HARMONIC ANALYSIS ON THE TWISTED FINITE POINCARÉ UPPER HALF-PLANE

JORGE SOTO-ANDRADE AND JORGE VARGAS

Abstract. We prove that the induced representation from a non trivial character of the Coxeter torus of GL(2, F), for a finite field F, is multiplicity-free; we give an explicit description of the corresponding (twisted) spherical functions and a version of the Heisenberg Uncertainty Principle.

1. Introduction

Let F be a finite field, with q elements, and E be its unique quadratic extension. Put $G = GL(2, F)$ and denote by K the Coxeter torus of G, realized as the subgroup of all matrices $m_z (z \in E^\times)$ of the maps $w \mapsto zw (w \in E)$ with respect to a fixed F-basis of E. Recall that the finite homogeneous space $\mathcal{H} = G/K$ may be looked upon as the finite analogue of (the double cover of) the classical Poincaré Upper Half Plane (see [4]). Harmonic analysis on \mathcal{H} amounts to decompose the induced representation $\text{Ind}_K^G 1$ from the unit character 1 of K to G. We are interested here in the “twisted” version of this, i.e., the decomposition of the induced representation $\text{Ind}_K^G \Phi$ from a non (necessarily) trivial character Φ of K to G. The real analogue of this case has been considered in [1]. We prove that this representation is multiplicity-free, taking advantage of the fact that this is so for $\text{Ind}_K^G 1$ (see [3]) and reducing the computation of the multiplicities in $\text{Ind}_K^G \Phi$ to the ones in $\text{Ind}_K^G 1$. We also give an explicit description of the corresponding (twisted) spherical functions. Finally, we give a version of the Heisenberg Uncertainty Principle.

2. The Multiplicity One Theorem for $\text{Ind}_K^G \Phi$.

2.1. The case $\Phi = 1$. We consider first the special case $\Phi = 1$ in which the multiplicity one theorem follows from a geometric argument. In fact, we have

$$\text{Ind}_K^G 1 \simeq (L^2(\mathcal{H}), \tau),$$

where $L^2(\mathcal{H})$ stands for the space of all complex functions on \mathcal{H} endowed with the usual canonical scalar product, and τ denotes the natural representation of G in

Soto-Andrade was partially supported by FONDECYT Grants 92-1041 and 1940590, DTI – U. Chile, ICTP, ECOS-France and NSF Grant DMS-9022140 at MSRI. Vargas was partially supported by CONICET, CONICOR, SecytUNC, ICTP and TWAS.
$L^2(\mathcal{H})$, defined by $(\tau_g f)(z) = f(g^{-1}.z)$, where $z \mapsto g.z$ is the homographic action of G on \mathcal{H}, given by $g.z = \frac{az + b}{cz + d}$ for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G, z \in \mathcal{H}$.

Definition 1. For all $z, w \in \mathcal{H}$, we put $D(z, w) = \frac{N(z - w)}{N(z - \bar{w})}$ with the convention that $D(z, w) = \infty$ if $w = \bar{z}$.

Proposition 1. D is an orbit classifying invariant function for the homographic action of G in $\mathcal{H} \times \mathcal{H}$.

Corollary 1. The commuting algebra of $(L^2(\mathcal{H}), \tau)$ is commutative.

This follows from the fact that, the classifying invariant D being symmetric, the G-orbits in $\mathcal{H} \times \mathcal{H}$ are also symmetric. \qed

2.2. The case of general Φ.

Let’s denote by ϕ the restriction of Φ to $F \times$. We will prove that every twisting of an irreducible representation π_θ^d of G (where the superscript d denotes the dimension of π and θ its character parameter) by the character $(\Phi + \Phi^q)$ is isomorphic to a representation of the form $\pi_{\phi}^{d'} + \pi_{\phi'}^{d''}$, when restricted to K. In fact we will work with the characters χ_θ^d of the irreducible representations π_θ^d of G, for which we keep the notations of [5] or [2].

Lemma 1. On K we have
\begin{align*}
(\Phi + \Phi^q)\chi_{\alpha,\alpha}^q &= \chi_{\Phi(\alpha N)}^{q-1} + \chi_{\phi(\alpha N)}^{q+1}, \\
(\Phi + \Phi^q)\chi_{\alpha,\beta}^{q+1} &= \chi_{\phi(\alpha N)}^{q+1} - \chi_{\Phi(\alpha N)}^{q-1}, \\
(\Phi + \Phi^q)\chi_{\alpha,\beta}^{q-1} &= \chi_{\Phi(\alpha N)}^{q-1} - \chi_{\phi(\alpha N)}^{q+1}, \\
(\Phi + \Phi^q)\chi_\Lambda^q &= \chi_{\Phi(\alpha N)}^{q-1} + \chi_{\phi(\alpha N)}^{q+1}.
\end{align*}
\qed

Now for a character χ of G, we have $\chi \circ \text{Frob} = \chi$ on K, as it follows from the character table. Therefore $\sum_K \Phi(k^q)\chi(k) = \sum_K \Phi(k)\chi(k)$ because Frob is an involutive automorphism.

Hence, the multiplicity of π in $\text{Ind}_K^G \Phi$ equals $\frac{1}{2} \sum_K (\Phi + \Phi^q)(k)\pi(k)$ and so it is just the average of the multiplicities in $\text{Ind}_K^G 1$ of two representations of G (one of which may be virtual!)

Remark 1. Put $\pi_{\alpha,\alpha}^{q+1} = \pi_\alpha^q + \pi_\alpha^1$ and $\pi_{\alpha,\alpha}^{q-1} = \pi_\alpha^q - \pi_\alpha^1$ for every $\alpha \in (F^\times)^\wedge$. It is easy to check than in the degenerate cases $\alpha = \beta$ (for $\pi = \pi_{\alpha,\beta}^{q+1}$) and $\Lambda = \Lambda^q$ (for $\pi = \pi_{\Lambda,\Lambda}^{q-1}$) we find for the multiplicities $m_1(\pi)$
\begin{equation}
m_1(\pi_{\alpha,\alpha}^{q+1}) = 1 \quad (\alpha \in (F^\times)^\wedge) (1)
\end{equation}
and
\[m_1(\pi_{\alpha \circ N}^{q-1}) = -\delta_{\alpha,1} \quad (\alpha \in (F^\times)^\wedge) \] (2)

Using the fact that the multiplicities of the irreducible representations of \(G \) in \(\text{Ind}_K^G \Phi \) are at most one and also equations (1) and (2), we get that the multiplicities are also at most one in the more general case of \(\text{Ind}_K^G \Phi \).

\[\square \]

2.3. The multiplicities \(m_{\Theta,d}(\Phi) \) of \(\pi_{\Theta}^d \) in \(\text{Ind}_K^G \Phi \) for general \(\Phi \in (E^\times)^\wedge \). In Table 1 below, \(\pi_{\Theta}^d \) denotes an irreducible representation of \(G \), of dimension \(d \) and parameter \(\Theta \). Then \(d \in \{1, q, q + 1, q - 1\} \) and \(\Theta \) is of the form \(\{\alpha, \beta\} \) with \(\alpha, \beta \in (F^\times)^\wedge \) or \(\{\Lambda, \Lambda^q\} \) with \(\Lambda \in (E^\times)^\wedge \).

\(\pi_{\Theta}^d \)	\(m_{\Theta,d}(\Phi) \)
\(\pi_{\alpha,\alpha}^d \)	\(\delta_{\alpha^2,\phi} \)
\(\pi_{\alpha,\alpha}^{q+1} \)	\(\delta_{\alpha^2,\phi} - \delta_{\alpha \circ N,\Phi} \)
\(\pi_{\alpha,\beta}^{q+1} \)	\(\delta_{\alpha,\beta,\phi} \)
\(\pi_{\Lambda,\Lambda^q}^{q-1} \)	\(\delta_{\Lambda,\phi} - \delta_{\Lambda,\Phi} - \delta_{\Lambda^q,\Phi} \)

Table 1. The multiplicities \(m_{\Theta,d}(\Phi) \)

NOTATIONS. Here \(\alpha, \beta \in (F^\times)^\wedge \) with \(\alpha \neq \beta \) and \(\Phi, \Lambda \in (E^\times)^\wedge \) with \(\Lambda \neq \Lambda^q \), and \(\lambda \) (resp. \(\phi \)) denotes the restriction of the character \(\Lambda \) (resp. \(\Phi \)) to \((F^\times)^\wedge \).

3. The twisted spherical functions

3.1. The averaging construction. In this section \(G \) denotes an arbitrary finite group, \(K \) a subgroup of \(G \) and \(\Phi \) a one dimensional representation of \(K \). We notice that the spherical functions for the representation \(\text{Ind}_K^G \Phi \) are obtained as weighted averages of the characters of \(G \). More precisely:

Definition 2. Let \(L^1(G) \) be the group algebra of \(G \), realized as the convolution algebra of all complex functions of \(G \) and let \(L^1_K(G, K) \) be the convolution algebra of all complex functions \(f \) on \(G \) such that
\[f(kgk') = \Phi(k)f(g)\Phi(k') \]
for all \(g \in G, k, k' \in K \). For any \(f \in L^1(G) \) put
\[(P_{\Phi} f)(g) = \frac{1}{|K|} \sum_{k \in K} \Phi^{-1}(k)f(kg) \]
for all \(g \in G \).
Notice that the operator \(P_\Phi \) is just convolution with the idempotent function \(\varepsilon_K^\Phi \in L^1G \) which coincides with \(|K|^{-1} \Phi \) on \(K \) and vanishes elsewhere. Moreover \(L^1_K(G, K) \) may be written as \(\varepsilon_K^\Phi \ast L^1G \ast \varepsilon_K^\Phi \) and its elements \(f \) are characterized by the properties

\[
\varepsilon_K^\Phi \ast f = f = f \ast \varepsilon_K^\Phi.
\]

Lemma 2. Let \(\chi \) be the character of an irreducible representation \(\pi \) of \(G \). Then \(P_\Phi(\chi)(e) \neq 0 \) iff \(\pi \) appears in \(\text{Ind}_K^G \Phi \). \(\square \)

Lemma 3. \(P_\Phi(\chi) \) is a non-zero function iff it doesn’t vanish for \(g = e \). \(\square \)

Proposition 2. The mapping \(P_\Phi \) is an algebra epimorphism from the center \(Z(L^1G) \) of the convolution algebra \(L^1G \) onto the center \(Z(L^1_\Phi(G, K)) \) of the convolution algebra \(L^1_\Phi(G, K) \).

Proof: We have

\[
P_\Phi(f_1 \ast f_2) = \varepsilon_K^\Phi \ast (f_1 \ast f_2) = (f_1 \ast \varepsilon_K^\Phi) \ast f_2 = (f_1 \ast \varepsilon_K^\Phi \ast \varepsilon_K^\Phi) \ast f_2 = (\varepsilon_K^\Phi \ast f_1) \ast (\varepsilon_K^\Phi \ast f_2) = P_\Phi f_1 \ast P_\Phi f_2.
\]

since \(f_1 \) is central and \(\varepsilon_K^\Phi \) is idempotent. Moreover the dimension \(d \) of the image of \(Z(L^1G) \) under \(P_\Phi \) is the number of irreducible characters \(\chi \) of \(G \) such that \(P_\Phi(\chi) \neq 0 \); but \(P_\Phi(\chi) \neq 0 \) iff \((P_\Phi(\chi))(e) \neq 0 \) and, the number \((P_\Phi(\chi))(e) \) being the multiplicity in \(\text{Ind}_K^G \Phi \) of the representation \(\pi \) of \(G \) whose character is \(\chi \), we see that \(d \) is just the number of irreducible representations \(\pi \) of \(G \) appearing in \(\text{Ind}_K^G \Phi \), i.e. the dimension of the center of \(L^1_\Phi(G, K) \). \(\square \)

Corollary 2. The nonzero functions that satisfy the functional equation

\[
h(x)h(y) = \int_K \Phi(k)h(xky) \, dk
\]

linearly span the center of the algebra \(L^1_\Phi(G, K) \).

Proof: The functions \(h \) that satisfy the above functional equation are exactly the complex multiples of the functions \(P_\Phi(\chi) \); for a proof (see [3]). Therefore the corollary follows. \(\square \)

3.2. Explicit formulae for the twisted spherical functions.

Define

\[
S_\Lambda^\Phi(a) = -(q^2 - 1)^{-1} \sum_{(z, w) \in \Gamma_a} \Phi^{-1}(z) \Lambda(w)
\]

for \(\Lambda \in (E^\times)^\wedge \) and \(a \in F^\times \), where \(\Gamma_a \) denotes the set of all \((z, w) \in E^\times \times E^\times \) such that \(N(w) = aN(z) \) and \(Tr(w) = 2(a + 1)^{-1}Tr(z) \).
Then the spherical function ζ_Λ^Φ of G associated to the cuspidal character $\chi_{q^{-1}}^\Lambda$ of G is given on the representatives $d(a,1) = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$ $(a \in F^\times)$ for the K-double cosets in G, by

$$\zeta_\Lambda^\Phi(d(a,1)) = S_\Lambda^\Phi(a) + q(q+1)^{-1}\delta_{a,1}\delta_{\lambda,\phi},$$

where λ (resp. ϕ) denotes the restriction of the character Λ (resp. Φ) of E^\times to F^\times.

Notice that $a = 1$ corresponds to the origin in H and $a = -1$ corresponds to the antipode of the origin in H. It is not difficult to check that these formulae for the spherical functions are equivalent to the ones given in [4] for the case $\Phi = 1$.

3.3. A new form for the cuspidal spherical functions for $\Phi = 1$ (char $F \neq 2$).

For $a \neq 1$, one has the following new expression for the spherical functions estimated in [3]

$$\zeta_\Lambda^\Phi(a) = (q+1)^{-1}\sum_{u \in U} \varepsilon(Tr(u) - (a + a^{-1}))(\varepsilon \omega)(u),$$

for $a \neq 1$, where ε denotes the sign character of F^\times.

4. Heisenberg Uncertainty Principle

For this section, G denotes an arbitrary finite group, K any subgroup of G and Φ any linear character of K.

Let \hat{G}^Φ be set of all the equivalence classes of irreducible representations of G that contain the character Φ when restricted to K. For each equivalence class we choose, once and for all, a representative (π, V_π). As usual, for each f in $L^1(G)$, the Fourier Transform $\mathcal{F}(f)$, valued in the class (π, V_π), is the linear operator \mathcal{F} in V_π defined by

$$\mathcal{F}(f)(\pi) := \pi(f) := \frac{1}{|G|} \int_G f(g)\pi(g^{-1})dg := \frac{1}{|G|} \sum_{g \in G} f(g)\pi(g^{-1}).$$

We recall the statement of the Plancherel theorem for a function $f \in L^1_b(G,K)$

$$f(g) = \frac{1}{|G|} \sum_{\pi \in \hat{G}^\Phi} d_\pi \text{trace}(\pi(f)\pi(g));$$

here $g \in G$ arbitrary and $d_\pi := \text{dim } V_\pi$.

For any complex valued function f on G, let $|\text{supp}(f)|$ denote the number of elements of the support of f. That is, the number of points of G where f takes nonzero values.

Proposition 3 (Heisenberg Uncertainty Principle). For any nonzero function $f \in L^1_b(G,K)$ we have

$$|\text{supp}(f)| (\sum_{\pi \in \text{supp}(\mathcal{F}(f))} d_\pi) \geq |G|.$$

Here $\text{supp}(\mathcal{F}(f))$ is the subset of \hat{G}^Φ where $\mathcal{F}(f)$ does not vanish.
Proof: For any function f on G we recall that
\[\|f\|_2^2 = \sum_{x \in G} |f(x)|^2; \quad \|f\|_\infty = \max_{x \in G} |f(x)|; \quad \|f\|_2^2 \leq \|f\|_\infty^2 |\text{supp}(f)| \quad (*) \]

From now on, we fix a G–invariant inner product on V_π. Then T^* denotes the adjoint of a linear operator T on V_π with respect to this inner product. Also $\|T\|$ denotes the Hilbert-Schmidt norm on $\text{End} V_\pi$ defined by $\text{trace}(TS^*)$, for $S, T \in \text{End} V_\pi$.

Since $f \in L_1^1(G, K)$, as we pointed out before, the Plancherel Theorem says that we have that $\text{supp}(f)$ is contained in \hat{G}^Φ and that
\[f(x) = \frac{1}{G} \sum_{\pi \in \hat{G}^\Phi} d_\pi \text{trace}(\pi(f)\pi(x)). \]

The Cauchy–Schwarz inequality applied to the Hilbert-Schmidt inner product says that the first of the two following inequalities is true,
\[\text{trace}(\pi(f)\pi(x)) \leq \|\pi(f)\|\|\pi(x)\| \leq \|\pi(f)\|, \]
the second inequality follows from the fact that $\|T\| = 1$ for a unitary operator.

Putting together the last two statements we get
\[\|f\|_\infty \leq \frac{1}{G} \sum_{\pi \in \hat{G}^\Phi} d_\pi \|\mathcal{F}(f)(\pi)\| \]

The classical Cauchy–Schwarz inequality and the fact that $d_\pi = d_{\pi^*}^{\frac{1}{2}} d_{\pi^*}^{\frac{1}{2}}$ imply that
\[\|f\|_\infty^2 \leq \frac{1}{|G|^2} \sum_{\pi \in \hat{G}^\Phi} d_\pi \|\mathcal{F}(f)(\pi)\|^2 \sum_{\pi \in \text{supp}(\mathcal{F}(f))} d_\pi. \]

Now the L^2–version of Plancherel Theorem says that
\[\|f\|_2^2 = \frac{1}{|G|} \sum_{\pi \in \hat{G}^\Phi} d_\pi \|\mathcal{F}(f)(\pi)\|^2. \]

Therefore,
\[\|f\|_\infty^2 \leq \frac{1}{|G|} \|f\|_2^2 \sum_{\pi \in \hat{G}^\Phi} d_\pi. \]
Since f is nonzero, we apply (*) to the above inequality and get the desired result. \(\square\)

References

[1] Galina, E. and Vargas, J., Eigenvalues and eigenspaces for the twisted Dirac operator over $SU(n, 1)$ and $Spin(2n, 1)$, Trans. Amer. Math. Soc., 345 (1994), 97-113.
[2] Helversen-Pasotto, A., Repr´esentation de Gelfand-Graev et identit´es de Barnes, Enseign. Math. 32 (1986), 57-77.
[3] Katz, N., Estimates for Soto-Andrade sums, J. reine angew. Math. 438 (1993), 143-161.
[4] Soto-Andrade, J., Geometrical Gel’fand Models, tensor quotients and Weil representations, Proc. Symp. Pure Maths., 47, AMS, Providence, 1987, 305-316.
[5] Soto-Andrade, J., Répresentations de certains groupes symplectiques, Mém. 55-56, Soc. Math. France, 1975.
[6] Varadarajan, Spherical functions, Springer, Berlin.

Jorge Soto-Andrade, Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
E-mail address: sotoandr@mate.uncor.edu, sotoandr@abello.dic.uchile.cl

Jorge Vargas, FAMAF, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
E-mail address: vargas@mate.uncor.edu