CONSTRANTS ON PARAMETERS OF RADIATIVELY DECAYING DARK MATTER FROM THE GALAXY CLUSTER 1E 0657–56

A. BOYARSKY, O. RUCHAYSKIY, and M. MARKETICH

Received 2006 November 16; accepted 2007 October 9

ABSTRACT

We derived constraints on parameters of a radiatively decaying warm dark matter particle, e.g., the mass and mixing angle for a sterile neutrino, using Chandra X-ray spectra of galaxy cluster 1E 0657–56 (the “bullet” cluster). The constraints are based on nondetection of the sterile neutrino decay emission line. This cluster exhibits spatial separation between the hot intergalactic gas and the dark matter, which helps to disentangle their X-ray signals. It also has a very long X-ray observation and a total mass measured via gravitational lensing. This makes the resulting constraints on a sterile neutrino complementary to earlier results that used different cluster mass estimates. Our limits are comparable to the existing cluster constraints (although they are weaker than the best constraints derived from M31 and the Milky Way halo).

Subject headings: dark matter — elementary particles — galaxies: clusters: individual (1E 0657–56) — line: formation — neutrinos — X-rays: galaxies: clusters — X-rays: individual (1E 0657–56)

1. STERILE NEUTRINOS AS WARM DM CANDIDATES

A number of works have recently appeared on the subject of a sterile (or right-handed) neutrino as a possible dark matter (DM) candidate (e.g., Asaka et al. 2005, 2006a; Asaka & Shaposhnikov 2005; Abazajian 2006b, 2006a; Boyarsky et al. 2006a, 2006b, 2006c, 2006d, 2007b; Shaposhnikov & Tkachev 2006; Riemer-Sørensen et al. 2006; Watson et al. 2006). The discovery of neutrino oscillations (see, e.g., Strumia & Vissani 2006 for a review) made the existence of a sterile neutrino quite plausible and spurred interest in this candidate. Several factors make dark matter made of sterile neutrinos with a mass in the keV range particularly interesting:

1. The keV range is the lowest possible range of masses for fermionic DM. The Pauli exclusion principle applied to the DM particles in the halos of dwarf spheroidal galaxies (such as Draco or Ursa Minor) implies a lower bound on the particle mass $m_{\text{dm}} \geq 350$ eV (Tremaine & Gunn 1979). Thus, the sterile neutrino can be light enough to be a warm DM candidate (see below).

2. Warm DM with a keV mass can alleviate the problem of too many small subhalos inside bigger dark matter halos, and of overly concentrated central density peaks in the galaxy-sized DM halos predicted in the cold dark matter scenario (Bode et al. 2001; Goerdt et al. 2006). For example, the flat central radial mass profile of the Fornax dwarf spheroidal galaxy (Goerdt et al. 2006; Strigari et al. 2006) can be explained if dark matter is warm with $m_{\text{dm}} \sim 2$ keV.

3. Asaka et al. (2005) and Asaka & Shaposhnikov (2005) recently demonstrated that a simple extension of the Standard Model by three singlet fermions with masses smaller than the electroweak scale can accommodate the data on neutrino masses and mixings, can provide a candidate dark matter particle (in the form of the lightest sterile neutrino), and can explain the baryon asymmetry of the universe. Such an extension (dubbed ν-MSM) can quantitatively explain these “beyond the Standard Model” phenomena within a single consistent framework. It should be tested observationally, and one such test is the search for the sterile neutrino DM.

4. One can obtain lower bounds on the mass of a DM particle in the keV range by modeling the large-scale structure formation. The power spectrum of the matter density fluctuations derived from the Lyα forest data in the Sloan Digital Sky Survey, spanning redshifts $2 < z < 4.2$ (Seljak et al. 2006; Viel et al. 2006), constrains the mass of a warm DM particle to the range ≈ 10 keV (≈ 14 keV in Seljak et al. 2006). However, a more conservative analysis using only the higher spectral resolution Lyα data and lower redshifts gives $m_{\text{dm}} \approx 2$ keV (Hansen et al. 2002; Viel et al. 2005).

5. Sterile neutrinos with a keV mass would have other interesting astrophysical applications (e.g., Kusenko 2006b, 2006a; Biermann & Kusenko 2006; Stasielak et al. 2007). The sterile neutrino should possess a radiative decay channel (Pal & Wolfenstein 1982; Barger et al. 1995) (see § 1.1 below). An emission line from neutrino decay has been sought—so far unsuccessfully—in the X-ray spectra of various types of astrophysical objects, including clusters of galaxies (Abazajian et al. 2001b; Boyarsky et al. 2006c), the diffuse X-ray background (Dolgov & Hansen 2002; Boyarsky et al. 2006a), the DM halo of the Milky Way (Boyarsky et al. 2006d, 2007b; Riemer-Sørensen et al. 2006), dwarf galaxies (Boyarsky et al. 2006d, 2007b), and the Andromeda galaxy (M31; Watson et al. 2006). Assuming that all of the dark matter is in the form of sterile neutrinos, nondetection of such a line places constraints on the mixing angle of the sterile neutrino as a function of mass in the range 1 keV $\leq M_{\nu} \leq 100$ keV. To derive such constraints, one needs to know the mass of the DM in the field of view of the X-ray spectrometer, $M_{\text{fov}}^{\text{dm}}$ (eq. [2], below). There are several ways of deriving these masses: (1) by modeling rotational curves of stars in galaxies or the velocity dispersion of galaxies in dynamically relaxed galaxy clusters; (2) by reconstructing the density and temperature profiles of the hot intergalactic gas in relaxed galaxy clusters using X-ray data, and determining the total mass from the assumption of hydrostatic
equilibrium (e.g., Cavaliere & Fusco-Femiano 1976; Bahcall & Sarazin 1977; Vikhlinin et al. 2006); and (3) for sufficiently distant ($z > 0.1$) clusters, by using gravitational lensing (Bartelmann & Schneider 2001), which does not require a cluster to be relaxed.

All previous observational constraints were derived for nearby objects ($z \leq 0.01$), for which a combination of methods (1) and (2) provided the DM density distribution and M_{dim}. It is important to cross-check these results using objects with masses determined by all methods, to minimize the systematic uncertainties inherent in each method.

In the present work, we use a distant object ($z = 0.296$, corresponding to the luminosity distance $D_L = 1.530$ Gpc for our adopted cosmology with $h = 0.7$, $\Omega_m = 0.3$, and $\Omega_{\Lambda} = 0.7$) whose mass is determined via weak and strong gravitational lensing (Clowe et al. 2006; Bradac et al. 2006). This method gives the total projected mass within a given region in the sky, eliminating a number of uncertainties of other methods. It is the only mass measurement method applicable to this cluster, which is undergoing a violent merger. The merger has also resulted in a unique separation between the dark and visible matter (Clowe et al. 2006), which we utilize below.

1.1. Radiative Decay of Sterile Neutrinos

A dark matter halo composed of sterile neutrinos should not be completely “dark” (Dolgov & Hansen 2002; Abazajian et al. 2001b). The sterile neutrino possesses a radiative decay channel, decaying at a rate Γ into an active neutrino and a photon with energy $E = M_\nu/2$ (where M_ν is the sterile neutrino mass). It is convenient to parameterize the interaction with the active neutrino in terms of the mixing angle $\sin^2(2\theta)$. The decay rate Γ is then given by (Pal & Wolfenstein 1982; Barger et al. 1995)

$$\Gamma = \frac{9\alpha G_F^2}{1024\pi^4} \sin^2(2\theta) M_\nu^5$$

$$= 1.38 \times 10^{-22} \sin^2(2\theta) \left(\frac{M_\nu}{1 \text{ keV}} \right)^5 \text{s}^{-1}. \quad (1)$$

Note the presence of an additional factor of 2 as compared with, e.g., Abazajian et al. (2001b). This is due to the Majorana nature of the decaying particle (cf., e.g., Barger et al. 1995; Boyarsky et al. 2006a). The same comment applies to equation (3), below.

For distant objects, the decay flux into a solid angle Ω_{fov} (the spectrometer’s field of view) is given by

$$F_{\text{dm}} = \frac{M_{\text{dim}}^{\text{fov}} \Gamma}{4\pi D_L^2} \frac{E}{M_\nu}, \quad (2)$$

where $M_{\text{dim}}^{\text{fov}}$ is the total mass of DM within this solid angle, E is the energy in the rest frame of the object, and D_L is the luminous distance to the object. As a result,

$$F_{\text{dm}} = 6.4 \left(\frac{M_{\text{dim}}^{\text{fov}}}{10^{13} M_\odot} \right) \left(\frac{100 \text{ Mpc}}{D_L} \right)^2 \times \sin^2(2\theta) \left(\frac{M_\nu}{1 \text{ keV}} \right)^5 \text{keV cm}^{-2} \text{s}^{-1}. \quad (3)$$

Detection of any X-ray emission lines in the spectrum of a massive object that are not expected from its baryonic constituents (the hot intergalactic gas in the case of a galaxy cluster) can be used to place an upper limit on the flux from sterile neutrino decay. Equation (3) can then be used to constrain the parameters M_ν and θ.

2. THE 1E 0657−56 CLUSTER

1E 0657−56 is an interesting object for constraining the brightness of the neutrino line, for several reasons. Its total mass is directly measured from gravitational lensing (Clowe et al. 2006; Bradac et al. 2006). The 450 ks Chandra exposure of 1E0657−56 (Markovitch 2006) also produced a very high signal-to-noise ratio X-ray spectrum of the cluster. While formal constraints on the neutrino model that we obtain below (§4) are not significantly better than those previously derived from the nearby X-ray clusters Coma and Virgo (Boyarsky et al. 2006c), 1E 0657−56 provides a significant improvement in reliability because of its directly measured total mass (whereas Coma and Virgo are both nearby unrelaxed systems, so their dark matter masses are uncertain, as is the question of how much of this mass falls inside the instrument fov).

A unique feature of 1E 0657−56 is a spatial separation between the peaks of gas and dark matter density belonging to the two subclusters (Clowe et al. 2006), caused by their merger in the plane of the sky (Fig. 1). This enables us to try to exclude the spatial regions with the highest thermal X-ray contamination (and thus minimize the uncertainty of modeling this component; see §3.1 below), while at the same time retaining the densest dark matter regions. Thus, we use two regions in our X-ray analysis below, shown in Figure 1. The region peaks takes advantage of the separation between the DM and the gas, and combines two circles centered on the mass peaks, excluding the two X-ray brightness peaks. We also use a subregion of peaks that includes only the bullet subcluster mass peak, sub, to illustrate the effects of uncertainties. The region whole includes most of the cluster mass within $r = 6' = 1.6$ Mpc, excluding only a small region at the X-ray brightness peak. (A still bigger region would increase the uncertainties of the mass and the detector background.)

To calculate the dark matter mass within the spectral extraction regions, we integrated the weak-lensing map of the projected total mass (Clowe et al. 2006) and subtracted a relatively small contribution from the intracluster gas. We note that the mass near the cluster center derived from weak lensing is lower by a factor of about 2 compared to that derived by Bradac et al., who combined weak- and strong-lensing data (but whose fit is in fact dominated by the strong-lensing data). Some of this discrepancy is expected, because the weak-lensing approximation breaks down near the peaks of massive clusters that produce strong gravitational arcs (such as both subclusters of 1E 0657−56); indeed, the peak densities in Clowe et al. (2006) are insufficient to produce arcs. Weak lensing is also insensitive to adding a constant mass sheet (Bartelmann & Schneider 2001). Strong-lensing analysis may suffer from other types of uncertainties. The higher mass Bradac et al. (2006) map is limited to the central $r = 1.5'−2'$ region, which is insufficient for our purposes, so we chose to use the Clowe et al. (2006) mass map. This results in conservative underestimates of the expected neutrino signal by a factor of up to 2. We illustrate this uncertainty in our final results.

The gas mass within our spectral regions is estimated from a three-dimensional model fit to the Chandra X-ray brightness and temperature maps. The X-ray luminosity of a hot ($T \sim 8−20$ keV), optically thin gas cloud at energies where Chandra is most sensitive ($E \sim 1−1.5$ keV) is determined mostly by the gas density and...
depends weakly on temperature. Therefore, for symmetric clusters, the gas density can usually be reconstructed very reliably. The apparent axial symmetry of 1E 0657–56 allowed us to derive a gas model with a 10% accuracy (M. Markevitch et al. 2008, in preparation). The gas contribution to the total mass in our spectral model with a 10% accuracy (M. Markevitch et al. 2008, in preparation) and Vikhlinin et al. (2001) representing the multitemperature intracluster gas. A useful property of thermal spectra is that a continuous range of gas temperatures produces a spectrum that can be adequately fit with a sum of just a few discrete temperatures. Models for all regions were modified at low energies by the Galactic absorption $N_H = 4.6 \times 10^{20}$ cm$^{-2}$. An example of the fit for the region SUB is shown in Figure 2; this fit has a reduced $\chi^2 = 0.98$ for 152 degrees of freedom.

None of the regions exhibits any emission lines other than those expected from hot gas (mostly the $E \approx 6.7$ keV Fe line, redshifted to 5.2 keV). We use this fact to place constraints on the neutrino decay flux following the procedure previously used in this context by, e.g., Boyarsky et al. (2006a, 2006c, 2006d, 2007b). In particular, for each energy bin in the 0.8–9 keV range, we added a narrow emission line (a Gaussian line much narrower than the detector spectral resolution) to the thermal model, refit the spectra, and calculated a statistical upper limit on the line flux by increasing the line normalization until the χ^2 of the fit worsens by 9 (3 σ, or a 99.7% confidence level). To obtain conservative upper limits, we allowed as much freedom for the parameters of the thermal model as possible, including allowing the heavy-element abundances (which produce the thermal emission lines) to vary, thus letting the neutrino line mimic some of the thermal line flux at the respective energies. We note that the full number of counts in each bin (including the instrumental background) is sufficiently high to ensure the Gaussian statistics and is much higher than the resulting limits on the line flux, so the use of $\Delta \chi^2$ is appropriate (cf. Protassov et al. 2002). An example of an emission line that

TABLE 1

MASSES WITHIN SPECTRAL EXTRACTION REGIONS

Region	Total Mass* $(10^{15} M_\odot)$	Gas Mass* $(10^{15} M_\odot)$	DM Mass* $(10^{15} M_\odot)$	Area* $(10^{-7}$ sr)
SUB	0.058 ± 0.007	0.007	0.05	1.00
PEAKS	0.198 ± 0.013	0.034	0.16	3.55
WHOLE	1.46 ± 0.23	0.297	1.16	95.3

*Masses from weak lensing.

The solid angle of the region.

Fig. 1.—Regions used for extracting the X-ray spectra overlaid on a *Chandra* X-ray 0.8–4 keV image of 1E 0657–56 (left) and its weak-lensing mass map (Clowe et al. 2006) (right). The panel size is $12^\prime \times 12^\prime$. All point sources seen in the X-ray image are spatially excluded from the spectral analysis. The region that we refer to as SUB is the green circle centered on the western subcluster’s mass peak, excluding the smaller black circle encompassing most of the X-ray gas bullet. The region PEAKS is a combination of SUB and the green circle centered on the eastern mass peak, again excluding the corresponding X-ray peak (bigger black circle). The region WHOLE is the big ($r = 6^\prime$) green circle, excluding only the gas bullet (smaller black circle).
would correspond to a 3σ upper limit is shown in Figure 2, and the resulting statistical limits are shown in Figure 3.

3.1. Systematic Uncertainties

In addition to the statistical upper limits on the line flux, there are systematic uncertainties that have to be taken into account. First, the way we normalize the ACIS background using the high-energy band (Markevitch et al. 2003; Hickox & Markevitch 2006) results in a 3% uncertainty in the normalization at the useful energies. Because the ACIS detector background has several prominent emission lines, such a normalization error may, for example, hide an emission line coming from the sky, or create a spurious line. To take this into account, we varied the background normalization by 3% and repeated the fitting procedure. As expected, this leads to a noticeable increase of the allowed line flux at rather high energies $E \geq 6$ keV, where the background intensity increases steeply. For the region whole, limits with nominal background normalization and those for which the normalization changed by $\pm 3\%$ are shown in Figure 4. These differences were added, in quadrature, to the statistical limits at each energy.

A more insidious uncertainty arises from the inaccuracies in the calibration of the detector response and gain (the energy to spectral channel conversion). To assess this uncertainty, we have extracted a spectrum from the 880 ks ACIS observation of the very bright Perseus Cluster, and fit it using the same calibration products (current as of summer 2006) and a model consisting of several thermal models as we use in this work, with all element abundances allowed to vary. The fit is shown in Figure 5. Statistical errors in this data set are mostly negligible. The fit shows systematic residuals at a 2% level of the model flux, some edgelike or even linelike, obviously caused by calibration inaccuracies (e.g., the feature around $E = 2$ keV is obviously due to a gain error). To take this uncertainty into account, we added 3% of the thermal model flux contained within the width of a Gaussian line, in quadrature, to the statistical limits on the line flux. The result of adding these uncertainties for the whole and sub regions is shown in Figure 6. As expected, this uncertainty contributes mostly at lower energies, where thermal emission is bright (at high energies, the increasing statistical uncertainty starts to dominate). This is the uncertainty that can be minimized by

Fig. 2.—Spectrum and residuals for the whole region with the best-fit APEC model for $1 \text{ keV} < E < 4$ keV in the detector’s reference frame (black crosses). For illustration, we show (solid red line) the same model with an additional narrow Gaussian line (corresponding to the emitted energy $M_s/2 = 3.15$ keV, redshifted to $E = 2.43$ keV), which worsens the fit at a 3σ level. In § 4.1, we explain how we produce this decay signature, which corresponds to the sterile neutrino mass limit we derive from our analysis, $M_s = 6.3$ keV.

Fig. 3.—Statistical upper limits (3σ) for the flux in a nonthermal, narrow emission line as a function of line energy, for our fitting regions.

Fig. 4.—Effect of a $\pm 3\%$ systematic uncertainty in the ACIS background normalization (bg) for the region whole on our line limits. This uncertainty is significant for large regions and at high energies; for smaller regions, such as sub and peaks, it is negligible (not shown).

Fig. 5.—Chandra ACIS spectrum of the Perseus cluster from an 880 ks exposure, extracted from the $8' \times 8'$ central region, excluding the very center ($r < 1'$) with complex gas structure. The fit residuals (bottom; units are same as in the upper panel) illustrate the current calibration uncertainties. The residuals around 2–4 keV are 2%–3%.
observing “dark” matter clumps, such as our gas-stripped subcluster.

The uncertainty of the Chandra absolute flux calibration is at the level of a few percent; it enters in the conversion of counts to fluxes. Because our limits on line brightness are much smaller than the underlying continuum plus background at all energies, this uncertainty is much smaller than the ones described above, and we ignore it.

Finally, the biggest uncertainty, unrelated to the X-ray data, comes from the factor of 2 difference between the cluster masses determined from the weak and strong gravitational lensing analyses (Clowe et al. 2006; Bradac et al. 2006). We include it in the plot with results below (Fig. 7b).

4. RESULTS

Using equation (3) and masses from Table 1 (and, of course, the assumption that sterile neutrinos account for all of the dark matter), we convert the upper limits on the neutrino line flux for our two regions into restrictions on sterile neutrinos in the $M_\pi - \sin^2(2\theta)$ plane. They are shown in Figure 7. The strongest constraint comes from the region whole; the bigger mass of DM within the field of view turns out to offer a greater advantage than the reduced thermal contamination at the gas-stripped DM peaks. For the sub and peaks regions, we plot constraints for the conservative DM mass estimate from weak gravitational lensing (Fig. 7a), along with stronger constraints based on the higher strong-lensing mass (Fig. 7b).

Although on average these results are about an order of magnitude weaker [in terms of $\sin^2(2\theta)$] than other recent limits (e.g., Boyarsky et al. 2007b; Watson et al. 2006),9 or even more recent results (Boyarsky et al. 2007b), they serve as an important cross-check. First, they are obtained from an object with $z \sim 0.3$, while previous results (Boyarsky et al. 2006a, 2006c, 2006d, 2007b; Riemer-Sørensen et al. 2006; Watson et al. 2006) were obtained for objects with $z \lesssim 0.01$. Furthermore, the DM mass was determined via gravitational lensing, a method not applicable to nearby objects. This is important, as different mass measurement methods are subject to different uncertainties, and using an object with a lensing-determined mass, such as 1E 0657–56, makes the constraints more robust.

4.1. Dodelson-Widrow Scenario

Assuming that sterile neutrinos constitute all the DM and that they are only produced in the early universe via mixing with active neutrinos leads to a relation between the mass of the sterile neutrino and its mixing angle (Dodelson & Widrow 1994; Dolgov & Hansen 2002; Abazajian et al. 2001a; Abazajian 2006b). Combined with observational restrictions on the DM decay emission, this relation provides an upper bound on the sterile neutrino mass.

However, as sterile neutrinos do not thermalize in the early universe, any such model relies on a number of assumptions (including initial conditions at temperatures $\gtrsim 1$ GeV and the absence of entropy dilution) (Boyarsky et al. 2006d; Asaka et al. 2006a). To

9 We note that the M31 constraints presented in Watson et al. (2006) [as a straight line in the $M_\pi - \sin^2(2\theta)$ plane] should be very qualitative at $M_\pi \gtrsim 10^{-12}$ keV. They must worsen as our limits do, since the XMM-Newton effective area rapidly declines at the corresponding energies, similar to Chandra’s (see Boyarsky et al. 2007a for details).

10 When this work was in final preparation, the preprint Riemer-Sørensen et al. (2007) appeared, in which a Chandra grating spectrum of the cluster A1835 ($z \approx 0.025$) is analyzed. That analysis strongly underestimates the effect of the cluster angular extent on energy resolution of the grating spectrum, so we do not consider it here.
define the boundary conditions, the knowledge of some “beyond the \(\nu\)MSM” physics is needed. For example, it was shown in Shaposhnikov & Tkachev (2006) that all of the DM sterile neutrinos could have been produced by interaction with the inflation. In such a scenario, the mixing angle can be arbitrarily small, or even zero. This means that the sterile neutrino mass and mixing angle are not necessarily related, which is contrary to the assumption used in recent literature (e.g., Abazajian 2006a, 2006b, 2007). Upper limits on the decay line flux, are not only model dependent, but depend strongly on initial conditions. Moreover, even assuming ad hoc initial conditions implying that there was no DM at temperatures \(\gtrsim 1\) GeV (which is hardly physically justified), the correct calculation of the production rate requires calculation of the non-preturbative QCD contributions, which is still a subject of discussion in the literature (Asaka et al. 2006a, 2006b, 2007). Nevertheless, for the sake of comparison with other works, the intersection of our constraints in Figure 7a with the \(M_\nu - \sin^2(2\theta)\) relation obtained in Abazajian (2006b) for the simplest Dodelson-Widrow model (with one sterile neutrino, assuming zero initial conditions and a particular form of QCD contribution) corresponds to an upper limit of \(M_\nu < 6.3\) keV. (The decay signature associated with our mass limit is shown in Fig. 2.)

Although this upper limit is weaker than those obtained in other works (e.g., Boyarsky et al. 2006d; Watson et al. 2006; Asaka et al. 2007), it was obtained in the case where the DM mass is determined via gravitational lensing (as discussed in § 4) and thus represents an important cross-check of the above results.

We would like to thank D. Clowe, A. Neronov, M. Shaposhnikov, and I. Tkachev for useful discussions. O. R. was supported in part by the European Research Training Network contract 005104, “ForcesUniverse,” and by a Marie Curie International Fellowship within the Sixth European Community Framework Programme. M. M. acknowledges support from NASA contract NAS8-39073 and Chandra grant GO4-5152X.