DVCC Based (2 + α) Order Low Pass Bessel Filter Using Optimization Techniques

Ashu Soni1 · Maneesha Gupta2

Accepted: 21 November 2021 / Published online: 21 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
This paper proposes the design and analysis of (2 + α) order low pass Bessel filter using different optimization techniques. The coefficients of the proposed filter are obtained by minimizing the error between transfer functions of (2 + α) order low pass filter and third-order Bessel approximation using simulated annealing (SA), interior search algorithm (ISA), and nonlinear least square (NLS) optimization techniques. The best optimization technique based on the error in gain, cut-off frequency, roll-off, passband, stopband, and phase is chosen for designing the proposed filter. The stability analysis of the proposed filter has also been done in W-plane. The simulated responses of the best optimized proposed filter are attained using the FOMCON toolbox of MATLAB and SPICE. The circuit realization of 2.5 order low pass Bessel filter is done using two DVCCs (differential voltage current conveyors), one generalized impedance converter (GIC) based inductor, and one fractional capacitor. The proposed filter is implemented for the cut-off frequency of 10 kHz using a wideband fractional capacitor. Monte Carlo and noise analyses are also performed for the proposed filter. The MATLAB and SPICE results are shown in good agreement.

Keywords Bessel filter · Optimization · DVCC · GIC · Monte Carlo

1 Introduction

Recently, fractional order systems have shown great attraction to researchers in the field of science and engineering. These fields contain bioengineering, control systems, signal processing, nanotechnologies, biology, electrical engineering, medicine, finances, etc. The concepts of fractional calculus can be used to model various fractional order systems since it provides various novel features along with design flexibilities. The continuous progress of fractional order systems and circuits requires the study of their mathematical explanation as well as their physical implementation [1, 2]. Various signal processing blocks such as fractional order

1 Faculty of Technology, University of Delhi, New Delhi 110078, India
2 Division of Electronics and Communication Engineering, Netaji Subhas University of Technology, New Delhi 110078, India
oscillators, filters, differentiators, integrators multivibrators, etc. have been explored in the fractional order domain. Many definitions have been proposed for fractional order derivatives [3] such as

Caputo definition is as follows

\[D_0^\alpha f(t) = \frac{1}{\Gamma(m-\alpha)} \int_0^t (t-u)^{m-\alpha-1} f^{(m)}(u) du \]

(1)

Riemann–Liouville is as follows

\[\text{RL} a D_\alpha^a f(t) = \frac{d^m}{dt^m} \left[\frac{1}{\Gamma(m-\alpha)} \int_0^t (t-\tau)^{m-\alpha-1} f(\tau) d\tau \right] \]

\[m - 1 < \alpha \leq m, m \in \mathbb{N}. \]

(2)

Grunwald-Letnikov is as follows

\[GL a D_\alpha^a f(t) = \lim_{h \to 0} \sum_{k=0}^{\left\lfloor \frac{t}{h} \right\rfloor} (-1)^k \binom{a}{k} f(t-kh) h^a, \quad \alpha \in \mathbb{R}, t-a = nh \]

(3)

where \(\Gamma(.) \) is the gamma function, \(m \) is an integer and \(\alpha \) is fractional order.

Initially, fractional order filters have been designed for first and second order systems [4, 5]. Further, the active and passive realization of fractional Butterworth filters has been done by Ali et al. [6]. Nowadays, the performance of fractional order filters is being improved by using optimization techniques [7–9]. Freeborn et al. realized fractional order Butterworth, Chebyshev, and Inverse Chebyshev filters using optimization techniques [10–14]. In addition to these, the comparison of different optimization techniques for designing fractional filters (Butterworth, Chebyshev and Bessel) has also been done [15–18]. Thus, fractional order Butterworth, Chebyshev, Inverse Chebyshev, and Bessel filters have been designed using optimization techniques in the literature.

However, there is a need to design a higher order fractional filter. Here, higher order Bessel filter is designed using optimization techniques as it is not attempted previously. In the proposed work, \((2 + \alpha) \) order low pass Bessel filter is approximated using SA, ISA, and NLS optimization techniques. The best technique out of these three is chosen and then the proposed filter is realized using DVCC based circuit. DVCC is an advanced and most effective block for realizing analog circuits. It has the benefits of the differential difference amplifier and second generation current conveyor (CC-II).

This paper is organized as follows: Sect. 2 describes the optimization techniques used in the proposed filter. Section 3 highlights the use of SA, ISA and NLS optimization methods to obtain the filter coefficients. Section 4 presents the stability analysis in W-plane. Section 5 deals with the performance parameters obtained using various techniques. Section 6 focuses on the comparison of proposed filters with existing counterparts. Section 7 emphasizes the analog realization of the proposed filter. Section 8 discusses results and finally, the main facts are summarized in Sect. 9.
2 Optimization Techniques

In the proposed work, \((2 + \alpha)\) order low pass Bessel filter coefficients are optimized using SA, ISA, and NLS. These optimization techniques have been shown using flow charts in Figs. 1, 2 and 3.
Over the last few years, the SA technique has been attained great attention to obtain good solutions for challenging optimization problems. Various attempts have been taken to apply this approach to multiple problems in areas of VLSI design, code generation, and pattern recognition with significant achievement. SA is a meta-heuristic algorithm that can escape from local optima. This technique is popular due to ease of execution, use of hill-climbing moves, and convergence properties. Discrete and partly continuous optimization problems can be usually dealt with by SA. This algorithm has an analogy with the process in that a crystalline solid is heated and then cooled very slowly till it reaches the most regular possible crystal lattice arrangement (physical annealing of solids), and thus is free of crystal defects. It forms an algorithmic link between the search for global minima and thermodynamic behavior to solve discrete optimization issues [19–22].
Start

Form a matrix or vector of input \(x_{\text{data}} \).

Define Lower bound and upper bound in the form of vectors or matrices of same size as \(x \). Coefficients of \(x \) are to be found out using Iscurvefit.

Define \(y_{\text{data}} \) observed output matrices or vectors.

For \(F(x,x_{\text{data}}) \) in the vector form \([x,x_{\text{data}(1)}] \ldots [x,x_{\text{data}(k)}]\)\), it is vector-valued or matrix-valued function of similar size as \(y_{\text{data}} \).

Lscurvefit solve the problem using \(\min_x |F(x,x_{\text{data}})-y_{\text{data}}|^2 = \min_x \sum (F(x,x_{\text{data}})-y_{\text{data}})^2 \).

Analyze and compare the outcomes of levenberg-marquardt algorithm and default trust-region-reflective algorithm.

Are the outcomes same?

No

Better outcomes out of two can be taken into consideration.

Yes

Any of the algorithm outcomes can be chosen.

End

Fig. 3 Flow chart of NLS technique
The ISA algorithm is used for solving wide areas of optimization problems. It is a metaheuristic algorithm which has fast convergence speed and large search space. This novel algorithm can solve complex optimization tasks efficiently. It has some benefits over conventional optimization techniques such as only one tuning parameter, simple and solves the problems of local and premature convergence. It can also find the global minimum much more efficiently [23, 24].

The NLS problems have arisen when the parameterized function is fitted to a set of measured data points to minimize the sum of the squares of the errors between the function and data points. The Levenberg–Marquardt and trust-region approaches have been used to solve NLS problems. The Levenberg–Marquardt curve-fitting method is essentially an arrangement of two minimization methods such as the gradient descent method and the Gauss–Newton method. If the parameters are far from their optimal value, the Levenberg–Marquardt method acts as a gradient-descent method. It is the sharpest descent approach that updates parameter values in the “downhill” direction. For problems with simple objective functions the gradient descent approach converges well. Gradient descent approaches are sometimes the only practical method when the number of parameters is thousands. When the parameters are close to their optimal value, the Levenberg–Marquardt method behaves as the Gauss–Newton method. It converges much faster than gradient-descent methods for moderately-sized problems. This method reduces the sum of the squared errors to assume that the least-squares function is locally quadratic. The Levenberg–Marquardt method adaptively fluctuates the parameter updates between the Gauss–Newton and the gradient descent. The important and common class of minimization problems having upper and lower bound for some of the variables. These types of problems have been solved by many algorithms, few are restricted to the quadratic objective function and few are more general. Unconstrained minimization problems have been solved using Trust region methods that form a respected class of algorithms. Its strong convergence properties, naturalness, reliability, and efficiency make it more attractive. While the Levenberg–Marquardt algorithm can suffer from slow convergence. On the other hand, the algorithm may easily become lost in parameter space when the least-squares function is very flat [25, 26].

3 Filter Coefficient Selection

To approximate the passband behavior of the proposed filter, the transfer function of $(2 + \alpha)$ order low pass filter and the 3rd order Bessel transfer function with cut off frequency 1 rad/sec are compared in the frequency range from ω equals 10^{-5} rad/sec to 1.5 rad/sec for reducing the error function.

The transfer function of $(2 + \alpha)$ order low pass filter is given as follows

$$T_{LP}^{2+\alpha}(s) = \frac{a_0}{a_1s^{2+\alpha} + a_2s^{1+\alpha} + a_3s + a_4s^\alpha + 1}$$ \hspace{1cm} (4)

The 3rd order Bessel transfer function with cut off frequency 1 rad/sec is given by

$$B_3(s) = \frac{0.2506}{s^3 + 3.4175s^2 + 4.8664s + 2.7718}$$ \hspace{1cm} (5)

Equation 6 is used to minimize the error between Eqs. 4 and 5 with SA, ISA, and NLS optimization techniques.
where vector of filter coefficients denoted as x, magnitude response of Eq. 1 is $T(x, \omega)$ and $B_3(\omega_i)$ is the third-order Bessel approximation with frequency ω_i, and the total number of data points are k. SA, ISA, and NLS optimized filter coefficients $(a_0, a_1, a_2, a_3, a_4)$ are found out for α value ranging from 0.1 to 0.9 and summarized in Table 1.

Table 1 Filter coefficients of $(2 + \alpha)$ order Bessel filter using SA, ISA, and NLS

α	SA	ISA	NLS
0.2	0.2000	0.2000	0.2000
0.5	0.9957	0.9997	1.0000
0.8	0.9972	0.9981	0.9999
1.0	1.0000	0.9997	0.9999

\[
\min_x \left\| |T(x, \omega)| - |B_3(\omega)| \right\|^2 = \min_x \sum_{i=1}^{k} \left(|T(x, \omega_i)| - |B_3(\omega_i)| \right)^2
\]

\[
s.t. x > 0.1
\]

where vector of filter coefficients denoted as x, magnitude response of Eq. 1 is $T(x, \omega_i)$ and $B_3(\omega_i)$ is the third-order Bessel approximation with frequency ω_i, and the total number of data points are k. SA, ISA, and NLS optimized filter coefficients $(a_0, a_1, a_2, a_3, a_4)$ are found out for α value ranging from 0.1 to 0.9 and summarized in Table 1.

4 Stability Analysis

Stability analysis is an important aspect to confirm the possibility of analog realization of the proposed filter. To explore the stability of the proposed $(2 + \alpha)$ order Bessel filter, conversion of the s-plane transfer function into the W-plane transfer function is required [27–32]. This conversion is done in the following manner.

(i) Convert $s = W^m$ and $\alpha = k/m$

(ii) Choose k and m for the required value of α.

(iii) Converted W-plane transfer function is solved for all poles.

(iv) Evaluate the absolute pole angles $|\theta|$, if all are greater than $\pi/2$ m then the system is stable otherwise not.

The above steps have been used to find the root angles for different values of α using SA, NLS, and ISA optimized filter coefficients. For example, the stability analysis of the 2.2 order NLS optimized filter can be done using the denominator of Eq. 4. It can be written as follows

\[
D(s) = a_1s^{2.2} + a_2s^{1.2} + a_3s + a_4s^{0.2} + 1
\]

Equation 7 can be rewritten for $W = s^{1/10}$ with $m = 10$ and modified as

\[
D(W) = a_1W^{22} + a_2W^{12} + a_3W + a_4W^2 + 1
\]

Equation 8 can be written as follows

\[
D(W) = 1.6842W^{22} + 0.6050W^{12} + 1.2695W + 0.0351W^2 + 1
\]
The minimum root angle ($\theta_{w_{\text{min}}}$) for the above equation is 12.2 degrees (mentioned in Table 2). Table 2 reported the minimum pole angle $|\theta_{w_{\text{min}}}|$ of $(2 + \alpha)$ order low pass Bessel filter using SA, ISA, and NLS techniques for α equals to 0.2, 0.5 and 0.8. It can be seen that all pole angles ($|\theta_{w_{\text{min}}}|$) are greater than 9 degrees (minimum value of $\pi/2$ for $m=10$). Hence, it confirms that all the techniques used for optimizing the proposed filter are physically realizable.

5 Performance Parameters

SA, ISA, and NLS optimized filter coefficients are compared for errors such as gain, cut-off frequency, roll-off, passband, stopband, and phase. The best optimization technique out of these three in terms of the above mentioned parameters is chosen for analog realization of the proposed filter.

The following parameters are compared to check the performance of the optimization techniques [33]:

(i) Gain error: It is the error between maximum gain of the ideal Bessel filter and the maximum gain of fractional order low pass Bessel filter.

(ii) Cut-off frequency error: It is the error obtained when the cut-off frequency of the proposed filter is compared with the ideal Bessel filter (1 rad/sec).

(iii) Roll-off error: The roll-off error can be obtained by comparing the roll-off rate of the proposed filter with the ideal Bessel filter.

(iv) Passband error (PE): It is the error measured in the passband when compared to the ideal Bessel response. PE can be calculated as follows:

$$PE = 20 \times \log_{10} \left\{ \sum_{i=1}^{K} \frac{\left| T_{LP}^{2+\alpha} (\omega_i) \right| - \left| B_3 (\omega_i) \right|}{K} \right\} dB$$ \hspace{1cm} (10)

where $K = 500$ and $0.01 \leq \omega_i \leq 1$.

(v) Stopband error (SE): It is measured in the stopband (1 rad/sec to 10 rad/sec) while compared with ideal Bessel response. It is calculated as follows

$$SE = 20 \times \log_{10} \left\{ \sum_{i=1}^{K} \frac{\left| T_{LP}^{2+\alpha} (\omega_i) \right| - \left| B_3 (\omega_i) \right|}{K} \right\} dB$$ \hspace{1cm} (11)
where $K = 500$ and $1 \leq \omega_i \leq 10$.

(vi) Phase error: It is observed in the phase response while compared with ideal Bessel response. It is measured as follows

$$\text{Phase Error} = \frac{\sum_{i=1}^{K} \left| \tan^{-1} T_{LP}^{2+\alpha}(\omega_i) \right| - \left| \tan^{-1} B_3(\omega_i) \right|}{K}$$

where $K = 500$ and $0.01 \leq \omega_i \leq 10$.

Table 3 shows the comparison of parameters for different optimization techniques (SA, ISA, and NLS). It has been observed that NLS gives the minimum error of all parameters (gain error, cut-off frequency error, roll-off error, PE, SE, and phase error) as compared to SA, and ISA for α equal to 0.2, 0.5, and 0.8. Gain and roll-off of ideal third-order Bessel filter are -20.9 dB and -54.6 dB/decade.

The frequency and phase response of SA, ISA, and NLS optimized $(2 + \alpha)$ order Bessel filters for the orders 2.2, 2.5, and 2.8 have been plotted in Fig. 4a–c. Further, the frequency and phase responses have also been plotted for $B_3(s)$ to show the deviation of fractional order filters. These responses show that the roll-off increases as the order are increasing from 2.2 to 2.8.

α Parameters	SA	ISA	NLS
0.2 Gain Error (dB)	6.1	5.6	0.1
Cut-off frequency error (rad/sec)	0.9364	0.9922	0.051
Roll-off error (dB/dec)	11.4	12.3	9.5
PE (dB)	56.1936	66.1824	92.3605
SE(dB)	87.6072	93.7984	92.5471
Phase error(radians)	2.5	2.77	1.12
0.5 Gain error (dB)	6.9	6.9	0
Cut-off frequency error (rad/sec)	0.741	0.964	0.11
Roll-off error (dB/dec)	2.1	4.3	1.7
PE(dB)	47.9189	60.2175	108.7552
SE(dB)	80.8105	90.8799	112.7983
Phase error(radians)	0.515	0.62	0.381
0.8 Gain error(dB)	6.9	6.9	0
Cut-off frequency error (rad/sec)	0.43	0.883	0.01
Roll-off error(dB/dec))	7.2	4.5	0.4
PE(dB)	42.5550	57.2557	127.8340
SE(dB)	67.3757	90.7401	137.4023
Phase error(radians)	0.445	0.587	0.122
Fig. 4 Frequency and phase response of $(2 + \alpha)$ order Bessel filter using a SA b ISA c NLS
6 Comparison of Proposed Filter with Existing Filters

The comparison of the proposed filter with existing fractional filters in literature is needed to show the merits of the \((2 + \alpha)\) order Bessel filter. The comparative analysis of the proposed Bessel filter with existing filters has been done in Table 4 for roll-off error, cut-off frequency error, PE, SE, phase error, degree of freedom and applied optimization technique. It can be seen that the phase error of the NLS optimized proposed Bessel filter is less or comparable to existing filters.

7 Analog Realization of the Proposed Filter

It has been discussed earlier that the NLS gives the least gain error, cut-off frequency error, roll-off error, PE, SE, and phase error as compared to SA, and ISA techniques for the proposed filter. So, there is a requirement to verify the results obtained from the NLS optimization technique. Here, DVCC is chosen to design NLS optimized \((2 + \alpha)\) order low pass Bessel filter. DVCC is defined using the following matrix:

\[
\begin{bmatrix}
Y_1 \\
Y_2 \\
V_X \\
I_Z
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
V_Y \\
V_Z
\end{bmatrix}
\tag{13}
\]

Figure 5 shows the circuit diagram of the NLS optimized \((2 + \alpha)\) order low pass Bessel filter using 2 DVCCs, 1 GIC based inductor, and 1 fractional capacitor. The internal structure of DVCC is given in Fig. 6 using 3 AD844 [38–40].

GIC based inductor is used in the proposed circuit for \(L = 1\) mH. In Fig. 7, the desired value of the inductor \((L = 1\) mH) is achieved by choosing \(R = 1\) KΩ, \(R_5 = 100\) Ω, and \(C_4 = 0.01\) µF. Equivalent input impedance to ground of above ckt. (Fig. 7) is given by

\[
Z = \frac{Z_1Z_2Z_5}{Z_2Z_4}
\tag{14}
\]

Using \(Z_1 = Z_2 = Z_3 = R, Z_4 = 1/sC_4, Z_5 = R_5\), Eq. 14 becomes

\[
Z = sC_4RR_5
\tag{15}
\]

\[
L = C_4RR_5
\tag{16}
\]

DVCC based 2.5 order proposed filter is used \(C_1\) as a fractional capacitor, this capacitor is used for a wide frequency range. It is made up of 10 resistances and nine capacitances. Figure 8 shows the structure of a wideband fractional capacitor and Table 5 gives the values of resistances and capacitances used in \(C_1\) [41].

To get the overall transfer function of DVCC based proposed filter (Fig. 5), the following steps are required:

\[
\frac{V_1}{V_{in}} = \frac{1}{LC_1s^{1+\alpha} + R_1C_1s^\alpha + 1}
\tag{17}
\]
Table 4 Comparison of NLS optimized proposed filter with existing counterparts

Parameters	Order of filter	[17]	[18]	[34]	[9]	[35]	[36]	[37]	NLS optimized Proposed filter					
Cut-off frequency error (rad/sec)	1.1	1.300	0.82	0.878	0.003	0.999	0.798	0.034	0.051					
	1.2	–	1.088	0.876	–	0.921	0.799	0.048						
	1.3	1.070	0.85	0.878	–	0.901	0.819	0.078						
	1.4	0.880	0.84	0.884	–	0.891	0.759	0.081						
	1.5	–	0.731	0.885	0.002	0.601	0.788	0.071	0.11					
	1.8	–	0.892	–	–	–	–	–	0.01					
	1.9	–	0.545	0.913	0.001	0.209	0.912	0.071						
Roll-off error (dB/decade)	1.1	1.600	1.60	2.450	4.893	4.060	1.800	1.059						
	1.2	–	2.540	2.540	–	4.070	2.860	1.930	9.5					
	1.3	1.600	1.3	2.790	–	3.800	2.670	2.727						
	1.4	2.100	1.5	2.860	–	4.000	2.100	3.375						
	1.5	–	3.210	3.210	4.741	4.480	2.900	3.785	1.7					
	1.8	–	2.8	–	–	–	–	–	0.4					
	1.9	–	5.130	5.130	14.655	4.900	4.300	0.481						
PE(dB)	1.1	–67.7175	–74.9487	–35.59	–37.8	–37.8	–66.1824							
	1.2	–93.011	–8.783	–40.96	–11.38	–40.1	–60.2175							
	1.3	–88.2934	–80.9750	–33.7	–24.97	–8.288	–30.6	–57.2557						
	1.4	–78.6026	–69.7839	–33.7	–25.4	–25.4	–57.2557							
	1.5	–77.522	–8.35	–33.58	–24.97	–8.288	–30.6	–60.2175						
	1.8	–87.0294	–8.828	–31.74	–11.55	–9.399	–25.2	–57.2557						
	1.9	–87.0294	–8.828	–31.74	–11.55	–9.399	–25.2	–57.2557						
Parameters	Order of filter	[17]	[18]	[34]	[9]	[35]	[36]	[37]	NLS optimized	Proposed filter				
------------	----------------	------	------	------	-----	------	------	------	----------------	-----------------				
SE(dB)														
1.1		−68.1378	−68.2453						−44.9					
1.2	−	−74.764	−28.73	−6.872	−34.55	−29.37	−38	−93.7984						
1.3	−83.3390	−85.3804	−	−	−	−	−74.764	−28.73	−6.872	−34.55	−29.37	−38	−93.7984	
1.4	−91.7671	−92.8286	−	−	−	−	−	−	−	−	−	−	−33.6	
1.5	−	−95.768	−31.79	−19.47	−37.72	−31.00	−33.4	−90.8799						
1.8	−	−99.042	−	−	−	−	−	−	−	−	−	−	−41.3	−90.7401
1.9	−108.523	−38.62	−30.81	−36.63	−39.81	−45.4								
Phase error (radians)														
1.1	0.982	0.970	1.180	1.159	−	1.180	1.197							
1.2	−	1.040	1.040	−	1.2013	1.040	1.062	1.12						
1.3	0.668	0.64	0.909	−	−	0.091	0.929							
1.4	0.525	0.502	0.774	−	−	0.720	0.797							
1.5	−	0.643	0.643	1.161	0.7229	0.635	0.664	0.381						
1.8	−	0.107	−	−	0.0892	−	−	0.122						
1.9	−	0.144	0.144	1.173	−	0.142	0.143							
Degree of freedom														
2	1	1	1	1	1	1	1							
Applied optimization technique	Yes	Yes	No	Yes	No	No	No	Yes						
After dividing the numerator and denominator of Eq. 19 by $(R_2 + R_3)$, then compare this equation with Eq. 4. The outcome of comparison gives the values of $R_1 = 5163.9 \, \Omega$, $R_2 = 168,200 \, \Omega$, $R_3 = 19070 \, \Omega$ with $C_1 = 2.5 \, nF s^{-\alpha-1}$, $C_2 = 0.02 \, \mu F$, and $L = 1 \, mH$. These values are used to get the magnitude response of DVCC based NLS optimized $(2 + \alpha)$ order low pass Bessel filter, magnitude is scaled by 10,000 and frequency shifted to 10 kHz.
Fig. 7 The internal structure of GIC based inductor

Fig. 8 Wideband Fractional capacitor \((C_1)\) for \(\alpha = 0.5\)

Resistors	Values (Ω)	Capacitors	Values (F)
R_2	537.6	–	–
R_3	394.1	C_3	803.2 p
R_4	974	C_4	1506 p
R_5	2153	C_5	3164 p
R_6	4665	C_6	6779 p
R_7	10.07 K	C_7	14.58 n
R_8	21.75 K	C_8	31.33 n
R_9	47.4 K	C_9	66.7 n
R_{10}	108.2 K	C_{10}	135.6 n
R_{11}	341.4 K	C_{11}	84 n
8 Result and Discussion

8.1 SPICE Simulated Magnitude Response

The SPICE simulated magnitude response of the proposed 2.5 order NLS optimized Bessel filter is shown in Fig. 9. The MATLAB and SPICE simulated results of 2.5 order Bessel filters have been compared. The absolute error in MATLAB and SPICE simulated results of gain and cut-off frequency is 3.5 dB and 0.37 rad/sec, respectively. It specifies that the results of MATLAB and SPICE are close to each other as desired for realization at the circuit level using approximated fractional order capacitor.

In addition to it, the Monte Carlo analysis of 2.5 order DVCC based NLS optimized Bessel filter for all the resistances and capacitances used in the circuit (Fig. 5) within 5% tolerance has been done for n = 100 runs. The resultant plots are shown in Fig. 10a, b. The maximum variation in gain, cut-off frequency and roll-off rate for 2.5 order proposed filter are (−20.18 dB to −20.22 dB), (15.80 kHz to 16.33 kHz) and (−39.65 dB/decade to −41.27 dB/decade) respectively. Thus, it shows the reasonable variation in the above mentioned parameters.

8.2 Noise Analysis

Noise analysis is an important aspect to see the impact of noise on the proposed circuit. There are different kinds of noise in any electronic circuit such as shot noise, flicker noise, and thermal noise. The collective effect of all such noises on the proposed circuit (Fig. 5) is determined in the SPICE environment. The behavior of input and output noise voltage of 2.5 order NLS optimized proposed filter is shown in Fig. 11. As can be seen from this figure (Fig. 11) that both the input and output noise are low in the entire passband.
9 Conclusion

This work presents the designing of \((2 + \alpha)\) order low pass Bessel filter using SA, ISA, and NLS techniques. These techniques are used to optimize the filter coefficients. Further, the best optimization technique based on gain error, cut-off frequency error, roll-off error, PE, SE, and phase error has been chosen to design the proposed filter using DVCCs. The NLS optimized \((2 + \alpha)\) order low pass Bessel filter gives good similarity with SPICE simulated
DVCC based circuit. Therefore, MATLAB and SPICE results show a good similarity between results. This work can be further extended for other approximations of the filter.

Funding The authors have not disclosed any funding.

Data Availability Enquiries about data availability should be directed to the authors.

Code Availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Elwakil, A. S. (2010). Fractional-order circuits and systems an emerging interdisciplinary research area. *IEEE Circuits and Systems Magazine, 10*, 40–50.
2. Psychalinos, C., Elwakil, A. S., Radwan, A. G., & Biswas, K. (2016). Guest Editorial: Fractional order circuits and systems: Theory, design, and applications. *Circuits Systems and Signal Processing, 35*, 1807–1813.
3. Petras, I. (2009). Stability of fractional-order systems with rational orders. *Fractional Calculus and Applied Analysis, 12*(3). https://arxiv.org/abs/0811.4102.
4. Radwan, A. G., Soliman, A. M., & Elwakil, A. S. (2008). First-order filters generalized to the fractional domain. *Journal of Circuits, Systems, and Computers, 17*, 55–66.
5. Radwan, A. G., Elwakil, A. S., & Soliman, A. M. (2009). On the generalization of second-order filters to the fractional-order domain. *Journal of Circuits, Systems, and Computers, 18*, 361–386.
6. Ali, A. S., Radwan, A. G., & Soliman, A. M. (2013). Fractional Order Butterworth Filter: Active and Passive Realizations. *IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3*(3), 346–354. https://doi.org/10.1109/JETCAS.2013.2266753
7. Kubanek, D., & Freeborn, T. (2018). (1+α) Fractional-order transfer functions to approximate low-pass magnitude responses with arbitrary quality factor. *International Journal of Electronics and Communication, 83*, 570–578.
8. Said, L. A., Ismail, S. M., Radwan, A. G., Madian, A. H., El-Yazeed, M. F. A., & Soliman, A. M. (2016). On the optimization of fractional order low pass filters. *Circuits Systems and Signal Processing, 35*, 2017–2039.
9. Mahata, S., Saha, S. K., Kar, R., & Mandal, D. (2018). Approximation of fractional-order low-pass filter. *IET Signal Processing*. https://doi.org/10.1049/iet-spr.2018.5128
10. Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2015). Approximated fractional order chebyshev low pass filters. *Hindawi Publishing Corporation*. https://doi.org/10.1155/2015/832468
11. Freeborn, T. J., Elwakil, A. S., & Maundy, B. (2016). Approximated fractional order inverse chebyshev low pass filters. *Circuits Systems and Signal Processing, 35*, 1973–1982.
12. Freeborn, T. J. (2016). Comparison of (1+α) fractional-order transfer functions to approximate low pass butterworth magnitude responses. *Circuits Systems and Signal Processing, 35*, 1983–2002.
13. Khanna, T., & Upadhyay, D. K. (2015). Design and realization of fractional order butterworth low pass filters. In: *international conference on signal processing, computing and control (ISPCC)*.
14. AbdelAty, A. M., Soltan, A., Ahmed, A. W., & Radwan, A. G. (2017). On the analysis and design of fractional –order chebyshev complex filter. *Circuits Systems and Signal Processing*. https://doi.org/10.1007/s00034-017-0570-1
15. Soni, A., & Gupta, M. (2019). Performance evaluation of different order fractional chebyshev filters using optimization techniques. *International Journal of Electronics letters*. https://doi.org/10.1080/21681724.2019.1584915
16. Mahata, S., Saha, S. K., Kar, R., & Mandal, D. (2018). Optimal design of fractional order low pass Butterworth filter with accurate magnitude response. *Digital Signal Processing, 72*, 96–114.
17. Soni, A., & Gupta, M. (2021). Analysis and design of optimized fractional order low-pass bessel filter. *Journal of Circuits, Systems and Computers*. https://doi.org/10.1142/S0218126621500353
18. Soni, A., & Gupta, M. (2021). Designing of fractional order bessel filter using optimization techniques. *International Journal of Electronics Letters*. https://doi.org/10.1080/21681724.2020.1870715
19. Catoni, O. (1996). Metropolis, simulated annealing, and iterated energy transformation algorithms: Theory and experiments. *Journal of Complexity*, 12(4), 595–623.
20. Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. *Journal of Statistical Physics*, 34, 975–986.
21. Cerny, V. (1985). Thermodynamical approach to the travelling salesman problem: An efficient simulation algorithm. *Journal of Optimization Theory and Applications*, 45, 41–51.
22. Henderson, D., Jacobson, S. H., & Johnson, A. W. (2003). The theory and practice of simulated annealing. *Handbook of Metaheuristics* (pp. 287–319). Springer.
23. Gandomi, A. H. (2014). Interior search algorithm (ISA): A novel approach for global optimization. *ISA Transactions*, 53(4), 1168–1183.
24. Kumar, R., Farkas, K., Jouppi, N. P., Ranganathan, P., & Tullsen, D. M. (2003). Processor power reduction via single-ISA heterogeneous multi-core architectures. *IEEE Computer Architecture Letters*, 2(1), 2–2.
25. Coleman, T. F., & Li, Y. (1996). An interior trust region approach for nonlinear minimization subject to bounds. *SIAM Journal on Optimization*, 6(2), 418–445.
26. Mohammad, H., Waziri, M. Y., & Santos, S. A. (2018). A brief survey of methods for solving nonlinear least-squares problems. *Numerical Algebra, Control & Optimization*, 9(1), 1–1.
27. Acharya, A., Das, S., Pan, I., & Das, S. (2013). Extending the concept of analog butterworth filter for fractional order systems. *Signal Processing*, 94, 409–420. https://doi.org/10.1016/j.sigpro.2013.07.012
28. Soltan, A., Radwan, A. G., & Soliman, A. M. (2015). Fractional order sallen Key and KHN filters: Stability and poles allocation. *Circuits Systems and Signal Processing*, 34(5), 1461–1480. https://doi.org/10.1007/s00034-014-9925-z
29. Radwan, A. G., Soliman, A. M., Elwakil, A. S., & Sedeek, A. (2009). On the stability of linear systems with fractional-order elements. *Chaos, Solitons & Fractals*, 40(5), 2317–2328.
30. Choudhary, S. K. (2014). Stability and performance analysis of fractional order control systems. *Wseas Transactions on Systems and Control*, 9(45), 438–444.
31. Semary, M. S., Radwan, A. G., & Hassan, H. N. (2016). Fundamentals of fractional-order LTI circuits and systems: Number of poles, stability, time and frequency responses. *International Journal of Circuit Theory and Applications*, 44(12), 2114–2133.
32. Sabatier, J., Moze, M., & Farges, C. (2010). LMI stability conditions for fractional order systems. *Computers and Mathematics with Applications*, 59(5), 1594–1609.
33. Soni, A., Sreejeth, N., Saxena, V., & Gupta, M. (2019). Series optimized fractional order low pass butterworth filter. *Arabian Journal for Science and Engineering*. https://doi.org/10.1007/s13369-019-04225-7
34. Dvorak, J., Langhammer, L., Jerabek, J., Koton, J., Sotner, R., & Polak, J. (2018). Synthesis and analysis of electronically adjustable fractional-order low-pass filter. *Journal of Circuits, Systems and Computers*, 27(02), 1850032.
35. Freeborn, T. J., Maundy, B., & Elwakil, A. (2013). Fractional resonance based RLβCα filters. *Hindawi Publishing Corporation*. https://doi.org/10.1155/2013/726721
36. Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2012). Fractional step tow-thomas biquad filters. *Nonlinear Theory and Its Applications, IEICE*, 3, 357–374.
37. Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2010). Field programmable analogue array implementation of fractional step filters. *IET Circuits, Devices and Systems*, 4(6), 514–524.
38. Mishra, S. K., Gupta, M., & Upadhyay, D. K. (2018). Compact design of four-phase fractional-order oscillator with independent phase and frequency control. *Indian Journal of Physics*, 93(7), 891-901. https://doi.org/10.1007/s12648-018-1341-y
39. Chandratripathy, M., & Mohapatra, A. (2016). Fractional order filter based on fractional capacitors and fractional inductor. In *Proceedings of International Interdisciplinary Conference on Engineering Science & Management*, 17th - 18th December 2016, Goa, India. ISBN: 9788193137383
40. Mishra, S. K., Gupta, M., & Upadhyay, D. K. (2018). Active realization of fractional order Butterworth lowpass filter using DVCC. *Journal of King Saud University-Engineering Sciences*. https://doi.org/10.1016/j.jsues.2018.11.005
41. Kubanek, D., Khateb, F., Tsirimokou, G., & Psychalinos, C. (2016). Practical design and evaluation of fractional-order oscillator using differential voltage current conveyors. *Circuits Systems and Signal Processing*. https://doi.org/10.1007/s00034-016-0243-5

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Ashu Soni received the B.E and M.Tech, degrees from Shri Govindram Seksaria Institute of Technology and Science, Indore, India, in 2002 and 2004, respectively. She is currently working as a Teaching and Research Associate in Department of Electronics and Communications Engineering, Netaji Subhas Institute of Technology, New Delhi, India. Her current research interests are analog signal processing and fractional order circuits.

Maneesha Gupta is the corresponding author for this manuscript. She received the B.E and M.E, in Electronics & Communication Engineering from Government Engineering College, Jabalpur, India, and her Ph.D. from the department of Electronics Engineering, Indian Institute of Technology, New Delhi, India. She is currently working as a Professor in Department of Electronics and Communication Engineering, Netaji Subhas Institute of Technology, New Delhi, India. Her teaching and research interests are Switched Capacitors Circuits, Analog and digital signal processing, Low voltage low power design techniques and Fractional order analog and digital circuits. She is author and co-author over 100 research papers in these areas in various international/national journals and conferences.