Identification of Albumin-binding Proteins in Capillary Endothelial Cells

Nicolae Ghinea, Anton Fixman, Dorin Alexandru, Doina Popov, Mirela Hasu, Lucian Ghitescu, Monica Eskenasy, Maya Simionescu, and Nicolae Simionescu

Institute of Cellular Biology and Pathology, Bucharest-79691, Romania

Abstract. Isolated fat tissue microvessels and lung, whose capillary endothelia express in situ specific binding sites for albumin, were homogenized and subjected to SDS–gel electrophoresis and electroblotting. The nitrocellulose strips were incubated with either albumin–gold (Alb-Au) and directly visualized, or with [125I]albumin (monomeric or polymeric) and autoradiographed. The extracts of both microvascular endothelium and the lung express albumin-binding proteins (ABPs) represented by two pairs of polypeptides with major components of molecular mass 31 and 18 kD. The ABP peptides have pI values 8.05 to 8.75. Rabbit aortic endothelium, used as control, does not express detectable amounts of ABPs. The ABPs subjected to electrophoresis bind specifically and with high affinity (Kd = ~ 60 × 10⁻⁹ M) both monomeric and polymeric albumin: the binding is saturable at ~80 nM concentration and 50% inhibition is reached at 5.5 µg/ml albumin concentration. Sulphydryl-reducing agents β-mercaptoethanol and dithiothreitol do not markedly affect the ABPs electrophoretic mobility and binding properties. As indicated by cell surface iodination of isolated capillary endothelium followed by electroblotting, autoradiography, and incubation with Alb-Au, the bands specifically stained by this ligand are also labeled with radioiodine.

Serum albumin, in addition to its major role in securing the oncotic pressure of plasma and interstitial fluid, it is reputedly known to serve as carrier for free fatty acids, bilirubin, steroids, Ca²⁺, amino acids and thyroid hormones (21, 22, 28, 29).

Recently, in experiments with albumin–gold (Alb-Au) complex perfused in situ, it was demonstrated that capillary endothelium of murine heart, lung, diaphragm (9), skeletal muscle, and adipose tissue contains specific albumin-binding sites (ABS) mainly restricted to plasmalemmal vesicles. ABS seem to provide a mechanism for the transendothelial transport of albumin and the molecules it carries by a receptor-mediated process (9, 26, 27). In contradistinction, in the endothelia of arteries, arterioles, muscular venules, veins, endocardium, and fenestrated capillaries examined, ABS appeared to be poorly expressed, albumin being transported at relatively lower rate predominantly by a nonspecific fluid phase transport (9, 26, 27).

In an attempt to define the endothelial membrane proteins that bind albumin and may be instrumental in its carrier-mediated uptake and transcytosis, we tried to identify the presence of such proteins in those endothelial cells which in situ bind specifically the Alb-Au complex. In this paper we report the identification by the ligand blotting technique (5) of albumin-binding proteins (ABPs) in endothelial cells and tissues which in vivo take up and transport albumin by a receptor-mediated process. A preliminary account of these findings was presented in (27).

Materials and Methods

Animals

Experiments were carried out on adult male animals: RAP mice 25–30 g weight, R rats weighing 150–200 g and New Zealand rabbits 2–3 kg live weight.

Reagents

Special chemicals and supplies were obtained from the following sources: crystallized BSA from Miles Diagnostics (Kankakee, IL) and Serva (Heidelberg, FRG); polyethylene glycol (PEG) 20,000 from J. T. Baker Products (Phillipsburg, NY); tetrachlorauric acid, urea, sucrose, and white phosphorus from Merck (Darmstadt, FRG); iodogen from Pierce Chemical Co. (Rockford, IL); carrier free Na[125I] from Institute of Atomic Energy (Otwock-Swierk, Poland); sodium deoxycholate from Koch-Light (Colnbrook, England); Pharmalyte 3–10 and Percoll from Pharmacia Biotechnology (Uppsala, Sweden); sorbitol, isoelectric focusing marker kit, FCS, histamine, heparin, endothelial cell growth supplement from Sigma Chemical Co. (St. Louis, MO); collagenase type I Worthington from Biochrom KG (Berlin, FRG); culture medium 199 from Gibco (Grand Island, NY); nitrocellulose membrane filters BA-85 0.45 µm from Schleicher and Schuell (Dassel, FRG); low molecular weight standards from Merck or Pharmacia Biotechnology; and X-ray films from Eastman Kodak (Rochester, NY), and Azo-Mures (Tg Mures, Romania). Monomeric (mAlb) and polymeric albu-
min (pAlb) were prepared from commercial available BSA by gel filtration on Sephadex G-200. Bovine immunoglobulin G, albumin-free, was kindly prepared by Dr. G. Szegli (Dr. I. Cantacuzino Institute, Bucharest, Romania) and by V. Partenie in our laboratory. All other chemicals used were of analytical grade.

Tracers

Gold Conjugates. Alb-Au, bovine immunoglobulin G-gold (IgG-Au), and polyethylene glycol-gold (PEG-Au) complexes were prepared as previously described (9). The tracers were diluted so as to give a concentration corresponding to A 1.0 cm/515 nm = 10. Radioiodinated Albumin. Monomeric and polymeric albumins were radioiodinated by using iodogen (10 µg:100 µg of protein) in the presence of 200 µCi Na[125I] (7). Unbound iodine was removed by chromatocentrification (34) and extensive dialysis against distilled water (4–5 changes) and Dulbecco's PBS (2–3 changes). The specific radioactivity obtained was 0.14–1.0 mCi/mg of protein.

Experimental Procedure

Based on the previous in situ detection of specific ABS expressed by certain capillary endothelia (9, 26, 27) we tried to identify the putative ABPs in capillaries isolated from rat adipose tissue and the lung, the capillaries of which are provided with ABS. As controls, we used freshly isolated rabbit aortic endothelial cells which in vivo appeared not to express detectable amounts of ABS. In addition, adipocytes, reportedly provided with ABS (2) were also examined.

As general protocol, the cells or tissue extracts were subjected to homogenization, solubilization, gel electrophoresis and electroblotting on nitrocellulose membrane. The transfer strips were incubated with either Alb-Au, [125I]monomeric albumin, [131I]polymeric albumin and other ligands or agents required for various control experiments.

Cell Isolation

Microvascular Endothelial Cells (MEs). MEs were isolated from rat epididymal fat pads according to (3) and (35). Since in situ neither arterioles nor venules larger than 20 µm showed a significant affinity for Alb-Au (26, 27), we considered that, although working on microvascular segments, the emerging findings virtually reflected the ligand interactions with the endothelium of capillaries and small postcapillary venules. MEs were freshly used either as suspensions or seeded on plastic Petri dishes precoated with 1% gelatin. The culture medium 199 was supplemented with 15% FCS, 2 mg/ml histamine, 100 µg/ml heparin, 20 µg/ml endothelial cell growth supplement, 100 U/ml penicillin and 100 µg/ml streptomycin. In addition to their aspect in phase contrast microscopy and electron microscopy, the endothelial cells were identified by the presence of factor VIII–related antigen (14), angiotensin converting enzyme (4) and by their ability to incorporate acetylated low density lipoprotein (33). Suspensions of MEs were devoid of adipocytes but contained up to 15% pericytes as contaminant. To check whether isolated MEs express ABS (as observed in situ) (26), aliquots of freshly separated ME were incubated for 10 min with Alb-Au complex in PBS, then fixed and prepared for electron microscopy (9).

Arterial Endothelial Cells. Arterial endothelial cells were obtained from rabbit aorta previously flushed with PBS; endothelium was mechanically removed (together with the intima) and freshly used (as negative controls). Adipocytes were isolated from rat epididymal fat pads and cultured after the procedure indicated in (2) and (10) and used as positive controls.

Preparation of Cell Extracts

After the culture medium was discarded, the cell suspensions or the monolayers (scraped) were washed with PBS, then collected in PBS containing 1% SDS, 0.001 M CaCl2, 0.005 M benzamidine and 0.25 × 10−3 M phenylmethylsulfonyl fluoride (PMSF); homogenization for 1 min with an Ultrasonic Cell Disruptor (Heat Systems-Ultrasonics Inc., Plainview, NY) using the Microtip with the amplitude at setting 6. The homogenate was centrifuged at 13,500 g for 5 min in a Beckman Microfuge B and the supernatant used for electrophoresis or protein determination.

Preparation of Lung Extracts

Experiments conducted in mouse, rat, and rabbit followed a similar protocol. After general anesthesia and laparotomy, the vasculature was washed out of blood by perfusion with PBS at 37°C for 3–5 min at a flow rate of 3 ml/min, using the abdominal aorta as inlet and the punctured abdominal vena cava as outlet. In addition, the lung was perfused via pulmonary artery (catheterized through the right ventricle). In some experiments, the airways were cleared of macrophages by bronchial lavage. The collected lungs were rinsed in PBS containing 1% SDS, 0.001 M CaCl2, 0.005 M benzamidine and 0.25 × 10−3 M PMSF, minced and homogenized for 1 min in an UltraTurrax homogenizer at maximum speed. Homogenization was completed with an Ultrasonic Cell Disruptor at setting 6, for 2–3 min. Homogenates were centrifuged for 5 min at 13,500 g and the supernatants used for protein assay and electrophoresis.

Protein Content

This was determined with the BCA Protein assay reagent from the Pierce Chemical Co. (Rockford, IL) using BSA as standard (24). To determine the amount of ABP on blots, the nitrocellulose strips were stained with Amido Black 10B, cut, the bound stain eluted and the O.D. read at 630 nm.

Solubilization

For sample preparation we have comparatively used various electrophoresis schemes for lung solubilization: (a) nondissociating vs. dissociating buffer systems, (b) nonreducing vs. denaturing detergents and (c) nonreducing vs. reducing conditions.

The nondissociating buffer system consisted of either PBS, pH 7.4, 0.4 M NaCl, 0.005 M Tris-HCl buffer containing 0.001 M MgCl2, pH 7.4, 0.09 M Tris, 0.08 M H3PO4 buffer containing 0.003 M Na2 EDTA pH 8.35, or 0.055 M Tris-0.38 M glycine, pH 8.3. Electrophoresis was carried out on precast 2–16% polyacrylamide slab gels under the conditions indicated by the manufacturer (Pharmacia Biotechnology), or on home made 4–10% polyacrylamide slab gels in 0.38 M glycine-0.05 M Tris buffer, pH 8.3. To perform cathodic disc-PAGE system, murine lung was homogenized in 0.35 M β-alkanine, 0.14 M acetic acid, pH 4.5. The electrophoresis was done at 125 V on 2–16% precast polyacrylamide slab gels, which were subsequently silver stained (11) or electroblotted (as further described).

The dissociating buffer system mostly used was 0.198 M Tris 0.107 M H3PO4 buffer, 4.2% SDS, 0.005 M Na2EDTA, 0.022 M dithiothreitol (DTT) and 0.42 M sucrose pH 6.7. For solubilization of TCA-precipitated samples we also used 0.1 M phosphate buffer, pH 7.0, containing 1% SDS, 1% β-mercaptoethanol and 6 M urea. Electrophoresis was conducted according to (18); the acrylamide concentration of the resolving gel was 5–15% and of the stacking gel 3.75%. The gels (1–3 mm thick; 13 × 17 cm) were subjected to electrophoresis overnight at 15 mA.

Nondenaturing nonionic detergents such as n-octyl-β-D-glucopyranoside (25) and denaturing ionic detergents such as SDS with or without urea, were comparatively tested. Since the electrophoretic patterns obtained with these detergents were not significantly different, in most cases we used 1% SDS in PBS or in 0.01 M Heps, pH 7.4.

Preparation of Protein Extracts

In some experiments, the standards were iodinated with 600 µCi Na[125I] in the presence of 60 µg iodogen in 0.1 M borate buffer, pH 8 (7). Molecular weights were determined by the calibration curve methods indicated in (6) and (35). After electrophoresis, the gels were either silver-stained (11) or stained with 0.2% Comassie Brilliant Blue R-250 in 45% methanol and 10% acetic acid. Gel staining of Comassie Blue was performed either by passive diffusion of the stain in 25% CH3OH, 10% CH3COOH or in a
gel destainer GD-4 (Pharmacia Biotechnology). The stained gels were dried and photographed; the densitometric profiles were traced with a Chromoscan apparatus (Joyce, Loebi & Co. Ltd., Gateshead, England).

Isoelectric Focusing

This assay was conducted on 4% T + 3% C polyacrylamide gels (12 × 15 cm) containing 2% Pharmalyte 3-10 using 0.05 M H2SO4 and 1 M NaOH as electrode solutions. After 30 min prefocus, the samples (10-20 µl) were applied on the gel surface near the middle of the gel with the aid of paper applicators. The pH gradient was determined using the following pl markers: amyloglucosidase (from Aspergillus oryzae) pl 4.35, trypsin inhibitor (from soybean) pl 4.55, α-lactoglobulin A (from bovine milk) pl 5.13, carbonic anhydrase (from bovine erythrocytes) pl 5.85, carbonic anhydrase (from human erythrocytes) pl 6.57, myoglobin (from horse heart) pl 6.76 and 7.16, β-lactase dehydrogenase (from rabbit muscle) pl 8.3, 8.4, and 8.5, and trypsinogen (from bovine pancreas) pl 9.3. After 3,000 volt-hours, the gels were equilibrated for 15 min in Tris-borate buffer, pH 8.3, placed between two nitrocellulose sheets and the electrophoretic transfer of proteins was performed as described below.

Two-dimensional Electrophoresis

The isoelectric focusing in the first dimension was carried out on 1% agarose IEF gels containing 6% sorbitol, 6% sucrose and 2% Pharmalyte 3-10. The electrode solutions were 0.01 M H2SO4 and 1 M NaOH. 50 µl of rabbit lung homogenate containing 500 µg protein in 0.005 M Tris-HCl buffer, pH 7.4, were applied on the gel surface. After 2,000 volt-hours, a strip from the agarose gel equilibrated for 30 min in an SDS sample buffer (10% [w/v] vol/vol) glycerol, 5% β-mercaptoethanol, 2.3% SDS, 0.025 M Tris-HCl pH 6.8), was placed on top of a 5-15% polyacrylamide slab gel for electrophoresis in the second dimension. The gel was calibrated with the radiiodinated molecular weight standards. The proteins were transferred to nitrocellulose membrane, preincubated with bovine IgG for 12 h and incubated with Alb-Au for 1 h. The dried nitrocellulose sheet was exposed to X-ray films.

Incubation of Nitrocellulose Strips with Albumin Conjugates

Before incubation with albumin conjugates, the blots were washed 3 × 10 min with PBS containing 0.001 M CaCl2, then incubated with 1-2 µg/ml bovine IgG in PBS for 12 h to prevent nonspecific binding. Unless specified, IgG was present in all incubation steps. The strips were dried and used for either staining with 1% Amido Black 10B in 7.5% acetic acid or for incubation with ligands.

Electroblotting

The transfer of electrophoretically separated proteins on nitrocellulose membranes was performed in 0.04 M Tris-0.04 M boric acid buffer pH 8.3 for 150 min at 200 mA in an electroblotting chamber (8). The strips were dried and used for either staining with 1% Amido Black 10B in 7.5% acetic acid or for incubation with ligands.

Characterization of ABP-binding Properties

Binding assays were carried out on small segments of the nitrocellulose strips containing the ABP peptides, using a procedure adapted from (19). After electrotransfer, two strips from the lateral edges of the nitrocellulose sheets were cut out, incubated with either 2 µg/ml bovine IgG or 2% polyvinylpyrrolidone (PVP) in PBS, and stained with Alb-Au in the presence of the quencher. After aligning these strips with the remaining nitrocellulose sheet, small segments of equivalent area (0.5 cm × 0.5 cm) that correspond to the 31- or the 18- kD peptides, were excised and used for the following binding assays.

Saturability. Nitrocellulose segments obtained as described above were incubated with 2 µg/ml bovine IgG in PBS for 12 h at room temperature. Subsequently, the segments were incubated for 60 min with increasing concentrations (from 9 nM to 273 nM) of [125I]Alb, washed 3 × 30 min with 2 µg/ml bovine IgG in PBS, and counted. The nonsaturable nonspecific ligand binding was determined by conducting the incubations in the presence of a 100-fold excess of unlabelled albumin. The saturable binding was estimated by measuring the difference in detected ABP-bound radioactivity in the presence and absence of excess unlabelled albumin. The specific binding was calculated by subtracting nonspecific binding from total binding.

The data for specific binding were then used for constructing double-reciprocal plot to estimate the dissociation constant (Kd).

Competition. ABP-containing nitrocellulose segments were incubated for 1 h with 9.4 nM of [125I]Alb in the presence of increasing concentrations of unlabeled albumin (from 15 × 10^-8 to 44 × 10^-4 M). After 30 min washes with 2 µg/ml bovine IgG in PBS, the remaining radioactivity bound to either the 31- or 18- kD was counted.

Binding Kinetics. The pH sensitivity of albumin binding to the ABP peptides was assessed by incubating the nitrocellulose strips with [125I]Alb in 2% PVP in 1 M phosphate buffer at pH ranging from 3.0 to 9.0.

The time-dependence of Alb binding to the ABP peptides was determined by incubating nitrocellulose strips with [125I]Alb in 2% PVP in PBS for periods of 20, 40, 60, and 80 min. After 30 min washes in PBS, the retained radioactivity was counted.

Binding Specificity. In addition to competition experiments, binding specificity was tested by incubating electroblotting strips of lung extracts with either IgG-Au or PEG-Au at A 1.0 cm/515 nm = 1.0.

Effect of High Ionic Strength. To determine whether the [125I]Alb or Alb-Au binding to ABP is purely due to a nonspecific electrostatic interaction, electroblotting strips were incubated with either radiiodinated albumin or Alb-Au in PBS containing 2 mg/ml IgG in the presence of 0.45 to 2 M NaCl (final concentration). In other experiments, NaCl was applied after the ligand was bound to the ABP bands.

Effect of Heparin. Electroblots incubation with Alb-Au was carried out in the presence of 4 mg/ml heparin (activity = 500 U/ml).

Detection of ABP Exposure on Endothelial Cell Surface

The membrane proteins exposed on the cell surface of MEs were radiiodinated using Na[125I] and iodogen as oxidizing reagent. The radiolabeled cells were then processed for electrophoresis followed by incubation with Alb-Au and autoradiography.

Radioiodination. The procedure used was adapted from (7) and (33).

Suspensions of MEs maintained in serum-free culture medium for 24 h at 4°C were pelleted by 10 min centrifugation at 170 g, washed twice by resuspension in PBS, and harvested by centrifugation as above. The pellet was suspended in 1 ml of 0.1 M borate buffer pH 8.0 containing 530 µCi of carrier-free Na[125I]. The mixture was transferred to test tubes coated with 120 µg iodogen and the reaction was carried out for 20 min at 4°C. Since the oxidizing agent (iodogen) was immobilized on the wall of the test tube, the iodination could occur only at the surface of the cells. The reaction was stopped by transferring the suspension to centrifuge tubes containing 0.1 M KI in PBS (vol/vol). Cells were pelleted for 5 min at 200 g and resuspended in 1 ml PBS. Proteins were extracted and precipitated overnight at 4°C in 0.015% sodium deoxycholate and 10% TCA containing 0.1 M KI. The precipitated proteins were pelleted by 10 min centrifugation at 13,500 g and washed twice to be cleared from unreacted iodide.

Electrophoresis, Blotting, and Autoradiography. The labeled proteins were solubilized in 0.1 M phosphate buffer, pH 7, containing 1% SDS, 1% β-mercaptoethanol and 6 M urea and were run on 5-15% SDS–PAGE as above. The gels were either used for electrophoroblotting or stained with Coomassie Blue R-250, air-dried and exposed to X-ray films.

Detection of albumin binding proteins was carried out by blot incubation with Alb-Au, as described above. The blots were then washed with PBS for 5 min, dried between filter papers and exposed to X-ray films at -70°C for different periods of time according to the level of radioactivity.

Results

Detection of ABS on Isolated Capillary Endothelium

We have previously shown that Alb-Au perfused in situ binds specifically to the plasmalemmal vesicles of capillary endothelium of the lung, heart, muscle and adipose tissue (9, 26, 27). Fig. 1 shows an example of in situ Alb-Au binding to capillary endothelium of adipose tissue. The occurrence of specific and restrictively located ABS made these endo-
Figures 1 and 2. (Figure 1) Capillary endothelium of adipose tissue after 3 min in situ perfusion of Alb-Au: tracer particles occur only occasionally on plasma membrane (arrowhead) but bind avidly in one or two rows (arrows) on uncoated pits (up) and virtually all plasmalemmal vesicles (v) apparently associated with the luminal front. (l) Lumen; (p) pericyte; (e) endothelial cell. (Figure 2) Microvascular endothelial cells freshly isolated from rat epididymal fat and incubated for 3 min with Alb-Au: numerous plasmalemmal vesicles (v) are labeled by tracer particles, predominantly in an adsorptive pattern. Some particles are bound to uncoated pits (up) and rarely appear on plasma membrane proper (arrowhead). (e) Endothelial cell. Bars, 0.2 μm.

Detection of ABPs on Electroblotting Strips
Cell Extracts. In Fig. 3 extracts of (MEs), arterial endothelium freshly isolated from the rabbit aorta (fAE), as well as isolated adipocytes (Ads) were analyzed by SDS–PAGE. After transfer on nitrocellulose membrane, the blots were incubated with Alb-Au. The ME lane revealed two pairs of bands which strongly bound Alb-Au and became clearly visible due to their red color. As shown by Fig. 3, the plasmalemmal vesicles, especially those associated with the former luminal front, were characteristically labeled in an adsorptive pattern by the tracer particles which were not removed by extensive washing with PBS (Fig. 2). As in situ, binding appeared to be restricted to capillary endothelium (small vascular tubes <6-μm wide) and was negligible in endothelia of larger vessels containing Weibel-Palade bodies (presumably arterioles and venules). This indicated that isolated and freshly cultured capillary endo-

dotheium largely maintain their ABS. In cultured MEs the main contaminants were pericytes which could represent up to 15% of the cell population; no adipocytes were detected in these preparations.
peptides binding Alb-Au consisted of a doublet composed of a major band with an apparent M_r of 30,000 to 31,000 (hereafter named the 31-kD peptide) and a variable minor band with M_r 28,000. A lower molecular weight doublet was usually represented by a band corresponding to a M_r of 17,000 to 18,000 (hereafter named the 18-kD peptide) and a variable minor band with an apparent molecular weight of 16,000. An additional faint band may show up at M_r 14,400 (the 14-kD peptide). The minor variable bands may represent proteolytic degradation products of ABP. Since in situ ABS occur restrictively on capillary endothelium, it is likely that the ABP detected in the ME homogenates originate primarily or solely from capillary endothelial cells. With this procedure and using the same amount of protein applied on the SDS-gel, no detectable ABPs were revealed in the extract of aortic endothelial cells; such bands were present, however, in the extracts of adipocytes (Fig. 3). The latter occurrence is in agreement with previous reports on the existence of albumin receptors on the Ad plasma membrane (2, 20).

Lung Extract. In the heart or lung extracts, prepared as described, Alb-Au-binding peptides similar to those found in MEs were detected. Since in the heart homogenates, ABPs may originate from myocytes, for our experiments we used lung extracts only (as an alternative to MEs of adipose tissue) (15, 16, 23). The ABP peptides were labeled both by radioiodinated monomeric albumin ([125I]mAlb) or polymeric albumin ([125I]pAlb) with a pattern superposable to that resulted upon Alb-Au incubation (Fig. 3 b). The removal of macrophages by bronchial lavage did not significantly change the electrophoretic pattern and ligand affinity of the electrotransferred ABP peptides. Since in situ the bronchial and alveolar epithelium did not show any special affinity for the Alb-Au complex infused intratracheally (Simionescu, M., manuscript in preparation), it was assumed that in the lung extract the detected ABP originate mainly from capillary endothelia.

Densitometric profiles of extracts of murine lung blots incubated with Alb-Au gave an approximation of the fractional contribution of the four ABP peptides. The major component appears to be the 18-kD peptide that amounts to ~57%; the 31-kD peptide accounts for ~27%, while the 28- and the 14-kD bands represent only 10% and 4%, respectively (Fig. 3 c).

ABP Electrophoretic Pattern as a Function of Solubilization Conditions

Nondissociative vs. Dissociative Conditions. Lung fragments which were homogenized in buffer systems devoid of detergent, upon electrophoresis, transfer on nitrocellulose, and incubation with Alb-Au, gave a band at the top of the resolving gel. This was taken as an indication that ABP material was present in the crude homogenate but was not dissociated from the membrane, and as such, it penetrated minimally the polyacrylamide gel. When similar lung homogenates were centrifuged for 1 h at 114,000g in a Beckman SW 50.1 rotor and the supernatant processed as above, no Alb-Au-reacting bands were visualized on the electroblotting strips; the ABP remained associated with the membrane material spun down in the pellet. It was concluded that in the mild conditions used for extraction (low to high ionic strength at neutral or slightly alkaline pH), ABP cannot be obtained in soluble lipid-free form, presumably due to strong hydrophobic interaction with other membrane components. In the cathodic electrophoresis system followed by electroblotting, the absence of detectable amounts of Alb-Au-binding peptides suggested that ABPs have a low solubility in aqueous solutions, their solubilization requiring detergents.
Detergents (n-octyl-β-D-glucopyranoside), the electrophoretic mobility and binding activity of the ABP peptides was similar to those of the control (standard procedure) (lane d).

Non-denaturing vs. Denaturing Conditions. When lung fragments were solubilized in denaturing (SDS) or nonionic detergents (n-octyl-β-D-glucopyranoside), the electrophoretic patterns obtained were similar. Accordingly, either 1% SDS (in most cases) or 1% n-octyl-β-D-glucopyranoside in PBS or 0.01 M Hepes pH 7.4 were alternatively used in the extraction buffers. Heating of the samples for 5 min at 100°C resulted in a slight increase in the electrophoretic mobility of the 31-kD polypeptide (Fig. 4) without significantly affecting the ABP-binding properties. This effect occurred only when urea was added to the SDS gel. The presence of urea in the SDS-electrophoretic buffer without heating did not significantly change ABP mobility or its binding of albumin. These observations were taken as a suggestion that SDS-denatured ABPs maintain to a large extent their binding affinity for albumin.

Nonreducing vs. Reducing Conditions. Addition of sulfhydryl reducing agents such as β-mercaptoethanol or DTT did not induce significant changes in the ABP electrophoretic mobility or binding activity (Fig. 4). This indicated that disulfide bonds, if existent in the ABP molecules, are in very low number and are not required for the expression of the specific binding properties.

Isoelectric Focusing

After the electrophoretic transfer of proteins to nitrocellulose membranes and incubation with Alb-Au, five bands were stained by the ligand. Three bands appeared labeled on the anodic sheet: two soluble ABP bands correspond to pIs of 8.05 and 8.15 and a third band (insoluble ABP) remained in start. On the cathodic nitrocellulose membranes, two soluble ABP bands of pIs 8.55 and 8.75, respectively, were stained by Alb-Au.

Two-dimensional Electrophoresis

By applying the ligand blotting with Alb-Au to two-dimensional isoelectric focusing/SDS polyacrylamide gels it was found that the 31-kD peptides correspond to the isoelectric points of 8.05 and 8.15, the 18-kD peptides have an isoelectric point of 8.55 and the 14-kD peptide a pI of 8.75. No other peptides resolved by this technique showed affinity for Alb-Au (Fig. 5).

Binding Characteristics of the ABP Peptides

Saturability. The binding of radioiodinated albumin to the electrophoretically resolved and transferred ABP peptides, was saturated at 80 × 10⁻⁹ M concentration of labeled ligand. The profiles of the saturation curves were similar for the two sets of ABP peptides. At all concentrations used, the non-saturable binding component was subtracted from the total binding.

Figure 4. Rabbit lung extract subjected to electrophoresis on 5–15% polyacrylamide gel under reducing and nonreducing conditions. After electrophoretic blotting, the nitrocellulose strips were incubated with Alb-Au. The conditions used for sample solubilization are indicated in the lower part of the figure. When the SDS-urea-β-mercaptoethanol mixture was heated before electrophoresis (lane a), the mobility of the 31-kD peptide was slightly faster than in lanes b and d. Same increase in the mobility of this peptide was obtained by only heating the sample without addition of β-mercaptoethanol (lane c). When the SDS-urea solution was supplemented with β-mercaptoethanol alone (lane b), the apparent molecular weight and binding activity of the ABP peptides is similar to that of the control (standard procedure) (lane d).

Figure 5. Two-dimensional electrophoresis and ligand blotting of ABPs. Rabbit lung homogenate (500 µg protein) was subjected to two-dimensional electrophoresis, electrophoretic transfer and incubation with Alb-Au. The isoelectric points of ABPs visualized by the ligand binding are: pI 8.05 for the 31 kD, pI 8.15 for the 33 kD, pI 8.55 for the 17 kD and 8.75 for the 14-kD peptides. Molecular mass standards are indicated.

Figure 6. Saturation of [¹²⁵I]-albumin binding to the ABP peptides subjected to electrophoresis and transferred on nitrocellulose sheets. (A) Concentration dependency of [¹²⁵I]-albumin binding; (B) Double reciprocal plot constructed with the data in A. Murine lung homogenate was solubilized and aliquots containing 1.4 mg protein were applied to a preparative SDS-polyacrylamide gel (12.3-cm wide well). After electrophoresis and transfer to nitrocellulose sheets, 0.5 cm × 0.5 cm slabs corresponding to the 31- and 18-kD (detected with Alb-Au on the marginal strips) were excised. Slabs were incubated with 2 ml of increasing concentrations of [¹²⁵I]albumin (0.14 µCi/µg protein) for 1 h at room temperature. The diagram in A shows the values of the saturable binding corrected for background by subtracting the nonsaturable binding (ns) measured in the presence of a 100-fold excess of unlabeled albumin from the total binding.
values of the nonsaturable nonspecific binding were low (less than 4% of the total binding) and were ascribed to a straight line (Fig. 6A). Analysis of the binding values in Fig. 6A by double reciprocal plots gave, from the abscissa intercepts, an apparent equilibrium dissociation constant K_d of 5.5×10^{-9} M and 7.1×10^{-9} M for the 18-kD and 31-kD peptides, respectively (Fig. 6B).

Competition. When the electroblots exposed to the same concentration of radioiodinated albumin (9.4 nM) were competed for 60 min with increasing concentrations of unlabeled albumin, the [125I]Alb binding was inhibited by 95% by concentrations of unlabeled albumin as low as 4.4×10^{-6} M (Fig. 7).

Binding Kinetics. The data obtained showed that the electrophoretically resolved and transferred ABP peptides bound radioiodinated albumin in a pH-dependent manner. The highest binding values occurred at pH 5.0 (close to the pI of albumin). At pH 8.0, close to the pI of ABP peptides, the [125I]Alb binding reached half the values recorded at pH 5.0. In our experiments the incubations were performed at pH 7 within the range of the physiological pH in plasma where 64% of the highest binding occurred. When the strips were incubated with the same concentration of [125I]Alb, but for different time intervals, the binding reached a steady-state plateau at 1 h (that was used as standard incubation period in our experiments).

Specificity. On the nitrocellulose strips no protein was detected if IgG-gold or PEG-gold were used as ligands or when the blots were quenched with albumin before the ABP detection with Alb-Au, or control incubation with IgG-Au (Fig. 8). The experiments with radioiodinated monomeric or polymeric albumin showed that the ABP peptides bound each of these ligands as well as the Alb-Au complex (Fig. 3b).

Effects of High Ionic Strength and Heparin. The [125I]-Alb binding to the ABP peptides could not be either prevented or displaced by NaCl in concentration up to 2 M when it was either added in the incubation medium concomitantly with the ligand or was applied after the radiolabeled Alb was bound to ABP. Similar results were obtained when Alb-Au was used as ligand.

Heparin at a concentration of 4 mg/ml: 500 UI/ml did not impair the Alb-Au [A 1.0 cm/515 nm = 1.0] binding to the ABP bands after a 1-h incubation.

These findings showed that Alb/ABP interaction are not of a pure electrostatic nature.

ABPs Are Probably Membrane-Associated Components Exposed on Endothelial Cell-Surface

The results obtained from MEs whose surface proteins were iodinated and the emerging electroblots exposed to X-ray films and incubated with Alb-Au showed that proteins with the same molecular weight as ABPs are detected on the cell surface of MEs. The 14-kD peptide often displayed the strongest radiolabeling suggesting a content in thryosine residues higher than the other two sets of ABP peptides (Fig. 9).

Discussion

The existence of an albumin receptor that mediates the uptake of free fatty acids has been reported for the heart myocytes (15, 17, 24), adipocytes (2, 20) and hepatocytes (20, 37, 38). The specificity of the latter has been recently challenged (1, 30, 31, 36, 38). Attempts to identify and isolate the pro-
tein(s) responsible for the specific cellular uptake by the liver or kidney of the native or chemically modified serum albumin have been only partially successful (12, 13, 22). A hepatitis B surface antigen polypeptide of 31,000 D which binds human and chimpanzee glutaraldehyde-polymerized albumin has been reported (17).

In our experiments, the detection of ABPs by the ligand blotting relied on the ability of this technique to reveal such proteins in crude extracts of cells and tissues when no anti-receptor antibody was yet available. Ligand blotting was shown to be as sensitive as immunoblotting for the identification of receptors such as low density lipoprotein receptor (5).

The visualization of ABPs by ligand blotting was facilitated by several characteristics of these proteins: (a) they retain their binding capacity after SDS–gel electrophoresis and electrophobring on nitrocellulose paper even in the presence of sulphydryl reducing agent and after heating, (b) they interact strongly with either monomeric or polymeric albumin in radioiodinated or gold-conjugated form; and (c) quenching with IgG or PVP permits extensive washings required for the removal of nonspecifically bound material.

In our ligand blotting survey, ABP were found to be well expressed in the microvascular endothelial cells of the adipose tissue as well as in the lung (presumably due to its ABS-positive capillary endothelium). Because of the ubiquitous role of albumin as carrier for free fatty acids and other molecules, the occurrence of ABPs (in various density and affinity) in other cells has to be expected, but this remains to be investigated. In our preparation conditions, ABP were not detected in extracts of rabbit aortic endothelium. The preliminary observation reported in (27) on cultured bovine arterial endothelium and rat pericytes remained to be confirmed (or infirmed) by using higher protein concentrations applied on gels and transferred on nitrocellulose sheets. The present observations suggest, but not yet proved, that ABPs may represent the specific binding sites for albumin expressed in situ. Experiments to test their possible identity are currently conducted. In SDS–PAGE, the two pairs of ABP polypeptides, 31 and 18 kD, have virtually the same apparent molecular weight as ABPs are radioiodinated.

Final demonstration will be possible when antibodies against the ABP peptides will become available.

As revealed by the densitometric profiles of the electrophoretic bands (not shown), ABPs bind with similar affinity monomeric and polymeric albumin regardless whether the latter was obtained by intermolecular self-aggregation or by adsorption on gold particles. From these results, it may be assumed that—at least in the conditions described—the ABP interaction with its cognate ligand is not significantly dependent on its mono-, or polymeric character or on the presence of the gold tag.

As detected by ligand blotting, the specificity of ABP was indicated by the demonstration that: (a) other gold-conjugated ligands such as IgG-Au or PEG-Au do not bind to the ABP peptides; (b) binding is not of purely electrostatic nature since neither high ionic strength nor heparin are able to displace the ligand; and (c) binding is specifically competed by increasing concentration of free albumin (and not by IgG) in a dose-dependent manner. However, an inquiry of a large number of plasma proteins and cells remains to elucidate how restricted is the ligand specificity and tissue specificity of the ABPs.

In the conditions of the electroblotting technique applied to receptor-ligand interactions (20), the albumin binding to the ABP peptides, subjected to electrophoresis, reaches saturation at ~80 nM concentration. A 50% inhibition of ligand binding is achieved by 5.5 µg/ml of competing albumin, suggesting a strong interaction with ABPs (K = ~60 × 10^-9 M). We do not know yet how these values compare with those of the ABPs in situ; the latter are under current investigation.

As suggested by the electrophoretic patterns, the ABP cationic peptides may represent dimer or oligomer of nonidentical subunits, noncovalently associated and containing a relatively reduced number (if any) of intramolecular disulfide bonds. The integrity of the latter seems not to be required for the binding activity.

The excellent technical assistance of V. Craciun, I. Andreescu, M. Toader, D. Proffit (electrophoresis); F. Georgescu, and D. Taftan (radioassay); I. Manolescu (cell culture), E. Stefan and G. V. Ionescu (photographical work); C. Neacu and M. Schean (graphics); and D. Neacu (word processing) is gratefully acknowledged.

The work was supported by the Ministry of Education, Romania, and by the National Institutes of Health (NIH) grant HL-26343.

Received for publication 22 October 1987, and in revised form 7 March 1988.

References

1. Berk, P. D., B. J. Potter, and W. Stremmel. 1987. Role of plasma membrane ligand-binding proteins in the hepatocellular uptake of albumin-bound organic anions. Hepatology. 7:165–176.
2. Brandes, R., R. K. Ockner, R. A. Weisiger, and N. Lysenko. 1982. Specific and saturable binding of albumin to rat adipocytes: Modulation by epinephrine and possible role in free fatty acid transfer. Biochem. Biophys. Res. Comm. 105(3):821–827.
3. Carson, M. P., and C. C. Haudenschild. 1986. Microvascular endothelium and pericytes: high yield, low passage cultures. In Vitro Cell. Dev. Biol. 22(6):344–354.
4. Ching, S. F., L. W. Hayes, and L. L. Slakey. 1981. Angiotensin-convert- ing enzyme in cultured endothelial cells and growth medium. Biochim. Biophys. Acta. 651:222–230.
5. Daniel, T. O., W. J. Schneider, J. L. Goldstein, and M. S. Brown. 1983. Visualization of lipoprotein receptors by ligand blotting. J. Biol. Chem.
21. Peters, T. Jr. 1985. Serum albumin.
20. Ockner, R. K., R. A. Weisiger, and J. L. Gollan. 1983. Hepatic uptake of albumin-bound substances: albumin receptor concept. Biochem. J. 239:537-543.
19. Oblas, B., N. D. Boyd, and R. H. Singer. 1983. Analysis of receptor-ligand interactions using nitrocellulose gel transfer: application to Torpedo aceetylcholine receptor and alpha bungarotoxin. Anal. Biochem. 130:1-8.
18. Maizel, J. V. Jr. 1971. PolyaCRYlamIDE gel electrophoresis of viral proteins. Meth. Virology. 4:179-246.
17. Machida, A., S. Kishimoto, H. Ohnuma, H. Miyamoto, K. Baba, K. Oda, T. Nakamura, Y. Miyakawa, and M. Mayumi. 1983. A hepatitis B surface antigen polypeptide (P31) with the receptor for polymerized human albumin as well as chimpanzee albumins. Gastroenterology. 85:268-274.
16. Hutter, J. F., H. M. Piper, and P. G. Spieckermann. 1984. Kinetic analysis of myocardial fatty acid oxidation suggesting an albumin receptor mediated uptake process. J. Mol. Cell. Cardiol. 16:219-226.
15. Hutter, J. F., H. M. Piper, and P. G. Spieckermann. 1984. Myocardial fatty acid oxidation: evidence for an albumin receptor-mediated membrane transfer of fatty acids. Basic Res. Cardiol. 79:274-282.
14. Hormia, M., Y. P. Lehto, and J. Virtanen. 1983. Factor VIII related antigen. A pericellular matrix component of cultured human endothelial cells. Exp. Cell Res. 149:483-497.
13. Horiuchi, S., K. Takata, and Y. Morino. 1985. Characterization of a membrane-associated receptor from rat sinusoidal liver cells that binds formaldehyde-treated serum albumin. J. Biol. Chem. 260:475-481.
12. Horiuchi, S., K. Takata, and Y. Morino. 1985. Purification of a receptor for formaldehyde-treated serum albumin from rat liver. J. Biol. Chem. 260:482-488.
11. Heukeshoven, J., and R. Dernick. 1985. Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis. 6:103-112.
10. Hauner, H., P. Schmid, and E. F. Pfeiffer. 1987. Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J. Clin. Endocrinol. Metab. 64(4):832-835.
9. Ghinea et al. 1986. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J. Cell Biol. 102:1304-1311.
8. Gershoni, J. M., and G. E. Palade. 1982. Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to a positively charged membrane filter. Anal. Biochem. 124:396-405.
7. Fraker, P. J., and J. C. Speck. 1978. Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1, 3, 4, 6-tetrachloro-3a, 6a diphenylglycoluril. Biochem. Biophys. Res. Commun. 80:849-857.
6. Davies, G., and G. Stark. 1970. Use of dimethyl suberimidate, a cross-linking reagent in studying the subunit structure of oligomeric proteins. Proc. Natl. Acad. Sci. USA. 66:651-656.
5. Fraker, P. J., and J. C. Speck. 1978. Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1, 3, 4, 6-tetrachloro-3a, 6a diphenylglycoluril. Biochem. Biophys. Res. Commun. 80:849-857.
4. Ockner, R. K., R. A. Weisiger, and J. L. Gollan. 1983. Hepatic uptake of albumin-bound substances: albumin receptor concept. Biochem. J. 239:537-543.