Title: Allododecaploid yeasts: synthetic hybrids of six species

Authors: David Peris1,\dagger, Ryan V. Moriarty1, William G. Alexander1,‡, Russell L. Wrobel1, Chris Todd Hittinger1,*

Affiliations:

1Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America;

\daggerDepartment of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, 46980 Paterna, Valencia, Spain;

‡Department of Biology, Truman State University, Kirksville, MO, 63501

*Correspondence to: chittinger@wisc.edu (CTH)

Short title: Synthetic six-species hybrids

Field codes: Biotechnology
Abstract

Polyploidy generates diversity by increasing the number of copies of each chromosome. Many plants, animals, fungi, and other eukaryotes are ancient or recent polyploids, including some of the best-known evolutionary radiations, crops, and industrial organisms. Polyploidy facilitates differentiation and adaptation to new environments, but the tools to test its limits are lacking. Here we develop an iterative Hybrid Production (iHyPr) method to produce allododecaploid yeast strains with a base ploidy of 12n. Chromosomal instability increased dramatically as additional copies of the genome were added. These six-species hybrids rapidly improved their fitness during adaptive laboratory evolution. This new method for making synthetic hybrids will enable basic research on polyploidy, cancer, and chromosome biology, as well as more applied research on biofuels, bioproducts, and synthetic biology.

One sentence summary: We constructed six-species synthetic hybrids and showed that they were chromosomally unstable but able to adapt rapidly.

Keywords: Saccharomyces, synthetic hybrids, interspecific hybridization, biotechnology, genome instability
Main text

Polyploidy is a widespread phenomenon in biology. Organismal life cycles manipulate ploidy to promote dispersal, environmental robustness, and species diversification (1). One of the major drivers of evolutionary innovation is through whole genome duplication (2, 3). Polyploidization promotes genome instability and increases mutation rates, both of which can facilitate short-term adaptation to new environments (4). The karyotypic diversity generated by polyploidization can lead to tumorigenesis in some cancer types (5), but it can also be exploited to develop yeast strains to generate new bioproducts (6).

The baker’s yeast *Saccharomyces cerevisiae* has been one of the most important model organisms to study polyploidy in the context of evolution (7), its effects on mutation rate (4), and as a model of how cancer progresses as clonal populations adapt through driver mutations (8). Experimental evolution assays in *S. cerevisiae* and comparisons of the genomes of industrial *Saccharomyces* interspecific hybrids have also uncovered many of the same genetic mechanisms that occur during the clonal expansion of tumorigenic cells, such as aneuploidy and loss-of-heterozygosity (9, 10).

To experimentally test the limits of chromosome biology and polyploidy in yeasts, we developed an iterative Hybrid Production (iHyPr) method to construct a series of higher-order interspecific hybrids. First, we used two differentially marked HyPr plasmids, which each encode a drug-inducible *HO* gene (*homothallic switching endonuclease*) that promotes mating-type switching, to efficiently generate and select for two-species hybrids (11). Next, using two additional differentially marked HyPr plasmids, we crossed these two-species hybrids to construct three-species and four-species hybrids. Finally, we
constructed six-species hybrids using three different crossing schemes (Figure 1A, Figure S1).

In all three schemes, diploid genomes were successfully introduced from each of the six parental species, but some species contributed many fewer chromosomes than others to the final strains. Thus, even though the base ploidy of the final strains was allododecaploidy (12n), a ploidy level acquired by a handful of plants and animals in the wild (12, 13), none were euploid (Figure S2). During construction, chromosome losses were widespread and outnumbered gains (t-test p-value < 1.66*10^-2) (Figure S2). These aneuploidies rose dramatically as the number of species donating genomes increased (linear regression \(r^2 = 0.78, \) p-value = 3.33*10^-6) (Figure 1B, Figure S2). Complete chromosomal aneuploidies were much more common than aneuploidies caused by unbalanced translocations (97.31% versus 2.69% of total detected chromosomal aberrations). Mitochondrial genome inheritance had a significant impact on the retention of the nuclear genome (ANOVA multifactor p-value = 1.21*10^-3), with the mitochondrial genome donor tending to also contribute more nuclear chromosomes (Figure S3-S5).

To determine if the inherent chromosomal instability of these six-species hybrids could be harnessed, we tested how these new six-species hybrids altered their kinetic parameters during adaptive laboratory evolution (ALE) for an estimated 80 generations in a medium containing glucose or in another medium containing xylose, a sugar poorly metabolized by most *Saccharomyces* species (14). To provide some growth capability upon which to improve, we chose a *S. cerevisiae* parental strain that had been engineered by inserting xylose utilization genes into Chromosome IV (15, 16). Ancestral six-species hybrids grew slowly, and despite differing from each other in chromosomal composition
single-colony isolates of all 12 ALE replicates outperformed their ancestors in culturing conditions identical to the ALE (Wilcoxon rank sum test, \(p\)-value = 3.51*10^{-4}). This improvement in maximum growth rate on xylose occurred regardless of whether they were evolved on xylose or glucose, and many evolved strains outperformed the \textit{S. cerevisiae} reference strain (Figure 1C). In microplate culturing conditions, evolved hybrid populations grew as much as 71% faster on xylose than the reference \textit{S. cerevisiae} strain, and populations evolved on xylose outperformed those evolved on glucose (Wilcoxon rank sum test, \(p\)-value = 1.29*10^{-2}) (Table S2, Figure S6), giving further support to the utility of iHyPr and ALE.

Higher-order synthetic hybrids allow investigators to rapidly combine traits from many different parents, such as the xylose consumption of the cellulosic biofuel reference strain of \textit{S. cerevisiae} with traits from other \textit{Saccharomyces} species. Both ALE selection regimes improved performance on xylose, probably partly due to the removal of interspecific incompatibilities through chromosomal loss and partly due to condition-specific effects (Figure 1C, Figure S2, Figure S6). The karyotypic diversity generated allowed for selection from a great deal of phenotypic diversity (Figure S2), a process of great interest for many industrial applications. The fitness improvements observed here also mimic the genetic processes seen in tumor cells escaping antitumorigenic treatments, where polyploidy drives genomic instability and evolution (8). In summary, higher-order allopolyploids constructed with iHyPr rapidly acquire genome aberrations that involve multiple species and can rapidly adapt to new environmental conditions. This new technology pushes the yeast cell toward its limits in pursuit of basic research
questions in chromosome biology and evolutionary genetics, as well as potential industrial applications.

References and Notes

1. Y. Van de Peer, E. Mizrachi, K. Marchal, *Nat Rev Genet* **18**, 411-424 (2017).
2. S. P. Otto, J. Whitton, *Annu Rev Genet* **34**, 401-437 (2000).
3. B. K. Mable, M. A. Alexandrou, M. Taylor, I, *Journal of Zoology* **284**, 151-182 (2011).
4. A. M. Selmecki et al., *Nature* **519**, 349-352 (2015).
5. L. Pikor, K. Thu, E. Vucic, W. Lam, *Cancer and Metastasis Reviews* **32**, 341-352 (2013).
6. J. Steensels et al., *FEMS Microbiol Rev* **38**, 947-995 (2014).
7. W. Albertin, P. Marullo, *Proc R Soc Lond B Biol Sci* **279**, 2497-2509 (2012).
8. K. Sprouffske, L.-M. Merlo, P. J. Gerrish, C. C. Maley, P. D. Sniegowski, *Curr Biol* **22**, R762-R771 (2012).
9. M. J. Dunham et al., *Proc. Natl. Acad. Sci. U. S. A.* **99**, 16144-16149 (2002).
10. C. S. S. Heil et al., *Mol. Biol. Evol.* **34**, 1596–1612 (2017).
11. W. G. Alexander et al., *Fungal Genet Biol* **89**, 10-17 (2016).
12. J. Tymowska, in *Amphibian Cytogenetics and Evolution*, D. M. Green, S. K. Sessions, Eds. (Academic Press, 1991) ,chap. 12, pp. 259-297.
13. M. L. Ainouche, A. Baumel, A. Salmon, G. Yannic, *New Phytol* **161**, 165-172 (2003).
14. D. Peris et al., *Biotechnology for Biofuels* **10**, 78 (2017).
15. T. K. Sato et al., *Appl Environ Microbiol* **8**, 540-554 (2014).
16. D. J. Wohlbach et al., *Proc. Natl. Acad. Sci. U. S. A.* **108**, 13212-13217 (2011).
Acknowledgements: We thank the Joint Genome Institute (JGI) for providing Illumina Sequencing services.

Funding: This material is based upon work supported in part by the Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Numbers DE-SC0018409 and DE-FC02-07ER64494; the National Science Foundation under Grant No. DEB-1253634; and the Robert Draper Technology Innovation Fund from the Wisconsin Alumni Research Foundation. DP is a Marie Sklodowska-Curie fellow of the European Union’s Horizon 2020 research and innovation programme, grant agreement No. 747775. CTH is a Pew Scholar in the Biomedical Sciences and a Vilas Early Career Investigator, supported by the Pew Charitable Trusts and Vilas Trust Estate, respectively. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231.

Authors’ contributions: Conceived the experiments: DP WGA RLW CTH. Engineered strains: RVM WGA RLW. Data generation: RLW. Data analysis: DP. Wrote the paper: DP CTH.

Competing interests: The Wisconsin Alumni Research Foundation has filed a patent application entitled "Synthetic yeast cells and methods of making and using same" (describing the HyPr method with WGA, DP, and CTH as inventors).

Data and material availability: Raw genome sequencing data has been deposited in NCBI’s SRA database, Bioproject PRJNA476226.
Figure and table captions

Figure 1. The generation of the six-species hybrids and their use as a tool to study genome instability and improve industrial strains. A) Synthetic hybrid generation scheme using the iHyPr method. The example shown is the six-species hybrid yHRWh39. Chromosomes were colored according to their species designation, with height representing copy number, using the sppIDer pipeline (17). For an extended explanation and other schemes, see Figure S1. Arrows mark hybridization steps. For additional intermediary and six-species hybrid nuclear and mitochondrial genomes with higher resolution, see Figure S3, S4. B) Number of chromosomal aberrations inferred versus the number of species contributing genomes (Figure S2, S5). Synthetic hybrids generated from each independent scheme are represented with different shapes and colors. A linear regression line and the 95% confidence interval of the fit are represented with a discontinuous blue color and grey shadow, respectively. C) Box plots for the individual evolved colonies isolated from YPX or YPD plates after ALE and their synthetic hybrid ancestors. Kinetic parameters were tested in 3 mL YPX on a rotating culture wheel, identically to how they were evolved for 80 Generations. The average values (n=6) of
maximum specific growth rates (µ, defined as \((\ln(OD2)-\ln(OD1))/(T2-T1)\)) for the S. cerevisiae reference strain (black line, yHRW135 was derived from yHRW134 by plasmid loss), ancestor (light blue dots), and evolved six-species strains (red dots) are shown (Table S1). Different shapes indicate the media in which the synthetic six-species hybrids were evolved. Color points differentiate the ancestor from the evolved hybrids. Additional kinetic parameters from microplate experiments performed on evolved populations are shown in Figure S6 and Table S2.
Supplementary Materials for

Allododecaploid yeasts: six-species synthetic hybrids

David Peris, Ryan V. Moriarty, William G. Alexander, Russell L. Wrobel, Chris Todd Hittinger

Correspondence to: cthittinger@wisc.edu (CTH)

This PDF file includes:

Materials and Methods
- Yeast strains and maintenance
- Two new HyPr plasmids
- Saccharomyces transformation with HyPr plasmids
- iHyPr (iterative HyPr) method for sequentially generating higher order hybrids
- Mating-type and PCR-RFLP confirmation of strains
- Adaptive laboratory evolution (ALE) and colony selection
- Genome sequencing and chromosome composition
- Microtiter plate growth curves
- Statistical analysis

Supplementary Text
- High instability of chromosome III
- Heteroplasmic state

Figures
- Figure S1
- Figure S2
- Figure S3
- Figure S4
- Figure S5
- Figure S6

Tables
- Table S1
- Table S2
- Table S3
Table S4
Table S5
Table S6

References
Materials and Methods

Yeast strains and maintenance

The reference strain chosen for improvement was GLBRCY101, a haploid derivative of a *Saccharomyces cerevisiae* strain engineered and aerobically evolved for the consumption of xylose (GLBRCY73) (16, 15). Representative strains were selected from five additional *Saccharomyces* species based on published nuclear and mitochondrial genomes (Table S3). These six parent strains were used to generate the six-species hybrids. Yeast strains were stored in cryotubes with YPD (1 % yeast extract, 2 % peptone, and 2 % glucose) and 15 % glycerol at -80 °C. Routine cultures were maintained in YPD plus 2 % agar plates at 24 °C.

Two new Hybrid Production (HyPr) plasmids

We previously published two HyPr plasmids with natMX (pHCT2) and hphMX (pHMK34) resistance cassettes (11). Following our previously described methodology, we amplified the *ble* (ZEOcyn resistance) and *nptII* (G418 resistance) coding regions for marker swaps to generate pHRW32 and pHRW40 plasmids, respectively. The new HyPr plasmids enabled complex, iterative crossing schemes without adding extra steps to remove one of the two HyPr plasmids between the hybridization steps.

Saccharomyces transformation with HyPr plasmids

Before transforming GLBRCY101 with a HyPr plasmid, we removed its nuclear KanMX cassette by swapping the KanMX marker to TkMX (18). Next, we transformed this strain using a short DNA fragment designed to allow the TkMX gene to be removed via homologous recombination and selecting for successful marker loss on synthetic complete (SC) + FUdR medium (0.17 % yeast nitrogen base, 0.5 % ammonium sulfate, 0.2 % complete drop out mix, 2 % glucose, and 50 µg/ml 5-fluorodeoxyuridine). *S. cerevisiae* yHWA85 and representative strains of *Saccharomyces paradoxus*, *Saccharomyces mikatae*, *Saccharomyces kudriavzevii*, *Saccharomyces arboricola*, and *Saccharomyces uvarum* were transformed with one of the four HyPr plasmid versions (Table S3). Transformation of yeast strains was done using the lithium acetate/PEG-4000/carryer DNA method, as previously described (19), with previously described modifications for particular species (11). Cells were suspended in YPD, followed by incubation at each species’ optimal temperature (i.e. 30 °C for *S. cerevisiae* and room
temperature for all others, including hybrids) for 3 h before being plated on selective medium. Selective media consisted in YPD plus 2 % agar plates with the appropriate selectable drug(s). *S. cerevisiae* yHWA85 was first diploidized using the HyPr plasmid pHWR40, creating yHRW134 for subsequent crosses. The generation of this diploid strain occurred in one step, which was confirmed by polymerase chain reaction (PCR) amplification of the *MAT* loci (see below). The experimental reference strain yHRW135 was derived from yHRW134 by screening for spontaneous plasmid loss.

iHyPr (iterative HyPr) method for sequentially generating higher-order hybrids

Following the HyPr method to facilitate mating-type switch (11), we pre-cultured strains with differentially marked HyPr plasmids in the presence of doxycycline to express the endonuclease encoded by *HO*, which is under a Tet-ON promoter; each plasmid also contains the full machinery for inducible expression of the promoter. To generate the six-species hybrids yHRWh36 and yHRWh39, we first forced three separate pairs of species to mate, generating two-species hybrids. In each case, once the three two-species hybrids were generated, we crossed two of those two-species hybrids to create a four-species hybrid, which finally was crossed with the last two-species hybrid to generate the six-species hybrid. To generate the six-species hybrid yHRWh56, two separate two-species hybrids were separately crossed with diploid *Saccharomyces* strains from other species to create two separate three-species hybrids, which were then mated to generate the six-species hybrid (*Figure S1*). Before each cross, parental strains were transformed with differentially marked HyPr plasmids (*Table S3, Figure S1*) and treated with doxycycline in YPD at room temperature, except for *S. cerevisiae* where 30 °C was applied. As previously described (11), the doxycycline triggers the expression of the Ho endonuclease, which cuts one or more *MATa/MATα* idiomorphs and generates mating-compatible strains that behave as either *MATa* or *MATα*. A sample of each culture was combined in a 1-mL Eppendorf tube and patched on a YPD plate. After 2-3 days, a sample was taken with a toothpick and streaked on a YPD plate supplemented with the corresponding drugs to select for successful matings. In contrast to the original HyPr method, we pre-cultured the new hybrid in YPD with one of the two drugs used during the selective medium step, and that hybrid was then crossed with another strain containing one or two of the other HyPr plasmids not used previously. During these subsequent
steps, we expected (and phenotypically verified) the loss of the HyPr plasmid containing the drug-resistance cassette not under selection. This approach and the additional HyPr plasmids made for this study facilitated the iterative crosses required to make six-species hybrids by avoiding the steps of plasmid removal and minimizing the number of generations between crosses (Figure S2).

Mating-type and PCR-RFLP confirmation of strains

Diploidization of the S. cerevisiae strain was confirmed by PCR at the mating-type locus. Hybrid statuses were confirmed by restriction fragment length polymorphism (RFLP) analysis. We used the Standard Taq Polymerase (New England Biolabs, Ipswich, MA), and the primers listed in Table S4. Genomic DNA was extracted using the phenol:chloroform method on a strain grown from pre-culture to saturation in YPD. Aliquots of 700 µl of saturated culture were located in 1.5 mL microcentrifuge tubes that contained acid-washed beads. Each tube was centrifuged at maximum speed (15000 rpm) for 5 minutes, and the supernatant was removed. 200 µl of buffer EB (10 mM Tris-Cl, pH 8.0), 200 µl of DNA lysis buffer (10 mM Tris pH 8.0, 1 mM EDTA, 100 mM NaCl, 1 % SDS, 2 % Triton X-100), and 200 µl of phenol:chloroform were added to each tube. Vigorous vortexing was performed for 3-4 minutes, followed by 5 minutes of centrifugation at maximum speed. The top aqueous layer was transferred to 1 mL 100 % EtOH. After an inversion mixture, DNA was precipitated at -80 °C for at least 10-15 minutes. A second centrifugation at maximum speed was performed, and the supernatant was discarded. We washed the pellet with 700 µl of 70 % EtOH, and we centrifuged again to remove any residue or trace of the supernatant. The pellet was dried and resuspended in 100 µl of EB at 50-60 °C for 30 minutes. To remove RNA, we incubated the solution with 0.5 µl of 10 mg/ml RNase A for 30 minutes at 37 °C. DNA was quantified with a Qubit 2.0 Fluorometer (ThermoFisher Scientific). For PCR-RFLP, resulting PCR products were digested with a restriction enzyme or a combination of multiple restriction enzyme assays able to discriminate among Saccharomyces species (New England Biolabs, Ipswich, MA). An extended PCR-RFLP pattern, developed in previous publications (11, 20) and this study, are detailed in Table S5. Undigested PCR products were visualized on a 1.5 % agarose gel, while digested PCR products were visualized on a 3 % agarose gel.

Adaptive laboratory evolution (ALE) and colony selection
Two of the three six-species hybrids (during construction, the third lost *S. cerevisiae* chromosome IV, where *Scheffersomyces* (*Pichia*) *stipitis* xylose utilization genes had been inserted) were evolved in triplicate at room temperature in tubes with two independent media conditions: 3.0 mL YPD or 3.0 mL YPX (1 % yeast extract, 2 % peptone, and 2 % xylose). Three to five days of fermentation were performed to allow cells to consume the sugars, and an aliquot of each replicate was transferred at of 0.1 optical density at 600 nm (OD\textsubscript{600}) to a fresh medium until it reached approximately 80 generations. A colony from each independent ALE experiment, regardless of whether they were evolved in glucose or xylose, was selected on YPX plates (1 % yeast extract, 2 % peptone, 2 % xylose, and 2 % agar).

Genome sequencing and chromosome composition

Genomic DNA (gDNA) samples from the diploidized *S. cerevisiae* strain and the two-, three-, and six-species hybrids were submitted to the DOE Joint Genome Institute for paired-end Illumina sequencing. Libraries were constructed according to the manufacturer’s instructions. Sequencing of the flow cell was performed on an Illumina MiSeq using MiSeq Reagent kits, following a 2x150 nucleotide (nt) indexed run recipe. Curated raw reads were submitted to the SRA database as Bioproject PRJNA476226 (Table S6).

Genomic characterization was performed with sppIDer (17). Our combined nuclear reference genome was built with the genome assemblies of *S. cerevisiae* GLBRCY22-3 (21), which is a close relative of the biofuel reference strain used here; *S. paradoxus* CBS432; *S. arboricola* CBS10644 (22); *S. mikatae* IFO1815; *S. kudriavzevii* ZP591; *S. uvarum* CBS7001 (23); and *Saccharomyces eubayanus* FM1318 (24). Our combined mitochondrial reference genome was built with the mitochondrial assemblies of the aforementioned strains (22, 24, 25), except for CBS7001, whose mitochondrial genome is still not completely assembled (26). Instead, we used the mitochondrial genome of a close relative, *S. uvarum* CBS395 (25). Raw Illumina paired-end reads and the combined reference genomes were the input data of sppIDer, which is essentially a wrapper that runs published tools to map the short reads to the combined reference genomes and creates several colorful and visually intuitive outputs (17). Here, we show depth of coverage plots from those species contributing genomes.
The percentage of each *Saccharomyces* nuclear genome retained in the hybrid was calculated as follows:

\[\text{Pspp} = \left(\frac{\text{Ct} \times \text{Ws}}{\text{Gs}} \right) \times 100 \]

where Pspp is the percentage for one of the parental species; Ct is the number of windows with a coverage mean value above 2; Ws is the window size; and Gs is the reference genome size for that parental species. This calculation yielded a good approximation of contribution of each species to the genome of the hybrid. For each strain, the number of chromosomes, and the ploidy were estimated from the sppIDer plots. The number of chromosomal aberrations was based on the number of gains, losses, or unbalanced translocations detected in the sppIDer plots. One chromosomal gain, loss, or unbalanced translocation was counted as one aberration. Aberrations observed in one hybrid and maintained in the offspring of subsequent crosses were not counted again; only new aberrations for each cross were reported in the aberration plot (Figure 1B).

Microtiter plate growth curves

We compared the growth kinetics of the *S. cerevisiae* reference strain yHRW135, the ancestors of the two six-species hybrids retaining the chromosome IV (yHRWh39, yHRWh56), and populations of the evolved hybrids. Growth was tested in YPD and YPX at room temperature. Strains or populations were pre-cultured in 3.0 mL YPD or YPX, depending on the medium tested. After pre-culture, 10 µl of saturated culture was inoculated into a 96-well plate (Nunc, Roskilde, Denmark) containing 240 µl of identical medium as the pre-culture. Spaces between the wells in the plates were filled with sterile H₂O to maintain the humidity of the plates. The reference strain was cross-inoculated in all conditions; for example, yHRW135 pre-cultured in YPX was tested in both YPD and in YPX.

To monitor the growth of strains and populations in the different media conditions, we inoculated 96-well plates and placed them in a BMG FLUOstar Omega at 20 °C. Absorbance at 595 nm was monitored every 15 min for 2 days. Background absorbance was subtracted from the average of three negative controls containing the uninoculated medium being tested. Kinetic parameters for each condition were calculated in GCAT v6.3 (27). Median and standard deviations from three independent biological replicates
were calculated in \(\mathbb{R} \) (28) (Table S2). For each medium condition, parameters were normalized against the reference strain, yHRW135, which had been pre-cultured and grown in the medium tested.

Culture wheel growth curves

Strains isolated from single colonies from evolved hybrids, ancestral hybrids, and the reference strain (yHRW135) were pre-cultured in YPX, and inoculated at an initial OD\(_{600}\) of 0.1 into 3 mL glass tubes containing YPX. Growth was monitored by measuring OD\(_{600}\). Kinetic parameters were calculated as above. Median and standard deviations from six independent biological replicates were calculated as above. These experimental conditions most closely matched the conditions in which the strains were evolved, and they are reported in Figure 1C and Table S1.

Statistical analysis

Data analysis and plots were performed in \(\mathbb{R} \) (28). A linear model of regressions were added to the plot in Figure 1B using the geom_smooth option in the R package ggplot2, and \(r^2 \) and significance of regression were calculated with `summary(lm(y ~ x))`, where \(x \) was the number of species, and \(y \) was the number of observed aberrations.

The impact of mitochondrial inheritance (Figure S5B) in the retention of the nuclear genome of those hybrids involving *S. cerevisiae* was tested using a multifactor ANOVA in \(\mathbb{R} \), using `summary(aov(P ~ M * C))`, where \(P \) is the percentage retained of the *S. cerevisiae* nuclear genome; \(M \) is the mitochondrial genome, which was encoded as a binary character (either as the *S. cerevisiae* mitochondrial genome or that of another species); and \(C \) is the type of strain (i.e. classified as parental *S. cerevisiae*; two-, three-, four-, or ancestral six-species hybrid; and evolved six-species hybrid).

\(t \)-tests for significant differences between frequency of chromosome gains and losses and Wilcoxon rank sum tests for significant differences in the kinetic parameters shown in Figure 1C and S6, respectively, were performed in \(\mathbb{R} \).

Supplementary Text

High instability of chromosome III

Industrial conditions offer a niche to interspecific hybrids due to the stressful conditions (29-35). The existence of allotriploids and allotetraploids have generated speculation
about rare-mating as one of the mechanisms for the generation of hybrids (36-38). For rare-mating, one of the diploid cells must convert the heterozygous MAT locus into a homozygous state ($MATa/MATa$ or $MAT\alpha/MAT\alpha$) or a hemizygous state ($MATa/-$ or $MAT\alpha/-$), such as after a double-strand break. Such mating-compatible diploids are then able to mate with a compatible cell of the opposite sex (39).

HyPr exploits the rare-mating system by heterologously expressing the HO gene from differentially marked plasmids (11). We expected that Ho would cut one copy of the heterozygous MAT locus of the diploid strain and use homology repair to convert the locus from heterozygous to homozygous, presumably over a small gene conversion patch using either a homologous chromosome or a silent mating cassette as a template. Although both this mechanism and larger breakage-induced replication events likely occur some of the time at this locus, 88.9% of the translocations involving chromosome III were unbalanced (Figure S2), suggesting other repair mechanisms are also leading to mating-type locus hemizygosity or homozygosity. For example, the high number of unbalanced translocations targeting chromosome III (40 % or six of fifteen hybrids) might support the occurrence of imperfect Non-Homologous End Joining (NHEJ) events, perhaps promoted by overexpression of the HO gene (39). Another scenario for the frequent rearrangements in chromosome III might be the high instability observed for that particular chromosome (40). Synthetic hybrids between $S. \text{cerevisiae}$ and $S. \text{kudriavzevii}$ have demonstrated how easily chromosome III of one of the parents can be lost, rendering the hybrid competent to mate again (41). Recent studies of interspecific hybrids from the genus $Zygosaccharomyces$ have also shown that inactivation of one of the MAT locus copies can also restore sexual competency (42, 43). Regardless of the precise mechanisms at work, the iHyPr method clearly facilitated the recovery of the sexual competency of higher-order hybrids by controlling and exploiting these naturally occurring mechanisms to generate interspecific hybrids.

Heteroplasmic state

During interspecific hybridization, hybrids can inherit one of the two parental mitotypes or a recombinant version (44). In general, one of the parental mitotypes was quickly fixed during the generation of our hybrids here, except for: the allotetraploid $S. \text{kudriavzevii}$ x
S. mikatae yHRWh4, the allotetraploid S. cerevisiae x S. uvarum yHRWh10, and the six-species hybrids yHRWh36, which were all heteroplasmic (Figure S4).

These three exceptions were all part of the same crossing scheme, and we offer a set of related possible explanations. The presence of selfish elements, such as homing endonucleases, could explain why multiple mitotypes were retained in yHRWh4. In this case, a portion of Smik-COX1, a gene with a high number of introns invaded by homing endonuclease genes (45), seems to have been introduced into the Skud mitochondrial genome (mtDNA) (Figure S4A,C). The most intriguing result occurred while generating the yHRWh10 hybrid, which retained most of both parental mtDNAs (S. cerevisiae and S. uvarum) and remained in a heteroplasmic state (Figure S4A). We recently demonstrated that, during formation of S. cerevisiae x S. uvarum hybrids, the frequency of petite generation (e.g. strains with incomplete or no mitochondrial genome) was higher when the hybrid inherited a S. uvarum mtDNA (26). Introgression of the F-SceIII homing endonuclease gene into a Suva-mtDNA restored normal mitochondrial retention (26). In yHRWh10, we did not detect the presence of F-SceIII, which might have influenced the loss of mtDNA in its descendants. For example, the six-species hybrid yHRWh36 retained only a small region of Sarb-mtDNA and Suva-mtDNA (Figure S4C). The role of F-SceIII in the stabilization of the mitochondrial genome is still unclear, but it may be playing an important role in our crosses. In another recent study, mtDNA inheritance was also demonstrated to be dominated by one parental strain due to nuclear-mitochondrial interactions, rather than occurring stochastically (46).

The loss of mitochondrial genomes in particular hybrid combinations, and the unusually high or low coverage (Figure S4) might suggest that interactions between nuclear-encoded mitochondrial proteins with the mtDNA are unbalanced. In such cases, one model proposes that an oligomeric circular mtDNA form precedes ρ^- strain formation (47). The Illumina read coverages for some regions of the mtDNAs were surprisingly varied in some hybrids, such as yHRWh8, yHRWh13, and most of the hybrids used for yHRWh36 generation (Figure S4). Formation of mtDNA concatemers are regulated by levels of Din7p and Mhr1p (47); when hybrids form, these protein levels might be misregulated due to different cis- and trans-regulation, which could increase or decrease the copy numbers of specific mitochondrial regions. Technical artifacts from Illumina
sequencing also cannot be excluded, and this phenomenon and process merits further study.

Table and Figure captions
Scheme 2: yHRWh39

Species
- S. cerevisiae
- S. paradoxus
- S. mikatae
- S. kudriavzevii
- S. arboricola
- S. uvarum

Doxycycline shock
Scheme 3: yHRWh56

Species
- S. cerevisiae
- S. paradoxus
- S. mikatae
- S. kudriavzevii
- S. arboricola
- S. uvarum

Legend:
- MATa
- MATα
- G418+
- HYG+
- ZEO+
- NAT+
- doxycycline shock

GLBRCY101 (yHWA415) → G418+ → GLBRCY101 (yHWA415)

This occurs in one step.

CBS10644 (yHRW112) → HYG+ → CBS10644 (yHRW112)

CBS432 (yHRW129) → ZEO+ → CBS432 (yHRW129)

ZP591 (yHRW131) → NAT+ → ZP591 (yHRW131)

IFO1815 (yHRW123) → ZEO+/NAT+ → IFO1815 (yHRW123)

yHRW134 → G418+ → yHRW134

yHRWh8 → HYG+/ZEO+ → yHRWh8

G418+/HYG+ → G418+/HYG+ → yHRWh56

yHRWh42 → G418+/NAT+ → yHRWh42

CBS7001 (yHRW114) → ZEO+/NAT+ → CBS7001 (yHRW114)

yHRWh51
Figure S1 Schematics for the generation of three six-species *Saccharomyces* hybrids.

The hybridization steps necessary to generate the six-species hybrids yHRWh36, yHRWh39, and yHRWh56 are represented in panels A), B) and C), respectively. Yeast cells are represented in gray, and chromosomes are colored according to the *Saccharomyces* species. The strain names of our lab’s copy of some strains (Table S2) are displayed in parentheses below the original culture collection strains. Drug-marker resistance is indicated above yeast cells. Systematic crosses are highlighted with arrows to form a pedigree. The black lightning bolt symbol represents the doxycycline shock to promote *MAT*ing-type switching or loss to facilitate hybridization.
Figure S2 *Saccharomyces* species genome contribution to synthetic hybrids.

Number of chromosomes for each synthetic hybrid and the *Saccharomyces* species designation were inferred from `sppIDer` plots (Figure S3). The chromosome content was colored according to the species donor. Mitochondrial inheritance
was inferred based on the mitosppIDER output (Figure S4). Presence, absence, or incomplete mitochondrial genomes are colored in yellow, white, and black, respectively. Synthetic hybrids were ordered as they were used to generate the next hybrid (Figure S1). Diploidized GLRBCY101 (yHRW134) and yHRWh4 are shown multiple times because of their use in multiple crossing schemes. Note that considerable karyotypic diversity continued to be generated during 80 generations of ALE, but each evolved strain is easily recognized as more similar to its ancestral six-species hybrid.
Figure S3 Nuclear genome composition of the diploidized *S. cerevisiae* reference strain and the synthetic and evolved hybrids.

Panels A-Z are the *sppIDER* outputs for the diploidized reference strain of *S. cerevisiae* (GLBRCY101) and the synthetic and evolved hybrids. Sequencing coverage values are colored according to each *Saccharomyces* species’ contribution in that portion of the genome. Panels were ordered to represent synthetic hybrid data based on the order they were used to
generate the next hybrid (Figure S2). **sppIDer** produces multiple plots (17), but here we show the log₂ of the average coverage of ~8 Kbp windows normalized to the genome-wide average coverage. To improve the resolution of the three-, four-, and six-species hybrid plots, window coverage values were normalized to the genome-wide average coverage, and values were limited to the 99% percentile and below.
mtDNA
S. cerevisiae
S. paradoxus
S. mikatae
S. kudriavzevii
S. arborcola
S. uvarum
Figure S4 Mitochondrial genome inheritance of the diploidized *S. cerevisiae* reference strain and the synthetic and evolved hybrids.

Panels A-C are the sppIDer outputs for the diploidized reference strain of *S. cerevisiae* (GLBRCY101) and the synthetic and evolved hybrids. Sequencing coverage values are colored according to each *Saccharomyces* species’ contribution in that portion of the mitochondrial genome. Each panel contains the mitochondrial genome inheritance for the synthetic hybrid.
used for generating the individual six-species hybrids (Figure S2). sppIDer produces multiple plots (17), but here we show the log$_2$ of the average coverage of ~44 bp windows normalized to the mitochondrial genome-wide average coverage. When a synthetic hybrid is formed between ρ^+ parental strains, a heteroplasmic state can be maintained for several generations, but eventually, a parental or recombinant mitochondrial genome is generally fixed (44). In some hybrids, this heteroplasmic state persisted, and the names of hybrids are colored in a gradient according to the detected mitochondrial genomes; these colors are also displayed in Figure S5. Due to the unusually high coverage of ATP9 or ATP9-VAR1-15S rRNA of S. uvarum in panel A), additional inset plots with limited y-axes are shown.
Figure S5 Percentage of retained *Saccharomyces* genomes in synthetic hybrids.

A) The percentage of each *Saccharomyces* species genome is stacked in the bar plot for each synthetic hybrid. Synthetic hybrids are displayed in the order in which they were used (Figure S1). yHRWh4 is shown multiple times because of its use in two crossing schemes. We did not expect 100% genome contribution for each *Saccharomyces* species, even for recently created hybrids, because some genomic regions (e.g. repeats) are not unambiguously detectable with Illumina sequencing data. Percentage bars are colored according to each species’ contribution. The strain names are colored based on the mitochondrial inheritance inferred from mitosppIDer output (Figure S4). Synthetic hybrids with two or more detected
mitochondrial genomes or regions are shown as gradient color based on the species' contributions. B) The nuclear composition of the *S. cerevisiae* parent, synthetic hybrids, and evolved hybrids is plotted according to mitochondrial inheritance. Hybrids with or without the *S. cerevisiae* mitochondrial genome are colored in red and light blue, respectively.
Figure S6 Growth kinetics for ancestral and evolved six-species hybrids in a microplate.

Growth measured as area under the curve (AUC) for the ancestor and evolved six-species hybrids, after normalization to the *S. cerevisiae* reference strain, yHRW135 (full microplate kinetic parameters are reported in Table S2). Different shapes indicate the media in which the synthetic six-species hybrids were evolved. Colors differentiate parent strains, while each data point represents an evolved replicate population.
Table S1 Kinetic parameter information for the *S. cerevisiae* reference strain and ancestral and evolved synthetic hybrids on a culture wheel after colony selection.

Strain	Species	Evolved in	spec.growth.median	spec.growth.sd	ODmax.median	ODmax.sd
yHRW15	*S. cerevisiae*	Not evolved	0.0701	0.0123	3.1023	1.0531
yHRW16	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0543	0.0123	1.2039	0.2819
yHRW17	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0659	0.0156	1.2343	0.1269
yHRW18	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0707	0.0207	1.8881	0.2159
yHRW19	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0747	0.0113	1.3832	0.1477
yHRW20	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0707	0.0156	1.2343	0.1269
yHRW21	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0707	0.0156	1.2343	0.1269
yHRW22	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0707	0.0156	1.2343	0.1269
yHRW23	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0707	0.0156	1.2343	0.1269
yHRW24	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0707	0.0156	1.2343	0.1269
yHRW25	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0707	0.0156	1.2343	0.1269
yHRW26	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0707	0.0156	1.2343	0.1269
yHRW27	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0707	0.0156	1.2343	0.1269
yHRW28	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0707	0.0156	1.2343	0.1269
yHRW29	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0707	0.0156	1.2343	0.1269
yHRW30	*S. cerevisiae* x *S. kudriavzevii* x *S. mikatae* x *S. uvarum* x *S. arboricola* x *S. paradoxus*	Not evolved	0.0707	0.0156	1.2343	0.1269

spec.growth.median = median (n=6) of the maximum exponential growth rates achieved by the sample in independent cultures

spec.growth.sd = standard deviation (n=6) of the maximum exponential growth rates achieved by the sample in independent cultures

ODmax.median = median (n=6) of the estimated growth plateaus achieved by the sample in independent cultures

ODmax.sd = standard deviation (n=6) of the estimated growth plateaus achieved by the sample in independent cultures
Table S2 Kinetic parameter information for the *S. cerevisiae* reference strain and synthetic hybrids.

Strain	Species	Pre-culture	Medium of kinetic measurement	Final culturing	AUC.median	spec.growth.median	ODmax.median	AUC.sd	AUC.sd	AUC.median	AUC.percent	AUC.percent	AUC.percent
yHRW56	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW57	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW58	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW59	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW60	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW61	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW62	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW63	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW64	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW65	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW66	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW67	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW68	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW69	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW70	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW71	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW72	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW73	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW74	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW75	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW76	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW77	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW78	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW79	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW80	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW81	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW82	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW83	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW84	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW85	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW86	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW87	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW88	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW89	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW90	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW91	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW92	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW93	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW94	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW95	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW96	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW97	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW98	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW99	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW100	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW101	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW102	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
yHRW103	*S. cerevisiae*	-	-	-	-	-	-	-	-	-	-	-	
Table S3: Wild, engineered, and synthetic hybrid strain information.

Genotypic information of wild Saccharomyces species and engineered strains for generating synthetic hybrids.

Strain	Genotype	Gene	Marker	Comment
C2_HXXX				Indicates the COX2 haplotype based on (49) XTL23. abbreviation for the Scel. alpha XTL1.XTL2.XTL3 cassette.
Table S4 Primers.

PCR primers used to confirm mating-type switches and hybridization.

Primer collection name	Primer name	Species target	Target gene	Strand	Sequence (5’-3’)	Annealing T °C	Reference paper
oHRW247	MAT common	All Saccharomyces species	MAT	Reverse	GAACCGCAGGCGCAGTTTACCTTT	48.1	(11)
oHRW248	Mata	All Saccharomyces species	MAT	Forward	CTCACCTTCAAGTAGTTTTGCG	50.1	(11)
oHRW249	Mata	All Saccharomyces species	MAT	Forward	TACTACAGATTTGGCTCCGGTTGT	52.3	(11)
oHDP022	BRES_5.1	S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus	BRES	Forward	TGATTTAGCCAGGCGTCTAATTTGCG	55.5	(11)
oHDP023	BRES_5.2	S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus	BRES	Forward	TGATATAGCCGCGTGARATGCTTTGCG	55.5	(11)
oHDP024	BRES_3.2	All Saccharomyces species	BRES	Reverse	TICTACCTCATCATTTGCGCCCATGTCAT	55.5	(11)
oHDP025	GAL4_5.2	All Saccharomyces species	GAL4	Forward	TGYCGCAAGCTGTTGAGAAYACTGGGA	55.5	This study
oHDP026	GAL4_3.2	All Saccharomyces species	GAL4	Reverse	GCGATTTCAATCTGTTAATTCATCATCAG	55.5	This study
oHDP027	GS1_5.2	All Saccharomyces species	GS1	Forward	ATGGSSAAAGAATATTCGAGCATRCCRATGAG	55.5	This study
oHDP028	GS1_3.2	All Saccharomyces species	GS1	Reverse	AATTTCCTACCCGCGCAAGRTTAYCTATT	55.5	This study
oHDP029	KEL2_5.2	All Saccharomyces species	KEL2	Forward	TACTTTTCATAATYAAATCTTTATAARTTGG	55.5	This study
oHDP030	KEL2_3	All Saccharomyces species	KEL2	Forward	GCAGTTTCAAGTTCYTYTGCG	55.5	(20)
oHDP031	PPR1_5.2	All Saccharomyces species	PPR1	Forward	CRGGCGTTTGGCTACAYATGCG	55.5	This study
oHDP032	PPR1_3	All Saccharomyces species	PPR1	Reverse	TAAAGATAAGTCATACTGTGCTAACAAT	55.5	(20)

Sarb, S. arboricola; Scer, Saccharomyces cerevisiae; Seub, S. eubayanus; Skud, S. kudriavzevii; Smik, S. mikatae; Spar, S. paradoxus; Suva, S. uvarum.
Table S5 PCR-RFLP expected *Saccharomyces* bands.

Gene	Specie (Strain)	3. cerevisiae (LondonY73)	3. paradoxus (ITCC2897/ CBS4132)	3. mikatae (IFO1815)	S. Auberiensis (ZPS01)	S. arboricola (CBS10644)	S. uvarum (CBS7001)
		Biofuel	EU	Asia A	EU	Asia A	HOL-EU
GSY1	PCR SIZE	767	767	767	767	767	767
YFR025C	Eco RI	496+275	496+275	767	767	767	767
Chr VI	Hae III	638+82+47	720+47	661+106	767	518+126+16	767
Msp I (Hpa II)	597+159+15	430+339	754+15	326+270+162+15	381+339+51	381+326+51+15	
REL2	PCR SIZE	1102	1196	1220	1214	1223	1241
YGR228C	Hinf I	742+246+136+87	742+457	742+381+103	594+454+172	742+484	742+502
Chr VII	Hae III	1007+121+50+17+7	694+307+121+50+17+7	1025+121+74	821+326+92+74	466+365+197+92+74+29	681+365+121+74
Msp I (Hpa II)	781+129+196	559+222+169+168+86	724+496	657+336+225	950+229	898+345	
PPR2	PCR SIZE	706	706	706	706	706	706
YLR014C	Hae III	397+309	706	706	541+165 (observed 600)	397+277+132	309+267+90+40
Chr XII	Hinf I	378+125+109	297+125+131+62	293+125+62	429+125+62	244+138+112+10+104	377+124+104+62+51
Xba I	PCR SIZE	706	706	706	706	461+249	
ScrF I		227+200+164+115	211+200+118+115+46+16	364+342	364+209+133	342+274+90	364+342
Taq I	PCR SIZE	235+184+166+127	184+166+129+112+108+17	166+126+112+108+91+60+40+17	360+184+166	251+166+126+91+60+22	259+184+142+71+58
YRE5	PCR SIZE	782	782	782	782	795	779
YNR051C	Hae III	279+270+204+20+9	762+20	782	438+327+20	370+240+170+14	471+288+20
	Hinf I	239+231+102+69+63+22+20	231+156+141+138+51+41+30+12	311+162+134+114+75+69+42+20+12	228+153+129+93+55+50+44+42	335+301+143	
Chr XIV	Msp I (Hpa II)	388+195+88+78+41	353+195+164+41+37	314+312+158	724+50+15	383+385+50	779
SAL4	PCR SIZE	725	740	740	740	749	737
YPL248C	ScrFI	749	740	409+183+79+69	670+79	460+184+79+69	
Chr XVI	Taq I	207+203+181+140	222+214+166+140+6+6	396+166+84+6+31+13	436+105+90+70+47	445+166+142	306+295+91+46+7
Xba I	PCR SIZE	614+115	629+115	740	740	638+115	737
Msp I (Hpa II)	543+184	558+184	558+184	740	740	315+242+184	

Recommended restriction enzyme
Table S6 Summary of whole genome sequencing statistics.

Read length, coverage, and SRA accession numbers for sequencing libraries.

Strain Name	Species	Run Type	Read Length	Average Insert Size	Average Coverage	Kit	Bioproject
yHRWh134	S. cerevisiae	2x151	251.5	21X	MiSeq Reagent	PRJNA476226	
yHRWh14	S. mikatae × S. kudriavzevii	2x151	250.9	11X	MiSeq Reagent	PRJNA476226	
yHRWh17	S. arboricola × S. paradoxus	2x151	250.6	9X	MiSeq Reagent	PRJNA476226	
yHRWh18	S. arboricola × S. paradoxus	2x151	250.6	13X	MiSeq Reagent	PRJNA476226	
yHRWh10	S. cerevisiae × S. uvarum	2x151	249.8	13X	MiSeq Reagent	PRJNA476226	
yHRWh13	S. mikatae × S. uvarum	2x151	250.9	12X	MiSeq Reagent	PRJNA476226	
yHRWh18	S. kudriavzevii × S. paradoxus	2x151	251.1	12X	MiSeq Reagent	PRJNA476226	
yHRWh19	S. cerevisiae × S. arboricola	2x151	250.5	11X	MiSeq Reagent	PRJNA476226	
yHRWh22	S. cerevisiae × S. arboricola × S. mikatae × S. uvarum	2x151	250.2	6X	MiSeq Reagent	PRJNA476226	
yHRWh24	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum	2x151	252	7X	MiSeq Reagent	PRJNA476226	
yHRWh36	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum × S. arboricola × S. paradoxus	2x151	248	12X	MiSeq Reagent	PRJNA476226	
yHRWh39	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum × S. arboricola × S. paradoxus	2x151	248	11X	MiSeq Reagent	PRJNA476226	
yHRWh42	S. cerevisiae × S. arboricola × S. paradoxus	2x151	251	8X	MiSeq Reagent	PRJNA476226	
yHRWh51	S. uvarum × S. mikatae × S. kudriavzevii	2x151	249	7X	MiSeq Reagent	PRJNA476226	
yHRWh56	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum × S. arboricola × S. paradoxus	2x151	251	10X	MiSeq Reagent	PRJNA476226	
yHRWh62	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum × S. arboricola × S. paradoxus	2x151	402	7X	MiSeq Reagent	PRJNA476226	
yHRWh63	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum × S. arboricola × S. paradoxus	2x151	374	5X	MiSeq Reagent	PRJNA476226	
yHRWh64	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum × S. arboricola × S. paradoxus	2x151	305	4X	MiSeq Reagent	PRJNA476226	
yHRWh65	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum × S. arboricola × S. paradoxus	2x151	199	6X	MiSeq Reagent	PRJNA476226	
yHRWh66	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum × S. arboricola × S. paradoxus	2x151	219	4X	MiSeq Reagent	PRJNA476226	
yHRWh67	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum × S. arboricola × S. paradoxus	2x151	202	5X	MiSeq Reagent	PRJNA476226	
yHRWh68	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum × S. arboricola × S. paradoxus	2x151	275	5X	MiSeq Reagent	PRJNA476226	
yHRWh69	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum × S. arboricola × S. paradoxus	2x151	250	7X	MiSeq Reagent	PRJNA476226	
yHRWh71	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum × S. arboricola × S. paradoxus	2x151	192	6X	MiSeq Reagent	PRJNA476226	
yHRWh72	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum × S. arboricola × S. paradoxus	2x151	195	6X	MiSeq Reagent	PRJNA476226	
yHRWh73	S. cerevisiae × S. kudriavzevii × S. mikatae × S. uvarum × S. arboricola × S. paradoxus	2x151	181	7X	MiSeq Reagent	PRJNA476226	
References
18. W. G. Alexander, D. T. Doering, C. T. Hittinger, *Genetics* 198, 859-866 (2014).
19. R. D. Gietz, R. A. Woods, *Biotechniques* 30, 816-831 (2001).
20. D. Peris *et al.*, *Yeast* 29, 81-91 (2012).
21. S. J. McIlwain *et al.*, *G3: Genes|Genomes|Genetics* 6, 1757-1766 (2016).
22. J. X. Yue *et al.*, *Nat Genet* 49, 913-924 (2017).
23. D. Peris *et al.*, paper presented at the 34th International Specialised Symposium on Yeasts (ISSY34), Bariloche, Argentina, October 2019.
24. E. Baker *et al.*, *Mol. Biol. Evol.* 32, 2818-2831 (2015).
25. P. Sulo *et al.*, *DNA Res* 24, 571–583 (2017).
26. X. C. Li, D. Peris, C. T. Hittinger, E. A. Sia, J. C. Fay, *Sci Adv* 5, eaav1848 (2019).
27. Y. Bukhman *et al.*, *Bioenerg. Res.* 8, 1-9 (2015).
28. R Development Core Team. R: a language and environment for statistical computing. http://www.R-project.org. 2010. Vienna, Austria: R Foundation for Statistical Computing.
29. C. Ivorra, J. E. Pérez-Ortín, M. l. del Olmo, *Biotechnol. Bioeng.* 64, 698-708 (1999).
30. P. Carrasco, A. Querol, M. l. del Olmo, *Arch Microbiol* 175, 450-457 (2001).
31. D. J. Erasmus, G. K. van der Merwe, H. J. J. van Vuuren, *FEMS Yeast Res.* 3, 375-399 (2003).
32. D. E. Briggs, C. A. Boulton, P. A. Brookes, R. Stevens, *Brewing: science and practice* (Woodhead, Cambridge, UK, 2004).
33. B. Dunn, G. Sherlock, *Genome Res.* 18, 1610-1623 (2008).
34. D. Peris, C. A. Lopes, A. Arias, E. Barrio, *PLoS ONE* 7, e45527 (2012).
35. L. Pérez-Través, C. A. Lopes, A. Querol, E. Barrio, *PLoS ONE* 9, e93729 (2014).
36. C. Belloch et al., *Appl Environ Microbiol* 75, 2534-2544 (2009).
37. M. Sipiczki, *FEMS Yeast Res.* 8, 996-1007 (2008).
38. D. Peris, C. A. Lopes, C. Belloch, A. Querol, E. Barrio, *BMC Genomics* 13, 407 (2012).
39. J. E. Haber, *Genetics* 191, 33-64 (2012).
40. R. Kumaran, S. Y. Yang, J. Y. Leu, *PLoS ONE* 8, e68094 (2013).
41. E. Karanyicz, Z. Antunovics, Z. Kallai, M. Sipiczki, *Appl Microbiol Biot* 101, 1-17 (2017).
42. S. Braun-Galleani, R. A. Ortiz-Merino, Q. Wu, Y. Xu, K. H. Wolfe, *FEMS Yeast Res.* 18, foy079 (2018).
43. R. A. Ortiz-Merino et al., *PLOS Biology* 15, e2002128 (2017).
44. K. H. Berger, M. P. Yaffe, *Trends Microbiol* 8, 508-513 (2000).
45. B. Wu, W. Hao, *G3: Genes|Genomes|Genetics* 4, 605-612 (2014).
46. A. Verspohl, S. Pignedoli, P. Giudici, *Yeast* 35, 173-187 (2018).
47. F. Ling et al., *Nucl. Acids Res.* 41, 5799-5816 (2013).
48. D. Peris et al., *Mol Phylogenet Evol* 108, 49-60 (2017).
49. G. Liti et al., *Nature* 458, 337-341 (2009).
50. D. R. Scannell et al., *G3: Genes|Genomes|Genetics* 1, 11-25 (2011).
51. G. Liti et al., *BMC Genomics* 14, 69 (2013).