INTRODUCTION

Great efforts have been directed recently in the plate kinematic community to consider the pre-breakup evolution in kinematic reconstructions of divergent plate boundaries (Aslanian & Moulin, 2013; Barnett-Moore et al., 2016; Nirrengarten et al., 2018; Peace et al., 2019). A robust kinematic description appears crucial to a physics-based understanding of rifting (Brune et al., 2014; Gueydan et al., 2008; Williams et al., 2019). Kinematic restoration of divergent plate boundaries relies on a common procedure, which includes: (a) tight fit of seafloor magnetic anomalies, defining the position of diverging plates through time; (b) oceanic fracture zones, interpreted as flowlines, determining the direction of the motion; (c) necking zones, defining the tightest-fit solutions of reconstructions; and (d) paleomagnetic data from continental undeformed regions, outlining rotation and latitudinal shifts (Schettino & Turco, 2011).

This four-step approach has achieved outstanding results in reconstructing global plate motions at divergent settings (Müller et al., 2019). However, problems arise when obliquely deforming continental regions are considered, as shown for the Iberian case (Angrand et al., 2020; Barnett-Moore et al., 2016; Peace & Welford, 2020; Tavani et al., 2018). During a large part of its Mesozoic history, Iberia was a continental rigid block delimited by intracontinental deforming regions, 40–200 km wide (Ady & Whittaker, 2019; Angrand et al., 2020; King et al., 2020) and hereafter referred to as strike-slip corridors. The M-series magnetic anomalies fringing Iberia on its
N-Atlantic side have been shown to not represent classical oceanic magnetic anomalies and therefore to be unreliable for reconstructions (Nirrengarten et al., 2017; Sramek et al., 2020). Moreover, kinematic reconstructions proposed Late Cretaceous subduction east of Iberia not harmonizing with tomographic data in the Pyrenees (Chevrot et al., 2018; Gong et al., 2008; Neret et al., 2012; Nirrengarten et al., 2017; Vissers & Meijer, 2012b).

The Mesozoic left-lateral motion of Africa (AFR) relative to Europe (EU) occurred while Iberia was diverging from North America (NAM) and interleaved rigid continental blocks were moving (Müller et al., 2019). We identify strike-slip corridors limiting rigid continental blocks, which include the Newfoundland, Flemish Pass, and Bay of Biscay—Iberian Rift corridors. Continental blocks are considered rigid if their internal estimated deformation is <30 km, that is, the error value introduced in restorations (Nirrengarten et al., 2018). The motion of blocks is assumed to be perpendicular to necking lines at orthogonal intracontinental rifts or parallel to the dominant trend of strike-slip corridors. Relying on these corridors as motion paths for kinematic restorations enables to build a new kinematic model for the southern N-Atlantic and the Bay of Biscay, and to reconstruct the kinematics of Iberia from 200 to 83 Ma, that is, from Late Triassic onset of rifting in the Central Atlantic to Anomaly C34, the first unambiguous oceanic magnetic anomaly in the southern N-Atlantic.

2 | TECTONIC SETTING

Following Nirrengarten et al. (2018), the current Iberia consisted, before 83 Ma, of two continental rigid blocks, Iberia (IB) and Ebro (EBR), that were surrounded, at different periods, by other smaller blocks such as Flemish Cap (FL), Porcupine (PR) and Morocco (MO) (Figure 1). Figure 1 summarizes the stage Euler poles reported for the different blocks. Flemish Cap and Porcupine blocks separate North America from Europe. Morocco is the northwestern promontory of Africa, while Ebro is the promontory of Europe (Angrand et al., 2020; Favre & Stampflii, 1992). Significant –N-S directed extension is invoked after 126 Ma between Ebro and Europe (Jammes et al., 2009; Lescoutre and Manatschal, 2020; Tavani et al., 2018). Motion is recorded in the Atlas separating Morocco from Africa during Early to Middle Jurassic (El Kochri & Chorowicz, 1996; Favre et al., 1991; Laville et al., 2004; Stampflii & Hochard, 2009).

Three large-scale strike-slip corridors have been identified around IB: (a) the Newfoundland corridor, (b) the Flemish Pass corridor, and (c) the Bay of Biscay—Iberian Rift corridor, B-IR (Angrand et al., 2020; Reid, 1988; Sandoval et al., 2019) (Figure 1). These strike-slip corridors are up to 200 km wide and can contain local structures with variable trends and kinematics. The corridors connect aligned Upper Jurassic—Lower Cretaceous, laterally confined and narrow depocenters, sometimes reactivated during later events (Cadenas et al., 2020). Offshore, subvertical structures belonging to the corridors are often difficult to interpret on seismic reflection data.

The Newfoundland corridor extends into the Newfoundland Fracture Zone separating the Central and N-Atlantic and fringing the North America and Morocco blocks. The corridor evolved to a transform margin bounded by oceanic crust, allowing to use magnetic anomalies to define its timing. The Flemish Pass corridor is proposed to run south of the E and W Orphan basins and is perpendicular to the necking zones bounding Flemish Cap. Restoration of the Late Jurassic to Lower Cretaceous E and W Orphan basins result in a dextral motion along this corridor (Lundin & Doré, 2019; Sandoval et al., 2019; Sibuet et al., 2007). As suggested by Lundin and Doré (2019) an associated zone of strike-slip may extend north of the Orphan basins into the proto-Labrador Sea (Figure 1). This strike-slip corridor may continue in the Biscay—Iberian Rift (B-IR) corridor, which defines the boundary between Iberia and Europe—Ebro. The B-IR is here interpreted by the alignment of Late Jurassic—Lower Cretaceous basins from north of the Balearic Islands to the Asturian basin and the northern Bay of Biscay margin (Cadenas et al., 2020; Omodeo Salé et al., 2014; Sandoval et al., 2019; Thimon et al., 2002; Tugend et al., 2014).

3 | METHOD

The kinematic model proposed here is designed to respect boundary conditions defined by the global motion of the larger plates around IB in Mesozoic time, as described by Müller et al. (2019) (Figure 2, Table 1, first column, Data Repository S1–S3). Position and timing of present-day Edges of Continental Crust (ECC) and Restored Edge of Continental Crust (RECC) define the shape of the deforming regions (as defined in Nirrengarten et al., 2018, Figures 2a–c and 3a). The previously described strike-slip corridors are part of the deforming regions built on GPlates 2.1 software. In contrast to previous restorations (e.g. Nirrengarten et al., 2018), we do not use the best-fit criteria as a base for the model (Figure 2d). Our method thus appears suitable for regions where strong oblique motions preclude RECC tight-fit restorations or where significant magmatic additions prevent robust quantification of the original volumes of continental crust.

The initial condition of the model is the position of the four main continental blocks (NAM, IB, EU; AFR) at 83 Ma along anomaly C34,
the first unambiguous oceanic magnetic anomaly (Figures 1 and 3a) (Vissers & Meijer, 2012a). The strike-slip corridors have broadly the same trend at 83 Ma (Figures 3a and 4a). We translate Iberia backward from this first step (83 Ma) using: (a) estimates of crustal extension in the Atlantic, and (b) a direction of motion parallel to the trend of the strike-slip corridors (Figure 3). Since the strike-slip corridors do not represent in reality simple linear plate boundaries, the motion is hypothetically assumed orthogonal to rift necking lines in orthogonal settings and parallel to the corridors borders where strike slip dominates (Figure 2). For the Atlantic, between 112 and 83 Ma, we use the extensional template of Gómez-Romeu et al. (2020), which provides extension values for FL and NAM relative to IB, in strong agreement with independently obtained values proposed by Sutra et al. (2013).

Concerning the strike-slip corridors, synchronous movements between 165 and 112 Ma (Late Jurassic to Aptian) allow the definition of coherent motion of AFR relative to NAM (Newfoundland), NAM relative to FL (Flemish Cap) and IB relative to Africa (Gorringe Bank) as input (Figures 3a and 4). The motion of NAM relative to Iberia (Tagus Plain), and IB relative to Africa (Gorringe Bank) are considered as output (Figure 2d).

4 | RESULTS AND DISCUSSION

4.1 | The Iberia-Europe-Ebro region

In our kinematic model, the lateral motion of IB relative to EBR is: (a) 370 km from 155 to 112 Ma, resulting in the development of Late Jurassic to Aptian depocenters along the Iberian Rift System (Salas et al., 2001), and (b) 320 km from 112 to 83 Ma, suggesting that strike-slip component of the motion continued inside the Iberian Rift System after the Aptian. According to Angrand et al. (2020) strike-slip motion stopped at 100 Ma. Our model suggests (a) a migration of orthogonal extensional deformation from the B-IR corridor to the Pyrenean segment at 126 Ma (see Lescoutre and Manatschal, 2020; Figure 4b–d), and (b) defines 80 km as a maximum N–S extension within the Pyrenean rift between EBR and EU from 126 to 83 Ma, consistent with values inferred from hyperextended basins in the Pyrenees (e.g., Quintana et al., 2015; Teixell, 1998) and with post-83 Ma inferred N–S Alpine shortening in north Iberia (Macchiavelli et al., 2017; Wang et al., 2016).

4.2 | The southern N-Atlantic

Although the southern N-Atlantic provides some first-order input in our model, due to the existence of a complete data set, including reflection, refraction seismic data and ODP boreholes, our model also has some outputs that can be tested in this region. The validity of the reconstruction is supported by the parallelism between the computed FL:IB motion path and the trend of the displacement zone shown by Mohn et al. (2015) and interpreted as Lower Cretaceous (Figure 1). Similarly, the reconstructed Jurassic IB-AFR motion path is parallel to displacement zones inferred by Fernández et al. (2019). Both structural trends fit with the motion path and confirm the validity of our approach (Figure 1).
The computed total ~185 km of extension for the Orphan Basin during the Mesozoic (Figures 2 and 4f,g) is compatible with reported observations (MacMahon et al., 2020; Peace & Welford, 2020). Our orthogonal setting has a NAM-FL pole of rotation far from Flemish Cap, in contrast to previous estimations (Sibuet et al., 2007; see Figure 1). In the southern N-Atlantic, the progressive northward oceanization is compatible with the model of Szameitat et al. (2020) involving a V-shape propagator.

The Newfoundland intracontinental strike-slip corridor motion (MO-NAM) combined with the motion AFR-NAM, as defined independently by Müller et al. (2019), implies ~80 km of dextral displacement in the Atlas (MO-AFR deforming region) during the Early Jurassic (Favre & Stampfli, 1992; Stampfli & Hochard, 2009). A left-lateral movement of the Morocco micro-block relative to the Iberia continental block during the whole Cretaceous after the docking of Morocco and NW Africa (Figure 4g) is also in agreement with geological data (Gimeno-Vives et al., 2019).

FIGURE 2 Simplified sketch of the restoration method with input situation (a), method representation (b), and expected results (c). Diagram showing the decision-making process applied to the kinematic reconstruction built on GPlates 2.1 software (d) [Colour figure can be viewed at wileyonlinelibrary.com]

The computed total ~185 km of extension for the Orphan Basin during the Mesozoic (Figures 2 and 4f,g) is compatible with reported observations (MacMahon et al., 2020; Peace & Welford, 2020). Our orthogonal setting has a NAM-FL pole of rotation far from Flemish Cap, in contrast to previous estimations (Sibuet et al., 2007; see Figure 1). In the southern N-Atlantic, the progressive northward oceanization is compatible with the model of Szameitat et al. (2020) involving a V-shape propagator.

The Newfoundland intracontinental strike-slip corridor motion (MO-NAM) combined with the motion AFR-NAM, as defined independently by Müller et al. (2019), implies ~80 km of dextral displacement in the Atlas (MO-AFR deforming region) during the Early Jurassic (Favre & Stampfli, 1992; Stampfli & Hochard, 2009). A left-lateral movement of the Morocco micro-block relative to the Iberia continental block during the whole Cretaceous after the docking of Morocco and NW Africa (Figure 4g) is also in agreement with geological data (Gimeno-Vives et al., 2019).

4.3 Strike-slip corridors: A new approach to restore pre-breakup rigid blocks

The kinematic reconstruction of Iberia prior to magnetic anomaly C34 is problematic due to the absence of large-scale, restorable marker features such as oceanic fracture zones or well defined oceanic magnetic anomalies, and because plate separation occurred during the magnetic quiet period (e.g. Cretaceous Normal Superchron) (Nirrengarten et al., 2017). Here we use intra-continental strike-slip corridors to assess the kinematic framework during continental
TABLE 1 Main tectonic events in the NAM-AFR-EUR area around IB as defined by Müller et al. 2019 in the first column. Computed values of displacement in kilometres for the points shown in Figure 1 and time steps represented in maps of Figures 3 and 4. Input data are in black, while outputs are grey. Computed values and 2σ method explained in Data Repository. Colours in the background show the evolution from rifting to drifting [Colour table can be viewed at wileyonlinelibrary.com]

Steps Figs.	Events around Iberia	INPUT (km)	OUTPUT (km)
83	NAM-AFR NAM-EU Rifting	343±27 256±2 220±19	18±9 166±4 142±13 73±30
97		391±11 292±1 240±1	26±18 65±28 146±10 21±7 183±1
120	NAM-AFR Drifting	200±5 146±3 89±2 41±1	43±1 97±2 80±4 22±5 33±12
133		226±1 143±12 64±7 68±3	502±4 100±2 71±2 27±2 44±1
145		209±1 102±7 37±6 64±1	53±4 66±3 35±6 110±24
165	AFR-EU Strike-Slip	518±18 173±12 57±17 111±17	98±14 109±4 69±1 276±25
200	AFR-NAM Rifting	404±3 76±13 68±12	35±31 238±23 86±25

FIGURE 3 (a) Motion paths for points reported in Figure 1. Note the similar trend between paths and corridor border trends in Figure 1. (b) Stage relative velocities between blocks during the time steps of Figure 4 [Colour figure can be viewed at wileyonlinelibrary.com]
rifting. Considering the complex strain partitioning in the strike slip corridors, local kinematic indicators do not necessarily provide information on the plate kinematic scale. Furthermore, strike slip and decoupling levels, such as the Triassic salt, can trigger local rotations, hampering the analysis of regional kinematics. Therefore, upscaling of field observations and of paleomagnetic data (Neres et al., 2012; López-Gómez et al., 2019; Oliva-Urcía et al., 2012; Osete et al., 2011) to a plate kinematic scale requires a careful study and good, large-scale outcrops.

4.4 | Open questions

Three intriguing issues arise from the kinematic reconstruction (Data Repository S4, S5). The first issue regards gaps and overlaps in the restored edges of continental crust (RECC), respectively in the Bay of Biscay and east of Flemish Cap (Figure 4h). Discrepancies are nevertheless expected in such an oblique setting, as underlined by Peace et al. (2019). Gaps at the 200 Ma reconstruction might be justified by poorly-constrained Triassic and older extension (López-Gómez, et al., 2019;
van Hinsbergen et al., 2020). The second issue is the post-112 Ma large strike-slip motion between Ebro and Iberia. Post-112 Ma overprint due to N–S extension and shortening in the Iberian Rift System could hamper its recognition. However, our kinematic model is able to reproduce for the first time strike-slip and subsequent orthogonal N–S extension reported by field-based studies (Cadenas et al., 2020; Lescoutre and Manatschal, 2020; Figure 4b–d). As a third issue, M-series magnetic anomalies in the Bay of Biscay do not correspond to isochrons in our model (Figure 4b–e). The V-shaped propagation of these magnetic anomalies could result from lateral contrast of magnetization between different types of crust, as described by Szameitat et al. (2020) for the M-series in the southern N-Atlantic (Figure 4b,c).

4.5 Differences with previous kinematic reconstructions

The reconstruction of the southern N-Atlantic was traditionally based on two end-member approaches. A first group used the M-series magnetic anomalies as isochrons (Rowley & Lottes, 1988; Sibuet et al., 2004; Vissers & Meijer, 2012b; Figure 5a) while a second group used Triassic tight-fit restorations of rigid continental blocks (Barnett-Moore, Müller, et al., 2016; Nirrengarten et al., 2018; Figure 5b). Resulting models imply: (a) an acceleration of Iberia relative to Africa between 126 and 112 Ma and thus a dextral shearing in the deforming region east (Figure 5a) or south (Figure 5b) of Iberia; and (b) significant shortening in either the Pyrenean or Tethys domains, triggering subduction between 126 and 112 Ma (Figure 5a,b) Van Hinsbergen et al. (2020) and Angrand et al. (2020). Our model does not produce subduction north and east of Iberia in Aptian-Albian time, compatible with the lack of thrust faults, volcanic arc, terrigenous “flysch” deposits and high-pressure metamorphism older than 100 Ma (Chevrot et al., 2018; Facenna et al., 2001; Fernández, 2019; Fichtner & Villaseñor, 2015; Le Breton et al., 2021; Molli & Malavieille, 2011). Our workflow gives priority to first-order, large-scale onshore and offshore seismic observations and robust regional interpretations (Figure 2d). Our model represents a new solution involving left-lateral motion between Iberia and Africa, south of Iberia (Figure 5c), contrarily to the latest models of Nirrengarten et al. (2018) and Angrand et al. (2020). As such, the left-lateral motion of Africa relative to Europe appears crucial to control the Mesozoic kinematics of Iberia.

5 CONCLUSIONS

The key point of the present reconstruction of Iberia is the definition of motion paths using strike-slip corridors, mainly marked by alignments of laterally confined and narrow rift basins or transfer zones. The resulting reconstruction of Iberia conforms at a first order with the circum-Iberian regional geology, suggesting that intracontinental strike-slip corridors may be used as a robust boundary condition to restore large rigid blocks back to the onset of rifting.

ACKNOWLEDGEMENTS

The authors thank B. Petri and S. Tomasi for discussions. GF and GM were supported by M5 consortium. PC, JM, RL, and GM were supported by OROGEN Project. Constructive reviews by Alexander Peace, Ruth Soto, Tony Doré and the Associate Editor helped to improve the manuscript.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available in the supplementary material of this article.

REFERENCES

Ady, B. E., & Whittaker, R. C. (2019). Examining the influence of tectonic inheritance on the evolution of the North Atlantic using a palinspastic deformable plate reconstruction. Geological Society, London, Special Publications, 470(1), 245–263. https://doi.org/10.1144/SP470.9

Angrand, P., Mouthereau, F., Masini, E., & Asti, R. (2020). A reconstruction of Iberia accounting for Western Tethys–North Atlantic kinematics since the late-Permo-Triassic. Solid Earth Discuss, 11(4), 1013–1332. https://doi.org/10.5194/se-11-1313-2020

Aslanian, D., & Moulin, M. (2013). Palaeogeographic consequences of conservational models in the South Atlantic Ocean. Geological
Barnett-Moore, N., Hosseinpour, M., & Maus, S. (2016). Assessing discrepancies between previous plate kinematic models of Mesozoic Iberia and their constraints. Tectonics, 35, 2015TC004019. https://doi.org/10.1002/2015TC004019

Barnett-Moore, N., Müller, D. R., Williams, S., Skogseid, J., & Seton, M. (2016). A reconstruction of the North Atlantic since the earliest Jurassic. Basin Research, 30(S1), 160–185. https://doi.org/10.1111/bre.12214

Brune, S., Heine, C., Pérez-Gussinyé, M., & Sobolev, S. V. (2014). Rift migration explains continental margin asymmetry and crustal hyper-extension. Nature Communications, 5, 4014. https://doi.org/10.1038/ncomms5014

Cadenas, P., Manatschal, G., & Fernández-Viejo, G. (2020). Unravelling Thermatic Discussions

Favre, P., & Stampfli, G. M. (1992). From rifting to passive margin: Faccenna, C., Becker, T. W., Lucente, F. P., Jolivet, L., & Rossetti, F.

Gómez-Gras, D., Goy, A., … Viseras, C. (2019). The Alpine cycle in Eastern Iberia: Microplate units and geo-physical evolution. Marine and Petroleum Geology, 118, 104403. https://doi.org/10.1016/j.marpetgeo.2020.104403.

Gong, Z., Langereis, C. G., & Mullender, T. A. T. (2008). The rotation of Iberia during the Aptian and the opening of the Bay of Biscay. Earth and Planetary Science Letters, 273, 80–93. https://doi.org/10.1016/j.epsl.2008.06.016

Guesdon, F., Morency, C., & Brun, J.-P. (2008). Continental rifting as a function of lithosphere mantle strength. Tectonophysics, 460, 83–93. https://doi.org/10.1016/j.tecto.2008.08.012

Jammes, S., Manatschal, G., Lavier, L., & Masini, E. (2009). Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics, 28, TC4012. https://doi.org/10.1029/2008TC002406

King, M. T., Welford, J. K., & Peace, A. L. (2020). Investigating the role of the Galicia Bank on the formation of the North West Iberian margin using deformable plate tectonic models. Tectonophysics, 789, 228537. https://doi.org/10.1016/j.tecto.2020.228537

Laville, E., Pique, A., Amhrar, M., & Charroud, M. (2004). A restatement of the Mesozoic Aulacogen model (Morocco). Journal of African Earth Sciences, 38, 145–153. https://doi.org/10.1016/j.jafrearsci.2003.12.003

Le Breton, E., Brune, S., Ustaszewski, K., Zahirovic, S., Seton, M., & Müller, R. D. (2021). Kinematics and extent of the Piemont-Liguria Tethys triple junction. Tectonics, 40, 132–149. https://doi.org/10.1002/2021TC005684

Lescouret, R., & Manatschal, G. (2020) Role of rifting-inheritance and segmentation for orgenic evolution: example from the Pyrenean-Cantabrian system. Bulletin de la Société Géologique de France. doi:https://doi.org/10.1051/bg/2020021

López-Gómez, J., Alonso-Azcárate, J., Arche, A., Arribas, J., Fernández Barrenechea, J., Borruel-Abadía, V., Bourquin, S., Cadenas, P., Cuevas, J., De la Horra, R., Díez, J. B., Escudero-Mozo, M. J., Fernández-Viejo, G., Galán-Abellán, B., Galé, C., Gaspar-Escribano, J., Gisbert Aguilar, J., Gómez-Gras, D., Goy, A., … Viseras, C. (2019). Permian-Triassic Rifting Stage. In Quesada, C., & J. T. Oliveira (2019). The Jurassic evolution of the Africa-Iberia conjugate margin and its implications on the evolution of the Atlantic-Tethys triple junction. Tectonophysics, 750, 379–393. https://doi.org/10.1016/j.tecto.2018.12.006

Lundin, E. R., & Doré, A. G. (2019). Non-Wilsonian break-up predisposed by transforms: Examples from the North Atlantic and Arctic. Geological Society, London, Special Publications, 470, 375. https://doi.org/10.1144/SP470.6

Macchiavelli, C., Vergés, J., Schettino, A., Fernández, M., Turco, E., Casciello, E., Torne, M., Pierantoni, P. P., & Tunini, L. (2017). A new northern south Atlantic Isocron Map: Insights into the drift of the Iberian plate since the Late Cretaceous. Journal of Geophysical Research: Solid Earth, 122, 9603–9626. https://doi.org/10.1002/2017JB014769

MacMahon, H., Welford, J. K., Sandoval, L., & Peace, A. L. (2020). The Rockall and the Orphan Basins of the Southern North Atlantic Ocean: Determining Continuous Basins Across Conjugate Margins. Geosciences, 10, 178. https://doi.org/10.3390/geosciences10050017

Mohn, G., Karner, G. D., Manatschal, G., & Johnson, C. A. (2015). Structural and stratigraphic evolution of the Iberia-Newfoundland hyper-extended rifted margin: A quantitative modelling approach. Geological Society, London, Special Publications, 413, 53. https://doi.org/10.1144/SP413.9

Molli, G., & Malavieille, J. (2011). Orogenic processes and theCorsica/ Apennines geodynamic evolution: Insights from Taiwan. International Journal of Earth Sciences, 100, 1207–1224. https://doi.org/10.1007/s00531-010-0598-y

Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., Liu, S., Russell, S. H. J., Yang, T., Leonard, J., & Gurnis, M. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, 38, 1884–1907. https://doi.org/10.1029/2018T C005462

MacMahon, H., Welford, J. K., Sandoval, L., & Peace, A. L. (2020). The Rockall and the Orphan Basins of the Southern North Atlantic Ocean: Determining Continuous Basins Across Conjugate Margins. Geosciences, 10, 178. https://doi.org/10.3390/geosciences10050017

Mohn, G., Karner, G. D., Manatschal, G., & Johnson, C. A. (2015). Structural and stratigraphic evolution of the Iberia-Newfoundland hyper-extended rifted margin: A quantitative modelling approach. Geological Society, London, Special Publications, 413, 53. https://doi.org/10.1144/SP413.9

Molli, G., & Malavieille, J. (2011). Orogenic processes and the Corsica/ Apennines geodynamic evolution: Insights from Taiwan. International Journal of Earth Sciences, 100, 1207–1224. https://doi.org/10.1007/s00531-010-0598-y

Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., Liu, S., Russell, S. H. J., Yang, T., Leonard, J., & Gurnis, M. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, 38, 1884–1907. https://doi.org/10.1029/2018T C005462

Fernández, O. (2019). The Jurassic evolution of the Africa-Iberia conjugate margin and its implications on the evolution of the Atlantic-Tethys triple junction. Tectonophysics, 750, 379–393. https://doi.org/10.1016/j.tecto.2018.12.006

Fichnter, A., & Villaseñor, A. (2015). Crust and upper mantle of the western Mediterranean – Constraints from full-waveform inversion. Earth and Planetary Science Letters, 428, 52–62. https://doi.org/10.1016/j.epsl.2015.07.038

Gimeno-Vives, O., Mohn, G., Bosse, V., Haissen, F., Zaghloul, M. N., Atouabat, A., & Frizon de Lamotte, D. (2019). The Mesozoic margin of the Maghreb tethys in the Rif Belt (Morocco): Evidence for polyphase rifting and related magmatic activity. Tectonics, 38, 2894–2918. https://doi.org/10.1029/2019TC005508

Gómez, J. J., Sandoval, J., Aguado, R., O’Dogherty, L., & Osote, M. L. (2019). The Alpine cycle in Eastern Iberia: Microplate units and geodynamic stages. In C. Quesada, & J. T. Oliveira (Eds.), The Geology of Iberia: A geodynamic approach: volume 3: the alpine cycle (pp. 15–27). Springer International Publishing. https://doi.org/10.1007/978-3-030-11295-0_2

FK3470.6
