Demonstrating Basic Properties and Application of Polarimetry Using a Self-Constructed Polarimeter

Lise Kvittingen and Birte Johanne Sjursnes

Abstract: An easily constructed and inexpensive polarimeter with an optical rotation angle resolution of about 0.5° is presented. It is made from small pieces of polarizing film, 2 LEDs, a protractor, and a few wires, all held in place with plastic interlocking toy bricks, such as Lego bricks. The instrument was used to demonstrate the optical rotation of plane polarized light as a function of concentration, path length, temperature, and wavelength, and to determine enantiomeric excess in solutions of arabinose, the amount of limonene in citrus ski wax remover, and optical rotations of various types of honeys and essential oils. Results were comparable to values obtained on a commercial scientific instrument, and with literature values.

Keywords: High School/Introductory Chemistry, First-Year Undergraduate/General, Second-Year Undergraduate, Upper-Division Undergraduate, Analytical Chemistry, Organic Chemistry, Laboratory Instructions, Hands-On Learning/Manipulatives, Chirality/Optical Activity, Spectroscopy

Introduction

Students encounter polarimetry in high school in connection with stereochemistry. The classical schematic representation of a polarimeter is illustrative and easy to understand, an asset not shared by the modern polarimeter, where basic features are hidden. Many simple, self-constructed polarimeters have been reported for use in demonstrations and student experiments.1−11 Overheads have earlier been used as a light source.2−5 These have now been replaced by LEDs,6,7 lasers,8,9 and LCD screens.10,11 We have previously published descriptions of simple instruments constructed with plastic interlocking toy bricks, such as Lego, and LEDs for UV−vis absorption and fluorescence measurements intended for student experiments.12−14 We add here polarimetry, extending the range of spectroscopic methods possible with the same basic building blocks. The polarimeter has the same layout as a classical polarimeter, making it easy to explain fundamental principles and instrumental design. It is not a black box system; it is inexpensive, easy to assemble, and flexible; can be used for many different compounds at varying concentrations; and has a precision and resolution sufficient for students’ use. This makes it a convenient device for a range of quantitative measurements.

The emphasis in this article is on the design and application of the polarimeter. First, the design is explained. Second, basic properties such as optical rotation as a function of concentration, path length, temperature, and wavelength are demonstrated. Third, applications are presented: finding the enantiomeric excess in arabinose solutions and limonene in a citrus ski wax remover as well as the optical rotation of honeys, syrups, and essential oils.

Equipment Setup

Figure 1 illustrates the arrangement of the instrument when the observer faces the detector.

It is also possible to face the light source. This can be achieved by turning the protractor and arrow toward the detector side. However, independent of which direction observations are made in, the light from the source must hit the polarizing film before the plastic sheet that constitutes the dial, as plastic films depolarize plane polarized light.

The flexibility obtained by using Lego bricks makes it simple to increase and reduce the path length and to change wavelengths. Optical rotation is often reported using the D-line of sodium at 589 nm; thus, a yellow LED with a peak \(\lambda \) at 592 nm has been used in most of the experiments here. Optical rotation readings of solutions are made relative to zero readings with solvent (or air). All readings are undertaken at minimum light intensity because readings at maximum light
intensity are less accurate.5,8 The resolution is about 0.5°; thus, small rotations have correspondingly larger error margins. See Supporting Information (SI) for detailed instructions.

The layout closely resembles the classical schematic representation of optical rotation by chiral compounds. It is easy to demonstrate that the amount of radiation (light) passing through the second polarizing film is dependent on the rotatory power of the solution in the cuvette, and the degree of rotation of the second polarizing film.

■ EXPERIMENTAL SECTION

Polarizing film was purchased from American Polarizer (AP42-007T-12X19). Polarizing films intended for physics experiments in schools (from Amazon.com, without specifications) gave almost the same results and may be used. Cuvettes/cells used were of optical glass (path length; 1.0, 2.0, 4.0, and 10.0 cm) and purchased through Amazon.com. Plastic cuvettes cannot be used as plastic depolarizes plane polarized light. For the measurement of rotation as a function of wavelength, LEDs with wavelengths in the range 405–660 nm were used. For all other experiments, a yellow LED with a peak lambda of 592 nm and a bandwidth of 20 nm was used. See SI for more information and instructions for making the protractor, plastic dial, and pieces of polarizing film; for assembling the instrument; and for performing measurements.

Solutions were made of fructose, sucrose, arabinose, limonene, citrus ski wax remover, and some of the honeys and syrups. The essential oils were used neat. See SI for detailed information.

Rotation measurements were made at minimum light transmission (lowest reading of the voltmeter connected to the detector LED) in a dimly lit room. Control measurements were regularly performed on a commercial scientific instrument (Anton Paar MCP 5100, 589 nm) for comparison. Measurements were made at ambient temperature (20–23 °C), unless otherwise stated. This is in the same range as the literature values.

■ HAZARDS

With respect to chemicals, the following apply: The carbohydrates are nonhazardous. Limonene, ethanol, citrus ski wax remover, and essential oils are both flammable and irritating. The preparation of solutions of limonene and citrus ski wax remover in ethanol and measurements of these solutions and essential oils require a properly ventilated location, preferably a fume hood. Goggles, gloves, and lab coat should be used. Experiments with sugars in water represent no hazards. Use a lid or something similar like a microscope slide to cover the cuvette if necessary.

There are no hazards in constructing the device. None of the LEDs used here are in a wavelength range harmful to the eyes. However, the contrast between the light source and the environment can be strong in dim lighting, especially for high intensity LEDs. We advise to build extra walls of Lego-bricks or to cover with small pieces of material to shield the light. This is not a problem with the 592 nm yellow LED used in most experiments. The LEDs are cold-running and will not get warm. The voltage used is low, and the risk associated with this voltage is minimal.

■ BASIC PROPERTIES: OPTICAL ROTATION VS CONCENTRATION, PATH LENGTH, TEMPERATURE, AND WAVELENGTH

Optical rotation measurements as a function of concentration were performed with (R)- and (S)-limonene (Figure 2). The linearity between concentration and observed rotation is good for both enantiomers.

Optical rotation as a function of path length and temperature was determined using d-fructose, increased with path length (Figure 3), and decreased with temperature (Figure 4).

Optical rotatory dispersion (ORD) is often demonstrated simply as a color change when white light is rotated by a solution of a chiral compound.2,3,15 With LEDs of different wavelengths, this can easily be done quantitatively. Specific rotation as a function of wavelength (ORD) was determined for both d-fructose and d-sucrose. Specific rotations were calculated from observed optical rotation according to eq 1 where [α] is specific rotation, α is observed optical rotation, l is the length of the cuvette in dm, and c is the concentration in g/mL.

$$[\alpha] = \frac{\alpha}{l \times c}$$

(1)

Specific rotation increased with decreasing wavelength (Figure 5) displaying a plain ORD curve. The results are in
accordance with literature values.11,16−19 Extracted values for D-sucrose from Figure 4 in Mahurin et al.16 are included in Figure 5 for comparison.

\section*{SOME APPLICATIONS OF POLARIMETRY}

We present here identification of unknown samples of D-fructose, D-sucrose, and D-glucose; quantification of (R)-limonene in citrus ski wax remover; and determination of enantiomeric excess in a mixture of D- and L-arabinose, as well as discovery of chirality in natural compounds, such as honeys, syrups, and essential oils.

\subsection*{Identification}

Identification of unknown solutions of carbohydrates such as glucose, fructose, and sucrose by polarimetry is a common laboratory exercise.20 Unknown solutions of D-fructose, D-sucrose, and D-glucose were measured by students on the self-constructed polarimeter, and by the teacher both on the self-constructed polarimeter and on a commercial polarimeter (Anton Paar). The results are shown in Table 1 together with literature values. The calculated specific rotations for the student measurements agreed well with both the teacher’s results, measurements on a commercial instrument and literature values. Experimental details are given in SI, section 5.3.

\subsection*{Quantification}

Quantification has been done by determining the content of (R)-limonene in citrus ski wax remover. Limonene is mostly known as a fragrance and a flavor, but it is also used as a green solvent with a number of different applications including cleaning products, and it is being explored as a starting material and for use in functionalized foods.21 The amount of limonene was calculated to be 25\% using Figure 2 as the calibrating curve. See SI section 5.4 for experimental details.

\section*{Table 1. Optical Rotation Data for Identification of Unknown Sugar Solutions}

Solution	Student Result α (°)	Teacher α (°)	Anton Paar α (°)	Literature Value α (°)
(A) D-−−-Fructose	$-94.8^\circ \pm 3.3$	-93.5°	-93.7°	$-92^\circ \pm 2$
(B) D-+-Sucrose	$+66.5^\circ \pm 2.5$	$+66.8^\circ$	$+65.9^\circ$	$+66.5^\circ \pm 1$
(C) D-+-Glucose	$+52.9^\circ \pm 2.2$	$+54.5^\circ$	$+53.6^\circ$	$+53^\circ \pm 2$

aThe source for these values is Sigma-Aldrich (now Merck). Temperature: 20°C. Preparation: 10\% in H$_2$O.
Enantiomeric Excess

Determination of enantiomeric excess is an important application in organic chemistry. Most carbohydrates exist in nature almost exclusively as the D-enantiomer making it expensive to purchase the “unnatural” L-enantiomer. Arabinose, on the other hand, exists as both enantiomers in nature. The L-enantiomer is the most common and is found in hemicelluloses, pectin, and gums and is easily obtainable. The D-enantiomer is synthesized from D-glucose and can also be purchased at a reasonable price. L-Arabinose is sometimes used as “sugar replacement”, as it apparently inhibits uptake of sucrose. Arabinose is harmless and water-soluble and has a high specific optical rotation. It is therefore a suitable compound for investigating quantitative aspects such as enantiomeric excess (ee, most commonly given in %) in a mixture of enantiomers. The results from measuring commercial samples of L- and D-arabinose, a mixture of L- and D-arabinose, together with literature values for the enantiomers are presented in Table 2.

Table 2. Optical Rotation Data of L-(+)- and D-(−)-Arabinose

Solution (20% in H2O)	Optical Rotation α (deg)	Specific Optical Rotation [α]D25 (deg)	Literature Valueα	Calculated Optical Rotation α (deg)
L-(+) Arabinose	+21	+105	+103 to +105	
D-(−) Arabinose	−19.5	−97.5	−105 to −103	
L-(+) Arabinose: d<–>l-Arabinos	+10.5	+52.5		
e = 3:1				

“The source for these values is Sigma-Aldrich (now Merck). Temperature: 20 °C. Preparation: 10% in H2O for L-(+)-arabinose and 4% in H2O for D-(−)-arabinose. The mixture was also measured on an Anton Paar (589 nm) instrument, resulting in a specific optical rotation of +52.1°.

Enantiomeric excess in percent is calculated according to eq 2:

\[
\text{ee} = \frac{[\alpha]D_{\text{mixture}}}{[\alpha]D_{\text{pure enantiomer}}} \times 100\% \tag{2}
\]

As seen in Table 2, the specific optical rotation [α]D of the mixture of L- and D-arabinose is +52.5°, showing an excess of the L-(+)-enantiomer. Using [α]D = +105° for the L-enantiomer gives ee = 50% which is in accordance with the prepared mixture of 25% L- and 75% D-arabinose. It is simple for the teacher to hand out a range of mixtures and let the students determine the enantiomeric excess (ee) using the self-constructed polarimeter.

Honeys and Syrups

Polarimetry is used frequently in the sugar industry. Having performed measurements with glucose, fructose, and sucrose, it makes sense to continue with an industrial application of polarimetry on sugar-containing compounds such as in analyses of honeys and syrups.

As these viscous liquids can be somewhat nontransparent in the visual (VIS) region of the electromagnetic spectrum but transparent in the near-infrared (NIR) region, NIR polarimetry is preferred for accurate measurements. Nevertheless, it is possible to apply VIS polarimetry semiquantitatively directly. Honeys and syrups rotate plane polarized light both to the left (levorotatory, −) and right (dextrorotatory, +) mirroring predominantly the amount of d-glucose (+), D-sucrose (+), and D-fructose (−) in them. Honey is a complex mixture. However, fructose dominates in floral honey, and in general, the net optical rotation will be levorotatory. In honeydew, on the other hand, glucose together with other strongly dextrorotatory carbohydrates make the total optical rotation dextrorotatory. Honeydew is not produced from flower nectar like floral honey, but from secretions of living plants or excretions from plant-sucking insects on plants. If a honey is dextrorotatory, it could also be adulterated honey.

In our case (see Table 3), three of the honeys were levorotatory, consistent with floral honeys, while the fourth (Serbian honey) was dextrorotatory and is most likely honeydew.

Table 3. Optical Rotation Data from Some Honeys and Syrups

Type of Honey/Syrup	Calculated Optical Rotation α (deg)
Kjartan’s honey dew/forest honey	−8
Liquid mountain honey European acacia	−6
Kjartan’s raspberry honey	−4
Serbian forest honey	+4
Lyle golden syrup	+12.5
Maple syrup Winnitou	+22

Syrups are dextrorotatory containing relatively more sucrose and glucose than fructose; however, there are also different types of syrups. Golden syrups are generally made from refiners’ return syrup (leftover liquid with sucrose from production of white sugar from sugar canes) where most of the sucrose is hydrolyzed (inverted) to glucose and fructose. Maple syrup is concentrated maple sap that has not been hydrolyzed and contains mostly sucrose and only small amounts of fructose and glucose. These relative amounts of sucrose, fructose, and glucose are reflected in the optical rotations where Lyle golden syrup has a lower rotation than maple syrup due to the higher content of fructose. See SI section 5.9 for experimental details.

Enantiomers and Essential Oils

Nature is an important pool for chiral compounds. Chiral fragrant compounds are often used in organic chemistry textbooks to explain different activities of enantiomers in biological systems. The significance of course greater for chiral drugs, but with fragrant compounds the students can themselves experience the difference. Olfactory discrimination of enantiomers is an intriguing field.

Most known are perhaps carvone and limonene. (R)-(−)-Carvone has a sweet mint smell and is naturally found in spearmint oil. (S)-(+)−Carvone has a more spicy smell and is the major compound in oil from caraway seeds. Limonene is even more common. (R)-(−)-Limonene is the major component in oil from citrus peel and is in particular associated with oranges. (S)-(−)-Limonene has a more piney and turpentine smell.

Many essential oils contain fragrant chiral compounds, and they rotate plane polarized light both levorotatory and dextrorotatory. Measuring the optical rotation of essential oils shows the diversity of optically active compounds in natural compounds. These oils also lend themselves to investigation, combining a literature study about chiral...
Table 4. Optical Rotation of Some Essential Oils at 592 nm in a 4 cm Cuvette

Essential Oil, Species (Supplier)	Optical Rotation \(\alpha\) (deg), Neat	Major Chiral Compounds	Literature Value\(^{\text{a}}\) \(\alpha\) (deg)	Preparation
Eucalyptus oil, Eucalyptus globulus (Karlo Pharma)	+2	(+)-\(\alpha\)-Pinene\(^{d}\)	+50.7 Neat	
Peppermint oil, Mentha piperita (Karlo Pharma)	\(-9.5\) to \(-10\)	(\(-\)-\(\alpha\)-Menthol	\(-49.5\) 10% in ethanol	
Lavender oil, Lavandula angustifolia (Teleurt)	\(-3.5\) to \(-4\)	(\(-\)-\(\alpha\)-Linalool	\(-20\) Neat	
Caraway oil, Carum carvi (Carl Roth)	+29	(\(+\)-\(\alpha\)-Carvone	+55 Neat	
Black spruce oil, Pinus mariana (Teleurt)	\(-11\)	(\(+\)-\(\alpha\)-Limonene	+115 10% in ethanol	
Pine needle oil, Pinus sylvestria (Teleurt)	\(-8\)	(\(+\)-\(\alpha\)-Pinene	+50.7 Neat	
Orange Douce oil, Citrus sinensis (Florame)	+40	(\(-\)-\(\alpha\)-Pinene	+50.7 Neat	
Lemon oil, Citrus limon (Florame)	+25	(\(-\)-\(\alpha\)-Pinene	+50.7 Neat	
Mandarin oil, Citrus reticulata (Pima)	+31	(\(+\)-\(\beta\)-Pinene	+36 Neat	

\(^{\text{a}}\)The source for these values is Sigma-Aldrich (now Merck) except for the two marked with an asterisk for which the source is PubChem. Temperature: \(20\)–\(25\) °C. Preparation: as stated in the last column. \(^{\text{b}}\)See refs 54–56. \(^{\text{c}}\)See refs 57–59. \(^{\text{d}}\)See refs 60–65. \(^{\text{e}}\)See refs 49 and 66–68. \(^{\text{f}}\)See refs 69–72. \(^{\text{g}}\)See ref 73. \(^{\text{h}}\)See ref 76. \(^{\text{i}}\)See refs 76 and 77.

compounds in oils, their uses, and practical experiments for their extraction.\(^{50–53}\) To facilitate exploration, the measured optical rotations of some essential oils together with their major chiral compounds as found in literature reports are given in Table 4. The net rotation is, of course, dependent on all chiral compounds present, and their relative amounts. There is no simple direct correlation between the net rotation of the essential oils and the compounds included in Table 4. The exact amounts of different compounds can vary depending on season, variety, and origin and so may also the optical rotation.

SUMMARY

A simple, inexpensive, and flexible polarimeter was made from two LEDs, a polarizing film, a few wires, a single resistor, a battery, a few Lego bricks, and one multimeter. This polarimeter is used to demonstrate basic properties of polarimetry such as optical rotation as a function of concentration, path length, temperature, and wavelength, as well as to investigate some applications such as determining the enantiomeric excess in a solution of arabinose, the amount of limonene in citrus ski wax remover, and the optical rotations of syrups, honeys, and essential oils.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available at https://pubs.acs.org/doi/10.1021/acs.jchemed.9b00763.

Instructions and patterns for building the polarimeter, and experimental details (PDF, DOCX)

AUTHOR INFORMATION

Corresponding Author

Birte Johanne Sjursnes – Faculty of Engineering, Ostfold University College, 1757 Halden, Norway; orcid.org/0000-0002-8206-4133; Email: birte.sjursnes@hiof.no

Author

Lise Kvittingen – Department of Chemistry, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway; orcid.org/0000-0002-0151-1852

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jchemed.9b00763

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors are grateful to Mickaël Fontaine for graphical artwork, to Richard Verley for scientific discussions, to a vigilant referee, and to the library service at NTNU.

REFERENCES

(1) Shavitz, R. An Easily Constructed Student Polarimeter. J. Chem. Educ. 1978, 55 (10), 682.
(2) Kinney, J. B.; Skinner, J. F. A Device for Easy Demonstration of Optical Activity and Optical Rotatory Dispersion. J. Chem. Educ. 1977, 54 (8), 494.
(3) Dorn, H. C.; Bell, H.; Birkett, T. A Simple Polarimeter and Experiments Utilizing an Overhead Projector. J. Chem. Educ. 1984, 61 (12), 1106–1107.

(4) Mehta, A.; Greenbode, T. J. A Shoebox Polarimeter: An Inexpensive Analytical Tool for Teachers and Students. J. Chem. Educ. 2011, 88 (8), 1194–1197.

(5) Breton, G. W. An Inexpensive Homemade Polarimeter for Demonstration Use in the Classroom. J. Lab. Chem. Educ. 2015, 3 (1), 7–11.

(6) Isaacs, M. S. Two Readily-Constructed Instruments for Teaching Laboratory. J. Chem. Educ. 1983, 60 (7), 607–610.

(7) Stary, J. E.; Woldow, W. Build a Simple Polarimeter. J. Chem. Educ. 2001, 78 (5), 644.

(8) Darveau, S. A.; Mueller, J.; Vaverka, A.; Barta, C.; Fitch, A.; Jurzenksi, J.; Gind, Y. A Modular Laser Apparatus for Polarimetry, Nephelometry, and Fluorimetry in General Chemistry. J. Chem. Educ. 2004, 81 (3), 401–405.

(9) Lisboa, P.; Sotomayor, J.; Ribeiro, P. A New Cost-Effective Diode Laser Polarimeter Apparatus Constructed by Undergraduate Students. J. Chem. Educ. 2010, 87 (12), 1408–1410.

(10) Schwartz, P. M.; Lepore, D. M.; Morneau, B. N.; Barratt, C. Demonstrating Optical Activity Using an iPad. J. Chem. Educ. 2011, 88 (12), 1692–1693.

(11) Thomson, P. I. T. Is That a Polarimeter in Your pocket? A Simple, Small-Scale Lego Colorimeter with a Light-Emitting Diode (LED) Used as Detector. J. Chem. Educ. 2014, 91 (7), 1037–1039.

(12) Knittingen, E. V.; Knittingen, L.; Verley, R. L. P. A Simple, Small-Scale Lego Colorimeter with a Light-Emitting Diode (LED) Used as Detector. J. Chem. Educ. 2016, 93 (10), 1814–1817.

(13) Knittingen, E. V.; Knittingen, L.; Melo, T. B.; Sjursnes, B. J.; Verley, R. L. P. Demonstrating Basic Properties of Spectroscopy Using a Self-Constructed Combined Fluorimeter and UV-Photometer. J. Chem. Educ. 2017, 94 (10), 1486–1491.

(14) Koubek, E.; Quinn, H. Change in Optical Rotation with Wavelength. J. Chem. Educ. 1989, 66 (10), 853.

(15) Mahurin, S. M.; Compton, R. N.; Zare, R. N. Demonstration of Optical Rotatory Dispersion of Sucrose. J. Chem. Educ. 1999, 76 (9), 1234–1236.

(16) Soetedjo, H.; Ra, C.; Barta, Z. Arabinose biopurification by Ogataea szoltii yeast. In Chemical Engineering Conference; University of Pannonia: Veszprém, Hungary, 2016; pp 82–86.

(17) Monrad, R. N.; Madsen, R. Modern methods for shortening and extending the carbon chain in carbohydrates at the anomeric center. Tetrahedron 2011, 67 (46), 8825–8850.

(18) Hourdin, G.; Germain, A.; Moreau, C.; Fajula, F. The Catalysis of the Buff Oxidative Degradation of Aldonic Acids by Copper(I)-Containing Solids. J. Catal. 2002, 209 (1), 217–224.

(19) Jičíčný, V.; Staněk, V. Preparation of D-Arabinose in a Laboratory Fluidized Bed Electrode. Collect. Czech. Chem. Commun. 1995, 60 (5), 863–874.

(20) Krog-Mikkelsen, I.; Hels, O.; Tetens, I.; Holst, J. J.; Andersen, J. R.; Bukhave, K. The effects of L-arabinose on intestinal sucrase activity: dose-response studies in vitro and in humans. Am. J. Clin. Nutr. 2011, 94 (2), 472–478.

(21) Horwitz, W. Sugar and Sugar Products. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, 2000; Chapter 44, pp 4–7, 24.

(22) Bogdanov, S.; Martin, P.; Lüllmann, C. Harmonised methods of the European Honey Commission. Apidologie 1997, No. extra issue, 1–59. http://www.ihc-platform.net/ihcmethods2009.pdf (accessed 2020-06-07).

(23) International Commission for Uniform Methods of Sugar Analysis. ICUMSA Methods Book; 2017; Methods GS1/2/3-9/1, GS1/2-3/1, GS3-1, GS4/7-1, GS6-1, GS7-5, GS7/7/5-5/2. https://www.icumsa.org/index.php?id=103 (accessed 2020-06-07).

(24) Pigman, W. The Carbohydrates: Chemistry, Biochemistry, Physiology; Academic Press Inc.: New York, 1957; pp 610–612.

(25) Bogdanov, S.; Ruoff, K.; Persano Oddo, L. Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie 2004, 35 (Suppl.1), S4–S17.

(26) García-Alvarez, M.; Ceresuela, S.; Huidobro, J. F.; Hermita, M.; Rodríguez-Otero, J. L. Determination of Polarimetric Parameters of Honey by Near-Infrared Transflectance Spectroscopy. J. Agric. Food Chem. 2002, 50 (3), 419–425.

(27) Pita-Calvo, C.; Vazquez, M. Differences between honeydew and blossom honeys: a review. Trends Food Sci. Technol. 2017, 59, 79–87.

(28) Taylor, J. What is Honey Made of? The Optical Rotation of Sugars. In Search of More Solutions; Royal Society of Chemistry Education Resources, 1992; Vol. 15, experiment 14, pp 94–95.

(29) Clarke, M. A. Encyclopedia of Food Science and Nutrition, 2nd ed.; Academic Press, 2003; Syrups, pp 5711–5717.

(30) Varazkas, T.; Labropoulos, A.; Anestis, S. Sweeteners: Nutritional Aspects, Applications, and Production Technology; CRC Press, 2012; Chapter 6, Syrups: pp 160, 168.

(31) Stuckel, J. G.; Low, N. H. The chemical composition of 80 pure maple syrup samples produced in North America. Food Res. Int. 1996, 29 (3–4), 373–379.

(32) Ball, D. W. The Chemical Composition of Maple Syrup. J. Chem. Educ. 2007, 84 (10), 1647–1650.

(33) Perkins, T. D.; van den Berg, A. K. Chapter 4 Maple Syrup — Production, Composition, Chemistry, and Sensory Characteristics. Adv. Food Nutr. Res. 2009, 56, 101–143.

(34) Laska, M.; Teubner, P. Olfactory Discrimination Ability of Human Subjects for Ten Pairs of Enantiomers. J. Chem. Technol. Biotechnol. 1999, 74 (3), 241–245.

(35) Bentley, R. The Nose as a Stereochimist. Enantiomers and Odor. Chem. Rev. 2006, 106 (9), 4099–4112.

(36)_sell, C. S. Chemistry and the Sense of Smell; John Wiley & Sons: NJ, 2014; pp 188–208.

(37) Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Engel, R. G. Introduction to Organic Laboratory Techniques: A Small Scale Approach, 2nd ed.; Thomson-Brooks/Cole: USA, 2005; pp 108–118.

(38) Leitger, T. J.; Guadagni, D. G.; Harris, J.; Mon, T. R.; Teranishi, R. Chemical and sensory data supporting the difference
between the odors of the enantiomeric carvones. *J. Agric. Food Chem.* **1971**, *19* (4), 785–787.

(49) König, W. A.; Krebber, R.; Evers, P.; Bruhn, G. Stereochemical Analysis of Constituents of Essential Oils and Flavor Compounds by Enantioselective Capillary Gas Chromatography. *J. High Resolut. Chromatogr.* 1990, *13* (5), 328–332.

(50) Nimitz, J. S. *Experiments in Organic Chemistry: From Microscale to Macroscale*, 1st ed.; Prentice Hall, 1991; pp 196–208.

(51) Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Engel, R. G. *Introduction to Organic Laboratory Techniques: A Small Scale Approach*, 2nd ed.; Thomson - Brooks/Cole: USA, 2005; pp 101–119, 523–528, 786–794, 857–866.

(52) Doyle, M. P.; Mungall, W. S. *Experimental Organic Chemistry*, John Wiley & Sons, 1980; pp 61–80.

(53) Finefield, J. M.; Sherman, D. H.; Kreitman, M.; Williams, R. M. *Enantiomeric Natural Products: Occurrence and Biogenesis. Angew. Chem., Int. Ed. 2012, *51* (20), 4802–4806.

(54) Silvestre, A. J. D.; Cavaleiro, J. A. S.; Delmonde, B.; Filliatre, C.; Bourgeois, G. *Analysis of the variation of the essential oil composition of Eucalyptus globulus Labill. from Portugal using multivariate statistical analysis. Ind. Crops Prod.* 1997, *6* (1), 27–33.

(55) Sebei, K.; Sakouhi, F.; Herchi, W.; Khouja, M. L.; Boukhchina, S. Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. *Biol. Res.* 2015, *48*, 7.

(56) Kreck, M.; Scharrer, A.; Bilke, S.; Mosandl, A. *Enantiomeric analysis of monoterpene compounds in essential oils by stir bar sorptive extraction (SBSE)—enantio-MDGC—MS. Flavour Fragrance J.* 2002, *17* (1), 32–40.

(57) Rohloff, J. *Monoterpene Composition of Essential Oil from Peppermint (Mentha × piperita L.) with Regard to Leaf Position Using Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry Analysis. J. Agric. Food Chem.* 1999, *47* (9), 3782–3786.

(58) Verma, R. S.; Rahman, L.; Verma, R. K.; Chauhan, A.; Yadav, A. K.; Singh, A. *Essential Oil Composition of Menthol Mint (Mentha arvensis) and Peppermint (Mentha piperita) Cultivars at Different Stages of Plant Growth from Kumaon Region of Western Himalaya.* *J. Med. Aromat. Plants* 2010, *1* (1), 13–18.

(59) Bicchi, C.; Pisciotta, A. *Use of two-dimensional gas chromatography in the direct enantiomer separation of chiral essential oil components. J. Chromatogr. A* 1990, *508*, 341–348.

(60) Shellie, R.; Mondello, L.; Marriott, P.; Dugo, G. Characterisation of lavender essential oils by using gas chromatography–mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. *J. Chromatogr. A* 2002, *970* (1–2), 225–234.

(61) Marincas, O.; Feher, I. *A new cost-effective approach for lavender essential oils quality assessment. Ind. Crops Prod.* 2018, *125*, 241–247.

(62) Casabianca, H.; Graff, J. B.; Faugier, V.; Fleig, F.; Grenier, C. *Enantiomeric Distribution Studies of Linalool and Linalyl Acetate. A Powerful Tool for Authenticity Control of Essential Oils. J. High Resolut. Chromatogr.* 1998, *21* (2), 107–112.

(63) Renaud, E. N. C.; Charles, D. J.; Simon, J. *E. Essential Oil Quantity and Composition from 10 Cultivars of Organically Grown Lavender and Lavandin. J. Essent. Oil Res.* 2001, *13* (4), 269–273.

(64) Baser, K. H. C.; Ozek, T.; Konakchiev, A. *Enantiomeric Distribution of Linalool, Linalyl Acetate and Camphor in Bulgarian Lavender Oils. J. Essent. Oil Res.* 2005, *17* (2), 135–136.

(65) Ravid, U.; Putievsky, E.; Katzir, I. *Stereochemical Analysis of Borneol in Essential Oils Using Permethylated β-Cyclocitral as a Chiral Stationary Phase. Flavour Fragrance J.* 1996, *11* (3), 191–195.

(66) Laribi, B.; Kouki, K.; Mougou, A.; Marzouk, B. Fatty acid and essential oil composition of three Tunisian caraway (*Carum carvi L.*) seed ecotypes. *J. Sci. Food Agric.* 2010, *90* (3), 391–396.

(67) Zawirska-Wojtasia, R.; Wasowicz, E. *Enantiomeric composition of limonene and carvone in seeds of dill and caraway grown in Poland.* *Polish J. Food Nutr. Sci.* 2000, *50* (3), 9–13.

(68) Bouwmeester, H. J.; Davies, J. A. R.; Toxopeus, H. *Enantiomeric composition of carvone, limonene, and carveol in seeds of dill and annual and biennial caraway varieties. J. Agric. Food Chem.* 1995, *43* (12), 3057–3064.

(69) Garneau, F.-X.; Collin, G.; Gagnon, H.; Pichette, A. *Chemical Composition of the Hydrosol and the Essential Oil of Three Different Species of the Pinaceae Family: Picea glauca (Moench) Voss., Picea mariana (Mill.) B.S.P., and Abies balsamea (L.) Mill. J. Essent. Oil-Bear. Plants* 2012, *15* (2), 227–236.

(70) Kocak, A.; Klic, O. *Identification of Essential Oil Composition of Four Picea Mill. (Pinaceae) Species from Canada.* Journal of Agricultural Science and Technology B 2014, *4* (3), 209–214.

(71) Poaty, B.; Lahlah, J.; Porqueres, F.; Bouaffi, H. *Composition, antimicrobial and antioxidant activities of seven essential oils from the North American boreal forest. World J. Microbiol. Biotechnol.* 2015, *31* (6), 907–919.

(72) Brockerhoff, E. G. *Host Location and oviposition in Strobilomia spp., (Diptera: Anthommiidae), infesting spruce cones. PhD dissertation, University of Toronto: Ontario, 1998; pp 45–47.

(73) Joannou, E.; Koutsaviti, A.; Tsakou, O.; Roussis, V. *The genus Pinus: a comparative study on the needle essential oil composition of 46 pine species.* *Phytochem. Rev.* 2014, *13* (4), 741–768.

(74) Sjödin, K.; Persson, M.; Borg-Karlsson, A.-K.; Norin, T. *Enantiomeric Composition of Monoterpenic Hydrocarbons in Different Tissues of Four Individuals of Pinus Sylvestris.* *Phytochemistry* 1996, *41* (2), 439–445.

(75) Ochocka, R. J.; Azsemborska, M.; Sybilsk, D.; Langs, W. *Determination of Enantiomers of Terpenic Hydrocarbons in Essential Oils Obtained from Species of Pinus and Abies. Pharm. Biol.* 2002, *40* (5), 395–399.

(76) Bonaccorsi, I.; Sciaricone, D.; Cotonoreo, A.; Mondello, L.; Dugo, P.; Dugo, G. *Enantiomeric distribution of key volatile components in Citrus essential oils.* *Rev. Bras. Farmacogn.* 2011, *21* (5), 841–849.

(77) Gok, A.; Ismail Kirbaslar, S.; Gulay Kirbaslar, F. *Comparison of lemon oil composition after using different extraction methods. J. Essent. Oil Res.* 2015, *27* (1), 17–22.