Effect of different levels of NPK on growth and yield attributing characters of Cowpea (Vigna unguiculata L. Walp var. Kashi Kanchan)

Anisha Tirkey, Pravin Kumar Sharma and Puleshwar Khurana

DOI: https://doi.org/10.22271/chemi.2020.v8.i6e.10787

Abstract
A field experiment was conducted during Kharif season 2019 to know the effect of different fertility levels on growth and yield attributing characters of cowpea (Vigna unguiculata L. Walp var. Kashi Kanchan). Data revealed that higher growth and yield parameters were recorded under the treatment (T2) 150% RDF i.e. plant height (97.26 cm), branches number (7.5), leaves number (30.67), pod number per cluster (3.6), pod number per plant (14.43), pod length (22.7 cm), yield of pod per plot (3.18 kg), pod yield in (q/ha) (66.41 q/ha). The nutrient application of NP0K (T5) was most effective for higher pericarp weight (3.08 g). The restricted nitrogenous fertilizer application was most appreciated for nodule count at the time of harvesting of the crop 18.8 nodules/plant. Higher protein content in 150% RDF T2 (28.3%). B:C ratio is an important parameter to understand the economics of any treatment among the treatments evaluated, application of 50% RDF (T3) was most impressive with higher B:C ratio (5.58) followed by 100% RDF (T1) with (5.52).

Keywords: Cowpea, fertility levels, growth, yield, economics

Introduction
India is world’s second largest producer of vegetables next to China. In India, total area under vegetable production is 2582190 ha and production is 34.43 MT. Vegetables and pulses are cheap source of protein. Cowpea (Vigna unguiculata L. Walp) belongs to family leguminaceae, sub family fabaceae, having chromosome number 2n=22 or 24. India is the center of origin (Vavilov 1939) [27]. Cowpea is an annual herb having tap root system with various growth habits i.e. erect, semi erect, climbing, bushy annual with glabrous stem. This crop has leaves in trifoliate arrangement which arise alternatively and terminal leaflet is longer having larger area than that of lateral leaflets. In addition to green vegetable, it is also grown for grain, fodder, catch crop, mulch crop, mixed and intercrop. Cowpea is one of the important vegetable crop mainly grown for its pods as green vegetable during both summer and rainy seasons. Cowpea is of great importance due to its short duration, high yield capacity and rapid growth habit. It is a relatively cheap source of vegetable protein (Pareek and Chandra 2003) [20] which is essential for the growth and maintenance of the body. Cowpea is shade tolerant crop therefore, it is compatible as intercrop. It grows and develops well in poor soils with more than 85 per cent sand and with less than 0.2 per cent organic matter and rainfall of 760-1520 mm during its growth period. (Singh et al., 2003) [23]

Based on FAO data, worldwide area under cowpea is over 12.49 million ha, with over 7.23 million tonnes annual production. In India, peas has occupied an area of 997735 ha with a total production of 920473 tonnes. (Anon, 2018b) [1] In Chhattisgarh, total area under cultivation is 16609 hectare with 233115 MT production. (Anon, 2018c) [2]

Growth and yield of plants are mostly affected by wide range of nutrients. There are many reason for its low productivity like weed growth, pest attacks, plant population and improper nutrient management. The dose of fertilizer depends on the initial soil fertility status and moisture conditions. Cowpea being a leguminous crop is able to fix atmospheric nitrogen with small amount of nitrogenous fertilizer implemented as starter dose.
Phosphorous is critical to cowpea crop because it is reported to stimulate growth, initiate nodule, root growth as well as influence the efficiency of the rhizobium-legume symbiosis (Haruna and Aliyu 2011) [8]. Legumes are phosphorous loving plants, they require phosphorus for growth and seed development and most specifically in nitrogen fixation. Phosphorus is needed for the transfer of energy in carbohydrate and fat metabolism inside plant system and has beneficial impact on early root development. (Yawalker et al., 1996) [29].

Potassium also plays a vital role in crop production. It increases plant vigour and disease resistance and serves as an activator of various enzymes. Indian soil is characterized as poor to medium nitrogen status and available phosphorus so, balanced fertilizer is required for maximum yield and growth. Since, India’s productivity of cowpea is very low so it is necessary to apply good agronomical practices with appropriate level of fertilizer for higher yield and productivity. Intensive agriculture leads to overwhelming withdrawal of nutrients from the soil furthermore, imbalanced utilization of chemical fertilizer has disintegrated soil health. Therefore, utilization of balanced of fertilizer can contribute to high yield and increment of soil health.

Material and Methods

The experimental trial was laid out at the field of Horticulature farm, Department of Vegetable Science, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh. Raipur’s climatic condition is sub-humid to semi-arid. A total rainfall received during crop growth period was 799.1 mm in 26 rainy days. A maximum temperature of 33 °C in standard week of 38 and lowest temperature of 21.8 °C in week of 42. The experiment was laid out in Randomized Block Design, with three replication. Experimental details contains 7 treatments of different level of fertilizer doses (T₀- 100% RDF, T₁- 150% RDF, T₂- 50% RDF, T₃- N₀PK, T₄- NPkg₉, T₅- NPK₀ and T₆- N₉P₀K₀). All the cultural practices were similar for each plot including weeding, irrigation and disease pest control measures. The soil was clay loam in texture with pH of normal (7.4), organic carbon was low (0.62), available nitrogen low (133.802), phosphorus was medium in range (16.814) and available potassium was high (303.11). Net plot size of various treatment was laid out in Randomized Block Design, with three replication.

The important parameters include in this study were growth, yield and quality attributes viz. Plant height, number of branches, number of leaves, number of pods per cluster, number of pods per plant, pod length, girth of pod, pericarp weight, pod yield per plant, pod yield per plot, pod yield q/ha, nodules number at harvest, protein content and economics of cowpea. The data collected from five randomly selected plants for above parameters and subjected without transformation for statistically analysis with RBD using OPSTAT.

Result and Discussion

Plant height

The plant height (cm) of crop were recorded at 30, 60 and 90 days and data presented in table 1. The treatment T₂ (150% RDF) was found significantly superior as compared to other treatment. At 30, 60 and 90 days plant height was 23.3 cm, 37.40 cm and 97.26 cm was recorded in treatment T₂ and lowest were recorded in T₁ (N₀P₀K₀) at 30, 60 and 90 days with 16.77 cm, 28.18 cm and 82.24 cm respectively. The result obtained in this investigation for height of plants were also similar to findings, which showed that significant increment in growth of cowpea by application of high level of nitrogenous fertilizer Dart et al., (1997) [6]. This result is in conformity to Nyok et al., (2013) [10] that phosphorus is required in large quantities in shoots and root tips where metabolism is high.

Number of branches per plant

Data on branches number per plant were observed at 30, 60 and 90 days which depicted in table 1. The branches number per plant was significantly differed in all growth of stage of plants. A more branches number per plant was observed in T₂ (150% RDF) at 30, 60 and 90 days with 4.22, 6.6 and 7.5 respectively, followed by T₁ (100% RDF) showed 3.9, 5.33 and 6.33, while minimum branches number seen in T₇ (N₀P₀K₀) 2.66, 3.8 and 5.3 at 30, 60 and 90 days. The application of 90 Kg P₂O₅/ha as in T₂ affected on number of branches and recorded more branches number per plant. This may be due to cumulative effect of phosphorus on division of cells, balanced nutrition and availability of phosphorous. These results are confirmed with that of Yadav and Yadav (2011). Paliwal et al., (1999) [19] who reported the maximum plant height, number of branches and number of leaves when higher dose of nitrogen were applied to cowpea and other vegetables.

Leaves number per plant

Leaves number per plant of various treatment noted at 30, 60 and 90 days that illustrated in table 1. At 30, 60 and 90 days after sowing, maximum leaves number observed in T₂ (150% RDF) 14.76, 20.78 and 30.67 at 30, 60 and 90 days followed by T₁ (100% RDF) 12.8, 18.41 and 27.50. Lowest number of leaves observed in T₇ (N₀P₀K₀) 10.45, 14.49 and 20.60 in 30, 60 and 90 days respectively. These findings are in consensus with report of Baboo and Mishra (2001) and Baboo and Mishra (2004) [3, 4] that, increasing rate of nitrogen up to 40 Kg/ha increased leaves number per plant. Increased in P level up to 90 Kg/ha significantly increased its leaves number. Ofosubodu et al., (2008) also concluded that use of 30 Kg P₂O₅ ha⁻¹ increased leaf number more than the control.

Pods number per cluster

The data presented in table 2 that shows that with application of 150% RDF in T₂ significantly provided higher pods number per cluster with 3.6 which followed by T₁ (100% RDF) 2.83. Minimum pods number per cluster observed in T₇ (N₀P₀K₀) with 1.86. These results are in concurrence with result of Kumar et al., (2001) [12] who reported that application of 60 Kg P₂O₅/ha as DAP is best source of getting higher pods per cluster. Baboo and Mishra (2004) [4] reported that the number of pods were highest in high N application with inoculation.

Pods number per plant

Data of these parameters presented in table 2, with view of different NPK, highest pods number per plant reported in T₂ (150% RDF) of 14.43 during harvesting followed by T₁ (100% RDF) of 13.08. Lowest pods number per plant observed in T₇ (N₀P₀K₀) of 10.61 followed by T₄ (N₀PK) 11.49 mean value of pods per plant. The similar result were obtained by other research findings. Singh et al., (2007) showed that Rhizobium inoculation, 30
Kg N and 60 Kg P₂O₅/ha produced higher number of pods per plant of cowpea over control. Khandelwal et al., (2012) [10] reported that the application of 75% of recommended dose of fertilizer i.e. 15 Kg N and 30 Kg P₂O₅ along with inoculation proved superior over rest of treatment combination provided higher pod number per plant.

Pod length (cm)
Pod length were significantly affected by NPK levels. Data of table 2 showed that T₁ (150% RDF) had maximum pod length of 22.7 cm followed by T₁ (100% RDF) 19.23 cm. Minimum pod length was discerned in T₄ (N₀P₀K₀) followed by T₁ (N₀P₀K₀) 17.25 cm and 17.84 cm respectively.

The result of experiment in pod length may be due to increased supply of nutrients. Nitrogen enhance growth, reproductive stage and protein making, thus encourage pod length. Subbarayappa et al., (2009) [24] reported that the application of 100 per cent RDF + FYM significantly increase pod length (15.85 cm).

Pod length were significantly affected by NPK levels. Data of parameters depicted in table 2. A highest pod yield (q/ha) reported in T₁ (150% RDF) 66.41 q/ha followed by T₁ (100% RDF) 64.86 q/ha while, lowest pod yield evaluated in T₅ (N₀P₀K₀) 43.60 q/ha.

Pod yield (q/ha)
Any crop yield shows success or failure of crop of any experiment. Data of parameters depicted in table 2. A highest pod yield (q/ha) reported in T₁ (150% RDF) 66.41 q/ha followed by T₁ (100% RDF) 64.86 q/ha while, lowest pod yield evaluated in T₅ (N₀P₀K₀) 43.60 q/ha.

Pod yield per plant (g)
Observation of pod yield per plant presented in table 2. The highest green pod yield per plant found in T₁ (100% RDF) 2.07 cm. However, minimum pod girth were found in T₅ (N₀P₀K₀) 1.77 cm. Result in T₁ may be due to absence of any nutrients in plants. T₁ (100% RDF) results of pod girth was due to availability of major nutrients. This indicates directly proportional between girth of pod and nitrogen phosphorous fertilizers.

Girth of pod (cm)
Observation data presented in table 2. Significantly increase in girth of pod were seen in T₁ (100% RDF) 2.07 cm. However, minimum pod girth were found in T₅ (N₀P₀K₀) 1.77 cm.

Pod yield per plant (g)
Observation of pod yield per plant presented in table 2. The highest green pod yield per plant found in T₁ (150% RDF) 80.70 followed by T₁ (100% RDF) 77.08. The lowest yield of pods per plant reported in T₇ (N₀P₀K₀) 52.48. This might be due to NPK levels and availability of high nitrogen phosphorous to produce more reproductive parts (pods). Mokwunye and Batino (2002) [15] have reported that P is essential for photosynthesis, pod development and grain filling in leguminous crops. Thus higher nodulation resulted in high N fixation and eventually pod yield. These results are consensus with result of Subramaniam et al., (1977) and Deshbhratar et al., (2010) [25, 7].

Pod yield per plot (Kg)
The yield of pod per plot were significantly differed due to various levels of NPK and data illustrated in table 2. The treatment T₁ (150% RDF) had maximum 3.18 Kg pod yield per plot followed by T₁ (100% RDF) 3.11 Kg as compare to rest of treatments while the lowest level 2.09 Kg pod yield /plot was obtained with treatment T₁ (N₀P₀K₀). Increased vegetative growth might have provide more sites of translocation of photosynthesis, which ultimately resulted in increased yield. These findings corroborates with result obtained by Choudhary et al., (2002) [10] reported that application of fertilizers up to 100% RDF recorded significantly higher yield (seed and biological) over its preceding levels. Patel et al., (2010) [21] reported that growth and yield attributes were significantly influenced due to combined application of N, P, K.

Pod yield (q/ha)
Any crop yield shows success or failure of crop of any experiment. Data of parameters depicted in table 2. A highest pod yield (q/ha) reported in T₁ (150% RDF) 66.41 q/ha followed by T₁ (100% RDF) 64.86 q/ha while, lowest pod yield evaluated in T₅ (N₀P₀K₀) 43.60 q/ha.

Pod yield per plant (g)
Observation of pod yield per plant presented in table 2. The highest green pod yield per plant found in T₁ (100% RDF) 2.07 cm. However, minimum pod girth were found in T₅ (N₀P₀K₀) 1.77 cm. Result in T₁ may be due to absence of any nutrients in plants. T₁ (100% RDF) results of pod girth was due to availability of major nutrients. This indicates directly proportional between girth of pod and nitrogen phosphorous fertilizers.
returns. Data of economics illustrated in table 3. Value of gross returns changed significantly and highest gross returns observed in T2 (150% RDF) Rs.66410.00 followed by T1 (100% RDF) Rs.64860.00 while lowest gross return observed in T7 (NPK) Rs.43600.00
Total expenditure of different treatment are depicted in table 3. The highest total cost of cultivation Rs.12368.00 seen in T2 (150% RDF) whereas lowest cost of cultivation observed in T7 (NPK) Rs.10500.00. Net monetary returns are significantly differ between each treatment. A highest net returns were reported in T2 (150% RDF) of Rs. 54042.00 this treatment was found to be most remunerative with return while minimum net returns of cowpea were observed in T7 (NPK) Rs.33100.00
The B: C ratio of different levels of NPK treatments are evaluated and presented in table 4.4 and fig.4.18. The B:C ratio ranged from 5.58 to 4.15 depending upon its levels of nutrient. Maximum B:C ratio obtained in T3 (50% RDF) with 5.58 while lowest B:C ratio observed with treatment of T7 (NPK) 4.15.

The obtained result might be due to yield and less cost of cultivation in T3 (50% RDF). Naidu et al., (2001) reported by use of 100: 50: 50 Kg NPK + 20 t FYM/ha found maximum B:C ratio 1.272. This result also conformity with Swaroop and Rathore (2002) \[20\].

Conclusions
- Experimental result revealed that T2-150% RDF was most effective to maximize the overall growth, development and yield of cowpea, var. “Kashi Kanchan”.
- The economical evaluation inferred us that substantial increment in nutrient doses may increase growth and yield of the crop, but its higher quantity may not be economical for the crop like cowpea.
- The low dose of nutritional application i.e. T3-50% RDF was most economical and for yield optimization, it may be increase further up to 70% RDF

| Table 1: Effect of different levels of NPK on height of plant, branches number and leaves number at different growth stages |
S. No.	Treatments	Plant Height (cm)	Number of Branches	Number of Leaves
		30th days 60th days 90th days	30th days 60th days 90th days	30th days 60th days 90th days
1.	T1-(100% RDF)	20.83 33.65 89.00	3.9 5.33 6.33	12.8 18.41 27.50
2.	T2-(150% RDF)	23.3 37.40 97.26	4.22 6.6 7.5	14.76 20.78 30.67
3.	T3-(50% RDF)	18.00 29.06 83.92	2.96 4.83 5.46	11.26 15.61 22.13
4.	T4-(NPK)	18.35 30.68 85.2	3.73 4.92 6.00	11.63 15.71 23.70
5.	T5-(NPK)K	18.48 31.16 86.67	3.6 5.16 6.23	11.66 16.19 24.30
6.	T6-(NPK)K	16.77 28.18 82.24	2.66 3.8 5.3	10.45 14.49 20.60
7.	T7-(NPK)K	19.27 31.79 87.37	3.49 5.10 5.39	12.04 16.80 24.95
Mean		20.32 33.65 89.00	4.06 5.33 6.33	11.26 18.41 27.50
C.D	0.787	1.315 2.84 0.696	0.554 0.428 0.504	1.357 2.269

| Table 2: Effect of different level of NPK on no. of pods per cluster, no. of pods per plant, pod length, girth of pod, pericarp weight, pod yield per plant, pod yield per plot, pod yield (q/ha), nodules number and protein content of cowpea |
S.N.	Treatments	Number of pods/ cluster	Number of pods/ plant	Pod length At harvest (cm)	Girth of pod (cm)	Pericarp Weight (g)	Pod yield / plant (g)	Pod yield (q/ha)	Pod yield (q/plot)	Pod yield (q/ha)	Nodules no. at harvest	Protein content (%)
1.	T1-(100% RDF)	2.83 13.08 19.23 2.07 3.05 77.08 3.11 64.86 15.67 28.29										
2.	T2-(150% RDF)	3.6 14.43 22.7 1.87 2.91 80.70 3.18 66.41 17.53 28.30										
3.	T3-(50% RDF)	2.64 12.34 18.46 1.99 3.03 74.69 2.98 62.14 13.93 28.10										
4.	T4-(NPK)	2.2 11.49 17.84 1.79 2.99 70.69 2.82 58.88 18.8 28.00										
5.	T5-(NPK)K	2.5 11.85 18.14 1.94 3.08 71.90 2.87 59.85 14.73 28.20										
6.	T6-(NPK)K	2.6 12.53 18.29 1.87 3.05 72.97 2.91 60.69 16.93 28.10										
7.	T7-(NPK)K	1.86 10.61 17.25 1.77 2.6 52.48 2.09 43.60 12.67 28.00										
Mean		2.6 12.33 18.84 1.9 2.95 65.69 2.85 59.49 15.75 28.14										
C.D	0.272	2.481 1.16 0.195 0.363 2.15 0.116 2.249 1.318 0.184										

| Table 3: Effect of different levels of NPK on economics of cowpea crop production |
S. No.	Treatments	Yield (q/ha)	Cost of cultivation (Rs./ha)	Sale price (Rs./q)	Gross returns (Rs./ha)	Net monetary returns (Rs./ha)	B:C ratio
1.	T1-(100% RDF)	64.86	2500.00 1243.00 8000.00 11743.00 10000.00	64860.00	53117.00	5.52	
2.	T2-(150% RDF)	66.41	2500.00 1868.00 8000.00 12368.00 10000.00	66410.00	54042.00	5.36	
3.	T3-(50% RDF)	62.14	2500.00 622.00 8000.00 11122.00 10000.00	62140.00	51018.00	5.58	
4.	T4-(NPK)	58.88	2500.00 1126.00 8000.00 11626.00 10000.00	58880.00	47254.00	5.06	
5.	T5-(NPK)K	59.85	2500.00 853.00 8000.00 11353.00 10000.00	59850.00	48497.00	5.27	
6.	T6-(NPK)K	60.69	2500.00 508.00 8000.00 11008.00 10000.00	60690.00	49682.00	5.51	
7.	T7-(NPK)K	43.60	2500.00 0.00 8000.00 10500.00 10000.00	43600.00	33100.00	4.15	

Acknowledgement
The authors are heartily thankful to Department of Vegetable Science, College of Agriculture, Raipur (Chhattisgarh) for providing field trial facilities in farm and for financial help. Also thankful to the Dean, College of Agriculture, Raipur for providing the facilities for the study and investigation.

References
1. Anonymous. Food and Agriculture Organisation of the United Nations, 2018b.
2. Anonymous. Government of Chhattisgarh agriculture development and farmer welfare and bio-technology department, 2018c.
3. Baboo R, Mishra SK. Growth and pod production of cowpea (Vigna sinensis Savi) as affected by inoculation, nitrogen and phosphorus. Ann. Agric. Res 2001;19:81-82.

4. Baboo R, Mishra SK. Growth and pod production of cowpea (Vigna sinensis) as affected by inoculation, nitrogen and phosphorus application. Annals of Agricultural Research 2004;25:467-469.

5. Choudhury MU, Ullah MH, Mahmood ZU. Dry matter production in mungbean as influenced by brady rhizobium inoculation and phosphorus inoculation. Legume Res 2000;23(1):15-20.

6. Dart P, Day J, Islam RA, Dobereiner J. Some effects of temperature and composition of the rooting medium in symbiotic nitrogen fixation in plant synthesis. In: Nutman RS (Ed) Tropical grain legume, Cambridge university press, 1997, 361-383.

7. Deshbhratar PB, Singh PK, Jambhulkar AP, Ramteke DS. Effect of sulphur and phosphorus on yield, quality and nutrient status of pigeonpea (Cajanus Cajan). Journal of environmental biology 2010;31(6):933.

8. Haruna IM, Aliyu. Agronomic efficiency of cowpea varieties (Vigna unguiculata (L.) Walp) under varying phosphorus rates in Lafia, Nassarawa state, Nigeria. Asian J Of Crop Sci 2011;5:209-215.

9. Khan WDF, Peoples MB, Herridge DF. Quantifying below-ground nitrogen of legumes. Plant and soil 2002;245(2):327-334.

10. Khandelwal R, Choudhary SK, Kangarot SS, Jat MK, Singh P. Effect of inorganic and biofertilizers on productivity and nutrients uptake in cowpea [Vigna unguiculata (L.) Walp]. Legumes research 2012;35(3):235-238.

11. Krasilnikoff G, Gahoonia T, Nielsen NE. Variation in phosphorus uptake efficiency by genotypes of cowpea (Vigna unguiculata) due to differences in root and root hair length and induced rhizosphere processes. Plant and Soil 2003;251(1):83-91.

12. Kumar CP, Nagaraju AP, Yogananda SB. Effect of phosphorus sources and zinc levels on growth and yield of cowpea (Vigna unguiculata). Journal of ecobiology 2001;13(4):275-278.

13. Kudkeri CB, Patil RV, Krishnamurthy K. Response of cowpea (Vigna catjang) to varying fertilizer levels. Mysore journal of agricultural sciences, 1973.

14. Mishra SK. Effect of Rhizobium inoculation, nitrogen and phosphorus on root nodulation, protein production and nutrient uptake in cowpea. Ann. Agric. Res. New Series 2003;24:139-144.

15. Mokwunye U, Bationoz A. Meeting the Phosphorus 16 Needs of the Soils and Crops of West Africa: the Role of Indigenous Phosphate Rocks. Integrated plant nutrient management in Sub-Saharan Africa: from concept to practice, 2002, 209p.

16. Nyoki D, Ndakidemi PA. Economic benefits of Bradyrhizobium japonicum inoculation and phosphorus supplementation in cowpea (Vigna unguiculata (L) Walp) grown in northern Tanzania. American Journal of Research Communication 2013;1(11):173-189.

17. Ofere CS. The importance of fertilizer nitrogen in grain legume production on soils of granitic origin in the Upper Volta region of Ghana. In Proceedings of First IITA Grain legume Improvement Workshop, IITA. Ibadan, 1973, 155-161.