Centroaffine Duality and Loewner’s Conjecture

Marcos Craizer and Ronaldo Garcia

Abstract. Consider a transversal vector field ξ along a hypersurface f. Then a lifting of (f, ξ) is a centroaffine codimension 2 immersion together with a transversal vector field, and its dual centroaffine immersion G does not depend on the lifting.

We prove in this paper that principal lines of (f, ξ) correspond to asymptotic lines of G. As an application, we prove that Loewner’s conjecture for asymptotic lines at inflection points of surfaces in 4-space is equivalent to Loewner’s conjecture for principal lines at umbilical points of surfaces in 3-space with an equiaffine transversal vector field.

Mathematics Subject Classification (2010). 53A15, 53A05.

Keywords. Umbilical Points, Curvature Lines, Asymptotic Lines, Inflection Points, Line Congruences, Loewner’s conjecture.

1. Introduction

A centroaffine codimension 2 immersion is an immersion $F : M \to \mathbb{R}^{n+2} \setminus \{0\}$ whose radial vector field does not belong to tangent space of F. In this context, we can generate a unique conical hypersurface with vertex at the origin and containing $F(M)$. A vector field Φ along M will be called transversal if it is transversal to this conical hypersurface. We say that a transversal vector field Φ along a centroaffine immersion $F : M \to \mathbb{R}^{n+2}$ is equiaffine (or parallel, or exact, see [2], [11], [12]), if the derivative of Φ in any direction tangent to M is tangent to the above conical hypersurface. A centroaffine codimension 2 immersion F together with an equiaffine transversal vector field is called an equiaffine pair.

The authors want to thank CNPq and CAPES (Finance Code 001) for financial support during the preparation of this manuscript.
E-mail of the corresponding author: craizer@puc-rio.br.
For a codimension 2 immersion F together with a transversal vector field Φ, the centroaffine dual pair $(G, \Psi) : M^n \rightarrow \mathbb{R}_{n+2}$, where \mathbb{R}_k denotes the dual space of \mathbb{R}_k, is defined by the following equations:

\begin{align}
G \cdot \Phi &= 1, & G \cdot F_s X &= 0, & G \cdot F &= 0, \quad \text{(1.1)} \\
\Psi \cdot \Phi &= 0, & \Psi \cdot F_s X &= 0, & \Psi \cdot F &= 1. \quad \text{(1.2)}
\end{align}

(see [10]). When (F, Φ) is equiaffine, the same holds for the dual pair (G, Ψ). One can show that if we start with a codimension 1 immersion f together with an equiaffine transversal vector field ξ and lift it to a codimension 2 equiaffine pair (F, Φ), the dual immersion G does not depend on the lifting ([9], note 9). We call G the projective pedal of the pair (f, ξ). It is proved in [3] that the projective pedal of a Blaschke pair (f, ξ) is umbilical, and conversely, any umbilical centroaffine immersion is the projective pedal of a Blaschke pair.

In this paper we prove that principal lines (resp. umbilical points) of (F, Φ) correspond to asymptotic lines (resp. inflection points) of the centroaffine dual (G, Ψ), and vice-versa. As a consequence, principal lines (resp. umbilical points) of an equiaffine pair (f, ξ) correspond to asymptotic lines (resp. inflection points) of its projective pedal G. Loewner’s conjecture for isolated inflection points of a surface in 4-space states that the index of the asymptotic lines is at most 1 ([1], [5], [6], [11]). Since any immersion $G : M^2 \rightarrow \mathbb{R}^4$ is locally the affine pedal of some equiaffine immersion (f, ξ), we shall verify that the above conjecture is equivalent to the conjecture that the index of curvature lines of an equiaffine pair (f, ξ) at an isolated umbilical point is at most 1. This latter conjecture was proved in [4] under the additional hypothesis of semi-homogeneity of the umbilical point.

The paper is organized as follows: In section 2 we recall some basic definitions. In section 3 we consider the duality between centroaffine codimension 2 immersions and prove that principal lines of the original correspond to asymptotic lines of the dual. In section 4 we describe the main properties of the projective pedal. In section 5 we apply our results to prove the equivalence between Loewner’s conjectures for principal lines of equiaffine transversal vector fields in 3-space and for asymptotic lines of surfaces in 4-space.

2. Centroaffine Immersions, Principal and Asymptotic Directions

2.1. Centroaffine immersions and equiaffine transversal vector fields

A centroaffine codimension 2 immersion is an immersion $F : M^n \rightarrow \mathbb{R}_{n+2} \setminus \{0\}$ such that the radial vector field $\eta(F(x))$ does not belong to the tangent space $F_s(T_x M)$, for any $x \in M$. A vector field Φ along F is called transversal if
\(\Phi(x)\) does not belong to \(F_*(T_xM) \oplus \mathcal{S}(\eta(F(x)))\), where \(\mathcal{S}(w)\) denotes the space generated by \(w\). In order to keep notations shorter, we shall use \(F(x)\) instead of \(\eta(F(x))\). We denote by \(\mathfrak{X}(M)\) the space of smooth vector fields tangent to \(M\).

Let \(D\) be the canonical flat affine connection of \(\mathbb{R}^{n+2}\). For \(X, Y \in \mathfrak{X}(M)\), write

\[
D_XF_*Y = T(X,Y)F + F_*(\nabla_XY) + H(X,Y)\Phi,
\]

where \(H\) and \(T\) are bilinear forms and \(\nabla\) a torsion-free connection on \(M\). The bilinear form \(H\) is called the affine metric with respect to \(\Phi\). The conformal class of \(H\) does not depend on \(\Phi\) \([10]\), and thus non-degeneracy and also positiveness of \(H\) are independent of the choice of \(\Phi\). We shall assume non-degeneracy of \(H\) throughout the paper. We also write

\[
D_X\Phi = \rho(X)F - F_*(S)X + \tau(X)\Phi,
\]

where \(\rho\) and \(\tau\) are 1-forms and \(S\) a \((1,1)\)-tensor on \(M\). The \((1,1)\)-tensor \(S\) is called shape operator. We say that the pair \((F, \Phi)\) is equiaffine if \(\tau = 0\).

2.2. Principal directions and umbilical points

A principal direction for the pair \((F, \Phi)\) at \(x_0 \in M\) is an eigenvector of the shape operator \(S\). If the shape operator is a multiple of the identity, then we say that the point \(x_0\) is umbilical.

We say that a pair \((F, \Phi)\) is umbilical if all points are umbilical. The following proposition is a version of Theorem 4.3 of \([10]\):

Proposition 2.1. Consider an umbilical equiaffine pair \((F, \Phi)\). Then the planes generated by \(\{F, \Phi\}\) contain a fixed line through the origin.

2.3. Asymptotic directions and inflection points

Consider a hyperplane passing through \(F(x_0)\) defined by a linear functional \(w \in \mathbb{R}_{n+2}\). The contact function of the immersion with the hyperplane is given by

\[
k(x) = w \cdot (F(x) - F(x_0)),
\]

\(x \in M\). It is easy to see that \(x_0\) is a critical point of \(k\) if and only if the hyperplane defined by \(w\) contains the tangent space at \(x_0\).

Consider a vector field \(X \in \mathfrak{X}(M)\). We say that \(X(x_0) \in T_{x_0}M\) is an asymptotic direction if there exists an hyperplane \(w\) such that \(x_0\) is a degenerate critical point of the contact function \(k\) and \(X\) belongs to the kernel of its hessian, i.e. \(D_Xk_*Y = 0\), for any \(Y \in \mathfrak{X}(M)\). Thus \(X\) is asymptotic at \(x_0\) if and only if there exists a functional \(w\) such that

\[
w \cdot (D_XF_*Y)(x_0) = 0,
\]
for any $Y \in \mathfrak{X}(M)$ (see [8, p.223] for the case $n = 2$). We may assume that
$w \cdot F = 1$ and write $w \cdot \Phi = \mu$, for certain scalar function μ. We conclude
that X is asymptotic at x_0 if and only if there exists $\mu = \mu(x_0)$ such that

$$T(X, Y) - \mu H(X, Y) = 0, \quad (2.3)$$

for any $Y \in \mathfrak{X}(M)$.

If $T - \mu H = 0$ at x_0, then we say that x_0 is an inflection point. The following
proposition is proved in [9, Prop.N9.3]

Proposition 2.2. The image of the immersion F is contained in an affine
hyperplane if and only if all $x \in M$ are inflection points.

3. Centroaffine Duality

3.1. Basic equations

Assume that $F: M^n \to \mathbb{R}^{n+2}$ is a non-degenerate immersion together with
an equiaffine transversal vector field Φ. The dual pair $(G, \Psi): M^n \to \mathbb{R}^{n+2}$ of (F, Φ) is defined by Equations (1.1) and (1.2).

The following proposition can be found in [10, Lemmas 3.2 and 3.3]:

Proposition 3.1. Consider a non-degenerate centroaffine immersion F and
an equiaffine transversal vector field Φ.

1. G defined by Equation (1.1) is a non-degenerate centroaffine immersion
 and we can write

 $$D_X G \ast Y = -H(SX, Y)G + G \ast (\nabla^\ast_X Y) + H(X, Y)\Psi, \quad (3.1)$$

 which means that $H^\ast = H$ and $T^\ast(X, Y) = -H(SX, Y)$. Moreover, the
dual connection ∇^\ast is conjugate to ∇, i.e.,

 $$Z(H(X, Y)) = H(\nabla_Z X, Y) + H(X, \nabla^\ast_Z Y).$$

2. Ψ defined by Equation (1.2) is an equiaffine vector field and

 $$D_X \Psi = -\rho(X)G - G \ast (S^\ast X),$$

 where

 $$H(S^\ast X, Y) = -T(X, Y),$$

 which implies that S^\ast is H-self-adjoint.

3.2. Projective invariance

Assume that (F_0, Φ_0) and (G_0, Ψ_0) are dual equiaffine pairs. Next lemma
computes the dual of the equiaffine pair

$$F = \lambda F_0, \quad \Phi = \Phi_0 + \mu F_0, \quad (3.2)$$

where λ and μ are arbitrary smooth real functions on M, $\lambda(x) \neq 0$ for any
$x \in M$. Denote by H_0 the metric associated with (F_0, Φ_0).
Lemma 3.2. The centroaffine dual of the equiaffine pair \((F, \Phi)\) given by Equations (3.2) is \((G, \Psi)\), where \(G = G_0\) and
\[
\Psi = \lambda^{-1} \Psi_0 - \mu \lambda^{-1} G_0 + (G_0)_* Z, \tag{3.3}
\]
where \(Z\) is the vector field on \(M\) defined by the condition \(H_0(X, Z) = d(\log \lambda)(X)\), for any \(X \in \mathfrak{X}(M)\).

Proof. We first verify conditions (1.1) with \(G = G_0\). We have
\[
G_0 \cdot (\Phi_0 + \mu F_0) = 1, \quad G_0 \cdot (\lambda F_0) = 0,
\]
and
\[
G_0 \cdot (d\lambda(X) F_0 + \lambda(F_0)_* X) = 0,
\]
which proves that in fact \(G = G_0\). Now we must verify conditions (1.2) for \(\Psi\) given by Equation (3.3). We have
\[
(\lambda^{-1} \Psi_0 - \mu \lambda^{-1} G_0 + (G_0)_* Z) \cdot (\Phi_0 + \mu F_0) = \lambda^{-1} \mu - \mu \lambda^{-1} = 0,
\]
where we have used that \((G_0)_* Z \cdot F_0 = -G_0 \cdot (F_0)_* Z = 0\) and \((G_0)_* Z \cdot \Phi_0 = -G_0 \cdot (\Phi_0)_* Z = 0\). Moreover
\[
(\lambda^{-1} \Psi_0 - \mu \lambda^{-1} G_0 + (G_0)_* Z) \cdot (\lambda F_0) = 0,
\]
since \((G_0)_* Z \cdot F_0 = -G_0 \cdot (F_0)_* Z = 0\). Finally
\[
(\lambda^{-1} \Psi_0 - \mu \lambda^{-1} G_0 + (G_0)_* Z) \cdot (d\lambda(X) F_0 + \lambda(F_0)_* X) = \lambda^{-1} d\lambda(X) - \lambda H_0(X, Z), \tag{3.4}
\]
where we have used that
\[
(G_0)_* Z \cdot (F_0)_* X = -H_0(X, Z).
\]
Now since \(H_0(X, Z) = d(\log \lambda)(X)\), we conclude that the second member of Equation (3.4) equals zero, thus proving the lemma.

A codimension 1 equiaffine pair \((f, \xi)\) in \(\mathbb{R}^{n+1}\) is represented in homogeneous coordinates by a lifting, which is a codimension equiaffine pair \((F, \Phi)\) in \(\mathbb{R}^{n+2}\). More explicitly, let \((F_0, \Phi_0) : M^n \to \mathbb{R}^{n+2}\) be given by
\[
F_0(x) = (f(x), 1), \quad \Phi_0(x) = (\xi(x), 0). \tag{3.5}
\]
Then any lifting of \((f, \xi)\) is given by
\[
F = \lambda F_0, \quad \Phi = \Phi_0 + \mu F_0, \tag{3.6}
\]
where \(\lambda\) and \(\mu\) are arbitrary smooth functions on \(M\), with \(\lambda(x) \neq 0, x \in M\). The following corollary can be found in [9, Note 9]:

Corollary 3.3. The centroaffine dual surface \(G\) of the lifting of a codimension 1 equiaffine pair \((f, \xi)\) is independent of the lifting.
3.3. Duality between asymptotic and principal directions

The main tool of this paper is the following:

Proposition 3.4. Consider non-degenerate dual equiaffine pairs \((F, \Phi)\) and \((G, \Psi)\). Fix \(x_0 \in M\) and \(X \in T_{x_0} M\). Then \(X\) is a principal direction for \(F\) at \(x_0\) if and only if \(X\) is an asymptotic direction for \(G\) at \(x_0\).

Proof. From Equations (2.3) and (3.1), \(X\) is an asymptotic direction for \(G\) at \(x_0\) if

\[H(SX,Y) + \mu H(X,Y) = 0, \]

at \(x_0\), for any \(Y \in \mathfrak{X}(M)\). Thus \(X\) is an asymptotic direction for \(G\) if and only if

\[H((S + \mu I)X,Y) = 0, \]

for any \(Y\). Since \(H\) is non-degenerate, this is equivalent to \((S + \mu I)X = 0\), which is the condition for \(X\) to be a principal direction for \(F\) at \(x_0\). \(\square\)

4. The Projective Pedal

We call the surface \(G\) in \(\mathbb{R}^{n+2}\) given by Corollary 3.3 the projective pedal of the equiaffine pair \((f, \xi)\).

4.1. Co-normal vector field

For a non-degenerate immersion \(f : M^n \to \mathbb{R}^{n+1}\) with an equiaffine transversal vector field \(\xi\), denote by \(\nu : M^n \to \mathbb{R}_{n+1}\) the co-normal map associated to \(\xi\), i.e.,

\[\nu(x) \cdot \xi(x) = 1, \quad \nu(x) \cdot f_*X = 0, \quad X \in TM. \quad (4.1) \]

Lemma 4.1. The projective pedal \(G : M \to \mathbb{R}_{n+2}\) is given by

\[G(x) = (\nu(x), -\nu(x) \cdot f(x)). \quad (4.2) \]

Proof. Let \((F_0, \Phi_0)\) be given by Equation (3.5). Then one can directly check that

\[G \cdot F_0 = 0, \quad G \cdot (F_0)_*, X = 0, \quad G \cdot \Phi_0 = 1, \]

for any \(X \in \mathfrak{X}(M)\), thus proving the lemma. \(\square\)

4.2. Centroaffine dual of the pedal

Next proposition is a type of converse of Corollary 3.3

Proposition 4.2. Let \(G\) be the projective pedal of \((f, \xi)\) and \(\Psi\) be any equiaffine vector field along \(G\). Then the centroaffine dual of \((G, \Psi)\) is a lifting of \((f, \xi)\).
Proof. Denote by H the metric induced by the equiaffine vector field Ψ along G. Writing

$$\Psi = \alpha G + G^*_Z + \beta \Psi_0,$$

the equiaffine condition implies that $d(\log \beta) = -H(X, Z)$. Now take $\lambda = \beta^{-1}$ and $\mu = -\alpha \beta^{-1}$, so $H(X, Z) = d(\log \lambda)(X)$, which implies that Ψ is given by Equation (3.3). Thus, by Lemma 3.2, the centroaffine dual of (G, Ψ) is a lifting of (f, ξ), thus proving the proposition. □

4.3. Projective invariance

Denote by L a invertible linear transformation of \mathbb{R}^{n+2} and by \tilde{L} the corresponding projective transformation of $P\mathbb{R}^{n+1}$. It is proved in [12] that if (f, ξ) is an equiaffine pair, then $(\tilde{L} \cdot f, d\tilde{L} \cdot \xi)$ is also an equiaffine pair.

Proposition 4.3. Let (f, ξ) be an equiaffine pair with affine pedal G. Then the affine pedal of $(\tilde{L} \cdot f, d\tilde{L} \cdot \xi)$ is $G \cdot L^{-1}$.

Proof. The projective transformation \tilde{L} of (f, ξ) corresponds to the linear transformation L of its lifting (F, Φ). Moreover, the centroaffine dual of $(L \cdot F, L \cdot \Phi)$ is $(GL^{-1}, \Psi \cdot L^{-1})$, thus proving the proposition. □

4.4. Principal and asymptotic directions

Let (f, ξ) be a codimension 1 equiaffine immersion and write

$$D_X \xi = -f_\ast(SX),$$

where S is the shape operator of (f, ξ). Let (F_0, Φ_0) be given by Equation (3.5). Then

$$D_X \Phi_0 = (D_X \xi, 0) = -(f_\ast(SX), 0) = -(F_0)_\ast(SX),$$

which implies that the shape operator of (F_0, Φ_0) is also S.

Proposition 4.4. The principal lines of (f, ξ) correspond to the asymptotic lines of G. Moreover, umbilical points of (f, ξ) correspond to inflection points of G.

Proof. As we have seen above, the principal lines, resp. umbilical points, of (f, ξ) correspond to principal lines, resp. umbilical points, of the lifting (F_0, Φ_0). Then the proposition follows from Proposition 3.4 □

4.5. A useful remark

Next proposition will be useful in what follows:

Proposition 4.5. Consider a non-degenerate immersion $G : M^n \to R_{n+2}$. Then G is locally the projective pedal of an equiaffine pair (f, ξ).
Proof. Fix a point \(x_0 \in M \) and an origin of \(\mathbb{R}^{n+2} \) such that \(G \) becomes a centroaffine immersion at \(x_0 \). Then choose a vector \(\Psi(x_0) \) which is transversal to the centroaffine immersion \(G \) at \(x_0 \). In a neighborhood of \(x_0 \), the constant vector field \(\Psi(x_0) \) is equiaffine and transversal to \(G \). By Proposition 4.2, \(G \) is the affine pedal of some equiaffine pair \((f, \xi)\). □

5. Loewner’s Type Conjectures

Consider an isolated inflection point \(x_0 \) of an immersion \(G : M^2 \to \mathbb{R}^4 \). It is conjectured that the index of the asymptotic line foliation is at most 1 ([7], [6]). For later reference, we shall call it Conjecture 1. For generic immersions, it is well-known that this conjecture holds: It is proved in [7] that for a generic immersion \(G : M^2 \to \mathbb{R}^4 \), the index of an inflection point \(-1/2 \) or \(1/2 \).

Conjecture 1 is equivalent to the following two conjectures:

Conjecture 1a. Consider an equiaffine pair \((f, \xi)\), where \(f : M^2 \to \mathbb{R}^3 \) is an immersion with positive affine metric. Then the index of the curvature lines of \((f, \xi)\) at \(x_0 \) is at most 1.

Conjecture 1b. Consider an equiaffine pair \((F, \Phi)\), where \(F : M^2 \to \mathbb{R}^4 \) is a centroaffine immersion with positive bilinear form \(H \). Then the index of the curvature lines of \((F, \Phi)\) at \(x_0 \) is at most 1.

Proposition 5.1. Conjectures 1, 1a and 1b are equivalent.

Proof. If Conjecture 1 holds, then Conjecture 1a also holds by taking the affine pedal. Conversely, assume Conjecture 1a holds and let \(G \) is an immersion. By Proposition 4.5, \(G \) is the affine pedal of some equiaffine pair \((f, \xi)\), and by Proposition 3.4, \(x_0 \) is an umbilical point for this pair. Moreover, the curvature lines of \((f, \xi)\) correspond to asymptotic lines of \(G \), which proves that Conjecture 1 holds.

If Conjecture 1 holds, then Conjecture 1b holds by taking the dual. Conversely, assume Conjecture 1b holds. Then by taking the lifting, Conjecture 1a also holds, thus proving the claim. □

Remark 5.2. Under a semi-homogeneity hypothesis, it is proved in [4] that Conjecture 1a holds. Thus, under the semi-homogeneity hypothesis, Conjecture 1 and Conjecture 1b also hold.

References

[1] J.W.Bruce, F.Tari: Families of surfaces in \(\mathbb{R}^4 \), Proc. Edinburgh Math. Soc., 45, 181-203, 2002.
[2] M.Craizer, L.Sánchez, M.Saia: Equiaffine Darboux frames for codimension-2 submanifolds contained in hypersurfaces, J. of Math. Soc. Japan, 69(4), 1331-1352, 2017.

[3] M.Craizer, L.Sánchez, M.Saia: Affine focal sets of codimension-2 submanifolds contained in hypersurfaces, Proceedings of the Royal Society of Edinburgh, 148A, 995-1016, 2018.

[4] M.Craizer, R.A.Garcia: Curvature lines of a transversal equiaffine vector field along a surface in 3-space, to appear in the Proceedings of the 16th International Workshop on Real and Complex Singularities, to be published by the Journal of Singularities.

[5] C.Gutierrez, F.S.Bringas: On a Loewner umbilic-index conjecture for surfaces immersed in \mathbb{R}^4, J.Dyn.Control Systems, 4 (1), 127-136, 1998.

[6] C.Gutierrez, M.A.S.Ruas: Indices of Newton non-degenerate vector fields and a conjecture of Loewner for surfaces in \mathbb{R}^4, Real and Complex Singularities, Lecture Notes Pure Appl. Math., 245-253, Dekker, New York, 2003.

[7] R.A.Garcia, D.K.H.Mochida, M.C.R.Fuster, M.A.S.Ruas: Inflection points and topology of surfaces in 4-space, Trans.American Math.Soc. 352(7), 3029-3043, 2000.

[8] S.Izumiya, M.C.Romero Fuster, M.A.S.Ruas, F.Tari: Differential Geometry from the Singularity Theory Viewpoint, World Scientific, 2015.

[9] K.Nomizu and T.Sasaki: Affine Differential Geometry, Cambridge University Press, 1994.

[10] K.Nomizu and T.Sasaki: Centroaffine immersions of codimension two and projective hypersurface theory, Nagoya Math. J., 132, 63-90, 1993.

[11] J.J.Nuño-Ballesteros: Submanifolds with a non-degenerate parallel normal vector field in euclidean spaces, Advanced Studies in Pure Mathematics, 43, Singularity Theory and its Applications, 311-332, 2006.

[12] V.Ovsienko and S.Tabachnikov: Projective Differential Geometry Old and New, Cambridge Tracts in Mathematics, 2005.

Marcos Craizer
Departamento de Matemática- PUC-Rio
Rio de Janeiro, RJ, Brasil

e-mail: craizer@puc-rio.br

Ronaldo Garcia
Instituto de Matemática e Estatística- UFG
Goiânia, GO, Brasil

e-mail: ragarcia@ufg.br