GENERALIZED HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR GA-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRAL

İMDAT İŞCAN AND SERCAN TURHAN

Abstract. In this paper, it is a function that is a GA-convex differentiable for a new identity. As a result of this identity some new and general fractional integral inequalities for differentiable GA-convex functions are obtained.

1. Introduction

The classical or the usual convexity is defined as follows:
A function \(f : \emptyset \neq I \subseteq \mathbb{R} \rightarrow \mathbb{R} \), is said to be convex on \(I \) if inequality

\[
 f(tx + (1-t)y) \leq tf(x) + (1-t)f(y)
\]

holds for all \(x, y \in I \) and \(t \in [0,1] \).

A number of papers have been written on inequalities using the classical convexity and one of the most fascinating inequalities in mathematical analysis is stated as follows

\[
 f\left(\frac{a + b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2},
\]

where \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a convex mapping and \(a, b \in I \) with \(a \leq b \). Both the inequalities hold in reversed direction if \(f \) is concave. The inequalities stated in (1.1) are known as Hermite-Hadamard inequalities.

For more results on (1.1) which provide new proof, significantly extensions, generalizations, refinements, counterparts, new Hermite-Hadamard-type inequalities and numerous applications, we refer the interested reader to [4]-[6],[8, 10, 11, 13, 14] and the references therein.

The usual notion of convex function have been generalized in diverse manners. One of them is the so called GA-convex functions and is stated in the definition below.

Definition 1. [10] [11] A function \(f : I \subseteq \mathbb{R} = (0, \infty) \rightarrow \mathbb{R} \) is said to be GA-convex function on \(I \) if

\[
 f\left(x^\lambda y^{1-\lambda}\right) \leq \lambda f\left(x\right) + (1-\lambda) f\left(y\right)
\]

2000 Mathematics Subject Classification. Primary 26D15; Secondary 26A51, Third 26D10, Fourth 26A15.

Key words and phrases. GA-convex, Hermite-Hadamard-Fejer type inequalities, Fractional Integral.
holds for all \(x, y \in I \) and \(\lambda \in [0, 1] \), where \(x^\lambda y^{1-\lambda} \) and \(\lambda f(x) + (1-\lambda)f(y) \) are respectively the weighted geometric mean of two positive numbers \(x \) and \(y \) and the weighted arithmetic mean of \(f(x) \) and \(f(y) \).

The definition of GA-convexity is further generalized as s-GA-convexity in the second sense as follows.

Definition 2.\cite{17} A function \(f : I \subseteq \mathbb{R} = (0, \infty) \rightarrow \mathbb{R} \) is said to be s-GA-convex function on \(I \) if
\[
\left(x^\lambda y^{1-\lambda} \right) \leq \lambda^s f(x) + (1-\lambda)^s f(y)
\]
holds for all \(x, y \in I \) and \(\lambda \in [0, 1] \) and for some \(s \in (0, 1] \).

For the properties of GA-convex functions and GA-\(s \)-convex functions, we refer the reader to \cite{9 12 14 15 16 17 21 22} and the reference there in.

Most recently, a number of findings have been seen on Hermite-Hadamard type integral inequalities for GA-convex and for GA-\(s \)-convex functions.

Zang at al. in \cite{20} established the following Hermite-Hadamard type integral inequalities for GA-convex function.

Theorem 1.\cite{20} Let \(f : I \subseteq \mathbb{R}^+ \rightarrow \mathbb{R} \) be differentiable on \(I^o \), and \(a, b \in I \) with \(a < b \) and \(f' \in L[a, b] \). If \(|f'|^q \) is GA-convex on \([a, b]\) for \(q \geq 1 \), then
\[
\int_a^b \left| bf(b) - af(a) - \int_a^b f(x)\,dx \right| \leq \frac{|(b-a)A(a,b)|^{1-1/q}}{2^{1/q}}
\]
\[
\times \left\{ \left[L(a, b^2, a^2) - a^2 \right] |f'(a)|^q + \left[b^2 - L(a^2, b^2) \right] |f'(b)|^q \right\}^{1/q}.
\]

Theorem 2.\cite{20} Let \(f : I \subseteq \mathbb{R}^+ \rightarrow \mathbb{R} \) be differentiable on \(I^o \), and \(a, b \in I \) with \(a < b \) and \(f' \in L[a, b] \). If \(|f'|^q \) is GA-convex on \([a, b]\) for \(q > 1 \), then
\[
\int_a^b \left| bf(b) - af(a) - \int_a^b f(x)\,dx \right| \leq (\ln b - \ln a)
\]
\[
\times \left[L(2a^q, b^q, a^q) - a^2(2q-1) \right]^{1-1/q} \left[A(|f'(a)|^q, |f'(b)|^q) \right]^{1/q}.
\]

Theorem 3. Let \(f : I \subseteq \mathbb{R}^+ \rightarrow \mathbb{R} \) be differentiable on \(I^o \), and \(a, b \in I \) with \(a < b \) and \(f' \in L[a, b] \). If \(|f'|^q \) is GA-convex on \([a, b]\) for \(q > 1 \) and \(2q > p > 0 \), then
\[
\int_a^b \left| bf(b) - af(a) - \int_a^b f(x)\,dx \right| \leq \frac{(\ln b - \ln a)^{1-1/q}}{p^{1/q}}
\]
\[
\times \left[L(2q-p, a^q(p-1), b^q(p-1)) \right]^{1-1/q}
\]
\[
\times \left\{ \left[L(a^p, b^p, a^p) - a^p \right] |f'(a)|^q + [b^p - L(a^p, b^p)] |f'(b)|^q \right\}^{1/q}.
\]

Theorem 4. Suppose that \(f : I \subseteq \mathbb{R} = (0, \infty) \rightarrow \mathbb{R} \) is s-GA-convex function in the second sense, where \(s \in (0, 1] \) and let \(a, b \in [0, \infty), a < b \). If \(f \in L[a, b] \), then the following inequalities hold
\[
2^{s-1} f \left(\sqrt{ab} \right) \leq \frac{1}{\ln b - \ln a} \int_a^b \frac{f(x)}{x}\,dx \leq \frac{f(a) + f(b)}{s + 1}.
\]
the constant $k = \frac{1}{s+1}$ is the best possible in the second inequality in (1.1).

If f in Theorem 5 is GA-convex function, then we get the following inequalities.

(1.6) \[f\left(\sqrt{ab}\right) \leq \frac{1}{\ln b - \ln a} \int_a^b \frac{f(x)}{x} \, dx \leq \frac{f(a) + f(b)}{2}. \]

For more results on GA-convex function and s-GA-convex function see e.g [9, 17, 21] and [22].

Definition 3. A function $f : I \subseteq \mathbb{R} = (0, \infty) \rightarrow \mathbb{R}$ is said to be geometrically symmetric with respect to \sqrt{ab} if the inequality $g\left(\frac{ab}{x}\right) = g(x)$ holds for all $x \in [a, b]$

Definition 4. Let $f \in L[a, b]$. The right-hand side and left-hand side Hadamard fractional integrals $J_{a^+}^\alpha f$ and $J_{b^-}^\alpha f$ of order $\alpha > 0$ with $b > a \leq 0$ are defined by

\[
J_{a^+}^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x \left(\ln \frac{x}{t}\right)^{\alpha-1} f(t) \frac{dt}{t}, \quad x > a
\]
\[
J_{b^-}^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b \left(\ln \frac{t}{x}\right)^{\alpha-1} f(t) \frac{dt}{t}, \quad x < b
\]
respectively where $\Gamma(\alpha)$ is the Gamma function defined by $\Gamma(\alpha) = \int_0^\infty e^{-t}t^{\alpha-1} \, dt$.

Lemma 1. For $0 < \theta \leq 1$ and $0 < a \leq b$ we have

\[|a^\theta - b^\theta| \leq (b - a)^\theta. \]

In [1] D. Y. Hwang found out a new identity and by using this identity, established a new inequalities. In this paper, we established a new identity similar to that’s identity in [1] and then we obtained some new and general integral inequalities for differentiable GA-convex functions using this lemma.

2. **Main result**

Throughout this section, let $\|g\|_{\infty} = \sup_{x \in [a, b]} |g(x)|$, for the continuous function $g : [a, b] \rightarrow \mathbb{R} = (0, \infty) \rightarrow \mathbb{R}$ be differentiable mapping I^α, where $a, b \in I$ with $a \leq b$, and $h : [a, b] \rightarrow (0, \infty)$ be differentiable mapping. In the following sections, for convenience, let the notion $L(t) = a^tG^{1-t}$, $U(t) = b^tG^{1-t}$ and $G = G(a, b) = \sqrt{ab}$.

Lemma 2. If $f' \in L(a, b)$ then the following inequality holds:

(2.1) \[|h(b) - 2h(a)| \frac{f(a)}{2} + h(b)\frac{f(b)}{2} - \int_a^b f(x)h'(x) \, dx \]
\[
\frac{\ln b - \ln a}{4} \left\{ \int_0^1 \left[2h (a^t G^{1-t}) - h(b) \right] f' (a^t G^{1-t}) a^t G^{1-t} \, dt
+ \int_0^1 \left[2h (b^t G^{1-t}) - h(b) \right] f' (b^t G^{1-t}) b^t G^{1-t} \, dt \right\}.
\]

Proof. By the integration by parts, we have

\[
I_1 = \int_0^1 \left[2h (a^t G^{1-t}) - h(b) \right] d (f (a^t G^{1-t}))
= \left[2h (a^t G^{1-t}) - h(b) \right] f (a^t G^{1-t}) \bigg|_0^1
- 2 \ln \left(\frac{a}{G} \right) \int_0^1 f (a^t G^{1-t}) h' (a^t G^{1-t}) a^t G^{1-t} \, dt
\]

and

\[
I_2 = \int_0^1 \left[2h (b^t G^{1-t}) - h(b) \right] d (f (b^t G^{1-t}))
= \left[2h (b^t G^{1-t}) - h(b) \right] f (b^t G^{1-t}) \bigg|_0^1
- 2 \ln \left(\frac{b}{G} \right) \int_0^1 f (b^t G^{1-t}) h' (b^t G^{1-t}) b^t G^{1-t} \, dt
\]

Therefore

\[
\frac{I_1 + I_2}{2} = \left[h(b) - 2h(a) \right] \frac{f(a) + f(b)}{2} + \frac{\ln b - \ln a}{2} \left\{ \int_0^1 f (a^t G^{1-t}) h' (a^t G^{1-t}) a^t G^{1-t} \, dt
+ \int_0^1 f (b^t G^{1-t}) h' (b^t G^{1-t}) b^t G^{1-t} \, dt \right\}
\]

This complete the proof. \(\square\)

Lemma 3. For \(a, G, b > 0\), we have

\[
\zeta_1 (a, b) = \int_0^1 t a^t G^{1-t} \left| 2h (a^t G^{1-t}) - h(b) \right| \, dt
\]

\[
\zeta_2 (a, b) = \int_0^1 (1-t) a^t G^{1-t} \left| 2h (a^t G^{1-t}) - h(b) \right| \, dt + \int_0^1 (1-t) b^t G^{1-t} \left| 2h (b^t G^{1-t}) - h(b) \right| \, dt
\]
Proof. Continuing inequality (2.1) in Lemma 1 we obtain:

\[\zeta_3(a, b) = \int_0^1 t b^t G^{1-t} \left| 2h (b^t G^{1-t}) - h(b) \right| dt \]

Theorem 5. Let \(f : I \subseteq \mathbb{R} = (0, \infty) \rightarrow \mathbb{R} \) be differentiable mapping \(I^o \), where \(a, b \in I^o \) with \(a < b \). If the mapping \(|f'| \) is GA-convex on \([a, b] \), then the following inequality holds:

\[\left| \left[h(b) - 2h(a) \right] \frac{f(a)}{2} + h(b) \frac{f(b)}{2} - \int_a^b f(x)h'(x)dx \right| \]

\[\leq \frac{\ln b - \ln a}{4} \left\{ \int_0^1 2h (a^t G^{1-t}) - h(b) \left| f' (a^t G^{1-t}) a^t G^{1-t} \right| dt \right. \]

\[+ \left. \int_0^1 2h (b^t G^{1-t}) - h(b) \left| f' (b^t G^{1-t}) b^t G^{1-t} \right| dt \right\} \]

where \(\zeta_1(a, b), \zeta_2(a, b), \zeta_3(a, b) \) are defined in Lemma 2.

Proof. Continuing inequality (2.1) in Lemma 1

\[\left| \left[h(b) - 2h(a) \right] \frac{f(a)}{2} + h(b) \frac{f(b)}{2} - \int_a^b f(x)h'(x)dx \right| \]

\[\leq \frac{\ln b - \ln a}{4} \left\{ \int_0^1 2h (a^t G^{1-t}) - h(b) \left| f' (a^t G^{1-t}) a^t G^{1-t} \right| dt \right. \]

\[+ \left. \int_0^1 2h (b^t G^{1-t}) - h(b) \left| f' (b^t G^{1-t}) b^t G^{1-t} \right| dt \right\} \]

Using \(|f'| \) is GA-convex in (2.7)

\[\left| \left[h(b) - 2h(a) \right] \frac{f(a)}{2} + h(b) \frac{f(b)}{2} - \int_a^b f(x)h'(x)dx \right| \]

\[\leq \frac{\ln b - \ln a}{4} \left\{ \int_0^1 2h (a^t G^{1-t}) - h(b) \left| t \cdot f'(a) + (1 - t) |f'(G)| \right| a^t G^{1-t} dt \right. \]

\[+ \left. \int_0^1 2h (b^t G^{1-t}) - h(b) \left| t \cdot f'(b) + (1 - t) |f'(G)| \right| b^t G^{1-t} dt \right\} \],

by (2.8) and Lemma 2, this proof is complete. \(\square \)

Corollary 1. \(g : [a, b] \rightarrow [0, \infty) \) be continuous positive mapping and symmetric to \(\sqrt{ab} \). Let \(h(x) = \int_a^x \left[(\ln t)^{\alpha-1} + (\ln t)^{\beta-1} \right] \frac{g(t)}{t} dt \) for all \(t \in [a, b] \) and \(\alpha > 0 \) in Teorem 5, we obtain:

\[\left(\frac{f(a) + f(b)}{2} \right) \left[J_\alpha^a g(b) + J_\alpha^b g(a) \right] - \left[J_\alpha^a (fg)(b) + J_\alpha^b (fg)(a) \right] \]
By left side of inequality (2.8) in Theorem 5, when we write

\[\|f(a)\|_\infty \leq \frac{\ln b - \ln a}{2\alpha + 1} \|g\|_\infty \left[C_1(\alpha) |f'(a)| + C_2(\alpha) |f'(G)| + C_3(\alpha) |f'(b)| \right] \]

where

\[C_1(\alpha) = \int_0^1 [(1 + t)^\alpha - (1 - t)^\alpha] t a^t G^{1-t} dt \]

\[C_2(\alpha) = \int_0^1 (1 - t) [(1 + t)^\alpha - (1 - t)^\alpha] [a^t G^{1-t} + b^t G^{1-t}] dt \]

\[C_3(\alpha) = \int_0^1 [(1 + t)^\alpha - (1 - t)^\alpha] t b^t G^{1-t} dt \]

Specially in (2.9) and using Lemma 2, for \(0 < \alpha \leq 1\) we have:

\[\left| \left(\frac{f(a) + f(b)}{2} \right) [J_+ a^t g(b) + J_- b^t g(a)] - [J_+ a^t (fg)(b) + J_- b^t (fg)(a)] \right| \]

\[\leq \frac{\ln b - \ln a}{2} \|g\|_\infty \left[C_1(\alpha) |f'(a)| + C_2(\alpha) |f'(G)| + C_3(\alpha) |f'(b)| \right] \]

where

\[C_1(\alpha) = \int_0^1 t^{\alpha + 1} a^t G^{1-t} \]

\[C_2(\alpha) = \int_0^1 [(1 + t) t^\alpha a^t G^{1-t} + (1 - t) t^\alpha b^t G^{1-t}] dt \]

\[C_3(\alpha) = \int_0^1 t^{\alpha + 1} b^t G^{1-t} \]

Proof. By left side of inequality (2.8) in Theorem 5, when we write \(h(x) = \int_a^x \left[(\ln \frac{b}{x})^{\alpha - 1} + (\ln \frac{x}{a})^{\alpha - 1} \right] \frac{g(t)}{t} dt \) for all \(t \in [a, b]\), we have

\[\left| \Gamma(\alpha) \left(\frac{f(a) + f(b)}{2} \right) [J_+ a^t g(b) + J_- b^t g(a)] - \Gamma(\alpha) [J_+ a^t (fg)(b) + J_- b^t (fg)(a)] \right| \]

On the other hand, right side of inequality (2.8)

\[\leq \frac{\ln b - \ln a}{4} \left\{ \left| \int_0^1 \frac{1}{2} \left[\ln \frac{b}{x}\right]^{\alpha - 1} \left[(\ln \frac{b}{x})^{\alpha - 1} + (\ln \frac{x}{a})^{\alpha - 1} \right] \frac{g(x)}{x} dx \right| \left| t |f'(a)| + (1 - t) |f'(G)| \right| a^t G^{1-t} dt \]
In the last inequality, we have

\[\frac{\ln b - \ln a}{4\Gamma(\alpha)} \left\{ \int_0^1 \left[\left(\ln \frac{b}{x} \right)^{\alpha-1} + \left(\ln \frac{x}{a} \right)^{\alpha-1} \right] \frac{g(x)}{x} dx \right\} \left(t |f'(b)| + (1 - t) |f'(G)| b^{\gamma - 1} dt \right) \]

and

\[\frac{\ln b - \ln a}{4\Gamma(\alpha)} \|g\|_{\infty} \left\{ \int_0^1 \left[\left(\ln \frac{b}{x} \right)^{\alpha-1} + \left(\ln \frac{x}{a} \right)^{\alpha-1} \right] \frac{1}{x} dx \right\} \left(t |f'(b)| + (1 - t) |f'(G)| b^{\gamma - 1} dt \right) \]

for all \(t \in [0, 1] \). By (2.10), (2.11) and (2.12), we have

\[\left(\frac{f(a) + f(b)}{2} \right) \left[J_{a^+}^\alpha g(b) + J_{b^-}^\alpha g(a) \right] - [J_{a^+}^\alpha (fg)(b) + J_{b^-}^\alpha (fg)(a)] \]

\[\leq \frac{\ln b - \ln a}{4\Gamma(\alpha)} \left\{ \int_0^1 \left[\left(\ln \frac{b}{x} \right)^{\alpha-1} + \left(\ln \frac{x}{a} \right)^{\alpha-1} \right] \frac{g(x)}{x} dx \right\} \left(t |f'(b)| + (1 - t) |f'(G)| b^{\gamma - 1} dt \right) \]

\[+ \frac{\ln b - \ln a}{4\Gamma(\alpha)} \|g\|_{\infty} \left\{ \int_0^1 \left[\left(\ln \frac{b}{x} \right)^{\alpha-1} + \left(\ln \frac{x}{a} \right)^{\alpha-1} \right] \frac{1}{x} dx \right\} \left(t |f'(b)| + (1 - t) |f'(G)| b^{\gamma - 1} dt \right) \]

In the last inequality,
\begin{align*}
&\int_{\alpha t^G-t}^{bG^{-1}} \left[\left(\ln \frac{b}{x} \right)^{\alpha-1} + \left(\ln \frac{x}{a} \right)^{\alpha-1} \right] \frac{1}{x} \, dx = \int_{\alpha t^G-t}^{bG^{-1}} \left(\ln \frac{b}{x} \right)^{\alpha-1} \frac{1}{x} \, dx + \int_{\alpha t^G-t}^{bG^{-1}} \left(\ln \frac{x}{a} \right)^{\alpha-1} \frac{1}{x} \, dx \\
&\quad = \frac{2}{\alpha} \left(\ln b - \ln a \right)^{\alpha} \left[(1 + t)^{\alpha} - (1 - t)^{\alpha} \right].
\end{align*}

By Lemma 1, we have
\begin{align*}
&\int_{\alpha t^G-t}^{bG^{-1}} \left[\left(\ln \frac{b}{x} \right)^{\alpha-1} + \left(\ln \frac{x}{a} \right)^{\alpha-1} \right] \frac{1}{x} \, dx = \int_{\alpha t^G-t}^{bG^{-1}} \left(\ln \frac{b}{x} \right)^{\alpha-1} \frac{1}{x} \, dx + \int_{\alpha t^G-t}^{bG^{-1}} \left(\ln \frac{x}{a} \right)^{\alpha-1} \frac{1}{x} \, dx \\
&\quad \leq \frac{2}{\alpha} \left(\ln b - \ln a \right)^{\alpha} \mu^\alpha.
\end{align*}

A combination of (2.13) and (2.14), we have (2.9). This complete is proof. □

Corollary 2. In Corollary 1,

(1) If \(\alpha = 1 \) is in corollary, we obtain following Hermite-Hadamard-Fejer Type inequality for GA-convex function which is related in (2.10):

\begin{align*}
&\int_{\alpha t^G-t}^{bG^{-1}} \left[\left(\ln \frac{b}{x} \right)^{\alpha-1} + \left(\ln \frac{x}{a} \right)^{\alpha-1} \right] \frac{1}{x} \, dx = \int_{\alpha t^G-t}^{bG^{-1}} \left(\ln \frac{b}{x} \right)^{\alpha-1} \frac{1}{x} \, dx + \int_{\alpha t^G-t}^{bG^{-1}} \left(\ln \frac{x}{a} \right)^{\alpha-1} \frac{1}{x} \, dx \\
&\quad \leq \frac{2}{\alpha} \left(\ln b - \ln a \right)^{\alpha} \mu^\alpha
\end{align*}

where for \(a, b, G > 0 \), we have

\begin{align*}
C_1(1) &= \frac{1}{t} \int_0^t a^t G^{-1} \, dt = \frac{2}{\ln b - \ln a} \left\{ -a + \frac{4a}{\ln b - \ln a} - \frac{8a - 8G}{(\ln b - \ln a)^2} \right\} , \\
C_2(1) &= \frac{1}{t} \int_0^t (1 - t) a^t G^{-1} \, dt + \frac{1}{t} \int_0^t (1 - t) b^t G^{-1} \, dt = \frac{2}{\ln b - \ln a} \left\{ \frac{2(a + b + 2G)}{\ln b - \ln a} + \frac{8(a - b)}{(\ln b - \ln a)^2} \right\} , \\
\text{and} \\
C_3(1) &= \frac{1}{t} \int_0^t t^2 a^t G^{-1} \, dt = \frac{2}{\ln b - \ln a} \left\{ b - \frac{4b}{\ln b - \ln a} + \frac{8b - 8G}{(\ln b - \ln a)^2} \right\} .
\end{align*}

(2) If \(g(x) = 1 \) is in corollary, we obtain following Hermite-Hadamard-Fejer Type inequality for GA-convex function which is related in (2.9):

\begin{align*}
&\left| \left(\frac{f(a) + f(b)}{2} \right) - \frac{\Gamma(\alpha + 1)}{2(\ln b - \ln a)^\alpha} \left[J^\alpha_a f(b) + J^\alpha_b f(a) \right] \right| \\
&\quad \leq \frac{\ln b - \ln a}{2^{\alpha + 2}} \left[C_1(\alpha) |f'(a)| + C_2(\alpha) |f'(G)| + C_3(\alpha) |f'(b)| \right].
\end{align*}

(3) If \(g(x) = 1 \) and \(\alpha = 1 \) is in corollary, we obtain following Hermite-Hadamard-Fejer Type inequality for GA-convex function which is related in (2.10):

\begin{align*}
&\left| \left(\frac{f(a) + f(b)}{2} \right) - \frac{\Gamma(\alpha + 1)}{2(\ln b - \ln a)^\alpha} \left[J^\alpha_a f(b) + J^\alpha_b f(a) \right] \right| \\
&\quad \leq \frac{\ln b - \ln a}{2^{\alpha + 2}} \left[C_1(\alpha) |f'(a)| + C_2(\alpha) |f'(G)| + C_3(\alpha) |f'(b)| \right].
\end{align*}
6, we obtain:

where for

(\ln) \leq \mid (ln α + 1) = 1. If the mapping \mid f'\mid is GA-convex on [a, b], then the following inequality holds:

\mid \mid (h(b) - 2h(a)) \frac{f(a)}{2} + h(b)\frac{f(b)}{2} - \int_{a}^{b} f(x)h'(x)dx \mid \leq \frac{\ln b - \ln a}{4} \left[C_1(1) |f'(a)| + C_2(1) |f'(G)| + C_3(1) |f'(b)| \right].

Theorem 6. Let \(f: I \subseteq \mathbb{R}^+ = (0, \infty) \rightarrow \mathbb{R} \) be differentiable mapping \(I^0 \), where \(a, b \in I \) with \(a < b \), and \(g: [a, b] \rightarrow [0, \infty) \) be continuous positive mapping and symmetric to \(\sqrt{ab} \) and \(\frac{1}{2} + \frac{1}{q} = 1 \). If the mapping \(|f'|^q \) is GA-convex on \([a, b] \), then the following inequality holds:

(2.19) \quad \left| \left(\frac{f(a) + f(b)}{2} \right) \left(\frac{g(a)}{a} \mid f'(a) \mid ^q + \frac{g(b)}{b} \mid f'(b) \mid ^q \right) \right| \leq \frac{\ln b - \ln a}{4} \left[C_1(1) \| f' \| + C_2(1) \| f'(G) \| + C_3(1) \| f'(b) \| \right].

Proof. Continuing from (2.7) in Theorem 5, we use Holder Inequality and we use that \(|f'|^q \) is GA-convex. Thus this proof is complete. \(\square \)

Corollary 3. Let \(h(x) = \int_{a}^{x} \left(\frac{\ln \frac{a}{t}}{t} \right)^{\alpha - 1} + \left(\frac{\ln \frac{b}{t}}{t} \right)^{\alpha - 1} \right) \frac{g(t)}{t} dt \) for all \(t \in [a, b] \) in Theorem 6, we obtain:

(2.20) \quad \left| \left(\frac{f(a) + f(b)}{2} \right) \left(J_{a+}^\alpha g(b) + J_{b-}^\alpha g(a) \right) - \left(J_{a+}^\alpha (fg)(b) + J_{b-}^\alpha (fg)(a) \right) \right| \leq \frac{\ln b - \ln a}{2^{\alpha+1} \Gamma (\alpha + 1)} \left(\frac{2^{\alpha+2} - 2^2}{\alpha + 1} \right) \left[C_1(\alpha, q) \mid f'(a) \mid ^q + C_2(\alpha, q) \mid f'(G) \mid ^q + C_3(\alpha, q) \mid f'(b) \mid ^q \right].

where for \(q > 1 \)

\begin{align*}
C_1(\alpha, q) &= \int_{0}^{1} \left[(1 + t)^\alpha - (1 - t)^\alpha \right] t a^q G^q(1-t) dt \\
C_2(\alpha, q) &= \int_{0}^{1} \left[(1 + t)^\alpha - (1 - t)^\alpha \right] \left(1 - t \right) \left(a^q G^q(1-t) + b^q G^q(1-t) \right) dt
\end{align*}
Corollary 4. When \(\alpha = 1 \) and \(g(x) = \frac{1}{\ln b - \ln a} \) is taken in Corollary 3, we obtain:

\[
\left| \left(\frac{f(a) + f(b)}{2} \right) \right| \leq \frac{(\ln b - \ln a)^{1+\frac{1}{q}}}{2^{\frac{1}{q}+\frac{1}{r}}} \left[C_1 (1, q) |f'(a)|^q + C_2 (1, q) |f'(G)|^q + C_3 (1, q) |f'(b)|^q \right]^{\frac{1}{q}}.
\]

This proof is complete.
ON GA-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRAL

REFERENCES

[1] D-Y. Hwang, Some inequalities for differentiable convex mapping with application to weighted trapezoidal formula and higher moments of random variables, Applied Mathematics and Computation, 217 (2011), 9598-9605.

[2] D-Y. Hwang, Some inequalities for differentiable convex mapping with application to weighted midpoint formula and higher moments of random variables, Applied Mathematics and Computation, 232 (2014), 68-75.

[3] P.S. Bullen, Handbook of Means and Their Inequalities, Mathematics and its Applications, Volume 560, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.

[4] S.S. Dragomir, Hermite-Hadamard’s type inequalities for convex functions of selfadjoint operators in Hilbert spaces, Linear Algebra Appl. 436 (2012), no. 5, 1503-1515.

[5] S.S. Dragomir and C.E.M. Pearce, Selected topics on Hermite-Hadamard type inequalities and applications, RGMIA Monographs, 2000. Available online at http://rgmia.vu.edu.au/monographs/hermite_hadamard.html.

[6] J. Hua, B.-Y. Xi, and F. Qi, Hermite-Hadamard type inequalities for geometrically s-convex functions, Commun. Korean Math. Soc. 29 (2014), No.1, pp.51-63.

[7] H.Hudzik and Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), no. 1, 100-111. V. N. Huy and N. T. Chung, Some generalization of the Fejer and Hermite-Hadamard inequalities in Hölder space, J. Appl. Math. Inform. 29 (2011), no. 3-4, 859-868.

[8] I. Iscan, New estimates on generalization of some integral inequalities for s-convex functions and their applications, International Journal of Pure and Applied Mathematics, 86, No.4 (2013).

[9] I. Iscan, Hermite-Hadamard type inequalities for GA-s-convex functions, Le Matematische,LXIX (2014)-Fasc. II, pp. 129-146.

[10] C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2) (2000), 155-167. Available online at http://dx.doi.org/10.7153/mia-03-19.

[11] C. P. Niculescu, Convexity according to means, Math. Inequal. Appl. 6 (4) (2003), 571-579. Available online at http://dx.doi.org/10.7153/mia-06-53.

[12] M.A. Latif, New Hermite Hadamard type integral inequalities for GA-convex functions with applications. Volume 34, Issue 4 (Nov 2014).

[13] Y. Shuang, H.-P. Yin, and F. Qi, Hermite-Hadamard type integral inequalities for geometrically-arithmetically s-convex functions, Analysis (Munich) 33 (2013), 197-208. Available online at http://dx.doi.org/10.1524/anly.2013.1192.

[14] T.-Y. Zhang, A.-P. Ji and F. Qi, Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means, Le Matematiche, Vol. LXVIII (2013) – Fasc. I, pp. 229–239. doi: 10.4418/2013.68.1.17.

[15] X.-M. Zhang, Y.-M. Chu, and X.-H. Zhang, The Hermite-Hadamard Type Inequality of GA-Convex Functions and Its Application, Journal of Inequalities and Applications, Volume 2010, Article ID 507560, 11 pages. doi:10.1155/2010/507560.

[16] A. P. Ji, T. Y. Zhang, F. Qi, Integral Inequalities of Hermite Hadamard Type (α, m)-GA convex functions, Journal of Function Space and Applications, 2013 (2013), Article ID 823856, 8 pages.

[17] I. Iscan, Hermite-Hadamard type inequalities for GA-s-convex functions, LE Mathematiche, LXIX (2014)-Fasc. II, pp. 129-146.

[18] C. P. Niculescu, Convexity according to geometric mean, Math. Inequal. Appl. 3 (2000), no. 2, 155-167.

[19] C. P. Niculescu, Convexity according to means, Math. Inequal. Appl. 3 (2003), no. 4, 571-579.

[20] Some inequalities of Hermite-Hadamard type for GA-Convex functions with applications to means, Le Matematiche, 48 (2013), no. 1, 229-239.

[21] M.A. Latif, S. S. Dragomir, E. Momoniat, Fejér type integral inequalities related with geometrically-arithmetically-convex functions with applications, (Submitted).

[22] M.A. Latif, S. S. Dragomir, E. Momoniat, Some Fejér type integral inequalities related with geometrically-arithmetically-convex functions with applications, (Submitted).
