PDGF-D Expression Is Down-Regulated by TGFβ in Fibroblasts

Saima Charni Chaabane1, Alexandra Coomans de Brachène1, Ahmed Essaghir1, Amélie Velghe1, Sandra Lo Re2, Julie Stockis1, Sophie Lucas1,3, Levon M. Khachigian4, François Huaux2, Jean-Baptiste Demoulin1*

1 de Duve Institute, Université catholique de Louvain, Brussels, Belgium, 2Louvain center of Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium, 3 Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium, 4 Center of Vascular Research, University of New South Wales, Sydney, Australia

Abstract

Transforming growth factor-β (TGFβ) is a key mediator of fibrogenesis. TGFβ is overexpressed and activated in fibrotic diseases, regulates fibroblast differentiation into myofibroblasts and induces extracellular matrix deposition. Platelet-derived growth factor (PDGF) is also a regulator of fibrogenesis. Some studies showed a link between TGFβ and PDGF in certain fibrotic diseases. TGFβ induces PDGF receptor alpha expression in scleroderma fibroblasts. PDGF-C and -D are the most recently discovered ligands and also play a role in fibrosis. In this study, we report the first link between TGFβ and PDGF-D and -C ligands. In normal fibroblasts, TGFβ down-regulated PDGF-D expression and up-regulated PDGF-C expression at the mRNA and protein levels. This phenomenon is not limited to TGFβ since other growth factors implicated in fibrosis, such as FGF, EGF and PDGF-B, also regulated PDGF-D and PDGF-C expression. Among different kinase inhibitors, only TGFβ receptor inhibitors and the IkB kinase (IKK) inhibitor BMS-345541 blocked the effect of TGFβ. However, activation of the classical NF-κB pathway was not involved. Interestingly, in a model of lung fibrosis induced by either bleomycin or silica, PDGF-D was down-regulated, which correlates with the production of TGFβ and other fibrotic growth factors. In conclusion, the down-regulation of PDGF-D by TGFβ and other growth factors may serve as a negative feedback in the network of cytokines that control fibrosis.

Introduction

Transforming growth factor-β (TGFβ) family members are cytokines that regulate numerous physiological processes such as embryonic development, cell differentiation, proliferation, migration and extracellular matrix production [1,2]. TGFβ has been linked to several human pathologies including fibrosis and carcinogenesis [3,4,5]. TGFβ is a central mediator of several fibrotic diseases like renal fibrosis or liver fibrosis [6,7]. Smad proteins are the core components of the intracellular signaling cascade of TGFβ receptors. The Smad proteins transduce signals from the cell surface directly to the nucleus where they regulate gene transcription in cooperation with co-activators and/or co-repressors. In addition to the Smad pathway, also known as the conventional pathway, Smad-independent pathways can be activated by TGFβ, including TGFβ-associated kinase 1 (TAK1) [8], certain MAPKs such as extracellular signal-regulated kinase (ERK) 1 and 2, Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase [8,9]. The PI3K-Akt-mTOR pathway has also been reported to be activated by TGFβ [10]. The importance of these alternative pathways, NF-κB in particular, has been debated. NF-κB activation by TGFβ seems to be cell type dependent [11,12]. Platelet-derived growth factors (PDGF) are also major players in fibrosis including intestinal, cardiac and liver fibrosis [13,14,15]. PDGFs are potent mitogens for myofibroblasts while TGFβ stimulates collagen deposition by these cells [16,17]. PDGF family members are composed of 4 ligands A, B, C and D binding to two receptors, alpha and beta. PDGF-A and -B are well characterized and their role in fibrotic diseases is well established [13,15]. PDGF-C and -D were discovered more recently and are also implicated in fibrosis. PDGF-C is overexpressed and activated in fibrotic tissues [15,14,15]. PDGF-D is overexpressed in fibrosis of the liver [23] and kidney [24]. By contrast, one study showed a negative correlation of PDGF-D expression in a mice model of bleomycin-induced lung fibrosis [19].
Crosstalk between TGFβ and PDGF has been reported in several fibrotic conditions. In a model of hepatic fibrosis, one report showed that TGFβ mediated the mitogenic effect of PDGF-BB, but not PDGF-AA, and this effect was due to the up-regulation of PDGFRβ mRNA and cell surface expression [25]. In scleroderma, TGFβ also enhances PDGF-A-stimulated growth by increasing the expression of PDGFRα [26]. All together these are the most relevant studies that reported a regulation of PDGFs by TGFβ in fibrotic disorders.

In the present study, we demonstrate that TGFβ down-regulates PDGF-D expression in normal fibroblasts.

Materials and Methods

Ethics Statement

This study was approved by the local ethical committee for animal experiments (Comité d’Ethique pour l’Expérimentation Animale, Permit number LA1230312). Experiments were carried out in strict accordance with the Belgian and European regulations. All surgery was performed after euthanasia by intraperitoneal injection of 20 mg of sodium pentobarbital (Certa, Braine l’Alleud, Belgium), and all efforts were made to minimize suffering.

Reagents and antibodies

Sources were as follows: Recombinant human TGFβ1, PDGF-BB, EGF, FGF-4 and IL1β were purchased from Peprotech; p38 inhibitors SB202190 and SB203580 from Millipore; HDAC inhibitor Trichostatin (TSA) was a kind gift from Pr. De Smet (Université catholique de Louvain, Belgium); ALK5 inhibitor SB431542, IKK inhibitor BMS-345541 and MEK1/2 inhibitor U0126 were from Calbiochem; PDGF-D antibody from Santa Cruz; PDGF-C monoclonal antibody was a kind gift from Pr. U. Eriksson (Ludwig Institute for Cancer Research & Karolinska Institute, Sweden) [27]. Actin antibody was from Sigma; anti-mouse HRP from Santa Cruz.

Cell lines

MRC5 human lung fibroblasts (Sigma-Aldrich), AG01518 and AG01523 human foreskin fibroblasts (both from Coriell Institute for Medical Research, Camden, NJ) were grown in Quantum 333 fibroblast growth medium (PAA laboratories, Pasching, Austria). HEK293T (from ATCC) cells were grown in DMEM supplemented with 10% fetal bovine serum (FBS), 50 U/ml penicillin and 50 μg/ml streptomycin (Gibco, Life Technologies). Gamma2A human fibrosarcoma cells (a kind gift from Prof Stefan Constantinescu, de Duve Institute, Belgium) were grown as described by Dusa et al. [29].

Lentivirus-mediated stable gene silencing

Short hairpin RNA (shRNA) used in this study were as follows: (i) pLKO.1 scramble shRNA: CCTAAGGTTAATGCCTGCTC-TCG (Addgene, 1864), (ii) pGIPZ shmsmd4 (1): AGCAGTTGATGTTAGAGA (Open Biosystems, V2LHS_37199), (iii) pGIPZ shmsmd4 (2): CAGTGGTAATTTCTATGGCTTAA (Open Biosystems, V2LHL_37199). Lentiviral plasmids expressing the above shRNAs were transfected with the packaging plasmid pCMV-dR8.2 dvpr and the envelope plasmid pCMV-VSV-G (Addgene catalog numbers 8453 and 8454) into HEK293T cells using FuGENE 6 (Roche Applied Science) as described [30]. Virus-containing supernatants were collected at 36 and 60 hours after transfection and used to infect fibroblasts in the presence of 8 μg/ml of polybrene (Sigma). Then cells were incubated with standard growth medium containing 2 μg/ml puromycin for 3 days prior to cell analysis.

Reverse transcriptase-PCR and quantitative PCR analysis

Subconfluent AG01523 or MRC5 fibroblasts were plated at 60000 cells/plate, starved for 24 hours in the presence of 0.05% essentially fatty acid free BSA (Sigma) and treated for 30 minutes in presence or absence of the following inhibitors: TGFβ receptor inhibitor (SB431542, 10 μM), MEK1/2 inhibitor (U0126, 10 μM), p38 inhibitors (SB203580 and SB202190, 10 μM), IKK inhibitor (BMS-345541, 10 μM), PDGFRα inhibitor (LY294002, 20 μM), HDAC inhibitor (TSA, 300 nM) or vehicle (DMSO). Cells were then incubated during 24 hours in the presence of TGFβ (4 ng/ml). Total RNA was extracted from cells using the Qiagen RNeasy extraction kit according to the manufacturer’s instructions. Complementary DNA synthesis from total RNA was performed following the M-MLV reverse transcriptase (Invitrogen) protocol. Real time quantitative PCR (q-PCR) was performed using SYBR-green (Abgene kit) on an iCycler instrument (Bio-Rad) as described [30]. The expression of the RPLP0 and β-Actin genes was used to normalize q-PCR experiments. All q-PCR primer sequences used in this study are provided in Table S1.

Protein extraction and Western blotting

Subconfluent MRC5 cells were plated at 200000 cells/well (six well plates), starved for 24 hours in the presence of 0.05% essentially fatty acid free BSA (Sigma) and treated with or without TGFβ (4 ng/ml) during 24 or 48 hours. Cells were washed with phosphate-buffered saline (PBS) and then lysed as described [30]. Equal amounts of total protein extracts were analyzed by SDS-PAGE, then transferred on a polyvinylidene difluoride membrane (PVDF) and subjected to antibodies against PDGF-D (1 μg/ml, Santa Cruz), PDGF-C (1 μg/ml, monoclonal antibody) or β-actin (0.5 μg/ml, Sigma).

Luciferase assay

Gamma-2A cells were plated in 24-well plates and transfected using Lipofectamine 2000 (Invitrogen) with 1 μg p1168-PDFG-D-luc vector [31] or 1 μg of GAGA12 vector [32] as a control, 1 μg pCDNA3 or pEF-BOS-ALK3 [33] and 1.5 μg pEF-β-galactosidase (pDRIVEChEF1-RU3, Invitrogen) [28]. Cells were incubated for 4 hours, washed with PBS, and then cultured in normal medium for 24 hours. Cells were then treated with 10 μM of IKK inhibitor (BMS-345541) 30 min prior to TGFβ stimulation (4 ng/ml) for 24 hours. We then measured the luciferase and β-galactosidase activities.

Enzyme-linked immunoabsorbent assays (ELISA)

An ELISA kit was obtained to measure concentrations of PDGF-DD (R&D systems) in supernatants of MRC5 cells cultured in the absence or presence of TGFβ (4 ng/ml) for 24 h. The detection limit of this assay was 1.67 pg/ml.

Lung Fibrosis induced with crystalline silica particles

NMRI mice were instilled either with 2.5 μg of silica per mouse or with NaCl for control condition. Three mice were used for control group and four for the silica-treated group. Mice were sacrificed 60 or 120 days post instillation by intraperitoneal injection of 20 mg of sodium pentobarbital (Certa, Braine l’Alleud, Belgium) and total RNA was extracted from their lung samples [34].
Role of Smad-independent pathways in PDGF-D gene regulation by TGFβ

We next tested whether TGFβ regulates PDGF-D through a Smad-independent pathway. We used specific pharmacological inhibitors to inhibit the PI3K, MAPK and IKK pathways in the presence or absence of TGFβ. Figure 3A shows the effect of PI3K (LY294002) and MEK1/2 (U0126) inhibitors, Figure 3B, the effect of two p38 MAPK inhibitors (SB202190 and SB203580) and Figure 3C, the effect of a JNK inhibitor (SP600125). None of these inhibitors influenced PDGF-D expression. These results suggested that neither the PI3K nor MAPK pathways mediated PDGF-D regulation by TGFβ. We next investigated the NF-κB pathway, by treating fibroblasts with an inhibitor of IKK (BMS-345541). The IKK inhibitor alone had no effect on basal PDGF-D expression, but it abrogated the inhibition of PDGF-D expression observed in the presence of TGFβ (Figure 3D). Similar results were obtained in AG01523 fibroblasts (data not shown). These data suggest that TGFβ regulates PDGF-D via IKK or another unknown BMS-345541 target.

PDGF-D is down-regulated in a mouse model of lung fibrosis

TGFβ is implicated in several fibrotic diseases. To analyze the expression of PDGF-D and PDGF-C genes in the context of a fibrotic disease, we performed RT-qPCR on lungs collected from NMRI mice that have received intra-tracheal instillations of silica. Mice developed lung fibrosis upon silica instillation, and Rabolli et al. showed that TGFβ is highly expressed and released in fibrotic lungs by comparison to saline controls in this model [34]. PDGF-D and PDGF-C gene expression was analyzed 60 and 120 days post instillation by RT-qPCR. PDGF-D expression was significantly down-regulated in fibrotic lungs by comparison to controls (Figure 5A). PDGF-C expression, however, was not different in fibrotic lungs by comparison to controls (Figure 5B). Similar results were obtained with another strain of mice (C57/Bl6) instilled or not with silica (data not shown).

PDGF-D is down-regulated by other growth factors involved in fibrosis

We next tested whether, in addition to TGFβ, other growth factors could also regulate PDGF-D and PDGF-C expression. In our previous microarray analysis, we found that PDGF-D expression was significantly down-regulated in fibroblasts 24 hours after stimulation with PDGF-BB or FGF-2 (Figure S2). Using RT-qPCR, we observed that FGF, EGF and PDGF-BB down-regulated PDGF-D and up-regulated PDGF-C expression (Figures 6A and 6B). We also investigated whether inflammatory cytokines could...
regulate PDGF-D expression. Interleukin-1β, alone or in combination with TGFβ, did not regulate PDGF-D expression (Figure 6C).

Discussion

In this study we have shown that TGFβ regulates PDGF-C and -D ligand expression at both the mRNA and the protein level in normal human fibroblasts. To our knowledge, this is the first study showing that the expression of PDGF-C and -D ligands is regulated by TGFβ. Furthermore, a recent study reported that Bone morphogenetic proteins (BMPs), which are members of the of TGFβ superfamily, are repressors of PDGF-A in ovarian granulosa cells and tumors [37]. Here we showed that TGFβ induced PDGF-C in normal fibroblasts whereas PDGF-D was significantly down-regulated at the transcriptional level. Consistently, TGFβ inhibited PDGF-D secretion by the cells.

Smad proteins mediate TGFβ signaling. Down-regulation of Smad4 weakly restored PDGF-D expression in the presence of TGFβ. These partial effects might be explained in part by the fact that Smad4 expression was not completely abolished but Smad-independent pathways are likely to play a role. Additional non-canonical pathways are known to transduce TGFβ signals, and include ERK1/2, p38, JNK or PI3K pathways [10]. We showed that neither the PI3K nor the MAPK pathways are responsible for PDGF-D regulation by TGFβ. Moreover, a study performed in renal fibrosis identified two non-canonical TGFβ pathways, Abl and mTORC1, that play an important role in the development of fibrosis [38]. Our experiments with imatinib (an Abl inhibitor) and rapamycin (an mTOR inhibitor) did not support the hypothesis that these pathways played a role in PDGF-D regulation by TGFβ (data not shown). BMS-345541, an IKK inhibitor, rescued PDGF-D expression to the basal level in the presence of TGFβ suggesting a regulation through IKK.

Whether TGFβ activates NF-κB pathway is not fully understood and appears to be cell context dependent. Gingery et al. described a mechanism of NF-κB activation by TGFβ through a TAK1/MEK1/2/AKT pathway, which promotes osteoclast survival in cooperation with Smad2/3 [39]. We showed that TGFβ failed to induce p65 phosphorylation on Ser 536 in contrast to the anti-inflammatory cytokine IL-1β which strongly activated

Figure 1. PDGF-D and PDGF-C are late targets of TGFβ. (A) MRC5 human fibroblasts were treated with TGFβ (4 ng/ml) for 2 to 24 hours. PDGF-D and PDGF-C mRNA expression was analyzed by RT-qPCR and normalized with the housekeeping gene RPLP0 (*, p<0.05; **, p<0.01). (B) Published microarray data were also reanalyzed for PDGF-C and -D expression (GEO database, reference GDS3710). In this experiment, A549 cells were stimulated by TGFβ for the indicated periods of time. Each time point was investigated in triplicates (p<0.001, ANOVA). doi:10.1371/journal.pone.0108656.g001
p65 (data not shown) but did not regulate PDGF-D in MRC5 fibroblasts. This demonstrates that activation of the classical NF-kB pathway alone does not regulate PDGF-D. Moreover, an interesting study reported a non-canonical NF-kB activation pathway through TAK1 and NIK by silica in Rat2 fibroblasts [40]. Taken together with our results, it is likely that TGFβ activates NF-kB in fibroblasts through a non-classical pathway. Alternatively, IKK may also signal independently of NF-kB downstream TGFβ. Finally, we cannot rule out a non-specific effect of the IKK inhibitor.

Gene down-regulation frequently involves histone deacetylases (HDAC). Figure S3 showed that HDAC strongly down-regulated PDGF-D expression. Indeed, trichostatin A (TSA), an inhibitor of HDAC, induced PDGF-D expression. However, TGFβ strongly repressed PDGF-D expression even in the presence of HDAC inhibitor, indicating that HDAC regulated PDGF-D independently of TGFβ. Little information is available regarding PDGF-D promoter regulation. Some studies reported that PDGF-D is induced by Ets-1 and Sp1 transcription factors [41]. Sp1 is in general described as an activator rather than a repressor of transcription but some studies reported that Sp1 could act as an activator and a repressor depending on other factors.

Figure 2. PDGF-D and PDGF-C regulation by TGFβ at the mRNA and protein levels. (A) and (D), MRC5 human fibroblasts were pre-treated with TGFβ receptor inhibitor SB431542 (10 μM) 30 min before treatment with TGFβ (4 ng/ml) for 24 h. The control condition was treated with DMSO alone. PDGF-D and PDGF-C mRNA expression was measured by RT-qPCR and normalized with the housekeeping gene RPLP0. (B) and (E) MRC5 cells were treated with TGFβ (4 ng/ml) for the indicated period of time. PDGF-D and PDGF-C protein expression was analyzed by western blotting. Blots were re-hybridized with an anti-β-actin antibody as control. (C) Active PDGF-DD levels were measured by ELISA in the culture supernatant of MRC5 cells treated or untreated with TGFβ 4 ng/ml for 24 h. The average of 3 experiments is shown with S.E.M, ** p<0.005, *** p<0.0005.

doi:10.1371/journal.pone.0108656.g002
Irvine et al. showed that TGF\(\beta\) inhibits LPL gene transcription through modulation of the action of Sp1 and Sp3. The authors reported that TGF\(\beta\) stimulation reduces Sp1 DNA binding [42]. Another study suggested also a negative regulation of the AT1 receptor by TGF\(\beta\) through Sp1.

Unpublished experiments obtained in the lab, demonstrated that the presence of serum down-regulated PDGF-D expression and that this effect was even stronger in the presence of saturating amounts of TGF\(\beta\), suggesting that other growth factors may regulate PDGF-D and PDGF-C expression. We showed that EGF, FGF and PDGF-BB alone or combined reduced significantly PDGF-D expression and induced PDGF-C expression confirming our observation with serum. Interestingly, all these growth factors have been linked to fibrosis: PDGF-B in liver fibrosis [15], EGF in heart and renal fibrosis [43,44] and FGF-4 in lung and renal fibrosis [45,46]. These factors do not efficiently activate Smad or

Figure 3. PDGF-D is regulated in a non-conventional manner by TGF\(\beta\). MRC5 cells were pre-treated with (A) the PI3K inhibitor LY294002 20 \(\mu\)M or the MAPK inhibitor U0126 10 \(\mu\)M, (B) with an inhibitor of p38 (SB202190 or SB203580, 10 \(\mu\)M), (C) with a JNK inhibitor SP600125, 20 \(\mu\)M and (D) with the IKK inhibitor BMS-345541 10 \(\mu\)M or vehicle (DMSO) for 30 min, then treated or untreated with TGF\(\beta\) 4 ng/ml for 24 h. PDGF-D mRNA expression was measured by RT-qPCR and normalized with RPLP0 expression. The average of 3 experiments is shown with S.E.M, ** p<0.005, *** p<0.0005.

doi:10.1371/journal.pone.0108656.g003
IKK proteins, thus further experiments will be required to identify
the pathway responsible for this effect. Moreover, some studies
have reported that FGF represses gene expression via the ERK/
Sp1 pathway. Bonello et al. showed in smooth muscle cells that
FGF-2 represses PDGFRα expression in an ERK/Sp1 dependent
manner. Phosphorylation of Sp1 upon FGF-2 stimulation switches
Sp1 from an activator to a repressor of PDGFRα expression [47].
This pathway was also reported in another study in breast cancer
cells where the authors showed that FGF-2 down-regulates TSP50
expression via the ERK/Sp1 pathway [48]. All together these
studies suggest a mechanism of negative regulation via Sp1 upon
FGF-2 activation. Our preliminary results do not go in the same

\[\text{TGF}β\] represses PDGF-D at the transcriptional level through an IKK-dependent pathway. We used a 1.3 kb fragment of the
PDGF-D promoter cloned upstream of the luciferase reporter gene [31]. (A) Gamma-2A cells were co-transfected with the PDGF-D promoter construct
or the CAGA12 promoter construct (positive control), with either empty vector or constitutively activated Alk5 [33] and with a control β-galactosidase
reporter [28]. Cells were treated with TGFβ 4 ng/ml or left untreated for 24 h. (B) Gamma-2A cells were co-transfected with PDGF-D promoter
construct and with β-galactosidase. They were treated with BMS-345541 (10 μM) for 30 min and then TGFβ was added for 24 h. In all experiments,
luciferase and β-galactosidase activities were measured and the luciferase activity was normalized by dividing by the β-galactosidase activity. The
mean of three independent experiments is shown.
doi:10.1371/journal.pone.0108656.g004

Figure 4. TGFβ represses PDGF-D at the transcriptional level through an IKK-dependent pathway. We used a 1.3 kb fragment of the
PDGF-D promoter cloned upstream of the luciferase reporter gene [31]. (A) Gamma-2A cells were co-transfected with the PDGF-D promoter construct
or the CAGA12 promoter construct (positive control), with either empty vector or constitutively activated Alk5 [33] and with a control β-galactosidase
reporter [28]. Cells were treated with TGFβ 4 ng/ml or left untreated for 24 h. (B) Gamma-2A cells were co-transfected with PDGF-D promoter
construct and with β-galactosidase. They were treated with BMS-345541 (10 μM) for 30 min and then TGFβ was added for 24 h. In all experiments,
luciferase and β-galactosidase activities were measured and the luciferase activity was normalized by dividing by the β-galactosidase activity. The
mean of three independent experiments is shown.
doi:10.1371/journal.pone.0108656.g004

Figure 5. PDGF-D and PDGF-C expression in lung fibrosis induced by silica. RNA samples were harvested from lungs of three control mice
and four silica-treated mice. (A) PDGF-D and (B) PDGF-C gene expression was measured by quantitative PCR and reported to the expression of actin.
ANOVA analysis revealed that the effect of treatment was highly significant (p-value: <2.2e-16, data not shown).
doi:10.1371/journal.pone.0108656.g005
direction as these studies because U0126, an inhibitor of ERK1/2 pathway, did not have any effect on PDGF-D expression upon FGF-4 stimulation (data not shown).

Our observations in cultured fibroblasts may be relevant in pathophysiological conditions. Indeed, we showed in a mouse model of silica-induced lung fibrosis, in which TGFβ expression is highly increased [34], that PDGF-D mRNA expression was down-regulated whereas PDGF-C mRNA expression remained unchanged. These results were confirmed in two different strains of mice. Furthermore, Zhuo et al. have described in another mouse model of lung fibrosis induced by bleomycin that PDGF-D expression was decreased and PDGF-C expression was increased [19]. Our results shed a light on the potential mechanism of PDGF-D regulation in this model of lung fibrosis. However, it is unclear which cytokine regulates PDGF-D in vivo.

In summary, we showed that TGFβ down-regulated PDGF-D and up-regulated PDGF-C expression. The regulation of PDGF-D expression was sensitive to BMS-345541. We speculate that this regulation may represent a negative feedback in the network of fibrotic cytokines.

Supporting Information

Figure S1 Role of Smad4 in PDGF-D regulation by TGFβ.

Figure S2 PDGF-B and FGF-2 decrease PDGF-D expression.
Figure S3 The HDAC inhibitor TSA regulates PDGF-D expression.

(TIF)

Table S1 q-PCR primer sequences.

(DOCX)

Acknowledgments

We thank Pr. U. Eriksson (Ludwig Institute for Cancer Research & Karolinska Institute, Sweden), Pr. R. Lories (Katholieke Universiteit Leuven, Belgium), Pr. C. De Smet, Pr. Christophe Pierreux and Pr. S.N. Constantinescu (Université catholique de Louvain, Belgium) for generous donation of reagents.

Author Contributions

Conceived and designed the experiments: JBD SCC. Performed the experiments: SCC AgIB AV SLR. Analyzed the data: JBD SCC AE AgIB AV. Contributed reagents/materials/analysis tools: JS SI SLR FH WK. Wrote the paper: SCC AgIB AE JBD.
43. Lian H, Ma Y, Feng J, Dong W, Yang Q, et al. (2012) Heparin-binding EGF-like growth factor induces heart interstitial fibrosis via an Akt/mTor/p70s6k pathway. PloS one 7: e44946.
44. Liu N, Guo JK, Pang M, Tolbert E, Ponusamy M, et al. (2012) Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis. Journal of the American Society of Nephrology: JASN 23: 854–867.
45. Dosanjh A (2012) The fibroblast growth factor pathway and its role in the pathogenesis of lung disease. Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research 32: 111–114.
46. Masola V, Gambaro G, Tibaldi E, Brunati AM, Gastaldeollo A, et al. (2012) Heparanase and syndecan-1 interplay orchestrates fibroblast growth factor-2-induced epithelial-mesenchymal transition in renal tubular cells. The Journal of biological chemistry 287: 1478–1488.
47. Bonello MR, Khachigian LM (2004) Fibroblast growth factor-2 represses platelet-derived growth factor receptor-alpha (PDGFR-alpha) transcription via ERK1/2-dependent Sp1 phosphorylation and an atypical cis-acting element in the proximal PDGFR-alpha promoter. The Journal of biological chemistry 279: 2377–2382.
48. Wang M, Bao YL, Wu Y, Yu CL, Meng XY, et al. (2010) Basic FGF downregulates TSP50 expression via the ERK/Sp1 pathway. Journal of cellular biochemistry 111: 75–81.