Cobolt: Joint analysis of multimodal single-cell sequencing data

Boying Gong1, Yun Zhou1, and Elizabeth Purdom2,*

1Division of Biostatistics, University of California, Berkeley, Berkeley, CA 94720, USA
2Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
*Corresponding author. Email: epurdom@stat.berkeley.edu

April 3, 2021

Abstract

Single-cell measurements of different cellular features or modalities from cells from the same system allow for a comprehensive understanding of a biological process. While the most common single-cell sequencing technologies require separate input cells for different modalities, there are a growing number of platforms that allow for measuring several modalities on a single cell. We present a novel method, Cobolt, for analyzing such multi-modality single-cell sequencing datasets. Cobolt jointly models the multiple modalities via a novel application of Multimodal Variational Autoencoder (MVAE) to a hierarchical generative model. We first demonstrate its performance on data from the multi-modality platform SNARE-seq, consisting of measurements of gene expression and chromatin accessibility on the same cells. We then illustrate the ability of Cobolt to integrate multi-modality platforms with single-modality platforms by jointly analyzing a SNARE-seq dataset, a single-cell gene expression dataset, and a single-cell chromatin accessibility dataset. We compared Cobolt with current options for analyzing such datasets and show that Cobolt provides robust and flexible results for integration of single-cell data on multiple modalities.

1 Introduction

Single-cell sequencing allows for quantifying molecular traits at the single-cell level, and there exist a wide variety of platforms that extend traditional bulk platforms, such as mRNA-seq and ATAC-seq, to the single cell. Comparison of different cellular features or modalities from cells from the same biological system gives the potential for a holistic understanding of the system. Most single-cell technologies require different cells as input to the platform, and therefore there remains the challenge of linking together the biological signal from the different modalities, with several computational methods proposed to estimate the linkage between the different modalities, such as LIGER [Welch et al., 2019] and Signac (Seurat) [Stuart et al., 2020, 2019].

However, there are a growing number of platforms that allow for measuring several modalities on a single cell. CITE-seq [Stoeckius et al., 2017] jointly sequences epitope and transcriptome; scNMT-seq [Clark et al., 2018] jointly profiles chromatin accessibility, DNA methylation, and gene expression; and sci-CAR [Cao et al., 2018], Paired-seq [Zhu et al., 2019], and SNARE-seq [Chen et al., 2019b] enable simultaneous measurement of transcription and chromatin accessibility (we direct readers to Lee et al. [2020] for a comprehensive review). By directly measuring the different modalities on the same cells, these techniques greatly enhance the ability to relate the different modalities. However, there is little existing methodology for analyzing this kind of multi-modality data. Existing methods mainly focused on CITE-seq [Gayoso et al., 2021, Wang et al., 2020, Hao et al., 2020]; however, CITE-seq jointly sequences gene expressions and at most a few hundred antibodies, and thus is quite different from other kinds of multi-modality data sets. Sequencing of chromatin accessibility or methylation status will easily result in tens of thousands of features and much lower counts than even single-cell RNA-seq (scRNA-seq). Even for single-modality technologies, these types of data often require specialized analysis tools [Chen et al., 2019a]. As a result, existing analyses of data from multi-modality technologies from these modalities have primarily analyzed one modality (usually scRNA-seq, [Cao et al., 2018]), analyzed the two modalities separately [Chen et al., 2019b], or have created ad-hoc integration
methods for joint clustering [Zhu et al., 2019]. In principle, one could also use methods like LIGER and Signac to analyze multi-modality data jointly, but these methods are designed for data from independent cells and thus do not make use of the valuable extra information that is available from jointly measuring the two modalities.

Our method Cobolt fills this gap by providing a coherent framework for a single analysis of multi-modality platforms. The result of Cobolt is a single representation of the cells irrespective of modalities which can then be used directly by downstream analyses, such as joint clustering of cells across modalities. Cobolt estimates this joint representation via a novel application of Multimodal Variational Autoencoder (MVAE) [Wu and Goodman, 2018] to a hierarchical generative model.

In addition to providing a method for analysis of multi-modality datasets, the method of Cobolt allows for the integration of multi-modality platforms with single-modality platforms. This is done by a transfer learning approach which harnesses the valuable information found by joint sequencing of the same cells and extends it to the cells in the single-cell platform. The end result is a single representation of all of the input cells, whether sequenced on a multi-modality platform or a single-modality platform. In this context, Cobolt gives an over-all integrative framework that is flexible for a wide range of modalities.

We demonstrate Cobolt on two use-cases. The first uses Cobolt to analyze a multi-modality sequencing dataset from the SNARE-seq technology. The second uses Cobolt to integrate multi-modality data with single-modality data from related biological systems. We show that in both settings, Cobolt results in a representation of the individual cells that can be used for downstream analysis to provide meaningful biological insights.
2 Results

2.1 The Cobolt Model

We develop a novel method, Cobolt, that utilizes joint-modality data to enable the joint analysis of cells sequenced on separate sequencing modalities. We do this by developing a Multimodal Variational Autoencoder based on a hierarchical bayesian generative model. We briefly describe the premise of the model using the example of two modalities: mRNA-seq and ATAC-seq (for more details in greater generality, see the Methods Section 3). We assume that we have a set of cells with both mRNA-seq and ATAC-seq data collected using the joint modality platform (X$_{mRNA}^1$ and X$_{ATAC}^1$), as well as (optionally) a set of cells with only mRNA-seq data (X$_{mRNA}^2$), and a set of cells with only ATAC-seq data (X$_{ATAC}^3$). Cobolt takes all of this data as input to find a representation of the cells in a shared reduced dimensionality space, regardless of modality (Figure 1A).

Cobolt models the sequence counts from the modalities inspired by Latent Dirichlet Allocation (LDA) [Blei et al., 2003] model. The LDA model is a popular Bayesian model for count data which has been successfully applied to genomics in areas such as clustering of single-cell RNA-seq data [Yotsukura et al., 2016, Sun et al., 2018], single-cell ATAC-seq analysis [González-Blas et al., 2019], and functional annotation [Backenroth et al., 2018]. Cobolt builds a hierarchical latent model to model data from different modalities and then adapts the MVAE approach to both estimate the model and allow for a transfer of learning between the joint-modality data and the single-modality data.

Cobolt assumes that there are K different types of possible categories that make up the workings of a cell. For ease of understanding, it is useful to think of these categories as biological processes of the cell, though the categories are unlikely to actually have a one-to-one mapping with biological processes. Each category will result in different distributions of features in each of the modalities – i.e. different regions of open chromatin in ATAC-seq or expression levels of genes in mRNA-seq for different categories. The features measured in a cell are then the cumulative contribution of the degree of activation of each category present in that cell. The activation level of each category is represented by the latent variable θ_c for each cell c, which gives the relative activity of each of the K categories in the cell. θ_c is assumed to be an intrinsic property of each cell representing the underlying biological properties of the cell, while the differences of data observed in each modality for the same cell are due to the fact that the categories active in a cell have different impacts in the modality measured (open chromatin in ATAC-seq versus gene expression in mRNA-seq). We assume $\theta_c = \sigma(z_c)$, where z_c is drawn from a Gaussian prior and σ is the soft-max transformation; this is an approximation to the standard Dirichlet prior for θ_c that allows use of variational autoencoders to fit the model [Srivastava and Sutton, 2017]. The mean of the posterior distribution gives us an estimate of our latent variable z_c for each cell, and the posterior distribution is estimated using variational autoencoders (VAE).

In the end, Cobolt results in an estimate of the latent variable z_c for each cell, which is a vector that lies in a K-dimensional space. This space represents the shared biological signal of the individual cells, regardless of modality, and can be used for the common analysis tasks of single-cell data, such as visualization and clustering of cells to find subtypes. Importantly, we can predict the latent variable z_c even when a cell does not have all modalities measured. Moreover, because of the joint-modality platforms, Cobolt does not require that the different modalities measure the same features in order to link the modalities together – the fact that some of the cells were sequenced on both platforms provides the link between different types of features. Therefore, ATAC-seq peaks and mRNA-seq gene expression can be directly provided as input. This is unlike methods that do not make use of the joint-modality data and require that the different modalities be summarized on the same set of features, for example by simplifying ATAC-seq peaks to a single measurement per gene.

2.2 Cobolt as an analysis tool for multi-modality data

While Cobolt can be used to link together data from single and multiple modality datasets, in its simplest form Cobolt can be used for the analysis of data from solely a multi-modality technology. We demonstrate this usage with the SNARE-seq data of Chen et al. [2019b], which consists of paired transcription and chromatin accessibility sequenced on 10,309 cells of adult mouse cerebral cortices.
A common approach for analyzing joint modality data is to analyze the two modalities separately and then link together the results. This is the strategy of Chen et al. [2019b], where the authors primarily clustered the gene expression modality to form clusters of the cells, and then performed a separate analysis on chromatin accessibility modality as a comparison. Focusing on the gene expression modality is common, since it is often assumed to have the greatest resolution in determining cell-types. However, the reduced representations and clusters created on one modality may not be representative of all the underlying cell subtypes, and a joint analysis could potentially have greater power to find subtypes. To address this question, we compare the results of the joint analysis of Cobolt with that of the separate analyses of Chen et al. [2019b]. Since the authors of Chen et al. [2019b] did not provide cluster annotations, we recreate the separate analysis on the separate modalities. We do this by creating lower-dimensional representations of the gene expression using Seurat [Stuart et al., 2019] and chromatin accessibility modality using cisTopic [González-Blas et al., 2019] (consistent with Chen et al. [2019b], see Supplementary Material S2 for details).

In Figure 2, we visualize the lower-dimensional space generated using gene expression (Seurat), chromatin accessibility (cisTopic), and joint modalities (Cobolt) via UMAP (Uniform Manifold Approximation and Projection, McInnes et al. [2018]). We color the cells based on the clusters found by clustering the gene expression modality data (Figure 2A) and those based on clustering the chromatin accessibility data (Figure 2B). In both cases, we see distinct clusters that are found in one modality but are not reflected in the other modality. For example, the highlighted gene expression clusters in Figure 2A are distinct in the mRNA-
expression representation but are not distinguishable from each other on the chromatin accessibility UMAP. Their medium silhouette widths in the chromatin accessibility space are below 0, indicating poor separations (Supplementary Figure S2). Similarly, in Figure 2B, we highlight clusters of cells which nicely separate in the chromatin accessibility analysis but are mixed in the UMAP of gene expression modality. In both these cases, the results of the Cobolt analysis shows that Cobolt integrates both modalities to find these modality-specific subtype differences: the two highlighted cell populations mentioned above are both distinguishable in the Cobolt reduced dimensions, and their cluster median silhouette widths are improved compared to single modality analysis (Supplementary Figure S2). These results demonstrate the power of a joint analysis of modalities for a comprehensive understanding of subtypes.

2.3 Cobolt for integrating multi-modality data with single-modality data

We now turn to the example of using Cobolt to integrate multi-modality data with single-modality data. For this use-case, we use Cobolt to jointly model three different datasets — the SNARE-seq of mouse cerebral cortices analyzed in the above section, together with a scRNA-seq and a scATAC-seq dataset of mouse primary motor cortex (MOp) [Yao et al., 2020]. We do this by rerunning Cobolt but with the input now including all three datasets (SNARE-seq, MOp scRNA-seq, and MOp scATAC-seq). For the gene expression modality, we used only genes detected in both the SNARE-seq and scRNA-seq datasets; for chromatin accessibility, we map the SNARE-seq to the peak set called on the MOp scATAC-seq data. After obtaining the lower-dimensional representation ($K = 30$), we applied the Louvain community detection algorithm [Blondel et al., 2008] for cell clustering (see details in Supplementary Text S1).

The result is a lower-dimensional latent space that aligns the above three datasets into a single representation. In Figure 3A, we visualize this low-dimensional space via UMAP, with cells colored by their dataset of origin. We see that the cells from different datasets are well aligned regardless of their source of origin for the most part. In Figure 3B, we color the MOp cells by their cellular subtype as defined by Yao et al. [2020]; for the purposes of comparison across the modalities, we integrated some cell-types into larger groupings and modified the names so as to have comparable groups (see Supplementary Material S2). For the SNARE-seq cells, we do not have the cell types from Chen et al. [2019b], so we use the identifications we found in the previous section in the analysis of only the SNARE-seq cells. We see that cells from the same cellular subtypes are projected closely regardless of the data source. We also see that the representation of Cobolt respects the larger category of cell types by grouping three major cell classes: GABAergic inhibitory neurons (CGE, Sst, Pvalb), glutamatergic excitatory neurons (IT, L5 PT, L6 CT, L6b, NP), and non-neurons.

Despite detecting mostly similar cell types, the MOp datasets profile several cell types distinct to the modality. For example, microglial cells (MGC) and smooth muscle cells (SMC) are uniquely detected in scATAC-seq. The different datasets also have different cellular compositions of their shared subtypes, where astrocytes (Astro) and oligodendrocytes (Oligo) are much more abundant in the scATAC-seq (6.55% and 10.50%) than in the SNARE-seq (4.5% and 2.84%) and scRNA-seq (0.40% and 0.36%). As shown in Figure 3B, cell populations unique to one dataset are grouped in the UMAP plot and are distinguishable from the other datasets/cell types, indicating that Cobolt reconciles data even when one cell population is entirely absent or scarcely represented in one or more data sources.

Cobolt also facilitates subtype identification at a finer resolution by transferring information between modalities. Figure 4 shows a breakdown of one cell type, caudal ganglionic eminence interneurons (CGE). In the scATAC-seq MOp dataset, this was annotated as one cluster, while the scRNA-seq annotation further divided CGE cells into 3 subtypes based on marker genes –Lamp5, Vip, and Sncg. Our joint mapping of the cells relates the subtypes detected in scRNA-seq to scATAC-seq and provides a finer resolution breakdown of CGE in scATAC-seq. As shown in Figure 4A, our clustering of the results of the joint analysis of Cobolt resulted in a cluster (cluster 13) which composed of Lamp5 and Sncg, while another (cluster 16) is mostly Vip cells. This subdivision is further validated by gene expression and gene activity levels of marker genes Lamp5 and Vip in these clusters, which discriminate subtype Lamp5 from subtype Vip (Figure 4B). This shows that the joint model of Cobolt can help distinguish noisy cells in one dataset with additional information from other datasets or modalities.
Figure 3: The UMAP visualization of integrating SNARE-seq and MOp datasets. Cells are colored by (A) dataset of origin and (B) cell type annotation. Both the scRNA-seq and the scATAC-seq contain a substantial fraction of cells labeled “unannotated” by the authors of the data and that do not map to known cell types. The cell type abbreviation largely followed Yao et al. [2020]: astrocytes (Astro); caudal ganglionic eminence interneurons (CGE); endothelial cells (Endo); layer 2 to layer 6 (L2-6); intratelencephalic neurons (IT); pyramidal tracts (PT); corticothalamic neurons (CT); L6b excitatory neurons (L6b); microglial cells (MGC); near-projecting excitatory neurons (NP); oligodendrocytes (Oligo); oligodendrocyte precursors (OPC); smooth muscle cells (SMC); medial ganglionic eminence interneurons subclasses based on marker genes (Sst, Pvalb).

Figure 4: A) Composition of clusters found by clustering reduced dimensionality of Cobolt. We show cells annotated as CGE by the scATAC-seq dataset compared to the cells annotated in the subtypes Lamp5, Vip, and Sng by the scRNA-seq dataset. (B-C) Plots of the gene expression (mRNA) and gene body assessability summaries (ATAC) in clusters 13 and 16 for the marker genes (B) $Gad1$, $Prox1$, and (C) $Lamp5$, Vip. $Gad1$, $Prox1$ are marker genes for the larger CGE cluster that contains $Lamp5$, Vip, and Sng, while ($Lamp5$, Vip) distinguish between cell types $Lamp5$ and Vip [Yao et al., 2020].
2.4 Comparison

As described in the introduction, there are few existing methods that analyze multi-modality sequencing data nor integrate it with single-modality data. Therefore, for a point of comparison, we apply the LIGER and Signac methods, which are designed for integrating unpaired modalities. LIGER applies an integrative nonnegative matrix factorization (iNMF) approach to project the data onto a lower-dimensional space and then builds a shared nearest neighbor graph for joint clustering. Signac implements canonical correlation analysis (CCA) for dimensionality reduction; Signac subsequently transfers cell labels by identifying mutual nearest neighbor cell pairs across modalities. We applied these methods to only the scRNA-seq and scATAC-seq MOp data, as there is no clear way of including the SNARE-seq without focusing on one of its modalities and adding extra batch correction steps. LIGER and Signac (Seurat) take as input gene-level count summaries from different modalities, such as gene expression or gene body methylation/chromatin accessibility measures, so we applied these two methods on the gene expression and gene activity matrices, where the latter is defined as the summarized chromatin accessibility counts over gene and promoter regions. Cobolt uses the peak summaries directly without needing to summarize at the gene level. The implementation details can be found in Supplementary Material S2.

In Figure 5A, we visualize the dimensionality reduction results of all three methods for the MOp cells via a UMAP representation. Cells are color-coded by the same a priori cell labels for all three methods, as shown in Figure 5A. LIGER gives greater separation between cell types but splits several subtypes into far-away islands, such as for L5 PT, MGC, and Astro. Signac adopts an asymmetric strategy of transferring scRNA-seq labels to scATAC-seq data, and as a result, Signac performs well on major cell types but poorly on under-represented subpopulations in scRNA-seq such as astrocytes (Astro), which accounts for only 0.4% of the cells in scRNA-seq but 6.55% in scATAC-seq. Cobolt generates a UMAP visualization that well represents rare subpopulations and respects broader cell classes. Further, Cobolt, unlike LIGER and Signac, not only groups together the subtypes, but appears to also represent the three broader categories major GABAergic inhibitory neurons, glutamatergic excitatory neurons, and non-neurons.

These differences in the UMAP representations are purely qualitative and furthermore might not capture more subtle aspects that cannot be reduced to two dimensions. To give a more quantitative assessment of the performance, we compared the clusters resulting from each of the methods. LIGER and Signac have their own clustering strategies, which we relied on, while for Cobolt we just used a standard Louvain clustering. We set the number of identified clusters for each method to be 17, consistent with the annotation. In Figure 5B, we plot the maximum proportion that a cluster overlaps with each a priori identified cell type, ordered in descending order of the cell population sizes. Despite embedding cell types into distant islands, as mentioned above, LIGER’s clustering algorithm does successfully clustered the cell populations together, suggesting that their clustering algorithm is more successful than their dimensionality reduction (it should be noted that for LIGER, the starting point for the clustering technique is not its joint dimensionality reduction). As expected from the UMAP, Signac gives similar performance as Cobolt on major cell types but falls short on small ones. Cobolt clustering performance is equivalently good as LIGER; as we just apply a standard clustering routine on the latent space of \(\hat{Z} \), this suggests that the qualitative strengths that we see from Cobolt are maintained in the clustering.

Comparison to these cell-type labels is informative, but has significant limitations. These cell-types have been derived from these same data sets, and are not truly a gold-standard, particularly at the level of individual cells. Further, there are different levels of potential resolution, as exemplified previous for the CGE cluster. The cluster identifications we have compared have the advantage of being relatively robust, but are also likely to be fairly easy to detect, making it difficult to compare methods since all of the methods find these large structures. To circumvent these problems, we turn to the SNARE-seq data – where we know which cells should be the same in each modality – and compared the methods by evaluating whether coordinates of the reduced dimensions \(Z \) for the paired cells were close together in the different methods. Specifically, for a fixed number \(k \), we find for each test cell in \(Z_{mRNA} \) its \(k \) nearest neighbors in the other modality \(Z_{ATAC} \). We then calculate the percentage of test cells whose paired representation is included in its nearest neighbor. The reverse analysis was done using chromatin accessibility as the query and evaluating the percentage whose nearest neighbors include their mRNA pair. Many popular clustering routines use nearest-neighbor graphs for identifying clusters, so this is a metric directly related to whether the paired cells would likely cluster together, but avoids having to specify cluster parameters, especially as applied to
Figure 5: A, B, C) UMAP visualizations generated by (A) LIGER, (B) Signac, and (C) Cobolt aligning MOp scATAC-seq and scRNA-seq, colored by cell type annotations. The three major classes of cell types—GABAergic inhibitory neurons, glutamatergic excitatory neurons, and non-neurons—are indicated on the Cobolt UMAP plot. D) Barplot of maximum overlap proportion between identified clusters and each cell type. For the complete concordance between clustering results and a priori cell type labels, see Supplementary Figure S5.)
different methods (and LIGER and Signac have their own clustering techniques specific for this data).

Paired cells are by definition given the same coordinate space in Cobolt, so in order to make the comparison meaningful we trained the Cobolt joint model with 20% of the SNARE-seq cells (playing the role of \((X^\text{mRNA}_1, X^\text{ATAC}_1)\)), while the rest of the cells were trained without pairing information (to play the role of \((X^\text{mRNA}_2, X^\text{ATAC}_3)\)). This provided separate estimates \(\hat{Z}_2\) and \(\hat{Z}_3\) for the unpaired mRNA and ATAC modalities, respectively, with which we evaluated whether the paired cells were close together. For LIGER and Signac, we hide the pairing information and provide the two modalities as if they were collected on different cells; unlike Cobolt, LIGER and Signac were given all of the cells (i.e. test and training) to create their dimensionality reduction since they do not have the ability for providing predictions for cells not included in the original dimensionality reduction. We only evaluated their performance on the test cells, however to be comparable with Cobolt.

As shown in Figure 6, the Cobolt joint representation does a much better job of placing the paired cells close to each other, compared to the lower-dimensional representation given by LIGER and Signac. The proportion of paired cells that are neighbors in the test set is much larger than either of the other two methods. This supports our qualitative assessment of the UMAP representations of the three methods, suggesting that by making use of the pairing information, Cobolt gives more compact and coherent clustering of similar cells.

Unlike these other methods, Cobolt also does not require the data to be summarized per gene and can use all the individual peaks. The number of peaks called on a chromatin accessibility dataset is usually much larger than the number of genes, and summarizing the data per gene could potentially result in a loss of signals: in the case of SNARE-seq, 244,544 peaks are identified versus the 33,160 genes that are detected. For the above comparison with LIGER and Signac, we applied Cobolt on both the summarised counts over genes (Cobolt-gene) and peaks (Cobolt-peak) separately. Figure 6 shows that using peaks vastly improved the performance relative to using the gene activities summarization, suggesting that there is a loss of information in using gene summaries, potentially due to distant binding sites not included in the gene summarization.

In the above analysis, we filtered out 2.5% of MOp mRNA cells and 15.8% ATAC-seq cells due to low counts and other quality control measures. Ultimately, the choice of filtering threshold is usually arbitrary, and overly conservative thresholds might lead to an omission of interesting cell types. However, unlike LIGER and Signac, Cobolt has an underlying count-based model (LDA), so that Cobolt should naturally downweight the influence of low-count cells. We evaluate the robustness of Cobolt by considering the extreme case where there is no filtering on cells and only a minimal filter on genes is performed (Supplementary Figure S3).
Figure S6. Cobolt gives similar performances with and without the filtering, unlike LIGER and Signac, demonstrating that Cobolt is robust to poor-quality cells and low-expressed genes.

Finally, we would note that this analysis demonstrates that the latent variable space of \(\hat{Z} \) is appropriate for conventional downstream analysis techniques without any further transformation. We see this in the clustering of the cells where, unlike LIGER and Signac, we applied standard clustering techniques to our representation and were able to capture the meaningful biology.

3 Methods

While the most common application of joint-modality platforms consists of pairs of modalities (such as the example of mRNA-seq and ATAC-seq we described above), we will describe Cobolt in generality, assuming that there are \(M \) modalities.

3.1 Modeling Modality Dependency

For an individual cell \(c \), we can (potentially) observe \(M \) vectors of data \(x_c = \{x_c^{(1)}, \ldots, x_c^{(M)}\} \), each vector of dimension \(d_1, \ldots, d_M \) corresponding to the number of features of each modality. We assume a Bayesian latent model, such that for each cell there is a latent variable \(z_c \in \mathbb{R}^K \) representing the biological signal of the cell, where \(z_c \) is assumed drawn from a Gaussian prior distribution. Given \(z_c \), we assume that the data \(x_c^{(m)} \) for each modality has an independent generative process, potentially different for each modality. Specifically, we assume that the data \(x_c^{(m)} \) from each modality are conditionally independent given the common latent variable \(z_c \). That is,

\[
p(x_c^{(1)}, \ldots, x_c^{(M)}, z_c) = p(z_c) \prod_{i=1}^{M} p(x_c^{(i)}|z_c).
\]

We use \(q(z_c|x_c^{(1)}, \ldots, x_c^{(M)}) \) as a variational approximation of the posterior distribution \(p(z_c|x_c^{(1)}, \ldots, x_c^{(M)}) \). \(q(z_c|x_c^{(1)}, \ldots, x_c^{(M)}) \), the encoder, is assumed Gaussian with parameters modeled as neural networks (i.e. Variational Autoencoder, VAE [Kingma and Welling, 2013]). This allows for estimation of the posterior distribution \(p(z_c|x_c^{(1)}, \ldots, x_c^{(M)}) \) and the underlying latent variable for each cell \(c \). The posterior mean of this distribution \(\hat{z}_c \) will be our summary of the shared representation across modalities.

Importantly, this model can be estimated even when not all of the input data contains all modalities. In this case, an individual cell \(c \) contains a subset of the modalities, \(S_c \subset \{1, \ldots, M\} \), and consists of data \(x_c = \{x_c^{(i)}, i \in S_c\} \). Without all modalities observed, the cell can contribute to the estimation of the model as its distribution can be explicitly written out:

\[
p(x_c, z_c) = p(z_c) \prod_{i \in S_c} p(x_c^{(i)}|z_c).
\]

Further, we can estimate latent variables for such cells by using posterior distribution of \(z_c \) when conditioning only on the observed modalities, \(q(z_c|\{x_c^{(i)}, i \in S_c\}) \). Instead of using separate neural networks for \(2^M - 1 \) posterior distributions of different modality combinations, we adopt a technique introduced in Multimodal Variational Autoencoder (MVAE) [Wu and Goodman, 2018], which largely reduces the number of decoders to \(2M \) (See Supplementary Material S1 for inference details).

As an example, if there are two modalities, mRNA-seq and ATAC-seq, and we have \(n_1 \) cells with paired data from the joint modality platform, \(X_1 = (X_1^{mRNA}, X_1^{ATAC}) \); \(n_2 \) cells with only mRNA measured, \(X_2 = X_2^{mRNA} \); and \(n_3 \) cells with only ATAC-seq measured, \(X_3 = X_3^{ATAC} \). All \(N = n_1 + n_2 + n_3 \) cells can be used in the estimation of the joint distribution of the latent variables, and estimates of the latent variables can be found as the mean of the relevant approximate posterior distributions:

\[
\hat{Z}_1 = E(Z|X_1^{mRNA}, X_1^{ATAC}) \quad \text{(Paired Cells)}
\]
\[
\hat{Z}_2^{mRNA} = E(Z|X_2^{mRNA}) \quad \text{(mRNA-seq only)}
\]
\[
\hat{Z}_3^{ATAC} = E(Z|X_3^{ATAC}) \quad \text{(ATAC-seq only)}
\]
Correcting for missing modalities. In practice we find that the distributions $q_\phi(z_c|\{x_c^{(i)}\}_{i \in S})$ have subtle differences for different subsets S, i.e. the latent variables \hat{Z}_1, \hat{Z}_2^{mRNA}, and \hat{Z}_3^{ATAC} show distinct separations (Supplementary Figure S4). One possibility could be due to platform differences between the different datasets that remain even after our batch correction (see below). However, we also see differences in these distributions even if we only consider the joint-modality data, where we can estimate all of these posterior distributions on the same cells, $\hat{Z}_1^{\text{mRNA}} = E(Z|X_1^{\text{mRNA}})$ or $\hat{Z}_1^{\text{ATAC}} = E(Z|X_1^{\text{ATAC}})$ (Supplementary Figure S4). Indeed there is nothing in the optimization of the posterior distribution that requires these different posterior distributions to be the same.

While the effects are small, these subtle differences can affect downstream analyses, e.g., in clustering cells for subtype discovery. Rather than directly force these posterior distributions to match in our estimation of the model, Cobolt fits the model as described above (using all of the data), then uses the paired data to train a prediction models that predict \hat{Z}_i from the modality-specific estimates \hat{Z}_1^{mRNA} and \hat{Z}_1^{ATAC} (See Supplementary Material S1 for details). We then apply these prediction models to \hat{Z}_2^{mRNA} and \hat{Z}_3^{ATAC} to obtain estimates \hat{Z}_2 and \hat{Z}_3 which are better aligned to be jointly analyzed in the same space.

3.2 Modeling Single Modality of Sparse Counts

The choice of the generative distribution $p_\psi(x^{(i)}|z)$ should be chosen to reflect the data, and in principle can vary from modality to modality. For example, single-modality VAE models using zero-inflated negative binomial distributions (ZINB) [Lopez et al., 2018] have been proposed for scRNA-seq datasets to account for sparse count data. However, we found ZINB models performed less well for technologies that measure modalities like chromatin accessibility, which results in data with sparser counts and larger feature sizes than scRNA-seq. Therefore, we develop a latent model (Figure S1) for these types of modalities inspired by the Latent Dirichlet Allocation (LDA) [Blei et al., 2003].

Our generative model for a single modality i starts by assuming that the counts measured on a cell are the mixture of the counts from different latent categories. In the genomic setting, these categories could correspond to biological processes of the cell, for example. Each category has a corresponding distribution of feature counts. The cumulative feature counts for a cell c are then the result of combining the counts across its categories, i.e. a mixture of the categories’ distributions. Specifically, each cell c has a latent probability vector $\theta_c \in [0,1]^K$ describing the proportion of each category that makes up cell c. Each category k has a probability vector $\sigma(\beta_k)$ that provides the distribution of its feature counts. Here σ indicates the softmax function that transforms β_k to a probability vector that sums to 1. The observed vector of counts x_c are a multinomial draw with probabilities π_c, where $\pi_c = \sigma(B)\theta_c$, and $B = (\beta_1, \ldots, \beta_K)$ is a matrix of the individual β_k vectors. To extend this model to multiple modalities, we assume a shared latent variable z_c that is common across modalities, but each modality has a different $B^{(i)}$ that transforms the shared latent class probabilities into the feature space of the modality.

Furthermore, it is well known that there can be meaningful technical artifacts (“batch effects”) between different datasets on the same modality, for example due to differences between platforms or laboratory preparations. To counter this, our model also adjusts the sampling probabilities $\sigma(B^{(i)})\theta_c$ differently for data from different batches within the same modality i.

θ_c is the latent variable describing the contributions of each category to cell c, and is shared across all modalities. In LDA models, it is typically assumed to have a Dirichlet prior distribution. However, we use a Laplace approximation to the Dirichlet introduced in ProdLDA [Srivastava and Sutton, 2017], which allows for incorporation into a VAE model. This prior assumes a latent variable z_c with a Gaussian prior, and sets $\theta_c = \sigma(z_c)$, where σ is the softmax transformation. We use this approximation to the Dirichlet distribution to provide a multi-modality method appropriate for sparse sequence count data.

4 Discussion

We have shown that Cobolt is a flexible tool for analyzing multi-modality sequencing data, whether separately or integrated with single-modality data. Cobolt synthesizes the varied data into a single representation, preserving meaningful biological signal in the different modalities. Moreover, this latent variable space
is appropriate for standard downstream analysis techniques commonly used for analyzing cells without any further specialized adjustments, allowing Cobolt to fit into standard analysis pipelines.

In this paper, we focused on reconcile cells from different sources and provide a consensus clustering. Future work could make use of the graphical model and inferred parameters to establish connections between features. For example, the probability vectors generated by $B^{(i)}$ naturally provide a reduced-dimensional space of molecular features and can potentially help the construction of gene networks.

We would note that while we have focused on the capability of Cobolt to analyze data from two-modalities, the underlying method can be extended to larger number of modalities and integration of different combinations of modalities, such as datasets with different pairs of modalities. Thus Cobolt provides a framework to integrate a wide range of varieties of multi-modality platforms as well as single-modality platforms.

5 Acknowledgements

This work has been supported by the NIH grant U19MH114830. The authors would like to thank Jean-Philippe Vert for useful early discussions on the analysis of multi-modality data, and Hector Roux de Bezieux for assistance in accessing the MOp data.

References

Daniel Backenroth, Zihuai He, Krzysztof Kiryluk, Valentina Boeva, Lynn Pethukova, Ekta Khurana, Angela Christiano, Joseph D Buxbaum, and Iuliana Ionița-Laza. Fun-lda: a latent dirichlet allocation model for predicting tissue-specific functional effects of noncoding variation: methods and applications. *The American Journal of Human Genetics*, 102(5):920–942, 2018.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. *Journal of machine Learning research*, 3(Jan):993–1022, 2003.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of communities in large networks. *Journal of statistical mechanics: theory and experiment*, 2008(10):P10008, 2008.

Junyue Cao, Darren A Cusanovich, Vijay Ramani, Delasa Aghamirzaie, Hannah A Pliner, Andrew J Hill, Riza M Daza, Jose L McFaline-Figueroa, Jonathan S Packer, Lena Christiansen, et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. *Science*, 361(6409):1380–1385, 2018.

Huidong Chen, Caleb Lareau, Tommaso Andreani, Michael E Vinyard, Sara P Garcia, Kendall Clement, Miguel A Andrade-Navarro, Jason D Buenrostro, and Luca Pinello. Assessment of computational methods for the analysis of single-cell atac-seq data. *Genome biology*, 20(1):1–25, 2019a.

Song Chen, Blue B Lake, and Kun Zhang. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. *Nature biotechnology*, 37(12):1452–1457, 2019b.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining*, pages 785–794, 2016.

Stephen J Clark, Ricard Argelaguet, Chantriolh-Andreas Kapourani, Thomas M Stubbs, Heather J Lee, Celia Alda-Catalinas, Felix Krueger, Guido Sanguinetti, Gavin Kelsey, John C Marioni, et al. scnmt-seq enables joint profiling of chromatin accessibility dna methylation and transcription in single cells. *Nature communications*, 9(1):1–9, 2018.

Adam Gayoso, Zoë Steier, Romain Lopez, Jeffrey Regier, Kristopher L Nazor, Aaron Streets, and Nir Yosef. Joint probabilistic modeling of single-cell multi-omic data with totalvi. *Nature Methods*, pages 1–11, 2021.
Carmen Bravo González-Blas, Liesbeth Minnoye, Dafni Papasokrati, Sara Aibar, Gert Hulselmans, Valerie Christiaens, Kristofer Davie, Jasper Wouters, and Stein Aerts. cistopic: cis-regulatory topic modeling on single-cell atac-seq data. *Nature methods*, 16(5):397–400, 2019.

Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M Mauck, Shiwei Zheng, Andrew Butler, Maddie Jane Lee, Aaron J Wilk, Charlotte Darby, Michael Zagar, et al. Integrated analysis of multimodal single-cell data. *bioRxiv*, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.

Jeongwoo Lee, Daehye Hwang, et al. Single-cell multionics: technologies and data analysis methods. *Experimental & Molecular Medicine*, 52(9):1428–1442, 2020.

Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep generative modeling for single-cell transcriptomics. *Nature methods*, 15(12):1053–1058, 2018.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.

Shane Nep, M Scott Kuehn, Alex P Reynolds, Eric Haugen, Robert E Thurman, Audra K Johnson, Eric Rynes, Matthew T Maurano, Jeff Vierstra, Sean Thomas, et al. Bedops: high-performance genomic feature operations. *Bioinformatics*, 28(14):1919–1920, 2012.

Akash Srivastava and Charles Sutton. Autoencoding variational inference for topic models. *International Conference on Learning Representations*, 2017.

Marlon Stoeckius, Christoph Hafemeister, William Stephenson, Brian Houck-Loomis, Pratip K Chattopadhyay, Harold Swerdlow, Rahul Satija, and Peter Smibert. Simultaneous epitope and transcriptome measurement in single cells. *Nature methods*, 14(9):865–868, 2017.

Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalexi, William M Mauck III, Yuhan Hao, Marlon Stoeckius, Peter Smibert, and Rahul Satija. Comprehensive integration of single-cell data. *Cell*, 177(7):1888–1902, 2019.

Tim Stuart, Avi Srivastava, Caleb Lareau, and Rahul Satija. Multimodal single-cell chromatin analysis with signac. *bioRxiv*, 2020.

Zhe Sun, Ting Wang, Ke Deng, Xiao-Feng Wang, Robert Lafyatis, Ying Ding, Ming Hu, and Wei Chen. Dimm-sc: a dirichlet mixture model for clustering droplet-based single cell transcriptomic data. *Bioinformatics*, 34(1):139–146, 2018.

Xinjun Wang, Zhe Sun, Yanfu Zhang, Zhongli Xu, Hongyi Xin, Heng Huang, Richard H Duerr, Kong Chen, Ying Ding, and Wei Chen. Brem-sc: a bayesian random effects mixture model for joint clustering single cell multi-omics data. *Nucleic acids research*, 48(11):5814–5824, 2020.

Joshua D Welch, Velina Kozareva, Ashley Ferreira, Charles Vanderburg, Carly Martin, and Evan Z Macosko. Single-cell multi-omic integration compares and contrasts features of brain cell identity. *Cell*, 177(7):1873–1887, 2019.

Mike Wu and Noah Goodman. Multimodal generative models for scalable weakly-supervised learning. In *Advances in Neural Information Processing Systems*, pages 5575–5585, 2018.

Zizhen Yao, Hanqing Liu, Fangming Xie, Stephan Fischer, Ricky S Adkins, Andrew I Aldrige, Seth A Ament, Ann Bartlett, M Margarita Behrens, Koen Van den Berge, et al. An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types. *Biorxiv*, 2020.

Sohiya Yotsukura, Seitaro Nomura, Hiroyuki Aburatani, Koji Tsuda, et al. Celltree: an r/bioconductor package to infer the hierarchical structure of cell populations from single-cell rna-seq data. *BMC bioinformatics*, 17(1):363, 2016.
Supplementary Material

S1 Model and Inference

The Objective Function To estimate the posterior distribution $p(z|x)$ of the latent variable z and the parameters, we follow the VAE approach to maximize the evidence lower bound (ELBO):

$$\text{ELBO}(x) = \mathbb{E}_{q_\phi(z|x)}[\log p_\psi(x|z)] - \gamma \text{KL}(q_\phi(z|x), p(z)),$$

where the encoder $q_\phi(z|x)$ is parameterized by neural networks and serves as an approximation to actual posterior distribution. The decoder $p_\psi(x|z)$ follows our model for single modality, which we will describe in detail later.

The above equation gives the objective function when all the modalities are observed. In case of missing modalities, our conditional independence assumption allows us to obtain a partial ELBO. Consider a subset of modalities $A \subset \{1, \ldots, M\}$ and data $x^A = \{x^{(i)}|i \in A\}$, its log-likehood given the latent variable is $\log p_\psi(x^A|z) = \sum_{i \in A} \log p_\psi(x^{(i)}|z)$. The corresponding ELBO can be written as

$$\text{ELBO}(x^A) = \mathbb{E}_{q_\phi(z|x^A)} \left[\sum_{i \in A} \eta_i \log p_\psi(x^{(i)}|z) \right] - \gamma \text{KL}(q_\phi(z|x^A), p(z)), \quad (S1)$$

where η_i are hyperparameters allowing different weights for different modalities.

In actual training, even when all modalities are collected, we still subsample the modalities such that posterior likelihoods given different modality subsets are learnt. Denote S_c as the modalities collected for cell c and $x_c = \{x^{(i)}|i \in S_c\}$ as the data, our final objective function is given by

$$\sum_{c=1}^N \left[\lambda \text{ELBO}(x_c) + \sum_{A \subseteq S_c} \lambda_A \text{ELBO}(x_c^A) \right], \quad (S2)$$

where λ's are hyperparameters allowing different weightings for the ELBO terms with different modalities.

Prior Distribution We use Gaussian distribution for the prior $p(z)$. A transformed vector $\theta = \sigma(z)$ is then calculated as the mixing probability of our latent model (Figure S1) for modeling single modalities, where σ is the softmax transformation. θ therefore follows a logistic normal distribution, which is commonly used as an approximation to a Dirichlet distribution. To approximate $\text{Dirichlet}(\theta|\xi)$, the parameters of the logistic normal $\mathcal{LN}(\theta|\mu_0(\xi), \Sigma_0(\xi))$ are calculated as a function of ξ,

$$\mu_0(\xi)_k = \log \xi_k - \frac{1}{K} \sum_j \log \xi_j,$$

$$\Sigma_0(\xi)_{kk} = \frac{1}{\xi_k} \left(1 - \frac{2}{K}\right) + \frac{1}{K^2} \sum_j \frac{1}{\xi_j}. \quad (S3)$$

Therefore, given the hyperparameter ξ, we use the Gaussian distribution $\mathcal{N}(z|\mu_0(\xi), \Sigma_0(\xi))$ for the prior $p(z)$.
Decoders For cell \(c \) in modality \(i \), our generative likelihood \(p(x_c^{(i)} | \theta_c, B^{(i)}, \alpha^{(i)}_0, \alpha^{(i)}_1) \) follows multinomial distribution with probability

\[
\pi_c^{(i)} = \sigma \left(\text{diag}(\alpha_{1,\ell_c}) \sigma(B^{(i)} \theta_c + \alpha^{(i)}_0, \alpha^{(i)}_0, \alpha^{(i)}_1) \right),
\]

where \(\ell_c \) indicates the batch of cell \(c \) and \(\alpha^{(i)}_0, \alpha^{(i)}_1 \in \mathbb{R}^d \), and \(B^{(i)} \in \mathbb{R}^{d \times K} \) are parameters to be estimated that are shared across samples. \(\sigma(B^{(i)}) \) gives the probability vectors for each latent category. \(\alpha^{(i)}_0 \) and \(\alpha^{(i)}_1 \) therefore provides scaling and shifting for adjusting dataset- or platform-specific differences in feature counts. Notice that Equation S4 works without the softmax transformation on \(B^{(i)} \), which gives us another version of the model

\[
\pi_c^{(i)} = \sigma \left(\text{diag}(\alpha^{(i)}_0, \alpha^{(i)}_1) B^{(i)} \theta_c + \alpha^{(i)}_0, \alpha^{(i)}_1 \right). \tag{S5}
\]

In practice, we find S5 works slightly better than S4. The results we present in this paper are based on S5.

In summary, we write the joint likelihood of the latent variable \(z_c \) and the data \(x_c \) of cell \(c \) as,

\[
p(x_c^S, z_c | B^S, \alpha_0, \alpha_1) = p(z_c) \prod_{i \in S} p(x_c^{(i)} | \theta_c = \sigma(z_c), B^{(i)}, \alpha^{(i)}_0, \alpha^{(i)}_1), \tag{S6}
\]

where \(p(x_c^{(i)} | \theta_c, B^{(i)}, \alpha^{(i)}_0, \alpha^{(i)}_1) \) follows multinomial distribution with probability vector given by Equation S5. Figure S1 shows a graphical model representation of this data generation process.

Encoders We would like to obtain an approximation \(q(z|x^A) \) of the posterior distribution \(p(z|x^A) \) given any collection of modalities \(x^A \). To do this, we first write the true posterior as

\[
p(z|x^A) \propto p(z) \prod_{i \in A} p(z|x^{(i)}) \frac{p(z)}{p(z)}. \]

We then approximate \(\frac{p(z|x^{(i)})}{p(z)} \) with Gaussian \(g(z|x^{(i)}) := \mathcal{N}(\tilde{\mu}^{(i)}, \tilde{\Sigma}^{(i)}) \), where \(\tilde{\mu}^{(i)} \) and \(\tilde{\Sigma}^{(i)} \) are estimated by neural networks. Here we use the property that the product of two multivariate Gaussian densities is proportional to a Gaussian density. \(q_\phi(z|x^A) \propto p(z) \prod_{i \in A} g(z|x^{(i)}) \) is still Gaussian whose parameters can be analytically written out,

\[
\Sigma^A = \left(\tilde{\Sigma}_0^{-1} + \sum_{i \in A} (\tilde{\Sigma}^{(i)})^{-1} \right)^{-1}, \\
\mu^A = \Sigma^A \left(\tilde{\Sigma}_0^{-1} \tilde{\mu}_0 + \sum_{i \in A} (\tilde{\Sigma}^{(i)})^{-1} \tilde{\mu}^{(i)} \right). \tag{S7}
\]

With this trick, instead of using \(2^M - 1 \) neural networks to estimate all \(\Sigma^A \) and \(\mu^A \) individually, our model uses one network for \(\tilde{\mu}^{(i)} \) and \(\tilde{\Sigma}^{(i)} \) separately for each modality \(i \), resulting in a total of \(2M \) networks. The variational posteriors \(q_\phi(z|x^A) \) are calculated using \(\tilde{\mu}^{(i)} \) and \(\tilde{\Sigma}^{(i)} \). The variational posterior \(q_\phi(\theta|x^A) \) is then defined to be logistic normal \(\mathcal{N}(\mu^A, \Sigma^A) \).

Network Architecture and Training For each modality \(i \), the encoder takes as input the log-plus-one transformed counts. We use one fully connected layer of size 128, followed by fully connected layers for mean \(\mu^{(i)} \) and log-variance \(\log \Sigma^{(i)} \). We tried networks with one or two hidden layers of varying sizes and found the results pretty stable. The decoders follow Equation S5 and do not contain neural networks. We set the parameter of the Dirichlet prior to 50 divided by the number of latent variables \(K \). The actual parameters used for the Gaussian prior are calculated by Equation S3. For the ELBO objective, we set the weighting terms \(\lambda^A \) reciprocal to the number of samples available to modality combination \(A \). And we set the hyperparameter weights \(\eta \) for conditional likelihood terms to 1. Adam optimizer is used and we select a learning rate of 0.005 after tuning. We adopt a KL cost annealing schedule that linearly increases the weight of the KL term \(\gamma \) from 0 to 1 in the first 30 epoch. During training, we use a batch size of 128 and a fixed number of 100 epochs.

For features, we focus on genes and peaks that have top 30% average expression and remove the ones in the top 1%. The choice of top features is less important here, which we found to have a small effect on the results.

Notice that the softmax transformation from \(z_c \) to \(\theta_c \) is not a one-to-one transformation. Therefore, we scale \(z_c \) to mean 0 before the downstream correction, followed by clustering and visualization.
Missing Modalities Correction Denote $X_1 = (X_{1mRNA}, X_{1ATAC})$ as cells with joint modalities, $X_2 = X_{2mRNA}$ cells with only mRNA, and $X_3 = X_{3ATAC}$ cells with only chromatin accessibility measured. The posterior means $\hat{Z}_1 = E(Z|X_{1mRNA}, X_{1ATAC})$, $\hat{Z}_{mRNA} = E(Z|X_{mRNA})$, and $\hat{Z}_{ATAC} = E(Z|X_{ATAC})$ can be estimated for cells with joint modalities. Similarly, $\hat{Z}_{mRNA} = E(Z|X_{2mRNA})$ and $\hat{Z}_{ATAC} = E(Z|X_{3ATAC})$ are estimated for single-modality cells. We build a model for predicting \hat{Z}_1 from \hat{Z}_{mRNA}, which is then applied on \hat{Z}_{2mRNA} to obtain corrected latent variables \hat{Z}_2. In practice, we find XGBoost [Chen and Guestrin, 2016] and k-nearest neighbors algorithm work equally well. We presented the results using XGBoost by setting the objective function to regression with squared loss, the learning rate to 0.8, and the maximum depth of a tree to 3. The same correction procedure is applied on the scATAC-seq modality to obtain corrected \hat{Z}_3. Finally, the UMAP visualization and clustering is generated by combining \hat{Z}_1, \hat{Z}_2, and \hat{Z}_3.

Clustering and Visualization Clusters are generated on the corrected latent variables using Louvain algorithm [Blondel et al., 2008]. We use the implementation of naive Louvain algorithm in FindClusters function from the R package Seurat. All parameters, other than the resolution controlling the number of clusters identified, are set to default. UMAPs are generated using the `umap` function from the R package uwot with the number of neighbors set to 30.

S2 Data and Method Implementation

SNARE-seq processing and annotation We downloaded the processed counts of the adult mouse cerebral cortex data (10,309 cells) from GEO (GSE126074). We applied quality filtering that retained cells having a number of genes detected greater than 20. For genes, we used the ones detected in more than 5 cells and have total counts greater than 10. For peaks, we removed the ones having nonzero counts in more than 10% of cells or less than 5 cells. We performed clustering analysis using Seurat (version 3.2.2) on the gene expression modality. The data were normalized using `SCTransform` function with default parameters, followed by principal component analysis (PCA) using the default 3,000 variable features. Louvain algorithm was applied on the first 50 PCs with the resolution parameter equals 0.65. Cell type annotation is generated using the marker genes provided in Yao et al. [2020] for the resulting 15 clusters. We applied cisTopic (version 0.3.0) on the chromatin accessibility data with default parameters. Model selection was conducted based on log-likelihood using `runWrapLDAModels` and `selectModel` functions, and 30 topics are used in the results.

For the integration of SNARE-seq with the MOp data, we map the SNARE-seq counts to the peak set called on the MOp scATAC-seq data. Since peaks are typically called in a dataset-specific manner, the ideal integration strategy would be to redo the peak-calling with all datasets combined. However, in Supplementary Figure S3 we show that our simple alternative of mapping data to peaks called on the same system does not result in significant performance loss for `Cobolt`.

MOp Data Preprocessing We downloaded the single-nucleus 10x v3 transcriptome dataset (90,266 cells) and the open chromatin dataset (15,731 cells, sample 171206_3C) described in Yao et al. [2020] (available on NeMO Archive with accession number nemodat-ch1nqb7). For mRNA-seq quality control, we filtered cells that have less than 200 genes detected or have greater than 5% mitochondrial counts. For ATAC-seq, we utilized the `TSSEnrichment` and blacklist region reads calculation functionalities in Signac. We subsetted cells with the blacklist ratio less than 0.1, the number of unique molecular identifiers (UMIs) greater than 50, and the TSS enrichment score greater than 2 and less than 20. A total of 88,021 and 13,249 were retained for mRNA-seq and ATAC-seq, separately. To make annotation in the two datasets consistent, we merged the layer 2/3 IT and layer 4/5 IT subclusters in ATAC-seq data. For mRNA-seq, we merged Lamp5, Vip, and Sncg into one CGE cluster.

Gene Activity Calculation Gene activity matrix for chromatin accessibility is generated by counting the number of reads overlapping genes and their promoters using BEDOPS [Neph et al., 2012], where a promoter is defined as the region starting from the transcription start site (TSS) to 3,000 base pairs upstream of TSS.

LIGER and Signac Analysis on the MOp Data We ran LIGER (version 0.5.0) using default parameters on the filtered data. Parameter K for factorization is set to 30 after inspecting the plot generated by
function `suggestK`. Louvain clustering was performed by setting the resolution such that 17 clusters were obtained. We ran Signac (version 1.1.0) on the same filtered data. We first performed clustering analysis on the gene expression modality and then transferred the cluster labels to the open chromatin modality. Both the gene expression matrix and gene activity matrix were normalized by running `NormalizeData` followed by `ScaleData`. For the gene activity matrix, the `scale.factor` parameter was set to the median of UMI distribution as suggested by the vignette. Other parameters were kept as default. We then ran `FindTransferAnchors` with the default number of dimensions equals 30, which is the same as used for LIGER. Finally, we ran `TransferData` with weight reduction set to "cca" or the Latent Semantic Indexing (LSI) from analyzing the peak matrix. Results using LSI are presented in the paper as it performed better than the "cca" option.
Figure S1: Graphical model representation of the generative distribution of Cobolt.
Figure S2: The median silhouette width of SNARE-seq clusters generated using A) gene expression modality and B) chromatin accessibility. For each of the clustering, we calculate the median silhouette width per cluster on reduced dimensionality space created by analyzing only gene expression data (using Seurat), only chromatin accessibility (using cisTopic), and jointly using both modalities (Cobolt). Cluster colors are assigned the same as Figure 2.
Figure S3: A comparison of Cobolt dimensionality reduction on SNARE-seq data 1) using peaks called on the SNARE-seq (Cobolt-peak) versus 2) mapping counts to the peaks called on the MOp scATAC-seq (Cobolt-remapped). No significant performance loss is observed for Cobolt-remapped compared to Cobolt-peak, indicating our strategy of mapping data to peaks called on similar datasets a simple but effective alternative in integration analysis.
Figure S4: Estimates of the posterior means without missing modality correction. The upper panel shows the UMAP dimensionality reduction plots of the posterior means $\hat{Z}_1 = E(Z|X_1^{\text{mRNA}}, X_1^{\text{ATAC}})$, $\hat{Z}_1^{\text{mRNA}} = E(Z|X_1^{\text{mRNA}})$, and $\hat{Z}_1^{\text{ATAC}} = E(Z|X_1^{\text{ATAC}})$ estimated for joint cells. The lower panel shows $\hat{Z}_2^{\text{mRNA}} = E(Z|X_2^{\text{mRNA}})$ and $\hat{Z}_2^{\text{ATAC}} = E(Z|X_3^{\text{ATAC}})$ estimated for single-modality cells. Other than the unannotated cells from MOp scRNA-seq data, cell populations from different datasets are well-aligned. We noticed slight distributional shifts between \hat{Z}_1, \hat{Z}_1^{mRNA}, and \hat{Z}_1^{ATAC} in the upper panel, motivating additional correction procedures.
Figure S5: A) UMAP visualizations generated by LIGER, Signac, and Cobolt for MOp scATAC-seq and scRNA-seq, colored by datasets. B, C) Concordance matrices between clustering results and annotations, scaled to sum 1 by (B) rows and (C) columns.
Figure S6: Cobolt results with no filtering on cells and minimal filtering on features. Genes and peaks with total counts larger than 10 and non-zero counts larger than 5 are retained in the model. A) UMAP visualization colored by cell type annotation. B, C) Concordance matrices between clustering results and annotations, scaled to sum 1 by (B) rows and (C) columns.