(δ, χ_{FF})-bounded families of graphs

Manouchehr Zaker*

Department of Mathematics,
Institute for Advanced Studies in Basic Sciences,
Zanjan 45137-66731, Iran

Abstract

For any graph G, the First-Fit (or Grundy) chromatic number of G, denoted by $\chi_{FF}(G)$, is defined as the maximum number of colors used by the First-Fit (greedy) coloring of the vertices of G. We call a family \mathcal{F} of graphs $(δ, χ_{FF})$-bounded if there exists a function $f(x)$ with $f(x) → \infty$ as $x → \infty$ such that for any graph G from the family one has $\chi_{FF}(G) ≥ f(δ(G))$, where $δ(G)$ is the minimum degree of G. We first give some results concerning $(δ, χ_{FF})$-bounded families and obtain a few such families. Then we prove that for any positive integer $ℓ$, $\text{Forb}(K_{ℓ,ℓ})$ is $(δ, χ_{FF})$-bounded, where $K_{ℓ,ℓ}$ is complete bipartite graph. We conjecture that if G is any C_4-free graph then $\chi_{FF}(G) ≥ δ(G) + 1$. We prove the validity of this conjecture for chordal graphs, complement of bipartite graphs and graphs with low minimum degree.

Mathematics Subject Classification (2000): 05C15, 05C07, 05C85, 05C38

Keywords: graph coloring; First-Fit coloring; Grundy number; lower bound; minimum degree

1 Introduction

All graphs in this paper are simple undirected graphs. A family \mathcal{F} of graphs is said to be $(δ, χ)$-bounded if there exists a function $f(x)$ satisfying $f(x) → \infty$ as $x → \infty$, such that for any graph G from the family one has $f(δ(G)) ≤ χ(G)$, where $δ(G)$ and $χ(G)$ denotes the minimum degree and chromatic number of G, respectively. Equivalently, the family \mathcal{F} is $(δ, χ)$-bounded if $δ(G_n) → \infty$ implies $χ(G_n) → \infty$ for any sequence $G_1, G_2, \ldots \text{ with } G_n ∈ \mathcal{F}$. Motivated by Problem 4.3 in [4], the author introduced and studied $(δ, χ)$-bounded families of graphs (under the name of $δ$-bounded families) in [9]. The so-called color-bound family of graphs mentioned in the related problem of [4] is a family for which there exists a function $f(x)$ satisfying $f(x) → \infty$ as $x → \infty$, such that for any graph G from the family one has $f(\text{col}(G)) ≤ χ(G)$, where $\text{col}(G)$ is defined as $\text{col}(G) = \max\{δ(H) : H ≤ G\} + 1$. It was shown in [9] that if we restrict ourselves to hereditary (i.e. closed under taking induced subgraph) families then the two concepts

* mzaker@iasbs.ac.ir
(δ, χ)-bounded and color-bound are equivalent. The first specific results concerning (δ, χ)-bounded families appeared in [9] where the following theorem was proved (in a somewhat different but equivalent form). In the following theorem for any set C of graphs, Forb(C) denotes the class of graphs that contains no member of C as an induced subgraph.

Theorem 1. ([9]) For any set C of graphs, Forb(C) is (δ, χ)-bounded if and only if there exists a constant c = c(C) such that for any bipartite graph H ∈ Forb(C) one has δ(H) ≤ c.

Theorem 1 shows that to decide whether Forb(C) is (δ, χ)-bounded we may restrict ourselves to bipartite graphs. A comprehensive study of (δ, χ)-bounded families was done in [2], where the authors proved the following theorem.

Theorem 2. ([2]) Given a finite set of graphs \{H_1, H_2, \ldots, H_k\}. Then Forb(H_1, H_2, \ldots, H_k) is (δ, χ)-bounded if and only if one of the following holds:

(i) For some i, H_i is a star tree.

(ii) For some i, H_i is a forest and for some j \neq i, H_j is complete bipartite graph.

The following result concerns Forb(C), where C contains infinitely many graphs in which one of them is a tree.

Theorem 3. ([2]) Let T be any non star tree. Then Forb(T, H_1, \ldots) is (δ, χ)-bounded if and only if at least one of H_i-s is complete bipartite graph.

For other (δ, χ)-bounded families of graphs we refer the reader to [2] and [9]. In this paper we work on the Grundy (or First-Fit) chromatic number of graphs. A Grundy k-coloring of a graph G, is a proper k-coloring of vertices in G using colors \{1, 2, \ldots, k\} such that for any two colors i and j with i < j, any vertex colored j is adjacent to some vertex colored i. The Grundy or First-Fit chromatic number of a graph G, denoted by \chi_{ff}(G) (also denoted by \Gamma(G) in some articles), is the largest integer k, such that there exists a Grundy k-coloring for G. It can be shown that \chi_{ff}(G) is the same as the maximum number of colors used by the First-Fit (greedy) coloring of the vertices of G [7]. To determine \chi_{ff}(G) is NP-complete even for complement of bipartite graphs G [7]. For this reason it is natural to obtain lower and upper bounds for \chi_{ff}(G) in terms of ordinary graph theoretical parameters. In this paper we obtain some lower bounds in terms of the minimum degree of graphs. The Grundy number and First-Fit coloring of graphs were studied widely in the literature, see [7, 8] and its references. Throughout the paper we denote the complete graph on n vertices by K_n and the cycle on n vertices by C_n. For each positive integer ℓ, the complete bipartite graph in which each part has ℓ vertices is denoted by K_{ℓ, ℓ}.

2
2 Results

Generalizing the concept of (δ, χ)-bounded graph, we define the following notion. A family \mathcal{F} of graphs is called $(\delta, \chi_{\mathcal{F}})$-bounded if there exists a function $f(x)$ with $f(x) \to \infty$ as $x \to \infty$ such that for any graph G from the family one has $\chi_{\mathcal{F}}(G) \geq f(\delta(G))$. It was shown in [7] that $\chi_{\mathcal{F}}(G) = 2$ if and only if G is a complete bipartite graph. Obviously, complete bipartite graphs may have arbitrary large minimum degree. We conclude that the family of complete bipartite graphs is not $(\delta, \chi_{\mathcal{F}})$-bounded. This example induces that perhaps C_4 and other complete bipartite graphs have significant role in $(\delta, \chi_{\mathcal{F}})$-boundedness. Note also that any (δ, χ)-bounded family is also $(\delta, \chi_{\mathcal{F}})$-bounded.

Another interesting chromatic-related parameter is the so-called coloring number of graphs. The coloring number of a graph G is defined as $\text{col}(G) = \max_{H \subseteq G} \delta(H) + 1$. The coloring number of graphs is a polynomial time parameter. See [4, 5, 9] for more results on the coloring number of graphs. The possible relationships between the coloring number and Grundy number of graphs is an interesting research area. For some graphs G we have $\text{col}(G) < \chi_{\mathcal{F}}(G)$. For example the path on four vertices P_4 and infinitely many trees satisfy this inequality. Also, for some graphs G we have $\chi_{\mathcal{F}}(G) < \text{col}(G)$. For example consider complete bipartite graphs $K_{a,b}$, where $a, b \geq 2$. We have the following remark, where by a hereditary family we mean any family \mathcal{F} such that for any graph G from \mathcal{F}, if H is an induced subgraph of G then $H \in \mathcal{F}$.

Remark 1. Let \mathcal{F} be any hereditary family of graphs such that \mathcal{F} is $(\delta, \chi_{\mathcal{F}})$-bounded. Then there exists a function $f(x)$ with $f(x) \to \infty$ as $x \to \infty$ such that for any graph G from the family one has $\chi_{\mathcal{F}}(G) \geq f(\text{col}(G))$.

Proof. Let $G \in \mathcal{F}$ and H be any induced subgraph of G with $\text{col}(G) = \delta(H) + 1$. We have $H \in \mathcal{F}$. Let $g(x)$ be such that $\chi_{\mathcal{F}}(H) \geq g(\delta(H))$. The proof completes by taking $f(x) = g(x - 1)$.

As we mentioned before any (δ, χ)-bounded family is also $(\delta, \chi_{\mathcal{F}})$-bounded. In Theorem 5 we obtain $(\delta, \chi_{\mathcal{F}})$-bounded families which are not (δ, χ)-bounded. For this purpose we first obtain in Proposition 1 a result concerning (δ, χ)-boundedness of graphs. In the following, the girth of a graph G is the length of a shortest cycle contained in G. When G contains a cycle then we say that G has finite girth. We use also the following two facts. The first fact states that any graph with m edges contains a bipartite subgraph with at least $m/2$ edges. The second one states that any graph with n vertices and $m/2$ edges contains a subgraph with minimum degree at least $m/2n$. For the proof of these facts we refer the reader to standard Graph Theory books such as [1].

Proposition 1. Let \mathcal{C} be any finite collection of graphs such that any member of \mathcal{C} has finite girth. Then $\text{Forb}(\mathcal{C})$ is not (δ, χ)-bounded. In particular $\text{Forb}(K_3, K_{2,m})$ and $\text{Forb}(K_{\ell, \ell})$ are not (δ, χ)-bounded.

Proof. Let g be an even integer such that the girth of any graph in \mathcal{C} is at most g. For the proof we use the following Turán-type result which is attributed to Erdős in [6]. For
any k and n there exists a graph on n vertices with $\Omega(n^{1+1/2k-1})$ edges that contains no cycle of length at most $2k$. Let $g = 2k$, and recall from the previous paragraph that (1) a graph with m edges contains a bipartite subgraph with at least $m/2$ edges, and (2) a graph with n vertices and $m/2$ edges contains a subgraph with minimum degree at least $m/2n$. We conclude that there exists an infinite sequence G_1, G_2, \ldots of bipartite graphs such that $\delta(G_i) \to \infty$ as $i \to \infty$ and the girth of any G_i is more than g. This shows that G_i belongs to $\text{Forb}(\mathcal{C})$. This shows that $\text{Forb}(\mathcal{C})$ is not (δ, χ)-bounded. □

In opposite direction we show in Theorem 5 that $\text{Forb}(K_3, K_{2,m})$ is (δ, χ_{ff})-bounded. More generally, Theorem 7 asserts that $\text{Forb}(K_{\ell,\ell})$ is (δ, χ_{ff})-bounded. Before we proceed, we need to introduce a family of trees $T_k, k = 1, 2, \ldots$. For $k = 1, 2, T_1$ (resp. T_2) is isomorphic to K_1 (resp. K_2). Assume that T_k has been defined. Attach a leaf to any vertex of T_k and denote the resulting tree by T_{k+1}. It is easily observed that $\chi_{ff}(T_k) = k$. Note also that $|V(T_k)| = 2k-1$. We need also the following result from [9], Theorem 2, where $\rho(G) = |E(G)|/|V(G)|$.

Theorem 4. ([9]) Let G be any triangle-free graph such that G does not contain $K_{2,m}$, where $m > 1$. If $\rho(G) \geq (k - 3)(m - 1) + 1$ then G contains all trees on k vertices as induced subgraphs.

The promised result is as follows.

Theorem 5. Let $G \in \text{Forb}(K_3, K_{2,m})$. Then

$$\chi_{ff}(G) \geq \log\left(\frac{\delta(G) + 6m - 8}{2m - 2}\right) + 1.$$

Proof. First note that G does not contain triangle and $K_{2,m}$. Set $\delta(G) = p$ and $k = (p + 6m - 8)/(2m - 2)$, for simplicity. We have

$$(k - 3)(m - 1) + 1 = \left(\frac{p + 6m - 8}{2m - 2} - 3\right)(m - 1) + 1$$

$$= \left(\frac{p - 2}{2m - 2}\right)(m - 1) + 1$$

$$= \frac{p}{2}.$$

Since $\rho(G) \geq (p/2)$ then G satisfies the conditions of Theorem 5 with these k and m. Therefore G contains all trees on k vertices as induced subgraph. In particular G contains T_q as induced subgraph, where $q = \log((\delta(G) + 6m - 8)/(2m - 2)) + 1$. We conclude that

$$\chi_{ff}(G) \geq \log\left(\frac{\delta(G) + 6m - 8}{2m - 2}\right) + 1.$$

□

By applying Theorem 4 and Theorem 5 more economically when $m = 2$ we obtain the following bound.
Corollary 1. Let \(G \in \text{Forb}(K_3, C_4) \). Then

\[
\chi_{ff}(G) \geq \log(\delta(G) + 1).
\]

We noted before that the family of complete bipartite graphs is not \((\delta, \chi_{ff})\)-bounded. Hence the following proposition is immediate from this fact.

Proposition 2. Let \(C \) be any collection of graphs such that any member of it contains an odd cycle. Then \(\text{Forb}(C) \) is not \((\delta, \chi_{ff})\)-bounded. In particular \(\text{Forb}(K_3) \) is not \((\delta, \chi_{ff})\)-bounded.

In Theorem 7 we prove that \(\text{Forb}(K_{\ell, \ell}) \) is \((\delta, \chi_{ff})\)-bounded. For this purpose we need the following theorem from [2].

Theorem 6. ([2]) For every tree \(T \) and for positive integers \(\ell, k \) there exist a function \(f(T, \ell, k) \) with the following property. If \(G \) is a graph with \(\delta(G) \geq f(T, \ell, k) \) and \(\chi(G) \leq k \) then \(G \) contains either \(T \) or \(K_{\ell, \ell} \) as an induced subgraph.

We shall make use of this theorem in proving the next result.

Theorem 7. For each positive integer \(\ell \), \(\text{Forb}(K_{\ell, \ell}) \) is \((\delta, \chi_{ff})\)-bounded.

Proof. Recall that for each positive integer \(k \), \(T_k \) denotes the only smallest tree of Grundy number \(k \). Let \(\{ G_n \}_{n=1}^{\infty} \) be a sequence of \(K_{\ell, \ell} \)-free graphs such that \(\delta(G_n) \to \infty \) as \(n \to \infty \). Assume on the contrary that for some integer \(N \), \(\chi_{ff}(G_n) \leq N \) holds for all \(n \). It follows that for each \(n \), \(T_{N+1} \) is not an induced subgraph of \(G_n \). Hence \(G_n \) belongs to \(\text{Forb}(T_{N+1}, K_{\ell, \ell}) \). Theorem 6 implies that for each \(n \) either \(\delta(G_n) < f(T_{N+1}, \ell, N) \) or \(\chi(G_n) > N \). But the second case is impossible because \(\chi(G_n) \leq \chi_{ff}(G_n) \leq N \). Therefore for each \(n \), \(\delta(G_n) < f(T_{N+1}, \ell, N) \). This contradicts \(\delta(G_n) \to \infty \). This contradiction completes the proof.

The following result shows that chordal graphs are \((\delta, \chi_{ff})\)-bounded with \(f(x) = x + 1 \). Note that the class of chordal graphs is the same as \(\text{Forb}(C_4, C_5, \ldots) \). In a graph \(G \), by a simplicial vertex we mean any vertex \(v \) such that \(G[N(v)] \) is a clique in \(G \), where \(G[N(v)] \) stands for the subgraph of \(G \) induced by the set \(N(v) \) of the neighbors of \(v \) in \(G \). It is a known fact that any chordal graph \(G \) admits a simplicial elimination ordering (see e.g. [1]). In other words, let \(G \) be a chordal graph. Then there exists a vertex ordering \(v_1, \ldots, v_n \) of \(G \) such that \(v_i \) is simplicial in \(G \setminus \{ v_1, \ldots, v_{i-1} \} \). We shall make use of this fact in the following theorem.

Theorem 8. \(\text{Forb}(C_4, C_5, \ldots) \) is \((\delta, \chi_{ff})\)-bounded with \(f(x) = x + 1 \).
Proof. Let G be any chordal graph G and let v_1, v_2, \ldots, v_n be a simplicial ordering of the vertices of G. Since $G[N(v) \cup \{v_1\}]$ is a clique in G with $\text{deg}_G(v_1) + 1$ vertices, then $\omega(G) \geq \text{deg}_G(v) + 1 \geq \delta(G) + 1$. We have also $\chi_{\text{ff}}(G) \geq \chi(G) \geq \omega(G)$. Hence $\chi_{\text{ff}}(G) \geq \delta(G) + 1$.

By strengthening Theorem 8 we propose the following conjecture.

Conjecture 1. Let G be a C_4-free graph. Then $\chi_{\text{ff}}(G) \geq \delta(G) + 1$.

A natural scenario to prove the above conjecture is as follows. Let F be a hereditary family of graphs satisfying the following property. Any member G from the family contains a maximal independent set (MIS) such as I such that $\delta(G \setminus I) = \delta(G) - 1$. We have the following observation which can be proved by induction.

Observation 1. Let F be any hereditary family of graphs such that any graph G from the family contains a MIS, say I such that for any vertex v of G if $\text{deg}_G(v) = \delta(G)$ then $\text{deg}_{G \setminus I}(v) = \text{deg}_G(v) - 1$. Then $\chi_{\text{ff}}(G) \geq \delta(G) + 1$ for any graph G from F.

Unfortunately the family of C_4-free graphs does not satisfy the above condition. In this regard it is worthy to work on the following problem.

Problem. Find families F of graphs satisfying the following property. Any graph G from F contains a MIS, say I such that for any vertex v of G if $\text{deg}_G(v) = \delta(G)$ then $\text{deg}_{G \setminus I}(v) = \text{deg}_G(v) - 1$.

In Theorem 9 we show that Conjecture 1 holds for any graph which is the complement of a bipartite graph. We need some prerequisites. In a graph H, a subset D of edges in H is called an edge dominating set if each edge in $E(H) \setminus D$ has a common end point with an edge in D. Let H be any bipartite graph. Set $G = \overline{H}$. Let $\gamma'(H)$ be the smallest size of an edge dominating set in H. It was proved in [7] that $\chi_{\text{ff}}(G) = |V(G)| - \gamma'(H)$. We have now the following theorem.

Theorem 9. Let H be any bipartite graph and G be the complement of H such that G is C_4-free. Then $\chi_{\text{ff}}(G) \geq \delta(G) + 1$.

Proof. Let n be the order of G. Since $\delta(G) = n - \Delta(H) - 1$, then the inequality $\chi_{\text{ff}}(G) \geq \delta(G) + 1$ is equivalent to $\gamma'(H) \leq \Delta(H)$. Now we use the fact that for any edge dominating set R in a bipartite graph, there is a matching M which is also an edge dominating set and $|M| \leq |R|$. This fact can be easily proved and we omit mentioning its proof here, and refer the reader to [3]. Let R be an edge dominating set in H with $|R| = \gamma'(H)$. Using the previous fact we obtain that R is a matching and therefore $\gamma'(H) \leq \alpha'(H)$. Hence to complete the proof we need to show that $\alpha'(H) \leq \Delta(H)$. We prove the latter inequality by induction on the number of edges. Note that since G
is C_4-free then H is $2K_2$-free, where by $2K_2$ we mean the graph consisting only of two independent edges.

Let M be any matching of maximum size in H and $e = uv$ be any edge of M. Define another graph as $H_0 = H \setminus \{u, v\}$. We have $\alpha'(H_0) \leq \Delta(H_0)$. Hence $\alpha'(H) - 1 \leq \Delta(H)$. To finalize the proof we show that $\Delta(H_0) + 1 \leq \Delta(H)$. Otherwise, since H_0 is an induced subgraph of H, we have $\Delta(H_0) = \Delta(H)$. Let x be any vertex in H_0 such that $\deg_{H_0}(x) = \Delta(H)$. Without loss of generality, we may assume that u and x are in the same bipartite part of H. We show that u is adjacent to any neighbor of x. Let w be any neighbor of x. Since H is $2K_2$-free then the subgraph of H consisting of two edges uw and xw can not be induced in H. Now, since x has the maximum degree then x can not be adjacent to v in H. Hence u should be adjacent to w. But v is adjacent to u and not adjacent to x. This means that the degree of u is strictly greater that the degree of x, a contradiction with our choice of x. This completes the proof. \(\square\)

The following theorem shows that Conjecture \([\square]\) holds for all graphs G with $\delta(G) \leq 3$.

Theorem 10. Let G be a C_4-free graph with $\delta(G) \leq 3$. Then $\chi_{ff}(G) \geq \delta(G) + 1$.

Proof. Theorem obviously holds if $\delta(G) = 1$. Assume that $\delta(G) = 2$. Let v be any vertex of G and a, b any two neighbors of v. If a and b are adjacent then the resulting triangle shows that $\chi_{ff}(G) \geq 3$. Assume that a and b are not adjacent. Let c be any neighbor of b. If a and c are not adjacent then we obtain an induced P_4 on the vertex set $\{v, a, b, c\}$. Hence the desired inequality holds in this case. Assume that a and c are adjacent. Then since G is C_4-free and b is not adjacent to a then v is adjacent to c. This gives rise to a triangle. Hence in this case too $\chi_{ff}(G) \geq 3$.

Assume now that $\delta(G) = 3$. Let v be any vertex of degree 3. Let a, b, c be the neighbors of v.

Case 1. Three vertices a, b, c are independent.

In this case we first note that no two vertices from $\{a, b, c\}$ have a common neighbor other than the vertex v, since otherwise let u be a common neighbor of a and b. The two vertices a and b are independent and G is C_4-free. Hence v should be adjacent to u. This contradicts $\deg_G(v) = 3$. Now, let x and y (resp. z and t) be two neighbors of a (resp. b). We have $\{x, y\} \cap \{z, t\} = \emptyset$ and c is not adjacent to any vertex in $\{x, y, z, t\}$. Consider a small bipartite graph H consisting of the bipartite sets $\{x, y\}$ and $\{z, t\}$ with all edges from G among these parts. If there are at most two edges in H then we color v by 4, a by 3, b by 2 and c by 1. The vertex a needs two neighbors of colors 1 and 2; and the vertex b needs one neighbor of color 1. We can easily fulfil these conditions by assigning suitable colors 1 and 2 to the vertices of H. If there are exactly three edges in H then (assuming that x is adjacent to z) we consider the following coloring. We color x by 4, y by 3, z by 3, y and t by 2 and a and b by 1. Finally, we consider the case that H is a complete bipartite graph. In this case we color x by 4, z by 3, a and b by 2; and t and v by 1 (note that t and v are not adjacent). All of these pre-colorings are partial Grundy colorings with 4 colors. This completes the proof in Case 1.

Case 2. a and b are adjacent and c is not adjacent to a and also to b.

In this case we color \(v \) by 4, \(a \) by 2, \(b \) by 3 and \(c \) by 1. Let \(d \) be a neighbor of \(b \). We color \(d \) by 1. Note that \(c \) and \(d \) can not be adjacent. If \(a \) is adjacent to \(d \) then we obtain a partial Grundy coloring using four colors. Otherwise, let \(a \) be adjacent to a vertex say \(e \). If \(e \) is adjacent to \(d \) then since \(a \) is not adjacent to \(d \), hence \(b \) should be adjacent to \(e \). In this situation we color \(e \) by 1 and remove the color of \(d \). Now the colors of \(\{ v, a, b, c, e \} \) is a partial Grundy coloring with four colors. But if \(e \) is not adjacent to \(d \), we color both vertices \(e \) and \(d \) by 1. Note that in this case the colors of \(\{ v, a, b, c, d, e \} \) introduce a partial Grundy coloring using four colors.

Case 3. \(a \) is adjacent to both \(b \) and \(c \); but \(b \) and \(c \) are not adjacent.

In this case we color \(v \) by 4, \(a \) by 3, \(b \) by 1 and \(c \) by 2. Let \(d \) be a new neighbor of \(c \). If \(b \) and \(d \) are not adjacent then we color both of them by 1. The resulting coloring is a partial Grundy coloring using four colors. But if \(b \) and \(d \) are adjacent, then \(a \) should be adjacent to \(d \). Now consider the 4-cycle on \(\{ v, b, c, d \} \). Since the degree of \(v \) is three then \(v \) can not be adjacent to \(d \). Hence \(b \) and \(c \) should be adjacent. But this is a contradiction.

Case 4. The only remaining case is that \(a, b, c \) are all adjacent. But in this case we obtain a clique of size four. It is clear that in this case \(\chi_{FF}(G) \geq 4 \).

We end the paper by mentioning that Conjecture 1 is also valid for graphs with minimum degree four. The proof is by checking too many cases. We omit the details.

References

[1] R. Diestel, Graph Theory, Springer-Verlag, New York, 2000.

[2] A. Gyárfás, M. Zaker, On \((\delta, \chi)\)-bounded graphs, Electron. J. Combin. 18 (2011) #P108.

[3] R. Häggkvist, A.S. Asratian, T.M.G. Denley, Bipartite Graphs and their Applications, Cambridge University Press, Cambridge, 1998.

[4] T.R Jensen, B. Toft, Graph Coloring Problems, Wiley, New York, 1995.

[5] S.E. Markossian, G.S. Gasparian, B.A. Reed, \(\beta\)-perfect graphs, J. Combin. Theory Ser. B 67 (1996) 1-11.

[6] M. Simonovits, Extremal graph theory, In: Selected Topics in Graph Theory vol. 2 (1983) L. Beineke and R. Wilson Eds., Academic Press: pp. 161–200.

[7] M. Zaker, Results on the Grundy chromatic number of graphs, Discrete Math. 306 (2006) 3166–3173.

[8] M. Zaker, Inequalities for the Grundy chromatic number of graphs, Disc. Appl. Math. 155 (2007) 2567–2572.

[9] M. Zaker, On lower bounds for the chromatic number in terms of vertex degree, Discrete Math. 311 (2011) 1365–1370.