3D And 2D RNA Structure Prediction Of The BRCA2 Gene And Its Silencing RNA In The Breast Cancer

Ryan Widjaja¹, Arli Aditya Parikesit¹*, Rizky Nurdiansyah¹

¹Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat kav.88 Jakarta 13210
E-mail: arli.parikesit@i3l.ac.id

Abstract

Breast cancer is one of the most threatening diseases for women. It is found that BRCA2 gene plays a significant role in breast cancer, provided that mutations occurred. The objective of this study is to determine whether the bioinformatics approach could provide the gene networking, molecular simulation, and computational metabolomics information to shed the relation between BRCA2 gene mutation with breast cancer progression. The methods are utilizing molecular simulation tools to comprehend the biochemical interaction of BRCA2 gene with other oncogenic genes. Lastly, the molecular docking tool is devised to provide the molecular interactions information. It could be implied that the Computer-Aided Drug Design (CADD)-based in silico transcriptomics tools could
provide the fine-grained information on the exact role of BRCA2 gene in the progression of breast cancer. The clinical impact of this study could only be measured after the wet laboratory experiment is conducted to validate the computational approach results.

Keywords: BRCA; Bioinformatics; Breast Cancer; Molecular Simulation; Gene Networking

Introduction

Breast cancer is the most common cancer among women. It affects more than 1.5 million women each year and causes the greatest number of cancer-related death among women. About 570,000 women died from breast cancer in 2015, which equals to approximately 15% of all cancer deaths among women. Breast cancer rates are increasing globally, as the incidence rates is various ranging from around 19.3 per 100,000 women in Eastern Africa and 89.7 per 100,000 women in Western Europe. Moreover, it is concerning as in the developing countries, the survival rates is just below 40% (Parikesit et al., 2018a; Surveillance Epidemiology and End Results Program, 2019; WHO, 2015).

The current treatments for breast cancer include surgery, radiation therapy, chemotherapy, and hormone therapy and are generally based on the type and stage of the breast cancer. If the breast cancer is still small and not metastasized, then the cancer can be removed by surgery. If the cancer has metastasized, then the common treatment is radiation therapy and/or chemotherapy. Radiation therapy and chemotherapy use high-energy rays (such as x-ray) and drugs, respectively, for destroying cancer (Cleator et al., 2007; Spicer, 2005).

Many scientists around the world are still doing lots of research on breast cancers. Some of the current areas of research of breast cancer include: the causes of breast cancer; new ways to prevent breast cancer; testing new drug therapies; new methods to detect cancer; and many other topics. For example, there is a research about the possibility of using the volatile organic compounds (VOCs) from human breath as biomarkers for breast cancer (Bonofiglio et al., 2016; Cherigo et al., 2015; Goncalves et al., 2014; Wu et al., 2012).

Some of the current research on breast cancer involves the use of transcriptomics to find some new methods to detect and treat the breast cancer. One of the common cause of breast cancer is the mutation in BRCA2 gene (Hedau et al., 2015; Petrovic et al., 2017). It is also known that the mutations in the BRCA2 gene occurred in 5-10% patients in all type of the breast cancer (Parikesit et al., 2020; Peshkin et al., 2010). Various microRNAs are also associated with the gene expression of BRCA2 and it is a feasible signature for biomarkers (Petrovic et al., 2017). For example, research on long non-coding RNA (IncRNA) MIAT (Myocardial Infarction Associated Transcript) showed that MIAT expression levels are increased in several types of cancers, including breast cancer. This same research (which included silencing MIAT using specific siRNAs) also showed that MIAT suppression induced the growth arrest and increased the basal apoptosis. It also increased the apoptotic response of breast cancer cells to a wide range of apoptotic stimuli (Wheeler et al., 2015). The interesting phenomenon is the overexpression of BRCA2 mRNA has been observed in breast cancer cell, and this information will serve as a basis for the drug lead design (Surveillance Epidemiology and End Results Program, 2019). Moreover, Computer-Aided Drug Design (CADD)-based tools are currently applied in biomedical
research (Valeska et al., 2019). Thus, cancer
omics is the field that within the focus of the
CADD application in bio medics domain
(Anurogo et al., 2019). In the future, this
research might be used to develop new
transcriptomic-based drugs for cancers,
including breast cancer. The utilization of
silencing siRNAs as blocker of oncogenic
genes have been proceeded to the clinical
trials, and some have been marketed but for
breast cancer it is still very scarce (Zaleska,
2015). These drugs might help to enhance
the effectiveness of cancer therapy (Burnett
and Rossi, 2012). This research would
eventually block the progression of the
mRNA expression of the BRCA2 with siRNA
before it is expressed as protein. The
objective of this research is to discover a
possible RNA-based drug candidate for
breast cancer using CADD-based specific
transcriptomics tools with 2D and 3D
molecular simulation approach. The notable
similar work in this area is the development
of the prediction pipeline for cervical cancer
biomarkers albeit the works are limited to
the proteomics-based molecular docking and
the absence of transcriptomics-based
docking pipeline (Arifin et al., 2020; Parikesit
et al., 2018b). Moreover, regarding this
research, a specific scoring function and
molecular simulation methods for RNA
molecules have been established
accordingly (Hashem and Auffinger, 2009;
McDowell et al., 2007; Šponer et al., 2018).

Materials and Method

The pipeline of this research was inspired
from the previously published method that
employ CADD-based approach from
structural bioinformatics studies (Arifin
et al., 2020; Parikesit, 2018). The BRCA2 breast
cancer genes were downloaded from the
NCBI website (https://www.ncbi.nlm.nih.gov/) in
the FASTA format. Moreover, the Vienna RNA
package (http://rna.tbi.univie.ac.at/) was
employed to predict and annotate the 2D
structure of the BRCA2 RNA (Gruber et al.,
2008; TBI, 2016). On those websites, several
online tools/applications (called "servers")
that are related to the secondary and tertiary
structures of RNA could be found. The first
server that would be used is the RNAfold
server (Lorenz et al., 2011). This server is
used for predicting the minimum free energy
structures and base pair probabilities from a
single RNA or DNA sequences. The RNAfold
server will be employed in order to find the
most probable secondary structure/shape of
the breast cancer gene.

The output of the application will be the 2D
structures annotations in the Vienna dot
bracket format. Thus, the modeRNA
application (http://iimcb.genesilico.pl/modernaserver/) was
employed to predict the 3D structure of
the RNA, with the PDB files as the output
(Rother et al., 2011). The last step will be
observing the molecular interactions
between the RNA and its respective siRNA
with ClusPro (https://cluspro.bu.edu/login.php)
(Kozakov et al., 2017). The docking protocol was
validated for RMSD less than 2 Å. All
programs were using the default parameters
as mentioned in the documents.

Result and Discussion

Figure 1 shows the optimal secondary
structure of the BRCA2 gene (Taken from the
NCBI websites with the accession code of
NM_000059.4 in the mRNA section). The
optimal secondary structure is the structure
that has the lowest minimum free energy. In
this case, the optimal secondary structure of
the BRCA2 gene has a minimum free energy
of -303.20 kcal/mol. This simplified
secondary structure diagram is saved in a
dot-bracket notation. As seen in the figure 1,
the mRNA structure of the BRCA2 is
considered complex with several loops and
bulges, and could be considered a transition
state in a biochemical reaction. It is due to
the unstable nature of the RNA molecule that
hanged upon the free hydroxyl group in its backbone. This condition facilitates autcatalytic reaction that could destabilize the RNA molecule accordingly (Davis, 1998; Eigen et al., 1988).

![Diagram of the optimal secondary structure of BRCA2. The colors showed the base-pair probabilities of each base; red stands for high probability and dark blue stands for low probability.](image)

Figure 1. The diagram of the optimal secondary structure of BRCA2. The colors showed the base-pair probabilities of each base; red stands for high probability and dark blue stands for low probability.

Then, the RNAxs server was utilized (Tafer et al., 2008). This server will design the siRNAs (small interfering RNAs) of a certain gene, in this case the overexpressed BRCA2. The mRNA sequence of the BRCA2 gene in the FASTA format was uploaded to the RNAxs server, and the default parameters were employed accordingly. The result could be seen in the Figure 2. Here, an accessibility plot of the target sequence (a portion of the BRCA2 gene) and the siRNA molecule could be observed. The result showed the three best siRNA molecules for this BRCA2 gene (Figure 2). The first siRNA sequence is the only one needed, as it is the most thermodynamically feasible, and the proof of submission is notified in the Figure 2a. Based on the accessibility plot in the Figure 2b, it tends to shift away from 1, toward the value of 0. It means that there is a huge possibility that the siRNA will attach to the designated target. It means that the siRNA would be able to repress the coding sequence accordingly. In the Figure 2c, the most feasible siRNA sequence is highlighted in the black box, and it is considered as the most favorable siRNA in the prediction system.

![Accessibility plot of the target sequence (a portion of the BRCA2 gene) and the siRNA molecule. The first siRNA sequence is highlighted in the black box.](image)

Figure 2. The siRNA result of BRCA2. Figure 2(a) is the system notification of sequence acceptance Figure (2b): The black graph shows the accessibility of the target sequence and the red graph shows the accessibility of the siRNA sequence. Figure (2c) is the siRNA sequence output.
Next, the Barriers server was applied to show the folding kinetics of the siRNA molecule (Flamm et al., 2002; Wolfinger et al., 2004). In order to use this server, it simply needs to paste the siRNA sequence into the text box and click “Proceed”. Figure 3 showed the output of the program in form of the animation of the structural changes of the BRCA2 siRNA as it is progressing from a least stable folded conformation until the stable unfolded one.

After the PDB files of the 3D structures of both the BRCA2 and the siRNA sequences were obtained, the ClusPro web server (https://cluspro.org/home.php) will be accessed to observe the docking configurations for the RNA sequences. ClusPro would show how the BRCA gene might bind to its siRNA molecule. The best conformation is the picture under ‘0’ annotation as it is the most thermodynamically favorable one. As the docking RMSD has RMSD less than 2 Å. Value, In this regard, the docking protocol has shown that the overexpression of the BRCA2 genes in the breast cancer cell could be swiftly inhibited with its respective siRNA (Figure 4).
Conclusion and Suggestion

Conclusion

The utilization of the 2D and 3D prediction of RNA structure could be employed in swift manner. It is concluded that the BRCA2 siRNA-based drug design could be elucidated with determined bioinformatics tools as shown by the docking result.

Suggestion

In order to provide a stability examination of the mRNA-siRNA complex, molecular dynamics simulation should be conducted.

Acknowledgments

The authors would like to thank to Institute for Research and Community Services (LPPM) of Indonesia International Institute for Life Sciences (i3l) for their heartfelt support. Thanks also goes to Direktorat Riset dan Pengabdian Masyarakat, Direktorat Jenderal Penguatan Riset dan Pengembangan Kementerian Riset, Teknologi dan Pendidikan Tinggi Republik Indonesia for providing Hibah Penelitian Dasar DIKTI/LLDIKTI III 2019 No. 1/AKM/PNT/2019. The authors declare that there is no competing interest.

References

Anurogo, D., Parikesit, A.A., Ikrar, T., 2019. LncRNAs in CONDBITs Perspectives, From Genetics towards Theranostics. J. Sains Kesihat. Malaysia 17, 1–16. https://doi.org/10.17576/jskm-2019-1702-01

Arifin, M.Z., Agustriawan, D., Parikesit, A.A.P., 2020. Molecular simulation of MDM2 and E6AP proteins as P53 regulator in cervical cancer. Biointerface Res. Appl. Chem. 10, 5875–5879. https://doi.org/10.33263/BRIAC104.875879

Bonofiglio, D., Giordano, C., De Amicis, F., Lanzino, M., Andò, S., 2016. Natural Products as Promising Antitumoral Agents in Breast Cancer: Mechanisms of Action and Molecular Targets. Mini-Reviews Med. Chem. 16, 596–604. https://doi.org/10.2174/1389557515666150709110959

Burnett, J.C., Rossi, J.J., 2012. RNA-based therapeutics: current progress and future prospects. Chem. Biol. 19, 60–71. https://doi.org/10.1016/j.chembiol.2011.12.008

Cherigo, L., Lopez, D., Martinez-Luis, S., 2015. Marine natural products as breast cancer resistance protein inhibitors. Mar. Drugs. https://doi.org/10.3390/md13042010

Cleator, S., Heller, W., Coombes, R.C., 2007. Triple-negative breast cancer: therapeutic options. Lancet Oncol. 8, 235–244. https://doi.org/10.1016/S1470-2045(07)70074-8

Davis, B.K., 1998. The forces driving molecular evolution. Prog. Biophys. Mol. Biol. 69, 83–150. https://doi.org/10.1016/S0079-6107(97)00034-5

Eigen, M., McCaskill, J., Schuster, P., 1988. Molecular quasi-species. J. Phys. Chem. 92, 6881–6891. https://doi.org/10.1021/j100335a010

Flamm, C., Hofacker, I.L., Stadler, P.F., Wolfinger, T., Wolfinger, M.T., 2002. Barrier Trees of Degenerate Landscapes. Zeitschrift für Phys. Chemie 216, 155. https://doi.org/10.1524/zpch.2002.216.2.155

Goncalves, R., Warner, W.A., Luo, J., Ellis, M.J., 2014. New concepts in breast cancer genomics and genetics. Breast Cancer Res. https://doi.org/10.1186/s13058-014-0460-4
Gruber, A.R., Lorenz, R., Bernhart, S.H., Neuböck, R., Hofacker, I.L., 2008. The Vienna RNA websuite. Nucleic Acids Res. 36. https://doi.org/10.1093/nar/gkn188

Hashem, Y., Auffinger, P., 2009. A short guide for molecular dynamics simulations of RNA systems. Methods 47, 187–197. https://doi.org/10.1016/j.ymeth.2008.09.020

Hedau, S., Batra, M., Singh, U., Bharti, A., Ray, A., Das, B., 2015. Expression of BRCA1 and BRCA2 proteins and their correlation with clinical staging in breast cancer. J. Cancer Res. Ther. https://doi.org/10.4103/0973-1482.140985

Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D., Vajda, S., 2017. The ClusPro web server for protein-protein docking. Nat. Protoc. https://doi.org/10.1038/nprot.2016.169

Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L., 2011. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26. https://doi.org/10.1186/1748-7188-6-26

McDowell, S.E., Spacková, N., Sponer, J., Walter, N.G., 2007. Molecular dynamics simulations of RNA: an in silico single molecule approach. Biopolymers 85, 169–84. https://doi.org/10.1002/bip.20620

Parikesit, A.A., 2018. The Construction of Two and Three Dimensional Molecular Models for the miR-31 and Its Silencer as the Triple Negative Breast Cancer Biomarkers. Online J. Biol. Sci. 18, 424–431. https://doi.org/10.3844/ojbsci.2018.424.431

Parikesit, A.A., Agustiawan, D., Nurdiansyah, R., 2020. Protein Annotation of Breast-cancer-related Proteins with Machine-learning Tools. Makara J. Sci. 24, 6. https://doi.org/10.7454/mss.v24i1.12106

Parikesit, A.A., Agustiawan, D., Nurdiansyah, R., 2018a. Telaah Sistematis Diagnosis dan Pengobatan Kanker Payudara Berbasis Transkriptomik, in: PROSIDING SEMINAR NASIONAL BIOLOGI 2018. FMIPA UNESA, Surabaya, pp. 438–443.

Parikesit, A.A., Utomo, D.H., Karimah, N., 2018b. Determination of secondary and tertiary structures of cervical cancer IncRNA diagnostic and siRNA therapeutic biomarkers. Indones. J. Biotechnol. 23, 1. https://doi.org/10.22146/ijbiotech.28508

Peshkin, B.N., Alabek, M.L., Isaacs, C., 2010. BRCA1/2 mutations and triple negative breast cancers. Breast Dis. 32, 25–33. https://doi.org/10.3233/BD-2010-0306

Petrovic, N., Davidovic, R., Bajic, V., Obradovic, M., Isenovic, R.E., 2017. MicroRNA in breast cancer: The association with BRCA1/2. Cancer Biomarkers. https://doi.org/10.3233/CBM-160319

Rother, M., Milanowska, K., Puton, T., Jeleniewicz, J., Rother, K., Bujnicki, J.M., 2011. ModeRNA server: an online tool for modeling RNA 3D structures. Bioinformatics 27, 2441–2442. https://doi.org/10.1093/bioinformatics/btr400

Spicer, J., 2005. Technology evaluation: nimotuzumab, the Center of Molecular Immunology/YM BioSciences/Oncoscience. Curr. Opin. Mol. Ther. 7, 182–91.
Šponer, J., Bussi, G., Krepl, M., Banáš, P., Bottaro, S., Cunha, R.A., Gil-Ley, A., Pinamonti, G., Poblete, S., Jurečka, P., Walter, N.G., Otýpka, M., 2018. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 118, 4177–4338. https://doi.org/10.1021/acs.chemrev.7b00427

Surveillance Epidemiology and End Results Program, 2019. Cancer Stat Facts: Female Breast Cancer. Natl. Cancer Inst. 1–10.

Tafer, H., Aмерес, S.L., Obernosterer, G., Gebeshuber, C.A., Schroeder, R., Martinez, J., Hofacker, I.L., 2008. The impact of target site accessibility on the design of effective siRNAs. Nat. Biotechnol. 26, 578–83. https://doi.org/10.1038/nbt1404

TBI, 2016. Vienna RNA Package Web Version 2.0 [WWW Document]. URL http://rna.tbi.univie.ac.at/#intro

Valeska, M.D., Adisurja, G.P., Bernard, S., Wijaya, R., Aldino, M., Parikesit, A.A., 2019. The Role of Bioinformatics in Personalized Medicine: Your Future Medical Treatment. Cermin Dunia Kedokt. 46, 785–788.

Wheeler, N.J., Agbedanu, P.N., Kimber, M.J., Ribeiro, Paula, Day, T.A., Zamanian, M., Werf, M., Vlas, S., Brooker, S., Looman, C., Nagelkerke, N., Habbema, J., Engels, D., Murray, C., Kimber, M.J., Kimber, M.J., Wheeler, N.J.
T., Shibata, N., Agata, K., Newmark, P., Kao, D., Felix, D., Aboobaker, A., Patocka, N., Ribeiro, P., Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y., Lopez, R., Hunter, S., Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M., Hetrick, B., Han, M., Helgeson, L., Nolen, B., Nogi, T., Zhang, D., Chan, J., Marchant, J., Crowther, G., Shanmugam, D., Carmona, S., Doyle, M., Hertz-Fowler, C., Berriman, M., Nwaka, S., Wang, B., Collins, J., Newmark, PA, 2015. Functional analysis of Girardia tigrina transcriptome seeds pipeline for anthelmintic target discovery. Parasit. Vectors 8, 34. https://doi.org/10.1186/s13071-014-0622-3

WHO, 2015. WHO | Breast cancer: prevention and control [WWW Document]. WHO. URL https://www.who.int/cancer/detection/breastcancer/en/

Wolfinger, M.T., Svrcek-Seiler, W.A., Flamm, C., Hofacker, I.L., Stadler, P.F., 2004. Efficient computation of RNA folding dynamics. J. Phys. A. Math. Gen. 37, 4731–4741. https://doi.org/10.1088/0305-4470/37/17/005

Wu, D., Rice, C.M., Wang, X., 2012. Cancer bioinformatics: A new approach to systems clinical medicine. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-13-71

Zaleska, K., 2015. MiRNA - Therapeutic tool in breast cancer? Where are we now? Reports Pract. Oncol. Radiother. https://doi.org/10.1016/j.rpor.2014.10.009