Colchicine use might be associated with lower mortality in COVID-19 patients: A meta-analysis

Mohamed Nabil Elshafei, Pharm D1, Ahmed El-Bardissy, Pharm D1, Ahmed Khalil MSc1, Mohammed Danjuma, MBBS, MSc, PhD2,3, Mahmood Mubasher, MD4, Ibrahim Y. Abubeker, MD5, Mouhand F.H. Mohamed, MD, M.Sc3

1Clinical Pharmacy Department, Hamad Medical Corporation, Doha, Qatar
2College of Medicine, Qatar University, Doha, Qatar
3Department of Medicine, Hamad Medical Corporation, Doha, Qatar
4Department of Internal Medicine, Unity Hospital of Rochester, Rochester Regional Health, Rochester, New York, United States.
5Alpert Medical School, Brown University, Providence, RI, United States

Running title: Colchicine and COVID-19: a meta-analysis

Correspondence

Mouhand F.H. Mohamed, MD, M.Sc, Department of Medicine, Hamad Medical Corporation, Doha, Qatar.
Email: dr.m.oraiby@hotmail.com. P.O Box: 3050. Tel:+97433649384

Conflict of Interest

None declared by all authors.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/ECI.13645

This article is protected by copyright. All rights reserved
Dear Editor,

We read with great interest the recently published meta-analysis by Aimo et al. in the European Journal of Clinical Investigation. The analysis encompassing over 5000 patients’ data revealed a significant reduction in adverse cardiovascular events in patients with chronic coronary syndrome receiving colchicine vs. control. These results are promising and suggest a potential role for colchicine in treating thrombogenic conditions. Colchicine is an ancient anti-inflammatory agent with an established safety profile. It inhibits various inflammatory pathways, including neutrophils adhesion, inflammasome activation, microtubule formation, neutrophil extracellular traps (NETs) essential in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis. Coronavirus disease 2019 (COVID-19) is thought to be associated with an exaggerated inflammatory response and thrombogenicity. Thus, studies tested repurposing this medication in the treatment of COVID-19 and yielded promising results.
We performed a rapid systematic review and meta-analysis to examine the mortality effect in patients with COVID-19 receiving colchicine vs. control. We followed our previously published protocol; however, we decided to accept observational studies for this rapid review due to data scarcity. We comprehensively searched PubMed, EMBASE, Google Scholar since their inception till 25/03/2021 for observational or controlled studies that reported mortality as an outcome. On screening, we limited the inclusion to articles written in the English language. We generated the mortality odds ratio with a 95% confidence interval utilizing the random effect models. We performed a subgroup analysis to examine the effect in hospitalized patients, also another analysis limited to peer-reviewed publications. We generated a funnel plot to ascertain publication bias, and we performed a sensitivity analysis to check the results' consistency. MetaXL software was used for statistical analysis.

Nine studies comprising 5522 patients met our inclusion criteria comparing colchicine with control in the treatment of COVID-19. Hence, they were included in the quantitative analysis (Table 1). Three of the studies were randomized controlled trials, one was quasi-experimental, and the remaining were observational. The only included non-peer-reviewed publication by Tardif et al. accounted for the majority of included cases (4488 patients) and consisted of non-hospitalized patients. Patients in the intervention group received colchicine in different dosage regimens and were followed up to 30 days. All studies revealed numerically reduced mortality associated with colchicine use, albeit statistically insignificant in a few instances. The quality of most included studies was moderate. Our meta-analysis revealed significantly lower mortality in the colchicine group (OR 0.35, 95% CI 0.25–0.48, I² 0%) (Figure 1). A subgroup analysis limited to 902 hospitalized patients of which 433 received colchicine (OR 0.35, 95% CI 0.25–0.50, I² 0%) and to peer-reviewed publications including total of 1034 patients (OR 0.33, 95% CI 0.24–0.47, I² 0%) revealed similarly lower mortality in the colchicine group. The exclusion of constituent studies did not affect the results' consistency. There was no evidence of heterogeneity as depicted an I² of 0%. Moreover, sensitivity analysis, including two studies that we have excluded (studied colchicine in a poorly controlled manner), revealed a consistent effect on mortality (OR 0.43, 95% CI 0.31–0.58, I² 13%). The funnel plot revealed asymmetry suggesting a possibility of a publication bias.

Our analysis revealed lower mortality associated with colchicine use. Significant immunosuppressed status and predisposition to infections seen with other immunomodulators are not commonly seen with colchicine. This may have contributed to the mortality benefit seen with colchicine and not with many other immunomodulators. Moreover, endothelial dysfunction and vascular inflammation play an integral role in SARS-CoV-2 pathogenesis. This has led to a significant risk of thrombosis in this patient cohort.
autopsy study by Wichmann et al., deep venous thromboses were found in 58%, and pulmonary embolism was the direct cause of mortality in a third of COVID-19 patients.16 Deftereos and Sandhu et al. found a lower rise of d-dimers in COVID-19 patients receiving colchicine compared to the standard of care.5,10 These observations may suggest a potential role of colchicine in mitigating COVID-19 thrombogenicity, thereby prevent fatal thrombotic events in COVID-19 patients. Nonetheless, d dimers reduction might be due to the anti-inflammatory properties of colchicine and may not necessarily correlate with thrombotic events. To further explore this effect, prospective related studies should account for venous and arterial thrombotic events as secondary outcomes and correct for these when ascertaining mortality outcomes.

Our review has limitations, including the observational nature of the majority of the included studies, varying severity of included patients, varying follow-up durations, different dosages and durations of colchicine used in the individual studies, mortality was a secondary outcome in most studies, and the inability to rule out a publication bias. Moreover, the large reliance on the preprint of Tardiff et al.’s study is another limitation. All these may have affected the analysis conclusion. Nonetheless, the review encompassed a large number of patients, and the effect was consistent across constituent studies.

In summary, results from this meta-analysis suggest lower mortality in COVID-19 patients treated with colchicine. Colchicine is a low-cost, widely available drug with a known safety profile. Thus, it may play a fundamental role in preventing COVID-19 associated dysregulated inflammatory response and, perhaps, its related thrombogenicity without causing significant immunosuppression. These findings are to be further supported by the results of ongoing RCTs.

References

1. Aimo A, Pascual Figal DA, Bayes-Genis A, Emdin M, Georgiopoulos G. Effect of low-dose colchicine in acute and chronic coronary syndromes: A systematic review and meta-analysis. *Eur J Clin Invest*. Published online December 7, 2020:e13464. doi:10.1111/eci.13464

2. Brunetti L, Diawara O, Tsai A, et al. Colchicine to Weather the Cytokine Storm in Hospitalized Patients with COVID-19. *J Clin Med*. 2020;9(9):2961. doi:10.3390/jcm9092961

3. Lopes MI, Bonjorno LP, Giannini MC, et al. Beneficial effects of colchicine for moderate to severe COVID-19: a randomised, double-blinded, placebo-controlled clinical trial. *RMD Open*. 2021;7(1):e001455. doi:10.1136/rmdopen-2020-001455

4. Mohamed MFH, Al-Shokri SD, Shunnar KM, et al. Prevalence of Venous Thromboembolism in Critically Ill COVID-19 Patients: Systematic Review and Meta-Analysis. *Front Cardiovasc Med*. 2021;7:598846. doi:10.3389/fcvm.2020.598846

5. Deftereos SG, Giannopoulos G, Vrachatis DA, et al. Effect of Colchicine vs Standard Care on Cardiac and Inflammatory
Biomarkers and Clinical Outcomes in Patients Hospitalized With Coronavirus Disease 2019: The GRECCO-19 Randomized Clinical Trial. *JAMA Netw Open*. 2020;3(6):e2013136. doi:10.1001/jamanetworkopen.2020.13136

6. Scarsi M, Piantoni S, Colombo E, et al. Association between treatment with colchicine and improved survival in a single-centre cohort of adult hospitalised patients with COVID-19 pneumonia and acute respiratory distress syndrome. *Ann Rheum Dis*. 2020;79(10):1286-1289. doi:10.1136/annrheumdis-2020-217712

7. Elshafei MN, Khalil A, El-Bardissy A, Danjuma M, Ahmed MB, Mohamed MFH. The efficacy of colchicine in the management of coronavirus disease 2019: A protocol for systematic review and meta-analysis. *Medicine (Baltimore)*. 2020;99(36):e21911. doi:10.1097/MD.0000000000021911

8. Tardif J-C, Bouabdallaoui N, L’Allier PL, et al. Efficacy of Colchicine in Non-Hospitalized Patients with COVID-19. *medRxiv*. Published online January 1, 2021:2021.01.26.21250494. doi:10.1101/2021.01.26.21250494

9. Mareev VY, Orlova YA, Plisyk AG, et al. Proactive anti-inflammatory therapy with colchicine in the treatment of advanced stages of new coronavirus infection. The first results of the COLORIT study. *Kardiologiia*. 2021;61(2):15-27. doi:10.18087/cardio.2021.2.n1560

10. Sandhu T, Tieng A, Chilimuri S, Franchin G. A case control study to evaluate the impact of colchicine on patients admitted to the hospital with moderate to severe covid-19 infection. *Can J Infect Dis Med Microbiol*. 2020;2020. doi:10.1155/2020/8865954

11. Manenti L, Maggiore U, Fiaccadori E, et al. Reduced mortality in COVID-19 patients treated with colchicine: Results from a retrospective, observational study. Cannatà A, ed. *PLoS One*. 2021;16(3):e0248276. doi:10.1371/journal.pone.0248276

12. García-Posada M, Aruachan-Vesga S, Mestra D, et al. Clinical outcomes of patients hospitalized for COVID-19 and evidence-based on the pharmacological management reduce mortality in a region of the Colombian Caribbean. *J Infect Public Health*. Published online March 6, 2021. doi:10.1016/j.jiph.2021.02.013

13. Alejandro Pinzón M, Medellín Doris Cardona Arango C, Felipe Betancur J, Arias Arias C, Javier Muñoz B, Felipe Llano Clínica Medellín Pablo Montoya J. Clinical Outcome of Patients with COVID-19 Pneumonia Treated with Corticosteroids and Colchicine in Colombia. Published online October 23, 2020. doi:10.21203/rs.3.rs-94922/v1

14. Purandare B, Rajhans P, Jog S, et al. A Retrospective Observational Study of Hypoxic COVID-19 Patients Treated with Immunomodulatory Drugs in a Tertiary Care Hospital. *Indian J Crit Care Med*. 2020;24(11):1020-1027. doi:10.5005/jp-journals-10071-23599

15. Kimmig LM, Wu D, Gold M, et al. IL6 inhibition in critically ill COVID-19 patients is associated with increased secondary infections. *medRxiv Prepr Serv Heal Sci*. Published online September 12, 2020;2020.05.15.20103531. doi:10.1101/2020.05.15.20103531

16. Wichmann D, Sperhake J-P, Lütgehetmann M, et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19. *Ann Intern Med*. Published online May 6, 2020. doi:10.7326/m20-2003

17. Lopes MIF, Bonjorno LP, Giannini MC, et al. Beneficial effects of colchicine for moderate to severe COVID-19: an interim

This article is protected by copyright. All rights reserved
analysis of a randomized, double-blinded, placebo controlled clinical trial. medRxiv. Published online January 1, 2020:2020.08.06.20169573. doi:10.1101/2020.08.06.20169573
Study author (country)	Design	Median age (male%)	Patient setting	Intervention	Follow-up duration	Primary outcomes	Mechanical ventilation n/N (%)	Mortality n/N (%)
Deftereos et al. 2020 (Greece)	RCT	63 (56.4%)/65 (60%)	Inpatient	Colchicine 1.5 mg × 1 dose > 0.5 mg after 60 min > maintenance of 0.5 mg BID up to 3 weeks	Hospital discharge or up to 21 days	1-Time to deterioration. 2- Maximum high-sensitivity cardiac troponin level 3-Time for C-reactive protein to reach more than 3 times the upper reference limit.	Colchicine 1/55 (1.8%) Control 5/50 (10%)	Colchicine 1/55 (1.8%) Control 4/50 (8%)
Scarsi et al. 2020 (Italy)	Prospective cohort study	69.3 (63%)/70.5 (64%)	Inpatient	Colchicine 1mg OD, reduced to 0.5 mg/day if severe diarrhea (duration NS)	Recruitment March 5-April 5, 2020 and patients followed till April 16 The study reported 21 days survival.	Survival rate	NS	Colchicine 20/122 (16%) Control 52/140 (37.1%)
Sandhu et al. 2020 10	Case Control Study	70 (64.2%)/65 (55.6%)	Inpatient	Colchicine 0.6 mg BID × 3 days > 0.6 mg OD up to	Follow-up period NS	1-Hospitalization days 2-Mortality	Colchicine 28/53 (52.8%)	Colchicine 26/53 (49%)
Study	Design	Country	Inpatient/Outpatient	Colchicine Treatment	Follow-up Duration	Primary Outcomes		
------------------------------	-----------------	-------------	----------------------	----------------------	--------------------	--		
Brunetti et al 2020	Prospective cohort study	(United States)	Inpatient (severe COVID-19)	Colchicine 1.2 mg × 1 dose > Maintenance 0.6 mg BID (duration NS)	Up to 28 days	In-hospital mortality within 28 days.		
Lopes et al 2020	RCT	(Brazil)	Inpatient (moderate to severe COVID-19)	Colchicine 0.5 mg TID × 5 days > 0.5 BID × 5 days.	-Recruitment April 11- July 6, 2020 (follow-up period NS)	1-Time to need for supplemental oxygen; 2-Time to hospitalization. 3-Need for admission and length of stay in ICU 4-Death rate		
Tardif et al 2020	RCT	(Canada)	Outpatient (mild to moderate COVID-19)	0.5 mg BID × 3 days > OD × 27 days	Up to 30 days	Composite of death or hospitalization due to COVID-19 infection		
Manenti et al. 2021	Retrospective cohort	(Italy)	Inpatient and outpatient	1 mg OD till clinical improvement (up to 21 days)	Up to 21 days	1-Differences in mortality 2- Clinical improvement 3- Inflammatory markers		

Control 106/144 (73.6%)	Control 105/144 (72.9%)
3-Mechanical ventilation	4-Discharge rate
NS	3/33 (9.1%)
NS	0/36 (0%)
NS	0.5/2235 (0.5%)
NS	5/2235 (0.2%)
NS	5/66 (7.5%)

This article is protected by copyright. All rights reserved
Study	Design	Setting	Inpatient	Dose and duration	Follow-up period	Mortality comparison	Mortality
García-Posada et al\(^{12}\) (Columbia)	Retrospective cohort	Overall, NS (moderate to severe COVID-19), NS for each group separately	Dose and duration NS	Follow-up period NS	Differences in mortality between treatment groups	NS	
COLORIT 2021\(^{2}\) (Russia)	Quasi-randomized trial	61.9 (66.7%) / 59.9 (72.7%)	1 mg OD ×1-3 days > 0.5 mg OD (up to 14 days)	Up to discharge or 12 days	Changes in the SHOCS-COVID score	NS	

Figure 1: Forest plot summarizing the pooled mortality odds in COVID-19 patients receiving colchicine compared to controls.

NS=Non specified, OD= once daily, BID= twice daily, > = followed by, COVID-19= coronavirus disease 2019, SHOCS-COVID= Symptomatic Hospital and Outpatient Clinical Scale for COVID-19, RCT= randomized clinical trial
The diagram shows a forest plot with odds ratios (OR) and 95% confidence intervals (CI) for different studies. The studies included are:
- Deftereos 2020
- Scarsi 2020
- Sandhu 2020
- Brunetti 2020
- Lopes 2020
- Colorit 2021
- García-Posada 2021
- Manenti 2021
- Tardif 2021

The overall effect is calculated with Q=3.90, p=0.87, I²=0%.

The ORs and their weights are as follows:

- Deftereos 2020: OR = 0.21 (0.02, 1.97), Weight = 2.1
- Scarsi 2020: OR = 0.33 (0.18, 0.60), Weight = 29.4
- Sandhu 2020: OR = 0.36 (0.19, 0.69), Weight = 24.0
- Brunetti 2020: OR = 0.20 (0.05, 0.80), Weight = 5.3
- Lopes 2020: OR = 0.19 (0.01, 4.08), Weight = 1.1
- Colorit 2021: OR = 0.19 (0.01, 4.22), Weight = 1.1
- García-Posada 2021: OR = 0.51 (0.25, 1.05), Weight = 19.5
- Manenti 2021: OR = 0.20 (0.07, 0.58), Weight = 9.2
- Tardif 2021: OR = 0.56 (0.19, 1.67), Weight = 8.5

Overall OR: OR = 0.35 (0.25, 0.48), Weight = 100.0