VLSI based Lossless ECG Compression Algorithm Implementation for Low Power Devices

P G Kuppusamy1*, R Sureshkumar2, S A Yuvaraj3, E Dilliraj4
1Department of Electronics and Communication Engineering, Siddharth Institute of Engineering and Technology, Puttur, Andhra Pradesh, India
2Department of Electronics and Communication Engineering, Chennai Institute of Technology, Malayambakkam, Tamil Nadu, India
3Department of Bio Medical Engineering, GRT Institute of Engineering and Technology, Thiruvallur, Tamil Nadu, India
4Department of Electronics and Communication Engineering, Prathyusha Engineering College, Thiruvallur, Tamil Nadu, India
Email: *1kuppusamy.ece.sietk@gmail.com, 2sureshkumarr@citchennai.net, 3akmraja007@gmail.com, 4createrraj@gmail.com

Abstract. The research study presents a VLSI design of an effective electrocardiogram data encoding lossless data compression scheme to conserve disk system to minimize channel capacity. As the data compression can save disc space, reduce transfer time, and seized this ability by introducing a memory-less architecture when operating in VLSI at a high data rate. There are two components of the ECG classification technique: an adaptive frequency-domain methodology and bandwidth. An accurate and reduced VLSI compressed algorithm design has been introduced. The current VLSI architecture uses a few more procedures to substitute for the various mathematical functions to enhance performance and implemented the VLSI's architecture to the MIT-BIH atrial fibrillation repository capable of achieving a 2.62 lossless bit compression rate. Also, the VLSI structure uses a gate count of 5.1 K.

Keywords: ECG, EEG, Compression, Low power.

1. Introduction
An electrocardiogram is a based nano indicative of the hearts electrical. Due to its anti and its capacity to diagnose heart disorders, it is commonly used in the medical industry. ECG is typically reported in clinics or clinical facilities where the patient has to stay for hours or days in the hospital. Physicians have been activated by handheld or ECG telemetry systems to track their ECG, document and transmit ECG data to the hospital. [2] For any anomalies, the relocated data is stored in health facilities. Latest Internet of Things (IoT) advances have made it possible for comprehensive and continuous surveillance to partly process and distribute data. There are several architecture challenges and trade-offs in designing IoT natural ingredients. Power loss due to insufficient battery energy is the key limitation of the integrated sensor. Steps have been taken to control Sensor networks from power transmission sources [1] in which insanely energy consumption is needed for the system to operate. Both local processing and data transfer, there is a trade-off. It is possible to relay much of the raw data, while local processing is limited to basic functionality. Complex calculations are carried out on cell phones or PCs in this case. [3] The incorporation of ultra-low power semiconductors and extraction of such features is another option.
The ECG signal includes various regions with sharp differences in amplitude, such as wave domains QRS, P, and T, as seen in Figure 1. It includes a cellular transmitter and analogue front end optical processor power management unit electrodes. Our resource requirement is confined to the microwatt range [4] for this machine to have a long operating life. It is optional for the smart electrical system to reduce electricity series for each of the units. [8] Since the receiver is the most influential module, it can operate quickly under the design requirements. Another part that consumes large quantities of energy is an electronic processor that could be an attitude processor specially designed fuel cells [6]. This research paper designs and implements an Electrocardiogram system consisting of all digital circuits. The digital processor contrition is as part of an optimized IoT Oxygenation status of this study. The architecture problems are summarized into two groups to realize an ultra-low intensity ECG device: architecture decisions and connector intelligent systems [9].

A block-level diagram is seen in fig 2 for the hardware design. The necessary request and the available energy budget decide the architectural option. The electronic computer is done to decrease the usage of electricity and energy dissipation. Either by using a processor or designing a completely customized template, there are several ways to incorporate a digital system [7]. Hardware accelerators, which are unique to an algorithm or programme, are more environmentally friendly and much more efficient. [10] An ASIC-implemented algorithm is more powerful than an algorithm implemented in a particular processor or microcontroller with low power. Integrating a CPU with
custom generators offers a combination of renewable energy and versatility. Attempts have been devoted to minimizing both technological and sensor energy consumption, thus achieving the application's optimal efficiency. [11] ECG wearable sensors were investigated, and phase elements such as Qrs, T-wave, and P-wave are found in the Ecg. [12] The QRS complex with the largest slope and momentum is the dominant component. The ECG wave properties are referred to as ECG characteristics besides its peaks and ends. In the QRS identification of complete ECG extracting features and ECG, classifications are identified many ultra-low power ECG computing interfaces. Most of these structures have a CPU of comparatively higher power consumption. Others are more energy-friendly and have prototypes that are completely personalized. Most of the nearest neighbourhood implementations mentioned are based on wavelet transformation [14]. Wavelet transformation is robust in identifying complex QRS using a waterfall of filters; its approach requires parametric removal. Others also documented architectures for QRS image based on a technique known Pans and Thomas.

The Pat approach is based on integral sorting, distinguishing, averaging, and going. Many of these activities involve processing that is the handset. [13] For complete ECG function extraction, spontaneous emulsification using parametric evaporation has also been implemented. For complete function extraction, the frequency-domain signal method is presented. The goal is to achieve the optimal output at the lowest possible electricity consumption in QRS detection or ECG extraction and classification. That's why it's important to make suitable business processes.

Process of micro-optimization for Circuit design[15]. This approach efficiently combines different forms of control and pause. In particular, convex models achieve single-step processes or technologies on an additional modelling error from the two models; surface and quasi, whereas non-convex methodology peaks optimally globally only if theoretical continuum is used. The Methods are graded sum, equilibrium design, and a satisfying Commerce approach to help achieve many co-enhancements where successful person efficiency benefits from the analytical gradient and convex model. In resolving the multi-objective [16] objective function, the weighted total is not favored. STOM is created depending on the design's value in just such a point researched on the latest trends in VLSI architecture; it reflects on micro algorithmic VLSI architectures. The test findings are focused on the assessment of the output standards of the various VLSI studies to determine the optimum precision values [19]. Modifications are tested without any need for genomics methods, such as self-adaptive bacterial foraging and VLSI optimal architecture. Measurement and study of the dilemma of designing are treated with the utmost concern. Supported an insight into computer vision frameworks during Nano-CMOS times; [17] helps explain the accountability for developing spiking neurons and spark targeting based permeability training circuitry for the effective sequential type. Therefore, the neurons are viewed as digital arithmetic logic units and coordination machines, paving the way for optimizing neural architecture by spiking neurons & STDP learning, which helps to authenticate system architecture with the power of neuronal development.

2. Proposed System

An ECG data compression consisting of a creating a sense predictive model as the forecasting part and Areas such as training Rice code as the equilibrium test database is applied to Han's research, VLSI specification of the uncompressed ECG compression was proposed developed. To minimize the original data variability, creating a sense based on historical samples and can increase prediction performance to increase the classification accuracy. [18] A bandwidth Transfer of risks code with a time window has also been suggested to compact Sensor information for the entropy coding section. Voltage drop and actual data processing approaches have been suggested for Practical deployment. After using the lowest percentage of gates, low power architecture is the primary objective of this work is significant ECG recording systems to use less energy. It can result in a higher error rate at the calculation stage of the prediction error. [19] It is suggested to maximize the error rate by preserving its value minimum in a morphological predictor methodology. Entropy coding is a component of the dimensionality reduction coding strategy. Few binary bits are
provided with finding common patterns or values, and several binary bits are provided with occasionally experiencing ones. A spherically symmetric encoder is used to draw on the management information training program. Golomb coding is an entropy-based dimensionality reduction scheme. It is suitable for languages with the level of information to calculate the propagation of forecast errors of a channel is used in model recognition. For the calculation of the k variable, the projection error distribution of each window is implemented. The windows size is calculated through the QRS section in the Ecg waveform.

![Mag Checker Block](image)

Fig 3: Mag Checker Block

The decryption stage, the coded data services related to the first set of 11-bit ECG data and the 3-bit k variable for each channel and the encrypted correlation coefficient to recreate the original message. Proposed Mag Checker Block method is shown in fig 3, 4.

BRAM or text file may be the source of the data input, and the activation function has 11 bits per organ systems in the first step of the Evolutionary Power Spectrum module. Golomb Rice encoding is achieved on the data input after doing the failure estimation. The pack is done over the last stages, and information is sent as output was data is true in a community. The analysis of achieving area specialization in multifunctional machines has been demonstrated and reveals that area specialization is one of the key problems owing to the rejigged area system layout. With Verilog language's assist, a new Reed-Solomon encoder component has been established, which takes up much less FPGA area but uses a hyper Rupees contour VLSI scheduling.

A Rates corrector is associated with a strong hardware problem, resolved using programmable correction for a wide range of industries. A particular teaching rule based on the Potential flow used for input nodes on volatile touch-sensitive storage is extracted. Also, to achieve the approximate...
weight normalization, the morning organizational strategy is used to take care of periodic associations in spike tracks. Feature extraction requires encoding information utilizing shorter sentences than the initial representation in signal processing. It may be either loss or lossless encoding. By defining and removing numerical redundancy, file format decreases bits. In compression, no material is lost. It is selecting different or less needs to feel safe, converting digital bits. Lossy signal processing is used in the health establishment because it may lose much of the lossy compression technique's essential data. To decrease the storage space needed to store the data, ECG Median Filtering is required. ECG is a continuous data taken over a very long period and can also be eliminated by absorbing transitive dependency again from the signal, which requires a considerably wide physical memory. For remote examination, its need for signal propagation over cell towers or antennas creates signals transmission and software restoration an interesting subject in image processing. The ECG is a visual display of the atrial and ventricular function. The ECG signal has been applied to detect cardiovascular diseases and outpatient surveillance due to low costs and non-invasion. The encoding of ECG signal systems is essential for the storing and transmitting of broad signal data.

3. Results and Discussion

Also, after the sum of one window’s values, the differentiation is done; the number of properties will be from one to 256. Therefore, the log sums of such factors have been preserved in a log table, retrieved anytime the design needs a log operation. To monitor data processing and storing, a single monitor is used to decrease the usage of energy. In Comparison, they share the same counter with both controller reductions operation compared to using two counters, resulting in the turn’s protection.

Method	Trend Forecasting	Proposed
Compression	2.77	2.62
Gate count (k)	20.8	5.9

Most generally, the Threshold value is used to calculate the consistency of compression codec restoration. The Comparison of the proposed method is shown in table 1. The signal seems to be the original data in this case, as well as the noise is the compression-induced error. The proposed technique is an approximation of the human understanding of restoration efficiency by evaluating compression codecs. While a higher PSNR usually suggests that the repair is of higher quality, in some cases it does not. With the validity spectrum of this metric, one must be exceedingly cautious; it is only conclusively accurate because it is used to equate outcomes of the same codec and content.

When the alert message is received from the monitoring authority's cell phone, the individual bin is cleaned automatically, and the original value is displayed on the recording device. In other words, 18 cm because all of these data are stored on the Cloud Server and can efficiently track this IoT-based waste and waste management system.

4. Conclusion

In biomedical devices, the low-cost low-power and low-area embedded genetic algorithm running VLSI architecture are strongly desired. MICS detectors with improved RF circuits are critical foundations for auditing, investigation & control functions for biogenic devices. The additional VLSI design strategies are implementing FPGA, computer vision computation and neuro-fuzzy methodology, which are difficult in medicinal application. The FPGA carries out parallel loading at a faster speed. The primary feature of high durability is microelectronic computing. Cardiology systems are useful for most realistic medical applications. The existing literature and analysis table can assist the observer for further research in this area.

References

1. Tsai, T. H., & Kuo, W. T. (2018). An efficient ECG lossless compression system for embedded platforms with telemedicine applications. IEEE Access, 6, 42207-42215.
2. Tsai, T. H., & Tsai, F. L. (2020). Efficient lossless compression scheme for multi-channel ECG signal processing. Biomedical Signal Processing and Control, 59, 101879.
3. Hameed, M. E., Ibrahim, M. M., Abd Manap, N., & Mohammed, A. A. (2020). A lossless compression and encryption mechanism for remote monitoring of ECG data using Huffman
coding and CBC-AES. Future Generation Computer Systems, 111, 829-840.
4. Ibaida, A., Abuadbba, A., & Chilamkurti, N. (2020). Privacy-preserving compression model for efficient IoMT ECG sharing. Computer Communications, 166, 1-8.
5. Pulavskyi, A. A., Krivenko, S. S., & Kryvenko, L. S. (2020, June). Evaluation of the Effectiveness of Post-filtration Smoothing using Lossless Compression for Heart Rate Variability Obtained from a Very Noisy ECG. In 2020 9th Mediterranean Conference on Embedded Computing (MECO) (pp. 1-5). IEEE.
6. Jia, M., Li, F., Pu, Y., & Chen, Z. (2020). A Lossless Electrocardiogram Compression System Based on Dual-Mode Prediction and Error Modeling. IEEE Access, 8, 101153-101162.
7. Abbasi, R., Xu, L., Amin, F., & Luo, B. (2019). Efficient lossless compression based reversible data hiding using multilayered n-bit localization. Security and Communication Networks, 2019.
8. Hejraei, B., Fathi, A., & Abdal-Mohammadi, F. (2017). Efficient lossless multi-channel EEG compression based on channel clustering. Biomedical Signal Processing and Control, 31, 295-300.
9. Talukder, S., Singh, R., Bora, S., & Paily, R. (2020). An Efficient Architecture for QRS Detection in FPGA Using Integer Haar Wavelet Transform. Circuits, Systems, and Signal Processing, 1-16.
10. Peppas, K., Tsolakis, A. C., Krinidis, S., & Trovaras, D. (2020). Real-Time Physical Activity Recognition on Smart Mobile Devices Using Convolutional Neural Networks. Applied Sciences, 10(23), 8482.
11. Rizwan, A., Zoha, A., Mabrouk, I., Sabbour, H., Al-Sumaiti, A., Alomaniy, A., ... & Abbasi, Q. (2020). A review on state of the art in atrial fibrillation detection enabled by machine learning. IEEE reviews in biomedical engineering.
12. Laukien, E., Byrne, F., & Crowder, R. (2020). U.S. Patent No. 10,579,929. Washington, DC: U.S. Patent and Trademark Office.
13. Yildirim, O., San Tan, R., & Acharya, U. R. (2018). An efficient compression of ECG signals using deep convolutional autoencoders. Cognitive Systems Research, 52, 198-211.
14. Campobello, G., Segreto, A., Zanafi, S., & Serrano, S. (2018, September). An efficient lossless compression algorithm for electrocardiogram signals. In 2018 26th European Signal Processing Conference (EUSIPCO) (pp. 777-781). IEEE.
15. Nemati, K. and Ramakrishnan, K., 2017, May. Hybrid lossless and lossy compression technique for ECG signals. In 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS) (pp. 450-455). IEEE.
16. Sarala, B., Devi, S. R., & Sheela, J. J. J. (2020). Spectrum energy detection in cognitive radio networks based on a novel adaptive threshold energy detection method. Computer Communications, 152, 1-7.
17. Manieniyan, V., Velumani, V., Senthilkumar, R., & Sivaprakasam, S. (2020). Effect of EGR (exhaust gas recirculation) in a diesel engine with multi-walled carbon nanotubes and vegetable oil refinery waste as biodiesel. Fuel, 119689.
18. Murugananth, G., Samidurai, K., Muthukrishnan, S., & Vijayan, S. (2015). Experimental Validation of Fuzzy-Tuned AWPI Controller-Based Chopper Driven PMDC Motor. Journal of Testing and Evaluation, 43(6), 1383-1394.
19. Punithavathi, I. H., & GaneshKumar, P. (2019, April). Annotation and Retrieval of Retinal Images using Support Vector Machine with Active Learning. In 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS) (pp. 1-6). IEEE.