Immunotherapy-related toxicity in lung cancer: clinical characteristics and managing strategy

Wen-Xin Luo, Lan Yang, Wei-Min Li

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

Worldwide, lung cancer is the most common malignancy and the leading cause of cancer-related death. After the era of chemotherapy, radiotherapy, and molecular-targeted therapy, the treatment of advanced lung cancer has entered a new era of immunotherapy, represented by immune checkpoint inhibitors (ICIs), including programmed cell death protein-1/programmed cell death protein ligand-1 (PD-1/PD-L1) inhibitors and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) inhibitors.[1] However, patients treated with ICIs may experience unexpected systemic toxicities, some fatal. Thus, managing immunotherapy-related toxicity has become increasingly significant in patients with lung cancer. Here, we review the latest developments on the clinical features and management of immunotherapy-related toxicity in patients with lung cancer in order to promote the standardization of immunotherapy for lung cancer.

Clinical characteristics of immunotherapy-related toxicity

The toxicities can occur in almost every tissues and organs throughout the body, including skin, endocrine system, liver, gastrointestinal tract, lung, cardiovascular system, musculoskeletal system, nervous system, eyes, hematologic system, etc. In the present review, we mainly focus on several common or fatal toxicities.

Digestive toxicity

The digestive system is one of the most common sites affected by ICIs; and digestive toxicities mainly manifest with hepatic toxicity (hepatitis) and gastrointestinal toxicity (diarrhea and colitis).[2,3] In clinical trials of PD-1/PD-L1 inhibitors, the incidences of any-grade hepatic and gastrointestinal toxicities range from 2–9% and 1–15%, respectively; and those of grade 3 or higher are <1–4% and <1–3%, respectively.[4–12] Notably, gastrointestinal toxicity is frequently observed in patients with CTLA-4 inhibitors other than PD-1/PD-L1 inhibitors; moreover, ICI combination may significantly increase the possibility. A meta-analysis of incidence of immunotherapy-related colitis in various solid cancers revealed that no significant differences in gastrointestinal toxicity incidences were observed among different cancers (eg, melanoma, non-small cell lung cancer [NSCLC], renal cell cancer [RCC]). Incidence of all-grade colitis with CTLA inhibitor monotherapy and PD-1/PD-L1 inhibitor monotherapy were 9.1% and 1.3%, respectively. Patients receiving ICI combination (ipilimumab plus nivolumab) had the highest rate of all-grade colitis (13.6%).[13]

Endocrine toxicity

The most common endocrine toxicity is thyroid dysfunction (hypothyroidism and hyperthyroidism). Other endocrine toxicities have also been reported, such as thyroiditis, hypophysitis, type one diabetes and primary adrenal insufficiency, but they are rare.[2,3] Specific regimens appear to be associated with specific endocrine toxicities. Thyroid dysfunction is seen more commonly with PD-1/ PD-L1 inhibitors, whereas hypophysitis is seen more commonly with CTLA-4 inhibitors.[14] Following treatment of PD-1/PD-L1 inhibitors, 4–11% and 1–8% of patients with lung cancer experience any-grade hypothyroidism and hyperthyroidism, respectively; yet those of grade 3 or higher are rare (<1% for both).[4–11]

Pulmonary toxicity

Pulmonary toxicity is relatively common in lung cancer compared with other cancers; and it is the leading cause of immunotherapy-related deaths in lung cancer.[15] According to the preexisting clinical trials in patients with lung cancer treated with PD-1/PD-L1 inhibitors monotherapy,

Access this article online

Quick Response Code:
Website: www.cmj.org
DOI: 10.1097/CM9.0000000000001287

Correspondence to: Wei-Min Li, Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, Sichuan 610041, China
E-Mail: weimini003@163.com

Chinese Medical Journal 2021;134(7)
Received: 14-05-2020 Edited by: Pei-Fang Wei
the incidence of any-grade pneumonitis ranges from 3% and 9%; and 1–3% of patients experience pneumonitis of grade 3 or higher.[4-12] Retrospective analyses suggest that old age (≥70 years), Asian ethnicity, former/current smoking status, squamous cell histological type, preexisting chronic lung disease (such as interstitial lung disease, chronic obstructive pulmonary disease [COPD]), combination therapy (PD-1/PD-L1 inhibitor plus CTLA-4 inhibitor, epidermal growth factor receptor-tyrosine kinase inhibitor plus PD-1/PD-L1 inhibitor) are associated with increased risk of pneumonitis.[13-18] On CT images, the radiologic features of pneumonitis are classified into four patterns: cryptogenic organizing pneumonia (COP), hypersensitivity pneumonitis (HP), acute interstitial pneumonia/acute respiratory distress syndrome (AIP/ARDS), and non-specific interstitial pneumonia (NSIP).[20]

Cardiovascular toxicities

Cardiovascular toxicity is rare in lung cancer, but it is highly lethal. Cardiovascular toxicities reported with ICI s in lung cancer include cardiomyopathy (mainly myocarditis), pericardial disease, arrhythmia, acute coronary syndrome, vascular disease and valve disease.[21] In a large-scale meta-analysis of fatal toxicities in cancers (including lung cancer), the mortality rate of myocarditis is up to 40%.[22] According to a recent real-world study, female, old age (≥75 years), and ICIs combination (ipilimumab plus nivolumab) may favor the occurrence of myocarditis.[23]

Management of immunotherapy-related toxicity

To date, several authoritative organizations have issued guidelines/consensus for immunotherapy; and the principles for management are comprehensive understanding, early recognition, timely detection, detailed assessment and effective management.[2,3,24-26] Before starting treatment, clinicians need to identify whether patients have underlying diseases or risk factors, including (1) pregnancy; (2) hepatitis B or C virus infection, human immunodeficiency virus (HIV) infection, or advanced age; (3) autoimmune diseases, hematopoietic stem cell transplantation or organ transplantation; and (4) poor general condition.[3] Pretreating laboratory tests such as complete blood count with differential, infectious disease screening panel, comprehensive metabolic panel; as well as imaging including CT scans of the chest, abdomen, and pelvis and echocardiography should be reviewed as baseline data.[3,12] Baseline data will be used as a reference for any abnormality occurring during immunotherapy.

During and after the immunotherapy, any adverse events should be assessed for three potential causes: disease progression, an unforeseen event, or an immunotherapy-related toxicity.[18] The differential diagnosis can be based on clinical manifestations, laboratory tests, and endoscopy and imaging examination. Test results should always be compared with baseline to detect any changes over time. Once diagnosed with immunotherapy-related toxicity, it should be graded according to the Common Terminology Criteria for Adverse Events (CTCAE) standard, and treatment should be tailored to different grades.[2,12,19,20] (1) Grade one toxicity does not require hospitalization, and immunotherapy may continue. The use of corticosteroids or other immunosuppressants is usually not recommended. (2) Grade 2 toxicity also does not require hospitalization, but immunotherapy should be suspended temporarily. Patients can be treated with topical or systemic glucocorticoids. (3) Grade 3 toxicity requires hospitalization and suspension of immunotherapy. Systemic glucocorticoid treatment is usually suggested. (4) Grade 4 toxicity requires hospitalization, and shall be considered for admission to intensive care unit. ICI therapy is permanently discontinued. Apart from systemic glucocorticoid, intravenous immunoglobulin is also suggested. Notably, for patients with grade 3 or 4 toxicity, whose symptoms do not subside after 3 to 5 days of treatment, other immunosuppressive therapy (anti-tumor necrosis factor α antibody, alpha-4 beta-7 integrin inhibitors, mycophenolate-containing medicines, etc) may be considered under the guidance of a specialist.

Prospect

Immunotherapy has provided a powerful and promising tool in the treatment of advanced lung cancer. However, there are still some issues to be explored. First, how to identify risk factors for developing specific immunotherapy-related toxicity after treatment with ICIs, which would contribute to the identification of susceptible population and the early diagnosis of toxicity. Second, more attention should be paid to the incidence and features of immune-related toxicities in the extension of immunotherapy (such as combination of ICIs and tyrosine kinase inhibitors). Third, more studies are needed to explore the characteristics of immune-related toxicities in the Chinese population, as most of the current clinical trials have been conducted in Europe and the United States. In summary, we need to develop a more reasonable whole-course management program for the lung cancer patients receiving immunotherapy.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81871890) to Wei-Min Li.

Conflicts of interest

None.

References

1. Duma N, Santana-Davila R, Molina JR. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc 2019;94:1623–1640. doi: 10.1016/j.mayocp.2019.01.013.
2. China Society of Clinical Oncology Guidelines Working Committee Editor-in-Chief. Guidelines for Toxicity Management Related to Immune Checkpoint Inhibitors. Beijing: People's Medical Publishing House; 2019: 53. doi: 10.3969/j.issn.1006-3725.2019.04.001.
3. Thompson JA. New NCCN guidelines: recognition and management of immunotherapy-related toxicity. J Natl Compr Canc Netw 2018;16:594–596. doi: 10.6004/jnccn.2018.0047.
Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Cadranel J, Canellas A, Matton L, Darrason M, Parrot A, Naccache 10. Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Cadranel J, Canellas A, Matton L, Darrason M, Parrot A, Naccache et al. Pembrolizumab versus docetaxel for previously treated non-small-cell lung cancer (KEYNOTE-028): a randomised, phase 3, open-label, phase 2 randomised controlled trial. Lancet 2016;387:1837–1846. doi: 10.1016/s0140-6736(16)00387-0.

Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Pembrolizumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 2018;378:2093–2104. doi: 10.1056/NEJMoa1801946.

Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 2016;387:1540–1550. doi: 10.1016/s0140-6736(15)01281-7.

Reck M, Rodriguez-Alcure D, Robinson AG, Hui R, Cosset T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823–1833. doi: 10.1056/NEJMoa1613493.

Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Cadranel J, Canellas A, Matton L, Darrason M, Parrot A, Naccache Audigier-Valette C, et al. Pembrolizumab versus docetaxel for previously treated non-small-cell lung cancer (POPLAR): a multi-centre, open-label, phase 2 randomised controlled trial. Lancet 2015;373:123–135. doi: 10.1056/NEJMoa1504627.

Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 2017;376:2415–2426. doi: 10.1056/NEJMoa1613493.

Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, et al. Pembrolizumab for previously treated non-small-cell lung cancer (KEYNOTE-001): a multi-centre, open-label, randomised controlled phase 2 study. Lancet 2016;387:2091–2092. doi: 10.1016/s0140-6736(16)00385-4.

Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 2017;376:2415–2426. doi: 10.1056/NEJMoa1613493.

Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 2016;387:1540–1550. doi: 10.1016/s0140-6736(15)01281-7.

Reck M, Rodriguez-Altceu D, Robinson AG, Hui R, Cosset T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823–1833. doi: 10.1056/NEJMoa1606774.

Rittmeyer A, Barlesi F, Waterkamp D, Park K, Cardillo F, von Pawel J, et al. Pembrolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 2017;389:265–275. doi: 10.1016/s0140-6736(16)32517-x.

Wang DY, Ye F, Zhao S, Johnson DR. Incidence of immune checkpoint inhibitor-related colitis in solid tumor patients: a systematic review and meta-analysis. Oncoimmunology 2017;6:e1344805. doi: 10.1080/2162402x.2017.1344805.

Chang LS, Beroukhim R, Teltosky M, Holt FS, Kaiser UB, Min L. Endocrine toxicity of cancer immunotherapy targeting immune checkpoints. Endocr Rev 2019;40:17–65. doi: 10.1210/er.2018-00006.

Cadrenel J, Canellas A, Matton L, Darrason M, Parrot A, Naccache JM, et al. Pulmonary complications of immune checkpoint inhibitors in patients with nonsmall-cell lung cancer. Eur Respir Rev 2019;28:1900358. doi: 10.1183/16000617.00358-2019.

Naidoo J, Nishino M, Patel SP, Shankar B, Rekhtman N, Illy P, et al. Immune-related pneumonitis after chemoradiotherapy and subsequent immune checkpoint blockade in unresectable stage iii non-small-cell lung cancer. Clin Lung Cancer 2020;21:e435–e444. doi: 10.1016/j.cllc.2020.02.025.

Oxandir GR, Yang JC, Yu H, Kim SW, Saka H, Horn L, et al. TATTON: a multi-arm, phase lb trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol 2020;31:507–516. doi: 10.1016/j.annonc.2020.01.013.

Voong KR, Hazell SZ, Fu W, Hui C, Lin CT, Dong K, et al. Relationship between prior radiotherapy and checkpoint-inhibitor pneumonitis in patients with advanced non-small-cell lung cancer. Clin Lung Cancer 2019;20:470–479. doi: 10.1016/j. clincr.2019.02.018.

Rashdan S, Minna JD, Gerber DE. Diagnosis and management of pulmonary toxicity associated with cancer immunotherapy. Lancet Respir Med 2018;6:472–478. doi: 10.1016/s2213-2600(18)30172-3.

Sears CR, Peikert T, Possick JD, Naidoo J, Nishino M, Patel SP, et al. Knowledge Gaps And Research Priorities In Immune Checkpoint Inhibitor-Related Pneumonitis. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2019;200:e31–e43. doi: 10.1164/rccm.201906-1202ST.

Salem JE, Manouchehri A, Moey M, Lebrun-Vignes B, Bastarache L, Pariente A, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol 2018;19:1579–1589. doi: 10.1016/s1470-2045(18)30608-9.

Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol 2018;4:1721–1728. doi: 10.1001/jamaoncol.2018.3923.

Zamami Y, Nimmura T, Okada N, Koyama T, Fukushima K, Izawa-Ishizawa Y, et al. Factors associated with immune checkpoint inhibitor-related myocarditis. JAMA Oncol 2019;5:1635–1637. doi: 10.1001/jamaoncol.2019.3113.

Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brussel KJ, Caterino JM, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: american society of clinical oncology clinical practice guideline. J Clin Oncol 2018;36:1714–1768. doi: 10.1200/jco.2017.77.6385.

Haanen J, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017;28 Suppl 4:iv119–iv142. doi: 10.1016/annonc/mdx225.

Puzanov I, Diab A, Abdallah K, Bingham CO 3rd, Brogdon C, Dadu R, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (STI) Toxicity Management Working Group. J Immunother Cancer 2017;5:e95. doi: 10.1186/s40425-017-0300-z.

How to cite this article: Luo WX, Yang L, Li WM. Immunotherapy-related toxicity in lung cancer: clinical characteristics and managing strategy. Chin Med J 2021;134:780–782. doi: 10.1097/CM9. 0000000000001287.