Introduction

Intravenous fluid resuscitation is a key piece in the management of patients with circulatory shock.1 Fluid loading aims to increase cardiac output (CO) to improve the convective transport of oxygen to the tissues. Nevertheless, fluids can be harmful when excessively administered.2 Indeed, higher fluid transport of oxygen to the tissues. Nevertheless, fluids can be used to increase cardiac output (CO) to improve the convective transport of oxygen to the tissues. Nevertheless, fluids can be harmful when excessively administered.2

Several tools can be used to predict the increase in CO after a necessary volume load during resuscitation of circulatory shock.5 Several tools can be used to predict the increase in CO after a necessary volume load during resuscitation of circulatory shock.5 Nevertheless, the operative performance of PPV may be sub-

ABSTRACT

INTRODUCTION: Pulse pressure variation (PPV) has been shown to be useful to predict fluid responsiveness in patients ventilated at tidal volume (VT) >8 mL kg⁻¹. Nevertheless, most conditions in critical care force to use lower VT. Thus, we sought to evaluate the operative performance of PPV when a VT <8 mL kg⁻¹ is used during mechanical ventilation support.

METHODS: We searched PubMed and Embase databases for articles evaluating the operative performance of PPV as a predictor of fluid responsiveness in critical care and perioperative adult patients ventilated with tidal volume <8 mL kg⁻¹ without respiratory effort and arrhythmias, between January 1990 and January 2019. We included cohort and cross-sectional studies. Two authors performed an independently selection using predefined terms of search. The fitted data of sensitivity, specificity, and area under the curve (AUC) were assessed by bivariate and hierarchical analyses.

RESULTS: We retrieved 19 trials with a total of 777 patients and a total of 935 fluid challenges. The fitted sensitivity of PPV to predict fluid responsiveness during mechanical ventilation at VT ≤8 mL kg⁻¹ was 0.65 (95% confidence interval [CI]: 0.57-0.73), the specificity was 0.79 (95% CI: 0.73-0.84), and the AUC was 0.75. The diagnostic odds ratio was 5.5 (95% CI: 3.08-10.01, P < .001) by the random-effects model.

CONCLUSIONS: Pulse pressure variation shows a fair operative performance as a predictor of fluid responsiveness in critical care and perioperative patients ventilated with a tidal volume <8 mL kg⁻¹ without respiratory effort and arrhythmias.

KEYWORDS: Critical care, hemodynamic, perioperative care, pulse pressure, sepsis, tidal volume

Use of Pulse Pressure Variation as Predictor of Fluid Responsiveness in Patients Ventilated With Low Tidal Volume: A Systematic Review and Meta-Analysis

Jorge Iván Alvarado Sánchez1,2©, Juan Daniel Caicedo Ruiz2, Juan José Diaztagle Fernández2,3, Gustavo Adolfo Ospina-Tascón4 and Luis Eduardo Cruz Martínez2

1Department of Anaesthesiology of Centro Policlínico del Olaya, Bogota, Colombia. 2Department of Physiology Sciences, School of Medicine, Universidad Nacional de Colombia, Bogota, Colombia. 3Department of Internal Medicine of Hospital de San Jose, Fundación Universitaria de Ciencias de la Salud, Bogota, Colombia. 4Department of Intensive Care, Fundación Valle del Lili, Universidad ICESI, Cali, Colombia.
systematic review about the performance of PPV as a predictor of fluid responsiveness in adult patients ventilated at tidal volume $\leq 8 \text{ mL kg}^{-1}$ without arrhythmias and active respiratory efforts in the critical care and perioperative settings.

Methodology

Protocol

This systematic review was conducted by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations.20

Study selection and inclusion criteria

We look for prospective studies assessing the operative performance of PPV as a predictor of fluid responsiveness in the critical care and perioperative adult patients ventilated at $V_t \leq 8 \text{ mL kg}^{-1}$ without excessive respiratory efforts and arrhythmias. Only those in which PPV was used as a predictor of fluid responsiveness and revealing data about its operative performance were finally included for analysis. Indeed, an explicit definition of fluid responsiveness and the percentage of fluid response should also be revealed to be included. Only manuscripts written in English were selected. We did not include studies including patients younger than 18 years of age or pregnant women. We also did not include case reports, studies in abstract form, or studies conducted in animals.

Search strategy and data extraction

A highly sensitive search strategy was conducted in Embase and in MEDLINE using the PubMed interface from January 1990 to January 2019. We applied no restrictions apart of language restrictions (as previously described). Data extraction and eligibility assessment were performed independently in an unblinded, standardized manner by 2 reviewers (J.I.A.S. and J.D.C.R.). We used the following terms: (“pulse pressure variation” [All Field] OR “Fluid Challenge” [All field]) AND (respiration [MeSH] OR Respiration, Artificial [MeSH] OR Respiratory Distress Syndrome, Adult [MeSH] OR Tidal volume [MeSH] OR Lung Compliance [MeSH]) filtered by full text.

Study selection and data collection process

Two authors (J.I.A.S. and J.D.C.R.) reviewed titles independently and abstracts potentially eligible. Those studies fulfilling the inclusion criteria were pooled in a list, and then, the 2 files were compared to select those to be finally included for analysis. We also search for additional studies using the bibliography of previously chosen studies. Any disagreement between the authors was resolved through discussion; if it continued, a third author reviewed the article and facilitated a consensus among all review authors.

Data items

Data extracted from each clinical trial included authors, year of publication, type of population (critical or surgical) enrolled in the trial, type of study, number of patients enrolled, device or technique used to determine PPV; type and volume of fluid used during the fluid loading; operational definition of intravenous fluid responsiveness; percentage of positive fluid response; cut-off point of PPV used; ventilatory settings (particularly tidal volume, RR, and lung compliance); finally, data about sensitivity, specificity, and area under the curve (AUC) reported for PPV.

Quality assessment

The quality of studies was assessed by the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) using 4 domains: patient selection, index test, reference standard, and flow and time. Each area was assessed for risk of bias, classified as “low,” “high,” or “unclear.” Besides, its risk of applicability had 3 domains: patient selection, index test, and reference standard, which were assessed as “low,” “high,” or “unclear.”21

Statistical analysis

Analysis of individual studies. The data of sensitivity, specificity, diagnostic odds ratio (DOR) were calculated by a contingency table.

Analysis of summary measures. The pooled data of sensitivity, specificity, DOR were assessed by the random-effects methods. The fitted data of sensitivity, specificity, and AUC were assessed by bivariate and hierarchical analyses. The summary receiver operating characteristic (ROC) curve was evaluated by the Rutter and Gatsonis method. An area under curve receiver operating (AUROC) greater than 0.7 would mean a fair operative performance.22

The heterogeneity of trials was assessed by Cochran Q statistics; its effects were quantified using inconsistency (I^2). I^2 greater than 50% would mean significant heterogeneity.23

Analysis of risk of bias across studies. Asymmetry was assessed by a contour-enhanced funnel plot and by the Thompson and Sharp tests. Publication bias was fitted by the trim-and-fill method.

Additional analysis. We performed a subgroup and meta-regression analysis to assess the association between clinical setting, lung compliance, variable measured to determine fluid responsiveness, a method for indices, type of fluid, hemodynamic endpoint, outlier studies, and tidal volume used, and DOR and Log-DOR. The threshold effect was assessed by Spearman rank correlation coefficient and by the Moses-Shapiro-Littenberg method.
The data were analyzed using R version 3.4.3 with the mada and meta packages. The data are expressed as a value (95% confidence interval [CI]). \(P < .05 \) was considered statistically significant.

Results

Study selection

From a total of 255 studies, we finally retrieved 19 fulfilling all inclusion criteria and providing complete information about mechanical ventilation settings. The complete searching process is depicted in Figure 1.

Study characteristics

A total of 19 studies were incorporated in the meta-analysis; these included 18 prospective cohort studies and 1 cross-sectional study for a total of 777 patients. General characteristics are summarized in Tables 1 and 2. A total of 935 fluid challenges were performed, with an average of fluid responsiveness of 51.51%. Seven studies were performed in a surgical setting, whereas 12 were conducted in the critical care setting. Eight studies used crystalloids, 8 used colloids, and 3 used both fluids during the fluid loads. Cardiac output was determined by different methods: pulmonary artery catheter (PAC) (\(n = 7 \)), Pulse Contour Cardiac Output (PiCCO and PiCCO2) (\(n = 7 \)), ProAQT (\(n = 2 \)), PAC or PiCCO (\(n = 2 \)), and Lithium Dilution Cardiac Output (LiDCO) (\(n = 1 \)). A positive response to fluids was considered when CO, stroke volume index, or cardiac index increase >15% in 15 studies and >10% in 4 studies.

The data of sensitivity, specificity, and DOR are shown in Figures 2 to 4 and in Table 2.

Risk of bias within studies

The risk of bias was low in most of the included studies. Two studies were at high risk of bias in the item of patient selection and flow and timing (see additional Supplemental Table 1).

Syntheses of results

The cut-off point average of PPV was 10.28%. Pooled sensitivity was 0.65 (95% CI: 0.57-0.73) by the random-effects model. The pooled specificity was 0.79 (95% CI: 0.73-0.84) by the
Table 1. Select characteristics of included studies.

ORDER	AUTHORS	YEAR	SETTING	TYPE OF STUDY	SAMPLE SIZE	NO. OF FLUID CHALLENGE	METHOD FOR INDICES	INFUSION VOLUME	HEMODYNAMIC END POINT	TIDAL VOLUME, ML\(\text{kg}^{-1}\)	COMPLIANCE, ML\(\text{CM}^{2}\)H\(\text{O}^{-1}\)
1	De Backer et al.16	2005	Critically ill patients	Prospective cohort	33	33 PAC	1000mL CR or 500mL HES 10%	Increase in CI \(\geq 15\)%	6.3 (6.0-7.1)	26.0 (23.0-33.0)	
2	Huang et al.24	2008	Critically ill patients	Prospective cohort	22	22 PAC	500mL HES	Increase in CI \(\geq 15\)%	6.4 (5.7-1.7)	26.1 (18.5-33.7)	
3	Auler et al.25	2008	Post cardiac surgery	Prospective cohort	59	59 PAC	20mLkg\(^{-1}\) LR	Increase in CI \(\geq 15\)%	8.0	NR	
4	Vallée et al.26	2009	Critically ill patients	Prospective cohort	42	42 PiCCO	6mLkg\(^{-1}\) HES	Increase in CI \(\geq 15\)%	6.0 (6.2-7.3)	27.0 (23.0-35.0)	
5	Müller et al.19	2010	Critically ill patients	Prospective cohort	57	57 PAC or PiCCO	250 or 500mL saline or HES	Increase in SVI \(\geq 15\)%	6.0 (4.8-7.8) IBW	28.0	
6	Lakhal et al.19	2011	Critically ill patients	Prospective cohort?	65	65 PAC or PiCCO	500mL of gelatin	Increase in CO \(\geq 10\)%	6.9 (5.95-7.85) PBW	40.4 (24.6-56.2)	
7	Oliveira-Costa et al.27	2012	Critically ill patients	Cross-sectional observational	37	37 PAC	1000mL saline or LR or 500mL HES 6%	Increase in CI \(\geq 15\)%	6.5 (6.0-6.5) IBW	34.0 (19.0-49.0)	
8	Mormet et al.17	2012	Critically ill patients	Prospective cohort	28	28 PiCCO2	500mL saline	Increase in CI \(\geq 15\)%	7.1 (6.3-7.9) PBW	23.0 (20.0-26.0)	
9	Yazigi et al.28	2012	Post cardiac surgery	Prospective cohort	60	60 PAC	7mLkg\(^{-1}\) HES	Increase in SVI \(\geq 15\)%	8.0	NR	
10	Cecconi et al.19	2012	Post high-risk surgery	Prospective cohort	31	47 LiDCO	250mL colloid	Increase in SV \(\geq 15\)%	8.0 IBW	NR	
11	Freitas et al.20	2013	Critically ill patients	Prospective cohort	40	40 PAC	7mLkg\(^{-1}\) HES	Increase in CO \(\geq 15\)%	6.0 PBW	31.0 (23.6-37.9)	

(Continued)
ORDER	AUTHORS	YEAR	SETTING	TYPE OF STUDY	SAMPLE SIZE	NO. OF FLUID CHALLENGE	METHOD FOR INDICES	INFUSION VOLUME	HEMODYNAMIC END POINT	TIDAL VOLUME, ML·KG⁻¹	COMPLIANCE, ML·CM·H₂O⁻¹
12	Trepte et al.³¹	2013	Intraoperative high-risk surgery	Prospective cohort	24	72	PiCCO2	300 mL HES	Increase in CI ⩾ 10%	8.0	NR
13	Song et al.³²	2014	Intraoperative—cardiac surgery	Prospective cohort	40	40	PAC	6 mL·kg⁻¹ HES	Increase in SVI ⩾ 15%	8.0 IBW	NR
14	Ibarra-Estrada et al.³³	2015	Critically ill patients	Prospective cohort	19	59	PiCCO	7 mL·kg⁻¹ saline	Increase in SVI ⩾ 15%	6.0 (6.0-6.3) PBW	NR
15	Liu et al.³⁴	2016	Critically ill patients	Prospective cohort	96	96	PiCCO	500 mL saline	Increase in CO ⩾ 15%	7.0 (6.2-7.8) mL·kg⁻¹	28.0 (15.9-40.1)¹
16	Myatra et al.³⁵	2017	Critically ill patients	Prospective cohort	20	30	PiCCO	7 mL·kg⁻¹ saline	Increase in CI ⩾ 15%	6.0 (5.8-6.2) PWB	29.0 (21.0-37.0)
17	Biais et al.³⁶	2017	Intraoperative—neurosurgery	Prospective cohort	41	41	ProAQT	250 mL saline	Increase in SVI ⩾ 10%	6.8 (6.3-7.3) IBW	38.0 (28.0-48.0)
18	Biais et al.³⁷	2017	Intraoperative—neurosurgery	Prospective cohort	44	88	ProAQT	250 mL saline	Increase in SVI ⩾ 10%	6.9 (6.5-7.2) IBW	42.²
19	Yonis et al.³⁸	2017	Critically ill patients	Prospective cohort	19	19	PiCCO	500 mL LR	Increase in CI ⩾ 15%	6.0 PBW	30.0 (23.0-39.0)

Abbreviations: CI, cardiac index; CO, cardiac output; CR, crystalloid; HES, hydroxyethyl starch; IBW, ideal body weight; LR, Ringer’s lactate; NA, not available; NR: not reported; PAC, pulmonary artery catheter; PBW, predicted body weight; SV, stroke volume; SVI, stroke volume index; PPV, pulse pressure variation.

Values are expressed as pooled value (95% confidence interval) or median (IQR).

¹Calculated.
Table 2. Diagnostic performance of pulse pressure variation for prediction of fluid responsiveness in patients with tidal volume $\leq 8\, \text{mL} \, \text{kg}^{-1}$ from included studies.

ORDER	AUTHORS	YEAR	TP	N1	TN	N2	NT	SENSITIVITY (95% CI)	SPECIFICITY (95% CI)	AUC (95% CI)	THRESHOLD, %	METHOD USE TO MEASURE PPV	FLUID RESPONSIVENESS RATE, %
1	De Backer et al.	2005	7	18	10	15	33	0.39 (0.20-0.61)	0.65 (0.42-0.85)	0.71 (0.62-0.80)	PPV ≥ 12	Analysis of the monitored arterial tracing	55.00*
2	Huang et al.	2008	7	10	11	12	22	0.70 (0.40-0.89)	0.92 (0.65-0.99)	0.76	PPV ≥ 11.8	Analysis of the monitored arterial tracing	45.45
3	Auler et al.	2008	38	39	19	20	59	0.97 (0.87-1.00)	0.95 (0.76-0.99)	0.98 (0.97-0.99)	PPV $= 12$	Analysis of the monitored arterial tracing	66.10
4	Vallée et al.	2009	6	19	17	23	42	0.32 (0.15-0.54)	0.74 (0.54-0.87)	0.63 (0.45-0.81)	PPV $= 15$	Analysis of the monitored arterial tracing	46.42*
5	Muller et al.	2010	25	41	15	16	57	0.61 (0.46-0.74)	0.94 (0.72-0.99)	0.77 (0.65-0.90)	PPV $= 7$	Analysis of the monitored arterial tracing	72.00
6	Lakhal et al.	2011	19	26	33	39	65	0.73 (0.54-0.86)	0.85 (0.70-0.93)	0.75 (0.62-0.85)	PPV $= 5$	Analysis of the monitored arterial tracing	40.00
7	Oliveira-Costa et al.	2012	9	17	19	20	37	0.53 (0.31-0.74)	0.95 (0.76-0.99)	0.74 (0.56-0.90)	PPV $= 10$	Analysis of the monitored arterial tracing	44.73
8	Monnet et al.	2012	14	15	4	13	28	0.93 (0.79-0.99)	0.31 (0.13-0.58)	0.69 (0.68-0.70)	PPV $= 4$	Analysis with PiCCO2	53.57
9	Yazigi et al.	2012	33	41	14	19	60	0.80 (0.66-0.90)	0.74 (0.51-0.88)	0.85	PPV $= 11.5$	Analysis of the monitored arterial tracing	68.33
10	Cecconi et al.	2012	10	12	14	19	31	0.83 (0.55-0.95)	0.74 (0.51-0.88)	0.87 (0.76-0.99)	PPV $= 13$	Analysis with LiDCO	39.00
11	Freitas et al.	2013	17	19	19	21	40	0.89 (0.69-0.97)	0.90 (0.71-0.97)	0.91 (0.82-1.0)	PPV $= 6.5$	Analysis with computer software	47.50
12	Trepte et al.	2013	25	41	25	31	72	0.61 (0.46-0.74)	0.81 (0.64-0.91)	0.70 (0.21-0.85)	PPV $= 10.1$	Analysis with PiCCO2	57.00
13	Song et al.	2014	17	23	12	17	40	0.74 (0.54-0.87)	0.71 (0.47-0.87)	0.74 (0.58-0.90)	PPV $= 13$	Analysis with computer software	57.50
14	Ibarra-Estrada et al.	2015	15	30	23	29	59	0.5 (0.33-0.67)	0.79 (0.62-0.90)	0.63	PPV $= 14$	Analysis of the monitored arterial tracing	50.80
15	Liu et al.	2016	35	52	37	44	96	0.67 (0.54-0.78)	0.84 (0.71-0.92)	0.78 (0.69-0.86)	PPV $= 10$	Analysis with PiCCO	54.16
16	Myatra et al.	2017	12	16	13	14	30	0.75 (0.51-0.90)	0.93 (0.69-0.99)	0.91 (0.81-0.97)	PPV $= 11.5$	Analysis with computer software	53.33
17	Bias et al.	2017	12	20	18	21	41	0.60 (0.36-0.78)	0.86 (0.65-0.95)	0.75 (0.60-0.90)	PPV $= 9$	Analysis with computer ProAQT	48.78
18	Bias et al.	2017	15	28	41	60	88	0.54 (0.39-0.78)	0.68 (0.56-0.79)	0.65 (0.53-0.78)	PPV $= 10$	Analysis with computer Pulsioflex	31.81
19	Yonis et al.	2017	3	9	8	10	19	0.33 (0.12-0.65)	0.8 (0.49-0.94)	0.49 (0.21-0.77)	PPV $= 10$	Analysis with computer software	47.36

Abbreviations: n, true negative; tp, true positive; PPV, pulse pressure variation. Values are expressed as pooled value (95% confidence interval). AUC, area under curve; n1, number of patients who were positive fluid responsiveness; n2, number of patients who were negative fluid responsiveness; nt, number total of patients included. *Calculated.
random-effects model. The pooled DOR was 7.49 (95% CI: 4.50–12.45) by the random-effects model. The studies revealed moderate heterogeneity \((Q = 42.21, \text{df} = 18, P = .001; I^2 = 57.4, 95\% \text{ CI: } 28.9–74.4) \). Fitted sensitivity was 0.65 (95% CI: 0.57–0.73, \(P < .01 \)), whereas the fitted specificity was 0.79 (95% CI: 0.73–0.84, \(P < .001 \)). The AUC was 0.75 (Figure 5).

Risk of bias across studies

Two studies showed a specificity of 100%,\(^{24,35} \) and 1 study showed a sensitivity of 100%.\(^{17} \) Their specificity and sensitivity needed to decrease to values nearer to 0.9 to calculate their standard error and perform an asymmetry analysis. We found asymmetry in the contour-enhanced funnel plot (Figure 6), and
it was statistically significant ($P < .01$). The asymmetry was by publication bias; we found 4 studies with $P > .1$ versus 15 studies with $P < .1$, and then the asymmetry was fitted by the trim-and-fill method. We found a fitted DOR by the random-effects model (5.5; 95% CI: 3.08-10.01, $P < .001$; Figure 7).

Additional analysis

When we performed a subgroup and meta-regression analysis, we found that lung compliance was associated with an improvement in its operative performance (DOR = 13.14 [95% CI: 6.48-26.65, $P = .058$ by random-effects, $P = .03$ by fixed-effect]); see additional Supplemental Table 2. Neither clinical setting nor tidal volume was associated with a change in its operative performance. Also, We found 2 outlier studies25,30; these were a source of heterogeneity.

We did not find a correlation between sensitivity and specificity among the studies included ($\rho = 0.11$, $P = .63$). Moreover, the slope found by the Moses-Shapiro-Littenberg method was not statistically significant ($P = .465$).

Discussion

This systematic review and meta-analysis suggest a fair operative performance of PPV on fluid responsiveness in patients mechanically ventilated at $V_t \leq 8 \text{ mL kg}^{-1}$. Respiratory variations in stroke volume have been shown to be associated with preload dependency in mechanically ventilated patients without spontaneous breathing efforts. Pulse pressure variation could be considered, in some extent, a surrogate of stroke volume variation (SVV), and it might predict fluid responsiveness better than static indices of cardiac preload.39-41 However, SVV and PPV are generated by respiratory-induced variations, which might be limited when mechanical ventilation is provided at low tidal volumes. Thus, the reliability of PPV could be theoretically limited in mechanically ventilated patients with increased lung elastance or under conditions in which mechanical ventilation at low tidal volume is selected. Several meta-analyses assessed the operative performance of PPV as a predictor of intravenous fluid responsiveness.11-13 Nevertheless, studies incorporated in such meta-analyses included patients using a wide variety of tidal volumes. For example, Marik and collaborators included patients with $V_t > 7 \text{ mL kg}^{-1}$, whereas other authors included mechanically ventilated patients at V_t from 4.9 to 12 mL kg$^{-1}$ and even $> 8 \text{ mL kg}^{-1}$.12,13 Conversely, we focused on studies including patients ventilated at $V_t \leq 8 \text{ mL kg}^{-1}$, and we also extended the search to the perioperative setting. As
suggested by our results, PPV exhibits a fair operative performance in mechanically ventilated patients at such tidal volumes. Surprisingly, such operative performance was not as bad as expected, which suggests that some patients included in the studies should be highly preload dependent. Thus, although some physicians could consider the sensitivity and specificity of the PPV as low in this clinical setting, PPV can retain some capacity to predict fluid responsiveness in cases of a high preload dependence in patients ventilated with a tidal volume $\leq 8 \text{ mL kg}^{-1}$.

Variations in Vt influences PPV. 42 De Backer et al suggested that low Vt ($\leq 8 \text{ mL kg}^{-1}$) decreases the operative performance of PPV to predict fluid responsiveness, 16 whereas other studies have shown different results. 24,26,28,30 Our meta-analysis confirms a fair performance of PPV to predict fluid responsiveness when mechanical ventilation is set at Vt $\leq 8 \text{ mL kg}^{-1}$. However, some strategies could improve such performance, and although these are out of the scope of this meta-analysis, we can mention the adjusting of PPV by the changes in pleural pressure 14 and the use of “tidal volume challenges” consisting in transitory increases in Vt to evaluate variations in PPV. 35 Nevertheless, such transitory increments of Vt could be not harm-free, and there are no broad data confirming its reliability.

So, the practical question would be, “What can we do to predict fluid responsiveness in mechanically ventilated patients with tidal volumes lower than 8 mL kg$^{-1}$?” One possibility would be using low cut-offs for PPV to identify responders and nonresponders such as suggested by De Backer et al. 16 However, lower cut-offs might be more profoundly influenced by small errors in measurements. Another possibility might be to consider the traditional cut-off values (ie, 12%), expecting a low sensitivity but a convenient specificity. 24 Unfortunately, data showed in the studies included in our meta-analysis do not provide sufficient information to conduct additional analysis using different cut-off points.

Significant limitations or advantages can result from different statistical strategies to perform meta-analyses, comparing the efficacy of diagnostic tests. 43,44 We found moderate heterogeneity between studies, which decreased when we removed 2 outlier ones. Importantly, we did not find another source to clinical heterogeneity by analysis of subgroups and meta-regression; also, we did not find a threshold effect and methodological heterogeneity because, within the quality assessment of the included studies, the risk of bias was low in most of them. All of these reflect the strength of our results.

Future investigations should resolve some questions about the predictors of fluid intravenous responsiveness in patients under protective ventilatory strategies and limited respiratory system and lung elastance.
Conclusions
Our meta-analysis shows a fair operative performance of PPV as a predictor of intravascular fluid responsiveness in critical care and perioperative patients ventilated with a tidal volume ≤8 mL kg⁻¹ without respiratory effort and arrhythmias.

Author Contributions
JIAS contributed to design, performed the literature review, acquisition of data, statistical analysis, interpretation of data, and wrote the manuscript. JDCR contributed to design, performed the literature review, acquisition of data, interpretation of data, and wrote the paper. LECM contributed to design, interpretation of data, and wrote the paper.

ORCID iD
Jorge Iván Alvarado Sánchez https://orcid.org/0000-0003-4320-3150

Supplemental Material
Supplemental material for this article is available online.

REFERENCES
1. Vincent J, De Backer. Circulatory shock. *N Engl J Med*. 2013;41:580-627.
2. Kelm DJ, Perrin JT, Cartin-Ceba R, Gajic O, Schenck L, Kennedy CC. Fluid overload in patients with severe sepsis and septic shock treated with early goal-directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death. *Shock*. 2015;43:68-73.
3. Sakr Y, Rubatto-Bieli PN, Kothe K, et al. Higher fluid balance increases the risk of death from sepsis: results from a large international audit. *Crit Care Med*. 2017;45:385-394.
4. CooperSmith CM, De Backer D, Deutschman CS, et al. Surviving sepsis campaign: research priorities for sepsis and septic shock. *Crit Care Clin*. 2018;44:1334-1356.
5. Alvarado Sanchez JI, Amaya Zuniga WF, Monge Garcia M. Predictors to intravascular fluid responsiveness. *J Intensive Care Med*. 2018;33:227-240.
6. Simmons RS, Berdine GG, Seidenfeld JJ, et al. Fluid balance and the adult respiratory distress syndrome. *Am Rev Respir Dis*. 1987;135:924-929.
7. Mitchell JP, Schuller D, Calandrino FS, Schuster DP. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. *Am Rev Respir Dis*. 1992;145:990-999.
8. Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid management methods in acute lung injury. *N Engl J Med*. 2006;354:2564-2575.
9. Bednarz JKM, Fridfinnson JA, Kumar A, et al. Incorporating dynamic assessment of fluid responsiveness into goal-directed therapy. *Crit Care Med*. 2017;45:1538-1545.
10. Cecconi M, Corredor C, Arulkumaran N, et al. Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. *Crit Care*. 2013;17:209.
11. Marki PE, Cavazzali R, Vasi T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. *Crit Care Med*. 2009;37:244-267.
12. Hong J-Q, He H-F, Chen Z-Y, et al. Comparison of stroke volume variation with pulse pressure variation as a diagnostic indicator of fluid responsiveness in mechanically ventilated critically ill patients. *Saudi Med J*. 2014;35:261-268.
13. Yang X, Du B. Does pulse pressure variation predict fluid responsiveness in critically ill patients: a systematic review and meta-analysis. *Crit Care*. 2014;18:60-613.
14. Walkey AJ, Del Sorbo L, Hodgson CL, et al. Higher PEEP versus lower PEEP strategies for patients with acute respiratory distress syndrome. *Ann Am Thorac Soc*. 2017;14:297-5303.
15. Serpa Neto A, Hennemuth A, SNT, Barba CSV, et al. Protective versus conventional ventilation for surgery. *Anesthesiology*. 2015;123:66-78. http://content.weakhealth.com/linkback/openurl?sid=WKPTTPLandtingpage&can=0000542-201507000-00019.
16. De Backer D, Heenen S, Pignanelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. *Intensive Care Med*. 2005;31:517-523.
17. Monnet X, Bleibtreu A, Ferrer A, et al. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance. *Crit Care Med*. 2012;40:152-157.
18. Muller L, Louvat G, Bouquet P-J, et al. The influence of the airway driving pressure on pulse pressure variation as a predictor of fluid responsiveness. *Intensive Care Med*. 2012;38:496-503.
19. Lakhal K, Ehrmann S, Benzekri-Lefèvre D, et al. Respiratory pulse pressure variation fails to predict fluid responsiveness in acute respiratory distress syndrome. *Crit Care*. 2011;15:855.
20. PRISMA. Transparent reporting of systematic reviews and meta-analyses. PRISMA Checklist. http://prisma-statement.org/prismastatement/Checklist.asp. Updated 2009.
21. Whiting PF, Rutjes AW, Westwood M, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. *Ann Intern Med*. 2011;155:529-536.
22. Fischer JE, Bachmann LM, Jaeschke R. A reader’s guide to the interpretation of diagnostic test properties: clinical example of sepsis. *Intensive Care Med*. 2005;29:1043-1051.
23. Hucol-Medina TB, Sánchez-Meca J, Martín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q-statistic or I² Index? *Psychol Methods*. 2006.
24. Huang C-C, Fu J-Y, Hu H-C, et al. Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end-expiratory pressure. *Crit Care Med*. 2006;34:2810-2816.
25. Auler JO Jr, Galas F, Barbas L, Carvalho T, Michaud F. Online monitoring of pulse pressure variation to guide fluid therapy after cardiac surgery. *Anesth Analg*. 2008;106:1201-1206.
26. Vallée F, Richard JC, Mari A, et al. Pulse pressure variations adjusted by alveolar driving pressure to assess fluid responsiveness. *Intensive Care Med*. 2009;35:1004-1010.
27. Oliveira-Costa C, Friedman G, Vieira S, Fialkow L. Pulse pressure variation and prediction of fluid responsiveness in patients ventilated with low tidal volumes. *Clinics (Sao Paulo)*. 2012;67:773-778.
28. Yazigi A, Khoury E, Hlias S, et al. Pulse pressure variation predicts fluid responsiveness in elderly patients after coronary artery bypass graft surgery. *J Cardiothorac Vasc Anesth*. 2012;26:387-390.
29. Cecconi M, Monti G, Hamilton MA, et al. Efficacy of functional hemodynamic parameters power analysis in surgical patients. *Minerva Anestesiol*. 2007;73:527-533.
30. Freitas FGR, Bafl AT, Nascente AP, et al. Predictive value of pulse pressure variation for fluid responsiveness in septic patients using lung-protective ventilative strategies. *Br J Anaesth*. 2013;110:402-408.
31. Trepte CJC, Eichhorn V, Haas SA, et al. Comparison of an automated respiratory systolic variation test with dynamic preload indicators to predict fluid responsiveness after major surgery. *Br J Anaesth*. 2013;111:736-742.
32. Song Y, Kwak YL, Song JW, Kim YJ, Shin JK. Respiriophasic carotid artery peak velocity variation as a predictor of fluid responsiveness in mechanically ventilated patients with coronary artery disease. *Br J Anaesth*. 2014;113:63-66.
33. Ibarra-Estrada M, Lopez-Pulgarin JA, Mijangos-Mendez JC, Diaz-Gomez JL, Aguirre-Avalos G. Respiratory variation in carotid peak systolic velocity predicts volume responsiveness in mechanically ventilated patients with septic shock: a prospective cohort study. *Circ Ultrasonas*. 2015;7:29-29.
34. Liu Y, Wei L, Li G, Yu X, Li G, Li Y. Pulse pressure variation adjusted by respiratory changes in pleural pressure, rather than by tidal volume, reliably predicts fluid responsiveness in patients with acute respiratory distress syndrome. *Crit Care Med*. 2016;44:342-352.
35. Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul J. The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge” reliably predict fluid responsiveness during low tidal volume ventilation. *Crit Care Med*. 2017;45:415-421.
36. Biasi M, Langhi M, Henriot J, de Courson H, Sesay M, Noutre-Gaulain K. End-expiratory occlusion test predicts fluid responsiveness in patients with protective ventilation in the operating room. *Anesth Analg*. 2017;125:1889-1895.
37. Biasi M, de Courson H, Lanchon R, et al. Mini-fluid challenge of 100 mL of crystalloid predicts fluid responsiveness in the operating room. *Anesthesiology*. 2017;127:450-456.
38. Yonis H, Birker L, Aublanc M, et al. Change in cardiac output during Trendelenburg maneuver is a reliable predictor of fluid responsiveness in patients with acute respiratory distress syndrome in the prone position under protective ventilation. *Crit Care Med*. 2017;45:295-212.
39. Michaud F, Bousset S, Chemla D, et al. Relationship between respiratory changes in arterial pulse pressure and fluid responsiveness in septic. *Am J Respir Crit Care Med*. 2000;162:134-138.
40. Michaud F, Teboul J. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. *Crit Care*. 2012;16:2090-2098.
41. Michaud F. Changes in arterial pressure during mechanical anesthesia. *Anesthesiology*. 2005;103:34-36.
42. Reuter D, Bayerlein J, Goepfert MSG, et al. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. *Intensive Care Med*. 2003;29:476-480.
43. Gatoson C, Palwai P. Meta-analysis of diagnostic and screening test accuracy evaluations: methodologic approach. *AJR Am J Roentgenol*. 2006;187:271-281.
44. Botella J, Huang H. Procedimientos para realizar meta-analisis de la precision de instrumentos de clasificacion binaria. *Psicothema*. 2012:24:133-141.