Semi-parallelism of normal Jacobi operator
for Hopf hypersurfaces in complex two-plane Grassmannians

Konstantina Panagiotidou and Mukut Mani Tripathi

Abstract. It is proved the non-existence of Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, whose normal Jacobi operator is semi-parallel, if the principal curvature of the Reeb vector field is non-vanishing and the component of the Reeb vector field in the maximal quaternionic subbundle \mathcal{D} or its orthogonal complement \mathcal{D}^\perp is invariant by the shape operator.

2010 Mathematics Subject Classification. 53C40, 53C15.
Keywords and Phrases: Complex two-plane Grassmanian; Hopf hypersurface; semi-parallel; normal Jacobi operator.

1 Introduction

A complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$ is the set of all 2-dimensional linear subspaces in \mathbb{C}^{m+2}. It is a symmetric space and is equipped with both a Kaehler structure J and a quaternionic Kaehler structure J' with a canonical local basis $\{J_1, J_2, J_3\}$, which does not contain J.

Let M be a real hypersurface in $G_2(\mathbb{C}^{m+2})$, N a unit normal vector field of M and A the shape operator of M with respect to N. The Reeb vector field of M is the structure vector field given by $\xi = -JN$. Apart from the Reeb vector field, there are three more vector fields given by $\xi_\nu = -J_\nu N$, $\nu = 1, 2, 3$. Consequently, we have two distributions on M given by $[\xi] = \text{Span}\{\xi\}$ and $\mathcal{D}^\perp = \text{Span}\{\xi_1, \xi_2, \xi_3\}$. We denote by \mathcal{D} the orthogonal complement of the distribution \mathcal{D}^\perp such that $T_p M = \mathcal{D}_p \oplus \mathcal{D}^\perp_p$, for each point $p \in M$.

An important geometric condition for real hypersurfaces is the invariantness of the distributions $[\xi]$ and \mathcal{D}^\perp under the action of the shape operator. Under this condition, using a result due to Alekseevskii [1], Berndt and Suh classified the real hypersurfaces in the following:

Theorem 1.1 (Theorem 1, [4]) Let M be a connected real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$. Then both the distributions $[\xi]$ and \mathcal{D}^\perp are invariant under the shape operator of M if and only if either

- M is of type (A), that is M is an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$, or
- M is of type (B), that is m is even, say $m = 2n$, and M is an open part of a tube around a totally geodesic $\mathbb{H}P^n$ in $G_2(\mathbb{C}^{2n+2})$.

A real hypersurface M in $G_2(\mathbb{C}^{m+2})$ is said to be a Hopf hypersurface if the Reeb vector field ξ is principal, that is $A\xi = \alpha\xi$, where $\alpha = g(A\xi, \xi)$ is the corresponding principal curvature to ξ. In such a case the integral curves of the Reeb vector field ξ are geodesics.
are Hopf hypersurfaces. Of course, all of hypersurfaces in $G_2(\mathbb{C}^{m+2})$ mentioned in Theorem 1.1 are Hopf hypersurfaces.

In [2], Berndt introduced the notion of normal Jacobi operator
\[
\overline{R}_N(X) = \overline{R}(X, N)N \in \text{End}(T_xM), \quad x \in M,
\]
for a real hypersurface M in quaternionic projective spaces $\mathbb{H}P^m$ and in quaternionic hyperbolic spaces $\mathbb{H}H^m$, where \overline{R} is the curvature tensor of the ambient space. He also proved the equivalence of the commutation of \overline{R}_N with the shape operator A with the fact that the distributions \mathcal{D} and \mathcal{D}^\perp are invariant under the shape operator A.

The classification of real hypersurfaces in $G_2(\mathbb{C}^{m+2})$, whose normal Jacobi operator \overline{R}_N satisfies certain geometric conditions, is one of great importance in the area of Differential Geometry. In [15], Perez et. al. proved that \mathcal{D}^\perp-invariant real hypersurfaces in $G_2(\mathbb{C}^{m+2})$, whose normal Jacobi operator commutes with both the structure tensor φ and the shape operator A are locally congruent to one of type (A). Recently in [11], Jeong, Suh and the second author considered Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ which satisfy the following two commuting conditions
\[
\varphi A\overline{R}_N X = \overline{R}_N \varphi AX, \quad X \in T M \quad \text{and} \quad A\varphi_1 X = \varphi_1 AX, \quad X \in \mathcal{D}^\perp;
\]
and proved that such real hypersurfaces are locally congruent to one of type (A). The first condition is equivalent to $(\mathcal{L}_\xi \overline{R}_N)X = (\nabla_\xi \overline{R}_N)X$.

There are many interesting results concerning the non-existence of real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ under certain geometric conditions on the normal Jacobi operator. In [7], Jeong and Suh examined cases of real hypersurfaces in $G_2(\mathbb{C}^{m+2})$, when the normal Jacobi operator is Lie ξ-parallel, that is $\mathcal{L}_\xi \overline{R}_N = 0$. More precisely, they proved the non-existence of real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ with $\mathcal{L}_\xi \overline{R}_N = 0$ and one of the conditions $\xi \in \mathcal{D}^\perp$ and $\xi \in \mathcal{D}$. They also proved the non-existence of Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ with $\mathcal{L}_\xi \overline{R}_N = 0$ and commuting shape operator on the distribution \mathcal{D}^\perp.

In [9], it was proved that a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$ does not exist if the normal Jacobi operator is Lie parallel and the integral curves of \mathcal{D}- and \mathcal{D}^\perp- components of the Reeb vector field are totally geodesic. In [13], Machado et. al. proved the non-existence of Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ whose normal Jacobi operator is of Codazzi type (that is, $(\nabla_X \overline{R}_N)Y = (\nabla_Y \overline{R}_N)X$ for any $X, Y \in TM$) and \mathcal{D}- or \mathcal{D}^\perp-component of ξ is invariant by the shape operator. In [8], Jeong et. al. proved the non-existence of Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ with parallel normal Jacobi operator, that is $\nabla_X \overline{R}_N = 0$. In [10], the non-existence of Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ whose normal Jacobi operator is $(\{\xi\} \cup \mathcal{D}^\perp)$-parallel, which is a weaker condition then the previous one, was proved.

A tensor field P of type $(1, s)$ on a Riemannian manifold is said to be semi-parallel if $R \cdot P = 0$, where R is the curvature tensor of the manifold and acts as a derivation on P [6]. In the geometry of real hypersurfaces in complex space form the following results concerning the semi-parallelism conditions have been proved. In [16], Perez and Santos proved that there exist no real hypersurfaces in complex projective space CP^n, $n \geq 3$, with semi-parallel structure Jacobi operator (that is $R \cdot R_\xi = 0$, where $R_\xi = R(\cdot, \xi)\xi$ and ξ is the structure vector field). Later, Cho and Kimura [6] generalized this work and proved that there do not
exist real hypersurfaces in complex space forms equipped with semi-parallel structure Jacobi operator. Finally, Niebergall and Ryan in [14] studied real hypersurfaces in complex space forms equipped with the semi-parallel shape operator \(A \).

Motivated by these studies the following question is raised naturally:

Problem 1.2 Do there exist real hypersurfaces in \(G_2(\mathbb{C}^{m+2}) \), \(m \geq 3 \), whose normal Jacobi operator, structure Jacobi operator or shape operator is semi-parallel?

In the present paper we give the answer partially and prove the following:

Theorem 1.3 There does not exist any connected Hopf hypersurface \(M \) in \(G_2(\mathbb{C}^{m+2}) \), \(m \geq 3 \), equipped with semi-parallel normal Jacobi operator, if \(\alpha \neq 0 \) and \(\mathcal{D} \)- or \(\mathcal{D}^\perp \)-component of the Reeb vector field \(\xi \) is invariant by the shape operator \(A \).

The paper is organized as follows. In section 2, we give a brief description of complex two plane Grassmanians. In section 3 basic relations for real hypersurfaces in \(G_2(\mathbb{C}^{m+2}) \) are presented. Section 4 contains some key results for further use. Finally, in section 5, we give the proof of Theorem 1.3.

2 Riemannian Geometry of \(G_2(\mathbb{C}^{m+2}) \)

The complex two-plane Grassmannian \(G_2(\mathbb{C}^{m+2}) \) is the Grassmann manifold of all complex 2-dimensional linear subspaces in \(\mathbb{C}^{m+2} \). The special unitary group \(G = SU(m + 2) \) acts transitively on \(G_2(\mathbb{C}^{m+2}) \) with stabilizer isomorphic to \(K = S(U(2) \times U(m)) \subset G \). Thus \(G_2(\mathbb{C}^{m+2}) \) can be identified with the homogeneous space \(G/K \), which can be equipped with the unique analytic structure for which the natural action of \(G \) on \(G_2(\mathbb{C}^{m+2}) \) becomes analytic. Denote by \(\mathfrak{g} \) and \(\mathfrak{l} \) the Lie algebra of \(G \) and \(K \), respectively. Let \(\mathfrak{m} \) be the orthogonal complement of \(\mathfrak{l} \) in \(\mathfrak{g} \) with respect to the Cartan-Killing form \(B \) of \(\mathfrak{g} \). Then \(\mathfrak{g} = \mathfrak{l} \oplus \mathfrak{m} \) is an \(Ad(K) \)-invariant reductive decomposition of \(\mathfrak{g} \). We put \(o = eK \) and identify \(T_oG_2(\mathbb{C}^{m+2}) \) with \(\mathfrak{m} \) in the usual manner. Since \(B \) is negative definite on \(\mathfrak{g} \), therefore the restriction \(-B|_{\mathfrak{m} \times \mathfrak{m}} \) yields a positive definite inner product on \(\mathfrak{m} \). By \(Ad(K) \)-invariance of \(B \) this inner product can be extended to a \(G \)-invariant Riemannian metric \(g \) on \(G_2(\mathbb{C}^{m+2}) \). In this manner \(G_2(\mathbb{C}^{m+2}) \) becomes a Riemannian homogeneous symmetric space. For computational reasons we normalize the Riemannian metric \(g \) such that the maximal sectional curvature of \((G_2(\mathbb{C}^{m+2}), g) \) becomes 8.

When \(m = 1 \), \(G_2(\mathbb{C}^3) \) is isometric to the 2-dimensional complex projective space \(\mathbb{C}P^2 \) with constant holomorphic sectional curvature 8. When \(m = 2 \), the isomorphism \(Spin(6) \cong SU(4) \) provides an isometry between \(G_2(\mathbb{C}^4) \) and the real Grassmann manifold \(G_2^+(\mathbb{R}^6) \) of oriented 2-dimensional linear subspaces of \(\mathbb{R}^6 \). Therefore, we usually assume that \(m \geq 3 \).

The Lie algebra \(\mathfrak{l} \) has the direct sum decomposition \(\mathfrak{l} = \mathfrak{su}(m) \oplus \mathfrak{su}(m) \oplus \mathfrak{R} \), where \(\mathfrak{R} \) is the center of \(\mathfrak{l} \). Regarding \(\mathfrak{l} \) as the holonomy algebra of \(G_2(\mathbb{C}^{m+2}) \), the center \(\mathfrak{R} \) induces a Kaehler structure \(J \) and the \(\mathfrak{su}(2) \)-part induces a quaternionic Kaehler structure \(\mathcal{J} \) on \(G_2(\mathbb{C}^{m+2}) \). If \(J_\nu \) is any almost Hermitian structure in \(\mathcal{J} \), then \(JJ_\nu = J_\nu J \), and \(JJ_\nu \) is a symmetric endomorphism with \((JJ_\nu)^2 = I \) and \(\text{tr}(JJ_\nu) = 0 \).
A canonical local basis \(\{ J_1, J_2, J_3 \} \) of \(\mathfrak{J} \) consists of three local almost Hermitian structures \(J_\nu \) in \(\mathfrak{J} \) such that \(J_\nu J_{\nu+1} = J_{\nu+2} = -J_{\nu+1} J_\nu \), where the index is taken modulo 3. Since \(\mathfrak{J} \) is parallel with respect to the Riemannian connection \(\nabla \) of \((G_2(\mathbb{C}^{m+2}), g) \), there exist for any canonical local basis \(J_1, J_2, J_3 \) of \(\mathfrak{J} \) three local 1-forms \(q_1, q_2, q_3 \), such that
\[
\nabla_X J_\nu = q_{\nu+2}(X) J_{\nu+1} - q_{\nu+1}(X) J_{\nu+2} \tag{2.1}
\]
for all vector fields \(X \) on \(G_2(\mathbb{C}^{m+2}) \).

The Riemann curvature tensor \(\overline{R} \) of \(G_2(\mathbb{C}^{m+2}) \) is locally given by [3]
\[
\overline{R}(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX - 2g(JX, Y)JZ + \sum_{\nu=1}^{3} \{ g(J_\nu Y, Z) J_\nu X - g(J_\nu X, Z) J_\nu Y - 2g(J_\nu X, Y) J_\nu Z \} + \sum_{\nu=1}^{3} \{ g(J_\nu JY, Z) J_\nu JX - g(J_\nu JX, Z) J_\nu JY \} \tag{2.2}
\]
for all vector fields \(X, Y, Z \) on \(G_2(\mathbb{C}^{m+2}) \), where \(\{ J_1, J_2, J_3 \} \) is any canonical local basis of \(\mathfrak{J} \). This expression involves the Riemannian curvature tensor of \(S^{4m}, \mathbb{C}P^{2m} \) and \(\mathbb{H}P^{m} \).

3 Real hypersurfaces in \(G_2(\mathbb{C}^{m+2}) \)

Let \(M \) be a real hypersurface in \(G_2(\mathbb{C}^{m+2}) \), that is a hypersurface of \(G_2(\mathbb{C}^{m+2}) \) with real codimension one. The induced Riemannian metric on \(M \) is denoted by \(g \) and \(\nabla \) denotes the induced Riemannian connection of \((M, g) \). Let \(N \) be a local unit normal field of \(M \) and \(A \) the shape operator of \(M \) with respect to \(N \).

Now let us put
\[
JX = \varphi X + \eta(X)N, \quad J_\nu X = \varphi_\nu X + \eta_\nu(X)N \tag{3.1}
\]
for any tangent vector \(X \) of a real hypersurface \(M \) in \(G_2(\mathbb{C}^{m+2}) \).

The Kaehler structure \(J \) of \(G_2(\mathbb{C}^{m+2}) \) induces a local almost contact metric structure \((\varphi, \xi, \eta, g) \) on \(M \) in the following way
\[
\varphi^2 X = -X + \eta(X)\xi, \quad \eta(X) = 1, \quad \varphi \xi = 0, \quad \eta(X) = g(x, \xi).
\]

If \(M \) is orientable then \(\xi \) is globally defined and is the induced Reeb vector field on \(M \). Furthermore, let \(\{ J_1, J_2, J_3 \} \) be a canonical local basis of \(\mathfrak{J} \). Then each \(J_\nu \) induces an almost contact metric structure \((\varphi_\nu, \xi_\nu, \eta_\nu, g) \) on \(M \). Locally, the orthogonal complement of the real span of \(\xi \) in \(TM \) is denoted by \(\mathfrak{J} \) and the orthogonal complement of the real span of \(\xi_1, \xi_2, \xi_3 \) in \(TM \) is denoted by \(\mathfrak{D} \).
In view of (2.2), the Gauss equation is given by

\[R(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(\varphi Y, Z)\varphi X - g(\varphi X, Z)\varphi Y - 2g(\varphi X, Y)\varphi Z + \sum_{\nu=1}^{3} \left\{ g(\varphi_{\nu} Y, Z)\varphi_{\nu} X - g(\varphi_{\nu} X, Z)\varphi_{\nu} Y - 2g(\varphi_{\nu} X, Y)\varphi_{\nu} Z \right\} + \sum_{\nu=1}^{3} \left\{ g(\varphi_{\nu} Y, Z)\varphi_{\nu} \varphi X - g(\varphi_{\nu} \varphi X, Z)\varphi_{\nu} \varphi Y \right\} - \sum_{\nu=1}^{3} \left\{ \eta(Y)\eta_{\nu}(Z)\varphi_{\nu} \varphi X - \eta(X)\eta_{\nu}(Z)\varphi_{\nu} \varphi Y \right\} - \sum_{\nu=1}^{3} \left\{ \eta(X)g(\varphi_{\nu} \varphi Y, Z) - \eta(Y)g(\varphi_{\nu} \varphi X, Z) \right\} \xi_{\nu} + g(AY, Z)AX - g(AX, Z)AY \]

(3.2)

where \(R \) denotes the curvature tensor of the real hypersurface \(M \) in \(G_{2}(\mathbb{C}^{m+2}) \).

It is straightforward to verify the following identities

\[\varphi_{\nu} \xi_{\nu+1} = \xi_{\nu+2}, \quad \varphi_{\nu+1} \xi_{\nu} = -\xi_{\nu+2}, \]
\[\varphi_{\nu} \xi_{\nu} = \varphi_{\nu} \xi, \quad \eta_{\nu}(\varphi X) = \eta(\varphi_{\nu} X), \]
\[\varphi_{\nu} \varphi_{\nu+1} X = \varphi_{\nu+2} X + \eta_{\nu+1}(X)\xi_{\nu}, \]
\[\varphi_{\nu+1} \varphi_{\nu} X = -\varphi_{\nu+2} X + \eta_{\nu}(X)\xi_{\nu+1}. \]

(3.3)

In view of (3.1), (2.1) and (3.3), it is known that

\[(\nabla_X \varphi) Y = \eta(Y) AX - g(AX, Y) \xi, \quad \nabla_X \xi = \varphi AX, \]
\[\nabla_X \xi_{\nu} = q_{\nu+2}(X)\xi_{\nu+1} - q_{\nu+1}(X)\xi_{\nu+2} + \varphi_{\nu} AX, \]
\[(\nabla_X \varphi_{\nu}) Y = -q_{\nu+1}(X)\varphi_{\nu+2} Y + q_{\nu+2}(X)\varphi_{\nu+1} Y + \eta_{\nu}(Y) AX - g(AX, Y) \xi_{\nu}. \]

Summing up these formulas, we also find the following

\[\nabla_X (\varphi_{\nu} \xi) = (\nabla_X \varphi_{\nu}) \xi + \varphi_{\nu} (\nabla_X \xi) = -q_{\nu+1}(X)\varphi_{\nu+2} \xi + q_{\nu+2}(X)\varphi_{\nu+1} \xi + \eta_{\nu}(\xi) AX - g(AX, \xi) \xi_{\nu} + \varphi_{\nu} \varphi AX. \]

Moreover, from \(JJ_{\nu} = J_{\nu} J, \nu = 1, 2, 3 \), it follows that

\[\varphi_{\nu} \varphi X = \varphi_{\nu} X - \eta_{\nu}(X) \xi + \eta(X) \xi_{\nu}. \]

For more details we refer to [1], [3], [4] and [5].
4 Key Lemmas

We consider a connected, orientable, Hopf hypersurface \(M \) in \(G_2(C^{m+2}) \) with \(\alpha \neq 0 \) and semi-parallel normal Jacobi operator. The normal Jacobi operator \(\overline{R}_N \) for a real hypersurface \(M \) in \(G_2(C^{m+2}) \) is given by

\[
\overline{R}_N(X) = X + 3\eta(X)\xi + \sum_{\nu=1}^{3} \eta_{\nu}(X)\xi_{\nu}
\]

\[
- \sum_{\nu=1}^{3} \{ \eta_{\nu}(\xi) (\varphi_{\nu}\varphi X - \eta(X)\xi_{\nu}) - \eta_{\nu}(\varphi X)\varphi_{\nu}\xi \} \tag{4.1}
\]

for any vector field \(X \) tangent to \(M \). Furthermore, semi-parallelism condition of it, that is \(R(X,Y) \cdot \overline{R}_N = 0 \), implies

\[
R(X,Y)\overline{R}_NZ = \overline{R}_N(R(X,Y)Z) \tag{4.2}
\]

for all vector fields \(X, Y, Z \) tangent to \(M \).

Lemma 4.1 Let \(M \) be a Hopf hypersurface in \(G_2(C^{m+2}) \) such that \(\mathcal{D} \)- or \(\mathcal{D}^\perp \)-component of \(\xi \) is invariant by the shape operator \(A \) and \(\alpha \neq 0 \). If the normal Jacobi operator is semi-parallel, then \(\xi \in \mathcal{D} \) or \(\xi \in \mathcal{D}^\perp \).

Proof. Suppose that \(\xi \) is written as

\[
\xi = \eta(U)U + \eta(\xi_1)\xi_1 + \eta(\xi_2)\xi_2 + \eta(\xi_3)\xi_3, \tag{4.3}
\]

where \(U \) is a unit vector in \(\mathcal{D} \) and \(\eta(U) \neq 0 \) and \(\eta(\xi_\kappa) \neq 0 \) for at least one \(\kappa \in \{1,2,3\} \). Then relation (4.3) implies that

\[
\varphi_\kappa \xi = \eta(U)\varphi_\kappa U + \eta(\xi_{\kappa+1})\xi_{\kappa+2} - \eta(\xi_{\kappa+2})\xi_{\kappa+1}. \tag{4.4}
\]

From (4.1), we get

\[
\overline{R}_N(\xi) = 4\xi + 4 \sum_{\nu=1}^{3} \eta(\xi_{\nu})(\xi_{\nu}), \tag{4.5}
\]

\[
\overline{R}_N(\xi_\kappa) = 4\xi_\kappa + 4\eta(\xi_\kappa)\xi + 2\eta(\xi_{\kappa+1})\varphi_{\kappa+2}\xi - 2\eta(\xi_{\kappa+2})\varphi_{\kappa+1}\xi, \tag{4.6}
\]

\[
\overline{R}_N(\varphi_\kappa \xi) = 2\eta(\xi_{\kappa+1})\xi_{\kappa+2} - 2\eta(\xi_{\kappa+2})\xi_{\kappa+1}. \tag{4.7}
\]

Since the normal Jacobi operator is semi-parallel, from (4.2) and (4.5), we get

\[
\overline{R}_N(R(\xi,\xi_\kappa)\xi) = 4R(\xi,\xi_\kappa)\xi + 4 \sum_{\nu=1}^{3} \eta(\xi_{\nu})R(\xi,\xi_\kappa)\xi_{\nu}. \tag{4.8}
\]

Since \(\mathcal{D} \)- or \(\mathcal{D}^\perp \)-component of \(\xi \) is assumed to be invariant by the shape operator \(A \), we obtain

\[
AU = \alpha U \quad \text{and} \quad A\xi_\kappa = \alpha \xi_\kappa, \quad \kappa \in \{1,2,3\}. \tag{4.9}
\]
In view of (4.9), from relation (3.2) we get
\[R(\xi, \xi_\kappa)\xi = \alpha^2 \eta(\xi_\kappa)\xi - \alpha^2 \xi_\kappa + 2\eta(\xi_{\kappa+1})\varphi_{\kappa+2}\xi - 2\eta(\xi_{\kappa+2})\varphi_{\kappa+1}\xi. \] (4.10)

Substituting (4.10) in (4.8), we lead to the following
\[4 \sum_{\nu=1}^{3} \eta(\xi_\nu)R(\xi, \xi_\kappa)\xi_\nu = \alpha^2 \eta(\xi_\kappa)R_N(\xi) - \alpha^2 R_N(\xi_\kappa) \\
+ 2\eta(\xi_{\kappa+1})R_N(\varphi_{\kappa+2}\xi) - 2\eta(\xi_{\kappa+2})R_N(\varphi_{\kappa+1}\xi) \] (4.11)
\[- 4\alpha^2 \eta(\xi_\kappa)\xi + 4\alpha^2 \xi_\kappa \\
- 8\eta(\xi_{\kappa+1})\varphi_{\kappa+2}\xi + 8\eta(\xi_{\kappa+2})\varphi_{\kappa+1}\xi. \]

Taking the inner product of (4.11) with \(U \), in view of (4.6), (4.7) and (4.4) we obtain
\[\sum_{\nu=1}^{3} \eta(\xi_\nu)g(R(\xi, \xi_\kappa)\xi_\nu, U) = -\alpha^2 \eta(\xi_\kappa)\eta(U). \] (4.12)

We calculate \(R(\xi, \xi_\kappa)\xi_\nu \) from relation (3.2) taking into account (4.9) and then we take the inner product with \(U \) and we lead to the following relation
\[g(R(\xi, \xi_\kappa)\xi_\nu, U) = \alpha^2 \eta_\kappa(\xi_\nu)\eta(U). \] (4.13)

From (4.12) and (4.13) we get
\[\alpha^2 \eta(\xi_\kappa)\eta(U) = 0, \quad \kappa \in \{1, 2, 3\}, \]
which is a contradiction. □

Now, we examine the case when the Reeb vector field \(\xi \) belongs to the distribution \(\mathcal{D}^\perp \). In fact, we have the following

Lemma 4.2 Let \(M \) be a Hopf hypersurface in \(G_2(\mathbb{C}^{m+2}) \) and \(\alpha \neq 0 \), with semi-parallel normal Jacobi operator and \(\xi \in \mathcal{D}^\perp \) then \(g(A\mathcal{D}, \mathcal{D}^\perp) = 0 \).

Proof. Let \(W \in \mathcal{D} \) arbitrarily. In order to prove that \(g(A\mathcal{D}, \mathcal{D}^\perp) = 0 \), it suffices to prove that \(g(AW, \xi_\kappa) = 0, \kappa = 1, 2, 3 \). Since \(\xi \in \mathcal{D}^\perp \), we have that \(JN \in \mathfrak{j}N \). Let \(J_1 \) be an almost Hermitian structure of \(\mathfrak{j} \) such that \(JN = J_1N \). Then we obtain that \(\xi = \xi_1 \) and \(\eta(\xi_2) = \eta(\xi_3) = 0 \). Furthermore, \(\varphi_{\xi_2} = -\xi_3, \varphi_{\xi_3} = \xi_2 \) and \(\varphi(\mathcal{D}) \subset \mathcal{D} \).

Due to the fact that \(M \) is a Hopf hypersurface, we have that \(A\xi = \alpha \xi \) and so \(g(AW, \xi) = g(AW, \xi_1) = 0 \). Thus, it remains to prove that \(g(AW, \xi_\kappa) = 0, \quad \kappa = 2, 3 \).

From (4.1), we obtain
\[\overline{R}_N(\xi) = 8\xi, \quad \overline{R}_N(W) = W - \varphi_1 \varphi W. \] (4.14)

Using (4.14) in (4.2) we get
\[8R(W, \xi)\xi = \overline{R}_N(R(W, \xi)\xi). \] (4.15)
In view of $A\xi = \alpha \xi$, from (3.2), it follows that

$$R(W, \xi)\xi = W + \alpha AW - \varphi_1 \varphi W.$$

(4.16)

Substituting (4.16) in (4.15) and taking into consideration (4.14) we lead to the following

$$8W + 8\alpha AW - 8\varphi_1 \varphi W = R_N(W) + \alpha R_N(AW) - R_N(\varphi_1 \varphi W).$$

(4.17)

From (4.1) we also get

$$R_N(AW) = AW + 2\eta_2(AW)\xi_2 + 2\eta_3(AW)\xi_3 - \varphi_1 \varphi AW,$$

$$R_N(\varphi_1 \varphi W) = \varphi_1 \varphi W - \varphi_1 \varphi (\varphi_1 \varphi W).$$

Substitution of the previous two relations in (4.17) gives

$$7W + 7\alpha AW - 6\varphi_1 \varphi W = 2\alpha \eta_2(AW)\xi_2 + 2\alpha \eta_3(AW)\xi_3 + \varphi_1 \varphi (\varphi_1 \varphi W) - \alpha \varphi_1 \varphi AW.$$

Taking the inner product of the last relation with ξ_κ, $\kappa = 2, 3,$ and because of $\alpha \neq 0$ implies

$$\eta_\kappa(AW) = 0, \quad \kappa = 2, 3,$$

and this completes the proof. \blacksquare

Finally, in the case when the Reeb vector field ξ belongs to the distribution \frak{D}, we refer to the following

Proposition 4.3 (Proposition 3.1, [12]) Let M be a connected orientable Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$. If the Reeb vector ξ belongs to the distribution \frak{D}, then the distribution \frak{D} is invariant under the shape operator A of M, that is $g(A\frak{D}, \frak{D}^\perp) = 0$.

5 Proof of Theorem 1.3

In the previous section, because of Lemma 4.2, Proposition 4.3 and Theorem 1.1, we lead to the conclusion that real hypersurfaces in $G_2(\mathbb{C}^{m+2})$, under some additional assumptions, whose normal Jacobi operator is semi-parallel are locally congruent to real hypersurfaces of type (A) or (B). Now, we check if the normal Jacobi operator of such real hypersurfaces satisfies the semi-parallelism condition.

First, we recall the following proposition due to Berndt and Suh ([4]).

Proposition 5.1 (Proposition 3, [4]) Let M be a connected real hypersurface of $G_2(\mathbb{C}^{m+2})$. Suppose that $A\frak{D} \subset \frak{D}$, $A\xi = \alpha \xi$ and ξ is tangent to \frak{D}^\perp. Let $J_1 \in \frak{J}$ be the almost Hermitian structure such that $JN = J_1 N$. Then M has three (if $r = \frac{\pi}{2\sqrt{8}}$) or four (otherwise) distinct constant principal curvatures

$$\alpha = \sqrt{8} \cot(\sqrt{8}r), \quad \beta = \sqrt{2} \cot(\sqrt{2}r), \quad \lambda = -\sqrt{2} \tan(\sqrt{2}r), \quad \mu = 0,$$

with some $r \in (0, \frac{\pi}{2\sqrt{8}})$. The corresponding multiplicities are

$$m(\alpha) = 1, \quad m(\beta) = 2, \quad m(\lambda) = 2m - 2 = m(\mu),$$

8
and the corresponding eigenspaces are
\[T_\alpha = \mathbb{R} \xi = \mathbb{R} \xi_1 = \mathbb{R} J N = \text{Span} \{ \xi \} = \text{Span} \{ \xi_1 \}, \]
\[T_\beta = \mathbb{C}^+ \xi = \mathbb{C}^+ N = \mathbb{R} \xi_2 \oplus \mathbb{R} \xi_3 = \text{Span} \{ \xi_2, \xi_3 \}, \]
\[T_\gamma = \{ X/X \perp \mathbb{H} \xi, JX = J_1 X \}, \]
\[T_\mu = \{ X/X \perp \mathbb{H} \xi, JX = -J_1 X \}, \]
where \(\mathbb{R} \xi, \mathbb{C} \xi \) and \(\mathbb{H} \xi \) respectively denotes real, complex, quaternionic span of the structure vector field \(\xi \) and \(\mathbb{C}^+ \xi \) denotes the orthogonal complement of the \(\mathbb{C} \xi \) in \(\mathbb{H} \xi \).

In this case we have \(\xi = \xi_1 \). From (4.1) we obtain
\[\mathcal{R}_N(\xi) = 8 \xi \quad \text{and} \quad \mathcal{R}_N(\xi_2) = 2 \xi_2. \] (5.1)
Since the normal Jacobi operator is semi-parallel, from (4.2) and the second relation of (5.1) we obtain:
\[2R(\xi_2, \xi)\xi_2 = \mathcal{R}_N(R(\xi_2, \xi)\xi_2), \] (5.2)
Relation (3.2) for \(X = \xi_2, Y = \xi \) and \(Z = \xi_2 \) taking into account the fact that \(A\xi = \alpha \xi \) and \(A\xi_2 = \beta \xi_2 \) implies
\[R(\xi_2, \xi)\xi_2 = -(2 + \alpha \beta)\xi. \] (5.3)
Substitution of relation (5.3) in (5.2) leads to
\[(2 + \alpha \beta)\xi = 0. \]
The last relation taking into account that \(\alpha = \sqrt{8} \cot(\sqrt{8} r) \) and \(\beta = \sqrt{2} \cot(\sqrt{2} r) \) implies
\[\cot^2(\sqrt{2} r) = 0, \]
which is a contradiction. So real hypersurfaces of type (A) do not have semi-parallel normal Jacobi operator.

Next we check that whether real hypersurfaces of type (B) are equipped with semi-parallel normal Jacobi operator. We recall the following proposition due to Berndt and Suh ([4]).

Proposition 5.2 (Proposition 2, [4]) Let \(M \) be a connected real hypersurface of \(G_2(\mathbb{C}^{m+2}) \). Suppose that \(AD \subset \mathcal{D} \), \(A\xi = \alpha \xi \) and \(\xi \) is tangent to \(\mathcal{D} \). Then the quaternionic dimension \(m \) of \(G_2(\mathbb{C}^{m+2}) \) is even, say \(m = 2n \), and \(M \) has five distinct constant principal curvatures
\[\alpha = -2 \tan(2r), \quad \beta = 2 \cot(2r), \quad \gamma = 0, \quad \lambda = \cot(r), \quad \mu = -\tan(r), \]
with some \(r \in (0, \pi/4) \). The corresponding multiplicities are
\[m(\alpha) = 1, \quad m(\beta) = 3 = m(\gamma), \quad m(\lambda) = 4n - 4 = m(\mu), \]
and the corresponding eigenspaces are
\[T_\alpha = \mathbb{R} \xi = \text{Span} \{ \xi \}, \]
\[T_\beta = \mathfrak{J} J \xi = \text{Span} \{ \xi_1, \xi_2, \xi_3 \}, \]
\[T_\gamma = \mathfrak{J} \xi = \text{Span} \{ \varphi_1 \xi, \varphi_2 \xi, \varphi_3 \xi \}, \]
\[T_\lambda, T_\mu, \]
where
\[T_\lambda \oplus T_\mu = (\mathbb{H} \mathbb{C} \xi)^+, \quad \mathfrak{J} T_\lambda = T_\lambda, \quad \mathfrak{J} T_\mu = T_\mu, \quad J T_\lambda = T_\mu. \]
From (4.1) we obtain
\[\mathcal{R}_N(W) = W, \quad \mathcal{R}_N(\xi) = 4\xi \quad \text{and} \quad \mathcal{R}_N(\xi_\nu) = 4\xi_\nu, \quad \nu = 1, 2, 3, \] (5.4)
where \(W \in T_\lambda \). Due to the semi-parallelism of the normal Jacobi operator, from (4.2) and the first relation of (5.4) we get:
\[R(W, \xi)W = \mathcal{R}_N(R(W, \xi)W), \] (5.5)
The Gauss equation (3.2) for \(X = W, \ Y = \xi \) and \(Z = W \), because of \(A\xi = \alpha \xi \) and \(AW = \lambda W \) implies
\[R(W, \xi)W = -(1 + \alpha \lambda) \xi + \sum_{\nu=1}^{3} g(\varphi_\nu W, W)\xi_\nu. \] (5.6)
Substituting (5.6) in (5.5) and taking into account relation (5.4), we lead to the following
\[[1 + \alpha \lambda] \xi - \sum_{\nu=1}^{3} g(\varphi_\nu W, W)\xi_\nu = 0. \]
The inner product of the last relation with \(\xi \) and substitution of \(\alpha = -2\tan(2r) \) and \(\lambda = \cot(r) \) yield
\[1 - 2\tan(2r)\cot(r) = 0, \]
from which we obtain
\[3 + \tan^2(r) = 0, \]
which is a contradiction. So real hypersurfaces of type (B) do not admit semi-parallel normal Jacobi operator and this completes the proof. \(\blacksquare \)

Acknowledgements. The first author would like to express her gratitude to Professor Ph. J. Xenos. Second author is thankful to Professor Oldrich Kowalski for academic hospitality provided by him at Charles University during June 9-24, 2012.

References

[1] D. V. Alekseevskii, Compact quaternion spaces, Func. Anal. Priložen 2 (1968), no. 2, 11-20.

[2] J. Berndt, Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math. 419 (1991), 9-26.

[3] J. Berndt, Riemannian geometry of complex two-plane Grassmannians, Rend. Sem. Mat. Univ. Politec. Torino 55 (1997), no. 1, 19-83.

[4] J. Berndt and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians, Monatsh. für Math. 127 (1999), no. 1, 1-14.

[5] J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians, Monatsh. für Math. 137 (2002), no. 2, 87-98.
[6] J. T. Cho and M. Kimura, *Curvature of Hopf hypersurfaces in a complex space form*, Results Math. **61** (2012), no. 1-2, 127–135.

[7] I. Jeong and Y. J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with Lie ξ-parallel normal Jacobi operator*, J. Korean Math. Soc. **45** (2008), no. 4, 1113-1133.

[8] I. Jeong, H. J. Kim and Y. J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator*, Publ. Math. Debrecen **76** (2010), no.1-2, 203-218.

[9] I. Jeong, H. Lee and Y. J. Suh, *Hopf hypersurfaces in complex two-plane Grassmannians with Lie parallel normal Jacobi operator*, Bull. Korean Math. Soc. **48** (2011), no. 2, 427-444.

[10] I. Jeong and Y. J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with \mathfrak{S}-parallel normal Jacobi operator*, Kyungpook Math. J. **51** (2011) no. 4, 395-410.

[11] I. Jeong, Y. J. Suh and M. M. Tripathi, *Real hypersurfaces of type A in complex two-plane Grassmannians related to the normal Jacobi operator*, Bull. Korean Math. Soc. **49** (2012).

[12] H. Lee and Y. J. Suh, *Real hypersurfaces of type B in complex two-plane Grassmannians related to the Reeb vector*, Bull. Korean Math. Soc. **47** (2010), no. 3, 551-561.

[13] C. J. G. Machado, J. D. Perez, I. Jeong and Y. J. Suh, *Real hypersurfaces in complex two-plane Grassmannians whose normal Jacobi operator is of Codazzi type*, Cent. Eur. J. Math. **9** (2011), no. 3, 578-582.

[14] R. Niebergall and P. J. Ryan, *Semi-parallel and semi-symmetric real hypersurfaces in complex space forms*, Kyungpook Math. J. **38** (1998), 227-234.

[15] J. D. Perez, I. Jeong and Y. J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator*, Acta Math. Hungar. **117** (2007), no. 3, 201-217.

[16] J. D. Perez and F. G. Santos, *Real hypersurfaces in complex projective space whose structure Jacobi operator is cyclic-Ryan parallel*, Kyungpook Math. J. **49** (2009), 211-219.

Konstantina Panagiotidou
Mathematics Division-School of Technology,
Aristotle University of Thessaloniki,
Thessakibiju 54124, Greece,
Email: kapanagi@gen.auth.gr

Mukut Mani Tripathi
Department of Mathematics
Faculty of Science
Banaras Hindu University
Varanasi 221005, India
Email: mmtripathi66@yahoo.com