Harnack Inequality and Applications for Infinite-Dimensional GEM Processes *

Shui Fengb and Feng-Yu Wanga,c

aSchool of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
bDepartment of Mathematics and Statistics, McMaster University, Hamilton, L8S 4K1, Canada
cDepartment of Mathematics, Swansea University, Singleton Park, SA2 8PP, UK

wangfy@bnu.edu.cn; F.Y.Wang@swansea.ac.uk; shuifeng@univmail.cis.mcmaster.ca

October 16, 2014

Abstract

The dimension-free Harnack inequality and uniform heat kernel upper/lower bounds are derived for a class of infinite-dimensional GEM processes, which was introduced in \cite{7} to simulate the two-parameter GEM distributions. In particular, the associated Dirichlet form satisfies the super \textemdash log-Sobolev inequality which strengthens the log-Sobolev inequality derived in \cite{7}. To prove the main results, explicit Harnack inequality and super Poincaré inequality are established for the one-dimensional Wright-Fisher diffusion processes. The main tool of the study is the coupling by change of measures.

AMS subject Classification: 65G17, 65G60.

Keywords: GEM distribution, GEM diffusion process, Harnack inequality, heat kernel, super log-Sobolev inequality.

1 Introduction

The GEM distribution appears in population genetics describing the distribution of age-ordered allelic frequencies \cite{6}. Due to the many computational friendly properties of the stick-breaking structure, the GEM distribution and various generalizations are widely used as prior distributions in Bayesian statistics \cite{12}. Below we briefly recall a standard construction of the GEM random variables.

*Supported in part by NNSFC(11131003, 11431014), the 985 project, the Laboratory of Mathematical and Complex Systems, and NSERC.
Let \(\{U_n\}_{n \geq 1} \) be a sequence of independent beta random variables with corresponding parameters \(a_n > 0 \) and \(b_n > 0, \ n \geq 1 \). Set

\[
V_1 = U_1, \ V_n = U_n \prod_{i=1}^{n-1} (1 - U_i), \ \ n \geq 2.
\]

For any \(n \geq 1 \), the joint distribution of \((V_1, \ldots, V_n) \) is the generalized Dirichlet distribution defined in [3]. The law of \(V = (V_1, V_2, \ldots) \) is a probability on the space

\[
\Delta_\infty := \left\{ x = (x_i)_{i \in \mathbb{N}} \in [0, 1]^\mathbb{N} : \sum_{n=1}^{\infty} x_n \leq 1 \right\}
\]
equipped with the usual \(\sigma \)-field induced by the projections \(\{x \mapsto x_i : i \in \mathbb{N}\} \). Let

\[
W_n = V_1 + \ldots + V_n, \ \ n \geq 1.
\]

Then \(W_n \) is monotonically increasing bounded above by 1. If the parameters satisfy

\[
\sum_{i=1}^{\infty} \frac{a_i}{a_i + b_i} = \infty,
\]
then \(1 - W_n = (1 - U_1) \cdots (1 - U_n) \) converges monotonically to 0 and the law of \(V \) becomes a probability on space

\[
\Delta := \left\{ x \in [0, 1]^\mathbb{N} : \sum_{i \geq 1} x_i = 1 \right\}.
\]

If \(a_i = 1 - \alpha, b_i = \theta + i\alpha \) for a pair of parameters \(0 \leq \alpha < 1, \theta + \alpha > 0 \), then the law of \(V \) is the well known two-parameter GEM distribution. The GEM distribution with parameter \(\theta \), coined by Ewens and named after Griffiths, Engen, and McCloskey, corresponds to \(\alpha = 0 \). Under assumption (1.2), the representation (1.1) is also known as the stick-breaking model.

To simulate the GEM distributions using Markov processes, a class of infinite-dimensional diffusion processes on \(\Delta_\infty \) have been constructed in [7]. It was proved in [7] that these processes are symmetric with respect to the corresponding GEM distributions and satisfy the log-Sobolev inequality, so that they converge to the GEM distributions exponentially in both entropy and \(L^2 \). In this paper we derive some stronger properties on these processes, including the uniform heat kernel upper/lower bounds and super log-Sobolev inequalities.

The main idea of the study goes back to [13] using the dimension-free Harnack inequality, and the main tool to establish the Harnack inequality is the coupling by change of measures developed from [1], see the recent monograph [18] for a brief theory on coupling by change of measures and applications.

To recall the GEM processes constructed in [7], let \(\{a_i, b_i\}_{i \geq 1} \) be strictly positive numbers. Then the corresponding GEM process is generated by the following second-order differentiable operator on \(\Delta_\infty \) (note that the factor \(1/2 \) in the diffusion term is missed in [7]):

\[
\mathcal{L}(x) = \frac{1}{2} \sum_{i,j=1}^{\infty} A_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{\infty} C_i(x) \frac{\partial}{\partial x_i}, \ \ x = (x_1, x_2, \cdots) \in \Delta_\infty,
\]
where

\[A_{ij}(x) := x_i x_j \sum_{k=1}^{i+j} \left(\delta_{ki} \left(1 - \sum_{l=1}^{k-1} x_l\right) - x_k \right) \left(\delta_{kj} \left(1 - \sum_{l=1}^{k-1} x_l\right) - x_k \right), \]

\[C_i(x) := x_i \sum_{k=1}^{i} \left(\delta_{ik} \left(1 - \sum_{l=1}^{k-1} x_l\right) - x_k \right) \left(a_k \left(1 - \sum_{l=1}^{k-1} x_l\right) - (a_k + b_k) x_k \right) \frac{1}{x_k \left(1 - \sum_{l=1}^{k} x_l\right)}. \]

Here and in what follows, we set \(\sum_{i=1}^{\infty} = 0\) and \(\prod_{i=1}^{\infty} = 1\) by conventions. Obviously, \(A_{ij}(x)\) and \(C_i(x)\) are well defined if \(x = (x_i)_{i \in \mathbb{N}}\) satisfies \(\sum_{i=1}^{n} x_i < 1\) for all \(n \in \mathbb{N}\). By setting \(\frac{a}{\theta} = 1\), they are defined on the whole space \(\Delta_{\infty}\).

The diffusion process generated by \(\mathcal{L}\) on \(\Delta_{\infty}\) is constructed in [7] using the one-dimensional Wright-Fisher diffusion processes, which solve the following SDEs on \([0, 1]\) for \(i \geq 1\):

\[\frac{d}{t} x_i(t) = \{a_i - (a_i + b_i) x_i(t)\} dt + \sqrt{x_i(t)(1 - x_i(t))} dB_i(t), \]

where \(\{B_i(t)\}_{i \geq 1}\) are independent one-dimensional Brownian motions. By [11, Theorem 3.2] with \(\sigma(x) := \sqrt{x(1-x)1_{[0,1]}(x)}\) and \(b(x) := a_i - (a_i + b_i) x\), the equation has a unique strong solution which is a diffusion process on \([0, 1]\). For any \(x = (x_i)_{i \in \mathbb{N}} \in [0, 1]^\mathbb{N}\), let \(X^x(t) = (x_1(t), x_2(t), \ldots, x_i(t))\), where \(x_i(t)\) solves (1.3) with \(x_i(0) = x_i \in [0, 1]\). Let \(\tilde{P}_t^{a,b}\) be the corresponding Markov semigroup, i.e.

\[\tilde{P}_t^{a,b} f(x) = \mathbb{E} f(X^x(t)), \quad t \geq 0, f \in \mathcal{B}_b([0, 1]^\mathbb{N}), x \in [0, 1]^\mathbb{N}, \]

where \(\mathcal{B}_b(\cdot)\) denotes the set of all bounded measurable functions on a measurable space.

It is easy to see that \(x_i(t)\) is reversible with respect to the beta distribution

\[\pi_{a_i,b_i}(dx) := \frac{\Gamma(2a_i + 2b_i)}{\Gamma(2a_i)\Gamma(2b_i)} 1_{[0,1]}(x)(1-x)^{2a_i-1}(1-x)^{2b_i-1} dx. \]

Define the map \(\Phi : [0, 1]^\mathbb{N} \rightarrow \Delta_{\infty}\) by

\[\Phi(x) = (\phi_1(x), \phi_2(x), \ldots), \quad \phi_n(x) := x_n \prod_{i=1}^{n-1} (1 - x_i), \quad n \geq 1, x = (x_1, x_2, \ldots) \in [0, 1]^\mathbb{N}. \]

Let \(\Xi_{a,b} = \pi_{a,b} \circ \Phi^{-1}\), where \(\pi_{a,b} := \prod_{i \geq 1} \pi_{a_i,b_i}\). It is clear that \(\Xi_{a,b}\) includes the GEM distributions as special examples: the one-parameter GEM distribution \(\pi_{a}^{GEM} = \Xi_{a,b}\) for \(a_i = \frac{a}{\theta}\) and \(b_i = \frac{\theta - a}{\theta}\); and the two-parameter GEM distribution \(\pi_{a,\theta}^{GEM} = \Xi_{a,b}\) for \(a_i = \frac{1-a}{2}\) and \(b_i = \frac{\theta + a}{2}\).

To construct the GEM diffusion process using the map \(\Phi\) and \(x_i(t), i \geq 1\), we observe that

\[\Phi : [0, 1]^\mathbb{N} \rightarrow \Delta_{\infty} = \left\{ x \in [0, 1]^\mathbb{N} : \sum_{i=1}^{n} x_i < 1 \quad \forall \ n \in \mathbb{N} \right\} \]
is a bijection with inverse

\[\Psi(x) = (\psi_1(x), \psi_2(x), \cdots), \quad \psi_n(x) := \frac{x_n}{1 - \sum_{i=1}^{n-1} x_i} \in [0,1), \quad n \geq 1, \ x \in \tilde{\Delta}_\infty. \]

Due to this fact, if \(i \geq 1 \) \(b_i \geq \frac{1}{2} \) has been assumed in [7] so that \(x_i(t) \in [0,1) \) for all \(t > 0 \) and \(i \geq 1 \). In this case, for any \(x \in \Phi([0,1]^N) \), \(X^x(t) := \Phi(X^{\Psi(x)}(t)) \) is a Markov process on \(\tilde{\Delta}_\infty \).

Moreover, according to [7, §3], this Markov process is generated by \(\mathcal{L} \) on \(\tilde{\Delta}_\infty \); that is, the Markov semigroup

\[P_{t}^{a,b} f(x) := \mathbb{E} f(\Phi(X^{\Psi(x)}(t))) = \bar{P}_{t}^{a,b}(f \circ \Phi)(\Psi(x)), \quad f \in \mathcal{B}_b(\tilde{\Delta}_\infty), t \geq 0, x \in \tilde{\Delta}_\infty, \]

where \(\mathcal{B}_b(\cdot) \) denotes the set of all bounded measurable real functions on a measurable space, is associated to the symmetric Dirichlet form \((\mathcal{E}_{a,b}, \mathcal{D}(\mathcal{E}_{a,b}))\), which is the closure of the following pre-Dirichlet form on \(L^2(\Xi_{a,b}) \):

\[\mathcal{E}_{a,b}(f,g) := -\int_{\tilde{\Delta}_\infty} f \mathcal{L} g \mathbb{d}\Xi_{a,b} = \frac{1}{2} \int_{\tilde{\Delta}_\infty} \left(\sum_{i,j \geq 1} a_{ij}(\partial_i f)(\partial_j g) \right) \mathbb{d}\Xi_{a,b} \quad f, g \in \mathcal{F}C_b^\infty, \]

where \(\mathcal{F}C_b^\infty \) is the set of all \(C_b^\infty \)-cylindrical functions on \([0,1]^N\).

To extend the above construction for all \(b_i > 0 \) for which \(x_i(t) \) may hit 1, we extend \(\Psi \) to \(\tilde{\Delta}_\infty \) by setting \(\frac{0}{0} = 1 \), i.e., \(\psi_n(x) = 1 \) provided \(\sum_{i=1}^{n-1} x_i = 1 \) (this implies \(x_n = 0 \) for \(x \in \tilde{\Delta}_\infty \)).

Then

\[\Psi(\tilde{\Delta}_\infty) = E := \{ x = (x_i)_{i \in N} \in [0,1]^N : \text{if } x_i = 1 \text{ for some } i \in \mathbb{N}, \text{ then } x_j = 1 \text{ for all } j \geq i \}, \]

and \(\Phi : E \to \tilde{\Delta}_\infty \) is a bijection with inverse \(\Psi \). In this case we can prove that \(P_t^{a,b} \) given in (1.4) for \(\tilde{\Delta}_\infty \) in place of \(\Delta_\infty \), i.e.

\[P_{t}^{a,b} f(x) := \mathbb{E} f(\Phi(X^{\Psi(x)}(t))) = \bar{P}_{t}^{a,b}(f \circ \Phi)(\Psi(x)), \quad f \in \mathcal{B}_b(\tilde{\Delta}_\infty), t \geq 0, x \in \tilde{\Delta}_\infty, \]

is also a Markov semigroup. Indeed, since \(\Phi \circ \Psi(x) = x \) for \(x \in \tilde{\Delta}_\infty \), \(P_0^{a,b} \) is the identity operator. Moreover, for any \(t > 0 \) and any \(x \in [0,1]^N \), we have

\[\mathbb{P}(X^x(t) \notin E) \leq \mathbb{P}(x_i(t) = 1 \text{ for some } i \in \mathbb{N}) = 0, \]

so that \(\Psi \circ \Phi(X^x(t)) = X^x(t) \) \(\mathbb{P} \)-a.s. Thus, by (1.3) and the semigroup property of \(\bar{P}_t^{a,b} \),

\[P_{t}^{a,b}P_{s}^{a,b} f(x) = \mathbb{E} \left[(P_{s}^{a,b} f) \circ \Phi(X^{\Psi(x)}(t)) \right] = \mathbb{E} \left[(\bar{P}_{s}^{a,b} f \circ \Phi) \circ \Psi \circ \Phi(X^{\Psi(x)}(t)) \right] = \mathbb{E} \left[\bar{P}_{s}^{a,b} f \circ \Phi \Phi(X^{\Psi(x)}(t)) \right] = \bar{P}_{t+s}^{a,b} f(\Psi(x)) = P_{t+s}^{a,b} f(x), \quad s, t > 0, f \in \mathcal{B}_b(\tilde{\Delta}_\infty), x \in \tilde{\Delta}_\infty. \]

So, \(Y^x(t) \) is a Markov process on \(\tilde{\Delta}_\infty \) for any \(x \in \tilde{\Delta}_\infty \). Moreover, as shown in [7, §3] that \(P_{t}^{a,b} \) is associated to the symmetric Dirichlet form \((\mathcal{E}_{a,b}, \mathcal{D}(\mathcal{E}_{a,b}))\) on \(L^2(\Xi_{a,b}) \).
It is now the position to state the main results in the paper. Let
\[K_{a,b} = \frac{1}{4} \left(\sqrt{(4a-1)(4b-1) + 2(a+b) - 1} \right), \quad a, b > 0; \]
\[\rho(s, t) = \int_{s \land t}^{s \lor t} \frac{dr}{\sqrt{r(1-r)}}, \quad s, t \in [0, 1]. \]

Theorem 1.1. Assume \(a_i \land b_i \geq \frac{1}{4} \) for all \(i \geq 1 \). Then for any positive \(f \in \mathcal{B}_b(\bar{\Delta}_\infty) \) and \(p > 1 \), the following Harnack inequality holds:
\[
(P_t f)^p(x) \leq (P_t f^p(y)) \exp \left[\frac{p}{p-1} \sum_{i=1}^{\infty} \rho(\psi_i(x), \psi_i(y))^2 K_{a_i,b_i} \right], \quad x, y \in \bar{\Delta}_\infty, t > 0,
\]
where when \(K_{a_i,b_i} = 0 \) we set \(\frac{K_{a_i,b_i}}{\exp[2K_{a_i,b_i}t] - 1} = \frac{1}{2t} \).

The following is a consequence of Theorem 1.1.

Corollary 1.2. Assume \(a_i \land b_i \geq \frac{1}{4} \) for large \(i \geq 1 \). If
\[
\lim_{i \to \infty} \frac{a_i + b_i}{\log i} = \infty,
\]
then:

1. \(\Xi_{a,b} \) is the unique invariant probability measure of \(P_t^{a,b} \), and for any \(t > 0 \), \(P_t^{a,b} \) has a symmetric density \(p_t^{a,b}(x, y) \) with respect to \(\Xi_{a,b} \) such that
\[
C^{-1} e^{-c_0 \gamma(t)} \leq \inf_{x,y \in \bar{\Delta}_\infty} p_t^{a,b}(x, y) \leq \sup_{x,y \in \bar{\Delta}_\infty} p_t^{a,b}(x, y) \leq C e^{c_0 \gamma(t)}, \quad t > 0
\]
holds for some constant \(C \geq 1 \) and \(c_0 := 2\rho(0, 1) \), where
\[\gamma(t) := \sum_{i=1}^{\infty} \frac{K_{a_i,b_i}}{\exp[K_{a_i,b_i}t] - 1} < \infty, \quad t > 0. \]

If \(\inf_{i \geq 1} (a_i \land b_i) \geq \frac{1}{4} \) then (1.8) holds for \(C = 1 \).

2. \(P_t^{a,b} \) is strong Feller with respect to the metric
\[d(x, y) := \left(\sum_{i=1}^{\infty} i^{-2} \rho(\psi_i(x), \psi_i(y))^2 \right)^{\frac{1}{2}}, \quad \xi, \eta \in \bar{\Delta}_\infty. \]

3. Let \(\lambda = \inf_{i \geq 1} (a_i + b_i) \). Then there exists a constant \(c > 0 \) such that
\[
\sup_{x,y \in \bar{\Delta}_\infty} |p_t^{a,b}(x, y) - 1| \leq c e^{-\lambda t}, \quad t > 1.
\]
Remark 1.1 (1) If a, b satisfies (1.2), then $\Xi_{a, b}$ is fully supported on the simplex Δ_∞, so that due to Corollary 1.2(1) we have $Y(t) \in \Delta_\infty$ P-a.s. for any $t > 0$ and any starting point $Y(0) \in \Delta_\infty$.

(2) It is well known that the uniform heat kernel upper bound $Ce^{c_0 \gamma(t)}$ of the heat kernel implies the super log-Sobolev inequality (see [17, Theorem 5.1.7] or [4, Theorem 2.2.3])

\begin{equation}
\Xi_{a, b}(f^2 \log f^2) \leq r\mathcal{E}_{a, b}(f, f) + \log C + c_0 \gamma(r), \quad r > 0, f \in \mathcal{P}(\mathcal{E}_{a, b}), \Xi_{a, b}(f^2) = 1,
\end{equation}

as well as the super Poincaré inequality (see [17, Theorem 3.3.15] or [15, Theorem 4.5])

\begin{equation}
\Xi_{a, b}(f^2) \leq r\mathcal{E}_{a, b}(f, f) + \beta(r)\Xi_{a, b}(|f|^2), \quad r > 0, f \in \mathcal{P}(\mathcal{E}_{a, b})
\end{equation}

for

\[
\beta(r) := C \inf_{t>0} \frac{r}{t} \exp \left[c_0 \gamma(t) + \frac{t}{r} - 1 \right], \quad r > 0.
\]

This strengthens the log-Sobolev inequality derived in [7].

(3) Theorem 1.3 is stronger than the uniform ergodicity (also called strong ergodicity):

\[
\sup_{x \in \Delta_\infty} \|P_t^{a, b}(x, \cdot) - \Xi_{a, b}\|_{\text{var}} \leq Ce^{-\lambda t}, \quad t \geq 0
\]

for some constant $C > 0$, where $\| \cdot \|_{\text{var}}$ is the total variational and

\[
P_t^{a, b}(x, dy) := p_t^{a, b}(x, y)\Xi_{a, b}(dy)
\]

is the transition probability kernel of the infinite-dimensional diffusion process $Y(t)$.

(4) We also like to mention that by using explicit formula of the heat kernel, the super log-Sobolev inequality has been presented in [8, Theorem 4.1] for the infinite-many-neutral-alleles diffusion processes associated to the Poisson-Dirichlet distributions, which are the image of the corresponding GEM distributions of the descending order statistic.

To illustrate the above results, we consider below a special case where $a_i + b_i \geq b$ for some constant $b > 0$. This covers the two-parameter GEM case where $a_i = \frac{1}{2}$ and $b_i = \frac{b + a_i}{2}$ for some constants $\alpha \in (0, \frac{1}{2})$ and $\theta \geq \frac{1}{2} - \alpha$.

Corollary 1.3. Assume $\inf_{i \geq 1} b_i \geq \frac{1}{2}$, $a_i \geq \frac{1}{4}$ for large enough $i \geq 1$, and $a_i + b_i \geq b$ for some constant $b > 0$ and all $i \geq 1$. Then there exists a constant $C > 0$ such that

\begin{equation}
e^{-ct^{-2}} \leq p_t^{a, b} \leq e^{ct^{-2}}, \quad t > 0,
\end{equation}

and

\begin{equation}
\sup_{x, y \in \Delta_\infty} |p_t^{a, b}(x, y) - 1| \leq e^{ct^{-2} - \lambda t}, \quad t > 0,
\end{equation}

where $\lambda := \inf_{i \geq 1}(a_i + b_i)$. Consequently, (1.9) with $\gamma(r) = \frac{C}{r}$ and (1.10) with $\beta(r) = \exp \left[\frac{C}{r} \right]$ hold for some constant $C > 0$.

The remainder of the paper is organized as follows. In Section 2 we establish the Harnack inequality and super Poincaré inequality for the Wright-Fisher diffusion processes, which are used in Section 3 to prove Theorem 1.1 and Corollaries 1.2, 1.3.
2 Functional inequalities for the Wright-Fisher diffusion processes

For $a, b > 0$, consider the following SDEs on $[0, 1]$:

\begin{equation}
\mathrm{d}x(t) = \{a - (a + b)x(t)\} \mathrm{d}t + \sqrt{x(t)(1-x(t))} \mathrm{d}B(t),
\end{equation}

where $B(t)$ is a one-dimensional Brownian motion. Let $P_t^{a,b}$ be the Markov semigroup of the solution. Then $P_t^{a,b}$ is symmetric with respect to $\pi_{a,b}$ and, see e.g. [5, §9], has a density $p_t^{a,b}(x, y)$ with respect to $\pi_{a,b}$.

In this section we investigate the Harnack inequality for $P_t^{a,b}$ and the super Poincaré inequality for the associated Dirichlet form

\[E_{a,b}(f, f) := \frac{1}{2} \int_0^1 x(1-x)f''(x)^2 \, d\pi_{a,b}, \quad f \in \mathcal{D}(E_{a,b}), \]

where $\mathcal{D}(E_{a,b})$ is the completion of $C^1([0, 1])$ under the corresponding $E_{a,b}$-norm. These inequalities imply heat kernel estimates and will be applied in the next section to prove Theorem 1.1 and Corollaries 1.2-1.3.

We will see in Remark 2.1(2) and the proof of Theorem 2.2 that the Harnack inequality (2.2) we present below implies the sharp super Poincaré inequality for $a \wedge b \geq \frac{1}{4}$, and the sharp super Poincaré inequality for $a \wedge b \leq \frac{1}{4}$ will be proved using isoperimetric constants.

2.1 Harnack inequality and heat kernel estimates

For any $x \in [0, 1]$ and $r > 0$, let $B_r(x, r) = \{y \in [0, 1] : \rho(x, y) < r\}$.

Theorem 2.1. Let $a \wedge b \geq \frac{1}{4}$. Then for any $p > 1$ and positive $f \in \mathcal{B}_b([0, 1])$, the following Harnack inequality holds:

\begin{equation}
(P_t^{a,b}f)^p(x) \leq (P_t^{a,b}f^p(y)) \exp \left[\frac{pK_{a,b} \rho(x,y)^2}{(p-1)(\exp[2K_{a,b} t] - 1)} \right], \quad x, y \in [0, 1], t > 0.
\end{equation}

Consequently, the heat kernel $p_t^{a,b}$ satisfies

\begin{equation}
\exp \left[-\frac{2K_{a,b} \rho(x,y)^2}{\exp[K_{a,b} t] - 1} \right] \leq p_t^{a,b}(x, y) \leq \exp \left[\frac{2K_{a,b} \rho(0,1)^2}{\exp[K_{a,b} t] - 1} \right], \quad t > 0, x, y \in [0, 1].
\end{equation}

Proof. (a) We first observe that (2.3) follows from (2.2). Let $p = 2$ and $P = P_{1/2}$. (2.2) implies

\begin{equation}
(Pf)^2(x) \leq (Pf^2(y))e^{\Psi(x,y)}, \quad x, y \in [0, 1], 0 \leq f \in \mathcal{B}_b([0, 1]),
\end{equation}

where $\Psi(x,y) := \frac{2K_{a,b} \rho(x,y)^2}{\exp[K_{a,b} t] - 1}$. So, applying [13, Theorem 1.4.1(5)] with $\Phi(r) = r^2$ and using the symmetry of $p(x,y) := p_t^{a,b}(x,y)$, we obtain

\[p_t^{a,b}(x,y) = \int_{[0,1]} p(x,z)p(y,z)\pi_{a,b}(\mathrm{d}z) \geq e^{-\Psi(x,y)}, \]

7
which implies the desired lower bound estimate in (2.3). Next, by [18] Theorem 1.4.1(6), (2.4) implies
\[
(Pf)^2(x) \leq \frac{1}{\int_0^1 e^{-\Psi(x,y) \pi_{a,b}(dy)}} \pi_{a,b}(f^2) \leq 1.
\]
Taking \(f(z) = \frac{p(x,z)}{\sqrt{p_t(x,x)}} \), we arrive at
\[
p_t^{a,b}(x,x)^2 = (Pf(x))^2 \leq \frac{1}{\int_0^1 e^{-\Psi(x,y) \pi_{a,b}(dy)}} \leq \exp \left[\frac{2K_{a,b} \rho(0,1)^2}{\exp[K_{a,b}t] - 1} \right], \quad x \in [0,1].
\]
This implies the desired upper bound estimate in (2.3) since
\[
p_t^{a,b}(x,x)^2 = \left(\int_{[0,1]} p(x,z) p(y,z) \pi_{a,b}(dz) \right)^{\frac{1}{2}} \left(\int_{[0,1]} p(y,z) \pi_{a,b}(dz) \right)^{\frac{1}{2}} = \sqrt{p_t^{a,b}(x,x)p_t^{a,b}(y,y)}.
\]
(b) next, we prove the Harnack inequality (2.2) using coupling by change of measures. Let \(T > 0 \) and \(x, y \in [0,1] \) be fixed. Without loss of generality, we assume that \(y > x \). Let \(x(t) \) solve (2.1) for \(x(0) = x \), and let \(y(t) \) solve the following equation on \([0,1]\) with reflection with \(y(0) = y \):
\[
\begin{align*}
dy(t) &= \{a - (a + b) y(t)\} dt + \sqrt{y(t)(1-y(t))} dB(t) \\
&\quad - 1_{[0,\tau]}(t) \sqrt{y(t)(1-y(t))} \xi(t) dt,
\end{align*}
\]
where \(\tau := \inf\{t \geq 0 : x(t) = y(t)\} \) is the coupling time and
\[
\xi(t) := \frac{\rho(x,y) \exp[K_{a,b}t]}{\int_0^T \exp[2K_{a,b}t] dt}, \quad t \geq 0.
\]
Below, we prove the inequality
\[
d\rho(x(t),y(t)) \leq -\{K_{a,b} \rho(x(t),y(t)) + \xi(t)\} dt, \quad t \in [0,\tau)
\]
by using Itô’s formula for \(\rho(x(t),y(t)) \), see (2.7) below. To avoid the singularity of \(\rho(x,y) \) for \(x < y \) at \(x = 0 \) and \(y = 1 \), one may prove (2.6) in a similar way by applying Itô’s formula to \(\rho_\varepsilon(x(t),y(t)) := \int_x^{y(t)} \frac{ds}{s(1+\varepsilon(s-x)^{-1})} \) for \(\varepsilon > 0 \) and finally letting \(\varepsilon \to 0 \).

Obviouslly, we have \(x(t) < y(t) \) for \(t < \tau \), and \(x(t) = y(t) \) for \(t \geq \tau \). Consequently, \(y(t) > 0 \) and \(x(t) < 1 \) for \(t < \tau \). Therefore, by Itô’s formula we obtain
\[
d\rho(x(t),y(t))
\begin{align*}
&= \left\{ \frac{4a - 1 - 2(2a + 2b - 1)y(t)}{4\sqrt{y(t)(1-y(t))}} - \frac{4a - 1 - 2(2a + 2b - 1)x(t)}{4\sqrt{x(t)(1-x(t))}} - \xi(t) \right\} dt
\end{align*}
\]
for \(t \in [0, \tau) \). Since \(y(t) > x(t) \) for \(t \in [0, \tau) \), we have
\[
\frac{4a - 1 - 2(2a + 2b - 1)y(t)}{4\sqrt{y(t)(1 - y(t))}} - \frac{4a - 1 - 2(2a + 2b - 1)x(t)}{4\sqrt{x(t)(1 - x(t))}} = \frac{1}{4} \int_{x(t)}^{y(t)} \frac{d}{ds} \left(\frac{4a - 1 - 2(2a + 2b - 1)s}{\sqrt{s(1 - s)}} \right) ds = -\frac{1}{8} \int_{x(t)}^{y(t)} \frac{4a - 1 + 4(b - a)s}{\{s(1 - s)\}^{3/2}} ds \\
\leq -c \int_{x(t)}^{y(t)} \frac{ds}{\sqrt{s(1 - s)}} = -c\rho(x(t), y(t)), \quad t \in [0, \tau),
\]
where
\[
(2.9) \quad c := \inf_{s \in (0, 1)} \frac{4a - 1 + 4(b - a)s}{8s(1 - s)} = K_{a,b}.
\]
Since \((2.9) \) is trivial when \(a \land b = \frac{1}{3} \), we only prove it for \(a \land b > \frac{1}{3} \). In this case we have
\[
\frac{4a - 1 + 4(b - a)s}{8s(1 - s)} \rightarrow \infty \text{ as } s \rightarrow 0 \text{ or } 1, \text{ so that the inf is reached in } (0, 1). \text{ It is easy to see that in } (0, 1) \text{ we have } \frac{d}{ds} \left(\frac{4a - 1 + 4(b - a)s}{8s(1 - s)} \right) = 0 \text{ if and only if }
\[
4(b - a)s^2 + 2(4a - 1)s - (4a - 1) = 0,
\]
so that the inf is reached at
\[
s_0 = \sqrt{(4a - 1)(4b - 1) - (4a - 1)} = \frac{4a - 1}{4a - 1 + \sqrt{(4a - 1)(4b - 1)}}.
\]
Thus,
\[
c = \frac{4a - 1 + 4(b - a)s_0}{8s_0(1 - s_0)} = \frac{1}{4} \left(\sqrt{(4a - 1)(4b - 1) + 2a + 2b - 1} \right) = K_{a,b}.
\]
Combining \((2.7), (2.8) \) and \((2.9) \), we prove \((2.6) \). Consequently,
\[
\rho(x(t), y(t)) \leq \rho(x, y)e^{-K_{a,b}t} - \int_0^t e^{-K_{a,b}(t-s)} \xi(s) ds = \frac{\rho(x, y)e^{-K_{a,b}t} \int_0^T e^{2K_{a,b}s} ds}{\int_0^T e^{2K_{a,b}s} ds}, \quad t \in [0, \tau).
\]
This implies \(\tau \leq T \), so that \(x(T) = y(T) \).
Now, rewrite \((2.5) \) as
\[
dy(t) = \{a - (a + b)y(t)\} dt + \sqrt{y(t)(1 - y(t))} \, dB(t),
\]
where, by Girsanov’s theorem,
\[
\tilde{B}(t) := B(t) - \int_0^{\tau} \xi(s) ds, \quad t \geq 0.
\]
is a one-dimensional Brownian motion under the probability measure \(dQ := RdP \) for
\[
R := \exp \left[\int_0^T \xi(t)dB(t) - \frac{1}{2} \int_0^T \xi(t)^2dt \right].
\]
So, by the weak uniqueness of the solution to (2.1), we have
\[
P_T^{a,b}f(y) = \mathbb{E}_Q f(y(T)) = \mathbb{E}[Rf(y(T))].
\]
Combining this with \(x(T) = y(T) \) observed above, we obtain
\[
(P_T^{a,b}f(y))^p = (\mathbb{E}[Rf(y(T))])^p = (\mathbb{E}[Rf(x(T))])^p
\leq (\mathbb{E}f^p(x(T)))(\mathbb{E}R_{\frac{p-1}{p-1}}^p)^{p-1} = (P_T^{a,b}f^p(x))(\mathbb{E}R_{\frac{p-1}{p-1}}^p)^{p-1}.
\]
This implies (2.2) since, by the definitions of \(R, \xi \) and the fact that \(\tau \leq T \),
\[
\mathbb{E}R_{\frac{p-1}{p-1}}^p \leq e^{\frac{p}{2(p-1)} \int_0^T \xi(t)^2dt} \mathbb{E} \left[\frac{p}{p-1} \int_0^T \xi(t)dB(t) - \frac{p^2}{2(p-1)^2} \int_0^T \xi(t)^2dt \right]
= \exp \left[\frac{p}{2(p-1)^2} \int_0^T \xi(t)^2dt \right] = \exp \left[\frac{pK_{a,b}p(x,y)^2}{(p-1)^2(\exp[2K_{a,b}T] - 1)} \right].
\]

Remark 2.1. (1) From the proof we see that the condition \(a \wedge b \geq \frac{1}{4} \) is more or less essential for the desired explicit Harnack inequality using coupling by change of measures. This condition might be dropped using a localization argument as in [2], which, however, will lead to a less explicit Harnack inequality.

(2) We will see in the proof of Theorem 2.2 below that the Harnack inequality (2.2) also implies the heat kernel upper bound

\[
\sup_{x,y \in [0,1]} p_t^{a,b}(x,y) \leq \frac{c_{a,b}}{t^{2(a\vee b)}}, \quad t \in (0,1]
\]
for some constant \(c_{a,b} > 0 \), which is much better than (2.3) in short time. Next, by repeating the argument in the proof of Lemma 2.3 in [9], we see that the Harnack inequality (2.2) implies the following Gaussian type upper bound estimate: for any \(\delta > 2 \) there exists a constant \(C(\delta) > 0 \) such that

\[
p_t^{a,b}(x,y) \leq \frac{C(\delta) \exp\left[-\frac{\rho(x,y)^2}{\delta} + C(\delta)t \right]}{\sqrt{\pi_{a,b}(B_{\sqrt{2}\rho}(x,\sqrt{t}))^{\pi_{a,b}(B_{\sqrt{2}\rho}(y,\sqrt{t}))}}, \quad t > 0, x, y \in [0,1],
\]
where we have used the fact that \(\sqrt{2}\rho \), rather than \(\rho \), is the intrinsic distance induced by the diffusion process. Moreover, according to [10] Theorem 7.2 which works for the present
case by using the transform \(x \mapsto \frac{x}{2} + \frac{1}{2} \) which maps \([-1, 1]\) therein onto the present \([0, 1]\), there exists constants \(c_1, c_2, c'_1, c'_2 > 0\) such that

\[
(2.12) \quad \frac{c'_1 \exp[-c'_2 \frac{\rho(x,y)^2}{t}]}{\sqrt{\pi_{a,b}(B_r(x, \frac{\sqrt{t}}{2})) \pi_{a,b}(B_r(y, \frac{\sqrt{t}}{2}))}} \leq p_{t}^{a,b}(x, y) \leq \frac{c_1 \exp[-c_2 \frac{\rho(x,y)^2}{t}]}{\sqrt{\pi_{a,b}(B_r(x, \frac{\sqrt{t}}{2})) \pi_{a,b}(B_r(y, \frac{\sqrt{t}}{2}))}}
\]

holds for all \(t \in (0, 1], x, y \in [0, 1] \). However, all these estimates can not be extended to infinite-dimensions.

(3) The leading term of the heat kernel \(p_t^{a,b}(x, y) \) has been figured out in the last display in [5] §9 as follows for \(b_0 = 2a \) and \(b_1 = 2b \) (since the reference measure used there is \(dy \) rather than the invariant measure \(\pi_{a,b}(dy) \), we multiply the factor \(y^{1-2a}(1 - y)^{1-2b} \):

\[
p_t^{a,b}(x, y) \sim \frac{1}{t^{2a}} e^{\frac{x+y}{t}} \psi_{2a} \left(\frac{x+y}{t^2} \right) + \frac{1}{t^{2b}} e^{\frac{y-x}{t}} \psi_{2b} \left(\frac{y-x}{t^2} \right),
\]

where \(\sqrt{s_l} := \sin^{-1} \sqrt{s}, \sqrt{s_r} := \sin^{-1} \sqrt{1-s} \) for \(s \in [0, 1] \), and

\[
\psi_b(x) := \sum_{j=0}^{\infty} \frac{x^j}{j! \Gamma(j+b)}, \quad x, b > 0.
\]

This suggests

\[
\sup_{x, y \in [0, 1]} p_t^{a,b}(x, y) \geq \max_{x \in \{t, 1-t\}} p_t^{a,b}(x, x) \geq \frac{c}{t^{(2a) \vee (2b)}}, \quad t \in (0, 1]
\]

for some constant \(c > 0 \), so that the above uniform heat kernel estimate (2.10) implied by the Harnack inequality is sharp for \(a \wedge b \geq \frac{1}{4} \). See Corollary 2.3 below for a sharp uniform heat kernel estimate also for \(a \wedge b \leq \frac{1}{4} \) using the super Poincaré inequality, which is of order \(t^{-(2a) \vee (2b)} \).

2.2 Super Poincaré inequality and heat kernel estimates

According to [14], the Dirichlet form \((\mathcal{E}_{a,b}, \mathcal{D}(\mathcal{E}_{a,b}))\) is said to satisfy the super Poincaré inequality if there exists a function \(\beta : (0, \infty) \to (0, \infty) \) such that

\[
(2.13) \quad \pi_{a,b}(f^2) \leq r \mathcal{E}_{a,b}(f, f) + \beta(r) \pi_{a,b}(|f|)^2, \quad r > 0, f \in \mathcal{D}(\mathcal{E}_{a,b}).
\]

As \(\mathcal{D}(\mathcal{E}_{a,b}) \) is the closure of \(C^1([0, 1]) \) under the associated Dirichlet norm, one only needs to verify the inequality for \(f \in C^1([0, 1]) \).

Theorem 2.2. There exists a constant \(c = c(a, b) > 0 \) such that the following super Poincaré inequality

\[
(2.14) \quad \pi_{a,b}(f^2) \leq r \mathcal{E}_{a,b}(f, f) + \left(1 \vee \frac{c}{r^{2(2a) \vee (2b)}} \right) \pi_{a,b}(|f|)^2, \quad r > 0, f \in \mathcal{D}(\mathcal{E}_{a,b}).
\]

On the other hand, the super Poincaré inequality (2.13) implies

\[
(2.15) \quad \liminf_{r \to 0} \beta(r) r^{\frac{1}{2(2a) \vee (2b)}} > 0,
\]

so that (2.14) is sharp for small \(r > 0 \).
Proof. (1) The proof of (2.14) consists of the following four steps.

(1a) It is easy to see that the generator \(L_{a,b} := \frac{1}{2}x(1-x)\partial_x^2 + (a-(a+b)x)\partial_x \) has a spectral gap \(\lambda_1 = a + b \) with the first eigenvalue \(u(x) := x - \frac{a}{a+b} \). Then the Poincaré inequality

\[
\pi_{a,b}(f^2) \leq \frac{1}{a+b} \mathcal{E}_{a,b}(f,f) + \pi_{a,b}(f)^2, \quad f \in \mathcal{D}(\mathcal{E}_{a,b})
\]

holds. Thus, for the first assertion it suffices to prove (2.14) for small \(r > 0 \), say \(r \in (0, 1] \).

(1b) To prove (2.14) for \(r \in (0, 1] \), we first consider \(a \wedge b \geq \frac{1}{4} \) and prove (2.10) using the Harnack inequality (2.2). Since \(K_{a,b} \geq 0 \), we have

\[
\frac{K_{a,b}}{\exp[2K_{a,b}')} - 1 \leq \frac{1}{2t^2}, \quad t > 0.
\]

So, by (2.2) with \(p = 2 \) we obtain

\[
(P^a_b)^2(x) \exp \left[- \frac{\rho(x, y)^2}{t} \right] \leq P^a_b f^2(y), \quad t > 0, x, y \in [0, 1], f \in \mathcal{B}_b([0, 1]).
\]

Let \(B_\rho(x, r) = \{ y \in [0, 1] : \rho(x, y) \leq r \} \) for \(x \in [0, 1] \) and \(r > 0 \). This implies

\[
(P^a_b)^2(x) \exp \left[- \frac{\rho(x, y)^2}{t} \right] \pi_{a,b}(dy) \leq \int_{B_\rho(x, \sqrt{2t})} P^a_b f^2(y) \pi_{a,b}(dy) \leq 1, \quad \pi_{a,b}(f^2) \leq 1.
\]

Taking

\[
f(z) = \frac{p^a_b(x, z)}{\sqrt{p^a_b(x, x)}}, \quad z \in [0, 1],
\]

we arrive at

\[
p^a_b(x, x) \leq \frac{e^2}{\pi_{a,b}(B_\rho(x, \sqrt{2t}))}, \quad x \in [0, 1], t > 0.
\]

Similar but less explicit estimates can be derived from (2.11) or (2.12). We intend to prove

\[
\inf_{x \in [0, 1]} \pi_{a,b}(B_\rho(x, \sqrt{t})) \geq c_0 t^{2(a\wedge b)}, \quad t \in [0, 1]
\]

for some constant \(c_0 > 0 \), so that (2.10) follows from (2.17).

Let \(x \in [0, \frac{1}{2}] \) and take \(t_0 = \rho(\frac{1}{2}, \frac{3}{4}) \). Then there exists a unique \(y_t \in (x, \frac{3}{4}) \) such that

\[
\sqrt{t} \wedge t_0 \leq \rho(x, y_t) = \int_x^{y_t} \frac{ds}{\sqrt{s(1-s)}} \leq 2 \int_x^{y_t} \frac{ds}{\sqrt{s}} = 4(\sqrt{y_t} - \sqrt{x}).
\]

So,

\[
B_\rho(x, \sqrt{t}) \supset B_\rho(x, \sqrt{t_0} \wedge t) \supset [x, (\sqrt{x} + \frac{1}{4} \sqrt{t \wedge t_0})^2].
\]
Combining this with \((\sqrt{x} + \frac{1}{4}\sqrt{t \wedge t_0})^2 \leq y_t^2 \leq \frac{3}{4}\), and noting that \(4a \geq 1\), we obtain

\[
\int_{B_\rho(x, \sqrt{t})} s^{2a-1}(1 - s)^{2b-1} ds \geq \frac{1}{4(2b-1)^{+}} \int_{(\sqrt{x} + \frac{1}{4}\sqrt{t \wedge t_0})^2} s^{2a-1} ds
\]

\[
= \frac{1}{2a4^{(2b-1)^{+}}} \left((\sqrt{x} + \frac{1}{4}\sqrt{t \wedge t_0})^{4a} - (\sqrt{x} + \frac{1}{8}\sqrt{t \wedge t_0})^{4a} \right)
\]

\[
\geq \frac{\sqrt{t \wedge t_0}}{4^{1+(2b-1)^{+}}} (\sqrt{x} + \frac{1}{8}\sqrt{t \wedge t_0})^{4a-1} \geq \frac{(t \wedge t_0)^{2a}}{8^{4a-1}4^{1+(2b-1)^{+}}}
\]

Therefore,

\[
\inf_{x \in [0, \frac{1}{2}]} \pi_{a,b}(B_\rho(x, \sqrt{t})) \geq c_1 t^{2a}, \quad t \in [0, 1]
\]

holds for some constant \(c_1 > 0\). Similarly, we have

\[
\inf_{x \in [\frac{1}{2}, 1]} \pi_{a,b}(B_\rho(x, \sqrt{t})) \geq c_2 t^{2b}, \quad t \in [0, 1]
\]

for some constant \(c_2 > 0\). Combining them together we prove (2.18), and hence (2.10) as observed above.

Now, according to [17] Theorem 3.3.15 or [15] Theorem 4.5, (2.10) implies the super Poincaré inequality (2.13) for

\[
\beta(r) := \inf_{t > 0} \left\{ \frac{r}{t} e^{\frac{r}{t} - 1} \| p^{a,b}_r \|_\infty \right\} \leq \| p^{a,b}_r \|_\infty \leq \frac{c_0}{r^{2(a+b)}}, \quad r \in (0, 1].
\]

That is, (2.14) holds for \(r \in (0, 1]\).

(1c) Next, we consider the case that \(a \vee b \leq \frac{1}{4}\), and prove (2.13) for small \(r > 0\) using isoperimetric constants. Let \(\mu_a(dx) = 1_{[0, \frac{1}{2}]}(x)x^{2a-1}dx\). Let \(\mu^\partial_a\) be the boundary measure induced by \(\mu_a\) under the intrinsic metric \(\rho\). We have

\[
(2.19) \quad \mu^\partial_a(\{x\}) := \lim_{\varepsilon \to 0} \frac{\mu_a(\{y : \rho(y, x) \leq \varepsilon\})}{2\varepsilon} \geq c_1 x^{2a-\frac{1}{2}}, \quad x \in (0, 1/2)
\]

for some constant \(c_1 > 0\). Now, for any set \(A \subset [0, \frac{1}{2}]\) with \(\mu_a(A) \in (0, \mu_a([0, \frac{1}{2}]))\), let \(\partial_0 A\) be the set of boundary points of \(A\) included in \((0, \frac{1}{2})\). Then \(\partial_0 A \neq \emptyset\). It follows from (2.19) and \(2a - \frac{1}{2} \leq 0\) that

\[
k(s) := \inf_{A \subset [0, \frac{1}{2}], \mu_a(A) \leq s} \frac{\mu^\partial_a(\partial_0 A)}{\mu_a(A)} \geq \frac{c_1}{s}, \quad 0 < s < \mu_a([0, 1/2]).
\]

So,

\[
k^{-1}(2r^{-1/2}) \geq c_2 \sqrt{r}
\]

holds for some constant \(c_2 > 0\) and small \(r > 0\). Therefore, according to [17] Theorem 3.4.16], the super Poincaré inequality

\[
(2.21) \quad \mu_a(f^2) \leq r \int_0^{\frac{1}{r}} x f'(x)^2 \mu_a(dx) + \frac{c}{\sqrt{r}} \mu_a(|f|)^2, \quad r \in (0, 1], f \in C_b^1([0, 1/2])
\]
holds for some constant \(c > 0 \). In case the book [17] is not easy to find, we present below a brief proof of the assertion, see also the proof of Theorem 3.4(1) in [14] where the last term in the first display should be changed into \(\frac{2k(r)}{r} \). In fact, let \(f \in C^1_b([0, \frac{1}{2}]) \) with \(\mu_a(|f|) = 1 \). We have \(\mu_a(f^2 > t) \leq t^{-1/2} \) so that by the coarea formula,

\[
\int_0^{\frac{1}{2}} \sqrt{x(1-x)} |(f^2)'(x)| \mu_a(dx) = \int_0^\infty \mu_a^0(\{f^2 = t\} \setminus \{0, 1/2\})dt \geq k(s) \int_{s^{-2}}^\infty \mu_a(f^2 > t)dt \\
\leq k(s)\mu_a(f^2) - k(s) \int_0^{s^{-2}} \frac{dt}{\sqrt{t}} = k(s)\mu_a(f^2) - \frac{2k(s)}{s}, \quad s \in (0, \mu_a([0, 1/2]).
\]

Combining this with

\[
\int_0^{\frac{1}{2}} \sqrt{x(1-x)} |(f^2)'(x)| \mu_a(dx) \leq 2\sqrt{\mu_a(f^2)} \left(\int_0^{\frac{1}{2}} x(1-x)f'(x)^2 \mu_a(dx) \right)^\frac{1}{2} \\
\leq \frac{2}{k(s)} \int_0^{\frac{1}{2}} x(1-x)f'(x)^2 \mu_a(dx) + \frac{k(s)}{2s} \mu_a(f^2),
\]

we prove

\[
\mu_a(f^2) \leq \frac{4}{k(s)^2} \int_0^{\frac{1}{2}} x(1-x)f'(x)^2 \mu_a(dx) + \frac{4}{s}, \quad \mu_a(|f|) = 1, s \in (0, \mu_a([0, 1/2]).
\]

Taking \(s = k^{-1}(2r^{-1/2}) \) in this inequality and using (2.20), we prove (2.21) for small \(r > 0 \). Consequently,

\[
\pi_{a,b}(f^21_{[0, \frac{1}{2}]}(x) \leq r \int_0^{\frac{1}{2}} (1-x)f'(x)^2 \pi_{a,b}(dx) + \frac{c}{\sqrt{r}} \pi_{a,b}(|f|1_{[0, \frac{1}{2}]} \leq r, \quad r \in (0, 1]
\]

holds for some constant \(c > 0 \) and all \(f \in C^1_b([0, 1]) \).

Similarly, when \(b \leq \frac{1}{4} \), we have

\[
\pi_{a,b}(f^21_{[\frac{1}{2}, 1]} \leq r \int_{\frac{1}{2}}^1 (1-x)f'(x)^2 \pi_{a,b}(dx) + \frac{c}{\sqrt{r}} \pi_{a,b}(|f|1_{[\frac{1}{2}, 1]} \leq r, \quad r \in (0, 1]
\]

for some constant \(c > 0 \) and all \(f \in C^1_b([0, 1]) \). Combining them together we prove (2.14) with \(r \in (0, 1] \) for \(a \lor b \leq \frac{1}{4} \).

(1d) Finally, let \(a \land b < \frac{1}{4} \) but \(a \lor b \geq \frac{1}{4} \), for instance, we assume that \(a < \frac{1}{4} \) and \(b \geq \frac{1}{4} \). In this case we have \(x^{2a-1} \geq x^{-\frac{1}{2}} \) for \(x \in (0, 1] \), but \(x^{2a-1} \leq 2^{\frac{1}{2}-2a}x^{-\frac{1}{2}} \) for \(x \in [\frac{1}{2}, 1] \). So, by (2.14) for \(a \land b \geq \frac{1}{4} \) we obtain

\[
\pi_{a,b}(f^21_{[\frac{1}{2}, 1]} \leq c_1 \pi_{a,b}^0(f^2) \leq r \rho_{\frac{1}{2}, b}(f, f) + \frac{c_2}{\rho_{a,b}} \pi_{a,b}^0(|f|)^2 \\
\leq c_3 \rho_{a,b}(f, f) + \frac{c_3}{\rho_{a,b}} \pi_{a,b}(|f|)^2 \quad r \in (0, 1], f \in C^1_b([0, 1])
\]

14
for some constants $c_1, c_2, c_3 > 0$. Combining this with (2.22), we prove (2.14) for $r \in (0, 1]$.

(2) To prove the second assertion, let (2.13) hold for some b. Take $f(x) = (\varepsilon - x)^+$ for $\varepsilon \in (0, 1/2)$. Then there exists constants $c_1, c_2 > 0$ such that

$$
\pi_{a,b}(f^2) \geq c_1 \varepsilon^{2a+2}, \quad \pi_{a,b}(f) + \delta_{a,b}(f, f) \leq c_2 \varepsilon^{2a+1}, \quad \varepsilon \in (0, 1/2).
$$

So, by (2.13) we obtain

$$
\beta(r) \geq \frac{1}{c_3^2} \sup_{\varepsilon \in (0, \frac{1}{2})} \left(\frac{c_1}{\varepsilon^{2a}} - \frac{r c_2}{\varepsilon^{2a+1}} \right) = c_3 r^{-2a}
$$

for some constant $c_3 > 0$ and small $r > 0$. Therefore,

$$
\lim inf_{r \to 0} \beta(r) r^{2a} \geq c_3 > 0.
$$

Similarly, by taking $f(x) = (x + \varepsilon - 1)^+$ in (2.13) we obtain $\lim inf_{r \to 0} \beta(r) r^{2b} > 0$; while (2.13) with $f(x) := (x + \varepsilon - \frac{1}{2})^+ \land (\frac{1}{2} + \varepsilon - x)^+$ implies $\lim inf_{r \to 0} \beta(r) r^{1/2} > 0$. In conclusion, (2.15) holds.

We would like to indicate that when $a \land b > \frac{1}{4}$, the desired super Poincaré inequality can also be proved using isoperimetric constants. However, the argument we used is more straightforward and it stresses the sharpness of the Harnack inequality (2.2).

Corollary 2.3. There exist constants $c_1, c_2 > 0$ such that

$$
(2.24) \quad \sup_{x,y \in [0, 1]} |p_{t}^{a,b}(x, y) - 1| \leq \frac{c_1 e^{-(a+b)t}}{(t \land 1)^{\frac{1}{2} \sqrt{2a} \sqrt{2b}}}, \quad t > 0;
$$

$$
(2.25) \quad \sup_{x,y \in [0, 1]} p_{t}^{a,b}(x, y) \geq \frac{c_2}{t^{\frac{1}{2} \sqrt{2a} \sqrt{2b}}}, \quad t \in (0, 1].
$$

Proof. (1) Proof of (2.2). By [17, Theorem 3.3.15 (2)] or [15, Theorem 4.5], (2.14) implies (2.26) for some constant $c > 0$. So, it suffices to prove (2.24) for $t \geq 2$. By the Poincaré inequality (1.16), we have

$$
\|P_{t}^{a,b} - \pi_{a,b}\|_{2 \to 2} \leq e^{-(a+b)t}, \quad t \geq 0,
$$

where, for any $p, q \geq 1$, $\| \cdot \|_{p \to q}$ stands for the operator norm from $L^p(\pi_{a,b})$ to $L^q(\pi_{a,b})$. Combining this with (2.26) we obtain

$$
\|P_{t}^{a,b} - \pi_{a,b}\|_{2 \to \infty} \leq \|P_{1}^{a,b} - \pi_{a,b}\|_{2 \to \infty} \|P_{t-1}^{a,b} - \pi_{a,b}\|_{2 \to 2} \leq C e^{-(a+b)t}, \quad t \geq 1
$$
for some constant $C > 0$. Therefore, by the symmetry of $P_{t}^{a,b}$ in $L^{2}(\pi_{a,b})$, this implies

$$\sup_{x,y \in [0,1]} p_{t}^{a,b}(x, y) - 1 = \| P_{t}^{a,b} - \pi_{a,b} \|_{1} \leq \| P_{t}^{a,b} - \pi_{a,b} \|_{2}. \| P_{t}^{a,b} - \pi_{a,b} \|_{2} \rightarrow \infty$$

$$= \| P_{t}^{a,b} - \pi_{a,b} \|_{2}^{2} \leq C^{2} e^{-(a+b)t}, \ t \geq 2.$$

Therefore, (2.24) holds also for $t \geq 2$.

(2) To prove (2.25), we use again [17] Theorem 3.3.15] or [15] Theorem 4.5] that (2.13) holds for

$$\beta(r) := \inf_{t > 0} \left\{ \frac{r}{t} e^{t-1} \| P_{t}^{a,b} \|_{\infty} \right\} \leq \| P_{t}^{a,b} \|_{\infty}.$$

Combining this with the second assertion in Theorem 2.2, we obtain

$$\lim_{t \rightarrow 0} \inf \| P_{t}^{a,b} \|_{\infty}^{2(a)\lor(2b)\lor \frac{1}{2}} > 0,$$

which implies (2.26) for some constant $c_{2} > 0$.

3 Proofs of Theorem 1.1 and Corollaries 1.2-1.3

Proof of Theorem 1.1. By (1.5) and Theorem 2.1 we have

$$\left(P_{t}^{a,b} f(x) \right)^{p} = \left(P_{t}^{a,b} (f \circ \Phi)(\Psi(x)) \right) = \left(\prod_{i=1}^{\infty} P_{t}^{a_{i},b_{i}} f(\Psi(x)) \right)^{p}$$

$$\leq \left\{ \left(\prod_{i=1}^{\infty} P_{t}^{a_{i},b_{i}} \right)^{p} \exp \left[\sum_{i=1}^{\infty} \frac{pK_{a_{i},b_{i}}}{(p-1)(\exp[2K_{a_{i},b_{i}}] - 1)} \right] \right\}$$

$$= (P_{t}^{a,b} f^{p}(y)) \exp \left[\frac{p}{p-1} \sum_{i=1}^{\infty} \frac{K_{a_{i},b_{i}}}{\exp[2K_{a_{i},b_{i}}] - 1} \right].$$

Thus, (1.6) holds.

Proof of Corollary 1.2. (a) Let $i_{0} \geq 0$ such that $a_{i} \land b_{i} \geq \frac{1}{4}$ for $i > i_{0}$. It is easy to see that (1.7) implies $\gamma(t) < \infty$ for all $t > 0$. By (2.22), there exists a constant $c_{1} \geq 1$ such that

$$c_{1}^{-1} e^{-c_{1}t^{-1}} \leq P_{t}^{a_{i},b_{i}}(x, y) \leq c_{1} e^{c_{1}t^{-1}}, \ t > 0, 1 \leq i \leq i_{0}.$$

Combining this with (2.3) we obtain

$$C^{-1} e^{-c_{1}t} \leq \prod_{i=1}^{\infty} P_{t}^{a_{i},b_{i}}(x_{i}, y_{i}) \leq CE^{c_{1}t}, \ t > 0, x = (x_{1}, x_{2}, \ldots), y = (y_{1}, y_{2}, \ldots) \in [0,1]^{N}$$

for some constant $C \geq 1$, and $C = 1$ if $i_{0} = 0$. So, according to (1.4) and the definition of $\Xi_{a,b}$, the density of $P_{t}^{a,b}$ with respect to $\Xi_{a,b}$ exists and is given by

$$P_{t}^{a,b}(x, y) = \prod_{i=1}^{\infty} P_{t}^{a_{i},b_{i}}(\psi_{i}(x), \psi_{i}(y)), \ t > 0, x, y \in \Delta_{\infty}.$$

Thus, (1.8) holds.

Next, since $P_t^{a,b}$ is symmetric in $L^2(\Xi_{a,b})$, $\Xi_{a,b}$ is its invariant probability measure. Moreover, (1.8) implies the Harnack inequality

$$(P_t^{a,b} f(x))^p \leq (P_t^{a,b} f(y))^p C_{a,b}^p e^{2p\gamma(t)}, \quad t > 0, p > 1, x, y \in \bar{\Delta}_\infty$$

for all positive $f \in \mathcal{B}_b(\bar{\Delta}_\infty)$. Then, according to [18, Theorem 1.4.1(3)] or [16, Proposition 3.1(3)], $P_t^{a,b}$ has a unique invariant probability measure. Therefore, the proof of (1) is finished.

(b) Since for any $a, b > 0$ the semigroup $P_t^{a,b}$ has a continuous density with respect to $\pi_{a,b}$ (see [5, §9] as mentioned in Remark 2.1), it is strong Feller with respect to the metric ρ. So, due to the first equality in (1.1), it is strong Feller with respect to the metric d. Moreover, by the symmetry of $P_t^{a,b}$, the strong Feller property of $P_t^{a,b}$ with respect to d is not affected by changing finite many (a_i, b_i). Thus, without loss of generality, we may and do assume that $a_i \wedge b_i \geq \frac{1}{4}$ for all $i \geq 1$. In this case, (1.7) implies

$$C(t) := \sup_{i \geq 1} \frac{q^2 K_{a_i, b_i}}{\exp[2K_{a_i, b_i}^i]} < \infty, \quad t > 0.$$

Then (1.6) yields

$$(P_t^{a,b} f(x))^p \leq (P_t^{a,b} f(y))^p \exp\left[\frac{pC(t)d(x, y)^2}{p - 1}\right], \quad t > 0, x, y \in \bar{\Delta}_\infty.$$

According to [18] Theorem 1.4.1(1) or [16] Proposition 3.1(1), $P_t^{a,b}$ is strong Feller with respect to the metric d, i.e. (2) holds.

(c) Finally, as in [7, Theorem 3.1], the Poincaré inequality

$$\Xi_{a,b}(f^2) \leq \frac{1}{\lambda} \delta_{a,b}(f, f), \quad f \in \mathcal{D}(\delta_{a,b}), \Xi_{a,b}(f) = 0$$

holds. So,

$$\|P_t^{a,b} - \Xi_{a,b}\|_2 \leq e^{-\lambda t}, \quad t \geq 0,$$

where $\| \cdot \|_2$ is the L^2-norm with respect to $\Xi_{a,b}$. On the other hand, (1) implies

$$\|P_{\frac{t}{2}}^{a,b} - \Xi_{a,b}\|_{1 \rightarrow \infty} < \infty.$$

Moreover, by the symmetry of $P_t^{a,b}$, we have

$$\|P_{\frac{t}{2}}^{a,b} - \Xi_{a,b}\|_{L^1(\Xi_{a,b}) \rightarrow L^\infty(\Xi_{a,b})} = \|P_{\frac{t}{2}}^{a,b} - \Xi_{a,b}\|_{L^2(\Xi_{a,b}) \rightarrow L^\infty(\Xi_{a,b})} \leq \|P_{\frac{t}{2}}^{a,b} - \Xi_{a,b}\|_{2 \rightarrow \infty},$$

where $\| \cdot \|_{2 \rightarrow \infty}$ is defined as $\| \cdot \|_{1 \rightarrow \infty}$ using $\Xi_{a,b}(f^2) \leq 1$ in place of $\Xi_{a,b}(|f|) \leq 1$, i.e. for a linear operator P on $L^2(\Xi_{a,b})$,

$$\|P\|_{2 \rightarrow \infty} := \sup_{\Xi_{a,b}(f^2) \leq 1} \sup_{x \in \bar{\Delta}_\infty} |Pf(x)|.$$
Therefore,
\[
\| P_{t}^{a,b} - \Xi_{a,b} \|_{1 \to \infty} \leq \| P_{t}^{a,b} - \Xi_{a,b} \|_{L^1(\Xi_{a,b}) \to L^2(\Xi_{a,b})} \| P_{t}^{a,b} - \Xi_{a,b} \|_{2 \to \infty}
\]
\[
\leq \| P_{t}^{a,b} - \Xi_{a,b} \|_{2}^{2} \| P_{t}^{a,b} - \Xi_{a,b} \|_{2}^{2} \| P_{t}^{a,b} - \Xi_{a,b} \|_{2} \leq c e^{-\lambda t}
\]
holds for some constant \(c > 0 \) and all \(t \geq 1 \). Now, for any \(t \geq 1 \) and \(\varepsilon > 0 \), with \(f(z) := p_{\varepsilon}^{a,b}(z, y) \) this implies
\[
p_{t,\varepsilon}^{a,b}(x, y) = (P_{t}^{a,b} f)(x) \leq ce^{-\lambda t} \Xi_{a,b}(f) = ce^{-\lambda t}, \quad x, y \in \bar{\Delta}_{\infty}.
\]
Therefore, the proof of (3) is finished.

Proof of Corollary 1.3. By Corollary 1.2(3) and Remark 1.1(2), it suffices to prove \(\gamma(t) \leq \frac{c}{t^2} \) for some constant \(c > 0 \) and \(t \in (0, 1] \) as in this case the estimate holds for all \(t > 0 \), so that
\[
\inf_{t > 0} \left(\frac{r}{t} \exp \left[\frac{c_0\gamma(t) + \frac{t}{r} - 1}{t} \right] \right) \leq \inf_{t > 0} \left(\frac{r}{t} \exp \left[\frac{c_0c}{t^2} + \frac{t}{r} - 1 \right] \right) \leq \exp \left[\frac{C}{r^2} \right], \quad r > 0
\]
holds for some constant \(C > 0 \) by taking \(t = r^{\frac{1}{4}} \) for \(r < 1 \).

By the definition of \(K_{a_i, b_i} \) and the condition \(a_i + b_i \geq bi \) for some constant \(b > 0 \), there exist \(i_0 \in \mathbb{N} \) and a constant \(c_1 > 0 \) such that \(K_{a_i, b_i} \geq c_1 i \) for \(i \geq i_0 \). Since \(K_{a_i, b_i} \geq 0 \) and \(e^{s} \geq \frac{s}{2} e^{s/2} \) holds for \(s \geq 0 \), we get
\[
\gamma(t) \leq \frac{i_0}{t} + \sum_{i > i_0} \frac{c_1 i}{\exp[ci t]} - 1 \leq \frac{i_0}{t} + \sum_{i > i_0} \frac{2}{t} e^{-c_1 i t/2}
\]
\[
\leq \frac{i_0}{t} + \frac{2}{t} \int_{1}^{\infty} e^{-c_1 s/2} ds = \frac{i_0}{t} + \frac{4}{c_1 t^2} \leq \frac{c}{t^2}, \quad t \in (0, 1]
\]
for some constant \(c > 0 \). The proof is finished.

References

[1] M. Arnaudon, A. Thalmaier, F.-Y. Wang, Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below, Bull. Sci. Math. 130(2006), 223–233.

[2] M. Arnaudon, A. Thalmaier, F.-Y. Wang, Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds, Stoch. Proc. Appl. 119(2009), 3653-3670.

[3] R. J. Connor, J. E. Moisssmann, Concepts of independence for proportions with a generalization of the Dirichlet distribution, J. Amer. Statist. Assoc. 64(1969), 194-206.

[4] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge: Cambridge Univ. Press, 1989.
[5] C. L. Epstein, R. Mazzeo, *Wright-Fisher diffusion in one dimension*, SIAM J. Math. Anal. 42(2010), 568–608.

[6] W.J. Ewens, *Mathematical Population Genetics, Vol I* Springer-Verlag, New York, 2004.

[7] S. Feng, F.-Y. Wang, *A class of infinite-dimensional diffusion processes with connection to population genetics*, J. Appl. Probab. 44(2007), 938–949.

[8] S. Feng, W. Sun, F.-Y. Wang, F. Xu, *Functional inequalities for the two-parameter extension of the infinite-many-neutral-ales diffusion*, J. Funct. Anal. 260(2011), 399–413.

[9] F.-Z. Gong, F.-Y. Wang, *Heat kernel estimates with application to compactness of manifolds*, Quart. J. Math. 52(2001), 171–180.

[10] T. Coulhon, G. Kerkyacharian, P. Petrushev, *Heat kernel generated frames in the setting of Dirichlet spaces*, J Fourier Anal. Appl. 18(2012), 995–1066.

[11] N. Ikeda, S. Watanabe, *Stochastic Differential Equations and Diffusion Processes*, 2nd Ed. North-Holland, Amsterdam, 1989.

[12] H. Ishwaran, L. F. James, *Gibbs sampling methods for stick-breaking priors*, J. Amer. Statist. Assoc. 96(2001), 161-173.

[13] F.-Y. Wang, *Logarithmic Sobolev inequalities on noncompact Riemannian manifolds*, Probab. Theory Relat. Fields 109(1997), 417–424.

[14] F.-Y. Wang, *Functional inequalities for empty essential spectrum*, J. Funct. Anal. 170(2000), 219–245.

[15] F.-Y. Wang, *Functional inequalities, semigroup properties and spectrum estimates*, Infinite Dimensional Analysis, Quantum Probability and Related Topics 3(2000), 263–295.

[16] F.-Y. Wang, C. Yuan, *Harnack inequalities for functional SDEs with multiplicative noise and applications*, Stoch. Proc. Appl. 121(2011), 2692–2710.

[17] F.-Y. Wang, *Functional Inequality, Markov Semigroups, and Spectral Theory*, Science Press, 2005, Beijing.

[18] F.-Y. Wang, *Harnack Inequalities and Applications for Stochastic Partial Differential Equations*, Springer, 2013, Berlin.