Bivalirudin versus unfractionated heparin: a meta-analysis of patients receiving percutaneous coronary intervention for acute coronary syndromes

Mohamed Farag,1,2 Diana A Gorog,1,2,3 Abhiram Prasad,4 Manivannan Srinivasan1

ABSTRACT

Objective: Acute coronary syndrome (ACS) encompasses ST segment elevation myocardial infarction (STEMI), with generally high thrombus burden and non-ST segment elevation ACS (NSTE-ACS), with lower thrombus burden. In the setting of percutaneous coronary intervention (PCI) for ACS, bivalirudin appears superior to unfractionated heparin (UFH), driven by reduced major bleeding. Recent trials suggest that the benefit of bivalirudin may be reduced with use of transradial access and evolution in antithrombotic therapy. Moreover, a differential role of bivalirudin in ACS cohorts is unknown.

Methods: A meta-analysis of randomised trials comparing bivalirudin and UFH in patients with ACS receiving PCI, with separate analyses in STEMI and NSTE-ACS groups. Overall estimates of treatment effect were calculated with random-effects model.

Results: In 5 trials of STEMI (10 358 patients), bivalirudin increased the risk of acute stent thrombosis (ST) (OR 3.62; CI 1.95 to 6.74; p<0.0001) compared with UFH. Bivalirudin reduced the risk of major bleeding only when compared with UFH plus planned glycoprotein IIb/IIIa inhibitors (GPI) (OR 0.49; CI 0.36 to 0.67; p<0.0001). In 14 NSTE-ACS trials (25 238 patients), there was no difference between bivalirudin and UFH in death, myocardial infarction or ST. However, bivalirudin reduced the risk of major bleeding compared with UFH plus planned GPI (OR 0.52; CI 0.43 to 0.62; p<0.0001), or UFH plus provisional GPI (OR 0.68; CI 0.46 to 1.01; p=0.05). The reduction in major bleeding with bivalirudin was not related to vascular access site.

Conclusions: Bivalirudin increases the risk of acute ST in STEMI, but may confer an advantage over UFH in NSTE-ACS while undergoing PCI, reducing major bleeding without an increase in ST.

BACKGROUND

Bivalirudin is an intravenous direct thrombin inhibitor that is widely used in the setting of percutaneous coronary intervention (PCI) for acute coronary syndrome (ACS).1 2 Randomised trials have demonstrated that bivalirudin is superior to unfractionated heparin (UFH) in reducing net adverse cardiac events, mainly due to a reduction in major bleeding.3-5 This is an important consideration since bleeding related to PCI has been associated with significant deleterious short-term and long-term consequences.6-8 However, over the past decade, the rates of major or clinically significant bleeding have

KEY QUESTIONS

What is already known about this subject?

▸ The use of bivalirudin during percutaneous coronary intervention (PCI) has been the subject of much debate recently.

What does this study add?

▸ Our meta-analysis should help clinicians when selecting a periprocedural anticoagulant in different acute coronary syndrome (ACS) cohorts undergoing PCI (ie, in ST segment elevation myocardial infarction (STEMI) vs non-ST segment elevation (NSTE) ACS).

How might this impact on clinical practice?

▸ This will probably have a great impact on clinical practice as this meta-analysis suggests that in patients with STEMI, with generally high thrombus burden and with the increasing use of transradial approach and more potent oral antithrombotic therapy, bivalirudin does not appear to be superior to unfractionated heparin, especially with provisional use of glycoprotein IIb/IIIa inhibitors (GPI) as currently recommended. In comparison, in patients with NSTE-ACS with lower thrombus burden, our meta-analysis suggests that bivalirudin may be superior to unfractionated heparin with provisional GPI use with regard to bleeding risk, but does not reduce risk of ischaemic events.
decreased markedly as a result of innovations in PCI, including the increasing use of transradial vascular access and modifications in adjunct pharmacotherapy. With respect to the latter, introduction of potent oral antplatelet agents have decreased the routine use of glycoprotein IIb/IIIa inhibitors (GPI) in ACS, with current opinion favouring their use in patients with large thrombus burden, insufficient oral antplatelet therapy, or as a bailout for complications.9 Perhaps, as a result of this evolution in clinical practice, recent trials suggest that the previous benefit observed with bivalirudin may be substantially reduced in the contemporary PCI setting.10-11

Several trials of bivalirudin have reported a small increase in the risk of myocardial infarction (MI) and/or stent thrombosis (ST) in patients with ACS undergoing PCI.4,5,12-13 However, the study designs were not directly comparable as some of these trials used routine GPI in the UFH arm compared with provisional GPI use in the bivalirudin arm.5,12-13 Thus, the net clinical benefit of bivalirudin use is likely to depend on the relative risk of ischaemic versus bleeding complications.

The main beneficial effect of potent antithrombotic therapy would be expected in the setting of large thrombus burden. Since ACS comprises of both ST segment elevation MI (STEMI), with generally high thrombus burden and non-ST segment elevation ACS (NSTE-ACS), with lower thrombus burden,14 there is a need to assess the differential clinical benefit of bivalirudin versus UFH in these two groups. We, therefore, sought to evaluate the effects of bivalirudin compared with UFH on ischaemic and bleeding outcomes, with particular focus on the differential role in patients predominantly with STEMI versus NSTE-ACS.

METHODS

The study was designed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) Statement.15 Inclusion criteria were randomised controlled trials comparing the effects of bivalirudin and UFH, including those with multiple arms. Trials that involved a bolus of low-molecular-weight heparin or fondaparinux at baseline and before randomisation were also included. Trials were restricted to those studying patients predominantly with STEMI or NSTE-ACS, who underwent PCI. Since ACS encompasses a wide spectrum of disease, the trials referred to as STEMI also included some patients with non-STEMI (NSTEIMI), and NSTE-ACS trials also included patients with stable angina undergoing elective PCI. However, similar treatment strategies were employed for all patients in these trials. Exclusion criteria were as follows: studies that used fibrinolytic therapy, studies that used balloon angioplasty only, studies that primarily addressed dosing or timing issues, small studies including ≤ 50 patients, studies that included patients with stable angina only, and studies that reported no clinical outcomes (see online supplementary figure S1).

The PubMed/Medline, Embase, Scopus and Cochrane Central Register of Controlled Trials databases were searched until March 2015, without language restrictions. Eligible studies were identified with the following search terms: bivalirudin, Angiomax, Hirulog, heparin, anticoagulation, primary percutaneous coronary intervention, percutaneous coronary intervention, coronary intervention, coronary angioplasty, stent, acute coronary syndrome, myocardial infarction, unstable angina, randomly, random and randomised controlled trial. We also searched reference lists of the retrieved articles to identify other eligible studies. Online oral presentations and expert slide presentations were also examined.

Two investigators independently reviewed all titles, or titles and abstracts from the search results to identify articles according to full inclusion criteria. Selected trials were compared, and disagreement was resolved by team discussion and consensus. Data extraction was carried out independently and in duplicate by the study investigators. Results of data extraction were then compared, and discrepancies resolved by discussion. If results were incomplete or unclear, the study authors were contacted. Articles finally selected for the review were checked to avoid inclusion of data published in duplicate. Relevant data was collected on baseline characteristics, and clinical outcomes at baseline and end of follow-up. We investigated efficacy end points of death, MI (including Q wave and non-Q wave), early ST elevation in the CK-MB assay, and any revascularisation. The primary outcomes and definition of major bleeding for each trial is listed in online supplementary table S1.

Relevant studies were stratified according to the population studied into predominantly STEMI versus predominantly NSTE-ACS. For the purposes of the meta-analysis, results are presented for each ACS cohort independently. Where both ACS cohorts were studied with distinct results, the respective groups were analysed separately. Likewise, for trials in which there were three arms based on GPI use, major bleeding comparisons were analysed separately.

Statistical analysis

Outcomes are presented as ORs with 95\% CIs. Pooled OR were calculated using a random-effects model by the method of DerSimonian and Laird.16 Heterogeneity was assessed using χ^2 and I2 tests. All analyses were performed with the intention-to-treat principle. We stratified results by key trial characteristics, including type of ACS (predominantly STEMI vs predominantly NSTE-ACS) and use of GPIs (predominantly planned in the UFH arm vs provisional in the bivalirudin arm, provisional in both arms, or planned in both arms). In sensitivity analysis, where possible, we included only trials which included patients predominantly with NSTEIMI. We did
Table 1 Characteristics of predominantly STEMI studies

Study	Patients (n)	PCI (%)	Bivalirudin (n)	UFH (n)	Bivalirudin design	UFH design	Female (%)	Mean age (year)	Follow-up (days)	GPI use (%)	Transradial (%)	
HORIZONS-AMI, 2008¹³	3602	93	1800	1802	Intravenous bolus of 0.75 mg/kg followed by an infusion of 1.75 mg/kg/h	Intravenous bolus of 60 U/kg with subsequent boluses targeted to ACT of 200–250 s	23	60	30	8	98	6
EUROMAX, 2013⁹	2218	86	1089	1109	Intravenous bolus of 0.75 mg/kg followed by an infusion of 1.75 mg/kg/h	Intravenous bolus of 100 U/kg without GPI or 60 U/kg with GPI	24	62	30	12	69	47
Heat-PPCI, 2014¹⁰	1812	82	905	907	Intravenous bolus of 0.75 mg/kg followed by infusion of 1.75 mg/kg/h and GPI	Intravenous bolus of 70 U/kg with subsequent boluses if ACT values were <200 s	28	63	28	13	15	81
BRIGHT*, 2015¹⁷	2178	97	729	1449	Intravenous bolus of 0.75 mg/kg, followed by a continuous infusion of 1.75 mg/kg/h if ACT was <225 s, an additional bolus of 0.3 mg/kg was added	Intravenous bolus of 100 U/kg without GPI or 60 U/kg with GPI, with subsequent boluses if ACT values were <200 s	18	58	30	4	53	79
BRAVE 4, 2014¹¹	548	92	271	277	Intravenous bolus of 0.75 mg/kg followed by an infusion of 1.75 mg/kg/h	Intravenous bolus of 70–100 U/kg with subsequent boluses according to ACT	23	61	30	3	6	<1

*The trial involved three arms: bivalirudin alone, UFH alone, and UFH plus GPI.

ACT, activated clotting time; GPI, glycoprotein IIb/IIIa inhibitors; PCI, percutaneous coronary intervention; STEMI, ST segment elevation myocardial infarction; UFH, unfractionated heparin.
Study	Patients (n)/population	PCI (%)	Bivalirudin (n)	UFH (n)	Bivalirudin design	UFH design	Female (%)	Mean age (year)	Follow-up (days)	GPI use (%)	Transradial (%)	
REPLACE-2, 2003	6010	98	2999	3011	Intravenous bolus of 0.75 mg/kg, followed by a continuous infusion of 1.75 mg/kg/h	Intravenous bolus of 65 U/kg	26	63	30	7	97	0
REPLACE-1, 2004	1056	100	532	524	Intravenous bolus of 0.75 mg/kg, followed by a continuous infusion of 1.75 mg/kg/h	Intravenous bolus of 60–70 U/kg adjusted to achieve and maintain an ACT of 200–300 s	30	64	2	71	73	3
PROTECT-TIMI 30, 2006	857	100	284	573	Intravenous bolus of 0.75 mg/kg, followed by a continuous infusion of 1.75 mg/kg/h with additional boluses to maintain ACT>200 s	Intravenous bolus of 50 U/kg adjusted to achieve and maintain an ACT of 200–250 s	33	60	2	3	99	NR
ACUITY-PCI*, 2007	7789	100	5228	2561	Intravenous bolus of 0.1 mg/kg and an infusion of 0.25 mg/kg/h. An additional intravenous bolus of 0.5 mg/kg was administered before PCI, and the infusion was increased to 1.75 mg/kg/h	Intravenous bolus of 60 U/kg followed by an infusion of 12 U/kg/h to achieve and maintain an ACT of 200–250 s	27	63	30	53	97	6
ARNO, 2008	850	86	425	425	Intravenous bolus of 0.75 mg/kg, followed by a continuous infusion of 1.75 mg/kg/h	Intravenous bolus of 100 U/kg with or without additional boluses to achieve an ACT of 250–300 s	24	69	30	NR	NR	2
ISAR-REACT 3, 2008	4570	100	2289	2281	Intravenous bolus of 0.75 mg/kg, followed by a continuous infusion of 1.75 mg/kg/h	Intravenous bolus of 140 U/kg followed by a placebo infusion for the duration of the procedure	24	67	30	<1	<1	68

Continued
Study	Patients (n)/population	PCI (%)	Bivalirudin (n)	UFH (n)	Bivalirudin design	UFH design	Female (%)	Mean age (year)	Follow-up (days)	GPI use (%)	Transradial Bivalirudin (%)	Transradial UFH (%)
NAPLES, 2009	335	Elective or urgent PCI	100	167	168 Intravenous bolus of 0.75 mg/kg, followed by a continuous infusion of 1.75 mg/kg/h with additional boluses to maintain ACT>250 s	Intravenous bolus of 70 U/kg with additional boluses to maintain ACT>250 s	35	65	30	1	100	3
TENACITY, 2011	383	Elective or urgent PCI	100	185	198 Intravenous bolus of 0.75 mg/kg, followed by a continuous infusion of 1.75 mg/kg/h	Intravenous bolus of 70 U/kg adjusted to achieve and maintain an ACT of 225 s	27	63	30	100	100	NR
ISAR-REACT 4, 2011	1721	NSTEMI	100	860	861 Intravenous bolus of 0.75 mg/kg, followed by a continuous infusion of 1.75 mg/kg/h	Intravenous bolus of 70 U/kg	23	68	30	0	100	1
ARMYDA-7 BIVALE, 2012	401	Elective or urgent PCI	93	198	203 Intravenous bolus of 0.75 mg/kg, followed by a continuous infusion of 1.75 mg/kg/h	Intravenous bolus of 75 U/kg	28	70	30	12	14	2
Deshpande et al	101	Elective or urgent PCI	100	49	52 Intravenous bolus of 0.75 mg/kg, followed by a continuous infusion of 1.75 mg/kg/h	Intravenous bolus of 70 U/kg followed by an infusion of 20 U/kg/h to achieve and maintain an ACT of 200–250 s	13	56	30	0	100	0
SWITCH III, 2013	100	NSTEMI	98	51	49 Intravenous bolus of 0.75 mg/kg, followed by a continuous infusion of 1.75 mg/kg/h	Intravenous bolus of 60 U/kg with subsequent boluses to maintain an ACT>200 s	32	63	30	4	12	68
Xiang et al	218	UA or elective PCI	100	110	108 Intravenous bolus of 0.75 mg/kg, followed by a continuous infusion of 1.75 mg/kg/h	Intravenous bolus of 130 U/kg. If ACT was <225 s, an additional bolus of 0.3 mg/kg was added	17	58	30	1	4	25

Continued
meta-regression to examine the following relations: (1) the log-transformed OR of the effect of bivalirudin on major bleeding and log-transformed OR of the effect of bivalirudin on mortality, (2) the log-transformed OR of the effect of bivalirudin on major bleeding and where possible, the trial reported percentage of the use of transradial approach.

Publication bias was minimised by a comprehensive literature search. In addition, a graphical display (funnel plot) of the size of the treatment effect against the precision of the trial (1/SE) was used to investigate publication bias. All tests were two-sided, and statistical significance was fixed at 0.05 level. Analysis was carried out using Review Manager Software (RevMan V.5.3) and Stata V.11.2 (StataCorp, College Station, Texas, USA).

RESULTS
We identified 32 randomised trials comparing the effects of bivalirudin and UFH, and involving patients with ACS undergoing PCI. Of these, 19 trials involving 35,596 patients, that met the inclusion and exclusion criteria, were included in the meta-analysis. The methodological quality of included studies is described in online supplementary table S2. The primary outcomes of each trial are listed in online supplementary table S1. Most trials used a major bleeding definition based on either REPLACE-2 or ACUITY. There was no evidence of publication bias having a significant effect on the results (eg, see online supplementary figures S2 and S3).

The characteristics of individual STEMI trials are listed in table 1. Five trials enrolled 10,358 patients predominantly with STEMI,5 10 11 13 17 in which 82–97% underwent PCI. The characteristics of individual NSTE-ACS trials are listed in table 2. Four trials predominantly enrolled patients with NSTEMI,4 12 15 19 and 10 trials predominantly enrolled patients with urgent or elective PCI for unstable or stable angina.3 20–28 In total, across the 14 NSTE-ACS trials, 24,979 (98.9%) of 25,238 patients underwent PCI. Bivalirudin doses were similar across all included trials (intravenous bolus of 0.75 mg/kg followed by an infusion of 1.75 mg/kg/h). UFH doses ranged between 50 U/kg, as in TENACITY24 and PROTECT-TIMI 30, 18 and up to 140 U/kg, as in ISAR-REACT 3,22 with a median dose of 70 U/kg across all included trials.

In STEMI, there was no difference in the risk of death (OR 0.91; CI 0.72 to 1.15; p=0.42) (figure 1A), MI (OR 1.44; CI 0.90 to 2.30; p=0.12) (figure 1B), any ST (OR 1.65; CI 0.89 to 3.07; p=0.11) (figure 2A), or subacute ST (OR 0.86; CI 0.47 to 1.60; p=0.64) (figure 2C) between the two drugs. As compared with UFH, bivalirudin increased the risk of acute ST (OR 3.62; CI 1.95 to 6.74; p<0.0001) (figure 2B). Major bleeding was less with bivalirudin plus provisional GPI compared with UFH plus planned GPI (OR 0.49; CI 0.36 to 0.67; p<0.0001) (figure 3A). However, there was no
difference in the risk of major bleeding when both drugs were combined with provisional GPI (OR 0.98; CI 0.59 to 1.63; p=0.93) (Figure 3B).

In NSTE-ACS, there was no difference between bivalirudin and UFH in the risk of death (OR 0.96; CI 0.64 to 1.45; p=0.86), MI (OR 1.09; CI 0.98 to 1.21; p=0.11), or any ST (OR 1.20; CI 0.84 to 1.70; p=0.31) (Figure 4).

Two NSTE-ACS trials reported no significant difference between bivalirudin and UFH in the risk of acute and subacute ST.21 25 Bivalirudin plus provisional GPI

Figure 1 Death, myocardial infarction with bivalirudin versus unfractionated heparin (UFH) in predominantly ST segment elevation myocardial infarction (STEMI) studies; (A) death, (B) myocardial infarction.

Figure 2 Any, acute and subacute stent thrombosis with bivalirudin versus unfractionated heparin (UFH) in predominantly ST segment elevation myocardial infarction (STEMI) studies; (A) any stent thrombosis, (B) acute stent thrombosis (<24 h), and (C) subacute stent thrombosis (≥24 h to 30 days).
reduced the risk of major bleeding compared with UFH
plus planned GPI (OR 0.52; CI 0.43 to 0.62; p<0.00001)
(figure 5A). Also, bivalirudin reduced the risk of major
bleeding compared with UFH, with provisional use of
GPI in both arms (OR 0.68; CI 0.46 to 1.01; p=0.05)
(figure 5B). However, there was no difference in the
risk of major bleeding when either drug was combined
with planned GPI (OR 0.94; CI 0.57 to 1.53; p=0.79)
(figure 5C). The results observed in NSTE-ACS were
also observed within the group of trials that enrolled
patients predominantly with NSTEMI (see online supple-
mentary figure S4).

There was no significant relation between the reduc-
tion in bleeding with bivalirudin and mortality across all
trials (p=0.96; see online supplementary figure S5). Also,
there was no significant relation between the reduction
in bleeding with bivalirudin and the use of transradial
approach across all trials (p=0.49; see online supplementary
figure S6), in predominantly STEMI trials (p=0.61),
or in predominantly NSTE-ACS trials (p=0.15).

DISCUSSION

The use of bivalirudin during PCI has been the subject
of much debate recently. Most evidence of benefit was
obtained when bivalirudin monotherapy was compared
with a combination therapy of UFH plus GPI.
Therefore, the differing benefits seen with bivalirudin
and UFH in PCI may be in part related to the differential
rates of GPI use. In this meta-analysis of 19 trials
involving 35 596 patients, we found that bivalirudin may
confer an advantage over UFH in patients with
NSTE-ACS undergoing PCI, while this was not so in
patients with STEMI. This difference is attributable to
substantially increased risk of acute ST in STEMI-treated
patients and not in NSTE-ACS. Moreover, bivalirudin
use was associated with a significant reduction in major
bleeding in NSTE-ACS but not in STEMI, when com-
pared with UFH and provisional GPI use in both arms.

There was no significant difference in the incidence of
death, MI, or any ST between bivalirudin and UFH
-treated patients for both types of ACS.

The potential advantage of bivalirudin on bleeding
risk was significantly affected by the strategy for con-
comitant GPI use. Overall, bivalirudin monotherapy con-
sistently reduced the risk of bleeding in both ACS
cohorts compared with UFH plus planned GPI. In con-
trast, when the use of GPI was provisional in bivalirudin
and UFH arms, a benefit of bivalirudin use was observed
in NSTE-ACS but not in STEMI. This may be in part
due to the fact that the studies in NSTE-ACS included
ISAR-REACT 322 (figure 5B), in which a very high bolus
dose of UFH (140 U/kg) was used, resulting in more
bleeding outcomes in the UFH arm. Also, the transra-
dial approach was used more in STEMI than in
NSTE-ACS trials (43% vs 15%, p=0.09), an approach
associated with overall reduced bleeding29 30 and there-
fore, perhaps negating the reduction in bleeding that
may have been observed with bivalirudin had a transfe-
moral approach been used. However, in contrast to what
one might expect, our meta-analysis suggests that the
relative reduction in major bleeding with bivalirudin was
probably non-vascular access site related and did not
seem to depend on the transradial approach use across
all included trials (p=0.49), or in independent ACS
cohorts (STEMI (p=0.61) versus NSTE-ACS (p=0.15)).

In five NSTE-ACS studies, when GPI was planned in
both arms, there was no difference in the risk of major
bleeding.

Our findings are further supported by the recently
conducted MATRIX trials, which showed that transradial
compared with transfemoral access reduced net adverse
clinical events through a reduction in all-cause mortality
and major bleeding in 8404 patients with ACS

Figure 3 Major bleeding with bivalirudin versus unfractionated heparin (UFH) in predominantly ST segment elevation
myocardial infarction (STEMI) studies; (A) glycoprotein IIb/IIIa inhibitors (GPI) predominantly provisional in the bivalirudin arm
versus planned use in the heparin arm, and (B) provisional GPI use in both arms.
undergoing PCI. In a parallel trial to assess antithrombotic effects, about 95% of 7213 patients with ACS (56% STEMI and 44% NSTE-ACS) were also randomised to bivalirudin or UFH with provisional GPI use (4.6% in bivalirudin group vs 26% in UFH group). Reduction in all-cause mortality was seen with bivalirudin (1.7% vs 2.3%; risk ratio (RR) 0.71; 95% CI 0.51 to 0.99), which was probably due to a reduction in major bleeding (1.4% vs 2.5%; RR 0.55; 95% CI 0.39 to 0.78), importantly with an independent bivalirudin impact on bleeding not related to the vascular access site. The rate of definite ST was higher with bivalirudin compared with UFH (1.0% vs 0.6%; RR 1.71; 95% CI 1.00 to 2.93). In contrast to our findings, although there has not been yet a published subgroup analysis of the MATRIX antithrombotic trial, the authors state that the findings were consistent across various subgroups (ie, STEMI vs NSTE-ACS).

In theory, continued bivalirudin infusion after PCI might decrease the risk of acute ST in patients with STEMI. The MATRIX optical coherence tomography (OCT) substudy will provide data on whether prolonged bivalirudin infusion, compared with intraprocedural-only

Figure 4 Death, myocardial infarction and any stent thrombosis with bivalirudin versus unfractionated heparin (UFH) in predominantly non-ST segment elevation acute coronary syndrome (NSTE-ACS) studies; (A) death, (B) myocardial infarction, and (C) any stent thrombosis.
administration in patients undergoing PCI, reduces the initial increase in ST (residual thrombosis on stent struts) as evaluated by OCT at the end of PCI and at 3–5 days follow-up.33

Our findings, which incorporate data from recent trials, should help clinicians when selecting a periprocedural anticoagulant in different ACS cohorts undergoing PCI. In patients with STEMI, with generally high thrombus burden and with the increasing use of transradial approach and more potent oral antiplatelet therapy, bivalirudin does not appear to be superior to UFH, especially with provisional use of GPI as currently recommended. In comparison, in patients with NSTE-ACS with lower thrombus burden, our meta-analysis suggests that bivalirudin may be superior to UFH with provisional GPI use with regard to bleeding risk, but does not reduce risk of ischaemic events. The results of future trials of bivalirudin should provide more understanding of the clinical outcomes with this antithrombotic drug in different ACS cohorts undergoing PCI.

Study limitations
Our meta-analysis has several limitations. First, most trials in NSTE-ACS included a considerable proportion of patients with stable angina undergoing elective PCI. This cohort was also included in our study, as the trials did not report a separate analysis for the ACS cohort. That being said, similar treatment strategies were allowed for patients with stable angina in these trials. Second, we were unable to gain full access to the MATRIX antithrombotic trial subgroup results to include in the meta-analysis section. Third, UFH doses were different across the trials, which may have impacted on differential bleeding outcomes in the ACS cohorts studied. Fourth, the trials included had differences in vascular access, drug design and definitions. Finally, the results of this meta-analysis are derived from study-level data and not from patient-level data. Additionally, one trial had been presented but not published.21 Also, many of the trials included were open label with a potential for high performance bias. Finally, most of the large studies were conducted in developed western countries and thus, may not be generalisable to other healthcare settings.

CONCLUSIONS
Although in STEMI, bivalirudin is associated with an increased risk of acute ST, it may confer an advantage in patients undergoing PCI, reduces the initial increase in ST (residual thrombosis on stent struts) as evaluated by OCT at the end of PCI and at 3–5 days follow-up.33

Our findings, which incorporate data from recent trials, should help clinicians when selecting a periprocedural anticoagulant in different ACS cohorts undergoing PCI. In patients with STEMI, with generally high thrombus burden and with the increasing use of transradial approach and more potent oral antiplatelet therapy, bivalirudin does not appear to be superior to UFH, especially with provisional use of GPI as currently recommended. In comparison, in patients with NSTE-ACS with lower thrombus burden, our meta-analysis suggests that bivalirudin may be superior to UFH with provisional GPI use with regard to bleeding risk, but does not reduce risk of ischaemic events. The results of future trials of bivalirudin should provide more understanding of the clinical outcomes with this antithrombotic drug in different ACS cohorts undergoing PCI.
over UFH in patients with NSTE-ACS undergoing PCI, with a reduction in non-vascular access site major bleeding and without an increase in ST. Large randomised studies are needed to elucidate more precisely the optimal PCI-related antithrombotic regimen for patients presenting with STEMI and NSTE-ACS in the contemporary era.

Acknowledgements The authors would like to thank Ashraf Nathan, MD, and Keith Sullivan, PhD, for analytical support.

Contributors MF and MS did the literature search. All the authors analysed the data, interpreted the findings, drafted the manuscript, and approved the manuscript submitted.

Competing interests None declared.

Ethics approval All included studies in this meta-analysis obtained ethics approval.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

1. Windecker S, Kolth P, Alfonso F, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2014;35:2541–619.

2. Levine GN, Bates ER, Blankenship JC, et al. ACC/AHA/SCAI Guideline for Percutaneous Coronary Intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 2011;124: e574–615.

3. Lincoff AM, Bittl JA, Harrington RA, et al. Bivalirudin and provisional glycoprotein IIb/IIIa blockade compared with heparin and planned glycoprotein IIb/IIIa blockade during percutaneous coronary intervention: REPLACE-2 randomized trial. JAMA 2003;289:853–63.

4. Stone GW, White HD, Ohman EM, et al. Bivalirudin in patients with acute coronary syndromes undergoing percutaneous coronary intervention: a subgroup analysis from the Acute Catheterization and Urgent Intervention Triage strategy (ACUITY) trial. Lancet 2007;369:907–19.

5. Steg PG, van ’t Hof A, Hamm CW, et al. Bivalirudin started during emergency transport for primary PCI. N Engl J Med 2013;369:2007–17.

6. Mehran R, Pocock S, Nikolsky E, et al. Impact of bleeding on mortality after percutaneous coronary intervention results from a patient-level pooled analysis of the REPLACE-2 (randomized evaluation of PCI linking angiomax to reduced clinical events), ACUITY (acute catheterization and urgent intervention triage strategy), and HORIZONS-AMI (harmonising outcomes with revascularisation and stents in acute myocardial infarction) trials. JACC Cardiovasc Interv 2011;4:654–64.

7. Hermanties RS, Ottervanger JP, Dambrik JH, et al. Incidence, predictors and prognostic importance of bleeding after primary PCI for ST-elevation myocardial infarction. EuroIntervention 2010;6:106–11.

8. Manoukian SV. The relationship between bleeding and adverse outcomes in ACS and PCI: pharmacologic and nonpharmacologic modification of risk. J Invasive Cardiol 2010;22:132–41.

9. Giugliano RP, White JA, Bode C, et al. Early versus delayed, provisional eptifibatide in acute coronary syndromes. N Engl J Med 2009;360:2176–90.

10. Shahzad A, Kemp I, Mars C, et al. Unfractionated heparin versus bivalirudin in primary percutaneous coronary intervention (HEAT-PPCI): an open-label, single centre, randomised controlled trial. Lancet 2014;384:1849–58.

11. Schulz S, Richardt G, Laughitz KL, et al. Prasugrel plus bivalirudin vs. clopidogrel plus heparin in patients with ST-segment elevation myocardial infarction. Eur Heart J 2014;35:2285–94.

12. Kastrati A, Neumann FJ, Schulz S, et al. Abciximab and heparin versus bivalirudin for non-ST-elevation myocardial infarction. N Engl J Med 2011;365:1980–9.

13. Stone GW, Witzenbichler B, Guagliumi G, et al. Bivalirudin during primary PCI in acute myocardial infarction. N Engl J Med 2008;358:2218–30.

14. Hong YJ, Jeong MG, Choi YH, et al. Differences in intravascular ultrasound findings in culprit lesions in infarct-related arteries between ST segment elevation myocardial infarction and non-ST segment elevation myocardial infarction. J Cardiothorac Vasc Anesth 2012;26:1113–20.

15. D’Arbelot C, Liberati A, Tetzlaff J, et al. Preferred Reporting Items for Systematic Reviews and Meta-analyses: the PRISMA Statement. Open Med 2009;3:e123–30.

16. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–88.

17. Han Y, Guo J, Zhang Y, et al. Bivalirudin vs heparin with or without tirofiban during primary percutaneous coronary intervention in acute myocardial infarction: the BRIGHT randomized clinical trial. JAMA 2015;313:1336–46.

18. Gibson CM, Morrow DA, Murphy SA, et al. A randomized trial to evaluate the relative protection against post-percutaneous coronary intervention microvascular dysfunction, ischemia, and inflammation among antiplatelet and antithrombotic agents: the PROTECT-TIMI-30 trial. J Am Coll Cardiol 2006;47:2364–73.

19. Waksman R, Bertrand O, Driesen M, et al. Bivalirudin versus unfractionated heparin during percutaneous coronary intervention in patients with non-ST-segment elevation acute coronary syndrome initially treated with fondaparinux: results from an international, multicenter, randomized pilot study (SWITCH III). J Interv Cardiol 2013;26:107–13.

20. Lincoff AM, Bittl JA, Kleiman NS, et al. Comparison of bivalirudin versus heparin during percutaneous coronary intervention (the Randomized Evaluation of PCI Linking Angiomax to Reduced Clinical Events [REPLACE]-1) trial. Am J Cardiol 2004;93:1092–6.

21. Antoniucci D. A randomized trial comparing bivalirudin with unfractionated heparin in patients undergoing elective PCI (ARNO Trial). Washington, DC, USA: Transcatheter Cardiovascular Therapeutics, 2008.

22. Kastrati A, Neumann FJ, Mehlii J, et al. Bivalirudin versus unfractionated heparin during percutaneous coronary intervention. N Engl J Med 2008;359:688–96.

23. Tavano D, Visconti G, D’Andrea A, et al. Comparison of bivalirudin monotherapy versus unfractionated heparin plus tirofiban in patients with diabetes mellitus undergoing elective percutaneous coronar. J Am Coll Cardiol 2009;10:1222–8.

24. Moliterno DJ. TENACITY Steering Committee and Investigators. A randomized two-by-two comparison of high-dose bolus tirofiban versus abciximab and unfractionated heparin versus bivalirudin during percutaneous coronary revascularization and stent placement: the tirofiban evaluation of novel dosing versus abciximab with clopidogrel and inhibition of thrombin (TENACITY) study trial. Catheter Cardiovasc Interv 2011;77:1001–9.

25. Patti G, Piscini V, D’Antonio L, et al. Comparison of safety and efficacy of bivalirudin versus unfractionated heparin in high-risk patients undergoing percutaneous coronary intervention (from the Anti-Thrombotic Strategy for Reduction of Myocardial Damage During Angioplasty-Bivalirudin vs Heparin study). Am J Cardiol 2012;110:78–84.

26. Deshpande NV, Prattli R, Admane P, et al. Safety and efficacy of bivalirudin with glycoprotein IIb/IIa for high-risk percutaneous coronary intervention. Indian Heart J 2012;64:444–8.

27. Xiang DC, Gu XL, Song YM, et al. Evaluation on the efficacy and safety of domestic bivalirudin during percutaneous coronary intervention. Chin Med J (Engl) 2013;126:3064–8.

28. Briguori C, Visconti G, Focaccio A, et al. Novel approaches for preventing or limiting events (Naples) III trial: randomized comparison of bivalirudin versus unfractionated heparin in patients at increased risk of bleeding undergoing transfemoral elective coronary stenting. JACC Cardiovasc Interv 2015;8:414–23.

29. Jolly SS, Amlani S, Hamon M, et al. Radial versus femoral access for coronary angiography or intervention and the impact on major complications. JAMA 2015;314:2127–36.

Farag M, Gorog DA, Prasad A, et al. Open Heart 2015;2:e000258. doi:10.1136/openhrt-2015-000258
bleeding and ischemic events: a systematic review and meta-analysis of randomized trials. *Am Heart J* 2009;157:132–40.

30. Karrowni W, Vyas A, Giacomino B, *et al.* Radial versus femoral access for primary percutaneous interventions in ST-segment elevation myocardial infarction patients: a meta-analysis of randomized controlled trials. *JACC Cardiovasc Interv* 2013;6:814–23.

31. Valgimigli M, Gagnor A, Calabrò P, *et al.* Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. *Lancet* 2015;385:2465–76.

32. Valgimigli M. Minimizing Adverse haemorrhagic events by TRansradial access site and systemic Implementation of angioX: bivalirudin vs. heparin clinical trial—MATRIX. San Diego, CA, USA: American College of Cardiology, 2015.

33. Picchi A, Limbruno U, Andò G, *et al.* Optical coherence tomography appraisal of residual thrombus burden in patients with ST-segment elevation myocardial infarction undergoing intraprocedural versus post-stenting prolonged bivalirudin infusion. Rationale and design of the MATRIX (minimizing adverse haemorrhagic events by TRansradial access site and angioX) OCT substudy. *EuroIntervention* 2015;10:1311–17.
Supplementary Appendix
Supplemental Figure 1: PRISMA flow chart

Records identified through database searching (n = 817)

Additional records identified through other sources (n = 12)

Records after duplicates removed (n = 441)

Records screened (n = 441)

Records excluded (n = 409)

Full-text articles assessed for eligibility (n = 32)

Studies included in qualitative synthesis (n = 19)

Studies included in quantitative synthesis (meta-analysis) (n = 19)

Full-text articles excluded, with reasons (n = 13)
- Included only stable angina patients [1]
- Fibrinolytic therapy [2-4]
- Addressed dosing or timing issues [5-8]
- No clinical outcomes [9, 10]
- Balloon angioplasty only [11-13]
- Small study (<50 patients) [14]
Supplemental Figure 2: Death with bivalirudin versus unfractionated heparin in predominantly NSTE-ACS studies, the funnel plot suggesting that publication bias was minimal.
Supplemental Figure 3: Myocardial infarction with bivalirudin versus unfractionated heparin in predominantly NSTE-ACS studies, the funnel plot suggesting that publication bias was minimal
Supplemental Figure 4: Death, myocardial infarction, any stent thrombosis, and major bleeding with bivalirudin versus unfractionated heparin in predominantly NSTEMI studies

(A) Death, (B) Myocardial infarction, (C) Any stent thrombosis, and (D) Major bleeding with GPI predominantly provisional in the bivalirudin arm versus planned use in the heparin arm
Supplemental Figure 5: Relationship between the effect of bivalirudin on bleeding and mortality

The regression line is almost flat (slope -0.61), P=0.9539.
Supplemental Figure 6: Relationship between the effect of bivalirudin on bleeding and the use of transradial approach

The regression line is almost flat (slope -0.54), P=0.4985.
Supplemental Table 1: Primary Outcomes and Definition of Major Bleeding

Study	Primary Outcomes	Major Bleeding Definition
REPLACE-2	Composite death, MI, urgent repeat revascularization and major bleeding	Non-CABG, intracranial, retroperitoneal, 4gm Hgb decline without bleeding, 3gm Hgb decline with bleeding or ≥2U RBC transfusion
REPLACE-1	Composite death, MI and repeat revascularisation at 48 hours	Non-CABG, intracranial, retroperitoneal, 3gm Hgb decline or ≥2U transfusion
PROTECT-TIMI 30	Coronary flow reserve or TIMI major bleeding	TIMI major or minor
ACUITY-PCI	Composite death, MI and unplanned revascularization or major bleeding or net clinical outcomes (composite ischaemia or major bleeding)	Non-CABG, intracranial, intraocular, access site haemorrhage requiring intervention, 5 cm hematoma, 4gm Hgb decline without bleeding, 3gm Hgb decline with bleeding or transfusion
ARNO	Major bleeding	Non-CABG, intracranial, retroperitoneal, 4gm Hgb decline without bleeding, 3gm Hgb decline with bleeding or ≥2U RBC transfusion
HORIZONS-AMI	Composite death, MI and target vessel revascularization and stroke or major bleeding	Non-CABG, intracranial, intraocular, access site haemorrhage requiring intervention, 5 cm hematoma, 4gm Hgb decline without bleeding, 3gm Hgb decline with bleeding or transfusion
ISAR-REACT 3	Composite death, MI, urgent target vessel revascularization and major bleeding	Non-CABG, intracranial, retroperitoneal, 4gm Hgb decline without bleeding, 3gm Hgb decline with bleeding or ≥2U RBC transfusion
NAPLES	Composite death, MI, urgent repeat revascularization and major bleeding	Intracranial, intraocular, retroperitoneal, access site haemorrhage requiring intervention, 4gm Hgb decline without bleeding, 3gm Hgb decline with bleeding or ≥2U transfusion
TENACITY	Composite death, MI and urgent target vessel revascularization	Non-CABG, intracranial, retroperitoneal, 4gm Hgb decline without bleeding, 3gm Hgb decline with bleeding or ≥2U RBC transfusion
ISAR-REACT 4	Composite death, MI, urgent target vessel revascularization and major bleeding	Non-CABG, intracranial, retroperitoneal, 4gm Hgb decline + overt bleeding or transfusion of at least 2 U
ARMYDA-7 BIVALVE	Composite death, MI, urgent target vessel revascularization and ST or any bleeding	Any bleeding
Deshpande et al.	post procedural time to sheath removal and ambulation of the patient	Non-CABG, intracranial, retroperitoneal, 4gm Hgb decline without bleeding, 3gm Hgb decline with bleeding or ≥2U RBC transfusion
EUROMAX	Composite of death or major bleeding	Non-CABG, intracranial, intraocular, access site haemorrhage requiring intervention, retroperitoneal, 4gm Hgb decline without bleeding, 3gm Hgb decline with bleeding or transfusion
SWITCH III	Major bleeding	Fatal bleeding, intracranial, intraocular, retroperitoneal, 3gm Hgb decline with bleeding or ≥2U RBC transfusion
Xiang et al.	Composite death, MI and target vessel revascularization or ACT values or any bleeding	Non-CABG, intracranial, retroperitoneal, 4gm Hgb decline without bleeding, 3gm Hgb decline with bleeding or ≥2U RBC transfusion
Heat-PPCI	Composite death, MI, stroke and unplanned target vessel revascularization or major bleeding	BARC 3-5
Study	Event Description	Criteria
-----------	---	--
NAPLES III	Major bleeding	In-hospital intracranial, intraocular, retroperitoneal, access site haemorrhage requiring intervention, 4gm Hgb decline without bleeding, 3gm Hgb decline with bleeding or ≥2U transfusion
BRIGHT	Composite death, MI, urgent target vessel revascularization, stroke and major bleeding	BARC 3 or 5
BRAVE 4	Composite death, MI, unplanned revascularization, ST, stroke and major bleeding	Non-CABG, intracranial, intraocular, access site haemorrhage requiring intervention, 5 cm hematoma, 4gm Hgb decline without bleeding, 3gm Hgb decline with bleeding or transfusion

ACT: activated clotting time, BARC: Bleeding Academic Research Consortium, CABG: coronary artery bypass grafting, Hgb: haemoglobin, MI: myocardial infarction, ST: stent thrombosis
Supplemental Table 2: The methodological quality assessment of included studies

Study	Randomisation Scheme	Blinding	Dropout Rate (%)	Endpoint adjudication	Potential Sources of Bias
REPLACE-2	By central telephone system	Double-blind	<1%	By blinded central committee	None identified
REPLACE-1	By central telephone system	Open-label	Not reported	Central adjudication was not used	Performance bias, attrition bias
PROTECT-TIMI 30	By central permuted block design system	Open-label	<1%	By blinded central committee	Performance bias
ACUITY-PCI	By interactive voice response system	Open-label	<1%	By blinded central committee	Performance bias
ARNO *	Not reported	Open-label	Not reported	By blinded central committee	Selection bias, performance bias, attrition bias
HORIZONS-AMI	By interactive voice response system	Open-label	<1%	By blinded central committee	Performance bias
ISAR-REACT 3	Not reported	Double-blind	<1%	By blinded central committee	Selection bias
NAPLES	By block randomisation system	Open-label	Not reported	By blinded central committee	Performance bias, attrition bias
TENACITY	Not reported	Double-blind	Not reported	By central committee	Selection bias, attrition bias
ISAR-REACT 4	By double-dummy-drug system	Double-blind	<1%	By blinded central committee	None identified
ARMYDA-7 BIVALVE	By random numbers system	Open-label	Not reported	By blinded central committee	Performance bias, attrition bias
Deshpande et al.	Not reported	Open-label	Not reported	Not reported	Selection bias, performance bias, attrition bias
EUROMAX	Not reported	Open-label	1%	By blinded central committee	Selection bias, Performance bias
SWITCH III	By block randomisation system	Open-label	0	Not reported	Performance bias
Xiang et al.	Not reported	Single-blind	4%	Not reported	Selection bias, Performance bias
Heat-PPCI	By computerized randomisation system	Open-label	<1%	By blinded central committee	Performance bias
NAPLES III	Not reported	Double-blind	0	By central committee	Selection bias
BRIGHT	Not reported	Single-blind	<1%	By central committee	Selection bias
BRAVE 4	Not reported	Open-label	<1%	By blinded central committee	Selection bias, performance bias, premature termination of the trial

* The trial had been presented, but not published.
References:

1. Lincoff AM, Kleiman NS, Kottke-Marchant K, et al. Bivalirudin with planned or provisional abciximab versus low-dose heparin and abciximab during percutaneous coronary revascularization: results of the Comparison of Abciximab Complications with Hirulog for Ischemic Events Trial (CACHET). Am Heart J 2002;143(5):847-53

2. Théroux P, Pérez-Villa F, Waters D, et al. Randomized double-blind comparison of two doses of Hirulog with heparin as adjunctive therapy to streptokinase to promote early patency of the infarct-related artery in acute myocardial infarction. Circulation 1995;91(8):2132-9

3. White HD, Aylward PE, Frey MJ, et al. Randomized, double-blind comparison of Hirulog versus heparin in patients receiving streptokinase and aspirin for acute myocardial infarction (HERO). Hirulog Early Reperfusion/Occlusion (HERO) Trial Investigators. Circulation 1997;96(7):2155-61

4. White H, Investigators HaERoOH-T. Thrombin-specific anticoagulation with bivalirudin versus heparin in patients receiving fibrinolytic therapy for acute myocardial infarction: the HERO-2 randomised trial. Lancet 2001;358(9296):1855-63

5. Fuchs J, Cannon CP. Hirulog in the treatment of unstable angina. Results of the Thrombin Inhibition in Myocardial Ischemia (TIMI) 7 trial. Circulation 1995;92(4):727-33

6. Mahaffey KW, Lewis BE, Wildermann NM, et al. The anticoagulant therapy with bivalirudin to assist in the performance of percutaneous coronary intervention in patients with heparin-induced thrombocytopenia (ATBAT) study: main results. J Invasive Cardiol 2003;15(11):611-6

7. Cortese B, Picchi A, Micheli A, et al. Comparison of prolonged bivalirudin infusion versus intraprocedural in preventing myocardial damage after percutaneous coronary intervention in patients with angina pectoris. Am J Cardiol 2009;104(8):1063-8 doi: 10.1016/j.amjcard.2009.06.005[published Online First: Epub Date].

8. Waksman R, Wolfram RM, Torguson RL, et al. Switching from Enoxaparin to Bivalirudin in Patients with Acute Coronary Syndromes without ST-segment Elevation who Undergo Percutaneous Coronary Intervention. Results from SWITCH—a multicenter clinical trial. J Invasive Cardiol 2006;18(8):370-5

9. Sibbing D, Busch G, Braun S, et al. Impact of bivalirudin or unfractionated heparin on platelet aggregation in patients pretreated with 600 mg clopidogrel undergoing elective percutaneous coronary intervention. Eur Heart J 2008;29(12):1504-9 doi: 10.1093/eurheartj/ehn195[published Online First: Epub Date].

10. Saucedo JF, Aude W, Pacheco R, et al. Inhibition of platelet aggregation with eptifibatide, bivalirudin, and heparin in patients undergoing percutaneous coronary intervention receiving clopidogrel pretreatment (The PharmacoDynamic Evaluation of Angiomax, Clopidogrel with or without INtegrilin [DEACON] study). Am J Cardiol 2005;95(12):1453-6 doi: 10.1016/j.amjcard.2005.02.012[published Online First: Epub Date].

11. Bittl JA, Strongy J, Brinker JA, et al. Treatment with bivalirudin (Hirulog) as compared with heparin during coronary angioplasty for unstable or postinfarction angina. Hirulog Angioplasty Study Investigators. N Engl J Med 1995;333(12):764-9 doi: 10.1056/NEJM199509213331204[published Online First: Epub Date].

12. Bittl JA, Chaitman BR, Feit F, et al. Bivalirudin versus heparin during coronary angioplasty for unstable or postinfarction angina: Final report reanalysis of the Bivalirudin Angioplasty Study. Am Heart J 2001;142(6):952-9

13. Antman EM, McCabe CH, Braunwald E. Bivalirudin as a replacement for unfractionated heparin in unstable angina/non-ST-elevation myocardial infarction: observations from the TIMI 8 trial. The Thrombolysis in Myocardial Infarction. Am Heart J 2002;143(2):229-34

14. Ray MJ, Juneja M, Bett N, et al. A comparison of anticoagulation with bivalirudin and provisional GPIIb/IIIa inhibition with unfractionated heparin and mandatory GPIIb/IIIa inhibition during
percutaneous coronary intervention in relation to platelet activation and the inhibition of coagulation. EuroIntervention 2009;5(3):330-5