Implications of Chemical-Thermal enhanced oil recovery methods in shale reservoirs
Jing, Huang; Davarpanah, Afshin

Published in: Cogent Engineering
DOI: 10.1080/23311916.2021.1920564
Publication date: 2021
Citation for published version (APA): Jing, H., & Davarpanah, A. (2021). Implications of Chemical-Thermal enhanced oil recovery methods in shale reservoirs. Cogent Engineering, 8(1), [1920564]. https://doi.org/10.1080/23311916.2021.1920564
Implications of Chemical-Thermal enhanced oil recovery methods in shale reservoirs

Huang Jing & Afshin Davarpanah |

To cite this article: Huang Jing & Afshin Davarpanah | (2021) Implications of Chemical-Thermal enhanced oil recovery methods in shale reservoirs, Cogent Engineering, 8:1, 1920564, DOI: 10.1080/23311916.2021.1920564

To link to this article: https://doi.org/10.1080/23311916.2021.1920564

© 2021 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Published online: 06 May 2021.

Submit your article to this journal

Article views: 42

View related articles

View Crossmark data
Implications of Chemical-Thermal enhanced oil recovery methods in shale reservoirs
Huang Jing¹ and Afshin Davarpanah²*

Abstract: Recent advancement in enhanced oil recovery techniques has given petroleum industries the chance to find optimum solutions to recover remained oil from hydrocarbon reservoirs. This paper aims to experimentally investigate the profound impact of reservoir characteristics such as permeability and pressure drop and foams properties such as foam quality and foams resistance factor in enhanced oil recovery processes. Therefore, a hybrid recovery technique containing a thermal recovery method (carbon dioxide) and a chemical method (foam injection) with different brine concentrations was performed to enhance the oil recovery factor. Consequently, after brine injectivity, foam injection has provided the highest recovery factor among other scenarios in shale reservoirs. Permeability increase has caused to increase in the resistance factor as the fluid mobilization is increased in the porous media. Therefore, for 80% of foam quality, the resistance factor is about 7.5, while for 40%, foam quality is about 5 at the permeability of 10mD.

Keywords: Heat Transfer; Thermodynamics; Fluid Mechanics

1. Introduction
Shale reservoirs have required specific recovery methods adapted to the reservoir characteristics (Alvarado & Manrique, 2010; Davarpanah, 2018a; Ebadati et al., 2019b; Mahmoud et al., 2018; Thomas, 2008). These have consisted of oil and gas shales, gas hydrate deposits, tight gas sands, coalbed methane, and heavy oil sands(Davarpanah et al., 2019a, 2018; Haiyan & Davarpanah, 2020; Sahu et al., 2020; Siavashi & Doraneghord, 2017). Due to tight reservoirs' limitations and restrictions, providing sufficient water in water flooding processes has always been a concern.

ABOUT THE AUTHOR
Afshin Davarpanah currently works at the Department of Mathematics and Physics, Aberystwyth, United Kingdom. My educational background and training coupled with extensive coursework in mathematical modelling of polymer flooding (which is coupled with the effects of fines migration) and foam flooding, the utilization of Surfactant and foaming agent in the EOR processes, WAG processes in oil recovery enhancement that have improved my materials processing and characterization skills. Further, my current research works at mathematical and numerical modelling of CO2 sequestration and Geothermal oil reservoirs has enriched my fundamental knowledge of carbon solubility and carbon sequestration.

PUBLIC INTEREST STATEMENT
Recent advancement in enhanced oil recovery techniques has given petroleum industries the chance to find optimum solutions to recover remained oil from hydrocarbon reservoirs. This paper aims to experimentally investigate the profound impact of reservoir characteristics such as permeability and pressure drop and foams properties such as foam quality and foams resistance factor in enhanced oil recovery processes. Therefore, a hybrid recovery technique containing a thermal recovery method (carbon dioxide) and a chemical method (foam injection) with different brine concentrations was performed to enhance the oil recovery factor.
Gas recovery methods regarding its feasibility to mobilize through porous media have been preferred in tight reservoirs to enhance oil production (Davaranah & Mirshekari, 2019c; De Holanda et al., 2018; Omran & Berg, 2020; Tang et al., 2018; Wu et al., 2018). The low permeability of these reservoirs, steam injection, or stimulation treatments would be more economical as more mobility control is required to displace the remaining oil to the production wells (National Energy Board, 2011; Todd & Evans, 2016; Kuang et al., 2018).

Due to the remaining large volumes of oil in the tight reservoirs, oil production would be reduced after one year of primary recovery techniques, and this is why petroleum industries have tried to propose thermal and chemical recovery techniques to produce the remaining oil more efficiently (Davaranah, 2020; Davaranah & Mirshekari, 2019c; Ebadati et al., 2019a; Luo et al., 2017; Singh & Cai, 2018; Valizadeh et al., 2019). Chemical recovery techniques have always provided efficient results in oil production. The application of foams in the oil recovery from tight reservoirs by increasing mobility control is shown as a novel method to enhance sweep efficiency (Davaranah & Mirshekari, 2019c, 2020a; Davaranah et al., 2019b; Yu et al., 2020c; Yu et al., 2019d). Moreover, the foaming agent, which is always a surfactant that reduces the interfacial tension between oil and water phases, would increase the oil production rate in tight reservoirs (Davaranah & Mirshekari, 2020b; Sie & Nguyen, 2019, 2020; Wei et al., 2018; Y Zhang et al., 2019). Alfarge et al. (2017) investigated different experimental and simulation techniques and compared each technique’s feasibility to tight reservoirs’ oil recovery factor. It is proved that surfactant, carbon dioxide, and natural gas flooding are the most optimum recovery methods to improve sweep efficiency in tight reservoirs (Alfarge et al., 2017). Moreover, they found that due to the misleading of the diffusion mechanism in pilot tests, there are some differences between laboratory and field tests that should be considered in the results. Pankaj et al. (2018) investigated fluid flow behaviour mechanisms in fractured reservoirs in the Eagle Ford oilfield. They proposed a 3D petrophysical and geomechanical model to consider the fluid flow through natural fractures and improve the oil recovery by carbon dioxide injection. They concluded that the CO2 huff-n-puff technique would be an efficient method as the gas phase can mobilize more through the tight pores and spaces (Pankaj et al., 2018).

Due to the Soltanian et al. (2019) findings, the considerable influence of reservoir characteristics such as permeability and porosity experimentally investigated during carbon dioxide injection in unconventional reservoirs. It can be concluded that permeability has been affected more in carbon dioxide injectivity as the gas phase can be conducted more, especially in tight pores and channels (Soltanian et al., 2019). In this paper, different permeabilities were schematically plotted to compare the resistance factor. Consequently, permeability increase has caused to increase in the resistance factor due to the more mobilization of fluids in porous media. On the other hand, according to the Dashtian et al. (2018) findings, they concluded that pore size distribution is essential in hydrocarbon transport, especially in tight pore networks that are utterly dependent on the reservoir permeability (Dashtian et al., 2018). It is following the permeability effect that is discussed in this paper. Nell experimentally investigated the crucial role of rock wettability in foam flooding performances. They concluded that foams could destabilize the oil phase, improving oil transportation through porous media. In this paper, foam injection after brine injectivity has provided the highest recovery factor among other scenarios in shale reservoirs, under Nell’s (2015) findings (Farajzadeh et al., 2012). Hu et al. (2020b) developed a set of experimental investigations to consider the effect of cyclic carbon dioxide injection in different temperatures and pressures in shale reservoirs. They concluded that permeability is a crucial factor in carbon dioxide injection due to gas-phase feasibility through porous media to carry the oil phase out. In this paper, the permeability effect is considered the same findings as Hu et al.’s (2020) paper (Hu et al., 2020b).

Due to the complexity of tight reservoirs, in this paper, different injectivity scenarios were experimentally investigated to consider the profound impact of thermal recovery methods (carbon dioxide) and chemical methods (foam injection) with different brine concentrations to measure
enhance oil recovery factor. Moreover, reservoir characteristics such as permeability, resistance factor, and pressure drop were investigated explicitly to define each parameter's alteration.

2. Materials and methods

2.1. Materials

Core plug: the provided core samples extracted from Pazanan oilfield in the south of Iran with a relatively outer diameter of 4.1 cm and 8.24 cm in length. Core samples permeability was measured in an average value of 0.2–0.4 mD. As cores might be broken during the core flooding processes and the sealing procedure might be time-consuming for each core sample, the total number of cores is 30. This is related to repeating the tests two or three times to remove the experimental errors and obtain an average value for each test.

The brine contains CaCl2 salt, under the field foam injections procedures from shale reservoirs to be more adapted with the formation brine. The provided brine's salinity is 22,096.68 ppm with a viscosity of 1 cP, a density of 1.05 g/cm\(^3\), and a pH of 6.25. Brine composition is described explicitly in Table 1.

Crude Oil; density and viscosity of selected crude oil is 0.836 g/cm\(^3\) and 5.49 cP, respectively. The composition of crude oil is described for each composition in Table 2.

Chemical agent; Alpha olefin sulfonate (AOS 40) was used as a surfactant agent to generate foams for flooding processes. This type of surfactant is anionic with a freeze and boiling point of \(-7 \, ^\circ\text{C}\) and 100 \, ^\circ\text{C}\). This condition would be critical as the surfactant can be stabilized as the liquid phase in the laboratory. The viscosity and density of the AOS is 125 cP and 1.05 g/ml. In this study, one wt% of surfactant agents was used to generate foams.

Ion type	Salinity (ppm)
Ca\(^{2+}\)	7526.34
Mg\(^{2+}\)	153.81
Na\(^+\)	4023.16
SO\(_4\)^{2-}	54.52
HCO\(_3\)^{−}	223.18
Cl\(^−\)	10,115.67
Total Salinity	22,096.68

Composition	Mole%	Composition	Mole%
C\(_1\)	20.14	C\(_8\)	3.42
C\(_2\)	6.59	C\(_9\)	4.13
C\(_3\)	5.14	C\(_10\)	3.84
nC\(_4\)	1.25	C\(_11\)	3.85
iC\(_4\)	2.96	C\(_12\)	2.4
nC\(_5\)	1.54	CO\(_2\)	0.84
iC\(_5\)	2.36	H\(_2\)S	0
C\(_6\)	4.52	N\(_2\)	0.3
C\(_7\)	20.14		
2.2. Core flooding procedure
Before commencing the core flooding tests, all the core samples should be sealed in the core holder at two different pressures on the inlet and outlet. To confine the pressure between the core holder wall and core sleeves, an ISCO syringe pump was used. It also controls the flow injectivity through the system.

The Coreflooding apparatus is schematically depicted in Figure 1. According to Figure 1, the experimental procedure is followed by the sequential steps;

- Core samples dried at the 77 °C for 72 h to measure the porosity and permeability of the Permeameter-Porodimeter device's permeability. Next, they placed it into the core holder under the confining pressure of 2.07 Pa, and then it is vacuumed for about one day to eliminate the air.
- To have a steady-state flow in the core plug, it is saturated with the brine, and the permeability of the liquid phase is determined by the application of Darcy's law in the single-phase situation.
- Crude oil, with a rate of 0.5 mL/min, was injected into the system. This was done to provide 1% water cut.
- Brine with the 0.6 mL/min flow rate was injected into the system to measure residual oil saturation.
- The specified volume of chemical and carbon dioxide is injected into the core samples on the miscible condition at the flow rate of 0.6 mL/min to reach the water cut of 99%. The working pressure for the supercritical carbon dioxide is 1.72 Pa. CO₂ is injected with a temperature of 31 °C to be more adapted to the reservoir temperature under a pressure of about 7 Mpa.

3. Results and discussion
In this part of the study, three injectivity scenarios were investigated to consider each scenario's efficiency in the presence and absence of the oil phase during the flooding procedure. The injectivity scenarios are brine injection, carbon dioxide (CO₂) injection, and foam-CO₂ injection.

Figure 1. Experimental apparatus to consider different injectivity scenarios of foams injection, CO₂ injection after brine injection.
Table 3. Resistance factor for different foam qualities

Test No.	Total Injection	Gas Fraction	Resistance factor
1	0.1	80%	3.76
2	0.1	60%	3.28
3	0.1	40%	2.91
4	0.05	80%	4.95
5	0.05	60%	4.62
6	0.05	40%	4.37

3.1. Resistance factor

Resistance factor is defined as the ratio of foam pressure drop versus brine pressure drop in a steady-state condition. Foam with 80% of foam quality had the maximum resistance factor. In contrast, foam mobility reduction has witnessed the lowest value among other foam qualities. It is caused by the low increment of pressure drop in a steady-state condition. Furthermore, brine and gas coinjection has provided more pressure drop by increasing the total injection rate related to the gas channeling issue and improving the oil recovery. Thereby, foam flooding had the best efficiency rather than brine and gas injection. The value of the resistance factor at various foam qualities is statistically depicted in Table 3. It is concluded that higher foam qualities provide a higher resistance factor. For 80% of foam quality, the resistance factor is about 4.95 and 3.76 at 0.05 and 0.1 cm³/min injection.

3.2. Pressure drop

The pressure drop for each scenario is different regarding the various performance of each scenario. Pressure drop measurements for each scenario is statistically depicted in Table 2 for different gas fractions. Thereby, the increase in foam quality caused to increase in the foam flooding pressure drop and a decrease in the brine and gas coinjection pressure drop. Moreover, it is concluded that foaming agents (surfactants) significantly increase oil recovery in shale reservoirs. As shown in Table 4, the increase of gas fraction increases caused an increase in brine-CO₂ pressure drop to decrease foam-CO₂ pressure drop. Foams and CO₂ injection has the highest pressure drop of 235 kPa when the foam quality is 80%. By the decrease of foam quality from 80 to 40%, pressure drop has decreased accordingly.

3.3. Permeability impact

Permeability is considered as one of the crucial parameters in porous media that affect recovery performances. This parameter in tight reservoirs is extremely lower than in conventional reservoirs. Thereby, the resistance factor of foam is lower than its value for conventional reservoirs. As

Table 4. Pressure drop measurement for different scenarios at different gas fractions

Test No.	Injectivity Scenario	Gas Fraction	Pressure Drop at steady-state condition, kPa
1	Brine	-	37
2	Brine and CO₂	80%	44
3	Foam and CO₂	80%	235
4	Brine and CO₂	60%	52
5	Foam and CO₂	60%	204
6	Brine and CO₂	40%	76
7	Foam and CO₂	40%	176
discussed in section 3.1, higher foam quality has provided a higher resistance factor for foam in recovery performances. Therefore, for 80% of foam quality, the resistance factor is about 7.5, while for 40%, foam quality is about 5 at the permeability of 10mD. As can be seen in Figure 2, different permeabilities were schematically plotted to compare the resistance factor. Consequently, permeability increase has caused to increase in the resistance factor due to the more mobilization of fluids in porous media.

3.4. Recovery factor

In this part of the study, each scenario’s efficiency was evaluated by the recovery factor, considered one of the critical parameters used to measure the porous media’s oil production rate.
Figure 3 provides the recovery factor for each scenario versus pore volume injection. Figure 3 shows that foam injection after brine injectivity has the highest recovery factor among other shale reservoir scenarios.

4. Conclusion
As shale reservoirs are considered as one of the unconventional reservoirs in the world and production from these reservoirs is more complicated than conventional reservoirs, in this study, the combination of thermal methods (carbon dioxide and nitrogen injection) and chemical methods (foam injection) with different brine concentrations to measure enhance oil recovery factor. Therefore, after brine injectivity, foam injection has provided the highest recovery factor among other scenarios in shale reservoirs. Permeability increase has caused to increase in the resistance factor due to the more mobilization of fluids in porous media.

Funding
There was no financial support to do this study.

Author details
Huang Jing1
Afshin Davarpanah2
E-mail: afshindpe@gmail.com
ORCID ID: https://orcid.org/0000-0002-3697-1808
1 Department of Information and Electronic Engineering, Hunan University, yang, Hunan, China.
2 Department of Mathematics, Aberystwyth University, Aberystwyth, UK.

Disclosure statement
The author(s) declare that they have no conflict of interest.

Citation information
Cite this article as: Implications of Chemical-Thermal enhanced oil recovery methods in shale reservoirs, Huang Jing & Afshin Davarpanah, Cogent Engineering (2021), 8: 1920564.

References
Alfarage, D., Wei, M., & Bai, B. (2017) IOR methods in unconventional reservoirs of North America: Comprehensive review. In SPE Western Regional Meeting Proceedings.Bakersfield, California.
Alvarado, V., & Manrique, E. (2018). Enhanced oil recovery: An update review. Energies, 11(9), 1529–1579. https://doi.org/10.3390/en11091529
Dashnian, H., Shokri, N., & Sahimi, M. (2019). Pore-network model of evaporation-induced salt precipitation in porous media: The effect of correlations and heterogeneity. Advances in Water Resources, 112, 99–111. https://doi.org/10.1016/j.adwatres.2017.12.006
Davarpanah, A. (2017a). Integrated feasibility analysis of shale inhibition property by utilization of pore pressure transmission equipment. Petroleum Research, 3(2), 152–158. https://doi.org/10.1016/j.ptres.2018.03.006
Davarpanah, A. (2018b). A feasible visual investigation for associative foam polymer injectivity performances in the oil recovery enhancement. European Polymer Journal, 105, 405–411. https://doi.org/10.1016/j.eurpolymj.2018.06.017
Davarpanah, A. (2020). Parametric study of polymer-nanoparticles-assisted injectivity performance for axisymmetric two-phase flow in EOR processes. Nanomaterials, 10(9), 1818. https://doi.org/10.3390/nano10091818
Davarpanah, A., Mazarei, M., & Mirshekari, B. (2019a). A simulation study to enhance the gas production rate by nitrogen replacement in the underground gas storage performance. Energy Reports, 5, 431–435. https://doi.org/10.1016/j.egyr.2019.04.004
Davarpanah, A., & Mirshekari, B. (2019b). Experimental Investigation and Mathematical Modeling of Gas Diffusivity by Carbon Dioxide and Methane Kinetic Adsorption. Industrial & Engineering Chemistry Research, 58(27), 12392–12400. https://doi.org/10.1021/acs.iecr.9b01920
Davarpanah, A., & Mirshekari, B. (2019b). Mathematical modeling of injectivity damage with oil droplets in the waste produced water re-injection of the linear flow. The European Physical Journal Plus, 134(4), 180–187. https://doi.org/10.1140/epjp/i2019-12546-9
Davarpanah, A., & Mirshekari, B. (2019c). A mathematical model to evaluate the polymer flooding performances. Energy Reports, 5, 1651–1657. https://doi.org/10.1016/j.egyr.2019.09.061
Davarpanah, A., & Mirshekari, B. (2020a). Numerical simulation and laboratory evaluation of alkali-surfactant-polymer and foam flooding. International Journal of Environmental Science and Technology, 17 (2), 1123–1136. https://doi.org/10.1007/s13762-019-02438-9
Davarpanah, A., & Mirshekari, B. (2020b). Experimental study of CO2 solubility on the oil recovery enhancement of heavy oil reservoirs. Journal of Thermal Analysis and Calorimetry, 139(2), 1161–1169. https://doi.org/10.1007/s10973-019-08498-w
Davarpanah, A., Mirshekari, B., Jafari Behbohani, T., & Hermati, M. (2018). Integrated production logging tools approach for convenient experimental individual layer permeability measurements in a multi-layered fractured reservoir. Journal of Petroleum Exploration and Production Technology, 8 (3), 743–751. https://doi.org/10.1007/s13202-017-0422-3
Davarpanah, A., Shirmohammadi, R., & Mirshekari, B. (2019a). Experimental evaluation of polymer-enhanced foam transportation on the foam stabilization in the porous media. International Journal of Environmental Science and Technology, 16 (12), 8107–8116. https://doi.org/10.1007/s13762-019-02280-z
De Holanda, R. W., Gildin, E., & Valkó, P. P. (2018). Combining physics, statistics, and heuristics in the decline-curve analysis of large data sets in unconventional reservoirs. SPE Reservoir Evaluation & Engineering, 21(3), 683–702. https://doi.org/10.2118/185588-PA
Ebadati, A., Akbari, E., & Davarpanah, A. (2019a). An experimental study of alternative hot water alternating gas injection in a fractured model. Energy Exploration & Exploitation, 37(3), 945–959. https://doi.org/10.1177/0144559818815247
Ebadati, A., Davarpanah, A., Shahhosseini, A., & Ahmad, P. (2019a). An experimental study to measure the required fresh water and treated water for drilling an unconventional shale reservoir. International Journal of Environmental Science and Technology, 16(12), 7727–7734. https://doi.org/10.1007/s13762-018-02185-3

Farajzadeh, R., Andrianov, A., Krastev, H., Hirasaki, G. J., & Rossen, W. R. (2012). Foam–oil interaction in porous media: Implications for foam assisted enhanced oil recovery. Advances in Colloid and Interface Science, 183-184, 1–13. https://doi.org/10.1016/j.cis.2012.07.002

Haiyan, Z., & Davarpanah, A. (2020). Hybrid chemical enhanced oil recovery techniques: A simulation study. Symmetry, 12(7), 1086–1097. Basel. https://doi.org/10.3390/sym12071086

Hu, X., Li, M., Peng, C., & Davarpanah, A. (2020a). Hybrid thermal-chemical enhanced oil recovery methods: an experimental study for tight reservoirs. Symmetry, 12 (6), 947. Basel. https://doi.org/10.3390/sym12060947

Hu, X., Xie, J., Cai, W., Wang, R., & Davarpanah, A. (2020b). Thermodynamic effects of cycling carbon dioxide injection in shale reservoirs. Journal of Petroleum Science and Engineering, 195, 107717. https://doi.org/10.1016/j.petrol.2020.107717

Hu, Y., Cheng, G., Yang, J., Zhang, L., & Davarpanah, A. (2020c). A laboratory approach on the hybrid-enhanced oil recovery techniques with different saline brines in sandstone reservoirs. Processes, 8 (9), 1051. https://doi.org/10.3390/pr8091051

Kuang, W., Saraji, S., & Piri, M. (2018). A systematic experimental investigation on the synergistic effects of aqueous nanofluids on interfacial properties and their implications for enhanced oil recovery. Fuel, 220, 849–870. https://doi.org/10.1016/j.fuel.2018.01.102

Luo, P., Luo, W., & Li, S. (2017). Effectiveness of miscible and immiscible gas flooding in recovering tight oil from Bakken reservoirs in Saskatchewan, Canada. Fuel, 208, 626–636. https://doi.org/10.1016/j.fuel.2017.07.044

Mahmoud, O., Ibrahim, M., Piepgriza, C., & Larsen, S. (2018) EUR prediction for unconventional reservoirs: State of the art and field case. In: Society of Petroleum engineers - SPE trinidad and tobago section energy resources conference 2018, Port of Spain, Trinidad and Tobago.

Mazarei, M., Davarpanah, A., Ebadati, A., & Mirshekari, B. (2019). The feasibility analysis of underground gas storage during an integration of improved condensate recovery processes. Journal of Petroleum Exploration and Production Technology, 9(1), 397–408. https://doi.org/10.1007/s13202-018-0470-3

Mennd, N. A., Nouredine, Z., Hemmati-Saraprodheh, A., et al. (2019a). Modeling temperature dependency of oil – water relative permeability in thermal enhanced oil recovery processes using group method of data handling and gene expression programming. Engineering Applied Computational Fluid Mechanics, 13(1), 724–743. https://doi.org/10.1080/19942060.2019.1639549

National Energy Board (2011) Tight Oil Developments in the Western Canada Sedimentary Basin
Omran, M., & Berg, C. F. (2020) Applying new rock typing methods, and modelling for conventional & unconventional reservoirs. In International Petroleum Technology Conference 2020, IPTC 2020, Dohaian, Kingdom of Saudi Arabia.

Pankaj, P., Mukisa, H., Solovyeva, I., & Xue, H. (2018) Enhanced oil recovery in Eagle Ford: Opportunities using huff-n-puff technique in unconventional reservoirs. In: Society of Petroleum Engineers - SPE Liquids-Rich Basins Conference - North America 2018, LRBC 2018, Midland, Texas, USA.

Sahb, C., Kumar, R., & Sangwai, J. S. (2020). Comprehensive review on exploration and drilling techniques for natural gas hydrate reservoirs. Energy and Fuels, 34(10), 11813–11839. https://doi.org/10.1021/acs.energyfuels.0c02202

Siavashi, M., & Dorenejhagard, M. H. (2017). Particle swarm optimization of thermal enhanced oil recovery from oilfields with temperature control. Applied Thermal Engineering, 123, 658–669. https://doi.org/10.1016/j.applthermaleng.2017.05.109

Sie, C. Y., & Nguyen, Q. (2019) Non aqueous foam for improving hydrocarbon miscible flooding in water sensitive tight oil formations. In: Proceedings - SPE Annual Technical Conference and Exhibition, Calgary, Alberta, Canada.

Sie, C. Y., & Nguyen, Q. P. (2020) Pore-scale study of non-aqueous foam for improving hydrocarbon miscible flooding in water sensitive tight oil formations. In: SPE/PAE/SEG Unconventional Resources Technology Conference 2020, URTec 2020, Calgary, Alberta, Canada.

Singh, H., & Cai, J. (2018). Screening improved recovery methods in tight-oil formations by injecting and producing through fractures. International Journal of Heat and Mass Transfer, 116, 977–993. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.017

Soltonian, M. R., Hajirezaie, S., Hosseini, S. A., et al (2019). A Laboratory Approach on the Hybrid-Enhanced Oil Recovery Techniques with Different Saline Brines in Sandstone Reservoirs. Processes, 6(3), 212–223. https://doi.org/10.1016/j.jngse.2019.03.011

Tang, J., Wu, K., Zeng, B., Huang, H., Hu, X., Guo, X., & Zuo, L. (2018). Investigate effects of weak bedding interfaces on fracture geometry in unconventional reservoirs. Journal of Petroleum Science and Engineering, 165, 992–1009. https://doi.org/10.1016/j.petrol.2017.11.037

Thomas, S. (2009). Enhanced oil recovery - An overview. Oil & Gas Science and Technology - Revue De l’IFP, 63 (1), 9–19. https://doi.org/10.2516/ogst-2007060

Todd, H. B., & Evans, J. G. (2016) Improved oil recovery IOR pilot projects in the Bakken formation. In: Society of Petroleum Engineers - SPE Low Perm Symposium, Denver, Colorado, USA.

Valizadeh, K., Farahabksh, S., Bateni, A., Zargarian, A., & Davarpanah, A. (2019). Assessment of agricultural biomass residues to replace fossil fuel and hydro-electric power energy: A spatial approach.. Energy science & Engineering, 7(6), 2287–2305. https://doi.org/10.1002/esee.554

Wei, P., Pu, W., Sun, L., Pu, Y., Wang, S., & Fang, Z. (2018). Oil recovery enhancement in low permeable and severe heterogeneous oil reservoirs via gas and foam flooding. Journal of Petroleum Science and Engineering, 163, 340–348. https://doi.org/10.1016/j.petrol.2018.01.011

Wu, K., Wu, B., & Yu, W. (2018). Mechanism analysis of well interference in unconventional reservoirs: Insights from fracture-geometry simulation between two horizontal wells. SPE Production Operations, 33 (1), 12–20. https://doi.org/10.2118/186091-PA

Yu, H., Yang, Z., Luo, L., Liu, J., Cheng, S., Qu, X., ... & Lu, J. (2019). Application of cumulative-in-situ-injection production technology to supplement hydrocarbon recovery among fractured tight oil reservoirs: A case study in Changqing Oilfield, China. Fuel, 242, 804–818. https://doi.org/10.1016/j.fuel.2018.12.121
Zhang, Q., Wang, X., Wang, D., Zeng, J., Zeng, F., & Zhang, L. (2018). Pressure transient analysis for vertical fractured wells with fishbone fracture patterns. Journal of Natural Gas Science and Engineering, 52, 187-201. https://doi.org/10.1016/j.jngse.2018.01.032

Zhang, Y., Gao, M., You, Q., Fan, H., Li, W., Liu, Y., ... & Dai, C. (2019). Smart mobility control agent for enhanced oil recovery during CO2 flooding in ultra-low permeability reservoirs. Fuel, 241, 442-450. https://doi.org/10.1016/j.fuel.2018.12.069

© 2021 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
No additional restrictions
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Engineering (ISSN: 2331-1916) is published by Cogent OA, part of Taylor & Francis Group.
PUBLISHING WITH COGENT OA ENSURES:
• Immediate, universal access to your article on publication
• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
• Download and citation statistics for your article
• Rapid online publication
• Input from, and dialog with, expert editors and editorial boards
• Retention of full copyright of your article
• Guaranteed legacy preservation of your article
• Discounts and waivers for authors in developing regions

SUBMIT YOUR MANUSCRIPT TO A COGENT OA JOURNAL AT WWW.COGENTOA.COM