Aberrantly high expression of the CUB and zona pellucida-like domain-containing protein 1 (CUZD1) in mammary epithelium leads to breast tumorigenesis

Janelle Mapes1*, Lavanya Anandan1*, Quanxi Li2, Alison Neff1, Charles V. Clevenger3, Indrani C. Bagchi2, and Milan K. Bagchi1#

1Departments of Molecular and Integrative Physiology and 2Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 3Department of Pathology, Virginia Commonwealth University, Richmond, VA

* These authors share first authorship on this work
Corresponding author

Running title: Role of CUZD1 in breast tumorigenesis

Keywords: breast cancer, prolactin, STAT transcription factor, epidermal growth factor receptor, tumor cell biology

To whom correspondence should be addressed:
Milan K. Bagchi, Ph.D.
Deborah Paul Professor
Director, School of Molecular & Cellular Biology
534 Burrill Hall, 407 S Goodwin
University of Illinois at Urbana-Champaign, Urbana, IL, USA
E-mail: mbagchi@life.illinois.edu
ABSTRACT

The peptide hormone prolactin (PRL) and certain members of the epidermal growth factor (EGF) family play central roles in mammary gland development and physiology, and their dysregulation has been implicated in mammary tumorigenesis. Our recent studies have revealed that the CUB and zona pellucida-like domain-containing protein 1 (CUZD1) is a critical factor for PRL-mediated activation of the transcription factor STAT5 in mouse mammary epithelium. CUZD1 controls production of a specific subset of the EGF family growth factors and consequent activation of their receptors. Here, we found that consistent with this finding, CUZD1 overexpression in non-transformed mammary epithelial HC11 cells increases their proliferation and induces tumorigenic characteristics in these cells. When introduced orthotopically in mouse mammary glands, these cells formed adenocarcinomas, exhibiting elevated levels of STAT5 phosphorylation and activation of the EGF signaling pathway. Selective blockade of STAT5 phosphorylation by pimozide, a small-molecule inhibitor, markedly reduced the production of the EGF family growth factors and inhibited PRL-induced tumor cell proliferation in vitro. Pimozide administration to mice also suppressed CUZD1-driven mammary tumorigenesis in vivo. Analysis of human MCF7 breast cancer cells indicated that CUZD1 controls the production of the same subset of EGF family members in these cells as in the mouse. Moreover, pimozide treatment reduced the proliferation of these cancer cells. Collectively, these findings indicate that overexpression of CUZD1, a regulator of growth factor pathways controlled by PRL and STAT5, promotes mammary tumorigenesis. Blockade of the STAT5 signaling pathway downstream of CUZD1 may offer a therapeutic strategy for managing breast tumors.

INTRODUCTION

The mammary gland is a dynamic organ in that it undergoes cycles of proliferation, differentiation and regression with every pregnancy (1, 2). Tight control of the signaling pathways orchestrating each of these steps is essential for appropriate function of the mammary epithelium (3). Expansion of the ductal epithelium through branching and development of secretory alveoli occur during pregnancy as the mammary gland prepares for lactation (4). Terminal differentiation of the mammary gland observed at lactation is marked by the expression of milk protein genes and the production of milk by the alveolar epithelial cells (5). The peptide hormone prolactin (PRL) plays a central role in regulating mammary gland development during pregnancy and lactation (6). Binding of PRL to the prolactin receptor (PRLR) initiates a signaling cascade in which members of the Janus Kinase (JAK) family, JAK1 and JAK2, and the Signal Transducer and Activator of Transcription 5 (STAT5) participate (7–13). STAT5, a transcription factor, is phosphorylated and activated by the JAKs associated with PRLR (14–19). The changes in gene expression brought about by active STAT5 are essential for proliferation and differentiation of the mammary epithelium during pregnancy and lactation (17, 20–24). In this way, PRL and STAT5 play critical roles in alveolar development and terminal differentiation of the mammary gland.

Signaling via phosphorylated STAT5 is key to the proliferation of mammary epithelial cells during alveologenesis (23, 25–27). Mitogenic genes under the control of STAT5 encode cyclin D1 and certain members of the epidermal growth factor (EGF) family, including epiregulin (EREG), which induce expansion of the mammary epithelium prior to alveolar differentiation (28–31). The EGF family ligands signal through their cognate ErbB receptors to promote proliferation and differentiation of the mammary epithelium during various stages of mammary gland development (32, 33). Communication between, and regulation of, the PRL/STAT5 and ErbB receptor pathways are essential for alveologenesis in preparation for lactation.

The PRLR signaling, which is critical for normal mammary gland development, is dysregulated in certain types of breast cancer (34). Aberrant PRL/STAT5 signaling induces excessive proliferation and thereby triggers unchecked growth, leading to mammary tumorigenesis (32, 35–37). Genes regulated by PRL/STAT5 influence
proliferation and differentiation of breast cancer cells (31, 38). In an oncogene-induced tumor model (MMTV-PyVT), Prl^{−/−} mice exhibit delayed tumor development and slower (30%) tumor progression when compared to control (39). In another study, local overexpression of PRL in the mouse mammary gland resulted in ubiquitous development of mammary carcinomas in aged mice and PRL-induced carcinomas displayed high levels of nuclear pSTAT5 (24, 40). Transgenic mice expressing constitutively active STAT5 exhibit hyperproliferative mammary epithelium, delayed involution, and a predisposition to mammary tumor formation (41). Collectively, these studies indicate that aberrant PRL/STAT5 signaling contributes to breast cancer.

Similarly, an increased signaling through the EGF pathway has long been implicated in the proliferation of mammary epithelial cells in breast cancer (32, 42–44). Many drugs that inhibit activation of certain ErbB receptors have been developed to treat breast cancer (45, 46). Analysis of ErbB receptor expression and activation via phosphorylation in human breast tumors provides important prognostic information and predict responses to these targeted therapies (47). Therefore, it is conceivable that targeting a cellular factor that controls both the EGF and PRL signaling pathways would provide an effective and personalized treatment plan in breast cancer patients (48–50).

Our recent studies revealed that the CUB and zona pellucida-like domain-containing protein 1 (CUZD1) may fit such a role (51). Gene ontology analysis indicates an association of the Cuzd1 gene product with cell division, cell cycle, and cell proliferation (52). Structurally, CUZD1 is composed of two tandem CUB domains, a ZP domain, and a putative transmembrane domain (53, 54). Presently, little information exists describing the function of these domains, but they are often found in proteins that regulate developmental processes (55, 56). Studies illustrating the presence of CUZD1 in specific tissues have provided some functional analysis. We previously reported that CUZD1, also known as estrogen-regulated gene 1 (ERG1), is an estrogen-regulated gene in the rodent reproductive tract and is important for mammary epithelial cell proliferation during pregnancy and lactation (51, 53). Additionally, expression of Cuzd1 has been identified in the pancreas, epididymis, human ovarian cancer cells, and human embryonic stem cells (57–61). Leong et al. demonstrated the importance of CUZD1 in cell growth and proliferation of a human ovarian cancer cell line and proposed a potential role of CUZD1 in chemotherapeutic resistance (61, 62). Efforts have also been made to develop serum-based assays using CUZD1 as a biomarker for ovarian cancer and pancreatic cancer, however controversial reports support the need for additional studies (61, 63–69). Our recent work fills a gap in the body of knowledge surrounding CUZD1 by detailing the molecular signaling pathway of CUZD1-induced proliferation in mammary epithelial cells (51). The Cuzd1-null mouse model provided evidence that CUZD1 is a mediator of PRL/STAT5 signaling in the mammary gland during puberty and pregnancy that controls STAT5 phosphorylation in mammary epithelial cells. Notably, CUZD1-mediated STAT5 activation drives the expression of certain EGF family growth factors, such as EREG, which acts via the ErbB1 and ErbB4 receptors. In the absence of Cuzd1, therefore, proliferation of the mammary epithelium during alveolar development is dramatically reduced due to the loss of signaling via these receptors. These data led us to hypothesize that the opposite may also be true; increased Cuzd1 expression may lead to excessive proliferation of the mammary epithelium, leading to tumorigenesis.

In this study, we tested the concept that overexpression of CUZD1 in mammary epithelial cells may drive constitutive activation of the STAT5 pathway and inappropriate stimulation of the EGF family growth factor pathways, leading to uncontrolled cell proliferation. We demonstrate that such dysregulation of CUZD1 and its downstream STAT5 and EGF receptor pathways indeed leads to breast carcinoma. Furthermore, we provide evidence that pimozone, a selective inhibitor of STAT5 phosphorylation, is able to suppress CUZD1/STAT5 phosphorylation-driven mammary epithelial proliferation and tumorigenesis, presenting it as a potential therapeutic drug target in breast cancers in which the STAT5 pathway plays a major role.
RESULTS

Overexpression of Cuzd1 leads to transformation of HC11 cells

To test whether the overexpression of Cuzd1 promotes transformation of mammary epithelial cells, we employed HC11 cells, a non-transformed mammary epithelial cell line derived from pregnant BALB/c mice. As described previously, a lentiviral expression vector harboring a full-length cDNA encoding Cuzd1 or β-galactosidase (control) was integrated into HC11 cells to generate stable cell lines which constitutively express elevated levels of Cuzd1 (HC11-Cuzd1) or β-galactosidase (HC11-LacZ) (51). Western blot analysis indicated that HC11-Cuzd1 cells overexpress CUZD1 about two-fold over the HC11-LacZ control cells (51). These cells also expressed prolactin receptor and low levels of estrogen receptor α and progesterone receptor. We then subjected these cells to a cell invasion assay using Boyden chambers. The HC11-Cuzd1 cells exhibited enhanced motility and were able to migrate across a barrier while control HC11-LacZ cells failed to penetrate the membrane (Fig.1A). We then subjected these cells to a soft agar assay to assess their anchorage independent growth, a well-known marker of cell transformation (70). As shown in Fig. 1B, HC11-Cuzd1 cells formed multiple large colonies when cultured in soft agar, whereas the HC11-LacZ cells remained as single cells in the agar. As a control, we used MCF7 breast cancer cells, which are known to form robust colonies on soft agar (Fig.1B). These findings indicated that the overexpression of Cuzd1 in HC11 mammary epithelial cells altered their growth and migratory properties, two important hallmarks of pre-cancerous cells.

Introduction of HC11-Cuzd1 cells into the mammary gland generates adenocarcinomas

To further evaluate the tumorigenic properties of HC11-Cuzd1 cells in vivo, these cells were mixed with matrigel and orthotopically injected into the mammary gland ducts of nude mice through the nipple. Mice injected with HC11-LacZ cells served as a control for tumor growth. After a latency period of about six weeks, mice injected with HC11-Cuzd1 cells manifested palpable tumors, which continued to grow over 18 weeks (Fig. 2A). All of the mice injected with HC11-Cuzd1 cells had tumors ranging in size between 200-250mm3, while mice injected with control HC11-LacZ cells did not form any detectable tumor (Fig. 2B). Tumor growth was measured weekly and tumor volume was calculated.

We further examined this breast tumorigenesis process in immunologically intact BALB/c mice. HC11-Cuzd1 or HC11-LacZ cells were introduced in mammary glands of these mice as described above. Again, all BALB/c mice injected with HC11-Cuzd1 cells developed mammary tumors while those receiving HC11-LacZ showed no tumor formation. Through dissection and enzymatic digestion of the mammary tumors established by injection of HC11-Cuzd1 cells in BALB/c mice, we isolated cells from these tumors (HC11-Cuzd Tum). These HC11-Cuzd Tum cells appeared to be phenotypically similar to HC11-Cuzd1 cells. When HC11-Cuzd Tum cells were orthotopically injected into the 4th mammary gland pair in BALB/c mice, mammary tumors developed and grew rapidly to reach a volume of about 50mm3 at five weeks, 200-250mm3 at seven weeks, and eventually reaching a volume of almost 900mm3 at 9 weeks (Fig. 2C). These tumors grew larger more rapidly than those formed by HC11-Cuzd1 cells, which were less than 300mm3 at eighteen weeks.

For histological analysis of mammary tumors, mice were sacrificed at eighteen weeks following injection of HC11 cells. The tumors and mammary glands from mice injected with HC11-Cuzd1 and HC11-LacZ cells, respectively, were removed and examined by H&E staining (Fig. 2D, a-d). The mammary glands injected with HC11-LacZ cells appeared normal (Fig. 2D, a and b). The tumors that arise in mammary glands injected with HC11-Cuzd1 cells were verified by pathological examination as adenocarcinomas with lobular characteristics (Fig. 2D, c and d). When these tumors were examined by immunohistochemical staining using a CUZD1-specific antibody, we observed a robust expression of the CUZD1 protein in both cytoplasmic and nuclear compartments (Fig. 2D, e). The retention of CUZD1 and pan-cytokeratin expression in the
tumor indicated that the cells in the tumor mass were indeed derived from the original HC11-Cuzd1 epithelial cell line (Fig. 2D, e and f). These tumors also expressed a high level of PCNA, indicative of highly proliferative cells in the tumor tissue (Fig. 2D, g). We noted liver and lung lesions consistent with metastasis of primary adenocarcinoma to other organs in 10% of nude mice with HC11-Cuzd1 tumors. These results established that overexpression of Cuzd1 produces a tumorigenic phenotype in HC11 mammary epithelial cells, which manifest in breast adenocarcinomas in vivo.

Cuzd1-induced mammary tumorigenesis is mediated by the ErbB signaling pathway

We have previously shown that Cuzd1 controls the phosphorylation and activation of STAT5, downstream production of a subset of EGF family ligands, and consequent phosphorylation of two key ErbB receptors, ErbB1 and ErbB4 (51). We therefore investigated, using IHC, the phosphorylation status of STAT5 in tumors from nude mice orthotopically injected with HC11-Cuzd1 cells. As expected, we detected ample expression of STAT5 in the tumor sections (Fig. 3B). Using an antibody that recognizes activating STAT5 phosphorylation (Tyr-694), we observed phosphorylated STAT5 (pSTAT5) in the tumors (Fig. 3A). We also assessed the expression levels of the EGF family ligands EREG, EPGN and NRG1, and the activation states of the ErbB receptors in Cuzd1-overexpressing breast tumors. The expression of high levels of EREG, EPGN and NRG1 proteins was evident in these tumors (Fig. 3C, E, and F). Additionally, abundant active (phosphorylated) forms of ErbB1 and ErbB4 were present in the tumors (Fig. 3G and I). However, activated (phosphorylated) ErbB2 was undetectable in the tumor sections (Fig. 3H). These results are consistent with the hypothesis that CUZD1-driven breast tumorigenesis involves phosphorylation and activation of STAT5 and production downstream of a subset of EGF family growth factors and activation of ErbB1 and ErbB4 signaling, but is not dependent on ErbB2 activation.

Activation of ErbB receptors is often accompanied by activation of downstream ERK and/or PI3K-AKT pathways. To assess ERK and AKT activation in Cuzd1-overexpressing tumors, sections of tumors were probed with antibodies specific for phosphorylated ERK1/2 or phosphorylated AKT1/2/3. Our results showed the presence of abundant pERK (Fig. 3, J) and an absence of pAKT (Fig. 3K), indicating that ERK signaling is indeed activated and it potentially regulates proliferation of the Cuzd1-driven breast tumor cells, but their proliferation is not dependent on the AKT pathway.

Inhibition of STAT5 phosphorylation suppresses the proliferation of HC11-Cuzd1 cells in vitro

Our previous studies indicate that overexpression of Cuzd1 leads to increased STAT5 activity (51). We therefore investigated the importance of upstream PRLR signaling on CUZD1-mediated STAT5 activation. To determine if nuclear translocation of CUZD1 as well as phosphorylation, nuclear localization, and transcriptional activity of STAT5 are dependent on PRLR activity, we used siRNA to knock down expression of Prlr in HC11 cells overexpressing Cuzd1 (Fig. 4A). The phosphorylation of STAT5 as well as the nuclear translocation of pSTAT5 and CUZD1 was reduced following abatement of PRLR signaling compared to control siRNA (Fig. 4B). Chromatin immunoprecipitation for pSTAT5 and/or FLAG-CUZD1 demonstrates that the loss of Prlr impairs enrichment of STAT5/CUZD1 binding site on the Ereg promoter (Fig. 4C). These data indicate that intact signaling through PRL/PRLR is essential for CUZD1-mediated STAT5 activity.

Since CUZD1 activates the STAT5 signaling pathway to stimulate proliferation of the mammary epithelium, we hypothesized that by inhibiting STAT5, we could prevent cellular signaling downstream of CUZD1 and suppress tumorigenesis induced by constitutive Cuzd1 overexpression. To test this hypothesis, we treated HC11-Cuzd1 cells with PRL along with vehicle or pimozide, a selective inhibitor of STAT5 phosphorylation. As shown by western blotting, pimozide treatment dramatically reduced the activating phosphorylation of STAT5 in these cells compared to the vehicle treatment (Fig. 5A). Total
STAT5 protein levels were unaffected by pimozide treatment (Fig. 5A). We further confirmed by immunocytochemistry that PRL-induced phosphorylation of STAT5 in HC11-Cuzd1 cells is attenuated by pimozide treatment (Fig. 5B). These data established that pimozide is an effective inhibitor of STAT5 phosphorylation in HC11-Cuzd1 cells. We previously reported that loss of STAT5 phosphorylation in Cuzd1-null mammary epithelium is coincident with the lack of production of a subset of EGF family ligands in this tissue (S1). Consistent with this finding, we report here that inhibition of STAT5 by pimozide also reduced the expression of Ereg and Epgn transcripts in HC11-Cuzd1 cells (Fig. 5C), confirming that inhibition of STAT5 signaling inhibits growth factor pathways critical for tumor cell proliferation. HC11-Cuzd1 cells remained over 70% viable with 24h of pimozide treatment compared to 90% in the vehicle control (Fig. S1). A discrete shift to less than 50% viable cells is observed with 48-96h of treatment (Fig. S1). A reduction in total cell number is detected starting at 18h of treatment with pimozide, indicating a reduction in proliferation before cell death occurs (Fig. S1). A BrdU incorporation assay was used to assess whether proliferation of HC11-Cuzd1 cells treated with PRL was indeed affected by pimozide at 18h. As shown in Fig. 5D, significant reduction in PRL-induced proliferation of HC11-Cuzd1 cells was observed following pimozide treatment. Collectively, these data indicate that inhibition of STAT5 phosphorylation by pimozide reduces the proliferation of HC11-Cuzd1 cells.

Pimozide treatment decreases the growth of Cuzd1-driven mammary tumors in vivo

We next tested whether inhibition of STAT5 signaling by pimozide treatment suppressed Cuzd1-induced mammary tumor formation in vivo. We orthotopically injected HC11-Cuzd1 Tum cells into the fourth mammary gland pair of BALB/c mice and treated them with oral doses of pimozide or a vehicle control. At the end of five weeks of tumor growth, and pimozide or vehicle treatment, we observed a drastic reduction in tumor size in mice treated with pimozide compared to mice treated with vehicle control (Fig. 6A, B, and C). Immunohistochemical analysis of STAT5 phosphorylation showed widespread pSTAT5 (Tyr-694) in vehicle-treated mammary tumors, whereas markedly diminished pSTAT5 was observed in tumors of mice treated with pimozide (Fig. 7A, a, b, d, and e). Analysis of STAT5 staining indicated that pimozide did not affect total STAT5 protein levels (Fig. 7A, c and f).

We also examined the levels of the EGF family growth factors EREG, EPGN, and NRG1 and monitored the activation of ErbB1 and ErbB4 in these tumors with or without pimozide treatment (Fig. 7B). Our results showed that inhibition of STAT5 signaling by pimozide, and consequent regression of the mammary tumors, are associated with suppression of the EGF signaling pathway. This is due to a decrease in production of EREG, EPGN, and NRG1 and loss of activation via phosphorylation of ErbB1 and ErbB4 in these tumors (Fig. 7B, a-e and g-k, insets indicate total ErbB1 and ErbB4). To determine if proliferation is reduced with pimozide treatment, we conducted IHC using Ki67, a well-known marker of proliferation. This staining indicates that tumor cell proliferation is dramatically reduced with pimozide treatment (Fig. 7B). Our results showed that inhibition of STAT5 signaling by pimozide, and resulting impairment in ErbB1 and ErbB4 signaling, mitigate CUZD1-induced tumorigenesis.

CUZD1 pathway operates in a subset of human breast cancer cells

The fact that Cuzd1 overexpression in mammary epithelial cells leads to breast tumorigenesis in mice raised the possibility that CUZD1 may play a role in human breast cancer. We, therefore, examined the expression of CUZD1 transcripts in several human breast cancer cell lines. As shown in Fig. 8A, CUZD1 transcripts are expressed in certain human breast cancer cell lines, including MCF7, but are undetectable in other breast cancer cell lines. Interestingly, the CUZD1 protein was mostly cytosolic in MCF7 cells when these cells were grown in serum-free media but it rapidly translocated to the nucleus upon treatment with serum (Fig. 8B).
To examine the effects of CUZD1 protein on STAT5 and ErbB signaling pathways in MCF7 cells, we created a stable cell line in which CUZD1 is overexpressed (MCF7-Cuzd1). MCF7 cells overexpressing β-galactosidase were used as a control (MCF7-LacZ). MCF7-Cuzd1 cells overexpressed Cuzd1 mRNA 20 fold compared to the MCF7-LacZ control cells (Fig. S2). While STAT5 phosphorylation was evident in MCF7-LacZ cells (Fig. 8C, a), the level of pSTAT5 increased in MCF7-Cuzd1 cells (Fig. 8C, c). Pimozide treatment strongly inhibited STAT5 phosphorylation in both MCF7-Cuzd1 and MCF7-LacZ cells (Fig. 8C, b and d). We then tested whether CUZD1 expression in MCF7 cells is linked to the production of the EGF family growth factors by these cells. Elevated CUZD1 expression in MCF7-Cuzd1 cells led to increased expression of EREG, EPGN, and NRG1 transcripts compared to their levels in MCF7-LacZ cells (Fig. 8D). Finally, we performed a BrdU incorporation assay by growing MCF7-Cuzd1 cells in the presence or absence of pimozide. Our results showed that pimozide markedly inhibited the proliferation of MCF7-Cuzd1 in growth media containing serum (Fig. 8E). Collectively, these results indicated that CUZD1-mediated activation of STAT5 signaling and downstream activation of ErbB1 and ErbB4 pathways are likely to play a critical role in controlling the proliferation of certain types of human breast cancer cells and the use of pimozide is highly effective in countering the growth of these cells.

DISCUSSION

It is well documented that, during pregnancy and lactation, PRL functions through PRLR in the mammary epithelium to activate a molecular signaling cascade involving phosphorylation of PRLR and JAKs. This is followed by recruitment of STAT5 to this protein complex and subsequent activation of STAT5 through phosphorylation by JAKs. Activated STAT5 then translocates to the nucleus to regulate target gene expression (71). Our recent studies identified CUZD1 as a key cellular protein that functions as an essential regulator of STAT5 activation downstream of PRL signaling during mammary epithelial proliferation and differentiation during pregnancy and lactation (51). CUZD1 interacts with a complex containing JAK1/JAK2 and STAT5 and plays an important role in the phosphorylation and nuclear translocation of STAT5. The integral role of CUZD1 in STAT5 phosphorylation became evident with the creation of the Cuzd1-null mice in which the activating STAT5 phosphorylation at Tyr 694 fails to occur in the mammary epithelium, leading to a defect in its proliferation and alveolar differentiation (51). It is also of interest that the Stat5-null and Cuzd1-null mice display remarkably similar defects in mammary alveologenesis (25).

With the backdrop of the findings that CUZD1 critically influences PRL/STAT5-dependent mammary epithelial proliferation and differentiation, we examined whether dysregulation of its normal function leads to mammary tumorigenesis. Our study revealed that overexpression of CUZD1 in non-transformed mammary epithelial HC11 cells leads to pre-cancerous transformation of these cells. Introduction of these transformed cells in a mammary gland milieu via orthotopic injection led to the development of breast adenocarcinomas. Interestingly, tumor cells isolated from these primary tumors displayed even more aggressive growth phenotype when transplanted to mammary glands of subsequent hosts. An important aspect of this tumorigenesis is the striking activation of STAT5 in the tumors, presumably due to constitutive overexpression of CUZD1.

We previously demonstrated that CUZD1 is also a critical regulator of a subset of EGF family growth factors, EREG, EPGN, and NRG1, which act primarily through their tyrosine kinase receptors, ErbB1 and ErbB4, to exert effects mainly during alveolar development (72). The ErbB receptors are activated at all stages of mammary development and contribute to normal breast functions (32, 44, 72). A large body of evidence suggests that these receptors control cell proliferation, differentiation, angiogenesis, invasion, and survival of mammary cells, and their aberrant activation plays a key role in giving rise to malignant phenotypes (44, 46, 73). This raised the possibility that Cuzd1-mediated tumorigenesis may be driven through an overactive ErbB signaling network. Consistent with this prediction, the EGF family ligands
EREG, EPGN, and NRG1 are robustly expressed and activated forms of their receptors ErbB1 and ErbB4 are prominently present in the Cuzd1-overexpressing cells and adenocarcinomas. Interestingly, ErbB2, the receptor associated with shortest overall survival rates for breast cancer and a primary target for developing therapeutics, is not active in these tumors.

During normal mammary gland development, PRL acting via downstream STAT5 signaling, directs proliferation and extension of the ductal system. We and others have shown that the gene encoding EREG, which has been implicated in promoting growth and survival of breast cancer cells, is a direct transcripational target of STAT5 (31, 51). Constitutive action of pSTAT5, and resulting stimulation in the production of a subset of EGF-like growth factors, may therefore contribute to tumorigenesis through persistent stimulation of mammary epithelial proliferation. Drugs, such as bromocriptine, inhibit transcription of pituitary PRL, but due to the local synthesis of PRL in the mammary gland driving tumor proliferation, therapeutic intervention needs to occur further downstream in the signaling pathway (74–76). Researchers have been targeting multiple steps along the PRL signaling pathway, from competitive PRLR antagonists to pharmacologic inhibition of PRL signal transducers (77). These data support a growing body of research emphasizing the need for clinical targets of PRL/STAT5 signaling in the treatment of breast cancer. Interruption of the PRL signaling pathway through inhibition of STAT5 could be an effective treatment for PRL/STAT5-driven tumors.

Development of the Cuzd1-dependent breast cancer model in our laboratory presents a unique opportunity to study the effects of a STAT5-inhibitor in treating breast cancers expressing a constitutively high level of pSTAT5. In this study, we re-purposed a previously FDA approved antipsychotic drug, pimozide, which is used to treat mental disorders such as Tourette syndrome and schizophrenia. Studies demonstrated that pimozide reduces viability and proliferation of breast and non-small cell lung carcinoma cells and was comparably less cytotoxic to non-cancer cells (78, 79). Although the mechanism of STAT5 inhibition by pimozide is yet to be elucidated, it selectively inhibits STAT5 phosphorylation and transcription of STAT5 target genes (80, 81). In our study, inhibition of STAT5 phosphorylation through the use of pimozide reduced the production of the EGF family members Ereg, Epgn, and Nrg1, activation of ErbB1 and ErbB4 receptors, and resulted in the suppression of proliferation in Cuzd1-overexpressing cells. Most importantly, treatment of mice with pimozide was able to significantly inhibit breast tumorigenesis in vivo. Although this treatment did not prevent tumorigenesis, an increase in dosage concentration/frequency or combination with other therapies may significantly increase the effectiveness of this drug.

The Cuzd1 gene is highly conserved between the mouse and the human (61). The linkage between CUZD1 and mammary tumorigenesis in the mouse raised the possibility that it might be involved in human breast cancers. Screening of a broad panel of breast cancer cell lines for CUZD1 expression using qPCR revealed that CUZD1 is undetectable in ERα-negative tumor cells, but present in ERα-positive tumor cells, including the well-characterized MCF7 cells. It is pertinent to mention here that Cuzd1 (formerly known as ERG1) was originally identified by our laboratory as an estrogen-regulated gene in the uterus and was later found to be induced in breast epithelium of ovariectomized mice in response to E (53). It is therefore possible that ERα regulates CUZD1 expression in certain human breast cancer cells. Previous studies reported that the PRLR and ERα act synergistically to exert their mitogenic effects on breast cancer cells (48). It would be important to study the mechanism of this cross-regulation.

The expression of CUZD1 in several human breast cancer cell lines raised the possibility that dysregulation of CUZD1 may play a role in human breast tumorigenesis. We analyzed publicly available data on the cBioPortal for Cancer Genomics database to examine whether CUZD1 expression is altered in human breast cancer (82, 83). Interestingly, data from tumors in Breast Invasive Carcinoma (The Cancer Genome Atlas, Provisional) indicate that CUZD1 is altered in 1% of patients (10 of 960). Although this represents a small portion of this study, it is worth noting that HER2, BRCA1, and BRCA2 were altered in 14%.
4%, and 5% of patients, respectively. All breast cancer samples that had alterations in **CUZD1** displayed **CUZD1** amplification and were classified as stage IIA through IIIB. Classification of tumors based on occurrence of genes identified by gene expression profiles, as opposed to tumor stage, can provide the necessary information to predict treatment response and clinical outcome (84–86). A subset of tumors with a **CUZD1** amplification also showed amplification of **STAT5A**, **PRL**, **PRLR**, and/or **EGFR**. There was significant occurrence of alterations in **CUZD1** and **STAT5A** (p=0.026) and **CUZD1** and **PRL** (p=0.024). Additionally, breast cancer samples with alterations in this gene set also had increased EGFR phosphorylation at tyrosine 1068 (p=0.0112). Collectively, these data indicate that not only **CUZD1** amplified in these breast cancer samples, the components of its signaling pathway are also amplified or increased. Although these data provide some insights regarding the relevance of **CUZD1** amplification in human breast cancer, they do not provide a complete picture of the functional amplification of **CUZD1** and **STAT5A** signaling since a large portion of these activities are conveyed through post-translational modifications on these factors. Nonetheless, based on our findings, **CUZD1** has emerged as a novel target for designing effective treatments for certain types of breast cancers.

EXPERIMENTAL PROCEDURES

Animals

Mice were maintained in the designated animal care facility at the University of Illinois, according to institutional guidelines for the care and use of laboratory animals. All experimental procedures involving mice were conducted in accordance with National Institutes of Health standards for the use and care of mice. The animal protocol describing these procedures was approved by the University of Illinois Institutional Animal Care and Use Committee (IACUC).

Cell Lines and Cell Culture

The HC11 cell line is a non-transformed mammary epithelial cell line derived from pregnant BALB/c mice (87). These cells were grown in RPMI-1640 supplemented with 5% (v/v) fetal bovine serum, 5 µg/ml insulin and 10 ng/ml EGF at 37°C and 5% CO₂. HC11-LacZ, HC11-Cuzd1, MCF7-LacZ, and MCF7-Cuzd1 cell lines were developed as described in Mapes and Li et al (51). To create the HC11-Cuzd1 Tum cell line, HC11-Cuzd1 cells were orthotopically injected into BALB/c mice and allowed to form tumors. Upon collection, tumors were minced into 1 mm pieces using scissors and fragments were digested in HBSS with 6 g/L dispase and 0.5 g/L collagenase at 37°C for 1 h with constant agitation. Enzymes were neutralized and the cell suspension was passed through a 100 µm mesh, followed by two washes with HBSS. Cells were plated on collagen-treated plates in DMEM supplemented with 10% FBS, penicillin-streptomycin, and amphotericin B. After 48 h in culture, stable **Cuzd1** overexpressing cells were selected using blasticidin for 10 days.

HC11 cells were treated with 50 µm PRL followed by immunocytochemistry or RNA analysis. The STAT5 inhibitor pimozide was used at 10 µM (unless otherwise designated) along-side a vehicle control (DMSO) prior to immunocytochemistry, western blotting, proliferation assays, and RNA analysis.

Boyden Chamber Cell Migration Assay

Boyden-chambers (Millipore) were placed in 24-well dishes containing chemoattract media (RPMI containing 10% FBS). Serum-starved cells HC11-LacZ or –Cuzd1 cells (1 x 10⁵ cells/well) were added to the upper compartment and allowed to incubate for 72 h at 37 °C. Cells that migrated across into the lower chamber of the membrane were quantified by CyQuant (Millipore) fluorometric assay according to manufacturer’s instructions. Mean values were taken from three individual chambers for each of the three biological replicates.

Anchorage Independent Growth in Soft Agar

HC11-LacZ or HC11-Cuzd1 cells (1 x 10⁵) or MCF7 cells (control) were seeded in six-well plates with a bottom layer of 0.48% Bacto agar in DMEM and a top layer of 0.36% Bacto agar in DMEM. Fresh DMEM containing 10% FBS was added to the top layer of the soft agar. The culture
medium was changed twice a week. After 16 days, colonies were stained with 0.005% crystal violet. Visible colonies (>0.5 mm in diameter) were counted from representative views from three biological replicates and the average number of colonies per well was determined.

Cell proliferation using BrdU incorporation

Cells were plated at a density of 5×10^3 cells/well in 96-well plates and cultured overnight in full growth medium. Following 48h of serum starvation, cells were treated with selected compounds in addition to vehicle or pimozide and allowed to grow for 18h. BrdU was added and incorporation was measured after 2h using an ELISA-based BrdU assay. Resulting color reaction was measured using a plate reader at 370nm. The relative levels of BrdU incorporation from three independent measurements are shown (Mean ± SEM).

Quantitative real-time PCR (qPCR) analysis

For qPCR, total RNA was extracted from purified mammary epithelium or cultured HC11 cells using a Trizol RNA purification kit. Reverse transcription was performed using the cDNA synthesis kit (Stratagene) following manufacturer’s instructions. cDNA was amplified by quantitative real-time PCR analysis using gene-specific primers and SYBR-Green supermix (Applied Biosciences). For a given sample, threshold cycle (Ct) and SD was calculated from individual Ct values from 3-4 replicates of a sample. Normalized mean Ct was computed as ΔCt by substracting mean Ct of 36B4 from Ct of a target gene for control sample. ΔΔCt was then calculated as a difference in ΔCt values between control and experimental groups. Fold change in gene expression was then computed as $2^{-\Delta\Delta Ct}$. Relative mRNA levels were plotted after normalization to the loading control 36B4. The error bars represent the relative gene expression ± the standard error from three or more independent trials.

Orthotopic Intraductal Injection of Cells into the Mammary Gland

HC11-LacZ, HC11-CuZd1 or HC11-CuZd1 Tum cells (1×10^6) were suspended in Matrigel and orthotopically injected into the nipple of the fourth abdominal mammary gland of nude or BALB/c mice. During each tumor study, these experiments were repeated 3x with 5 mice per group when tracking tumor growth and 8 mice per group during pimozide treatment. Tumor length and width were measured using digital calipers and tumor volume was calculated (tumor volume=$1/2$($length \times width^2$).

Pimozide Treatment

Female BALB/c mice were orally treated with 5mg/kg body weight pimozide or a vehicle control (DMSO), suspended in corn oil, once a day for three days prior to orthotopic injection. The treatment regimen of pimozide included three days of treatment followed by three days of rest, which cycled until the end of the five weeks. Tumor volume was measured throughout the course of the five-week treatment. The primary mammary tumors were harvested from sacrificed animals and fixed in 4% paraformaldehyde for subsequent H&E staining or immunohistochemistry. Individual tumor studies were terminated at the recommendation of the University of Illinois Division of Animal Resources veterinary staff due to high tumor burden.

Immunostaining

Paraffin-embedded mammary tissues were sectioned and subjected to IHC as described previously (88). IHC was performed on tissue sections using primary antibodies and bound primary antibodies were detected with either immunoperoxidase or immunofluorescence secondary antibodies. For immunoperoxidase staining, horseradish peroxidase (HRP)–conjugated goat anti-mouse or goat anti-rabbit secondary antibodies. Sections were counterstained with hematoxylin and mounted. For immunofluorescence staining, fluorescence-conjugated ant-mouse IgG or anti-rabbit IgG were used as secondary antibody and slides were mounted in Prolong GOLD and cured for 24 hours before imaging.
For immunocytochemistry, cells were fixed in a 3% formalin solution at room temperature for 10 min followed by washing with PBS for 10 min. The cells were permeabilized with 0.25% Triton X-100 in PBS for 10 min, and nonspecific binding of antibodies was blocked with 10% donkey serum for 1 h at room temperature. Cells were incubated with primary antibodies overnight at 4°C. Fluorescence-conjugated anti-mouse IgG or anti-rabbit IgG were used as secondary antibody and slides were mounted in Prolong GOLD and cured for 24 hours before imaging.

Rabbit polyclonal antibodies against a peptide antigen containing amino acids SSPNYPKPHPEL of mouse CUZD1 were generated in our laboratory and used in IHC at 1:200 dilution. Other antibodies used in this study include pan-ck from Santa Cruz Biotechnology, Cat# sc-8018, IHC 1:350; PCNA from Santa Cruz Biotechnology, Cat# sc-56, IHC 1:500; pSTAT5 (Tyr 694/Tyr 699) from Santa Cruz Biotechnology, Cat# sc-11761, IHC 1:50, WB 1:500; STAT5 from Santa Cruz Biotechnology, Cat# sc-376284, IHC 1:50; EREG from R&D Systems, Cat# AF1127SP, IHC 1:100, NRG1 from NeoMarkers, Cat# AP-9003, IHC 1:100; pEGFR (Tyr 1068) from Santa Cruz Biotechnology, Cat# sc-377547, IHC 1:500; pErbB2 from Cell Signaling Technology, Cat# 2241S, IHC 1:100; pErbB4 (Tyr 1056) from Santa Cruz Biotechnology, Cat# sc-33040, IHC 1:100; ErbB1 from Santa Cruz Biotechnology, Cat# sc-03, IHC 1:100; ErbB4 from Santa Cruz Biotechnology, Cat# sc-283, IHC 1:100; Ki67 from BD Pharmingen, Cat#550609, IHC 1:100; pAKT1/2/3 from Santa Cruz Biotechnology, Cat# sc-33437R, IHC 1:100; pERK1/2 from Santa Cruz Biotechnology, IHC 1:100; Phospho-Akt1/2/3 from Santa Cruz Biotechnology, Cat# sc-33437R, IHC 1:100; pSTAT5 (Tyr 694) from, Cell Signaling Technology, Cat #9351, Lot #7.

Image capture and processing of immunostaining

Images of immunohistochemical staining were captured by using a Leica DM2500 light microscope fitted with a Qimaging Retiga 2000R camera (Qimaging) or a a Leica 700 confocal microscope. These images were directly documented from the scope with minimal processing to adjust the tonal range and color balance in ADOBE Photoshop version 8. ImageJ was used to quantify immunofluorescence staining.

siRNA treatment

HC11 cells were transfected with siRNA against Prlr or control siRNA (non-targeting), using siLentFect reagent following manufacturer’s protocol. Briefly, siLentFect was mixed with 150nM siRNA, and allowed to form siRNA-liposome complexes, which were then added to cells at 60% confluency. Cells were harvested 48 h after transfection and 6 h after PRL treatment. Total RNA was isolated and analyzed by qPCR using gene-specific primers.

Chromatin Immunoprecipitation

ChIP assays were performed using the EZ-ChIP kit (Millipore) according to the manufacturer’s instructions with minor modifications. Anti-FLAG M2 affinity gel (Sigma, A2220) and anti-pSTAT5 antibody (Cell Signaling Technology, Antibody #9351, Lot #7) were used individually overnight at 4°C to immunoprecipitate FLAG-CUZD1 and pSTAT5, respectively. Normal mouse IgG (Santa Cruz, sc-2027) immunoprecipitation served as a negative control. The ChIP re-ChIP was conducted by immunoprecipitating with pSTAT5 followed by M2. Protein/DNA complexes were eluted, crosslinks were reversed, and purified DNA was analyzed for enrichment in sequences of interest using qPCR.

Statistical analysis

Statistical analysis was performed by the Student t-Test. Statistically significant differences (P<0.05) are indicated by *.

ACKNOWLEDGEMENTS

The authors would like to thank Elizabeth Hunt and Ashley Young for their help with mouse tumor experiments.
Grant Support: This work was supported by the Eunice Kennedy Shriver NICHD/NIH through cooperative agreement U54 HD055787 as part of the Specialized Cooperative Centers Program in Reproduction and Infertility Research.

CONFLICT OF INTEREST

The authors have nothing to disclose.

AUTHOR CONTRIBUTIONS

Study concept and design: JM, LA, QL, CVC, ICB, MKB. Acquisition of data: JM, LA, QL, AN. Analysis and interpretation of data: JM, LA, QL, AN, CVC, ICB, MKB. Drafting of manuscript: JM, LA, MKB. Critical revision: JM, CVC, MKB.
REFERENCES

1. Hennighausen, L., and Robinson, G. W. (2001) Signaling Pathways in Mammary Gland Development. *Dev. Cell.* 1, 467–475
2. Hennighausen, L., and Robinson, G. W. (2005) Information networks in the mammary gland. *Nat. Rev. cell Biol.* 6, 715–725
3. Brisken, C., and O’Malley, B. (2010) Hormone Action in the Mammary Gland. *Cold Spring Harb. Perspect. Biol.* 2, a003178–a003178
4. Watson, C. J., and Khaled, W. T. (2008) Mammary development in the embryo and adult: a journey of morphogenesis and commitment. *Development.* 135, 995–1003
5. Rillema, J. A. (1994) Development of the mammary gland and lactation. *Trends Endocrinol. Metab.* 5, 149–154
6. Horseman, N. D., Zhao, W., Montecino-Rodriguez, E., Tanaka, M., Nakashima, K., Engle, S. J., Smith, F., Markoff, E., and Dorshkind, K. (1997) Defective mammospheres, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. *EMBO J.* 2014, 6926–6935
7. Gao, J., Hughes, J. P., Auperin, B., Buteau, H., Edery, M., Zhuang, H., Wojchowski, D. M., and Horseman, N. D. (1996) Interactions among Janus kinases and the prolactin (PRL) receptor in the regulation of a PRL response element. *Mol. Endocrinol.* 10, 847–856
8. Ali, S. (1998) Prolactin Receptor Regulates Stat5 Tyrosine Phosphorylation and Nuclear Translocation by Two Separate Pathways. *J. Biol. Chem.* 273, 7709–7716
9. Hennighausen, L., Robinson, G. W., Wagner, K.-U., and Liu, X. (1997) Prolactin Signaling in Mammary Gland Development. *J. Biol. Chem.* 272, 7567–7569
10. Cleverger, C. V., and Plank, T. L. (1997) Prolactin as an autocrine/paracrine factor in breast tissue. *J. Mammary Gland Biol. Neoplasia.* 2, 59–68
11. Brisken, C., Kaur, S., Chavarria, T. E., Binart, N., Sutherland, R. L., Weinberg, R. A., Kelly, P. A., and Ormandy, C. J. (1999) Prolactin controls mammary gland development via direct and indirect mechanisms. *Dev. Biol.* 210, 96–106
12. DaSilva, L., Howard, O. M. Z., Rui, H., Kirken, R. A., Farrar, W. L., Howard, O. M. Z., Rui, H., Kirken, R. A., Farrar, W. L., Howard, O. M. Z., Rui, H., Kirken, R. A., and Farrar, W. L. (1994) Growth Signaling and JAK2 Association Mediated by Membrane-proximal Cytoplasmic Regions of Prolactin Receptors. *J. Biol. Chem.* 2014, 18267–70
13. Rodig, S. J., Meraz, M. A., White, J. M., Lampe, P. A., Riley, J. K., Arthur, C. D., King, K. L., Sheehan, K. C. F., Yin, L., Pennica, D., Johnson, E. M., and Schreiber, R. D. (1998) Disruption of the Jak1 Gene Demonstrates Obligatory and Nonredundant Roles of the Jak s in Cytokine-Induced Biologic Responses. *Cell.* 93, 373–383
14. Wagner, K.-U. U., and Schmidt, J. W. (2011) The two faces of Janus kinases and their respective STATs in mammary gland development and cancer. *J. Carcinog.* 10, 32
15. Wagner, K.-U., and Rui, H. (2008) Jak2/Stat5 Signaling in Mammogenesis, Breast Cancer Initiation and Progression. *J. Mammary Gland Biol. Neoplasia.* 13, 93–103
16. Nevalainen, M. T., Xie, J., Bubendorf, L., Wagner, K.-U., and Rui, H. (2002) Basal Activation of Transcription Factor Signal Transducer and Activator of Transcription (Stat5) in Nonpregnant Mouse and Human Breast Epithelium. *Mol. Endocrinol.* 2014, 1108–1124
17. Hennighausen, L., and Robinson, G. W. (2008) Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. *Genes Dev.* 22, 711–721
18. Ihle, J. N., and Kerr, I. M. (1995) Jak s and Stats in signaling by the cytokine receptor superfamily. *Trends Genet.* 11, 69–74
19. Kisseleva, T., Bhattacharya, S., Braunstein, J., and Schindler, C. W. (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. *Gene.* 285, 1–24
20. Schmitt-Ney, M., Doppler, W., Ball, R. K., and Groner, B. (1991) Beta-casein gene promoter activity is regulated by the hormone-mediated relief of transcriptional repression and a mammary-
gland-specific nuclear factor. Mol. Cell. Biol. 2014, 3745–55
21. Yamaji, D., Kang, K., Robinson, G. W., and Hennighausen, L. (2013) Sequential activation of genetic programs in mouse mammary epithelium during pregnancy depends on STAT5A/B concentration. Nucleic Acids Res. 41, 1622–1636
22. Fuh, G., and Wells, J. A. (1995) Prolactin receptor antagonists that inhibit the growth of breast cancer cell lines. J. Biol. Chem. 270, 13133–13137
23. Liu, X., Robinson, G. W., and Hennighausen, L. (1996) Activation of Stat5a and Stat5b by tyrosine phosphorylation is tightly linked to mammary gland differentiation. Mol. Endocrinol. 10, 1496–1506
24. Arendt, L. M., Rugowski, Debra E Grafwallner-Huseth, Tara A Garcia-Barchino, M. J., Rui, H., and Schuler, L. A. (2011) Prolactin-induced mouse mammary carcinomas model estrogen resistant luminal breast cancer. Breast Cancer Res. 13, R11
25. Liu, X., Robinson, G. W., Wagner, K. U., Garrett, L., Wynshaw-Boris, A., and Hennighausen, L. (1997) Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11, 179–186
26. Cui, Y., Riedlinger, G., Miyoshi, K., Tang, W., Li, C., Deng, C.-X., Robinson, G. W., and Hennighausen, L. (2004) Inactivation of Stat5 in Mouse Mammary Epithelium during Pregnancy Reveals Distinct Functions in Cell Proliferation, Survival, and Differentiation. Mol. Cell. Biol. 2014, 8037
27. Clarkson, R. W. E., Boland, M. P., Kritikou, E. A., Lee, J. M., Freeman, T. C., Tiffen, P. G., and Watson, C. J. (2006) The Genes Induced by Signal Transducer and Activators of Transcription (STAT)3 and STAT5 in Mammary Epithelial Cells Define the Roles of these STATs in Mammary Development. Mol. Endocrinol. 2014, 675–85
28. Sicinski, P., Donaher, J. L., Parker, S. B., Li, T., Fazeli, A., Gardner, H., Haslam, S. Z., Bronson, R. T., Elledge, S. J., and Weinberg, R. A. (1995) Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell. 82, 621–630
29. Creamer, B. A., Sakamoto, K., Schmidt, J. W., Triplett, A. A., Moriggl, R., and Wagner, K. U. Stat5 Promotes Survival of Mammary Epithelial Cells through Transcriptional Activation of a Distinct Promoter in Akt1. Mol. Cell. Biol. 30, 2957–2970
30. Zhu, B. M., Kang, K., Yu, J. H., Chen, W., Smith, H. E., Lee, D., Sun, H. W., Wei, L., and Hennighausen, L. (2012) Genome-wide analyses reveal the extent of opportunistic STAT5 binding that does not yield transcriptional activation of neighboring genes. Nucleic Acids Res. 40, 4461–4472
31. Sato, T., Tran, T. H., Peck, A. R., Liu, C., Ertel, A., Lin, J., Neilson, L. M., and Rui, H. (2013) Global profiling of prolactin-modulated transcripts in breast cancer in vivo. Mol. Cancer. 12, 59
32. Troyer, K. L., and Lee, D. C. (2001) Regulation of mouse mammary gland development and tumorigenesis by the ERBB signaling network. J. Mammary Gland Biol. Neoplasia. 6, 7–21
33. Stern, D. F. (2003) ErbBs in mammary development. Exp. Cell Res. 284, 89–98
34. Clevenger, C. V., Gadd, S. L., and Zheng, J. (2009) New mechanisms for PRLr action in breast cancer. Trends Endocrinol. Metab. 20, 223–229
35. Brisken, C., Hess, K., and Jeitner, R. (2015) Progesterone and Overlooked Endocrine Pathways in Breast Cancer Pathogenesis. Endocrinology. 10.1210/en.2015-1392
36. Hynes, N. E., and Watson, C. J. (2010) Mammary Gland Growth Factors: Roles in Normal Development and in Cancer. Cold Spring Harb. Perspect. Biol. 2, a003186–a003186
37. Visvader, J. E., and Lindeman, G. J. (2003) Transcriptional regulators in mammary gland development and cancer. Int. J. Biochem. Cell Biol. 35, 1034–1051
38. Iavnilovitch, E., Cardiff, R. D., Groner, B., and Barash, I. (2004) Deregulation of Stat5 expression and activation causes mammary tumors in transgenic mice. Int. J. cancer.Journal Int. du cancer. 112, 607–619
39. Vomachka, A. J., Pratt, S. L., Lockefer, J. A., and Horeman, N. D. (2000) Prolactin gene-disruption arrests mammary gland development and retards T-antigen-induced tumor growth .
40. Rose-Hellekant, T. A., Arendt, L. M., Schroeder, M. D., Gilchrist, K., Sandgren, E. P., and Schuler, L. A. (2003) Prolactin induces ERAlpha-positive and ERAlpha-negative mammary cancer in transgenic mice. *Oncogene*. **19**, 1077–1084

41. Ivaniilovitch, E., Groner, B., and Barash, I. (2002) Overexpression and forced activation of stat5 in mammary gland of transgenic mice promotes cellular proliferation, enhances differentiation, and delays postlactational apoptosis. *Mol. Cancer Res.* **1**, 32–47

42. Richard, J., Sainsbury, C., Needham, G., Farndon, J., Malcolm, A., and Harris, A. (1987) Epidermal-Growth-Factor Receptor Status as Predictor of Early Recurrence of and Death From Breast Cancer. *Lancet*. **329**, 1398–1402

43. Salomon, D. S., Brandt, R., Ciardiello, F., and Normanno, N. (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. *Crit. Rev. Oncol. Hematol.* **19**, 183–232

44. Citri, A., and Yarden, Y. (2006) EGF-ERBB signalling: towards the systems level. *Nat. Rev. cell Biol.* **7**, 505–516

45. Atalay, G., Cardoso, F., Awada, A., and Piccart, M. J. (2003) Novel therapeutic strategies targeting the epidermal growth factor receptor (EGFR) family and its downstream effectors in breast cancer. *Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO*. **2011**, 1346–1363

46. Hynes, N. E., and Lane, H. A. (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. *Nat. Rev. Cancer*. **5**, 341–354

47. Masuda, H., Zhang, D., Bartholomeusz, C., Doihara, H., Hortobagyi, G. N., and Ueno, N. T. (2012) Role of epidermal growth factor receptor in breast cancer. *Breast Cancer Res. Treat.* **136**, 331–345

48. Carver, K. C., Arendt, L. M., and Schuler, L. A. (2009) Complex prolactin crosstalk in breast cancer: new therapeutic implications. *Mol. Cell. Endocrinol.* **307**, 1–7

49. Scotti, M. L., Langenheim, J. F., Tomblyn, S., Springs, A. E. B., and Chen, W. Y. (2008) Additive effects of a prolactin receptor antagonist, G129R, and herceptin on inhibition of HER2-overexpressing breast cancer cells. *Breast Cancer Res. Treat.* **111**, 241–250

50. Howell, S. J., Anderson, E., Hunter, T., Farnie, G., and Clarke, R. B. (2008) Prolactin receptor antagonism reduces the clonogenic capacity of breast cancer cells and potentiates doxorubicin and paclitaxel cytotoxicity. *Breast Cancer Res.** **10**, R68

51. Mapes, J., Li, Q., Kannan, A., Anandan, L., Laws, M., Lydon, J. P., Bagchi, I. C., and Bagchi, M. K. (2017) CUZD1 is a critical mediator of the JAK/STAT5 signaling pathway that controls mammary gland development during pregnancy. *PLOS Genet.* **13**, e1006654

52. Barrell, D., Dimmer, E., Huntley, R. P., Binns, D., O’Donovan, C., and Apweiler, R. (2009) The GOA database in 2009 - An integrated Gene Ontology Annotation resource. *Nucleic Acids Res.* **37**, D396-403

53. Chen, D., Xu, X., Zhu, L.-J. J., Angervo, M., Li, Q., Bagchi, M. K., and Bagchi, I. C. (1999) Cloning and Uterus/Oviduct-specific Expression of a Novel Estrogen-regulated Gene (ERG1). *J. Biol. Chem*. **2014**, 32215–32224

54. Kasik, J. W. (1998) A cDNA cloned from pregnant mouse uterus exhibits temporo-spatial expression and predicts a novel protein. *Biochem. J.* **330**, 947–950

55. Bork, P., and Beckmann, G. (1993) The CUB domain. A widespread module in developmentally regulated proteins. *J. Mol. Biol.* **231**, 539–545

56. Jovine, L., Darie, C. C., Litscher, E. S., and Wassarman, P. M. (2005) Zona pellucida domain proteins. *Annu. Rev. Biochem.* **74**, 83–114

57. Yamazaki, K., Adachi, T., Sato, K., Yanagisawa, Y., Fukata, H., Seki, N., Mori, C., and Komiyama, M. (2006) Identification and characterization of novel and unknown mouse epididymis-specific genes by complementary DNA microarray technology. *Biol. Reprod.* **75**, 462–468

58. Huynh, H., Ng, C. Y., Ong, C. K., Lim, K. B., and Chan, T. W. (2001) Cloning and
characterization of a novel pregnancy-induced growth inhibitor in mammary gland.

Endocrinology. 142, 3607–3615

59. Imamura, T., Asada, M., Vogt, S. K., Rudnick, D. A., Lowe, M. E., and Muglia, L. J. (2002) Protection from Pancreatitis by the Zymogen Granule Membrane Protein Integral Membrane-associated Protein-1. J. Biol. Chem. 277, 50725–50733

60. Brink, T. C., Sudheer, S., Janke, D., Jagodzinska, J., Jung, M., and Adjaye, J. (2008) The Origins of Human Embryonic Stem Cells: A Biological Conundrum. Cells Tissues Organs. 2012, 9–22

61. Leong, C. T. C., Ng, C. Y., Ong, C. K., Ng, C. P., Ma, Z. S., Nguyen, T. H., Tay, S. K., and Huynh, H. (2004) Molecular cloning, characterization and isolation of novel spliced variants of the human ortholog of a rat estrogen-regulated membrane-associated protein, UO-44. Oncogene. 23, 5707–5718

62. Leong, C. T. C., Ong, C. K., Tay, S. K., and Huynh, H. (2007) Silencing expression of UO-44 (CUZD1) using small interfering RNA sensitizes human ovarian cancer cells to cisplatin in vitro. Oncogene. 26, 870–880

63. Hirte, H., Leung, F., Soosaipillai, A., Kulasingam, V., and Diamandis, E. P. (2012) CUB and zona pellucida-like domain-containing protein 1 (CUZD1): A novel serological biomarker for ovarian cancer. Clin. Biochem. 45, 1543–1546

64. Pavlidis, P., Komorowski, L., Teegen, B., Liaskos, C., Koutsoumpas, A. L., Smyk, D. S., Perricone, C., Mytilinaiou, M. G., Stocker, W., Forbes, A., and Bogdanos, D. P. (2016) Diagnostic and clinical significance of Crohn’s disease-specific pancreatic anti-GP2 and anti-CUZD1 antibodies. Clin. Chem. Lab. Med. 54, 249–256

65. Michaels, M. A., Jendrek, S. T., Korf, T., Nitzsche, T., Teegen, B., Komorowski, L., Derer, S., Schroder, T., Baer, F., Lehnter, H., Buning, J., Fellerman, K., and Sina, C. (2015) Pancreatic Autoantibodies Against CUZD1 and GP2 Are Associated with Distinct Clinical Phenotypes of Crohn’s Disease. Inflamm. Bowel Dis. 21, 2864–2872

66. Papp, M., Sipeki, N., Tornai, T., Altorjay, I., Norman, G. L., Shums, Z., Roggenbuck, D., Fechner, K., St?tker, W., Antal-Szalmás, P., Veres, G., and Lakatos, P. L. (2015) Rediscovery of the anti-pancreatic antibodies and evaluation of their prognostic value in a prospective clinical cohort of Crohn’s patients: The importance of specific target antigens [GP2 and CUZD1]. J. Crohn’s Colitis. 9, 659–668

67. Liaskos, C., Rigopoulou, E. I., Orfanidou, T., Bogdanos, D. P., and Papandreou, C. N. (2013) CUZD1 and anti-CUZD1 antibodies as markers of cancer and inflammatory bowel diseases. Clin. Dev. Immunol. 2013, 968041

68. Komorowski, L., Teegen, B., Probst, C., Aulingер-Stöcker, K., Sina, C., Fellerman, K., and Stöcker, W. (2013) Autoantibodies against exocrine pancreas in Crohn’s disease are directed against two antigens: The glycoproteins CUZD1 and GP2. J. Crohn’s Colitis. 7, 780–790

69. Prassas, I., Brinc, D., Farkona, S., Leung, F., Dimitromanolakis, A., Chrystoja, C. C., Brand, R., Kulasingam, V., Blasutig, I. M., and Diamandis, E. P. (2014) False biomarker discovery due to reactivity of a commercial ELISA for CUZD1 with cancer antigen CA125. Clin. Chem. 60, 381–388

70. Macpherson, I., and Montagnier, L. (1964) Agar suspension culture for the selective assay of cells transformed by polyoma virus. Virology. 23, 291–294

71. Sakamoto, K., Creamer, B. A., Triplett, A. A., and Wagner, K.-U. (2007) The Janus Kinase 2 Is Required for Expression and Nuclear Accumulation of Cyclin D1 in Proliferating Mammary Epithelial Cells. Mol. Endocrinol.

72. Schroeder, J. A., and Lee, D. C. (1998) Dynamic expression and activation of ERBB receptors in the developing mouse mammary gland. Cell Growth Differ. 2014, 451–464

73. Yarden, Y., and Sliwkowski, M. X. (2001) Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127–137

74. Ben-Jonathan, N., Mershon, J. L., ALLEN, D. L., and Steinmetz, R. W. (1996) Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocr. Rev. 17, 639–669
75. Shaw-Bruha, C. M., Pirrucello, S. J., and Shull, J. D. (1997) Expression of the prolactin gene in normal and neoplastic human breast tissues and human mammary cell lines: Promoter usage and alternative mRNA splicing. Breast Cancer Res. Treat. 44, 243–253
76. Clevenger, C. V, Furth, P. A., Hankinson, S. E., and Schuler, L. A. (2003) The Role of Prolactin in Mammary Carcinoma. Endocri. Rev. 2013, 1–27
77. Clevenger, C. V, Zheng, J., Jablonski, E. M., Galbaugh, T. L., and Fang, F. (2008) From bench to bedside: future potential for the translation of prolactin inhibitors as breast cancer therapeutics. J. Mammary Gland Biol. Neoplasia. 13, 147–156
78. Strohl, J. S., Kirkwood, K. L., Lantz, T. K., Lewine, M. A., Peterson, V. A., Worley, J. F., Worley 3rd, J. F., and Worley, J. F. (1990) Inhibition of human breast cancer cell proliferation in tissue culture by the neuroleptic agents pimozide and thiordanize. Cancer Res. 50, 5399–5405
79. Wiklund, E. D., Catts, V. S., Catts, S. V., Ng, T. F., Whitaker, N. J., Brown, A. J., and Lutze-Mann, L. H. (2010) Cytotoxic effects of antipsychotic drugs implicate cholesterol homeostasis as a novel chemotherapeutic target. Int. J. cancer. Journal Int. du cancer. 126, 28–40
80. Bar-Natan, M., Nelson, E. A., Walker, S. R., Kuang, Y., Distel, R. J., and Frank, D. A. (2012) Dual inhibition of Jak2 and STAT5 enhances killing of myeloproliferative neoplasia cells. Leukemia. 26, 1407–1410
81. Nelson, E. A., Walker, S. R., Weisberg, E., Bar-Natan, M., Barrett, R., Gashin, L. B., Terrell, S., Klitgaard, J. L., Santo, L., Addorio, M. R., Ebert, B. L., Griffin, J. D., and Frank, D. A. (2011) The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood. 117, 3421–3429
82. Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C., and Schultz, N. (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 6, pl1
83. Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., and Schultz, N. (2012) The cBio Cancer Genomics Portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404
84. van ’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A. M., Mao, M., Peterse, H. L., van der Kooy, K., Marton, M. J., Witteveen, A. T., Schreiber, G. J., Kerkhoven, R. M., Roberts, C., Linsley, P. S., Bernards, R., and Friend, S. H. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature. 415, 530–536
85. Cui, Q. (2010) A network of cancer genes with co-occurring and anti-co-occurring mutations. PLoS One. 5, e13180
86. Maskery, S. M., Zhang, Y., Jordan, R. M., Hu, H., Hooke, J. A., Shriver, C. D., and Liebman, M. N. (2006) Co-occurrence analysis for discovery of novel breast pathology patterns. IEEE Trans. Inf. Technol. Biomed. 10, 497–503
87. Danielson, K. G., Knepper, J. E., Kittrell, F. S., Butel, J. S., Medina, D., and Durban, E. M. (1989) Clonal populations of the mouse mammary cell line, COMMA-D, which retain capability of morphogenesis in vivo. In Vitro Cell. Dev. Biol. 25, 535–543
88. Li, Q., Cheon, Y. P., Kannan, A., Shankar, S., Bagchi, I. C., and Bagchi, M. K. (2004) A novel pathway involving progesterone receptor, 12/15-lipoxygenase-derived eicosanoids, and peroxisome proliferator-activated receptor gamma regulates implantation in mice. J. Biol. Chem. 279, 11570–11581

17
FIGURE LEGENDS

Figure 1. Overexpression of Cuzd1 leads to enhanced motility and anchorage-independent growth of HC11 cells. A. Overexpression of Cuzd1 leads to enhanced motility of HC11 cells. Serum starved MDA-MB-231 cells (positive control), HC11-LacZ, or HC11-Cuzd1 cells were placed in Boyden chambers and allowed to migrate toward 10% FBS for 72 h. The number of invading cells was quantified using CyQuant fluorescence labeling and compared to corresponding cells unexposed to the serum chemotactant. Data are represented as Relative Fluorescence ± SEM from ≥3 biological replicates (p=0.04). B. Overexpression of Cuzd1 promotes anchorage-independent growth in HC11 cells. MCF7 cells (positive control), HC11-LacZ, or HC11-Cuzd1 cells were plated in media containing soft agar. Colonies were allowed to form for 16 days and stained with crystal violet overnight. Visible colonies (>0.5mm) were counted using a dissecting microscope. Data are represented as Number of Colonies (>0.5mm) ± SEM from ≥3 biological replicates (p=0.0003). Images show representative colonies of MCF7 (a-c) and HC11-Cuzd1 cells (d-f).

Figure 2. Orthotopic injections of HC11-Cuzd1 cells form adenocarcinomas in vivo. A. External images of HC11-Cuzd1 cell tumors in nude mice. HC11-LacZ or HC11-Cuzd1 cells were injected orthotopically into the nipple of the 4th mammary gland of immunocompromised female nude mice. Mice were sacrificed 18 weeks post injection and examined for tumor growth. Top panels represent an exterior view of the animal and bottom panels show the mammary gland after dissection. B. Tracking growth of HC11-Cuzd1 tumors in nude mice. Tumor volume was quantified weekly using digital calipers from time of injection (week 0) to time of sacrifice (week 18). Tumor volume=1/2(length × width^2) ± SEM, n=15 in each group. C. Tracking growth of HC11-Cuzd1 Tum tumors in BALB/c mice. HC11-LacZ or HC11-Cuzd1 Tum cells were injected orthotopically into the nipple of the 4th mammary gland of female BALB/c mice. Tumor volume was quantified weekly using digital calipers from time of injection (week 0) to time of sacrifice (week 9). Tumor volume=1/2(length × width^2) ± SEM, n=15 in each group.

D. Immunohistochemical analysis of HC11-Cuzd1 Tumors. Mammary glands and tumors were collected from mice injected with HC11-LacZ and HC11-Cuzd1, respectively, 18 weeks post-injection. The specimens were fixed, embedded in paraffin, sectioned, and subjected to H&E staining and imaged at 5x (A and C) and 40x (B and D) magnification. IHC analysis was carried out with antibodies against CUZD1 (E) (red), Pan-cytokeratin (F) (red), and PCNA (G) (red) and counterstained with hematoxylin (blue). Magnification, 40x. Scale bars, 200µm. Data are representative images from n=5.

Figure 3. The ErbB1 and ErbB4 pathways are activated in HC11-Cuzd1 tumors in vivo. Tumors were collected 18 weeks post-injection, fixed, embedded in paraffin, sectioned, and subjected to IHC analysis using antibodies against pSTAT5 (A) (red), STAT5 (B) (green), EREG (C) (green), EPGN (E) (red), NRG1 (F) (red), pErbB1 (G) (red), pErbB2 (H) (red), pErbB4 (I) (red), pERK (J) (red), and pAKT (K) (red) and counterstained with hematoxylin (blue) or DAPI (blue). Control sections were stained in the absence of a primary antibody (D and L). Magnification, 40x. Scale bars, 20µm A-D, 200µm E-L. Data are representative images from n=5.

Figure 4. Signaling through PRLR is essential for CUZD1/pSTAT5 complex nuclear translocation and DNA binding. A. Prlr expression is reduced following siRNA treatment. HC11-3FCuzd1 cells were treated with 150nM siRNA targeting Prlr or control siRNA for 48h and prolactin for 6h. mRNA was isolated and gene expression of Prlr was measured. B. Knockdown of Prlr reduces STAT5 phosphorylation and nuclear translocation as well as CUZD1 nuclear translocation. Cells treated with control or Prlr siRNA were fixed and subjected to ICC using an antibody specific for pSTAT5 (green) and CUZD1 (red) or STAT5 (green) and counterstained with DAPI (blue). Data are representative images from ≥3 biological replicates. Magnification, 40x. Scale bars, 200µm. Immunocytochemical staining was quantified using ImageJ and expressed as Relative Fluorescence (RF). C. Occupation of the Ereg GAS by CUZD1/STAT5 is reduced following Prlr knockdown. Protein/DNA complexes
were precipitated using an antibody specific for pSTAT5, M2 (anti-FLAG), or a ChIP re-ChIP using pSTAT5 followed by M2. Purified DNA was subjected to qPCR using primers specific to the GAS motif of the Ereg promoter. Data are represented as Fold Enrichment ± SEM from ≥3 biological replicates.

Figure 5. Pimozide inhibits STAT5 phosphorylation and cell proliferation. A. Phosphorylation of STAT5 is reduced following treatment with pimozide. HC11-Cuzd1 cells were plated, allowed to attach overnight and treated with PRL plus vehicle or pimozide at 5 and 10uM for 3 h. Cells were then lysed and subjected to Western blotting using an antibody specific for pSTAT5, STAT5, or Calnexin. Band intensity was quantified using ImageJ. B. Phosphorylation as well as nuclear localization of STAT5 is reduced following treatment with pimozide. HC11-Cuzd1 cells were plated, allowed to attach overnight, and treated with vehicle (V) or pimozide (P) at 10uM for 3 h. Cells were then fixed and subjected to ICC using an antibody specific for pSTAT5 (red) and counterstained with DAPI (blue). Data are representative images from ≥3 biological replicates. Scale bars, 200µm. Nuclear pSTAT5 was quantified using ImageJ and expressed as Relative Fluorescence (RF) from ≥3 biological replicates. C. Treatment with pimozide leads to a reduction in expression of specific EGF ligands. HC11-Cuzd1 cells were plated, allowed to attach overnight, and treated with Vehicle or pimozide at 10uM for 24 h. RNA was isolated and subjected to qPCR using gene specific primers to assess expression of Ereg and Epgn. Data are represented as Relative Gene Expression ± SEM from ≥3 biological replicates. D. Treatment with pimozide reduces cell proliferation. HC11-Cuzd1 cells were plated, allowed to attach overnight and serum starved for 48 h. Cells were then treated with growth media or PRL, with vehicle or pimozide for 18 h. BrdU was added 2 h before fixation and cells were assayed for proliferation. Data are represented as Absorbance at 370nM ± SEM from ≥3 biological replicates.

Figure 6. Pimozide treatment suppresses growth of HC11-Cuzd1-Tum cell tumors in vivo. A. Gross tumor size is reduced following pimozide treatment. Representative images of tumors isolated from vehicle and pimozide treated mice. B. Time course of tumor growth in mice treated with pimozide. Tumor volume in vehicle and pimozide treated mice was measured over the course of five weeks using digital calipers. Tumor volume=1/2(length × width²) ± SEM. C. End tumor volume is reduced with pimozide treatment. Final tumor volume in vehicle and pimozide-treated mice was measured using digital calipers. Tumor volume=1/2(length × width²) ± SEM, n=15.

Figure 7. Pimozide treatment reduces STAT5 phosphorylation and blocks downstream ErbB signaling in vivo. A. STAT5 phosphorylation is decreased in the tumors of mice treated with pimozide. Vehicle-treated or pimozide-treated tumors were collected, fixed, embedded in paraffin, sectioned, and subjected to IHC analysis with antibodies against pSTAT5 (a and b: vehicle-treated; d and e: pimozide-treated (red) or STAT5 c: vehicle-treated and f: pimozide-treated (green) and counterstained with DAPI (blue). Magnification, 40x. Scale bars, 200µm. Immunohistochemical staining was quantified using ImageJ and expressed as Relative Fluorescence (RF) from ≥3 biological replicates. Data are representative images from n=5. B. Phosphorylation as well as nuclear localization of STAT5 is reduced following treatment with pimozide. Tumors were collected, fixed, embedded in paraffin, sectioned, and subjected to IHC analysis with antibodies against EREG (a and g) (green), EPGN (b and h) (green), NRG1 (c and i) (green), pErbB1 (d and j) (green), ErbB1 (insets on d and j) (green), pErbB4 (e and k) (green), and ErbB4 (insets on e and k) (green), Ki67 (f and l) (green), and counterstained with DAPI (blue). Magnification, 40x. Scale bars, 200µm. Immunohistochemical staining was quantified using ImageJ and expressed as Relative Fluorescence (RF) from ≥3 biological replicates. Data are representative images from n=5.

Figure 8. CUZD1 signaling in the human breast cancer MCF7 cells. A. MCF7 cells express high levels of Cuzd1 mRNA. Human cancer cell lines were cultured in growth medium and mRNA isolated from these cells was examined for Cuzd1 expression. Data are represented as Relative Gene Expression ± SEM from ≥3 biological replicates. B. CUZD1 localization is influenced by FBS. MCF7 cells were plated, allowed to attach overnight and serum starved for 48 h. Cells were treated with no serum (a) or
FBS (b) for 6 h. Following fixation, cells were subjected to IF with an antibody specific for CUZD1 (green) and counterstained with DAPI (blue). Data are representative images from ≥3 biological replicates. Scale bars, 200µm. **Phosphorylation of STAT5 is reduced following treatment with pimozide.** HC11-LacZ and HC11-Cuzd1 cells were plated, allowed to attach overnight, and treated with a vehicle control (a and c) or a pimozide at 10µM (b and d) for 3 h. Cells were then fixed and subjected to ICC using an antibody specific for pSTAT5 (red) and counterstained with DAPI (blue). Data are representative images from ≥3 biological replicates. Scale bars, 200µm. **D. Specific EGF family ligands are up-regulated in MCF7 cells that overexpress CUZD1.** RNA was isolated from MCF7-Cuzd1 cells and subjected to qPCR using gene specific primers to assess expression of EREG, EPGN, and NRG1. Data are represented as Relative Gene Expression ± SEM from ≥3 biological replicates. **E. Treatment with pimozide reduces cell proliferation.** MCF7-Cuzd1 cells were plated, allowed to attach overnight and serum starved for 48 h. Cells were then treated with growth media, with vehicle or pimozide for 18 h. BrdU was added 2 h before fixation and cells were assayed for proliferation. Data are represented as Absorbance at 370nM ± SEM from ≥3 biological replicates.
A.
- No FBS • 10% FBS

B. 150

MDA-MB-231 HC11-LacZ HC11-Cuzd1

MCF7 HC11-LacZ HC11-Cuzd1

MCF7 HC11-Cuzd1
A. Vehicle Pimozide

B. Tumor Measurement

C. Tumor Measurement

p = 0.007
Aberrantly high expression of the CUB and zona pellucida-like domain-containing protein 1 (CUZD1) in mammary epithelium leads to breast tumorigenesis
Janelle Mapes, Lavanya Anandan, Quanxi Li, Alison Neff, Charles V. Clevenger, Indrani C. Bagchi and Milan K. Bagchi

J. Biol. Chem. published online January 10, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA117.000162

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts