A FOCAL SUBGROUP THEOREM FOR OUTER COMMUTATOR WORDS

CRISTINA ACCIARRI, GUSTAVO A. FERNÁNDEZ-ALCOBER, AND PAVEL SHUMYATSKY

Abstract. Let G be a finite group of order $p^a m$, where p is a prime and m is not divisible by p, and let P be a Sylow p-subgroup of G. If w is an outer commutator word, we prove that $P \cap w(G)$ is generated by the intersection of P with the set of mth powers of all values of w in G.

Let G be a finite group and P a Sylow p-subgroup of G. The Focal Subgroup Theorem states that $P \cap G'$ is generated by the set of commutators $\{[g, z] : g \in G, z \in P, [g, z] \in P\}$. This was proved by Higman in 1953 [4]. Nowadays the proof of the theorem can be found in many standard books on group theory (for example, Rose’s book [7] or Gorenstein’s [3]).

One immediate corollary is that $P \cap G'$ can be generated by commutators lying in P. Of course, G' is the verbal subgroup of G corresponding to the group word $[x, y] = x^{-1}y^{-1}xy$. It is natural to ask the question on generation of Sylow subgroups for other words. More specifically, if w is a group word we write G_w for the set of values of w in G and $w(G)$ for the subgroup generated by G_w (which is called the verbal subgroup of w in G), and one is tempted to ask the following question.

Question. Given a Sylow p-subgroup P of a finite group G, is it true that $P \cap w(G)$ can be generated by w-values lying in P, i.e., that $P \cap w(G) = \langle P \cap G_w \rangle$?

However considering the case where G is the non-abelian group of order six, $w = x^3$ and $p = 3$ we quickly see that the answer to the above question is negative. Therefore we concentrate on the case where w is a commutator word. Recall that a group word is commutator if the sum of the exponents of any indeterminate involved in it is zero. Thus, we deal with the question whether $P \cap w(G)$ can be generated by w-values whenever w is a commutator word.

The main result of this paper is a contribution towards a positive answer to this question: we prove that if w is an outer commutator word, then $P \cap w(G)$ can be generated by the powers of values of w which lie in P. More precisely, we have the following result.

Theorem A. Let G be a finite group of order $p^a m$, where p is a prime and m is not divisible by p, and let P be a Sylow p-subgroup of G. If w is
an outer commutator word, then $P \cap w(G)$ is generated by mth powers of w-values, i.e., $P \cap w(G) = \langle P \cap G_{w,m} \rangle$.

Recall that an outer commutator word is a word which is obtained by nesting commutators, but using always different indeterminates. Thus the word $[x_1, x_2], [x_3, x_4, x_5], x_6$ is an outer commutator while the Engel word $[x_1, x_2, x_2]$ is not. An important family of outer commutator words are the simple commutators γ_i, given by

$$\gamma_1 = x_1, \quad \gamma_i = [\gamma_{i-1}, x_i] = [x_1, \ldots, x_i], \text{ for } i \geq 2.$$

The corresponding verbal subgroups $\gamma_i(G)$ are the terms of the lower central series of G. Another distinguished sequence of outer commutator words are the derived words δ_i, on 2^i indeterminates, which are defined recursively by

$$\delta_0 = x_1, \quad \delta_i = [\delta_{i-1}(x_1, \ldots, x_{2^{i-1}}), \delta_{i-1}(x_{2^{i-1}+1}, \ldots, x_{2^i})], \text{ for } i \geq 1.$$

Then $\delta_i(G) = G^{(i)}$, the ith derived subgroup of G.

Some of the ideas behind the proof of Theorem A were anticipated already in [3] where somewhat similar arguments, due to Guralnick, led to a result on generation of a Sylow p-subgroup of G' for a finite group G admitting a coprime group of automorphisms. Later the arguments were refined in [1]. In both papers [4] and [1] the results on generation of Sylow subgroups were used to reduce a problem about finite groups to the case of nilpotent groups. It is hoped that also our Theorem A will play a similar role in the subsequent projects.

Another important tool used in the proof of Theorem A is the famous result of Liebeck, O’Brien, Shalev and Tiep [6] that every element of a nonabelian simple group is a commutator. The result proved Ore’s conjecture thus solving a long-standing problem. In turn, the proof in [6] uses the classification of finite simple groups as well as many other sophisticated tools.

1. Preliminaries

If X and Y are two subsets of a group G, and N is a normal subgroup of G, it is not always the case that $XN \cap YN = (X \cap Y)N$, i.e., that $\overline{X \cap Y} = \overline{X} \cap \overline{Y}$ in the quotient group $\overline{G} = G/N$. In our first lemma we have a situation in which this property holds, and which will be of importance in the sequel.

Lemma 1.1. Let G be a finite group, and let N be a normal subgroup of G. If P is a Sylow p-subgroup of G and X is a normal subset of G consisting of p-elements, then $XN \cap PN = (X \cap P)N$. In other words, if we use the bar notation in G/N, we have $\overline{X \cap P} = \overline{X} \cap \overline{P}$.

Proof. We only need to worry about the inclusion $\overline{X \cap P} \subseteq \overline{X} \cap \overline{P}$. So, given an element $g \in XN \cap PN$, we prove that $g \in xN$ for some $x \in X \cap P$. Since we have $g \in XN$, we may assume without loss of generality that $g \in X$, and in particular g is a p-element. Since also $g \in PN$, there exists $z \in P$ such that $gN = zN$.

Put $H = \langle g \rangle N = \langle z \rangle N$, and observe that $H' \leq N$. Since $P \cap N$ is a Sylow p-subgroup of N and $z \in P$, it follows that $P \cap H = \langle z \rangle (P \cap N)$ is a Sylow p-subgroup of H. Now, g is a p-element of H, and so we get $g^h \in P \cap H$ for
some $h \in H$. If we put $x = g^h$ then $x \in X \cap P$, since X is a normal subset of G, and $g = x^{h^{-1}} = x[x, h^{-1}] \in xH' \subseteq xN$, as desired. \hfill \square

The next lemma will be fundamental in the proof of Theorem A, since it will allow us to go up a series from 1 to $w(G)$ in which all quotients of two consecutive terms are verbal subgroups of a word all of whose values are also w-values.

Lemma 1.2. Let G be a finite group, and let P be a Sylow p-subgroup of G. Assume that $N \leq L$ are two normal subgroups of G, and use the bar notation in the quotient group G/N. Let X be a normal subset of G consisting of p-elements such that $\overline{P} \cap \overline{X} = (\overline{P} \cap \overline{X})$. Then $P \cap L = (P \cap X, P \cap N)$.

Proof. By Lemma 1.1, we have $P \cap L = \langle P \cap X \rangle$, and this implies that $PN \cap L = \langle P \cap X \rangle N$. By intersecting with P, we get

$$P \cap L = P \cap (PN \cap L) = P \cap \langle P \cap X \rangle N = \langle P \cap X \rangle (P \cap N),$$

where the last equality follows from Dedekind’s law. This proves the result. \hfill \square

We will also need the following lemma, of a different nature.

Lemma 1.3. Let G be a finite group, and let N be a minimal normal subgroup of G. If N does not contain any non-trivial elements of G_{δ_i}, where $i \geq 1$, then $[N, G^{(i-1)}] = 1$.

Proof. We argue by induction on i. If $i = 1$ then, since N is normal in G and does not contain any non-trivial commutators of elements of G, it follows that $[n, g] = 1$ for every $n \in N$ and $g \in G$. Thus $[N, G] = 1$, as desired.

Assume now that $i \geq 2$. The fact that N is a minimal normal subgroup of G implies that the subgroup $\langle N \cap G_{\delta_{i-1}} \rangle$ must be either equal to N or the trivial subgroup. In the former case, we have $N = (N \cap G_{\delta_{i-1}})$ and so $[N, G^{(i-1)}]$ is generated by elements of the form $[a, b]$ where $a \in N \cap G_{\delta_{i-1}}$ and $b \in G_{\delta_{i-1}}$. In particular, each commutator $[a, b]$ belongs to $N \cap G_{\delta_{i}}$ and must be 1 by the hypothesis. Hence $[N, G^{(i-1)}] = 1$. If $N \cap G_{\delta_{i-1}} = 1$, then it follows from the induction hypothesis that $[N, G^{(i-2)}] = 1$, and the result holds. \hfill \square

We conclude this preliminary section by showing that Theorem A holds for every word under the assumption that the verbal subgroup $w(G)$ is nilpotent.

Theorem 1.4. Let G be a finite group of order $p^a m$, where p is a prime and m is not divisible by p, and let P be a Sylow p-subgroup of G. If w is any word such that $w(G)$ is nilpotent, then

$$P \cap w(G) = \langle P \cap G_{w^m} \rangle.$$

Proof. By Bezout’s identity, there exist two integers λ and μ such that $1 = \lambda p^a + \mu m$. If we put $u = w^{\lambda p^a}$ and $v = w^{\mu m}$, then for every $g \in G_{w}$ we have

$$g = (g^{p^a})^\lambda \cdot (g^{m})^\mu \in \langle G_u \rangle \cdot \langle G_v \rangle.$$
Hence
\begin{equation}
 w(G) = \langle G_u, G_v \rangle.
\end{equation}

Note that all elements of G_u have p'-order, and all elements of G_v have p-power order. Since $w(G)$ is nilpotent, it follows that $\langle G_u \rangle$ is a p'-subgroup of $w(G)$, $\langle G_v \rangle$ is a p-subgroup, and G_u and G_v commute elementwise. As a consequence of this and (1), we get
\begin{equation}
 w(G) = \langle G_u \rangle \times \langle G_v \rangle,
\end{equation}
and $\langle G_u \rangle$ and $\langle G_v \rangle$ are a Hall p'-subgroup and a Sylow p-subgroup of $w(G)$, respectively. We conclude that $P \cap w(G) = \langle G_v \rangle$, which proves the theorem. \qed

2. The proof of Theorem A

The first step in the proof of Theorem A is to verify it for δ_i, which is done in Theorem 2.3 below. For this, we will rely on the result by Liebeck, O’Brien, Shalev and Tiep \cite{6} that proved Ore’s conjecture, according to which every element of a non-abelian simple group is a commutator, and a fortiori, also a value of δ_i for every i. We will also need the following result of Gaschütz (see page 191 of \cite{3}).

Theorem 2.1. Let G be a finite group, and let P be a Sylow p-subgroup of G. If N is a normal abelian p-subgroup of G, then N is complemented in G if and only if N is complemented in P.

In the proof of Theorem A for both δ_i and an arbitrary outer commutator word, we will argue by induction. Then it will be important to take into account the following remark.

Remark 2.2. Let G be a group of order $p^a m$ for which we want to prove Theorem A in the case of a given word w. Assume that K is a group whose order $p^a m^*$ is a divisor of $p^a m$ (for example, a subgroup or a quotient of G), and let P^* be a Sylow p-subgroup of K. If Theorem A is known to hold for K and w, then we have $P^* \cap w(K) = \langle P^* \cap K_{w^*} \rangle$. Since m/m^* is a positive integer which is coprime to p, it follows that $P^* \cap w(K) = \langle (P^* \cap K_{w^*})^{m/m^*} \rangle$, and so also that $P^* \cap w(K) = \langle P^* \cap K_{w^*} \rangle$. In other words, in the statement of Theorem A for K, we can replace the power word w^{m^*} corresponding to the order of K with the word w^m, which corresponds to the order of G.

We can now proceed to the proof of Theorem A for δ_i.

Theorem 2.3. Let G be a finite group of order $p^a m$, where p is a prime and m is not divisible by p, and let P be a Sylow p-subgroup of G. Then, for every $i \geq 0$, we have
\begin{equation}
 P \cap G^{(i)} = \langle P \cap G_{\delta^m} \rangle.
\end{equation}

Proof. We argue by induction on the order of G. The result is obvious if either $i = 0$ or $G^{(i)} = 1$, so we assume that $i \geq 1$ and $G^{(i)} \neq 1$.

Let $N \neq 1$ be a normal subgroup of G which is contained in $G^{(i)}$. Then the result holds in $G = G/N$, and we have $P \cap G^{(i)} = \langle P \cap G_{\delta^m} \rangle$. By applying Lemma 1.2, we get
\begin{equation}
 P \cap G^{(i)} = \langle P \cap G_{\delta^m}, P \cap N \rangle.
\end{equation}
Now we assume that \(N \) is a minimal normal subgroup of \(G \), and we consider three different cases, depending on the structure of \(N \).

(i) \(N \) is a direct product of isomorphic non-abelian simple groups.

By the positive solution to Ore’s conjecture, we have \(N = N_{δ_i} \). Hence we get \(P \cap N \subseteq N_{δ_i} \), and since the map \(z \mapsto z^m \) is a bijection in \(P \cap N \), it follows that \(P \cap N \subseteq P \cap N_{δ_n} \). Now the result is immediate from (3).

(ii) \(N \cong C_q \times \cdots \times C_q \), where \(q \) is a prime different from \(p \).

In this case, \(P \cap N = 1 \) and the result obviously holds.

(iii) \(N \cong C_p \times \cdots \times C_p \).

In this case, we have \(N \leq P \) and so \(P \cap N = N \). Since \(\langle N \cap G_{δ_i} \rangle \) is a normal subgroup of \(G \) and \(N \) is a minimal normal subgroup, it follows that either \(\langle N \cap G_{δ_i} \rangle = N \) or \(N \cap G_{δ_i} = 1 \). In the former case, we have \(N = \langle (N \cap G_{δ_i})^m \rangle \), since \(N \) is a finite \(p \)-group, and so \(N = \langle N \cap G_{δ_i}^m \rangle \) and the theorem follows again from (3). So we are necessarily in the latter case, and then by Lemma [13] we have \([N, G^{(i-1)}] = 1 \).

If \(G \) is not perfect, then the theorem holds by induction in \(G' \), and so \(P \cap G^{(i+1)} = P \cap (G')^{(i)} \) can be generated by values of \(δ_i^m \) lying in \(P \). If \(G^{(i+1)} \neq 1 \) then we can use (3) with \(G^{(i+1)} \) in the place of \(N \), and we are done. On the other hand, if \(G^{(i+1)} = 1 \) then \(G^{(i)} \) is abelian, and the result is a consequence of Theorem [14].

Thus we may assume that \(G \) is perfect. Then \(P \cap G^{(i)} = P \). Also \([N, G] = [N, G^{(i-1)}] = 1 \), and \(N \) is central in \(G \). Being a minimal normal subgroup of \(G \), this implies that \(|N| = p \). If \(N \leq \Phi(P) \) then it follows from (3) that \(P = \langle P \cap G_{δ_i}^m \rangle \), as desired. Hence we may assume that \(N \) is not contained in a maximal subgroup \(M \) of \(P \). Since \(|N| = p \), it follows that \(M \) is a complement of \(N \) in \(P \). By Theorem [24] it follows that \(N \) has also a complement in \(G \), say \(H \). Since \(N \leq Z(G) \), we conclude that \(G = H \times N \), a contradiction with the fact that \(G \) is perfect. This completes the proof. □

We will deal with arbitrary outer commutator words using some concepts from the paper [2], where outer commutator words are represented by binary rooted trees in the following way: indeterminates are represented by an isolated vertex, and if \(w = [u, v] \) is the commutator of two outer commutator words \(u \) and \(v \), then the tree \(T_w \) of \(w \) is obtained by drawing the trees \(T_u \) and \(T_v \), and a new vertex (which will be the root of the new tree) which is then connected to the roots of \(T_u \) and \(T_v \). For example, the following are the trees for the words \(γ_4 \) and \(δ_3 \) (we also label every vertex with the outer commutator word which is represented by the tree appearing on top of that vertex):

![Figure 1](image.png)

Figure 1. The trees of the words \(γ_4 \) and \(δ_3 \).
Each of these trees has a visual height, which coincides with the largest distance from the root to another vertex of the tree. Observe that the full binary tree of height \(i \) corresponds to the derived word \(\delta_i \). The following two concepts, also introduced in [2], will be essential in our proof of Theorem A.

Definition 2.4. Let \(u \) and \(w \) be two outer commutator words. We say that \(u \) is an *extension* of \(w \) if the tree of \(u \) is an upward extension of the tree of \(w \). If \(u \neq w \), we say that \(u \) is a *proper extension* of \(w \).

An important remark is that, if \(u \) is an extension of \(w \), then \(G_u \subseteq G_w \).

Definition 2.5. If \(w \) is an outer commutator word whose tree has height \(i \), the *defect* of \(w \) is the number of vertices that need to be added to the tree of \(w \) in order to get the tree of \(\delta_i \). In other words, if the tree of \(w \) has \(V \) vertices, the defect of \(w \) is \(2^{i+1} - 1 - V \).

Thus the only words of defect 0 are the derived words. Our proof of Theorem A also depends on the following result, which is implicit in the proof of Theorem B of [2].

Theorem 2.6. Let \(w = [u, v] \) be an outer commutator word of height \(i \), different from \(\delta_i \). Then at least one of the subgroups \([w(G), u(G)]\) and \([w(G), v(G)]\) is contained in a product of verbal subgroups corresponding to words which are proper extensions of \(w \) of height \(i \).

Let us now give the proof of Theorem A.

Proof of Theorem A. We argue by induction on the defect of the word \(w \). If the defect is 0, then \(w \) is a derived word, and the result is true by Theorem 2.3. Hence we may assume that the defect is positive. If the height of \(w \) is \(i \), let \(\Phi = \{ \varphi_1, \ldots, \varphi_r \} \) be the set of all outer commutator words of height \(i \) which are a proper extension of \(w \). Since every word in the set \(\Phi \) has smaller defect than \(w \), the theorem holds for all \(\varphi_i \).

Put \(N_0 = 1 \), \(N_i = \varphi_1(G) \ldots \varphi_i(G) \) for \(1 \leq i \leq r \), and \(N = N_r \). Let us write \(w = [u, v] \), where \(u \) and \(v \) are outer commutator words. Since \([w(G), w(G)]\) is contained in both \([w(G), u(G)]\) and \([w(G), v(G)]\), it follows from Theorem 2.6 that \([w(G), w(G)] \leq N \). Thus if \(G = G/N \), the verbal subgroup \(w(G) \) is abelian, and so Theorem A holds in \(G \), according to Theorem 1.2. Hence \(P \cap w(G) = \langle P \cap G_{w^m} \rangle \), and by applying Lemma 1.2 we get \(P \cap w(G) = \langle P \cap G_{w^m}, P \cap N \rangle \).

Consequently, it suffices to show that \(P \cap N \) can be generated by values of \(w^m \). We see this by proving that \(P \cap N_i = \langle P \cap N_i \cap G_{w^m} \rangle \) for every \(i = 0, \ldots, r \), by induction on \(i \). There is nothing to prove if \(i = 0 \), so we assume that \(i \geq 1 \). If \(G_i = G/N_{i-1} \), we have \(G_i = \varphi_i(G) \). Since the theorem is true for \(\varphi_i \), it follows that \(P \cap G_i = \langle P \cap G_{\varphi_i^m} \rangle \). By Lemma 1.2, we get

\[
P \cap N_i = \langle P \cap G_{\varphi_i^m}, P \cap N_{i-1} \rangle.
\]

Observe that, since \(\varphi_i \) is an extension of \(w \), we have \(G_{\varphi_i^m} \subseteq G_{w^m} \). Since also \(G_{\varphi_i^m} \subseteq \varphi_i(G) \subseteq N_i \), we can further say that \(G_{\varphi_i^m} \subseteq N_i \cap G_{w^m} \). Hence

\[
P \cap N_i = \langle P \cap N_i \cap G_{w^m}, P \cap N_{i-1} \rangle,
\]

and the result follows from the induction hypothesis. \(\square \)
References

[1] C. Acciarri, P. Shumyatsky, Fixed points of coprime operator groups, *J. Algebra* **342** (2011), 161–174.

[2] G.A. Fernández-Alcober, M. Morigi, Outer commutator words are uniformly concise, *J. London Math. Soc.* **82** (2010), 581–595.

[3] D. Gorenstein, *Finite Groups*, Chelsea Publishing Company, New York, 1980.

[4] R. Guralnick, P. Shumyatsky, Derived subgroups of fixed points, *Israel J. Math.* **126** (2001), 345–362.

[5] G. Higman, Focal series in finite groups, *Canad. J. Math.* **5** (1953), 477–497.

[6] M.W. Liebeck, E.A. O’Brien, A. Shalev, P.H. Tiep, The Ore conjecture. *J. Eur. Math. Soc.*, **12**(4) (2010), 939–1008.

[7] J.S. Rose, *A Course in Group Theory*, Dover Publications, New York, 1994.

[8] J.J. Rotman, *An Introduction to the Theory of Groups*, 4th ed., Springer-Verlag, 1995.

Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900 Brazil

E-mail address: acciarricristina@yahoo.it

Matematika Saila, Euskal Herriko Unibertsitatea, 48080 Bilbao, Spain

E-mail address: gustavo.fernandez@ehu.es

Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900 Brazil

E-mail address: pavel@unb.br