On uniformly S-Artinian rings and modules

Xiaolei Zhanga, Wei Qia

a. School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, China

Corresponding author: Xiaolei Zhang, E-mail: zxlrghj@163.com

Abstract

Let R be a commutative ring with identity and S a multiplicative subset of R. An R-module M is said to be a uniformly S-Artinian (u-S-Artinian for abbreviation) module if there is $s \in S$ such that any descending chain of submodules of M is S-stationary with respect to s. u-S-Artinian modules are characterized in terms of (S-MIN)-conditions and u-S-cofinite properties. We call a ring R is a u-S-Artinian ring if R itself is a u-S-Artinian module, and then show that any u-S-semisimple ring is u-S-Artinian. It is proved that a ring R is u-S-Artinian if and only if R is u-S-Noetherian, the u-S-Jacobson radical $\text{Jac}_S(R)$ of R is S-nilpotent and $R/\text{Jac}_S(R)$ is a u-$S/\text{Jac}_S(R)$-semisimple ring. Besides, some examples are given to distinguish Artinian rings, u-S-Artinian rings and S-Artinian rings.

Key Words: u-S-Artinian ring; u-S-Artinian module; u-S-Noetherian ring; u-S-semisimple ring; u-S-Jacobson radical.

2010 Mathematics Subject Classification: 13E10, 16P20, 13C12.

1. Introduction

Throughout this article, all rings are commutative rings with identity and all modules are unitary. A subset S of R is called a multiplicative subset of R if $1 \in S$ and $s_1s_2 \in S$ for any $s_1 \in S$, $s_2 \in S$. Early in 2002, Anderson and Dumitrescu \cite{2} introduced the so-called S-Noetherian ring R, in which for any ideal I of R, there exists a finitely generated ideal K of R such that $sI \subseteq K \subseteq I$ for some $s \in S$. Note that Cohen’s Theorem, Eakin-Nagata Theorem and Hilbert Basis Theorem for S-Noetherian rings are also given in \cite{2}. The notion of S-Noetherian rings provides a good direction for S-generalizations of other classical rings (see \cite{1, 3, 6, 7, 9} for example). However, it is often difficult to study these S-generalizations of classical rings via a module-theoretic approach. The essential difficulty is that the selected element $s \in S$ is often not “uniform” in their definitions. To overcome this difficulty for Noetherian properties, Qi et al. \cite{13} recently introduced the notions of uniformly
S-Noetherian rings which are S-Noetherian rings such that s is independent on I in the definition of S-Noetherian rings. They also introduced the notion of u-S-injective modules and then characterized uniformly S-Noetherian rings in terms of u-S-injective modules. Some other uniform S-versions of rings and modules, such as semisimple rings, von Neumann regular rings, projective modules and flat modules are introduced and studied by the named authors and coauthors in [16, 17].

In 2020, Sengelen et al. [14] introduced the notions of S-Artinian rings for which any descending chain of ideals $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_m \supseteq \cdots$ of R satisfies S-stationary condition, i.e., then there exist $s \in S$ and $k \in \mathbb{Z}^+$ such that $sI_k \subseteq I_n$ for all $n \geq k$. In the definition of S-Artinian rings, it is easy to see that although the element $s \in S$ is independent on n but it is certainly dependent on the given descending chain of ideals. Recently, Özen et al. [12] extended the notion of S-Artinian rings to that of S-Artinian modules by replacing descending chains of ideals to these of submodules. And then, Omid et al. [11] introduced the notion of weakly S-Artinian modules, for which every descending chain $N_1 \supseteq N_2 \supseteq \cdots \supseteq N_m \supseteq \cdots$ of submodules of M is weakly S-stationary, i.e., there exists $k \in \mathbb{Z}^+$ such that for each $n \geq k$, $s_nN_k \subseteq N_n$ for some $s_n \in S$. In the definition of weakly S-Artinian modules, it is easy to see the element s_n is dependent both on n and the descending chain of ideals. So the notion of weakly S-Artinian modules is certainly a “weak” version of that of S-Artinian modules. In this article, we introduced and study the “uniform” S-version of Artinian rings and modules (we call them u-S-Artinian rings and modules) such that the element s given in the definition of S-Artinian rings and modules is both independent on n and the descending chain of ideals or submodules. Obviously, we have the following implications:

\[
\text{Artinian rings} \implies \text{u-S-Artinian rings} \implies \text{S-Artinian rings}
\]

But neither of implications can be reversed (see Example 2.7 and Example 3.4). Denote by $\text{Jac}_S(R)$ the u-S-Jacobson radical of a ring R (see Definition 4.2). Then it is also worth to mention that a ring R is u-S-Artinian if and only if R is u-S-Noetherian, the u-S-Jacobson radical $\text{Jac}_S(R)$ of R is S-nilpotent and $R/\text{Jac}_S(R)$ is a u-S/$\text{Jac}_S(R)$-semisimple ring (see Theorem 4.9).

The related notions of uniformly S-torsion theory originally emerged in [16], and we give a quick review below. An R-module T is called u-S-torsion (with respect to s) provided that there exists $s \in S$ such that $sT = 0$. A sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ of R-modules is called a short u-S-exact sequence (with respect to s), if $s\ker(f) = s\coker(f) = 0$, $s\ker(g) \subseteq \text{Im}(f)$ and $s\text{Im}(f) \subseteq \ker(g)$ for some $s \in S$. An R-homomorphism $f : M \to N$ is a u-S-monomorphism (resp., u-S-epimorphism,
u-S-isomorphism) (with respect to s) provided $\ker(f)$ is (resp., $\coker(f)$ is, both $\ker(f)$ and $\coker(f)$ are) u-S-torsion (with respect to s). Recall from [17] an R-module P is called u-S-projective provided that the induced sequence

$$0 \to \text{Hom}_R(P, A) \to \text{Hom}_R(P, B) \to \text{Hom}_R(P, C) \to 0$$

is u-S-exact for any u-S-exact sequence $0 \to A \to B \to C \to 0$. Suppose M and N are R-modules. We say M is u-S-isomorphic to N if there exists a u-S-isomorphism $f : M \to N$. A family \mathcal{C} of R-modules is said to be closed under u-S-isomorphisms if M is u-S-isomorphic to N and M is in \mathcal{C}, then N is also in \mathcal{C}. Note that the class of u-S-projective modules is closed under u-S-isomorphisms. One can deduce from the following [17, Lemma 2.1] that the existence of u-S-isomorphisms of two R-modules is actually an equivalence relationship.

2. uniformly S-Artinian modules

Let R be a ring, S a multiplicative subset of R and M an R-module. Suppose $M_1 \supseteq M_2 \supseteq \cdots \supseteq M_n \supseteq \cdots$ is a descending chain of submodules of M. The family $\{M_i\}_{i \in \mathbb{Z}^+}$ is said to be S-stationary (with respect to s) if there exists $s \in S$ and $k \in \mathbb{Z}^+$ such that $sM_k \subseteq M_n$ for every $n \geq k$. And M is called an S-Artinian module if each descending chain of submodules $\{M_i\}_{i \in \mathbb{Z}^+}$ of M is S-stationary (see [12, definition 1]). Note that in the definition of S-Artinian module, the element s is dependent on the given descending chain of submodules. The main purpose of this section is to introduce and study a “uniform” version of S-Artinian modules.

Definition 2.1. Let R be a ring and S a multiplicative subset of R. An R-module M is called a u-S-Artinian (abbreviates uniformly S-Artinian) module (with respect to s) provided that there exists $s \in S$ such that each descending chain $\{M_i\}_{i \in \mathbb{Z}^+}$ of submodules of M is S-stationary with respect to s.

Trivially, if $0 \in S$, then every R-module is u-S-Artinian. If $S_1 \subseteq S_2$ are multiplicative subsets of R and M is u-S_1-Artinian, then M is obviously u-S_2-Artinian. Note that Artinian modules are exactly u-$\{1\}$-Artinian modules. So all Artinian modules are u-S-Artinian modules for any multiplicative set S. Next we give a u-S-Artinian module which is not Artinian.

Example 2.2. Let $R = \mathbb{Z}$ be the ring of integers, p a prime in R and $M = \mathbb{Z}_p[[x]]$ the set of all formal power series over $\mathbb{Z}_p := \mathbb{Z}/p\mathbb{Z}$. Set $S = \{p^n \mid n \in \mathbb{N}\}$. Then M is not Artinian since the descending chain

$$\langle x \rangle \supseteq \langle x^2 \rangle \supseteq \cdots \supseteq \langle x^n \rangle \supseteq \cdots$$
is not stationary. However, since M is obviously u-S-torsion, M is a u-S-Artinian module.

Let S be a multiplicative subset of R. We always denote by $S^* = \{ r \in R \mid rt \in S$ for some $t \in R \}$ and call it to be the saturation of S. A multiplicative set S is said to be saturated if $S = S^*$. Trivially, we have $S \subseteq S^*$ for all multiplicative subset S of R.

Proposition 2.3. Let R be a ring, S a multiplicative subset of R and M an R-module. Let S^* be the saturation of S. Then M is a u-S-Artinian R-module if and only if M is a u-S^*-Artinian R-module.

Proof. Suppose M is a u-S-Artinian R-module. Then M is trivially a u-S^*-Artinian R-module since $S \subseteq S^*$. Now, suppose M is a u-S^*-Artinian R-module. Then there is $r \in S^*$ such that each descending chain of submodules $\{M_i\}_{i \in \mathbb{Z}^+}$ of M is S^*-stationary with respect to r, i.e., there exits $k \in \mathbb{Z}^+$ such that $rM_k \subseteq M_n$ for each $n \geq k$. Since $r \in S^*$, $rt \in S$ for some $t \in R$. Note that $rtM_k \subseteq rM_k \subseteq M_n$. Hence M is a u-S-Artinian R-module.

Let R be a ring, M an R-module and S a multiplicative subset of R. For any $s \in S$, there is a multiplicative subset $S_s = \{1, s, s^2, \ldots \}$ of S. We denote by M_s the localization of M at S_s. Note that $M_s \cong M \otimes_R R_s$.

Lemma 2.4. Let R be a ring, S a multiplicative subset of R and M an R-module. If M is a u-S-Artinian R-module, then there exists an element $s \in S$ such that M_s is an Artinian R_s-module.

Proof. Let s be an element in S such that each family of descending chain of submodules $\{M_i\}_{i \in \mathbb{Z}^+}$ of M is S-stationary with respect to s. Let $M_1 \supseteq M_2 \supseteq \cdots \supseteq M_n \supseteq \cdots$ be a descending chain of R_s-submodules of M_s. Considering the natural homomorphism $f : M \to M_s$, we have a a descending chain of submodules of M as follows:

$$f^{-1}(M_1) \supseteq f^{-1}(M_2) \supseteq \cdots \supseteq f^{-1}(M_n) \supseteq \cdots$$

There is a $k \in \mathbb{Z}^+$ such that $s f^{-1}(M_k) = f^{-1}(sM_k) = f^{-1}(M_k) \subseteq f^{-1}(M_n)$ for each $n \geq k$ since M_k is an R_s-module. Hence $M_k = M_n$ for each $n \geq k$. Consequently, M_s is an Artinian R_s-module.

Remark 2.5. The converse of Lemma 2.4 also does not hold in general. Let $R = k[[x]]$ the formal power series ring over a field k. Let $S = \{1, x, x^2, \cdots \}$. Then R_S is a field, and so is an Artinian R_S-module. However, R is not a u-S-Artinian R-module as R is not Artinian (see Proposition 3.2).
Proposition 2.6. Let R be a ring, S a finite multiplicative subset of R and M an R-module. Then M is a u-S-Artinian module if and only if M is an S-Artinian module.

Proof. If M is a u-S-Artinian module, then trivially M is S-Artinian. Suppose $S = \{s_1, ..., s_n\}$ and set $s = s_1 \cdots s_n$. Suppose M is an S-Artinian module and $\{M_i\}_{i \in \mathbb{Z}^+}$ a descending chain of submodules of M. Then there exist $s_i \in S$ and $k \in \mathbb{Z}^+$ such that $s_i M_k \subseteq M_n$ for each $n \geq k$. So $s M_k \subseteq s_i M_k \subseteq M_n$ for each $i = 1, \cdots n$. Hence M is a u-S-Artinian module.

However, the following example shows S-Artinian modules are not u-S-Artinian modules in general.

Example 2.7. Let R be a valuation domain whose valuation group is $G = \prod_{\aleph_0} \mathbb{Z}$ the Hahn product \aleph_0-copies of \mathbb{Z} with lexicographic order, where \aleph_0 is an uncountable regular cardinal (see [3] for example). Let $S = R \setminus \{0\}$ the set of all nonzero elements of R. Then R itself is an S-Artinian R-module but not u-S-Artinian.

Proof. First, we claim that R is an S-Artinian R-module. Indeed, let $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$ is a descending chain of ideals of R. We may assume that each I_i is not equal to 0. Then for each I_i, there exist an nonzero element $r_i \in I_i$ such that $v(r_i) \in G$. Moreover, we can assume all r_i satisfy $v(r_i) \leq v(r_{i+1})$. Since \aleph_0 is an uncountable regular cardinal, $\lim_{\rightarrow} v(r_i) < \aleph_0$. So there is an element $x \in G$ such that $x \geq v(r_i)$ for each i. Suppose $v(s) = x$. Then $0 \neq s \in \bigcap_{i=1}^{\infty} I_i$. Hence $s I_k \subseteq I_n$ for each $n \geq k$. Consequently, R is an S-Artinian R-module. Now, we claim that R is not a u-S-Artinian R-module. On contrary, suppose R is u-S-Artinian. Then, by Lemma 2.4 there is an $s \in S$ such that R_s is an artinian domain, which is exactly a field. Let r be a nonzero element such that $v(r) > nv(s)$ for all non-negative integer n. Then r is not a unit in R_s, which is a contradiction. Consequently, R is not a u-S-Artinian R-module. (Note that it can also be easily deduced by Proposition 3.2) □

Lemma 2.8. Let R be a ring and S a multiplicative subset of R. Let M and N be R-modules. If M is u-S-isomorphic to N, then M is u-S-Artinian if and only if N is u-S-Artinian.
Proof. Let M be u-S-Artinian with respect to $s \in S$ and $f : M \to N$ a u-S-isomorphism. Suppose $N_1 \supseteq N_2 \supseteq \cdots \supseteq N_n \supseteq \cdots$ is a descending chain of submodules of N. Then $f^{-1}(N_1) \supseteq f^{-1}(N_2) \supseteq \cdots \supseteq f^{-1}(N_n) \supseteq \cdots$ is a descending chain of submodules of N. So there is $k \in \mathbb{Z}^+$ such that $sf^{-1}(N_k) \subset f^{-1}(N_n)$ for any $n \geq k$. Hence M is u-S-Artinian. Suppose N is u-S-Artinian. Then by [7] Lemma 2.1, there is a u-S-isomorphism $g : N \to M$. So we can show M is u-S-Artinian similarly. \hfill \Box

Proposition 2.9. Let R be a ring and S a multiplicative subset of R. Let $0 \to A \to B \to C \to 0$ be an S-exact sequence. Then B is u-S-Artinian if and only if A and C are u-S-Artinian. Consequently, a finite direct sum $\bigoplus_{i=1}^{n} M_i$ is u-S-Artinian if and only if each M_i is u-S-Artinian ($i = 1, \cdots, n$).

Proof. We can assume that $0 \to A \to B \to C \to 0$ is an exact sequence by Lemma 2.8. If B is u-S-Artinian, then it is easy to verify A and C are u-S-Artinian. Now suppose A and C are u-S-Artinian. Let $B_1 \supseteq B_2 \supseteq \cdots \supseteq B_n \supseteq \cdots$ be a descending chain of submodules of B. Then

$$B_1 \cap A \supseteq B_2 \cap A \supseteq \cdots \supseteq B_n \cap A \supseteq \cdots$$

is a descending chain of submodules of A, and

$$(B_1 + A)/A \supseteq (B_2 + A)/A \supseteq \cdots \supseteq (B_n + A)/A \supseteq \cdots$$

is a descending chain of submodules of $C \cong B/A$. So there is $s_1, s_2 \in S$ and $k \in \mathbb{Z}^+$ such that $s_1 B_k \cap A \subseteq B_n \cap A$ and $s_2 (B_k + A) \subseteq B_n + A$ for any $n \geq k$. Then one can verify that $s_1 s_2 B_k \subseteq B_n$ for any $n \geq k$. Hence, B is u-S-Artinian. \hfill \Box

Let \mathfrak{p} be a prime ideal of R. We say an R-module M is u-\mathfrak{p}-Artinian provided that M is u-$(R \setminus \mathfrak{p})$-Artinian. The next result gives a local characterization of Artinian modules.

Proposition 2.10. Let R be a ring and M an R-module. Then the following statements are equivalent:

1. M is Artinian;
2. M is u-\mathfrak{p}-Artinian for any $\mathfrak{p} \in \text{Spec}(R)$;
3. M is u-\mathfrak{m}-Artinian for any $\mathfrak{m} \in \text{Max}(R)$.

Proof. (1) \Rightarrow (2) \Rightarrow (3): Trivial.

(3) \Rightarrow (1): Let $M_1 \supseteq M_2 \supseteq \cdots \supseteq M_n \supseteq \cdots$ be a descending chain of submodules of M. Then, for each $\mathfrak{m} \in \text{Max}(R)$, there exist $s_m \notin \mathfrak{m}$ and $k_m \in \mathbb{Z}^+$ such that $s_m M_{k_m} \subseteq M_n$ for each $n \geq k_m$. Since R is generated by $\left\{ s_m \mid \mathfrak{m} \in \text{Max}(R) \right\}$. So
there is a finite subset \(\{s_{m_1}, \ldots, s_{m_t}\} \) that generates \(R \). Let \(k = \max\{k_{m_1}, \ldots, k_{m_t}\} \). Then \(M_k = \langle s_{m_1}, \ldots, s_{m_t} \rangle M_k \subseteq \sum_{i=1}^{t}(s_{m_i}M_{k_{m_i}}) \subseteq M_n \) for all \(n \geq k \). Hence \(M \) is Artinian.

Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). Recall from [12], an \(R \)-module \(M \) is said to be \(S \)-cofinite (called finitely \(S \)-cogenerated in [12, Definition 3]) if for each nonempty family of submodules \(\{M_i\}_{i \in \Delta} \) of \(M \), \(\bigcap_{i \in \Delta} M_i = 0 \) implies that \(s(\bigcap_{i \in \Delta'} M_i) = 0 \) for some \(s \in S \) and a finite subset \(\Delta' \subseteq \Delta \). If \(S = \{1\} \), then \(S \)-cofinite modules are exactly the classical cofinite modules.

Definition 2.11. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). An \(R \)-module \(M \) is called \(u \)-\(S \)-cofinite (with respect to \(s \)) if there is an \(s \in S \) such that for each nonempty family of submodules \(\{M_i\}_{i \in \Delta} \) of \(M \), \(\bigcap_{i \in \Delta} M_i = 0 \) implies that \(s(\bigcap_{i \in \Delta'} M_i) = 0 \) for a finite subset \(\Delta' \subseteq \Delta \).

Obviously, cofinite \(R \)-modules are \(u \)-\(S \)-cofinite, and \(u \)-\(S \)-cofinite \(R \)-modules is \(S \)-cofinite.

Proposition 2.12. Let \(R \) be a ring, \(M \) an \(R \)-module and \(S \) a multiplicative subset of \(R \). Then the following statements hold.

1. If \(S_1 \subseteq S_2 \) are multiplicative subsets of \(R \) and \(M \) is \(u \)-\(S_1 \)-cofinite. Then \(M \) is \(u \)-\(S_2 \)-cofinite.
2. Suppose \(S^* \) is the saturation of \(S \). Then \(M \) is \(u \)-\(S \)-cofinite if and only if \(M \) is \(u \)-\(S^* \)-cofinite.

Proof. (1) is trivial.

(2) If \(M \) is \(u \)-\(S \)-cofinite, then \(M \) is also \(u \)-\(S^* \)-cofinite by (1). Suppose \(M \) is \(u \)-\(S^* \)-cofinite. Then there is an \(r \in S^* \) such that for each nonempty family of submodules \(\{M_i\}_{i \in \Delta} \) of \(M \), \(\bigcap_{i \in \Delta} M_i = 0 \) implies that \(r(\bigcap_{i \in \Delta'} M_i) = 0 \) for a finite subset \(\Delta' \subseteq \Delta \). Let \(s := rt \in S \) for some \(t \in R \). Then \(sr(\bigcap_{i \in \Delta'} M_i) = s0 = 0 \). Hence \(M \) is \(u \)-\(S \)-cofinite. \(\square \)

Let \(\mathfrak{p} \) be a prime ideal of \(R \). We say an \(R \)-module \(M \) is \(u \)-\(\mathfrak{p} \)-cofinite provided that \(M \) is \(u \)-(\(R \setminus \mathfrak{p} \))-cofinite. The next result gives a local characterization of cofinite modules.

Proposition 2.13. Let \(R \) be a ring and \(M \) an \(R \)-module. Then the following statements are equivalent:

1. \(M \) is cofinite;
2. \(M \) is \(u \)-\(\mathfrak{p} \)-cofinite for any \(\mathfrak{p} \in \text{Spec}(R) \);
(3) M is u-m-cofinite for any $m \in \text{Max}(R)$.

Proof. (1) \Rightarrow (2) \Rightarrow (3): Trivial.

(3) \Rightarrow (1): Let $\{M_i\}_{i \in \Delta}$ be a family of submodules of M such that $\bigcap_{i \in \Delta} M_i = 0$. Then, for each $m \in \text{Max}(R)$, there exist $s_m \not\subseteq m$ and $k_m \in \mathbb{Z}^+$ such that $s_m(\bigcap_{i \in \Delta_m} M_i) = 0$ for a finite subset $\Delta_m' \subseteq \Delta$. Since R can be generated by a finite subset $\{s_m, \ldots, s_{m_t}\}$, let $\Delta_m' = \{s_m, \ldots, s_{m_t}\}$. Then $\bigcap_{i \in \Delta_m'} M_i = \langle s_m, \ldots, s_{m_t} \rangle(\bigcap_{i \in \Delta_m'} M_i) \subseteq \sum_{i=1}^{t}(s_{m_i} \bigcap_{i \in \Delta_m'} M_i) = 0$. Hence, M is cofinite. □

Definition 2.14. Let \mathcal{N} be a nonempty family of submodules of M. Then $N \in \mathcal{N}$ is called an S-minimal element of \mathcal{N} with respect to s if whenever $N' \subseteq N$ for some $N \in \mathcal{N}$ then $sN \not\subseteq N'$. We say M satisfies $(S\text{-MIN})$-condition with respect to s if every nonempty family of submodules of M has an S-minimal element with respect to s.

It follows from [4, Proposition 10.10] that an R-module M is Artinian if and only if every factory M/N is finitely cogenerated, if and only if M satisfies (MIN)-Condition. Recently, Özen extended this result to S-Artinian rings in [12, Theorem 3]. Now we give a uniform S-version of [4, Proposition 10.10].

Theorem 2.15. Let R be a ring, S a multiplicative subset of R and M an R-module. Let $s \in S$. Then the following statements are equivalent:

1. M is a u-S-Artinian module with respect to s;
2. M satisfies $(S\text{-MIN})$-condition with respect to s;
3. For any nonempty family $\{N_i\}_{i \in \Gamma}$ of submodules of M, there is a finite subset $\Gamma_0 \subseteq \Gamma$ such that $s \bigcap_{i \in \Gamma_0} N_i \subseteq \bigcap_{i \in \Gamma} N_i$;
4. Every factor module M/N is u-S-cofinite with respect to s.

Proof. (1) \Rightarrow (2) : Suppose that M is a u-S-Artinian module with respect to s. Let \mathcal{N} be a nonempty set of submodules of M. On contrary, suppose \mathcal{N} has no S-minimal element of \mathcal{N} with respect to s. Take $N_1 \in \mathcal{N}$, and then there exists $N_2 \in \mathcal{N}$ such that $N_1 \supseteq N_2$ and $sN_1 \not\subseteq N_2$. Iterating these steps, we can obtain a descending chain $N_1 \supseteq N_2 \supseteq \cdots \supseteq N_n \supseteq \cdots$ such that $sN_k \not\subseteq N_{k+1}$ for any k. This implies M is not a u-S-Artinian module with respect to s, which is a contradiction.

(2) \Rightarrow (3) : Let $\{N_i\}_{i \in \Gamma}$ be a nonempty family of submodules of M. Set $N = \bigcap_{i \in \Gamma} N_i$. Let \mathcal{A} be the set of all intersections of finitely many N_i. Then each $N_i \in \mathcal{A}$,
and so \mathcal{A} is nonempty. So there is an S-minimal element, say $A = \bigcap_{i \in \Gamma_0} N_i$, of \mathcal{A}. It is clear that $N \subseteq A$. For each $i \in \Gamma$, we have $sA \subseteq A \cap N_i \subseteq N_i$ by the S-minimality of A with respect to s. So $sA \subseteq \bigcap_{i \in \Gamma} N_i = N$.

(3) \Rightarrow (1): Let $N_1 \supseteq N_2 \supseteq \cdots \supseteq N_n \supseteq \cdots$ be a descending chain of submodules of M. Then there is positive inter k such that $sN_k = s \bigcap_{i=1}^{k} N_i \subseteq \bigcap_{i=1}^{\infty} N_i$. So $sN_k \subseteq N_n$ for any $n \geq k$.

(3) \Rightarrow (4): Suppose $\bigcap_{i \in \Gamma} N_i/N = 0$ for some family of submodules $\{N_i/N\}_{i \in \Gamma}$ of M/N. Then $\bigcap_{i \in \Gamma} N_i = N$. Set $\mathcal{A} = \{ \bigcap_{i \in \Gamma'} N_i \mid \Gamma' \subseteq \Gamma \text{ is a finite subset } \}$. By (3), \mathcal{A} has an S-minimal element with respect to s, say $M_0 = \bigcap_{i \in \Gamma} N_i$ for some finite subset $\Gamma_0 \subseteq \Gamma$. So, for any $k \in \Gamma - \Gamma_0$, we have $sM_0 \subseteq M_0 \cap N_k$. Thus $sN \subseteq M_0 \cap (\bigcap_{k \in \Gamma - \Gamma_0} N_k) \subseteq \bigcap_{k \in \Gamma} N_k = N$. Consequently, M/N is u-S-cofinite with respect to s.

(4) \Rightarrow (1): Let $N_1 \supseteq N_2 \supseteq \cdots \supseteq N_n \supseteq \cdots$ be a descending chain of submodules of M. Set $N = \bigcap_{i=1}^{\infty} N_i$. By assumption, M/N is is u-S-cofinite with respect to s. Note that $\bigcap_{i=1}^{k} N_i/N = 0$ in M/N. Then there is a positive integer k such that $\bigcap_{i=1}^{k} N_i/N = 0$ by (4). So $sN_k \subseteq N_n$ for all $n \geq k$. So M is a u-S-Artinian module with respect to s. \square

3. Basic properties of u-S-Artinian rings

Recall from [14, Definition 2.1] that a ring R is called an S-Artinian ring if any descending chain of ideals $\{I_i\}_{i \in \mathbb{Z}^+}$ of R is S-stationary with respect to some $s \in S$. Note that the s is determined by the descending chain of ideals in the definition of S-Artinian rings. Now we introduce a “uniform” version of S-Artinian rings.

Definition 3.1. Let R be a ring and S a multiplicative subset of R. Then R is called a u-S-Artinian (abbreviates uniformly S-Artinian) ring (with respect to s) provided that R is a u-S-Artinian R-module (with respect to s), that is, there exists $s \in S$ such that each descending chain $\{I_i\}_{i \in \mathbb{Z}^+}$ of ideals of R is S-stationary with respect to s.

Since u-S-Artinian rings are u-S-Artinian modules over themselves, the results in Secton 1 also hold for u-S-Artinian rings. Specially, u-S-Artinian rings are S-Artinian. However, S-Artinian rings are not u-S-Artinian in general. A counterexample was given in Example 2.7. If $0 \in S$, then every ring R is u-S-Artinian. So
Artinian rings are not \(u\)-\(S\)-Artinian in general. A multiplicative set \(S \) is said to be regular if every element in \(S \) is a non-zero-divisor. The following Proposition shows that \(u\)-\(S\)-Artinian rings are exactly Artinian for any regular multiplicative set \(S \).

Proposition 3.2. Let \(R \) be a ring and \(S \) a regular multiplicative subset of \(R \). If \(R \) is a \(u\)-\(S\)-Artinian ring, then \(R \) is an Artinian ring.

Proof. Let \(s \) be an element in \(S \). Consider the descending chain \(Rs \subseteq Rs^2 \subseteq \cdots \) of ideals of \(R \). Then there exists \(k \) such that \(sRs^k \subseteq Rs^n \) for any \(n \geq k \). In particular, we have \(s^{k+1} = rs^{k+2} \) for some \(r \in R \). Since \(s \) is a non-zero-divisor, we have \(1 = rs \), and thus \(s \) is a unit. So \(R \) is an Artinian ring. \(\square \)

In order to give a non-trivial \(u\)-\(S\)-Artinian ring which is not Artinian, we consider the direct product of \(u\)-\(S\)-Artinian rings.

Proposition 3.3. Let \(R = R_1 \times R_2 \) be direct product of rings \(R_1 \) and \(R_2 \) and \(S = S_1 \times S_2 \) a direct product of multiplicative subsets of \(R_1 \) and \(R_2 \). Then \(R \) is a \(u\)-\(S\)-Artinian ring if and only if \(R_i \) is a \(u\)-\(S_i\)-Artinian ring for each \(i = 1, 2 \).

Proof. Suppose \(R \) is a \(u\)-\(S\)-Artinian ring with respect to \(s_1 \times s_2 \). Let \(\{I^1_i\}_{i \in \mathbb{Z}^+} \) be a descending chain of ideals of \(R_1 \). Then \(\{I^1_i \times 0\}_{i \in \mathbb{Z}^+} \) be a descending chain of ideals of \(R \). Then there exists an integer \(k \) such that \((s_1 \times s_2)(I^1_k \times 0) \subseteq I^1_n \times 0 \) for all \(n \geq k \). Hence \(s_1I^1_k \subseteq I^1_n \) for all \(n \geq k \). So \(R_1 \) is a \(u\)-\(S_1\)-Artinian ring with respect to \(s_1 \). Similarly, \(R_2 \) is a \(u\)-\(S_2\)-Artinian ring with respect to \(s_2 \). On the other hand, suppose \(R_i \) is a \(u\)-\(S_i\)-Artinian ring with respect to \(s_i \) for each \(i = 1, 2 \). Let \(\{I_i = I^1_i \times I^2_i\}_{i \in \mathbb{Z}^+} \) be a descending chain of ideals of \(R \). Then there exists an integer \(k_i \) such that \(s_iI^1_{k_i} \subseteq I^1_n \) for all \(n \geq k_i \). Set \(k = \max\{k_1, k_2\} \). Then \((s_1 \times s_2)I_k = s_1I^1_k \times s_2I^2_k \subseteq I^1_n \times I^2_n = I_n \) for all \(n \geq k \). So \(R \) is a \(u\)-\(S\)-Artinian ring. \(\square \)

The promised non-Artinian \(u\)-\(S\)-Artinian rings are given as follows.

Example 3.4. Let \(R = R_1 \times R_2 \) be a product of \(R_1 \) and \(R_2 \), where \(R_1 \) is an Artinian ring while \(R_2 \) is not Artinian. Set \(S = \{1\} \times \{1, 0\} \). Then \(R \) is \(u\)-\(S\)-Artinian rings but not Artinian by Proposition 3.3.

Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). Recall from [17] that an \(R \)-module \(M \) is called \(u\)-\(S\)-semisimple (with respect to \(s \)) provided that any \(u\)-\(S\)-short exact sequence \(0 \to A \overset{f}{\to} M \overset{g}{\to} C \to 0 \) is \(u\)-\(S\)-split (with respect to \(s \)), i.e., there exists an \(R \)-homomorphism \(h : B \to A \) such that \(h \circ f = s \text{Id}_A \) for some \(s \in S \). A ring \(R \) is called a \(u\)-\(S\)-semisimple ring if every free \(R \)-module is \(u\)-\(S\)-semisimple.
The rest of this section is devoted to show any \(u-S \)-semisimple ring is \(u-S \)-Artinian. First, we introduce the notion of \(u-S \)-simple modules.

Definition 3.5. An \(R \)-module \(M \) is said to be \(u-S \)-simple (with respect to \(s \)) provided that \(M \) is not \(u-S \)-torsion with respect to some \(s \in S \), and any proper submodule of \(M \) is \(u-S \)-torsion with respect to \(s \).

Since any proper submodule of a \(u-S \)-simple \(R \)-module is \(u-S \)-torsion, we have any \(u-S \)-simple \(R \)-module is \(u-S \)-semisimple by [17] Lemma 2.1. Moreover, we have the following result.

Proposition 3.6. Suppose \(M \) is a \(u-S \)-simple \(R \)-module. Then \(M^{(\mathfrak{R})} \) is a \(u-S \)-semisimple \(R \)-module for any ordinal \(\mathfrak{R} \).

Proof. Suppose \(M \) is a \(u-S \)-simple \(R \)-module with respect to \(s \) and \(N \) is a submodule of \(M^{(\mathfrak{R})} \) such that \(M^{(\mathfrak{R})}/N \) is not \(u-S \)-torsion with respect to \(s \). Set \(\Gamma = \{ \alpha \subseteq \mathfrak{R} \mid s(N \cap M^{(\alpha)}) = 0 \} \). For each \(i \in \mathfrak{R} \), we set \(M^i \) to be the \(i \)-th component of \(M^{(\mathfrak{R})} \). Then we claim there is \(i \in \mathfrak{R} \) such that \(s(N \cap M^i) = 0 \), and hence \(\Gamma \) is not empty. Indeed, on contrary, suppose \(N \cap M^i \) is not \(u-S \)-torsion for any \(i \in \mathfrak{R} \). Since \(M \) is \(u-S \)-simple with respect to \(s \), then \(N \cap M^i = M^i \cong M \), and hence \(N = M^{(\mathfrak{R})} \) which is a contradiction. Let \(\Lambda \) be a chain in \(\Gamma \). Then \(s(N \cap \bigcup_{\alpha \in \Lambda} M^{(\alpha)}) = \bigcup_{\alpha \in \Lambda} s(N \cap M^{(\alpha)}) = 0 \). So \(\Lambda \) has a upper bound. By Zorn Lemma, there is a maximal element, say \(\beta \), in \(\Gamma \). Set \(L = M^{(\beta)} \). We claim that \(M^{(\mathfrak{R})} \) is \(u-S \)-isomorphic to \(N + L \). Otherwise, since \(M^j \cong M \) is \(u-S \)-simple, there is an \(M^j \not\subseteq N + L \) for some \(j \in \mathfrak{R} \). Hence \(N \cap M^{(\beta \cup \{ j \})} \) is \(u-S \)-torsion with respect to \(s \), which contradicts the maximality of \(\beta \). Since \(N \cap L \) is \(u-S \)-torsion, \(N \) is \(u-S \)-isomorphic to \(N/(N \cap L) \) and \((N + L)/(N \cap L) \) is \(u-S \)-isomorphic to \((N + L) \) which is also \(u-S \)-isomorphic to \(M^{(\mathfrak{R})} \). Considering the split monomorphism \(g : N/(N \cap L) \to (N + L)/(N \cap L) \), we have the natural embedding map \(N \to M \) is also a \(u-S \)-split monomorphism.

Theorem 3.7. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). Suppose \(R \) is a \(u-S \)-semisimple ring. Then \(R \) is a \(u-S \)-artinian ring.

Proof. Suppose \(R \) is a \(u-S \)-semisimple ring. Let \(\mathfrak{R} \) be a cardinal greater than \(2^{\sharp(R)} \cdot \aleph_0 \), where \(\sharp(R) \) is the cardinal of \(R \). Then the free \(R \)-module \(R^{(\mathfrak{R})} \) is \(u-S \)-semisimple with respect to some \(s \in S \). And so every subquotient of \(R^{(\mathfrak{R})} \) is also \(u-S \)-semisimple with respect to some \(s \in S \). Let \(I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots \) be a descending chain of ideals of \(R \). Note that there are at most \(2^{\sharp(R)} \cdot \aleph_0 \) such chains. Set \(R = I_0 \). Consider the exact sequence \(\xi_i : 0 \to I_i \to I_{i-1} \to I_{i-1}/I_i \to 0 \) for any positive integer \(i \). Since \(R \) is a \(u-S \)-semisimple ring, then each \(I_{i-1}/I_i \) are \(u-S \)-projective by [17] Theorem
3.5]. So, by Corollary 2.10, each \(\xi_i \) is \(u \)-\(S \)-split with respect to \(s \). Hence, by Lemma 2.4, there is a \(u \)-\(S \)-isomorphism \(f_i : I_{i-1} \to I_i \oplus I_{i-1}/I_i \) with respect to \(s \) for each \(i \). So there are \(u \)-\(S \)-isomorphisms

\[
R \xrightarrow{f_1} I_1 \bigoplus R/I_1 \xrightarrow{f_2 \oplus \text{Id}} I_2 \bigoplus I_1/I_2 \bigoplus R/I_1 \to \cdots \xrightarrow{f_k \oplus \text{Id}} I_k \bigoplus \left(\bigoplus_{i=0}^{k} I_i/I_{i-1} \right) \to \cdots
\]

Assume \(f(1) \in \bigoplus_{i=1}^{k} I_{i-1}/I_i \subseteq \bigoplus_{i=1}^{\infty} I_{i-1}/I_i \) where \(f = \lim_{\to k}(f_k \oplus \text{Id}) \circ \cdots \circ f_1 \). Then \(R \) is \(u \)-\(S \)-isomorphic to \(\bigoplus_{i=0}^{k} I_i/I_{i-1} \) with respect to \(s \). And so \(I_k \) is \(u \)-\(S \)-torsion with respect to \(s \). Hence \(sI_k/I_n = 0 \), i.e., \(sI_k \subseteq I_n \) for all \(n \geq k \). So \(R \) is a \(u \)-\(S \)-artinian ring.

Corollary 3.8. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). Suppose \(R \) is a \(u \)-\(S \)-semisimple ring. Then any \(S \)-finite \(R \)-module is \(u \)-\(S \)-artinian.

Proof. Since the class of \(u \)-\(S \)-artinian modules is closed under \(u \)-\(S \)-isomorphisms, we just need to show any finitely generated \(R \)-module is \(u \)-\(S \)-artinian, which can easily be deduced by Proposition 2.9 and Theorem 3.7. \(\square \)

4. A Characterization of \(u \)-\(S \)-Artinian Rings

It is well-known that a ring \(R \) is Artinian if and only if \(R \) is a Noetherian ring with its Jacobson radical \(\text{Jac}(R) \) nilpotent and \(R/\text{Jac}(R) \) a semisimple ring (see [15, Theorem 4.1.10]). In this section, we will give a “uniform” \(S \)-version of this result. We begin with the notion of \(u \)-\(S \)-maximal submodules and the \(u \)-\(S \)-Jacobson radical of a given \(R \)-module.

Definition 4.1. Let \(R \) be a ring, \(S \) a multiplicative subset of \(R \) and \(s \in S \). Then a submodule \(N \) is said to be \(u \)-\(S \)-maximal in an \(R \)-module \(M \) with respect to \(s \) provided that

1. \(M/N \) is not \(u \)-\(S \)-torsion with respect to \(s \);
2. if \(N \nsubseteq H \subseteq M \), then \(M/H \) is \(u \)-\(S \)-torsion with respect to \(s \).

Note that an \(R \)-module \(N \) is a \(u \)-\(S \)-maximal submodule of \(M \) (with respect to \(s \)) if and only if \(M/N \) is \(u \)-\(S \)-simple (with respect to \(s \)). If \(M \) does not have any \(u \)-\(S \)-maximal submodule with respect to \(s \), then we denote by \(\text{Jac}_s(M) = M \). Otherwise, we denote by \(\text{Jac}_s(M) \) the intersection of all \(u \)-\(S \)-maximal submodules of \(M \) with respect to \(s \). The submodule \(\text{Jac}_s(M) \) of \(M \) is called the \(u \)-\(S \)-Jacobson radical of \(M \) with respect to \(s \).
Definition 4.2. Let R be a ring, S a multiplicative subset of R and M an R-module. Then the u-S-Jacobson radical of M is defined to be $\text{Jac}_{S}(M) = \bigcap_{s \in S} \text{Jac}_s(M)$ under the above notions.

First, we have the following obversion.

Lemma 4.3. Let M be an R-module. Then

$$\text{Jac}_s(M/\text{Jac}_s(M)) = 0, \text{ and } \text{Jac}_S(M/\text{Jac}_S(M)) = 0.$$

Proof. We just note that an R-module $N/\text{Jac}_s(M) \subseteq M/\text{Jac}_s(M)$ is u-S-maximal with respect to s if and only if $N + \text{Jac}_s(M) \subseteq M$ is u-S-maximal with respect to s.

Proposition 4.4. Suppose M is a u-S-Artinian R-module with $\text{Jac}_S(M)$ u-S-torsion. Then there exists $T \subseteq M$ such that $sT = 0$ and $M/T \subseteq \bigoplus_{i=1}^n S_i$ where each S_i is u-S-simple with respect to s for some $s \in S$. Consequently, M is a u-S-Noetherian R-module.

Proof. If M has no u-S-maximal submodule, then we may assume $T = \text{Jac}_S(M) = M$ is u-S-torsion. So the assertion trivially holds. Now suppose M has a u-S-maximal submodules. Then the intersection of all u-S-maximal submodules of M is u-S-torsion. Since M is u-S-Artinian, then there exists a finite family of u-S-maximal submodules, say $\{M_1, \ldots, M_n\}$, of M such that $T := \bigcap_{i=1}^n M_i$ is u-S-torsion with respect to some $t \in S$ by Theorem 2.15. Note that M/T is a submodule of $\bigoplus_{i=1}^n M_i$, where M_i is u-S-simple with respect to some $s_i \in S$. Set $s = ts_1 \cdots s_n$. Then each $S_i := M_i$ is u-S-simple with respect to s. One can easily check that M/T, as a submodule of $\bigoplus_{i=1}^n M_i$, is u-S-Noetherian with respect to s. Thus M is u-S-Noetherian with respect to s.

Proposition 4.5. Suppose R is a u-S-Artinian ring. Then $R/\text{Jac}_S(R)$ is a u-$S/\text{Jac}_S(R)$-semisimple ring.

Proof. Write $J = \text{Jac}_S(R)$, $\overline{R} = R/J$ and $\overline{S} = S/\text{Jac}_S(R)$. Since R is a u-S-Artinian ring, \overline{R} is a u-S-Artinian R-module by Proposition 2.9. By Lemma 4.3, $\text{Jac}_S(\overline{R}) = 0$. It follows from by Proposition 4.4 that there exists an element $s \in S$ and an submodule T of \overline{R} such that $sT = 0$ and $\overline{R}/T \subseteq \bigoplus_{i=1}^n S_i$ with each S_i u-S-simple with respect to s. Now let $F = \overline{R}^{(n)}$ be a free \overline{R}-module with n an arbitrary cardinal. Then there is a short exact sequence $0 \rightarrow T^{(n)} \rightarrow \overline{R}^{(n)} \rightarrow (\overline{R}/T)^{(n)} \rightarrow 0$.

13
By Proposition 4.4, $(\overline{R}/T)^{(n)}$ is a submodule of $(\bigoplus_{i=1}^{t} S_i)^{(n)} = (\bigoplus_{i=1}^{t} (S_i)^{(n)}$ which is u-S-semisimple by Proposition 3.6. Hence $(\overline{R}/T)^{(n)}$ is also u-S-semisimple by [17, Proposition 3.3]. Since $sT^{(n)} = 0$, $(\overline{R})^{(n)}$ is a u-S-semisimple R-module. So $(\overline{R})^{(n)}$ is actually a u-\overline{S}-semisimple \overline{R}-module, that is, \overline{R} is a u-\overline{S}-semisimple ring. \hfill \Box

Lemma 4.6. Let R be a ring, S a multiplicative subset of R and S^* the saturation of S. Suppose $r \in R$ and $s \in S$. If $r - s \in \text{Jac}_S(R)$, then $r \in S^*$.

Proof. Assume on contrary $r \notin S^*$. Then we claim R/Rr is not u-S-torsion. Indeed, if $t(R/Rr) = 0$ for some $t \in S$. Then $t = rr'$ for some $r' \in R$. So $r \in S^*$, which is a contradiction. We also claim that there exists a u-S-maximal ideal I of R such that $r \in I$. Indeed, let Λ be the set of ideals J of R that contains r satisfying R/J is not u-S-torsion. One can check that the union of any ascending chain in Λ is also in Λ. So there is a maximal element I in Λ by Zorn Lemma. Hence I is a u-S-maximal ideal of R. Since $\text{Jac}_S(R) \subseteq I$, we have $s \in I$. Then $s(R/I) = 0$, which is a contradiction. So $r \in S^*$.

Proposition 4.7. (Nakayama Lemma for S-finite modules) Let R be a ring, $I \subseteq \text{Jac}_S(R)$, S a multiplicative subset of R and M an S-finite R-module. If $sM \subseteq IM$ for some $s \in S$, then M is u-S-torsion.

Proof. Let F be a finitely generated submodule, say generated by $\{m_1, \cdots, m_n\}$, of M satisfying $s'M \subseteq F$ and $sM \subseteq IM$ for some $s', s \in S$. Then $ss'F \subseteq IF$. So we can assume M itself is generated by $\{m_1, \cdots, m_n\}$. Then we have $a := s^n + a_1s^{n-1} + \cdots + a_{n-1}s + a_n = 0$ where $a_i \in I^i$ by [10, Theorem 2.1]. Note that $aM = 0$ and $a - s^n \in I$. By Lemma 4.6, $a \in S^*$, that is, there is $r \in R$ such that $ar \in S$. Hence $arM = 0$, and so M is u-S-torsion. \hfill \Box

Let I be an ideal of R. we say I is S-nilpotent if $sI^k = 0$ for some integer k and $s \in S$.

Proposition 4.8. Let R be a ring and S a multiplicative subset of R. Suppose R is a u-S-Artinian ring. Then $\text{Jac}_S(R)$ is S-nilpotent.

Proof. Suppose R is a u-S-Artinian ring with respect to some $t \in S$. Write $J = \text{Jac}_S(R)$. Consider the descending chain

$$J \supseteq J^2 \supseteq \cdots \supseteq J^n \supseteq J^{n+1} \supseteq \cdots$$

Then there exists an integer k such that $tJ^k \subseteq J^n$ for some $n \geq k$. We claim that $sJ^k = 0$ for some $s \in S$. On contrary, set $\Gamma = \{I \subseteq R \mid sJ^k I \neq 0 \text{ for all } s \in S\}$. Since $R \in \Gamma$, Γ is non-empty. So there is an S-minimal element I in Γ by Theorem
Let \(x \in I \) such that \(sJ^k x \neq 0 \) for all \(s \in S \). Then \(0 \neq stJ^k x \subseteq sJ^{k+1} x \). So \(sJ^{k+1} x \neq 0 \) for any \(s \in S \). Hence \(Jx \in \Gamma \). Since \(Jx \subseteq Rx \subseteq I \), there exists \(s_1 \in S \) such that \(s_1 Rx \subseteq s_1 I \subseteq Jx \subseteq Rx \) by the \(S \)-minimality of \(I \). So there exists \(s_2 \in S \) such that \(s_2 Rx = 0 \) by Proposition \(4.7 \) which contradicts \(sJ^k x \neq 0 \) for all \(s \in S \).

Recently, Qi et al. [13, Definition 2.1] introduced the notion of \(u \)-\(S \)-Noetherian rings. A ring \(R \) is called a \(u \)-\(S \)-Noetherian (abbreviates uniformly \(S \)-Noetherian) ring provided there exists an element \(s \in S \) such that for any ideal \(I \) of \(R \), \(sI \subseteq K \) for some finitely generated sub-ideal \(K \) of \(I \). Finally, we will show the promised result.

Theorem 4.9. Let \(R \) be a ring and \(S \) a multiplicative subset of \(R \). Then the following statements are equivalent:

1. \(R \) is a \(u \)-\(S \)-Artinian ring;
2. \(R \) is a \(u \)-\(S \)-Noetherian ring, \(\text{Jac}_S(R) \) is \(S \)-nilpotent and \(R/\text{Jac}_S(R) \) is a \(u \)-\(S/\text{Jac}_S(R) \)-semisimple ring.

Proof. (1) \(\Rightarrow \) (2) Suppose \(R \) is a \(u \)-\(S \)-Artinian ring with respect to some \(s \in S \). We just need to prove \(R \) is \(u \)-\(S \)-Noetherian because the other two statements are showed in Proposition \(4.8 \) and Proposition \(4.5 \) respectively. Write \(J = \text{Jac}_S(R) \). By Proposition \(4.8 \) there exits an integer \(m \) such that \(tJ^m = 0 \) for some \(t \in S \). We will show \(R \) is \(u \)-\(S \)-Noetherian by induction on \(m \). Let \(m = 1 \). It follows by Proposition \(4.4 \) that \(R \) is \(u \)-\(S \)-Noetherian. Now, let \(m > 1 \). Set \(\overline{R} = R/J^{m-1} \). Then \(\overline{R} \) is also \(u \)-\(S \)-Artinian by Proposition \(2.9 \). Note that \(\text{Jac}_S(\overline{R}) = J/J^{m-1} \). So \(\text{Jac}_S(\overline{R}) \) is also \(u \)-\(S \)-torsion. Hence \(\overline{R} \) is \(u \)-\(S \)-Noetherian by induction. Since \(tJ^m = 0 \), \(tJ^{m-1} \) can also be seen as an ideal of \(R/J \). Since \(R/J \) is a \(u \)-\(S/\text{Jac}_S(R) \)-semisimple ring, \(R/J \) is also \(u \)-\(S \)-Noetherian by [17, Corollary 3.6]. So \(tJ^{m-1} \), and hence \(J^{m-1} \), are both \(u \)-\(S \)-Noetherian \(R \)-modules since \(J^{m-1} \) is \(u \)-\(S \)-isomorphic to \(tJ^{m-1} \). Considering the exact sequence \(0 \to J^{m-1} \to R \to R/J^{m-1} \to 0 \), we have \(R \) is also \(u \)-\(S \)-Noetherian by [13, Lemma 2.12].

(2) \(\Rightarrow \) (1) Write \(J = \text{Jac}_S(R) \). We may assume \(R \) is \(u \)-\(S \)-Noetherian with respect to \(s \) such that \(sJ^m = 0 \) and \(R/J \) is a \(u \)-\(S \)-semisimple \(R \)-module with respect to \(s \). We claim that \(J \) is a \(u \)-\(S \)-Artinian \(R \)-module. Since \(sJ^{m-1} \) is an \(S \)-finite \(R/J \)-module and \(R/J \) is a \(u \)-\(S \)-semisimple ring, we have \(sJ^{m-1} \) is \(u \)-\(S \)-Artinian by Corollary \(3.8 \). Consider the sequence \(0 \to sJ^{m-1} \to sJ^{m-2} \to sJ^{m-2}/sJ^{m-1} \to 0 \). Since \(sJ^{m-2}/sJ^{m-1} \) is an \(S \)-finite \(R/J \)-module, we have \(sJ^{m-2}/sJ^{m-1} \) is \(u \)-\(S \)-Artinian by
Corollary 3.8 Since sJ^{m-1} is u-S-Artinian, sJ^{m-2} is also u-S-Artinian by Proposition 2.9 Iterating these steps, we have sJ is also u-S-Artinian. So J is also u-S-Artinian since J is u-S-isomorphic to sJ.

Let $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$ be a descending chain of ideals of R. Consider the following natural commutative diagram with exact rows:

\[
\begin{array}{ccccccccc}
0 & \rightarrow & I_i \cap J & \rightarrow & I_i & \rightarrow & (I_i + J)/J & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & I_{i+1} \cap J & \rightarrow & I_{i+1} & \rightarrow & (I_{i+1} + J)/J & \rightarrow & 0.
\end{array}
\]

Since J is u-S-Artinian, there is an integer k_1 such that $s(I_{k_1} \cap J) \subseteq I_n \cap J$ for $n \geq k_1$. Since R/J is a u-S/J-semisimple ring, R/J is also a u-S/J-Artinian ring by Theorem 3.7. Hence there is an integer k_2 such that $s((I_{k_2} + J)/J) \subseteq (I_n + J)/J$ for $n \geq k_2$. Taking $k = \max\{k_1, k_2\}$, we can easily deduce $sI_k \subseteq I_n$ for $n \geq k$. Hence R is a u-S-Artinian ring. □

Let R be a commutative ring and M an R-module. Then the idealization of R by M, denoted by $R(+)M$, is equal to $R \bigoplus M$ as R-modules with coordinate-wise addition and multiplication $(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + r_2m_1)$. It is easy to verify that $R(+)M$ is a commutative ring with identity $(1, 0)$ (see [5] for more details). Note that there is a natural exact sequence of $R(+)M$-modules:

\[0 \rightarrow 0(+)M \rightarrow R(+)M \xrightarrow{\pi} R \rightarrow 0.\]

Let S be a multiplicative subset of R. Then it is easy to verify that $S(+)M = \{(s, m)|s \in S, m \in M\}$ is a multiplicative subset of $R(+)M$. Now, we give a u-S-Artinian property on idealizations.

Corollary 4.10. Let R be a commutative ring, S a multiplicative subset of R and M an R-module. Then $R(+)M$ is a u-$S(+)M$-Artinian ring if and only if R is a u-S-Artinian ring and M is an S-finite R-module.

Proof. Suppose $R(+)M$ is a u-$S(+)M$-Artinian ring. Then $R \cong R(+)M/0(+)M$ is a u-S-Artinian ring essentially by Proposition 2.9. By Theorem 4.9, $R(+)M$ is a u-$S(+)M$-Noetherian ring. So $0(+)M$ is an $S(+)M$-finite ideal of $R(+)M$, which implies that M is an S-finite R-module.

Suppose R is a u-S-Artinian ring and M is an S-finite R-module. Then M is u-S-Artinian R-module by Proposition 2.9. Let $I^*: I_1 \supseteq I_2 \supseteq \cdots$ be an descending chain of ideals of $R(+)M$. Then there is an descending chain of ideals of R: $\pi(I^*): \pi(I_1) \supseteq \pi(I_2) \supseteq \cdots$, where $\pi: R(+)M \rightarrow R$ is the natural epimorphism. Thus there is an element $s' \in S$ which is independent of I^* satisfying that there exists $k' \in \mathbb{Z}^+$
such that \(s' \pi(I_{k'}) \subseteq \pi(I_n) \) for any \(n \geq k' \). Similarly, \(I^* \cap 0(+)_M : I_1 \cap 0(+)_M \supseteq I_2 \cap 0(+)_M \supseteq \cdots \) is an descending chain of sub-ideals of \(0(+)_M \) which is equivalent to a descending chain of submodules of \(M \). So there is an element \(s'' \in S \) satisfying that there exists \(k'' \in \mathbb{Z}^+ \) such that \(s''(I_{k''} \cap 0(+)_M) \subseteq I_n \cap 0(+)_M \) for any \(n \geq k'' \). Let \(k = \max(k', k'') \) and \(n \geq k \). Consider the following natural commutative diagram with exact rows:

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & I_n \cap 0(+)_M & \longrightarrow & I_n & \longrightarrow & \pi(I_n) & \longrightarrow & 0 \\
& & \Big\downarrow & & \Big\downarrow & & \Big\downarrow & & \\
0 & \longrightarrow & I_k \cap 0(+)_M & \longrightarrow & I_k & \longrightarrow & \pi(I_k) & \longrightarrow & 0.
\end{array}
\]

Set \(s = s's'' \). Then we have \(sI_k \subseteq I_n \) for any \(n \geq k \). So \(R(+)M \) is a \(u\)-\(S(+)M \)-Artinian ring. \(\square \)

Acknowledgement.

The second author was supported by National Natural Science Foundation of China (No. 12201361).

References

[1] H. Ahmed, On \(S \)-Mori domains, *J. Algebra Appl.* 17(9) (2018) 1850171, 11 pp.

[2] D. D. Anderson and T. Dumitrescu, \(S \)-Noetherian rings, *Comm. Algebra* 30(9) (2002) 4407-4416.

[3] D. D. Anderson, A. Hamed and M. Zafrullah, On \(S \)-GCD domains, *J. Algebra Appl.* 18(4)(2019) 1950067, 14 pp.

[4] D. W. Anderson and K. R. Fuller, Rings and Categories of Modules, 13, (Springer Science & Business Media, 2012).

[5] D. D. Anderson and M. Winders, Idealization of a module, *J. Commut. Algebra* 1(1) (2009) 3-56.

[6] S. Bazzoni and L. Positselski, \(S \)-almost perfect commutative rings, *J. Algebra* 532 (2019) 323-356.

[7] D. Bennis and M. El Hajoui, On \(S \)-coherence, *J. Korean Math. Soc.* 55(6) (2018) 1499-1512.

[8] L. Fuchsand L. Salce, Modules over non-Noetherian domains, volume 84 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001.

[9] H. Kim, M. O. Kim and J. W. Lim, On \(S \)-strong Mori domains, *J. Algebra* 416 (2014) 314-332.

[10] H. Matsumura, Commutative Ring Theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2nd edn (1989). Translated from the Japanese by M. Reid

[11] K. N. Omid and H. Ahmed, Weakly \(S \)-artinian modules, *Filomat*, 35(15) (2021) 5215-5226.

[12] M. Özcn, O. Najji, U. Tekir and K. Shum, Characterization Theorems of \(S \)-Artinian Modules, *Comptes rendus de l’Académie bulgare des sciences: sciences mathématiques et naturelles* 74 (2021) 496-505.
[13] W. Qi, H. Kim, F. G. Wang, M. Z. Chen and W. Zhao, Uniformly S-Noetherian rings, https://arxiv.org/abs/2201.07913.

[14] E. S. Sengelen, U. Tekir and S. Koc, On S-Artinian rings and finitely S-cogenerated rings, *J. Algebra Appl.* 19(3) (2020) 2050051 (16 pages).

[15] F. G. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, (Singapore, Springer, 2016).

[16] X. L. Zhang, Characterizing S-flat modules and S-von Neumann regular rings by uniformity, *Bull. Korean Math. Soc.*, 59(3) (2022) 643-657.

[17] X. L. Zhang and Wei Qi, Characterizing S-projective modules and S-semisimple rings by uniformity, *J. Commut. Algebra*, to appear.

https://projecteuclid.org/journals/jca/journal-of-commutative-algebra/acceptedpapers