Deep Learning with Quantized Neural Networks for Gravitational Wave Forecasting of Eccentric Compact Binary Coalescence

WEI WEI1,2,3 E. A. HUERTA1,5,1,6 MENGSHEN YUN1,2,7 NICHOLAS LOUTREL8,9 MD ARIF SHAIKH10
PRAYUSH KUMAR10,11 ROLAND HAAS1 and VOLODYMYR KINDRATENKO1,2,7,12

1National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
2NCSA Center for Artificial Intelligence Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
3Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
4Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
5University of Chicago, Chicago, Illinois 60637, USA
6Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
7Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
8Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
9Princeton Gravity Initiative, Princeton University, Princeton, New Jersey 08544, USA
10International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India
11Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York 14853, USA
12Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

ABSTRACT

We present the first application of deep learning forecasting for binary neutron stars, neutron star-black hole systems, and binary black hole mergers that span an eccentricity range $e \leq 0.9$. We train neural networks that describe these astrophysical populations, and then test their performance by injecting simulated eccentric signals in advanced LIGO noise available at the Gravitational Wave Open Science Center to: 1) quantify how fast neural networks identify these signals before the binary components merge; 2) quantify how accurately neural networks estimate the time to merger once gravitational waves are identified; and 3) estimate the time-dependent sky localization of these events from early detection to merger. Our findings show that deep learning can identify eccentric signals from a few seconds (for binary black holes) up to tens of seconds (for binary neutron stars) prior to merger. A quantized version of our neural networks achieves 4x reduction in model size, and up to 2.5x inference speed up. These novel algorithms may be used to facilitate time-sensitive multi-messenger astrophysics observations of compact binaries in dense stellar environments.

Keywords: Gravitational Waves — Deep Learning — Forecasting — Eccentric Mergers — Advanced LIGO

1. INTRODUCTION

Multi-Messenger observations that combine the gravitational and electromagnetic spectra (Abbott et al. 2017a,b; Smith 2017; Abbott et al. 2017c; The LIGO Scientific Collaboration et al. 2017; Mooley et al. 2018; Troja et al. 2017) have provided revolutionary insights about the nature of gravity, the engines that power short gamma ray bursts, cosmology and fundamental physics (et al. 2019; Abbott 2017; Schutz 1986; Fishbach et al. 2019; Berti et al. 2018; Abbott et al. 2019a). These remarkable discoveries provide a glimpse of what Multi-Messenger Astrophysics may accomplish once gravitational wave detectors reach their design sensitivity, and they work in unison with electromagnetic and astro-particle observatories to observe the transient universe with unprecedented precision (Abbott et al. 2019b; Georgescu 2020; Mészáros et al. 2019). To realize these goals, however, there is an urgent need to develop signal
processing tools and computing frameworks that turn computational grand challenges in the big-data era into unique opportunities to enable new modes of data-driven discovery (Huerta et al. 2019; Georgescu 2020; Huerta & Zhao 2021).

In the realm of gravitational wave observations, recent developments include the production of early warning systems to forecast the merger of Multi-Messenger sources using template-matching methods in the context of simulated advanced LIGO noise (Cannon et al. 2012; Sachdev et al. 2020), and third generation ground-based detectors (Nitz et al. 2020). Deep learning has emerged as a powerful tool to process data at scale, with similar sensitivity of traditional algorithms, but at a fraction of their computational cost. Deep learning methods have evolved rapidly in gravitational wave astrophysics, ranging from the first algorithms that were proposed to enable real-time gravitational wave detection with advanced LIGO noise (George & Huerta 2018; 2017; George & Huerta 2018), to the production of sophisticated neural networks that span the same signal manifold of traditional low-latency pipelines, process hundreds of hours of advanced LIGO noise faster than real-time with just a handful of GPUs, and identify real events with a minimal number of false positives in real advanced LIGO noise (Wei et al. 2021; Huerta et al. 2020). Deep learning has also been used to forecast the merger of quasi-circular binary neutron stars and black hole-neutron stars systems in real advanced LIGO noise (Wei & Huerta 2021).

To date, neural networks have been developed in the context of quasi-circular gravitational wave sources, even though some of these models have been used to explore the detection of eccentric binary black hole mergers (Rebei et al. 2019). In this paper we introduce the first class of neural networks that are trained and tested with waveforms that describe binary neutron stars, neutron star-black hole mergers, and binary black hole mergers that cover a broad eccentricity range, $e \leq 0.9$. These neural networks target a significantly much more challenging task than detection, since these models can predict the merger of eccentric signals embedded in advanced LIGO data from a few seconds up to two minutes before the merger event.

This study is motivated by a number of considerations. For instance, it is well known that eccentric waveforms have a rich and complex morphology at early frequencies. Given that neural networks have been particularly successful at time-series processing and pattern identification (LeCun et al. 2015), it is worth exploring whether we can train neural networks to enable gravitational wave forecasting by leveraging the rich spectrum of frequencies that characterize eccentric signals in the context of advanced LIGO noise. If this analysis was indeed possible, we would like to quantify how fast deep learning may predict the merger of likely multi-messenger sources—neutron star mergers or stellar mass black hole-neutron star systems—or binary black holes that coalesce in dense stellar environments. This is the theme of this article.

We organize this article as follows. Section 2 describes our deep learning algorithms, the modeled waveforms and advanced LIGO noise used to create our neural networks. We present our forecasting results in Section 3. We analyze network quantization results in Section 4. We summarize our findings and discuss future activities in Section 5.

2. METHODS

Here we describe the modeled waveforms and advanced LIGO noise used to create our neural networks, and how these models may be used to forecast the merger of compact binary systems in advanced LIGO noise.

2.1. Waveforms and advanced LIGO noise

Modeled waveforms We used the waveform model introduced in (East et al. 2013) to describe eccentric compact binary systems. Even though this is an admittedly approximate model, it provides a complete description of the systems’ dynamics, from inspiral to ringdown, and more importantly, it enables the modeling of highly eccentric systems. The waveforms used in this study are produced at a sample rate of 16384Hz, and describe binary neutron stars, black hole-neutron star systems, and binary black hole mergers. For binary neutron stars, we consider systems with binary components $m_{(1,2)} \in [1M_\odot, 3M_\odot]$, whereas for black hole-neutron star systems we considered $m_{BH} \in [3M_\odot, 15M_\odot]$ and $m_{NS} \in [1M_\odot, 3M_\odot]$ for the masses of the black hole and neutron star components, respectively.

The waveforms in the training dataset cover the eccentricity range $e \leq 0.9$, and are 160s long. These waveforms are randomly split into training sets (12423 waveforms for binary neutron stars, 15593 for black hole-neutron star systems, and 10677 for binary black holes), and test sets (3075 waveforms for binary neutron stars, 3882 for black hole-neutron star systems, and 2661 for binary black holes).

Advanced LIGO noise We have used four 4096s-long advanced LIGO noise segments, sampled at 16384Hz, from the Hanford and Livingston detectors. These segments have GPS starting times 1186725888, 1187151872, 1187569664, and 1186897920. The first three segments are used for training, while the last is used for testing. All these open source data were obtained from the Gravitational Wave Open Science Center (Vallisneri et al. 2015).
We rescaled and injected the waveform datasets described above into real advanced LIGO noise, using both Livingston and Hanford data, to simulate eccentric mergers that span a broad range of signal-to-noise ratios (SNRs). We standardized the datasets for training by normalizing the standard deviation of the advanced LIGO strain data with signal injections.

2.2. Spectrograms of Eccentric Compact Binary Mergers

Eccentric binary neutron stars have long-duration inspiral stages with periodic spikes in time domain, as shown in the right panel of Figure 1. Their spectral decomposition provides a rich spectrum of frequencies, as shown in the right panel of Figure 1. We use the early inspiral-stage presence of the chirp patterns in the spectrograms to provide early warnings for imminent merger events, which may provide early warnings for potential electromagnetic follow-ups.

![Figure 1](image.png)

Figure 1. Left panel: gravitational wave signal injected in advanced LIGO O2 noise that describes a binary neutron star with component masses $m_1, m_2 = 1.4 M_\odot$, eccentricity $e = 0.7$ measured 150 seconds before merger. Right panel: spectrum of frequencies of the eccentric waveform signal shown in the left panel.

2.3. Chirp-pattern recognition and merger-time estimation with deep learning

Early Detection We use a deep neural network to identify inspiral-stage chirp-like signatures in spectrograms, and provide tens of seconds early warnings for a variety of compact binary systems.

Specifically, we use ResNet-50 (He et al. 2016) architecture pre-trained on ImageNet (Deng et al. 2009), implemented with PyTorch (Paszke et al. 2019) for our pattern recognition tasks. We produce and stack together spectrograms from 8s-long advanced LIGO strain data to form an image of two channels with the first channel representing Livingston data, and the second channel representing Hanford data. We then pad a third channel with zeros so that the final images have three channels to match the ResNet-50 architecture. The three-channel images made from spectrograms will be used as the input to ResNet-50. We also modify the last layer of the original ResNet-50 design so that the output for input images is a single number from zero to one, indicating the probability for the presence of chirp signals in the input spectrogram image.

To ensure the output for an input image is a number in the range $[0, 1]$, we used the sigmoid function defined as $\sigma(x) = 1/(1 + \exp(-x))$. This function maps real numbers into the range of $[0, 1]$, which can go on be interpreted as the probability for the presence of chirp signals. We choose a threshold of 0.8 for the identification of signals, which means the time steps with output probabilities greater than 0.8 indicate the presence of GW signals.

The spectrograms from 8s-long strain data are produced with a blackman window size of 16384, and a step size of 1024. The generated spectrograms have a size of 8193×113 in the frequency and time domain, respectively. As a part of the pre-processing step, we also take the element-wise log transformation of the spectrograms to accentuate the chirp patterns. All the spectrograms are produced using the `spectrogram` function provided by SciPy.

Since the neural networks are trained to identify inspiral-stage chirp patterns in the spectrograms, we can truncate the spectrograms above 150 Hz to reduce the size of the input images. We also remove the parts below 20 Hz, which are dominated by low-frequency noise. Therefore, the actual size of the images used as the inputs to the trained neural network is 130×113 with three channels as stated above.
Merger Time Estimation The neural network for merger time estimation is the same as the one used for chirp pattern detection, except that the last layer is a fully connected layer, and the network output corresponds to the estimated merger time.

2.4. Training strategy

Early Detection We separately trained three ResNet-50s on eccentric binary neutron star, black hole-neutron star and binary black hole datasets, as described in Section 2.1. We followed the same training strategy for all cases. As mentioned above, we first injected clean waveforms into advanced LIGO noise data to simulate noisy signals with different SNRs. Then we produced spectrograms from those stimulated gravitational wave events to generate input images for ResNet-50. Finally, we trained ResNet-50 using a batch size of 256, and a learning rate of 10^{-4} with the ADAM (Kingma & Ba 2014) optimizer. The training and testing was done using 4 NVIDIA V100 GPUs. For robust performance, we exposed the neural network to a variety of scenarios during the training. Specifically, 50% of the input spectrogram images contain no gravitational waves, while 25% have simulated signals only in either Livingston or Hanford data, while the remaining 25% have waveform signals in both Livingston and Hanford data. Upon thoroughly testing the performance of our three separate neural networks, we found that the network trained on binary neutron star waveforms provided the best performance for early detection for all systems under consideration. We may understand this finding if we consider that forecasting depends critically on information the neural network extracts from the inspiral phase, and in the case of black hole-neutron star systems and binary black holes most of the power is concentrated in the vicinity of the merger. Thus, in what follows we present forecasting results using the neural network trained with binary neutron star waveforms for the three classes of binaries under consideration.

Merger Time Estimation For merger time estimation, the training process follows the same approach described above, except that the neural network is now trained to predict the merger time of the binary systems, and the input spectrogram images contain signals that merge at different times. We separately trained three neural networks on eccentric binary neutron star, neutron star-black hole and binary black hole datasets, as described in Section 2.1.

2.5. Sky Localization

In addition to forecasting and quantifying the time to merger with deep learning, we have adapted an algorithm to rapidly estimate the sky localization area as a function of time, namely, from the time our neural networks identify a given signal until the merger event. The localization sky area is estimated via triangulation using a Fisher matrix based method, as described in Fairhurst (2009, 2011). The sky area may be estimated from the separation between the detectors, their individual effective bandwidth and the SNRs. The effective bandwidth, σ_f, of a detector is computed from the frequency moments as

$$\sigma_f^2 = \bar{f}^2 - \bar{f}^2,$$

(1)

where

$$\bar{f} = 4\int_0^\infty df \frac{f^n |\tilde{h}(f)|^2}{S_n(f)},$$

(2)

where S_n is the noise spectral density, and \tilde{h} is the frequency domain waveform. The effective bandwidth and the SNR, $\rho = \sqrt{\bar{f}^2}$, may be combined to compute the timing accuracy, σ_t, through the relation

$$\sigma_t = \frac{1}{2\pi \rho \sigma_f}.$$

(3)

The timing accuracy may be used to construct a posterior distribution of the source location (Fairhurst 2009, 2011). In this study, we truncate our time domain signal at different times before merger and Fourier transform the truncated signal to get the frequency domain signal to compute the frequency moments which are then used to estimate the sky localization area as a function of time from early detection to merger. The results we present below assume a 3 detector network that encompasses the Hanford and Livingston LIGO detectors, and the Virgo detector. We have computed PSDs for each of these interferometers using the O2 noise segments described above.

2.6. Quantized neural networks
We have explored the use of quantized neural networks to enable forecasting at the edge in view of their compact size and power efficiency. To quantize our fully trained ResNet-50 models, post-training static quantization is used to convert the weights and activations of the models from 32-bits to 8-bits representation. We utilize quantization tools provided by PyTorch to perform static quantization. First we define a ResNet-50 model and insert a quantization layer at the beginning and a de-quantization layer at the end for handling the input and output tensors during inference. The weights of our trained FP32 model are then loaded into the new model definition. Layer fusions are performed to fuse Conv2D, BatchNorm, and ReLU modules when possible to obtain better performance.

We prepared our networks for inference by collecting statistics for each layer input, running calibration for the quantized model, and quantizing the trained weights into INT8. Asymmetric linear quantization is used here to scale and offset the values in activation tensors. The calibration step adjusts the scales and offsets to minimize accuracy loss due to quantization. The spectrogram images used for this step are randomly selected from the testing dataset, and only 30 images are required to fully calibrate the quantized parameters. After the networks have been quantized, we use Intel Xeon E5-2620 CPU with AVX2 support as the backend for running the quantized networks. As we show below, our quantized networks have the same forecasting performance of regular neural networks, but are 4x more compact and 2.5x faster. These features promote them as ideal tools to enable gravitational wave forecasting at the edge.

3. RESULTS

We present results for three types of sources, binary neutron stars, black hole-neutron star systems, and binary black hole mergers. As mentioned above, our neural networks are used to search for patterns in spectrograms that characterize eccentric compact binary mergers. We used a sliding window of 8s, with a step size of 1s, that is applied to the spectrograms generated from strain data that are up to 160s long. The data within the sliding window are fed into the neural networks, and the neural networks output the probability for the existence of a gravitational wave signals in advanced LIGO noise.

3.1. Eccentric Binary Neutron Stars

Our first set of results comprise binary neutron stars with component masses $1M_\odot \leq m_{1,2} \leq 2.1M_\odot$, and eccentricities $e \leq 0.9$. To test the performance of our neural networks, we prepared injections that sampled a broad range of inclinations, sky locations and SNRs.

In Figure 2 we present three sets of results for binary neutron stars with component masses $(m_1 = m_2 = 1.4M_\odot)$, and $(m_1 = 2.1M_\odot, m_2 = 1.4M_\odot)$. In both cases we consider binaries with SNR = 30. The top panels in Figure 2 show that our neural networks identify these signals up to 15 seconds before their binary components coalesce. The mid panels show that our neural networks may provide a reliable estimate for the time to merger about 10 seconds before the binary components collide. Finally, the bottom panels in Figure 2 show that the sky localization is rather sensitivity to the eccentricity of the binary. We notice that sky localization improves by nearly two orders of magnitude from early detection up to merger for the most eccentric systems, and by three orders of magnitude for the least eccentric systems.

An extensive body of research in the literature argues strongly for the modeling of eccentric binary neutron stars, and the new physics that may be learned by detecting these sources (East et al. 2016; Paschalidis et al. 2015; East et al. 2012; East & Pretorius 2012; Lehner & Pretorius 2014; Gold et al. 2012; Chaurasia et al. 2018; Chaurasia et al. 2018; Vick & Lai 2019; Vick & Lai 2018; Yang 2019; Yang et al. 2018). This new tool provides the means to enable such observations, and to even forecast when such objects may coalesce. If flybys during the inspiral evolution produce tidal disruptions with electromagnetic counterparts (Tsang 2013), then deep learning forecasting may help associate these electromagnetic observations with the physics of eccentric neutron star systems.

3.2. Eccentric Neutron Star-Black Hole Binaries

As described above, we model black hole-neutron star binaries assuming systems with component masses $m_{\text{BH}} \in [3M_\odot, 15M_\odot]$ and $m_{\text{NS}} \in [1M_\odot, 3M_\odot]$, and eccentricities $e \leq 0.9$. As in the case of binary neutron stars, we prepared injections that sampled a broad range of inclinations, sky locations and SNRs.

Figure 3 summarizes our findings for injections that describe binaries with component masses $(m_1 = 5M_\odot, m_2 = 1.4M_\odot)$ and $(m_1 = 10M_\odot, m_2 = 1.4M_\odot)$ and SNR = 30. The top panels in this figure show that forecasting is weekly dependent on eccentricity, and that systems with lower total mass may be identified up to 12 seconds before merger,
Figure 2. **Top panels** Neural networks identify injections of modeled binary neutron star waveforms in O2 LIGO data up to 15 seconds before merger. **Mid panels** Neural networks provide reliable estimates of time to merger 10 seconds ahead of the actual merger event. **Bottom panels** Time-dependent sky localization of injected binary neutron star waveforms in O2 LIGO noise.

whereas heavier systems are identified 10 seconds before merger. This behaviour is expected due to several factors. First, forecasting results are optimal for low mass black hole-neutron star systems because, as shown in the left panel of Figure 1, the time evolution of the whitened waveform amplitude undergoes a gradual increase as it nears merger. On the other hand, this evolution becomes more asymmetrical, characterized by a sharp amplitude growth near merger, as we consider heavier black holes. As a result, the spectrograms used to identify the existence of waveforms in advanced LIGO noise contain a wealth of information near merger where the power is concentrated. In turn, neural nets become more confident of the existence of these systems closer to merger.

The mid panels in Figure 3 show that neural networks may provide reliable information about the merger time about 6 seconds before merger. The bottom panels show that, as in the case of binary neutron stars, sky localization depends strongly on orbital eccentricity, and that the most eccentric systems may be better localized before merger.
Deep Learning Gravitational Wave Forecasting for Eccentric Binary Mergers

Figure 3. **Top panels** Neural networks identify injections of neutron star-black hole waveforms in O2 LIGO data up to 12 seconds before merger. **Mid panels** Neural networks provide reliable estimates of time to merger 5 seconds ahead of the actual merger event. **Bottom panels** Time-dependent sky localization of injected neutron star-black hole waveforms in O2 LIGO noise.

From the time our deep learning algorithms identify these injections, their sky localization is reduced from \(O(10^3) \) square degrees for the most eccentric systems and \(O(10^4) \) square degrees for the least eccentric systems, to only \(O(10) \) square degrees at merger. It is worth noting that this improvement takes place within 10 seconds.

3.3. **Eccentric Binary Black Hole Mergers**

The third set of systems we considered are binary black hole mergers with component masses \(m_{\text{BH}} \in [3M_\odot, 15M_\odot] \) and eccentricities \(e \leq 0.9 \). As in the two previous cases, we used injections that sample a wide range of inclination angles, sky locations and SNRs.

Our findings are summarized in Figure 4 for two sample systems with component masses \((m_1 = 10M_\odot, m_2 = 5M_\odot) \) and \((m_1 = 12M_\odot, m_2 = 8M_\odot) \) and SNR = 30.
Figure 4. **Top panels** Neural networks identify injections of binary black hole waveforms in O2 LIGO data a few seconds before merger. Forecasting results transition into real-time alerts for these black hole mergers. **Mid panels** Neural networks provide a reliable estimate of the merger once the coalescence is imminent. **Bottom panels** Time-dependent sky localization of injected binary black holes in O2 LIGO noise.

The top panels in Figure 4 show that deep learning may forecast the merger of low mass binary black hole mergers about 2 seconds before merger. The mid panels indicate that deep learning may indicate the time to merger about 1 second before the binary components collide. In other words, our deep learning algorithms are actually working as real-time gravitational wave classifiers. The bottom panels show how accurately we may constrain the sky location of binary black hole mergers. These results show that we may localize these sources within $\sim O(10^2)$ square degrees in the vicinity of merger merger, and down to $\sim O(10)$ square degrees at merger.

4. **QUANTIZED NEURAL NETWORKS FOR RAPID, ENERGY EFFICIENT FORECASTING**

We compare the results of inference speed and error rate for un-quantized and quantized networks trained with spectrogram images. Prior to quantization, the networks need to be calibrated using a set of testing images. We
randomly select 30 images from the testing data set to yield the optimal scales and zero points for activation tensors. We selected 1000 spectrogram images from the testing set to benchmark the performance. After quantization, the inference latency of the quantized model is 8 ms per prediction, while that of the un-quantized model is 20 ms per prediction, showing a 2.5x speedup. Here we used a batch number of 16, which means the network predicted 16 images at a time to exploit the parallelism of the multi-core processor. By converting the model parameters from floating-point to fixed-point representation, we can reduce the overall model size by 4x, from 92 MB to 23 MB. Our results show that quantization does not negatively affect inference performance, and, in our case, it is able to decrease the top-1 error rates by 10%.

Figure 5 presents three forecasting results produced by our un-quantized and quantized networks. We select one scenario from each of these three sources: binary neutron stars, black hole-neutron star systems, and binary black hole mergers. As illustrated, the forecasting results produced by the quantized network are very similar to those produced by the un-quantized network, but faster. Furthermore, our quantized networks alleviate the high demand for computational and memory resources, and, as a result, the power efficiency is increased for gravitational wave forecasting, which is critical for edge devices.

5. CONCLUSIONS

We have introduced the first application of deep learning to forecast the merger of eccentric binary systems in advanced LIGO noise. The neural networks introduced in this study can readily identify eccentric waveforms injected in O2 noise up to 15 seconds before merger, and estimate the time within which the binary components will coalesce. We have adapted a sky localization method to estimate the time-dependent sky area within which we may observe these signals, from the time they are identified by our forecasting algorithms up to merger, with a three detector network encompassing the twin LIGO detectors (Hanford and Livingston) and the Virgo detector. These results were obtained using open source LIGO and Virgo O2 noise. Our findings indicate that the performance of our forecasting neural networks is fairly independent of the eccentricity of the binary system under consideration. However, sky localization improves significantly for larger values of eccentricity.

We quantized our neural networks and found that they improve the latency and power efficiency of gravitational wave forecasting, making it suitable for edge computing. These algorithms may then enable a broader cross section of the community to readily use these algorithms for time-sensitive multi-messenger astrophysics discovery campaigns that target compact binary systems that may reside in dense stellar environments, but that due to their complex morphology are difficult to capture with other signal processing tools.

6. ACKNOWLEDGMENTS

We thank Frans Pretorius for insightful conversations that led to the conceptualization of this project. We gratefully acknowledge National Science Foundation (NSF) awards OAC-1931561 and OAC-1934757. We thank NVIDIA for their continued support. This work utilized resources supported by the NSF’s Major Research Instrumentation program, the Hardware-Learning Accelerated (HAL) cluster, grant OAC-1725729, as well as the University of Illinois at Urbana-Champaign. N.L. acknowledges support from NSF grant PHY-1912171, the Simons Foundation, and the Canadian Institute for Advanced Research (CIFAR)
Figure 5. Deep learning forecasting for binary neutron stars, black hole-neutron star systems, and binary black hole mergers in advanced LIGO data, from top to bottom respectively. The left panel shows results produced by un-quantized networks, and the right panel shows results produced by quantized networks.
Appendix

A. Waveforms Used for Neural Network Training

We have mentioned in previous studies that deep learning enables the generalization to new types of signals, beyond the waveform set used for training. We have explored this assertion by comparing forecasting predictions for the binary neutron star system GW170817 using neural networks trained with the eccentric waveform model used in this analysis (East et al. 2013), and the IMRPhenomD NRTidal (Dietrich et al. 2019) waveform model.

Figure A1 indicates that both neural network models have similar forecasting capabilities (Wei & Huerta 2021). These results indicate that while we should continue to use the best waveform models available to train deep learning algorithms, neural networks may also be used to enable data-driven discovery by guiding them towards the right answer with approximate models that describe complex physical processes.

![Figure A1](image.png)

Figure A1. Forecasting of the binary neutron star GW170817 with a neural network trained with IMRPhenomD NRTidal waveforms (Quasi-circular) and with eccentric waveforms produced by the model introduced in (East et al. 2013) (Eccentric).

B. Gravitational Wave Forecasting for the Gravitational Wave Events GW190814 and GW190412.

Figure B2 presents forecasting results for the events GW190814 and GW190412. These results are consistent with short early warning or real-time detection alerts that we discussed in Sections 3.2 and 3.3. The key point here is that the larger the total mass of the systems under consideration the closer to the merger event our forecasting algorithms identify gravitational wave signals.
Figure B2. Application of our neural networks to forecast the merger of the events GW190814 and GW190412.
REFERENCES

Abbott, B., et al. 2019a, Phys. Rev. D, 100, 104036, doi: 10.1103/PhysRevD.100.104036
—. 2019b, Astrophys. J., 875, 161, doi: 10.3847/1538-4357/ab0e8f
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a, Physical Review Letters, 119, 161101, doi: 10.1103/PhysRevLett.119.161101
—. 2017b, Astrophys. J. Lett., 848, L12, doi: 10.3847/2041-8213/aa91c9
—. 2017c, Astrophys. J. Lett., 848, L13, doi: 10.3847/2041-8213/aa920c
Abbott, B. P., e. a. 2017, 551, 85, doi: 10.3847/2041-8213/aa8fc7
Berti, E., Yagi, K., & Yunes, N. 2018, General Relativity and Gravitation, 50, 46, doi: 10.1007/s10714-018-2362-8
Cannon, K., Cariou, R., Chapman, A., et al. 2012, Astrophys. J., 748, 136, doi: 10.1088/0004-637X/748/2/136
Chaurasia, S. V., Dietrich, T., Johnson-McDaniel, N. K., et al. 2018, Phys. Rev. D, 98, 104005, doi: 10.1103/PhysRevD.98.104005
Chaurasia, S. V., Dietrich, T., Johnson-McDaniel, N. K., et al. 2018, Phys. Rev. D, 98, 104005, doi: 10.1103/PhysRevD.98.104005
Deng, J., Dong, W., Socher, R., et al. 2009, CVRP
Dietrich, T., et al. 2019, Phys. Rev. D, 99, 024029, doi: 10.1103/PhysRevD.99.024029
East, W. E., McWilliams, S. T., Levin, J., & Pretorius, F. 2013, Phys. Rev. D, 87, 043004, doi: 10.1103/PhysRevD.87.043004
East, W. E., Paschalidis, V., Pretorius, F., & Shapiro, S. L. 2016, Phys. Rev. D, 93, 024011, doi: 10.1103/PhysRevD.93.024011
East, W. E., & Pretorius, F. 2012, Astrophys. J. Lett., 760, L4, doi: 10.1088/2041-8205/760/1/L4
East, W. E., Pretorius, F., & Stephens, B. C. 2012, Phys. Rev. D, 85, 124009, doi: 10.1103/PhysRevD.85.124009
et al., M. S.-S. 2019, The Astrophysical Journal, 876, L7, doi: 10.3847/2041-8213/ab14f1
Fairhurst, S. 2009, New Journal of Physics, 11, 123006, doi: 10.1088/1367-2630/11/12/123006
—. 2011, Classical and Quantum Gravity, 28, 105021, doi: 10.1088/0264-9381/28/10/105021
Fishbach, M., Gray, R., Magaña Hernandez, I., et al. 2019, The Astrophysical Journal Letters, 871, L13
George, D., & Huerta, E. A. 2017, in NiPS Summer School 2017. https://arxiv.org/abs/1711.07966
George, D., & Huerta, E. A. 2018, Phys. Rev. D, 97, 044039, doi: 10.1103/PhysRevD.97.044039
George, D., & Huerta, E. A. 2018, Physics Letters B, 778, 64, doi: 10.1016/j.physletb.2017.12.053
Georgescu, I. 2020, Nature Reviews Physics. https://go.nature.com/2YY1NLn
Gold, R., Bernuzzi, S., Thierfelder, M., Brügmann, B., & Pretorius, F. 2012, Phys. Rev. D, 86, 121501, doi: 10.1103/PhysRevD.86.121501
He, K., Zhang, X., Ren, S., & Sun, J. 2016, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778
Huerta, E. A., & Zhao, Z. 2021, arXiv e-prints, arXiv:2105.06479. https://arxiv.org/abs/2105.06479
Huerta, E. A., Allen, G., Andreoni, I., et al. 2019, Nature Reviews Physics, 1, 521, 436, doi: 10.1038/nature14539
LeCun, Y., Bengio, Y., & Hinton, G. 2015, Nature, 521, 436, doi: 10.1038/nature14539
Lehner, L., & Pretorius, F. 2014, ARA&A, 52, 661, doi: 10.1146/annurev-astro-081913-040031
Mészáros, P., Fox, D. B., Hanna, C., & Murase, K. 2019, Nature Reviews Physics, 1, 585, doi: 10.1038/s42254-019-0101-z
Mooley, K., et al. 2018, Nature, 554, 207, doi: 10.1038/nature25452
Nitz, A. H., Schäfer, M., & Dal Canton, T. 2020, Astrophys. J. Lett., 902, L29, doi: 10.3847/2041-8213/abbc10
Paschalidis, V., East, W. E., Pretorius, F., & Shapiro, S. L. 2015, Phys. Rev. D, 92, 121502, doi: 10.1103/PhysRevD.92.121502
Paszke, A., Gross, S., Massa, F., et al. 2019, in Advances in Neural Information Processing Systems 32, ed. H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Curran Associates, Inc.), 8024–8035
Rebei, A., Huerta, E. A., Wang, S., et al. 2019, Phys. Rev. D, 100, 044025, doi: 10.1103/PhysRevD.100.044025
Sachdev, S., et al. 2020. https://arxiv.org/abs/2008.04288
Schutz, B. F. 1986, Nature, 323, 310, doi: 10.1038/323310a0
Smith, K. T. 2017, Science, 358, 1551, doi: 10.1126/science.358.6370.1551-i
The LIGO Scientific Collaboration, the Virgo Collaboration, et al. 2017, Astrophys. J., 850, L39, doi: 10.3847/2041-8213/aa9478
Troja, E., Piro, L., van Eerten, H., et al. 2017, Nature, 551, 71, doi: 10.1038/nature24290
Tsang, D. 2013, Astrophys. J., 777, 103, doi: 10.1088/0004-637X/777/2/103

Vallisneri, M., Kanner, J., Williams, R., Weinstein, A., & Stephens, B. 2015, J. Phys. Conf. Ser., 610, 012021, doi: 10.1088/1742-6596/610/1/012021

Vick, M., & Lai, D. 2018, MNRAS, 476, 482, doi: 10.1093/mnras/sty225

Vick, M., & Lai, D. 2019, Phys. Rev. D, 100, 063001, doi: 10.1103/PhysRevD.100.063001

Wei, W., & Huerta, E. A. 2021, Phys. Lett. B, 816, 136185, doi: 10.1016/j.physletb.2021.136185

Wei, W., Khan, A., Huerta, E. A., Huang, X., & Tian, M. 2021, Physics Letters B, 812, 136029, doi: 10.1016/j.physletb.2020.136029

Yang, H. 2019, Phys. Rev. D, 100, 064023, doi: 10.1103/PhysRevD.100.064023

Yang, H., East, W. E., Paschalidis, V., Pretorius, F., & Mendes, R. F. P. 2018, Phys. Rev. D, 98, 044007, doi: 10.1103/PhysRevD.98.044007