A Poisson-Jacobi-type transformation for the sum
\[\sum_{n=1}^{\infty} n^{-2m} \exp(-an^2) \] for positive integer \(m \)

R. B. PARIS
School of Engineering, Computing and Applied Mathematics,
University of Abertay Dundee, Dundee DD1 1HG, UK

Abstract
We obtain an asymptotic expansion for the sum
\[S(a; w) = \sum_{n=1}^{\infty} e^{-an^2/n^w} \]
as \(a \to 0 \) in \(|\arg a| < \frac{1}{2}\pi \) for arbitrary finite \(w > 0 \). The result when \(w = 2m \), where \(m \) is a positive integer, is the analogue of the well-known Poisson-Jacobi transformation for the sum with \(m = 0 \). Numerical results are given to illustrate the accuracy of the expansion.

Mathematics Subject Classification: 30E15, 33B10, 34E05, 41A30

Keywords: Poisson-Jacobi transformation, asymptotic expansion, inverse factorial expansion

1. Introduction

The classical Poisson-Jacobi transformation is given by
\[\sum_{n=1}^{\infty} e^{-an^2} = \frac{1}{2} \sqrt{\pi/a - \frac{1}{2}} + \sqrt{\frac{\pi}{a}} \sum_{n=1}^{\infty} e^{-\pi^2n^2/a}, \]
where the parameter \(a \) satisfies \(\Re(a) > 0 \). This transformation relates a sum of Gaussian exponentials involving the parameter \(a \) to a similar sum with parameter \(\pi^2/a \). In the case \(a \to 0 \) in \(\Re(a) > 0 \), the convergence of the sum on the left-hand side becomes slow, whereas the sum on the right-hand side converges rapidly in this limit. Various proofs of the well-known result (1.1) exist in the literature; see, for example, [3, p. 120], [4, p. 60] and [5, p. 124].

In this note we consider the sum
\[S(a; w) = \sum_{n=1}^{\infty} e^{-an^2/n^w} \quad (\Re(a) > 0). \]

This sum converges for any finite value of the parameter \(w \) provided \(\Re(a) > 0 \); when \(a = 0 \) then \(S(0; w) \) reduces to the Riemann zeta function \(\zeta(w) \) when \(\Re(w) > 1 \). Consequently, the series in (1.2) can be viewed as a smoothed Dirichlet series for \(\zeta(w) \). The asymptotic expansion
of $S(a;w)$ as $a \to 0$ in $\Re(a) > 0$ is straightforward. The most interesting case arises when $w = 2m$, where m is a positive integer, for which we establish a transformation for $S(a;2m)$ analogous to that in (1.1) valid as $a \to 0$ in $\Re(a) > 0$. This similarly involves the series in (1.2) with a replaced by π^2/a, but with each term decorated by an asymptotic series in a. A recent application of the series with $w = 2$ and $w = 4$ has arisen in the geological problem of thermochronometry in spherical geometry [6].

2. An expansion for $S(a;w)$ as $a \to 0$ when $w \neq 2, 4, \ldots$

Our starting point is the well-known Cahen-Mellin integral (see, for example, [3, §3.3.1])

$$z^{-\alpha} e^{-z} = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s - \alpha) z^{-s} ds \quad (z \neq 0, \ |\arg z| < \frac{1}{2} \pi), \quad (2.1)$$

where $c > \Re(\alpha)$ so that the integration path passes to the right of all the poles of $\Gamma(s - \alpha)$ situated at $s + \alpha - k$ ($k = 0, 1, 2, \ldots$). For simplicity in presentation we shall assume throughout real values of $w > 0$. Then, it follows that

$$S(a;w) = \sum_{n=1}^{\infty} e^{-an^2} = \sum_{n=1}^{\infty} \frac{n^{-w}}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s)(an^2)^{-s} ds$$

$$= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s)\zeta(2s+w) a^{-s} ds,$$

upon reversal of the order of summation and integration, which is justified when $c > \max\{0, \frac{1}{2} - \frac{1}{2}w\}$, and evaluation of the inner sum in terms of the Riemann zeta function. The integrand possesses simple poles at $s = \frac{1}{2} - \frac{1}{2}w$ and $s = -k$ ($k = 0, 1, 2, \ldots$), except if $w = 2m + 1$ is an odd positive integer when the pole at $s = \frac{1}{2} - \frac{1}{2}w$ is double. The case when $w = 2m$ is an even positive integer requires a separate investigation which is discussed in Section 3.

Consider the integral taken round the rectangular contour with vertices at $c \pm iT$, $-c' \pm iT$, where $c' > 0$. The contribution from the upper and lower sides $s = \sigma \pm iT$, $-c' \leq \sigma \leq c$, vanishes as $T \to \infty$ provided $|\arg a| < \frac{1}{2} \pi$, since from the behaviour

$$\Gamma(\sigma \pm iT) = O(t^{\sigma - \frac{1}{2}e^{-\frac{1}{2}\pi T}}), \quad \zeta(\sigma \pm iT) = O(t^{\mu(\sigma) \log^4 t}), \quad (t \to \infty),$$

where for σ and t real

$$\mu(\sigma) = 0 \ (\sigma > 1), \quad \frac{1}{2} - \frac{1}{2} \sigma \ (0 \leq \sigma \leq 1), \quad \frac{1}{2} - \sigma \ (\sigma < 0),$$

$$A = 1 \ (0 \leq \sigma \leq 1), \quad A = 0 \ otherwise,$$

the modulus of the integrand is controlled by $O(T^{\sigma + \mu(\sigma) - \frac{1}{2} \log T e^{-\Delta T}})$, with $\Delta = \frac{1}{2} \pi - |\arg a|$. The residue at the double pole $s = -m$ when $w = 2m + 1$ ($m = 0, 1, 2, \ldots$) is given by

$$\frac{(-a)^m}{m!}(\gamma - \frac{1}{2} \log a + \frac{1}{2} \psi(m + 1),$$

where γ is Euler’s constant and $\psi(x)$ is the logarithmic derivative of the gamma function. Displacement of the integration path to the left over the poles then yields (provided $w \neq 2m$)

$$S(a;w) = J(a;w) + \sum_{k=0}^{N-1} \frac{(-1)^k}{k!} \zeta(w - 2k)a^k + R_N, \quad (2.2)$$
where
\[
J(a; w) = \begin{cases}
\frac{1}{2} \Gamma\left(\frac{1}{2} - \frac{1}{2}w\right)a^{w-1}/2 & (w \neq 2m+1) \\
\frac{(-a)^m}{m!} \left(\gamma - \frac{1}{2} \log a + \frac{1}{2} \psi(m+1)\right) & (w = 2m+1),
\end{cases}
\]

\(N\) is a positive integer such that \(N > \frac{1}{2}w + \frac{1}{2}\) and the prime on the sum over \(k\) denotes the omission of the term corresponding to \(k = m\) when \(w = 2m+1\).

The remainder \(R_N\) is
\[
R_N = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \Gamma(s)\zeta(w + 2s)a^{-s}ds, \quad c = N - \frac{1}{2}.
\]

It is shown in the appendix, when \(w \neq 2, 4, \ldots\), that \(R_N = O(a^{N-\frac{1}{2}})\) as \(a \to 0\) in \(|\arg a| < \frac{1}{2}\pi\), with the constant implied in the \(O\)-symbol growing at least like \(\Gamma(N+1-\frac{1}{2}w)\). This establishes that the above series over \(k\) diverges as \(N \to \infty\) and that (2.2) is therefore an asymptotic expansion.

We remark that the algebraic expansion (2.2) also contains a subdominant exponentially small component as \(a \to 0\); compare [3, §8.1.5] for the particular case \(w = 0\). We do not consider this further in the present paper.

3. An expansion for \(S(a; 2m)\) when \(m = 1, 2, \ldots\)

The case \(w = 2m\), where \(m\) is a positive integer, is more interesting as this leads to the analogue of the Poisson-Jacobi transformation (1.1). There is now only a finite set of poles of the integrand in (2.1) at \(s = \frac{1}{2} - \frac{1}{2}w\) and \(s = 0, -1, -2, \ldots, -m\), since the poles of \(\Gamma(s)\) at \(s = -m - k\) \((k = 1, 2, \ldots)\) are cancelled by the trivial zeros of the zeta function \(\zeta(2m + 2s)\) at \(s = -m - 1, -m - 2, \ldots\). This has the consequence that the integrand is holomorphic in \(\Re(s) < -m\), so that further displacement of the contour can produce no additional algebraic terms in the expansion of \(S(a; 2m)\). Thus, we find when \(w = 2m\)

\[
S(a; 2m) = \frac{1}{2} \Gamma\left(\frac{1}{2} - m\right)a^{m-\frac{1}{2}} + \sum_{k=0}^{m} \frac{(-1)^k}{k!} \zeta(2m - 2k)a^k + I_L,
\]

where, upon making the change of variable \(s \to -s\),

\[
I_L = \frac{1}{2\pi i} \int_L \Gamma(-s)\zeta(2m - 2s)a^{-s}ds
\]

and \(L\) denotes a path parallel to the imaginary axis with \(\Re(s) > m\).

We now employ the functional relation for \(\zeta(s)\) given by [5, p. 269]

\[
\zeta(s) = 2^s\pi^{s-1}\sin\frac{1}{2}\pi s \Gamma(1-s)\zeta(1-s)\Gamma(1-s)\sin\frac{1}{2}\pi s
\]

and convert the argument of the zeta function in (3.2) into one with real part greater than unity. The integral in (3.2) can then be written in the form

\[
\frac{(-1)^m(2\pi)^m}{2\pi i} \int_L \left(2s - 2m + 1\right) \frac{\Gamma(2s - 2m + 1)}{\Gamma(s + 1)} \left(\frac{a}{4\pi^2}\right)^s ds.
\]

Since on the integration path \(\Re(2s - 2m + 1) > 1\), we can expand the zeta function and reverse the order of summation and integration to obtain

\[
I_L = (-)^m \frac{\pi^{2m-\frac{1}{2}}}{\Gamma(2m-\frac{1}{2})} \sum_{n=1}^{\infty} n^{2m-1} K_n(a; m),
\]

(3.4)
where
\[K_n(a; m) := \frac{1}{2\pi i} \int_L \frac{\Gamma(s - m + \frac{1}{2})\Gamma(s - m + 1)}{\Gamma(s + 1)} \left(\frac{a}{\pi^2 n^2} \right)^s ds, \]
and we have employed the duplication formula for the gamma function
\[\Gamma(2z) = 2^{2z-1} \pi^{-\frac{1}{2}} \Gamma(z) \Gamma(z + \frac{1}{2}). \]

The quotients of gamma functions may then be expanded by making use of the result given in [3, p. 53]
\[\frac{\Gamma(s - m + \frac{1}{2})\Gamma(s - m + 1)}{\Gamma(s + 1)^2} = \sum_{j=0}^{M-1} (-)^j c_j \Gamma(s + \vartheta - j) + \rho_M(s) \Gamma(s + \vartheta - M) \tag{3.5} \]
for positive integer \(M \), where \(\vartheta = \frac{1}{2} - 2m \),
\[c_j = \frac{(m)_j(m + \frac{1}{2})_j}{j!} = \frac{2^{-2j}(2m)_{2j}}{j!} \]
and \(\rho_M(s) = O(1) \) as \(|s| \to \infty \) in \(|\arg s| < \pi \). Substitution of this expansion into the integrals \(K_n(a; m) \) then produces
\[K_n(a; m) = \sum_{j=0}^{M-1} (-)^j c_j \frac{1}{2\pi i} \int_L \Gamma(s + \vartheta - j) \left(\frac{a}{\pi^2 n^2} \right)^s ds + R_M \]
\[= \sum_{j=0}^{M-1} (-)^j c_j \left(\frac{a}{\pi^2 n^2} \right)^{2m+j-\frac{1}{2}} e^{-\pi^2 n^2/a} + R_M \tag{3.6} \]
by (2.1), where
\[R_M = \frac{1}{2\pi i} \int_L \rho_M(s) \Gamma(s + \vartheta - M) \left(\frac{a}{\pi^2 n^2} \right)^s ds. \]

Bounds for the remainder \(R_M \) have been considered in [3, p. 71, Lemma 2.7], where it is shown that
\[R_M = O \left(\left(\frac{a}{\pi^2 n^2} \right)^{M-\vartheta} e^{-\pi^2 n^2/a} \right) \tag{3.7} \]
as \(a \to 0 \) in the sector \(|\arg a| < \frac{1}{4} \pi \).

Collecting together the results in (3.2), (3.4), (3.6) and (3.7), we obtain
\[I_L = (-)^m \left(\frac{a}{\pi} \right)^{2m-\frac{1}{2}} \sum_{n=1}^{\infty} e^{-\pi^2 n^2/a} n^{2m} \left\{ \sum_{j=0}^{M-1} c_j \left(\frac{-a}{\pi^2 n^2} \right)^j + O \left(\left(\frac{a}{\pi^2 n^2} \right)^M \right) \right\}. \]

From (3.1) we now have the following theorem:

Theorem 1. Let \(m \) and \(M \) be positive integers. Then, when \(w = 2m \), we have the expansion valid as \(a \to 0 \) in \(|\arg a| < \frac{1}{4} \pi \)
\[S(a; 2m) = \frac{1}{2} \Gamma(\frac{1}{2} - m) a^{m-\frac{1}{2}} + \sum_{k=0}^{m} \frac{(-)^k}{k!} \zeta(2m - 2k) a^k \]
\[+(-)^m \left(\frac{a}{\pi} \right)^{2m-\frac{1}{2}} \sum_{n=1}^{\infty} \frac{\Upsilon_n(a; m)}{n^{2m}} e^{-\pi n^2/a}, \tag{3.8} \]

where \(\Upsilon_n(a; m) \) has the asymptotic expansion

\[\Upsilon_n(a; m) = \sum_{j=0}^{M-1} \frac{(m+\frac{1}{2})_j}{j!} \left(-\frac{a}{\pi} n^2 \right)^j + O \left(\left(\frac{a}{\pi^2 n^2} \right)^M \right). \]

This is the analogue of the Poisson-Jacobi transformation in (1.1). In the case \(m = 0 \), the quotient of gamma functions in (3.5) is replaced by the single gamma function \(\Gamma(s+\frac{1}{2}) \), with the result that \(c_0 = 1, c_j = 0 \) \((j \geq 1)\) and \(\Upsilon_n(a; m) = 1 \) for all \(n \geq 1 \). Then (3.8) reduces to (1.1) and is valid for all values of the parameter \(a \) (not just \(a \to 0 \)) satisfying \(|\arg a| < \frac{1}{4} \pi\).

Remark 1. We note that the values of the zeta function appearing in (3.8) can be expressed alternatively in terms of Bernoulli numbers by the result [2, p. 605]

\[\zeta(2n) = \frac{(2\pi)^{2n}}{2(2n)!} |B_{2n}|. \]

4. Numerical results and concluding remarks

From the well-known values [2, p. 605]

\[\zeta(2) = \frac{\pi^2}{6}, \quad \zeta(4) = \frac{\pi^4}{90}, \]

we obtain from Theorem 1 the expansions in the cases \(m = 1 \) and \(m = 2 \) given by

\[S(a; 2) = \frac{\pi^2}{6} + \frac{a}{2} - (\pi a)^{\frac{3}{2}} - \frac{a^2}{4} \sum_{n=1}^{\infty} \frac{e^{-\pi^2 n^2/a}}{n^2} \left\{ \sum_{j=0}^{M-1} \frac{(\frac{5}{2})_j}{j!} \left(-\frac{a}{\pi^2 n^2} \right)^j + O(a^M) \right\} \tag{4.1} \]

and

\[S(a; 4) = \frac{\pi^4}{90} - \frac{\pi^2 a}{6} - \frac{a^2}{4} + \frac{2}{5} \pi^2 a^2 \]

\[+ \left(\frac{a}{\pi} \right)^{\frac{3}{2}} \sum_{n=1}^{\infty} \frac{e^{-\pi^2 n^2/a}}{n^4} \left\{ \sum_{j=0}^{M-1} \frac{(\frac{5}{2})_j (2)_j}{j!} \left(-\frac{a}{\pi^2 n^2} \right)^j + O(a^M) \right\} \tag{4.2} \]

valid as \(a \to 0 \) in \(|\arg a| < \frac{1}{4} \pi\).

In Table 1 we show the results of numerical calculations for the case \(m = 2 \). For different values of the parameter \(a \) we present the value of the absolute error in the computation of \(S(a; 4) \) from (4.2). In the computations, we have used only the \(n = 1 \) term (since the order of \(\frac{1}{4} \exp(-4\pi^2/a) \) was found to be less than the error), with the expansion for \(\Upsilon_1(a; 2) \) optimally truncated (corresponding to truncation at, or near, the least term in modulus) at index \(j_0 \approx \left(\pi^2/a \right)^{-\frac{1}{2}} \). It is seen that the error when \(a = 0.1 \) is extremely small and that, only when \(a \approx 2 \) does the relative error start to become significant.

To conclude, we mention that a similar treatment can be carried out for the sum

\[S_p(a; w) \equiv \sum_{n=1}^{\infty} \frac{e^{-an^p}}{n^w} \quad (a \to 0, \Re(a) > 0) \]
for positive even integer w and p. The case $w = 0$ and $p > 0$, corresponding to the Euler-Jacobi series, has been considered in [3, §8.1]; see also [1] for a hypergeometric approach when p is a rational fraction. The details of the small-a expansion of $S_p(a; w)$ will be presented elsewhere.

Acknowledgement. The author wishes to acknowledge B. Guralnik for having brought this problem to his attention.

Appendix: A bound for the remainder R_N

Let $\psi = \arg a$ and integer $N > \frac{1}{2} w + \frac{1}{2}$. Upon replacement of s by $-s$ followed by use of (3.3), the remainder R_N in (2.3) becomes

$$R_N = \frac{(2\pi)^w}{2\pi i} \int_{N - \frac{1}{2} - i\infty}^{N - \frac{1}{2} + i\infty} \zeta(1 - w + 2s) \frac{\Gamma(1 - w + 2s)}{\Gamma(1 + s)} \sin \pi s \left(\frac{a}{4\pi^2} \right)^s ds.$$

With $s = N - \frac{1}{2} + it, t \in (-\infty, \infty)$ we have

$$|R_N| \leq (2\pi)^{w-1} \left(\frac{a}{4\pi^2} \right)^{N - \frac{1}{2}} \zeta(2N - w) \int_{-\infty}^{\infty} e^{-\psi t} \left| \frac{\Gamma(2N - w + 2it)}{\Gamma(N + \frac{1}{2} + it)} \right| dt,$$

since $|\zeta(x + it)| \leq \zeta(x)$ ($x > 1$) and

$$\left| \frac{\sin \pi(N - \frac{1}{2} - \frac{1}{2} w + it)}{\sin \pi(N + \frac{1}{2} + it)} \right| = \left| \frac{\cos \pi(\frac{x}{2} w - it)}{\cosh \pi t} \right| = \left(\frac{\cos^2 \frac{1}{2} \pi \sinh \pi t}{\cosh \pi t} \right)^{\frac{1}{2}} \leq 1.$$

It then follows that

$$|R_N| = O \left(\left(\frac{a}{\pi^2} \right)^{N - \frac{1}{2}} \int_{-\infty}^{\infty} e^{-\psi t} \left| \frac{\Gamma(N - \frac{1}{2} w + it)}{\Gamma(N + \frac{1}{2} + it)} \right| dt \right). \quad (A.1)$$

Using the argument presented in [3, p. 126], we set $N - \frac{1}{2} w - \frac{1}{2} = M + \delta$, with $-\frac{1}{2} < \delta \leq \frac{1}{2}$ so that $M \leq N - 1$, to find

$$\left| \frac{\Gamma(N - \frac{1}{2} w + \frac{1}{2} + it)}{\Gamma(N + \frac{1}{2} + it)} \right| = P(t)g(t), \quad g(t) := \frac{\left| \Gamma(1 + \delta + it) \right|}{\left| \Gamma(\frac{1}{2} + it) \right|},$$

a	$S(a; 4)$	Error	j_0
0.10	0.952696	9.662×10^{-86}	96
0.20	0.849025	9.768×10^{-43}	46
0.25	0.803169	4.045×10^{-34}	36
0.50	0.615128	7.769×10^{-17}	17
0.75	0.475493	4.656×10^{-11}	10
1.00	0.369026	3.642×10^{-8}	6
1.50	0.223285	2.856×10^{-5}	3
2.00	0.135356	7.500×10^{-4}	1
where
\[P(t) = \left(\frac{1}{4} + t^2 \right)^{-\frac{1}{2}} \prod_{r=1}^{M} \left(\left(r + \delta \right)^2 + t^2 \right)^{-\frac{1}{2}} \leq \left(\frac{1}{4} + t^2 \right)^{-\frac{1}{2}} \leq 2. \]

From the upper bound for the gamma function \(\Gamma(z) \) with \(z = x + it, \ x > 0 \) [3, p. 35]
\[
|\Gamma(z)| \leq |\Gamma(x)| \exp \left[x \left\{ \frac{1}{2} \pi \pm \psi \right\} e^{-\frac{1}{2} \pi |t|} \right],
\]
where we have put \(\tau = t/x \), defined \(\omega(\tau) = |\tau| \arctan(1/|\tau|) \) and used the fact that \(0 \leq \omega(\tau) < 1 \) for \(\tau \in [0, \infty) \), with the limit 1 being approached as \(\tau \to \infty \). Substituting the above bounds into (A.1), we see on setting \(x = N - \frac{1}{2} w \) that
\[
|R_N| = e^N \Gamma(N-\frac{1}{2}w+1) \times \left(\frac{a}{\pi} \right)^{N-\frac{1}{2}} \int_0^\infty (1 + \tau^2)^{N/2} g(\tau) \left\{ e^{-\Delta^+} + e^{-\Delta^-} \right\} d\tau,
\]
where \(\Delta_{\pm} = (N - \frac{1}{2} w) (\frac{1}{2} \pi \pm \psi) \). Since \(g(\tau) = O(\tau^{d+\frac{1}{2}}) \) as \(\tau \to \infty \), the integral is convergent provided \(|\psi| < \frac{1}{2} \pi \) and is manifestly an increasing function of \(N \).

Hence
\[
R_N = O(a^{N-\frac{1}{2}}) \quad (a \to 0, \ |\arg a| < \frac{1}{2} \pi), \tag{A.2}
\]
with the constant implied in the \(O \)-symbol growing at least like \(\Gamma(N+1-\frac{1}{2}w) \) as \(N \) increases.

References

[1] V. Kowalenko, N. E. Frankel, M. L. Glasser and T. Taucher, *Generalised Euler-Jacobi Inversion Formula and Asymptotics Beyond All Orders*, London Math. Soc. Lecture Notes Series 214, Cambridge University Press, Cambridge, 1995.

[2] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (eds.), *NIST Handbook of Mathematical Functions*, Cambridge University Press, Cambridge, 2010.

[3] R. B. Paris and D. Kaminski, *Asymptotics and Mellin-Barnes Integrals*, Cambridge University Press, Cambridge, 2001.

[4] E. C. Titchmarsh, *Introduction to the Theory of Fourier Integrals*, Oxford University Press, Oxford, 1975.

[5] E. T. Whittaker and G. N. Watson, *Modern Analysis*, Cambridge University Press, Cambridge, 1952.

[6] R. A. Wolf, K. A. Farley and D. M. Kass, Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer, Chem. Geology 148 (1998) 105–114.