Diferenças e similaridades no registro do potencial evocado auditivo P1-N1 para distintos estímulos sonoros

Differences and similarities in the long-latency auditory evoked potential recording of P1-N1 for different sound stimuli

Pamela Papile Lunardelo
https://orcid.org/0000-0003-0382-637X

Humberto de Oliveira Simões
https://orcid.org/0000-0003-3544-8262

Sthella Zanchetta
https://orcid.org/0000-0001-9171-6116

RESUMO

Objetivo: caracterizar as similaridades e diferenças do registro das componentes P1 e N1 para os estímulos verbal e não verbal, em uma população adulta, para fins de referência.

Métodos: foram estudados 21 sujeitos adultos jovens, eutróficos, de ambos os sexos. O potencial evocado auditivo de longa latência foi pesquisado com estimulação bilateral e registro simultâneo das duas orelhas, com o estímulo clique e a sílaba /da/.

Resultados: a N1 foi identificada em 100,0% da população, para os estímulos clique e fala, enquanto que a P1 foi observada em 85,7% e 95,2% dos sujeitos, para os respectivos estímulos. Foram observadas diferenças significativas para a amplitude de P1 e N1 entre as orelhas (p <0.05), sendo na P1 os valores da esquerda superiores à direita e para N1 foi o inverso. Entre os estímulos os valores de amplitude e latência da N1 foram maiores para a fala, enquanto na P1, apenas a latência obteve resultados distintos.

Conclusão: a componente N1 foi a mais frequente. Apenas para N1 a diferença entre os tipos de estímulos ocorreram para latência e amplitude, o que pode ser justificado pelo seu papel no processo da discriminação de fala.

Descritores: Testes Auditivos; Vias Auditivas; Percepção Auditiva; Adulto

ABSTRACT

Purpose: this study aimed at illustrating the similarities and differences in the recording of components P1 and N1 for verbal and non-verbal stimuli, in an adult sample population, for reference purposes.

Methods: twenty-one adult, eutrophic individuals of both sexes were recruited for this study. The long-latency auditory evoked potential was detected by bilateral stimulation in both ears, using simultaneous recording, with non-verbal stimuli and the syllable /da/.

Results: for non-verbal and speech stimuli, N1 was identified in 100.0% of the participants, whereas P1 was observed in 85.7% and 95.2% individuals for non-verbal and speech stimuli, respectively. Significant differences were observed for the P1 and N1 amplitudes between the ears (p <0.05); the P1 component, in the left ear, was higher than that in the right ear, whereas the N1 component was higher in the right one. Regarding the stimuli, the amplitude and latency values of N1 were higher for speech, whereas in P1, different results were obtained only in latency.

Conclusion: the N1 component was the most frequently detected one. Differences in latency and amplitude for each stimuli occurred only for N1, which can be justified by its role in the process of speech discrimination.

Keywords: Auditory Tests; Auditory Pathways; Auditory Perception; Adult
INTRODUÇÃO

Os Potenciais Evocados Auditivos (PEAs) caracterizam-se pelos traçados decorrentes de atividades bioelétricas após estimulação acústica. O Potencial Evocado Auditivo de Longa Latência (PEALL) é comumente estudado com fins de mensuração das modificações neurofisiológicas provenientes do processo maturacional, usualmente por meio das componentes P1 e N1\(^1\), individualizadas por representarem, teoricamente, a primeira atividade no córtex auditivo decorrente de estimulação sonora\(^2\).

Durante o desenvolvimento são observadas modificações para a latência e amplitude destas componentes, simultâneas ao aumento de mielinização e eficiência sináptica\(^3\). Estas mudanças podem refletir o refinamento de processos neurais necessários para a aquisição e desenvolvimento das habilidades do processamento auditivo\(^4,5\). Ambas alcançam valores semelhantes ao do adulto na segunda década de vida, aos 17 e 16 anos para P1 e N1, respectivamente\(^6\).

As distinções no curso maturacional destas componentes refletem diferentes geradores neurais para cada uma delas. A componente P1, ocasionada pela atividade do circuito tálamo-cortical\(^6\), é obrigatória na infância\(^7\) e presente em todas as faixas etárias dos cinco aos 78 anos\(^8\). Enquanto N1 ocorre como forma de onda confiável por volta dos seis a sete anos e se torna obrigatória na idade adulta\(^9\), resultado das atividades do córtex auditivo supra temporal, responsável pela decodificação inicial do estímulo\(^10\).

O registro de P1 e N1 ocorre em conformidade com as características espectrais do estímulo empregado\(^11\), variáveis principalmente pela duração e frequência. Diversos são os estímulos acústicos passíveis de aplicação, incluindo estímulos verbais, com estrutura simples e complexa, e não verbais\(^12,13\), os mais utilizados atualmente são clique, tone bursts, vogais, sílabas.

Há uma variedade de achados quanto ao uso de diferentes estímulos no PEALL, bem como, quanto à população e o objetivo. Swink e Stuart\(^14\) compararam o uso da vogal /a/, em sua forma natural e sintética, a um estímulo não verbal. Os autores constataram o prolongamento de latência para o estímulo verbal versus tom puro de 0,723 kHz, e da fala sintética versus natural. Contrário a este achado, as variáveis latência e amplitude não se diferiram ao serem eliciadas em paradigma oddball entre os estímulos não verbal (tone burst nas frequências de 1kHz - frequente e 4kHz - raro), e verbais (sílabas /ba/- frequente e /ga/, /da/ e /di/- raro)\(^15\). Outro estudo, ao comparar uma população de indivíduos hígidos e com comprometimento cognitivo leve, constatou latência prolongada para tone burst de 1 kHz em relação ao estímulo de fala /ba/ para o grupo com comprometimento\(^16\).

O processamento de estímulos verbais constitui uma tarefa de maior complexidade de discriminação em relação aos não verbais\(^15\), permitindo a obtenção de informações complementares quanto aos processos biológicos que são necessários para o adequado processamento da fala\(^17\).

A utilização dos PEAs é recomendada a fim de se complementar a avaliação diagnóstica do Transtorno do Processamento Auditivo\(^18\), por caracterizar-se como um marcador biológico da integridade funcional das vias neurais. Entretanto, ainda não há evidências que um destes apresente sensibilidade e especificidade satisfatória para identificação desta condição\(^19\). Compreendendo que a componente P1 reflete o primeiro registro do processamento do sinal sonoro em área primária auditiva\(^a\) e a N1 engolve-se na função de decodificação\(^10\), faz-se necessário conhecer os parâmetros de diferenças e similaridades destas componentes, para diferentes estímulos sonoros, para auxiliar na investigação das bases neurais responsáveis pelo processamento de fala, em nível cortical\(^20\).

Diante dos pressupostos apresentados, a comparação das diferenças e similaridades das componentes P1 e N1 para dois estímulos distintos, em uma população jovem adulta hígida com completa maturação, configura uma alternativa para a elucidação de como ocorre o funcionamento da via de entrada cortical de estímulos sonoros, e permite seu uso como parâmetro em outras populações e faixas etárias, com o mesmo protocolo, incluindo o transtorno do processamento auditivo.

Destas forma, o presente estudo teve como proposta caracterizar o registro das componentes P1 e N1 para os estímulos verbal e não verbal, em uma população adulta, para fins de referência.

MÉTODOS

Estudo prospectivo, transversal e observacional, aprovado pelo Comitê de Ética em Pesquisa do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto – USP (nº 10482/2015). Foi obtida a anuência de todos os sujeitos por meio da assinatura do termo de consentimento livre e esclarecido.
Casuística

Participaram do estudo 21 jovens adultos hígidos, sendo oito (38,1%) do sexo masculino e 13 (61,9%) do sexo feminino. Considerou-se como critérios de inclusão idades entre 18 a 30 anos, segundo grau completo como nível mínimo de escolaridade, ausência de antecedentes familiar e/ou pessoal de perda auditiva de qualquer natureza e de sintomas, atuais ou antecedentes ao período de avaliação, sugestivos de comprometimento do Sistema Nervoso Auditivo Central, como epilepsia, convulsões e enxaquecas. Como critérios de exclusão foram definidos a presença de resultados alterados na audiometria tonal e/ou em pelo menos um dos dois testes de processamento auditivo.

Procedimentos

Realizou-se, inicialmente, a inspeção do meato acústico externo com o otoscópio, modelo MISSOURI 001, para assegurar a ausência de condições que pudessem influenciar na determinação dos limiares tonais por via aérea. Foram realizados os seguintes procedimentos: audiometria tonal; limiar de recepção de fala; medida de imitância acústica; testes comportamentais do processamento auditivo padrão de duração e dicótico de dígitos; potenciais evocados auditivos, de curta (PEATE) e de longa latência (PEALL).

A sensibilidade auditiva foi determinada em cabina acusticamente tratada com o audiômetro da marca Otometrics, modelo MEDSEN Astera2, fone HDA 300. Os limiares tonais por via aérea foram pesquisados nas frequências de 0,25 a 8 kHz, em técnica descendente-ascendente. Considerou-se como normalidade aqueles encontrados ≤ 20 dB NA. Para confirmar a veracidade dos limiares realizou-se o Limiar de Reconhecimento de Fala (LRF), por meio de palavras trissilábicas, os resultados iguais ou até 10 dB NS da média tritonal (0,5, 1 e 2 kHz) foram interpretados como adequados.

As medidas de imitação acústica foram obtidas por meio do equipamento da marca Otometrics, modelo ZODIAC 901, com sonda de 226 Hz. Foram considerados como resultados adequados a presença de curva timpanométrica do tipo “A”, “As”, “Ad” e “C”, desde que houvesse a presença de reflexo acústico, na modalidade contralateral, em 0,5 a 2 kHz.

Para excluir a possibilidade de presença de Transtorno do Processamento Auditivo, dois testes comportamentais foram aplicados. O Teste Dicótico de Dígitos (TDD), versão português brasileiro, realizado em etapa de integração binaural, segundo as orientações de aplicação e análise do manual. Considerou-se como normalidade os escores ≥ 95% em ambas as orelhas. O Teste Padrão de Duração (TPD) foi realizado de forma monoaural e aplicado em sua etapa de nomeação – curto ou longo – para cada uma das 30 sequências de tons aplicadas em cada uma das orelhas. O valor de normalidade adotado foram os escores ≥ 74,2% para a orelha direita e ≥ 72,7% para a esquerda.

Os potenciais evocados auditivos foram realizados com equipamento da marca Intelligent Hearing Systems, módulo SmartEP, de dois canais, com fone de inserção modelo ER3A. Após a limpeza de pele para a remoção de resíduos de descamação epitelial e de oleosidade, foram fixados os eletrodos de superfície, segundo a norma internacional 10-20, dispostos da seguinte forma: negativos em A1 (lóbulo do pavilhão auricular esquerdo), A2 (lóbulo do pavilhão auricular direito), positivos em Cz (vértez) e o eletrodo Terra em Fpz na testa. O nível de impedância foi mantido entre 1-3 Kohms.

O PEATE foi realizado com estímulo clique, em condição monoaural, em intensidade de 80 dB NA, com total de 1024 promediações a uma velocidade de 21.1 estímulos por segundo, com polaridade rarefeita. O filtro de banda de 100-1500 Hz, ganho de 100 µV e janela de análise de 12 ms. Duas estimulações consecutivas foram realizadas, no mínimo, a fim de verificar a reprodutibilidade das componentes.

Como critério de análise das componentes I, III e V foram considerados sua identificação em pelo menos dois traçados, da mesma orelha, e os valores médios de cada uma das componentes, latências absolutas, assim como, suas respectivas latências interpicos, e ainda a diferença interaural da onda V.

Para a realização do PEALL utilizou-se dois estímulos, clique e a sílaba sintética /da/. Com apresentação binaural, em intensidade de 70 dB NA, com total de 300 promediações a uma velocidade de 1.1 estímulos por segundo, intervalo inter-estímulo (ISI) de 810ms, com polaridade alternada. O filtro de banda de 1-30 Hz, ganho de 50 µV e janela de análise de -25 a 256ms. Duas estimulações consecutivas foram realizadas para cada um dos estímulos a fim de verificar a reprodutibilidade das componentes.

Adotou-se dois critérios para identificação do complexo P1-N1. O primeiro foi a ocorrência de uma deflexão positiva (P1), por volta de 40 a 50ms, sucedida por uma deflexão contrária (N1) por volta de 100ms.
Como segundo critério, a P1 foi considerada presente apenas na condição de sua amplitude com valores positivos, tendo como referência a linha de base, o mesmo aplicou-se a N1 com valores negativos. Desta forma, a presença visual da deflexão positiva, mas com valores inferiores a 0,1 µV, qualificou a P1 como ausente.

Análise Estatística

A análise estatística foi realizada pelo teste não paramétrico de Wilcoxon, para amostra pareada, considerando a comparação entre as variáveis estudadas, orelha e/ou estímulo, para cada uma das componentes. O nível de significância foi estabelecido em 5%

RESULTADOS

Os 21 sujeitos avaliados apresentaram resultados dentro dos valores estabelecidos como adequados para os testes auditivos psicoacústico e eletroacústico, possibilitando o registro do PEALL em todos eles. As análises descritivas relacionadas à idade, aos testes comportamentais e PEATE encontram-se na Tabela 1.

Tabela 1. Distribuição das variáveis independentes (n=21)

Variáveis	Média	Min. – Máx.		
Idade (anos)	22	18 – 29		
TDD (%)	OD	99,8	97,5 – 100,0	
	OE	99,4	97,5 – 100,0	
TPD (%)	OD	94,8	80,0 – 100,0	
	OE	96,4	73,3 – 100,0	
PEATE* (ms)	OD	I	1,85	1,66 – 2,00
	III	3,88	3,49 – 4,21	
	V	5,95	5,55 – 6,20	
	I–III	2,01	1,50 – 2,38	
	III–V	2,05	1,56 – 2,31	
	I–V	4,10	3,63 – 4,30	
	OE	I	1,83	1,64 – 1,94
	III	3,88	3,58 – 4,21	
	V	5,91	5,44 – 6,20	
	I–III	2,04	1,71 – 2,41	
	III–V	2,01	1,56 – 2,23	
	I–V	4,08	3,51 – 4,35	
D.I.V	0,10	0,01 – 0,23		

Legenda: Min.= Mínimo; Máx. = Máximo; TDD = Teste Dicótico de Dígitos; TPD = Teste Padrão de Duração; OD = Orelha Direita; OE = Orelha Esquerda; PEATE = Potencial Evocado Auditivo de Tronco Encefálico; D.I.V = Diferença Interaural da onda V.

* Valores de referência considerando 30 sujeitos eutróficos adultos, a média +/- 2 desvios padrões: I –1,76 +/- 0,13; III– 3.84 +/- 0,22; V – 5,84 +/- 0,21; I –III= 2.34 +/- 0,23; I – V = 2,18 +/- 0,21; I – V = 4,08 +/- 0,24.

Inicialmente, verificou-se a ocorrência das componentes estudadas. Para a P1 a presença foi de 85,7% (n=18) dos sujeitos e em 100% (n= 21) para N1, quando utilizado o estímulo clique. Para o estímulo de fala a presença da componente P1 foi de 95,2% (n=20) dos sujeitos e N1 manteve-se presente em 100% (n=21) deles.

Conduziram-se duas análises distintas para o PEALL. Na primeira o estudo da sincronia neural entre as duas orelhas para cada um dos estímulos empregados, na segunda, a comparação dos estímulos entre si, para cada uma das orelhas em separado.

Na primeira análise, verificou-se que diante da apresentação binaural existiram diferenças significantes para a amplitude, de P1 e N1, mas não para a latência. Este resultado foi observado para o estímulo clique (Tabela 2) e fala (Tabela 3). Nas duas situações de estímulo a P1 apresentou valores superiores à esquerda em relação à direita, já para a N1 ocorreu o inverso, o registro à direita foi maior que à esquerda (p < 0,05).
Tabela 2. Valores de latência e amplitude para o estímulo clique nas orelhas direita e esquerda

Estímulo	Comp.	Variável	Orelha	Média (dp)	Mediana	Mínimo	Máximo	p#
Clique		Latência (ms)	OD	42,8 (11,6)	36,2	30,5	66,0	0,148
			OE	41,5 (11,2)	36,5	31,0	66,5	
			OD	0,92 (0,50)	0,76	0,13	1,58	0,000*
			OE	1,23 (0,60)	1,14	0,18	2,46	
N1		Latência (ms)	OD	89,0 (11,0)	90,5	73,0	105	0,051
			OE	90,1 (11,5)	90,5	70,0	106	
			OD	2,99 (0,97)	3,19	1,04	4,66	0,004*
			OE	2,65 (1,03)	2,63	0,53	4,47	
P1-N1		Amplitude (µV)	OD	3,88 (1,08)	3,73	1,31	5,89	0,435
			OE	3,73 (1,40)	3,80	0,45	6,43	

Teste Wilcoxon valor de p
Legenda: Comp. = Componente; P1 = Pico Positivo; N1 = Pico Negativo; dp = Desvio Padrão; ms = Milissegundos; µV = Microvolts; OD = Orelha Direita; OE = Orelha Esquerda; p# = valor de P.
*Diferença significante.

Tabela 3. Valores de latência e amplitude para o estímulo fala nas orelhas direita e esquerda

Estímulo	Comp.	Variável	Orelha	Média (dp)	Mediana	Mínimo	Máximo	p#
Fala		Latência (ms)	OD	49,6 (10,0)	51,5	35,0	67,0	0,492
			OE	49,4 (10,6)	53,0	35,0	67,5	
			OD	0,99 (0,67)	0,46	0,10	3,1	
			OE	1,06 (0,50)	1,11	0,17	2,24	
P1		Amplitude (µV)	OD	98,7 (11,1)	99,0	75,0	131,5	0,002*
			OE	97,8 (17,2)	101,5	43,5	131	
			OD	4,69 (1,99)	4,05	1,31	6,33	
			OE	4,05 (1,08)	3,71	2,02	5,57	
N1		Latência (ms)	OD	4,70 (1,27)	4,84	2,48	7,29	0,162
			OE	4,91 (1,53)	4,82	1,93	7,35	

Teste Wilcoxon valor de p
Legenda: Comp. = Componente; P1 = Pico Positivo; N1 = Pico Negativo; dp = Desvio Padrão; ms = Milissegundos; µV = Microvolts; OD = Orelha Direita; OE = Orelha Esquerda; p# = valor de P.
*Diferença significante.
Na segunda análise, se comparou os estímulos verbal e não verbal para a orelha direita (tabela 4) e esquerda (tabela 5). Os resultados foram semelhantes para ambas as orelhas. A latência da P1 foi maior para fala, de forma significante \((p<0,00)\), nas duas orelhas, mas para variável amplitude não foram observadas diferenças. Para a N1 os valores das duas variáveis, latência e amplitude, foram superiores para a fala em ambas as orelhas, de forma significante \((p<0,05)\).

Tabela 4. Valores de latência e amplitude para os estímulos de clique e fala da orelha direita

Estímulo	Variável	Orelha	Média (dp)	Mediana	Mínimo	Máximo	\(p^*\)
P1	Latência (ms)	Clique	42,8 (11,6)	36,2	30,5	66,0	0,007*
		Fala	49,6 (10,0)	51,5	35,0	67,0	
	Amplitude (µV)	Clique	0,82 (0,50)	0,76	0,13	1,58	0,143
		Fala	0,63 (0,72)	0,46	0,1	3,1	
OD	Latência (ms)	Clique	89,0 (11,0)	90,5	73	105	0,001*
		Fala	98,7 (11,1)	99,0	75	131	
	Amplitude (µV)	Clique	2,99 (0,97)	3,19	1,04	4,66	0,000*
		Fala	4,46 (1,19)	4,69	1,31	6,33	
P1-N1	Amplitude (µV)	Clique	3,88 (1,0)	3,73	1,31	5,89	0,010*
		Fala	4,70 (1,27)	4,84	2,48	7,29	

Teste Wilcoxon valor de \(p\)
Legenda: Comp. = Componente; P1 = Pico Positivo; N1 = Pico Negativo; dp = Desvio Padrão; ms = Milissegundos; µV = Microvolts; OD = Orelha Direita; \(p^*\) = valor de \(p\). *Diferença significante.
DIFICULDADES E SIMILARIDADES PARA P1 E N1

DISCUSSÃO

Os testes empregados antecedentes a avaliação do PEALL permitem a inferência quanto à integridade funcional da orelha média, da sensitividade auditiva, e das vias neurais em nível de tronco encefálico, assim como, ausência do transtorno do processamento auditivo. Desta forma, estes resultados fornecem subsídios quanto a condução da avaliação do PEALL em condições de integridade funcional das vias auditivas periférica e centrais, sub-corticais, em cada um dos sujeitos.

Identificação das componentes P1 e N1

Como apresentado, a componente P1 não foi identificada em todos os sujeitos no presente estudo, achado este respaldado pela literatura. A componente pode ser identificada em todas as faixas etárias, dos cinco aos 78 anos, contudo, sua presença é descrita como obrigatória na infância. Assim como neste, outros dois estudos não a identificou em aproximadamente um terço de sua população, utilizando como referência o eletrodo ativo Cz e estímulos com especificidade de frequência e fala. Resultados convergentes ao descrito foram apresentados por outros autores. Cone e colaboradores estudaram a P1 em diferentes intensidades, quando em 60 dB NPS sua ocorrência foi de 86,0% em adultos, relato semelhante à de Fitzoy e colaboradores, que para uma população de 17 anos, idade em que espera-se completa maturação da componente, esta não foi observada em todos os sujeitos.

Quanto à presença de N1 em todos os sujeitos, esta é prevista por estudos anteriores e com diferentes protocolos, evidenciando sua obrigatoriedade na idade adulta. Orelhas direita versus esquerda

Em relação aos resultados da análise entre as orelhas para o clique e fala, a P1 apresentou maiores valores de amplitude na orelha esquerda para ambos os estímulos, enquanto N1 apresentou maiores valores para a direita. Estes resultados devem ser discutidos frente a dois aspectos.

Tabela 5. Valores de latência e amplitude para os estímulos de clique e fala da orelha esquerda

Estímulo	Comp.	Variável	Orelha	Média (dp)	Mediana	Mínimo	Máximo	p#
P1	Latência (ms)	Clique	41,5 (11,2)	36,5	31	66,5	0,000*	
		Fala	49,4 (10,6)	53,0	35,0	67,5		
	Amplitude (µV)	Clique	1,23 (0,60)	1,39	0,18	6,5	0,465	
		Fala	1,05 (0,50)	1,11	0,17	2,24		
N1	Latência (ms)	Clique	90,1 (11,5)	90,5	70,0	106	0,001*	
		Fala	97,8 (17,2)	101,5	43,5	131,5		
	Amplitude (µV)	Clique	2,65 (1,03)	2,63	0,53	4,47	0,000*	
		Fala	4,05 (1,08)	3,71	2,02	5,57		
P1-N1	Amplitude (µV)	Clique	3,73 (1,40)	3,80	0,45	6,43	0,005*	
		Fala	4,91 (1,53)	4,82	1,93	7,35		

Teste Wilcoxon valor de p
Legenda: Comp. = Componente; P1 = Pico Positivo; N1 = Pico Negativo; dp = Desvio Padrão; ms = Milissegundos; µV = Microvolts; OE = Orelha Esquerda; p# = valor de P *Diferença significante.
O primeiro aspecto abrange a comparação com outros estudos. Regaçone e colaboradores10 não observaram em seu grupo controle, com idade de sete a 14 anos, diferenças para a componente N1 entre orelhas. Assim como, Ismail e colaboradores28 não encontraram distinções entre as orelhas, em uma população controle de oito a 18 anos. Oppitz e colaboradores29 relataram diferenças entre as orelhas para as variáveis amplitude da P1 e N1 e latência da N1, com maiores valores à esquerda, para uma população adulta. Contudo, ressalta-se que estas diferenças foram encontradas em determinados grupos em função do nível de proficiência na língua inglesa. É essencial salientar que os três trabalhos referenciados acima, possuem diferentes populações, assim como, parâmetros de estímulos e registro dos potenciais evocados, o que impossibilita uma comparação precisa dos resultados.

O segundo aspecto versa sobre a complexidade das vias neurais auditivas. Os estímulos procedentes das duas cócleas, ao entrem no tronco encefálico possuem os núcleos cocleares como primeiro ponto de processamento da informação acústica. A partir deste, feixes de neurônios se projetam simultaneamente para diversas estruturas, sendo o complexo olivar superior o primeiro ponto de convergência binaural, desde momento em diante a representação dos sons das duas orelhas é compartilhada em todas as estruturas neurais ascendentes ao complexo30. A complexidade das vias auditivas no córtex impossibilita uma conclusão simplista dos resultados, porém com base nos achados e em estudos anteriores, certamente há diferenciação de vias neurais procedentes das orelhas direita e esquerda, em nível das componentes P1 e N1, em termos de amplitude.

Estímulo de fala versus clique

O resultado das diferenças de latência e amplitude encontradas entre os estímulos sonoros era esperando, com valores superiores para fala em relação ao clique, uma vez que o processamento do estímulo sonoro pelo SNAC está relacionado à complexidade do mesmo. Os estímulos verbais constituem tarefa de maior complexidade de discriminação em relação aos não verbais15. Outro aspecto diz respeito à duração do estímulo31, uma vez que a extensão é proporcional ao tempo de decodificação pelas estruturas do córtex auditivo, o que pode promover prolongamento de latência devido às características acústicas11.

Skink e Stuart14 encontraram os mesmos resultados que os do presente estudo ao comparar o uso de estímulos de menor e maior complexidade. Ainda, comparam o uso de vogais de mesma duração, sintética e natural, e verificaram maior latência para a sintética. No trabalho em questão, o tempo de duração não foi fator influente e sim a complexidade do estímulo empregado. Todavia, em outro estudo no qual comparou-se estímulos verbais e não verbais em paradigma oddball, diferenças não foram observadas para componentes P1 e N115. Os achados distintos podem ser decorrentes da metodologia adotada, principalmente quanto aos estímulos, uma vez já explicitado que a diversidade de resultados no estudo dos PEAs decorre da variedade metodológica22.

Quanto à amplitude, não houve diferenças para a P1, entretanto o estímulo de fala promoveu maior amplitude absoluta para N1, assim como, para a pico a pico P1-N1. Estes resultados não são corroborados por estudos anteriores14,15, porém atribui-se mais uma vez as diferenças metodológicas, que inviabilizam uma discussão comparativa, ainda assim, algumas consideações quanto aos resultados encontrados podem ser realizadas.

O papel de decodificação inicial do estímulo é atribuído a componente N1, a literatura refere seu papel na investigação da percepção de fala e discriminação20,33. Sua maturação ao longo do desenvolvimento é relacionada ao refinamento estrutural da maturação cortical auditiva, ao desenvolvimento do processamento auditivo e as habilidades auditivas aprimoradas4,5. Desta forma, a maior amplitude decorrente da complexidade do estímulo de fala frente ao estímulo não verbal pode ter sido promovida pelo papel discriminatório da componente, que para decodificá-lo recrutou um maior número de neurônios.

O presente estudo confirma a hipótese de que o processamento do sinal acústico ocorre de maneira diferente em função do tipo do estímulo e fornece informações quanto às diferenças e similaridades do registro da P1 e N1, que podem ser utilizadas como referência na população com transtorno do desenvolvimento auditivo. Este último resultado ressalta a pertinência do uso da fala para os estudos das bases neurais responsáveis pela detecção e discriminação em nível de SNAC. O desenvolvimento de testes eletrofisiológicos que se relacionam a discriminação de fala faz-se um desafio, contudo, estes são ideais para as avaliações em que os sujeitos não possuem
os pré-requisitos cognitivos para os testes comportamentais de percepção de fala.

CONCLUSÃO

Para a população adulta a N1 foi identificada em 100,0% dos sujeitos, enquanto o mesmo não ocorreu para P1, independente da orelha e do estímulo empregado. Embora as duas componentes tenham refletido as diferenças no processamento da informação acústica em função do tipo de estímulo, os resultados da N1 evidenciaram seu papel no processo da discriminação de fala. A reprodução do presente método na população com Transtorno do Processamento Auditivo pode vir a contribuir para melhor compreensão da condição.

REFERÊNCIAS

1. Sharma A, Martin K, Roland P, Bauer P, Sweeney MH, Gilley P et al. P1 latency as a biomarker for central auditory development in children with hearing impairment. J Am Acad Audiol. 2005;16(8):564-73.
2. Sharma A, Campbell J, Cardon G. Developmental and cross-modal plasticity in deafness: evidence from the P1 and N1 event related potentials in cochlear implanted children. Int J Psychophysiol. 2015;95(2):135-44.
3. Kral A, Eggermont JJ. What’s to lose and what’s to learn: development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Res Rev. 2007;56(1):259-69.
4. Ponton CW, Eggermont JJ, Kwong B, Don M. Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clinical Neurophysiol. 2000;111(2):220-36.
5. Eggermont JJ, Ponton CW. Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: correlations with changes in structure and speech perception. Acta Otolaryngol. 2003;123(2):249-52.
6. Jang JH, Jang HK, Kim SE, Oh SH, Chang SO, Lee JH. Analysis of P1 latency in normal hearing and profound sensorineural hearing loss. Clin Exp Otorhinolaryngol. 2010;3(4):194-8.
7. Wunderlich JL, Cone-Wesson BK. Maturation of CAEP in infants and children: a review. Hear Res. 2006;212(1-2):212-23.
8. Silva LAF, Magliaro FCL, Carvalho ACM, Matas CG. Maturation of long latency auditory evoked potentials in hearing children: systematic review. CoDAS. 2017;29(3):e20160107.
9. Cunningham J, Nicol T, Zecker S, Kraus N. Speech-evoked neurophysiologic responses in children with learning problems: development and behavioral correlates of perception. Ear Hear. 2000;21(6):554-68.
10. Regaçone SF, Gução ACB, Giacheti CM, Romero ACL, Frizzo ACF. Long latency auditory evoked potentials in students with specific learning disorders. Audiol. Commun. Res. 2014;19(1):13-8.
11. Alvarenga KF, Vicente LC, Lopes RCF, Silva RA, Banhara MR, Lopes AC et al. The influence of speech stimuli contrast in cortical auditory evoked potentials. Braz J Otorhinolaryngol. 2013;79(3):336-41.
12. Groenen PAP, Beynon AJ, Snik AFM, Van BP. Speech-evoked cortical potentials and speech recognition in cochlear implant users. Scand Audiol. 2001;30(1):31-40.
13. Korczak PA, Kurtzberg D, Stapells DR. Effects of sensorineural hearing loss and personal hearing aids on cortical event-related potential and behavioral measures of speech-sound processing. Ear Hear. 2005;26(2):165-85.
14. Swink S, Stuart A. Auditory long latency responses to tonal and speech stimuli. J Speech Lang Hear Res. 2012;55(2):447-59.
15. Oppitz SJ, Didoné DD, Silva MG, Folgeriani J. Long-latency auditory evoked potentials with verbal and nonverbal stimuli. Braz J Otorhinolaryngol. 2015;81(6):647-52.
16. Lister JJ, Bush ALH, Andel R, Matthews C, Morgan D, Edwards JD. Cortical auditory evoked responses of older adults with and without probable mild cognitive impairment. ClinNeurophysiol. 2016;127(2):1279-87.
17. Massa CGP, Rabelo CM, Matas CG, Schochat E, Sameli AG. P300 com estímulo verbal e não verbal em adultos normo-ouvintes. Braz. J. Otorhinolaryngol. 2011;77(6):686-90.
18. American Academy of Audiology (AAA). Clinical Practice Guidelines: diagnosis, treatment and management of children and adults with central auditory processing disorder. In: 2010: https://audiologyweb.s3.amazonaws.com/migrated/CAPD%20Guidelines%20pdf_539952af956c79.73897613.pdf
19. Koravand A, Juntras B, Lassonde M. Abnormalities in cortical auditory responses in children with
central auditory processing disorder. Neuroscience. 2017;346:135-48.

20. Kummer P, Burger M, Schuster M, Rosanowski F, Eysholdt U, Hoppe U. Cortical auditory evoked potentials to acoustic stimuli in children. Folia Phoniat Logop. 2007;59(5):273-80.

21. Pereira LD, Schochat E. Testes auditivos comportamentais para avaliação do processamento auditivo central. São Paulo: Pró-Fono; 2011.

22. Musiek FE. Frequency (pitch) and duration pattern tests. J Am Acad Audiol. 1994;5(4):265-8.

23. Schochat E, Rabelo CM, Sanfins MD. Processamento auditivo central: testes tonais de padrão de frequência e de duração em indivíduos normais de 7 a 16 anos de idade. Pró-Fono R Atual. Científ. 2000;12(2):1-7.

24. Steinschneider M, Liegeois-hauvel C, Brugge JF. Auditory evoked potentials and their utility in the assessment of complex sound processing. In: Winer JA, Schreiner CE (eds). The Auditory Cortex. New York: Springer; 2011. p. 535-59.

25. Didoné DD, Oppitz SJ, Folgearini J, Biagio EPV, Garcia MV. Auditory evoked potentials with different speech stimuli: a comparison and standardization of values. Int Arch Otorhinolaryngol. 2016;20(2):99-104.

26. Cone B, Whitaker R. Dynamics of infant cortical Auditory Evoked Potentials (CAEPs) for tone and speech tokens. Int J Pediatr Otorhinolaryngol. 2013;77(7):1162-73.

27. Fitzroy AB, Krizman J, Tierney A, Agouridou M, Kraus N. Longitudinal maturation of auditory cortical function during adolescence. Front Hum Neurosci. 2015;9(530):eCollection.

28. Koravand A, Juntras B, Lassonde M. Abnormalities in cortical auditory responses in children with central auditory processing disorder. Neuroscience. 2017;346:135-8.

29. Oppitz SJ, Bruno RS, Didoné DD, Garcia MV. Temporal resolution and cortical potential in different levels of english proficiency. Rev. CEFAC. 2017;19(1):27-40.

30. Moller A. Anatomy of the auditory nervous system. In: Moller A (org). Hearing: anatomy, physiology, and disorders of the auditory system. 3th ed. San Diego: Plural Publishing; 2013. p.91-114.

31. Matas CG, Silva FBL, Carrico B, Leite RA, Magliaro FCL. Long-latency auditory evoked potentials in sound field in normal-hearing children. Audiol. Commun. Res. 2015;20(4):305-12.

32. Silva LAF, Magliaro FCL, Carvalho ACM, Matas CG. Cortical maturation of long latency auditory evoked potentials in hearing children: the complex P1-N1-P2-N2. CoDAS. 2017;29(4):e20160216.

33. Ostroff JM, Martin BA, Boothroyd A. Cortical evoked response to acoustic change within a syllable. Ear Hear. 1998;19(4):290-7.