1 Introduction

In 1993 Joseph Taylor and Russel Hulse received the Nobel prize for their discovery of the first binary pulsar, PSR 1913+16. Their citation acknowledged the importance of their work for the field of gravitation and the accompanying press release stressed the special significance of their measurements of the orbital motion of the system in providing the first experimental evidence for the existence of gravitational waves (Royal Swedish Academy of Sciences, 1993). Nobel prizes for work in astronomy and astrophysics were once very rare, and prizes awarded for work in gravitational physics have been even rarer. Einstein himself was denied any citation for his discovery of General Relativity. This Nobel prize is therefore a striking demonstration of the importance of gravitational waves as a topic of physics. It is all the more interesting then, that gravitational wave research had been, until Taylor and Hulse’s discovery, a marginal and controversial field. The very existence of gravitational waves, even as a theoretical prediction of Einstein’s theory, had frequently been doubted in the half century before Taylor and Hulse’s work. The story of how this classic experiment by two astrophysicists settled a long-standing theoretical controversy seems a natural study from a historical perspective.

My own interest in the binary pulsar experiment derives primarily from its relation to the long running quadrupole formula controversy which centered on the validity, within general relativity, of the quadrupole formula, first derived by Einstein in 1918, when applied to binary star systems such as the binary pulsar (Kennefick 2007). This aspect of the binary pulsar’s history, while interesting in itself, is highly relevant to the question of proving the existence of gravitational waves. What Taylor and Hulse achieved was to show that the rate of decay of the binary pulsar’s orbit was in agreement with the prediction of the quadrupole formula, suggesting emission of gravitational radiation by the system as the cause of the decay. Obviously this line of logic depended on the assumption that the quadrupole formula was correctly derived from the
established theory. 1 This comes even more into focus when one realizes that the theoretical controversy over gravitational waves, in its early phases, focused on the question of whether gravitational waves could exist at all, or could be emitted by binary stars.

This topic bears somewhat on the longstanding debate between Harry Collins and Allan Franklin over Collins’ concept of the Experimenters’ Regress, as applied to the Weber controversy, coincidentally enough a controversy over the detection of gravitational waves by Earth-based detectors. It is well known that the exchange between Collins and Franklin over the Experimenters’ Regress and Collins’ interpretation of the controversy over gravitational wave detection was seen as a significant engagement in the so-called Science Wars. At that time philosophers, like Franklin, debated with sociologists, like Collins, over issues such as realism versus relativism, the demarcation problem in science studies and so on. The debate between Collins and Franklin centered on whether physicists had rational or objective grounds for closing debates, or whether achieving closure in scientific controversies depended on the social relations between the participants and their community. Sociologists like Collins argue that “interpretive flexibility” means that physicists always have the option to keep a debate open, but that social cohesion depends upon the ability of the core group to eventually achieve a consensus, even in defiance of the wishes of the remaining group of outsiders who regard the matter as unsettled (Collins 1994, Collins 2004). Franklin’s take was that the rump group of outsiders in the Weber controversy were behaving irrationally in refusing to accept comprehensive experimental evidence contradicting their view and had, in some sense, placed themselves outside of the sphere of rational scientific discourse (Franklin, 1994).

Inspired by Collins’ work, I made use of the analogous concept of the Theoreticians’ Regress to explain the intractability of the controversy on the theoretical side of the gravitational wave field. Somewhat to my relief, my own study did not appear to be so controversial, in the context of the science wars, no doubt largely because of my insignificant status in the field. Additionally, neither side

1 An interesting side note to the binary pulsar discovery of gravitational waves is the common use of phrases like “indirect detection” of gravity waves, to distinguish Taylor and company’s work from the long awaited “direct detection” of gravitational waves by Earth-based detectors. A number of people have pointed out the fallacy in this kind of thinking, observing that, strictly speaking, the binary pulsar evidence is no more indirect than any other detection. Two people I am thinking of particularly are Thibault Damour and Allan Franklin, both of whom have made the point to me personally. While it is true that the astronomers use electromagnetic signals from the source system, and must then infer the presence of gravitational waves from the observed behavior, the same is true of Earth-based detectors, which also use electromagnetically controlled detection of local masses and deduce the presence of gravitational waves from the motions of those masses. In some sense the only difference is that the binary pulsar astronomers only observe the source of the gravitational waves, and thus cannot comment on the propagation through space of these waves. Another distinction, of some relevance to our discussion, is that the theory required to analyze the binary pulsar system is not the linearized gravity which suffices for the Earth-based detector, and therefore, it could be argued, it is a more complex and more controversial process of deduction. This claim would be, however, highly debatable. To date, the experimental detection of gravitational waves has been even more controversial than the theoretical study of their sources, and there have been several challenges over the years to the established theory of such detectors.
claimed that theorists were directly confronted with the objective reality of the
laboratory. But what about the fact that the close of the debate in my story
was apparently connected, certainly timed so as to suggest a connection, with
the arrival of experimental evidence? Was it not particularly satisfactory for
“realists” that unambiguous, and largely unchallenged, experimental evidence
should help to close out debate amongst theorists? While I was happy that my
study was not likely to play a role in the science wars, I was shy of this one issue
that was apparently relevant to the questions at issue in that struggle.

Both Collins and Franklin were pioneers in the careful micro-study of ex-
perimental method and practice. Through personal contact with both men,
and others, I was inspired to adopt this kind of approach. From my perspec-
tive Collins and Franklin appeared to be saying very similar things. I confess
to being somewhat uncomfortable in addressing the precise role played by the
binary pulsar in settling the quadrupole formula controversy, lest I be seen to
be firing a shot in a war which, however interesting the individual debates, I
find slightly incomprehensible. Surely what mattered was that both Collins and
Franklin believed in close detailed studies of what scientists actually did, not in
whether they agreed on points of principal? Here, I suppose, my own outlook
as a historian differed from either Collins or Franklin, who as a sociologist and
a philosopher, respectively, viewed the micro-study as a means to an end. Their
goal lies not only in the interest of the study itself, but also in what it teaches us
about the way science is done. At any rate, it seemed as if I was a conscientious
objector in the science wars. Now that a ceasefire amongst those who value the
scientific endeavor seems likely to endure (Collins 2009) this paper is by way
of being a belated commentary on this issue, from the perspective of a draft
dodger now returned to the scene of the fray in peacetime.

2 Controversy

The background to the story can be sketched relatively briefly (for a fuller
account, see Kennefick 2007). The theory of gravitational waves dates to 1916
with Einstein’s first paper on the subject, only half a year after his publication
of the final form of his general relativity theory. In 1918 Einstein published a paper
correcting a certain error from the paper of 1916, and presenting, for the first
time, the quadrupole formula, expressing the rate of emission of gravitational
wave energy by a system of accelerating masses.

When Einstein derived the quadrupole formula it was on the basis of the
linearized approximation of general relativity. This permitted him to make the
calculation relatively straightforward, because in the coordinate system adopted
by him the linearized equations of gravity take on a form which is directly anal-
ogous to the Maxwell equations for electromagnetism, a theory in which the
role of radiation was, and is, reasonably well understood. But, since general
relativity is a non-linear theory, this linearized approximation can hold only
for very weak fields, which specifically excludes systems, such as a binary star
system, which are held together by their own gravitational interaction. Since
it is only this type of system which (as far as we know today) might be capable of producing detectable gravitational waves, this approximation leaves something to be desired as far as sources go. It is thought to be ideal for the study of gravitational wave detectors however. The question then is, does the quadrupole formula give a reasonable approximation of the source strength of possible astrophysical sources of gravitational waves, especially binary stars?

Famously, Einstein himself came to entertain doubts about the existence of gravitational waves (indeed, there is evidence that his paper of 1916 was preceded by a brief period of skepticism on the subject, see Kennefick 2007, pp. 44-49), when he and his then assistant Nathan Rosen came to look for an exact solution of the Einstein equations representing plane gravitational waves (Einstein and Rosen, 1937). They discovered that it was not possible to construct a metric in a given coordinate system which did not include a singularity somewhere in the spacetime representing the plane gravitational waves. Subsequently it was shown that this singularity is merely a coordinate singularity, rather than a physical singularity, but at the time Einstein and Rosen interpreted it as physical, arguing that such spacetimes could not exist. However, before the paper was published, Einstein realized that his argument was mistaken. Nevertheless, in the published version, he still included a discussion of the possibility that binary stars would not emit gravitational waves, in spite of the fact that the quadrupole formula suggests that they would. Einstein’s assistant who succeeded Rosen, Leopold Infeld afterwards always insisted that this was Einstein’s final word on the subject which, in a strictly published sense, it was.

When interest in general relativity began to pick up again in the mid-fifties, Rosen and Infeld advanced a number of arguments whose common point was that binary star systems would not undergo orbital decay as a result of emitting gravitational waves. Hermann Bondi also entertained serious doubts on this score, arguing that the analogy with electromagnetism which lay behind the original notion of gravitational waves, actually pointed this way. His view was that in electrodynamics it was believed that accelerating charges emitted radiation and that the same was expected to hold true in the case of gravity. But since the theory was a theory of general relativity, how did one define what was accelerating? In Bondi’s view, an inertial particle in general relativity was one which followed a geodesic. An accelerating particle was one which did not. Since binary stars in orbit around each other followed the geodesics of the local spacetime, they were not accelerating, in this sense. As particles in a form of inertial motion, their motion would not be of the type which should decay in response to radiation reaction.

These kinds of arguments came up for discussion at a seminal 1957 meeting at Chapel Hill, North Carolina, which was the inspiration for the General Relativity and Gravitation series of meeting which have continued to the present day as the leading conferences in the field of general relativity. The meeting is important for the history of gravitational waves because it was there, in response to arguments raised by Rosen, that Richard Feynman and Bondi himself, responding to the work of Felix Pirani, put forward the “sticky bead” argument
that gravitational waves must carry energy. As a result of this, the debate shifted to the question of whether binary stars could emit gravitational waves. This question was still being debated at the third General Relativity and Gravitation meeting held in Warsaw in 1962. Feynman attended this meeting and, one may speculate, was perturbed to find that the questions he had thought were settled in 1957 were still being aired. While the questions had changed somewhat, nevertheless Feynman had, in 1957 made an impassioned case for the field to abandon a “too rigorous” approach as being infertile in theoretical physics (De Witt, 1957). In a celebrated letter home from the conference to his wife, Feynman painted a Fellinesque portrait of a physicist trapped inside a field full of “dopes” (126 of them at the conference, according to his letter) rehearsing the same arguments over and over again like “a lot of worms trying to get out of a bottle by crawling all over each other.” (Feynman and Leighton, 1989)

Ironically enough, it was the work of Bondi himself, as much as of any other relativist, which did the most to convince most relativists that binary stars did indeed decay in their orbits as a result of gravitational wave emission. But the debate seemed of little practical relevance, since the one thing that everyone involved agreed upon was that the rate at which this decay took place was too small for it to be observable in any known orbital system. Very likely it was for this reason that the debate became very quiet in the decade between 1965 and 1975. The discovery of the binary pulsar in late 1974 undoubtedly did much to reinvigorate this debate, which by then had shifted to a new question, whether the quadrupole formula was the correct formula for strong gravity binaries of this kind. Over the course of the following decade the debate was fairly vigorous, until it petered out in the mid-1980s, when the remaining skeptics grew quiet (again, for a discussion of all of this history, with references, consult Kennefick 2007).

What is interesting about the role of the binary pulsar in this story is that there are good grounds for believing that its primary role was to stimulate the controversy into new life. It is usually thought of as the agency by which the controversy was settled (and this is certainly a role which is of interest to this paper), but another possible reading is that it actually made the controversy more prominent and more contentious and that this served, with time, to bring it to a conclusion by focusing the attention of theorists upon it. One might speculate that we are dealing with a controversy downsizing principle, in analogy with the problem of cosmic downsizing in extragalactic astronomy, which revolves around the observation that over time quasars come to have smaller and smaller black holes. Since black holes should only every grow in size, it is claimed that this observational effect arises because the big ones have already used up all their fuel and “turned off.” The situation is thought to be similar to that which obtains for stars, where the larger stars, which paradoxically contain more fuel, burn the fuel at a far faster rate and live a much shorter life than do less massive stars.

In the case of scientific controversies we may similarly expect, at any given moment to find many more small and almost moribund controversies than stri-
dent ones, because the former will be more long-lived. The fuel which is only slowly consumed in a small controversy is not the number of issues to be debated. I agree with those who think such points are all but inexhaustible. The fuel is the number of potential participants in the controversy. Where the number of participants is low, each of them may feel comfortable conceding a long period of debate to what is a manageable number of colleagues. As the number involved in the controversy rises, the ability to mediate the controversy by direct personal relations between all participants is strained. The consequences of remaining on the fence become less predictable as they become potentially more serious, since more people involved means potentially more influential people having a vested interest in the outcome. The participants come under pressure to take a definitive position and tend to do so more quickly. To continue with the analogy, the fuel is more quickly processed through the various stages, from open-minded participant, to committed protagonist, to close-minded ideologue, at the end of which no further debate is possible. In essence, the controversy which burns most brightly extinguishes itself most quickly. To be sure, I am here merely taking a long-established piece of folk wisdom and dressing it up in academic clothes. The phrase “slow-burning controversy,” already nicely encapsulates the image I am trying to convey.

So let us examine briefly the course of the quadrupole formula controversy in the 1970s. We have already summarized the debate over whether binary stars could emit gravitational waves, a debate which flourished in the late fifties and early sixties. There then followed a period in which it was regarded as settled, by a large majority, that binary stars did undergo radiation damping as a result of gravitational wave emission. The detail of how this occurred was perhaps not regarded as a terribly pressing problem, given that no one was familiar with any known astronomical systems which, according to the quadrupole formula itself, would undergo a measurable decay in their orbits. The state of affairs bore a close approximation to the situation in controversies which have passed the point of crystallization, which is to say that even though there remained some who doubted the consensus opinion that the quadrupole formula was approximately correct, their views did not receive much public airing. In fact, however, it was still possible for their views to be aired, the problem was simply not important enough for huge notice to be taken of anyone’s views on the matter.

A good example of the status of the debate on the eve of the discovery of the binary pulsar is the June, 1973 Paris meeting on gravitational waves at which Havas gave a talk outlining his view that the question whether binary stars did emit gravitational waves at all was still unsettled, and advancing his critique of the main calculations which agreed with the quadrupole formula result (Havas, 1973). In the conference proceedings, two of the remarks in response to Havas’ talk can be regarded as sharing his skepticism, two as disagreeing with it, and two as neutral (at least phrased in a neutral way). This certainly suggests not only that Havas had leave to raise such issues with his peers, but also that he had an audience part of which, at least, was sympathetic. At the same time, the problem was not at the forefront of theoretical concerns at that moment. It was not considered irrelevant or uninteresting, after all the very fact of the
conference being held at all suggests otherwise, but the fact that no astrophysical applications had been discovered certainly restricted its urgency. Within little over a year the situation was transformed completely.

3 Discovery

Pulsars were discovered in 1967 by Jocelyn Bell and Tony Hewish using the Interplanetary Scintillation Array at the Mullard Radio Astronomy Observatory near Cambridge, England. It quickly became apparent that pulsars were a real-life instance of a long standing theoretical entity, the neutron star, which had been first proposed by Walter Baade and Fritz Zwicky decades previously, in 1933 (see Haensel, Potekhin and Yakovlev, 2007, pp. 2-4 for a brief history). The problem of gravitationally collapsed objects become of greater theoretical interest following the discovery of quasars by radio astronomers in the fifties and was further stimulated by the pulsar discovery. By the early seventies only a few dozen pulsars were known, and Joe Taylor of the University of Massachusetts, together with his graduate student Russell Hulse, proposed to do a computerized search for them with the large Arecibo dish in Puerto Rico to provide a much larger ensemble of discovered objects. It was a specific aim of Taylor’s proposal that such a large number of pulsars might feature one which was part of a binary system (Hulse 1997). This would permit the measurement of the mass of the pulsar, a topic of immense astrophysical interest, since the very idea of neutron stars had arisen following the work of Subramanian Chandrasekhar on the limiting mass of white dwarf stars. That a close binary neutron star system had been suggested as a possible source of detectable gravitational waves as early as 1963 by Freeman Dyson was almost certainly not on Taylor’s mind as he began his pulsar search. This was all the more true since Dyson’s suggestion had been made in the context of a suggestion that arbitrarily advanced alien civilizations might construct such systems for the purpose of interstellar navigation.

In early July 1974 Hulse, down at Arecibo, recorded a pulsar, just barely strong enough to be detected by the system, unusually sensitive for its day as it was, whose position on the sky automatically baptized it with the name PSR 1913+16. After confirmation that this was indeed a pulsar, including measuring its period, Hulse recorded the word “fantastic” on his observing record, referring to the fact that the pulsar had the second shortest period known at that time. At this point he had no notion that it was in a binary system, only the rotational period of the neutron star itself had been measured, not its orbital period. The only foretaste of what was to come was that subsequent attempts to confirm that rapid pulse in these first observations did not agree, to Hulse’s frustration. He even went so far as to cross out and erase these subsequent attempts from his log (Hulse 1997).

In late August Hulse returned to this object, in a routine way, to try to confirm its period. As before he found that its period kept changing with each measurement. Indeed, by a curious coincidence, he found that he almost
repeated the same set of measurements each time the pulsar came overhead at Arecibo (the dish at Arecibo is so large it is built into a small valley, and thus cannot observe very far from the zenith of the sky). This would turn out to be due to the fact that the pulsar binary has an orbital period of just under 8 hours, and thus completes a little over 3 orbits with every rotation of the Earth. It did not take Hulse long to convince himself that he had discovered a pulsar in a binary system, and it was immediately clear to him and to his advisor Taylor that they were dealing with an extraordinary system. An eight hour orbital period represented an orbiting system involving massive objects with an unprecedentedly small physical separation from each other. Indeed word got around quickly about the new discovery, to the extent that the first theoretical paper commenting on the binary pulsar appeared in late 1974 (Damour and Ruffini, 1974), while the discovery paper itself, by Hulse and Taylor, appeared only in 1975.

There can be little doubt that interest in the radiation problem from binary stars was reinvigorated by the binary pulsar discovery. Here was a real world example of a system where radiation damping might actually be measurable. Of course there were doubts expressed, on the theoretical side (Damour and Ruffini 1974) that the effect really would be measurable, but the experimenters were nevertheless not ruling it out. In an interview Joe Taylor recalls his own view at the time (interview conducted by the author by phone on 2nd May, 2008) ...

The person who put us onto that was Bob Wagoner. It happened that once the news was out and it became public that this thing was there and that we were observing it, I responded to a number of invitations to go and give talks about it and ended up making a grand tour around North America where I made five or six stops and one of them was at Stanford and Bob Wagoner there actually gave me his paper predicting the orbital period decay to carry back with me since he knew I was going to be at Harvard a couple of days later and I handed it to Alex Dalgarno the editor of ApJ Letters. So it was Bob’s paper [Wagoner 1975] that I first began to take seriously and to recognize that with the current state of the art then, in October 1974 of doing pulsar timing, it was clear that, if his numbers were right, and I assumed they were, it would take us a number of years to see any effect, but not an unreasonable number and if we could improve the timing accuracy a little bit it might happen even sooner and that’s more or less what happened.

While relativists were excited about a number of tests of general relativity which could be made for this system whose components were moving under the influence of unprecedentedly strong gravitational forces, it seems that the measurement of the binary pulsar orbital decay came significantly earlier than most people expected, as Taylor agrees (interview; 2nd May, 2008):

I think that’s right and that’s largely because at that time it
wasn’t yet recognized that doing really high precision timing of pulsar signals was a very important goal.

Nevertheless the possibility was in the air from late 1974 onwards, and the fact that it would take a significant amount of time gave the theorists ample time in which to apply new techniques and increased effort to the problem of analyzing the orbital evolution of such a system as it responded to its own gravitational wave emission.

To what extent was this activity on the theoretical side visible to the experimenters? Given that their result, when available, was likely to have a decisive effect on the controversy, it is remarkable that they went totally unaware of it until they finally had a result to announce. This announcement was made, in its earliest version, at the ninth Texas Symposium on Relativistic Astrophysics in Munich in 1978. The Texas series of meetings had a tradition of announcements of important observational results. The first Texas meeting had been held in response to the growing interest in quasars as new objects discovered by radio astronomers in the late fifties. Taylor’s talk in Munich is one of the more celebrated of the announcements made at this series of meetings (interview, 2nd May, 2008).

Well, I’ll tell you when I first even knew that there was any debate, was at the Texas Symposium in Munich.² And so somebody asked me a question, well let me back up just a little bit. I was scheduled to give a paper there on something like the second or third day of the conference, and Jürgen Ehlers, who was one of the conference organizers, recognized that somehow not getting to this until nearly the last day of the conference was not a good idea. So he asked me to get up and say just a few words about it in a session on the first day so that at least people would know what I looked like and we could talk in the halls, and so forth, afterwards. So I did that and I basically gave the result and said I’ll give all the details at the scheduled time the day after tomorrow, or something like that. Somebody then in the audience asked a question, I don’t remember who it was, ‘when you say that you have seen the period decay and it agrees with the prediction, what prediction are you using?’ And I sort of was blind-sided by that. I just thought that everyone knew how to calculate this, except maybe me. And so I think I must have stood there wondering how to answer for a minute and Tommy Gold, who happened to be the session chairman, whispered in my ear, ‘Landau and Lifshitz,’ so I said it’s given in Landau and Lifshitz. So that more or less is what transpired. I mean, I remember having conversations later with people about it and I began to realize that, of course, that was just sort of an heuristic formula and the calculation wasn’t even derived, I guess, in Landau and Lifshitz, it was given as an exercise for the student to do.

²At this point on the interview recording, the author can hear himself say ‘Really.’
It is humorous to note that Gold, the session chairman, had been, with his collaborator Bondi, one of the early skeptics concerning whether binary stars could emit gravitational radiation. Although Gold would certainly have been very familiar with Landau and Lifshitz’ treatment, he might also have been inclined to agree with Bondi’s comment, that it was very “glib.”

So once Taylor was apprised of the existence of the controversy, what was his reaction (interview, 2nd May, 2008)?

So ok, so I was aware then that there was a controversy about it. Whenever I quizzed theorists, that I knew pretty well, about it, they tended to be people like Kip Thorne, for example. Kip always said, ‘oh yes, you know, we’re still worrying about the mathematical details, but we know its right.’ And my impression was that, I think pretty much I gained the impression that you convey to a large extent in your book as well,\(^3\) that the more mathematically oriented physicists, and particularly those who had been doing relativity in mathematics departments, were still concerned about the lack of rigor and the full mathematical beauty, but the physicists like Thorne and Feynman and others just had little patience with that kind of concern and wanted to get on with it and see what you could do with it. And they more or less told me ‘don’t worry about it.’

So communication between theorists and experimenters contained this interesting feature, that a reasonably lively controversy amongst the theorists could be completely invisible to the experimenters. Obviously the controversy was not one which consumed the total energy of theorists in the field, but it still involved a good deal of back and forth and even a dedicated workshop, during the period in question, and yet no mention was made of its existence within Taylor’s hearing. Partly, as Taylor says, this was because of the kind of theorists he was talking to. In the field of relativistic astrophysics, there were people close to the astrophysics end of the spectrum, and people closer to the relativity end, and Taylor, as an astrophysicist, was naturally more likely to talk to those on the astrophysics end. Since those theorists were less likely to be skeptical of the quadrupole formula, they naturally chose not to bring up any caveats about the derivations which they felt were unlikely ever to have a bearing on the observations underway. Furthermore, and this bears on a point I will try to bring out at the end of the paper, they may have felt some slight embarrassment that there existed theorists in their field who still doubted the canonical understanding of gravitational radiation in general relativity.

\(^3\)A reference to Kennefick 2007, illustrating one of the problems faced by an oral historian who wishes to write books and continue doing oral histories!
4 Trading Zones and Pidgins

In his book *Image and Logic* Peter Galison (1997), another pioneer of the careful micro-study of physicists in action, argues that different groups of scientists, in particular experimental and theoretical physicists often speak different technical languages and encounter difficulty in communicating with each other. He argues that, in such situations, physicists find it useful to develop a pidgin, a term used to describe a secondary language, formed usually from a mishmash of other languages, used to facilitate trade between different peoples. Galison describes the conceptual space between different groups of physicists as a trading zone and discusses the use of pidgins, which in his usage may refer to particular mathematical constructs designed to permit experimenters and theoreticians (let’s say) to discuss and compare the predictions of the latter with the results of the former.

The binary pulsar is an interesting case to observe the possible need for trading zones, since it was a discovery by radio astronomers who had, otherwise, relatively little contact with relativists interested in gravitational waves. At the same time their field had arisen alongside the broader culture of relativistic astrophysics, which was formed by a first contact between radio astronomers and relativists after the discovery of quasars. To what extent do we observe the need for a trading zone between experimenters and theorists in our particular story? Certainly there seem to be areas of physics in which theorists and experimenters talk to each other regularly and apparently freely, and it is certainly also true that when physicists, even from very different subject areas, converse, they speak a recognizable technical language which seems to be quite unconscious of boundaries. Indeed, for the physicist, the international, inter subject quality of physics speech is one of the defining experiences of being a physicist (no doubt the same may be true for scholars in other disciplines). Nevertheless there is some evidence, in the case of the binary pulsar story, supporting the model put forward by Galison. One promising way to understand how scientists deal with trading zones, when and if they occur, is through the notion of interactional expertise, a concept which describes the ability of someone to talk intelligibly and usefully to an expert about their field, even if they are not (yet) capable of working in that field, which would be full expertise (Collins, Evans and Gorman, 2007). It may be that, even where physicists lack direct expertise to work in a neighboring field, they at least possess interactional expertise to talk with their fellow physicists in that field.

Let us begin with the discovery of the binary pulsar in 1974. The two astronomers involved, Joseph Taylor and Russell Hulse, both received educations fairly typical of astronomers of their generation in that they were educated primarily in physics (in fact Hulse was still a graduate student when he discovered the binary pulsar). In this context, particularly as the two men were working in radio astronomy, astronomy is conceived of as being more or less a sub-discipline of physics, albeit an unusually ancient one which still maintained a certain level of institutional independence. As such they took courses in general relativity, a subject within physics which was typically considered an optional higher
level course, but one which might be especially relevant to those planning to specialize in astronomy. As radio astronomers interested in pulsars, relativity theory was clearly relevant to an understanding of the source of the signals they planned to study, but not nearly as relevant and routine as the physics of the electromagnetically based detectors and instruments they operated.

Accordingly Joe Taylor describes one of his first actions on discovering that he had a binary pulsar with a uniquely close orbit involving unprecedentedly intense gravitational interaction between the two components (interview, 2nd May, 2008).

We’d both taken the obligatory, or almost obligatory, relativity course in University, as part of our physics training, but neither one of us was very deeply into relativity. My wife was much amused when one day, this was when I was at the University of Massachusetts, of course, I said I don’t have to teach today, I’m going to drive into Boston and visit the Tech Coop. And I spent the day in the MIT bookstore and came back with a pile of books, Weinberg, and Misner, Thorne and Wheeler and all the other ones that you would imagine. She was much amused that I spent the next few months deeply engrossed in these books.

So certainly the astronomers felt a need to get up to speed with the elements of relativistic orbital motion. To what extent was there a language gap between them and the practitioners of this discipline? Partly the gap was a social gap. Neither Taylor nor Hulse habituated amongst relativists and therefore did not partake in their discourse. So Taylor went unaware of the ongoing quadrupole formula controversy, throughout the time when, as we would be tempted to say today, he was determining the outcome of this controversy.

But leaving aside this question of discourse, when Taylor and his collaborators did speak to relativists, could they make themselves understood and be understood? Clearly they could, for the most part. But some obstacles were encountered. By the time Taylor and company were dealing with the orbital decay of the binary pulsar, Hulse had finished his doctorate and moved on. A collaborator with whom Taylor published many of the early papers announcing and discussing the orbital decay was Joel Weisberg. Weisberg does recall language difficulty playing some modest role in talking to theorists, before they found a long term collaborator in a talented young French relativist, Thibault Damour (interview conducted by the author, by phone, on 24th February, 2000).

It’s interesting, we had a failed attempt to work with one person. And I think the problem was he couldn’t talk well enough to experimentalists. He couldn’t give us results that were easily interpretable by us, whereas Thibault could. It was quite interesting.

Weisberg describes the kind of theorist that would be helpful in the process of theory testing using the binary pulsar data, saying “it had to be people who could talk a language I could understand.” Regarding the one failed effort
mentioned above, the problem had a very practical aspect, “he [the theorist] couldn’t give us specific things to test.” At the same time he emphasizes that their eventual collaborator, Damour was “brilliant” and “made fundamental progress,” so “it wasn’t just a language thing.” He adds (in a private communication) that the “theorist ‘speaking the right language’ was not, by itself, enough for a successful collaboration.”

Nevertheless, to examine the “language thing,” I suspect it is fair to say that, in the absence of a relativity community, Taylor and Weisberg would have been capable of performing calculations to establish the predictions of certain theories. In fact, as we shall see, they did contribute original work on the theory side. The problem seems to me to be legitimately a question of language and society, in the sense that Taylor and Weisberg’s problem was not primarily that they lacked the expertise to do the calculations. That much they could have acquired, and did acquire, with time and effort. What they lacked was fluency in the language spoken by theorists, and social standing within the discourse of theory. The existence of theories to test is inextricably linked with the existence of theorists who developed them, who have a vested interest in the testing. Since the theorists are the experts, it is understandable that the astronomers, like Taylor and Weisberg, would feel distinctly hesitant about publicly putting forth calculations in an area that was not their own realm of expertise. At the same time it was important that the calculations which were done by theorists were not black boxes whose inner workings were totally opaque to the experimenters. It was important that the results of these calculations could be couched in a form which dealt with observables pertinent to the actual measurements being made.

The need for what Galison would describe as a pidgin seems to have produced the parameterized post-Newtonian (PPN) framework as a tool to mediate the theory testing process. This process required an alliance of theorists and experimenters. Theorists made predictions based on their calculations. Experimenters made measurements which were then compared to the results of the calculations. This PPN framework had been widely used during solar system tests of general relativity, but was ill-adapted to the binary pulsar case because it presumed that the gravitational fields involved were very weak. Nevertheless a somewhat similar, but much less general (focusing as it did upon the case of gravitational radiation emission) parameterization was established which facilitated the theory testing aspect of Weisberg and Taylor’s 1981 paper. To quote from Clifford Will’s paper on the subject (1977)

Because of the complexity of many alternative theories of gravitation beyond the post-Newtonian approximation, we have not attempted to devise a general formulation analogous to the PPN framework beyond writing equation (2) with arbitrary parameters. However, we can provide a general description of the method used to arrive at equation (2), emphasizing those features that are common to the theories being studied.

So given the existence of a pidgin to create a trading zone between as-
tronomers (and others) interested in doing theory testing and gravitational
theorists, why did the astronomers shrink from commenting directly on the
quadrupole formula itself? One obvious answer is that the pidgin was not
designed to facilitate such a conversation. It permitted comparisons between
calculations derived from different theories. It was not designed for the more
complex and open-ended task of critiquing subtle details of such calculations.
Another answer is that the barriers were as much social as linguistic (the two
must obviously be linked). The astronomers felt they lacked the social stand-
ing to weigh in on a question which obviously fell within the purview of the
theorists. Because the controversy over which calculation within a given theory
was the correct one depended on subtle judgments, it naturally required the
expertise of the practicing theorists. This is precisely the meaning of the Theo-
reticians’ Regress, that it depends on subtleties of expert judgment and not on
some closed algorithmic model of how to perform a calculation.

5 Skeptics’ Dilemma

I have argued that the closing of debate in the quadrupole formula controversy
occurred at least partly because of the quickening effect caused by the binary
pulsar increasing the importance of the controversy. At the same time, the
lifetime of the controversy, once the binary pulsar data became available, was
greatly constrained by the existence of experimental data which bore directly on
the topic at issue. For the theoretical controversy to continue indefinitely, there
would have to have been a significant effort to contest either the experimental
evidence or the interpretation of it. The fact that there was no such significant
attack on the ruling interpretation of the binary pulsar data certainly limited
the lifetime of the controversy, so it is interesting to look at the reaction of the
skeptics to the work of Taylor and his collaborators.

In any problem of orbital mechanics there are many mechanisms which might
account for all or part of an observed change in orbital period. That even the
most famous agreements between theory and observation can be challenged in
this way is shown by the saga of Robert Dicke’s efforts to measure the oblate-
ness of the Sun (the degree to which its shape departs from a perfect sphere).
Dicke had pointed out that if the Solar oblateness turned out to be signifi-
cantly different from zero, its gravitational influence on the orbit of Mercury
would throw out the close agreement between the prediction of General Relativity
and the observed perihelion advance of the planet Mercury (Dicke and Gold-
enberg, 1967). As with the case of the Mercury Perihelion, the binary pulsar
data seemed particularly impressive because it agreed with the prediction of the
quadrupole formula with little or no need to take into account of other factors.
The interpretation was that the system was very “clean.” The corollary to this,
naturally, is that any evidence that the system was not so clean would throw
out the agreement. Given this opening to challenge the interpretation of the
binary pulsar data, it is interesting that the gravitational wave skeptics were
not involved in proposing alternative mechanisms.
Certainly there were those who considered it, amongst them Peter Havas and, very likely, his former student Arnold Rosenblum. They were to the fore in demanding that the observations not be accounted a successful test of general relativity given that (in their opinion) the quadrupole formula had not been shown to a valid prediction of that theory. Joe Taylor recalls that certain people were particular about this question of terminology (interview, 2nd May, 2008).

Well, let me think, the people who kept bugging me about it, so to speak, were Peter Havas, Fred Cooperstock and Arnold Rosenblum. Arnold bugged me about it a lot. Anyway, they just kept saying ‘Look, even though you have an experimental number now, we’re not even sure what the theoretical number is and you can’t go around saying that you’ve confirmed something.’ So I tried to remain outside of the argument, letting the theorists fight it out until they all ... persuaded one another. So that seemed to be the best thing for me to do and we were simply concerned with getting an experimental result that we were happy with.

The alternative scenarios to the gravitational wave interpretation were actually put forward in print, but generally not by the skeptics. This may have been because the skeptics found themselves in a similar position to the experimenters. They had a vested interest in the debate, but lacked the special expertise which would have permitted them to comment. Likely dissipative mechanisms (or even non-dissipative ones) fell within the purview of astrophysics rather than relativity, and were explored and commented upon by astrophysicists rather than relativists.

The most important issues which had to be dealt with in demonstrating that the observed decay agreed with the quadrupole formula prediction was the nature of the unseen companion in the system, and the relative acceleration of the binary pulsar to our solar system. If the unseen companion was a sufficiently compact object, like another neutron star (which is now firmly believed to be the case) then it would undergo little deformation as a result of the visible pulsar’s tidal effect. But if it was a normal star, it would develop a marked oblateness which would in turn create a perturbation in the orbit of the pulsar (a tidal friction-like effect) which would be difficult, except over longer timescales, to distinguish from the orbital decay due to radiation damping. Effects of this type would, however, have affected other measurements made in the system, and with time the experimenters became convinced that the system was extraordinarily clean. As Taylor and McCulloch stated in their paper from the Texas Symposium (1980)

If one were given the task of designing an ideal machine for testing gravitation theories, the result might be a system rather similar to PSR1913+16; an accurate clock of large mass and small size, moving at high speed in an eccentric orbit around a similar object located in otherwise empty space. To be sure, one would place the system somewhat closer to the Earth than ~ 5 kpc, or which arrange for a
more powerful transmitter to convey the clock pulses to terrestrial telescopes; but we cannot expect Nature to be concerned with the inadequacies of our instrumentation!

This sense of wonder at the sheer serendipity of coming across such a system (many relativity theorists had sworn for decades that no system would ever be found in which gravitational wave effects would be measurable) was brought into focus for me after the more recent discovery of the “double pulsar” a system with an even closer orbit than the original binary pulsar, in which both pulsars are visible from Earth. I have heard this system referred to as “a relativistic astrophysicist’s wet dream.”

Taylor and McCulloch’s comment illustrates the three main technical challenges in creating a match between theory and experiment for this system. First, the system must be in empty space. The presence of instellar gas, for instance, would certainly alter the orbit of the system with time, as a result of dynamical friction. A related issue would be if the pulsars themselves were blowing off material at a significant rate, in which case the mass loss would affect the orbital motion. Secondly, as we have seen, both objects must be compact objects, such as neutron stars, so that perturbations due to the failure of the bodies to behave as point sources can be ignored. As a corollary to this, if the system contained a third massive object, this would obviously also affect the orbit of the two known components. Finally, the object should be close to us, not only for reasons of detection, but because a more distant object is in a more different orbit around the center of the galaxy and would be accelerating more strongly with respect to us here on Earth (for a list of references and discussion of a number of these issues, see Damour and Taylor 1991).

It is a well known result of special relativity that systems which are in inertial motion with respect to each other have clocks which run at different rates. If the systems are accelerating with respect to each other, then their respective clocks will alter, with time, in their relative rates of running. Since the solar system and the binary pulsar system are in different orbits around the galactic center they are not in the same inertial frame with each other. Accordingly the sensitive timing which is required to measure the orbital damping effect is also capable of measuring the relative accelerations of these two systems. In so far as doubt persisted about the validity of the quadrupole formula, this was a bad thing. Indeed, at one point during the 1980s, it did happen that the analysis of measurements of the binary pulsar did fall out of agreement with the quadrupole formula, by a much smaller amount than had been at issue in the earlier theoretical debate (in so far as that debate had ever been completely quantified). A close analysis of the relativistic theory of timing between the two systems, carried out by Taylor in collaboration with Thibault Damour, showed that the discrepancy could be explained on the basis of fully accounting for the timing issues (Damour and Taylor, 1991).

Ultimately, as Taylor recalls, the situation reached the point where, if one assumed the validity of the quadrupole formula, one could make an accurate determination of the position of the binary pulsar in the galaxy, based on its
relative acceleration. This measurement was more accurate than was possible by other methods at that time. This makes as good a moment as any to mark the end of the quadrupole formula controversy. When a prediction turns from a thing to be tested to a tool to be used, the debate is surely closed (and this, of course, goes some way to explain the impatience of non-skeptics to achieve that moment of closure). It is a mark of the importance of the controversy that the measurement of the distance to the galactic center which could have been provided by the binary pulsar data never became a canonical one, though it is in agreement with subsequent measurements using other techniques.

As Damour and Taylor put it in 1991

If we assume that the standard general relativistic framework ... is valid we see that, in a few years, the measurement of \dot{P}_{obs} [the rate of decay of the binary pulsar’s orbit] can be turned into a measurement of ... the galactic constants R_o [the distance form the Solar System to the Galactic center] and v_o [the speed of galactic rotation at about the center at the position of the solar system] (especially v_o, which presently contributes the biggest uncertainty). Such a “pulsar timing” measurement of v_o would be free from many of the astrophysical uncertainties that have plagued other determinations.

Since the Taylor-Hulse discovery, subsequent binary pulsars have been found where the relative acceleration of the two systems does not permit a particularly accurate determination of the rate of orbital damping. Had the controversy persisted so far this might have provided some opening for skeptics. However the discovery of the double pulsar in 2003, a system in which both pulsars are oriented so that both their radio beams are visible from the Earth, has provided a system with even stronger orbital damping than the original binary pulsars, whose results are in agreement with it.

How much interpretive flexibility was there for skeptics to continue the controversy? Did the skeptics largely abandon the fight because, as Franklin would have it, they were rational actors or, as Collins would have it, they had run out of sociological space in which to continue the argument? I suspect both considerations played a role. A rational actor will certainly take sociological considerations into account when determining whether to continue a debate. Most physicists do not wish to face social ostracism, even in a cause they believe to be right. At the same time any social constructivist will agree that the ruling out of certain arguments as work in the field progresses, the limitations placed on interpretative flexibility in the ebb and flow of debate, can tax the ingenuity of even the most stubborn skeptics to the point at which they give up the struggle. The social struggle can become unequal in a double sense, in that they are both outnumbered and outmaneuvered by their opponents. Whether the maneuvering was all in vain, given the inevitable verdict of nature is, of course, an interesting question, but not one that is trivial to answer by the historian’s method.

That skeptics considered continuing the battle is clear enough. Although Fred Cooperstock did retire from the fray for a decade or so after the mid-
eighties, he subsequently put forward a new argument that gravitational waves would not propagate energy through empty space. The failure, to date, of the new generation of gravitational wave detectors like LIGO, to detect gravitational waves passing by the Earth, has provided a new opening for skeptics like Cooperstock. He and others now put forward arguments that the existing theory is correct for sources like the binary pulsar, but fails for detectors like LIGO, thus explaining why we see evidence for gravitational waves in these source systems, but cannot, as yet, detect them. The specifics of these new skeptical arguments vary widely. Some come from professional physicists like Cooperstock, others come from amateurs who focus on the sheer expense of the detectors which, they claim, can never succeed in detecting anything.

Peter Havas, when I interviewed him in 1995, certainly spoke of the openings he believed had existed, at least for a time, for an attack on the standard interpretation of the pulsar timing results. He still entertained significant doubts about the consensus which had emerged at that time. Joe Taylor reports that Havas, and his student Arnold Rosenblum, did ask to see some of the data and that he sent them a magnetic tape containing some (private communication). When he asked them a year later whether they had made progress they indicated that they had been distracted by other problems. Nevertheless, a search for Arnold Rosenblum’s papers on the SAO/NASA Astrophysics Data System server shows that, from the mid-eighties, after several years spent on his calculations of gravitational wave emission that did not agree with the quadrupole formula, he then devoted a number of papers to the problems of relativistic timing in orbital and binary systems. Although none of this series of papers referred directly to the binary pulsar, they are strongly suggestive that he had spent a considerable amount of time thinking about this issue, leading him into that field.

Therefore we can say that the skeptics considered a foray against the conventional interpretation of the binary pulsar data, but decided against it. One can say that the physics of the situation obliged them to react this way, in that they felt they could not overturn the hard empirical evidence provided by the binary pulsar data. But one can also say there were sociological reasons. They were not in a position to do their own experiment to challenge the data, because they lacked the standing in that field which would have permitted them to enter it with any hope of success. For starters they would never have been granted time on a radio telescope to do their own measurements of this system (one group of astronomers did do some independent timing measurements of the binary pulsar, guided by data supplied by Taylor, and concluded that Taylor and his collaborators were correct in their results on the orbital decay,

4We cannot hope, with current technology, to detect the gravitational waves emitted by the known binary pulsar systems. It is only when such systems reach their terminal point and spiral into each other and merge that Earth-based detectors can hope to observe them.

5A sample of modern gravitational wave skepticism is given by the following references: Cooperstock 1992, Bel 1996, Aldrovandi et al 2008, and, for the non-professional viewpoint, see the webpage http://www.god-does-not-play-dice.net/Szabados.html#SBG, accessed on April 24th, 2009

6Arnold Rosenblum died tragically young in 1991 (Cohen, Havas and Lind 1991).
see Boriakoff et al 1982). Even worse, in so far as the interpretation of the data could be challenged by theorists, it was by astrophysicists with experience in the study of stellar binaries and pulsars, not by relativists experienced in gravitational waves. Thus from a professional point of view the skeptics were in a double bind which, combined with their increasing isolation within their own community, as the debate moved towards a final resolution, prevented any kind of continuation of the public debate. Whatever private doubts were held by a few theorists about the reliability of the existing calculations, the empirical result was regarded as beyond dispute. The final option open to the skeptics, arguing that Taylor had simply got it wrong, was undoubtedly not entertained because of the outstanding reputation which Taylor enjoyed within the astrophysics community for his careful and painstaking work.

This whole issue of replicating experimental work lies at the heart of the philosophical controversy between Collins and Franklin alluded to earlier. In his papers on the Weber controversy Collins showed how problematic was the use of replication to close a debate. The difficulty lies in the fact that the details of experiments must necessarily differ, and these differences generally provide ammunition for one side or the other. In addition, what is sauce for the goose is sauce for the gander. If someone who replicates an experiment charges that the original experimenter got it wrong, the same charge can always be thrown back in their own teeth. Franklin responded that physicists could still rationally and (hopefully) dispassionately decide between these competing claims. From the sociologists’ point of view the issue casts interesting light on the nature of expertise and how it is recognized and evaluated by fellow experts. From the sociologists standpoint, the physicist, as a rational actor, must make a series of social judgments over the course of a controversy in evaluating his colleagues’ expertise and the consequent reliability of their work.

In the case of the binary pulsar replication demanded access to radio telescope time to look at the same system or, better, the discovery of an independent system. But, as we have seen, subsequent systems were often not as ideal for this experiment as the original. Not until the discovery of the double pulsar can we be said to have a fully comparable replication of the original, so one can certainly speculate that there may have been some scope for further controversy in the decades between 1980 and the early years of the twentieth century, had there been sufficient sociological space to support such a debate. But while logical space for disputation may have remained, the skeptics had run out of sociological space. Indeed, there is every reason to believe that the field of gravitational wave physics could ill afford to permit such a controversy to linger for that amount of time, lest it put its own disciplinary space at risk.

6 Theory Testing

An interesting feature of the early papers on the orbital decay measurements of the binary pulsar is the focus on theory testing. In the 1981 paper by Weisberg and Taylor much of the paper is devoted to discussion of the predictions of a va-
riety of alternative theories of gravity which were falsified by the measurements. The best known of these theories was the bi-metric theory of Nathan Rosen, a longtime skeptic of gravitational waves (Rosen, 1940). Rosen’s theory had been shown to make a prediction of anti-damping for binaries emitting gravitational waves (Will and Eardley, 1977). The waves would carry away negative energy from the system, leaving it more energetic than before, and thus permitting the orbiting bodies to spiral away from each other. As Will and Eardley acknowledged in their paper (p. L92)

Some might thereby argue that the theory should be ruled out on theoretical grounds alone.

But the theory was of particular interest to theory testers because it agreed with the predictions of general relativity in the post-Newtonian limit. Accordingly it was one of a handful of theories which had survived all early solar-systems tests of gravitation theories. This placed it in a special category of theories which could play a useful role as a foil for theory testing with the binary pulsar, even if calculations such as these were beginnings to show that the theory had troubling pathologies.

The emphasis on theory testing in early papers on the orbital decay seems odd when these papers are read today. This work is famous, but certainly not famous for invalidating the bi-metric theory of Nathan Rosen. What seems particularly odd is that the prediction of Rosen’s theory (and other theories) which it invalidated appeared paradoxical. As was openly acknowledged, no one would give any credence to these predictions even without an experiment to falsify them. The theory had few, if any, proponents by this stage. It’s certainly true that we cannot say here that we have a direct confrontation between theories, in any symmetric sense. While Rosen’s theory could have been falsified by the results, it could not have been confirmed. Had Taylor and colleagues encountered a result in agreement with Rosen’s theory’s prediction, all sorts of other mechanisms would have been proposed to explain it before Rosen’s. Perhaps, given enough supporting evidence (several other systems behaving the same way) Rosen’s theory would have been accepted, but it would have been a long hard road.

Nevertheless, no matter how little credibility a theory has, experimenters still find it satisfying to have a definite prediction they can test. One must not be too inclined to overlook the obvious motivation. Indeed, a crazy prediction of a reasonable theory, as long as it is a definite prediction, may be a godsend to an experimentalist. After all, falsifying such a prediction is likely to be seen as good, worthwhile work by colleagues, and yet it will also be uncontroversial and easily accepted by the community. Furthermore a theory like Rosen’s, with its odd prediction, plays a useful role in the framing of experimental results as theory testing. It is a straw house theory, in the sense that it is rather like the pig who built his house out of straw. The main purpose of the research is to show that general relativity has been validated. Therefore general relativity is like the house of bricks which does not fall down to the huffing and puffing of the big bad wolf. But the story of the one little pig is rarely satisfying to
an audience. In order to appreciate the part about the pig who survived, we must first learn about his brothers who were not so lucky. The foolish pigs who built their houses of straw and sticks are perhaps all the more welcome, from a narrative standpoint, if the brick house is the subject of controversy. Doubts have been voiced as to whether the brick house really was built by the third pig. Perhaps, say his detractors, said pig has been given too much credit. How much easier it is to talk about the first two pigs. At least no one is trying to claim credit for their edifices!\footnote{parts of this section are based on an unpublished paper by the author and Harry Collins.}

Lest anyone think that it is normal to find theories with strange predictions waiting to be falsified, one must give Rosen some due credit here for not contesting the calculation which set up this scenario. Clifford Will, a leading figure amongst theorists interested in theory testing experiments, who was the chief architect of the parameterized post-Newtonian scheme mentioned previously, was very active in producing the calculations which provided predictions from alternative theories. Note the very fact that the authors of the theories were not doing these calculations themselves suggests that we are not dealing with theories which have proper communities of advocates behind them. Will notes that it is relatively unusual to find that the author of a new theory will agree with a calculation which shows that the theory makes a prediction that is highly likely to be falsified by experiment. Generally the process, typically of many scientific controversies, can be almost open-ended (Interview conducted by the author at Washington University, St. Louis, 2nd March, 1999).

It can be, and it rarely reaches a conclusion. The only time I know .. and I don’t get involved in this all that much. I mean, I don’t grab theories out of the literature and analyze them. It’s kind of a hopeless and not a terribly rewarding task. But my experience has been that it takes a long time because the people who propose it always try to wriggle out of it. But there are only two cases that I know of where it has actually come to a conclusion whereby the person said,'yes I agree, this theory is wrong' and one was Rosen himself. Because when we did this work on the binary pulsar and showed that Rosen’s theory disagreed with the observations, in fact I was giving a talk in Haifa shortly after that and gave this lecture and said that Rosen’s theory is wrong and at the end of the lecture Rosen stood up and said ‘yep, I agree with you, it’s wrong, ... but I have a new theory’ a rather different theory which he then went on to argue had nice properties and agreed with all the experiments.

It is worth noting here that Will’s work showed that Rosen’s theory predicted negative energy wave emission only in the case of dipole gravitational waves. This in itself was a departure from standard general relativity theory, since dipole gravitational waves do not exist in this theory. Even in Rosen’s theory dipole radiation would not be emitted for a binary system consisting of two identical pulsars. Since it was gradually shown that the binary pulsar and
its companion are fairly similar, Weisberg and Taylor (1981) found it necessary to calculate the quadrupole prediction of Rosen’s theory (and certain other theories which were also falsified by their work) themselves, drawing upon Will’s framework. The calculation showed that Rosen’s theory predicted negative energy waves even in the quadrupole case.

But if Rosen’s theory predicted an unphysical result, wouldn’t it have been discarded even if the binary pulsar hadn’t been found to falsify it? To quote Cliff Will again (interview, 2nd March, 1999)

> In a case like that it really depends on your point of view. Some people would have argued that just having anti-damping, negative energy flux would make that a bad theory right off the bat and you would throw it away without further ado. So my attitude is slightly more phenomenological then that. I’m willing to say that it looks strange to me but let’s compare it with observations and, of course, there the comparison is easy because we see damping and not anti-damping and so it really is wiped out. But some people would just say on theoretical grounds, ‘that theory’s dead.’

The context here is particularly important. Physicists interested in gravitational waves were used to having no experiments at all. Once an experiment had, at last, become available, they wanted to put it to every kind of use they could, and theory testing was the most established role for experiment in the general relativity community. Most of the work in this field which had some prestige in the wider physics community was of the theory testing variety, such as the British 1919 eclipse expedition, the Pound-Rebka experiment, the perihelion advance of Mercury and the Shapiro time-delay measurement. The limitation of all of these experiments, as far as theory-testing goes, was that they were all “solar-system” tests limited to weak gravitational fields. As such, some theories, and Rosen’s was a leading example, could not be distinguished from general relativity by these tests. It was certainly natural for those involved with the binary pulsar to anticipate that its significance would lie largely in the fact that it was the first strong-field test of general relativity and its rivals. In fact, such was the significance of the discovery of evidence of the existence of gravitational waves, that this quickly came to dominate everything else. As such, the falsification of Rosen’s theory seems almost quaint today, compared to the importance of the verification of the general relativistic quadrupole formula.

7 Conclusions

It is now time for me to examine my own place within a controversial field, in analogy with my study of the astrophysicists struggling to interpret the binary pulsar data. I find myself trying to interpret their struggles in the context of the competing theories of social constructivism and rival philosophies which insist on the normative standing of experiment, permitting it a special status in deciding scientific controversies. It is in this sense that the binary pulsar story
may be said to be a potentially controversial case study from the science studies standpoint.

Is there a sense in which my work can decide between these competing theories? Unfortunately the answer appears to be no. Perhaps this is fortunate, since I mentioned at the outside that I am not sure I want to place myself squarely in the cross hairs of this particular controversy. The problem is that the predictions of the two theories do not significantly differ from each other in this case. At the resolution provided by my study, there does not seem to exist a possibility of deciding between them. Collins would say that Kennefick has extended his notion of the Experimenters’ Regress onto the Theoretical side in a way that seems natural and useful. He would say it is not at all surprising that the theorists’ seeking a way out of the regress, should turn to an outside expertise, in the form of experimenters, to find a resolution. It is just the inverse of the way in which experimenters, seeking a way out of their regress, might appeal to theory in order to decide between competing experimental results. But of course Franklin is perfectly happy for theorists to let their debates be decided by experiment. It fits in completely with his normative picture of experiment as the decisive factor in such disputes. Thus each side is likely to be happy with the basic story I’ve outlined. Even more problematic is the way in which the philosophical debate does not necessarily permit a clear distinction to be drawn in the behavior of the scientists involved. Even if we concede that the protagonists were more willing to settle the issue based on what the experimenters said, and were relatively unwilling to challenge what the experimenters said, this could be explained by the sociologists as simply a feature of the society under examination. Theorists, by the rules of the game, have a relatively limited (but definitely non-zero) liberty to challenge the expertise of experimenters. When they do so, they must do so from a position of strength, and the entire history of the controversy shows that the skeptics were already in a position of weakness by the time the binary pulsar data came along. Indeed we have noted that a paradoxical effect of the experimenters’ arrival on the scene was to breathe new life into the controversy, effectively giving new oxygen to the skeptics, even as it forced them to consume more oxygen in the exertion of defending their position.

Recall that the substance of the debate between the physicist/philosopher Franklin and the sociologist Collins was the problem of replication, and how one can tell whether an experiment has been performed correctly. To some extent it boils down to the question of how scientists deal with the possibility that Joe Taylor and colleagues might simply have gotten it wrong. This is especially noteworthy in this case, because for a considerable time there was no confirming experiment. The answer is that most people were impressed with Taylor and felt they had every reason to trust his work. This is a profoundly sociological issue obviously. Even if one believes that Taylor is correct, one has not actually done all the work he has done to convince himself. One assumes that he has done a proficient job, especially if one has had reason to believe that other work he has done has been very reliable. In short, at least one important aspect of judging the work of fellow physicists derives from our ability to judge their
standing in the community and to assess their expertise from social encounters. Note that only if we are physicists ourselves are we likely to have much success in making this kind of judgment. Collins’ and Franklin’s debate concerns (in part) the question of how much importance one should place on this aspect of the reception of scientific work.

For what it is worth, my own view is that at bottom physicists are simply doing what humans usually do and applying a basic version of the principle of induction. If an experiment is replicated \(n \) times and always produces the same result, then the \(n + 1 \)th replication will produce the same result. It makes sense for physicists to infer that this is because reality is determining the outcome of the experiment. For a sociologist, it makes more sense to assume that if \(n \) experimenters sharing a similar expertise perform an experiment the same way, then the \(n + 1 \)th expert will perform it the same way and also produce the same result. The inference is different, depending on the academic interests of the scholars involved, but the basic principle is the same. It seems to me that the argument between some sociologists and some philosophers on this topic is similar to the old dispute between realists and empiricists. Philosophers are saying that science is only possible because scientists are engaged in studying a real entity, the laws of nature. In this case, the sociologists are in the role of the empiricists, insisting that sense impressions are the only reality and observing that much of what passes for sense perception in modern science is what scientists hear from other scientists as scientific knowledge passes through a series of social networks. I doubt that I can decide a debate between realism and empiricism.\(^8\)

The moral of this story, it now seems to me, is that science works. Does this mean that the story I am telling is an argument in favor of realism? It’s certainly not an argument against realism and its true that the strong realist would say that science has to work because the objective nature of reality constantly obtrudes on experimental work of all kinds. But if we adopt the position of the strong program of the sociologists, we must work rather harder to explain how it is that scientists “manufacture consent.” This question is of interest even to the realist, since history certainly tells us that people are sometimes wrong about the laws of nature. In this imperfect world, if scientists are able to reach agreement amongst themselves, we can announce that science works. This

\(^8\)Another question I cannot answer is if \(n \) historians study the same historical episode, can we rely on the \(n + 1 \)th historian reaching the same conclusions? Can I do so if \(n = 1 \)? Is there any sense in which historical micro-studies of this kind can be compared to real science? Is there a Historians’ Regress related to the problem of When History Ends, just as the Experiments’ Regress relates to the problem of When Experiments End? The phrase “When History Ends” may seem millennial in tone but note the aptness of the word Apocalypse which means, “the lifting of the veil,” which is entirely what the historian is trying to do. Just as the radio astronomer does in continuing his timing measurements over longer periods to greater degrees of precision, or as the theorist does in delving to higher orders in an approximation scheme, so the historian burrows down more deeply in a micro-study. But in historical analysis we should be careful to practice Interpretational Frugality, a sort of inverse form of Occam’s Razor. We may multiply entities if it is in the service of keeping our feet grounded in the local. Not all morals are generally applicable. In the words of Bart Simpson, sometimes there is no moral, “just a bunch of stuff that happened.”
sounds like a very global moral, but its true significance is local. The relativity community, I believe, had quite a lot at stake in this debate. They had to show that their science worked, that they as a community could do science which worked. The binary pulsar therefore played a key role in showing that relativity as a field, and relativists as a community, could work as a functioning branch of science, that relativists were competent, and not dopes. From the point of view of the relativists, it would have mattered little whether their behavior was viewed as that of incompetent, irrational physicists who refused to accept the obvious fact that gravitational waves existed, or as that of needlessly fractious and insufficiently socialized actors unable to crystallize a core group amongst themselves in order to facilitate normal scientific behavior. What they had to do was demonstrate that they were a healthy branch of physics, a postulate which Feynman, sitting in the Grand Hotel, Warsaw in 1962, would have doubted. The imagery confronting Feynman as he set in a hotel restaurant and contemplated this dysfunctional field, writing the script for a possible Fellini film, “126 Dopes” has been replaced by the gleaming, high tech, ultra-precision big science of LIGO, and by the confidence of funders in pouring money into the construction of large gravitational wave detectors. Since no one can know for certain whether gravitational waves will ultimately be detected by these devices, the process by which the more confident decided to begin ignoring the anxieties of the more cautious is an interesting one regardless of whether we believe those cautious skeptics were irrational dopes or sensible social actors.

8 Acknowledgments

I would like to thank Joseph Taylor, Clifford Will, Thibault Damour, Joel Weisberg and the late Peter Havas all of whom permitted me to interview them for the research which gave rise to this paper. All of the interviews, except the one with Peter Havas, were recorded. Both Harry Collins and Allan Franklin discussed some of the issues bearing on this paper with me many times, and aspects of it are based on an unpublished draft of a paper written by Collins and I. I would like to thank both of them for their help and inspiration on this work. Diana Buchwald and Kip Thorne both helped me far more than I can recall in the early stages of this work, and I would also like to thank David Rowe for his giving me the chance to finally turn it into a paper, and for his patience waiting for it to be finished.

9 Bibliography

Aldrovandi, R., Pereira, J. G., da Rocha, Roldao and Vu, H. K. (2008). “Non-linear Gravitational Waves: Their Form and Effects.” arXiv:0809.2911v1

Baade, Walter and Zwicky, Fritz (1933). “Remarks on Super-Novae and Cosmic Rays” Physical Review 46: 76-77.
Bel, Luis (1996). “Static Elastic Deformations in General Relativity” electronic preprint gr-qc/9609045 from the archive http://xxx.lanl.gov

Boriakoff, Valentin, Ferguson, Dale C., Haugan, Mark P., Terzian, Yervant and Teukolsky, Saul A. (1982). “Timing Observations of the Binary Pulsar PSR 1913+16.” The Astrophysical Journal 261: L97-L101.

Cohen, Jeffrey M., Havas, Peter and Lind, V. Gordon (1991). “Arnold Rosenblum.” Physics Today 45: 81. Another obituary of Rosenblum appeared in the New York Times of January 7, 1991.

Collins, Harry M. (1994). “A Strong Confirmation of the Experimenters’ Regress,” Studies in History and Philosophy of Science Part A 25: 493-503.

Collins, Harry M. (2004). Gravity’s Shadow Chicago: University of Chicago Press.

Collins, Harry M. (2009). “We cannot live by scepticism alone.” Nature 458: 30-31.

Collins, Harry M., Evans, Robert and Gorman, Mike (2007). “Trading Zones and Interactional Expertise.” Studies in the History and Philosophy of Science A 38: 657-666.

Cooperstock, Fred I. (1992) “Energy Localization in General Relativity: A New Hypothesis”, Foundations of Physics, 22, 1011-1024.

Damour, Thibault and Ruffini, R. (1974). “Sur certaines vérifications nouvelles de la Relativité générale rendues possibles par la découverte d’un pulsar membre d’un système binaire” Comptes Rendu de l’Academie des Sciences de Paris, series A 279: 971-973.

Damour, Thibault and Taylor, Joseph H. (1991). “On the Orbital Period Change of the Binary Pulsar PSR 1913+16” The Astrophysical Journal 366: 501-511.

De Witt, Cécile M. (1957). Conference on the Role of Gravitation in Physics, proceedings of conference at Chapel Hill, North Carolina, January 18-23, 1957. (Wright Air Development Center (WADC) technical report 57-216, United States Air Force, Wright-Patterson Air Force Base, Ohio). A supplement with an expanded synopsis of Feynman’s remarks was also distributed to participants (a copy can be found, for example, in the Feynman papers at Caltech).

Dicke, Robert H and Goldenberg, H. Mark (1967). “Solar Oblateness and General Relativity” Physical Review Letters 18: 313-316.

Dyson, Freeman (1963). “Gravitational Machines” in Interstellar Communications ed. A.G.W. Cameron New York: W.A. Benjamin Inc. pp. 115- 120.

Einstein, Albert (1916). “Näherungsweise Integration der Feldgleichungen der Gravitation” Königlich Preussische Akademie der Wissenschaften Berlin, Sitzungsberichte: 688-696
Einstein, Albert (1918). “Über Gravitationswellen” Königlich Preussische Akademie der Wissenschaften Berlin, Sitzungsberichte: 154-167

Einstein, Albert and Rosen, Nathan (1937). “On Gravitational Waves” Journal of the Franklin Institute, 223, 43-54.

Feynman, Richard P. and Leighton, Ralph (1988). What do you care what other people think? Further adventures of a curious character (Norton, New York). Remark quoted appears on pg. 91 of the Bantam paperback edition (New York, 1989).

Franklin, Allan (1994). “How to Avoid the Experimenters’ Regress” Studies in History and Philosophy of Science Part A 25: 463-491.

Galison, Peter (1997). Image and Logic: A Material Culture of Microphysics Chicago: University of Chicago Press.

Haensel, Pawel, Potekhin, Alexander Y. and Yakovlev, D. G. (2007). Neutron Stars I: Equation of State and Structure New York: Springer.

Havas, Peter (1973). “Equations of Motion, Radiation Reaction, and Gravitational Radiation” in Ondes et Radiation Gravitationelles proceedings of meeting, Paris, June, 1973 Paris: Editions du Centre National de la recherche scientifique, pp. 383-392.

Hulse, Russell (1997). “The Discovery of the Binary Pulsar” in Nobel Lectures in Physics 1991-1995 ed. Gösta Ekspong Singapore: World Scientific.

Hulse, R.A. and Taylor, J.H. (1975). “Discovery of a Pulsar in a Binary System” Astrophysical Journal, 195, L51-L53.

Kaiser, David (2009). “Birth Cry of Image and Logic” Centaurus 50: 166-167.

Kennefick, Daniel (2007). Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves Princeton, New Jersey: Princeton University Press.

Rosen, Nathan (1940). “General Relativity and Flat Space I” Physical Review 57: 147-150.

Royal Swedish Academy of Sciences (1993). Press Release announcing the Nobel prize winners in Physics for 1993, issued 13 October, 1993 and retrieved on the web at http://nobelprize.org/nobel_prizes/physics/laureates/1993/press.html on Apr 21, 1993.

Taylor, Joseph H. and McCulloch, P. M. (1980). “Evidence for the Existence of Gravitational Radiation from Measurements of the Binary Pulsar 1913+16.” in Proceedings of the Ninth Texas Symposium on Relativistic Astrophysics ed. Jürgen Ehlers, Judith Perry and Martin Walker, pp. 442-446 New York: New York Academy of Sciences.

Wagoner, Robert V. (1975). “Test for the Existence of Gravitational Radiation” Astrophysical Journal 196: L63-L65.
Weisberg, Joel M. and Taylor, Joseph H. (1981). “Gravitational Radiation from an Orbiting Pulsar.” General Relativity and Gravitation 13: 1-6.

Will, Clifford M. (1977). “Gravitational Radiation from Binary Systems in Alternative Metric Theories of Gravity: Dipole Radiation and the Binary Pulsar.” The Astrophysics Journal 214: 826-839.

Will, Clifford M. and Eardley, Doug M. (1977). “Dipole Gravitational Radiation in Rosen’s theory of gravity - Observable effects in the binary system PSR 1913+16.” The Astrophysical Journal 212: L91-L94.