Electromotive force in the Blandford–Znajek process

Kenji Toma$^{1,2,3 Re}$ and Fumio Takahara3

1Astronomical Institute, Tohoku University, Sendai 980-8578, Japan
2Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
3Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan

Accepted 2014 May 27. Received 2014 May 19; in original form 2014 January 7

ABSTRACT

One of the mechanisms widely considered for driving relativistic jets in active galactic nuclei, Galactic microquasars and gamma-ray bursts is the electromagnetic extraction of the rotational energy of a central black hole, i.e. the Blandford–Znajek process, although the origin of the electromotive force in this process is still under debate. We study this process as the steady unipolar induction in the Kerr black hole magnetosphere filled with a collisionless plasma screening the electric field (the D field) along the magnetic field (the B field), i.e. $D \cdot B = 0$. We extend the formulations and arguments made by Komissarov, and generally show that the origin of the electromotive force is ascribed to the ergosphere. It is explicitly shown that open magnetic field lines penetrating the ergosphere have a region where the D field is stronger than the B field in the ergosphere, and it keeps driving the poloidal currents and generating the electromotive force and the outward Poynting flux. The range of the possible value of the so-called angular velocity of the magnetic field line Ω_\ast is deduced for the field lines threading the equatorial plane in the ergosphere. We briefly discuss the relation between our conclusion and the ideal magnetohydrodynamic condition.

Key words: black hole physics – magnetic fields – relativistic processes.

1 INTRODUCTION

Collimated outflows, or jets, with relativistic speeds are observed in active galactic nuclei and Galactic microquasars, and are presumably driven in gamma-ray bursts. Possible mechanisms for driving relativistic jets include the electromagnetic extraction of the rotational energy of a central black hole (BH; Blandford & Znajek 1977), the electromagnetic extraction of the rotational energy of an accretion flow around a BH (Lovelace 1976), and the thermal gas ejection from an accretion flow (e.g. Paczynski 1990; Asano & Takahara 2009; Becker, Das & Le 2011; Toma & Takahara 2012).

The electromagnetic extraction of the rotational energy of the accretion flow is the same mechanism as pulsar winds. Goldreich & Julian (1969) showed that when the poloidal magnetic field is penetrating a rotating conductive star, the steady force-free magnetosphere can be established outside the star, where the poloidal electric fields are maintained by the charge distribution and the poloidal currents flow (i.e. the unipolar induction process). As a result, outward electromagnetic energy and angular momentum fluxes continue to be generated. The origin of the electromotive force (and the fluxes) is the matter-dominated rotating star, while the plasma outside the star only supports the electromagnetic field, playing a passive role for keeping the electric potential differences in the whole system.

As for the energy extraction of the BH itself, Blandford & Znajek (1977) first showed a mathematical solution for the electromagnetic energy and angular momentum fluxes extracted from the BH with the force-free approximation in the slow rotation limit of the BH, in a similar mechanism to the Goldreich–Julian model. It has been frequently argued that this electromagnetic process may be the only viable process to extract the rotational energy from a BH (e.g. Penrose 1969; Bardeen, Press & Teukolsky 1972; Bejger et al. 2012). However, the origin of the electromotive force in this process is still being debated. There is no matter-dominated region in which the poloidal magnetic field is anchored, and all the matter in the BH magnetosphere only plays a passive role. Then, it is not a simple question what determines the electric potential difference (or the so-called angular velocity of the magnetic field line Ω_\ast) and drives the poloidal currents. The literature on the origin of the electromotive force focuses on either the event horizon (Thorne, Price & MacDonald 1986), the wind separation surface (Takahashi et al. 1990; Beskin & Kusnetsova 2000; Levinson 2006; Beskin 2010; Okamoto 2012), or the ergosphere (Komissarov 2004a, 2009, see also Menon & Dermer 2005, 2011; Contopoulos, Kazanas & Papadopoulos 2013), although the first one is unlikely because the event horizon is causally disconnected from the BH

* E-mail: toma@astr.tohoku.ac.jp

© 2014 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

Downloaded from https://academic.oup.com/mnras/article-abstract/442/4/2855/1341816 on 26 July 2018
This paper is organized as follows. We first review the Goldreich–Julian model of pulsar winds in Section 2 and the convenient formulation of the electrodynamics in Kerr space–time in Section 3. We then study the plasma-filled BH magnetosphere, discussing its general properties (Section 4) and the origin of the electromotive force (Section 5). Section 6 is devoted to summary and discussion.

2 UNIPOLAR INDUCTION OF PULSARS

We review the unipolar induction mechanism of pulsars, first discussed by Goldreich & Julian (1969), which is quite helpful for understanding the unipolar induction of rotating BHs. In particular, it is instructive that the electric field outside the star is stronger in the plasma-filled case than that in the vacuum case (equations 6 and 7) and that the star drives the poloidal currents inside itself in the direction of \(-E\), which generates the Poynting flux (equation 10). We will refer to these points in Sections 5.1 and 5.3, respectively.

2.1 Electric potential differences

Let us consider a uniformly magnetized, rotating star with angular velocity \(\Omega_s\). Our assumptions are as follows. (1) The rotation vector is parallel to the magnetic dipole moment, so that the system is steady and axisymmetric. (2) At and inside the stellar surface, the matter is highly conductive, and its rotational energy dominates the total energy. (3) The region outside the star is filled with plasma. The plasma is dilute and collisionless, but its number density is high enough to screen the electric field along the magnetic field lines, i.e. \(E \cdot B = 0\) is satisfied. The energy density of the particles is much smaller than that of the electromagnetic field. The magnetic field is so strong that the gravitational force of the central star is negligible compared with the Lorentz force. In this section, we adopt the units of \(c = 1\).

First of all, at and inside the stellar surface, the high conductivity implies

\[
E = -V \times B = -\sigma \Omega_s e_\phi \times B, \tag{1}
\]

where \(V\) is the fluid velocity, and we have adopted the cylindrical coordinate system \((\sigma, \varphi, z)\). This electric field is produced by the non-zero charge density \(\rho = (1/4\pi)\nabla \cdot E\).

The electromagnetic field structure in the region outside the star, i.e. magnetosphere, is described as follows. In the axisymmetric configuration, the poloidal magnetic field can be written as

\[
B_p = \frac{1}{\sigma} \nabla \Phi \times e_\phi, \tag{2}
\]

where \(\Psi(\sigma, z)\) is called the flux function, representing the toroidal component of the vector potential times \(\sigma\), or the magnetic flux threading through a circle of \(\sigma\) for a given \(z\). The above equation leads to \(B \cdot \nabla \Psi = 0\), which means that \(\Psi(\sigma, z)\) is constant along each magnetic field line. For the electric field, Faraday’s law in the steady state gives \(\nabla \times E = 0\). The axisymmetric condition implies \(E_\sigma = 0\). This equation and \(E \cdot B = 0\) mean that the electric field can be written as

\[
E = -\sigma \Omega_p e_\phi \times B, \tag{3}
\]

where \(\Omega_p\) is a function of \((\sigma, z)\). Substituting this equation into \(\nabla \times E = 0\) and using \(\nabla \cdot B = 0\), one obtains

\[
B \cdot \nabla \Omega_p = 0. \tag{4}
\]

This means that \(\Omega_p\) is constant along each magnetic field line. The electric field is also described by \(E = -\Omega_p \nabla \Psi\), which means...
that each magnetic field line is equipotential, and \(\Omega_e \) corresponds to the potential difference between the field lines. The plasma in the magnetosphere sustains \(\rho = (1/4\pi)\nabla \cdot \mathbf{E} \), which produces the electric field in the similar manner to the star.

Equation (3) is satisfied in the whole system we now consider including the inside of the star, as long as there is no region where \(\mathbf{E} \cdot \mathbf{B} \neq 0 \), i.e. no gap. Comparing it with equation (1), one obtains

\[
\Omega_e = \Omega_c. \tag{5}
\]

This means that the stellar rotation generates the potential differences in the magnetosphere, i.e. the origin of the electromotive force for pulsar winds is ascribed to the rotation of the stellar matter. For the rigid rotation of the star, \(\Omega_e \) is constant in the whole system.

It is interesting that the plasma enhances the strength of the electric field across the magnetic field, although it screens that along the magnetic field (satisfying \(\mathbf{E} \cdot \mathbf{B} = 0 \)). In fact, in the plasma-filled case for the dipole magnetic field, which we have considered, one has from equation (3)

\[
E_r = \mu \Omega_c \frac{\sin^2 \theta}{r^2}, \quad E_\theta = -\mu \Omega_c \frac{2 \sin \theta \cos \theta}{r^2}, \tag{6}
\]

in terms of the spherical coordinates \((r, \theta, \phi)\), where \(\mu \) is the magnetic dipole moment. In the vacuum case, the electric field has quadrupole shape (Goldreich & Julian 1969)

\[
E_r = -\mu \Omega_c r_0^3 \frac{3 \sin^2 \theta - 1}{r^4}, \quad E_\theta = -\mu \Omega_c r_0^2 \frac{2 \sin \theta \cos \theta}{r^4}, \tag{7}
\]

where \(r_0 \) is the radius of the star. It is obvious that the electric field is stronger in the plasma-filled case for \(r > r_0 \).

Let us consider the particle motions in the magnetosphere. Since the energy density is dominated by the electromagnetic field, the particles move via the \(\mathbf{E} \times \mathbf{B} \) drifts. For the dipole magnetic field and the associated electric field shown above, this motion is in the direction of \(\psi \). It carries the drift currents, but does not produce \(B_\psi \).

The drift velocity is written by using equation (3) as

\[
v_\psi = \sigma \Omega_c e_\psi - \sigma \Omega_c \frac{B_\psi}{B_z} \mathbf{B}. \tag{8}
\]

As long as \(B_z = 0 \), one has \(v_\psi = \sigma \Omega_c e_\psi \). Because \(\Omega_c = \Omega_e \), the particles corotate with the star. The drift current is \(J_\psi = \rho \sigma \Omega_c e_\psi \). Now, one can calculate the charge density in the magnetosphere at \(\sigma < 1/\Omega_c \) as

\[
\rho = \frac{1}{4\pi} \mathbf{v} \cdot \mathbf{E} = \frac{-\Omega_c B_z}{2\pi(1 - \sigma^2 \Omega_c^2)} \approx -\Omega_c B_z. \tag{9}
\]

This implies that \(\rho < 0 \) (>) in the region, where \(B_z > 0 \) (\(<0\)).

2.2 Poloidal current structure

The corotation of the particles cannot be maintained outside the light cylinder at \(\sigma = \sigma_{lc} \equiv 1/\Omega_c \). The poloidal electric currents must flow. The poloidal currents produce \(B_\psi \), which prevents the particle speeds from exceeding the light speed (see equation 8). The particles must flow out along the magnetic field lines which cross the light cylinder. Those magnetic field lines must be open, because of the symmetry with respect to the equatorial plane. The charge density distribution (equation 9) and the particle outflow imply that the poloidal electric currents flow towards the northern and southern poles of the star and flow out from the light cylinder around the equatorial plane. Therefore, one finds \(B_\psi < 0 \) (>) in the main body of the outflow region (i.e. the open field line region) in the northern (southern) hemisphere.

According to equation (8), one has \(v_\psi = (1 - B_z^2/B^2)\sigma \Omega_c \), and thus it is reasonable that \(|B_\psi| \sim |B_z|\) around the light cylinder. One might consider that such a strong \(B_\psi \) is produced by the poloidal currents flowing due to the effects of the particle inertia around the light cylinder, but this is not the case, because the particle energy density is still much smaller than the electromagnetic field energy density around the light cylinder, as seen by the MHD theory (cf. Beskin 2010; Toma & Takahara 2013). \(B_z \) must be produced by the poloidal currents which are driven by the matter-dominated star. The outflows of the positive (negative) charges from the high (low) potential region in the star result in the net electric field \(\mathbf{E} + \mathbf{V} \times \mathbf{B} \neq 0 \) in the direction of \(-\mathbf{E}\), which continues driving the poloidal currents and supplying the positive (negative) charges to the high (low) potential region.

The currents flowing in the direction of \(-\mathbf{E}\) in the star generates the poloidal component of the Poynting flux \(S_p = \mathbf{E} \times \mathbf{B}_\psi /4\pi = -\Omega_c \sigma \mathbf{B}_\psi \mathbf{B}_s /4\pi \), as described by

\[
\nabla \cdot \mathbf{S}_p = -\mathbf{E} \cdot \mathbf{J}_p = (\mathbf{V} \times \mathbf{B}_s) \cdot \mathbf{J}_p = -(\mathbf{J}_p \times \mathbf{B}_s) \cdot \mathbf{V}_p. \tag{10}
\]

This equation also means that the Lorentz force \(\mathbf{J}_p \times \mathbf{B}_s \), being in the direction of \(-\mathbf{V}_p\), decelerates the stellar rotation as a feedback of the Poynting flux generation. In this way, the rotating star keeps generating the electromotive force (equation 5), driving the poloidal electric currents, and generating the outward Poynting flux.

Since \(|B_\psi| \sim |B_z|\) is expected around the light cylinder, one may estimate \(|S_p| \sim B_z^2 / 4\pi \), where \(B_{zlc} \) is the strength of the poloidal magnetic field at the light cylinder. The dipole field implies \(B_{zlc} \sim B_{zlc}(\sigma_{lc}(r_0/r))^3 \), where \(B_{zlc} \) is the strength of the poloidal magnetic field at the stellar surface. Then, the electromagnetic luminosity is roughly estimated as

\[
L \sim 4\pi \sigma_{lc}^2 | \mathbf{S}_p | \sim B_z^2 \Omega_c^2 r_0^2. \tag{11}
\]

Here, the condition \(|B_\psi| \sim |B_z|\) around the light cylinder is equivalent to the estimate of the total current \(I \) flowing towards the star. In fact, the order of the current density is probably \(I \sim |\rho| r_c \), and then \(I \sim \sigma A \), where \(A \) is the area of the stellar surface into which the currents flow, and estimated to be \(A \sim \sigma_A^4 \Omega_c \) (Goldreich & Julian 1969). The electromagnetic luminosity is also calculated by \(L \sim \rho^2 \), where the potential difference \(\Phi \sim B_{zlc} r_0^2 \Omega_c^2 \), which is consistent with equation (11). (The factor 2 comes from the contributions from the northern and southern hemispheres.)

The poloidal currents must cross the poloidal magnetic field lines in the direction of \(\mathbf{E} \) outside the star for making closed circuits, which accelerates the particles via the \(\mathbf{J}_p \times \mathbf{B}_s \) force and then converts the Poynting flux to the particle kinetic energy flux. In this paper, we do not discuss the particle acceleration mechanism in detail (see Beskin 2010; Toma & Takahara 2013, and references therein).

3 ELECTRODYNAMICS IN KERR SPACE–TIME

We briefly summarize the geometrical properties of Kerr space–time and the electrodynamics in order to define the various physical quantities used in this paper. We follow the definitions and formulations of Komissarov (2004a) except for keeping \(4\pi \) in Maxwell equations. We adopt the units of \(c = 1 \) and \(GM = 1 \), where \(M \) is the BH mass. For such units, the gravitational radius \(r_g = GM/c^2 = 1 \).
3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

$$\text{d}s^2 = g_{\mu\nu}\text{d}x^\mu\text{d}x^\nu = -\alpha^2\text{d}t^2 + \gamma_{ij}(\beta^i\text{d}t + \text{d}x^i)(\beta^j\text{d}t + \text{d}x^j),$$ \hspace{1cm} (12)

where α is called the lapse function, β^i the shift vector and γ_{ij} the three-dimensional metric tensor of the space-like hypersurfaces. The hypersurfaces are regarded as the absolute space at different instants of time t (cf. Thorne et al. 1986). For Kerr space–time, $\partial_t g_{\mu\nu} = \partial_\nu g_{\mu\nu} = 0$. These correspond to the existences of the Killing vector fields ξ^μ and χ^μ. In the coordinates (t, φ, r, θ), $\xi^\mu = (1, 0, 0, 0)$ and $\chi^\mu = (0, 1, 0, 0)$.

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne et al. 1986), whose world line is perpendicular to the absolute space, is described by the coordinate four-velocity

$$n^\mu = \left(\frac{1}{\alpha} - \frac{\beta^t}{\alpha}\right), \quad n_\mu = g_{\mu\nu}n^\nu = (-\alpha, 0, 0, 0).$$ \hspace{1cm} (13)

The angular momentum of this observer is $n \cdot \chi = g_{\mu\nu}n^\mu \chi^\nu = n_\theta = 0$, and thus FIDO is also a zero angular momentum observer (ZAMO; Thorne et al. 1986). Note that the FIDO frame is not inertial, but it can be used as a convenient orthonormal basis to investigate the local physics (Thorne et al. 1986; Punsly & Corinotii 1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, φ, r, θ) (see Appendix A), FIDOs rotate with the coordinate angular velocity

$$\Omega = \frac{\partial \phi_{\text{FIDO}}}{\partial t} = -\beta^\varphi > 0,$$ \hspace{1cm} (14)

which is in the same direction as the BH. The BL coordinates have the well-known coordinate singularity $(g_{tt} = \infty)$ at the event horizon. The radius of the event horizon is $r_\text{H} = 1 + \sqrt{1 - a^2}$. The Killing vector ξ^μ is space-like in the ergosphere, where $\xi^t = g_{tt} = -\alpha^2 + \beta^t > 0$. The radius of the outer boundary of the ergosphere (i.e. the stationary limit) is $r_\text{ng} = 1 + \sqrt{1 - a^2} \cos \theta$. At infinity, this space–time asymptotes to the flat one. The shapes of the event horizon and the ergosphere are shown in Fig. 1.

The Kerr–Schild (KS) coordinates have no coordinate singularity at the event horizon. However, the KS spatial coordinates are no longer orthogonal ($\gamma_{\varphi\varphi} \neq 0$; see Appendix A), and then one should be cautious for examining the spatial structure of the electromagnetic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time, we adopt the 3+1 electrodynamics of the version which was developed by (Komissarov 2004a, see also Landau & Lifshitz 1975; Komissarov 2009, and references therein). The covariant Maxwell equations $\nabla^\mu F_{\mu\nu} = 0$ and $\nabla_\nu F^{\mu\nu} = 4\pi I^\mu$ are reduced to

$$\nabla \cdot B = 0, \quad \partial_t B + \nabla \times E = 0,$$ \hspace{1cm} (15)

$$\nabla \cdot D = 4\pi \rho, \quad -\partial_t D + \nabla \times H = 4\pi J,$$ \hspace{1cm} (16)

where $\nabla \cdot C$ and $\nabla \times C$ denote $(1/\sqrt{\gamma})\partial_i(\sqrt{\gamma}C^i)$ and $\epsilon^{ijk}\partial_jC_k$, respectively, and $\epsilon^{ijk} = (1/\sqrt{\gamma})\epsilon^{ijk}$ is the Levi-Civita pseudo-tensor.

Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1 electrodynamics of the version without introducing E or H, and showed some of the expressions in this paper, such as equations (22) and (29).

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr space–time, the properties of the electromagnetic field in the vacuum (i.e. no plasma) are summarized. Wald (1974) derived the solution of a steady, axisymmetric, vacuum test electromagnetic field in Kerr space–time for which the magnetic field is uniform, of the absolute space. The condition of zero electric and magnetic susceptibilities for general fully ionized plasmas leads to following constitutive equations:

$$E = \alpha D + \beta \times B,$$ \hspace{1cm} (17)

$$H = \alpha B - \beta \times D,$$ \hspace{1cm} (18)

where $C \times F$ denotes $\epsilon^{ijk}C_jF_k$. At infinity, $\alpha = 1$ and $\beta = 0$, so that $E = D$ and $H = B$. Here, D, B and ρ are the electric field, magnetic field and charge density as measured by FIDOs, respectively (see Appendix A for more details). The current J is related to the current as measured by FIDOs, j, as

$$J = \alpha j - \rho \beta.$$ \hspace{1cm} (19)

The covariant energy–momentum equation of the electromagnetic field $\nabla_{\mu}T_{\mu\nu}^E = -F_{\mu\nu}I^\nu$ gives us the energy equation as

$$\partial_t \left[\frac{1}{8\pi} (E \cdot D + B \cdot H) \right] + \nabla \cdot \left(\frac{1}{4\pi} E \times H \right) = -E \cdot J,$$ \hspace{1cm} (20)

where $C \cdot F$ denotes C^iF_i, and the angular momentum equation as

$$\partial_t \left[\frac{1}{4\pi} (D \times B \cdot m) \right] + \nabla \cdot \left[\frac{1}{4\pi} (E \cdot D - (H \cdot m)B \right.$$ \hspace{1cm}
$$+ \frac{1}{2} (E \cdot D + B \cdot H)m \right] = -(\rho E + J \times B) \cdot m,$$ \hspace{1cm} (21)

where $m = \partial_\phi$. From these equations, one can find the energy density, energy flux, angular momentum density and angular momentum flux.
parallel to the rotation axis, at infinity in an elegant way by utilizing
the fact that ξ^μ and χ^μ generate a solution of Maxwell equations
(see Appendix A). For this solution, the poloidal D field is
non-zero. This may be understood by considering $\nabla \times E =
\nabla \times (\alpha D + \beta \times B) = 0$. Since $\nabla \times (\beta \times B) \neq 0$
generally, one has $\nabla \times (\alpha D) \neq 0$. This D field is produced by the charges at
the event horizon and at infinity. Note that $D \cdot B \neq 0$ for this solution.
$\nabla \times E = 0$ implies $E_\tau = 0$, and $\nabla \times H = 0$ tells us $H_\tau = 0$. Then the poloidal components of the energy and angular momentum fluxes are zero. These properties are the same as those for the pulsar in the vacuum.

4 KERR BH MAGNETOSPHERE

Now, we examine the steady, axisymmetric, test electromagnetic
field in Kerr space–time in which the plasma is filled. As a prepara-
tion for the discussion on the unpolar induction of rotating BHs
(in Section 5), we summarize the general properties of the electro-
magnetic field in Section 4.1. In Section 4.2, we study the particle
motions as viewed by FIDOs. This study provides a conclusion that
$D^2 > B^2$ is the necessary and sufficient condition for driving the
electric currents to flow across the poloidal B field lines.

4.1 Electromagnetic field

We consider the Kerr BH magnetosphere under the following as-
sumptions: (1) the poloidal B field produced by the external electric
currents is penetrating the ergosphere. (2) The plasma in the BH
magnetosphere is dilute and collisionless, but its number density is
high enough to screen the electric field along the B field lines, i.e.
$D \cdot B = 0$. The energy density of the particles is much smaller
than that of the electromagnetic field. (3) The gravitational force
is negligible compared with the Lorentz force. [The gravitational
force overwhelms the Lorentz force in a region very close to the
event horizon (Punsly 2008), but the physical condition in that
region hardly affects its exterior.] These assumptions are the same
as those for the pulsar case. One big difference is that there is no
matter-dominated region on which the B field is anchored (see
Section 1). As a result, the determination of Ω_ℓ is not so simple as
the pulsar case.

In terms of the vector potential, one can write $B = \nabla \times A$
(Komissarov 2004a). Thus, one finds

$$B^i = \frac{1}{\sqrt{\gamma}} \partial_\gamma \Psi, \quad B^b = \frac{-1}{\sqrt{\gamma}} \partial_b \Psi,$$

(22)

where we have defined $\Psi \equiv A_\phi$. It is easily shown that $B^i \partial_i \Psi = 0$,
which means that Ψ is constant along each B field line.

The condition $D \cdot B = 0$ and equation (17) lead to $E \cdot B = 0$.
Taking account of $E_\tau = 0$, one can write

$$E = -\omega \times B. \quad \omega = \Omega_\ell \hat{m}.$$

(23)

Substituting this equation into $\nabla \times E = 0$ and $\nabla \cdot B = 0$, one ob-
tains

$$B^i \partial_i \Omega_\ell = 0.$$

(24)

That is, Ω_ℓ is constant along each B field line. The E field is
also described by $E_\tau = -\Omega_\ell \partial_\tau \Psi$, which means that each B
field line is equipotential, and Ω_ℓ corresponds to the potential
difference between the field lines. These properties are the same as those in
the pulsar case, discussed in Section 2.

In the steady, axisymmetric state, the angular momentum equa-
tion (21) is reduced to

$$\nabla \cdot \left(\frac{H_\ell}{4\pi} B_p \right) = B^i \partial_i \left(\frac{H_\ell}{4\pi} \right) = -(J_\ell \times B_p) \cdot m.$$

(25)

The energy equation (20) is reduced to

$$\nabla \cdot \left(-\Omega_r \frac{H_\ell}{4\pi} B_p \right) = B^i \partial_i \left(-\Omega_r \frac{H_\ell}{4\pi} \right) = -E \cdot J_\ell,$$

(26)

which can be deduced by equation (25) together with equations
(23) and (24). These equations imply that H_ℓ is generated by the
poloidal currents which have the component perpendicular to the
poloidal B field, and then the poloidal component of the Poynt-
ing flux $-\Omega_r H_\ell B_\psi / (4\pi)$ is non-zero when $\Omega_\ell \neq 0$. We note that
$\Omega_r = -F_{\phi\phi}/F_{\phi \phi}$ and $H_\ell = \ast F_{\phi o}$ are the same in the BL and KS
coordinates (Komissarov 2004a).

4.2 Poloidal currents

Komissarov (2004a) argues that the poloidal currents can have the
component perpendicular to the poloidal B field in the region where
$D^2 > B^2$, by utilizing a specific Ohm’s law (or some effective resistivity). Here, we prove this to be valid by examining particle
currents in the electromagnetic fields more generally, without rely-
ing on Ohm’s law.

We treat the particle motion as viewed by FIDOs. They can use a
convenient local orthonormal basis for which the space–time metric
is diagonal and one can investigate local, instantaneous particle
motions under the Lorentz force as special relativistic dynamics. In
fact, the equation of a particle motion as viewed by FIDOs (either
BL or KS FIDOs) is

$$\frac{d\hat{u}_i}{dt} = \frac{q}{m} (\hat{D}_i + \epsilon_{ijk} u_j \hat{B}^k),$$

(27)

as shown in Appendix B. Here, u, v, q and m are the four-velocity,
three-velocity, charge and mass of a particle, respectively, and \hat{C}_i
denotes the vector component in respect of the FIDO’s orthonormal
basis, i.e. $\hat{C}_i = C_{ij} e^j_i$ (see Appendix A).

Note that the FIDO frame is not inertial and a particle feels the gravitational force, although we assume that it is negligible compared with the Lorentz force. In this equation, \hat{D}_i and \hat{B}^i appear as the electric and magnetic fields as viewed by FIDOS, respectively, as expected. The assumption $D \cdot B = 0$ is equivalent to $\hat{D} \cdot \hat{B} = 0$, because $D^\mu B^\mu$ is a scalar and $\hat{D}^2 = \hat{B}^2 = 0$.

When $D^2 < B^2$ is satisfied (which is equivalent to $\hat{D}^2 < \hat{B}^2$), the charged particles freely move along the B field line and/or drift in
the direction of $\hat{D} \times \hat{B}$. Effectively, one has $\hat{u}_+ \cdot \hat{D} = \hat{u}_+ \cdot \hat{D} = 0$, where u_+ and u_- denote the four-velocities of positively and
negatively charged particles, respectively. This equation is valid
as long as the plasma is dilute and any particle collisions which
induce $\hat{u}_+ \cdot \hat{D} \neq 0$ or $\hat{u}_- \cdot \hat{D} \neq 0$ are ineffective. In the coordinate
basis, one has $u_{+\mu} \cdot D = u_{+\mu} \cdot D = 0$, since $u_{+\mu} D^\mu$ is a scalar and $\hat{D}^2 = 0$. Then, by considering $u' = u'' v'$, one has $v_{+\mu} \cdot D = u_{+\mu} \cdot D = 0$. As a result, the motions of the charged particles can carry only the electric currents satisfying $J_\mu \cdot D = 0$ and $J_\mu \parallel B_p$.

If $\hat{D}^2 > \hat{B}^2$ is realized (which is equivalent to $\hat{D}^2 > \hat{B}^2$), then the positively (negatively) charged particles are forced to move in the
direction of $\hat{D} (\hat{D})$ (cf. Landau & Lifshitz 1975), i.e. $\hat{u}_+ \cdot \hat{D} > 0$

$\hat{u}_- \cdot \hat{D} < 0$.

The quantities \hat{E} and \hat{B} used in Komissarov (2004a) are identical to
D and B. The FIDO’s orthonormal basis is not utilized for discussion in
Komissarov (2004a).

Downloaded from https://academic.oup.com/mnras/article-abstract/442/4/2855/1341816
by guest
on 26 July 2018
and $\mathbf{u} \cdot \mathbf{D} < 0$. Then, one has $\mathbf{u} \cdot \mathbf{D} > 0$ and $\mathbf{u} \cdot \mathbf{D} < 0$ in the coordinate basis, which lead to $v_+ \cdot \mathbf{D} > 0$ and $v_- \cdot \mathbf{D} < 0$ since $u' > 0$. Therefore, the particle motions can carry $\mathbf{J}_p \parallel \mathbf{D}$. This implies $\mathbf{J}_p \perp \mathbf{B}_p$. The force-free approximation $F_{\mu\nu} F^{\mu\nu} = 0$ (i.e. $\rho \mathbf{E} + \mathbf{J} \times \mathbf{B} = 0$) is violated in this case, since $E_p = 0$.

In summary, $D^2 > B^2$ is the necessary and sufficient condition for driving the electric currents to flow across the poloidal \mathbf{B} field lines (and then obtaining $H_p \neq 0$) under our assumptions (1)–(3) listed in Section 4.1.

5 UNIPOLAR INDUCTION OF KERR BHS

We discuss the unipolar induction process in the Kerr BH magnetosphere where the poloidal \mathbf{B} field lines threading the ergosphere are open, i.e. crossing the outer light surface. We mainly utilize the BL coordinates rather than the KS ones in this section.

The light surfaces are defined as follows. In the BL coordinates, when $B_\theta = B_\phi = 0$, the coordinate angular velocity of the drift motion is Ω_θ, as deduced in Appendix B. The light surfaces are the surfaces where the four-velocity of a particle which is rotating with the coordinate angular velocity Ω_θ becomes null, i.e. $f(\Omega_\theta, r, \theta) = 0$, where we have defined

$$f(\Omega_\theta, r, \theta) = (\xi + \Omega_\theta \chi)^2 - \alpha^2 + \gamma \chi (\Omega_\theta - \Omega)^2.$$

(28)

There can be two light surfaces. One has $\Omega_\theta = \Omega = \alpha/\sqrt{\gamma}$ at the outer light surface (where $\Omega < \Omega_\theta$), while $\Omega_\theta = \Omega = -\alpha/\sqrt{\gamma}$ at the inner light surface (where $\Omega > \Omega_\theta$).

From the condition $D \cdot B = 0$, equations (17) and (23) lead to

$$D = -\frac{1}{\alpha} (\omega + \beta) \times B.$$

(29)

Calculating $D^2 = D^2 D$, one obtains in the BL coordinates

$$D^2 = \frac{1}{\alpha^2} (\Omega_\theta - \Omega)^2 B_\text{p}^2,$$

(30)

where $B_\text{p}^2 \equiv B_\theta^2 + B_\phi^2 B_\theta^2$. This equation can be rewritten by using equation (28) (cf. Komissarov 2004a)

$$(B^2 - D^2) \alpha^2 = -B^2 f(\Omega_\theta, r, \theta) + \frac{1}{\alpha^2} (\Omega_\theta - \Omega)^2 H_p^2,$$

(31)

where we have used $H_p = \alpha B_\text{p}$ (see equation 18). This equation is useful for the following discussion.

5.1 Origin of the electromotive force

We show that there is no steady, axisymmetric state with $\Omega_\theta = 0$ and $H_p = 0$ for the \mathbf{B} field lines threading the ergosphere. The condition $\Omega_\theta = 0$ means $E = 0$, and $D = (-1/\alpha) \beta \times B$. Equation (31) is reduced to

$$(B^2 - D^2) \alpha^2 = B^2 (\alpha^2 - \beta^2).$$

(32)

In the ergosphere, where $\alpha^2 - \beta^2 < 0$, one has $D^2 > B^2$. Note that $B^2 - D^2 = F_{\mu\nu} F^{\mu\nu}/2$ is a scalar, and thus $B^2 - D^2 < 0$ is valid also in the KS coordinates. The \mathbf{D} field stronger than the \mathbf{B} field drives the poloidal currents to flow across the poloidal \mathbf{B} field lines, as discussed in Section 4.2. These poloidal currents generate H_p (equation 25). Therefore, the state with $\Omega_\theta = 0$ and $H_p = 0$ cannot be maintained.

The poloidal currents (i.e. the charged particle flows) across the poloidal \mathbf{B} field lines due to the strong \mathbf{D} field in the ergosphere change the charge density distribution. This reduces the strength of the \mathbf{D} field. (We show the charge density distribution calculated for the Wald \mathbf{B}_p field in Appendix C, which might be helpful for understanding the reduction of the \mathbf{D} field strength by the charged particle flows across the poloidal \mathbf{B} field lines.) Then equation (30) implies that $\Omega_\theta > 0$ is realized and one finds a non-zero E field.

From this argument, we can conclude that the origin of the electromotive force is ascribed to the ergosphere in the unipolar induction of the BH magnetosphere with $D \cdot B = 0$.

The generation of such a strong \mathbf{D} field may be understood as a phenomenon similar to the pulsar case. In the vacuum case, we can straightforwardly calculate D^2/B^2 by using the Wald solution (see Appendix A), and find that the region where $D^2 > B^2$ is only in the vicinity of the event horizon at the equatorial plane, as shown in Fig. 2. In contrast, one has $D^2/B^2 = \beta^2/\alpha^2$ in the plasma-filled case with $\Omega_\theta = 0$ and $H_p = 0$ (equation 32), which is larger than unity in the entire ergosphere (see the dot–dashed line in Fig. 2). The enhancement of the electric field in the plasma-filled case compared to the vacuum case is quite similar to the pulsar case (see equations 6 and 7 in Section 2.1). The charge distribution of the plasma screen the \mathbf{D} field component along the \mathbf{B} field but enhances the total strength of the \mathbf{D} field. Note that the condition $D^2 > B^2$ is not due to a shortage of the number of charged particles like the gap with non-zero electric field along the magnet field lines (Blandford & Znajek 1977; Beskin, Istomin & Pariev 1992; Hirota & Okamoto 1998), but rather, it arises due to a sufficiency of the charged particles sustaining $D \cdot B = 0$.

The divergence of D^2/B^2 near the event horizon in Fig. 2 is not physical, just due to the BL coordinate singularity. In Appendix A, we calculate D^2/B^2 in the KS coordinates, which does not show any divergence (see Fig. A1).

We also find that no \mathbf{B} field lines can have the condition of $\Omega_\theta = 0$ and $H_p \neq 0$. Along such \mathbf{B} field lines, the poloidal electromagnetic angular momentum flux is non-zero, but the poloidal Poynting flux is zero (see equations 25 and 26). The current closure requires that such a \mathbf{B} field line should have a part where the poloidal currents cross this field line. Focusing on the currents crossing the field line at the far zone, one finds that the $\mathbf{J}_p \times \mathbf{B}_p$ force acts on the matter, converting the poloidal momentum flux of the electromagnetic field to that of the matter. The matter should also
gain the poloidal energy flux from the electromagnetic field, which conflicts with the condition of $\Omega_F = 0$. Therefore, the state with $\Omega_F = 0$ and $H_F \neq 0$ must not be realized.

5.2 Maintenance of the poloidal currents

As discussed above, the condition $\Omega_F > 0$ is inevitably satisfied for all the B field lines threading the ergosphere in the steady, axisymmetric state. This condition leads to the azimuthal drift motions of the particles at the far zone, similar to the pulsar case. For the open B field lines that we consider, they must have the condition $B_\phi = H_\phi/\alpha \neq 0$ so that the azimuthal drift speeds do not exceed the light speed. Therefore, the open B field lines threading the ergosphere will be forced to have the condition $\Omega_F > 0$ and $H_F \neq 0$.

We have seen that H_F is generated by the poloidal currents driven to flow across the poloidal B field line. Then, the field line should have a part where $D^2 > B^2$ in the ergosphere (see also Section 5.3 below) in order to maintain the poloidal currents, although those currents reduce the strength of the D field (leading to a larger value of Ω_F). Therefore, the value of Ω_F will be regulated so that $\Omega_F > 0$ and the B field line keeps having a part where $D^2 > B^2$.

It should be noted that the ergosphere is causally connected to the region around the outer light surface, which is inside the outer fast magnetosonic surface (cf. Punsly 2008; Beskin 2010; Toma & Takahara 2012). Thus, the steady state with $\Omega_F > 0$ and $H_F \neq 0$ can be established in principle, although more quantitative analyses on the stability of this state are needed.

If we have any B field lines which penetrate the ergosphere but are not open, e.g. field lines having the cylindrical shapes and not crossing the outer light surfaces, they can be in the steady state with $\Omega_F > 0$ and $H_F = 0$. Such field lines do not have a region where $D^2 > B^2$ (i.e. Ω_F is larger than the case of $H_F \neq 0$).

5.3 B fields threading the equatorial plane

Let us call the region where $D^2 > B^2$ and then the poloidal currents are driven to flow across the poloidal B field line ‘current crossing region.’ In the case of $\Omega_F = 0$ and $H_F = 0$, the current crossing region has been found to be the ergosphere in Section 5.1. Where is the current crossing region in the case of $\Omega_F > 0$ and $H_F \neq 0$? Here, we focus on an open B field line threading the equatorial plane in the ergosphere, showing a self-consistent electromagnetic structure along such a field line and pinning down the region where $D^2 > B^2$.

First, since $\Omega_F > 0$, there is a point where $\Omega = \Omega_F$ for each field line. One has $D \cdot E < 0$ below this point, while $D \cdot E > 0$ above this point, as illustrated in Fig. 3. The point of $\Omega = \Omega_F$ is located between the outer light surface (where $\Omega = \alpha/\sqrt{\gamma_{\text{eq}}}$) and the inner light surface (where $\Omega = \alpha = -\alpha/\sqrt{\gamma_{\text{eq}}}$). We plot the contour of $\Omega = \alpha/\sqrt{\gamma_{\text{eq}}}$ in Fig. 1, which shows that $\Omega = \alpha/\sqrt{\gamma_{\text{eq}}}$ is positive only in the ergosphere. Thus, $\Omega_F > 0$ requires that the inner light surface is located in the ergosphere.

Because of the symmetry, $H_F = 0$ on the equatorial plane. The current crossing region must include the equatorial plane, and H_F is generated in this region (see equation 25). Equation (31) implies that $D^2 > B^2$ is satisfied in the region of $f(\Omega_F, r, \theta) > 0$. Therefore, the current crossing region must be below the inner light surface, which is within the ergosphere. Above the current crossing region, $D^2 < B^2$ is satisfied and $H_F \sim \text{const.}$ (Here, we do not consider the region where the currents flow across the poloidal B field lines in the direction of E, i.e. the particle acceleration zone.) We summarize the electromagnetic structure in Fig. 3.

5.4 Range of Ω_F and outflow power

A necessary condition for maintaining the electromagnetic structure along a B field line threading the equatorial plane in the ergosphere (Fig. 3) is that the size of the current crossing region is finite. In the limit of the infinitesimally thin current crossing region, $D^2 \approx B^2$ on the equatorial plane. Since $H_F = 0$ there, equation (31) implies $f(\Omega_F, r, \theta) \approx 0$. This condition provides the maximum allowed value of Ω_F, i.e. we find the range of possible value of Ω_F as

\[0 < \Omega_F < \Omega_{F,\text{max}} \equiv \left(\Omega - \frac{\alpha}{\sqrt{\gamma_{\text{eq}}}} \right)_{\Omega \to 0} . \tag{33} \]

The value of $\Omega_{F,\text{max}}$ normalized by the BH angular velocity $\Omega_{\text{BH}} = a/(2r_{\text{S}})$ as a function of r on the equatorial plane is plotted in Fig. 4. Since the poloidal current flows reduce the strength of the D field, as discussed above, Ω_F is expected to have a value near $\Omega_{F,\text{max}}$.

Fig. 4 implies that Ω_F should be zero for the B field line threading the ergosphere at $r = r_{\text{S}}$, which we call ‘last ergospheric field line’. The poloidal currents will not cross this field line, and thus $H_F = 0$ for this field line. The poloidal current circuit can consist of the
current flow in the current crossing region, the outward flow along the last ergospheric field line, and the inward flow in the main body of the open field line region (See Fig. 5 and Section 6).

Similar to the pulsar case, it is reasonable that $|B_\rho| = |B_\rho|/\sqrt{\gamma_\rho} \sim |B_\rho|$ around the outer light surface. Then, we can have a rough estimate of the poloidal Poynting flux as $|S_\rho| = \Omega_p|H_\rho||B_\rho|/4\pi \sim B_{\rho,\text{ls}}^2/(4\pi)$, where we have used the equations valid at the outer light surface $f(\Omega_p, r, \theta) = -\alpha^2 + \gamma_\rho(\Omega_p - \Omega)^2 = 0$, $\alpha \sim 1$ and $\Omega \ll \Omega_p$. When the open poloidal magnetic field roughly scales as $B_{\rho,\text{ls}} \sim B_{\rho,\text{H}}(r_0/r_{\text{H}})^{-2}$ (i.e. monopole-like rather than dipole), where $B_{\rho,\text{H}}$ is the field strength in the vicinity of the BH and r_0 is the radius of the outer light surface, and then one has the luminosity per solid angle as

$$\frac{dL}{d\Omega} \sim r_0^3|S_\rho| \sim \frac{B_{\rho,\text{ls}}^2\Omega_p^2\Omega_{\text{H}}^2}{4\pi} \sim \frac{\alpha^2}{16\pi} \left(\frac{\Omega_p}{\Omega_{\text{H}}}\right)^2 B_{\rho,\text{H}}^2 r_0^2.$$ (34)

Here, $\Omega_p/\Omega_{\text{H}}$ is expected to be $\sim \Omega_{\text{F, max}}/\Omega_{\text{H}}$ (Fig. 4) for the B field lines threading the equatorial plane in the ergosphere.

6 SUMMARY AND DISCUSSION

We consider the Blandford–Znajek process as the steady unipolar induction process in the Kerr BH magnetosphere in which a collisionless plasma is filled so that $\mathbf{D} \cdot \mathbf{B} = 0$ is sustained and the energy density is dominated by the electromagnetic field. The origin of the electromotive force in this process is the ergosphere, unlike in the pulsar case, in which the origin of the electromotive force is the rotation of the stellar matter (see Section 2). All the open B field lines threading the ergosphere inevitably keep having a part where the D field (perpendicular to the B field) is stronger than the B field, i.e. $D^2 > B^2$, which drives the poloidal currents to flow across the poloidal B field lines ($H_\rho \neq 0$; see equation 25) and give rise to the electromotive force, i.e. $\Omega_p > 0$. In the current crossing region, the currents flow in the direction of $-\mathbf{E}$, which generate the poloidal Poynting flux (see equation 26), similar to the pulsar case. The condition $J_\rho \times B_\rho \neq 0$ in the current crossing region implies that the force-free approximation cannot be assumed (see Section 4.2). Note that we only assume $D \cdot B = 0$, not utilizing the force-free condition $\rho \mathbf{E} + \mathbf{J} \times \mathbf{B} = 0$ in our arguments.

6.1 B fields threading the horizon

We have shown the self-consistent electromagnetic structure along a B field line threading the equatorial plane in the ergosphere in Fig. 3. Also for the B field lines threading the event horizon, the above conclusion on the origin of the electromotive force is applicable, and thus the electromagnetic structure will be similar to Fig. 3, having the current crossing region just outside the horizon. It is not an easy task to solve the whole electromagnetic structure of the BH magnetosphere, but our arguments so far allow us to conjecture that the solution looks like Fig. 5. We describe the poloidal current flows by the open arrows in Fig. 5. Some fraction of the poloidal currents can flow across the horizon, while the remaining fraction flows across the poloidal B field lines just outside the horizon, generating the poloidal Poynting flux. In the current crossing region around the equatorial plane, the negatively charged particles flow across the horizon. The current circuits will be made for the BH not to charge up in the steady state.

In the membrane paradigm (Thorne et al. 1986; Penna, Narayan & Sadowski 2013), the force-free condition is assumed to be satisfied except on the membrane (at $r \approx r_{\text{H}}$) covering the horizon, so that all the poloidal currents flow into the membrane (i.e. flow across the horizon for freely falling observers) in the region of the B field lines threading the horizon. The poloidal currents are then regarded as flowing along the viscous membrane and generating the outward Poynting flux. However, this picture looks unphysical, because the membrane is causally disconnected with its exterior (Punsly & Coroniti 1989; Punsly 2008). The energy equation (26) implies that a region of $E \cdot J_\rho < 0$ has to be causally connected for producing the Poynting flux. Such a region is realized outside the horizon (or the membrane) and within the ergosphere, where the force-free condition is violated.

We have deduced the maximum value of $\Omega_p/\Omega_{\text{H}}$ for the poloidal B field lines threading the equatorial plane in the ergosphere as shown in Fig. 4. This can be deduced easily by utilizing the symmetry condition on the equatorial plane $H_\rho = 0$ for equation (31). In contrast, for the poloidal B field lines threading the horizon,
\(\Omega_{F, \text{max}} \) is difficult to deduce, because \(H_p \neq 0 \) at the horizon in general. Furthermore, the BL coordinates are not useful for analysing the condition near the horizon. Equation (29) can be rewritten in the KS coordinates as
\[
(B^2 - D^2)\alpha^2 = -B^2 f(\Omega_F, \hat{r}, \theta, \phi) + (\Omega_F B_\phi + \beta' B_\theta)^2,
\]
where \(B_\phi = (H_p + \sqrt{r} \beta' D^\phi)/\alpha \). This implies that \(\Omega_{F, \text{max}} \), which is obtained for \(D^2 \approx B^2 \) at the horizon, depends on the structure of \(B_\theta \).

We have assumed that some field lines of \(B_\theta \) produced by the external currents are threading the equatorial plane within the ergosphere in Sections 5.3 and 5.4 and in Fig. 5. However, a situation could be realized in which the magnetospheric currents around the equatorial plane become so strong that no field lines intersect the equatorial plane within the ergosphere, as demonstrated by some MHD numerical simulations (Komissarov 2005; Komissarov \\& McKinney 2007). The Blandford–Znajek process can operate only for the field lines threading the horizon in this case.

6.2 On the ideal MHD condition

The ideal MHD condition \((F_{,\mu}^\prime, \xi'' = 0) \) is \(\dot{D} + \hat{r} \times \dot{B} = 0 \) as viewed by FIDOs. Beskin \\& Rafikov (2000) examined the two-fluid effects on the electron–positron plasma in the pulsar magnetosphere with a monopole magnetic field and the number density much larger than the Goldreich–Julian density, and showed that the one-fluid flow with the ideal MHD condition is a good approximation in the region \(E^2 < B^2 \) (see also Melatos \\& Melrose 1996; Goodwin et al. 2004). In this case, the ideal MHD condition does not imply the infinite isotropic conductivity, but rather, the flow is almost force-free and moving via the \(E \times B \) drifts, i.e. \(J_\beta \parallel B_\beta \). Most region in the BH magnetosphere may be described as the one-fluid with the ideal MHD condition or the force-free plasma in the same sense. However, this has to be violated in the current crossing region, as stated above. (The ideal MHD condition requires \(D^2 < B^2 \) from \(|\beta| < 1 \).)

For the pulsar case, the fluid at and inside the stellar surface has a high isotropic conductivity owing to the effective particle collisions, i.e. the particle collision rate is very high compared with the gyration period (cf. Bekenstein \\& Oron 1978; Khanna 1998), in which the poloidal currents flow across the poloidal magnetic field lines and the electromotive force arises. The ideal MHD condition is a good approximation there.

Beskin \\& Kasneitsova (2000) examined the one-fluid MHD flow in the Kerr BH magnetosphere with a small spin parameter \(a \ll 1 \) and a monopole magnetic field, and argued that there are many types of solutions corresponding to different values of \(H_p \) and \(\Omega_p \) (see their table 1). The MHD flow in the Kerr BH magnetosphere generally consists of an inflow and an outflow, and they assumed that there is a gap between them, in which \(D \cdot B \neq 0 \) and the poloidal currents flow across the poloidal fields, and the electromotive force arises. The ideal MHD condition is a good approximation there.

Beskin \\& Kasneitsova (2000) examined the one-fluid MHD flow in the Kerr BH magnetosphere with a small spin parameter \(a \ll 1 \) and a monopole magnetic field, and argued that there are many types of solutions corresponding to different values of \(H_p \) and \(\Omega_p \) (see their table 1). The MHD flow in the Kerr BH magnetosphere generally consists of an inflow and an outflow, and they assumed that there is a gap between them, in which \(D \cdot B \neq 0 \) and the poloidal currents flow across the poloidal fields, and the electromotive force arises. The ideal MHD condition is a good approximation there.

Beskin \\& Kasneitsova (2000) examined the one-fluid MHD flow in the Kerr BH magnetosphere with a small spin parameter \(a \ll 1 \) and a monopole magnetic field, and argued that there are many types of solutions corresponding to different values of \(H_p \) and \(\Omega_p \) (see their table 1). The MHD flow in the Kerr BH magnetosphere generally consists of an inflow and an outflow, and they assumed that there is a gap between them, in which \(D \cdot B \neq 0 \) and the poloidal currents flow across the poloidal fields, and the electromotive force arises. The ideal MHD condition is a good approximation there.

6.3 Final remarks

The plasma may keep being injected into the whole Kerr BH magnetosphere through the electron–positron pair creation by collisions of two photons emitted from the external hot fluid and/or through electron–proton creation by decays of neutrons escaping from the external fluid (Toma \\& Takahara 2012). The electrons accelerated due to the strong \(D \) field in the current crossing region produce photons, which also can create electron–positron pairs by collisions with the external photons. However, it will be hard for those electron–positron pairs to be distributed widely in the magnetosphere, because the poloidal drift motions \((D \times B) \) are downward in the region of \(\Omega > \Omega_p \) (see Fig. 3).

The origin of the electromotive force in the Blandford–Znajek process is attributed to the ergosphere. It cannot work in the Schwarzschild BH magnetosphere, which has no ergosphere. Then, it is expected that the rotational energy of the Kerr BH decreases by this process. However, it is not evident how the BH rotational energy is converted to the Poynting flux. This energy conversion mechanism has been discussed so far by utilizing the ideal MHD simulation results, focusing on the importance of generation of negative particle energies (Koide et al. 2002; Komissarov 2005). We have argued that the breakdown of the ideal MHD condition is essential for giving rise to the electromotive force. Further analyses on the energy transport are needed to fully understand the physics of the Blandford–Znajek process (see also Komissarov 2009).

ACKNOWLEDGEMENTS

We thank the anonymous referee for his/her comments, which improved the manuscript. KT thanks Shinpei Shibata, Hideyuki Tagoshi, Yuto Teraki and Shigeo Kimura for useful discussions. This work is partly supported by JSPS Research Fellowships for Young Scientists no. 231446.

REFERENCES

Asano K., Takahara F., 2009, ApJ, 690, L81
Bardeen J. M., Press W. H., Teukolsky S. A., 1972, ApJ, 178, 347
Becker P. A., Das S., Le T., 2011, ApJ, 743, 47
Beijer M., Piran T., Abramowicz M., Hakanson F., 2012, Phys. Rev. Let., 109, 121101
Bekenstein J. D., Oron E., 1978, Phys. Rev. D, 18, 1809
Beskin V. S., 2010, Phys.-Usp., 53, 1199
Beskin V. S., Kasneitsova I. V., 2000, Nuovo Cimento B, 115, 795
Beskin V. S., Rafikov R. K., 2000, MNRAS, 313, 433
Beskin V. S., Gurevich A. V., Istomin Y. N., 1983, Sov. Phys.–JETP, 58, 235
Beskin V. S., Istomin Y. N., Pariev V. I., 1992, Sov. Astron., 36, 642
Blandford R. D., Znajek R. L., 1977, MNRAS, 176, 465
Contopoulos I., Kazanas D., Papadopoulos D. B., 2013, ApJ, 765, 113
Goldreich P., Julian W. H., 1969, ApJ, 157, 869
Goodwin S. P., Mestel J., Mestel L., Wright G. A. E., 2004, MNRAS, 349, 213
Hirotani K., Okamoto I., 1998, ApJ, 497, 563
Khanna R., 1998, MNRAS, 294, 673
King A. R., Lasota J. P., Kundt W., 1975, Phys. Rev. D, 12, 3037
Komissarov S. S., 2004a, MNRAS, 350, 427
Komissarov S. S., 2004b, MNRAS, 350, 1431
Komissarov S. S., 2005, MNRAS, 359, 801
Komissarov S. S., 2009, J. Korean Phys. Soc., 54, 2503
Komissarov S. S., Barkov M. V., 2009, MNRAS, 397, 1153
Komissarov S. S., McKinney J. C., 2007, MNRAS, 377, L49
Landau L. D., Lifshitz E. M., 1975, Course of Theoretical Physics, Vol. 2. Pergamon Press, New York

MNRAS 442, 2855–2866 (2014)

Downloaded from https://academic.oup.com/mnras/article-abstract/442/4/2855/1341816 on 26 July 2018
APPENDIX A: ELECTROMAGNETIC FIELD IN THE VACUUM

Wald (1974) showed a vacuum test electromagnetic field solution in Kerr space–time for which the magnetic field is uniform, parallel to the rotation axis, at infinity with the strength B_0 as

$$F_{\mu\nu} = B_0(\partial_\mu \xi_1 + 2a \partial_\mu \chi_0), \quad (A1)$$

where a is the dimensionless spin parameter. The covariant forms of the D and B fields are given by

$$D_\mu = F_{\mu}^\nu n_\nu, \quad B^\mu = -F^{\mu\nu\nu} n_\nu \quad (A2)$$

(Komissarov 2004a). In this sense, D and B are the electric and magnetic fields as measured by FIDOs. Here, we calculate the strengths of the D and B fields of the vacuum solution in the BL and KS coordinates.

In the BL coordinates, one has the following non-zero metric components:

$$\alpha = \sqrt{\frac{\rho^2 \Delta}{\Sigma}}, \quad \beta^\rho = -\frac{2ar}{\Sigma}, \quad \gamma_{\psi\psi} = \frac{\Sigma}{\rho^2} \sin^2 \theta, \quad \gamma_{rr} = \frac{\Delta}{\rho^2}, \quad \gamma_{\theta\theta} = \rho^2, \quad (A3)$$

where

$$\rho^2 = r^2 + a^2 \cos^2 \theta, \quad \Delta = r^2 + a^2 - 2r,$$

$$\Sigma = (r^2 + a^2)^2 - a^2 \Delta \sin^2 \theta \quad (A4)$$

(see e.g. Landau & Lifshitz 1975). FIDOs can have a local orthonormal basis as

$$\omega^\rho = \alpha d\rho, \quad \omega^\theta = \sqrt{\gamma_{\psi\psi}} (\beta^\rho d\rho + d\psi), \quad \omega^\phi = \sqrt{\gamma_{\theta\theta}} d\theta, \quad (A5)$$

which satisfy $ds^2 = \eta_{ab} \omega^a \omega^b$. The corresponding basis vectors are

$$e_i = \frac{1}{\alpha} (\partial_i - \beta^\rho \partial_\rho), \quad e_\psi = \frac{1}{\sqrt{\gamma_{\psi\psi}}} \partial_\psi, \quad (A6)$$

$$e_r = \frac{1}{\sqrt{\gamma_{\theta\theta}}} \partial_r, \quad e_\theta = \frac{1}{\sqrt{\gamma_{\theta\theta}}} \partial_\theta. \quad (A6)$$

Note that $n^a = e_i^a$ and $n_\mu = -\alpha e_i^\mu$. Then, we can calculate the vector components \hat{D}_i and B^i in respect of the orthonormal basis as

$$\hat{D}_i = D_\mu e_i^\mu = F_{\mu i}^\nu n_\nu, \quad B^i = B^\nu \gamma_{i\nu} = \frac{1}{2} \epsilon^{aibcj} F_{\mu i}^\nu \omega_\mu \omega_\nu. \quad (A7)$$

The result is

$$\hat{D}_\phi = \hat{B}^\phi = 0, \quad \hat{D}_r = \frac{B_0 a^2 \sqrt{\Delta}}{\sqrt{\Sigma} \rho^2} 2r \sin \theta \cos \theta (1 + \cos^2 \theta), \quad \hat{D}_\theta = \frac{B_0}{\sqrt{\Sigma} \rho^2} \cos \theta \left[(r^2 + a^2) (\rho^4 - 4r a^2 \cos^2 \theta) - 2r a^4 \sin^2 \theta \right], \quad \hat{B}^\phi = -\frac{B_0}{\sqrt{\Sigma} \rho^2} \sin \theta \left[r \rho^4 + a^2 (r^2 - a^2 \cos^2 \theta) (1 + \cos^2 \theta) \right]. \quad (A8)$$

This agrees with the result of the same calculation in King, Lasota & Kundt (1975) and Punsly & Coroniti (1989). Because $D^r D_\mu$ and $B^\nu B_\mu$ are scalars and $D' = D = 0$ and $B' = B^\phi = 0$, one has $D' = D'^r \Delta^2$ and $B' = B'^\phi \Delta^2$. We calculate $D'^\phi / B'^\phi = D^2 / B^2$ and plot it in Fig. 2.

In the KS coordinates, one has the following non-zero metric components

$$\alpha = \frac{1}{\sqrt{1 + z}}, \quad \beta^\rho = \frac{z}{1 + z}, \quad \gamma_{\psi\psi} = \frac{\Sigma}{\rho^2} \sin^2 \theta, \quad \gamma_{rr} = -a (1 + z) \sin^2 \theta, \quad \gamma_{\theta\theta} = 1 + z, \quad \gamma_{\phi\phi} = a^2. \quad (A9)$$

where $z = 2r / \rho^2$ (Komissarov 2004a). By transferring the KS FIDO motion into the BL coordinates, one finds that the KS FIDO has the same angular velocity as the BL FIDO but also moves radially towards the true singularity. The orthonormal basis dual-vectors can be chosen as

$$\omega^\rho = \alpha d\rho, \quad \omega^\theta = \beta^\rho \frac{\gamma_{\psi\psi}}{\sqrt{\gamma_{\psi\psi}}} \sqrt{\gamma_{\theta\theta}} d\theta, \quad \omega^\phi = \sqrt{\gamma_{\theta\theta}} d\phi, \quad (A10)$$

and the corresponding basis vectors are

$$e_i = \frac{1}{\alpha} (\partial_i - \beta^\rho \partial_\rho), \quad e_\psi = \frac{1}{\sqrt{\gamma_{\psi\psi}}} \partial_\psi, \quad (A11)$$

(Komissarov 2004b). Note that $n^a = e_i^a$ and $n_\mu = -\alpha e_i^\mu$, similar to those in the BL coordinates. Then by calculating equation (A7), we

MNRAS 442, 2855–2866 (2014)
obtain
\[
\dot{\hat{D}}_\theta = \frac{B_0}{\sqrt{\sum r^2}} \frac{2r}{1 + z} \sin \theta \left[r^2 - a^2(r^2 - a^2 \cos \theta)(1 + \cos^2 \theta) \right],
\]
\[
\dot{\hat{D}}_\phi = \frac{B_0 a}{\sqrt{\sum r^2}} \frac{2r}{1 + z} \sin \theta \cos \theta(1 + \cos^2 \theta),
\]
\[
\dot{\hat{B}}^\theta = \frac{B_0 a}{\sqrt{\sum r^2}} \frac{1}{1 + z} \sin \theta \cos \theta(1 + \cos^2 \theta),
\]
\[
\dot{\hat{B}}^\phi = \frac{B_0 a}{\sqrt{\sum r^2}} \frac{1}{1 + z} \cos \theta \left[r^2 - a^2(r^2 - a^2 \cos^2 \theta) - 2r a^2 \sin^2 \theta \right],
\]
\[
\dot{\hat{B}}^\rho = \frac{B_0 a}{\sqrt{\sum r^2}} \frac{1}{1 + z} \sin \theta \left[r^2 - a^2(r^2 - a^2 \cos^2 \theta)(1 + \cos^2 \theta) \right].
\]

(A12)

In Fig. A1, we plot $D^2/B^2 = \hat{D}^2/\hat{B}^2$ calculated in the KS coordinates. It does not show the divergence at the event horizon, unlike that calculated in the BL coordinates as shown in Fig. 2. Note that the D fields (as well as the B fields) in the BL and KS coordinates are not identical, corresponding to the difference of n^0 in equation (A2). Thus, $D^2, B^2, D^2/B^2$ are different in the two coordinates, but $B^2 - D^2 = F_{\mu \nu} F^{\mu \nu}/2$ is a scalar, providing the same value in the two coordinates. This can be confirmed directly by using equations (A8) and (A12). As a result, the region of (r, θ) where $D^2/B^2 > 1$ (i.e. $D^2 - B^2 > 0$) are identical in Figs 2 and A1.

APPENDIX B: PARTICLE MOTION AS VIEWED BY FIDOS

The equation of a particle motion as viewed by FIDOs is described as
\[
\frac{d\hat{\nu}^\alpha}{dr} = \frac{m}{q} F^\mu_\alpha \hat{v}^\mu,
\]

(B1)

where τ, q and m are the proper time, charge and mass of a particle, respectively. For $\mu = \phi$ in the BL coordinates as an example, one has
\[
\hat{F}_{\phi \mu} = F_{\phi \mu} e^\phi_\mu = \hat{D}_{\phi},
\]
\[
\hat{F}_{\phi \phi} = e^\phi_\mu F^\mu_{\phi \phi} = \frac{1}{\sqrt{\gamma_{\phi \phi}}} \left(\frac{1}{\sqrt{\gamma_{rr}}} B^\phi = B^\phi, \frac{1}{\sqrt{\gamma_{\theta \theta}}} B^\theta = B^\theta, \frac{1}{\sqrt{\gamma_{\phi \phi}}} B^\phi = -B^\phi, \right)
\]
where we have used $F_{\phi \phi} = e_{\phi \phi} B^\phi$ (see Komissarov 2004a). Thus, one obtains
\[
\frac{D\hat{\nu}^\phi}{dr} = \frac{q}{m} (\hat{D}_{\phi} \hat{u}^\phi + e_{\phi \phi} \hat{u}^\phi \hat{B}^\phi).
\]

(B2)

The same form of equation is obtained also for $\mu = r$ and θ. By taking account of $dr = d\tilde{u}^\phi/\tilde{u}^\phi$ and the assumption that the gravitational force is negligible compared with the Lorentz force, one obtains equation (27). The same form of the equation is obtained also by using the KS coordinates.

Let us examine the drift motion of a particle in the plasma with $\mathbf{D} \cdot \mathbf{B} = 0$ in the BL coordinates. From equation (29), one has $D_\phi = (\sqrt{\gamma/\alpha})\Omega \mu - \Omega)\mathbf{B}^\phi, D_\rho = (-(\sqrt{\gamma/\alpha})\Omega \mu - \Omega)\mathbf{B}^\rho$ and $B_\mu = 0$. The drift three-velocity as viewed by FIDOs is $\hat{v}^\mu = (\hat{D} \times \hat{B})/\hat{B}^2$, where $\hat{B}^2 = B^2$. The azimuthal drift velocity is calculated as
\[
\hat{v}^\phi = D_\phi B_\rho - D_\rho B_\phi \frac{\sqrt{\gamma_{\phi \phi}}}{\alpha} (\Omega \mu - \Omega) B^\phi.
\]

(B3)

In general, one has $\hat{u}^\phi = u^\phi u^\mu = \alpha u^\mu$ and $\hat{v}^\phi = u^\mu u^\phi = \sqrt{\gamma_{\phi \phi}} (u^\phi - \Omega u^\mu)$. Then, $\hat{v}^\phi = \tilde{u}^\phi/\tilde{u}^\phi = (\sqrt{\gamma_{\phi \phi}}/\alpha)(v^\phi - \Omega)$. Therefore, one finds
\[
\hat{v}^\mu = \Omega (1 - \frac{B_\mu}{B^2}) + \Omega \frac{B_\phi}{B^2}.
\]

(B4)

When $B_\phi = 0$, one has $\hat{v}^\phi = \Omega$. In this case, $\hat{v}^\phi = \pm 1$ at the light surfaces, where $\Omega = \pm \Omega$. When $B_\rho \neq 0$, one has non-zero poloidal components of the drift velocity,
\[
\hat{v}^\mu = \frac{D_\phi B_\rho - D_\rho B_\phi}{B^2 \sqrt{\gamma_{\phi \phi}}} \frac{\sqrt{\gamma_{rr}}}{\sqrt{\gamma_{\phi \phi}}} = \frac{\hat{D}_{\phi} \hat{v}^{\phi}}{B^2 \sqrt{\gamma_{\phi \phi}}} = \frac{\hat{D}_{\phi} \hat{v}^{\phi}}{B^2}.
\]

(B5)

Then, one has $\hat{v}^\mu = \frac{\hat{D}_{\phi} \hat{v}^{\phi}}{\sqrt{\gamma_{\phi \phi}}} = (\hat{D} \times \hat{B}_{\phi})/B^2$ and $\hat{v}^\phi = \hat{v}^\phi/\sqrt{\gamma_{\phi \phi}} = (\hat{D} \times \hat{B}_{\phi})/B^2$. This means that
\[
\hat{v}^\phi \parallel (\hat{D} \times \hat{B}_{\phi}).
\]

(B6)

APPENDIX C: CHARGE DENSITY DISTRIBUTION

We derive a description of the charge distribution which is valid for $f(\Omega \mu, r, \theta) < 0$ in the case of $\mathbf{D} \cdot \mathbf{B} = 0$ and $B_\phi = 0$ in the BL coordinates. By using equations (29) and (18), one has
\[
4\pi \rho = \nabla \cdot \mathbf{D} = \nabla \cdot \left[\frac{1}{\alpha} (\omega + \beta) \times \mathbf{B} \right] = \frac{\gamma_{\phi \phi}}{\alpha \sqrt{\gamma}} \partial_r (\Omega \mu - \Omega) (\partial_r H_\theta - \partial_\phi H_r).
\]
The charge density ρ can be calculated if B_p and $\Omega_p(\Psi)$ are given.

Let us calculate ρ by assuming B_p as the Wald vacuum solution (equation A8). This corresponds to the Goldreich–Julian charge density for the Kerr BH magnetosphere. For $\Omega_p = \Omega_{\rm eq}/2$, we confirmed that our calculation result of the surface of $\rho = 0$ is consistent with fig. 3 of Beskin et al. (1992). For $\Omega_p = 0$, we obtain the result as shown in Fig. C1.

For the case of non-uniform Ω_p, the flux function Ψ is required to calculate ρ. For the Wald solution of the B field, it is given as (Beskin et al. 1992)

$$\Psi = B_0 \sin^2 \theta \frac{\Omega}{\Omega_{\rm eq}} \left(\Sigma - 4a^2 r \right). \quad \text{(C5)}$$

It is confirmed that this form of Ψ provides the B field in equation (A8) through equation (22).

As an example, we assume the Wald solution of the B_p field and Ω_p given as

$$\Omega_p(\Psi) = \begin{cases} \Omega_{\rm eq}/2 & \text{for } \sigma_{\rm eq}(\Psi) \leq r_{\rm H} \\ \Omega_p \left(\frac{r_{\rm eq}}{r_{\rm eq} - r_{\rm H}} \right)^2 & \text{for } r_{\rm H} < \sigma_{\rm eq}(\Psi) < r_{es} \\ 0 & \text{for } \sigma_{\rm eq}(\Psi) \geq r_{es} \end{cases} \quad \text{(C6)}$$

where $\sigma_{\rm eq}(\Psi)$ is the cylindrical radius at which a B field line crosses the equatorial plane. This form satisfies $\Omega_p \lesssim \Omega_{\rm eq}$ for the B field lines threading the equatorial plane outside the event horizon, where $\Omega_{\rm eq}$ is given by equation (33) (see also Fig. 4). The calculation result is shown in Fig. C2.

This paper has been typeset from a \TeX file prepared by the author.