Elliptic operators and their symbols

Abstract: We consider special elliptic operators in functional spaces on manifolds with a boundary which has some singular points. Such an operator can be represented by a sum of operators, and for a Fredholm property of an initial operator one needs a Fredholm property for each operator from this sum.

Keywords: elliptic operator, local representative, enveloping operator

MSC: 47A05; 58J05

1 Introduction

This paper is devoted to describing the structure of a special class of linear bounded operators on a manifold with non-smooth boundary. Our description is based on Simonenko's theory of envelopes \cite{1} and explains why we obtain distinct theories for pseudo-differential equations and boundary value problems and distinct index theorems for such operators.

1.1 Operators of a local type

In this section we will give some preliminary ideas and definitions from \cite{1}.

Let B_1, B_2 be Banach spaces consisting of functions defined on compact m-dimensional manifold M, $A : B_1 \to B_2$ be a linear bounded operator, $W \subset M$, and P_W be a projector on W, i.e.

$$(P_W u)(x) = \begin{cases} u(x), & \text{if } x \in W; \\ 0, & \text{if } x \notin W. \end{cases}$$

Definition 1. An operator A is called an operator of local type if the operator

$$P_U A P_V$$

is a compact operator for arbitrary non-intersecting compact sets $U, V \subset M$.

1.2 Simple examples

These are two of the simplest examples for illustration.

Example 1. If A is a differential operator of the type

$$(Au)(x) = \sum_{|k|=0}^{n} a_k(x) D^k u(x), \quad D^k u = \frac{\partial^k u}{\partial x_1^{k_1} \cdots \partial x_m^{k_m}},$$

then A is an operator of local type.

Corresponding Author: Vladimir Vasilyev: Chair of Differential Equations, Belgorod State National Research University, ul. Podedy 85, Belgorod 308015, Russia; E-mail: vladimir.b.vasilyev@gmail.com
Example 2. If A is a Calderon–Zygmund operator with variable kernel $K(x, y) \in C^1(\mathbb{R}^m \times (\mathbb{R}^m \setminus \{0\})$ of the following type

$$(Au)(x) = \nu.p. \int_{\mathbb{R}^m} K(x, x - y)u(y)dy,$$

then A is an operator of a local type.

Everywhere below we say “an operator” instead of “an operator of local type”.

1.3 Functional spaces on a manifold

1.3.1 Spaces $H^s(\mathbb{R}^m)$, $L^p(\mathbb{R}^m)$, $C^\alpha(\mathbb{R}^m)$

It is possible to work with distinct functional spaces [2, 3].

Definition 2. [4] The space $H^s(\mathbb{R}^m)$, $s \in \mathbb{R}$, is a Hilbert space of functions with the finite norm

$$||u||_s = \left(\int_{\mathbb{R}^m} |\hat{u}(\xi)|^2 (1 + |\xi|^2)^s d\xi \right)^{1/2},$$

where the sign \sim over a function means its Fourier transform.

Definition 3. [2] The space $L^p(\mathbb{R}^m)$, $1 < p < +\infty$, is a Banach space of measurable functions with the finite norm

$$||u||_p = \left(\int_{\mathbb{R}^m} |u(x)|^p dx \right)^{1/p}.$$

Definition 4. [2] The space $C^\alpha(\mathbb{R}^m)$, $0 < \alpha \leq 1$, is a space of continuous functions u on \mathbb{R}^m satisfying the H"older condition

$$|u(x) - u(y)| \leq c|x - y|^\alpha, \quad \forall x, y \in \mathbb{R}^m,$$

with the finite norm

$$||u||_\alpha = \inf\{c\},$$

where infimum is taken over all constants c from the above inequality.

1.3.2 Partition of unity and spaces $H^s(M)$, $L^p(M)$, $C^\alpha(M)$

If M is a compact manifold then there is a partition of unity [5]. It means the following. For every finite open covering $\{U_j\}_{j=1}^k$ of the manifold M there exists a system of functions $\{\varphi_j(x)\}_{j=1}^k$, $\varphi_j(x) \in C^\infty(M)$, such that

- $0 \leq \varphi_j(x) \leq 1$,
- $\text{supp } \varphi_j \subset U_j$,
- $\sum_{j=1}^k \varphi_j(x) = 1$.

So we have

$$f(x) = \sum_{j=1}^k \varphi_j(x)f(x)$$

for an arbitrary function f defined on M.

Since every set U_j is diffeomorphic to an open set $D_j \subset \mathbb{R}^m$ we have corresponding diffeomorphisms $\omega_j : U_j \rightarrow D_j$. Further, for a function f defined on M we compose mappings $f_j = f \cdot \varphi_j$ and as long as
supp \(f_j \subset U_j \) we put \(\tilde{f}_j = f_j \circ \omega_j^{-1} \) so that \(\tilde{f}_j : D_j \to \mathbb{R} \) is a function defined on a domain of \(m \)-dimensional space \(\mathbb{R}^m \). We can consider, for example, the following functional spaces [2–4].

Definition 5. A function \(f \in H^s(M) \) if the following norm

\[
||f||_{H^s(M)} = \sum_{j=1}^{k} ||\tilde{f}_j||_s
\]

is finite.

A function \(f \in L_p(M) \) if the following norm

\[
||f||_{L_p(M)} = \sum_{j=1}^{k} ||\tilde{f}_j||_p
\]

is finite.

A function \(f \in C^\alpha(M) \) if the following norm

\[
||f||_{C^\alpha(M)} = \sum_{j=1}^{k} ||\tilde{f}_j||_\alpha
\]

is finite.

2 Operators on a compact manifold

On the manifold \(M \) we fix a finite open covering and a partition of unity corresponding to this covering \(\{U_j, f_j\}_{j=1}^n \). We then choose smooth functions \(\{g_j\}_{j=1}^n \) so that \(supp g_j \subset V_j, \overline{U_j} \subset V_j, \) and \(g_j(x) \equiv 1 \) for \(x \in supp f_j, supp f_j \cap (1-g_j) = \emptyset \).

Proposition 1. The operator \(A \) on the manifold \(M \) can be represented in the form

\[
A = \sum_{j=1}^{n} f_j \cdot A \cdot g_j + T,
\]

where \(T : B_1 \to B_2 \) is a compact operator.

Proof. The proof is straightforward. Since

\[
\sum_{j=1}^{n} f_j(x) \equiv 1, \quad \forall x \in M,
\]

then we have

\[
A = \sum_{j=1}^{n} f_j \cdot A = \sum_{j=1}^{n} f_j \cdot A \cdot g_j + \sum_{j=1}^{n} f_j \cdot A \cdot (1-g_j),
\]

and the proof is completed. \(\square \)

Remark 1. Obviously such an operator is defined uniquely up to a compact operators which have no influence on an index.

By definition, for an arbitrary operator \(A : B_1 \to B_2 \)

\[
|||A||| = \inf ||A + T||,
\]

where infimum is taken over all compact operators \(T : B_1 \to B_2 \).

Let \(B'_1, B'_2 \) be Banach spaces consisting of functions defined on \(\mathbb{R}^m \), and let \(\tilde{A} : B'_1 \to B'_2 \) be a linear bounded operator.
Since M is a compact manifold, then for every point $x \in M$ there exists a neighborhood $U \ni x$ and a diffeomorphism $\omega : U \to D \subset \mathbb{R}^m$, $\omega(x) \equiv y$. We denote by S_ω the following operator acting from B_k to $B'_{k'}$, $k, k' = 1, 2$. For every function $u \in B_k$ vanishing out of U

\[(S_\omega u)(y) = u(\omega^{-1}(y)), \quad y \in D, \quad (S_\omega u)(y) = 0, \quad y \notin D.\]

Definition 6. A local representative of the operator $A : B_1 \to B_2$ at the point $x \in M$ is called the operator $\tilde{A} : B'_1 \to B'_2$ such that for all $\varepsilon > 0$ there exists the neighborhood U_j of the point $x \in U_j \subset M$ with the property

\[
|||g_j Af_j - S_\omega^{-1} g_j \tilde{A} f_j S_\omega||| < \varepsilon.
\]

3 Algebra of symbols

Definition 7. Symbol of an operator A is called the family of its local representatives $\{A_x\}$ at each point $x \in M$.

One can show like [1] this definition of an operator symbol conserves all properties of a symbolic calculus. Namely, up to compact summands we have the following:

- the product and the sum of two operators corresponds to the product and the sum of their local representatives;
- the adjoint operator corresponds to its adjoint local representative;
- a Fredholm property of an operator corresponds to a Fredholm property of its local representative.

4 Operators with symbols. Examples of operators

It seems not every operator has a symbol, and we give some examples for operators with symbols.

Example 3. Let A be the differential operator from Example 1, and functions $a_k(x)$ be continuous functions on \mathbb{R}^m. Then its symbol is an operator family consisting of multiplication operators on the function

\[
\sum_{|k|=0}^n a_k(x)\xi^k,
\]

where $\xi^k = \xi_1^{k_1} \cdots \xi_m^{k_m}$.

Example 4. Let A be the Calderon–Zygmund operator from Example 2 and $\sigma(x, \xi)$ be its symbol in the sense of [2], then its symbol is an operator family consisting of multiplication operators on the function $\sigma(x, \xi)$.

The more important point is that the symbol of an operator is simpler than general operator, and it permits to verify its Fredholm properties. For the two above examples a Fredholm property of an operator symbol is equivalent to its invertibility.

5 Stratification of manifolds and operators

5.1 Sub-manifolds

The above definition of an operator on a manifold supposes that all neighborhoods $\{U_j\}$ have the same type. But even if a manifold has a smooth boundary then there are two types of neighborhoods related to a placement of neighborhood, namely inner neighborhoods and boundary ones. For an inner neighborhood U such that $\overline{U} \subset \overline{M}$ we have the diffeomorphism $\omega : U \to D$, where $D \subset \mathbb{R}^m$ is an open set. For a boundary neighborhood such that $U \cap \partial M \neq \emptyset$ we have another diffeomorphism $\omega_1 : U \to D \cap \mathbb{R}^m_+$, where

\[
\mathbb{R}^m_+ = \{x \in \mathbb{R}^m : x = (x_1, \cdots, x_m), x_m > 0\}.
\]
Maybe this boundary ∂M has some singularities like conical points and wedges. The conical point at the boundary is such a point, for which its neighborhood is diffeomorphic to the cone

$$C^a_n = \{ x \in \mathbb{R}^m : x_m > a|x'|, \ x' = (x_1, \ldots, x_{m-1}), \ a > 0 \}.$$

The wedge point of codimension k, $1 \leq k \leq m-1$, is such a point for which its neighborhood is diffeomorphic to the set $\{ x \in \mathbb{R}^m : x = (x', x''), x'' \in \mathbb{R}^{m-k}, x' = (x_1, \ldots, x_{m-k-1}), x_{m-k-1} > a|x'''|, x''' = (x_1, \ldots, x_{m-k-2}), \ a > 0 \}$. So if the manifold M has such singularities we suppose that we can extract certain k-dimensional submanifolds, namely an $(m - 1)$-dimensional boundary ∂M, and k-dimensional wedges $M_k, k = 0, \ldots, m - 2$; M_0 are a collection of conical points.

5.2 Enveloping operators

If the family $\{A_x\}_{x \in M}$ is continuous in the operator topology, then according to Simonenko’s theory there is an enveloping operator, i.e. such an operator A for which every operator A_x is the local representative for the operator A in the point $x \in M$.

Example 5. If $\{A_x\}_{x \in M}$ consists of Calderon–Zygmund operators in \mathbb{R}^m [2] with symbols $\sigma(x, \xi)$ parametrized by points $x \in M$ and this family smoothly depends on $x \in M$ then the Calderon–Zygmund operator with variable kernel and symbol $\sigma(x, \xi)$ will be an enveloping operator for this family.

Example 6. If $\{A_x\}_{x \in M}$ consists of null operators then an enveloping operator is a compact operator [1].

Theorem 1. The operator A has a Fredholm property if and only if its all local representatives $\{A_x\}_{x \in M}$ have the same property.

This property was proved in [1], but we will give the proof (see Lemma 2) including some new constructions because it will be used below for a decomposition of the operator.

5.3 Hierarchy of operators

We will remind the reader here of the following definition and Fredholm criteria for operators [6].

Definition 8. Let B_1, B_2 be Banach spaces, and $A : B_1 \to B_2$ be a linear bounded operator. The operator $R : B_2 \to B_1$ is called a regularizer for the operator A if the following properties

$$RA = I_1 + T_1, \quad AR = I_2 + T_2$$

hold, where $I_k : B_k \to B_k$ is an identity operator, $T_k : B_k \to B_k$ is a compact operator, $k = 1, 2$.

Proposition 2. The operator $A : B_1 \to B_2$ has a Fredholm property if and only if there exists a linear bounded regularizer $R : B_2 \to B_1$.

Lemma 1. Let f be a smooth function on the manifold M, $U \subset M$ be an open set, and $\text{supp} f \subset U$. Then the operator $f \cdot A - A \cdot f$ is a compact operator.

Proof. Let g be a smooth function on M, $\text{supp} g \subset V \subset M$, moreover $\overline{U} \subset V$, $g(x) \equiv 1$ for $x \in \text{supp} f$. Then we have

$$f \cdot A = f \cdot A \cdot g + f \cdot A \cdot (1 - g) = f \cdot A \cdot g + T_1,$$

$$A \cdot f = g \cdot A \cdot f + (1 - g) \cdot A \cdot f = g \cdot A \cdot f + T_2,$$

where T_1, T_2 are compact operators. Let us denote $g \cdot A \cdot g \equiv h$ and write

$$f \cdot A \cdot g = f \cdot g \cdot A \cdot g = f \cdot h, \quad g \cdot A \cdot f = g \cdot A \cdot g \cdot f = h \cdot f,$$

and we obtain the required property. □
Definition 9. The operator A is called an elliptic operator if its operator symbol $\{A_x\}_{x \in M}$ consists of Fredholm operators.

Now we will show that each elliptic operator really has a Fredholm property. Our proof in general follows the book [1], but our constructions are more stratified and we need such constructions below.

Lemma 2. Let A be an elliptic operator. Then the operator A has a Fredholm property.

Proof. To obtain the proof we will construct the regularizer for the operator A. For this purpose we choose two coverings like Proposition 1 and write the operator A in the form

$$A = \sum_{j=1}^{n} f_j \cdot A \cdot g_j + T,$$

where T is a compact operator. Without loss of generality we can assume that there are n points $x_k \in U_k \subset V_k$, $k = 1, 2, \ldots, n$. Moreover, we can construct such coverings by balls in the following way. Let $\varepsilon > 0$ be a small enough number. First, for every point $x \in M_0$ we take two balls U_x, V_x with the center at x of radius ε and construct two open coverings for M_0 namely $\mathcal{U}_0 = \bigcup_{x \in M_0} U_x$ and $\mathcal{V}_0 = \bigcup_{x \in M_0} V_x$. Second, we consider the set $L_1 = \overline{M}_{\mathcal{U}_0}$ and construct two coverings $\mathcal{U}_1 = \bigcup_{x \in L_1 \cap M_1} U_x$ and $\mathcal{V}_1 = \bigcup_{x \in L_1 \cap M_1} V_x$. Further, we introduce the set $L_2 = \overline{M}_{\mathcal{U}_1}$ and two coverings $\mathcal{U}_2 = \bigcup_{x \in L_2 \cap M_2} U_x$ and $\mathcal{V}_2 = \bigcup_{x \in L_2 \cap M_2} V_x$. Continuing these actions we will come to the set $L_{m-1} = \overline{M}_{\bigcup_{k=0} \mathcal{V}_k}$ which consists of smoothness points of ∂M and inner points of M. We then construct two covering $\mathcal{U}_{m-1} = \bigcup_{x \in L_{m-1} \cap \partial M} U_x$ and $\mathcal{V}_{m-1} = \bigcup_{x \in L_{m-1} \cap \partial M} V_x$. Finally, the set $L_m = \bigcup_{k=0} \mathcal{V}_k$ consists of inner points of the manifold M only. We finish this process by choosing the covering \mathcal{U}_m for the latter set L_m. So, the covering $\bigcup_{k=0} \mathcal{V}_k$ will be a covering for the whole manifold M.

Now we will rewrite the formula (1) in the following way

$$A = \sum_{k=0}^{m} \left(\sum_{j=1}^{n_k} f_{jk} \cdot A \cdot g_{jk} \right) + T,$$

where the coverings and partitions of unity $\{f_{jk}\}$ and $\{g_{jk}\}$ are chosen as mentioned above. In other words the operator

$$\sum_{j=1}^{n_k} f_{jk} \cdot A \cdot g_{jk}$$

is related to some neighborhood of the sub-manifold M_k; this neighborhood is generated by covering the sub-manifold M_k by balls with centers at points $x_{jk} \in M_k$. Since $A_{x_{jk}}$ is a local representative for the operator A at point x_{jk} we can rewrite the formula (2) as follows

$$A = \sum_{k=0}^{m} \left(\sum_{j=1}^{n_k} f_{jk} \cdot A_{x_{jk}} \cdot g_{jk} \right) + T.$$

Let us denote $S_{w_j} \tilde{g}_j \equiv \tilde{g}_j$ and $S_{w_j} \equiv \tilde{f}_j$. Further, we can assert that the operator

$$R = \sum_{k=0}^{m} \left(\sum_{j=1}^{n_k} g_{jk} \cdot A_{x_{jk}}^{-1} f_{jk} \right)$$

will be the regularizer for the operator A'; here $A_{x_{jk}}^{-1}$ is a regularizer for the operator $A_{x_{jk}}$.

Indeed,

$$RA = \left(\sum_{k=0}^{m} \left(\sum_{j=1}^{n_k} g_{jk} A_{x_{jk}}^{-1} f_{jk} \right) \right) \cdot \left(\sum_{k=0}^{m} \sum_{j=1}^{n_k} g_{jk} \cdot A_{x_{jk}}^{-1} \cdot (A - A_{x_{jk}} + A_{x_{jk}}) \cdot f_{jk} + T_1 \right).$$
is verified analogously.

\[\theta_k = \sum_{k=0}^{m} \sum_{j=1}^{n_k} g_{jk} \cdot A_{x_{jk}}^{-1} \cdot (A - A_{x_{jk}}) \cdot f_{jk} + \sum_{k=0}^{m} f_{jk} \]

because \(f_{jk} \cdot A_{x_{jk}} = A_{x_{jk}} \cdot f_{jk} + \) compact summand, and \(f_{jk} \cdot g_{jk} = f_{jk} \), and

\[\sum_{k=0}^{m} \sum_{j=1}^{n_k} f_{jk} \equiv 1 \]

as the partition of unity. The same property

\[AR = I_2 + T_2 + \theta_2, \]

\[\theta_2 = \sum_{k=0}^{m} \sum_{j=1}^{n_k} g_{jk} \cdot (A - A_{x_{jk}}) \cdot A_{x_{jk}}^{-1} \cdot f_{jk}, \]

is verified analogously.

\[\square \]

6 Piece-wise continuous operator families

Given an operator \(A \) with the symbol \(\{ A_x \}_{x \in \mathbb{M}} \) which generates a few operators in dependence on a quantity of singular manifolds; we consider this situation in the following way. We will assume additionally some smoothness properties for the symbol \(\{ A_x \}_{x \in \mathbb{M}} \).

Theorem 2. If the symbol \(\{ A_x \}_{x \in \mathbb{M}} \) is a piece-wise continuous operator function then there are \(m + 1 \) operators \(A^{(k)} \), \(k = 0, 1, \ldots, m \) such that the operator \(A \) and the operator

\[A' = \sum_{k=0}^{m} A^{(k)} + T \]

(4)

have the same symbols, where the operator \(A^{(k)} \) is an enveloping operator for the family \(\{ A_x \}_{x \in \mathbb{M}_k} \), and \(T \) is a compact operator.

Proof. We will use the constructions from the proof of Lemma 2, namely the formula (3). We will extract the operator

\[\sum_{j=1}^{n_k} f_{jk} \cdot A_{x_{jk}} \cdot g_{jk} \]

which “serves” the sub-manifold \(M_k \) and consider it in detail. This operator is related to neighborhoods \(\{ U_{jk} \} \) and the partition of unity \(\{ f_{jk} \} \). Really, \(U_{jk} \) is the ball with the center at \(x_{jk} \in M_k \) of radius \(\varepsilon > 0 \), and therefore \(f_{jk}, g_{jk}, n_k \) depend on \(\varepsilon \).

According to Simonenko’s ideas [1] we will construct the component \(A^{(k)} \) in the following way. Let \(\{ \varepsilon_n \}_{n=0}^{\infty} \) be a sequence such that \(\varepsilon_n > 0 \) for all \(n \in \mathbb{N} \), \(\lim_{n \to \infty} \varepsilon_n = 0 \). Given \(\varepsilon_n \) we choose coverings \(\{ U_{jk} \}_{j=1}^{n_k} \) and \(\{ V_{jk} \}_{j=1}^{n_k} \) as above with partition of unity \(\{ f_{jk} \} \) and corresponding functions \(\{ g_{jk} \} \) such that

\[||| f_{jk} \cdot (A_x - A_{x_{jk}}) \cdot g_{jk} ||| < \varepsilon_n, \quad \forall x \in V_{jk}; \]

we remind that \(U_{jk}, V_{jk} \) are balls with centers at \(x_{jk} \in \mathbb{M}_k \) of radius \(\varepsilon \) and \(2 \varepsilon \). This requirement is possible according to continuity of family \(\{ A_x \} \) on the sub-manifold \(\mathbb{M}_k \). Now we will introduce such a constructed operator

\[A_n = \sum_{j=1}^{n_k} f_{jk} \cdot A_{x_{jk}} \cdot g_{jk} \]
and will show that the sequence \(\{ A_n \} \) is a Cauchy sequence with respect to a norm \(||| \cdot ||| \). We have

\[
A_I = \sum_{i=1}^{l_k} F_{ik} \cdot A_{y_{ik}} \cdot G_{ik},
\]

where the operator \(A_I \) is constructed for a given \(\varepsilon_I \) with corresponding coverings \(\{ u_{ik} \}_{i=1}^{l_k} \) and \(\{ v_{ik} \}_{j=1}^{l_k} \) with partition of unity \(\{ F_{ik} \} \) and corresponding functions \(\{ G_{ik} \} \) so that

\[
||| F_{ik} \cdot (A_x - A_{y_{ik}}) \cdot G_{ik} ||| < \varepsilon_I, \quad \forall x \in v_{ik};
\]

here \(u_{ik}, v_{ik} \) are balls with centers at \(y_{ik} \in M_k \) of radius \(\tau \) and \(2\tau \).

We can write

\[
A_n = \sum_{i=1}^{l_k} f_{jk} \cdot A_{y_{jk}} \cdot g_{jk} = \sum_{i=1}^{l_k} F_{ik} \cdot \sum_{i=1}^{l_k} f_{jk} \cdot A_{y_{ik}} \cdot g_{jk}
\]

\[
= \sum_{i=1}^{l_k} \sum_{j=1}^{l_k} F_{ik} \cdot f_{jk} \cdot A_{y_{ik}} \cdot g_{jk} = \sum_{i=1}^{l_k} \sum_{j=1}^{l_k} F_{ik} \cdot f_{jk} \cdot A_{y_{ik}} \cdot g_{jk} + T_1,
\]

and the same can be done for \(A_I \)

\[
A_I = \sum_{i=1}^{l_k} F_{ik} \cdot A_{y_{ik}} \cdot G_{ik} = \sum_{i=1}^{l_k} f_{jk} \cdot F_{ik} \cdot A_{y_{ik}} \cdot G_{ik} - \sum_{j=1}^{l_k} \sum_{i=1}^{l_k} f_{jk} \cdot F_{ik} \cdot A_{y_{ik}} \cdot G_{ik}
\]

\[
= \sum_{j=1}^{l_k} \sum_{i=1}^{l_k} f_{jk} \cdot F_{ik} \cdot A_{y_{ik}} \cdot G_{ik} + T_2.
\]

Let us consider the difference

\[
||| A_n - A_I ||| = \left| \sum_{j=1}^{l_k} \sum_{i=1}^{l_k} f_{jk} \cdot F_{ik} \cdot (A_{x_{jk}} - A_{y_{ik}}) \cdot G_{ik} \cdot g_{jk} \right|.
\]

Obviously, summands with non-vanishing supplements to the formula (5) are those for which \(U_{jk} \cap U_{ik} \neq \emptyset \). A number of such neighborhoods are finite always for arbitrary finite coverings, hence we obtain

\[
||| A_n - A_I ||| \leq \sum_{j=1}^{l_k} \sum_{i=1}^{l_k} ||| f_{jk} \cdot F_{ik} \cdot (A_{y_{jk}} - A_{y_{ik}}) \cdot G_{ik} \cdot g_{jk} |||.
\]

\[
\leq \sum_{x \in U_{jk} \cap U_{ik} \neq \emptyset} ||| f_{jk} \cdot F_{ik} \cdot (A_{x_{jk}} - A_{x_{ik}}) \cdot G_{ik} \cdot g_{jk} ||| + \sum_{x \in U_{jk} \cap U_{ik} \neq \emptyset} ||| f_{jk} \cdot F_{ik} \cdot (A_x - A_{y_{ik}}) \cdot G_{ik} \cdot g_{jk} |||
\]

\[
\leq 2K \max(e_n, \varepsilon_I),
\]

where \(K \) is a universal constant.

Thus, we have proved that the sequence \(\{ A_n \} \) is a Cauchy sequence, hence there exists \(\lim_{n \to \infty} A_n = A^{(k)} \). \(\square \)

Corollary 1. The operator \(A \) has a Fredholm property if and only if all operators \(A^{(k)}, k = 0, 1, \ldots, m \) have the same property.

Remark 2. The constructed operator \(A' \) generally speaking does not coincide with the initial operator \(A \) because they act in different spaces. But for some cases they may be the same.

7 Conclusion

This paper is a general concept of my vision to the theory of pseudo-differential equations and boundary value problems on manifolds with a non-smooth boundary. The second part will be devoted to applying these abstract results to index theory for such operator families and then to concrete classes of pseudo-differential equations.
References

[1] Simonenko I. B., Local Method in the Theory of Translation Invariant Operators and Their Envelopes, Rostov on Don, 2007 (in Russian)
[2] Mikhlin S. G., Prössdorf S., Singular Integral Operators, Akademie-Verlag, Berlin, 1986
[3] Triebel H. Theory of Function Spaces, I, II, Birkhäuser, Basel, 2000
[4] Eskin G., Boundary Value Problems for Elliptic Pseudodifferential Equations, Ams, Providence, 1981
[5] Munkres J., Analysis on Manifolds, CRC Press, Boca Raton, 2018
[6] Krein S. G., Linear Equations in Banach Spaces, Birkhäuser, Basel, 1982