The Mitochondrial Apoptotic Effectors BAX/BAK Activate Caspase-3 and -7 to Trigger NLRP3 Inflammasome and Caspase-8 Driven IL-1β Activation

James E. Vince,1,2,* Dominic De Nardo,1,2,8 Wenqing Gao,3,8 Angelina J. Vince,1 Cathrine Hall,1 Kate McArthur,1,2,4 Daniel Simpson,1,2 Swarna Vijayaraj,1,2 Lisa M. Lindqvist,1,2 Philippe Bouillet,1,2 Mark A. Rizzacasa,6 Si Ming Man,6 John Silke,1,2 Seth L. Masters,1,2 Guillaume Lessene,1,2 David C.S. Huang,1,2 Daniel H.D. Gray,1,2 Benjamin T. Kile,1,2,4 Feng Shao,3 and Kate E. Lawlor1,2,7,9,*

1The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
2Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
3National Institute of Biological Sciences, Beijing 102206, China
4Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
5School of Chemistry, The Bio 21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
6Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia
7Present address: Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
8These authors contributed equally
9Lead Contact
*Correspondence: vince@wehi.edu.au (J.E.V.), kate.lawlor@hudson.org.au (K.E.L.)
https://doi.org/10.1016/j.celrep.2018.10.103

SUMMARY

Intrinsic apoptosis resulting from BAX/BAK-mediated mitochondrial membrane damage is regarded as immunologically silent. We show here that in macrophages, BAX/BAK activation results in inhibitor of apoptosis (IAP) protein degradation to promote caspase-8-mediated activation of IL-1β. Furthermore, BAX/BAK signaling induces a parallel pathway to NLRP3 inflammasome-mediated caspase-1-dependent IL-1β maturation that requires potassium efflux. Remarkably, following BAX/BAK activation, the apoptotic executioner caspases, caspase-3 and -7, act upstream of both caspase-8 and NLRP3-induced IL-1β maturation and secretion. Conversely, the pyroptotic cell death effectors gasdermin D and gasdermin E are not essential for BAX/BAK-induced IL-1β release. These findings highlight that innate immune cells undergoing BAX/BAK-mediated apoptosis have the capacity to generate pro-inflammatory signals and provide an explanation as to why IL-1β activation is often associated with cellular stress, such as during chemotherapy.

INTRODUCTION

Mitochondrial or “intrinsic” apoptosis is an evolutionarily conserved, BCL-2 family-regulated process that promotes the death and phagocytic clearance of stressed, damaged, or infected cells. Triggered by a diverse range of cellular stressors, such as growth factor withdrawal, infection, and anti-cancer chemotherapeutics, intrinsic apoptosis ensues when activated BAX and/or BAK oligomers insert into and permeabilize the mitochondrial outer membrane, releasing cytochrome c into the cytosol (Strasser and Vaux, 2018). Subsequently, cytosolic cytochrome c nucleates formation of the cytochrome c/APAF-1/caspase-9 apoptosome. Active caspase-9 in turn engages executioner caspases, such as caspase-3 and caspase-7, which are common to both the death receptor and mitochondrial apoptotic signaling pathways. The apoptotic caspase cascade mediates many of the hallmarks of apoptosis, such as membrane blebbing and phosphatidylserine exposure. Despite this, caspases are ultimately dispensable for intrinsic apoptotic cell death, as irreversible mitochondrial membrane damage caused by BAX and BAX ensures the cells’ demise (Ekert et al., 2004; Marsden et al., 2002).

In viable cells, the activation of BAX and BAK (BAX/BAK) is directly held in check by pro-survival BCL-2 family members, including BCL-XL, BCL-2, BCL-W, A1 (BFL-1), and MCL-1 (Kale et al., 2018). Exposure to cytotoxic stimuli often triggers BAX/BAK activation via the induction of pro-apoptotic BH3-only proteins (e.g., BIM, NOXA, PUMA) that potently antagonize pro-survival BCL-2 proteins. Consequently, a number of anticancer BH3-mimetic compounds have been developed that exhibit exquisite specificity for several BCL-2 proteins (e.g., ABT-737 targeting of BCL-2, BCL-XL, BCL-W; Oltersdorf et al., 2005; van Delft et al., 2006) or individual family members (e.g., S63845 targeting of MCL-1 [Kotschy et al., 2016] and ABT-199 targeting of BCL-2 [Souers et al., 2013]). Pre-clinical models and subsequent clinical studies have validated their efficacy against cancer (Roberts et al., 2016), and remarkably, emerging studies show how BCL-XL targeted BH3 mimetics might be repurposed to induce death specifically in pathogen-infected host cells to eliminate microbial infection (Speir et al., 2016).

Apoptotic cell death is classically regarded as immunologically silent. This feature is achieved, in part, by limiting plasma...
membrane breakdown and the lytic release of cellular contents
and via the display of “find me” and “eat me” signals to trigger
the rapid phagocytic clearance of apoptotic bodies (Fuchs and
Steller, 2015). Several studies have also documented how
apoptotic caspases inactivate specific inflammatory signaling
pathways (Rongvaux et al., 2014; White et al., 2014) and cyto-
kines (Giampazolias et al., 2017; Lüthi et al., 2009). Despite these
observations, recent genetic evidence acquired from the study
of innate immune cells has shown that death receptor apoptotic
signaling, initiated by TNF receptor 1 (TNFR1), Fas, or Toll-like
receptors (TLR), can induce potent inflammatory responses
both in vitro and in vivo (Feltham et al., 2017). The inflammatory
potential of apoptotic signaling in innate immune cells is perhaps
best highlighted by the occurrence of hyperinflammatory dis-
ease in humans and mice with mutations or deficiency in nega-
tive regulators of TNFR1 and TLR cell death pathways, such as
the inhibitor of apoptosis (IAP) family members X-linked
IAP (XIAP) and cellular IAP1 (cIAP1) (Lawlor et al., 2017; Vince
and Silke, 2016). Of note, we and others have shown that in
most of these cases the TLR- or TNFR1-induced death receptor
initiator caspase, caspase-8, drives activation of the potent
pro-inflammatory cytokine IL-1β in innate immune cells
(Chen et al., 2018; Gaidt et al., 2016; Lawlor et al., 2015; Maelfait
et al., 2008; Moriwaki et al., 2015; Vince et al., 2012; Wicki et al.,
2016; Yabal et al., 2014).

Activated caspase-8 can directly process precursor IL-1β
to its mature bioactive 17 kDa form (Bossaller et al., 2012;
Maelfait et al., 2008; Vince et al., 2012). In some circumstances,
Figure 2. BCL-XL and MCL-1 Targeting Renders Macrophages Sensitive to Caspase-1 and IL-1β Activation

WT and Bcl-xL−/− BMDMs were primed for 2–3 hr with LPS (50 ng/mL), pre-treated with QVD (20–40 µM) in the final 30 min of priming, as indicated, and treated with CHX (20 µg/mL), EPI (500 nM), HHT (1,000 nM), S63845 (10 µM), or compound A (Cp. A) (911; 1,000 nM) for 5–6 hr or nigericin (10 µM) for 1 hr.

(A, B, and H) Cell death was measured by PI uptake and flow cytometry.

(C and E) Cell lysates and supernatants were analyzed by immunoblot.

(D) WT and Bcl-xL−/− BMDMs were primed for 2–3 hr with LPS (50 ng/mL), pre-treated with QVD (20–40 µM) in the final 30 min of priming, as indicated, and treated with CHX (20 µg/mL), EPI (500 nM), HHT (1,000 nM), S63845 (10 µM), or compound A (Cp. A) (911; 1,000 nM) for 5–6 hr or nigericin (10 µM) for 1 hr.

(F) WT and Bcl-xL−/− BMDMs were primed for 2–3 hr with LPS (50 ng/mL), pre-treated with QVD (20–40 µM) in the final 30 min of priming, as indicated, and treated with CHX (20 µg/mL), EPI (500 nM), HHT (1,000 nM), S63845 (10 µM), or compound A (Cp. A) (911; 1,000 nM) for 5–6 hr or nigericin (10 µM) for 1 hr.

(G) WT and Bcl-xL−/− BMDMs were primed for 2–3 hr with LPS (50 ng/mL), pre-treated with QVD (20–40 µM) in the final 30 min of priming, as indicated, and treated with CHX (20 µg/mL), EPI (500 nM), HHT (1,000 nM), S63845 (10 µM), or compound A (Cp. A) (911; 1,000 nM) for 5–6 hr or nigericin (10 µM) for 1 hr.

(J) Mcl-1+/− and Mcl-1−/− BMDMs were primed for 2–3 hr with LPS (50 ng/mL), pre-treated with QVD (20–40 µM) in the final 30 min of priming, as indicated, and treated with CHX (20 µg/mL), EPI (500 nM), HHT (1,000 nM), S63845 (10 µM), or compound A (Cp. A) (911; 1,000 nM) for 5–6 hr or nigericin (10 µM) for 1 hr.

(K) Mcl-1+/− and Mcl-1−/− BMDMs were primed for 2–3 hr with LPS (50 ng/mL), pre-treated with QVD (20–40 µM) in the final 30 min of priming, as indicated, and treated with CHX (20 µg/mL), EPI (500 nM), HHT (1,000 nM), S63845 (10 µM), or compound A (Cp. A) (911; 1,000 nM) for 5–6 hr or nigericin (10 µM) for 1 hr.

(L) WT and Mcl-1+/− BMDMs were primed for 2–3 hr with LPS (50 ng/mL), pre-treated with QVD (20–40 µM) in the final 30 min of priming, as indicated, and treated with CHX (20 µg/mL), EPI (500 nM), HHT (1,000 nM), S63845 (10 µM), or compound A (Cp. A) (911; 1,000 nM) for 5–6 hr or nigericin (10 µM) for 1 hr.
particularly following IAP loss in murine macrophages (Lawlor et al., 2015, 2017; Vince et al., 2012) or TLR stimulation of human monocytes (Gaidt et al., 2016), caspase-8 can also trigger NOD-like receptor-3 (NLRP3) inflammasome assembly to activate the inflammatory caspase, caspase-1. Caspase-1 subsequently cleaves IL-1β, and with canonical inflammasome triggers it also facilitates IL-1β release via activation of the membrane pore-forming protein, gasdermin D (GSDMD). As such, GSDMD is required for efficient caspase-1-mediated cell lysis, pyroptosis, and, in many cases, the release of bioactive IL-1β (He et al., 2015; Kayagaki et al., 2015; Shi et al., 2015). Whether apoptosis signaling emanating from the essential intrinsic apoptotic effector proteins BAX and BAK can generate pro-inflammatory signals, akin to death receptor signaling in innate immune cells, remains unclear.

RESULTS

Loss of MCL-1 and BCL-XL Triggers BAX/BAK-Mediated Cell Death in Macrophages

Protein synthesis inhibitors, such as cycloheximide (CHX), epispilvesterol (EPI), and homoharringtonine (HHT; omacetaxine mepesuccinate), rapidly deplete the short-lived pro-survival BCL-2 family member MCL-1 (Goodall et al., 2016; Lindqvist et al., 2012), which can be a major contributor to their clinical efficacy (e.g., HHT) in killing cancer cells (Chen et al., 2011; Tang et al., 2006). Similar to these compounds, we recently discovered that *Legionella* bacteria inhibit host macrophage protein synthesis to decrease MCL-1 levels (Speir et al., 2016). However, in this scenario, antagonism of BCL-XL is also required to induce rapid cell death of infected macrophages, suggesting that both MCL-1 and BCL-XL are required for macrophage survival.

Consistent with this idea, we found that wild-type (WT) bone marrow–derived macrophages (BMDMs) were not sensitive to cell death following treatment with the BH3 mimetic ABT-737, a potent inhibitor of BCL-XL, BCL-W, and BCL-2 (Figures 1A and S1A). However, BMDMs rapidly succumbed to apoptotic caspase activation and cell death when ABT-737 was combined with CHX, EPI, or HHT (Figures 1A, 1B, S1A, and S1B). Protein synthesis inhibition depleted total cellular MCL-1 upstream of caspase activity (i.e., MCL-1 loss was not blocked upon pan-caspase inhibition with Q-VD-OPh [QVD]; Figures 1B and S1B). Importantly, specific inhibition of MCL-1 using S63845 (Kotschy et al., 2016; Merino et al., 2017) in combination with chemical targeting or genetic deficiency of BCL-XL mimicked results with protein synthesis inhibition, demonstrating that MCL-1 and BCL-XL are critical for macrophage survival (Figures 1C–1F). As expected, pan-caspase inhibition using QVD (Figures 1B and 1F) or genetic depletion of BAX and BAK (Figures 1G and 1H) blocked the rapid cell death induced by functional loss of BCL-XL and MCL-1, confirming that the cell death observed was a result of mitochondrial apoptosis.

Loss of MCL-1 and BCL-XL Triggers BAX/BAK-Mediated Activation of IL-1β

We have documented that inflammasome activation resulting from treatment with soluble (e.g., ATP, nigericin) or particulate (e.g., alum) NLRP3 activators was not altered upon deletion of BAX/BAK or overexpression of BCL-2, demonstrating that mitochondrial apoptosis is dispensable for canonical NLRP3 activity (Allam et al., 2014; Lawlor et al., 2013). We were therefore surprised to observe that MCL-1 depletion following treatment with protein synthesis inhibitors CHX, EPI, or HHT, or the MCL-1 inhibitor S63845, not only induced caspase-dependent cell death (Figures 2A, 2B, and S1C) but also increased the cleavage and release of inflammasome-associated caspase-1 and IL-1β in lipopolysaccharide (LPS)-primed Bcl-xL−/− BMDMs compared with WT cells (Figures 2C–2F and S1D). In contrast, TLR-induced TNF secretion was not affected by BCL-XL deficiency (Figure S1E). Likewise, IL-1β release (Figure 2G), cell death (Figure 2H), and TNF secretion (Figure S1F) were all comparable between LPS-primed WT and Bcl-xL−/− BMDMs in response to treatment with the canonical NLRP3 activator nigericin, or stimulation with the Smac mimetic compound A (Cp A; antagonizes IAPs) that triggers alternative caspase-8-driven activation of NLRP3 (Lawlor et al., 2015).

To genetically confirm that MCL-1 loss was requisite for macrophage cell death and IL-1β activation following BCL-XL targeting, we treated Mcl-1fl/fl/Rosa-CreER BMDMs with 4-hydroxytamoxifen (4HT) to generate MCL-1-deficient macrophages (Glaser et al., 2012; Okamoto et al., 2014). Of note, Mcl-1fl/fl animals express a 13-residue extended N terminus MCL-1, termed Mcl-1-fn (Okamoto et al., 2014), which can be distinguished from WT MCL-1 by immunoblot (Figure 2I). Importantly, the genetic deletion of MCL-1 mirrored results obtained by chemical MCL-1 targeting, with significant caspase-1 and IL-1β activation and secretion (Figures 2J and 2K), as well as cell death (Figure 2L), induced upon BCL-XL inhibition with ABT-737, but not BCL-2 targeting with ABT-199.

To establish if BAX/BAK activation was obligatory for caspase-1 and IL-1β cleavage and secretion following MCL-1 and BCL-XL loss, we next treated LPS-primed WT and BAX/BAK-deficient macrophages with the protein synthesis inhibitor CHX, or the MCL-1-specific inhibitor S63845, and ABT-737. In accord with previous findings, LPS and CHX treatment alone induced IL-1β proteolysis in a BAX/BAK-independent manner (Figures 3A and 3B), presumably via direct TLR4-induced

(D, F, and G) IL-1β levels were measured in supernatants by ELISA. n = 3 mice/group. Mean ± SEM, n = 3 mice/group. Data are representative of one of at least two experiments. See also Figure S1.

(I–L) BMDMs derived from Mcl-1fl/fl/Rosa-CreER and indicated Mcl-1−/−/Rosa-CreER or Mcl-1−/− control animals were treated with 100 nM of 4-hydroxy tamoxifen (4HT) for 24 hr. Subsequently, 4HT was removed and media replaced. Cells were primed for 2–3 hr with LPS (50 ng/mL), with MCC950 (2 μM) added in the last 30 min of priming, as indicated. BMDMs were subsequently treated with ABT-737 (1 μM) or ABT-199 (1 μM) for 20–24 hr. (I and J) Cells were analyzed by immunoblot for MCL-1 levels (two independent mice shown in n) and (J) caspase-1 and IL-1β activation and secretion detected by immunoblot. Data reflect one of two independent experiments. (K) IL-1β levels were measured in supernatants by ELISA, and (L) cell death was measured by PI uptake and flow cytometry. For (K) and (L), n = 3 independent experiments, with different symbols representing independent experiments containing up to three technical replicates. Mean ± SEM.
Figure 3. Loss of BCL-XL and MCL-1 Promotes BAX/BAK-Induced NLRP3 and IL-1β Activation

(A–D) WT and Bax^{−/−} Bak^{−/−} BMDMs were primed for 2–3 hr with LPS (50 ng/mL), treated in the last 15–30 min of priming with QVD (20–40 μM) or MCC950 (2 μM), as indicated, and treated with ABT-737 (1 μM) and/or CHX (20 μg/mL) for 6 hr or S63845 for 20 hr. (A) IL-1β and (D) TNF levels were measured in supernatants by

(legend continued on next page)
caspase-2 activity (Allam et al., 2014; Maelfait et al., 2008; Vince et al., 2012). However, chemical targeting of MCL-1 (CHX or S3845) and BCL-XL (ABT-737) markedly increased caspase-1 cleavage and IL-1β secretion, as well as cell death, in WT BMDMs, and this was dependent on BAX and BAK (Figures 3A–3C and S2A–S2D). Importantly, the failure to activate IL-1β and caspase-1 in BAX/BAK-deficient BMDMs did not result from general defects in cytokine production, as reflected by equivalent pro-IL-1β production and TNF secretion in WT and Bax^{−/−} BMDMs (Figures 3B, 3D, S2A, and S2E).

BAX/BAK Signaling Activates the NLRP3 Inflammasome

Mitochondrial damage has been suggested to activate NLRP3 or AIM2 via mtDNA release and direct binding to these inflammasome sensors (Dang et al., 2017; Nakahira et al., 2011; Shimada et al., 2012). We therefore hypothesized that NLRP3 or AIM2 were the most likely inflammasomes triggered by BAX/BAK. Upon activation, these inflammasome sensors recruit the adaptor protein, ASC, which oligomerizes to form a single protein aggregate (so-called ASC speck) to facilitate proximity-mediated activation of caspase-1. Indeed, ABT-737 and CHX treatment of LPS-primed WT, but not Bax^{−/−} BMDMs, resulted in endogenous perinuclear ASC speck formation (Figure 3E). To test the role of NLRP3 in BAX/BAK-dependent IL-1β activation, we first inhibited NLRP3 using the specific chemical inhibitor MCC950 (Coll et al., 2015). NLRP3 inhibition reduced BAX/BAK-mediated IL-1β release and completely prevented caspase-1 processing in WT BMDMs but did not affect cell death (Figures 2J–2L, 3A, 3C, and S2A). In agreement with these data, incubating WT BMDMs with high levels of extracellular potassium to prevent NLRP3 activation via potassium efflux-dependent ASC speck formation in both WT and Bax^{−/−} BMDMs following ABT-737 and CHX treatment (Figure 4E), suggesting that BAX/BAK-induced ASC speck formation was not dependent on NLRP3 for canonical, nigericin-induced NLRP3 responses (Figure 4F).

BAX/BAK-Induced Caspase-1 Activation Occurs Coincident with the Degradation of IAP Proteins and the Activation of Caspase-8

The deletion of NLRP3 or caspase-1 only partly reduced BAX/BAK-driven IL-1β cleavage and release (~50%; Figures 4A and 4B) and, at later time points, had little impact on ABT-737/CHX responses (Figure S3A). This partial dependence on NLRP3 for IL-1β activation is reminiscent of the effect of Smac-mimetic Cpa. A in LPS-primed macrophages (Figures 4B and S5A) (Lawlor et al., 2015; Vince et al., 2012). Cpa. A is a mimetic of the natural IAP antagonist SMAC/DIABLO (Du et al., 2000; Verhagen et al., 2000; Vince et al., 2007), which can be released from damaged mitochondria into the cytosol to antagonize IAPs. Previously, we documented how genetic, chemical, or physiological (i.e., via TNFR2 signaling) loss of the IAPs, particularly cIAP1 and XIAP, induces caspase-8 activity to cleave pro-IL-1β directly and also activate the NLRP3-caspase-1 inflammasome (Lawlor et al., 2015, 2017; Vince et al., 2012; Yabal et al., 2014). We therefore hypothesized that BAX/BAK activation might trigger IAP loss to promote NLRP3 and IL-1β activation. As predicted,
Figure 4. NLRP3 Is Required for ASC Speck Formation and Caspase-1 Activation Downstream of BAX/BAK Signaling

(A–D) WT, Nlrp3−/−, and Caspase-1−/− BMDMs were primed for 3 hr with LPS (50 ng/mL) and treated with ABT-737 (1 μM) and/or CHX (20 μg/mL) for 6 hr or nigericin (10 μM) for 1 hr. (A) IL-1β and (D) TNF levels were measured in supernatants by ELISA. Data are mean ± SEM, n = 3 mice/group. (B) Cell lysates and supernatants were analyzed by immunoblot. (C) Cell viability was assessed by measurement of PI uptake by flow cytometric analysis. Data are mean ± SEM, n=3 mice/group. Data represent one of three experiments.

(legend continued on next page)
specific activation of BAX/BAK triggered significant cIAP1 loss in LPS-primed macrophages, and this correlated with the activation of caspase-8, caspase-1, and IL-1β, akin to Cp. A treatment (Figures 4B, S5B, and S1B).

To circumvent the fact that LPS and CHX (or EPI) treatment alone promotes direct TLR-TRIF activation of caspase-8 (Maelfait et al., 2008), we subsequently evaluated BAX/BAK-mediated events in the absence of TLR priming. Importantly, treatment of unprimed BMDMs with ABT-737 and CHX, or the MCL-1 inhibitor S63845, was sufficient to trigger cIAP1 and XIAP loss, caspase-8 activation, and cleavage of caspase-1 (Figures 5C–5E and S4A). Furthermore, these events were dependent on BAX/BAK (Figures 5C and S4A), and caspase-1 processing remained NLRP3 dependent (i.e., abrogated by high extracellular potassium or MCC950; Figures 5D and S3F). These findings demonstrate that BAX/BAK activity causes IAP loss, caspase-8 activation and NLRP3 inflammasome signaling even in the absence of a TLR priming stimulus.

BAX/BAK activation not only induced the rapid degradation of cIAP1 but also triggered XIAP loss and the cleavage of the caspase-8 inhibitor c-FLIP, within ~3 hr (Figures 5E, 5F, and S4A). Pan-caspase inhibition with QVD failed to rescue cIAP1 loss but did limit XIAP depletion and c-FLIP cleavage (Figures 5E, 5F, and S4B). In comparison, pre-treatment with the proteasome inhibitor MG132 alone did not significantly alter cIAP1 or XIAP degradation (Figures 5E, 5F, and S4B). Therefore, BAX/BAK-induced XIAP degradation is dependent on caspase activity, while cIAP1 loss must occur by a combination of events or possibly through another degradation pathway.

BAX/BAK Signaling-Induced Caspase-8 Can Activate IL-1β in the Absence of NLRP3

We queried whether BAX/BAK-induced caspase-8 activity might also cleave IL-1β directly and engage NLRP3, as occurs upon IAP depletion (Lawlor et al., 2015). As caspase-8 deficiency in mice is embryonic lethal because of unrestrained necroptotic cell death (Kaiser et al., 2011; Oberst et al., 2011), we examined BAX/BAK signaling in mice lacking necroptotic receptor interacting protein kinase-3 (RIPK3) and caspase-8 ubiquitously (Ripk3-/- Caspase-8-/-) or specifically in myeloid cells (Caspase-8ΔyMcreRipk3-/-). In line with our previous findings (Allam et al., 2014), Ripk3-/-Caspase-8-/- BMDMs exhibited reduced precursor IL-1β and TNF levels in response to LPS treatment, which subsequently reduced IL-1β secretion following nigericin stimulation (Figures 6A, 6B, S4C, and S4D). In comparison, LPS-mediated inflammasome priming, and hence necroinflammatory IL-1β activation, was less affected in Caspase-8ΔyMcreRipk3-/- cells, most likely because of incomplete caspase-8 deletion (Figures 6A, S4C, and S4D). Importantly, caspase-8 deficiency prevented LPS and CHX-induced IL-1β activation (Figures 6A, 6C, and S4E). However, surprisingly, in both LPS-primed Ripk3-/- Caspase-8-/- and Caspase-8ΔyMcreRipk3-/- BMDMs, IL-1β and caspase-1 activation were not prevented upon combined treatment with ABT-737/CHX or ABT-737/S63845 (Figures 6A, 6C, S4E, and S4F), and cell death was comparable with WT responses (Figures S4G and S4H). The appreciable, albeit significantly reduced, levels of IL-1β observed in caspase-8-deficient cells following ABT-737 and CHX stimulation was the result of NLRP3 signaling, as MCC950 limited residual IL-1β activation (Figures S4E and S4F). These results contrasted to those observed following IAP antagonist (Cp. A) treatment, where the caspase-1 and IL-1β secretion (Figures 6A and 6D) and cell death (Figure S4G) observed in LPS-primed WT cells was abolished in both Ripk3-/- Caspase-8-/- and Caspase-8ΔyMcreRipk3-/- BMDMs. Therefore, although caspase-8 activation contributes to direct IL-1β proteolysis upon BAX/BAK activation, BAX/BAK signaling requires a distinct caspase to engage the NLRP3 inflammasome.

BAX/BAK Activation Triggers NLRP3 via Caspase-3 and Caspase-7 Activity

BAX/BAK signaling activates the effector caspases, caspase-3 and caspase-7. Recent reports have shown that active caspase-3 can cleave auto-inhibited gasdermin E (GSDME) to promote pyroptotic-like cell death through the membrane pore-forming activity of the GSDME N-terminal fragment (Rogers et al., 2017; Wang et al., 2017). Considering that BAX/BAK-induced NLRP3 activation was inhibited by preventing cellular potassium ion efflux, we speculated that GSDME could allow potassium ion efflux downstream of BAX and BAK to trigger NLRP3. Upon activation of BAX/BAK in BMDMs, we observed both robust caspase-3 processing and GSDME cleavage to the active N-terminal fragment that was unaffected by MCC950 treatment (Figures 1B and S5A). However, analysis of caspase-3-deficient and GSDME-deficient macrophages revealed that neither of these proteins was essential for NLRP3 activation, IL-1β secretion, and cell death following ABT-737 and CHX treatment (Figures S5B–S5E).

We next considered the possibility that caspase-3 and -7 may act together to trigger NLRP3, particularly as apoptotic caspase activity has been associated with decreased intracellular potassium ion levels (Bortner and Cidlowski, 2007; Park and Kim, 2002). To test this notion, we generated fetal liver-derived macrophages (FLDMs) lacking both caspase-3 and -7. Remarkably, LPS-primed Caspase-3-/- Caspase-7-/- FLDMs treated with ABT-737 and CHX exhibited markedly reduced IL-1β secretion and cell death compared with control cells, despite normal TNF production (Figures 7A–7C and S6) and comparable canonical NLRP3 responses to nigericin (Figures S5F and S6). The lack of BAX/BAK-induced IL-1β release in caspase-3- and -7-deficient macrophages was associated with a loss of ASC speck...
formation (Figure 7D) and reduced IL-1β and caspase-1 processing and secretion (Figures 7E and S6). The loss of caspase-3 and -7 in LPS-primed FLDMs did not restore XIAP levels, although it greatly reduced BAX/BAK-induced caspase-8 activation (Figures 7E and S6). Therefore, BAX/BAK signaling activates caspase-3 and -7 to induce both NLRP3 and caspase-8-dependent IL-1β activation.

DISCUSSION

Contrary to the assumption that mitochondrial apoptosis universally shuts down inflammatory responses, we have discovered that the activation of BAX/BAK in macrophages triggers pro-inflammatory IL-1β maturation and release. Our data show that the activation of caspase-3 and -7 downstream of BAX/BAK...
promotes caspase-8-mediated cleavage and activation of IL-1β and also results in potassium ion efflux to trigger NLRP3 inflammasome formation. These findings may have relevance to anti-cancer chemotherapeutics that can activate BAX and BAK and also trigger NLRP3 (Ghiringhelli et al., 2009; Sauter et al., 2011; Westbom et al., 2015).

The genetic or chemical targeting of BCL-XL and MCL-1 specifically triggered BAX/BAK activation and apoptosis in macrophages. When combined with an inflammasome priming stimulus to induce precursor IL-1β expression and elevate NLRP3 levels, the activation of BAX/BAK sufficed to trigger caspase-1 and IL-1β processing and secretion. Notably, these events correlated with BAX/BAK-mediated degradation of the IAP family members cIAP1 and XIAP, which we have documented to critically suppress caspase-8-driven IL-1β activation following TLR or TNFR1 ligation (Lawlor et al., 2017). Consistent with our model for IL-1β activation upon the chemical or genetic loss of IAPs (Lawlor et al., 2015, 2017), BAX/BAK-induced IL-1β activation also resulted in caspase-8-mediated cleavage and maturation of IL-1β.

How BAX/BAK signaling causes IAP loss remains unclear. The permeabilization of mitochondrial membranes releases a number of mitochondrial proteins, such as SMAC/DIABLO, capable of binding to and inhibiting IAP function (Verhagen et al., 2007).

Figure 6. BAX/BAK-Induced Caspase-8 Activity Contributes to IL-1β Cleavage but Is Not Required for NLRP3 and Caspase-1 Activation

(A) WT, Caspase-8LysMcreRipk3−/−, and Ripk3−/− Caspase-8−/− BMDMs were primed for 3 hr with LPS (50 ng/mL) and treated, as indicated, with ABT-737 (1 μM) and/or CHX (20 μg/mL), or with Cp. A (1 μM) for 6 hr, or with nigericin (10 μM) for 1 hr. Cell lysates and supernatants were analyzed by immunoblot. One of at least two experiments.

(B–D) TNF (B) and IL-1β (C and D) were assayed in supernatants by ELISA. Data are mean ± SEM, n = 3 mice/group of one of two experiments. See related Figure S4.
It is possible that redundancy among mitochondrial IAP-binding proteins exists, as a recent report demonstrated that deletion of two mitochondrial IAP-binding proteins, SMAC/DIABLO and OMI, failed to prevent IAP degradation upon intrinsic apoptosis activation (Giampazolias et al., 2017). Consistent with other studies (Deveraux et al., 1999), our data also show that XIAP can be cleaved by caspases downstream of BAX/BAK, which may act to ensure efficient loss of XIAP activity independent of, or in conjunction with, the release of mitochondrial IAP-binding proteins.

Unexpectedly, we observed that BAX/BAK-induced caspase-8 processing and activation required the downstream effector caspases, caspase-3 and -7, which may act to directly process pro-caspase-8 in a feedforward loop to ensure rapid cell death (Ferreira et al., 2012; Tang et al., 2000). It will be interesting to define whether IAP loss is important for optimal BAX/BAK-mediated caspase-3 and -7 activities or only allows efficient processing of pro-caspase-8. Of note, the IAPs are also critical repressors of non-canonical NF-κB (Varfolomeev et al., 2007; Vince et al., 2007), and their degradation following BAX/BAK activation has recently been reported to activate non-canonical NF-κB to initiate inflammatory cytokine production, particularly upon caspase inhibition (Giampazolias et al., 2017). Therefore, BAX/BAK-driven IAP degradation can, in some circumstances, promote both pro-death and pro-inflammatory signaling cascades.

Robust BAX/BAK-mediated NLRP3-caspase-1 activation required the effector caspases, caspase-3 and -7, but did not rely on caspase-8 or the pyroptotic effectors GSDMD and GSDME. This is likely to reflect the fact that BAX/BAK
signaling, via the apoptotic effector caspases, caspase-3 and -7, triggers membrane damage or potassium ion channel activation, leading to decreased intracellular potassium ion stores and NLRP3 inflammasome formation. Precisely how potassium ion efflux occurs as a result of caspase-3 and -7 activity remains unclear. Apoptosis-induced activation of potassium ion channels has been suggested to promote cell shrinkage and even death (Kunzleimann, 2016), yet our data demonstrate that potassium ion loss downstream of BAX/BAK is not required for cell death and is not critically dependent on caspase-1/-11 or the caspase-3 lytic effectors GSDMD and GSDME, respectively. Regardless, when taking into consideration the fact that potassium ion efflux is required for pyroptotic caspase-11-induced (Baker et al., 2015; Rühl and Broz, 2015), apoptotic caspase-8-induced (Conos et al., 2017), and necrototic MLKL-induced (Conos et al., 2017; Gutierrez et al., 2017) NLRP3 inflammasome activation, these results highlight how disruption of membrane integrity resulting from genetically distinct programmed cell death pathways can culminate in pro-inflammatory NLRP3 inflammasome responses.

It has been proposed that mitochondrial apoptotic signaling and consequent oxidized mtDNA release drives NLRP3 inflammasome responses following treatment with canonical NLRP3 activators, such as nigericin and ATP (Shimada et al., 2012). However, even the data of Shimada et al. (2012) showed that oxidized mtDNA acts mainly through the AIM2 inflammasome, and its ability to signal to NLRP3 is, by comparison, limited. Moreover, genetic experiments using mice deficient in BAX/BAK and caspase-9 demonstrated that canonical NLRP3 responses were not affected by the loss of mitochondrial apoptosis (Allam et al., 2014). A recent study also reported that cells depleted of mtDNA can respond normally to the canonical NLRP3 activator ATP to induce IL-1β release (Dang et al., 2017). Nevertheless, despite these controversies, it is clear that cell death-inducing agents, including cancer chemotherapeutics, can activate IL-1β. It will therefore be informative to genetically define which of these clinically useful compounds, in addition to BH3 mimetics, might trigger BAX/BAK-mediated IL-1β to affect anti-cancer immune responses.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- CONTACT FOR REAGENT AND RESOURCE SHARING
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
 - Mice
 - Macrophages
- METHOD DETAILS
 - Cell Viability
 - Cytokine analysis
 - ASC specking
 - Immunoblotting
- QUANTIFICATION AND STATISTICAL ANALYSIS

Supplemental Information includes seven figures and can be found with this article online at https://doi.org/10.1016/j.celrep.2018.10.103.

ACKNOWLEDGMENTS

We thank for technical assistance: R. Crawley, L. Wilkins, S. Oliver, and L. Johnson for animal care; S. Monard and staff for flow cytometric sorting; K. Rogers and staff from the Centre for Dynamic Imaging for assistance; TetraLogic Pharmaceuticals for Smac-mimetic compounds; Lorraine O’Reilly for the generous supply of in-house antibodies; Andreas Strasser, Kerstin Brinkmann, and Gemma Kelly (WEHI) and Visha Dixit (Genentech) for gene targeted mice; and Jennifer M. Chambers for epi-silvestrol synthesis. This work was supported by National Health and Medical Research Project grants (1101405, 1145788, 1099262, 1078763, 1046010, 1051506, and 1127885), fellowships (1052598, 1141466, 1016647, 1090236, 1107149, and 1042629), and program grants (461221 and 111333), an Australian Federal Government Postgraduate Award, and the DHB Foundation, managed by ANZ Trustees. S.L.M. acknowledges additional funding from the Sylvia and Charles Viertel Foundation, an HHMI-Wellcome International Research Scholarship, and GlaxoSmithKline. This work was also supported by operational infrastructure grants through the Australian Government IRISS (9000220) and the Victorian State Government OIS.

AUTHOR CONTRIBUTIONS

The project was conceived by J.E.V. and K.E.L., the experiments designed by J.E.V., K.E.L., D.D.N., W.G., and the manuscript written by J.E.V. and K.E.L. and edited by G.L., B.T.K., P.B., L.M.L., and D.H.D.G. The experiments were performed by K.E.L., J.E.V., D.D.N., W.G., A.J.V., C.H., D.S., S.V., and L.M.L. Essential mice and reagents were provided by S.M.M., P.B., K.M., M.A.R., J.S., S.L.M., G.L., D.C.S.H., B.T.K., D.H.D.G., and F.S.

DECLARATION OF INTERESTS

J.S. is a former Tetralogic Pharmaceutical Scientific Advisory Board member. J.E.V., D.D.N., A.J.V., C.H., K.M., D.S., S.V., L.M.L., J.E.V., K.E.L., and K.E.L. are currently or have been employed at the Walter and Eliza Hall Institute, which received research funding from Servier that holds intellectual rights on S63845 and receive milestone payments in relation to venetoclax (ABT-199) from AbbVie and Genentech. All other authors declare no competing interests.

Received: February 25, 2018
Revised: August 8, 2018
Accepted: October 26, 2018
Published: November 27, 2018

REFERENCES

Adams, T.E., El Sous, M., Hawkins, B.C., Himler, S., Holloway, G., Kho, M.L., Owen, D.J., Savage, G.P., Scammells, P.J., and Rizzacasa, M.A. (2009). Total synthesis of the potent anticancer Aglaia metabolites (-)-silvestrol and (-)-episilvestrol. J. Am. Chem. Soc. 131, 1607–1616.
Allam, R., Lawlor, K.E., Yu, E.C., Mildenhall, A.L., Moujalled, D.M., Lewis, R.S., Ke, F., Mason, K.D., White, M.J., Stacey, K.J., et al. (2014). Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep. 15, 982–990.
Baker, P.J., Boucher, D., Bierschenk, D., Tebartz, C., Whitney, P.G., D’Silva, D.B., Tanzer, M.C., Monteleone, M., Robertson, A.A., Cooper, M.A., et al. (2015). NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. Eur. J. Immunol. 45, 2918–2926.
Beisner, D.R., Ch’en, I.L., Kolla, R.V., Hoffmann, A., and Hedrick, S.M. (2005). Cutting edge: innate immunity conferred by B cells is regulated by caspase-8. J. Immunol. 175, 3469–3473.

Bortner, C.D., and Cidlowski, J.A. (2007). Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch. Biochem. Biophys. 462, 176–188.

Bossaller, L., Chiang, P.I., Schmidt-Lauber, C., Ganesan, S., Kaiser, W.J., Ratinham, V.A., Mocsari, E.S., Subramanian, D., Green, D.R., Silverman, N., et al. (2012). Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J. Immunol. 189, 5508–5512.

Chen, R., Guo, L., Chen, Y., Jiang, Y., Wierda, W.G., and Plunkett, W. (2011). Homoharringtonine reduced Mcl-1 expression and induced apoptosis in chronic lymphocytic leukemia. Blood 117, 156–164.

Chen, K.W., Lawlor, K.E., von Pein, J.B., Boucher, D., Gerlic, M., Croker, B.A., Bezbradica, J.S., Vinc, J.E., and Schroder, K. (2018). Cutting edge: blockade of inhibitor of apoptosis proteins sensitizes neutrophils to TNF-β but not lipo-polyasaccharide cell death and IL-1β secretion. J. Immunol. 200, 3341–3346.

Coll, R.C., Robertson, A.A., Chae, J.J., Higgins, S.C., Munoz-Planillo, R., Inserna, M.C., Vetter, I., Dungan, L.S., Monks, B.G., Stutz, A., et al. (2015). A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 245–255.

Conos, S.A., Chen, K.W., De Nardo, D., Haran, H., Whitehead, L., Núñez, G., Masters, S.L., Murphy, J.M., Schroder, K., Vaux, D.L., et al. (2017). Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc. Natl. Acad. Sci. U S A 114, E961–E969.

Dang, E.V., McDonald, J.G., Russell, D.W., and Cyster, J.G. (2017). Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell 171, 1057–1071.e11.

Deveraux, Q.L., Lee, E., Stennicke, H.R., Welsh, K., Salvesen, G.S., and Reed, J.C. (1999). Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18, 5242–5251.

Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 32–42.

Eckert, P.G., Read, S.H., Silke, J., Marsden, V.S., Kaufmann, H., Hawkins, C.J., Gerl, R., Kumar, S., and Vaux, D.L. (2004). Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. J. Cell Biol. 165, 835–842.

Feltham, R., Vince, J.E., and Lawlor, K.E. (2017). Caspase-8: not so silently deadly. Clin. Transl. Immunology 6, e124.

Ferreira, K.S., Kreutz, C., Macnelly, S., Neubert, K., Haber, A., Bogyo, M., Timmer, J., and Borner, C. (2012). Caspase-3 feeds back on caspase-8, Bid and Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev. 26, 120–125.

Goodall, K.J., Finch-Edmondson, M.L., van Vuure, J., Yeoh, G.C., Gentile, I.E., Vinc, J.E., Ekert, P.G., Vaux, D.L., and Callus, B.A. (2016). Cycloheximide can induce Bax/Bak dependent myeloid cell death independently of multiple BH3-only proteins. PLoS ONE 11, e0164003.

Gutierrez, K.D., Davis, M.A., Daniels, B.P., Olsen, T.M., Ralli-Jain, P., Tait, S.W., Gale, M., Jr., and Oberst, A. (2017). MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D. J. Immunol. 198, 2156–2164.

He, W.T., Wan, H., Hu, L., Chen, P., Wang, X., Huang, Z., Yang, Z.H., Zhong, C.Q., and Han, J. (2015). Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25, 1285–1296.

Jones, J.W., Kayagaki, N., Broz, P., Henry, T., Newton, K., O’Rourke, K., Chen, S., Dong, J., Qu, Y., Roose-Girma, M., et al. (2010). Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl. Acad. Sci. U S A 107, 9771–9776.

Kaiser, W.J., Upton, J.W., Long, A.B., Livingston-Rosanoff, D., Daley-Bauer, L.P., Hakem, R., Caspary, T., and Mocarski, E.S. (2011). RIP3 mediates the embryonic lethal of caspase-8-deficient mice. Nature 471, 368–372.

Kale, J., Osterlund, E.J., and Andrews, D.W. (2018). BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 25, 65–80.

Kayagaki, N., Warming, S., Lamkant, M., Vande Walle, L., Louie, S., Dong, J., Newton, K., Ou, Y., Liu, J., Heldens, S., et al. (2011). Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121.

Kayagaki, N., Stowe, I.B., Lee, B.L., O’Rourke, K., Anderson, K., Warming, S., Cuellar, T., Haley, B., Roose-Girma, M., Phung, Q.T., et al. (2015). Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671.

Kotschay, A., Szlakiv, Z., Murray, J., Davidson, J., Maragno, A.L., Le Toumelin, S.A., Masud, A., Kuida, K., Porter, G.A., Jr., Booth, C.J., Mehal, W.Z., et al. (2017). MLKL cleaves gasdermin D for non-canonical inflammasome signalling. Nature 548, 477–482.

Kuida, K., Lippke, J.A., Ku, G., Harding, M.W., Livingston, D.J., Su, M.S., and Flavell, R.A. (1995). Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267, 2000–2003.

Kuida, K., Zheng, T.S., Na, S., Kuan, C., Yang, D., Karasuyama, H., Rick, P., and Flavell, R.A. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372.

Kunzelmann, K. (2016). Ion channels in regulated cell death. Cell. Mol. Life Sci. 73, 2387–2403.

Lakhan, S.A., Masud, A., Kuida, K., Porter, G.A., Jr., Booth, C.J., Mehal, W.Z., Inayat, I., and Flavell, R.A. (2006). Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311, 847–851.

Lawlor, K.E., van Nieuwenhuijze, A., Parker, K.L., Drake, S.F., Campbell, I.K., Smith, S.D., Vince, J.E., Strasser, A., and Wicks, I.P. (2013). Caspase-11 overexpression ameliorates immune complex-mediated arthritis by altering FcγRIIb expression and monocytic homeostasis. J. Leukoc. Biol. 93, 585–597.

Laxdell, M., Khan, N., Mildenhall, A., Gerlic, M., Croker, B.A., D’Cruz, A.A., Hall, C., Kaur Spall, S., Anderson, H., Masters, S.L., et al. (2015). RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 6, 6282.

Laxdell, M., Kelk, H., Balazs, K., Proiske, E., et al. (2018). Caspase-8 inactivation prevents myeloid cell death and triggers inflammasome activation in MLKL−/− mice. Cell Reports, 25, 2339–2353, November 27, 2018.
Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 37, 84–98.

Maeilait, J., Vercaemmen, E., Janssens, S., Schotte, P., Haegeman, M., Magez, S., and Beyaert, R. (2008). Stimulation of Toll-like receptor 3 and 4 induces interleukin-1beta maturation by caspase-8. J. Exp. Med. 205, 1967–1973.

Marsden, V.S., O’Connor, L., O'Reilly, L.A., Silke, J., Metcalf, D., Eckert, P.G., Huang, D.C., Cecconi, F., Kuida, K., Tomaselli, K.J., et al. (2002). Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/cApat-f1/caspase-9 apoptosome. Nature 419, 634–637.

Martinson, F., Petrelli, V., Mayor, A., Tardivel, A., and Tschopp, J. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241.

Merino, D., Whittle, J.R., Vaillant, F., Serrano, A., Gong, J.N., Giner, G., Maragno, A.L., Chanrion, M., Schneider, E., Pal, B., et al. (2017). Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Sci. Transl. Med. 9, 9.

Moriwaki, K., Bertin, J., Gough, P.J., and Chan, F.K. (2015). A RIPK3-caspase 8 complex mediates atypical pro-IL-1β processing. J. Immunol. 194, 1938–1944.

Muñoz-Planillo, R., Kuffa, P., Martinez-Colón, G., Smith, B.L., Rajendran, T.M., and Núñez, G. (2013). K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153.

Nakahira, K., Haspel, J.A., Rathinam, V.A., Lee, S.J., Dolinay, T., Lam, H.C., Engiert, J.A., Rabionovitch, M., Cernadas, M., Kim, H.P., et al. (2011). Auto- phagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230.

Newton, K., Sun, X., and Dixit, V.M. (2004). Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol. Cell. Biol. 24, 1464–1469.

Oberst, A., Dillon, C.P., Weinrich, R., McCormick, L.L., Fitzgerald, P., Pop, C., Hakem, R., Salvesen, G.S., and Green, D.R. (2011). Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367.

Okamoto, T., Coulta, L., Metcalf, D., van Delft, M.F., Glaser, S.P., Takiguchi, M., Strasser, A., Bouillet, P., Adams, J.M., and Huang, D.C. (2014). Enhanced stability of Mcl1, a prosurvival Bcl2 relative, blunts stress-induced apoptosis, causes male sterility, and promotes tumorigenesis. Proc. Natl. Acad. Sci. U S A 111, 261–266.

Ottersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdorf, T., Elmore, S.W., Shoemaker, A.R., Armstrong, R.C., Augeri, D.J., Oltersdor
Vince, J.E., Wong, W.W., Gentle, I., Lawlor, K.E., Allam, R., O'Reilly, L., Mason, K., Gross, O., Ma, S., Guarda, G., et al. (2012). Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36, 215–227.

Wang, Y., Gao, W., Shi, X., Ding, J., Liu, W., He, H., Wang, K., and Shao, F. (2017). Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103.

Westbom, C., Thompson, J.K., Leggett, A., MacPherson, M., Beuschel, S., Pass, H., Vacek, P., and Shukla, A. (2015). Inflammasome modulation by chemotherapeutics in malignant mesothelioma. PLoS ONE 10, e0145404.

White, M.J., McArthur, K., Metcalf, D., Lane, R.M., Cambier, J.C., Herold, M.J., van Delft, M.F., Bedoui, S., Lessene, G., Ritchie, M.E., et al. (2014). Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562.

Wicki, S., Gurzeler, U., Wei-Lynn Wong, W., Jost, P.J., Bachmann, D., and Kaufmann, T. (2016). Loss of XIAP facilitates switch to TNFα-induced necroptosis in mouse neutrophils. Cell Death Dis. 7, e2422.

Yabal, M., Müller, N., Adler, H., Knies, N., Groß, C.J., Damgaard, R.B., Kangane, H., Ringelhan, M., Kaufmann, T., Heikenwälder, M., et al. (2014). XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep. 7, 1796–1808.
STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Rabbit polyclonal anti-ASC	Santa Cruz Biotechnology	Cat#sc-22514-R; RRID: AB_2174874
Rat monoclonal anti-cIAP1	Alexis Biochemicals	Cat#ALX-803-335; RRID: AB_2227905
Mouse monoclonal anti-XIAP (MBL; M044-3)	MBL International Corporation	Cat#M044-3; RRID: AB_592998
Goat polyclonal anti-IL-1β	R&D Systems	Cat#AF-401-NA; RRID: AB_416684
Rabbit polyclonal anti-caspase-1	Santa Cruz Biotechnology	Cat#sc-514; RRID: AB_2068895
Mouse monoclonal anti-caspase-1	Adipogen	Cat# AG-20B-0042-C100; RRID: AB_2490248
Rat monoclonal anti-caspase-8	In house	N/A
Rabbit polyclonal anti-cleaved caspase-8 Asp387	Cell Signaling Technology	Cat#9429; RRID: AB_2068300
Rabbit polyclonal anti-BAX	Cell Signaling Technology	Cat#2772; RRID: AB_10695870
Rabbit polyclonal anti-BAK	Cell Signaling Technology	Cat#60-536; RRID: AB_310159
Mouse monoclonal anti-NLRP3	Abipore	Cat#AG-20B-0014_C100; RRID: AB_2490202
Rabbit monoclonal anti-MCL-1	Cell Signaling Technology	Cat#5453; RRID: AB_10694494
Rabbit monoclonal anti-BCL-XL	Cell Signaling Technology	Cat#2764; RRID: AB_2280008
Rabbit polyclonal anti-BCL-2	In house	N/A
Rabbit polyclonal anti-caspase-3	Cell Signaling Technology	Cat#9662; RRID: AB_331439
Rabbit polyclonal anti-caspase-7	Cell Signaling Technology	Cat#9492; RRID: AB_2283313
Rat monoclonal anti-cFLIP	Abipogen	Cat#AG-20B-0005; RRID: AB_2490185
Rabbit monoclonal anti-GSDMD	Abcam	Cat#ab209845; RRID not available
Rabbit monoclonal anti-GSDME	Abcam	Cat#ab215191; RRID: AB_2737000
Goat anti-rabbit (H+L) highly cross adsorbed secondary antibody	Invitrogen	Cat#A-21245; RRID: AB_2535813
Chemicals, Peptides, and Recombinant Proteins		
LPS	InvivoGen	Cat#ltrl-3pelps
Cycloheximide	SIGMA-Aldrich	Cat#C7698
Episilvesterol	In house	N/A
Homoharringtonine	Enzo Life Sciences	Cat# ALX-350-236-M005
S-63845	Active Biochem	Cat#A-6044
ABT-737	Active Biochem	Cat#A-1002
MG132	SIGMA-Aldrich	Cat#SML1135
QVD	MP Biomedicals	Cat#03OPH109
911 (Cp. A)	TetraLogic Pharmaceuticals	N/A
Nigericin	SIGMA-Aldrich	Cat#N7143
MCC950	In house	Provided by A. Roberson and M. Cooper, University of Queensland, Australia
Critical Commercial Assays		
Mouse IL-1 beta/IL-1F2 DuoSet ELISA	R&D Systems	Cat#DY401
Mouse IL-1beta ELISA kit	DAKEWEI	Cat#DKW12-2012-096
Mouse TNF alpha ELISA Ready-SET-Go! Kit	eBioscience	Cat#5017331
Cyto Tox 96 Non-Radioactive Cytotoxicity assay kit	Promega	Cat#G1780
Cytotoxicity detection kit from Roche	Sigma	Cat#11644793001
Experimental Models: Organisms/Strains		
Mouse: Bcl-xL<sup>F<sub>lox/l_{ox}</sup> LysM-Cre	Speir et al., 2016	N/A
Mouse: Caspase-8<sup>fl/fl</sub> R^{p3} ^{−/−}	Beisner et al., 2005; Newton et al., 2004	N/A

(Continued on next page)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by Kate Lawlor (kate.lawlor@hudson.org.au).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

All mice were housed under standard conditions at the Walter and Eliza Hall Institute of Medical Research (WEHI), Australia, and the National Institute of Biological Sciences (NIBS), China. All procedures were approved by the WEHI Animal Ethics Committee (Australia) or the Institutional Animal Care and Use Committee at NIBS (China). None of the mice used in our experiments had been previously used for other procedures. The animals presented a healthy status and were employed independently of their gender for generating macrophages.

Caspase-3 and Caspase-7 heterozygous mice (Kuida et al., 1996; Lakhani et al., 2006) were intercrossed to yield littermate control (Caspase-3+/+, Caspase-7+/+), Caspase-3+/− (Caspase-3+/−, Caspase-7+/−, Caspase-3+/− Caspase-7+/−), Caspase-3−/− (Caspase-3−/−, Caspase-7−/−, Caspase-3−/− Caspase-7−/−) and Caspase-3−/− Caspase-7−/− embryos. Bcl-XLflx/flx and Caspase-8flx/flxRipk3−/− (Beisner et al., 2005; Newton et al., 2004) mice were crossed with the LysM-Cre transgenic mice to conditionally delete BCL-XL and caspase-8 (and RIPK3) in myeloid cells; they are referred to as Bcl-xL−/− (Speir et al., 2016) or Caspase-8flx/flxRipk3−/−. Baxflx/flxBak−/− mice (Takeuchi et al., 2005) were crossed with Vav-Cre transgenic mice (or compound knockouts used) to generate mice lacking BAX/BAK in the hematopoietic system and are referred to as Bax−/−Bak−/− mice. Mcl-1flx/flx Rosa26-Cre-ERT2 (homozygous Cre), Ripk3−/−Caspase-8−/−, Caspase-1−/−, Nirp3−/−, Gsdmd−/−, and Gsdme−/− and Aim2−/− mice have been previously described (Glaser et al., 2012; Jones et al., 2010; Kayagaki et al., 2015; Kuida et al., 1995; Martinon et al., 2006; Rickard et al., 2014; Shi et al., 2015; Wang et al., 2017). C57BL/6 and C57BL/6 Ly5.1 mice were purchased from WEHI Bioservices (Kew, Australia). Female and male mice were at least 6 weeks old at the time of experimentation. To expand numbers of Bax−/−Bak−/− mice available for derivation of macrophages, bone marrow and fetal liver cells (~E13.5) were harvested from Bax−/−Bak−/− and WT CD45.2 donor mice. C57BL/6 Ly5.1 (CD45.1) mice were lethally irradiated (2 × 550R) and injected intravenously with 3-5x10⁶ cells and allowed to reconstitute for 8 weeks. Levels of reconstitution were assessed using CD45 markers and flow cytometry.

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Mouse: Caspase-8−/−Ripk3−/−	Beisner et al., 2005; Newton et al., 2004	N/A
Mouse: Baxflx/flxBak−/−	Takeuchi et al., 2005	N/A
Mouse: Mcl-1flx/flxRosa26-Cre-ERT2 (homozygous Cre)	Glaser et al., 2012	N/A
Mouse: Ripk3−/− Caspase-8−/−	Rickard et al., 2014	N/A
Mouse: Caspase-1−/−	Kuida et al., 1995	N/A
Mouse: Nirp3−/−	Martinon et al., 2006	N/A
Mouse: Gsdmd−/−	Shi et al., 2015; Kayagaki et al., 2015	N/A
Mouse: Gsdme−/−	Wang et al., 2017	N/A
Mouse: Aim2−/−	Jones et al., 2010	N/A
Mouse: Caspase-3−/−	Kuida et al., 1996	N/A
Mouse: Caspase-7−/−	Lakhani et al., 2006	N/A

Software and Algorithms

ZEN 2012 version 8.1 software
Beisner et al., 2005; Newton et al., 2004
https://www.zeiss.com/microscopy

FIJI software (Image merging)
Schindelin et al., 2012
https://fiji.sc

Image Lab software.
Bio-Rad
http://www.bio-rad.com

WEASEL version 2.7 software
WEHI
http://www.frankbattye.com.au/Weasel/

Prism 7 (version 7.0d)
GraphPad Software
https://www.graphpad.com/scientific-software/prism/
Macrophages
To generate macrophages, bone marrow cells harvested from femoral and tibial bones (6-14 week-old animals of either gender, or >12 weeks post bone marrow transplantation), or fetal liver cells obtained from E13.5-14 embryos, were cultured in Dulbecco’s modified essential medium (DMEM) containing 10% fetal bovine serum (FBS, Sigma), 50 U/ml penicillin and 50 μg/ml streptomycin (complete media) and supplemented with 20% L929 cell conditioned medium for 6 days (37°C, 10% CO₂). Unless otherwise indicated, macrophages were routinely plated at 4x10⁵ cells/well in 24-well tissue culture plates (BD Falcon) or 2x10⁵ cells/well in 96-well flat bottom tissue culture plates. Alternatively, macrophages were plated at 3x10⁵ or 1x10⁵ cells in 24-well or 96-well non-tissue culture treated plates, respectively, for flow cytometric analysis. Macrophages were primed where indicated with LPS (50-100 ng/ml Ultrapure, InvivoGen), for 2-3 hr prior to stimulation as indicated with Cycloheximide (CHX, 20 μg/ml, SIGMA-Aldrich), Episilvestor (EPI, 500 nM, synthesized by J. Chambers and M. Rizzacasa) according to Rizzacasa et al., (Adams et al., 2009), Homoharringtonine (HHT, 500-1000 nM, Enzo Life Sciences), MCL-1 inhibitor S63845 (Kotschy et al., 2016)(10 μM, Active Biochem), ABT-737 (1 μM, Active Biochem), MG132 (5 μM, SIGMA-Aldrich), QVD (10-40 μM, QVD, MP Biomedicals), 911 (1 μM, Op. A, TetraLogic Pharmaceuticals), Nigericin (10 μM, SIGMA-Aldrich), KC1 (60 mM, SIGMA-Aldrich), MCC950 (2 μM, CP-456773 sodium salt, PZ0280). In some experiments, due to a lower affinity for mouse MCL-1, S63845 was added two times over a 24 hr period, spaced at least 8 hr apart. At specified times supernatants were harvested for cytokine analysis. Supernatants and cells were prepared in reduced sample buffer for immunoblot analysis, and to evaluate cell viability.

METHOD DETAILS

Cell Viability
To evaluate cell viability, supernatants were harvested. Adherent cells from non-tissue culture treated plates were removed using 5 mM EDTA in phosphate buffered saline (PBS) (~3-5 min incubation, room temperature) and these cells added to the supernatants. Dead cells were stained detected by propidium iodide (1-2 μg/ml, PI) uptake and were measured by flow cytometric analysis on a FACS Calibur instrument and Cell quest software (BD Biosciences). FACS data were analyzed using WEASEL version 2.7 software (in-house). In certain experiments (as defined in the figure legends), cell death was evaluated by measuring the release of lactate dehydrogenase (LDH) into supernatants using a cytotoxicity detection kit (LDH) (Roche and Promega) based on the manufacturer’s instructions.

Cytokine analysis
IL-1β (R&D and DAKEWEI, DKW12-2012-096) and TNF (Ebioscience) ELISA kits were routinely used to assay cell supernatants for cytokine levels according to the manufacturer’s instructions.

ASC specking
Immunofluorescence of endogenous ASC specks was performed as described (Conos et al., 2017). 8-well μ-slides (ibidi) were coated with 15 μg/ml poly-L-lysine (SIGMA-Aldrich), before relevant BMDCs/FLDCs were seeded at 2x10⁵ cells per well. Cells were primed with LPS (50 ng/ml) for 2-3 hr, treated with or without QVD (40 μM, MCC950 (2 μM) or KC1 (60 mM) and stimulated with ABT-737 (1 μM) and CHX (20 μg/ml) for ~3 hr, or Nigericin for 1 hr. Cells were then fixed with 4% paraformaldehyde for 30 min, before blocking and permeabilizing cells [Permeabilization buffer: PBS, 10% (v/v) FOS, 0.5% Triton X-100] for 1 hr at room temperature, prior to staining for perinuclear ASC using rabbit anti-ASC (N-15; 1:500; Santa Cruz Biotechnology) overnight at 4°C. Cells were then stained with a secondary donkey anti-rabbit Alexa647 antibody (A-21245; 1:1000; Invitrogen) for 1 hr at room temperature, before nuclear staining with DAPI (1-2 μg/ml, Invitrogen), for 3-5 min incubation, room temperature) and these cells added to the supernatants.

Immunoblotting
Cell lysates and supernatants (reduced and denatured) were separated on 4%-12% gradient gels (Invitrogen), proteins transferred onto nitrocellulose membrane (Amersham), and ponceau staining performed to evaluate loading accuracy. Membranes were blocked with 5% skimmed milk in PBS containing 0.1% Tween 20 (PBST) for 0.5-1hr and were then probed overnight with primary antibodies (all diluted 1:1000 unless noted otherwise): Mouse β-actin (Sigma; A-1798), GAPDH (Proteintech, 60004-1-lg), cIAP1 (1:500 ALX-803-335; Alexis Biochemicals), XIAP (MBL; M044-3), pro and mature IL-1β (R&D Systems; AF-401-NA), pro- and cleaved caspase-1 (Santa Cruz; sc-514)(Adipogen; AG-20B-0042-C100), pro-caspase-8 (in-house), cleaved caspase-8 Asp387 (Cell Signaling; 9429), BAX (Cell Signaling; 2772), BAK (Millipore; 0-536), NLRP3 (Adipogen; AG-20B-0014, C100), MCL-1 (Cell Signaling; 5453), BCL-XL (in-house), BCL-2 (in-house), caspase-3 (Cell Signaling; 9662), caspase-7 (Cell Signaling; 9492), c-FLIP (Adipogen; AG-20B-0005), GSDMD (Abcam; ab208845) and GSDME (Abcam; ab215191). Relevant horseradish peroxidase-conjugated secondary antibodies were applied for at least 1-2 hr. Membranes were washed four to six times in PBS-Tween between antibody
incubations. Antibodies were diluted in PBS-Tween containing 5% skimmed milk. Membranes were developed using ECL (Millipore) on an X-OMAT developer (Kodak) or using the ChemiDoc Touch Imaging System (Bio-Rad) and Image Lab software.

QUANTIFICATION AND STATISTICAL ANALYSIS

Flow cytometry data were analyzed using WEASEL version 2.7 software. Error bars (SEM or SD) were calculated using Prism 7 (version 7.0d) as indicated in the figure legends. The number of times each experiment was repeated, and the number of animals used per experiment, are detailed in the figure legends.