The relationship between the expression of thymidylate synthase, dihydrofolate reductase, orotate phosphoribosyltransferase, excision repair cross-complementation group 1 and class III β-tubulin, and the therapeutic effect of S-1 or carboplatin plus paclitaxel in non-small-cell lung cancer

KATSUHIRO OKUDA, TSUTOMU TATEMATSU, MOTOKI YANO, KATSUMI NAKAMAE, TAKESHI YAMADA, TOSHIKO KASUGAI, TSUTOMU NISHIDA, MASAHIKO SANO, SATOKO MORIYAMA, HIROSHI HANEDA, OSAMU KAWANO, TADASHI SAKANE, RISA ODA, TAKUYA WATANABE, and RYOICHI NAKANISHI

1Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601; 2Department of Surgery, Aichi Medical University, Nagakute, Aichi 480-1195; 3Department of Surgery, Nagoya City West Medical Center, Nagoya, Aichi 462-8508; 4Department of Surgery, Kariya Toyota General Hospital, Kariya, Aichi 448-8505; 5Department of Surgery, Matsunami General Hospital, Hashima, Gifu 501-6062; 6Department of Surgery, Toyokawa City Hospital, Toyokawa, Aichi 442-8561; 7Department of Surgery, Nagoya Memorial Hospital, Nagoya, Aichi 468-8520, Japan

Received February 13, 2018; Accepted May 2, 2018

DOI: 10.3892/mco.2018.1619

Abstract. Previous studies have reported that the expressions of specific proteins may predict the efficacy of chemotherapy agents for non-small cell lung cancer (NSCLC) patients. The present study evaluated the expression of proteins hypothesized to be associated with the effect of chemotherapeutic agents in 38 NSCLC patients with pathological stage II and IIIA. The subjects received carboplatin plus paclitaxel (CP) or S-1 as adjuvant chemotherapy following complete resection. The protein expressions evaluated were those of thymidylate synthase (TS), dihydrofolate reductase (DPD) and orotate phosphoribosyltransferase (OPRT), which were suspected to be associated with the effect of S-1 agents, excision repair cross-complementation group 1 (ERCC1), which was suspected to be associated with the effect of platinum-based agents, and class III β-tubulin (TUBB3), which was suspected to be associated with the effect of taxane-based agents. The positive rate of TS was 55.3% (n=21/38), DPD was 57.9% (n=22/38), OPRT was 42.1% (n=16/38), ERCC1 was 47.4% (n=18/38) and TUBB3 was 44.7% (n=17/38). Among the patients who received S-1 adjuvant chemotherapy, TS-negative cases demonstrated a significantly better disease-free survival than positive cases. Thus, TS protein expression may have been a factor that predicted the effect of S-1 agent as adjuvant chemotherapy.

Introduction

The mortality rates of patients with advanced non-small cell lung cancer (NSCLC) remain high (1). To improve this poor prognosis, several adjuvant chemotherapies have been administered in patients with completely resected NSCLC, but the improvement of the survival rate is not ideal, and patients sometimes struggle with adverse effects, like nausea, neutropenia, and fatigue (2-10). Ideally, we would be able to predict the effects of chemotherapeutic agents and regimens for patients who received chemotherapy, especially for postoperative adjuvant chemotherapy, because whether or not adjuvant chemotherapy reduces the rate of recurrence is unclear. Even with cytotoxic anticancer drugs, the predictive factors of the therapeutic effect would ideally be revealed in a manner similar to that observed for molecular targeted therapy (11-13).

Recently, the expression of some proteins has been reported as a predictor of the efficacy of cytotoxic chemotherapeutic agents. Excision repair cross-complementation group 1 (ERCC1) is a DNA repair gene in the nucleotide excision

Correspondence to: Dr Katsuhiro Okuda, Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
E-mail: kokuda@med.nagoya-cu.ac.jp

Key words: non-small cell lung cancer, adjuvant chemotherapy, protein expression, thymidylate synthase, dihydrofolate reductase, orotate phosphoribosyltransferase, excision repair cross-complementation group 1, class III β-tubulin
repair pathway that is activated when platinum-based chemotherapeutic agents form DNA adducts (14). High ERCC1 expression in several cancers has been reported in association with resistance to platinum-based treatment (15-17). Class III β-tubulin (TUBB3) is a major component of the microtubules that are targeted by taxane-based agents, which exert their growth inhibitory effects through the inhibition of microtubule dynamics, resulting in the growth arrest of tumor cells at the G2-M phase (18). High expression of TUBB3 has been reported in association with resistance to taxane-based treatment in human cancers (19-21). Thymidylate synthase (TS) is an enzyme that generates deoxynthymidine monophosphate, which is subsequently phosphorylated to thymidine triphosphate for use in DNA synthesis and repair. High expression of TS has been reported in association with fluorouracil (5FU)-based chemotherapy (including S-1 agent) resistance in various cancers (22-24). Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in degrading 5-FU to 2-fluoro-β-alanine (25), and high expression of DPD has been reported in association with resistance to 5-FU-based chemotherapies (26-28). Orotate phosphoribosyltransferase (OPRT) is an enzyme involved in pyrimidine biosynthesis and contributes to the conversion of 5-FU into dUMP, an active form of 5-FU. Low expression of OPRT has been reported in association with resistance to 5-FU-based chemotherapies (29,30).

In this study, we investigated the expression of several proteins in completely resected NSCLC patients who received carboplatin plus paclitaxel (CP) or S-1 regimen as adjuvant chemotherapy.

Patients and methods

Patients. A multicenter randomized feasibility study of CP vs. S-1 in patients with locally advanced completely resected NSCLC was conducted. Forty patients underwent complete resection and were diagnosed with pathological stage II or IIIA NSCLC (the 7th edition of the Tumor‑Node‑Metastasis classification) (31) at Nagoya City University Hospital (Nagoya, Japan) and its affiliated hospitals between January 2008 and December 2013.

Written informed consent was obtained from all patients, and the study protocol was approved by the Institutional Review Board of each participating institution (Nagoya City University Hospital No. 45-13-0020). This study was registered on the UMIN Clinical Trial database (ID:000001510). We have reported on details of this study (32). In this paper, we evaluated the relationships between the protein expression and the prognosis of patients who received adjuvant chemotherapy after complete surgical resection. The randomization was performed centrally at the Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences (Nagoya, Japan).

Design of the study and treatment schedule. The patients were randomly assigned either to arm A (21 cases) receiving CP bi-weekly or to arm B (19 cases) receiving S-1. Among the 40 patients, two patients assigned to arm A could not continue the adjuvant chemotherapy because of a Grade 4 allergic reaction (anaphylactic shock) during the first cycle of paclitaxel infusion. We excluded these two patients from this additional study and investigated the 38 patients who received adjuvant chemotherapy over two courses.

The infusing dosage of paclitaxel was 120 mg m⁻² on days 1 and 15. Carboplatin at an area under the curve (AUC) 3 dose was also administered on days 1 and 15. The patients received adjuvant chemotherapy with carboplatin plus paclitaxel every four weeks for up to four cycles. Calvert's formula was used to calculate the dose of the AUC for carboplatin (33), while the creatinine clearance was determined with the Jellife formula (34). The dosage of S-1 was established as follows: patients with a body surface area (BSA) <1.25 m² received 40 mg twice a day (80 mg/day), those with BSA of ≥1.25 m² but <1.5 m² received 50 mg twice a day (100 mg/day), and those with a BSA ≥1.5 m² received 60 mg twice a day (120 mg/day). S-1 was administered for two weeks followed by a one-week rest period for up to one year. Both arms A and B continued on the above prescription unless any evidence for relapse, other malignancies, or severe adverse events were identified.

Recurrence was diagnosed on the basis of imaging study findings. Chest and abdominal computed tomography and positron emission tomography plus head magnetic resonance imaging were performed at 6- and 12-month intervals, respectively. In addition, when patients complained of any symptoms or exhibited elevated tumor markers on blood tests, imaging studies were performed.

Protein expression by immunohistochemistry. The ERCC1 protein expression was evaluated by immunohistochemistry (IHC) using an anti-ERCC1 antibody (clone 8F1; Abcam, Cambridge, UK). We used a standard protocol for the immunostaining of the samples. The details of the method were previously described (35). Tumor nuclear staining intensity was graded on a scale of 0-3. The percentage of positive tumor nuclei was graded on a scale of 0-3. The percentage of positive tumor nuclei was evaluated, and a proportion score was attributed (0 if 0%; 0.1 if 1-9%; 0.5 if 10-49%; 1.0 if ≥50%), as previously described (36,37).

The antibody against TUBB3 was an anti-class III β-tubulin monoclonal antibody (clone TUJ1; Covance, Inc., Princeton, NJ, USA). Having over 50% of positive cells with a staining intensity of 2 was considered TUBB3-positive (35).

TS protein was evaluated by IHC using recombinant human TS-specific antibody (clone RTSSA; Taiho Pharmaceutical, Co., Ltd., Saitama, Japan). The slides were examined at low magnification, and the intensity of cytoplasmic staining was scored as follows: 0, no staining or faint staining; 1+, moderate staining; 2+, strong staining. We classified scores of 0 as negative and scores of 1+ and 2+ as positive for the TS antibody. We also judged cases with <10% of tumor cells with moderate or strong staining as being negative (38).

OPRT protein expression was evaluated by IHC using an anti-OPRT polyclonal antibody (Taiho Pharmaceutical, Co., Ltd.) The staining was the same as for TS (38). Scores of 0 and 1+ were classified as negative and scores of 2+ as positive for the OPRT protein. We also judged cases with <10% of tumor cells with moderate or strong staining as being negative.

DPD protein expression was evaluated by IHC using anti-DPD polyclonal antibody RDPDPA (dilution: 1:400; Taiho Pharmaceutical, Co., Ltd.) The staining was the same as
the previously described method (28). Scores of 0 and 1+ were classified as negative and scores of 2+ as positive for the DPD protein. We also judged cases with <10% of tumor cells with moderate or strong staining as being negative.

All immunostained sections were evaluated by separate investigator without knowledge of the patients’ clinical data to evaluate H‑scoring accurately. Representative positive and negative cases of each IHC are shown in Fig. 1.

Statistical analysis. The sample size was determined based on a phase II study reported by Kawamura et al (39) applying docetaxel plus gemcitabine as an adjuvant chemotherapy in 35 patients. The number of patients in each arm was calculated using the Fleming method and found to be 32 per arm (32). However, sufficient data for patients in the study could not be gathered within the study period.

The characteristics, disease‑free survival (DFS), and the overall survival (OS) of 38 patients who received over two courses of adjuvant chemotherapy were analyzed. The five‑year DFS and OS were examined by the Kaplan‑Meier method, and the difference in the two arms was calculated by the log‑rank test. The differences in the rate of adverse events were evaluated by the χ2 test. All of the data were analyzed with the EZR software version 1.33 (www.jichi.ac.jp/saitama‑sct/SaitamaHP.files/statmedEN.html) (40). P≤0.05 was considered to indicate a statistically significant difference.

Results

Patients’ characteristics. Forty patients with stage II or IIIA NSCLC who had received surgically complete resection were enrolled. Among the 40 patients, 2 were excluded due to the cessation of adjuvant chemotherapy because of a grade 4 allergic reaction (anaphylactic shock) induced by paclitaxel. The patients’ characteristics are presented in Table I. Briefly, the patients were 7 females and 31 males ranging in age from 39‑75 years, with a mean age of 63.6 years. There were no significant differences in the clinicopathological characteristics between arms A and B.

Protein expression on IHC. The ERCC1 IHC staining was positive in 18/38 cases (47%) in all patients. The positive cases were 10/19 (53%) in arm A and 8/19 (42%) in arm B, and there was no significant difference in the ERCC1 protein expression among the various adjuvant chemotherapy regimens. No association between the expression of ERCC1 and clinicopathological factors was identified (data not shown).

The TUBB3 IHC staining was positive in 17/38 cases (45%) in all patients. The positive cases were 9/19 (47%) in arm A and 8/19 (42%) in arm B, and there was no significant difference in the TUBB3 protein expression among adjuvant chemotherapy regimens. No association between the expression of TUBB3 and clinicopathological factors was identified (data not shown).

The TS IHC staining was positive in 21/38 cases (55%) in all patients. The positive cases were 11/19 (58%) in arm A and 10/19 (53%) in arm B, and there was no significant difference in the TS protein expression among adjuvant chemotherapy regimens. No association between the expression of TS and clinicopathological factors was identified (data not shown).

The OPRT IHC staining was positive in 16/38 cases (42%) in all patients. The positive cases were 7/19 (37%) in arm A and 9/19 (47%) in arm B, and there was no significant difference in the OPRT protein expression among adjuvant chemotherapy regimens. No association between the expression of OPRT and clinicopathological factors was identified (data not shown).

Figure 1. Representative positive and negative cases of each immunohistochemistry result observed (magnification, x200). (A) TS positive case. (B) TS negative case. (C) DPD positive case. (D) DPD negative case. (E) OPRT positive case. (F) OPRT negative case. (G) ERCC1 positive case. (H) ERCC1 negative case. (I) TUBB3 positive case. (J) TUBB3 negative case. TS, thymidylate synthase; DPD, dihydropyrimidine dehydrogenase; OPRT, orotate phosphoribosyltransferase; ERCC1, excision repair cross-complementation group 1; TUBB3, class III β-tubulin.
The DPD IHC staining was positive in 22/38 cases (58%) in all patients. The positive cases were 14/19 (74%) in arm A and 8/19 (42%) in arm B, and there was no significant difference in the DPD protein expression among adjuvant chemotherapy regimens. No association between the expression of DPD and clinicopathological factors was identified (data not shown).

The survival. The correlations between the OS plus DFS and the clinicopathological factors of the 38 patients are summarized in Table II. No factors, including the protein expression, were found to have significantly influenced the OS or DFS. Furthermore, there were no significant differences in the OS and DFS between the CP and S-1 adjuvant chemotherapy regimens. The 5-year OS and DFS of 38 patients was 81.0 and 59.6%, respectively (Fig. 2A and B). The Kaplan-Meier curves based on the adjuvant chemotherapy regimens are shown in Fig. 2C and D.

The correlations between the OS plus DFS and the clinicopathological factors of the 38 patients who received CP adjuvant chemotherapy are summarized in Table III. There were no factors found to have significantly influenced the OS or DFS.
Table III. Correlation with overall survival plus disease free survival and clinicopathological factors for Carboplatin plus paclitaxel patients.

Factor	Subgroup	Total n (n=19)	Overall survival	Disease free survival		
			5-year survival (%)	P-value	5-year survival (%)	P-value
Age, years	≤65/>65	9/10	76.2/80.0	0.598	63.5/40.0	0.281
Sex	Male/female	14/5	70.7/100	0.134	47.6/60.0	0.601
Tissue type	Adenocarcinoma/others	11/8	90.9/60.0	0.325	36.4/72.9	0.172
Pathological stage	IIIA/IIB or IIIA	9/10	76.2/80.0	0.473	53.3/50.0	0.902
ERCC1	Positive/negative	10/9	58.3/100	0.773	67.5/33.3	0.129
TUBB3	Positive/negative	9/10	77.8/78.7	0.527	44.4/57.1	0.502
TS	Positive/negative	11/8	71.6/87.5	0.310	53.0/50.0	0.700
OPRT	Positive/negative	7/12	68.6/83.3	0.824	68.6/41.7	0.321
DPD	Positive/negative	14/5	77.9/80.0	0.806	62.9/20.0	0.164

CP, carboplatin plus paclitaxel; ERCC1, excision repair cross-complementation group 1; TUBB3, class III β-tubulin; TS, thymidylate synthase; OPRT, orotate phosphoribosyltransferase; DPD, dihydropyrimidine dehydrogenase.

OS or DFS in the patients who received the CP regimen. The protein expressions of ERCC1 and TUBB3 did not affect the OS or DFS.

The correlations between the OS plus DFS and the clinicopathological factors of the 19 patients who received S-1 adjuvant chemotherapy are summarized at Table IV. There were no factors found to have significantly influenced the OS in the patients who received the S-1 regimens. In the analysis of the DFS, the protein expression of TS was the only significant prognostic factor. However, the protein expression of TS did not affect the OS (Fig. 3A) or DFS (Fig. 3B) in the investigation of all 38 patients. Furthermore, the protein expression of TS did not affect the OS (Fig. 3C) in the investigation of the 19 patients who received S-1 adjuvant chemotherapy. However, when we limited our investigation to the DFS of the patients who received S-1 adjuvant chemotherapy, the
Table IV. Correlation with overall survival plus disease free survival and clinicopathological factors for S-1 patients.

Factor	Subgroup	Total n (n=19)	Overall survival 5-year survival (%) P-value	Disease free survival 5-year survival (%) P-value
Age, years	≤65/>65	11/8	80.8/87.5 0.202	63.6/75.0 0.389
Sex	Male/female	17/2	81.6/100 0.316	64.7/100 0.297
Tissue type	Adenocarcinoma/others	13/6	83.9/83.3 0.839	76.9/50.0 0.570
Pathological stage	IIA/IIB or IIIA	8/11	100/70.7 0.065	87.5/54.5 0.072
ERCC1	Positive/negative	8/11	100/72.7 0.142	87.5/54.5 0.346
TUBB3	Positive/negative	8/11	100/72.7 0.241	87.5/54.5 0.346
TS	Positive/negative	10/9	77.8/88.9 0.187	50.0/88.9 0.044
OPRT	Positive/negative	9/10	100/70.0 0.496	66.7/70.0 0.783
DPD	Positive/negative	8/11	100/70.7 0.587	75.0/63.6 0.721

CP, carboplatin plus paclitaxel; ERCC1, excision repair cross-complementation group 1; TUBB3, class III β-tubulin; TS, thymidylate synthase; OPRT, orotate phosphoribosyltransferase; DPD, dihydropyrimidine dehydrogenase.

Figure 3. Kaplan-Meier analyses. (A) The overall survival of the 38 patients associated with the protein expression of TS. (B) The disease-free survival of the 38 patients associated with the protein expression of TS. (C) The overall survival of the 19 patients who received S-1 adjuvant chemotherapy, associated with the protein expression of TS. (D) The disease-free survival of the 19 patients who received S-1 adjuvant chemotherapy, associated with the protein expression of TS. TS, thymidylate synthase.

TS-negative cases showed a longer DFS than the TS-positive cases (Fig. 3D).

Discussion

The survival of patients with advanced lung cancer is still unfavorable compared with malignant tumors of other organs (1). Recently, improved outcomes have been achieved with molecular-targeted therapy for select patients with epidermal growth factor receptor (EGFR)-activating mutations or ALK translocation (11-13). Understanding the genetic and molecular variations that affect the efficacy of chemotherapeutic agents may improve patient care by allowing physicians to optimize treatment for each patient. Even with cytotoxic anticancer drugs, it would be useful to know the factors predictive of a therapeutic effect before starting the administration of chemotherapy.

In this study, we evaluated the expression of several proteins in 38 patients with stage II and IIIA NSCLC who had received CP or S-1 as adjuvant chemotherapy. The
5-year OS and DFS of these 38 patients were 81.0 and 59.6%, respectively. These findings are comparable to those that have been reported recently (1,41). Concerning the OS analysis, the EGFR mutation status has been shown to influence the prognosis after relapse (11-13). Molecular-targeted therapeutic drugs apparently extend the OS in cases with EGFR mutations. It is therefore difficult to evaluate the effect of adjuvant chemotherapy on the OS in our small-scale study, because we don't have the data of gene mutations about all patients of this study. We should evaluate the DFS to clarify the relationship between protein expression and adjuvant chemotherapy efficacy. We should check the gene mutations (EGFR and ALK) to evaluated the effect of adjuvant chemotherapy on the OS in the future studies.

The CP regimen is considered as a standard chemotherapy regimen for recurrent and advanced lung cancer (42-46). We used the regimen of bi-weekly paclitaxel plus carboplatin to be able to complete the adjuvant chemotherapy without interruption due to side effects. As S-1 is considered more effective than UFT, long-term S-1 administration may be promising as an adjuvant chemotherapy regimen for advanced lung cancer (47). Indeed, several studies have shown that S-1 administration as adjuvant chemotherapy is associated with significant survival benefits following surgically complete resection for NSCLC (47,48). In this study, the 5-year OS and DFS were almost the same between the S-1 group and the CP group.

We investigated the protein expressions of ERCC1 and TUBB3, which are believed to be associated with the effect of platinum- and taxane-based chemotherapies, respectively. Previously, ERCC1-positive cases were reported to show more resistance to platinum-based chemotherapy than negative cases (16), but no relationship was noted between the ERCC1 expression and the prognosis, even in the patients who received the CP regimen in this study. We obtained similar findings concerning the TUBB3 expression. TUBB3-negative cases have previously been reported to show a better prognosis than positive ones. The prognostic effect of TUBB3 expression observed in this study, even in the patients who received CP regimen, was not consistent with prior published reports in the setting of advanced NSCLC (35,49,50). This discrepancy may be attributed to the small patient population in this study.

We also evaluated the protein expressions of TS, DPD, and OPRT, which are believed to be associated with the effect 5-FU-related agents, including S-1. Specifically, the overexpression of TS and DPD have been reported to be associated with resistance to S-1 (26-28). In contrast, the overexpression of OPRT was reported to be associated with a better prognosis in patients who received S-1 chemotherapy (30). In the present study, the expression of DPD and OPRT showed no association with the OS or DFS, even in the patients who received S-1 chemotherapy. The expression of TS did not have an association with the OS or DFS in the total population or with the OS in the 19 patients who received S-1. However, in the analysis of the DFS of the 19 patients who received S-1, the patients with TS overexpression showed a significantly poorer prognosis than the TS-negative patients.

One limitation associated with this study was the small patient population, as only 19 cases received S-1 and 19 cases received CP. Among the 40 patients, 2 were excluded due to the cessation of adjuvant chemotherapy because of a grade 4 allergic reaction (anaphylactic shock) induced by paclitaxel. The frequency of the anaphylactic shock (5%) was higher than previous reports. We think that the small sample size of this study will affect to the result. However, the adverse effects of S-1 were tolerable, and S-1 chemotherapy may be considered a promising adjuvant chemotherapy for patients with advanced disease who have undergone complete surgical resection. Further large-scale analyses of the relationship between TS expression and chemotherapeutic effects are desired. Moreover, we should evaluate the relationship among each protein expression in a large-scale clinical trial in the future.

We herein showed that TS is a potentially useful biomarker to help identify patients who will benefit from S-1 adjuvant chemotherapy.

Acknowledgements
Not applicable.

Funding
No funding was received.

Availability of data and material
The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions
KO and MY designed the present study. KO, KN, TY, TK, TN, MS, SM, HH, OK and MY collected the patients’ data. KO, TT, TS, RO, TW and RN analyzed the patients’ data. KO was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Written informed consent was obtained from all patients, and the study protocol was approved by the Institutional Review Board of each participating institution (Nagoya City University Hospital no. 45-13-0020). This study was carried out in accordance with the Declaration of Helsinki.

Consent for publication
Written informed consent was obtained from all patients.

Competing interests
The authors declare that they have no competing interests.

References
1. Deterbeck FC, Chansky K, Groome P, Bolejack V, Crowley J, Shemenski L, Kennedy C, Krasnik M, Peake M, Rami-Porta R, et al: The IASLC lung cancer staging project: Methodology and validation used in the development of proposals for revision of the stage classification of NSCLC in the forthcoming (eighth) edition of the TNM classification of lung cancer. J Thorac Oncol 11: 1433-1446, 2016.
2. Kis MG, Gaspar LE, Chaft JE, Kennedy EB, Azzoli CG, Ellis PM, Lin SH, Pass HI, Seth R, Shepherd FA, et al: Adjuvant systemic therapy and adjuvant radiation therapy for stage I IIIA completely resected non-small cell lung cancers: American society of clinical oncology/cancer care ontario clinical practice guideline update. J Clin Oncol 35: 2960-2974, 2017.

3. Pisters KM, Evans WK, Azzoli CG, Kris MG, Smith CA, Desch CE, Somerfield MR, Brouwers MC, Darling G, Ellis PM, et al: Cancer care onario American society of clinical oncology/adjuvant chemotherapy and adjuvant radiation therapy for stages I-IIIA resectable non-small cell lung cancer guideline. J Clin Oncol 25: 5506-5518, 2007.

4. Crínó L, Weder W, van Meerbeeck J and Felip E: ESMO Guidelines Working Group: Early stage and locally advanced (non‑metastatic) non‑small‑cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow‑up. Ann Oncol 21 (Suppl 5): vi103-vi115, 2010.

5. NSCLC Meta-analyses Collaborative Group, Arriagada R, Auperin A, Burdett S, Higgins JP, Johnson DH, Le Chevalier T, Le Pechoux C, Parmar MK, Pignon JP, et al: Adjuvant chemo‑therapy, with or without postoperative radiotherapy, in operable non‑small‑cell lung cancer: Two meta‑analyses of individual patient data. Lancet 375: 1267-1277, 2010.

6. Fruh M, Rolland E, Pignon JP, Seymour L, Ding K, Tribodet H, Winton T, Le Chevalier T, Scaglotti GV, Douillard JY, et al: Postoperative adjuvant cisplatin‑based chemotherapy for completely resected non‑small‑cell lung cancer. J Clin Oncol 26: 3573-3581, 2008.

7. Hotta K, Matsuo K, Ueoka H, Kiura K, Tabata M and Tamimoto M: Role of adjuvant chemotherapy in patients with resected non‑small‑cell lung cancer: Randomized multivariate analysis of randomized controlled trials. J Clin Oncol 22: 3860-3867 2004.

8. Sedrakyan A, Van Der Meulen J, O'Byrne K, Prendiville J, Hill J and Testore T: Postoperative chemotherapy for non‑small‑cell lung cancer: A systematic review and meta‑analysis. J Thorac Cardiovasc Surg 128: 414-419, 2004.

9. Bergmanns T, Paesmans M, Meert AP, Mascau C, Lothaire P, Lalitte JJ and Scullier JP: Survival improvement in resectable non‑small‑cell lung cancer with (neo)adjuvant chemotherapy: Results of a meta‑analysis of the literature. Lung Cancer 49: 13-23, 2005.

10. Kelly K, Crowley J, Bunn PA Jr, Presant CA, Gervstad PK, Moinpour CM, Ramsey SD, Wozniak AJ, Weiss GR, Moore DF, et al: Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus carboplatin in the treatment of patients with advanced non‑small‑cell lung cancer: A Southwest Oncology Group trial. J Clin Oncol 19: 3210-3218, 2001.

11. Lu H, Cho JY, Gurbahbayavatula S, Okimoto RA, Branigan WW, Harris PL, Hasezumi AP, Supko JG, Feathers K, et al: Activating mutations in the epidermal growth factor receptor in non‑small‑cell lung cancer to gefitinib. N Engl J Med 350: 2129-2139, 2004.

12. Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Paez JG, et al: Activating mutations in the epidermal growth factor receptor in non‑small‑cell lung cancer. J Clin Oncol 19: 3210-3218, 2001.

13. Etienne MC, Chéradame S, Fischel JL, Formento P, Dassonville O, Renée N, Schneider M, Thyss A, Demard F and Milano G: Response to gefitinib in the treatment of patients: The role of tumoral dihydorpyrimidine dehydrogenase expression in tumor tissue, regarding the efficacy of postoperatively administered UFT (Tegafur+Uracil) in patients with non‑small‑cell lung cancer. Anticancer Res 27: 2641-2648, 2007.

14. Sakurai Y, Sakamoto K, Sugimoto Y, Yoshida I, Masui T, Tomonoura S, Inaba K, Shoji M, Nakamura Y, Uyama I, et al: Orotate phosphoribosyltransferase levels as predictive factors of thymidylate synthase and dihydropyrimidine dehydrogenase expression in tumor tissue, associated with treatment outcomes. Mol Pharmaco 28: 991-998, 2008.

15. Obukado Y, Kurosawa K, Tanaka Y, Obara M, Ueda K, Hamasaki K, et al: Thymidylate synthase, thymidine phosphorylase and orotate phosphoribosyltransferase levels as predictive factors of treatment response in patients with non‑small‑cell lung cancer. Anticancer Res 26: 173-182, 2006.

16. Metzger R, Leichman CG, Danenberg KD, Danenberg PV, Lenz HJ, Hayashi K, Groschen S, Salonga D, Cohen H, Laine I, et al: ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 16: 309-316, 1998.

17. Burkhart CA, Kavallis R and Band Horvitz S: The role of beta‑tubulin isotypes in resistance to antimitotic drugs. Biochem Biophys Acta 1471: 101, 1993.
37. Handara-Luca A, Bilal H, Bertrand LC and Fouret P: Extra-cellular signal-regulated ERK-1/ERK-2 pathway activation in human salivary gland mucoepidermoid carcinoma: association to aggressive tumor behavior and tumor cell proliferation. Am J Pathol 163: 957-967, 2003.

38. Yokota K, Sasaki H, Okuda K, Shitara M, Hikosaka Y, Moriyama S, Yano M and Fuji Y: Expression of thymidylate synthase and orotate phosphoribosyltransferase in thymic carcinoma. Exp Ther Med 4: 589-593, 2012.

39. Kawamura M, Eguchi K, Izumi Y, Yamato Y, Koike T, Sakaguchi H, Hada E and Kobayashi K: Phase II trial of gemcitabine and docetaxel in patients with completely resected stage IIA-IIIA non-small-cell lung cancer. Cancer Chemother Pharmacol 60: 495-501, 2007.

40. Kanda Y: Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48: 452-458, 2013.

41. Asamura H, Goya T, Koshiishi Y, Sohara Y, Eguchi K, Mori M, Nakanishi Y, Tsuchiya R, Shimokata K, Inoue H, et al: A Japanese lung cancer registry study: Prognosis of 13,010 resected lung cancers. J Thorac Oncol 3: 46-52, 2008.

42. Ohe Y, Ohashi Y, Kubota K, Tamura T, Nakagawa K, Negoro S, Nishiwaki Y, Saijo N, Aritoshi Y and Fukuoka M: Randomized phase III study of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced non-small-cell lung cancer: Four-Arm cooperative study in Japan. Ann Oncol 18: 317-323, 2007.

43. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J and Johnson DH: Eastern Cooperative Oncology Group: Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346: 92-98, 2002.

44. Yamashita Y, Kataoka K, Ishida T, Matsuura M, Seno N, Mukaida H, Miyahara E, Miyata O, Okita R, Shimizu K, et al: A feasibility study of postoperative adjuvant therapy of carboplatin and weekly paclitaxel for completely resected non-small cell lung cancer. J Thorac Oncol 3: 612-616, 2008.

45. Ichiki M, Kawasaki M, Takayama K, Ninomiya K, Kuba M, Iwami F, Miyazaki N, Oishi K, Takeo S, Aizawa H and Nakanishi Y: A multi-center phase II study of carboplatin and paclitaxel with a biweekly schedule in patients with advanced non-small-cell lung cancer. Kyushu thoracic oncology group trial. Cancer Chemother Pharmacol 58: 368-373, 2006.

46. Sugaya M, Uramoto H, Uchiyama A, Nagashima A, Nakanishi R, Sakata H, Nakanishi K, Hanagiri T and Yasumoto K: Phase II trial of adjuvant chemotherapy with bi-weekly carboplatin plus paclitaxel in patients with completely resected non-small cell lung cancer. Anticancer Res 30: 3039-3044, 2010.

47. Iwamoto Y, Mitsudomi T, Sakai K, Yamanaka T, Yoshioka H, Takahama M, Yoshimura M, Yoshino I, Takeda M, Sugawara S, et al: Randomized phase II study of adjuvant chemotherapy with long-term S-1 versus Cisplatin+S-1 in completely resected stage II-III non-small cell lung cancer. Clin Cancer Res 21: 5245-5252, 2015.

48. Okumura S, Sasaki T, Satoh K, Kitada M, Nagase A, Yatsuyanagi E and Ohsaki Y: Feasibility of adjuvant chemotherapy with S-1 consisting of a 4-week administration and a two-week rest period in patients with completely resected non-small cell lung cancer. Mol Clin Oncol 1: 124-130, 2013.

49. Mozzetti S, Ferlini C, Concolino P, Filippetti F, Raspaglio G, Prisele S, Gallo D, Martinelli E, Ranelletti FO, Ferrandina G and Scambia G: Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res 11: 298-305, 2005.

50. Paradiso A, Mangia A, Chiriatti A, Tommasi S, Zito A, Latorre A, Schuttuli F and Lorusso V: Biomarkers predictive for clinical efficacy of taxol-based chemotherapy in advanced breast cancer. Ann Oncol 16 (Suppl 4): iv14-iv19, 2005.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.