Mechanisms of Aerobic Exercise Impairment in Diabetes: A Narrative Review

Matthew P. Wahl1,2, Rebecca L. Scalzo1,3, Judith G. Regensteiner3,4 and Jane E. B. Reusch1,2,3,*

1Division of Endocrinology, University of Colorado School of Medicine, Aurora, CO, United States, 2Veterans Administration Eastern Colorado Health Care System, Denver, CO, United States, 3Center for Women’s Health Research, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States, *Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, CO, United States

The prevalence of diabetes in the United States and globally has been rapidly increasing over the last several decades. There are now estimated to be 30.3 million people in the United States and 422 million people worldwide with diabetes. Diabetes is associated with a greatly increased risk of cardiovascular mortality, which is the leading cause of death in adults with diabetes. While exercise training is a cornerstone of diabetes treatment, people with diabetes have well-described aerobic exercise impairments that may create an additional diabetes-specific barrier to adding regular exercise to their lifestyle. Physiologic mechanisms linked to exercise impairment in diabetes include insulin resistance, cardiac abnormalities, mitochondrial function, and the ability of the body to supply oxygen. In this paper, we highlight the abnormalities of exercise in type 2 diabetes as well as potential therapeutic approaches.

Keywords: insulin resistance, mitochondrial dysfunction, nitric oxide synthase, microvascular, muscle perfusion

SCOPE

The prevalence of diabetes is rising rapidly in the United States, with a 75% increase from 1988 to 2010 (1). There are now 30.3 million people in the United States with diabetes (2). Diabetes is associated with a greatly increased risk of cardiovascular mortality, which is the leading cause of death in adults with diabetes (2–4). In 2015, diabetes was the seventh leading cause of death in the United States (2). Total direct and indirect costs associated with diabetes globally may have been as high as 1.3 trillion USD and are expected to rise (5, 6).

Regular exercise is a cornerstone of treatment for diabetes. In the 2018 Diabetes Standards of Care publication, the American Diabetes Association recommends most adults with type 1 and type 2 diabetes (T2D) should engage in 150 min or more of moderate to vigorous intensity physical activity plus two bouts of resistance exercise per week (7). Despite the well-established health benefits of exercise, paradoxically only 51% of adults in the USA meet the recommended aerobic exercise guidelines (8). Exercise training is associated with lowering blood pressure, improving insulin sensitivity, and glucose control, improving lipoprotein profile and playing an important role in weight management among other benefits (9). More recent evidence shows that moderate to high volumes of aerobic activity are associated with significantly lower cardiovascular and overall mortality risks in both type 1 diabetes and T2D (10). In contrast, physical inactivity or sedentarism, is known to have deleterious health effects in people with diabetes (11, 12).
The focus of this review is to outline recent advances in understanding the interaction between diabetes and impairments in aerobic exercise function. There are numerous other chronic conditions that are known to impact exercise capacity including smoking (13), obesity (14, 15), and hypertension (16–18). The mechanisms underlying these impairments may overlap with or differ from those leading to impairments in people with diabetes. Past studies from our group have addressed this potential overlap by controlling for BMI, weight, activity level, and excluding potential participants with hypertension, chronic kidney disease, or smokers (19).

CLINICAL IMPACT

People with diabetes have physiologic exercise limitations and decreased cardiorespiratory fitness (CRF). More specifically, people with diabetes have approximately 20% lower maximal oxygen uptake (VO₂ max) when compared with those without diabetes (20–25). This is important because reduced VO₂ max is linked to increased cardiovascular mortality (11, 20, 22, 26–28). A second exercise limitation is that individuals with T2D have slower oxygen uptake kinetics with constant-load exercise (21, 29), indicating decreased ability to adapt to an acute change in the demand for oxygenation at the beginning of exercise. Our group has reported that, perhaps related to the aforementioned physiologic limitations, people with diabetes report greater perceived exertion compared with their non-diabetic counterparts; that is, exercise seems more challenging to them, even at very low-work rates (30).

We and others have characterized many individual impairments in key cardiac and vascular measures associated with CRF impairment in T2D including insulin resistance, endothelial dysfunction, decreased myocardial perfusion with exercise, abnormally increased pulmonary capillary wedge pressure (PCWP), decreased limb blood flow, and skeletal muscle mitochondrial dysfunction (20–24, 29, 31–36). CRF impairment in T2D is present in youth as well as adults, even those with recent onset diabetes and no clinically apparent cardiovascular disease (23, 24). The CRF impairment appears to be independent from effects of obesity or decreased habitual physical activity (19–24, 37–41). Due to methodologic limitations to date, we lack critical knowledge about how each of the associated abnormalities of CRF mechanistically contributes to the CRF impairments. In addition, we lack information about which of the abnormalities are potentially reversible vs non-reversible. The goal of this review is to discuss underlying mechanisms of decreased CRF in T2D and to highlight newer data suggesting a microvascular contribution to the impaired exercise capacity associated with T2D.

EXERCISE AS INTERVENTION

Given the overwhelming importance CRF plays in health and the importance of exercise training in diabetes management, it is critical to characterize diabetes-related physiologic exercise limitations in order to identify therapeutic strategies to improve CRF. Physical activity has been seen to prevent T2D even in the absence of weight loss (42). Multiple studies have documented that exercise training generally improves exercise function in T2D (20–22, 29, 43–49). It is less clear if a clinical intervention with exercise training reduces mortality in established T2D. For example, the Look Ahead trial did not find a survival advantage associated with lifestyle/exercise intervention (50). In this study, there was a very low-event rate (due in part to the overall decline in CV mortality in people with DM likely related to the use of improved CV risk factor modification over the time period of the study). There were, however, other benefits resulting from lifestyle modification in the Look Ahead Study including better quality of life, lower medical costs, and reduced need of diabetes medications in the intensive lifestyle intervention group (51).

We have previously shown that, despite improvement in CRF after formal exercise training, exercise impairments persist in people with T2D relative to similarly trained people without T2D, possibly suggesting a mixture of modifiable and fixed defects (Table 1) (21).

ASSESSMENT OF POTENTIAL MECHANISTIC CAUSES OF EXERCISE IMPAIRMENT IN T2D

Previous research from our laboratory has demonstrated a significant positive correlation between insulin sensitivity and VO₂ max (20, 31). As proof of concept, we elected to examine whether an insulin sensitizer has the capacity to improve exercise function. Our group investigated the effects of rosiglitazone, a thiazolidinedione (TZD), on exercise capacity in individuals with diabetes (31). TZDs augment insulin responsiveness of the skeletal muscle and adipose tissue. This study demonstrated significantly improved VO₂ max (7% increase) in participants

Table 1: Decreased exercise capacity in type 2 diabetes (T2D)—exercise training intervention.

	Lean control subjects	Overweight control subjects	T2D subjects
N	10	9	8
Age (years)	37 ± 6	37 ± 6	43 ± 7
Fasting glucose (mmol/l)	4.89 ± 0.43	5.12 ± 0.67	11.90 ± 3.80*
HbA₁c (%)	6.3 ± 2.8	5.4 ± 0.5	9.5 ± 1.9*
VO₂ max (ml/kg/min)	Before 25.1 ± 4.7	21.8 ± 2.9	17.7 ± 4.0*
	After 26.0 ± 6.0	23.0 ± 1.8	22.4 ± 5.5†
RER	Before 1.13 ± 0.08	1.12 ± 0.06	1.16 ± 0.13
	After 1.12 ± 0.13	1.15 ± 0.05	1.12 ± 0.03
Heart rate (bpm)	Before 174 ± 15	167 ± 12	166 ± 11
	After 167 ± 12	164 ± 10	164 ± 18

*P < 0.05 for difference between the group with diabetes and the other two groups.
†P < 0.05 for difference between before and after exercise training.

This table is adapted from Brandenburg et al. (21). Copyright 1999 by the American Diabetes Association. These data demonstrates reduced VO₂ max in T2D compared with lean control and overweight control subjects. Note there is no difference in baseline physical activity (assessed by low-level physical activity recall) across all groups. Data are mean ± SD.
with diabetes that were treated for 4 months with rosiglitazone 4 mg/day (31). Insulin sensitivity, measured by HOMA, and endothelial function, measured by ultrasound of the brachial artery, were also significantly improved in the rosiglitazone-treated group. Since multiple physiological factors correlated with improvement in CRF, the relative contributions to improved exercise capacity from changes in insulin action and improvements in vascular function with TZD remain unclear.

Our findings with rosiglitazone and CRF were reproduced by Kadoglou et al. (52). In addition, they demonstrated an added benefit of exercise training plus the TZD (52), a finding which was recently substantiated in an animal model (53). The impact of TZD on exercise capacity appears to differ depending upon disease status, as people with T2D and cardiovascular disease did not improve VO₂ max (54). Taken together, these publications support the proof of concept that targeting insulin action in diabetes is associated with improvement in VO₂ max in uncomplicated T2D. Rosiglitazone is no longer commonly used in diabetes treatment, due in part to concerns that it increased risk of cardiac events [a claim the FDA later disputed (55)], and thus further research with other insulin sensitizers may be warranted.

Metformin, a known stimulator of AMP-activated protein kinase, has also been evaluated for its effects on CRF. A study published in 2008 by Braun et al. investigated the effects of metformin on exercise capacity in healthy individuals and noted metformin decreased VO₂ max by 2.7% when compared with controls (56). A similar study in people with insulin resistance by HOMA IR also demonstrated a significant decrease in VO₂ peak with metformin for 3 months (57). However, evaluation of the impact of metformin on VO₂ peak has not been determined in people with diabetes. Limited investigations have addressed the response to metformin in people with metabolic disease and the data are mixed regarding CRF and metformin. A recent study showed a significant decrease in VO₂ max in people with metabolic syndrome following 6 weeks of metformin administration (58). However, previous investigations in people with prediabetes demonstrated no effect of metformin on CRF when administered without a concomitant exercise intervention and no metformin-associated impairment of the response to an exercise training intervention (59, 60). Metformin is reported to inhibit complex 1 of the mitochondrial respiratory chain (61, 62). It has been postulated that this action of metformin may be responsible for the observed reduced CRF in people with diabetes. As metformin is first-line therapy for the treatment of diabetes, further studies are necessary to determine the impact of this widely used pharmacological agent on CRF in the primary population where it is prescribed.

Epigenetic modifications have been noted in T2D (63) and research also shows that acute exercise results in DNA hypomethylation in promoter regions in human skeletal muscle (64). There are suggestions in the literature that a physiological challenge, such as diabetes, may change these acute epigenetic responses (65). This is an area of intensive investigation under the NIH Common Fund Molecular Transducers of Physical Activity Program. Once the changes in the healthy population are understood, we will be in a better place to understand whether there are differences in the adaptive response in the context of diabetes.

MITOCHONDRIAL DYSFUNCTION

Diabetes is associated with mitochondrial dysfunction in cardiac tissue and skeletal muscle (66, 67). In addition to other muscle tissue, we reported that DM affects mitochondrial function in the vasculature (68). This finding is pertinent because mitochondria, when dysfunctional, can decrease normal vasomotion and generate excess vascular reactive oxygen species (ROS) (69, 70). Vascular ROS are related to vascular inflammation and vascular stiffness—precursors of clinical cardiovascular disease (71). Prior studies in healthy subjects demonstrate that exercise improves skeletal muscle and vascular mitochondrial function and decreases mitochondrial damage (72–76). However, our group found that rats with hypertension or metabolic syndrome and mild diabetes did not have the mitochondrial improvement in the aorta that was demonstrated in control rats after exercise training (68). This failure of mitochondrial adaptation in the diabetic rats was unexpected and led us to consider vascular mitochondrial function and turnover as new therapeutic targets in diabetes.

To target mitochondrial dysfunction, we have explored connections between known mitochondrial regulatory pathways and established vascular consequences of diabetes. Endothelial dysfunction is an established vascular abnormality in diabetes and it is known to be regulated, in part, by endothelial nitric oxide synthase (eNOS) (77). Work by Nisoli’s group established nitric oxide (NO) to be an upstream regulator of mitochondrial biogenesis in a variety of tissues (78). We therefore examined the effects that NOS inhibition might have specifically in vascular mitochondrial biogenesis. In a 2013 publication, we noted that inhibition of eNOS blocked mitochondrial adaptation to an exercise intervention in the aorta of Sprague Dawley rats (79)—affirming the important role NO plays in vascular mitochondrial biogenesis and the adaptive response to exercise.

PANCREATIC DYSFUNCTION

Onset of exercise in individuals without diabetes is associated with decreased insulin secretion and increased glucagon secretion (80–82). Previous reports suggest that exercise is trophic for the pancreatic beta cell (83, 84). We are unaware of studies conducted to evaluate islet dysfunction and its interaction with exercise capacity. Pancreatic β cell dysfunction and failure are common culprits in the pathogenesis of diabetes. The process of aging can result in impaired carbohydrate metabolism, via both increased insulin resistance and impaired insulin secretion (85–89). Several factors have been shown to contribute to decreased insulin secretion in aging including reduced expression of β(2)-adrenergic receptors (90), decreased calcium signaling (91), and chronic oxidative stress (92). Consequently, it is plausible that aging in people with diabetes could be associated with abnormal ratios of glucagon to insulin with a subsequent impact on exercise capacity (93). It is also important to note the important role that pancreatic β cell mitochondria play in facilitating insulin secretion and that mitochondrial dysfunction in β cells is associated with beta cell failure and thus dysregulation of glucagon (94–96). This principle has been further substantiated recently in a study illustrating the deleterious effect of tacrolimus on β cell mitochondria and
SGLT2 inhibitors have recently been found to improve insulin sensitivity in the skeletal muscle of diabetic rats (107) and in *ex vivo* human epicardial adipose tissue (108). SGLT2 inhibition with phlorizin was shown by Li et al. to improve endothelial dysfunction by way of increasing NO levels in human umbilical vein endothelial cells (109). We are not aware of any published studies directly addressing the effect of SGLT2 inhibition on CRF, except a beneficial impact in the context of heart failure (105, 106, 110). In light of these recent reports demonstrating improvements in cardiac function, aortic stiffness, and renal perfusion, it is plausible that SGLT2 inhibition will counteract the pathophysiological factors contributing to exercise impairment in diabetes (111–116). Further studies evaluating the impact of SGLT2 inhibition on insulin sensitivity, NO, and functional exercise capacity in diabetes are warranted.

TARGETING NOS DYSFUNCTION

To determine if it was possible to counteract NOS inhibition and improve adaptive response to exercise training, we looked to the incretin class of insulin secretagogues: glucagon-like peptide 1 receptor agonists (GLP-1 RA) and dipeptidyl peptidase 4 inhibitors (DPP4). GLP-1 signals via G-protein-coupled receptors that are highly expressed in the vasculature and have been shown to stimulate eNOS and increase cyclic AMP (cAMP)—leading to enhanced endothelial function and tissue perfusion, plus improved muscle glucose utilization (98–101). To explore the effects of incretins on exercise, vascular function, and mitochondrial adaptation in diabetes, we first examined the effects of saxagliptin (a DPP4 inhibitor) in Goto-Kakazaki rats (a lean rat model of insulin resistant diabetes). Saxagliptin combined with exercise training stimulated eNOS and restored vascular mitochondrial expression (70).

In a more recent study, we treated human subjects with uncomplicated T2D with the GLP-1 RA exenatide (102). Treatment with exenatide, without a concomitant exercise intervention, led to improvement of both diastolic cardiac function and aortic stiffness, but did not improve VO2 max or endothelial dysfunction as measured by flow mediated dilatation (102). These data suggest that an effective stand-alone intervention (without concomitant exercise intervention) would need to impact cardiac, vascular, and muscle function (the latter was not evaluated in this trial). In our clinical study, we did not measure the impact of exenatide on eNOS or NO. It is possible that eNOS dysfunction, including eNOS uncoupling in diabetes, rendered our subjects resistant to cAMP regulation of NO, or that the combination of GLP-1 RA and exercise training is needed to achieve an adaptive response and change VO2 max. These observations suggest that NO may be crucial for exercise adaptation in the vasculature. We are currently exploring other methods to target NOS dysfunction in the context of diabetes.

Other agents with “insulin sensitizing” mechanisms have been examined as exercise mimetics in non-diabetic preclinical models and healthy subjects, including AMPK stimulation and PPAR delta ligands. In a 2008 study, administration of an orally active AMPK agonist, AICAR, for 4 weeks resulted in a 44% enhancement of running endurance in sedentary mice (103). In a 2017 study, sedentary mice administered a PPAR delta ligand were able to run ~100 min longer than control mice before exhaustion, a 70% increase (104). Studies in diabetic models employing these agents are either underway or not yet conducted.

Sodium glucose transporter type 2 (SGLT2) inhibitors are a relatively new class of diabetes medications with demonstrated cardiovascular morbidity and mortality benefit in humans (105, 106). SGLT2 inhibitors have recently been found to improve insulin resistance in the skeletal muscle of diabetic rats (107) and in *ex vivo* human epicardial adipose tissue (108). SGLT2 inhibition with phlorizin was shown by Li et al. to improve endothelial dysfunction by way of increasing NO levels in human umbilical vein endothelial cells (109). We are not aware of any published studies directly addressing the effect of SGLT2 inhibition on CRF, except a beneficial impact in the context of heart failure (105, 106, 110). In light of these recent reports demonstrating improvements in cardiac function, aortic stiffness, and renal perfusion, it is plausible that SGLT2 inhibition will counteract the pathophysiological factors contributing to exercise impairment in diabetes (111–116). Further studies evaluating the impact of SGLT2 inhibition on insulin sensitivity, NO, and functional exercise capacity in diabetes are warranted.

MUSCLE PERFUSION-MICROVASCULATURE

The role of NOS in vascular adaptation to shear stress and exercise is accepted. Still, it is unclear what the consequences of impaired NOS function are on skeletal muscle and cardiac function. Importantly, it is controversial whether the skeletal muscle and heart NOS isoforms (eNOS and neuronal NOS, nNOS) contribute to exercise training adaptation or whether it is NOS mediated blood flow that contributes to the NOS-dependent adaptive response. McConnell has reported that skeletal muscle mitochondrial adaptation to exercise training is unaffected by deletion of either eNOS or nNOS (117). Another recent study indicates that alterations in muscle microvascular blood flow after an exercise bout are needed to garner the bout effect of exercise on insulin action (118). In a parallel line of investigation, Liu and Barrett report that insulin-mediated microvascular recruitment is essential for skeletal muscle insulin action and that this response requires NOS stimulation (119, 120). Taken together, these reports support a model wherein skeletal muscle insulin action involves coordination of blood flow-dependent insulin delivery to the skeletal muscle and intact skeletal muscle insulin signaling.

Similar to the relationship between muscle microvascular perfusion and insulin action, cardiac and skeletal muscle perfusion are critical for physiological function during a bout of exercise. Our previous work demonstrated decreased myocardial perfusion by sestamibi during exercise in people with T2D—consistent with abnormal tissue perfusion associated with cardiac dysfunction in T2D (19). Further, we have also reported slowed skeletal muscle blood flow at the onset of exercise in people with T2D (22). With regard to skeletal muscle mitochondrial dysfunction, a few key questions are currently unresolved: 1. What is the relationship between *in vivo* skeletal muscle oxidative capacity and VO2 max? 2. What is the contribution of muscle perfusion to decreased skeletal muscle oxidative capacity? 3. Is the adaptive response to either an exercise bout or exercise training in the skeletal muscle impacted by diabetes?

We postulated that skeletal muscle perfusion limitations due to either capillary rarefaction or perfusion heterogeneity may contribute to the limitations observed in muscle oxidative phosphorylation in people with diabetes, and ultimately the associated CRF impairment. In support of this model, we recently
published that people with diabetes have similar capillary recruitment with the onset of exercise as controls, yet have decreased oxyhemoglobin depletion during exercise compared with people without diabetes (121). We postulate that decreased skeletal muscle oxidative capacity is due to a combination of skeletal muscle mitochondrial dysfunction and muscle perfusion abnormalities including irregular blood flow distribution. Ongoing work in our laboratory is investigating the relationship between muscle O₂ delivery and muscle mitochondrial function.

To add to our understanding of lower effective muscle oxygen delivery in diabetes, we conducted a recent analysis of capillary density, muscle perfusion, and muscle fatigue in collaboration with Jefferson Frisbee’s group (122). This analysis combines a theoretical modeling simulation of blood flow distribution and predicted oxygen extraction across a muscle bed with experimental data from the lean Zucker rat and the metabolic syndrome obese Zucker rat (OZR) to test the contributors to decreased muscle VO₂ in metabolic syndrome. Muscle blood flow was lower in the OZR and yet venous oxygen was higher. Simply stated, despite less blood flow delivery to the muscle there was less oxygen extracted to do the same amount of work (Figure 1). Possible explanations for this could be decreased capillary density or decreased effectively perfused capillaries. Based on our simulation, the observed diabetes-related decrease in capillary density only accounted for 20% of the mismatch. The remaining defect in muscle oxygen extraction was due to uneven blood flow (red blood cell) distribution. We were able to confirm that our modeling was correct by treating with an antioxidant (TEMPOL) and observing that we were able to restore ~80% of the mismatch (123). An acute response like this would not be possible if the defect was due to a fixed lesion such as decreased capillary density. Taken together, published findings indicate that the discrepancy in muscle oxygen extraction (muscle VO₂) is primarily explained by muscle perfusion heterogeneity (122).

In light of the significant improvements in oxygen extraction with the TEMPOL intervention, microvascular perfusion heterogeneity represents an unaddressed therapeutic target for improving tissue oxygenation and muscle function.

To summarize, muscle perfusion abnormalities are a plausible contributor to decreased VO₂ and CRF in diabetes. Recent data in humans and in rodents using TEMPOL and other agents demonstrate that abnormalities in muscle perfusion can be corrected (123). Targeting muscle perfusion is a novel therapeutic direction for improving CRF and the adaptation to exercise intervention in diabetes. Future studies should focus on the impact of interventions targeting cardiac and skeletal muscle blood flow and examining the interaction between perfusion and the adaptive exercise training response.

CARDIAC FUNCTION

Studies to evaluate cardiac abnormalities using invasive and non-invasive methods revealed that cardiac abnormalities are present in newly diagnosed adults and youth with T2D upon exercise

FIGURE 1 | Oxygen extraction fails to compensate for reduced blood flow under conditions of microvascular perfusion heterogeneity. Adapted from Mason McClatchey et al. (123). Copyright 2017 Springer US. **(A)** Blood flow during exercise is reduced by ~20% in the obese Zucker rat (OZR) relative to the Lean Zucker Rat. **(B)** Venous oxygenation during exercise is increased in the OZR relative to the Lean Zucker Rat, reflecting impaired oxygen extraction. **(C)** Computational modeling of oxygen transport reveals that the failure to compensate for reduced blood flow in the OZR can be explained by the combined effects of reduced capillary density and microvascular perfusion heterogeneity.
challenge (23, 24). We employed right heart catheterization to investigate cardiac function during exercise in sedentary, overweight premenopausal women with and without uncomplicated T2D. We found no differences in cardiac output at rest or during exercise (19). However, we did observe significantly increased PCWP during exercise in the T2D group suggesting the possibility of subclinical decreased ventricular contractility. This increase in PCWP correlated with decreased myocardial perfusion as assessed using sestamibi during stress testing (19). Similar differences were observed in adolescents with and without diabetes using non-invasive methods (23, 24). A clearer understanding of the long-term consequences of these subclinical CV changes is needed. In addition, it is unknown whether the agents that improve skeletal muscle perfusion will have the same impact on myocardial perfusion. Finally, the relationship between diastolic dysfunction, increased PCWP, and perceived rate of exertion may reveal an impact of cardiac dysfunction on CRF that is distinct from cardiac output. New MRI techniques may help elucidate changes and aid in evaluating the cardiac functional changes responsive to pharmacological or exercise interventions.

SUMMARY

People with even recently diagnosed diabetes have well-described aerobic exercise impairment as evidenced by decreased CRF with both maximal and submaximal workloads when compared with similarly overweight, sedentary non-diabetic subjects. Despite improvement in CRF after exercise training, exercise impairments persist in people with T2D compared with people without T2D for reasons that are not completely clear.

Diabetes is associated with exercise-induced abnormalities in the heart, skeletal muscle, and vasculature (Figure 2). Thus, the abnormalities are multifactorial which makes it unlikely that a single therapeutic approach will alleviate the entire problem. Therefore, approaches to resolve the exercise impairment in T2D should be multifactorial and target the contributors that have been identified across the cardiac, vascular, and skeletal muscle parameters in an integrative approach.

AUTHOR CONTRIBUTIONS

MW drafted the manuscript and revised it. RS edited and revised the manuscript. MW and RS developed the figures/tables. JGR and JEBR outlined and edited the manuscript and revised the manuscript. MW and RS developed the figures/tables. JGR and JEBR outlined and edited the manuscript and contributed to generation of data in the manuscript.

ACKNOWLEDGMENTS

The authors are grateful for P. Mason McClatchey's contribution to the repurposing of figures for this review. The authors' sources of funding include: NIH ST32HL007171 (RS), VA Merit Denver Research Institute (JEBR), CCTSI-UL1RR025780 (JEBR), and the Center for Women's Health Research (RS, JEBR, and JGR).

REFERENCES

1. Cheng YJ, Imperatore G, Geiss LS, Wang J, Saydah SH, Cowie CC, et al. Secular changes in the age-specific prevalence of diabetes among U.S. adults: 1988–2010. Diabetes Care (2013) 36(9):2690–6. doi:10.2337/dc12-2074
2. Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2017. Atlanta, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services (2017).
3. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med (1998) 339(4):229–34. doi:10.1056/NEJM199807233390404
4. Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet (2010) 375(9733):2215–22. doi:10.1016/S0140-6736(10)60484-9
5. Bommer C, Heesemann E, Sagalova V, Manne-Goehler J, Atun R, Barnighausen T, et al. The global economic burden of diabetes in adults aged 20–79 years: a cost-of-illness study. Lancet Diabetes Endocrinol (2017) 5(6):423–30. doi:10.1016/S2213-8587(17)30097-9
6. Bommer C, Sagalova V, Heesemann E, Manne-Goehler J, Atun R, Barnighausen T, et al. Global economic burden of diabetes in adults: projections from 2015 to 2030. Diabetes Care (2018) 41(4):dc171962. doi:10.2337/dc17-1962
7. American Diabetes Association. Standards of medical care in diabetes-2018. Diabetes Care (2018) 41(Suppl 1):S1–10. doi:10.2337/dc18-S001
8. Katzmarzyk PT, Lee IM, Martin CK, Blair SN. Epidemiology of physical activity and exercise training in the United States. Prog Cardiovasc Dis (2017) 60(1):3–10. doi:10.1016/j.pcad.2017.01.004
9. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, muscular, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc (2011) 43(7):1334–59. doi:10.1249/MSS.0b013e318213fedb
10. Sluik D, Buissje B, Muckelbauer R, Kaaks R, Teucher B, Johnsen NF, et al. Physical activity and mortality in individuals with diabetes mellitus: a
11. Wei M, Robbins LW, Kampert JB, Nichaman MZ, Blair SN. Low cardiore-spiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med (2000) 132(8):605–11. doi:10.7326/0003-4819-132-8-200004180-00035

12. Cooper AJ, Brage S, Ekelund U, Wareham NJ, Griffin SJ, Simmons RK. Association between objectively assessed sedentary time and physical activity with metabolic risk factors among people with recently diagnosed type 2 diabetes. Diabetologia (2014) 57(1):73–82. doi:10.1007/s00125-013-3009-8

13. de Borba AT, Jost RT, Gass R, Nedel FB, Cardoso DM, Pohl HH, et al. The impact of physical activity on children and adolescents with type 2 diabetes. Multidiscip Respir Med (2014) 9(1):34. doi:10.1186/2049-6958-9-34

14. Mondal H, Mishra SP. Effect of BMI, body fat percentage and fat free mass on maximal oxygen consumption in healthy young adults. J Clin Diag Res (2017) 11(6):CC17–20. doi:10.7860/JCDR/2017/25465.10039

15. Dumuid D, Lewis JK, Olds TS, Maher C, Bondarenko C, Norton L. Relationships between older adults’ use of time and cardio-respiratory fitness, obesity and cardio-metabolic risk: a compositional isotemporal substitution analysis. Maturitas (2018) 110:104–10. doi:10.1016/j.maturitas.2018.02.003

16. Yoon JH, So WY. Associations of hypertension status with physical fitness variables in Korean women. Iran J Public Health (2013) 42(7):673–80.

17. Mazic S, Suzic Lazic J, Dekleva M, Antic M, Soldatovic I, Djelic M, et al. The impact of elevated blood pressure and pulse pressure on exercise capacity in elite athletes. Int J Cardiol (2014) 180:171–7. doi:10.1016/j.ijcard.2014.11.125

18. Jae SY, Kurl S, Franklin BA, Laukkanen JA. Changes in cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Diabetes Care (2002) 25(12):2877–83. doi:10.2337/diacare.25.12.2877

19. Regensteiner JG, Bauer TA, Reusch JE. Rosiglitazone improves exercise capacity in individuals with type 2 diabetes. Diabetes Care (2005) 28(12):3110–7. doi:10.2337/diacare.28.12.3110

20. Regensteiner JG, Bauer TA, Reusch JE. Rosiglitazone improves exercise capacity in individuals with type 2 diabetes. J Appl Physiol (1985) 99(1):510–7. doi:10.1152/jappl.1985.99.1.510

21. Ziska L, Wagner S, Youn JH, So WY. Exercise capacity and submaximal oxygen uptake during the first 5 minutes of constant-load cycling exercise. J Appl Physiol (1998) 85(1):310–7. doi:10.1152/jappl.1998.85.1.310

22. Bouchard C, Leon AS, Rao DC, Skinner JS, Wilmore JH. Glucoregulation and hormonal responses to maximal exercise in non-insulin-dependent diabetes. J Appl Physiol (1989) 68(5):2067–74. doi:10.1152/jappl.1989.68.5.2067

23. Macananeo O, O’Shea D, Warrington SA, Green S, Egana M. Gymnasium-based unsupervised exercise maintains benefits in oxygen uptake kinetics obtained following supervised training in type 2 diabetes. Appl Physiol Nutr Metab (2012) 37(4):599–609. doi:10.1139/h2012-012

24. Yoon JH, So WY. Effects of hypertension status on exercise capacity in elite athletes. Appl Physiol Nutr Metab (2015) 40(7):865–72. doi:10.1183/2049-6650.2015.08.0151

25. Schneider SH, Amorsfo LF, Khachadurian AK, Ruderman NB. Studies on the mechanism of improved glucose control during regular exercise in type 2 (non-insulin-dependent) diabetes. Diabetesologia (1984) 26(5):355–60. doi:10.2337/db84-0863

26. Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L. Impaired stroke volume and aerobic capacity in female adolescents with type 1 and type 2 diabetes mellitus. Diabetes (1998) 47(11):1537–40. doi:10.2337/diabetes.47.11.1537

27. Bouchard C, Leon AS, Rao DC, Skinner JS, Wilmore JH. Cardiac output is not related to the slowed O2 uptake kinetics in type 2 diabetes. Med Sci Sports Exerc (2011) 43(6):1027–35. doi:10.1249/MSS.0b013e3181de6334

28. Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care (2006) 29(9):2102–7. doi:10.2337/dc05-1056

29. Bouchard C, Leon AS, Rao DC, Skinner JS, Wilmore JH. The HERITAGE family study. Aims, design, and measurement protocol. Med Sci Sports Exerc (1995) 27(5):721–9. doi:10.1249/00005768-199505000-00015

30. Mors M, Jordan AN, Skinner JS, Dunn AL, Church TS, Earnest CP, et al. Exercise capacity and submaximal oxygen uptake during dynamic and submaximal cycling exercise. J Appl Physiol (1993) 75(4):1449–55. doi:10.1152/jappl.1993.75.4.1449

31. Regensteiner JG, Bauer TA, Reusch JE. Rosiglitazone improves exercise capacity in individuals with type 2 diabetes. Diabetes Care (2005) 28(12):3110–7. doi:10.2337/diacare.28.12.3110

32. Sisson SB, Katzmarzyk PT, Earnest CP, Bouchard C, Blair SN, Church TS. Volume of exercise and fitness nonresponse in sedentary, postmenopausal

with type II diabetes mellitus. J Appl Physiol (1985) 99(1):510–7. doi:10.1152/jappl.1985.99.1.510

33. Regensteiner JG, Bauer TA, Reusch JE. Rosiglitazone improves exercise capacity in individuals with type 2 diabetes. Diabetes Care (2005) 28(12):3110–7. doi:10.2337/diacare.28.12.3110

34. Subudhi AW, Dimmen AC, Roach RC. Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. J Appl Physiol (1985) 59(3):781–8. doi:10.1152/japplphysiol.1985.59.3.781

35. Macananeo O, O’Shea D, Warrington SA, Green S, Egana M. Gymnasium-based unsupervised exercise maintains benefits in oxygen uptake kinetics obtained following supervised training in type 2 diabetes. Appl Physiol Nutr Metab (2012) 37(4):599–609. doi:10.1139/h2012-012

36. Yoon JH, So WY. Effects of hypertension status on exercise capacity in elite athletes. Appl Physiol Nutr Metab (2015) 40(7):865–72. doi:10.1183/2049-6650.2015.08.0151

37. Schneider SH, Amorsfo LF, Khachadurian AK, Ruderman NB. Studies on the mechanism of improved glucose control during regular exercise in type 2 (non-insulin-dependent) diabetes. Diabetesologia (1984) 26(5):355–60. doi:10.2337/db84-0863

38. Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L. Impaired stroke volume and aerobic capacity in female adolescents with type 1 and type 2 diabetes mellitus. Diabetes (1998) 47(11):1537–40. doi:10.2337/diabetes.47.11.1537

39. Bouchard C, Leon AS, Rao DC, Skinner JS, Wilmore JH. The HERITAGE family study. Aims, design, and measurement protocol. Med Sci Sports Exerc (1995) 27(5):721–9. doi:10.1249/00005768-199505000-00015

40. Mors M, Jordan AN, Skinner JS, Dunn AL, Church TS, Earnest CP, et al. Exercise capacity and submaximal oxygen uptake during dynamic and submaximal cycling exercise. J Appl Physiol (1993) 75(4):1449–55. doi:10.1152/jappl.1993.75.4.1449

41. Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care (2006) 29(9):2102–7. doi:10.2337/dc05-1056

42. Bouchard C, Leon AS, Rao DC, Skinner JS, Wilmore JH. The HERITAGE family study. Aims, design, and measurement protocol. Med Sci Sports Exerc (1995) 27(5):721–9. doi:10.1249/00005768-199505000-00015

43. Sisson SB, Katzmarzyk PT, Earnest CP, Bouchard C, Blair SN, Church TS. Volume of exercise and fitness nonresponse in sedentary, postmenopausal
women. Med Sci Sports Exerc (2009) 41(3):539–45. doi:10.1249/ MSS.0b013e3181896e4e
48. Regnault DE, Henslee TA, Huebschmann AG, Herlache L, Weinerberger HD, Wolfel EE, et al. Sex differences in the effects of type 2 diabetes on exercise performance. Med Sci Sports Exerc (2015) 47(1):58–65. doi:10.1249/ MSS.0000000000000371
49. Ring M, Eriksson MJ, Fritz T, Nyberg G, Ostenson CG, Krook A, et al. Influence of physical activity and gender on arterial function in type 2 diabetes, normal and impaired glucose tolerance. Diab Vasc Dis Res (2015) 12(5):315–24. doi:10.1177/1749661515588548
50. Look ARG, Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med (2013) 369(2):145–54. doi:10.1056/NEJMoa1212914
51. Ps Suyner X. The look AHEAD trial: a review and discussion of its outcomes. Curr Nutr Rep (2014) 3(4):387–91. doi:10.1007/s13668-014-0099-x
52. Kadoglu NP, Ilidias F, Sailer N, Athanasiadou Z, Vitta I, Kapelouzou A, et al. Exercise training ameliorates the effects of rosiglitazone on traditional and novel cardiovascular risk factors in patients with type 2 diabetes mellitus. Metabolism (2010) 59(4):599–607. doi:10.1016/j.metabol.2009.09.002
53. Kim JC. The effect of exercise training combined with PPARgamma agonist on skeletal muscle glucose uptake and insulin sensitivity in induced prediabetes. Metabolism (2010) 59(4):599–607. doi:10.1016/j.metabol.2009.09.002
54. Cadeddu C, Nocco S, Deidda M, Cadeddu F, Bina A, Demuru P, et al. Differential mitochondrial adaptation in primary vascular smooth muscle cells from a diabetic rat model. Oxid Med Cell Longev (2016) 2016:8524267. doi:10.1155/2016/8524267
55. Brierley EL, Johnson MA, James OF, Turnbull DM. Effects of physical activity and age on mitochondrial function. QJM (1996) 89(4):251–8. doi:10.1097/0000000000000251
56. Batandier C, Guigas B, Detaille D, El-Mir MY, Fontaine E, Rigoulet M, et al. Mitochondrial dysfunction in exocrine pancreatic islets of diabetic rats. J Biol Chem (2003) 278(13):11925–30. doi:10.1074/jbc.M300690200
57. Leverve XM, Guigas B, Detaille D, Batandier C, Koceir EA, Chauvin C, et al. Insulin-stimulated activation of eNOS is independent of Ca2+ and requires phosphorylation by Akt at Ser(1179). J Biol Chem (2001) 276(32):30392–8. doi:10.1074/jbc.M103702200
58. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Diabetes (2003) 52(9):2509–16. doi:10.2337/diabetes.52.9.2509
59. Miller MW, Knaub LA, Olivera-Fragoso LF, Keller AC, Balasubramaniyan V, Runge MS, et al. Nitric oxide regulates vascular adaptive mitocondrial dynamics. Am J Physiol Heart Circ Physiol (2005) 288(4):H1638–44. doi:10.1152/ajpheart.00987.2012
60. Krotkiewski M, Lonroth P, Mandroukas K, Wroblewski Z, Rebuffle-Scribe M, Holm G, et al. The effects of physical training on insulin secretion and effectiveness and on glucose metabolism in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia (1985) 28(12):881–90. doi:10.1007/BF0073130
61. Kirwan JP, Kohrt WM, Wojta DM, Bourey RE, Holloszy JO. Endurance exercise training reduces glucose-stimulated insulin levels in 60– to 70-year-old men and women. J Gerontol (1993) 48(3):M84–90. doi:10.1093/geront/48.3.M84
62. Marllis EB, Vrancic M. Intense exercise has unique effects on both insulin release and its roles in glucose regulation: implications for diabetes. Diabetes (2002) 51(Suppl 1):S271–8. doi:10.2337/db01.S271
63. Kiraly MA, Bates HE, Kaniuk NA, Yue JT, Brumell JL, Matthews SG, et al. Swim training prevents hyperglycemia in ZDF rats: mechanisms involved in the partial maintenance of beta-cell function. Am J Physiol Endocrinol Metab (2008) 294(2):E271–83. doi:10.1152/ajpendo.00476.2007
64. Park S, Hongs SM, Sung SR. Exendin-4 and exercise promote beta-cell function and mass through IRS2 induction in islets of diabetic rats. Life Sci (2008) 82(9–10):503–11. doi:10.1016/j.lfs.2007.12.018
65. DeFronzo RA. Glucose intolerance and aging. Diabetes Care (1981) 4(4):493–501. doi:10.2337/diacare.4.4.493
66. Fink RI, Koltermann OG, Griffin J, Olefsky JM. Mechanisms of insulin resistance in aging. J Clin Invest (1983) 71(6):1523–35. doi:10.1172/JCI110908
67. Izoyo P, Beck-Nielsen H, Laakso M, Smith U, Yki-Jarvinen H, Ferrarini E. Independent influence of age on basal insulin secretion in nonobese humans. European Group for the Study of Insulin Resistance. J Clin Endocrinol Metabol (1999) 84(3):863–8. doi:10.1210/jcem.84.3.5542
68. Szoke E, Shrayef MZ, Messing S, Woerle HJ, van Haehlen TW, Meyer C, et al. Effect of aging on glucose homeostasis: accelerated deterioration of beta-cell function in individuals with impaired glucose tolerance. Diabetes Care (2008) 31(3):539–43. doi:10.2337/dci07-1443
89. De Tata V. Age-related impairment of pancreatic beta-cell function: pathophysiological and cellular mechanisms. Front Endocrinol (2014) 5:138. doi:10.3389/fendo.2014.00138

90. Santulli G, Lombardi A, Sorrentino D, Anastasio A, Del Giudice C, Formisano P, et al. Age-related impairment in insulin release: the essential role of beta(2)-adrenergic receptor. Diabetes (2012) 61(3):692–701. doi:10.2337/db11-1027

91. Lin Y, Sun Z. Antiaging gene Klotho enhances glucose-induced insulin secretion by up-regulating plasma membrane levels of TRPV2 in MIN6 beta-cells. Endocrinology (2012) 153(7):3029–39. doi:10.1210/en.2012-1091

92. Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging (Dis) (2015) 6(2):109–20. doi:10.14336/AD.2014.0305

93. Rogers MA, Hagberg JM, Martin WH III, Ehsani AA, Holloszy JO. Decline in VO2max with aging in master athletes and sedentary men. J Appl Physiol (1985) 68(5):2195–9. doi:10.1152/jappl.1989.68.5.2195

94. Ishihara H, Machler P, Ginovsi A, Herrera PL, Wollheim CR. Ilet beta-cell secretion determines glucagon release from neighbouring alpha-cells. Nat Cell Biol (2003) 5(4):330–5. doi:10.1038/nckb951

95. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Nat Rev Endocrinol (2015) 11(7):448–59. doi:10.1038/nrendo.2015.129

96. Lu H, Koshkin V, Allister EM, Gyulkhandanyan AV, Wheeler MB. Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes. Diabetes (2010) 59(2):448–59. doi:10.2337/db09-0129

97. Lombardi A, Trimarco B, Iaccarino G, Santulli G. Impaired mitochondrial involvement of oxidative stress. Front Endocrinol (2014) 5:138. doi:10.3389/fendo.2014.00138

98. De Tata V. Age-related impairment in insulin release: the essential role of beta(2)-adrenergic receptor. Diabetes (2012) 61(3):692–701. doi:10.2337/db11-1027

99. O'Brien TP, Jenkins EC, Estes SK, Del Giudice C, Formisano P, et al. Age-related impairment in insulin release: the essential role of beta(2)-adrenergic receptor. Diabetes (2012) 61(3):692–701. doi:10.2337/db11-1027

100. Neal B, Perkovic V, Solomon SD, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and heart failure in type 2 diabetes mellitus: results from the CANVAS program (Canagliflozin Cardiovascular Assessment Study). Circulation (2018). doi:10.1161/CIRCULATIONAHA.118.034222

101. Dong Z, Chai W, Wang W, Zhao L, Fu Z, Cao W, et al. Protein kinase A production, and differentiation ability. Cardiometabolism (2018) 114(2):336–46. doi:10.1093/cardiv/cvx186

102. Radholt K, Fitgreet G, Perkovic V, Solomon SD, Mahaffey KW, de Zeeuw D, et al. Canagliflozin and heart failure in type 2 diabetes mellitus: results from the CANVAS program (Canagliflozin Cardiovascular Assessment Study). Circulation (2018). doi:10.1161/CIRCULATIONAHA.118.034222

103. Cherney DZ, Perkins BA, Soleymaniou N, Har R, Fagan N, Johansen OE, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiometabolism (2014) 13:28. doi:10.1002/2014-128-30-13

104. Chilton R, Tikkkanen I, Cannon CP, Crowe S, Woerle HJ, Broedel UC, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab (2015) 17(12):1180–93. doi:10.1111/dobm.12572

105. Fioretto P, Zamponi G, Rossato M, Busseto L, Vettor R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care (2016) 39(Suppl 2):S65–71. doi:10.2337/db15-S106

106. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med (2016) 375(4):323–34. doi:10.1056/NEJMoa1519200

107. Chilton R, Tikkkanen I, Cannon CP, Crowe S, Woerle HJ, Broedel UC, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab (2015) 17(12):1180–93. doi:10.1111/dobm.12572

108. Packer M, Anker SD, Butler J, Filippatos G, Zannad F. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a new mechanism of action. JAMA Cardiol (2017) 2(9):1025–9. doi:10.1001/jamacardio.2017.2275

109. Vennari C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med (2016) 375(4):323–34. doi:10.1056/NEJMoa1519200

110. Radholm K, Figtree G, Perkovic V, Solomon SD, Mahaffey KW, de Zeeuw D, et al. Canagliflozin and heart failure in type 2 diabetes mellitus: results from the CANVAS program (Canagliflozin Cardiovascular Assessment Study). Circulation (2018). doi:10.1161/CIRCULATIONAHA.118.034222

111. Cherney DZ, Perkins BA, Soleymaniou N, Har R, Fagan N, Johansen OE, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiometabolism (2014) 13:28. doi:10.1002/2014-128-30-13

112. Chilton R, Tikkkanen I, Cannon CP, Crowe S, Woerle HJ, Broedel UC, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab (2015) 17(12):1180–93. doi:10.1111/dobm.12572

113. Fioretto P, Zamponi G, Rossato M, Busseto L, Vettor R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care (2016) 39(Suppl 2):S65–71. doi:10.2337/db15-S106

114. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med (2016) 375(4):323–34. doi:10.1056/NEJMoa1519200

115. Sjoberg KA, Frosig C, Jøbsted R, Sylow L, Kleinert M, Betik AC, et al. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes (2017) 66(6):1501–10. doi:10.2337/db16-1327

116. Barrett EJ, Eggleston EM, Inyard AC, Wang H, Li G, Chai W, et al. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetesologia (2009) 52(9):2222–8. doi:10.1111/j.1464-5491.2009.02712.x

117. Wang Z, Wang X, Aylor K, Barrett EJ. Nitric oxide directly promotes vascular endothelial insulin transport. Diabetes (2013) 62(12):4030–42. doi:10.2337/db13-0627

118. Mason McClatchey P, Bauer TA, Regensteiner JG, Schauer IE, Huebschmann AG, Reusch JE. Dissociation of local and global skeletal muscle oxygen transport metrics in type 2 diabetes. J Diabetes Complications (2017) 31(8):1311–7. doi:10.1016/j.jdiacomp.2017.05.004

119. McClatchey PM, Frisbee JC, Reusch JE. A conceptual framework for predicting and addressing the consequences of disease-related microvascular dysfunction. Microcirculation (2017) 24(6):e12359. doi:10.1111/micc.12359

120. Mason McClatchey P, Wu F, Oliffert IM, Ellis CG, Goldman D, Reusch JE, et al. Impaired tissue oxygenation in metabolic syndrome requires increased microvascular perfusion heterogeneity. J Cardiovasc Transl Res (2017) 10(1):69–81. doi:10.1007/s12265-017-9732-6

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.