Enzymatic Polymerization of Dimethyl 2,5-Furandicarboxylate and Heteroatom Diamines

Dina Maniar,† Katharina F. Hohmann,‡† Yi Jiang,† Albert J. J. Woortman,† Jur van Dijken,† and Katja Loos*†

†Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
‡Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany

ABSTRACT: Previously, we have synthesized a diverse range of 2,5-furandicarboxylic acid (FDCA)-based semiaromatic polyamides via enzymatic polymerization. This novel class of polymers are biobased alternatives to polyphthalamides, which are petrol-based semiaromatic polyamides. From a commercial perspective, they have interesting properties as high-performance materials and engineering thermoplastics. It is even more appealing to explore novel FDCA-based polyamides with added functionality, for the development of sustainable functional materials. Here, a set of FDCA-based heteroatom polyamides have been successfully produced via Novozyme 435 (N435)-catalyzed polymerization of biobased dimethyl 2,5-furandicarboxylate with (potentially)-heteroatom diamines, namely, 4,9-dioxa-1,12-dodecanediamine (DODA), diethylenetriamine, and 3,3-ethylenedimino propylamine. We performed the enzymatic polymerization in solution and bulk. The latter approach is more sustainable and results in higher molecular weight products. Among the tested heteroatom diamines, N435 shows the highest catalytic activity toward DODA. Furthermore, we find that all obtained FDCA-based heteroatom polyamides are amorphous materials with a relatively high thermal stability. These heteroatom polyamides display a glass-transition temperature ranging from 41 to 107 °C.

INTRODUCTION

Most commonly, semiaromatic polyamides are used as high-performance materials and engineering thermoplastics. This is owned to their good mechanical properties, excellent chemical resistance, and other interesting features.1,2 These polymers have many applications in the automobile industry, electronic and electrical appliances, packaging, photovoltaic parts and panels, medical devices, and also for materials that are used for oil and gas extraction.

Currently, semiaromatic polyamides are mainly produced from fossil fuels. However, these resources are limited and are expected to be depleted within a few centuries.3−5 Generally, semiaromatic polyamides are obtained by polycondensation of aliphatic diamines with petrol-based terephthalic acid (TPA) and isophthalic acid,6,7 although the prevalent combination of aliphatic diamines and aromatic diacids gives access to a large range of semiaromatic polyamides with diverse properties. Using these compounds in polycondensation to obtain high-molecular-weight products at high conversion requires extreme condition and is energy-intensive.8−11

Recent research shows that 2,5-Furandicarboxylic acid (FDCA) has been put forward as an alternative renewable building block to replace TPA. FDCA is a rigid difunctional furan compound resembling TPA in structure, which is likely to play an important role in the construction of biobased polymer materials,12−15 for example, via polycondensation.14 FDCA can be directly generated by oxidation of 5-(hydroxymethyl)furfural, which is easily prepared from widely available renewable C6 sugars or polysaccharides.16,17 In addition, the production of other heteroatom-containing chemicals from renewable resources (including heteroatom amines) is steadily under development.18 Previously, the polymerization of diverse furanic monomers has been reported, for example, the synthesis of furanic-aromatic polyamides from difuranic acid chloride and various difuranic diamines.19,20 FDCA-based polymers reportedly have better or similar thermal and mechanical properties compared to TPA-based polymers.15,21−27 Consequently, polyphthalamides (semiaromatic polyamides) can potentially be replaced by sustainable FDCA-based polyamides.

In general, living organisms synthesize macromolecules by in vivo enzyme-catalyzed polymerization. Mimicking such behav-
In this work, a series of FDCA-based heteroatom polyamides were successfully synthesized via enzymatic polycondensation, including furan-based polyesters and furan-based polyamides. Various Heteroatom Diamines via Solution and Bulk Polyamidization was carried out in bulk and in solution at 90 °C using the biocatalyst N435. Biobased DMFDCA and three heteroatom-containing diamines via enzymatic polycondensation, to synthesize biobased polyamides with added functionality. The resulting products will hereinafter be referred to as FDCA-based heteroatom polyamides. We performed the enzymatic synthesis both in solution and in bulk, and the latter approach adds more sustainability aspects to the final products. Moreover, we studied the thermal properties and crystallinity of these heteroatom polyamides and investigated the differences compared to polymers synthesized from dimethyl 2,5-furandicarboxylate (DMFDCA) with linear aliphatic diamines.

**RESULTS AND DISCUSSION**

**N435-Catalyzed Polycondensation of DMFDCA and Various Heteroatom Diamines via Solution and Bulk Polymerization.** In this work, a series of FDCA-based heteroatom polyamides, namely, PA DODAF, PA DETAF, and PA EDDAF, were successfully synthesized via enzymatic polycondensation (see Scheme 1). The enzymatic polycondensation was carried out in bulk and in solution at 90 °C using the biocatalyst N435. Biobased DMFDCA and three heteroatom...
Polyamides (see Scheme 2a) were successfully synthesized by reaction yield. Other suitable precipitants should be used to increase the resulting in lower yields. Another polymerization method or higher amount of short chain oligomers were removed, thus and PA EDDAF oligomers. During the purification steps, a higher amount of short chain oligomers were removed, thus resulting in lower yields. Another polymerization method or other suitable precipitants should be used to increase the reaction yield.

Previously in our laboratory, different FDCA-based aromatic polyamides (see Scheme 2a) were successfully synthesized by using N435 as a biocatalyst. FDCA-based aromatic polyamides with high weight-average molecular weight up to 48300 g mol$^{-1}$ were successfully prepared. However, in this study, the enzymatic polymerization gave significantly lower molecular weight heteroatom counterparts. This may suggest that the tested heteroatom diamines (DODA, DETA, and EDDA) are less favored by CALB because of its ether or amine groups. This is in good agreement with our earlier findings, in which we also found that the enzymatic polymerization of polyester involving alkane-$\alpha$-$\omega$-aliphatic linear diols is more favored compared to diethylene glycol. Nevertheless, our results prove the substrate promiscuity of CALB as the biocatalyst.

### Influence of the Enzymatic Polymerization Method on the Molecular Weights and Isolation Yields.

Both the enzymatic polymerization in toluene and in bulk give FDCA-based heteroatom polyamide with comparable molecular weights, but in bulk, the molecular weights are higher. From this, we can conclude that the enzymatic polymerization in bulk is preferred. The high molecular weights in bulk polymerization could be attributed to the lower enzyme catalytic activity in the organic solvent: toluene. Toluene possesses a log $P$ value of 2.73, which is a suitable organic solvent for the lipase-catalyzed polymerization. However, the presence of toluene in the system changes the structure conformation of the enzyme and thus reduces its catalytic activity. On the other hand, in the solvent-free system, the enzyme retains its structure and thus shows a higher catalytic activity. Furthermore, we applied vacuum in the enzymatic polymerization in bulk where the elimination of the residual alcohol and water is facilitated.

The enzymatic polymerization in bulk resulted in PA DODAF with the lowest isolation yield compared to the other two. Upon changing to diamines having secondary amine groups, the isolation yield increases to more than 50%. This can be explained by the higher solubility of PA DODAF oligomers in the precipitant (THF). PA DODAF oligomers have a higher solubility in the THF compared to PA DETA and PA EDDAF oligomers. During the purification steps, a higher amount of short chain oligomers were removed, thus resulting in lower yields. Another polymerization method or other suitable precipitants should be used to increase the reaction yield. Short chain oligomers were removed, thus resulting in lower yields. Another polymerization method or other suitable precipitants should be used to increase the reaction yield.

Previously in our laboratory, different FDCA-based aromatic polyamides were analyzed by Fourier transform infrared (ATR–FTIR) and NMR (see Figures 1 and 2, respectively). The Experimental Section described detailed NMR and IR assignments.

The obtained FDCA-based heteroatom polyamides chemical structures are confirmed by attenuated total reflectance–Fourier transform infrared (ATR–FTIR) and NMR (see Figures 1 and 2, respectively). The Experimental Section described detailed NMR and IR assignments.

**Figure 2.** $^1$H NMR spectra of FDCA-based heteroatom polyamides produced via enzymatic polymerization in bulk.

**Scheme 2.** Chemical Structures of (a) FDCA-Based Aromatic Polyamides (PAXF) and (b) FDCA-Based Heteroatom Polyamides

$x = 4, 6, 8, 10, 12$

PA DODAF ($R = \text{CH}_2\text{NH})$

PA DETA ($R = \text{CH}_2\text{N(CH}_3)_2$)

PA EDDAF ($R = \text{CH}_2\text{N(CH}_3)_2\text{NH}$)

**Microstructures of the Obtained FDCA-Based Heteroatom Polyamides.** The microstructures and end groups of the FDCA-based heteroatom polyamides were analyzed by
matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF MS). Figure 3 shows the representative MALDI spectra.

Similarly as in our previous study, when we used monoatomic aliphatic diamines, eight different polyamide species were identified (see Table 2). They were terminated by ester/ester, amine/amine, ester/amine, acid/amine, acid/amide, ester/amide, ester/acid, and cyclic polyamides (without end groups). However, in this work, additional end groups are identified. The heteroatom bond in the amine end group can easily be cleaved off during the ionization of the molecules in the MALDI-ToF measurement, resulting in new fragmentation.
patterns. Therefore, additional peaks are observed. For example, in the MALDI-ToF spectrum of PA DODAF, the peaks assigning to the additional end groups are marked as peaks I and J (see Figure 3 and Table S1−S3), indicating that the amine (DODA) end group of PA DODAF undergoes fragmentation in C-α of the ether bond during MALDI-ToF measurements.

As previously reported by our group, the acid end group is formed because during the polymerization, the esters were catalytically hydrolyzed by N435.7,11,33 The formation of amide end groups occurred because of the reaction between amine groups and formic acid that we use at the purification step.11

Crystallinity and Thermal Properties of the Obtained FDCA-Based Heteroatom Polyamides. The thermal behavior of the tested FDCA-based heteroatom polyamides was analyzed by differential scanning calorimetry (DSC). No melting and crystallization peaks were observed. This indicated that the obtained FDCA-based heteroatom polyamides are amorphous materials. As confirmed by the wide-angle X-ray diffraction (WAXD) measurements, no reflection peaks but only broad halo appeared (Figure S8).

The glass-transition temperature (Tg) of the obtained FDCA-based heteroatom polyamides is presented in Table 1 and Figure 4. The Tg was ranging from 41 to 107 °C. PA DETA showed the highest Tg of 107 °C. This can be explained by two facts. First, the repeating unit of PA DETA is most rigid because of its shortest chain length. Second, the intermolecular hydrogen bond density in PA DETA is higher due to the secondary amine groups. Moreover, the Tg of PA EDDA approaches that of PA DODA, even though the molecular weight of PA EDDA is much lower. This can also be explained by the higher intermolecular hydrogen bond density in PA EDDA. We also noticed that the Tg of FDCA-based heteroatom polyamides from enzymatic polymerization in bulk is lower, despite having higher molecular weight. This could be elucidated by the varied composition of the end groups generated from different synthetic approaches.

The Tg of the synthesized FDCA-based heteroatom polyamides decreases as the chain length of the heteroatom aliphatic diamine units increases. These results also agreed well with our previous results reported in the literature,33 which indicated that the Tg of semiaromatic polyamides decreased.

Figure 4. DSC second heating curves of the obtained FDCA-based heteroatom polyamides: (a) PA DODAF, (b) PA DETAF, and (c) EDDAF.

Figure 5. TGA traces of the obtained FDCA-based heteroatom polyamides: (a) enzymatic polymerization in solution and (b) in bulk.
whereas the chain length of the aliphatic diamine units increased.

The thermal stability of the tested FDCA-based heteroatom polyamides was determined by thermal gravimetric analysis (TGA). Figure S shows the TGA curves of the FDCA-based heteroatom polyamides. The temperature at 5% weight loss \( T_\text{d,5\%} \) of all FDCA-based heteroatom polyamides was around 186–297 °C. The temperature of maximal rate of decomposition \( T_\text{d,max} \) of all FDCA-based heteroatom polyamides was ranging from 351 to 432 °C. In addition, we also observe 10% weight loss step in PA DETAF at temperature around 288–292 °C. The temperature at the maximum rate of decomposition can mostly associate with the thermal cleavage of the amide bonds in the polymer backbones. However, to obtain additional information for understanding the thermal degradation mechanism steps, further analysis using TGA-GC/MS coupling measurements is needed in the future. Considering their high decomposition temperature, all FDCA-based heteroatom polyamides have a very wide processing window.

**CONCLUSIONS**

We demonstrate that enzymatic catalysis is a robust pathway toward the synthesis of FDCA-based heteroatom polyamides. As confirmed by \(^1\)H NMR and ATR–FTIR analysis, a series of FDCA-based heteroatom polyamides are successfully synthesized, with a \( M_\text{w} \) of up to 16 620 g/mol. We found that N435 shows the highest catalytic activity toward DODA, a diamine having ether groups, compared to the other two with secondary amines. Additionally, we found that enzymatic polymerization in bulk is more preferred. Furthermore, MALDI-ToF MS results indicated that no polyamide species can be assigned to the byproducts from undesirable side reaction.

All obtained FDCA-based heteroatom polyamides are amorphous materials with relatively high thermal stability. TGA analysis results show that all obtained FDCA-based heteroatom polyamides possess a \( T_\text{d,5\%} \) and \( T_\text{d,max} \) at around 186–297 and 351–432 °C, respectively. Moreover, these heteroatom polyamides possess a glass-transition temperature at around 41–107 °C. Because of the polymer chain rigidity, tested FDCA-based heteroatom polyamides having shorter diamine units generally possess higher glass-transition temperature.

In the future research, it will be of great interest to optimize reaction parameters to facilitate the enzymatic polymerization. Furthermore, we are aiming to thoroughly understand the enzymatic polymerization mechanism; thus, we can design a greener and more efficient pathway toward diverse biobased polymers.

**EXPERIMENTAL SECTION**

**Materials.** Novozym 435 [N435, Candida antarctica lipase B (CALB)] immobilized on acrylic resin, 5000 + U/g, 4,9-dioxo-1,12-dodecanediamine (DODA, 99%), DETA (reagent plus, 99%), 1,2-bis(3-aminopropylamino) ethane (EDDA, technical grade, 94%), toluene (anhydrous, 99, 8%), formic acid (puriss, 98%+), molecular sieves (4 Å), dimethyl sulfoxide-d$_6$ (DMSO-d$_6$, 99, 5 atom %), and potassium trifluoroacetate (KTFA, 98%) were purchased from Sigma-Aldrich. Dimethyl 2,5-furan dicarboxylate (DMFDCA, 97%) was purchased from Fluorochem UK. 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, 99%) was purchased from TCI Europe. Dithanol (98+%) was purchased from Fluka. Tertrahydrofuran (THF, stabilized with BHT, pro analyze) was purchased from Boom BV. 2,5-Dihydroxybenzoic acid (DHB, 98–100%) was purchased from ThermoFisher scientific.

N435 was predried as reported previously, and the molecular sieves were preactivated at 200 °C in vacuo. All of the other chemicals were used without further purification.

**Procedure for the N435-Catalyzed Solution Polymerization of DMFDCA with Various Heteroatom Diamines.** Predried N435 (20 wt % in relation to the total amount of the monomer) and preactivated molecular sieves (200 wt %) were placed in a 25 mL round-bottom flask under a nitrogen environment. Subsequently, DMFDCA (5.000 mmol), diamines (5.000 mmol), and anhydrous toluene (500 wt %) were added into the flask. The flask was placed in an oil bath, and the reaction mixture was magnetically stirred at 90 °C. After that, formic acid (15 mL) was added to dissolve the products and then the solution was filtrated (folded filter type 15 Munktell 240 mm) to remove N435 and molecular sieves. N435, molecular sieves, and filter paper were washed three times using formic acid (10 mL). All of the obtained solutions were then combined and concentrated by a rotary evaporator at 40 °C under reduced pressure of 20–40 mbar. The concentrated solution was poured in an excess amount of THF. The solution with the precipitated products was then stored for several hours at −20 °C. Subsequently, they were isolated via centrifugation (30 min, 4500 rpm, 4 °C in Thermo/Heraeus Labofuge 400 R). The obtained crude products were dissolved by a small amount of formic acid and then added dropwise into THF. The final products were collected via centrifugation following the same procedure mentioned above and dried in vacuo at 40 °C for 3 days. Finally, they were stored in vacuo at room temperature prior to analysis.

**Procedure for the N435-Catalyzed Bulk Polymerization of DMFDCA with Various Heteroatom Diamines.** DMFDCA (5.000 mmol, 0.9208 g), diamines (5.000 mmol, 1.0216 g), preactivated molecular sieves (200 wt %), and predried N435 (20 wt % in relation to the total amount of the monomer) were added into a 25 mL round-bottom flask. The reaction mixture was magnetically stirred at 90 °C under atmospheric pressure for 2 h, followed by applying 30 mm Hg pressure of 20 °C for 3 days. Finally, they were stored in vacuo at room temperature before analysis.

**Poly(4,9-Dioxo-1,12-dodecamethylene furanamide) (PA DODAF).** \(^1\)H NMR (400 MHz, DMSO-d$_6$, δ, ppm): 8.49 (1H, m, −NH−CO−, from DODA), 7.10 (2H, s, =CH=, furan), 3.38–3.30 (4H, 12H, overlap multiplet, −NH−CH$_2$−, −O−CH$_2$−, from DODA), 1.73 (4H, m, −NH−CH$_2$−CH$_2$−CH$_2$−O−, from DODA), 1.50 (4H, s, −O−CH$_2$−CH$_2$−O−, from DODA), \(^13\)C NMR (300 MHz, DMSO-d$_6$, δ, ppm): 157.69 (−CO−NH−, from DMFDCA), 148.67 (−NH−CO− C(0)=CH=, from DMFDCA), 114.69 (−CH=−, from DMFDCA), 70.36 (−O−CH$_2$−CH$_2$−, from DODA), 68.16 (−O−CH$_2$−CH$_2$−NH−CO−, from DODA), 36.42 (−CH$_2$−NH−CO−, from DODA), 29.94 (−CH$_2$−CH$_2$−NH−CO−, from DODA), 26.43 (−O−CH$_2$−CH$_2$−, from DODA).

**Poly(3-Aza-1,5-pentamethylene furanamide) (PA DETAF).** \(^1\)H NMR (400 MHz, DMSO-d$_6$, δ, ppm): 8.25 (1H, m, NH−
The thermal stability of the obtained polyamides was characterized by TGA on TA-Instruments Discovery TGA 5500 on an open pan under a nitrogen environment. The scan rate was 10 °C/min. To remove the remaining water and solvents in the polymer, the tested sample was first heated up to 150 °C and then maintained at this temperature for 30 min before the standard TGA measurement.

MALDI-ToF MS measurements were performed on a Biosystems Voyager-DE PRO spectrometer in the positive ionization and the linear mode using an accelerating voltage of 25 kV. The grid voltage, guide wire voltage, and delay time were optimized for each spectrum to achieve the best signal-to-noise ratio. PA DODAF and PA DETAF samples were prepared using 20 mg/mL matrix solution of dithranol in HFIP. Polymer sample solution in HFIP (1–2 mg/mL), potassium trifluoroacetate in HFIP (KTFA, 5 mg/mL), and dithranol (20 mg/mL) were premixed in a ratio of 5:1:5. After that, the resulting mixture (0.2–0.6 μL) was hand-spotted on a MALDI target plate and left to dry. PA EDDAF samples were prepared using 40 mg/mL matrix solution of DHB in 70/30 acetonitrile/water with 0.1% TFA. Typically, a 1:2 mixture of polymer sample solution in HFIP (1–2 mg/mL) was mixed with the DHB matrix solution. Subsequently, the mixture was hand-spotted on the MALDI target plate and left to dry. Polyamide species having different end groups were determined by the following equation: $M_p = M_{eg} + (n \times M_{RU}) + M_{\text{car}}$, where $M_p$ is the molecular mass of a polyamide species, $M_{eg}$ is the molecular mass of the end groups, $n$ is the number of the repeating units, $M_{RU}$ is the molecular mass of the repeating units, and $M_{\text{car}}$ is the molecular mass of the potassium cation.

WAXD spectra were recorded at room temperature using a Bruker D8 Advance diffractometer (Cu Kα radiation, $\lambda = 0.1542$ nm) in the angular range of 5–50° (2θ).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.8b01106.

MALDI-TOF analysis: additional end groups of the obtained FDCA-based heteroatom polyamides, $^{13}$C NMR spectra of FDCA-based heteroatom polyamides produced via enzymatic polymerization in bulk, SEC elution curves of the obtained FDCA-based heteroatom polyamides, and MALDI-ToF MS spectra of the obtained FDCA-based heteroatom polyamides with detailed peak interpretation (PDF)

AUTHOR INFORMATION

Corresponding Author
*E-mail: k.u.loos@rug.nl. Phone: +31-50 363 6867 (K.L.).

ORCID
Katja Loos: 0000-0002-4613-1159

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

D.M. thanks the financial support from the Indonesian Endowment Fund for Education (Lembaga Pengelola Dana Pendidikan LPDP)
FDCA, 2,5-furandicarboxylic acid; N435, Novozyme 435; DMFDCA, dimethyl 2,5-furandicarboxylate; DODA, 4,9-dioxa-1,12-dodecanediamine; DETA, diethylenetriamine; EDDA, 3,3-ethylenedimino propylamine; TPA, terephthalic acid; IPA, isophthalic acid; HMF, 5-(hydroxymethyl)furfural; PA DODAF, poly(4,9-dioxa-1,12-dodecamethylene furanamide); PA DETA, poly(3-aza-1,5-pentamethylene furanamide); PA EDDAF, poly(4,7-diaza-1,10-decamethylene furanamide); ATR−FTIR, attenuated total reflection−Fourier transform infrared; "H NMR, proton nuclear magnetic resonance; SEC, size exclusion chromatography; DSC, differential scanning calorimetry; TGA, thermal gravimetric analysis; MALDI-ToF MS, matrix-assisted laser desorption/ionization-time of flight mass spectrometry; WAXD, wide-angle X-ray diffraction.

REFERENCES

(1) Glasscock, D.; Atolino, W.; Kozielski, G.; Martens, M. High Performance Polyamides Fulfill Demanding Requirements for Automotive Thermal Management Components; DuPont Engineering Polymers, 2008.
(2) Marchildon, K. Polyamides - Still Strong After Seventy Years. Macromol. React. Eng. 2011, 5, 22−54.
(3) Williams, C.; Hillmyer, M. Polymers from Renewable Resources: A Perspective for a Special Issue of Polymer Reviews. Polym. Rev. 2008, 48, 1−10.
(4) van Putten, R.-J.; van der Waal, J. C.; de Jong, E.; Rasrendra, C. B.; Heeres, H. J.; de Vries, J. G. Hydroxymethylfurfural, A Versatile Building Block for a Very Interesting Class of Polymers; American Chemical Society, 2012; Vol. 1105, pp 1−13.
(5) Poulhe, S.; Heeres, H. J.; de Vries, J. G. Hydroxymethylfurfural, A Versatile Building Block for a Very Interesting Class of Polymers; American Chemical Society, 2012; Vol. 1105, pp 1−13.
(6) Deldiovich, I.; Haasoul, P. J. C.; Deng, L.; Pfitzenreuter, R.; Rose, M.; Palkovits, R. Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production. Chem. Rev. 2016, 116, 1540−1599.
(7) Vilela, C.; Sousa, A. F.; Fonseca, A. C.; Serra, A. C.; Coelho, J. F. J.; Freire, C. S. R.; Silva, A. J. D. The quest for sustainable polyesters - insights into the future. Polym. Chem. 2014, 5, 3119−3141.
(8) Hüseyin, M. J.; Yang, H.; Yan, N. Sustainable Routes for the Synthesis of Renewable Heteroatom-Containing Polymers. ACS Sustainable Chem. Eng. 2018, 6, 5694−5707.
(9) Abid, S.; El Gharbi, R.; Gandini, A. Polyamides incorporating furan moieties. S. Synthesis and characterisation of furan-aromatic homologues. Polym. 2004, 45, 5793−5801.
(10) Gandini, A. A. The quest for sustainable polyesters - insights into the future. Polym. Chem. 2014, 5, 3119−3141.
(11) Stavila, E.; F.; Alberda van Ekenstein, G. O. R.; Loos, K. Enzymatic Synthesis of Biobased Polyesters and Polymides. Polymers 2016, 8, 243.
(12) Sembitsch, S. Building Blocks for Polymer Synthesis by Enzymatic Catalysis. Ph.D. Dissertation, KTH Royal Institute of Technology, 2017.
(13) Jiang, Y.; Maniar, D.; Woortman, A. J. J.; Alberda van Ekenstein, G. O. R.; Loos, K. Enzymatic Polymerization of Furan-2,5-Dicarboxylic Acid-Based Furanic-Aliphatic Polyamides as Sustainable Alternatives to Polyphthalamides. Biomacromolecules 2015, 16, 3674−3685.
(14) Pojodi, P.; Darzins, A. P.; Zhang, Y.; Wang, W., Zhang, Y.; Zhong, Z.; Wang, X.; Sun, P.; Joncheray, T.; Zhang, Y. Synthetic and Polyamides. Polyamides 2016, 8, 243.
Using 2,5-Bis(hydroxymethyl)furan as the Building Block. *Biomacromolecules* **2014**, 15, 2482−2493.

(37) Schwab, L. W. *Polyamide Synthesis by Hydrolases*. Ph.D. Dissertation, University of Groningen, Groningen, 2010.

(38) Froidevaux, V.; Negrell, C.; Caillol, S.; Pascault, J.-P.; Boutevin, B. Biobased Amines: From Synthesis to Polymers; Present and Future. *Chem. Rev.* **2016**, 116, 14181−14224.

(39) Wang, S.; Meng, X.; Zhou, H.; Liu, Y.; Secundo, F.; Liu, Y. Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review. *Catalysts* **2016**, 6, 32.

(40) Jiang, Y.; van Ekenstein, G. O. R. A.; Woortman, A. J. J.; Loos, K. Fully Biobased Unsaturated Aliphatic Polyesters from Renewable Resources: Enzymatic Synthesis, Characterization, and Properties. *Macromol. Chem. Phys.* **2014**, 215, 2185−2197.