RAEDEMACHER FUNCTIONS IN WEIGHTED SYMMETRIC SPACES

SERGEY ASTASHKIN

Abstract

The closed span of Rademacher functions is investigated in the weighted spaces $X(w)$, where X is a symmetric space on $[0,1]$ and w is a positive measurable function on $[0,1]$. By using the notion and properties of the Rademacher multiplicator space of a symmetric space, we give a description of the weights w for which the Rademacher orthogonal projection is bounded in $X(w)$.

1 Introduction

We recall that the Rademacher functions on $[0,1]$ are defined by $r_k(t) = \text{sign}(\sin 2^k \pi t)$ for every $t \in [0,1]$ and each $k \in \mathbb{N}$. It is well known that $\{r_k\}$ is an incomplete orthogonal system of independent random variables. This system plays a prominent role in the modern theory of Banach spaces and operators (see, e.g., [11], [12], [17] and [19]).

A classical result of Rodin and Semenov [20] states that the sequence $\{r_k\}$ is equivalent in a symmetric space X to the unit vector basis in ℓ^2, i.e.,

$$\|\sum_{k=1}^{\infty} a_k r_k\|_X \asymp \left(\sum_{k=1}^{\infty} |a_k|^2 \right)^{1/2}, \quad (a_k) \in \ell^2,$$

if and only if $G \subset X$, where G is the closure of $L_\infty[0,1]$ in the Zygmund space $\text{Exp} L^2[0,1]$. When this condition is satisfied, the span $[r_k]$ of Rademacher functions is complemented in X if and only if $X \subset G'$, where the Köthe dual space G' to G coincides (with equivalence of norms) with another well-known Zygmund space $L \log^{1/2} L[0,1]$. This was proved independently by Rodin and Semenov [21] and Lindenstrauss and Tzafriri [15, pp.138-138]. Moreover, the condition $G \subset X \subset G'$ (equivalently, complementability of $[r_k]$ in X) is equivalent to the boundedness in X of the orthogonal projection

$$Pf(t) := \sum_{k=1}^{\infty} c_k(f) r_k(t),$$

where $c_k(f) := \int_0^1 f(u) r_k(u) \, du$, $k = 1, 2, \ldots$. The main purpose of this paper is to investigate the behaviour of Rademacher functions and of the respective projection P in the weighted spaces $X(w)$ consisting of all measurable functions f such that $fw \in X$ with the norm $\|f\|_{X(w)} := \|fw\|_X$. Here, X is a symmetric space on $[0,1]$ and w is a positive measurable function on $[0,1]$. We make use of the notion of the Rademacher multiplicator space $\mathcal{M}(X)$ of a symmetric space X, which originally arose from the study of vector measures and scalar functions integrable with respect to them (see [8] and [10]). For the first time a connection between the space $\mathcal{M}(X)$ and the behavior
of Rademacher functions in the weighted spaces \(X(w) \) was observed in \([4]\) when proving a weighted version of inequality \([1]\) (under more restrictive conditions in the case of \(L_p \)-spaces it was proved in \([23]\)).

To ensure that the operator \(P \) is well defined, we have to guarantee that the Rademacher functions belong both to \(X(w) \) and to its Köthe dual space \((X(w))' = X'(1/w)\). For this reason, in what follows we assume that

\[
L_\infty \subset X(w) \subset L_1. \tag{3}
\]

This assumption allows us to find necessary and sufficient conditions on the weight \(w \) under which the orthogonal projection \(P \) is bounded in the weighted space \(X(w) \). Moreover, extending above mentioned result of Rodin and Semenov from \([20]\) to the weighted symmetric spaces, we show that, in contrast to the symmetric spaces, the embedding \(X(w) \supseteq G \) is a stronger condition, in general, than equivalence of the sequence of Rademacher functions in \(X(w) \) to the unit vector basis in \(\ell_2 \).

In the final part of the paper, answering a question from \([10]\), we present a concrete example of a function \(f \in M(L_1) \), which does not belong to the symmetric kernel of the latter space.

2 Preliminaries

Let \(E \) be a Banach function lattice on \([0,1]\), i.e., if \(x \) and \(y \) are measurable a.e. finite functions on \([0,1]\) such that \(x \in E \) and \(|y| \leq |x| \), then \(y \in E \) and \(\|y\|_E \leq \|x\|_E \). The Köthe dual of \(E \) is the Banach function lattice \(E' \) of all functions \(y \) such that \(\int_0^1 |x(t)y(t)| \, dt < \infty \), for every \(x \in E \), with the norm

\[
\|y\|_E' := \sup \left\{ \int_0^1 x(t)y(t) \, dt : x \in E, \|x\|_E \leq 1 \right\}.
\]

\(E' \) is a subspace of the topological dual \(E^* \). If \(E \) is separable we have \(E' = E^* \). A Banach function lattice \(E \) has the Fatou property, if from \(0 \leq x_n \searrow x \) a.e. on \([0,1]\) and \(\sup_{n \in \mathbb{N}} \|x_n\|_E < \infty \) it follows that \(x \in E \) and \(\|x_n\|_E \nearrow \|x\|_E \).

Suppose a Banach function lattice \(E \supseteq L_\infty \). By \(E_0 \) we will denote the closure of \(L_\infty \) in \(E \). Clearly, \(E_0 \) contains the absolutely continuous part of \(E \), that is, the set of all functions \(x \in E \) such that \(\lim_{m(A) \to 0} \|x \cdot \chi_A\|_E = 0 \). Here and next, \(m \) is the Lebesgue measure on \([0,1]\) and \(\chi_A \) is the characteristic function of a set \(A \subset [0,1] \).

Throughout the paper a symmetric (or rearrangement invariant) space \(X \) is a Banach space of classes of measurable functions on \([0,1]\) such that from the conditions \(y* \leq x* \) and \(x \in X \) it follows that \(y \in X \) and \(\|y\|_X \leq \|x\|_X \). Here, \(x* \) is the decreasing rearrangement of \(x \), that is, the right continuous inverse of its distribution function: \(n_x(\tau) = m\{t \in [0,1] : |x(t)| > \tau \} \) Functions \(x \) and \(y \) are said to be equimeasurable if \(n_x(\tau) = n_y(\tau) \), for all \(\tau > 0 \). The Köthe dual \(X' \) is a symmetric space whenever \(X \) is symmetric. In what follows we assume that \(X \) is isometric to a subspace of its second Köthe dual \(X'' := (X')' \). In particular, this holds if \(X \) is separable or it has the Fatou property. For every symmetric space \(X \) the following continuous embeddings hold: \(L_\infty \subset X \subset L_1 \).

If \(X \) is a symmetric space, \(X \neq L_\infty \), then \(X_0 \) is a separable symmetric space.

Important examples of symmetric spaces are Marcinkiewicz, Lorentz and Orlicz spaces. Let \(\varphi : [0,1] \to [0,\infty) \) be a quasi-concave function, that is, \(\varphi \) increases, \(\varphi(t)/t \) decreases and \(\varphi(0) = 0 \). The Marcinkiewicz space \(M(\varphi) \) is the space of all measurable functions \(x \) on \([0,1]\) for which the norm

\[
\|x\|_{M(\varphi)} = \sup_{0 < t \leq 1} \frac{\varphi(t)}{t} \int_0^t x^*(s) \, ds < \infty.
\]
If $\varphi : [0,1] \to [0, +\infty)$ is an increasing concave function, $\varphi(0) = 0$, then the Lorentz space $\Lambda(\varphi)$ consists of all measurable functions x on $[0,1]$ such that

$$\|x\|_{\Lambda(\varphi)} = \int_0^1 x^*(s) \, d\varphi(s) < \infty.$$

For arbitrary increasing convex function φ we have $\Lambda(\varphi)' = M(\tilde{\varphi})$ and $M(\varphi)' = \Lambda(\check{\varphi})$, where $\tilde{\varphi}(t) := t/\varphi(t)$ \[14\] Theorems II.5.2 and II.5.4.

Let M be an Orlicz function, that is, an increasing convex function on $[0, \infty)$ with $M(0) = 0$. The norm of the Orlicz space L_M is defined as follows

$$\|x\|_{L_M} = \inf \left\{ \lambda > 0 : \int_0^1 M\left(\frac{|x(s)|}{\lambda}\right) \, ds \leq 1 \right\}.$$

In particular, if $M(u) = u^p$, $1 \leq p < \infty$, we have $L_M = L_p$ isometrically. Next, by $\|f\|_p$ we denote the norm $\|f\|_{L_p}$.

The fundamental function of a symmetric space X is the function $\phi_X(t) := \|X_{[0,t]}\|_X$. In particular, we have $\phi_M(\varphi)(t) = \phi_M(\varphi)(t) = \varphi(t)$, and $\phi_M(t) = 1/M^{-1}(1/t)$, respectively. The Marcinkiewicz $M(\varphi)$ and Lorentz $\Lambda(\varphi)$ spaces are, respectively, the largest and the smallest symmetric spaces with the fundamental function φ, that is, if the fundamental function of a symmetric space X is equal to φ, then $\Lambda(\varphi) \subset X \subset M(\varphi)$.

If ψ is a positive function defined on $[0,1]$, then its lower and upper dilation indices are

$$\gamma_\psi := \lim_{t \to 0^+} \frac{\log \left(\sup_{0 < s \leq 1} \frac{\psi(st)}{\psi(s)} \right)}{\log t} \quad \text{and} \quad \delta_\psi := \lim_{t \to +\infty} \frac{\log \left(\sup_{0 < s \leq 1/t} \frac{\psi(st)}{\psi(s)} \right)}{\log t},$$

respectively. Always we have $0 \leq \gamma_\psi \leq \delta_\psi \leq 1$.

In the case when $\delta_\varphi < 1$ the norm in the Marcinkiewicz space $M(\varphi)$ satisfies the equivalence

$$\|x\|_{M(\varphi)} \asymp \sup_{0 < t \leq 1} \varphi(t)x^*(t).$$

[14] Theorem II.5.3. Here, and throughout the paper, $A \asymp B$ means that there exist constants $C > 0$ and $c > 0$ such that $cA \leq B \leq CA$.

The Orlicz spaces L_{N_p}, $p > 0$, where N_p is an Orlicz function equivalent to the function $\exp(t^p) - 1$, will be of major importance in our study. Usually these are referred as the Zygmund spaces and denoted by $\exp L^p$. The fundamental function of $\exp L^p$ is equivalent to the function $\varphi_p(t) = \log^{-1/p}(c/t)$. Since $N_p(u)$ increases at infinity very rapidly, $\exp L^p$ coincides with the Marcinkiewicz space $M(\varphi_p)$ \[16\]. This, together with the equality $\delta_{\varphi_p} = 0 < 1$, gives

$$\|x\|_{\exp L^p} \asymp \sup_{0 < t \leq 1} x^*(t) \log^{-1/p}(c/t).$$

In particular, for every $x \in \exp L^p$ and $0 < t \leq 1$ we have

$$x^*(t) \leq C \|x\|_{\exp L^p} \log^{1/p}(c/t). \quad (4)$$

Hence, for a symmetric space X, the embedding $\exp L^p \subset X$ is equivalent to the condition $\log^{1/p}(c/t) \in X$.

Recall that the Rademacher functions are $r_k(t) := \text{sign} \sin(2^k \pi t)$, $t \in [0,1]$, $k \geq 1$. The famous Khintchine inequality \[13\] states that, for every $1 \leq p < \infty$, the sequence $\{r_k\}$ is equivalent in L_p.
Moreover, if \(X \) that Sym \((g)\), defined as follows
\[g, \text{ arbitrary function which are bounded from the subspace } [r_M] \]
\(X \) is a symmetric space different from \(X \). The opposite situation is when the Rademacher multiplicator space \(M(X) \) is not symmetric. This result was extended in [3] to include all symmetric spaces such that the lower dilation index \(\gamma_M \) of their fundamental function \(\varphi_X \) is positive. This result motivated the study of the symmetric kernel Sym \((X)\) of the space \(M(X) \). The space Sym \((X)\) consists of all functions \(f \in M(X) \) such that an arbitrary function \(g, \text{ equimeasurable with } f, \) belongs to \(M(X) \) as well. The norm in Sym \((X)\) is defined as follows
\[\|f\|_{\text{Sym}(X)} = \sup \{ \|f \cdot \sum_{k=1}^{\infty} a_k r_k\|_X : \|\sum_{k=1}^{\infty} a_k r_k\|_X \leq 1 \}, \]
\(M(X) \) can be viewed as the space of operators given by multiplication by a measurable function, which are bounded from the subspace \([r_k]\) in \(X \) into the whole space \(X \).

The Rademacher multiplicator space \(M(X) \) was firstly considered in [9], where it was shown that for a broad class of classical symmetric spaces \(X \) the space \(M(X) \) is not symmetric. This result was extended in [3] to include all symmetric spaces such that the lower dilation index \(\gamma_M \) of their fundamental function \(\varphi_X \) is positive. This result motivated the study of the symmetric kernel Sym \((X)\) of the space \(M(X) \). The space Sym \((X)\) consists of all functions \(f \in M(X) \) such that an arbitrary function \(g, \text{ equimeasurable with } f, \) belongs to \(M(X) \) as well. The norm in Sym \((X)\) is defined as follows
\[\|f\|_{\text{Sym}(X)} = \sup \|g\|_{\text{Sym}(X)}, \]
where the supremum is taken over all \(g \) equimeasurable with \(f \). From the definition it follows that Sym \((X)\) is the largest symmetric space embedded into \(M(X) \) (see also [3, Proposition 2.4]). Moreover, if \(X \) is a symmetric space such that \(X'' \supset \text{Exp} L^2 \), then
\[\|f\|_{\text{Sym}(X)} \asymp \|f^*(t) \log^{1/2}(e/t)\|_{X''} \]
(see [3, Proposition 3.1 and Corollary 3.2]). The opposite situation is when the Rademacher multiplicator space \(M(X) \) is symmetric. The simplest case of this situation is when \(M(X) = L_\infty \). It was shown in [3] that \(M(X) = L_\infty \) if and only if \(\log^{1/2}(e/t) \notin X_o \). Regarding the case when \(M(X) \) is a symmetric space different from \(L_\infty \) see the paper [5].

We will denote by \(\Delta_n^k \) the dyadic intervals of \([0,1]\), that is, \(\Delta_n^k = [(k-1)2^{-n}, k2^{-n}] \), where \(n = 0, 1, \ldots, k = 1, \ldots, 2^n \); we say that \(\Delta_n^k \) has rank \(n \). For any undefined notions we refer the reader to the monographs [7], [14], [15].

3 Rademacher sums in weighted spaces

First, we find necessary and sufficient conditions on the symmetric space \(X \), under which there is a weight \(w \) such that the sequence of Rademacher functions spans \(\ell_2 \) in \(X(w) \). We prove the following refinement of the nontrivial part of above mentioned Rodin–Semenov theorem.

\[\frac{1}{\sqrt{2}} \|\{a_k\}\|_{\ell_2} \leq \left\| \sum_{k=1}^{\infty} a_k r_k \right\|_{1} \leq \|\{a_k\}\|_{\ell_2} \]

(see [22]), where \(\|\{a_k\}\|_{\ell_2} := (\sum_{k=1}^{\infty} |a_k|^2)^{1/2} \).

The Rademacher multiplicator space of a symmetric space \(X \) is the space \(M(X) \) of all measurable functions \(f : [0,1] \to \mathbb{R} \) such that \(f \cdot \sum_{k=1}^{\infty} a_k r_k \in X \), for every Rademacher sum \(\sum_{k=1}^{\infty} a_k r_k \in X \). It is a Banach function lattice on \([0,1]\) when endowed with the norm
\[\|f\|_{M(X)} = \sup \{ \|f \cdot \sum_{k=1}^{\infty} a_k r_k\|_X : \|\sum_{k=1}^{\infty} a_k r_k\|_X \leq 1 \}. \]
Proposition 3.1. For every symmetric space X the following conditions are equivalent:

(i) there exists a set $D \subset [0,1]$ of positive measure such that

$$\left\| \sum_{k=1}^{\infty} a_k r_k \cdot \chi_D \right\|_X \leq M \|a_k\|_{\ell_2},$$

for some $M > 0$ and arbitrary $(a_k) \in \ell_2$;

(ii) $X \supset G$.

Proof. Since implication $(ii) \Rightarrow (i)$ is an immediate consequence of the fact that the sequence $\{r_k\}$ spans ℓ_2 in the space G (see [18] or [24, Theorem V.8.16]), we need to prove only that (i) implies (ii).

Assume that (i) holds. By Lebesgue’s density theorem, for sufficiently large $m \in \mathbb{N}$, we can find a dyadic interval $\Delta := \Delta_m = [(k_0 - 1)2^{-m}, k_02^{-m}]$ such that

$$2^{-m} = m(\Delta) \geq m(\Delta \cap D) > 2^{-m-1}.$$

Let us consider the set $E = \bigcup_{k=1}^{2m} E_m^k$, where E_m^k is obtained by translating the set $\Delta \cap D$ to the interval Δ_m^k, $k = 1, 2, \ldots, 2^m$, (in particular, $E_m^m = \Delta \cap D$). Denote $f_i = r_i \cdot \chi_E, i \in \mathbb{N}$. It follows easily that $|f_i(t)| \leq 1, t \in [0,1], \|f_i\|_2 \geq 1/\sqrt{2}$, and $f_i \to 0$ weakly in $L_2[0,1]$ when $i \to \infty$.

Therefore, by [11, Theorem 5], the sequence $(f_i)_{i=1}^{\infty}$ contains a subsequence (f_{i_j}), which is equivalent in distribution to the Rademacher system. The last means that there exists a constant $C > 0$ such that

$$C^{-1}m \left\{ t \in [0,1] : \left| \sum_{j=1}^{l} a_j r_j(t) \right| > Cz \right\} \leq m \left\{ t \in [0,1] : \left| \sum_{j=1}^{l} a_j f_{i_j}(t) \right| > z \right\} \leq Cm \left\{ t \in [0,1] : \left| \sum_{j=1}^{l} a_j r_j(t) \right| > C^{-1}z \right\}$$

for all $l \in \mathbb{N}, a_j \in \mathbb{R},$ and $z > 0$. Hence, by the definition of r_j and f_j, for every $n \in \mathbb{N}$ we have

$$C^{-1}m \left\{ t \in [0,1] : \left| \sum_{j=m+1}^{m+n} r_j(t)\chi_{[0,2^{-m}]}(t) \right| > Cz \right\} \leq m \left\{ t \in [0,1] : \left| \sum_{j=m+1}^{m+n} f_{i_j}(t)\chi_{\Delta}(t) \right| > z \right\} \leq Cm \left\{ t \in [0,1] : \left| \sum_{j=m+1}^{m+n} r_j(t)\chi_{[0,2^{-m}]}(t) \right| > C^{-1}z \right\},$$

whence

$$\left\| \sum_{j=m+1}^{m+n} r_{i_j} \chi_{\Delta \cap D} \right\|_X \geq \alpha \left\| \sum_{j=m+1}^{m+n} r_j \chi_{[0,2^{-m}]} \right\|_X,$$

where $\alpha > 0$ depends only on the constant C and on the space X.

Now, assume that (ii) fails, i.e., $X \not\supset G$. Then, by [11] inequality (2) in the proof of Theorem 1, there exists a constant $\beta > 0$, depending only on X, such that for every $m \geq 0$ there exists $n_0 \geq 1$
such that, if \(n \geq n_0 \) and \(\Delta \) is an arbitrary dyadic interval of rank \(m \), we have

\[
\left\| \chi_\Delta \sum_{i=m+1}^{m+n} r_i \right\|_X \geq \beta \left\| \sum_{i=1}^{n} r_i \right\|_X.
\]

From this inequality with \(\Delta = [0, 2^{-m}] \) and inequality (7) it follows that, for \(n \) large enough,

\[
\left\| \sum_{j=m+1}^{m+n} r_i \chi_D \right\|_X \geq \alpha \beta \left\| \sum_{j=1}^{n} r_j \right\|_X.
\]

Combining the latter inequality together with (6) we deduce

\[
\frac{1}{\sqrt{n}} \left\| \sum_{j=1}^{n} r_j \right\|_X \leq \frac{M}{\alpha \beta}
\]

for all \(n \in \mathbb{N} \) large enough. At the same time, as it follows from the proof of Rodin–Semenov theorem [20], the last condition is equivalent to the embedding \(X \supset G \). This contradiction concludes the proof.

Corollary 3.1. Suppose \(X \) is a symmetric space. Then, \(X \supset G \) if and only if there exists a weight \(w \) such that the sequence \(\{r_k\} \) spans \(\ell_2 \) in \(X(w) \).

Proof. If \(\{r_k\} \) spans \(\ell_2 \) in \(X(w) \) for some weight \(w \), we have

\[
\left\| \sum_{k=1}^{\infty} a_k r_k \cdot w \right\|_X \leq C \|(a_k)\|_\ell_2.
\]

Since \(w(t) > 0 \) a.e. on \([0, 1] \), there is a set \(D \subset [0, 1] \) of positive measure such that inequality (6) holds for some \(M > 0 \) and arbitrary \((a_k) \in \ell_2 \). Applying Proposition 3.1 we obtain that \(X \supset G \). The converse is obvious, and so the proof is completed.

Corollary 3.1 shows the necessity of the condition \(X \supset G \) in the following main result of this part of the paper.

Theorem 3.1. Let \(X \) be a symmetric space such that \(X \supset G \) and let a positive measurable function \(w \) on \([0, 1] \) satisfy condition (8). Then we have

(i) The sequence \(\{r_k\} \) spans \(\ell_2 \) in \(X(w) \) if and only if \(w \in \mathcal{M}(X) \), where \(\mathcal{M}(X) \) is the Rademacher multiplicator space of \(X \);

(ii) \(X(w) \supset G \) if and only if \(w \in \text{Sym}(X) \), where \(\text{Sym}(X) \) is the symmetric kernel of \(\mathcal{M}(X) \).

The part (i) of this theorem was actually obtained in [6, p. 240]. However, for the reader’s convenience we provide here its proof. But we begin with the following technical result, which will be needed us to prove the part (ii).

Lemma 3.1. Let \(Y \) be a symmetric space and \(w \) be a positive measurable function on \([0, 1] \). Suppose the weighted function lattice \(Y(w^*) \) contains an unbounded decreasing positive function \(a \) on \((0, 1] \). Then \((Y(w))_o = Y_o(w) \).
Proof. Since \((wa)^*(t) \leq w^*(t/2)a(t/2), 0 < t \leq 1\), [14, §II.2] and, by assumption, \(w^*a \in Y\), we have \(wa \in Y\). Equivalently, \(a \in Y(w)\).

Let \(y \in (Y(w))_0\). By definition, there is a sequence \(\{y_k\} \subset L_\infty\) such that

\[
\lim_{k \to \infty} \|y_k - y\|_Y = 0.
\] (8)

Show that \(y_kw \in Y_0\) for every \(k \in \mathbb{N}\).

Since \(a\) decreases, for arbitrary \(A \subset [0, 1]\) and every (fixed) \(k \in \mathbb{N}\) we have

\[
\|y_kw\chi_A\|_Y \leq \|y_k\|_\infty \|w^*\chi_{(0, m(A))}\|_Y \leq \frac{\|y_k\|_\infty}{a(m(A))}\|w^*a\|_Y.
\]

Hence, \(y_kw \in (Y(w))_0\), \(k \in \mathbb{N}\). Since \(\|y_k/w - y\|_{Y(w)} = \|y_k - yw\|_Y\), from \((8)\) it follows that \(y \in (Y(w))_0\).

To prove the opposite embedding, assume that \(y \in Y_0\). Then

\[
\lim_{k \to \infty} \|y_k - yw\|_Y = 0
\] (9)

for some sequence \(\{y_k\} \subset L_\infty\). From hypothesis of lemma it follows that \(Y \neq L_\infty\). Therefore, for arbitrary \(A \subset [0, 1]\) and each \(k \in \mathbb{N}\)

\[
\|y_kw\chi_A\|_{Y(w)} = \|y_k\chi_A\|_Y \to 0 \text{ as } m(A) \to 0.
\]

Hence, \(y_k/w \in (Y(w))_0\), \(k \in \mathbb{N}\). Since \(\|y_k/w - y\|_{Y(w)} = \|y_k - yw\|_Y\), from \((9)\) it follows that \(y \in (Y(w))_0\).

Proof of Theorem 2.14 (i) Since \(X \supset G\), equivalence \((1)\) holds. At first, assume that \(w \in M(X)\). Then, by definition of the norm in \(M(X)\), we have

\[
\|w\|_{M(X)} \asymp \sup \left\{ \left\| \sum_{k=1}^{\infty} a_k r_k \right\|_X : \|(a_k)\|_{\ell_2} \leq 1 \right\}.
\] (10)

Therefore,

\[
\left\| \sum_{k=1}^{\infty} a_k r_k \right\|_{X(w)} = \left\| w \cdot \sum_{k=1}^{\infty} a_k r_k \right\|_X \leq \|w\|_{M(X)} \|(a_k)\|_{\ell_2}
\]

for every \((a_k) \in \ell_2\). On the other hand, from embeddings \((3)\) and inequality \((5)\) it follows that

\[
\left\| \sum_{k=1}^{\infty} a_k r_k \right\|_{X(w)} \geq c \left\| \sum_{k=1}^{\infty} a_k r_k \right\|_1 \geq \frac{c}{\sqrt{2}} \|(a_k)\|_{\ell_2}.
\]

As a result we deduce that \(\{r_k\}\) spans \(\ell_2\) in \(X(w)\).

Conversely, if

\[
\left\| \sum_{k=1}^{\infty} a_k r_k \right\|_{X(w)} \asymp \|(a_k)\|_{\ell_2},
\]

from \((10)\) we obtain that \(\|w\|_{M(X)} < \infty\), i.e., \(w \in M(X)\).
(ii) Assume that \(w \in \text{Sym}(X) \). Then, taking into account the properties of the symmetric kernel \(\text{Sym}(X) \) (see Preliminaries or [5, Corollary 3.2]) we have \(w^*(t) \log^{1/2}(e/t) \in X'' \). Let us prove that
\[
\text{Exp} L_2 \subset X''(w). \tag{11}
\]
Given \(x \in \text{Exp} L_2 \), by [7, Theorem 2.7.5], there exists a measure-preserving transformation \(\sigma \) of \((0,1] \) such that \(|x(t)| = x^*(\sigma(t)) \). Applying inequality (4) and a well-known property of the rearrangement of a measurable function (see e.g. [14, §II.2]), we have
\[
(wx)^*(t) = (wx^*(\sigma))^*(t) \leq C \left(w \log^{1/2}(e/\sigma) \right)^*(t) \leq Cw^*(t/2) \log^{1/2}(2e/t), \quad 0 < t \leq 1.
\]
Therefore, \(wx \in X'' \) or, equivalently, \(x \in X''(w) \), and (11) is proved. Hence, \(G = (\text{Exp} L_2)_o \subset (X''(w))_o \). Since \(\log^{1/2}(e/t) \in X''(w) \), we can apply Lemma 3.1 and so, by [2, Lemma 3.3],
\[
G \subset (X''(w))_o = X_o(w) \subset X(w).
\]

Now, let \(X(w) \supseteq G \). We show that \(X(w^*) \supseteq G \).
In fact, let \(\tau \) be a measure-preserving transformation of \((0,1] \) such that \(w(t) = w^*(\tau(t)) \) [7, Theorem 2.7.5]. Suppose \(x \in G \). Since \(x(\tau) \) and \(x \) are equimesurable functions, we have \(x(\tau) \in G \) and \(\|x(\tau)\|_G = \|x\|_G \). Therefore,
\[
\|x(\tau)w^*(\tau)\|_X = \|x(\tau)w\|_X \leq C\|x\|_G.
\]
Then, \(\|x(\tau)w^*(\tau)\|_X = \|xw^*\|_X \), because \(X \) is a symmetric space, and from the preceding inequality we infer that \(\|xw^*\|_X \leq C\|x\|_G \). Thus, \(x \in X(w^*) \), and the embedding \(X(w^*) \supseteq G \) is proved. Passing to the second Kōthe dual spaces, we obtain: \(X''(w^*) \supseteq G'' = \text{Exp} L^2 \). Hence, \(\log^{1/2}(e/t) \in X''(w^*) \) or, equivalently, \(w \in \text{Sym}(X) \) (as above, see Preliminaries or [5, Corollary 3.2]), and the proof is complete.

By Rodin-Semenov theorem [20], the sequence \(\{r_k\} \) is equivalent in a symmetric space \(X \) to the unit vector basis in \(\ell_2 \) if and only if \(X \supseteq G \). In contrast to that from Theorem 3.1 we immediately deduce the following result.

Corollary 3.2. Suppose \(X \) is a symmetric space such that \(\text{Sym}(X) \neq \mathcal{M}(X) \). Then, for every \(w \in \mathcal{M}(X) \setminus \text{Sym}(X) \) the Rademacher functions span \(\ell_2 \) in \(X(w) \) but \(X(w) \not\supseteq G \).

By [3, Theorem 2.1], \(\text{Sym}(X) \neq \mathcal{M}(X) \) (and therefore there is \(w \in \mathcal{M}(X) \setminus \text{Sym}(X) \)) whenever the lower dilation index of the fundamental function \(\phi_X \) is positive. In particular, it is fulfilled for \(L_p \)-spaces, \(1 \leq p < \infty \). The condition \(\gamma_{\phi_X} > 0 \) means that the space \(X \) is situated “far” from the minimal symmetric space \(L_\infty \). Now, consider the opposite case when a symmetric space is “close” to \(L_\infty \). Then the Rademacher multiplicator space \(\mathcal{M}(X) \) may be symmetric (equivalently, it coincides with its symmetric kernel). Since the space \(\text{Sym}(X) \) has an explicit description (see Preliminaries), in this case we are able to state a sharper result. For simplicity, let us consider only Lorentz and Marcinkiewicz spaces (for more general results of such a sort see [3]).

Recall [5] that a function \(\varphi(t) \) defined on \([0,1] \) satisfies the \(\Delta^2 \)-condition (briefly, \(\varphi \in \Delta^2 \)) if it is nonnegative, increasing, concave, and there exists \(C > 0 \) such that \(\varphi(t) \leq C \cdot \varphi(t^2) \) for all \(0 < t \leq 1 \). By [5, Corollary 3.5], if \(\varphi \in \Delta^2 \), then \(\mathcal{M}(\Lambda(\varphi)) = \text{Sym}(\Lambda(\varphi)) \) and \(\mathcal{M}(M(\varphi)) = \text{Sym}(M(\varphi)) \). Moreover, it is known [3, Example 2.15 and Theorem 4.1] that \(\text{Sym}(\Lambda(\varphi)) = \Lambda(\psi) \) (resp. \(\text{Sym}(M(\varphi)) = M(\psi) \)), where \(\psi(t) = \varphi'(t) \log^{1/2}(e/t) \), whenever \(\log^{1/2}(e/t) \in \Lambda(\varphi) \) (resp. \(\log^{1/2}(e/t) \in M(\varphi) \)). Therefore, we get
Corollary 3.3. Let \(\varphi \in \Delta^2 \) and \(\log^{1/2}(e/t) \in \Lambda(\varphi) \) (resp. \(\log^{1/2}(e/t) \in M(\varphi) \)). If \(w \) is a positive measurable function on \([0,1]\) satisfying condition (3), then the sequence \(\{r_k\} \) is equivalent in the space \(\Lambda(\varphi)(w) \) (resp. \(M(\varphi)(w) \)) to the unit vector basis in \(\ell_2 \) if and only if \(w \in \Lambda(\psi) \) (resp. \(w \in M(\psi) \)), where \(\psi'(t) = \varphi'(t) \log^{1/2}(e/t) \).

In particular, if \(0 < p \leq 2 \), the sequence \(\{r_k\} \) is equivalent in the Zygmund space \(\text{Exp} L^p(w) \) to the unit vector basis in \(\ell_2 \) if and only if \(w \in \text{Exp} L^q \), where \(q = 2p/(2 - p) \) (here, we set \(\text{Exp} L^\infty = L^\infty \)).

4 Rademacher orthogonal projection in weighted spaces

Proposition 4.1. Let \(E \) be a Banach function lattice on \([0,1]\) that is isometrically embedded into \(E'' \), \(L^\infty \subseteq E \subseteq L^1 \). Then the projection \(P \) defined by (2) is bounded in \(E \) if and only if there are constants \(C_1 \) and \(C_2 \) such that for all \(a = (a_k) \in \ell_2 \)

\[
\left\| \sum_{k=1}^{\infty} a_k r_k \right\|_E \leq C_1 \|a\|_{\ell_2} \tag{12}
\]

and

\[
\left\| \sum_{k=1}^{\infty} a_k r_k \right\|_{E'} \leq C_2 \|a\|_{\ell_2}. \tag{13}
\]

Proof. Firstly, assume that inequalities (12) and (13) hold. Then, denoting, as above, \(c_k(f) := \int_0^1 f(u)r_k(u) \, du \), \(k = 1, 2, \ldots \), for every \(n \in \mathbb{N} \), by (13), we have

\[
\sum_{k=1}^{n} c_k(f)^2 = \int_0^1 f(u) \sum_{k=1}^{n} c_k(f)r_k(u) \, du \leq \|f\|_E \left\| \sum_{k=1}^{n} c_k(f)r_k \right\|_{E'} \leq C_2 \|f\|_E \left(\sum_{k=1}^{n} c_k(f)^2 \right)^{1/2},
\]

whence

\[
\left(\sum_{k=1}^{\infty} c_k(f)^2 \right)^{1/2} \leq C_2 \|f\|_E, \quad f \in E.
\]

Therefore, by (12), we obtain

\[
\|Pf\|_E \leq C_1 \left(\sum_{k=1}^{\infty} c_k(f)^2 \right)^{1/2} \leq C_1 C_2 \|f\|_E
\]

for all \(f \in E \).

Conversely, suppose that the projection \(P \) is bounded in \(E \). Let us consider the following sequence of finite dimensional operators

\[
P_n f(t) := \sum_{k=1}^{n} c_k(f)r_k(t), \quad n \in \mathbb{N}.
\]

Clearly, \(P_n \) is bounded in \(E \) for every \(n \in \mathbb{N} \). Furthermore, by assumption, the series \(\sum_{k=1}^{\infty} c_k(f)r_k \) converges in \(E \) for each \(f \in E \). Therefore, by the Uniform Boundedness Principle,

\[
\|P_n\|_{E \to E} \leq B, \quad n \in \mathbb{N}. \tag{14}
\]
Moreover, since $L_\infty \subset E \subset L_1$, then $L_\infty \subset E' \subset L_1$ as well, and hence, by the L_1-Khintchine inequality \[5\],
\[
\left\| \sum_{k=1}^{\infty} a_k r_k \right\|_{E'} \geq c \|a\|_{\ell_2} \quad \text{and} \quad \left\| \sum_{k=1}^{\infty} a_k r_k \right\|_{E} \geq c \|a\|_{\ell_2}.
\]
Therefore, for all $f \in E$, $n \in \mathbb{N}$ and $a_k \in \mathbb{R}$, $k = 1, 2, \ldots, n$, we have
\[
\int_0^1 f(t) \cdot \sum_{k=1}^{n} a_k r_k(t) \, dt = \sum_{k=1}^{n} a_k c_k(f) \leq \|a\|_2 \left(\sum_{k=1}^{n} c_k(f)^2 \right)^{1/2} \leq c^{-1} \|a\|_{\ell_2} \cdot \|P_n f\|_E \leq Bc^{-1} \|a\|_{\ell_2} \cdot \|f\|_E.
\]
Taking the supremum over all $f \in E$, $\|f\|_E \leq 1$, we get
\[
\left\| \sum_{k=1}^{n} a_k r_k \right\|_{E'} \leq Bc^{-1} \|a\|_{\ell_2}, \quad n \in \mathbb{N}.
\]
Applying the latter inequality to Rademacher sums $\sum_{k=n}^{m} a_k r_k$, $1 \leq n < m$, with $a = \{a_k\}_{k=1}^{\infty} \in \ell_2$, we deduce that the series $\sum_{k=1}^{\infty} a_k r_k$ converges in the space E' and
\[
\left\| \sum_{k=1}^{\infty} a_k r_k \right\|_{E'} \leq Bc^{-1} \|a\|_{\ell_2}.
\]
Thus, \[13\] is proved. Let us prove similar inequality for E.

By Fubini theorem and \[14\], for arbitrary $f \in E$, $g \in E'$ and every $n \in \mathbb{N}$ we have
\[
\int_0^1 f(u) \cdot \sum_{k=1}^{n} c_k(g) r_k(u) \, du = \int_0^1 g(t) \cdot \sum_{k=1}^{n} c_k(f) r_k(t) \, dt \leq \|P_n f\|_E \|g\|_{E'} \leq B \|f\|_E \|g\|_{E'},
\]
whence
\[
\left\| \sum_{k=1}^{n} c_k(g) r_k \right\|_{E'} \leq B \|g\|_{E'}, \quad n \in \mathbb{N}.
\]
Applying this inequality instead of \[14\], as above, we get
\[
\left\| \sum_{k=1}^{n} a_k r_k \right\|_{E''} \leq Bc^{-1} \|a\|_{\ell_2}.
\]
Since $L_\infty \subset E$ and E is isometrically embedded into E'', from the last inequality it follows that
\[
\left\| \sum_{k=1}^{n} a_k r_k \right\|_E \leq Bc^{-1} \|a\|_{\ell_2}
\]
for all $n \in \mathbb{N}$. Hence, if $a = \{a_k\}_{k=1}^{\infty} \in \ell_2$, the series $\sum_{k=1}^{\infty} a_k r_k$ converges in E and
\[
\left\| \sum_{k=1}^{\infty} a_k r_k \right\|_E \leq Bc^{-1} \|a\|_{\ell_2}.
\]
Thus, inequality \[12\] holds, and the proof is complete.
From Proposition 4.1 Corollary 3.1 and Theorem 3.1 we obtain the following results.

Theorem 4.1. Let a symmetric space X and a positive measurable function w on $[0,1]$ satisfy condition (3). Then, the projection P defined by (2) is bounded in $X(w)$ if and only if $G \subset X \subset G'$, $w \in \mathcal{M}(X)$ and $1/w \in \mathcal{M}(X')$.

In particular, P is bounded in $X(w)$ whenever $w^*(t) \log^{1/2}(e/t) \in X''$ and $(1/w)^*(t) \log^{1/2}(e/t) \in X'$.

As above, the result can be somewhat refined for Lorentz and Marcinkiewicz spaces whose fundamental function satisfies the Δ^2-condition.

Corollary 4.1. Let $\varphi \in \Delta^2$ and let w be a positive measurable function on $[0,1]$ satisfying condition (3) for $X = \Lambda(\varphi)$ (resp. $X = M(\varphi)$). Then the projection P defined by (2) is bounded in $\Lambda(\varphi)(w)$ (resp. $M(\varphi)(w)$) if and only if $G \subset \Lambda(\varphi) \subset G'$, $w \in \Lambda(\psi)$ and $1/w \in \mathcal{M}(M(\varphi))$ (resp. $G \subset M(\varphi) \subset G'$, $w \in M(\psi)$ and $1/w \in \mathcal{M}(\Lambda(\varphi)))$, where $\psi'(t) = \varphi'(t) \log^{1/2}(e/t)$ and $\varphi(t) = t/\varphi(t)$.

Remark 4.1. It is easy to see that the orthogonal projection P is bounded in the space $X(w)$ if and only if the projection

$$P_w f(t) := \sum_{k=1}^{\infty} \int_0^1 f(s) r_k(s) \frac{ds}{w(s)} \cdot r_k(t) w(t), \quad 0 \leq t \leq 1,$$

(on the subspace $[r_kw]$) is bounded in X.

5 Example of a function from $\mathcal{M}(L_1) \setminus \text{Sym}(L_1)$

Answering a question from [10], we present here a concrete example of a function $f \in \mathcal{M}(L_1)$, which does not belong to the symmetric kernel $\text{Sym}(L_1)$, that is,

$$\int_0^1 f^*(t) \log^{1/2}(e/t) \, dt = \infty.$$

Since the latter space is symmetric, it is sufficient to find a function $f \in \mathcal{M}(L_1)$, for which there exists a function $g \notin \mathcal{M}(L_1)$ equimeasurable with f. We will look for f and g in the form

$$f = \sum_{k=1}^{\infty} \alpha_k \chi_{B_k}, \quad g = \sum_{k=1}^{\infty} \alpha_k \chi_{D_k},$$

(15)

where $\{B_k\}$ and $\{D_k\}$ are sequences of pairwise disjoint subsets of $[0,1]$, $m(B_k) = m(D_k)$, $\alpha_k \in \mathbb{R}$, $k = 1, 2, \ldots$. Next, we will make use of some ideas of the paper [9].

Let $n = 2^m$ with $m \in \mathbb{N}$ and let J be a subset of $\{1, 2, \ldots, 2^n\}$ with cardinality n. We define the set $A = \bigcup_{j \in J} \Delta_n^j$ associated with J (as above, Δ_n^j are the dyadic intervals of $[0,1]$). Clearly, $m(A) = n2^{-n}$.

For arbitrary sequence $(b_i) \in \ell_2$ we have

$$\left\| \chi_A \sum_{i=1}^{n} b_i r_i \right\|_1 \leq \left\| \chi_A \sum_{i=1}^{n} b_i r_i \right\|_1 + \left\| \chi_A \sum_{i=n+1}^{\infty} b_i r_i \right\|_1.$$

(16)
Firstly, we estimate the tail term from the right hand side of this inequality. It is easy to see that the functions
\[\chi_A(t) \cdot \sum_{i=n+1}^{\infty} b_i r_i(t) \quad \text{and} \quad \chi_{[0,n2^{-n}]}(t) \cdot \sum_{i=n+1}^{\infty} b_i r_i(t) \]
are equimeasurable on \([0,1]\) and
\[
\chi_{[0,n2^{-n}]}(t) \sum_{i=n+1}^{\infty} b_i r_i(t) = \sum_{i=n+1}^{\infty} b_i r_{i+m-n}(n2^{-n}t), \quad 0 < t \leq 1.
\]
Therefore,
\[
\left\| \chi_A \sum_{i=n+1}^{\infty} b_i r_i \right\|_1 = \left\| \chi_{[0,n2^{-n}]} \sum_{i=n+1}^{\infty} b_i r_i \right\|_1 = n2^{-n} \left\| \sum_{i=n+1}^{\infty} b_i r_{i+m-n} \right\|_1 \leq n2^{-n} \left(\sum_{i=n+1}^{\infty} b_i^2 \right)^{1/2}. \tag{17}
\]

Now, choosing a set \(A\) in a special way, estimate the first term from the right hand side of (16). Denote by \(c_{ij}^n\) the value of the function \(r_i, i = 1, 2, \ldots, n,\) on the interval \(\Delta_{j,n}^n, 1 \leq j \leq 2^n.\) Since \(n = 2^m,\) we can find a set \(J_1(n) \subset \{1, 2, \ldots, 2^n\}, \) \(\text{card } J_1(n) = n,\) such that the \(n \times n\) matrix \(n^{-1/2} \cdot (c_{ij}^n)_{1 \leq i \leq n, j \in J_1(n)}\) is orthogonal. Then, if \(c_j := n^{-1/2} \sum_{i=1}^{n} c_{ij}^n b_i, j \in J_1(n),\) we have \(\|(c_j)_{j \in J_1(n)}\|_2 = \|(b_i)_{i=1}^{n}\|_2.\) Therefore, setting \(B(n) := \bigcup_{j \in J_1(n)} \Delta_{j,n}^n,\) we obtain
\[
\left\| \chi_{B(n)} \sum_{i=1}^{n} b_i r_i \right\|_1 = \left\| \sum_{j \in J_1(n)} \left(\sum_{i=1}^{n} b_i r_i \right) \chi_{\Delta_{j,n}^n} \right\|_1 = \left\| \sum_{j \in J_1(n)} c_j \chi_{\Delta_{j,n}^n} \right\|_1 = n^{1/2} \left\| \sum_{j \in J_1(n)} c_j \chi_{\Delta_{j,n}^n} \right\|_1 = n^{1/2} n^{2^{-n}} \|b_i\|_{i=1}^{n} \|_2.
\]
Combining this inequality with (16), (17) for \(A = B(n)\) and (15), by definition of the norm in the space \(\mathcal{M}(L_1),\) we have
\[
\left\| \chi_{B(n)} \right\|_{\mathcal{M}(L_1)} \leq 2 \sqrt{2} n 2^{-n}. \tag{18}
\]
Let \(\{n_k\}_{k=1}^{\infty}\) be an increasing sequence of positive integers, \(n_k = 2^{m_k}, m_k \in \mathbb{N},\) satisfying the condition
\[
n_k^{1/8} \geq 2^{n_1 + \cdots + n_{k-1}}, \quad k = 2, 3, \ldots \tag{19}
\]
At first, we construct a sequence of sets \(\{B_k\}.\) Setting \(J_1^k := J_1(n_k)\) and \(B_1 := B(n_1),\) in view of (18) we have
\[
\left\| \chi_{B_k} \right\|_{\mathcal{M}(L_1)} \leq 2 \sqrt{2} n_k 2^{-n_1}.
\]
To define \(B_2,\) we take for \(I_1\) any interval \(\Delta_{j_1}^1,\) such that \(j \notin J_1^1.\) Now, we can choose a set \(J_1^2 \subset \{1, 2, \ldots, 2^{n_1+n_2}\}\) satisfying the conditions: \(\text{card } J_1^2 = n_2, \Delta_{n_1+n_2}^2 \subset I_1\) for every \(j \in J_1^2\) and the \(n_2 \times n_2\) matrix \(n_2^{-1/2} \cdot (c_{ij}^{n_1+n_2})_{n_1 < i \leq n_1+n_2, j \in J_1^2}\) is orthogonal. We set \(B_2 := \bigcup_{j \in J_1^2} \Delta_{j_1}^{n_1+n_2} ,\) Clearly, \(m(B_2) = n_2 2^{-(n_1+n_2)}\) and \(B_1 \cap B_2 = \emptyset,\) because of \(B_2 \subset I_1.\) As in the case of \(B(n)\) we have
\[
\left\| \chi_{B_2} \sum_{i=1}^{n_2} b_i r_i \right\|_1 = \left\| \sum_{j \in J_1^2} \left(\sum_{i=1}^{n_2} b_i r_i \right) \chi_{\Delta_{j_1}^{n_1+n_2}} \right\|_1 \leq \left\| \sum_{j \in J_1^2} \left(\sum_{i=1}^{n_1} b_i r_i \right) \chi_{\Delta_{j_1}^{n_1+n_2}} \right\|_1 + \left\| \sum_{j \in J_1^2} \left(\sum_{i=1}^{n_2} b_i r_i \right) \chi_{\Delta_{j_1}^{n_1+n_2}} \right\|_1 \leq \left(n_1^{1/2} + 1 \right) n_2 2^{-(n_1+n_2)} \|b_i\|_{i=1}^{n_1+n_2} \|_2 \leq n_2 2^{-n_2} \|b_i\|_{i=1}^{n_1+n_2} \|_2.\]
Therefore, from (16), (17) and (5) it follows that
\[
\|\chi_{B_2}\|_{\mathcal{M}(L_1)} \leq \sqrt{2} \left((n_1 + n_2)2^{-(n_1+n_2)} + n_22^{-n_2}\right) \leq 2\sqrt{2}n_22^{-n_2}.
\]

Proceeding in the same way, we get a sequence \(\{B_k\} \) of pairwise disjoint subsets of \([0, 1]\) such that \(m(B_k) = n_2^{-(n_1+\ldots+n_k)} \) and
\[
\|\chi_{B_k}\|_{\mathcal{M}(L_1)} \leq 2\sqrt{2}n_22^{-n_k}, \ k = 1, 2, \ldots
\]

Now, define the sets \(D_k, \ k = 1, 2, \ldots \). Select a set \(J^2_2 \subset \{1, 2, \ldots, 2^{n_1}\} \), \(\text{card} \ J^2_2 = n_1 \), such that each column of the \(n_1 \times n_1 \) matrix \((\varepsilon_{ij}^{n_1})_{1 \leq i \leq n_1, j \in J^2_2} \) has exactly one entry equal to \(-1\) and the rest are equal to \(1\). Setting \(D_1 := \bigcup_{j \in J^2_2} \Delta^j_{n_1} \), we have \(m(D_1) = n_12^{-n_1} \). Furthermore, from the inequality \(\|n_1^{-1/2} \sum_{i=1}^{n_1} r_i\|_1 \leq 1 \) (see (5)) and the definition of \(D_1 \) it follows that
\[
\|\chi_{D_1}\|_{\mathcal{M}(L_1)} \geq \left\| \sum_{j \in J^2_2} \left(n_1^{-1/2} \sum_{i=1}^{n_1} r_i\right) \chi_{\Delta^j_{n_1}} \right\|_1
\]
\[
= \left\| \sum_{j \in J^2_1} \left(n_1^{-1/2} \sum_{i=1}^{n_1} \varepsilon_{ij}^{n_1}\right) \chi_{\Delta^j_{n_1}} \right\|_1
\]
\[
= (n_1^{1/2} - 2n_1^{1/2})n_12^{-n_1} \geq \frac{1}{2}n_1^{3/2}2^{-n_1}
\]
if \(n_1 \) is large enough.

Similarly, we can define the set \(D_2 \). Let \(I_2 \) be any interval \(\Delta^j_{n_1} \) with \(j \notin J^1_2 \). Choose the set \(J^2_2 \subset \{1, 2, \ldots, 2^{n_1+n_2}\} \) such that \(\text{card} \ J^2_2 = n_2 \), \(\Delta^j_{n_1+n_2} \subset I_2 \) for every \(j \in J^2_2 \) and each column of the \(n_2 \times n_2 \) matrix \((\varepsilon_{ij}^{n_1+n_2})_{n_1 \leq i \leq n_1+n_2, j \in J^2_2} \) has exactly one entry equal to \(-1\) and the rest are equal to \(1\). Then, if \(D_2 := \bigcup_{j \in J^2_2} \Delta^j_{n_1+n_2} \), then \(m(D_2) = n_22^{-(n_1+n_2)} \) and \(D_1 \cap D_2 = \emptyset \). Moreover, we have
\[
\|\chi_{D_2}\|_{\mathcal{M}(L_1)} \geq \left\| \sum_{j \in J^2_2} \left(n_2^{-1/2} \sum_{i=n_1+1}^{n_1+n_2} r_i\right) \chi_{\Delta^j_{n_1+n_2}} \right\|_1
\]
\[
= \left\| \sum_{j \in J^2_2} \left(n_2^{-1/2} \sum_{i=n_1+1}^{n_1+n_2} \varepsilon_{ij}^{n_1+n_2}\right) \chi_{\Delta^j_{n_1+n_2}} \right\|_1
\]
\[
= (n_2^{1/2} - 2n_2^{1/2})n_22^{-(n_1+n_2)} \geq \frac{1}{2}n_2^{3/2}2^{-(n_1+n_2)}
\]

Arguing in the same way, we construct a sequence \(\{D_k\} \) of pairwise disjoint subsets of \([0, 1]\) such that \(m(D_k) = n_2^{-(n_1+\ldots+n_k)} \) and
\[
\|\chi_{D_k}\|_{\mathcal{M}(L_1)} \geq \frac{1}{2}n_k^{3/2}2^{-(n_1+\ldots+n_k)}, \ k = 1, 2, \ldots
\]

Since \(m(B_k) = m(D_k), \ k = 1, 2, \ldots \), the functions \(f \) and \(g \) defined by (15) are equimeasurable ones for arbitrary \(\alpha_k \in \mathbb{R}, \ k = 1, 2, \ldots \). Setting \(\alpha_k = 2^{n_k}n_k^{-5/4} \), by (20), we obtain
\[
\|f\|_{\mathcal{M}(L_1)} \leq \sum_{k=1}^{\infty} \alpha_k \|\chi_{B_k}\|_{\mathcal{M}(L_1)} \leq 2\sqrt{2} \sum_{k=1}^{\infty} n_k^{-1/4} < \infty,
\]
because of $n_k = 2^{m_k}$, $m_1 < m_2 < \ldots$. Thus, $f \in \mathcal{M}(L_1)$.

On the other hand, since $\mathcal{M}(L_1)$ is a Banach function lattice, for every $k = 1, 2, \ldots$ from (21) and (19) it follows that

$$\|g\|_{\mathcal{M}(L_1)} \geq \alpha_k \|\chi_{D_k}\|_{\mathcal{M}(L_1)} \geq \frac{1}{2} n_k^{1/4} 2^{-(n_1 + \ldots + n_{k-1})} \geq \frac{1}{2} n_k^{1/8}.$$

Hence, $g \notin \mathcal{M}(L_1)$.

References

[1] S. V. Astashkin, *Systems of random variables equivalent in distribution to the Rademacher system and K-closed representability of Banach pairs*, Matem. sb. 191(2000), no. 6, 3–30 (Russian); English transl. in Sb. Math. 191(2000), 779–807.

[2] S. V. Astashkin, *Rademacher functions in symmetric spaces*, Sovrem. Mat. Fundam. Napravl., 32(2009), 3–161 (Russian); English transl. in J. Math. Sci. (N.Y.) (6), 169(2010), 725–886.

[3] S. V. Astashkin and G. P. Curbera, *Symmetric kernel of Rademacher multiplicator spaces*, J. Funct. Anal. 226(2005), 173–192.

[4] S. V. Astashkin and G. P. Curbera, *Rademacher multiplicator spaces equal to L^∞*, Proc. Amer. Math. Soc. 136(2008), 3493–3501.

[5] S. V. Astashkin and G. P. Curbera, *Rearrangement invariance of Rademacher multiplicator spaces*, J. Funct. Anal. 256(2009), 4071–4094.

[6] S. V. Astashkin and G. P. Curbera, *A weighted Khintchine inequality*, Revista Mat. Iberoam. 30(2014), no. 1, 237–246.

[7] C. Bennett and R. Sharpley, *Interpolation of Operators*, Pure and Applied Mathematics, Vol. 119, Academic Press, Boston, 1988.

[8] G. P. Curbera, *Operators into L^1 of a vector measure and applications to Banach lattices*, Math. Ann. 293(1992), 317–330.

[9] G. P. Curbera, *A note on function spaces generated by Rademacher series*, Proc. Edinburgh. Math. Soc. 40(1997), 119–126.

[10] G. P. Curbera, *How summable are Rademacher series?*, Operator Theory: Adv. and Appl. 201(2009), 135–148.

[11] J. Diestel, H. Jarchow and A. Tonge, *Absolutely Summing Operators*, Cambridge University Press, Cambridge, 1995.

[12] W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, *Symmetric structures in Banach spaces*, Mem. Amer. Math. Soc. No. 217, 1979.

[13] A. Khintchine, *Über dyadische Bruche*, Math. Zeit. 18(1923), 109–116.

[14] S. G. Krein, Ju. I. Petunin and E. M. Semenov, *Interpolation of Linear Operators*, AMS Translations of Math. Monog., 54, Providence, 1982.
[15] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces II*, vol. 97, Springer-Verlag, Berlin, 1979.

[16] G. G. Lorentz, *Relations between function spaces*, Proc. Amer. Math. Soc. **12**(1961), 127–132.

[17] V. D. Milman and G. Schechtman, *Asymptotic theory of finite dimensional normed spaces*, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986.

[18] R. E. A. C. Paley and A. Zygmund, *On some series of functions. I, II*, Proc. Camb. Phil. Soc. **26**(1930), 337–357, 458–474.

[19] G. Pisier, *Factorization of linear operators and geometry of Banach spaces*, Amer. Math. Soc., Providence, RI, CBMS 60, 1986.

[20] V. A. Rodin and E. M. Semyonov, *Rademacher series in symmetric spaces*, Anal. Math. **1**(1975), no. 3, 207–222.

[21] V. A. Rodin and E. M. Semenov, *The complementability of a subspace that is generated by the Rademacher system in a symmetric space*, Funktsional. Anal. i Prilozhen. (2), **13**(1979), 91–92 (Russian); English transl. in Functional Anal. Appl. **13**(1979), no. 2, 150–151.

[22] S. J. Szarek, *On the best constants in the Khinchin inequality*, Studia Math. **58**(1976), no. 2, 197–208.

[23] M. Veraar, *On Khintchine inequalities with a weight*, Proc. Amer. Math. Soc. **138**(2011), 4119–4121.

[24] A. Zygmund, *Trigonometric Series. 2nd ed. Vol. I*, Cambridge University Press, New York 1959.

Department of Mathematics and Mechanics
Samara State University
Acad. Pavlov, 1
443011 Samara
Russian Federation
E-mail: astash@samsu.ru