A gauge theory can be formulated on a noncommutative (NC) spacetime. This NC gauge theory has an equivalent dual description through the so-called Seiberg-Witten (SW) map in terms of an ordinary gauge theory on a commutative spacetime. We show that all NC U(1) instantons of Nekrasov-Schwarz type are mapped to ALE gravitational instantons by the exact SW map and that the NC gauge theory of U(1) instantons is equivalent to the theory of hyper-Kähler geometries. It implies the remarkable consequence that ALE gravitational instantons can emerge from local condensates of purely NC photons.

The commutative action (3) can actually be derived from the NC action (2) using the exact SW maps in (4) (see 5 for the exact inverse SW map):

\[\hat{F}_{\mu\nu}(y) = \left(\frac{1}{1 + F\theta} \right) \hat{F}_{\mu\nu}(x), \]

\[d^4y = d^4x \sqrt{\det(1 + F\theta)}(x), \]

where \(x^\mu(y) = y^\mu + \theta^\mu \hat{A}_\mu(y) \). It was shown in 6 that the self-duality equation for the action \(S_C \) is given by

\[F_{\mu\nu}(x) = \pm \frac{1}{2} \varepsilon_{\mu\nu\alpha\beta} \hat{F}_{\alpha\beta}(x), \]

where

\[F_{\mu\nu}(x) \equiv \left(g^{-1} \right)^{\mu\nu}(x). \]

The above equation is directly obtained by the exact SW map (7) from the NC self-duality equation (4). It was checked in 6 that the field configuration that satisfies the self-duality equation (9) also satisfies the equations of motion derived from the action (5). A general strategy was suggested in 4 to solve the self-duality equation (9). For example, let us consider the anti-self-dual (ASD) case. Take a general ansatz for the ASD \(F_{\mu\nu} \) as follows

\[F_{\mu\nu}(x) = f^\alpha(x)\bar{\eta}^\alpha_{\mu\nu}, \]

where \(\bar{\eta}^\alpha \) are three 4 \(\times \) 4 ASD ‘t Hooft matrices and \(f^\alpha \)'s are arbitrary functions. Then the equation (9) is automatically satisfied. Next, solve the field strength \(F_{\mu\nu} \) in terms of \(F_{\mu\nu} \):

\[F_{\mu\nu}(x) = \left(\frac{1}{1 - F\theta} \right) F_{\mu\nu}(x), \]

and impose the Bianchi identity for \(F_{\mu\nu} \),

\[\varepsilon_{\mu\nu\rho\sigma} \partial_\rho F_{\sigma\mu} = 0, \]

since the field strength \(F_{\mu\nu} \) is given by a (locally) exact two-form, i.e., \(F = dA \). In the end one can get general differential equations governing U(1) instantons 4.
Now let us restrict to the self-dual (SD) NC \mathbb{R}^4 properly normalized as $\theta_{\mu\nu} = \frac{1}{2}\eta_{\mu\nu}^3$ to consider the Nekrasov-Schwarz instantons \[1\]. The NC parameter θ can be easily recovered by a simple dimensional analysis by recalling that θ carries the dimension of $(\text{length})^2$. It was shown \[2\] that the parameter θ, which sets the size of NC instantons, is related to the size of a minimal two-sphere known as a “Bolt” in the gravitational instantons.

Substituting the ansatz \[11\] into Eq.\((12)\), we get

$$F_{\mu\nu} = \frac{1}{\phi} f^\theta \theta_{\mu\nu} - \frac{2\phi}{1-\phi} \eta_{\mu\nu}^3,$$

where $\phi \equiv \frac{1}{4} \sum_{a=1}^3 f^a(x) f^a(x)$. From Eq.\((13)\), we also obtain

$$F_{\mu\nu}^+ = \frac{1}{2} (F_{\mu\nu} + \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} F_{\rho\sigma}) = \frac{1}{4} (\bar{F} - \theta_{\mu\nu})$$

since

$$\bar{F} \equiv \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} = -\frac{16\phi}{1-\phi}.$$

We thus get

$$F_{24} = F_{13}, \quad F_{14} = -F_{23},$$

$$F_{12} + F_{34} = \frac{1}{4} \bar{F}.$$

Note that Eq.\((15)\) is equivalent to the instanton equation in \[2\], although there it was derived perturbatively.

The metric for the $U(1)$ fields in Eq.\((14)\) becomes symmetric, i.e., $g_{\mu\nu} = g_{\nu\mu}$ and its components are

$$g_{11} = g_{22} = 1 - \frac{1}{2} F_{12}, \quad g_{33} = g_{44} = 1 - \frac{1}{2} F_{34},$$

$$g_{13} = g_{24} = -\frac{1}{2} F_{14}, \quad g_{14} = -g_{23} = \frac{1}{2} F_{13},$$

$$g_{12} = g_{34} = 0.$$

Eq.\((18)\) can be rewritten using the metric $g_{\mu\nu}$ as

$$g_{\mu\nu} = 4 \sqrt{\text{det} g_{\mu\nu}}$$

with $\sqrt{\text{det} g_{\mu\nu}} = g_{11} g_{33} - (g_{13}^2 + g_{14}^2)$. We will show later that Eq.\((20)\) reduces to the so-called complex Monge-Ampère equation, which is the Einstein field equation for a Kähler metric \[3\].

The equation \[13\] was solved in \[3\] for the single instanton case. It was found there that the effective metric \[6\] for the single $U(1)$ instanton is related to the Eguchi-Hanson (EH) metric \[8\], the simplest ALE space, and that the family of the EH space is parameterized by the instanton number. In this paper we will show that the connection between NC $U(1)$ instantons and hyper-Kähler geometries is more general. More precisely, we will see that the NC self-duality equation \[4\] is mapped by the SW map to gravitational instantons, defined by the following self-duality equation \[9\] \[10\]

$$R_{abcd} = \pm \frac{1}{2} \epsilon_{abcdef} R_{ef},$$

where R_{abcd} is a curvature tensor.

To proceed with the Kähler geometry, let us introduce the complex coordinates and the complex gauge fields

$$z_1 = x^2 + i x^4, \quad z_2 = x^4 + i x^3,$$

$$A_{z_1} = A^2 - i A^1, \quad A_{z_2} = A^4 - i A^3.$$

In terms of these variables, Eqs.\((17)\) and \((18)\) are written as

$$F_{z_1 z_2} = 0 = F_{z_1 z_2},$$

$$F_{z_1 z_1} + F_{z_2 z_2} = -i \bar{F},$$

where $F_{\bar{F}} = -4 (F_{z_1 z_1} + F_{z_2 z_2} + F_{z_1 z_2} F_{z_1 z_2})$. Using the metric components in Eq.\((13)\), one can easily see that the metric $g_{\mu\nu}$ is a Hermitian metric. That is,

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = g_{ij} dz_i d\bar{z}_j, \quad i, j = 1, 2,$$

where

$$g_{z_1 z_1} = g_{11} = \frac{1}{1 - \phi} \left(1 - \frac{f^3}{2} \right),$$

$$g_{z_2 z_2} = g_{33} = \frac{1}{1 - \phi} \left(1 + \frac{f^3}{2} \right),$$

$$g_{z_1 z_2} = g_{13} + ig_{14} = \frac{1}{1 - \phi} \left(\frac{f^1 + if^2}{2} \right),$$

$$g_{z_2 z_2} = g_{13} - ig_{14} = \frac{1}{1 - \phi} \left(\frac{f^1 - if^2}{2} \right).$$

If we let

$$\Omega = i \frac{1}{2} g_{ij} dz_i \wedge d\bar{z}_j$$

be the Kähler form, then the Kähler condition is $d\Omega = 0$, or, for all i, j, k,

$$\frac{\partial g_{ij}}{\partial z^k} = \frac{\partial g_{ik}}{\partial z^j}.$$

It is straightforward to check the pleasant property that the Kähler condition \[21\] is equivalent to the Bianchi identity \[13\] for the $U(1)$ field strength \[14\]. Thus our metric g_{ij} is a Kähler metric and thus we can introduce a Kähler potential K defined by

$$g_{ij} = \frac{\partial^2 K}{\partial z^i \partial \bar{z}^j}.$$

Now we will show that the Kähler potential K is related to the integrability condition of the self-duality
equation (31). Locally, there is no difficulty in finding the general solution of Eq. (24):

$$A_{z_i} = 0, \quad A_{z_i} = 2i\partial_{z_i}(K - \bar{z}_k z_k).$$

(31)

Then one can easily check that the real-valued smooth function K in Eq. (31) is equivalent to the Kähler potential in Eq. (20) (up to holomorphic diffeomorphisms).

As announced in Eq. (21), the metric $g_{\mu\nu}$ in Eq. (6) is related to gravitational instantons satisfying Eq. (21), whose metrics are necessarily Ricci-flat. To see this, let us rewrite $g_{\mu\nu}$ as

$$g_{\mu\nu} = \frac{1}{2}(\delta_{\mu\nu} + \tilde{g}_{\mu\nu}).$$

Then, from Eq. (20), one can see that

$$\sqrt{\det g_{\mu\nu}} = 1.$$

(33)

Note that the metric $\tilde{g}_{\mu\nu}$ is also a Kähler metric:

$$\tilde{g}_{ij} = \frac{\partial^2 \tilde{K}}{\partial z^i \partial \bar{z}^j}.$$

(34)

The relation $\det \tilde{g}_{\mu\nu} = (\det \tilde{g}_{ij})^2$ definitely leads to

$$\det \tilde{g}_{ij} = 1.$$

(35)

Therefore the metric $\tilde{g}_{\mu\nu}$ is both Ricci-flat and Kähler, which is the case of gravitational instantons [7]. For example, if one assumes that \tilde{K} in Eq. (24) is a function solely of $r^2 = |z_1|^2 + |z_2|^2$, Eq. (28) can be integrated to give

$$\tilde{K} = \sqrt{r^4 + t^4} + t^2 \log \frac{r^2}{\sqrt{r^4 + t^4} + t^2}.$$

(36)

This leads precisely to the EH metric of [3]. The instanton equation (15) is thus equivalent to the Einstein field equation for Kähler metrics.

Although it is obvious that the metric $\tilde{g}_{\mu\nu}$ in Eq. (6) is hyper-Kähler [12], since in four dimensions the hyper-Kähler condition is equivalent to Ricci-flat Kähler, we would like to show more directly the hyper-Kähler structure. First we introduce a dual basis of 1-forms defined by $\sigma_\mu = \alpha_{\mu\nu} dx^\nu$ where, $\alpha_{\mu\nu} = \sqrt{g_{\mu\nu}}$ for $\mu = \nu$, $g_{\mu\nu}/2\sqrt{g_{11}}$ for $\mu \neq \nu$ and $\mu = 1, 2$, and $g_{\mu\nu}/2\sqrt{g_{33}}$ for $\mu \neq \nu$ and $\mu = 3, 4$, and

$$\gamma = \frac{1}{2} \left(1 \pm \frac{(\det g_{\mu\nu})^{\frac{1}{2}}}{\sqrt{g_{11}g_{33}}} \right).$$

Using the metric components in Eq. (19), one can show that the metric can be written as

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = \sigma_\mu \otimes \sigma_\mu$$

(37)

and

$$\sigma_1 \wedge \sigma_2 \wedge \sigma_3 \wedge \sigma_4 = \sqrt{\det g_{\mu\nu}} d^4 x.$$

(38)

Let us introduce a SD local triple of 2-forms defined by

$$\omega^a = \frac{1}{2} \eta^a_{\mu\nu} \sigma^\mu \wedge \sigma^\nu,$$

(39)

where η^a are three 4×4 SD 't Hooft matrices. The explicit forms of ω^a are given by

$$\omega^1 = (\det g_{\mu\nu})^{\frac{1}{2}} (dx^1 \wedge dx^4 + dx^2 \wedge dx^3),$$

(40)

$$\omega^2 = (\det g_{\mu\nu})^{\frac{1}{2}} (dx^2 \wedge dx^4 + dx^3 \wedge dx^1),$$

(41)

$$\omega^3 = g_{11} dx^1 \wedge dx^2 + g_{33} dx^3 \wedge dx^4 + g_{13} (dx^1 \wedge dx^4 + dx^3 \wedge dx^2) + g_{14} (dx^3 \wedge dx^1 + dx^4 \wedge dx^2).$$

(42)

One can easily check that $d\omega^3 = 0$ if and only if the Bianchi identity (13) is satisfied. Since $\omega^3 = -\Omega$ in Eq. (25), this result indeed reproduces the Kähler condition (29). Thus the metric $g_{\mu\nu}$ is Kähler, as was shown before, but not hyper-Kähler, since $d\omega^1 = d\omega^2 = 0$ requires $\det g_{\mu\nu} = \text{constant}$.

However, if we consider the triple of Kähler forms of the metric $\tilde{g}_{\mu\nu}$ as follows,

$$\tilde{\omega}^a = \frac{1}{2} \eta^a_{\mu\nu} \bar{\sigma}^\mu \wedge \bar{\sigma}^\nu,$$

(43)

where $\bar{\sigma}^a$ are defined in the same way as the σ^as, but with $g_{\mu\nu}$ replaced by $\tilde{g}_{\mu\nu}$, we immediately get

$$d\tilde{\omega}^a = 0, \quad \forall a$$

(44)

since $\det \tilde{g}_{\mu\nu} = 1$. Thus the metric $\tilde{g}_{\mu\nu}$ should be a hyper-Kähler metric [12]. Therefore the hyper-Kähler condition has one-to-one correspondence with the self-duality equation of NC $U(1)$ instantons through the SW map.

Using this hyper-Kähler structure, we can easily understand the ALF such as the Taub-NUT metric [9] as well as ALE instantons [8, 13], which are a general class of self-dual, Ricci-flat metrics with a triholomorphic $U(1)$ symmetry. The metric is given by

$$ds^2_{GH} = U^{-1} (dx^4 + \bar{a} \cdot d\bar{x})^2 + Ud\bar{x} \cdot d\bar{x},$$

(45)

where x^4 parameterizes circles and $\bar{x} \in \mathbb{R}^3$. Since the above mentioned triholomorphic $U(1)$ symmetry is generated by the Killing field $\partial / \partial dx^4$, the $U(1)$ invariant function $U = U(\bar{x})$ does not depend on x^4, and has to satisfy the condition

$$\nabla U = \nabla \times \bar{a}.$$

(46)

It turns out that the condition (46) is equivalent to the hyper-Kähler condition (44). To see this, let us introduce a 1-form basis as

$$\bar{\sigma}^i = \sqrt{U} dx^i, \quad (i = 1, 2, 3),$$

$$\bar{\sigma}^4 = \frac{1}{\sqrt{U}} (dx^4 + \bar{a} \cdot d\bar{x}),$$

(47)
where the metric reads as

$$ds^2_{\text{GH}} = \tilde{\sigma}_\mu \otimes \tilde{\sigma}_\mu. \quad (48)$$

It is then easy to see that Eq. (46) is equivalent to the hyper-Kähler condition (44) for the Kähler forms (43) given by the basis (47).

Thus the ALE and ALF spaces are all hyper-Kähler manifolds. But they have very different asymptotic behaviors of curvature tensors: The ALE spaces fall like $1/r^6$ while the ALF spaces fall like $1/r^3$ (10). This suggests that the ALF metrics describe gravitational “dipoles” (8) while the ALF metrics describe monopoles (regarded as gravitational dyons) (9). So ALF instantons may have a rather similar realization in terms of NC (regarded as gravitational dyons) [9]. So ALF instantons can emerge from local condensates of purely NC photons (10), while the ALF spaces fall like $1/r^3$. The connection between NC monopoles [14] is still a consequence of the strict Lorentz invariance. The Alexander von Humboldt Foundation (H.S.Y.) and by DFG under the project SA 1356/1 (M.S.).

* Electronic address: hsyang, sali@physik.hu-berlin.de

[1] N. Nekrasov and A. Schwarz, Commun. Math. Phys. 198, 689 (1998).
[2] N. Seiberg and E. Witten, J. High Energy Phys. 09, 032 (1999).
[3] H. S. Yang, hep-th/0402002
[4] R. Banerjee and H. S. Yang, Nucl. Phys. B708, 434 (2005).
[5] H. Liu, Nucl. Phys. B614, 305 (2001); Y. Okawa and H. Ooguri, Phys. Rev. D64, 046009 (2001); S. Mukhi and N. V. Suryanarayana, J. High Energy Phys. 05, 023 (2001); H. Liu and J. Michelsohn, Phys. Lett. B518, 143 (2001).
[6] M. Salizzoni, A. Torrielli, and H. S. Yang, Phys. Lett. B634, 427 (2006).
[7] A Kähler geometry is solely described by a single real-valued function K – the Kähler potential. If $R_{ab}dz^a \otimes dz^b$ is the Ricci tensor, then $R_{ij} = -\frac{\partial^2[\log det(g_{ij})]}{\partial z^a \partial \bar{z}^a}$. Since the Einstein equation for a metric g_{ab} is given by $R_{ab} = \rho g_{ab}$ where $\rho = \frac{1}{2} R - \Lambda$ with the Ricci scalar R and the cosmological constant Λ is a constant, the requirement that the metric g_{ab} be Einstein, is nothing else than $\det g_{ij} = e^{-\rho K}$, which is known as the complex Monge-Ampère equation; S.-T. Yau, Commun. Pure Appl. Math. 31, 339 (1978). For Ricci-flat metrics, the equation becomes $\det g_{ij} = 1$. The gravitational instantons satisfying Eq. (21) are always Ricci-flat metrics since $R_{ab} = R^{a}_{\ cba} = \pm \frac{1}{2} \partial_a \partial_b \log \det R_{(cde)} = 0$.
[8] T. Eguchi and A. J. Hanson, Phys. Lett. 74B, 249 (1978).
[9] S. W. Hawking, Phys. Lett. 60A, 81 (1977).
[10] T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep. 66, 213 (1980).
[11] G. W. Gibbons and C. N. Pope, Commun. Math. Phys. 66, 267 (1979).
[12] A hyper-Kähler manifold \mathcal{M} is defined by a quadruple (I, J, K, g), where I and K are almost complex structures on \mathcal{M} with $IK = K$, and g is a Kähler metric with respect to I, J and K. The Kähler forms on \mathcal{M} are defined by $\omega^I(X, Y) = g(I X, Y)$, $\omega^J(X, Y) = g(J X, Y)$ and $\omega^K(X, Y) = g(K X, Y)$. Then the hyper-Kähler structure is equivalent to the condition that the almost complex structures I, J and K are integrable, i.e., $d\omega^I = d\omega^J = d\omega^K = 0$.
[13] G. W. Gibbons and S. W. Hawking, Phys. Lett. 78B, 430 (1978).
[14] K. Lee and P. Yi, Phys. Rev. D61, 125015 (2000).
[15] S. Weinberg and E. Witten, Phys. Lett. 96B, 59 (1980).
[16] M. Chaichian, P. Kulish, K. Nishijima, and A. Tureanu, Phys. Lett. B604, 98 (2004); M. Chaichian, P. Presnajder, and A. Tureanu, Phys. Rev. Lett. 94, 151602 (2005); J. Wess, hep-th/0408050
[17] S. W. Hawking and C. N. Pope, Nucl. Phys. B146, 381 (1978); C. LeBrun, Commun. Math. Phys. 118, 591 (1988).
[18] L. Alvarez-Gaumé and E. Witten, Nucl. Phys. B234, 269 (1983); L. Alvarez-Gaumé and P. Ginsparg, Ann. Phys. 161, 423 (1985).
[19] P. B. Kronheimer, J. Diff. Geom. 29 (1989) 665.