Multiplicative Noise Induces Zero Critical Frequency

I. Peleg and E. Barkai

Department of Physics, Bar Ilan University, Ramat-Gan 52900, Israel

Stochastic Bloch equations which model the fluorescence of two level molecules and atoms, NMR experiments and Josephson junctions are investigated to illustrate the profound effect of multiplicative noise on the critical frequency of a dynamical system. Using exact solutions and the cumulant expansion we find two main effects: (i) even very weak noise may double or triple the number of critical frequencies, which is related to an instability of the system and (ii) strong multiplicative noise may induce a non-trivial zero critical frequency thus wiping out the over-damped phase.

PACS numbers: 02.50.-r, 05.40.-a

Many dissipative deterministic dynamical systems exhibit two phases of motion: an under-damped oscillatory behavior or an over-damped non-oscillatory motion. The transition between these common behaviors defines the critical frequency of the system, e.g. the critical frequency of the damped harmonic oscillator. Multiplicative noise is known to influence deterministic systems, in profound and surprising ways [1, 2, 3, 4, 5, 6, 7, 8]. Here we show how a stochastic perturbation induces a zero critical frequency for a particular non-trivial choice of noise strength, thus completely wiping out the overdamped phase. This might be counter intuitive at first glance, since we expect noise to work against oscillations, however as we soon demonstrate, in some cases the opposite situation is found. The second interesting result we obtain is that even weak multiplicative noise may induce a doubling or a tripling of the number of critical frequencies of a system (in a way defined later) a result which is related to an instability of the noiseless dynamical system. Our results show how multiplicative noise may influence the critical frequency of a system in profound ways.

We investigate the dynamics of the stochastic Bloch equation. The Bloch equation finds its applications, in many fields of Physics ranging from Nuclear Magnetic Resonance (NMR) [9, 10] to single molecule spectroscopy [11, 12] and Josephson’s junctions [13]. We use the example of the optical Bloch equation, however with minor modifications we may consider other systems e.g. magnetic systems. In particular we consider a two level electronic transition of an atom or a molecule, interacting with a continuous wave laser and a stochastic bath. The optical Bloch equation for \(\vec{Z}(t) = (u, v, w, y) \), where \((u, v, w)\) describes the usual Bloch vector, is

\[
\frac{d}{dt} \vec{Z}(t) = M(t) \vec{Z}(t)
\]

\[
M(t) = \begin{pmatrix}
-\frac{\Gamma}{2} & \delta_L(t) & 0 & 0 \\
-\delta_L(t) & -\frac{\Gamma}{2} & -\Omega & 0 \\
0 & \Omega & -\Gamma & -\Gamma \\
0 & 0 & 0 & 0
\end{pmatrix}.
\] (1)

The initial condition is \(\vec{Z}(0) = (0, 0, -1/2, 1/2) \) describing a system in the ground state and \(y = 1/2 \) for all times. Here \(\Gamma \) is the radiative emission rate and \(\Omega \) is the Rabi frequency describing the interaction of the transition dipole of the system with the laser field (within rotating wave approximation). The stochastic detuning \(\delta_L(t) = \omega_L - (\omega_0 + \nu(t)) \) describes the interaction of the system with the bath in the spirit of the Kubo-Anderson line shape theory [11, 14, 15], namely \(\delta_L(t) \) is a stochastic process describing spectral diffusion. \(\omega_L \) is the laser frequency and \(\omega_0 \) is the absorption frequency of the two level system. Spectral diffusion is found in many molecular, atomic and magnetic systems and is well investigated [11, 16]. The noise is called multiplicative since in Eq. (1) the spectral diffusion process multiplies the vector \(\vec{Z} \). Beyond spectral diffusion the equations describe a two level system in the process of resonance fluorescence, where the laser frequency exhibits fluctuations, namely the detuning is a random function of time.

For the noiseless case \(\nu(t) = 0 \) and for zero laser detuning \(\omega_L = \omega_0 \) we have a simple damped harmonic oscillator for \(w \)

\[
\ddot{w} + \left(\frac{3\Gamma}{2} \right) \dot{w} + \left(\Omega^2 + \frac{\Gamma^2}{2} \right) w + \left(\frac{\Gamma^2}{4} \right) = 0. \quad (2)
\]

When \(\Omega \) is larger than the critical frequency \(\Omega_c = \Gamma/4 \) the system exhibits under-damped Rabi oscillations while when \(\Omega < \Omega_c \) it decays to the steady state monotonically. The critical frequency provides the quickest approach of the amplitude of the damped harmonic oscillator to zero.

Now we consider the system in the presence of the spectral noise and investigate the average behavior \(\langle w \rangle \). What will happen to the critical frequency of the system? and can we choose parameters of the noise in such a way that the critical frequency of the noisy system is zero?

The formal solution of the problem is given in terms of the time ordered exponential

\[
\langle \vec{Z}(t) \rangle = \left\langle T \left\{ \exp \left(\int_0^t M(\tau) d\tau \right) \right\} \right\rangle \vec{Z}(0). \quad (3)
\]

In practice it is generally difficult to find explicit solutions due to the combination of the time ordering operator \(T \).
and the average over the multiplicative stochastic process denoted with $\langle \cdots \rangle$ in Eq. 8. Here we find an exact solution for a dichotomic two state Kubo-Anderson process. With this solution we will explore whether the motion is over-damped or under-damped. We later show that our findings are general beyond the exactly solvable two state process. In particular we consider $\nu(t) = \nu h(t)$, where $h(t) = +1$ or $h(t) = -1$ describes the stochastic two state process with a rate R for transitions between $+1$ and -1. Such a model is applicable in single molecule spectroscopy in glasses [12, 17, 18] and was used extensively for the line shape theory of Kubo and Anderson.

We use Burshtein’s method [19] of marginal averages to solve the Kubo-Anderson process with zero laser detuning $\omega_L = \omega_0$. We define the marginal average vector $(\langle \vec{Z}(t) \rangle_+, \langle \vec{Z}(t) \rangle_-)$ which is the average of $\vec{Z}(t)$ given that at time t the stochastic process had the value ± 1 correspondingly. The equation of motion for the marginal average vector is

$$\frac{\partial}{\partial t} \begin{pmatrix} \langle \vec{Z} \rangle_+ \\ \langle \vec{Z} \rangle_- \end{pmatrix} = \begin{pmatrix} A^+_0 & RI \\ RI & A^-_0 - RI \end{pmatrix} \begin{pmatrix} \langle \vec{Z} \rangle_+ \\ \langle \vec{Z} \rangle_- \end{pmatrix}$$

The operators A^+_0 and A^-_0 are Bloch matrices corresponding to the state of the spectral diffusion $\delta_L = +\nu$ or $\delta_L = -\nu$ respectively. To solve the problem we must diagonalize the 8×8 matrix in Eq. 8. Then complex eigenvalues yield under-damped oscillatory modes while real eigenvalues correspond to over-damped modes. The eigenvalues $\{\lambda\}$ are found using the characteristic polynomial of Eq. 8

$$\lambda(\lambda + 2R)P_1(\lambda)P_2(\lambda) = 0, \quad (6)$$

where two cubic polynomials are defined as

$$P_1(\lambda) = (8\Omega^2 + 4(\Gamma + \lambda)(\Gamma + 2\lambda)) R^+ + 2(\Gamma + 2\lambda)\Omega^2 + (\Gamma + \lambda)((\Gamma + 2\lambda)^2 + 4\nu^2)$$

$$P_2(\lambda) = 8(\Gamma + 2\lambda)R^2 + +2(4\nu^2 + (\Gamma + 2\lambda)(3\Gamma + 4\lambda)) R^+ + 2(\Gamma + 2\lambda)\Omega^2 + (\Gamma + \lambda)((\Gamma + 2\lambda)^2 + 4\nu^2).$$

We have thus reduced the problem to finding the roots of two third order polynomials $P_1(\lambda) = 0$ and $P_2(\lambda) = 0$. After some algebra one can show that only the roots of $P_1(\lambda)$ enter the solution of $\langle \vec{Z} \rangle_+ = (\langle \vec{Z} \rangle_+ + (\langle \vec{Z} \rangle_-)$ as well as the eigenvalue $\lambda = 0$ [see Eq. 8] which yields the steady state solution [20].

A physical observable is the intensity of emitted light $\langle \mathcal{I}(t) \rangle$ which is equal to Γ times the population in the excited state $\langle \mathcal{I}(t) \rangle \equiv \Gamma (\langle \nu \rangle + \frac{1}{2})$. The eigenvalues $\{\lambda_1, \lambda_2, \lambda_3\}$ are the solutions of $P_1(\lambda) = 0$ and the intensity is

$$\langle \mathcal{I}(t) \rangle = \langle \mathcal{I} \rangle - \sum_{i=1}^3 e^{\lambda_i t} \frac{\Gamma(\lambda_i + \lambda_0)(4\Gamma \Gamma_{SD} + (\Gamma + 2\lambda_0)(4R + \Gamma + 2\lambda_0))}{2\lambda_0(6\lambda_0^2 + 12\Gamma R + 4\lambda_0^2 + 4\Gamma \Gamma_{SD} + 4\lambda_0(4R + \Gamma + 3\lambda_0))}$$

with $\Gamma_{SD} \equiv \nu^2 / R$. The steady state solution is

$$\mathcal{I}_{ss} = \frac{\Gamma (4R + \Gamma)\Omega^2}{(4R + \Gamma)(\Gamma^2 + 2\Omega^2) + 4R\Gamma \Gamma_{SD}}.$$ (9)

This expression when $\Omega \rightarrow 0$ is the well known Kubo-Anderson line shape at zero laser detuning.

We now focus our attention on the eigenvalues $\{\lambda_i\}$ to determine whether the solution is over-damped or under-damped. The motion is called over-damped if all eigenvalues $\{\lambda_i\}$ are real otherwise it is under-damped. The condition for over-damped behavior is that the discriminant D of $P_1(\lambda)$ be less than zero, explicitly we have

$$A^+_0 = \begin{pmatrix} -\frac{\Gamma}{2} & -\nu & 0 & 0 \\ -\nu & -\frac{\Gamma}{2} & -\Omega & 0 \\ 0 & \Omega & -\Gamma & -\Gamma \\ 0 & 0 & 0 & 0 \end{pmatrix}$$ (5)
Recall that for the noiseless case we have a single critical frequency $\Omega_c = \Gamma/4$. As shown in Fig. 1 in the presence of multiplicative noise the phase diagram of the motion is very rich:

(i) In the slow modulation $\nu \gg R$ strong coupling $\nu/\Gamma \gg 1$ regime, the solutions are always oscillatory and the critical frequency is 0 (indicated by 0 in Fig. 1). (ii) When $\nu \approx R$ we obtain over-damped motion when $\Omega_{C_1} < \Omega < \Omega_{C_2}$ so we have two critical frequencies (indicated by 2 in Fig. 1). (iii) In the fast modulation $R > \nu$ strong coupling $\nu/\Gamma > 1$ limit, we find a single critical frequency similar to the noiseless case, except for a surprising line on which $\Omega_C = 0$ (denoted with 0 in Fig. 1). (iv) In the weak noise limit $\nu \ll \Gamma$, the solution yields either 2 or 3 critical frequencies (see Fig. 1). Thus weak noise modifies the solution dramatically by doubling or tripling the number of critical frequencies of the system.

To understand better the phase diagram Fig. 1 we present in Fig. 2 the behavior of the solution of the optical Bloch equation in the absence of the multiplicative noise i.e. $\nu = 0$. The figure is a phase diagram in the Rabi frequency Ω/Γ and detuning $(\omega_L - \omega)/\Gamma$ plane showing the regions of over-damped and under-damped behavior. Fig. 2 illustrates that the noiseless system is unstable in the sense that for any small detuning and low enough Rabi frequency we get an oscillatory behavior while for zero detuning the solution is over-damped. This instability of the noiseless solution explains why even adding a weak perturbation $\nu \ll \Gamma$ strongly affects the system. Namely, for weak noise (Fig. 1) we find either 2 or 3 critical frequencies instead of 1 for the noiseless case.

As mentioned before for slow modulation $\nu > R$ and strong coupling $\nu \gg \Gamma$ the motion is always under-damped. To understand this behavior we again refer to the noiseless case presented in Fig. 2 where we observe that large detuning means an oscillatory solution. Namely oscillations for the noise free Bloch equation are induced by two mechanisms, the Rabi frequency and the detuning. Hence it is not surprising that strong and slow noise in Fig. 1 (i.e. $\nu > R, \Gamma$) may induce oscillations and the wipe out of the over-damped motion.

Far less trivial is the wipe out of over-damped motion in the fast modulation limit, i.e. the line of zero critical frequency in Fig. 1. To investigate this behavior we consider the limit $R \rightarrow \infty$. Then using Eq. (10) we find

$$
D = -16384 \left(\left(\frac{\Gamma - \Gamma_{SD}}{4} \right)^2 - \Omega^2 \right) R^4 + 512 \left(\Gamma^3 - 8\Omega^2 \left(2\Gamma + 5\Gamma_{SD} \right) + \Gamma_{SD} \left(\Gamma^2 + 2\Gamma_{SD} \left(\Gamma_{SD} - 2\Gamma \right) \right) \right) R^3 \\
+ 64 \left(128\Omega^4 + 8 \left(\Gamma^2 + 19\Gamma_{SD} + 6\Gamma_{SD}^2 \right) \Omega^2 - \Gamma \left(\Gamma^2 + 8 \left(\Gamma - \Gamma_{SD} \right) \Gamma_{SD} \right) \right) R^2 \\
+ 64 \left(\Gamma_{SD} \Gamma^2 + 2\Omega^2 \left(\Gamma - 10\Gamma_{SD} \right) \Gamma^2 + 16\Omega^4 \left(3\Gamma_{SD} - 2\Gamma \right) \right) R - 1024\Omega^4 \left(\left(\frac{\Gamma}{4} \right)^2 - \Omega^2 \right) < 0.
$$

FIG. 2: Phase diagram of the optical Bloch equation in the absence of the multiplicative noise. The darker area is the over-damped phase. For zero detuning $\omega_L - \omega_0 = 0$ the critical frequency is $\Omega_C = \Gamma/4$. Notice the cusp at zero detuning which makes the solutions unstable to multiplicative noise.

the critical frequency

$$
\lim_{\nu, R \rightarrow \infty} \Omega_C = \left| \frac{\Gamma - \Gamma_{SD}}{4} \right|.
$$

where the limit is taken with Γ_{SD} remaining finite. We see that $\Omega_c = 0$ when $\Gamma_{SD} = \Gamma$, namely when $\nu/\Gamma = \sqrt{R/\Gamma}$. This line is shown in Fig. 1 as a dashed line.

Expanding the exact solution in Γ_{SD}, one can show that for $R > \Gamma/8$ any amount of noise will lead to a decrease of Ω_c according to

$$
\Omega_C = \frac{\Gamma}{4} - \frac{2\Gamma_{SD}}{8}\frac{\Gamma}{R} + O \left(\frac{\Gamma_{SD}^2}{R} \right),
$$

where the leading $\Gamma/4$ term describes the noiseless case. The decrease of Ω_c is explained by the fact that the noise removes the system from zero detuning and hence solutions tend to be more oscillatory (i.e. the critical frequency is reduced). The surprising result is that by increasing the noise level we reach a limit where the critical frequency is zero. Such a behavior in the fast modulation limit could not be anticipated without our mathematical analysis. The behavior of Ω_c is illustrated in Fig. 3 which shows the decrease of the critical frequency until it reaches the value $\Omega_c = 0$.

It is natural to ask if the behavior we found is general or limited to the example of a two state process. For this
aim we have used the cumulant expansion [21], to investigate the critical frequency Ω_c of the system. We consider a stationary process $h(t)$ whose correlation function is $\langle h(t)h(t + \tau) \rangle = \exp(-\nu \tau)$. The cumulant expansion works well when the Kubo number ν/R is small. Within this approximation [21]

$$\frac{\partial \langle \vec{Z} \rangle}{\partial t} = (A_0 + \nu^2 K) \langle \vec{Z} \rangle$$ \hspace{1cm} (13)

where $A_0 = A_0^\pm|_{\nu=0}$ and

$$K = \int_0^\infty e^{-R\tau} A_1 e^{A_0 \tau} A_1 e^{-A_0 \tau} d\tau$$ \hspace{1cm} (14)

with $A_1 = \begin{pmatrix} \sigma & 0 \\ 0 & 0 \end{pmatrix}$ and $\sigma = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Solving the integrals leads to cumbersome equations for Ω_c. However in the limit $R \to \infty$ and $\nu \to \infty$ in such a way that $\Gamma_{SD} = \nu^2/R$ remains constant we find that Eq. (11) is valid and therefore the equation is not limited to the two state Kubo-Andersen model. This means that for a large class of stochastic processes, multiplicative noise induces zero critical frequency in the fast modulation limit and the curve $\nu/\Gamma = \sqrt{R/\Gamma}$, on which $\Omega_c = 0$ shown in Fig. 1(a), is a general behavior.

To further validate the generality of our results we have solved semi-analytically and with the help of Mathematica: (i) two state model with two non identical rates describing the transitions between up and down states, and (ii) models with three states. These models show behaviors similar to our findings.

The same effects cannot be found for linear systems driven by additive noise with zero mean, since the averaged equations have the same critical frequency as the noiseless case. Hence for linear systems the effects we have found are limited to systems with multiplicative noise. However nonlinear systems with additive noise may exhibit behaviors identical to those investigated in this manuscript. To see this we add a coordinate δ to the description of the system thus Eq. (1) is written as:

$$\frac{\partial \langle \vec{Z} \rangle}{\partial t} = \begin{pmatrix} 0 & 0 \\ 0 & M(\delta) \end{pmatrix} \langle \vec{Z} \rangle + \langle \xi(t) \rangle$$ \hspace{1cm} (15)

This equation is a non linear stochastic equation with additive noise (i.e. $\xi(t)$ in Eq. (15)) which is equivalent to the multiplicative Eq. (1). We see that the two main effects found in this manuscript: (a) noise inducing zero critical frequency and (b) the doubling or the tripling of the number of critical frequencies, even for weak noise, may be found either in linear multiplicative systems or non linear additive systems. Thus we expect the main features of our results to be valid for a vast class of stochastic dynamical systems.

Acknowledgment This work was supported by the Israel Science Foundation.

[1] M. Gitterman, The Noisy Oscillator, The First Hundred Years From Einstein until Now, (World Scientific Publishing, Singapore, 2005), Chap. 10.
[2] K. Lindenberg, and V. Seshadri Physica A 109 483 (1981). V. Seshadri, and K. Lindenberg Physica A 115 501 (1982).
[3] C. Van den Broeck, J. M. R. Parrondo and R. Toral, Phys. Rev. Lett. 73, 3395 - 3398 (1994).
[4] L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, and S. Santucci, Phys. Rev. E 49, 4878 - 4881 (1994).
[5] D. Sornette, Phys. Rev. E 57, 4811 - 4813 (1998).
[6] V. Berdichevsky and M. Gitterman, Phys. Rev. E 60, 1494 - 1499 (1999).
[7] M. Gitterman, Phys. Rev. E, 69, 041101 (2004).
[8] T. S. Biró and A. Jakovíc, Phys. Rev. Lett. 94, 132302 (2005).
[9] P. W. Anderson, J. Phys. Soc. Jpn. 9, 316-319 (1954).
[10] In NMR but also for optical systems additional relaxations described by T_1 and T_2 may be included in the theory Eq. (1), however we will focus on the simplest case here.
[11] E. Barkai, Y. Jung and R. Silbey, Annual Review of Physical Chemistry 55, 457 (2004).
[12] Y. He and E. Barkai, Phys. Rev. Lett. 93, 068302 (2004).
[13] H. Xu et al, Phys. Rev. B. 71, 064512 (2005)
[14] Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001 (2006).
[15] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics 2 (Springer, Berlin, 1995). New-York, 1992.)
[16] F. Sada and S. Mukamel Phys. Rev. Lett. 98 080603 (2007).
[17] E. Geva and J. L. Skinner, J. Phys. Chem. B 101, 8920 (1997)
[18] E. Barkai, A. V. Naumov, Yu. G. Vainer, M. Bauer, and L. Kador, Phys. Rev. Lett. 91, 075502 (2003).
[19] A.I. Burshtein, Sov. Phys. JETP 22 937 (1966)
[20] Note that the roots of $P_2(\lambda) = 0$ enter in the solutions of $\langle \vec{Z} \rangle_+ - \langle \vec{Z} \rangle_-$.

[21] N. G. Van Kampen, *Stochastic Process in Physics and Chemistry*, (North-Holland, Amsterdam, 1981).