Light (Hyper-)Nuclei production at the LHC measured with ALICE

Francesco Barile for the ALICE Collaboration

Università degli Studi di Bari & INFN

francesco.barile@cern.ch
Outline

● Introduction

● The ALICE detector
 ● Detector performance and analysis strategy

● Results
 ● d and 3He spectra and d/p ratio
 ● Coalescence parameter $B2$
 ● Thermal model fit to the data
 ● Hypertriton
 ● Searches for exotic bound states

● Conclusions
Introduction

- **Thermal model:**
 - The key parameter at the LHC energies is the T_{chem}
 - Nuclei abundance strongly depends on the value of T_{chem}
 - Large mass
 - Exponential dependence of the yield $\sim \exp(-m/T_{\text{chem}})$

A. Andronic, P. Braun-Munzinger, J. Stachel and H. Stoecher, Phys. Lett. B697, 203 (2011), 1010.2995

- **Coalescence model:**
 - Nuclei are formed by protons and neutrons which are nearby and have same velocity (after kinetic freeze-out)
 - Nuclei produced at chemical freeze-out
 - Can break apart
 - Created again by final-state coalescence

J.I. Kapusta, Phys. Rev. C21, 1301 (1980)
ALICE is ideally suited for the identification of light (anti-)nuclei and hyper-nuclei;

ALICE subdetectors used for the results in this talk:
- **ITS** tracking + vertexing + PID (dE/dx)
- **TPC** tracking + vertexing + PID (dE/dx)
- **TOF** PID (time-of-flight)
- **HMPID** PID (ring imaging Cherenkov)

Central barrel
- 2π tracking and PID
 - $|\eta| < 0.9$
 - $B = 0.5$ T
- EM cal. ($|\eta| < 0.7$, $\Delta\phi = 107^\circ$)
- RICH ($|\eta| < 0.5$, $\Delta\phi = 57.6^\circ$)
Particle identification via dE/dx

- At low momenta, nuclei are identified using the dE/dx measurement in the TPC
- About 7% resolution in central Pb-Pb collisions
Particle identification via TOF

- Velocity measurement with the TOF detector is used to calculate the m^2 distribution
- Excellent TOF performance ($\sigma_{\text{TOF}} = 85$ ps time resolution in Pb-Pb collisions)
- 3σ-cut around expected TPC dE/dx for deuterons reduces drastically the background from TOF and TPC track mismatch
- Raw yields extraction from a fit of gaussian function + exponential tail to the m^2 distribution
Particle identification in HMPID

At higher momenta, deuterons, in central Pb-Pb collisions, are identified based on Cherenkov radiation (HMPID).

Excellent agreement with the nominal value of the deuteron mass (m^2).

- At higher momenta, deuterons, in central Pb-Pb collisions, are identified based on Cherenkov radiation (HMPID)

$$\cos\theta_{Cherenkov} = \frac{1}{n\beta} \quad \Rightarrow \quad m^2 = p^2(\frac{n^2\cos^2\theta_{Cherenkov}}{n^2\cos^2\theta_{Cherenkov}} - 1)$$
Deuterons and 3He in Pb-Pb

- A hardening of the spectrum with increasing centrality is observed → expected in a hydrodynamic description of the fireball as a radially expanding source

E. Schnedermann et al., Phys. Rev. C48, 2462 (1993)
Deuterons and 3He in Pb-Pb

- Spectra are fitted with the blast-wave function (simplified hydro model) in different centrality bins.
- These fits are used for the extrapolation of the yield to the unmeasured region at low and high p_T.
- A hardening of the spectrum with increasing centrality is observed → expected in a hydrodynamic description of the fireball as a radially expanding source.

E. Schnedermann et al., Phys. Rev. C48, 2462 (1993)
Deuterons in p-Pb

- Pb-Pb: spectra are fitted with the blast-wave functions in different centrality bins
- p-Pb: spectra become harder with increasing multiplicity
An increasing trend with multiplicity in p-Pb data is observed.

Possible saturation in Pb-Pb collisions within the errors.

Ratio in pp collisions is a factor 2.5 lower than in Pb-Pb collisions.
Coalescence parameter B_2

- Coalescence model. In this picture the nuclei are formed in the last stage of the collision (after kinetic freeze-out) by protons and neutrons which are close in position and momentum space.

- The formation probability of nuclei can be quantified through the coalescence parameter B_A.

\[
B_A = \frac{E_A \frac{d^3N_A}{d^3p_A}}{\left(E_P \frac{d^3N_P}{d^3p_P}\right)^A}
\]

\[
\rightarrow \text{deuterons}
\]

\[
B_2 = \frac{E_d \frac{d^3N_d}{d^3p_d}}{\left(E_P \frac{d^3N_P}{d^3p_P}\right)^2}
\]

- To first order, B_2 is expected to depend only on the maximum difference in the momentum of the two constituents ("pure nuclear physics")
 - B_2 should be flat vs. p_T and should not dependent on multiplicity/centrality
 - The d/p ratio should strongly increase with multiplicity/centrality.
Coalescence parameter B_2

- B_2 is flat vs. transverse momentum in p-Pb and peripheral Pb-Pb
- p-Pb:
 - d/p shows increasing trend in p-Pb
 - B_2 is slightly decreasing with multiplicity
- Pb-Pb:
 - B_2 is strongly decreasing with centrality in Pb-Pb collisions
 - d/p shows no significant dependence with centrality

R. Scheibl and U. Heinz, Phys.Rev. C59, 1585 (1999)
Coalescence parameter B_2

- B_2 is flat vs. transverse momentum in p-Pb and peripheral Pb-Pb
- Pb-Pb:
 - B_2 is strongly decreasing with centrality in Pb-Pb collisions

B_2 scales like the HBT radii. The strong decrease of the B_2 with centrality can be naturally explained as an increase in the emitting volume

R. Scheibl and U. Heinz, Phys.Rev. C59, 1585 (1999)
Thermal model fit to the ALICE data

- The p_T-integrated yields and ratios can be interpreted in terms of statistical (thermal) model.
- Measured absolute yields (dN/dy) of light nuclei production in Pb-Pb collisions are in good agreement with thermal model calculation.
- Temperature $T = 156 \pm 2$ MeV.

Talks: D. Elia - G. Volpe
Hypertriton

- $m(\text{Hypertriton}) = 2.991 \pm 0.002 \text{ GeV/c}^2$
- Investigated decay channel: Hypertriton $\rightarrow ^3\text{He} + \pi^-$
- Yields can be extracted in two centrality bins
- dN/dy in good agreement with thermal model prediction from Andronic et al. for $T = 156 \text{ MeV}$
Searches for exotic bound states

- H0-dibaryon:
 - Hypothetical bound state of uuddss (ΛΛ)
 - First predicted by Jaffe in a bag model calculation
 \(\text{R.L. Jaffe, PRL 38, 195 (1977)} \)
 - Recent lattice calculations suggest a bound state or a resonance close to the \(\Xi p \) threshold
 - Renewed interest in experimental searches
 \(\text{Inoue et al., PRL 106, 162001 (2011)} \)
 \(\text{Beane et al., PRL 106, 162002 (2011)} \)
- Bound state of \(\Lambda n \) ?
H-dibaryon

- The thermal model describes the production rates of strange hadrons, light nuclei and hypernuclei → baseline for the expected rates in exotica searches

- Expected H-dibaryons (H0 → Λ p π⁻):
 \[N_{H^0} = \frac{1.38 \times 10^7 \cdot 0.0385 \cdot 0.64 \cdot 3.1 \times 10^{-3} \cdot 2}{\text{events eff. BR(Λ) dN/dy dy}} \approx 2110 \]

- Strongly bound: 2110 x 0.1 = 211

- Lightly bound: 2110 x 0.64 = 1350 where 0.64 BR(H-dibaryon)

- **No signal visible**

- From the non-observation we obtain as upper limits:
 - For a strongly bound (20 MeV)
 \[H: dN/dy \leq 8.4 \times 10^{-4} \text{ (99\% CL)} \]
 - For a lightly bound (1 MeV)
 \[H: dN/dy \leq 2 \times 10^{-4} \text{ (99\% CL)} \]
\(\Lambda n \) bound state

Assuming a V0 type decay topology

- Expected \(\bar{\Lambda}n \) bound states (\(\bar{\Lambda}n \rightarrow \bar{d} \pi^+ \)):
 \[N_{\bar{\Lambda}n} = 1.38 \times 10^7 \times 0.0255 \times 0.35 \times 1.6 \times 10^{-2} \times 2 \approx 4000 \]
- Efficiency estimation from MC simulation
- No signal visible
 - From the non-observation we obtain as upper limits:
 - \(dN/dy \leq 1.5 \times 10^{-3} \) (99% CL)
Comparison to models

- Extracted upper limits for exotica are lower than expected from thermal model calculation;
- At the same time, the thermal model with the same temperature describes precisely deuteron, 3He nuclei and hypertriton;
- Existence of those particles with the assumed proprieties (BR, mass, lifetime) is questionable.
Conclusions

- ALICE at the LHC offers unique experimental possibilities for the study of light (hyper-)nuclei

- Coalescence and thermal (statistical) models describe different aspects of the data:
 - production rates (light nuclei and hypertriton) in Pb-Pb collisions are in agreement with thermal model expectation

- d/p ratio in pp collisions is a factor 2.5 lower then in Pb-Pb. The p-Pb results connect the pp and Pb-Pb results

- Existence of Λn and H-dibaryon is doubtful
 - Upper limits have been set (significantly lower than thermal model prediction)
Nuclear matter under extreme conditions can be investigated in ultra-relativistic heavy-ion collisions. Collective and thermal properties of the Quark Gluon Plasma inferred from transverse momentum (p_T) distributions and integrated yields of identified particles \(\rightarrow\) excellent PID needed. The ALICE detectors is a dedicated heavy-ion experiment at the LHC.

Heavy Ion collisions dynamical evolution

- Initial interaction
- Hydrodynamic flow (radial and elliptic flow)
- Chemical freezeout (particle ratios)
- Kinetic freezeout (momentum distribution)

Time

Initial state

Energy Stopping Hard Collisions

Hydrodynamic Evolution

Hadron Freezeout
Introduction (2)

- Particle production in pp, p-Pb and Pb-Pb collisions shows an equal abundance of matter and anti-matter in central rapidity region;
- A large number of particle are produced in every collision \(\frac{dN}{d\eta} \approx 1600 \) for central Pb-Pb collision
 - \(\approx 80\% \) of charged particles are pions, \(\approx 5\% \) of all the charged particles are protons
- ALICE is ideally suited for these studies thanks to its particle identification capabilities and efficient reconstruction down to low momenta
Rapidity definition in p-Pb

Asymmetric energy/nucleon in the two beams \rightarrow cms moves with rapidity $y_{\text{cms}} = -0.465$

$y_{\text{cms},\text{NN}} = -0.465$
Absorption correction

Anti-nuclei: additional correction for absorption
H-dibaryon

- The thermal model describes the production rates of strange hadrons, light nuclei and hypernuclei → baseline for the expected rates in exotica searches

- Expected H-dibaryons (H0 → Λ p π⁻):

 \[N_{H^0} = 1.38 \times 10^7 \cdot 0.0385 \cdot 0.64 \cdot 3.1 \times 10^{-3} \cdot 2 \approx 2110 \]

 - Strongly bound: 2110 x 0.1 = 211
 - Lightly bound: 2110 x 0.64 = 1350 where 0.64 BR(H-dibaryon)

Andronic, private communication

Shaffner-Bielich et al., PRL 84, 4305 (2000)
H-dibaryon

Two cases:
- \(m_H < \Lambda \Lambda \) threshold
 \(\rightarrow \) weakly bound
 measurable channel
 \(H \rightarrow \Lambda p \pi \)
 \(2.2 \text{ GeV}/c^2 < m_H < 2.231 \text{ GeV}/c^2 \)

- \(m_H > \Lambda \Lambda \) threshold
 \(\rightarrow \) resonant state
 measurable channel
 \(H \rightarrow \Lambda \Lambda \)
 \(m_H > 2.231 \text{ GeV}/c^2 \)
Hypertriton

- $m(\text{Hypertriton}) = 2.991 \pm 0.002$ GeV/c2
- Investigated decay channel: Hypertriton $\rightarrow ^3\text{He} + \pi^-$
- dN/dy in good agreement with thermal model prediction from Andronic et. al. for $T = 156$ MeV;
Secondaries

- The measurement of nuclei is strongly affected by background from knock-out material;
- Rejection is possible by fitting the DCAxy distribution;
- Not relevant for anti-nuclei. However, their measurement suffers from large systematics related to unknown hadronic interaction cross section of anti-nuclei in material;
Efficiency correction

- After subtraction of secondaries, the measured raw yields have to be corrected for efficiency and acceptance;
pp, p-Pb and Pb-Pb details

- $\sqrt{s_{pp}} = 7$ TeV (2010, 2011)
- $\sqrt{s_{Pb-Pb}} = 2.76$ TeV (2010, 2011)
- $\sqrt{s_{p-Pb}} = 5.02$ TeV (2012, 2013)
- Asymmetric energy/nucleon in the beams → the nucleon-nucleon center-of-mass system was moving in the laboratory frame with a rapidity of $y_{CMS} = -0.465$ in the direction of the proton beam

Centrality/Multiplicity selection:

- In pp collisions:
 - tracklets + tracks estimator
- In Pb-Pb collisions:
 - VZEROOM (VZERO-A + VZERO-C)
 (ALICE arXiv:1301.4361)
- In p-Pb collisions:
 - correlation between impact parameter and multiplicity is not as straightforward as in Pb-Pb (VZERO-A chosen)
pp, p-Pb and Pb-Pb details

- $\sqrt{s_{pp}} = 7$ TeV (2010, 2011)
- $\sqrt{s_{Pb-Pb}} = 2.76$ TeV (2010, 2011)
- $\sqrt{s_{p-Pb}} = 5.02$ TeV (2012, 2013)
- Asymmetric energy/nucleon in the beams → the nucleon-nucleon center-of-mass system was moving in the laboratory frame with a rapidity of $y_{CMS} = -0.465$ in the direction of the proton beam.

Centrality/Multiplicity selection:

- In pp collisions:
 - tracklets + tracks estimator
- In Pb-Pb collisions:
 - VZEROM (VZERO-A + VZERO-C) (ALICE arXiv:1301.4361)
- In p-Pb collisions:
 - Seven p-Pb multiplicity event classes based on the amplitude of the signal of the VZERO-A detector (A is the direction of Pb beam)
- ITS: inner tracking system
 - 2 layers of Silicon Pixel Detector (SPD)
 - 2 layers of Silicon Drift Detector (SDD)
 - 2 layers of Silicon Strip Detector (SSD)