Abstract

A gram-staining-positive, rod-shaped bacterium, designated strain FJAT-51161T was isolated from farmland soil collected from Fujian Province, China. Growth was observed at 25–40 °C (optimum 30 °C), pH 7.0–9.0 (optimum 7.0), and NaCl tolerance in the range of 0–7% (w/v), respectively. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the strain FJAT-51161T belonged to the genus *Lysinibacillus*, and had the closest relationship with *Lysinibacillus xylanilyticus* XDB9T (99.0% 16S rRNA sequence similarity). The digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values based on the genome sequence analysis between strain FJAT-51161T and the closest reference strain were 38.0% for dDDH and 88.7% for ANI, respectively, lower than the prokaryotic species delineation values. Further analysis showed that strain FJAT-51161T shared the fatty acid profiles such as iso-C15:0 (46.7%), iso-C16:0 (15.8%), C16:1 ω7c alcohol (14.0%), anteiso-C15:0 (6.9%) with other members of the genus *Lysinibacillus*. As the peptidoglycan contained the amino acids alanine, lysine, glycine and aspartic acid, the type A4α was deduced as found in the closest relatives of strain FJAT-51161T. The peptidoglycan of strain FJAT-51161T was L-Lys–D-Asp (type A4α). The major quinone was MK-7 and MK-6. The major polar lipids were diphosphatidylglycerol (DPG) and phosphatidylethanolamine (PE). The DNA G+ C content is 36.6 mol%. Based on the phenotypic characters and taxono-genomics study, strain FJAT-51161T is considered to represent a novel *Lysinibacillus* species, for which the name *Lysinibacillus agricola* sp. nov. is proposed. The type strain is FJAT-51161T (GDMCC1.2350T = KCTC 43326T).

Keywords *Lysinibacillus agricola* sp. nov. · Soil

Abbreviations

dDDH Digital DNA–DNA hybridization
ANI Average nucleotide identity
DPG Diphosphatidylglycerol
PE Phosphatidyl ethanolamine

Introduction

The genus *Lysinibacillus* was established and transferred from the genus *Bacillus* by Ahmed et al. (Ahmed et al. 2007), which belong to the family *Bacillaceae* of the phylum Firmicutes. The *Lysinibacillus* species are unique among the family *Bacillaceae* as they are characterized by a special cell-wall peptidoglycan type of A4α (L-Lys–D-Asp), such as *Lysinibacillus yapensis* isolated from deep-sea sediment of the Yap Trench, Pacific Ocean (Yu et al. 2019), *Lysinibacillus xyleni* sp. nov. from a bottle of xylene (Begum et al. 2016), *Lysinibacillus louembei* sp. nov. from alkaline fermented leaves of cassava (Ouoba et al. 2015), *Lysinibacillus manganicus* sp. nov. isolated from manganese mining soil (Liu et al. 2013). At the time of writing, the genus *Lysinibacillus* consisted of 30 species with validly published names (https://lpsn.dsmz.de/genus/lysinibacillus) with *Lysinibacillus boronitolerans* as the type species (Ahmed et al. 2007). During the survey of *Bacillus*-like species diversity, an endospore-forming novel strain was isolated from soil samples and was found to have morphological properties...
consistent with the genus *Lysinibacillus*. Therefore, we adopted polyphasic taxonomic approach combining with the genome indexes to evaluate the taxonomic position of strain FJAT-51161T.

Materials and methods

Sample collection, isolation, and preservation

Strain FJAT-51161T was isolated from soil sample of farm land, Fujian Province, China. The sample was serially diluted and an aliquot (100 μL) was spread on LB medium. The plate was incubated at 30 °C for two days. The colonies obtained were repeatedly re-streaked on the same medium until pure colonies were obtained and stored as glycerol suspensions (20%, w/v) at −80 °C and as lyophilized form in skimmed milk (15%, w/v) at 4 °C.

Phenotypic, microscopic and growth conditions

Colony morphology was observed on LB medium after 24 h of aerobic incubation under optimal growth conditions. The gram staining and the KOH lysis test were carried out according to the methods described by Gregersen (1978), Smibert and Krieg (1994). The size of the cells was determined by transmission electron microscopy (Hitachi, Japan). Endospores were examined according to Schaeffer–Fulton staining method (Murray et al. 1994). Motility was examined on motility agar (Chen et al. 2007). Ten different growth temperatures (10, 15, 20, 25, 30, 37, 45, 50, 55 and 60 °C), six NaCl concentrations (0, 1, 3, 5, 7, and 10%, w/v) and ten pH values (5.0, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 10.0, 11.0) were tested. Catalase activity was determined by investigating bubble production with 3% (v/v) H2O2, and oxidase activity was determined using 1% (v/v) tetramethyl p-phenylenediamine. Cell growth under anaerobic conditions was determined in a CO2 incubator on anaerobic media. Other physiological and biochemical characteristics were confirmed using API 20E and API 50CHB strips (BioMérieux, France) following the manufacturer’s instructions.

16S rRNA gene sequence and phylogenetic analysis

Genomic DNA was extracted from a single colony of strain FJAT-51161T grown on LB plates at 30 °C for 24 h using the bacteria genomic DNA extraction kit (Shanghai Generay Biotech Co., Ltd, China) according to the manufacturer’s instructions. 16S rRNA gene was amplified and sequenced using primers and the conditions described previously (Liu et al. 2015). The obtained 16S rRNA gene sequence was compared with available sequences of cultured species at EZBioCloud server (https://www.ezbiocloud.net/) (Yoon et al. 2017a). After multiple alignments of data by CLUSTAL_X (Thompson et al. 1997), phylogenetic trees were constructed using the neighbor-joining (Saitou and Nei 1987), maximum-parsimony (MP) (Fitch 1971) and maximum-likelihood (Felsenstein 1981) methods implemented with MEGA version X (Kumar et al. 2018). For all the trees, gaps were treated as complete deletions, evolutionary distances were computed according to the Kimura 2-parameter model (Kimura 1980) and the reliability of each branch was evaluated by bootstrap analysis based on 1000 replications (Felsenstein 1985). The 16S rRNA gene sequences used for the phylogenetic comparisons were shown in the maximum-likelihood phylogenetic tree with their strain designations and accession numbers.

Chemotaxonomy

To investigate chemotaxonomy characters, the peptidoglycan diamino acid test was carried out according to the method described by Schumann (2011). Main quinine was analyzed as described by Collins (1977) using reverse-phase HPLC (Groth et al. 1996). Extraction and analysis of polar lipids by two-dimensional TLC was performed according to Minnikin et al. (1979). The cellular fatty acid profiles of strain FJAT-51161T and its closely related strains grown on TSBA medium at 28 °C for 24 h were determined according to the Sherlock microbial identification system (MIDI). The fatty acids were separated using an automated GC system (model 7890 N, Agilent) and identified with the TSBA6 database of the microbial identification system (Sasser 1990).

Genome sequencing and comparison

For determination of digital DDH (dDDH) and average nucleotide identity (ANI), the genomes of FJAT-51161T, *L. xylanilyticus* DSM 23493T, *L. macroides* DSM 54T and *L. contaminans* DSM 25560T were sequenced by the Beijing Novogene Bioinformatics Technology Co., Ltd (China), with accession number CP067341, LFJX0000000, LGCI00000000 and LGRV00000000. Other genomes were obtained from NCBI database. Estimation of dDDH was performed using the genome-to-genome distance calculator (GGDC) (Auch et al. 2010; Meier-Kolthoff et al. 2013). The genome files were uploaded to the GGDC 2.0 Web interface (http://ggdc.dsmz.de/distcalc2.php) and the formula two was used according to the recommendation for the calculation of dDDH for incomplete genomes. The ANI value was calculated using OrthoAniu algorithm (https://www.ezbiocloud.net/tools/ani) according to the description by Yoon et al. (2017b) at the EzGenome web server (http://www.ezbiocloud.net/ezgenome/ani).
Results and discussion

The colonies of strain FJAT-51161T were approximate 2 mm in diameter, white-creamy, smooth, opaque circular. The size of cells and presence of flagella were determined by transmission electron microscopy (Hitachi, Japan), with a length ranging from 2.0 to 3.37 μm and a diameter ranging from 0.8 to 1.12 μm (Supplementary Fig. S1). The results showed that strain FJAT-51161T could not utilize any carbon source to produce acid in API 50 CHB strip. The hydrolysis of gelatin, V−P test and lysine decarboxylase were positive in API 20E, others were negative. The different characteristics of strain FJAT-51161T in comparison with its closest phylogenetic neighbors are presented in Table 1.

The results of phylogenetic analysis of 16S rRNA gene sequences suggested that strain FJAT-51161T formed a single branch distinguished from those of other members of the genus Lysinibacillus (Fig. 1). EZBioCloud server search analysis revealed that strain FJAT-51161T had high 16S rRNA similarities with the type strains of Lysinibacillus xylanilyticus DSM 23493T (99.0% sequence similarity), Lysinibacillus pakistanensis NCCP-54T (98.7%), Lysinibacillus macroides DSM 54T (98.6%), respectively, other species in the genus Lysinibacillus were lower than 98.1%. Therefore, it was obvious that strain FJAT-51161T should be a member of the v genus Lysinibacillus. The phylogenetic position was also confirmed by trees generated using the methods of neighbor-joining (Supplementary Fig. 2) and maximum parsimony (Supplementary Fig. 3).

As the peptidoglycan contained the amino acids alanine, lysine, glycine and aspartic acid, the type A4α was deduced as found in the closest relatives of strain FJAT-51161T (Lee et al. 2010). So, the peptidoglycan of strain FJAT-51161T was L-Lys–D-Asp (type A4α) (Supplementary Fig. S4). The main quinone profiles of strain FJAT-51161T were MK-7 (58.3%), MK-6 (29.1%), MK-5 (6.3%), and MK-8 (6.3%). The major polar lipids were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), one unknown aminolipid, two unknown aminophospholipids and two unknown phospholipids (Supplementary Fig. S5). The cellular fatty acid profiles of strain were characterized by high proportions of branched fatty acids, such as iso-C15:0 (46.7%), iso-C16:0 (15.8%), C16:1ω7c alcohol (14.0%), anteiso-C15:0 (6.9%) (Table 2), which confirmed the placement of strain FJAT-51161T in the genus Lysinibacillus with iso-C15:0 as the major fatty acid (Ahmed et al. 2007).

The genome size of FJAT-51161T was 5,381,280 bp, and the genomic DNA G+C content was 36.0%. Detailed genome features of FJAT-51161T and closely related members were showed in Table 3. The values of dDDH and ANI for strain FJAT-51161T with its most closely related species L. xylanilyticus DSM 23493T were 38.0 and 88.7%, respectively, lower than the recognized cutoff values of isDDH > 70% and ANI > 95–96% served as a

Table 1 Characteristics used to distinguish strain FJAT-51161T from the type strains of phylogenetically related species

Characteristics	1	2	3	4	5
Spore shape	Round	Round	Round	Round	Round
pH range	7.0–9.0	5–9	7.0–9.0	5.5–9.5	6.5–10.5
pH optimal	7	7	7	7	7–8
Temp range (°C)	25–40	10–40	10–45	16–45	15–45
Temp optimal (°C)	30	30	30	35–37	30
Nitrate reduction	−	−	−	−	−
Urease activity	−	−	−	+	−
Hydrolysis of gelatin	+	+	−	−	+
Voges–Proskauer test	+	−	+	−	+
Arginine dihydrolase	−	−	−	+	−
Lysine decarboxylase	+	+	−	−	−
Polar lipida	PE, DPG, PG	PE, DPG	PG, PE, DPG	PG, PE, DPG	PG, PE, DPG
MK	7	7	7	7	7, 6
Cell-wall peptidoglycan	L-Lys–D-Asp	L-Lys–D-Asp	L-Lys–D-Asp	L-Lys–D-Asp	L-Lys–D-Asp
DNA G+C content (mol %)	41	37.2	38.2	36.5	37.3

1 FJAT-51161T, 2 Lysinibacillus xylanilyticus DSM 23493T, 3 Lysinibacillus macroides DSM 54T, 4 Lysinibacillus boronitolerans T-10aT, 5 Lysinibacillus contaminans DSM 25560T

The data were from this study, except taxon four was from Ahmed et al. (2007)

aDPG diphosphatidylglycerol, PG phosphatidylglycerol, PE phosphatidylethanolamine
threshold for prokaryotic species delineation (Wayne et al. 1987; Goris et al. 2007; Richter and Rosselló-Móra 2009; Meier-Kolthoff et al. 2013).

Based on the morphological, phenotypic and genotypic distinctiveness (G+C content, 16S rRNA gene sequence and taxono-genomics (dDDH and ANI)), strain FJAT-51161T can be considered to represent a novel species within the genus *Lysinibacillus*, for which the name *Lysinibacillus agricola* sp. nov. is proposed.

Description of Lysinibacillus agricola sp. nov.

Lysinibacillus agricola (*a.gri’co.la. L. masc. n. ager field, L. suff. cola (from L. n. *incola* a dweller, inhabitant, L. masc. n. *agricola* field dwelling).

Aerobic gram-positive, motile and rod-shaped bacterium with rounded ends, cells size is approximate 0.8~1.12 × 2.0~3.37 μm. Cells are motile by means of lateral flagella. On LB plate, the colony diameter is about 1–2 mm, white-creamy, smooth, and opaque. Round endospores are located at terminal position. Growth of strain FJAT-51161T is achieved aerobically between 25 and 40 °C (optimum 30 °C), between pH 7.0–9.0 (optimum 7.0), and NaCl (w/v) concentration in the range of 0–7.0% (optimum 0%). It could not grow at 10% NaCl (w/v). Catalase and oxidase are positive. In API 50CHB strip, strain FJAT-51161T cannot utilize any carbon source to produce acid. In API 20E, hydrolysis of gelatin, Voges–Proskauer test and lysine decarboxylase are positive, others were negative. The main quinone is MK-7. The major polar lipids are diphosphatidylglycerol (DPG) and phosphatidyl-lethanolamine (PE). The peptidoglycan was L-Lys–D-Asp (type A4α). The main quinone is MK-7 and MK-6. The predominant fatty acids are iso-C₁₅:₀, iso-C₁₆:₀ and C₁₆:₁ ω7c alcohol. The G+C content of the genome is 36.6%.

The type strain of the species FJAT-51161T (GDMCC1.2350T = KCTC 43326T) was isolated from soil in Fujian Province, China.
Table 2 Fatty acids profiles of strain FJAT-51161T and its related species

Fatty acids	1	2	3	4^a	5
C_{12:0}	0.16	0	0	0	0
iso-C_{13:0}	0.1	0.4	0	0	0
C_{14:0}	0.6	0.9	0.4	0.4	0.7
iso-C_{14:0}	4.7	1.55	2.6	1.7	5.6
C_{15:0}	0	0	0	0.5	0
anteiso-C_{15:0}	6.9	8.0	7.4	21.4	3.14
iso-C_{15:0}	46.7	58.2	45.9	31.8	35.4
iso-C_{12:1 ω9c}	0	0.5	0	0	0.2
C_{16:0}	1.9	1.85	2.7	1.8	2.4
C_{16:0 2OH}	0.1	0	0	0	0
C_{16:0 3OH}	0.12	0	0	0	0
iso-C_{16:0}	15.8	1.8	12.19	11.2	11.5
iso-C_{16:1 H}	0	0	0	0	0.2
C_{16:1 ω11c}	2.3	2.7	5.3	2.7	6.4
C_{16:1 ω7c alcohol}	14.0	7.0	10.1	7.6	24.9
anteiso-C_{17:0}	1.8	2.7	3.1	11.1	0.8
iso-C_{17:0}	3.3	3.4	6.1	5.5	1.9
anteiso-C_{17:1 ω9c}	0	0	0	0	0
iso-C_{17:1 ω10c}	0.6	6.3	2.0	1.3	3.2
C_{17:1 ω9c}	0	0	0	0	0.8
C_{18:0}	0.19	0.8	0.4	0	0.6
C_{18:1 ω7c}	0	0.4	0.4	0	0.5
Summed feature 3^a	0.19	0.1	0	0	0.2
Summed feature 4^b	0.5	3.1	1.6	2.8	1.5
Summed feature 8^c	0	0.2	0	0	0

^aSummed feature 3, C_{16:1 ω6c} and or C_{16:1 ω7c}
^bSummed feature 4, anteiso-C_{17:1} B and/or iso-C_{17:1} I
^cSummed feature 8, C_{18:1 ω6c} and/or C_{18:1 ω7c}
^dThe data were got from the paper by Ahmed et al. (2007)

Table 3 The 16S rRNA similarities, ANI, AAI, POCP and dDDH values of strain FJAT-51161T with its closely related species

Species	Strain no.	Accession no.	16S rRNA similarities (%)	ANI (%)	dDDH (%)
FJAT-51161T	FJAT-51161T	CP067341	99.0	88.7	38.0
Lysinibacillus xylanilyticus	DSM 23493T	LFXI00000000	98.7	82.8	28.1
Lysinibacillus pakistanensis	NCCP-54T	BBDJ00000000	98.6	79.9	25.5
Lysinibacillus macroides	DSM 54T	LGCI00000000	98.1	80.5	25.1
Lysinibacillus fusiformis	NBRC 15717T	CP010820	98.1	80.5	25.1
Lysinibacillus boronitolerans	T-10aT	JPV00000000	98.1	80.0	24.7
Lysinibacillus sphaericus	KCTC 3346T	AUOZ00000000	98.0	80.1	25.7
Lysinibacillus contaminans	DSM 25560T	LGRV00000000	97.7	77.9	23.4
Lysinibacillus parviboronicapiens	BAM-582T	PYWI00000000	97.0	80.5	25.8

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00203-021-02394-4.

Author contributions This work was financially supported by Fujian Academy of Agricultural Sciences (GJPY2019003).

Declarations

Conflict of interest The authors declared that they had no conflict of interest.

Ethical approval This article did not contain any studies with animals performed by any of the authors.

References

Ahmed I, Yokota A, Yamazoe A, Fujiwara T (2007) Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 57:1117–1125

Auch AF, von Jan M, Klenk HP, Göker M (2010) Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134

Begum MA, Rahul K, Sasikala C, Ramana CV (2016) Lysinibacillus xylanilyticus sp. nov., isolated from a bottle of xylene. Arch Microbiol 198:325–332

Chen YG, Cui XL, Pukall R, Li HM, Yang YL, Xu LH, Wen ML, Jiang CL (2007) Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south–west China. Int J Syst Evol Microbiol 57:2327–2332

Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789

Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:82–232

Gorin M, Pipou T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789

Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91
Gregersen T (1978) Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127

Groth I, Schumann P, Weiss N, Martin K, Rainey FA (1996) Agrococcus gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

Lee CS, Jung YT, Park S, Oh TK, Yoon JH (2010) Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus. Int J Syst Evol Microbiol 60:281–286

Liu H, Song Y, Chen F, Zheng S, Wang G (2013) Lysinibacillus manganicus sp. nov., isolated from manganese mining soil. Int J Syst Evol Microbiol 63:3568–3573

Liu B, Liu GH, Sengonca C, Schumann P, Che JM, Zhu YJ, Wang JP (2015) Bacillus wayshanensis sp. nov., isolated from rhizosphere soil of a medical plant, Prunella vulgaris, in the Wuyi mountain of China. Int J Syst Evol Microbiol 65:2030–2035

Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95

Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Method 2:233–241

Murray RGE, Doetsch RN, Robinow CF (1994) Determinative and cytological light microscopy. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 21–41

Ouoba LI, Voudibio Mbozo AB, Thorsen L, Anyogu A, Nielsen DS, Kobawila SC, Sutherland JP (2015) Lysinibacillus louembei sp. nov., a spore-forming bacterium isolated from Ntoba Mbozi, alkaline fermented leaves of cassava from the Republic of the Congo. Int J Syst Evol Microbiol 65:4256–4262

Richter M, Rosselló-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 20:1–6

Schumann P (2011) Peptidoglycan structure. Method Microbiol 38:101–129

Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murrage RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Bacteriol 37:463–464

Yu L, Tang X, Wei S, Qiu Y, Xu X, Xu G, Wang Q, Yang Q (2019) Isolation and characterization of a novel piezotolerant bacterium Lysinibacillus yapensis sp. nov., from deep-sea sediment of the Yap Trench. Pacific Ocean J Microbiol 57:562–568

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.