1108. Evaluation of Vancomycin Dosing in Adolescents
Ashley I. Weaver, PharmD1; Geneene A. Wilson, PharmD2; Emily Belanski, PharmD, BCPS3; Allison Nelson, PharmD3; Madan Kumar, DOF; Pulak Bhagat, PharmD, BCPS3; 1University of Chicago Medicine, Indianapolis, Indiana; 2Dell Children’s Medical Center, Austin, Texas; 3University of Chicago Medicine, Chicago, Illinois; University of Chicago, Chicago, IL
Session: P-62. PK/PD Studies
Background. Febrile vancomycin dosing varies based on age and renal function. Recent literature suggests previously recommended doses of 45-60 mg/kg/day may be insufficient to achieve an AUC/MIC ratio of 400-600 mg·hr/L and higher doses of at least 60 mg/kg/day may be required. However, data to guide dosing in adolescents is limited.

Methods. A single-center, retrospective chart review of patients aged 12 to 18 years who received vancomycin and had therapeutic drug monitoring (TDM) performed between July 2017 to June 2020 were included. The primary endpoint was the median total daily dose (TDD) of vancomycin required to achieve therapeutic serum concentrations. Secondary endpoints were to characterize how factors such as age, weight, trough versus AUC monitoring, malignancy, and trauma may influence dosing.

Results. 130 vancomycin courses in 86 patients were included. Baseline characteristics are presented in Table 1. Of the 130 vancomycin courses, 50 courses (38%) achieved therapeutic serum concentrations at a median TDD of 49.8 mg/kg/day (IQR 42 – 59.4). This was not statistically different from the sub- or supra-therapeutic groups (p=0.22).

Based on age, the median total daily dose for 12-14 year olds was higher at 60 mg/kg/day (IQR 45-78.8; n=14) than for 15-16 and 17-18 year olds (45.3 mg/kg/day (IQR 41.1-51; n=15), 48 mg/kg/day (IQR 42-52; n=21), respectively). Obese patients needed a median TDD of 43.5 mg/kg/day vs at least 51 mg/kg/day in healthy and overweight patients. Finally, AUC-guided dosing resulted in a slightly lower overall median TDD vs trough guided dosing (45.8 mg/kg/day vs 50.5 mg/kg/day). Additional dose requirements based on age, weight, TDM and other characteristics are presented in Table 2. Of the 15 patients who developed AKI per pRIFILE criteria, 2 were classified as injury and 3 as failure.

Conclusion. Therapeutic levels, adolescents 12 to14 years old need higher empiric doses of 60 mg/kg/day compared to 45 mg/kg/day in 15 to 18 year olds. Obese patients, however, may require lower TDD than underweight, healthy, and overweight patients. Patients that receive AUC versus trough monitoring may also require lower TDD to achieve therapeutic concentrations. More data is needed to further evaluate our findings.

Disclosures. All Authors: No reported disclosures

Table 2. Total Daily Dose Course Analysis

Category	Total Daily Dose (mg/kg/day)	p value		
Age (yrs)	Tibbot Therapeutic	Sub-Therapeutic	Supra-Therapeutic	
Age 12-14	49.8 (42-59.4)	43.5 (31-51.3)	50.5 (41.1-59.4)	<0.02
Age 15-16	49.8 (42-59.4)	48 (41-55)	53 (43-60)	0.06
Age 17-18	49.8 (42-59.4)	48 (41-55)	53 (43-60)	0.06

1109. Pharmacokinetics and Exposure of Cefepime in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation (ECMO)
Abigail K. Kois, PharmD1; Jason A. Gluck, DO2; David P. Nicolau, PharmD3; Joseph L. Kuti, PharmD4; Hartford Hospital, Hartford, Connecticut; Hartford Healthcare, Hartford, Connecticut; 1Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut
Session: P-62. PK/PD Studies
Background. ECMO is a life-saving tool utilized in critically ill patients that require respiratory and/or cardiac support. ECMO may also affect the pharmacokinetics (PK) of certain medications, including some antibiotics. Cefepime is a widely used antibiotic in this population due to its broad spectrum activity but limited data are available to guide dosing in patients requiring ECMO.

Methods. This was a prospective, single-center study of 6 critically ill adult patients requiring ECMO and receiving cefepime 2g q8h as a 3h infusion. After obtaining informed consent, 4-6 blood samples within the dosing interval were collected to determine cefepime concentrations. Population PK was conducted in Pmetrics using R. Final MAP Bayesian parameter estimates were used to simulate free time above MIC (%T>MIC) for various cefepime dosing regimens. The target pharmacodynamic exposure was 70% T>MIC.

Results. Patients were between 31-62 years old; 4/6 (66.7%) were on veno-venous (VV) ECMO and 2 veno-arterial (VA) ECMO. Two patients required continuous venovenous hemofiltration (CVVHDF) while the other 4 had a CRRT between 92-199 ml/min. A two compartment model fitted the data better than a one compartment model. Median (range) final population PK parameters were: clearance (CL), 9.8 L/h (7.6-33.1); volume of central compartment (Vc), 6.9 L (4.7-49.8); and intercompartment transfer constants (k21) 1.48 h-1 (1.28-2.29) and k12 1.49 h-1 (0.75-1.71). The 2g q8h (3h infusion) regimen resulted in target exposure in all patients up to an MIC of 8 mg/L (the susceptibility breakpoint for Pseudomonas), with 5/6 patients achieving this at 16 mL/kg. A standard 2g q12h (0.5h infusion) regimen would have resulted in 5/6 patients achieving 70% T>MIC at 8 mg/L and 1/6 at 16 mg/L.

Conclusion. These are the first data describing cefepime PK and exposure attainment in critically ill patients receiving ECMO. Cefepime 2g q8h (3h infusion) achieved target pharmacodynamic exposure up to the susceptibility breakpoint of 8 mg/L in all 6 patients, including 2 with concomitant CVVHDF. Additional studies are warranted to define cefepime PK in patients on ECMO across a robust range of CL/C to guide dosing.

Disclosures. All Authors: No reported disclosures

Table 1. Patient Characteristics

Category	Value
Age (yrs)	57.7 ± 11.3
Weight (kg)	73.9 (41.3-72)
Height (cm), median (IQR)	170 (140.7 - 175.2)
BMI, median (IQR)	23 (19–30)
(Underweight, n, %)	4 (7)
Healthy, n, %	44 (55)
Overweight, n, %	12 (14)
Obese, n, %	24 (28)

Active Medications per n = 32

Medication	n
Doxycycline	9
Darunavir	6
Atazanavir	3
Omeprazole	3
Lumiracoxib	2
Ribavirin	1
Paracetamol	1
Torasemide	1

1110. In Vivo Pharmacodynamics of Vancomycin Against Staphylococci in Young Infants
Amanda Gwee, MBBS, FRACP, DTMH, PhD1; Stephen Duffull, PhD2; Derek Zhu, PhD3; 1The Royal Children’s Hospital, Melbourne, Victoria, Parkville, Victoria, Australia; 2University of Otago, Dunedin, Otago, New Zealand
Session: P-62. PK/PD Studies
Background. Coagulase-negative staphylococci are the predominant pathogen causing late onset sepsis in young infants, however, the pharmacodynamic target for vancomycin therapy is unknown. This study aimed to determine the pharmacodynamic target of vancomycin in young infants with staphylococcal infections.

Conclusion. To achieve therapeutic levels, adolescents 12 to14 years old need higher empiric doses of 60 mg/kg/day compared to 45 mg/kg/day in 15 to 18 year olds. Obese patients, however, may require lower TDD than underweight, healthy, and overweight patients. Patients that receive AUC versus trough monitoring may also require lower TDD to achieve therapeutic concentrations. More data is needed to further evaluate our findings.

Disclosures. All Authors: No reported disclosures

Table 1. Patient Characteristics

Category	Value
Age (yrs)	15.7 (4.0)
Weight (kg)	68.5 (51.8 - 87.1)
Height (cm), median (IQR)	170.2 (140.7 - 175.2)
BMI, median (IQR)	23 (19–30)
(Underweight, n, %)	4 (7)
Healthy, n, %	44 (55)
Overweight, n, %	12 (14)
Obese, n, %	24 (28)

Active Medications per n = 32

Medication	n
Doxycycline	9
Darunavir	6
Atazanavir	3
Omeprazole	3
Lumiracoxib	2
Ribavirin	1
Paracetamol	1
Torasemide	1