A Gs Protein Couples P2-purinergic Stimulation to Cardiac Ca Channels without Cyclic AMP Production

FREDERIQUE SCAMPS, VITALY RYBIN, MICHEL PUCEAT, VSEVOLOD TKACHUK, and GUY VASSORT

From the Laboratoire de Physiologie Cellulaire Cardiaque, Institut National de la Sante et de la Recherche Medicale U-241, Université de Paris-Sud, Orsay, France; and Laboratory of Molecular Endocrinology, Cardiology Research Center, Moscow, Russia

ABSTRACT P2-purinergic stimulation of the L-type Ca current induced by the external application of 100 μM ATPγS was investigated in rat ventricular cardiomyocytes using the whole-cell patch-clamp technique. The purinergic-induced increase in ICa was slow and monophasic and reached a steady state within 3 min. In contrast to β-adrenergic stimulation, after a brief agonist application the current did not continue to increase on washout; recovery started immediately after agonist removal. The P2-purinergic increase in ICa was significantly less in the presence of GDPβS, but it occurred much faster and was twice as large when a low dose of GTPγS (100 μM) was added to a GTP-containing internal medium. This suggests that the ICa increase was mediated by a G protein. Based on electrophoretic mobility and susceptibility to cholera toxin and anti-Ga serum, it is proposed that the G protein involved during purinergic-induced ICa stimulation is an isoform of Gs, not coupled to the adenylyl cyclase, since the cyclic AMP level was unaffected. High intracellular GTPγS (1 mM) maximally activated ICa so that neither β-adrenergic nor P2-purinergic agonists further increased ICa. In the absence of GTP and an ATP-regenerating system, GTPγS was much more potent in increasing basal ICa and supporting purinergic stimulation. This indicates that a nucleoside diphosphate kinase activity might replenish endogenous GTP; GTP exchange with GTPγS on the G protein was promoted by the P2-purinergic stimulation and led to a reversible and reproducible increase in ICa. In the presence of 3 mM internal ATPγS, the P2-purinergic stimulation was also reversible and reproducible. Moreover, under these conditions (ATPγS or GTPγS) the increase in ICa was not maintained during prolonged agonist application. Such an inhibition occurred slowly and irreversibly; it might be related to the threefold increase in cyclic GMP. In conclusion, we propose that extracellular ATP induces both a stimulatory and an inhibitory effect on ICa, probably mediated by subtypes of P2-purinergic receptors. An isoform of the Gs protein is likely to mediate the stimulation.

Address reprint requests to Dr. Guy Vassort, INSERM U-241, Physiologie Cellulaire Cardiaque, Université Paris-Sud, Bât 443, F-91405 Orsay, France.
INTRODUCTION

In heart cells the Ca current, \(I_{\text{Ca}} \), which plays an essential role in controlling the electrical activity and contractility, is modulated by hormones and neurotransmitters (see Hartzell, 1988). The \(\beta \)-adrenergic-induced increase in \(I_{\text{Ca}} \) has been extensively studied. The increase in \(I_{\text{Ca}} \) follows the stimulation of adenyl cyclase; the resulting increase in cyclic AMP activates a cyclic AMP–dependent protein kinase (PKA) which phosphorylates the Ca channel proteins or a nearby protein (Trautwein and Hescheler, 1990). Stimulation of the cyclase after binding of agonist to the receptor implies interaction of the receptor with a stimulatory guanine nucleotide regulatory protein (Gs) localized at the inner face of the plasma membrane (Brown and Birnbaumer, 1990). Initially, a direct interaction of adenyl cyclase with the G protein \(\alpha \) subunit was shown in reconstitution experiments (Feder, Im, Klein, Hekman, Holzhöfer, Dees, Levitzi, Helmreich, and Pfeuffer, 1986). More recently it was shown that the \(\beta \) subunits also either activate or inhibit the different subtypes of adenyl cyclase (Tang and Gilman, 1991). A close control of a channel by a G protein was initially reported for K channels in cardiac cells (Kurachi, Nakajima, and Sugimoto, 1986). With regard to the Ca channel, a direct coupling of a G protein to dihydropyridine (DHP) binding sites is supported by the facts that guanylyl-imidodiphosphate (GMP-PNP) increases the ability of a DHP agonist to displace a DHP antagonist (Bergamaschi, Govoni, Cominetti, Parenti, and Trabucchi, 1988) and that guanosine 5'-O-3-thiotriphosphate (GTP\(_\gamma\)S) enhances charge movement and \(I_{\text{Ca}} \) while phosphorylation by PKA increases only \(I_{\text{Ca}} \) (Garcia, Gamboa-Aldeco, and Stefani, 1990). There is also evidence that Gs\(_\alpha\) comigrates with the DHP receptor in the skeletal muscle (Hamilton, Codina, Hawkes, Yatani, Sawada, Strickland, Froehner, Spiegel, Toro, Stefani, Birnbaumer, and Brown, 1991). A direct gating of the Ca channel by G\(_\alpha\) proteins, independent of protein kinase phosphorylation, has been suggested by applying the preactivated \(\alpha \) subunit to the cytoplasmic side of isolated membrane patches or to Ca channels incorporated into planar lipid bilayers (Yatani, Codina, Imoto, Reeves, Birnbaumer, and Brown, 1987; Imoto, Yatani, Reeves, Codina, Birnbaumer, and Brown, 1988; Yatani, Imoto, Codina, Hamilton, Brown, and Birnbaumer, 1988). Moreover, it has recently been suggested that cyclic AMP–dependent phosphorylation could not explain all the effects of \(\beta \)-adrenergic agonists on \(I_{\text{Ca}} \) and that a parallel “membrane-delimited” pathway was also involved in this stimulation (Yatani and Brown, 1989; Shuba, Hesslinger, Trautwein, McDonald, and Pelzer, 1990; Cavalié, Allen, and Trautwein, 1991; but see Hartzell, Méry, Fischmeister, and Szabo, 1991).

Purinergic receptors control many cellular functions; they have been classified into two main categories (Burnstock, 1981). The P\(_1\) purinoceptors most sensitive to adenosine are linked to adenyl cyclase in either an inhibitory (A\(_1\)) or excitatory (A\(_2\)) manner. The P\(_2\) purinoceptors for which ATP is the preferred agonist induce prostaglandin synthesis (Needleman, Minkes, and Douglas, 1974; Schwartzman, Pinkas, and Raz, 1981; Takikawa, Kurachi, Mashima, and Sugimoto, 1990) and increase inositol–lipid metabolism (Legssyer, Poggioli, Renard, and Vassort, 1988; see Olsson and Pearson, 1990 for a review on the cardiovascular system). More specifically, in cardiac tissues and particularly in the auricles P\(_1\)-purinergic stimula-
tion leads to both negative chronotropic and inotropic effects which could be mediated by an increase in K current (Belardinelli and Isenberg, 1983) and a decrease in Ca current (Cerbai, Klöckner, and Isenberg, 1988). Adenosine, through A2 receptors, was also shown to activate the adenylyl cyclase in the ventricle and a positive inotropy was reported in the chick (Xu, Kong, and Liang, 1992) but not observed in the guinea pig (Behnke, Müller, Neumann, Schmitz, Scholz, and Stein, 1990). On the other hand, extracellular ATP in the ventricles or in pertussis toxin–treated auricles induced a positive inotropy (Legssyer et al., 1988; Scamps, Legssyer, Mayoux, and Vassort, 1990a); this was attributed to P2-purinergic stimulation since ATP was much more efficient in increasing the Ca current than adenosine in both frog and rat ventricular cells (Alvarez, Mongo, Scamps, and Vassort, 1990; Scamps et al., 1990a). The increase of ICa under P2 stimulation was pertussis toxin insensitive. Recently, a P3-type of purinoceptor was defined on the basis that it is activated only by triphosphate adenosine derivatives and that it has an absolute requirement of Mg ions while the P2-purinergic increase in ICa does not. P3 purinostimulation leads to cell depolarization and possibly arrhythmias as a consequence of a transient acidosis due to activation of the CI/HCO3 exchanger (Scamps and Vassort, 1990; Pucéat, Clément, Scamps, and Vassort, 1991a; Pucéat, Clément, and Vassort, 1991b).

This work investigates in more detail the possible pathways involved in the rise of ICa under P2 purinoceptor stimulation in rat cardiac cells. A direct activation of the Ca conductance, mediated by a Gs protein without variations in cyclic AMP level, is proposed to account for the ATP-induced increase in ICa. Furthermore, during prolonged agonist application in the presence of hydrolyzable-resistant analogues of GTPγS or adenosine 5′-O-3-thiotriphosphate (ATPγS), an inhibition of ICa was observed.

Methods

Isolation of Single Cells

Single ventricular cells from male Wistar rats (180–250 g) were enzymatically dispersed as described previously (Pucéat, Clément, Lechêne, Pelosin, Ventura-Clapier, and Vassort, 1990) and kept at 37°C before the experiments. The yield of rod-shaped cells was generally >70%.

Solutions and Drugs

Control external solution contained: 117 mM NaCl, 20 mM CsCl, 1.8 mM MgCl2, 1.8 mM CaCl2, 10 mM HEPES, 5 mM d-glucose, and 50 μM tetrodotoxin; pH was adjusted to 7.4 with NaOH. Patch electrodes (0.5–1 MΩ) were filled with a standard internal solution that contained (mM): 120 CsCl, 5 Cs₂EGTA, 6.8 MgCl₂, 5 Na₂PCR, 5 Na₂ATP, 0.4 Na₂GTP, 0.06 CaCl₂ (pCa 8.7), and 20 HEPES; pH was adjusted to 7.2 with CsOH. In a few experiments, a low Mg–low substrate internal solution was used (mM): 120 CsCl, 10 NaCl, 5 Cs₂EGTA, 0.06 CaCl₂, 1 MgATP, and 20 HEPES, pH 7.2.

The drugs used in these experiments were isoproterenol, neomycin sulfate, phorbol 12-myristate 13-acetate (PMA), indomethacin, nordihydroguaiaretic acid, cholera toxin, 5′-guanylylimidodiphosphate (Gpp(NH)p), guanosine 5′-O-2-thiodiphosphate (GDPβS), isobutylmethylxanthine (IBMX) (Sigma, L’Isle d’Abeau Chesnes, France); ATPγS, GTPγS (Boehringer Mannheim, Biochemica, France), and [32P]NAD (Dupont de Nemours, Paris, France). GF
109203X was a gift from Glaxo (Les Ulis, France). The electrophysiological experiments were performed at room temperature (21–24°C). Incubations of cells with toxins or with the agonists for biochemical assays were done at 37°C.

Electrophysiological Recordings

I_{Ca} was recorded with the whole-cell patch-clamp technique (Hamill, Marty, Neher, Sakmann, and Sigworth, 1981). In each experiment the cell was depolarized every 4 s from −70 mV holding potential to 0 mV for 200 ms with a patch-clamp amplifier (model RK-300; Biologic, Claix, France) and L-type I_{Ca} was measured on-line by a Compaq 286 Desk-Pro computer (COMPAQ Computer Corp., Houston, TX) as the difference between peak inward current and current at the end of the 200-ms depolarization. We have previously shown that in rat ventricular cells, T-type Ca current is not present (Scamps, Mayoux, Charlemagne, and Vassort, 1990b). In few experiments, a residual I_{Na} could be seen when performing $I-V$ curves. This residual Na current was inhibited by ATP or ATPγS application and thus could not account for our observations (Scamps, F., B. Turan, and G. Vassort, manuscript in preparation). Currents were digitized at 10 kHz (12-bit A/D converter). Before I_{Ca} recording, membrane capacitance (C_m) was measured as previously described (Scamps et al., 1990b).

Biochemical Techniques

Cyclic AMP and cyclic GMP measurements. To measure cyclic AMP or cyclic GMP content of cardiac cells, batches of 4 \times 105 cells/ml were incubated at 37°C for 5 min in the presence of 100 μM IBMX. Then 100 μM ATPγS or 10 μM isoproterenol was added for 5 or 3 min, respectively. The incubations were rapidly stopped by addition of trichloroacetic acid (TCA). After centrifugation, the concentration of cyclic nucleotides was determined in the supernatant after the extraction of TCA with water-saturated ether. A commercially available kit using a high specificity binding protein assay (TRK 432; Amersham International, Amersham, UK) was used to determine cyclic AMP. Cyclic GMP was measured by radioimmunoassay following a succinylation of the cyclic nucleotide according to Cailla, Vannier, and Delaage (1976).

Preparation of cardiomyocyte membranes. Cardiomyocyte membranes were prepared according to Murakami and Yasuda (1986). Cells were diluted with 5 ml of buffer A (50 mM NaH$_2$PO$_4$, pH 7.5, 5 mM EDTA, 5 mM MgCl$_2$) and homogenized with a Potter. Homogenates were spun at 1,000 g for 10 min at 4°C. Supernatant fluids were then spun at 30,000 g for 1 h. Pellets (crude membranes) were suspended in buffer A containing 1 mM DTT and stored at −20°C.

ADP ribosylation with cholera toxin. ADP ribosylation with cholera toxin was done according to Ribeiro-Neto, Mattera, Grenet, Sekura, Birnbaumer, and Field (1987). Cholera toxin (1 mg/ml) was activated for 20 min at 31°C in the presence of 25 mM DTT. ADP ribosylation mixture (50 μl) contained 300 mM NaH$_2$PO$_4$, pH 7.5, 2 mM EDTA, 11 mM MgCl$_2$, 0.4 mM Gpp(NH)p, 100 μM NADP, 10 mM thymidine, 2.5 mM DTT, 10 μM $[^{32}P]$NAD (10 μCi/assay), 100 μg/ml activated cholera toxin, and crude membranes (50–100 μg). Samples were incubated for 1 h at 31°C. 50 μl of SDS-PAGE sample buffer was added to stop the reaction.

SDS-PAGE. 11% polyacrylamide gels were used. After SDS-PAGE, gels were stained with Coomassie R250, destained, dried, and autoradiographed for 3 d with intensifying screen. Regions of the gels that corresponded to 44-kD cholera toxin substrate bands of the autoradiograms were excised and the amount of radioactivity was quantified by the use of a β counter.

Immunoblot analysis. For immunoblot analysis, cardiomyocyte crude membranes were subjected to SDS-PAGE. The separated proteins were then transferred from the gel to a nitrocellulose sheet using an electrophoretic apparatus operated at a constant current of 190
mA for 16 h. Subsequent procedures were modified according to Foster, McDermott, and Robishaw (1990). After the transfer of proteins, the nitrocellulose was incubated with buffer B (50 mM Tris-Cl, pH 8.0, 2 mM CaCl₂, 80 mM NaCl, 0.02% NaN₃, 5% nonfat dry milk, and 0.2% NP-40). The anti-Çₐ antibody 584 was kindly provided by Dr. A. G. Gilman (University of Texas Health Science Center, Dallas, TX). It was diluted in buffer B (but 2% NP-40) and incubated with the blot for 1 h at 20°C. After three washes with buffer B, the blot was incubated with ¹²⁵I-labeled goat anti-rabbit IgG (3.5 × 10⁶ cpm/ml) for 1 h at 20°C, washed five more times with buffer B, and allowed to air dry. Autoradiography of the dried blot was performed. Regions of the blot that correspond to 44-kD G, a subunit bands of the autoradiograms were excised and the amount of radioactivity was quantified by the use of a γ counter.

Results are expressed as mean ± SEM. Statistical analysis was done with a Student’s t test. The differences were considered significant when P < 0.05.

RESULTS

Effect of P₂-purinergic Agonists on Characteristics of I₉Ca

In a previous study we reported that ATP (1–30 μM) induced an increase in I₉Ca amplitude associated with a leftward shift in the voltage dependence of the Ca channel (Scamps et al., 1990a). As illustrated in Fig. 1, ATP₇S was also effective and increased I₉Ca amplitude. The mean increase in peak I₉Ca was 62.3 ± 4.4% (n = 6), 65.4 ± 3.7% (n = 4), and 54.6 ± 2.7% (n = 9) in the presence of 10 μM ATP₇S, 100 μM ATP₇S, or 10 μM ATP, respectively. The basal I₉Ca density averaged 7.2 ± 0.4 pA/pF (n = 14). The increase in I₉Ca amplitude induced by ATP₇S was reversible and reproducible.

ATP₇S increased the Ca current at every membrane depolarization; moreover, as did ATP, it induced a ~5-mV shift of the peak I-V curve toward hyperpolarized potentials (Fig. 2A). The availability curve of I₉Ca was also shifted to more hyperpolarized potentials (Vᵢ at 50% inactivation was -20.1 ± 1.3 and -26.8 ± 1.1 mV (n = 5) in control and in the presence of 10 μM ATP₇S, respectively (P < 0.01).

A major difference between the actions of ATP and ATP₇S was that ATP₇S up to 100 μM did not significantly stimulate the P₃-purinergic receptors that lead to
acidity and activation of a nonspecific cationic conductance (Scamps and Vassort, 1990; Pucéat et al., 1991b). For these reasons, and also due to the fact that ATPγS is a slowly hydrolyzable analogue of ATP, we externally applied ATPγS at 10 or 100 μM in the following experiments.

Time Course of P₂-purinergic-induced Increase in Ca Current

During P₂-purinergic stimulation, the increase in I_{Ca} was slow and monophasic and required \sim3 min to reach a steady state. The mean rate of increase, calculated as the slope of I_{Ca} increase, was $117 \pm 21 \text{ pA min}^{-1}$ ($n = 8$) in the presence of 10 or 100 μM ATPγS.

![Figure 2](image-url)

FIGURE 2. Effect of ATPγS on Ca current characteristics. (A) Peak Ca density-voltage relationships established in control (■) and in the presence of 10 μM ATPγS (▲), mean ± SEM ($n = 4$). Densities instead of amplitudes are given to allow for comparison of I_{Ca} in different cells. The increase of I_{Ca} was significant when depolarizing pulses between −20 and +10 mV were applied. (B) Availability curves obtained in control (■) and in the presence of ATPγS (▲), mean ± SEM ($n = 4$). The leftward shift of the curve in the presence of ATPγS was statistically significant (see text). The protocol used to construct $I-V$ and availability curves is shown in the inset to B. Prepulse potentials (PP; 200 ms, range −60 to +80 mV) were separated from the test pulse (TP; 0 mV, 200 ms) by a 3-ms return to −70 mV to better resolve I_{Ca} from the variable capacitive current. Pulse pairs were applied every 4 s. The currents elicited during the prepulse potentials were used to construct $I-V$ curves. The currents elicited during the test pulse were normalized to the current obtained without prepulse and plotted as a function of the prepulse potential. Curves are fitted by eye.

ATPγS. In the experiment illustrated in Fig. 3, the effects of a short application of a P₂-purinergic and a β-adrenergic agonist were compared. The increase in current occurred only when the purinergic agonist was present in the external solution; I_{Ca} started to return toward its control value immediately after removal of the agonist. A second and sustained application of ATPγS demonstrated the maximal effect of
ATP\(_{\text{S}}\) on \(I_{\text{Ca}}\). In contrast, when isoproterenol was applied for a brief period (< 10 s), the increase in \(I_{\text{Ca}}\) still developed after washing away the \(\beta\)-adrenergic agonist. The mean rate of increase under maximal stimulation with isoproterenol was \(750 \pm 70\) pA·min\(^{-1}\) (\(n = 5\)).

Possible Metabolic Pathways

It was demonstrated in the rat heart that the P2-purinergic stimulation is associated with the production of inositol triphosphate (InsP3; Legssyer et al., 1988) due to activation of phospholipase C; a subsequent activation of the protein kinase C (PKC) by the simultaneously produced diacylglycerol might thus be expected. To investigate if PKC could play a role in the increase of \(I_{\text{Ca}}\), we used a membrane-permeable phorbol ester, PMA, which directly activates this kinase. As shown in Fig. 4A, the external application of 0.1 \(\mu\)M PMA did not induce an increase in \(I_{\text{Ca}}\) amplitude, but rather decreased it as already reported by Tseng and Boyden (1991). The response to 10 \(\mu\)M ATP\(_{\text{S}}\) through the P2-purinergic receptors was not affected by the presence of PMA (percent increase of \(I_{\text{Ca}}\) amplitude at 0 mV was \(76.0 \pm 5.9\%\), \(n = 3\)). The prior incubation of cells for 20 min with 0.1 \(\mu\)M PMA also did not affect the subsequent electrophysiological effects of ATP\(_{\text{S}}\) (not shown).

To further support the lack of effect of PKC on the P2-purinergic stimulation of \(I_{\text{Ca}}\), a newly synthetized PKC inhibitor, GF 109203X, was used (Toullec, Pianetti, Coste, Bellevergue, Grand-Perret, Ajakane, Baudet, Boissin, Boursier, Loriolle, Duhamel, Charon, and Kirilovsky, 1991). Fig. 4B shows that superfusion of 10 \(\mu\)M GF 109203X induced a decrease in basal \(I_{\text{Ca}}\) (38.1 \(\pm\) 4.4\%, \(n = 5\)). After a steady state was reached, 10 \(\mu\)M ATP\(_{\text{S}}\) still induced a 55.2 \(\pm\) 11.5\% increase in \(I_{\text{Ca}}\) (\(n = 5\)), a value similar to that obtained in control experiments performed in the presence of the solvant (DMSO) (53.9 \(\pm\) 13.2\% increase, \(n = 2\)).

In a previous study performed in frog heart, it was proposed that the increase in phosphatidylinositol turnover might in some way be involved in the \(I_{\text{Ca}}\) increase. In the presence of neomycin which, by binding to phosphoinositide biphosphate prevents its hydrolysis by the phospholipase C (Vergara, Tsien, and Delay, 1985), no
detectable increase in \(I_{\text{Ca}} \) could be recorded on applying ATP (Alvarez et al., 1990). Similar experiments were performed on rat heart cells in which a much larger increase in \(I_{\text{Ca}} \) is generally elicited by \(P_2 \)-purinergic stimulation. In the experiment illustrated in Fig. 4C, neomycin was added at a concentration of 500 \(\mu \text{M} \) together with 50 \(\mu \text{M} \) cyclic AMP to the pipette solution to check cell dialysis. Soon after breaking the patch, \(I_{\text{Ca}} \) was very large, confirming diffusion of cyclic AMP, and presumably neomycin, into the cell; \(I_{\text{Ca}} \) then decreased. This decrease was probably due to the nonspecific effects of neomycin as previously reported by Suarez-Kurtz and Reuben (1987). Nevertheless, the external application of 10 \(\mu \text{M} \) ATP\(_\text{yS} \) still markedly enhanced \(I_{\text{Ca}} \). Similar results were obtained in two other cells investigated under the same experimental conditions. In three other cells which were instead

![Graphs A to D](image-url)

FIGURE 4. Evaluation of possible metabolic pathways involved in the \(P_2 \)-purinergic-induced increase in \(I_{\text{Ca}} \) **(A)** External application of a PKC activator, PMA, induced a decrease in basal \(I_{\text{Ca}} \) amplitude but did not affect the \(P_2 \)-purinergic stimulation (\(C_m = 225 \) pF). **(B)** External application of a PKC inhibitor, GF 109203X, induced a decrease in basal \(I_{\text{Ca}} \) amplitude but did not affect the \(P_2 \)-purinergic stimulation (\(C_m = 100 \) pF). **(C)** Internal perfusion of the cell with neomycin, a phospholipase C inhibitor, induced a decrease in \(I_{\text{Ca}} \) amplitude but did not affect the \(P_2 \)-purinergic stimulation. Cyclic AMP was included in the patch electrode as a control for dialysis (\(C_m = 160 \) pF). **(D)** External application of indomethacin and NDGA, which are prostaglandin and leukotriene inhibitors, induced a decrease in \(I_{\text{Ca}} \) amplitude but did not prevent the \(P_2 \)-purinergic stimulation (\(C_m = 155 \) pF). In each experiment, \(I_{\text{Ca}} \) was elicited by 200-ms depolarization to 0 mV.
incubated up to 90 min in the presence of 30 μM neomycin, ATPγS also induced an increase in I_{Ca} amplitude.

In many cell types including cardiomyocytes, the activation of the P2 purinoceptors induces an increase in arachidonic acid leading to a synthesis of prostaglandins. Consequently, we investigated whether the products of arachidonic acid metabolism could account for the effects of P2-purinergic activation of I_{Ca}. Treatment of the cells for 5 or 10 min with 10 μM indomethacin, an inhibitor of the cyclooxygenase pathway, together with 10 μM nordihydroguaiaretic acid (NDGA), an inhibitor of the lipoxygenase pathway, did not prevent the increase in I_{Ca} amplitude induced by the application of 10 μM ATPγS (Fig. 4 D). During the course of this series of experiments the mean increase of I_{Ca} induced by ATPγS was 30.1 ± 3.2% as compared with 27.3 ± 2.2% (n = 4) for nontreated cells.

Involvement of a G Protein

To investigate whether the P2-purinergic-induced increase in I_{Ca} was mediated through a G protein, we used GDPβS, known to block G protein activation, and poorly hydrolyzable analogues of GTP, GppNHp, and GTPγS, known to induce sustained activation of the G proteins.

Effects of GDPβS. In preliminary experiments, a standard internal medium was used (see Methods), except that GTP was replaced with 1 mM GDPβS. Under this experimental condition, the P2-purinergic as well as the β-adrenergic stimulations were not affected at all. To allow GDPβS to better compete with endogeneous GTP, a low Mg–low substrate internal solution was used (see Methods). When GDPβS was not added to this internal solution, 100 μM ATPγS and 1 μM isoproterenol induced 75.3 ± 12.5 and 78.1 ± 7.8% increases of I_{Ca} (n = 4), respectively (Fig. 5 A). In the presence of 1 mM GDPβS (Fig. 5 B) the increases in I_{Ca} under ATPγS and isoproterenol applications were 42.1 ± 12.2% (n = 8) and 32.1 ± 2.6% (n = 5), respectively, and were significantly different from control cells (P < 0.05 and P < 0.005, respectively).

Effects of GppNHp. Fig. 6 shows that internal perfusion with 1 mM GppNHp (standard internal medium without GTP) through the patch electrode apparently had no effect on basal I_{Ca} in this as well as in the four other cells tested. However, mean I_{Ca} density was significantly higher than under control conditions (10.1 ± 1.6 pA/pF, n = 5, compared with 7.2 ± 0.4 pA/pF, n = 14, P < 0.05). As stated in Methods, recordings of I_{Ca} were begun after membrane capacitance measurements, i.e., ~1–2 min after patch breaking, so a slight stimulation might have already occurred. After a few minutes in this experimental condition, the application of 1 μM isoproterenol induced an increase in I_{Ca} amplitude that was poorly reversible on washout of the ligand (I_{Ca} increased by 40.1 ± 8.5%, n = 5). The mean I_{Ca} density after isoproterenol was 14.4 ± 1.8 pA/pF, a value close to the one obtained with a standard internal medium (see Table I). The subsequent application of 100 μM ATPγS on top of the sustained isoproterenol effect induced a further significant increase in I_{Ca} amplitude (18.8 ± 6.2%, n = 5). The washout of ATPγS led to a pronounced decrease in I_{Ca} amplitude (54.3 ± 3.4% decrease compared with maximal activated I_{Ca}). A second application of ATPγS was still able to increase I_{Ca} amplitude (51.6 ± 13.9% increase relative to current amplitude just before ATPγS application, n = 5). This increase
induced by ATPγS reapplication was not sustained but could be repeated. On the other hand, a second application of isoproterenol was without effect.

Effects of GTPγS. Addition of 1 mM GTPγS to the standard internal medium (in the absence of GTP) induced an increase in basal I_{Ca} which had reached its maximal steady level either at or just after the onset of I_{Ca} recording, presumably depending on cell dialysis (see Fig. 7A). In the presence of 1 mM GTPγS, mean I_{Ca} density elicited by depolarization to 0 mV was 20.3 ± 2.8 pA/pF ($n = 9$), i.e., nearly a threefold increase relative to basal values (Table I). Under these steady-state conditions, application of 1 μM isoproterenol had no effect on I_{Ca} amplitude, consistent with already maximal activation of the G_s protein by GTPγS (not shown). Applications of 10 or 100 μM ATPγS also did not induce a further increase in I_{Ca} amplitude. However, while I_{Ca} retained its amplitude on washing out of the β-adrenergic agonist, a decrease of I_{Ca} amplitude was consistently observed on washout of 10 or 100 μM ATPγS in the six cells tested (46.8 ± 1.8% decrease from the maximal GTPγS-stimulated level) (Fig. 7A). In some other experiments, as illustrated in Fig. 7B, soon after the application of a high ATPγS concentration (100
The GTPγS-stimulated I_{Ca} decreased to a steady level and a further decrease was observed on washing out the agonist. A subsequent application of isoproterenol then had a weak positive effect on I_{Ca} (mean increase at 0 mV was 29.2 ± 4.8%, n = 5) or no effect at all if it was not the first β-adrenergic stimulation of the cell. Forskolin at 10 μM also did not resume the inhibitory effect. The inhibitory effect of ATPγS was neither prevented nor reversed by the application of 100 μM IBMX, a nonspecific phosphodiesterase inhibitor and a P1 purinoceptor antagonist. That P1-purinergic stimulation was not involved in this inhibitory effect was reinforced by the lack of adenosine (100 μM)-induced alterations of the GTPγS-stimulated I_{Ca} during its application or on removal (not shown). A subsequent ATPγS application was always able to transiently increase I_{Ca}.

In the presence of GTPγS, ATPγS still induced a shift in the availability curve (V_f at 50% inactivation was shifted from -26.6 to -34.6 mV and from -31 to -36.6 mV in two cells so investigated).

Effects of a low dose of GTPγS in the presence of GTP. Addition of 100 μM GTPγS to the standard internal medium (in the presence of 400 μM GTP) had only a weak or no effect on basal I_{Ca} amplitude. However, under this experimental condition, 100 μM ATPγS induced a pronounced increase in I_{Ca} amplitude which was twice the effect of ATPγS in control conditions (Fig. 8A) (125 ± 3% increase, n = 3 compared with 65.4 ± 7.4%, n = 4 in standard internal solution, $P < 0.01$). The mean rate of increase was 269 ± 45 pA·min⁻¹, a value significantly greater than the control value.

	Control	Isoproterenol (1 μM)	Cholera toxin (10 μg/ml)	GTPγS (1 mM)
I_{Ca} density (pA/pF)	7.2 ± 0.4	13.7 ± 0.6	20.8 ± 0.7*	20.3 ± 0.9*
ATP (% increase)	54.6 ± 2.7	40.7 ± 3.1*	2.6 ± 2.8	See text

I_{Ca} density is the value of I_{Ca} amplitude, measured at 0 mV, relative to the cell membrane capacitance, C_m (see Methods). Values are given as mean ± SEM; number of experiments 9 ≤ n ≤ 14. Statistical analysis was done with the Student's t test to compare I_{Ca} density under each experimental condition. $^*P < 0.001$ relative to current densities either in control or in isoproterenol conditions. A paired test was used for the significance in the percentage increase in I_{Ca} density under external application of 10 μM ATP or 100 μM ATPγS. $^{1*}P < 0.001$; $^{1*}P < 0.01$.

TABLE 1

Relative Increase in I_{Ca} Density under P₂-purinergic Stimulation
(n = 3, P < 0.02). As in the experiments performed with 1 mM internal GTP\textsubscript{y}S or GppNHp (without added GTP), I\textsubscript{Ca} decreased on washout of ATP\textsubscript{y}S. Before a steady state was reached, the subsequent application of 1 μM isoproterenol allowed I\textsubscript{Ca} to recover its maximal amplitude. On isoproterenol removal, I\textsubscript{Ca} stabilized at a rather high amplitude. Reapplication of ATP\textsubscript{y}S, which did not significantly increase I\textsubscript{Ca} above this apparent maximal level, induced a decrease in current and allowed control solution to further markedly reduce its amplitude. Subsequent ATP\textsubscript{y}S applications were then able to transiently and reversibly increase I\textsubscript{Ca}; isoproterenol was ineffective.

FIGURE 7. Effect of P\textsubscript{2}-purinergic and \(\beta\)-adrenergic stimulations of I\textsubscript{Ca} in the presence of GTP\textsubscript{y}S, a hydrolysis-resistant analogue of GTP. (A) Effect of 10 μM ATP\textsubscript{y}S and 1 μM isoproterenol (\(C_m = 155 \text{ pF}\)). (B) Effect of 100 μM ATP\textsubscript{y}S and 1 μM isoproterenol (\(C_m = 110 \text{ pF}\)). In both experiments I\textsubscript{Ca} was elicited by 200-ms depolarizations to 0 mV.

Effects of low doses of GTP\textsubscript{y}S in the absence of GTP and of an ATP regenerating system. In the absence of phosphocreatine, ATP, and GTP (but in the presence of 1 mM MgCl\textsubscript{2} and 10 mM NaCl), intracellularly added GTP\textsubscript{y}S was much more potent in increasing basal I\textsubscript{Ca}. The addition of 100 or 25 μM GTP\textsubscript{y}S fully activated I\textsubscript{Ca} within 5 min of perfusion (mean I\textsubscript{Ca} densities were 12.5 ± 0.9 pA/pF, \(n = 4\) and 12.1 ± 1.3 pA/pF, \(n = 3\), respectively). The application of ATP\textsubscript{y}S or isoproterenol was then unable to further increase I\textsubscript{Ca}; rather, ATP\textsubscript{y}S had an inhibitory effect on I\textsubscript{Ca} (not shown). At a concentration as low as 3 μM, GTP\textsubscript{y}S already markedly increased I\textsubscript{Ca}; the purinergic stimulation was then limited so that I\textsubscript{Ca} was 2.5 times larger than in control (Fig. 8 B). During the purinergic stimulation I\textsubscript{Ca} was not maintained and
further decreased during recovery. Another salient feature of these experiments was that the stimulatory effects of ATPγS were not reproducible. A second application of ATPγS was ineffective in increasing I_{Ca} but accelerated its rate of decrease. Isoproterenol application was without effect. Similar observations were obtained with two other cells. In two other cells, the addition of 1 μM GTPγS had no effect on basal I_{Ca}; the external application of 100 μM ATPγS was still able to increase I_{Ca} by 77 ± 2% (not shown).

![Figure 8](image.png)

Figure 8. Effect of P$_2$-purinergic stimulation of I_{Ca} in the presence of low concentrations of GTPγS. (A) The patch-pipette solution contained 100 μM GTPγS and 400 μM GTP ($C_m = 130$ pF). (B) The patch-pipette solution contained 3 μM GTPγS but no GTP, ATP, or phosphocreatine. ($C_m = 85$ pF). In both cases I_{Ca} was elicited by 200-ms depolarizations to 0 mV.

Is a Phosphorylation Step Associated with the P$_2$-purinergic Stimulation?

To investigate whether a phosphorylation step was involved during the P$_2$-purinergic stimulation, the standard patch pipette solution contained 3 mM ATPγS, which is a substrate for kinases but not for phosphatases. To favor the use of ATPγS by kinases, ATP was omitted from the internal standard medium and total Mg$^{2+}$ was decreased to keep a constant free Mg$^{2+}$ concentration of 1 mM. Usually I_{Ca} did not significantly change during the internal perfusion of ATPγS. Under this experimental condition, the external application of 100 μM ATPγS induced a pronounced increase in I_{Ca} amplitude which within 5–6 min reached a value similar to the one obtained in the presence of 100 μM GTPγS inside the cell ($154 ± 11\%$ increase, $n = 5$) (Fig. 9A). The mean rate of increase was faster than under control conditions: 212 ± 27
pA·min⁻¹ (n = 5, P < 0.05). Washout of the agonist allowed I_{Ca} to recover. Isoproterenol had no effect when applied before I_{Ca} had begun to recover (not shown). However, when applied with a delay after ATPγS removal, isoproterenol could stimulate I_{Ca} in a manner proportional to the decrease of I_{Ca}. As previously reported with GTPγS, the β-adrenergic stimulatory effect was observed only once, whereas the P₂-purinergic stimulation was reproducible (Fig. 9 A).
In a second series of experiments performed under similar conditions (3 mM ATPγS), application of 1 μM isoproterenol induced an irreversible increase in I_{Ca} (Fig. 9B). Note that this increase (196 ± 23%, n = 3) appears larger than under control conditions (120 ± 10%, n = 12; see Scamps et al., 1990b). P_2-purinergic stimulation of such a large, irreversibly isoproterenol-stimulated I_{Ca} induced a further increase in I_{Ca} (39.1 ± 4.5%; i.e., an increase that was 1.2-fold control I_{Ca}, n = 3). The purinergic-induced increase in I_{Ca} was reversible and reproducible, suggesting that phosphorylation was not involved in the purinergic effect. Note that on removal of ATPγS, I_{Ca} decreased below the sustained isoproterenol-stimulated steady level.

In three cells the internal perfusion with 3 mM ATPγS induced, after an 8–12 min delay, a slow increase in basal I_{Ca} (69.4 ± 3.9%, n = 3). When a steady state was reached after ~20 min, the external application of 100 μM ATPγS induced a further small increase in I_{Ca} amplitude which was followed by a pronounced decrease on washout (Fig. 9C). The first application of isoproterenol enhanced I_{Ca} to an amplitude larger than the one reached after P_2-purinergic stimulation. This β-adrenergic sustained increase in I_{Ca} was reversed by ATPγS application. Later, when I_{Ca} had reached its new steady-state amplitude, further applications of ATPγS could transiently increase I_{Ca}, isoproterenol could not.

A rather different situation was found when phosphocreatine and ATP were both omitted from the patch pipette solution. First, basal I_{Ca} increased more consistently under this experimental condition in the presence of internal ATPγS; after a steady state was reached, the purinergic stimulation was without positive effect and induced only an inhibition of I_{Ca}. A second major observation was the absence of reproducibility of the purinergic stimulation (Fig. 9D). Isoproterenol was without effect. Similar observations were found in two other cells.

Effet of Cholera Toxin

To further analyze the metabolic pathways involved during purinergic stimulation and particularly the role of G proteins, several toxins known to alter their properties were used. In a previous study (Scamps et al., 1990a), we have shown that P_2-purinergic stimulation was pertussis toxin insensitive.

When myocytes were incubated for at least 4 h with 10 μg/ml cholera toxin, a toxin known to ADP ribosylate the G, proteins, basal I_{Ca} density was much larger than in control cells (Table I and Fig. 10). Application to these cells of 1 μM isoproterenol or 10–100 μM ATPγS failed to further increase I_{Ca}, but ATPγS still shifted the $I-V$ curve and the availability curve (Figs. 10 and 11). The shift of the $I-V$ curve was not statistically different, but the shift in the availability curve was significant (V_h at 50% inactivation was −27.2 ± 0.4 and −30.2 ± 0.4 mV, n = 4 in cholera toxin–treated cells and in the presence of 10 or 100 μM ATPγS, respectively, $P < 0.01$). ATPγS at 10 or 100 μM had no inhibitory effects on cholera toxin–treated cells.

To ensure that the P_2-purinergic stimulation was mediated through activation of the G protein, SDS-PAGE and autoradiograms of 32P-labeled membrane proteins after ADP-ribosylation by cholera toxin were performed. At least two substrates for the ADP-ribosyltransferase of cholera toxin are reported in rat cardiomyocyte sarcolemmal membranes (Murakami and Yasuda, 1986; Foster et al., 1990). In the absence of cholera toxin, the autoradiograms reveal a weak radiolabeling of a 44-kD
membrane protein, probably resulting from an endogenous ADP-ribosyltransferase (Fig. 12A, 1). In the presence of cholera toxin, a marked increase in the 44-kD protein ADP ribosylation and some ADP ribosylation of a 47-kD protein were observed (Fig. 12A, 2). Radiolabeling of the 44- and 47-kD proteins was GppNHp dependent (data not shown). Further identification of the $G\alpha$ proteins was achieved by the use of anti-$G\alpha\beta$ antiserum (Foster et al., 1990). The immunoblot shown in Fig.

Figure 10. Effects of P$_2$-purinergic and β-adrenergic stimulations of I_{Ca} on cholera toxin-treated cells. (Inset) I_{Ca} current traces under external ATP$_7$S and isoproterenol ($C_m = 170$ pF).

Figure 11. Effect of P$_2$-purinergic agonist on I_{Ca} characteristics of cholera toxin-treated cells. (A) Peak I_{Ca} density–voltage relationships established on a cholera toxin-treated cell in the absence (■) and in the presence (▲) of ATP$_7$S; mean ± SEM ($n = 4$). (B) Availability curves obtained on control cholera toxin–treated cells (■) and in the presence of ATP$_7$S (▲); mean ± SEM ($n = 4$). Shift was significant (see text).
12B reveals that the antiserum specifically recognized both the 44- and 47-kD proteins. Therefore, based on electrophoretic mobility, immunochemical properties, and susceptibility to cholera toxin, these two proteins appear to represent α subunits of Ga (Ga44 and Ga47; Northup, Sternweis, Smigel, Schleifer, Ross, and Gilman, 1980). Preincubation of cardiomyocytes for 5 min with 10 μM isoproterenol led to a 40% reduction of the cholera toxin–dependent ADP ribosylation of Ga44. Preincubation for 5 min with 100 μM ATPγS had a similar effect, with a 23% inhibition of Ga44 labeling. These results suggest that, like the β-adrenergic agonists, the P2-purinergic agonists act through activation of a Ga44 protein. Unfortunately, due to its low distribution it was not possible to evaluate to what extent Ga47 was affected by these agonists.

Cyclic AMP Measurements

In a previous report we suggested that the P2-purinergic increase in ICa was independent of Ca channel phosphorylation by cyclic AMP–dependent PKA since it was additive to a maximal stimulation by β-adrenergic agonists or internal cyclic AMP perfusion. Moreover, it was not prevented by a nonspecific inhibitor of phosphodiesterases, IBMX (Scamps et al., 1990a). However, the results presented above show that P2-purinergic as well as β-adrenergic stimulation is associated with an activation of the Ga proteins.

To confirm that the P2-purinergic stimulation did not induce an increase in cyclic AMP levels, measurements of cyclic AMP concentration were done in isolated rat ventricular cells. Aliquots of ~100,000 cells were first incubated with 100 μM IBMX for 5 min to inhibit the phosphodiesterases; 10 μM isoproterenol, 100 μM ATPγS, or 10 μM isoproterenol plus 100 μM ATPγS was then added to cell batches for 5 min. The levels of cyclic AMP were 23.4 ± 0.8, 138 ± 17.5, 50.5 ± 1.8, and 125 ± 8.6 pmol/mg protein (mean ± SEM, n = 9 from three hearts), respectively, in control or in the presence of isoproterenol, ATPγS, or isoproterenol plus ATPγS. No significant increase in cyclic AMP level was observed with the P2-purinergic agonist, and P2 purinoagonists have no antagonistic effect on cyclic AMP production by the supramaximal activation of the β-adrenergic receptors with 10 μM isoproterenol.
Cyclic GMP Measurements

Adenosine, a P1-purinergic agonist, was previously reported to increase intracellular cyclic GMP concentration in isolated frog ventricle (Singh and Flitney, 1980) but not in guinea pig atria and ventricle (Brückner, Fenner, Meyer, Nobis, Schmitz, and Scholz, 1985). We thus investigated the effects of extracellular ATPγS on the cyclic GMP level in isolated rat ventricular cells. In the presence of 100 μM IBMX, basal cyclic GMP concentration was 272 ± 13 fmol/mg protein (n = 5 from two hearts). Incubation of the cells for 5 min with a solution containing 100 μM ATPγS increased the intracellular cyclic GMP content threefold (651 ± 65 fmol/mg protein, n = 5).

Discussion

These results confirm that extracellular ATP in the micromolar concentration range increases the Ca current of cardiac muscle. They demonstrate that neither PKC activation nor the products of arachidonic acid metabolism were involved in the increase of I_Ca. Such an increase was also not consequent to cyclic AMP production, in agreement with recent studies performed in rat and mouse ventricular cells (Yamada, Hamamori, Akita, and Yokoyama, 1992; Zheng, Christie, De Young, Levy, and Scarpa, 1992). Interestingly, in the study of Yamada et al. (1992) measurements of cyclic AMP were done in the presence of a cyclic AMP phosphodiesterase inhibitor instead of the nonspecific phosphodiesterase inhibitor (IBMX). Under their experimental condition, ATPγS induced a decrease in cyclic AMP levels which could be attributed to the increase in cyclic GMP levels that we report, assuming a cyclic GMP-dependent phosphodiesterase was activated. Despite its rather slow development, the ATP-induced increase in Ca current can be attributed to a direct activation of the Ca conductance by a G protein. P1-purinergic stimulation of a cardiac K conductance is achieved similarly by a G protein (Kurachi et al., 1986). Moreover, based on electrophoretic mobility, immunochemical properties, and susceptibility to cholera toxin, it is proposed that the activating G protein is similar to the G protein involved during β-adrenergic stimulation which acts indirectly upon the Ca current by activation of adenyl cyclase.

Besides increasing the Ca current, the P2-purinergic stimulation induces a 5–10 mV shift in the hyperpolarizing direction of the activation curve and the current availability curve. Such shifts are observed on adding ATPγS to the external solution under all of the experimental conditions we used (control, GTPγS, and cholera toxin). Extracellularly applied ATPγS as used in this study is roughly equipotent to ATP on the P2-purinergic receptor (Scamps et al., 1990a) but much less on the P3-purinergic receptor known to induce internal acidosis (Scamps and Vassort, 1990; Pucéat et al., 1991b). This shift was also observed in Mg-free solution, a condition that definitively prevented activation of the P3-purinergic receptors. Thus, the shift in I_Ca/voltage characteristics could not be related to a change in internal pH. This shift is consistent with an increase in negative charges on the extracellular face of the membrane after adsorption of ATP.
SCAMPS ET AL. G Protein–dependent Purinergic Stimulation of Ca Current

Involvement of a G Protein

The experiments performed with the poorly hydrolyzable analogues of GTP show that, in rat ventricular cells, a trinucleotide exchange of the G proteins may take place even in the absence of agonist, particularly when GTP\beta S is used. The result of this exchange is an increase in basal \(I_{Ca} \) amplitude, which suggests either that the number of the stimulatory G proteins largely prevails over the inhibitory G proteins or that the stimulatory G proteins have a faster basal trinucleotide exchange rate than the inhibitory G proteins. Such an effect of poorly hydrolyzable analogues of GTP on basal \(I_{Ca} \) was also observed in guinea pig ventricular cardiomyocytes (Hescheler, Kameyama, and Trautwein, 1986; Shuba et al., 1990) but not in frog atrial cells (Breitwieser and Szabo, 1985; Nakajima, Wu, Irisawa, and Giles, 1990). In the presence of GppNHp or at a low GTP\gamma S/GTP ratio, \(I_{Ca} \) is hardly increased, a result that is quite consistent with competition between GTP and its hydrolysis-resistant analogues for the G proteins with an order of relative effectiveness GTP\gamma S > GTP > GppNHp (Yamanaka, Eckstein, and Stryer, 1986; Breitwieser and Szabo, 1988). This suggests that the cells can be depleted of GTP with great difficulty. In agreement with this proposal, we have shown that concentrations of GTP\gamma S as low as 3 \(\mu \)M, in the absence of a GTP-regenerating system, could induce a twofold increase in \(I_{Ca} \) (see below, involvement of nucleoside diphosphate kinase). The experiments performed with GDP\beta S are also consistent with this proposal. Indeed, to block half of the \(P_2 \)-purinergic and \(\beta \)-adrenergic stimulations, it was not only necessary to decrease the level of metabolites but also to decrease the level of free \(Mg^{2+} \) ions, a cofactor known to increase the affinity of G proteins for GTP but not for GDP (Gilman, 1987).

It is remarkable that the Ca current density could be increased to the same level (20 pA/pF, about threefold higher than the control value) by different means: cholera toxin pretreatment, internal perfusion with GTP\gamma S, or cumulative \(P_2 \)-purinergic and \(\beta \)-adrenergic stimulation (Table I). This could mean that this value represents the maximal Ca current producible by these cells, or that GTP\gamma S and cholera toxin treatments allow maximal stimulation by both cascades involved in these stimulations. That the \(P_2 \)-purinoceptor-induced increase in \(I_{Ca} \) is mediated through a G protein is supported particularly by its marked reduction in the presence of GDP\beta S (an approximately two times smaller increase than in control) and by the doubled and faster \(I_{Ca} \) increase induced by a maximal concentration of the agonist in the presence of weak concentrations of GTP\gamma S (together with GTP). The latter result suggests that the implied G protein possesses a rather strong GTPase activity and/or a rather slow turnover.

Identification of the Activatory G Protein

The high \(I_{Ca} \) density and the lack of effect of isoproterenol on cholera toxin–treated cells were expected since this toxin is known to activate the \(G_i \) proteins (Northup et al., 1980). Such an activation might lead to both a production of cyclic AMP and a direct stimulatory effect of Ca channels (Yatani et al., 1987, 1988; Brown and Birnbaumer, 1988; Yatani and Brown, 1989; Trautwein and Hescheler, 1990). The
involvement of a cholera toxin–sensitive G protein (namely, Gs protein) in the P2-purinergic pathway was strengthened by demonstrating that cholera toxin–dependent ADP-ribosylation of the αs44 subunit of the Gs protein is reduced after β-adrenergic stimulation and also after P2-purinergic stimulation, although to a slightly less extent. However, the different types of stimulation cannot involve the same pool of Gs proteins because their subsequent effects are specific and different; namely, an increase in cyclic AMP production and an irreversible effect of isoproterenol under GTPγS or ATPγS versus no measurable cyclic AMP production and a reversible and reproducible effect of purinergic stimulation under the same experimental conditions. This specificity of response implies either a spatial distribution and colocalization of the Gs protein with the two receptor types or that the two receptors are coupled to specific Gs proteins as shown for other G proteins (Kleuss, Hescheler, Ewel, Rosenthal, Schultz, and Witting, 1991). The latter explanation could result from splice variants of the αs subunit (Mattera, Graziano, Yatani, Zhou, Graf, Codina, Birnbaumer, Gilman, and Brown, 1989) not resolved by electrophoretic mobility in our SDS-denaturing conditions or from specificity induced by at least one of the four isoforms of the βγ dimer (Birnbaumer, Abramowitz, and Brown, 1990). It was also reported that cardiac Gs protein exists not only in particulate fraction (membrane) but also in soluble fraction (cytosol); this latter form is not efficient in activating adenylyl cyclase (Urasawa, Leiber, Roth, Hammond, and Insel, 1991).

Involvement of a Nucleoside Diphosphate Kinase

Surprisingly, in the presence of poorly hydrolyzable analogues of either GTP (GXP) or ATP, the purinergic-induced increase in I_{Ca} is reversible and can be reproduced. This is markedly different from the sustained β-adrenergic stimulation, which could be attributed to poorly reversible binding of α-GTPγS leading to an elevated cyclic AMP production or to hydrolysis-resistant thiophosphorylation of the Ca channel (see below). This accounts for the fact that isoproterenol was active only on the first application. Assuming that GXP has activated all the G proteins during the ATP application, reproducibility of the purinergic effects implies that some G-GDP complexes are made available upon agonist removal, or that P2-purinergic stimulation facilitates the GXP/GTP exchange (Otero, Li, and Szabo, 1991; Hilf, Kupprian, Wieland, and Jakobs, 1992), both conditions requiring endogenous GTP to be available. Since no GTP was added in the experiments performed with high concentrations of GXP, we have to assume that a GTP regenerative system should be present. A good candidate is the nucleoside diphosphate kinase (NDPK), for which the preferential phosphate donor is ATP (Otero, Breitwieser, and Szabo, 1988; Heidbüchel, Callewaert, Vereecke, and Carmeliet, 1990; Otero, 1990). Moreover, it has been shown that the membrane-associated NDPK is extractable together with a Gs protein as a complex form (Kimura and Shimada, 1988). Indeed, in the experiments designed to lower the internal ATP concentration (no added phosphocreatine or ATP) to tentatively reduce the NDPK activity, we failed to observe any reproducible stimulatory effects of the P2-purinergic agonist (Figs. 8 B and 9 D). Moreover, experiments performed in the presence of internal ATPγS (Fig. 9) allows us to postulate that the lack of reproducibility was not due to depletion of ATP per se.
Thus, it is proposed (see Fig. 13) that besides the GXP added to the pipette solution, and which is diffused to the membrane or translocated to the membrane through the NDPK, GTP is also made locally available by the NDPK from ATP whenever ATP is added or newly formed due to the creatine kinase activity when phosphocreatine is present. This implies a channeling of high energy phosphate from phosphocreatine to GDP by a cascade of two enzymes in which phosphocreatine and creatine kinase serve as an NTP-regenerative system while NDPK will use the newly formed NTP to restore GTP.

Phosphorylation

In the absence of agonists, intracellular perfusion of rat cardiomyocytes with ATPγS can elicit a progressive increase in the L-type Ca current (Fig. 9 C) as already observed in guinea pig cells (Kameyama, Hescheler, Hofmann, and Trautwein, 1986). These effects were attributed to a basal turnover of phosphorylation/dephosphorylation of the Ca channel protein. Another interpretation of an intracellular ATPγS-induced increase in current should be taken from the similar increase of the muscarinic K channel current in frog atrial cells (Otero et al., 1988), where the effects of ATPγS were consequent to its conversion into GTPγS by a nucleoside diphosphate kinase; the resulting increase in GTPγS was assumed to be responsible for the sustained, direct activation of the K conductance. Moreover, a longer delay in the presence of ATPγS compared with GTPγS was necessary to see an effect, which was consistent with an intermediary metabolic step. That such an ATPγS to GTPγS conversion has occurred during our experiments could account for the slowly developing increase in I_{Ca} seen in few cells before agonist application (Fig. 9, C and D). On internal perfusion of ATPγS, the increase in basal I_{Ca} required at least 8–10 min, a value similar to the one reported by Otero et al. (1988). Besides, when no apparent effect on basal I_{Ca} was observed, application of the P2-purinergic agonist induced effects quite similar to those obtained with the low GTPγS concentration (i.e., potentiation, reversibility, and reproducibility). As with the slowly hydrolyzable analogues of GTP, the repeatability of P2-purinergic-induced increase in I_{Ca} was
suppressed when phosphocreatine was omitted, i.e., when no ATP was provided to the NDPK reaction. Under this condition the NDPK utilizes only the internal ATPγS, leading to formation of GTPγS, potentiation of the P2-purinergic stimulation, and development of the G protein–dependent inhibition. Incidently, the sustained β-adrenergic increase in I_{Ca} in the presence of internal ATPγS might result from both thiophosphorylation of the Ca channel and sustained activation of the adenylyl cyclase by α$_5$GXP.

Inhibition of I_{Ca}

In the presence of hydrolysis-resistant GTP analogues, the increase in I_{Ca} is not maintained during prolonged or repetitive external applications of ATPγS (Figs. 7 and 8). A slow decrease occurs which could be attributed to the activation of an inhibitory pathway in addition to the GXP/GTP exchange described above. Such an inhibitory effect was also observed under control conditions in mammal cells (Qu, Campbell, Whorton, and Strauss, 1991) or with high ATP concentrations in frog cells (Alvarez et al., 1990). The reduction of I_{Ca} cannot be attributed to activation of P$_1$ purinoceptors since it is neither mimicked by adenosine nor prevented by IBMX (P$_1$ purinoceptor antagonist). The latter experiment also suggests that the inhibitory effect does not result from phosphodiesterase activation leading to cyclic AMP degradation. Moreover, the lack of effects of forskolin allows us to postulate that the inhibitory effect is not due to a direct inhibition of adenylate cyclase through a Gi protein. In addition, the reported increase in cyclic GMP cannot be attributed to activation of P$_1$-purinergic receptors since it was observed in the presence of IBMX. Thus, we can propose that the negative effect of ATPγS is consequent to P$_2$-purinergic stimulation, although we have not yet established which subtype is involved (P$_{2X}$ or P$_{2Y}$), and that this negative effect does not appear to be linked to cyclic AMP production or degradation. Interestingly, in ferret heart cells ATP and its derivatives had only a negative effect on I_{Ca} amplitude, which was attributed to P$_{2Y}$ purinoceptor stimulation (Qu et al., 1991).

Several mechanisms can account for this decrease in I_{Ca} and may be related to a phosphorylation of an inhibitory site of the Ca channel protein (Fig. 13). Purinergic stimulation increases the cyclic GMP level. It might thus activate the cyclic GMP–dependent protein kinase (PKG) that has been reported to inhibit I_{Ca} in several tissues, including cardiac cells (Méry, Lohman, Walter, and Fischmeister, 1991). Purinergic stimulation also increases the phosphoinositide turnover and thus might activate the Ca- and phospholipid-dependent PKC. Activation of PKC by phorbol esters reduces I_{Ca} (Tseng and Boydén, 1991) and reduces the open probability of the Ca channel after a transient increase (Lacerda, Rampe, and Brown, 1988), although the same authors reported that there was no effect on Ca current under whole-cell patch-clamp conditions. One cannot exclude another possibility that sustained activation of a G protein would have a direct inhibitory effect on the cardiac I_{Ca} as reported for the N-type Ca channel in neuronal cells (Dolphin, 1990). Whatever the exact mechanism of inhibition, these effects were clearly observed only in the presence of hydrolysis-resistant GTP analogues; this suggests that this inhibitory effect also occurs through activation of a G protein and might involve an hydrolysis-resistant phosphorylation.
Kinetic Aspects

From studies relating $I_{K(ACh)}$ (Breitwieser and Szabo, 1985) and isoproterenol-stimulated I_{Ca} (Yatani and Brown, 1989), the idea has emerged that ion channel regulation through the membrane-delimited G protein pathway is a rather fast process. However, a slow rate of increase as seen during P2-purinergic stimulation might not necessarily involve a multistep pathway. As reviewed by Gilman (1987) and Levitzki (1988), the kinetic features of the hormone–G protein–effector complex depend on the agonist–receptor interactions, on the intrinsic nature of the G protein, and on the G protein–effector interactions. Thus, a low density of P2 purinoceptors as yet unknown or a weak interaction of this Gs isoform with the Ca channel could be rate limiting.

That the increase in I_{Ca} continued to develop after brief isoproterenol application (see Fig. 3) can be accounted for by the slow GTPase step as compared with the turnover number of activated cyclase; ~100 cyclic AMP molecules can be produced before the GTPase-off step (Levitzki, 1988). Such is not the case with P2-purinergic stimulation, which is consistent with the concept of a direct G protein–Ca channel coupling. Further support for this interpretation is given by the fact that in the presence of a low GTPyS concentration the rate and amplitude of P2-purinergic increase in I_{Ca} were enhanced (see Fig. 8), in agreement with the fact that the poorly hydrolyzable analogue forms a more stable Gs protein–Ca channel complex.

Conclusions

The present results suggest that P2-purinergic stimulation would both activate and more slowly inhibit the Ca current. Activation is suggested to involve a direct coupling of the Ca channel with a Gs protein which is in some ways different from the Gs protein activating the adenylyl cyclase. P2-purinergic activation of I_{Ca} would thus have similarities with the direct activation by a G protein of the K conductance under adenosine-mediated P1-purinergic stimulation. Besides, several inhibitory pathways are tentatively proposed. Moreover, our results suggest that a nucleoside diphosphate kinase can be involved to channel high energy phosphate to the GTP used by the Gs protein associated with the Ca channel.

The authors wish to thank Dr. J.-F. Arnal for assistance with the cyclic GMP measurements, Dr. I. Findlay for help with the manuscript, and D. Reuter for secretarial assistance.

Original version received 16 January 1992 and accepted version received 20 June 1992.

REFERENCES

Alvarez, J. L., K. Mongo, F. Scamps, and G. Vassort. 1990. Effects of purinergic stimulation on the calcium current in single frog cardiac cells. Pflügers Archiv. 416:189–195.

Behnke, N., W. Müller, J. Neumann, W. Schmitz, H. Scholz, and B. Stein. 1990. Differential antagonism by 1,3-dipropylxanthine-8-cyclopentylxanthen and 9-chloro-2-(2-furanyl)-5,6-dihydro-1,2,4-triazolo(1,5-c)quinazolin-5-imine of the effects of adenosine derivatives in the presence of isoprenaline on contractile response and cyclic AMP content in cardiomyocytes: evidence for the coexistence of A_1 and A_2-adenosine receptors on cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics. 254:1017–1023.
Belardinelli, L., and G. Isenberg. 1983. Increase in potassium conductance in isolated guinea pig atrial myocytes by adenosine and acetylcholine. *American Journal of Physiology.* 244:H734–H737.

Bergamaschi, S., S. Govoni, P. Cominetti, M. Parenti, and M. Trabucchi. 1988. Direct coupling of a G-protein to dihydropyridine binding sites. *Biochemical and Biophysical Research Communications.* 156:1279–1286.

Birnbaumer, L., J. Abramowitz, and A. M. Brown. 1990. Receptor-effector coupling by G proteins. *Biochimica et Biophysica Acta.* 1031:163–224.

Breitwieser, G. E., and G. Szabo. 1985. Uncoupling of cardiac muscarinic and β-adrenergic receptors from ion channels by a guanine nucleotide analogue. *Nature.* 317:538–540.

Breitwieser, G. E., and G. Szabo. 1988. Mechanism of muscarinic receptor-induced K+ channel activation as revealed by hydrolysis-resistant GTP analogues. *Journal of General Physiology.* 91:469–493.

Brown, A. M., and L. Birnbaumer. 1988. Direct G protein gating of ion channels. *American Journal of Physiology.* 254:H401–H410.

Brown, A. M., and L. Birnbaumer. 1990. Ionic channels and their regulation by G protein subunits. *Annual Review of Physiology.* 52:197–213.

Brückner, R., A. Fenner, W. Meyer, T.-M. Nobis, W. Schmitz, and H. Scholz. 1985. Cardiac effects of adenosine and adenosine analogs in guinea-pig atrial and ventricular preparations: evidence against a role of cyclic AMP and cyclic GMP. *Journal of Pharmacology and Experimental Therapeutics.* 234:766–774.

Burnstock, G. 1981. Neurotransmitters and trophic factors in the autonomic nervous system. *Journal of Physiology.* 313:1–35.

Cailla, H. L., C. T. Vannier, and M. A. Delaage. 1976. Guanosine 3',5' cyclic monophosphate assay at 10−15 mole level. *Analytical Biochemistry.* 70:195–202.

Cavalié, A., T. J. A. Allen, and W. Trautwein. 1991. Role of the GTP-binding protein Gi in the β-adrenergic modulation of cardiac Ca channel. *Pflügers Archiv.* 419:433–443.

Cerbai, E., U. Klöckner, and G. Isenberg. 1988. Ca-antagonistic effect of adenosine in guinea pig atrial cells. *American Journal of Physiology.* 255:H872–H878.

Dolphin, A. C. 1990. G-protein modulation of calcium currents in neurons. *Annual Review of Physiology.* 52:245–255.

Feder, D., M.-J. Im, H. W. Klein, M. Hekman, A. Holzhöfer, C. Dees, A. Levitzki, E. J. M. Helmreich, and T. Pfeuffer. 1986. Reconstitution of β1-adrenoceptor-dependent adenylyl cyclase from purified components. *EMBO Journal.* 5:1509–1514.

Foster, K. A., P. J. McDermott, and J. D. Robishaw. 1990. Expression of G-proteins in rat cardiac myocytes: effect of KCl depolarization. *American Journal of Physiology.* 259:H432–H441.

Garcia, J., R. Gamboa-Aldeco, and E. Stefani. 1990. Charge movement and calcium currents in skeletal muscle fibers are enhanced by GTPγS. *Pflügers Archiv.* 417:114–116.

Gilman, A. G. 1987. G proteins: transducers of receptor-generated signals. *Annual Review of Biochemistry.* 56:615–649.

Hamill, O. P., A. Marty, E. Neher, B. Sakmann, and P. J. Sigworth. 1981. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. *Pflügers Archiv.* 391:85–100.

Hamilton, S. L., J. Codina, M. J. Hawkes, A. Yatani, T. Sawada, F. M. Strickland, S. C. Froehner, A. M. Spiegel, L. Toro, E. Stefani, L. Birnbaumer, and A. M. Brown. 1991. Evidence for direct interaction of Gα with the Ca2+ channel of skeletal muscle. *Journal of Biological Chemistry.* 266:19528–19535.

Hartzell, H. C. 1988. Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. *Progress in Biophysics and Molecular Biology.* 52:165–247.
Hartzell, H. C., P.-F. Méry, R. Fischmeister, and G. Szabo. 1991. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. *Nature.* 351:573–576.

Heidbüchel, H., G. Callewaert, J. Vereecke, and E. Carmeliet. 1990. ATP-dependent activation of atrial muscarinic K⁺ channels in the absence of agonist and G-nucleotides. *Pflügers Archiv.* 416:213–215.

Hescheler, J., M. Kameyama, and W. Trautwein. 1986. On the mechanism of muscarinic inhibition of the cardiac Ca current. *Pflügers Archiv.* 407:182–189.

Hilf, G., C. Kupprion, T. Wieland, and K. H. Jakobs. 1992. Dissociation of guanosine 5′-(γ-thio)triphosphate from guanine-nucleotide-binding regulatory proteins in native cardiac membranes: regulation by nucleotides and muscarinic acetylcholine receptors. *European Journal of Biochemistry.* 204:725–731.

Imoto, Y., A. Yatani, J. P. Reeves, J. Codina, L. Birnbaumer, and A. M. Brown. 1988. α-Subunit of Gs directly activates cardiac calcium channels in lipid bilayers. *American Journal of Physiology.* 255:H722–H728.

Kameyama, M., J. Hescheler, F. Hofmann, and W. Trautwein. 1986. Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. *Pflügers Archiv.* 407:129–128.

Kimura, N., and N. Shimada. 1988. Direct interaction between membrane-associated nucleoside diphosphate kinase and GTP-binding protein (Gᵢ), and its regulation by hormones and guanine nucleotides. *Biochemical and Biophysical Research Communications.* 151:248–256.

Kleuss, C., J. Hescheler, C. Ewel, W. Rosenthal, G. Schultz, and B. Witting. 1991. Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. *Nature.* 353:43–48.

Kurachi, Y., T. Nakajima, and T. Sugimoto. 1986. On the mechanism of activation of muscarinic K⁺ channels by adenosine in isolated atrial cells: involvement of GTP binding proteins. *Pflügers Archiv.* 407:264–274.

Lacerda, A. E., D. Rampe, and A. M. Brown. 1988. Effects of protein kinase C activators on cardiac Ca²⁺ channels. *Nature.* 335:249–251.

Legssyer, A., J. Poggioli, D. Renard, and G. Vassort. 1988. ATP and other adenine compounds increase mechanical activity and inositol trisphosphate production in rat heart. *Journal of Physiology.* 401:185–199.

Levitzki, A. 1988. From epinephrine to cyclic AMP. *Science.* 241:800–806.

Mattera, R., M. P. Graziano, A. Yatani, Z. Zhou, R. Graf, J. Codina, L. Birnbaumer, A. G. Gilman, and A. M. Brown. 1989. Splice variants of the α subunit of the G protein G, activate both adenylyl cyclase and calcium channels. *Science.* 243:804–807.

Méry, P.-F., S. M. Lohman, U. Walter, and R. Fischmeister. 1991. Ca²⁺ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. *Proceedings of the National Academy of Sciences, USA.* 88:1197–1201.

Murakami, T., and H. Yasuda. 1986. Rat heart cell membranes contain three substrates for cholera toxin-catalyzed ADP-ribosylation and a single substrate for pertussis toxin-catalyzed ADP-ribosylation. *Biochemical and Biophysical Research Communications.* 138:1355–1361.

Nakajima, T., S. Wu, H. Irisawa, and W. Giles. 1990. Mechanism of acetylcholine-induced inhibition of Ca current in bullfrog atrial myocytes. *Journal of General Physiology.* 96:865–885.

Needleman, P., M. S. Minkes, and J. R. Douglas. 1974. Stimulation of prostaglandin biosynthesis by adenine nucleotides. *Circulation Research.* 34:455–460.

Northup, J. K., P. C. Sternweis, M. D. Smigel, L. S. Schleifer, E. M. Ross, and A. G. Gilman. 1980. Purification of the regulatory component of adenylyl cyclase. *Proceedings of the National Academy of Sciences, USA.* 77:6516–6520.

Olsson, R. A., and J. D. Pearson. 1990. Cardiovascular purinoceptors. *Physiological Reviews.* 70:761–845.
Otero, A. 1990. Transphosphorylation and G protein activation. *Biochemical Pharmacology.* 39:1399-1404.

Otero, A., G. E. Breitwieser, and G. Szabo. 1988. Activation of muscarinic potassium currents by ATPγS in atrial cells. *Science.* 242:443-445.

Otero, A., Y. Li, and G. Szabo. 1991. Receptor-mediated deactivation of Go in cardiac myocytes. *Pflügers Archiv.* 417:543-545.

Pucéat, M., O. Clément, P. Lechéne, J. M. Pelosin, R. Ventura-Clapier, and G. Vassort. 1990. Neurohormonal control of calcium sensitivity of myofilaments in rat single heart cells. *Circulation Research.* 67:517-524.

Pucéat, M., O. Clément, F. Scamps, and G. Vassort. 1991a. Extracellular ATP-induced acidification leads to a cytosolic calcium transient rise in single rat cardiac myocytes. *Biochemical Journal.* 274:55-62.

Pucéat, M., O. Clément, and G. Vassort. 1991b. Extracellular MgATP activates the CI/HCO3-exchanger in single rat cardiac cells. *Journal of Physiology.* 444:241-256.

Qu, Y., D. L. Campbell, A. R. Whorton, and H. C. Strauss. 1991. Modulation of ICa by ATP in isolated ferret right ventricular myocytes. *Circulation.* 84(Suppl. II):172.

Ribeiro-Neto, F., R. Mattera, D. Grenet, R. D. Sekura, L. Birnbaumer, and J. B. Field. 1987. Adenosine diphosphate ribosylation of G proteins by pertussis and cholera toxin in isolated membranes: different requirements for and effects of guanine nucleotides and Mg2+. *Molecular Endocrinology.* 1:472-481.

Scamps, F., A. Legssyer, E. Mayoux, and G. Vassort. 1990a. On the mechanism of positive inotropy induced by ATP in rat heart. *Circulation Research.* 67:1007-1016.

Scamps, F., E. Mayoux, D. Charlemagne, and G. Vassort. 1990b. Calcium current in single cells isolated from normal and hypertrophied rat heart: effects of β-adrenergic stimulation. *Circulation Research.* 67:199-208.

Scamps, F., and G. Vassort. 1990. Mechanism of extracellular ATP-induced depolarization in rat isolated ventricular cardiomyocytes. *Pflügers Archiv.* 417:309-316.

Schwartzman, M., R. Pinkas, and A. Raz. 1981. Evidence for different purinergic receptors for ATP and ADP in rabbit kidney and heart. *European Journal of Pharmacology.* 74:167-173.

Shuba, Y. M., B. Hessinger, W. Trautwein, T. F. McDonald, and D. Pelzer. 1990. Whole-cell calcium current in guinea-pig ventricular myocytes dialysed with guanine nucleotides. *Journal of Physiology.* 424:205-228.

Singh, J., and F. W. Flitney. 1980. Adenosine depresses contractility and stimulates 3',5' cyclic nucleotide metabolism in the isolated frog ventricle. *Journal of Molecular and Cellular Cardiology.* 12:285-297.

Suárez-Kurtz, G., and J. P. Reuben. 1987. Effects of neomycin on calcium channel currents in clonal GH3 pituitary cells. *Pflügers Archiv.* 410:517-523.

Takikawa, R., Y. Kurachi, S. Mashima, and T. Sugimoto. 1990. Adenosine-5'-triphosphate-induced sinus tachycardia mediated by prostaglandin synthesis via phospholipase C in the rabbit heart. *Pflügers Archiv.* 417:13-20.

Tang, W.-J., and A. G. Gilman. 1991. Type-specific regulation of adenylyl cyclase by G protein βγ subunits. *Science.* 254:1500-1503.

Toullec, D., P. Pianetti, H. Coste, P. Bellevergue, T. Grand-Perret, M. Ajakane, V. Baudet, P. Boissin, E. Bourrier, F. Loriolle, L. Duhamel, D. Charon, and J. Kirilovsky. 1991. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. *Journal of Biological Chemistry.* 266:15771-15781.

Trautwein, W., and J. Hescheler. 1990. Regulation of cardiac L-Type calcium current by phosphorylation and G proteins. *Annual Review of Physiology.* 52:257-274.
Tseng, G.-N., and P. A. Boyden. 1991. Different effects of intracellular Ca and protein kinase C on cardiac T and L Ca currents. *American Journal of Physiology.* 261:H364-H379.
Urasawa, K., D. Leiber, D. A. Roth, H. K. Hammond, and P. Insel. 1991. Stimulatory GTP binding protein (Gs) in the soluble fraction of porcine left ventricle. *Circulation.* 84(Suppl. II):391.
Vergara, J., R. Y. Tsien, and M. Delay. 1985. Inositol 1,4,5-triphosphate: a possible link in excitation-contraction coupling in muscle. *Proceedings of the National Academy of Sciences, USA.* 82:6352–6356.
Xu, D., H. Kong, and B. T. Liang. 1992. Expression and pharmacological characterization of a stimulatory subtype of adenosine receptor in fetal chick ventricular myocytes. *Circulation Research.* 70:56–65.
Yamada, M., Y. Hamamori, H. Akita, and M. Yokoyama. 1992. P2-purinoceptor activation stimulates phosphoinositide hydrolysis and inhibits accumulation of cAMP in cultured ventricular myocytes. *Circulation Research.* 70:477–485.
Yamanaka, G., F. Eckstein, and L. Stryer. 1986. Interaction of retinal transducin with guanosine triphosphate analogues: specificity of the γ-phosphate binding region. *Biochemistry.* 25:6149–6153.
Yatani, A., and A. M. Brown. 1989. Rapid β-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. *Science.* 245:71–74.
Yatani, A., J. Codina, Y. Imoto, J. P. Reeves, L. Birnbaumer, and A. M. Brown. 1987. A G-protein directly regulates mammalian cardiac calcium channels. *Science.* 238:1288–1291.
Yatani, A., Y. Imoto, J. Codina, S. L. Hamilton, A. M. Brown, and L. Birnbaumer. 1988. The stimulatory G protein of adenylate cyclase, Gs, also stimulates dihydropyridine-sensitive Ca2+ channels. *Journal of Biological Chemistry.* 263:9887–9895.
Zheng, J.-S., A. Christie, M. B. De Young, M. N. Levy, and A. Scarpa. 1992. Synergism between cAMP and ATP in signal transduction in cardiac myocytes. *American Journal of Physiology.* 262:C128–C135.