Tunable Fast and Slow light in a hybrid optomechanical system

M. Javed Akram† and Farhan Saif†

1Department of Electronics, Quaid-i-Azam University, 45320 Islamabad, Pakistan.

We explain probe field transmission spectrum under the influence of a strong pump field in a hybrid optomechanical system, composed of an optical cavity, a mechanical resonator and a two-level atom. We show fast (superluminal) and slow (subluminal) light effects of the transmitted probe field in the hybrid system for suitable parametric regimes. For experimental accessible domain, we find that the fast light effect obtained for the single optomechanical coupling, can further be enhanced with the additional atom-field coupling in the hybrid system. Furthermore, we report the existence of a tunable switch from fast to slow light by adjusting the atomic detuning with the anti-Stokes and Stokes sidebands respectively, as $\Delta = +\omega_m$ and $-\omega_m$. The reported characteristics are realizable in state-of-the-art laboratory experiments.

I. INTRODUCTION

In recent years, tremendous progress in new methods for pulse propagation and properties of optical media have been reported in optomechanics. The rapidly emerging field has become a playground to study electromagnetically induced transparency (EIT) [1], inverse EIT [2], stimulated Raman adiabatic passage (STIRAP) [3], refractive index enhancement [4, 5], Fano resonances [6, 7], microscopy [8], photonic crystals [10], and nanooptic resonators [11]. In this contribution, we explain the phenomena of parametrically controlled fast (superluminal) light and slow (subluminal) light in hybrid optomechanics, which is of considerable interest in view of its potential impact on present-day photonic technology [12–16].

Various techniques have been developed to realize fast light and slow light in atomic vapors and solid-state materials. One application among these techniques is to control the group velocity v_g of light pulses to make them propagate either very slow ($v_g < c$) or very fast ($v_g > c$ or v_g is negative) [17]. For instance, studies on slow light have made use of the technique of EIT in atomic vapors or Bose-Einstein condensate (BEC) [18, 19]. Astonishingly, Hau et al. [20] observed a dramatic reduction of the group velocity down to 17 ms$^{-1}$ in an ultracold sodium vapour. Besides the slow light, superluminal (fast-light) phenomenon were observed in atomic cesium gas [21] and in alexandrite crystal [22]. Safavi-Naeini et al. [23] have observed the superluminal light with a 1.4 μs pulse advancement as well as tunable delay of the order 50 ns in a nanoscale optomechanical crystal device. Recently, Lett and colleagues [24] reported the arrival time of the mutual information contained within the detection bandwidth in the fast and slow light media. More recently, Mirhosseini et al. [25] have observed the dramatic enhancement in the fast light effect caused by electromagnetically-induced absorption in warm Rubidium vapor.

On the other hand, cavity optomechanics has surged swiftly through theoretical as well as experimental advancements over the last few years [26, 27]. Combination of optomechanics with mechanical elements, like nano mechanical membranes [28, 30] and (ultra-cold) atoms [31, 32], leads to hybrid optomechanics [33] which serves as workhorse to study coherent dynamics in microscopic and macroscopic domains. Significant progress has been made in the investigation of various characteristics of optomechanics, such as quantum entanglement [34], quantum ground-state cooling [35], squeezing [30, 36], dynamical localization [37], gravitational wave detection [38], EIT [7, 39], Fano resonances [7, 8] and classical dynamics [28, 40]. Fast and slow light have also been observed in optomechanical systems [41–43], whose smaller dimensions and normal environmental conditions have paved the way towards real applications, such as telecommunication, interferometry, quantum-optomechanical memory and classical signal processing applications [49, 50].

In view of many potential applications of fast and slow light propagation, a question of interest is whether one can have a controlling parameter in a single set-up (experiment) for switching from superluminal to subluminal propagation or vice versa. However, previous studies show that single ended cavities allow only superluminal propagation [44], whereas hybrid BEC [45], quadratically coupled [46] and even two-mode optomechanical system [17] only allow slow light propagation. Furthermore, it is reported [48] that, slow light in a double ended cavity occurs in the transmitted probe field, whereas fast light effect takes place in the reflected field. In this paper, based on hybrid atom-cavity optomechanics, we report: (i) A new and unique possibility to realize fast and slow light effects in the transmitted probe field by using a single set-up; (ii) We show that the additional atom-field coupling in the hybrid system, significantly enhances the superluminal behaviour of probe field obtained earlier for the single optomechanical coupling; (iii) In our experimentally feasible system, we provide a tunable switch that changes the propagation of light from superluminal to subluminal by adjusting the atomic detuning. Thus, in contrast to the earlier schemes, our proposal suggests a new and unique opportunity to realize fast and slow light.
light effects in the transmitted probe field by using a single set-up.

The paper is organized as follows. In Sec. II we present our hybrid system and give detailed analytical discussions; from system Hamiltonian to the probe transmission spectrum via standard input-output theory. Section III is devoted to numerical results and discussions, where the occurrence of fast and slow light regimes have been explained. Finally in Sec. IV we conclude our work.

II. THE MODEL SYSTEM

We consider a hybrid optomechanical system, composed of a high Q Fabry-Pérot cavity of length L, a mechanical resonator and a two-level atom. The single-mode cavity field is coupled to both; the mechanical resonator as well as to the two-level atom. Hence, the system has the nonlinear optomechanical coupling and the Jaynes-Cummings (JC) (atom-field) coupling of cavity QED [51]. The cavity is simultaneously driven by a strong pump field of frequency ω_l and a weak probe field of frequency ω_p.

![FIG. 1. (Color online) The schematic representation for the hybrid optomechanical system. A high Q Fabry-Pérot cavity of length L consists of a fixed mirror, a movable mirror and a two-level atom. The cavity is simultaneously driven by a strong pump field of frequency ω_l and a weak probe field of frequency ω_p.](image)

strong pump field of frequency ω_l and a weak probe field of frequency ω_p along the cavity axis. Hence, under the rotating reference frame at the frequency ω_l of the strong driving field, the total Hamiltonian of the system can be written as [7]:

$$H_T = \frac{p^2}{2m} + \frac{1}{2} m \omega_m^2 q^2 + h \Delta_c c^\dagger c + h \frac{\Delta_a}{2} \sigma_z - h g_{mc} c^\dagger q + h g_{ac} (c^\dagger \sigma_+ + \sigma_-) + i h E_l (c^\dagger - c) + i h (E_p e^{-i \delta t} c^\dagger - E_p^* e^{i \delta t} c).$$

(1)

Here, $\Delta_c = \omega_c - \omega_l$, $\Delta_a = \omega_a - \omega_l$ and $\delta = \omega_p - \omega_l$ are respectively, detuning of the cavity field frequency, the atomic transition frequency and the probe field frequency, with pump field frequency. In Eq. (1), first term gives the free Hamiltonian of the moving mirror. Here, respectively, q and p represent the position and momentum operators with the vibration frequency ω_m and mass m. Second term describes the Hamiltonian of the cavity mode with creation (annihilation) operator $c^\dagger (c)$. The third term expresses the Hamiltonian of the two-level atomic system with transition frequency ω_a. The next two terms describe the interaction Hamiltonian: first term shows the interaction between the cavity and the oscillating mirror with optomechanical coupling strength $g_{mc} = \sqrt{\hbar / m \omega_m}$; second term describes the atom-field interaction with (JC) coupling g_{ac}. The parameters σ_+ and σ_- are the raising and lowering operators of the two-level atom with transition frequency ω_a and are expressed by $\sigma_+ = \frac{1}{\sqrt{2}} (c^\dagger \sigma_x c + \sigma_y c^\dagger)$. Here $\sigma_x, \sigma_y, \sigma_z$ are the Pauli spin operators for the two-level atom. Finally, the last two terms in Eq. (1), correspond to the classical light fields (pump and probe lasers) with frequencies ω_l and ω_p. Here, E_l and E_p are related to the laser power as $|E_l| = \sqrt{2 \kappa P_l / \hbar \omega_l}$ and $|E_p| = \sqrt{2 \kappa P_p / \hbar \omega_p}$ respectively, where κ is the decay rate of the cavity.

After taking the corresponding dissipation and fluctuation terms into consideration, the Heisenberg-Langevin equations based on the Hamiltonian given in Eq. (1), are read as

$$\dot{q} = \frac{p}{m},$$

$$\dot{p} = -m \omega_m^2 q - \gamma_m p + g_{mc} c^\dagger c + \xi(t),$$

$$\dot{c} = -(\kappa + i \Delta_c) c + i g_{mc} q - ig_{ac} \sigma_- + E_l,$$

$$+ E_p e^{-i \delta t} + \sqrt{2 \kappa} \xi(t),$$

$$\dot{\sigma}_- = -(\gamma_a + i \Delta_a) \sigma_- + i g_{ac} \sigma_+ + \sqrt{2 \gamma_a} a_{in}(t),$$

(2)

where κ, γ_a and γ_m denotes the radiative decays associated with the cavity, the atom and the mechanical mode respectively. Here, we have introduced the input vacuum noises associated with the cavity field $a_{in}(t)$ and the atom $a_{in}(t)$ respectively, having zero mean values i.e. $\langle a_{in}(t) \rangle = \langle a_{in}(t) \rangle = 0$. Moreover, the input vacuum noises affecting cavity field and the atom, obey the non-vanishing commutation relations [52]: $\langle c_{in}(t) c^\dagger_{in}(t') \rangle = \delta(t - t')$ and $\langle a_{in}(t) a^\dagger_{in}(t') \rangle = \delta(t - t')$. Furthermore, the Hermitian Brownian noise operator (thermal Langevin force) $\xi(t)$ with zero mean value $\langle \xi(t) \rangle = 0$, satisfy the temperature dependent correlation function [52]: $\langle \xi(t) \xi(t') \rangle = \frac{\gamma_m}{2 \pi} \omega_m [1 + \coth(\frac{\hbar \omega_l}{2 k_B T})]$ where, $\coth(x) = e^x + e^{-x}$.

In order to explain the effect of the mechanical resonator and the atom on the probe field transmission, we write the steady-state solutions of the corresponding operators and study the output spectrum. Using the mean field approximation [52], i.e. $\langle gc \rangle \approx \langle q \rangle \langle c \rangle$, the mean
over, in the case of Δ stronger. To resolve simply, we consider that the system is in the sideband resolved limit i.e. $\omega_m >> \kappa$ and $\delta \sim \omega_m [32]$. In order to investigate the optical properties of the output field, we employ the standard input-output relation

$$c_{out}(t) = c_{in}(t) - \sqrt{2}\kappa c(t),$$

where c_{in} and c_{out} are the input and output operators, respectively. By using the above input-output relation and the ansatz given in Eq. 4 for $\langle c(t) \rangle$, we can obtain the expectation value of the output field as,

$$\langle c_{out}(t) \rangle = (E_l - \sqrt{2}\kappa c) + (E_p - \sqrt{2}\kappa c_\sigma) e^{-i\delta t} - \sqrt{2}\kappa c_\sigma e^{i\delta t}. \tag{7}$$

In analogy with Eq. 4, the above solution of the output field contains three components. The first term corresponds to the output field at driving field frequency, ω_p. The second term corresponds to the output field at probe frequency, ω_p. The last term corresponds to the output field at frequency, $2\omega_l - \omega_p$, which corresponds to Stokes field. It is generated via the nonlinear four-wave mixing process, in which two photons at frequency ω_l interact with a single photon at frequency ω_p to create a new photon at frequency $2\omega_l - \omega_p [53]$. As we note that, the second term on the right side in expression (7) corresponds to the output field at probe frequency ω_p, with detuning δ. Thus, the transmission of the probe field, which is the ratio of the returned probe field from the coupling system divided by the sent probe field $[23, 41]$, can be acquired as

$$T(\omega_p) = \frac{E_p - \sqrt{2}\kappa c}{E_p} = 1 - \frac{\sqrt{2}\kappa c}{E_p}. \tag{8}$$

For an optomechanical system, in the region of the narrow transparency window the rapid phase dispersion, viz. $\phi_g(\omega_p) = \arg[T(\omega_p)]$, can cause the transmission group delay given by $[41]$,

$$\tau_g = \frac{d\phi_g(\omega_p)}{d\omega_p} = \frac{d[\arg[T(\omega_p)]]}{d\omega_p}. \tag{9}$$

As the magnitude of group delay depends upon the rapid phase dispersion in the transmitted probe field, where $\tau_g < 0$ and $\tau_g > 0$, correspond to fast and slow light propagation respectively. Therefore, the high phase dispersion is always advantageous which allows for large change in the group delay, and leads to strongly altered group velocity $[14, 61]$. In the following section, we show that hybrid optomechanics provide an effective way to achieve the high dispersion by controlling the atom-field coupling. Consequently, we anticipate that fast light obtained for the single-ended cavities, can further be enhanced in the hybrid system. Moreover, we provide a tunable switch from fast to slow light by adjusting the atomic detuning.

III. RESULTS AND DISCUSSIONS

In order to quantify the superluminal (fast) and slow light effects, we consider experimentally realizable parametric values of the optomechanical system in our numerical simulations. We calculate the transmission spectrum, phase and group delay of the probe field for
the parameters $27, 56$: the optomechanical coupling $g_{mc}/2\pi = 1.2$ MHz, $E_l/2\pi = 2$ MHz, $\omega_m/2\pi = 10$ MHz, $\kappa/2\pi = 215$ KHz, $g_{ac}/2\pi = 4$ MHz, $\Delta_c/2\pi = 10$ MHz, $\Delta_a/2\pi = \pm 10$ MHz, $\gamma_a/2\pi = 200$ KHz and $\gamma_m/2\pi = 140$ Hz. Note that $\omega_m > \kappa$, therefore the system operates in the resolved-sideband regime, also termed as good-cavity limit 39. Following, we explain the probe transmission, and observation of superluminal and slow light regimes in the hybrid system.

Superluminal regime with single optomechanical coupling - We consider the case when atom-field coupling is switched off, i.e. $g_{ac} = 0$, this reduces the system to a single-ended optomechanical system $44, 48$. In Fig.2 we plot the transmission coefficient $|T|^2$ as a function of normalized probe detuning δ/ω_m, for different values of the optomechanical coupling g_{mc}. We see that, in the absence of pump laser, i.e. $g_{mc} = 0$, a standard Lorentzian curve appears in Fig.2(a) $7, 11$. However, in the presence of a pump laser, the transmission spectrum of the probe field shows a prominent transparency window at the resonant region, viz. $\delta \sim \omega_m$, in Fig.2(b-d). The transparency window as appears in Fig.2 can be modulated effectively by the optomechanical coupling g_{mc}, or equivalently by the pump power P_l $23, 41$. Such a physical phenomenon is very similar to EIT $2, 39$. The underlying physical mechanism for this phenomenon is as follows: the simultaneous presence of pump and probe fields generates a radiation pressure force at the beat frequency $\delta = \omega_p - \omega_l$, resonant with the mechanical frequency ω_m. The frequency of the pump field ω_p is shifted to the anti-Stokes frequency $\omega_l + \omega_m$, which is degenerated with the probe field. Destructive interference between the anti-Stokes field and the probe field can suppress the build-up of an intracavity probe field and result in the narrow transparency window. The window becomes wider and more transparent when either the pump field power or the optomechanical coupling continuously increases 7.

We plot the phase and group delay of the probe field in Fig.3. Within the transparency window, the phase of the transmitted probe beam suffers a sharp enhancement as shown in Fig.3(a), which indicates that the group velocity of the transmitted probe field can be strongly altered $14, 61$. In Fig.3(b), we plot the group delay τ as a function of the pump power for $\delta = \omega_m$. We can see that by employing single coupling g_{mc}, the group delay is negative, which corresponds to the superluminal (fast-light) effect of the transmitted probe field. It is worth noticing that the phenomenon of superluminal effect can be counterintuitive owing to the presence of phenomena for which it is possible that the peak of the output pulse may exit the optical material before it passes through the entrance face 61. Its consistency with the principle has been verified experimentally by Stenner et al. 43. Thus, the effect of single optomechanical coupling leads to the superluminal propagation in the probe field transmission as noted earlier $44, 48$.

Superluminal regime in hybrid optomechanics - Here, we analyze how the addition of atomic ensemble in the optical cavity can influence in the transmission of the probe field. In Fig.4 we show the transmission and the phase of the probe field as a function of the
normalized probe detuning δ/ω_m for $P_\perp = 6 \mu W$ and $\Delta_a = \omega_m$. Fig. 4(a) plots the transmission spectrum for different values of JC coupling g_{ac}. We see that a narrow transparency window appears for $g_{ac} = 0$, (thin gray curve). However, different from the output field for the single coupling as in Fig. 2, the characteristics of the probe field changes in the presence of JC coupling in the present case. From Fig. 4(a), one can see that the transmission window becomes wider and wider by continuously increasing the JC coupling under a constant driving field in the hybrid system. Hence, one can estimate the magnitude of the atom-field interaction by measuring the width of the window. It is also worth noticing that, different from single coupling case, when a two-level atom is coupled to the opto-mechanical resonator, the atomic state splits into two states making the dressed states by the single-photon state and the two-level system ($g_{ac} \neq 0$), Eqs. (5) and (6) reveal that the effective loss of the cavity and the effective detuning Δ will decrease, which is equal to enhancing the radiation pressure [62]. Thus, the existence of atom-field coupling, together with g_{mc}, significantly affects the probe transmission and may lead to the high phase dispersion that can strongly alter the group velocity of the transmitted probe field.

In Fig. 4(b), we plot the phase of the transmitted probe field in the presence of atomic ensemble in the optical cavity. The Fig. 4(b) and the inset show that, a relatively high and rapid phase change occurs in the resonant interval of the transparency window ($\delta \sim \omega_m$) as compared with the case of single coupling shown in Fig. 3(a). In the context of fast and slow light, the high phase dispersion is always advantageous as it greatly alter the group index of the medium, through which a probe pulse will propagate with strongly altered group velocity [61]. Unlike single-ended cavities, here we show that the high dispersion can be achieved by simply adjusting the JC coupling in the hybrid system.

FIG. 4. (Color online) (a) The transmission $|T|^2$ of the probe field as a function of normalized probe detuning is shown, involving both coupling parameters of the hybrid system. The experimental parameters of the atomic system are: $g_{ac} = 0$ for thin black curve, and for the rest $g_{ac}/2\pi = 1.2, 1.4, 1.6$ MHz (from bottom to top) with $\Delta_a = \omega_m$ and $\gamma_a/2\pi = 200$ KHz. (b) Phase ϕ_t of the probe field as a function of normalized probe detuning is shown for $g_{ac}/2\pi = 1.2$ MHz. Rest of the parameters are the same as in Fig. 2.

In Fig. 5, the group delay τ_g is plotted as a function of the pump power with $\delta = \omega_m$ and $\Delta_a = \omega_m$, for different values of JC coupling. For the experimental accessible parameters, we obtain the pulse advancement of the order 1.2 ns for $g_{ac} = 2\pi \times 2$ MHz (black cure), and 20 ns for $g_{ac} = 2\pi \times 8$ MHz (blue dashed cure). Note that, as compared to the previous case of single coupling in Fig. 2(b), here we achieve the pulse advancement of the order 20 ns, significantly larger in magnitude. Thus, we infer that the pulse advancement increases by continuously increasing the JC coupling under a constant driving field in the hybrid system. Hence, by employing both coupling parameters simultaneously, we achieve the high phase dispersion which leads to the higher pulse advancement than single-ended cavities.

Subluminal regime in hybrid optomechanics -

In the context of fast and slow light, a question of interest is whether one can have a controlling parameter in a single set-up for switching from superluminal to subluminal propagation or vise versa. In 2001, Agarwal et al. [57], and thereafter in 2004, Zubairy and colleagues [58], proposed a switching mechanism from subluminal...
to superluminal propagation based on Λ-type system and four-level atomic system, respectively. Analogous to the multi-level atomic systems, single-ended optomechanical systems share the properties of three-level atomic system, therefore, leads to the occurrence of single EIT window [7, 59]. The occurrence of double EIT window, for example, or the switching mechanism from superluminal to subluminal regime, requires additional interfering pathways [57, 58], and the hybrid optomechanical systems spectacularly meet this requirement; as they can share the properties of four (or more) level atomic systems [7, 59].

In our scheme, change in the atomic detuning from $\Delta_a = \omega_m$ to $\Delta_a = -\omega_m$, acts as a tunable switch from superluminal to subluminal light propagation in the hybrid system. The atomic detuning $\Delta_a = -\omega_m$ means that the atomic ensemble is resonant with the Stokes sideband. In Fig. 6, we plot the phase ϕ_t versus normalized probe detuning δ/ω_m, and the group delay τ_g as a function of the pump power P_1, for $\Delta_a = -\omega_m$.

In Fig. 6(a), we see that the phase of the probe field changes suddenly with steeper dispersion as we switch the atomic detuning from $\Delta_a = \omega_m$ (solid-black curve) to $\Delta_a = -\omega_m$ (dashed-gray curve). This rapid phase dispersion alters the characteristics of the probe propagation from superluminal to slow light. The group delay, τ_g, versus the pump power is plotted in Fig. 6(b) for different values of cavity decay rate $\kappa = \pi \times 215, 2\pi \times 215, 3\pi \times 215$ KHz, for blue-solid, gray-dashed and black-dotted curves, respectively. Rest of the parameters are the same as in Fig. 4.

![Figure 6](image)

FIG. 6. (Color online) (a) The phase of the probe field, ϕ_t, versus the normalized probe detuning δ/ω_m, for $\Delta_a = \omega_m$ (black solid curve) and $\Delta_a = -\omega_m$ (gray dashed curve). (b) Group delay (τ_g) as a function of the pump power (P_1) for the case of $\Delta_a = -\omega_m$, indicating the slow light effect of the transmitted probe field for the different values of cavity decay rate $\kappa = \pi \times 215, 2\pi \times 215, 3\pi \times 215$ KHz, for blue-solid, gray-dashed and black-dotted curves, respectively. Rest of the parameters are the same as in Fig. 4.

due to the presence of the atom(s), the initial cavity-mirror entanglement partially redistributes to the atom-mirror and atom-cavity subsystems and this effect is predominant when the atoms are resonant with the Stokes sideband. Here, we achieve a tunable switch from superluminal to slow light with $\Delta_a = \pm \omega_m$. Thus, consistency of the switching mechanism from superluminal to slow light regime ($\Delta_a = -\omega_m$) is in agreement with the realistic experimental conditions [53]. In addition, the orders of pulse advancement and delay, i.e. $\tau_g = -20$ ns and $\tau_g = 4.2$ μs, show a very good agreement with the experimental realization of fast and slow light in Refs. [23, 43], which can be further enhanced with the longer lifetime of the resonator.

Hence, observation of superluminal light and its enhancement, and existence of a tunable switch from superluminal to slow light, make our model more practical and advantageous over previous schemes, such as, the single ended cavities [44], coupled BEC-cavity systems [45], quadratically coupled systems [46], and hybrid optomechanics with two optical modes [47]. Moreover, we explain the fast and slow light effects in the probe field transmission. However, previously it is reported [48] that, slow light in a double ended cavity occurs in the transmitted probe field, whereas fast light effect takes place in the reflected field. The recent progress in optomechanics, makes it possible to realize our reported characteristics in state-of-the-art laboratory experiments.

IV. CONCLUSION

In conclusions, we have explained tunable fast and slow light effects of a transmitted probe field in a hybrid optomechanical system for experimentally realizable parametric values. Based on standard input-output theory, the full analytical model is presented to investigate the
transmission, phase and group delay of the probe field. It is shown that the addition of a two-level atom in the system, not only affects the transmission of the probe field, but also yields the high phase dispersion, which makes it possible to realize the enhancement of superluminal light in the hybrid system. In addition, a tunable switch from superluminal to slow light is achievable in our model by simply adjusting the atomic-detuning as $\Delta_m = \pm \omega_m$, which makes our scheme thereby more advantageous and more practical over earlier schemes. Fast and slow light effects have potential impact on the present-day photonic technology, which have paved the way towards many applications including quantum information processing, integrated quantum optomechanical memory, classical signal processing, optical buffering, delay lines, telecommunication and interferometry.

ACKNOWLEDGMENTS

We acknowledge HEC for financial support through grant #HEC/20-1374, and QAU-URF2014.

[1] S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990). S. E. Harris, Phys. Today 50, 36 (1997). M. Fleischhauer, A. Imamoglu, and J. P. Marango, Rev. Mod. Phys. 77, 633 (2005).
[2] G. S. Agarwal and S. Huang, New J. Phys. 16, 033023 (2014).
[3] M. J. Akram and F. Saif, J. Russ. Laser Res., 35 (6), 547 (2014). Y. D. Wang and A. A. Clerk, Phys. Rev. Lett. 108, 153603 (2012). K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).
[4] L. Zhang and J. Evers, Phys. Rev. A 90, 023826 (2014). E. Kuznetsova, R. Rajapakse, and S. F. Yelin, Phys. Rev. A 88, 033850 (2013). D. D. Yavuz, Phys. Rev. Lett. 95, 226301 (2005).
[5] A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, V. L. Velichansky, Phys. Rev. Lett. 76, 3935 (1996). M. O. Scully and M. S. Zubairy, Quantum Optics, (Cambridge University Press, Cambridge, 1997).
[6] U. Fano, Phys. Rev. 124, 1866 (1961). C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, T. Pfeifer, Science 340, 716 (2013). K. P. Hegg, C. Ott, D. Schumacher, H.-C. Wille, R. Rohlsberger, T. Pfeifer, and J. Evers, arXiv:1411.1545 (2014).
[7] M. J. Akram, F. Ghafoor and F. Saif, J. Phys. B: At. Mol. Opt. Phys. (in press) arXiv:1405.5614 (2014).
[8] K. Qu and G. S. Agarwal, Phys. Rev. A 87, 063813 (2013).
[9] F. Saif, F. L. Kien, and M. S. Zubairy, Phys. Rev. A 64, 043812 (2001). F. Saif, Phys. Rev. A 73, 033618 (2006). H. Khan, M. Umar, M. J. Akram, and F. Saif, J. Russ. Laser Res., 35, 401 (2014).
[10] T. Baba, Nat. Photon. 2, 465 (2008). M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003). Y. Okawachi, M. A. Foster, J. E. Sharpe, A. L. Gaeta, Q. Xu, and M. Lipson, Opt. Express 14, 2317 (2006). M. A. Foster, A. C. Turner, J. E. Sharpe, B. S. Schmidt, M. Lipson and A. L. Gaeta, Nature 441, 960 (2006). M. Ayub and F. Saif, Phys. Rev. A 85, 023634 (2012).
[11] E. Verhagen, S. Deleglise, S. Weiss, A. Schliesser, and T. J. Kippenberg, Nature 482, 63 (2012).
[12] M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003). J. T. Mok and B. J. Eggleton, Nature 433, 811 (2005).
[13] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094 (2000). C. Jiang, B. Chen and K. D. Zhu, Eur. Phys. Lett. 94, 38002 (2011).
[14] P.W. Milonni, Fast light, slow light and left-handed light (Institute of Physics Publishing, Bristol, 2005).
[15] R. W. Boyd, D. G. Gauthier, and A. L. Gaeta, Optic. Photon. News 17, 18-22 (2006).
[16] A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni and R. Y. Chiao, Phys. Rev. Lett. 86, 3925 (2001).
[17] R. W. Boyd and D. J. Gauthier, Science 326, 1074 (2009). M. O. Scully and M. S. Zubairy, Science, 301, 06 (2003).
[18] A. Kasapi, M. Jain, G. Y. Yin and S. E. Harris, Phys. Rev. Lett. 74 2447 (1995).
[19] F. L. Kien and K. Hakuta, Phys. Rev. A 79, 013818 (2009). J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, Phys. Rev. A 65, 031801(R) (2002).
[20] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature (London) 397, 594 (1999).
[21] L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000). A. Dogariu and A. Kuzmich, and L. J. Wang, Phys. Rev. A 63, 053806 (2001).
[22] M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003). S. Manipatruni, P. Dong, Q. Xu, and M. Lipson, Opt. Lett. 33, 2928 (2008).
[23] A. H. Safavi-Naeini, T. P. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Nature (London) 472, 69 (2011).
[24] J. B. Clark, R. T. Glasser, Q. Glorieux, U. Vogl, T. Li, K. M. Jones, and P. D. Lett, Nature Photon. 8, 515 (2014).
[25] M. Mirhosseini, G. I. Viza, O. S. M.-Loaiza, M. Malik, J. C. Howell, and R. W. Boyd arXiv:1412.3019v1 (2014).
[26] P. Meystre, Ann. Phys. (Berlin) 525, 215 (2013).
[27] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).
[28] M. J. Akram and F. Saif, Nonlinear Dyn. (in press) arXiv:1411.0711v1 (2014).
[29] J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, Nat. Phys. 6, 707 (2010).
[30] T. P. Purdy, P. L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, Phys. Rev. X 3, 031012 (2013).
[31] H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, Phys. Rev. A 90, 023817 (2014). K. Hammerer et al., Phys. Rev. Lett. 103, 063605 (2009). J. Restrepo, C. Ciuti, and I. Favero, Phys. Rev. Lett. 112, 013601 (2014).
[32] F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Science 322, 235 (2008). P. Kanamoto and P. Meystre Phys. Rev. Lett. 104, 063601 (2010).
Amri and M. S. Zubairy, J. Phys. B: At. Mol. Opt. Phys. 47, 135503 (2014).

[33] B. Rogers, N. L. Gullo, G. D. Chiara, G. M. Palma, M. Paternostro, Quantum Meas. Quantum Metrol. 2, 11 (2014).

[34] D. Vitali, S. Gigan, A. Ferreira, H.R. Bhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007). M. Asjad and F. Saif, Phys. Rev. A 84, 033606 (2011). M. Ikram and F. Saif, Phys. Rev. A 66, 014304 (2002).

[35] A. Naik et al., Nature (London) 443, 193 (2006). S. Gigan et al., Nature 444, 67 (2006). F. Marquardt, J. P. Chen, A. A. Clerk and S. M. Girvin Phys. Rev. Lett. 99, 093902 (2007).

[36] A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, Nature 500, 185 (2013). D. Pile, Nat. Photon. 7, 938 (2013).

[37] F. Saif and M. Fortunato, Phys. Rev. A, 65, 013401 (2002). F. Saif and I. Rehman, Phys. Rev. A 75, 043610 (2007). J. A. Miles, Z. J. Simmons, and D. D. Yavuz, Phys. Rev. X 3, 031014 (2013). K. A. Yasir, M. Ayub, F. Saif, J. Mod. Opt. 61, 1318 (2014).

[38] C.M. Caves, Phys. Rev. Lett. 45, 75 (1980). V. Braginsky, S.P. Vyatchanin, Phys. Lett. A 293, 228 (2002).

[39] G. S. Agarwal and S. Huang, Phys. Rev. A 81, 041803(R) (2010).

[40] F. Saif, I. Bialynicki-Birula, M. Fortunato, and W. P. Schleich, Phys. Rev. A, 58, 4779 (1998). W. Chen, D. S. Goldbaum, M. Bhattacharya, and P. Meystre, Phys. Rev. A 81, 053833 (2010).

[41] S. Weis, R. Riviére, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Science 330, 1520 (2010).

[42] J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, Nature 471, 204 (2011).

[43] M. D. Stenner, D. J. Gathier and M. A. Niefeld, Nature 425, 695 (2003).

[44] D. Tarhan, Act. Phys. Pol. A 124, 46 (2013).

[45] B. Chen, C. Jiang, and K. D. Zhu, Phys. Rev. A 83, 055803 (2011).

[46] X-G Zhan et al., J. Phys. B: At. Mol. Opt. Phys. 46, 025501 (2013).

[47] C. Jiang, H. Liu, Y. Cui, X. Li, G. Chen, and B. Chen, Opt. Express 21, 12165 (2013).

[48] D. Tarhan, S. Huang, and O. E. Mustecaplioglu, Phys. Rev. A 87, 013824 (2013).

[49] D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, New J. Phys 13, 023003 (2011).

[50] R. W. Boyd and D. J. Gauthier, Progress in Optics 43, edited by E. Wolf, Chap. 6, p. 497. (Elsevier, Amsterdam, 2002).

[51] S. Haroche, J. M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons, (Oxford University Press, Oxford, 2006).

[52] W. Gardiner and P. Zoller, Quantum Noise (Springer-Verlag, Berlin, 2000).

[53] C. Genes, D. Vitali, and P. Tombesi, Phys. Rev. A 77, 050307(R) (2008).

[54] R. W. Boyd, Nonlinear Optics, Academic Press, New York, (2010).

[55] S. Huang and G. S. Agarwal, Phys. Rev. A 81, 033830 (2010).

[56] S. Groblacher, K. Hammerer, M. R. Vanner and M. Aspelmeyer, Nature 460, 724 (2009).

[57] G. S. Agarwal, T. N. Dey, and S. Menon, Phys. Rev. A 64, 053809 (2001).

[58] M. Sahrai, H. Tajalli, K. T. Kapale, and M. S. Zubairy, Phys. Rev. A 70, 023813 (2004).

[59] L. Wang, Y. Gu, H. Chen, J. Y. Zhang, Y. Cui, B. D. Gerardot, and Q. Gong, Sci. Rep. 3, 2879 (2013). G. S. Agarwal, Quantum Optics, (Cambridge University Press, 2013).

[60] C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1970).

[61] B. D. Clader and J. H. Eberly, J. Opt. Soc. Am. B. 24, 916 (2007).

[62] H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun and F. Nori, Phys. Rev. A 78, 013824 (2008).