Improvement and Renormalization Constants in $O(a)$ Improved Lattice QCD

Tanmoy Bhattacharyaa, Rajan Guptaa, Weonjong Leea, Stephen Sharpeb

aMS B-285, Los Alamos National Lab, Los Alamos, New Mexico 87545, USA

bPhysics Department, University of Washington, Seattle, Washington 98195, USA

We present results at $\beta = 6.0$ and 6.2 for the $O(a)$ improvement and renormalization constants for bilinear operators using axial and vector Ward identities. We discuss the extraction of the mass dependence of the renormalization constants and the coefficients of the equation of motion operators.

1. INTRODUCTION

In quenched Lattice QCD, axial and vector Ward identities can be used to determine, at $O(a)$, all the scale independent renormalization constants for bilinear currents (Z_A, Z_V, and Z_S/Z_P), the improvement constants (c_A, c_V, and c_T), the quark mass dependence of all five Z_O, and the coefficients of the equation of motion operators \(\langle \delta S^{(12)} \rangle \). Here we summarize results at $\beta = 6.0$ and 6.2 and discuss the highlights of our calculations.

We start with the general axial Ward identity involving operators improved on and off-shell

\[
\langle \delta S^{(12)} \rangle = \langle \delta S_{\text{on-shell}}^{(12)} \rangle = \langle \delta S_{\text{off-shell}}^{(12)} \rangle,
\]

where δS is the result of the axial variation of O ($A_\mu \leftrightarrow V_\mu$, $S \leftrightarrow P$, and $T_{\mu\nu} \rightarrow \epsilon_{\mu\rho\sigma\tau} T_{\rho\sigma}$), and δS is the variation in the action.

At $O(a)$ there exists only one dimension 4 off-shell operator (which vanishes by the equations of motion) for each bilinear that has the appropriate symmetries \mathbb{T}. Consequently, we define

\[
\langle \delta S_{\text{on-shell}}^{(12)} \rangle = \langle \delta S_{\text{on-shell}}^{(12)} \rangle = \langle \delta S_{\text{on-shell}}^{(12)} \rangle \equiv 0,
\]

\[
\langle \delta S_{\text{off-shell}}^{(12)} \rangle = \langle \delta S_{\text{off-shell}}^{(12)} \rangle = \langle \delta S_{\text{off-shell}}^{(12)} \rangle = 0,
\]

\[
\langle \delta S_{\text{on-shell}}^{(12)} \rangle = \langle \delta S_{\text{on-shell}}^{(12)} \rangle = \langle \delta S_{\text{on-shell}}^{(12)} \rangle = 0,
\]

\[
\langle \delta S_{\text{off-shell}}^{(12)} \rangle = \langle \delta S_{\text{off-shell}}^{(12)} \rangle = \langle \delta S_{\text{off-shell}}^{(12)} \rangle = 0.
\]

This ensures that the equation-of-motion operator E_{O} gives rise only to contact terms, and does not change the overall normalization Z_O. The $O(a)$ on-shell improved renormalized operators $O_{R}^{(ij)}$ are

\[
O_{R}^{(ij)} = Z_{O}^{0}(1 + b_{O} m_{ij}) O_{I}^{(ij)},
\]

\[
(4)
\]

\[
O_{R}^{(ij)} = Z_{O}^{0}(1 + b_{O} m_{ij}) O_{I}^{(ij)}.
\]

\[
(5)
\]

\[
(A_{I})_{\mu} = A_{\mu} + a c_{A} \partial_{\mu} P_{I},
\]

\[
(6)
\]

\[
(V_{I})_{\mu} = V_{\mu} + a c_{V} \partial_{\mu} T_{I} P_{I},
\]

\[
(7)
\]

\[
(T_{I})_{\mu\nu} = T_{\mu\nu} + a c_{T} \epsilon_{\mu\nu\rho\sigma} V_{\rho} - \partial_{\sigma} V_{\mu},
\]

\[
(8)
\]

\[
P_{I} = P_{I}, \quad S_{I} \equiv S_{I},
\]

\[
(9)
\]

The Z_{O} are renormalization constants in the chiral limit, $m_{ij} \equiv (m_{i} + m_{j})/2$ is the average bare quark mass, $m_{ij} = 1/2 k_{i} - 1/2 k_{j}$, k_{i} is the value of the hopping parameter in the chiral limit, and m_{ij} is the quark mass defined by the axial Ward identity (AWI) in Eq. (12). Note that m and \tilde{m} are identical in a discretized theory with chiral symmetry, like staggered fermions. With these definitions, $b_{O} = 1$, $c_{O} = 0$, $c_{T} = 1$ at tree level \mathbb{T}.

Since the equation-of-motion operators contribute only contact terms, Eq. (13) can be rewritten in terms of just on-shell improved operators:

\[
\langle \delta S_{I}^{(13)} \rangle = \langle \delta S_{I}^{(13)} \rangle / \langle \delta S_{I}^{(12)} \rangle
\]

\[
\langle \delta S_{I}^{(13)} \rangle = \langle \delta S_{I}^{(13)} \rangle / \langle \delta S_{I}^{(12)} \rangle
\]

\[
\langle \delta S_{I}^{(13)} \rangle = \langle \delta S_{I}^{(13)} \rangle / \langle \delta S_{I}^{(12)} \rangle
\]

\[
\langle \delta S_{I}^{(13)} \rangle = \langle \delta S_{I}^{(13)} \rangle / \langle \delta S_{I}^{(12)} \rangle
\]

\[
\langle \delta S_{I}^{(13)} \rangle = \langle \delta S_{I}^{(13)} \rangle / \langle \delta S_{I}^{(12)} \rangle
\]

where

\[
\delta S_{I}(x) \equiv 2 \tilde{m}_{12} P_{I}^{(12)}(x) - \partial_{\mu} (A_{I})_{\mu}^{(12)}(x).
\]
Our calculation is limited to the case $\tilde{m}_1 = \tilde{m}_2$ (this simplification was used due to limited computer resources), in which case the r.h.s. of Eq. 10 reduces to

$$\frac{Z^0_{A \Sigma}}{Z^0_{A \Sigma}} \left[1 + (\tilde{b}_A - \tilde{b}_O) \frac{a \tilde{m}_3}{2} \right] +$$

$$\left[\frac{Z^0_{A \Sigma}}{Z^0_{A \Sigma}} \left(\tilde{b}_A - \tilde{b}_O \right) - \tilde{b}_A \right] + c_{\rho}' + c_{\sigma}' \right] a \tilde{m}_1 \right(11)$$

where $\tilde{m}_i \equiv \tilde{m}_{ij} |_{m_i = m_i}$. Using Eqs. 10 and 11, all the b_{ij} (except b_T which requires $m_1 \neq m_2$), c_{ij}, c_{ρ}', and c_{σ}', and the scale independent normalization constants are determined by making suitable choices for J, O, and y in Eq. 10 and studying it as a function of \tilde{m}_1 and \tilde{m}_3 (Eq. 11).

2. RESULTS

The lattice parameters used in our calculation are given in Tab. 1 and 2. Our final results, which supercede those in Ref. 1, are given in Tab. 2.

In many cases a given on-shell improvement and normalization constants can be determined in a number of ways as discussed in 1. Results in Tab. 2 are based on the AWI with the best signal and smallest error. Table 2 also includes results by the ALPHA collaboration 3, 4, 5 and the one-loop tadpole improved perturbative results. To simplify comparison with previous results, we quote both b_V, b_A and b_V, b_A.

One of the goals of our calculation is to quantify the residual $O(a^2)$ errors and to understand the shortcomings of 1-loop perturbation theory. For $O(a^2)$ errors we use two estimates: (i) the difference between our results and those by the ALPHA collaboration 3, 4, 5, and (ii) the difference between using 2-point and 3-point discretization of the derivatives 6 in the extraction of c_A from

$$\frac{\sum_{\vec{x}} \langle \bar{A}_\mu | A_\mu + ac_{\rho} \bar{J} (\vec{x}) \rangle}{\sum_{\vec{x}} \langle \bar{P} | J^2 (\vec{x}) \rangle}$$

$$= 2 \tilde{m}_{ij}, \quad (12)$$

and the subsequent effect of the difference in c_A on other constants. This latter variation is quoted as the second error in Tab. 2.

These differences are compared to the expected size of the residual discretization errors: $|a_{\Lambda_{QCD}}| \approx 0.15$ and 0.1 for the improvement constants and $|a_{\Lambda_{QCD}}|^2 \approx 0.02$ and 0.01 for the normalization constants at $\beta = 6.0$ and 6.2 respectively.

A comparison, at $\beta = 6.0$, between simulation at $c_{SW} = 1.4755$ (tadpole improved theory) and $c_{SW} = 1.769$ (non-perturbatively $O(a)$ improved theory) shows that all the constants are sensitive to the choice of c_{SW}. It is therefore important to use c_{SW} determined non-perturbatively.

The most significant comparison is between our results and those of the ALPHA collaboration. The only results which do not agree within 2-σ statistical errors are those for Z^0_V, c_A and c_V at $\beta = 6$, and for Z^0_V at $\beta = 6.2$. The differences for Z^0_V are of size 0.01 and 0.005 at $\beta = 6$ and 6.2 respectively, and are thus consistent with the expected differences of $O(a^2)$. The differences for c_A and c_V are also consistent with the size expected of $O(a)$ differences, but are more notable because they correspond to very large fractional differences (e.g. our c_A at $\beta = 6$ has less than half the magnitude of that found by the ALPHA collaboration). What we learn is that (i) c_O, which vanish at tree level and are numerically small, depend

Table 1

Simulation parameters, statistics, and the time interval in x_4 defining the volume V over which the chiral rotation is performed in the AWI. The lattice spacing is fixed using $r_0 = 0.5$ fermi, and is thus independent of the fermion action. The source J is placed at $t = 0.$

Label	β	c_{SW}	a^{-1} (GeV)	Volume (fm3)	Conf.	x_4	
60TI	6.0	1.4755	2.12	$16^3 \times 48$	1.5	83	4–18
60NPF	6.0	1.769	2.12	$16^3 \times 48$	1.5	125	4–18
60NPb	6.2	1.614	2.91	$24^3 \times 64$	1.65	70	6–25
62NP	6.2	1.014	1.61	$24^3 \times 64$	1.65	70	39–58
Table 2
Values of κ used in the three simulations, and the corresponding values of aM_π and the quark mass $a\hat{m}$ extracted. \hat{m} is defined by the AWI in Eq. [13]. κ_c is the zero of \hat{m} obtained from quadratic fits in $1/\kappa$. The non-zero value of aM_π at κ_c is indicative of the inadequacy of quadratic fits, $a^2M_\pi^2$ as a function of $1/2\kappa$, used to extract it, and discretization errors. Of these, the first is the dominant cause and points to the need for including quenched chiral logs in the fits [13].

Label	κ	$a\hat{m}$	aM_π	κ	$a\hat{m}$	aM_π	κ	$a\hat{m}$	aM_π	
κ_1	0.11900	0.443(8)	1.530(1)	0.1300	0.144(1)	0.711(2)	0.1310	0.1345(6)	0.609(1)	
κ_2	0.13524	0.105(1)	0.571(2)	0.1310	0.118(1)	0.630(2)	0.1321	0.1054(4)	0.522(1)	
κ_3	0.13606	0.084(1)	0.504(2)	0.1320	0.092(1)	0.544(2)	0.1333	0.0727(3)	0.418(1)	
κ_4	0.13688	0.063(1)	0.431(2)	0.1326	0.075(1)	0.488(2)	0.1339	0.0560(2)	0.360(2)	
κ_5	0.13770	0.042(1)	0.348(3)	0.1333	0.056(1)	0.416(2)	0.1344	0.0419(2)	0.307(2)	
κ_6	0.13851	0.020(1)	0.244(4)	0.1342	0.032(1)	0.308(3)	0.1348	0.0306(2)	0.261(2)	
κ_7	0.13878	0.013(1)	0.195(8)	0.1345	0.025(4)	0.262(12)	0.1350	0.0248(1)	0.235(2)	
κ_c	0.13926(2)	0	0.082(15)	0.13532(3)	0	0.083(20)	0	0.135861(5)	0	0.066(10)

substantially, at $\beta = 6$, on the method/definition used to extract them; (ii) the variation between 2-pt and 3-pt derivatives significantly smaller than the difference between our results and those of the ALPHA collaboration; and (iii) these differences in c_V, and even more so in c_A, are substantially reduced at $\beta = 6.2$. The change appears too rapid to be an $O(a)$ effect.

Both c_V and c_T are obtained as a small difference between two large terms. Nevertheless, we are able to design Ward identities that yield these quantities with reasonable precision. In particular, the significant improvement we obtain in determining c_V using methods described in [3] reduces the error in Z_{λ}^0, Z_{P}^0/Z_{S}^0, c_T and $c_A'\pi$ as the uncertainty in c_V feeds into these quantities.

When comparing against perturbative estimates, the yardstick we use for the missing higher order terms is $\sim \alpha_s^2 \approx 0.02$ and 0.016, respectively. We find that tadpole-improved 1-loop perturbation theory underestimates the deviations of renormalization and improvement constants from their tree level values. In all but one case, however, these discrepancies can be understood as a combination of a 2-loop correction of size $(1 - 2) \times \alpha_s^2$ [for Z_{λ}^0, Z_{A}^0, and c_A], higher order discretization errors of size $(1 - 2) \times aA_{\text{QCD}}$ [for c_V, c_T and b_V], and statistical errors [for b_A, b_P, and b_S]. The only exception is Z_{P}^0/Z_{S}^0, for which a very large higher order perturbative con-

Table 4
Results for off-shell mixing coefficients.

	60TI	60NP	60NPb	62NP
c_V'	+3.72(73)	+2.38(50)	+3.00(37)	+1.72(16)
c_A'	+3.28(94)	+1.99(56)	+2.45(46)	+1.53(20)
c_P'	-0.98(76)	+0.44(49)	-0.33(29)	+0.91(12)
c_S'	+3.00(73)	+2.00(48)	+2.72(33)	+1.49(14)
c_T'	+3.24(75)	+1.96(49)	+2.60(38)	+1.51(15)

tribution of size $4 \times \alpha_s^2$ is needed to reconcile our non-perturbative results with 1-loop perturbation theory.

In Tab. 4, we present, first results for the equation-of-motion improvement constants c_X'. The combination $c_P' + c_O'$ is extracted by studying the dependence of Eq. [14] on \hat{m}_1 once the other constants defined in Eq. [11] have been determined. The errors in the determination of the c_O' are dominated by two quantities: (i) The uncertainty in c_A feeds into the extraction of c_A', and (ii) the correlation function from which $c_P' + c_P$ is determined has a poor signal (the intermediate state is a scalar for $J = S$, $O = P$ and $\delta O = S$ in Eq. [14]). The uncertainty in c_P' then feeds into c_V', c_S', and c_T'. Overall, we find a very significant improvement in the quality of the results with increasing β, i.e., between $\beta = 6.0$ and $\beta = 6.2$.

Finally, we comment on results presented in
two recent papers. Using the Schrödinger functional, Ref. [8] calculates $b_A - b_P$, b_S and $Z_P^0/(Z_S^0 Z_A^0)$ for a range of $\beta \geq 6$. Their most striking result is that different discretizations of derivatives lead to very different results for $b_A - b_P$. For example, at $\beta = 6$, this quantity varies roughly from 0.17 to -0.17. While our number lies within this range, our estimate of $O(a)$ uncertainties is clearly a substantial underestimate.

Reference [9] has determined c_A using the same method and similar lattice parameters as here but with significantly more configurations. They study, at one κ (\sim κ_5 at both $\beta = 6.0$ and 6.2), the effect of using derivatives that are tree-level improved through $O(a^2)$ (our 3-pt), $O(a^3)$ and $O(a^6)$. They find a larger dependence than what we get between 2-pt and 3-pt discretizations at κ_5. The $O(a^2)$ errors in the two calculations are, however, different due to the choice of source and the fit range in time. Also, we find that after chiral extrapolation these discretization effects are significantly reduced. Nevertheless, once again the large variation should serve as a warning that the $O(a)$ errors in c_0 can be substantial.

REFERENCES

1. M. Lüscher et al., Nuc. Phy. B478 (1996) 365.
2. M. Lüscher et al., Nuc. Phy. B491 (1997) 323.
3. M. Lüscher et al., Nuc. Phy. B491 (1997) 344.
4. M. Bochicchio et al., Nuc. Phy. B262 (1985) 331.
5. T. Bhattacharya et al., Phys. Lett. B461 (1999) 79.
6. T. Bhattacharya et al., hep-lat/0009038.
7. G. Martinelli et al., Phys. Lett. B411 (1997) 141.
8. M. Guagnelli et al., hep-lat/0009021.
9. S. Collins and C. Davies, hep-lat/0010043.