Genome-wide association pathway analysis to identify candidate single nucleotide polymorphisms and molecular pathways associated with TP53 expression status in HBV-related hepatocellular carcinoma

Xiwen Liao1,2,*
Long Yu1,3,*
Xiaoguang Liu1,2
Chuangye Han1
Tingdong Yu1
Wei Qin1
Chengkun Yang1
Guangzhi Zhu1
Hao Su1
Tao Peng1

1Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China; 2Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People’s Republic of China

*These authors contributed equally to this work

Background: The aim of this investigation was to identify candidate single nucleotide polymorphisms (SNPs) and molecular pathways associated with tumor protein p53 (TP53) expression status in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), clarify their potential mechanisms, and generate SNP-to-gene-to-pathway hypothesis.

Materials and methods: Identify candidate Causal SNPs and Pathways (ICSNPathway) was used to perform pathway analysis based on the results of our previous genome-wide association study of TP53 expression status in 387 HBV-related HCC patients.

Results: Through the ICSNPathway analysis, we identified 18 candidate SNPs and 10 candidate pathways that are associated with TP53 expression status in HBV-related HCC. The strongest mechanism involved the modulation of major histocompatibility complex, class II, DP beta 1 (human leukocyte antigen [HLA]-DPB1-rs1042153), major histocompatibility complex, class II, DQ beta 1 (HLA-DQB1-rs1049056, HLA-DQB1-rs1049059, and HLA-DQB1-rs1049060), and major histocompatibility complex, class II, DR beta 1 (HLA-DRB1-rs35445101). SNPs consequently affected regulatory roles in all the candidate pathways except hematopoietic cell lineage pathways. Association analysis using the GSE14520 data set, Gene Multiple Association Network Integration Algorithm, and Search Tool for the Retrieval of Interacting Genes/Proteins suggests that all genes of the candidate SNPs were associated with TP53. Survival analysis showed that the collagen type VI alpha 3 chain (COL6A3) rs111231885 and COL6A3-rs113155945 and COL6A3 block 4 CC haplotypes with TP53 negative status may have protective effects in HBV-related HCC patients after hepatectomy.

Conclusion: Our pathway analysis identified 18 candidate SNPs and 10 candidate pathways that were associated with TP53 expression status in HBV-related HCC. Among these candidate SNPs, the genetic variation of COL6.43 may be a potential prognostic biomarker of HBV-related HCC.

Keywords: TP53, hepatocellular carcinoma, hepatitis B virus, genome-wide association study, pathway analysis

Introduction

Liver cancer is the third leading cause of cancer death in China, with an age-standardized 5-year relative survival rate of 10.1%.1,2 The majority of liver cancer cases are hepatocellular carcinoma (HCC).1 A high prevalence of hepatitis B virus (HBV) infection and aflatoxin B1 exposure are the main factors of HCC in the Guangxi
province of China. Previous studies have demonstrated that the tumor protein p53 (TP53) mutation is frequently found in HBV-related HCC in patients of Guangxi province. Therefore, in the Guangxi region, there is a representative population in which the associations between HBV infection and the TP53 gene in HCC can be investigated.

Hepatocarcinogenesis is driven by the interaction of genetic and environmental factors. Genome-wide association studies (GWAS) can be used to identify associations between specific single nucleotide polymorphisms (SNPs) and complex diseases or other traits. The roles of the corresponding genes or proteins in the context of the pathway might be altered by trait-related SNPs. Identify candidate Causal SNPs and Pathways (ICSNPathway) is an analytical framework for the comprehensive interpretation of GWAS data by integrating linkage disequilibrium (LD) analysis, functional SNP annotation, and pathway-based analysis (PBA) and can be used to derive the mechanism hypothesis of SNP→gene→pathway(s) for complex disease studies, including cancer. In addition, ICSNPathway also is a tool based on PBA algorithm, which is a method for secondary excavation of GWAS results based on prior biological knowledge on gene function and biological metabolic pathways. By using the PBA algorithm, more information about the pathway and gene sets with same functions which are associated with the diseases or traits from GWAS results could be obtained.

Our previous study has identified several SNPs associated with TP53 expression status in HBV-related HCC in patients of Guangxi by using the GWAS approach. In the present study, we further investigated candidate SNPs and molecular pathways associated with TP53 expression status in HBV-related HCC by using the ICSNPathway web server based on the result of our previous GWAS.

Materials and methods
Study population and GWAS data
Our study was approved by the Ethics Committee of the First Affiliated Hospital of Guangxi Medical University with an ethics approval number of 2015 (KY-E-032). Written informed consent was obtained from all the participants enrolled in the study. The primary GWAS data set was extracted from our previous study. Clinicopathological characteristics and prognosis of the HBV-related HCC patients, genotyping, quality control, and GWAS analysis methods have been described and published in our earlier article. A total of 403 patients with serum tests that were HBV surface antigen positive and newly diagnosed with HCC by pathological examination in the First Affiliated Hospital of Guangxi Medical University between 2001 and 2013 were included. TP53 staining in HCC tumor tissues was detected by immunohistochemistry. The SNPs were genotyped by an Illumina Human Exome BeadChip 12 v1-1 system (Illumina Inc, San Diego, CA, USA). Quality control standards were set as follows: samples were excluded if they had 1) an overall genotyping rate of <95%; 2) ambiguous gender; 3) genome-wide identity by-descent >0.1875; 4) outliers in principal component analysis (PCA) for ancestry and population stratification. SNPs had to meet the following criteria: 1) a call rate of >95%; 2) a Hardy–Weinberg equilibrium $P>1\times10^{-6}$; 3) a minor allele frequency >0.01. PCA for ancestry and population stratification suggest that no or mild population stratification was found in the current study population, and similar results were observed in our previous study. A total of 387 patients with 28,952 SNPs passed the quality control filters and were included in further investigations.

Identification of candidate SNPs and pathways
The ICSNPathway (http://icsnpathway.psych.ac.cn, accessed February 20, 2017) web server contains a two-stage analysis: 1) preselect candidate SNPs by LD analysis and functional SNP annotation based on the most significant SNPs and 2) annotate the biological mechanisms for the preselected candidate SNPs by using PBA. A complete list of GWAS SNP P-values was input for ICSNPathway analysis. The parameters used in the ICSNPathway were 1) threshold to specify the most significant SNPs: P-value $<1\times10^{-2}$; 2) HapMap population: Han Chinese in Beijing, China; 3) LD cutoff: $r^2>0.8$; 4) distance for searching LD neighborhoods: 200 kb; 5) rule of mapping SNPs to genes: 500 kb upstream and downstream of gene; 6) pathway/gene set database: Kyoto Encyclopedia of Genes and Genomes; 7) number of genes in each pathway/gene set: minimum 5 and maximum 100; and 8) false discovery rate cutoff for PBA: 0.1.

Association analysis
Based on the results of the ICSNPathway analysis, haplotype analysis among the candidate SNPs was calculated using Haploview version 4.2 (Broad Institute of MIT and Harvard, Cambridge, MA, USA). Regional LD plots of the candidate SNPs were generated by SNP Annotation and Proxy Search (SNAP) (http://archive.broadinstitute.org/mpg/snap, accessed February 20, 2017), a tool used for the identification and annotation of proxy SNPs using HapMap. Genotype and haplotype distribution of the candidate SNPs in different
TP53 expression status groups were determined using a binary logistic regression model. Co-expression analysis of the TP53 gene and the genes of candidate SNPs was performed using GSE14520, a Chinese HBV-related HCC mRNA expression chip data set obtained from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo, accessed February 20, 2017). In order to eliminate the batch effect of the expression chip, we only included the Affymetrix HT Human Genome U133A Array data set (Thermo Fisher Scientific, Waltham, MA, USA) of GSE14520 in the co-expression analysis. Gene Multiple Association Network Integration Algorithm (GeneMANIA; http://genemania.org, accessed February 20, 2017) and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING; http://string.embl.de/, accessed February 20, 2017) web servers were used for investigating the gene–gene and protein–protein interactions (PPIs) among genes of the candidate SNPs, respectively.

Survival analysis

We further analyzed the association of the candidate SNPs and clinical outcomes. The TP53 expression status and the candidate SNP interactions were analyzed using a joint effects survival analysis. In addition, we also analyzed haplotypes of the candidate SNPs.

Statistical analysis

Pearson correlation coefficient was used to assess co-expression correlation. The odds ratio (OR) and the corresponding 95% confidence interval (CI) of the binary logistic regression model were used to estimate the relative risk of TP53 expression status in HBV-related HCC. Univariate analysis between clinical features and overall survival (OS) were studied using the Kaplan–Meier method with the log-rank test. Cox proportional hazards regression analysis was used to calculate the crude and adjusted hazard ratio (HR) and 95% CI in univariate and multivariate analyses, with adjustment for age, gender, race, body mass index (BMI), smoking status, drinking status, Barcelona Clinic Liver Cancer (BCLC) stage, cirrhosis, radical resection, antiviral therapy, status of tumor capsule, regional invasion, and portal vein tumor thrombus (PVTT). A value of $P<0.05$ was considered statistically significant. All the statistical analyses were conducted with SPSS version 20.0 software (IBM Corporation, Armonk, NY, USA).

Results

Candidate SNPs and pathways

Using the P-values of the 28,952 GWAS SNPs as input data, the ICSNPathway identified 18 SNPs as candidate SNPs (Table 1) and 10 pathways as candidate pathways (Table 2) that were associated with TP53 expression status in HBV-related HCC. All of the candidate SNPs were non-synonymous coding SNPs, and the alteration of four SNPs (desmoglein 3 ($DSG3$)-rs16961975, keratin 35 ($KRT35$)-rs2071601, $KRT35$-rs743686, and keratin 36 ($KRT36$)-rs2301354) was deleterious. The strongest mechanism involved the modulation of major histocompatibility complex, class II, DP beta 1 (human leukocyte antigen [HLA]-DPB1-rs1042153), major histocompatibility complex, class II, DQ beta 1 (HLA-DQB1-rs1130399, HLA-DQB1-rs1049056, HLA-DQB1-rs1049059, and HLA-DQB1-rs1049060) and major histocompatibility complex, class II, DR beta 1 (HLA-DRB1-rs35445101), consequently affecting their regulatory roles in all the candidate pathways except the hematopoietic cell lineage pathway. The second strongest hypothetical biological mechanism was that SNPs of major histocompatibility complex, class I, C (HLA-C-rs1131096 and HLA-C-rs1130838) influence the regulatory role of cell adhesion molecules (CAMs), autoimmune thyroid disease, allograft rejection, antigen processing and presentation, type 1 diabetes mellitus, and graft-versus-host disease pathways. Other multiple mechanisms presented in Tables 1 and 2 indicated that alterations in candidate SNPs of collagen type VI alpha 3 chain ($COL6A3$)-rs111231885 and $COL6A3$-rs113155945, desmoglein 3 ($DSG3$)-rs16961975, keratin 35 ($KRT35$)-rs2071601 and $KRT35$-rs743686, and keratin 36 ($KRT36$)-rs2301354 affect their regulatory roles in cell communication, whereas legumain ($LGMN$)-rs11128989 alterations affected the antigen processing and presentation pathway and interleukin 6 receptor ($IL6R$)-rs2228145, interleukin 7 receptor ($IL7R$)-rs6897932 alterations affected the hematopoietic cell lineage pathway.

Association analysis

In the output of candidate SNPs, $KRT32$-rs3744786 and $KRT35$-rs2071601 were not present in the original GWAS result. So, only 16 candidate SNPs and their corresponding genes were included in further association and survival analysis. Four haplotype blocks were detected in the haplotypes analysis (block 1 pairwise $r^2=0.992$, constituted by HLA-C-rs1130838 and HLA-C-rs1131096; block 2 pairwise $r^2=0.121–1.0$, constituted by HLA-DRB1-rs35445101, HLA-DQB1-rs1130399, HLA-DQB1-rs1049060, HLA-DQB1-rs1049059, and HLA-DQB1-rs1049056; block 3 pairwise $r^2=0.973$, constituted by $KRT35$-rs743686 and $KRT36$-rs2301354; block 4 pairwise $r^2=0.755$, constituted by $COL6A3$-rs111231885 and $COL6A3$-rs113155945;
Table 1 Candidate SNPs identified from ICSNPathway analysis

Candidate SNP	Functional class	Gene	Candidate pathway	−log10(\(P\))	In LD with rs	\(r^2\)	D'	−log10(\(P\)) in original GWAS
rs1042153	non_synonymous_coding	HLA-DPB1	1,2,3,4,5,7,9,10	2.45	rs1042153	–	–	2.45
rs1130399	non_synonymous_coding	HLA-DQB1	1,2,3,4,5,7,9,10	3.153	rs1130399	–	–	3.153
rs1049056	non_synonymous_coding	HLA-DQB1	1,2,3,4,5,7,9,10	2.433	rs1049056	–	–	2.433
rs1049059	non_synonymous_coding	HLA-DQB1	1,2,3,4,5,7,9,10	2.357	rs1049059	–	–	2.357
rs1049060	non_synonymous_coding	HLA-DQB1	1,2,3,4,5,7,9,10	2.467	rs1049060	–	–	2.467
rs35445101	non_synonymous_coding	HLA-DRB1	1,2,3,4,5,7,8,9,10	3.591	rs35445101	–	–	3.591
rs1131096	non_synonymous_coding	HLA-C	3,4,5,7,9,10	2.097	rs1131096	–	–	2.097
rs1130838	non_synonymous_coding	HLA-C	3,4,5,7,9,10	2.267	rs1130838	–	–	2.267
rs111231885	non_synonymous_coding	COL6A3	6	2.541	rs111231885	–	–	2.541
rs13155945	non_synonymous_coding	COL6A3	6	2.044	rs13155945	–	–	2.044
rs16961975	non_synonymous_coding	DSG3	6	2.12	rs16961975	–	–	2.12
rs3744786	non_synonymous_coding	KRT32	6	–	rs2301354	0.847	0.945	3.583
rs2071601	non_synonymous_coding	KRT35	6	–	rs2301354	0.901	1	3.583
rs743686	non_synonymous_coding	KRT35	6	3.209	rs743686	–	–	3.209
rs2301354	non_synonymous_coding	KRT36	6	3.583	rs2301354	–	–	3.583
rs18128989	non_synonymous_coding	LGMN	7	2.084	rs18128989	–	–	2.084
rs2228145	non_synonymous_coding	IL6R	8	2.081	rs2228145	–	–	2.081
rs6897932	non_synonymous_coding	IL7R	8	2.004	rs6897932	–	–	2.004

Notes: *The number indicates the index of pathways (listed in Table 2), which are ranked by their statistical significance (FDR). *−log10(\(P\)) for candidate SNP in original GWAS. *−log10(\(P\)) for the SNP (which candidate SNP is in LD with) in original GWAS.

Abbreviations: SNP, single nucleotide polymorphism; ICSNPathway, Identify candidate Causal SNPs and Pathways; LD, linkage disequilibrium; GWAS, genome-wide association studies; HLA-DPB1, major histocompatibility complex, class II, DP beta 1; HLA-DQB1, major histocompatibility complex, class II, DQ beta 1; HLA-DRB1, major histocompatibility complex, class II, DR beta 1; HLA-C, major histocompatibility complex, class I; COL6A3, collagen type VI alpha 3 chain; DSG3, desmoglein 3; KRT32, keratin 32; KRT35, keratin 35; KRT36, keratin 36; LGMN, legumain; IL6R, interleukin 6 receptor; IL7R, interleukin 7 receptor; FDR, false discovery rate.

Table 2 Candidate pathways identified from ICSNPathway analysis

Index	Candidate pathway	Description	Nominal P-value	FDR
1	hsa05310	Asthma	0.005	0.026
2	hsa05322	Systemic lupus erythematosus	0.005	0.026
3	hsa04514	CAMs	0.034	0.056
4	hsa05320	Autoimmune thyroid disease	0.028	0.058
5	hsa05330	Allograft rejection	0.028	0.058
6	hsa01430	Cell communication	0.024	0.058
7	hsa04612	Antigen processing and presentation	0.041	0.06
8	hsa04640	Hematopoietic cell lineage	0.009	0.069
9	hsa04940	Type 1 diabetes mellitus	0.032	0.077
10	hsa05332	Graft-versus-host disease	0.032	0.077

Abbreviations: FDR, false discovery rate; CAMs, cell adhesion molecules; ICSNPathway, Identify candidate Causal SNPs and Pathways.

Figure 1A). Distribution of candidate SNPs in different TP53 expression status patients is shown in Table S1. After adjusting for age, gender, race, BMI, smoking status, drinking status, BCLC stage, cirrhosis, radical resection, antiviral therapy, status of tumor capsule, regional invasion, and PVTT, all the SNPs were significantly associated with TP53 expression status in HBV-related HCC, compared to patients with TC, AGAGA, AG, and CC (Table 3), respectively.

Co-expression analysis in HBV-related HCC expression profile data set from the GSE14520 cohort revealed that the TP53 gene has a significantly weak negative correlation with HLA-C \((r=-0.322, P<0.001)\), IL6R \((r=-0.132, P=0.007)\), and KRT36 \((r=-0.186, P<0.001)\), whereas it had a positive...
correlation with $COL6A3$ ($r=0.238$, $P<0.001$), $HLA-DPB1$ ($r=0.115$, $P=0.018$), $HLA-DQB1$ ($r=0.176$, $P=0.0003$), and $LGMN$ ($r=0.157$, $P=0.001$) at the mRNA level in HBV-related HCC of GSE14520; the co-expression heat map is shown in Figure 1B. The remaining genes were not significantly correlated with $TP53$ at the mRNA level. Gene and gene co-expression interaction networks constructed by GeneMANIA demonstrated that all the genes of the candidate SNPs exist in a complex gene–gene co-expression interaction network and are directly or indirectly associated with $TP53$ (Figure 2A). In addition, PPIs determined experimentally and constructed by STRING showed that $HLA-DQB1$, $HLA-C$, $KRT35$, $IL7R$, and $LGMN$ were associated with $TP53$ through ubiquitin C (UBC) (Figure 2B).

Detailed regional LD plots of the four haplotype blocks of the candidate SNPs were generated by SNAP. Regional LD plots for four SNPs of $HLA-DQB1$ in block 2 are shown in Figure 3A–D, whereas the regional LD plot of $HLA-DRB1$-rs35445101 in block 2 was not available on the SNAP website. Regional LD plots of block 3 (Figure 4A, B) and block 4 (Figure 4C, D) are shown in Figure 4, whereas the regional LD plot for block 1 of $HLA-C$-rs1131096 and $HLA-C$-rs1130838 was not available on the SNAP website. Regional LD plot for these SNPs indicated that there were

Table 3 Haplotype distribution of the candidate SNPs in patients with different $TP53$ expression status

Haplotypes	$TP53$ negative (2n=308)	$TP53$ positive (2n=466)	Crude OR (95% CI)	Crude P-value	Adjusted OR (95% CI)	Adjusted P-valuea
Block 1						
TC	229	387	1	1	1	1
GT	79	79	0.592 (0.416–0.841)	0.003	0.622 (0.432–0.895)	0.011
Block 2						
AGAGA	118	238	1	1	1	1
AGTCC	116	167	0.714 (0.516–0.987)	0.041	0.696 (0.494–0.980)	0.038
GATCC+other haplotypes	74	61	0.409 (0.273–0.612)	<0.001	0.395 (0.259–0.603)	<0.001
Block 3						
AG	156	291	1	1	1	1
GA+other haplotypes	152	175	0.617 (0.461–0.826)	0.001	0.582 (0.427–0.792)	0.001
Block 4						
CC	279	446	1	1	1	1
TT+other haplotypes	29	20	0.431 (0.239–0.777)	0.005	0.376 (0.201–0.703)	0.002

Notes: aAdjusted for age, gender, race, body mass index, smoking status, drinking status, BCLC stage, cirrhosis, radical resection, antiviral therapy, status of tumor capsule, regional invasion, and PVTT.

Abbreviations: SNP, single nucleotide polymorphism; TP53, tumor protein p53; BCLC, Barcelona Clinic Liver Cancer; PVTT, portal vein tumor thrombus.
Figure 2 Gene–gene and protein–protein interaction networks.
Notes: (A) Gene–gene interaction networks constructed by GeneMANIA. (B) Protein–protein interaction networks constructed by STRING.
Abbreviations: GeneMANIA, Gene Multiple Association Network Integration Algorithm; STRING, Search Tool for the Retrieval of Interacting Genes/Proteins; TP53, tumor protein p53; UBC, ubiquitin C; HLA-DPB1, major histocompatibility complex, class II, DP beta 1; HLA-DQB1, major histocompatibility complex, class II, DQ beta 1; HLA-DRB1, major histocompatibility complex, class II, DR beta 1; HLA-C, major histocompatibility complex, class I, C; COL6A3, collagen type VI alpha 3 chain; DSG3, desmoglein 3; KRT32, keratin 32; KRT35, keratin 35; KRT36, keratin 36; LGMN, legumain; IL6R, interleukin 6 receptor; IL7R, interleukin 7 receptor.

Figure 3 Regional LD plots of block 2 (HLA-DQB1).
Notes: Regional LD plots of (A) HLA-DQB1-rs1049056, (B) HLA-DQB1-rs1049059, (C) HLA-DQB1-rs1049060, and (D) HLA-DQB1-rs1130399.
Abbreviations: LD, linkage disequilibrium; HLA-DQB1, major histocompatibility complex, class II, DQ beta 1; CHB, chronic hepatitis B.
strong LD loci of these blocks detectable in the region nearby them.

Survival analysis
Survival analysis was used to further investigate the associations between the candidate SNPs and haplotypes with HBV-related HCC prognosis. Clinicopathological characteristics and prognosis information of patients with HBV-related HCC have been described and published in an earlier article\(^1\) and shown in Table 4. Survival analysis of COL6A3-rs111231885 showed that patients with the T allele had a shorter median survival time (MST) than those with the C allele (51 vs 33 months for CC vs TT/TC, log-rank \(P=0.012\); Table S2). After adjusting for age, gender, race, BMI, smoking status, drinking status, BCLC stage, cirrhosis, radical resection, antiviral therapy, status of tumor capsule, regional invasion, and PVTT in the Cox proportional hazards regression model, patients with the T allele had a significantly increased risk of death compared to those with the C allele (adjusted \(P=0.043\), HR=4.281, 95% CI=1.017–18.022; Table S2). In addition, joint effects analysis was also used to explore the SNPs and TP53 interaction in HBV-related HCC prognosis. TP53-negative patients with the COL6A3-rs111231885 T allele carriers had a significantly increased risk of death (adjusted \(P=0.034\), HR=1.994, 95% CI=1.052–3.778; Table S3) and a poor clinical outcome (MST: 33 vs 68 months for TT/TC vs CC, log-rank \(P=0.031\); Table S3) in HBV-related HCC, compared to TP53-negative patients with C allele carriers. No other genotypes were significantly associated with OS in single and joint effects analysis.

Survival analysis for haplotypes of candidate SNPs is shown in Figure 5A–D, and indicated that patients with TT/other haplotypes in block 4 had a significantly shorter OS (MST: 33 vs 51 months for TT/TC vs CC, log-rank \(P=0.019\); Table 5, Figure 5D). Multivariate analyses of the Cox proportional hazards regression model suggest that patients with TT/other haplotypes in block 4 had increased risk of death in HBV-related HCC (adjusted
Table 4 Clinicopathological characteristics of patients with HBV-related HCC after data quality control

Variable	GWAS	Survival analysis	Log-rank P	
	TPS3 negative (n=154)	OR (95% CI)	P-value	
	TPS3 positive (n=233)		Patients	
			MST	
			HR (95% CI)	
Age (years)				
≤60	133	211	1	
>60	21	22	0.66 (0.35–1.247)	0.201
Sex				
Male	141	207	1	
Female	13	26	0.734 (0.365–1.477)	0.386
Race				
Han	103	142	1	
Minority	51	91	1.294 (0.845–1.983)	0.236
BMI				
≤25	121	181	1	
>25	33	52	1.053 (0.643–1.725)	0.836
Smoking status				
None	97	147	1	
Ever	57	86	0.996 (0.653–1.518)	0.984
Drinking status				
None	91	134	1	
Ever	63	99	1.067 (0.706–1.613)	0.758
Child–Pugh³				
A	116	189	1	
B	28	30	0.658 (0.374–1.156)	0.146
Cirrhosis				
No	12	27	1	
Yes	142	206	0.645 (0.316–1.315)	0.228
Radical resection³				
Yes	82	133	1	
None	67	94	0.865 (0.57–1.313)	0.496
Portal hypertension³				
No	69	124	1	
Yes	75	87	0.645 (0.421–0.989)	0.044
Pathological grade⁴				
Well differentiated	14	10	1	
Moderately differentiated	126	190	2.111 (0.909–4.901)	0.082
Poorly differentiated	14	10	1 (1.536–127.621)	0.019
Serum AFP⁵				
≤400 (ng/mL)	87	110	1	
>400 (ng/mL)	58	105	1.432 (0.935–2.193)	0.099
Antiviral therapy				
No	95	157	1	
Yes	59	76	0.779 (0.51–1.192)	0.25
Tumor behavior				
Tumor size				
≤5 cm	72	85	1	
>5 cm	82	148	1.529 (1.011–2.313)	0.044
Tumor number				
Single	111	169	1	
Multiple	43	64	0.978 (0.62–1.54)	0.922
Status of tumor capsule				
Complete	126	201	1	
Incomplete	28	32	0.716 (0.412–1.247)	0.238
Regional invasion				
Absence	131	199	1	
Presence	23	34	0.973 (0.549–1.726)	0.926

(Continued)
P=0.07, HR=1.450, 95% CI=0.970–2.167; Table 5), with a critically significant P-value, compared to patients with CC haplotypes. Joint effects analysis (Figure 6A–D) indicated that TP53-negative patients with TT/other haplotypes in block 4 had a significantly poor prognosis (MST: 33 vs 68 months for TT/other haplotypes vs CC haplotypes, log-rank P=0.047; Table 6, Figure 6D) and increased risk of death in HBV-related HCC (adjusted P=0.047, HR=1.713, 95% CI =1.006–2.918; Table 6), compared to TP53-negative patients with CC haplotypes. No other haplotypes were significantly associated with OS in single or joint effects analysis.

Discussion

The GWAS approach is increasingly being used to discover the association between genes and disease. However, most GWAS have focused on SNPs with high statistical
significance, whereas many other SNPs have received little attention and the full potential of these data have not been fully exploited.24,25 Therefore, it is necessary to perform in-depth data mining with GWAS results. Genome-wide pathway analysis can investigate the GWAS SNPs through a SNP→gene→pathway approach to discover the overrepresented pathways in the GWAS data, which would consider rare variants, multi-omics, and interactions. In the current study, ICSNPathway analysis identified 18 candidate SNPs and 10 candidate pathways that are associated with TP53.

Table 5 Survival analysis of different haplotypes

Haplotypes	Patients (2n=774)	MST (months)	Crude HR (95% CI)	Crude P-value	Adjusted HR (95% CI)	Adjusted P-value*
Block 1						
TC	616	47	I	I		
GT	158	68	0.913 (0.702–1.187)	0.497	0.934 (0.714–1.221)	0.618
Block 2						
AGAGA	356	51	I	I		
AGTCC	283	48	0.930 (0.735–1.176)	0.544	0.915 (0.717–1.170)	0.48
GATCC+other haplotypes	135	41	1.198 (0.909–1.580)	0.199	1.153 (0.867–1.533)	0.327
Block 3						
AG	447	58	I	I		
GA+other haplotypes	327	41	1.132 (0.918–1.396)	0.247	1.121 (0.903–1.392)	0.299
Block 4						
CC	725	51	I	I		
TT+other haplotypes	46	33	1.566 (1.070–2.292)	0.021	1.450 (0.970–2.167)	0.07

Notes: *Adjusted for age, gender, race, body mass index, smoking status, drinking status, BCLC stage, cirrhosis, radical resection, antiviral therapy, status of tumor capsule, regional invasion, and PVTT.

Abbreviations: BCLC, Barcelona Clinic Liver Cancer; PVTT, portal vein tumor thrombus; MST, median survival time.

Figure 6 Joint effects survival analysis of different haplotypes and TP53 expression status.

Notes: OS stratified by (A) block 1 haplotypes and TP53 expression status, (B) block 2 haplotypes and TP53 expression status, (C) block 3 haplotypes and TP53 expression status, (D) block 4 haplotypes and TP53 expression status.

Abbreviations: OS, overall survival; TP53, tumor protein p53.
expression status in HBV-related HCC. Five hypothetical biological mechanisms can be obtained from ICSNPathway analysis.

The strongest hypothetical biological mechanism found that the candidate SNPs of \textit{HLA-DPB1}, \textit{HLA-DQB1}, and \textit{HLA-DRB1} affected their regulatory roles in all the candidate pathways except hematopoietic cell lineage pathway. The major histocompatibility complex class II molecule is a heterodimer consisting of an alpha (DQA) and a beta chain (DQB), both anchored in the membrane. Previous studies have demonstrated that \textit{HLA-DPB1} polymorphisms were significantly associated with the risk of HBV infection susceptibility,26,27 whereas the distribution of the SNPs genotype frequencies was similar in HCC and chronic hepatitis B patients.26,28 A case–control study that compared persistence and natural clearance of HBV infection in a population indicated that the \textit{HLA-DPB1}-rs9277535 A allele has a major effect on the risk of persistent HBV infection.29 Subsequently, another study also reported that \textit{HLA-DPB1}-rs9277535 was significantly related to HBV infection risks and increased HBV clearance possibility in a dose-dependent manner.30 Furthermore, the polymorphisms of another HLA class II molecule, \textit{HLA-DQB1}, were also associated with the development of chronic HBV infection and liver cirrhosis,31 as well as the risk factor of HCC.32,33 In addition, our previous study also showed that \textit{HLA-DQB1} polymorphisms have a prognosis predictive value in HBV-related HCC patients undergoing hepatic resection.34 Similar genetic susceptibility research on \textit{HLA-DRB1} also demonstrated that polymorphisms in the \textit{HLA-DRB1} gene were significantly associated with HCC risk, HBV infection, and progression from CHB to HCC.35–38

The second strongest mechanism was that a candidate SNP of \textit{HLA-C}-rs1131096 and \textit{HLA-C}-rs1130838 influenced the regulatory role of CAMs, autoimmune thyroid disease, allograft rejection, antigen processing and presentation, type I diabetes mellitus, and graft-versus-host disease pathways. HLA-C belongs to the HLA class I heavy chain paralogues and its genetic variation can influence the risk of HBV-related HCC development;39 furthermore, HLA-C*15 is also an important host immunogenetic factor that negatively associates with hepatitis C virus viral load in chronic hepatitis C patients.40

gene polymorphisms demonstrate a risk factor for hepatitis virus and HCC. In the current study, our findings suggest that genetic variation in \textit{HLA-DPB1}, \textit{HLA-DQB1}, \textit{HLA-DRB1}, and \textit{HLA-C} were associated with TP53 expression status in HBV-related HCC.

| Table 6 Joint effects survival analysis of different haplotypes and TP53 expression status |
|-----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|----------------|
| **Group** | **Haplotypes** | **TP53** | **Patients** | **MST** | **Crude HR (95% CI)** | **Crude P-value** | **Adjusted HR (95% CI)** | **Adjusted P-value** |
| **Block 1** | | status | (2n=774) | (months) | | | | |
| Group 1 | TC | Negative | 229 | 51 | 1.000 (0.866–1.413) | 0.413 | 1.104 (0.855–1.425) | 0.449 |
| Group 2 | TC | Positive | 387 | 43 | 1.107 (0.928–1.827) | 0.126 | 1.206 (0.854–1.704) | 0.288 |
| Group 3 | GT | Negative | 79 | 68 | 0.845 (0.567–1.260) | 0.409 | 0.857 (0.570–1.289) | 0.459 |
| Group 4 | GT | Positive | 79 | 41 | 1.126 (0.771–1.644) | 0.539 | 1.158 (0.787–1.706) | 0.456 |
| **Block 2** | | | | | | | | |
| Group A | AGAGA | Negative | 118 | 68 | 1.302 (0.928–1.827) | 0.126 | 1.206 (0.854–1.704) | 0.288 |
| Group B | AGAGA | Positive | 238 | 41 | 1.171 (0.818–1.675) | 0.389 | 1.057 (0.733–1.524) | 0.765 |
| Group C | AGTCC+other haplotypes | Negative | 190 | 48 | 1.256 (0.892–1.769) | 0.191 | 1.199 (0.841–1.709) | 0.316 |
| Group D | AGTCC+other haplotypes | Positive | 228 | 43 | 1.380 (0.993–1.918) | 0.055 | 1.361 (0.971–1.908) | 0.074 |
| **Block 3** | | | | | | | | |
| Group i | AG | Negative | 156 | 71 | 1.243 (0.920–1.678) | 0.156 | 1.329 (0.976–1.811) | 0.071 |
| Group ii | AG | Positive | 291 | 48 | 1.235 (0.875–1.743) | 0.23 | 1.341 (0.943–1.905) | 0.102 |
| Group iii | GA+other haplotypes | Negative | 152 | 45 | 1.380 (0.993–1.918) | 0.055 | 1.361 (0.971–1.908) | 0.074 |
| Group iv | GA+other haplotypes | Positive | 175 | 40 | 1.380 (0.993–1.918) | 0.055 | 1.361 (0.971–1.908) | 0.074 |
| **Block 4** | | | | | | | | |
| Group I | CC | Negative | 279 | 68 | 1.196 (0.953–1.501) | 0.123 | 1.261 (0.995–1.599) | 0.055 |
| Group II | CC | Positive | 446 | 44 | 1.167 (0.992–2.384) | 0.054 | 1.713 (1.006–2.918) | 0.047 |
| Group III | TT+other haplotypes | Negative | 29 | 33 | 1.555 (1.045–2.394) | 0.035 | 1.651 (0.872–3.126) | 0.123 |
| Group IV | TT+other haplotypes | Positive | 20 | 32 | 1.167 (0.992–2.384) | 0.054 | 1.713 (1.006–2.918) | 0.047 |

Notes: Adjusted for age, gender, race, body mass index, smoking status, drinking status, BCLC stage, cirrhosis, radical resection, antiviral therapy, status of tumor capsule, regional invasion, and PVTT.

Abbreviations: TP53, tumor protein p53; BCLC, Barcelona Clinic Liver Cancer; PVTT, portal vein tumor thrombus; MST, median survival time.
HBV-related HCC. These results contribute to a better understanding of the heritability of HLA-DPB1, HLA-DQB1, HLA-DRB1, and HLA-C in HBV-related HCC and subsequently provide hypotheses to clarify their potential mechanisms in HBV and HCC genetic susceptibility.

In the remaining genes with candidate SNPs, we only found that IL6R and IL7R were associated with HCC among the previous studies, whereas associations between the other genes and human HCC have not been reported. IL6R encodes a subunit of the IL6R complex, and its dysregulation is related to the pathogenesis of many diseases, including cancer. A study by Deng et al revealed that the IL6R-rs6684439 T allele is associated with a lower susceptibility of HBV-related HCC in the Guangxi population, whereas miR-451 plays a suppressive role in tumor angiogenesis via the regulation of the IL6R-signal transducer and activator of transcription 3-vascular endothelial growth factor signaling pathway. Research by Midorikawa et al confirms that IL7R is downregulated in well-differentiated tumor tissue in HCC and can serve as a predictor gene of HCC dedifferentiation. Our results contribute to a better understanding of genes associated with different HBV-related HCC subgroups.

Our association analysis demonstrated that seven genes with candidate SNPs were correlated to TP53 at the HBV-related HCC mRNA level, whereas PPI networks showed that five genes with candidate SNPs were associated with TP53 via UBC through experiments. However, the GeneMANIA gene–gene interaction networks showed complex co-expression networks among those genes, and all genes were directly or indirectly related to the TP53 gene. In the present study, we confirmed that LGMN and TP53 are positively correlated at the mRNA level in HBV-related HCC based on the GSE14520 data set, and our bioinformatics analysis by GeneMANIA also suggests that LGMN and TP53 were co-expressed via the TAP1 gene, whereas LGMN was also related to TP53 via the UBC gene in the PPI networks that were constructed by STRING. A study by Murthy et al has reported that LGMN was significantly upregulated in tumor tissue and its low expression showed a better prognosis in colorectal cancer (CRC); meanwhile, it has a positive correlation with TP53. LGMN expression and its enzyme activity can also be regulated by TP53, and knockdown experiments suggest that LGMN and TP53 have a positive correlation in HCT116 cells. Our bioinformatics analysis also suggests that IL7R is associated with TP53 in GeneMANIA and PPI networks, and IL7/IL7R prevents apoptosis by regulating bel-2 expression and the TP53 pathway in A549 and human bronchial epithelial cells. Among the 10 candidate pathways, CAMs and cell communication pathways were the most common hypothetical biological mechanisms that involved the majority of candidate SNPs. CAMs play an important role in cell communication and are associated with HCC diagnosis and survival prediction. Our findings suggest a novel hypothetical biological mechanism between CAMs and TP53 expression status in HBV-related HCC.

Survival analysis in the current study indicates that the C allele of COL6A3-rs111231885 and COL6A3-rs113155945, and COL6A3 block 4 CC haplotypes with TP53 negative status significantly decrease the risk of death in HBV-related HCC patients after hepatectomy. Previous studies have confirmed that high COL6A3 expression was significantly associated with poor prognosis and its mutation can be used for survival prediction in CRC. Furthermore, COL6A3 was markedly upregulated in the tumor tissue of gastric cancer, pancreatic cancer, and CRC and can serve as a potential diagnostic biomarker in these cancers. This evidence suggests that COL6A3 may be a potential diagnosis and prognosis marker in CRC and may serve as an oncogene of CRC. Our findings demonstrate that several SNPs of COL6A3 have a prediction value for HBV-related HCC prognosis and provide insight into the clinical utility of HBV-related HCC prognosis. Once validated, COL6A3 may be used for prognosis prediction and decision-making in HCC management.

There were limitations in our study that need to be recognized. First, our study evaluates the association between TP53 expression status and candidate SNPs using the GWAS approach, and validates the association between the genes of the candidate SNPs and TP53 using the Gene Expression Omnibus data set, GeneMANIA, and STRING bioinformatics tools that lack confirmation by in vivo and in vitro experiments. Second, all patients in the present study were exclusively from a Guangxi population of HBV-related HCC; therefore, in order to generalize our findings, additional external validation in cohorts from other ethnic populations is necessary to confirm our results.

Despite these limitations, our study is the first to explore the association between the SNPs and molecular pathways associated with TP53 expression status in HBV-related HCC by using the genome-wide association pathway analysis approach, and that might have etiology or clinical implications.

Conclusion

Genome-wide association pathway analysis in the current study identified 18 candidate SNPs and 10 candidate...
pathways that are associated with TP53 expression status in HBV-related HCC and generated five novel SNP-to-gene to pathway hypotheses. These results contribute to a better understanding of the heritability of HBV-related HCC in different TP53 expression subgroups and provide evidence for personalized treatment strategies of different TP53 expression subgroups in HBV-related HCC patients. Additional in vivo and in vitro experimental studies will be necessary to elucidate the role of these pathways in different TP53 expression subgroups of HBV-related HCC. Among these candidate SNPs, the C allele of COL6A3-rs111231885 and COL6A3-rs113155945, and COL6A3 block 4 CC haplotypes with TP53 negative status may have protective effects in HBV-related HCC patients after hepatectomy and can serve as a potential prognostic biomarker. Further well-designed and larger sample size studies are needed to validate the associations between COL6A3 genetic variation and HBV-related HCC prognosis.

Acknowledgments
This work was supported in part by the National Natural Science Foundation of China (no. 81560535, 81072321, 30760243, 30460143, and 30560133), 2009 Program for New Century Excellent Talents in University, Guangxi Natural Science Foundation (no. GuiKeGong 1104003A-7), Guangxi Health Ministry Medicine Grant (Key-Scientific Research-Grant Z201018), and Self-raised Scientific Research Fund of the Health and Family Planning Commission of Guangxi Zhuang Autonomous Region (Z2016318). We also acknowledge the support offered by the National Key Clinical Specialty Programs (General Surgery and Oncology) and the Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor (Guangxi Medical University), Ministry of Education, China. The authors thank Prof Minhao Peng, Lequn Li, Xiao Qin, Kaiyin Xiao, Xigang Chen, Bin Chen, Zhihong Su, Ming Su, Zhang Wen, Jingning Lu, Ning Peng, and Hai Zhu, from the Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, for providing part of the HCC samples for this study. Thanks also go to Prof Xue Qin (Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University) for providing patient’s serum AFP assay results, and Prof Zengnan Mo (Center for Genomic and Personalized Medicine, Guangxi Medical University) for help in the GWAS analysis. We would like to acknowledge the assistance offered by researcher Jiaquan Li and Ying Gui from Guangxi Medical University for their contribution to specimen management. In addition, we also would like to acknowledge the contributors of GSE14520 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520) for sharing their data set on open access. We thank our reviewers for helpful comments on this article.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–132.
2. Zeng H, Zheng R, Guo Y, et al. Cancer survival in China, 2003–2005: a population-based study. Int J Cancer. 2015;136(8):1921–1930.
3. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–2576.
4. Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott J. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet. 2015;386(1003):1546–1555.
5. Qi LN, Li LQ, Chen YY, et al. Genome-wide and differential proteomic analysis of hepatitis B virus and aflatoxin B1 related hepatocellular carcinoma in Guangxi, China. PLoS One. 2013;8(12):e83465.
6. Liu ZM, Li LQ, Peng MH, et al. Hepatitis B virus infection contributes to oxidative stress in a population exposed to aflatoxin B1 and high-risk for hepatocellular carcinoma. Cancer Lett. 2008;263(2):212–222.
7. Yu L, Liu X, Han C, et al. XRC1-rs25487 genetic variant and TP53 mutation at codon 249 predict clinical outcomes of hepatitis B virus-related hepatocellular carcinoma after hepatectomy: a cohort study for 10 years’ follow up. Hepatol Res. 2016;46(8):765–774.
8. Stern MC, Umbach DM, Yu MC, London SJ, Zhang QZ, Taylor JA. Hepatitis B, aflatoxin B(1), and p53 codon 249 mutation in hepatocellular carcinomas from Guangxi, People’s Republic of China, and a meta-analysis of existing studies. Cancer Epidemiol Biomarkers Prev. 2001;10(6):617–625.
9. Qi LN, Bai T, Chen ZS, et al. The p53 mutation spectrum in hepatocellular carcinoma from Guangxi, China: role of chronic hepatitis B virus infection and aflatoxin B1 exposure. Liver Int. 2015;35(3):999–1009.
10. Long XD, Ma Y, Huang HD, Yao JG, Qu DY, Lu VL. Polymorphism of XRC1C1 and the frequency of mutation in codon 249 of the p53 gene in hepatocellular carcinoma among Guangxi population, China. Mol Carcinog. 2008;47(4):295–300.
11. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6(9):674–687.
12. Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018.
13. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363(2):166–176.
14. Zhang K, Chang S, Cui S, Guo L, Zhang L, Wang J. ICSNPathway: identify candidate causal SNPs and pathways from genome-wide association study by one analytical framework. Nucleic Acids Res. 2011;39(Web Server issue):W437–W443.
15. Liao X, Han C, Qin W, et al. Genome-wide association study identified PLCE1-rs2797992 and EGFR-rs6950826 were associated with TP53 expression in the HBV-related hepatocellular carcinoma of Chinese patients in Guangxi. Am J Transl Res. 2016;8(4):1799–1812.
16. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–265.
17. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CI, de Bakker PI. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24(24):2938–2939.
18. Roessler S, Long EL, Budhu A, et al. Integrative genomic identification of genes on 8p associated with hepatocellular carcinoma progression and patient survival. *Gastroenterology*. 2012;142(4):957–966.

19. Roessler S, Hul HL, Budhu A, et al. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. *Cancer Res*. 2010;70(24):10202–10212.

20. Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. *Nucleic Acids Res*. 2010;38(Web Server issue):W214–W220.

21. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. *Genome Biol*. 2008;9(Suppl 1):S4.

22. Szkarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. *Nucleic Acids Res*. 2015;43(Database issue):D447–D452.

23. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. *Nucleic Acids Res*. 2003;31(1):258–261.

24. Ramanan VK, Shen L, Moore JH, Saykin AJ. Pathway analysis of major histocompatibility complex class II alleles in Chinese patients with hepatocellular carcinoma and B-cell lymphoma patients show a different profile of major histocompatibility complex class II alleles. *Hum Mol Genet*. 2013;22(20):4233–4238.

25. Donaldson PT, Ho S, Williams R, Johnson PJ. HLA class II alleles in Chinese patients with hepatocellular carcinoma. *Liver*. 2001;21(2):143–148.

26. Akoglu E, Bilgin R, Akkiz H, et al. Association between chronic hepatitis B virus infection and HLA-DP gene polymorphisms in the Turkish population. *Viruses*. 2017;9(6):1232–1332.

27. Elbers CC, van Eijk KR, Franke L, et al. Using genome-wide pathway analysis to unravel the etiology of complex diseases. *Genet Epidemiol*. 2009;33(5):419–431.

28. Posuwan N, Payungporn S, Tangkijvanich P, et al. Genetic association of human leukocyte antigens with chronicity or resolution of hepatitis B infection in Thai population. *PLoS One*. 2014;9(1):e86007.

29. Kim YJ, Kim HY, Lee JH, et al. A genome-wide association study identified new variants associated with the risk of chronic hepatitis B. *Hum Mol Genet*. 2013;22(20):4233–4238.

30. Liu C, Cheng B, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. *Nucleic Acids Res*. 2003;31(1):258–261.

31. Roessler S, Hul HL, Budhu A, et al. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. *Cancer Res*. 2010;70(24):10202–10212.

32. Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. *Nucleic Acids Res*. 2010;38(Web Server issue):W214–W220.

33. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. *Genome Biol*. 2008;9(Suppl 1):S4.

34. Szkarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. *Nucleic Acids Res*. 2015;43(Database issue):D447–D452.

35. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. *Nucleic Acids Res*. 2003;31(1):258–261.

36. Ramanan VK, Shen L, Moore JH, Saykin AJ. Pathway analysis of major histocompatibility complex class II alleles in Chinese patients with hepatocellular carcinoma and B-cell lymphoma patients show a different profile of major histocompatibility complex class II alleles. *Hum Mol Genet*. 2013;22(20):4233–4238.

37. Donaldson PT, Ho S, Williams R, Johnson PJ. HLA class II alleles in Chinese patients with hepatocellular carcinoma. *Liver*. 2001;21(2):143–148.

38. Akoglu E, Bilgin R, Akkiz H, et al. Association between chronic hepatitis B virus infection and HLA-DP gene polymorphisms in the Turkish population. *Viruses*. 2017;9(6):1232–1332.

39. Posuwan N, Payungporn S, Tangkijvanich P, et al. Genetic association of human leukocyte antigens with chronicity or resolution of hepatitis B infection in Thai population. *PLoS One*. 2014;9(1):e86007.

40. Kim YJ, Kim HY, Lee JH, et al. A genome-wide association study identified new variants associated with the risk of chronic hepatitis B. *Hum Mol Genet*. 2013;22(20):4233–4238.

41. Donaldson PT, Ho S, Williams R, Johnson PJ. HLA class II alleles in Chinese patients with hepatocellular carcinoma. *Liver*. 2001;21(2):143–148.

42. Akoglu E, Bilgin R, Akkiz H, et al. Association between chronic hepatitis B virus infection and HLA-DP gene polymorphisms in the Turkish population. *Viruses*. 2017;9(6):1232–1332.

43. Posuwan N, Payungporn S, Tangkijvanich P, et al. Genetic association of human leukocyte antigens with chronicity or resolution of hepatitis B infection in Thai population. *PLoS One*. 2014;9(1):e86007.

44. Kim YJ, Kim HY, Lee JH, et al. A genome-wide association study identified new variants associated with the risk of chronic hepatitis B. *Hum Mol Genet*. 2013;22(20):4233–4238.

45. Donaldson PT, Ho S, Williams R, Johnson PJ. HLA class II alleles in Chinese patients with hepatocellular carcinoma. *Liver*. 2001;21(2):143–148.

46. Akoglu E, Bilgin R, Akkiz H, et al. Association between chronic hepatitis B virus infection and HLA-DP gene polymorphisms in the Turkish population. *Viruses*. 2017;9(6):1232–1332.

47. Posuwan N, Payungporn S, Tangkijvanich P, et al. Genetic association of human leukocyte antigens with chronicity or resolution of hepatitis B infection in Thai population. *PLoS One*. 2014;9(1):e86007.

48. Kim YJ, Kim HY, Lee JH, et al. A genome-wide association study identified new variants associated with the risk of chronic hepatitis B. *Hum Mol Genet*. 2013;22(20):4233–4238.

49. Donaldson PT, Ho S, Williams R, Johnson PJ. HLA class II alleles in Chinese patients with hepatocellular carcinoma. *Liver*. 2001;21(2):143–148.

50. Akoglu E, Bilgin R, Akkiz H, et al. Association between chronic hepatitis B virus infection and HLA-DP gene polymorphisms in the Turkish population. *Viruses*. 2017;9(6):1232–1332.

51. Posuwan N, Payungporn S, Tangkijvanich P, et al. Genetic association of human leukocyte antigens with chronicity or resolution of hepatitis B infection in Thai population. *PLoS One*. 2014;9(1):e86007.

52. Kim YJ, Kim HY, Lee JH, et al. A genome-wide association study identified new variants associated with the risk of chronic hepatitis B. *Hum Mol Genet*. 2013;22(20):4233–4238.
