Large characteristic subgroups of surface groups
not containing any simple loops

M. Pikaart

Abstract

We determine the largest (i.e. smallest index) characteristic subgroup
of surface groups not containing any simple loops.

1 Introduction

For any compact orientable surface S we determine the smallest characteristic
non-geometric quotient of $\pi_1(S)$. Non-geometric means that no non-trivial
element that can be represented by a simple closed curve is mapped to the identity
and characteristic means that its kernel is kept fixed under all automorphisms.
We write π, H and g for $\pi_1(S), H_1(S, \mathbb{Z})$ and the genus of S respectively. We
assume that g is at least 2. Consider the following characteristic subgroups of π:
$\pi^{[1]} := \pi$ and inductively $\pi^{[k+1]} := [\pi, \pi^{[k]}]$. We have a well known isomorphism
$\pi^{[2]} / \pi^{[3]} \to \wedge^2 H / \omega, [x, y] \mapsto x \wedge y$, where ω is the intersection form on H. We
have an intersection product $\wedge^2 H \to \mathbb{Z}$. Let K be the kernel of the composition
of the map $\pi^{[2]} \to \wedge^2 H / \omega$ with the intersection product $\wedge^2 H / \omega \to \mathbb{Z} / g\mathbb{Z}$. Our
result is

Proposition 1.1 If g is odd, then the largest (i.e. smallest index) characteristic
non-geometric subgroup of π is given by all gth powers and K. If g is even, then
the largest characteristic non-geometric subgroup of π is given by all $2g$th powers
and K. The indices of these are g^{2g+1} and $(2g)^{2g}g$ respectively.

Recently, Livingston proved that for $g = 2$ the smallest non-geometric quotient
of π is a group of order 2^5, and he raised the question whether an easy
generalisation of his result (which yields a group of order g^{2g+1}), holds true for
any genus. The theorem above shows that his generalisation for odd genus is in
any case the smallest non-geometric characteristic quotient.

2 Notation and preliminary computations

Before we start, we pick once and for all a set of generators for π: x_1, \ldots, x_{2g} with
defining relation $\Pi_{i=1}^{g}[x_{2i-1}, x_{2i}]$. We call a pair of integers (i, j) related if and
only if there exists an integer h with $1 \leq h \leq g-1$ such that $(i, j) = (2h-1, 2h)$.

1
We write $[a, b]$ for $a^{-1}b^{-1}ab$, such that $ab = ba[a, b]$. Furthermore, if α and β are elements of π, then $\alpha \beta$ means: perform α first, then β.

Consider the following normal subgroups of π:

$$
\begin{align*}
\pi^{[1]} & : = \pi; \\
\pi^{[k+1]} & : = [\pi, \pi^{[k]}]; \\
K & : = Ker(\pi^{[2]} \to \mathbb{Z}/g\mathbb{Z}); \\
\pi^n & : = < x^n | x \in \pi >.
\end{align*}
$$

Notice that K contains $\pi^{[3]}$. All these are clearly characteristic subgroups. For K this holds since $\pi^{[2]}$ is characteristic and all involved maps are natural. The quotient we are interested in, is π/π^nK respectively $\pi/\pi^{2g}K$. In order to prove the proposition, we first describe $\pi/\pi^{[3]}$.

Lemma 2.1 $\pi/\pi^{[3]} \cong \{\Pi_{i=1}^{2g} x_i^n, \Pi_1^{m_{i,j}} | n_i, m_{i,j} \in \mathbb{Z}, * meaning : (i, j) \neq (2g - 1, 2g)\} \to \pi/\pi^{[3]} \to \pi/\pi^{[2]} \to \mathbb{Z}$.

where multiplication on the right hand side is defined as follows:

$$
(\Pi_{i=1}^{2g} x_i^n, \Pi_1^{m_{i,j}}) \cdot (\Pi_{i=1}^{2g} x_i^n, \Pi_1^{m_{i,j}}) = \Pi_{i=1}^{2g} x_i^{n_i + m_{i,j}} \Pi_1^{m_{i,j} - k_{i,j} + \delta_{i,j}}.
$$

Here $\delta_{a,b} = 1$ if $a = b$ and a is even, else $\delta_{a,b} = 0$.

Proof 2.2 We have the exact sequence

$$1 \to \pi^{[2]}/\pi^{[3]} \to \pi/\pi^{[3]} \to \pi/\pi^{[2]} \to 1,$$

where the outer factors are finitely generated free abelian groups ([Lk, Th.5.12]) of rank $(2g) - 1$ and $2g$ respectively. Explicitly, we have:

$$
\pi/\pi^{[2]} = (x_i)_{a,b}, i = 1, \ldots, 2g,
\pi^{[2]}/\pi^{[3]} = (\{x_i, x_j\})_{a,b}, 1 \leq i < j \leq 2g, (i, j) \neq (2g - 1, 2g).
$$

Here the subscript ab means the free abelian group generated by these elements. Now recall that if $a \in \pi^{[k]}$ and $b \in \pi^{[l]}$ then $ab = ba[a, b]$ with $[a, b] \in \pi^{[k+l]}$, so that

$$
ab \equiv ba \mod \pi^{[k+l]}.
$$

Furthermore we have the following identities, modulo $\pi^{[3]}$: ([MKS, Th.5.1])

$$
\begin{align*}
[a, b] & = [b, a]^{-1}, \\
[a, bc] & = [a, c] [a, b], \\
[ab, c] & = [a, c] [b, c].
\end{align*}
$$

It is clear now that any element of $\pi/\pi^{[3]}$ can be written uniquely in the form $\Pi_{i=1}^{2g} x_i^n, \Pi_1^{m_{i,j}} | n_i, m_{i,j} \in \mathbb{Z}$ and the meaning of the * is:
(i, j) \neq (2g - 1, 2g). Note that the last \((2^g - 1)\) factors commute by (1). Before we start the computation, notice that modulo \(\pi^{[3]}\) we have

\[[a^i, b^j] = [a, b]^{ij}, \] (5)

as one proves easily by induction. The following identities hold in the group \(\pi/\pi^{[3]}\):

\[
\begin{align*}
(x_1^{n_1} \ldots x_{2g}^{n_{2g}})(x_1^{k_1} \ldots x_{2g}^{k_{2g}}) &= x_1^{n_1 + k_1} \ldots x_{2g}^{n_{2g} + k_{2g}} [x_1, x_2]^{-k_1} \ldots [x_1, x_{2g}]^{-k_{2g}} \\
&= \ldots \\
&= \prod x_i^{n_i + k_i}, \prod_{1 \leq i < j \leq 2g} [x_i, x_j]^{-k_{ij} + \delta_{i,j+1} k_{2g-1} n_{2g}}
\end{align*}
\]

with \(\delta_{i+1,j} k_{2g-1} n_{2g}\) as above. Combining these proves the lemma. (Cf. [PdJ, Lemma 6.1])

Here the term with \(\delta_{i+1,j} k_{2g-1} n_{2g}\) stems from the defining relation for the group \(\pi: \Pi^{[2]}_1[x_{2i-1}, x_{2i}] = 1\), which we used to get rid of \([x_{2g-1}, x_{2g}]\) as a generator for \(\pi^{[2]}/\pi^{[3]}\).

Clearly the subgroup \(\pi^{[2]}/\pi^{[3]}\) is given in terms of these generators by all expressions of the form \(\Pi^{[2]}_{1 \leq i < j \leq 2g} [x_i, x_j]^{m_{ij}}\).

Lemma 2.3 \(\pi/K \cong \{ \Pi^{2g}_{i=1} x_i^{n_i} [x_1, x_2]^m | n_i \in \mathbb{Z}, m \in \mathbb{Z}/g\mathbb{Z} \}\), where multiplication on the right hand side is defined as follows:

\[
(\Pi_{i=1}^{2g} x_i^{n_i} [x_1, x_2]^m) (\Pi_{i=1}^{2g} x_i^{k_i} [x_1, x_2]^l) = \Pi_{i=1}^{2g} x_i^{n_i + k_i} [x_1, x_2]^{m + l - \sum_{i=1}^{2g} k_{2i-1} n_{2i} + (g-1) k_{2g-1} n_{2g}}.
\]

Proof 2.4 Clearly, \(K/\pi^{[3]}\) is generated by the elements \([x_i, x_j]\) for \(i\) and \(j\) not related, by the elements \([x_{2k-1}, x_{2k}][x_{2k-1}, x_{2k}]^{-1}\) and by \(\Pi_{i=1}^{g} [x_{2i-1}, x_{2i}]\).

Proposition 2.5 If \(g\) is odd, then

\[\pi/\pi^{g} K \cong \{ \Pi_{i=1}^{2g} x_i^{n_i} [x_1, x_2]^m | n_i, m \in \mathbb{Z}/g\mathbb{Z} \}, \]

and if \(g\) is even, say \(g = 2h\), then

\[\pi/\pi^{g} K \cong \{ \Pi_{i=1}^{2g} x_i^{n_i} [x_1, x_2]^m | n_i \in \mathbb{Z}/g\mathbb{Z}, m \in \mathbb{Z}/h\mathbb{Z} \}, \]

where multiplication on the right hand sides is defined as above.
Proof 2.6 Consider the short exact sequence

\[1 \to \pi / (\pi^2 \cap \pi^g K) \to \pi / \pi^g \to \pi / \pi^g \pi^2 \to 1. \]

Clearly, \(\pi / \pi^g \pi^2 \cong H_1(S; \mathbb{Z}/g\mathbb{Z}) \). Furthermore, if \(g \) is odd, \(\pi / (\pi^2 \cap \pi^g K) \cong (\mathbb{Z}/g\mathbb{Z}) \), whereas in case \(g \) is even, say \(g = 2h \), we have \(\pi^2 / (\pi^2 \cap \pi^g K) \cong (\mathbb{Z}/h\mathbb{Z}) \). This follows directly from [PdJ, Lemma 6.3].

Corollary 2.7 The subgroup \(\pi^g \) is generated by all \(g \)th powers of geometric (i.e. representable by a simple closed curve) elements modulo \(K \).

Proof 2.8 Clearly the elements \(x_i^g \) and \([x_1, x_3]^g \) are \(g \)th powers of geometric elements, settling the statement for odd \(g \). For even \(g \), say \(g = 2h \), we have \((x_1x_2)^{2h} \cong x_1^{2h} x_2^{2h} [x_1, x_2]^{(2h-1)h} \) modulo \(\pi^3 \), as one proves easily by induction (cf. [PdJ, Lemma 6.3]). Therefore, \([x_1, x_2]^{-h} \cong x_2^{-2h} x_1^{-2h} (x_1 x_2)^{2h} [x_1, x_2]^{-2h} \), proving the corollary.

We define the following simple loops on \(S \): \(\gamma_1 = x_1 \), \(\gamma_{2h} = x_{2h} \), for \(h = 1, \ldots, g \), \(\gamma_{2h-1} = x_{2h-1} [x_{2h-3}, x_{2h-2}]^{-1} x_{2h-3}^{-1} \), for \(h = 2, \ldots, g \), and finally \(\gamma_{2g+1} = [x_{2g-1}, x_{2g}]^{-1} x_{2g-1}^{-1} \).

We write \(\tau_i \) respectively \(\sigma_i \) for the (right handed) Dehn twist around \(\gamma_i \) and \(x_{2i-1} \) respectively. For later convenience we list the action of these Dehn twists on the generators of \(\pi \) and the action modulo \(\pi^3 \) as above (if the action of some Dehn twist on a generator is not given, it is the trivial action):

\[
\begin{align*}
\tau_1(x_2) &= x_1^{-1} x_2, \\
\tau_{2h}(x_{2h-1}) &= x_2 x_{2h-1}^{-1} x_2 x_{2h-1} x_{2h-1}^{-1} x_2, \\
\tau_{2h-1}(x_{2h-2}) &= x_{2h-2}^{-1} x_{2h-1}^{-1} = x_{2h-2} x_{2h-1} x_{2h-2}^{-1} x_{2h-3}, \\
\tau_{2h-1}(x_{2h-1}) &= x_{2h-1}^{-1} x_{2h-2}^{-1} x_{2h-1}^{-1} = x_{2h-1} x_{2h-2} x_{2h-3} x_{2h-2}^{-1} x_{2h-3}^{-1}, \\
\tau_{2h-1}(x_{2h}) &= x_{2h-1}^{-1} x_{2h}, \\
\tau_{2g+1}(x_{2g}) &= x_{2g}^{-1} x_{2g+1} = x_{2g} x_{2g+1} x_{2g}^{-1} x_{2g+1}^{-1} x_{2g+1}^{-1}. \\
\sigma_i(x_{2i}) &= x_{2i-1} x_{2i}.
\end{align*}
\]

3 The proofs

Proposition 3.1 The quotient \(\pi / \pi^g K \) is characteristic and it is non-geometric if and only if \(g \) is odd. If \(g \) is even, the quotient \(\pi / \pi^{2g} K \) is characteristic and non-geometric.
\begin{proof}
\(\pi^g K\) is characteristic, while \(\pi^g\) and \(K\) are. For \(g\) odd, we have that \(\pi^g K\) is non-geometric since it is exactly the group described by Livingston in [4, Section 5]. For \(g\) even, say \(g = 2h\), it follows from Proposition 2.9 that \(\Pi_i = [x_{2i-1}, x_i]\) is contained in \(\pi^g K\), so \(\pi^g K\) is geometric. On the other hand, for \(g\) even, Livingston’s group is a quotient of \(\pi^{2g} K\), namely the one generated by the elements \(x_i^g\) for \(i = 1, \ldots, 2g\). Thus \(\pi^{2g} K\) is non-geometric.
\end{proof}

Theorem 3.3 If \(g\) is odd, the largest characteristic non-geometric quotient of \(\pi\) is \(\pi/\pi^g K\) and if \(g\) is even, the largest characteristic non-geometric quotient of \(\pi\) is \(\pi/\pi^{2g} K\). The indices of these groups are \(g^{g+1}\) respectively \((2g)^{2g+1}/2\).

\begin{proof}
The indices follow directly from Proposition 2.3. Let \(M\) be any characteristic finite-index non-geometric subgroup of \(\pi\). Let \(k\) be the smallest positive integer such that for some simple closed not separating curve \(\delta\) we have \(\delta^k \in M\). Since \(M\) is characteristic and all simple closed not separating curves can be mapped one onto the other, we have that \(k\) is the smallest positive integer with \(\delta^k \in M\) for all simple closed not separating curves \(\delta\). Notice that \(k \geq 3\).

Namely, if \(k = 2\), then \([x_1, x_2] = x_1^{-2}(x_1 x_2)^2 x_2^{-2} \in M\), so \(M\) is geometric, contradiction. We have \(\pi/M\pi^2 \cong (\mathbb{Z}/k\mathbb{Z})^{2g}\) for some positive integer \(k\).

Let \(P\) be the subgroup of \(\pi^2\) generated by all \([x_i, x_j]\) for \((i, j)\) not related (recall that \(i < j\)). By an analogous argument we have that \((\pi^2 \cap M)/(\pi^3 \cap M)P\) is a quotient of \((\mathbb{Z}/m\mathbb{Z})^{g-1}\), generated by the elements \([x_{2i-1}, x_{2i}]\) for \(i = 1, \ldots, g\). Again by the classification of surfaces and by the fact that \(M\) is characteristic, we get a uniform power \(l\) such that \([x_{2i-1}, x_{2i}]^l \in M\) if and only if \(l\) divides \(t\). We have that

\[[x_{2i-1}, x_{2i}] \cong [x_{2i-1}, x_{2i}]^k \text{ modulo } \pi^3 \]

and thus \(l\) divides \(k\) if \(k\) odd and \(2l\) divides \(k\) if \(k\) even, by Proposition 2.7.

Similarly, we obtain a uniform power \(m\) such that for \((i, j)\) not related, the elements \([x_i, x_j]^m\) are in \(M\) if and only if \(m\) divides \(t\). Furthermore we have that \(m\) divides \(l\), since \(\tau_3([x_1, x_2]^m) \equiv [x_1, x_2]^m [x_1, x_3]^m \text{ modulo } \pi^3\).

Now suppose \([x_1, x_2] \notin [x_3, x_4]\) modulo \(M\). Since \(M\) is characteristic and all classes \([x_{2i-1}, x_{2i}]\) can be transformed one into the other by an automorphism of \(\pi\), it follows that they all have different classes modulo \(M\), thus \([x_{2i-1}, x_{2i}][x_{2j-1}, x_{2j}]^{-1}\) is not contained in \(M\). Consider the short exact sequence

\[1 \to M\pi^3/\pi^3 \to \pi/\pi^3 \to M\pi^3/\pi^3 \to 1.\]

We claim that \(M\pi^3/\pi^3\) does not contain any element of the form \([x_i, x_j]\) for \((i, j)\) not related (equivalently, \(m > 1\)). Namely, suppose that there is a pair \((i, j)\), with \((i, j)\) not related, such that \([x_i, x_j] \in M\). Then \([x_i, x_j]\) is in \(M\) for all \((i, j)\) not related, again by the classification of surfaces and the fact that
M is characteristic. We compute $\tau_{2h-1}([x_{2h-2}, x_{2h}])$. We have the following identities modulo $\pi^{[3]}$, where $2 \leq h \leq g$:

\[
\begin{align*}
\tau_{2h-1}([x_{2h-2}, x_{2h}]) & \equiv [x_{2h-3}, x_{2h-2}]^{-1} [x_{2h-2}, x_{2h}]^{-1} [x_{2h-3}, x_{2h}] [x_{2h-3}, x_{2h-1}]^{-1} \frac{1}{[x_{2h-2}, x_{2h-1}, x_{2h}]} [x_{2h-3}, x_{2h-1}]^{-1} [x_{2h-2}, x_{2h}] \equiv [x_{2h-3}, x_{2h-2}]^{-1} [x_{2h-2}, x_{2h}]^{-1} [x_{2h-3}, x_{2h}] [x_{2h-3}, x_{2h-1}]^{-1} \frac{1}{[x_{2h-2}, x_{2h-1}, x_{2h}]} [x_{2h-3}, x_{2h-1}]^{-1} [x_{2h-2}, x_{2h}].
\end{align*}
\]

The product $[x_{2h-3}, x_{2h-2}]^{-1} [x_{2h-1}, x_{2h}]$ is contained in M since the first three commutators are in M. This leads to a contradiction.

Now we claim that the abelian m-torsion subgroup of $\pi/M\pi^{[3]}$ generated by all $[x_i, x_j]$ for (i, j) not related, has rank $(\frac{2g}{3}) - g = 2g^2 - 2g$. Namely, suppose there is an element $z = \sum_{(i,j)\text{not rel.}} n_{i,j} [x_i, x_j]$ contained in M with all $n_{i,j} \in \{0, \ldots, m-1\}$ (in additive notation). We compute a number of elements of the form $\pi(z) - z$ to show that all these $n_{i,j}$ are actually zero. We use repeatedly that $n_{i,j} [x_i, x_j]$ is in M if and only if m divides $n_{i,j}$

\[
\begin{align*}
2g_2 & := \tau_2(z) - z = \sum_{3 \leq j \leq 2g} n_{1,j} [x_1, x_j] \\
2g_{2-1} & := \sigma_g (2g_2) - z_{2g} = n_{1,2g} [x_1, x_{2g-1}] \Rightarrow n_{1,2g} = 0 \\
2g_{2-2} & := \tau_2(z_{2g-1}) - z_{2g-1} = n_{1,2g-1} [x_1, x_{2g}] \Rightarrow n_{1,2g-1} = 0 \\
2g_{2-3} & := \sigma_g (2g_{2-2}) - z_{2g-2} = n_{1,2g-2} [x_1, x_{2g-3}] \Rightarrow n_{1,2g-2} = 0 \\
2g_{2-4} & := \tau_2(z_{2g-3}) - z_{2g-3} = n_{1,2g-3} [x_1, x_{2g-2}] \Rightarrow n_{1,2g-3} = 0 \\
\vdots
\end{align*}
\]

we get $z = \sum_{2 \leq j \leq 2g} n_{1,j} [x_1, x_j]$.

It is clear that continuing in this way we show that all coefficients $n_{i,j}$ are zero. Since there are $(\frac{2g}{3}) - 2g$ elements of this form, this proves the claim.

It remains to show that the index of this quotient is larger than the index of $\pi^g K$ respectively $\pi^{2g} K$. We have that the index of M is at least $\#(\pi/M\pi^{[2]}) \#(M \cap \pi^{[3]})/\#(M \cap \pi^{[3]})$, which in turn is at least $k^2 m 2g^2 - 2g$. If m is even, this leaves $m = 2$ as smallest possibility. Since m divides l, l is also even and therefore $2l$ divides k. So the smallest possibility we get is $4^g 2g^2 - 2g = (2g)^2 + 2$. This is larger than $(2g)^2 + 1/2$ for all g.

If m is odd, the smallest possibility becomes $3^{2g} 3^{2g^2 - 2g} = (3g)^{2g}$, which is again larger than $g^{2g + 1}$ for all g.

On the other hand, suppose $[x_1, x_2] \equiv [x_3, x_4] \text{ modulo } M$. By the same argument, we get that all the classes $[x_{2i-1}, x_{2i}]$ are equal modulo M. Since $\Pi_{i=1}^h [x_{2i-1}, x_{2i}] \notin M$ for all $h = 1, \ldots, g - 1$, the smallest possibility for $(\pi^{[2]} \cap M)/(\pi^{[3]} \cap M)P$ is (Z/gZ). This implies that g divides k and $2g$ divides k if g even. Thus, M is contained in $\pi^g K$ or $\pi^{2g} K$ if g is even.
References

[La] J. Labute, On the descending central series of groups with a single defining relation, J. of Alg. 14 (1970), 16-23.

[Li] C. Livingston, Maps of surface groups to finite groups with no simple loops in the kernel, arXiv:math.GT/0002162 (2000).

[MKS] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory, Pure and applied math., Interscience publishers, New York, London (1966).

[PdJ] M. Pikaart and J. de Jong, Moduli of curves with non-abelian level structure, in The Moduli space of Curves, R. Dijkgraaf, C. Faber, G. van der Geer ed. PM 129, (1995), 483-510.