Enhanced Membership Inference Attacks against Machine Learning Models

Jiayuan Ye1, Aadyaa Maddi1, Sasi Kumar Murakonda2, Vincent Bindschaedler3, Reza Shokri1

1National University of Singapore 2Privitar Labs 3University of Florida
Membership Inference

Does the sensitive dataset contain a given person's record?
Widely studied in machine learning

- Could serve as the base for stronger attacks
- Used for auditing different kinds of leakage

Data Reconstruction

Model
Privacy
Algorithm
Data Memorization
Issues with existing MIA

Belief: success of attacker is a metric for privacy loss

Success over what records or models? How to interpret different success rate?

Inconsistencies in formalizing the problem

An (unknown) **optimal** attack

The best known attack!

Inadequate attack performance

Overfitting? Memorization? Latent neighbor?

Lack of explanation for the leakage
Contributions

• Explain games in which different kinds of leakage could be quantified

• Formalize prior attack in this consistent framework

• Design attack stronger than prior attacks in this framework, via approximating an optimal attack that minimizes adversary's uncertainty
Membership Inference Attack (MIA) Game

Prior works largely formulates MIA game when all the components are randomized

[Yeom, Glacomelli, Fredrikson, Jha] Privacy risk in machine learning, CSF’18
[Sablarolles, Douze, Schmid, Olivier, Jegou] White-box vs black-box: Bayes optimal strategies for membership inference, ICML’19
Reason for Leakage?

Overfitting
An **average** behavior of the model on data distributions

A **large body of the literature** is based on techniques that simulates these two **average-case** member and non-member worlds, via training **shadow models** on random **population data**

[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine Learning Models, SP’17
How to Design Stronger Inference Attacks?

Minimize the uncertainties of MIA Game

A Strongest Inference Attack

- Black-box Access to Target Model
- Access to a population data pool

[Jagielski, Ullman, Opera] Auditing Differentially Private Machine Learning: How Private is Private SGD? NeurIPS’20
[Nasr, Song, Thakurta, Papernot, Carlini] Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning, IEEE S&P’21
Reason for Leakage?

Conditional Memorization
The behavior of models on a data point, conditioned over other unknown training data

Conditionally Atypical
Hard to learn data sample x, given other training data D

Higher Leakage

Conditionally Typical
Easy to learn data sample x, given other training data D

Loss of models on record x

Less conditional memorization on x, given D
How to simulate the two worlds in this game when the remaining training dataset is unknown?
Mimic all the training dataset of the target model (except the target data)

• E.g., train reference models on random population records, i.e., similar to shadow models

• E.g., Model distillation — train reference models on relabelled random population records by the target model
Our MIA via Reference Models on Target Data

If \(\ell(\theta, x_z, y_z) \leq c_\alpha(\theta, x_z, y_z) \) Predict "Member"

- Learn a **threshold** from the loss distribution of target data on reference models

Different threshold for individual models and records

Loss of target data on reference models

![Graph showing log(loss) vs. Frequency with different thresholds and model predictions.](image)
Our MIAs via Reference Models are Stronger than Prior Attacks via Shadow Models
Our MIA via Reference Models is Stronger than existing MIAs of similar nature

(a) Overall TPR-FPR

(b) Focus on Small FPR Region

[Carlini, Chien, Nasr, Song, Terzis, Tramèr] Membership inference attacks from first principles, IEEE S&P’22
Main Takeaways

• Membership inference attack is useful for auditing different kinds of leakage when formulated in different games

• There are multiple issues with the existing MIA in formalizing the problem and the performance of attacks

• We propose a framework to deal with these issues, and design more powerful attack via reducing adversary's uncertainty