ON CERTAIN CUNTZ-PIMSNER ALGEBRAS

ALEX KUMJIAN

Abstract. Let A be a separable unital C*-algebra and let $\pi : A \to L(H)$ be a faithful representation of A on a separable Hilbert space H such that $\pi(A) \cap K(H) = \{0\}$. We show that O_E, the Cuntz-Pimsner algebra associated to the Hilbert A-bimodule $E = \mathcal{H} \otimes \mathbb{C}A$, is simple and purely infinite. If A is nuclear and belongs to the bootstrap class to which the UCT applies, then the same applies to O_E. Hence by the Kirchberg-Phillips Theorem the isomorphism class of O_E only depends on the K-theory of A and the class of the unit.

In his seminal paper [Pm], Pimsner constructed a C*-algebra O_E from a Hilbert bimodule over a C*-algebra A as a quotient of a concrete C*-algebra T_E, an analogue of the Toeplitz algebra, acting on the Fock space associated to E. There has recently been much interest in these Cuntz-Pimsner algebras (or Cuntz-Krieger-Pimsner algebras), which generalize both crossed products by \mathbb{Z} and Cuntz-Krieger algebras, as well as the associated Toeplitz algebras. The structure of these C*-algebras is not yet fully understood, although considerable progress has been made. For example, Pimsner found a six-term exact sequence for the K-theory of O_E which generalizes the Pimsner-Voiculescu exact sequence (see [Pm, Theorem 4.8]); conditions for simplicity were found in [Sc2, MS, KPW1, DPW] and for pure infiniteness in [Z].

The purpose of the present note is to analyze the structure of Cuntz-Pimsner algebras associated to a certain class of Hilbert bimodules. Let A be a separable unital C*-algebra and let $\pi : A \to L(H)$ be a faithful representation of A on a separable Hilbert space H such that $\pi(A) \cap K(H) = \{0\}$. Then $E = \mathcal{H} \otimes \mathbb{C}A$ is a Hilbert bimodule over A in a natural way. We show that O_E is separable, simple and purely infinite. If A is nuclear and in the bootstrap class, then the same holds for O_E and thus by the Kirchberg-Phillips theorem the isomorphism class of O_E is completely determined by the K-theory of A together with the class of the unit (since O_E is KK-equivalent to A).

Many examples of Cuntz-Pimsner algebras found in the literature arise from Hilbert bimodules which are finitely generated and projective; in such cases the left action must consist entirely of compact operators. Our examples do not fall in this class; in fact, the left action has trivial intersection with the compacts. And this has some interesting consequences: $O_E \cong T_E$ (see [Pm, Corollary 3.14]) and the natural embedding $A \hookrightarrow O_E$ induces a KK-equivalence (see [Pm, Corollary 4.5]).

In §1 we review some basic facts concerning the construction of T_E as operators on the Fock space of E and the gauge action $\lambda : \mathbb{T} \to \text{Aut}(T_E)$. We assume that the left action of A does not meet the compacts $K(E)$ and identify O_E with T_E. The fixed point algebra F_E, the analogue of the AF-core of a Cuntz-Krieger algebra, contains a canonical descending sequence of essential ideals indexed by \mathbb{N} with trivial intersection. The crossed product $O_E \rtimes \lambda \mathbb{T}$ has a similar collection of essential ideals indexed by \mathbb{Z} on which the dual group of automorphisms acts in a natural way. By Takesaki-Takai duality

$$O_E \otimes K(L^2(\mathbb{T})) \cong (O_E \rtimes \lambda \mathbb{T}) \rtimes \lambda \mathbb{Z};$$
hence, much of the structure of O_E is revealed through an analysis of the double crossed product. In §3 we show that if E is the Hilbert bimodule over A associated to a representation as described above, then for every nonzero positive element $d \in O_E$ there is a $z \in O_E$ so that $z^* dz = 1$; it follows that O_E is simple and purely infinite (see Theorem 2.3). The proof of this proceeds through a sequence of lemmas and is patterned on the proof of [Rø, Theorem 2.1], which is in turn based on a key lemma of Kishimoto (see [Ks, Lemma 3.2]). Our argument uses the version of this lemma found in [OP3, Lemma 7.1] and this requires that we show that the Connes spectrum of the dual action is full (this is also an ingredient in the proof of simplicity found in [DPW]). We invoke a version of a key lemma of Rørdam for crossed products by \mathbb{Z} which arise from automorphisms with full Connes spectrum. The fact that O_E embeds equivariantly into $(O_E \rtimes_A \mathbb{T}) \rtimes_{\chi} \mathbb{Z}$ allows us to apply this lemma to O_E. In §4 we use the Kirchberg-Phillips theorem to collect some consequences of this theorem as indicated above and discuss certain connections with reduced (amalgamated) free products.

We fix some notation and terminology. Given a C*-algebra B we let \hat{B} denote its spectrum, that is, the collection of irreducible representations modulo unitary equivalence endowed with the Jacobson topology (see [Pd, §4.1]). If I is an ideal in a C*-algebra B, then every irreducible representation of I extends uniquely to an irreducible representation of B. This allows one to identify \hat{I} with an open subset of \hat{B}, the complement of which consists of the classes of irreducible representations which vanish on I. Given a *-automorphism β of a C*-algebra B, let $\Gamma(\beta)$ denote the Connes spectrum of β (see [O, Co] or [Pd, §8.8]): recall that

$$\Gamma(\beta) = \bigcap_H \text{Sp}(\beta|_H)$$

where the intersection is taken over all β-invariant hereditary subalgebras H. A C*-algebra is said to be purely infinite if every hereditary subalgebra contains an infinite projection.

I wish to thank D. Shlyakhtenko for certain helpful remarks relating to material in §3.

1. Preliminaries

We review some basic facts concerning Cuntz-Pimsner algebras; we shall be mainly interested in those which arise from bimodules for which the left action has trivial intersection with the compacts (see Remark §3). Let A be a C*-algebra.

Definition 1.1. (see [Rø, Kk, Fr]) Let E be a right A-module. Then E is said to be (a right) pre-Hilbert A-module if it is equipped with an A-valued inner product $\langle \cdot, \cdot \rangle_A$ which satisfies the following conditions for all $\xi, \eta, \zeta \in E$, $s, t \in \mathbb{C}$, and $a \in A$:

i. $\langle \xi, s\eta + t\zeta \rangle_A = s\langle \xi, \eta \rangle_A + t\langle \xi, \zeta \rangle_A$

ii. $\langle \xi, t\eta \rangle_A = \langle \xi, t \eta \rangle_A a$

iii. $\langle \eta, \xi \rangle_A = \langle \xi, \eta \rangle_A^*$

iv. $\langle \xi, \xi \rangle_A \geq 0$ and $\langle \xi, \xi \rangle_A = 0$ only if $\xi = 0$.

E is said to be a (right) Hilbert A-module if it is complete in the norm: $\|\xi\| = \|\langle \xi, \cdot \rangle_A\|^{1/2}$.

Let E be a Hilbert A-module. Then E is said to be full if the span of the values of the inner product is dense. The collection of bounded adjointable operators on E, $\mathcal{L}(E)$, is a C*-algebra. The closure of the span of operators of the form $\theta_{\xi, \eta}$ for $\xi, \eta \in E$ (where $\theta_{\xi, \eta}(\zeta) = \langle \xi, \zeta \rangle_A$ for $\zeta \in E$) forms an essential ideal in $\mathcal{L}(E)$ which is denoted $\mathcal{K}(E)$. A Hilbert space is a Hilbert module over \mathbb{C}.

Definition 1.2. Let E be a Hilbert A-module and $\varphi : A \to \mathcal{L}(E)$ be an injective *-homomorphism. Then the pair (E, φ) is said to be Hilbert bimodule over A (or Hilbert A-bimodule).

Pimsner defines the Cuntz-Pimsner algebra O_E as a quotient of the analogue of the Toeplitz algebra, \mathcal{T}_E, generated by creation operators on the Fock space of E (see [Pm]). The injectivity
of \(\varphi \) is not really necessary (see \cite[Remark 1.2.1]{Pn}). We will henceforth assume that \(E \) is full (see \cite[Remark 1.2.3]{Pn}).

The Fock space of \(E \) is the Hilbert \(A \)-module
\[
\mathcal{E}_+ = \bigoplus_{n=0}^{\infty} E^\otimes n
\]
where \(E^\otimes 0 = A \) and for \(n > 0 \), \(E^\otimes n \) is the \(n \)-fold tensor product:
\[
E^\otimes n = E \otimes_A \cdots \otimes_A E.
\]
Note that \(\mathcal{E}_+ \) is also a Hilbert \(A \)-bimodule with left action defined by \(\varphi_+(a)b = ab \) for \(a, b \in A = E^\otimes 0 \) and
\[
\varphi_+(a)(\xi_1 \otimes \cdots \otimes \xi_n) = \varphi(a)\xi_1 \otimes \cdots \otimes \xi_n
\]
for \(a \in A \) and \(\xi_1 \otimes \cdots \otimes \xi_n \in E^\otimes n \). Then \(T_E \subset \mathcal{L}(\mathcal{E}_+) \) is the \(C^* \)-algebra generated by the creation operators \(T_\xi \) for \(\xi \in E \) where
\[
T_\xi(a) = \xi a
\]
and
\[
T_\xi(\xi_1 \otimes \cdots \otimes \xi_n) = \xi \otimes \xi_1 \otimes \cdots \otimes \xi_n.
\]
Observe that \(T_\xi^* T_\eta = \varphi_+(\langle \xi, \eta \rangle A) \) for \(\xi, \eta \in E \). Since \(E \) is full, \(\varphi_+(A) \subset T_E \); let \(\iota : A \hookrightarrow T_E \) denote the embedding. Note that one may define \(T_\xi \) for \(\xi \in E^\otimes n \) in an analogous manner and that we have \(T_\xi^* T_\eta = \iota(\langle \xi, \eta \rangle A) \) for \(\xi, \eta \in E^\otimes n \). There is an embedding \(\iota_n : K(E^\otimes n) \hookrightarrow T_E \) (identify \(K(E^\otimes 0) \) with \(A \)), given for \(n > 0 \) by
\[
\iota_n(\theta_{\xi, \eta}) = T_\xi T_\eta^* \text{ for } \xi, \eta \in E^\otimes n.
\]
Note that such operators preserve the grading of \(\mathcal{E}_+ \) and that there is an embedding \(K(E^\otimes n) \hookrightarrow \mathcal{L}(E^\otimes m) \) for \(m \geq n \). Let \(C_n \) denote the \(C^* \)-subalgebra of \(T_E \) generated by operators of the form \(T_\xi T_\eta^* \) for \(\xi, \eta \in E^\otimes k \) with \(k \leq n \) (by convention \(C_0 = \iota(A) \)). Then the \(C_n \) form an ascending family of \(C^* \)-subalgebras.

Remark 1.3. Suppose \(\varphi(A) \cap K(E) = \{0\} \); then the natural map \(C_n \to \mathcal{L}(E^\otimes m) \) is an embedding for \(m \geq n \). By \cite[Corollary 3.14]{Pn} \(T_E \cong \mathcal{O}_E \) and the inclusion \(A \hookrightarrow \mathcal{O}_E \) induces a KK-equivalence (see \cite[Corollary 4.5]{Pn}). Under the isomorphism of \(T_E \) with \(\mathcal{O}_E \), \(\cup_n C_n \) is mapped to \(\mathcal{F}_E \), the analog of the AF core of a Cuntz-Krieger algebra.

For the remainder of this section we shall tacitly assume that \(\varphi(A) \cap K(E) = \{0\} \) and identify \(T_E \) with \(\mathcal{O}_E \).

Proposition 1.4. For each \(n \in \mathbb{N} \) the \(C^* \)-subalgebra, \(J_n \), generated by \(\iota_n(K(E^\otimes k)) \) for \(k \geq n \) is an essential ideal in \(\mathcal{F}_E \). We obtain a descending sequence of ideals
\[
J_0 \supset J_1 \supset J_2 \supset \cdots
\]
with \(J_0 = \mathcal{F}_E \) and \(\cap_n J_n = \{0\} \). Furthermore, \(J_n/J_{n+1} \cong K(E^\otimes n) \) (thus \(J_n/J_{n+1} \) is strong Morita equivalent to \(A \)) and the restriction of the quotient map yields an isomorphism \(C_n \cong \mathcal{F}_E/J_{n+1} \).

Proof. Given \(n \in \mathbb{N} \) it is clear that \(J_n \) is an ideal (see \cite[Definition 2.1]{Pn}). To see that \(J_n \) is essential it suffices to show that for every \(m \) and nonzero element \(c \in C_m \) there is an element \(d \in K(E^\otimes k) \) for some \(k \geq n \) such that \(c d \neq 0 \). Let \(k \) be an integer with \(k \geq \max(m, n) \); since the map from \(C_m \) to \(\mathcal{L}(E^\otimes k) \) is an embedding for \(k \geq m \), \(c \xi \neq 0 \) for some \(\xi \in E^\otimes k \). Then \(c T_\xi T_\xi^* \neq 0 \) and we take \(d = \theta_{\xi, \xi} \).

The \(J_n \) form a descending sequence of ideals by construction. Since \(\varphi(A) \cap K(E) = \{0\} \), \(C_m \cap J_n = \{0\} \) for \(m < n \). Hence, \(\cap_n J_n = \{0\} \), for \(\mathcal{F}_E \) is the inductive limit of the \(C_m \). Further, for each \(n \) we have
\[
J_n = \iota_n(K(E^\otimes n)) + J_{n+1} \quad \text{and} \quad \iota_n(K(E^\otimes n)) \cap J_{n+1} = \{0\};
\]
it follows that \(J_n/J_{n+1} \cong K(E^\otimes n) \). Finally, since
\[
\mathcal{F}_E = C_n + J_{n+1} \quad \text{and} \quad C_n \cap J_{n+1} = \{0\},
\]
we have \(C_n \cong \mathcal{F}_E/J_{n+1} \). \qed
There is a strongly continuous action
\[\lambda : \mathbb{T} \to \text{Aut} (\mathcal{O}_E) \]
such that \(\lambda_t(T_\xi) = tT_\xi \). The fixed point algebra under this action is \(\mathcal{F}_E \) and we have a faithful conditional expectation \(P_E : \mathcal{O}_E \to \mathcal{F}_E \) given by
\[P_E(x) = \int_{\mathbb{T}} \lambda_t(x) dt. \]

Consider the spectral subspaces of \(\mathcal{O}_E \) under this action: for \(n \in \mathbb{Z} \)
\[(\mathcal{O}_E)_n = \{ x \in \mathcal{O}_E : \lambda_t(x) = t^n x \text{ for all } t \in \mathbb{T} \}. \]

Remark 1.5. Note that \((\mathcal{O}_E)_n \) is the closure of the span of elements of the form \(T_\xi T_\eta^* \) where \(\xi \in E^\otimes k \) and \(\eta \in E^\otimes l \) with \(n = k - l \). For \(n \geq 0 \) and \(x \in (\mathcal{O}_E)_n \) we have \(x^* x \in \mathcal{F}_E \) and \(xx^* \in J_n \).

We may regard \((\mathcal{O}_E)_n \) as an \(J_n \)-\(\mathcal{F}_E \)-equivalence bimodule (see [Ri]); hence, \(J_n \) is strong Morita equivalent to \(\mathcal{F}_E \) for each \(n \geq 0 \). If we regard \((\mathcal{O}_E)_1 \) as a Hilbert \(\mathcal{F}_E \)-bimodule we have (cf. [Pm, §2] and [Sc2, §1.4])
\[(\mathcal{O}_E)_1 \cong E \otimes_A \mathcal{F}_E, \]
where the isomorphism is implemented by the map \(\xi \otimes a \mapsto T_\xi a \). The crossed product \(\mathcal{O}_E \rtimes_{\lambda} \mathbb{T} \) may be identified with the closure of the subalgebra of \(\mathcal{O}_E \otimes \mathcal{K}(\ell^2(\mathbb{Z})) \) consisting of finite sums of the form
\[\sum x_{ij} \otimes e_{ij} \]
where \(e_{ij} \) are the standard rank one partial isometries in \(\mathcal{K}(\ell^2(\mathbb{Z})) \) and \(x_{ij} \in (\mathcal{O}_E)_{j-i} \).

Let \(\hat{\lambda} : \mathbb{Z} \to \text{Aut} (\mathcal{O}_E \rtimes_{\lambda} \mathbb{T}) \) denote the dual automorphism group.

Proposition 1.6. There is an embedding \(\epsilon : \mathcal{F}_E \hookrightarrow \mathcal{O}_E \rtimes_{\lambda} \mathbb{T} \) onto a corner and a collection of essential ideals \(\{I_n\}_{n \in \mathbb{Z}} \) in \(\mathcal{O}_E \rtimes_{\lambda} \mathbb{T} \) satisfying the following conditions:

i. For all \(n \in \mathbb{Z} \), \(\mathcal{F}_E \) is strong Morita equivalent to \(I_n \) and \(A \) is strong Morita equivalent to \(I_n/I_{n+1} \).

ii. For all \(n \geq 0 \), \(\epsilon(J_n) = \epsilon(1) I_n \epsilon(1) \).

iii. \(I_n \subset I_m \) if \(m \leq n \).

iv. \(\cap_n I_n = \{0\} \)

v. \(\cup_n I_n = \mathcal{O}_E \rtimes_{\lambda} \mathbb{T} \)

vi. \(\hat{\lambda}_k(I_n) = I_{n+k} \)

Proof. We use the identification of \(\mathcal{O}_E \rtimes_{\lambda} \mathbb{T} \) with a \(C^* \)-subalgebra of \(\mathcal{O}_E \otimes \mathcal{K}(\ell^2(\mathbb{Z})) \) given in Remark 1.3. For each \(n \) let \(I_n \) be the ideal generated by \(p_n = 1 \otimes e_{nn} \). Since \(\mathcal{F}_E = (\mathcal{O}_E)_0 \), it follows that \(\mathcal{F}_E \) is isomorphic to the corner determined by \(p_n \) and thus is strong Morita equivalent to \(I_n \). The desired embedding \(\epsilon : \mathcal{F}_E \hookrightarrow \mathcal{O}_E \rtimes_{\lambda} \mathbb{T} \) is given by \(\epsilon(a) = a \otimes e_{00} \).

Given an element of the form \(a_{mn} = x_{mn} \otimes e_{nn} \) in \(\mathcal{O}_E \rtimes_{\lambda} \mathbb{T} \) with \(m \leq n \), we have
\[a_{mn}^* a_{mn} = x_{mn}^* x_{mn} \otimes e_{nn} \quad \text{and} \quad a_{mn} a_{mn}^* = x_{mn}^* x_{mn} \otimes e_{mm} \]
with \(x_{mn}^* x_{mn} \in J_{n-m} \); since \(p_n \) may be expressed as a finite sum of elements of the form \(a_{mn}^* a_{mn} \), it follows that \(I_n \subset I_m \) and that \(p_m I_n p_m = J_{n-m} \otimes e_{mm} \). Thus \(\epsilon(J_n) = \epsilon(1) I_n \epsilon(1) \) for all \(n \geq 0 \). Assertion (vi) follows from the fact that \(\hat{\lambda}_k(p_n) = 1 \otimes p_{n+k} \). The remaining assertions follow from Proposition 1.4.\(\square \)
2. \mathcal{O}_E is simple and purely infinite

Let A be a separable unital C*-algebra and let $\pi : A \to \mathcal{L}(\mathcal{H})$ be a faithful representation of A on a separable Hilbert space \mathcal{H}.

Proposition 2.1. With A and $\pi : A \to \mathcal{L}(\mathcal{H})$ as above,

$$E = \mathcal{H} \otimes \mathcal{C} A$$

is a full Hilbert bimodule over A under the operations

$$\langle \xi \otimes a, \eta \otimes b \rangle_A = \langle \xi, \eta \rangle a^* b, \quad \varphi(a)(\xi \otimes b) = \pi(a)\xi \otimes b$$

for all $\xi, \eta \in \mathcal{H}$ and $a, b \in A$. Moreover, if $\pi(A) \cap \mathcal{K}(\mathcal{H}) = \{0\}$, then $\varphi(A) \cap \mathcal{K}(E) = \{0\}$ and $\mathcal{O}_E \cong \mathcal{T}_E$.

Proof. Note that $E = \mathcal{H} \otimes \mathcal{C} A$ is the tensor product of the Hilbert A-C-bimodule \mathcal{H} and the Hilbert \mathcal{C}-A-bimodule A as defined by Rieffel in [R] (see also [L, Ch. 4]). The natural map from $\mathcal{L}(\mathcal{H})$ to $\mathcal{L}(E) = \mathcal{H} \otimes \mathcal{C} A$ induces an embedding $\mathcal{L}(\mathcal{H})/\mathcal{K}(\mathcal{H}) \to \mathcal{L}(E)/\mathcal{K}(E)$ (since $\mathcal{K}(\mathcal{H})$ is mapped into $\mathcal{K}(E)$ and the Calkin algebra $\mathcal{L}(\mathcal{H})/\mathcal{K}(\mathcal{H})$ is simple). Hence, if $\pi(A) \cap \mathcal{K}(\mathcal{H}) = \{0\}$, then $\varphi(A) \cap \mathcal{K}(E) = \{0\}$. The last assertion, $\mathcal{O}_E \cong \mathcal{T}_E$, follows by [Pm, Corollary 3.14].

Henceforth, we assume that $\pi(A) \cap \mathcal{K}(\mathcal{H}) = \{0\}$ and identify \mathcal{O}_E with \mathcal{T}_E. The aim of this section is to show that \mathcal{O}_E is simple and purely infinite. Simplicity may be proven directly by invoking [Sc2, Theorem 3.9]: if A is unital and E is full, then \mathcal{O}_E is simple if and only if E is minimal and nonperiodic. Lemma 2.3 would then be a consequence of [OP, Theorem 6.5]. We follow a more indirect route patterned on the proof of [Re, Theorem 2.1]: this will also show that \mathcal{O}_E is purely infinite.

Remark 2.2. With $E = \mathcal{H} \otimes \mathcal{C} A$ as above, we have $E^\otimes n \cong \mathcal{H}^\otimes n \otimes \mathcal{C} A$ via the map

$$(\xi_1 \otimes a_1) \otimes (\xi_2 \otimes a_2) \otimes \cdots \otimes (\xi_n \otimes a_n) \mapsto (\xi_1 \otimes \pi(a_1)\xi_2 \otimes \cdots \otimes \pi(a_{n-1})\xi_n) \otimes a_n;$$

similarly, if $\sigma : A \to \mathcal{L}(\mathfrak{R})$ is a representation of A on a Hilbert space \mathfrak{R}, then

$$E^\otimes n \otimes_A \mathfrak{R} \cong E^{\otimes n-1} \otimes_A \mathcal{H} \otimes \mathfrak{R}.$$

Recall that the action of \mathcal{F}_E on Fock space preserves the natural grading. Let $\tilde{\sigma}_n$ denote the representation of \mathcal{F}_E on $E^\otimes n \otimes_A \mathfrak{R}$ given by left action on $E^\otimes n$. Then the restriction of $\tilde{\sigma}_n$ to C_{n-1} is faithful: indeed, this follows from the facts that the natural map

$$\mathcal{L}(E^{\otimes n-1}) \to \mathcal{L}(E^{\otimes n-1} \otimes_A \mathcal{H} \otimes \mathfrak{R}) \cong \mathcal{L}(E^{\otimes n} \otimes_A \mathfrak{R})$$

is an embedding (since π is faithful) and that $\tilde{\sigma}_n|_{\mathcal{L}(E^{\otimes n-1})}$ factors through $\mathcal{L}(E^{\otimes n-1})$. Note that $\tilde{\sigma}_n$ is equivalent to the representation of \mathcal{F}_E obtained from σ as follows: use the strong Morita equivalence between A and J_n/J_{n+1} to obtain a representation of J_n/J_{n+1} and extend this to a representation of \mathcal{F}_E. Since the restriction of $\tilde{\sigma}_n$ to C_{n-1} is faithful, $\ker \tilde{\sigma}_n \subset J_n$ (see Proposition 1.4). It follows that the closure of a point in $\tilde{I}_n - \tilde{I}_{n+1}$ contains the complement of \tilde{J}_n. A similar assertion holds for $\mathcal{O}_E \rtimes \mathbb{Z}$: for any $n \in \mathbb{Z}$ the closure of a point in $\tilde{I}_n - \tilde{I}_{n+1}$ contains the complement of \tilde{I}_n.

Lemma 2.3. With A and E as above, $\Gamma(\hat{\lambda}_1) = \mathbb{T}$ where $\hat{\lambda}$ is the dual action of \mathbb{Z} on $\mathcal{O}_E \rtimes \mathbb{Z}$.

Proof. By [OP2, Theorem 4.6] it suffices to find a dense invariant subset of $(\mathcal{O}_E \rtimes \mathbb{Z})^\wedge$ on which $\hat{\lambda}^*_1$ acts freely. That is, we must find an irreducible representation σ of $\mathcal{O}_E \rtimes \mathbb{Z}$ such that,

$$\{[\sigma \circ \hat{\lambda}_n] : n \in \mathbb{Z}\},$$

the orbit of the unitary equivalence class of σ under $\hat{\lambda}^*$, is dense in $(\mathcal{O}_E \rtimes \mathbb{Z})^\wedge$ and $[\sigma \circ \hat{\lambda}_n] \neq [\sigma \circ \hat{\lambda}_m]$ if $m \neq n$. Let σ_0 be an irreducible representation of A and use the strong Morita equivalence between A and I_0/I_1 to obtain an irreducible representation σ' of I_0/I_1. Then
σ, the extension of σ to $O_E \rtimes \lambda \mathbb{T}$, is also irreducible. The classes $[\sigma \circ \lambda_n]$ are distinct, for if $m < n$, σ ∘ λ_m vanishes on I_n. Moreover, for each $n \in \mathbb{Z}$ the closure of $[\sigma \circ \lambda_n]$ in $(O_E \rtimes \lambda \mathbb{T})^\sim$ includes the classes of all irreducible representations which vanish on I_n (since $[\sigma \circ \lambda_n] \in \tilde{I}_n - \tilde{I}_{n+1}$, see Remark 2.2). Hence, $\{[\sigma \circ \lambda_n] : n \in \mathbb{Z}\}$ is dense in $(O_E \rtimes \lambda \mathbb{T})^\sim$.

Using Takesaki-Takai duality we show below that a C*-algebra D equipped with an action α of \mathbb{T} may be embedded equivariantly as a corner in $(D \rtimes \alpha \mathbb{T}) \rtimes \alpha \mathbb{Z}$. This fact is related to Rosenberg’s observation that the fixed point algebra under a compact group action embeds as a corner in the crossed product (see [Rö]).

Proposition 2.4. Given a unital C*-algebra D and a strongly continuous action $\alpha : \mathbb{T} \to \text{Aut}(D)$, there is an isomorphism ψ of D onto a full corner of $(D \rtimes \alpha \mathbb{T}) \rtimes \alpha \mathbb{Z}$ which is equivariant in the sense that $\hat{\alpha}_t \circ \psi = \psi \circ \alpha_t$ for all $t \in \mathbb{T}$. Moreover, $\psi(1) \in D \rtimes \alpha \mathbb{T}$.

Proof. By Takesaki-Takai duality [Pa, 7.9.3] there is an isomorphism

$$
\gamma : D \otimes \mathcal{K}(L^2(\mathbb{T})) \cong (D \rtimes \alpha \mathbb{T}) \rtimes \alpha \mathbb{Z},
$$

which is equivariant with respect to $\alpha \otimes \text{Ad} \rho$ and $\hat{\alpha}$ (where ρ is the right regular representation of \mathbb{T} on $L^2(\mathbb{T})$). The desired embedding is obtained by finding an Ad ρ invariant minimal projection p in $\mathcal{K}(L^2(\mathbb{T}))$ (cf. [Rö]): set $\psi(d) = \gamma(d \otimes p)$ for $d \in D$. Since ψ is equivariant, $\psi(1)$ is in the fixed point algebra of $\hat{\alpha}$; hence, $\psi(1) \in D \rtimes \alpha \mathbb{T}$.

The following lemma is adapted from [Rö, Lemma 2.4]; the proof is patterned on Rørdam’s but we substitute [OP3, Lemma 7.1] for [Ks, Lemma 3.2].

Lemma 2.5. Let B be a C*-algebra and let β be an automorphism of B such that $\Gamma(\beta) = \mathbb{T}$ and let P denote the canonical conditional expectation from $B \rtimes \beta \mathbb{Z}$ to B. Then for every positive element $y \in B \rtimes \beta \mathbb{Z}$ and $\varepsilon > 0$ there are positive elements $x, b \in B$ such that

$$
\|b\| > \|P(y)\| - \varepsilon, \quad \|x\| \leq 1 \quad \text{and} \quad \|xy - b\| < \varepsilon.
$$

If y is in the corner determined by a projection $p \in B$, then x, b may also be chosen to be in the corner.

Proof. As in the proof of [Rö, Lemma 2.4] we may assume (by perturbing y if necessary) that y is of the form

$$
y = y_{-n}u^{-n} + \cdots + y_{-1}u^{-1} + y_0 + y_1u + \cdots + y_nu^n
$$

for some n where $y_j \in B$ and u is the canonical unitary in $B \rtimes \beta \mathbb{Z}$ implementing the automorphism β; note that $y_0 = P(y)$ is positive. By [OP3, Theorem 10.4] β^k is properly outer for all $k \neq 0$. Hence, by [OP3, Lemma 7.1] there is a positive element x with $\|x\| = 1$ such that

$$
\|xy_0x\| > \|y_0\| - \varepsilon, \quad \text{and} \quad \|xy_ku^kx\| = \|xy_k\beta^k(x)\| < \varepsilon/2n
$$

for $0 < |k| \leq n$. Set $b = xy_0x$; then a straightforward calculation yields $\|xy - b\| < \varepsilon$. We now verify the last assertion. Suppose that y is in the corner determined by a projection $p \in B$; we may again assume that y is of the above form. Since P is a conditional expectation onto B, $y_0 = P(y)$ is also in the corner determined by p. In the proof of [OP3, Lemma 7.1] the positive element x is constructed in the hereditary subalgebra determined by y_0; hence we may assume that x and therefore also $b = xy_0x$ lies in the same corner. \(\square\)

Recall that C_n is the C*-subalgebra of \mathcal{F}_E generated by operators of the form $T_\xi T_\eta^*$ for $\xi, \eta \in E^\otimes k$ with $k \leq n$ and that they form an ascending family of C*-subalgebras with dense union. The subspace $E^\otimes n$ is left invariant by C_n and one has an embedding $C_n \hookrightarrow \mathcal{L}(E^\otimes n)$.
Lemma 2.6. Given a positive element \(c \in C_n \) and \(\varepsilon > 0 \), there is \(\xi \in E^{\otimes n} \) with \(\|\xi\| = 1 \) such that \(T_\xi^* c T_\xi \in C_0 \) and \(\|T_\xi^* c T_\xi\| > \|c\| - \varepsilon \).

Proof. The first assertion follows from a straightforward calculation: given \(c \in C_n \) and \(\xi \in E^{\otimes n} \), then \(c\xi \in E^{\otimes n} \) and

\[
T_\xi^* c T_\xi = T_\xi^* T_\xi = \iota(\langle \xi, c\xi \rangle_A) \in C_0.
\]

The second assertion follows from the embedding \(C_n \hookrightarrow \mathcal{L}(E^{\otimes n}) \) and the fact

\[
\|d\| = \sup\{\|\langle \xi, d\xi \rangle_A\| : \xi \in E^{\otimes n}, \|\xi\| = 1\}
\]

for \(d \in \mathcal{L}(E^{\otimes n}) \) positive.

Lemma 2.7. Given a positive element \(a \in A \) and \(\varepsilon > 0 \) with \(\|a\| > \varepsilon \), there is \(\eta \in E \) with \(\|\eta\| \leq (\|a\| - \varepsilon)^{-1/2} \) such that \(T_\eta^* \iota(a) T_\eta = 1 \).

Proof. Let \(f \) be a continuous nonzero real-valued function supported on the interval \([\|a\| - \varepsilon, \|a\|]\) and choose a vector \(\zeta \in \pi(f(a))B \) such that \(\langle \zeta, \pi(a)\zeta \rangle = 1 \); we have

\[
(||a||-\varepsilon)\|\zeta\|^2 \leq ||\langle \zeta, \pi(a)\zeta \rangle|| = 1.
\]

Then \(\eta = \zeta \otimes 1 \in E \) satisfies the desired conditions.

It will now follow that \(O_E \) is simple and purely infinite (cf. proof of [Rø, Theorem 2.1]).

Theorem 2.8. For every nonzero positive element \(d \in O_E \) there is a \(z \in O_E \) so that \(z^*dz = 1 \). Hence, \(O_E \) is simple and purely infinite.

Proof. Let \(d \in O_E \) be a nonzero positive element and choose \(\varepsilon \) so that \(0 < \varepsilon < \|P(d)\|/4 \). By Proposition 2.4 there is a \(\mathbb{T} \)-equivariant isomorphism \(\psi \) from \(O_E \) onto a corner of \((O_E \rtimes \Lambda \mathbb{T}) \rtimes \Lambda \mathbb{Z} \) determined by a projection \(p \in O_E \rtimes \Lambda \mathbb{T} \). We now apply Lemma 2.7 to the element \(y = \psi(d) \) and the automorphism \(\beta = \lambda_1 \) (note \(\Gamma(\lambda_1) = \mathbb{T} \) by Lemma 2.3). We identify \(O_E \) with the corner determined by \(p \); note that under this identification \(F_E \) is identified with \(p(O_E \rtimes \Lambda \mathbb{T})p \). There are then positive elements \(x, b \in F_E \) so that

\[
\|b\| > \|P(d)\| - \varepsilon, \quad \|x\| \leq 1 \quad \text{and} \quad \|xdx - b\| < \varepsilon.
\]

Since \(\cup_n C_n \) is dense in \(F_E \) we may assume that \(b \in C_n \) for some \(n \). Hence, by Lemma 2.6 there is \(\xi \in E^{\otimes n} \) with \(\|\xi\| = 1 \) such that

\[
T_\xi^* b T_\xi \in C_0 \quad \text{and} \quad \|T_\xi^* b T_\xi\| > \|b\| - \varepsilon.
\]

Let \(a \) denote the unique element of \(A \) such that \(\iota(a) = T_\xi^* b T_\xi \); then \(\|a\| > \|P(d)\| - 2\varepsilon \) and

\[
\|T_\xi^* xdx T_\xi - \iota(a)\| = \|T_\xi^* (xdx - b) T_\xi\| < \varepsilon.
\]

By Lemma 2.7 there is \(\eta \in E \) such that \(T_\eta^* \iota(a) T_\eta = 1 \) and

\[
\|\eta\| \leq (\|a\| - \varepsilon)^{-1/2} < (\|P(d)\| - 3\varepsilon)^{-1/2} < \varepsilon^{-1/2}.
\]

It follows that

\[
\|T_\eta^* T_\xi^* xdx T_\xi T_\eta - 1\| = \|T_\eta^* (T_\xi^* xdx T_\xi - \iota(a)) T_\eta\| \leq \|T_\xi^* xdx T_\xi - \iota(a)\|(\varepsilon^{-1/2})^2 < 1.
\]

Therefore, \(c = T_\eta^* T_\xi^* xdx T_\xi T_\eta \) is an invertible positive element and we take \(z = xT_\xi T_\eta c^{-1/2} \).
3. Applications and concluding remarks

We collect some applications of the above theorem and consider certain connections with the theory of reduced (amalgamated) free product C*-algebras. First we consider criteria under which the Kirchberg-Phillips Theorem applies (see [Ka, Theorem C], [Pi, Corollary 4.2.2]).

Theorem 3.1. Let A be a separable nuclear unital C*-algebra which belongs to the bootstrap class to which the uct applies (see [FrS]); let $\pi : A \to \mathcal{L}(\mathcal{H})$ be a faithful representation of A on a separable Hilbert space \mathcal{H} such that $\pi(A) \cap \mathcal{K}(\mathcal{H}) = \{0\}$ and let E denote the Hilbert A-bimodule $\mathcal{H} \otimes_{C} A$. Then O_E is a unital Kirchberg algebra (simple, purely infinite, separable and nuclear) which belongs to the bootstrap class. Hence, the Kirchberg-Phillips Theorem applies and the isomorphism class of O_E only depends on $(K_* (A), [1_A])$ and not on the choice of representation π.

Proof. First note that O_E is simple and purely infinite by Theorem 2.8. If A is nuclear, then the argument given in the proof of [DS, Theorem 2.1] shows that O_E must also be nuclear (alternatively, the nuclearity of O_E follows from the structural results discussed in [Pi]). Hence, O_E is a unital Kirchberg algebra. Recall that the inclusion $A \to O_E$ defines a KK-equivalence (see [Pi, Corollary 4.5]) which induces a unit-preserving isomorphism $K_* (A) \cong K_* (O_E)$. Hence, if A is in the bootstrap class, then O_E is also. Therefore, the Kirchberg-Phillips Theorem applies and the isomorphism class of O_E only depends on $(K_* (A), [1_A])$. \qed

Let X be a second countable compact space, let μ be a nonatomic Borel measure with full support and let

$$\pi : C(X) \to \mathcal{L}(L^2(X, \mu))$$

be the representation given by multiplication of functions. Then π is faithful and

$$\pi(C(X)) \cap \mathcal{K}(L^2(X, \mu)) = \{0\}.$$

Hence, we may apply the above theorem with $A = C(X)$ and $\mathcal{H} = L^2(X, \mu)$.

Corollary 3.2. Let X and μ be as above. Then

$$E = L^2(X, \mu) \otimes_{\mathbb{C}} C(X)$$

is a Hilbert bimodule over $C(X)$ and O_E is a unital Kirchberg algebra. The embedding $C(X) \to O_E$ induces a (unit preserving) KK-equivalence. Hence, the isomorphism class of O_E only depends on $(K_* (C(X)), [1_{C(X)}])$ (and not on μ); moreover, if X is contractible, then $O_E \cong O_\infty$.

The following proposition is Theorem 5.6 of [L] (see also [Ka, Theorem 3]); Lance calls this the Kasparov-Stinespring-Gelfand-Naimark-Segal construction.

Proposition 3.3. Let B and C be C*-algebras, let F be a Hilbert C-module and let $f : B \to \mathcal{L}(F)$ be a completely positive map, then there is a Hilbert C-module E_f, a *-homomorphism $\varphi_f : B \to \mathcal{L}(E_f)$ and an element $v_f \in \mathcal{L}(F, E_f)$ such that $f(b) = v_f^* \varphi_f(b) v_f$ and $\varphi_f(B)v_f F$ is dense in E_f.

I am grateful to D. Shlyakhtenko for the following observation. Let \mathcal{T} denote the “usual” Toeplitz algebra (i.e. \mathcal{T}_E where E is the 1-dimensional Hilbert bimodule over \mathbb{C}) and let g denote the vacuum state on \mathcal{T}.

Proposition 3.4. Let A be a separable unital C*-algebra and let $\pi : A \to \mathcal{L}(\mathcal{H})$ be a faithful representation of A on a separable Hilbert space \mathcal{H} such that π has a cyclic vector $\xi \in \mathcal{H}$. Let f denote the vector state $\langle \xi, \cdot \rangle : \mathcal{H}$ and let \tilde{f} denote the corresponding completely positive map from A to $\mathcal{L}(A)$ (given by $\tilde{f}(a) = f(a) 1$). Then $E = E_{\tilde{f}} \cong \mathcal{H} \otimes A$ and \mathcal{T}_E may be realized as a reduced free product (see [A, V]):

$$(\mathcal{T}_E, h) \cong (A, f) * (\mathcal{T}, g)$$
for some state h on \mathcal{T}_E.

Proof. This follows from [Sh, Theorem 2.3, Corollary 2.5].

As a result of this observation part (at least) of Corollary 3.2 follows from the existing literature on reduced free products. The simplicity follows from a theorem of Dykema [Dy, Theorem 2]. Criteria for when reduced free products are purely infinite have been found by Choda, Dykema and Rørdam in a series of papers [DR1, DR2, DC]; but none seem to apply generally to the case considered in the corollary.

A theorem of Speicher (see [Sp]) on reduced amalgamated free products (see [V, §5]) and Toeplitz algebras associated to Hilbert bimodules yields a curious stability property of the algebras we have been considering. The following is the version given in [BDS, Theorem 2.4].

Proposition 3.5. Suppose that E_1 and E_2 are full Hilbert bimodules over the C*-algebra A. Then

$$\mathcal{T}_{E_1 \oplus E_2} = \mathcal{T}_{E_1} \ast A \mathcal{T}_{E_2}.$$

We obtain the following corollary.

Corollary 3.6. Let A be a separable nuclear unital C*-algebra which belongs to the bootstrap class to which the UCT applies (see [RS]) and let $\pi : A \rightarrow \mathcal{L}(\mathcal{H})$ be a faithful representation of A on a separable Hilbert space \mathcal{H} such that $\pi(A) \cap \mathcal{K}(\mathcal{H}) = \{0\}$. Let E be the Hilbert bimodule $\mathcal{H} \otimes_C A$. Then

$$\mathcal{O}_E \cong \mathcal{O}_E \ast A \mathcal{O}_E.$$

Proof. Observe that $E \oplus E = (\mathcal{H} \oplus \mathcal{H}) \otimes_C A$. Since $\pi \oplus \pi : A \rightarrow \mathcal{L}(\mathcal{H} \oplus \mathcal{H})$ is a faithful representation and $(\pi \oplus \pi)(A) \cap \mathcal{K}(\mathcal{H} \oplus \mathcal{H}) = \{0\}$, the result follows follows from Theorem 3.1 and the above proposition.

References

[A] D. Avitzour, Free products of C*-algebras, Trans. Amer. Math. Soc. 271 (1982) 423–435.

[BDS] N. Brown, K. Dykema and D. Shlyakhtenko, Topological Entropy of Free Product Automorphisms, preprint.

[Co] A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. 6 (1973) 133–252.

[Cu] J. Cuntz, Simple C*-algebras generated by isometries, Commun. Math. Phys. 57 (1977) 173-185.

[CK] J. Cuntz and W. Krieger, A class of C*-algebras and topological Markov chains, Invent. Math. 56 (1980) 251-268.

[De] V. Deaconu, Generalized solenoids and C*-algebras, Pacific J. Math. 190 (1999), 247–260.

[DPW] Doplicher, C. Pinzari, and R. Zuccante, The C*-algebra of a Hilbert bimodule, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998) 263–281.

[Dy] K. Dykema, Simplicity and the stable rank of some free product C*-algebras, Trans. Amer. Math. Soc. 351 (1999) 1–40.

[DC] K. Dykema and M. Choda, Purely infinite, simple C*-algebras arising from free product constructions, III, Proc. Amer. Math. Soc. 128 (2000) 3269–3273.

[DR1] K. Dykema and M. Rørdam, Purely infinite, simple C*-algebras arising from free product constructions, Canad. J. Math. 50 (1998) 323–341.

[DR2] K. Dykema and M. Rørdam, Purely infinite, simple C*-algebras arising from free product constructions, II, preprint.

[DS] K. Dykema and D. Shlyakhtenko, Exactness of Cuntz-Pimsner C*-algebras, Proc. Edinburgh Math. Soc., to appear.

[E] George A. Elliott, Some simple C*-algebras constructed as crossed products with discrete outer automorphism groups, Publ. Res. Inst. Math. Sci. 16 (1980) 299–311.

[FR] N. J. Fowler and I. Raeburn, The Toeplitz algebra of a Hilbert bimodule, Indiana Univ. Math. J. 48 (1999) 155–181.

[FRM] N. J. Fowler, I. Raeburn and P. S. Muhly, Representations of Cuntz-Pimsner C*-algebras, preprint.

[KPW1] T. Kajiwara, C. Pinzari and Y. Watatani, Ideal structure and simplicity of the C*-algebras generated by Hilbert bimodules, J. Funct. Anal. 159 (1998) 295–322.
[KPW2] T. Kajiwara, C. Pinzari and Y. Watatani, Hilbert C^*-bimodules and countably generated Cuntz-Krieger algebras, J. Operator Theory 45 (2001) 3–18.

[Ka] G. G. Kasparov, Hilbert C^*-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980) 133–150.

[Kr] E. Kirchberg, The classification of purely infinite C^*-algebras using Kasparov’s theory, Fields Institute Communications, to appear.

[Ks] A. Kishimoto, Outer automorphisms and reduced crossed products of simple C^*-algebras, Comm. Math. Phys. 81 (1981) 429–435.

[L] E. C. Lance, Hilbert C^*-modules. A toolkit for operator algebraists, London Math. Soc. Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995.

[MS] P. S. Muhly and B. Solel, On the simplicity of some Cuntz-Pimsner algebras, Math. Scand. 83 (1998) 53–73.

[Pa] W. L. Paschke, The crossed product of a C^*-algebra by an endomorphism, Proc. Amer. Math. Soc. 80 (1980) 113–118.

[Pd] G. K. Pedersen, C^*-algebras and their automorphism groups, Academic Press, London, 1979.

[Ph] N. C. Phillips, A classification theorem for nuclear purely infinite simple C^*-algebras, Doc. Math. 5 (2000) 49–114.

[Pm] M. Pimsner, A class of C^*-algebras generalizing both Cuntz-Krieger algebras and crossed products by \mathbb{Z}, in “Free probability theory” (D. Voiculescu, Ed.), 189-212, Fields Institute Communications 12, Amer. Math. Soc., Providence, 1997.

[PV] M. Pimsner and D. Voiculescu, Exact sequences for K-groups and Ext-groups of certain cross-product C^*-algebras, J. Operator Theory 4 (1980) 93–118.

[Pl] C. Pinzari, The ideal structure of Cuntz-Krieger-Pimsner algebras and Cuntz-Krieger algebras over infinite matrices, in “Operator Algebras and Quantum Field Theory (Accademia Nazionale dei Lincei, Roma, July 1-6 1996)” (S. Doplicher et al, Eds.), 136–150, International Press 1997.

[Ri] M. A. Rieffel, Induced Representations of C^*-algebras, Advances Math. 13 (1974) 176-257.

[Ro] J. Rosenberg, Classification of certain infinite simple C^*-algebras, III, in “Operator algebras and their applications” (P. Fillmore and J. Mingo, Eds.), 257–283, Fields Institute Communications 13, Amer. Math. Soc., Providence, 1997.

[Ro] J. Rosenberg, Appendix to: “Crossed products of UHF algebras by product type actions,” by O. Bratteli, Duke Math. J. 46 (1979) 25–26.

[RS] J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor, Duke Math. J. 55 (1987) 431-474.

[Sc1] J. Schweizer, Crossed products by C^*-correspondences and Cuntz-Pimsner algebras, in “C^*-algebras, Münster, 1999,” (J. Cuntz and S. Echterhoff, Eds.), 203–226, Springer Verlag, Berlin, 2000.

[Sc2] J. Schweizer, Dilations of C^*-correspondences and the simplicity of Cuntz-Pimsner algebras, J. Funct. Anal. 180 (2001) 404–425.

[Sh] D. Shlyakhtenko, Some applications of freeness with amalgamation, J. Reine Angew. Math. 500 (1998), 191–212.

[Sp] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc. 132, no. 627 (1998).

[T] H. Takai, On a duality for crossed products of C^*-algebras, J. Funct. Anal. 19 (1975), 25–39.

[V] D. Voiculescu, Symmetries of some reduced free product C^*-algebras, in “Operator algebras and their connections with topology and ergodic theory, Buşteni, 1983,” (H. Araki et al, Eds.) 556–588, Lecture Notes in Math., 1132, Springer, Berlin, 1985.

[Z] J. Zacharias, Quasi-free automorphisms of Cuntz-Krieger-Pimsner algebras, in “C^*-algebras, Münster 1999,” (J. Cuntz and S. Echterhoff, Eds.), 262–272, Springer Verlag, Berlin, 2000.

Department of Mathematics, University of Nevada, Reno NV 89557, USA

E-mail address: alex@unr.edu