Dog owners are more likely to meet physical activity guidelines than people without a dog: An investigation of the association between dog ownership and physical activity levels in a UK community

Carri Westgarth1,2, Robert M. Christley1,2, Christopher Jewell3, Alexander J. German4,2, Lynne M. Boddy5 & Hayley E. Christian6

Previous research suggests that dog owners are slightly more physically active than those without dogs, but have only studied one household member, and it is unclear whether time spent dog walking replaces other physical activity (PA). A survey of 191 dog owning adults (DO), 455 non-dog owning adults (NDO), and 46 children, living in 385 households in West Cheshire UK, was conducted in July-August 2015. Objective (accelerometer) validation occurred on a subset (n = 28 adults). Survey PA outcomes were modelled using hierarchical logistic and linear multivariable regression modelling, accounting for clustering of participants in households. DO were far more likely than NDO to report walking for recreation (OR = 14.35, 95% CI = 5.77–35.79, P < 0.001), and amongst recreational walkers walked for longer per week (RR = 1.39, 95% CI = 1.27–5.91, P < 0.001). Other PA undertaken did not differ by dog ownership. The odds of DO meeting current physical activity guidelines of 150 mins per week were four times greater than for NDO (OR = 4.10, 95% CI = 2.05–8.19, P < 0.001). Children with dogs reported more minutes of walking (P = 0.01) and free-time (unstructured) activity (P < 0.01).

Dog ownership is associated with more recreational walking and considerably greater odds of meeting PA guidelines. Policies regarding public spaces and housing should support dog ownership due to PA benefits.

Dog ownership is of public health interest due to the potential to promote health-enhancing physical activity (PA) and improved cardiovascular outcomes.1 Evidence suggests dog ownership is associated with lower risk of death, and a lower risk of cardiovascular conditions at least in single-person households, where the participant may be more highly obligated to dog walk.2 It is recommended that adults undertake at least 150 minutes of moderate-to-vigorous intensity physical activity (MVPA) per week,3 but this is achieved by only 66% of men and 58% of women in the England,4 and under 50% of US adults.5 A 2013 review concluded considerable evidence that dog owners were more physically active than people without a dog with small to moderate effect sizes.1 However findings from some studies have been inconsistent, mainly because some owners do not walk with their dogs.

1Institute of Infection and Global Health, University of Liverpool, Liverpool, UK. 2Institute of Veterinary Science, University of Liverpool, Liverpool, UK. 3Lancaster Medical School, Lancaster University, Lancaster, UK. 4Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK. 5School of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK. 6School of Population and Global Health, The University of Western Australia, Perth, Australia. Correspondence and requests for materials should be addressed to C.W. (email: carri.westgarth@liverpool.ac.uk)
Nevertheless, considering the number of households that own dogs (e.g. 24% UK3, 48% USA4, and 39% Australia5), even small effect sizes might contribute considerable additional physical activity at the population level provided, of course, that the dogs are actually walked.

The different types of exercise that dog owners (DO) and non-dog owners (NDO) report participating in requires investigation. Dog walking is reported to be the only physical activity for some owners but for others it limits other activity (potentially of higher intensity) as ‘there are only so many hours in the day’ and the dog takes priority11. However, there is some evidence that participation in other types of MVPA is also greater in DO than NDO12. It is also not known what proportion of dog walking is undertaken for recreational reasons, and what proportion is dispersed practice13 e.g. primarily transport-related activity, such as walking to a local shop, to drop/pick up from school, or to a work place. Anecdotally, other physical activities with a dog are also popular, such as jogging or cycling, but it is not known how common these are.

It is difficult to compare dog walking rates directly between countries as study designs and measures vary, but UK owners potentially participate in more dog walking than North America and Australia where most previous research has been conducted1, due to social and climatic differences. Daily walking of dogs is the accepted social expectation in the UK11 with this occurring for 78% of dogs in a UK study14. A common reason reported by USA dog owners for not walking their dog was that the dog self-exercised or was an outside dog (43%)2, and warm climates in Australia may have a similar effect. In contrast, only 4% of pet dogs in a UK community slept outside15. Dog owners are also more highly motivated to walk in bad weather than their non-dog owning counterparts16, which could be advantageous for dog owners’ activity levels given the often cool and wet weather in the UK. Specific UK research has focused on older adults17; pregnant women18; children19; and adolescents19. To the author’s knowledge, no studies have investigated the association between dog ownership and PA in a general adult population, and this study aims to fill this gap. This will allow cross-country comparisons and contribute to the development of robust intervention strategies to promote dog walking across different countries.

Therefore the first aim of this study was to compare the physical activity of dog owners from UK population with people that do not own a dog. This study is superior to those previously conducted on dog walking in a number of ways. It uses both self-report and objective measures of physical activity, as people have a tendency to over-report physical activity on surveys. Research often focuses on one participant per household, potentially biased towards the person with the most involvement in dog care, inflating impact of dogs. In contrast, this study attempted to recruit and assess the PA of all household members, including children. Another unique aspect of this study was that all of the participants resided in the same community and thus had access to the same neighbourhood environment for walking, known to influence activity levels20,21, although perhaps only in dog owners22. Therefore this is the first study of dog ownership to truly account for perceived differences in PA that may actually be attributed to dog owners living in different environments to people without a dog. A final novel aspect of this study is the methods of analysis used. Parametric linear regression methods are not strictly appropriate for analysis of PA data, despite often being undertaken23. Our analysis methods address this issue, providing more accurate estimates of the effects of dog ownership. We hypothesised that dog owners (DO) would be more likely to meet PA guidelines than non-dog owners (NDO), and the effect sizes would be greater than reported previously (which were odds ratios (OR) less than 2)12,24. A secondary aim of the study was to investigate whether DO spend more or less time than NDO in more intensive PA than walking. We hypothesised that increased PA in dog owners would be additional to, and not replacing other forms of activity.

Results

Responses were received from 385 (55.2%) households with 694 (43.6%) participants (total household response rate 30.1% of study area (1280 households)). Sociodemographic descriptors of the adult participants are given in Table 1. There were slightly more female than males and participants were mainly middle-aged or older adults. Dog owners were significantly younger, more likely to work, had higher household gross income, slightly different education patterns, and had higher self-rated health (all P < 0.05).

Dog-related physical activity in adults. Dog owners walked with their dogs a median 7.0 times per week (range 0–32) and for a median 220.0 mins per week (range 0–1755). However, eighteen people (9.6%) who owned a dog reported 0 mins walking with their dog; excluding these non-dog walkers (NDW) increased the median time spent dog walking for dog walkers (DW) to 248 mins per week (range 0–1755). Dog walking was mostly done for recreation, health and fitness (median 210 mins per week, range 0–1680) compared with 0 mins (range 0–840) for transport); 33 dog owners (17.6%) reported walking their dogs for transport, 10 (5.3%) jogging with their dogs and 4 (2.1%) cycling with their dogs. Overall, dog owners spent a median 248 mins per week (range 0–3100) participating in PA with their dog. Sixty-four percent of dog owners met the PA guidelines through their dog walking alone (71% of dog walkers).

Descriptive analysis unadjusted. Comparisons for self-reported PA outcomes in adults are presented in Table 2 ((NDO and DO) and (NDO, NDW and DW)). It is worth noting that NDW had very low levels of PA; only 29% of NDW met PA guidelines compared with over 80% of all DO, (88% of DW) and 62% of NDO, only 31% for those without a dog (P < 0.001). Dog owners were more likely to report jogging/running without a dog (P = 0.03) and less likely to report Yoga/Pilates (P = 0.03); see Table 3. No other differences in PA types were found.

Table 4 presents the unadjusted accelerometry findings for 28 adults (11 NDO and 17 DW). A non-significant but relevant effect size was found; dog walkers measured 2000 more steps and 13 more minutes of moderate-to-vigorous physical activity per day compared to non-owners (P = 0.34 and 0.37 respectively). Of the
### Variable	NDO	DO	NDW	DW	P NDO/DO	P NDO/NDW/DW
Household factors
House type | | | | | | |
Detached | 71.3 (316) | 69.5 (130) | 64.7 (11) | 70.5 (117) | 0.90 | 0.40
Semi-detached | 20.3 (90) | 21.4 (40) | 35.3 (6) | 19.3 (32) | | |
Terraced | 8.4 (37) | 9.1 (17) | 0 (0) | 10.2 (17) | | |
Number of people in household | | | | | | |
1 | 17.4 (79) | 12.0 (23) | 5.6 (1) | 13.0 (22) | 0.16 | 0.27
2 | 51.2 (232) | 51.3 (98) | 44.4 (8) | 51.5 (87) | | |
3+ | 31.4 (142) | 36.7 (70) | 50.0 (9) | 35.5 (60) | | |
Children present in household (<16) | | | | | | |
Yes | 84.9 (392) | 89.5 (170) | 94.4 (17) | 88.7 (149) | 0.12 | 0.28
No | 15.1 (68) | 10.5 (20) | 5.6 (1) | 11.3 (19) | | |
Personal factors
Gender | | | | | | |
Male | 46.5 (208) | 42.9 (81) | 33.3 (6) | 45.1 (72) | 0.40 | 0.44
Female | 53.5 (239) | 57.1 (108) | 66.7 (12) | 56.9 (95) | | |
OR (95% CI) | 1 | 1.16 (0.82–1.63) | | | | |
Age categorised | | | | | | |
<30 | 7.2 (32) | 13.5 (26) | 38.9 (7) | 11.4 (19) | 0.01 | <0.001
30–49 | 21.4 (95) | 17.5 (33) | 5.6 (1) | 19.2 (32) | | |
50–69 | 44.8 (199) | 32.1 (64) | 38.9 (7) | 51.5 (86) | | |
70+ | 26.6 (118) | 23.4 (36) | 16.7 (3) | 18.0 (30) | | |
Marital status | | | | | | |
Not | 29.4 (131) | 24.2 (46) | 44.4 (8) | 22.6 (38) | 0.18 | 0.07
Married or living with partner | 70.6 (315) | 75.8 (144) | 55.6 (10) | 77.4 (130) | | |
Socio-economic factors
Highest Education | | | | | | |
Other school leaving certificate or none | 21.7 (95) | 14.1 (26) | 6.3 (1) | 14.5 (24) | 0.004 | 0.03
GCSE or O’level equivalent (level of High-School Diploma) | 20.6 (90) | 31.9 (59) | 37.5 (6) | 30.7 (51) | | |
A-level or equivalent (level of US Advanced Placement) | 10.3 (45) | 13.5 (25) | 18.8 (3) | 13.3 (22) | | |
Degree/diploma or above | 47.5 (208) | 40.5 (75) | 37.5 (6) | 41.6 (69) | | |
Work status | | | | | | |
None/home/retired | 53.6 (238) | 40.9 (77) | 29.4 (5) | 40.7 (68) | 0.04 | 0.004
Working or studying (Full or part-time, paid or unpaid) | 46.4 (206) | 59.0 (111) | 76.6 (12) | 59.3 (99) | | |
Household gross income | | | | | | |
£0–20,000 ($0–27,000) | 29.3 (110) | 21.4 (31) | 11.1 (1) | 21.8 (29) | 0.03 | —
£20–40,000 ($27–54,000) | 36.3 (136) | 30.3 (44) | 22.2 (2) | 30.1 (40) | | |
£40–60,000 ($54–81,000) | 20.3 (76) | 30.3 (44) | 44.4 (4) | 30.1 (40) | | |
£60,000+ ($81,000+) | 14.3 (53) | 17.9 (26) | 22.2 (4) | 18.1 (24) | | |
Health factors
Physically active at work | | | | | | |
No | 43.7 (90) | 43.5 (47) | 45.5 (5) | 43.3 (42) | 0.98 | 0.99
Yes | 56.3 (116) | 56.5 (61) | 54.5 (5) | 56.7 (55) | | |
Physically active at work/work status combined | | | | | | |
Physically inactive at work | 20.5 (91) | 26.6 (50) | 35.3 (6) | 26.4 (44) | 0.01 | 0.03
Physically active at work | 25.9 (115) | 32.5 (61) | 35.3 (6) | 32.9 (53) | | |
Does not work | 53.6 (238) | 41.0 (77) | 29.4 (5) | 40.7 (68) | | |
Self-rated general health | | | | | | |
Poor-good | 61.2 (273) | 45.5 (86) | 27.8 (5) | 46.7 (78) | 0.000 | 0.000
Very good-excellent | 38.8 (173) | 54.5 (103) | 72.2 (13) | 53.3 (89) | | |
OR (95% CI) | 1 | 1.89 (1.34–2.67) | | | | |
Weight status | | | | | | |
Normal or below | 45.5 (191) | 43.7 (76) | 61.5 (8) | 43.3 (68) | 0.91 | 0.51
Overweight | 37.4 (157) | 39.1 (68) | 38.5 (5) | 38.3 (60) | | |
Obese | 17.1 (72) | 17.2 (30) | 0 (0) | 18.5 (29) | | |
Other factors
Self-rated personality (TIPI 1-7) | | | | | | |
Extraversion | 4 (419) | 4.5 (180) | 3.5 (14) | 4/5 (163) | 0.17 | 0.11
Agreeableness | 5.5 (414) | 5.5 (176) | 5.8 (12) | 5.5 (161) | 0.78 | 0.77
Conscientiousness | 6.0 (415) | 5.8 (178) | 5.0 (14) | 6.0 (161) | 0.09 | 0.18
Emotional Stability | 5.0 (414) | 5.0 (180) | 4.0 (14) | 5.0 (163) | 0.39 | 0.08
Open to Experiences | 5.0 (414) | 5.0 (177) | 4.5 (13) | 5.0 (161) | 0.45 | 0.42
Family social support for walking | | | | | | |
Low-high | 2 (414) | 2 (185) | 1 (16) | 2 (165) | 0.01 | 0.004
Friend social support for walking | | | | | | |
Low-high | 0 (425) | 0 (181) | 0 (15) | 0 (162) | 0.20 | 0.41

Table 1. Demographics of survey sample presented as adult non-dog owners (NDO, n = 455) and dog owners (DO, n = 191), residing in 385 households in West Cheshire, UK, 2015. DO can be further split into dog-walkers (DW, n = 169) and non-dog walkers (NDW, n = 18). OR = Odds Ratio. TIPI = Ten-Item Personality Inventory.
Outcome	NDO	DO	P Med NDO/DO	P Mean NDO/DO	NDW	DW	P Med NDW/DW	P Mean NDW/DW		
Walk for recreation frequency/week	449	12	1.6 (2.2)	7.3 (6.0)	18	0	0.7 (1.9)	27.8 (65.5)		
Walk for recreation mins/week	445	30	84 (136)	184	210	(360)	293 (300)	169		
Walk for transport frequency/week	449	2	3.0 (3.7)	187	0	3	2.4 (4.5)	18	0.14	11.3 (3.3)
Walk for transport mins/week	444	40	75 (123)	186	0	60	53 (113)	18	0.00	11.3 (11.1)
Total walk frequency/week	449	4	4.6 (4.6)	187	7	10	9.6 (8.0)	18	0.00	2.5 (3.7)
Total walk mins/week	442	90	250 (372.5)	184	250	(316)	347 (316)	169		
MVPA freq/week	449	1	2.2 (2.9)	187	2	4	2.9 (5.1)	18	0.17	0.9 (0.7)
MVPA mins/week	441	60	127 (190)	179	179	126	180 (186)	162		
VPA freq/week	449	0	0.7 (1.5)	187	0	1	0.9 (1.7)	18	0.50	0.9 (1.6)
VPA mins/week	448	0	37.1 (91.4)	183	0	30	51 (119)	165		
Total PA mins/week	439	205	286 (293)	176	420	(440)	476 (357)	159		
% of total PA walking contributes	397	61	68.9 (35.8)	171	83	40.9	73.4 (30.5)	159		
% of total PA walking for recreation	397	20	45.5 (29.9)	171	66	60.0	60.0 (33.7)	159		
% of total PA walking for transport	397	22	30.0 (33.3)	171	0.0	17.7	13.4 (23.0)	159		
% of total walking dog walking	100	77	100.0	100	84.5	(26.6)	84.5 (26.6)	100		
% of total physical activity dog walking	71.4	42.9	94.6	65.0 (32.3)	75.2	(51.2–95.3)	69.1 (28.6)	75.2 (51.2–95.3)		

Table 2. Self-reported physical activity outcomes adults raw unadjusted for NDO (Non-Dog Owners) vs DO (Dog Owners), and NDO vs NDW (Non-Dog Walkers) vs DW (Dog Walkers), residing in 385 households in West Cheshire, UK, 2015. DO: dog owners; NDO: non-dog owners; NDW: non-dog walkers; DW: dog walkers; PA: physical activity; MVPA: moderate-vigorous intensity physical activity; VPA vigorous physical activity; Med: median.

six dog owners who reported walking with their dogs some days but not others, a mean 3010 extra steps per day (range 691–7236) were reported on dog walking days.

Multivariable modelling. The addition of weight status and perceived general health made very little difference to the model estimates so only the findings from model 1 are presented in Table 5. The odds of walking for transport was lower in DO compared with NDO (OR 0.32, 95% CI 0.19–0.53), but if walking for transport occurred, there was no difference in the duration per week between NDO and DO. Dog owners were 14 times more likely than non-owners to walk for recreation (OR 14.35, 95% CI 5.77–35.79) and amongst people who walked for recreation, dog owners also walked for 39% more minutes per week (RR = 1.39, 95% CI 1.27–5.91). In contrast, there was no evidence that participation in other MVPA activities were more or less likely in dog owners. Walking for transport occurred, there was no difference in the duration per week between NDO and DO. Dog owning children more likely than non-owners to walk for recreation (OR 14.35, 95% CI 5.77–35.79) and amongst people who walked for recreation, dog owners also walked for 39% more minutes per week (RR = 1.39, 95% CI 1.27–5.91). This represents an absolute difference of 87.3% of DO achieving 150 mins per week compared to 62.7% of NDO. In all but two cases the self-report and objective measures provided the same outcome in terms of meeting guidelines. Two participants met guidelines by self-report but not accelerometry, 20 met guidelines by both measures, and 6 did not meet guidelines by accelerometer or self-report.

Dog-related physical activity in children. Children’s involvement in dog walking and unadjusted (due to small sample) children’s PA comparisons by dog ownership are presented in Table 6 (n = 46). The mean child age was 10.5 years; 24 children were male and 23 children were female. Two out of ten dog-owning children (5–15 yrs) reported never walking with their dog. Again, walking for transport was less common (median 0 mins per week) than walking for recreation (median 85 mins per week), dog walking median 105 mins per week in total. Children walked their dogs a median two times during the week (median of 40 mins total), and one time at the weekend (median of 45 mins total). Three children (30%) reported running/jogging with their dog. Free-time unstructured PA (eg. playing) with the dog by children was common, with a median 205 mins per week spent in this activity...
DO children reported 78 more minutes per week walking for recreation ($P = 0.04$), and 285 more minutes per week walking ($P = 0.01$) than NDO children. Free time unstructured PA (e.g playing) was also 260 mins higher in DO children ($P < 0.01$).

Discussion

The odds of dog owners meeting current physical activity guidelines were four times greater than for non-dog owners. This difference (OR 4) is more marked than differences reported in other countries (OR 1.6)\(^\text{12,24}\). Our findings are striking when compared to a meta-analysis of typical physical activity interventions in adults which have an effect size of 0.19 (across a variety of self-report and objective measures of PA), equating to just 496 steps per day\(^\text{25}\). Our study also suggests that children who own dogs report greater participation in recreational walking and free time physical activity. Given that dog owners did not appear to have lower participation in other forms of physical activity compared to non-owners, our findings suggest that adult dog owners’ increased recreational walking is contributing additional activity rather than replacing other activity. In fact, our data suggest dog owners are also more likely to participate in jogging or running without a dog than non-owners. Dog owners were less likely to report walking for transport than people without a dog, in line with previous studies\(^\text{26}\), but this was more than compensated for by additional recreational walking. Our novel approach to analysis elucidates that it is increased frequency of recreational walks, rather than considerably greater walk duration, explaining the principle effect of dog ownership on physical activity levels. These findings are important because guidelines recommend that activity should be frequent to break up periods of sedentary behaviour/sitting, and also undertaken in bouts of at least 10 minutes or more\(^\text{1}\); walking with a dog appears to be an effective strategy for facilitating this type of physical activity.

Activity	NDO % (n)	DO % (n)	P NDO/DO	NDO % (n)	NDW % (n)	DW % (n)	P NDW/DW	
Jog/run	No	95.1 (431)	90.5 (171)	0.03	95.1 (431)	88.9 (16)	90.5 (153)	0.07
	Yes	4.9 (22)	9.5 (18)		4.9 (22)	11.1 (2)	9.5 (16)	
OR (95% CI)		1	2.06 (1.08–3.94)					
Swimming	No	89.0 (403)	89.4 (169)	0.87	89.0 (403)	100 (18)	88.2 (149)	0.31
	Yes	11.0 (50)	10.6 (20)		11.0 (50)	0 (0)	11.8 (20)	
OR (95% CI)		1	0.95 (0.55–1.65)					
Cycling	No	79.9 (362)	83.1 (157)	0.35	79.9 (362)	94.4 (17)	81.7 (138)	0.30
	Yes	20.1 (91)	16.9 (32)		20.1 (91)	5.6 (1)	18.3 (31)	
OR (95% CI)		1	0.81 (0.52–1.26)					
Aerobics/dance	No	89.9 (407)	88.9 (168)	0.72	89.9 (407)	88.9 (16)	88.8 (150)	0.92
	Yes	10.1 (46)	11.1 (21)		10.1 (46)	11.1 (2)	11.2 (19)	
OR (95% CI)		1	1.11 (0.64–1.91)					
Gym session	No	87.6 (397)	85.7 (162)	0.51	87.6 (397)	88.9 (16)	85.2 (144)	0.70
	Yes	12.4 (56)	14.3 (27)		12.4 (56)	11.1 (2)	17.8 (25)	
OR (95% CI)		1	1.18 (0.72–1.94)					
Individual sport	No	92.3 (418)	92.6 (175)	0.89	92.3 (418)	94.4 (17)	92.3 (156)	0.94
	Yes	7.7 (35)	7.4 (14)		7.7 (35)	5.6 (1)	3.7 (13)	
OR (95% CI)		1	0.96 (0.50–1.82)					
Team sport	No	94.9 (430)	95.2 (180)	0.87	94.9 (430)	72.2 (13)	97.6 (165)	—
	Yes	5.1 (23)	4.8 (9)		5.1 (23)	27.8 (5)	2.4 (4)	
OR (95% CI)		1	0.93 (0.42–2.06)					
Gardening and housework	No	67.8 (307)	70.9 (134)	0.44	67.8 (307)	83.3 (15)	69.8 (118)	0.35
	Yes	32.2 (146)	29.1 (55)		32.2 (146)	16.7 (3)	30.2 (51)	
OR (95% CI)		1	0.86 (0.60–1.25)					
Horse riding	No	99.1 (449)	97.9 (185)	0.24	99.1 (449)	100 (18)	97.6 (165)	—
	Yes	0.88 (4)	2.1 (4)		0.9 (1)	0 (0)	2.4 (4)	
OR (95% CI)		1	2.43 (0.60–9.81)					
Yoga/Pilates	No	96.5 (437)	99.5 (188)	0.03	96.5 (437)	100 (18)	99.4 (168)	—
	Yes	3.5 (16)	0.5 (1)		3.5 (16)	0 (0)	0.6 (1)	
OR (95% CI)		1	0.15 (0.02–1.10)					
Other activity	No	98.5 (446)	98.4 (186)	1.0	98.5 (446)	100 (18)	98.2 (166)	—
	Yes	1.5 (7)	1.6 (3)		1.5 (7)	0 (0)	1.8 (3)	
OR (95% CI)		1	1.03 (0.26–4.02)					

Table 3. Activity types (other than walking) reported participated in (unadjusted), by participants (dog owning (DO) and non-dog owning (NDO), residing in 385 households in West Cheshire, UK, 2015.

(60 mins inside the house and 65 mins per week in the yard/garden). DO children reported 78 more minutes per week walking for recreation ($P = 0.04$), and 285 more minutes per week walking ($P = 0.01$) than NDO children. Free time unstructured PA (e.g playing) was also 260 mins higher in DO children ($P < 0.01$).
Table 4. Accelerometry physical activity objective measures of 28 participants, in West Cheshire UK, 2015.

Measure	Median (IQR)	Mean (SD)	Difference medians	Difference means	P Medians NDO/DW	P Means NDO/DW
n	11	17				
Average steps/day	6036 (4606)	6381 (3215)	8038 (3366)	7523 (2710)	2002	1142
Average CPM Axis 1	321.6 (174.9)	286.2 (111.6)	375.4 (132.8)	393.2 (101.1)	53.8	53.0
Average % Sedentary	67.5 (15.6)	66.8 (9.3)	65.8 (10.5)	64.11 (9.3)	~1.7	~2.7
Average %LMVPA	32.5 (15.6)	33.3 (9.3)	34.2 (10.5)	35.9 (9.3)	1.7	2.6
Average %MVPA	3.1 (3.6)	3.6 (2.4)	4.9 (3.6)	4.5 (2.3)	1.8	0.9
Average MVPA mins/day	287.1 (147.6)	276.1 (97.6)	314.4 (72.0)	297.1 (70.2)	27.3	30.0
Average MVP mins/day	26.6 (21.3)	30.3 (21.4)	39.1 (31.5)	37.8 (20.3)	12.5	7.5
Projected average mins MVPA/week	186.0 (149.0)	211.8 (150.1)	274.0 (220.5)	264.4 (141.8)	0.23	0.37
% that would meet PA guidelines	7	63.6	13	76.5		

Table 5. Univariable and multivariable hierarchical logistic and linear regression modelling in non-dog owners and dog-owners, of odds of undertaking physical activity and relative risk in minutes if that physical activity type occurs, in a study of participants residing in 385 households in West Cheshire, UK, 2015. Adjustment for age, gender, household income, number of people, marital status, social support for walking and physical activity overall. Further research is required in order to understand why and if anything can be done to facilitate their participation in dog walking. Qualitative research into barriers and motivators to dog walking suggests it may be due to owner perception of owner or dog health capabilities. However, looking at the small amount of data here, NDW perhaps have a tendency to be female, under 30 yrs, working, of normal weight and self-perceived very good health.

Our data confirms that people who own a dog but do not walk it (NDW) are much less physically active than both DW and NDO. Only 10% of our owners reported no walking with their dog, compared to 22% in an Australian study using similar methodology, and 30% in a USA study, which likely contributes to our larger differences in odds of meeting physical activity guidelines. Another USA study found that only 27% of dog owners walked their dog for at least 150 minutes per week, compared with 64% in the current study. We conclude that dog walking is more important to the physical activity levels of our community than in other countries, but a proportion of dog owners who do not walk (NDW) are pervasive. This group also have very low levels of physical activity overall. Further research is required in order to understand why and if anything can be done to facilitate their participation in dog walking. Qualitative research into barriers and motivators to dog walking suggests it may be due to owner perception of owner or dog health capabilities. However, looking at the small amount of data here, NDW perhaps have a tendency to be female, under 30 yrs, working, of normal weight and self-perceived very good health.

Our study has considerable strengths over previous research. We combined self-report with validation using objective measures of physical activity, in a standardised population living in the same area, and provided novel contextual information into the types of walking and physical activity done both with and without a dog. Analysis...
Table 6. Children’s (n = 46) reported physical activity (excluding activity during school time), by participants (dog -Owning (DO) and non-dog owning (NDO), in a study in West Cheshire, UK, 2015.

Outcome	n	DO	NDO	OR	P Means DO/NDO	P Means NDO/DOMedian (IQR)	Mean (SD)	n	Mean (SD)	P Means DO/NDO	P Means NDO/DOMedian (IQR)	Mean (SD)
Walk for recreation frequency/week	36	2.0 (2.8)	3.4 (6.1)	10	4.0 (10.5)	6.1 (6.4)	0.09	0.26				
Walk for recreation mins/week	36	40.0 (105.0)	61.8 (77.2)	10	117.5 (78.8)	115.0 (97.9)	0.04	0.14				
Walk for transport frequency/week	36	5.0 (7.8)	6.4 (5.9)	10	3.0 (8.3)	4.0 (4.2)	0.23	0.16				
Walk for transport mins/week	36	120.0 (165.0)	143.1 (127.8)	10	52.5 (233.8)	179.0 (306.9)	0.40	0.73				
Total walk frequency/week	36	6.0 (6.8)	9.9 (11.0)	10	10.5 (8.5)	10.1 (5.5)	0.32	0.93				
Total walk mins/week	36	205.0 (177.5)	204.9 (140.2)	10	490.0 (488.0)	694.0 (968.0)	0.01	0.15				
Freetime physical activity frequency/week (eg playing)	36	6.0 (4.8)	5.4 (3.7)	10	13.5 (13.5)	149.7 (7.1)	<0.001	0.002				
Freetime physical activity mins/week (eg playing)	36	180.0 (230.0)	218.5 (184.0)	10	440.0 (835.0)	858.0 (1091)	0.004	0.10				
Sports frequency/week	36	2.0 (2.0)	2.3 (1.8)	10	2.0 (3.3)	2.4 (1.9)	0.89	0.92				
Sports mins/week	36	105.0 (120.0)	150.3 (183.0)	10	120.0 (207.5)	137.0 (122.8)	0.91	0.79				
Total PA mins/week	36	477.5 (320.0)	565.6 (369.2)	10	680.0 (1016.0)	1035.0 (1010.0)	0.17	0.18				
Met children's physical activity guidelines (excluding school activity) of 60 mins per day average	20	55.6	80.0	3.2	OR	95% CI	P					

In conclusion, this study provides new evidence that UK dog owners are considerably more active than people without a dog, and that dog walking is undertaken in addition to, and not instead of, other physical activities. Our study is cross-sectional in nature and cannot confirm that getting a dog causes people to be more active, although there is a small amount of longitudinal data which support this. Nevertheless, the effect of dog ownership on physical activity levels in the UK appears to be greater than other countries studied. Our findings provide support for the role of pet dogs in promoting and maintaining positive health behaviours such as walking. Without dogs, it is likely that population physical activity levels would be much lower. Dog walking is also significant for wider health as physical activity undertaken outdoors and in natural environments has the greatest mental health benefits, and also increases social capital through encouraging interactions in local communities. Therefore our pet dogs play an important role in keeping us healthy and this should be recognised and facilitated. However, this should not be interpreted as a recommendation for people to go out and get a dog purely for their own benefit; dog welfare needs must be carefully considered. Our findings should instead be used to justify the provision of dog-supportive environments for walking and pet-friendly housing; failure of planning and policy makers to provide these may significantly damage population levels of physical activity. Findings should also be used to promote interventions to increase and maintain dog walking, as even though many owners reported significant walking with their dog, there is still potential to increase this further. It is also important to understand how to support the maintenance of the activity levels of dog walkers, in particular regarding the perceived barriers of owner and dog health and ageing.

Methods

Participants. The study population and survey methods have been outlined previously. A community of 1280 households in a semi-rural town in West Cheshire, UK, were approached up to five separate times at different days of the week and times. Interviewers (female, personable veterinary students) spoke with members of 984 households (76.9%) and for those who agreed to participate (767/77.9%), collected baseline data on household type, pets owned, and number of household members. Paper questionnaire surveys were then provided for each member of 698 households (91.0%), giving 1591 eligible participants. Participants were asked to either complete and return them by post or online. Different questionnaires were issued for adults and children (5–15 yrs). Children less than 5 years old were not surveyed due to difficulties measuring PA reliably via questionnaire in this age group. A postcard reminder was sent after 2 weeks of non-return, and a second copy of the questionnaire at 4 weeks. Survey participants were asked whether they would mind participating in further research and to provide contact details, and from this 88 people were also contacted at a later date by email/post/phone to be invited to wear an accelerometer for seven days.
Ethical approval. The study protocol was approved by University of Liverpool Veterinary Research Ethics Committee (VREC334) and the methods were carried out in accordance with these guidelines. Households received an information flyer detailing the study a week before. Participants consented by completing and returning the questionnaires and for children ages 5–15 yrs, questionnaires were completed by the child and the parent together and posted back with the parent’s questionnaire, thus giving parental consent. The sub-sample provided informed written consent to wear the accelerometer.

Outcomes. Physical activity items were adapted slightly from the validated RESIDE Neighbourhood Physical Activity Questionnaire (NPAQ) and Dogs And Physical Activity (DAPA) Tool, to separately measure the activities with a dog of walking for recreation, walking for transport, jogging, and cycling. In summary, all participants (DO and NDO) indicated the frequency per usual week and total minutes per usual week that they engaged in walking for recreation and leisure (including for dog owners both with and without a dog), walking for transport (including for dog owners both with and without a dog), participation in other moderate intensity physical activities as defined, and other vigorous intensity physical activities as defined. The responses were used to calculate frequency and minutes dog-related physical activity, total walking, total recreational walking, total transport walking, MVPA, and total PA per week, as well as percentage contributions to total PA of the various components of walking.

Children’s PA questions were completed by the child with the parent and used a modified version (to include activities with and without dogs) of the questions used for children in the Child and Adolescent Physical Activity and Nutrition Survey (CAPANS). In brief, questions asked about frequency and total minutes spent in each activity type in a usual week (mon–Fri), and weekend (sat–sun), undertaking: (a) walking without your dog for recreation, health or fitness; (b) walking without your dog for transport; (c) playing sport or structured physical activity; (d) free-time unstructured activity without your dog; (e) walking with your dog for recreation health or fitness; (f) Walking with a dog as a means of transport; (g) jogging or running with a dog; (h) free time activity with your dog in the backyard/garden; (i) free time activity with your dog inside the house; (j) other activity with your dog.

A subset of 31 adults and 3 children also wore Actigraph GTX3 accelerometers for 7 days within six months of completing surveys. The monitor was worn on the right hip during waking hours and recorded at 1 second epochs. Only adult data was further processed. Diaries were used to validate periods of non-wear. Valid data of at least 3 full days wear (1 weekend, 2 weekday, at least 500 mins per day) was available for n = 28 adults and activity intensities were classified by converting the data to 60 second epochs and then using validated cut points to distinguish physical activity intensities.

Variables. Socio-demographic data collected included (see Table 1): house type; number of people in the household; children < 16 present in household; current age of participant; gender; highest education level; occupation; household income; dog ownership; marital status; work status; and PA at work. Other questions included: self-rated general health; height and weight (used to calculate BMI and categorise as normal, overweight or obese); Ten Item Personality Inventory (TIPI); social support from family and friends for walking; educational qualifications; work status; household income; socio-demographic factors and social support factors identified through the univariable analysis and retained through backwards selection (gender was non-significant at P < 0.05 but deemed important to retain); Model 2 – addition of weight status; Model 3 – addition of self-reported general health. Models including weight status and self-reported perceived general health were tested due to the reasoning that being overweight or in poor health could be a cause and outcome of low PA levels. Modelling was conducted in R v3.3.0 and the nlme R library.

Data Availability
Please contact the corresponding author for requests for access to anonymised data.
References

1. Christian, H. et al. Dog ownership and physical activity: A review of the evidence. Journal of Physical Activity and Health 10, 750–759 (2013).

2. Mubanga, M. et al. Dog ownership and the risk of cardiovascular disease and death – a nationwide cohort study. Scientific Reports 7, 15821. https://doi.org/10.1038/s41598-017-16116-8 (2017).

3. Bull, F. C. Physical Activity Guidelines in the UK. Review and Recommendations., (School of Sport, Exercise and Health Sciences, Loughborough University, 2010).

4. Scholes, S. & Neave, A. Health Survey for England 2016: Physical Activity in Adults, https://files.digital.nhs.uk/publication/m/3/hse16-adult-phy-act.pdf (2016).

5. Blackwell, D. L., Lucas, J. W. & Clarke, T. C. Summary health statistics for U.S. adults: national health interview survey, 2012. Vital and health statistics. Series 10, Data from the National Health Survey, 1–161 (2014).

6. Bauman, A. E., Russell, S. J., Purber, S. E. & Dobson, A. J. The epidemiology of dog walking: an unmet need for human and canine health. Medical Journal of Australia 175, 632–634 (2001).

7. Reeves, M. J., Rafferty, A. P., Miller, C. E. & Lyon-Calvo, S. K. The Impact of Dog Walking on Leisure-Time Physical Activity: Results From a Population-Based Survey of Michigan Adults. Journal of Physical Activity & Health 8, 436–444 (2011).

8. PFMA. Pet Population 2017, https://www.pfma.org.uk/pet-population-2017 (2017).

9. APHA. 2017-2018 APHA National Pet Owners Survey, http://americanpetproducts.org/Uploads/MemServices/GPE2017_NPOS_Seminar.pdf (2017).

10. AMA. Pet Ownership in Australia 2016, http://animalmedicinesaustralia.org.au/wp-content/uploads/2016/11/AMA_Pet-Ownedership-in-Australia-2016-Report_sml.pdf (2016).

11. Westgarth, C., Christley, R. M., Marvin, G. & Jones, A. I Walk My Dog Because It Makes Me Happy: A Qualitative Study to Understand Why Dogs Motivate Walking and Improved Health. Int J Environ Res Public Health 14, https://doi.org/10.3390/ijerph14080936 (2017).

12. Oka, K. & Shibata, A. Dog Ownership and Health-Related Physical Activity Among Japanese Adults. Journal of Physical Activity & Health 6, 412–418 (2009).

13. Harries, T. & Rette, R. Walking as a social practice: dispersed walking and the organisation of everyday practices. Sociology of Health & Illness 38, 874–883, https://doi.org/10.1111/j.1467-9566.2016.12406 (2016).

14. Westgarth, C., Christian, H. E. & Christley, R. M. Factors associated with daily walking of dogs. BMC Veterinary Research 11, 116–116, https://doi.org/10.1186/s12917-015-0434-5 (2015).

15. Westgarth, C. et al. Dog-human and dog-dog interactions of 260 dog-owning households in a community in Cheshire. The Veterinary Record 162, 436–442 (2008).

16. Wu, Y.-T., Luben, R. & Jones, A. Dog ownership supports the maintenance of physical activity during poor weather in older English adults: cross-sectional results from the EPIC Norfolk cohort. Journal of Epidemiology and Community Health 71, 905–911, https://doi.org/10.1136/jech-2017-208987 (2017).

17. Westgarth, C. et al. Dog Ownership during Pregnancy, Maternal Activity, and Obesity: A Cross-Sectional Study. PloS One 7, e31315, https://doi.org/10.1371/journal.pone.0031315 (2012).

18. Owen, C. G. et al. Family Dog Ownership and Levels of Physical Activity in Childhood: Findings From the Child Heart and Health Study in England. American Journal of Public Health 100, 1669–1671, https://doi.org/10.2105/ajph.2009.188193 (2010).

19. Westgarth, C., Ness, A. R., Mattocks, C. & Christley, R. M. A Birth Cohort Analysis to Study Dog Walking in Adolescence Shows No Relationship with Objectively Measured Physical Activity. Frontiers in Veterinary Science 4, https://doi.org/10.3389/fvets.2017.00062 (2017).

20. Saelens, B. E. & Handy, S. L. Built Environment Correlates of Walking: A Review. Medicine and science in sports and exercise 40, 5590–5566, https://doi.org/10.1249/MSS.0b013e31817e7a4 (2008).

21. Trost, S. G., Owen, N., Bauman, A. E., Sallis, J. F. & Brown, W. Correlates of adults’ participation in physical activity: review and update. Med Sci Sports Exerc 34, 1966–2001, https://doi.org/10.1249/01.mss.0000038974.76900.92 (2002).

22. White, M. P., Elliott, L. R., Wheeler, B. W. & Fleming, L. E. Neighbourhood greenspace is related to physical activity in England, but only for dog owners. Landscape and Urban Planning 174, 18–23, https://doi.org/10.1016/j.landurbplan.2018.01.004 (2018).

23. Baldwin, S. A., Fellingham, G. W. & Baldwin, A. S. Statistical models for multilevel skewed physical activity data in health research and behavioral medicine. Health Psychology 35, 552–562, https://doi.org/10.1037/hea0000292 (2016).

24. Cutt, H., Giles-Corti, B., Knuiaman, M. & Timperio, A. & Bull, F. Understanding dog owners’ increased levels of physical activity: Results from RESIDE. American Journal of Public Health 98, 66–69, https://doi.org/10.2105/ajph.2006.103499 (2008).

25. Conn, V. S., Hafdahl, A. R. & Mehr, D. R. Interventions to increase physical activity among healthy adults: meta-analysis of outcomes. Am J Public Health 101, 751–758, https://doi.org/10.2105/ajph.2010.394381 (2011).

26. Yabroff, K. R., Troiano, R. P. & Berrigan, D. Walking the Dog: Is Pet Ownership Associated With Physical Activity in Californian Journal of Physical Activity & Health 5, 216–228 (2008).

27. Coleman, K. J. et al. Physical activity, weight status, and neighborhood characteristics of dog walkers. Preventive Medicine 47, 309–312, https://doi.org/10.1016/j.ypmed.2008.05.007 (2008).

28. Cutt, H. E., Knuiaman, M. W. & Giles-Corti, B. Does getting a dog increase recreational walking? International Journal of Behavioral Nutrition and Physical Activity 5, https://doi.org/10.1186/1749-5868-5-17 (2008).

29. Serpell, J. Beneficial effects of pet ownership on some aspects of human health and behaviour. Journal of the Royal Society of Medicine 84, 717–720 (1991).

30. Thompson Coon, J. et al. Does Participating in Physical Activity in Outdoor Natural Environments Have a Greater Effect on Physical and Mental Wellbeing than Physical Activity Indoors? A Systematic Review. Environmental Science & Technology 45, 1761–1772, https://doi.org/10.1021/es102947t (2011).

31. Wood, L. et al. The Pet Factor - Companion Animals as a Conduit for Getting to Know People, Friendship Formation and Social Support. Plos One 10, https://doi.org/10.1371/journal.pone.0122085 (2015).

32. Westgarth, C., Brooke, M. & Christley, R. M. How many people have been bitten by dogs? A cross-sectional survey of prevalence, incidence and factors associated with dog bites in a UK community. Journal of Epidemiology and Community Health 72, 331–336, https://doi.org/10.1136/jech-2017-209330 (2018).

33. Giles-Corti, B. et al. Development of a reliable measure of walking within and outside the local neighborhood: RESIDE’s Neighborhood Physical Activity Questionnaire. Preventive Medicine 42, 435–459, https://doi.org/10.1016/j.ypmed.2006.01.019 (2006).

34. Cutt, H. E., Giles-Corti, B., Knuiaman, M. W. & Pikora, T. J. Physical activity behavior of dog owners: development and reliability of the Dogs and Physical Activity (DAPA) tool. J Phys Act Health (2009).

35. Martin, K. et al. Move and Munch Final Report. Trends in physical activity, nutrition and body size in Western Australian children and adolescents: the Child and Adolescent Physical Activity and Nutrition Survey (CAPANS). (Western Australia, 2008).

36. Freedson, P. S., Melanson, E. & Sirard, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Medicine and science in sports and exercise 30, 777–781, https://doi.org/10.1097/00005768-199805000-00021 (1998).

37. Gosling, S. D., Rentfrow, P. J. & swirl, W. B. Jr. A very brief measure of the Five personality domains. Journal of Research in Personality 37, 504–528, https://doi.org/10.1016/S0092-6566(03)00046-1 (2003).

38. Saelens, B. E., Sallis, J. F., Black, J. B. & Chen, D. Neighborhood-Based Differences in Physical Activity: An Environment Scale Evaluation. American Journal of Public Health 93, 1552–1558 (2003).
Acknowledgements
We would like to acknowledge Dr. Jasper Schipperijn for guidance with processing of the accelerometry data. The data collection and analysis was funded by a UK Medical Research Council Population Health Scientist Fellowship [grant number G1002402], held by Carri Westgarth. Study sponsors had no role in study design, collection, analysis or interpretation of data, writing of the manuscript or decision to submit the manuscript for publication. Hayley Christian is supported by an NHMRC/National Heart Foundation Early Career Fellowship (#1036350) and National Heart Foundation Future Leader Fellowship (#100794). Alexander German is an employee of the University of Liverpool, but his post is financially supported by Royal Canin.

Author Contributions
C.W. conceived the study, collected the data, analysed the data and drafted the manuscript. H.C., R.C., L.B. and A.J.G. assisted with study design, data analysis and revisions to the manuscript. C.J. assisted with data analysis and revised the manuscript.

Additional Information
Competing Interests: A.J.G. is an employee of the University of Liverpool, but his post is financially supported by Royal Canin. A.J.G. has also received financial remuneration for providing educational material, speaking at conferences, and consultancy work from this company. C.W. is a funded consultant on the human-animal bond for Forthglade Dog Food. There are no other financial or non-financial conflicts of interest to report.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019