ON STUDY OF EXPONENTIATED GAMMA DISTRIBUTION BASED ON UNIFIED HYBRID CENSORED DATA

M.A.W. Mahmouda, L.S. Diabb, M.G.M. Ghazalc, Baria.A.Hb

a Department of Mathematics, Faculty of Sciences, Al-Azhar University, Cairo, Egypt.
b Department of Mathematics, Faculty of Sciences, Al-Azhar University, Girls Branch, Cairo, Egypt.
c Department of Mathematics, Faculty of Sciences, Minia University, El-Minia, Egypt.

ABSTRACT

In this article, we will study the estimation of the unknown parameters for exponentiated gamma distribution as well as a survival function, failure rate function and the coefficient of variation based on unified hybrid censored data. In addition that, we will study maximum likelihood and Bayesian estimates. To calculate the Bayes estimates of the model parameters will be used Markov chain Monte Carlo method (MCMC). Gibbs within the Metropolis-Hasting algorithm has been applied to generate MCMC samples from the posterior density function and calculate approximate confidence intervals for the unknown parameters, survival, failure rate functions and coefficient of variation. All results obtained are based on the balanced-squared error loss, balanced linear-exponential loss, and balanced general entropy loss functions. At the end of article, real data has been used to determine how the estimation method can be used in practice.

Keywords: Exponentiated gamma distribution, Unified hybrid censored data, Bayesian estimation, MCMC method.

1 - INTRODUCTION

The gamma distribution is the most popular model for studying skewed data. Gupta et al.[1] presented the exponentiated gamma (EG) distribution. For more details, see Bakoban[2] and Shawky and Bakoban[3]. The EG distribution has the cumulative distribution function (cdf):
\[F(x, \theta, \gamma) = (1 - (1 + \gamma x)e^{-\gamma x})^\theta, \] (1)

Therefore, EG distribution has the probability density function (pdf):
\[f(x, \theta, \gamma) = \theta \gamma x e^{-\gamma x} [1 - (1 + \gamma x)e^{-\gamma x}]^{\theta - 1}, \] (2)

where \(\theta, \gamma, x > 0 \), \(\theta \) is the shape parameter and \(\gamma \) is the scale parameter.

The survival function (SF) or \(S(t) \) is given by
\[S(t) = 1 - (1 + \gamma t)e^{-\gamma t})^\theta, \quad t > 0. \] (3)

The failure rate function \(h(t) \) is given by
\[h(t) = \frac{\theta \gamma t e^{-\gamma t}(1 - (1 + \gamma t)e^{-\gamma t})^{\theta - 1}}{1 - (1 + \gamma t)e^{-\gamma t})^\theta}. \] (4)

The coefficient of variation (CV) is used in many areas of science such as biology, economics, chemistry, psychology, and in engineering in reliability theory. The CV Based on the EG distribution \((\theta, \gamma)\) is given by
\[CV = \frac{\sigma_X}{E(X)}. \] (5)
where \(\sigma_x = \sqrt{E(X^2) - [E(X)]^2} \) is the standard deviation of \(X \), where \(E(X) \) and \(E(X^2) \) are the first and the second moments of the EG distribution \((\theta, \gamma)\), can be obtained by using binomial theorem and the definition of gamma function we have

\[
E(X^q) = \theta^q \sum_{j=0}^{\infty} \binom{q}{j} \frac{\Gamma(q+1)}{\Gamma(q+j+2)} E(X^{q-j}) \quad (\theta \geq 1),
\]

\[= \theta^q \sum_{j=0}^{\infty} \binom{q}{j} \frac{\Gamma(q+1)}{\Gamma(q+j+2)} \int_0^\infty x^{q-j+1} e^{-\gamma x} \frac{(\theta-1)}{q} \frac{\Gamma(q+1)}{\Gamma(q+j+2)} dx.
\]

A sample is supposed to be censored if out of \(n \) items placed on a life test, only \((m < n)\) of them are essentially detected to fail. So there are several different censoring schemas as follows. Assume \(n \) identical items are located on a life-testing experiment. Suppose that their lifetimes are independent and identically distributed from EG distribution. Let the ordered failure times of these items be denoted by \(X_{(1)}, X_{(2)}, \ldots, X_{(n)} \). Epstein[4] considered a hybrid censored scheme (HCS), which is a combination of Type-I and Type-II censoring schemes. In Type-I HCS, the life-testing experiment is finished at a random time \(T_1 = \min(x_{(r)}, T) \), where \(1 \leq r \leq n \) and \(T \in (0, \infty) \) are fixed. The disadvantage of Type-I HCS is very few failures occurring until the pre-fixed time \(T_1 \). To overcome this disadvantage, Childs et al.[5] proposed a new HCS, referred to as Type-II hybrid censoring scheme (Type-II HCS), which guarantees fixed number of failures. In this case, the termination time of the experiment is \(T_2 = \max(x_{(r)}, T) \), where \(1 \leq r \leq n \) and \(T \in (0, \infty) \) are fixed. Although the Type-II HCS guarantees a specified number of failures, it has the disadvantage that it might take a very long time to observe \(r \) failures and complete the life-test. Chandrasekara et al.[6] improved these schemes of censored sampling by introducing two extensions of this type, namely as generalized Type-I HCS and generalized Type-II HCS. In generalized Type-I HCS, one fixes \(k, r \in \{1, 2, \ldots, n\} \) and time \(T \in (0, \infty) \) where \(k < r < n \). If the \(k^{th} \) failure happens before time \(T \), the termination time of the experiment is \(T^* = \min(x_{(r)}, T) \). If the \(k^{th} \) failure happens after time \(T \), the termination time in this case is \(x_{(r)} \). In generalized Type-II HCS, one fixes \(r \in \{1, 2, \ldots, n\} \) and \(T_1, T_2 \in (0, \infty) \) s.t. \(T_1 < T_2 \). If the \(r^{th} \) failure happens before time \(T_1 \), the termination time of the experiment is \(T_1 \); if the \(r^{th} \) failure happened between \(T_1 \) and \(T_2 \), the termination time in this case is \(x_{(r)} \); otherwise, the experiment is finished at \(T_2 \). Though these two new schemes of censored sampling are improvements over the old ones, they still face some problems. For example, in the generalized Type-I HCS, because of only one pre-assigned time \(T \), we cannot guarantee \(r \) failures. In the generalized Type-II HCS, there is a possibility of not observing any failure at all or observe very few failures until the pre-fixed time \(T_2 \), and so it has the problem as the Type-I HCS. To avoid the drawbacks in these schemes, Balakrishnan et al.[8] introduced a mixture of generalized Type-I HCS and generalized Type-II HCS and named the unified hybrid censoring scheme (UHCS), which can be described as follows, fix integers \(r, k \in \{1, 2, \ldots, n\} \) where \(k < r < n \) and time points \(T_1, T_2 \in (0, \infty) \) where \(T_1 < T_2 \). If the \(k^{th} \) failure happens before time \(T_1 \), the termination time of the experiment is \(T^* = \min(x_{(r)}, T_1, T_2) \). If the \(k^{th} \) failure occurs between \(T_1 \) and \(T_2 \), the termination time is \(T^* = \min(x_{(r)}, T_2) \) and if the \(k^{th} \) failure occurs after time \(T_2 \), the experiment is finished at . Under
this censoring scheme, we can guarantee that the experiment would be finished at most in time T_2
with at least k failures and if not, we can guarantee exactly k failures. Therefore, under this UHCS, we
have the following six cases:

Case I: $0 < x_{kn} < x_{rn} < T_1 < T_2$ in this case $T^* = T_1$.
Case II: $0 < x_{kn} < T_1 < x_{rn} < T_2$ in this case $T^* = x_{rn}$.
Case III: $0 < x_{kn} < T_1 < T_2 < x_{rn}$ in this case $T^* = T_2$.
Case IV: $0 < T_1 < x_{kn} < x_{rn} < T_2$ in this case $T^* = x_{rn}$.
Case V: $0 < T_1 < x_{kn} < T_2 < x_{rn}$ in this case $T^* = T_2$.
Case VI: $0 < T_1 < T_2 < x_{kn} < x_{rn}$ in this case $T^* = x_{kn}$.

The article is organized as follows. In the next section, the maximum likelihood (ML) estimators
of the unknown parameters. In section (3), asymptotic confidence intervals (CIs) based on ML
estimator are obtained. In section (4), we will study Bayesian estimation based on balanced loss
functions. MCMC for estimating the posterior distribution of the unknown parameters, survival
function, failure rate function and CV in section (5). Finally, real data set has been analyzed in section
(6), and conclusion is given in section (7).

2 - Maximum likelihood estimation:

In this section we derive the ML estimations of the unknown parameters of EG distribution, $S(t)$,$h(t)$, and CV under UHCS as follows. Let $x_{kn}, x_{kn}, \ldots, x_{kn}$ be an UHCS observed from a life test
involving n units taken from a population with $F(x)$ and $f(x)$ given in Equations (1) and (2), then the
likelihood function of θ, γ, for six cases is given by

$$L(x; \theta; \gamma) = \frac{n!}{(n-D)! \prod_{i=1}^{D} \{1-F(x_i)[1-F(c)]^{n-D}\}}.$$ (8)

Where D represent number of failures up to time c. And is given by

$$(D, c) = \begin{cases} (d_1, T_1) & \text{for I}, \\ (r, x_{rn}) & \text{for II and IV}, \\ (d_2, T_2) & \text{for III and V}, \\ (k, x_{kn}) & \text{for VI}. \\ \end{cases}$$ (9)

where d_1 and d_2 the number of failures that occur before T_1 and T_2, respectively. Then the likelihood function is given

$$L(x; \theta, \gamma) = \frac{n!}{(n-D)! \prod_{i=1}^{D} \{1-F(x_i)[1-F(c)]^{n-D}\}} \left[\prod_{i=1}^{D} \theta^{x_i} \gamma^{x_i} (1-\gamma) e^{-\gamma x_i} \right]^{n-D},$$ \hspace{1cm} (10)

the estimation of the parameters θ and γ, can be obtained by taking the logarithm of (10) we get

$$l(x; \theta, \gamma) = \ln K + D \ln \theta + 2D \ln \gamma + \ln \sum_{i=1}^{D} x_i - \gamma \sum_{i=1}^{D} x_i + (\theta - 1)$$

$$\sum_{i=1}^{D} x_i \ln [1 - (1 + \gamma x_i) e^{-\gamma x_i}] + (n - D) \ln [1 - (1 + \gamma c) e^{-\gamma c}] \theta],$$ \hspace{1cm} (11)

where $K = \frac{D!}{(n-D)!}$.

Then differentiate (11) with respect to θ and γ and solve the result equations as follows.

\[
\frac{D}{\theta} + \sum_{i=1}^{D} \ln[1 - (1 + \gamma x_i)e^{-\gamma c_i}]
- \frac{(n - D)[1 - (1 + \gamma)c]e^{-\gamma c}[1 - (1 + \gamma)c]e^{-\gamma c}]^{\theta}}{1 - [1 - (1 + \gamma)c]e^{-\gamma c}]^{\theta}} = 0, \tag{12}
\]

\[
\frac{2D}{\gamma} - \sum_{i=1}^{D} x_i + (\theta - 1) \sum_{i=1}^{D} \frac{\gamma x_i^2 e^{-\gamma x_i}}{1 - (1 + \gamma x_i)e^{-\gamma x_i}}
- \frac{\gamma e^{2(n - D)c}e^{-\gamma c}[1 - (1 + \gamma)c]e^{-\gamma c}]^{(\theta-1)}}{1 - [1 - (1 + \gamma)c]e^{-\gamma c}]^{\theta}} = 0. \tag{13}
\]

There is no analytical solution for these equations in θ and γ. Some numerical methods are used to get $\hat{\theta}_{ML}$ and $\hat{\gamma}_{ML}$. To find the value of ML estimators of $S(t)$, $h(t)$ and CV replace θ and γ by $\hat{\theta}_{ML}$ and $\hat{\gamma}_{ML}$.

\[
\begin{align*}
(S_{ML}(t) &= 1 - (1 - (1 + \gamma_{ML} t)e^{\gamma_{ML} t})^\theta, \quad h_{ML}(t) \tag{14} \\
D1 &= (-1)^{\theta} \binom{\hat{\theta}_{ML} - 1}{\hat{\theta}_{ML}} (\hat{\theta}_{ML})^{\theta} \\
\end{align*}
\]

where

\[
D1 = (-1)^{\theta} \binom{\hat{\theta}_{ML} - 1}{\hat{\theta}_{ML}} (\hat{\theta}_{ML})^{\theta}.
\]

3 - Bayesian estimation:

In this section, we find Bayesian estimates of the unknown parameters θ and γ, in addition to $S(t)$, $h(t)$ and CV based on balanced-squared error loss (BSEL), balanced linear-exponential (BLINEX) loss, and the balanced general entropy (BGE) loss functions. We assume that θ and γ are independently distribution as gamma α_1, β_1 and gamma α_2, β_2 priors, respectively. Then, the priors of θ and γ are

\[
g_1(\theta) \propto \theta^{a_1-1}e^{-b_1\theta}, \theta > 0, \\
g_2(\gamma) \propto \gamma^{a_2-1}e^{-b_2\gamma}, \gamma > 0,
\]

where a_1, a_2, b_1 and $b_2 > 0$. The joint prior distribution for θ and γ is

\[
g(\theta, \gamma) \propto \theta^{a_1-1}e^{-b_1\theta}\gamma^{a_2-1}e^{-b_2\gamma}.
\]

The posterior distribution is given by

\[
g^*(\theta, \gamma | x) = \frac{L(x | \theta, \gamma)g(\theta, \gamma)}{f(x)} = \frac{L(x | \theta, \gamma)g(\theta, \gamma)}{\int L(x | \theta, \gamma)g(\theta, \gamma) \, d\theta, \, d\gamma}, \tag{16}
\]

where $g(\alpha)$ is the prior distribution for the parameter, $L(x | \alpha)$ is the likelihood function, $f(x)$ is the marginal function and $g^*(\theta, \gamma | x)$, is the posterior distribution for the parameter.

From (15) and (16) we obtain the joint posterior density function as follows

\[
g^*(\theta, \gamma | x) \propto \theta^{D+a_1-1}\gamma^{a_2-1}e^{-b_1\theta - b_2\gamma}e^{\theta D + \gamma D + \sum_{i=1}^{D} x_i} [1 - (1 + \gamma ce^{-\gamma c})^{n-D}].
\]
Note that it is not possible to calculate (17) analytically because it very difficult to get clear forms for the marginal posterior distributions for each parameter. Then, we suggested method to approximate (17), this method is Markov Chain Monte Carlo.

See Jozani et al.[9] presented a generalized loss function called the balanced loss function of the form

$$L_{\rho,\omega,\xi_0}(\phi, \rho) = \omega \rho(\xi, \xi_0) + (1 - \omega)\rho(\phi, \xi).$$

(18)

where $0 \leq \omega \leq 1$, ρ is an arbitrary loss function and ξ_0 is a chosen prior estimator of ϕ and ξ is an estimator. In BSEL loss function $\rho(\phi, \xi) = (\xi - \phi)^2$, then (18) take the form

$$L_{\rho,\omega,\xi_0} = \omega(\xi - \xi_0)^2 + (1 - \omega)(\xi - \phi)^2,$$

and the Bayes estimate in this case is

$$\phi_{BS}(\tilde{x}) = \omega\xi_0 + (1 - \omega)E(\phi|\tilde{x}).$$

(19)

If we choice

$$\rho(\phi, \xi) = e^{a(\xi - \xi_0)} - a(\xi - \phi) - 1,$$

we will get the BLINEX loss function where $a \neq 0$, and the Bayes estimate of ϕ in this case is, see Zellner[10]

$$\phi_{BL}(\tilde{x}) = \frac{-1}{a} \ln[\omega e^{-a\xi_0} + (1 - \omega)E(e^{-a\phi}|\tilde{x})].$$

(20)

And if we choice

$$\rho(\xi, \phi) = \left(\frac{\xi_0}{\phi}\right)^{-a} - a\ln\left(\frac{\xi_0}{\phi}\right) - 1,$$

we will get the BGE loss function where $a \neq 0$, and the Bayes estimate of ϕ in this case is

$$\phi_{BG}(\tilde{x}) = \left[\omega(\xi_0)^{-a} + (1 - \omega)E(\phi^{-a}|\tilde{x})\right]^{\frac{1}{-a}}.$$

(21)

4 - Confidence Interval

Consider a life-testing experiment in which n similar units are located on a life-test. Let $x_1 < x_2 < \cdots < x_n$ denote the corresponding life-times from EG distribution. The Fisher information matrix $I(\theta, \gamma)$, is obtained by taking the expectation of minus of the second derivatives of the log-likelihood of the parameters θ and γ given the vector of observations.

$$I_{ij} = -E\left(\frac{\partial^2}{\partial \phi_i \partial \phi_j}\right); \quad i, j = 1, 2, \phi_1 = \theta, \phi_2 = \gamma.$$

(22)

Take the approximate asymptotic variance-covariance matrix for the ML estimators.

$$[\Delta W] = \left[\begin{array}{cc}
-\frac{\partial^2}{\partial \phi_1^2} & -\frac{\partial^2}{\partial \phi_1 \partial \gamma} \\
-\frac{\partial^2}{\partial \phi_1 \partial \theta} & -\frac{\partial^2}{\partial \phi_1 \partial \gamma}
\end{array}\right]^{-1}
\begin{bmatrix}
\text{var}(\hat{\theta}) & \text{corr}(\hat{\theta}, \hat{\gamma}) \\
\text{corr}(\hat{\gamma}, \hat{\theta}) & \text{var}(\hat{\gamma})
\end{bmatrix}.$$

To calculate the approximate confidence intervals (ACI)s for θ and γ, we can use asymptotic normality of the ML estimators. Therefore, $(1 - \lambda)\%$ confidence intervals (CI)s for parameters θ and γ become
where \(\lambda \) is the percentile of the standard normal distribution with right-tail probability \(\lambda \).

To construct the asymptotic CIs of \(S(t) \), \(h(t) \) and CV, we need to find the variances of them, we use the delta method. According to this method, the variance of \(\hat{S}_{ML} \), \(\hat{h}_{ML} \) and \(\hat{CV}_{ML} \), can be approximated, respectively by:

\[
\hat{\sigma}^2_{S_{ML}} = [\nabla \hat{S}_{ML}]^T [\nabla \hat{S}_{ML}] \quad \hat{\sigma}^2_{h_{ML}} = [\nabla \hat{h}_{ML}]^T [\nabla \hat{h}_{ML}] \quad \text{and} \quad \hat{\sigma}^2_{CV_{ML}} = [\nabla \hat{CV}_{ML}]^T [\nabla \hat{CV}_{ML}],
\]

then, the \((1 - \lambda)100\%\) two sided CIs of \(\theta \), \(\gamma \), \(S(t) \), \(h(t) \) and CV, can be written as

\[
\left(\hat{\theta} \pm z_{(\lambda \mid 2 \lambda)} \sqrt{\hat{\sigma}^2_{\theta}} \right), \quad \left(\hat{\gamma} \pm z_{(\lambda \mid 2 \lambda)} \sqrt{\hat{\sigma}^2_{\gamma}} \right), \quad \left(\hat{S}(t) \pm z_{(\lambda \mid 2 \lambda)} \sqrt{\hat{\sigma}^2_{S(t)}} \right), \quad \left(\hat{h}(t) \pm z_{(\lambda \mid 2 \lambda)} \sqrt{\hat{\sigma}^2_{h(t)}} \right), \quad \left(\hat{CV}(t) \pm z_{(\lambda \mid 2 \lambda)} \sqrt{\hat{\sigma}^2_{CV(t)}} \right).
\]

5 - MCMC Method

Equation (17) is complicated and no closed form inferences appear possible. So, we use the MCMC method, see Chen and Shao[11]. To generate samples from the posterior distributions this samples can be drawn and then compute the Bayes estimates of \(\theta \) and \(\gamma \) in addition to \(S(t) \), \(h(t) \) and CV and also to construct associated CIs.

From (17), the posterior density function of \(\gamma \) given \(\theta \) is

\[
g^*_1(\gamma \mid \theta, X) = \gamma^{a_2 + D - 1} e^{-\Sigma D = 1 \Sigma x_i}. \]

(25)

Similarly, the full posterior conditional distribution for \(\theta \) is

\[
g^*_1(\theta \mid \gamma, X) = \gamma^{\theta + a_2 - 1} e^{-\theta b_2 + (\theta - 1) \Sigma D = 1 \Sigma x_i} \ln \left[1 - (1 + \gamma c) e^{-\gamma x} \right] \left[1 - (1 + \gamma c) e^{-\gamma x} \right]^{\theta - D}. \]

(26)

It can be seen that \(g^*_1(\gamma \mid \theta, X) \) is a gamma density with shape parameter \((D + a_2)\) and scale parameter \(b_2 + \sum_{i=1}^{D} x_i\). Also, \(g^*_1(\theta \mid \gamma, X) \) cannot be reduced analytically to well known distributions so we can not take sample directly by standard methods, and therefore we use the Metropolis-Hastings method with normal proposal distribution. MCMC algorithm used in this article to calculate the Bayesian estimate of \(\gamma \) and \(\theta \), \(S(t) \), \(h(t) \) and CV and find the corresponding CIs. Also, used to draw samples from the posterior density functions(17)

Algorithm
1) Start with initial \((\theta^{(0)}, \gamma^{(0)})\), \(N=\text{burn-in}\).

2) Set \(l = 1\).

3) Generate \(\gamma^{(l)}\) from Gamma \((D + a, 2, b, 2 + \sum_i (i = 1)^t D), x, 1\).

4) Using Metropolis-Hastings, see Metropolis et al.[12] generate \(\theta^{(l)}\) from \(\mathcal{N}(\theta^{(l-1)}, \sigma^2)\) proposal distribution. where \(\sigma^2\) is the variance of \(\gamma\) obtained using variance-covariance matrix.

5) Compute \(S(t), h(t)\) and \(CV\) as

\[
S^{(l)}(t) = 1 - \left(1 - (1 + \gamma^{(l)} t) e^{-\gamma^{(l)} t}\right)^{\theta^{(l)}},
\]

\[
h^{(l)}(t) = \frac{\theta^{(l)} \gamma^{(l)} \lambda^2 t e^{-\gamma^{(l)} t} \left[1 - (1 + \gamma^{(l)} t) e^{-\gamma^{(l)} t}\right]^{\theta^{(l)} - 1}}{1 - \left(1 - (1 + \gamma^{(l)} t) e^{-\gamma^{(l)} t}\right)^{\theta^{(l)}}},
\]

\[
CV^{(l)}(\theta) = \sqrt{(\theta^{(l)})/\gamma^{(l)}(\theta^{(l)})^2} \sum (q = 0) \gamma^{(l)} \lambda^4 \sum (i = 0) \gamma^{(l)} \lambda^2 D1 (\eta^{(l)} + 4)/((\eta^{(l)} + 4) - [\theta^{(l)}]) (\eta^{(l)}) \sum (q)
\]

6) Set \(l = l + 1\).

7) Repeat steps (3-6) \(N\) times.

8) By arranging \(\gamma^{(l)}, \theta^{(l)}, S^{(l)}(t), h^{(l)}(t),\) and \(CV^{(l)}\), \(l = M + 1, \ldots, N\) in ascending orders, the approximate \((1 - \gamma) \times 100\%\) CIs for \(\Phi = \gamma, \theta, S(t), h(t),\) or \(CV\) is

\[
\begin{pmatrix}
\Phi \\
\Phi^{(N-M+1)} \\
\Phi^{(N-M+\frac{1}{2})}
\end{pmatrix}.
\]

Then the approximate Bayes estimates of \(\Phi = \gamma, \theta, S(t), h(t)\) and \(CV\) based on BSEL, BLINEX and BGE loss functions

\[
\hat{\Phi}_{RS} = \omega \Phi_{ML} + \frac{1 - \omega}{N - M} \sum_{l=M+1}^{N} \Phi^{(l)},
\]

\[
\hat{\Phi}_{BL} = \frac{-1}{\lambda} \ln \left[e^{-\lambda \Phi_{ML}} + \frac{1 - \omega}{N - M} \sum_{l=M+1}^{N} e^{-\lambda \Phi^{(l)}} \right],
\]

\[
\hat{\Phi}_{BG} = \left[\omega (\Phi_{ML})^{-\alpha} + \frac{1 - \omega}{N - M} \sum_{l=M+1}^{N} (\Phi^{(l)})^{-\alpha} \right]^{-\frac{1}{\alpha}}.
\]

6 - Application to real life data

A real data set is taken from Kumar and Umesh[13], these data represent the average monthly rainfall obtained from the Information System for Management of Water Resources from the State of
So Paulo, including a period of 56 years from 1947 to 2003, for the month of November, which is represented as;

Table 1: real data set.

0.2	0.8	1.1	1.3	1.4	1.7	1.8	1.9	2.1	2.1	2.2	2.5	2.6	2.8
2.8	2.9	2.9	2.9	3.1	3.2	3.3	3.5	3.5	3.7	3.8	3.8	3.8	
3.9	4	4.1	4.1	4.6	4.7	4.8	5	5.2	5.2	5.4	5.4	5.4	5.4
5.5	5.5	6.2	6.2	6.7	6.9	7.3	7.3	7.4	8.7	8.8	9.9	10.8	24.1

We plot the empirical SF and the fitted SF in the Fig[1] they show that EG distribution (θ, γ) provide a reasonable fit to the above real data.

Figure 1: The empirical and fitted survival functions.

Now, we consider the case when the data are censored. We generate six UHCD sets from the uncensored data set as

Case I: $T_1 = 8, T_2 = 10, k = 40, r = 45$ in this case $D = 51, c = T_1 = 8$.
Case II: $T_1 = 5.6, T_2 = 10, k = 40, r = 45$ in this case $D = 45, c = x_{r,n} = 6.2$.
Case III: $T_1 = 5.8, T_2 = 7.6, k = 40, r = 50$ in this case $D = 48, c = T_2 = 7$.
Case IV: $T_1 = 4, T_2 = 6.7, k = 35, r = 47$ in this case $D = 47, c = x_{r,n} = 6.7$.
Case V: $T_1 = 2.7, T_2 = 3.6, k = 15, r = 25$ in this case $D = 19, c = T_2 = 3$.
Case VI: $T_1 = 2, T_2 = 3, k = 25, r = 30$ in this case $D = 25, c = x_{kn} = 3.5$.

In these cases, we used ML and Bayesian estimation to estimate the parameters γ, θ in addition to $S(t), h(t)$ and CV. We used MCMC where $M=11000$ MCMC sample and $N=1000$ values as "burn-in". used non-informative gamma priors for γ and θ when $a_1 = a_2 = b_1 = b_2 = 0$.

We computed the 95% ACIs based on the MCMC samples in Table (2). In Table (3) represent some characteristics of γ, θ in addition to $S(t), h(t)$ and CV. Also, we can determine the values of $\gamma, \theta, S(t = 0.4), h(t = 0.4)$, and CV, based on the three types of balanced loss functions with various value of a and ω, result are given in Table (4). The histogram of $\gamma, \theta, S(t), h(t)$ and CV are displayed in Fig[2]. Also, plot the MCMC output of $\gamma, \theta, S(t), h(t)$, and CV in Fig[3].
ON STUDY OF EXPONENTIATED GAMMA DISTRIBUTION BASED ON UNIFIED…

Figure 2: Histogram of $\gamma, \theta, S(t), h(t)$ and CV generated by MCMC method for case I.

Figure 3: Simulation number of $\gamma, \theta, S(t), h(t)$ and CV generated by MCMC method based on balanced loss function for Case I with non-informative priors.

It is clear this Figure for $\gamma, \theta, h(t)$ and CV have a long tail to the right, then they are said to be skewed to the right and have positive skewness but, $S(t)$ have a long tail to the left, then they are said to be skewed to the left and have negative skewness.
Table 2: The 95% confidence interval of ML estimates and MCMC for \(\gamma, \Theta, S, h \) and CV for six cases of UHCS based on the observed Fisher information matrix.

Cases	Par	Lower	MLE Upper	Length	Lower	MLE Upper	Length
	\(\gamma \)	0.39982	0.6845	0.28468	0.19619	0.34299	0.14683
	\(\Theta \)	0.83958	2.05042	1.21084	0.45913	0.96291	0.50378
Case I	\(S \)	0.9897	1.0031	0.0134	0.91159	0.9934	0.08184
	\(h \)	4.00183	9.42279	5.42095	2.21697	4.6295	2.4125
	\(CV \)	0.50876	0.70434	0.19558	0.7194	1.0536	0.3341
	\(\gamma \)	0.38006	0.68152	0.30146	0.21177	0.38315	0.17138
	\(\Theta \)	0.79624	2.02224	1.226	0.48616	1.05026	0.5641
	\(S \)	0.98875	1.00341	0.01466	0.91769	0.99502	0.07733
Case II	\(h \)	3.81221	9.30072	5.48851	2.34653	5.02775	2.68122
	\(CV \)	0.509	0.71591	0.20691	0.69175	1.02118	0.32943
	\(\gamma \)	0.38927	0.67925	0.28999	0.20466	0.35889	0.15423
	\(\Theta \)	0.8164	2.02353	1.20713	0.47825	1.00463	0.52638
	\(S \)	0.98909	1.00327	0.01418	0.91975	0.99442	0.07467
Case III	\(h \)	3.89941	9.30702	5.40761	2.31154	4.83319	2.52165
	\(CV \)	0.51014	0.71117	0.20103	0.70563	1.03036	0.32473
	\(\gamma \)	0.23002	0.7521	0.5221	0.29725	0.7229	0.4256
	\(\Theta \)	0.5219	2.0629	1.5409	0.77714	1.9367	1.1595
	\(S \)	0.9841	1.0055	0.0214	0.9596	0.99969	0.04003
Case IV	\(h \)	2.6338	9.4581	6.8243	3.64663	9.0134	5.3668
	\(CV \)	0.4817	0.7857	0.3093	0.54413	0.7975	0.2533
	\(\gamma \)	0.28522	0.72379	0.43857	0.27302	0.60084	0.32782
	\(\Theta \)	0.61335	2.04885	1.4355	0.71181	1.64676	0.93495
	\(S \)	0.9858	1.0048	0.019	0.95765	0.9993	0.04165
Case V	\(h \)	3.02603	9.40482	6.3788	3.36758	7.37641	4.36883
	\(CV \)	0.49217	0.76049	0.26832	0.57738	0.83375	0.25636

Table 3: The characteristics for \(\Theta, \gamma, S, h \) and CV for six cases of UHCS with non informative prior.

Cases	Par	Mean	Median	Mode	SD	MS	Ske
Case I	\(\gamma \)	0.2648	0.2632	0.2599	0.0372	0.2675	0.2709
	\(\Theta \)	0.6787	0.6807	0.6686	0.1299	0.6989	0.4568
	\(S \)	0.9672	0.9722	0.983	0.022	0.9671	-1.7871
	\(h \)	3.318	3.285	3.2324	0.6234	3.3708	0.4494
	\(CV \)	0.8623	0.8532	0.83	0.0865	0.8676	0.6634
Case II	\(\gamma \)	0.2914	0.2889	0.2839	0.0435	0.2947	0.3359
	\(\Theta \)	0.7535	0.745	0.7279	0.1423	0.7668	0.2913
	\(S \)	0.9724	0.9776	0.9878	0.0204	0.9727	-2.3654
	\(h \)	3.6217	3.587	3.5177	0.6792	3.6848	0.2831
	\(CV \)	0.8236	0.8146	0.7967	0.0832	0.8278	0.9485
Case III	\(\gamma \)	0.2754	0.273	0.2683	0.0394	0.2782	0.3244
	\(\Theta \)	0.7144	0.7066	0.6909	0.1321	0.7265	0.4369
	\(S \)	0.9698	0.9744	0.9836	0.0198	0.97	-1.7132
	\(h \)	3.4415	3.4061	3.3353	0.6321	3.499	0.4289
	\(CV \)	0.8452	0.8369	0.8202	0.0819	0.8492	0.6563
Case IV	\(\gamma \)	0.2804	0.278	0.275	0.0409	0.2834	0.2705
	\(\Theta \)	0.7267	0.7163	0.6953	0.1363	0.7394	0.526
	\(S \)	0.9708	0.975	0.9833	0.019	0.971	-1.6039
ON STUDY OF EXPONENTIATED GAMMA DISTRIBUTION BASED ON UNIFIED

Cases	Par	MLE	\(\phi \)	BSEL	\(a_1 = 3 \)	\(a_2 = 0.25 \)	\(a_2 = 10 \)	\(a_1 = 3 \)	\(a_2 = 0.25 \)	\(a_2 = 10 \)
Case V	\(\gamma \)	0.4874	0.4803	0.466	0.11	0.4996	0.4542			
	\(\Theta \)	1.3005	1.2744	1.2221	0.2987	1.3342	0.4308			
	\(S \)	0.9905	0.9948	1.002	0.0112	0.9912	-3.7747			
	\(h \)	6.0822	5.9558	5.711	1.3747	6.2356	0.4201			
	CV	0.645	0.6374	0.622	0.0647	0.6483	0.9491			
Case VI	\(\gamma \)	0.4224	0.4168	0.4057	0.0839	0.4307	0.3651			
	\(\Theta \)	1.1374	1.1222	1.0918	0.2496	1.1645	0.4215			
	\(S \)	0.9886	0.9925	1.0001	0.0132	0.9887	4.2001			
	\(h \)	5.3681	5.2968	5.1541	1.1643	5.492	0.4129			
	CV	0.6806	0.6719	0.6545	0.0651	0.6837	0.8747			

Table 4: Estimation of \(\gamma, \Theta, S, h \) and CV for MCMC method for six cases of UHCS with non informative prior.
Cases	Par	MIE	BSEL	a₁=−3	BLINEX	a₂=0.25	a₂=10	BGE	a₂=0.25	a₂=10	
	γ	0.53079	0.2	0.33857	0.35623	0.33725	0.30205	0.3704	0.3218	0.26228	
	0.4	0.38663	0.40915	0.38476	0.32749	0.42265	0.36262	0.26992			
	0.6	0.43468	0.45481	0.43285	0.36171	0.46444	0.41009	0.28108			
	1	0.53079	0.53079	0.53079	0.53079	0.53079	0.53079	0.53079			
	θ	1.41997	0.2	0.85313	1.02319	0.84161	0.65756	0.96263	0.7949	0.55516	
	0.4	0.99484	1.17398	0.97855	0.68631	1.14663	0.91183	0.57136			
	0.6	1.13655	1.27743	1.12035	0.72682	1.23367	1.05124	0.595			
	1	1.41997	1.41997	1.41997	1.41997	1.41997	1.41997	1.41997			
Case	S	0.99618	0.2	0.97466	0.97531	0.97461	0.97212	0.97512	0.97437	0.97167	
III		0.4	0.98004	0.98065	0.97999	0.97762	0.98047	0.97976	0.9772		
	0.6	0.98542	0.98591	0.98538	0.98343	0.98576	0.9852	0.9839			
	1	0.99618	0.99618	0.99618	0.99618	0.99618	0.99618	0.99618			
	h	6.60322	0.2	0.40624	0.606918	3.84677	2.08899	4.53478	3.80627	2.69447	
	0.4	4.69765	6.29871	4.37859	2.11776	5.21612	4.33807	2.7731			
	0.6	5.33284	6.43335	4.99211	2.15831	5.7548	4.96606	2.88782			
	1	6.60322	6.60322	6.60322	6.60322	6.60322	6.60322	6.60322			
	CV	0.61066	0.2	0.7976	0.81918	0.79581	0.73	0.81518	0.78604	0.72481	
	0.4	0.75087	0.77798	0.74871	0.6846	0.77373	0.73685	0.64889			
	0.6	0.70413	0.73096	0.70216	0.65349	0.7273	0.69144	0.62401			
	1	0.61066	0.61066	0.61066	0.61066	0.61066	0.61066	0.61066			
	γ	0.5309	0.2	0.3305	0.3494	0.32911	0.2928	0.3652	0.3126	0.2520	
	0.4	0.3806	0.4048	0.3786	0.3185	0.4197	0.3546	0.2594			
	0.6	0.4307	0.4524	0.42848	0.34925	0.46469	0.40192	0.26638			
	1	0.5309	0.5309	0.5309	0.5309	0.5309	0.5309	0.5309			
	θ	1.4096	0.2	0.86331	1.02371	0.84343	0.66042	0.96354	0.79689	0.58832	
	0.4	0.9999	1.17423	0.97996	0.68917	1.11513	0.9137	0.60548			
	0.6	1.1364	1.27755	1.12132	0.72969	1.23394	1.05272	0.63053			
	1	1.4096	1.4096	1.4096	1.4096	1.4096	1.4096	1.4096			
Case	IV	S	0.99609	0.2	0.9758	0.97557	0.9749	0.9726	0.97538	0.97467	0.9722
	0.4	0.9809	0.98084	0.98021	0.97799	0.98066	0.97999	0.97762			
	0.6	0.9859	0.98603	0.98552	0.98369	0.98589	0.98353	0.98339			
	1	0.99609	0.99609	0.99609	0.99609	0.99609	0.99609	0.99609			
	h	6.55832	0.2	4.1101	6.06778	3.85611	2.32734	4.53911	3.81621	2.84456	
	0.4	4.7221	6.29818	4.38659	2.35611	5.21858	4.34683	2.92756			
	0.6	5.3342	6.43312	4.99833	2.39666	5.75614	4.97298	3.0486			
	1	6.5583	6.55832	6.5583	6.5583	6.5583	6.5583	6.5583			
Continued Table (4)

Cases	Par	MIE	ω	BSEL	\(a = -3\)	\(a = 0.25\)	\(a = 10\)	\(a = -3\)	\(a = 0.25\)	\(a = 10\)
\(\gamma\)	0.46407	0.2	0.47427	0.48834	0.47317	0.43429	0.49288	0.46261	0.32822	
\(\theta\)	1.23507	0.2	1.27973	1.40017	1.27148	1.08007	1.33181	1.24745	0.93483	
Case V	S 0.9943	0.2	0.99207	0.99222	0.99206	0.99155	0.99216	0.99201	0.99147	
			0.99263	0.99272	0.99262	0.99223	0.99269	0.99258	0.99217	
			0.99319	0.99325	0.99318	0.99292	0.99323	0.99316	0.99288	
			0.9943	0.9943	0.9943	0.9943	0.9943	0.9943	0.9943	
h 5.79924	0.2	5.99682	9.29689	5.82733	3.16766	6.23369	5.84977	4.41527		
			5.94743	9.201	5.80209	3.19642	6.13078	5.83709	4.53434	
			5.89803	9.06585	5.81326	3.23697	6.0243	5.82444	4.70226	
CV 0.64555	0.2	0.64639	0.65131	0.64601	0.63313	0.65125	0.64856	0.64722		
			0.64618	0.64988	0.6459	0.6361	0.65048	0.64706	0.64703	
			0.64597	0.64844	0.64578	0.63915	0.64942	0.64656	0.64674	
			0.64555	0.64555	0.64555	0.64555	0.64555	0.64555	0.64555	

Obviously from Table (4) when \(ω\) goes to one all results of Bayes estimates under BSE, BLINEX and BGE loss functions for \(θ, γ, S(t)\), \(h(t)\) and CV are close to corresponding ML estimates and equal to ML estimates when \(ω = 1\). If the shape parameter \(a\) increase the value of \(θ, γ, S(t)\), \(h(t)\) and CV are decreased in BLINEX and BGE loss functions. Obviously from Table (4), the Bayes estimates under BLINEX loss function is approximately the Bayes estimates under BSE loss function and there for almost symmetric for \(a = 0.25\) .
7 - CONCLUSION

In this paper, we considered the Bayes estimation of the unknown parameters of the exponentiated gamma distribution when the data is collected under the unified hybrid censored data. The MLEs and the CIs based on the observed Fisher information matrix have been obtained. Under balanced loss functions we can obtain Bayes estimate so, we can using MCMC technique to computing the Bayes estimation under three different balanced losses functions. We have applied the developed techniques on a real data set to demonstrate how the proposed method can be used in practice.

REFERENCES

[1] Gupta, R.C., Gupta, P.L., and Gupta, R.D. (1998). Modeling failure time data by Lehman alternatives. Journal of Statistical Planning and Inference, 27, 887-904.

[2] Bakoban, R.A. (2010). Study on mixture of exponential and exponentiated gamma distributions. Advances in Applied Mathematics, 40, 101-127.

[3] Shawky, A.I. and Bakoban, R.A. (2012). Exponentiated gamma distribution: different methods of estimations. Journal of Applied Mathematics, 23, 284-296.

[4] Epstein, B. (1954). Truncated life-test in exponential case. The Annals of Mathematical Statistics, 25, 555-564.

[5] Childs, A., Chandrasekar, B., Balakrishnan, N., and Kundu, D. (2003). Exact likelihood inference based on type-I and type-II hybrid censored samples from the exponential distribution. Annals of the Institute of Statistical Mathematics, 55, 319-330.

[6] Chandrasekar, B., Childs, A., and Balakrishnan, N. (2004). Exact likelihood inference for the exponential distribution under generalized type-I and type-II hybrid censoring. Naval Research Logistics, 51, 994-1000.

[7] Saieed F. Ateya. (2015). Estimation under Inverse Weibull Distribution based on Balakrishnan's Unified Hybrid Censored Scheme. Communications in Statistics - Simulation and Computation, 41, 4132-4141 (Online).

[8] Balakrishnan N, Rasouli A, Sanjari Farsipour N. (2008) Exact likelihood inference based on an unified hybrid censored sample from the exponential distribution. Journal of Statistical Computation and Simulation, 78, 475-788.

[9] Jozani, M.J., Marchand, E., and Parsian, A. (2012). Bayes and robust Bayesian estimation under a general class of balanced loss functions. Statistical Papers, 53, 51-60.

[10] Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss functions. Journal of the American Statistical Association, 81, 446-545.

[11] Chen, M.H. and Shao, Q.M. (1999). Monte Carlo estimation of Bayesian credible and HPD intervals. Journal of Computational and Graphical Statistics, 8, 69-92.

[12] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical and Physics, 21, 1087-1091.

[13] Kumar, S. and Umesh, (2015). Bayesian estimation for exponentiated gamma distribution under Progressive Type-II Censoring using different approximation techniques. Journal of Data Science, 13, 551-568.
الملخص العربي

في هذا المقال تم دراسة تقدير المعلمات المجهول لوزيع جاما الاسي باستخدام هجين وحد من البيانات المراقبة بالإضافة إلى حساب قيم دالة البقاء ومعدل الفشل ومعامل الاختلاف. وتم دراسة طريقة القيم العليا والتقدير البازي لهذا التوزيع ولاغداد التقدير البازي للمعلمات سوف نستخدم طريقة سلسلة ماركوف مونتي كارلو وتم حساب ظورات الثقة للمعلمات المجهول دالة البقاء على قيد الحياة ومعدل الفشل ومعامل الاختلاف. تستند جميع النتائج التي تم الحصول عليها إلى الخسارة التربيعية المتوازنة، والخسارة الأسي المتوازنة، ووظائف فقدان الاتروبي العامة المتوازنة. في نهاية المقال، استخدمنا بيانات حقيقية لتحديد كيفية استخدام طريقة التقدير في الممارسة العملية.