Food Insecurity is Associated with Maladaptive Eating Behaviors and Objectively Measured Overeating

Emma J. Stinson1, Susanne B. Votruba1, Colleen Venti1, Marisol Perez2, Jonathan Krakoff1, and Marci E. Gluck1

Objective: The association between food insecurity and obesity may be partially explained by overeating in response to unpredictable food availability cycles. The aim of this study was to measure objective food intake in food-insecure individuals.

Methods: Eighty-two volunteers (53 m; BMI 29 ± 7; 38 ± 12 years) were admitted to our inpatient Clinical Research Unit and completed the Food Security Short Form, Three-Factor Eating Questionnaire, Gormally Binge Eating Scale, and body composition assessment (dual-energy x-ray absorptiometry). After 5 days of a weight-maintaining diet, participants self-selected food from an ad libitum vending machine paradigm for 3 days. Mean daily intake (kilocalories), macronutrient intake, and percentage of weight-maintaining energy needs (%WMEN) were calculated.

Results: Based on Food Security Short Form cutoffs, food-insecure participants (n = 46; 56%) had higher body weight (P = 0.04), fat-free mass (P = 0.05), disinhibition (P = 0.008), hunger (P = 0.02), and binge-eating scores (P = 0.02) but not cognitive restraint (P = 0.37) compared with food-secure individuals. They overate more kilocalories (P = 0.001), %WMEN (P = 0.003), fat (P = 0.003), and carbohydrates (P = 0.004) during the vending machine paradigm, continued to increase their hourly rate of kilocalories (group x time; β = 37.7 cumulative kcal/h; P < 0.0001), and ate more total kilocalories across the 72 hours (β = 47.09 kcal/h; P = 0.003).

Conclusions: Food insecurity may amplify susceptibility to weight gain via overeating during times of unlimited food access.

Introduction

Food insecurity is a major health problem in the United States, affecting an estimated 42.4 million people, and it is associated with increased susceptibility to obesity, type 2 diabetes, mood and anxiety disorders, and disordered eating (1-4). In 2006, the US Department of Agriculture eliminated hunger from its definition of food insecurity, which is currently defined as limited or uncertain availability of nutritionally adequate foods or the limited ability to acquire food in socially acceptable ways (1). Historically, food insecurity has been associated with malnutrition and having underweight (5), but rates of both obesity and food-insecure households (6) have risen dramatically over the past decade, indirectly indicating a paradox linking obesity and food insecurity (7). Energy density and food costs are inversely associated, supporting the idea that food insecurity promotes dependence on inexpensive, palatable, energy-dense foods to meet caloric needs (8,9).

It has been hypothesized that food-insecure individuals alternate between times of adequate food availability and food scarcity (5,6), a chronic cycle that promotes overeating of low-cost and energy-dense foods when food is available and restrictive behaviors when food is scarce, resulting in physiological shifts toward energy efficiency, increased storage of fat, and subsequent weight gain (2,12). The chronic cycle of restriction and overeating may lead to disordered eating...
behaviors, which may increase anxiety and negative emotions toward food, subsequently promoting this vicious cycle (2).

Animal studies have also provided insights into the food-insecurity obesity paradox. Mice exposed to random intermittent fasting gained more weight and fat mass compared with mice with both predictable food availability and predictable fasting sessions (13). Similarly, rats exposed to repeated food-restrictive and binge-feeding cycles were heavier compared with rats on a continuous restrictive feeding cycle (14). These rats also displayed reduced sensitivity to sensory and/or satiety factors, which are important regulators of the cessation of eating. In humans, cyclic food restriction is associated with preferences for energy-dense foods and increased body fat (3). Thus, perceived unpredictable access to food, as mirrored in food insecurity, appears to promote hyperphagia of energy-dense foods and subsequent weight gain.

While a growing body of evidence has indicated a link between food insecurity, energy intake, and obesity, previous studies have examined intake only through self-reported food diaries, which are often biased
and inaccurate (15,16). Thus, the aim of the current study was to investigate differences between food-secure and food-insecure individuals in measures of adiposity, maladaptive eating behaviors, and objectively measured ad libitum energy intake using a reproducible automated vending machine paradigm (17). We hypothesized food-insecure individuals would have greater adiposity, have maladaptive eating behaviors, and would consume more calories compared with food-secure individuals.

Methods

The current study measuring ad libitum food intake has been ongoing since 1999; however, assessment of food insecurity was added in 2011. From November 11, 2011, to March 3, 2017, 190 adults between the ages of 18 and 65 were recruited from the Phoenix, Arizona, area via advertisements in newspapers and in various public places, such as libraries, universities, hospitals, and health clubs, to participate in an ongoing natural history study assessing eating behavior and food preferences as risk factors for obesity using an ad libitum vending machine paradigm (ClinicalTrials.gov identifier NCT00342732). Of these, 112 met initial inclusion criteria (Figure 1A) and were admitted to our clinical research unit for at least 4 days. Screening, eligibility, and available data are reported in the CONSORT diagram (Figure 1A). Only individuals with available food-insecurity status, vending machine data, and dual-energy x-ray absorptiometry data were included in the current analyses, resulting in a total of 82 participants. Prior to participation, all participants were informed of the nature, purpose, and risks of the study and provided written informed consent. The protocol was approved by the Institutional Review Board of the NIDDK and is described in detail below (Figure 1B). All participants were healthy based on medical history, physical examinations, and laboratory tests.

Study design

Upon admission to the Obesity and Diabetes Clinical Research Unit (Phoenix, Arizona), participants were placed on a standard weight-maintaining diet for 5 days to standardize baseline food intake prior to ad libitum food consumption. Weight-maintaining energy needs (WMEN) were calculated for each participant based on weight, sex, and BMI (18), and each meal contained a macronutrient composition of 50% carbohydrate, 30% fat, and 20% protein. Participants were instructed to consume the entirety of weight-maintaining meal. Within the first 2 days after admission, while participants were weight stable, body composition was determined by dual-energy x-ray absorptiometry (DPX-L; Lunar Radiation, Madison, Wisconsin), and participants completed the psychological questionnaires approximately 1 hour after eating breakfast. After 4 days of the weight-maintaining diet, a 75-g oral glucose tolerance test was done to exclude individuals with diabetes mellitus.

Vending machine paradigm

Ad libitum food intake was measured using automated vending machines, as previously described (17,19,20). Prior studies on our unit have shown high reproducibility (intraclass correlation coefficient = 0.9) in intraperson energy intake pattern during repeated visits (17), demonstrating this method provides a highly accurate assessment of energy intake for persons admitted to our research unit. In brief, participants completed a Food Preferences Questionnaire after the day of admission, which was used to determine food preferences for stocking of vending machines, using a paradigm devised by Geiselman et al. (21). Participants rated their preference for a variety of foods on a 9-point Likert scale. Forty different foods given an intermediate rating were used to stock the vending machines and were available each of the 3 days along with condiments. Participants were given free access to the machines for 23.5 hours, with 30 minutes per day needed to restock the machines. The machines are computer operated and require a unique code given to each participant, which records the time of day food was accessed. To correct for actual food intake, the metabolic kitchen staff weighed food leftovers returned by participants. These data were then imported into the Food Processor SQL Edition software (version 10.0.0; ESHA Research, Salem, Oregon), which provided calorie and macronutrient content of the foods. Energy intake is expressed as total kilocalories eaten per day, intake from macronutrients (kilocalories), and percent of WMEN consumed per day (%WMEN), calculated by dividing the total average kilocalories by WMEN.

Demographic measures

Food insecurity (22-24). Food insecurity over a 12-month reference period was assessed using the validated six-item Food Security Short Form of the US Department of Agriculture Household Food Security Model. A food-security summary score was calculated and used to classify individuals as either food secure (score 0-1) or food insecure (score 2-6).

MacArthur Scale of Subjective Social Status (SSS) (25,26). The MacArthur Scale of SSS was presented in a 10-step ladder format and used to assess SSS. Participants were asked to place a cross on the level that they considered representative of their place in US society. Step 10 represents people who are best off relative to the rest of the United States (e.g., people perceive they have more money, higher educational achievements, and better-respected jobs). Step 1 represents people who perceive themselves as worse off relative to the rest of the United States (e.g., people have less money, lower education achievements, and less-respected jobs).

Psychological measures

Three Factor Eating Questionnaire (TFEQ) (27). The TFEQ is a 51-item questionnaire that classifies eating behavior into the following three factors: cognitive restraint, disinhibition, and susceptibility to hunger cues. Cognitive restraint reflects the intent to restrict food intake to control body weight, disinhibition is the self-reported overconsumption of food in response to various stimuli, and hunger cues are associated with loss of control of eating in the presence of food-related stimuli. Scores range from 0 to 21 (cognitive restraint), 0 to 16 (disinhibition), and 0 to 14 (hunger cues); higher scores indicate greater disordered eating behaviors.

Gormally Binge Eating Scale (BES) (28). The Gormally BES is a 16-item self-report questionnaire that assesses the severity of binge-eating behavior. Each item contains three to four response options reflecting a range of severity. The BES is designed to describe both behavioral and cognitive aspects of binge-eating episodes and provides an overall severity score. Scores range from 0 to 46, and scores ≥ 27 are indicative of severe binge-eating behaviors.
Statistical analyses
Statistical analyses were done using SAS (version 9.3; SAS Institute, Inc., Cary, North Carolina) and SPSS Statistics (version 25; IBM Corp., Armonk, New York). Alpha was set at 0.05 for all analyses, except for the multivariate linear models, in which a Bonferroni correction was used to correct for multiple analyses conducted on the sample and alpha was set at 0.008; two-sided P values are reported. Normally distributed data are presented as means±SDs. Because there were no significant differences in food intake between the 3 days by one-way analysis of variance (ANOVA), all outcome variables are expressed as the average per day over the 3 days. Differences between food-insecure and food-secure individuals were analyzed using t tests. Differences between categorical variables were analyzed using χ^2 tests. There were no differences between Native Americans of Southwestern heritage ($n=21; 26\%$), Other (i.e., individuals with a mixture of minority background; $n=15; 18\%$), Hispanic participants ($n=9; 11\%$), or black participants ($n=9; 11\%$) on anthropometric measures, psychological measures, or food-insecurity status, and these groups were combined into a mixed minority group ($n=54; 66\%$) and compared with non-Hispanic white participants ($n=28; 34\%$).

Multivariate ANOVA was used to assess group differences on the three TFEQ subscales and BES. Multivariate analysis of covariance (ANCOVA) was used to assess group differences while adjusting for age, sex, race and ethnicity, and SSS. If the overall analysis was significant, univariate tests were examined. A series of multivariate linear analyses were used to assess differences in energy intake between food-insecure and food-secure individuals, adjusting for age, sex, race and ethnicity, SSS, and fat-free mass (FFM). Least squared means with 95% CIs were generated from these multivariate models. Repeated-measures mixed models were performed to compare the hourly food intake trajectories of the two groups over 72 hours using a first-order autoregressive covariance structure adjusted for age, sex, race and ethnicity, SSS, and FFM. A group x time interaction term was also included to assess whether the trajectories of cumulative food intake were different between the two groups.

Results

Baseline characteristics
Participants ranged in age from 18 to 65 years (38 [SD 12]) and ranged in BMI from 17 to 47 kg/m2 (29 [SD 7]) (Supporting Information Table S1). Forty-six (56%) individuals were characterized as food insecure, and 36 (44%) were characterized as food secure. Consistent with a physically and psychologically healthy cohort, the scores of psychological measures were not within clinical range. Food-insecure individuals had lower SSS ($t=2.39; P=0.02$) and higher body weight ($t=-2.06; P=0.04$), and they had nearly significantly higher BMI ($t=-1.74; P=0.08$) and FFM ($t=-1.98; P=0.05$) compared with the food-secure group. Age, years of education, height (meters), and fat mass did not differ between groups. There were no significant sex ($\chi^2=2.31; P=0.13$) or racial differences ($\chi^2=0.02, P=0.90$) between participants with and without food insecurity. Mean scores and correlations across all variables are shown in Supporting Information Table S2.

![Figure 2 Mean eating behavior scores between food-secure and food-insecure individuals. Error bars represent means with 95% CIs. *P<0.01.](image)

TABLE 1 Multivariate linear models

Variable	Total kilocalories	%WMEN				
	B	CI	P value	B	CI	P value
Interception	1,294.91	−210.19 to 2,800.00	0.09	88.9	32.24 to 145.68	0.003
Age (y)	10.24	−7.73 to 28.21	0.26	0.33	−0.35 to 1.00	0.34
Race/ethnicity (non-Hispanic white)	−257.68	−706.37 to 191.01	0.26	−8.9	−25.87 to 7.95	0.29
SSS	767.53	188.61 to 1,346.46	0.01	28.33	6.51 to 50.1	0.01
FFM	−8.90	−129.49 to 111.7	0.88	0.13	−4.41 to 4.68	0.95
Food insecure	15.57	−7.63 to 38.77	0.18	−0.13	−1.00 to 0.74	0.76

γ coefficients reported with 95% CIs and P values.

Total intake, mean kilocalories/day; %WMEN, percent weight-maintaining diet; SSS, subjective socioeconomic status; FFM, fat-free mass; food insecure, food-insecure group.

![Graph](image)
Eating behavior questionnaires

A multivariate ANOVA revealed group differences on the TFEQ and BES (Wilks Fs [4, 77] = 3.13; P = 0.02; $\eta^2 = 0.14$). Univariate results indicated food-insecure individuals had higher scores on disinhibition ($F=7.29; \ P=0.008$; partial $\eta^2=0.08$), hunger cues ($F=6.3; \ P=0.01$; partial $\eta^2=0.07$), and BES ($F=7.2; \ P=0.009; \eta^2=0.08$) but not cognitive restraint ($F=1.76; \ P=0.19; \eta^2=0.02$), even after adjusting for age, sex, race and ethnicity, and SSS (Figure 2).

Energy intake

To examine whether food-insecurity status predicted ad libitum energy intake during the vending machine paradigm, five separate multivariate linear models adjusted for age, sex and ethnicity, SSS, and FFM were conducted. FFM, as we have previously reported (29), was positively associated with all food intake measures (Supporting Information Table S2). Food-insecure individuals consumed significantly more total kilocalories ($\beta=+710$ kcal/d; $P=0.002$; Table 1), %WMEN ($\beta=+25\%$ kcal/d; $P=0.004$; Table 1), kilocalories from fat ($\beta=+329$ kcal/d; $P=0.003$), and carbohydrates ($\beta=+360$ kcal/d; $P=0.004$), but not protein ($P=0.47$), compared with the food-secure group. Least squares means and 95% CIs are shown in Figure 3.

Repeated-measures analysis of cumulative food intake over the 72 hours revealed that, compared with the food-secure group, the food-insecure group had a greater hourly rate of cumulative food intake (interaction term group × time; $\beta=37.7$ cumulative kcal/h; $P<0.0001$) (Figure 4A) and consistently ate significantly more total kilocalories across the 72 hours ($\beta=47.09$ kcal/h; $P=0.003$) (Figure 4B).

Figure 3 (A) Mean of 3-day energy intake (kilocalories/day) between food-secure and food-insecure individuals. (B) Mean of 3-day energy intake, expressed as the percentage of WMEN. (C) Mean of 3-day macronutrient energy intake between food-secure and food-insecure individuals: fat (kilocalories/day), protein (kilocalories/day), and carbohydrates (kilocalories/day). Error bars represent means with 95% CIs. *$P<0.05$. P values adjusted for age, sex, race and ethnicity, subjective socioeconomic status, and fat-free mass.
Discussion

We have shown that individuals who rate themselves as food insecure ingested greater total kilocalories and greater kilocalories relative to their WMEN over a 3-day period, as measured by a highly reproducible ad libitum food intake paradigm in a controlled setting (17,21). Food-insecure individuals also had greater body weight and higher scores on indices of disordered eating behavior (i.e., disinhibition, hunger cues, and binge eating), supporting the hypothesized vicious cycle that repeated patterns of restriction and overeating may contribute to disordered eating behavior. To our knowledge, there are no previous reports in the literature comparing food-insecure and food-secure individuals on objectively measured food intake.
The utilization of an objective measure of food intake broadens the existing knowledge of the association between food insecurity and overeating (11,12,30). The ad libitum vending machine system employed in our study has been shown to be valid and highly reliable (17) compared with less-reliable measures such as 24-hour food recall questionnaires and self-report food diaries (8,31,32). Self-report measures are associated with underreporting of food intake and biased reports of high-fat, palatable, and energy-dense foods (15,31,33), most notably in those with obesity (16) and binge-eating disorder (34). Furthermore, participants were on a weight-maintaining diet for 5 days prior to the ad libitum vending machine paradigm and thus were not in a state of nutrient or caloric deficiency prior to the vending machine paradigm. This indicates that food insecurity may be an engrained construct, resulting in overeating even when food is readily available without constraints.

Our results confirm a recent study by Becker and colleagues (4) who reported that severity of food insecurity in individuals seeking food from food pantries was associated with increased eating disorder pathology, weight self-stigma, and worry. Similarly, a recent study randomized individuals to a high subjective social position or low subjective social position in a rigged game of Monopoly and assessed acute ad libitum food intake during a buffet meal (35). Results indicated that the individuals randomized to the low subjective social position ate significantly more during the ad libitum buffet meal, possibly because of their decreased feelings of pride and powerlessness. Our study extends these findings to a diverse group of individuals recruited from the general population and confirms reports of overeating with objectively measured food intake. The differences observed between food-insecure and food-secure individuals in disinhibition, hunger cues, and binge-eating scores, but not in cognitive restraint, indicate that overeating and/or binge-eating behaviors may be of particular concern in this population. Furthermore, overeating in this population may be attributable to increased worry, powerlessness, and pride, which are associated with lower social status (4,35).

Energy balance is defined as the interaction between energy intake and energy expenditure; eating in excess of metabolic needs results in a positive energy balance (36), which leads to ongoing weight gain. In the current study, food-insecure individuals consistently overate during a 3-day period, even after being on a weight-maintaining diet for five consecutive days. Thus, food insecurity may result in a pattern of overeating whenever food is available, promoting positive energy balance and, in turn, subsequent weight gain and obesity (37,38). Because food-insecure adults are often trapped in cyclic food patterns moving from available food to food scarcity, they may be in a transient state of negative energy during restrictive times, such as when food stamp assistance runs out at the end of the month (5,10). But when they do have access to food, such as during the beginning of the month, they may overeat, resulting in a positive energy balance and increased risk of obesity (39). Thus, both poor diet quality over time and engagement in maladaptive eating behaviors such as those reported herein may further exacerbate the documented health consequences observed in food-insecure populations (40).

Despite previous reports (41,42), SSS alone does not explain the important mechanism observed here between maladaptive eating behaviors and greater body weight in food-insecure individuals. In the current study, food insecurity was a better predictor of overeating above and beyond the effects of SSS. Food insecurity may indeed be a better predictor of obesity because the chronic food-insecurity cycle is a likely contributor to the chronic maladaptive eating patterns often linked to weight gain. This was evident in our data, as measures of overeating were still significant after adjustment for SSS.

This study has several limitations. First, the ad libitum vending machine paradigm is an artificial environment with no barriers to food intake, which promotes overeating. However, this paradigm has shown high reliability, which is not true for self-reported food intake measures (17,21,43). Second, our longitudinal data of follow-up weight were limited and consisted of only 36% (n = 30) of the total 82 participants. Thus, we were unable to examine the longitudinal effects of the overeating behaviors observed on our clinical unit. Third, follow-up measurements were not obtained for other variables, which limited our ability to assess whether change in food-insecurity status could improve the observed maladaptive eating behaviors. However, change in food-insecurity status is relatively rare and would require much larger samples (44). Fourth, we did not utilize an objective measure of socioeconomic status. However, previous studies have found that SSS is more predictive of health outcomes (45). Lastly, participants were not from a clinical population, and therefore scores on the BES were below the clinical range. However, we believe this is actually a strength, as we found that food-secure individuals scored higher on the BES, even within a normative range, which is likely more representative of the general population. Future research should focus on longitudinal measurements to determine whether maladaptive eating behaviors and increased food intake in food-secure individuals lead to weight gain over time.

Conclusion

We observed that food insecurity, a significant public health issue, is associated with increased ad libitum food intake over a 3-day period using a direct and objective measure of food intake. The chronic cycle between food availability and food scarcity may be associated with the maladaptive eating behaviors observed in our study, amplifying susceptibility to overeating during times of unlimited access to food and thus predisposing food-insecure individuals to obesity and weight gain. Replication and follow-up studies are needed to determine whether these observed relationships predict future weight gain and whether changes in the food-insecurity cycle can reverse eating behaviors, specifically overeating. Advocacy and policy initiatives to address the adverse health effects of food insecurity are critical to address the obesity epidemic and improve the health and livelihood of the 42.2 million individuals suffering from food insecurity.

Acknowledgments

The authors thank the volunteers who participated in the studies. They also thank the clinical staff of the Phoenix Epidemiology and Clinical Research Branch for conducting the examinations.

© 2018 The Obesity Society

References

1. Coleman-Jensen A, Rabbitt PM, Gregory AC, Singh A. Household food security in the United States in 2015. Economic Research Report no. 2015. Washington, DC: United States Department of Agriculture, Economic Research Service; 2016.
2. Larraza BA. Food insecurity and chronic disease. Adv Nutr 2013;4:203-212.
3. Seligman HK, Schillinger D. Hunger and socioeconomic disparities in chronic disease. N Engl J Med 2010;363:6-9.
4. Becker CB, Middlemass K, Taylor B, Johnson C, Gomez F. Food insecurity and eating disorder pathology. Int J Eat Disord 2017;50:1031-1040.
5. Ludwig DS, Blumenthal SJ, Willett WC. Opportunities to reduce childhood hunger and obesity: restructuring the Supplemental Nutrition Assistance Program (the Food Stamp Program). JAMA 2013;309:2567-2568.

6. Dinour LM, Bergen D, Yeh MC. The food insecurity-obesity paradox: a review of the literature and the role food stamps may play. J Am Diet Assoc 2007;107:1952-1961.

7. Crawford PB, Webb KL. Unraveling the paradox of concurrent food insecurity and obesity. Am J Prev Med 2011;40:274-275.

8. Leung CW, Epel ES, Ritchie LD, Crawford PB, Laraia BA. Food insecurity is inversely associated with diet quality of lower-income adults. J Acad Nutr Diet 2014;114:1943.e1942-1953.e1942.

9. Widomra R, Neumark-Sztainer D, Hannon PJ, Haines J, Story M. Eating when there is not enough to eat: eating behaviors and perceptions of food among food-insecure youths. Am J Public Health 2009;99:822-828.

10. Leung CW, Epel ES, Willett WC, Rimm EB, Laraia BA. Household food insecurity is positively associated with depression among low-income supplemental nutrition assistance program participants and income-eligible nonparticipants. J Nutr 2015;145:622-627.

11. Laraia B, Vinkoor-Imler LC, Siega-Riz AM. Food insecurity during pregnancy leads to stress, disordered eating, and greater postpartum weight among overweight women. Obesity (Silver Spring) 2015;23:1303-1311.

12. Finney Rutten LJ, Yaroch AL, Colón-Ramos U, Johnson-Askew W, Story M. Poverty, food insecurity, and obesity: a conceptual framework for research, practice, and policy. J Hunger Environ Nutr 2010;5:403-415.

13. Zhang L-N, Mitchell SE, Hamblc C, Morgan DG, Clahm JC, Speakman JR. Physiological and behavioral responses to intermittent starvation in C57BL/6J mice. Physiol Behav 2012;105:376-387.

14. Ahn S, Phillips MG. Repeated cycles of restricted food intake and binge feeding disrupt sensory-specific satiety in the rat. Behav Brain Res 2012;231:279-285.

15. Arab L, Tseng CH, Ang A, Jardack P. Validity of a multipass, web-based, 24-hour self-administered recall for assessment of total energy intake in blacks and whites. Am J Epidemiol 2011;174:1256-1265.

16. Bailey RL, Mitchell DC, Miller C. Smiciklas-Wright H. Assessing the effect of underreporting energy intake on dietary patterns and weight status. J Am Diet Assoc 2007;107:64-71.

17. Venti CA, Votruba SB, Franks PW, Krakoff J, Salbe AD. Reproducibility of ad libitum energy intake with the use of a computerized vending machine system. Am J Clin Nutr 2010;91:334-348.

18. Ferraro R, Boyce VL, Swinburn B, De Gregorio M, Ravussin E. Energy cost of physical activity on a metabolic ward in relationship to obesity. Am J Clin Nutr 1991;53:1368-1371.

19. Salbe AD, Tichop MH, Dell’Aligia V, Venti CA, Tatarenni PA. Negative relationship between fasting plasma ghrelin concentrations and ad libitum food intake. J Clin Endocrinol Metab 2004;89:2951-2956.

20. Rosing R, Algren S, Boyce N, et al. Food intake measured by an automated food-selection system: relationship to energy expenditure. Am J Clin Nutr 1992;55:343-349.

21. Geiselman PJ, Anderson AM, Dowdy ML, West DB, Redmann SM, Smith SR. Reliability and validity of a macronutrient self-selection paradigm and a food preference questionnaire. Physiol Behav 1998;63:919-928.

22. Blumberg SJ, Bialostosky K, Hamilton WL, Briefel RR. The effectiveness of a short form of the Household Food Security Scale. Am J Public Health 1999;89:1231-1234.

23. Bengle R, Sinnott S, Johnson T, Johnson MA, Brown A, Lee JS. Food insecurity is associated with cost-related medication non-adherence in community-dwelling, low-income older adults in Georgia. J Nutr Elder 2010;29:170-191.

24. Goldberg SL, Mawn BE. Predictors of food insecurity among older adults in the United States. Public Health Nurs 2015;32:397-407.

25. Adler NE, Epel ES, Castellazzo G, Ickovics JR. Relationships of subjective and objective social status with psychological and physiological functioning: preliminary data in healthy white women. Health Psychol 2000;19:586-592.

26. Goodman E, Adler NE, Kawachi I, Frazier AL, Huang B, Colditz GA. Adolescents’ perceptions of social status: development and evaluation of a new indicator. Pediatrics 2001;108:E31. doi:10.1542/peds.108.2.e31

27. Stunkard AJ, Messick S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res 1985;29:71-83.

28. Gormally J, Black S, Daston S, Rardin D. The assessment of binge eating severity among obese persons. Addict Behav 1982;7:47-55.

29. Weise CM, Holenadel MG, Krakoff J, Votruba SB. Body composition and energy expenditure predict ad-libitum food and macronutrient intake in humans. Int J Obes (Lond) 2014;38:243-251.

30. Darmon N, Drewnowski A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: a systematic review and analysis. Nutr Rev 2015;73:643-660.

31. Kirkpatrick SI, Tarasuk V. Food insecurity is associated with nutrient inadequacies among Canadian adults and adolescents. J Nutr 2008;138:604-612.

32. Kharrats AV, Jones-Smith JC, Cheah YS, et al. Relation between the supplemental nutritional assistance program cycle and dietary quality in low-income African Americans in Baltimore, Maryland. Am J Clin Nutr 2014;99:1006-1014.

33. McKenzie DC, Johnson RK, Harvey-Berino J, Gold BC. Impact of interviewer’s body mass index on underreporting energy intake in obese and overweight women. Obes Res 2002;10:471-477.

34. Bartholome LT, Peterson RE, Rautz SK, Raymond NC. A comparison of the accuracy of self-reported intake with measured intake of a laboratory overeating episode in overweight and obese women with and without binge eating disorder. Eur J Nutr 2015;53:191-202.

35. Cardel MI, Johnson SL, Beck J, et al. The effects of experimentally manipulated social status on acute eating behavior: a randomized, crossover pilot study. Physiol Behav 2016;162:93-101.

36. Blundell JE, Caudwell P, Gibbons C, et al. Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation. Dis Models Mech 2012;5:608-613.

37. Caudwell P, Finlayson G, Gibbons C, et al. Resting metabolic rate is associated with hunger, self-determined meal size, and daily energy intake and may represent a marker for appetite. Am J Clin Nutr 2013;97:7-14.

38. Piaggi P, Thearle MS, Bogardus C, Krakoff J. Lower energy expenditure predicts long-term increases in weight and fat mass. J Clin Endocrinol Metab 2013;98:E703- E707.

39. Grummon AH, Taille LS. Nutritional profile of Supplemental Nutrition Assistance Program household food and beverage purchases. Am J Clin Nutr 2017;105:1433-1442.

40. Tarasuk V, Cheng J, de Oliveira C, Dachner N, Gunderson C, Kordyjak P. Association between household food insecurity and annual health care costs. Can Med Assoc J 2015;187:E429-E436.

41. Drewnowski A, Moudon AV, Jiao J, Aggarwal A, Charee H, Chai B. Food environment and socioeconomic status influence obesity rates in Seattle and in Paris. Int J Obes (Lond) 2014;38:306-314.

42. Gallo LC, Fortmann AL, de Los Monteros KE, et al. Individual and neighborhood socioeconomic status and inflammation in Mexican American women: what is the role of obesity? Psychosom Med 2012;74:535-542.

43. Pfrimmer K, Vilela M, Resende CM, et al. Under-reporting of food intake and body fatness in independent older people: a doubly labelled water study. Age Ageing 2015;44:103-108.

44. Nettle D, Andrews C, Bateson M. Food insecurity as a driver of obesity in humans: the insurance hypothesis. Behav Brain Sci 2017; 40:e105. doi:10.1017/ S0140525X16000947

45. Operario D, Adler NE, Williams DR. Subjective social status: reliability and predictive utility for global health. Psychol Health 2004;19:237-246.