Impact of Lorentz violation on anomalous magnetic moments of charged leptons

Andreas Crivellin,a,b Fiona Kirk,a,b and Marco Schreckc

a Paul Scherrer Institut,
CH-5232 Villigen PSI, Switzerland
b Physik-Institut, Universität Zürich,
Winterthurerstraße 190, CH-8057 Zürich, Switzerland
c Departamento de Física, Universidade Federal do Maranhão,
Campus Universitário do Bacanga, São Luís (MA), 65085-580, Brazil
E-mail: andreas.crivellin@cern.ch, fiona.kirk@psi.ch, marco.schreck@ufma.br

Abstract: We address the question whether a violation of Lorentz symmetry can explain the tension between the measurement and the Standard-Model prediction of the anomalous magnetic moment of the muon, \((g - 2)_\mu\), and whether it can significantly impact the one of the electron, \((g - 2)_e\). While anisotropic Lorentz-violating effects are, in general, expected to produce sidereal oscillations in observables, isotropic Lorentz violation (LV) in the charged-lepton sector could also feed into \((g - 2)_e\). However, we find that this type of Lorentz violation, parametrised via a dim-4 field operator of the Standard-Model Extension (SME), is already strongly constrained by the absence of vacuum Čerenkov radiation and photon decay. In particular, the observations of very-high-energetic astrophysical photons at LHAASO and of high-energetic electrons (muons) by the LHC (IceCube) place the most stringent two-sided bounds on the relevant SME coefficients \(\hat{c}^{(e)} (\hat{c}^{(\mu)})\). Therefore, any explanation of the tension in \((g - 2)_\mu\) via isotropic Lorentz violation of the minimal spin-degenerate SME is excluded, and the possible size of its impact on \((g - 2)_e\) is very limited.

Keywords: Violation of Lorentz and/or CPT Symmetry, Precision QED, Cosmic Rays

ArXiv ePrint: 2208.11420
1 Introduction

Anomalous magnetic moments of charged leptons pose excellent tests of quantum field theory, dating back to Schwinger’s famous prediction $a_\ell \equiv (g-2)_\ell/2 = \alpha/(2\pi) \simeq 1.16 \times 10^{-3}$ [1] and its later experimental confirmation [2] for electrons. Currently, the comparisons between direct measurements [3] and the Standard-Model (SM) predictions yield for the electron

$$\Delta a_e[\text{Cs}] \equiv a_e^{\text{exp}} - a_e^{\text{SM}[\text{Cs}]} = -0.88(28)(23)[36] \times 10^{-12}, \quad (1.1a)$$

$$\Delta a_e[\text{Rb}] \equiv a_e^{\text{exp}} - a_e^{\text{SM}[\text{Rb}]} = +0.48(28)(9)[30] \times 10^{-12}, \quad (1.1b)$$

depending on whether the fine-structure constant α is taken from Cs [4] or Rb [5] atom interferometry. The errors refer to those on a_e^{exp}, α, and the total uncertainty, respectively. For the muon, the experimental average [6–10] differs from the SM prediction of the white paper by the Muon $g-2$ Theory Initiative [11]:

$$\Delta a_\mu \equiv a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = 2.51(59) \times 10^{-9}, \quad (1.2)$$

which constitutes a 4.2 σ tension. This result is based on refs. [12–31]. Note that the recent lattice results [32–34] for hadronic vacuum polarization (HVP), which would render the SM prediction of a_μ compatible with experiment at the 2σ level, are not included. However, these lattice results are in tension with HVP determined from $e^+e^- \rightarrow \text{hadrons}$ data [16–21]. Furthermore, HVP enters the global electroweak fit [35], whose (indirect) determination is below the lattice values [36, 37], increasing the tension within the electroweak fit [38, 39].
Many extensions of the SM by new particles have been proposed to explain the anomalous magnetic moment of the muon (see ref. [40] for a recent review). We refer to, most prominently, the MSSM (see, e.g. refs. [41–44]), models with generic new scalars and fermions [45–53], Z' bosons [54–57], leptoquarks [58–67] or additional Higgs doublets [68–75], etc. However, there is also the possibility of modifying quantum field theory itself at the fundamental level instead of adding new particles. The physics responsible for such modifications is usually associated with the Planck scale and its impact on $(g - 2)_\mu$ was studied, e.g. in ref. [76]. They found, though, that these effects were not capable of explaining the muon anomaly [77]. In addition, an explanation of the tension in $(g - 2)_\mu$ by nonlocal QED was discussed in ref. [78].

Alternatively, Lorentz-violating physics, which may occur at the Planck scale, could be able to account for Δa_μ. Here, the aforementioned SME [79, 80] provides a comprehensive effective-field theory framework to parametrise possible LV in all particle sectors of the SM. This approach allows us to assess the implications of LV at energy scales currently accessible to experiments. The SME incorporates operators involving SM fields whose Lorentz indices are suitably contracted with background fields. The latter give rise to preferred spacetime directions and the potential size of LV is encoded in the Wilson coefficients, which are known as the (controlling) coefficients in the SME literature. Therefore, the SME constitutes a modified quantum field theory whose theoretical aspects have been extensively investigated [81–95]. Since the emergence of the SME, a large number of experiments has constrained all kinds of coefficients in the matter sector. The yearly updated data tables [96] can be consulted for a compilation of these bounds.

The literature comprises only few studies of LV effects on $(g - 2)_\mu$ beyond the SME, e.g. refs. [97, 98]. In an SME setting, $(g - 2)_\mu$ has been investigated with LV in Dirac fermions [99–101], photons [111, 112], Yukawa couplings [113–115], and the Higgs field [116]. The focus of refs. [99–101, 109, 110] is on modified spin precession governed by the spin-nondegenerate coefficients b, d, H, g. Unless for very specific choices of coefficients, this approach leads to time-dependent effects in the lab, which cannot account for the discrepancies in eqs. (1.1), (1.2).

The coefficients known as c, which are CPT-conserving and describe spin-independent effects, are expected to provide a possible explanation of the tension in $(g - 2)_\mu$. Various anisotropic combinations of c have already been severely constrained by laboratory experiments, which is, e.g. backed up by the very recent analysis [117] in the electron sector providing bounds at the 10^{-21} level. Astrophysics gives rise to few competitive limits on the isotropic part of c in electrons [96], whereas laboratory experiments, in general, are not that sensitive to isotropic modifications. In particular, the muon sector lacks strong constraints on an isotropic c. Therefore, and since the isotropic part does also not lead to sidereal oscillations of observables, we intend to focus on the latter. Until now, it is only the authors of ref. [108] who studied $g_\ell - 2$ for the isotropic subset of c coefficients. However, our tree-level result disagrees with theirs, which also has consequences on the physics.
2 Lorentz-violating QED

The SME parametrises LV modifications of the SM in a model-independent way, preserving gauge invariance and, thus, the Ward identities. Before electroweak symmetry breaking, there are four distinct types of controlling coefficients contracted with power-counting renormalizable operators in the SME lepton sector [79, 80]. The coefficients \((a_L)^\mu\) and \((c_L)^{\mu\nu}\) couple to left-handed \(SU(2)\) doublets, whereas \((a_R)^\mu\) and \((c_R)^{\mu\nu}\) couple to right-handed \(SU(2)\) singlets. After electroweak symmetry breaking, four new types of coefficients emerge in the charged-lepton sector from linear combinations of \((a_{L,R})^\mu\) and \((c_{L,R})^{\mu\nu}\). The first two are denoted as \((a^L)^\mu\), \((c^L)^{\mu\nu}\) and are accompanied by a parity-even Dirac bilinear, while \((b^R)^\mu\), \((d^R)^{\mu\nu}\) come with a parity-odd Dirac bilinear [118].

These coefficients alter free-particle propagation of charged leptons, which even differs for the two possible spin projections in the presence of the \(b\)-type and \(d\)-type coefficients [79, 106]. The extended free Dirac theory is minimally coupled to the photon sector, which gives rise to a modified quantum electrodynamics (QED). In our analysis we do not need to consider the \(a\) coefficients, since they can be removed in QED by (individual) redefinitions of the charged-lepton fields [79, 80]. The impact of the spin-nondegenerate \(b\) and \(d\) coefficients on \((g - 2)_\ell\) has been the subject matter of a fair number of papers [99–107, 109, 110].

Here, we focus on the spin-degenerate \(c\) coefficients, which affect leptons and antileptons in the same way [96] and enter the anomalous magnetic moment both via their effect on the free propagation of leptons and via the modified QED vertex. Since the \(c\) coefficients relate to coefficients in photons that are denoted as \(k_F\) [119], we consider the following Lagrange density:

\[
\mathcal{L} = \frac{1}{2} \bar{\psi} \left[i \left(\gamma^\mu + c^{\mu\nu} \gamma_\nu \right) D_\mu - m \right] \psi + \text{h.c.} - \frac{1}{4} \left(\eta_{\mu\sigma} \eta_{\nu\rho} + \left(k_F \right)_{\mu\nu\rho\sigma} \right) F^{\mu\nu} F^{\rho\sigma}. \tag{2.1}
\]

All fields are defined in Minkowski spacetime with the metric tensor \(\eta_{\mu\nu}\) of signature \((+,-,-,-)\). Furthermore, \(\psi\) is a Dirac field standing for a single charged lepton, \(\bar{\psi} = \psi^\dagger \gamma^0\) the Dirac-conjugate field, \(m\) the fermion mass and \(\gamma^\mu\) are the standard Dirac matrices satisfying the Clifford algebra \(\left[\gamma^\mu, \gamma^\nu \right] = 2i \eta^{\mu\nu}\). Furthermore, \(D_\mu = \partial_\mu + i q A_\mu\) denotes the gauge-covariant derivative for a particle of charge \(q\) (with \(q = -e, e > 0\) for electrons) and \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu\) is the electromagnetic field strength tensor with the \(U(1)\) gauge field \(A_\mu\).

For convenience, we dropped the index \(\ell\) for \((c^L)^{\mu\nu}\), which refers to the charged-lepton flavour. Apart from \(c\) coupling to Dirac fermions, the modified QED of eq. (2.1) involves the aforementioned background field known as \(k_F\), which affects photons. The flavour-universal part of \(c\) and a subset of the \(k_F\) coefficients can inherently be mapped onto each other [119]. Hence, it makes sense to perform a combined study of their effects on \((g - 2)_\ell\), which provides an important cross-check of the result to be obtained.

Since the Lagrange density is Hermitian by definition, \(c^{\mu\nu}\) and \((k_F)_{\mu\nu\rho\sigma}\) must be real. Furthermore, the antisymmetric part of \(c^{\mu\nu}\) can be removed by a field redefinition [120]:

\[
\psi(x) \rightarrow \psi'(x) = \left(1 + \frac{i}{4} c^{\mu\nu} \sigma_{\mu\nu} \right) \psi(x), \tag{2.2}
\]

with \(\sigma^{\mu\nu} = (i/2)[\gamma^\mu, \gamma^\nu]\). Also, the trace of \(c^{\mu\nu}\) is taken to be zero in a canonically normalized kinetic term. The background field \(k_F\) transforms as a four-tensor of rank 4 under...
coordinate transformations, satisfying
\[(kF)_{\mu\nu\kappa\lambda} = (kF)_{\kappa\lambda\mu\nu} = -(kF)_{\nu\mu\kappa\lambda} = -(kF)_{\mu\lambda\nu\kappa}, \]
(2.3)
as well as a Bianchi-type identity \((kF)_{\mu(\lambda\nu\kappa)} = 0\). The latter holds upon summation over cyclic permutations of a triple of its indices. Furthermore, the double trace of \(kF\) can be removed by another field redefinition, such that \((kF)^{\mu\nu}_{\mu\nu} = 0\) is assumed. The generic constraints on LV [96] strongly suggest perturbative modifications, i.e. \(|e^{\mu\nu}| \ll 1\) and \(|(kF)_{\mu\nu\kappa\lambda}| \ll 1\). Hence, it is sufficient to work at first order in the coefficients.

3 Modified anomalous magnetic moment

Without LV, the tree-level amplitude describing the interaction of an on-shell Dirac fermion with a virtual photon can be rewritten by applying the Gordon identity:
\[i\mathcal{M}^{(0)}_{ss} = -\overline{\pi}^{(s)}i\gamma^\mu u^{(s')}A_\mu(q) = -\frac{ie}{2m}\overline{\pi}^{(s)}\left(P^\mu A_\mu(q) - \frac{1}{2}\sigma_{\mu\nu}F^{\mu\nu}(q) \right)u^{(s')}, \]
(3.1)with the four-momenta \(P^\mu\) and \(q^\mu\), as defined in figure 1, and where \(\overline{\pi}^{(s)} = \overline{\pi}^{(s)}(p_f,m)\), \(u^{(s')} = u^{(s')}(p_i,m)\) are understood. To perform an analysis of \((g-2)\) physics, \(A_\mu\) is replaced by a static vector potential \(A_\mu\), describing the limit of a slowly varying external magnetic field with components \(B^i\). Then, \(A_0 = 0\) and \(-ie^{ijk}q_i\overline{\pi}^{(s)}(q) = B^k\), whereby an expansion around \(q^\mu = 0\) is permissible. Since our sole interest is in the tensorial contribution, which arises at linear order in \(q^\mu\), we can simply keep the constant (mass-dependent as opposed to momentum-dependent) contribution from the spinors such that
\[\overline{\pi}^{(s)}\sigma^0u^{(s')} = 0, \quad \overline{\pi}^{(s)}\sigma^{ij}u^{(s')} = \varepsilon^{ijk}\xi^{(s)}\delta^{ss'}, \]
(3.2)where \(\xi^{(s)}\) are two-component spinors with \(\xi^{(s)}\dagger\xi^{(s')} = \delta^{ss'}\). We employ the spin operator for particle states, \(S = \sigma/2\), with the set of Pauli matrices \(\sigma = (\sigma^x, \sigma^y, \sigma^z)\). The spin quantization axis is set to point along the magnetic field where we choose the coordinate system such that \(B = Bz\) [11]. Then, the part of the amplitude that the anomalous magnetic moment can be deduced from is
\[\mathcal{M}^{(0)}_{ss} \supset \frac{e}{4m}\overline{\pi}^{(s)}\sigma_{\mu\nu}u^{(s')}F^{\mu\nu}(q) = -\frac{e}{m}BS^z, \]
(3.3)with the spin eigenvalues \(S^z = \pm 1/2\) along the quantization axis. Comparing eq. (3.3) to the nonrelativistic potential \(V(x) = -\mu \cdot B(x)\) with \(\mu = g_e(2m)S^z\mathbf{z}\), we identify Dirac’s famous prediction \(g_e = 2\), which holds at tree-level and when LV corrections are disregarded.

3.1 Modified Dirac fermions

Our next step is to compute \(a_\ell\) in the presence of c-type LV with \(k_F = 0\). The modified Dirac equation in momentum space based on eq. (2.1) then reads
\[(\slashed{p} + e^{\mu\nu}\gamma^\mu p_{\nu} - m)u(p) = 0, \]
(4.4)
Figure 1. Contributions responsible for $a_\ell = (g - 2)_\ell/2$ based on eq. (2.1). We use the conventions $p_i = (P + q)/2$ and $p_f = (P - q)/2$ for the coming and outgoing fermion momentum, respectively, and $q \equiv p_i - p_f$ is the outgoing-photon momentum. The bullets indicate LV insertions, i.e. the modification of the propagation of the charged lepton and the coupling to the photon, respectively.

where $u(p)$ is a particle spinor. The modified Dirac equation gives rise to a modified Gordon identity

$$\pi(p_f)\gamma^\mu u(p_i) = \frac{1}{2m}\pi(p_f)\left[\eta^{\mu\lambda} + c^{\mu\lambda}\right]P_\lambda - i\sigma^\mu_\kappa(\eta^{\kappa\lambda} + c^{\kappa\lambda})q_\lambda]u(p_i),$$

where we dropped the spin index, as a_ℓ follows from the spin-conserving contributions, anyhow. The modification of the Gordon identity is illustrated by the Feynman diagram in figure 1a. It is judicious to absorb all coefficients $c^{\mu\nu}$ that enter the propagators and the spinors into the momenta of the fermions:

$$\overline{p}^\mu \equiv p^\mu + c^{\mu\nu}p_\nu.$$

In terms of the redefined momentum, the modified Dirac equation and Gordon identity take the same form as in the SM:

$$\overline{p} - m)u(p) = 0,$$

$$\pi(p_f)\gamma^\mu u(p_i) = \frac{1}{2m}\pi(p_f)(\overline{P}^\mu - i\sigma^\mu_\kappa q_\kappa)u(p_i).$$

The complete tree-level amplitude also involves a modified fermion-photon coupling induced by the covariant derivative according to the diagram of figure 1b. By defining $\Gamma^\mu \equiv \gamma^\mu + c^{\mu\nu}\gamma^\nu$, we write the complete tree-level amplitude for modified Dirac fermions in the form

$$iM^{(0)}_{\psi,ss'} = -\pi^{(s)} ie\Gamma^\mu u^{(s')} A_{\mu}(q) = i(M^{(0)}_{ss'} + \delta M^{(0)}_{\psi,ss'}),$$

with the standard contribution given in eq. (3.1) and the modification

$$\delta M^{(0)}_{\psi,ss'} = -\frac{e}{2m}\pi^{(s)}\left[-\frac{1}{2}(c^{\mu\lambda}\sigma^\nu_\lambda - c^{\nu\lambda}\sigma^\mu_\lambda)F_{\mu\nu}(q) + 2c^{\mu\nu}P_\nu A_{\mu}(q)\right]u^{(s')}.$$

Applying the procedure described at the beginning of the current section, we find the following LV modification of the amplitude in eq. (3.3):

$$\delta M^{(0)}_{\psi,ss'} \supset \frac{e}{4m}\pi^{(s)}(c^{\mu\lambda}\sigma^\nu_\lambda - c^{\nu\lambda}\sigma^\mu_\lambda)u^{(s)} F_{\mu\nu}(q) = \frac{e}{m}(c^{11} + c^{22})BS^z.$$
Finally, the tree-level contribution of the c coefficients to the anomalous magnetic moment, at leading order in LV, reads

$$a_\psi \equiv -\frac{m}{e} \frac{\delta M_{\psi,ss}^{(0)}}{BS} = -(c^{11} + c^{22}) .$$

(3.10)

Thus, only a small subset of purely spacelike c coefficients is capable of inducing an anomalous magnetic moment at tree-level. It is this combination of coefficients that introduces LV into the cyclotron frequency [99–101], i.e. we interpret eq. (3.10) as not arising from modified spin precession; cf. refs. [106, 107].

Parametrising LV in the photon sector by a specific subset of k_F implies a result similar to that of eq. (3.10); cf. section 3.2 below. This outcome is expected, since an appropriate coordinate transformation can remove the c coefficients from the fermion sector, whereby the k_F coefficients get shifted accordingly [119]. This finding provides an independent crosscheck of eq. (3.10). Since LV in photons is tightly constrained by spectropolarimetry [121–124] as well as table-top experiments with optical cavities [125, 126], we will discard k_F in the remainder of the current section. Also, it is beyond the scope of this work to investigate sidereal variations of $(c^\ell)_{\mu\nu}$. Hence, as of now, we will be working with the setting of an isotropic c-type background field:

$$c^{\mu\nu} = 3 \, c \, \delta^{\mu\nu} , \quad c \equiv c^{00} .$$

(3.11)

In this case, eq. (3.10) takes the form

$$a_\psi = -\frac{2}{3} \tilde{c} .$$

(3.12)

This means that isotropic LV, contrary to the findings of ref. [108], leads to a tree-level effect in the anomalous magnetic moments of charged leptons. Confronting eq. (3.12) with eq. (1.2), the discrepancy between the experimental and the SM predictions for a_μ could be explained by the presence of isotropic LV in muons with

$$\tilde{c}(\mu) = -3.8 \times 10^{-9} ,$$

(3.13)

while for electrons

$$\tilde{c}(e)_{[Cs]} = 1.3 \times 10^{-12} , \quad \tilde{c}(e)_{[Rb]} = -7.2 \times 10^{-13} .$$

(3.14)

3.2 Modified photons

To perform a crosscheck of the anomalous magnetic moment induced by c-type LV in the charged-lepton sector, eq. (3.10), we intend to perform an independent computation of this quantity based on LV in photons. This investigation is carried out in the altered QED stated in eq. (2.1) with $c^{\mu\nu} = 0$. The generic field equations for photons modified by k_F read [80]:

$$M^{\alpha\delta}(p) A_\delta(p) = 0 ,$$

(3.15a)

$$M^{\alpha\delta}(p) = \eta^{\alpha\delta} p^2 - p^\alpha p^\delta - 2(k_F)^{\alpha\beta\gamma\delta} p_\beta p_\gamma .$$

(3.15b)
We focus on the set of coefficients leading to a nonbirefringent vacuum at first order in LV. The latter is parametrised by \cite{119}

\[(k_F)^{\alpha\beta\gamma\delta} = \frac{1}{2}(\eta^{\alpha\gamma}k^{\beta\delta} - \eta^{\alpha\delta}k^{\beta\gamma} - \eta^{\beta\gamma}k^{\alpha\delta} + \eta^{\beta\delta}k^{\alpha\gamma}), \quad (3.16)\]

where the set $\tilde{k}^{\alpha\beta} \equiv (k_F)^{\alpha\beta}$ in $\tau^{\gamma\beta}$ defines a symmetric and traceless (4×4) matrix. Inserting eq. (3.16) into the tensor-valued function $M^{\alpha\delta}$ of the modified field equations in eq. (3.15) and keeping only the terms linear in $\tilde{k}^{\alpha\beta}$ leads to

\[\tilde{M}^{\alpha\delta}(p)A_\delta = 0, \quad (3.17a)\]

\[M^{\alpha\delta} = (\eta^{\alpha\delta} + \tilde{k}^{\alpha\delta})(\eta^{\beta\gamma} + \tilde{k}^{\beta\gamma})q_{\beta\gamma} - (\eta^{\alpha\beta} + \tilde{k}^{\alpha\beta})(\eta^{\beta\gamma} + \tilde{k}^{\beta\gamma})q_{\gamma} + \ldots, \quad (3.17b)\]

which, by multiplying with $\delta^{\alpha\delta} - \tilde{k}^{\alpha\delta}/2$, can be expressed in alternative form,

\[0 = \tilde{A}^\alpha q_{\beta\gamma} - \tilde{q}^\alpha \tilde{A}^\gamma + \ldots, \quad (3.18a)\]

\[\tilde{q}^\mu \equiv (\eta^{\mu\nu} + \frac{1}{2}k^{\mu\nu})q_{\nu}, \quad \tilde{A}^\mu \equiv (\eta^{\mu\nu} + \frac{1}{2}k^{\mu\nu})A_{\nu}, \quad (3.18b)\]

with $\tilde{A}^\mu = \tilde{A}^\mu(q)$ and where the ellipses indicate higher-order contributions in the LV coefficients. For convenience, we define $\tilde{F}_{\mu\nu} = \tilde{F}_{\mu\nu}(q) \equiv -i(\tilde{q}_{\mu}\tilde{A}_\nu - \tilde{q}_{\nu}\tilde{A}_\mu)$ as the electromagnetic field strength tensor of the redefined four-potential in momentum space. Thus, at first order in LV, the effects of nonzero coefficients $\tilde{k}^{\alpha\beta}$ are governed by an effective metric $\tilde{\eta}^{\mu\nu} \equiv \eta^{\mu\nu} + \tilde{k}^{\mu\nu}$, since the modified photon dispersion equation reads $\tilde{q}^\mu \tilde{q}_\mu \simeq q^\mu \tilde{q}_\mu q_\nu = 0$.

Now, the anomalous magnetic moment caused by $\tilde{k}^{\mu\nu}$ can be inferred from the standard matrix element of eq. (3.1) by performing the inverse substitutions. As the Dirac fermions are unaffected by LV, the standard Gordon identity is employed. Then,

\[i\mathcal{M}^{(0)}_{\gamma,ss'} = -\frac{ie}{2m} \pi^{(s)} \left[\tilde{P}^\mu (\tilde{\eta}^{\mu\nu} - \tilde{k}^{\mu\nu})\tilde{A}^\nu(q) \right. \]

\[\left. - \frac{1}{2}(\eta^{\mu\nu} - \frac{1}{2}\tilde{k}^{\mu\nu})(\eta^{\rho\sigma} - \frac{1}{2}\tilde{k}^{\rho\sigma})\sigma^{\mu\nu}\tilde{F}^{\rho\sigma}(q) \right] u^{(s')} \]

\[= i(\mathcal{M}^{(0)}_{ss'} + \delta\mathcal{M}^{(0)}_{\gamma,ss'}), \quad (3.19a)\]

with the standard amplitude of eq. (3.1) and the alteration

\[\delta\mathcal{M}^{(0)}_{\gamma,ss'} = \frac{e}{2m} \pi^{(s)} \left[-\frac{1}{4}(\tilde{k}^{\mu\nu}\sigma^\nu - \tilde{k}^{\mu\nu}\sigma^\nu)\tilde{F}_{\mu\nu}(q) + \tilde{k}^{\mu\nu}\tilde{P}_{\mu} \tilde{A}_{\nu}(q) \right] u^{(s')} (3.19b)\]

Focusing on the part responsible for the anomalous magnetic moment, we arrive at

\[\delta\mathcal{M}^{(0)}_{\gamma,ss} \supset -\frac{e}{8m} \pi^{(s)}(\tilde{k}^{\mu\nu}\sigma^\nu - \tilde{k}^{\mu\nu}\sigma^\nu)u^{(s)}\tilde{F}_{\mu\nu}(q) = -\frac{e}{2m}(\tilde{k}^{11} + \tilde{k}^{22})BS^z, \quad (3.20)\]

such that the anomaly reads

\[\alpha_\gamma \equiv -\frac{m}{e} \frac{\delta\mathcal{M}^{(0)}_{\gamma,ss}}{BS^z} = \frac{1}{2}(\tilde{k}^{11} + \tilde{k}^{22}). \quad (3.21)\]
Note that a coordinate transformation removes $k^{\mu\nu}$ from the photon sector and generates $c^{\mu\nu} = -\tilde{k}^{\mu\nu}/2$ in the fermion sector [119]. This correspondence between the coefficients $c^{\mu\nu}$ and $\tilde{k}^{\mu\nu}$ is evident from eqs. (3.10), (3.21), which provides a powerful crosscheck of our results. Hence, if LV resides both in the fermion and the photon sector, the c coefficients get shifted according to $c^{\mu\nu} \rightarrow c^{\mu\nu} - \tilde{k}^{\mu\nu}/2$, which is why the anomaly in its complete form is given by

$$a_{\psi,\gamma} = \left(\frac{\tilde{k}}{2} - c\right)^{11} + \left(\frac{\tilde{k}}{2} - c\right)^{22}. \quad (3.22)$$

4 Vacuum Čerenkov radiation and photon decay

In this section we will assess whether the size of LV needed to explain Δa_μ or leading to a relevant effect in a_e is compatible with constraints from other processes. Firstly, charged, massive particles with an energy above a specific threshold lose energy via vacuum Čerenkov radiation [119, 127–148]. In particular, for the isotropic controlling coefficient c this happens when the charged-lepton energy exceeds [145]

$$E_{\psi}^{\text{th}} = \frac{1}{2} \sqrt{\frac{3}{2}} \frac{m}{\sqrt{-c}}. \quad (4.1)$$

The minus sign inside the square root indicates that this process is possible only for $c < 0$. Furthermore, the radiated-energy rate near the threshold is [145]

$$\frac{dW}{dt} \simeq \frac{64}{9} \sqrt{\frac{2}{3}} \frac{\alpha (-c)^{3/2}}{m} \left(\frac{E - E_{\psi}^{\text{th}}}{m}\right)^3 \simeq \frac{4}{3} \alpha m^2 \left(\frac{E - E_{\psi}^{\text{th}}}{E}\right)^3. \quad (4.2)$$

This result corresponds to the estimate on the right-hand side of eq. (13) in ref. [135] apart from the dimensionless prefactor. The latter can only be properly derived from a quantum field theoretic treatment of the process. Moreover, eq. (4.2) allows us to conclude that the process is very efficient with a typical radiation length of $\ll 1$ m. If a propagating particle does not suffer energy losses, the particle energy must lie below the threshold of eq. (4.1), which, in turn, restricts the maximum size of $-c$.

Therefore, constraints on c can be obtained from the maximum charged-lepton energies observed experimentally. The highest energy of electrons produced in a particle physics laboratory was measured by CMS at the LHC in the search for a charged lepton plus missing transverse momentum (see, e.g. figure 4 of ref. [149]). It amounts to around 2.5 TeV, which implies that the threshold energy must be lower than this value. Hence, we infer the conservative lower bound

$$-1.6 \times 10^{-14} < \hat{c}^{(e)}.$$

(4.3)

This LHC bound is more stringent than that obtained previously from sychrotron radiation at LEP [135]. Note that the cosmic-electron energy spectrum, which has been measured by several experiments [150–155], with CALET [156] and AMS [157] providing the most recent analyses, could also be consulted to constrain LV via the absence of vacuum Čerenkov radiation. It is worthwhile to mention that HESS detected a 3 TeV electron event [153].
However, since their analysis involves simulations for disentangling proton and photon events, we will use the maximum electron energy measured at the LHC to constrain \(\hat{c}^{(e)} \) conservatively from below. Anyhow, the potential constraint obtained from the 3 TeV data point would only be marginally better than that of eq. (4.3).

In a survey of the atmospheric-muon spectrum, IceCube measured the highest-energetic muons ever detected with \(E_\mu = 1 \text{ PeV} \) [158]. These data result in the lower constraint

\[
-4.2 \times 10^{-15} < \hat{c}^{(\mu)}. \tag{4.4}
\]

The latter limit is also stricter than the sensitivity that could be achieved via an estimate of synchrotron radiation losses in a future muon collider [159]; cf. the forthcoming section 4.1.

A second non-standard process that can occur in the presence of isotropic \(c \)-type LV is photon decay [135, 136, 139, 160–179]. A photon whose energy exceeds

\[
E_{\gamma}^{th} = \sqrt{\frac{3}{2} m \sqrt{\hat{c}}}, \tag{4.5}
\]

decays into a fermion-antifermion pair (each of mass \(m \)). The form of eq. (4.5) suggests that photon decay can occur only for positive \(\hat{c} \). Note that a photon favours to decay into an \(e^- e^+ \) pair, as the corresponding threshold energy is lower than that for a decay into a \(\mu^- \mu^+ \) pair.

The coefficient \(\hat{c} \) can thus be constrained by the observation of high-energy astrophysical photons. The Large High Altitude Air Shower Observatory (LHAASO) [180] in China has recently detected very-high-energy photon events with energies up to 1.4 PeV [181, 182], opening a new era of gamma astronomy. From this event energy, we are able to derive the following upper bounds:

\[
\hat{c}^{(e)} < 1.9 \times 10^{-19}, \quad \hat{c}^{(\mu)} < 8.3 \times 10^{-15}, \tag{4.6}
\]

where the second holds under the assumption \(\hat{c}^{(e)} = 0 \).

4.1 Sensitivity from synchrotron radiation

A hypothetical energy loss of a charged, massive particle caused by a nonzero \(\hat{c} \) may hide within the experimental uncertainty of the energy loss by synchrotron radiation. To be able to operate accelerators and storage rings, it is critical to have precise knowledge of possible synchrotron radiation losses, from which a further bound on \(\hat{c} \) can be deduced. Reference [135] is devoted to such an analysis for electrons based on LEP specifications.

When it comes to muons, LV could be searched for in a hypothetical 10 TeV center-of-mass muon collider [159]. In the following, we intend to estimate the sensitivity on \(\hat{c}^{\mu} \) based on a potential energy loss of a circulating muon via vacuum Čerenkov radiation, where the latter hides in the energy loss due to synchrotron radiation. To do so, we must take additional assumptions on the specifications of the muon collider. We assume that the muon energy amounts to 5 TeV and that the bending radius of the collider is \(\sim 4.2 \text{ km} \), if the LHC tunnel is to be reused. The synchrotron radiation loss of a single muon would then be \(7.129 \text{ MeV per turn} \), which implies an energy loss per distance travelled of \(5.294 \times 10^{-23} \text{ GeV}^2 \). The uncertainty on the synchrotron radiation losses at LEP was
estimated to have been a fraction of 10^{-4} of the actual energy loss per turn [135]. If the uncertainty in the synchrotron radiation losses of a future muon collider is comparable, the condition $dW/dL \leq 5.294 \times 10^{-27}$ GeV2 based on eq. (4.2) then implies a sensitivity for $\tilde{c}^{(\mu)}$ of -1.7×10^{-10}. The latter is significantly weaker than the constraint of eq. (4.4).

5 Combined results

Combining the constraints from vacuum Čerenkov radiation and photon decay deduced in the last section, we can obtain two-sided limits on the isotropic c coefficients:

\begin{align}
-1.6 \times 10^{-14} &< \tilde{c}^{(e)} < 1.9 \times 10^{-19}, \\
-4.2 \times 10^{-15} &< \tilde{c}^{(\mu)} < 8.3 \times 10^{-15}.
\end{align}

(5.1a) (5.1b)

These numbers show that it is impossible to account for Δa_e through LV. Similarly, the isotropic c-type coefficient in electrons is already too tightly constrained by LHC searches as well as by the absence of photon decay to be able to explain the tensions of eq. (1.1a) (eq. (1.1b)) at 2σ (1σ) confidence level. The situation is illustrated in figure 2, which confronts the anomalous magnetic moments of electrons (muons) with the threshold energies for vacuum Čerenkov radiation and photon decay. The solid (dashed) black curves are determined by the threshold energy of eq. (4.1) (eq. (4.5)). The values for $\Delta a_{e(\mu)}$ to the right of the intersection points of the solid curves and the dark blue (cyan) horizontal lines are excluded by the non-observation of vacuum Čerenkov radiation. The grey regions at negative $\Delta a_{e(\mu)}$ are excluded by the absence of photon decay.

6 Conclusions

In this paper we explored whether the presence of a particular type of LV in the electron (muon) sector can explain the tensions between the measurements and the SM predictions for the electron (muon) anomalous magnetic moment. Focusing on spin- and direction-independent LV effects within the minimal SME, we calculated the impact of the \tilde{c}^ℓ coefficients on $(g - 2)_\ell$ at tree-level. These are constrained by the non-observation of vacuum Čerenkov radiation of charged leptons and of photon decay into lepton-antilepton pairs. In particular, using LHAASO data for photons, as well as the measured maximum electron (muon) energies observed at the LHC (IceCube), we computed strict two-sided bounds on \tilde{c}^ℓ. As these constraints are more stringent than the ranges preferred for these coefficients by $(g - 2)_\ell$, we conclude that spin-degenerate LV cannot explain the corresponding tensions.

Acknowledgments

We thank David Hertzog, Martin Hoferichter, Matthew Mewes, and Philipp Schmidt-Wellenburg for useful discussions and helpful comments. The work of A.C. and F.K. is supported by a Professorship Grant (PP00P2_176884) of the Swiss National Science Foundation. M.S. is indebted to FAPEMA Universal 00830/19, CNPq Produtividade 310076/2021-8, and CAPES/Finance Code 001.
Figure 2. Top (bottom): difference of the experimental average and the SM prediction of the anomalous magnetic moment of the electron (muon), \(\Delta a_e (\Delta a_\mu) \), versus the charged-lepton energy. The threshold energy for photon decay, \(E_{th}^e \) (\(E_{th}^\mu \)), in eq. (4.5) is illustrated by a dashed, black curve and the regions of \(\Delta a_e(\mu) \) excluded by photon decay are coloured in grey. We do not show \(\Delta a_e(\mu) \), since the whole 2\(\sigma \)-preferred region is excluded by LHAASO. The threshold energy for vacuum Čerenkov radiation, \(E_{th}^e \) (\(E_{th}^\mu \)), given in eq. (4.1) is represented by a solid, black curve, whereas the lepton energies probed by IceCube, by the LHC, and by the proposed Future Circular Hadron Collider (FCC-hh) are indicated by horizontal lines. The regions to the right of the \(\Delta a_e(\mu) \)-value corresponding to the intersection of the curve \(E_{th}^e \) (\(E_{th}^\mu \)) with the LHC (IceCube) line are excluded. We observe that the IceCube measurements exclude the values of \(\tilde{\epsilon}^{(\mu)} \) that would be required to explain the tension in \(\Delta a_\mu \).
Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] J. Schwinger, *On quantum-electrodynamics and the magnetic moment of the electron*, Phys. Rev. 73 (1948) 416 [SPIRE].

[2] P. Kusch and H.M. Foley, *The magnetic moment of the electron*, Phys. Rev. 74 (1948) 250 [SPIRE].

[3] D. Hanneke, S. Fogwell and G. Gabrielse, *New measurement of the electron magnetic moment and the fine structure constant*, Phys. Rev. Lett. 100 (2008) 120801 [arXiv:0801.1134] [SPIRE].

[4] R.H. Parker, C. Yu, W. Zhong, B. Estey and H. Müller, *Measurement of the fine-structure constant as a test of the Standard Model*, Science 360 (2018) 191 [arXiv:1812.04130] [SPIRE].

[5] L. Morel, Z. Yao, P. Cladé and S. Guellati-Khélifa, *Determination of the fine-structure constant with an accuracy of 81 parts per trillion*, Nature 588 (2020) 61 [SPIRE].

[6] Muon g-2 collaboration, *Final report of the E821 muon anomalous magnetic moment measurement at BNL*, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [SPIRE].

[7] Muon g-2 collaboration, *Measurement of the positive muon anomalous magnetic moment to 0.46 ppm*, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [SPIRE].

[8] Muon g-2 collaboration, *Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g − 2 Experiment*, Phys. Rev. D 103 (2021) 072002 [arXiv:2104.03247] [SPIRE].

[9] Muon g-2 collaboration, *Magnetic-field measurement and analysis for the Muon g − 2 Experiment at Fermilab*, Phys. Rev. A 103 (2021) 042208 [arXiv:2104.03201] [SPIRE].

[10] Muon g-2 collaboration, *Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab*, Phys. Rev. Accel. Beams 24 (2021) 044002 [arXiv:2104.03240] [SPIRE].

[11] Muon g-2 collaboration, *Measurement of the positive muon anomalous magnetic moment to 0.46 ppm*, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [SPIRE].

[12] T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, *Complete tenth-order QED contribution to the muon g − 2*, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [SPIRE].

[13] T. Aoyama, T. Kinoshita and M. Nio, *Theory of the anomalous magnetic moment of the electron*, Atoms 7 (2019) 28 [SPIRE].

[14] A. Czarnecki, W.J. Marciano and A. Vainshtein, *Refinements in electroweak contributions to the muon anomalous magnetic moment*, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. 73 (2006) 119901] [hep-ph/0212229] [SPIRE].
[15] C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to $(g - 2)_\mu$ after the Higgs-boson mass measurement, *Phys. Rev. D* **88** (2013) 053005 [arXiv:1306.5546] [INSPIRE].

[16] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarization contributions to the Standard Model predictions of the muon $g - 2$ and $\alpha(m_Z^2)$ using newest hadronic cross-section data, *Eur. Phys. J. C* **77** (2017) 827 [arXiv:1706.09436] [INSPIRE].

[17] A. Keshavarzi, D. Nomura and T. Teubner, $g - 2$ and $\alpha(M_Z^2)$: A new data-based analysis, *Phys. Rev. D* **88** (2013) 053005 [arXiv:1306.5546] [INSPIRE].

[18] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarization contributions to the Standard Model predictions of the muon $g - 2$ and $\alpha(M_Z^2)$ using newest hadronic cross-section data, *Eur. Phys. J. C* **77** (2017) 827 [arXiv:1706.09436] [INSPIRE].

[19] A. Keshavarzi, D. Nomura and T. Teubner, $g - 2$ and $\alpha(M_Z^2)$: A new data-based analysis, *Phys. Rev. D* **97** (2018) 114025 [arXiv:1802.02995] [INSPIRE].

[20] G. Colangelo, M. Hoferichter and P. Stoffer, Two-pion contribution to hadronic vacuum polarization, *JHEP* **02** (2019) 006 [arXiv:1810.00007] [INSPIRE].

[21] M. Hoferichter, B.-L. Hoid and B. Kubis, Three-pion contribution to hadronic vacuum polarization, *JHEP* **08** (2019) 137 [arXiv:1907.01556] [INSPIRE].

[22] A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, *Phys. Lett. B* **734** (2014) 144 [arXiv:1403.6400] [INSPIRE].

[23] K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment reexamined, *Phys. Rev. D* **70** (2004) 113006 [hep-ph/0312226] [INSPIRE].

[24] P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole contribution to the $(g_\mu - 2)$: A rational approach, *Phys. Rev. D* **95** (2017) 054026 [arXiv:1701.05829] [INSPIRE].

[25] G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: two-pion contributions, *JHEP* **04** (2017) 161 [arXiv:1702.07347] [INSPIRE].

[26] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold and S.P. Schneider, Dispersion relation for hadronic light-by-light scattering: pion pole, *JHEP* **10** (2018) 141 [arXiv:1808.04823] [INSPIRE].

[27] A. Gérardin, H.B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form factor with $N_f = 2 + 1$ Wilson quarks, *Phys. Rev. D* **100** (2019) 034520 [arXiv:1903.09471] [INSPIRE].

[28] J. Bijnen, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment, *Phys. Lett. B* **798** (2019) 134994 [arXiv:1908.03331] [INSPIRE].

[29] G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub and P. Stoffer, Longitudinal short-distance constraints for the hadronic light-by-light contribution to $(g - 2)_\mu$ with large-N_c Regge models, *JHEP* **03** (2020) 101 [arXiv:1910.13432] [INSPIRE].
[30] T. Blum et al., Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett. 124 (2020) 132002 [arXiv:1911.08123] [inSPIRE].

[31] G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera and P. Stoffer, Remarks on higher-order hadronic corrections to the muon $g - 2$, Phys. Lett. B 735 (2014) 90 [arXiv:1403.7512] [inSPIRE].

[32] Sz. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [inSPIRE].

[33] C. Alexandrou et al., Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions, arXiv:2206.15084 [inSPIRE].

[34] M. Cè et al., Window observable for the hadronic vacuum polarization contribution to the muon $g - 2$ from lattice QCD, JHEP 08 (2022) 220 [arXiv:2203.08676] [inSPIRE].

[35] G. Colangelo et al., Data-driven evaluations of Euclidean windows to scrutinize hadronic vacuum polarization, Phys. Lett. B 833 (2022) 137313 [arXiv:2205.12963] [inSPIRE].

[36] A. Crivellin, M. Hoferichter, C.A. Manzari and M. Montull, Hadronic vacuum polarization: $(g - 2)_\mu$ versus global electroweak fits, Phys. Rev. Lett. 125 (2020) 091801 [arXiv:2003.04886] [inSPIRE].
[48] A. Falkowski, D.M. Straub and A. Vicente, Vector-like leptons: Higgs decays and collider phenomenology, *JHEP* 05 (2014) 092 [arXiv:1312.5329] [inSPIRE].

[49] W. Altmannshofer, M. Carena and A. Crivellin, $L_\mu - L_\tau$ theory of Higgs flavor violation and $(g - 2)_\mu$, *Phys. Rev. D* 94 (2016) 095026 [arXiv:1604.06221] [inSPIRE].

[50] K. Kowalska and E.M. Sessolo, Expectations for the muon $(g - 2)_\mu$ in simplified models with dark matter, *JHEP* 09 (2017) 112 [arXiv:1707.00753] [inSPIRE].

[51] A. Crivellin, M. Hoferichter and P. Schmidt-Wellenburg, Combined explanations of $(g - 2)_\mu,e$ and implications for a large muon EDM, *Phys. Rev. D* 98 (2018) 113002 [arXiv:1807.11484] [inSPIRE].

[52] P. Arnan, A. Crivellin, M. Fedele and F. Mescia, Generic loop effects of new scalars and fermions in $b \to s \ell^+ \ell^-$ and a vector-like 4th generation, *JHEP* 06 (2019) 118 [arXiv:1904.05890] [inSPIRE].

[53] A. Djouadi, T. Köhler, M. Spira and J. Tutas, (eb), (et) type leptoquarks at ep colliders, *Z. Phys. C* 46 (1990) 679 [inSPIRE].

[54] K. Cheung, Muon anomalous magnetic moment and leptoquark solutions, *Phys. Rev. D* 64 (2001) 033001 [hep-ph/0102238] [inSPIRE].

[55] M. Bauer and M. Neubert, Minimal leptoquark explanation for the $R_{D^{(*)}}, R_K$, and $(g - 2)_\mu$ anomalies, *Phys. Rev. Lett.* 116 (2016) 141802 [arXiv:1511.01900] [inSPIRE].

[56] E. Coluccio Leskow, G. D’Ambrosio, A. Crivellin and D. Müller, $(g - 2)_\mu$, lepton flavor violation, and Z decays with leptoquarks: Correlations and future prospects, *Phys. Rev. D* 95 (2017) 055018 [arXiv:1612.06858] [inSPIRE].

[57] I. Doršner, S. Fajfer and O. Sumensari, Muon $g - 2$ and scalar leptoquark mixing, *JHEP* 06 (2020) 089 [arXiv:1910.03877] [inSPIRE].

[58] A. Crivellin, D. Müller and F. Saturnino, Correlating $h \to \mu^+ \mu^-$ to the anomalous magnetic moment of the muon via leptoquarks, *Phys. Rev. Lett.* 127 (2021) 021801 [arXiv:2008.02643] [inSPIRE].
[65] A. Crivellin, C. Greub, D. Müller and F. Saturnino, *Scalar leptoquarks in leptonic processes*, *JHEP* **02** (2021) 182 [arXiv:2010.06593] [nSPIRE].

[66] S. Fajfer, J.F. Kamenik and M. Tammaro, *Interplay of New Physics effects in (g − 2)_μ and h → ℓ^+ℓ^−-lessons from SMEFT*, *JHEP* **06** (2021) 099 [arXiv:2103.10859] [nSPIRE].

[67] A. Greljo, P. Stangl and A.E. Thomsen, *A model of muon anomalies*, *Phys. Lett. B* **820** (2021) 136554 [arXiv:2103.13991] [nSPIRE].

[68] J. Cao, P. Wan, L. Wu and J.M. Yang, *Lepton-specific two-Higgs-doublet model: Experimental constraints and implication on Higgs phenomenology*, *Phys. Rev. D* **80** (2009) 071701(R) [arXiv:0909.5148] [nSPIRE].

[69] A. Broggio, E.J. Chun, M. Passera, K.M. Patel and S.K. Vempati, *Limiting two-Higgs-doublet models*, *JHEP* **11** (2014) 058 [arXiv:1409.3199] [nSPIRE].

[70] L. Wang and X.-F. Han, *A light pseudoscalar of 2HDM confronted with muon g − 2 and experimental constraints*, *JHEP* **05** (2015) 039 [arXiv:1412.4874] [nSPIRE].

[71] V. Ilisie, *New Barr-Zee contributions to (g − 2)_µ in two-Higgs-doublet models*, *JHEP* **04** (2015) 077 [arXiv:1502.04199] [nSPIRE].

[72] T. Abe, R. Sato and K. Yagyu, *Lepton-specific two Higgs doublet model as a solution of muon g − 2 anomaly*, *JHEP* **07** (2015) 064 [arXiv:1504.07059] [nSPIRE].

[73] A. Crivellin, J. Heeck and P. Stoffer, *Perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model*, *Phys. Rev. Lett.* **116** (2016) 081801 [arXiv:1507.07567] [nSPIRE].

[74] S.-P. Li, X.-Q. Li and Y.-D. Yang, *Muon g − 2 in a U(1)-symmetric two-Higgs-doublet model*, *Phys. Rev. D* **99** (2019) 035010 [arXiv:1808.02424] [nSPIRE].

[75] S.-P. Li, X.-Q. Li, Y.-Y. Li, Y.-D. Yang and X. Zhang, *Power-aligned 2HDM: a correlative perspective on (g − 2)_e,µ*, *JHEP* **01** (2021) 034 [arXiv:2010.02799] [nSPIRE].

[76] A.G. Cohen, D.B. Kaplan and A.E. Nelson, *Effective field theory, black holes, and the cosmological constant*, *Phys. Rev. Lett.* **82** (1999) 4971 [hep-th/9803464] [nSPIRE].

[77] A.G. Cohen and D.B. Kaplan, *Lorentz-violating extension of the standard model*, *Phys. Rev. D* **58** (1998) 116002 [hep-ph/9809521] [nSPIRE].

[78] A. Capolupo, G. Lambiase and A. Quaranta, *Muon g − 2 anomaly and non-locality*, *Phys. Lett. B* **829** (2022) 137128 [arXiv:2206.06037] [nSPIRE].

[79] D. Colladay and V.A. Kostelecký, *CPT violation and the standard model*, *Phys. Rev. D* **55** (1997) 6760 [hep-ph/9703464] [nSPIRE].

[80] D. Colladay and V.A. Kostelecký, *Lorentz-violating extension of the standard model*, *Phys. Rev. D* **58** (1998) 116002 [hep-ph/9809521] [nSPIRE].

[81] C.M. Reyes, L.F. Urrutia and J.D. Vergara, *Quantization of the Myers-Pospelov model: The photon sector interacting with standard fermions as a perturbation of QED*, *Phys. Rev. D* **78** (2008) 125011 [arXiv:0810.5379] [nSPIRE].

[82] C.M. Reyes, L.F. Urrutia and J.D. Vergara, *The photon sector in the quantum Myers-Pospelov model: An improved description*, *Phys. Lett. B* **675** (2009) 336 [arXiv:0810.4346] [nSPIRE].

[83] C.M. Reyes, *Causality and stability for Lorentz-CPT violating electrodynamics with dimension-5 operators*, *Phys. Rev. D* **82** (2010) 125036 [arXiv:1011.2971] [nSPIRE].
[84] F.R. Klinkhamer and M. Schreck, Consistency of isotropic modified Maxwell theory: Microcausality and unitarity, *Nucl. Phys. B* 848 (2011) 90 [arXiv:1011.4258] [nSPIRE].

[85] F.R. Klinkhamer and M. Schreck, Models for low-energy Lorentz violation in the photon sector: Addendum to ‘Consistency of isotropic modified Maxwell theory’, *Nucl. Phys. B* 856 (2012) 666 [arXiv:1110.4101] [nSPIRE].

[86] M. Schreck, Analysis of the consistency of parity-odd nonbirefringent modified Maxwell theory, *Phys. Rev. D* 86 (2012) 065038 [arXiv:1111.4258] [nSPIRE].

[87] F.R. Klinkhamer and M. Schreck, Models for low-energy Lorentz violation in the photon sector: Addendum to ‘Consistency of isotropic modified Maxwell theory’, *Nucl. Phys. B* 856 (2012) 666 [arXiv:1110.4258] [nSPIRE].

[88] M. Schreck, Analysis of the consistency of parity-odd nonbirefringent modified Maxwell theory, *Phys. Rev. D* 86 (2012) 065038 [arXiv:1111.4258] [nSPIRE].

[89] J. Lopez-Sarrion and C.M. Reyes, Microcausality and quantization of the fermionic Myers-Pospelov model, *Eur. Phys. J. C* 72 (2012) 2150 [arXiv:1109.5927] [nSPIRE].

[90] C.M. Reyes, Unitarity in higher-order Lorentz-invariance violating QED, *Phys. Rev. D* 87 (2013) 125028 [arXiv:1311.0032] [nSPIRE].

[91] M. Schreck, Quantum field theory based on birefringent modified Maxwell theory, *Phys. Rev. D* 89 (2014) 085013 [arXiv:1311.0032] [nSPIRE].

[92] M. Schreck, Quantum field theoretic properties of Lorentz-violating operators of nonrenormalizable dimension in the photon sector, *Phys. Rev. D* 89 (2014) 105019 [arXiv:1312.4916] [nSPIRE].

[93] M. Maniatis and C.M. Reyes, Unitarity in a Lorentz symmetry breaking model with higher-order operators, *Phys. Rev. D* 89 (2014) 056009 [arXiv:1401.3752] [nSPIRE].

[94] J.R. Nascimento, A.Yu. Petrov and C.M. Reyes, Renormalization in a Lorentz-violating model and higher-order operators, *Eur. Phys. J. C* 78 (2018) 541 [arXiv:1706.01466] [nSPIRE].

[95] V.A. Kostelecký and N. Russell, Data tables for Lorentz and CPT violation, *Rev. Mod. Phys.* 83 (2011) 11 [arXiv:0801.0287] [nSPIRE].

[96] M. Hayakawa, Perturbative analysis on infrared aspects of noncommutative QED on R^4, *Phys. Lett. B* 478 (2000) 394 [hep-th/9912094] [nSPIRE].

[97] V.E. Mouchrek-Santos, M.M. Ferreira Jr. and C. Miller, A dimension five Lorentz-violating nonminimal coupling for mesons in the KLZ model, *Nucl. Phys. B* 945 (2019) 114677 [arXiv:1808.02029] [nSPIRE].

[98] R. Bluhm, V.A. Kostelecký and N. Russell, CPT and Lorentz tests in Penning traps, *Phys. Rev. D* 57 (1998) 3932 [hep-ph/9809543] [nSPIRE].

[99] R. Bluhm, Theoretical analysis of CPT and Lorentz tests in Penning traps, in Meeting on CPT and Lorentz symmetry, (1998), p. 103 [hep-ph/9904508] [nSPIRE].
[101] R. Bluhm, V.A. Kostelecký and N. Russell, *Testing CPT and Lorentz symmetry with protons and antiprotons in Penning traps*, AIP Conf. Proc. 457 (1999) 133 [hep-ph/9810310] [SPIRE].

[102] R. Bluhm, V.A. Kostelecký and C.D. Lane, *CPT and Lorentz tests with muons*, Phys. Rev. Lett. 84 (2000) 1098 [hep-ph/9912451] [SPIRE].

[103] W.F. Chen and G. Kunstatter, *Constraint from the Lamb shift and anomalous magnetic moment on radiatively induced Lorentz and CPT violation in quantum electrodynamics*, Phys. Rev. D 62 (2000) 105029 [hep-ph/0002294] [SPIRE].

[104] Muon g-2 collaboration, *Testing CPT and Lorentz invariance with the anomalous spin precession of the muon*, in 2nd meeting on CPT and Lorentz symmetry, World Scientific, Singapore (2002), p. 305 [hep-ex/0110044] [SPIRE].

[105] Muon (g-2) collaboration, *Search for Lorentz and CPT violation effects in muon spin precession*, Phys. Rev. Lett. 100 (2008) 091602 [arXiv:0709.4670] [SPIRE].

[106] V.A. Kostelecký and M. Mewes, *Fermions with Lorentz-violating operators of arbitrary dimension*, Phys. Rev. D 88 (2013) 096006 [arXiv:1308.4973] [SPIRE].

[107] A.H. Gomes, V.A. Kostelecký and A.J. Vargas, *Laboratory tests of Lorentz and CPT symmetry with muons*, Phys. Rev. D 90 (2014) 076009 [arXiv:1407.7748] [SPIRE].

[108] S. Aghababaei, M. Haghighat and I. Motie, *Muon anomalous magnetic moment in the standard model extension*, Phys. Rev. D 96 (2017) 115028 [arXiv:1712.09028] [SPIRE].

[109] Muon g-2 collaboration, *CPT- and Lorentz-violation tests with muon g − 2*, in 8th meeting on CPT and Lorentz symmetry, World Scientific, Singapore (2020), p. 174 [arXiv:1907.00162] [SPIRE].

[110] H.-X. Lin, J. Tang, S. Vihonen and P. Pasquini, *Nonminimal Lorentz invariance violation in light of the muon anomalous magnetic moment and long-baseline neutrino oscillation data*, Phys. Rev. D 105 (2022) 096029 [arXiv:2111.14336] [SPIRE].

[111] C.D. Carone, M. Sher and M. Vanderhaeghen, *New bounds on isotropic Lorentz violation*, Phys. Rev. D 74 (2006) 077901 [hep-ph/0609150] [SPIRE].

[112] A. Moyotl, H. Novales-Sánchez, J.J. Toscano and E.S. Tututi, *Gauge invariant electromagnetic properties of fermions induced by CPT-violation in the Standard Model Extension*, Int. J. Mod. Phys. A 29 (2014) 1450039 [arXiv:1306.0262] [SPIRE].

[113] J.A. Ahuatzi-Avendaño, J. Montaño, H. Novales-Sánchez, M. Salinas and J.J. Toscano, *Bounds on Lorentz-violating Yukawa couplings via lepton electromagnetic moments*, Phys. Rev. D 103 (2021) 055003 [Erratum ibid. 104 (2021) 119902] [arXiv:2008.12370] [SPIRE].

[114] J. Montaño-Domínguez, H. Novales-Sánchez, M. Salinas and J.J. Toscano, *Lorentz violation in nucleon electromagnetic moments*, Phys. Rev. D 105 (2022) 075018 [arXiv:2107.12444] [SPIRE].

[115] J. Montaño-Domínguez, H. Novales-Sánchez, M. Salinas and J.J. Toscano, *Lorentz violation in electromagnetic moments of fermions*, in 9th meeting on CPT and Lorentz symmetry, (2022) [arXiv:2208.12399] [SPIRE].

[116] P.L. Cástulo, J.J. Toscano and E.S. Tututi, *Effects of Lorentz violation in the Higgs sector of the minimal standard model extension*, Int. J. Mod. Phys. A 37 (2022) 2250138 [arXiv:2205.06332] [SPIRE].
L.S. Dreissen, C.-H. Yeh, H.A. Fürst, K.C. Grensemann and T.E. Mehlstäubler, *New bounds on Lorentz violation from a composite pulse method in a trapped ion*, arXiv:2206.00570 [nSPIRE].

A. Crivellin, F. Kirk and M. Schreck, *Implications of SU(2)_L gauge invariance for constraints on Lorentz violation*, JHEP 04 (2021) 082 [arXiv:2009.01247] [nSPIRE].

B. Altschul, *Vacuum Čerenkov radiation in Lorentz-violating theories without CPT violation*, Phys. Rev. Lett. 98 (2007) 041603 [hep-th/0609030] [nSPIRE].

A. Crivellin, F. Kirk and M. Schreck, *Implications of SU(2)_L gauge invariance for constraints on Lorentz violation*, JHEP 04 (2021) 082 [arXiv:2009.01247] [nSPIRE].

B. Altschul, *Vacuum Čerenkov radiation in Lorentz-violating theories without CPT violation*, Phys. Rev. Lett. 98 (2007) 041603 [hep-th/0609030] [nSPIRE].

V.A. Kostelecký, *Gravity, Lorentz violation, and the standard model*, Phys. Rev. D 69 (2004) 105009 [hep-th/0312310] [nSPIRE].

A.S. Friedman et al., *Constraints on Lorentz invariance and CPT violation using optical photometry and polarimetry of active galaxies BL Lacertae and S5 B0716 + 714*, Phys. Rev. D 99 (2019) 035045 [arXiv:1809.08356] [nSPIRE].

F. Kislat, *Constraints on Lorentz invariance violation from optical polarimetry of astrophysical objects*, Symmetry 10 (2018) 596 [nSPIRE].

A.S. Friedman et al., *Improved constraints on anisotropic birefringent Lorentz invariance and CPT violation from broadband optical polarimetry of high redshift galaxies*, Phys. Rev. D 102 (2020) 043008 [arXiv:2003.00647] [nSPIRE].

R. Gerasimov, P. Bhoj and F. Kislat, *New constraints on Lorentz invariance violation from combined linear and circular optical polarimetry of extragalactic sources*, Symmetry 13 (2021) 880 [arXiv:2104.00238] [nSPIRE].

Y. Michimura et al., *New limit on Lorentz violation using a double-pass optical ring cavity*, Phys. Rev. Lett. 110 (2013) 200401 [arXiv:1303.6709] [nSPIRE].

M. Nagel et al., *Direct terrestrial test of Lorentz symmetry in electrodynamics to 10^{-18}*, Nature Commun. 6 (2015) 8174 [arXiv:1412.6954] [nSPIRE].

E.F. Beall, *Measuring the gravitational interaction of elementary particles*, Phys. Rev. D 1 (1970) 961 [nSPIRE].

S. Coleman and S.L. Glashow, *Cosmic ray and neutrino tests of special relativity*, Phys. Lett. B 405 (1997) 249 [hep-ph/9703240] [nSPIRE].

G.D. Moore and A.E. Nelson, *Lower bound on the propagation speed of gravity from gravitational Čerenkov radiation*, JHEP 09 (2001) 023 [hep-ph/0106220] [nSPIRE].

R. Lehnert and R. Potting, *Čerenkov effect in Lorentz-violating vacua*, Phys. Rev. D 70 (2004) 125010 [Erratum ibid. 70 (2004) 129906] [hep-ph/0408285] [nSPIRE].

R. Lehnert and R. Potting, *Vacuum Čerenkov radiation*, Phys. Rev. Lett. 93 (2004) 110402 [hep-ph/0406128] [nSPIRE].

C. Kaufhold and F.R. Klinkhamer, *Vacuum Čerenkov radiation and photon triple-splitting in a Lorentz-noninvariant extension of quantum electrodynamics*, Nucl. Phys. B 734 (2006) 1 [hep-th/0508074] [nSPIRE].

C. Kaufhold and F.R. Klinkhamer, *Vacuum Čerenkov radiation in spacelike Maxwell-Chern-Simons theory*, Phys. Rev. D 76 (2007) 025024 [arXiv:0704.3255] [nSPIRE].
[135] M.A. Hohensee, R. Lehnert, D.F. Phillips and R.L. Walsworth, Limits on isotropic Lorentz violation in QED from collider physics, *Phys. Rev. D* **80** (2009) 036010 [arXiv:0809.3442] [inSPIRE].

[136] F.R. Klinkhamer and M. Schreck, New two-sided bound on the isotropic Lorentz-violating parameter of modified Maxwell theory, *Phys. Rev. D* **78** (2008) 085026 [arXiv:0809.3217] [inSPIRE].

[137] B. Altschul, Absence of long-wavelength Cerenkov radiation with isotropic Lorentz and CPT violation, *Phys. Rev. D* **90** (2014) 021701(R) [arXiv:1405.6189] [inSPIRE].

[138] K. Schober and B. Altschul, No vacuum Cerenkov radiation losses in the timelike Lorentz-violating Chern-Simons theory, *Phys. Rev. D* **92** (2015) 125016 [arXiv:1510.05571] [inSPIRE].

[139] J.S. Díaz and F.R. Klinkhamer, Parton-model calculation of a nonstandard decay process in isotropic modified Maxwell theory, *Phys. Rev. D* **92** (2015) 125007 [arXiv:1504.01324] [inSPIRE].

[140] V.A. Kostelecký and J.D. Tasson, Constraints on Lorentz violation from gravitational Čerenkov radiation, *Phys. Lett. B* **749** (2015) 551 [arXiv:1508.07007] [inSPIRE].

[141] D. Colladay, P. McDonald and R. Potting, Cerenkov radiation with massive, CPT-violating photons, *Phys. Rev. D* **93** (2016) 125007 [arXiv:1603.00308] [inSPIRE].

[142] D. Colladay, J.P. Noordmans and R. Potting, Covariant quantization of CPT-violating photons, *Phys. Rev. D* **95** (2017) 025025 [arXiv:1610.00169] [inSPIRE].

[143] D. Colladay, J.P. Noordmans and R. Potting, Cerenkov-like emission of Z bosons, *J. Phys. Conf. Ser.* **873** (2017) 012017 [inSPIRE].

[144] M. Schreck, Vacuum Cherenkov radiation for Lorentz-violating fermions, *Phys. Rev. D* **96** (2017) 095026 [arXiv:1702.03171] [inSPIRE].

[145] B. Altschul, Why Cerenkov radiation may not occur, even when it is allowed by Lorentz-violating kinematics, *Symmetry* **9** (2017) 250 [inSPIRE].

[146] M. Schreck, Vacuum Cherenkov radiation for Lorentz-violating fermions, *J. Phys. Conf. Ser.* **952** (2018) 012018 [arXiv:1711.11167] [inSPIRE].

[147] M. Schreck, (Gravitational) vacuum Cherenkov radiation, *Symmetry* **10** (2018) 424 [arXiv:1909.11045] [inSPIRE].

[148] CMS collaboration, Search for new physics in the lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s} = 13$ TeV, *JHEP* **07** (2022) 067 [arXiv:2202.06075] [inSPIRE].

[149] AMS collaboration, Leptons in near earth orbit, *Phys. Lett. B* **484** (2000) 10 [Erratum *ibid.* **495** (2000) 440] [inSPIRE].

[150] M. Boezio et al., Measurements of cosmic-ray electrons and positrons by the Wizard/CAPRICE collaboration, *Adv. Space Res.* **27** (2001) 669 [inSPIRE].

[151] C. Grimani et al., Measurements of the absolute energy spectra of cosmic-ray positrons and electrons above 7 GeV, *Astron. Astrophys.* **392** (2002) 287 [inSPIRE].
[153] H.E.S.S. collaboration, *Energy spectrum of cosmic-ray electrons at TeV energies*, Phys. Rev. Lett. 101 (2008) 261104 [arXiv:0811.3894] [inSPIRE].

[154] PAMELA collaboration, *Cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV*, Phys. Rev. Lett. 106 (2011) 201101 [arXiv:1103.2880] [inSPIRE].

[155] Fermi-LAT collaboration, *Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope*, Phys. Rev. Lett. 108 (2012) 011103 [arXiv:1109.0521] [inSPIRE].

[156] CALET collaboration, *Energy spectrum of cosmic-ray electron and positron from 10 GeV to 3 TeV observed with the Calorimetric Electron Telescope on the International Space Station*, Phys. Rev. Lett. 119 (2017) 181101 [arXiv:1712.01711] [inSPIRE].

[157] AMS collaboration, *Towards understanding the origin of cosmic-ray electrons*, Phys. Rev. Lett. 122 (2019) 101101 [inSPIRE].

[158] IceCube collaboration, *Characterization of the atmospheric muon flux in IceCube*, Astropart. Phys. 78 (2016) 1 [arXiv:1506.07981] [inSPIRE].

[159] Muon Collider collaboration, *A muon collider facility for physics discovery*, arXiv:2203.08033 [inSPIRE].

[160] S. Liberati, T.A. Jacobson and D. Mattingly, *High energy constraints on Lorentz symmetry violations*, in 2nd meeting on CPT and Lorentz symmetry, World Scientific, Singapore (2002), p. 298 [hep-ph/0110094] [inSPIRE].

[161] T. Jacobson, S. Liberati and D. Mattingly, *TeV astrophysics constraints on Planck scale Lorentz violation*, Phys. Rev. D 66 (2002) 081302(R) [hep-ph/0112207] [inSPIRE].

[162] T. Jacobson, S. Liberati and D. Mattingly, *Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics*, Phys. Rev. D 67 (2003) 124011 [hep-ph/0209264] [inSPIRE].

[163] T. Jacobson, S. Liberati and D. Mattingly, *Lorentz violation at high energy: Concepts, phenomena, and astrophysical constraints*, Annals Phys. 321 (2006) 150 [astro-ph/0505267] [inSPIRE].

[164] L. Shao and B.-Q. Ma, *Lorentz violation effects on astrophysical propagation of very high energy photons*, Mod. Phys. Lett. A 25 (2010) 3251 [arXiv:1007.2269] [inSPIRE].

[165] B. Altschul, *Modeling-free bounds on nonrenormalizable isotropic Lorentz and CPT violation in QED*, Phys. Rev. D 83 (2011) 056012 [arXiv:1010.2779] [inSPIRE].

[166] G. Rubtsov, P. Satunin and S. Sibiryakov, *Calculation of cross sections in Lorentz-violating theories*, Phys. Rev. D 86 (2012) 085012 [arXiv:1204.5782] [inSPIRE].

[167] P. Satunin, *Width of photon decay in a magnetic field: Elementary semiclassical derivation and sensitivity to Lorentz violation*, Phys. Rev. D 87 (2013) 105015 [arXiv:1301.5707] [inSPIRE].

[168] G. Rubtsov, P. Satunin and S. Sibiryakov, *Prospective constraints on Lorentz violation from ultrahigh-energy photon detection*, Phys. Rev. D 89 (2014) 123011 [arXiv:1312.4368] [inSPIRE].

[169] T. Kalaydzhyan, *Testing gravity on accelerators*, in 7th meeting on CPT and Lorentz symmetry, World Scientific, Singapore (2017), p. 283 [arXiv:1608.07458] [inSPIRE].
[170] H. Martínez-Huerta and A. Pérez-Lorenzana, *Vacuum Cherenkov radiation and photon decay rates from generic Lorentz invariance violation*, J. Phys. Conf. Ser. **761** (2016) 012035 [arXiv:1609.07185] [inSPIRE].

[171] H. Martínez-Huerta and A. Pérez-Lorenzana, *Restrictions from Lorentz invariance violation on cosmic ray propagation*, Phys. Rev. D **95** (2017) 063001 [arXiv:1610.00047] [inSPIRE].

[172] H. Martínez-Huerta and A. Pérez-Lorenzana, *Photon emission and decay from generic Lorentz invariance violation*, J. Phys. Conf. Ser. **866** (2017) 012006 [arXiv:1702.00913] [inSPIRE].

[173] H. Martínez-Huerta and A. Pérez-Lorenzana, *Effects of Lorentz invariance violation on cosmic ray photon emission and gamma ray decay processes*, PoS *ICRC2017* (2018) 556 [arXiv:1709.08247] [inSPIRE].

[174] F.R. Klinkhamer, M. Niechciol and M. Risse, *Improved bound on isotropic Lorentz violation in the photon sector from extensive air showers*, Phys. Rev. D **96** (2017) 116011 [arXiv:1710.02507] [inSPIRE].

[175] H. Martínez-Huerta, *Lorentz-violation constraints with astroparticle physics*, in 8th meeting on CPT and Lorentz symmetry, World Scientific, Singapore (2020), p. 134 [arXiv:1906.06293] [inSPIRE].

[176] P. Satunin, *New constraints on Lorentz invariance violation from Crab Nebula spectrum beyond 100 TeV*, Eur. Phys. J. C **79** (2019) 1011 [arXiv:1906.08221] [inSPIRE].

[177] L. Chen, Z. Xiong, C. Li, S. Chen and H. He, *Strong constraints on Lorentz violation using new γ-ray observations around PeV*, Chin. Phys. C **45** (2021) 105105 [arXiv:2105.07927] [inSPIRE].

[178] F. Duenkel, M. Niechciol and M. Risse, *Photon decay in ultrahigh-energy air showers: Stringent bound on Lorentz violation*, Phys. Rev. D **104** (2021) 015010 [arXiv:2106.01012] [inSPIRE].

[179] J.-J. Wei and X.-F. Wu, *Tests of Lorentz invariance*, arXiv:2111.02029 [inSPIRE].

[180] LHAASO collaboration, *Introduction to Large High Altitude Air Shower Observatory (LHAASO)*, Chin. Astron. Astrophys. **43** (2019) 457.

[181] Z. Cao et al., *Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray galactic sources*, Nature **594** (2021) 33.

[182] C. Li and B.-Q. Ma, *Ultrahigh-energy photons from LHAASO as probes of Lorentz symmetry violations*, Phys. Rev. D **104** (2021) 063012 [arXiv:2105.07967] [inSPIRE].