Association between blood ethylene oxide levels and the prevalence of hypertension

Ningtao Wu1 · Wenya Cao2 · Yuxing Wang3 · Xiaoqing Liu3

Received: 28 October 2021 / Accepted: 23 May 2022 / Published online: 7 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

The relationship of blood ethylene oxide levels with hypertension and blood pressure has not been addressed. A total of 5005 participants from the National Health and Nutrition Examination Survey (NHANES) 2013–2016 were enrolled. Hypertension was defined as a mean systolic blood pressure (SBP) of at least 140 mmHg, a mean diastolic blood pressure (DBP) of at least 90 mmHg, or both, and/or the self-reported use of prescription drugs for diagnosed hypertension. Generalized linear regression models and restricted cubic spline plots were performed to explore the associations of ethylene oxide levels with hypertension and blood pressure. The prevalence of hypertension in the study sample was 27.6%. After adjusting for confounding factors, compared with the lowest quantile, the odds ratios (ORs) with 95% confidence intervals (CIs) of hypertension across the quantiles of ethylene oxide levels were 0.80 (0.63, 1.03), 0.91 (0.71, 1.16), and 1.39 (1.06, 1.82), respectively (P-value for trend = 0.001). Compared with the lowest quantile, the highest quantile of blood ethylene oxide levels was significantly associated with the worst DBP profile by approximately 2.67 mmHg. Blood ethylene oxide levels showed a strong nonlinear and positive association with DBP, while no significant association was observed between blood ethylene oxide levels and SBP. These results provide epidemiological evidence of elevated blood levels of ethylene oxide in relation to a higher prevalence of hypertension and higher DBP. Further study is warranted to address these issues.

Keywords Ethylene oxide · Exposure · Hypertension · Relationship · Blood pressure · NHANES

Introduction

Hypertension is a global health problem that can lead to serious consequences, including renal failure, cardiovascular disease (CVD), stroke, and other chronic diseases (Hamrahian and Falkner 2017; Lackland and Weber 2015; Lamprea-Montealegre et al. 2018). Hypertension was also identified as a vital influential risk factor contributing to disability-adjusted life-years worldwide (Virani et al. 2021). Recent studies have demonstrated that environmental pollutants such as acrylamide (Liang et al. 2022), perfluoroalkyl substances (Ma et al. 2019), and metals (Rahman et al. 2022) may be related to increased odds of hypertension. Therefore, the discovery and reduction of hypertension exposure factors may have significant public health benefits.

Ethylene oxide is an important industrial and environmental chemical and has been classified as a group 1 human carcinogen by the International Agency for Research on Cancer (Yang et al. 2018). There are two pathways of ethylene oxide exposure, endogenous and exogenous pathways, and the endogenous pathway is a major source of exposure among the general population (Rasool and Malik 2021). Environmental exposure to ethylene oxide occurs during its production and use, such as gaseous sterilant for medical devices and as a fumigant...
to disinfect food products such as spices. Ethylene oxide is a gas at room temperature, and inhalation is the primary method of human exposure. After inhalation, ethylene oxide is easily absorbed into the blood and rapidly distributed throughout the human body (Jinot and Fritz 2018). As described in the previous literature, ethylene oxide is directly responsible for increased oxidative stress and related disorders (Rasool and Malik 2021), while increased oxidative stress is a central mechanism contributing to elevated blood pressure (Prado et al. 2021). In view of the former considerations, we hypothesize that ethylene oxide is positively correlated with hypertension. Thus, in the present study, we aimed to explore whether elevated blood ethylene oxide levels were independently associated with an increased prevalence of hypertension and blood pressure using nationally representative data from the National Health and Nutrition Examination Survey (NHANES) series.

Methods

Study population

Our study included 20,146 participants from the 2013–2016 NHANES conducted by the Centers for Disease Control and Prevention (CDC) National Center for Health Statistics (NCHS). We retrieved all data from the website of the NCHS (https://www.cdc.gov/nchs/nhanes/index.htm). To analyze the effects of ethylene oxide on hypertension, we excluded subjects with missing ethylene oxide \((n = 14,700)\), systolic blood pressure (SBP), and diastolic blood pressure (DBP) data \((n = 404)\). We also excluded pregnant women \((n = 37)\). Finally, a total of 5005 participants were included in our analysis (Fig. 1). All participants provided written informed consent, and the study protocol was approved by the Research Ethics Review Board of the NCHS.

Assessment of ethylene oxide levels

Human whole blood samples were collected in a mobile examination center. Blood ethylene oxide levels were measured by a modified Edman reaction method. The detailed measurement of blood ethylene oxide concentrations is described in detail elsewhere (https://www.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/AMDGYD_ETHO1MET.pdf). The limit of detection (LOD) for blood ethylene oxide concentrations was 12.90 pmol/g Hb, while the analytic results below the LOD were recorded as the LOD values divided by the square root of 2.

Blood pressure measurements

Trained physicians used a calibrated mercury sphygmomanometer using a standardized protocol to measure arterial blood pressure, and 3 consecutive blood pressure readings were taken for each participant on the same arm. Hypertension was defined as a mean SBP of at least 140 mmHg, a mean DBP of at least 90 mmHg, or both, and/or the self-reported use of prescription drugs for diagnosed hypertension (Muntner et al. 2020).

Fig. 1 Study flow chart

Participants of NHANES from 2013-2016\((n=20146)\)

Participants with missing data on ethylene oxide \((n=14700)\)

Enrolled \((n=5446)\)

Excluded \((n=441)\)

- Participants with missing data on systolic and diastolic blood pressure \((n=404)\)
- Participants who were pregnant \((n=37)\)

Data for analyses \((n=5005)\)
Additional data

We selected data consistent with previous studies (Liao et al. 2020; Liu et al. 2021) and current NHANES guidelines. Data on demographic characteristics, body examinations, medication use, and socioeconomic background were selected as appropriate. Data on age, sex (male/female), race/ethnicity (Mexican American, other Hispanic, non-Hispanic White, non-Hispanic Black, other race), education (< 9th grade, 9–11th grade, high school, college, and graduate), smoking status (smoking more than 100 cigarettes during their lifetime or not), diabetes mellitus (yes/no), alcohol use (consumed at least 12 drinks in the last 12 months or not), poverty-to-income ratio, and physical activity level (none, moderate, and vigorous) was based on self-reports. Body mass index (BMI, kg/m²) was calculated as body weight divided by height squared. Information on dietary intake of calories, sodium, and potassium was also considered as covariates in our analysis models.

Statistical analysis

All statistical analyses were performed by R software (v3.6.0; R Foundation for Statistical Computing). Baseline characteristics were compared across the quantiles of blood ethylene oxide levels using 1-way ANOVA for continuous variables and χ^2 tests for categorical variables. Since the ethylene oxide levels were skewed, we log2 transformed the data. Simple and multiple generalized linear regression models were performed to explore the associations of ethylene oxide levels with hypertension and blood pressure. Restricted cubic spline plots with 3 knots located at the 10th, 50th, and 90th percentiles of the distribution were generated to explore the potential nonlinear relationship between ethylene oxide levels and hypertension and blood pressure. Participants who reported taking antihypertensive medications were omitted from further separate statistical models, and adjusted regression coefficients (β) were obtained to estimate the association of ethylene oxide levels with SBP and DBP ($n = 3994$). Generalized linear regression models and restricted cubic spline models were all adjusted for age, sex, education level, race, diabetes mellitus, smoking status, alcohol use, body mass index, poverty-income ratio, energy intake, sodium intake, potassium intake, and physical activity level. Subgroup analysis stratified by age, sex, diabetes, obesity, and physical activity level was performed because they were important confounding factors of hypertension. A P-value less than 0.05 was regarded as statistically significant in our study.

Results

Baseline characteristics

The baseline characteristics of the study subjects across the quantiles of blood ethylene oxide levels are shown in Table 1. Differential significance was found for age, sex, education level, race/ethnicity, smoking status, alcohol use, body mass index (BMI), dietary energy intake, dietary sodium intake, dietary potassium intake, poverty-to-income ratio, and physical activity level. The prevalence of hypertension in the study sample was 27.6%, and the prevalence of hypertension across the quartiles of blood ethylene oxide levels was 28.5%, 23.2%, 24.8%, and 33.7%, respectively.

Associations between ethylene oxide levels and hypertension

The fully multivariable adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for hypertension across the quartiles of blood ethylene oxide levels compared with the lowest quartile were 0.80 (0.63, 1.03), 0.91 (0.71, 1.16), and 1.39 (1.06, 1.82), respectively (P for trend 0.001, Table 2). Cubic spline plots of the association between blood ethylene oxide levels and the prevalence of hypertension were approximately nonlinear (Fig. 2); however, the tests for nonlinearity were not significant.

Associations between ethylene oxide levels and blood pressure

In the full multiple generalized linear regression, no significant association between blood ethylene oxide levels and SBP was observed (P for trend $= 0.869$, Table 3 and Fig. 3A). Participants in the highest quartile, in comparison with the lowest quartile of blood ethylene oxide levels, showed increased DBP by 2.67 mmHg. The restricted cubic spline plot displayed a J-shape between blood ethylene oxide levels and DBP (P for nonlinearity $= 0.021$, Fig. 3B).

Subgroup analysis

Stratified analysis confirmed a stronger association between blood ethylene oxide levels and the prevalence of hypertension among participants aged 60 years, female participants, nondiabetic participants, participants with BMIs > 30 kg/m², and participants with poor physical activity levels (Table 4). Since the interaction of blood ethylene oxide levels with age groups was significant, age-stratified models suggested that the association of blood ethylene oxide levels with the prevalence of hypertension was significant among participants aged 60 years but not participants aged > 60 years.
Discussion

Using the national representative survey in the USA, this analysis is the first to demonstrate that the concentration of blood ethylene oxide is positively associated with the prevalence of hypertension and DBP. The significant association between elevated blood ethylene oxide levels and the prevalence of hypertension and DBP persisted even after adjustment for a wide range of established confounding factors, including age, sex, education level, race, diabetes mellitus, smoking status, alcohol use, body mass index, poverty-income ratio, energy intake, sodium intake, potassium intake, and physical activity level.

Previous studies regarding the cardiotoxicity of ethylene oxide exposure in the general population are sparse. Collectively, our findings corroborate the findings of the few previously published studies (cross-sectional study) that reported the association between ethylene oxide exposure and cardiovascular disease in the general population.

Table 1 Characteristics of the study population

Variable	Overall (n = 5005)	≤ 24.6 pmol/g Hb (n = 1265)	> 24.6 to ≤ 34.3 pmol/g Hb (n = 1248)	> 34.3 to ≤ 98.4 pmol/g Hb (n = 1241)	≥ 98.4 pmol/g Hb (n = 1251)	P-value
Age, years	40.6 (21.2)	41.8 (21.7)	37.6 (23.0)	38.0 (22.6)	44.7 (15.9)	< 0.001
Male, %	2495 (49.9%)	562 (44.4%)	596 (47.8%)	631 (50.8%)	706 (56.4%)	< 0.001
Education level, %						> 0.001
< 9th grade	447 (8.9%)	119 (9.4%)	123 (9.9%)	113 (9.1%)	92 (7.4%)	
9–11th grade	674 (13.5%)	113 (8.9%)	136 (10.9%)	139 (11.2%)	286 (22.9%)	
High school	1185 (23.7%)	270 (21.3%)	250 (20.0%)	296 (23.9%)	369 (29.5%)	
College	1550 (31.0%)	399 (31.5%)	389 (31.2%)	365 (29.4%)	397 (31.7%)	
Graduate	1149 (23.0%)	364 (28.8%)	350 (28.0%)	328 (26.4%)	107 (8.6%)	
Race/ethnicity, %						< 0.001
Mexican American	812 (16.2%)	225 (17.8%)	268 (21.5%)	233 (18.8%)	86 (6.9%)	
Other Hispanic	538 (10.7%)	165 (13.0%)	172 (13.8%)	114 (9.2%)	87 (7.0%)	
Non-Hispanic White	1897 (37.9%)	531 (42.0%)	418 (33.5%)	341 (27.5%)	607 (48.5%)	
Non-Hispanic Black	1044 (20.9%)	195 (15.4%)	210 (16.8%)	275 (22.2%)	364 (29.1%)	
Other race	714 (14.3%)	149 (11.8%)	180 (14.4%)	278 (22.4%)	107 (8.6%)	
Diabetes mellitus, %	511 (10.2%)	114 (9.0%)	119 (9.5%)	146 (11.8%)	132 (10.6%)	0.110
Smoker, %	2214 (44.2%)	326 (25.8%)	297 (23.8%)	416 (33.5%)	1175 (93.9%)	< 0.001
Alcohol user, %	3515 (70.2%)	867 (68.5%)	777 (62.3%)	807 (65.0%)	1064 (85.1%)	< 0.001
Body mass index, kg/m²	27.7 (7.43)	28.8 (7.67)	27.5 (7.89)	26.4 (6.88)	28.1 (7.02)	< 0.001
Energy intake (kcal/day)	1914 (1461–2457)	1848 (1443–2340)	1902 (1439–2410)	1917 (1470–2444)	1998 (1503–2657)	< 0.001
Sodium intake, mg/day	3114 (2334–4117)	3046 (2333–3985)	3064 (2270–4061)	3208 (2415–4188)	3147 (2312–4258)	0.007
Potassium intake, mg/day	2312 (1725–3024)	2289 (1759–2931)	2326 (1746–3057)	2348 (1739–3069)	2265 (1631–3036)	0.050
Poverty-income ratio	2.10 (1.52)	2.41 (1.57)	2.22 (1.54)	2.17 (1.55)	1.60 (1.27)	< 0.001
Physical activity						< 0.001
Never	2996 (59.9%)	749 (59.2%)	785 (62.9%)	793 (63.9%)	669 (53.5%)	
Moderate	1041 (20.8%)	277 (21.9%)	263 (21.1%)	272 (21.9%)	229 (18.3%)	
Vigorous	968 (19.3%)	239 (18.9%)	200 (16.0%)	176 (14.2%)	353 (28.2%)	
Systolic blood pressure, mmHg	120 (18.3%)	121 (17.8)	118 (17.6)	118 (18.4)	124 (18.6)	< 0.001
Diastolic blood pressure, mmHg	66.7 (13.5)	67.0 (12.8)	65.2 (13.6)	65.0 (14.0)	69.8 (13.0)	< 0.001
Hypertension, %	1380 (27.6%)	361 (28.5%)	290 (23.2%)	308 (24.8%)	421 (33.7%)	< 0.001

Data are presented as mean (SD) or n (%)

© Springer
Specifically, in a cross-sectional study of 3410 participants from the NHANES, the authors found that elevated blood levels of ethylene oxide were independently associated with an increased prevalence of cardiovascular disease in the general population (Zeng et al. 2021). However, there was little evidence of any ethylene oxide relationship to all-cause and cardiovascular mortality in a cohort of 18,235 ethylene oxide-exposed workers (Steenland et al. 2004). The results of our study suggest the possible cardiotoxic effects of ethylene oxide exposure on blood pressure.

Our results have demonstrated that environmental exposure to ethylene oxide may be related to increased odds of hypertension. Furthermore, findings of positive association of ethylene oxide with hypertension were consistent in men and women, non-diabetes and diabetes groups, obese and non-obese groups, and no regular and regular moderate-to-vigorous physical activity groups. However, the positive association of blood ethylene oxide levels with hypertension was significant among participants aged ≤ 60 years but not participants aged > 60 years.

The biological mechanisms linking ethylene oxide levels to a higher prevalence of hypertension and higher DBP are not fully understood. Data from animal studies have suggested that the metabolism of ethylene oxide hydrolysis produced ethylene glycol and 2-chloroethanol (Koga et al. 1987). Accumulating evidence suggests that ethylene oxide and its metabolism promote increased oxidative stress and inflammation, two possible determinants of hypertension (Adedara and Farombi 2010; Kuiper et al. 2008; Rasool and Malik 2021). Ethylene glycol forms a conjugate with glutathione (GSH), resulting in its excretion through urine, forms S-carboxymethyl GSH and S-carboxymethyl cysteine, and disrupts the formation of thiol (-SH) groups (Rasool and Malik 2021). Both increases in the formation of S-carboxymethyl GSH and S-carboxymethyl cysteine and decreases in thiol (-SH)

Table 2

Ethylene oxide	Cases	N	Model 1 OR (95% CI)	Model 2 OR (95% CI)	Model 3 OR (95% CI)
Q1	361	1265	Ref	Ref	Ref
Q2	290	1248	0.82 (0.65, 1.04)	0.81 (0.63, 1.03)	0.80 (0.63, 1.03)
Q3	308	1241	0.93 (0.74, 1.17)	0.92 (0.72, 1.17)	0.91 (0.71, 1.16)
Q4	421	1251	**1.36 (1.10, 1.68)**	**1.42 (1.09, 1.85)**	**1.39 (1.06, 1.82)**

P for trend <0.001 0.001 0.001

Bolding indicates significant (P<0.05). Model 1 was adjusted for age and sex. Model 2 was adjusted for age, sex, education level, race, diabetes mellitus, smoking status, alcohol use, and body mass index. Model 3 was adjusted for age, sex, education level, race, diabetes mellitus, smoking status, alcohol use, body mass index, poverty-income ratio, energy intake, sodium intake, potassium intake, and physical activity. OR, odd ratio; CI, confidence interval

Table 3

Ethylene oxide, pmol/g Hb	Systolic blood pressure β (95% CI)	Diastolic blood pressure β (95% CI)
Q1	Ref	Ref
Q2	−0.41 (−1.57, 0.75)	−0.27 (−1.31, 0.76)
Q3	−1.15 (−2.34, 0.04)	−0.73 (−1.79, 0.33)
Q4	0.00 (−1.44, 1.43)	**2.67 (1.38, 3.95)**

P for trend 0.869 <0.001

Bolding indicates significant (P<0.05). Analyses was adjusted for age, sex, education level, race, diabetes mellitus, smoking status, alcohol use, body mass index, poverty-income ratio, energy intake, sodium intake, potassium intake, and physical activity.
groups contribute to decreases in the GSH level, further leading to oxidative stress damage.

There are several limitations in the present study. First, given the observational nature of this cross-sectional study, causality cannot be determined. Second, we used a single measurement of ethylene oxide levels in the blood to reflect chronic exposure to ethylene oxide, while dynamic changes in blood ethylene oxide levels may lead to exposure misclassification. Finally, although the data were tested with multiple adjustments, unmeasured confounding factors may also play a role in the relationship of blood ethylene oxide levels with hypertension and blood pressure.

Conclusion

In summary, our study demonstrates that exposure to ethylene oxide is related to an elevated prevalence of hypertension and higher diastolic blood pressure in the general population.

Table 4 Subgroups analysis for the associations of ethylene oxide with the prevalence of hypertension

	Q1 OR (95% CI)	Q2 OR (95% CI)	Q3 OR (95% CI)	Q4 OR (95% CI)	P for trend	P for interaction
Age						
> 60 years	1.00	0.94 (0.66, 1.35)	1.00 (0.69, 1.44)	1.14 (0.74, 1.73)	0.481	
≤ 60 years	1.00	0.69 (0.52, 0.93)	0.76 (0.56, 1.02)	1.34 (0.97, 1.84)	0.003	
Sex					0.572	
Male	1.00	0.63 (0.44, 0.89)	0.86 (0.61, 1.22)	1.34 (0.92, 1.93)	0.006	
Female	1.00	1.05 (0.75, 1.49)	0.97 (0.68, 1.40)	**1.50 (1.01, 2.25)**	0.043	
Diabetes					0.411	
Yes	1.00	0.82 (0.44, 1.53)	0.89 (0.48, 1.66)	1.19 (0.60, 2.36)	0.420	
No	1.00	0.78 (0.60, 1.01)	0.91 (0.69, 1.20)	**1.36 (1.01, 1.82)**	0.006	
Obesity					0.843	
BMI > 30 kg/m²	1.00	1.04 (0.74, 1.46)	0.96 (0.67, 1.38)	1.38 (0.92, 2.05)	0.096	
BMI ≤ 30 kg/m²	1.00	0.64 (0.45, 0.90)	0.78 (0.56, 1.10)	1.20 (0.84, 1.72)	0.051	
Physical activity					0.307	
Never	1.00	0.88 (0.64, 1.20)	0.99 (0.73, 1.36)	**1.63 (1.15, 2.32)**	0.001	
Moderate	1.00	0.68 (0.38, 1.20)	0.99 (0.55, 1.77)	1.39 (0.73, 2.63)	0.145	
Vigorous	1.00	0.75 (0.42, 1.34)	0.68 (0.37, 1.25)	0.89 (0.50,1.59)	0.992	

Bolding indicates significant (P < 0.05). Analyses was adjusted for age, sex, education level, race, diabetes mellitus, smoking status, alcohol use, body mass index, poverty-income ratio, energy intake, sodium intake, potassium intake, and physical activity when they were not the strata variables. OR, odd ratio; CI, confidence interval.
population. The mechanism underlying the effect of ethylene oxide levels on blood pressure needs further exploration.

Acknowledgements The authors would like to thank all participants enrolled in the National Center for Health Statistics and the director of the NHANES.

Author contribution YW and NW designed the research. NW performed the data analysis. WC wrote and edited the original draft of the paper. YW and XL took responsibility for the integrity of the data and the accuracy of the data analysis. All authors contributed to the interpretation of the results, and all authors read and approved the final manuscript.

Data availability The data we used and analyzed in our study are available from https://www.cdc.gov/nchs/nhanes.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

References

Adedara IA, Farombi EO (2010) Induction of oxidative damage in the testes and spermatozoa and hematotoxicity in rats exposed to multiple doses of ethylene glycol monoethyl ether. Hum Exp Toxicol 29:801–812. https://doi.org/10.1177/0960327109360115

Hamrahian SM, Falkner B (2017) Hypertension in chronic kidney disease. Adv Exp Med Biol 956:307–325. https://doi.org/10.1007/5584_2016_84

Jinot J, Fritz JM (2018) Carcinogenicity of ethylene oxide: key findings and scientific issues. Toxicol Mech Methods 28:386–396. https://doi.org/10.1080/15376516.2017.1414343

Koga M, Hori H, Tanaka I, Akiyama T, Inoue N (1987) Analysis of urinary metabolites of rats exposed to ethylene oxide. J UOEH 9:167–170. https://doi.org/10.7888/jueoh.9.167

Kuiper HC, Miranda CL, Sowell JD, Stevens JF (2008) Mercapturic acid conjugates of 4-hydroxy-2-nonalen and 4-oxo-2-nonalen metabolites are in vivo markers of oxidative stress. J Biol Chem 283:17131–17138. https://doi.org/10.1074/jbc.M802797200

Lackland DT, Weber MA (2015) Global burden of cardiovascular disease and stroke: hypertension at the core. Can J Cardiol 31:569–571. https://doi.org/10.1061/cjca.2015.01.009

Lamprea-Montalegre JA, Zelnick LR, Hall YN, Bansal N, de Boer IH (2018) Prevalence of hypertension and cardiovascular risk according to blood pressure thresholds used for diagnosis. Hypertension 72:602–609. https://doi.org/10.1161/hypertensionaha.118.11609

Liang J, Xu C, Liu Q, Weng Z, Zhang X, Xu J, Gu A (2022) Total cholesterol: a potential mediator of the association between exposure to acrylamide and hypertension risk in adolescent females. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-021-18342-0

Liao S, Yao W, Cheang I, Tang X, Yin T, Lu X, Zhou Y, Zhang H, Li X (2020) Association between perfluorooalkyl acids and the prevalence of hypertension among US adults. Ecotoxicol Environ Saf 196:110589. https://doi.org/10.1016/j.ecoenv.2020.110589

Liu Y, Wu M, Xu B, Kang L (2021) Association between urinary nickel and the diastolic blood pressure in general population. Chemosphere 286:131900. https://doi.org/10.1016/j.chemosphere.2021.131900

Ma S, Xu C, Ma J, Wang Z, Zhang Y, Shu Y, Mo X (2019) Association between perfluorooalkyl substance concentrations and blood pressure in adolescents. Environ Pollut 254:112971. https://doi.org/10.1016/j.envpol.2019.112971

Muntner P, Hardy ST, Fine LJ, Jaeger BC, Wozniak G, Levitan EB, Colantonio LD (2020) Trends in blood pressure control among us adults with hypertension, 1999–2000 to 2017–2018. JAMA 324:1190–1200. https://doi.org/10.1001/jama.2020.14545

Prado AF, Batista RIM, Tanus-Santos JE, Gerlach RF (2021) Matrix Metalloproteinases and Arterial Hypertension: Role of Oxidative Stress and Nitric Oxide in Vascular Functional and Structural Alterations. Biomolecules 11:585. https://doi.org/10.3390/biom11040585

Rahman, HH, Niemann, D, Munson-McGee, SH (2022) Environmental exposure to metals and the risk of high blood pressure: a cross-sectional study from NHANES 2015-2016. Environ Sci Pollut Res Int 29:531–542. https://doi.org/10.1007/s11356-021-15726-0

Rasool M, Malik A (2021) Phytochemical analysis and protective effects of Vaccinium macrocarpon (cranberry) in rats (Rattus norvegicus) following ethylene oxide-induced oxidative insult. Bioengineered 12:4593–4604. https://doi.org/10.1080/21655979.2021.1955528

Steenland K, Stayner L, Deddens J (2004) Mortality analyses in a cohort of 18 235 ethylene oxide exposed workers: follow up extended from 1987 to 1998. Occup Environ Med 61:2–7

Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, Tsao CW (2021) Heart Disease and Stroke Statistics-2021 update: a report from the American Heart Association. Circulation 143:e254–e743. https://doi.org/10.1161/cir.0000000000000950

Yang M, Frame T, Tse C, Vesper HW (2018) High-throughput, simultaneous quantitation of hemoglobin adducts of acrylamide, glycida-mide, and ethylene oxide using UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 1086:197–205. https://doi.org/10.1016/j.jchromb.2018.03.048

Zeng G, Zhang Q, Wang X, Wu KH (2021) Association between blood ethylene oxide levels and the risk of cardiovascular diseases in the general population. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-021-15572-0

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.