Original article

Epidemiological profile and performance of triage decision-making process of COVID-19 suspected cases in southern Tunisia

Maissa Ben Jmaa a,*, Houda Ben Ayed a, Mondher Kassis c, Mariem Ben Hmida c, Maroua Trigui b, Hanen Maamri b, Nouha Ketata a, Sourour Yaich b, Jihene Trabelsi b, Yosra Mejdoub b, Manel Turki i, Chakib Marrakchi d, Sami Kammoun e, Mounir Ben Jemaa d, Habib Feki a, Jamel Damak b

a Preventive Medicine and Hygiene Department, Hedi Chaker University Hospital, University of Sfax, Tunisia
b Community Health and Epidemiology Department, Hedi Chaker University Hospital, University of Sfax, Tunisia
c Department of Social Medicine, Faculty of Medicine of Sfax, University of Sfax, Tunisia
d Infectious Diseases Department, Hedi Chaker University Hospital, University of Sfax, Tunisia
e Department of Pneumology, Hedi Chaker University Hospital, Sfax, Tunisia
f Department of Pharmacy, Hedi Chaker University Hospital, Sfax, Tunisia

ARTICLE INFO

Keywords: COVID-19 Epidemiology Score Triage Trends

ABSTRACT

Introduction: During an epidemic, screening processes can play a crucial role in limiting the spread of the infection. The aim of this study was to describe the epidemiological profile of COVID-19 suspected cases and to evaluate the performance of the triage process in predicting COVID-19 in Southern Tunisia.

Methods: It was a prospective study including all patients consulting to the Hedi Chaker University Hospital departments from March to June 2020. A clinical triage score (CTS) was used to assess the risk of the infection and to refer patients to the appropriate part of the facility accordingly.

Results: Overall, 862 patients were enrolled, among whom 505 patients (58.6%) were classified as suspected cases (CTS ≥4). Of these, 46.9% (n = 237) were of mild form. Samples were collected from 215 patients (24.9%), among whom five were COVID-19 positive, representing a positive rate of 2.3%. The in-hospital cumulative incidence rate of COVID-19 was 580/100000 patients. The total daily incidence decreased significantly during the study period (p < 0.001, chi-square for linear trend = 25.6). At a cut-off of four, the CTS had a sensitivity of 40%, a specificity of 32.4%, and negative and positive predictive values of 95.8% and 1.4%, respectively.

Discussion: Although the triage process based on the CTS was not as performant as the RT-PCR, it was crucial to interrupt virus spread among hospitalized patients in “COVID-19-free departments”.

African relevance

• The lack of resources in Africa limits triage strategies meant to mitigate the spread of the COVID-19 pandemic.
• A modified COVID-19 triage strategy based on a clinical triage score could address this issue in limited resources countries.
• We find the triage process was not as performant as RT-PCR in identifying COVID-19 cases in some African hospitals.
• African physicians should continue to rely on their medical expertise to diagnose and manage COVID-19 suspected cases.

Introduction

In December 2019, a novel coronavirus now known as SARS-CoV-2 and later identified as the cause of COVID-19 suddenly emerged in Wuhan, China. COVID-19 rapidly spread throughout the world, becoming, according to the WHO, a Public Health Emergency of International Concern on January 31st, 2020 [1,2]. As of April 16th, 2020, the emerging COVID-19 infection had been spreading worldwide, causing over two million cases and over 137 thousand deaths [3]. On March 2nd, 2020, the first imported case of COVID-19 was reported in Tunisia, announcing the beginning of the COVID-19 pandemic in our country. In as much as this disease continues to appear and poses a major

* Corresponding author.
E-mail address: maissabenjmaa@live.fr (M.B. Jmaa).

https://doi.org/10.1016/j.afjem.2021.10.001
Received 3 March 2021; Received in revised form 3 September 2021; Accepted 9 October 2021
Available online 4 November 2021
2211-419X/© 2021 The Authors. Published by Elsevier Ltd. CC BY-NC-ND 4.0 This is an open access article under the CC BY-NC-ND license
public health concern, due to its higher rates of transmissibility, hospi-
totalization, intensive care unit admission, the severity of disease, and
mortality, health institutions should increase as better as possible
measures to prevent COVID-19 spread among hospitalized patients in
"COVID-19-free departments". Studies from China, where the initial
outbreak took hold, reported that triage strategies, aimed both at
regulating patient access and separating them within the hospital, could
mitigate many problems related to the spread of the pandemic, such as
hospital overcrowding, diffusion of the virus within the hospital and
infection of healthcare personnel [4,5]. In northern Italy, the structure
of a hospital, which was specifically equipped for the management of
COVID-19 patients, was immediately modified with the introduction of
a pre-triage protocol to divide patients according to the risk of infection
[6]. This hospital held the "zero infection" record in healthcare workers,
which indicated the flexibility and validity of the pre-triage system.
Despite major advances in epidemic preparedness, Africa remains
uniquely susceptible to COVID-19 [7]. The high prevalence of HIV,
tuberculosis and other pathogens might potentiate the severity of this
disease and contribute to diagnostic uncertainty [7]. On February 27th,
2020, the first case of COVID-19 in sub-Saharan Africa was reported in
Nigeria, making the spread in the region more probable [8]. Unfortu-
nately, COVID-19 triage strategies adopted in response to COVID-19
outbreak in Wuhan, China, such as chest Computed Tomography (CT),
complete blood counts with differential, and c-reactive protein, would
not be feasible in low-income settings due to lack of logistics, human and
material resources [7,9]. Accordingly, a modified COVID-19 triage
strategy was proposed for use in resource-limited settings that do not
have established local transmission [7]. It was a simple approach used
to decide who requires isolation and targeted testing for SARS-CoV-2.
The most advanced tool required was a thermometer. In Southern Tunisia,
Hedi Chaker University Hospital (HCUH) has adopted, according to the
Tunisian national guidelines, a triage process based on a clinical triage
strategy was proposed for use in resource-limited settings that do not
have established local transmission [7]. It was a simple approach used
to decide who requires isolation and targeted testing for SARS-CoV-2. The
most advanced tool required was a thermometer. In Southern Tunisia,
Hedi Chaker University Hospital (HCUH) has adopted, according to the
Tunisian national guidelines, a triage process based on a clinical triage
score (CTS) in order to improve its function during the pandemic and to
avoid patients with suspected COVID-19 to be carrying the infection
from coming into contact with non-infected patients. However, to the
best of our knowledge, the effectiveness of this strategy and whether the
adopted CTS was conforming to the local epidemiological context have
not yet been evaluated. Thus, the aim of this study was to describe the
epidemiological profile and the chronological trends of COVID-19 sus-
pected cases in Southern Tunisia during the first wave and to evaluate
the performance of the triage process in predicting COVID-19.

Methods

It was a prospective study including all patients consulting to the
HCUH departments in Southern Tunisia during the first epidemic wave,
from March to June 2020. This hospital has been nominated as the
refferent centre of COVID-19 management in Sfax, Southern Tunisia,
hosting patients from both private and public health structures. More-
ever, an isolation ward was launched in HCUH, receiving all cases with
confirmed or suspected COVID-19, with clinical symptoms not
manageable outside the hospital settings, and who required immediate
hospitalization.

A two-level triage operation was established in HCUH to guide pa-
tients during their hospital visits. All patients entering the hospital had
to pass through pre-triage. Moreover, this process included all in-
dividuals entering the hospital: outpatients, emergency cases, in-
patients, healthcare professionals, and visitors. The first level of the
triage process, called pre-triage, aimed to identify patients who might be
infected. The second-level and final evaluation, called triage, aimed to
evaluate the degree of the disease severity. Before being qualified for a
pre-triage or triage position, all medical and nursing staff personnel
received systematic and strict training. The pre-triage was performed
inside the purpose-built structure, opened 24 h a day, and introduced at
the entrance to the HCUH by a team comprising a doctor and a nurse.
This team measured the body temperature using an infrared
thermometer and underwent an oral questionnaire. Data were collected
using a pre-established fact sheet. These data included gender, age, resi-
dency, comorbidities, such as diabetes, hypertension, chronic res-
piratory diseases, cardiovascular diseases, chronic renal failure and
obesity, a history of fever (Temperature ≥ 38.5), clinical symptoms, and
potential community exposure to SARS-CoV-2, defined as a history of
travelling within the last 14 days before the disease onset or having
contact with people with acute respiratory symptoms or having close
contact with returning travelers. Then, this information was compiled
into a CTS, which was established by Tunisian national guidelines of the
National Authority for Accreditation in Healthcare (INEAS) in order to
stratify those at higher risk of COVID-19, which was continuously
updated according to the epidemiological evolution in the country [10].
The CTS was calculated as follows: community exposure (2 points), fever
(2 points), cough and/or dyspnoea (2 points), sore throat (1 point),
nausea/vomiting/diarrhoea (1 point), renal/respiratory or cardiac fail-
ure (1 point). A cut-off of four was adopted to classify all patients
consulting to the hospitals into suspected cases if the score was ≥ 4
points and not suspected cases if the score was <4 points. The doctor had
to calculate the CTS for each patient. If this score was less than four, then
the patient would be allocated to the relevant department dedicated to
patients presumed not to be infected. Otherwise, suspected patients
(CTS ≥ 4) were referred for the second-level triage, re-evaluated by an
expert team of specialised physicians, and classified according to the
severity of the disease using specific criteria established by Tunisian
national guidelines of INEAS, as follows [10]: mild form (i.e., suspected
patients who had a respiratory rate (RR) <30 breaths/min and a pe-
ripheral oxygen saturation on pulse oximetry (SpO2) >92% on ambient
air), moderate form (i.e., suspected patients with shortness of breath or a
RR >30 breaths/min or SpO2 <92% on ambient air or a severe tare
decompensation requiring hospitalization), and severe form (i.e., sus-
pected patients with respiratory distress or systolic blood pressure less
than nine or neurological disorders). Further biological and radiological
explorations were done when necessary, i.e., indication of hospitaliza-
tion or exacerbation of existing comorbidity or suspicion of another
diagnosis other than COVID-19. Then, after a physical examination and
further complementary biological or radiological exams, patients who
had another diagnostic other than COVID-19 were ruled out from the
study. Despite its relatively low sensitivity, the real-time reverse-trans-
scription polymerase chain reaction (RT-PCR) was described as the gold
standard to confirm COVID-19 diagnosis during the study period [11].
The RT-PCR analysis of nasopharyngeal swab specimens was carried out
for patients with clinical CTS ≥ 4 and/or for those with high clinical
suspicion of COVID-19 after expert re-evaluation.

Statistical analysis was performed using SPSS.20. Continuous vari-
ables with normal distribution were presented as means ± standard
development (SD); non-normal variables were reported as medians and
interquartile ranges (IQR). Categorical variables were summarised as
numbers and percentages. Chronological trends analysis was done using
Chi-square for trends. The diagnostic performance of CTS was evaluated
by calculating the area under the receiver operating characteristics
curve (AUROC). At a cut-off of 4, the score performance in predicting
COVID-19 was also evaluated through a 2 × 2 contingency table RT-PCR
result (Positive RT-PCR vs. Negative RT-PCR) with the patient’s CTS (<4
vs. ≥4). Through this contingency table, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) of CTS were
calculated. P values lower than 0.05 were considered statistically
significant.

Results

From March to June, 862 patients were successfully evaluated at the
pre-triage stage. Their median age was 39 years (IQR = [29.5–54.8]).
The distribution by age groups showed that the largest age group of
included patients was (15–60 years) (n = 670;77.7%), followed by ≥60
years (n = 153;17.7%). Five hundred and fifteen patients were males

(59.7%), with a sex ratio (Male/Female) of 1.48. According to the urbanity of residence, 688 cases (79.8%) came from urban areas. Community exposure to SARS-CoV-2 was noted in 133 patients (15.4%).

Four hundred sixty-six cases (54.1%) reported having at least one comorbidity. The most prevalent comorbidities were chronic respiratory diseases (n = 116;24.9%), hypertension (n = 96;20.6%) and cardiovascular diseases (n = 79;17%). Common clinical symptoms included dry cough (40.8%), headache (33.9%), fever (32.1%), dry throat (30.6%), and dyspnoea at rest (30.6%). Of patients who arrived in pre-triage during the study period, 58.6% (n = 505) had a CTS ≥ 4 and were referred for second-level triage according to the described protocol. Of these, 46.9% (n = 237) were with mild form, 145 cases with moderate form (28.7%), and 3 cases with severe COVID-19 form (0.6%). The COVID-19 diagnosis was ruled out in 120 cases (23.8%) (Table 1).

The RT-PCR analysis of nasopharyngeal swab specimens was carried out for 215 cases out of the 862 enrolled cases, representing a screening rate of 24.9%. Of these, five tested cases were COVID-19 positive, accounting for a positive rate of 2.3%. Of all patients consulting to the pre-triage box, the in-hospital cumulative incidence rate of COVID-19 was 580/100,000 persons.

The median daily number of suspected cases was 6 cases/day (IQR = [3–11.75]). It had increased gradually since March 25th, 2020, and peaked on April 7th, 2020, with 22 new cases (Fig. 1).

Meanwhile, the peak of not suspected cases appeared on April 13th, 2020, with 21 new cases, and then the daily new cases started to gradually decline in both groups (Fig. 1).

Chronological trends analysis showed a significant decrease in the total daily incidence of the COVID-19 suspected cases during the study period (p < 0.001, chi-square for linear trend (CST) = 25.6), as well as in COVID-19 mild (p = 0.02, CST = 9) and moderate forms (p = 0.01, CST = 6). However, the daily incidence of COVID-19 severe form did not change over the study period (p = 0.28, CST = 12) (Fig. 2).

Performance of clinical triage score in predicting COVID-19.

Receiver operating characteristics (ROC) curve analysis showed that the CTS had an AUROC of 0.35 in predicting COVID-19 (p = 0.26) (Fig. 3).

At a cut-off of four, the CTS had a sensitivity of 40% and a specificity of 32.4%. In addition, this score showed an NPV of 95.8% and a PPV of 1.4% (Table 2).

Table 1 Description of the study population.

Variables	Number (%)
Total	862
Gender	
Males	515 (59.7)
Females	347 (40.3)
Age groups (years)	
< 15	39 (4.5)
[15–60)	670 (77.7)
≥ 60	153 (17.7)
Urbanity of residence	
Urban areas	688 (79.8)
Rural areas	174 (20.2)
Community exposure	
Yes	133 (15.4)
No	729 (84.6)
Comorbidities	
Yes	466 (54.1)
No	396 (45.9)
Clinical symptoms	
Dry cough	352 (40.8)
Fever	277 (32.1)
Headache	292 (33.9)
Dry throat	264 (30.6)
Dyspnoea at rest	264 (30.6)
Exertional dyspnoea	133 (15.4)
Productive cough	169 (19.6)
Diarrhoea	155 (18)
Asthenia	145 (16.8)
Shivering	137 (15.9)
Vomiting	133 (15.4)
Myalgia	111 (12.9)
Rhinorrhoea	117 (13.6)
Clinical triage score	
< 4	357 (41.4)
≥ 4	505 (58.6)
Mild form	237 (46.9)
Moderate form	145 (28.7)
Severe form	3 (0.6)
Ruled out COVID-19 diagnosis	120 (23.8)
COVID-19 diagnostic testing	
Yes	215 (24.9)
No	647 (75.1)

* People who travelled within the last 14 days or who were exposed to people with acute respiratory symptoms or who had close contact with returning travelers.

† The real-time reverse-transcription polymerase chain reaction.

‡ percentage.

Discussion

During the study period, the in-hospital cumulative incidence of COVID-19 was 580/100,000 persons. At a population-based level, the cumulative incidence of COVID-19 ranged between 3 and 5/100,000 inhabitants in Southern Tunisia and was equal to 9.66/100,000 inhabitants at the national level [12]. This latter was much lower than the cumulative incidence rates reported in developed countries such as the United States (403.6/100,000 persons) [13] and Germany (223/100,000 persons) [14] as well as in the developing countries, such as Brazil (36.58/100,000 inhabitants), Morocco (15.2/100,000 inhabitants) and Algeria (11.02/100,000 inhabitants) [15].

The screening rate found in the present study (24.9%) reflected the low testing capacity, especially at the very beginning of the pandemic spread. To be noted, the laboratory testing capacity (RT-PCR) in Tunisia was highly limited compared with France and Italy. Indeed, the maximum recorded tests made in Tunisia were 724 daily, while only the city of Marseille in France provided more than 11,000 tests per day [16]. Additionally, there was a testing inequality among the regions: the testing was focused on the capital but was not adequately performed over all the regions. As for Southern Tunisia, there was an extremely low testing activity in the region, and the majority of infected individuals had not been tested [16].

Taking these facts into account, it is getting clear that there is a huge discrepancy between the officially recorded and real infection cases. Accordingly, our hypothesis was that the recorded positive rate in the present study (2.3%) might be underestimated. This rate was higher than those of Australia, South Korea, and Uruguay (<1%) and lower than positives rates reported in Mexico and Bolivia (20–50%) [17].

According to criteria published by the WHO in May 2020, a positive rate of less than 5% is one indicator that the epidemic is under control in a country [17].

Most of the COVID-19 suspected cases were classified as mild to moderate cases, which was in line with previous studies [3,18–20]. In fact, in Italy, which was the first European COVID-19 cluster, 5% to 6% of cases required admission to intensive care unit [19], which was higher than that reported in our study population. As the population median age in Italy is higher than North-African countries [21] and given that the severe form of the disease becomes significantly and progressively higher after 50 years of age, the observed discrepancy in the severity of COVID-19 symptoms could be explained by differences in population age structures [19].

During the study period, a significant decrease in the total daily incidence of the COVID-19 suspected cases was noted. In fact, since the very beginning of the pandemic spread in our country, Tunisian authorities adopted a containment strategy, which started on March 22nd in order to halt the spread of COVID-19 and limit the number of fatalities [16]. Compared to France and Italy who had applied similar
containment rules [16], this early preventive measure allowed Tunisia to reduce faster the number of infected people. However, containment measures have entailed large economic costs and were likely to continue to aggravate the economic recession with sharp reductions in production and interruptions to trade and supply chains [22]. Besides, this strategy had a negative impact on the management of patients with non-communicable diseases (NCDs). Resources were mainly allocated to enhance emergency care and were deflected from facilities for NCDs [23].

In the present study, the ROC curve and the corresponding AUROC analysis showed that CTS did not have a predictive ability to discriminate COVID-19 cases from those not infected with SARS-CoV-2. Moreover, in comparison with the RT-PCR, CTS had lower sensitivity and lower specificity, impeding its use for screening symptomatic patients and for confirming COVID-19 diagnosis. In fact, data from in vitro analyses along with minimal clinical data suggested that RT-PCR had a very high specificity but lower sensitivity ranging from 63% to 78% [24]. A non-peer-reviewed publication reported that, based on 87 Chinese patients who were ultimately diagnosed with COVID-19, RT-PCR tests had a sensitivity and a specificity of 78.2% and 98.8%, respectively [25]. Therefore, CTS adopted in the triage process cannot substitute RT-PCR in diagnosing COVID-19, although the same reagent, process, and technique were used. This might be explained by the small number of confirmed cases, which may lead to lower reliability and validity of the score. However, the identification criteria for suspected COVID-19 cases cannot achieve 100% sensitivity and specificity at the same time. Giving preference to sensitivity will cause more patients to be admitted into the infected area, increasing the risk of transmitting the infection to healthy patients incorrectly placed there. Conversely, preferring specificity will allow infected patients to enter a clean area where they may infect healthy patients. Although the sensitivity and the specificity were relatively low in this study, these rates could be arguably acceptable since the incidence of COVID-19 in this region was very low. In fact, the disease incidence or the prevalence is a key determinant of the effectiveness and reliability of public health screening strategies. With a highly sensitive test, few false-negative results would be recorded, and the diagnosis could be ruled out. Besides, NPV of CTS was high, suggesting its performance in excluding the COVID-19 diagnosis rather than confirming it. The low PPV found in our study could be explained in part by the fact that the chosen cut-off was low. On the other hand, other
Clinical triage strategies were established in several countries, such as in northern Italy, particularly in Piacenza, where a point-of-care ultrasound lung was used in the triage decision-making. This technique was strongly recommended as an effective, safe, low-cost, and easy method to early detect pulmonary and pleural findings in patients without suspicious symptoms of COVID-19 [1].

This manuscript provides a lot of concise data from a prospective assessment of a novel triage tool. The results studies described demographic, chronological, as well as a gold-standard comparison. This CTS could be proposed as a useful algorithm in other low-income countries to better predict patients at high risk of COVID-19 infection. Yet, regardless of the adopted triage strategy, physicians should generate their reasoning skills to make effective judgments about the diagnosis and management of suspected cases on a case-by-case basis.

Nevertheless, some limitations associated with conducting survey screenings need to be mentioned. In fact, not all patients were tested with the gold standard (RT-PCR). Although the RT-PCR referenced has a relatively high sensitivity in most countries, the CTS had a low sensitivity which is not well-matched with what is desired for large public health screenings. That is, when doing public health screenings for outbreaks identification, the compromise is generally to sacrifice specificity for sensitivity, notably in mass screening, in order to avoid a high rate of misdiagnosed and false-negative cases. Indeed, this scoring system was effective based on the overall low incidence of cases, however, due to overall low sensitivities, it may not be suitable for high-incidence diseases regions and need to be more amended to generalise it in other health settings. These findings confirmed that the physician should rely on their medical expertise to suspect a diagnosis, rather than adopting blindly a rational score independently of their clinical sense. Moreover, clinical triage scores based on an absurd measure of temperature using an infrared thermometer could bias the objective evaluation of the patient status, and then it should be interpreted according to the reliability of this method as well as its dependence on technique.

Conclusion

This original study highlighted that triage decision rules adopted in predicting COVID-19 suspected cases represented a real challenge in the local context. Although the triage process based on the CTS was not as performant as the RT-PCR, it was crucial to interrupt virus spread among hospitalized patients in “COVID-19-free departments” and to avoid local outbreaks. Nevertheless, since the COVID-19 outbreak is not over yet, every detail should be evaluated carefully, and the updates should be followed closely to monitor the epidemiological properties of COVID-19.

Dissemination of results

The results of this study were shared with the clinicians at the study site through an informal presentation.

Authorship contribution statement

Authors contributed as follows to the conception or design of the work; the acquisition, analysis, or interpretation of data for the work; and drafting the work or revising it critically for important intellectual content: MBJ, HBA, MK, and MBH contributed 10% each; MT, HM, NK, SY, JT, YM, MT, CM, SM, MBJ, HB, and JD contributed 5% each. All authors approved the version to be published and agreed to be accountable for all aspects of the work.

Declaration of competing interest

The authors declared no conflicts of interest.

References

1. Erika P, Andrea V, Cilliis MG, Ioannilli T, Andrea M. Triage decision-making at the time of COVID-19 infection: the Piacenza strategy. Intern Emerg Med 2020;15(5):879–82. https://doi.org/10.1007/s11739-020-02350-y.
2. Team Eurosurveillance Editorial. Note from the editors: World Health Organization declares novel coronavirus (2019-nCoV) sixth public health emergency of international concern. Eurosurveillance 2020;25(5):200131e. https://dx.doi.org/10.2807/1560-7917.ES.2020.25.5.200131e.
3. Bulut C, Kato Y. Epidemiology of COVID-19. Turk J Med Sci. 2020;50(S1-1):563–70. https://dx.doi.org/10.3906/aag-2004-172.
4. Lim BI, Tay ZRE, Vanu A, Heng WJK. Comparing triage evaluation of adult dyspneic patients between emergency nurses and doctors using simulated scenarios. Int Emerg Nurs 2013;21(2):103–12. https://dx.doi.org/10.1016/j.ienjr.2012.06.003.
5. Gao Y, Li Q, Chen J, Guo X, Miao C, Yang H, et al. Hospital emergency management plan during the COVID-19 epidemic. Acad Emerg Med 2020;27(4):309–11. https://dx.doi.org/10.1111/acem.13991.
6. Turcato G, Zabolí A, Pfeifer N. The COVID-19 epidemic and reorganisation of triage, an observational study. Intern Emerg Med 2020;1–8. https://dx.doi.org/10.1007/s11739-020-02465-2.
7. Ayebare RR, Flick R, Okware S, Bodo B, Lamorde M. Adoption of COVID-19 triage strategies for low-income settings. Lancet Respir Med 2020;8(4):e22. https://dx.doi.org/10.1016/s2213-2600(20)30114-4.
8. World Health Organization. Coronavirus disease 2019 (COVID-19) situation report – 39. Geneva: WHO; 2020.
9. Zhang J, Zhou L, Yang Y, Peng W, Wang W, Chen X. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet Respir Med 2020;8(3):e11–2. https://dx.doi.org/10.1016/s2213-2600(20)30071-0.
10. Instance Nationale de l’Evaluation et de l’Accréditation en Santé. Guide Parcours du patient suspect ou atteint par le Covid-19 Avis d’experts. Tunisie: INEAS; 2020.

11. Afzal A. Molecular diagnostic technologies for COVID-19: limitations and challenges. J Adv Res 2020. https://doi.org/10.1016/j.jare.2020.08.002.

12. Observatoire National des Maladies Nouvelles et Emergentes. Plan de Préparation et de Riposte au Risque d’introduction et de dissemination du "SARS-CoV-2" en Tunisie 2020. Tunisie: ONMNE; 2020.

13. Stokes EK, Zambrano LD, Anderson KN, Marder EP, Raz KM, Felix SER, et al. Coronavirus disease 2019 case surveillance—United States, January 22nd–May 30th, 2020. MMWR Morb Mortal Mortality Wkly Rep 2020;69(24):759–65. https://doi.org/10.15585/mmwr.mm6924e2.

14. Robert Koch Institute. Coronavirus disease 2019 (COVID-19) daily situation report of the Robert Koch institute 12/06/2020 - updated status for Germany. Germany: RKI; 2020.

15. Hadrya F, Soulaymani A, El Hatimy F. Space-time COVID-19 monitoring in Morocco. Pan Afr Med J 2020;35(41). https://doi.org/10.11604/pamj. suppv.2020.35.2.23505.

16. Chaari L, Golubnitschaja O. Covid-19 pandemic by the “real-time” monitoring: the Tunisian case and lessons for global epidemics in the context of 3PM strategies. EPMA J. 2020;11(2):133–8. https://doi.org/10.1007/s13167-020-00207-0.

17. World Health Organization. Public health criteria to adjust public health and social measures in the context of COVID-19. Geneva: WHO; 2020.

18. World Health Organization. World Health Organization report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). Geneva: WHO; 2020.

19. Cegolon L, Pichiari J, Mattrangelo G, Cinquetti S, Sotgiu G, Belluzzi S, et al. Hypothesis to explain the severe form of COVID-19 in northern Italy. BMJ Glob Health 2020;5(6):e002564. https://doi.org/10.1136/bmjgh-2020-002564.

20. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 2020;41(2):145–51. https://doi.org/10.3760/cma.j.issn.0254-6450.2020.02.003.

21. Iacovou M, Skew A. Household composition across the new Europe: where do the new member states fit in? Demogr Res 2020;25(14):465–90. https://doi.org/10.4504/DemRes.2011.25.14.

22. International Food Policy Research Institute. The impact of COVID-19 on Tunisia’s economy, agri-food system, and households. Washington: IFPRI; 2020.

23. World Health Organization. Coronavirus disease (COVID-19) technical guidance: infection prevention and controlMarch. Geneva: WHO; 2020.

24. Zitek T. The appropriate use of testing for COVID-19. West J Emerg Med 2020;21(3):470–2. https://doi.org/10.5811/westjem.2020.4.47370.

25. Jiang G, Ren X, Liu Y, Chen H, Liu W, Guo Z, et al. Application and optimization of RT-PCR in diagnosis of SARS-CoV-2 infection. medRxiv. 2020;1:1–29. https://doi.org/10.1101/2020.02.25.20027755.