Morphological and Biochemical Studies of the Yellow and Purple–red Petal Pigmentation in *Paeonia delavayi*

Qianqian Shi1
College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, Shaanxi, China; National Engineering Research Center for Oil Peony, Yangling 712100, Shaanxi, China; State Key Laboratory of Tree Genetics and Breeding, Beijing 100091, China; and Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China

Long Li1
National Engineering Research Center for Oil Peony, Yangling 712100, Shaanxi, China; and College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China

Lin Zhou and Yan Wang2
State Key Laboratory of Tree Genetics and Breeding, Beijing 100091, China; and Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China

Additional index words. *Paeonia delavayi*, vacuolar pH, metal ion, pigments, gene expression analysis

Abstract. *Paeonia delavayi* is a species endemic to Southwest China and an important genetic resource for flower color breeding of tree peonies. The mechanisms underlying the flower coloration of this plant have not been fully elucidated. In this article, we investigated the petals of yellow-colored individual (Pl) and purple–red-colored individual (Pd) of *P. delavayi* and purple–red-colored Pd petals. Our results indicate that significant differences occurred between the cell sap pH of the Pl and Pd flowers and large differences occurred in the contents of Fe and Al between Pl and Pd. Yellow petals may be related to metal ions and pigment compositions. Flower coloration is also linked to metal ions and vacuolar pH differences, such as in *Tulipa gesneriana* (Momonoii et al., 2009; Shoji et al., 2007, 2010), *Hydrangea macrophylla* (Ito et al., 2009; Schreiber et al., 2010, 2011), and *Ipomoea tricolor* (Yoshida et al., 2005, 2009a, 2009b). Thus, we can infer that the variously colored flowers of *P. delavayi* are the result of certain physiological differences. However, the precise mechanisms involved remain uncertain, and comprehensive studies of color formation in *P. delavayi* or other tree peony flowers have not yet been reported. In the present work, the major factors underlying the formation of various colorations of *P. delavayi* were investigated in individuals with purple–red (Pd) and yellow (Pl) petals. The results indicate that the color variation of *P. delavayi* petals may be related to a delicately controlled balance of the aforementioned factors.

Received for publication 2 Apr. 2018. Accepted for publication 30 May 2018.

1These authors contributed equally to this work.
2Corresponding author. E-mail: wyancaf@163.co.

Paeonia delavayi is an unique wild tree peony species with variously colored individuals including yellow, orange, red, dark red, and purple–red occurring both within and between populations, and the yellow colored individuals are considered the most precious resource for cultivar breeding (Hong and Pan, 1999, 2005a, 2005b, 2007; Hong et al., 1998; Li et al., 2011). Moreover, the antioxidant activity of the yellow-colored flowers of *P. delavayi* is higher than that of other yellow flowers, and this activity indicates its potential for use in drug development or functional food development (Li et al., 2009).

In certain species, flavonoids, particularly anthocyanins, are the primary contributors to the different coloration of flowers (Tanaka and Ohmiya, 2008; Suzuki et al., 2016). To date, more than 30 different flavonoids, including anthocyanins and multiform glycosides of flavones and flavonols, have been identified and quantified from different groups and several wild species of tree peony (Hosoki et al., 1991; Wang et al., 2001a, 2001b, 2005; Zhang et al., 2007). Wang et al. (2001a) analyzed the composition and content of flower pigments of seven wild tree peonies and found that pelargonidin (Pg)-based anthocyanins were not detected in any accessions in the subsection Delavayanae and that the flower petals of *P. delavayi* primarily contained peonidin-3, 5-glucosides (Pn3G5G). Zhou et al. (2011) investigated the pigment composition of the yellow petals of *P. delavayi* wild population in Yunnan Province, China, and found that the primary components were chalcone, flavone, and flavanol, including isosalipurposide, kaempferol (Km), quercetin (Qu), isorhamnetin (Is), chrysoeriol (Ch), and apigenin (Ap) glycosides. In addition, reports have indicated that the petal epidermis cell shape can affect flower color. Conical cells lead to darker flower colors and improved color saturation. On the contrast, flat cells lead to lighter flower colors. For example, the magenta flower color of *Antirrhinum majus* changes to pink when conical epidermal cells are flattened (Noda et al., 1994). The length and arrangement of *Iris tectorum* petal epidermal cells also have certain influence on the flower color (Yoshida et al., 1995), and epidermal cells with protruding papillae can generate a velvet sheen on the petals as in *Anagallis monelli* L. (Quintana et al., 2007).

In tree peony, the epidermal cells of *Paeonia rockii* and *Paeonia ostii* were all elongated and exaplanate (Shi et al., 2017). Flower coloration is also linked to metal ions and vacuolar pH differences, such as in *Tulipa gesneriana* (Momonoii et al., 2009; Shoji et al., 2007, 2010), *Hydrangea macrophylla* (Ito et al., 2009; Schreiber et al., 2010, 2011), and *Ipomoea tricolor* (Yoshida et al., 2005, 2009a, 2009b). Thus, we can infer that the variously colored flowers of *P. delavayi* are the result of certain physiological differences. However, the precise mechanisms involved remain uncertain, and comprehensive studies of color formation in *P. delavayi* or other tree peony flowers have not yet been reported.

In the present work, the major factors underlying the formation of various colorations of *P. delavayi* were investigated in individuals with purple–red (Pd) and yellow (Pl) petals. The results indicate that the color variation of *P. delavayi* petals may be related to a delicately controlled balance of the aforementioned factors.

Materials and Methods

Plant material. The yellow-colored individuals (Pl) and purple–red individual (Pd) of *P. delavayi* were introduced from...
a wild population in Shangri-La County (lat. 27°57′N, long. 99°35′E), Yunnan Province, China, and grown in the germplasm repository of Northwest A&F University, Shaanxi, China, under the same conditions with sufficient light and water (Fig. 1). The flowers opened during five developmental stages (from Stage 1 to Stage 5, i.e., from S1 to S5) as in the previous study of Shi et al. (2015). The petals were picked from five different individuals of Pl and Pd during five developmental stages and immediately frozen in liquid nitrogen for the total content measurement of pigments. To measure the pigment contents and conduct gene expression analyses, the petal samples were separately detached at the fully opened stage with exposed anther and immediately frozen in liquid nitrogen and stored at −80°C before analysis. In addition, petals at the fully opened stage were separately detached and used immediately for the morphological and anatomical observations, protoplast preparation, and pH and metal ion measurements.

Petal color measurement. The petal color at the fully opened stage was determined by comparison with the Royal Horticultural Society Color Chart (RHSCC) and then measured with a chroma meter (CR-400; Konica Minolta Sensing, Inc., Osaka, Japan) using five color parameters, including the indices of lightness (L*), chromatic components (a*, b*), brightness (C*), and hue angle (h) (Zhang et al., 2007). Six replications were recorded. The mean values and sds were obtained.

Microscopic observations of the epidermal cells and transverse sections. According to the method of Shi et al. (2017), fresh petals of Pl and Pd flowers at the fully opened stage were cross-sectioned with the help of a razor blade. The upper and lower epidermal layers were peeled off using a razor blade. The layers were placed onto a glass slide with a drop of water and then immediately observed under a light microscope (BX43; Olympus, Tokyo, Japan) equipped with a DS cooled camera head with FNIS-Elements image processing software.

Scanning electron microscopy observations. The Pl and Pd petals of *P. delavayi* were spliced into 5 × 5 mm blocks, fixed in FAA buffer (38% methanol, 5 mL; acetic acid, 5 mL; 70% ethanol, 90 mL) under vacuum pressure for 30 min, and then incubated at 4°C overnight. Next, the fixed petals were dehydrated in an ascending aqueous ethanol series (30, 50, 70, 80, 90, and 100%), followed by 100% acetone and then treated twice with isopentyl acetate for 30 min. Finally, the samples were dried using a CO2 supercritical drying technique (K850; Quorum, England), mounted on a specimen stub, and sputter-coated with gold before examination in a scanning electron microscope (SU-3400N; Hitachi Ltd., Japan).

Preparation of free protoplasts. Free protoplast was prepared from Pl and Pd fresh petals at the fully opened stage according to Qi et al. (2013) with slight modifications. The mid part of fresh pets was cut into 1 mm filaments using a blade and then placed into 20 mL of enzymolysis solution (0.3 g of 1.5% (w/v) cellulase R-10, 0.06 g of 0.3% (w/v) macerozyme R-10, 2.1689 g of 600 mM mannitol, 0.04264 g of 10 mM MES, 8 μL of 1 mM CaCl2, 7 μL of 5 mM β-mercaptoethanol, and 0.02 g of 0.1% (w/v) BSA; pH 5.7). After vacuum infiltration for 30 min without shaking, the enzymolysis solution with petal strips was shaken for 1 h at 80 rpm and 25°C to release the protoplasts. The reaction mixture containing free protoplasts was filtered through a 75-μm nylon mesh and washed with buffer (0.017 g of 4 mM MES-Tris, 2.1869 g of 600 mM mannitol, and 0.0298 g of 20 mM KCl; pH 5.7), then centrifuged in an aqueous ethanol series (30, 50, 70, 80, 90, and 100%), followed by 100% acetone and then treated twice with isopentyl acetate for 30 min. Finally, the fixed petals were dehydrated in an ascending aqueous ethanol series (30, 50, 70, 80, 90, and 100%), followed by 100% acetone and then treated twice with isopentyl acetate for 30 min. Finally, the fixed petals were dehydrated in an ascending aqueous ethanol series (30, 50, 70, 80, 90, and 100%), followed by 100% acetone and then treated twice with isopentyl acetate for 30 min. Finally, the fixed petals were dehydrated in an ascending aqueous ethanol series (30, 50, 70, 80, 90, and 100%), followed by 100% acetone and then treated twice with isopentyl acetate for 30 min. Finally, the fixed petals were dehydrated in an ascending aqueous ethanol series (30, 50, 70, 80, 90, and 100%), followed by 100% acetone and then treated twice with isopentyl acetate for 30 min.

Materials

- **Pl** (yellow-colored flower of *P. delavayi*).
- **Pd** (purple-red flower of *P. delavayi*).
Metal ions measurement. The petals of Pl and Pd flowers at fully opened stage were rinsed in sterile water and then placed in a drying oven at 105 °C for 30 min, followed by 80 °C for 6 h. Dried petals were finely ground to a powder, and then, 2 mg of dried powder was digested in 5 mL HNO_3 and 1 mL H_2O_2 and then treated in a high performance microwave digestion unit (ICAP Qc; Thermo Fisher Scientific, Waltham, MA) using the procedure of Qi et al. (2013). After complete digestion and acid removal, the samples were diluted with double-distilled water and then analyzed the contents of metal ions using ICP-MS (ICAP Qc; Thermo Fisher Scientific). The mean values and sds were obtained from three biological replications.

Petal vacuolar pH measurement. To measure the vacuolar pH, 2 g of fresh petals of the Pl and Pd flowers at the fully opened stage was ground in liquid nitrogen and centrifuged at 18,407 g for 5 min. The pH of the supernatant was measured using a flat pH tester (pH5F; Shanghai Sanxin Instrument Corporation, China) at 25 °C (Zhao et al., 2016). The average pH and sds of each flower color was calculated from 10 replications.

Flavonoid and anthocyanidins analysis. The petals of Pd and Pl flowers at five different development stages were lyophilized using the lyophilizer (LG-25C; Beijing Four-ring Science Instrument Plant Corporation, China). Then, a total of 10 mg of lyophilized petal powder from 10 individual Pl and Pd flowers were extracted in 1 mL of 0.1% acetic acid/methanol solution at 4 °C overnight and then centrifuged for 10 min at 10,000 rpm. The supernatant was collected and dried with a vacuum centrifuge concentrator (CV100-DNA; Aijima, Beijing, China). The identification and quantification of flavonoid and anthocyanidins compounds were performed with an ultra-high performance liquid chromatography–mass spectrometry system (UPLC-MS/MS; Waters, Milford, MA) coupled to a triple quadrupole mass spectrometry system (XEVO®-TQ; Waters) with electrospray ionization (ESI) based on previous methods (Veberic et al., 2015) with modifications. The anthocyanidin and flavonoid contents were measured semiquantitatively according to the method reported by Shi et al. (2017). The mean values and sds were obtained from three biological replications.

Quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Total RNA was extracted from the fully opened petals of the Pd and Pl flowers using Trizol (Invitrogen, Carlsbad, CA). After verifying the RNA purity and integrity, 1 mg of total RNA was reverse-transcribed to first-strand cDNA with a PrimeScript RT reagent kit (Takara, Otsu, Japan). The qRT-PCR assay was conducted using a fluorescent intercalating dye on a Light Cycler 480 with SYBR Green I Master Mix (Roche, Mannheim, Germany), following the procedure of Shi et al. (2017). Specific primers were designed using Primer Premier software (Table 1). The relative expression levels of genes in the petals of the Pl and Pd flowers were normalized to the TUB gene expression level in the same sample. All reactions were conducted with three biological replications and three technical replications.

Results

Color indices. According to the RHSCC, the colors of Pd and Pl flowers were purple–red (185A) and yellow (4A), respectively (Fig. 1A and E; Table 2). The higher L* value in Pl than in Pd indicated that Pl petals had a lighter color than those of Pd. The lower a* value in Pl than in Pd indicated that the green level was higher in Pl, whereas the redness level was higher in Pd. The higher b* value in Pl than in Pd indicated that the yellow level was higher in Pl, whereas the blue level was higher in Pd. C* represents the saturation level was higher in Pl, whereas the blue level was higher in Pd. The hue angle (h) of ≈90° in the Pl petals represented yellow and the h of ≈47° in the Pd petals mean red.

Anatomical analysis. In Pl, the yellow cells were located in upper epidermis (Fig. 1). In addition, sporadically colored cells were in the palisade mesophyll and spongy mesophyll (Fig. 1B). In Pd, the colored cells were primarily located in the upper and lower epidermis and not in the palisade mesophyll and spongy mesophyll (Fig. 1F). Notably, the degree of pigmentation varied slightly between the upper and lower epidermis. To further clarify the mechanism for the various flower colorations of P. delavayi, the colored protoplasts were analyzed. A large amount of yellow protoplasts and a small amount of colorless protoplasts were located in the yellow-colored Pl petals. However, the purple–red-colored flower was composed of a mixture of purple, red, and pink protoplasts (Fig. 2). These results were in line with the observations from transverse sections.

The shape of the epidermal cells can influence the visual effect of the color. In this study, the Pl cells were subrounded and flat, whereas the Pd cells were irregularly polygon-shaped and bulging (Fig. 1C, D, G, and H). These findings suggested that the various flower colors of P. delavayi were partly associated with different epidermal cell shapes.

Metal ions and pH analysis. To determine whether metal ions had an effect on flower color formation of P. delavayi, eight metal elements (Ca, Mg, Fe, Zn, Cu, Al, Cd, and Mn) related to color formation were measured using inductively coupled plasma mass spectrometry in Pl and Pd petals (Yoshida et al., 2009a, 2009b; Qi et al., 2013). As shown in Table 3, the two most abundant metal ion elements in the Pl and Pd petals were Ca and Mg, which were followed by Fe and Al. Except for the contents of Fe and Al, which were much higher in Pd than in Pl, the other metal elements did not show differences between the Pl and Pd petals.

Besides, the pH of the Pl and Pd petals was 5.76 ± 0.049 and 4.61 ± 0.015, respectively (Table 4), and the difference was significant. Thus, the sap pH might contribute to the formation of different flower colors.

Qualitative and quantitative analysis of pigments. For tree peony, flavonoids, particularly anthocyanins, are responsible for various flower colors such as white, yellow, red, pink, purple, and so on (Hosoki et al., 1991; Wang et al., 2001a, 2001b, 2005; Zhang et al., 2007; Zhou et al., 2011). The pigment composition and content were measured in the fully opened flowers of Pl and Pd using UPLC-MS. According to the ultraviolet-visible absorption characteristics, anthocyanins, flavonol, and chalcone were detected under the wavelength of 520 and 350 nm, respectively (Fig. 3). At 520 nm, no anthocyanins were found in Pl, whereas five

Table 3. Concentration of metal elements in Paeonia delavayi petals.

Materials	Ca	Mg	Fe	Zn	Cu	Al	Cd	Mn
Pd	1.614 ± 0.027	1.088 ± 0.037	51.185 ± 2.034	39.270 ± 3.290	8.766 ± 0.420	37.170 ± 3.648	0.024 ± 0.002	55.806 ± 0.436
Pl	1.636 ± 0.027	1.075 ± 0.037	51.185 ± 2.034	39.270 ± 3.290	8.766 ± 0.420	37.170 ± 3.648	0.024 ± 0.002	55.806 ± 0.436

Pd, purple–red flower of P. delavayi.

Fig. 2. Protoplasts from yellow-flowered individual (Pl) and purple-red-flowered individual (Pd) of Paeonia delavayi. Bars = 50 μm.

1104 HORTSCIENCE Vol. 53(8) August 2018
obvious peaks (a1, a2, a3, a4, and a5) were detected in Pd, among which a3 and a5 were the highest. On the basis of the maximum absorption wavelength (λmax) and the fragment ions (m/z), the five peaks at 520 nm were presumed to be cyanidin 3, 5-di-O-glucoside (Cy3SG), Pn3GSG, cyanidin 3-O-glucoside (Cy3G), cyanidin 3-arabinoside (Cy3A), and peonidin 3-O-glucoside (Pn3G), respectively (Table 5). Meanwhile, we detected many of the same but also different flavonoids at 350 nm in these two flower types (Fig. 3; Tables 5 and 6). The same flavonoids identified in these two flowers included a Qu derivative, Km 3, 7-di-O-hexoside, Is 3-O-glucoside, and chalcononaringenin 2′-O-glucoside (chalcone 2′G). Is 3, 7-di-O-glucoside, luteolin (Lu) 7-O-glucoside, Ap 7-O-neohesperidoside, and Ch 7-O-glucoside were only detected in Pl, whereas the Pd petals included Km 3-O-glucoside, Is 3-O-galloylglucoside, and Km 7-O-glucoside (Tables 5 and 6). These results indicated that the Ap-, Ch-, and 7-O-glucoside flavonols were the primary copigments responsible for the yellow coloration and the anthocyanins were responsible for the purple–red coloration.

Concerning the pigment content, chalcone 2′G accumulated most abundantly in Pl and was 5-fold higher than that in Pd. Is 3-O-glucoside and Lu 7-O-glucoside were also abundantly accumulated in Pl at ≈348 and 337 μg·g⁻¹, respectively; however, the contents of Ap 7-O-neohesperidoside and Ch 7-O-glucoside were low at 20 and 53 μg·g⁻¹, respectively (Table 6). For Pd, the most abundant anthocyanin was Cy3G (631 μg·g⁻¹), followed by Pn3G (303 μg·g⁻¹), Pn3G5G, and Cy3G5G (102 μg·g⁻¹). In addition, Cy3A was hardly detectable (8 μg·g⁻¹). Interestingly, among the identified flavonols in Pd, chalcone 2′G was the most abundant (395 μg·g⁻¹), followed by Qu 7-O-glucoside (228 μg·g⁻¹) and Is 3-O-glucoside (156 μg·g⁻¹) (Table 5). The total content of anthocyanins was rising during development of Pd flowers, whereas the total contents of flavonols and chalcone accumulated without any rules during Pd flower development. However, the total contents of flavonols and chalcone in Pl were always higher than those in Pd at all the developmental stages (Table 4).

Expression analysis of key flavonoid biosynthetic genes. To further investigate the effect of the flavonoid biosynthetic genes on the various flower colorations of P. delavayi, qRT-PCR was conducted to test the expression patterns of 12 related structural genes in fully opened petals of Pl and Pd (Fig. 4; Table 1). The 11 genes were CHS, CHI, DFR, F3H, FNS, FLS, anthocyanin 3-O-glycosyltransferase (3GT), anthocyanin 5-O-glycosyltransferase (5GT), 7GT, THC, and ANS, which are involved in flower pigmentation of P. delavayi (Shi et al., 2015), CHI, F3H, FNS, 7GT, and THC were significantly highly expressed in Pl relative to Pd. In particular, FNS was barely detected in Pd (Fig. 4). Moreover, the expression patterns of these genes were in agreement with the accumulation levels of the corresponding flavones and flavonols. However, CHS, DFR, 3GT, 5GT, and ANS were expressed strongly in the Pd petals (Fig. 4). Among these genes, the expression of CHS, DFR, and ANS, which are the key enzymes for anthocyanin synthesis (Tanaka and Ohmiya, 2008; Suzuki et al., 2016), was significantly higher in the Pd petals than in the Pl petals. These results demonstrated that the different flower colorations of P. delavayi were caused by the different expression patterns of different flavonoid biosynthetic genes, which led to the corresponding differences in the accumulation levels of different pigments.

Discussion

Paeonia delavayi is a special wild tree peony species and has the most previous resource of yellow flowers. The flower coloration involves many factors, such as the petal structure, pigment type and distribution, vacuolar pH, and metal ion complexation (Zhao and Tao, 2015). The shape of epidermal cells affects the pigmentation, with conical cells leading to darker flower color and enhanced color saturation (Noda et al., 1994). In the present study, the petal epidermal cells were different between the yellow-colored Pl and purple–red-colored Pd. As expected, the epidermal cells of Pd were bulging and, therefore, had darker color. Notably, in previous work, we found that the shapes of the petal epidermal cells were different between different tree peony species, with those of the dark purple-colored petals of P. rockii elongated and explanate and those of purple–red-colored individuals of P. delavayi irregularly polygon-shaped and bulging (Shi et al., 2017). Differences in the shape of the petal epidermal cells also affect the texture of petals and ultimately affect pollinator attraction (Glover, 2000). In wild populations, bees are the most important pollinators for P. delavayi, whereas abiotic factors are the most important for P. rockii (Li et al., 2013b).

Moreover, anthocyanin can change in relation to the cell sap pH, which affects flower color (Quintana et al., 2007). Because of an increased pH, the reddish-purple petals of I. tricolor cv. Heavenly Blue change to blue (Asen et al., 1977). The same results are found in Petunia hybrid (Griesbach, 1996). The stability of anthocyanins is greatly influenced by pH and decreases with an increase in pH (Zhao et al., 2005), whereas flavone and flavonol tend to become more yellow as the vacuolar acidity weakens (Fu et al., 2013). Similarly, the pH values in the yellow-colored individuals of P. delavayi were much higher than those in the purple-red-colored individuals. Thus, pH might be related to the different flower coloration of P. delavayi. Metal ions affect the pigment structure and thus the flower color. The pale yellow flower of Tagetes patula changes to golden yellow when treated with alums, to deep orange when treated with Cr, and to brown when treated with Cu, and these changes are considered to be the result of...
a shift between flavonoids and Qu (Li et al., 2013a). Mg$^{2+}$ can increase the content of anthocyanin, thereby enriching flower colors (15% to 70%), such as in the red flower of Antigonanthos flavidus, the blue bracts of Limonium sinutatum, the pink flowers of Gypsophila elegans, and the blue flowers of Aconitum carmichaelii (Nissan-Levi et al., 2007). The blue color of H. macrophylla is derived from Al$^{3+}$-complexed anthocyanin and copigments (Ito et al., 2009; Takeda et al., 2005; Yoshida et al., 2003), whereas the sky-blue color of Meconopsis grandis and Centaurea cyanus is caused by Mg$^{2+}$ and Fe$^{3+}$-complexed anthocyanins (Kondo et al., 1994, 1998; Shiono et al., 2005; Takeda et al., 2005; Yoshida et al., 2006; Yoshida and Negishi, 2013). The blue coloration at the bottom of the inner perianth of T. gesneriana is attributed to Fe$^{2+}$ (Momonoi et al., 2009; Shoji et al., 2010). In red and yellow petals of Paeonia lactiflora, K, Ca, Mg, Mn, and Zn were abundant and showed significant correlation coefficient with the color indice h (Zhao et al., 2017). Although Ca, Mg, Fe, and Al were the most abundant metal ions in the Pd and Pl petals, only Fe and Al showed large differences between Pl and Pd, indicating that the different flower colors of P. delavayi might be related to Fe and Al.

Previous studies showed that the opened purple flowers of P. delavayi mainly contained Pn3G5G, whereas the yellow flowers of P. delavayi primarily contain chalcone, Km, Qu, Is, Ch, and Ap-glycopyranoside (Wang et al., 2001b; Zhou et al., 2011). As expected, in the present study, the primary pigments of P. delavayi were anthocyanin and chalcone. For Pd, anthocyanin, primarily Cy and Pn based, determined the flower color and flavones and flavonols generally acted as copigments to affect the flower color. Although the purple petals also contained

Table 5. Contents of identified flavonoids and anthocyanins in purple–red-colored individual petals of Paeonia delavayi at the fully opened stage (S5) (μg g$^{-1}$).

No.	Identification	Amax (nm)	ESI(+)-MS (m/z)	Content (μg g$^{-1}$)
f1	Km 3-O-glucoside	347, 254	287, 449	45.056 ± 0.041
f2	Km 3,7-di-O-hexoside	269	287, 449, 633	80.938 ± 0.071
f3	Qu 3,7-di-O-glucoside	256	301, 463, 641	139.174 ± 0.121
f4	Qu 7-O-glucoside	256	303, 487	228.891 ± 0.150
f5	Is 3-O-galloylglucoside	348	317, 653	68.293 ± 0.058
f6	Km 7-O-glucoside	266	287, 471	130.265 ± 0.116
f7	Is 3-O-glucoside	254	317, 501	156.024 ± 0.139
c1	chalcone 2-G	365	273, 457	395.855 ± 0.311
a1	Cy3G5G	509, 287	449, 287	102.196 ± 0.083
a2	Pn3G5G	515, 287	301, 463, 625	160.076 ± 0.130
a3	Cy3G	509, 287	287, 449	631.384 ± 0.561
a4	Cy3A	509, 287	287, 419	8.592 ± 0.008
a5	Pn3G	515, 287	301, 463	303.992 ± 0.256

*Fig. 3. Ultrahigh performance liquid chromatography (UPLC) chromatograms of yellow-colored individual and purple–red-colored individual of Paeonia delavayi flavonoids at 350 nm and anthocyanins at 525 nm at the fully opened stage (S5). (A) UPLC chromatograms of yellow-colored individual; (B) UPLC chromatograms of purple–red-colored individual at 350 nm; (C) UPLC chromatograms of purple–red-colored individual at 520 nm; f1–f7 indicated identified flavonoids compositions; a1–a4 indicates identified anthocyanin compositions.
yellow chalcone, highly abundant anthocyanin covered the small amount of chalcone, resulting in a purple–red color. For Pd, the main pigment was chalcone 2’ G, and Ap 7-O-neohesperidoside and Ch 7-O-glucoside were copigments; thus, it appeared yellow, inconsistent with the report of yellow coloration in P. lactiflora (Zhu et al., 2014). The same glycoside had different modifications in Pl and Pd. The hydroxylation modification of Qu and Lu can strengthen the red color and darken the flower color and the methylation modification of Cy and Pn can enhance the blue color. The pigmentation effect of flavones and flavonols in Pd was much higher than in Pl and increased the purple degree, which is consistent with results in Japanese tree peony (Sakata et al., 1995) and rhododendron (Asen et al., 1971). Consequently, the downstream structural genes DFR and ANS were significantly highly expressed in Pd relative to Pl, which agreed with the reports of Shi et al. (2015) and Zhao et al. (2015). THC, which glycosylates 4’, 2’, 4’, 6’-tetrahydroxychalcone to chalcone 2’ G, was upregulated in Pl (Togami et al., 2011). FNS was clearly upregulated in the yellow petals and responsible for flavone production in Pl (Akashi et al., 1999; Martens and Mithöfer, 2005). CHI can isomerize 4’, 2’, 4’, 6’-tetrahydroxychalcone to form flavones and flavonols, and anthocyanins. In Hordeum vulgare (Marinova et al., 2007), and Scutellaria baicalensis (Park et al., 2011), mutations of CHI are required for chalcone 2’ G production. As expected, the expression of CHI in Pl was almost 2-fold higher than that in Pd. In addition, FLS is the key enzyme for Qu and Km, and 7GT is responsible for the 7-O-glycosylation pattern of flavone (Tanaka and Ohmiya, 2008). These enzymes were significantly highly expressed in yellow petals, which was consistent with the flavone and flavone production levels in Pl. Hence, the diversity of the flavone/flavonol and anthocyanin accumulation likely contributes to the different flower coloration of P. delavayi.

In conclusion, anatomical, chemical, and gene expression analyses indicated that the epidermal cell shape, vacular pH, Fe and Al metal ions, and different pigments all affected the various flower colorations of P. delavayi. Therefore, the color variation of P. delavayi petals is likely dependent on the delicately controlled balance of these factors. Our results provide a substantial foundation for a full understanding of the mechanisms of P. delavayi flower pigmentation.

Literature Cited

Akashi, T., T. Aoki, and S. Ayabe. 1999. Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxysoflavone synthase involved in biosynthesis of the iso-flavonoid skeleton in licorice. Plant Physiol. 121:821–828.

Asen, S., R.N. Stewart, and K.H. Norris. 1971. Co-pigmentation effect of querctein glycosides on absorption characteristics of cyanidin glycosides and color of Red Wing azalea. Phytochemistry 10:171–175.

Asen, S., R.N. Stewart, and K.H. Norris. 1977. Anthocyanin and pH involved in the color of ‘Heavenly Blue’ morning glory. Phytochemistry 16:1118–1119.

Fu, L.J., H. Li, L. Li, H. Yu, and L. Wang. 2013. Reason of flower color change in *Lonicerajaponica*. Scientia Silvae Sin. 49:155–161.

Glover, B.J. 2000. Differentiation in plant epidermal cells. J. Exp. Biol. 51:497–505.

Griesbach, R.J. 1996. The inheritance of flower color in *Petunia hybridra* Vil. J. Hered. 87:241–245.

Hong, D.Y. and K.Y. Pan. 1999. Taxonomical history and revision of Paeonia sect. Moutan (Paeoniaceae). Acta Phytotax Sin. 37:351–368.

Hong, D.Y. and K.Y. Pan. 2005a. Notes on taxonomy of Paeonia sect. Moutan dc. (Paeoniaceae). Acta Phytotax Sin. 43:169–177.

Hong, D.Y. and K.Y. Pan. 2005b. Additional taxonomy motes on Paeonia sect. Moutan (Paeoniaceae). Acta Phytotax Sin. 43:284–287.

Hong, D.Y. and K.Y. Pan. 2007. *Paeonia cathayana* D.Y. Hong & K.Y. Pan, a new tree peony, with revision of *P. suffruticosa* spp. yinpingmudan. Acta Phytotax Sin. 43:284–287.

Hong, D.Y., K.Y. Pan, and H.Y. Yu. 1998. Taxonomy of the *Paeonia delavayi* complex (Paeoniaceae). Ann. Mo. Bot. Gard. 85:554–564.

Hosoki, T., M. Hamada, T. Kando, R. Moriwaki, and K. Inaba. 1991. Comparative study of anthocyanin in tree peony flowers. J. Jpn. Soc. Hort. Sci. 60:395–403.

Ito, D., Y. Shinkai, Y. Kato, T. Kondo, and K. Yoshida. 2009. Chemical studies on different color development in blue- and red-colored sepal cells of *Hydrangea macrophylla*. Biosci. Biotechnol. Biochem. 73:1054–1059.

Kondo, T., M. Ueda, and M. Isobe. 1998. A new mechanical mechanism of blue color development with protocyanin, a supermolecular pigment from cornflower, *Centauraea cyanus*. Tetrahedron Lett. 49:8307–8310.

Table 6. Contents of identified flavonoid in yellow-colored individual petals of *Paeonia delavayi* at the fully opened stage (S5) (µg·g⁻¹).

No.	Identification	Amax (nm)	ESI(-)-MS (m/z)	Content (µg·g⁻¹)
1	Qu derivative	256	303	20.504 ± 0.02
2	Km 3,7-di-O-hexoside	266	287, 449, 633	85.282 ± 0.079
3	Is 3,7-di-O-glucoside	255	317, 479, 663	136.611 ± 0.121
4	Lu 7-O-neohesperidoside	348	287, 449	337.853 ± 0.195
5	Ap 7-O-neohesperidoside	267	271, 579	20.800 ± 0.02
6	Is 3-O-glucoside	254	317, 501	348.685 ± 0.183
7	Ch 7-O-glucoside	346	301, 463	53.496 ± 0.051
c1	chalcone 2’ G	365	273, 457	1,505.572 ± 0.585

*fl–f7, and c1 indicate the order of the identified flavonoids in yellow-colored flowers of *P. delavayi*. Fig. 4. Expression analyses of flavonoid biosynthetic genes in yellow-colored flower and purple–red flower of *Paeonia delavayi* by quantitative real-time polymerase chain reaction using total RNA from the petals at the fully opened stage (S5). Pl, yellow-colored flower of *P. delavayi*; Pd, purple-red flower of *P. delavayi*. The TUB gene was used as an internal control, and relative transcript levels are presented as the means with sos of three technical and three biological replications. CHS, chalcone synthase gene; CHI, chalcone isomerase gene; F3H, flavanone 3-hydroxylase; DFR, dihydroflavonol 4-reductase gene; FNS, flavonol synthase; FLS, flavonol synthase; 3GT, anthocyanin 5-O-glycosyltransferase; 5GT, anthocyanin 3-O-glycosyltransferase; 7GT, flavonoid 7-O-glycosyltransferase; THC, 2’4’6’4-tetrahydroxychalcone 2’-glucosyltransferase; ANS, anthocyanidin synthase gene.
Kondo, T., M. Ueda, H. Tamura, K. Yoshida, M. Isobe, and T. Goto. 1994. Composition of protocyanin, a self-assembled supramolecular pigment from the blue cornflower Centaurea cyanus. Angew. Chem. Int. Ed. Engl. 33:978–979.

Li, C.-H., H. Du, L.S. Wang, Q.Y. Shu, Y.R. Zheng, and Y.J. Xu. 2009. Flavonoid composition and antioxidant activity of tree peony (Paeonia section Moutan) yellow flowers. J. Agr. Food Chem. 57:8496–8503.

Li, H., Y. Liu, J. Yue, and Q. Lou. 2013a. Study on the factors of flower color development in Tradescantia albiflora. Pratacult. Sci. 30:710–715.

Li, K., Y. Wang, B.Q. Zheng, X.T. Zhu, L. Zhai, L. He, and Y. Zhang. 2017. Biochemical and comparative transcriptomic analyses identify candidate genes related to variegation formation in Paeonia rockii. Molecules 22:1364.

Shi, Q., L. Zhou, Y. Wang, K. Li, B.Q. Zheng, and K. Miao. 2015. Transcriptomic analysis of Paeonia delavayi wild population flowers to identify differently expressed genes involved in purple-red and yellow petal pigmentation. PLoS One 10:e0135038.

Shiono, M., N. Matsugaki, and K. Takeda. 2005. Structure of the blue cornflower pigment. Nature 436:791.

Shoji, K., N. Miki, N. Nakajima, K. Momonoi, C. Kato, and K. Yoshida. 2007. Periarch bottom-specific blue color development in tulip cv. Murasakizuisho requires ferric ions. Plant Cell Physiol. 48:243–251.

Shoji, K., K. Momonoi, and T. Tsuji. 2010. Alternative expression ofvacuolar iron transporter and ferritin genes leads to blue/purple coloration of flowers in tulip cv. ‘Murasaki- zuisho’. Plant Physiol. 152:215–224.

Suzuki, K., T. Suzuki, T. Nakatsuka, H. Dohra, M. Yamagishi, K. Matsuyama, and H. Matsura. 2016. RNA-seq-based evaluation of bicolor tepal pigmentation in Asiatic hybrid lilies (Lilium spp.). BMC Genomics 17:611.

Takeda, K., A. Osakabe, S. Saito, D. Furuyama, A. Tomita, Y. Kojima, M. Yamadera, and M. Sakuta. 2005. Components of protocyanin, a blue pigment from the blue flowers of Centaurea cyanus. Phytochemistry 66:1607–1613.

Tanaka, Y. and A. Omiyia. 2008. Seeing is believing: Engineering anthocyanin and carotenoid biosynthetic pathways. Curr. Opin. Biotechnol. 19:190–197.

Togami, J., H. Okuhara, N. Nakamura, K. Ishiguro, C. Hirose, M. Ochiai, Y. Fukui, M. Yamaguchi, and Y. Tanaka. 2011. Isolation of cDNAs encoding tetrahydroxychalcone 2'-glucosyltransferase activity from carnation, cyclamen, and catharanthus. Plant Biotechnol. 28:231–238.

Veberic, R., A. Slatinar, B. Bizjak, F. Stampar, and M. Mikulic-Petkovsek. 2015. Anthocyanin composition of different wild and cultivated berry species. LWT-Food Sci. Technol. 60:509–517.

Wang, X., C.G. Cheng, Q.L. Sun, F.W. Li, J.H. Liu, and C.C. Zheng. 2005. Isolation and purification of four flavonoid constituents from the flower of Paeonia suffruticosa by high-speed counter-current chromatography. J. Chromatogr. 1075:127–131.

Wang, L.S., F. Hashimoto, A. Shiraishi, N. Aoki, J.J. Li, and K. Shimizu. 2001a. Phenetics in tree peony species from China by flower pigment cluster analysis. J. Plant Res. 114:213–221.

Wang, L.S., A. Shiraishi, F. Hashimoto, N. Aoki, K. Shimizu, and Y. Sakata. 2001b. Analysis of petal anthocyanins to investigate flower coloration of Zhongyuan (Chinese) and Daikon (Japanese) tree peony cultivars. J. Plant Res. 114:33–43.

Yoshida, K., M. Kawachi, M. Mori, M. Maeshima, M. Kondo, M. Nishimura, and T. Kondo. 2005. The involvement of tonoplast proton pumps and Na+ (K+)/H+ exchangers in the change of petal color during flower opening of morning glory, Ipomoea tricolor cv. Heavenly Blue. Plant Cell Physiol. 46:407–415.

Yoshida, K., S. Kitahara, D. Ito, and T. Kondo. 2006. Ferric ions involved in the flower color development of the Himalayan blue poppy, Miconopsis grandis. Phytochemistry 67:992–998.

Yoshida, K., T. Kondo, Y. Okazaki, and K. Katou. 1995. Cause of blue petal colour. Nature 373:291.

Yoshida, K., M. Morii, and T. Kondo. 2009a. Blue flower color development by anthocyanins: From chemical structure to cell physiology. Nat. Prod. Rpt. 26:884–915.

Yoshida, K., N. Miki, K. Momonoi, M. Kawachi, K. Katou, Y. Okazaki, N. Uozumi, M. Maeshima, and T. Kondo. 2009b. Synchrony between flower opening and petal-color change from red to blue in morning glory, Ipomoea tricolor cv. Heavenly Blue. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85:187–197.

Yoshida, K. and T. Negishi. 2013. The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals. Phytochemistry 94:60–67.

Yoshida, K., Y. Toyama-Kato, K. Kameda, and T. Kondo. 2003. Sepal color variation of Hydrangea macrophylla and vacular pH measured with a proton-selective microelectrode. Plant Cell Physiol. 44:262–268.

Zhang, J.J., L.S. Wang, Q.Y. Shu, Z. Liu, C.H. Li, and J. Zhang. 2007. Comparison of anthocyanins in non-blottes and blotches of the petals of Xibe tree peony. Scientia Hort.114:104–111.

Zhao, C., W. Guo, and J. Chen. 2005. Formation and regulation of flower color in higher plants. Chinese Bul. Bot. 22:70–81.

Zhao, D., Y. Jiang, C. Ning, J. Meng, S. Lin, W. Ding, and J. Tao. 2014. Transcriptome sequencing of a chimaera reveals coordinated expression of anthocyanin biosynthetic genes mediating yellow formation in herbaceous peony (Paeonia lactiflora Pall.). BMC Genomics 15:689.

Zhao, D. and J. Tao. 2015. Recent advances on the development and regulation of color flower color in ornamental plants. Front. Plant Sci. 6:261.

Zhao, D., M. Wei, D. Liu, and J. Tao. 2016. Anatomical and biochemical analysis reveal the role of anthocyanins in flower coloration of herbaceous peony. Plant Physiol. Biochem. 102:97–106.

Zhao, D., M. Wei, M. Shi, Z. Hao, and J. Tao. 2017. Identification and comparative profiling of miRNAs in herbaceous peony (Paeonia lactiflora Pall.) with red/yellow bicoloured flowers. Sci. Rpt. 7:49426.

Zhao, D., W.H. Tang, Z.J. Hao, and J. Tao. 2015. Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers. Biochem. Biophys. Res. Commun. 459:450–456.

Zhou, L., Y. Wang, C.Y. Lü, and Z.H. Peng. 2011. Identification of components of flower pigments in petals of Paeonia lactiflora wild population in Yunnan. J. Northeast For. Univ. 39:52–54.