TSM: Temporal Shift Module for Efficient Video Understanding

Ji Lin
MIT
jilin@mit.edu

Chuang Gan
MIT-IBM Watson AI Lab
ganchuang@csail.mit.edu

Song Han
MIT
songhan@mit.edu

Abstract

The explosive growth in video streaming gives rise to challenges on efficiently extracting the spatial-temporal information to perform video understanding at low computation cost. Conventional 2D CNNs are computationally cheap but cannot capture temporal relationships; 3D CNN based methods can achieve good performance but are computationally intensive, making it expensive to deploy. In this paper, we propose a generic and effective Temporal Shift Module (TSM) that enjoys both high efficiency and high performance. Specifically, it can achieve the performance of 3D CNN but maintain 2D CNN’s complexity. TSM shifts part of the channels along the temporal dimension, thus facilitate information exchanged among neighboring frames. It can be inserted into 2D CNNs to achieve temporal modeling at zero computation and zero parameters. We also extended TSM to online video recognition setting, which enables real-time low-latency online video recognition. On the Something-Something-V1 dataset which focuses on temporal modeling, we achieved better results than I3D family and ECO family using 6× and 2.7× fewer FLOPs respectively. Measured on P100 GPU, our single model achieved 1.8% higher accuracy at 9.5× lower latency and 12.7× higher throughput compared to I3D. The code is available here: https://github.com/MIT-HAN-LAB/temporal-shift-module.

1. Introduction

Computation-efficient video understanding is an important step towards real-world deployment, both on the cloud and on the edge. For example, there are over 10^5 hours of videos uploaded to YouTube every day to be processed for recommendation and ads ranking; tera-bytes of sensitive videos in hospitals need to be processed locally on edge devices to protect privacy. All these industry applications require both accurate and efficient video understanding.

Deep learning has become the standard for video understanding over the years [42, 45, 4, 46, 56, 49, 54]. One key difference between video recognition and image recognition is the need for temporal modeling. For example, to distinguish between opening and closing a box, reversing the order will give opposite results, so temporal modeling here is critical. Existing efficient video understanding approaches directly use 2D CNN [22, 36, 45, 54], However, 2D CNN on individual frames cannot well model the temporal information. 3D CNNs [42, 4] can jointly learn spatial and temporal features but the computation cost is large, making the production deployment expensive on edge devices. There have been works to trade off between temporal modeling ability and computation, such as post-hoc fusion [12, 8, 54, 6] and mid-level temporal fusion [56, 49, 43]. Such methods sacrifice the low-level temporal modeling for efficiency, but much of the useful information is lost during the feature extraction before the temporal fusion happens.

In this paper, we propose a new perspective for efficient temporal modeling in video understanding by proposing a novel Temporal Shift Module (TSM). Concretely, an activation in a video model can be represented as $A \in \mathbb{R}^{N \times C \times T \times H \times W}$, where N is the batch size, C is the number of channels, T is the temporal dimension, H and W are the spatial resolutions. Traditional 2D CNNs operate independently over the dimension T; thus no temporal modeling takes effects (Figure 1a). In contrast, our Temporal Shift Module (TSM) shifts the channels along the temporal dimension, thus facilitate information exchanged among neighboring frames. It can be inserted into 2D CNNs to achieve temporal modeling at zero computation and zero parameters. We also extended TSM to online video recognition setting, which enables real-time low-latency online video recognition.

Figure 1. Temporal Shift Module (TSM) performs efficient temporal modeling by moving the feature map along the temporal dimension. It is computationally free on top of a 2D convolution, but achieves strong temporal modeling ability. TSM efficiently supports both offline and online video recognition. Bi-directional TSM mingles both past and future frames with the current frame, which is suitable for high-throughput offline video recognition. Uni-directional TSM mingles only the past frame with the current frame, which is suitable for low-latency online video recognition.
sion, both forward and backward. As shown in Figure 1b, the information from neighboring frames is mingled with the current frame after shifting. Our intuition is: convolution operation consists of shift and multiply-accumulate. We shift in the time dimension by ±1 and fold the multiply-accumulate from time dimension to channel dimension. For real-time online video understanding, future frames can’t get shifted to the present, so we use a uni-directional TSM (Figure 1c) to perform online video understanding.

Despite the zero-computation nature of the shift operation, we empirically find that simply adopting the spatial shift strategy [48] used in image classifications introduces two major issues for video understanding: (1) it is not efficient: shift operation is conceptually zero FLOP but incurs data movement. Though the computation cost of the shift operation is cheap, the additional cost of data movement is non-negligible and will result in latency increase. This phenomenon has been exacerbated in the video understanding networks since they usually have a large memory consumption (5D tensor for activation). (2) It is not accurate: shifting too many channels in a network will significantly hurt the spatial modeling ability and result in performance degradation. To tackle the problems, we make two technical contributions. (1) We use a temporal partial shift strategy: instead of shifting all the channels, we shift only a small portion of the channels for efficient temporal fusion. Such strategy significantly cuts down the data movement cost (Figure 2a). (2) We insert the Temporal Shift Module into the residual branch rather than outside the residual branch so that the activation of the current frame is preserved, which does not harm the spatial feature learning capability of the 2D CNN backbone. The partial shift can also be easily extended to the online video recognition setting. Online TSM module only shifts channels in one direction from the past to the future, which enables efficient temporal fusion without increasing the latency for per-frame prediction.

The contributions of our paper are summarized as follows:

- We provide a new perspective for efficient video model design by temporal shift, which is computationally free but has strong spatio-temporal modeling ability.
- We observed that naive shift cannot achieve high efficiency or high performance. We then proposed two technical modifications partial shift and residual shift to realize a high efficiency model design.
- We propose bi-directional TSM for offline video understanding that achieved state-of-the-art performance with 12× higher throughput compared to I3D.
- We propose uni-directional TSM for online real-time video recognition with strong temporal modeling capacity at low latency.

2. Related Work

2.1. Deep Video Recognition

2D CNN. Using the 2D CNN is a straightforward way to conduct video recognition [22, 36, 45, 10, 7, 8, 2]. For example, Simonyan et al. [36] designed a two-stream CNN for RGB input (spatial stream) and optical flow [51] input (temporal stream) respectively. Temporal Segment Networks (TSN) [45] extracted averaged features from strided sampled frames. Such methods are more efficient compared to 3D counterparts but cannot infer the temporal order or more complicated temporal relationships. For example, on Something-Something dataset where labels are related to the temporal modeling, TSN based method achieves top-1 accuracy around 20%.

3D CNN. 3D convolutional neural networks can jointly learn spatio-temporal features. Tran et al. [42] proposed a 3D CNN based on VGG models, named C3D, to learn spatio-temporal features from a frame sequence. Carreira and Zisserman [4] proposed to inflate all the 2D convolution filters in an Inception V1 model [40] into 3D convolutions. However, 3D CNNs are computationally heavy, making the deployment difficult. They also have more parameters than 2D counterparts, thus are more prone to over-fitting. On the other hand, our TSM has the same spatial-temporal modeling ability as 3D CNN while enjoying the same computation and parameters as the 2D CNNS.

Trade-offs. There have been attempts to trade off expressiveness and computation costs. Lee et al. [25] proposed a motion filter to generate spatio-temporal features from 2D CNN. Tran et al. [43] and Xie et al. [49] proposed to study mixed 2D and 3D networks, either first using 3D and later 2D (bottom-heavy) or first 2D and later 3D (top-heavy) architecture. ECO [56] also uses a similar top-heavy architecture to achieve a very efficient framework. Another way to save computation is to decompose the 3D convolution into a 2D spatial convolution and a 1D temporal convolution [43, 31, 39]. For mixed 2D-3D CNNs, they still need to remove low-level temporal modeling or high-level temporal modeling. Compared to decomposed convolutions, our method completely removes the computation cost of temporal modeling has enjoys better hardware efficiency.

2.2. Temporal Modeling

Long-term temporal modeling is challenging. A direct way is to use 3D CNN based methods as discussed above. Wang et al. [46] proposed a spatial-temporal non-local module to capture long-range dependencies. Wang et al. [47] proposed to represent videos as space-time region graphs for feature learning. An alternative way to model the temporal relationships is to use 2D CNN + post-hoc fusion [12, 8, 54, 6]. Some works use LSTM [18] to aggregate the 2D CNN features [50, 6, 38, 9, 11]. Attention mechanism also proves
to be effective for temporal modeling [34, 26, 30]. Zhou et al. [54] proposed Temporal Relation Network to learn and reason about temporal dependencies. The former category is computational heavy, while the latter cannot capture the useful low-level information that is lost during feature extraction. Our method offers an efficient solution at the cost of 2D CNNs, while enabling both low-level and high-level temporal modeling, just like 3D-CNN based methods.

2.3. Efficient Neural Networks

The efficiency of 2D CNN has been extensively studied. Some works focused on designing an efficient model [20, 19, 33, 52]. Recently neural architecture search [57, 58, 29] has been introduced to find an efficient architecture automatically [41, 3]. Another way is to prune, quantize and compress an existing model for efficient deployment [15, 14, 27, 55, 17, 44]. Address shift, which is a hardware-friendly primitive, has also been exploited for compact 2D CNN design on image recognition tasks [48, 53]. Nevertheless, we observe that directly adopting the shift operation on video recognition task neither maintains efficiency nor accuracy, due to the complexity of the video data.

3. Temporal Shift Module (TSM)

We first explain the intuition behind TSM: data movement and computation can be separated in a convolution. However, we observe that such naïve shift operation neither achieves high efficiency nor high performance. To tackle the problem, we propose two techniques optimizing data movement and model capacity, which leads to the efficient TSM module.

3.1. Intuition

For video understanding framework, the shape of activation is usually $[N, C, T, H, W]$ (activation $A \in \mathbb{R}^{N \times C \times T \times H \times W}$), where N is the batch size, C is the number of channels, T is the temporal dimension, H and W are the spatial resolutions.

Let us first consider a normal convolution operation. For brevity, we used a 1-D convolution with the kernel size of 3 as an example. Suppose the weight of the convolution is $w = (w_1, w_2, w_3)$, and the input X is a 1-D vector with infinite length. The convolution operator $Y = \text{Conv}(W, X)$ can be written as: $Y_i = w_1 X_{i-1} + w_2 X_i + w_3 X_{i+1}$. We can decouple the operation of convolution into two steps: shift and multiply-accumulate: we shift the input X by $-1, 0, +1$ and multiply by w_1, w_2, w_3 respectively, which sum up to be Y. Formally, the shift operation is:

$$X_i^{-1} = X_{i-1}, \quad X_0^0 = X_i, \quad X_i^{+1} = X_{i+1} \quad (1)$$

and the multiply-accumulate operation is:

$$Y = w_1 X^{-1} + w_2 X^0 + w_3 X^{+1} \quad (2)$$

The first step shift can be conducted without any multiplication. While the second step is more computationally expensive, our Temporal Shift module merges the multiply-accumulate into the following 2D convolution, so it introduces no extra cost compared to 2D CNN based models.

The proposed Temporal Shift module is described in Figure 1. In Figure 1a, we describe a tensor with C channels and T frames. The features at different time stamps are denoted as different colors in each row. Along the temporal dimension, we shift part of the channels by -1, another part by $+1$, leaving the rest half un-shifted (Figure 1b). For online video recognition setting, we also provide an online version of TSM (Figure 1c). In the online setting, we cannot access future frames, therefore, we only shift from past frames to future frames in a uni-directional fashion.

3.2. Naive Shift Does Not Work

Despite the simple philosophy behind the proposed module, we find that directly applying the spatial shift strategy [48] to the temporal dimension cannot provide high performance nor efficiency. To be specific, if we shift all or most of the channels, it brings two disasters: (1) Worse efficiency due to large data movement. The shift operation enjoys no computation, but it involves data movement. Data movement increases the inference latency on hardware. Worse still, such effect is exacerbated in the video understanding networks due to large activation size (5D activation). When using the naive shift strategy shifting every map, we observe a 13.7% increase in CPU latency and 12.4% increase in GPU latency, making the overall inference slow. (2) Performance degradation due to worse spatial modeling ability. By shifting part of the channels to neighboring frames, the information contained in the channels is no longer accessible for the current frame, which may harm the spatial modeling ability of the 2D CNN backbone. We observe a 2.6% accuracy drop when using the naive shift implementation compared to the 2D CNN baseline (TSN).

3.3. Module Design

To tackle the two problem from naïve shift implementation, we discuss two technical contributions to the shift operation.

Reducing Data Movement. To study the effect of data movement, we first measured the inference latency of TSM models and 2D baseline on different hardware devices. We shifted different proportion of the channels and measured the latency. We measured models with ResNet-50 backbone and 8-frame input using no shift (2D baseline), partial shift (1/8, 1/4, 1/2) and all shift (shift all the channels). The timing was measured on server GPU (NVIDIA Tesla P100), mobile GPU (NVIDIA Jetson TX2) and CPU (Intel Xeon E5-2690). We report the average latency from 1000 runs after 200 warm-up runs. We show the overhead of the shift operat-
We choose $1/4$ proportion residual shift as our default setting. It enables us to limit the latency overhead to 12% for $1/4$ proportion residual shift, as shown in Table 1. We can see that residual shift fuses temporal information inside a residual branch.

Keeping Spatial Feature Learning Capacity

We need to balance the model capacity for spatial feature learning and temporal feature learning. A straight-forward way to apply the Temporal Shift module is to insert it before each convolutional layer or residual block, as illustrated in Figure 3a. We call such implementation in-place shift. It harms the spatial feature learning capability of the backbone model, especially when we shift a large amount of channels, since the information stored in the shifted channels is lost for the current frame.

To address such issue, we propose a variant of the shift module. Instead of inserting it in-place, we put the TSM inside the residual branch in a residual block. We denote such version of shift as residual shift as shown in 3b. Residual shift can address the degraded spatial feature learning problem, as all the information in the original activation is still accessible after temporal shift through identity mapping.

To verify our assumption, we compared the performance of in-place shift and residual shift on Kinetics [23] dataset. We studied the experiments under different shift proportion setting. The results are shown in 2b. We can see that residual shift achieves better performance than in-place shift for all shift proportion. Even if we shift all the channels to neighboring frames, due to the shortcut connection, residual shift still achieves better performance than the 2D baseline. Another finding is that the performance is related to the proportion of shifted channels: if the proportion is too small, the ability of temporal reasoning may not be enough to handle complicated temporal relationships; if too large, the spatial feature learning ability may be hurt. For residual shift, we found that the performance reaches the peak when $1/4$ (1/8 for each direction) of the channels are shifted. Therefore, we use this setting for the rest of the paper.

4. TSM Video Network

4.1. Offline Models with Bi-directional TSM

We insert bi-directional TSM to build offline video recognition models. Given a video V, we first sample T frames $F_1, F_2, ..., F_T$ from the video. After frame sampling, 2D CNN baselines process each of the frames individually, and the output logits are averaged to give the final prediction. Our proposed TSM model has exactly the same parameters and computation cost as 2D model. During the inference of convolution layers, the frames are still running independently just like the 2D CNNs. The difference is that TSM is inserted for each residual block, which enables temporal information fusion at no computation. For each inserted temporal shift module, the temporal receptive field will be enlarged by 2, as if running a convolution with the kernel size of 3 along the temporal dimension. Therefore, our TSM model has a very large temporal receptive field to conduct highly complicated temporal modeling. In this paper, we used ResNet-50 [16] as the backbone for all the experiments unless otherwise specified.

A unique advantage of our method is that it can easily convert any off-the-shelf 2D CNN model into a pseudo-3D model that can handle both spatial and temporal information, without adding additional computation. Thus the deployment of our framework is hardware friendly: we only need to support the operations in 2D CNNs, which are already well-optimized at both framework level (CuDNN [5], MKLDNN) and hardware level (CPU/GPU/TPU/FPGA).

4.2. Online Models with Uni-directional TSM

Video understanding from online video streams is important in real-life scenarios. Many real-time applications requires online video recognition with low latency. In this section, we show that we can adapt TSM to achieve online video recognition while with multi-level temporal fusion. As shown in Figure 1, offline TSM shifts part of the channels bi-directionally, which requires features from future frames to replace the features in the current frame. If we only shift the feature from previous frames to current frames, we can achieve online recognition with uni-directional TSM.
The inference graph of uni-directional TSM for online video recognition is shown in Figure 4. During inference, for each frame, we save the first 1/8 feature maps of each residual block and cache it in the memory. For the next frame, we replace the first 1/8 of the current feature maps with the cached feature maps. We use the combination of 7/8 current feature maps and 1/8 old feature maps to generate the next layer, and repeat. Using the uni-directional TSM for online video recognition shares several unique advantages:

1. **Low latency inference.** For each frame, we only need to replace and cache 1/8 of the features, without incurring any extra computations. Therefore, the latency of giving per-frame prediction is almost the same as the 2D CNN baseline. Existing methods like [56] use multiple frames to give one prediction, which may introduce large latency during online prediction.

2. **Low memory consumption.** Since we only cache a small portion of the features in the memory, the memory consumption is low. For ResNet-50, we only need 3.8MB memory cache to store the intermediate feature.

3. **Multi-level temporal fusion.** Most of the online method only enables late temporal fusion after feature extraction like [54] or mid level temporal fusion [56], while our TSM enables all levels of temporal fusion. Through experiments (Table 2) we find that multi-level temporal fusion is very important for complex temporal modeling.

5. Experiments

We first show that TSM can significantly improve the performance of 2D CNN on video recognition while being computationally free. It further demonstrated state-of-the-art performance on temporal-related datasets, arriving at a significantly better pareto optimal curve trading off accuracy and computation. TSM models achieve an order of magnitude speed up in measured GPU throughput. Finally, we leverage uni-directional TSM to conduct low-latency and real-time online prediction.

5.1. Setups

Training & Testing. To evaluate the effectiveness of the proposed method, we conducted experiments on video ac-

Figure 4. Uni-directional TSM for online video recognition.

Figure 5. Something-Something dataset is temporal-related. Following different arrows of time gives different labels of the dataset. Recognition tasks. Since many of the action recognition datasets are not large enough and are prone to overfitting [45], we followed the common practice [46, 56, 4, 49] to first pre-trained the models on Kinetics [23] and then fine-tuned the model to other target datasets like Something-Something [13], UCF101 [37], and HMDB51 [24]. We followed the practice in [45] to fix all the Batch Normalization [21] layers except for the first one. For most of the experiments, we followed the commonly used setting in [46] for training and testing. When comparing with previous state-of-the-art efficient models [56] in Table 2, we followed the setting in [56] that uses the same number of frames for both training and testing to make a direct comparison.

Model. To have an apple-to-apple comparison with the state-of-the-art method [47], we used the same backbone (ResNet-50) on the dataset (Something-Something-V1 [13]). This dataset focuses on temporal modeling. The difference is that [47] used 3D ResNet-50, while we used 2D ResNet-50 as the backbone to demonstrate efficiency.

Datasets. Kinetics dataset [23] is a large-scale action recognition dataset with 400 classes. As pointed in [54, 49], datasets like Something-Something (V1&V2) [13], Charades [35], and Jester [1] are more focused on modeling the temporal relationships (see Figure 5), while UCF101 [37], HMDB51 [24], and Kinetics [23] are less sensitive to temporal relationships. Since TSM focuses on temporal modeling, we mainly focus on datasets with stronger temporal relationships like Something-Something. Nevertheless, we also observed strong results on the other datasets and reported it.

5.2. Improving 2D CNN Baselines

We can seamlessly inject Temporal Shift module into a normal 2D CNN and improve its performance on video recognition. In this section, we demonstrate a 2D CNN baseline can significantly benefit from TSM with double-digits accuracy improvement. Here we aim to show the improvement over the baselines. We will demonstrate how to push it to the state-of-the-art in the next section.

We chose TSN [45] as the 2D CNN baseline. We used the same training and testing protocol for TSN and our TSM. The only difference is with or without TSM. The results on several action recognition datasets are listed in Table 1. The chart is split into two parts. The upper part contains datasets Kinetics [23], UCF101 [37], HMDB51 [24], where temporal relationships are less important, while our TSM
still consistently outperforms the 2D TSN baseline at no extra computation. For the lower part, we present the results on Something-Something V1 and V2 [13] and Jester [1], which depend heavily on temporal relationships. 2D CNN baseline cannot achieve a good accuracy, but once equipped with our Temporal Shift module, the performance improved by double digits. For example, on Something-Something-V1 dataset, our TSM achieves 25.1% better performance than the 2D baseline, even though the computation costs of the two methods are exactly the same.

5.3. Comparison with State-of-the-Arts

TSM not only significantly improves the 2D baseline but also outperforms state-of-the-art methods, which heavily rely on 3D convolutions. We compared the performance of our TSM model with state-of-the-art methods on both Something-Something V1&V2 because these two datasets focus on temporal modeling.

Something-Something-V1. Something-Something-V1 is a challenging dataset, as activity cannot be inferred merely from individual frames (e.g., pushing something from right to left, pushing something from left to right, moving something up). An individual frame can not differ left to right and right to left. We compared the results of the proposed TSM with current state-of-the-art methods on Something-Something-V1 in Table 2. We only applied center crop during testing to ensure the efficiency.

In Table 2 we first present the 2D based methods TSN [45] and TRN [54]. TSN with different backbones fails to achieve decent performance (19.7% Top-1), due to the lack of temporal modeling. For TRN, although late temporal fusion is added after feature extraction, the performance is still significantly lower than state-of-the-art methods, showing the importance of temporal fusion across all levels.

The second section shows the state-of-the-art efficient video understanding framework ECO [56]. ECO uses an early 2D + late 3D architecture which enables medium-level temporal fusion. Compared to ECO, our method achieves better performance at a smaller FLOPs. For example, when using 8 frames as input, our TSM achieves 43.4% top-1 accuracy with 33G FLOPs, which is 2.0% higher than ECO with 1.9× less computation. The ensemble versions of ECO (ECO_{EnLite} and $ECO_{EnLiteRGB+Flow}$, using an ensemble of {16, 20, 24, 32} frames as input) did achieve competitive results, but the computation and parameters are too large for deployment, even surpassing 3D models. While our model is much more efficient: we only used {8, 16} frames model for ensemble (TSM_{En}), and the model achieves better performance using 2.7× less computation and 3.1× fewer parameters.

The third section contains previous state-of-the-art methods: Non-local 13D + GCN [47], that enables all-level temporal fusion. The GCN needs a Region Proposal Network [32] trained on MSCOCO object detection dataset [28] to generate the bounding boxes, which is unfair to compare since external data (MSCOCO) and extra training cost is introduced. Thus we compared TSM to its CNN part: Non-local 13D. Our TSM (16f) achieves 0.4% better accuracy with 5× fewer FLOPs on the validation set compared to the Non-local 13D network. Note that techniques like Non-local module [46] are orthogonal to our work, which could also be added to our framework to boost the performance further.

Generalize to Other Modalities. We also show that our proposed method can generalize to other modalities like optical flow. To extract the optical flow information between frames, we followed [45] to use the TVL1 optical flow algorithm [51] implemented in OpenCV with CUDA. We conducted two-stream experiments on both Something-Something V1 and V2 datasets, and it consistently improves over the RGB performance: introducing optical flow branch brings 5.4% and 4.6% top-1 improvement on V1 and V2 evaluation sets.

Something-Something-V2. We also show the result on Something-Something-V2 dataset, which is a newer release to its previous version, containing more videos for training. The results compared to other state-of-the-art methods are shown in Table 3. On Something-Something-V2 dataset, we achieved state-of-the-art performance when only using RGB input. Note that the RGB input result of our model is 3.9% higher than previous two-stream method, showing that our TSM model is strong at handling temporal modeling.

Cost vs. Accuracy. Our TSM model achieves very competitive performance while enjoying high efficiency and low computation cost for fast inference. We show the FLOPs for each model in Table 2. Although GCN itself is light, the method used a ResNet-50 based Region Proposal Network [32] to extract bounding boxes, whose cost is also
Table 2. Comparison of TSM against other methods on Something-Something dataset.

Model	Backbone	#Frame	FLOPs/Video	#Param.	Val Top-1	Val Top-5	Test Top-1
TSN [54]	BNInception	8	16G	10.7M	19.5	-	-
TSN (our impl.)	ResNet-50	8	33G	24.3M	19.7	46.6	-
TRN-Multiscale [53]	BNInception	8	16G	18.3M	34.4	-	33.6
TRN-Multiscale (our impl.)	ResNet-50	8	33G	31.8M	38.9	68.1	-
Two-stream TRNRGB+Flow	BNInception	8+8	-	36.6M	42.0	-	40.7

Model	Backbone	#Frame	FLOPs/Video	#Param.	Val Top-1	Val Top-5	Test Top-1
ECO [56]	BNIncep+3D Res18	8	32G	47.5M	39.6	-	-
ECO [56]	BNIncep+3D Res18	16	64G	47.5M	41.4	-	-
ECO_{EN} [56]	BNIncep+3D Res18	92	267G	150M	46.4	42.3	-
ECO_{EN} RGB+Flow	BNIncep+3D Res18	92+92	-	300M	49.5	-	43.9
I3D [47]	3D ResNet-50	32×2clip	153G¹×2	28.0M	41.6	-	40.7
Non-local I3D [47]	3D ResNet-50	32×2clip	168G¹×2	35.3M	44.4	76.0	-
Non-local I3D + GCN [47]	3D ResNet-50+GCN	32×2clip	303G²×2	62.2M	46.1	76.8	45.0

Model	Backbone	#Frame	FLOPs/Video	#Param.	Val Top-1	Val Top-5	Test Top-1
TSM	ResNet-50	8	33G	24.3M	43.4	73.2	-
TSM	ResNet-50	16	65G	24.3M	44.8	74.5	-
TSM_{EN}	ResNet-50	24	98G	48.6M	46.8	76.1	-
TSM_{RGB+Flow}	ResNet-50	16+16	-	48.6M	50.2	79.5	47.0

Table 3. Results on Something-Something-V2. Our TSM achieves comparable performance to previous state-of-the-art results using only RGB input.

Method	Val Top-1	Val Top-5	Test Top-1
TSN (our impl.)	30.0	60.5	-
MultiScale TRN [54]	48.8	77.6	50.9
2-Stream TRN [54]	55.5	83.1	56.2
TSM_{8F}	59.1	85.6	-
TSM_{16F}	59.4	86.1	60.4
TSM_{RGB+Flow}	64.0	89.1	64.3

Table 3. Results on Something-Something-V2. Our TSM achieves comparable performance to previous state-of-the-art results using only RGB input.

considered in the chart. Note that in actual deployment we need to consider the computation cost of optical flow extraction, which is usually much larger than the video recognition model itself. Therefore, we do not report the FLOPs of two-stream based methods.

We show the accuracy, FLOPs, and number of parameters trade-off in Figure 6. The accuracy is tested on the validation set of Something-Something-V1 dataset, and the number of parameters is indicated by the area of the circles. We can see that our TSM based methods have a better Pareto curve than both previous state-of-the-art efficient models (ECO based models) and high-performance models (non-local I3D based models). TSM models are both efficient and accurate. It can achieve state-of-the-art accuracy at high efficiency: it achieves better performance while consuming 3× less computation than the ECO family and 6× less computation than the Non-local I3D family. The model size is

1 We reported the performance of NL I3D described in [47], which is a variant of the original NL I3D [46]. It uses fewer temporal dimension pooling to achieve good performance, but also incurs larger computation.

2 Includes parameters and FLOPs of the Region Proposal Network.

considered in the chart. Note that in actual deployment we need to consider the computation cost of optical flow extraction, which is usually much larger than the video recognition model itself. Therefore, we do not report the FLOPs of two-stream based methods.

We show the accuracy, FLOPs, and number of parameters trade-off in Figure 6. The accuracy is tested on the validation set of Something-Something-V1 dataset, and the number of parameters is indicated by the area of the circles. We can see that our TSM based methods have a better Pareto curve than both previous state-of-the-art efficient models (ECO based models) and high-performance models (non-local I3D based models). TSM models are both efficient and accurate. It can achieve state-of-the-art accuracy at high efficiency: it achieves better performance while consuming 3× less computation than the ECO family and 6× less computation than the Non-local I3D family. The model size is

1 We reported the performance of NL I3D described in [47], which is a variant of the original NL I3D [46]. It uses fewer temporal dimension pooling to achieve good performance, but also incurs larger computation.

2 Includes parameters and FLOPs of the Region Proposal Network.

considered in the chart. Note that in actual deployment we need to consider the computation cost of optical flow extraction, which is usually much larger than the video recognition model itself. Therefore, we do not report the FLOPs of two-stream based methods.

We show the accuracy, FLOPs, and number of parameters trade-off in Figure 6. The accuracy is tested on the validation set of Something-Something-V1 dataset, and the number of parameters is indicated by the area of the circles. We can see that our TSM based methods have a better Pareto curve than both previous state-of-the-art efficient models (ECO based models) and high-performance models (non-local I3D based models). TSM models are both efficient and accurate. It can achieve state-of-the-art accuracy at high efficiency: it achieves better performance while consuming 3× less computation than the ECO family and 6× less computation than the Non-local I3D family. The model size is

1 We reported the performance of NL I3D described in [47], which is a variant of the original NL I3D [46]. It uses fewer temporal dimension pooling to achieve good performance, but also incurs larger computation.

2 Includes parameters and FLOPs of the Region Proposal Network.

also 3× smaller than ensemble ECO. Considering that ECO is already an efficiency-oriented design, our method enjoys highly competitive hardware efficiency.

5.4. Latency and Throughput Speedup

The measured inference latency and throughput are important for the large-scale deployment of video understanding algorithms. Our method has not only low FLOPs but also low latency and high throughput. We performed measurement on a single NVIDIA Tesla P100 GPU. We excluded the data loading time for fair comparison. To measure the latency, we used a batch size of 1. To measure the throughput, we used a batch size of 16. We made two comparisons:

1. Compared with the popular I3D algorithm, our method achieved 9.5× lower latency (17.4ms vs. 165.3ms),
12× higher throughput (77 videos per second vs. 6 videos per second), at 1.8% higher accuracy (Table 4). We also compared our method to the state-of-the-art efficient model ECO [56]: Our TSM model has 1.75× lower latency (17.4ms vs. 30.6ms), 1.7× higher throughput, and achieves 2% better accuracy. ECO has an expensive two-branch (2D+3D) architecture, while our method only needs the inexpensive 2D backbone.

We also compared our algorithm to efficient 3D model design that uses a decomposed temporal 1D convolution [49, 31, 43], i.e., decomposing spatio-temporal 3D convolution into spatial 2D convolution and temporal 1D convolution. However, inserting temporal 1D convolution suffers from a large overhead (Table 4, row Temporal-1D). It incurs 2.6× longer latency with only 26% the throughput compared to TSM, with worse accuracy. Another way is to inflate the first 1 × 1 convolution in each of the block [46], denoted as "I3D3×1×1" in the table. However, it suffers from 1.5× higher latency and only 55% the throughput compared with TSM, with worse accuracy. We speculate the reason is that TSM model only uses 2D convolution which is highly optimized for hardware.

5.5. Online Recognition with TSM

Online vs. Offline Online TSM models shift the feature maps uni-directionally so that it can give predictions in real time. We compare the performance of offline and online TSM models to show that online TSM can provide online prediction with comparable accuracy compared with offline TSM. Follow [56], we use the prediction averaged from all the frames to compare with offline models, i.e., we compare the performance after observing the whole videos. The performance comparison is provided in Table 5. We can see that for less temporal related datasets like Kinetics, UCF101 and HMDB51, the online models achieve comparable and sometimes even better performance compared to the offline models. While for more temporal related datasets Something-Something, online model performs worse than offline model by 1.2%. Nevertheless, the performance of online model is still significantly better than the 2D baseline.

We also compare the per-frame prediction latency of pure 2D backbone (TSN) and our online TSM model. Our online TSN model only adds to 0.6ms latency overhead per frame, while bringing considerable performance gain. Therefore, we believe that our online TSM module is friendly for real-time deployment and latency-critical applications.

Early Recognition Early recognition aims to classify the video while only observing a small portion of the frames. It gives fast response to the input video stream, which is very useful in real-time applications that is latency critical. Here we compare the early video recognition performance on UCF101 dataset (Figure 7). Compared to different ECO models, TSM can give much higher accuracy, especially when only observing a small portion of the frames. For example, when only observing the first 10% of video frames, TSM model can achieve 90% accuracy, which is 6.6% higher than the best ECO model and practical for real-time applications.

6. Conclusion

In this paper, we proposed a Temporal Shift module that can be inserted into 2D CNN backbone to enable joint spatial-temporal modeling at no additional cost. The module shifts part of the channels along temporal dimension bi-directionally to exchange information with neighboring frames. Our framework is both efficient and accurate for video recognition. On Something-Something-V1 dataset we achieved better results than I3D family and ECO family using 6× and 2.7× fewer FLOPs respectively.
Acknowledgments We thank MIT Quest for Intelligence, MIT-IBM Watson AI Lab, Samsung, SenseTime and Google Cloud for supporting this research.

References

[1] The 20bn-jester dataset v1. https://20bn.com/datasets/jester. 5, 6

[2] H. Bilal, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould. Dynamic image networks for action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3034–3042, 2016. 2

[3] H. Cai, L. Zhu, and S. Han. ProxylessNAS: Direct neural architecture search on target task and hardware. In International Conference on Learning Representations, 2019. 3

[4] J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 4724–4733. IEEE, 2017. 1, 2, 5

[5] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014. 4

[6] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2625–2634, 2015. 1, 2

[7] C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal residual networks for video action recognition. In Advances in neural information processing systems, pages 3468–3476, 2016. 2

[8] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional two-stream network fusion for video action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1933–1941, 2016. 1, 2

[9] C. Gan, C. Sun, L. Duan, and B. Gong. Webly-supervised video recognition by mutually voting for relevant web images and web video frames. In European Conference on Computer Vision, pages 849–866. Springer, 2016. 2

[10] C. Gan, N. Wang, Y. Yang, D.-Y. Yeung, and A. G. Hauptmann. Devnet: A deep event network for multimedia event detection and evidence recounting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2568–2577, 2015. 2

[11] C. Gan, T. Yao, K. Yang, Y. Yang, and T. Mei. You lead, we exceed: Labor-free video concept learning by jointly exploiting web videos and images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 923–932, 2016. 2

[12] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell. Actionvlad: Learning spatio-temporal aggregation for action classification. In CVPR, volume 2, page 3, 2017. 1, 2

[13] R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska, S. Westphal, H. Kim, V. Haenel, J. Fruend, P. Yianilos, M. Mueller-Freitag, et al. The something something video database for learning and evaluating visual common sense. In The IEEE International Conference on Computer Vision (ICCV), volume 1, page 3, 2017. 5, 6, 7

[14] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. International Conference on Learning Representations, 2016. 3

[15] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural network. In Advances in neural information processing systems, pages 1135–1143, 2015. 3

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. 4

[17] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc: Automl for model compression and acceleration on mobile devices. In Proceedings of the European Conference on Computer Vision (ECCV), pages 784–800, 2018. 3

[18] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997. 2

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam. Mobilennets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. 3

[20] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer. SqueezeNet: Alexnet-level accuracy with 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016. 3

[21] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015. 5

[22] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 1725–1732, 2014. 1, 2

[23] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al. The kinetics human action video dataset. arXiv preprint arXiv:1705.06950, 2017. 4, 5

[24] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: a large video database for human motion recognition. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 2556–2563. IEEE, 2011. 5

[25] M. Lee, S. Lee, S. Son, G. Park, and N. Kwak. Motion feature network: Fixed motion filter for action recognition. In Proceedings of the European Conference on Computer Vision (ECCV), pages 387–403, 2018. 2

[26] Z. Li, K. Gavriyuk, E. Gavves, M. Jain, and C. G. Snoek. Vosltstm convolves, attends and flows for action recognition. Computer Vision and Image Understanding, 166:41–50, 2018. 3

[27] J. Lin, Y. Rao, J. Lu, and J. Zhou. Runtime neural pruning. In Advances in Neural Information Processing Systems, pages 2181–2191, 2017. 3

[28] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common
objects in context. In *European conference on computer vision*, pages 740–755. Springer, 2014. 6

[29] C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy. Progressive neural architecture search. *arXiv preprint arXiv:1712.00559*, 2017. 3

[30] X. Long, C. Gan, G. de Melo, J. Wu, X. Liu, and S. Wen. Attention clusters: Purely attention based local feature integration for video classification. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 7834–7843, 2018. 3

[31] Z. Qiu, T. Yao, and T. Mei. Learning spatio-temporal representation with pseudo-3d residual networks. In *2017 IEEE International Conference on Computer Vision (ICCV)*, pages 5534–5542. IEEE, 2017. 2, 8

[32] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In *Advances in neural information processing systems*, pages 91–99, 2015. 6

[33] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 4510–4520, 2018. 3

[34] S. Sharma, R. Kiros, and R. Salakhutdinov. Action recognition using visual attention. *arXiv preprint arXiv:1511.04119*, 2015. 3

[35] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta. Hollywood in homes: Crowdsourcing data collection for activity understanding. In *European Conference on Computer Vision*, pages 510–526. Springer, 2016. 5

[36] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In *Advances in neural information processing systems*, pages 568–576, 2014. 1, 2

[37] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actions classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012. 5

[38] N. Srivastava, E. Mansimov, and R. Salakhudinov. Unsupervised learning of video representations using lstms. In *International conference on machine learning*, pages 843–852, 2015. 2

[39] L. Sun, K. Jia, D.-Y. Yeung, and B. E. Shi. Human action recognition using factorized spatio-temporal convolutional networks. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 4597–4605, 2015. 2

[40] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 1–9, 2015. 2

[41] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le. Mnasnet: Platform-aware neural architecture search for mobile. *arXiv preprint arXiv:1807.11626*, 2018. 3

[42] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3d convolutional networks. In *Proceedings of the IEEE international conference on computer vision*, pages 4489–4497, 2015. 1, 2

[43] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri. A closer look at spatiotemporal convolutions for action recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 6450–6459, 2018. 1, 2, 8

[44] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han. Haq: Hardware-aware automated quantization. *arXiv preprint arXiv:1811.08886*, 2018. 3

[45] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool. Temporal segment networks: Towards good practices for deep action recognition. In *European Conference on Computer Vision*, pages 20–36. Springer, 2016. 1, 2, 5, 6

[46] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. *arXiv preprint arXiv:1711.07971*, 10, 2017. 1, 2, 5, 6, 7, 8

[47] X. Wang and A. Gupta. Videos as space-time region graphs. *arXiv preprint arXiv:1806.01810*, 2018. 2, 5, 6, 7, 8

[48] B. Wu, A. Wan, X. Yue, P. Jin, S. Zhao, N. Golmant, A. Gholamnejad, J. Gonzalez, and K. Keutzer. Shift: A zero flop, zero parameter alternative to spatial convolutions. *arXiv preprint arXiv:1711.08141*, 2017. 2, 3

[49] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy. Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video classification. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 305–321, 2018. 1, 2, 5, 8

[50] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. Beyond short snippets: Deep networks for video classification. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 4694–4702, 2015. 2

[51] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime tv-1 optical flow. In *Joint Pattern Recognition Symposium*, pages 214–223. Springer, 2007. 2, 6

[52] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient convolutional neural network for mobile devices. *CoRR*, abs/1707.01083, 2017. 3

[53] H. Zhong, X. Liu, Y. He, Y. Ma, and K. Kitani. Shift-based primitives for efficient convolutional neural networks. *arXiv preprint arXiv:1809.08458*, 2018. 3

[54] B. Zhou, A. Andonian, and A. Torralba. Temporal relational reasoning in videos. *arXiv preprint arXiv:1711.08496*, 2017. 1, 2, 3, 5, 6, 7

[55] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable image recognition. *arXiv preprint arXiv:1707.07012*, 2(6), 2017. 3