Three Different Ways to Explain the Sulfur Depletion in the Clouds of Venus

PAUL B. RIMMER 1,2,3, SEAN JORDAN, 4 TEREZA CONSTANTINOU, 4 PETER WOITKE, 5, 6 OLIVER SHORTTLE 1, 7 RICHARD HOBBS, 7 AND ALESSIA PASCHODIMAS 8, 6

1 Department of Earth Sciences, University of Cambridge, Downing St, Cambridge CB2 3EQ, United Kingdom
2 Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom
3 MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, United Kingdom
4 Institute of Astronomy, University of Cambridge, Madingley Rd, Cambridge CB3 0HA, United Kingdom
5 SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
6 Centre for Exoplanet Science, University of St Andrews, St Andrews, UK
7 Institute of Astronomy, University of Cambridge, Madingley Rd, Cambridge CB3 0HA, United Kingdom
8 Earth and Environmental Sciences, University of St Andrews, Irvine Building, North Street, St Andrews, KY16 9AL, United Kingdom

(Received January 22, 2021; Revised NaN; Accepted NaN)

Submitted to PSJ

ABSTRACT

The depletion of SO₂ and H₂O in and above the clouds of Venus (45 – 65 km) cannot be explained by known gas-phase chemistry and the observed composition of the atmosphere. We apply a full-atmosphere model of Venus to investigate three potential explanations for the SO₂ and H₂O depletion: (1) varying the below-cloud water vapor (H₂O), (2) varying the below-cloud sulfur dioxide (SO₂), and (3) the incorporation of chemical reactions inside the sulfuric acid cloud droplets. We find that increasing the below-cloud H₂O to explain the SO₂ depletion results in a cloud top that is 20 km too high, above-cloud O₂ three orders of magnitude greater than observational upper limits and no SO above 80 km. The SO₂ depletion can be explained by decreasing the below-cloud SO₂ to 20 ppm. The depletion of SO₂ in the clouds can also be explained by the SO₂ dissolving into the clouds, if the droplets contain hydroxide salts. These salts buffer the cloud pH. The amount of salts sufficient to explain the SO₂ depletion entail a droplet pH of ~ 1 at 50 km. Since sulfuric acid is constantly condensing out into the cloud droplets, there must be a continuous and pervasive flux of salts of \(\sim 10^{−13} \text{mol cm}^{−2} \text{s}^{−1} \) driving the cloud droplet chemistry. An atmospheric probe can test both of these explanations by measuring the pH of the cloud droplets and the concentrations of gas-phase SO₂ below the clouds.
Both sulfur dioxide (SO_2) and water vapor (H_2O) are known to be depleted in the cloud layer of Venus (see, e.g., Vandaele et al. 2017a; Bierson & Zhang 2020), and to vary in abundance above the cloud top by an order of magnitude or more both spatially (Jessup et al. 2015; Encrenaz et al. 2019; Marcq et al. 2020), and temporally in years-long cycles (Marcq et al. 2013; Vandaele et al. 2017b). Both of these species participate in Venus’s atmospheric sulfur cycle (Yung & Demore 1982; Krasnopolsky 1982, 2007, 2010a, 2012; Mills et al. 2007; Zhang et al. 2012; Bierson & Zhang 2020). Their photo-destruction in the upper cloud layer ($60 – 70$ km) leads to formation of sulfuric acid (H_2SO_4), that condenses out and forms the clouds in Venus’s atmosphere (Yung & Demore 1982). The droplets rain out of the clouds at a height of $\lesssim 40$ km, where they evaporate (Yung & Demore 1982; Krasnopolsky 2007). The H_2SO_4 then dissociates and replenishes SO_2 and H_2O in the lower atmosphere (e.g., Krasnopolsky 2007). The behavior of all other known chemically reactive species in Venus’s atmosphere is influenced by this cycle (Krasnopolsky 2007, 2010a, 2012), and many of these species participate in this cycle. The sulfur cycle in the atmosphere of Venus establishes a strong and persistent redox gradient through the atmosphere of Venus. Venus is more reduced above the clouds and more oxidized below the clouds.

Though this cycle is central to the atmospheric chemistry of Venus, it is not fully understood, and no self-consistent full atmospheric model of Venus yet accounts for this cycle. There are several models of the lower atmosphere of Venus ($0 – 40$ km) that account for the efficient evaporation of H_2SO_4 and the effect of its dissociation products, SO_3 and H_2O, on the abundances of carbon monoxide (CO), carbonyl sulfide (OCS), and SO_2 (Krasnopolsky 2007, 2013). Other models describe the middle atmosphere of Venus ($60 – 120$ km) (e.g., Zhang et al. 2012), investigating the chemistry above the clouds ($60 – 80$ km) where SO_2 is depleted and then re-appears between 85 and 105 km (Sandor et al. 2010; Belyaev et al. 2012). Zhang et al. (2010) propose that night-side evaporation of H_2SO_4 at 85 – 105 km, followed by rapid displacement to the day side by strong winds and subsequent photodissociation, can explain this behavior. There has recently been a model of the upper clouds layer of Venus exploring the SO_2 depletion from 1 ppm to ~ 10 ppb, and the correlation with H_2O abundances in the clouds (Shao et al. 2020). A diagram of the sulfur cycle and its connection to other trace atmospheric species in the atmosphere of Venus is shown in Figure 1.

At least three atmospheric models of Venus also exist, but they either do not predict the observed SO_2 depletion (Yung et al. 2009), do not couple the SO_2 depletion to the sulfur cycle (Greaves et al. 2020a), or do not consider the H_2O and SO_2 depletion in concert. The best current full-atmospheric model that accounts for the SO_2 depletion, from Bierson & Zhang (2020), reproduces the SO_2 reasonably well, though only by fixing the H_2O profile and by introducing an effective “cold trap” throughout the cloud layer.

To explain the depletion of sulfur dioxide and water in concert, either some unknown chemistry must take place within the cloud layer, or observations of lower atmospheric SO_2 and/or H_2O must be mistaken. We explore both of these possibilities in this paper.
First, we give an overview of the data we try to explain (Section 2). Then in Section 3 we show why the sulfur cycle cannot be explained without either decreasing the amount of sulfur in the lower atmosphere or increasing the amount of hydrogen in the clouds, either by increasing the water vapor in the clouds or by transporting the hydrogen into the clouds in a different form. We propose that hydrogen could be contained either in aerosols that are lifted by winds into the clouds from the surface, delivered exogenously, or contained within the clouds within some unknown chemical species. In Section 4, we discuss our full atmospheric model for Venus. We then show the results of our model if the observational constraints on SO$_2$ and H$_2$O in the lower atmosphere are wrong (Sections 7.2 and 7.1) or if we introduce cloud chemistry (Section 7.3). In Section 7.3 we also predict the effect of this source of hydrogen on the cloud chemistry, chiefly on how it would act as a pH buffer in the clouds. We discuss the implications of our results in Section 8, particularly about how rainout and replenishment of hydrogen is needed to sustain the SO$_2$ gradient. We also speculate about possible sources of hydrogen and their delivery into the clouds, and ways of reconciling the changing cloud chemistry with observations. Section 9 contains our conclusions.

Figure 1. A scheme of the sulfur cycle on Venus. We include a hypothetical mechanism for cloud buffering by volcanic release of salts into the clouds, or levitation of dust particles with salts by winds into the cloud layer. For simplicity, this figure only shows the upward diffusion of species relevant for formation of the cloud and initiation of droplet chemistry, and not the settling, rainout and evaporation of cloud droplets, needed to complete the sulfur cycle.
2. OBSERVATIONAL CONSTRAINTS ON THE ATMOSPHERIC COMPOSITION OF VENUS

The species we included in our network robustly, and that are also observationally constrained in Venus’s atmosphere are carbon dioxide (CO₂), molecular nitrogen (N₂), sulfur dioxide (SO₂), water vapor (H₂O), carbon monoxide (CO), molecular oxygen (O₂), carbonyl sulfide (OCS), sulfuric acid vapor (H₂SO₄), hydrogen chloride (HCl), sulfur monoxide (SO), trisulfur (S₃), tetrasulfur (S₄), hydrogen sulfide (H₂S) and molecular hydrogen (H₂). Phosphine (PH₃) is also included in our network but not in a robust way. PH₃ may have been observed in the atmosphere of Venus (see Section 8.3 for details). There are also many remote observations that constrain cloud properties such as average particle size and indirectly infer that the clouds are made of droplets of high concentration sulfuric acid (See Section 8.2). To this date no definitive in situ measurements of the cloud droplet chemistry have been made, and so virtually nothing is directly known about the cloud droplet chemistry. Observations have been made by a variety of instruments on the ground, by orbital probes, and by in situ probes. We compiled this data ourselves from a variety of sources, and a more complete compilation has been made by Johnson & de Oliveira (2019), which includes several reactive species not incorporated into our network, such as HF, as well as unreactive species. Our compilation is given in Table 1.

Species	h_{min} (km)	h_{max} (km)	Mixing Ratio *	Reference	Obs Type
SO₂	…	…	ppm	…	…
…	30.0	40.0	130. ± 50.	Marcq et al. (2008)	Venus Express
…	0.	22.0	130. ± 35.	Gelman et al. (1979)	Venera 12
…	22	22	185. ± 43.	Oyama et al. (1979)	Pioneer Venus
…	35	45	130. ± 40.	Bédard & de Bergh (2007)	Ground
…	12	12	22.5 ± 2.5	Bertaux et al. (1996)	Vega 1, Vega 2
…	22	22	38.0 ± 3.8	Bertaux et al. (1996)	Vega 1, Vega 2
…	42	42	132.5 ± 14.	Bertaux et al. (1996)	Vega 1, Vega 2
…	52	52	107.5 ± 42.5	Bertaux et al. (1996)	Vega 1, Vega 2
…	35	45	130. ± 40.	Bédard & de Bergh (2007)	Ground
…	42	42	180. ± 70.	Pollack et al. (1993)	Ground
…	62	62	0.5 ± 0.1	Zasova et al. (1993)	Ground
…	62	62	1.5 ± 0.5	Zasova et al. (1993)	Ground
…	22	22	38. ± 10.	Bertaux et al. (1996)	Vega 1
…	12	12	25. ± 10.	Bertaux et al. (1996)	Vega 1
…	52	52	150. ± 70.	Bertaux et al. (1996)	Vega 1
…	52	52	65. ± 30.	Bertaux et al. (1996)	Vega 2

Table 1 continued on next page
Table 1 (continued)

Species	h_{min} (km)	h_{max} (km)	Mixing Ratio*	Reference	Obs Type
				Bertaux et al. (1996)	Vega 1
				Bertaux et al. (1996)	Vega 2
				Oyama et al. (1980)	Pioneer Venus
				Oyama et al. (1980)	Pioneer Venus
				Oyama et al. (1980)	Pioneer Venus
				Hoffman et al. (1980)	Pioneer Venus
				Hoffman et al. (1980)	Pioneer Venus
				Marcq et al. (2008)	Venus Express
				Encrenaz et al. (2012)	Ground
				Encrenaz et al. (2012)	Ground
				Na et al. (1990)	Ground
				Arney et al. (2014)	Ground
				Arney et al. (2014)	Ground
				Na et al. (1990)	IUE
				Na et al. (1990)	IUE
SO$_2$			ppm	Greaves et al. (2020a)	Ground**
H$_2$O			ppm		
				Marcq et al. (2008)	Venus Express
				de Bergh et al. (1995)	Venus Express
				Bézard & de Bergh (2007)	Venus Express
				Donahue et al. (1997)	Pioneer Venus
				Donahue et al. (1997)	Pioneer Venus
				Cottini et al. (2012)	Venus Express
				Evans & Ingalls (1969)	Ground
				Mukhin et al. (1982)	Venera 13, 14
				Surkov et al. (1982)	Venera 13, 14
				de Bergh et al. (1995)	Ground
				de Bergh et al. (1995)	Ground
				de Bergh et al. (1995)	Ground
				Meadows & Crisp (1996)	Ground
				Donahue & Hodges (1992)	Ground

Table 1 continued on next page
Species	h_{min} (km)	h_{max} (km)	Mixing Ratio*	Reference	Obs Type
...	10	26	28. ± 18.	Donahue & Hodges (1992)	Ground
...	58	60	20. ± 10.	Moroz et al. (1990)	Ground
...	52	60	1000. ± 500.	Surkov et al. (1987)	Vega 1, 2
...	42	42	150. ± 50.	Moroz et al. (1979)	Venera 11, 12
...	22	22	60. ± 30.	Moroz et al. (1979)	Venera 11, 12
...	35	45	40. ± 20.	Bezard et al. (1990)	Ground
...	10	40	30. ± 10.	Pollack et al. (1993)	Ground
...	15	25	30. ± 10.	de Bergh et al. (1995)	Ground
...	0	15	30. ± 15.	de Bergh et al. (1995)	Ground
...	0	0	20. ± 10.	Moroz et al. (1979)	Venera 11, 12
...	30	40	26. ± 4.	Marcq et al. (2006)	Ground
...	30	40	35. ± 4.	Tsang et al. (2008)	Venus Express
...	30	40	30. ± 4.	Tsang et al. (2008)	Venus Express
...	30	40	34. ± 2.	Arney et al. (2014)	Ground
...	30	40	33. ± 3.	Arney et al. (2014)	Ground
...	15	30	33. ± 2.	Arney et al. (2014)	Ground
...	15	30	32. ± 2.	Arney et al. (2014)	Ground
...	0	15	44. ± 9.	Bézard & de Bergh (2007)	Venus Express
...	0	15	30. ± 10.	Bézard et al. (2011)	Venus Express
...	0	15	31. ± 9.	Chamberlain et al. (2013)	AAT
...	0	15	29. ± 2.	Arney et al. (2014)	Ground
...	0	15	27. ± 2.	Arney et al. (2014)	Ground
...	0	15	25.7 ± 1.4	Fedorova et al. (2015)	Venus Express
...	0	15	29.4 ± 1.6	Fedorova et al. (2015)	Venus Express
...	65	74	6.0 ± 4.0	Fedorova et al. (2016)	Pioneer Venus
...	70	110	1.0 ± 0.9	Fedorova et al. (2008)	Venus Express
...	45	55	20.0 ± 10.	Meadows & Crisp (1996)	Ground
...	0	15	45. ± 15.	Meadows & Crisp (1996)	Ground
...	65	100	1.8 ± 1.8	Sandor & Clancy (2005)	Ground
...	65	120	2.5 ± 0.6	Encrenaz et al. (2015)	Ground
...	65	75	3.0 ± 1.0	Cottini et al. (2012)	Venus Express
...	65	75	5.0 ± 2.0	Cottini et al. (2012)	Venus Express
H$_2$O	ppm

Table 1 continued on next page
Table 1 (continued)

Species	h_{min}	h_{max}	Mixing Ratio*	Reference	Obs Type
CO	ppm
	36	36	27.5 ± 3.5	Marcq et al. (2008)	Venus Express
	35	35	23.0 ± 2.0	Tsang et al. (2008)	Venus Express
	35	35	32.0 ± 2.0	Tsang et al. (2008)	Venus Express
	22	22	20.0 ± 0.4	Oyama et al. (1979)	Pioneer Venus
	64	64	45.0 ± 10.0	Fegley (2014)	Venera 13, 14
	0	0	3.8 ± 3.2	Fegley (2014)	Venera 13, 14
	52	52	32.0 ± 22.0	Oyama et al. (1980)	Pioneer Venus
	42	42	30.0 ± 18.0	Oyama et al. (1980)	Pioneer Venus
	22	22	20.0 ± 3.0	Oyama et al. (1980)	Pioneer Venus
	0	42	28.0 ± 7.0	Gelman et al. (1979)	Venera 12
	64. 64.	45.0 ± 10.0		Connes et al. (1968)	Ground
	90	90	180. ± 90.0	Wilson et al. (1981)	Ground
	36	36	23.0 ± 5.0	Pollack et al. (1993)	Ground
	40	40	29.0 ± 7.0	Pollack et al. (1993)	Ground
	35	45	45.0 ± 10.0	Bézard et al. (1990)	Ground
	36	36	23.0 ± 10.0	Pollack et al. (1993)	Ground
	28	28	23.0 ± 10.0	Bézard & de Bergh (2007)	Ground
	42	42	30.0 ± 15.0	Bézard & de Bergh (2007)	Ground
	36	36	24.0 ± 2.0	Marcq et al. (2006)	Ground
	36	36	27.0 ± 3.0	Cotton et al. (2012)	Ground
	68	71	70.0 ± 8.0	Krasnopolsky (2008)	Ground
	68	68	51.0 ± 4.0	Krasnopolsky (2010a)	Ground
	68	68	40.0 ± 4.0	Krasnopolsky (2010a)	Ground
	104	104	560.0 ± 100.0	Krasnopolsky (2014)	Ground
	70	70	35.0 ± 10.0	Marcq et al. (2015)	Ground
	30	30	30.0 ± 5.0	Collard et al. (1993)	Galileo
	30	30	40.0 ± 5.0	Collard et al. (1993)	Galileo
	35	35	30.0 ± 15.0	Marcq et al. (2005)	Ground
	104	104	560.0 ± 100.0	Krasnopolsky (2014)	Ground
	65	75	70.0 ± 10.0	Grassi et al. (2014)	Venus Express
	65	75	60.0 ± 5.0	Grassi et al. (2014)	Venus Express

Table 1 continued on next page
Table 1 (continued)

Species	h_{min} (km)	h_{max} (km)	Mixing Ratio*	Reference	Obs Type
CO	ppm
O$_2$	ppm
	52 52	43. ± 25.	Oyama et al. (1979)	Pioneer Venus	
	42 42	16. ± 8.	Oyama et al. (1979)	Pioneer Venus	
	52 52	44. ± 25.	Oyama et al. (1980)	Pioneer Venus	
	42 42	16. ± 7.	Oyama et al. (1980)	Pioneer Venus	
	35 58	18. ± 4.	Mukhin et al. (1982)	Venera 13, 14	
	60 100	< 2.8	Marcq et al. (2018)	Ground	
OCS	ppm
	30 30	14.0 ± 6.0	Pollack et al. (1993)	Ground	
	33 33	3.25 ± 0.75	Marcq et al. (2008)	Venus Express	
	29 37	4.0 ± 20.0	Mukhin et al. (1982)	Venera 13, 14	
	33 33	4.4 ± 1.0	Pollack et al. (1993)	Ground	
	28 28	30.0 ± 10.0	Pollack et al. (1993)	Ground	
	38 38	0.35 ± 0.1	Marcq et al. (2005)	Ground	
	0 30	15.0 ± 5.0	Bézard & de Bergh (2007)	Ground	
	30 30	14.0 ± 6.0	Pollack et al. (1993)	Ground	
	29 37	40.0 ± 20.0	Mukhin et al. (1983)	Venera 13, 14	
	36 36	0.52 ± 0.05	Marcq et al. (2006)	Ground	
	30 30	16.0 ± 8.0	Bézard & de Bergh (2007)	Ground	
	38 38	0.35 ± 0.1	Bézard & de Bergh (2007)	Ground	
	36 36	0.44 ± 0.1	Arney et al. (2014)	Ground	
	36 36	0.57 ± 0.12	Arney et al. (2014)	Ground	
	36 36	0.5 ± 0.02	Marcq et al. (2005)	Ground	
	36 36	0.46 ± 0.01	Marcq et al. (2005)	Ground	
	36 36	0.54 ± 0.13	Arney et al. (2014)	Ground	
	36 36	0.61 ± 0.12	Arney et al. (2014)	Ground	
	65 65	< 0.004	Krasnopolsky (2010a)	Ground	
	65 65	0.005 ± 0.003	Krasnopolsky (2010a)	Ground	
OCS	ppm
H$_2$SO$_4$	ppm
	50 52	3.0 ± 2.0	Oschlisniok et al. (2012)	Venus Express	

Table 1 continued on next page
Species	h_{min} (km)	h_{max} (km)	Mixing Ratio*	Reference	Obs Type
H$_2$SO$_4$	ppm
HCl	ppm
...	15 25	0.41 ± 0.04	Arney et al. (2014)	Ground	
...	15 25	0.42 ± 0.055	Arney et al. (2014)	Ground	
...	74 74	0.4 ± 0.03	Krasnopolsky (2010b)	Ground	
...	61 67	0.76 ± 0.1	Iwagami et al. (2008)	Ground	
...	74 74	0.4 ± 0.03	Krasnopolsky (2010b)	Ground	
...	70 70	0.4 ± 0.04	Sandor & Clancy (2012)	Ground	
...	90 90	0.2 ± 0.02	Sandor & Clancy (2012)	Ground	
...	35 70	0.5 ± 0.12	Connes et al. (1967)	Ground	
...	74 74	0.4 ± 0.04	Krasnopolsky (2010b)	Ground	
...	36 36	0.42 ± 0.07	Young (1972)	Ground	
...	50 50	0.61 ± 0.06	Young (1972)	Ground	
...	30 40	0.005 ± 0.002	Bezard et al. (1990)	Ground	
...	70 70	0.4 ± 0.04	Bezard et al. (1990)	Ground	
...	15 30	0.5 ± 0.05	Bezard et al. (1990)	Ground	
...	45 55	0.5 ± 0.05	Iwagami et al. (2008)	Ground	
...	65 75	0.6 ± 0.1	Connes et al. (1967)	Ground	
HCl	ppm
PH$_3$	ppb
...	55.0 60.0	20.0 ± 10.0	Greaves et al. (2020a)	Ground†	
...	55.0 60.0	1.5 ± 1.0	Greaves et al. (2020b)	Ground†	
...	60.0 65.0	< 5.0	Encrenaz et al. (2020)	Ground	
PH$_3$	ppb
SO	ppb
...	84.0 90.0	8.0 ± 2.0	Encrenaz et al. (2015)	Ground	
...	84.0 90.0	8.0 ± 2.0	Encrenaz et al. (2015)	Ground	
...	65.0 75.0	20. ± 10.0	Na et al. (1990)	Ground	
SO	ppb
S$_3$	ppb
...	23.0 23.0	0.04 ± 0.01	Bézard & de Bergh (2007)	Venera 11-14	
...	3.0 19.0	0.065 ± 0.035	Maiorov et al. (2005)	Venera 11	
...	3.0 19.0	11. ± 3.0	Krasnopolsky (2013)	Venera 11	

Table 1 continued on next page
3. THE PUZZLE OF SULFUR DEPLETION

There is good observational evidence that the concentration of SO$_2$, the dominant sulfur-bearing species in Venus’s atmosphere, varies by several orders of magnitude between altitudes of 40 – 80 km. The concentration of SO$_2$ is above 100 ppm at 40 km and between 1 and 100 ppb at 80 km, and we call the decrease in SO$_2$ with height the “depletion” of SO$_2$. The standard explanation for this depletion predicts the major presumed constituent of the clouds of Venus: H$_2$SO$_4$. Near the top of the clouds:

\[
\begin{align*}
\text{CO}_2 + h\nu &\rightarrow \text{CO} + \text{O} \\
\text{SO}_2 + h\nu &\rightarrow \text{SO} + \text{O} \\
\text{SO}_2 + \text{O} + \text{M} &\rightarrow \text{SO}_3 + \text{M} \\
\text{SO}_3 + 2\text{H}_2\text{O} &\rightarrow \text{H}_2\text{SO}_4 + \text{H}_2\text{O}
\end{align*}
\]

The H$_2$SO$_4$ condenses out to droplets that then drop down to ~ 40 km, where the droplets evaporate. These droplets are predicted to make up the cloud layer. This mechanism ends up reducing the upper atmosphere by replacing CO$_2$ with CO and SO$_2$ with SO. The excess oxygen is bound up in the sulfuric acid which has condensed out of the atmosphere.

An oxygen atom is needed to form SO$_3$, and this O must come from either CO$_2$ or SO$_2$ because they are by far the most abundant O-containing molecules. The formation of one molecule of H$_2$SO$_4$
is the destruction of one molecule of H$_2$O and at least one molecule of SO$_2$ (the sum of Reactions (1) and (3)), at most two molecules of SO$_2$ (the sum of Reactions (2) and (3)). Between one and two molecules of SO$_2$ is lost with every molecule of H$_2$O to make a molecule of H$_2$SO$_4$, this way, and so this mechanism predicts that the below-cloud H$_2$O and SO$_2$ concentrations be within a factor of two of each other. Therefore, the maximum depletion of SO$_2$ in the atmosphere by this mechanism is equal to $(\chi + 1) [\text{H}_2\text{O}]$, where $[\text{H}_2\text{O}] (\text{cm}^{-3})$ is the atmospheric mixing ratio of H$_2$O and χ is the fraction of H$_2$SO$_4$-bound O that was produced by SO$_2$ dissociation.

The observational constraints, however, are $[\text{SO}_2] \approx 150 \text{ ppm}$ and $[\text{H}_2\text{O}] \approx 30 \text{ ppm}$. Even if $\chi = 1$, and all water was converted to H$_2$SO$_4$, the SO$_2$ would only be depleted by $\sim 20\%$. This is insufficient to explain the several-orders-of-magnitude depletion of SO$_2$.

Therefore the SO$_2$ depletion is a puzzle for which there is no successful solution in the literature consistent with observations. This implies that either the observational constraints on H$_2$O and/or SO$_2$ in the lower atmosphere are wrong and their abundances below the clouds are within a factor of two of each other, or that some alternative chemistry explains the SO$_2$ depletion.

One alternative mechanism to explain the SO$_2$ depletion is the formation of condensible sulfur allotropes out of SO$_2$ photodissociation or thermal dissociation products. The remaining sulfur cannot be in the form of SO, because the resulting concentrations of SO would be at least two orders of magnitude greater than indicated by above-cloud observations. This explanation requires photodissociation of both SO and SO$_2$ near the cloud top that is many orders of magnitude more efficient than predicted by any model, or similarly more efficient thermal dissociation of SO$_2$, and must explain 80% of the SO$_2$ depletion. 20% of the SO$_2$ will be converted into SO$_3$ and will react with H$_2$O to form H$_2$SO$_4$, condensing out. Another 20% will balance the reducing power of the SO$_3$ removal. The remaining 60% would have to go through the either or both of the total reactions:

$$
2\text{SO}_2 \rightarrow \text{S}_2 + 2\text{O}_2, \quad \text{Thermochemistry; (5)}
$$

$$
2\text{SO}_2 + 4h\nu \rightarrow \text{S}_2 + 2\text{O}_2 \quad \text{Photochemistry. (6)}
$$

This would either predict 150 ppm additional O$_2$ in the upper atmosphere of Venus, exacerbating the O$_2$ overabundance problem discussed in the Introduction, or would lead to oxidation of CO. However, oxidation of CO would cause it to become depleted, whereas we see that CO increases above the clouds. It is not possible that the excess oxygen would remain in the form of atomic oxygen, because atomic oxygen is not chemically stable at above-cloud altitudes. It is possible that the oxygen is stored in some other chemical species that has not yet been identified, but thus far there is no known candidate species at several ppm concentrations needed to contain the excess oxygen. For these reasons we do not consider this explanation further here.

4. THE MODEL

For this work we use a photochemistry-diffusion model based on the model of Rimmer & Helling (2016). The model is composed of a solver and a network. The solver, ARGO, solves the time-dependent set of coupled non-linear differential equations:

$$
\frac{dn_X}{dt} = P_X - L_X n_X - \frac{\partial \Phi_X}{\partial t}, \quad (7)
$$

where $n_X (\text{cm}^{-3})$ is the number density of species X at height z (cm) and time t (s), $P_X (\text{cm}^{-3} \text{ s}^{-1})$ is the rate of production of X at height z and time t, $L_X (\text{s}^{-1})$ is the rate constant for destruction.
of species X at height \(z \) and time \(t \). The term \(\partial \Phi_X / \partial z \) (cm\(^{-3}\) s\(^{-1}\)) describes the divergence of the vertical diffusion flux.

As described by Rimmer \& Helling (2016), the chemistry is solved by following the motion of a parcel up and down through a one-dimensional atmosphere described by a grid of set temperature, \(T \) (K), pressure, \(p \) (bar) and other properties. A parcel starts at the surface with a particular set of initial chemical conditions, and then moves through the atmosphere at a velocity determined by the Eddy diffusion coefficient:

\[
t_{\text{chem}} = \frac{(\Delta z)^2}{2K_{zz}},
\]

where \(\Delta z \) (km) is the change in height from one part of the grid to the next, and \(K_{zz} \) (cm\(^2\) s\(^{-1}\)) is the Eddy diffusion coefficient. The volume mixing ratios are recorded for each species at each grid height, constructing chemical profiles for the atmosphere. There is a method to account for molecular diffusion, described by Rimmer \& Helling (2016) and corrected by Rimmer \& Helling (2019). We do not solve above Venus’s homopause, so molecular diffusion, though included, is not significant and we do not describe it in detail here. After the parcel makes a single complete trip, a UV radiative transfer model is run on the recorded profiles, completing a single global iteration and recording the actinic flux\(^1\) \(F_\lambda \) (photons cm\(^{-2}\) s\(^{-1}\); photons will be excluded from the units hereafter).

This method reproduces results for modern Earth and Jupiter (Rimmer \& Helling 2016) and agrees with Eulerian solvers for chemical quenching heights in Hot Jupiter atmospheres (Tsai et al. 2017; Hobbs et al. 2019, 2020).

Some of the values of \(L_X \) (and corresponding production coefficients) are the result of direct photodissociation and photoionization. These are all set to zero for the first global iteration, and then are calculated for global iteration \(I \) using the chemical profiles of global iteration \(I - 1 \). The photodissociation and photoionization rate constant for species X are:

\[
k_\lambda(X) = \frac{1}{2} \int F_\lambda \sigma_\lambda(X) \, d\lambda
\]

where \(\lambda \) (Å) is the wavelength, \(z \) (km) is the atmospheric height, \(\sigma_\lambda(X) \) (cm\(^2\)) are the photochemical cross-sections (see Appendix A). The factor of 1/2 is typically included to account for rotation of the planet. Venus rotates too slowly to include this factor for the same reason, and would typically be treated as having a dayside and nightside chemistry. However, the zonal winds of Venus are very strong, horizontal mixing is fast, and for simplicity we consider the atmosphere to be a well-mixed average of day-side and night-side chemistries, which will be true for the long-lifetime and medium-lifetime species. The flux at height \(z \) is given by:

\[
F_\lambda(z) = F_\lambda(z_0) e^{-(\tau+\tau_\alpha)/\mu_0} + F_{\text{diff}}.
\]

Here \(F_\lambda(z_0) \) (cm\(^{-2}\) s\(^{-1}\) Å\(^{-1}\)) is the top-of-atmosphere (TOA) flux as described in Section 4.1, \(F_{\text{diff}} \) (cm\(^{-2}\) s\(^{-1}\) Å\(^{-1}\)) is the diffuse flux from scattering (see Rimmer \& Helling 2016), the cosine of the average zenith angle \(\mu_0 = 0.54 \) (see Hu et al. 2012), \(\tau \) is the optical depth from molecular absorption calculated from the chemical profiles using the prior global solution as well as the photochemical

\(^1\) The actinic flux is the total (direct and diffusive) spectral irradiance integrated over a unit sphere.
cross-sections (see Appendix A for details). In addition, \(\tau_a \) is the additional optical depth due to Venus’s mysterious UV absorber, described in Section 4.1.

Beyond these photodissociation and photoionization rate constants, the coefficients used to construct \(P_X \) and \(L_X \) are provided by the chemical network, STAND2020, which we introduce here. We start with the sulfur network of Hobbs et al. (2020) and add all relevant reactions involving species without thermochemical data from Greaves et al. (2020a). The network includes 2901 reversible reactions and 537 irreversible reactions involving 480 species comprised of H/C/N/O/S/Cl and a handful of other elements. The network, including added condensation chemistry for sulfuric acid and sulfur allotropes, is described in detail in Appendix A.

In addition, we track the dissolution of \(\text{SO}_2 \) into the cloud droplets and subsequent liquid-phase chemistry for the cloud chemistry model described in Section 6.

The chemical profiles from the most recent global iteration, \(I \) are compared to the profiles from the next most recent global iteration, \(I-1 \) in order to determine convergence. Convergence criteria are the same as for Greaves et al. (2020a).

We give the parameters and initial conditions for our model in Section 4.1, including the temperature profile, Eddy diffusion, stellar irradiation, and surface boundary conditions for the chemistry. In Section 4.2, we discuss the consistency of these initial conditions compared to chemical equilibrium at the surface.

4.1. Parameters and Initial Conditions

The initial conditions and parameters we use are are similar to those used for Greaves et al. (2020a). We use the same fixed temperature profile as Greaves et al. (2020a), which was initially taken from Krasnopolsky (2007) and Krasnopolsky (2012). We use Eddy diffusion profiles from the same sources, though we also explore the effect of using the in-cloud Eddy diffusion coefficients of Bierson & Zhang (2020) in Section 5. The profiles we use are shown in Figure 2.

We use a scaled top-of-atmosphere (TOA) solar spectrum from 1 – 10000 Å, compiled by Granville-Willett (2017), for our TOA boundary condition. This data was compiled using Matthes et al. (2017) for the 401 – 1149 Å spectral region and Coddington et al. (2015) for the other wavelengths. The actinic flux is then multiplied by 1.913 to account for the difference in average distances of Earth and Venus from the Sun. The TOA spectrum is included in the Supplementary Materials.

We also include, in addition to molecular absorption and scattering as described above in Section 4, a parameterization of the mysterious UV absorber present within Venus’s cloud layer. The parameterization originates with Krasnopolsky (2012) and is the same as that used by Greaves et al. (2020a), it takes the form:

\[
\frac{d\tau_a}{dz} = 0.056 \text{ km}^{-1} \exp \left\{ - \frac{z - 67 \text{ km}}{3 \text{ km}} - \frac{\lambda - 3600 \text{ Å}}{1000 \text{ Å}} \right\}, \quad z > 67 \text{ km};
\]

\[
\frac{d\tau_a}{dz} = 0.056 \text{ km}^{-1} \exp \left\{ - \frac{\lambda - 3600 \text{ Å}}{1000 \text{ Å}} \right\}, \quad 58 \text{ km} < z \leq 67 \text{ km};
\]

\[
\frac{d\tau_a}{dz} = 0.0 \text{ km}^{-1}, \quad z \leq 58 \text{ km}.
\]

Where \(\tau_a \) is added to the optical depth in Eq. (10).

The initial surface mixing ratios we set for Venus’s atmosphere are given in Table 2, defining the bulk atmosphere. For all of the models presented outside of Section 8.3, we do not include \(\text{PH}_3 \). Now
Table 2. Initial Surface Abundances used for Model Atmospheres of Venus

CO$_2$	N$_2$	SO$_2$	H$_2$O	OCS	CO	HCl	H$_2$	H$_2$S	NO
0.96	0.03	150 ppm*	30 ppm*	5 ppm	20 ppm	500 ppb	3 ppb	10 ppb	5.5 ppb

*The mixing ratios of SO$_2$ and H$_2$O are varied for some of the models.

that we’ve defined our model and parameters, we will lay out the different scenarios that we consider for explaining the observed SO$_2$ depletion.

Figure 2. Atmospheric temperature, T (K, left), and K_{zz} (cm2 s$^{-1}$, right), as a function of height h (km) (from Krasnopolsky 2007). The two values of K_{zz} are for the cloud chemistry and the low-sulfur models (Sections 5, 6, 7.1 and 7.3, solid) and high-water models (Sections 5 and 7.2, dashed and dotted), from Krasnopolsky (2007, 2012) and Bierson & Zhang (2020) respectively.

4.2. Equilibrium Surface Composition

Here we discuss the consistency of the chemical boundary conditions (Table 2) compared to chemical equilibrium, and the implications these conditions may have on surface mineralogy. We find there are solutions where the gas-phase chemistry is consistent with our chosen boundary conditions and the condensed-phase chemistry is broadly consistent with observed surface mineral compositions. We will explore these conditions and their implications for hypothetical cloud chemistry in Section 8.

In June 1985, the Vega 2 lander determined the composition of the Venusian surface rock in the northern region of Aphrodite Terra (Surkov et al. 1986, see also Fegley 2014). The rock was analysed by X-ray fluorescence employing instrumentation that had been improved based on the experience with the previous Venera 13 and 14 missions (Surkov et al. 1982, 1984). The measured oxide ratios are listed in Table 3. We have used these data, in combination with the observed gas composition at the surface in Table 2, to investigate the question in how far the gas at the bottom of the Venusian atmosphere is in chemical equilibrium and in phase equilibrium with the surface rock.

These investigations were carried out by means of the chemical and phase equilibrium code GGchem (Woitke et al. 2018) taking into account the following 16 elements: H, C, N, O, F, S, Cl, Fe, Mn, Si, Mg, Ca, Al, Na, K, and Ti. No information is available about phosphorous at the
Venusian surface, so we have excluded that element from this investigation. GGchem finds 442 gas phase species (atoms, ions, molecules and molecular ions) and 190 condensed species in its databases for this selection of elements. The thermochemical data for the molecules are based on the NIST-Janaf tables (Chase et al. 1982; Chase 1986, 1998), as fitted by Stock (2008), with some additions for diatomic molecules from Barklem & Collet (2016). Condensed phase data are taken from the SUPCRTBL database (Zimmer et al. 2016) and from the NIST-Janaf database. Some additional vapour pressure data are taken from Yaws (1999), Weast (1971), Ackerman & Marley (2001), and Zahnle et al. (2016).

We consider a mixture of gas and condensed species at \(T = 735 \text{ K} \) and \(p = 90 \text{ bars} \) with total (gas + condensed) element abundances \(\epsilon^0 \), see Herbort et al. (2020, their figure 1). In order to find these element abundances we first convert the solid oxide mass ratios given in Table 3 into element particle ratios. Second, we multiply by an arbitrary factor of 1000 and then add the observed gas phase element abundances from Table 2. Third, we carefully adjust the total oxygen abundance \(\epsilon^0_O \) until the gas over the condensates has a \(\text{SO}_2 \) concentration of 150 ppm in the model. The arbitrary factor in preparation step two causes the model to produce mostly condensed phases with only small amounts of gas above it. That factor has little influence on the results as long as it is large. The reason for this behaviour is that once GGchem has determined the solid composition in form of active condensates, which have supersaturation ratio \(S = 1 \) (all other condensates have \(S < 1 \)), one can add arbitrary amounts of those condensates to \(\epsilon^0_O \), they will just fall out again without changing the resulting gas composition.

The results of this model are shown in Table 4. The resultant solid composition of the Venusian surface rock is a felsic mixture of enstatite (\(\text{MgSiO}_3[s] \)) and quartz (\(\text{SiO}_2[s] \)). The condensates anorthite (\(\text{CaAl}_2\text{Si}_2\text{O}_8[s] \)), albite (\(\text{NaAlSi}_3\text{O}_3[s] \)), and microcline (\(\text{KAlSi}_3\text{O}_8[s] \)) are the three main minerals forming feldspar which is found e.g. in basaltic rock on Earth. Iron is found to be entirely bound in magnetite (\(\text{Fe}_2\text{O}_3[s] \)). No carbonates and no phyllosilicates are found to be stable under the assumed conditions, nor any minerals containing chlorine. The only halide found to be stable is magnesium fluoride (\(\text{MgF}_2[s] \)). Therefore, all carbon, nitrogen, hydrogen and chlorine assumed in the model is present in the gas, which allows us to directly fit the observed gas phase concentrations of \(\text{CO}_2 \), \(\text{N}_2 \), \(\text{H}_2\text{O} \) and \(\text{HCl} \).

Fitting the \(\text{SO}_2 \) concentration is more difficult, because sulphur is mostly contained in anhydrite (\(\text{CaSO}_4 \)). In the close vicinity of the equilibrium solution outlined in Table 4, we see that additional oxygen is used to form more anhydrite in the model on the expense of gaseous \(\text{SO}_2 \) and anorthite (\(\text{CaAl}_2\text{Si}_2\text{O}_8[s] \)) via

\[
\text{O} + \text{SO}_2 + \text{CaAl}_2\text{Si}_2\text{O}_8[s] \rightleftharpoons \text{CaSO}_4[s] + \text{Al}_2\text{O}_3[s] + 2\text{SiO}_2[s] ,
\]

The following elements were not detected: Cl, Cu and Pb <0.3%, Zn<0.2%, Pb, As, Se, Br, Sr, Y, Zr, Nb, Mo <0.1%.

Table 3. Oxide mass fractions [%] of the surface rock measured by the Vega 2 lander (Surkov et al. 1986).

| \(\text{SiO}_2 \) & \(\text{TiO}_2 \) & \(\text{Al}_2\text{O}_3 \) & \(\text{FeO} \) & \(\text{MnO} \) & \(\text{MgO} \) & \(\text{CaO} \) & \(\text{Na}_2\text{O} \) & \(\text{K}_2\text{O} \) & \(\text{SO}_3 \) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 45.6 ± 3.2 | 0.2 ± 0.1 | 16 ± 1.8 | 7.7 ± 1.1 | 0.14 ± 0.12 | 11.5 ± 3.7 | 7.5 ± 0.7 | 2.0 | 0.1 ± 0.08 | 4.7 ± 1.5 |

The following elements were not detected: Cl, Cu and Pb <0.3%, Zn<0.2%, Pb, As, Se, Br, Sr, Y, Zr, Nb, Mo <0.1%.
Table 4. Results of the GGchem model for the bottom of the Venusian atmosphere assuming the gas to be in chemical equilibrium and in phase equilibrium with the surface rock at $T=735$ K and $p=90$ bars.

Gas phase composition

	CO$_2$	N$_2$	SO$_2$	H$_2$O	CO	OCS	HCL	HF	S$_2$	H$_2$S	S$_2$O	H$_2$	
input	96%	3%	150 ppm	30 ppm	20 ppm	5 ppm	500 ppb	500 ppb	-	10 ppb	-	3 ppb	
result	97%	3%	150 ppm	30 ppm	12 ppm	9 ppm	505 ppb	355 ppb	114 ppb	57 ppb	17 ppb	3 ppb	

All other molecules have concentrations <1 ppm in the model.

Solid composition (results in mass fractions)

	MgSiO$_3$	SiO$_2$	CaAl$_2$Si$_2$O$_8$	NaAlSi$_3$O$_8$	CaSO$_4$	Fe$_2$O$_3$	Al$_2$O$_3$	TiO$_2$	KAlSi$_3$O$_8$	Mn$_3$Al$_2$Si$_3$O$_{12}$	MgF$_2$
mass %	29.7%	7.6%	21.7%	17.6%	8.3%	8.9%	5.1%	0.2%	0.6%	0.3%	(trace)

MgSiO$_3$ = enstatite, SiO$_2$ = quartz, CaAl$_2$Si$_2$O$_8$ = anorthite, NaAlSi$_3$O$_8$ = albite, CaSO$_4$ = anhydrite, Fe$_2$O$_3$ = magnetite, Al$_2$O$_3$ = corundum, TiO$_2$ = rutile, KAlSi$_3$O$_8$ = microcline, Mn$_3$Al$_2$Si$_3$O$_{12}$ = spessartine, MgF$_2$ = magnesium fluoride. All other condensates are under-saturated in the model and have zero mass fractions.

which is a potentially important buffer mechanism to understand the SO$_2$ concentration in the lower Venus atmosphere. It allows us in the model to adjust the total oxygen abundance ϵ_0^O to find the desired SO$_2$ concentration (more oxygen means less SO$_2$).

Table 4 shows that it is possible to explain both the observed composition of the near-crust Venusian atmosphere and the solid composition of the surface rock by a simple consistent phase equilibrium model. All molecules that are predicted to be abundant in our model (those with percent or ppm concentrations) have observed counterparts. The abundance hierarchy matches between model and observations. Other common molecules like CH$_4$ and NH$_3$, which have extremely small abundances ($<10^{-15}$) in our model, are not observed. The Venus atmosphere can hence be classified as type B atmosphere according to Woitke et al. (2020). All predicted molecular concentrations are in reasonable agreement with the observed values, in particular when taking into account the large measurement uncertainties (see Table 1). We note, however that this does not prove that the Venusian atmosphere is in chemical and phase equilibrium with the surface rock, it only shows that the data can be interpreted that way.

For the water-rich scenario, see Sect. 5, we can increase the hydrogen abundance to find a model with 200 ppm H$_2$O, which has little effect on CO and OCS, but results in slightly increased abundances of the ppb molecules, 149 ppm SO$_2$, 12 ppm CO, 9 ppm OCS, 505 ppb HCl, 505 ppb HF, 110 ppb S$_2$, 370 ppb H$_2$S, 110 ppb S$_2$O, and 18 ppb H$_2$, which is arguably still consistent with the observations. For the sulphur-poor scenario, we can increase the oxygen abundance to find a model with 20 ppm SO$_2$. In that case, the atmosphere is found to have a purer, more oxidising character with 30 ppm H$_2$O, 2 ppm CO, 4 ppb OCS, 505 ppb HCl, 355 ppb HF, and S$_2$, H$_2$S, S$_2$O, H$_2$ all <1 ppb, which seems inconsistent with the observations.

5. HYPOTHESIS: THE OBSERVATIONAL CONSTRAINTS ARE WRONG

One possibility to consider is that the below-cloud observational constraints are incorrect. Possibly the below-cloud water vapor is much higher than observations suggest, a possibility considered by Yung & Demore (1982). Or the below-cloud sulfur dioxide is much lower than most observations suggest.
In order to explore the sulfur-poor hypothesis we vary the below-cloud SO$_2$ abundance from 80 ppm down to 6 ppm with below-cloud H$_2$O kept at the nominal value (30 ppm). To explore the water-rich hypothesis we vary the below-cloud H$_2$O abundance from 30 ppm up to 200 ppm with SO$_2$ kept at the nominal value (150 ppm). In this case we find that the observed above-cloud SO$_2$ depletion is not achieved for any value of below-cloud H$_2$O due to H$_2$O self-shielding effects.

To explore the possibility of the water-rich hypothesis further we test the effect of introducing a trap in the eddy diffusion profile within the cloud layer alongside varying the H$_2$O abundance below the clouds. Observational constraints on the eddy diffusivity as a function of altitude in the atmosphere are sparse. Marcq et al. (2018) have suggested that the existence of statically stable layers in the cloud region may inhibit dynamical exchange between the upper and lower regions of the atmosphere, a possibility explored by Bierson & Zhang (2020). In the present work we test this possibility by modifying the nominal eddy diffusion profile taken from Krasnopolsky (2007) and Krasnopolsky (2012) to include a trap of constant lower K_{zz} across the extent of the cloud layer. The range of values that we explore for K_{zz} in the trap are 5000, 1000, 500 and 100 cm2s$^{-1}$, shown in figure 2. Such a K_{zz} trap, if it exists in the Venus cloud layer, is particularly relevant to the water-rich hypothesis as enhanced water abundance below the clouds would result in lesser thermal heating flux at the cloud base due to H$_2$O IR absorption, which in turn increases the convective stability and decreases the eddy diffusivity, shown by Yamamoto (2014). We investigate the results from combining a K_{zz} trap and enhanced below-cloud water abundance.

6. HYPOTHESIS: ANOTHER SOURCE OF HYDROGEN IN THE CLOUDS

The SO$_2$ depletion can be explained if there is another source of hydrogen in the clouds. Here we will use NaOH as that source of hydrogen for the sake of convenience when calculating the cloud droplet chemistry. We are not claiming that this is the source of hydrogen. We will discuss possible sources of this excess hydrogen in Section 8.

Some SO$_2$ will dissolve into the cloud droplets directly, with a concentration in the droplet, c (mol/L), linearly proportional to the partial pressure of SO$_2$, with the Henry’s Law constant, H_{SO_2} (mol/(L bar)), as the constant of proportionality:

$$c(SO_2) = H_{SO_2} \, p_{SO_2}.$$ \hspace{1cm} (13)

Here p_{SO_2} is the partial pressure of SO$_2$, with the total gas pressure p (bar) and f_{SO_2} as the volume mixing ratio of SO$_2$, equal to $n_{SO_2}/(\Sigma n_X)$.

For SO$_2$ dissolved in water, the Henry’s Law constant is $\approx 10^{-2}$ mol/(L bar) (Burkholder et al. 2020). For SO$_2$ dissolved in sulfuric acid, the constant increases with the sulfuric acid concentration between 0.1 and 1 mol/(L bar) (Zhang et al. 1998). The SO$_2$ then participates in the following reactions (here g is gas-phase, ℓ is in the droplet). We first consider the dissolution of SO$_2$ and H$_2$O into the droplets by Henry’s law.

$$\text{SO}_2(g) \rightleftharpoons \text{SO}_2(\ell),$$ \hspace{1cm} (14)

$$\text{H}_2\text{O}(g) \rightleftharpoons \text{H}_2\text{O}(\ell).$$ \hspace{1cm} (15)

The rate constants for this reaction are balanced such that the concentration of SO$_2$ at any point agrees with Eq. (13) when accounting for the droplet volume (see below). The rest of the reactions are dissociation reactions for which bimolecular rate constants are set to $k_f = 5 \times 10^{10}$ mol$^{-1}$ L in order
to rapidly achieve equilibrium and avoid any dynamic effects, and the unimolecular rate constant is assigned a value that preserves equilibrium set by the pK_a or pK_b. The rate constant for the reverse reaction is (with units s$^{-1}$):

$$k_r = \frac{\rho k_f}{\mu} 10^{-pK_a},$$

$$k_r = \frac{\rho k_f}{\mu} 10^{pK_b},$$

where ρ (g cm$^{-3}$) is the density of the liquid and μ (g mol$^{-1}$) is the molar weight of the species. The reactions for the sulfates are:

$$\text{H}_2\text{SO}_4(\ell) \rightleftharpoons \text{HSO}_4^{-}(\ell) + \text{H}^+ (\ell), \quad pK_{a,1} = -2.8;$$

$$\text{HSO}_4^{-}(\ell) \rightleftharpoons \text{SO}_4^{2-}(\ell) + \text{H}^+ (\ell), \quad pK_{a,2} = 1.99;$$

and the reactions involving sulfurous acid and sulfites:

$$\text{SO}_2(\ell) + \text{H}_2\text{O}(\ell) \rightleftharpoons \text{HSO}_3^{-}(\ell) + \text{H}^+ (\ell), \quad \text{see below;}$$

$$\text{H}_2\text{SO}_3(\ell) \rightleftharpoons \text{SO}_2(\ell) + \text{H}_2\text{O}(\ell), \quad \text{see below;}$$

$$\text{H}_2\text{SO}_3(\ell) \rightleftharpoons \text{HSO}_3^{-}(\ell) + \text{H}^+ (\ell), \quad pK_{a,1} = 1.857;$$

$$\text{HSO}_3^{-}(\ell) \rightleftharpoons \text{SO}_3^{2-}(\ell) + \text{H}^+ (\ell) \quad pK_{a,2} = 7.172.$$

The rate constant for SO_2 to react with H_2O is 2×10^8 mol$^{-1}$ Ls$^{-1}$ (Eigen et al. 1961; Brandt & Van Eldik 1995) and the rate constant for H_2SO_3 dissociation is 10^8 s$^{-1}$ (Eigen et al. 1961; Brandt & Van Eldik 1995). Finally, we consider the self-dissociation of water and the dissociation of sodium hydroxide:

$$\text{H}^+(\ell) + \text{OH}^-(\ell) \rightleftharpoons \text{H}_2\text{O}(\ell), \quad pK_a = 14$$

$$\text{NaOH}(\ell) \rightleftharpoons \text{Na}^+(\ell) + \text{OH}^- (\ell), \quad pK_b = -0.56$$

Sodium hydroxide is the example species we will use to buffer the clouds of Venus, freeing up more water in the droplet to react with SO_3, forming sulfuric acid, or with SO_2 to form sulfurous acid. The explanation for these reactions and details about rate constants and equilibrium constants is given in Section 6.

If the excess source of hydrogen is a salt, as is the case with NaOH, H^+ is replaced by Na^+. We calculate the pH where $\text{pH} = -\log_{10}(a_{\text{H}^+})$, where a_{H^+} is the H^+ activity. The concentration of NaOH needed in the droplets to sequester SO_2 is determined by considering the cloud droplet volume as a function of height:

$$V_d(h) = \int 4\pi r_d^3 \frac{\partial N_d}{\partial r_d} dr_d,$$

where r_d (µm) is the droplet radius, and the function $r_d(\partial N_d/\partial r_d)$ is the droplet size distribution, which we take from Gao et al. (2014):

$$\frac{\partial N_d}{\partial r_d} = \frac{\partial n_d}{\partial r_d} V_{\text{atm}}$$
where \(n_d \) (cm\(^{-3}\)) is the droplet number density (across all sizes) and \(V_{\text{atm}} = 4\pi R_p^2 \Delta z \), with \(R_p = 6052 \) km as the radius of Venus and \(\Delta z \) (km) is the model height step. We can calculate the amount of NaOH needed to deplete the SO\(_2\) to the observed levels. We do this by dividing the total number of SO\(_2\) molecules by the total droplet volume at height \(z \):

\[
c(z) = \frac{p f_{\text{SO}_2}(z)}{N_A k T(z)} \left[\int 4\pi r_d^2 \left(r_d \frac{\partial n_d(z)}{\partial r_d} \right) dr_d \right]^{-1},
\]

where \(N_A = 6.022 \times 10^{23} \) is Avogadro’s Number and \(k = 1.38065 \times 10^{-16} \) erg/K is Boltzmann’s constant. The above equation is used to prescribe the initial concentration of NaOH (in units of mol/cm\(^3\)) for our solver. The NaOH will rapidly dissociate and the OH\(^–\) will then recombine with H\(^+\) to form H\(_2\)O, and this, along with dissolved H\(_2\)O from the gas phase will react with SO\(_2\) to form H\(_2\)SO\(_3\). This will rapidly dissociate to form HSO\(_3\)^– and H\(^+\), and will buffer the solution, meaning that if the H\(^+\) activity is perturbed, the reactions between the anions and H\(^+\) will bring the activity of H\(^+\) back to a given value determined by the \(pK_a \).

Prescribing the NaOH this way introduces extra hydrogen into the model in a way not accounted by mass balance or atmospheric redox balance. A full solution of the atmospheric chemistry coupled with surface chemistry would preserve this balance, but that would require us to identify the source of hydrogen. Though we speculate on possible sources of hydrogen, from the surface (delivered via volcanism or winds) or exogenous, in Section 8, we do not know enough about Venus’s atmosphere, surface or clouds to confidently identify a source, and therefore do not self-consistently include this source in our model.

7. RESULTS

The depletion of SO\(_2\) can be explained by the SO\(_2\) dissolving into the clouds, if the cloud pH is higher than previously believed. It can also be explained by varying the below-cloud SO\(_2\) and H\(_2\)O. We discuss the consequences of varying the SO\(_2\) in Section 7.1 and H\(_2\)O in Section 7.2. The results of incorporating cloud chemistry are presented in Section 7.3.

7.1. Sulfur-Poor Venus

The SO\(_2\) begins to significantly decrease through and above the clouds when surface \(f_{\text{SO}_2} \sim 50 \) ppm, and achieves best results for below-cloud concentrations of 15 ppm. See Figure 3. The depletion occurs at 70-80 km unless the surface SO\(_2\) is lower, around 15 ppm. Besides being inconsistent with most below-cloud observational constraints on \(f_{\text{SO}_2} \) by almost an order of magnitude, the sulfur-poor model predictions agree with observations for all the species we consider reasonably well. The results agree with observations as closely as when we consider cloud droplet chemistry below with one possible exception of SO, which is below 1 ppb at between 80 and 100 km. This may be brought into better agreement by including a mesospheric source of sulfur acid vapor, or by adjusting the below-cloud concentrations of SO\(_2\), since we have found that the above-cloud SO\(_2\) is very sensitive to the below-cloud SO\(_2\) and the Eddy diffusion profile when \(f_{\text{SO}_2} \approx 15 \) ppm. The 15 ppm below-cloud SO\(_2\) model also predicts H\(_2\) concentrations of \(\sim 10 \) ppm above 70 km.

7.2. Water-Rich Venus

For the water-rich case, SO\(_2\) does not deplete for any value of below-cloud H\(_2\)O unless a \(K_{zz} \) trap extending to 85 km in altitude is introduced in the eddy diffusion profile. Upon introduction of this
Figure 3. Mixing ratios as a function of height for SO$_2$ (a), H$_2$O (b), O$_2$ (c) and CO (d) by varying the below-cloud abundance of SO$_2$ from 6 ppm to 80 ppm. No droplet chemistry is included.

trap the SO$_2$ begins to significantly deplete at the top of the atmosphere, and this depletion height then lowers with increasing below-cloud water abundance, achieving best results around surface $f_{H_2O} = 200$ ppm. See Figure 4. For in-cloud $K_{zz} = 5000 \text{ cm}^2 \text{s}^{-1}$ the depletion height is higher than observations suggest (Encrenaz et al. 2019), dropping off at $\gtrsim 75$ km, and the O$_2$ concentration in the upper atmosphere exceeds 100 ppm. The depletion height can be lowered further to ~ 70 km by decreasing the K_{zz} value in the trap, however this exacerbates the overabundance of O$_2$ and causes CO to deviate from smooth monotonic growth with altitude. The CO profile has a downward spike at ~ 70 km, consistent with mesospheric data (Marcq et al. 2005). This is likely due to the change of K_{zz}, see Section 8. Neither the SO$_2$ depletion or O$_2$ abundances agree with observations as well as the sulfur-poor and cloud-chemistry cases. The reason for this is the self-shielding of the excess water, which is not as effectively removed as SO$_2$ within the clouds. The 200 ppm below-cloud H$_2$O model also predicts H$_2$ concentrations of ~ 100 ppm above 70 km.

7.3. Cloud Chemistry
Figure 4. Mixing ratios as a function of height for SO$_2$ (a), H$_2$O (b), O$_2$ (c) and CO (d) by varying K_{zz} (see Figure 2) with the abundance of below-cloud H$_2$O of 200 ppm. The CO profile when $K_{zz} = 1000$ cm2s$^{-1}$ bears a remarkable similarity to the retrieved profile from Marcq et al. (2005). No droplet chemistry is included.

In this scenario, described in Section 6, SO$_2$ depletion through the clouds is accomplished by removing the SO$_2$ into H$_2$SO$_3$ and H$_2$SO$_4$ via droplet chemistry. In our model, the droplet chemistry is driven specifically by sodium hydroxide (NaOH), and the NaOH itself buffers the cloud pH. The NaOH is a proxy used for convenience in modelling, and represents other plausible sources of delivered hydrogen, discussed in Section 8. We adjust the amount of NaOH as a function of height to reproduce the observationally constrained SO$_2$ profile (see Figure 5). This initial NaOH is prescribed for each height and is not solved for within the model. The function that reproduces the SO$_2$ depletion, given the estimated droplet volume, was determined by solving the aqueous chemistry and cloud chemistry for different amounts of NaOH, and the concentration of NaOH as a function of height that results in the observed SO$_2$ profile is shown in Figure 5.

We can then consider our solution of the droplet chemistry, set out in Equations (14) – (25), which predicts the H$^+$ activity, from which we can calculate the cloud droplet pH. As described in Section 6, the SO$_2$ depletion is set by the capacity of the liquid to hold SO$_2$, which is controlled by the
amount of NaOH, and by the total volume of the liquid, which is determined by the cloud droplet size distribution. The predicted droplet pH is plotted as a function of height in Figure 5.

In this model, throughout the clouds the gas-phase SO_2 is in equilibrium with the concentration of sulfur in the droplet that is specifically in the form of SO_2; i.e., $\text{SO}_2(g) \propto \text{SO}_2(\ell)$ and adding or removing gas-phase SO_2 results in proportionally changing the droplet SO_2, and the balance of the other sulfur species. This equilibrium allows us to write out effective rate constants for SO_2 and H_2O dissolution into the droplets with rate constants tuned to reproduce the results from solving Eq’s (14) – (25). For SO_2 the effective reaction is:

$$\text{SO}_2(g) + \text{H}_2\text{SO}_4(\ell) \rightleftharpoons \text{SO}_2(\ell) + \text{H}_2\text{SO}_4(\ell).$$

The rate constants for the forward reaction, k_f (cm3 s$^{-1}$), and reverse reaction k_r (cm3 s$^{-1}$) are:

$$k_f = 10^{-32} \text{ cm}^3 \text{ s}^{-1} e^{9000K/T},$$

$$k_r = 6.67 \times 10^{-36} \text{ cm}^3 \text{ s}^{-1} e^{9000K/T}. \tag{30}$$

For H_2O the effective reaction is:

$$\text{H}_2\text{O}(g) + 2\text{SO}_2(\ell) \rightleftharpoons \text{H}_2\text{SO}_3(\ell) + \text{SO}_2(\ell).$$

We determine the effective rate constants for the forward reaction, k_f (cm3 s$^{-1}$), and reverse reaction k_r (cm3 s$^{-1}$) to be:

$$k_f = 2.53 \times 10^{-36} \text{ cm}^3 \text{ s}^{-1} e^{9000K/T},$$

$$k_r = 8.43 \times 10^{-38} \text{ cm}^3 \text{ s}^{-1} e^{9000K/T}. \tag{33}$$

Finally, an effective reaction needs to be included to encapsulate the release of SO_2 when the droplet rains out and evaporates:

$$\text{SO}_2(\ell) + \text{H}_2\text{SO}_4(g) \rightarrow \text{SO}_2(g) + \text{H}_2\text{SO}_4(g),$$

with rate constant of $2.2 \times 10^{-4} \text{ cm}^3 \text{ s}^{-1} e^{-10000K/T}$.

The results of our model agree within an order of magnitude for all species considered, and within a factor of 3 for all species except for OCS and the sulfur allotropes. Our model underestimates S_4 and does not predict the steep below-cloud gradient of OCS. In addition, it over-predicts O_2 in the upper atmosphere by a factor of 2-3. Comparison of this model and the best sulfur-poor model, with $f(\text{SO}_2) = 20$ ppm and Krasnopolsky’s Eddy diffusion profile (from Section 7.1) is shown in Figure 6.

8. DISCUSSION

Below-cloud $\text{SO}_2 < 50$ ppm is inconsistent with most observations but not all. Vega 1 and 2 observed ≥ 100 ppm concentrations of SO_2 directly below the clouds, though the error bars are large and 50 ppm abundances would be within 2σ of the measurements (Bertaux et al. 1996). Even lower SO_2 was measured within 20 km of the surface (Bertaux et al. 1996), which could indicate rapid surface depletion of SO_2 (Yung & Demore 1982).

The reported observations of below-cloud SO_2 at 100–200 ppm also have large uncertainties, typically on the order of 50 ppm (see, e.g. Marcq et al. 2008), so true values below 50 ppm would amount
Figure 5. Predicted cloud droplet pH (bottom axis, solid line) and initial NaOH concentrations (mol/L, top axis, dashed line), as a function of height (km) based on SO$_2$ depletion. The initial NaOH is an input that we use to reproduce the SO$_2$ depletion. This solution for SO$_2$ is not unique. Changing the pH by changing the initial NaOH will affect the SO$_2$ depletion. Alternatively, the pH could be higher than plotted, and the depletion could be limited by kinetics.

to discrepancies of $2 - 3 \sigma$. Exploring the hypothesis of low below-cloud SO$_2$ as an explanation for the above-cloud SO$_2$ depletion will require both more precise and more frequent observations of the below-cloud SO$_2$, to see whether it varies and by how much. Such data may only be obtainable with in situ measurements.

Below-cloud H$_2$O is better constrained, so it is less likely that there is an undetected large source of water vapor beneath the clouds. There are some variations in the measurements, from less than 10 ppm to 60 ppm, but with relatively small error bars. There is some observational support for a large reservoir of water within the clouds, with 700 – 2000 ppm concentrations observed in the cloud layers by Vega 1,2 (Surkov et al. 1987) and Venera 13,14 (Mukhin et al. 1982; Surkov et al. 1982). These high quantities may have been due to incidental sampling of cloud droplets which are expected to be composed of $\sim 15 - 25\%$ water, even without considering the cloud pH buffer hypothesis proposed here. Even if these constraints were not so tight, the model where we increase the below-cloud water vapor predicts that the clouds to extend up to ~ 80 km, and the depletion would be more gradual and higher in the atmosphere. Further to this, the water-rich model overproduces O$_2$ above ~ 70 km.
Figure 6. Predicted volume mixing ratios of SO$_2$, H$_2$O, CO, OCS, O$_2$, HCl, H$_2$SO$_4$, H$_2$, SO, S$_3$, S$_4$ and H$_2$S as a function of height (km), for four models: the cloud-chemistry model (yellow dashed, Sections 6 and 7.3), the sulfur-poor model with f(SO$_2$) = 20 ppm (red dash-dot, Section 7.1), the water-rich model with f(H$_2$O) = 200 ppm and in-cloud K_{zz} = 5000 cm2s$^{-1}$ (blue dotted, Section 7.2), and the fiducial model with f(SO$_2$) = 150 ppm, f(H$_2$O) = 30 ppm and no cloud chemistry (black solid). Observations and upper limits of these species (from Table 1) are also plotted in gray to compare. H$_2$SO$_4$ includes both condensed and gas-phase H$_2$SO$_4$. “Effective SO$_2$(ℓ)” is the sum of all condensed species except for H$_2$O or H$_2$SO$_4$.

pushing it beyond the observed upper limit by two orders of magnitude, overproduces CO at 80 km,
and does not allow for SO$_2$ to return at the \sim 1 ppb level at 90 km, problems which are not shared by the other best fitting models.

In addition to enhancing the cloud layers, we had to vary the above-cloud K_{zz} in order to induce sulfur and water vapor depletion. Decreasing the K_{zz} to \sim 1000 cm2 s$^{-1}$ creates a negative spike in the CO at \sim 70 km, reproducing some mesospheric observations (Marcq et al. 2005). This is a consequence of varying the K_{zz} and not increasing the below-cloud water vapor. Our model suggests that this CO negative spike may trace changes in the eddy diffusion, a hypothesis that is worth further investigation but is outside the scope of this paper.

Both the sulfur-poor and water-rich models predict > 10 ppm H$_2$ concentrations in the mesosphere, above 70 km, where the cloud chemistry model predicts \sim 0.1 ppm H$_2$ concentrations. Better observational constraints of H$_2$ may be useful for distinguishing these models.

As we have shown, cloud chemistry is a possible explanation for the depletion of SO$_2$. Aerosols could provide the excess hydrogen needed to deplete gas-phase SO$_2$. This hydrogen could be bound in salts, or could be in some other form, such as hydrocarbons. It is important that whatever the source of hydrogen, it is replenished to sustain the SO$_2$ gradient. Otherwise the hydrogen will be consumed, the clouds will be saturated with sulfur, and the gradient of SO$_2$ will disappear.

What follows in this section is a discussion of the requirements for and implications of cloud chemistry. In Section 8.1, we discuss possible sources of hydrogen within the clouds. The measured optical constants and spectral features of the clouds of Venus are consistent with cloud droplets composed of a large percentage of sulfuric acid. Any proposed cloud chemistry must either preserve sulfuric acid as the dominant species in the clouds, or must propose a species with similar optical properties and spectral features. We discuss the observable implications of our cloud chemistry in Section 8.2. The cloud chemistry also has implications for above-cloud radical concentrations, which affects the lifetime of hypothetical PH$_3$ within the clouds. We discuss the status of PH$_3$ and its lifetime within the clouds in Section 8.3. Finally, in Section 8.4, we briefly discuss the implications of different cloud chemistry for hypothetical life within the cloud droplets of Venus.

8.1. Possible Sources of Hydrogen in the Clouds

If a buffer explains the sulfur depletion, it is possibly a salt. Salts will dissociate quickly, and some will provide efficient buffers. The salts must get into the clouds in order to buffer them. This can be accomplished either by transport from the surface or exogenous delivery.

Exogenous Delivery: Exogenous delivery, meaning delivery of material from the interplanetary medium, is unlikely to provide significant material to buffer the clouds of Venus based on the estimated incoming flux of interplanetary dust. The clouds must be able to retain virtually all of the SO$_2$ over the timescale of transport through the clouds, requiring a flux of salts, Φ_s (mol cm$^{-2}$ s$^{-1}$), of:

$$\Phi_s = \frac{n_{SO_2} H_0}{\tau_{dyn}} = \frac{f_{SO_2} n k T K_{zz}}{\mu_m m_p N_A g (\Delta h)^2},$$

where n_{SO_2} (cm$^{-3}$) is the number density of SO$_2$ at the height where SO$_2$ begins to deplete (50 km), H_0 (km) is the scale height, $R = 6052$ km is the radius of Venus, τ_{dyn} (s) is the dynamic timescale of the atmosphere at 40 km, $f_{SO_2} = 150$ ppm is the volume mixing ratio of SO$_2$, $n = \Sigma X n_X = 2.189 \times 10^{19}$ cm$^{-3}$ is the gas density at 50 km, the height where the depletion begins, $k = 1.38065 \times 10^{-16}$ erg/K is Boltzmann’s constant, $T = 349.7$ K is the temperature at 40 km, $K_{zz} \approx 100$ cm2 s$^{-1}$ is the Eddy
diffusion of the droplets within the cloud, a low estimate more favorable for exogenous delivery.
\(\mu_{av} = 44 \) is the mean molecular weight of the atmosphere, \(m_p = 1.6726 \times 10^{-24} \) g is the mass of a proton, \(N_A = 6.022 \times 10^{23} \) is Avogadro’s Number, \(g = 8.87 \) m s\(^{-2} \) is the surface gravity of Venus and \(\Delta h = 20 \) km is the thickness of the cloud layer. Applying all these estimates yields:

\[
\Phi_s \approx 10^{-13} \text{ mol cm}^{-2} \text{s}^{-1}.
\]

(37)

Continuous exogenous delivery of material is insufficient to match this flux even assuming that 100% of the material is in the form of hydrated minerals that will deplete \(\text{SO}_2 \). Delivery of exogenous material to Venus is comparable to delivery to Earth, 20 – 70 ktonnes/year, which translates to \(\sim 10^{-17} \) mol cm\(^{-2} \) s\(^{-1} \), or four orders of magnitude too little to account for the missing hydrogen.

One other possibility is stochastic delivery. If a recent airburst, a large impact that breaks up in the atmosphere, occurred in Venus’s atmosphere, the metals released could permeate the clouds, providing a transient in-cloud source of hydrogen. If this is the case, then the depletion of \(\text{SO}_2 \) will be temporary, lasting as long as the below-cloud store of these elements persists, on the order of the diffusion timescale or \(\sim 1000 \) years.

Dust from the Surface: Transport from the surface also struggles to meet the required flux of hydrated material. Although calculations of dust transport favor a more dusty atmosphere for Venus than Earth (Sagan 1975), Venera measurements suggest that the lower atmosphere is clear, placing upper limits on dust transport to the clouds. It is possible that there is heterogeneous low atmospheric weather, with dust rapidly transported to tens of km above the surface, and that Venera happened to land in a region where the vertical diffusion and winds were insufficient to change the atmospheric opacity. A low level haze inferred from Venera probe data (Grieger et al. 2004), and consistent with heavy metal frost at higher elevations on Venus’s surface (Schaefer & Fegley 2004), may itself be the suspended dust (Titov et al. 2018), and winds may cause that dust to periodically move into the clouds.

To explain the sulfur depletion, with dust containing 5 wt.% salt, requires a dust flux to the clouds of \(\approx 16 \) Gt/year, well within the estimates of surface dust fluxes estimated from analogue experiments (Greeley et al. 1984). The composition of the dust and the form of the salts is unknown. Here we will speculate on some possible candidates. Our speculation is based on chemical and physical stability of the salts:

- **NaOH:** Sodium hydroxide is the example salt we use for our calculations, but is an unrealistic candidate salt. It is sufficiently stable to heat, persisting as a liquid up to 1661 K (Haynes 2014). However, it is known to react rapidly with \(\text{SO}_2 \) to form sodium sulfite and water vapor. Given the concentrations of below-cloud \(\text{SO}_2 \), NaOH cannot plausibly survive to reach the clouds.

- **Ca(OH)$_2$:** Calcium hydroxide is stable as a solid at the surface of Venus. Strictly speaking, calcium hydroxide has no melting point. Instead, at 93 bar and \(\sim 1000 \) K it is expected to decompose into CaO and \(\text{H}_2\text{O} \), based on extrapolations of the vapor pressure curve of Halstead & Moore (1957). Ca(OH)$_2$ will undergo carbonation, and there is ample \(\text{CO}_2 \), but this reaction is very slow, and Ca(OH)$_2$ is kinetically stable at temperatures above 723 K (Materic & Smedley 2011). Ca(OH)$_2$ will also react rapidly with \(\text{SO}_2 \), but only in the presence of water vapor at
concentrations of > 3000 ppm (Liu et al. 2010). The kinetic stability vs. the dynamic timescale for Ca(OH)$_2$ aerosols is unknown, but presently Ca(OH)$_2$ cannot be ruled out as a candidate.

- **Mg(OH)$_2$ and Fe(OH)$_2$:** Neither magnesium hydroxide nor iron hydroxide (either the Fe(II) hydroxide or Fe(III) hydroxides) are stable at Venus’s surface temperature and pressure (Wang et al. 1998; Haynes 2014).

- **Other Hydroxides:** It may be that more exotic hydroxides, such as Al(OH)$_3$, could deliver hydrogen to Venus’s cloud layer. The requirements are sufficient concentrations to satisfy the required fluxes, and the thermochemical and kinetic stability of the salt in the presence of major atmospheric constituents.

- **Oxides:** Oxides, either resident surface oxides or oxides produced by the dehydration of hydroxides, may participate in cloud chemistry in unknown ways, sequestering SO$_3$ directly, for example, \(\{\text{Mg,Fe}\}O + \text{SO}_3 \) may be converted into \(\{\text{Mg,Fe}\}\text{SO}_4 \) directly. The subsequent dissociation in sulfuric acid will buffer the cloud droplet pH. There is some indirect evidence of the presence of oxides from the near-surface haze, since these oxides can react with hydrochloric acid vapor to form FeCl$_3$, which has been observed in the clouds and is a candidate for the mysterious UV absorber (Krasnopolsky 2017).

- **Sulfates:** It is possible hydrogen-bearing sulfates could find their way into the clouds, but no known hydrogen-bearing sulfate is thermally stable at Venus’s surface pressure and temperature. It is possible that they are produced from gas-phase reactions, e.g., the possible production of ammonium sulfate from reaction with NH$_3$ and SO$_2$ (Titov 1983). Sulfates that do not contain hydrogen are plausible aerosols. Indeed, we predict they are produced via cloud chemistry. But these aerosols will not deliver hydrogen and cannot directly participate in the depletion of gas-phase SO$_2$.

The above list is not intended to be exhaustive, and does not consider whether these salts are expected at the temperatures and pressures at the surface of Venus, where we would generally expect chemistry to tend toward thermodynamic equilibrium. The results of comparing our surface boundary conditions (Section 4.1) to chemical equilibrium (Section 4.2) predicts that no phyllosilicates or hydrated minerals are present at the surface of Venus if the surface and gas are in equilibrium.

The model presented in Sect. 4.2 can be used to explore the sensitivity of the mineral composition to surface temperature. Figure 7 shows the results of our GGchem model at the same constant pressure and total element abundances when varying the surface temperature between 450 K and 850 K. Venus is just about 15 K too warm to have pyrite (FeS$_2$) as a stable condensate on the surface according to this model. For surface temperatures lower than about 720 K, the formation of FeS$_2$ would start to remove the SO$_2$ from the atmosphere according to the following complex net reaction

\[
\frac{15}{11} \text{SO}_2 + \frac{1}{11} \text{Fe}_2\text{O}_3 + \text{CaAl}_2\text{Si}_2\text{O}_8 \rightarrow \frac{2}{11} \text{FeS}_2 + \text{CaSO}_4 + \text{Al}_2\text{O}_3 + 2\text{SiO}_2 , \tag{38}
\]

which is a variant of Eq. (12) where the oxygen on the left side is provided by Fe$_2$O$_3$. At temperatures below about 580 K in this model, the first carbonate magnesite (MgCO$_3$) becomes stable,
which could initiate a dramatic change of the atmosphere as the main atmospheric molecule CO_2 could deposit at the surface to form MgCO_3:

$$\text{CO}_2 + \text{MgSiO}_3 \rightarrow \text{MgCO}_3 + \text{SiO}_2,$$

leaving an atmosphere that is dominated by N_2 with more H_2O. Finally, below a temperature of about 520 K, the first phyllosilicate, talc ($\text{Mg}_3\text{Si}_4\text{O}_{12}\text{H}_2$) becomes stable, which could partly remove the water from the atmosphere. Only for temperatures below 520 K our model predicts the presence of hydrogen-containing minerals.

Whether or not this means that the gas at the bottom of the Venusian atmosphere is in fact in chemical equilibrium, and whether the element abundances in the gas are regulated by outgassing/deposition via the contact with the hot rock at the surface are yet unsolved questions. Disequilibrium processes might supply phyllosilicates or hydrated salts. For example, geological processes such as volcanism may resurface Venus’s crust with hydrated components (see also discussion below). Our phase-equilibrium model suggests that hydrogenated rock and salts are not stable on the surface of Venus and will sublimate or react with the atmospheric gases to form other chemicals. However, the salts may be stable enough to be swept up to greater altitudes and cooler temperatures, before they react away and equilibrium is restored.

More research in the lab and in situ observations of the clouds of Venus will be needed to determine if salts are present and, if so, what their chemistry is.

Volcanic Delivery: A variant of the dust delivery mechanism to achieve a hydrogen flux to the clouds is volcanism. The presence of active volcanism on Venus has long been speculated upon, motivated both by the transient high tropospheric SO_2 detected by Pioneer Venus (Table 1; Esposito 1984).
and the recognition that SO_2 may react with surface minerals and require continual replenishment (Fegley & Prinn 1989).

Volcanism could deliver material to Venus’s clouds in three ways: 1) as solid material deposited at the surface, which is subsequently lofted by winds; 2) as an explosive eruption introducing material into the below-cloud atmosphere, where vertical mixing slowly raises it into the cloud layer; and 3) as a large explosive eruption injecting material directly into the cloud layer.

Scenario (1) is effectively the ‘dust from the surface’ mechanism described above. Albeit, by explicitly considering volcanism a source of juvenile OH-bearing material is introduced, which could help overcome the short surface lifetime of some OH-bearing phases. The second and third possibilities take advantage of the dynamics of volcanism to shorten the distance, and thereby potentially increase the flux, of mineral sources of OH to the clouds by reducing the time the material spends at high temperature near Venus’s surface. Volcanism may also help loft material above the sluggish surface winds to an altitude where winds more readily carry dust higher (e.g., Linkin et al. 1986; Zasova et al. 2007; Peralta et al. 2017).

Modelling work by Glaze (1999) and Airey et al. (2015) suggests that it is possible for volcanic eruption columns on Venus to reach the cloud base, however it requires particular circumstances that may or may not be frequently met: in particular, a high elevation vent and a magma containing several wt% water. Whether such water-rich magmas exist on Venus is unknown; taking Earth as an analogue, magmas with > 3 wt% water occur only where subduction is introducing surface water back into the mantle, a tectonic mode that cannot have prevailed on Venus for hundreds of millions of years, if ever. Voluminous water-rich explosive volcanism is also problematic given the tight constraints on the below-cloud the H_2O mixing ratio of < 60 ppm. At best, therefore, these constraints would imply a highly stochastic delivery of volcanic material directly into the clouds.

The best case for a volcanic contribution to mineral buffering of Venus’s cloud chemistry is therefore by enhancing background dust levels in the below-cloud atmosphere. Fegley & Prinn (1989) estimate that a volcanic flux of $\sim 1 \text{ km}^3 \text{ yr}^{-1}$ is required to sustain atmospheric SO_2 at the levels observed. This translates to a mass flux of $\sim 3 \times 10^{12} \text{ kg yr}^{-1}$ of magma, or $\sim 6 \times 10^{11} \text{ mol yr}^{-1}$ of hydrated phases assuming terrestrial-levels of water in Venus’s magmas. As an upper bound, this volcanic flux could provide a potential $4 \times 10^{-15} \text{ mol cm}^{-2} \text{ s}^{-1}$ of hydrated phases to Venus’s clouds if the entire mass was mobilised as dust in the atmosphere. Being below the $\sim 10^{-13} \text{ mol cm}^{-2} \text{ s}^{-1}$ of salt delivery estimated above, rates of volcanism either need to be (at least) an order of magnitude larger than assumed here, or the magmas correspondingly more volatile rich, for volcanism to be contributing to chemical buffering of Venus’s clouds by water delivery. We note that although seeming unlikely, given all the current uncertainties on the composition and dynamics of Venus’s interior, this possibility cannot be entirely ruled out.

8.2. Reconciling the Cloud Chemistry with Cloud Observations

There is considerable evidence that the clouds of Venus are mostly sulfuric acid or something very like sulfuric acid. The classic paper by Young (1973) identifies most of the lines of evidence. The refractive index of the clouds obtained from infrared polarimetry, constrained to within 1.425 and 1.455 at the time, is best explained by droplets of $\sim 75\%$ sulfuric acid. In addition, the bottom of the cloud layer matches the condensation temperature of sulfuric acid, and specific spectral features between 8 – 13 μm are very similar to spectra of condensed sulfuric acid. Sulfuric acid is also expected at concentrations of $\sim 75\%$ based on models of H_2SO_4 and H_2O condensation (Krasnopolsky 2015).
Subsequent studies have further refined the estimated concentrations of sulfuric acid in the clouds. Barstow et al. (2012) perform a retrieval on VIRTIS data of the atmosphere from Venus Express, and find that the 2.2:1.74 μm radiance ratio is sensitive only to the imaginary index of refraction, and therefore the sulfuric acid concentrations, and that most of the retrieved sulfuric acid concentrations in the lower clouds are between 85 – 96 wt%, or between 16 – 18 mol/L. Arney et al. (2014) used the same 2.2:1.74 μm radiance ratio and found that the sulfuric acid concentrations vary by time and latitude between 73 – 87 wt% in the upper clouds, or between 14 – 16 mol/L sulfuric acid concentration, lower than Barstow et al. (2012), suggesting that the concentration of sulfuric acid changes as a function of height. Titov et al. (2018) provide a comprehensive review of the research into Venus’s clouds.

Recent retrievals rely on infrared bands that constrain the index of refraction. If our proposed cloud chemistry is accurate and if all droplets have the same chemistry, hydrated sulfites and sulfates compose a large fraction of Venus’s clouds. Sulfate achieves an index of refraction of >1.44 at <20 wt% H$_2$O (Cotterell et al. 2017), sufficient to explain the observed index of refraction. In addition, the S–H and S–O bonds are all similar, and so similar spectral features are expected. We predict a significant fraction of the clouds is made up of sulfites, in line with terrestrial SO$_2$ + H$_2$O chemistry (Terraglio & Manganelli 1967). The refractive index of sulfites is not as well known, though it has been measured for cyclic sulfites to be ~ 1.5 (Pritchard & Lauterbur 1961), which is consistent with Venus cloud observations.

One other possibility is that the droplets of Venus do not all have the same chemistry. The salt content of the aerosols could be heterogeneous, either because they derive from different surface, volcanic or delivered materials, or because some cloud nuclei are produced photochemically, as sulfur allotropes and sulfuric acid. The observed bimodal distribution of cloud droplet sizes (Wilquet et al. 2009, 2012), is consistent with this hypothesis. It may be that the smaller more numerous cloud droplets lack salts, while less numerous droplets have salts. The salts will afford those droplets a far greater capacity for SO$_2$, and this may explain their larger size. If this is the case, we would predict the small mode droplets have a pH < 0 and the large mode droplets a pH > 1.

8.3. The Presence and Lifetime of Phosphine

A broad time-variable feature has been observed at 267 GHz by both ALMA and JCMT (Greaves et al. 2020a, b). The existence and source of the feature has been disputed (Snellen et al. 2020; Thompson 2020), though see the reply by Greaves et al. (2020b). This feature has been attributed to phosphine (Greaves et al. 2020a, b), consistent with possible in situ detection of phosphine discovered during re-analysis of Venus Pioneer data (Mogul et al. 2020). The updated ALMA data is now consistent either with 1 ppb phosphine (PH$_3$) or > 100 ppb in-cloud SO$_2$ (Greaves et al. 2020b). Further observations will be needed to determine which if either is the source of the 267 GHz feature.

Greaves et al. (2020a) and Bains et al. (2020) estimated the lifetime and required flux of 20 ppb PH$_3$. The amount inferred from the ALMA observations has decreased to 1 ppb (Greaves et al. 2020b), and we can apply our new model results to estimate that a flux of 10^7 cm$^{-2}$ s$^{-1}$ PH$_3$ is required to explain PH$_3$ at these abundances (this includes effective dry deposition of PH$_2$ set to fix the abundance of PH$_2$ at the surface equal to zero, and dry deposition of PH$_3$ fixed to 10^{-4} cm s$^{-1}$). We also find that PH$_3$ is efficiently destroyed above 60 km, and the steep gradient in its profile is consistent with the non-detection above 61 km (Encrenaz et al. 2020).
8.4. Implications for Hypothetical Life in the Clouds of Venus

The implications of this cloud chemistry on hypothetical Venusian life depends on how and in what form the sulfur is depleted. If surface, volcanic or exogenous delivery is responsible, this would explain the provision of various alkaline salts and/or other metals, essential for life as we know it. The higher pH is within the range where known acidophiles can thrive (Messerli et al. 2005). However, the low water activity will be at least as serious a problem as before, with this process driving the available water in the aerosols toward zero.

If on the other hand the pH is being buffered within the clouds by the organisms themselves, either by use of phosphine or by burning hydrocarbons, sacrificing themselves so that others may live, then the available water will be produced and scavenged by means of the reaction. The remaining question is whether the biomass is sufficient to explain the sulfur depletion, and there is no reliable estimate of the biomass in the clouds of Venus. Early estimates based on tentative detections of phosphine have been made (Lingam & Loeb 2020), but there is significant work left to better constrain the possibility that life is making use of the in-cloud SO$_2$.

9. CONCLUSION

In this paper, we discussed the puzzle of SO$_2$ depletion in the cloud layer. If the below-cloud observations of SO$_2$ and H$_2$O are correct, then there is too little H$_2$O to explain this depletion. We found that increasing the amount of below-cloud H$_2$O predicts chemistry above the clouds that does not agree with observations, but decreasing the below-cloud SO$_2$ results in above-cloud chemistry that generally agrees with observations. We also explored the possibility that hydrogen is delivered into the clouds in the form of aerosols, salts or metals, either from an exogenous source, from dust rising up from the surface, from volcanism, and from processes occurring within the clouds themselves. These processes buffer the pH of the clouds to values of 1-2. We discuss the implication of these predictions for observations of other trace gas-phase species and the optical properties of the clouds themselves.

Probes into the clouds of Venus will be necessary to determine what is happening within the clouds: the depletion of SO$_2$, the droplet chemistry (whether or not this chemistry has anything to do with the SO$_2$ depletion), the mysterious UV absorber, the known presence of heavy metals such as iron, the plausible presence of several reduced species in surprisingly large quantities (Greaves et al. 2020a; Mogul et al. 2020).

Probes to the surface will be relevant for constraining the surface mineralogy and determining whether Venus’s surface composition is in chemical equilibrium. These observations can be combined with a climate history of Venus, based on observations and models, to discover more about Venus’s atmospheric evolution. Specifically, Figure 7 can also be used to speculate about the possible cause for the origin of the thick Venusian atmosphere that we observe today. If Venus once was a cooler planet with a thinner N$_2$ dominated atmosphere, just like Earth, but for some reason it warmed up to temperatures above 580 K, possibly due to large amounts of CO$_2$ released during global resurfacing (Strom et al. 1994), all carbonates in the surface rock would decompose and liberate even more CO$_2$ into the atmosphere. Not only would this increase the greenhouse effect, but it would also make the Venusian atmosphere thicker. Both effects would have increased the surface temperature, leading to a run-away build-up of the thick CO$_2$ Venusian atmosphere that we find today. Observations of
surface minerals would allow us to test the predictions of this and other hypotheses for the present state of Venus’s atmosphere and climate.

To prepare for these missions, experiments are needed in Venus analogue environments to predict the chemistry that takes place, especially the largely unexplored chemistry that may take place within high concentrations of sulfuric acid, and the surface chemistry that may take place on efflorescent sulfates. In the meantime, a detailed cloud model of the form published by Gao et al. (2014), but that incorporates this chemistry, would be of value in order to see if any remote predictions would distinguish between sulfuric acid/water droplets and sulfate/sulfite/water droplets. It may be possible to falsify the cloud chemistry hypothesis based on a combination of cloud formation and radiative transfer models and observations. It is unlikely the puzzles addressed in our paper are likely to be resolved without returning to the clouds of Venus. If other missions to other planets are any indication, what we find will be entirely unexpected.

ACKNOWLEDGMENTS

The authors thank Joanna Petkowska-Hankel for the preparation of Fig. 1. P. B. R. thanks the Simons Foundation for funding (SCOL awards 599634). P. W. acknowledges funding from the European Union H2020-MSCA-ITN-2019 under Grant Agreement no. 860470 (CHAMELEON). We thank David Grinspoon, Stephen Mojzsis and Kevin Zahnle for helpful discussions, Alex T. Archibald for his advice for improving the Earth-relevant reactions for our network, and the entire team involved with Greaves et al. (2020a) for initiating this investigation into the atmospheric chemistry of Venus. A.P. thanks Sami Mikhail for providing Venus and Venus II books and Christiane Helling for the support.

Software: Argos (Rimmer & Helling 2016), GGchem (Woitke et al. 2018)

APPENDIX

A. THE CHEMICAL NETWORK: STAND2020

We constructed our network starting with Rimmer & Rugheimer (2019), adjusting several reactions relevant for Earth’s atmosphere to improve agreement between our model predictions and observations of formaldehyde and HCN in modern Earth’s atmosphere. We then include the sulfur network developed by Hobbs et al. (2020), and supplement it with reactions from Krasnopolsky (2007) and Zhang et al. (2012). We made extensive use of the NIST database (Manion et al. 2015), the KIDA database (Wakelam et al. 2012), the MPI-Mainz UV/VIS database (Keller-Rudek et al. 2013), and PhiDRates (Huebner & Mukherjee 2015), keeping with the philosophy, quoted from Rimmer & Helling (2016):

1. If there exists only one published rate constant for a given reaction, we use that value.
2. Reject all rate constants that become unrealistically large at extreme temperature.
3. Choose rate constants that agree with each other over the range of validity.
4. If the most recent published rate constant disagrees with (3), and the authors give convincing arguments for why the previous rates were mistaken, we use the most recently published rate.

The network is given in Tables 5, 6 and 7.

Table 5. Reactions Added and Updated for STAND2020

Reaction	α	Units	β	E_a (K)	Reference
C + C + M \rightarrow C$_2$ + M	5.46×10^{-31}	cm3 s$^{-1}$	-1.6	0.0	Slack (1976)
C + C + M \rightarrow C$_2$ + M	2.16×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Martinotti et al. (1968)
C + O + M \rightarrow CO + M	2.00×10^{-34}	cm6 s$^{-1}$	0.0	0.0	Fairbairn (1969)
C + O + M \rightarrow CO + M	4.82×10^{-15}	cm3 s$^{-1}$	-1.0	0.0	Est.
H + N + M \rightarrow HN + M	5.02×10^{-32}	cm6 s$^{-1}$	0.0	0.0	Brown (1973)
H + N + M \rightarrow HN + M	1.21×10^{-12}	cm3 s$^{-1}$	-1.0	0.0	Est.
N + N + M \rightarrow N$_2$ + M	1.25×10^{-32}	cm6 s$^{-1}$	0.0	0.0	Knipovich et al. (1988)
N + N + M \rightarrow N$_2$ + M	5.00×10^{-16}	cm3 s$^{-1}$	0.0	0.0	Takahashi & Miyazaki (1977)
N + O + M \rightarrow NO + M	3.26×10^{-33}	cm6 s$^{-1}$	0.0	0.0	Campbell & Gray (1973)
N + O + M \rightarrow NO + M	7.87×10^{-14}	cm3 s$^{-1}$	-1.0	0.0	Est.
O + O + M \rightarrow O$_2$ + M	1.67×10^{-33}	cm6 s$^{-1}$	-1.0	0.0	Javoy et al. (2003)
O + O + M \rightarrow O$_2$ + M	1.21×10^{-11}	cm3 s$^{-1}$	-2.0	0.0	Est.
CN + H + M \rightarrow HCN + M	9.35×10^{-30}	cm6 s$^{-1}$	-2.0	520.0	Tsang (1992)
CN + H + M \rightarrow HCN + M	1.73×10^{-10}	cm3 s$^{-1}$	-0.5	0.0	Tsang (1992)
CO + O + M \rightarrow CO$_2$ + M	1.20×10^{-32}	cm6 s$^{-1}$	0.0	2160.0	Fujii et al. (1985)
CO + O + M \rightarrow CO$_2$ + M	1.00×10^{-14}	cm3 s$^{-1}$	0.0	1630.0	Toby et al. (1984)
NO + H + M \rightarrow HNO + M	1.34×10^{-31}	cm6 s$^{-1}$	-1.32	370.0	Tsang & Herron (1991)
NO + H + M \rightarrow HNO + M	2.44×10^{-10}	cm3 s$^{-1}$	-0.41	0.0	Tsang & Herron (1991)
O$_2$ + H + M \rightarrow HO$_2$ + M	4.11×10^{-32}	cm6 s$^{-1}$	-1.10	0.0	Turányi et al. (2012)
O$_2$ + H + M \rightarrow HO$_2$ + M	7.51×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Cobos et al. (1985)
H$_2$N + H + M \rightarrow H$_3$N + M	6.07×10^{-30}	cm6 s$^{-1}$	0.0	0.0	Gordon et al. (1971)
H$_2$N + H + M \rightarrow H$_3$N + M	2.66×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Pagsberg et al. (1979)
OH + O$_2$ + M \rightarrow HO$_3$ + M	1.70×10^{-33}	cm6 s$^{-1}$	-3.5	0.0	Tiznit et al. (2010)
OH + O$_2$ + M \rightarrow HO$_3$ + M	4.10×10^{-11}	cm3 s$^{-1}$	-4.5	0.0	Est.
NO + O$_2$ + M \rightarrow NO$_3$ + M	4.81×10^{-41}	cm6 s$^{-1}$	0.0	0.0	Ashmore & Burnett (1962)
NO + O$_2$ + M \rightarrow NO$_3$ + M	1.36×10^{-21}	cm3 s$^{-1}$	-1.0	0.0	Est.
N$_2$ + H + M \rightarrow HN$_2$ + M	1.22×10^{-29}	cm6 s$^{-1}$	0.36	7700.0	Caridade et al. (2005)
N$_2$ + H + M \rightarrow HN$_2$ + M	2.94×10^{-10}	cm3 s$^{-1}$	-0.64	7700.0	Est.
CN + CN + M \rightarrow NCCN + M	4.94×10^{-29}	cm6 s$^{-1}$	-2.62	0.0	Tsang (1992)

Table 5 continued on next page
Reaction	α	Units	β	E_a (K)	Reference
CN + CN + M \rightarrow NCCN + M	9.40×10^{-12} cm3 s$^{-1}$	0.0	0.0	0.0	Tsang (1992)
CHO + H + M \rightarrow CH$_2$O + M	1.57×10^{-30} cm3 s$^{-1}$	-2.57	0.0	0.0	Eiteneer et al. (1998)
CH$_2$ + H + M \rightarrow CH$_2$O + M	1.53×10^{-10} cm3 s$^{-1}$	0.0	0.0	0.0	Tsuboi et al. (1981)
CH + N$_2$ + M \rightarrow CHN$_2$ + M	1.60×10^{-31} cm3 s$^{-1}$	-2.2	0.0	0.0	Rowe et al. (1998)
CH + N$_2$ + M \rightarrow CHN$_2$ + M	1.80×10^{-12} cm3 s$^{-1}$	-1.5	0.0	0.0	Rowe et al. (1998)
HO + HO + M \rightarrow H$_2$O$_2$ + M	1.01×10^{-30} cm3 s$^{-1}$	-4.3	340.0	0.0	Sellevåg et al. (2009)
HO + HO + M \rightarrow H$_2$O$_2$ + M	2.61×10^{-11} cm3 s$^{-1}$	0.0	0.0	0.0	Fulle et al. (1996)
HO + NO + M \rightarrow HNO$_2$ + M	8.91×10^{-31} cm3 s$^{-1}$	-2.1	0.0	0.0	Sharkey et al. (1994)
HO + NO + M \rightarrow HNO$_2$ + M	3.31×10^{-11} cm3 s$^{-1}$	-0.3	0.0	0.0	Fulle et al. (1998)
CH$_2$O + H + M \rightarrow CH$_3$O + M	1.80×10^{-31} cm3 s$^{-1}$	0.66	863.0	Est.	
CH$_2$O + H + M \rightarrow CH$_3$O + M	4.34×10^{-12} cm3 s$^{-1}$	1.66	863.0	Huynh & Violi (2008)	
NO$_2$ + HO + M \rightarrow HNO$_3$ + M	1.87×10^{-30} cm3 s$^{-1}$	3.0	0.0	0.0	Golden et al. (2003)
NO$_2$ + HO + M \rightarrow HNO$_3$ + M	2.80×10^{-11} cm3 s$^{-1}$	0.0	0.0	0.0	Golden et al. (2003)
NO$_2$ + NO + M \rightarrow N$_2$O$_3$ + M	3.09×10^{-34} cm3 s$^{-1}$	-7.7	0.0	0.0	Markwalder et al. (1993)
NO$_2$ + NO + M \rightarrow N$_2$O$_3$ + M	7.74×10^{-12} cm3 s$^{-1}$	1.4	0.0	0.0	Markwalder et al. (1993)
H$_2$N + H$_2$N + M \rightarrow H$_4$N$_2$ + M	1.17×10^{-27} cm3 s$^{-1}$	-5.49	997.0	Klippenstein et al. (2009)	
H$_2$N + H$_2$N + M \rightarrow H$_4$N$_2$ + M	7.90×10^{-11} cm3 s$^{-1}$	-0.41	0.0	Klippenstein et al. (2009)	
CH$_3$ + H$_2$N + M \rightarrow CH$_3$N + M	1.80×10^{-27} cm3 s$^{-1}$	-3.85	997.0	Jodkowski et al. (1995)	
CH$_3$ + H$_2$N + M \rightarrow CH$_3$N + M	1.30×10^{-10} cm3 s$^{-1}$	0.42	0.0	0.0	Jodkowski et al. (1995)
C$_2$H$_2$ + CH$_2$ + M \rightarrow C$_3$H$_4$ + M	8.33×10^{-31} cm3 s$^{-1}$	-1.0	3320.0	Est.	
C$_2$H$_2$ + CH$_2$ + M \rightarrow C$_3$H$_4$ + M	2.01×10^{-11} cm3 s$^{-1}$	0.0	3320.0	Baulch et al. (1992)	
C$_3$H$_3$ + H + M \rightarrow C$_3$H$_4$ + M	8.28×10^{-30} cm3 s$^{-1}$	1.1	0.0	0.0	Est.
C$_3$H$_3$ + H + M \rightarrow C$_4$H$_4$ + M	2.00×10^{-10} cm3 s$^{-1}$	0.1	0.0	0.0	Harding et al. (2007)
C$_3$H$_4$ + H + M \rightarrow C$_3$H$_5$ + M	4.18×10^{-31} cm3 s$^{-1}$	1.69	1510.0	Est.	
C$_3$H$_4$ + H + M \rightarrow C$_5$H$_5$ + M	1.01×10^{-11} cm3 s$^{-1}$	0.69	1510.0	Tsang & Walker (1992)	
C$_2$H$_2$ + CH$_3$ + M \rightarrow C$_3$H$_5$ + M	4.14×10^{-32} cm3 s$^{-1}$	1.0	3890.0	Est.	
C$_2$H$_2$ + CH$_3$ + M \rightarrow C$_3$H$_5$ + M	1.00×10^{-12} cm3 s$^{-1}$	0.0	3890.0	Baulch et al. (1992)	
CHO + H + M \rightarrow HOCH + M	1.57×10^{-30} cm3 s$^{-1}$	-2.57	0.0	0.0	Est.
CHO + H + M \rightarrow HOCH + M	1.52×10^{-10} cm3 s$^{-1}$	0.0	0.0	0.0	Est.
C$_2$H$_2$ + C$_2$H$_2$ + M \rightarrow C$_4$H$_4$ + M	3.78×10^{-31} cm3 s$^{-1}$	1.0	18600.0	Est.	
C$_2$H$_2$ + C$_2$H$_2$ + M \rightarrow C$_4$H$_4$ + M	9.13×10^{-12} cm3 s$^{-1}$	0.0	18600.0	Duran et al. (1989)	
C$_3$H$_3$ + CH$_3$ + M \rightarrow C$_4$H$_6$ + M	1.38×10^{-31} cm3 s$^{-1}$	1.0	0.0	0.0	Est.
C$_3$H$_3$ + CH$_3$ + M \rightarrow C$_4$H$_6$ + M	3.32×10^{-12} cm3 s$^{-1}$	0.0	0.0	0.0	Faravelli et al. (2000)
C$_2$H$_3$ + C$_2$H$_3$ + M \rightarrow C$_4$H$_6$ + M	6.88×10^{-31} cm3 s$^{-1}$	1.0	0.0	0.0	Est.
Table 5 (continued)

Reaction	α	Units	β	E_a (K)	Reference
C$_2$H$_3$ + C$_2$H$_3$ + M \rightarrow C$_4$H$_6$ + M	1.66×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Benson (1989)
C$_2$H$_3$ + C$_2$H$_3$ + M \rightarrow C$_4$H$_6$ + M	6.88×10^{-31}	cm6 s$^{-1}$	1.0	0.0	Est.
C$_2$H$_3$ + C$_2$H$_3$ + M \rightarrow C$_4$H$_6$ + M	1.66×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Benson (1989)
HCN + H + M \rightarrow H$_2$CN + M	1.34×10^{-30}	cm6 s$^{-1}$	-2.63	3780.0	Tsang & Herron (1991)
HCN + H + M \rightarrow H$_2$CN + M	5.50×10^{-11}	cm3 s$^{-1}$	0.0	2430.0	Tsang & Herron (1991)
CH$_3$ + CO + M \rightarrow C$_2$H$_3$O + M	3.01×10^{-34}	cm6 s$^{-1}$	0.0	1910.0	Baulch et al. (1994)
CH$_3$ + CO + M \rightarrow C$_2$H$_3$O + M	1.90×10^{-13}	cm3 s$^{-1}$	2.25	3030.0	Huynh & Violi (2008)
C$_2$H$_2$O + H + M \rightarrow C$_2$H$_3$O + M	1.38×10^{-30}	cm6 s$^{-1}$	0.0	0.0	Yasunaga et al. (2008)
C$_2$H$_2$O + H + M \rightarrow C$_2$H$_3$O + M	3.68×10^{-12}	cm3 s$^{-1}$	1.61	1320.0	Senosiai et al. (2006)
CH$_3$OH + M \rightarrow H$_2$O + 1CH$_2$ + M	1.0×10^{-9}	cm3 s$^{-1}$	0.0	46100.0	Est.
CH$_3$OH + M \rightarrow H$_2$O + 1CH$_2$ + M	9.51×10^{-15}	s$^{-1}$	-1.02	46100.0	Jasper et al. (2007)
CH$_3$OH + M \rightarrow H$_2$O + 1CH$_2$ + M	7.21×10^{-30}	cm3 s$^{-1}$	1.24	0.0	Est.
CH$_3$O + H + M \rightarrow CH$_3$OH + M	1.74×10^{-10}	cm3 s$^{-1}$	0.24	0.0	Brudnik et al. (2009)
HOCH + H$_2$ + M \rightarrow CH$_3$OH + M	5.18×10^{-34}	cm6 s$^{-1}$	3.62	4470.0	Est.
HOCH + H$_2$ + M \rightarrow CH$_3$OH + M	1.25×10^{-14}	cm3 s$^{-1}$	2.62	4470.0	Jasper et al. (2007)
CH$_3$ + CHO + M \rightarrow C$_2$H$_4$O + M	1.25×10^{-30}	cm6 s$^{-1}$	1.0	0.0	Est.
CH$_3$ + CHO + M \rightarrow C$_2$H$_4$O + M	3.01×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Tsang & Hampson (1986)
H$_2$N + HO + M \rightarrow NH$_2$OH + M	2.80×10^{-20}	cm6 s$^{-1}$	-2.23	672.0	Est.
H$_2$N + HO + M \rightarrow NH$_2$OH + M	6.77×10^{-10}	cm3 s$^{-1}$	-3.23	672.0	Mousavipour et al. (2009)
C$_2$H$_3$ + CO + M \rightarrow C$_3$H$_3$O + M	1.13×10^{-33}	cm6 s$^{-1}$	3.65	1300.0	Est.
C$_2$H$_3$ + CO + M \rightarrow C$_3$H$_3$O + M	2.74×10^{-14}	cm3 s$^{-1}$	2.65	1300.0	Huynh & Violi (2008)
H$_2$N + HN + M \rightarrow NH$_2$NH + M	4.80×10^{-30}	cm3 s$^{-1}$	1.0	0.0	Est.
H$_2$N + HN + M \rightarrow NH$_2$NH + M	1.16×10^{-10}	cm3 s$^{-1}$	0.0	0.0	Pagsberg et al. (1979)
CH$_3$ + O$_2$ + M \rightarrow CH$_3$O$_2$ + M	7.14×10^{-31}	cm6 s$^{-1}$	-3.0	0.0	Fernandes et al. (2006)
CH$_3$ + O$_2$ + M \rightarrow CH$_3$O$_2$ + M	2.19×10^{-12}	cm3 s$^{-1}$	0.9	0.0	Fernandes et al. (2006)
CHO + CHO + M \rightarrow (CHO)$_2$ + M	2.07×10^{-30}	cm6 s$^{-1}$	1.0	0.0	Est.
CHO + CHO + M \rightarrow (CHO)$_2$ + M	5.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Stoeckel et al. (1985)
CH$_3$O + NO$_2$ + M \rightarrow CH$_3$NO$_3$ + M	3.98×10^{-29}	cm6 s$^{-1}$	-1.74	0.0	Martínez et al. (2000)
CH$_3$O + NO$_2$ + M \rightarrow CH$_3$NO$_3$ + M	2.41×10^{-11}	cm3 s$^{-1}$	-0.88	0.0	Martínez et al. (2000)
C$_2$H$_5$ + CHO + M \rightarrow (CH$_3$)$_2$CO + M	5.96×10^{-32}	cm6 s$^{-1}$	1.0	0.0	Est.
C$_2$H$_5$ + CHO + M \rightarrow (CH$_3$)$_2$CO + M	1.44×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Est.
S + S + M \rightarrow S$_2$ + M	3.95×10^{-33}	cm6 s$^{-1}$	0.0	0.0	Du et al. (2008)
S + S + M \rightarrow S$_2$ + M	9.09×10^{-14}	cm3 s$^{-1}$	0.0	0.0	Du et al. (2008)
SO + HO + M \rightarrow HOSO + M	6.45×10^{-29}	cm6 s$^{-1}$	-3.48	490.0	Goumri et al. (1999)

Table 5 continued on next page
Reaction	α	Units	β	E_a (K)	Reference
SO + HO + M → HOSO + M	8.75×10^{-11}	cm3 s$^{-1}$	0.5	0.0	Goumri et al. (1999)
SO$_2$ + O + M → SO$_3$ + M	1.32×10^{-31}	cm6 s$^{-1}$	0.0	1000.0	Zhang et al. (2012)
SO$_2$ + O + M → SO$_3$ + M	5.00×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Est.
SO$_2$ + H + M → HSO$_2$ + M	5.74×10^{-31}	cm6 s$^{-1}$	-3.69	2410.0	Goumri et al. (1999)
SO$_2$ + H + M → HSO$_2$ + M	2.31×10^{-11}	cm3 s$^{-1}$	0.62	1820.0	Goumri et al. (1999)
SO$_2$ + H + M → HOSO + M	9.43×10^{-28}	cm6 s$^{-1}$	-4.36	5440.0	Goumri et al. (1999)
SO$_2$ + H + M → HOSO + M	9.13×10^{-12}	cm3 s$^{-1}$	0.96	4320.0	Goumri et al. (1999)
SO + O + M → SO$_2$ + M	4.82×10^{-31}	cm6 s$^{-1}$	-2.17	0.0	Lu et al. (2003)
SO + O + M → SO$_2$ + M	3.50×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Est.
SO$_2$ + HO + M → HSNO + M	1.10×10^{-30}	cm6 s$^{-1}$	-4.3	0.0	Zhang et al. (2012)
SO$_2$ + HO + M → HSNO + M	1.60×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Est.
HS + NO + M → HSNO + M	2.40×10^{-31}	cm3 s$^{-1}$	-3.0	0.0	Burkholder et al. (2020)
HS + NO + M → HSNO + M	2.71×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Atkinson et al. (2004)
HS + O$_2$ + M → HSO$_2$ + M	9.18×10^{-34}	cm6 s$^{-1}$	-1.69	0.0	Goumri et al. (1995)
HS + O$_2$ + M → HSO$_2$ + M	2.01×10^{-10}	cm3 s$^{-1}$	0.31	0.0	Goumri et al. (1995)
HS + O$_2$ + M → HSOO + M	9.06×10^{-34}	cm6 s$^{-1}$	-2.01	10.0	Goumri et al. (1995)
HS + O$_2$ + M → HSOO + M	3.30×10^{-10}	cm3 s$^{-1}$	-0.26	150.0	Goumri et al. (1995)
HS + H + M → H$_2$S + M	1.00×10^{-30}	cm6 s$^{-1}$	-2.0	0.0	Krasnopolsky (2007)
HS + H + M → H$_2$S + M	2.41×10^{-11}	cm3 s$^{-1}$	-3.0	0.0	Est.
HSO + M → H + SO + M	1.40×10^{-8}	cm3 s$^{-1}$	0.0	29500.0	Tsuchiya et al. (1994)
HSO + M → H + SO + M	3.38×10^{-11}	s$^{-1}$	-1.0	29500.0	Est.
HSOO + M → HSO$_2$ + M	3.18×10^{-3}	cm3 s$^{-1}$	-5.64	27900.0	Goumri et al. (1999)
HSOO + M → HSO$_2$ + M	3.64×10^{-11}	s$^{-1}$	1.04	25200.0	Goumri et al. (1999)
HSOO + M → O + HSO + M	4.61×10^{-4}	cm3 s$^{-1}$	-5.87	15600.0	Goumri et al. (1999)
HSOO + M → O + HSO + M	4.53×10^{16}	s$^{-1}$	-1.07	14300.0	Est.
H$_2$S$_2$ + M → HS + HS + M	3.43×10^{-7}	cm3 s$^{-1}$	1.0	28700.0	Sendt et al. (2002)
H$_2$S$_2$ + M → HS + HS + M	8.28×10^{-12}	cm3 s$^{-1}$	0.0	28700.0	Est.
CS$_2$ + HO + M → CS$_2$OH + M	8.00×10^{-31}	cm6 s$^{-1}$	0.0	0.0	Atkinson et al. (2004)
CS$_2$ + HO + M → CS$_2$OH + M	8.00×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Atkinson et al. (2004)
CO + S + M → OCS + M	3.00×10^{-33}	cm6 s$^{-1}$	0.0	1000.0	Krasnopolsky (2007)
CO + S + M → OCS + M	7.24×10^{-14}	cm3 s$^{-1}$	0.0	1000.0	Est.
CH$_3$ + HS + M → CH$_3$SH + M	6.88×10^{-31}	cm6 s$^{-1}$	1.0	0.0	Est.
CH$_3$ + HS + M → CH$_3$SH + M	1.66×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Shum & Benson (1985)
PH$_3$ + M → PH$_2$ + H + M	3.40×10^{-8}	cm3 s$^{-1}$	0.0	35600.0	Greaves et al. (2020a)

Table 5 continued on next page
The Clouds of Venus

Table 5 (continued)

Reaction	α	Units	β	E_a (K)	Reference
$\text{PH}_3 + \text{M} \rightarrow \text{PH}_2 + \text{H} + \text{M}$	1.91×10^{18}	s$^{-1}$	0.0	40100.0	Cardelino et al. (2003)
$\text{S}_2 + \text{S}_2 + \text{M} \rightarrow \text{S}_4 + \text{M}$	2.20×10^{-29}	cm6 s$^{-1}$	0.0	0.0	Mills (1998)
$\text{S}_3 + \text{S}_3 + \text{M} \rightarrow \text{S}_6 + \text{M}$	1.00×10^{-10}	cm6 s$^{-1}$	0.0	0.0	Mills (1998)
$\text{S}_4 + \text{S}_4 + \text{M} \rightarrow \text{S}_8 + \text{M}$	1.00×10^{-30}	cm6 s$^{-1}$	0.0	0.0	Mills (1998)
$\text{Cl} + \text{O} + \text{M} \rightarrow \text{ClO} + \text{M}$	5.00×10^{-32}	cm6 s$^{-1}$	0.0	0.0	Yung & Demore (1982)
$\text{Cl} + \text{O} + \text{M} \rightarrow \text{ClO} + \text{M}$	1.21×10^{-12}	cm3 s$^{-1}$	-1.0	0.0	Est.
$\text{Cl} + \text{CO} + \text{M} \rightarrow \text{ClCO} + \text{M}$	1.30×10^{-33}	cm6 s$^{-1}$	-3.8	0.0	Mills (1998)
$\text{Cl} + \text{CO} + \text{M} \rightarrow \text{ClCO} + \text{M}$	3.14×10^{-14}	cm3 s$^{-1}$	-4.8	0.0	Est.
$\text{Cl} + \text{Cl} + \text{M} \rightarrow \text{Cl}_2 + \text{M}$	1.40×10^{-32}	cm6 s$^{-1}$	0.0	0.0	Mills (1998)
$\text{Cl} + \text{Cl} + \text{M} \rightarrow \text{Cl}_2 + \text{M}$	3.38×10^{-13}	cm3 s$^{-1}$	-1.0	0.0	Est.
$\text{S} + \text{O} + \text{M} \rightarrow \text{SO} + \text{M}$	3.01×10^{-33}	cm6 s$^{-1}$	0.0	0.0	Moses et al. (2002)
$\text{S} + \text{O} + \text{M} \rightarrow \text{SO} + \text{M}$	7.27×10^{-14}	cm3 s$^{-1}$	-1.0	0.0	Est.
$\text{Cl} + \text{S} + \text{M} \rightarrow \text{ClS} + \text{M}$	1.00×10^{-29}	cm6 s$^{-1}$	-1.0	0.0	Moses et al. (2002)
$\text{Cl} + \text{S} + \text{M} \rightarrow \text{ClS} + \text{M}$	2.41×10^{-10}	cm6 s$^{-1}$	-2.0	0.0	Est.
$\text{S} + \text{S}_3 + \text{M} \rightarrow \text{S}_4 + \text{M}$	1.11×10^{-30}	cm6 s$^{-1}$	-2.0	0.0	Moses et al. (2002)
$\text{S} + \text{S}_3 + \text{M} \rightarrow \text{S}_4 + \text{M}$	3.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
$\text{S}_2 + \text{S}_3 + \text{M} \rightarrow \text{S}_5 + \text{M}$	1.11×10^{-13}	cm6 s$^{-1}$	-2.0	0.0	Moses et al. (2002)
$\text{S}_2 + \text{S}_3 + \text{M} \rightarrow \text{S}_5 + \text{M}$	3.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
$\text{S} + \text{S}_3 + \text{M} \rightarrow \text{S}_5 + \text{M}$	1.11×10^{-30}	cm6 s$^{-1}$	-2.0	0.0	Moses et al. (2002)
$\text{S} + \text{S}_4 + \text{M} \rightarrow \text{S}_5 + \text{M}$	3.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
$\text{S}_2 + \text{S}_4 + \text{M} \rightarrow \text{S}_6 + \text{M}$	1.11×10^{-30}	cm6 s$^{-1}$	-2.0	0.0	Moses et al. (2002)
$\text{S}_2 + \text{S}_4 + \text{M} \rightarrow \text{S}_6 + \text{M}$	3.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
$\text{S}_3 + \text{S}_4 + \text{M} \rightarrow \text{S}_7 + \text{M}$	1.11×10^{-30}	cm6 s$^{-1}$	-2.0	0.0	Moses et al. (2002)
$\text{S}_3 + \text{S}_4 + \text{M} \rightarrow \text{S}_7 + \text{M}$	3.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
$\text{S} + \text{S}_5 + \text{M} \rightarrow \text{S}_6 + \text{M}$	1.11×10^{-30}	cm6 s$^{-1}$	-2.0	0.0	Moses et al. (2002)
$\text{S} + \text{S}_5 + \text{M} \rightarrow \text{S}_6 + \text{M}$	3.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
$\text{S}_2 + \text{S}_5 + \text{M} \rightarrow \text{S}_7 + \text{M}$	1.11×10^{-30}	cm6 s$^{-1}$	-2.0	0.0	Moses et al. (2002)
$\text{S}_2 + \text{S}_5 + \text{M} \rightarrow \text{S}_7 + \text{M}$	3.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
$\text{S}_3 + \text{S}_5 + \text{M} \rightarrow \text{S}_8 + \text{M}$	3.00×10^{-11}	cm3 s$^{-1}$	-2.0	0.0	Mills (1998)
$\text{S} + \text{S}_6 + \text{M} \rightarrow \text{S}_7 + \text{M}$	1.11×10^{-30}	cm6 s$^{-1}$	-2.0	0.0	Moses et al. (2002)

Table 5 continued on next page
Reaction	α	Units	β	E_a (K)	Reference
S + S$_6$ + M \rightarrow S$_7$ + M	3.00×10^{-11} cm3 s$^{-1}$	0.0	0.0	Mills (1998)	
S$_2$ + S$_6$ + M \rightarrow S$_8$ + M	1.11×10^{-30} cm6 s$^{-1}$	-2.0	0.0	Moses et al. (2002)	
S + S$_6$ + M \rightarrow S$_8$ + M	3.00×10^{-11} cm3 s$^{-1}$	0.0	0.0	Mills (1998)	
S + SO + M \rightarrow S$_2$O + M	3.67×10^{-31} cm6 s$^{-1}$	-2.0	0.0	Moses et al. (2002)	
S + S + SO + M \rightarrow S$_2$O$_2$ + M	8.86×10^{-13} cm3 s$^{-1}$	-3.0	0.0	Mills (1998)	
Cl$_2$ + Cl$_2$ + M \rightarrow Cl$_2$S$_2$ + M	1.00×10^{-30} cm6 s$^{-1}$	0.0	0.0	Mills et al. (2007)	
Cl$_2$ + Cl$_2$ + M \rightarrow Cl$_2$S$_2$ + M	5.00×10^{-11} cm3 s$^{-1}$	0.0	0.0	Mills et al. (2007)	
Cl$_2$ + Cl$_2$ + M \rightarrow Cl$_2$S$_2$ + M	4.00×10^{-31} cm6 s$^{-1}$	0.0	0.0	Mills (1998)	
Cl + SO + M \rightarrow OSCl + M	7.24×10^{-14} cm3 s$^{-1}$	-6.0	0.0	Est.	
S + NO + M \rightarrow SNO + M	3.00×10^{-32} cm6 s$^{-1}$	0.0	-940.0	Krasnapolsky (2007)	
S + NO + M \rightarrow SNO + M	7.24×10^{-14} cm3 s$^{-1}$	0.0	0.0	Est.	
Cl + SO$_2$ + M \rightarrow SNO + M	1.30×10^{-34} cm6 s$^{-1}$	0.0	-940.0	Mills (1998)	
Cl + SO$_2$ + M \rightarrow SNO + M	7.20×10^{-14} cm3 s$^{-1}$	-1.0	0.0	Est.	
OSCl + M \rightarrow SO + Cl + M	3.00×10^{-31} cm3 s$^{-1}$	-5.0	35600.0	Mills (1998)	
OSCl + M \rightarrow SO + Cl + M	7.24×10^{-12} s$^{-1}$	-6.0	0.0	Est.	
ClSO$_2$ + M \rightarrow Cl + SO$_2$ + M	7.00×10^{-16} cm3 s$^{-1}$	0.0	10500.0	DeMore et al. (1985)	
ClCO$_2$ + M \rightarrow Cl + SO$_2$ + M	1.69×10^4 s$^{-1}$	-1.0	10500.0	Est.	
ClCO + O$_2$ + M \rightarrow ClCO$_3$ + M	5.70×10^{-32} cm6 s$^{-1}$	0.0	-500.0	Yung & Demore (1982)	
ClCO + O$_2$ + M \rightarrow ClCO$_3$ + M	6.00×10^{-13} cm3 s$^{-1}$	0.0	0.0	Est.	
CN + N \rightarrow C + N$_2$	6.56×10^{-11} cm3 s$^{-1}$	0.0	0.0	Natarajan et al. (1997)	
HN + N \rightarrow H + N$_2$	1.89×10^{-11} cm3 s$^{-1}$	0.51	0.0	Caridade et al. (2005)	
HN + O \rightarrow H + NO	1.16×10^{-10} cm3 s$^{-1}$	0.0	0.0	Cohen & Westberg (1991)	
HO + N \rightarrow H + NO	4.70×10^{-11} cm3 s$^{-1}$	0.0	0.0	Baulch et al. (2005)	
HO + O \rightarrow H + O$_2$	3.28×10^{-11} cm3 s$^{-1}$	-0.32	0.0	Robertson & Smith (2006)	
CN + H$_2$ \rightarrow HCN + H	3.49×10^{-11} cm3 s$^{-1}$	0.0	2370.0	Jacobs et al. (1989)	
O + CH$_2$ \rightarrow CHO + H	5.01×10^{-11} cm3 s$^{-1}$	0.0	0.0	Tsuboi & Hashimoto (1981)	
CO + HO \rightarrow CO$_2$ + H	1.43×10^{-13} cm3 s$^{-1}$	1.55	0.0	Lissianski et al. (1995)	
H$_2$ + HO \rightarrow H$_2$O + H	5.44×10^{-11} cm3 s$^{-1}$	0.0	3210.0	Krasnoperov & Michael (2004)	
H$_2$N + O \rightarrow HNO + H	5.28×10^{-11} cm3 s$^{-1}$	-0.49	0.0	Bozzelli & Dean (1989)	
HO + HN\rightarrow HNO + H	6.84×10^{-11} cm3 s$^{-1}$	-0.38	0.0	Klippenstein et al. (2009)	
O + HN$_2$ \rightarrow N$_2$O + H	5.27×10^{-11} cm3 s$^{-1}$	-0.4	0.0	Bozzelli & Dean (1995)	
NO + HN\rightarrow N$_2$O + H	1.07×10^{-12} cm3 s$^{-1}$	0.75	0.0	Roese et al. (1978)	

Table 5 continued on next page
The Clouds of Venus

Table 5 (continued)

Reaction	α	Units	β	E_a (K)	Reference
H$_2$ + C$_2$H \rightarrow C$_2$H$_2$ + H	2.45×10^{-12}	cm3 s$^{-1}$	0.83	541.0	Ju & Wang (2010)
CN + HCN \rightarrow NCCN + H	4.27×10^{-13}	cm3 s$^{-1}$	1.71	768.0	Wooldridge et al. (1996)
CN + O \rightarrow CO + N	1.45×10^{-10}	cm3 s$^{-1}$	-0.18	0.0	Andersson et al. (2003)
HN + O \rightarrow HO + N	1.16×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Cohen & Westberg (1991)
N + O$_2$ \rightarrow NO + O	4.40×10^{-12}	cm3 s$^{-1}$	0.0	2400.0	Atkinson et al. (1989)
HN + HN \rightarrow H$_2$N + N	6.63×10^{-15}	cm3 s$^{-1}$	3.88	0.0	Klippenstein et al. (2009)
HO + HN \rightarrow H$_2$O + N	1.39×10^{-13}	cm3 s$^{-1}$	1.74	0.0	Klippenstein et al. (2009)
HN + NCO \rightarrow HNCO + N	1.67×10^{-20}	cm3 s$^{-1}$	2.21	0.0	Xu & Sun (1999)
NO + C \rightarrow CN + O	5.57×10^{-11}	cm3 s$^{-1}$	-0.31	0.0	Andersson et al. (2003)
CN + HO \rightarrow HCN + O	1.00×10^{-11}	cm3 s$^{-1}$	0.0	997.0	Tsang & Herron (1991)
CN + O$_2$ \rightarrow NCO + O	1.32×10^{-11}	cm3 s$^{-1}$	0.18	0.0	Klippenstein & Kim (1993)
HO + HO \rightarrow H$_2$O + O	5.98×10^{-12}	cm3 s$^{-1}$	0.83	379.0	Karkach & Osherov (1999)
O + NO$_2$ \rightarrow NO + O$_2$	1.04×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Estupiñán et al. (2001)
O + O$_3$ \rightarrow O$_2$ + O$_2$	8.00×10^{-12}	cm3 s$^{-1}$	0.0	2060.0	Atkinson et al. (2004)
HO + NCO \rightarrow HNCO + O	2.81×10^{-13}	cm3 s$^{-1}$	2.27	0.0	Tsang (1992)
HO + H$_2$N \rightarrow H$_3$N + O	8.03×10^{-14}	cm3 s$^{-1}$	2.41	0.0	Mousavipour et al. (2009)
CH$_3$ + HO \rightarrow CH$_4$ + O	3.22×10^{-14}	cm3 s$^{-1}$	2.0	2230.0	Cohen & Westberg (1991)
C$_2$H$_5$ + HO \rightarrow C$_2$H$_6$ + O	4.26×10^{-19}	cm3 s$^{-1}$	8.8	0.0	Cohen & Westberg (1991)
C$_2$H + CHO \rightarrow C$_2$H$_2$ + CO	1.00×10^{-10}	cm3 s$^{-1}$	0.0	0.0	Tsang & Hampson (1986)
C$_2$H$_3$ + CHO \rightarrow C$_2$H$_4$ + CO	1.50×10^{-10}	cm3 s$^{-1}$	0.0	0.0	Tsang & Hampson (1986)
H$_2$N + HO \rightarrow H$_2$O + HN	1.19×10^{-12}	cm3 s$^{-1}$	1.97	336.0	Mousavipour et al. (2009)
H$_2$N + NCO \rightarrow HNCO + HN	5.42×10^{-10}	cm3 s$^{-1}$	1.91	0.0	Xu & Sun (1998)
H$_2$N + H$_2$N \rightarrow H$_3$N + HN	2.01×10^{-15}	cm3 s$^{-1}$	3.53	0.0	Klippenstein et al. (2009)
HO$_2$ + NO \rightarrow HO + NO$_2$	8.80×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Atkinson et al. (2004)
C$_2$H + H$_2$O \rightarrow C$_2$H$_2$ + HO	7.74×10^{-14}	cm3 s$^{-1}$	3.05	376.0	Carl et al. (2005)
HO + HCN\rightarrow HOCH + NO	1.66×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Miller et al. (2003)
HO + CH$_3$O \rightarrow CH$_2$O + H$_2$O	9.04×10^{-16}	cm3 s$^{-1}$	2.5	947.0	Jasper et al. (2009)
HO + HNO$_3$ \rightarrow NO$_3$ + H$_2$O	1.39×10^{-13}	cm3 s$^{-1}$	0.0	0.0	Lamb et al. (1984)
HO + CH$_4$O$_2$ \rightarrow CH$_3$O$_2$ + H$_2$O	3.59×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Anglada et al. (2017)
HO + CH$_4$O$_2$ \rightarrow CH$_3$O + H$_2$O + HO	1.89×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Anglada et al. (2017)
NO + O$_3$ \rightarrow NO$_2$ + O$_2$	3.00×10^{-12}	cm3 s$^{-1}$	0.0	1500.0	Seinfeld & Pandis (2016)
HNO + H$_2$N \rightarrow H$_3$N + NO	3.57×10^{-12}	cm3 s$^{-1}$	0.41	0.0	Xu & Lin (2009)
C$_2$H$_5$ + HNO \rightarrow C$_2$H$_6$ + NO	1.66×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Laidler & Wojciechowski (1961)
HO$_2$ + HO$_2$ \rightarrow H$_2$O$_2$ + O$_2$	2.76×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Stone & Rowley (2005)

Table 5 continued on next page
Reaction	α	Units	β	E_a (K)	Reference
CH$_3$O$_2$ + H \rightarrow CH$_4$ + O$_2$	1.17×10^{-11}	cm3 s$^{-1}$	1.02	8340.0	Bogdanchikov et al. (2004)
CH$_3$ + HO$_2$ \rightarrow CH$_4$ + O$_2$	7.31×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Hong et al. (2012)
C$_2$H$_5$ + HO$_2$ \rightarrow C$_2$H$_6$ + O$_2$	5.00×10^{-13}	cm3 s$^{-1}$	0.0	0.0	Tsang & Hampson (1986)
HCN + C$_2$H$_3$ \rightarrow C$_3$H$_3$N + H	1.00×10^{-11}	cm3 s$^{-1}$	0.0	1590.0	Est. (Monks et al. 1993)
CH$_2$O + HO \rightarrow CHO + H$_2$O	8.50×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Est. (Zanchet et al. 2018)
CH$_2$O + NCO \rightarrow HNCO + CHO	1.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Tsang (1992)
CH$_2$O + CH$_3$ \rightarrow CH$_4$ + CHO	2.04×10^{-15}	cm3 s$^{-1}$	3.92	2320.0	Li et al. (2004)
CH$_2$O + CH$_2$OH \rightarrow CH$_3$OH + CHO	7.72×10^{-15}	cm3 s$^{-1}$	2.80	2940.0	Tsang (1987)
CH$_2$O + C$_2$H$_5$ \rightarrow C$_2$H$_6$ + CHO	8.19×10^{-14}	cm3 s$^{-1}$	2.81	2940.0	Tsang & Hampson (1986)
CH$_3$NO + H \rightarrow CH$_3$ + HNO	2.09×10^{-11}	cm3 s$^{-1}$	0.84	0.0	Choi & Lin (2005)
HO$_2$ + O \rightarrow HO + O$_2$	5.90×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Est.
HO$_2$ + O$_3$ \rightarrow HO + O$_2$ + O$_2$	1.00×10^{-14}	cm3 s$^{-1}$	0.0	490.0	Seinfeld & Pandis (2016)
CH$_3$ + H$_2$O$_2$ \rightarrow CH$_4$ + HO$_2$	5.45×10^{-14}	cm3 s$^{-1}$	0.0	0.0	Tsang & Hampson (1986)
CH$_3$O + CHO \rightarrow CH$_3$OH + CO	1.50×10^{-10}	cm3 s$^{-1}$	0.0	0.0	Tsang & Hampson (1986)
C$_2$H$_5$ + H$_2$O$_2$ \rightarrow C$_2$H$_6$ + HO$_2$	1.45×10^{-14}	cm3 s$^{-1}$	0.0	289.0	Tsang & Hampson (1986)
CH$_3$ + HNO$_2$ \rightarrow CH$_4$ + NO$_2$	3.55×10^{-7}	cm3 s$^{-1}$	0.0	10100.0	Zhang & Bauer (1997)
S + O$_2$ \rightarrow SO + O	2.51×10^{-11}	cm3 s$^{-1}$	0.0	1840.0	Tsuchiya et al. (1997)
S + SO$_2$ \rightarrow SO + SO	9.77×10^{-12}	cm3 s$^{-1}$	0.0	4540.0	Murakami et al. (2003)
S + H$_2$ \rightarrow H + HS	3.04×10^{-13}	cm3 s$^{-1}$	2.7	6460.0	Hobbs et al. (2020)
S + OCS \rightarrow CO + S$_2$	1.35×10^{-13}	cm3 s$^{-1}$	2.7	1200.0	Hobbs et al. (2020)
S + CS$_2$ \rightarrow CS + S$_2$	2.82×10^{-10}	cm3 s$^{-1}$	0.0	5920.0	Woiki & Roth (1995)
S + C$_2$H$_6$ \rightarrow HS + C$_2$H$_5$	2.04×10^{-10}	cm3 s$^{-1}$	0.0	7420.0	Tsuchiya et al. (1996)
S + CH$_4$ \rightarrow HS + CH$_3$	3.39×10^{-10}	cm3 s$^{-1}$	0.0	10000.0	Tsuchiya et al. (1996)
S + HS \rightarrow S$_2$ + H	4.98×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Nicholas et al. (1979)
SO + O$_2$ \rightarrow SO$_2$ + O	4.37×10^{-14}	cm3 s$^{-1}$	1.4	1870.0	Garland (1998)
SO$_2$ + H \rightarrow HO + SO	4.58×10^{-8}	cm3 s$^{-1}$	-2.3	15600.0	Blitz et al. (2006)
SO$_2$ + NO$_3$ \rightarrow SO$_3$ + NO$_2$	1.80×10^{-22}	cm3 s$^{-1}$	0.0	0.0	Kurtén et al. (2010)
SO$_2$ + O$_3$ \rightarrow SO$_3$ + O$_2$	3.01×10^{-12}	cm3 s$^{-1}$	0.0	7000.0	Burkholder et al. (2020)
H$_2$S + SO$_2$ \rightarrow H$_2$O + S$_2$O	1.09×10^{-13}	cm3 s$^{-1}$	1.86	19000.0	Sendt & Haynes (2005)
SO$_2$ + HO$_2$ \rightarrow HO + SO$_3$	2.26×10^{-13}	cm3 s$^{-1}$	0.0	3420.0	Hwang et al. (2010)
SO$_2$ + HO$_2$ \rightarrow O$_2$ + HOSO	8.60×10^{-10}	cm3 s$^{-1}$	0.0	5230.0	Wang & Hou (2005)
SO$_3$ + O \rightarrow SO$_2$ + O$_2$	1.06×10^{-13}	cm3 s$^{-1}$	2.57	14700.0	Hindiyarti et al. (2007)
SO$_3$ + H \rightarrow SO$_2$ + HO	1.46×10^{-11}	cm3 s$^{-1}$	1.22	1670.0	Hindiyarti et al. (2007)
HS + O \rightarrow SO + H	1.30×10^{-10}	cm3 s$^{-1}$	0.0	0.0	Tsuchiya et al. (1994)

Table 5 continued on next page
The Clouds of Venus

Table 5 (continued)

Reaction	α	Units	β	E_a (K)	Reference
HS + NO$_2$ → NO + HSO	6.49×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Atkinson et al. (2004)
HS + N$_2$O → N$_2$ + HSO	5.00×10^{-16}	cm3 s$^{-1}$	0.0	0.0	Herndon et al. (1999)
HS + O$_3$ → O$_2$ + HSO	1.10×10^{-11}	cm3 s$^{-1}$	0.0	280.0	Wang & Howard (1990)
HS + O$_2$ → O + HSO	3.11×10^{-11}	cm3 s$^{-1}$	0.0	9020.0	Tsuchiya et al. (1997)
HS + O$_2$ → HO + SO	4.00×10^{-19}	cm3 s$^{-1}$	0.0	0.0	Burkholder et al. (2020)
HS + CO → OCS + H	4.15×10^{-14}	cm3 s$^{-1}$	0.0	7660.0	Kurbanov & Mamedov (1995)
CS + O → CO + S	2.61×10^{-10}	cm3 s$^{-1}$	0.0	758.0	Lilenfeld & Richardson (1977)
CS + HO → OCS + H	1.70×10^{-10}	cm3 s$^{-1}$	0.0	0.0	Vidal et al. (2017)
CS + HO → CO + HS	3.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Vidal et al. (2017)
CS + C → C$_2$ + S	1.44×10^{-11}	cm3 s$^{-1}$	0.5	20400.0	Harada et al. (2010)
CS + CH → C$_2$H$_2$ + S	5.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Vidal et al. (2017)
CS + C$_2$H$_3$ → H$_2$C$_3$H + S + H	1.70×10^{-12}	cm3 s$^{-1}$	0.0	400.0	Vidal et al. (2017)
CS + HN → S + HNC	1.00×10^{-11}	cm3 s$^{-1}$	0.0	1200.0	Vidal et al. (2017)
CS + NO$_2$ → OCS + NO	7.61×10^{-17}	cm3 s$^{-1}$	0.0	0.0	Atkinson et al. (2004)
CS + O$_3$ → OCS + O$_2$	3.01×10^{-16}	cm3 s$^{-1}$	0.0	0.0	Atkinson et al. (2004)
CS + O$_2$ → OCS + O	2.62×10^{-16}	cm3 s$^{-1}$	0.0	1860.0	Burkholder et al. (2020)
H$_2$S + O → HSO + H	5.00×10^{-10}	cm3 s$^{-1}$	0.0	3850.0	Tsuchiya et al. (1994)
H$_2$S + O → HO + HS	2.01×10^{-10}	cm3 s$^{-1}$	0.0	3850.0	Tsuchiya et al. (1994)
H$_2$S + H → H$_2$ + HS	3.07×10^{-12}	cm3 s$^{-1}$	2.1	352.0	Yoshimura et al. (1992)
H$_2$S + O$_2$ → HO$_2$ + HS	3.10×10^{-12}	cm3 s$^{-1}$	2.76	19200.0	Monroya et al. (2005)
H$_2$S + HO → H$_2$O + HS	1.61×10^{-11}	cm3 s$^{-1}$	0.0	540.0	Mousavipour et al. (2003)
H$_2$S + HO$_2$ → H$_2$O + HSO	5.00×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Bulatov et al. (1990)
H$_2$S + CH$_3$ → CH$_4$ + HS	1.05×10^{-13}	cm3 s$^{-1}$	1.2	722.0	Mousavipour et al. (2003)
H$_2$S + S$_2$O → H$_2$O + S$_3$	7.08×10^{-13}	cm3 s$^{-1}$	1.51	17100.0	Sendt & Haynes (2005)
HSO$_3$ + O$_2$ → HO$_2$ + SO$_3$	1.30×10^{-12}	cm3 s$^{-1}$	0.0	330.0	Atkinson et al. (2004)
H$_2$CS + HS → H$_2$S + HCS	8.14×10^{-11}	cm3 s$^{-1}$	0.0	3180.0	Vandeputte et al. (2010)
H$_2$CS + H → H$_2$ + HCS	9.33×10^{-11}	cm3 s$^{-1}$	0.0	3570.0	Vandeputte et al. (2010)
H$_2$CS + CH$_3$ → CH$_4$ + HCS	2.57×10^{-11}	cm3 s$^{-1}$	0.0	4930.0	Vandeputte et al. (2010)
HSO + NO$_2$ → NO + HSO$_2$	9.60×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Lovejoy et al. (1987)
HSO + O$_3$ → O$_2$ + O$_2$ + HS	2.54×10^{-13}	cm3 s$^{-1}$	0.0	384.0	Wang & Howard (1990)
HSO$_2$ + O$_2$ → HO$_2$ + SO$_2$	3.01×10^{-13}	cm3 s$^{-1}$	0.0	0.0	Lovejoy et al. (1987)
HSOO + O$_2$ → HO$_2$ + SO$_2$	3.01×10^{-13}	cm3 s$^{-1}$	0.0	0.0	Lovejoy et al. (1987)
CS$_2$ + O → CS + SO	2.76×10^{-11}	cm3 s$^{-1}$	0.0	644.0	Wei & Timmons (1975)
Reaction	α	Units	β	E_a (K)	Reference
--	----------------	----------	---------	-----------	---------------------------
$\text{CS}_2 + \text{O} \rightarrow \text{CO} + \text{S}_2$	1.08×10^{-13}	cm3 s$^{-1}$	0.0	0.0	Cooper & Hershberger (1992)
$\text{CS}_2 + \text{O} \rightarrow \text{OCS} + \text{S}$	3.65×10^{-12}	cm3 s$^{-1}$	0.0	5830.0	Singleton & Cvetanović (1988)
$\text{CS}_2 + \text{HO} \rightarrow \text{OCS} + \text{HS}$	1.70×10^{-15}	cm3 s$^{-1}$	0.0	0.0	Est.
$\text{OCS} + \text{O} \rightarrow \text{CO} + \text{SO}$	1.99×10^{-11}	cm3 s$^{-1}$	0.0	2150.0	Wei & Timmons (1975)
$\text{OCS} + \text{O} \rightarrow \text{CO}_2 + \text{S}$	8.30×10^{-11}	cm3 s$^{-1}$	0.0	5530.0	Singleton & Cvetanović (1988)
$\text{OCS} + \text{C} \rightarrow \text{CO} + \text{CS}$	1.01×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Dørthe et al. (1991)
$\text{CH}_3\text{SH} + \text{H} \rightarrow \text{CH}_3 + \text{H}_2\text{S}$	1.15×10^{-11}	cm3 s$^{-1}$	0.0	841.0	Amano et al. (1983)
$\text{PH}_3 + \text{H} \rightarrow \text{PH}_2 + \text{H}_2$	7.22×10^{-11}	cm3 s$^{-1}$	0.0	884.0	Arthur & Cooper (1997)
$\text{PH}_3 + \text{O} \rightarrow \text{Products}$	4.75×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Nava & Stief (1989)
$\text{PH}_3 + \text{Cl} \rightarrow \text{PH}_2 + \text{HCl}$	1.61×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Fritz et al. (1982)
$\text{Cl} + \text{O}_3 \rightarrow \text{ClO} + \text{O}_2$	2.40×10^{-10}	cm3 s$^{-1}$	0.0	0.0	Iyer et al. (1983)
$\text{Cl} + \text{O}_3 \rightarrow \text{ClO} + \text{O}_2(1\Delta)$	2.20×10^{-11}	cm3 s$^{-1}$	0.0	200.0	Watson et al. (1976)
$\text{Cl} + \text{HO}_2 \rightarrow \text{HCl} + \text{O}_2$	3.17×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Watson et al. (1976)
$\text{Cl} + \text{HO}_2 \rightarrow \text{ClO} + \text{HO}$	4.10×10^{-11}	cm3 s$^{-1}$	0.0	450.0	Hickson & Keyser (2005)
$\text{Cl} + \text{H}_2\text{O}_2 \rightarrow \text{HCl} + \text{HO}_2$	1.10×10^{-11}	cm3 s$^{-1}$	0.0	980.0	Keyser (1980)
$\text{Cl} + \text{HOCl} \rightarrow \text{HO} + \text{Cl}_2$	6.00×10^{-13}	cm3 s$^{-1}$	0.0	130.0	Cook et al. (1981)
$\text{Cl} + \text{HOCl} \rightarrow \text{HCl} + \text{ClO}$	1.90×10^{-12}	cm3 s$^{-1}$	0.0	130.0	Cook et al. (1981)
$\text{Cl} + \text{ClICO} \rightarrow \text{Cl}_2 + \text{CO}$	2.16×10^{-9}	cm3 s$^{-1}$	0.0	1670.0	Baulch et al. (1981)
$\text{Cl} + \text{OCS} \rightarrow \text{ClS} + \text{CO}$	1.00×10^{-16}	cm3 s$^{-1}$	0.0	0.0	Burkholder et al. (2020)
$\text{Cl} + \text{ClS}_2 \rightarrow \text{Cl}_2 + \text{S}_2$	1.00×10^{-13}	cm3 s$^{-1}$	0.0	0.0	Moses et al. (2002)
$\text{O} + \text{Cl}_2 \rightarrow \text{ClO} + \text{Cl}$	7.40×10^{-12}	cm3 s$^{-1}$	0.0	1650.0	Mills (1998)
$\text{O}(1\Delta) + \text{Cl}_2 \rightarrow \text{ClO} + \text{Cl}$	1.55×10^{-10}	cm3 s$^{-1}$	0.0	0.0	Burkholder et al. (2020)
$\text{ClO} + \text{O} \rightarrow \text{Cl} + \text{O}_2$	3.78×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Est. (Burkholder et al. 2020)
$\text{ClO} + \text{O} \rightarrow \text{Cl} + \text{O}_2(1\Delta)$	7.58×10^{-13}	cm3 s$^{-1}$	0.0	0.0	Est. (Burkholder et al. 2020)
$\text{ClO} + \text{H}_2 \rightarrow \text{HCl} + \text{HO}$	1.00×10^{-12}	cm3 s$^{-1}$	0.0	4800.0	Clyne & Watson (1974)
$\text{ClO} + \text{HO} \rightarrow \text{HCl} + \text{O}_2$	1.29×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Est. (Burkholder et al. 2020)
$\text{ClO} + \text{HO}_2 \rightarrow \text{HOCO} + \text{O}_2$	5.62×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Est. (Burkholder et al. 2020)
$\text{ClO} + \text{CO} \rightarrow \text{CO}_2 + \text{Cl}$	1.00×10^{-12}	cm3 s$^{-1}$	0.0	3700.0	Clyne & Watson (1974)
$\text{ClO} + \text{ClO} \rightarrow \text{Cl}_2 + \text{O}_2$	1.00×10^{-12}	cm3 s$^{-1}$	0.0	1590.0	Nickolaisen et al. (1994)
$\text{ClO} + \text{ClO} \rightarrow \text{Cl}_2 + \text{O}_2(1\Delta)$	2.00×10^{-14}	cm3 s$^{-1}$	0.0	1590.0	Nickolaisen et al. (1994)
$\text{ClO} + \text{SO} \rightarrow \text{Cl} + \text{SO}_2$	2.80×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Burkholder et al. (2020)
$\text{O} + \text{HCl} \rightarrow \text{HO} + \text{Cl}$	1.00×10^{-11}	cm3 s$^{-1}$	0.0	3300.0	Burkholder et al. (2020)
$\text{O}(1\Delta) + \text{HCl} \rightarrow \text{HO} + \text{Cl}$	1.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Streit et al. (1976)
Reaction	α	Units	β	E_a (K)	Reference
----------	---------	-------	---------	----------	-----------
$\text{O}^{(1D)} + \text{HCl} \rightarrow \text{ClO} + \text{H}$	3.60×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Streit et al. (1976)
$\text{O} + \text{HOCl} \rightarrow \text{HO} + \text{ClO}$	1.70×10^{-13}	cm3 s$^{-1}$	0.0	0.0	Schindler et al. (1996)
$\text{HO} + \text{HOCl} \rightarrow \text{H}_2\text{O} + \text{ClO}$	3.00×10^{-12}	cm3 s$^{-1}$	0.0	500.0	Ennis & Birks (1988)
$\text{O} + \text{ClCO} \rightarrow \text{Cl} + \text{CO}_2$	3.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Yung & Demore (1982)
$\text{O} + \text{ClCO} \rightarrow \text{ClO} + \text{CO}$	3.00×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Yung & Demore (1982)
$\text{H} + \text{ClCO} \rightarrow \text{HCl} + \text{CO}$	1.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Yung & Demore (1982)
$\text{HO} + \text{ClCO} \rightarrow \text{HOCl} + \text{CO}$	1.50×10^{-10}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
$\text{ClS} + \text{O}_2 \rightarrow \text{SO} + \text{ClO}$	2.00×10^{-15}	cm3 s$^{-1}$	0.0	0.0	Mills et al. (2007)
$\text{S} + \text{O}_3 \rightarrow \text{SO} + \text{O}_2$	1.20×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Clyne & Townsend (1975)
$\text{SO} + \text{O}_3 \rightarrow \text{SO}_2 + \text{O}_2$	4.50×10^{-12}	cm3 s$^{-1}$	0.0	1170.0	Atkinson et al. (2004)
$\text{SO} + \text{O}_3 \rightarrow \text{SO}_2 + \text{O}_2^{(1}\Delta)$	3.60×10^{-13}	cm3 s$^{-1}$	0.0	1100.0	Burkholder et al. (2020)
$\text{SO}_2 + \text{O}_3 \rightarrow \text{SO}_3 + \text{O}_2^{(1}\Delta)$	6.00×10^{-14}	cm3 s$^{-1}$	0.0	7000.0	Zhang et al. (2012)
$\text{S} + \text{HO}_2 \rightarrow \text{SO} + \text{HO}$	5.84×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Est. (Yung & Demore 1982)
$\text{ClS} + \text{Cl}_2 \rightarrow \text{Cl}_2\text{S} + \text{Cl}$	7.00×10^{-14}	cm3 s$^{-1}$	0.0	0.0	Mills et al. (2007)
$\text{S} + \text{ClO} \rightarrow \text{SO} + \text{Cl}$	4.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Moses et al. (2002)
$\text{S} + \text{ClCO} \rightarrow \text{CO} + \text{ClS}$	3.00×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Zhang et al. (2012)
$\text{S} + \text{ClCO} \rightarrow \text{OCS} + \text{Cl}$	3.00×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Zhang et al. (2012)
$\text{O} + \text{S}_2 \rightarrow \text{SO} + \text{S}$	2.00×10^{-11}	cm3 s$^{-1}$	0.0	84.0	Craven & Murrell (1987)
$\text{ClO} + \text{S}_2 \rightarrow \text{S}_2\text{O} + \text{Cl}$	2.80×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Moses et al. (2002)
$\text{O} + \text{S}_3 \rightarrow \text{SO} + \text{S}_2$	8.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Moses et al. (2002)
$\text{S} + \text{S}_3 \rightarrow \text{S}_2 + \text{S}_2$	8.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Moses et al. (2002)
$\text{O} + \text{S}_4 \rightarrow \text{SO} + \text{S}_3$	8.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Moses et al. (2002)
$\text{Cl} + \text{S}_4 \rightarrow \text{ClS}_2 + \text{S}_2$	2.00×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Mills et al. (2007)
$\text{Cl} + \text{S}_4 \rightarrow \text{ClS}_2 + \text{S}_2$	2.00×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Mills et al. (2007)
$\text{S} + \text{S}_4 \rightarrow \text{S}_2 + \text{S}_3$	8.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Moses et al. (2002)
$\text{S}_3 + \text{S}_4 \rightarrow \text{S}_2 + \text{S}_5$	4.00×10^{-11}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$\text{O} + \text{S}_5 \rightarrow \text{S}_4 + \text{SO}$	8.00×10^{-11}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$\text{S} + \text{S}_5 \rightarrow \text{S}_3 + \text{S}_3$	3.00×10^{-11}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$\text{S} + \text{S}_5 \rightarrow \text{S}_2 + \text{S}_4$	5.00×10^{-11}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$\text{S}_3 + \text{S}_5 \rightarrow \text{S}_2 + \text{S}_6$	4.00×10^{-11}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$\text{S}_4 + \text{S}_5 \rightarrow \text{S}_2 + \text{S}_7$	2.00×10^{-12}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$\text{S}_4 + \text{S}_5 \rightarrow \text{S}_3 + \text{S}_6$	2.00×10^{-12}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$\text{O} + \text{S}_6 \rightarrow \text{S}_5 + \text{SO}$	8.00×10^{-11}	cm3 s$^{-1}$	0.0	300.0	Moses et al. (2002)
$\text{S} + \text{S}_6 \rightarrow \text{S}_3 + \text{S}_4$	3.00×10^{-11}	cm3 s$^{-1}$	0.0	300.0	Moses et al. (2002)

Table 5 continued on next page
Reaction	α	Units	β	E_a (K)	Reference
$S + S_6 \rightarrow S_2 + S_5$	5.00×10^{-11}	cm3 s$^{-1}$	0.0	300.0	Moses et al. (2002)
$S_3 + S_6 \rightarrow S_2 + S_7$	4.00×10^{-12}	cm3 s$^{-1}$	0.0	300.0	Moses et al. (2002)
$S_4 + S_6 \rightarrow S_2 + S_8$	2.00×10^{-12}	cm3 s$^{-1}$	0.0	300.0	Moses et al. (2002)
$S_5 + S_6 \rightarrow S_5 + S_5$	2.00×10^{-12}	cm3 s$^{-1}$	0.0	300.0	Moses et al. (2002)
$O + S_7 \rightarrow S_6 + SO$	8.00×10^{-11}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$S + S_7 \rightarrow S_6 + S_2$	4.00×10^{-11}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$S + S_7 \rightarrow S_3 + S_5$	2.00×10^{-11}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$S + S_7 \rightarrow S_4 + S_4$	2.00×10^{-11}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$S_3 + S_7 \rightarrow S_2 + S_8$	3.00×10^{-11}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$S_3 + S_7 \rightarrow S_4 + S_6$	1.00×10^{-11}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$S_4 + S_7 \rightarrow S_5 + S_5$	1.00×10^{-11}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$S_4 + S_7 \rightarrow S_3 + S_8$	5.00×10^{-12}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$S_4 + S_7 \rightarrow S_5 + S_6$	5.00×10^{-12}	cm3 s$^{-1}$	0.0	200.0	Moses et al. (2002)
$O + S_8 \rightarrow S_7 + SO$	8.00×10^{-11}	cm3 s$^{-1}$	0.0	400.0	Moses et al. (2002)
$S + S_8 \rightarrow S_2 + S_7$	4.00×10^{-11}	cm3 s$^{-1}$	0.0	400.0	Moses et al. (2002)
$S + S_8 \rightarrow S_3 + S_6$	2.00×10^{-11}	cm3 s$^{-1}$	0.0	400.0	Moses et al. (2002)
$S + S_8 \rightarrow S_4 + S_5$	2.00×10^{-11}	cm3 s$^{-1}$	0.0	400.0	Moses et al. (2002)
$S_2 + S_8 \rightarrow S_5 + S_5$	1.00×10^{-11}	cm3 s$^{-1}$	0.0	1400.0	Moses et al. (2002)
$HO_2 + SO \rightarrow SO_2 + HO$	2.80×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Zhang et al. (2012)
$ClS + SO \rightarrow S_2O + Cl$	1.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Moses et al. (2002)
$S_3 + SO \rightarrow S_2O + S_2$	1.00×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Moses et al. (2002)
$O(1D) + SO_2 \rightarrow SO + O_2$	1.30×10^{-10}	cm3 s$^{-1}$	0.0	0.0	Moses et al. (2002)
$S + SO_3 \rightarrow SO_2 + SO$	1.00×10^{-16}	cm3 s$^{-1}$	0.0	0.0	Moses et al. (2002)
$S_2 + SO_3 \rightarrow S_2O + SO_2$	2.00×10^{-16}	cm3 s$^{-1}$	0.0	0.0	Moses et al. (2002)
$SO + SO_3 \rightarrow SO_2 + SO_2$	2.00×10^{-16}	cm3 s$^{-1}$	0.0	0.0	Chung et al. (1975)
$O + S_2O \rightarrow SO + SO$	1.70×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
$S + S_2O \rightarrow S_2 + SO$	1.00×10^{-12}	cm3 s$^{-1}$	0.0	1200.0	Moses et al. (2002)
$S_2O + S_2O \rightarrow S_3 + SO_2$	1.00×10^{-14}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
$O + ClS \rightarrow SO + Cl$	1.20×10^{-10}	cm3 s$^{-1}$	0.0	0.0	Mills et al. (2007)
$S_2 + ClS \rightarrow S_3 + Cl$	1.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Moses et al. (2002)
$ClS + ClS \rightarrow S_2 + Cl_2$	6.00×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Mills et al. (2007)
$ClS + ClS \rightarrow Cl_2S + S$	7.50×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
$ClS + ClS \rightarrow ClS_2 + Cl$	5.40×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Mills et al. (2007)
$OCS + ClS \rightarrow ClS_2 + CO$	3.00×10^{-16}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
The Clouds of Venus

Table 5 (continued)

Reaction	α	Units	β	E_a (K)	Reference
O + ClS$_2$ → SO + ClS	1.00×10^{-13}	cm3 s$^{-1}$	0.0	0.0	Moses et al. (2002)
ClS + ClS$_2$ → Cl$_2$S + S$_2$	1.00×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
H + Cl$_2$S → HCl + ClS	2.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
Cl$_2$S + Cl$_2$S → Cl$_2$S$_2$ + Cl$_2$	1.00×10^{-20}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
Cl + ClS$_2$ → Cl$_2$ + ClS$_2$	4.30×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)
Cl + NO$_3$ → ClO + NO$_2$	2.40×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Becker et al. (1991)
Cl + HNO$_3$ → HCl + NO$_3$	2.00×10^{-16}	cm3 s$^{-1}$	0.0	0.0	Wine et al. (1988)
ClO + NO → Cl + NO$_2$	1.68×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Est. (Burkholder et al. 2020)
ClO + N$_2$O → NO + NO + Cl	1.00×10^{-12}	cm3 s$^{-1}$	0.0	4300.0	Clyne & Watson (1974)
SO + NO$_3$ → SO$_2$ + NO	1.40×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Burkhilder et al. (2020)
OCS + NO$_3$ → CO + SO + NO$_2$	1.00×10^{-16}	cm3 s$^{-1}$	0.0	0.0	Atkinson et al. (2004)
SO + CO$_2$ → SO$_2$ + CO	1.50×10^{-11}	cm3 s$^{-1}$	0.0	22000.0	Krasnopolsky & Pollack (1994)
CO + S$_3$ → OCS + CO	1.00×10^{-11}	cm3 s$^{-1}$	0.0	20000.0	Krasnopolsky (2007)
HS + HS → H$_2$S + S	1.50×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Strausz et al. (1968)
H$_2$S + Cl → HCl + S	7.45×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Est. (Gao et al. 2015)
Cl + HS → HCl + S	1.61×10^{-10}	cm3 s$^{-1}$	0.0	0.0	Est. (Clyne et al. 1984)
H + S$_3$ → HS + S$_2$	1.20×10^{-10}	cm3 s$^{-1}$	0.0	1950.0	Est. (Krasnopolsky 2007)
H + Cl$_2$ → HCl + Cl	8.00×10^{-11}	cm3 s$^{-1}$	0.0	416.0	Krasnopov et al. (1984)
S + Cl$_2$ → ClS + Cl	2.80×10^{-11}	cm3 s$^{-1}$	0.0	300.0	Krasnopov et al. (1984)
S + ClS → S$_2$ + Cl	1.00×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Krasnopolsky (2007)
H + ClS → HCl + S	1.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Krasnopolsky (2007)
HS + ClS → S$_2$ + HCl	1.29×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Est. (Krasnopolsky 2007)
HS + HO → H$_2$O + S	2.50×10^{-12}	cm3 s$^{-1}$	0.0	0.0	Krasnopolsky (2007)
HO + OCS → CO$_2$ + HS	1.10×10^{-13}	cm3 s$^{-1}$	0.0	1200.0	Burkholder et al. (2020)
S + HO → SO + H	6.60×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Jourdain et al. (1979)
ClCO + Cl$_2$ → COCl$_2$ + Cl	4.18×10^{-12}	cm3 s$^{-1}$	0.0	1490.0	Est. (Zhang et al. 2012)a
ClO + OCS → OSCl + CO	2.00×10^{-16}	cm3 s$^{-1}$	0.0	0.0	Eibling & Kaufman (1983)a
ClCO + ClO → COCl$_2$ + CO	5.00×10^{-11}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)a
O(1D) + COCl$_2$ → Cl$_2$ + CO$_2$	3.60×10^{-10}	cm3 s$^{-1}$	0.0	0.0	Burkhilder et al. (2020)a
O(1D) + COCl$_2$ → ClCO + ClO	3.60×10^{-10}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)a
O + S2O → S$_2$O + O$_2$	3.00×10^{-14}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)a
O + S2O → SO + SO$_2$	3.00×10^{-15}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)a
S$_2$ + S2O → S$_2$O + S$_2$O	3.30×10^{-14}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)a
SO + S2O → S$_2$O + SO$_2$	3.30×10^{-14}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)a

Table 5 continued on next page
Reaction	α	Units	β	E_a (K)	Reference
O + OSCl \rightarrow SO$_2$ + Cl	5.00 x 10^{-11}	cm3 s$^{-1}$	0.0	600.0	Mills et al. (2007)a
O + OSCl \rightarrow SO + ClO	2.00 x 10^{-11}	cm3 s$^{-1}$	0.0	600.0	Mills et al. (2002)a
Cl + OSCl \rightarrow Cl$_2$ + SO	2.30 x 10^{-11}	cm3 s$^{-1}$	0.0	0.0	Mills et al. (2007)a
S + OSCl \rightarrow S$_2$O + Cl	5.00 x 10^{-11}	cm3 s$^{-1}$	0.0	600.0	Mills et al. (2002)a
S + OSCl \rightarrow SO + ClS	2.00 x 10^{-11}	cm3 s$^{-1}$	0.0	600.0	Mills et al. (2002)a
SO + OSCl \rightarrow SO$_2$ + ClS	6.00 x 10^{-13}	cm3 s$^{-1}$	0.0	0.0	Mills et al. (2007)a
O + ClSO$_2$ \rightarrow SO$_2$ + ClO	1.00 x 10^{-11}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)a
ClS + ClSO$_2$ \rightarrow SO$_2$ + Cl$_2$S	5.00 x 10^{-12}	cm3 s$^{-1}$	0.0	0.0	Mills et al. (2007)a
S$_2$ + ClSO$_2$ \rightarrow SO$_2$ + ClS$_2$	5.00 x 10^{-11}	cm3 s$^{-1}$	0.0	800.0	Mills et al. (2002)a
SO + ClSO$_2$ \rightarrow OSCI + SO$_2$	5.00 x 10^{-11}	cm3 s$^{-1}$	0.0	800.0	Mills et al. (2002)a
ClSO$_2$ + ClSO$_2$ \rightarrow Cl$_2$ + SO$_2$ + SO$_2$	3.00 x 10^{-13}	cm3 s$^{-1}$	0.0	800.0	Mills et al. (2002)a
SO$_3$ + OCS \rightarrow CO$_2$ + SOSO	1.00 x 10^{-11}	cm3 s$^{-1}$	0.0	10000.0	Krasnopolsky & Pollack (1994)a
SOSO + OCS \rightarrow CO + SO$_2$ + S$_2$	1.00 x 10^{-20}	cm3 s$^{-1}$	0.0	0.0	Krasnopolsky & Pollack (1994)a
S + SNO \rightarrow S$_2$ + NO	5.00 x 10^{-11}	cm3 s$^{-1}$	0.0	0.0	Krasnopolsky (2007)a
S$_2$ + SNO \rightarrow S$_3$ + NO	1.00 x 10^{-17}	cm3 s$^{-1}$	0.0	0.0	Krasnopolsky (2007)a
H + SNO \rightarrow NO + HS	4.00 x 10^{-10}	cm3 s$^{-1}$	0.0	340.0	Krasnopolsky (2007)a
ClSO$_2$ + ClSO$_2$ \rightarrow SOCl$_2$ + ClO$_2$	1.00 x 10^{-12}	cm3 s$^{-1}$	0.0	0.0	Krasnopolsky (2007)a
SO$_2$Cl$_2$ + SO$_2$ \rightarrow SOCl$_2$Cl$_2$ + SO$_2$	1.00 x 10^{-12}	cm3 s$^{-1}$	0.0	11000.0	Krasnopolsky (2007)a
ClSO$_2$ + Cl \rightarrow SO$_2$ + Cl	1.00 x 10^{-12}	cm3 s$^{-1}$	0.0	0.0	Krasnopolsky (2007)a
ClSO$_2$ + S \rightarrow SO$_2$ + ClS	1.00 x 10^{-12}	cm3 s$^{-1}$	0.0	0.0	Krasnopolsky (2007)a
ClSO$_2$ + H \rightarrow SO$_2$ + HCl	1.00 x 10^{-12}	cm3 s$^{-1}$	0.0	0.0	Krasnopolsky (2007)a
SO$_2$Cl$_2$ + Cl \rightarrow ClSO$_2$ + Cl$_2$	1.00 x 10^{-12}	cm3 s$^{-1}$	0.0	0.0	Krasnopolsky (2007)a
SO$_2$Cl$_2$ + S \rightarrow ClSO$_2$ + ClS	1.00 x 10^{-12}	cm3 s$^{-1}$	0.0	0.0	Krasnopolsky (2007)a
SO$_2$Cl$_2$ + H \rightarrow ClSO$_2$ + HCl	1.00 x 10^{-11}	cm3 s$^{-1}$	0.0	0.0	Krasnopolsky (2007)a
HS + Cl$_2$ \rightarrow HSCI + Cl	1.40 x 10^{-11}	cm3 s$^{-1}$	0.0	690.0	Burkholder et al. (2020)a
HSCI + HS \rightarrow H$_2$S + ClS	3.00 x 10^{-12}	cm3 s$^{-1}$	0.0	500.0	Krasnopolsky (2007)a
HSCI + S \rightarrow HS + ClS	1.70 x 10^{-13}	cm3 s$^{-1}$	0.0	0.0	Krasnopolsky (2007)a
HSCI + H \rightarrow H$_2$ + ClS	1.20 x 10^{-13}	cm3 s$^{-1}$	0.0	2770.0	Krasnopolsky (2007)a
HSCI + Cl \rightarrow H$_2$ + ClS	2.50 x 10^{-13}	cm3 s$^{-1}$	0.0	130.0	Krasnopolsky (2007)a
HSCI + Cl \rightarrow H$_2$ + ClS	2.50 x 10^{-13}	cm3 s$^{-1}$	0.0	130.0	Krasnopolsky (2007)a
SO$_3$ + H$_2$O + H$_2$O \rightarrow H$_2$SO$_4$ + H$_2$O	6.90 x 10^{-41}	cm3 s$^{-1}$	1.0	-6540.0	Lovejoy et al. (1996)a,b
H$_2$SO$_4$ + H$_2$O \rightarrow SO$_3$ + H$_2$O + H$_2$O	1.00 x 10^{-10}	cm3 s$^{-1}$	0.0	14500.0	Krasnopolsky (2007)a
H$_2$SO$_3$ + H$_2$O \rightarrow SO$_2$ + H$_2$O + H$_2$O	7.00 x 10^{-14}	cm3 s$^{-1}$	0.0	5170.0	Est.a
ClCO + ClCO$_3$ \rightarrow CO$_2$ + CO$_2$ + Cl + Cl	1.00 x 10^{-11}	cm3 s$^{-1}$	0.0	0.0	Mills (1998)a
Table 5 (continued)

Reaction	α	Units	β	E_a (K)	Reference
O + ClCO → Cl + O$_2$ + CO$_2$	1.00 × 10$^{-11}$	cm3 s$^{-1}$	0.0	0.0	Mills (1998)a
H + ClCO → Cl + HO + CO$_2$	1.00 × 10$^{-11}$	cm3 s$^{-1}$	0.0	0.0	Mills (1998)a
Cl + ClCO → Cl + ClO + CO$_2$	1.00 × 10$^{-11}$	cm3 s$^{-1}$	0.0	0.0	Mills (1998)a
S + ClCO → Cl + SO + CO$_2$	3.00 × 10$^{-11}$	cm3 s$^{-1}$	0.0	0.0	Mills (1998)a
SO + ClCO → Cl + SO$_2$ + CO$_2$	1.00 × 10$^{-11}$	cm3 s$^{-1}$	0.0	0.0	Mills (1998)a
SO$_2$ + ClCO → Cl + SO$_3$ + CO$_2$	1.00 × 10$^{-15}$	cm3 s$^{-1}$	0.0	0.0	Mills (1998)a
C$_2$N + H → HCN + C	2.00 × 10$^{-10}$	cm3 s$^{-1}$	0.0	0.0	Barth et al. (2020)
CNC + H → HCN + C	2.00 × 10$^{-10}$	cm3 s$^{-1}$	0.0	0.0	Barth et al. (2020)
Cl$^+$ + e$^−$ → Cl + hν	1.13 × 10$^{-10}$	cm3 s$^{-1}$	-0.7	0.0	Barth et al. (2020)a
C$_2^+$ + e$^−$ → C$_2$ + C	3.00 × 10$^{-7}$	cm3 s$^{-1}$	-0.5	0.0	Barth et al. (2020)a

a This reaction is not reversed.

b The rate constant for this reaction was miswritten in Krasnopolsky (2007); Zhang et al. (2012).

Table 6. Photochemistry Reactions in STAND2020

Reactants	Database	References
C	PhiDRates	Verner & Yakovlev (1995); Verner et al. (1996)
C(1D)	PhiDRates	Barfield et al. (1972); Henry (1970)
C(1S)	PhiDRates	Barfield et al. (1972); Henry (1970)
H	PhiDRates	Stobbe (1930); Sauter (1931); Bethe & Salpeter (1957)
He	PhiDRates	Verner & Yakovlev (1995); Verner et al. (1996)
N	PhiDRates	Verner & Yakovlev (1995); Verner et al. (1996)
O	PhiDRates	Verner & Yakovlev (1995); Verner et al. (1996)
O(1D)	PhiDRates	Barfield et al. (1972); Henry (1970)
O(1S)	PhiDRates	Barfield et al. (1972); Henry (1970)
H	PhiDRates	Geltman (1962); Broad & Reinhardt (1976)
C$_2$	PhiDRates	Barfield et al. (1972); Pouilly et al. (1983); Padial et al. (1985)
CH	PhiDRates	Walker & Kelly (1972); Barsuhn & Nesbet (1978); van Dishoeck (1987)
CN	PhiDRates	Barfield et al. (1972); Lavendy et al. (1984, 1987)
CO	PhiDRates	Henry & McElroy (1968); Masuoka & Samson (1981); Cairns & Samson (1965)
		Cook et al. (1965); Kronebusch & Berkowitz (1976)
H$_2$	PhiDRates	Samson & Cairns (1965); Cook & Metzger (1964)
		Brolley et al. (1973); Browning & Fryar (1973)
N$_2$	PhiDRates	Huffman (1969); Samson & Cairns (1964); Cook & Metzger (1964)

Table 6 continued on next page
Reactants	Database	References
NO	PhiDRates	Huffman et al. (1963); Lofthus & Krupenie (1977); Hubert & Herzberg (1979) Huffman (1969)
		Lee et al. (1973); Watanabe et al. (1967) Marmo (1953); Kronebusch & Berkowitz (1976)
O₂	PhiDRates	Barfield et al. (1972); Brion et al. (1979); Samson & Cairns (1965)
	MPI-Mainz	Cook & Metzger (1964); Matsumana & Watanabe (1967); Watanabe (1958)
	JPL	Ackerman et al. (1970); Herman & Mentall (1982); Huffman (1969)
		Lee et al. (1977); Kronebusch & Berkowitz (1976); Bogumil et al. (2003)
		Burkholder et al. (2020)
HO	PhiDRates	van Dishoeck & Dalgarno (1984); Barfield et al. (1972); Nee & Lee (1984)
	Leiden	
CO₂	PhiDRates	Henry & McElroy (1968); Cairns & Samson (1965); Nakata et al. (1965)
	MPI-Mainz	Lawrence (1972a,b); Kronebusch & Berkowitz (1976)
	JPL	Ityakso et al. (2008); Archer et al. (2013); Burkholder et al. (2020)
H₂O	PhiDRates	Barfield et al. (1972); Phillips et al. (1977); Katayama et al. (1973)
		Watanabe & Jursa (1964); Watanabe & Zelikoff (1953); Mc Nesby et al. (1962)
		Slanger & Black (1982); Kronebusch & Berkowitz (1976); Ranjan et al. (2020)
HCN	PhiDRates	West & Berry (1974); Nuth & Glicker (1982)
	MPI-Mainz	
HO₂	PhiDRates	See references for H₂O₂
N₂O	PhiDRates	Barfield et al. (1972); Zelikoff et al. (1953); Selwyn et al. (1977)
	JPL	Okabe (1978); Burkholder et al. (2020)
H₂N	PhiDRates	Saxon et al. (1983)
NO₂	PhiDRates	Nakayama et al. (1959)
O₃	PhiDRates	Barfield et al. (1972); Tanaka et al. (1953); Griggs (1968)
	MPI-Mainz	Moortgat & Warneck (1975); Yoshino et al. (1993); Matsumi et al. (2002)
C₂H₂	PhiDRates	Metzger & Cook (1964); Nakayama & Watanabe (1964); Schoen (1962)
		Okabe (1981, 1983)
CH₂O	PhiDRates	Barfield et al. (1972); Mentall et al. (1971); Gentieu & Mentall (1970)
	MPI-Mainz	Glicker & Stief (1971); Clark et al. (1978); Stief et al. (1972)
	JPL	Guyon et al. (1976); Smith et al. (2006); Chen et al. (2002)
		Burkholder et al. (2020)
H₂O₂	PhiDRates	Barfield et al. (1972); Lin et al. (1978); Schürgers & Welge (1968)
HNCO	PhiDRates	Barfield et al. (1972); Okabe (1970); Dixon & Kirby (1968)

Table 6 continued on next page
Reactants	Database	References
HNO₂	PhiDRates	Barfield et al. (1972); Cox & Derwent (1976); Stockwell & Calvert (1978)
H₃N	PhiDRates	Sun & Weissler (1955); Watanabe & Sood (1965); Watanabe (1954)
	MPI-Mainz	Thompson et al. (1963); Mcnesby et al. (1962); Schurath et al. (1969)
		Kronebusch & Berkowitz (1976); Cheng et al. (2006); Wu et al. (2007)
NO₃	PhiDRates	Barfield et al. (1972); Graham & Johnston (1978); Magnotta & Johnston (1980)
CH₄	PhiDRates	Lukirskii et al. (1964); Ditchburn (1955); Sun & Weissler (1955)
	MPI-Mainz	Mount & Moos (1978); Gordon & Ausloos (1967); Hayden et al. (1982)
	JPL	Kronebusch & Berkowitz (1976); Chen & Wu (2004); Burkholder et al. (2020)
HCOOH	PhiDRates	Barnes & Simpson (1963); Gordon & Ausloos (1967)
HNO₃	PhiDRates	Barnes & Simpson (1963); Gordon & Ausloos (1967); Okabe (1980)
C₂H₄	PhiDRates	Barfield et al. (1972); Lee et al. (1973); Schoen (1962)
		Zelikoff & Watanabe (1953); Lee et al. (1973); Mcnesby & Okabe (1964)
		Back & Griffiths (1967)
C₂H₆	PhiDRates	Barfield et al. (1972); Koch & Skibowski (1971); Lombos et al. (1967)
		Okabe & Becker (1963); Mount & Moos (1978); Lias et al. (1970)
C₂H₄O₂	PhiDRates	Weaver et al. (1976); Atkinson et al. (2004)
CH₃OH	PhiDRates	Salahub & Sandorfy (1971); Porter & Noyes Jr (1959)
CH₄O₂	PhiDRates	Molina & Arguello (1979)
C₄H₂	MPI-Mainz	Smith et al. (1998); Ferradaz et al. (2009)
Na	PhiDRates	Verner & Yakovlev (1995)
K	PhiDRates	Verner & Yakovlev (1995)
HCl	PhiDRates	Barfield et al. (1972); Myer & Samson (1970); Inn (1975)
PH₃	PhiDRates	Kley & Welge (1965); Chen et al. (1991)
	MPI-Mainz	
Cl₂	MPI-Mainz	Roxlo & Mandl (1980); Tellinghuisen (2003); Burkholder et al. (2020)
	JPL	
HOClin	PhiDRates	In Database
COCl₂	PhiDRates	Barfield et al. (1972); Okabe et al. (1971); Moule & Foo (1971)
	JPL	Burkholder et al. (2020)
H₂S	PhiDRates	Barfield et al. (1972); Watanabe & Jursa (1964); Goodeve & Stein (1931)
S₃	PhiDRates	Mills (1998); Krasnopolsky (2007)
S₄	PhiDRates	Mills (1998); Krasnopolsky (2007)
Cl₂S	PhiDRates	Mills (1998)
SO	PhiDRates	Barfield et al. (1972); Phillips (1981)

Table 6 continued on next page
Table 6 (continued)

Reactants	Database	References
SO$_2$	PhiDRates	Barfield et al. (1972); Wu & Judge (1981); Golomb et al. (1962) Freeman et al. (1984)
SO$_3$	MPI-Mainz	Hintze et al. (2003); Burkholder & McKeen (1997)
OCS	PhiDRates	Barfield et al. (1972); Carnovale et al. (1982); Lee & Chiang (1982) Matsunaga & Watanabe (1967); Molina et al. (1981); Black et al. (1975) Okabe (1978)
H$_2$SO$_4$	MPI-Mainz	Lane & Kjaergaard (2008); Farahani et al. (2019)
ClO	JPL	Burkhoder et al. (2020)
S$_2$	JPL	Mills (1998)
CIS	JPL	Mills (1998)
CIS$_2$	JPL	Mills (1998)
S$_2$O	JPL	Mills (1998)
CS$_2$	PhiDRates	Barfield et al. (1972); Carnovale et al. (1982)
CH$_3$SH	PhiDRates	Barfield et al. (1972); Vaghjiani & Ghanshyam (1993); Steer & Knight (1968)

aHO has both theoretical and experimental estimates, and one can switch between them. Experimental values are used for all results presented here.

Table 7. Modified Antoine Equations for Vapor Pressure of Condensible Species

Species	Equation	References
CH$_4$	$\log_{10} p = 4.4251 - \frac{453.92}{T} - \frac{4055.6}{T^2}$ $+ \frac{1.1535 \times 10^5}{T^3} + \frac{1.1656 \times 10^6}{T^4}$	Moses et al. (1992)
H$_2$O	$\log_{10} p = 6.8543 - \frac{1897.0}{T - 64.848}$	Rimmer et al. (2020)
H$_3$N	$\log_{10} p = 15.96 - \frac{3537.0}{T} - \frac{33100.0}{T^2}$ $+ \frac{1.752 \times 10^6}{T^3} + \frac{2.995 \times 10^7}{T^4}$	Est.
HCN	$\log_{10} p = 20.055 - \frac{4522.2}{T}$	Sinozaki et al. (1926)
N$_2$O	$\log_{10} p = 16.22 - \frac{2971.0}{T}$	Stull (1947)
C$_2$H$_2$	$\log_{10} p = 6.2224 - \frac{1644.1}{T}$	Ambrose (1956); Ambrose & Townsend (1964)

Table 7 continued on next page
Species	Equation	References
C$_2$H$_4$	$\log_{10} p = 5.8489 - \frac{901.6}{T - 2.555}$	Michels & Wassenaar (1950)
C$_2$H$_6$	$\log_{10} p = 7.1349 - \frac{1085.0}{T - 56.1}$	Loomis & Walters (1927)
C$_3$H$_4$	$\log_{10} p = 4.9008 - \frac{1240.3}{T}$	Esta
C$_4$H$_6$	$\log_{10} p = 5.1575 - \frac{1441.4}{T}$	Esta
CH$_5$N	$\log_{10} p = 16.413 - \frac{3333.3}{T}$	Aston et al. (1937)
HC$_3$N	$\log_{10} p = 20.72 - \frac{5087.5}{T}$	Dannhauser & Flueckinger (1963)
NCCN	$\log_{10} p = 16.381 - \frac{2031.0}{T}$	Stull (1947)
C$_4$H$_{10}$	$\log_{10} p = 5.5709 - \frac{1461.2}{T}$	Esta
H$_2$SO$_3$	$\log_{10} p = 4.4753 - \frac{3229.0}{T + 7.1192 \times 10^5} - \frac{3.1723 \times 10^6}{T^2}$	
	$+ \frac{4.0832 \times 10^8}{T^3} - \frac{2.0321 \times 10^{10}}{T^4}$	Est.b
H$_2$SO$_4$	$\log_{10} p = 4.4753 - \frac{3229.0}{T + 7.1192 \times 10^5} - \frac{3.1723 \times 10^6}{T^2}$	
	$+ \frac{4.0832 \times 10^8}{T^3} - \frac{2.0321 \times 10^{10}}{T^4}$	Greaves et al. (2020a)
S$_2$	$\log_{10} p = 7.024 - \frac{6091.2}{T}$	Lyons (2008)
S$_3$	$\log_{10} p = 6.3428 - \frac{6202.2}{T}$	Lyons (2008)
S$_4$	$\log_{10} p = 6.0028 - \frac{6047.5}{T}$	Lyons (2008)
S$_5$	$\log_{10} p = 5.1609 - \frac{4714.8}{T}$	Lyons (2008)
S$_6$	$\log_{10} p = 4.8039 - \frac{3814.1}{T}$	Lyons (2008)
S$_7$	$\log_{10} p = 5.2127 - \frac{4113.6}{T}$	Lyons (2008)
S$_8$	$\log_{10} p = 4.1879 - \frac{3269.1}{T}$	Lyons (2008)

a The isomer will matter significantly for vapor pressures. This is a way to arbitrarily constraint the abundances of large hydrocarbons in cold reducing atmospheres.

b Estimated to be the same as H$_2$SO$_4$ in the atmosphere of Venus.

T is in units of kelvin, p in units of bar.
REFERENCES

Ackerman, A. S., & Marley, M. S. 2001, ApJ, 556, 872, doi: 10.1086/321540

Ackerman, M., Biaumé, F., & Kockarts, G. 1970, Planet. Space Sci., 18, 1639, doi: 10.1016/0032-0633(70)90038-3

Airey, M. W., Mather, T., Pyle, D., et al. 2015, Planetary and Space Science, 113, 33

Ambrose, D. 1956, Transactions of the Faraday Society, 52, 772

Ambrose, D., & Townsend, R. 1964, Transactions of the Faraday Society, 60, 1025

Anderson, S., Marković, N., & Nyman, G. 2003, Journal of Physical Chemistry A, 107, 5439, doi: 10.1021/jp0222604

Anglada, J. M., Crehuet, R., Martins-Costa, M., Francisco, J. S., & Ruiz-López, M. 2017, Physical Chemistry Chemical Physics (Incorporating Faraday Transactions), 19, 12331, doi: 10.1039/C7CP01976A

Archer, L., Stark, G., Smith, P., et al. 2013, Journal of Quantitative Spectroscopy and Radiative Transfer, 117, 88

Arney, G., Meadows, V., Crisp, D., et al. 2014, Journal of Geophysical Research (Planets), 119, 1860, doi: 10.1002/2014JE004662

Arthur, N. L., & Cooper, I. A. 1997, Journal of the Chemical Society, Faraday Transactions, 93, 521

Ashmore, P., & Burnett, M. 1962, Transactions of the Faraday Society, 58, 253

Aston, J., Siller, C., & Messerly, G. 1937, Journal of the American Chemical Society, 59, 1743

Atkinson, R., Baulch, D. L., Cox, R. A., et al. 1989, Journal of Physical and Chemical Reference Data, 18, 881, doi: 10.1063/1.555832

—. 2004, Atmospheric Chemistry & Physics, 4, 1461

Bee, R. A., & Griffiths, D. W. L. 1967, JChPh, 46, 4839, doi: 10.1063/1.1840644

Bains, W., Petkowski, J. J., Seager, S., et al. 2020, arXiv e-prints, arXiv:2009.06499. https://arxiv.org/abs/2009.06499

Barfield, W., Koontz, G. D., & Huebner, W. F. 1972, JQSRT, 12, 1409, doi: 10.1016/0022-4073(72)90043-X

Barklem, P. S., & Collet, R. 2016, A&A, 588, A96, doi: 10.1051/0004-6361/201526961

Barth, P., Helling, C., Stüeken, E., et al. 2020, MNRAS, submitted

Baulch, D., Duxbury, J., Grant, S., & Montague, D. 1981, Evaluated kinetic data for high temperature reactions. Volume 4. Homogeneous gas phase reactions of halogen-and cyanide-containing species, Tech. rep., National Standard Reference Data System

Baulch, D. L., Cobos, C. J., Cox, R. A., et al. 1992, Journal of Physical and Chemical Reference Data, 21, 411, doi: 10.1063/1.555908

—. 1994, Journal of Physical and Chemical Reference Data, 23, 847, doi: 10.1063/1.555953

Baulch, D. L., Bowman, C. T., Cobos, C. J., et al. 2005, Journal of Physical and Chemical Reference Data, 34, 757, doi: 10.1063/1.1748524

Becker, E., Wille, U., Rahman, M., & Schindler, R. 1991, Berichte der Bunsengesellschaft für physikalische Chemie, 95, 1173

Belyaev, D. A., Montmessin, F., Bertaux, J.-L., et al. 2012, Icarus, 217, 174, doi: 10.1016/j.icarus.2011.09.025

Benson, S. W. 1989, International journal of chemical kinetics, 21, 233

Bertaux, J.-L., Widemann, T., Hauchecorne, A., Moroz, V. I., & Ekonomov, A. P. 1996, J. Geophys. Res., 101, 12709, doi: 10.1029/96JE00466

Bethe, H., & Salpeter, E. 1957, Quantum mechanics of one-and two-electron atoms, Springer-Verlag, Berlin

Bézard, B., & de Bergh, C. 2007, Journal of Geophysical Research (Planets), 112, E04S07, doi: 10.1029/2006JE002794

Bezard, B., de Bergh, C., Crisp, D., & Maillard, J. P. 1990, Nature, 345, 508, doi: 10.1038/345508a0

Bézard, B., Fedorova, A., Bertaux, J.-L., Rodin, A., & Korablev, O. 2011, Icarus, 216, 173, doi: 10.1016/j.icarus.2011.08.025
Clyne, M. A., MacRobert, A. J., Murrells, T. P., & Stief, L. J. 1984, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 80, 877

Clyne, M. A., & Watson, R. T. 1974, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 70, 2250

Cobos, C., Hippler, H., & Troe, J. 1985, The Journal of Physical Chemistry, 89, 342

Coddington, O., Lean, J., Lindholm, D., Pilewskie, P., & Snow, M. 2015, NOAA National Centers for Environmental Information, doi: 10.7289/V51J97P6

Cohen, N., & Westberg, K. R. 1991, Journal of Physical and Chemical Reference Data, 20, 1211, doi: 10.1063/1.555901

Collard, A. D., Taylor, F. W., Calcutt, S. B., et al. 1993, Planet. Space Sci., 41, 487, doi: 10.1016/0032-0633(93)90031-V

Connes, P., Connes, J., Benedict, W. S., & Kaplan, L. D. 1967, ApJ, 147, 1230, doi: 10.1086/149124

Connes, P., Connes, J., Kaplan, L. D., & Benedict, W. S. 1968, ApJ, 152, 731, doi: 10.1086/149590

Cook, G., & Metzger, P. 1964, The Journal of Chemical Physics, 41, 321

Cook, G., Metzger, P., & Ogawa, M. 1965, Canadian Journal of Physics, 43, 1706

Cook, G. R., & Metzger, P. H. 1964, Journal of the Optical Society of America (1917-1983), 54, 968

Cook, J.-E. L., Ennis, C. A., Leck, T. J., & Birks, J. W. 1981, JChPh, 74, 545, doi: 10.1063/1.440807

Cooper, W. F., & Hershberger, J. F. 1992, The Journal of Physical Chemistry, 96, 5405

Cotterell, M. I., Willoughby, R. E., Bzdek, B. R., Orr-Ewing, A. J., & Reid, J. P. 2017, Atmos. Chem. Phys., 17, 9837

Cottini, V., Ignatiev, N. I., Piccioni, G., et al. 2012, Icarus, 217, 561, doi: 10.1016/j.icarus.2011.06.018

Cotton, D. V., Bailey, J., Crisp, D., & Meadows, V. S. 2012, Icarus, 217, 570, doi: 10.1016/j.icarus.2011.05.020

Cox, R., & Derwent, R. 1976, Journal of Photochemistry, 6, 23

Craven, W., & Murrell, J. N. 1987, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 83, 1733

Dannhauser, W., & Flueckinger, A. F. 1963, JChPh, 38, 69, doi: 10.1063/1.1733497

de Bergh, C., Bezard, B., Crisp, D., et al. 1995, Advances in Space Research, 15, 79, doi: 10.1016/0273-1177(94)00067-B

DeMore, W. B., Leu, M.-T., Smith, R. H., & Yung, Y. L. 1985, Icarus, 63, 347, doi: 10.1016/0019-1035(85)90051-X

Ditchburn, R. W. 1955, Proceedings of the Royal Society of London Series A, 229, 44, doi: 10.1098/rspa.1955.0073

Dixon, R., & Kirby, G. 1968, Transactions of the Faraday Society, 64, 2002

Donahue, T. M., Grinspoon, D. H., Hartle, R. E., & Hodges, R. R., J. 1997, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. S. W. Bougher, D. M. Hunten, & R. J. Phillips, 385

Donahue, T. M., & Hodges, R. R., J. 1992, J. Geophys. Res., 97, 6083, doi: 10.1029/92JE00343

Dorthe, G., Caubet, P., Vias, T., Barrere, B., & Marchais, J. 1991, The Journal of Physical Chemistry, 95, 5109

Du, S., Francisco, J. S., Shepler, B. C., & Peterson, K. A. 2008, JChPh, 128, 204306, doi: 10.1063/1.2919569

Duran, R., Amorebieta, V., & Colussi, A. 1989, International journal of chemical kinetics, 21, 847

Eibling, R. E., & Kaufman, M. 1983, Atmospheric Environment, 17, 429, doi: 10.1016/0004-6981(83)90061-6

Eigen, M., Kustin, K., & Maass, G. 1961, Zeitschrift für Physikalische Chemie, 30, 130

Eiteeuer, B., Yu, C. L., Goldenberg, M., & Frenklach, M. 1998, Journal of Physical Chemistry A, 102, 5196, doi: 10.1021/jp981184v

Encrenaz, T., Greathouse, T. K., Roe, H., et al. 2012, A&A, 543, A153, doi: 10.1051/0004-6361/201219419

Encrenaz, T., Moreno, R., Moulet, A., Lellouch, E., & Fouchet, T. 2015, Planet. Space Sci., 113, 275, doi: 10.1016/j.pss.2015.01.011

Encrenaz, T., Greathouse, T. K., Marcq, E., et al. 2019, A&A, 623, A70, doi: 10.1051/0004-6361/201833511

—. 2020, A&A, 643, L5, doi: 10.1051/0004-6361/202039559
Ennis, C., & Birks, J. 1988, Journal of physical chemistry (1952), 92, 1119
Esposito, L. W. 1984, Science, 223, 1072
Estupiñán, E. G., Nicovich, J. M., & Wine, P. H. 2001, Journal of Physical Chemistry A, 105, 9697, doi: 10.1021/jp011940o
Evans, J. V., & Ingalls, R. P. 1969, in The Venus Atmosphere, ed. R. Jastrow & S. I. Rasool, 169
Fairbairn, A. R. 1969, Proceedings of the Royal Society of London Series A, 312, 207, doi: 10.1098/rspa.1969.0149
Farahani, S., Frandsen, B. N., Kjaergaard, H. G., & Lane, J. R. 2019, The Journal of Physical Chemistry A, 123, 6605
Ferradaz, T., Bénilan, Y., Fray, N., et al. 2009, Planet. Space Sci., 57, 10, doi: 10.1016/j.pss.2008.10.005
Fegley, B., & Prinn, R. G. 1989, Nature, 337, 55
Fegley, B., J. 2014, Venus, Vol. 2 (Elsevier), 127–148
Fernandes, R. X., Luther, K., & Troe, J. 2006, Journal of Physical Chemistry A, 110, 4442, doi: 10.1021/jp056850o
Ferradaz, T., Bénilan, Y., Fray, N., et al. 2009, Planet. Space Sci., 57, 10, doi: 10.1016/j.pss.2008.10.005
Freeman, D. E., Yoshino, K., Esmond, J. R., & Parkinson, W. H. 1984, Planet. Space Sci., 32, 1125, doi: 10.1016/0032-0633(84)90139-9
Fritzsche, B., Lorenz, K., Steinert, W., & Zellner, R. 1982, Phys. Chem. Behav. Atmos. Pollut. Proc. Eur. Symp.
Fujii, N., Kakuda, T., Sugiyama, T., & Miyama, H. 1985, Chemical Physics Letters, 122, 489, doi: 10.1016/0009-2614(85)87251-1
Fulle, D., Hamann, H. F., Hippler, H., & Troe, J. 1996, JChPh, 105, 1001, doi: 10.1063/1.471944 —. 1998, JChPh, 108, 5391, doi: 10.1063/1.475971
Gao, P., Zhang, X., Crisp, D., Bardeen, C. G., & Yung, Y. L. 2014, Icarus, 231, 83, doi: 10.1016/j.icarus.2013.10.013
Gao, Y., Alecu, I. M., Goumri, A., & Marshall, P. 2015, Chemical Physics Letters, 624, 83, doi: 10.1016/j.cplett.2015.02.011
Garland, N. L. 1998, Chemical Physics Letters, 290, 385, doi: 10.1016/S0009-2614(98)00553-3
Gelman, B. G., Zolotukhin, V. G., Lamonov, N. I., et al. 1979, An analysis of the chemical composition of the atmosphere of Venus on an AMS of the Venera-12 using a gas chromatograph, NASA STI/Recon Technical Report N
Geltman, S. 1962, ApJ, 136, 935, doi: 10.1086/147447
Gentieu, E. P., & Mentall, J. E. 1970, Science, 169, 681, doi: 10.1126/science.169.3946.681
Glaze, L. S. 1999, Journal of Geophysical Research: Planets, 104, 18899
Glicker, S., & Stief, L. J. 1971, JChPh, 54, 2852, doi: 10.1063/1.1675264
Golden, D. M., Barker, J. R., & Lohr, L. L. 2003, Journal of Physical Chemistry A, 107, 11057, doi: 10.1021/jp0353183
Golomb, D., Watanabe, K., & Marmo, F. F. 1962, JChPh, 36, 958, doi: 10.1063/1.1732695
Goodeve, C., & Stein, N. 1931, Transactions of the Faraday Society, 27, 393
Gordon, R., & Ausloos, P. 1967, J. Chem. Phys, 46, 4823
Gordon, S., Mulac, W., & Nangia, P. 1971, Journal of Physical Chemistry, 75, 2087
Goumri, A., Rocha, J.-D. R., Laakso, D., Smith, C. E., & Marshall, P. 1999, Journal of Physical Chemistry A, 103, 11328, doi: 10.1021/jp9924070
Goumri, A., Rocha, J.-D. R., & Marshall, P. 1995, The Journal of Physical Chemistry, 75, 2087
Granville-Willet, A. 2017, Master’s thesis, University of Cambridge, Cambridge, UK
Grassi, D., Politi, R., Ignatiev, N. I., et al. 2014, Journal of Geophysical Research (Planets), 119, 837, doi: 10.1002/2013JE004586
Greaves, J. S., Richards, A. M. S., Bains, W., et al. 2020a, Nature Astronomy, doi: 10.1038/s41550-020-1174-4 —. 2020b, Matters Arising
The Clouds of Venus

McNesby, J., & Okabe, H. 1964, Advances in Photochemistry, 3, 166
McNesby, J. R., Tanaka, I., & Okabe, H. 1962, JChPh, 36, 605, doi: 10.1063/1.1732579
Meadows, V. S., & Crisp, D. 1996, J. Geophys. Res., 101, 4595, doi: 10.1029/95JE03567
McNesby, J. R., Tanaka, I., & Okabe, H. 1962, JChPh, 36, 605, doi: 10.1063/1.1732579
Moses, J. I., Allen, M., & Yung, Y. L. 1992, Icarus, 99, 318, doi: 10.1016/0019-1035(92)90149-2
Moses, J. I., Zolotov, M. Y., & Fegley, B. 2002, Icarus, 156, 76, doi: 10.1006/icar.2001.6758
Moule, D. C., & Foo, P. D. 1971, JChPh, 55, 1262, doi: 10.1063/1.1676214
Mount, G. H., & Moos, H. W. 1978, ApJL, 224, L35, doi: 10.1086/182753
Mousavi, S. H., Namdar-Ghanbari, M. A., & Sadeghian, L. 2003, Journal of Physical Chemistry A, 107, 3752, doi: 10.1021/jp022291z
Mousavi, S. H., Pirhadi, F., & Habibagahi, A. 2009, Journal of Physical Chemistry A, 113, 12961, doi: 10.1021/jp905197h
Mukhin, L., Gel’man, B., Lamonov, N., et al. 1983, Kosmicheskie Issledovaniya, 21, 225
Mukhin, L. M., Gelman, B. G., Lamonov, N. I., et al. 1982, Soviet Astronomy Letters, 8, 216
Murakami, Y., Onishi, S., Kobayashi, T., et al. 2003, Journal of Physical Chemistry A, 107, 10996, doi: 10.1021/jp030471i
Myer, J. A., & Samson, J. A. R. 1970, JChPh, 52, 206, doi: 10.1063/1.1672676
Na, C. Y., Esposito, L. W., & Skinner, T. E. 1990, J. Geophys. Res., 95, 7485, doi: 10.1029/JD095iD06p07485
Nakata, R., Watanabe, K., & Matsunaga, F. 1965, Sci. Light Tokyo, 14, 54V71
Nakayama, T., Kitamura, M. Y., & Watanabe, K. 1959, JChPh, 30, 1180, doi: 10.1063/1.1730152
Nakayama, T., & Watanabe, K. 1964, JChPh, 40, 558, doi: 10.1063/1.1725154
Natarajan, K., Woiki, D., & Roth, P. 1997, International Journal of Chemical Kinetics, 29, 35
Nava, D. F., & Stief, L. J. 1989, The Journal of Physical Chemistry, 93, 4044
Nee, J. B., & Lee, L. C. 1984, JChPh, 81, 31, doi: 10.1063/1.447387
Nicholas, J. E., Amodio, C. A., & Baker, M. J. 1979, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 75, 1868
Nickolaisen, S. L., Friedl, R. R., & Sander, S. P. 1994, The Journal of Physical Chemistry, 98, 155
Nuth, J. A., & Glicker, S. 1982, JQSRT, 28, 223, doi: 10.1016/0022-4073(82)90025-5
Okabe, H. 1970, JChPh, 53, 3507, doi: 10.1063/1.1674525
—. 1978, Photochemistry of small molecules (John Wiley & Sons)
Selwyn, G., Podolske, J., & Johnston, H. S. 1977, Geophys. Res. Lett., 4, 427, doi: 10.1029/GL004i010p00427

Sendt, K., & Haynes, B. S. 2005, Journal of Physical Chemistry A, 109, 8180, doi: 10.1021/jp052622i

Sendt, K., Jazbec, M., & Haynes, B. 2002, Proceedings of the Combustion Institute, 29, 2439

Senosiain, J. P., Klippenstein, S. J., & Miller, J. A. 2006, Journal of Physical Chemistry A, 110, 5772, doi: 10.1029/2006GC001497

Shao, W. D., Zhang, X., Bierson, C. J., & Encrenaz, T. 2020, Journal of Geophysical Research (Planets), 125, e06195, doi: 10.1029/2019JE006195

Slack, M. W. 1976, JChPh, 64, 228, doi: 10.1063/1.431955

Slanger, T. G., & Black, G. 1982, JChPh, 77, 2432, doi: 10.1063/1.444111

Smith, C. A., Pope, F. D., Cronin, B., Parkes, C. B., & Orr-Ewing, A. J. 2006, Journal of Physical Chemistry A, 110, 11645, doi: 10.1021/jp063713y

Smith, N. S., Bénilan, Y., & Bruston, P. 1998, Planet. Space Sci., 46, 1215, doi: 10.1016/S0032-0633(97)00206-7

Snellen, I. A. G., Guzman-Ramirez, L., Hogerheijde, M. R., Hygate, A. P. S., & van der Tak, F. F. S. 2020, arXiv e-prints, arXiv:2010.09761. https://arxiv.org/abs/2010.09761

Steer, R., & Knight, A. 1968, The Journal of Physical Chemistry, 72, 2145

Stief, L. J., Donn, B., Glicker, S., Gentieu, E. P., & Mentall, J. E. 1972, ApJ, 171, 21, doi: 10.1086/151253

Stobbe, M. 1930, Annalen der Physik, 399, 661

Stock, J. 2008, diploma thesis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

Stockwell, W. R., & Calvert, J. G. 1978, Journal of Photochemistry, 8, 193

Stoeckel, F., Schuh, M. D., Goldstein, N., & Atkinson, G. H. 1985, Chemical Physics, 95, 135, doi: 10.1016/0301-0104(85)80154-3

Stone, D., & Rowley, D. M. 2005, Physical Chemistry Chemical Physics (Incorporating Faraday Transactions), 7, 2156, doi: 10.1039/B502673C

Strausz, O., Donovan, R., & De Sorgo, M. 1968, Berichte der Bunsengesellschaft für physikalische Chemie, 72, 253

Streit, G. E., Howard, C. J., Schmeltekopf, A. L., Davidson, J. A., & Schiff, H. I. 1976, JChPh, 65, 4761, doi: 10.1063/1.432930

Strom, R. G., Schaber, G. G., & Dawsow, D. D. 1994, J. Geophys. Res., 99, 10899, doi: 10.1029/94JE00038

Stull, D. R. 1947, Industrial & Engineering Chemistry, 39, 517

Sun, H., & Weissler, G. L. 1955, JChPh, 23, 1160, doi: 10.1063/1.1742205

Surkov, I. A., Shcheglov, O. P., Ryvkin, M. L., Sheinin, D. M., & Davydov, N. A. 1987, Kosmicheskie Issledovaniia, 25, 678

Surkov, Y. A., Barsukov, V. L., Moskalyeva, L. P., Kharyukova, V. P., & Kemurdzhian, A. L. 1984, Lunar and Planetary Science Conference Proceedings, 89, B393, doi: 10.1029/JB089iB03pB393

Surkov, Y. A., Ivanova, V. F., Pudov, A. N., et al. 1982, Pisma v Astronomicheskii Zhurnal, 8, 111

Surkov, Y. A., Moskalyova, L. P., Kharyukova, V. P., & Kemurdzhian, A. L. 1984, J. Geophys. Res., 91, E215, doi: 10.1029/JB091iB13p0E215

Takahashi, S., & Miyazaki, S. 1977, Bulletin of the Chemical Society of Japan, 50, 1627

Tanaka, Y., Inn, E. C., & Watanabe, K. 1953, The Journal of Chemical Physics, 21, 1651

Terraglio, F. P., & Manganelli, R. M. 1967, Journal of the Air Pollution Control Association, 17, 403

Thompson, B. A., Hartack, P., & Reeves, R. R. 1963, J. Geophys. Res., 68, 6431, doi: 10.1029/JZ068i024p06431
Thompson, M. A. 2020, arXiv e-prints, arXiv:2010.15188.
https://arxiv.org/abs/2010.15188

Titov, D. V. 1983, Kosmicheskie Issledovaniia, 21, 401

Titov, D. V., Ignatiev, N. I., McGouldrick, K., Wilquet, V., & Wilson, C. F. 2018, SSRv, 214, 126, doi: 10.1007/s11214-018-0552-z

Tizniti, M., Le Picard, S. D., Canosa, A., Sims, I. R., & Smith, I. W. M. 2010, Physical Chemistry Chemical Physics (Incorporating Faraday Transactions), 12, 12702, doi: 10.1039/C0CP00591F

Toby, S., Sheth, S., & Toby, F. S. 1984, International journal of chemical kinetics, 16, 149

Tsang, C. C. C., Irwin, P. G. J., Wilson, C. F., et al. 2008, Journal of Geophysical Research (Planets), 113, E00B08, doi: 10.1029/2008JE003089

Tsuchiya, K., Kamiya, K., & Matsui, H. 1997, International Journal of Chemical Kinetics, 29, 57

Tsuchiya, K., Yamashita, K., Miyoshi, A., & Matsui, H. 1996, The Journal of Physical Chemistry, 100, 17202

Tsuchiya, K., Yokoyama, K., Matsui, H., Oya, M., & Dupre, G. 1994, The Journal of Physical Chemistry, 98, 8419

Turányi, T., Nagy, T., Zsély, I. G., et al. 2012, International Journal of Chemical Kinetics, 44, 284

Vaghjiani, & Ghanshyam, L. 1993, JChPh, 99, 5936, doi: 10.1063/1.465917

van Dishoeck, E. F. 1987, JChPh, 86, 196, doi: 10.1063/1.452610

van Dishoeck, E. F., & Dalgaro, A. 1984, Icarus, 59, 305, doi: 10.1016/0019-1035(84)90104-0

Vandaele, A. C., Korablev, O., Belyaev, D., et al. 2017a, Icarus, 295, 16, doi: 10.1016/j.icarus.2017.05.003

—. 2017b, Icarus, 295, 1, doi: 10.1016/j.icarus.2017.05.001

Vandeputte, A. G., Reyniers, M.-F., & Marin, G. B. 2010, Journal of Physical Chemistry A, 114, 10531, doi: 10.1021/jp103357z

Verner, D. A., Ferland, G. J., Korista, K. T., & Yakovlev, D. G. 1996, ApJ, 465, 487, doi: 10.1086/177435

Verner, D. A., & Yakovlev, D. G. 1995, A&AS, 109, 125

Vidal, T. H. G., Loison, J.-C., Jaziri, A. Y., et al. 2017, MNRAS, 469, 435, doi: 10.1093/mnras/stx828

Wakelam, V., Herbst, E., Loison, J. C., et al. 2012, ApJS, 199, 21, doi: 10.1088/0067-0049/199/1/21

Walker, T. E. H., & Kelly, H. P. 1972, Chemical Physics Letters, 16, 511, doi: 10.1016/0009-2614(72)80412-3

Wang, B., & Hou, H. 2005, Chemical Physics Letters, 410, 235, doi: 10.1016/j.cplett.2005.05.091

Wang, J., Novaro, O., Bokhimi, X., et al. 1998, Materials letters, 35, 317

Wang, N. S., & Howard, C. J. 1990, Journal of physical chemistry, 94, 8787

Watanabe, K. 1954, JChPh, 22, 1564, doi: 10.1063/1.1740459

—. 1958, Advances in Geophysics, 5, 153, doi: 10.1016/S0065-2678(08)60078-3

Watanabe, K., & Jursa, A. S. 1964, JChPh, 41, 1650, doi: 10.1063/1.1726138

Watanabe, K., Matsunaga, F. M., & Sakai, H. 1967, ApOpt, 6, 391, doi: 10.1364/AO.6.000391

Watanabe, K., & Sood, S. 1965, Sci. Light, 14, 36

Watanabe, K., & Zelikoff, M. 1953, Journal of the Optical Society of America (1917-1983), 43, 753
Zimmer, K., Zhang, Y., Lu, P., et al. 2016, Computers and Geosciences, 90, 97, doi: 10.1016/j.cageo.2016.02.013