Confinement in the Three-dimensional Anisotropic t-J

Model: A Mean-Field Study

Sanjoy K. Sarker

Department of Physics and Astronomy

The University of Alabama

Tuscaloosa, Alabama 35487

Abstract

We consider the anisotropic t-J model with the c-axis parameters t_c and J_c different from their in-plane counterparts, t and J. Within the slave-fermion mean-field approximation it is shown that the spiral state exhibits charge-confinement in the intermediate δ regime for a range of values of t_c/t. In the confined state the hopping amplitude $\langle c_{i\sigma}^\dagger c_{j\sigma} \rangle = 0$ along the c direction so that c-axis resistivity is infinite at $T = 0$.

1
The normal-state resistivity of the cuprate superconductors is metallic in the \(ab \) plane but is characteristic of an insulator along the \(c \) direction, leading to the possibility of the remarkable phenomenon of confinement \([1, 2]\). By continuity, such a behavior is not expected to occur in a Fermi liquid. In addition, confinement is at the heart of the proposed pair-tunneling mechanism which is in essence a deconfining process \([3]\). Theoretical treatments so far have been focused on a collection of weakly coupled Hubbard chains \([2]\). In this paper we study confinement in a collection of Hubbard planes, more specifically in the anisotropic \(t-J \) model described by the Hamiltonian

\[
H = -\sum_{ij} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + \frac{1}{2} \sum_{ij} J_{ij} [S_i \cdot S_j - n_i n_j]. \tag{1}
\]

Here the in-plane hopping parameter \(t_{ab} \equiv t \) and the exchange interaction \(J_{ab} \equiv J \) are in general different \(t_c \) and \(J_c \), the corresponding quantities along the \(c \) axis. Not all the parameters are free since the \(t-J \) model is thought to be derived from an underlying Hubbard model \((J_{ij} = 4t_{ij}^2/U) \) so that \(J_c/J = (t_c/t)^2 \). There are therefore three independent parameters: \(t/J, \xi \equiv t_c/t \) and the hole density \(\delta \).

Confinement is presumably intimately connected with spin-charge separation. While model (1) is not exactly solvable, in two dimensions a number of approximate ground states have been proposed that exhibit spin-charge separation. Here we study the spiral states in the Schwinger-boson slave-fermion representation: \(c_{i\sigma} = h_i^\dagger b_{i\sigma} \), where \(h_i^\dagger \) creates a fermionic hole and \(b_{i\sigma} \) destroys a bosonic spin \([4]\). We will impose the constraint \(h_i^\dagger h_i + \sum_\sigma b_{i\sigma}^\dagger b_{i\sigma} = 1 \) on the average. A mean-field decomposition leads to following hamiltonians:

\[
H_h = 2 \sum_{ij} t_{ij} B_{ij} h_i^\dagger h_j \tag{2}
\]

\[
H_b = \sum_{i j \sigma} t_{ij} D_{ij} b_{i\sigma}^\dagger b_{j\sigma} - \sum_{i j \sigma} J_{ij} A_{ij} \sigma b_{i\sigma} b_{j-\sigma}. \tag{3}
\]

Here \(D_{ij} = \langle h_i^\dagger h_j \rangle \) is the average hopping amplitude. This is associated with ferromagnetic backflow \(B_{ij} = \langle b_{i\sigma}^\dagger b_{j\sigma} \rangle \). And \(A_{ij} = \frac{1}{2} < (b_{i\uparrow} b_{j\downarrow} - b_{i\downarrow} b_{j\uparrow}) > \) represents the antiferromagnetic correlations associated with the exchange term. We have shown that in two dimensions this competition gives rise to \([4, 5]\) an incommensurate spiral metallic state that evolves
continuously from the Neel state at $\delta = 0$ to a ferromagnetic state at large $t\delta/J$. The spiral state is favored over double spiral and canted states and is stabilized against phase separation and domain walls by Coulomb repulsion \[3, 4\].

In the present problem the in-plane amplitudes (D_{ab}, B_{ab} and A_{ab}) are in general different from those along the c directions (D_c, B_c and A_c). We have solved the mean-field equations numerically for various values of $t_{ab}/J_{ab}, \xi = t_c/t_{ab}$ and δ. One self-consistent solution is found to be the usual spiral metallic state which evolves continuously out of the Neel state. For this state all the mean-field amplitudes including D_c and B_c are nonzero and hence there is no confinement. In addition, the state with $D_c = 0$ (and hence $B_c = 0$) is also a self-consistent solution. This is clearly a direct consequence of spin-charge separation. Charge can propagate in the ab plane in this case ($D_{ab} \neq 0$). Hence D_c can be thought of as the order-parameter for deconfining transitions.

While spin-charge separation can lead to confinement, it does not guarantee that such a state is favored energetically. The ground-state energy is given by

$$E_G = 8tD_{ab}B_{ab} - 4JR_{ab} + 4t_cD_cB_c - 2J_cR_c,$$ \hspace{1cm} (4)

where $R_{ij} = A_{ij}^2 - B_{ij}^2/2 + (1 - \delta)^2/8$. In general D and B have opposite signs and $R > 0$. For physically interesting values of $t - J$, we find that the unconfined phase has a lower energy both at small and large δ. But, as shown in Fig. 1, for intermediate δ there is a region in the $\delta-t_c/t$ plane where the confined state is favored. Interestingly, for fixed t/J and δ, the mean-field state is unconfined at small t_c/t, and with increasing t_c/t there is a first-order transition to a confined state. This is because as t_c decreases, $J_c \propto t_c^2$ decreases more rapidly. This favors ferromagnetic alignment and deconfinement. These results are summarized in Fig. 2.

For δ not too large the hole hopping amplitude D in the isotropic 3-D case is given by

$$D_3(\delta) \approx -\delta + \frac{(6\pi^2)^{2/3}}{10}\delta^{5/3}.$$

In two dimensions, $D_2(\delta) \approx -\delta + \pi\delta^2/2$. Hence, the hopping energy per bond can be lower in two dimensions. When t_c and δ are not too small, the system can gain maximum exchange energy in the c direction and maximum kinetic energy in the ab plane by having $B_c = D_c = 0$.

3
To summarize, we have shown that spiral state in the anisotropic t-J model exhibits charge confinement. For a more realistic treatment one needs to include fluctuations that destroy long-range magnetic order and reconstruct the Luttinger-Fermi surface, as shown previously for the 2-D model [7]. Such fluctuations are likely to bring the region of stability of the confined state to smaller values of δ and t_c/t. Nonetheless, there are some interesting consequences of confinement in our simple theory. (1) In the confined state the magnetic correlations along the c direction is peaked at $Q_c = \pi$, while the correlations in the ab plane remains incommensurate. (2) The c-axis resistivity is strictly infinite at $T = 0$, since $\langle c_i^{\dagger} c_j \rangle = -D_{ij} B_{ij} = 0$ along the c direction. However, at finite T or frequency there will be an incoherent contribution to the conductivity. Such a contribution will be activated if there is a spin gap.
References

[1] P. W. Anderson, preprint.

[2] D. G. Clarke, S. P. Strong and P. W. Anderson, Phys. Rev. Lett. 72, 3218 (1994).

[3] S. Chakravarty, A. Sudbo, P. W. Anderson and S. P. Strong, Science 261, 337 (1993).

[4] C. Jayaprakash, H.R. Krishnamurthy, and S.K. Sarker, Phys. Rev. B40, 2610 (1989).

[5] S. K. Sarker, Phys. Rev. B 46, 8617 (1992).

[6] F. M. Hu, S. K. Sarker and C. Jayaprakash, Phys. Rev. B 50, 17901 (1994).

[7] S. K. Sarker, Phys. Rev. B46, 8617 (1992).
Figure Captions

Fig. 1. Phase diagram in the $\delta-t_c/t$ plane for two $t/J = 3$ (squares) and $t/J = 5$ (diamonds). In each case, the confined state ($D_c = 0$) has a lower energy in the V-shaped region. The transition is first order.

Fig. 2. The hole-hopping amplitude $D_c/(-\delta)$ and the ordering wavevector along the c-direction $Q_z \equiv \frac{Q_c}{2\pi}$ (diamonds) vs t_c/t. Note that Q_c is essentially zero (ferromagnetic) in the unconfined phase. Close to the transition it acquires a spiral character, and at the transition jumps to π corresponding to antiferromagnetic correlations in the confined phase.