Directed flow of Λ from heavy-ion collisions and hyperon puzzle of neutron stars

Akira Ohnishi 1, A. Jinno 2, K. Murase 1, Y. Nara 3

1. YITP, Kyoto U., 2. Dept. Phys., Kyoto U., 3. Akita International U.

Introduction – Hyperon puzzle
Directed flow of protons
Directed flow of Λ using U_Λ from chiral EFT
Summary

Y.Nara, A. Jinno, K. Murase, AO, in prep.
Hyperon Puzzle of Neutron Stars

- Observation of massive neutron stars rules out hyperonic EOS?
 - Attractive $U_\Lambda(\rho)$ causes hyperon mixing in NS at $(2-4)\rho_0$, softens the EOS, and reduces $M_{\text{max}} = (1.3-1.6)M_\odot$

- Proposed solutions
 - Three-body ΛNN repulsion \rightarrow repulsive $U_\Lambda(\rho)$ at high density
 - Transition to quark matter before Λ appears
 - General relativity \rightarrow Modified gravity

Challenging Subject in Mean Field Dynamics
Chiral effective field theory (chiral EFT) may cause repulsive Λ potential at high densities

Gerstung, Kaiser, Weise (2001.10563), Kohno (1802.05388)

Yet unknown parameters are tuned to support 2 M_\odot neutron stars.

→ Repulsion at high densities needs to be verified!
→ E.g. Collective flows in heavy-ion collisions

Gerstung+ (‘20)
Kohno (‘18)
Semi-Classical Nuclear Transport Theories

- Wigner(-Weyl) transform of TDHF = Vlasov equation
 - Wigner transform of density matrix = Wigner fn. (phase space dist.)
 - Wigner transform of commutator $\sim i\hbar \times$ Poisson bracket
 \[
 i\hbar \frac{d\rho}{dt} = [\hbar, \rho] \rightarrow \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f - \nabla U \cdot \nabla_p f = 0
 \]
 \[
 [f = \rho_W, [A, B]_W = i\hbar \{A_W, B_W\}_{PB} + \mathcal{O}(\hbar^2)]
 \]
- Test particle solution of the Vlasov equation \rightarrow Classical EOM
 \[
 f(r, p) = \frac{(2\pi)^3}{N} \sum_{i=1, NA} \delta(r - r_i)\delta(p - p_i)
 \]
 \[
 \rightarrow \frac{dr_i}{dt} = \frac{\partial h}{\partial p} \bigg|_{p=p_i} = \frac{p}{m} + \frac{\partial U}{\partial p} \bigg|_{p=p_i}, \quad \frac{dp_i}{dt} = -\frac{\partial U}{\partial r} \bigg|_{r=r_i}
 \]
- Relativistic Quantum Molecular Dynamics
 - Transport model applicable to high energies
 Sorge, Stoecker, Greiner (‘89); Maruyama et al. (‘96)
 - Stronger potential effects are necessary \rightarrow Vector potential
 Nara et al. (‘20), Nara, AO (‘21)
 - Stochastic collisions are also included
Transport models and then (High-Energy) Heavy-Ion Collisions are RELEVANT to Mean Field Dynamics.

Let us Examine the Effects of U_\wedge at High Densities via Collective Flow(s) in Heavy-Ion Collisions!
Directed flow of protons
Directed flow (v_1)

- Directed flow (v_1 or $\langle p_x \rangle$) has been utilized to constrain EOS

 E.g. Sahu, Cassing, Mosel, AO (nucl-th/9907002), Snellings+(nucl-ex/9908001)

- Proton v_1 slope problem *STAR (1401.3043)*

 - Non-monotonic beam E. dep. of v_1 slope
 - Sign change of v_1 slope at $\sqrt{s_{NN}} \sim 10$ GeV
 - None of fluid and hybrid models explain the colliding energy dependence using a single EOS

 Nara+(JAM, 1601.07692, 1611.08023, 1708.05617), Ivanov+(3FD, 1412.1669, 1601.03902), Konchakovski+ (PHSD, 1404.2765)

\[v_1 = \langle \cos \phi \rangle \]
Past tries

JAM-RQMD

- p-dep.
- p-indep.

M.Isse, AO, N.Otuka, P.K.Sahu, Y.Nara, PRC72(‘05)064908
(There was a mistake...)

3FD

Y.B.Ivanov, A.A.Soldatov, PRC91(‘15)024915

HSD/PHSD

V.P.Konchakovski, W.Cassing, Y.B.Ivanov, V.D.Toneev, PRC90(‘14)014903

JAM+Att.

Y.Nara, H.Niemi, AO, H.Stoecker, PRC94(‘16)034906

A. Ohnishi @ MCD 2022, June 8, 2022, Hybrid (YITP, Kyoto, Japan / Online)
An Explanation is found

Beam energy dependence of dv_1/dy can be explained with JAM2 in the RQMDv mode.
\textit{Nara+('16,'17,'18); Y. Nara, AO, arXiv:2109.07594}

Origin of Positive & Negative Flow Components

- Compression stage \rightarrow repulsive pot. at high ρ \rightarrow positive flow ($dv_1/dy > 0$)
- Expansion stage \rightarrow tilted matter formation \rightarrow negative flow ($dv_1/dy < 0$)
\textit{(E.g. 3FD, Tonnev+('03)}

Balance of two contributions may cause non-monotonic colliding energy dep. of v_1 slope

18 GeV, 3-fluid \textit{Toneev et al. ('03)} \textit{Nara, AO (PRC’(’22), 2109.07594)
Positive and Negative Contributions

\[\sqrt{S_{NN}} = 4.86 \text{ GeV} \ b=6 \text{ fm} \]

JAM2

\[\sqrt{S_{NN}} = 11.5 \text{ GeV} \ b=6 \text{ fm} \]

JAM2

Nara, AO (PRC’(’22), 2109.07594)
Can we access EOS by using flows?

- EOS from Flow is a Notorious problem!
 - Momentum-dependent potential can simulate stiff EOS, and then we cannot extract stiffness. (1980s ~)
 - Directed flow value depends on the details of the theoretical treatment.

- A New (?) Hope (Episode IV)
 - After fixing momentum-dependent pot. from pA scattering data and explaining v_1 data, EOS dependence of v_2 (elliptic flow) remains! (Global analysis of multiple observables will help.)

- How about Λ?

Nara, AO (PRC’(’22), 2109.07594)
Directed flow of Λ using U_Λ from chiral EFT
Why Directed flow (v_1) of p and Λ

Directed flow of Λ

- In the compression+tilted expansion mechanism, directed flow of Λ is expected to be smaller than p (Λs are produced during the compression stage).
- Data show $v_1(\Lambda) \sim v_1(p)$ *STAR, PRL120 (‘18),062301 (1708.07132)*
 - Stronger repulsion for Λ at high densities?

Let us examine Λ directed flow using $U_\Lambda(\rho)$ from chiral EFT!
Chiral EFT with 3BF and hyperons

Gerstung+(2001.10563)(GKW, decouplet saturation model), Kohno (1802.05388)

- ρ-dep. potential using Fermi mom. expansion Tews+(1611.07133)

\[U_{sk}(\rho) = a(\rho/\rho_0) + b(\rho/\rho_0)^{4/3} + c(\rho/\rho_0)^{5/3} \]

Momentum dep. fit to Kohno('18)

\[U^{0}_m(p) = \frac{C}{\rho_0} \int \frac{dp'}{(2\pi)^3} \frac{f(r, p')}{1 + (p - p')^2/\mu^2} \]

preliminary

Nara, Jinno, Murase, AO, in prep.
$\sqrt{s_{NN}} = 4.5 \text{ GeV}$

- Slope ($y=0$) is OK with
 - chiral EFT U_Λ (p-indep.)
 - $U_\Lambda = 2/3 \ U_N$
 - v_1 at large $|y|$ needs stiffer U_Λ
 - chiral EFT (p-indep.)
 - p-dep. U_Λ seems to underestimate v_1

MS2: p-dep. soft pot. for N
GKW2: chiral EFT with 2-body int.
GKW3: chiral EFT with 2+3 body int.
GKW3+Kohno: GKW3 with p-dep. from Kohno
Kohno+Kohno: ρ- and p-dep. from Kohno

Nara, Jinno, Murase, AO, in prep.
Can we rely on U_Λ up to 2 GeV/c?

- The cutoff is 550 MeV/c ~ 2.75 fm$^{-1}$ in Kohno (‘18)
- Quark model YN interaction gives weaker p-dep.
- Chiral EFT results at $k < 1$ fm$^{-1}$ are fitted and used (Kohno low-k)

Fujiwara, Suzuki, Nakamoto, PPNP 58 (‘07) 439 (nucl-th/0607013)
Chiral EFT at low momentum seems to be consistent with the Λ directed flow.
Summary

- The directed flow (v_1) of Λ from HIC is studied by using the Λ potential from chiral EFT with 3-body potential, which can support 2 solar mass neutron stars.
 - U_Λ from chiral EFT is not inconsistent with the directed flow data from heavy-ion collisions.
 - [Similar results for $<px>$ at $\sqrt{s_{NN}}=3.0$ GeV are obtained by D.C. Zhang+ (2107.00277)]
- Momentum dependence may be weaker than the explicit results. (We should not rely on results at $k > \Lambda/2$)
- $v_1(\Lambda)$ is not very sensitive to the density dep. of U_Λ.
 - (Λ produced from N in the compression stage succeeds the v_1 of N)
- The forward and backward v_1 values seem to be sensitive to the Λ potential at high densities and/or high momentum.
- How can we pin down U_Λ at high densities?
 - Λ-nucleus scattering (Emulsion or Femtoscopy) \rightarrow mom. dep.
 - Elliptic flow (v_2) and other observables
 - Hypernuclear spectroscopy

Nara, Jinno, Murase, AO, in prep.
Thank you for your attention!
Directed flow of Λ at $\sqrt{s_{NN}} = (4.5-19.6)$ GeV

U_Λ having the p-dep. in chiral EFT roughly explains the v_1 slopes.

MS2: p-dep. soft pot. for N

GKW2: chiral EFT with 2-body int.

GKW3: chiral EFT with 2+3 body int.

GKW3+Kohno: GKW3 with p-dep. from Kohno

Kohno+Kohno: ρ- and p-dep. from Kohno

Nara, Jinno, Murase, AO, in prep.
Time dependence of v_1

Courtesy of Y. Nara
Lambda position: 11.5GeV 20 events

Red: nucleons
Blue: Lambda + Sigma0

\(\sqrt{s_{NN}} = 11.5 \text{ GeV} b=6 \text{ fm} \)

Courtesy of Y. Nara
Collision order = collision time
= \frac{(t_1 + t_2)}{2}, \quad L = 0.5 \text{ fm}^2

\begin{align*}
\text{CO} &= \text{CT} = \min(t_1, t_2), \quad L = 1.0 \text{ fm}^2
\end{align*}

Courtesy of Y. Nara