Molecular tectonics: tetracarboxythiacalix[4]arene derivatives as tectons for the formation of hydrogen-bonded networks†

A. S. Ovsyannikov,b,c M. N. Lang,a S. Ferlay,*a S. E. Solovieva,*b,c I. S. Antipin,*b,c A. I. Konovalov,b,c N. Kyritsakas,a and M. W. Hosseini*a

A series of thiacalix[4]arene derivatives blocked in the 1,3-alternate conformation and bearing four carboxylic acids have been designed and synthesized. These compounds, owing to the H-bond donor (OH moiety) and acceptor (C=O group) nature of the carboxylic acid moieties, behave as self-complementary tectons and lead to the formation of tubular 1D H-bonded networks in the crystalline phase. Upon deprotonation of the self-complementary neutral compounds, i.e. transformation of carboxylic acid moieties into carboxylates, anionic tectons are generated. Due to their propensity to form H-bonded networks in the presence of a dicationic H-bond donor tecton the cyclic bis-amidinium type, designed to behave as a molecular staple interconnecting two carboxylates moieties, 1- and 2-D H-bonded networks are formed under self-assembly conditions.

Introduction

Tubular architectures1–3 are of interest as they form channels that may lead to the transport of neutral or charged species. Such entities may be either discrete or infinite networks displaying translational symmetry. For the latter category, they may be formed by self-assembly processes upon interconnection of cyclic entities using either hydrogen or coordination bonds.4–7 Tubular architectures may also be helical assemblies.8 Organisation of cyclic units into tubular architectures using liquid crystalline phases9 or polymeric backbones10 has been also reported.

Following the concepts developed in molecular tectonics11 for the design and formation by self-assembly processes of infinite molecular networks in the crystalline phase, we are interested in tubular architectures based on H-bonds between macrocyclic entities behaving as tectons.12 Owing to their cyclic nature, calix[4]arene13 and thiacalix[4]arene1–3,14,15 (Fig. 1) in their 1,3-alternate conformation are interesting backbones for the design of such tectons. Indeed the 1,3-alternate conformation of these two platforms allows up to 4 interaction sites to be positioned in a divergent fashion, i.e. two above and two below the main plane of the calixarene. We have previously exploited this feature and designed metallatubulanes based on calix[4]arene derivatives16 or on [1]-metacyclophane in the 1,3-alternate fixed conformation, an analogous backbone to calix[4]arene.17

Here we report on the design, synthesis and characterization of thiacalixarene based derivatives 4–8, in their 1,3-alternate conformation, bearing four carboxylic acid groups and thus behaving as self-complementary tectons. We describe their self-assembly in the crystalline phase into 1D tubular H-bonded networks as well as combinations of their deprotonated derivatives as anionic tectons with a dicaticionic tecton A+, behaving as a molecular staple, capable of bridging consecutive anionic units, leading to extended H-bonded networks.

Compounds 4–7, and 8 are based on p-tert-butylthiacalix[4]arene and on the H-thiacalix[4]arene backbone in its 1,3-alternate conformation, respectively (Fig. 1). They are analogous derivatives bearing four carboxylic acid moieties and differ by the nature of the spacer connecting the carboxyl groups to the backbone. They have been designed in order to investigate the role played by the spacer in their ability to form tubular H-bonded networks (Fig. 2a) based on the formation of H-bonded dimeric nodes (Fig. 2b) between carboxylic acids belonging to consecutive self-complementary tectons. Owing to the acidic nature of compounds 4–8, upon their deprotonation leading to anionic species, they offer another possibility for the design of tubular

† Electronic supplementary information (ESI) available: X-ray diffraction data, tables of selected bond distances and angles, CCDC 1504484–1504489 and 1505426. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6ce02026g

8622 | CrystEngComm, 2016, 18, 8622–8630

This journal is © The Royal Society of Chemistry 2016
H-bonded networks. Indeed these anionic tectons bearing carboxylate moieties may be combined with the dicaticionic organic tecton A (Fig. 1) designed to bridge two carboxylates, one on each of its faces, and thus behave as a molecular staple (Fig. 2c) connecting consecutive carboxylate-bearing components. Depending on the degree of deprotonation of neutral compounds 4–8 and the nature of the spacer connecting the calix backbone to the carboxylate units, one may expect the formation of 1D tubular H-bonded networks (Fig. 2a). The driving force for the formation of such extended architectures is the establishment of charge-assisted H-bonds.

Although few tetra-acid derivatives based on calix[4]arene (CA) and thiacalix[4]arene (TCA) backbones have been reported, to the best of our knowledge, no example of tetr mercaptothiacalixarene (TMTCA) 3 (Fig. 1) based derivatives has been documented to date.

Few examples of H-bonded nanotubular assemblies based on p-tert-thiacalix[4]arene 3 bearing carboxylic acid and/or urea have been reported. An interesting investigation dealing with the photoisomerization of a H-bonded network based on a p-tert-butylthiacalix[4]arene derivative bearing carboxylic acid moieties combined with bipyridylethene has been also reported.

Experimental

Characterization techniques

1H-NMR and 13C-NMR spectra were recorded at room temperature on a Bruker 300 MHz and 500 MHz.

FT-IR spectra were recorded on a Perkin Elmer ATR spectrometer.

Mass spectra (MS (ES+)) were recorded on a Bruker Micro-TOF spectrometer.

Melting points were measured in capillary tubes on a Stuart Scientific Melting Point SMP-1 apparatus.

Elemental analyses were performed by the Service de Microanalyses de la Fédération de Recherche Chimie of the Université de Strasbourg.

Single-crystal studies

Data were collected at 173(2) K on a Bruker APEX8 CCD diffractometer equipped with an Oxford Cryosystem liquid N$_2$ device, using graphite-monochromated Mo-Kα ($\lambda = 0.71073 \text{ Å}$) radiation. For all structures, diffraction data were corrected for absorption. Structures were solved using SHELXS-97 and refined by full matrix least-squares on F^2 using SHELXL-97. The hydrogen atoms were introduced at calculated positions and not refined (riding model).

CCDC: 1504484–1504490 and 1505426 (see Tables S4 and S5, ESI†).

Powder X-ray diffraction

Powder diffraction (PXRD) diagrams were collected on a Bruker D8 diffractometer using monochromatic Cu-Kα radiation in a scanning range between 3.8 and 40° using a scan step size of 2° min$^{-1}$.

As already demonstrated and currently admitted, for all the compounds, discrepancies in intensity between the
observed and simulated patterns are due to the preferential orientations of the microcrystalline powders.

Synthesis

General: all reagents were purchased from commercial sources and used without further purification. The synthesis of 1,14,16,2,26,32,37 and 8 was previously reported. The synthesis of 4–7 was adapted from previously reported procedures.23,29

The bisamidinium compound A', used as its disotylate salt (A', 2TsO), has been prepared using an already reported procedure.18

Synthesis of the tetraester derivative 4 in 1,3-A conformation. Under argon, a mixture of TMTC 3 (0.3 g, 0.38 mmol) and Cs2CO3 (2.47 g, 7.6 mmol) in dry and degassed acetone (60 ml) was refluxed for 2 hours before BrCH2COOEt (0.85 ml, 7.6 mmol) was added. The reaction mixture was refluxed for 50 hours under argon. After cooling, the solid was filtered and the filtrate was evaporated. The residue was treated with MeOH (50 ml) affording the desired compound 4' (0.2 g, 46% yield) in the 1,3-A conformation as a white powder.

Mp: 310 °C (decomp.); MALDI TOF: m/z = 1129.3 [M]+ (calculated 1129.69); elemental analysis: % calculated: C, 59.54%; H, 6.42%; % found: C, 59.45%; H, 6.48%; 1H-NMR (CDCl3, 300 MHz, 25 °C): δ (ppm) = 1.18 (12H, t, −CH3), 1.26 (36H, s, tBu); 3.61 (8H, s, ArSCH2), 4.12 (8H, q, −C(O)CH2), 7.76 (8H, s, Ar–H); 13C-NMR (CDCl3, 125 MHz, 25 °C): δ ppm = 14.4; 31.1; 34.8; 37.7; 61.5; 136.1; 139.9; 143.2; 150.9; 170.0.

Synthesis of the tetraester derivative 5 in 1,3-A conformation. Under argon, a mixture of 3 (0.5 g, 0.63 mmol) and Cs2CO3 (1.3 g, 4 mmol) and methyl-(4-bromomethyl)benzoate (2.05 g, 9 mmol) in dry and degassed DMF (60 ml) was stirred for 40 hours at 80 °C. After cooling, the solvent was evaporated under reduced pressure. The residue was treated with 2 M HCl (40 ml) and extracted with CH2Cl2 (2 × 50 ml). The organic layers were combined and dried over MgSO4. After filtration, the solvent was evaporated. The residue was treated with MeOH (200 ml) affording the desired compound 5' (0.43 g, 60% yield) in the 1,3-A conformation as a white powder.

Mp: 300 °C (decomp.) MALDI TOF: m/z: 1377.15 [M]+ (calculated 1377.95); elemental analysis: % calculated: C, 66.25%; H, 5.85%; % found: C, 66.18%; H, 5.86%; 1H-NMR (CDCl3, 300 MHz, 25 °C): δ (ppm) = 1.06 (36H, s, tBu); 3.92 (12H, s, −C(O)O−CH2); 4.05 (8H, s, −C(O)−CH2); 7.28 (8H, d, Ar–H); 7.61 (8H, s, Ar–H); 7.90 (8H, d, Ar–H); 13C-NMR (CDCl3, 125 MHz, 25 °C): δ ppm = 30.7; 34.4; 51.0; 52.2; 128.7; 129.1; 129.7; 134.9; 140.0; 143.4; 143.6; 150.4; 167.2.

Synthesis of the tetraester derivative 8 in 1,3-A conformation. Compound 8' was prepared using a reported procedure (63% yield).23

1H-NMR (CDCl3, 300 MHz, 25 °C): δ (ppm) = 4.05 (12H, s, −C(O)O−CH2); 5.29 (8H, s, −C(O)−CH2); 6.44 (4H, t, Ar–H); 7.01 (8H, d, Ar–H); 7.13 (8H, d, Ar–H); 8.1 (8H, d, Ar–H).

Synthesis of the tetracarboxyl derivative 4 in 1,3-A conformation. A mixture of 2 (3.00 g, 4.17 mmol), Br(CH2)3C(O)OEt (6.55 g, 33.3 mmol) and Cs2CO3 (8.16 g, 25 mmol) was refluxed under argon in acetone (100 ml) for 3 days. The reaction mixture was filtered. The filtrate was concentrated under vacuum. The residue was treated with MeOH (50 ml) affording the desired compound 6' (2.25 g, 46% yield) in the 1,3-A conformation as a white powder.

Mp: 315–317 °C; MALDI TOF: m/z: 1176.85 [M]+ (calculated 1177.64); elemental analysis: % calculated: C, 65.28%; H, 7.53%; % found: C, 65.33%; H, 7.51%; 1H-NMR (CDCl3, 600 MHz, 25 °C): δ (ppm) = 1.25 (s, 36H, tBu), 1.25 (t, 12H, −CH3), 1.41 (m, 8H, −CH2CH2CH2−), 2.11 (t, 8H, −CH2(CH3)−), 3.91 (t, 12H, −O−CH2−), 4.09 (q, 8H, −OCH2CH3), 7.36 (s, 8H, Ar–H); 13C-NMR (CDCl3, 125 MHz, 25 °C): δ ppm = 14.3, 24.3, 30.9, 31.2, 34.3, 60.1, 67.9, 127.8, 128.2, 145.9, 156.8, 172.8.

Synthesis of the tetracarboxyl derivative 5 in 1,3-A conformation. To a dispersion of compound 5' (0.5 g, 0.4 mmol) in EtOH (80 ml), an aqueous NaOH solution (20 ml, 0.16 g, 4 mmol) was added and the mixture was refluxed for 48 hours. After cooling to 0 °C, an aqueous 2 M HCl solution (40 ml) was added. The precipitate was filtered and washed with water (3 × 50 ml) affording compound 5 (0.43 g, 95% yield).
Mps: 315 °C (decomp.) MALDI TOF: m/z = 1167.31 [M + K]+ (calculated 1168.76); elemental analysis: % calculated: C, 59.54%; H, 6.42%; % found: C, 59.40%; H, 6.46%; 1H-NMR (DMSO-d6, 300 MHz, 25 °C): δ(ppm) = 1.23 (36H, s, tBu); 1.60 (8H, m, -CH2CH2CH2-); 2.46 (8H, t, -SCH2-); 2.88 (8H, t, -CH2-C(O)-); 7.71 (8H, s, Ar-H); 13C-NMR (DMSO-d6, 125 MHz, 25 °C): δ(ppm) = 24.2; 30.5; 32.6; 34.0; 34.6; 133.9; 140.0; 141.9; 149.4; 174.1.

Synthesis of the tetracarboxyl derivative 6 in 1,3-A conformation. Compound 6′ (0.75 g, 0.64 mmol), KOH (0.72 g, 12.86 mmol), EtOH (125 mL) and water (31 mL) were stirred at 100 °C for 3 hours. The reaction mixture was cooled in an ice-water bath before 2 M aqueous HCl solution (12 mL) was added. The precipitate was filtered and a white solid (0.35 g, 92% yield).

Na+[6] (calculated 1088.41); elemental analysis: % found: C, 67.3; 127.0; 127.3; 145.6; 156.2; 174.0.

Upon slow diffusion at room temperature, colourless crystals, suitable for X-ray analysis, were obtained after several days. Formula: C26H26O8S8 (see ESI† Table S4).

6. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of a CHCl3-MeOH mixture (5 mL, 5/1) containing compound 6 (3 mg, 0.0027 mmol). Formula: C26H26O8S8·2CHCl3 (see ESI† Table S4).

7. In a crystallization tube (length 20 cm, diameter 4 mm), a DMF–CH2Cl2 mixture (0.5 ml, 3/2) containing compound 7 (5 mg, 0.0037 mmol) was carefully layered with DMF (0.1 ml) before a H2O–CH2CN mixture (0.5 ml) was added. Upon slow diffusion at room temperature, colourless crystals, suitable for X-ray analysis, were obtained after several days. Formula: (C7H2O3S4)2–CH2Cl2·2H2O (see ESI† Table S4).

[(43Z)2-(A2+)3]. In a crystallization tube (length 20 cm, diameter 4 mm), a DMF solution (2 mL) of 4 (3 mg, 0.003 mmol) and 0.24 ml of 0.05 M solution of NET3 (0.012 mmol) in DMF were carefully layered with a DMF/MeOH mixture (1 mL, 1/1). Then a MeOH–H2O solution (2 mL, 4/1) containing (A2+, 2TsO) (3.2 mg, 0.006 mmol) was added. Upon slow diffusion at room temperature, colourless crystals suitable for X-ray analysis were obtained after several days. Formula: [(4[A]3)·4 DMF·H2O (see ESI† Table S5). Anal. calcd.: C, 56.61%; H, 6.75%; N, 7.65%; found: C, 56.81%; H, 6.69%; N, 7.72%.

[52]-A2+. In a crystallization tube (length 20 cm, diameter 4 mm), a DMF solution (2 mL) containing 5 (3 mg, 0.0026 mmol) and 0.22 ml of 0.05 M solution of NET3 (0.01 mmol) in DMF were carefully layered with a DMF/MeOH mixture (1 mL, 1/1). Then a MeOH–H2O solution (2 mL, 4/1) containing (A2+, 2TsO) (2.8 mg, 0.0052 mmol) was added. Upon slow diffusion at room temperature, colourless crystals suitable for X-ray analysis were obtained after one week. Formula: [5-A]-0.5CH3OH·0.5H2O (see ESI† Table S5). Anal. calcd.: C, 59.12%; H, 7.09%; N, 4.15%; found: C, 59.35%; H, 6.92%; N, 4.21%.

[74]-A2+. In a crystallization tube (length 20 cm, diameter 4 mm), a DMF solution (2 mL) containing compound 7 (3 mg, 0.0023 mmol) and 0.18 ml of 0.05 M solution of NET3 (0.0092 mmol) in DMF were carefully layered with a DMF/MeOH mixture (1 mL, 1/1). Then a MeOH–H2O solution (2 mL, 4/1) containing (A2+, 2TsO) (2.4 mg, 0.0046 mmol) was added. Upon slow diffusion at room temperature, colourless crystals suitable for X-ray analysis were obtained after one week. Formula: [7-[A]2]·2H2O (see ESI† Table S5). Anal. calcd.: C, 63.27%; H, 6.46%; N, 6.42%; found: C, 63.18%; H, 6.56%; N, 6.49%.

[84]-A2+. In a crystallization tube (length 20 cm, diameter 4 mm), a DMF solution (2 mL) containing compound 8 (3 mg, 0.003 mmol) and 0.24 ml of 0.05 M solution of NET3 (0.012 mmol) in DMF were carefully layered with a DMF/MeOH mixture (1 mL, 1/1). Then a MeOH–H2O solution (2 mL, 4/1) containing (A2+, 2TsO) (3.2 mg, 0.006 mmol) was added. Upon slow diffusion at room temperature, colourless crystals suitable for X-ray analysis were obtained after one week. Formula: [8-[A]2]·2H2O (see ESI† Table S5). Anal. calcd.: C, 64.21%; H, 5.39%; N, 7.88%; found: C, 64.24%; H, 5.45%; N, 7.85%.
Results and discussion

Synthesis and solid state characterization of the tectons

The synthesis of thiacalix[4]arene derivatives 4–8 was achieved using reported procedures (see the Experimental section). Compounds 4–8 bearing four carboxylic acid moieties were obtained in 46–95% yield upon hydrolysis of the tetraester derivatives 4′–8′ (see ESI† Table S1).

In solution, all four compounds 4–8 were characterized by both 1H- and 13C-NMR spectroscopy which showed sharp signals indicating the presence of conformationally blocked 1,3-alternate isomers (see the Experimental section). Furthermore, among the five new compounds 4–8, four (compounds 4–7) have been also characterized in the solid state by X-ray diffraction methods on single crystals obtained upon slow diffusion or slow evaporation techniques (see the Experimental part and Table S4, ESI†). As expected, all compounds adopt the 1,3-A conformation (Fig. 4). As indicated by the C–O distances (see ESI† Table S2), the carboxyl moieties are fully protonated.

Compound 4 crystallizes in the presence of DMF molecules which are found to be disordered. Crystals of 5 are exclusively composed of the tecton. Tecton 6 crystallizes with CHCl₃ solvent molecules, whereas compound 7 crystallizes with both H₂O and CH₂Cl₂ molecules.

For compounds 4–7, the metrics for the macrocyclic backbone is close to the one observed for the parent compounds 1,15 2 (ref. 15a) and 3 (ref. 27) (see Table S2, ESI†). In the case of 5, one of the four tertiobutyl groups is found to be disordered (Fig. 3).

Formation of extended 1D tubular architectures by self-complementary tectons 4–8

Owing to the propensity of carboxylic acids to form a H-bonded dimeric complex (Fig. 2b) and due to the 1,3-A conformation adopted by the tetracarboxyl compounds 4–8, the latter might behave as self-complementary tectons and self-assemble into 1D H-bonded tubular networks (Fig. 2a).

In the case of 4, the presence of disordered DMF molecules interacting with the carboxyl groups (O–O distances of 2.552(4)–2.806(7) Å) prevents the formation of dimeric H-bonded motives (Fig. 2b) and consequently, the generation of the extended 1D architecture. In this case, the isolated species is observed in the crystals.

For tectons 5–7, the tubular arrangement was observed. All three self-complementary tectons display the dimeric recognition pattern (Fig. 2b) and self-assemble into analogous 1D H-bonded networks (Fig. 2a) with the O–O bond distance in the 2.579(4)–2.686(5) Å range (Fig. 4) (see ESI† Table S2). Whereas tubular architectures formed by tectons 5 (Fig. 4a and d) and 7 (Fig. 4c and f) are linear, for tecton 6 (Fig. 4b and e) a slightly zig-zag type arrangement is observed. Consequently, the diameter of the tubular networks formed by 5 and 7 of ca. 5 Å is substantially larger than the one observed for 6 (Fig. 4d–f).

For all three cases, the 1D tubular architectures are packed in a parallel fashion.

For tecton 6, no specific interactions between CHCl₃ solvent molecules and the network are found. For 7, however, whereas no interactions between CH₂Cl₂ solvent molecules and the network could be spotted, the water molecules do form H-bonds with the carboxylic acid moieties of the tecton (O–O distance of 3.197(6) Å).
Owing to the instability of the crystals of 4, 5 and 7 outside the crystallization mother liquor, no PXRD powder patterns could be recorded on the corresponding microcrystalline powder. In marked contrast, the microcrystalline powder of 6 was found to be stable and thus it could be investigated by PXRD. The study revealed a good match between the simulated and observed patterns (Fig. 5).

Formation of extended networks by combinations of deprotonated compounds 4–8 and the dicaticonic H-bond donar tecton \(\text{A}^{2+} \)

As stated in the introduction, the dicaticonic organic tecton \(\text{A}^{2+} \) (Fig. 1) is well suited to recognize two carboxylate moieties, through a dihapto mode of interaction (Fig. 2c). In other terms, tecton \(\text{A}^{2+} \) may be regarded as a molecular staple interconnecting two consecutive carboxylate groups by charge assisted H-bonds. This particular mode of interaction may be considered as a structural node of extended H-bonded networks (Fig. 2a) resulting from mutual bridging between deprotonated anionic tectons 4–8 bearing divergently oriented carboxylate moieties as H-bond acceptors and the H-bond donar caticonic tecton \(\text{A}^{2+} \).

The role played by the spacer connecting the four carboxylic acid moieties to the calixarene backbone in compounds 4–8 was systematically investigated. Furthermore, combinations of their deprotonated analogues, generated using 4 eq. of \(\text{NEt}_3 \), as base, with tecton \(\text{A}^{2+} \) (2 eq.) were also studied (see the Experimental section). Among several attempts, the following crystalline materials \([(4^{−})_2(\text{A}^{2+})_3] \), \([5^{−}(\text{A}^{2+})_2] \), \([7^{−}(\text{A}^{2+})_2] \) and \([8^{−}(\text{A}^{2+})_2] \) were obtained and analysed by X-ray diffraction on single crystals (see Table S5, ESI†).

For the combination of 4 with \(\text{A}^{2+} \) in the presence of 4 eq. of \(\text{NEt}_3 \), probably because of the short nature of the spacer \(-\text{CH}_2-\) and the presence of tertiobutyl groups, the expected tubular architecture (Fig. 2a) was not observed in the obtained crystals under the crystallization conditions used (see the Experimental section). Indeed, instead of the projected 1/2 stoichiometry \([(4^{+})_2(\text{A}^{2+})_3] \), the calixarene derivative was partially deprotonated and found to be in its trianionic form. This was substantiated by C-O distances ranging from 1.187(9) to 1.291(8) Å (see Table S3 in the ESI†). In the crystal, a 2/3 stoichiometry between the trianionic compound \(4^{−} \) and the dicaticonic tecton \(\text{A}^{2+} \), leading to \([(4^{−})_2(\text{A}^{2+})_3] \), is observed. The metrics observed for \(4^{−} \) is close to the one observed for 4 and the structural parameters observed for \(\text{A}^{2+} \) are close to those already reported.29

\([(4^{−})_2(\text{A}^{2+})_3] \) crystallises in the presence of DMF and water solvent molecules. Interestingly, the interaction between all three carboxylate moieties of \(4^{3} \) and the dicaticonic tecton \(\text{A}^{2+} \), as expected from the design of \(\text{A}^{2+} \), takes place through a dihapto mode of H-bonding with N⋯O distances in the range of 2.669(10) to 2.818(10) Å (see ESI, Table S3). Owing to the 3/2 anion/cation ratio, the overall architecture is a deformed honeycomb 2D H-bonded network in the xOy plane (Fig. 6). The four DMF and the \(\text{H}_2\text{O} \) molecules interact with each other and with the H-bonded network. The DMF molecule is H-bonded with the water molecule with a O⋯O distance of 2.786(15) Å. Furthermore, the water molecule interacts with a carboxylate group (O⋯O distance of 2.784(22) Å). Consecutive 2D H-bonded planes are packed along the c axis with solvent molecules lying between the planes.

Owing to the decomposition of crystals of \([(4^{+})_2(\text{A}^{2+})_3] \) in air, no PXRD measurements could be performed.

For the combination of 5 with \(\text{A}^{2+} \) in the presence of 4 eq. of \(\text{NEt}_3 \), again the formation of the tubular architecture (Fig. 2a) was not observed under the crystallization conditions used (see the Experimental section). The calixarene-based tecton was in its dianionic state \((5^{−})_2 \) resulting from the partial deprotonation of two out of the four carboxylic acid moieties. This was reflected by C-O distances ranging from 1.204(9) to 1.316(8) Å (see Table S3) ranging from 1.187(9) to 1.291(8) Å (see Table S3). In the crystal, a 1/1 stoichiometry between

![Fig. 5](https://example.com/fig5.png)

Fig. 5 Simulated (a) and observed (b) PXRD powder patterns for compound 6. Discrepancies in peak intensity are due to the preferential orientation of the microcrystalline powder.

![Fig. 6](https://example.com/fig6.png)

Fig. 6 Solid state structures of the 2D honeycomb type H-bonded \([(4^{+})_2(\text{A}^{2+})_3] \) network formed by complementary tectons \(4^{3} \) and \(\text{A}^{2+} \). H atoms, DMF and water solvent molecules are not presented for clarity. For bond distances and angles, see the text and ESI† Table S3.)
the dianionic compound $5^2^−$ and the dicationic tecton A^2^+ leading to $[5^2^−\cdot A^2^+]_2$ is observed. The latter crystallises in the presence of 1 MeOH and 1 H$_2$O solvent molecule. The two deprotonated carboxyl groups are in *trans* disposition, thus divergently oriented, and located above and under the main plane of the calix backbone.

The overall structure is a 1D H-bonded network (Fig. 7). The connectivity pattern between the components (tectons $5^2^−$, A^2^+ and H$_2$O and MeOH solvent molecules) is rather complex.

In marked contrast with the abovementioned combination of $4^−$ with A^2^+, for $[5^2^−\cdot A^2^+]_2$, interactions between carboxylate groups and the dicaticionic tecton takes place through a mono-hapto mode of H-bonding (d_{ON} of 2.725(8) and 2.815(10) Å) (see ESI,† Table S3). Furthermore, tecton A^2^+ also forms H-bonds of NHO type with the carboxylic acid groups of $5^2^−$ (d_{ON} of 2.791(7) Å). The caticionic tecton A^2^+ is also connected with MeOH by a H bond (d_{ON} of 2.780(11) Å). Owing to the presence of both carboxylic acid and carboxylate moieties, several H-bonded patterns are observed between them: carboxylic-carboxylate (d_{OO} of 2.508(7) Å), carboxylic-carboxylic (d_{OO} of 2.481(9) Å). Furthermore, the MeOH molecule, in addition to A^2^+, is also H-bonded to a carboxylic group (d_{OO} of 2.685(10) Å).

The 1D arrangements are packed in a parallel fashion along the a and b axes. Water molecules are located between 1D networks without specific interactions with them.

Again, due to the decomposition of crystals of $[5^2^−\cdot A^2^+]_2$ in air, no PXRD measurements could be performed.

The combination of A^2^+ in the presence of 4 eq. of NEt$_3$, with either 7 or 8, afforded crystals which were investigated by X-ray diffraction on single crystals. The structural study revealed that both 7 and 8 are fully deprotonated and behave as tetra anionic tectons ($7^4^−$ and $8^4^−$) (see ESI,† Table S3). The anion/cation stoichiometry is $\frac{1}{4}$, leading to $[X^4^−(A^2^+)_{\frac{1}{2}}]$ ($X=7$ or 8). The metrics observed for $7^4^−$ and for $8^4^−$ is similar to those for 7 and reported for 8.25 Structural parameters for the dicaticionic tecton A^2^+ within the networks are close to the one reported.29

For $[7^4^−(A^2^+)_{\frac{1}{2}}]$, the crystal, in addition to the caticionic and anionic tectons, contains two water molecules. For the anionic partner $7^4^−$, two out of the four phenyl groups bearing the carboxylate moieties are found to be disordered.

In both cases, as a result of the design of the complementary anionic and caticionic tectons behaving as H-bond acceptor and donor sites, respectively, a dihapto mode of H-bonding with the N⋯O distance in the range of 2.625(15)–2.816(13) Å is observed (Fig. 8) (see ESI,† Table S3). Consequently, the mutual interconnection of the anionic tectons $7^4^−$ and $8^4^−$ and the caticionic tecton A^2^+ leads to the formation of 1D tubular H-bonded networks (Fig. 2a). For $[7^4^−(A^2^+)_{\frac{1}{2}}]$, the 1D network runs along the b axis (Fig. 8a and c). For $[8^4^−(A^2^+)_{\frac{1}{2}}]$, the 1D network running along the a axis is not linear but corrugated (Fig. 8b and d).

The 1D networks are packed in a parallel fashion along the other two space directions (a and c for $[7^4^−(A^2^+)_{\frac{1}{2}}]$ and b and c for $[8^4^−(A^2^+)_{\frac{1}{2}}]$).
For \([7^{+}-(A^{2-})_2]\), the water molecules are located between the 1D chains and interact with the carboxylic groups of tecton 7 through H bonds with O–O distances of 2.138(15), 2.844(14) and 2.914(11) Å (see ESI, Table S3).

The PXRD analysis of the microcrystalline powder of \([7^{+}-(A^{2-})_2]\) revealed a good match between the simulated and experimental diffractograms (Fig. 9). For \([8^{+}-(A^{2-})_2]\), unfortunately due to the instability of crystals in air, no PXRD investigation could be carried out.

Conclusions

The aim of this systematic study was to investigate the formation of tubular 1D H-bonded networks in the crystalline phase. For that purpose, a series of thiacalix[4]arene derivatives blocked in the 1,3-alternate conformation and bearing four carboxylic acids have been designed and studied in the solid state. Owing to the presence of divergently oriented carboxylic acid groups, compounds 4–8 may, in principle, behave as self-complementary H-bond donor (OH moiety) and acceptor (C=O group) tectons. Under used crystallization conditions, among the five compounds investigated, only tectons 5–7 afforded crystals which were investigated by X-ray diffraction on single crystals. For all three cases, as expected from their self-complementary nature, 1D H-bonded tubular architectures were obtained (Fig. 2a). These arrangements result from mutual bridging of consecutive tectons through COOH-COOH H-bonded nodes (Fig. 2b).

Upon deprotonation of the self-complementary neutral tectons 4–8 with NETs, i.e. transformation of the carboxylic acid moieties into carboxylates, anionic tectons were generated in situ. Their propensity to form H-bonded networks in the presence of the dicationic H-bond donor \(A^{2+}\), designed to behave as a molecular staple interconnecting two carboxylates moieties (Fig. 2c), was studied. Under used conditions, i.e. combinations of compounds 4–8 as tetra-acids with 4 eq. of NETs and \((A^{2+}, 2\text{TSO}^-)\), depending on the nature of the spacer connecting the carboxylic unit to the calix backbone, different deprotonated species are obtained. Indeed, whereas in the case compound 4 the latter was in its 4 ring form, for compound 5, the dianionic form \(5^{2-}\) was obtained. The other two compounds 7 and 8 were fully deprotonated in \(X^{4-}\) (\(X = 7\) or 8).

The combination of \(4^{+}\) and \(A^{2+}\), the network \([4^{+}-(A^{2+})_2]\), is a deformed honeycomb 2D H-bonded network (Fig. 6). On the other hand, the combination of \(5^{2-}\) and \(A^{2+}\), leads to a non-tubular 1D H-bonded network \([5^{2-}-A^{2+}]\) (Fig. 7). Finally, for \(7^{+}\) and \(8^{+}\), their combinations with \(A^{2+}\) lead to a 1/2 stoichiometry and the formation of the expected \((2a)\) 1D tubular H-bonded networks, \([7^{+}-(A^{2-})_2]\) and \([8^{+}-(A^{2-})_2]\) (Fig. 8).

Acknowledgements

The Russian Science Foundation (Grant No 15-13-30006), the University of Strasbourg, the International Centre for Frontier Research in Chemistry (icFRC), the Labex CSC (ANR-10-LABX-0026 CSC) within the Investissement d’Avenir program ANR-10-IDEX-0002-02, the Institut Universitaire de France and the CNRS are acknowledged for financial support.

References

1. (a) P. De Santis, S. Morosetti and R. Rizzo, Macromolecules, 1974, 7, 52; (b) J. D. Lear, Z. R. Wasserman and W. F. DeGrado, Science, 1988, 240, 117; (c) M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee and N. Khazanovich, Nature, 1993, 366, 324; (d) D. H. Lee and M. R. Ghadiri, in Comprehensive Supramolecular Chemistry, ed. J. L. Atwood, J. E. D. Davies, D. D. Macnicol, J.-P. Sauvage, M. W. Hosseini and F. Vögtle, Pergamon, 1996, vol. 9, p. 451.
2. (a) V. Semetey, D. Rognan, C. Hemmerlin, R. Graff, J.-P. Briand, M. Marraud and G. Guichard, Angew. Chem., Int. Ed., 2002, 41, 1893; (b) N. Sakai and S. Matile, Chem. Commun., 2003, 2514.
3. T. Shimizu, M. Masuda and H. Minamikawa, Chem. Rev., 2005, 105, 1401.
4. C. Kaes, M. W. Hosseini, C. E. F. Rickard, B. W. Skelton and A. White, Angew. Chem., Int. Ed., 1998, 37, 920.
5. (a) O. J. Gelling, F. van Bolhuis and B. L. Feringa, J. Chem. Soc., Chem. Commun., 1991, 197; (b) Y. Dai, T. J. Katz and D. A. Nichols, Angew. Chem., Int. Ed. Engl., 1996, 35, 2109; (c) B. Wu, W.-J. Zhang, S.-Y. Yu and X.-T. Wu, Chem. Commun., 1997, 1795.
6. M. J. Hannon, C. L. Painting and W. Errington, Chem. Commun., 1997, 1805.
7. M. Loi, M. W. Hosseini, A. Jouaiti, A. De Cian and J. Fischer, Eur. J. Inorg. Chem., 1999, 81.
8. W. L. Leong and J. J. Vittal, Chem. Rev., 2011, 111, 688.
9. (a) J.-M. Lehn, J. Malthète and A.-M. Levelut, J. Chem. Soc., Chem. Commun., 1985, 1794; (b) C. Mertesdorf and H. Ringsdorf, Mol. Cryst. Liq. Cryst., 1989, 5, 1757; (c) V. Percec, G. Johansson, J. A. Heck, G. Ungar and S. V. Betty, J. Chem. Soc., Perkin Trans. 1, 1993, 1411; (d) T. Komori and S. Shinkai, Chem. Lett., 1993, 1455.
10. U. F. Kragten, M. F. M. Roos and R. J. M. Nolte, J. Chem. Soc., Chem. Commun., 1985, 1275.
11. (a) S. Mann, Nature, 1993, 365, 499; (b) M. W. Hosseini, Acc. Chem. Res., 2005, 38, 313.
12. (a) M. Simard, D. Su and J. D. Wuest, J. Am. Chem. Soc., 1991, 113, 4696; (b) M. W. Hosseini, CrystEngComm, 2004, 6, 318; (c) M. W. Hosseini, Chem. Commun., 2005, 582.
13. (a) C. D. Gutsche, Monographs in Supramolecular Chemistry, Calixarenes revisited, ed. J. F. Stoddart, R.S.C., London, 1998; (b) Calixarenes 2001, ed. J. Vicens, Z. Asfari, J. M. Harrowfield and V. Böhmer, Kluwer, 2001.
14. (a) H. Kumagai, M. Hasegawa, S. Miyamori, Y. Sugawa, Y. Sato, T. Hori, S. Ueda, H. Kamiyama and S. Miyano, Tetrahedron Lett., 1997, 38, 397; (b) T. Sone, Y. Ohba, K. Moriya, H. Kumada and K. Ito, Tetrahedron, 1997, 53, 10689.
15. (a) H. Akdas, L. Bringel, E. Graf, M. W. Hosseini, G. Mislin, J. Pansanel, A. De Cian and J. Fischer, Tetrahedron Lett., 1998, 39, 2311; (b) M. W. Hosseini, ACS Series, Calixarene.
Molecules for Separation, ed. G. J. Lumentta, R. D. Rogers and A. S. Gopalan, 2000, vol. 557, p. 296.

16 (a) G. Mislin, E. Graf, M. W. Hosseini, A. De Cian, N. Kyritsakas and J. Fischer, Chem. Commun., 1998, 2545; (b) G. Laugel, E. Graf, M. W. Hosseini, J.-M. Planeix and N. Kyritsakas, New J. Chem., 2006, 30, 1340.

17 C. Klein, E. Graf, M. W. Hosseini, A. De Cian and J. Fischer, Chem. Commun., 2000, 239.

18 (a) M. W. Hosseini, R. Ruppert, P. Schaeffer, A. De Cian, N. Kyritsakas and J. Fischer, J. Chem. Soc., Chem. Commun., 1994, 2135; (b) O. Félix, M. W. Hosseini, A. De Cian and J. Fischer, New J. Chem., 1998, 22, 1389; (c) O. Félix, M. W. Hosseini, A. De Cian and J. Fischer, New J. Chem., 1998, 22, 1389.

19 M. W. Hosseini, Coord. Chem. Rev., 2003, 240, 157.

20 (a) K. T. Holman, S. M. Martin, D. P. Parker and M. D. Ward, J. Am. Chem. Soc., 2001, 123, 4421; (b) K. T. Holman, A. M. Pivovar and M. D. Ward, Science, 2001, 294, 1907; (c) S. A. Dalrymple and G. K. H. Shimizu, J. Am. Chem. Soc., 2007, 129, 12114.

21 K.-M. Park, E. Lee, C. S. Park and S. S. Lee, Inorg. Chem., 2011, 50, 12085.

22 H. Akdas, W. Jaunky, E. Graf, M. W. Hosseini, A. De Cian and J. Fischer, Tetrahedron Lett., 2000, 41, 3601.

23 (a) X. Li, S. L. Gong, W. P. Yang, Y. Y. Chen and X. G. Meng, Tetrahedron, 2008, 64, 6230; (b) Y. Li, W. Yang, Y. Chen and S. Gong, CrystEngComm, 2011, 13, 259; (c) Y. Li, W. Yang, R. Guo, Y. Chen and S. Gong, CrystEngComm, 2012, 14, 1455.

24 E. Lee, H. Ju, S. Sung Lee and K.-M. Park, Cryst. Growth Des., 2013, 13, 992.

25 G. M. Sheldrick, Program for Crystal Structure Solution, University of Göttingen, Göttingen, Germany, 1997.

26 H. Akdas, E. Graf, M. W. Hosseini, A. De Cian and N. Kyritsakas-Gruber, C. R. Chim., 2003, 6, 565.

27 P. Rao, M. W. Hosseini, A. De Cian and J. Fischer, Chem. Commun., 1999, 2169.

28 D. Appelhans, V. Stastny, H. Komber, D. Voigt, B. Voit, P. Lhotak and I. Stibor, Tetrahedron Lett., 2004, 45, 7145.

29 G. Brand, M. W. Hosseini, R. Ruppert, A. De Cian, J. Fischer and N. Kyritsakas, New J. Chem., 1995, 19, 9.