Comparative study on progressive collapse analysis of RC frame buildings subjected to wind and seismic loads

Abhishek Maheshwaram, Praveen Oggu, Goriparthi Mallikarjuna Rao, M. Venu

Abstract. Progressive collapse occurs when the local failure of the primary structure leads to an eventual collapse of the structure as the adjoining load-bearing elements fail to transfer the load of the lost column. This analysis checks whether the load transfer from adjoining members upon loss of columns. A 10-storey RC structure of square and circular plan geometry were considered in this study. The buildings were modelled and designed for gravity, wind, and earthquake loads as per the guidelines of respective Indian Standards. Further, those models were examined for progressive collapse considering different critical column removal scenarios. The DCR results were calculated for the adjacent beams and adjacent columns to check whether the structure elements reach an alternate equilibrium of the load path or not. Out of both the geometry, the circular plan building was showing better performance than square plan building and it is about 10% to 20% better based upon all the analysis and for different loading conditions.

Keywords: progressive collapse; demand-capacity-ratios; wind and seismic loads; column removal and ETABS.

1. Introduction

Progressive collapse is a dangerous phenomenon with causes disproportionate collapse of the structure upon the loss of any load bearing element like column. The local failure of the structure element causes the partial or even complete collapse of the structural system. So, it is important to design the structure after meeting the requirements of progressive collapse analysis. It is a non-linear happening in which structural elements are tensed past their elastic limit to failure.

The failure of the two towers of World Trade Center buildings (WTC) in 2001 has amplified interest amongst building landlords and administration entities in estimating the progressive collapse potential of prevailing buildings and in designing new buildings to counterattack this type of structural collapse. It was all started after the partial collapse of the Roman Point Building, which is located at Canning town in Newham, East London, United Kingdom. It was a 22-storey precast building. There was a gas explosion on May 16 1968 in the 18th floor and failure of the load-bearing precast concrete panel was failed. Due to the failure of the wall panel in the 18th floor the above wall unable to hold the position due to load, so failed. The impact force caused on the eighteenth floor due to the failure of the above elements caused the additional collapse of the structural elements below resulted in the complete collapse of the corner of the Structure. Due to this collapse, four people were dies and seventeen were injured. A rigorous investigate determination led to develop progressive collapse tactics methods and the first progressive collapse provisions was made by United Kingdom.

On April 19 1995, there was an explosion by truck bomb taken place due to the Local terrorism on Murrah Federal building was situated at the Oklahoma City, United States. In some Studies, Researchers found out that due to the blast only 4% area was damaged but due to the progression of the damage, total 44% area was...
collapsed. In this incident, 167 people died and 759 Injured. So, if that building had been designed in such a way that even after the loss of column, if the remaining elements had successfully resisted the load coming from the above elements, it would have saved lot of the building area and may have saved many people.

On September 11 2001, The World Trade Center (WTC) towers 1 & 2 at Lower Manhattan, New York city, United States has collapsed. It was of 110 floors each has been struck by the two aeroplanes during the September 11 attacks. After the aeroplane crash the building had resisted the heat and transfer of loads for an hour, then the pancake type structure failure occurred which resulted in 2,977 causalities and 25,000 injured. After this attack, many researchers across the world got interested to study about progressive failure of the structure on the loss of some load bearing elements.

The progressive collapse can occur due to different reasons, that may cause due explosives, explosions due to gas, impact due to vehicles, earthquake, human errors in design or in construction phase. There are many chances that the building may loss load bearing element due to the accidental loads, impacts, explosions etc., the loss of property and life will be much lesser. So, it is significant to implicit the progressive collapse resistance to the structures.

Progressive collapse can be defined as an initial local failure that spreads from element to element, eventually resulting in the collapse of an entire structure or a disproportionately large portion of it. Alternate load path method is a method that allows for local failure while also attempting to provide alternate load paths so that the damage is absorbed and major collapse is avoided.

The progressive collapse analysis for the RC frame is done very profoundly and still going on for providing the safety of the building and people in it even after the loss of load-bearing columns. The research was carried out by several researchers for keeping the structure in equilibrium and continuity in load transfer [1-10]. In this study, progressive collapse analysis of the structure for different plan configurations i.e., for square and circular of approximately same slab area, materials, sections and loads has been performed. Both configurations were analysed for progressive collapse, there were compare and concluded.

2. Progressive collapse analysis

2.1. Structural models

The 3D structural models are designed for gravity loads, wind loads and seismic forces corresponding to seismic Zone III as per IS 456 2000, IS 875 2015 and IS 1893 2016 [11-13]. The description of models and the details of loads considered for analysis are given in Table 1 and Table 2 respectively. The inelastic behaviour of the structural components (beams and columns) was modelled with concentrated plastic hinges in which, the beams possess only moment (modelled as M3 hinges), and the columns have an axial load and a biaxial moment (modelled as P-M2-M3 hinges) as per FEMA 356 (2000) [14]. This local inelastic behaviour of structural components further leads to global non-linear behaviour of entire structural model. Additionally, rigid diaphragms were assigned every story level throughout the structure ignoring the flexibility of the floor. Mander et al. model and Park et al. model was used in characterizing the stress-strain behaviour of concrete and steel rebars (Mander et al. 1988, CSi 2016) as depicted in Fig. 1 [15-16]. Moreover, as per the recommendations of IS 1893 (2016), moments of inertia of beams and columns were reduced to 35% and 70% for beams and columns respectively while performing the non-linear structural analysis. The building configurations considered are depicted in Figs. 1 and 2, were modelled and analysed using a commercial structural software SAP2000 (CSi 2016).

S. No.	Parameter	Data
1	Grade of concrete	M 25
2	Poisson’s ratio of concrete	0.2
3	Unit weight of concrete	25 kN/m³
4	Modulus of elasticity of concrete	25 GPa
5	Grade of rebar	Fe 415
6	Modulus of elasticity of rebar	200 GPa
Table 2. Details of loads considered for analysis

S. No.	Particulars	Description
1	Dead load of beams and columns	Self-weight of the structure
2	Live load on slab	3 kN/m²
3	Dead load on slab including floor finish	3.75 kN/m²
4	Dead load of wall (230 mm thick)	14.2 kN/m
5	Seismic load	IS 1893 (Part 1): 2016
6	Type of structure	RC frame structure
7	Importance factor	1
8	Response reduction factor	3 for OMRF
9	Soil type	Medium
10	Zone factor	0.16 (Zone III)
11	Wind load	IS 875 (Part 3): 2015

Fig. 1. (a) Mander confined concrete stress-strain model (b) Park stress-strain model

2.2. Column removal scenarios

A. FOR SQUARE PLAN BUILDINGS:
- Removal of corner column, C1.
- Removal of Peripheral Column, C3.
- Removal of Inner Column, C15.

Fig. 2. Column removal scenarios of square plan building
B. FOR CIRCULAR PLAN BUILDINGS:
- Removal of outer peripheral column, C1.
- Removal of middle Column, C3.
- Removal of Inner peripheral Column, C15.

![Column removal scenarios of circular plan building](image)

Fig. 3. Column removal scenarios of circular plan building

2.3. Analysis procedure

There are two methodologies – the guidelines of General Service Administration (GSA) and Department of Defence – Unified Facilities Criteria (UFC) [17-18]. In which, GSA guidelines are followed as the simplicity in calculation for finding out the DCR of the elements. The procedure adopted in this study is:

1. Modelling the 3D structure in the software with required material and sectional properties.
2. Adding the Loads, service and design load combinations to the structure.
3. Ensuring the structural system, pass all the analysis and design checks.
4. Applying GSA guidelines, the checking the structure condition under different column removal scenario and with different analysis.
5. Checking the structural elements around column removal by Demand Capacity Ratio.

2.4. Computation of DCRs

The Demand Capacity Ratio (DCR) of each primary and secondary member of the alternate path structure is calculated from the following equation:

$$DCR = \frac{Q_{UD}}{Q_{CE}}$$

where,

- Q_{UD} = Acting force determined in the structural element.
- Q_{CE} = Expected ultimate, un-factored capacity of the structural element.

DCR limits as per GSA guidelines:
- $DCR \leq 2.0$ for typical structural configuration
- $DCR \leq 1.5$ for atypical structural configuration

Q_{CE} calculation:

For Columns:

$$Pu = 0.4*F_{ck}*A_c + 0.67*F_y*A_{sc}$$

For Beams:

$$Mu = 0.87*F_y*A_{st}*d*(1-(A_{st}*F_y)/(b*d*F_{ck}))$$

Q_{UD} is obtained from analysis performed on the model in ETABS.

3. Results and discussions:

| Table 3. DCR values of the buildings subjected to wind with LSA, NLSA and LDA |
|---|------------------|
| LINEAR STATIC ANALYSIS -RC STRUCTURE OF SQUARE PLAN BUILDING – WIND LOAD |
CORNER COLUMN REMOVAL DCR	PERIPHERAL COLUMN REMOVAL DCR	MIDDLE COLUMN REMOVAL DCR
Removed Column is C1	Removed Column is C3	Removed Column is C15
C2 = 0.707185	C2 = 0.69050	C9 = 0.883717
C7 = 0.707185	C4 = 0.714513	C14 = 0.883717
C8 = 0.757477	C9 = 0.879371	C16 = 0.921335
B1 = 0.736318	B2 = 0.816576	C21 = 0.921335
B6 = 0.736318	B3 = 0.819936	B19 = 0.810196
	B8 = 0.632424	B24 = 0.810196
		B25 = 0.804182
		B30 = 0.804182

LINEAR STATIC ANALYSIS – RC STRUCTURE OF CIRCULAR PLAN BUILDING – WIND LOAD

OUTER PERIPHERAL COLUMN REMOVAL DCR	MIDDLE COLUMN REMOVAL DCR	INNER PERIPHERAL COLUMN REMOVAL DCR
Removed Column is C2	Removed Column is C5	Removed Column is C12
C1 = 0.488316	C2 = 0.534642	C5 = 0.715533
C5 = 0.985677	C4 = 0.755479	C10 = 0.575138
C7 = 0.518084	C9 = 0.796775	C14 = 0.593177
B1 = 0.44175	C12 = 0.571264	B13 = 0.16107
B4 = 0.651508	B4 = 0.391322	B17 = 0.540019
B6 = 0.439254	B8 = 0.38780	B23 = 0.528023
	B11 = 0.376886	B13 = 0.400235
	B15 = 0.907815	B25 = 0.821405

NON-LINEAR STATIC ANALYSIS – RC STRUCTURE OF SQUARE PLAN BUILDING – WIND LOAD

CORNER COLUMN REMOVAL DCR	PERIPHERAL COLUMN REMOVAL DCR	MIDDLE COLUMN REMOVAL DCR
Removed Column is C1	Removed Column is C3	Removed Column is C15
C2 = 0.845264	C2 = 0.821641	C9 = 0.910463
C7 = 0.845264	C4 = 0.848921	C14 = 0.910463
C8 = 0.886241	C9 = 1.026436	C16 = 0.949144
B1 = 0.907815	B2 = 0.952037	C21 = 0.949144
B6 = 0.907815	B3 = 0.956005	B19 = 0.82750
	B8 = 0.773925	B24 = 0.82750
	B11 = 0.376886	B25 = 0.821405
	B13 = 0.400235	B30 = 0.821405

NON-LINEAR STATIC ANALYSIS – RC STRUCTURE OF CIRCULAR PLAN BUILDING – WIND LOAD

OUTER PERIPHERAL COLUMN REMOVAL DCR	MIDDLE COLUMN REMOVAL DCR	INNER PERIPHERAL COLUMN REMOVAL DCR
Removed Column is C2	Removed Column is C5	Removed Column is C12
C1 = 0.707784	C2 = 0.709452	C5 = 0.715533
C5 = 1.239369	C4 = 0.972065	C12 = 0.731362
C7 = 0.706969	C9 = 0.958603	C5 = 0.732989
B1 = 0.652457	C12 = 0.701207	B13 = 0.3178
B4 = 0.90599	B4 = 0.531317	B17 = 0.638735
B6 = 0.679709	B8 = 0.475092	B23 = 0.679007
	B11 = 0.477698	B25 = 0.821405
	B13 = 0.48046	B30 = 0.821405

LINEAR DYNAMIC ANALYSIS – RC STRUCTURE OF SQUARE PLAN BUILDING – WIND LOAD

CORNER COLUMN REMOVAL DCR	PERIPHERAL COLUMN REMOVAL DCR	MIDDLE COLUMN REMOVAL DCR
Removed Column is C1	Removed Column is C3	Removed Column is C15
C2 = 0.943884 C2 = 0.927118 C9 = 1.14930
C7 = 0.943884 C4 = 0.998251 C14 = 1.14930
C8 = 0.937273 C9 = 1.158549 C16 = 1.187444
B1 = 1.054819 B2 = 1.206898 C21 = 1.187444
B6 = 1.054819 B3 = 1.202952 B19 = 1.040616
B8 = 0.944765 B24 = 1.040616
B25 = 1.044106
B30 = 1.044106

OUTER PERIPHERAL COLUMN REMOVAL DCR	MIDDLE COLUMN REMOVAL DCR	INNER PERIPHERAL COLUMN REMOVAL DCR
Removed Column is C2	Removed Column is C5	Removed Column is C12
C1 = 0.707905	C2 = 0.709518	C5 = 0.862088
C5 = 1.23952	C4 = 0.972082	C10 = 0.731193
C7 = 0.707055	C9 = 0.958677	C14 = 0.73265
B1 = 0.653759	C12 = 0.701084	B13 = 0.321039
B4 = 0.901304	B4 = 0.528004	B17 = 0.653589
B6 = 0.680323	B8 = 0.471848	B23 = 0.690279
B11 = 0.476276	B13 = 0.480384	

The demand capacity ratios obtained from the calculation of the output results from ETABS had been satisfied GSA guidelines i.e., the DCR values obtained are below 2, as presented in Table 3. The comparison of both the different plan configuration i.e., square and circular gives the better results in the circular plan building as it is more symmetry.

From the observation, it can be concluded that the circular building elements subjected to 30 to 40 percent less to stresses when compared to the square plan building. In observing the DCR value, it can also be concluded that the stress cause upon removal of external column leads to development to more stresses and further leads to failure of the structure and the damage will progress. In square plan building the removal of corner column has more development of internal stresses, the middle column and when comes to least stress developing elements upon the column loss is the middle column removal in square building and inner peripheral column in case of circular plan buildings, as depicted in Fig. 4 and Fig. 5.

![Fig. 4. DCR Graphs of Square building with wind loading](image-url)
Fig. 5. DCR Graphs of Circular building with wind loading

Table 4. DCR values of the buildings subjected to seismic with LSA, NLSA, LDA & NLDA

CORNER COLUMN REMOVAL DCR	PERIPHERAL COLUMN REMOVAL DCR	MIDDLE COLUMN REMOVAL DCR
Removed Column is C1	Removed Column is C3	Removed Column is C15
C2 = 0.71276	C2 = 0.70006	C9 = 0.93788
C7 = 0.71276	C4 = 0.72745	C14 = 0.93788
C8 = 0.77558	C9 = 0.94543	C16 = 0.96088
B1 = 0.83378	B2 = 1.03319	C21 = 0.96088
B6 = 0.83378	B3 = 1.01116	B24 = 0.91832
	B8 = 0.68635	B25 = 0.94156
		B30 = 1.37218

OUTER PERIPHERAL COLUMN REMOVAL DCR	MIDDLE COLUMN REMOVAL DCR	INNER PERIPHERAL COLUMN REMOVAL DCR
Removed Column is C2	Removed Column is C5	Removed Column is C12
C1 = 0.457553	C2 = 0.489051	C5 = 0.545759
C5 = 0.784699	C4 = 0.616149	C10 = 0.458968
C7 = 0.461616	C9 = 0.607928	C14 = 0.469384
B1 = 0.367008	C12 = 0.448141	B13 = 0.21785
B4 = 0.753054	B4 = 0.464812	B17 = 0.437716
B6 = 0.409252	B8 = 0.454443	B23 = 0.409121
	B11 = 0.347459	
	B13 = 0.336908	

CORNER COLUMN REMOVAL DCR	PERIPHERAL COLUMN REMOVAL DCR	MIDDLE COLUMN REMOVAL DCR
Removed Column is C1	Removed Column is C3	Removed Column is C15
C7 = 0.6420099	C2 = 0.630305	C9 = 0.779207
C2 = 0.6420099	C4 = 0.67812	C14 = 0.779207
C8 = 0.636941	C9 = 0.785654	C16 = 0.80521
B1 = 0.610135	B2 = 0.737939	C21 = 0.80521
B6 = 0.610135	B3 = 0.727301	B19 = 0.637694
	B8 = 0.526470	B24 = 0.637218
NON-LINEAR STATIC ANALYSIS – RC STRUCTURE OF CIRCULAR PLAN BUILDING WITH SEISMIC

OUTER PERIPHERAL COLUMN REMOVAL DCR	MIDDLE COLUMN REMOVAL DCR	INNER PERIPHERAL COLUMN REMOVAL DCR
Removed Column is C2	Removed Column is C5	Removed Column is C12
C1 = 0.457474	C2 = 0.488761	C10 = 0.54569
C5 = 0.784602	C4 = 0.616138	C12 = 0.459074
C7 = 0.461558	C9 = 0.60788	C5 = 0.469601
B1 = 0.366299	C12 = 0.448219	B13 = 0.215725
B4 = 0.756968	B4 = 0.46768	B17 = 0.426195
B6 = 0.40891	B8 = 0.457236	B23 = 0.402333
	B11 = 0.34843	B13 = 0.336835

LINEAR DYNAMIC ANALYSIS - RC STRUCTURE OF SQUARE PLAN BUILDING WITH SEISMIC

CORNER COLUMN REMOVAL DCR	PERIPHERAL COLUMN REMOVAL DCR	MIDDLE COLUMN REMOVAL DCR
Removed Column is C1	Removed Column is C3	Removed Column is C15
C2 = 0.717964	C2 = 0.697461	C9 = 0.966389
C7 = 0.717964	C4 = 0.725158	C14 = 0.966389
C8 = 0.780681	C9 = 0.986758	C16 = 0.983645
B1 = 0.516291	B2 = 0.641645	C21 = 0.983645
B6 = 0.532649	B3 = 0.630656	B19 = 0.796466
	B8 = 0.421344	B24 = 0.530256
		B25 = 0.52716
		B30 = 0.769867

LINEAR DYNAMIC ANALYSIS – RC STRUCTURE OF CIRCULAR PLAN BUILDING WITH SEISMIC

OUTER PERIPHERAL COLUMN REMOVAL DCR	MIDDLE COLUMN REMOVAL DCR	INNER PERIPHERAL COLUMN REMOVAL DCR
Removed Column is C2	Removed Column is C5	Removed Column is C12
C1 = 0.68633	C2 = 0.73321	C5 = 0.81864
C5 = 1.17705	C4 = 0.86511	C10 = 0.68845
C7 = 0.69242	C9 = 0.96907	C14 = 0.70408
B1 = 0.53051	C12 = 0.67221	B13 = 0.32692
B4 = 1.12958	B4 = 0.69722	B17 = 0.65637
B6 = 0.61388	B8 = 0.65319	B23 = 0.61368
	B11 = 0.54391	B13 = 0.50536

NON-LINEAR DYNAMIC ANALYSIS – RC STRUCTURE OF SQUARE PLAN BUILDING - SEISMIC

CORNER COLUMN REMOVAL DCR	PERIPHERAL COLUMN REMOVAL DCR	MIDDLE COLUMN REMOVAL DCR
Removed Column is C1	Removed Column is C3	Removed Column is C15
C2 = 0.72726	C2 = 0.71391	C9 = 0.95380
C7 = 0.72726	C4 = 0.74125	C14 = 0.95380
C8 = 0.79263	C9 = 0.96169	C16 = 0.97736
B1 = 0.87066	B2 = 1.07811	C21 = 0.97736
B6 = 0.87066	B3 = 1.05569	B19 = 1.46293
	B8 = 0.72671	B24 = 0.97387
	B25 = 0.96809	B30 = 1.41178
In case of the building designed for earthquake loading, the earthquake resistant building performs better than the building which are not designed for earthquake, as presented in Table 4. This indicates that the design of earthquake structures indirectly has ability to resist progressive collapse. The buildings performance is same as the initial case even with earthquake loading as depicted in Fig. 6.
Fig. 6. DCR Graphs of building with EQ loading

4. Conclusions:
From the results presented above, it can be concluded:

1. All the demand capacity ratios values are below 2, which indicates the structure is satisfying the GSA guidelines i.e., good structural stability after different column removal scenarios.
2. From the outcome of this project, we can conclude that the building of circular plan will performing 10% to 20% better than the square plan building when subjected to progressive collapse.
3. The stress cause upon removal of external column leads to development to more stresses due to distance between the neighbouring columns and intensity of the loads on the neighbouring elements which further leads to failure of the structure and the damage will develop gradually.
4. In the Square planned buildings, the stress caused upon loss of internal column is more, when compared to loss of corner or peripheral column. Then corner column and later peripheral column removal.
5. In Circular plan Columns, the loss of the outer peripheral column produces more stress proceeding to middle column loss and then internal column loss.
6. Seismically designed building will have more resistance to progressive collapse than the non-seismic design building, as the earthquake design itself implicit the resistance to progressive collapse.
7. The symmetry of the building also contributes to the structure stability, with the symmetry of the material, sectional and as well as the plan.

References:

1. Sasani M, Kazemi A, Sagiroglu S, Forest S. Progressive collapse resistance of an actual 11-story structure subjected to severe initial damage. Journal of Structural Engineering. 2011 Apr 20; 137(9):893-902.
2. Salem HM, El-Fouly AK, Tagel-Din HS. Toward an economic design of reinforced concrete structures against progressive collapse. Engineering Structures. 2011 Dec 1; 33(12):3341-50.
3. Qian K, Li B. Dynamic and residual behavior of reinforced concrete floors following instantaneous removal of a column. Engineering Structures. 2017 Oct 1; 148:175-84.
4. Amiri S, Saffari H, Mashhadi J. Assessment of dynamic increase factor for progressive collapse analysis of RC structures. Engineering Failure Analysis. 2018 Feb 1; 84:300-10.
5. Adam JM, Parisi F, Sagasetta J, Lu X. Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures. 2018 Oct 15; 173:122-49.
6. Azim I, Yang J, Bhatia S, Wang F, Liu QF. Factors influencing the progressive collapse resistance of RC frame structures. Journal of Building Engineering. 2019 Oct 9;100986.
7. Parisi F, Scalvenzi M. Progressive collapse assessment of gravity-load designed European RC buildings under multi-column loss scenarios. Engineering Structures. 2019 Dec 5;110001.
8. Marjanishvili SM. Progressive analysis procedure for progressive collapse. Journal of Performance of Constructed Facilities. 2004 May; 18(2):79-85.
9. Praveen O, Pithadiya M, Gopikrishna K, Influence of Real Ground Motion Records in Performance Assessment of RC Buildings. International Journal of Engineering (IJE), IJE TRANSACTIONS C: Aspects 32(12). 2019 Dec; 1745-1752.
10. Praveen Oggu, Gopikrishna K., Saptadwipa Jha, Importance of ‘DAF’ in evaluating structural adequacy of gravity-load designed RC buildings. Materials Today: Proceedings 32, 2020; 810-818.
11. Indian Standard IS. IS 456: Plain and Reinforced Concrete. Code of Practice. Bureau of Indian Standards, New Delhi. 2000.
12. Indian Standard IS. IS 875: Design Loads (Other than Earthquakes) for Buildings and Structures – Code of Practice – Part 3 Wind loads. Bureau of Indian Standards, New Delhi. 2015.
13. Indian Standard, IS 1893. Indian standard criteria for earthquake resistant design of structures. Bureau of Indian Standards, New Delhi, India. 2002.
14. FEMA-356, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Washington DC: Federal Emergency Management Agency. 2000.
15. Mander JB, Priestley MJ, Park R. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering 114(8). 1988; 1804-1826.
16. SAP2000, C.S.I. Analysis reference manual. Computer and Structures Inc., Berkeley. 2016.
17. GSA (General Services Administration). Alternate path analysis and design guidelines for progressive collapse resistance. 2013.
18. DoD (Department of Defense). Design of buildings to resist progressive collapse. Unified Facilities Criteria (UFC) 4-023-03. 2016.