Space charge limited transport and time of flight measurements in tetracene single crystals: a comparative study.

R.W.I. de Boer, M. Jochemsen, T.M. Klapwijk, and A.F. Morpurgo
Department of Nanoscience, Faculty of Applied Sciences,
Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, the Netherlands

J. Niemax, A.K. Tripathi, and J. Pflaum
3. Physikalisches Institut, University of Stuttgart, D-70550 Stuttgart, Germany
(Dated: March 22, 2022)

We report on a systematic study of electronic transport in tetracene single crystals by means of space charge limited current spectroscopy and time of flight measurements. Both $I-V$ and time of flight measurements show that the room-temperature effective hole-mobility reaches values close to $\mu \approx 1 \text{ cm}^2/\text{Vs}$ and show that, within a range of temperatures, the mobility increases with decreasing temperature. The experimental results further allow the characterization of different aspects of the tetracene crystals. In particular, the effects of both deep and shallow traps are clearly visible and can be used to estimate their densities and characteristic energies. The results presented in this paper show that the combination of $I-V$ measurements and time of flight spectroscopy is very effective in characterizing several different aspects of electronic transport through organic crystals.

PACS numbers: 72.20.-i, 72.80.Le

I. INTRODUCTION

Organic devices for electronic applications are usually based on thin film technology [1, 2]. This is particularly advantageous, as thin films of organic molecules and polymers can be manufactured easily and cheaply in different ways. Over the past few years, an intense research effort has resulted in rapid improvement of the manufacturing processes, which has allowed the commercialization of products based on organic devices, i.e. organic electronics.

In spite of the rapid progress that has taken place on the applied side, the rather low chemical and structural purity of the thin films used in device fabrication has so far prevented a systematic study of the intrinsic electronic properties of organic semiconductors. That is because for these films, it is the defects that determine the behavior observed experimentally [3]. As a consequence, our basic understanding of the electronic properties of organic materials is still limited.

Improved chemical and structural purity in organic conductors can be obtained by using single crystals of small conjugated organic molecules. Electronic transport through single crystals of different organic molecules has been investigated in the past by means of time of flight (TOF) measurements [4, 5]. It has been found that the hole mobility is approximately $1 \text{ cm}^2/\text{Vs}$ at room temperature, increasing up to values in excess of $100 \text{ cm}^2/\text{Vs}$ with decreasing temperature. Since these observations have been reported only in the highest purity crystals, it is believed that this is the intrinsic behavior of charge carrier mobility in organic conductors. So far however, this intrinsic behavior has never been observed in conventional DC transport measurements.

In this paper we report an experimental study of DC transport through tetracene single crystal and show that our results exhibit some of the features expected for the intrinsic behavior of organic conductors. Our investigations are based on the study of the current-voltage ($I-V$) measurements in the space charge limited current regime and on their comparison to TOF measure-
ments performed on identically grown crystals. As we will show, we find overall agreement between the results obtained with the two different methods. In particular, both I-V and TOF measurements show that the room-temperature effective hole-mobility reaches values close to $\mu \simeq 1$ cm2/Vs. Both measurement techniques also show that, within a range of temperatures, the mobility increases with decreasing temperature. For the best samples probed by I-V measurements this range extends down to approximately 200 K, below which a structural phase transition known to occur in tetracene causes a sudden drop of the mobility. The experimental results further allow the characterization of different aspects of the tetracene crystals. In particular, we observe the effect of both deep and shallow traps [17]. For the former, the measurement of the I-V characteristics give us an upper bound on their bulk density ($N^d_t < 5 \cdot 10^{13}$ cm$^{-3}$) and an estimate of their depth ($E_d^t \approx 700$ meV relative to the edge of the valence band). The concentration of shallow traps is substantially larger and only a very rough estimate can be obtained from TOF experiments.

The paper is organized as follows. We first describe the most important aspects of the tetracene crystals growth and of the sample preparation (section III). The behavior of the measured I-V curves is presented in section I. In this section we also discuss the basic aspects of the theoretical concepts necessary to interpret the experimental data. Section IV is devoted to TOF experiments. Finally, in section V we summarize and compare the outcome of TOF and DC transport measurements and we present our conclusions.

II. CRYSTAL GROWTH AND SAMPLE PREPARATION

Single tetracene crystals are grown by means of physical-vapor deposition in a temperature gradient (see fig. II), in the presence of a stream of carrier gas, using a set-up similar to that described in reference II. Both Ar and H$_2$ were used. All experiments discussed in this paper are performed on Ar grown crystals on which we have obtained the highest values of charge carrier mobility. Crystal growth is performed in the dark to minimize possible photo-activated chemical reaction of tetracene with remnant O$_2$. These photo-induced reaction with O$_2$ are known to occur for most polyacenes II and result in chemical impurities that can act as traps for charge carriers.

The source material for the first crystal growth is 98% pure tetracene purchased from Sigma-Aldrich. Crystals grown from as-purchased tetracene are used as source material for a subsequent growth process. For the first and second growth steps the results of the growth processes are shown in fig. III. Note the large residues of impurity molecules clearly visible after the first process (fig. III) but not after the second (fig. III), which directly demonstrate the usefulness of the second regrowth process.

Tetracene crystals grown by physical-vapor deposition are large platelets, with surfaces parallel to the ab plane. Typical dimensions range from few square millimeters to 1×1 cm2 or larger. For crystals grown by letting the growth process proceed overnight, the typical crystal thickness ranges between ~ 10 µm and ~ 200 µm. We have performed X-ray structural study on a few of our thickest crystals and found a structure consistent with known literature data III

Multiply regrown crystals are inspected under an optical microscope with polarized light. As it is typical for many organic conjugated molecules, tetracene crystals are birefringent. This allows us to select single crystals to be used for transport experiments by choosing those samples that become uniformly dark when changing the orientation of cross-polarizers II.

All I-V and TOF measurements discussed in this paper have been performed in the direction perpendicular to the crystal ab plane, using electrical contacts on the two opposite faces of crystals. Electrodes for I-V measurements are fabricated by connecting gold wires to the crystal surface using a two-component, solvent-free silver epoxy, so that the epoxy is in direct contact with the crystal. The contact area is measured under the microscope and it is typically of the order of 0.1 mm2. We use silver epoxy CW2400 (Circuitworks), which hardens at room temperature in a few hours. This contact fabrication method is very quick and it was chosen because it allows the inves-

![FIG. 2: Typical result of a DC I-V measurement perpendicular to the ab plane of a tetracene single-crystal, with a thickness $L = 30$ µm and a mobility $\mu_{\text{min}} = 0.59$ cm2/Vs. The inset shows a similar measurement on a different crystal ($L = 25$ µm, $\mu_{\text{min}} = 0.014$ cm2/Vs), in which a crossing over into an approximately quadratic dependence on voltage is visible at high voltage. In both cases, a very steep current increase occur around of just above 100 V that we attribute to filling of deep traps. We observed a steep increase in current in most samples studied.](image-url)
tigation of many samples in relatively short time. Other types of contacts were tested as well, i.e. metal evaporated contacts and colloidal graphite paint contacts, but they did not result in any improvement of the observed electrical properties. For TOF measurements we used silver electrodes prepared by thermal evaporation through a shadow mask.

III. DC TRANSPORT THROUGH TETRACENE SINGLE CRYSTALS

In this section we discuss the results obtained by studying the I-V characteristics of approximately 100 tetracene single crystals. We have found that the measured I-V curves exhibit large sample-to-sample deviations so that particular care has to be taken in the interpretation of the experimental data. For this reason, we first discuss how the charge carrier mobility can be estimated using concepts of space charge limited current theory of general validity, i.e. not sensitive to the detailed behavior of our samples. After having presented the experimental results in terms of the concept previously introduced, we discuss the role of deep traps present in the bulk of the crystals and at the metal/organic contact interface. We argue that the latter provide the most likely explanation of the large sample to sample variation observed in the measured I-V characteristics.

A. Estimate of the carrier mobility

Since the band-gap of tetracene is approximately $E_g \approx 3$ eV [11], high-purity tetracene crystals containing a negligible amount of dopants essentially behave as insulators. It is still possible to pass a current through tetracene crystals by applying a sufficiently large voltage, which acts both to transfer charge from the electrodes into the crystal and to accelerate that charge. When the charge injected from the contacts is larger than the charge present in the material in equilibrium the I-V characteristics become non-linear and transport is said to occur in the space charge limited regime [12].

For materials in which current is carried by only one carrier type (holes in our tetracene crystals; see section IV B), there exists an upper limit to the current that can be carried in the space charge limited regime. This is due to electrostatics that, at any given voltage V, fixes the maximum amount of charge that can be injected into the material. For the geometry used in our experiments, the resulting maximum current that can flow in the space charge limited regime in the presence of an applied voltage V is [12]:

$$I = A \frac{9\epsilon\mu V^2}{8L^3},$$

(1)

with A and L respectively electrode area and separation and ϵ relative dielectric constant of the material ($\epsilon \approx 3$ for tetracene). This upper limit is intrinsic and it is not sensitive to any of the specific sample details that determine the shape of the I-V curves. For any applied voltage, contact effects, defects or traps can only reduce the current below the value given by equation (1).

We use these considerations to obtain experimentally a lower limit μ_{min} for the mobility of charge carrier, by measuring the current I induced by a voltage V and by "inverting" equation (1): We obtain:

$$\mu_{\text{min}} = \frac{8IL^3}{9A\epsilon\mu V^2},$$

(2)

If μ_{min} is very low - e.g., at room temperature, much lower than the intrinsic value $1 \text{ cm}^2/\text{Vs}$ typical of organic semiconductors - this approach does not provide any useful information. However, if the value of μ_{min} is close to $1 \text{ cm}^2/\text{Vs}$, this analysis indicates that the quality of the crystal is high (since the intrinsic mobility $\mu > \mu_{\text{min}}$).

B. Measurements of I-V characteristics

All the measurements of I-V characteristics of tetracene crystals discussed in this paper have been performed in vacuum ($P < 10^{-5}$ mbar) and in the dark, in a two-terminal configuration. We have used a Keithley 237 source-measure unit that permits to apply up to 1100 V across our samples and to measure currents as small as 10 fA. Measurements at lower temperature were performed in the vacuum chamber of a flow cryostat. Approximately 100 samples have been measured at room temperature. Temperature dependent measurements have been performed on most samples in which a high value for μ_{min} (0.1 cm2/Vs or better) has been found and on few of the others.

The precise shape of the I-V characteristics measured

![Graph showing the histogram of values for μ_{min} calculated from DC I-V measurements performed on approximately 100 tetracene single-crystals.](image)

FIG. 3: Histogram of values for μ_{min} calculated from DC I-V measurements performed on approximately 100 tetracene single-crystals.
The histogram shown in fig. 3 provides an overview of the values of \(\mu_{\text{min}} \) obtained from all measured samples. The spread in the calculated values of \(\mu_{\text{min}} \) is large, as a consequence of the large deviations observed in the measured \(I-V \) characteristics. In what follows we concentrate on those samples for which the lower limit to the mobility on different samples exhibit large deviations, whose possible origin is discussed in the next section. Here, we focus on some important common features observed in many of the samples investigated (\(\simeq 100 \)). In particular, we often observe that in the lower voltage range (\(V < 10 - 100 \) V, depending on the sample) the current increases with voltage is approximately quadratic \[13\]. At higher voltage, the current increases by many decades (typically six to eight, depending on the sample) for a one-decade increase in voltage (fig. 2). In most cases samples fail as the voltage is increased in this part of the \(I-V \) curve, either because too much power is dissipated through the crystals (samples with high \(\mu_{\text{min}} \)) or because the electrical contacts detach from the crystal (samples with low \(\mu_{\text{min}} \)). In a few cases, however, we have observed that the rapid current increase terminates by crossing over into an approximately quadratic dependence on voltage (fig. 2 inset).

The value of the current measured at the maximum applied voltage is used to calculate \(\mu_{\text{min}} \) from equation \[2\]. The calculation requires the knowledge of the crystal thickness, which, in this geometry, corresponds to the electrode separation \(L \). The measurement of \(L \) is done by inspecting the crystals under an optical microscope. The uncertainty of \(L \) (typically 10 to 20%) is rather large and due to the difficulty of the measurement and to the opposite crystals surfaces not being parallel to each other. In calculating \(\mu_{\text{min}} \) we have used lower estimates of \(L \), in order to be sure not to over-estimate the crystal mobility.

The histogram shown in fig. 3 provides an overview of the values of \(\mu_{\text{min}} \) obtained from all measured samples. The spread in the calculated values of \(\mu_{\text{min}} \) is large, as a consequence of the large deviations observed in the measured \(I-V \) characteristics. In what follows we concentrate on those samples for which the lower limit to the mobility is \(\mu_{\text{min}} > 0.1 \text{cm}^2/\text{Vs} \) \[19\].

For most high-quality samples that did not fail during the room-temperature measurements we have performed \(I-V \) measurements at different temperatures. We reproducibly find that \(\mu_{\text{min}} \) increases upon lowering temperature in all the samples in which \(\mu_{\text{min}} > 0.1 \text{cm}^2/\text{Vs} \) at room temperature (fig. 3). The same behavior has also been observed in a couple of samples in which \(\mu_{\text{min}} \simeq 0.01 \text{cm}^2/\text{Vs} \), although normally samples for which \(\mu_{\text{min}} < 0.1 \text{cm}^2/\text{Vs} \) at room temperature exhibit a decrease in current as the temperature is lowered. We conclude that samples in which the room-temperature mobility is sufficiently close to the value of 1 \text{cm}^2/\text{Vs} exhibit the behavior expected for high-quality organic semiconductors, i.e., an increasing mobility with lowering temperature. This is the first time that this behavior is reported in simple two-terminal DC \(I-V \) characteristics.

In all the high-mobility samples measured we observe that below \(T \simeq 180 \text{ K} \), \(\mu_{\text{min}} \) starts to decrease when the temperature is decrease further. In most samples, the change in the temperature dependence of \(\mu_{\text{min}} \) is very sharp (fig. 1). This suggests that the origin of this change is a structural phase transition, which is known to occur in tetracene in this temperature range.

Past studies of this transition \[12\] have shown that the precise transition temperature depends on details, such as the stress induced by the adhesion between a crystal and the substrate on which the crystal is mounted \[20\]. These studies have also shown that the phase transition does not occur uniformly, with two different crystalline structures coexisting in different parts of a same crystal in a large interval of temperatures below the transition. The coexistence of different crystal phases is detrimental for transport, since it introduces grain boundary junctions and regions with different bandwidth that can trap large amounts of charge carriers. This explains the observed temperature dependence of the mobility. The observation of the effect of this structural phase transition on the transport properties of tetracene provides one additional indication that the crystal quality is high and that we are probing intrinsic effects in the material.

C. Deep traps in the bulk and at the contacts

The interpretation of experimental data in terms of \(\mu_{\text{min}} \) is of general validity and it does not require any assumption regarding the sample characteristics. Additional information can be extracted from the measurements if one considers the behavior of the measured \(I-V \) curves in more detail. Here we consider the effect of deep traps present in the bulk of the tetracene crystals and at their surface.

In general, deep traps suppress current flow by localizing charge carriers. In the space-charge limited transport regime, it can be easily shown \[12\] that when the applied
voltage \(V \) is approximately equal to

\[V_{\text{TFL}} = \frac{N_d eL^2}{\epsilon \epsilon_0} \]

(3)

the charge injected by the contacts is sufficient to fill all the traps and transport occurs in the so-called trap-filled limit. At this point (i.e., with increasing \(V \) from below to above \(V_{\text{TFL}} \)) the measured current exhibits a large sudden increase given by:

\[\frac{N_e}{N_d} \exp \left(\frac{E_d^*}{k_B T} \right) \]

(4)

In this expression, \(N_e \) is the number of states in the valence band which we take to be of the order of one state per molecule [12].

Essentially all samples exhibit a large, steep increase in current around a given (sample dependent) voltage (fig. 2), which we interpret as due to the transition to the trap filled limit. Using equation 8 we obtain \(N_d^* \approx 5 \cdot 10^{13} \text{ cm}^{-3} \). We find that different samples all give comparable values. Introducing this value for \(N_d^* \) in equation 11 we then find, taking the magnitude of current increase measured on samples with the highest value of \(\mu_{\text{min}} \), \(E_d^* \approx 700 \text{ meV} \).

The estimate of \(N_d^* \) is based on the assumption, not usually emphasized in literature, that the deep traps are uniformly distributed throughout the entire crystal bulk. In actual samples, due to the contact preparation process, it is likely that more traps are present at the crystal surface under the electrodes. A small amount of traps located close to the surface can have a large effect in suppressing current flow. This is because charges trapped at the surface can substantially affect the electrostatic profile in the bulk of the crystal, which determines the current flow in the space charge limited current regime.

To make this point more explicit, consider a 20 \(\mu \text{m} \) thick crystal in which no traps are present apart from in the first monolayer of molecules close to the surface. Suppose that, in this monolayer, one deep trap per every 1000 molecules is present. This will result in a very large current suppression, as populating these traps results in an electric field through the crystal which corresponds, in the case considered, to approximately 1000 Volts applied between the electrodes. For an \(I-V \) measurement this would imply that, as the voltage across the electrodes is increased, the surface traps are initially filled and no current flows until more than 1000 Volts are applied. For comparison, for a 20 \(\mu \text{m} \) thick crystal with no surface traps and a bulk density of traps of \(5 \cdot 10^{13} \text{ cm}^{-3} \) transport already occurs in the trap free limit when 200 V are applied across it. For this reason, our estimate of \(N_d^* \) is a higher limit to the bulk density of deep traps.

The strong sensitivity of the \(I-V \) curves to traps located at the metal/organic interface makes these traps a logical explanation for the large sample to sample variation observed in the experiments. Evidence for the relevance of contact effects is provided by the rather good sample-to-sample reproducibility observed in TOF measurements (see section IV.B) as compared to DC transport measurements.

IV. TOF EXPERIMENTS ON TETRACENE SINGLE CRYSTALS

A. Technical aspects of TOF experiments

The time of flight (TOF) spectroscopy is based on two fundamental steps. First, by photo-excitation electron hole pairs are generated near the crystal surface. Second, in the applied electric field the charge carriers move to the electrodes and the corresponding displacement current is measured [11]. Therefore, studies on the transport behavior are free of contact effects and the technique is selective on the respective type of charge carrier by choice of the polarity of the external voltage.

For the TOF measurements the tetracene crystals are covered on both sides by a thin layer of Ag thermally evaporated and, afterwards, mounted on a Cu support acting as back-electrode as well as thermal contact for the temperature dependent studies. The 15—20 nm thick Ag contacts showing almost bulk conductivity but are still sufficiently transparent for photo-induced generation of charge carriers at the front electrode. As light source for the charge carrier generation, a nitrogen laser in single shot mode (\(\lambda = 337 \text{ nm}, \text{ pulse width} 0.76 \text{ ns} \)) is used. The suitability of the used wavelength for photo-excitation has been proven by UV-VIS absorption measurements on the crystals. In addition, from the TOF pulse shape and the absorption spectra we can conclude that charge carrier generation takes place in the topmost fraction of the crystals mainly, i.e. the depth of charge carrier generation (several \(\mu \text{m} \)) can be neglected with respect to the thickness of the crystals (~ 100 \(\mu \text{m} \)).

The displacement current is measured as a voltage drop across a resistor connected in parallel to the crystal. The resistor is chosen in such a way that the time constant of the RC-part is much smaller than the transit time \(\tau \). TOF studies in the range from room temperature up to 450 K were carried out in a heating stage at ambient pressure, the upper temperature limit caused by sublimation of tetracene at around 450 K [14].

B. Measurement of TOF transients

Temperature dependent TOF measurements have been performed on three different single crystals giving essentially identical results. The room-temperature mobility values obtained from the different crystals were very close to each other (ranging from 0.5 \(\text{ cm}^2/\text{Vs} \) to 0.8 \(\text{ cm}^2/\text{Vs} \)) and their temperature dependence was qualitatively identical. This is in net contrast with the large sample-to-sample variations observed in DC transport measurements. From the outcome of the TOF experiments we
conclude that the quality of the grown crystals is rather reproducible and that the sample-to-sample variations observed in the DC I-V originates from irreproducibility in the contact preparation [21]. This is consistent with the fact that TOF experiments are not very sensitive to the contact quality whereas DC I-V measurements are.

Representative TOF pulses for positive charge carriers measured at various temperatures in one of the three tetracene single crystals are shown in fig. 5, from which the transit time τ can be easily extracted. In contrast to these well-defined TOF pulses measured for hole transport, only dispersive transport is observed for electrons throughout the measured temperature range. This indicates strong trapping for electrons, which is why in section III we have used single carrier space charge limited current theory to interpret the behavior of the measured I-V curves.

Assuming a constant electric field E across the crystal, the mobility of the holes is related to the transit time and to the crystal thickness L by:

$$\mu = \frac{L}{E \tau}$$ \hspace{1cm} (5)

For the values of electric field used in our studies τ^{-1} depends linearly on E (see fig. 3) so that μ does not depend on electric field. All the mobility values discussed in this paper have been estimated from this ohmic regime only.

In the absence of traps equation 5 represents the intrinsic mobility μ of the organic material, which typically varies as an inverse power of temperature, i.e. $\mu \propto T^{-n}$ ($n \approx 2 - 3$ depending on the specific organic molecules [11]). If shallow traps [22] are present, however, the measured mobility is just an “effective” mobility μ_{eff} related to the μ by [11]:

$$\mu_{\text{eff}}(T) = \frac{\mu(T)}{1 + N_{t}^{s}/N_{v} \left[\exp \left(\frac{E_{t}^{s}}{k_{B}T} \right) - 1 \right]}$$ \hspace{1cm} (6)

where N_{t}^{s}/N_{v} is the density ratio between shallow traps and organic molecules in the crystal and it is assumed that all the shallow traps have the same energy depth E_{t}^{s} relative to the valence band. A plot of the measured μ_{eff} vs. T is shown in fig. 4. The saturation with lowering temperature is a characteristic signature of shallow traps.

The effect of shallow traps is not only visible in the temperature dependence of the mobility, i.e. of the transit time of TOF pulses, but also in their shape. Specifically, fig. 4 shows that the signal intensity increases with increasing temperature and that the pulse becomes more rectangular. Both effects are due to reduced trapping at elevated temperature, which make the sample behave more closely to the ideal trap-free condition.

We have attempted to use equation 6 to fit the measured temperature dependence of μ_{eff} and to determine the values of N_{t}^{s} and E_{t}^{s}. However, the limited temperature range which is experimentally accessible, the unknown intrinsic room-temperature mobility of tetracene and of the value n determining its temperature dependence make it impossible to determine trap density and concentration precisely. Even when we set $\mu(300 \text{ K}) = 1 \text{ cm}^{2}/\text{Vs}$ and $n = 2$, we find that different combinations of N_{t}^{s} and E_{t}^{s} produce a satisfactory fit of our data. From this analysis we can however roughly estimate that $N_{t}^{s} \approx 10^{18} \text{ cm}^{-3}$ and $E_{t}^{s} \approx 100 \text{ meV}$. A more precise determination of these parameters would require to extend the temperature dependent measurements over

![Fig. 6: Transit time of hole TOF pulses versus applied voltage estimated at 375 K showing a linear (Ohmic) dependence. The continuous and dotted lines represents, respectively, the best linear fit and the best linear fit passing through the origin. The corresponding difference in the μ values gives a measure of the uncertainty in the extracted mobility.](image)

![Fig. 5: Hole TOF pulses measured at different temperatures in the range from room temperature and 150 °C. The applied voltage is +500 V. The arrows point to the transit times.](image)
V. SUMMARY

This is the first time that systematic DC transport measurements and TOF experiments have been performed on identically grown single crystals of organic molecules and it is interesting to find overall agreement in the comparison of the results obtained with the two techniques. Specifically, from both measurement techniques we conclude that the room temperature hole mobility is close to 1 cm²/Vs and that its temperature dependence is non-monotonic. For TOF measurements on tetracene, this behavior had been observed previously. On the contrary, an increase in mobility with lowering temperature observed by measuring the DC I-V curves in the space charge limited transport regime had not been reported previously neither for tetracene nor, to the best of our knowledge, for any organic un-doped semiconductor. This observation, together with the observed effect of the structural phase transition on the hole mobility, indicate that signatures of the intrinsic electronic properties are visible in the I-V measurements, which demonstrates the high quality of the crystals.

In spite of the crystal quality, the effect of imperfections is still clearly visible. In particular, I-V and TOF measurements provide complementary information about the presence of deep and shallow traps. I-V measurements allow us to infer an upper limit for the bulk density of deep traps and their activation energy (see section III C). For shallow traps the observation of a maximum in mobility in TOF measurements around room temperature indicates that the typical activation energy is ~ 100 meV, but a more precise value as well as a reliable estimate of the density cannot be presently obtained. We believe that these shallow traps originate from local deformations of the crystals, such as those due to mechanical stress or to electrically-inactive chemical impurities as well as from chemical impurities interacting only weakly with the surrounding host molecules. Within a conventional band picture it is easy to see that these deformations would have an important effect, as they can change locally the band gap of tetracene and form spatially localized “pockets” of holes. This mechanism could account for a fairly large density of shallow traps and for a trapping energy of ~ 100 meV, which corresponds to only a few percent change in the 3 eV tetracene gap.

Not only the similarities but also the differences between I-V and TOF measurements provide useful information. Particularly noticeable is the reproducibility of TOF measurements in contrast to the large sample to sample deviations observed in the I-V characteristics. Three out of three crystals studied by means of TOF gave \(\mu \approx 0.5 - 0.8 \) cm²/Vs, whereas out of approximately 100 sample measured only 5 to 10% gave a mobility larger than 0.1 cm²/Vs. The reproducibility observed in TOF measurements indicate that different tetracene crystals grown in our set-up exhibit only minor differences in their properties and that these differences cannot account for the large spread of I-V characteristics observed experimentally.

We conclude that the large sample to sample variations observed in the measurement of I-V characteristics mainly originate from the quality of the electrical contacts. As mentioned above, this is critically important for I-V measurements, but not for TOF measurements. Since the large values of \(\mu_{\text{min}} \) obtained in the best samples indicate that it is possible to fabricate "high-quality" contacts using silver epoxy, we infer that the effects determining the contact quality in our samples are mainly of extrinsic nature. Our estimates suggest that deep-traps present under the contacts at the crystal surface (introduced during the contact fabrication) play an important role. This is because even a very small surface density of these traps can substantially perturb the electrostatic profile in the crystal bulk that determines the current flow in the space charge limited transport regime.

VI. ACKNOWLEDGMENTS

We gratefully acknowledge N. Karl for his invaluable help and support. This work was financially supported by FOM and by DFG-Schwerpunkt (project No. KA 427/8). The work of AFM is part of the NWO Vernieuwingsimpuls 2000 program.
[1] G.H. Gelinck, T.C.T. Geuns, and D.M. de Leeuw, Appl. Phys. Lett. 77, 1487 (2000)
[2] C.D. Dimitrakopoulos, and P.R.L. Malenfant, Adv. Mater. 14, 99 (2002)
[3] I.H. Campbell, and D.L. Smith, Solid State Phys. 55,1 (2001)
[4] W. Warta, and N. Karl, Phys. Rev. B 32, 1172 (1985)
[5] N. Karl, K.-H. Kraft, J. Marktanner, M. Münch, F. Schatz, R. Stehle, and H.-M. Uhde, J. Vac. Sci. Technol. A 17, 2318 (1999)
[6] R.A. Laudise, Ch. Kloc, P.G. Simpkins, and T. Siegrist, J. Crystal Growth 187, 449 (1998)
[7] R. Dabestani, M. Nelson, and M.E. Sigman 64, 80 (1996)
[8] J. Monteath Robertson, V.C. Sinclair, and J. Trotter, Acta Cryst. 14, 697 (1961)
[9] D. Holmes, S. Kumaraswamy, A.J. Matzger, and K.P.C. Vollhardt, Chem. Eur. J. 5, 3399 (1999)
[10] J. Vrijmoeth, R.W. Stok, R. Veldman, W.A. Schoonveld, and T.M. Klapwijk, J. Appl. Phys. 83, 3816 (1998)
[11] R. Farchioni, and G. Grosso, Organic Electronic Materials (Springer-Verlag, Berlin, 2001)
[12] M.A. Lampert, and P. Mark, Current Injection in Solids(Academic Press Inc., New York, 1970)
[13] U. Sondermann, A. Kutoglu, H. Bäßler, J. Phys. Chem. 89, 1735 (1985)
[14] J.D. Cox, G. Pilcher: Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970
[15] J. Berrehar, P. Dellanoy, and M. Schott, Phys. Stat. Sol. (b) 77, K119 (1976)
[16] E.A. Silinsh, and V. Čápek, Organic Molecular Crystals (AIP Press, Woodbury, 1994)

[17] We define shallow traps as traps with an energy within a few times $k_B T$ from the edge of the valence band. Deep traps are further separated from the valence band.

[18] In samples with low μ_{min} this regime may not be visible, as the current is below the sensitivity of the measuring apparatus.

[19] I-V measurements performed on crystals that were regrown three or more times do not show a statistically significant difference from crystals that were regrown twice.

[20] The presence of stress is also responsible for entire crystals breaking into small pieces upon cooling to low temperature. The temperature at which crystals break can be very different for different crystals and it seems to depend on the cooling speed.

[21] Additional evidence for contact effects is given by the asymmetry in the I-V curves and polarity dependent hysteresis often observed in samples with low μ_{min}.

[22] The impact of a low density of deep traps ($E_d \gg k_B T$) is of minor importance for TOF experiments, contrary to the case of I-V measurements, since for these traps the relaxation time is much longer than the transit time and hole captured by deep traps do not give any signal.

[23] Although the general trend in the T dependence of the mobility is similar in both the I-V and TOF experiments, the temperature at which the mobility reaches its optimum value is different. We suggest that the cause of this difference is that, in the case of I-V measurements, a much larger amount of charge is being injected, so that more (shallow) traps are filled.