Sylow 3-subgroups of solvable cut groups

Nicola Grittini
Università degli Studi di Firenze

December 2, 2019

Abstract
A group G is said to be cut if, for every $g \in G$, each generator of $\langle g \rangle$ is conjugated to either g or g^{-1}. It is conjectured that a Sylow 3-subgroup P of a cut group G is cut. We prove that this is true if either $|G|$ is odd or P is of nilpotency class at most 2.

Keywords—cut groups, semi-rational groups, Sylow subgroups, character theory, B_π-characters

1 Introduction
A finite group G is said to be rational if every irreducible character is rational valued or, equivalently, if every element $g \in G$ is conjugated to every generator of the cyclic group $\langle g \rangle$. For long it had been conjectured that, if G is rational, then a Sylow 2-subgroup P of G must also be rational. This conjecture was proved to be false in general in [11], even for solvable groups; however, in the same paper the conjecture is proved to be true for solvable groups assuming that P is of nilpotency class at most 2.

A concept related to rational groups is the one of cut groups. Cut groups arise form the study of group rings. In fact, a finite group G is said to be a cut group if $\mathbb{Z}G$ only contains trivial central units (see [1] Definition 1.1 for details). There exists, however, also some purely group theoretical conditions for a group to be cut. By [1] Proposition 2.2, G is a cut group if and only if, for every element $g \in G$, each generator of the cyclic group $\langle g \rangle$ is conjugated either to g or to g^{-1}. Equivalently, a group is cut if, for each $\chi \in \text{Irr}(G)$, $Q(\chi) = \mathbb{Q}(\sqrt{-d})$ for some non-negative integer d, where $Q(\chi)$ is the field of values of χ. In particular, for every $\chi \in \text{Irr}(G)$, $|Q(\chi) : \mathbb{Q}| \leq 2$.

Notice that, in the literature, cut groups are also called inverse semi-rational groups (see, for instance, [3]).
It is conjectured that, if G is a cut group, then a Sylow 3-subgroup P of G must also be cut. In this paper, we answer positively in the solvable case, under the further assumption that P is of nilpotency class at most 2.

Theorem A. Let G be a 3-solvable cut group and let $P \in \text{Syl}_3(G)$ of nilpotency class at most 2. Then P is cut.

Theorem A will be proved as a consequence of a more general result involving B_p-characters. These characters, first introduced by Isaacs in [6], have always values in the p^a-cyclotomic extension Q_{p^a} for $p^a = |G|_p$. We will see that this allows us to relax our hypothesis on the field of values and still obtaining meaningful results. In particular, we prove the following theorem.

Theorem B. Let G be a p-solvable group and let $P \in \text{Syl}_p(G)$ of nilpotency class at most 2. Let Q_p be the p-cyclotomic extension of the field of rational numbers. Then, every B_p-character has values in Q_p if and only if every irreducible character of P has values in Q_p.

Since $Q_3 = Q(\sqrt{-3})$, Theorem A will follow as a corollary.

The problem of whether a Sylow 3-subgroup of a cut group is cut has already been studied for several classes of groups. In particular, in [2, Theorem 6.6] it is proved that the property holds when the group is supersolvable, Frobenius or simple. It is also proved that a Sylow 3-subgroup of a cut group G is cut when $|G|$ is odd and $O_3(G)$ is abelian. We will prove that the property holds also without assumptions on $O_3(G)$.

Theorem C. Let G be a cut group of odd order and let P be a Sylow 3-subgroup of G. Then, P is cut. Moreover, also $O_3(G)$ is cut.

2 Proof of Theorem C

We first prove Theorem C since it is easier and it does not require to recall the theory of B_p-characters.

The reader shall keep in mind that a character $\varphi \in \text{Irr}(P)$ of a p-group P has values in Q_{p^a}, i.e., the p^a-cyclotomic extension of Q, for some $a \in \mathbb{N}$ such that $p^a = |P|$. Therefore, we will need to prove that φ has values in $Q_3 = Q(\sqrt{-3})$, since it is the only subfield of Q_{p^a} to be an extension of Q of degree 2, thus, the only one which can be generated by the square root of a negative integer.

Proof of Theorem C. Let G be a cut group of odd order; it follows from [3, Remark 13] and [3, Theorem 3] that G is either a 3-group, a Frobenius group of order $3 \cdot 7^a$ or a group of order $7 \cdot 3^b$. In the first case there is nothing to prove while, in the second case, the thesis follows from [2, Theorem 6.6, (2)] and from the fact either $O_3(G) = P$ or $O_3(G) = 1$.

2
Therefore, we only have to consider the case when $|G| = 7 \cdot 3^h$. In this situation, let $O = O_3(G)$ and let $H \in \text{Hall}_2(G)$; it follows from [3] Theorem 3 that OH is a Frobenius group with Frobenius kernel O, $OT \in \text{Syl}_3(G)$ for some group T of order 3 and G/O is the nonabelian group of order 21 (notice that G/O is a Frobenius group, too, and for this reason groups like G are sometimes called 2-Frobenius or double Frobenius groups).

Since O is a 3-group, $Z(O) > 1$ and, since O is normal in G, then $Z(O) \triangleleft G$. It follows that there exists $M \leq Z(O)$ minimal normal subgroup of G. In particular, M is elementary abelian.

Now, let $\varphi \in \text{Irr}(P)$. If $M \leq \ker \varphi$, then φ is a character of $P/M \in \text{Syl}_3(G/M)$ and it has values in \mathbb{Q}_3 by induction. Thus, we may assume that $M \not\leq \ker \varphi$.

In order to prove that φ has values in \mathbb{Q}_3, we need to prove that it is fixed by every element of $\text{Gal}(\mathbb{Q}_{3^b} \mid \mathbb{Q}_3)$. Thus, let $\sigma \in \text{Gal}(\mathbb{Q}_{3^b} \mid \mathbb{Q}_3)$ and let $1_M \neq \lambda \in \text{Irr}(M)$ be a constituent of φ_M. Notice that λ is linear of order 3 because M is elementary abelian; thus, λ has values in \mathbb{Q}_3 and is fixed by σ.

Since OH is Frobenius, no elements of H fix any nontrivial element of $M \leq O$. Thus, also $H \cap I_G(\lambda) = 1$. Moreover, $O \leq I_G(\lambda)$ because M is central in O. Thus, either $I_G(\lambda) = O$ or $I_G(\lambda) = P$.

If $I_G(\lambda) = P$, then $\varphi^P = \chi \in \text{Irr}(G)$ by Clifford theorem. Moreover, χ is fixed by σ, since $|\mathbb{Q}(\chi) : \mathbb{Q}| = 2$ by hypothesis and $o(\sigma)$ is odd. Since both χ and λ are fixed by σ, it follows from the uniqueness in Clifford theory that also φ is fixed.

Suppose then that $I_G(\lambda) = O$, let $\theta \in \text{Irr}(O)$ be an irreducible constituent of φ_O lying over λ and notice that $\theta^G = \chi \in \text{Irr}(G)$ and $\theta^P = \varphi$. By the same argument as the previous paragraph, we have that θ is fixed by σ and, since σ commutes with the conjugation by elements of G, we have that

$$\varphi^\sigma = (\theta^\sigma)^P = \theta^P = \varphi.$$

It only remains to prove that O is cut. Suppose that there exists $\theta \in \text{Irr}(O)$ and $\sigma \in \text{Gal}(\mathbb{Q}_{3^b} \mid \mathbb{Q}_3)$ such that $\theta^\sigma \neq \theta$ and let $\varphi \in \text{Irr}(P)$ lying over θ. Let $M \leq O$ be a minimal normal subgroup of G central in O, as above, and let λ be an irreducible constituent of θ_M. We can assume that $\lambda \neq 1_M$, since otherwise θ is an irreducible character of $O/M = O_3(G/M)$ and the thesis follows by induction. Thus, we have that no nontrivial element of H fixes λ, because OH is Frobenius and λ is linear; since $\theta_M = \theta(1)\lambda$, the same is true for θ. Thus, $H \cap I_G(\theta) = 1$.

Moreover, let $T = \langle t \rangle$ for some $t \in T$ of order 3, so that $P = O(t)$. Since σ fixes φ and not θ, we have that $\varphi_O \neq \theta$ and it follows that $\varphi_O = \theta + \theta^t + \theta^{-t}$ and, thus, $I_G(\theta) = O$. However, also $\varphi_O = \theta + \theta^\sigma + \theta^{-\sigma}$, since $\theta^\sigma, \theta^{-\sigma}$ both lie under φ. Thus, either $\theta^\sigma = \theta^t$ or $\theta^\sigma = \theta^{-t}$ and, without loss of generality, we may assume $\theta^\sigma = \theta^t$.

3
Let $1 \neq h \in H$ and let $\varphi_1 = (\theta^h)^P$. Since θ^h is not σ-invariant, φ_1 is irreducible and, for the same arguments as above, it follows that either $(\theta^h)^\sigma = (\theta^h)^t$ or $(\theta^h)^\sigma = (\theta^h)^t^{-1}$. However, we also have that $(\theta^h)^\sigma = \theta^h$. Since HT is a complement for $O = I_G(\theta)$ in G, $HT \cap I_G(\theta) = 1$ and we have that either $th = ht$ or $th = ht^{-1}$. In the first case we have that t and h commute, while in the second case we have that $t^h = t^{-1}$ and, thus, $H = \langle h \rangle$ normalizes T. Since HT is a Frobenius group, both results are absurd; thus, it follows that θ is fixed by σ.

3 Review of the π-theory

In this section, we will briefly summarize the main properties of the B_p-characters in p-solvable groups. We do it in the more general frame of the theory of characters of π-separable groups. Here we see only some basic facts, an interested reader can consult [6], or the first part of [8], for a complete exposition of the theory.

Let π be a set of primes and denote as π' its complementary set. A finite group is said to be a π-group if its order is a π-number, which means that all its prime divisors lie in π.

A finite group G is said to be π-separable if every quotient in a composition series of the group is either a π-group or a π'-group. It is said to be π-solvable if every quotient is either a π'-group or a group of prime order.

The reader will notice that, if π consists of the sole prime p, then the two concepts coincide and in this case we simply talk about p-solvable groups.

If G is a finite group, a character $\chi \in \text{Irr}(G)$ is said to be π-special if its degree and its order are π-numbers and, for any $M \trianglelefteq G$ and any irreducible constituent ϕ of χ_M, the order of ϕ is a π-number.

Sometimes, we will write $X_\pi(G)$ to describe the subset of $\text{Irr}(G)$ of all the π-special characters. Notice that, if G is a π'-groups and $\phi \in X_\pi(G)$, since both $\chi(1)$ and $o(\chi)$ have to be π-numbers, it follows that $\chi(1) = o(\chi) = 1$ and, therefore, $X_\pi(G) = \{1_G\}$.

The behaviour of π-special characters when induced from, or restricted to, normal subgroups is well described by the following propositions.

Proposition 3.1 ([4, Proposition 4.1]). Let G be a finite group and $\chi \in X_\pi(G)$. If M is a subnormal subgroup of G, then every irreducible constituent of χ_M is a π-special character.

Proposition 3.2 ([4, Proposition 4.5]). Let G be a finite group and let $N \triangleleft G$ such that G/N is a π'-group. If $\psi \in X_\pi(N)$, then every irreducible constituent of ψ^G is a π-special character.

Proposition 3.3 ([4, Proposition 4.3]). Let G be a finite group and let $N < G$ such that G/N is a π'-group. If $\psi \in X_\pi(N)$ is G-invariant, then it extends to G and there exists a unique extension which is a π-special character.
character. If ψ is not G-invariant, none of the irreducible constituents of ψ^G is a π-special character.

There is no need for the group to be π-separable in order to define π-special characters. However, if G is a π-separable group, we have a further useful property.

Theorem 3.4 ([4, Theorem 7.2]). Let G be a π-separable group and let $\alpha, \beta \in \Irr(G)$, with α π-special character and β π'-special character. Then, $\alpha \beta$ is an irreducible character of G and this factorization is unique.

An irreducible character which can be written as a product of a π-special and a π'-special character is said to be a π-factorable character.

We now consider character pairs (H, θ), where H is a subgroup of some fixed group G and θ is an irreducible character of H. We say that $(H, \theta) \leq (K, \varphi)$ if $H \leq K$ and θ is an irreducible constituent of φ_H. This defines a partial order on the set of character pairs.

Definition 3.5 ([6, Definition 3.1]). Let G be π-separable. A π-factorable subnormal pair of G is a character pair (S, θ), where $S \trianglelefteq G$ and θ is a π-factorable character. We write $\mathfrak{F}_\pi(G)$ to denote the set of π-factorable subnormal pairs.

Theorem 3.6 ([6, Theorem 3.2]). Let G be π-separable and let $\chi \in \Irr(G)$ then there exists a π-factorable subnormal pair (S, θ) of G such that it is maximal in $\mathfrak{F}_\pi(G)$ and $(S, \theta) \leq (G, \chi)$. Moreover, if (R, η) is another such pair, then $R = S^g$ and $\eta = \theta^g$ for some $g \in G$.

Theorem 3.7 ([6, Theorem 4.4 and Lemma 4.5]). Let G be π-separable and let (S, μ) be a maximal π-factorable subnormal pair. Let $T = I_G(S, \theta)$, where $I_G(S, \theta) = I_{NG(S)}(\theta)$. Then the induction defines a bijection between $\Irr(T \mid \mu)$ and $\Irr(G \mid \mu)$. Moreover, if $S < G$, then also $T < G$.

If G is π-separable and $\chi \in \Irr(G)$, by Theorem 3.6 we have that there exists $(S, \mu) \in \mathfrak{F}_\pi(G)$ maximal such that $(S, \mu) \leq (G, \chi)$. If $T = I_G(S, \mu)$, by Theorem 3.7 there exists $\xi \in \Irr(T \mid \mu)$ such that $\xi^G = \chi$. This process associates, to the pair (G, χ) a specific pair (T, μ), determined uniquely up to conjugacy in G, which is called a standard inducing pair for (G, χ).

If χ is already π-factorable, then $(S, \mu) = (G, \chi)$ and, therefore, also $T = G$. Otherwise, $S < G$ and, by Theorem 3.7 also $T < G$. In this case, we can repeat the process and find a standard inducing pair for (T, ξ). If we continue this way until we reach a π-factorable pair, which will happen eventually, since the group is finite, we have

$$(G, \chi) = (T_0, \xi_0) > (T_1, \xi_1) > \ldots > (T_k, \xi_k),$$
where \((T_i, \xi_i)\) is a standard inducing pair for \((T_{i-1}, \xi_{i-1})\) and \(\xi_k\) is \(\pi\)-factorable. At each stage, the pair \((T_i, \xi_i)\) is determined up to conjugacy in \(T_{i-1}\); in particular, the terminal pair \((W, \mu) = (T_k, \mu_k)\) is determined up to conjugacy in \(G\) and it is said to be a nucleus for \(\chi\).

We can now give the definition of \(B_{\pi}\)-characters.

Definition 3.8 ([6, Definition 5.1]). Let \(\chi \in \text{Irr}(G)\), where \(G\) is a \(\pi\)-separable group, and let \((W, \mu) \in \text{nc}(\chi)\), which is unique up to conjugation for elements of \(G\). If \(\mu\) is a \(\pi\)-special character, we say that \(\chi\) is a \(B_{\pi}\)-character. We denote as \(B_{\pi}(G)\) the set of \(B_{\pi}\)-characters of the group \(G\).

It is useful to study the behaviour of the \(B_{\pi}\)-characters in relation with normal subgroups. As expected, this behaviour will be similar to the one of \(\pi\)-special characters.

Theorem 3.9. Let \(G\) be \(\pi\)-separable and let \(M \triangleleft G\). If \(\chi \in B_{\pi}(G)\), then every irreducible constituent of \(\chi_M\) belongs to \(B_{\pi}(M)\).

On the other hand, if \(\psi \in B_{\pi}(M)\), then there exist some characters in \(B_{\pi}(G)\) lying over \(\psi\). In particular, if \(G/M\) is a \(\pi\)-group, then every character in \(\text{Irr}(G/\psi)\) belongs to \(B_{\pi}(G)\) while, if \(G/M\) is a \(\pi'\)-group, then there exists a unique character in \(\text{Irr}(G/\psi)\) which belongs to \(B_{\pi}(G)\).

Proof. It is a direct consequence of [6, Theorem 6.2] and [6, Theorem 7.1].

The main property of \(B_{\pi}\)-characters, however, concerns their restriction to Hall \(\pi\)-subgroups.

Theorem 3.10 ([6, Theorem 8.1]). Let \(\chi \in B_{\pi}(G)\), with \(G\) \(\pi\)-separable, and let \(H \in \text{Hall}_{\pi}(G)\). Then the following hold.

a) For each \(\alpha \in \text{Irr}(H)\), \(\alpha(1) \geq |\alpha, \chi_H|\chi(1)_{\pi}\).

b) There exists at least one irreducible constituent \(\alpha\) of \(\chi_H\) such that \(\alpha(1) = \chi(1)_{\pi}\).

c) If \(\alpha\) is as in b), then \([\chi_H, \alpha] = 1\), and \([\psi_H, \alpha] = 0\) for any \(\psi \in B_{\pi}\), \(\psi \neq \chi\).

Corollary 3.11 ([6, Corollary 8.2]). Let \(G\) be \(\pi\)-separable and let \(H\) be a Hall \(\pi\)-subgroup of \(G\). Then, restriction defines an injection from the set of \(\pi\)-special characters of \(G\) into \(\text{Irr}(H)\).

Characters like the ones in Theorem 3.10, point b), play an important role in the theory of characters of \(\pi\)-separable groups. We refer to them as Fong characters.

An other consequence of Theorem 3.10 is that we have informations about the field of values of the characters in \(B_{\pi}(G)\). If \(n\) is a natural number, we write \(Q_n\) to refer to the \(n\)-cyclotomic extension of \(Q\), i.e., the extension
of the field of rational numbers obtained by adjoining a primitive \(n \)-root of unity \(\zeta_n \) to \(\mathbb{Q} \). If \(\pi \) is a set of primes, \(\mathbb{Q}_\pi \) denotes the extension of the field of rational numbers obtained by adjoining all complex \(n \)-th roots of unity of \(\mathbb{Q} \), for all \(\pi \)-numbers \(n \).

Corollary 3.12 ([6, Corollary 12.1]). If \(\chi \in B_\pi(G) \), then it has values in \(\mathbb{Q}_\pi \), i.e., for every \(x \in G \), \(\chi(x) \in \mathbb{Q}_\pi \).

We conclude this section by citing one final result which links the field of values of \(B_\pi \)-characters of a \(p \)-solvable group \(G \) with the field of values of the characters of a Sylow \(p \)-subgroup of \(G \). It is easier to prove it as a consequence of [5, Corollary 3.3] but it can be seen also as a consequence of [10, Corollary 3.8], and it is generalized in [12] for nonsolvable groups.

Theorem 3.13. Let \(G \) be a \(p \)-solvable group and suppose every character in the set \(B_p(G) \cap \text{Irr}'_p(G) \) has values in \(\mathbb{Q}_p \). Let \(P \) be a Sylow \(p \)-subgroup of \(G \), then \(P/P' \) has exponent \(p \).

Proof. Let \(\lambda \in \text{Lin}(P) \), then, by [9, Corollary 6.1] it is a Fong character associated with some \(\chi \in B_p(G) \cap \text{Irr}'_p(G) \) and, by [5, Corollary 3.3], it follows that \(o(\lambda) = p \). Since this holds for every \(\lambda \in \text{Lin}(P) \), then \(\exp(P/P') = p \).

4 Proofs of Theorem A and of Theorem B

We first prove a preliminary result which helps us to identify \(B_\pi \)-characters when the Hall \(\pi \)-subgroup is normal.

Proposition 4.1. Let \(G \) be a finite group with a normal Hall \(\pi \)-subgroup \(H \), then each irreducible character of \(H \) is a Fong character in \(G \). Moreover, if \(\varphi \in \text{Irr}(H) \), \(I = I_G(\varphi) \) and \(\eta \in \text{Irr}(I \mid \varphi) \), then \(\eta^G = \chi \in \text{Irr}(G) \) is a \(B_\pi \)-character if and only if \(\eta \) is a \(\pi \)-special character.

Proof. Let \(\varphi \in \text{Irr}(H) \), then \((H, \varphi) \in \mathcal{F}_\pi(G) \) since \(H \) is normal in \(G \). Let \(\chi \in \text{Irr}(G) \) lying over \(\varphi \) and let \((M, \gamma) \in \mathcal{F}_\pi(G) \) maximal such that \((H, \varphi) \leq (M, \gamma) \leq (G, \chi) \). Then, \(\gamma = \alpha \beta \), with \(\alpha \) \(\pi \)-special, and thus \(\alpha_H = \varphi \) by Corollary 3.11.

Let \(I = I_G(\varphi) \) and let \(J = I_G(M, \gamma) \); then, \(J \leq I \), since \(\alpha_H = \varphi \) and the factorization \(\gamma = \alpha \beta \) is unique, thus, if \(g \in G \) fixes \(\gamma \), it also fixes \(\alpha \) and \(\varphi \). By iterating the Isaacs’ algorithm, we obtain \((W, \mu) \in \text{mc}(\chi) \) such that \((H, \varphi) \leq (W, \mu) \leq (J, \gamma) \leq (I, \eta) \), where \(\eta \in \text{Irr}(I \mid \varphi) \) such that \(\eta^G = \chi \), and \(\mu^I = \eta \) by the uniqueness in Clifford theorem.

Now, if \(\eta \) is \(\pi \)-special, then \(\eta_H \) is irreducible by Corollary 3.11 and, thus, \(\eta_W = \mu \). Since \(\mu^I = \eta \), it follows that \((W, \mu) = (I, \eta) \), \(\mu \) is \(\pi \)-special and, therefore, \(\chi \in B_\pi(G) \).
On the other hand, if \(\chi \in B_{\pi}(G) \), then \([\eta_{H}, \varphi] \leq [\chi_{H}, \varphi] = 1\), thus, \(\eta_{H} = \varphi\), since \(\varphi\) is invariant in \(I\), and \(\eta_{W} = \mu\). It follows that \((W, \mu) = (I, \eta)\) and \(\eta\) is \(\pi\)-special, because so is \(\mu\).

Finally, by Proposition 3.3 \(X_{\pi}(I \mid \varphi)\) is nonempty, thus, \(\varphi\) is a Fong character in \(G\).

It is clear that the hypothesis in Theorem \([11]\) are preserved for group quotients. We see that, under some hypothesis, they are preserved also for normal subgroups.

Lemma 4.2. Let \(G\) be a \(p\)-solvable group and suppose that every \(\chi \in B_{p}(G)\) has values in \(Q_{p}\). Let \(K \triangleleft G\) such that \(p \nmid |G : K|\), then also every \(\psi \in B_{p}(K)\) has values in \(Q_{p}\).

Proof. Let \(\psi \in B_{p}(K)\), then by Corollary 3.12 it has values in \(Q_{|G|_{p}}\). Thus, it is enough to prove that every element of \(\text{Gal}(Q_{|G|_{p}} \mid Q_{p})\) fixes \(\psi\).

Let \(\sigma \in \text{Gal}(Q_{|G|_{p}} \mid Q_{p})\) and suppose \(\psi^{\sigma} \neq \psi\). By Theorem 3.9, there exists \(\chi \in B_{p}(G)\) lying over \(\psi\) and, by hypothesis, \(\chi\) is fixed by \(\sigma\). Thus, \(\sigma\) permutes the irreducible constituents of \(\chi_{K}\). Let \(C\) be the orbit of \(\psi\) under this permutation; since \(\sigma\) commutes with the conjugation for elements of \(G\), the orbit under \(\sigma\) of any conjugate \(\psi^{g}\) of \(\psi\) is \(C^{g}\). It follows that all the orbits of the action have cardinality \(|C|\) and, thus, \(|C| \mid |G : K|\). However, if \(\psi^{\sigma} \neq \psi\), then \(|C| > 1\) and, since \(o(\sigma)\) is a power of \(p\), then also \(|C|\) is a power of \(p\) and \(p \mid |G : K|\), in contradiction with the hypothesis.

We now prove our version of \([11]\) Theorem 3.1, for any prime \(p\). Our theorem is actually identical to a portion of \([11]\) Theorem 3.1, however since this was stated only for the prime 2, we cannot just cite it.

Theorem 4.3. Let \(G\) be a \(p\)-solvable group and let \(P \in \text{Syl}_{p}(G)\) of nilpotency class at most 2. Suppose that \(P/P'\) is elementary abelian and assume \(O_{p'}(G) = 1\) and \(O_{p'}'(G) = G\). Let \(F = F(G), H \in \text{Hall}_{p'}(G)\) and \(B = [F, H]\).

The following then hold.

(a) \(B \triangleleft G\) and \(C_{B}(H) = 1\);

(b) \(B\) is an elementary abelian \(p\)-group and it is central in \(F\);

(c) \(HB \triangleleft G\);

(d) \(G = N_{G}(H)B\) and \(N_{G}(H) \cap B = 1\).

Proof. Since \(O_{p'}(G) = 1\), we have that \(F = F_{p}(G) = O_{p}(G)\) and, since \(G\) is \(p\)-solvable, we also have that \(C_{G}(F) \leq F\). Since \(P\) has nilpotency class at most 2, it follows that \(P' \leq Z(P) \leq C_{G}(F) \leq F\). Thus, \(P/F\) is abelian and \(G/F\) has \(p\)-length at most 1 by \([7]\) Theorem 3.22. Since
however $O_{p'}(G) = G$, it follows that G/F has a normal p-complement and, thus, $HF < G$.

Let $Z = Z(F)$, then $P' \leq Z(P) \leq Z$ and P acts trivially on P/Z, thus it also acts trivially on F/Z. It follows that $p \nmid |G : C_G(F/Z)|$ and, since $C_G(F/Z) < G$, it follows that $C_G(F/Z) = G$ and, thus, $B = [F, H] \leq Z$ and it is abelian.

Now, $[F, H] = [F, H, H]$ for \cite{Fitting lemma 4.34}, thus, $B = [F, H, H] = [B, H] \leq [Z, H] \leq [F, H] = B$ and it follows that $B = [Z, H]$. Moreover, by Proposition 3.3, by Proposition 4.1, τ is a Fong character associated with ϕ and it is abelian.

We prove the other direction working by induction on $|\lambda|$. We are now ready to prove Theorem B.

We prove the other direction working by induction on $|\lambda|$. We can clearly assume $O_{p'}(G) = 1$, since $PO_{p'}(G)/O_{P'}(G)$ is a Sylow p-subgroup of $G/O_{p'}(G)$ and it is isomorphic to P. Moreover, by Lemma \cite{4.2} we can assume also that $O_{p'}(G) = G$ and, by Theorem \cite{4.13} we have that P/P' is elementary abelian. Thus, Theorem \cite{4.13} applies and we can use its notation.

Let $\varphi \in \text{Irr}(P)$ and assume $B \nsubseteq \ker(\varphi)$, since otherwise φ has values in \mathbb{Q}_p by induction on the group order. Let λ be an irreducible constituent of φ_B and let $T = I_G(\lambda)$, we have that $I_T(\lambda) = T \cap P$ and $I_K(\lambda) = T \cap K$, for $K = HB < G$. Thus, let $\gamma \in \text{Irr}(T \cap P | \lambda)$ such that $\gamma^p = \varphi$ and let $\tau \in \text{Irr}(T \cap K)$ be the unique p-special extension of λ to $T \cap K$, which exists by Proposition \cite{4.33}. By Proposition \cite{4.11} $\tau^K = \psi \in B_p(K)$. \hfill \qed
Now, ψ is an irreducible constituent of λ^K, which is a constituent of $\varphi_B^K = \varphi^G_K$. It follows that $[\varphi^G, \psi^G] = [\varphi^G_K, \psi] \neq 0$ and there exists $\chi \in \text{Irr}(G)$ lying over both ψ and φ. Since $\psi \in B_p(K)$ and G/K is a p-group, $\chi \in B_p(G)$ by Theorem 3.9 and it has values in \mathbb{Q}_p.

Since B is complemented in G and λ is linear, then λ extends to T. Let $\mu \in \text{Irr}(T)$ be an extension of λ of p-power order and notice that $\mu_{T \cap K} = \tau$ (by uniqueness, since $\mu_{T \cap K}$ is p-special and lies over λ). Let $\rho \in \text{Irr}(T | \lambda)$ such that $\rho^G = \chi$, then by Gallagher $\rho = \mu \xi$ for some $\xi \in \text{Irr}(T/B)$.

Now, $0 \neq [\chi_{T \cap K}, \tau] = [\chi_T, \tau^T]$, thus there exists some character $\varepsilon \in \text{Irr}(T)$ lying under χ and over τ. Therefore, ε lies over λ, too, and it follows that $\varepsilon = \rho$ by the uniqueness in Clifford theorem. Thus, ρ lies over τ and, with the same argument, we also have that ρ lies over γ.

Since $T \cap K \triangleleft T$ and $\mu_{T \cap K} = \tau$, it follows that $\rho_{T \cap K} = \xi(1)\tau$ and, in particular, $\xi \in \text{Irr}(T/T \cap K)$. Since $T/T \cap K = T/T \cap HB \cong T \cap P/B$, we have that $\xi_{T \cap P}$ is irreducible. As a consequence, $\rho_{T \cap P} = (\mu \xi)_{T \cap P}$ is irreducible, too, and $\rho_{T \cap P} = \gamma$.

Since both χ and λ have values in \mathbb{Q}_p, by uniqueness in the Clifford theory ρ is fixed by every element of $\text{Gal}(\mathbb{Q}(G^\lambda) | \mathbb{Q}_p)$ and, thus, it has values in \mathbb{Q}_p. It follows that the same is true for $\gamma = \rho_{T \cap P}$ and, finally, also for $\varphi = \gamma^P$. \hfill \Box

The proof of Theorem A then follows easily.

Proof of Theorem A. If G is cut, then every character in $B_3(G)$ have values in $\mathbb{Q}_3 = \mathbb{Q}(\sqrt{-3})$, since it is the only subfield of $\mathbb{Q}(G_{13})$ to be an extension of \mathbb{Q} of degree 2, thus the only one which can be generated by the square root of a negative integer. Then, by Theorem B it follows that every character in P has values in \mathbb{Q}_3 and the thesis follows. \hfill \Box

Moreover, Theorem B also provides a partially different proof of (a weaker version of) the main result in [11].

Corollary 4.4. Let G be a solvable rational group and let $P \in Syl_2(G)$ of nilpotency class at most 2. Then P is rational.
Proof. By hypothesis, every character in $B_2(G)$ has values in $Q_2 = Q$. Thus, by Theorem 3 it follows that also every character in $\text{Irr}(P)$ has values in Q and, therefore, P is rational. \qed

References

[1] A. Bächle: Integral group rings of solvable groups with trivial central units. Forum Math 30 (2018), 845–855.

[2] A. Bächle, M. Caicedo, E. Jespers, S. Maheshwary: Global and local properties of finite groups with only finitely many central units in their integral group ring. 1979, arXiv: 1808.03546 [math.GR].

[3] D. Chillag, S. Dolfi: Semi-rational solvable groups. J. Group Theory 13.4 (2010), 535–548.

[4] D. Gajendragadkar: A characteristic class of characters finite of π-separable groups. Journal of Algebra 59 (1979), 237–259.

[5] N. Grittini: p-length and character degrees in p-solvable groups. Journal of Algebra 544 (2020), 454–462.

[6] I. M. Isaacs: Characters of π-separable groups. Journal of Algebra 86 (1984), 98–128.

[7] I. M. Isaacs: Finite group theory. Vol. 92. Graduate Studies in Mathematics. American Mathematical Society, 2008.

[8] I. M. Isaacs: Characters of solvable groups. Vol. 189. Graduate Studies in Mathematics. American Mathematical Society, 2018.

[9] I. M. Isaacs: Fong characters of π-separable groups. Proceeding of the Edinburgh Mathematical Society 38 (1985), 313–317.

[10] I. M. Isaacs, G. Navarro: Characters of p'-degree of p-solvable groups. Journal of Algebra 246 (2001), 394–413.

[11] I. M. Isaacs, G. Navarro: Sylow 2-subgroups of rational solvable groups. Math. Z. 272 (2012), 937–945.

[12] G. Navarro, P. H. Tiep: Sylow subgroups, exponents, and character values. Trans. Amer. Math. Soc. 372.6 (2019), 4263–4291.