Interactions of the 67 kDa laminin receptor and its precursor with laminin
Aliya Fatehullah, Caroline Doherty, Géraldine Pivato, George Allen, Lynda Devine, John Nelson, David J Timson

To cite this version:
Aliya Fatehullah, Caroline Doherty, Géraldine Pivato, George Allen, Lynda Devine, et al.. Interactions of the 67 kDa laminin receptor and its precursor with laminin. Bioscience Reports, Portland Press, 2009, 30 (2), pp.73-79. <10.1042/BSR20090023>. <hal-00479314>

HAL Id: hal-00479314
https://hal.archives-ouvertes.fr/hal-00479314
Submitted on 30 Apr 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Interactions of the 67 kDa laminin receptor and its precursor with laminin

Aliya Fatehullah¹, Caroline Doherty¹, Géraldine Pivato¹, George Allen, Lynda Devine, John Nelson & David J Timson*

School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL. UK.

* Author to whom correspondence should be addressed
Telephone: +44(0)28 9097 5875
Fax: +44(0)28 9097 5877
Email: d.timson@qub.ac.uk

¹ Current address: School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, 73 University Road, Belfast, BT7 1NN. UK.

Running title: 67LR-laminin interactions

Word count: 3014
Synopsis
The 67 kDa laminin receptor (67LR) enables cells to interact with components of the extracellular matrix. The molecule is derived from the 37 kDa laminin receptor precursor (37LRP); however the precise molecular mechanism of this conversion is unknown. Recombinant 37LRP, expressed in, and purified from *Escherichia coli*, bound to human laminin in a surface plasmon resonance (SPR) experiment. 67LR isolated from human breast cancer-derived cells in culture was also shown to bind to laminin by SPR. However, the kinetics of association are qualitatively different. 37LRP, but not 67LR, binds to heparan sulphate. The binding of 37LRP to heparan sulphate did not affect interaction of 37LRP with laminin. In contrast, heparan sulphate reduces the extent of binding of laminin to 67LR. Taken together, these results show that 37LRP has some of the biological activities of 67LR, even prior to the conversion event. However, the conversion affects the sites of interaction with both laminin and heparan sulphate.

Keywords: 37LRP, 67LR, heparan sulphate, laminin receptor, ribosomal protein SA, surface plasmon resonance

Abbreviations
67LR: the 67 kDa laminin receptor
37LRP: the 37 kDa laminin receptor precursor
SPR: surface plasmon resonance
Introduction

In multicellular organisms, cells must be organised into tissues, organs and other structures. In part, this organisation is achieved through interactions between cells and extracellular matrices. Thus, it follows that there must be receptors on the surfaces of cells which recognise molecules in the extracellular matrix, bind to that matrix and transduce signals to the interior of the cell. One such receptor is the 67 kDa laminin receptor (67LR) [1]. This molecule has attracted considerable interest since its discovery in 1983 [2-5], not least because of its well documented involvement in the metastasis of cancerous cells [6,7].

The precise molecular nature of this receptor is a mystery. It is now well established that it arises from a smaller polypeptide, the 37 kDa laminin precursor (37LRP). However, the biochemical changes which accompany this alteration in molecular mass are not known and there are number of conflicting hypotheses. These include homodimerisation, heterodimerisation with an unidentified partner or fatty acylation [8-10]. Interestingly, 37LRP not only acts as a precursor for 67LR, but also functions as a ribosomal subunit (known as ribosomal protein SA, RPSA or p40) [11-15] and as a nuclear protein where it interacts with histones [16,17]. The ribosomal functions are conserved across all kingdoms of life with homologous proteins being found in archea, eubacteria, fungi, plants and animals [1]. However, the laminin receptor functions (and, presumably, the accompanying alterations to the molecule) are unique to multicellular animals. In addition to acting as a laminin receptor, 67LR acts as a receptor for the internalisation of some viruses, prions and bacteria [18-21].

The precise contact sites between 67LR and laminin have not been mapped. However, it is believed that the interaction involves a nonapeptide from the β1 chain of laminin (CDPGYIGSR) and residues 205 to 229 of human 67LR [22-24]. Additional contacts may be provided by residues 161-180 of 67LR, the so-called peptide G [25]. Residues 205 to 229 are predicted to adopt a mainly helical secondary structure, presenting two faces – a highly charged, polar, heparan sulphate binding surface and a more hydrophobic surface which interacts with laminin [22]. The functional consequence of this is that laminin and heparan sulphate binding are not mutually exclusive events at this site. The situation is different with peptide G. Here, interaction with laminin and the related sulphated glycoprotein heparin appear to be mutually exclusive [26]. Taken together, this suggests that heparan sulphate (or heparin) binding to 67LR may reduce the affinity of interactions between 67LR and laminin, but not abolish them altogether. Recently the structure of a fragment of 37LRP was solved [27]. The structure shows a high degree of similarity to ribosomal protein SA from prokaryotes and lower eukaryotes [28-30]. However, this structure (figure 1) lacks the C-terminal region (which is not present in lower organisms) and thus thebulk of the main, putative laminin binding peptide. Peptide G forms part of a β-strand, a loop and an α-helix, much of which is buried in the interior of the molecule. Thus, it has been postulated that considerable conformational changes are required to enable laminin binding [1].

The essential functions of 67LR combined with its key role in a number of different disease processes has resulted in considerable efforts to understand its structure and function. However, these have been hampered by lack of understanding of how 37LRP and 67LR differ. Here we expressed 37LRP in the bacterium Escherichia coli, taking advantage of the lack of post translational modifications in the organism.
to ensure that we isolate unmodified precursor and compare this protein’s ability to interact with laminin with 67LR shed from human breast cancer-derived T47D cells in culture.

Materials & Methods

Expression and purification of recombinant 37LRP in E. coli

A cDNA IMAGE clone [31] (Clone ID 4820432; Geneservice, Cambridge, UK) containing the coding sequence for human 37LRP was used as a PCR template. The amplified product was inserted into pET-46 Ek/LIC (Merck, Nottingham, UK) using the ligation independent cloning protocol according to the manufacturer’s instructions. Correctly assembled expression plasmids were identified by restriction digestion and DNA sequencing (MWG Biotech, Ebersford, Germany) of the entire coding sequence.

The expression vector was transformed into E. coli HMS174(DE3) (Merck). Single colonies were used to inoculate 5 ml cultures in Luria Broth (Miller) (LB) supplemented with 100 µg.ml⁻¹ ampicillin. These cultures were grown, shaking at 37 °C overnight and then diluted into 1 l of LB (supplemented with 100 µg.ml⁻¹ ampicillin). This culture was grown, shaking at 37 °C until the A₆₀₀ reached between 0.6 and 1.0 (typically 3-4 hours), then induced with 1 mM IPTG and grown for a further 2 hours. At this point, the cells were harvested by centrifugation at 4200 g, resuspended in approximately 20 ml of cell resuspension buffer (50 mM Hepes-OH, pH 7.5, 150 mM sodium chloride, 10%(v/v) glycerol) and stored, frozen at -80 °C until required.

These cell suspensions were thawed and guanidine hydrochloride added to a final concentration of 6 M. The cells were disrupted by sonication (three times 30 s pulses at 100 W with 30-60 s gaps between pulses for cooling). Cell debris was then removed by centrifugation (24,000 g for 15 min at 4°C) and the supernatant immediately applied to a 1 ml nickel agarose column (His-Select, Sigma, Poole, UK) which had been previously equilibrated in buffer A (50 mM Hepes-OH, pH 7.5, 500 mM sodium chloride, 6 M guanidine hydrochloride, 10% glycerol (v/v)). The supernatant was allowed to flow through by gravity and the column was then washed with 20 ml of buffer A, followed by 20 ml of buffer B (buffer A without guanidine hydrochloride). Elution was achieved by application of three 2 ml aliquots of buffer C (buffer B supplemented with 250 mM imidazole). These aliquots were collected as separate fractions. Protein containing fractions were identified by 10% SDS-PAGE in Tris-glycine buffer (pH 8.3), dialysed against cell resuspension buffer supplemented with 2 mM DTT and frozen in small aliquots at -80 °C.

Purification of native 67LR

67LR was obtained from T-47D human breast carcinoma cells (European Collection of Cell Cultures, Porton Down, UK). This cell line sheds the receptor into the medium on rotational incubation [32]. The cells were cultured in Dulbecco’s Modified Eagles’ Medium (DMEM), high glucose with glutamine and Sodium pyruvate (PAA, Austria). The cultures were harvested (at 70-75% confluence) by washing the monolayer with Calcium Free Saline and incubating the monolayer for 15 min with cell dissociation fluid (Sigma, Dorset, UK). The cells were then centrifuged at 800 g for 10 min. The cell pellet (approx 1.5 × 10⁷ cells) was resuspended in 500 µl of ice cold PBS and incubated with rotation at 37 °C for 2 hours. The crude
preparation of shed receptor was obtained by centrifuging the cells at 16,000 g at 4 °C for 10 min. The supernatant was aliquoted and stored at -80 °C. Protein concentration was estimated using the BCA protein assay kit (Pierce, Rockford, IL) in microtitre plates.

Western Blotting
37LRP and 67LR were run on 10 – 20% precast tricine gels (Invitrogen, Paisley, UK) under denaturing conditions using Tris(2-carboxyethyl)phosphine (TCEP) (Sigma, Dorset, UK) as a reducing agent at a final concentration of 5 mM. Following electrophoresis (at 200 V), transfer of the proteins onto a nitrocellulose membrane was done using a Novex XCell II MiniBlot apparatus at 30 V for one hour. The membrane was then washed in Tris buffered saline (TBS), pH 7.4, with 0.1% (v/v) Tween-20 (TBST). The membrane was blocked with 2 % (w/v) non-fat dry milk in TBST for 30 min. The membrane was washed and the primary antibody was diluted 1:1000 in 2 % (w/v) non-fat dry milk in TBST overnight. The two antibodies used were Pro-20-Ala (a polyclonal antibody raised against a 20 residue peptide from the C-terminus of 67LR) and Ab183 (67LR N-terminal specific antibody) [33,34]. The membranes were washed with TBST and secondary anti-rabbit alkaline phosphatase conjugated antibody (Sigma, Dorset, UK) was applied to the membrane in a 1:4000 dilution for 1 hour. The membrane was washed with TBS and a 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium (BCIP/NBT) substrate was prepared by dissolving one tablet of Sigma Fast BCIP/NBT in 10 ml deionised water and added to the membranes for 10 min. Colour development was stopped using deionised water.

Surface Plasmon Resonance
All experiments were carried out using a BIAcore 3000 biosensor (GE Healthcare, Uppsala, Sweden). Recombinant 37LRP and native 67LR were immobilised using N-hydroxysuccinimide/1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (NHS/EDC) coupling, followed by blocking with ethanolamine [35,36]. Two different sets of immobilizations were carried out using 67LR and 37LRP. Both proteins were concentrated in 10 mM acetate buffer (pH 4.0) using Microcon YM 3 membrane filters. All solutions made “in house” were filtered before use. Activation was done using 150 µl of 100 mM NHS/390 mM EDC for 30 min at 5 µl.min⁻¹; immobilization was carried out with a 50 µl injection of the desired protein for 10 min at 5 µl.min⁻¹, followed by a 30 min blocking step with 150 µl of 1 M ethanolamine at 5 µl.min⁻¹. 37LRP was immobilized on lane 2 and the 67LR was immobilized on lane 4 of the same chip. Lanes 1 and 3 served as control lanes, so that any non specific binding that occurred with the cross linkers rather than the protein could be subtracted from the final RU in the experimental lane. These lanes were subjected to the same NHS/EDC activation followed by blocking with ethanolamine as the experimental lanes. Data were analysed using BIAevaluation software (GE Healthcare, Uppsala, Sweden) applying the 1:1 Langmuir binding model, according to the manufacturer’s instructions.

Before the start of any binding assay, a regeneration step was carried out using NaOH (5-50 mM, pH 10.0-12.6) to remove any bound proteins and to obtain a stable baseline. The assays were all carried out with a final ligand injection volume of 50 µl and a dissociation time of 300 s, using the KINJECT programme. Assays were carried out using mouse and human laminin (Sigma), heparan sulphate (Sigma) and the laminin nonapeptide (Queen's University, Belfast peptide synthesis service). All
ligands were dissolved in 10 mM Hepes-OH, pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% (v/v) Tween-20 (HBS-EP, GE Healthcare). Data was visualised and analysed using BIAevaluation software (GE Healthcare).

Results

Soluble, recombinant 37LRP can be purified from E. coli

Initial attempts to purify recombinant 37LRP under native conditions using protocols similar to those employed for human S100B expressed using the same vector [37] were not successful. Examination of SDS-PAGE gels showed that an additional protein of approximately 35 kDa was present in *E. coli* whole cell extracts following induction with IPTG, but that this protein was not present in the soluble extract following sonication and centrifugation (data not shown). This suggested that although the protein was expressed, the molecules formed insoluble aggregates in the *E. coli* cytoplasm. To overcome this problem, the cells were sonicated and applied to the nickel affinity column in the presence of the strong denaturing agent guanidine hydrochloride. Renaturation was achieved on the column by washing the bound protein with buffer lacking the denaturing agent and soluble protein could be eluted by the addition of imidazole to the column buffer (figure 2a). Typical yields of soluble 37LRP were 2 mg per litre of culture. This recombinant protein could be recognised in Western blots by the antibody Ab183 but not Pro-20-Ala, which recognised only mature 67LR (figure 2b).

Human 37LRP and 67LR both interact with laminin

The high level of protein immobilised on the sensor chip combined with the large molecular mass of laminin (approximately 900 kDa [38]) mean that mass transport is likely to be a strong feature in the interaction kinetics as measured by SPR. Consequently, the results can be regarded, at best, as semi-quantitative. Nevertheless, interactions between human laminin and both 37LRP and 67LR could be detected by SPR measurements (figure 3). Estimation of the dissociation constants (K_d) for the 37LRP-laminin and 67LR-laminin interactions yielded similar values (410 nM and 320 nM respectively) suggesting similar overall affinities. Qualitatively the two interaction curves look different with 67LR exhibiting at least two phases of association – an initial rapid phase which gives way to a slower one. In contrast, 37LRP appears to have a single phase of association which is similar to the second, slower phase observed with 67LR. Mouse laminin also interacted with both 37LRP and 67LR, albeit to a lesser extent (data not shown).

37LRP interacts with heparan sulphate, but 67LR does not

When heparan sulphate (0.2 mg.ml$^{-1}$) was passed over immobilised 37LRP, an interaction was clearly detected (figure 4a, i). Binding to the laminin nonapeptide could not be detected by SPR (but it should be noted that the response change to this much smaller molecule would be reduced compared to those observed with laminin). This peptide caused little or no change to the binding of heparan sulphate.

Interestingly, no interaction between 67LR and heparan sulphate could be detected; nor could any interaction be detected with the laminin nonapeptide or a mixture of heparan and nonapeptide (figure 4a, ii). The binding of laminin and heparan sulphate to 37LRP were not mutually exclusive; the responses observed with mixtures of these molecules were essentially the sum of responses seen with the individual molecules at the same concentrations (figure 4b, i). This is not the case with 67LR, where heparan sulphate reduces the binding of laminin (figure 4b, ii).
Discussion

It has been demonstrated previously that intact 37LRP is insoluble upon expression in bacteria [39]. Two solutions have been pursued to address this problem. In one, a complex purification procedure involving the isolation of exclusion bodies and their solubilisation in urea resulted in purified, soluble 37LRP [39]. In the second approach, used to obtain the structure of 37LRP, a truncated form of the protein was expressed, which proved to be soluble. On purification, this protein could be crystallised [27]. We present here a simpler and faster method for obtaining purified, soluble, full length 37LRP. Our method couples total denaturation of the E. coli proteins, extraction of the His-tagged 37LRP by affinity chromatography and renaturation of protein on the column prior to elution. The protein can be purified from bacterial cells in less than one day and yields material with biological activity as evidenced by its interactions with an antibody in Western blotting and with laminin and heparan sulphate in SPR experiments.

This interaction between 37LRP and these ligands is interesting as it infers that the processing of 37LRP to 67LR is not required for the protein to interact with them. It has been speculated that the C-terminal region of 37LRP/67LR (which is not present in the prokaryotic and lower eukaryotic ribosomal proteins) is at least partly responsible for interaction with these ligands [1]. Our observations are consistent with that hypothesis. Although we were able to detect interactions between laminin and both 37LRP and 67LR the qualitative differences between the binding curves suggests differences in the molecular mechanisms of interaction. These differences may arise due to intrinsic differences between the two molecules. Indeed, if 67LR results from dimerisation [9], there would be two laminin binding sites, possibly with different affinities. Alternatively it is possible that heterogeneity of the 67LR preparation (which, potentially, includes some unmodified 37LRP and intermediate stages between the two forms) gives rise to the multiphasic nature of the association kinetics. Thus, it seems likely that the modifications resulting in maturation of 37LRP to 67LR directly, or indirectly, affect the sites of interaction with laminin.

That both heparan sulphate and laminin can interact with 37LRP simultaneously, suggest that the two molecules bind at different sites and that there is limited (or no) allosteric communication between these sites. Since both laminin and heparan sulphate are extra-cellular molecules, we assume that 37LRP does not interact with these ligands in vivo. In these experiments, we were unable to detect interactions between 67LR and heparan sulphate, suggesting that processing of 37LRP abolishes this activity. It should be noted that immobilised heparin is often used to purify nucleic acid binding proteins. Therefore, it is possible that the interaction between 37LRP and heparan sulphate may reflect the molecule’s well-documented interactions with nucleic acids [40]. Furthermore, heparan sulphate appears to inhibit the 67LR-laminin interaction. It has been shown that the related polysaccharide, heparin, also inhibits 67LR-laminin interactions, and it was suggested that this is caused by the polysaccharide competing for the 67LR binding site on laminin [26]. A similar mechanism may be occurring here. If it is then 37LRP may interact, at least in part, at a separate site on laminin which is not affected by heparan sulphate competition.

Overall, the results presented here demonstrate that 37LRP has at least some of the biological activities of 67LR, even prior to processing. However, the processing...
events modify these biological activities. Thus, they also further underline the need to understand this processing event at the molecular level.

Acknowledgements
We thank Emma Chambers who completed some of preliminary work on the construction of the 37LRP expression vector as part of her final year BSc project.
References

1 Nelson, J., McFerran, N. V., Pivato, G., Chambers, E., Doherty, C., Steele, D. and Timson, D. J. (2008) The 67 kDa laminin receptor: Structure, function and role in disease. Biosci. Rep. 28, 33-48

2 Rao, N. C., Barsky, S. H., Terranova, V. P. and Liotta, L. A. (1983) Isolation of a tumor cell laminin receptor. Biochem. Biophys. Res. Commun. 111, 804-808

3 Lesot, H., Kuhl, U. and Mark, K. V. (1983) Isolation of a laminin-binding protein from muscle cell membranes. EMBO J. 2, 861-865

4 Terranova, V. P., Rao, C. N., Kalebic, T., Margulies, I. M. and Liotta, L. A. (1983) Laminin receptor on human breast carcinoma cells. Proc. Natl. Acad. Sci. USA 80, 444-448

5 Malinoff, H. L. and Wicha, M. S. (1983) Isolation of a cell surface receptor protein for laminin from murine fibrosarcoma cells. J. Cell Biol. 96, 1475-1479

6 Wewer, U. M., Taraboletti, G., Sobel, M. E., Albrechtsen, R. and Liotta, L. A. (1987) Role of laminin receptor in tumor cell migration. Cancer Res. 47, 5691-5698

7 Wewer, U. M., Liotta, L. A., Jaye, M., Ricca, G. A., Drohan, W. N., Claysmith, A. P., Rao, C. N., Wirth, P., Coligan, J. E. and Albrechtsen, R. (1986) Altered levels of laminin receptor mRNA in various human carcinoma cells that have different abilities to bind laminin. Proc. Natl. Acad. Sci. USA 83, 7137-7141

8 Buto, S., Tagliabue, E., Ardini, E., Magnifico, A., Ghirelli, C., van den Brule, F., Castronovo, V., Colnaghi, M. I., Sobel, M. E. and Menard, S. (1998) Formation of the 67-kDa laminin receptor by acylation of the precursor. J. Cell Biochem. 69, 244-251

9 Landowski, T. H., Dratz, E. A. and Starkey, J. R. (1995) Studies of the structure of the metastasis-associated 67 kDa laminin binding protein: Fatty acid acylation and evidence supporting dimerization of the 32 kDa gene product to form the mature protein. Biochemistry. 34, 11276-11287

10 Rao, C. N., Castronovo, V., Schmitt, M. C., Wewer, U. M., Claysmith, A. P., Liotta, L. A. and Sobel, M. E. (1989) Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor. Biochemistry. 28, 7476-7486

11 Ardini, E., Pesole, G., Tagliabue, E., Magnifico, A., Castronovo, V., Sobel, M. E., Colnaghi, M. I. and Menard, S. (1998) The 67-kDa laminin receptor originated from a ribosomal protein that acquired a dual function during evolution. Mol. Biol. Evol. 15, 1017-1025

12 Montero, M., Marcilla, A., Sentandreu, R. and Valentín, E. (1998) A candida albicans 37 kDa polypeptide with homology to the laminin receptor is a component of the translational machinery. Microbiology. 144, 839-847

13 Rosenthal, E. T. and Wordeman, L. (1995) A protein similar to the 67 kDa laminin binding protein and p40 is probably a component of the translational machinery in urochis caupo oocytes and embryos. J. Cell. Sci. 108, 245-256

14 Garcia-Hernandez, M., Davies, E. and Staswick, P. E. (1994) Arabidopsis p40 homologue. A novel acidic protein associated with the 40 S subunit of ribosomes. J. Biol. Chem. 269, 20744-20749

15 Davis, S. C., Tzagoloff, A. and Ellis, S. R. (1992) Characterization of a yeast mitochondrial ribosomal protein structurally related to the mammalian 68-kDa high affinity laminin receptor. J. Biol. Chem. 267, 5508-5514

16 Kinoshita, K., Kaneda, Y., Sato, M., Saeki, Y., Wataya-Kaneda, M. and Hoffmann, A. (1998) LBP-p40 binds DNA tightly through associations with histones H2A, H2B, and H4. Biochem. Biophys. Res. Commun. 253, 277-282
17 Sato, M., Kinoshita, K., Kaneda, Y., Saeki, Y., Iwamatsu, A. and Tanaka, K. (1996) Analysis of nuclear localization of laminin binding protein precursor p40 (LBP/p40). Biochem. Biophys. Res. Commun. 229, 896-901

18 Kim, K. J., Chung, J. W. and Kim, K. S. (2005) 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J. Biol. Chem. 280, 1360-1368

19 Hundt, C., Peyrin, J. M., Haik, S., Gauczynski, S., Leucht, C., Rieger, R., Riley, M. L., Deslys, J. P., Dormont, D., Lasmezas, C. I. and Weiss, S. (2001) Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J. 20, 5876-5886

20 Gauczynski, S., Peyrin, J. M., Haik, S., Leucht, C., Hundt, C., Rieger, R., Krasemann, S., Deslys, J. P., Dormont, D., Lasmezas, C. I. and Weiss, S. (2001) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J. 20, 5863-5875

21 Wang, K. S., Kuhn, R. J., Strauss, E. G., Ou, S. and Strauss, J. H. (1992) High-affinity laminin receptor is a receptor for sindbis virus in mammalian cells. J. Virol. 66, 4992-5001

22 Kazmin, D. A., Hoyt, T. R., Taubner, L., Teintze, M. and Starkey, J. R. (2000) Phage display mapping for peptide 11 sensitive sequences binding to laminin-1. J. Mol. Biol. 298, 431-445

23 Starkey, J. R., Uthayakumar, S. and Berghlund, D. L. (1999) Cell surface and substrate distribution of the 67-kDa laminin-binding protein determined by using a ligand photoaffinity probe. Cytometry. 35, 37-47

24 Landowski, T. H., Uthayakumar, S. and Starkey, J. R. (1995) Control pathways of the 67 kDa laminin binding protein. Surface expression and activity of a new ligand binding domain. Clin. Exp. Metastasis. 13, 357-372

25 Castronovo, V., Taraboletti, G. and Sobel, M. E. (1991) Functional domains of the 67-kDa laminin receptor precursor. J. Biol. Chem. 266, 20440-20446

26 Guo, N. H., Krutzsch, H. C., Vogel, T. and Roberts, D. D. (1992) Interactions of a laminin-binding peptide from a 33-kDa protein related to the 67-kDa laminin receptor with laminin and melanoma cells are heparin-dependent. J. Biol. Chem. 267, 17743-17747

27 Jamieson, K. V., Wu, J., Hubbard, S. R. and Meruelo, D. (2008) Crystal structure of the human laminin receptor precursor. J. Biol. Chem. 283, 3002-3005

28 Badger, J., Sauder, J. M., Adams, J. M., Antonysamy, S., Bain, K., Bergseid, M. G., Buchanan, S. G., Buchanan, M. D., Batiyenko, Y., Christopher, J. A., Emtage, S., Eroshkina, A., Felt, L., Furlong, E. B., Gajiwala, K. S., Gao, X., He, D., Hendle, J., Huber, A., Hoda, K., Kearins, P., Kissinger, C., Laubert, B., Lewis, H. A., Lin, J., Loomis, K., Lorimer, D., Louie, G., Maletic, M., Marsh, C. D., Miller, I., Molinari, N., Muller-Dieckmann, H. J., Newman, J. M., Noland, B. W., Pagarigan, B., Park, F., Peat, T. S., Post, K. W., Radojicic, S., Ramos, A., Romero, R., Rutter, M. E., Sanderson, W. E., Schwinn, K. D., Tresser, J., Winhoven, J., Wright, T. A., Wu, L., Xu, J. and Harris, T. J. (2005) Structural analysis of a set of proteins resulting from a bacterial genomics project. Proteins. 60, 787-796

29 Spahn, C. M., Gomez-Lorenzo, M. G., Grassucci, R. A., Jorgensen, R., Andersen, G. R., Beckmann, R., Penczek, P. A., Ballesta, J. P. and Frank, J. (2004) Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23, 1008-1019
30 Yusupov, M. M., Yusupova, G. Z., Baucom, A., Lieberman, K., Earnest, T. N., Cate, J. H. and Noller, H. F. (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science. 292, 883-896
31 Lennon, G., Auffray, C., Polymeropoulos, M. and Soares, M. B. (1996) The I.M.A.G.E. consortium: An integrated molecular analysis of genomes and their expression. Genomics. 33, 151-152
32 Keydar, I., Chen, L., Karby, S., Weiss, F. R., Delarea, J., Radu, M., Chaiteck, S. and Brenner, H. J. (1979) Establishment and characterization of a cell line of human breast carcinoma origin. Eur. J. Cancer. 15, 659-670
33 Nelson, J., Scott, W. N., Allen, W. E., Wilson, D. J., Harriott, P., McFerran, N. V. and Walker, B. (1996) Murine epidermal growth factor peptide (33-42) binds to a YIGSR-specific laminin receptor on both tumor and endothelial cells. J. Biol. Chem. 271, 26179-26186
34 Donaldson, E. A., McKenna, D. J., McMullen, C. B., Scott, W. N., Stitt, A. W. and Nelson, J. (2000) The expression of membrane-associated 67-kDa laminin receptor (67LR) is modulated in vitro by cell-contact inhibition. Mol. Cell Biol. Res. Commun. 3, 53-59
35 Fagerstam, L. G., Frostell, A., Karlsson, R., Kullman, M., Larsson, A., Malmqvist, M. and Butt, H. (1990) Detection of antigen-antibody interactions by surface plasmon resonance. application to epitope mapping. J. Mol. Recognit. 3, 208-214
36 O’Shannessy, D. J., Brigham-Burke, M. and Peck, K. (1992) Immobilization chemistries suitable for use in the BIAcore surface plasmon resonance detector. Anal. Biochem. 205, 132-136
37 Pathmanathan, S., Elliott, S. F., McSwiggen, S., Greer, B., Harriott, P., Irvine, G. B. and Timson, D. J. (2008) IQ motif selectivity in human IQGAP1: Binding of myosin essential light chain and S100B. Mol. Cell. Biochem. 318, 43-51
38 Tzu, J. and Marinkovich, M. P. (2008) Bridging structure with function: Structural, regulatory, and developmental role of laminins. Int. J. Biochem. Cell Biol. 40, 199-214
39 Siianova, E. I. (1992) Expression of human LSB 32/67 KD gene in E. coli and analysis of its interactions with laminin. Biull. Eksp. Biol. Med. 113, 70-72
40 Kjellen, L. and Lindahl, U. (1991) Proteoglycans: Structures and interactions. Annu. Rev. Biochem. 60, 443-475
Figure legends

Figure 1: The structure of human 37LRP. One of the proposed laminin binding sites, peptide G (residues 161-180) is shown in black. The structure begins at residue 9 and finishes at residue 205 (both marked on the figure). Thus the structure lacks almost all the C-terminal laminin binding site which starts at residue 205. The figure was produced using the coordinates in pdb file 3BCH [27] and pymol (www.pymol.org).

Figure 2: Expression and purification of recombinant 37LRP. (a) 10% SDS-PAGE (Tris-glycine, pH8.3 buffer) gel stained with coomassie blue showing cell extract prior to induction (U); cell extract 2 hours post-induction (I) and samples from three 2 ml fractions following elution with 250 mM imidazole (E). The purified, soluble 37LRP appeared largely in the second and third elution fractions and is indicated by an arrow. The sizes (in kDa) of molecular mass markers (M) are shown on the right. (b) 67LR and 37LRP were resolved on 10%-20% tricine-gradient gels and Western blotted onto nitrocellulose. The antibody Pro-20-Ala only recognises 67LR, whereas Ab 183 recognises 37LRP. In the 67LR fraction, it recognises a protein which is slightly larger than 37LRP which may be a partially processed form of 37LRP, or a non-specifically bound contaminant. In addition, a number of unidentified contaminating proteins in the 37LRP fraction are also recognised. Note that different gel and buffer systems were used in the SDS-PAGE and Western blotting resulting in slight differences in the mobilities of the proteins. Arrows indicate the bands corresponding to 37LRP and 67LR.

Figure 3: An interaction between recombinant, human 37LRP and native, human 67LR with laminin can be demonstrated by SPR. In (a) 37LRP was immobilised onto a sensor chip surface and laminin at various concentrations (as indicated) was passed over the surface. The graphs represent the difference in resonance units (RU) between a lane on the sensor chip in which 37LRP has been immobilised and a control lane in which no protein has been immobilised. In (b) the difference between a lane in which 67LR had been immobilised and the control is shown. In both (a) and (b) the data were analysed (using BIAevaluation software) to derive dissociation constants (K_d) from the ratio of the dissociation and association rate constants. The K_d for the 37LRP-laminin interaction was estimated to be 410 nM and the value for the 67LR-laminin interaction to be 320 nM. Note that these values should be treated with caution given likely mass transport complications and the complex nature of the 67LR-laminin interaction.

Figure 4: Interactions between 37LRP and 67LR with heparan sulphate. (a) (i) An interaction between recombinant, human 37LRP (immobilised) and heparan sulphate (hep, solid line, soluble phase, 0.2 mg.ml$^{-1}$) can be demonstrated by SPR. In contrast, no interaction could be detected between 37LRP and the laminin nonapeptide (lam pep, dashed line, soluble phase, 100 µM); nor does this peptide greatly affect the heparan-37LRP interaction (dotted line). (ii) No interaction could be detected between 67LR (immobilised) and heparan sulphate (soluble phase, 0.2 mg.ml$^{-1}$), laminin nonapeptide (soluble phase, 100 µM) or a mixture of the two molecules. (b) (i) Heparan and laminin interactions with 37LRP are not mutually exclusive. The results observed (dotted line) with a mixture of heparan sulphate (soluble phase, 0.2 mg.ml$^{-1}$) and mouse laminin (soluble phase, 250 nM), are essentially the sum of the responses observed with heparan sulphate (hep, solid line) and mouse laminin (lam, dashed line) individually at the same concentrations. Similar results were observed
with human laminin (data not shown). (ii) Heparan sulphate (soluble phase, 0.2 mg.ml⁻¹) reduces the extent of interaction between mouse laminin (soluble phase, 200 nM) and 67LR (immobilised).
Fatehullah et al, Figure 2
Fatehullah et al, Figure 3
Fatehullah et al, Figure 4