Isolation and Identification of Fungal Species from the Insect Pest *Tribolium castaneum* in Rice Processing Complexes in Korea

Tae-Seong Yun1,2†, Sook-Young Park1†, Jihyun Yu1, Yujin Hwang1, and Ki-Jeong Hong1*

1Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Korea
2Pyeongtaek District Office, Animal and Plant Quarantine Agency, Pyeongtaek 17962, Korea
(Received on February 13, 2018; Revised on June 2, 2018; Accepted on July 2, 2018)

The red flour beetle, *Tribolium castaneum*, is one of the most common and economically important pests of stored cereal products worldwide. Furthermore, these beetles can act as vectors for several fungal post-harvest diseases. In this study, we collected *T. castaneum* from 49 rice processing complexes (RPCs) nationwide during 2016-2017 and identified contaminating fungal species on the surface of the beetles. Five beetles from each region were placed on potato dextrose agar media or *Fusarium* selection media after wet processing with 100% relative humidity at 27°C for one week. A total of 142 fungal isolates were thus collected. By sequence analysis of the internal transcribed spacer region, 23 fungal genera including one unidentified taxon were found to be associated with *T. castaneum*. The genus *Aspergillus* spp. (28.9%) was the most frequently present, followed by *Cladosporium* spp. (12.0%), *Hyphopichia burtonii* (9.2%), *Penicillium* spp. (8.5%), *Mucor* spp. (6.3%), *Rhizopus* spp. (5.6%), *Cephalophora* spp. (3.5%), *Alternaria alternata* (2.8%) and *Monascus* sp. (2.8%). Less commonly identified were genera *Fusarium*, *Nigrospora*, *Beauveria*, *Chaetomium*, *Coprinellus*, *Irplex*, *Lichtheimia*, *Trichoderma*, *Byssochlamys*, *Cochliobolus*, *Cunninghamamella*, *Mortierella*, *Polyporales*, *Rhizomucor* and *Talaromyces*. Among the isolates, two known mycotoxin-producing fungi, *Aspergillus flavus* and *Fusarium* spp. were also identified. This result is consistent with previous studies that surveyed fungal and mycotoxin contamination in rice from RPCs. Our study indicates that the storage pest, *T. castaneum*, would play an important role in spreading fungal contaminants and consequently increasing mycotoxin contamination in stored rice.

Keywords: fungi, mycotoxin, rice processing complexes, *Tribolium castaneum*

Handling Associate Editor: Jeon, Junhyun

The control of pests in stored grains is as economically important as increasing the crop yield because, unlike crop damage during the growing season, post-harvest damage of stored grains is not financially compensated. Fungi and animal pests are the major culprits for damage of stored grains, globally estimated to be responsible for 20% of food losses and up to 40-50% in some developing countries.

The red flour beetle (*Tribolium castaneum* Herbst) is one of the most important pests for stored grains such as rice (Kim and Ryoo, 1982), maize (LeCato and Flaherty, 1973), millet (Roorda et al., 1982), sorghum (Shazali and Smith, 1986), and wheat flour (Birch, 1945; Daniels, 1956) worldwide. Furthermore, *T. castaneum* beetles cause additional damage by spreading and promoting fungal contamination (Karunakaran et al., 2004; Kim and Ryoo, 1982; Simpanya et al., 2001). Here we chose to investigate the fungal contaminants disseminated by *T. castaneum*.

The *T. castaneum* has been reported to increase the moisture and temperature of stored grains to create an environment favorable for fungal proliferation, thereby accelerating grain degradation and decay (Miller, 1995). Degrad-
tion of stored grain by fungi results in lower germination rate, weight loss, loss of nutrients, odor and discoloration, which reduce overall grain quality. Fungal contamination of stored grains not only results in enormous economic losses but also has harmful consequences on human health and livestock due to toxic fungal secondary metabolites called mycotoxins (Tipple, 1995).

T. castaneum has also been reported to act as a vector for these toxigenic fungi during storage (Philip and Throne, 2010). When maize flour is co-contaminated with *T. castaneum*, toxigenic fungi including *Aspergillus* spp. are approximately 5 times more abundant than in the absence of the beetle vectors (Simpanya et al., 2001). Unlike in other stored grains such as wheat, barley, and corn, insect-mediated fungal toxin contamination in stored rice has yet to be reported (Tanaka et al., 2004).

Aspergillus spp., which produces aflatoxin in contaminated rice, has been reported to occur mainly in high temperature and high humidity countries such as India, China, and Iran (Rahmania et al., 2011; Reddy et al., 2008). It has been reported that deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEA) and fumonisin (FMS), which are mycotoxins of genus *Fusarium*, were detected in stored rice (Abbas et al., 1998; Lee et al., 2011; Tanaka et al., 2004). Previously, the distribution of toxigenic fungi on rice was investigated in the southern and central regions of Korea and ochratoxin A (OTA), aflatoxin B1 (AFB1), fumonisin B1 (FB1), and zearalenone (ZEN) were detected (Park et al., 2005). According to other reports, which tested the geographic distribution of toxigenic fungi contaminating seven different types of rice samples (paddy, husk, brown, blue-tinged, discolored, Broken and polished) from rice processing complexes, *Fusarium* spp. and *Alternaria* spp. were common in the southern region, while *Aspergillus* spp. and *Penicillium* spp. were common in the central region of Korea (Son et al., 2011).

Most studies previously conducted in Korea have focused on the regional distribution of contaminating fungal species, and only a few studies have examined the effect of *T. castaneum* on fungal transmission (Kim and Ryoo, 1982). The purpose of this study was to investigate what type of fungi could be disseminated by *T. castaneum* collected at rice processing complexes by time periods. This study could be used as a reference for establishing a system to effectively protect stored agricultural products.

Materials and Methods

Study site and insect trapping. *T. castaneum* beetles were collected in 49 different rice processing complexes (RPCs) nationwide, over three collection dates between April 2016 and August 2017 (Fig. 1A). We installed three or four corrugated traps (300 × 300 × 2 mm) at each RPC. Traps were placed in a variety of positions on the grain surface and collected a week later, placed individually into plastic bags. In the laboratory, the *T. castaneum* adults from the trap were placed into an insect breeding box (72 × 72 × 100 mm) and stored until just before the experiment.

Isolation of fungi from *T. castaneum* adult. The boxes containing *T. castaneum* were transferred to -15°C for 30 min (Fields, 2012), then five *T. castaneum* individuals were each placed on a sterilized glass slide inside a 9 cm Petri-dish lined with a single-layer of wet filter paper. The plates were incubated at 27°C for 7 days. After wet processing, the beetles were transferred onto potato dextrose agar (PDA) media containing streptomycin (50 mg/L) or *Fusarium* selective media (Nash and Snyder, 1962), and incubated at 25°C for 3 to 7 days. The fungal isolates were transferred to PDA medium and identified according to microscopic observations following the taxonomic keys for each genus (Barnett and Hunter, 1972; Samson et al., 1995). All fungal isolates were deposited at the Center for Fungal Genetic Resources (CFGR) at Seoul National University, Seoul, Korea.

Isolation of genomic DNA from fungal cultures. For molecular identification, fungal genomic DNA was extracted from mycelia using DNeasy Plant Mini Kit according to the manufacturer’s protocol (Qiagen, Valencia, CA, USA). Using the purified DNA from the collected isolates, the internal transcribed spacer with 5.8 s rDNA was amplified using ITS5/ITS4 (White et al., 1990). For further identification, beta-tubulin, calmodulin, translation elongation factor1 and glyceraldehyde-3-phosphate dehydrogenase sequence data were amplified using primer pairs BT2A/BT2B (Glass and Donaldson, 1995; O’Donnell and Cigelnik, 1997), CL1/CL2A (O’Donnell et al., 2000), 728F/1569R or 728F/EF2 (Carbone and Kohn, 1995; O’Donnell and Cigelnik, 1997), and GDF1/GDR1 (Guerber et al., 2003), respectively.

PCR reactions were performed using AccuPower PCR Premix (Bioneer, Korea) with an initial denaturation for 5 min at 94°C, 30 cycles of 1 min denaturation at 94°C, 1 min annealing at 55°C, 1 min extension at 72°C, followed by a final extension for 5 min at 72°C. PCR products were confirmed by gel electrophoresis, purified with AccuPower PCR purification kit (Bioneer, Korea) and bi-directionally sequenced on both strands with the same primers used for PCR amplification. Sequence assembly was performed using SeqMan program of DNA star (Madison, WI).
tained nucleotide sequences were used for BLASTn search in the GenBank database (http://www.ncbi.nlm.nih.gov/BLAST/).

Results and Discussion

In the first round of collection (June 4, 2016), 44 fungal strains were obtained from 17 RPCs (Fig. 1B), 46 were collected in the second round from 22 RPCs (May 18, 2017) (Fig. 1C), and 52 in the third round from 26 RPCs (Aug 1, 2017) (Fig. 1D). Based on the NCBI BLAST search results of the ITS sequences and morphological analysis, *Aspergillus* spp. including *A. flavus* were dominant in whole collected periods (Fig. 1E-G).

A total 142 fungal isolates corresponding to 49 species, belonging to 23 genera, were identified from 40 RPCs (Fig. 2A, Table 1 and Table 2). The major fungal species isolated in each sampling period were *Aspergillus* spp. including *A. flavus* (40.9%), *Cladosporium* sp. (15.9%), and *Mucor* spp. (9.1%) in the first round (June 2016) (Fig. 1E), *Aspergillus* spp. including *A. flavus* (28.3%), *Cladosporium* sp. (17.4%), and *Penicillium* spp. (10.9%) in the second round (May 2017) (Fig. 1F), and *Aspergillus* spp. including *A. flavus* (19.2%), *Hyphopichia* sp. (15.4%), *Mucor* sp. (7.7%), and *Penicillium* spp. (7.7%) for the third round (August 2017).

The major fungal species in whole periods were *Aspergillus* spp. including *A. flavus* (28.2%), *Cladosporium* spp. (12.0%), *Hyphopichia burtonii* (9.2%), *Penicillium* spp. (8.5%), *Mucor* spp. (6.3%), *Rhizopus* spp. (6.3%), *Cephalophora tropica* (3.5%), *Alternaria alternata* (3.5%), and *Monascus* sp. (2.8%) (Fig. 2B). Less commonly identified

![Fig. 1. Collation map of fungal isolates from the insect pest *Tribolium castaneum* in rice processing complexes (RPCs) during 2016 to 2017 in Korea. (A) Distribution map of 49 RPCs in Korea. The 49 RPCs are indicated by gray circles. The name of RPCs are noted by two capitalized letter just below the gray circles. The blue-colored letter indicates 8 provinces in Korea and two capitalized letters in parentheses indicates the abbreviation of provinces (See Table 1). The obtained fungal isolates and distribution map from (B) the first round (44 isolates from 17 RPCs), (C) the second round (46 isolates from 22 RPCs), and (D) the third round (52 isolates from 26 RPCs) of collection. The yellow colored circles indicates the location that obtained fungal isolates from the collected *T. castaneum*. A total number of fungal isolates is noted in the yellow colored circles. The percentage distribution of different fungal isolates from (E) the first round, (F) the second round, and (G) the third round of collection.](image-url)
were Fusarium spp., Beauveria bassiana, Chaetomium globosum, Coprinellus sp., Irpex lacteus, Lichtheimia spp., Trichoderma spp., Byssoschlamys spectabilis, Cochliobolus miyabeanus, Cunninghamella echinulata, Nigrospora oryzae, Mortierella oligospora, Polyporales sp., Rhizomucor pusillus, Talaromyces sp. and unidentified fungus. Among the isolates, two known mycotoxin-producing fungi, Aspergillus flavus (26 isolates) and Fusarium spp. (3 isolates) were identified.

The above results are consistent with a study which demonstrated that Aspergillus flavus is the major fungal contaminants of stored wheat in the presence of T. castaneum (Bosly and El-Banna, 2015). It is also consistent with another study on stored maize, where 10 species of fungi, Alternaria alternata, Aspergillus flavus, Aspergillus sp., Cladosporium sphaerospermum, Fusarium sp., Fusarium oxysporum, Penicillium sp., Mucor sp., Mucor racemosus and Rhizopus oryzae were isolated in the presence of T. castaneum (Simpanya et al., 2001).

In this study, we found the producer of aflatoxin, Aspergillus flavus, associated with T. castaneum, collected from 16 RPCs (Gangneung (GN) in Gangwon (GW) province, Yeoju (YJ) in Gyeonggii, Jinju (JC), Changju (CJ), and Boeun (BE) in Chungbuk (CB), Yeongdeok (YD), Gyeongju (GJ), Yecheon (YC) and Mungyeong (MG) in Gyeongbuk, Ulsan (US) and Hamyang (HY) in Gyeongnam (GN), Iksan (IK), Gochang (GC) and Namwon (NW) in Jeonbuk (JB), Yeonggwang (YG) and Naju (NJ) in Jeonnam) (Fig. 2C). Other Aspergillus species were also found on beetles from 9 RPCs (Goseong (GS) in Gangwon province, Paju (PJ) and YJ in Gyeonggii, Nonsan (NS) in Chungnam, GC
Table 1. Fungal isolates from *Tribolium castaneum*, GenBank accessions nos. of the ITS region sequences and the Blast search results of the sequences obtained.

Isolates	Collection Date	Region, Province	GenBank Accession No.	Most closely related fungi (GenBank Accession No.)	Similarity (%)
CB-BE-3-1	June 4, 2016	Boeun, Chungbuk	MG554270	Aspergillus sp. (KX148624.1)	100
CB-JC-3-2	June 4, 2016	Jincheon, Chungbuk	MG554234	Aspergillus flavus (AM745114.1)	100
CB-JC-3-3	June 4, 2016	Jincheon, Chungbuk	MG554235	Mucor circinelloides (KT336541.1)	99
CB-JC-3-1	June 4, 2016	Jincheon, Chungbuk	MG554233	Mucor racemosus (LN809049.1)	99
CN-GJ-3-2	June 4, 2016	Gongju, Chungnam	MG554260	Alternaria alternata (HQ380767.1)	100
CN-GJ-3-1	June 4, 2016	Gongju, Chungnam	MG554259	Alternaria alternata (HQ380767.1)	100
GB-GR-3-1	June 4, 2016	Goryeong, Gyeongbuk	MG554250	Irpex lacteus (KU761586.1)	99
GB-GR-3-2	June 4, 2016	Goryeong, Gyeongbuk	MG554251	Mucor racemosus (HM641690.1)	99
GB-MG-3-3	June 4, 2016	Mungyeong, Gyeongbuk	MG554264	Aspergillus sp. (KC178674.1)	100
GB-MG-3-4	June 4, 2016	Mungyeong, Gyeongbuk	MG554265	Aspergillus sp. (KX462757.1)	100
GB-MG-3-2	June 4, 2016	Mungyeong, Gyeongbuk	MG554262	Monascus sp. (HQ312163.1)	98
GB-MG-3-1	June 4, 2016	Mungyeong, Gyeongbuk	MG554263	Polyporales sp. (JQ312163.1)	98
GB-SJ-3-3	June 4, 2016	Sangju, Gyeongbuk	MG554242	Cladosporium sp. (KJ957785.1)	100
GB-SJ-3-1	June 4, 2016	Sangju, Gyeongbuk	MG554240	Rhizopus oryzae (JQ745257.1)	100
GB-SJ-3-2	June 4, 2016	Sangju, Gyeongbuk	MG554241	Rhizopus oryzae (AB109755.1)	100
GB-YC-3-2	June 4, 2016	Yecheon, Gyeongbuk	MG554237	Aspergillus flavus (KR611590.1)	99
GB-YC-3-1	June 4, 2016	Yecheon, Gyeongbuk	MG554236	Aspergillus sp. (KJ863514.1)	99
GG-YJ-3-3	June 4, 2016	Yeoju, Gyeonggi	MG554255	Lichtheimia ramosa (KP132378.1)	100
GG-YJ-3-4	June 4, 2016	Yeoju, Gyeonggi	MG554256	Cladosporium sp. (JQ745257.1)	100
GB-IM-3-1	June 4, 2016	Imsil, Jeonbuk	MG554239	Aspergillus flavus (JF723566.1)	99
JB-GC-3-3	June 4, 2016	Gochang, Jeonbuk	MG554245	Aspergillus flavus (EF409804.1)	99
JB-GC-3-2	June 4, 2016	Gochang, Jeonbuk	MG554244	Aspergillus oryzae (KX462757.1)	100
JB-GC-3-1	June 4, 2016	Gochang, Jeonbuk	MG554243	Cladosporium sp. (KX757230.1)	100
JB-GC-3-5	June 4, 2016	Gochang, Jeonbuk	MG554247	Cladosporium sp. (KJ957785.1)	100
JB-GC-3-4	June 4, 2016	Gochang, Jeonbuk	MG554246	Penicillium citrinum (KY921947.1)	100
JB-IK-3-2	June 4, 2016	Iksan, Jeonbuk	MG554267	Aspergillus flavus (GQ730732.1)	99
JB-IK-3-1	June 4, 2016	Iksan, Jeonbuk	MG554266	Cladosporium cycadica (KJ869122.1)	99
JB-IM-3-1	June 4, 2016	Imsil, Jeonbuk	MG554261	Cladosporium sp. (KT329207.1)	100
JN-GR-3-1	June 4, 2016	Gurye, Jeonnam	MG554252	Irpex lacteus (KU761586.1)	99
JN-JJ-3-2	June 4, 2016	Jeju, Jeju	MG554259	Aspergillus flavus (MF377553.1)	100
JN-GR-3-2	June 4, 2016	Gurye, Jeonnam	MG554255	Aspergillus flavus (MF377553.1)	100
JN-JG-3-2	June 4, 2016	Naju, Jeonnam	MG554268	Aspergillus flavus (KX347921.1)	99
JN-JG-3-1	June 4, 2016	Naju, Jeonnam	MG554265	Anguillulae sp. (KX347921.1)	99
JN-JG-3-3	June 4, 2016	Naju, Jeonnam	MG554264	Aspergillus candidus (JQ781823.1)	99
JN-JG-3-5	June 4, 2016	Naju, Jeonnam	MG554263	Aspergillus flavus (KR611590.1)	99
JN-JG-3-3	June 4, 2016	Naju, Jeonnam	MG554262	Aspergillus flavus (KX347921.1)	99
JN-JG-3-4	June 4, 2016	Naju, Jeonnam	MG554260	Aspergillus flavus (KX347921.1)	99
JN-JG-3-2	June 4, 2016	Yeonggwang, Jeonnam	MG554228	Aspergillus flavus (LC133097.1)	99
JN-JG-3-1	June 4, 2016	Yeonggwang, Jeonnam	MG554227	Aspergillus sydowii (KP131616.1)	100
JN-JG-3-6	June 4, 2016	Yeonggwang, Jeonnam	MG554232	Cladosporium sp. (HQ166315.1)	100
JN-JG-3-4	June 4, 2016	Yeonggwang, Jeonnam	MG554230	Penicillium citrinum (KY921947.1)	99
CB-CJ-1-2	May 18, 2017	Chungju, Chungbuk	MG554302	Aspergillus flavus (LC133097.1)	99
CB-JC-1-5	May 18, 2017	Jincheon, Chungbuk	MG554303	Mucor sp. (KX909678.1)	100
CN-NS-1-1	May 18, 2017	Nonsan, Chungnam	MG554309	Aspergillus sydowii (KX958061.1)	100
Isolates	Collection Date	Region, Province	GenBank Accession No.	Most closely related fungi (GenBank Accession No.)	Similarity (%)
-----------	-----------------	------------------	----------------------	---	--------------
CN-NS-1-2	May 18, 2017	Nonsan, Chungnam	MG554310	Lichtheimia corymbifera (KU147463.1)	100
CN-SC-1-1	May 18, 2017	Seocheon, Chungnam	MG554306	*Hyphopichia burtonii* (KY103598.1)	100
GW-GS-1-5	May 18, 2017	Goseong, Gangwon	MG554277	*Aspergillus versicolor* (AJ937749.1)	100
GW-GS-1-1	May 18, 2017	Goseong, Gangwon	MG554275	*Beauveria bassiana* (KM249032.1)	100
GW-GS-1-4	May 18, 2017	Goseong, Gangwon	MG554276	*Penicillium neoechinulatum* (AJ005481.1)	100
GB-GJ-1-1	May 18, 2017	Gyeongju, Gyeongbuk	MG554304	*Aspergillus flavus* (KY593504.1)	100
GB-GJ-1-2	May 18, 2017	Gyeongju, Gyeongbuk	MG554305	*Aspergillus sp.* (KX450911.1)	100
GB-MG-1-3	May 18, 2017	Mungyeong, Gyeongbuk	MG554279	*Cladosporium velox* (KX788192.1)	100
GB-MG-1-2	May 18, 2017	Mungyeong, Gyeongbuk	MG554278	*Hyphopichia burtonii* (EU714323.1)	100
GB-MG-1-4	May 18, 2017	Mungyeong, Gyeongbuk	MG554280	*Hyphopichia burtonii* (EU714323.1)	100
GB-MG-1-5	May 18, 2017	Mungyeong, Gyeongbuk	MG554281	*Aspergillus flavus* (KY103602.1)	100
GB-SJ-1-1	May 18, 2017	Seocheon, Chungnam	MG554271	*Mortierella oligospora* (LN898694.1)	100
GB-SJ-1-3	May 18, 2017	Seocheon, Chungnam	MG554272	*Cladosporium sphaerospermum* (FP792583.1)	99
GB-SJ-1-5	May 18, 2017	Seocheon, Chungnam	MG554273	*Cladosporium sp.* (KX148680.1)	99
GB-US-1-3	May 18, 2017	Ulsan, Gyeongnam	MG554274	*Nigrospora oryzae* (KX986075.1)	100
GB-US-1-4	May 18, 2017	Ulsan, Gyeongnam	MG554275	*Aspergillus creber* (KX928745.1)	100
JN-HN-1-2	May 18, 2017	Jeonju, Jeonbuk	MG554301	*Rhizopus oryzae* (KY244030.1)	100
JN-HN-1-3	May 18, 2017	Jeonju, Jeonbuk	MG554302	*Cephalophora tropica* (FJ792583.1)	99
JN-HY-1-5	May 18, 2017	Hamyang, Gyeongnam	MG554297	*Beauveria bassiana* (KX682175.1)	100
JN-HY-1-6	May 18, 2017	Hamyang, Gyeongnam	MG554296	*Penicillium crustosum* (MF188258.1)	100
JN-JJ-1-4	May 18, 2017	Jinju, Gyeongnam	MG554308	*Rhizopus oryzae* (KY244030.1)	100
JN-JJ-1-3	May 18, 2017	Jinju, Gyeongnam	MG554295	*Penicillium sp.* (KY401140.1)	100
JN-NJ-1-1	May 18, 2017	Naju, Jeonbuk	MG554311	*Cephalophora tropica* (FJ792583.1)	99
JN-NJ-1-2	May 18, 2017	Naju, Jeonbuk	MG554302	*Aspergillus sp.* (KX008655.1)	99
JN-YG-1-1	May 18, 2017	Yeonggwang, Jeonbuk	MG554299	*Cladosporium velox* (KX788192.1)	99
JN-YG-1-2	May 18, 2017	Yeonggwang, Jeonbuk	MG554300	*Cladosporium velox* (KX912161.1)	100
JN-YG-1-3	May 18, 2017	Yeonggwang, Jeonbuk	MG554301	*Fusarium proliferatum* (MG625088.1)	100
JN-YG-1-6	May 18, 2017	Yeonggwang, Jeonbuk	MG554299	*Fusarium oxysporum* (KY508368.1)	100
JN-YG-1-5	May 18, 2017	Yeonggwang, Jeonbuk	MG554295	*Penicillium sp.* (KY401140.1)	100
JN-YG-1-4	May 18, 2017	Yeonggwang, Jeonbuk	MG554300	*Penicillium velox* (KX912161.1)	100
JN-YG-1-3	May 18, 2017	Yeonggwang, Jeonbuk	MG554301	*Rhizopus oryzae* (KY244030.1)	100
JN-YG-1-2	May 18, 2017	Yeonggwang, Jeonbuk	MG554302	*Cephalophora tropica* (KX912161.1)	100
JN-YG-1-1	May 18, 2017	Yeonggwang, Jeonbuk	MG554301	*Aspergillus flavus* (KX912161.1)	100
Isolates	Collection Date	Region, Province	GenBank Accession No.	Most closely related fungi (GenBank Accession No.)	Similarity (%)
-------------	-----------------	--------------------	-----------------------	---	----------------
CN-NS-2-3	Aug 1, 2017	Nonsan, Chungnam	MG554346	Aspergillus sclerotiorum (AY373866.1)	100
CN-NS-2-2	Aug 1, 2017	Nonsan, Chungnam	MG554345	Penicillium sp. (KX148628.1)	100
CN-TA-2-1	Aug 1, 2017	Taean, Chungnam	MG554349	Cephalophora tropica (KR809561.1)	100
CN-TA-2-2	Aug 1, 2017	Taean, Chungnam	MG554350	Cephalophora tropica (KR809561.1)	100
CN-TA-2-3	Aug 1, 2017	Taean, Chungnam	MG554351	Rhizopus oryzae (AB109754.1)	100
CN-TA-2-4	Aug 1, 2017	Taean, Chungnam	MG554352	Rhizopus oryzae (AB109754.1)	100
GW-GN-2-1	Aug 1, 2017	Gangneung, Gangwon	MG554353	Aspergillus flavus (KX462773.1)	100
GW-GN-2-2	Aug 1, 2017	Gangneung, Gangwon	MG554354	Aspergillus flavus (MF120213.1)	100
GW-GN-2-4	Aug 1, 2017	Gangneung, Gangwon	MG554356	Aspergillus flavus (MF120213.1)	100
GB-GR-2-1	Aug 1, 2017	Goryeong, Gyeongbuk	MG554355	Fusarium equiseti (KY963137.1)	100
GB-GR-2-4	Aug 1, 2017	Goryeong, Gyeongbuk	MG554357	Alternaria alternata (KX814634.1)	100
GB-SJ-2-1	Aug 1, 2017	Gyeongju, Gyeongbuk	MG554359	Alternaria alternata (MF575850.1)	100
GB-US-2-1	Aug 1, 2017	Ulsan, Gyeongnam	MG554361	Trichoderma asperellum (KY623504.1)	100
GB-YD-2-4	Aug 1, 2017	Yeongdeok, Gyeongbuk	MG554362	Aspergillus flavus (KX912161.1)	100
GG-GP-2-4	Aug 1, 2017	Gimpo, Gyeonggi	MG554360	Rhizomucor pusillus (KJ527032.1)	100
GG-HS-2-4	Aug 1, 2017	Hwaseong, Gyeonggi	MG554357	Cunninghamella echinulata (KX179502.1)	100
GG-YP-2-1	Aug 1, 2017	Yangpyeong, Gyeonggi	MG554365	Trichoderma atroviride (KY305043.1)	99
GG-YJ-2-1	Aug 1, 2017	Yeoju, Gyeonggi	MG554359	Uncultured fungus (GU054203.1)	99
GN-GC-2-3	Aug 1, 2017	Geochang, Gyeongnam	MG554333	Chaetomium globosum (MF663683.1)	100
GN-GC-2-2	Aug 1, 2017	Geochang, Gyeongnam	MG554332	Coprinellus sp. (MF136551.1)	100
GN-GS-2-5	Aug 1, 2017	Goseong, Gyeongnam	MG554322	Chaetomium globosum (KX013209.1)	100
GN-GS-2-4	Aug 1, 2017	Goseong, Gyeongnam	MG554321	Hyphopichia burtoni (KY103598.1)	99
GN-GS-2-7	Aug 1, 2017	Goseong, Gyeongnam	MG554323	Monascus sp. (KY511749.1)	100
GN-HA-2-2	Aug 1, 2017	Haman, Gyeongnam	MG554324	Hyphopichia burtoni (KX965648.1)	100
GN-HA-2-3	Aug 1, 2017	Haman, Gyeongnam	MG554325	Hyphopichia burtoni (KX965648.1)	100
GN-HA-2-4	Aug 1, 2017	Haman, Gyeongnam	MG554326	Monascus sp. (KY511749.1)	100
GN-SC-2-1	Aug 1, 2017	Sancheong, Gyeongnam	MG554363	Byssoschlamys spectabilis (KC009788.1)	100
GN-US-2-3	Aug 1, 2017	Ulsan, Gyeongnam	MG554343	Aspergillus flavus (KX462773.1)	100
GN-US-2-2	Aug 1, 2017	Ulsan, Gyeongnam	MG554342	Aspergillus flavus (KX928745.1)	100
GN-US-2-1	Aug 1, 2017	Ulsan, Gyeongnam	MG554341	Talaromyces islandicus (JN899318.1)	100
JB-GC-2-1	Aug 1, 2017	Gochang, Jeonbuk	MG554361	Rhizopus microsporus (AB381937.1)	100
JB-IM-2-1	Aug 1, 2017	Imsil, Jeonbuk	MG554362	Hyphopichia burtoni (KY103598.1)	99
JB-NW-2-1	Aug 1, 2017	Namwon, Jeonbuk	MG554368	Penicillium steckii (KX674639.1)	100
JB-US-2-2	Aug 1, 2017	Boseong, Jeonnam	MG554366	Mucor circinelloides (KX620480.1)	99
JB-NR-2-1	Aug 1, 2017	Gurye, Jeonnam	MG554367	Aspergillus protuberus (LN899712.1)	100
JB-HN-2-1	Aug 1, 2017	Haenam, Jeonnam	MG554347	Lichtheimia hyalospora (GQ342894.1)	100
JB-HN-2-3	Aug 1, 2017	Haenam, Jeonnam	MG554348	Penicillium citrinum (MF663545.1)	100
JB-NJ-2-1	Aug 1, 2017	Naju, Jeonnam	MG554364	Penicillium steckii (KX674639.1)	100
JN-YA-2-2	Aug 1, 2017	Yeongam, Jeonnam	MG554340	Aspergillus terreus (KT778597.1)	100
JN-YA-2-1	Aug 1, 2017	Yeongam, Jeonnam	MG554339	Hyphopichia burtoni (KY103598.1)	100
Isolates	GenBank Accessions	Identified species			
-----------	--------------------	-------------------------			
Aspergillus spp.					
CB-BE-3-1	MH424078 MH424038	Aspergillus flavus			
CB-JC-3-2	MH424051 MH424011	Aspergillus flavus			
GB-MG-3-3	MH424073 MH424033	Aspergillus flavus			
GB-MG-3-4	MH424074 MH424034	Aspergillus flavus			
GB-YC-3-2	MH424055 MH424015	Aspergillus flavus			
GB-YC-3-1	MH424076 MH424036	Aspergillus flavus			
GG-YJ-3-1	MH424071 MH424031	Aspergillus flavus			
JB-GC-3-3	MH424052 MH424012	Aspergillus flavus			
JB-IK-3-2	MH424053 MH424013	Aspergillus flavus			
JN-NJ-3-2	MH424065 MH424025	Aspergillus flavus			
JN-NJ-3-1	MH424075 MH424035	Aspergillus flavus			
JN-YG-3-5	MH424056 MH424016	Aspergillus flavus			
JN-YG-3-3	MH424072 MH424032	Aspergillus flavus			
CB-CJ-1-2	MH424062 MH424022	Aspergillus flavus			
GB-GJ-1-1	MH424061 MH424021	Aspergillus flavus			
GB-GJ-1-2	MH424079 MH424039	Aspergillus flavus			
GN-HY-1-6	MH424080 MH424040	Aspergillus flavus			
GN-US-1-1	MH424077 MH424037	Aspergillus flavus			
JB-NW-1-3	MH424059 MH424019	Aspergillus flavus			
JN-YG-1-5	MH424054 MH424014	Aspergillus flavus			
GW-GN-2-1	MH424057 MH424017	Aspergillus flavus			
GW-GN-2-2	MH424063 MH424023	Aspergillus flavus			
GW-GN-2-4	MH424064 MH424024	Aspergillus flavus			
GB-YD-2-4	MH424060 MH424020	Aspergillus flavus			
GN-US-2-3	MH424058 MH424018	Aspergillus flavus			
GN-US-2-2	MH424081 MH424041	Aspergillus flavus			
JB-GC-1-3	MH424068 MH424028	Aspergillus sclerotiorum			
CN-NS-2-1	MH424069 MH424029	Aspergillus sclerotiorum			
CN-NS-2-3	MH424070 MH424030	Aspergillus sclerotiorum			
JN-YG-3-1	MH424083 MH424043	Aspergillus sydowii			
GG-YJ-3-4	MH424082 MH424042	Aspergillus sydowii			
CN-NS-1-1	MH424084 MH424044	Aspergillus sydowii			
GW-GS-1-5	MH424086 MH424046	Aspergillus versicolor			
JN-NJ-1-1	MH424088 MH424048	Aspergillus versicolor			
JN-NJ-1-2	MH424087 MH424047	Aspergillus versicolor			
JN-YG-3-2	MH424049 MH424009	Aspergillus candidus			
GG-PJ-1-1	MH424050 MH424010	Aspergillus creber			
JB-GC-3-2	MH424066 MH424026	Aspergillus oryzae			
JN-GR-2-1	MH424067 MH424027	Aspergillus protuberus			
JN-YA-2-2	MH424085 MH424045	Aspergillus terreus			
Penicillium spp.					
JB-GC-3-4	MH423997 MH423985	Penicillium citrinum			
JN-YG-3-4	MH423998 MH423986	Penicillium citrinum			
JN-HN-2-3	MH423999 MH423987	Penicillium citrinum			
GN-HY-1-1	MH424001 MH423989	Penicillium crustosum			

Table 2. Identification of four geni including *Aspergillus* spp., *Penicillium* spp., *Alternaria* sp. and *Fusarium* spp. using partial beta-tubulin, calmodulin, tef1 and glyceraldehyde-3-phosphate gene sequences.
in Jeonbuk, YG, NJ, Yeongam (YA) and Gurye (GR) in Jeonnam) (Fig. 2D, Table 1 and Table 2).

In addition, genus *Penicillium*, which is known to produce ochratoxin, was also isolated from the beetles collected in 10 RPCs (GS in Kangwon province, NS in Chungnam, Iksan (IK), GC, NS in Jeonbuk, HY in Gyeongnam, YG, NJ, Gangjin (GJ), and Haenam (HN) in Jeonnam). Another toxigenic genus, *Alternaria alternata* (Ostry, 2008), was found in Gongju (GJ) in Chungnam and Gyeongju (GJ) in Gyeongbuk province. Only three *Fusarium* species including *Fusarium equiseti* (Gangneung (GN) in Gangwon province), *Fusarium oxysporum* (Ik-san (IK) in Jeonbuk), and *Fusarium* sp. (Ulsan (US) from Gyeongnam) were collected in 3 RPCs (Fig. 2E, Table 1). Other fungi were identified as saprophiles that proliferate on wood and debris in the facility.

The fungi *Aspergillus* spp., *Penicillium* spp., *Fusarium* spp., and *Alternaria* spp. are the major fungal species found in stored grains (Lee et al., 2011; Lee et al., 2014). More than 25% of stored grains worldwide have been reported to be contaminated with mycotoxins produced by these fungal species, and over 300 fungal metabolites have been reported to have toxicity on humans and animals (Galvano et al., 2001).

The genera *Fusarium* and *Alternaria* are known to mainly infect ears of cereal plants in the field, whereas the genera *Aspergillus* and *Penicillium* are contaminants of stored seeds, grains, and processed foods and produce mycotoxins (Adams, 1977). In particular, a number of harmful mycotoxins, such as deoxynivalenol (DON) and nivalenol (NIV), produced by *Fusarium* spp., and Aflatoxin produced by *Aspergillus* spp. are detected in stored grains (Lee et al., 2011; Lee et al., 2014; Son et al., 2011).

Both *Aspergillus flavus* and *Fusarium* spp. are known to produce mycotoxins but only *Aspergillus flavus* was found in this study. It is known that pests and fungi tend to co-occur in stored grains (Simpanya et al., 2001). It is necessary to investigate the distribution of pests and fungi in grain warehouses because pests promote the growth and propagation of fungi.

According to the studies on fungal and mycotoxin contamination of RPC grain samples, *Aspergillus* and *Penicillium* species were infrequently found nationwide but were particularly abundant in a few RPC samples (Lee et al., 2014). *Alternaria*, *Nigrospora*, and *Epicoccum* species were more consistently isolated at similar frequencies, whenever fungal contamination was detected. In accordance with the results from previous studies (Lee et al., 2014; Lee et al., 2014; Son et al., 2011), genera *Aspergillus*, *Penicillium*, *Alternaria*, and *Nigrospora* were identified from the *T. castaneum* collected at RPCs. Therefore, it is suspected that the red flour beetles are a potential vector for the transfer of toxigenic fungi and mycotoxins.

According to the study on mycotoxin contamination

Table 2. Continued

Isolates	GenBank Accessions	Identified species				
	b-tubulin	Calmodulin	tefl	GAPDH		
JN-YG-1-2	MH424000	MH423988				*Penicillium crustosum*
GW-GS-1-4	MH424002	MH423990				*Penicillium neoechinulatum*
JB-GC-1-1	MH424003	MH423991				*Penicillium neoechinulatum*
JN-GJ-3-2	MH424004	MH423992				*Penicillium steckii*
JB-IS-1-3	MH424006	MH423994				*Penicillium steckii*
CN-NS-2-2	MH424005	MH423993				*Penicillium steckii*
JB-NW-2-1	MH424007	MH423995				*Penicillium steckii*
JN-NJ-2-1	MH424008	MH423996				*Penicillium steckii*
CN-GJ-3-2	MH423922	-	-	MH423917	*Alternaria alternata*	
CN-GJ-3-1	MH423921	-	-	MH423916	*Alternaria alternata*	
GB-GJ-2-2	MH423924	-	-	MH423919	*Alternaria alternata*	
GB-GJ-2-3	MH423925	-	-	MH423920	*Alternaria alternata*	
GB-GJ-2-1	MH423923	-	-	MH423918	*Alternaria alternata*	
Fusarium sp.						
GW-GN-2-3	-	-	MH423915			*Fusarium equiseti*
JB-IS-1-1	-	-	MH423914			*Fusarium oxysporum*
GN-US-1-2	-	-	MH423913			*Fusarium proliferatum*
in different growth stages of rice (Nakaijima et al., 2008; Nash and Snyder, 1962), rice plants are always exposed to fungi and mycotoxins even before storage. So far, it has been reported that differences in temperature and humidity depending on the climate have a great influence on the growth of fungi and occurrence of mycotoxins (Russell et al., 2010). However, studies on the effect of temperature and humidity on pest-assisted mycotoxin production in stored grains are uncommon and remained to be investigated in the future. Our study shows that the storage pest, T. castaneum, could play an important role in transmission of fungi in stored rice in RPC and potentially contribute to mycotoxin contamination of rice.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgment

This research was carried out through “Inventory and monitoring of biological pathogens-carrying wildlife pests for safety management of agricultural products” (Project Code PJ01085904) supported by Rural Development Administration, South Korea.

References

Abbas, H. K., Shier, W. T., Seo, J. A., Lee, Y. W. and Musser, S. M. 1998. Phytotoxicity and cytotoxicity of the fumonisin C and P series of mycotoxins from Fusarium spp. fungi. Toxicon 36:2033-2037.

Adams, J. M. 1977. A review of the literature concerning losses in stored cereals and pulses. Trop. Sci. 19:1-7.

Barnett, L. and Hunter, B. B. 1972. Illustrated Genera of Imperfect Fungi. 3rd ed. Burgess Publishing Co., Minneapolis, Minnesota, USA. 241 pp.

Birch, L. C. 1945. The influence of temperature, humidity and density on the oviposition of the small strain of Calandra oryzae L. and Rhizopertha dominica Fab (Coleoptera). Aust. J. Exp. Biol. Med. Sci. 23:197-203.

Bosly, H. A. and El-Banna, O. M. 2015. Isolation and identification of fungal growth on Tribolium castaneum in stored wheat flour. J. Entomol. Nematol. 7:11-17.

Carbone, I. and Kohn, L. M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553-556.

Daniels, N. E. 1956. Damage and reproduction by the flour beetles, Tribolium confusum and T. castaneum in wheat at three moistures. J. Econ. Entomol. 49:244-247.

Fields, P., Bhadriraju, S. and Hulasare, R. 2012. Extreme temperatures. In: Stored Product Protection, eds. by D. W. Hagstrom, T. W. Philip and G. Cuperus, pp. 179-190. K-State Research and Extension, Manhattan, USA.

Galvano, F., Piva, A., Ritieni, A. and Galvano, G. 2001. Dietary strategies to counteract the effects of mycotoxins: a review. J. Food. Prot. 64:120-131.

Glass, N. L. and Donaldson, G. C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61:1323-1330.

Guerber, J. C., Liu, B., Correll, J. C. and Johnston, P. R. 2003. Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia 95:872-895.

Karunakaran, C., Jayas, D. S. and White, N. D. G. 2004. Identification of wheat kernels damaged by the red flour beetle using X-ray images. Biosyst. Eng. 87:267-274.

Kim, Y. B. and Yu, M. I. 1982. Activities of molds and insects during rice storage Part I. Activities of Tribolium castaneum Herbst and Aspergillus species. J. Korean Agric. Chem. Soc. 25:252-256 (in Korean).

LeCato, G. L. and Flaherty, B. R. 1973. Tribolium castaneum progeny production and development on diet supplemented with egg of adult of Plodia interpunctella. J. Stored Prod. Res. 9:199-203.

Lee, T., Lee, S. H., Lee, S. H., Shin, J. Y., Yun, J. C., Lee, Y. W. and Ryu, J. G. 2011. Occurrence of Fusarium mycotoxins in rice and its milling by-products in Korea. J. Food Prot. 74:1169-1174.

Lee, T., Lee, S., Kim, L. H. and Ryu, J. G. 2014. Occurrence of fungi and Fusarium mycotoxins in the rice samples from rice processing complex. Res. Plant Dis. 20:289-294 (in Korean).

Miller, J. D. 1995. Fungi and mycotoxins in grain: implications for stored product research. J. Stored Prod. Res. 31:1-16.

Nakaijima, T., Yoshida, M. and Tomimura, K. 2008. Effect of lodging on the level of mycotoxins in wheat, barley, and rice infected with the Fusarium graminearum species complex. J. Gen. Plant Pathol. 74:289-295.

Nash, S. M. and Snyder, W. C. 1962. Quantitative estimations by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology 52:567-572.

O’donnell, K. and Cigelnik, E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7:103-116.

O’donnell, K., Nirenberg, H. I., Aoki, T. and Cigelnik, E. 2000. A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 41:61-78.

Ostry, V. 2008. Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 1:175-188.
Park, J. W., Choi, S. Y., Hwang, H. J. and Kim, Y. B. 2005. Fungal mycoflora and mycotoxins in Korean polished rice destined for humans. *Int. J. Food Microbiol.* 103:305-314.

Philip, T. W. and Throne, J. E. 2010. Biorational approaches for managing stored-product insect. *Annu. Rev. Entomol.* 55:375-397.

Rahmani, A., Soleimany, F., Hosseini, H. and Nateghi, L. 2011. Survey on the occurrence of aflatoxins in rice from different provinces of Iran. *Food Addit. Contam. B* 4:185-190.

Reddy, K. R. N., Reddy, C. S., Abbas, H. K., Abel, C. A. and Muralidharan, K. 2008. Mycotoxigenic fungi, mycotoxins, and management of rice grains. *Toxin Rev.* 27:287-317.

Roorda, F. A., Schulten, G. G. M. and Andriessen, E. A. M. 1982. Laboratory observations on the development of *Tribolium castaneum* Herbst (Col., Tenebrionidae) on millet at different temperatures and relative humidities. *J. Appl. Entomol.* 93:446-452.

Paterson, R. R. M. and Lima, N. 2010. How will climate change affect mycotoxins in food? *Food Res. Int.* 43:1902-1914.

Samson, R. A. and De Boer, E. 1995. Introduction to food-borne fungi. 4th ed. Centraalbureau voor Schimmelcultures, Baarn, Netherlands. 299 pp.

Shazali, M. E. H. and Smith, R. 1986. Life history studies of externally feeding pest of stored sorghum: *Corcyra cephalonica* (Staint.) and *Tribolium castaneum* (Hbst). *J. Stored Prod. Res.* 22:55-61.

Simpanya, M. F., Allotey, J. and Mpuchane, S. 2001. Insect and mycoflora interactions in maize flour. *Afr. J. Food Nutr. Sci.* 1:3-8.

Son, S. W., Nam, Y. J., Lee, S. H., Lee, S. M., Lee, S. H., Kim, M. J., Lee, T., Yun, J. C. and Ryu, J. G. 2011. Toxigenic fungal contaminants in the 2009-harvested rice and its milling-by-products samples collected from rice processing complexes in Korea. *Res. Plant Dis.* 17:280-287 (in Korean).

Tanaka, K., Kobayashi, H., Nagata, T. and Manabe, M. 2004. Natural occurrence of trichothecenes on lodged and water damaged domestic rice in Japan. *J. Food Hyg. Soc. Jpn.* 45:63-66.

Tipples, K. H. 1995. Quality and nutritional changes in stored grain. In: *Stored-grain ecosystems*, eds. by D. S. Jayas, N. D. G. White and W. E. Muir, pp. 325-351. New York Marcel Dekker, New York, USA.

White, T. J., Bruns, T. D., Lee, S. B. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics In: *PCR Protocols: a guide to methods and application*, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, New York, USA.