Origin of the Tethyan Hemihoplitidae tested with cladistics (Ancyloceratina, Ammonoidea, Early Cretaceous): an immigration event?

Didier Bert, Stéphane Bersac

To cite this version:

Didier Bert, Stéphane Bersac. Origin of the Tethyan Hemihoplitidae tested with cladistics (Ancyloceratina, Ammonoidea, Early Cretaceous): an immigration event?. Carnets de Géologie / Notebooks on Geology, 2014, 14 (13), pp.255-272. insu-01071656

HAL Id: insu-01071656
https://insu.hal.science/insu-01071656
Submitted on 17 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Origin of the Tethyan Hemihoplitidae tested with cladistics
(Ancyloceratina, Ammonoidea, Early Cretaceous):
an immigration event?

Didier BERT 1, 2
Stéphane BERSAC 2

Abstract: The Late Barremian Hemihoplitidae (Ancyloceratina, Ammonoidea) are widely known in the northern Tethyan Margin and the Essaouira-Agadir Basin (Morocco). Their rapid evolution and diversification make them one of the key groups for that period, but their origin remains poorly known and several competing hypotheses have been published. These hypotheses are tested here with cladistic analysis in order to reject those receiving the least support and discuss those well supported. The analysis discards the Crioceratitidae, Emericiceratidae (Emericiceras and Honnoratia) and Toxancyloceras as stem-groups of the Hemihoplitidae (Gassendiceras). The Toxancyloceras appear instead to be a sister-taxon of the Moutoniceras, so we propose the latter to be classified with the Ancyloceratidae rather than with the Heteroceratidae. The best supported hypothesis assumes that the Hemihoplitidae first appeared suddenly in the Essaouira-Agadir Basin at the end of the Early Barremian from small populations of Boreal Paracrioceras. These latter could have migrated southward episodically before invading the northern Tethyan margin at the beginning of the Late Barremian. As a consequence, the Paracrioceratidae fam. nov. is proposed to include the Boreal groups Fissicostaticeras / Paracrioceras / Parancyloceras, and Gassendiceras essaouirae sp. nov. is proposed as a new name for the Moroccan endemic "Barracyloceras" maghrebiense sensu COMPANY et al., 2008, non IMME, 1978.

Key Words: Ammonites; Hemihoplitidae; Barremian; cladistics; allopatry; founder effect; palaeobiogeography.

Citation: BERT D. & BERSAC S. (2014).- Origin of the Tethyan Hemihoplitidae tested with cladistics (Ancyloceratina, Ammonoidea, Early Cretaceous): an immigration event?.- Carnets de Géologie [Notebooks on Geology], Brest, vol. 14, nº 13, p. 255-272.

Résumé : L'origine des Hemihoplitidae téthysiens testée par la cladistique (Ancyloceratina, Ammonoidea, Crétacé inférieur) : un événement migratoire ?. Les Hemihoplitidae du Barrémien supérieur (Ancyloceratina, Ammonoidea) sont connus sur la plus grande partie de la marge Nord Téthysienne et dans le Bassin d'Essaouira-Agadir (Maroc). Leur évolution et leur diversification rapide en font un des groupes clés pour cette période, mais leur origine reste peu connue et plusieurs hypothèses contradictoires ont été développées dans la littérature. Ces hypothèses sont testées ici par une analyse cladistique afin d'éacter les moins étayées d'entre elles et de discuter les meilleures. L'analyse écarte les Crioceratitidae, les Emericiceratidae (Emericiceras et Honnoratia) et les Toxancyloceras en tant que groupe-souche pour les (Gassendiceras). D'autre part, les Toxancyloceras apparaissent être taxon-frère des Moutoniceras, aussi est-il proposé de classer ces derniers parmi les Ancyloceratidae plutôt que dans les Heteroceratidae. L'hypothèse la mieux soutenue suggère que les Hemihoplitidae seraient initialement apparus soudainement à la fin du Barrémien inférieur dans le Bassin d'Essaouira-Agadir à partir de petites populations de Paracrioceras boréaux. Ces derniers auraient pu migrer épisodiquement vers le Sud avant d'envahir la marge Nord-Téthysienne au début du Barrémien supérieur. En conclusion, la Famille des Paracrioceratidae fam. nov. est proposée pour individualiser le groupe boréal Fissicostaticeras / Paracrioceras / Parancyloceras, et Gassendiceras essaouirae sp. nov. est proposé comme nom nouveau pour désigner les "Barracyloceras" maghrebiense sensu COMPANY et al., 2008, non IMME, 1978, endémiques du Maroc.

Mots-cles : Ammonites ; Hemihoplitidae ; Barrémien ; cladistique ; allopatry ; effet fondateur ; paléobiogéographie.

1 Introduction

The marine Late Barremian (pro parte) ammonite family HemihoplitidaeSPATH, 1924 (Ancyloceratina WIEDMANN, 1960), is widely known in the northern Tethyan Margin and the Essaouira-Agadir Basin (Morocco), where it represents a separate entity from the Ancyloceratidae GILL, 1871. Their rapid evolution and diversification make it one of the key groups for that period. The Hemihoplitidae are currently under revision (D.B.) and several contributions have already been published (BERT & DELANOY, 2008, under revision (D.B.).
These works helped to recognise three major developments for this family. These developments are taxonomically characterized by three subfamilies (Fig. 1), from which the Gassendiceratinae BERT et al., 2006, represents the stem of the whole group; the group is present from the early Late Barremian Vandenheckei Zone to the Giraudi Zone.

The Gassendiceratinae include the genera *Gassendiceras* BERT et al., 2006, *Pseudoshasticrioceras* DELANOY, 1998, and *Imerites* ROUCHADZE, 1933, which have close phylogenetic relationships. The genus *Gassendiceras* spans the Vandenheckei and Sartousiana zones. This latter genus is characterized by a particularly recognizable morphology with an uncoiled shell and main trituberculate ribs strongly marked alternately with spineless intercalary ribs (smooth). The *Pseudoshasticrioceras* are derived from the *Gassendiceras* in the Feraudianus Horizon or a little earlier. They show a tighter coiling, depletion of spineless ribs and proliferation of weakly tuberculate intermediate ribs (ribs are less differentiated from each other on the ventral margin – BERT & DELANOY, 2009).

![Figure 1: Relationships within the Hemihoplitidae (after BERT, 2012).](image)
The transition to *Immerites* (base of the Giraudi Zone) is accomplished by a major restructuring of the shell (appearance of the helical early stage), which also determines the morphological appearance of dimorphism (Bert et al., 2009). Taxonomy, intraspecific variability and ontogenetic development of the genus *Gassendiceras* have been revised recently based on abundant material from south-eastern France (Bert et al., 2013; Bert, 2013), and its phylogenetic reconstruction was carried out using cladistic analysis (Bert & Bersac, 2013). The results were compared to palaeoenvironmental external data (eustacy, palaeoclimate proxies) and show that *Gassendiceras* has an anagenetic evolution of palinogenesis type associated with a constant selection under environmental control (transgressive sequence).

The origin of the Hemihoplitidae remains poorly known despite this revision, and several competing hypotheses have been published. The purpose of the present paper is to test these hypotheses with cladistics and to resolve the origin of the whole Hemihoplitidae clade, of which the *Gassendiceras* are the oldest representatives.

2. Hypotheses on the Hemihoplitidae origin

2.1. The literature hypotheses

Authors proposed previously four hypotheses about the origin of the Hemihoplitidae:

1- *Crioceratitidae* Gill, 1871, as stem-group: for Wiedmann (1962, p. 112 and Fig. 35), *Hemihoplitidae* [are] derived from *Pseudothurmannia* and perhaps from other *Crioceratitidae genera with similar suture*. Despite the large stratigraphic gap between the last Crioceratitidae (Late Hauterivian) and the first Hemihoplitidae (early Late Barremian), Wiedmann (followed by Immel, 1979, and more recently by Klinger & Kennedy, 1992, and Mikhailova & Baraboshkin, 2009) classified the forms of the "barremense" Kilian, 1895 / *alpinum* d’Orbigny, 1850 group (here *Gassendiceras*) into the genus *Crioceratites* Lévêillé, 1837. The former species are supposed to be derived from the latter by the increasingly tight coiling of the shell. A neighbouring position was supported recently by Kakabadze and Hoevemaeker (2004, p. 82), who considered the Hemihoplitidae invalid in favour of the Ancycloceratidae.

2- *Emericiceras emerici* (Lévêillé, 1837) and *Toxancyloceras vandenheckei* (Astier, 1851) as stem-group: according to Delany (1992, p. 52), the *Gassendiceras* (= group of "E. barremense") would be derived from the *Emericiceras Sarkar, 1954*, of the *E. emerici* group (Emericicerasidae Vermeulen, 2004) via the *Toxancyloceras Delany, 2003*, of the *T. vandenheckei* group (Ancycloceratidae) of which they were supposed to be the descendants. This evolution would be carried out through a process of shell recoiling. Such an origination would be supported by very strong ornamental convergences between the juvenile whorls of both the *Gassendiceras* and *Toxancyloceras*, which are also present partially of *Emericiceras* (alternation of trituberculate main ribs and smooth interribs). For Immel (1978, Fig. 11, p. 70) *E. emerici* could be directly at the origin of the *Gassendiceras* (= "E. barremense").

3- *Honnoraria thiollierei* (Astier, 1851) as stem-group: for Vermeulen (2000, p. 130), the *Hemihoplitidae* originated in the *Emericiceratidae* group. This assumption is based probably on the uncoiling and the ornamental similarities between *Honnoraria* Busnardo et al., 2003, and *Gassendiceras* with the trituberculate main ribs alternating with smooth interribs.

4- "*Barrancyloceras* maghrebiense" (sensu Company et al., 2008, non Immel, 1978) as stem-group: *Crioceratites maghrebiensis* Immel, 1978, was classified into the genus *Barrancyloceras* Vermeulen, 2000 [of which the type species *B. barremense* (Kilian, 1895) is a nomen dubium – see Bert et al., 2010] by Klein et al. (2007) and Company et al. (2008). Following Vermeulen (note 198, p. 225 in Klein et al., 2007), we consider however that the type specimen of the Moroccan taxon *maghrebiensis* s.s. (sensu Immel, non Company et al.) is rather an Early Barremian *Emericiceras* unrelated to the *Hemihoplitidae*. According to Company et al. (2008, p. 19) "*Barrancyloceras* maghrebiense" (non Immel, 1978 – here renamed into *Gassendiceras essaouriae* sp. nov., see point 6) could be an ancestral endemic Moroccan representative of the *Hemihoplitidae* (Agadir-Essaouria Basin). It characterizes a horizon at the top of the Moutonian Zone (end of the Early Barremian).

Note about the name of *T. vandenheckei*. As previously explained by Bert et al. (2013), the original spelling (Astier, 1851) of this species is Vanden-Heckii. According to the I.C.Z.N article 32.5.2.3, this name has to be corrected into *vandenheckii*. But this species was dedicated to the Abbot Vanden-Hecke (Astier, 1851, p. 452), so the name of the species should be *vandenheckei*. The terminal "ii" is incorrect and corresponds probably to an inadvertent error (lapsus calami). The name therefore has to be corrected to *vandenheckei* wherever it appears (I.C.Z.N article 32.5.1).

2.2. A new hypothesis

Following Spath (1924, p. 82-83) it is possible to point out the very strong morphological affinities between Tethyan taxa currently classified in the genus *Gassendiceras* and the Boreal *Paracrioceras* of the *stadtaenderi* (Müller, 1892) / *elegans* (von Koenen, 1902) group, be-
cause they share many features. Both genera have in particular the trituberculate main ribs (ventrolateral, lateral and umbilical tubercles) separated by one to two, rarely three or more, markedly thinner intermediate ribs between every two main ribs (= the Barremense stage). The ventrolateral spines are stronger than the lateral and umbilical tubercles. Looped ribs between the lateral and umbilical tubercles may also occur in both genera (Kakabadze & HoeDEmaeker, 2010; Bert et al., 2013). The intermediate ribs bear weak ventrolateral and sometimes lateral tubercles in some species of Paracrioceras as they do in Gassendiceras.

The Paracrioceras of the stadtlaenderi / elegans group are usually known in the Boreal Denckmani Zone (which is placed in the Late Barremian and probably correlates with the Tethyan Vandenheckei and Sartousiana zones – see Rawson, 1983, p. 494, tab. 1; Rawson, 1995, Fig. 2; Ogg & Hinno, 2012). In fact, they are present from the boundary between the Elegans and the Fissicostatum zones (see Kakabadze & HoeDEmaeker, 2010, p. 37 and 40). The limit between these latter zones is usually considered to correspond roughly to the Early - Late Barremian boundary (Mutterlose & Boeckel, 1998; Mutterlose & Bornemann, 2000). However, according to a more recent study, the early Elegans Boreal Zone instead corresponds to the transition between the Compressissima / Moutonianum Tethyan zones in the Early Barremian (Bodin et al., 2009, p. 1260, Fig. 6 – here Fig. 2). Thus, it is reasonable to expect that the

Figure 2: Comparison of Hauterivian-Barremian Boreal and Tethyan zonations after the data of Bodin et al., 2009, and McArthur et al., 2004 (redrawn from Fig. 6 in Bodin et al., 2009, modified), with long-term trends in belemnite oxygen isotope records from the Vocontian Trough (Tethyan Realm, France) and the Speeton area (Boreal Realm, England). The two major negative shifts (i.e., warmer temperatures) of the Early Hauterivian and Early Barremian are highlighted by grey shading bands. The datum of both stratigraphic scales is the base of the Boreal Elegans Zone, and the green area highlights its correspondence with the Tethyan stratigraphic scale (Bert et al., 2008). The blue arrow is the abrupt and temporary temperature decrease at about the time of onset of volcanism on the Ontong Java Plateau described by McArthur et al. (2004); the red arrow marks the onset of Gassendiceras in the Essaouira-Agadir Basin (Morocco) with G. essaouirae sp. nov. The stratigraphic positions of Paracrioceras stadtlaenderi (Boreal Realm, see Kakabadze & HoeDEmaeker, 2010), G. essaouirae sp. nov. (Essaouira-Agadir Basin, see Company et al., 2008) and G. multicostatum (Tethyan Realm, see Bert et al., 2013) are also shown; the orange arrows propose the migratory hypotheses, first from the Boreal Realm to the Essaouira-Agadir Basin, and secondly from the latter to the Tethyan Realm (see text).
first Paracrucioceras of the stadlaenderi / elegans group arose in the equivalent of the Moutonianum Tethyan Zone.

Therefore, the genera Paracrucioceras and Gassendiceras have a stratigraphic distribution that is highly consistent with ancestor-descendant relationship.

3. Methods

Cladistic analysis is nowadays one of the most popular methods used to infer phylogenetic relationships. Cladistics is however still little used in ammonite studies despite that it is now regarded as an available tool for their evolutionary studies (NEIGE et al., 2007). The stratigraphic data for ammonites are indeed deemed of such high quality that many authors consider these sufficient for the reconstruction of phylogenetic patterns using stratophenetnic methods alone (GUEX, 2006; see ROUGET et al., 2004, and MONNET, 2005, for contradictory discussions). However, in the case of the Hemihoplitiidae the stratophenetnic analysis failed to find their origin for which there are five competing hypotheses (see point 2). Therefore, these hypotheses were tested with cladistics (parsimony analysis) in order to take into account solely the relations of similarity among the taxa, and so to reject the hypotheses receiving the least support and to discuss the best supported.

3.1. Taxa and characters analysed

We built a taxon-character matrix (Appendix) with 11 taxa selected from the previous hypotheses. Gassendiceras multicostatum (SARKAR, 1955) is currently the oldest known Gassendiceras species from the north Tethyan Margin, so we chose it to represent the Hemihoplitiidae. The genus Pseudothurmannia SPATH, 1923 (Crioceratitidae), to which was added the related genus Sornayites WIEDEMANN, 1962, with robust ornamentation, represents the first hypothesis about the Hemihoplitiidae origin: the one of WIEDEMANN. The second hypothesis, the DELANDY’s, is represented by the genera Emericiceras and Toxancyloceras. The genus Honnoratia was added to test the third hypothesis of the origin of one single group (the Hemihoplitiidae) and not to resolve polarisation of the cladogram an outgroup comparison was performed. Only one outgroup taxon has been selected for the analysis because testing the monophyly of all the taxa selected here is not the purpose of the present work. We only want to test the hypotheses of the origin of one single group (the Hemihoplitiidae) and not to resolve phylogeny of the whole tested taxa. The outgroup taxon we chose is the "primitive" Ancyloceratina Crioceratites nolani (KILIAN, 1919), which is a large sized criocionic species. This taxon has also the advantage to be undoubtedly older than all the other taxa tested because it appeared in the Early Hauterivian.

3.2. Outgroup taxon

Polarisation is necessary in cladistics to distinguish derived (apomorphic) from primitive (plesiomorphic) state of a character, so to resolve polarization of the cladogram an outgroup comparison was performed. Only one outgroup taxon has been selected for the analysis because testing the monophyly of all the taxa selected here is not the purpose of the present work. We only want to test the hypotheses of the origin of one single group (the Hemihoplitiidae) and not to resolve phylogeny of the whole tested taxa. The outgroup taxon we chose is the "primitive" Ancyloceratina Crioceratites nolani (KILIAN, 1919), which is a large sized criocionic species. This taxon has also the advantage to be undoubtedly older than all the other taxa tested because it appeared in the Early Hauterivian.

3.3. Discussion about the relevancy of the matrix

3.3.1. Discretization of continuous characters

Some of the selected characters (characters 0, 2, 3 and 4, see Appendix) are objectively continuous but could not be encoded as such (see GOLOBOFF et al., 2008; BERT & BERSAC, 2013) because of the lack of revision of the majority of the studied groups, which limits the numbers of reliable measurements to extract

259
the phylogenetic information. In the current state of knowledge, we considered that estimation is less reliable than a discretized value, so we performed discretization using the classical method: the difference between the maximum and minimum observed or estimated values was divided by the number of states for the characters 0, 2 and 3. For the character 4 (coiling hiatus), this range was divided by 2, because the “first” character-state corresponds to a value of 0.

3.3.2. Treatment of polymorphic characters

The matrix contains eight characters (42%) with a polymorphic state (see Appendix). They represent 8.3% of the total phylogenetic information and 8.2% of the total data (the four unknown states represent 1.8% of the total data). Multistate characters coded as such are problematic because they introduce "extra" homoplasy in providing soft reversals (according to KORNET & TURNER, 1999, p. 366, "a soft reversal takes place when an unfixed evolutionary novelty disappears from a polymorphic lineage", see KORNET & TURNER, 1999, for explanations) and thus, they should be avoided as much as possible. Therefore, the polymorphic characters were treated here according to the method proposed by KORNET and TURNER (1999), which gives the most congruent results. When possible, the polymorphic characters were coded according to their ancestral state (Inferring Ancestral State, or IAS method). In case of impossibility to discriminate the ancestral state from the derived state, the polymorphic characters were coded as such ("ambiguous coding") of KORNET & TURNER, 1999, p. 370). In fact, most of the polymorphism (94.7%) is because we used seven taxa of generic rank (= 63.6% of the taxa – Appendix): coding the characters of supraspecific taxa consists of adding the different character states of their species, which increases the probability of polymorphic characters (KRON & JUDD, 1990; NIXON & DAVIS, 1991; PRENDINI, 2001). The accuracy of the numerous methods available to treat polymorphic characters of supraspecific taxa in cladistics has long been debated (see PRENDINI, 2001, and SIMMONS & GLEISER, 2002, for a discussion). From one method to another, the supraspecific taxa could be replaced in the matrix by one species or specimen (exemplar method), or the polymorphic characters could be coded separately according to one state only (the ancestral state or the most frequent state). The separate coding of polymorphic characters (e.g., IAS / ancestral / compartmentalization, demographic methods, see KORNET & TURNER, 1999; PRENDINI, 2001, for a short description) can bias the results of the cladistic analysis because it presents the risk in providing a chimeric taxon (see PRENDINI, 2001). Such a chimeric taxon, with all its polymorphic characters "forced" to their ancestral state (i.e., a hypothetical ancestor), is problematic if it belongs to the ingroup of the study (BRYANT, 1997). In the present paper, we chose to treat the supraspecific taxa according to the exemplar method as described by PRENDINI (2001 – one or more of its representative species replaced each generic taxon of the matrix). Selecting a representative species usually consists in choosing the most common or the supposed earliest / ancestral species (BININDA-EMONDS et al., 1998; PRENDINI, 2001). However, in the present study this method is problematic because the relative abundance and the evolutionary patterns of the treated taxa are not precisely known (non-revised taxa most of the time, cf. supra), and because their monophyly has never been tested. In other words, the risk here is to select an inappropriate species, which does not belong to the genus it is supposed to represent. For this study, only one species per genus was selected to not overload the cladogram: the type species in order to ensure that it belongs for sure to its genus. So the seven taxa at the generic level of the matrix were replaced (see point 3.1) by Pseudothurmannia picteti SARKAR, 1955, Sornayites paronai (SARKAR, 1955), Emericiceras emeric (LEVÉILLÉ, 1837), Toxanciloceras vandenhecke (ASTIER, 1851), Honnoratia honnoratiana (d'ORBIGNY, 1842), Fissicostaticeras fissicostatum (ROEMER, 1841), and Moutoniceras moutonianum (d'ORBIGNY, 1850) respectively. After replacing each generic taxon by its type species, then applying as far as possible the IAS method for polymorphisms (or ambiguous method if not possible), only two characters (10.5%) remain polymorphic for seven taxa: characters 3 and 12 (Appendix). As a result of using this method, the proportion of polymorphisms versus the total phylogenetic information in the matrix decreases from 8.3% to 3.9%. We chose not to follow the recommendation of PRENDINI (2001) to represent supraspecific (here genera) taxa by several species (including the type species) in order to take into account their phenotypic diversity and eventually to test their monophyly. In the present study, as pointed above, the "non-type" species may not belong to their genus for sure. Therefore, including such species in the cladistic analysis would potentially add useless information, because the goal of the present paper is not to test the monophyly of the generic selected taxa.

3.4. Analysis method

The analysis was performed with the TNT software (Tree analysing using New Technology), version 1.1 for Windows (GOLDBOFF et al., 2008) using the "branch-and-bound" method via the Implicit Enumeration option (collapsing rule used is maximum length = 0) that allows finding for sure the most parsimonious trees. The characters were considered unordered and unweighted in order to avoid the inference of pre-analytical assumptions. The Consistency Index (KLUGE & FARRIS, 1969), the
Retention Index (FARRIS, 1989) and the Adjusted Homoplasy (GOLOBOFF et al., 2008) quantified homoplasy. In case of multiple most parsimonious trees, a strict consensus cladogram was computed in order to analyse consistency between the trees. Then the eventual ambiguous apomorphies were performed by ACCTRAN optimization (accelerated transformation – FARRIS 1970; SWOFFORD & MADDISON, 1987, 1992), which favours reversals over convergences.

A resampling technique using bootstrap method (standard bootstrap of TNT with 1000 replications, using implicit enumeration, collapsing groups below 1%, result given in absolute frequency, see GOLOBOFF et al., 2008) and a decay analysis (BREMER, 1994, Absolute BREMER Support in TNT, support calculation with Tree Bisection and Reconnection from existing trees, retained suboptimal trees by 20 steps and null relative fit difference, see GOLOBOFF et al., 2008) were performed with TNT in order to assess the confidence of the nodes and to test the robustness of the tree topology. The bootstrap indicates the stability of the most parsimonious clades under random weighting of characters. So the more this value is high means the more times a given branch occurs in the consensus bootstrap trees, and the more robust this clade is assumed to be. The BREMER support indicates the robustness of a clade by calculating the number of extra steps needed to collapse this clade.

4. Results

4.1. The most parsimonious trees

The analysis results in 5 most parsimonious trees (Fig. 3) of 40 steps each, which reveal the presence of homoplasies (Consistency Index = 0.675; Retention Index = 0.75; Adjusted Homoplasy = 2.95 to 3.05). These five trees have some important topologic similarities since some taxa are systematically paired as sister taxa. This is the case for Toxancylloceras vandenheckei and Moutoniceras moutonianum, Sornayites paronai and Pseudothurmannia picteti, Emericiceras emericis and Honnoratia thiollerei and the two species of Gassendiceras. The other most important similarity between the trees is the clade with Paracrioceras, Fissicostaticeras and the two species of Gassendiceras, which is systematically present in the same structure.

4.2. The strict consensus tree

The structure of the strict consensus tree is given in Figure 4. Most of the nodes receive bootstrap value around or greater than 70% and a significant BREMER support value (from 1 to 2 – Fig. 4), which values are overall coherent between each other. The node with bootstrap value lesser than this threshold (node 17) is not uninteresting but it has to be considered more carefully. Nevertheless, a BREMER value of 1 can be used to assess and reinforce the interest of this node.

Fig. 3: The five most parsimonious trees obtained at first run with TNT.
The consensus tree shows four major clades well separated within the ingroup from a clearly unresolved node (node 13 – Fig. 4), which contains no synapomorphy in our study. This result is quite logical due to the spread choice of the taxa belonging to different families. The four clades are as follows: the one consisting of the Emericiceratidae (Emericiceras emerici and Honnoratia thiollierei); the one consisting of the Crioceratitidae (Pseudothurmannia picteti and Sornayites paronai; the pair Moutoniceras and Toxancyloceras; and the clade consisting of Paracrucioceras / Fissicostaticeras and Gassendiceras. This latter clade has a pectined structure (each node gives birth to a single taxon and a clade), with the respective apparition going upward although the cladogram of Fissicostaticeras fissicostatum, Paracrucioceras stadtaenderi and the two species of Gassendiceras. This latter clade is the most robust of the tree (Fig. 4).

5. Discussion

It is possible to discuss the hypotheses exposed above (point 2) in light of the cladogram obtained.

1- Crioceratitidae as stem-group (the Wiedmann hypothesis): the adult size, the evolute coiling and the shape of the dorsum are the synapomorphic characters supporting the clade of Pseudothurmannia / Sornayites (node 14 – Fig. 5). The other characters are all homoplasic. It appears in fact that the hypothesis of the Crioceratitidae as stem of the Hemihoplititidae is the result of a typological conception of both the Late Hauterivian Crioceratitidae and the Barremian Hemihoplititidae based on morphological convergences (homoplasies) without any phyletic link between these groups. The hypothesis of such a link is anyway hampered by the very large stratigraphic gap between the last Pseudothurmannia (latest Hauterivian) and the first Hemihoplititidae (Late Barremian).

2- Honnoratia thiollierei as stem-group (the Vermeulen hypothesis): Honnoratia thiollierei appears to be a sister taxon of Emericiceras emerici and they are both grouped into the Emericiceratidae. The coiling of the shell (node 15) and the presence of ribulate ribs are the synapomorphic characters supporting this clade. The very large adult size is homoplasic (see Fig. 5). There are five convergent characters (homoplasies) between the Honnoratia and the clade of the two species of Gassendiceras (characters 4, 9, 11, 14, 17 – see Appendix). Therefore, the hypothesis of an origin of the Hemihoplititidae within the Honnoratia is problematic in terms of morphology (shape of the shell and ornamentation). It is also problematic considering the stratigraphic gap of nearly two ammonite zones (Compressissima and Moutonianum zones) between the last Honnoratia (Early Barremian) and first Gassendiceras (early Late Barremian or extremely late Early Barremian according to Company et al., 2008).

3- Emericiceras emerici and Toxancyloceras vandenheckeii as stem-group (the Delanoy hypothesis): the link Delanoy had evoked between the Emericiceras and Toxancyloceras is not recognised from the cladistic analysis, as the "group" forming these two genera is clearly polyphyletic and thus unacceptable. Emericiceras emerici is the sister taxon of Honnoratia thiollierei (both Early Barremian Emericiceratidae) as seen above, and they have relationship neither with the Hemihoplititidae nor the Toxancyloceras (Ancyloceratidae). Moreover, this latter genus appears to be sister taxon of Moutoniceras. The synapomorphic character of the clade supported by Toxancyloceras and Moutoniceras is the strict ancyloceratic coiling (Fig 5). The coil of some robust Toxancyloceras of the T. vandenheckeii group may resemble some Gassendiceras to a strictly ornamental point of view, especially when they have many inermous (smooth without any tubercles) interribs. Toxancyloceras and Gassendiceras share common characters: their adult size is similar (character 0); the ribs can be reduced on the venter (character 8), are wedge shaped (character 13), and they often bear robust tubercles (character 15). The flanks are rounded in the same way (character 17). These similarities are however convergences (homoplasies) with no phyletic link, and in Toxancyloceras the uncoiling is more pronounced with a higher spiral gap (characters 1 and 4), growth in height whorls is lower (character 2), and the smooth interribs are still more numerous (character 10). The shaft of Toxancyloceras is also more slender, straight and longer in proportion than in the few tripartite species belonging to the genus Gassendiceras (see Bert et al., 2013). The hook is longer, rounded and less tuberculate near the ventral marginal area in Toxancyloceras. The possibility of an origin of the Gassendiceras within the Moutoniceras is utterly inconceivable because of their strongly divergent morphology, and such a hypothesis would not be supported by the present cladistic analysis anyway.
4- *Gassendiceras essaouirae* sp. nov. (= "Barrancycloceras" maghrebiense sensu COMPANY et al., 2008, non IMME, 1978) as stem-group (the COMPANY et al. hypothesis): examination of casts of the Moroccan specimens figured by COMPANY et al. (2008, Pl. 8, figs. L, M) allows the consideration of their classification into the genus *Gassendiceras* close to *G. multicostatum*. Their uniqueness merits a new species name (see below the taxonomic implications), thus *G. essaouirae* sp. nov. would now represent the oldest known *Gassendiceras*. *G. essaouirae* sp. nov. is sister taxon of *G. multicostatum* on the cladogram as the most robust clade (bootstrap of 86% consolidated with the significant BREMER support value of 2 – Fig. 4), and this is strongly in favour of the COMPANY et al. hypothesis. The synapomorphy that supports this clade is the scarcity of the intercalary ribs. The presence of the ontogenetic Heberti stage might be a synapomorphy of this clade as well as a synapomorphy of the *Paracrioceras-Gassendiceras* clade, due to the unknown state of the character 5 (Fig. 5). The origin of the Tethyan *Gassendiceras* within the Moroccan species is also stratigraphically consistent because *G. essaouirae* sp. nov. is from the latest Early Barremian and *G. multicostatum* (the oldest-known Tethyan Hemihoplitidae) is from the early Late Barremian (see Fig. 2).

5- *Paracrioceras* as stem-group (hypothesis of the present work): in the cladogram, *Paracrioceras* is the sister taxon of the *Gassendiceras* clade. This close relationship between *Paracrioceras* and *Gassendiceras*, and both the correspondence between their appearance on the cladogram (starting from the root) and their stratigraphical distribution (see above point 2.2 and Fig. 2) are consistent with this hypothesis (see BERT & BERSAC, 2013, for a discussion about cladagram and phylogenetic tree). They are supported by some synapomorphies (as for the *Fissicostaticeras* – node 16 – Fig. 5), especially concerning the ontogeny (the presence of the Barremense and the Simplified ornamentation stages, characters 6 and 16). Therefore, the link between these taxa is consolidated, and the origin of the Hemihoplitidae is compatible with the migration event hypothesis developed above (point 2.2).

The cladistic analysis clearly dismisses the first three hypotheses. The two remaining hypotheses are in contrast consolidated. There is no incompatibility between them and they should be regarded as complementary. It is indeed quite possible that the Hemihoplitidae appeared in the Essaouira-Agadir Basin at the end of the Early Barremian (COMPANY et al., 2008), before invading the northern Tethyan margin at the beginning of the Late Barremian. They could be derived from small populations of Boreal *Paracrioceras*, which might have migrated southward episodically.

Palaeogeographically, the Essaouira-Agadir Basin is of intermediate position on the only possible migration route (Fig. 6), while any other communication path between the Boreal and Tethyan realms was closed again in the Barremian (Neocomian Polish Furrow), or not yet opened (Russian Platform, Pyrenean Furrow, Paris Basin, Polish Through – DERCOURT et al., 2000). This Basin has a distinctly Mediterranean character (COMPANY et al., 2008), and the sudden onset of the Hemihoplitidae at the end of the Early Barremian in Morocco is thus strongly consistent with the migratory hypothesis of this group towards the Tethys. The beginning of the transgressive system tract (HARDENBOL et al., 1998) at the end of the Early Barremian / beginning of the Late Barremian *s.l.* also provides an additional argument with the greater ease of communication induced.

On the other hand, a communication between the Boreal Realm and the Atlantic for the "Mittelbarrême" was argued by IMME and MUTTERLOSE (1978, p. 265). These latter authors also suggested multiple Boreal influences during the Moroccan Cretaceous [based on ROCH's work (1930) who reported several Barremian Boreal ammonite taxa in the Agadir area], although COMPANY et al. (2008) did not confirm it for the Barremian.

Note that an East communication path (from the Boreal Ocean North of the Scandinavian Shield and through all the Russian Platform) has been proposed to explain the presence of *Paracrioceras denckmani* in the early Late Barremian of Crimea (KAKABADZE, 1981, Pl. 2, fig. 1, reconsidered as *P. cf. elegans* in KAKABADZE, 1983, p. 506; see also DELANOY & FÉRAUD, 1995, Fig. 4 and p. 211). However this determination is challenged here because KAKABADZE's specimen instead belongs to *Hemihoplites feraudianus* (robust morphology), which is unknown in the Boreal Realm. So, this theory is not supported by data until the dissemination of *Spinocrioceras polyspinosum* KEMPER, 1973, in the Late Barremian (spread out from the late Sartousiana Zone in western Tethys, to the early Giraudi Zone in Crimea, and to the early Bidentatum Zone in the Boreal area – see DELANOY & FÉRAUD, 1995).
6. Taxonomic implications

6.1. Classification of the genus Moutoniceras

When introduced, the genus Moutoniceras was classified in the Heteroceratidae SPATH, 1922 (SARKAR, 1955, p. 24). More recently this attribution was challenged by some authors. Some (e.g., AUTRAN et al., 1986, p. 1060; DELANOY et al., 1991; COMPANY et al., 2008) proposed a classification in the Ancyloceratidae, while others (e.g., KAKABADZE & THEILDEY, 1991) proposed a classification in the Crioceratitinae. WRIGHT et al. (1996, p. 216) more or less accepted Moutoniceras with doubt in the Ancyloceratidae, but they also suggested that it could be a Crioceratitinae. Finally, VERMEULEN (1997) proposed to reinstate the genus in the Heteroceratidae because of strong morphological convergences. In fact until 2007 and the work of KLEIN et al. (2007) there was no robust consensus about the classification of the genus Moutoniceras. In the latter work, no less than nine co-authors, specialists of the Barremian (Including DELANOY, KAKABADZE and VERMEULEN, but excepting COMPANY according to the footnote No. 130, p. 174), finally considered the genus to be a Heteroceratidae. Nevertheless, the present cladistic analysis shows Moutoniceras as a sister taxon of Toxancylloceras (strict Ancyloceratidae). A link between both genera is consistent, first stratigraphically and secondly morphologically: in the Vocontian Basin (South-East of France) the genus Moutoniceras disappeared with the tuberculate M. eigenheeri (VERMEULEN, 2003) at the very end of the Early Barremian, just below the First Apparition Dating (FAD) of the genus Toxancylloceras (beginning of the Late Barremian). It seems highly probable that the genus Toxancylloceras originated from Moutoniceras, mainly by the acquisition of the lower tubercles, and the generalisation of the median tubercles, on main ribs. The direct link between Toxancylloceras and Moutoniceras involves ranking the genus Moutoniceras among the Ancyloceratidae rather than in the Heteroceratidae. The Heteroceratidae are not beyond the scope of the present work, and thus they have not been added in the cladistic analysis, however we can note that the apparition of the primitive Heteroceratidae was much more discreet and belated. Exceptionally rare fragments of possible Heteroceratidae were reported from the lower part of the Sartoussiana Zone (VERMEULEN, 1995), but the first true representatives of the genus Heteroceras d’ORBIGNY, 1850, are only known with certainty at the end of the Feraudianus Subzone (Autralni Horizon – see DELANOY, 1994; BERT et al., 2008) with Heteroceras coulleti DELANOY, 1994. This stratigraphic position makes a gap of more than one and half ammonite zones between the last Moutoniceras and the first known Heteroceras s.s. (i.e., with a known helical part).
6.2. The Moroccan *Gassendiceras*

According to the present analysis, it is necessary to recognise under a new name the "Barrancyloceras" maghrebiense sensu COMPANY et al., 2008, non IMMEL, 1978, which ranks near the Tethyan *Gassendiceras*. We propose the name *Gassendiceras essaouirae* sp. nov.

Family Hemihoplitidae SPATH, 1924

Subfamily Gassendiceratinae BERT et al., 2006

Genus Gassendiceras BERT et al., 2006

Gassendiceras essaouirae sp. nov.

Synonymy

non 1978. Crioceratites (C.) maghrebiensis nov. sp.: IMmel, p. 59, tab. 10b, pl. 8, fig. 1.

\(2008. "Barrancyloceras" maghrebiense (IMmel, 1978): COMPANY et al., Fig. 8L-M.

Derivation of the name. Because of its origin (from Essaouira).

Holotype. The specimen No. X.OG.R.23 from Tafadna (Morocco), housed in the palaeontological collections of the University of Granada (Spain). Specimen figured by COMPANY et al. (2008, Fig. 8M).

Paratype. The specimen No. X.MS.R.9 from Imouane (Morocco), housed in the palaeontological collections of the University of Granada. Specimen figured by COMPANY et al. (2008, Fig. 8L).

Type locality. The Tafadna section (coordinates 31°05′46″N 9°48′22″W), 16 km NW of Tamanar; outcrop on the right bank of the Oued Igouzoulin, some 2 km before it joins the Atlantic Ocean on Tafadna beach, Essaouira Basin, Morocco (COMPANY et al., 2008).

Bed type. The bed of the specimen chosen here as holotype was not indicated by COMPANY
et al. (2008), but the species is present in beds 57-58 of the Imsouane section where the para-
type specimen comes from (COMPANY et al.,
2008, Fig. 3).

Geographic distribution. Gassendiceras
essaouirae sp. nov. is actually only known in
the Essaouira-Agadir Basin (Morocco), Atlantic
Realm.

Stratigraphic distribution. Uppermost
Lower Barremian strata dated from the end of
the Moutonianum Zone. Following COMPANY et
al. (2008) this species characterizes the
Moroccan "Maghrebiense Horizon", here
renamed as the Essaouirae Horizon.

Diagnosis. Only the inner whorls are known
up to \(D = 80\) mm (the first whorls are un-
known). Massive shell with tight crioconic coi-
ling; whorl section very broad and rounded of
sub-octagonal shape at ornamentation. Only
one ornamental stage, very close to the Heberti
stage, is known: ribs slightly differentiated,
trituberculate, radial or slightly retroverted, and
sometimes wedge shaped. Tubercles small,
conical and well defined. They are located at
the lower and upper thirds of the flanks, and at
the peri-ventral border.

Note. The authors of the present work could
observe the presence of the Barremense and
Simplified ornamental stages (and of the He-
berti stage in the innermost whorls of the shell)
on complete and unrestored Moroccan speci-
mens of *G. essaouirae* sp. nov. and thus coded
the matrix of the cladistic analysis accordingly
(see Appendix). It is to note that these speci-
mens cannot be figured for ethical reasons
because they were extracted for commercial
use and because their trace has been lost since
(pictures of one of them can be sent on
demand).

Differential diagnosis. The adult develop-
ments of *Gassendiceras essaouirae* sp. nov. are
not known on the basis of the type material
(COMPANY et al., 2008), but this species is uni-
que and different from all the other *Gassen-
diceras* described. Even if the innermost whorls
are unknown, the Heberti stage looks to have a
significantly longer duration, at least until
\(D = 80\) mm. This falls perfectly within the evolu-
tionary trends of the Tethyan *Gassendiceras*
defined by BERT and BERSAC (2013). The shell
has also a stronger general appearance with
larger ribs but smaller tubercles.

"C. (C.)" maghrebiensis IMMEL, 1978, differs
from *G. essaouirae* sp. nov. by the presence of
many smooth interribs between the main ribs.
The former bears only small tubercles, which
are better defined in the latter. In addition,
IMMEL’s species shows the ribs projected forward
on the uppermost part of the flanks, while in *G.
essaouirae* sp. nov. the ribs are radial (stronger
and more spaced), even on the ventral area.

Stratigraphically and geographically *G. essa-
ouirae* sp. nov. is very unique because it is yet
known only in Morocco, and only at the extreme
end of the Early Barremian (see COMPANY et al.,
2008).

**6.3. The case of Fissicostaticeras /
Paracrioceras**

If we consider only the Boreal Realm, the
genera *Fissicostaticeras* and *Paracrioceras* (and
also *Parancyloceras* SPATH, 1924, not added in
the present cladistic analysis – see KAKABADZE &
HOEDEMAEKER, 2010) are a monophyletic clade,
which requires them to be placed into a separa-
tele family. However, the present cladistic ana-
lysis resulted in the recognition of a possible
phyletic link between the Boreal *Fissi-
costaticeras / Paracrioceras* and the Atlantic /
Tethyan *Gassendiceras* (Figs. 4 - 5), which
makes de facto the former a paraphyletic clade. As
explained by BERR and BERSAC (2013) for the
genus *Gassendiceras* itself, the rise of a new
group (here *Gassendiceras*) would not affect
the older group (here the phylum *Fissicostaticeras /
Paracrioceras*). This reflects the reality of coexistence (even in different
geographic areas) of different lineages
(HÖRANDL, 2007), because of evolutionary
processes where descendants exist without concomitant extinction of the parental group.
Such processes rendering the parental group
paraphyletic (any group of descendants
dependent process where descendants
automatically cancels out the monophyly of the
ancestral group; see HÖRANDL, 2006). As
HÖRANDL and STUESSY (2010) recognised,
cladogenesis is the main source of paraphyly
and paraphyly is a normal stage in the evo-
lutionary process whereby a new species arises.

Considering that paraphyletic groups are
acceptable as taxa in evolutionary classifica-
tions, the proposition of allopatric origin of the
Tethyan Hemihoplitidae from the Boreal Para-
crioceras via the Essaouira-Agadir Basin
requires separating taxonomically the Boreal
lineage *Fissicostaticeras / Paracrioceras /
Parancyloceras* from the Emericiceratidae in
which they are currently classified (cf. KLEIN et
al., 2007). Therefore, we propose to introduce a
new family: the Paracrioceratidae fam. nov.

**Superfamily Ancycloceratoidea GILL,
1871**

Family Paracrioceratidae fam. nov.

Type genus. Paracrioceras SPATH, 1924.

Generic content. This family includes the
Boreal genera *Paracrioceras*, *Fissicostaticeras*
and *Parancyloceras* in order to recognise their
phylogenetic relationships. A Boreal phyletic
lineage *Fissicostaticeras -> Paracrioceras ->
Parancyloceras* may be considered taking into
account the similarity between these genera, as
well as stratigraphic and paleogeographic argu-
ments (KAKABADZE & HOEDEMAEKER, 2010).

Phyletic position. The Paracrioceratidae
fam. nov. appear from crioconic forms classified

266
in the genus *Emericeras* [sic] by *Kakabadze* and *HoeDemaeker* (2010) but probably closer to the *Crioceratidae* sensu lato. The *Paracrioceratidae* fam. nov. seem to be at the origin of the *Hemihoplitidae* (Gassendiceratinae) by allopatry and founder effect.

Remarks. It should be noted that *Kakabadze* and *HoeDemaeker* (2010) used the genus *Acriceras* *Hyatt*, 1900, in a different way than French authors. Some specimens they figured [e.g., "Acrioceras" of the nodulatum (von *Koenen*, 1902) group] could possibly correspond to microconchs of the contemporary *Paracrioceratidae* fam. nov. (same ornamental evolution over time). This hypothesis was suggested by *Rawson* (1975, p. 282) about the small tripartite genus *Hoplocrioceras* *SPATH*, 1924, which could correspond possibly to the microconch of *Fissicostaticeras* (= *Paracrioceras* for *Rawson*). These small tripartite forms would then have to be included in the *Paracrioceratidae* fam. nov. if this dimorphism was demonstrated. Such a dimorphism had been comparatively successfully advanced for the *Crioceratidae* by *DELANOY et al.* (1995), and *ROPOLO* and *GONNET* (1995), and for some *Hemihoplitidae* (*DELANOY et al.*, 1995; *BERT et al.*, 2009; *BERT*, 2012, 2013).

7. Conclusions

The marine Late Barremian ammonite family *Hemihoplitidae* (*Ancyloceratoidea*) is diversified in most of the northern Tethyan Margin and the Essaouira-Agadir Basin (Morocco). However, their origin remained hardly known because several competing hypotheses have been developed in literature until recently. Most of the literature hypotheses were rejected by cladistics (*Crioceratidae*, *Emericeratidae* and *Toxancylcoceras* as stem-group) and our analysis shows that they were in fact the result of typological conceptions. *Gassendiceras essouiraiae* sp. nov. appears now to be the best candidate as an ancestral endemic Moroccan representative of the group and probably also of the Moutonianum Zone (end of the Early Barremian). Cladistics also supports an origination of the *Hemihoplitidae* (incl. *G. essouiraiae* sp. nov.) from the Boreal *Paracrioceratidae* fam. nov. (migration hypothesis). *Paracrioceras* of the *stdaltlaenderi* group have indeed very strong morphological affinities with the Tethyan *Gassendiceras*. Stratigraphically, the former is known beginning at the boundary of the Fissicostatus / Elegans Boreal zones (late Early Barremian). Because it is recognised that the Elegans Zone corresponds roughly to the Moutonianum Tethyan Zone, this distribution is strongly concordant for relationships of ancestor-descendant type between both these two groups.

According to our hypothesis, the *Hemihoplitidae* first appeared suddenly in the Essaouira-Agadir Basin at the end of the Early Barremian, before invading the northern Tethyan margin at the beginning of the Late Barremian. They may have been derived from small populations of Boreal *Paracrioceras*, which could have migrated southward episodically. Such a migration of the *Paracrioceras* would have been enabled by the establishment of favourable climatic conditions during their expansion towards the lower latitudes (an abrupt and temporary temperature drop in the middle part of the Elegans Zone). This is supported paleogeographically because the Essaouira-Agadir Basin is of intermediate position on the only possible migration route, the Atlantic one (Fig. 6), in times of transgressive shorelines that probably induced a greater ease of communication. The exploitation of new ecological niches (for example those left vacant by the disappearance of the *Emericeratidae*) would then have allowed local adaptation leading to the evolution towards the *Gassendiceras* morphology (*Hemihoplitidae*), which invaded and diversified through the northern Tethyan margin. Therefore, the origin of the *Hemihoplitidae* looks to be a case of allopatry and speciation by founder effect.

Migration from the Boreal Ocean towards the Essaouira-Agadir Basin is supported morphologically by cladistics and by other arguments, but of course, it remains a hypothesis that needs to be tested more thoroughly, especially because there is no evidence currently of other faunistic Boreal influence in Morocco during the early Late Barremian. Maybe in the future a better competitor than the *Paracrioceratidae* fam. nov. could be found to explain the origin of the *Hemihoplitidae*? Meanwhile, it remains the best candidate.

Acknowledgements

The authors warmly thanks Miguel *COMPANY* and Gérard *DELANOY* for sending us the casts of *G. essouiraiae* sp. nov. Special thanks are due to Steve *FRIEDRICH* who kindly improved our original English text. We also acknowledge the three reviewers, Miguel *COMPANY*, Jérémie *BARDIN* and an anonymous reviewer, for their constructive remarks, which helped us to improve the manuscript.

Bibliographic references

ASTIER J.-E. (1851).- Catalogue descriptif des *Ancyloceracés* appartenant à l’étage Néocomien d’Escragnolles et des Basses-Alpes. *Annales des Sciences Physiques et Naturelles, d’Agriculture et d’Industrie, Lyon*, (2ème Série), t. III, p. 435-456. Online at http://gallica.bnf.fr/ark:/12148/bpt6k134988k

AUTRAN G., *DELANOY G.* & *THOMEL G.* (1986).- *Dis* cussion critique des genres d’ammonites déroulées : *Toxoceras* d’*ORBIGNY*, *Hemibaculites* *HYATT*, 1900 et *Moutoniceras* *SARKAR*, 1955. Proposition d’un nouveau genre *Pseudomoutoniceras* pour l’espèce *T. annulare* d’*ORBIGNY*. *Comptes Rendus de l’Académie
des Sciences, Paris, (série II), t. 303, n° 11, p. 1059-1064.

BARRON E.J., HARRISON C.G.A., SLOAN J.L. & HAY W.W. (1981).- Paleogeography, 180 million years ago to the present. - Eclogae Geologicae Helvetiae, Basel, n° 74, p. 443-470.

BERT D. (2012).- Phylogenetic relationships among the Hemihoplitiidae SPATH, 1924 (Ammonoidea, Upper Barremian). In: BERT D. & BERSAC S. (eds.), First meeting of the Research group for paleobiology and biostratigraphy of the ammonites – Communications.- Boletín del Instituto de Fisiografía y Geología, Rosario, n° 82, p. 37-38.

BERT D. (2013).- Factors of intraspecific variability in ammonites, the example of Gassendiceras alpinum (d’ORBIGNY, 1850) (Hemihoplitiidae, Upper Barremian).- Annales de Paléontologie, Paris, vol. 100, n° 3, p. 217-236.

BERT D. & BERSAC S. (2012).- Rediscovery of the type specimen and status of Ezeiceras heberti FALLOT, 1884 (Ammonoidea, Hemihoplitiidae, Barremian). In: BERT D. & BERSAC S. (eds.), First meeting of the Research group for paleobiology and biostratigraphy of the ammonites – Communications.- Boletín del Instituto de Fisiografía y Geología, Rosario, n° 82, p. 42-44.

BERT D. & BERSAC S. (2013).- Evolutionary patterns – tested with cladistics – and processes in relation to palaeoenvironments of the Upper Barremian genus Gassendiceras (Ammonitina, Lower Cretaceous).- Palaeontology, London, vol. 56, p. 631-646.

BERT D., BERSAC S., DELANOY G. & CANUT L. (2013).- Palaeontology, taxonomic revision and variability of some species of the genus Gassendiceras BERT et al., 2006 (Ammonitina, Upper Barremian) from southeastern France.- Acta Geologica Polonica, Warsaw, vol. 63, p. 355-397.

BERT D. & DELANOY G. (2009).- Considérations nouvelles sur quelques représentants barremiens des Puchelliidae DOUVILLÉ, 1890 et des Hemihoplitiidae SPATH, 1924 (Ammonoidea).- Annales du Muséum d’Histoire Naturelle de Nice, t. XV, p. 63-89.

BERT D. & DELANOY G. (2009).- Pseudosasticriceras bersaci nov. sp. (Ammonoidea, Gassendicerinatae), and new ammonite biohorizon for the Upper Barremian of southeastern France.- Carnets de Géologie [Notebooks on Geology], Brest, Article 2009/02 (CG2009_A02), 22 p.

BERT D., DELANOY G. & BERSAC S. (2006).- Descriptions de représentants nouveaux ou peu connus de la Famille des Hemihoplitiidae SPATH, 1924 (Barrémien supérieur, Sud-Est de la France) : conséquence taxinomique et phylétiques.- Annales du Muséum d’Histoire Naturelle de Nice, t. XXI, p. 179-253.

BERT D., DELANOY G. & BERSAC S. (2008).- Propositions pour un nouveau découpage biozonal ammonitique, et nouveaux bio-
de Nice, t. IX, 148 p.

DELANOY G. (1994).- Les biozones à Feraudia-

nus, Giraudi et Sarasini du Barrémien supé-

rieur de la région stratotypique d'Angles-

Barrême-Castellane (Sud-Est de la France).- Géologie Alpine, Grenoble, (Mémoire H.S.), n° 20, p. 279-319.

DELANOY G. & FÉRAUD P. (1995).- On the Genus Spinocrioceras KEMPER, 1973 (Ammonoidea, Ancyloceratina).- Geologisches Jahrbuch, Hannover, (Reihe A), Heft 141, p. 201-223.

DELANOY G., MAGNIN A., SÉLÉBRAN M. & SÉLÉBRAN J. (1991).- Moutoniceras nodosum d'ORBIGNY, 1850 (Ammonoidea, Ancyloceratina) une très grande ammonite hétéromorphe du Barrémien inférieur.- Revue de Paléobiologie, Genève, vol. 10, n° 2, p. 229-245.

DELANOY G., ROPOLO P., MAGNIN A., AUTRAN G., POUPOP A. & GONNET R. (1995).- Sur le di-

morphisme chez les Ancyloceratina (Ammo-

noidea) du Crétacé inférieur.- Comptes Ren-

dus de l'Académie des Sciences, Paris, (Série IIa), t. 321, p. 537-543.

DERCOURT J., GÄETANI M., VRIELYNCK B., BARRIER E., BIJU-DUVAL B, BRUNET M.F. CADET, J.P., CRASQUIN S. & SANDULESCU M. (eds., 2000).- Atlas Peri-Tethys, Palaeogeographical maps.- Commission de la Carte géologique du Monde / Commission for the geological Map of the World (CCGM/CGMW), Paris, 24 maps, explanatory notes I-XX, 269 p.

FARRIS J.S. (1970).- Methods for computing WAGNER trees.- Systematic Zoology, Oxford, vol. 19, p. 83-92.

FARRIS J.S. (1989).- The retention index and the rescaled consistency index.- Cladistics, New York, vol. 5, n° 4, p. 417-419.

GOLOBOFF P.A., FARRIS J.S. & NIXON K.C. (2008).- TNT, a free program for phylogenetic ana-

lysis.- Cladistics, New York, vol. 24, n° 5, p. 774-786.

GUÈX J. (2006).- Reinitialization of evolutionary clocks during sublethal environmental stress in some invertebrates.- Earth and Planetary Science Letters, La Jolla, vol. 242, p. 240-253.

HARDENBOL J., THIERRY J., FARLEY M.B., JACQUIN T., GRACIANSKY P.C. de & VAIL P.R. (1998).- Mesozoic and Cenozoic sequence chronostrati-

graphic framework of European Basins. In: GRACIANSKY P.C. de, HARDENBOL J., JACQUIN T. & VAIL P.R. (eds.), Mesozoic and Cenozoic sequence stratigraphy of European basins.- Society of Economic Paleontologists and Mineralogists, Special Publication, Tulsa, n° 60, p. 3-13.

HÖRANDL E. (2006).- Paraphyletic versus mono-

phyletic taxa - evolutionary versus cladistic classifications.- Taxon, Chambésy, vol. 55, n° 55, p. 564-570.

HÖRANDL E. (2007).- Neglecting evolution is bad taxonomy.- Taxon, Chambésy, vol. 56, n° 1, p. 1-5.

HÖRANDL E. & STUESSY T.F. (2010).- Paraphyletic groups as natural units of biological classification.- Taxon, Chambésy, n° 59, p. 6, 1641-1653.

IMMEL H. (1978).- Die Crioceratiten (Ancylocera-

tina, Ammonoidea) des mediterranen und borealen Hauterive-Barreme (Unterkreide).- Palaeontographica A, Stuttgart, vol. 163, n° 1-3, 85 p.

IMMEL H. (1979).- Über den Ursprung der Bo-

realen Crioceratiten und zur Phylogenie der Gattung Crioceratites Leveillé (Ammonoidea, Kreide).- Aspekte der Kreide Europas, Stuttgart, (IGUS Serie A), n° 6, p. 129-140.

IMMEL H. & MUTTERLOSE J. (1978).- Barrême-Ce-

phalopoden aus dem kretasichen Untergrund des Stadtgebietes von Hannover (N-W-Deutschland).- Paläontologische Zeitschrift, Stuttgart, vol. 54, p. 241-266.

KAKABADZE M.V. (1981).- The Ancyloceratids of the South of the USSR and their strati-

graphic significance.- Trudy geologicheskogo Instituta Akademii Nauk GSSR, n° 71, 221 p. (in Russian).

KAKABADZE M.V. (1983).- On the Hahterivian-

Barremian correlations between the South of the USSR and certain southern and northern regions of Europe. In: 2. Symposium Kreide. München 1982.- Zitteliana, München, (Reihe B: Abhandlungen der Bayerischen Staats-
sammlung für Paläontologie und Geologie), Band 10, p. 501-508.

KAKABADZE M.V. & HOEDEMAEKER P.J. (2004).- Heteromorphic ammonites from the Barre-

mian and Aptian strata of Colombia.- Scripta Geologica, Leiden, n° 128, p. 39-182.

KAKABADZE M.V. & HOEDEMAEKER P.J. (2010).- New data on Early Cretaceous (Hauterivian-

Barremian) heteromorphic ammonites from northern Germany.- Scripta Geologica, Leiden, n° 140, 168 p.

KAKABADZE M.V. & TUELOU Y.-P. (1991).- Am-

monites hétéromorphes du Barrémien et de l'Aptien de Colombie (Amérique du Sud).- Géologie Alpine, Grenoble, n° 67, p. 81-113.

KLEIN J., BUSNARD R., COMPANY M., DELANOY G., KAKABADZE M., REDBOULET S., ROPOLO P., VASI-

CEK Z. & VERMEULEN J. (2007).- Lower Creta-

ceous Ammonites III Bochianitidae, Protan-

cycloceratoida, Ancylocycloceratoida, Ptycho-

ceratoida. In: Rieggraf W. (ed.), Fossilium Catalogus I: Animalia. Backhuys Publishers, Leiden, 381 p.

KLINGER H.C. & KENNEDY W.J. (1992).- Creta-

ceous faunas from Zululand and Natal, South Africa. Barremian representatives of the ammonite family Ancyloceratidae Gill, 1871.- Annals of the South African Museum, Cape Town, vol. 101, p. 71-138.

KLUKE A.G. & FARRIS J.S. (1969).- Quantitative phyletics and the evolution of anurans.- Systematic Zoology, Oxford, vol. 18, n° 1, p. 1-32.

KORNET D.J. & TURNER H. (1999).- Coding poly-

morphism for phylogeny reconstruction.- Systematic Biology, Oxford, vol. 48, p. 365-
MUTTERLOSE J. & BORNEMANN A. (2000).- Phylogenetic relationships within the Rhodoreae (Ericaceae) with specific comments on the presence of Ledum.- Systematic Botany, Lamarck, vol. 15, p. 57-69.

MCARTHUR J.M., JANSEN N.M.M., ROBOUET S., LENG M.J., THURLIWL M.F. & SCHOUTTREJUG B. van de (2007).- Palaeotemperatures, polar ice-volume, and isotropo stratigraphy (Mg/Ca, δ18O, δ13C, 87Sr/86Sr): The Early Cretaceous (Berriasian, Valangian, Haueterivian).- Palaeogeography, Palaeoclimatology, Palaeoecology, Amsterdam, vol. 248, n° 3-4, p. 391-430.

MAYE E. (1974).- Populations, espèces et évolution.- Hermann, Paris, 496 p.

MIKHAILOVA I. A. & BARABOSHKIN E.Yu. (2009).- The evolution of the heteromorph and monomorph Early Cretaceous Ammonites of the Suborder Ancyloceratina WIEDMANN.- Paleontological Journal, n° 43, p. 527-536.

MONNET C. (2005).- Anisian (Middle Triassic) and Cenomanian (mid-Cretaceous) Ammonoids: biochronology, biodiversity, and evolution trends.- Ph.D. Thesis, University of Zürich, 706 p.

MURRELOUSE J. & BÖCKEL B. (1998).- The Barremian - Aptian interval in NW Germany: a review.- Cretaceous Research, London, vol. 19, p. 539-568.

MURRELOUSE J. & BORNEMANN A. (2000).- Distribution and facies patterns of Lower Cretaceous sediments in Northern Germany: a review.- Cretaceous Research, London, vol. 21, p. 733-759.

NEIGE P., ROUGET I. & MOYNE S. (2007).- Phylogenetic practices among scholars of fossil cephalopods, with special reference to cladistics. In: LANDMAN N.H., DAVIS R.A. & MAPES R.H. (eds.), Cephalopods present and past: new insights and fresh perspectives.- Springer-Verlag Inc., New York, p. 3-14.

NIXON K.C. & DAVIS J.I. (1991).- Polymorphic taxa, missing values and cladistic analysis.- Cladistics, New York, vol. 7, n° 3, p. 233-241.

OGG J.G. & HINNOV L.A. (2012).- Cretaceous, Chapter 27. In: GRADSTEIN F.M., OGG J.G., SCHMITZ M. & OGG G. (eds.), The Geologic Time Scale 2012 2-Volume Set.- Elsevier, Amsterdam, p. 793-853.

PRENDINI L. (2001).- Species or superspecific taxa as terminals in cladistic analysis? Ground-plans versus exemplars revisited.- Systematic Biology, Oxford, vol. 50, p. 290-300.

RAWSON P.F. (1975).- The interpretation of the Lower Cretaceous heteromorph ammonite genera Paracriceras and Hoplocriceras.- Palaeontology, London, vol. 18, p. 275-283.

RAWSON P.F. (1983).- The Valanginian to Aptian stages - current definitions and outstanding problems.- Zitteliana, Munich, Band 10, p. 493-500.

RAWSON P.F. (1995).- The "Boreal" Early Cretaceous (pre-Aptian) ammonite sequences of NW Europe and their correlation with the western Mediterranean faunas.- Memorie descriptive della Carta geologica d'Italia, Roma, vol. 51, p. 21-130.

REBOUET S. (2007).- Diversification des amnonoides hétéromorphes : l'exemple des Himantoceras. Evolution et changements paléoenvironnementaux au Valanginien.- Bulletin de l'Association géologique Auboise, Troyes, n° 28, p. 13-35.

REBOUET S. & ATROPS F. (1995).- Rôle du climat sur les migrations et la composition des peuplements d'ammonites du Valangien supérieur du bassin vocontien (S-E de la France).- Geobios, Villeurbanne, vol. 28, Supplement 1, p. 357-365.

REBOUET S., ATROPS F., FERRY S. & SCHAFF A. (1992).- Renouvellement des ammonites en fosse vocontienne à la limite Valangien-Hauterivien.- Geobios, Villeurbanne, vol. 25, fasc. 4, p. 469-476.

ROCH E. (1920).- Études géologiques dans la région méridionale du Maroc occidental.- Notes et Mémoires du Service de la Carte géologique du Maroc, Rabat 542 p.

ROPOLO P. & GONNET R. (1995).- Nouveaux exemples de dimorphisme chez les Ancyloceratina (Ammonoidea) de l'Hauterivien vocontien.- Géologie Méditerranéenne, Marseille, t. XXII, p. 93-109.

ROUGET I., NEIGE P. & DOMMERRGES J.L. (2004).- L'analyse phylogénétique chez les ammonites : état des lieux et perspectives.- Bulletin de la Société géologique de France, Paris, vol. 175, p. 507-512.

SARKAR S.S. (1955).- Révision des Ammonites déroulées du Crétacé inférieur du SE de la France.- Mémoires de la Société géologique de France, Paris, (N.S.), t. XXXIV, n° 72, 176 p.

SIMMONS N.B. & GLEISER J.H. (2002).- Sensitivity analysis of different methods of coding taxonomic polymorphism: an example from higher-level bat phylogeny.- Cladistics, New York, n° 18, p. 571-584.

SPATH L.F. (1924).- On the ammonites of the Speeton Clay and the subdivisions of the Neocomian.- Geological Magazine, Cambridge, vol. 61, n° 2, p. 73-89.

SWOFFORD D.L. & ADDISON W.P. (1987).- Reconstructing ancestral character states under Wagner parsimony.- Mathematical Biosciences, Atlanta, vol. 87, p. 199-229.

SWOFFORD D.L. & ADDISON W.P. (1992).- Parsimony, character-state reconstructions, and evolutionary inferences. In: MAYDEN R.L. (ed.), Systematics, historical ecology, and North American freshwater fishes.- Stanford University Press, p. 186-223.

VERMEULEN J. (1995).- Nouvelle biozonation basée sur la famille des Pulchelliidae (Ammonoidea).- Géologie Alpine, Grenoble, n° 71, p. 199-211.
VERMEULEN J. (1997).—*Moutoniceras marii*, nouvelle espèce d’ammonite hétéromorphe du Barrémien du Sud-Est de la France.— *Rivière Scientifique*, Nice, p. 73-80.

VERMEULEN J. (2000).— Nouvelles données sur les répartitions stratigraphiques, les évolutions et les classifications de trois familles d’ammonites du Crétacé inférieur.— *Géologie Alpino*, Grenoble, nº 75, p. 123-132.

WIEDMANN J. (1962).— Underkreide-Ammoniten von Mallorca. 1. Lieferung: Lytoceratina, Aptychi.— *Abhandlungen der Akademie der Wissenschaften und der Literatur*, Mayence, (Mathematisch-naturwissenschaftliche Klasse), Jahrgang 1962, nº 1, 148 p.

WISSLER L., WEISSERT H., MASSE J.-P. & BULOT L. (2002).— Chemostratigraphic correlation of Barremian and lower Aptian ammonite zones and magnetic reversals.— *International Journal of Earth Science (Geologische Rundschau)*, Mendig, vol. 91, nº 2, p. 272–279.

WRIGHT C.W., CALLOMON J.H. & HOWARTH M.K. (eds., 1996).— Cretaceous Ammonoidea. In: KAESLER R.L. (ed.), Mollusca 4 (revised).— *Treatise on Invertebrate Paleontology*, Geologic Society of America, New York; University of Kansas, Lawrence, Part L, 362 p.
Appendix

List of characters

00. Adult size: (0) little; (1) median; (2) large; (3) very large.
01. Coiling shape: (0) evolute normally coiled; (1) criocenic uncoiled; (2) tripartite tight; (3) tripartite strict.
02. Height whorl growth: (0) low; (1) moderate; (2) high.
03. Whorl section shape: (0) thick; (1) compressed.
04. Coiling hiatus: (0) almost joined whorls; (1) weak; (2) large.
05. Heberti stage: (0) absent; (1) present.
06. Barremense stage: (0) absent; (1) present.
07. Spines: (0) absent; (1) long and thin; (2) short and massive.
08. Shape of the main ribs on the venter: (0) not or mainly not altered; (1) attenuated.
09. Looped ribs: (0) absent; (1) present.
10. Smooth interribs: (0) rare; (1) frequent.
11. Bifurcated or polyfurcated ribs: (0) absent or scarce; (1) present.
12. Fibulate ribs: (0) absent; (1) present.
13. Wedge-shaped ribs: (0) absent; (1) present.
14. Position of lateral tubercles: (0) absent; (1) upper third; (2) upper quarter.
15. Shape of the tubercles: (0) slender; (1) robust.
16. Simplified ornamentation stage: (0) absent; (1) present.
17. Shape of the flanks: (0) flattened; (1) rounded.
18. Shape of the dorsum: (0) flattened; (1) concave; (2) convex.

Taxon-character matrix with generic taxa (generic taxa in white, polymorphic states in red):

Taxa / Characters	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	
Crioceratites nolani	2	1	0	[01]	2	0	0	1	0	0	1	0	0	0	1	0	0	0	0	
Emericiceras	3	2	0	[01]	1	0	0	1	0	1	1	1	1	0	1	0	0	0	0	
Fissicostaticeras	2	1	1	[?]	1	0	[01]	2	0	1	1	1	[01]	0	2	[01]	1	0	0	
Gassendiceras essaouiraev. sp.	[?]	1	1	0	1	1	1	2	1	[?]	0	0	0	1	1	1	1	0	0	
G. multistomatum	2	1	1	0	1	1	1	2	1	1	0	0	0	1	1	1	1	1	0	
Honnoratia	3	2	0	[01]	1	0	0	1	0	1	1	0	1	0	0	0	1	2	1	
Moutoniceras	3	3	0	[01]	2	0	0	0	1	0	[01]	0	1	0	[01]	0	0	0	2	1
Paracrioceras stadlaenderi	2	1	1	0	1	[?]	1	2	0	1	1	1	0	0	2	1	1	1	0	
Pseudothurmannia	[01]	0	2	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	
Sornayites	1	0	1	[01]	0	0	0	2	0	0	1	1	0	0	1	1	0	[01]	1	
Toxancyloceras	2	3	0	1	2	0	0	1	[01]	0	1	0	1	[01]	1	1	1	0	1	

Modified taxon-character matrix with generic taxa replaced by species:

Taxa / Characters	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18
Crioceratites nolani	2	1	0	[01]	2	0	0	1	0	0	1	0	0	0	1	0	0	0	0
Emericiceras emericus	3	2	0	[01]	1	0	0	1	0	1	1	1	1	0	1	0	0	0	0
Fissicostaticeras fissicostatum	2	1	1	[?]	1	0	1	2	0	1	1	1	1	[01]	0	2	1	1	0
Gassendiceras essaouiraev. sp.	[?]	1	1	0	1	1	1	2	1	[?]	0	0	0	1	1	1	1	0	0
G. multistomatum	2	1	1	0	1	1	1	2	1	1	0	0	0	1	1	1	1	1	0
Honnoratia	3	2	0	[01]	1	0	0	1	0	1	1	0	1	0	0	1	2	1	0
Moutoniceras moutonianum	3	3	0	[01]	2	0	0	0	1	0	1	0	[01]	1	0	1	0	0	2
Paracrioceras stadlaenderi	2	1	1	0	1	[?]	1	2	1	1	1	0	0	0	2	1	1	1	0
Pseudothurmannia piceti	1	0	2	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
Sornayites paronai	1	0	1	[01]	0	0	0	1	0	0	1	1	0	0	1	1	0	0	1
Toxancyloceras vandenheckeii	2	3	0	1	2	0	0	1	1	0	1	0	[01]	1	1	1	0	1	2