STRATEGIES FOR THE SITE-SPECIFIC DECORATION OF DNA ORIGAMI NANOSTRUCTURES WITH FUNCTIONALLY INTACT PROTEINS

Joschka Hellmeier¹*, René Platzer², Vanessa Mühlgrabner², Magdalena C. Schneider¹, Elke Kurz³, Gerhard J. Schütz¹, Johannes B. Huppa², Eva Sevcsik¹.

¹ Institute of Applied Physics, TU Wien, Vienna, Austria
² Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
³ Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK

* address correspondence to: eva.sevcsik@tuwien.ac.at, hellmeier@iap.tuwien.ac.at
Fig. S1. DNA origami scaffold routing. The DNA origami rectangular tile (65x54 nm) was designed based on the M13mp18 scaffold1 using caDNAno.2 At the site chosen for ligand attachment, the staple strand was elongated at its 3’-end with 21 bases (green arrow). For attachment to the SLB via complementary cholesterol-oligonucleotides, staple strands were elongated at predefined positions at their 5’-end with 25 bases as indicated by the red arrows.
Fig. S2. Mobility of functionalized DNA origami structures on fluid-phase SLBs. Individual DNA origami structures were tracked on POPC SLBs at a frame rate of 100 Hz. Mean square displacements were determined and plotted as a function of time lags. Assuming free Brownian motion, the diffusion coefficient D was derived by fitting the first two data points with a linear fit. An exemplary plot for H57-dSAv is shown.
Fig. S3. Determining functionalization efficiencies for construct H57-dSAv. Single molecule two-color co-localization imaging was applied to determine the efficiency of each modification step. (A) First, we evaluated the availability of elongated staple strands (handles) for site-specific hybridization. For this purpose, we used fluorophore-conjugated handles (DNA-AS635P) and labeled the DNA origami structure with YOYO, a DNA-intercalating fluorophore. The percentage of co-localized signals in the blue (YOYO) and the red (DNA-AS635P) color channel yielded the handle incorporation efficiency. Representative TIRF images of DNA origami on an SLB are shown. Green open circles indicate signals detected in both color channels; red open circles indicate signals detected only in one channel. (B) Two-color colocalization of fluorescently labeled biotinylated oligo nucleotides (bt-DNA-AS635P) and YOYO yielded the efficiency of hybridization to the handle. (C) Binding of dSAv to the biotinylated handle was then determined via colocalization of fluorescently labeled biotinylated oligos (bt-DNA-AS635P) and dSAv (dSAv-AF555). (D) Finally, two-color colocalization of hybridized bt-DNA-AS635P and site-specifically biotinylated AF555-labeled H57-scFv yielded the overall functionalization efficiency of DNA origami with the TCR-ligand. The functionalization efficiency was then assessed as described in the methods section. Scale bar, 2 µm.
Fig. S4. Determining functionalization efficiencies for construct H57-dSAv-NL. (A) To determine the incorporation efficiency of the biotinylated handle, DNA origami structures featuring a fluorescently labeled, biotinylated handle (AF647-DNA-bt) were produced and unspecifically stained with the DNA-intercalating dye YOYO. Representative TIRF images of DNA origami on an SLB are shown. Green open circles indicate signals detected in both color channels; red open circles designate signals detected only in one channel. The percentage of co-localized signals in the blue (YOYO) and red (AF647-DNA-bt) color channel yielded the incorporation efficiency. (B) The binding efficiency of dSAv to the biotinylated handle was determined via two-color colocalization of fluorescently labeled dSAv (dSAv-AF555) and AF647-DNA-bt. (C) Two-color colocalization of AS635P-labeled H57-scFvS and YOYO-stained DNA origami structures yielded the overall functionalization efficiency of DNA origami with the TCR-ligand. Scale bar, 2 µm.
Fig. S5. Determining functionalization efficiencies for construct H57-DNA. (A) Handle availability was determined via two-color co-localization of DNA-AS635P and YOYO. Representative TIRF images of DNA origami on a SLB are shown. Green open circles indicate signals detected in both color channels; red open circles designate signals detected only in one channel. (B) Colocalization of AF555-labeled DNA-conjugated H57-scFv s (H57-DNA) and DNA-AS635P yielded the overall functionalization efficiency of DNA origami with ligand. Scale bar, 2 µm.
Fig. S6. Determining functionalization efficiencies for the construct H57-PNA. (A) Handle availability was determined via two-color co-localization of DNA-AS635P and YOYO. Exemplary TIRF images of DNA origami on a SLB are shown. Green open circles indicate signals detected in both color channels; red open circles designate signals detected only in one channel. (B) Colocalization of AF555-labeled PNA-conjugated H57-scFvs (H57-PNA) and DNA-AS635P yielded the overall functionalization efficiency of DNA origami with ligand. Scale bar, 2 µm.
Fig. S7. Determining functionalization efficiencies for the construct H57-mSAv. (A) Handle availability was determined by two-color co-localization of DNA-AS635P and YOYO. Exemplary TIRF images of DNA origami on a SLB are shown. Green open circles indicate signals detected in both color channels; red open circles indicate signals detected only in one channel. (B) Colocalization of AS635P-labeled DNA-coupled mSAv (mSAv-DNA-AS635P) and YOYO yielded functionalization efficiency with mSAv. (C) Finally, two-color colocalization of mSAv-DNA-AS635P and AF555-labeled biotinylated H57-scFv yielded the overall functionalization efficiency of DNA origami with ligand. Scale bar, 2 µm.
Fig. S8. Determining functionalization efficiencies for construct H57-tSAv. (A) Handle availability was determined by two-color co-localization of DNA-AS635P and YOYO. Exemplary TIRF images of DNA origami on a SLB are shown. Green open circles indicate signals detected in both color channels; red open circles indicate signals detected only in one channel. (B) Next, two-color colocalization of fluorescently labeled biotinylated oligos (bt-DNA-AS635P) with YOYO yielded the efficiency of hybridization of biotinylated oligo to the handle. (C) Colocalization of fluorescently labeled tSAv (tSAv-AS635P) and YOYO yielded functionalization efficiency with tSAv. (D) Finally, colocalization of hybridized biotin-DNA-AS635P and AF555-labeled H57-scF\textsubscript{v}s yielded the overall functionalization efficiency of DNA origami with ligand. Scale bar, 2 µm.
Fig. S9. Determining functionalization efficiencies for construct H57-tSAv-NL. (A) Incorporation of the biotinylated handle on DNA origami for functionalization was assessed via colocalization of a fluorescently labeled biotinylated oligo (AF647-DNA-bt) and YOYO. Exemplary TIRF images of DNA origami on a SLB are shown. Green open circles indicate signals detected in both color channels; red open circles indicate signals detected only in one channel. (B) The binding efficiency of tSAv to the biotinylated handle was determined via two-color colocalization of fluorescently labeled tSAv (tSAv-AS635P) and YOYO. (C) Last, two-color colocalization of tSAv-AS635P and AF555-labeled H57-scFv yielded the overall functionalization efficiency of DNA origami with ligand. Scale bar, 2 μm.
Fig. S10. Determining functionalization stoichiometries for H57-scFv-functionalized DNA origami constructs. Exemplary TIRF images and corresponding brightness distributions ρ of DNA origami constructs functionalized with AF555-labeled H57-scFv on SLBs. The detected signals were fitted and deconvolved into monomer and multimer contributions3 (see methods section). Scale bar, 2 µm.
Fig. S11. Axial dimensions at the T-cell – SLB interface. Schematic sketches of TCR engagement for the different ligand-functionalized DNA origami structures: H57-dSAv (A), H57-dSAv-NL (B), H57-DNA (C), H57-PNA (D), H57-mSAv (E), H57-tSAv (F), H57-tSAv-NL (G). Distances were estimated from the protein crystal structures\(^5\)–\(^8\) and are given in nm.

Note on length estimates

The two *trans* biotin binding sites in SAv are separated by \(\sim 3.5\) nm;\(^8\) hence the contribution to the total length of the construct was assumed with 4 nm (A, F). For mSAv (E), this contribution was estimated with 3 nm from the crystal structure.\(^7\)

The DNA linker consists of 17 paired bases in constructs A, C, E, F; with the following variations:

A, F: (constructs H57-dSAv and H57-tSAv): 4 unpaired Ts on the handle, 17 paired bases, PEG4 linker and biotin. (\(\sim 7\) nm)

C, E: (constructs H57-DNA, H57-mSAv)): 4 unpaired Ts on the handle, 17 paired bases and 4 unpaired Ts on the hybridized DNA oligo, PEG4 linker (\(\sim 8\) nm)

D: The DNA/PNA linker consists of 4 unpaired Ts on the handle, 17 paired bases, 2 unpaired Ts and an O-linker (\(\sim 6\) nm).

B, G: (constructs H57-dSAv-NL and H57-tSAv-NL): The biotin is attached to the handle *via* 2 unpaired Ts and a PEG4 linker.
Fig. S12. Calcium imaging experiments to assess the T-cell activation state. T-cells were loaded with the ratiometric Ca$^{2+}$-sensitive dye Fura-2 AM, seeded onto SLBs and fluorescence emission was recorded at excitation wavelengths 340 nm and 380 nm over 10 min. Activation was tracked via a change of the intensity ratio (340/380nm). Exemplary ratio images recorded at activating (ICAM-1 100 µm$^{-2}$, B7-1 100 µm$^{-2}$, pMHC 150 µm$^{-2}$, (A)) and non-activating (ICAM-1 100 µm$^{-2}$, B7-1 100 µm$^{-2}$, (B)) conditions at 37°C are shown 5 min after cell seeding. Scale bar, 4 µm. (C,D) For each cell, the intensity ratio 340/380nm was determined and plotted over time. Exemplary calcium traces for a T-cell under non-activating (C) and activating (D) conditions are shown. The threshold ratio for counting a cell as “activated” was set to 0.4 for all experiments, indicated by a red dashed line.
Fig. S13. Determination of the TCR labeling efficiency of the different H57-scFv variants. (A) TCRs on T-cells were stained with different AF555-conjugated H57-scFv variants (H57-DNA, H57-PNA, bt-H57, H57) and allowed to adhere to SLBs presenting 100 molecules per µm² ICAM-1 for imaging in TIRF microscopy mode. T-cells were labeled under saturating conditions for AF555-conjugated H57-scFv (20 µg ml⁻¹). The cell outline is indicated by a dashed white contour line. Images were recorded 5-10 min after cell seeding. Scale bar, 2 µm. (B) Surface densities of labeled TCRs were quantified (n ≥ 27 cells). Data are the mean of two independent experiments and two different mice (± s.e.m.).
Table S1. Diffusion coefficients of constructs on SLBs. Single-molecule trajectories of DNA origami structures functionalized with H57-scFv were recorded on SLBs, pooled and diffusion coefficients were determined by mean square displacement analysis. Diffusion coefficients are given as mean ± s.e.m. Data are from at least two independent experiments.

Construct	D (µm²/s)	trajectories (n)			
H57-dSAv	0.380 ± 0.013	8,203			
H57-dSAv-NL	0.381 ± 0.015	9,857			
H57-DNA	0.383 ± 0.012	7,601			
H57-PNA	0.421 ± 0.003	3,797			
H57-mSAv	0.385 ± 0.012	8,669			
H57-tSAv	0.355 ± 0.015	11,108			
H57-tSAv-NL	0.399 ± 0.001	5,699			
Construct	Fluorophore ID	Handle incorporation	bt-DNA hybridization	SAv attachment	POI attachment
-------------------	----------------	----------------------	----------------------	---------------	---------------
1: H57-dSAv	DYE 1	DNA origami (YOYO)	DNA origami (YOYO)	bt-DNA (AS635P)	bt-DNA (AS635P)
	DYE 2	DNA (AS635P)	bt-DNA (AS635P)	dSAv (AF555)	bt-H57 (AF555)
2: H57-dSAv-NL	DYE 1	DNA origami (YOYO)	---	DNA (AS635P)	DNA origami (YOYO)
	DYE 2	DNA-bt (AF647)	---	dSAv (AF555)	bt-H57 (AS635P)
3: H57-DNA	DYE 1	DNA origami (YOYO)	---	---	DNA (AS635P)
	DYE 2	DNA (AS635P)	---	---	H57-DNA (AF555)
4: H57-PNA	DYE 1	DNA origami (YOYO)	---	---	DNA (AS635P)
	DYE 2	DNA (AS635P)	---	---	H57-PNA (AF555)
5: H57-mSAv	DYE 1	DNA origami (YOYO)	---	DNA origami (YOYO)	mSAv-DNA (AS635P)
	DYE 2	DNA (AS635P)	---	mSAv-DNA (AS635P)	bt-H57 (AF555)
6: H57-tSAv	DYE 1	DNA origami (YOYO)	DNA origami (YOYO)	DNA origami (YOYO)	bt-DNA (AS635P)
	DYE 2	DNA (AS635P)	bt-DNA (AS635P)	tSAv (AS635P)	bt-H57 (AF555)
7: H57-tSAv-NL	DYE 1	DNA origami (YOYO)	---	DNA origami (YOYO)	tSAv (AS635P)
	DYE 2	DNA-bt (AF647)	---	tSAv (AS635P)	bt-H57 (AF555)
Table S3. Optimization of functionalization conditions for construct H57-dSAv. For each step, the yield of functionalized DNA origami construct was determined for different conditions (incubation times and molar ratios) via two-color colocalization microscopy as sketched in SI Fig. S3. Optimal conditions for each step are marked in red; these were then used as the basis for subsequent steps. Cumulative yields are shown. Data are the mean (± s.e.m.) of at least two independent experiments.

Handle incorporation	Molar ratio DNA origami : handle oligo						
	1 : 1	1 : 2	1 : 5	1 : 10	1 : 30	1 : 50	1 : 100
	19.1 ± 0.9	32.8 ± 0.8	46.6 ± 0.6	84.4 ± 2.1	83.4 ± 2.7	86.4 ± 0.3	86.4 ± 0.0

bt-DNA hybridization	Molar ratio DNA origami : bt-DNA					
	1 : 10	1 : 20	1 : 50	1 : 100	1 : 300	1 : 1000
	26.9 ± 0.3	39.1 ± 2.0	86.4 ± 0.5	85.4 ± 0.3	85.4 ± 0.2	85.9 ± 0.0

SAv attachment	Molar ratio DNA origami : dSAv				
	1 : 1	1 : 5	1 : 10	1 : 100	Incubation time [min]
	33.1 ± 2.4	34.1 ± 0.6	32.6 ± 1.5	67.1 ± 0.6	10
	34.3 ± 1.7	61.0 ± 0.8	68.7 ± 0.4	67.9 ± 1.2	30
	34.2 ± 1.0	61.2 ± 0.7	68.1 ± 1.2	67.6 ± 1.5	60
	33.7 ± 0.5	65.0 ± 1.4	68.4 ± 0.9	68.5 ± 0.5	300

POI attachment	Molar ratio DNA origami : bt-H57-scFv				
	1 : 1	1 : 5	1 : 10	1 : 100	Incubation time [min]
	34.7 ± 2.2	59.8 ± 0.9	62.0 ± 0.4	66.9 ± 1.5	10
	32.0 ± 1.2	59.1 ± 1.5	62.2 ± 1.3	67.5 ± 0.5	30
	31.1 ± 1.4	60.1 ± 0.8	67.4 ± 1.0	68.1 ± 0.7	60
	34.6 ± 1.0	66.6 ± 0.9	67.3 ± 1.0	67.5 ± 0.5	300
Table S4. Optimization of functionalization conditions for construct H57-dSAv-NL. For each step, the yield of functionalized DNA origami construct was determined for different conditions (molar ratios, incubation times) via two-color colocalization microscopy as sketched in SI Fig. S4. Cumulative yields are shown. Optimal conditions for each step are marked in red. Data are the mean (± sem) of at least two independent experiments.

Handle incorporation	Molar ratio DNA origami : biotinylated handle oligo					
	1 : 1	1 : 2	1 : 5	1 : 10	1 : 30	1 : 100
21.2 ± 1.2	53.8 ± 7.0	59.0 ± 7.0	84.0 ± 2.7	79.9 ± 6.2	79.4 ± 0.5	

SAv attachment	Molar ratio DNA origami : dSAv				
	1 : 1	1 : 5	1 : 10	1 : 100	Incubation time [min]
43.2 ± 2.7	44.6 ± 6.6	64.7 ± 2.8	66.5 ± 3.8	10	
46.8 ± 4.6	55.4 ± 8.6	71.7 ± 3.3	67.8 ± 2.6	30	
44.2 ± 1.9	67.4 ± 3.6	72.0 ± 2.6	68.0 ± 2.5	60	
46.1 ± 8.2	66.3 ± 3.0	69.1 ± 4.2	70.1 ± 3.1	300	

POI attachment	Molar ratio DNA origami : bt-H57-scFv				
	1 : 1	1 : 5	1 : 10	1 : 100	Incubation time [min]
58.4 ± 4.8	63.5 ± 4.9	66.2 ± 4.5	68.5 ± 4.5	10	
59.5 ± 5.7	66.1 ± 3.2	67.0 ± 5.0	69.6 ± 3.7	30	
64.0 ± 2.4	66.4 ± 4.0	71.2 ± 2.6	69.8 ± 3.2	60	
64.3 ± 5.3	67.4 ± 4.5	72.4 ± 0.3	73.2 ± 2.5	300	
Table S5. Optimization of functionalization conditions for construct H57-DNA. For each step, the yield of functionalized DNA origami construct was determined for different conditions (molar ratios, incubation times) via two-color colocalization microscopy as sketched in SI Fig. S5. Cumulative yields are shown. Optimal conditions for each step are marked in red. Data are the mean (± sem) of at least two independent experiments.

Handle incorporation	Molar ratio DNA origami : handle oligo						
	1 : 1	1 : 2	1 : 5	1 : 10	1 : 30	1 : 50	1 : 100
	19.1 ± 0.9	32.8 ± 0.8	46.6 ± 0.6	84.4 ± 2.1	83.4 ± 2.7	86.4 ± 0.3	86.4 ± 0.0

POI attachment	Molar ratio DNA origami : H57-scFv-DNA				
	1 : 1	1 : 5	1 : 10	1 : 100	Incubation time [min]
	32.6 ± 2.6	62.8 ± 2.9	65.7 ± 1.9	67.1 ± 3.0	10
	34.9 ± 4.3	63.7 ± 2.5	66.9 ± 2.4	67.6 ± 1.9	30
	36.1 ± 3.3	65.4 ± 4.1	67.9 ± 2.4	67.6 ± 2.1	60
	58.5 ± 1.7	66.3 ± 3.6	67.7 ± 1.8	67.8 ± 2.6	300
Table S6. Determination of functionalization yields after each step for construct H57-PNA. For each step, the yield of functionalized DNA origami construct was determined for different conditions (incubation times and molar ratios) via two-color colocalization microscopy as sketched in SI Fig. S6. Cumulative yields are shown. Optimal conditions for each step are marked in red. Data are the mean (± s.e.m.) of at least two independent experiments.

Handle incorporation	Molar ratio DNA origami : handle oligo						
	1 : 1	1 : 2	1 : 5	1 : 10	1 : 30	1 : 50	1 : 100
	19.1 ± 0.9	32.8 ± 0.8	46.6 ± 0.6	**84.4 ± 2.1**	83.4 ± 2.7	86.4 ± 0.3	86.4 ± 0.0

POI attachment	Molar ratio DNA origami : H57-scFv-PNA				
	1 : 1	1 : 3	1 : 10	1 : 100	Incubation time [min]
	24.7 ± 1.9	28.0 ± 1.5	47.9 ± 3.2	48.9 ± 3.2	10
	50.2 ± 6.0	71.5 ± 2.5	71.7 ± 2.3	73.1 ± 2.4	30
	52.0 ± 4.5	**74.2 ± 2.2**	72.9 ± 2.5	73.0 ± 3.0	60
	51.4 ± 5.0	73.6 ± 2.0	72.9 ± 2.5	72.9 ± 2.7	300
Table S7. Determination of functionalization yields after each step for construct H57-mSAv. For each step, the yield of functionalized DNA origami construct was determined for different conditions (incubation times and molar ratios) via two-color colocalization microscopy as sketched in SI Fig. S7. Cumulative yields are shown. Optimal conditions for each step are marked in red. Data are the mean (± s.e.m.) of at least two independent experiments.

Handle incorporation	Molar ratio DNA origami : handle oligo						
	1 : 1	1 : 2	1 : 5	1 : 10	1 : 30	1 : 50	1 : 100
	19.1 ± 0.9	32.8 ± 0.8	46.6 ± 0.6	84.4 ± 2.1	83.4 ± 2.7	86.4 ± 0.3	86.4 ± 0.0

SAv attachment	Molar ratio DNA origami : mSAv-DNA			
	1 : 3	1 : 10	1 : 100	Incubation time [min]
	68.8 ± 2.7	74.0 ± 2.5	76.4 ± 3.1	10
	75.4 ± 0.4	75.7 ± 1.5	78.1 ± 0.6	30
	81.0 ± 2.4	78.5 ± 2.7	78.2 ± 5.8	60
	78.0 ± 0.6	80.0 ± 1.9	81.1 ± 3.0	300

POI attachment	Molar ratio DNA origami : bt-H57-scFv				
	1 : 1	1 : 5	1 : 10	1 : 100	Incubation time [min]
	47.4 ± 3.0	50.0 ± 4.8	56.4 ± 6.3	62.1 ± 2.6	10
	49.5 ± 1.5	58.3 ± 5.0	63.2 ± 2.4	65.5 ± 3.0	30
	50.7 ± 1.6	63.1 ± 1.9	66.6 ± 3.2	66.3 ± 2.9	60
	53.7 ± 1.7	65.5 ± 3.2	66.5 ± 3.1	67.6 ± 3.8	300
Table S8. Determination of functionalization yields after each step for construct H57-tSAv. For each step, the yield of functionalized DNA origami construct was determined for different conditions (incubation times and molar ratios) via two-color colocalization microscopy as sketched in SI Fig. S8. Cumulative yields are shown. Optimal conditions for each step are marked in red. Data are the mean (± s.e.m.) of at least two independent experiments.

Handle incorporation	Molar ratio DNA origami : handle oligo						
	1 : 1	1 : 2	1 : 5	1 : 10	1 : 30	1 : 50	1 : 100
	19.1 ± 0.9	32.8 ± 0.8	46.6 ± 0.6	**84.4 ± 2.1**	83.4 ± 2.7	86.4 ± 0.3	86.4 ± 0.0

bt-DNA hybridization	Molar ratio DNA origami : bt-DNA					
	1 : 10	1 : 20	1 : 50	1 : 100	1 : 300	1 : 1000
	26.9 ± 0.3	39.1 ± 2.0	**86.4 ± 0.5**	85.4 ± 0.3	85.4 ± 0.2	85.9 ± 0.0

SAv attachment	Molar ratio DNA origami : tSAv				
	1 : 1	1 : 5	1 : 10	1 : 100	Incubation time [min]
	76.6 ± 4.8	77.9 ± 5.2	77.5 ± 5.7	79.0 ± 5.6	10
	77.5 ± 3.6	79.7 ± 4.8	**79.4 ± 3.2**	79.4 ± 3.6	30
	76.8 ± 4.3	78.3 ± 6.0	79.6 ± 4.0	79.3 ± 4.0	60
	77.7 ± 4.9	78.8 ± 6.1	79.6 ± 4.0	82.1 ± 2.6	300

POI attachment	Molar ratio DNA origami : bt-H57-scFv	
	1 : 10	Incubation time [min]
	69.1 ± 2.3	10
	70.5 ± 1.1	30
	70.1 ± 1.3	60
	68.1 ± 3.0	300
Table S9. Determination of functionalization yields after each step for construct H57-tSAv-NL. For each step, the yield of functionalized DNA origami construct was determined for different conditions (incubation times and molar ratios) via two-color colocalization microscopy as sketched in SI Fig. S9. Cumulative yields are shown. Optimal conditions for each step are marked in red. Data are the mean (± s.e.m.) of at least two independent experiments.

Handle incorporation	Molar ratio DNA origami : biotinylated handle oligo					
	1 : 1	1 : 2	1 : 5	1 : 10	1 : 30	1 : 100
	21.2 ± 1.2	53.8 ± 7.0	59.0 ± 7.0	**84.0 ± 2.7**	79.9 ± 6.2	79.4 ± 0.5

SAv attachment	Molar ratio DNA origami : tSAv	Incubation time [min]
1 : 1	65.2 ± 6.5	10
1 : 5	78.8 ± 0.8	
1 : 10	79.5 ± 1.4	
1 : 100	81.2 ± 1.7	
	83.8 ± 1.3	30
	81.3 ± 1.7	
	78.0 ± 2.4	60
	80.6 ± 2.3	
	82.7 ± 0.3	
	81.5 ± 1.8	
	83.9 ± 0.2	300
	81.6 ± 1.1	
	82.1 ± 2.4	
	83.9 ± 0.2	

POI attachment	Molar ratio DNA origami : bt-H57-scFv	Incubation time [min]
1 : 10		10
71.0 ± 1.3		
71.2 ± 1.2		
72.1 ± 1.9		60
71.6 ± 1.8		300
Table S10. Functionalization efficiencies for the different constructs. The degree of functionalization (%, ± s.e.m.) (with one or more ligands) was determined via two-color colocalization microscopy (see Figures SI 3-9). Cumulative yields are shown in (A). To allow for direct comparison of the efficiencies of individual functionalization steps we provide this information in (B). Note that for (B) some step efficiencies could not be determined directly but had to be calculated (indicated with #).

	H57-dSAv	H57-dSAv-NL	H57-DNA	H57-PNA	H57-mSAv	H57-tSAv	H57-tSAv-NL	
A	handle incorporation	84.4 ± 2.1	84.0 ± 2.7	84.4 ± 2.1	84.4 ± 2.1	84.4 ± 2.1	84.4 ± 2.1	84.0 ± 2.7
	bt-DNA hybridization	86.4 ± 0.5	-	-	-	-	86.4 ± 0.5	-
	SAv attachment	68.7 ± 0.1	72.0 ± 0.2	-	-	81.0 ± 2.4*	79.4 ± 3.2	83.8 ± 1.3
B	H57-scFv attachment	67.4 ± 0.7	71.2 ± 2.6	67.9 ± 0.7*	74.2 ± 0.3*	66.6 ± 1.2	70.1 ± 0.9	72.1 ± 0.7

	H57-dSAv	H57-dSAv-NL	H57-DNA	H57-PNA	H57-mSAv	H57-tSAv	H57-tSAv-NL	
B	handle incorporation	84.0 ± 2.7	84.0 ± 2.7	84.4 ± 2.1	84.4 ± 2.1	84.4 ± 2.1	84.4 ± 2.1	84.0 ± 2.7
	bt-DNA hybridization	102.4 ± 3.1#	-	-	-	-	102.4 ± 3.1#	-
	SAv attachment	85.7 ± 3.0	85.7 ± 3.0	-	-	96.0 ± 5.2*#	91.9 ± 6.5#	99.8 ± 4.8#
	H57-scFv attachment	98.9 ± 3.9#	98.9 ± 3.9#	80.5 ± 2.8*	87.9 ± 2.5*	82.2 ± 3.9	88.3 ± 7.4#	86.0 ± 2.2

*indicates attachment via hybridization.
Table S11. Number of H57-scFv molecules per DNA origami construct. The number of H57-scFv molecules per functionalized DNA origami construct was determined by comparing the signal brightness of the construct to the brightness of a single AF555-labeled H57-scFv as described in the methods section. Data are the mean of at least two independent experiments (± s.e.m.).

Construct	1 H57-scFv	2 H57-scFv	3 H57-scFv	signals (n)
H57-dSAv	98.6 ± 0.8	0.5 ± 0.3	0.6 ± 0.5	1,352 ± 147
H57-dSAv-NL	99.9 ± 0.3	0.1 ± 0.1	0.6 ± 0.2	1,369 ± 107
H57-DNA	97.5 ± 1.1	2.2 ± 1.1	0.3 ± 0.2	1,273 ± 69
H57-PNA	99.5 ± 0.2	0.0 ± 0.0	0.5 ± 0.2	2,276 ± 484
H57-mSAv	98.6 ± 0.8	1.1 ± 0.7	0.3 ± 0.1	1,359 ± 63
H57-tSAv	30.6 ± 1.8	52.8 ± 3.2	16.7 ± 5.1	5,984 ± 1,627
H57-tSAv-NL	48.1 ± 3.2	47.1 ± 0.7	4.8 ± 3.9	3,096 ± 565
Table S12. Fitting parameters of fits to dose-response curves. Dose-response curves of T-cell activation by via the different ligand-decorated DNA origami constructs were fitted with Eq. 19 to extract the activation threshold T_A, the maximum response A_{max} and the Hill coefficient n. The 95% confidence intervals are indicated. The mean number of cells per region (± s.e.m.) and the number of animals used to generate dose-response curves are shown.

Construct	n	n	n	A_{max} (%)	A_{max}, low	A_{max}, high	T_A, low	T_A, high	# cells	# animals	
H57-dSAv	2.44	1.66	3.23	91.81	84.50	99.13	3.91	3.29	4.64	163 ± 35	3
H57-dSAv-NL	3.06	1.83	4.29	100.14	91.55	108.73	3.27	2.78	3.85	199 ± 55	2
H57-DNA	4.38	2.49	6.26	91.01	81.41	100.62	9.68	8.66	10.83	176 ± 68	2
H57-PNA	1.73	0.94	2.52	103.83	94.52	113.15	2.75	2.20	3.43	206 ± 65	2
H57-mSAv	3.35	0.99	5.71	92.55	84.01	101.09	3.15	2.58	3.86	203 ± 53	2
H57-tSAv	1.23	0.33	2.12	105.74	89.16	122.31	0.81	0.45	1.49	289 ± 81	2
H57-tSAv-NL	1.42	0.72	2.12	101.65	90.28	113.02	0.83	0.45	1.54	214 ± 62	2
Table S13. List of staple strands

Designation	Sequence	
10[63]-BLK	CAGCTTTCCGGCCGATCGTAAACGCAGTCCGCCT	
11[112]-BLK	AGCCGGACACAATCATAAGGAACCGGGCGGTAC	
12[95]-BLK	ACACTCATAGGGGACGACAGCTGGTACCTG	
13[80]-BLK	GGGCCAGCTAAGGAGGAACTCCCCGTAAAAC	
14[63]-BLK	GTATCGGGTCGTTTCTGTTGACGTAATCA	
15[112]-BLK	TACGAAAGGAGCTACCTAAAAATGGCTATAG	
16[95]-BLK	TGATTCCTAAAGGGGTGGCATCAATAATCATAC	
17[32]-BLK	GGGATAGGTTTCCGGCACCGCTTCCATTCAGG	
18[143]-BLK	TAGCCGGGACCTTCTCATCAAGTAGAATCAAGCTA	
19[95]-BLK	GGAGCTAGGTAGCACCCTCCATTCAGG	
20[112]-BLK	CTTGCGCAAGCAAGCGGTGACGTAAATCAG	
21[95]-BLK	GGATTCCTAAAGGGGTGGCATCAATAATCATAC	
22[32]-BLK	GGCAGAGTACGGGACGCACTTCAGGGGAAA	
23[112]-BLK	CTTTGGCATAGGGGGAACGCACTTCAGGGGAAA	
24[95]-BLK	CCAACCTCAGGTGTAGGGAACGCACTTCAGGG	
25[32]-BLK	TACGGAAGATTTGTATCATCGCCTATGTTACT	
26[47]-BLK	CAGCCGACGCTCAGGTTTGGTAGATATCAACAT	
27[63]-BLK	CAGGAAAGCAGGCGGCCCTCCTTCTGCAAG	
28[112]-BLK	CTTTGGCATAGGGGGAACGCACTTCAGGGGAAA	
29[32]-BLK	CTGCGCAAGTTCCTCAGGTCAGGAAGAAGAC	
30[143]-BLK	CTGAGGCTACTAAAGACTTTTACATAGCC	
31[95]-BLK	CAGCAGCGGGCGAAAGGGGGATGTCGCTATTA	
32[32]-BLK	AGTGAGCACAGGACGGGCAAGCATAACTCA	
33[80]-BLK	TTGGCTATATATTCATGCCGTATTTTCTTTTAAT	
34[143]-BLK	TCCGCTACACGGGTATGCGGACAAGGAAAA	
35[95]-BLK	GGGATGCTAGGTGAGTGCAATAGTGTCGCG	
36[32]-BLK	CAGCAGCGGGCGAAAGGGGGATGTCGCTATTA	
37[80]-BLK	CGTGCCAGATGAATGAATTTTCTCGTCTTTC	
Designation	Sequence	Docking Sequence
-------------	--	---------------------------------------
9[80]-4T-V	CAAAAATAAAAGAGACAGATGAACTGACCTTTTGAGTGTGTCATGT	GTGGAGTAGTGTCATGT
Z'-4T-10[47]	AGAGTCTAGCATATTTAGCCTTATTTAATTGTTGTTAATCTCAGCTCAAGCCCAAA	AGAGTCTAGCATATTTAGCC
Z'-4T-11[128]	AGAGTCCTAGCATATTTAGCCTTTTCAACGGAGGCAACCAACCTAAACGTACAGGG	AGAGTCTAGCATATTTAGCC
Z'-4T-14[47]	AGAGTCCTAGCATATTTAGCCTTTTACCCAGGCTGTTGGGAGAGGCGATCGCCTC	AGAGTCTAGCATATTTAGCC
Z'-4T-15[128]	AGAGTCCTAGCATATTTAGCCTTTTACCCATGTAGTACCGCCACCCTTCAGTACCAG	AGAGTCTAGCATATTTAGCC
Z'-4T-18[47]	AGAGTCCTAGCATATTTAGCCTTTTATACCCATGTAGTACCGCCACCCTTCAGTACCAG	AGAGTCTAGCATATTTAGCC
Z'-4T-19[128]	AGAGTCCTAGCATATTTAGCCTTTTTATACCCATGTAGTACCGCCACCCTTCAGTACCAG	AGAGTCTAGCATATTTAGCC
Z'-4T-2[47]	AGAGTCCTAGCATATTTAGCCTTTTATACCCATGTAGTACCGCCACCCTTCAGTACCAG	AGAGTCTAGCATATTTAGCC
Z'-4T-3[128]	AGAGTCCTAGCATATTTAGCCTTTTATACCCATGTAGTACCGCCACCCTTCAGTACCAG	AGAGTCTAGCATATTTAGCC
Z'-4T-6[47]	AGAGTCCTAGCATATTTAGCCTTTTATACCCATGTAGTACCGCCACCCTTCAGTACCAG	AGAGTCTAGCATATTTAGCC
Z'-4T-7[128]	AGAGTCCTAGCATATTTAGCCTTTTATACCCATGTAGTACCGCCACCCTTCAGTACCAG	AGAGTCTAGCATATTTAGCC
Table S15. List of modified oligonucleotides

Designation	Composition	Sequence	Modification
bt-DNA	Biotin-PEG4-V	ACATGACACTACTCCAC	5'-Biotin-PEG4
bt-DNA-635P	Biotin-PEG4-V-4T-AS635P	ACATGACACTACTCCACTTTT	5'-Biotin-PEG4; 3'-AS635P
DNA-635P	9[80]-4T-V'-AS635P	CAAAAATAAAAGAGGACAGATGAAGGACGTTTGTGAGATGTCATTG	3'-AS635P
AF647-DNA-bt	AF647-2T-9[80]-2T-PEG4-Biotin	TTTTTATTTTCTACTCCAC	5'-AF647; 3'-Biotin-PEG4
tetrazine-PEG5-DNA	tetrazine-PEG5-4T-V	TTACATGACACTACTCCAC	5'-tetrazine-PEG5
azido-PEG4-DNA	azido-PEG4-4T-V	TTTACATGACACTACTCCAC	5'-N3-PEG4
PNA-cysteine	O-2T-V (PNA)	O- TTACATGACACTACTCCAC	5'-O-linker
	Z-PEG4-Cholesterol	GGCTAAATATGCATTAGACTCTCT	3'-Cholesterol-PEG4
SI References

(1) Rothemund, P. W. K. Folding DNA to Create Nanoscale Shapes and Patterns. *2006, 440* (March), 297–302. https://doi.org/10.1038/nature04586.

(2) Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M. Rapid Prototyping of 3D DNA-Origami Shapes with CaDNAno. *Nucleic Acids Res.* 2009, 37 (15), 5001–5006. https://doi.org/10.1093/nar/gkp436.

(3) Brameshuber, M.; Weghuber, J.; Ruprecht, V.; Gombos, I.; Horváth, I.; Vigh, L.; Eckerstorfer, P.; Kiss, E.; Stockinger, H.; Schütz, G. J. Imaging of Mobile Long-Lived Nanoplatforms in the Live Cell Plasma Membrane. *J. Biol. Chem.* 2010, 285 (53), 41765–41771. https://doi.org/10.1074/jbc.M110.182121.

(4) Brameshuber, M.; Kellner, F.; Rossboth, B. K.; Ta, H.; Alge, K.; Sevcsik, E.; Göhring, J.; Axmann, M.; Baumgart, F.; Gascoigne, N. R. J.; Davis, S. J.; Stockinger, H.; Schütz, G. J.; Huppa, J. B. Monomeric TCRs Drive T Cell Antigen Recognition. *Nat. Immunol.* 2018, 19, 487–496. https://doi.org/10.1038/s41590-018-0092-4.

(5) Dong, D.; Zheng, L.; Lin, J.; Zhang, B.; Zhu, Y.; Li, N.; Xie, S.; Wang, Y.; Gao, N.; Huang, Z. Structural Basis of Assembly of the Human T Cell Receptor–CD3 Complex. *Nature* 2019, 573 (7775), 546–552. https://doi.org/10.1038/s41586-019-1537-0.

(6) Huppa, J. B.; Axmann, M.; Mörtelmaier, M. A.; Lillemoeier, B. F.; Newell, E. W.; Brameshuber, M.; Klein, L. O.; Schütz, G. J.; Davis, M. M. TCR-Peptide-MHC Interactions in Situ Show Accelerated Kinetics and Increased Affinity. *Nature* 2010, 463 (7283), 963–967. https://doi.org/10.1038/nature08746.

(7) Howarth, M.; Chinnapen, D. J.-F.; Gerrow, K.; Dorrestein, P. C.; Grandy, M. R.; Kelleher, N. L.; El-Husseini, A.; Ting, A. Y. A Monovalent Streptavidin with a Single Femtomolar Biotin Binding Site. *Nat. Methods* 2006, 3 (4), 267–273. https://doi.org/10.1038/nmeth861.

(8) Fairhead, M.; Krndija, D.; Lowe, E. D.; Howarth, M. Plug-and-Play Pairing via Defined Divalent Streptavidins. *J. Mol. Biol.* 2014, 426 (1), 199–214. https://doi.org/10.1016/j.jmb.2013.09.016.