Abstract

C-eigenvalues of piezoelectric-type tensors which are real and always exist, are introduced by Chen et al. [1]. And the largest C-eigenvalue for the piezoelectric tensor determines the highest piezoelectric coupling constant. In this paper, we give two intervals to locate all C-eigenvalues for a given Piezoelectric-type tensor. These intervals provide upper bounds for the largest C-eigenvalue. Numerical examples are also given to show the corresponding results.

Keywords: Piezoelectric tensors, C-eigenvalues, Interval.

2010 MSC: 12E10; 15A18; 15A69

1. Introduction

Piezoelectric-type tensors are introduced by Chen et al. in [1] as a subclass of third order tensors which have extensive applications in physics and engineering [2, 3, 5, 6, 7, 9]. The class of Piezoelectric tensors, as the subclass of Piezoelectric-type tensors of dimension three, plays the key role in Piezoelectric effect and converse Piezoelectric effect [1].

Definition 1. [1, Definition 2.1] Let $A = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$ be a third-order n dimensional real tensor. If the later two indices of A are symmetric, i.e., $a_{ijk} = a_{ikj}$ for all $j \in N$ and $k \in N$ where $N := \{1, 2, \ldots, n\}$, then A is called a piezoelectric-type tensor.
To explore more properties related to piezoelectric effect and converse piezoelectric effect in solid crystal, Chen et al. in [1] introduced C-eigenvalues and C-eigenvectors for Piezoelectric-type tensors, and shown that the largest C-eigenvalue corresponds to the electric displacement vector with the largest 2-norm in the piezoelectric electronic effect under unit uniaxial stress [1, 2, 8].

Definition 2. [1, Definition 2.2] Let $A = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$ be a piezoelectric-type tensor. If there exist a scalar $\lambda \in \mathbb{R}$, vectors $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$ satisfying the following system

\[
Ayy = \lambda x, \quad xAy = \lambda y, \quad x^T x = 1 \text{ and } y^T y = 1,
\]

where $Ayy \in \mathbb{R}^{n}$ and $xAy \in \mathbb{R}^{n}$ with the i-th entry

\[
(Ayy)_i = \sum_{j,k \in N} a_{ijk} y_j y_k, \quad \text{and} \quad (xAy)_i = \sum_{j,k \in N} a_{jki} x_j y_k,
\]

respectively, then λ is called a C-eigenvalue of A, x and y are called associated left and right C-eigenvectors, respectively.

For C-eigenvalues and associated left and right C-eigenvectors of a piezoelectric-type tensor, Chen et al. in [1] also provided several related results, such as:

Property 1. For a piezoelectric-type tensor A, there always exist C-eigenvalues of A and associated left and right C-eigenvectors.

Property 2. Suppose that λ, x and y are a C-eigenvalue and its associated left and right C-eigenvectors of a piezoelectric-type tensor A. Then

\[
\lambda = xAy,
\]

where $xAy = \sum_{i,j,k \in N} a_{ijk} x_i y_j y_k$. Furthermore, $(\lambda, x, -y)$, $(-\lambda, -x, y)$ and $(-\lambda, -x, -y)$ are also C-eigenvalues and their associated C-eigenvectors of A.

Property 3. Suppose that λ^* is the largest C-eigenvalue of a piezoelectric-type tensor A. Then

\[
\lambda^* = \max \left\{ xAy : x^T x = 1, y^T y = 1 \right\}.
\]

Property 2 and Property 3 provide theoretically the form to determine C-eigenvalues or the largest C-eigenvalue λ^* of A. However, it is difficult to compute them in practice because determining x and y is not easy. So, we in this paper give some intervals to locate all C-eigenvalues of a piezoelectric-type tensor, and then give some upper bounds for the the largest C-eigenvalue. This can provide more information before calculating them out.
2. Main results

In this section, we give two intervals to locate all \(C\)-eigenvalues of a piezoelectric-type tensor. And the comparison of these two intervals are also established.

Theorem 1. Let \(A = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}\) be a piezoelectric-type tensor, and \(\lambda\) be a \(C\)-eigenvalue of \(A\). Then

\[
\lambda \in [-\rho, \rho], \quad (2)
\]

where

\[
\rho := \max_{i,j \in \mathbb{N}} \left(R^{(1)}_i(A) R^{(3)}_j(A) \right)^{\frac{1}{2}},
\]

\[
R^{(1)}_i(A) := \sum_{l,k \in \mathbb{N}} |a_{ilk}| \quad \text{and} \quad R^{(3)}_j(A) := \sum_{l,k \in \mathbb{N}} |a_{lkj}|.
\]

Proof. Suppose that \(x = (x_1, x_2, \ldots, x_n)^T\) and \(y = (y_1, y_2, \ldots, y_n)^T\) are left and right \(C\)-eigenvectors corresponding to \(\lambda\) with \(x^T x = 1\) and \(y^T y = 1\). Let

\[
|x_p| = \max_{i \in \mathbb{N}} |x_i|, \quad \text{and} \quad |y_q| = \max_{i \in \mathbb{N}} |y_i|.
\]

Then \(0 < |x_p| \leq 1\) and \(0 < |y_q| \leq 1\) because \(x^T x = 1\) and \(y^T y = 1\).

By considering the \(p\)-th equation of \(Ay = \lambda x\) in (1), we have

\[
\lambda x_p = \sum_{j,k \in \mathbb{N}} a_{pjk} y_j y_k, \quad (3)
\]

and

\[
|\lambda||x_p| \leq \sum_{j,k \in \mathbb{N}} |a_{pjk}||y_j||y_k|
\]

\[
\leq \sum_{j,k \in \mathbb{N}} |a_{pjk}||y_q||y_q|
\]

\[
\leq \sum_{j,k \in \mathbb{N}} |a_{pjk}||y_q|. \quad \text{(by} \ |y_q| \leq 1)\]

Hence

\[
|\lambda||x_p| \leq R^{(1)}_p(A)|y_q|. \quad (4)
\]
On the other hand, by considering the q-th equation of $x \mathcal{A} y = \lambda y$ in (1), we have
\begin{equation}
\lambda y_q = \sum_{i,j \in N} a_{ijq} x_i y_j, \tag{5}
\end{equation}
and
\begin{align*}
|\lambda| |y_q| & \leq \sum_{i,j \in N} |a_{ijq}| |x_i| |y_j| \\
& \leq \sum_{i,j \in N} |a_{ijq}| |x_p| |y_q| \\
& \leq \sum_{i,j \in N} |a_{ijq}| |x_p|. \, (by \ |y_q| \leq 1)
\end{align*}

Hence
\begin{equation}
|\lambda| |y_q| \leq R_q^{(3)}(\mathcal{A}) |x_p|. \tag{6}
\end{equation}
Multiplying (1) with (6) yields
\begin{equation*}
|\lambda|^2 |x_p| |y_q| \leq R_p^{(1)}(\mathcal{A}) R_q^{(3)}(\mathcal{A}) |x_p| |y_q|,
\end{equation*}
consequently,
\begin{equation}
|\lambda| \leq \left(R_p^{(1)}(\mathcal{A}) R_q^{(3)}(\mathcal{A}) \right)^{\frac{1}{2}}. \tag{7}
\end{equation}

Note the facts that λ is a C-eigenvalue of \mathcal{A} if and only if $-\lambda$ is a C-eigenvalue of \mathcal{A}, and that a C-eigenvalue is real. Then
\begin{equation*}
\lambda \in \left[-\left(R_p^{(1)}(\mathcal{A}) R_q^{(3)}(\mathcal{A}) \right)^{\frac{1}{2}}, \left(R_p^{(1)}(\mathcal{A}) R_q^{(3)}(\mathcal{A}) \right)^{\frac{1}{2}} \right] \subseteq [-\rho, \rho].
\end{equation*}
The conclusion follows. \hfill \square

From Theorem 1 we can obtain easily the following upper bound for the largest C-eigenvalue of a piezoelectric-type tensor.

Corollary 1. Let $\mathcal{A} = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$ be a piezoelectric-type tensor, and λ^* be the largest C-eigenvalue of \mathcal{A}. Then
\begin{equation*}
\lambda^* \leq \rho.
\end{equation*}
Next we give another interval to locate all C-eigenvalues of a piezoelectric-type tensor. Before that some notation are given. For a subset S of N, denote
\[
\Delta_S := \{(i, j) : i \in S \text{ or } j \in S\}
\]
and
\[
\bar{\Delta}_S := \{(i, j) : i \notin S \text{ and } j \notin S\}.
\]
Given a piezoelectric-type tensor $A = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$, let
\[
R_{j}^{\Delta_S,(3)}(A) = \sum_{(l,k) \in \Delta_S} |a_{lkl}|, R_{j}^{\Delta_S,(3)}(A) = \sum_{(l,k) \in \bar{\Delta}_S} |a_{lkl}|,
\]
where $R_{j}^{\Delta_S,(3)}(A) = 0$ if $S = \emptyset$, and $R_{j}^{\Delta_S,(3)}(A) = 0$ if $S = N$. Obviously, $R_{j}^{(3)}(A) = R_{j}^{\Delta_S,(3)}(A) + R_{j}^{\bar{\Delta}_S,(3)}(A)$ for each $j \in N$.

Theorem 2. Let $A = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$ be a piezoelectric-type tensor, and λ be a C-eigenvalue of A. And let S be a subset of N. Then
\[
\lambda \in [-\rho_S, \rho_S],
\]
where
\[
\rho_S := \max_{i,j \in N} \frac{1}{2} \left(R_{j}^{\Delta_S,(3)}(A) + \left((R_{j}^{\Delta_S,(3)}(A))^2 + 4R_{i}^{(1)}(A)R_{j}^{\bar{\Delta}_S,(3)}(A) \right)^{1/2} \right).
\]
Furthermore,
\[
\lambda \in [-\rho_{\min}, \rho_{\min}],
\]
where $\rho_{\min} := \min_{S \subseteq N} \rho_S$.

Proof. Similarly to the proof of Theorem 1 (4) and (5) hold. Furthermore, by (5) we have
\[
|\lambda||y_q| \leq \sum_{i,j \in N} |a_{ijq}||x_p||y_q|
\]
\[
= R_q^{(3)}(A)|x_p||y_q|
\]
\[
= \left(R_q^{\Delta_S,(3)}(A) + R_q^{\bar{\Delta}_S,(3)}(A) \right) |x_p||y_q|
\]
\[
\leq R_q^{\Delta_S,(3)}(A)|y_q| + R_q^{\bar{\Delta}_S,(3)}(A)|x_p|
\]
Hence
\[(|\lambda| - R_{q}^{\Delta S,(3)}(A)) |y_q| \leq R_{q}^{\Delta S,(3)}(A)|x_p|. \] (10)

Multiplying (4) with (10) yields
\[|\lambda| (|\lambda| - R_{q}^{\Delta S,(3)}(A)) |x_p||y_q| \leq R_{p}^{(1)}(A) R_{q}^{\Delta S,(3)}(A)|x_p||y_q|, \]
consequently,
\[|\lambda| (|\lambda| - R_{q}^{\Delta S,(3)}(A)) \leq R_{p}^{(1)}(A) R_{q}^{\Delta S,(3)}(A). \] (11)

Solving (11) for $|\lambda|$ gives
\[|\lambda| \leq \frac{1}{2} \left(R_{q}^{\Delta S,(3)}(A) + \left((R_{q}^{\Delta S,(3)}(A))^2 + 4R_{p}^{(1)}(A) R_{q}^{\Delta S,(3)}(A) \right)^{\frac{1}{2}} \right). \]

By an analogous way of Theorem 1, we have
\[\lambda \in [-\rho_S, \rho_S]. \] (12)

Furthermore, since (12) holds for any $S \subseteq N$, it follows that
\[\lambda \in \bigcap_{S \subseteq N} [-\rho_S, \rho_S] = \left[-\min_{S \subseteq N} \rho_S, \min_{S \subseteq N} \rho_S \right] = [-\rho_{\min}, \rho_{\min}]. \]

The conclusion follows. \(\square \)

Note here that if $S = \emptyset$, then $R_{j}^{\Delta S,(3)}(A) = 0$ and $R_{j}^{\Delta S,(3)}(A) = R_{j}^{(3)}(A)$ for any $j \in N$, which implies
\[\frac{1}{2} \left(R_{j}^{\Delta S,(3)}(A) + \left((R_{j}^{\Delta S,(3)}(A))^2 + 4R_{j}^{(1)}(A) R_{j}^{\Delta S,(3)}(A) \right)^{\frac{1}{2}} \right) = \left(R_{j}^{(1)}(A) R_{j}^{(3)}(A) \right)^{\frac{1}{2}}, \]
consequently,
\[\rho_S = \rho. \]

Hence,
\[\rho_{\min} = \min_{S \subseteq N} \rho_S \leq \rho. \]

This gives the comparison of the intervals in Theorem 1 and Theorem 2 as follows.
Theorem 3. Let $A = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$ be a piezoelectric-type tensor, and λ be a C-eigenvalue of A. Then

$$\lambda \in [-\rho_{\min}, \rho_{\min}] \subseteq [-\rho, \rho],$$

where ρ is defined in Theorem 1 and ρ_{\min} is defined in Theorem 2.

Remark 1. Theorem 1 shows that the interval $[-\rho_{\min}, \rho_{\min}]$ captures all C-eigenvalues of a piezoelectric-type tensor precisely than the interval $[-\rho, \rho]$, although ρ_{\min} needs more computations than ρ.

Similarly to Corollary 1, we can obtain easily the following upper bound for the largest C-eigenvalue of a piezoelectric-type tensor by Theorem 2.

Corollary 2. Let $A = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$ be a piezoelectric-type tensor, and λ^* be the largest C-eigenvalue of A. Then

$$\lambda^* \leq \rho_{\min}.$$

3. Numerical examples

In this section, we give some examples to show the results obtained above. Consider the eight piezoelectric tensors in [1];

(I) The piezoelectric tensor A_{VFeSb} [1, 4], with its entries

$$a_{123} = a_{213} = a_{312} = -3.68180677,$$

and other elements are zeros;

(II) The piezoelectric tensor A_{SiO2} [1, 2, 3], with its entries

$$a_{111} = -a_{122} = -a_{133} = -0.13685, \text{ and } a_{123} = -a_{213} = -0.009715,$$

and other elements are zeros;

(III) The piezoelectric tensor $A_{Cr2AgBiO8}$ [1, 4], with its entries

$$a_{123} = a_{213} = -0.22163, \text{ and } a_{113} = -a_{223} = 2.608665,$$

$$a_{311} = -a_{322} = 0.152485, \text{ and } a_{312} = -0.37153,$$

and other elements are zeros;
(IV) The piezoelectric tensor A_{RbTaO_3}\[^1\, 4\] with its entries
\[a_{113} = a_{223} = -8.40955, \quad a_{222} = -a_{212} = -a_{211} = -5.412525, \]
\[a_{311} = a_{322} = -4.3031, \text{ and } a_{333} = -5.14766,\]
and other elements are zeros;

(V) The piezoelectric tensor A_{NaBiS_2}\[^1\, 4\] with its entries
\[a_{113} = -8.90808, \quad a_{223} = -0.00842, \quad a_{311} = -7.11526, \]
\[a_{322} = -0.6222, \text{ and } a_{333} = -7.93831,\]
and other elements are zeros;

(VI) The piezoelectric tensor $A_{LiBiB_2O_5}$\[^1\, 4\] with its entries
\[a_{123} = 2.35682, \quad a_{112} = 0.34929, \quad a_{211} = 0.16101, \quad a_{222} = 0.12562, \]
\[a_{233} = 0.1361, \quad a_{213} = -0.05587, \quad a_{323} = 6.91074, \text{ and } a_{312} = 2.57812,\]
and other elements are zeros;

(VII) The piezoelectric tensor $A_{KBi_2F_7}$\[^1\, 4\] with its entries
\[a_{111} = 12.64393, \quad a_{122} = 1.08802, \quad a_{133} = 4.14350, \quad a_{123} = 1.59052, \]
\[a_{113} = 1.96801, \quad a_{112} = 0.22465, \quad a_{211} = 2.59187, \quad a_{222} = 0.08263, \]
\[a_{233} = 0.81041, \quad a_{223} = 0.51165, \quad a_{213} = 0.71432, \quad a_{212} = 0.10570, \]
\[a_{311} = 1.51254, \quad a_{322} = 0.68235, \quad a_{333} = -0.23019, \quad a_{323} = 0.19013, \]
\[a_{313} = 0.39030, \text{ and } a_{312} = 0.08381,\]
and other elements are zeros;

(VIII) The piezoelectric tensor A_{BaNiO_3}\[^1\, 4\] with its entries
\[a_{113} = a_{223} = 0.038385, \quad a_{311} = a_{322} = 6.89822, \text{ and } a_{333} = 27.4628,\]
and other elements are zeros.

We now use the intervals in Theorem 11 and Theorem 12 to locate all C-eigenvalues of the eight tensors above, see Table 1. It is easy to see that for any C-eigenvalue λ,

$$\lambda \in [-\rho_{\text{min}}, \rho_{\text{min}}] \subseteq [-\rho, \rho].$$

	A_{VFeSb}	A_{SiO_2}	$A_{Cr_2AgBiO_8}$	A_{RbTaO_3}	A_{NaBiS_2}	$A_{LiBiB_2O_5}$	$A_{KBi_2F_7}$	A_{BaNiO_3}
ρ	7.3636	0.2882	5.6606	30.0911	17.3288	15.2911	22.6896	38.8162
ρ_{min}	7.3636	0.2834	5.6606	23.5377	16.8548	12.3206	20.2351	35.3787
λ^*	4.2514	0.1375	2.6258	12.4234	11.6674	7.7376	13.5021	27.4628

Table 1. The intervals $[-\rho, \rho]$ and $[-\rho_{\text{min}}, \rho_{\text{min}}]$, and λ^* is the largest C-eigenvalue.
Acknowledgements

This work is partly supported by National Natural Science Foundations of China (11601473) and CAS "Light of West China" Program.

References

[1] Y.N. Chen, A. Jákli, L.Q. Qi. Spectral Analysis of Piezoelectric Tensors, arXiv:1703.07937v1 [math-ph], 2017.

[2] J. Curie, P. Curie, Développement, par pression, de l’électricité polaire dans les cristaux hémisphères à faces inclinées, Comptes rendus (in French) 91, 294-295, 1880.

[3] S. Haussühl, Physical Properties of Crystals: An Introduction, Wiley-VCH Verlag, Weinheim, 2007.

[4] M. de Jong, W. Chen, H. Geerlings, M. Asta, K. A. Persson, A database to enable discovery and design of piezoelectric materials, Sci. Data 2, 150053, 2015.

[5] A.L. Kholkin, N.A. Pertsev, A.V. Goltsev, Piezoelectricity and crystal symmetry, in: A. Safari and E.K. Akdoğan, eds., Piezoelectric and Acoustic Materials, Springer, New York, 2008.

[6] D.R. Lovett, Tensor Properties of Crystals, Second Edition, Institute of Physics Publishing, Bristol, 1989.

[7] J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Second Edition, Clarendon Press, Oxford, 1985.

[8] T. Zhang, G.H. Golub, Rank-one approximation to high order tensors, SIAM J. Matrix Anal. Appl. 23, 534-550, 2001.

[9] W.N. Zou, C.X. Tang, E. Pan, Symmetric types of the piezotensor and their identification, Proc. R. Soc. A 469, 20120755, 2013.