Optimal Kernel Selection Based on GPR for Adaptive Learning of Mean Throughput Rates in LTE Networks

Joseph Isabona, Federal University Lokoja, Nigeria
Agbotiname Lucky Imoize, University of Lagos, Akoka, Nigeria
https://orcid.org/0000-0001-8921-8353

ABSTRACT

Machine learning models and algorithms have been employed in various applications, including prognostic scrutinizing, learning, and revealing patterns in data, knowledge extracting, and knowledge deducing. One promising computationally efficient and adaptive machine learning method is the Gaussian process regression (GPR). An essential ingredient for tuning the GPR performance is the kernel (covariance) function. The GPR models have been widely employed in diverse regression and functional approximation purposes. However, knowing the right GPR training to examine the impacts of the kernel functions on performance during implementation remains. In order to address this problem, a stepwise approach for optimal kernel selection is presented for adaptive optimal prognostic regression learning of throughput data acquired over 4G LTE networks. The resultant learning accuracy was statistically quantified using four evaluation indexes. Results indicate that the GPR training with the matern52 kernel function achieved the best user throughput data learning among the 10 contending kernel functions.

KEYWORDS

4G LTE Network, Adaptive Learning, Gaussian Process, Kernel Function, Measured Throughput, User Equipment

1.0 INTRODUCTION

Telecommunication is an established cutting-edge technology that permits two parties to communicate employing voice and data signals (Rappaport 2002). The evolution, deployment, and application of various cellular radio frequency (RF) based telecommunications systems has orchestrated rapid development in every aspect of human endeavour (Imoize et al. 2021). Starting from the first generation (1G) brand that came into existence in the early 80s to the ubiquitous fourth generation (4G) LTE (Imoize et al. 2019) (Imoize and Oseni 2019), the recently commercialized fifth-generation (5G) (Gupta and Jha 2015), and the envisioned sixth-generation (6G) wireless systems (Dang et al. 2020), the telecommunication industry is progressive globally. The 4G and 5G systems are data communication-centric (Shynu and Al-Turjman 2021). 4G LTE can provide robust data throughput rates in open terrains (Imoize and Adegbite 2018). However, in built-up terrains such as dense urban cities, where all forms of interference and multipath fading impacts are high, 4G LTE may experience low and fluctuating throughput data rates. Hence, there is a need to regularly conduct a measurement-
based prognostic examination of User Equipment (UE) throughput rates (Ughegbe, Adelabu, and Imoize 2021). These rates help the RF engineers make the necessary optimization decisions, detect and mitigate interference, including other anomalies that could negatively impact 4G LTE network performance (Huang et al. 2013).

Prognostic algorithms are central to a detailed examination of user data throughput rates (Estevez, Orchard, and Kailas 2013). In recent years, Machine Learning (ML) models and their prognostic algorithms have been deployed for diverse applications comprising data scrutinizing, learning, pattern close-fitting, knowledge extracting, knowledge deducing, and others (Alvarez, Louveaux, and Wehenkel 2017), (Song, Ristenpart, and Shmatikov 2017). There exist numerous ML-based prognostic regression models in the literature (Bui and Turner 2014; Cao and Fleet 2014; Chen and Ren 2009; Chen and Wang 2018; Dervilis et al. 2016; Gu and Hu 2012; Skilling 2006; Su, Peng, and Hu 2017; Vanhatalo, Pietiläinen, and Vehtari 2010; Wan and Ren 2015). One of the most promising techniques is the Gaussian Process Regression (GPR) (Rasmussen 2004) (Chalupka, Williams, and Murray 2013) (Wilson and Adams 2013). The GPR is a non-parametric Bayesian modeling technique with a Gaussian probabilistic structure. Some of the critical advantages of the GPR include (Bui and Turner 2014; Cao and Fleet 2014; Chen and Ren 2009; Chen and Wang 2018; Gu and Hu 2012; Vanhatalo et al. 2010): (i) relatively simple parameterization and implementation structure (ii) proficiency in dealing with stochastic processes of varied intricacies and complexities (iii) proficiency in adaptive learning of noisy and non-noisy data (iv) adeptness in handling uncertainties in datasets (v) expert knowledge incorporation (vi) flexible input data probability distributions, (vii) capacity to integrate prior knowledge (viii) precise stationary and non-stationary fitting of input-output data capability (ix) ability to estimate posterior degradation.

Gaussian Process (GP) is a robust data-driven approach that produces efficient solutions to image processing problems. These problems comprise modelling of low-level image features, image denoising and more. GPs find practical applications in high-resolution object reconstruction for lower resolution images. This is achieved by examining the local structures in natural images defined by their pixel spread (Wang et al. 2017). In wireless propagation measurements, GP regression helps fuse multiple datasets from heterogeneous sources (Vasudevan 2012). For example, a multi-task GP technique has been advanced on multi-modal image fusion (Reid, Ramos, and Sukkarieh 2013). In related literature, (Wilson, Knowles, and Ghahramani 2011) and (Nguyen and Bonilla 2013) introduced some complex models capable of handling complex relationships between the outputs and mixing weights with input dependencies.

In kernel function analysis, (Alaa and van der Schaar 2017) projected the ICM kernel in the hidden and output layers of the GPs for multi-task learning for survival analysis. A general formulation of some existing models has been presented to replace the linear mixing of latent processes with another suitable GP. This allows the modeling of more complex relationships between the assigned tasks. Considering the work due to (Requeima et al. 2019) on the Gaussian process autoregressive regression model, an alternative formulation to non-linear multi-output learning in GPs was reported. In this model, an inherit ordering of the outputs is assumed. Here, the current GP output is concatenated with the inputs of the proceeding GP at the specified location. Although this model can be interpreted as a DGP structure with several missing connections, inherit ordering of the tasks is assumed, and the dataset is closed in a downward trend.

The kernel (covariance) function is essential for tuning the GPR model for optimal performance. It helps the GPR articulate the close-fitting similarity between the input vector and the target response. The GPR techniques have been widely employed for diverse regression and functional approximation purposes (Bui and Turner 2014; Cao and Fleet 2014; Chen and Ren 2009; Dervilis et al. 2016; Gu and Hu 2012; Skilling 2006; Su et al. 2017; Vanhatalo et al. 2010). However, no work has presented a detailed assessment of the severe impacts of its kernel (covariance) functions on its performance characteristics. In order to fill this gap, this paper presents an optimal kernel selection approach based on Gaussian process regression for adaptive learning of mean throughput rates over 4G LTE networks.
Our key contributions in this paper are outlined as follows. First, we highlighted ten essential kernel functions and their mathematical derivatives. Second, we proposed a stepwise search algorithm for the best kernel function among the contenders. Last, we presented experimental throughput data acquired using TEMS investigation tools to test and validate the proposed random search algorithm.

The remainder of this paper is organized as follows. Section 2 covers the Gaussian process, kernel functions, the associated hyperparameters, mean user throughput measurements, and the proposed kernel function selection approach comprising the stepwise search kernel selection algorithm. Section 3 presents the results and discussions. Finally, Section 4 gives the conclusion to the paper.

2.0 METHODS

The methodology employed in this paper is described briefly. The Gaussian process, kernel functions, and the associated hyperparameters mean user throughput measurements, and the proposed kernel function selection approach, including the stepwise search kernel selection algorithm, are highlighted.

2.1 Gaussian Process

The Gaussian Process (GP) regression is a powerful state-of-the-art non-parametric Bayesian modeling technique with a Gaussian probabilistic structure (Cheng and Boots 2016); (Zhang, Huang, and Tian 2017). A function \(f(.) \) with a set of associated \(x \) input random variables is said to trail a GP if the values of the function also follow the texture of the Gaussian distribution given by (1) (Roberts et al. 2013); (Boustati, Damoulas, and Savage 2019):

\[
f = GP\left(m_\epsilon(x_i), k(x_i, x_j) \right)
\]

where, \(k(x_i, x_j) \) is the kernel function with the allied inputs \((x_i, x_j) \), which governs the GP and \(m_\epsilon \) is the conforming mean vector.

Given a training set, \(P = \left[(x_i, y_i) \right]_{i=1}^{k} \) of i.i.d unknown data samples (i.e., identically independent distribution of yet to be identified data samples) such that \((x_i, y_i) \in \mathbb{R}^d \times \mathbb{R} \), the GPR model assumes that the dependence of the output, \(y_i \) on the input, \(x_i \) satisfies the regression function in (2) given by:

\[
y_i = f_\epsilon(x_i) + \epsilon_i; i = 1,2,...,k
\]

where, \(\epsilon_i \) expresses the i.i.d random noise variables, such that \(\epsilon \approx \mathcal{N}(0, \sigma^2) \).

The GP predictive description of \(f(x_* \) any given test point \(x_* \) can be expressed by (Sun et al. 2018) in (3). A few of the parameters in (3) are defined in (4) and (5), indicating the respective mean and covariance values (Wu, Zhou, and Gao 2019).

\[
p\left(f(x_*) / P \right) = \mathcal{N}\left(\mu(x_*), \sigma^2(x_*) \right)
\]

where
\[\mu^{(t)} = P\left(X, X' \right) \left(P\left(X, X\right) + \sigma^2.I \right)^{-1} \hat{y}, \]
(4)

\[\sum^{(t)} = P\left(X^{(t)}, X^{(t)} \right) + \sigma^2.I - P\left(X^{(t)}, X\right) \left(P\left(X, X\right) + \sigma^2.I \right)^{-1} P\left(X, X^{(t)} \right) \]
(5)

2.2. Kernel Functions And Their Hyperparameters

In GPR, the kernel function expresses the close-fitting similarity between the input vector and the target response. As mentioned earlier, several GPR kernel functions exist in the literature. Specifically, a detailed description of ten standard GPR kernel functions and their mathematical representations is presented (Chen and Wang 2018; Rasmussen 2004; Roberts et al. 2013; Wilson 2014). These include Exponential Kernel (EK), Automatic Relevance Determination based Exponential Kernel (ARD-EK), Automatic Relevance Determination based Squared Exponential Kernel (ARD-SEK), Squared Exponential Kernel (SEK), Matern Kernel 3/2 (MK 32), Matern Kernel 5/2 (MK 52), Automatic Relevance Determination based Matern Kernel 3/2 (ARD-MK 32), Automatic Relevance Determination based Matern Kernel 5/2 (ARD-MK 52), Rational Quadratic Kernel (RQK), and Automatic Relevance Determination based Rational Quadratic Kernel (ARD-RQK) (Williams 2007; Yogatama and Mann 2014; Zhang et al. 2019; Palar et al. 2021; Sharma and Pandey 2021; Gbémou et al. 2021). A brief description of these standard GPR kernel functions is given as follows.

2.2.1 Exponential Kernel (EK)

The Exponential Kernel (EK) is a robust kernel function with one hyperparameter for boosting Gaussian process regression, and it is given by (6):

\[k(x_i, x_j, l) = \sigma^2 \exp \left(-\frac{d}{l} \right) \]
(6)

where \(l \) is the hyperparameter, and it is called the characteristic scale length.

2.2.2 Automatic Relevance Determination based Exponential Kernel (ARD-EK)

The Automatic Relevance Determination based Exponential Kernel (ARD-EK) is another vital kernel function with two hyperparameters for Gaussian process regression. It is given by (Gbémou et al. 2021) in (7):

\[k(x_i, x_j, l) = \sigma^2 \exp \left(-\sqrt{\sum_{n=1}^{m} \frac{(x_{in} - x_{jn})^2}{l^2}} \right) \]
(7)

where \(l \) is the hyperparameter, and it is called the characteristic scale length.
2.2.3. Automatic Relevance Determination based Squared Exponential Kernel (ARD-SEK)

The Automatic Relevance Determination based Squared Exponential Kernel (ARD-SEK) is a unique kernel function with two hyperparameters for Gaussian process regression. It is given by (Gbémou et al. 2021) in (8):

\[k(x_i, x_j) = \sigma^2 \exp \left(-\frac{1}{2} \sum_{m=1}^{m} \left(\frac{x_{im} - x_{jm}}{\sigma^2} \right)^2 \right) \]

(8)

where \(l \) is the hyperparameter, and it is called the characteristic scale length.

2.2.4. Squared Exponential Kernel (SEK)

The Squared Exponential Kernel (SEK) is a popular kernel function with two special hyperparameters, and it is given by (Yogatama and Mann 2014); (Sharma and Pandey 2021); (Gbémou et al. 2021) in (9):

\[k(x_i, x_j, l) = \sigma^2 \exp \left(-\frac{(x_i - x_j)^T (x_i - x_j)}{2l} \right) \]

(9)

where \(l \) and \(\sigma \) are the special hyperparameters with \(l \) being the characteristic scale length and \(\sigma \) the signal standard deviation.

2.2.5 Matern Kernel 3/2 (MK 32)

The Matern Kernel 3/2 (MK 32) is another popular kernel function with two special hyperparameters, and it is given by (Zhang et al. 2019) in (10):

\[k(x_i, x_j, l) = \sigma^2 \left(1 + \sqrt{3} \frac{(x_i - x_j)^T (x_i - x_j)}{l} \right) \exp \left(-\sqrt{3} \frac{(x_i - x_j)^T (x_i - x_j)}{l} \right) \]

(10)

where \(l \) and \(\sigma \) are the special hyperparameters with \(l \) being the characteristic scale length and \(\sigma \) the signal standard deviation.

2.2.6. Matern Kernel 5/2 (MK 52)

The Matern Kernel 5/2 (MK 52) is also a popular kernel function with two special hyperparameters, and it is given by (Palar et al. 2021) in (11):

\[k(x_i, x_j, l) = \sigma^2 \left(1 + \sqrt{5} \frac{(x_i - x_j)^T (x_i - x_j)}{l} + \frac{\sqrt{5}}{3l^2} \right) \exp \left(-\sqrt{5} \frac{(x_i - x_j)^T (x_i - x_j)}{l} \right) \]

(11)

where \(l \) and \(\sigma \) are the special hyperparameters with \(l \) being the characteristic scale length and \(\sigma \) the signal standard deviation.
2.2.7. **Automatic Relevance Determination based Matern Kernel 3/2 (ARD-MK 32)**

The Automatic Relevance Determination based Matern Kernel 3/2 (ARD-MK 32) is a unique kernel function with two special hyperparameters, and it is given by (Zhang et al. 2019) in (12):

\[
k(x_i, x_j, l) = \sigma^2 \left[1 + \sqrt{3 \sum_{n} \left(\frac{x_{in} - x_{nj}}{l_n^2} \right)^2} \right] \exp \left[-3 \sum_{n} \left(\frac{x_{in} - x_{nj}}{l_n^2} \right)^2 \right] (12)
\]

where \(l \) and \(\sigma \) are the special hyperparameters with \(l \) being the characteristic scale length and \(\sigma \) the signal standard deviation.

2.2.8. **Automatic Relevance Determination based Matern Kernel 5/2 (ARD-MK 52)**

The automatic relevance determination based Matern Kernel 5/2 (ARD-MK 52) is a unique kernel function with two special hyperparameters, and it is given by (Palar et al. 2021) in (13):

\[
k(x_i, x_j, l) = \sigma^2 \left[1 + \sqrt{5 \sum_{n} \left(\frac{x_{in} - x_{nj}}{l_n} \right)^2} + \frac{5}{3} \sum_{n} \left(\frac{x_{in} - x_{nj}}{l_n} \right)^2 \right] \exp \left[-5 \sum_{n} \left(\frac{x_{in} - x_{nj}}{l_n^2} \right)^2 \right] (13)
\]

where \(l \) and \(\sigma \) are the special hyperparameters with \(l \) being the characteristic scale length and \(\sigma \) the signal standard deviation.

2.2.9. **Rational Quadratic Kernel (RQK)**

The Rational Quadratic Kernel (RQK) is a unique kernel function with two special hyperparameters, and it is given by (Mohammadzadeh et al. 2018) in (14):

\[
k(x_i, x_j, l) = \sigma^2 \left[1 + \frac{\left(x_i - x_j \right)^2}{2\alpha l} \right]^{-\alpha} (14)
\]

where \(l \) and \(\sigma \) are the special hyperparameters with \(l \) being the characteristic scale length and \(\sigma \) the signal standard deviation.

2.2.10. **Automatic Relevance Determination based Rational Quadratic Kernel (ARD-RQK)**

The Automatic Relevance Determination based Rational Quadratic Kernel (ARD-RQK) is a unique kernel function with two special hyperparameters, and it is given by (Mohammadzadeh et al. 2018) in (15):

\[
k(x_i, x_j, l) = \sigma^2 \left[1 + \frac{1}{2\alpha} \sum_{n} \left(\frac{x_{in} - x_j}{l_n} \right)^2 \right]^{-\alpha} (15)
\]
where l and σ are the special hyperparameters with l being the characteristic scale length and σ the signal standard deviation.

2.3. Mean User Throughput Measurements

Mean user throughput expresses mean data transfer “speed” (bits/second) through a communication channel during wired or wireless data connection (Błaszczyszyn, Jovanovicy, and Karray 2014). More technically, it is the successful average bits number sent (or received) for every data request to the practical data transfer or delivery period (Isabona and Ojuh 2014; Isabona and Samson 2013). An efficient way to collect throughput data in cellular telecommunication networks is to use appropriate professional measurement and monitoring tools (Isabona and Konyeha 2013; Isabona and Ojuh 2014; Isabona and Samson 2013). The ASCOM TEMS investigation tools were employed in this work to collect three types of downlink throughput data. These include the RLC throughput (Chen et al. 2003; Paul et al. 2016; Shreevastav and Carbajo 2016), PDSCH throughput (Padaganur and Mallapur 2018), and PDSCH throughput data rates (Favraud and Nikaein 2017). These throughput types were obtained via FTP file downloading 1GBytes at the User Equipment (UE) terminal. Field measurements were conducted using ASCOM TEMS investigation tools over commercial 4G LTE networks. The measurement routes comprise the major roads and open streets in Port Harcourt Garden City, Nigeria. Three measurements, namely; location 1, location 2, and location 3, were used as case studies for the throughput data collection. The 4G LTE network uses a 2×2 MIMO antenna configuration, operates at 10MHz system bandwidth, and transmits at 2600MHz.

2.4. Proposed Kernel Function Selection Approach

This study proposes a stepwise approach for optimal kernel selection for adaptive GPR optimal prognostic regression learning on live throughput data acquired over operational 4G LTE networks. Specifically, we collected three data types: PDSCH, RLC, and PDCP throughput through field test measurement around three LTE eNodeB transmitters. The measurement is required to investigate the performance of the proposed stepwise kernel selection algorithm for optimal GPR predictive learning. PDSCH throughput is the physical channel throughput, and it comprises the transmitted user application data in the payload, signaling messages, paging, and System Information Blocks (SIB) in the downlink (Huang et al. 2012). It is the foremost downlink bearing channel data throughput allotted to user equipment on a resourceful and dynamic basis. The RLC throughput data represent the aggregate data bits transferred over the reverse link per unit time. The RLC throughput quantifies the amount of appropriately received data at the user equipment in bits per second. PDCP throughput is the user internet protocol based data throughput comprising user integrity protection, ciphering, header compression, control plane data, and plane data transferred from the base station.

In order to accomplish the objectives of the study, the stepwise selection program scripts were written in MATLAB and implemented successfully. The algorithm was designed to spontaneously go through a pool of the ten kernels highlighted in Section 2 and then select the best for the GPR model during predictive learning of the throughput data. The degree of the resultant prognostic learning accuracy of each investigated GPR kernel function on the acquired throughput data was statistically quantified using four evaluation indexes. The indexes include the Root Mean Square Error (RMSE), Sum of Absolute Mean Error (SAE), Standard Deviation Error (STD), and Mean Absolute Error (MAE) (Okakwu et al. 2019; Popoola et al. 2019; Wu et al. 2020; Yi et al. 2020). Lower values of each of the four different evaluation indexes indicate high learning accuracy. Additionally, the stepwise search kernel selection algorithm is adopted to achieve optimal GPR performance, leveraging the Bacharach criteria, which defines the way theories fit together to present a clearer picture of an empirical reality in a broad sense (Bacharach 1989). As shown in algorithm 1, after initiating and imputing the data training set, the next step focuses on an intuitive selection of arbitrary kernel. This procedure is followed by performing the training set using the selected kernel and then evaluate the adaptive learning of the kernel function before taking the next step.
Figure 1. Attained throughput data learning accuracy with exponential kernels

Figure 2. Attained throughput data learning accuracy with ardexponential kernels
Figure 3. Attained throughput data learning accuracy with ardsquared exponential kernels

Figure 4. Attained throughput data learning accuracy with squared exponential kernels
Figure 5. Attained throughput data learning accuracy with matern32 kernels

Figure 6. Attained throughput data learning accuracy with matern52 kernels
Figure 7. Attained throughput data learning accuracy with ardmatern32 kernels

Figure 8. Attained throughput data learning accuracy with ardmatern52 kernels
Figure 9. Attained throughput data learning accuracy with rational quadratic kernels

![Figure 9](image1)

Figure 10. Attained throughput data learning accuracy with ardrational quadratic kernels

![Figure 10](image2)
Algorithm 1: Stepwise Search Kernel Selection Algorithm
i). Input training set \((X_{train}, Y_{train})\) and other relevant training parameters
ii). Intuitively choose a kernel function
iii). Train the kernel with the training set \(i\)
iv). Appraise its accuracy on the training set \(i\) (with any set of 1st order statistical index)
v). For all the kernels do;
vi). end for
vii). return kernel with best appraisal score.

4.0 RESULTS AND DISCUSSIONS

This section presents the results and discussions of the study. For brevity in this investigation, we provide only the predictive learning performance attained for PDSCH throughput data along with the measurement points in measurements location 1, as shown in Figures 1 to 10. The figures indicate the prognostic learning results of the ten GPR kernel functions examined. Each figure highlights the subplots showing the RMSE attained over the data point during the learning process and its normalized distribution curve fit. Expressly, both subplots are provided to present a visual representation of the quantified RMSE values. Notably, the frequency distributions fit the collected PDSCH throughput data and the kernel-controlled GPR model at every measurement point.

Figure 11 is a bar chart revealing each kernel’s quantified RMSE error values with the GPR model after applying the stepwise selection algorithm. As observed in Figure 11, the matern52 kernel attained the best adaptive PDCP throughput learning performance with 0.00024 RMSE value, and the poorest prediction is with the exponential kernel, which attained 0.0053 RMSE value. This implies that the matern52 kernel provided the best close-fitting similarity between the predicted input and the throughput data-target response. The predictive learning performance summary of the proposed stepwise selection algorithm on PDCSH and RLC throughput data in measurements locations 2 and
3 are as shown in Figures 12 to 14, using the sum of SAE, STD, and MAE indexes; 0.010, 0.013, 0.009 SAE values, and 0.00016, 0.00014, 0.00002 MAE values, respectively. This is followed by the squared exponential kernel with 0.010, 0.013, 0.010 SAE values and 0.00020, 0.00015, 0.00021 MAE values, respectively.

As observed in Figures 11-14, the maern52 kernel attained the best adaptive PDCP, RLC, and PDSCH throughput learning capability with 0.010, 0.013, 0.009 SAE values, and 0.00016, 0.00014, 0.00002 MAE values, respectively. The second most promising GPR kernel is the squared exponential kernel with 0.010, 0.013, 0.010 SAE values and 0.00020, 0.00015, 0.00021 MAE values. These results also reveal that the GPR training matern52 slightly outperforms the frequently employed squared exponential kernel in several applications (Bhinge et al. 2014; Nannapaneni et al. 2018; Park et al. 2017). The exponential kernel attained the worst PDCP, RLC and PDSCH throughput learning with 0.1829, 0.2942, 0.1897 SAE values, and 0.0029, 0.0030, 0.00470 MAE values, respectively.
4.0 CONCLUSION

This work investigates the weight impacts of ten commonly used kernel functions in Gaussian process regression on throughput datasets acquired over 4G LTE networks. Generally, results reveal that the matern52 kernel function attained the best throughput learning capability among the ten contenders. In comparison, the ardsqaured kernel showed the worst throughput learning capability. These results show that the matern52 outperforms the usually acclaimed squared exponential kernel by 20%. Finally, results imply that the matern52 kernel could be a better alternative for practical GPR-based data mining and practical regression analysis. Future work would focus on the optimization of the GPR training with the matern52 kernel function for optimal user throughput data learning.

ACKNOWLEDGMENT

The work of Agbotiname Lucky Imoize is partially supported by the Nigerian Petroleum Technology Development Fund (PTDF) and the German Academic Exchange Service (DAAD) through the Nigerian-German Postgraduate Program under Grant 57473408.
REFERENCES

Alaa, A. M., & van der Schaar, M. (2017). Deep Multi-Task Gaussian Processes for Survival Analysis with Competing Risks. *Proceedings of the 31st International Conference on Neural Information Processing Systems*.

Alvarez, A., Louveaux, Q., & Wehenkel, L. (2017). A Machine Learning-Based Approximation of Strong Branching. *INFORMS Journal on Computing*, 29(1), 185–195. doi:10.1287/ijoc.2016.0723

Bacharach, S. B. (1989). Organizational Theories: Some Criteria for Evaluation. *Academy of Management Review*, 14(4), 496–515. doi:10.5465/amr.1989.4308374

Bhinge, R., Biswas, N., Dornfeld, D., Park, J., Law, K. H., Helu, M., & Rachuri, S. (2014). An Intelligent Machine Monitoring System for Energy Prediction Using a Gaussian Process Regression. *2014 IEEE International Conference on Big Data (Big Data)*. doi:10.1109/BigData.2014.7004331

Błaszczyszyn, B., Jovanovicy, M., & Karray, M. K. (2014). How User Throughput Depends on the Traffic Demand in Large Cellular Networks. *2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)*. doi:10.1109/WIOPT.2014.6850355

Boustati, A., Damoulas, T., & Savage, R. S. (2019). *Non-Linear Multitask Learning with Deep Gaussian Processes*. Academic Press.

Bui, T. D., & Turner, R. E. (2014). Tree-Structured Gaussian Process Approximations. Advances in Neural Information Processing Systems, 27.

Cao, Y., & Fleet, D. J. (2014). *Generalized Product of Experts for Automatic and Principled Fusion of Gaussian Process Predictions*. Academic Press.

Chalupka, K., Williams, C. K. I., & Murray, I. (2013). A Framework for Evaluating Approximation Methods for Gaussian Process Regression. *Journal of Machine Learning Research*, 14(1), 333–350.

Chen, T., & Ren, J. (2009). Bagging for Gaussian Process Regression. *Neurocomputing*, 72(7), 1605–1610. doi:10.1016/j.neucom.2008.09.002

Chen, Y.-C., Xu, X., & Xu, H. E. (2003). Simulation Analysis of RLC for Packet Data Services in UMTS Systems. *14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003*, 1.

Chen, Z., & Wang, B. (2018). How Priors of Initial Hyperparameters Affect Gaussian Process Regression Models. *Neurocomputing*, 275, 1702–1710. doi:10.1016/j.neucom.2017.10.028

Cheng, C.-A., & Boots, B. (2016). Incremental Variational Sparse Gaussian Process Regression. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, & R. Garnett (Eds.), *Advances in Neural Information Processing Systems: Vol. 29. Curran Associates, Inc*.

Dang, S., Amin, O., Shihada, B., & Alouini, M. S. (2020). What Should 6G Be? *Nature Electronics*, 3(1), 20–29. doi:10.1038/s41928-019-0355-6

Dervilis, N., Shi, H., Worden, K., & Cross, E. J. (2016). Exploring Environmental and Operational Variations in SHM Data Using Heteroscedastic Gaussian Processes. *Dynamics of Civil Structures*, 2. doi:10.1007/978-3-319-29751-4_15

Estevez, C., Orchard, M., & Kailas, A. (2013). Improving Throughput Performance under an Energy Efficient Multiplexing Access Scheme Using Time-of-Failure Prognosis. *Proceedings of the 8th International Conference on Body Area Networks*.

Favraud, R., & Nikaein, N. (2017). Analysis of LTE Relay Interface for Self-Backhauling in LTE Mesh Networks. *2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)*. doi:10.1109/VTCFall.2017.8288063

Gbémou, S., Eynard, J., Thil, S., Guillot, E., & Grieu, S. (2021). A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting. *Energies*, 14(11), 1–23. doi:10.3390/en14113192

Gu, D., & Hu, H. (2012). Spatial Gaussian Process Regression With Mobile Sensor Networks. *IEEE Transactions on Neural Networks and Learning Systems*, 23(8), 1279–1290. doi:10.1109/TNNLS.2012.2200694 PMID:24807524
Gupta, A., & Jha, R. K. (2015). A Survey of 5G Network: Architecture and Emerging Technologies. *IEEE Access: Practical Innovations, Open Solutions, 3*, 1206–1232. doi:10.1109/ACCESS.2015.2461602

Huang, J., Qian, F., Gerber, A., Mao, Z. M., Sen, S., & Spatscheck, O. (2012). A Close Examination of Performance and Power Characteristics of 4G LTE Networks. In *Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, MobiSys ’12*. New York: Association for Computing Machinery. doi:10.1145/2307636.2307658

Huang, J., Qian, F., Guo, Y., Zhou, Y., Xu, Q., Mao, Z. M., Sen, S., & Spatscheck, O. (2013). An In-Depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance. In *Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13*. New York: Association for Computing Machinery. doi:10.1145/2486001.2486006

Imoize, A. L., & Adegbite, O. D. (2018). Measurements-Based Performance Analysis of a 4G LTE Network in and Around Shopping Malls and Campus Environments in Lagos Nigeria. *Arid Zone Journal of Engineering, Technology and Environment, 14*(2), 208–225.

Imoize, A. L., & Oseni, A. I. (2019). Investigation and Pathloss Modeling of Fourth Generation Long Term Evolution Network along Major Highways in Lagos Nigeria. *Ife Journal of Science, 21*(1), 39–60. doi:10.4314/ijis.v21i1.4

Imoize, A. L., Ib haze, A. E., Nwosu, P. O., & Ajose, S. O. (2019). Determination of Best-Fit Propagation Models for Pathloss Prediction of a 4G LTE Network in Suburban and Urban Areas of Lagos, Nigeria. *The West Indian Journal of Engineering, 41*(2), 13–21.

Imoize, Adedeji, Tandiya, & Shetty. (2021). 6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap. *Sensors, 21*(5), 1–58.

Isabona, J., & Konyeha, C. C. (2013). Site-Specific Assessment of Node B Using Key Service Quality Indicators over 3G/UMTS Networks from Outdoor Drive-Test Measurements. *Journal of Information Engineering and Applications, 3*(9), 48–56.

Isabona, J., & Ojuh, D. O. (2014). Radio Link Quality Measurement Survey over HSDPA Radio Interface: A Holistic Technique for Efficient Networks Performance Monitoring in Wireless Communication Systems. *Nigerian Journal of Physics Vol., 25*(2), 46–54.

Isabona, J., & Samson, O. A. (2013). Experimental Investigation of Throughput Performance of IEEE 802.11 g OFDM Based Systems in a Campus Environment. *International Journal of Engineering, 2*(8), 427–434.

Mohammadzadeh, P., Tinati, M. A., Shiri, H., & Tazekand, B. M. (2018). Improved MSVR-Based Range-Free Localization Using a Rational Quadratic Kernel Function. *Electrical Engineering (ICEE), Iranian Conference on*. doi:10.1109/ICEE.2018.8472527

Nannapaneni, S., Narayanan, A., Ak, R., Lechevalier, D., Sexton, T., Mahadevan, S., & Lee, Y.-T. T. (2018). Predictive Model Markup Language (PMML) Representation of Bayesian Networks: An Application in Manufacturing. *Smart and Sustainable Manufacturing Systems*, 2(1), 20180018. Advance online publication. doi:10.1520/SSMS20180018 PMID:31276104

Nguyen & Bonilla. (2013). Efficient Variational Inference for Gaussian Process Regression Networks. In *Artificial Intelligence and Statistics*. PMLR.

Okakwu, I. K., Oluwasogo, E. S., Ib haze, A. E., & Imoize, A. L. (2019). A Comparative Study of Time Series Analysis for Forecasting Energy Demand in Nigeria. *Nigerian Journal of Technology, 38*(2), 465. doi:10.4314/njt.v38i2.24

Padaganur & Mallapur. (2018). Performance Analysis of PDSCH Downlink & Inter-Cell Interferece Parameters in LTE Network. *2018 2nd International Conference on Inventive Systems and Control (ICISC)*.

Palar, P. S., Zakaria, K., Zuhal, L. R., Shimoyama, K., & Liem, R. P. (2021). Gaussian Processes and Support Vector Regression for Uncertainty Quantification in Aerodynamics. *AIAA Scitech 2021 Forum*.

Park, J., Lechevalier, D., Ak, R., Ferguson, M., Law, K. H., Lee, Y. T. T., & Rachuri, S. (2017). Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML). *Smart and Sustainable Manufacturing Systems, 1*(1), 121–141. doi:10.1520/SSMS20160008 PMID:29202125
Paul, A. K., Kawakami, H., Tachibana, A., & Hasegawa, T. (2016). An AQM Based Congestion Control for ENB RLC in 4G/LTE Network. *2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)*. doi:10.1109/CCECE.2016.7726792

Popoola, S. I., Jefia, A., Atayero, A. A., Kingsley, O., Faruk, N., Oseni, O. F., & Abolade, R. O. (2019). Determination of Neural Network Parameters for Path Loss Prediction in Very High Frequency Wireless Channel. *IEEE Access: Practical Innovations, Open Solutions*, 7, 150462–150483. doi:10.1109/ACCESS.2019.2947009

Rappaport, T. S. (2002). *Wireless Communications: Principles and Applications* (2nd ed.). Prentice Hall.

Rasmussen, C. E. (2004). Gaussian Processes in Machine Learning. *Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised Lectures*. doi:10.1007/978-3-540-28650-9_4

Reid, Ramos, & Sukkarieh. (2013). Bayesian Fusion for Multi-Modal Aerial Images. *Robotics: Science and Systems*.

Requeima, J., & Tebbutt, W. (2019). The Gaussian Process Autoregressive Regression Model (GPAR). In *The 22nd International Conference on Artificial Intelligence and Statistics*. PMLR.

Roberts, Osborne, Ebden, Reece, Gibson, & Aigrain. (2013). *Gaussian Processes for Time-Series Modelling*. Academic Press.

Sharma, K., & Pandey, G. P. (2021). Efficient Isolation Modelling for Two-Port Mimo Antenna by Gaussian Process Regression. *Progress In Electromagnetics Research C*, 108(January), 227–236. doi:10.2528/PIERC20120301

Shreevastav, R., & Carbajo, R. S. (2016). Dynamic RLC Mode Based upon Link Adaptation to Reduce Latency and Improve Throughput in Cellular Networks. *2016 IEEE 7th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON)*. doi:10.1109/UEMCON.2016.7777932

Shynu, P. G., & Al-Turjman, F. (2021). Data-Centric Routing and Caching Approach for Mobile and Social Sensing Applications. *Computers & Electrical Engineering*, 94, 107357. doi:10.1016/j.compeleceng.2021.107357

Skilling, J. (2006). Nested Sampling for General Bayesian Computation. *Bayesian Analysis*, 1(4), 833–859. doi:10.1214/06-BA127

Song, C., Ristenpart, T., & Shmatikov, V. (2017). Machine Learning Models That Remember Too Much. In *Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS ’17*. New York: Association for Computing Machinery. doi:10.1145/3133956.3134077

Su, G., Peng, L., & Hu, L. (2017). A Gaussian Process-Based Dynamic Surrogate Model for Complex Engineering Structural Reliability Analysis. *Structural Safety*, 68, 97–109. doi:10.1016/j.strusafe.2017.06.003

Sun, W., Xue, M., Yu, H., Tang, H., & Lin, A. (2018). Augmentation of Fingerprints for Indoor WiFi Localization Based on Gaussian Process Regression. *IEEE Transactions on Vehicular Technology*, 67(11), 10896–10905. doi:10.1109/TVT.2018.2870160

Ughegbe, G. U., Adelabu, M. A., & Imoize, A. L. (2021). Experimental Data on Radio Frequency Interference in Microwave Links Using Frequency Scan Measurements at 6 GHz, 7 GHz, and 8 GHz. *Data in Brief*, 35, 106916. doi:10.1016/j.dib.2021.106916 PMID:33732829

Vanhatalo, J., Pietiläinen, V., & Vehtari, A. (2010). Approximate Inference for Disease Mapping with Sparse Gaussian Processes. *Statistics in Medicine*, 29(15), 1580–1607. doi:10.1002/sim.3895 PMID:20552572

Vasudevan, S. (2012). Data Fusion with Gaussian Processes. *Robotics and Autonomous Systems*, 60(12), 1528–1544. doi:10.1016/j.robot.2012.08.006

Wan, H.-P., & Ren, W.-X. (2015). A Residual-Based Gaussian Process Model Framework for Finite Element Model Updating. *Computers & Structures*, 156, 149–159. doi:10.1016/j.compstruc.2015.05.003

Wang, H., Gao, X., Zhang, K., & Li, J. (2017). Single Image Super-Resolution Using Gaussian Process Regression With Dictionary-Based Sampling and Student-$\frac{\sigma}{t}$ Likelihood. *IEEE Transactions on Image Processing*, 26(7), 3556–3568. doi:10.1109/TIP.2017.2700725 PMID:28475055
Williams, C. (2007). *Gaussian Processes for Machine Learning*. Institute for Adaptive and Neural Computation.

Wilson, A. G. (2014). *Covariance Kernels for Fast Automatic Pattern Discovery and Extrapolation with Gaussian Processes*. (Thesis). U. of Cambridge.

Wilson, A. G., & Adams, R. P. (2013). Gaussian Process Kernels for Pattern Discovery and Extrapolation. *30th International Conference on Machine Learning, ICML 2013*, 28(3), 2104–12.

Wilson, A. G., Knowles, D. A., & Ghahramani, Z. (2011). *Gaussian Process Regression Networks*. ArXiv Preprint ArXiv:1110.4411.

Wu, L., He, D., Ai, B., Wang, J., Qi, H., Guan, K., & Zhong, Z. (2020). Artificial Neural Network Based Path Loss Prediction for Wireless Communication Network. *IEEE Access: Practical Innovations, Open Solutions*, 8, 199523–199538. doi:10.1109/ACCESS.2020.3035209

Wu, S., Zhou, X., & Gao, Y. (2019). A Novel Indoor Coverage Measurement Scheme Based on FRFT and Gaussian Process Regression. In 2019 IEEE Globecom Workshops (GC Wkshps). IEEE. doi:10.1109/GCWkshps45667.2019.9024373

Yi, H., Guan, K., Ai, B., He, D., Zhu, F., Dou, J., & Zhong, Z. (2020). Channel Characterization for Vehicle-to-Infrastructure Communications at the Terahertz Band. *2020 IEEE International Conference on Communications Workshops, ICC Workshops 2020 - Proceedings*.

Yogatama & Mann. (2014). Efficient Transfer Learning Method for Automatic Hyperparameter Tuning. *17th International Conference on Artificial Intelligence and Statistics (AISTATS) 2014*, 1077–85.

Zhang, G., Wang, P., Chen, H., & Zhang, L. (2019). Wireless Indoor Localization Using Convolutional Neural Network and Gaussian Process Regression. *Sensors (Basel)*, 19(11), 2508. doi:10.3390/s19112508 PMID:31159314

Zhang, W., Huang, H., & Tian, X. (2017). Gaussian Process Based Radio Map Construction for LTE Localization. In *2017 9th International Conference on Wireless Communications and Signal Processing (WCSP)*. IEEE. doi:10.1109/WCSP.2017.8171090
APPENDIX A.

List of Abbreviations

Table 1.

Abbreviation	Full Meaning
4G	Fourth Generation
ARD	Automatic Relevance Determination
EK	Exponential Kernel
eNodeB	Evolved Node Base Station
GPR	Gaussian Process Regression
LTE	Long Term Evolution
MAE	Mean Absolute Error
MIMO	Multiple Input Multiple Output
MK	Matern Kernel
ML	Machine Learning
MHz	Megahertz
PDCP	Packet Data Convergence Protocol
PDCCH	Physical Downlink Control Channel
PDSCH	Physical Downlink Shared Channel
RF	Radio Frequency
RLC	Radio Link Control
RMSE	Root Mean Square Error
RQK	Rational Quadratic Kernel
RSRP	Reference Signal Received Power
SAE	Sum of Absolute Mean Error
SEK	Squared Exponential Kernel
SIB	System Information Blocks
STD	Standard Deviation
TEMS	Test Mobile System
UE	User Equipment
UHF	Ultra High Frequency
UMTS	Universal Mobile Telecommunications System

Availability of Data And Material

The data that support the findings of this study are available from the corresponding author upon reasonable request.
Competing Interests
The authors declare that they have no conflicts of interest.

Funding
This study had no direct funding from any resource.

Authors' Contribution
The manuscript was written through the contributions of both authors. Conceptualization, JI; methodology, JI, and AI; writing—original draft preparation, JI; writing—review and editing, JI, and AI; supervision, JI, and AI; project administration, JI, and AI; funding acquisition, AI. All authors have read and agreed to the published version of the manuscript.

Joseph Isabona is an Associate Professor of Physics Electronics. He received his Ph.D. and M.Sc. degrees in Physics Electronics, 2013 and 2007, respectively, and a B.Sc in Applied Physics in 2003. He is the author of more than 100 scientific contributions, including articles in international refereed journals and conferences in wireless mobile communications and signal processing. The author is a Postdoctoral Research Fellow of the Department of Electronic Engineering, Howard College, University of KwaZulu-Natal, Durban, South Africa. His interest areas include signal processing, data mining, RF propagation modelling and radio resource management in radio telecom networks. He can be reached via joseph.isabona@fulokoja.edu.ng.

Agbotiname Lucky Imoize (Member, IEEE) is a Lecturer in the Department of Electrical and Electronics Engineering at the University of Lagos, Nigeria. He received B.Eng (Honours) in Electrical and Electronics Engineering from Ambrose Alli University, Nigeria in 2008, and M.Sc in Electrical and Electronics Engineering – Communications Engineering from the University of Lagos, Nigeria in 2012. Before joining the University of Lagos, he was a Lecturer at Bells University of Technology, Nigeria. He worked as a core network products manager at ZTE Corporation, Nigeria, from 2011-2012, and as a Network Switching Subsystem Engineer at Globacom, Nigeria, from 2012-2017. Imoize was awarded the Fulbright Fellowship as a Visiting Research Scholar at the Wireless@VT Lab in the Bradley Department of Electrical and Computer Engineering, Virginia Tech, USA, where he worked under the supervision of Prof. R. Michael Buehrer from 2017-2018. He is currently a Research Scholar at Ruhr University Bochum, Germany, under the Nigerian Petroleum Technology Development Fund (PTDF) and the German Academic Exchange Service (DAAD) through the Nigerian-German Postgraduate Program. He is a Registered Engineer with the Council for the Regulation of Engineering in Nigeria (COREN) and a Nigerian Society of Engineers (NSE) member. He has co-edited one book and coauthored over 40 wireless communication papers in peer review Journals. His research interests are 6G wireless communication, Artificial Intelligence, and Wireless Security Systems.