Introduction

Pathological angiogenesis in the retina is the leading cause of human blindness resulting from diabetic retinopathy, age-related macular degeneration (AMD), and retinopathy of prematurity (ROP). Despite of significant advances in medical care, diabetic retinopathy, AMD and ROP continue to remain the leading causes of vision impairment and blindness in adults and infants respectively [1–4]. These common ocular disorders are characterized by overgrowth of disorganized, leaky and physiologically non-functional retinal vessels, which lead to vision impairment and blindness [1,4].

A good adult animal model that recapitulates clinical pathology of retinal angiogenesis does not exist [5,6]. Thus, there is a great and urgent need to develop clinically relevant retinopathy models in both newborn and adult animals for studying mechanisms of pathological neovascularization in the retina, screening of novel drugs, and validating antiangiogenic therapy.

In humans, the posterior part of the eye is nourished by two vascular networks, the choroidal and retinal vascular systems, which nourish the outer and inner layers of the retina, respectively [4,5,7].

Hypoxia-Induced Retinal Angiogenesis in Zebrafish as a Model to Study Retinopathy

Renhai Cao1*, Lasse Dahl Ejby Jensen1*, Iris Söll2,3, Giselbert Hauptmann2,3, Yihai Cao1*

1 Department of Microbiology, Tumor and Cell Biology, The Karolinska Institute, Stockholm, Sweden, 2 School of Life Sciences, Södertörns University College, Huddinge, Sweden, 3 Department of Biosciences and Nutrition, The Karolinska Institute, Huddinge, Sweden

Abstract

Mechanistic understanding and defining novel therapeutic targets of diabetic retinopathy and age-related macular degeneration (AMD) have been hampered by a lack of appropriate adult animal models. Here we describe a simple and highly reproducible adult fl/fl-EGFP transgenic zebrafish model to study retinal angiogenesis. The retinal vasculature in the adult zebrafish is highly organized and hypoxia-induced neovascularization occurs in a predictable area of capillary plexuses. New retinal vessels and vascular sprouts can be accurately measured and quantified. Orally active anti-VEGF agents including sunitinib and ZM33881 effectively block hypoxia-induced retinal neovascularization. Intriguingly, blockage of the Notch signaling pathway by the inhibitor DAPT under hypoxia, results in a high density of arterial sprouting in all optical arteries. The Notch suppression-induced arterial sprouting is dependent on tissue hypoxia. However, in the presence of DAPT substantial endothelial tip cell formation was detected only in optic capillary plexuses under normoxia. These findings suggest that hypoxia shifts the vascular targets of Notch inhibitors. Our findings for the first time show a clinically relevant retinal angiogenesis model in adult zebrafish, which might serve as a platform for studying mechanisms of retinopathy, for defining novel therapeutic targets, and for screening of novel antiangiogenic drugs.

Citation: Cao R, Jensen LDE, Söll I, Hauptmann G, Cao Y (2008) Hypoxia-Induced Retinal Angiogenesis in Zebrafish as a Model to Study Retinopathy. PLoS ONE 3(7): e2748. doi:10.1371/journal.pone.0002748

Editor: Arnold Schwartz, University of Cincinnati, United States of America

Received May 29, 2008; Accepted June 20, 2008; Published July 23, 2008

Copyright: © 2008 Cao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Yihai Cao’s laboratory is supported by research grants from the Swedish Research Council, the Swedish Heart and Lung Foundation, the Swedish Cancer Foundation, the Karolinska Institute fund, the Söderberg Foundation, the EU integrated projects of Angiotargeting (Contract No. 504743), and VascuPlug (Contract No. STRP 013811). The Swedish Research Council further supports Y. Cao.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: yihai.cao@ki.se

These authors contributed equally to this work.
O₂ delivery during retinal hypoxia. However, the VEGF-induced vasculature consists of disorganized and leaky primitive vascular networks leading to retinal edema and impairment of vision [22–27]. Thus, VEGF has become an attractive key target for development of new drugs against ocular diseases. Not surprisingly, both animal studies and clinical experiences demonstrate that blockade of VEGF signaling is a valid approach for the treatment of AMD although the therapeutic efficacy for diabetic retinopathy and ROP needs further validation in appropriate animal models. VEGF binds to both VEGFR-1 and VEGFR-2 mainly distributed in endothelial cells and it is VEGFR-2 that mediates active angiogenic and vascular permeability functions [28–32]. Thus, VEGFR-2 has become an attractive therapeutic target for treatments of several common human diseases including cancer and AMD.

The Notch signaling pathway has recently been highlighted in contributing to pathological angiogenesis [33–35]. Notch ligand DLL-4 acts as a negative feedback mechanism downstream of the VEGF signaling pathway and regulates endothelial cell differentiation, arterial sprouting, vascular remodeling and patterning, vessel maturation, and vessel stability [36]. Inhibition of the Notch pathway lead to reduced tumor growth, but increased formation of non-functional vasculature [37,38]. However, while the role of Notch in vascular development has been studied in embryos or infant animals little is known about its function in adult pathological angiogenesis of non-malignant tissues, and particular its relation to tissue hypoxia [39,40].

The retinal vasculature of adult zebrafish shares some similarities with that of humans. For example, mural cell coating, endothelial cell junctions, and basement membrane composition are similar in humans and zebrafish [13]. Thus, a retinal neovascularization disease model in adult zebrafish would be invaluable for understanding molecular mechanisms of retinal pathology, defining novel therapeutic targets and for drug validation. In this paper, we for the first time, describe such a highly reproducible ocular disease model in adult zebrafish.

Methods

Zebrafish strain and maintenance

Fluorescent reporter fish (GFP-Tg) zebrafish were purchased from the ZIRC fish center (Oregon) and maintained in aquaria according to standard procedures on a 10-h dark/14-h light cycle at 28.5 °C [43]. Approximately 5–16-month-old adult zebrafish were used for all experiments. Before experimental operations, all zebrafish were anaesthetized with 0.02% tricaine (Sigma). The zebrafish facility and all experimental procedures were approved by the North Stockholm Experimental Animal Ethical Committee.

Experimental hypoxia

The hypoxia device was engineered to perfuse N₂ gas directly into the water via an air diffuser and the aquarium was virtually sealed to prevent leaking air. The N₂ gas flow was engaged/disengaged by a valve, which was controlled by an O₂ regulator (All from Loligo Systems, Denmark). The O₂ regulator controlled the O₂ tension via a electrode and the entire hypoxia system was automated to maintain a constant level of O₂ in the aquaria water. The temperature of the aquaria water remained at 26 °C, which was maintained by using a thermostat. Zebrafish were first placed in normoxic water and the O₂ tension was gradually reduced to adopt the final 10% air saturation (820 ppm) over the course of 48–72 h. Zebrafish was exposed in this hypoxic environment for different time points with a maximal period of 15 days.

VEGF and Notch blockade

Fluorescent reporter fish (GFP-Tg) zebrafish exposed in the hypoxic condition as described above were also incubated with 0.5 μM sunitinib or 1 μMZN323881 for 15 days. The final concentration of the vehicle (sodium citrate or DMSO respectively) was less than 1:40,000. For Notch inhibition, DAPT (N-[N-([3,5-difluorophenacetyl]-L-alanyl)]-S-phenylglycine t-butyl ester; Sigma-Aldrich) from a stock of 10 mM in DMSO was added to the aquaria water to achieve a final concentration of 10 μM and zebrafish were incubated for 5 days and under hypoxia or 6 days under normoxia. During this period of experimentation, no obvious toxicity was observed with the anti-VEGF compounds or DAPT.

Preparation of retina

Before examination of retinal neovascularization, Fluorescent reporter fish zebrafish were killed by a lethal dose of MS-222, followed by decapitation. Fish heads were immersed immediately in 4% PFA, incubated at 4°C overnight and eyes were enucleated. Retinas were isolated from the other tissues and flat-mounted onto glass slides. As for mouse retinas, adult C57/Bl mice were used and eyes were enucleated after exposure to a lethal dose of CO₂. The isolated mouse retina was immunohistochemically double stained with a rat anti-mouse CD31 and a mouse anti-human α-SMC actin antibody as previously described [44].

Confocal analysis

Tissue slides were examined under a confocal microscope (Zeiss Confocal LSM510). Mouse retinas were scanned and 5 thin sections (z-thickness: 4–5 μm) of each sample were assembled into three-dimensional images. Quantitative analysis from at least 12 different tissue sections was performed using the color range tool of Adobe Photoshop CS2 version 9.0.2 software program.

Statistical analysis

Data is presented as the mean determinants (±SEM). A standard student t-test was used for statistical analysis. p<0.05 is considered significant; p<0.01 is considered highly significant; and p<0.001 is considered extremely significant.

Results

Retinal vascular networks in adult zebrafish

Development of the retinal vasculature in zebrafish embryos has been described elsewhere [13]. The retinal vascular structure and architecture were revealed using adult fluorescent reporter fish (fluorescent EGFP transgenic (fluorescent EGFP-Tg) zebrafish [41]. An overview of the retinal vasculature located at inner limiting membrane showed highly organized vascular patterns with the optic artery (OA) located in the center of the optic disc (Fig S1A–F). Approximately 4–9 main vessel branches derived from the optic artery were distributed in each optic disc and they were further divided 2–5 times (grade I–V) before anastomosing with circumferential vein capillaries (CVC). Branch numbers in the grade I optic arteries varied between individual vessels. In contrast, CVCs directly anastomosed to the finest grade of arterial capillaries and drained into the circumferential vein (CV), which encircled the entire optic disc (Fig S1A–F). Thus, highly organized and double-ended capillary plexuses formed a unique vascular pattern before entering into the CV. Anastomosed arterial-vein capillary plexuses might be susceptible to growth and sprouting in response to angiogenic stimuli. In contrast to zebrafish, the mouse retinal vasculature in the inner membrane of the retina is radially co-distributed with neurons and glia. Optic arteries and veins form a high density of capillary
networks in the inner surface of the posterior retina occupying two thirds of the optic disc (Fig. S1G–H).

Hypoxia-induced retinal neovascularization in adult zebrafish

To study retinal neovascularization in a pathological setting, we have engineered a hypoxia device for zebrafish (Fig. 1J). In this device, an N₂ tank was equipped with a pressure indicator, and connected to an air-diffuser submerged in the aquaria water. The aquarium was sealed and the N₂ flow was regulated by a solenoid valve controlled by an O₂ regulator. The entire system was automated and O₂ pressure was self-regulated. Tested drugs could be directed added into water of the sealed aquarium.

Under hypoxia, the optic capillary plexuses of optic arterioles and veins formed new sprouts that during 12 days in 10% air saturation grew to become a high density of capillary networks as compared with those of controls (Fig. 1A, B, D, E, G, H, and K).

Figure 1. Hypoxia-induced retinal angiogenesis in adult \textit{fli}-EGFP-Tg zebrafish. Adult \textit{fli}-EGFP-Tg zebrafish were placed in a hypoxic aquaria and air saturation in the water was controlled at 10% (820 ppb) by an automated device (J). After 12-days exposure to this hypoxic environment, retinal angiogenesis in the capillary plexuses was detected (B, E, H, and K). Corresponding areas of the retinal vasculature exposed to normoxia were used as controls (A, D and G). Numbers of new vascular branches and sprouts, intercapillary distances, and total vascularization areas were accurately quantified (C, F, I, and L). Yellow arrowheads point to vascular sprouts. Yellow arrows point to endothelial tips. Data represents mean determinants of 11–16 randomized samples. ***p<0.001. Bar in panels A and B = 100 μm; in panels D and E = 50 μm; and in G and H = 20 μm.

doi:10.1371/journal.pone.0002748.g001
Interestingly, most capillary sprouts were anastomosed or fused with other sprouts derived from neighboring capillaries (Fig. 1H). In addition, capillary endothelial cell tips were formed at the leading edge of the sprouts (Fig. 1K). Owing to the highly organized vascular architecture of retinal vessels, new vessel branches, sprouts, intercapillary distances, and vascularization area were accurately quantified and significant differences existed between normoxia- and hypoxia-treated zebrafish (Fig. 1C, F, I, and L).

Time course analysis showed that retinal neovascularization became obvious after exposure to hypoxia for 3 days and increased angiogenic responses were detected at day 6 and day 12 (Fig. 2A–H). At day 12, retinal neovascularization reached a plateau of maximal angiogenic responses. Quantification analysis of the formation of branches and sprouts, intercapillary distances and vascularization areas of the capillary plexuses showed significant differences as compared with those of controls at all time points after exposure to hypoxia, suggesting that retinal vascularization is a relatively rapid process in adult zebrafish.

Exposure of adult zebrafish to various concentrations of air-saturated water showed a dose-dependent angiogenic response to hypoxia (Fig. 3A–J). Although a significant number of angiogenic sprouts occurred at 20% air, the formation of new branches was barely detectable. In contrast, overwhelming retinal angiogenesis was detected in response to 10% air saturation. It should be indicated that a considerable number of adult zebrafish would die if the air saturation was below 10%.

Blockage of retinal neovascularization by oral anti-VEGF agents

It is known that hypoxia induces VEGF expression via the hypoxia inducible transcription factor (HIF) system [18,42]. To study the role of VEGF and VEGFRs in hypoxia-induced retinal neovascularization in adult zebrafish, known orally active VEGFR inhibitors were tested. Sunitinib and ZN323881, two potent anti-VEGFR-2 agents, almost completely blocked hypoxia-induced retinal neovascularization (Fig. 4A–F). Formation of new vascular branches was virtually totally inhibited by sunitinib and ZN323881 (Fig. 4A–H). Similarly, intercapillary distances and retinal neovascularization areas were also normalized to the levels of retinas exposed to normoxia (Fig. 4I and J). These findings indicate that the hypoxia-triggered VEGF signaling pathway is the primary angiogenic driving force for retinal neovascularization in adult zebrafish. Thus, our zebrafish retinal angiogenesis model recapitulates clinical disease settings showing that VEGF plays a pivotal role in pathological neovascularization in the retina.

Regulation of hypoxia-induced retinal angiogenesis by the Notch signaling pathway

The Notch signaling pathway has recently been reported to regulate vascular tip cells formation, vascular sprouting and vascular remodeling [36,39,40]. To study molecular mechanisms of hypoxia-induced retinal angiogenesis, the Notch signaling pathway was inhibited by addition of DAPT, a specific inhibitor for γ-secretase,
which is essential for notch activation. Interestingly, in the presence of DAPT, virtually all optic arteries form an exceptionally high density of sprouts, which constituted a disorganized vascular network in proximity to the central optical artery (Fig. 5A, E, and I). High magnification analysis of these arterial sprouts revealed endothelial tip cells forming at the migrating leading edges (Fig. 5I, arrows). The arterial sprout/branch formation was completely dependent on tissue hypoxia. Under normoxia, DAPT did not induce the formation of any arterial sprouts/branches, suggesting that hypoxia was the driving force when the Notch signaling was inhibited (Fig. 5B and F).

Interestingly, inhibition of the Notch signaling pathways by DAPT did not increase the hypoxia-induced sprouting and branch formation in the optic capillary plexus area (Fig. 5C, G, and K), suggesting that the negative feedback effect of Notch under tissue hypoxia was limited to the arterial vasculature close to the central optical artery. Surprisingly, inhibition of the Notch under normoxia led to formation of endothelial cell tips in the entire area of capillary plexuses (Fig. 5D, H, and L). These capillary endothelial cell tips were randomly formed from all capillary endothelial cells and were non-directionally distributed in all capillary plexuses (Fig. 5L). Intriguingly, these capillary endothelial tips were rarely detectable under hypoxia in the presence of DAPT, suggesting the hypoxia might suppress endothelial tip cell formation in capillary networks.

Discussion

Retinopathy, AMD, and other retinal disorders caused by the diabetes epidemic and the change in lifestyle demand development of effective and less expensive targeted therapeutic drugs. For this purpose, development of better animal disease models that recapitulate pathological neovascularization in the retina and clinical retinopathy is urgently needed. Such an in vivo disease model in adult animals would serve as a platform for understanding the underlying mechanism of retinal angiogenesis, for discovery of novel antiangiogenic drugs, and for evaluation of therapeutic efficacy of existing antiangiogenic agents. Unfortunately, a simple and clinically relevant animal model does not exist [5,6]. In this paper, we report that an adult zebrafish retinal angiogenesis model imitates pathological retinal neovascularization that is relevant to clinical settings. To the best of our knowledge, this is the first report describing the development of a non-invasive adult zebrafish model to study retinal angiogenesis.

Figure 3. Dose-dependent hypoxia-induced retinal neovascularization. Adult β-fil-EGFP-Tg zebrafish were exposed to 20% or 10% air-saturated water for 6 days. Retinal neovascularization was analyzed using whole-mount confocal analysis and quantified as branching points, numbers of sprouts, intercapillary distances, and total vascularization areas (A–J). Yellow arrowheads point to vascular sprouts. Data represents mean determinants of 11–25 randomized samples. *p<0.05. ***p<0.001. Bar = 50 μm. doi:10.1371/journal.pone.0002748.g003
A zebrafish retinopathy model is highly relevant to human retinal disorders. Zebrafish and human retinal vasculatures share some common features. Anatomically, the central retinal artery in zebrafish and humans contributes to angiogenesis and the formation capillary plexuses [13]. Developmentally, an initial hyaloid vasculature is associated with the lens and becomes separated at later stage of development [13] (our unpublished data). Similar to humans, the retinal vasculature in the adult zebrafish is also enriched in pericytes and shares some common compositions of ECM and basal lamina [13]. Our zebrafish model has several significant advantages as compared with other existing retinal angiogenesis models including the most commonly used ROP and laser-induced choroidal neovascularization. These include: 1) Non-invasive induction of retinal angiogenesis in the adult animal; 2) Highly reproducible retinal neovascularization in capillary plexuses; 3) Simple, easy and fast experimental procedures; 4) Fl/-EGFP-Tg zebrafish avoids immunohistochemical procedures; 5) Easy approval by the ethical committee; 6) Low-cost zebrafish facility; 7) Screening of angiogenic drugs in a real disease model; 8) Study of vascular patterning, remodeling, and molecular mechanisms of pathological angiogenesis; and 9) Therapeutic evaluation of orally active antiangiogenic agents.

In this adult zebrafish model, we have discovered some unexpected roles of the Notch signaling pathway in relation to tissue hypoxia for regulation of retinal angiogenesis. Under normoxia, inhibition of Notch only leads to capillary endothelial tip sprouting without stimulating the formation of new capillaries. These findings suggest that Notch signaling restricts capillary tip sprouting under physiological conditions. However, without hypoxia as a driving force the formation of capillary endothelial tips would not lead to establishment of functional capillary networks. Inhibition of Notch in the presence of hypoxia completely alters the angiogenic targets from capillary networks to the arterial vasculature. Although the underlying mechanisms remain uncharacterized, it is possible that inhibition of the Notch pathway might lead to repelling of pericytes or smooth muscle cells from arterial vessels, which then become susceptible to VEGF stimulation. This would not explain why capillary tip cells disappeared under hypoxia and Notch inhibition. Probably, hypoxia might inhibit capillary tip cell formation in the absence of notch. These interesting findings warrant further mechanistic investigation. Nevertheless, our findings suggest that hypoxia might alter the target of Notch inhibitors. For development of therapeutic agents targeting the Notch signaling pathway for the
Figure 5. Inhibition of Notch under hypoxia and normoxia. Adult fli-EGFP-Tg zebrafish were exposed to 10 μM DAPT under hypoxia for 5 days (A, E, I, C, G, and K) or under normoxia for 6 days (B, D, F, H, and L). Control optic arteries without exposure to hypoxia or DAPT are shown in (J). E–H are amplified images of the inserts of A–D. Retinal neovascularization was analyzed using whole-mount confocal analysis and quantified as numbers of arterial sprouts (M), capillary tips (N) or branch formations (O). Yellow arrowheads point to vascular sprouts. Yellow arrows point to endothelial tips. The dashed red lines encircle the central optic artery. Data represent mean determinants of 11–13 randomized samples. *p<0.05, ***p<0.001. Bars in A–D = 100 μm; Bars in A–D = 50 μm; and Bars in A–D = 20 μm.

doi:10.1371/journal.pone.0002748.g005
treatment of ocular disorders, it is pivotal to understand the relation between Notch and tissue hypoxia since pathological retinas in most ocular disorders including diabetic retinopathy, AMD and ROP are exposed to severe tissue hypoxia.

Both AMD and diabetic retinopathy are adult-onset disorders characterized by the formation of primitive, leaky and disorganized vascular networks, which grow into the vitreous [4,17]. These features of the retinal vasculature might reflect the unique aspects of VEGF function that include induction of disorganized, highly leaky, tortuous and primitive vascular networks. A large body of studies demonstrates that VEGF is the primary molecule responsible for pathological angiogenesis in the retina of AMD and diabetic retinopathy [16,17,19–21]. Indeed, clinical experiences with anti-VEGF agents for the treatment of AMD have shown remarkably beneficial effects [16]. Expression levels of VEGF are primarily regulated by tissue hypoxia since fetal retinal angiogenesis is carried out under normal oxygen levels [4,17]. With no exception in the pathological retina of AMD and retinopathy, hypoxia is the key element of retinal neovascularization. However in mammalian models, it is difficult to develop a hypoxia-induced retinal angiogenesis model in adult animals. Although the infant ROP model in mice is also based on mechanisms of the hypoxia-induced angiogenesis, exposure to normal air is considered as a relative hypoxia. Thus, this model is not considered as a true disease model.

Our findings show that similar to humans the retina of zebrafish responds to hypoxia, which initiates pathological angiogenesis. We further demonstrate that orally active angiogenesis inhibitors could significantly inhibit retinal neovascularization, suggesting that VEGF is responsible for the hypoxia-induced angiogenesis.

Supporting Information

Figure S1

Found at: doi:10.1371/journal.pone.0002748.s001 (0.25 MB PDF)

Acknowledgments

We thank Dr. John Steffensen at the University of Copenhagen for valuable advice and Dr. Lixiang Wang for technical assistance.

Author Contributions

Conceived and designed the experiments: YC.Performed the experiments: RC.LDEJ IS. Analyzed the data: LDEJ. Contributed reagents/materials/ analysis tools: IS GH YC. Wrote the paper: LDEJ YC.

References

1. Aiello LP (2005) Angiogenic pathways in diabetic retinopathy. N Engl J Med 353: 839–441.
2. Ambati J, Anand A, Fernandez S, Sakurai K, Lynn BC, et al. (2003) An animal model of age-related macular degeneration in senescent C57-B1/6J mice. Nat Med 9: 1390–1397.
3. Dewan A, Liu M, Hartman S, Zhang SS, Liu DT, et al. (2006) HTRA1 promotes polymorphism in wet age-related macular degeneration. Science 314: 909–992.
4. Garriano RF, Gardner TW (2005) Retinal angiogenesis in development and disease. Nat Rev 3: 960–966.
5. Gardner TW, Antonetti DA (2007) The role of VEGF in the regulation of physiological and pathological angiogenesis. Proc Natl Acad Sci U S A 95: 14389–14394.
6. Cao R, Eriksson A, Kubo H, Alitalo K, Cao Y, et al. (2004) Comparative evaluation of FGF-2, VEGF-A, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res 94: 664–670.
7. Gillies MC, Wong TY (2007) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 356: 2501–2514.
8. Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, et al. (1998) Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci U S A 95: 14389–14394.
9. Eriksson A, Cao R, Roy J, Trimmer K, Wahlestroem C, et al. (2003) Small GTP-binding protein Rac is an essential mediator of vascular endothelial growth factor-induced endothelial fenestrations and vascular permeability. Circulation 107: 1532–1538.
10. Senger DR, Galli SJ, Dvorak AM, Peruzzi CA, Harvy VS, et al. (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219: 983–985.
11. Makino Y, Cao R, Suri C, Smith K, McClain J, Sato TN, et al. (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286: 2511–2514.
12. Alon T, Hemo I, Itin A, Pe’er J, Gnessin H, et al. (1995) Development and pathology of the hyaloid, choroidal and retinal vasculature. Invest Ophthalmol Vis Sci 36: 1201–1214.
13. Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, et al. (2004) Comparative evaluation of FGF-2, VEGF-A, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res 94: 664–670.
14. Makino Y, Cao R, Suri C, Smith K, McClain J, Sato TN, et al. (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286: 2511–2514.
15. Ferrara N (2005) The role of VEGF in the regulation of physiological and pathological angiogenesis. Exs pp. 209–31.
16. Cao R, Eriksson A, Cao R, Roy J, Trimmer K, Wahlestroem C, et al. (2003) Small GTP-binding protein Rac is an essential mediator of vascular endothelial growth factor-induced endothelial fenestrations and vascular permeability. Circulation 107: 1532–1538.
17. Senger DR, Galli SJ, Dvorak AM, Peruzzi CA, Harvy VS, et al. (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219: 983–985.
18. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438: 932–936.
19. Ferrara N (2005) The role of VEGF in the regulation of physiological and pathological angiogenesis. Exs pp. 209–31.
20. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antitumor therapy. Science 307: 38–62.
21. Stone J, Itin A, Alon T, Pe’er J, Gnessin H, et al. (1995) Development of retinal neovascularization is mediated by hypoxia-induced vascular endothelial growth factor VEGF expression by neural retina. J Neurosci 15: 4730–4747.
40. Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445: 781–784.
41. Weinstein BM, Stemple DL, Driever W, Fishman MC (1995) Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat Med 1: 1143–1147.
42. Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, et al. (2002) HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1: 459–468.
43. Weinstein BM, Schier AF, Abdellah S, Malicki J, Solnica-Krezel L, et al. (1996) Hematopoietic mutations in the zebrafish. Development 123: 303–309.
44. Nissen LJ, Cao R, Hedlund EM, Wang Z, Zhao X, et al. (2007) Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 117: 2766–2777.