A forcing extension in which no absolute κ-Borel set of density $\kappa \in (\aleph_1, c)$ condenses onto compacta

Alexander V. Osipov

Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, Yekaterinburg, Russia

Abstract

It is consistent that the continuum be arbitrary large, there is a forcing extension in which no absolute κ-Borel set X of density κ, $\aleph_1 < \kappa < c$, condenses onto a compact metric space.

Keywords:

2020 MSC: 57N17, 57N20, 54C10, 54E99

1. Introduction

The density $d(X)$ of a topological space X is the smallest cardinality of a dense subset of X. The cardinal function $w(X)$ is the weight of X, which is defined by $w(X) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a base for } X\} + \omega$. For a metrizable space X, we have $d(X) = w(X)$.

Recall that the family of hyper-Borel sets of X, denoted $HB(X)$, to be the smallest family of subsets of X which contains (i) the open sets of X, (ii) $X \setminus B$ whenever $B \in HB(X)$, and (iii) $\bigcup B_t$ whenever each $B_t \in HB(X)$ and $\{B_t\}$ is a σ-discrete family of subsets of X. A set $B \subset X$ is called κ-Borel if B is hyper-Borel in X of class α for some ordinal α of cardinal $\leq \kappa$. The \aleph_0-Borel sets are the ordinary Borel sets [4].

A space X is called absolute κ-Borel, if X is homeomorphic to a κ-Borel subset of some complete metrizable space. Thus, absolute \aleph_0-Borel sets are the ordinary absolute Borel sets.

Since metrizable compact spaces have cardinality at most continuum, every metric space admitting a condensation (i.e. a bijective continuous...
mapping) onto a compactum (= compact metric space) has density at most continuum.

Let $\text{FIN}(\kappa, 2)$ be the partial order of finite partial functions from κ to 2, i.e., Cohen forcing.

Proposition 1.1. (Corollary 3.13 in [1]) Suppose M is a countable transitive model of $\text{ZFC} + \text{GCH}$. Let κ be any cardinal of M of uncountable cofinality which is not the successor of a cardinal of countable cofinality. Suppose that G is $\text{FIN}(\kappa, 2)$-generic over M, then in $M[G]$ the continuum is κ and for every uncountable $\gamma < \kappa$ if $F : \gamma^\omega \to \omega^\omega$ is continuous and onto, then there exists a $Q \in [\gamma]^\omega$ such that $F(Q^\omega) = \omega^\omega$.

2. Main result

Theorem 2.1. It is consistent that the continuum be arbitrary large, there is a forcing extension in which no absolute κ-Borel set X of density κ, $\aleph_1 < \kappa < \aleph_2$, condenses onto a metrizable compact space.

Proof. Suppose M is a countable transitive model of $\text{ZFC} + \text{GCH}$. Suppose that G is $\text{FIN}(\kappa, 2)$-generic over M (Proposition 1.1).

The proof of Theorem 3.7 in [3] uses Cohen reals, but the same idea shows that this generic extension has the property that

(*) for every family \mathcal{F} of Borel subsets of ω^ω with size $\aleph_1 < |\mathcal{F}| < \aleph_2$, if $\bigcup \mathcal{F} = \omega^\omega$ then there exists $\mathcal{F}_0 \in [\mathcal{F}]^{\omega_1}$ with $\bigcup \mathcal{F}_0 = \omega^\omega$ (see Proposition 3.14 in [1]).

Fix $\aleph_1 < \kappa < \aleph_2$. Let X be an absolute κ-Borel set of density κ.

Assume that there is a condensation g of X onto a compact metric space K. Since X is an absolute κ-Borel set of density κ there is a continuous bijection $f : A \to X$ where A is a closed subset of κ^ω (Theorem 5 in [4]) and a continuous surjection $q : \kappa^\omega \to A$ (Theorem 4 in [3]). Since f is a continuous bijection and $d(X) = \kappa$, $d(A) = \kappa$.

Then we have the continuous bijection $h = g \circ f : A \to K$ from A onto K.

Let $\sum = [\kappa]^\omega \cap M$. Note that $|\sum| < \aleph_2$ since in M, $|\kappa^\omega| > \kappa$ if and only if κ has cofinality ω, but in that case $|\kappa^\omega| = |\kappa^+| < \aleph_2$. Since the forcing is c.c.c. $M[G] \models \kappa^\omega = \bigcup \{Y^\omega : Y \in \sum\}$.

Let $\sum' := \{Y \in \sum : Y^\omega \cap A \neq \emptyset\}$. For any $Y \in \sum'$ the continuous image $h(Y^\omega \cap A)$ (note that $Y^\omega \cap A$ is Polish because A is closed) is an analytic
set (a Σ^1_1 set) and, hence the union of ω_1 Borel sets in K (see Ch.3, § 39, Corollary 3 in [2]).

Thus $h(Y^\omega \cap A) = \bigcup\{B(Y, \beta) : \beta < \omega_1\}$ where $B(Y, \beta)$ is a Borel subset in K for each $Y \in \sum'$ and $\beta < \omega_1$.

Let $\theta = \min\{|S| : S \subseteq \{B(Y, \beta) : Y \in \sum', \beta < \omega_1\}\}$ and $\bigcup S = K$. Note that $\theta \leq |\sum'| \leq |\sum| < c$.

Claim 1. $\theta \geq \kappa$.

Assume that $\theta < \kappa$. Let $S = \{B(Y_\zeta, \beta_\zeta) : \zeta \in \theta\}$. Consider a function $\phi : \{B(Y_\zeta, \beta_\zeta) : \zeta \in \theta\} \to \sum'$ such that $\phi(B(Y_\zeta, \beta_\zeta)) = Y_\zeta \in \sum'$ where $h(Y_\zeta, Y_\zeta) \cap A)$ contains in decomposition the set $B(Y_\zeta, \beta_\zeta)$ and $\zeta \in \theta$. Since h is a condensation and $K = \bigcup\{h(Y_\zeta, \zeta, A) : \zeta \in \theta\}$, $X = \bigcup\{f(Y_\zeta) : \zeta \in \theta\}$ and $A \subseteq \bigcup\{Y_\zeta, \zeta \in \theta\}$.

Let $Q = \bigcup\{Y_\zeta, \zeta \in \theta\}$ then $Q \in [\kappa]^{<\theta}$. Note that $A \subseteq \bigcup\{Y_\zeta, \zeta \in \theta\} \subseteq \bigcup\omega, \omega \subset \kappa^\omega$ and $w(Q^\omega) \leq \theta$. Since f is continuous, $w(f(Q^\omega)) \leq w(Q^\omega)$. But $\kappa = w(X) = w(f(Q^\omega)) \leq w(Q^\omega) \leq \theta$ is a contradiction.

Thus, $\kappa \leq \theta \leq |\sum| < c$.

Since K is Polish, there is a continuous surjection $p : \omega^\omega \to K$. Given a family $\mathcal{F} = \{p^{-1}(B(Y_\zeta, \beta_\zeta) : \zeta \in \theta\}$ of θ-many Borel sets ($\aleph_1 < \theta < c$) whose union is ω^ω.

By property (\star), there is a subfamily $\mathcal{F}_0 = \{F_\alpha : F_\alpha = p^{-1}(B(Y_\zeta, \beta_\zeta) : \alpha < \omega_1\}$ of size ω_1 whose union is ω^ω. Then the family $\{B(Y_\zeta, \beta_\zeta) : \alpha < \omega_1\}$ of size ω_1 whose union is K. It follows that $\theta \leq \aleph_1$, by Claim 1, it is a contradiction.

Proposition 2.2. There is a forcing extension in which for any $\kappa \in (\aleph_1, c)$ there exists a metric space X of density κ such that X condenses onto $[0, 1]$ but any completion \tilde{X} of X is not condensed onto a metrizable compact space.

Consider the forcing extension in Theorem 2.1. Let $[0, 1] = \prod\{A_\alpha : \alpha \in \kappa\}$ be a partition such that A_α is dense in $[0, 1]$ for each $\alpha \in \kappa$. Let $X = \bigoplus\{A_\alpha : \alpha \in \kappa\}$. Clear that X condenses onto $[0, 1]$, but any completion \tilde{X} of X is an absolute Borel set of density κ. Hence, by Theorem 2.1 \tilde{X} is not condensed onto a metrizable compact space.

References

[1] W.R. Brian, A.W. Miller, Partitions of 2^ω and completely ultrametrizable spaces, Topology and its Applications, 184 (2015), 61–71.
[2] K. Kuratowski, Topology I, Academic Press, New York, 1966.

[3] A.W. Miller, *Infinite combinatorics and definability*, Annals of Pure and Applied Logic, 41 (1989), 179–203.

[4] R.W. Hansell, *On the nonseparable theory of Borel and Souslin sets*, Bull. Am. Math. Soc., 78:2 (1972), 236–241.

[5] A.H. Stone, *Non-separable Borel sets*, Rozpr. Math., 28 (1962), 3–40.