解説

先端永久磁石材料に対する保磁力解析の実験的アプローチ

岡本 聡1,2,3*

1 東北大学多元物質科学研究所，〒980-8577 仙台市青葉区平2-1-1。
2 東北大学スピトロニクス学術連携研究教育センター（CSRN），〒980-8577 仙台市青葉区平2-1-1。
3 物質・材料研究機構（NIMS），元素戦略磁性材料研究拠点（ESICMM），〒305-0047つくば市千歳1-2-1。

Experimental Approaches for Micromagnetic Coercivity Analysis of Advanced Permanent Magnet Materials

Satoshi OKAMOTO1,2,3*

1 Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
2 Center for Spintronics Research Network (CSRN), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
3 Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan.

Received March 11, 2021; Revised May 22, 2021; Accepted June 3, 2021

ABSTRACT

Although coercivity is one of the fundamental properties of permanent magnets, it has not been well understood. In this paper, micromagnetics and thermal activation magnetization reversal theories are briefly reviewed, and then our recent macroscopic and microscopic experimental approaches for thermally activated magnetization reversal in advanced Nd-Fe-B hot-deformed magnets are explained. Our experimental results are well supported by the recent atomistic spin model calculations. Moreover, the systematic micromagnetics simulation study makes much clearer the physical picture of the thermally activated magnetization reversal process in permanent magnets.

KEY WORDS
coercivity, magnetization reversal, thermal activation, Nd-Fe-B
article classifications: magnetics / spintronics / superconductors

I はじめに

重希土類（HRE）元素を使用しない高性能Nd-Fe-B磁石の開発は、長年に電気/ハイブリッド自動車の駆動用モーターを応用において重要な問題となっており1,2), 熱間加工3), 共晶合金の粒界拡散法4), He-ジェットミリング拡散微細粒を用いたプレスレスプロセス5)、Ga添加最適化処理プロセス6)など、これまでに様々な技術開発が進められてきた。一部として、Nd-Cu共晶合金の粒界拡散（Grain-boundary diffused, GBD）と未拡散（As-hot-deformed, HD）の2種類のNd-Fe-B熱間加工磁石の保磁力HrおよびHc/Hmの温度依存性をFig. 1に示す7), ここでHrは異方性磁石であり、一般的にHrの理論上限と見なされている。GBD磁石はHD磁石と比較して約2倍のHrを示しているが、それでもHc/Hmの1/3程度に留まっている。

この小さなHr/Hcの値は、Kronmüller8)が指摘しているように、数多くの永久磁石材料で一般的にみられているものである。さらに、GBD磁石とHD磁石ともにHcは温度上昇に伴い大幅に減少し、同時にHr/Hcも減少している。この事実は、温度上昇に伴うHcの減少は、高温でのHrの減少だけではなくなぜ明示できないことを示している。したがって、磁化逆転過程とその温度変化を理解することは本質的に重要であると考えられる。

永久磁石材料の保磁力問題に関する研究には長い歴史がある。約75年前にブラウンが保磁力問題に関する問題提起を行なって以来10), 上述の低いHr/Hcはブラウンのパラドックスと称される未解決問題である。永久磁石材料のHcについては議論する際、一般的には室温環境下で測定された磁化曲線上で磁化がゼロになる磁場をHcとする。ただし、このような測定されたHcは、反転形成あるいは壁破壊体積、さらには磁壁伝播などの膨大な数の磁化反転素過程の結果である。こ
れら磁化反感表過程は、磁壁壁幅のナノメートル領域の小さな磁化核形成が起こるが、このサイド領域では、バルク磁石であっても熱活性が重要な役割を果たす。永久磁石材料のH_rに対する熱活性の影響はGiovorらによって研究されてきた。しかしながら、磁化機械的に測定されるH_sは、数多くの重磁化反感過程の結果であり、個々の磁化反感過程とH_rとの関係については殆ど理解が進んでいない。

ごく最近になり、磁化反感過程に関する理論的アプローチが著しく進展した。エネルギー極限に対するエネルギー最小法による反感磁化過程に関するエネルギー極限計算が報告された。さらに、より厳密な計算が有限温度下のスピンポラリテーション理論を適用して、一方、実験的アプローチでは、我々のグループがマイクロマグネティックス理論の再構築に伴い進行性磁化反感解析を行っている。さらに、Nd-Fe-B磁石試料に対してサブミクロスケールにまで微部加工作が施された磁化反感過程検出と熱活性解析に成功した。

本論文では、我々がこれまでに進めてきた保磁力および磁化反感解析に関する実験的アプローチを紹介する。それに先立ち、第2章では永久磁石材料のマイクロマグネティックスおよび熱活性磁化反感過程に関する理論を概説し、第3章では我々が進めてきた実験的および熱活性磁化反感解析を検討し、有限温度下のスピンポラリテーション理論を用いた考察結果と併せて説明する。

2 マイクロマグネティックスおよび熱活性磁化反感理論の概説
2.1 マイクロマグネティックス理論
マイクロマグネティックス理論は、有限サイズ磁石体のエネルギー最小の磁化平衡状態の計算を目的とする数学的手法であり、ブラウンによって提唱されたものである。このアプローチに基づいて、Aharoni（回転格子および無限格子状の試料におけるカーリングおよびパッティングタイプの磁化形成過程の臨界直径d_sを定式化）した。球状粒子に対するd_sは次式で与えられる。

$$d_s = 2L_q / \sqrt{N_{\alpha}}$$

ここで$L_q = \sqrt{2\mu_0 / \mu_s M_s}$は交換長、$q$は幾何学因子であり近似的で2で与えられる。$N_{\alpha}$は対称軸を直交する方向の磁場係数であり、$A$は試験スニペット、$M_s$は飽和磁化、$\mu_s$は真空の透磁率である。粒子サイズ$q$がより大きい場合、磁化反感過程の振興回旋から核形成過程を変化し、NdFe-BBではないが$d_s = 18\, \text{nm}$と計算される。一般にNd-Fe-B焼結磁石の粒子を小さくすると、H_sが単調に増大する傾向が広く知られている。このH_s増大に対して磁化反感過程が一斉回転型に近づく傾向がある。実験的に得られているNd-Fe-B焼結磁石の粒子サイズは数μmの領域であり、NdFe-Bの$d_s = 18\, \text{nm}$より2桁大きい。したがって粒子群における磁化反感過程の変化の傾向が見られる。粒子がd_sよりも大きい場合のカーリング型の核生成場は次式で与えられる。

$$H_s = H_t - N_{\alpha}M_s + \frac{4\alpha^2}{d_s^2}q^2M_s$$

ここでN_{α}は対称軸方向の磁場定数である。この式より、無限大粒子を想定したカーリング型における最小磁化生成場$H_t = H_s - N_{\alpha}M_s$ことがわかる。したがって、生成磁場は$H_s$より大幅に低下するもの。実験的に観察される$H_t$と$H_s$のギャップを埋めるに十分ではない。カーリング型核生成は、磁性材料が均質であり、かつ対称性が高いことを前提としている。しかしながら、実現の磁石材料は欠陥や粒界を含む不均一な構造である。このような粒界を含んだ系を扱う最もシンプルなモデルは2つの硬磁性層の間に挟まれた軟磁性層で構成される1次元モデルであり、磁壁デビジングや欠陥誘起の核生成を想定して計算されてきた。このモデルに基づけばKronmüllerらのH_tに関する次式を提案した。

$$H_t = aH_s - N_{\alpha}M_s$$

aは欠陥相や配向性の乱れ等に起因する実効的なH_sの減少率を示す係数であり、N_{α}は局部反磁場係数である。Kronmüllerらは、様々な観点よりaはr_0/μ_0に比例することを示した。ここでr_0は軟磁性相厚み、μ_0は硬磁性相の磁壁厚みである。H_sの温度依存性データに対する(3)式を適用すると、H_sは$

$$H_s = r_0/\mu_0$$$

次式で与えられる。傾きr_0/μ_0は実験的に決定される。実験研究者に広く受け入れられてきた。しかしながら、この推定はaが温度に対して不変であることを見失っている。一方、元々のKronmüllerの理論では$a = r_0/\mu_0$であり、明らかにaは温度依存性を持つものである。さらに、多くの実験的研究者が(3)式を適用する際には、磁化反感型磁化反感反転過程を前提としている。しかしながら、H_sの角度依存性の実験結果では、Nd-Fe-B焼結磁石、SmCo5焼結磁石、フェライト磁石など、多くの磁石材料において1cosθ_s型の摂動が観測されている。θ_sはr_0に対する外周部面方位である。例としてFig. 2に、Fig. 1で示したGBD磁石のH_sの1cosθ_s依存性を示す。この1cosθ_s型のH_s挙動は、磁壁デビジング型の磁化反感過程が支配的であるときに有効と言われている。ただし、現実の磁石材料で生じている磁化反感過程は、どちらか一方向の単純なものではなく、先述の通り、数少ない数の核生成と磁壁デビジングが共に相乗的に進行するものと考えるべきであろう。

2.2 熱活性磁化反感モデル
前節で説明したマイクロマグネティックス理論では、熱活性の影響を考慮していない。しかし、磁気粘性実験に代表されるように、バルク永久磁石においても熱活性は磁化反感過程に重要な役割を果たしている。磁気粘性とは、1の磁場H_sで磁化変化M_sが時間tとともに徐々に減少する現象で、磁化変化に次式で表される。

$$M(t) = M(0) - S \ln(t)$$

角本 聡
Fig. 1 Temperature dependent (a) μB of HD and GBD magnets. These two magnets have the same size of $3 \times 0.5 \times 0.5 \text{mm}^3$ with c-axis parallel to the long axis.

Fig. 2 Angular dependent μB of GBD magnet measured at 150°C. Solid line is a guide to the eye.

ここで、S は磁気粘性係数と呼ばれ、場強度 H と不可逆磁化率 γ_m を用いて以下で与えられる。

$$S = \gamma_m H_c$$ \hspace{1cm} (5)

確率的に発生する磁化反転過程事象のアンサンブルによる現象として磁気粘性が観測される。各事象の確率 $P(H)$ は、Néel-Arrhenius 線和則によって次式で与えられる。

$$P(H) = 1 - \exp(-\tau/H_c)$$ \hspace{1cm} (6)

ここで、τ は線和時間であり、

$$1/\tau(H) = f_0 \exp(-E_a(H)/k_B T)$$ \hspace{1cm} (7)

ここで、f_0 は試行周波数、k_B はボルツマン定数、T は温度である。$E_a(H)$ はエネルギー障壁であり、次式で与えられる。

$$E_a(H) = E_a(1 - H/H_c)^n$$ \hspace{1cm} (8)

多くの磁性材料において、実験的に S と γ_m が磁場 H に対して同様の挙動をとることが Givord によって指摘され14−16,39)。その結果、5) 式より H_c は定数となる。さらに、9) 式より E_a は H の線形関数となる。式によって $n = 1$ となることが示される。一般的な磁化曲線測定においてデータ取得時間を数秒のオーダーであるため、7) 式より E_a は $25 k_B T$ 程度となる。さらに実効磁場を加えた実効的な磁場を $H = H_c + N_{eff} M_s$ とすることにより、Givord が示した(8) 式より次式を導いた4)。

$$H_c = -\frac{k_B T}{\partial E_a/\partial H}$$ \hspace{1cm} (9)

ここで $N_{eff} = k_B T/M_s H_c$ が活性化体積である40)。磁場エネルギー $E_a \propto \sqrt{B}$ および磁場幅 $\delta_k \propto \sqrt{B}$ を用いて、$E_a \propto \gamma_a \delta_k^2$ ならばに $\gamma_{eff} \propto \delta_k^3$ とすると、(10) 式で右辺第 1 項は H_c に比例する形となる。したがって、Givord が示した(10) 式は Kronmüller による(3) 式に対応した形式となる。

3 永久磁石材料の磁化反転解析

3.1 磁気粘性解析

前述のように Givord は(8) 式のエネルギー障壁関数において $n = 1$ を仮定して、熟磁性磁化反転を議論した。しかしながら、El-Hilo らは E_a 分布が大きい場合、(8) 式の $n = 2$ である Stoner-Wohlfarth 粒子の集合に対して、計算される H_c は H に対してほぼ一定になることを報告している41)。この結果は、実際には $n = 2$ であるが、$n = 1$ という誤った結論を導きてしまう可能性を示唆するものである。このように n の値は E_a または H_c の評価に大きく影響するため、n を実験的に決定することは非常に重要である。

El-Hilo らは同時に、$H \approx H_c$ での H_c の計算値は E_a 分散の影響を受けないことも明らかにした。つまり、E_a 分散があっとも $H = H_c$ で評価された H_c の値は信頼できることを意味している。これまで H_c は独立に測定された S と γ_m から(5) 式
を用いて評価されてきた。これに対して、次式のように磁気粘度測定データのみを用いての H, 評価も El-Hilo らによって提案されている。

$$H = -\frac{\Delta H}{\Delta \ln(S/t)}.$$ (11)

この H の評価では δ 测定が不要なため、従来法よりも高い精度の H の評価が期待できる。一例として、H, 付近の様々な H に対する GBD 試料の磁気粘性曲线を Fig. 3 (a) に示す。この測定データから $H - \ln(S/t)$ をプロットした結果を Fig. 3 (b) に示す。このプロットから (11) 式を用いて H, が得られる。我々は、(11) 式から得られる H, の値と (5) 式から得られる値がほぼ同一であることを実験的に確認している。3)

Fig. 3 (a) の $M/M_0 = 0$ のラインと磁気粘性曲線の交点は、H, の時間依存性に対応しており、これを Fig. 4 (a) にプロットする。この H, の時間依存性は、(6) 式の $P(t) = 0.5$ としたものであり、これを変形することで Sharrock 式と呼ばれる次式が与えられる。4, 41)

$$H, (t) = H_0 \left[1 - \left(\frac{f_0}{E_0} \ln \left(\frac{f_0}{E_0} \ln (2) \right) \right)^n \right].$$ (12)

本研究では $f_0 = 1 \times 10^{11}$ Hz とした。4, 41). Fig. 4 (a) の実線はベストフィッティングの結果である。しかしながら、ある範囲の n に対して (12) 式のフィッティングはほぼ同じ精度で可能となるため、このフィッティングから n を決定するのは難しい。そこで n を変化させて E_0 と H_0 の値を決定し、Fig. 4 (b) の曲線で示のように、(9) 式から H, の n 依存性を得る。この H, 曲線と Fig. 4 (b) の直線で示す (11) 式から決定した値と一致する点より、E_0, H_0, n のすべてのパラメータが決定できる。

このように決定された HD 磁石および GBD 磁石の E_0, H_0, n の温度依存性を Fig. 5 に示す。Fig. 1 (a) に示したように、この 2 つの磁石では H, が大きく異なっており、また大きな H, の温度依存性を示す。H, の値は、この 2 つの磁石の H, と同じような挙動を示すが、n の値は依存条件に依らず、ほぼ 1 となっていることが分かった。つまり Givord による $n = 1$ の仮説が検証されたと言える。これまで、n の値は磁化反転過程を反映するものと考えられ、$n = 2$ であれば一斉回転もしくは反転核生成であり、$n = 1$ であれば磁壁デビニングと分類されてきた。2, 46). しかしながら、上の 2 つの条件を満たされる場合には、反転核生成の場合でも $n = 1$ となることが最近の理論計算によって示された。4, 45) 1 つは磁性体サイズが交換長に比べて十分に大きいこと、2 つ目は、磁化の緩和時間に比べて十分に短い磁化反転現象であることで
ある。Togaらは、原子スピン模型に基づくエネルギー地形の計算により、この推算を厳密に実証した(30)。この2つの条件は、永久磁石の磁化反転にとって、核生成や磁壁デビニングなどの磁化反転過程にかかわらず当てはまるものであり、Givordらが見出したように多くの磁石材料で$n = 1$となることが理解される。

興味深いことに、E_{0}は温度による変化は大きくなく10$^{-11}$ JO台である。この値は$p_{0}a^{2}$と同じオーダーであり、反転核生成もしくは磁壁デビニングにおいて臨界核サイズが磁壁幅程度であることを明瞭に示している。E_{0}の詳細は次章にて述べる。

3.2 磁化反転過程評価

ここでまで磁化反転は電動機などの逆流を伴う形で述べてきた。しかし、第1章で説明したように、H_{c}は膨大な数の磁化反転過程に伴うパラメーターが変化する結果の多くの観察で、毎々の磁化反転過程を直接測定することは現象理解の上で極めて重要である。この問題に対して、我々はNd-Fe-B熱間加工磁石の磁化反転過程を直接測定することに成功した(31,32)。

Fig. 6 (a)に示すように、加工デモーデの影響を慎重に評価しつつ、現象研究と集電イオンビーム（FIB）加工を用いてNd-Fe-B熱間加工磁石のサブミクロンスケールの十字型パターンを作製した。NdFeBのc軸は平面垂直方向である。異常ホール効果（AHE）を用いることにより、この十字センサー領域の微小領域における磁気信号を極めて高精度に検出できる。十字センサー領域が10 μm程度では、AHE曲線は未加工試料と同様であったが、Fig. 6 (a)の試料では各々の磁化反転過程に対応した段階状のAHE曲線が観測でき、Fig. 6 (b)は、AHE曲線上の各段階状ステップの1つに着目して50回繰り返し測定を重ねた結果である。ステップ高さは、Nd-Fe-B熱間加工磁石の1段もしくは2粒子程度の磁化反転信号程度に対応しており、このステップの反転磁場は磁体単位1段階状態の範囲で検出できる。この反転磁場分布$P(H)$をHの関数としてFig. 6 (c)に示す。実線は(6)式のNéel-Arrhenius緩和則を一定の磁場引き速度Rに対して積分して得られる次式でフィッティングした結果であり、実験結果を良く説明できている。

$$P(H) = 1 - \exp \left[- \frac{f_{0} \exp \left(- \frac{E_{0}/k_{B}T}{1 - H/H_{c}} \right)}{n(H/H_{c})} \right].$$ (13)

このフィッティングではE_{0}とH_{c}を変数とし、$n = 1$および$f_{0} = 1 \times 10^{11}$ Hzを用いた。したがって、実験で観測されたステップの反転磁場分布は熱流を伴うものであると結論づけられ、さらにAHE曲線の各ステップごとにE_{0}とH_{c}が評価できる。

異なる保磁力（$\mu_{0}H_{c} = 2.0, 1.8, 2.2$ T）を持つ3種類のNd-Fe-B熱間加工磁石（それぞれ試料A、B、C）に対してこの計算を適用した。試料Aの組成はNd$_{75}$Pr$_{15}$Fe$_{5}$Co$_{5}$B$_{4.5}$Ga$_{0.5}$ (wt.%)であり、これを標準として試料Bはやや低いNd組成であり、試料CはNd-Cu共晶合金による粒子拡散処理を施したものである。各磁石試料のAHE曲線に対して8-9ステップの解析を行い、得られたE_{0}とH_{c}の相関をFig. 7に示す。データ点に大きくばらつきが見られるものの、磁場で示すように、試料Aと試料CではH_{c}に対するE_{0}の傾きは大きく、試料Bでは大きくなっている様子が確認できる。

これらの挙動を解析するために、Landau-Lifshitz-Gilbert (LLG)方程式に基づくシミュレーションを行った。Fig. 8 (a)に模式的示すような2粒子粒界モデルに対してMuMax3により計算した(33)。2粒子粒界モデルは幅256 nmで厚み20 nmとし、1 nmの立方体メッシュとした。モデル中央（xz）
面を粒界とし、初期条件として右左の領域は、それぞれ上下向き/下向き磁化状態とした。端部での磁場の影響を除くため、3次元の周辺境界条件を設定した。磁化エレメントは、3軸とした。磁気異方性と交換スチフネスは、NdFeB Bと同じに設定した。

面を粒界とし、初期条件として右左の領域は、それぞれ上下向き/下向き磁化状態とした。端部での磁場の影響を除くため、3次元の周辺境界条件を設定した。磁化エレメントは、3軸とした。磁気異方性と交換スチフネスは、NdFeB Bと同じに設定した。
Fig. 8 (a) Schematic illustration of the two-grain model using in the LLG simulation. A_{GB} is normalized intergrain exchange stiffness with respect to the exchange stiffness of Nd$_2$Fe$_{14}$B (b) Calculated snapshot images of the z-component of magnetization for the domain-wall depinning process with continuously varying field H. (c) Probability curve $P(H)$ of the thermally fluctuated domain-wall depinning. Blue curve in (c) is the best fitting of eq. (13)26.

Fig. 9 (a) μ_0H_0 and (b) E_0/k_BT evaluated from the fitting of eq. (13) as a function of A_{GB}. Insets in (b) are the snapshot images at which domain wall depinning just began.

Fig. 10 Relationship between E_0/k_BT and μ_0H_0 obtained from the LLG simulation for various values of K_{MB}. Broken lines are the linear fitting as eye guides26.

で最も低いH_cであった試料Bの結果と対応しているようにみえる。

これらの結果より熱活性磁壁デピニングについて、A_{GB}は主として磁壁デピニングの臨界圧場に影響し、E_0は主相の磁気特性に依存することが分かった。これは粒界から主相粒子内部にデピニング核が侵入する臨界磁場がH_cであり、さらに反転核が主相粒子内部で膨張する際の臨界エネルギーがE_0に対応するためと理解できる。特に、磁壁デピニング核サイズは磁壁厚紙度であるため、E_0は主相粒子表面の磁気特性を強く反映するものと考えられる。

最後に、二粒子粒界モデルを用いてH_cの磁場方位θ依存
Fig. 11 Angular dependent μHc obtained from the LLG simulation for various values of A_{gb}.

性を計算した結果をFig. 11に示す。上述の反転核生成と磁壁デビニングの両方を含む各A_{gb}に対して計算した。主相粒子内部で核生成が起こるA_{gb} = 0では、明らかに下に凸の挙動となっている。θ_{0} = 0°でのH_{c}はA_{gb}の増加とともに徐々に減少し、やがてA_{gb} = 0.6においてH_{c}のθ_{0}依存性は1/cosθ_{0}の挙動に近くなる。前述したように、A_{gb} = 0.2を境に磁化反転過程が反転核生成から磁壁デビニングへと不連続に変化し、Fig. 9 (b)に示したように、E_{0}が大きく変化する。しかし、A_{gb} = 0.2の前後においてH_{c}のθ_{0}依存性は不連続な変化はみられず、下に凸の挙動のままである。この下に凸の挙動はA_{gb} = 0.5まで続いており、磁壁デビニングの磁化反転過程であるが一般的に言われているような1/cosθ_{0}挙動とはならない。これらの結果は、H_{c}のθ_{0}依存性からだけでは、反転核生成や磁壁デビニングの磁化反転過程を議論することは困難であることを意味している。

4 まとめ

本稿では、永久磁石の磁力磁性機構とその解析について概説した。これまで永久磁石はパルク材料であるため、その磁化反転には磁活性の影響は存在ないと認識されていなかった。しかし本稿で述べたように、パルク材料であってもナノメートルスケールの小さな反転核を起点とした磁化反射過程であるため、磁活性は重要な役割を果たしている。

我々はNd-Fe-B熱間加工磁石における磁活性磁化反転過程に関して、視的ならびに微視的実験的解析手法を適用し、マルチスケール解析を進め、これらの研究を通じて、永久磁石における磁活性磁化反転の物理的な描像がより明確に出来るのではないかと考えている。本稿で議論したエネルギー障壁パラメータは、粒子相と主相粒子表面の磁気特性を強く反映するものであることを強調しておきたい。

最短径の高性能磁石では、様々な手法を駆使して粒子相や粒子表面の磁気特性を調べることが必要である。実際の粒子相や粒子表面の磁気特性を直接計測することは現在でも容易ではない。その状況の中でエネルギー障壁解析は、その有力な解析ツールになるのではと期待している。

謝辞

本研究の成果は非常に多くの機関、研究者の方々との共同研究の成果をまとめたものである。主要な方々の御指導を賜り、ご指導頂いた。従来多く発表されている研究の一部を含む、今後の研究を進めるためにも、改めて感謝申し上げます。
Schrefl: JOM, 67 (2015) 1350-1356.
21) S. Miyashita, M. Nishino, Y. Toga, T. Hinokihara, T. Miyake, S. Hirosawa, A. Sakuma: Scr. Mater., 154 (2018) 259-265.
22) Y. Toga, M. Matsumoto, S. Miyashita, H. Akai, S. Doi, T. Miyake, A. Sakuma: Phys. Rev. B., 94 (2016) 174433.
23) Y. Toga, S. Miyashita, A. Sakuma, T. Miyake: NPJ Comput. Mater., 6 (2020) 67.
24) R. Goto, S. Okamoto, N. Kikuchi, O. Kitakami: J. Appl. Phys., 117 (2015) 17B514.
25) T. Yomogita, N. Kikuchi, S. Okamoto, O. Kitakami, H. Sepehri-Amin, T. Ohkubo, K. Hono, K. Hioki, A. Hattori: AIP Advances., 9 (2019) 125052.
26) T. Yomogita, S. Okamoto, N. Kikuchi, O. Kitakami, H. Sepehri-Amin, Y. K. Takahashi, T. Ohkubo, K. Hono, K. Hioki, A. Hattori: Acta. Mater., 201 (2020) 7-13.
27) W. F. Brown: Micromagnetics, Interscience Publishers, (1963).
28) A. Aharoni: Phys. Stat. Sol. (b), 16 (1966) 3-42.
29) A. Aharoni: IEEE Trans. Magn., 34 (1998) 2175-2176.
30) A. Aharoni: J. Appl. Phys., 60 (1986) 1118-1123.
31) G. Bertotti: Hysteresis in Magnetism, Academic Press, (1998).
32) J. Craik, E. Hill: Phys. Lett. A., 48 (1974) 157-158.
33) R. Friedberg, D. I. Paul: Phys. Rev. Lett., 34 (1974) 1234-1237.
34) H. Zijlstra: IEEE Trans. Magn., 15 (1979) 1246-1250.
35) D. I. Paul: J. Appl. Phys., 53 (1982) 1649-1654.
36) A. Sakuma, S. Tanigawa, M. Tokunaga: J. Magn. Magn. Mater., 84 (1999) 52-58.
37) H. Kronmüller, K.-D. Durst, M. Sagawa: J. Magn. Magn. Mater., 74 (1988) 291-302.
38) X. C. Kou, H. Kronmüller, D. Givord, M. F. Rossignol: Phys. Rev. B., 50 (1994) 3849-3860.
39) R. Street, J. C. Woolley: Proc. Phys. Soc. A, 62 (1949) 562-572.
40) E. P. Wohlfarth: J. Phys. F: Met. Phys., 14 (1984) L155-L159.
41) M. El-Hilo, K. O’Grady, R. W. Chantrell: J. Magn. Magn. Mater., 248 (2002) 360-373.
42) M. Sharrock, J. McKinney: IEEE Trans. Magn., 17 (1981) 3020-3022.
43) M. Sharrock: J. Appl. Phys., 76 (1994) 6413-6418.
44) W. F. Brown: J. Appl. Phys., 30 (1959) S130-S132.
45) W. F. Brown: J. Appl. Phys., 34 (1963) S130-S132.
46) P. Gaunt: Philos. Mag. B., 48 (1983) 261-276.
47) J. Vries, T. Bolhuis, L. Abelmann: N. J. Phys., 19 (2017) 093019.
48) A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Garcia-Sanchez, B. V. Wacenenberge: AIP Adv., 4 (2014) 107133.
49) S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa: J. Appl. Phys., 59 (1986) 873-879.
50) K. Ono, N. Inami, K. Saito, Y. Takeichi, M. Yano, T. Shoji, A. Manabe, A. Kato, Y. Kaneko, D. Kawana, T. Yokoo, S. Itoh: J. Appl. Phys., 115 (2014) 17A714.