Emissões de GEE na pecuária de leite brasileira: custo marginal de abatimento para diferentes sistemas de produção e implicações políticas

Gabriela Mota da Cruz

Dissertação apresentada para obtenção do título de Mestra em Ciências. Área de concentração: Economia Aplicada

Piracicaba
2020
Emissões de GEE na pecuária de leite brasileira: custo marginal de abatimento para diferentes sistemas de produção e implicações políticas
versão revisada de acordo com a resolução CoPGr 6018 de 2011

Orientadora:
Profª. Drª. SÍLVIA HELENA GALVÃO DE MIRANDA

Dissertação apresentada para obtenção do título de Mestra em Ciências. Área de concentração: Economia Aplicada

Piracicaba
2020
Cruz, Gabriela Mota da

Emissões de GEE na pecuária de leite brasileira: custo marginal de abatimento para diferentes sistemas de produção e implicações políticas / Gabriela Mota da Cruz. - - versão revisada de acordo com a resolução CoPGr 6018 de 2011. - - Piracicaba, 2020.

158 p.

Dissertação (Mestrado) - - USP / Escola Superior de Agricultura “Luiz de Queiroz”.

1. Pecuária 2. Leite 3. Medidas de mitigação 4. Imposto 5. Pigouviano 6. Custo marginal de abatimento 7. Título
DEDICATÓRIA

Primeiramente ao meu pai, que infelizmente não pode estar aqui para ver mais esta conquista, mas em vida dedicou todo seu amor, afeto e trabalho para que eu pudesse ter oportunidade de estudar apesar de todas nossas restrições financeiras.

À minha mãe, que à sua maneira energética, me apoia a sempre alcançar o meu melhor desempenho profissional, me inspira a ser uma pessoa mais solidária, determinada e ética; mas que acima de tudo, sempre será o meu porto seguro.

Também dedico a todos alunos que lecionei em cursos pré vestibular social: Prometheus e Podemos Mais. Em especial os alunos do Curso Prometheus, que fundei e dediquei quatro anos de minha vida: vocês alunos são minha inspiração para continuar lutando por uma educação com mais equidade, justiça, democracia, pluralidade e ética.

Também dedico a minha avó, afilhada Laura, tia Helenice, tia Alzeny, tio Antonio e tio Gislênio. Vocês são meus alicerces!

Aos professores, que ao cruzarem minha trajetória, me inspiraram a seguir na docência e pesquisa: professor Tangerino (PUC-Campinas), professor Lobão (PUC-Campinas), professora Sílvia (USP-ESALQ), professor Valdenir (PUC-Campinas), professor Izaias (PUC-Campinas), professora Eliane (PUC-Campinas), professora Viviane (amiga e colega de construção de Lumturo), Daniel e Milena (Prometheus).
AGRADECIMENTOS

Primeiramente a professora Sílvia, minha orientadora, que contribuiu muito para o desenvolvimento desta pesquisa e é uma grande inspiração feminina na docência e pesquisa.

Ao Caio Augusto de Souza Mello Monteiro, analista de custos de produção do CEPEA, que contribuiu de forma relevante na elaboração desta dissertação, principalmente no que tange as estimativas de evolução dos indicadores zootécnicos apresentados no artigo 2.

Aos meus colegas de mestrado e amigas que sempre me apoiam durante todo processo de elaboração da dissertação: Flávia Medeiros, Cris, Djanystella e Eduardo. Em especial ao Arthur, que me apoiou nos momentos mais desafiadores da pós graduação.

As minhas amigas, que apesar da distância, seguímos sempre nos apoiando: Viviane, Flávia Pigosso, Tarsila, Cintia, Jéssica, Thaisa, Daniela Sato, Aline, Ariane e Daniele Muniz.

À minha família de Campinas, que esteve comigo nos momentos complicados da dissertação: dona Fátima, seu Sérgio e Fernanda.

Ao meu companheiro canino Bibelô, que foi minha companhia confortante durante muitas madrugadas de estudo durante o mestrado.

Também agradeço imensamente ao Professor Dr. Adibe Luiz Abdala (USP/CENA), Dr. André Novo (Embrapa Leite) e Dr. Penatti (USP/ESALQ), que através de suas experiências contribuíram como comentários relevantes no processo de desenvolvimento desta dissertação.

Por fim, aos membros da minha banca, Prof. Dr. Ronaldo Serôa da Mota e Leila Harfuch, pela disponibilidade de compartilhar seu conhecimento na defesa de minha dissertação.

Também agradeço a cada leitor que se disponibilize a ler minha dissertação. Estou aberta a escutar opiniões, críticas, dúvidas e sugestões via meu contato de e-mail: gabriela.mota.cruz@hotmail.com

“O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001”.

Também apoiaram financeiramente este trabalho o Instituto Escolhas e o Centro de Estudos Avançados em Economia Aplicada – CEPEA/USP.
SUMÁRIO

RESUMO ... 7
ABSTRACT ... 9
1 INTRODUÇÃO .. 11
1.1 Objetivos .. 16
1.2 Delimitação do Problema e Justificativa ... 16
1.3 Referências .. 18
2 BOVINOCULTURA BRASILEIRA: UMA REVISÃO GERAL DA QUESTÃO CLIMÁTICA, ECONÔMICA E POTENCIAIS MEDIDAS DE MITIGAÇÃO PARA O SETOR .. 21
2.1 Introdução .. 21
2.2 A Questão Climática ... 22
2.3 Perfil das emissões brasileiras totais e da pecuária ... 26
2.4 A economia da pecuária: produção de carne e leite ... 31
2.5 Arcabouço Teórico e Analítico ... 40
2.6 Levantamentos sobre as Medidas de mitigação na bovinocultura .. 42
2.6.1 Sistema de confinamento .. 48
2.6.2 Sistema de Integração ... 52
2.6.3 Vacina antimetano ... 54
2.6.4 Dieta alimentar para redução de emissões para gado ... 55
2.6.5 Melhoramento Genético .. 59
2.6.6 Manejo de pastagens .. 60
2.6.7 Tratamento de dejetos bovinos ... 62
2.7 Discussão e Considerações Finais .. 64
2.8 Referências .. 66
3 MARGINAL ABATEMENT COST: EVALUATION OF FEED DIET IMPROVEMENTS IN DAIRY CATTLE FARMS .. 74
3.1 Introduction ... 74
3.2 Methodology and Data .. 77
3.2.1 Building the MACC: Mathematical model, variables and data source 87
3.3 Description of baseline and simulation feeding conditions .. 96
3.4 Results and Discussion .. 102
3.5 Conclusion .. 120
4 IMPOSTO AMBIENTAL: ESTUDOS DE CASOS PARA FAZENDAS TÍPICAS DE PRODUÇÃO DE LEITE NO BRASIL
4.1 Introdução
4.2 Revisão de Literatura
 4.2.1 Precificação de Carbono
 4.2.2 Emissões na Agropecuária
4.3 Metodologia e dados
 4.3.1 Painel de custos de produção e indicadores usados
 4.3.2 Cálculo do imposto ambiental
4.4 Resultados
4.5 Considerações Finais
4.6 Referências
5 CONSIDERAÇÕES FINAIS
RESUMO

Emissões de GEE na pecuária de leite brasileira: custo marginal de abatimento para diferentes sistemas de produção e implicações políticas

O presente trabalho tem como objetivo analisar e estimar, para casos selecionados, os efeitos da adoção de medidas de mitigação das emissões de Gases de Efeito Estufa (GEE) em propriedades de produção leiteira, sobre seus resultados econômicos e financeiros e suas emissões. Os estudos de caso versaram sobre fazendas típicas de bovinocultura brasileira que se diferenciam por seu nível tecnológico e região. Esta dissertação está organizada no formato de coletânea de três artigos, além da Introdução e Considerações Finais. O artigo 1 (Bovinocultura Brasileira: Uma revisão geral da questão climática, econômica e potenciais medidas de mitigação para o setor) apresenta um debate gera sobre as alternativas e sua importância em implementar medidas de mitigação na bovinocultura brasileira. É um artigo dissertativo, baseado em revisão bibliográfica. As considerações finais apontam que as medidas de mitigação preconizadas para a bovinocultura estão relacionadas a alguns dos desafios que, há décadas, o Brasil já vem buscando enfrentar, destacadamente via a implementação do Código Florestal, a recuperação de pastagens degradadas e a promoção de sistemas integrados de produção (pecuária, agricultura e floresta). O artigo 2 (Marginal Abatement Cost: Evaluation of Feed Diet Improvements in dairy cattle farms) estima e compara a Curva de Custo Marginal de Abatimento para duas fazendas típicas de bovinocultura leiteira do Brasil, no cenário de adoção de uma melhoria na dieta alimentar dos bovinos. Esta medida é recomendada, na literatura, como um dos instrumentos de mitigação na atividade pecuária. Além de consultar a especialistas, para obter informações e definir as dietas ótimas projetadas para cada situação analisada, foram utilizados dados de estrutura de produção e de custos de duas propriedades típicas levantadas pelo CEPEA-USP/CNA: Caçu-GO (médio nível tecnológico) e Leopoldina-MG (baixo nível tecnológico). O horizonte temporal considerado foi do ano base 2018 a 2030, prazo para cumprimento dos compromissos do Brasil junto ao Acordo de Paris. Para estimar o custo de abatimento, calculou-se o custo líquido de produção com e sem a melhoria da dieta dos animais. Os resultados mostraram que a fazenda com maior nível tecnológico apresentou menor emissão por litro de leite e a implementação da medida de mitigação analisada gerou um custo marginal de abatimento negativo, quando considerado este custo por litro de leite (decoupling relativo). O artigo 3 (Imposto Ambiental: estudos de casos para fazendas típicas de produção de leite no Brasil) simulou um imposto pigouviano sobre as emissões de GEE de três fazendas típicas de leite, representativas de diferentes níveis tecnológicos e regiões. Os dados foram obtidos do painel de custos do CEPEA-USP/CNA (Castro/PR – alto, Caçu – médio, Leopoldina – baixo nível tecnológico). Para o ano base 2018 os indicadores econômico-financeiros das três propriedades típicas foram comparados, para os cenários com e sem adoção de imposto. O valor do imposto simulado por cabeça, para cada categoria do bovino considerada, foi obtido a partir da multiplicação de fatores de emissão disponíveis no Terceiro Inventário Brasileiro de Emissões e Remoções Antrópicas de GEE (MCTI; EMBRAPA, 2015) por preços de carbono estimados para este estudo com base nos dados do Carbon Market Trade Book (BVRIOS’s, 2019). Os resultados mostraram que o imposto ambiental simulado poderia inviabilizar a atividade pecuária leiteira em propriedades de menor nível tecnológico e baixa produtividade. Como considerações finais desta dissertação, tendo em vista os estudos realizados, ressalta-se que há possibilidade de implementação de tecnologias que simultaneamente podem contribuir para a mitigação e redução das emissões em fazendas de pecuária leiteira no Brasil e, simultaneamente, melhorar sua produtividade e desempenho.
econômico-financeiro. O nível tecnológico das fazendas também é relevante e pode ditar o impacto potencial de uma política de precificação, avaliada pela simulação de um imposto sobre carbono hipotético, sobre resultados financeiros das mesmas. Embora se deva ter cautela para generalizar os resultados dos estudos de caso analisados, eles sugerem que os produtores de leite mais eficientes tendem a ter menor impacto do imposto medido por litro de leite. Os estudos apresentados fortalecem o discurso de que a heterogeneidade tecnológica e econômica do setor pecuário leiteiro no Brasil é relevante no âmbito do debate sobre políticas futuras para mitigação das emissões no setor agropecuário.

Palavras-chave: Pecuária, Leite, Medidas de mitigação, Imposto Pigouviano, Custo marginal de abatimento
ABSTRACT

GHG emissions in the Brazilian dairy cattle sector: marginal abatement cost for different production systems and policy implications

This work aims to analyze and estimate, for selected cases, the effects of adopting measures to mitigate greenhouse gas (GHG) emissions in dairy farms, on economic and financial results and on their emissions. The case studies focused on typical Brazilian cattle farms that differ by their technological level and region. This master thesis is organized as a collection of three papers, in addition to the Introduction and Final Considerations. Paper 1 (Brazilian bovine cattle: A general review of the climatic, economic and potential mitigation measures for the sector) presents a general debate about the alternatives and the importance of implementing mitigation measures in Brazilian cattle farming. It is an essay paper, based on a literature review. A final considerations highlight that mitigation measures recommended for cattle raising farms address challenges that, for decades, Brazil has been seeking to face, notably the implementation of the Forest Code, the recovery of degraded pastures and the promotion of integrated systems of production (livestock, agriculture and forest). Paper 2 (Marginal Abatement Cost: Evaluation of Feed Diet Improvements in Dairy Cattle farms) estimates and compares the Marginal Abatement Curve for two typical dairy farms in Brazil, in the scenario of adoption of an improvement in the diet of cattle. This measure is recommended, in the literature, as one of the mitigation tools in livestock production. Besides the consultations with experts obtain information and define the optimal diets designed for each case analyzed, data on the production structure and costs of two typical farms, surveyed by CEPEA-USP/CNA, were used: Caçu-GO (medium technology) and Leopoldina-MG (low technology). The time horizon considered was from 2018 (base-year) to 2030, which is the deadline to Brazil to fulfill its commitments under the Paris Agreement. To estimate the abatement cost, the net cost of production was calculated with and without improving the animals' feed diet. The farm with higher technology showed lower emissions per liter of milk and that the adoption of the mitigation measure generated a negative marginal abatement cost, calculated per liter of milk (relative decoupling). Paper 3 (Environmental Tax: case studies for typical dairy farms in Brazil) simulated a Pigouvian tax on GHG emissions from dairy cattle, for three typical farms differentiated by technological level and region. Data was available from the CEPEA-USP/CNA cost panel database (Castro / PR - high, Caçu - medium, Leopoldina – low technology). For the base year 2018, the three typical farms were compared in terms of economic and financial indicators, for the scenarios with and without the adoption of tax. The tax per animal head, for each category of cattle considered was calculated by multiplying emissions factors extracted from the Third Brazilian Inventory of Anthropic GHG Emissions and Removals (MCTI; EMBRAPA, 2015) by carbon prices based on the Carbon Market Trade Book database (BVRIO’S, 2019). The results showed that the environmental tax simulated could make the dairy business unfeasible in the case of farms of low technology and poor productivity. A final consideration to be emphasized, based on the studies carried out, is the possibility of implementing technologies that can simultaneously mitigate / reduce emissions from dairy cattle farms and increase the productivity, improving their economic and financial performance. The level of technology of farms is also relevant and can dictate the potential impact of carbon pricing policies, here evaluated by simulating a hypothetical carbon tax on the financial variables of the farms. Although, it is important to be cautious in generalizing the conclusions of the study cases, they suggest that dairy farmers more technically efficient tend to face lower impacts of carbon tax per liter of milk. The studies presented here strengthen the discourse that the technological and economic
heterogeneity of the Brazilian livestock sector is relevant to the debate on future policies to mitigate emissions in the agricultural sector.

Keywords: Livestock, Milk, Mitigation measures, Environmental tax, Marginal abatement cost
1 INTRODUÇÃO

Os Gases de Efeito Estufa (GEEs) podem ser definidos como quaisquer gases atmosféricos que possuam a propriedade de absorver e reemitir calor; mantendo a atmosfera da Terra mais quente do que na sua ausência. Destacam-se como principais GEEs terrestres: vapor d’água, dióxido de carbono (CO₂), metano (CH₄), óxido nitroso (N₂O) e ozônio (O₃) (BRANDER; DAVIS, 2012; EHHALT; PRATHER, 2001).

Os GEE estão presentes, naturalmente, na atmosfera terrestre. Entretanto, as atividades antropogênicas, como a queima de combustíveis fósseis e alguns processos biológicos vegetais e animais, potencializados pela ação humana através da agricultura e pecuária, contribuem para um aumento significativo de seus níveis, motivando o aquecimento global e as mudanças climáticas (BRANDER; DAVIS, 2012).

Neste sentido, após a Segunda Guerra Mundial, observou-se uma elevação significativa da emissão desses gases, o que colocou o tema na agenda de debates internacionais. O Brasil tem sido um ator importante nos debates, e sediou, em 1992, a Conferência das Nações Unidas sobre Meio Ambiente e Desenvolvimento (UNFCCC), também chamada de Eco-92. Este evento foi um marco mundial de reconhecimento da necessidade de cooperação entre países para redução das emissões de GEE e, dessa forma, prevenção das mudanças climáticas (CHICHILNISKY; HEAL, 1994; MOTTA, 2011).

Com a mesma temática da Eco-92, outros eventos internacionais foram realizados com o objetivo de discutir intervenções globais para mitigação das emissões de GEE. Destacam-se, em particular, a 3ª Conferência das Partes (COP 3) que tratou o Protocolo de Quioto (PQ) em 1997 e a 21ª Conferência das Partes (COP 21) que gerou o Acordo de Paris (AP), em 2015. Ambos eventos tiveram foco na cooperação global, sendo um dos principais pilares a redução das emissões de GEE.

Durante o AP foi instituída a Contribuição Nacionalmente Determinada (Nationally Determined Contribution – NDC), que é um mecanismo (não obrigatório) com objetivo de envolver os governos para se atingir as metas propostas de redução das emissões definidas pelo AP, e contidas em um documento facultativo que respeita as singularidades indicadas pelas nações signatárias (UNFCCC, 2015).
Em seu NDC o Brasil apresentou uma meta considerada ousada, ao se propor a emitir 1.3 GtCO2e\(^1\) em 2025 e 1.2 GtCO2e em 2030, representando uma diminuição no patamar de 37% em 2025 e 43%, em 2030, com base nas emissões nacionais reportadas em 2005, estimadas em 21 GtCO2e (BRASIL, 2018).

A instituição do NDC representou um substancial progresso para o alcance de uma economia de baixo carbono, visto que oficializou compromissos outrora voluntários por países em desenvolvimento em acordos climáticos internacionais. Dados do Banco Mundial (2018), apresentados na próxima seção, indicam que esses países detêm parcela representativa entre os maiores emissores de GEE. De fato, Mota (2011) reforça o papel essencial das nações emergentes na redução de emissão de GEE a níveis adequados e, principalmente do Brasil, que figura como um dos maiores emissores mundiais.

Essa relevância do Brasil é relatada em vários trabalhos que tratam da temática de emissões de GEE e mudanças climáticas, dos quais se destacam os relatórios de McKinsey & Company (2009), Banco Mundial (2010), Fundação Getulio Vargas (FGV) (2016) e, mais recentemente, do Instituto de Manejo e Certificação Florestal e Agrícola (IMAFLORA, 2018).

Um aspecto ressaltado na comparação entre o perfil das emissões brasileiras vis-à-vis as emissões de outros países do mundo, é o relatado por (AZEVEDO; ANGELO, 2018), destacado que, enquanto a média global tem o setor de energia como o principal emissor, o Brasil tem a maior parte das suas emissões atreladas ao setor agropecuário.

Segundo estimativas do Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa (SEEG) para 2018, o Brasil teve 69% das suas emissões atreladas ao setor agropecuário, com aproximadamente dois terços dessa emissão originada da transformação de áreas de floresta em pastos e em cultivos agrícolas, e a outra parcela derivada de emissões diretas da agropecuária, principalmente da fermentação entérica e manejo dos solos e dejetos (SEEG, 2020a). O relatório de emissões do setor de agropecuária elaborado pelo IMAFLORA (2018), em parceria com SEEG, acrescenta, ainda, que o Brasil ocupa o terceiro lugar no ranking mundial de emissões quando se analisa apenas o setor agropecuário.

Ao se desagregar as emissões do setor agropecuário, sem considerar neste caso as emissões por mudanças no uso da terra, verifica-se que a pecuária é a responsável pela maior parte delas, devido à fermentação entérica dos bovinos, além de contribuir para as emissões dos solos cultivados, no que tange à lixiviação dos dejetos animais. De acordo com a

\(^1\) Unidade de medida internacional que representa a quantidade de GEE “equivalente em dióxido de carbono (CO2e)”, neste caso em bilhões de toneladas (GtCO2e).
literatura, as emissões da pecuária bovina são adicionadas pelas emissões vinculadas à grande quantidade de áreas degradadas pela pastagem (IMAFLORA, 2018; MARGULIS; MIRANDA, 2018).

O baixo índice médio da produtividade pecuária bovina brasileira é um fator que tem relação com os altos níveis de desmatamento doméstico, à medida que esta produtividade reduzida contribui para o avanço crescente da produção pecuária em novas áreas, no lugar de um uso otimizado e sustentável da terra. Isto revela que a elevação da produtividade pecuária é uma alternativa viável para a diminuição de emissão de GEE na atmosfera (ANUALPEC, 2015; IMAFLORA, 2018; MARGULIS; MIRANDA, 2018).

A literatura indica, ainda, que os baixos índices de produtividade se relacionam à presença de sistemas de produção pecuária bovina de baixo nível tecnológico e gerencial, que ainda são adotados, em detrimento da disponibilidade de um conhecimento amplo de tecnologias e de sua adoção em várias regiões do País. Esta situação configura também uma grande heterogeneidade tecnológica no setor pecuário de corte e de leite.

O sistema pastoril em regime extensivo e o uso de pastagens cultivadas ou naturais, quando comparados a um sistema de confinamento, tem índices de produtividade muito inferiores. A situação é ainda mais agravada pelas condições de milhões de hectares de pastagens degradadas (BANCO MUNDIAL, 2010; DIAS-FILHO, 2011; IMAFLORA, 2018; SANTOS, 2016).

Os sistemas integrados, como o de Lavoura-pecuária-floresta (iLPF), mostram-se modelos eficazes para promover a mitigação das emissões desse setor, ao contribuir para uma melhora na produtividade da pecuária. A iLPF prevê que, em um mesmo espaço, é possível dispor de pastagens para a alimentação do gado (inclusive, recuperando pastagens degradadas), de lavouras (produção de culturas como soja e milho, entre outras) e de floresta (por exemplo, para produção de eucalipto). O benefício desta integração está muito atrelado à proteção contra pragas, exploração de novos produtos agrícolas, diminuição do risco da produção, além da estocagem de carbono e elevação da produtividade dessas atividades (BANCO MUNDIAL, 2010; MCKINSEY & COMPANY, 2009; SANTOS, 2016).

O melhoramento genético, tanto dos animais quanto das forragens, constitui uma tecnologia também passível de ser usada para promover a redução das emissões de metano, conforme relatado pelo Banco Mundial (2010). No caso dos animais, esse melhoramento ocorre pela aquisição tanto de sêmen bovino de alta qualidade, quanto pela aquisição de touros reprodutores de boa performance. Este sêmen e touros podem contemplar a produção
de animais mais produtivos e com menor emissão de GEE individualmente ou por produção de alimento (quilo de carne ou litro de leite).

Uma alimentação melhor administrada e/ ou o uso de suplementos alimentares também são apontados como principais ações que podem impactar positivamente a elevação da produtividade na bovinocultura, proporcionando um menor tempo de engorda para os bovinos de corte e, uma maior produção de leite por animal nos de leite.

O abate de animais mais jovens, no caso da bovinocultura de corte, leva à redução do coeficiente de emissão por quilograma de carne produzida. Um animal cujo tempo de engorda é mais curto e, desta forma, será abatido em um prazo menor de tempo, emitirá menos GEE, tanto o metano emitido via fermentação entérica quanto via dejetos. Contudo, a redução na idade do abate depende de vários fatores, tais como o tipo de criação, qualidade da alimentação e genética.

Outro potencial instrumento para promover a mitigação das emissões por fermentação entérica é a vacina antimetano, que ainda está em fase de desenvolvimento. Esta vacina funcionará controlando a atividade de bactérias metanogênicas e, portanto, proporcionando menor emissão desse gás por animal. (MCKINSEY & COMPANY, 2009). Apesar da vacina antimetano não estar disponível no mercado, no Brasil já existem aditivos para bovinos com o objetivo de interferir no processo de fermentação entérica e de produção de dejetos com vistas à redução das emissões animais.

Cabe ressaltar, também, que a viabilidade das medidas de mitigação deve ser analisada não apenas sob os aspectos econômicos, mas também pelos fatores políticos, os quais podem impulsionar ou restringir a adoção de ações mitigatórias na pecuária, já que este setor tem grande relevância para a economia nacional (BANCO MUNDIAL, 2010).

De acordo com dados do USDA (2018a,b), o Brasil se posiciona entre os maiores produtores e exportadores de carne bovina do mundo, além de figurar entre os maiores consumidores de carne e leite mundial. O PIB da cadeia de bovinocultura de corte e leite doméstica está estimado em 263.955 milhões de reais, a preços de 2017, representando aproximadamente 60% do ramo da pecuária nacional no agronegócio (443 bilhões de reais), mais de 18% do PIB do agronegócio e aproximadamente 4% do PIB nacional, segundo estimativa do Cepea (2017).

É nesse contexto que o presente estudo pretende estimar custos marginais de abatimento das emissões, levando em consideração as alternativas técnicas existentes para a bovinocultura leiteira e discutir outros aspectos que podem favorecer ou dificultar sua adoção.
A relevância deste estudo se respalda no contexto da almejada implantação dos compromissos do Acordo de Paris nos próximos anos e de medidas mitigatórias já implementadas.

As hipóteses que norteiam este estudo são:

- Há medidas de mitigação de baixo custo de adoção para os pecuaristas no Brasil, e que podem promover uma significativa redução das emissões de GEE desse setor, e, portanto, contribuir para o cumprimento parcial das metas estabelecidas no NDC do Brasil, no que tange às emissões do setor agropecuário;

- Existem medidas de mitigação das emissões na atividade pecuária bovina que têm custos marginais de abatimento negativos. Ou seja, em relação ao cenário de ausência destas medidas, sua adoção nas atividades pecuárias da bovinocultura de leite gera ganhos de produtividade que superam os custos adicionais com sua implantação;

- Um imposto ambiental pigouviano poderia inviabilizar a atividade econômica de produtores com baixa produtividade na produção de leite.

Esta dissertação está organizada no formato de uma coletânea de três artigos:

- O primeiro, intitulado, Bovinocultura Brasileira: uma revisão geral da questão climática, econômica e potenciais medidas de mitigação para o setor, consiste em uma revisão geral sobre o status atual das emissões na bovinocultura brasileira e sobre as potenciais medidas de mitigação para o setor.

- Marginal Abatement Cost: Evaluation of Feed Diet Improvements in Dairy Cattle Farms, visa comparar os impactos econômicos e ambientais das mudanças tecnológicas relacionadas à melhorias na dieta animal, para diferentes sistemas de produção - caracterizados por níveis de adoção de tecnologia e produtividade distintos;

- O terceiro artigo examina os efeitos de uma política tributária, um imposto sobre o carbono emitido, hipoteticamente incidente sobre propriedades de pecuária leiteira, sobre o desempenho econômico e financeiro das mesmas. Também neste artigo, comparam-se os impactos da política fiscal sobre diferentes fazendas típicas de produção leiteira do Brasil. O título deste artigo é “Imposto Ambiental: estudos de casos para fazendas típicas de produção de leite no Brasil”.

Por fim, esta dissertação está estruturada pela presente introdução, que contém, ainda, o objetivo e justificativa da pesquisa, seguidos dos três artigos mencionados acima e a
conclusão da dissertação, que conecta os resultados e considerações finais a respeito do que se tratou nos artigos.

1.1 Objetivos

O objetivo principal e geral desta dissertação é examinar impactos microeconômicos de intervenções sobre as emissões pecuárias brasileiras, seja pela adoção de medidas de mitigação vinculadas ao sistema de produção, ou pela imposição de medidas de precificação de carbono, como uma política de tributação de emissões.

A fim de alcançar o objetivo principal, neste trabalho, busca-se identificar, tanto na literatura técnica quanto científica, as medidas técnicas ou de gestão que podem promover a mitigação das emissões de GEE na bovinocultura, e, em especial, na leiteira.

A partir da identificação das medidas de mitigação previstas em literatura, passíveis de adoção nas propriedades pecuárias (artigo 1), a estimação das Curvas de Custo Marginal de Abatimento (artigo 2) pretende avaliar o potencial de que tais opções de mitigação também resultem em melhores resultados zootécnicos e econômicos para os pecuaristas, além dos benefícios ambientais esperados.

Este conhecimento é essencial para uma discussão posterior sobre a viabilidade de sua implantação em larga escala no território nacional, buscando-se sinergias da política agrícola com a política ambiental. Nesse contexto, é que outro objetivo específico da dissertação é discutir os possíveis efeitos microeconômicos de se adotar uma política de precificação do carbono emitido pela pecuária bovina e da internalização do custo social do mesmo (artigo 3), tendo em vista a importância socioeconômica deste setor para o Brasil.

1.2 Delimitação do Problema e Justificativa

A fim de viabilizar a análise no detalhamento necessário, foram escolhidos três estudos de caso como base para a discussão. Cada estudo de caso está delimitado pelo sistema de produção representativo de uma região de pecuária de leite, dado pela chamada propriedade típica. A fazenda típica pode ser compreendida como um modelo de fazenda percebido como representativo do sistema mais frequente numa dada região de estudo levantada, ou seja, a propriedade modal.

As três fazendas modais de leite escolhidas, dentre as disponíveis nos painéis do CEPEA-USP/CNA, representam as regiões de Leopoldina – MG, Caçu – GO e Castro – PR.
A pecuária foi escolhida tendo em vista a importância das emissões desse setor, dentro do macro-setor agropecuária, evidenciado pelo inventário de emissões do Brasil.

As opções de mitigação analisadas se referem a melhorias na qualidade da alimentação animal e a precificação de carbono é avaliada via alternativa de um imposto pigouviano sobre o carbono emitido. No caso das medidas de mitigação, elas são analisadas pela ótica de sua adoção autônoma pelo pecuarista, calculando-se seu custo de abatimento.

A Curva de Custo de Abatimento Marginal (MACC) é uma metodologia que contrasta o total de emissões do gás carbônico equivalente\(^2\) abatido com o custo marginal associado a tal redução, o que permite avaliar a medida de mitigação mais adequada para uma determinada região (KESICKI; EKINS, 2012). Constitui uma ferramenta analítica que possibilita a identificação do custo de redução de um certo volume GEE por meio da adoção de uma medida de mitigação.

Outra ótica de análise é a do impacto microeconômico do estabelecimento de um imposto ambiental pigouviano, avaliado para três situações tecnologicamente distintas, cujo desempenho produtivo e financeiro também difere, dadas pelas já citadas fazendas modais produtoras de leite em Leopoldina, Caçu e Castro.

A questão da precificação de carbono avança em vários países, mais em setores industriais e de energia e combustíveis, mas pouco a pouco desafia o setor agropecuário. Essa interface microeconômica entre a atividade agropecuária, já reconhecidamente heterogênea tecnologicamente, e seus impactos ambientais, embora emergindo de forma, em geral, conflituosa nos discursos e nas negociações, inclusive, com exposição grande para o Brasil, ainda carece de muitos estudos com visão aplicada, e foco nos estímulos e nos meios de enforcement efetivos junto ao setor.

Segundo Pinto et al (2014), o elevado grau de impacto do setor pecuário sobre as questões climáticas, não somente em termos de fermentação entérica, mas também dos dejetos e da degradação de pastagens, requer que as medidas mitigadoras sejam adotadas de forma ampla e ágil, sem, no entanto, esquecer o papel fundamental desta atividade para a economia brasileira.

A importância deste trabalho está na urgência em se gerar mais informações para subsidiar as decisões do setor privado quanto às estratégias para redução das emissões no setor pecuário, sem comprometer sua contribuição para a geração de renda e riqueza.

\(^2\) Gás carbônico equivalente ou CO2e é uma unidade de medida que transforma os demais GEE em uma medida única.
brasileira. Igualmente, é importante para subsidiar o planejamento das possíveis intervenções do governo com vistas à eventual precificação do carbono para esse setor.

1.3 Referências

ANGELO, C.; RITTIL, C. Análise das Emissões Brasileiras de Gases de Efeito Estufa e sua implicações para as metas do Brasil. São Paulo: 2019. Disponível em: <http://www.observatoriodoclima.eco.br/wp-content/uploads/2019/11/OC_SEEG_Relatorio_2019.pdf.pdf>. ANUALPEC. Anuário da Pecuária Brasileira. São Paulo: Informa Economics / FNP – Consultoria e Agroinformativos, 2015.

AZEVEDO, T. R.; ANGELO, C. Emissões de GEE no Brasil e suas implicações para políticas públicas e a contribuição brasileira para o Acordo de Paris. SEEG, 2018. Disponível em: <http://seeg.eco.br/wp-content/uploads/2018/08/Relatorios-SEEG-2018-Sintese-FINAL-v1.pdf>. Acesso em: 24 ago. 2018.

BANCO MUNDIAL. CO2 emissions (kt) | Data. Disponível em: <https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?view=map>. Acesso em: 25 ago. 2018.

BANCO MUNDIAL. Estudo de Baixo Carbono para o Brasil. Washington: The World Bank, 2010.

BARROS, G. S. DE C. PIB Cadeias do Agronegócio. Piracicaba: CEPEA, 2017. Disponível em: <https://www.cepea.esalq.usp.br/upload/kceditor/files/Relatorio PIBAGRO Cadeias_1_sem_2017_.pdf>. Acesso em: 2 set. 2018.

BRANDER, M.; DAVIS, G. Greenhouse Gases, CO2, CO2e, and Carbon: What Do All These Terms Mean?, 2012. Disponível em: <https://ecometrica.com/assets/GHGs-CO2-CO2e-and-Carbon-What-Do-These-Mean-v2.1.pdf>. Acesso em: 25 ago. 2018.

BRASIL. iNDC (Contribuição Nacionalmente Determinada). Disponível em: <http://www.mma.gov.br/informma/item/10570-indc-contribuição-nacionalmente-determinada>. Acesso em: 6 ago. 2018.

BVRIO’S. Carbon Market Trade Book: Emissions Trade System - Empresas pelo Clima. Disponível em: <https://www.bvrio.org/carbono/plataforma/prepara.do>, 2019.

CHICHILNISKY, G.; HEAL, G. Who should abate carbon emissions? An international viewpoint. Economics Letters, v. 44, p. 443–449, 1994. Disponível em: <https://www.sciencedirect.com/science/article/pii/0165176594901198>. Acesso em: 18 jan. 2018.
DIAS-FILHO, M. B. Os desafios da produção animal em pastagens na fronteira agrícola brasileira Challenges of animal production in pastures in the Brazilian agricultural frontier. *Revista Brasileira de Zootecnia*, v. 40, p. 243–252, 2011. Disponível em: <https://www.researchgate.net/publication/261025809>. Acesso em: 1 fev. 2018.

EHHALT, D.; PRATHER, M. Atmospheric Chemistry and Greenhouse Gases 4 Contents. *Climate change 2001: the scientific basis: contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change*. Genebra: UFWCC, 2001. p. 239–289. Disponível em: <https://www.ipcc.ch/ipccreports/tar/pdf/TAR-04.PDF>. Acesso em: 24 ago. 2018.

FGV. *Intensificação da Pecuária Brasileira: seus impactos no desmatamento evitado, na produção de carne e na redução de emissões de gases de efeito estufa*. Brasília: FGV, 2016. Disponível em: <https://bibliotecadigital.fgv.br/dspace/bitstream/handle/10438/17724/Intensificacao_da_Pecuaria_Brasileira_Relatorio_Completo.pdf>. Acesso em: 26 jul. 2018.

IMAFLORA. *Relatório SEEG 2018 - Emissões do Setor de Agropecuária*. SEEG, 2018. Disponível em: <http://seeg.eco.br/wp-content/uploads/2018/06/relatorios-SEEG-2018-agro-final-v1.pdf>. Acesso em: 30 jun. 2018.

MARGULIS, S.; MIRANDA, S. H. G. *Elaboração de estudos setoriais (energia elétrica, combustíveis, indústria e agropecuária) e proposição de opções de desenho de instrumentos de precificação de carbono: Diagnóstico de Agropecuária*. Piracicaba: WayCarbon, 2018. Disponível em: <http://mediadrawer.gvces.com.br/pmr-brasil/original/relatorio-para-consulta-p4-agropecuaria.pdf>. Acesso em: 30 jul. 2018.

MCKINSEY & COMPANY. *Caminhos para uma economia de baixa emissão de carbono no Brasil*. São Paulo: McKinsey & Company, 2009. Disponível em: <http://www.mckinsey.com.br/sao_paulo/carbono.pdf>.

MCTI; EMBRAPA. *Terceiro Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases Efeito Estufa: Setor Agropecuária*, 2015.

PINTO, L. F. G. *et al.* *Análise das Emissões de GEE do Brasil (1990-2012): Setor Agropecuário*. São Paulo: Observatório do Clima, 2014.

SANTOS, K. A. *Curvas de Custos Marginais de abatimento de Gases de Efeito Estufa: oportunidades de mitigação para pecuária de corte*. 2016. Universidade Federal da Grande Dourado, Dourados, 2016. Disponível em: <http://files.ufgd.edu.br/arquivos/arquivos/78/MESTRADO-AGRONEGOCIOS/CUSTOS MARGINAIS DE ABATIMENTO DE GASES DO EFEITO ESTUFA OPORTUNIDADES
MOTTA, R. *Climate Change in Brazil: economic, social and regulatory aspects.* Rio de Janeiro: 2011. Disponível em: <https://www.ipea.gov.br/portal/images/stories/PDFs/livros/livros/livro_climatechange_ingles.pdf>. Acesso em: 17 jan. 2018.

UNFCCC. Conferência das Partes - Vigésima primeira sessão - Adoção do Acordo de Paris. 2015, Paris: Organização das Nações Unidas, 2015. Disponível em: <https://nacoesunidas.org/wp-content/uploads/2016/04/Acordo-de-Paris.pdf>. Acesso em: 5 nov. 2017.

USDA. *Dairy: World Markets and Trade.*, 2018a. Disponível em: <https://apps.fas.usda.gov/psdonline/circulars/dairy.pdf>. Acesso em: 2 set. 2018.

USDA. *Livestock and Poultry: World Markets and Trade. Foreign Agricultural Service*, 2018b. Disponível em: <https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf>. Acesso em: 22 jul. 2018.
2 BOVINOCULTURA BRASILEIRA: UMA REVISÃO GERAL DA QUESTÃO CLIMÁTICA, ECONÔMICA E POTENCIAIS MEDIDAS DE MITIGAÇÃO PARA O SETOR

2.1 Introdução

Este artigo tem o objetivo de apresentar um debate geral sobre a temática que envolve medidas de mitigação na bovinocultura brasileira.

Para o alcance deste objetivo, este artigo apresenta primeiramente aspectos sobre a questão climática, seguida da discussão sobre as emissões de Gases Efeito Estufa (GEE) e alguns apontamentos sobre a importância econômica da bovinocultura brasileira. Para pautar a necessidade de implementação de medidas de mitigação nesse setor, é apresentado o arcabouço teórico que discute o conceito das emissões de GEE como externalidades negativas derivadas das atividades antropogênicas. Finalmente, apresentam-se as principais medidas de mitigação com potencial de redução de emissões de GEE para a bovinocultura brasileira, relatadas pela comunidade científica. As considerações finais destacam importantes aspectos sobre o tema para futuros estudos.

A metodologia utilizada para elaboração deste artigo foi a revisão bibliográfica de relatórios e artigos científicos; além da apresentação de dados estatísticos sobre a temática abordada, com atenção especial para as informações de emissões e indicadores socioeconômicos da bovinocultura brasileira.

Tendo em vista que a comunidade científica produz cada vez mais trabalhos apontando o risco de uma crise climática, reforçando a necessidade de ações emergenciais para mitigação e redução de emissões de GEE (ALLEN et al., 2018; IPCC, 2019), este artigo pretende enriquecer o debate de medidas de mitigação na pecuária brasileira. Este tema é, especialmente, relevante, considerando o contexto em que, segundo estimativas do SEEG\(^3\), o Brasil se coloca como o 7\(^o\) maior emissor de gases de efeito estufa do mundo (2,9% do total

\(^3\) Adotamos os dados do SEEG para este artigo em razão de além destas estimativas serem as mais atualizadas de emissões para o Brasil (os dados oficiais do Ministério da Ciência, Tecnologia, Inovação e Comunicações - MCTI- datam de 2015), também é uma metodologia consistente e amplamente divulgada em relatórios científicos.
mundial) e a pecuária representa 77%\(^4\) de toda emissão agropecuária brasileira em 2018 (ANGELO; RITTL, 2019).

2.2 A Questão Climática

A atmosfera é constituída por uma fina camada de gases, partículas e também nuvens que envolvem a Terra, e dentre estes gases estão os de Efeito Estufa—GEEs, que contribuem para o seu aquecimento, à medida que possibilitam que a radiação solar seja absorvida pelo planeta, sendo este aquecimento essencial para vida na Terra (BRANDER; DAVIS, 2012; EHHALT; PRATHER, 2001).

A quantidade de GEE concentrado na atmosfera está aumentando a altas taxas, devido, principalmente, às atividades antropogênicas; destacadamente pelo uso de combustíveis fósseis, processos de produção agropecuária e mudança do uso da terra. Essa aceleração torna o nível desse aquecimento terrestre superior aos patamares considerados adequados pelos estudiosos e promove as denominadas mudanças climáticas (RAMANATHAN; FENG, 2009). Além do CO2, os principais GEE terrestres são o vapor d'água, metano (CH4), óxido nitroso (N2O) e ozônio (O3) (RAMANATHAN; FENG, 2009).

Assim, as emissões de GEE constituem subprodutos das atividades econômicas, mas, primariamente, também de alguns dos processos biológicos vegetais e animais. Por sua vez, as atividades econômicas têm, em grande parte, seu consumo de energia atrelado à queima de combustíveis fósseis, cujo uso foi estimulado por décadas, pelo desenvolvimento de tecnologias intensivas nessa fonte energética. Neste contexto, observa-se desde a Segunda Guerra Mundial um aumento considerável da emissão de GEE, trazendo para a pauta das discussões internacionais a possibilidade de efeitos irreversíveis de tais gases sobre o clima (CHICHILNISKY; HEAL, 1994).

No âmbito das discussões internacionais sobre este assunto, destaca-se a realização da Conferência das Nações Unidas sobre o Ambiente Humano, realizada em Estocolmo, na

\(^{4}\) As estimativas do SEEG para emissões brasileiras do ano de 2018 apresentam que 25% das emissões brasileiras totais foram decorrentes da atividade agropecuária, e destas emissões agropecuárias, 69% se devem ao rebanho bovino de corte e 8% ao rebanho leiteiro.
Suécia, em 1972, que contribuiu de maneira relevante para o fortalecimento da política ambiental brasileira⁵ (MORAES; TUROLLA, 2004).

Outro marco internacional de debate sobre este tema foi a Conferência das Nações Unidas sobre Meio Ambiente e Desenvolvimento, no Brasil em 1992, também conhecida como Cúpula da Terra do Rio de Janeiro ou Eco-92. Nesta reconheceu-se, internacionalmente, a necessidade de cooperação entre países como resposta às ameaças de mudanças climáticas (CHICHILNISKY; HEAL, 1994; SEROA DA MOTA, 2011).

A partir da Eco-92, foi elaborada a Convenção-Quadro das Nações Unidas sobre Mudança do Clima (UNFCCC), tratado internacional que estabelece um conjunto de objetivos e regras para combater o aquecimento global. Nessa ocasião, foi acordada a realização de encontros anuais entre os países, as chamadas Conferência das Partes (COP), com objetivo de avaliar e definir os caminhos a serem traçados para se atingir os objetivos estabelecidos pela UNFCCC (COUTO; CASTRO; MOTA, 2011; UNFCCC, 1992).

Na sequência das discussões internacionais sobre o clima, em 1997, durante a COP 3, foi assinado o Protocolo de Quioto (PQ), que representou o início efetivo das diretrizes debatidas na UNFCCC, definindo tetos de emissões para os chamados países do Anexo B (países desenvolvidos) e estabelecendo o comprometimento de cerca de 40 países desenvolvidos em reduzir, conjuntamente, 5,2% das suas emissões em relação às de 1990 (SEROA DA MOTA, 2011; UNFCCC, 1998).

Apesar do avanço que o PQ representou para a discussão da questão climática, parcela representativa dos países do anexo B, que se reuniram em um grupo intitulado UMBRELLA⁶, impôs, como condição para aceitação do Protocolo, a instituição de um comércio de emissões entre as nações signatárias, como mecanismo de auxílio para alcance das metas domésticas de redução de emissão de GEE (BÖHRINGER, 2000; ELLERMAN; DECAUX, 1998).

O comércio de emissões representa uma ferramenta para diminuição de emissão de GEE mais barata do que as medidas de política restritiva, como as proibições e quotas, proporcionando oportunidade para a exploração dos diferenciais de custo marginal entre países e estimulando a prática de tecnologias carbono não intensivas. Entretanto, há críticas

⁵ Os anos 70 representaram um momento de importante desenvolvimento da estrutura pública de regulação da política ambiental, tendo ocorrido nessa década a criação da Secretaria Especial do Meio Ambiente (SEMA), em 1973 (MORAES; TUROLLA, 2004).

⁶ O grupo UMBRELLA tem como integrantes os EUA, Japão, Austrália, Canadá, Islândia, Nova Zelândia, Noruega, Ucrânia e Federação Russa; e sua principal característica é a defesa de um comércio de emissões, sem limites restritivos (BÖHRINGER, 2000).
sobre a efetividade técnica desse mecanismo para reduzir, de fato, a emissão dos GEE (BÖHRINGER, 2000; BÖHRINGER; VOGT, 2003).

Muitos oponentes ao sistema de comércio de emissões alertam para a possibilidade deste comércio estimular um aumento das emissões globais, à medida que os signatários que possuem tecnologias de baixa emissão vendam volumosas quantidades de direito de emissão. Para solucionar tal problema propôs-se impor limites restritivos sobre a quantidade de carbono comercializada, mas esta alternativa gerou um grande impasse, com os países do UMBRELLA pouco dispostos a aceitar potenciais perdas de produtividade e eficiência devido a políticas restritivas (BÖHRINGER, 2000; BÖHRINGER; VOGT, 2003).

Este contexto colocou o PQ em uma situação complicada, já que sua implementação depende da ratificação dos membros do grupo UMBRELLA, dentre os quais, os EUA. Tal impasse levou especialistas a considerarem que o PQ foi reduzido a um tratado simbólico, pouco efetivo, na prática, para a redução das emissões (BÖHRINGER, 2000; BÖHRINGER; VOGT, 2003, 2004; PEARCE, 2018).

Outro importante marco da cooperação global para diminuição das emissões foi a 21ª Conferência das Partes (COP 21), realizada em 2015, em Paris, conhecida como “Acordo de Paris” (AP). Assim como o PQ, este Acordo também se fundamentou na visão de que nações mais desenvolvidas detêm maior responsabilidade pelo fenômeno das mudanças climáticas. Logo, maior obrigação com a mitigação dos efeitos climáticos recairia sobre elas (FALKNER, 2016; STAVINS; STOWE, 2016).

O AP institui importantes diretrizes, das quais cabe destacar a limitação do aquecimento médio do planeta a 1,5 grau centígrado até 2100; a criação de um fundo até 2020, para o qual os países desenvolvidos doariam 100 bilhões de dólares por ano, para financiar projetos de combate às mudanças climáticas e adaptação dos países em desenvolvimento; compromisso dos países desenvolvidos no apoio de países mais pobres assolados por algum desastre ambiental; e transparência dos investimentos previstos no acordo, tornando regra o acompanhamento/monitoramento das emissões, dos recursos financeiros investidos e também das ações de mitigação (MINISTRY OF THE ENVIRONMENT (BRAZIL), 2018; UNFCCC, 2015).

No AP também foi instituída a Contribuição Nacionalmente Determinada (intended Nationally Determined Contribution – iNDC), um mecanismo que teve como alvo engajar os governos no alcance dos objetivos da COP 21. A partir de 2016, com a ratificação do Acordo

7 Em razão principalmente desses países estarem há mais tempo no estágio de industrialização e, deste modo, emitindo mais GEE.
de Paris, a iNDC cedeu lugar à NDC (Nationally Determined Contribution), um documento de adoção voluntária, com previsão de revisão a cada cinco anos, em que os países signatários apresentam seus projetos e planos para redução das emissões, obedecendo às peculiaridades apontadas por seu governo e à sua viabilidade diante de seu cenário socioeconômico. Este mecanismo significou um importante avanço, à medida que converteu em compromissos oficiais as metas pretendidas até mesmo pelos países de participação voluntária no Acordo (REPÚBLICA FEDERATIVA DO BRASIL, 2012; UNFCCC, 2015).

A NDC tem papel fundamental no avanço para uma economia de baixo carbono, já que engloba um maior número de países com compromissos internacionais de redução de GEE. Seroa da Motta et al. (2011) enfatizam este ponto, afirmando que a manutenção do atual padrão de emissão de alguns países emergentes - como a China, Índia e Brasil - não é sustentável no longo prazo, tornando necessária sua contribuição para a mitigação. Dados publicados pelo Banco Mundial (2018) revelam que uma parcela relevante de emissões de GEE se origina em países emergentes e expõem o Brasil entre os cinco maiores emissores do planeta.

Em 2002, as emissões mundiais de GEE foram estimadas em pouco mais de 43 milhões de kt de CO2 equivalente, e saltaram para mais de 53,5 milhões em 2012. Neste contexto, a China mais que dobrou suas emissões (BANCO MUNDIAL, 2018). Estes dados reforçam a importância de ações de mitigação também em países emergentes.

Diante desse quadro, o Brasil instituiu sua NDC, propondo-se a:

[...] Reduzir as emissões de gases de efeito estufa em 37% abaixo dos níveis de 2005, em 2025, com uma contribuição indicativa subsequente de reduzir as emissões de gases de efeito estufa em 43% abaixo dos níveis de 2005, em 2030. Para isso, o país se comprometeu a aumentar a participação de bioenergia sustentável na sua matriz energética para aproximadamente 18% até 2030, restaurar e reflorestar 12 milhões de hectares de florestas, bem como alcançar uma participação estimada de 45% de energias renováveis na composição da matriz energética em 2030. [...] A NDC do Brasil corresponde a uma redução estimada em 66% em termos de emissões de gases efeito de estufa por unidade do PIB (intensidade de emissões) em 2025 e em 75% em termos de intensidade de emissões em 2030, ambas em relação a 2005. O Brasil, portanto, reduzirá emissões de gases de efeito estufa no contexto de um aumento contínuo da população e do PIB, bem como da renda per capita, o que confere ambição a essas metas (BRASIL, 2018).

Como aponta o Ministério do Meio Ambiente, a meta de redução brasileira é considerada ambiciosa, o que torna ainda mais relevante analisar os instrumentos disponíveis para incentivar a mitigação das emissões, buscando seu fortalecimento e avaliando a necessidade de medidas impositivas para garantir sua consecução e examinando, previamente, seus potenciais impactos socioeconômicos.
Dentre os esforços explicitados para alcançar a redução das emissões no âmbito da NDC brasileira, destacam-se as medidas preconizadas para o setor da agricultura, florestas e outros usos do solos:

i) implementação do Código Florestal;
ii) desmatamento ilegal zero na Amazônia;
iii) restauro e reflorestamento de 12 milhões de hectares (Mha) de floresta;
iv) aprimoramento do uso sustentável de florestas nativas e recuperação adicional à meta do Plano ABC (15 Mha) de outros 15 Mha de pastos degradados;
v) expansão de 5 Mha de sistemas integrados de pecuária, agricultura e florestas até 2030 (AZEVEDO; ANGELO, 2018, p. 41).

As medidas acima tratam de desafios que, há décadas, o Brasil busca enfrentar, destacadamente a implementação do Código Florestal, a recuperação de pastagens degradadas e de sistemas integrados de pecuária, agricultura e floresta, nos quais o País, inclusive, já acumula know-how e experiências bem-sucedidas.

Além destes, contudo, há desafios que reforçam as dificuldades correntemente enfrentadas pelo poder público de forma direta, tal como nas ações de monitoramento e controle do desmatamento ilegal. Este ocorre não somente em áreas de produção agropecuária privadas, mas em parques e outras áreas protegidas, como reservas indígenas. Cabe destacar que o objeto de estudo neste artigo são as emissões do setor agropecuário, que correspondem a 25% do total nacional de 2018, segundo o SEEG (2020a), sem considerar aquelas resultantes da mudança do uso do solo (44% das nacionais no mesmo ano), mesmo que, em alguns estudos revisados na literatura, elas sejam tratadas de forma conjunta.

O cumprimento das metas, no que tange diretamente ao setor agropecuário, requer que o Brasil supere as dificuldades que já enfrenta há décadas e cuja solução, embora conhecida, não tem sido implementada com eficácia. A solução passa por um melhor enforcement das políticas já existentes, no que se refere ao Código Florestal; e uma maior eficiência no direcionamento dos incentivos, levando em consideração os distintos públicos-alvo, a adaptação das tecnologias recomendadas para os diferentes biomas e contextos socioeconômicos e produtivos. Certamente, somam-se a estas medidas, o fortalecimento e manutenção de sistemas de monitoramento, de educação ambiental e de aprimoramento dos serviços de extensão rural.

2.3 Perfil das emissões brasileiras totais e da pecuária

O estudo realizado por McKinsey & Company (2009) aponta o Brasil como um dos maiores emissores de GEE do mundo, com previsão do país deter 4% dessas emissões
estimadas para 2030. O relatório de emissões do setor de agropecuária elaborado pelo Imaflora (2018), além de corroborar o estudo da McKinsey & Company (2009) sobre a posição do Brasil nas emissões totais, alerta que o país ocupa o terceiro lugar no ranking mundial quando se analisa apenas o setor agropecuário.

Apesar do potencial das florestas brasileiras de capturar carbono\(^8\), o País figura como um dos principais emissores mundiais de GEE, com altos índices de desmatamento e de emissões da agropecuária. Este quadro é fruto da conversão de terras em área de produção agrícola e pastagem para pecuária, e tal quadro contrapõe o perfil brasileiro de emissão ao da maior parte dos países industrializados, cuja principal fonte de emissões é, em geral, sua matriz energética\(^9\) (AZEVEDO; RITTL, 2014; BANCO MUNDIAL, 2010; PINTO et al., 2014).

De fato, tanto as estatísticas oficiais publicadas no Inventário oficial publicado pelo MCTI; EMBRAPA (2015), quanto os dados divulgados pelo Sistema de Estimativas de Emissões de Gases de Efeito Estufa (SEEG) apontam que a principal fonte de emissão de GEE no Brasil está na categoria de Land Use, Land Use Change and Forestry (LULUCF), seguida pelo setor agropecuário. Estudo do Imaflora (2018) ressalta que o desmatamento está atrelado a estes dois componentes, como já discutido acima, em razão principalmente da transformação de florestas em áreas agrícolas ou em pastagens (Gráfico 1).

Estimativas de emissões do SEEG apontaram que, do total de emissões brasileiras em 2018, 44% (845 Mt CO2 e) vieram das mudanças de uso da terra, em grande parte pelo desmatamento na Amazônia e no Cerrado. As emissões da agropecuária, propriamente dita, ficaram como segunda maior fonte emissor, com 25% das emissões (492 Mt CO2 e), seguida pelo setor de energia, com 23% (408 MtCO2 e) (ANGELO; RITTL, 2019).

\(^8\) A região da Amazônia exerce a função de reservatório para cerca de 47 bilhões de toneladas de carbono, sequestrando de forma permanente um valor que supera em mais de 10 o volume emitido por ano (GOUVELLO, 2010).

\(^9\) O Brasil, diferente de outros países industrializados, tem matriz energética comparavelmente mais limpa, e este fato está atrelado aos investimentos passados em fontes de energia ligadas ao etanol e hidrelétricas (BANCO MUNDIAL, 2010).
Dentro do setor agropecuário, observa-se que a atividade pecuária é a maior fonte emissora de GEE, basicamente devido à fermentação entérica, mas também com participação significativa da geração de dejetos e de sua deposição nos solos, ou seja, com manejo inapropriado (Gráfico 2). Ambas fontes estão associadas, principalmente, à pecuária bovina de corte, ressaltando-se que o Brasil detém o maior rebanho comercial de bovinos do mundo (ABIEC, 2017).

Como se nota no Gráfico 2, estima-se que a fermentação entérica representava 64% das emissões do setor agropecuário e o manejo de dejetos animais, 5% do total de emissões agropecuárias de 2018 (SEEG, 2020b). Margulis e Miranda (2018) ressaltam que parte das emissões computadas como “solos agrícolas” também derivam da atividade pecuária, por exemplo, pela lixiviação e pela degradação dos dejetos depositados nos pastos em criações animais.
Gráfico 2 - Emissões totais pelo setor agropecuário em CO2e(t) GWP-AR5, discriminadas por fonte de emissão, 1990-2018, Brasil. *Fonte: SEEG (2020b).*

Apesar da sua expressiva dimensão econômica, discutida adiante, a atividade pecuária brasileira constitui uma das principais fontes emissoras de GEE devido à emissão de metano, gerado pelo processo de fermentação entérica (Gráfico 2). A emissão por fermentação entérica, no Brasil, se deve basicamente ao rebanho bovino, de modo que é essencial um adequado conhecimento desse setor a fim de se realizar intervenções em prol da mitigação de suas emissões e, ao mesmo tempo, de minimizar os impactos econômicos negativos que tais ações tendem a gerar para o setor.

A dimensão econômica alcançada pela bovinocultura brasileira foi acompanhada de impactos ambientais significativos, já que tanto a produtividade como a adequação das atividades pecuárias à legislação ambiental não avançam no mesmo ritmo das variáveis econômicas, a saber, por exemplo, das receitas cambiais das exportações setoriais.

Avaloa mais significativos na produtividade poderiam contribuir para “frear” os impactos ambientais negativos da atividade produtiva. Destacam-se como principais impactos ambientais da bovinocultura: a degradação de pastagens; o avanço em áreas florestais / nativas para ampliação da produção extensiva de bovinos de corte, o que, em algumas regiões vincula-se a desmatamento; a poluição dos recursos hídricos decorrente do manejo incorreto
de dejetos e a emissão de gases do efeito estufa resultante também do manejo inadequado, além da fermentação entérica (IMAFLORA, 2018).

Nota-se, ao analisar as emissões directas na agropecuária, que os estados mais emissores estão atrelados com o desenvolvimento de atividades de bovinocultura (Figura 1). Toda região do Centro-oeste e o estado de Minas Gerais se encontram entre os maiores emissores, e com participação significativa daquelas derivadas da pecuária. Diferentemente, nota-se que, no estado do Rio Grande do Sul, as emissões estão atreladas tanto à pecuária de corte, quanto à produção de arroz (IMAFLORA, 2018).

Figura 1 - Participação dos Estados nas emissões directas de GEE pela agropecuária, 2016, Brasil
Fonte: SEEG (IMAFLORA, 2018).

As emissões de GEE pela agropecuária são mais intensas nos estados onde a atividade pecuária é mais representativa. Apesar das emissões totais vinculadas à pecuária terem se elevado em termos absolutos (ver Gráfico 2) as emissões relativas, ou seja, medidas pela quantidade de gases por unidade de produto final, vem caindo.

Apesar do grande volume de emissões do setor agropecuário, nas últimas décadas observaram-se reduções consideráveis de suas emissões medidas por unidade de produto final. Indicadores permitem verificar que há um “decoupling” relativo na pecuária, já que o avanço gradativo da intensidade tecnológica neste setor possibilita uma redução na
necessidade do insumo terra para a produção de carne e leite bovinos (MARGULIS; MIRANDA, 2018).

Contudo, segundo Azevedo e Angelo (2018), apesar dessa drástica queda na intensidade das emissões, a quantidade de GEE gerada pela pecuária bovina é muito significativa, tornando necessária sua redução imediata, segundo os autores.

O Gráfico 2 também destaca outro aspecto sobre a agropecuária brasileira, de que a maior parte de suas emissões de GEE estão atreladas à fermentação entérica, seguida pelas categorias de emissão por degradação dos solos agrícolas e pelo manejo incorreto dos dejetos. A produção de bovinos, além das emissões via fermentação entérica, também contribui para emissões de solo, devido às pastagens degradadas e ao manejo incorreto de dejetos.

Nesse contexto, em que a bovinocultura figura como principal setor emissor da agropecuária, cabe ressaltar que o mesmo tem grande importância para a agroindústria brasileira, tanto em termos de fornecimento de matéria prima como fonte de exportações. Este panorama justifica a preocupação de buscar um modelo menos carbono intensivo para a pecuária brasileira, e que seja ajustável às diferentes condições socioeconômicas e tecnológicas presentes nas propriedades rurais em que é desenvolvida.

2.4 A economia da pecuária: produção de carne e leite

Em número de animais, a maior parte do rebanho brasileiro se constitui de bovinos (Tabela 1), com mais de 213 milhões de cabeças, vindo em segundo o de suínos, com quase

10 A fermentação entérica pode ser definida como um processo digestivo realizado por animais herbívoros, dentre eles os bovinos, pelo qual os carboidratos são decompostos por micro-organismos em moléculas simples a serem absorvidas pelo animal, gerando como subproduto desta reação a liberação de CH4 (MARGULIS; MIRANDA, 2018).

11 As pastagens degradadas contribuem para as emissões de solos agropecuários, mas também representam um significativo custo de oportunidade, já que essas pastagens poderiam ser usadas para a captura dos próprios GEEs pelo processo de fotossíntese (IMAFLORA, 2018).

12 Além do material excretado pelos animais (fezes e urina), os dejetos incluem a cama utilizada e a água consumida em caso de instalações de confinamento, alimentos desperdiçados e pelos dos bovinos. A quantidade de dejetos pode variar em função de diversos fatores, dentre eles a composição da dieta, idade, produtividade e consumo de água dos animais. O manejo e armazenamento de dejetos além de possuir um grande potencial de emissão de GEE (principalmente de CH4 e N2O) também oferece alto risco de contaminação tanto para o solo e recursos hídricos, quanto para seres humanos, causando doenças (DIAS; COSER; BERALDI, 2017).
41 milhões, a números de 2018. Do total de rebanho bovino, cerca de 8% eram vacas ordenhadas, conforme levantamento do IBGE para o ano de 2018 (2020a).

A criação de bovinos está presente em todo o território nacional, com maior ou menor nível tecnológico, em sistemas de produção intensivo (confinamento), extensivo (criação totalmente a pasto) e suas combinações, e cujos impactos em termos de emissões de GEE também diferem, como exposto mais adiante.

De acordo com a Pesquisa da Pecuária Municipal (2016), o rebanho bovino brasileiro possui uma trajetória de crescimento contínuo nas últimas décadas. A maior parcela desse rebanho está, atualmente, localizada na região centro-oeste (Tabela 1).

Tabela 1 - Efetivo dos rebanhos (número de cabeças), por tipo de rebanho, Grandes Regiões do Brasil, 2018

Brasil e Grande Região	Bovino	Bubalino	Equino	Suíno	Caprino	Ovino
Brasil	213.523.056	1.390.066	5.751.798	41.443.594	10.696.664	18.948.934
Norte	48.614.446	922.638	981.739	1.563.123	162.024	665.370
Nordeste	27.836.012	125.307	1.340.456	5.740.314	10.047.575	12.634.412
Sudeste	37.111.436	188.085	1.373.299	7.006.826	164.338	610.784
Sul	26.122.755	100.753	915.347	20.594.238	220.455	4.010.916
Centro-Oeste	73.838.407	53.283	1.140.957	6.539.093	102.272	1.027.452

Fonte: Elaboração própria. Pesquisa da Pecuária Municipal (IBGE, 2020a).

O rebanho bovino doméstico também se destaca quando comparado ao restante do mundo. Segundo dados da USDA (2018c), o Brasil possui o segundo maior rebanho do mundo, ficando atrás somente da Índia. Contudo, quando se analisa o estoque comercial de bovinos de corte, o Brasil lidera este ranking (ABIEC, 2018).

A importância desse setor de produção animal encontra amparo e se desdobra em ganhos também para os segmentos a montante e a jusante na cadeia agroindustrial da carne bovina e do leite. Estimativas do Cepea (2018) para o PIB do Agronegócio brasileiro apontam que o “ramo da Pecuária” representou mais de 30% do PIB do agronegócio, ou quase 7% do

13 O PIB do agronegócio calculado pelo CEPEA utiliza como base metodológica para medir o PIB a ótica do produto, isto é, o cálculo do PIB é realizado através da computação do Valor Adicionado total do setor do agronegócio para economia, se avaliando o valor adicionado a preços de mercado, contemplando desta forma os impostos indiretos subtraídos subsídios dos produtos no cálculo do PIB. Outro ponto importante sobre a formulação utilizada pelo CEPEA para apuração do PIB do agronegócio é que ele é segmentado em quatro áreas: “(a) insumos, (b) agropecuária (c) agroindústria (de base agrícola ou pecuária) e (d) agrosserviços (transporte, comércio e demais serviços)”. Também o agronegócio é dividido em dois grandes ramos produtivos para fins de
PIB brasileiro e movimentou um montante superior a 443 bilhões de reais, em 2017. Destaca-se que, desde a segunda metade dos anos 2000, o negócio pecuário vem ganhando participação no total do PIB do agronegócio.

Apesar do destaque brasileiro como importante produtor e exportador de carne bovina sua cadeia produtiva oferta outros produtos derivados, alguns de alto valor e potencial de agregação de valor. O processamento do bovino possibilita a geração de inúmeros outros produtos, dos quais se destacam o couro, sebo (que pode ser utilizado em sabão ou para gerar energia), insumos para a indústria alimentícia, farmacêutica, entre outros (MARGULIS; MIRANDA, 2018).

Dados do USDA (2018a) mostram que o Brasil foi o segundo maior produtor de carne bovina mundial de 2014 a 2017, e o primeiro no ranking da exportação na categoria de carne bovina e vitela em 2017. Esse desempenho brasileiro no ranking mundial tem sido respaldado não somente por um aumento no rebanho bovino, mas também por melhorias nos índices de produtividade da atividade, apesar de ainda registrar uma produtividade média nacional bastante baixa.

O Gráfico 3 apresenta a evolução de bovinos abatidos no Brasil, notando-se que há uma tendência de crescimento rápido no início dos anos 2000, que vai se tornando menos evidente nos últimos dez anos.

Gráfico 3 - Quantidade de bovinos abatidos (Cabeças), 1997-2018, Brasil
Fonte: Elaboração própria. Pesquisa Trimestral do Abate de Animais (IBGE, 2018b).

análise, o ramo agrícola (agricultura) e ramo pecuário (pecuária) (CEPEA, 2017, p. 4). O ramo da Pecuária representa “o conjunto das cadeias produtivas de produtos de origem animal” (CEPEA, 2017, p. 5).
O Brasil também figura entre os principais consumidores de carne bovina do mundo, segundo dados da ABIEC (2018), com um consumo per capita de 37,5 kg/habitante/ano, comparado à média mundial de apenas 9 kg/habitante/ano. Esse nível de consumo é praticamente o mesmo dos norte-americanos (37,2 kg/habitante/ano), mas ainda é inferior ao da Argentina, que registrou 54,7 kg/habitante/ano, em 2017. A Rússia, importante comprador, consome 12,6kg/habitante/ano, enquanto o Japão e a China, respectivamente, 9,6 e 5,7 quilos por habitante/ano.

O dado acima revela um aspecto cultural interessante sobre a alimentação no Brasil. Apesar de ser um país de renda média, com significativa desigualdade de renda, configura-se como grande consumidor de carne bovina. Ademais, mesmo com as crescentes preocupações nutricionais e ambientais em vários países desenvolvidos, relacionadas ao consumo de proteínas animais, algumas renomadas organizações de pesquisa preveem que o patamar de consumo de carne bovina no Brasil se manterá estável por mais algumas décadas e que aumentará em países mais pobres e em desenvolvimento (BANCO MUNDIAL, 2010; OECD; FAO, 2018).

Uma característica marcante da bovinocultura de corte brasileira é a diversidade de sistemas de produção. Segundo (OLIVEIRA; BARBOSA, BAGALDO; RIBEIRO, 2008) apud Oliveira e Montebello (2014), o sistema de produção do gado de corte pode ser dividido em três tipos principais: extensivo, semi-intensivo e intensivo, conforme apresentado no Quadro 1.

O Brasil apresenta a maior parte dos seus estabelecimentos ligados à produção de gado de corte em regime extensivo, o que em parte explica os baixos índices de produtividade da bovinocultura.

Oliveira et al. (2008), apud (OLIVEIRA e MONTEBELLO, 2014) ressaltam que no sistema intensivo, que adota um conjunto de medidas adicionais evidenciando um nível superior de tecnologia, os custos de produção são mais elevados. Por outro lado, este sistema ainda é relativamente pouco empregado no Brasil, apesar de propiciar níveis mais elevados de produtividade.

Cabe enfatizar, no entanto, que, mesmo ainda a níveis baixos, comparados com outros grandes produtores de carne bovina, houve avanço da produtividade pecuária brasileira, nas últimas décadas (BANCO MUNDIAL, 2010). Segundo Barros (2011) essa melhora da

14 O Brasil está classificado como país de renda média alta de acordo com o Banco Mundial (WORLD BANK, 2018).
produtividade doméstica na produção de carne bovina decorre, em grande parte, da elevação da rentabilidade por hectare, de um nível sanitário adequado aos padrões globais, além do manejo e desenvolvimento de pesquisas na área de melhoramento genético, promovendo a adoção de novas tecnologias na cadeia produtiva.

Quadro 1 - Sistemas de Produção de Carne Bovina

Sistema	Descrição
Extensivo	A maioria das propriedades rurais em sistema extensivo situam-se longe dos centros consumidores, gado a campo, produção e/ou produtividade baixa, ausência ou com pouco planejamento alimentar, inadequação de controles de produção e reprodução, instalações inadequadas, manejo inapropriado das pastagens e pouco uso de suplementação alimentar
Semi-intensivo	Propriedades rurais especializadas, podendo ou não estarem próximas a grandes centros, alimentação baseada em pasto, mas com utilização de suplementos minerais e concentrados durante a estação de seca, quando há falta de forragem; adoção de técnicas de conservação de forragens (silagens); quando há confinamento, este ocorre na fase de engorda; presença de controle zootécnico, profilático e reprodutivo; nem sempre o manejo do pastejo e da pastagem é apropriado; instalações não se restringem ao curral de manejo sendo mais apropriadas que o mesmo
Intensivo	Propriedades rurais altamente especializadas, geralmente mais próximas a grandes centros; necessidade de planejamento dos recursos alimentares, sanitários, produtivos / reprodutivos e administrativos; exploração intensiva dos pastos; adoção do sistema de confinamento, que pode ocorrer logo após a desmama; alta produção animal e produtividade; emprego de alimentos concentrados e minerais; manejo geral dos animais é mais detalhado e laborioso do que nos demais sistemas; mão de obra mais especializada

Fonte: Adaptado de Oliveira et al. (2008), extraído de Oliveira e Montebello (2014, p. 2).

Na Tabela 2 apresentam-se alguns indicadores produtivos para a pecuária bovina brasileira, levantados para as chamadas propriedades típicas (modais) de bovinocultura, com base na metodologia de painel adotada pelo CEPEA-CNA e citados por Margulis e Miranda (2018). Notam-se grandes disparidades entre os indicadores, quando se verifica a amplitude entre os mínimos, médias e máximos.

Margulis e Miranda (2018) destacam a taxa de desfrute¹⁵ como um exemplo da heterogeneidade das propriedades. Pelos dados levantados pelo CEPEA-CNA, a taxa de

¹⁵ A taxa de desfrute pode ser definida como o potencial do rebanho bovino em gerar excedente, isto é, ela retrata a produção (em arrobas ou cabeças) em um período de tempo pré-determinando em relação ao rebanho inicial.
desfrute chega a 38,2% para alguns sistemas de produção pesquisados em municípios brasileiros, enquanto a média nacional fica ao redor de 20%. Uma constatação interessante a partir desses indicadores é a diminuição da proporção de animais mais velhos nos rebanhos das propriedades típicas pesquisadas, o que contribui para reduzir a emissão de GEE dos bovinos via fermentação entérica e de produção de dejetos ao longo da vida dos animais.

Tabela 2 - Indicadores técnicos de produção de propriedades típicas de pecuária de corte selecionadas em todo o Brasil

Indicador	Mínimo	Média	Máximo
Taxa de mortalidade pré-desmama (%)	0,50%	3,80%	10,00%
Taxa de mortalidade pós-desmama (%)	0,20%	1,40%	5,00%
Taxa de lotação em área de pasto (UA/ha)	0,27	0,99	2,98
Idade média de abate (meses)	3,00	25,26	44,00
Taxa de desfrute (%)	19,70%	38,30%	83,70%

Fonte: Extraído de Margulis e Miranda (2018).

Barros (2011) caracteriza a organização produtiva da cadeia da carne bovina como fragmentada em quatro fases: insumos, produção do animal, indústria de processamento e serviços. Segundo o autor, é possível estruturar esse processo produtivo na forma de produção vertical, na qual as atividades de cria, recria e engorda ocorrem simultaneamente em um mesmo estabelecimento; ou, horizontal, com cada uma dessas etapas ocorrendo em propriedades distintas.

Outro aspecto relevante, inclusive para a discussão da heterogeneidade tecnológica e os desafios que impõe, é que uma parte do rebanho bovino de corte é de dupla aptidão, ou seja, para exploração conjunta de leite e corte. Enquanto em propriedades mais especializadas no corte, as raças utilizadas são o nelore e o Angus (raça europeia) ou os cruzamentos de raças zebuínas com europeias, como o Brangus, nas regiões em que o rebanho tem dupla aptidão, são comuns animais cruzados (raças europeias e zebuínas) e cujo potencial de produção em carne é inferior às raças especializadas para carne. As raças de leite zebuínas são a Gir e a Guzerá e as europeias, a Pardo-Suíça. Contudo, nas propriedades mais especializadas em produção de leite, criam-se animais da raça Holandesa e Jersey, ou a Pardo-Suíça selecionada para leite.
Do rebanho total brasileiro de mais de 213 milhões de cabeças para o ano de 2018, mais de 16 milhões são considerados como rebanho de leite, ou seja, cerca de 8% do rebanho bovino total (IBGE, 2020a).

O leite é um produto muito importante para a segurança alimentar no Brasil, tendo sido alvo, por cerca de 40 anos, de políticas que visavam garantir sua disponibilidade para a população, principalmente via intervenção no preço. As políticas de tabelamento do preço do leite e as expressivas compras governamentais acabaram por motivar baixos investimentos na bovinocultura leiteira, resultando em rebanhos não especializados e produtos de baixa qualidade (SILVA, 2009).

A desregulamentação do setor leiteiro na década de 90, apesar de ter gerado grandes obstáculos aos produtores em seu início, devido à queda do preço do leite, devido ao fim do tabelamento e do aumento da concorrência, pela concomitante implantação do Mercosul, também foi o começo de um processo de modernização deste setor no Brasil (SILVA, 2009).

Observa-se que a produtividade leiteira inicia uma trajetória de ascensão impulsionada, além da desregulamentação do setor também pela normatização de padrões de qualidade, assim como pela elevação da “profissionalização da atividade tanto na produção primária como na indústria processadora” (MARGULIS; MIRANDA, 2018, p. 46). A mesma fonte relata que, em período recente, esta indústria passa por um movimento de concentração industrial (fusões e aquisições).

As informações da Tabela 3 apresentam algumas estatísticas de produção, comércio e indicadores de produtividade da pecuária leiteira brasileira. Houve um aumento significativo de consumo per capita no Brasil, com um incremento de 50kg/habitante/ano entre 2000 e 2015. Igualmente significativo, é o crescimento de 10 vezes nas exportações de lácteos brasileiros, no mesmo período.

Em termos de indicadores de produção, a Tabela 3 evidencia, ainda, a elevação da produção diária de litros por vaca ordenhada, que, embora ainda bastante baixa, evoluiu favoravelmente no período. A tabela permite notar, ainda, um aumento expressivo na produção total e no número de animais ordenhados. O PIB da cadeia da bovinocultura de leite, assim como de corte, também apresenta uma tendência de crescimento, conforme dados do Centro de Estudos Avançados em Economia Aplicada (CEPEA) (CEPEA, 2017). Na comparação mundial, segundo dados da USDA (2018b), o Brasil figura como sexto maior produtor e quinto maior consumidor mundial de leite. Apesar do Brasil figurar entre os maiores produtores, a exportação do produto não é substancial, já que a maior parte da produção é absorvida internamente. Tradicionalmente, os produtos lácteos integram a pauta
de importação do agronegócio brasileiro e já foram alvo de disputas internacionais, em especial, de processos antidumping levantados por empresas nacionais contra empresas de vários países do mundo (OLIVEIRA; VIEIRA, 2008).

Do ponto de vista social também pode ser evidenciada a relevância deste setor para o Brasil. Estimativas do Cepea mostram que a pecuária de corte e leite empregou, em 2015, mais de dois milhões de pessoas, de um total de nove milhões de indivíduos ocupados no agronegócio, e cujo rendimento médio superou o salário mínimo naquele ano (MARGULIS; MIRANDA, 2018).

Cabe ainda reforçar que além da importância econômica no PIB e nas exportações de carnes e das ainda incipientes exportações de produtos lácteos, os produtos gerados pela pecuária bovina de corte e leite têm também grande importância na segurança alimentar do país, com papel relevante no atendimento da demanda de alimentos com alto teor nutritivo e no alcance da segurança alimentar doméstica (GTPS, 2017).

Logo, é evidente a importância econômica e social dessa atividade para o país. A atividade pecuária está presente em todo o território nacional, em pequena ou grande escala, com contribuições relevantes do ponto de vista nutricional, além do econômico e social, mas marcada por uma grande heterogeneidade tecnológica e de estrutura agrária das propriedades. Deste modo, diagnósticos melhor detalhados destes elementos característicos e de sua amplitude de variação, assim como de políticas que venham a afetar o setor – tal como a de mudanças climáticas - são essenciais para que os objetivos socioeconômicos e ambientais da sociedade sejam atingidos de forma eficaz.
Tabela 3 - Evolução da produção, comércio internacional e consumo de leite, 2000-2015, Brasil

Ano	Produção de Leite (mil kg eq. leite)	Importações (mil kg eq. leite)	Exportações (mil kg eq. leite)	Consumo Aparente (milhões de kg eq. leite)	Consumo aparente per capita (kg/habitante)	Vacas Ordenhadas (cab)	Produtividade (litros/vaca/dia)
2000	20.328.595	1.754.099	42.080	22.041	129	17.885.019	3,03
2001	21.092.436	808.000	84.270	21.816	126	18.193.951	3,09
2002	22.257.435	1.468.000	142.340	23.583	134	18.792.694	3,16
2003	22.885.873	554.000	173.360	23.267	130	19.255.642	3,17
2004	24.141.375	350.000	385.000	24.106	133	20.022.725	3,21
2005	25.320.091	480.000	492.200	25.308	137	20.625.925	3,27
2006	26.119.528	438.657	429.252	26.129	140	20.942.812	3,32
2007	26.879.564	250.688	575.069	26.555	144	21.122.318	3,39
2008	28.368.770	323.629	879.818	27.813	147	21.585.281	3,5
2009	29.932.091	777.912	277.899	30.432	159	22.435.289	3,55
2010	31.587.779	706.670	185.416	32.109	168	22.924.914	3,67
2011	33.007.746	1.215.990	122.800	34.101	177	23.229.193	3,79
2012	33.221.867	1.265.027	114.652	34.372	177	22.803.519	3,88
2013	35.228.085	1.064.674	139.819	36.153	180	22.954.537	4,09
2014	36.173.220	723.887	440.781	36.456	180	23.064.495	4,18
2015	35.994.233	1.090.265	438.656	36.646	179	21.751.073	4,41

Fonte: Extraído de Margulis e Miranda (2018).
2.5 Arcabouço Teórico e Analítico

As emissões de GEE pela pecuária podem ser analisadas sob o arcabouço microeconômico que aborda as externalidades. A externalidade pode assumir muitas definições e ramificações, conforme mostra a literatura. Pelo conceito formal de Bartor (1958), a externalidade constitui uma falha de mercado, ou seja, a existência de externalidade pressupõe que o mercado não alocou de forma eficiente os recursos (BATOR, 1958; BAUMOL; OATES, 1988).

Snyder e Nicholson (2010) explicam a externalidade como ocorrência de efeitos causados por atores econômicos sobre terceiros e que não são captados pelas transações de mercado. Assim, a externalidade ocorre quando as atividades econômicas de produção ou consumo de algum bem/serviço influenciam outras atividades de produção ou consumo, e tal influência não se reflete na precificação de mercado daquele bem/serviço. Ou seja, os agentes produtivos ou consumidores que geram externalidades com suas ações não compensam os demais agentes, terceiros, sobre os quais impactam tais externalidades.

As externalidades podem ser positivas ou negativas. Quando o impacto sobre os agentes é benéfico, é entendida como uma externalidade positiva; caso contrário, se há um malefício a partir do consumo ou da produção, que não foi internalizado no preço do bem ou serviço, trata-se de uma externalidade negativa. Neste caso, cabe ao Estado o papel de motivar externalidades positivas e controlar os impactos das externalidades negativas sobre terceiros, garantindo que se ocorrerem, sejam compensadas.

Dado este arcabouço teórico, a emissão de GEE constitui uma externalidade negativa das atividades antropogênicas, sejam as produtivas como a criação de bovinos e a exploração de carvão mineral, sejam as atividades de consumo, como o uso de combustíveis fósseis em veículos.

Outro conceito relevante para delimitar o arcabouço teórico neste trabalho é o de bem público, na medida em que se compreende que a qualidade atmosférica, afetada pelas emissões de GEE, constitui um bem público.

O bem público caracteriza-se por duas principais propriedades: a não rivalidade e a não exclusividade. Os bens públicos se diferenciam consideravelmente dos bens privados em razão principalmente de características da exclusividade destes últimos. No caso dos bens privados, em contraposição aos públicos, o indivíduo tem o direito de excluir os demais de seu uso, e seu detentor detém a propriedade da renda (o indivíduo pode obter renda a partir do
uso desse bem), assim como essa propriedade pode ser transferida a outros indivíduos, sob um
preço previamente acordado (SILBERBERG; SUEN, 2001).

A chamada “não exclusão” significa que, uma vez que esses bens ou serviços são
produzidos, seja pelo setor privado ou pelo público, eles propiciam benefícios para todos ao
seu entorno, sendo “tecnicamente impossível restringir esses benefícios a um grupo específico
de indivíduos que pagam por eles, de modo que os benefícios estão disponíveis para todos”\(^\text{16}\).
O atributo que diz respeito à não rivalidade explica que, para cada unidade adicional
consumida do bem ou serviço, o custo marginal é praticamente zero (SNYDER; NICHOLSON, 2010, p. 687).

A ideia da atmosfera como um bem público é discutida por Bator (1958) no artigo
“The anatomy of market failure”, no qual o autor relata que o ar poluído de uma cidade
afetará todos os residentes, independentes dos que contribuíram ou não para esta poluição.

Partindo de um ponto de vista econômico, observa-se que a redução das emissões de
GEE propiciam o que se pode chamar de uma “atmosfera melhor”, na qual todos os países
serão beneficiados. Neste sentido, cabe discutir sobre os níveis ótimos de redução de GEE por
diferentes países, considerando-se as condições de nível de renda, custos marginais de
redução, eficiência de suas tecnologias no que tange às restrições para essa otimização, e
levando-se em conta que esses elementos variam para cada nação (CHICHILNISKY; HEAL,
1994).

A necessidade de se precificar o custo social do carbono está atrelada à tarefa de
quantificar o dano incremental global causado pela emissão de GEE, proporcionando uma
análise custo-benefício que contribua para que os formuladores da política pública
determinem a proporção ideal de redução desses gases, de modo a se igualar o custo social do
carbono ao custo marginal de mitigação de emissões (PEARCE, 2018).

Neste sentido, possuir informações quanto ao real custo de diversas medidas de
mitigaçã\emdash é um relevante aspecto para a discussão de uma estratégia de precificação do
carbono que seja eficaz. Nesse escopo, a análise custo-benefício constitui uma ferramenta
passível de prover informações para orientar o estabelecimento de incentivos e medidas que
promovam a redução de emissões no curto-prazo. Entretanto, cabe uma crítica importante
sobre a aplicação da análise custo-benefício como instrumento analítico do problema das
mudanças climáticas, tendo em vista que estas podem gerar efeitos irreversíveis. Segundo

\[^{16}\text{Tradução livre da obra citada.}\]
alguns autores, exigem-se medidas mais duras para se atingir a redução necessária à estabilização desses gases na atmosfera (PEARCE, 2018; TOL, 2005).

Logo, é importante, antes mesmo de estimar o custo da mitigação do carbono, identificar quais medidas de mitigação geram resultados efetivos de diminuição das emissões de GEE. Assim, considerando o escopo deste artigo, são discutidas medidas de mitigação aplicáveis a bovinocultura brasileira, com base na literatura disponível.

2.6 Levantamentos sobre as Medidas de mitigação na bovinocultura

A discussão sobre medidas de mitigação das principais fontes emissoras de GEE, inclusive na agropecuária brasileira, tem gerado vários relatórios e trabalhos, que versam sobre diversos aspectos do problema e metodologias possíveis de aplicação. São relatórios elaborados por instituições públicas e privadas e organizações nacionais e internacionais, visando subsidiar o debate sobre a implementação de uma economia de baixo carbono. Alguns desses relatórios detalham as medidas mitigadoras para os principais setores emissores brasileiros, de modo que, no presente artigo, foi possível delimitar a revisão e a análise crítica da literatura sobre aquelas medidas que podem promover uma bovinocultura de baixo carbono.

O Quadro 2 lista 10 relatórios selecionados como os mais relevantes, que discutem medidas de mitigação na bovinocultura brasileira. A análise destes relatórios proporcionou a identificação de sete potenciais medidas, que são apresentadas resumidamente no Quadro 3, e discutidas com detalhes na sequência. Três critérios foram adotados para a seleção das sete medidas de mitigação, quais sejam:

- Recorrência da discussão da medida selecionada nos relatórios disponíveis na literatura;
- Relevância da medida de mitigação na atualidade, adotando-se como requisito, neste caso, que a mesma tenha sido alvo de pelo menos um artigo científico em revista científica indexada (brasileira ou internacional) nos últimos três anos; e
- Seleção de medidas de mitigação com potencial de serem abarcadas pela política pública, de modo a sua efetiva implementação.
Quadro 2 - Principais relatórios e estudos que tratam de medidas de mitigação de GEE no Brasil que abordam o caso da pecuária brasileira

Título	Instituição/Órgão	Síntese
Caminhos para uma economia de baixa emissão de carbono no Brasil	McKinsey	Apresenta um levantamento das “alavancas técnicas” e seus respectivos custos para o abatimento das emissões para diversos setores da economia brasileira, identificando o desmatamento e as emissões da agropecuária como setores fundamentais para transição a uma economia carbono não intensiva (MCKINSEY & COMPANY, 2009).
Estudo de Baixo Carbono para o Brasil	Banco Mundial	Analisa as possibilidades técnicas de mitigar e remover emissões de GEE de quatro grandes setores da economia brasileira - LULUCF, Energia, Transportes e Manejo de Resíduos -, investigando adicionalmente as condições para que essas opções de mitigação sejam replicadas em larga escala e proporcionando, dessa forma, informações técnicas para a redução das emissões até 2030 (BANCO MUNDIAL, 2010).
Reference Document: Crop-Livestock-Forestry Integration	EMBRAPA	Discute os sistemas sustentáveis na pecuária, com aprofundamento para o caso de Integração Lavoura-Pecuária-Floresta (ILPF) (BALBINO; BARCELLOS; STONE, 2011).
Plano Setorial de Mitigação e de Adaptação às Mudanças Climáticas para a Consolidação de uma Economia de Baixa Emissão de Carbono na Agricultura	MAPA	Apresenta o Plano ABC (Plano Setorial de Mitigação e de Adaptação às Mudanças Climáticas para a Consolidação de uma Economia de Baixa Emissão de Carbono na Agricultura), no qual há um detalhamento de “tecnologias sustentáveis de baixa emissão de carbono, desenvolvidas para condições tropicais e subtropicais, principalmente para a agropecuária de que o Brasil dispõe” (MAPA, 2012, p. 12).
Desafios da Produção Animal em Pastagens na Fronteira Agrícola Brasileira	EMBRAPA	Analisa o desafio da pecuária com sistema de produção a pasto na fronteira agrícola brasileira da Amazônia; propõe a elevação da eficiência do setor principalmente pelo uso mais intenso de tecnologias de manejo de pastagem. A contribuição deste relatório é a discussão de estratégias mais sustentáveis para produção dessa cadeia pelo aumento de eficiência na região amazônica (DIAS-FILHO, 2012).
Relatórios	Instituição/ Órgão	Síntese
---	--	--
Intensificação da Pecuária Brasileira: seus impactos no desmatamento evitado, na produção de carne e na redução de emissões de gases de efeito estufa	GV Agro	Estima o impacto nas emissões de GEE do setor da bovinocultura de corte adotando dois cenários: “com e sem a adoção de tecnologias de baixa emissão de carbono nos biomas brasileiros”; examina os efeitos da intensificação da pecuária bovina (seja pelo incremento de animais no sistema ou do efeito poupa-terra) e de alternativas de substituição de pastagens degradadas por sistemas de produção integrados (FGV, 2016, p. 12).
Modelagem setorial de opções de baixo carbono para agricultura, florestas e outros usos do solo (AFOLU)	MCTI; ONU Meio Ambiente	Avalia e identifica o potencial técnico de medidas de mitigação no setor AFOLU (Agricultura, Florestas e outros usos do Solo), no qual a pecuária está inserida, com vistas a estimar o custo da redução de emissão de GEE; possibilitando dessa forma o estudo dos “cobenefícios e potenciais efeitos adversos à adoção das atividades de baixo carbono e potenciais instrumentos de política pública capazes de viabilizá-las” (MCTI; ONU, 2017, p. 1).
Pecuária de baixa emissão de carbono: tecnologias mais limpas e aproveitamento econômico dos resíduos bovinos de corte e leite em sistemas confinados	MAPA	O estudo identifica e seleciona tecnologias de produção carbono não intensivas em sistemas de confinamento na bovinocultura de corte e leite brasileiras, com o objetivo de contribuir para a discussão sobre a implementação de uma pecuária sustentável (MAPA, 2012).
Relatório SEEG 2018 - Emissões do Setor de Agropecuária	Imaflora; SEEG 2018	Apresenta as estimativas anuais das emissões de GEE no setor agropecuário doméstico, juntamente com a análise sobre a evolução dessa emissão nas últimas décadas. Também apresenta recomendações de planos e políticas para efetiva redução das emissões deste setor, discutindo políticas que já foram implementadas com este objetivo (IMAFLORA, 2018).
Elaboração de estudos setoriais (energia elétrica, combustíveis, indústria e agropecuária) e proposição de opções de desenho de instrumentos de precificação de carbono: Diagnóstico de Agropecuária	Projeto PMR Brasil – Banco Mundial, Ministério da Fazenda e Cepea	Descreve o setor agropecuário, principais fontes de emissão e medidas de mitigação do setor, bem como os instrumentos de política pública agropecuária que possuem potencial de ser ajustados ou aprofundados com finalidade de estimular a adoção de medidas de mitigação no setor (MARGULIS; MIRANDA, 2018).

Fonte: Elaboração própria.
Quadro 3 - Medidas de mitigação das emissões de GEE para a bovinocultura brasileira identificadas na literatura selecionada

Medida de Mitigação	Breve resumo	Relatórios em que é relatada
Sistemas de confinamento	O aumento da produtividade da bovinocultura pela intensificação do uso da terra, aliado ao maior controle da alimentação dos animais, é o benefício deste sistema. Além disso, os autores consideram que contribui para a inibição do desmatamento, pelo menor uso de terra; a dieta no confinamento deve levar a menor emissão de GEE por quilo de carne ou leite bovinos	(BANCO MUNDIAL, 2010; DIAS; COSER; BERALDI, 2017; FGV, 2016; MARGULIS; MIRANDA, 2018; MCKINSEY & COMPANY, 2009; MCTI; ONU, 2017)
Sistemas de integração	Permite a intensificação do uso do solo via uma produção mais sustentável que integra a pecuária, agricultura e, idealmente, a floresta; outro benefício é a diminuição do risco da atividade econômica pela diversificação econômica	(BALBINO; BARCELLOS; STONE, 2011; BANCO MUNDIAL, 2010; DIAS-FILHO, 2012; FGV, 2016; IMAFLORA, 2018; MARGULIS; MIRANDA, 2018; MCTI; ONU, 2017)
Vacina antimetano	Seu alvo é interferir na fermentação entérica com vistas à diminuição da produção de metano em animais ruminantes. Como esta vacina ainda não foi lançada no mercado, um substituto para sua análise é a utilização de aditivos para bovinos com o objetivo de reduzir emissão de GEE via interferência no processo de fermentação entérica e produção de dejetos	(MCKINSEY & COMPANY, 2009)
Dieta para gado	Promover o uso de dietas que estimulam a menor produção de metano via fermentação entérica e da emissão de nitrogênio nos dejetos; neste segundo caso, inclusive, reduzindo o potencial de degradação de pastagens; dietas que elevam produtividade da bovinocultura produzem impactos ambientais positivos pois estimulam o ganho de peso para animais bovinos de corte em menor tempo, e o aumento de leite por vaca ordenhada; isto aumenta a razão dos produtos gerados por unidade de gases emitidos.	(BANCO MUNDIAL, 2010; FGV, 2016; MARGULIS; MIRANDA, 2018; MCKINSEY & COMPANY, 2009; MCTI; ONU, 2017)
Medida de Mitigação	Breve resumo	Relatórios em que é relatada
---------------------	--------------	-------------------------------
Melhoramento genético	Por meio do melhoramento genético é possível obter animais que produzam menos metano e menos dejetos; além disto, animais com alta produtividade, reduzem a razão produção/unidade de gases emitidos. O melhoramento genético das pastagens, contribui para o sequestro de GEE e melhora da dieta do dos bovinos	(BANCO MUNDIAL, 2010; DIAS; COSER; BERALDI, 2017; MARGULIS; MIRANDA, 2018; MCKINSEY & COMPANY, 2009; MCTI; ONU, 2017)
Manejo de pastagens	O manejo sustentável de pastagens pode ser realizado com tratamento adequado dos dejetos bovinos e recuperação de pastagens degradadas, possibilitando dessa forma a captura de GEE	(BALBINO; BARCELLOS; STONE, 2011; BANCO MUNDIAL, 2010; DIAS-FILHO, 2012; DIAS; COSER; BERALDI, 2017; FGV, 2016; IMAFLORA, 2018; MARGULIS; MIRANDA, 2018; MCKINSEY & COMPANY, 2009)
Tratamento de dejetos animais	Potencial de utilização e/ou tratamento dos dejetos bovinos para geração de energia via biodigestores ou sistemas de compostagem	(BANCO MUNDIAL, 2010; DIAS; COSER; BERALDI, 2017; IMAFLORA, 2018; MARGULIS; MIRANDA, 2018; MCKINSEY & COMPANY, 2009; MCTI; ONU, 2017)

Fonte: Elaboração própria.
Cabe destacar que este artigo visa uma síntese das medidas de mitigação selecionadas, tendo como horizonte de pesquisas futuras, a estimação de suas curvas marginais de abatimento, de modo a prover mais uma variável econômica para respaldar futuras decisões de políticas públicas e investimentos privados. Adicionalmente, é importante ressaltar que dada a imensa diversidade de condições socioeconômicas, tecnológicas e ambientais das centenas de milhares de propriedades com pecuária bovina, de corte e/ou leiteira, no Brasil, as soluções de mitigação serão certamente determinadas caso a caso. Buscam-se, com a presente discussão, identificar alguns fatores gerais que contribuem para a escolha dessas medidas e sua avaliação de viabilidade.

Neste contexto da importância da discussão de políticas públicas para seleção das medidas de mitigação, o relatório do Imaflora (2018) realizou um recorte inicial das principais políticas públicas, já em andamento no Brasil, com potencial para fomentar a adoção de medidas de mitigação por pecuaristas. Pontuam-se, na sequência, as principais políticas identificadas pelo Imaflora (2018), relevantes no contexto deste artigo:

- **Plano Safra** e o volume de crédito destinado ao Programa ABC: prevê subsidiar o crédito para adoção de tecnologias e práticas não intensivas em carbono na agropecuária;
- **Programa Nacional de Fortalecimento da Agricultura Familiar – PRONAF:** potencial deste programa para fornecer crédito para adoção de medidas de mitigação à atividade agropecuária familiar;
- **Plano Mais Pecuária:** este plano do governo federal aborda um dos pontos centrais das medidas de mitigação destacadas, que é a elevação da produtividade na bovinocultura brasileira, que pode ser atingida por diversos meios;
- **Pagamento por Serviços Ambientais (PSA):** já realizado no Brasil, sendo que a maior parcela dos recursos é destinada a “conservação e recuperação da cobertura florestal e dos recursos hídricos, principalmente em Áreas de Preservação Permanente (APPs)” (IMAFLORA, 2018, p. 69);
- **Plano Nacional de Defesa Agropecuária (PDA) 2015-2020:** além de prever estratégias de sanidade para lavouras e rebanhos brasileiros, também tem propósito de “promover o desenvolvimento sustentável do agronegócio, no sentido de garantir
a preservação da vida e da saúde da população, além de promover a segurança alimentar e o acesso a novos mercados” (IMAFLORA, 2018, p. 73).

Um dos pontos mais destacados nos relatórios referentes à mitigação na bovinocultura de corte atrata da importância do estímulo para redução da idade dos animais abatidos, considerada uma importante alternativa para diminuir as emissões do setor (MARGULIS; MIRANDA, 2018). Neste caso, principalmente, para diminuir a intensidade de emissões, ou seja, emissões por unidade de produto final (carne ou leite). No caso dos bovinos de leite, as medidas de mitigação estão atreladas a uma elevação da produção de leite por vaca ordenhada e também à extensão do período produtivo deste animal (DIAS; COSER; BERALDI, 2017).

As principais medidas de mitigação e suas contribuições para atenuar o problema das emissões na atividade pecuária são examinadas a seguir. Busca-se apresentar as opções de mitigação para a pecuária bovina de corte partindo das medidas mais prontamente acessíveis do ponto de vista tecnológico e financeiro, o que parece mais factível para o grande número de propriedades pecuárias de baixa tecnologia no Brasil, passando por medidas que representam maior complexidade tecnológica e investimentos, chegando à mudança para um sistema totalmente intensivo. Finalmente, apresenta-se de forma sintética a vacina antimetano, que vem sendo desenvolvida, mas ainda não está disponível no mercado.

Cabe, ainda, destacar que reduzir a idade do abate dos animais, ou seja, abater animais mais jovens mas com peso adequado, reduz as emissões de GEE por animal. De modo que estratégias técnicas que permitam abater os animais bovinos mais jovens, no caso da atividade de corte, estarão contribuindo para melhores resultados ambientais em termos de emissões.

2.6.1. Sistema de confinamento

O sistema de confinamento é uma forma de intensificação da pecuária bovina que possui como principais características a concentração do gado em área delimitada por piquetes, currais ou baias; e a nutrição animal realizada via abastecimento de alimento no cocho e água no bebedouro.

Tanto no sistema semi-intensivo como no intensivo há possibilidade de adotar o confinamento. Uma das mais relevantes diferenças do confinamento nestes dois
sistemas consiste no formato da alimentação bovina: enquanto no semi-intensivo (semiconfinamento) mantém-se um consumo de pastagem, no caso do sistema intensivo, toda a alimentação é fornecida via cocho (MARGULIS; MIRANDA, 2018).

O confinamento bovino pode ocorrer tanto para a produção de gado de corte quanto para o de leite, mas, em ambas atividades, o objetivo é comum: o aumento da produtividade por animal por meio de um melhor controle da dieta e a diminuição da demanda pelo insumo terra dentro do sistema produtivo, em comparação ao padrão nos sistemas extensivos (DIAS; COSER; BERALDI, 2017). Os sistemas extensivos são mais amplamente adotados no Brasil do que o confinamento.

O sistema de confinamento de gado de leite, com alimento no cocho, tem essa alimentação baseada principalmente em silagem de milho, feno de alfafa ou gramínea de alta qualidade, e concentrado. Os animais utilizados em confinamento na bovinocultura de leite compreendem, em quase sua totalidade, animais com alta presença de sangue holandês ou de raças puras taurinas (DIAS; COSER; BERALDI, 2017).

No sistema de confinamento de gado de leite, os modelos mais usados são o free stall e piquetes, com uma recente e crescente implementação também do confinamento compost barn (DIAS; COSER; BERALDI, 2017). Estes sistemas são explicados, brevemente, no Quadro 4.

Segundo a EMBRAPA (2000), o sistema de confinamento de gado de corte é mais usado para a terminação de bovinos, ou seja, na fase de engorda que antecede o abate. A qualidade da carcaça do animal de confinamento depende também do desempenho obtido nas fases anteriores, de cria e recria. No confinamento os animais ficam reunidos em lotes delimitados por piquetes ou currais com espaço restrito em circulação, podendo existir dois tipos principais de confinamento para gado de corte, conforme apresentado no Quadro 5.
Quadro 4 - Tipos de confinamento de bovinocultura leiteira

Tipo	Descrição
Free stall	Os bovinos ficam reunidos em um galpão coberto, subdividido em três partes: uma parte destinada à uma área para alimentação, uma para exercício dos animais e a terceira, constituída de baias forradas por cama, para descanso das vacas.
Piquetes	Os animais ficam em lotes delimitados por piquetes em uma área restrita, não necessariamente coberta.
Compost barn	As vacas ficam soltas em uma área de descanso coletiva, com piso coberto com cama de matéria orgânica, evitando que tenham contato com o piso de concreto; este tipo de confinamento oferece mais espaço para os bovinos em comparação com o free stall pela ausência de divisórias.

Fonte: Elaboração própria com reprodução fiel da obra de Coser; Beraldi (2017, p.11-12).

Quadro 5 - Tipos de confinamento de bovinocultura de corte

Tipo	Descrição
Céu aberto	O sistema de confinamento é formado por um conjunto de currais de chão batido e não há coleta regular dos dejetos.
Galpão coberto ou semicoberto	Os animais em fase de engorda ficam reunidos em um piso pavimentado, com coleta regular de dejetos.

Fonte: Elaboração própria baseada em Coser; Beraldi (2017, p.11-12).

O sistema de confinamento proporciona elevados indicadores de produtividade quando comparado aos sistemas extensivos de produção bovina (BANCO MUNDIAL, 2010; MCKINSEY & COMPANY, 2009). Especialistas relatam que a elevação da produtividade no sistema de confinamento está atrelada, em grande parte, ao melhor gerenciamento e controle da alimentação animal. Esta dieta animal pode contemplar resíduos de lavoura, silagem, bagaço de cana, ração (grãos), entre outros alimentos, além da possibilidade de suplementação alimentar (MARGULIS; MIRANDA, 2018).

O sistema de confinamento permite uma dieta administrada aos que tenha como objetivo também reduzir a emissão de GEE. Esse objetivo pode ser alcançado por duas vias principalmente:

i. Dietas com propósito de diminuir a emissão de GEE por bovino, atuando na fermentação entérica para reduzir a geração de metano e/ou dietas com o foco na diminuição da produção de dejetos e, portanto, das emissões de nitrogênio (DIAS; COSER; BERALDI, 2017);
ii. Dietas com a diretriz de aumento de produtividade, com potencial de mitigar as emissões pela diminuição da emissão relativa, ou seja, por unidade de produto final gerado (MARGULIS; MIRANDA, 2018).

Outra medida de mitigação de GEE proporcionada pelo sistema de confinamento é a implementação de biodigestores, que produzem energia a partir dos dejetos bovinos (DIAS; COSER; BERALDI, 2017).

O sistema de confinamento também se apresenta como uma importante opção de medida para mitigação das emissões de GEE em razão da elevação da taxa de lotação17 na bovinocultura, que proporciona a redução do uso de terra como insumo para o processo produtivo. Essa poupança de terra pode gerar benefício ambiental à medida que possibilita a diminuição do avanço em áreas de vegetação nativa e a queda no desmatamento18. Além disto, tem potencial de promover o uso das pastagens degradadas para reflorestamento ou para produção de outras culturas em sistemas produtivos sustentáveis, já que requer menos terra neste sistema, conferindo ao mesmo capacidade para captura de carbono (BANCO MUNDIAL, 2010; MCKINSEY & COMPANY, 2009).

Segundo Dias, Coser e Beraldi (2017), o confinamento traz outros benefícios específicos para a bovinocultura de corte, que também configuram vantagens no que se refere à questão das emissões. Esses benefícios derivam da diminuição da idade de abate dos animais criados em confinamento, elevando a taxa de desfrute. No caso dos bovinos leiteiros o maior controle sobre a alimentação pode contribuir principalmente para melhorar a eficiência do animal, pela maior longevidade e manutenção do nível de produção.

Corroborando com a ideia dos benefícios de elevação da produtividade proporcionados pela implementação de sistemas de confinamento, o Banco Mundial (2010) relata que, desde os anos 1990, tanto o sistema de confinamento quanto o de

17 Taxa de lotação pode ser sinteticamente definida como a relação entre o número de unidades animais (UA) e a área por eles ocupada.

18 É importante considerar que tal benefício ocorrerá de forma líquida se nas terras poupadas da atividade pecuária houver um manejo adequado para evitar a degradação dessas áreas abandonadas, ou sua realocação para uma agricultura em moldes sustentáveis, até mesmo para a produção de alimentos para os animais confinados.
integração contribuíram de maneira significativa para a elevação da produtividade por animal no Brasil.

Apesar de todas as vantagens apontadas acima, estudos alertam que o alto investimento constitui a principal desvantagem desse sistema. O confinamento possui custos elevados com a alimentação animal, além de alta complexidade e de riscos de gerenciamento mais elevados quando comparados aos sistemas de criação extensivos (MARGULIS; MIRANDA, 2018).

Embora venha crescendo no Brasil, a limitação de adoção deste sistema, pelo nível tecnológico que demanda e pelo aporte financeiro, torna-o uma opção de mitigação menos factível para a grande maioria dos produtores brasileiros.

2.6.2. Sistema de Integração

O sistema de integração tem como principal objetivo a intensificação do uso da terra por meio da produção integrada de diversas atividades, agrícolas, pecuárias e florestais, de forma sustentável. Divide-se, essencialmente, em três grupos os sistemas de integração em que a pecuária está envolvida: Integração-Lavoura-Pecuária (IPL), Integração-Pecuária-Floresta (IPF) e a Integração-Lavoura-Pecuária-Floresta (ILPF).

Estudos mencionam vantagens da produção integrada na pecuária, ressaltando, inclusive, a possibilidade de um retorno econômico mais rápido, resultado de três pilares: produção de forragem em períodos menos favoráveis; abastecimento de nutrientes; e elevação e/ou recuperação da produtividade (FGV, 2016)

Estes benefícios também se estendem para a lavoura, que tem a recuperação do seu solo apoiada pela produção pecuária. A contribuição da pecuária para a lavoura é realizada pela melhoria da estrutura e pela ciclagem de nutrientes, elevando a matéria orgânica, proporcionando o armazenamento de água e uma melhora da qualidade da “cobertura do solo para o plantio direto” (FGV, 2016, p. 9).

Outros benefícios da integração compreendem a elevação da produtividade e o ganho de peso mais acelerado do bovino. Estes ganhos contribuem para encurtar o ciclo de produção de animais para corte, obtendo-se menor intervalo entre o nascimento e o abate, e, portanto, reduzindo o período de vida e de emissões desse animal. Há o benefício, ainda, da redução da pressão pelo desmatamento, em razão da integração se
fundamentar no uso racional e sustentável dos recursos que são insumos produtivos da pecuária, lavoura e floresta (FGV, 2016).

Balbino, Barcellos e Stone (2011) observam que as bases da produção integrada estão atreladas à promoção de um processo produtivo de baixo carbono, no qual se preconizam como princípios fundamentais:

[...] Manejo e conservação do solo e da água; manejo integrado de insetos-praga, doenças e plantas daninhas; respeito à capacidade de uso da terra, ao zoneamento climático agrícola, e ao zoneamento agroecológico (ZAE); redução da pressão para abertura de novas áreas; diminuição da emissão de dióxido de carbono (CO2); sequestro de carbono; estímulo ao cumprimento da legislação ambiental, principalmente quanto à regularização das reservas legais (regeneração ou compensação) e das áreas de preservação permanente; dos serviços ambientais, adoção de boas práticas agropecuárias (BPA); certificação da produção; e ampliação positiva do balanço energético (BALBINO; BARCELLOS; STONE, 2011, p. 24).

Além de este sistema apresentar-se como uma interessante opção de mitigação na pecuária bovina, estudos indicam que seu potencial para maximizar a utilização da terra reduz os riscos da atividade econômica, dada a diversificação produtiva (MARGULIS; MIRANDA, 2018).

Apesar das vantagens mencionadas, e de relatos de especialistas do potencial para ampliação de receitas, do controle de pragas e até da mitigação climática (MARGULIS; MIRANDA, 2018), a maior complexidade desse sistema de produção tem sido um gargalo para expandir a sua adoção. O sistema requer, dos gestores da propriedade, conhecimentos tanto sobre o manejo técnico da agricultura e pecuária quanto sobre o replantio e manejos florais.

Cabe ressaltar que produção integrada na pecuária recebeu destaque considerável em ações governamentais voltadas para a mitigação de GEE na agropecuária (FGV, 2016; IMAFLORA, 2018). O Plano Setorial de Mitigação e de Adaptação às Mudanças Climáticas para a Consolidação de uma Economia de Baixa Emissão de Carbono na Agricultura (Plano ABC), lançado pelo governo federal, como resposta à agenda climática que o Brasil assumiu na COP 15, realizada em Copenhague, em 2009, prevê uma meta de implantação de sistemas integrados de produção de quatro milhões de hectares até 2020, cujo potencial de mitigação seria de 18 a 22 milhões de Mg CO2e.
Reforçando esta postura governamental de incentivo a sistemas integrados na pecuária, a meta do NDC brasileiro tem como objetivo de implantação de mais cinco milhões de hectares de sistemas integrados de produção, até 2030, adicionais aos previstos no Plano ABC (FGV, 2016). Portanto, conjuntamente, o objetivo é alcançar 9 milhões de hectares com sistemas integrados de produção envolvendo a pecuária, até 2030.

Esta opção de sistema é, certamente, uma das que mais benefícios acarreta para o ambiente e o setor produtivo, ao se analisar o médio e longo prazo. Contudo, assim como o confinamento, os desafios que impõe tornam sua adoção mais lenta no setor rural brasileiro. Questões como crédito, de forma mais ampla, financiamento do sistema, demanda de conhecimento técnico, implicando maior necessidade de serviços de extensão e assistência técnica, tendem a tornar sua adoção menos iminente, e, portanto, com contribuições ambientais que levarão mais tempo para se concretizarem. Políticas públicas e estratégias privadas mais elaboradas e amplas são necessárias para ampliar o emprego deste sistema no Brasil.

Dados do último Censo Agropecuário revelam que em 2017 o Brasil possuía 491.400 estabelecimentos e 13.930.307 hectares dedicados a sistemas de integração (IBGE, 2017).

2.6.3. Vacina antimetano

Diante do diagnóstico já apresentado na seção “2.2 Emissões: perfil brasileiro e pecuária”, a redução de emissões de metano via fermentação entérica bovina deve constar como um dos principais objetivos das políticas para mitigação da poluição atmosférica causada pela pecuária.

A literatura registra o uso de insumos que atuem no organismo do animal com propósito de interferir diretamente para que o processo de fermentação entérica gere menos metano é um dos instrumentos que vêm sendo estudados para promover essa redução das emissões pela fermentação entérica. McKinsey & Company (2009) relata pesquisas sobre vacinas que controlam a ação de bactérias metanogênicas como uma potencial medida de mitigação.

Muitos dos estudos que envolvem vacinas redutoras de emissão de metano partem da ideia de estímulo do sistema imunológico do animal para que seja gerada uma
resposta imune, resultando na produção de anticorpos no organismo do ruminante, capazes de inibir a emissão de metano (WRIGHT et al., 2004).

Estudos recentes de vacinas baseadas na produção de anticorpos para inibição de metano exploram a possibilidade de redução de emissão de GEE via indução desses anticorpos na saliva, que acabam sendo transferidos pelo rúmen e diminuem consideravelmente a capacidade dos metanogênicos de gerar gás metano pelos ruminantes (SUBHARAT et al., 2015). Outros estudos também empregaram proteínas recombinantes que agiam contra a metanogênese em ruminantes, também candidatas para vacinação (ZHANG et al., 2015).

Atualmente estas vacinas ainda estão em desenvolvimento, em alguns casos em fase de teste, sendo um exemplo disso a estimativa da Nova Zelândia de que essa vacina esteja disponível para venda em quatro ou seis anos (HRISTOV et al., 2013; NZ HERALD, 2017).

Entretanto, é preciso se atentar que sua eventual adoção, no futuro, pode levar a dificuldades comerciais, principalmente para a venda de produtos em mercados externos. Um exemplo dessas dificuldades é que o uso de alguns produtos que melhoram a produtividade dos animais – probióticos, ionóforos, antibióticos e halogênicos, e somatropina bovina (SBT) – vem causando descontentamento por parte de consumidores. A União Europeia baniu o uso de uma série de aditivos alimentares, como ressalta Martins-Costa (2015, p. 1388).

2.6.4. Dieta alimentar para redução de emissões para gado

Nas últimas décadas, pesquisas nacionais e internacionais analisam diferentes técnicas e métodos para reduzir a emissão de GEE na pecuária, dos quais se destacam aqueles relacionados à alimentação dos animais.

A literatura técnica argumenta que a alimentação do bovino possui grande influência sobre a emissão de gases de efeito estufa. O relatório do Banco Mundial (2010) pondera que os ruminantes emitem metano e óxido nitroso (dos dejetos), em função da quantidade e qualidade da dieta ingerida. Esse estudo aprofundou-se nessa discussão e um dos resultados gerais é que:

De forma geral, quanto mais fibroso for o alimento (para um nível determinado de ingestão), maior será a quantidade de CH4 emitida; quanto
mais alto o teor proteico – e, assim, quanto mais nitrogênio (N) excretado – maior é a quantidade de emissões de N2O. Quanto mais alimento ingerido, maiores serão as emissões diárias de CH4 e N2O para uma determinada dieta por animal. Entretanto, quando se aumenta a ingestão de alimento, aumenta-se também o desempenho do animal, encurtando-se assim o seu ciclo de vida ou reduzindo o número de bezerros necessários para a produção de animais para abate, o que eventualmente reduzirá as emissões de CH4 por unidade de produto e para a produção total de carne (BANCO MUNDIAL, 2010, p. 55).

A redução de emissão do metano derivado da fermentação entérica, além dos benefícios ambientais, também tem vantagens produtivas. A produção de metano gera uma perda de 2% a 12% da energia bruta consumida, com os estudos nacionais apontando uma média de de 6,17% (DIAS; COSER; BERALDI, 2017).

A redução de emissão de GEE por diminuição da produção de dejetos bovinos também é indicada não apenas como uma forma de mitigação de GEE, mas como um meio de conter o desperdício, por parte do produtor, dos insumos para alimentação do bovino (DIAS; COSER; BERALDI, 2017). De acordo com Dias, Coser e Beraldi (2017) uma dieta eficiente propõe um regime de alimentação em que os nutrientes fornecidos sejam muito próximos à quantidade necessária a estes animais.

Os carboidratos têm ampla participação na dieta bovina. Elementos que proporcionam a melhoria da digestibilidade dos carboidratos, promovendo desta forma o aumento de energia disponível e reduzindo o montante de esterco produzido, são bastante importantes na dieta animal, de acordo com os autores acima.

Outro destaque sobre a dieta de bovinos é a quantidade ótima de proteína bruta, já que o excesso desse componente na alimentação animal não possui funções produtivas, constituindo-se em desperdício de renda e gerando mais danos ambientais, em razão da elevação da produção de dejetos (DIAS; COSER; BERALDI, 2017).

Neste panorama, observa-se a importância de um bom gerenciamento da dieta para a redução das emissões. Cabe uma nota que, a despeito da grande diversidade de tipos de sistemas de produção pecuária no Brasil e de suas variantes, a implementação de dietas orientadas e/ou, até mesmo, da suplementação alimentar estão mais relacionadas aos sistemas intensivos, e de confinamento. Existem dificuldades relevantes para o gerenciamento de dieta em sistemas de produção extensivos de pastagens (MARGULIS; MIRANDA, 2018; MCKINSEY & COMPANY, 2009).

Uma alternativa para melhorar a alimentação bovina em sistemas extensivos de pastagens seria aprimorar a gestão dos nutrientes presentes na pastagem ofertada aos
animais (IMAFLORA, 2018; MCKINSEY & COMPANY, 2009). Ou seja, melhoria da gestão do manejo das pastagens, tema tratado na sequência.

Outra forma de se examinar o papel da dieta bovina é verificar a relação entre elevação da produtividade animal e a queda nas emissões do setor. O aumento da produtividade animal em carne e leite, por animal abatido e/ou ordenhado, reduz a intensidade de emissões por unidade de produto gerado pelos animais. É o que conclui Berndt (2015):

“O incremento da qualidade da alimentação e a alteração da micro-flora ruminal permitem maior retenção de energia, diminuindo-se as perdas por metano, o que proporciona melhor desempenho animal e, consequentemente, menor produção de metano por unidade de produto (metano/ kg carne, leite, etc.). No caso de animais destinados para corte, com a melhoria do desempenho e diminuição no ciclo produtivo, a emissão total de metano da vida deste animal será inferior ao dos animais abatidos tardivamente” (BERNDT, 2015).

Para o rebanho de corte, o ganho mais rápido de peso eleva a quantidade de quilos de carcaça por animal, diminuindo a necessidade de animais para abate, dada uma mesma produção de carne¹⁹. Outro benefício do ganho de peso mais rápido seria o encurtamento do tempo de abate (BANCO MUNDIAL, 2010; DIAS; COSER; BERALDI, 2017).

Para a pecuária bovina leiteira, nota-se que a elevação da produção de leite por vaca ordenhada e a sua maior longevidade produtiva resultaria na necessidade de menos bovinos em produção, e, portanto, menos animais emitindo GEE (DIAS; COSER; BERALDI, 2017).

A melhoria da dieta de bovinos pode ser realizada pelo uso de quantidades de ração²⁰ pré-determinadas. Entretanto, como já discutido, a administração de ração exige sistemas produtivos mais intensivos.

¹⁹ A pressuposição de que o ganho mais rápido pode ter um impacto na redução de GEE por unidade de carne ou leite produzidos requer confirmação via estudos que analisem o balanço líquido de emissão de GEE, ou seja, que atentem se as dietas implementadas também não estimulariam a emissão de mais metano e maior quantidade de dejetos por animal ou até mesmo, maiores emissões para a produção desses alimentos que compõem as dietas.

²⁰ A ração pode ser entendida como “todo o alimento ingerido pelo animal em um período de um dia”, sendo classificada em volumoso e não volumosa (DIAS; COSER; BERALDI, 2017, p. 30).
No caso da alimentação para gado de leite, a ração mais usada no Brasil, de acordo com Dias, Coser, Beraldo (2017, p.30) tem dois componentes: o volumoso e o concentrado. O componente volumoso apresenta mais de 18% de fibra bruta e baixo valor energético, ou menos de 60% de nutrientes digestíveis totais. O volumoso pode consistir de forrageiras verdes e picadas no cocho, silagens (de milho, sorgo, capim, cana de açúcar), fenos, restos de culturas e resíduos de agroindústrias.

De acordo com os autores acima, o componente concentrado contém quantidade abaixo de 18% de fibra bruta, mas tem alto valor energético, ou mais de 60% de nutrientes digestíveis totais. Podem ser divididos em concentrados energéticos, com menos de 20% de proteína bruta (geralmente suprida por grãos e cereais como o milho, sorgo, trigo, arroz, melaço, polpa cítrica), raízes e tubérculos (como a mandioca e a batata) e óleos de origem vegetal. O outro grupo é o dos concentrados proteicos, cuja composição é de mais de 20% de proteína bruta, representada por oleaginosas como o farelo de soja, farelo e caroço de algodão ou farelo de amendoim.

Primavesi et al. (2004) apontaram cinco conclusões a respeito das dietas mais adequadas à produção de leite com menor emissão de GEE:

1.) A emissão de metano por unidade de matéria seca ingerida é maior com alimentos de pior qualidade e de menor densidade energética; 2.) Animais jovens ingerem mais matéria seca em percentagem do peso vivo do que animais adultos, o que pode resultar em maior emissão de metano por peso vivo; 3.) No caso do uso de concentrados energéticos que respondam por mais de 40% da matéria seca, em substituição crescente do volumoso, pode haver pico de emissão de metano; 4.) Melhorar a qualidade do volumoso favorece o aumento da ingestão de matéria seca e reduz a emissão de metano por unidade de matéria seca ingerida. Logo, é maior a eficiência no uso da energia bruta ingerida; e 5.) Os volumosos de clima tropical de boa qualidade resultam em perdas da energia bruta ingerida, na forma de metano, similares às encontradas em condições de clima temperado (PRIMAVESI et al., 2004, p. 12)”.

Diante da diversidade de cultivos no Brasil, as combinações para formular as dietas dos bovinos podem variar significativamente. A dispersão dos dados indicativos da produtividade do leite e da produção de carne no Brasil leva à constatação de que há grandes oportunidades de melhoria na suplementação de alimentos para os bovinos. Ademais, o custo dessa melhoria no sistema produtivo também varia de acordo com a disponibilidade regional das matérias primas, das exigências nutricionais das raças criadas, e de uma série de outros elementos que os especialistas podem apontar.
Assim, o acesso à melhoria na dieta bovina oferece oportunidades a, praticamente, todos os pecuaristas, com custos dos mais variados e níveis de resultados em produtividade também diversificados. Por esta razão, acredita-se que esta opção de mitigação é uma das mais factíveis para a pecuária brasileira, de mais fácil acesso e potencial de adoção em um curto espaço de tempo.

2.6.5. Melhoramento Genético

O melhoramento genético na bovinocultura brasileira com vistas à redução das emissões de GEE pode ser adotado em duas frentes: via melhoramento de pastagens e de melhoramento dos animais (BANCO MUNDIAL, 2010).

O melhoramento genético de pastagens prevê que a evolução de pesquisas na área atue sobre dois aspectos principais, quais sejam, elevação da capacidade de absorção dos gases emitidos pelos animais pelas pastagens e a interferência na alimentação dos animais. Segundo o relatório do Banco Mundial (2010), a elevação da capacidade de absorção dos gases emitidos pelos bovinos através do processo de fotossíntese da pastagem se dá pela contribuição para que as plantas geneticamente modificadas tenham maior capacidade de retenção destes gases, sem impactar negativamente a alimentação bovina.

Em relação ao aspecto da interferência na alimentação dos bovinos, apontam-se dois objetivos principais que são a diminuição do metano emitido via fermentação entérica (alimentação impactando o processo digestivo bovino) e/ou a elevação da produtividade das pastagens para mitigação de impactos ambientais (DIAS; COSER; BERALDI, 2017).

Quanto ao melhoramento genético dos bovinos, segundo Dias, Coser e Beraldi (2017) há duas diretrizes principais que são a diminuição do metano gerado na fermentação entérica e da emissão do nitrogênio pelo decréscimo na produção de dejetos (que também contribui para mitigar o impacto sobre as pastagens, como discutido anteriormente); e a elevação da produtividade do bovino seja para gerar carne seja na produção de leite.

Os autores acima discutem, ainda, o melhoramento genético para obter o animal ideal. Enquanto o bovino leiteiro ideal é aquele em que sua eficiência proporciona maior longevidade produtiva e manutenção de patamares altos de produção de leite, os
bovinos de corte mais eficientes são aqueles cujo período de engorda é mais acelerado, estreitando o período entre o nascimento e o abate.

Os autores ressaltam que essa melhora genética proporciona importantes benefícios ambientais, à medida que propicia menos animais não produtivos e doentes no rebanho, contribuindo para a rentabilidade do pecuarista e para a queda das emissões. Isto, ressalvando-se, que prevaleça o raciocínio da necessidade de um menor rebanho para um mesmo nível de produção de carne ou leite em função da melhoria na produtividade, o que não será, necessariamente, a lógica econômico-financeira do pecuarista que estará investindo em melhorar a genética de seu rebanho.

A raça e o seu melhoramento genético são, portanto, elementos relevantes para a presente discussão sobre a adoção de tecnologias que podem, ao mesmo tempo que elevar a eficiência produtiva e econômica, gerar ganhos ambientais pelo potencial de reduzir a intensidade de emissões de GEE das atividades pecuárias.

A incorporação do melhoramento genético no sistema de produção pode se dar tanto pela aquisição de sêmen (sexados e não-sexados21) para inseminação artificial quanto pelo uso de touros reprodutores de alto desempenho, pressupondo-se que seus preços de mercado reflitem os avanços obtidos em melhoramento genético conforme as raças. Estas alternativas, contudo, também passam por um nível técnico e de gestão da atividade pecuária mais aprimorado, e acarreta custos adicionais, cujos retornos não serão auferidos no curto prazo.

2.6.6. Manejo de pastagens

A literatura aponta que os principais meios de promover o sequestro de carbono no setor agropecuário são: o plantio de florestas, a adoção de sistemas de ILP e/ou ILPF, adoção de sistemas de confinamento, de cultivos agrícolas manejados sob a técnica de plantio direto e do bom manejo dos solos de pastagens (BANCO MUNDIAL, 2010; IMAFLORA, 2018; MARGULIS; MIRANDA, 2018).

A atividade agropecuária, seja na criação extensiva bovina ou no cultivo agrícola, modifica os níveis de matéria orgânica do solo e esta interação da atividade agropecuária com o solo, via a matéria orgânica, pode resultar na emissão de CO2 em

21 Sêmen sexado é o insumo que garante o sexo do bezerro, sendo preferível macho para bovinocultura de corte e fêmea para bovinocultura leiteira.
solos degradados; ou no sequestro desse gás quando o solo é bem manejado (IMAFLORA, 2018). Deste modo, ao se examinar as possibilidades de mitigação das emissões da atividade pecuária, o manejo das pastagens constitui uma das alternativas mais interessantes, tanto em termos financeiros quanto ambientais para o Brasil. Embora exija dispêndio do produtor, os resultados são bastante rápidos e a tecnologia para manejo de pastagens vem se disseminando, há décadas, pelo território nacional.

Estima-se que no Brasil a área coberta por pastagens degradadas seja de, aproximadamente, 53 milhões de hectares, ou cerca de 45% dos solos destinados a agropecuária brasileira. Nestas áreas não ocorre a “compensação” dessas emissões via sequestro de carbono do solo, como ocorre em áreas de pastagens bem manejadas no Brasil (IMAFLORA, 2018).

O relatório elaborado pela Mckinsey & Company (2009) levanta como alternativas para mitigação via a restauração dos solos: a recuperação de sua fertilidade a partir da aplicação de nutrientes para correção do solo, de substratos orgânicos como resíduos ou compostos; da redução da movimentação de terra e maior retenção de resíduos agrícolas, substituindo-se os plantios convencionais pelo plantio direto; e pela conservação da água (MCKINSEY & COMPANY, 2009, p. 26).

Outra opção de mitigação envolvendo o manejo de pastagens é o reflorestamento, citado como uma das formas mais eficientes de mitigação de GEE para o setor agropecuário (BALBINO; BARCELLOS; STONE, 2011; BANCO MUNDIAL, 2010; FGV, 2016; MARGULIS; MIRANDA, 2018; MCKINSEY & COMPANY, 2009). O reflorestamento pode ser estimulado tanto no contexto do confinamento, via seu efeito poupa-terra, quanto pela adoção do ILPF, que já conta com este componente (BANCO MUNDIAL, 2010).

Do ponto de vista de incentivo público, o Plano ABC (2016) prevê um compromisso de recuperar 15 milhões de hectares de pastagens degradadas, o que possui um potencial de mitigar de 83 a 104 milhões Mg CO2e. O Programa ABC é um instrumento de incentivo para a adoção das tecnologias preconizadas, entre elas a recuperação das pastagens degradadas e, para tanto, disponibiliza uma linha de crédito específica. Ainda não se dispõe de um mecanismo que permita monitorar e avaliar, de modo eficiente e amplo, os resultados desse incentivo, mas a própria instituição do CAR – Cadastro Ambiental Rural, prevista no Código Florestal, deverá contribuir para melhorar a visibilidade dos efetivos resultados ambientais do Programa.
2.6.7. Tratamento de dejetos bovinos

O fato do Brasil possuir um dos maiores rebanhos bovinos do mundo, aliado à ampla adoção de um manejo extensivo, contribui para os altos índices de nitrogênio emitido pelo setor, resultantes da excreção de dejetos diretamente na pastagem. Este cenário é responsável pelos altos índices de emissão de óxido nitroso pela bovinocultura. Do total das emissões por deposição de dejetos em pastagens, 89% estão atreladas à bovinocultura, segundo dados do Observatório do Clima de 2015, como mostra o Gráfico 4 (MARGULIS; MIRANDA, 2018).

Os dejetos bovinos são compostos, além do material excretado pelos animais (urina e fezes), também pela cama utilizada nas instalações dos animais, pelos alimentos desperdiçados e pela água empregada no processo produtivo, ressaltando que esta inclui tanto a água para consumo como a de lavagem das instalações (DIAS; COSER; BERALDI, 2017).

Inúmeros aspectos podem influenciar a quantidade de dejetos bovinos, dos quais se destacam principalmente as “explorações agrícolas, composição da dieta (à base de forragem ou à base de grãos), idade dos animais, produtividade animal, ambiente e consumo de água, além de flutuações sazonais dentro de uma mesma propriedade”. Já, as alterações químicas dos dejetos são mais afetadas pela dieta dos bovinos (DIAS; COSER; BERALDI, 2017, p. 45).
A literatura aponta que três medidas de mitigação se apresentam como alternativas com potencial relevante de mitigação de gases emitidos pelo manejo inadequado dos dejetos: compostagem, lagoas anaeróbicas e biodigestores (GOMES; FEIJÓ; CHIARI, 2017).

A compostagem é um processo de digestão aeróbica, cujo objetivo é o de transformar os dejetos bovinos em composto orgânico que pode ser empregado como adubo no solo das propriedades agrícolas. A compostagem pode ser conduzida no formato de compost barn, que ocorre em sistemas de confinamentos, dentro do estabelecimento onde o bovino está; e por compostagem mecanizada, realizada fora do estabelecimento (DIAS; COSER; BERALDI, 2017).

Já as lagoas anaeróbicas representam uma espécie de “tratamento aberto dos dejetos”, predominantemente via mecanismos biológicos, utilizando microrganismos já presentes no meio ambiente. É essencial a impermeabilização do solo na construção dessas lagoas, evitando uma futura contaminação dos lençóis freáticos e do próprio solo (VON SPERLING, 2005).

A principal vantagem desse sistema é seu baixo custo de instalação. Por outro lado, esse sistema só contribui para a minimização da degradação das pastagens, não se mostrando eficaz para a mitigação das emissões, além de ter como desvantagem a
liberação de odores fétidos (DIAS; COSER; BERALDI, 2017). Uma forma de mitigar os impactos negativos das lagoas anaeróbicas é a sua transformação em biodigestores, por meio da cobertura das mesmas com geomembranas (DIAS; COSER; BERALDI, 2017).

Os biodigestores se apresentam como uma forma eficaz de mitigação de GEE por sua capacidade de coleta desses gases e sua posterior transformação em biogás, que pode ser usado como fonte de energia pelos estabelecimentos agrícolas, e também biofertilizantes (DIAS; COSER; BERALDI, 2017; IMAFLORA, 2018).

A adoção de um biodigestor é uma opção de mitigação na bovinocultura que contempla captura de GEE, geração de energia limpa e, adicionalmente, gera biofertilizantes que podem contribuir para reduzir a degradação das pastagens (MARGULIS; MIRANDA, 2018).

Cabe ressaltar que, assim como nos casos da iLPF, reflorestamento, recuperação de pastagens, também a tecnologia do biodigestor está contemplada entre as medidas incentivadas pelo Programa ABC. O subprograma Tratamento de Dejetos Animais, que visa aumentar a área produtiva brasileira com adoção de tecnologias para o tratamento de dejetos animais, tem a meta alcançar 4,4 milhões de m³ tratados até 2020, com um potencial de mitigar 6,9 milhões Mg CO₂e (MARGULIS; MIRANDA, 2018).

2.7 Discussão e Considerações Finais

O debate a respeito de medidas de mitigação na bovinocultura é um assunto de grande relevância à medida que, nos últimos anos, a comunidade científica alerta para os possíveis riscos de uma crise climática decorrente do do aquecimento global.

Cientistas e pesquisadores são questionados sobre os instrumentos mais adequados para a contenção deste fenômeno climático, buscando-se mecanismos eficazes do ponto de vista ambiental, cujos prejuízos sociais e econômicos sejam os mínimos possíveis.

O Brasil consta no ranking dos maiores emissores de GEE, sendo o setor agropecuário uma das principais fontes desses gases de acordo com dados oficiais do Inventário e os dados do SEEG. De outro lado, historicamente, o país ocupa um papel de destaque nas negociações climáticas, de forma que é crucial promover a pesquisa e o amplo debate sobre medidas que possam contribuir para a diminuição e mitigação das
emissões de GEE no Brasil, que possam subsidiar futuras políticas públicas e estratégias corporativas e do setor privado como um todo.

Por sua vez, a bovinocultura tem papel de destaque nas emissões diretas do setor agropecuário, representando cerca de 77% de todas emissões da atividade agropecuária, das quais 69% se refere a bovinos de corte e 8% a bovinos de leite (ANGELO; RITTL, 2019).

Apesar de figurar como um importante emissor de GEE, a bovinocultura também possui papel socioeconômico de destaque para o Brasil, que é atualmente um dos principais produtores, exportadores e consumidores mundiais de carne bovina, além também de importante consumidor de produtos lácteos. Enquanto preocupações ambientais e de saúde vinculadas à carne bovina, em nações ricas e desenvolvidas, geram cenários e estimativas de redução do consumo dessa proteína nessas nações, projeções apontam que o patamar de consumo de carne bovina no Brasil se manterá estável por mais décadas e que se elevará em países mais pobres e em emergentes (BANCO MUNDIAL, 2010; OECD; FAO, 2018).

Dentro deste contexto, é evidente a importância do debate de medidas de mitigação na bovinocultura, um setor de relevância não só na magnitude de suas emissões, mas também em sua dimensão socioeconômica para o Brasil.

Nota-se que as medidas de mitigação para bovinocultura tratam de desafios que, há décadas, o Brasil já vem buscando enfrentar, destacadamente a implementação do Código Florestal, a recuperação de pastagens degradadas e a expansão na adoção de sistemas de produção integrados de pecuária, agricultura e floresta, nos quais o País, inclusive, já acumula know-how e experiências bem-sucedidas.

O cumprimento das metas no que tange diretamente ao setor rural requer que o Brasil supere as dificuldades que já enfrenta há décadas e cuja solução, embora conhecida, não tem sido implementada com grande eficácia. A solução passa por um melhor enforcement das políticas ambientais já existentes, pelo fortalecimento e manutenção de sistemas de monitoramento dessas políticas, pela maior eficiência na execução dos instrumentos de incentivo às medidas mitigadoras de emissões já previstas em Programas de crédito como o ABC, e por um grande esforço de educação ambiental e de aprimoramento dos serviços de extensão rural que possa amparar a adoção das tecnologias menos carbono-intensivas.
Dentre as medidas que têm potencial para promover a redução das emissões de GEE na pecuária brasileira, mesmo que somente as emissões relativas, ou seja por unidade de carne ou de leite, destacam-se algumas de implementação relativamente fácil e de baixo custo para os pecuaristas. Medidas, inclusive, que têm flexibilidade para serem adotadas nas propriedades com diferentes sistemas de produção em termos de grau de intensificação tecnológica e que além dos benefícios ambientais podem gerar benefícios econômicos para os proprietários.

É o caso da melhoria da dieta dos rebanhos e do manejo de pastagens. O conhecimento técnico para subsidiar estas medidas está disponível no Brasil, assim como alguns instrumentos de incentivo, como o crédito para recuperação de pastagens do Programa ABC. É preciso, contudo, identificar os gargalos que ainda dificultam o processo de sua adoção no Brasil de forma mais ampla e ágil. Outras medidas de mitigação são consideradas na literatura, mas as barreiras para sua adoção aumentam, na medida da sofisticação tecnológica e conhecimentos técnicos que requerem, assim como pela magnitude dos investimentos necessários. É o caso dos sistemas de integração-lavoura pecuária e do manejo de dejetos bovinos.

2.8 Referências

ABIEC. *Perfil da Pecuária no Brasil - Relatório Anual*. São Paulo: 2017. Disponível em: <http://abiec.siteoficial.ws/images/upload/sumario-pt-010217.pdf>. Acesso em: 10 jul. 2018.

ABIEC. *Perfil da Pecuária no Brasil - Relatório Anual*. 2018. Disponível em: <http://abiec.siteoficial.ws/images/upload/sumario-pt-010217.pdf>. Acesso em: 2 set. 2018.

ALLEN, M. et al. *Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change*, 2018.

ANGELO, C.; RITTL, C. *Análise das Emissões Brasileiras de Gases de Efeito Estufa e sua implicações para as metas do Brasil*. São Paulo: 2019. Disponível em: <http://www.observatoriodoclima.eco.br/wp-content/uploads/2019/11/OC_SEEG_Relatorio_2019pdf.pdf>.

AZEVEDO, T. R.; ANGELO, C. *Emissões de GEE no Brasil e suas implicações para políticas públicas e a contribuição brasileira para o Acordo de Paris*. 2018. Disponível em: <http://seeg.eco.br/wp-content/uploads/2018/08/Relatorios-SEEG-2018-Sintese-FINAL-v1.pdf>. Acesso em: 24 ago. 2018.

AZEVEDO, T. R.; RITTL, C. *Análise da evolução das emissões de GEE no Brasil (1990-2012)*. São Paulo: Observatório do Clima, 2014.

BALBINO, L. C.; BARCELLOS, A. DE O.; STONE, L. F. *Reference Document: Crop-
Livestock-Forestry Integration. Brasília: 2011. Disponível em: <www.embrapa.br/liv>. Acesso em: 24 ago. 2018.

BANCO MUNDIAL. CO2 emissions (kt) | Data. Disponível em: <https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?view=map>. Acesso em: 25 ago. 2018.

BANCO MUNDIAL. Estudo de Baixo Carbono para o Brasil. Washington: The World Bank, 2010.

BARROS, G. S. DE C. Desenvolvimento Metodológico e Cálculo do PIB das Cadeias Produtivas do algodão, cana-de-açúcar, soja, pecuária de corte e leite no Brasil. Piracicaba: 2011. Disponível em: <https://www.cepea.esalq.usp.br/upload/kceditor/files/PIB_Cadeias_relatorio2009_10.pdf>. Acesso em: 4 ago. 2018.

BATOR, F. M. The Anatomy of Market Failure. Source: The Quarterly Journal of Economics, v. 72, n. 3, p. 351–379, 1958. Disponível em: <http://www.jstor.org/stable/1882231>. Acesso em: 19 jan. 2018.

BAUMOL, W. J.; OATES, W. E. The theory of environmental policy. 2. ed. Cambridge: Press Syndicate of the University of Cambridge, 1988. Disponível em: <http://www.lrc.tnu.edu.vn/upload/collection/brief/40080_263201492236thetheoryofenvironmentalpolicy.pdf>. Acesso em: 19 jan. 2018.

BERNDT, A. Impacto da Pecuária de Corte Brasileira sobre os Gases do Efeito Estufa. VII Simpósio de Produção de Gado de Corte, 2015. Disponível em: <https://www.alice.cnptia.embrapa.br/bitstream/doc/1015950/1/PRODI2010.00331.pdf>. Acesso em: 18 jan. 2019.

BÖHRINGER, C. Cooling down hot air: A global CGE analysis of post-Kyoto carbon abatement strategies. Energy Policy, v. 28, n. 11, p. 779–789, 2000. Disponível em: <https://ac.els-cdn.com/S0301421500000604/1-s2.0-S0301421500000604-main.pdf?_tid=42fd51d0-074d-11e8-bbc1-00000aaccb35d&acdnat=1517489085_fb840ef6e3af3ac477a20d338afe94bb>.

BÖHRINGER, C.; VOGT, C. Economic and environmental impacts of the Kyoto Protocol. Canadian Journal of Economics/Revue canadienne d’économique, v. 36, n. 2, 2003. Disponível em: <http://dx.doi.org/10.1111/1540-5982.t01-1-00010>.

BÖHRINGER, C.; VOGT, C. The dismantling of a breakthrough: the Kyoto Protocol as symbolic policy. European Journal of Political Economy, v. 20, n. 3, p. 597–617, 1 set. 2004. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0176268004000254>. Acesso em: 1 fev. 2018.

BRANDER, M.; DAVIS, G. Greenhouse Gases, CO2, CO2e, and Carbon: What Do All These Terms Mean?, 2012. Disponível em: <https://ecometrica.com/assets/GHGs-CO2-CO2e-and-Carbon-What-Do-These-Mean-v2.1.pdf>. Acesso em: 25 ago. 2018.

BRASIL. Contribuição Nacionalmente Determinada Brasil – iINDC. Brasília, 2012. Disponível em: <http://www.mma.gov.br/images/arquivos/clima/convencao/indc/BRASIL_iINDC_portugues.pdf>. Acesso em: 6 ago. 2018.

BRAZIL. Ministry of the Environment. Acordo de Paris. Disponível em: <http://www.mma.gov.br/clima/convencao-das-nacoes-unidas/acordo-de-paris>. Acesso em: 15 jan. 2018.

CEPEA. Metodologia - PIB do Agronegócio Brasileiro: Base e Evolução. Piracicaba: 2017. Disponível em: <https://www.cepea.esalq.usp.br/upload/kceditor/files/Metodologia...
PIB_divulgação.pdf>. Acesso em: 2 set. 2018.
CEPEA. *PIB do Agronegócio*. Disponível em: <https://cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx>. Acesso em: 17 jul. 2018.
CHICHLNISKY, G.; HEAL, G. Who should abate carbon emissions? An international viewpoint. *Economics Letters*, v. 44, p. 443–449, 1994. Disponível em: <https://ac.elscdn.com/0165176594901198/1-s2.0-0165176594901198-main.pdf?_tid=0638613c-fc93-11e7-a511-00000aacb362&acdnat=1516309585_de685be8a016171509fe969f34b8a927>. Acesso em: 18 jan. 2018.
COUTO, L. C.; CASTRO, L.; MOTA, R. S. Curvas de Custos Marginais de Abatimento de Gases de Efeito Estufa no Brasil: resenha e oportunidade de mitigação. *Radar*, 2011.
DIAS-FILHO, M. B. Desafios da Produção Animal em Pastagens na Fronteira Agrícola Brasileira. Belém: 2012. Disponível em: <www.cpatu.embrapa.br>. Acesso em: 19 ago. 2018.
DIAS, P. C.; COSER, F.; BERALDI, T. Pecuária de baixa emissão de carbono: tecnologias mais limpas e aproveitamento econômico dos resíduos bovinos de corte e leite em sistemas confinados. Brasília: Ministério da Agricultura, Pecuária e Abastecimento, 2017. Disponível em: <http://www.agricultura.gov.br/assuntos/sustentabilidade/plano-abc/projeto-pecuaria-abc/arquivos-publicacoes/cartilha-carbono-web.pdf>.
EHHALT, D.; PRATHER, M. Atmospheric Chemistry and Greenhouse Gases 4 Contents. *Climate change 2001 : the scientific basis : contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change*. Genebra: UFCCC, 2001. p. 239–289. Disponível em: <https://www.ipcc.ch/ipccreports/tar/wg1/pdf/TAR-04.PDF>. Acesso em: 24 ago. 2018.
ELLMERAN, A. D.; DECAUX, A. Analysis of Post-Kyoto CO 2 Emissions Trading Using Marginal Abatement Curves. *MIT Joint Program on the Science and Policy of Global Change*, v. 40, 1998. Disponível em: <https://dspace.mit.edu/bitstream/handle/1721.1/3608/MITJPSPGC_Rpt40.pdf?sequence=1>. Acesso em: 20 jan. 2018.
EMBRAPA. *Confinamento de Bovinos*. Disponível em: <https://docs.ufpr.br/~freitasjaf/artigos/CONFINAMENTO.htm>. Acesso em: 23 set. 2018.
FALKNER, R. The Paris Agreement and the new logic of international climate politics. *International Affairs*, v. 92, n. 5, p. 1107–1125, 1 set. 2016. Disponível em: <https://academic.oup.com/ia/article-lookup/doi/10.1111/1468-2346.12708>. Acesso em: 22 set. 2018.
FGV. *Intensificação da Pecuária Brasileira: seus impactos no desmatamento evitado, na produção de carne e na redução de emissões de gases de efeito estufa*. Brasília: 2016. Disponível em: <https://bibliotecadigital.fgv.br/dspace/bitstream/handle/10438/17724/Intensificacaoda_Pecuaria_Brasileira_Relatorio_Completo.pdf>. Acesso em: 26 jul. 2018.
GOMES, R. DA C.; FEIJÓ, G. L. D.; CHIARI, L. *Evolução e Qualidade da Pecuária Brasileira. Gado de Corte - Nota técnica*. Campo Grande: Embrapa. Disponível em: <https://www.embrapa.br/documents/10180/21470602/EvolucaoaeQualidadePecuaria.pdf/64e8985a-5c7c-b83e-ba2d-168ffaa762ad>. Acesso em: 17 jul. 2018.
GTPS. *Panorama sobre a pecuária brasileira e sua contribuição para o desenvolvimento sustentável*. São Paulo: 2017. Disponível em: <http://gtps.org.br/wp-
HRISTOV, A. N. et al. Mitigation of greenhouse gas emissions in livestock production: A review of technical options for non-CO2 emissions. n° 177. 2013. Disponível em: <www.fao.org/publications>. Acesso em: 17 jul. 2018.

IBGE. CENSO Agropecuário 2017. Rio de Janeiro: 2017.

IBGE. Indicadores IBGE: Estatística da Produção Pecuária. 2018a. Disponível em: <ftp://ftp.ibge.gov.br/Producao_Pecuaria/Fasciculo_Indicadores_IBGE/abate-leite-couro-ovos_201801caderno.pdf>. Acesso em: 24 jul. 2018.

IBGE. Pesquisa Pecuária Municipal. Disponível em: <http://www.sidra.ibge.gov.br>. Acesso em: 3 set. 2020a.

IBGE. Pesquisa Trimestral do Abate de Animais. Disponível em: <https://sidra.ibge.gov.br/pesquisa/abate/tabelas>. Acesso em: 3 set. 2020b.

IMAFLORA. Relatório SEEG 2018 - Emissões do Setor de Agropecuária. 2018. Disponível em: <http://seeg.eco.br/wp-content/uploads/2018/06/relatorios-SEEG-2018-agro-final-v1.pdf>. Acesso em: 30 jun. 2018.

IPCC. IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems. 2019. Disponível em: <https://www.ipcc.ch/site/assets/uploads/2019/08/SPM_Approved_Microsite_FINAL.pdf>. Acesso em: 10 ago. 2019.

MARGULIS, S.; MIRANDA, S. H. G. Elaboração de estudos setoriais (energia elétrica, combustíveis, indústria e agropecuária) e proposição de opções de desenho de instrumentos de precificação de carbono: Diagnóstico de Agropecuária. Piracicaba: 2018. Disponível em: <http://mediadrawer.gvces.com.br/pmr-brasil/original/relatorio-para-consulta-p4-agropecuaria.pdf>. Acesso em: 30 jul. 2018.

MARTINS, C. Produção de leite e emissões de metano na região do Corede, RS. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.67, n.5, p.1381-1389, 2015. Disponível em: <http://dx.doi.org/10.1590/1678-4162-7785>. Acesso em: 29 set. 2018.

MCKINSEY & COMPANY. Caminhos para uma economia de baixa emissão de carbono no Brasil. São Paulo: McKinsey & Company, 2009. Disponível em: <http://www.mckinsey.com.br/sao_paulo/carbono.pdf>.

MCTI; ONU. Modelagem setorial de opções de baixo carbono para agricultura, florestas e outros usos do solo (AFOLU). Brasília: 2017. Disponível em: <http://www.mctic.gov.br/mctic/export/sites/institucional/ciencia/SEPED/clima/arquivo/projeto_opcoes_mitigacao/publicacoes/AFOLU.pdf>. Acesso em: 21 ago. 2018.

MORAES, S. R. R.; TUROLLA, F. A. VISÃO GERAL DOS PROBLEMAS E DA POLÍTICA AMBIENTAL NO BRASIL 1 Moraes; Turolla. Informações Econômicas, v. 34, 2004.

NZ HERALD. Vaccine to reduce methane from cows could be “5 to 7 years away”. Disponível em: <https://www.nzherald.co.nz/the-country/news/article.cfm?c_id=16&objectid=11961127>. Acesso em: 29 set. 2018.

OECD; FAO. Chapter 6. Meat. OECD-FAO: Agricultural Outlook 2018-2027., 2018. p. 149–162.
OLIVEIRA, A. P. N. DE; MONTEBELLO, A. E. S. Aspectos econômicos e impactos ambientais da pecuária bovina de corte brasileira. *Revista Unar*, v. 9, 2014. Disponível em: <http://revistaunar.com.br/cientifica/documentos/vol9_n2_2014/4.Aspectos_economicos_e_impactos_ambientais.pdf>. Acesso em: 1 set. 2018.

OLIVEIRA, G. L.; VIEIRA, W. DA C. The effects of tariffs on the whole milk powder trade between Brazil and Argentina: a game theoretic analysis. *Revista de Economia Contemporânea*, v. 12, n. 2, p. 333–353, ago. 2008. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-98482008000200006&lng=en&tlng=en>. Acesso em: 1 out. 2018.

OLIVEIRA, R. L.; BARBOSA, M. A. A. F. BAGALDO, R.; RIBEIRO, M. D. O Zootecnista e os Sistemas de Produção de bovinos de corte. 2008, Paraíba: 2008. p. 8–10.

PEARCE, D. The social cost of carbon and its policy implications. *Oxford Review of Economic Policy*, v. 19, 2018. Disponível em: <https://watermark.silverchair.com/grg002.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dt3ZL_9Cf3qfKAc485ygAAAhQwggGwBqkqhikG9w0BBwagggGhMIBnQIBADCCAZYGQSgSIb3DQEHATAeBglghkgBZQMEAS4wEQQM8_ztFyzMiqmrsUcLAqEqsIIBZ42r2-e7CZaPACjnGIRHR0KQkavrV8M9fWHvJncuFwjr>. Acesso em: 20 jan. 2018.

PINTO, L. F. G. et al. *Análise das Emissões de GEE do Brasil (1990-2012): Setor Agropecuário*. São Paulo: Observatório do Clima, 2014.

PRIMAVESI, O. et al. Manejo alimentar de bovinos leiteiros e sua relação com produção de metano ruminal. , 39. São Carlos: 2004. Disponível em: <https://www.infoteca.cnptia.embrapa.br/bitstream/doc/47010/1/Circular39.pdf>. Acesso em: 21 jan. 2019.

RAMANATHAN, V.; FENG, Y. Air pollution, greenhouse gases and climate change: Global and regional perspectives. *Atmospheric Environment*, v. 43, n. 1, p. 37–50, 1 jan. 2009. Disponível em: <https://www.sciencedirect.com/science/article/pii/S1352231008008583>. Acesso em: 24 ago. 2018.

SEEG. *Emissões Por Setor | SEEG - Sistema de Estimativa de Emissão de Gases*. Disponível em: <http://plataforma.seeg.eco.br/sectors/agropecuaria>. Acesso em: 20 mar. 2020a.

SEEG. *Emissões Totais | SEEG - Sistema de Estimativa de Emissão de Gases*. Disponível em: <http://plataforma.seeg.eco.br/total_emission>. Acesso em: 23 mar. 2020b.

SEEG. *SEEG Monitor Agropecuário*. Disponível em: <http://monitoragropecuario.seeg.eco.br/>. Acesso em: 24 mar. 2020c.

SEROA DA MOTA, R. *Climate Change in Brazil: economic, social and regulatory aspects*. Rio de Janeiro: 2011. Disponível em: <http://www.ipea.gov.br/agency/images/stories/PDFs/livros/livros/livro_climatechange.pdf>. Acesso em: 17 jan. 2018.

SILVA, R. DE O. P. Intervenção do Estado nos Preços do Leite e suas Consequências na Produção. *Análises e Indicadores do Agronegócio*, v. 4, 2009. Disponível em: <http://www.iea.sp.gov.br/out/TerTexto.php?codTexto=11726>. Acesso em: 15 ago. 2018.

SNYDER, C.; NICHOLSON, W. *Microeconomic Theory: Basic Principles and
Extensions. 11. ed. Mason: Cengage Learning, 2010.
STAVINS, R. N.; STOWE, R. C. The Paris Agreement and Beyond: International Climate Change Policy Post-2020. . 2016. Disponível em: <http://belfercenter.ksg.harvard.edu/publication/26833>. Acesso em: 22 set. 2018.
SUBHARAT, S. et al. Vaccination of cattle with a methanogen protein produces specific antibodies in the saliva which are stable in the rumen. Veterinary Immunology and Immunopathology, v. 164, n. 3–4, p. 201–207, 15 abr. 2015. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0165242715000513>. Acesso em: 24 set. 2018.
TOL, R. S. J. The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties. Energy Policy, v. 33, p. 2064–2074, 2005. Disponível em: <https://ac.els-cdn.com/S0301421504001028/1-s2.0-S0301421504001028-main.pdf?_tid=4e772330-fe40-11e7-8091-00000aabc360&acdnat=1516493969_cac8328db46fc8bde873ad4e3bf3be84>. Acesso em: 20 jan. 2018.
UNFCCC. Conferência das Partes - Vigésima primeira sessão - Adoção do Acordo de Paris. 2015, Paris: Organização das Nações Unidas, 2015. Disponível em: <https://nacoesunidas.org/wp-content/uploads/2016/04/Acordo-de-Paris.pdf>. Acesso em: 5 nov. 2017.
UNFCCC. Kyoto protocol to the United Nations Framework Convention on Climate Change. 1998, Kyoto: 1998. Disponível em: <https:// unfccc.int/sites/default/files/kpeng.pdf>. Acesso em: 29 jul. 2018.
UNFCCC. United Nations Framework Convention on Climate Change, 1992. Disponível em: <https:// unfccc.int/resource/docs/convkp/conveng.pdf>. Acesso em: 29 jul. 2018.
USDA. Brazil: Livestock and Products. . 2018a. Disponível em: <https://gain.fas.usda.gov/Recent GAIN Publications/Livestock and Products Semi-annual_Brasilia_Brazil_2-28-2018.pdf>. Acesso em: 2 set. 2018.
USDA. Dairy: World Markets and Trade. . 2018b. Disponível em: <https://apps.fas.usda.gov/psdonline/circulars/dairy.pdf>. Acesso em: 2 set. 2018.
USDA. Livestock and Poultry: World Markets and Trade. Foreign Agricultural Service. 2018c. Disponível em: <https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf>. Acesso em: 22 jul. 2018.
VON SPERLING, M. Introdução à qualidade das águas e ao tratamento de esgotos. 3º ed. Belo Horizonte: UFMG, 2005.
WANG, W. et al. Greenhouse Effects due to Man-Mad Perturbations of Trace Gases. Science, v. 194, p. 685–690, 1976. Disponível em: <https://pubs.giss.nasa.gov/docs/1976/1976_Wang_wa07100z.pdf>. Acesso em: 26 ago. 2018.
WORLD BANK. World Bank Country and Lending Groups – World Bank Data Help Desk. Disponível em: <https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups>. Acesso em: 30 set. 2018.
WRIGHT, A. D. G. et al. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine, v. 22, p. 3976–3985, 2004. Disponível em: <http://www.dsmz.de/media/med161>. Acesso em: 1 set. 2018.
ZHANG, L. et al. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein. Plos One, v. 10, n. 10, 7 out. 2015. Disponível em:
<http://dx.plos.org/10.1371/journal.pone.0140086>. Acesso em: 24 set. 2018.
3 MARGINAL ABATEMENT COST: EVALUATION OF FEED DIET IMPROVEMENTS IN DAIRY CATTLE FARMS

3.1 Introduction

Brazil has assumed a proactive role in the world discussions about the climate change in the last years. In 1992, Brazil hosted the United Nations Framework Convention on Climate Change (UNFCC), the ECO-92, which recognized the need of cooperation among countries to succeed in reducing the Greenhouse Gases (GHG) emissions and, therefore, the climate change effects (Chichilnisky and Heal, 1994; Seroa da Motta, 2011). The 21st Conference of Parts (COP 21), in 2015, has also become another milestone in terms of the global effort toward a more sustainable policy on climate change. COP 21 ended to produce the Paris Agreement, in which Brazil has proposed targets of diminishing a significant amount of GHG emissions.

The Nationally Determined Contribution – NDC, defined in the Paris Agreement, consists on a mechanism (not mandatory) aiming to get governments involved in achieving the proposed targets related to reduce the GHG emissions, while respecting the particularities pointed by the signatory nations (UNFCCC, 2015). The Brazilian NDC is ambitious, once it proposes to reduce the GHG emissions to 1.3 GtCO2eq until 2025 and to 1.2 GtCO2eq until 2030. This amount refers to a cut of 37% and 43%, respectively, compared to emissions in 2005 (base year), estimated to have reached 2.1 GtCO2eq (BRASIL, 2018).

In comparison to other large emitters, Brazil shows a different pattern in terms of sources of GHG emissions, as highlighted by some studies - McKinsey & Company (2009), World Bank (2010), Fundação Getúlio Vargas - FGV (2016) and Imaflora (2018). Globally, and in average, the energy sector is the main source of emissions.

In Brazil, the largest share relates directly or indirectly to agriculture and cattle raising. Direct emissions from agriculture and livestock were estimated at around 25% of Brazil's total emissions in 2018, out of which around 69% come from beef cattle and 8% from dairy cattle. While indirect emissions originate mainly from deforestation and were estimated in 44% of total Brazilian emissions, according to Angelo and Rittl (2019), which used the SEEG data to calculate these figures.
According to a report about the agriculture and livestock emissions, elaborated by Imaflora (2018), in collaboration with the Greenhouse Gas Emission and Removal Estimate System (Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa, SEEG in Portuguese), Brazil ranks as the third world largest emitter for this sector. However, once those emissions are disaggregated, livestock emerges as the responsible for the majority of the GHG emissions, mainly because of the enteric fermentation from bovines, but also because they contribute to emissions from soils due to the manure disposal and lixiviation. Unfortunately, that official inventory of emissions does not consider the net emissions, since it does not account for the carbon sequestration that may occur in grassland. This fact makes it difficult to standardize the methodology for measuring and analysing emissions and mitigation effects due to strategies to recover degraded pastures.

The Brazilian cattle raising still shows a low productivity when measured in terms of animals per hectare. This poor performance contributes to raise domestic deforestation rates, as technical inefficiency pushes the livestock production toward new areas, instead of promoting optimization and a more sustainable land use. It reveals that the improvement of this sector productivity, by the adoption of more intensive systems of production, may constitute a feasible alternative to reduce GHG emissions from the livestock sector in Brazil (ANUALPEC, 2015; IMAFLORA, 2018; Margulis and Miranda, 2018).

Literature highlights that the low indexes for the average productivity relates to the presence of several diverse systems of cattle production in Brazil, for both sectors, beef and dairy. However, despite the available knowledge and technology, its adoption varies broadly across the regions, all over the country, characterizing a technologically very heterogeneous sector. Extensive systems, based on grazing, in natural or cultivated pastures, compared to semi-intensive or intensive systems (such as feedlots), usually show lower productivity indexes, but the outcome will still depend on the quality of pastures. This issue concerning cattle productivity is aggravated by the existence of millions of hectares of degraded pasture land in Brazil (Banco Mundial, 2010; Dias-Filho, 2011; Santos, 2016; IMAFLORA, 2018).

On the other hand, studies have also underlined measures that can make the livestock production less carbon-intensive. Some measures often listed by the specialized literature are: a) the integrated production systems, such as Crop-Livestock-
Forest (iLPF, in Portuguese); b) the animal breeding (using artificial insemination or bulls of high performance) and the fodder breeding; c) some feeding improvements, such as using supplements, allows for a better performance of the zoo technical coefficients, by reducing the time for animals fattening and extending the period of lactation of dairy cows (McKinsey & Company, 2009; Banco Mundial, 2010; Santos, 2016; and d) the anti-methane vaccine, which is still under development (McKinsey & Company, 2009).

It is worth mentioning that the feasibility of mitigation measures must be evaluated not only under an economic perspective, but also a political one. This last can push or slow the adoption of mitigation actions in the livestock sector, considering its social and economic relevance for Brazil. According to the USDA (2018a, 2018b), Brazil is one of the largest world beef producers and exporters, besides ranking as a major beef and milk world consumer. Thus, the Brazilian cattle sector (beef and dairy) computed to a GDP of roughly US$82,708.22 million of dollars22, at constant prices for 2017, which accounts for approximately 60% of the livestock share in the total of agribusiness (US$138.81 billions of dollars), more than 18% of the Agribusiness GDP and close to 4% of the national GDP (Barros, 2017).

Therefore, the discussion about GHG emissions in the cattle sector and its mitigation constitutes a great challenge for the Brazilian society and policy makers. So, this paper aims to estimate and analyse the marginal abatement cost of one technical measure that is recommended to mitigate GHG emissions in the cattle sector by most of the reviewed literature, which is the improvement of bovine diet.

Two typical (modal) farms of dairy production in Brazil are examined: Leopoldina, in Minas Gerais state and Caçu, in Góias state, and their production systems differ in terms of technological level. To estimate the abatement cost, the net cost of production of implementing the mitigation measure will be evaluated, comparing the scenario with the mitigation adoption and the one without it (baseline scenario). The study time horizon is 13 years, from 2018 to 2030, reaching the deadline for fulfilling the Brazilian commitments (NDC) in the Paris Agreement.

Data describing two Brazil’s typical farms, for two of the most important regions of milk production in Brazil, was obtained from Panel CEPEA – USP/CNA database.

22 The value was estimated in 263,955 million Reais, which was converted to dollar using a real exchange rate of R$3.1914/US$, annual average for 2017 (IPEADATA, 2019).
The relevance of dairy cattle emissions in Brazil, accounting for 8% of the whole agriculture/livestock sector emissions (ANGELO; RITTL, 2019), and the scarce literature about the economic and technological challenges for the dairy sector in complying to future requirements to reduce GHG emissions, have sparked interest for conducting this study. It is strategic to collect elements and knowledge that can fundament the discussion of a future policy on carbon pricing and to promote mitigation of agriculture and livestock GHG emissions. The recent project of Partnership for Market Readiness (PMR)23, a World Bank initiative, selecting Brazil to support a broad study about carbon pricing, is a major sign that this policy issue will be likely in the spotlight in the near future.

3.2 Methodology and Data

The need of adjustments in production and consumption systems toward a lower carbon-intensive model requires more information about costs to reduce the GHG emissions. In order to that, an analytical tool frequently applied is the Marginal Abatement Cost Curve (MACC). The environmental economics framework recognizes the MACC as an efficient tool, broadly used by policy makers to assess the economic and technological feasibility of measures to environmental mitigation (Böhringer and Rutherford, 2006; Kesicki; Strachan, 2011; Motta, Couto and Castro, 2012).

The MACC compares total abated emissions with the marginal costs associated to promote that reduction. Therefore, it allows analysing the most appropriate mitigation measure in each situation (Kesicki and Ekins, 2012). The MACC is usually plotted in a two dimension graph indicating the amount of the abated equivalent carbonic gas (CO₂) emission, usually measured by tonnes (in the x axis) and the monetary cost per abated ton of CO₂ (in the y axis). Besides measuring marginal costs, the MACC can be used to determine average costs and total costs of abatement (Kesicki and Strachan, 2011).

The first application of the MACC dates back to the 1980s, by Meier (1982), in a study entitled “Supply Curves of Conserved Energy Permalink”. This study applied that methodology to energy saving problem, raised by the oil crisis in the 1970s. At the time, the MACC nomenclature was not yet associated with this analytical instrument (KESICKI; STRACHAN, 2011; MEIER, 1982)

23 Available at: https://www.thepmr.org/country/brazil-0
From this study, the Marginal Abatement Cost Curve began to be widely used as a tool to assess energy efficiency in several sectors of the economy, which ended up highlighting its potential. This potential is not limited only to the analysis of climate change issues but also, to a large extent, to issues that oppose the possibility of reducing a certain economic good or negative externality (economic evil) vis-à-vis its marginal cost of abatement (KESICKI; STRACHAN, 2011).

Since the first publication applying the MACC, this tool has been built in studies about climate change mitigation, covering different regional scopes, periods and economic sectors. In general, there are two approaches in terms of its application: a technological approach and another one based on general and partial equilibrium economic models (KESICKI; EKINS, 2012). Figure 1 proposes a stylized model to illustrate MACCs built according to these two approaches.

![Figure 1 - Stylized examples for a MACC based on technological assessment (left) and general equilibrium economic model (right)](source: Extracted from Kesicki and Ekins (2012).)

The technological approach to obtain a MACC emerges from practices employed in the engineering areas, and describes the costs of adopting a technology to promote the mitigation of GHG emissions in a more detailed way than the alternative methodologies. This approach maps a baseline for the CO2e emissions in two scenarios, with and without the adoption of the mitigation option. The cost of the mitigation option represents the difference of costs between the adoption scenario and the baseline. This mapping makes it possible to explore the potential for emission reduction and the corresponding cost for each mitigating measure. The next step is to order the mitigation measures in a chart, from those with the lowest cost to the most expensive options. (Kesicki and Ekins, 2012).
According to Kesicki (2010), the main advantage of the technological approach to build the MACC is the ease to understand and interpret, allowing for a deeper analysis of the cost of the technology option used to promote the mitigation. On the other hand, the author reports that a failure of this approach is not providing an analysis of the impact of such an intervention over the macroeconomic variables.

One interesting benefit of adopting the technological approach to obtain the MACC is the possibility to identify negative costs of the mitigation measures examined (Couto, Castro and Motta, 2011). It means it is possible to have a better understanding about the opportunities to mitigation, with less obstacles being raised by farmers.

The identification of negative costs indicates mitigation measures that can generate profits, instead of only costs, that is, mitigation measures that can be paid by themselves, even though there is no carbon price. The study carried out by the World Bank (2010) about low carbon economy, covering various Brazilian sectors, pointed out a considerable number of negative cost mitigation measures. The debate about negative cost of abatement, which offers a comprehensive literature specifically for the energy sector, was carried out by Jaffe and Stavins (1994), particularly with respect to the energy paradox or to the efficiency gap.

Pursue the mitigation options that present negative abatement costs shows to be interesting in the scope of this paper, once that its implementation could be more attractive to cattle ranchers in the short term, favoring the awareness of those economic agents about the relevance of reducing emissions and, therefore, reducing conflicts between different segments of the society.

To understand the obstacles that cause the non-adoption of those measures is another important issue, even in the case of measures with negative costs of abatement. The conservatism, the low investment capacity of cattle raisers in Technologies that are less intensive in carbon emissions and even the interest rates in Brazil, consist on hypotheses to be investigated to explain the poor interest of economic agents even when a recommended technology has a negative cost.

McKinsey & Company (2009) are good reference when we address, specifically, the Brazilian cattle ranching, to estimate mitigation measures. These studies assessed the GHG mitigation potential of 21 countries. The World Bank report (2010), mentioned earlier, also addresses marginal costs through the technological alternative. This report aggregates all sectors that have potential for implementation and application
in the technological approach to building the MACC (COUTO; CASTRO; MOTTA, 2011).

Two other important studies of MACC, which adopted the technological approach, and dealt with livestock, are: Silva et. al (2015) and Kimura and Santos (KIMURA; SANTOS, 2016).

Silva et. al (2015) estimates a technological MACC for the Brazilian Cerrado, incorporating, mitigation strategies and comparing them. This study selected some mitigation strategies in livestock, namely: mineral and protein supplementation; pasture recovery, confinement (livestock intensification system) and the use of soil nitrification inhibitors.

In a different way, the goal of Kimura and Santos (2016) was to valuate the mitigation of the GHG given by the pastureland recovery, financed by credit resources from the the Low Carbon Emission Agriculture Program. The authors applied the technological MACC approach to that analysis (Kimura and Santos, 2016).

The MACC based on the economic models, either general or partial equilibrium, can be classified in two main categories: top-down and bottom-up. Differences between the two models are based on their aggregation level and on the scope of the ceteris paribus hypothesis (Böhringer and Rutherford, 2006; Kesicki, 2010).

Kesicki e Ekins (2012) discuss these two models as applications with the energy sector, pointing that the energy models take the bottom-up approach and partial equilibrium models, differently from the models that provide economic answers for the whole economy using a top-down approach (Kesicki and Ekins, 2012). The top-down model envisages the economy in a broad and aggregate manner, through general equilibrium models, capturing the macroeconomic effects of a given price or income policy, for example. However, this kind of model does not include details about the technology adopted as an analyzed mitigation instrument (BÖHRINGER; RUTHERFORD, 2006; KESICKI, 2010; MOTT; COUTO; CASTRO, 2012).

Santos (2016) studied the Brazilian livestock sector, by using top-down model. The author estimates the cost to control CO2e emissions in integrated systems adopted in cattle raising farms of Mato Grosso do Sul.

In contrast, the bottom-up models, partial equilibrium oriented, count on sectorial and technological details, as well as technological models. This last one is more suitable for the analysis of specific changes in technology or of adopting
command and control policies, such as rules that impose efficiency requirements or standards. Critical to the bottom-up model are pointed out, particularly related to its deficiency in capturing interactions between economic sectors and income effects, such as the impacts of introducing a tax on the economy (BÖHRINGER; RUTHERFORD, 2006; KESICKI, 2010).

Although Kesicki and Ekins (2012) apply the bottom-up model only for the energy sector, it can be used to other economic sectors. An example of bottom-up modeling for agriculture is the BLUM model (from the Brazilian Land Use Model, translated Land Use Model for Brazilian Agriculture) (ICONE, 2018).

Table 1 summarizes the advantages and disadvantages of the MACC cost curves derived from the three approaches, and was organized based on three tables freely translated from Kesick (2012).

It is also necessary to address the current efforts to build a hybrid modeling of top-down and bottom-up models, whose objective is to combine the technological details of the bottom-up models with the broad macroeconomic analysis of the top-down model (BÖHRINGER; RUTHERFORD, 2006).
Table 1- Strengths and weaknesses of the types of Marginal Abatement Cost Curves (MACC)

Strengths	Weaknesses
Technological MACC	**Technological MACC**
▪ Extensive technological detailing;	▪ Behavioral factors are not incorporated;
▪ Enables to incorporate specific market distortions from technology;	▪ Interactions and dependency between mitigation measures not incorporated;
▪ Ease of understanding and interpretation	▪ Possibility of baseline inconsistent with emissions;
	▪ Representation of temporal interactions is absent;
	▪ Representation of uncertainty is limited;
	▪ In some cases, this model is restricted to a single economic sector, not allowing to accumulate MACC for more sectors;
	▪ Macroeconomic impacts are not represented;
	▪ The structure of the technological costs is simplified

Bottom-up	Bottom-up
▪ Model explicitly maps energy technologies in detail	▪ The model does not allow for macroeconomic results;
	▪ Direct cost in the energy sector;
	▪ Risk of small cost variations generate changes in the energy system (“penny-switching”);
	▪ No reflection of the indirect effects reverberation

Top-down	Top-down
▪ It considers macroeconomic and cost impacts	▪ The model does not have technological details;
	▪ Unrealistic potential physical implications

Hybrids (Bottom-up and Top-down)	Hybrids (Bottom-up and Top-down)
▪ Interactions between measures are included;	▪ Absence of technological details in the MACC representation;
▪ Consistent emissions baseline trajectory;	▪ Assumption of rational agents, disregarding most distortions
▪ Intertemporal interactions incorporated;	▪ Enables to represent uncertainty;
▪ Behavioral factors incorporated;	▪ Enables more agile intertemporal comparisons
▪ Enables more agile intertemporal comparisons	▪ Absence of technological details in the MACC representation;

Source: Adapted from Kesicki (2010)
This paper builds the MACC by applying the Technological approach, which provides a more detailed description of the costs of technologies implemented to mitigate the GHG emissions. This method maps pathways for the CO2e emissions with and without the adoption of the mitigation measure.

This research encompasses a comparison among two different dairy production farms, which were selected to represent some of the major Brazilian regions of dairy production. The general goal is to evaluate how the technological improvements related to improvement feeding; can contribute to reduce the intensity of carbon emissions, measured by emissions per litre of milk, besides providing a better financial balance for dairy farming activities. This paper describes results from that research, specifically for the case of a typical dairy farm in Leopoldina (Minas Gerais state) and Caçu (Góias state), representatives of a low and medium technology production model, respectively.

Minas Gerais state is the largest milk producer in Brazil. However, the technology level varies across the state. In Leopoldina, the typical farm analysed shows a low technology level, with small economic returns, and poor zootechnical coefficients. This type of production system is largely found in several other Brazilian regions as well, where the dairy cattle is social or/and economically relevant, and commonly developed by family farmers (Margulis and Miranda, 2018).

The Goias state is also another important region of milk production in Brazil; and similarly to the Minas Gerais state, the level of technology varies widely across the state. Unlike Leopoldina, the typical farm of Caçu, located in the state of Goias, shows a medium level of technology, with pastures in a stable state of conservation, with medium economic returns and zootechnical coefficients. In addition, this production system is frequently found in several other Brazilian regions, where dairy cattle are socially or economically relevant and commonly present in family farms.

Any further discussion, in the future, about imposing public policies to enforce mitigation or even market-driven incentives with the same purpose will require more information on costs and benefits of the potential adjustments in the production systems and their impacts.

Data describing the typical farm was collected through a panel method, which provides a modal profile for the production system and a detailed worksheet on the production costs for the dairy activity. Cepea (ESALQ-USP), in collaboration with the National Confederation of Agriculture and Livestock (Confederação Nacional da Agricultura e
Pecuária, CNA in Portuguese) collects and organizes the panel data for several regions in a systematic and periodical procedure.

The panel contains information about the zoo technical indexes for the typical (modal) farm. This study intends to take into consideration how the adoption of measures to promote emissions mitigation can affect those indexes. Among the measures to mitigate emissions of interest for this study, the literature highlights the improvement of feeding diets and improvements on the pasture management system.

Using the initial zoo technical coefficients, collected by Cepea/CNA for Leopoldina and Caçu region, the emissions for the base year are calculated for that typical dairy farm.

Below is the data from the Caçu and Leopoldina panels regarding the herd and farm in tables Table 2 and Table 3.

Table 2- General Information on typical Caçu farms and Leopoldina farm, 2018

Information	Caçu farm	Leopoldina farm
Birth interval (months)	16	14
Lactation period (months)	12	9
Age at first calving (months)	36	36
Production cow/day (litres/day)	12	8
Daily production (litres)	550	300
Herd Race	Girolando 3/4	Girolando ½
Used área	Área Integral	Área Integral
Total área	96,00 ha	70,00 há
Building área	2,0 ha	2,0 há
Area of forest reserves	19,0 ha	5,0 há
Real interest rate	6,00%	6,00%
Arable land	75 ha	63 há
Fence lenght	3,92 km	3,35 km
Capital stock	R$ 1.598,284,26	R$ 1.330,880,47
Net margin	R$ 7,818,19	-R$ 56,423,97
Return on capital	0,50%	-4,2%

Source: elaborated by the authors based on CEPEA-CNA panel data for 2018.
Table 2- Number of animals for each cattle category in the typical farms of Leopoldina and Caçu, 2018

Cattle Category	Caçu farm	Leopoldina farm
Suckling male calves*	20	0
Bull	1	1
Suckling calves	22	16
Weaned calves	21	16
Heifers (12 to 24 months)	19	16
Heifers (24 to 36 months)	17	15
Heifers (36 to 48 months)	0	0
Lactating cows (first birth)	13	10
Lactating cows (multiparas)	32	27
Single and dry cows (dried)	15	21
Total animals in production	**141**	**107**

* In addition to bulls, there are only these categories of male animals on the typical farm analyzed

Source: elaborated by the authors based on CEPEA-CNA panel data for 2018.

In the sequence, two scenarios are simulated. The first scenario (A) is the baseline, considering “business as usual” in that farm, along the 13 years (2018-2030) projections, in terms of zoo technical indexes and cattle emissions.

The second scenario (B) assumes that changes will occur in terms of technical zoos and methane emissions over the projected schedule, due to Feed Diet Improvements. Table 4 details the assumptions of scenarios A and B.

The basic data to project costs and revenues for each scenario, as well as the zoo technical coefficients, came from the panel database of CEPEA/CNA, as mentioned before, and the consultation with experts helped to make some adjustments in order to use the data to project the GHG inventory for the 13 years scenarios.

The panel database comprises detailed information on the typical dairy farm, such as: description of the property (size, existence of pasture land, agriculture land, forest) infrastructure – buildings, machinery, number, age and category of animals, labour force (temporary, permanent and hours used for each operation, wage), inputs use (fertilizers, veterinarian drugs or vaccines, diesel, etc.), services (veterinarian, agronomic etc.). It also includes energy use, taxes, sources of revenues (animals sale, milk, beef, manure and others).
and the zoo technical indexes (productivity, lactation period, weight gain, birth rate, mortality indexes, pregnancy rate and so on).

Table 3- General assumptions to the simulated scenarios for the typical dairy farms of Leopoldina/MG and Caçu/GO to obtain a MACC. Evaluated technology to mitigate emissions: optimal feeding diet for milking cows

Scenario	Description
Scenario A	Zoo technical coefficients are kept constant along the 13 years of projection, as the production system and the technology level are kept the same of the base year; likewise the emissions. Costs and revenues (in real values) are the same along the 13 years; investments are null; computing only depreciation and maintenance costs
Scenario B	Technology changes in response to adoption of an optimal diet for cows in lactation, and consequently the zoo technical coefficients improve along the 13 year-period of projection; Costs of production, productivity and revenues, as well as emissions, increase along 13 years; investments are made to establish a semi-confinement infrastructure (Annex), to feeding lactating cows in the trough

Source: Own elaboration.

CEPEA/CNA implements the panels in regions considered being locally representative of a broader region or of the whole state, or even representative of a prevailing technology level. Every each two or three years, the panel is recollected to monitor changes in economic, zoo technical and technological variables. The method to collect data for typical farms start with the contact and previous meeting between the technicians from CEPEA and a focus point in the region, before the panel itself. Then, a meeting with the cattle producers is organized in the municipality, and along 4 to 5 hours, they define what is perceived as a typical (modal) farm to raise dairy cattle in the region. In some regions, there might be other prevailing typical systems, and in this case, another panel will take place to collect information about that system as well.

The economic indicators built from the panel follow the methodology proposed by Matsunaga et al (1976), and provide the information necessary to estimate costs of production, the Effective Operational Cost (COE, in Portuguese) and the Total Operational Cost (COT, in Portuguese), besides the Total Cost, which will not be considered here. The COE comprises all the expenses to operate the farm during one year, comprising fixed and variable costs. Variable costs include feed (concentrated and roughage), vaccines, mineral supplements, buildings and machinery maintenance, as mentioned by Santos (2015). The
COT comprises the COE added by the linear depreciation cost found for the farm inventory and by the farmer’s *pro labore*.

The collected data is used to build the baseline scenario (A), which considers that the production system will hold as the same along the whole 13 years-period of projection, in terms of zoo technical and economic indexes (in real terms). For Scenario B, investments will be necessary to improve the infrastructure that will provide the abatement of emissions through a better quality feeding. This implies a less-intensive carbon production system, i.e., the mitigation gains.

Usually Brazilian farmers are more concerned about the COE. However, because this study focuses on the projection time and the costs of investments made to pursue a more sustainable way to produce milk, it is convenient to discuss the COT instead of COE as an indicator of the microeconomic impact for farmers. The details about the proposed investments are presented in the "Annex".

3.2.1 Building the MACC: Mathematical model, variables and data source

As mentioned before, the objective of this paper is to examine the cost-efficiency of adopting mitigation measures in the Brazilian dairy sector and, because of that, the technological approach to build the MACC was chosen.

The adoption of strategies to improve feed diets for dairy cattle is evaluated in typical farms of Caçu and Leopoldina, building the Marginal Abatement Cost Curves, both the total cost and per litre of milk. The MACC allows for examining the potential for reducing emissions and its costs to different mitigation measures considering two aspects: one, more general, in terms of absolute contribution and its direct costs to implement; and the second, is the relative decoupling analysis, which considers the abatement cost per litre of milk produced.

The steps taken to build the MACC are shown in Table 4.
Table 4- Steps for preparing the MACC for the paper

Step	Description
1	Select a panel/typical farm according to the following criteria:
* a.) Geographic location – a relevant Brazilian state in dairy production;
* b.) Among the typical farms available in the CEPEA CEPEA/USP-CNA database, the production systems characterized by less intensive technology use were prioritize. For that set of production systems, the literature lists several different mitigation measures, which can potentially impact on the productivity (increase) and on the emissions (decrease) |
| 2 | Building of Scenario A for each modal (typical) farm, i.e., the path of emissions projected for 2018 to 2030, in the absence of adopting the mitigation measures; the cash flow and the typical farm emissions are projected for 13 years, using the panels database and the Third Brazilian Inventory of Anthropic GHG Emissions and Removals |
| 3 | Building Scenario B, which also uses the panel database, aggregating information collected in literature and experts consultation, in order to simulate the impacts of the selected technology (mitigation measures) over the structure of production costs and farm revenues, to evaluate the response of the zootechnical indexes and of emissions |
| 4 | Once the scenarios are drawn, the mathematical model is applied and the curves of Marginal Abatement Cost are built for the Technologies analyzed and for each typical dairy farm |

Source: Own elaboration

3.2.1.1 Mathematical model: MACC

This paper adopts the technological approach in order to build the MACC and follows the mathematical model proposed by Banco Mundial (2010, p.157), which used the incremental cost conception, as shown below:

\[
AC_{Activity}^n = \frac{AN_{Scenario A}^n - AN_{Scenario B}^n}{AE_{Scenario A} - AE_{Scenario B}}
\]

(1)

Where \(n = 2018, \ldots, 2030 \) and:
\[\text{AC}_{n}^{\text{Activity}}\] = Cost for the abatement technology of GHG emissions in \(n\);

\[\text{ANC}_{n}^{\text{scenario B}}\] = Annual net cost of the abatement technology (Scenario B) in year \(n\);

\[\text{ANC}_{n}^{\text{scenario A}}\] = Annual net cost of the technology adopted by the typical farm in 2018 (base year) in Scenario A, in \(n\);

\[\text{AE}_{n}^{\text{scenario B}}\] = Annual emissions of GHG with the adoption of abatement technology (Scenario B) in \(n\);

\[\text{AE}_{n}^{\text{scenario A}}\] = Annual GHG emissions without abatement technology (baseline - Scenario A) in year \(n\).

Equation (2) shows the calculation of the annual net cost of the technology of GHG emissions:

\[
\text{ANC}_{n} = \frac{\text{INV}.r^{\frac{t}{(1+r)^{t-1}}} + \text{AOMC}_{n} + \text{AFC}_{n} - \text{AREV}_{n}}{(1+r)^{n-2018}}
\]

Where:

- \(\text{ANC}_{n}\) = Annual net cost of abatement technology (Scenario B) or baseline technology (Scenario A), measured in present values at base year 2018, for year \(n\);
- \(\text{INV}\) = Total investment or cost of capital for the abatement technology (Scenario B) or in the reference scenario (A);
- \(\text{AOMC}\) = Annual cost of operation and maintenance of abatement technology (Scenario B) or baseline technology (Scenario A);
- \(\text{AFC}\) = Annual cost of fuel in Scenarios A and B;
- \(\text{AREV}\) = Annual revenue obtained in Scenarios A or B;
- \(r\) = Discount rate (a 8% rate was adopted, following similar works of the World Bank);
- \(t\) = Technology lifetime in years.
- \(n\) = Year

3.2.1.2 Mathematical model: inventory of emissions

The inventory of emissions can be defined as a diagnostic that maps the GEE emissions of a certain production chain, measuring its emissions and providing a metrics to evaluate the climatic impact of that chain. This metric occurs through the generation of the so called “emission factors”, which represent the amount of GEE emitted by a specific production process.
In this perspective, the inventories establish rules and principles for quantification, linked to important organizations in the sector, among which the IPCC occupies a prominent place.

The inventory methodology is divided into three categories due to the degree of complexity for its development. These classes are called “Tier” and the higher the Tier, the more complex the category in question. Table 5 presents the classes of inventory according to the Intergovernmental Panel on Climate Change (IPCC).

Table 5- Emission inventory categories, based on the IPCC (2006)

Type	Tier description
Tier 1	This method assumes default values for the emission factors, established by the IPCC; this is basic method, the most applied, which choice and use are, mainly because of difficulties to obtain data
Tier 2	This method has an intermediate level of complexity; in Tier 2, the emission factors incorporate more specific information about the territory evaluated, considering, for instance, industrial practices in the country, climate and others
Tier 3	This is the most complex level and requires very detailed information; often, the Tier 3 is tied to the elaboration of specific models to run emission factors that are closer from reality, and this makes its execution more difficult

Fonte: Elaborated by the author based on IPCC (2006)

This study adopts the Tier 2 methodology to conduct the carbon inventory. It seeks to capture territorial specificities affecting emissions from livestock in each modal farm examined. Still on the emissions inventory, it is important to discuss the scope. The scope of the inventory concerns the number of processes that the inventory of the production chain must comprise. Another relevant aspect of the scope is that it avoids double emissions counting since it establishes three types of coverage for calculating emissions in a production chain, as shown in Table 6.

In this context, the emissions inventory for each modal farm is conducted in order to obtain the metric of those variables, referred to the emissions calculated to the cattle raising activity, in accordance with each panel, i.e., for each typical farm, $AE_n^{Cenário A}$ and $AE_n^{Cenário B}$.
Table 6- Emission Scope Categories, based on the GHG Protocol (2017)

Type	Scope description
Scope 1	Emissions from sources directly related to the activities/processes of the firms or of the event conducted. Example: own vehicle fleet; energy generators and air conditioning
Scope 2	Emissions from the acquisition of electric and thermal energy related to the firm's operation/activity or to the event holding. Example: consumption of electric and thermal energy
Scope 3	Emissions from sources indirectly related to the firms’ operations/activities or to the holding of events. Example: land transportation of people and cargo; air travel; residues and effluents produced, among others

Source: Own elaboration based on GHG Protocol (2020)

In turn, the emissions recorded in the activities developed in the typical farms, for livestock, come from the following production processes:

- Enteric fermentation (Scope 1);
- Manure management (Scope 1);
- Electricity (used in rural property facilities) (Scope 2);
- Fossil fuels (used in motor vehicles on rural properties) (Scope 1)

Therefore, Scope 1 is adopted for the carbon inventory of the livestock activity developed in the typical farms chosen to be examined.

The methodology to computing the emissions, for both scenarios, A (baseline) and the B (Abatement), is based upon the Third Brazilian inventory of anthropic GHG emissions and removals (Terceiro Inventário Brasileiro de Emissões e Remoções Antrópicas de GEE, in Portuguese). This inventory was issued by the Ministry of Science, Technology, Innovation and Communications (Ministério da Ciência, Tecnologia, Inovações e Comunicações, MCTI in Portuguese) (MCTI; EMBRAPA, 2015).

The "Third Brazilian inventory of anthropic GHG emissions and removals" (MCTI; EMBRAPA, 2015) was taken as reference for the methodology because this document provides the detailed formulas to estimate the emissions. In addition, this is the official document containing estimates for Brazilian emissions. Equation 4 shows the parameters and
formulae to calculate the emissions originated from the enteric fermentation of bovines (EFi), measured in Kg CH4/head per year:

\[EF_i = GE_i \times Y_m \times \frac{365 \text{ days/year}}{55.65 \text{ MJ/kg CH}_4} \]

(3)

Where:

- \(GE_i \) = Intake of gross energy (MJ/head/day)\(^{24}\);
- \(Y_m \) = Conversion rate of methane (0.06)

The estimation of emissions generated by manure management also used the emissions factors proposed in the Third Brazilian Inventory of GHG Anthropic Emissions and Removals (MCTI; EMBRAPA, 2015).

The calculation of the gross energy intake (\(GE_i \)) by animal, per day, is given by:

\[GE_i = \left[\left(NE_m + NE_f + NE_l + NE_d + NE_p \right) / RND + NE_d / RND_d \right] \times 100 / DE \]

(4)

Where the variables are:

- \(NE_m \) = Net energy required to animal maintenance (MJ/head/day);
- \(NE_f \) = Net energy required to animal feeding (MJ/head/day);
- \(NE_l \) = Net energy required to lactation (MJ/head/day);
- \(NE_d \) = Net energy required to animal traction (MJ/head/day);
- \(NE_p \) = Net energy required to gestation (MJ/head/day);
- \(NE_g \) = Energia líquida necessária para o crescimento (MJ/head/day);
- \(RND \) = Ratio of net energy, consumed to maintainance, lactation, traction and gestation, to digestible consumed energy;
- \(RND_d \) = Ratio between consumed net energy consumed to growth and the correspondent consumed digestible energy and
- \(DE \) = Digestibility (%).

\(^{24}\) The third Brazilian inventory for emissions and removals presents a set of equations applied to calculate the intake of gross energy (MJ/head/day) by bovines (MCTI; EMBRAPA, 2015), which were considered here, together with the zoo technical indicators from Cepea/CNA panel and experts consultation, in order to estimate the cows emissions in a typical dairy farm of Leopoldina.
To calculate the net energy required to maintainance NE_m, assuming W as the animal weight, we have the following equations, based on the Third Inventory produced by the MCTi:

$$NE_m = 0.335 \times W^{0.75} \text{ (to dairy cattle) (MJ/head/day)} \quad (5)$$

$$NE_m = 0.322 \times W^{0.75} \text{ (to other bovines) (MJ/head/day)} \quad (6)$$

The CEPEA panels, containing data for the typical farms, provide, for each bovine category (calf, lactating cow, bull and others), the animal weight. This information allows for getting more accurate figures on the bovines emissions caused by the enteric fermentation, for the typical farms, than the default value available at the Third Brazilian Inventory of Anthropogenic GHG Emissions and Removals from MCTi (2015), for the states where the modal farms are located.

The net energy required to animal feeding (NE_f) can be calculated by a fraction of the energy required to maintainance (NE_m), according to the equation below:

$$NE_f = 0.17 \times NE_m \text{ (to dairy cattle) (MJ/head/day)} \quad (7)$$

$$NE_f = 0.37 \times NE_m \text{ (to other animals) (MJ/head/day)} \quad (8)$$

The calculation of the net energy necessary to lactation (NE_i) and net energy necessary to gestation (NE_p) takes in consideration only the reproducing cows in the beef cattle, or, in the case of the dairy cattle, the cows in lactation, and does not consider the evaluation of NE_i and NE_p for dry cows and heifers, when the dairy cattle panels are examined. The following equations show the net energy required to lactation and gestation, respectively:
Where,

- MP = Milk production (kg/head/day);
- MF = Fat content in milk (%);
- PR = Pregnancy rate (%).

Another detail provided by the CEPEA-CNA Panels, advantageousy in relation to the default values, is that the panels survey specific values for each farm, regarding the average daily milk production of lactating cows.

For the pregnancy rate, it was established that in the reference scenario (Scenario A) the default value of the Third Brazilian Inventory of Anthropogenic GHG Emissions and Removals from MCTi (60%) is adopted. For the scenario of reduction / adoption of a mitigation measure, the value suggested by the 1996 Guidelines is considered for the most productive rural properties (80%), since any mitigation measure whose implementation is simulated will have the effect of increasing productivity of the typical farm analyzed (MCTI; EMBRAPA, 2015).

To estimate the net energy used in work (animal traction) (NE_a), a proportion of the net energy for maintenance is multiplied by the number of hours worked by the animal, per day (H), as explained in eq. (14). Note that, for Brazil, the Inventory assumes that H is zero (MCTI; EMBRAPA, 2015).

$$NE_a = 0.10 \times (NE_m \times H) \left(\frac{MJ}{head/day} \right)$$

(11)

The accounting of the net energy required for growth (NE_g) is performed only for young cattle, according to the expression:
\[NE_g = 4.18 \times [(0.035 \times (W)^{0.75} \times (WG)^{1.115}) + WG] \]

(12)

Where:

\[WG = \text{Weight gain for young animal (kg/head/day)}. \]

The data panels collected by CEPEA-CNA also show the value of WG per category of young bovines, making the enteric fermentation inventory of young cattle more realistic in the present study, for the analyzed modal properties, than when adopting the default average values of the Brazilian Inventory of MCTi, for that category.

For the calculation of the RND (ratio of the net energy consumed for maintenance, lactation, work and management with the digestible energy consumed) and the \(RND_g \) (ratio for the net energy for growth in relation to the digestible energy consumed), the equations of calculation considers a proportion of digestibility, as shown below:

\[RND = 0.298 + (0.00335 \times DE) \]

(2)

\[RND_g = -0.036 + (0.00535 \times DE) \]

(14)

The estimation of emissions generated by manure management also used the emissions factors proposed in the Third Brazilian Inventory of GHG Anthropic Emissions and Removals (MCTI; EMBRAPA, 2015).

The original calculation of all monetary values available at the excel spreadsheets for Leopoldina and Caçu were in Reais, following the currency of the collected data in panels. Monetary values were firstly converted into constant Reais, for 2018, and finally they were converted into dollars using the official exchange rate, issued by the Brazilian Central Bank (in purchasing operations), which was R$ 3.1914/US$, annual average for 2018 (IPEADATA, 2019).
3.3 **Description of baseline and simulation feeding conditions**

Besides the potential to produce more milk, dairy market experts from CEPEA consider that the higher quality feeding diets under analysis will improve other zoo technical indicators.

In fact, the typical farm in Leopoldina and Caçu characterises by a grazing based-system, and animals access the trough only to have some concentrate and supplementation.

Experts from CEPEA gave technical support to define an optimal supplementary diet to compose the technological improvement simulated in Scenario B. In the baseline, the original (but insufficient) feed supplementation is maintained constant, along the whole 13 years. **Erro! Fonte de referência não encontrada.** shows the feed diet for the typical farms of Leopoldina and Caçu, according to data collected in the panels. These diets found in the field surveys are kept in the same level along 13 years to simulate Scenario A.
Table 8 - Daily feed and supplements per head, for different categories of dairy cattle, for a typical farm in Leopoldina (MG) and Caçu (GO). Scenario A. Projection: 2018-2030

Leopoldina

Bovine categories	Feed / Supplements	Description	Consumption period (months)	Unit	Consumption
All animals	Roughage (forage)*	Pasture*	12	(kg/head/day)	n/d
Lactating cows	Concentrate	Ration	12	(kg/head/day)	4.00
All animals	Protein salt		4	(g/A.U./day)	113.72
All animals	Mineral salt		12	(g/A.U./day)	34.11
All animals	White salt		12	(g/A.U./day)	18.95

Caçu

Bovine categories	Feed / Supplements	Description	Consumption period (months)	Unit	Consumption
All animals	Roughage (forage)*	Pasture*	12	(kg/head/day)	n/d
Lactating cows	Concentrate	Ration	12	(kg/head/day)	4.00
Suckling calves	Concentrate	Ration	12	(kg/head/day)	0.60
Lactating cows and dry cows	Mineral salt	Ration	12	(g/A.U./day)	110
Breeding Bull	Mineral salt		12	(g/A.U./day)	200
Weaned heifers	Mineral salt		12	(g/A.U./day)	50
Heifers (12 to 24 months)	Mineral salt		12	(g/A.U./day)	80
Heifers (24 to 36 months)	Mineral salt		12	(g/A.U./day)	90

* According to dairy experts from Cepea, based on very low production or milk per cow in the typical farms of Leopoldina and Caçu, one can infer that the cows in lactation are consuming less fodder than the recommendation for those animals.

** All feedstuff listed in the diet are considered along the whole year, except by protein salt, which is due only for the dry season, being provided to animals during only four months.

Source: elaborated by the authors based on CEPEA-CNA panel data for 2018.

A Table and 10 describes the diet suggested for Scenario B (which assumes a cattle diet improvement), by experts consulted in CEPEA/USP, and for both typical farms analyzed. It is important to remember that, as the typical farm of Leopoldina (low technology intensity) and Caçu (medium technology intensity) start from different technological, zootechnical, productive and financial levels, the diets simulated in Scenario B were different for each of the two regions. This strategy aims to get closer to what would be indicated if a real property, similar to these typical farms examined, had a technical intervention to improve the diet of its herd, both with a view to improving food, as well as reducing animal emissions, but also taking into account your current financial status.
In scenario B, once cows in lactation do not graze anymore, following recommendations from Cepea’s experts, the assumption was that the other categories will benefit from a larger feed supply from grazing.
Table 9- Daily diet - feed and supplements per head and category of dairy cattle in a typical farms of Leopoldina (MG) - Scenario B. Projection: 2018-2030

Bovine categories	Feed / Supplements	Description	Unit	2018 Consumption period (months)	2019 Consumption period (months)	2020 Consumption period (months)
All animals	Roughage (forage)*	Pasture*	n/d	12 n/d	12 n/d	12 n/d
Lactating cows	Roughage (forage)	Silage	kg/head/day	22.50 12 22.50 12 22.50 12	12 22.50 12 22.50 12 22.50 12	
(first birth)	Concentrate	Ration	kg/head/day	4.7 12 4.7 12 4.7 12 4.7 12	12 4.7 12 4.7 12 4.7 12 4.7 12	
(multiparas)				5 12 5 12 5 12 5 12	5 12 5 12 5 12 5 12	
Weaned calves	Concentrate	Ration	kg/head/day	- - 0.1 6 0.5 9	0.1 6 0.5 9 0.1 6 0.5 9 0.1 6 0.5 9	
Heifers (12 to 24 months) and Heifers (24 to 36 months)	Concentrate	Ration	kg/head/day	- - 1 6 1.2 6	1 6 1.2 6 1 6 1.2 6	
Lactating cows, Heifers (12 to 24 months) and Heifers (24 to 36 months)	Mineral salt	g/A.U./day	100 12 100 12 100 12 100 12	100 12 100 12 100 12 100 12		
All animals	Protein salt**	g/A.U./day	150 4	150 4	150 4	150 4

* Categories: young animals, bulls, cows not in lactation, single cows
Source: elaborated by the authors based on CEPEA-CNA panel data for 2018.
Table 10- Daily diet - feed and supplements for each category of dairy cattle, per head.

Typical farm in Caçu (GO) - Scenario B. Projection time: 2018-2030

Bovine categories	Feed / Supplements	Description	Consumption period (months)	Unit	2018	2019	2020	2021-2030
All animals	Roughage (forage)*	Pasture*	12	n/d	n/d	n/d	n/d	n/d
Lactating cows	Roughage (forage)	Silage	12	kg/head/day	22.50	22.50	22.50	22.50
Lactating cows	Concentrate	Ration	12	kg/head/day	4.00	5	5.5	6
Suckling calves	Concentrate	Ration	12	kg/head/day	0.60	0.60	0.6	0.6
Heifers (12 to 24 months)	Concentrate	Ration	12	kg/head/day	-	2	2	2
Heifers (24 to 36 months)	Concentrate	Ration	3	kg/head/day	-	2	3	3
Lactating cows and dry cows	Mineral salt	12	g/A.U./day	110	110	110	110	
Bull	Mineral salt	12	g/A.U./day	200	200	200	200	
Weaned calves	Mineral salt	12	g/A.U./day	50	50	50	50	
Heifers (12 to 24 months)	Mineral salt	12	g/A.U./day	80	80	80	80	
Heifers (24 to 36 months)	Mineral salt	12	g/A.U./day	90	90	90	90	

* Categories: young animals, bulls, cows not in lactation, single cows
Source: elaborated by the authors based on CEPEA-CNA panel data for 2018.

Regarding the zoo technical indicators for the typical farms in Scenario B, the analysis assumes that the typical farm improves feeding level, by making adjustments to achieve an optimally feed diet for dairy cattle, both in quantity and quality. Thus, it is reasonable to expect a better performance also in terms of zoo technical indicators. This will result in positive impacts over economic and financial farm outcomes as well.

Therefore, Scenario B assumes that in order to increase the daily average production of milk per lactating cow and the revenues of milk sales, the farmer will have to make some investments to implement the optimal feed diet and will face increasing costs of production, on both typical farms.

In this sense, the size of livestock will change along the projection time and becomes a relevant zoo technical indicator, by affecting outcomes of the technological changes. In Scenario A, the number of animals in farm keeps constant during the projection time. On the other hand, in Scenario B, the implementation of a semi-confinment system, improving feed diet and increasing expenditures, provides a gradual increase in the total number of animals raised in the farm, during the first five years, until the herd stabilizes, after 2023. Table 11 and 12 show the evolution of herd size along the time projected and in the base year, for each category of dairy cows, respectively for typical farms of Leopoldina and Caçu.
Table 7. Number of bovines, per category, projected for Scenario A and Scenario B, considering a typical dairy farm in Leopoldina – MG. Projection: 2018-2030

Categories	Scenario A Heads	Scenario B (Abatement) Heads					
	2018-2030	2018	2019	2020	2021	2022	2023-2030
Bull	1	1	1	1	1	1	
Suckling calves	16	16	16	22	24	26	29
Weaned calves	16	15	16	21	23	26	28
Heifers (12 to 24 months)	16	15	16	21	23	25	27
Heifers (24 to 36 months)	15	15	15	20	22	25	27
Heifers (36 to 48 months)	0	0	0	0	0	0	0
Lactating cows (first birth)	38	36	36	45	50	55	59
Single and dry cows (dried)	21	20	20	17	13	12	
Total production animals	107	102	105	129	137	146	155
Daily average litres of milk/	8	12	15	16	17	18	20
lactating cow							

Source: elaborated by the authors based on CEPEA-CNA panel data and experts consultation.

Table 12. Number of bovines, per category, projected for Scenario A and Scenario B, considering a typical dairy farm in Caçu - GO. Projection: 2018-2030

Categories	Scenario A	Scenario B (Abatement) – Heads					
	2018-2030	2018	2019	2020	2021	2022	2023-2030
Suckling calves (macho)	20	20	27	32	33	38	41
Bull	1	1	1	1	1	1	
Suckling calves	22	22	28	28	31	35	40
Weaned calves	21	22	27	28	31	35	39
Heifers (12 to 24 months)	19	22	27	27	30	34	39
Heifers (24 to 36 months)	17	21	26	23	26	30	34
Heifers (36 to 48 months)	0	0	0	0	0	0	0
Lactating cows	46	46	58	64	67	75	83
Single and dry cows (dried)	15	15	14	16	17	19	21
Total production animals	141	147	181	191	205	232	258
Daily average litres of milk/	12	15	16	17	18	20	20
lactating cow							

Source: elaborated by the authors based on CEPEA-CNA panel data and experts consultation.

In Scenario B, the adoption of an optimal diet is supposed to affect the herd growth rate in a short term, and livestock size will stabilise by 2023. After 2023, the additional animals born in the dairy farm shall be sold25, in order to maintain the herd stable for the rest of the projected period.

25 In Scenario A, there are also animals sold. However, in Scenario B, after 2022, a larger number of animals (cows and calves) are sold, which show better standards than in Scenario A, due to the optimal diet.
A different approach was taken to project herd size in the two panels analyzed. As Leopoldina presented worse zoo technical indices than Caçu, the model assumes the renewal of its herd along the projection time. During the first years, in Scenario B, there is a small reduction in the total number of animals in the Leopoldina typical farm, in comparison to the baseline. Then, afterwards, the herd follows a growth trend, until its stabilization. Another relevant aspect is that the daily average production per lactating cow remains fixed at 8 litres/cow and 12 litres/cow, respectively for Leopoldina and Caçu typical farms, in Scenario A, when assumption is no technological changes will happen during the projected 13 years. On the other hand, for Scenario B, the milk production will gradually increase, up to reach a daily average of 20 litres per lactating cow by 2023 year, in both typical farms. Table 12 and 13 presents the evolution of bovines, per category, in the dairy farm, for both scenarios and typical farms.

3.4 Results and Discussion

The mitigation measure analyzed in Scenario B begins in 2018 and is kept until 2030, allowing for stabilizing the zootchnical indicators after 2023, for both typical farms.

The timeline in Table 11 (Leopoldina) and 12 (Caçu) highlights that the total number of cows, particularly lactating cows, increase significantly for both typical farms, once it moves toward a more intensive production system (Scenario B). Leopoldina typical farm had 38 lactating cows (first birth and multiparas) in 2018, reaching 59 lactating cows in 2023 in Scenario B; likewise, the number of animals in production jumps from 107 heads to 155 heads, from 2023 on. In the case of Caçu, characterized by a medium technological level, the number of cows in lactation changes from 46, in Scenario A, to 83 in Scenario B, after 2023 on. The total herd increases from 148 heads of animals in production, in baseline, to 258 animals in the scenario of technological improvement, in 2023, keeping this size stable after then. It is noteworthy that, although there are no major changes in the evolution of the herd in 2018 in Scenario B for both typical farms, the supply of the improved diet begins in the year 2018.

Obviously, a larger herd emits more tCO2e by enteric fermentation and manure management in Scenario B, than the herd kept in baseline; however, the ratio of CO2e emissions per litre of milk decreases. Thus, it is remarkable that when the feed diet enhances in the typical farm, the intensity of emissions reduces, even if the absolute emissions augment. This finding is relevant for public policy purposes, regarding the need to mitigate or reduce
emissions from bovines, and notably because it was found for farming conditions characterized by a very low productivity.

Most importantly, considering the same type of animal (Girolando), it seems to be economically feasible to augment milk production, raising the daily average from 8 litres per cow in lactation (Scenario A) to 20 litres in the Scenario B in the case of Leopoldina typical farm. In the case of Caçu´s, from 12 litres per cow in lactation (Scenario A) to 20 litres in the same comparison.

Consulting with dairy farmers and CEPEA´s analysts, it was validated that both models of typical farms - for Leopoldina and Caçu- have the potential to achieve the milk production projected in this study only by improving the feed diets. Both typical farms have animals of the same breed, with slightly variations of cross-breeding in Dutch/ Gir animals.

For Leopoldina, in the baseline, the emission per litre of milk stands constant on 0.0016 tCO2e, while the coefficient of relative emission in Scenario B from 2023 until 2030 dropped to 0.0008 tCO2e per litre (half of the initial value presented in the baseline scenario).

For Caçu, the baseline emissions per litre of milk computed 0.0011 tCO2e, and decreased to 0.00081tCO2e, between 2023 and 2030. It suggests that dairy cows in Caçu typical farm starts, in the base year, emitting a lot less than cows in Leopoldina´s. Apparently, as the technology level of the dairy production is higher, the lower are emissions per litre of milk.

Despite the reduction of relative emissions found in the simulation for Caçu was not so large as for Leopoldina, a significant decrease of emissions was registered in 2023, around 27%.

Therefore, the improvement of feed diets, pointed by the specialized literature as a tool to mitigate GHG emissions from enteric fermentation, can contribute to a relative decouple of dairy production in terms of climate change effects. Figure2 and 3 compare results of Scenario B and the baseline, for both typical farms considered. The pictures allow examining the percentual difference between the two scenarios (Scenario B – Scenario A), respectively to Leopoldina and to Caçu, measured by the annual variation of total emissions and by the relative emissions/litre of milk.

In this case of Leopoldina, despite an increase of almost 94% in the volume of emissions, the milk production increased as well, by 293% in 2023, once the diet improvement was simulated, in Scenario B, in relation to Scenario A (Figure 2).
Figure 1- Percentage difference between total emissions and between relative emissions (tCO2e/litre of milk) in Scenario B (Abatement) and Scenario A (Baseline). Typical dairy farm - Leopoldina (MG). Projection: 2018-2030

Source: estimated results.

As for Caçu, remembering that this typical farm applies higher technology than in the typical farm found for Leopoldina, the emissions augmented by almost 117%, while the milk production increased by 200% in Scenario B, by 2023, in relation to the baseline, considering the shock of technology change simulated.
Consequently, to both typical farms, the intensity of emissions per litre of milk decreased, confirming that providing more balanced feed for bovines can turn the system more environmental-friendly.

This result contributes to better understanding and provides a wider public policy application when examined jointly with the economic outcomes resulting from the simulated scenarios. More specifically, those results found when Scenario B runs comparatively to the baseline. Noting that the base year is 2018, also for the economic and financial variables, costs of production in Scenario B are higher than costs of production in baseline, in both typical farms.

However, the new diet for the dairy cattle boosted production of lactating cows, and augmented the size of herd. Reduced mortality rate, reduced intervals between birth, and other improvements in zoo technical coefficients explain this positive answer in herd size. As a result, the revenues mount in Scenario B, due to increases in milk and animal sales and manure commercialization. Several financial indicators are more favourable in Scenario B because of the investments provide to supply better feed for the bovines.
The economic performance of the dairy farm is clearly superior in Scenario B compared to that in Scenario A, similarly for both typical farms. Table 13 summarizes the main financial indicators, which improvements were observed in simulations for both typical farms.

Table 13- Finance Indicator. Scenario A and B. Leopoldina (MG) and Caçu (GO), Projection: 2018-2030

Leopoldina	Scenario A	Scenario B					
Finance Indicators	2018	2018	2019	2020	2021	2022	2023-2030
Revenue Total (US$)	37,645,92	55,342,58	67,365,88	88,849,84	103,691,89	126,985,99	147,830,52
Cost Total (COT) (US$)	52,006,08	75,416,68	81,965,29	89,629,10	96,718,12	113,844,45	117,380,61
Profit (US$)	-29,672,00	-38,859,40	-33,681,07	-21,058,95	-13,785,45	-8,205,51	8,660,65
Capital Remuneration	-4,24%	-5,19%	-3,76%	-0,19%	1,71%	3,18%	7,26%

Caçu	Scenario A	Scenario B					
Finance Indicators	2018	2018	2019	2020	2021	2022	2023-2030
Revenue Total (US$)	71,687,22	84,791,79	111,642,62	134,574,29	148,551,70	183,525,13	201,017,82
Cost Total (COT) (US$)	69,609,89	81,257,61	105,635,17	121,154,45	150,756,58	164,864,51	175,586,66
Profit (US$)	-22,707,35	-21,952,14	-22,661,09	-17,132,98	-34,240,16	-14,606,06	-8,952,37
Capital Remuneration	0,49%	0,82%	1,27%	2,70%	-0,43%	3,58%	4,76%

Source: Author’s estimations.

Figure 4 and 5 presents the percentage difference between the total production cost in the typical farm, comparing Scenario B and Scenario A, in both cases, Leopoldina and Caçu. It also depicts the percentage difference between the costs per litre of milk between the two situations compared. It deserves to emphasize the positive impacts over the zootechnical coefficients since the very beginning, when the technological changes and the investments started. One example is volume of milk produced per lactating cow still in the first year.
Figure 3 - Percentage difference between the total cost and cost per litre of milk comparing Scenario B with Scenario A. Typical dairy farm – Leopoldina (MG). Projection: 2018-2030
Source: estimated results.

Figure 4 - Percentage difference between the total cost and cost per litre of milk comparing Scenario B with Scenario A. Typical dairy farm – Caçu (GO). Projection: 2018-2030
Source: estimated results.

The significant increase of cows’ productivity in Scenario B explains the evolution of the red bars in Figure 4 and 5. For Leopoldina’s typical farm, despite the total costs arose more than 125.71% by 2023, in Scenario B compared to Scenario A (at constant values along
the whole period), the costs per litre dropped by 43,57% in the same period simulated. In the case of Caçu, considering the same period, the total cost in Scenario B increased by 152% in relation to total cost in the baseline, while the cost per litre of milk reduced by 28%.

Another important result is the variation in revenues. These revenues increased more due a scale effect (greater sale of milk) than due to the increase in revenue per unit of litre of milk sold (which in some periods even reduced for both farms). Figures 6 and 7 show these results, respectively, for Leopoldina and Caçu. In both typical farms, it is worth emphasizing that the trajectory of total revenue has been increasing since the implementation of diet improvement (Scenario B).

Figure 5- Percentage difference between the total cost and revenue per litre of milk comparing Scenario B with Scenario A. Typical dairy farm – Leopoldina (MG). Projection: 2018-2030
Source: estimated results.
Figure 6- Percentage difference between the total cost and revenue per litre of milk comparing Scenario B with Scenario A. Typical dairy farm – Caçu (GO). Projection: 2018-2030
Source: estimated results.

Figure 8 and Table 14 present the estimates of the Marginal Abatement Cost for Leopoldina. The negative abatement costs for 2018 and 2019 mean a favourable situation, once this kind of outcome usually would underline that the technology adoption could be generating positive profits in that period. However, by examining data, it is remarkable that during these two years, the investments required to implement the less carbon-intensive technology (the optimal feed diet) were higher than the revenues obtained and that, in addition, that total number of animals and particularly lactating cows increases. Therefore, the emissions rise faster in Scenario B than in Scenario A, as well as do the cost, and that the increasing revenues did not offset that difference until that moment.

On the other hand, still for Leopoldina’s case, from 2020 to 2030, although the GHG emissions increased (because the number of animal increases\(^{26}\)), the marginal abatement costs decreased, due to revenues that started reacting as milk productivity enhances and healthier animals are available to be sold than those available in Scenario A. In fact, in 2023, the

\(^{26}\) Another factor pushing up the emissions relates to animals consuming more feed, which generates more emissions via enteric fermentation and manure disposal. The methodology for carbon inventory allows measuring the impacts of changes in feed consumption, by considering the increase in milk productivity per lactating cow in Scenario B compared to Scenario A.
revenue in Scenario B reached a variation of 293% in relation to the annual revenue obtained in the baseline, where the dairy farm maintained “business as usual”.

For the case of Caçu, Table 15 and Figure 9 show results for the marginal abatement costs. The negative abatement costs in 2021 have the same meaning as those findings discussed for Leopoldina. By examining data in more details for 2021, the investments needed to implement the less carbon-intensive technology (ideal diet for feed) in Caçu typical farm were higher in comparison with the revenues obtained. Besides, the number of lactating cows increased, thus generating more emissions. The investment in Caçu, in 2021, which generated that impact relates to the acquisition of an additional tractor necessary to comply with the adoption of new technology in the typical farm.

Table 14- Estimated components of the Marginal Abatement Costs of an optimal feed diet adopted in the typical dairy farm of Leopoldina (MG). In US$ constant for 2018. Projection: 2018-2030

Variable	2018	2019	2020	2021	2022	2023	2024
ANCn B	31.830,15	24.403,20	10.747,01	3.796,33	-1.018,37	12.722,73	11.780,30
ANCn A	14.360,17	13.296,45	12.311,53	11.399,56	10.555,15	9.773,29	9.049,34
AEn A	45,59	45,59	45,59	45,59	45,59	45,59	45,59
AEn B	47,12	51,59	64,85	72,91	79,87	88,44	88,44
ACn	-2.913,58	-470,79	20,68	70,83	85,92	133,62	123,72

Variable	2025	2026	2027	2028	2029	2030
ANCn B	-9.351,58	-8.658,87	-8.017,48	-7.423,59		
ANCn A	8.379,02	7.758,35	7.183,66	6.651,54	6.158,83	5.702,62
AEn A	45,59	45,59	45,59	45,59	45,59	45,59
AEn B	88,44	88,44	88,44	88,44	88,44	88,44
ACn	114,56	106,07	98,21	90,94	84,20	77,97

Notes: AC = Cost for the abatement technology of GHG emissions; ANC = annual net cost of the abatement technology; and AE = annual emissions of GHG.
Source: estimated results.
Table 15- Estimated components of the Marginal Abatement Costs of an optimal feed diet adopted in the typical dairy farm of Caçu (GO). In US$ constant for 2018. Projection: 2018-2030

Variable	2018	2019	2020	2021	2022	2023	2024
ANCn B	-3.534,18	-4.793,93	10.359,15	5.204,20	10.518,05	14.346,85	13.284,12
ANCn A	-2.077,33	-1.923,46	-1.780,98	1.649,05	-1.526,90	-1.413,80	-1.309,07
AEn A	226,00	226,00	226,00	226,00	226,00	226,00	226,00
AEn B	247,03	321,37	346,95	377,06	441,75	489,56	489,56
ACn	69,26	30,10	70,92	-45,37	41,67	49,07	45,44

Variable	2025	2026	2027	2028	2029	2030
ANCn B	12.300,12	11.389,00	10.545,37	9.764,23	-9.040,95	-8.371,25
ANCn A	-1.212,10	-1.122,32	-1.039,18	-962,21	-890,93	-824,94
AEn A	226,00	226,00	226,00	226,00	226,00	226,00
AEn B	489,56	489,56	489,56	489,56	489,56	489,56
ACn	42,07	38,95	36,07	33,40	30,92	28,63

Notes: AC = Cost for the abatement technology of GHG emissions; ANC = annual net cost of the abatement technology; and AE = annual emissions of GHG.
Source: estimated results.

From both typical farms, the marginal abatement cost depicted in Figure D and I, year by year, shows positive values for most of the projection period analysed. Thus, the adoption of the new feed diet caused an increase of herd, productivity gains per lactating cow, as well as more emissions.

Is very important to ponder that feed diet improvements seem to be economically more achievable at a first sight, when considering a thousand hundreds farmers who need to enhance their production systems toward a more sustainable model. In the whole Brazilian territory and not only Minas Gerais and Goias states, there is a huge number of dairy farmers who characterizes with a low and medium technology level, similarly the situation described by the typical farms of Leopoldina/MG and Caçu/GO.

An additional analysis proposed in this paper comprises the MACC presented for the relative emissions per litre of milk. This analytical tool aims to highlight the improvements in the production system, originated from the adoption of a better feeding technology. This technology expressed by the change toward an optimal (and feasible) diet, although increased the absolute emissions of the production system, it also allowed for diminishing the relative intensity of GHG emissions in dairy production. It means that the environmental efficiency of
producing milk has improved, once each litre of milk generated is now less intensive in GHG emissions. This outcome is an indicator of relative decoupling27 in that dairy activity.

27 A more detailed analysis of decoupling can be found on the master's dissertation Souza (2013).
Figure 7- Marginal Abatement Cost Curve for a typical dairy farm of Leopoldina (MG), Brazil. Projection: 2018-2030. In real dollar values of 2018

Source: Estimated results.
Figure 8- Marginal Abatement Cost Curve for a typical dairy farm of Caçu (GO), Brazil. Projection: 2018-2030. In real dollar at values of 2018.
Source: Estimated results.
Tables 16 and 17 and Figures 10 and 11 highlight negative marginal abatement costs, implying that the optimal feed diet implemented is a tool to reduce emissions per litre of milk produced, while simultaneously drops the cost per litre of milk itself. In the case of Leopoldina typical farm, only for 2018 and 2019, the abatement costs per litre of milk were not negative, because, as mentioned before, the investment costs were large in those years. Likewise for Caçu, but only in 2021.

Table 8- Disaggregated results of components for the model to build the MACC per litre of milk. Typical dairy farm – Leopoldina (MG). In US$ of 2018. Projection: 2018-2030

Variable	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
ANCn B	0,2028	0,1234	0,0407	0,0123	-0,0028	-0,0296	-0,03	-0,0254	-0,0235	-0,0217	-0,0201	-0,0186	-0,0173
ANCn A	0,1311	0,1214	0,1124	0,1041	0,0964	0,0893	0,08	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004
AEn A	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002
AEn B	0,0003	0,0003	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002
ACn	157,0268	3,1507						106,9714	129,2884	129,2863	143,5813	132,95	

Notes: AC = Abatement cost for the abatement technology of GHG emissions; ANC = annual net cost of the abatement technology; and AE = annual emissions of GHG.
Source: Estimated results.
Table 9- Disaggregated results of components for the model to build the MACC per litre of milk. Typical dairy farm – Caçu (GO). In US$ of 2018. Projection: 2018-2030

Variable	2018	2019	2020	2021	2022	2023	2024
ANCn B	-0.0045	-0.0061	-0.0131	0.0066	-0.0133	-0.0182	-0.0168
ANCn A	-0.0026	-0.0024	-0.0023	-0.0021	-0.0019	-0.0018	-0.0017
AEn A	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011
AEn B	0.0010	0.0010	0.0009	0.0009	0.0008	0.0008	0.0008
ACn	12,7464	21,5651	44,2739	32,7979	35,7418	52,4027	48,5210

Variable	2025	2026	2027	2028	2029	2030
ANCn B	-0.0156	-0.0144	-0.0134	-0.0124	-0.0115	-0.0106
ANCn A	-0.0015	-0.0014	-0.0013	-0.0012	-0.0011	-0.0010
AEn A	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011
AEn B	0.0008	0.0008	0.0008	0.0008	0.0008	0.0008
ACn	44,9268	41,5989	38,5175	35,6644	33,0226	30,5765

Notes: AC = Abatement cost for the abatement technology of GHG emissions; ANC = annual net cost of the abatement technology; and AE = annual emissions of GHG
Source: Estimated results.

The main factor contributing to the negative marginal abatement cost is the boosting in cow productivity, found in both typical farms, because of the measures adopted. While in Scenario A for Leopoldina, the daily average milk production per lactating cow was 8 litres, in Scenario B, after 2023 the cows reached a productivity of 20 litres per day. For Caçu, the daily average milk production per lactating cow was 12 litres and, in Scenario B, after 2023, the cows increased production to 20 litres per day.

The results found by simulating the adoption of an optimal diet for dairy cattle in typical farms, small and medium scale, characterized by low and medium technology and poor zoo technical performance, are very helpful regarding the planning and implementation of future interventions of policy makers, for both environmental and agricultural policy. This is true, particularly under the perspective of providing information to support policy makers by the moment they decide to establish a carbon pricing policy or another policy intervention to promote the emissions reduction in the livestock sector.

As previously mentioned, this is a relevant topic, regarding an important sector for Brazilian agribusiness, and that faces many challenges to accomplish to the targets that Brazil has assumed in the Paris Agreement. There is also a social aspect, concerned to the presence of small-scale dairy producers, showing a very low productivity and far from catching up with the best technology for milk production. They are located all over the country, as well as the
high technology producers, and their presence increase the technical, economic and political challenges to the implementation of future and tougher policies targeting the reduction of GHG emissions in agriculture and livestock sector.

Brazil has a program, implemented by the Ministry of Agriculture, Livestock and Supply - the ABC (Agriculture of Low Carbon Emissions), which established some goals such as the recovery of degraded pastures, manure treatment, forest plantation and the consortium of agriculture –livestock and forest in the so-called integration systems, to pursue more balanced production systems for agricultural and livestock activities. In order to promote this Program, the agricultural policy provides official support, through credit lines offered at low interest rates, for developing technical projects to implement those measures. However, this program still faces operational difficulties that restrict the scope of its adoption, effective implementation and monitoring. Despite those difficulties, the ABC can show synergy with future policies to reduce the GHG emissions in this sector, as underlined by Margulis and Miranda (2018).
Figure 9: MACC per litre of milk for Scenario B. Typical dairy farm. Leopoldina (MG). In US$ real values of 2018. Projection: 2018-2030
Source: Estimated results.
Figure 10 - MACC per litre of milk for Scenario B. Typical dairy farm. Caçu (GO). In US$ real values of 2018. Projection: 2018-2030

Source: Estimated results.
3.5 Conclusion

This paper reports some results of a broad study that aims to obtain the MACCs for different technologies available to be applied by dairy farms and that are expected to contribute to reduce the contribution of bovines in the Brazilian GHG emissions. Some of the most relevant studies focusing on this topic, estimating the costs of emissions abatement for the livestock sector in Brazil, comprise the McKinsey & Company (2009) and the World Bank report (Banco Mundial, 2010).

However, most of that literature focuses on the beef cattle sector, which is, indeed, the most important sector contributing to the category named as agriculture emissions in the national inventory of GHG emissions. We hardly found literature specifically treating the dairy cattle estimations for costs of abatement, mitigation of emissions and alternatives focused specifically on dairy sector in Brazil. Thereby, the current study intends to contribute to that literature.

Similar to the mentioned literature about the mitigation options for cattle sector, this research showed that the adoption of tools to reduce the emissions of Greenhouse Gases, while less carbon intensive, they are simultaneously making the production system more intensive, and, therefore more economically efficient. This finding is very convenient in the sense that farmers can realize that adopting some technologies recommended by agricultural and environmental policy makers, which are perceived as less carbon intensive, also can provide better economic and financial results in their activities.

Thus, this study shows that considering the scope 1 in the emissions inventory (which comprises emissions originated from manure disposal and enteric fermentation), there is space to intensify milk production in some dairy production systems usually found in Brazilian farms, providing potential to reduce the number of farms in the dairy business. This means that there is room to reduce GHG emissions in Brazil per unit of milk produced.

The simulation of adopting an optimal feed diet for lactating cows showed that emissions could drop by 50% (Leopoldina) and 27% (Caçu), resulting in negative abatement costs for that mitigation tool. Moreover, the financial results for dairy farmers showed to be very favorable toward the technological change.
Ongoing research is also assessing the other mitigation measures listed in the literature, and by applying the MACC technological approach, for dairy cattle sector, in different Brazilian regions. Despite the main goal is to support the environmental debate, specifically in regards of the feasibility to comply with the Paris Agreement commitments, there are other relevant aspects, with great synergies with the environmental policy and the rural development policy. For the livestock sector in Brazil, there are many opportunities to enhance cattle productivity and the economic sustainability of low-technology production systems. Thus, our findings support that agricultural policy and environmental policy may benefit from the same technological improvements on the production systems. This is an important message for farmers and environmentalists, as well as for policy makers.

3.6 Bibliography

ANGELO, C.; RITTL, C. Análise das Emissões Brasileiras de Gases de Efeito Estufa ee sua implicações para as metas do Brasil. São Paulo, 2019. Disponível em: <http://www.observatoriodoclima.eco.br/wp-content/uploads/2019/11/OC_SEEG_Relatorio_2019pdf.pdf>.

ANUALPEC (2015) Anuário da Pecuária Brasileira. São Paulo: Informa Economics / FNP – Consultoria e Agroinformativos.

Azevedo, T. R. and Angelo, C. (2018) Emissões de GEE no Brasil e suas implicações para políticas públicas e a contribuição brasileira para o Acordo de Paris. Available at: http://seeg.eco.br/wp-content/uploads/2018/08/Relatorios-SEEG-2018-Sintese-FINAL-v1.pdf (Accessed: 24 August 2018).

Banco Mundial (2010) Estudo de Baixo Carbono para o Brasil. Washington: The World Bank.

Barros, G. S. de C. (2017) PIB Cadeias do Agronegócio. Piracicaba. Available at: https://www.cepea.uesp.br/upload/kceditor/files/Relatorio PIBAGRO Cadeias_1_sem_2017_.pdf (Accessed: 2 September 2018).

Böhringer, C. and Rutherford, T. F. (2006) Combining Top-Down and Bottom-up in Energy Policy Analysis: A Decomposition Approach. 06–007. Mannheim. Available at: http://ftp.zew.de/pub/zew-docs/dp/dp06007.pdf (Accessed: 20 January 2018).

Böhringer, C. and Vogt, C. (2003) ‘Economic and environmental impacts of the Kyoto Protocol’, Canadian Journal of Economics/Revue canadienne d’économique, 36(2). Available at: http://dx.doi.org/10.1111/1540-5982.101-1-00010.

BRASIL (2018) iNDC (Contribuição Nacionalmente Determinada). Available at: http://www.mma.gov.br/informma/item/10570-indc-contribuição-nacionalmente-determinada (Accessed: 6 August 2018).

Chichilnisky, G. and Heal, G. (1994) ‘Who should abate carbon emissions? An international viewpoint’, Economics Letters, 44, pp. 443–449. Available at:
Couto, L. C., Castro, L. and Motta, R. S. (2011) ‘Curvas de Custos Marginais de Abatimento de Gases de Efeito Estufa no Brasil: resenha e oportunidade de mitigação’, Radar.

Dias-Filho, M. B. (2011) ‘Os desafios da produção animal em pastagens na fronteira agrícola brasileira Challenges of animal production in pastures in the Brazilian agricultural frontier’, Revista Brasileira de Zootecnia, 40, pp. 243–252. Available at: https://www.researchgate.net/publication/261025809 (Accessed: 1 February 2018).

FGV (2016) Intensificação da Pecuária Brasileira: seus impactos no desmatamento evitado, na produção de carne e na redução de emissões de gases de efeito estufa. Brasília. Available at: https://bibliotecadigital.fgv.br/dspace/bitstream/handle/10438/17724/Intensificação_da_Pecuária_Brasileira_Relatório_Completo.pdf (Accessed: 26 July 2018).

GHG Protocol (2020) Especificações e Notas Técnicas - GHG Protocol. Available at: http://ghgprotocolbrasil.com.br/especificacoes-e-notas-tecnicas-do-programa-brasileiro-ghg-protocol/?locale=pt-br (Accessed: 27 March 2020).

IMAFLORA (2018) Relatório SEEG 2018 - Emissões do Setor de Agropecuária. Available at: http://seeg.eco.br/wp-content/uploads/2018/06/relatorios-SEEG-2018-agro-final-v1.pdf (Accessed: 30 June 2018).

IPEADATA (2019) Taxa de câmbio comercial para compra: real (R$) / dólar americano (US$) - média (anual), Banco Central do Brasil, Boletim, Seção Balanço de Pagamentos (Bacen / Boletim / BP).

Jackson, T. (1991) ‘Least-cost greenhouse planning Supply curves for global warming abatement’, Energy Policy, 19. Available at: https://ac.els-cdn.com/030142159190075Y/1-s2.0-030142159190075Y-main.pdf?_tid=e96298fa-fde8-11e7-b0b1-00000aaf0f02&acdnat=1516456425_ba58fd3d762bc505d1c1a25ca6b1919db (Accessed: 20 January 2018).

Kesicki, F. (2010) ‘Marginal abatement cost curves for policy making – expert-based vs. model-derived curves’, in 33rd IAEE International Conference. Rio de Janeiro. Available at: http://www.homepages.ucl.ac.uk/~ucft347/Kesicki_MACC.pdf (Accessed: 20 January 2018).

Kesicki, F. and Ekins, P. (2012) ‘Marginal abatement cost curves: a call for caution’, Climate Policy, 12, pp. 219–236. doi: 10.1080/14693062.2011.582347.

Kesicki, F. and Strachan, N. (2011) ‘Marginal abatement cost (MAC) curves: confronting theory and practice’, Environmental Science and Policy, 14, pp. 1195–1204. doi: 10.1016/j.envsci.2011.08.004.

Kimura, W. J. and Santos, E. F. (2016) ‘Custo marginal de abatimento de emissões de gases de efeito estufa na recuperação da pastagem’, Revista IPecege, 2(4), pp. 9–23. Available at: https://revista.ipecege.com/Revista/article/view/77/61 (Accessed: 30 September 2018).

Margulis, S. and Miranda, S. H. G. (2018) Elaboração de estudos setoriais (energia elétrica, combustíveis, indústria e agropecuária) e proposição de opções de desenho de instrumentos de precificação de carbono: Diagnóstico de Agropecuária. Piracicaba. Available at: http://mediadrawer.gvces.com.br/pmr-brasil/original/relatorio-para-
Matsunaga et al. (1976) ‘Metodologia de custo de produção utilizado pelo IEA’, *Agriculura em São Paulo*, 23, pp. 123–139.

McKinsey & Company (2009) *Caminhos para uma economia de baixa emissão de carbono no Brasil*. São Paulo: McKinsey & Company. Available at: http://www.mckinsey.com.br/sao_paulo/carbono.pdf.

Meier, A. K. (1982) ‘Supply Curves of Conserved Energy Permalink’, *Lawrence Berkeley National Laboratory*.

Motta, R. S., Couto, L. C. and Castro, L. (2012) ‘Curvas de Custos Marginais de Abatimento de Gases de Efeito Estufa no Brasil: resenha e oportunidades de mitigação’, *Textos pra Discussão IPEA*, 1781(1), p. 64. doi: 10.1007/s13398-014-0173-7.

Santos, K. A. (2016) *Curvas de Custos Marginais de abatimento de Gases de Efeito Estufa: oportunidades de mitigação para pecuária de corte*. Universidade Federal da Grande Dourado. Available at: http://files.ufgd.edu.br/arquivos/arquivos/78/MESTRADO-AGRONEGÓCIOS/CUSTOS MARGINAIS DE ABATIMENTO DE GASES DO EFEITO ESTUFA OPORTUNIDADES DE MITIGAÇÃO PARA PECUÁRIA DE CORTE.pdf.

Santos, M. C. (2015) *As mudanças da bovinocultura de corte no Brasil: evidências a partir de Mato Grosso do Sul (2004 - 2015)*. Unicamp. Available at: http://repositorio.unicamp.br/jspui/handle/REPOSIP/304746 (Accessed: 28 January 2019).

SEROA DA MOTT A, R. (2011) *Climate Change in Brazil: economic, social and regulatory aspects*. Rio de Janeiro. Available at: http://www.ipea.gov.br/agencia/images/stories/PDFs/livros/livros/livro_climatechange.pdf (Accessed: 17 January 2018).

Souza, K. R. de (2013) *Economia verde e decoupling: uma aplicação para o setor canavieiro do Brasil*. Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo. doi: 10.11606/D.11.2013.tde-08042013-102900.

UNFCCC (2015) ‘Conferência das Partes - Vigésima primeira sessão - Adoção do Acordo de Paris’, in. Paris: Organização das Nações Unidas. Available at: https://nacoesunidas.org/wp-content/uploads/2016/04/Acordo-de-Paris.pdf (Accessed: 5 November 2017).

USDA (2018a) *Brazil: Livestock and Products*. Available at: https://gain.fas.usda.gov/Recent GAIN Publications/Livestock and Products Semiannual_Brasilia_Brazil_2-28-2018.pdf (Accessed: 2 September 2018).

USDA (2018b) *Livestock and Poultry: World Markets and Trade, Foreign Agricultural Service*. Available at: https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf (Accessed: 22 July 2018).
3.7 Annex

Table A - Investments in Scenario B (Abatement) in R$ of 2018. Typical dairy farm – Leopoldina (MG), 2018

Items	Description	Quantity	Value	Total	t = Lifetime	r = discount rate	INV Annualized
Corral/Stall	With milking parlour of 150 m²	1	120000	120000	40	0.08	10063.219
Hutch housing	Argentino	10	300	3000	10	0.08	447.0847
Trough (brickwork) - mineral salt, concentrate, forage	Feeding track	1	30600	30600	40	0.08	2566.1209
Farm Tractor	75 CV	1	120000	120000	20	0.08	12222.265
Transport cart	Wood	1	4500	4500	15	0.08	525.73295
Disc harrow	12 discs	1	15000	15000	15	0.08	1752.4432
Grubber		1	8000	8000	15	0.08	1061.5601
Knife (for cleaning the stall)		1	4000	4000	15	0.08	467.31818
Wheel loader		1	4000	4000	12	0.08	530.78007
Forager Wagon	Blender	1	30000	30000	15	0.08	3504.8863
Fertilizer Spreader	600 kg	1	12000	12000	10	0.08	1788.3539
Farm sprayer	600 litros	1	20000	20000	8	0.08	3480.2952
Milking machine	4 sets	1	45000	45000	15	0.08	5257.3295
Milk cooling tank	2000 litros	1	18000	18000	15	0.08	2102.9318
Power generator		1	4500	4500	25	0.08	421.55451

Total | 438600 | \[46191.88\] |

Source: Estimated results.

28 Acquisition of all investments for Scenario B of Leopoldina in 2018.
Table B - Investments in Scenario B (Abatement) in R$ of 2018. Typical dairy farm – Caçu (GO). Projection: 2019, 2020 and 2021

Installation	Description	Acquisition year	Quantity	Value	Total	t = Service life	r = discount rate	INV Annualized	Index for 2018 values	INV annualized (base year 2018)
Brick trough (mineral salt, concentrate, forage)	Schakle	2019	5	6250	3125	0	0.08	2620.63	1.044008	2735.959
Brick water dispenser	Schakle	2019	3	2000	6000	40	0.08	503.161	1.044008	525.3042
Brick trough (idem)	Schakle	2020	3	6250	1875	0	0.08	1572.378	1.044008	1641.576
Water dispenser	Schakle	2020	2	2000	4000	40	0.08	335.4406	1.044008	350.2028
Brick trough (idem)	Schakle	2021	3	6250	1100	0	0.08	1572.378	1.044008	1641.576
Farm tractor	75 CV	2021	1	00	00	30	0.08	9771.018	1.044008	10201.02

Total
1887
50

Source: Estimated results.
4 IMPOSTO AMBIENTAL: ESTUDOS DE CASOS PARA FAZENDAS TÍPICAS DE PRODUÇÃO DE LEITE NO BRASIL

4.1 Introdução

A necessidade de atender à crescente demanda da população global, com elevação do consumo per capita de energia, alimentos e produtos de origem florestal, e cujo aumento foi evidenciado por dados disponíveis desde 1961, verificou-se a expansão de áreas para agropecuária e silvicultura. Como reflexo das mudanças de cobertura do solo, decorrente dessa evolução, verificou-se uma grande elevação das emissões de Gases de Efeito Estufa (GEE) e a perda de vegetação natural - florestas, savanas, pradarias e pântanos naturais-, contribuindo para o declínio da biodiversidade (IPCC, 2020).

Esta aceleração das emissões de GEE, em grande parte reflexo de ações antropogênicas, torna o nível do aquecimento terrestre superior aos patamares considerados adequados por cientistas, e contribui para o aquecimento global e para a ocorrência de impactos catastróficos derivados das mudanças climáticas (IPCC 2018). As mudanças climáticas têm potencial de também causar grandes prejuízos para as atividades agropecuárias, à medida que podem influenciar variáveis chaves para produção, como níveis pluviométricos, clima, qualidade do solo, entre outros.

Neste contexto, evidencia-se o papel do Brasil no combate às mudanças do clima e o potencial de suas florestas para mitigar emissões via o sequestro de carbono. Como ressaltado pelo Banco Mundial (2010), a região Amazônica exerce função de reservatório para cerca de 47 bilhões de toneladas de carbono, e sequestra de forma permanente um volume que supera em mais de 10 o volume emitido por ano.

Estimativas do SEEG para 2018 indicam como principais responsáveis pelas emissões do Brasil os índices de desmatamento elevados e as atividades agropecuárias (SEEG,2020).

Estudos sobre o tema indicam que este perfil de emissões brasileiras resulta da crescente conversão de vegetação natural para produção agrícola e pastagem para pecuária. Este quadro contrapõe o perfil brasileiro de emissões ao da maior parte dos países industrializados, cuja principal fonte de emissões é, em geral, sua matriz energética (ANGELO; RITTL, 2019). A matriz energética brasileira é comparavelmente
mais limpa do que a de países mais industrializados, tendo em vista a significativa participação da energia hidrelétrica e de biomassa.

A maior fonte de emissões de GEE no Brasil é a mudança de uso da terra, e o Sistema de Estimativas de Emissões de Gases de Efeito Estufa (SEEG) aponta um aumento de 8,5% no desmatamento na Amazônia, que acabou sendo em parte compensado pela redução de 9,25% das emissões no Cerrado no ano de 2018, resultando em emissões totais por mudança no uso da terra em 3,6% no ano citado. Entretanto, quando se desconsideram as emissões de mudança de uso da terra e floresta, se observa uma redução de emissões dos demais setores econômicos brasileiros de 2% em 2018, em relação a 2017 (ANGELO; RITTL, 2019).

As estimativas das emissões para o Brasil do SEEG (2020) também registram uma queda das emissões do setor de energia, entre 2017 e 2018, de cerca de 5% (de 429,5 mtCO2e para 408 MtCO2e). Esse resultado foi impulsionado em grande medida pela recuperação competitiva do etanol (ANGELO; RITTL, 2019). Estes resultados revelam outro potencial de contribuição do setor da agropecuária nacional para a redução das emissões líquidas do Brasil.

Também nas emissões medidas na categoria setor agropecuário, apesar do grande volume de emissões do setor agropecuário, nas últimas décadas observaram-se reduções consideráveis de suas emissões medidas por unidade de produto final. Indicadores permitem verificar que há um “decoupling” relativo na agricultura brasileira, por exemplo, no cultivo da cana-de-açúcar (SOUZA, 2013) e também na pecuária, já que o avanço gradativo da intensidade tecnológica neste setor possibilita uma redução na necessidade do insumo terra para a produção de carne e leite bovinos (MARGULIS; MIRANDA, 2018).

Neste cenário em que a redução das emissões é eminente e o debate de precificação de carbono ganha força, observa-se que o Brasil, terceiro maior emissor de GEE na agropecuária, atrás apenas de China e Índia (IMAFLORA, 2018), sofre pressões pela execução de políticas em prol de uma economia menos intensiva em

29 Adotou-se como fonte de dados para este artigo o SEEG, em razão de além de suas estimativas serem as mais atualizadas de emissões para o Brasil (os dados oficiais do Ministério da Ciência, Tecnologia, Inovação e Comunicações -MCTI- datam de 2015), também tem uma metodologia consistente e amplamente divulgada em relatórios científicos.
carbono. Essa pressão pode ser percebida, principalmente, pelos requisitos impostos por países importadores de suas commodities agropecuárias.

Nesse sentido, diante da premência de discutir os potenciais efeitos de políticas ambientais climáticas sobre o setor privado brasileiro, e da necessidade de subsídios técnicos e econômicos para a tomada de decisão dos agentes públicos na política ambiental, este artigo se propõe a investigar o impacto de um hipotético tributo ambiental incidente sobre a atividade de produção de leite no Brasil.

Esta investigação é conduzida por meio de simulações de uma eventual implantação de um tributo ambiental para três estudos de caso. Estes estudos de caso se referem a três fazendas modais de pecuária leiteira localizadas em Castro-PR (ilustra propriedade com alta tecnologia), Caçu-GO (ilustra propriedade com média tecnologia) e Leopoldina-MG (com baixa tecnologia).

As simulações para analisar o impacto do tributo ambiental são realizadas sobre dados de custo de produção representativos de três fazendas modais (“typical farms”) de bovinocultura leiteira, que em conjunto, permitem comparar níveis tecnológicos distintos deste tipo de estabelecimento rural e da atividade no Brasil. O objetivo é verificar como o tributo sobre o carbono afeta o desempenho econômico e financeiro das fazendas, comparativamente, para propriedades modais já inicialmente distintas em termos de tecnologia e de rentabilidade, além de localizadas em regiões distintas brasileiras.

Não se encontraram, na literatura, estudos simulando a imposição de tributos ambientais sobre o carbono para a pecuária leiteira bovina, para o Brasil. Mesmo em termos de experiências internacionais, a tributação ambiental no setor agropecuário tem sido pouco explorada, assim como são raros os casos de efetiva adoção deste tipo de política nos países. O Canadá, como apresentado adiante, ilustra um dos poucos casos de aplicação desse instrumento sobre a agropecuária reportados na literatura.

Assim, este artigo pretende contribuir com subsídios para incrementar o debate sobre uma futura precificação do carbono no setor agropecuário brasileiro e evidenciar o potencial de pesquisas nesta área da Economia Aplicada.

Este artigo está estruturado, além da presente introdução, em uma revisão bibliográfica sobre os instrumentos para precificação de carbono e emissões na agropecuária, em metodologia e apresentação dos resultados, seguidos das considerações finais.
4.2 Revisão de Literatura

4.2.1 Precificação de Carbono

A precificação do carbono encontra base na teoria econômica, já que as emissões de GEE pelas atividades antropogênicas geram externalidades negativas para a sociedade que, em geral, não têm sido compensadas. É o caso das emissões na produção de bovinos e na exploração de carvão mineral, como das emissões no consumo, como pelo uso de combustíveis fósseis em veículos de passeio.

A externalidade é um tipo de falha de mercado prevista na teoria microeconômica, ou seja, sua constatação pressupõe que o mercado não alocou eficientemente os recursos. A externalidade pode ser entendida como uma consequência das atividades de agentes econômicos sobre terceiros, sempre que tais consequências não forem internalizadas pelas transações de mercado. As atividades podem se relacionar com a produção ou com o consumo e elas influenciarão outras atividades de produção ou consumo, e tal influência não se refletirá na precificação de mercado dos bens ou serviços relacionados àquelas atividades que geraram a externalidade.

Os agentes tomadores de decisão política têm um papel relevante na motivação de externalidades positivas, assim como no controle dos impactos das externalidades negativas, a fim de garantir compensação para os consumidores ou produtores afetados.

Nesse contexto, questões a respeito do nível aceitável de poluição e do custo de mitigação dessas emissões se tornam essenciais para determinar medidas efetivas de redução das emissões de GEE. É desejável que as respostas a estes questionamentos considerem tanto os custos marginais de controle quanto os danos do não controle.

No que tange à estimativa de custos marginais das medidas de controle, cabe ressaltar que tais custos têm alta dependência do leque de tecnologias existentes e também do “lucro da produção ou da utilidade marginal do consumo que se perde para reduzir as emissões”, enquanto o custos marginais dos danos possuem estimativa mais difícil, já que englobam “os custos resultantes da externalidade incorridos em todas as atividades de produção e consumo afetadas tanto hoje como no futuro” (MARGULIS, 2018, p. 9).
A internalização do custo das emissões, também tratada como o custo do carbono, possui potencial de ser alcançada tanto via mecanismos de controle quanto de preço de mercado:

"Com instrumentos de controle são estabelecidos padrões de emissão ou tecnológicos comuns para todos os emissores de uma fonte de poluição. Assim, todos os agentes econômicos têm que adotar os mesmos padrões de emissão e/ou de adoção tecnológica que permitem alcançar a meta de controle. Já com a precificação, seja tributo ou mercado, a decisão de reduzir emissões ou pagar o preço da emissão é feita pelo agente econômico da fonte regulada, que compara o preço do poluente sendo precificado com seu custo marginal de mitigação. Logo, o agente regulado escolhe a forma mais barata de cumprir com a regulação, seja por:

• redução das emissões pela adoção de práticas de produção ou de consumo, seja de insumos ou de produtos menos emissores;
• redução absoluta do consumo ou da produção; e
• nenhuma redução das emissões e pagamento do preço"

(MARGULIS, 2018, p. 9).

Margulis (2018) apresentou como uma das opções para redução das emissões o pagamento do custo das emissões, ou seja, o pagamento do custo social do carbono. O pagamento do carbono é uma medida de mitigação que difere dos instrumentos de comando e controle.

A precificação do carbono é apontada por estudiosos do tema como uma forma mais flexível de promover a redução das emissões, com potencial de se atingir as emissões de maneira mais barata, já que permite que os agentes optem por alternativas de custos com maior liberdade de escolha tecnológica, “porque se criam oportunidades de minimização de custos com a liberdade de escolha tecnológica combinada com a decisão de se pagar (ou não) de acordo com os custos de controle e metas de produção e expansão de cada agente poluidor” (MARGULIS, 2018, p. 9).

Dentro deste contexto, a precificação de carbono se apresenta como um mecanismo para mitigar as emissões de GEE e corrigir a externalidade negativa das atividades. O estabelecimento de um preço para o carbono tem como um de seus principais objetivos impor um custo social sobre os impactos gerados pelo aumento das emissões de GEE na atmosfera. A arrecadação com o mecanismo de precificação do carbono tem potencial para ser revertida para o investimento em tecnologias carbono
não intensivas, e, sob certas condições, pode contribuir na transição para uma economia de baixo carbono.

De toda forma, este tema é complexo, tanto do ponto de vista teórico como em seus aspectos práticos para implementação, em termos políticos e econômicos. Diante disto, a literatura não é conclusiva de que seja um instrumento eficaz para estimular a redução das emissões, em especial no caso da agropecuária.

Há um relevante debate na comunidade científica e política sobre a proposição de um sistema de precificação de carbono como ferramenta para mitigação de Gases Efeito Estufa (GEE) em vários países. A justificativa para o uso deste instrumento constitui-se em seu potencial para diminuir emissões e desta forma contribuir para a redução dos potenciais impactos catastróficos das mudanças climáticas. Nesse contexto, cabe registrar que a questão sobre qual o meio mais eficaz para implementar esse tipo de sistema tem gerado um debate intenso e controverso entre cientistas e policy makers (STAVINS, 2020).

De modo geral, um sistema de precificação de carbono pode ser implementado de duas formas principais: via um tributo sobre o carbono e via um mercado de carbono. Parte do debate e controvérsias na literatura, se relaciona à escolha de um destes tipos de mecanismos, que, basicamente, se diferenciam pela segunda opção configurar a busca de um incentivo aos agentes, enquanto a tributação gera um ônus aos mesmos.

Para uma parcela da comunidade científica, a tributação sobre o carbono resulta da do conceito de tributo pigouviano, entendendo que o objetivo do mesmo seja eliminar a lacuna entre o custo marginal privado e o custo social marginal líquido, decorrente da externalidade negativa das emissões de carbono.

A ideia de tributo pigouviano foi proposta por Arthur Cecil Pigou, em 1920, com intuito de criar uma ferramenta para controlar e corrigir as externalidades negativas. A principal ideia desse tipo de tributo, visando desencorajar a externalidade negativa, é que a receita arrecadada por ele seja suficiente para suportar os custos sociais derivados da externalidade negativa gerada. Assim, este artigo adota o conceito de taxa pigouviana para fundamentar a simulação de uma tributação ambiental sobre a pecuária leiteira no Brasil.

30 Para melhor aprofundamento da questão, ver Stavins (2020).
Em relação às experiências sobre a precificação de carbono, na Europa, nos anos 90, destacava-se o debate, principalmente, sobre os instrumentos de regulação direta e os de taxação como possíveis meios de promover a redução das emissões de gases de efeito estufa.

De fato, a European Commission (EC) chegou a recomendar o uso de tributação sobre o carbono no fim dos anos 90 e início dos anos 2000, mas sua implementação foi alvo de intensa oposição da indústria e de membros chave do Estado Europeu. Desta forma, a proposta de adoção de um tributo sobre carbono foi se enfraquecendo ao longo dos anos 2000, e cedendo lugar às discussões sobre o comércio de emissões (CHRISTIANSEN; WETTESTAD, 2003; SPASH, 2010).

Segundo os mesmos autores acima, o comércio de emissões foi apresentado de forma mais estruturada, como uma alternativa, por ocasião da COP 3, e do lançamento do Protocolo de Quioto, em 1997. O Protocolo de Quioto determinou limites máximos de emissões para os países listados no Anexo B, países desenvolvidos, estabelecendo compromissos de reduzirem, em conjunto, 5,2% de suas emissões em relação aos níveis de 1990. No entanto, parte dos países listados nesse Anexo B, organizados no grupo UMBRELLA31, impuseram como condição para aceitar o Protocolo que um mercado de emissões / mercado de emissões comerciais deveria ser criado entre os países signatários. Esse mercado constituiria um mecanismo de apoio a esses países para alcançar suas metas domésticas de redução de emissões de GEE (Böhringer, 2000; Ellerman; Decaux, 1998).

Dentro do contexto da implementação de instrumentos de precificação de carbono no mundo, nas últimas décadas, observam-se avanços gradativos no sentido da consolidação de um mercado de carbono, seja formal ou informal.

Também se observa que alguns países já adotam a tributação sobre o carbono, amparados sob o princípio de que os poluidores devem pagar pela produção de suas externalidades negativas. Dentre os países que já adotam esta prática de precificação de carbono, se destacam Finlândia, Dinamarca, Suécia, Noruega, Países Baixos, Itália,

31 O grupo UMBRELLA tem como integrantes os EUA, Japão, Austrália, Canadá, Islândia, Nova Zelândia, Noruega, Ucrânia e Federação Russa; e sua principal característica é a defesa de um comércio de emissões (sem limites restritivos) (BÖHRINGER, 2000).
Nova Zelândia, Canadá, Grã-Bretanha, Chile, Estados Unidos e Suiça\(^{32}\) (ZHANG; WANG, 2017).

Como já mencionado, observa-se que não existe ainda um consenso sobre a melhor forma de precificar o carbono. Tanto a tributação quanto o mecanismo de mercado enfrentam duras críticas e nos últimos anos vários estudos vêm sendo produzidos sobre o tema. Os estudos promovidos pelo Banco Mundial, no âmbito do projeto Partnership for Market Readiness (PMR)\(^{33}\), tem gerado resultados interessantes.

O projeto PMR financia estudos em diversos países (inclusive Brasil) a respeito da temática de precificação de carbono (WORLD BANK, 2020). Um dos objetivos é apontar, com apoio de modelagem matemática e econômica, e considerando as peculiaridades dos países analisados, as potenciais políticas públicas que, se implementadas em alguns setores da economia (inclusive na agropecuária), têm potencial de reduzir as emissões de GHG.

Quanto à precificação do carbono via tributação, Mardones e Baeza (2018) simularam um tributo sobre carbono para três países latino-americanos: Brasil, México e Chile. Para esta simulação ele usou o modelo “Leontief pricing” e simulou três faixas de valor para o tributo que foi aplicado em dois cenários: um cenário que incidiu apenas sobre as emissões do setor elétrico e outro cenário em que o imposto é aplicado às emissões de todos os setores econômicos. Uma das conclusões do artigo é que a eficácia desse tributo difere entre os países latino-americanos analisados. O artigo conclui que essa diferença se deve, principalmente, pela composição (carbonização) da matriz energética dos países analisados, já que a poluição dos setores econômicos não elétricos foi considerada semelhante entre os três países.

O setor pecuário foi alvo de estudos sobre a precificação do carbono, realizados por pesquisadores canadenses (SLADE, 2018; SCHAUFELE, 2018). Slade (2018) simulou três políticas de precificação de carbono para pecuária canadense: um imposto sobre o consumidor, um imposto sobre o produtor e um subsídio ao produtor. Os principais resultados deste estudo mostram que um imposto sobre o produtor resulta na maior redução de emissões ao menor custo social (por tonelada de emissões abatidas). O imposto sobre o consumidor gera uma redução trivial das emissões, a um custo que

\(^{32}\) Para maiores detalhes sobre os tributos ambientais já implementados no mundo, ler Zhang e Wang (2017).

\(^{33}\) Detalhes do PMR estão disponíveis no site oficial do projeto: https://www.thepmr.org/
supera o preço do carbono. Finalmente, o subsídio ao produtor gera um menor abatimento de carbono a um custo social mais alto quando comparado à política de taxação sobre o produtor. Contudo, o autor ressalta que o valor das emissões abatidas com o subsídio é ainda mais alto do que seu custo social (SLADE, 2018).

Ainda para o Canadá, Schaufele (2018) estudou os impactos do imposto de carbono sobre a cadeia de produção de carne bovina doméstica, como foco na análise da regulamentação ambiental unilateral e dos vazamentos e efeitos adversos do imposto sobre carbono na competitividade do setor. De acordo com o autor, o assunto é bastante importante para o Canadá, devido à atual implementação de um preço para o carbono em algumas províncias do país. Utilizando modelos econômicos, este estudo demonstrou que é improvável que os confinamentos canadenses sejam capazes de repassar os custos relacionados ao imposto sobre o carbono e, terão que arcar com a incidência total do imposto.

Outro estudo sobre a tributação do carbono na pecuária, foi realizado por Jansson and Säll (2018), para a União Européia. Os autores simularam a introdução de um imposto sobre o consumo de produtos de origem animal na União Europeia para reduzir as emissões de GEE, utilizando o modelo CAPRI, que foi criado para analisar impactos das reformas da Política Agrícola Comum da UE. Os resultados mostraram um impacto pequeno do imposto de carbono sobre a mitigação de GEE, com redução de até 4,9% das emissões totais agrícolas da UE-27. Os autores apontaram que esse pequeno impacto da tributação seria devido à demanda inelástica do setor.

Springmann et al (2017) mostram um potencial benéfico em termos de mitigação de GEE, em seu trabalho analisando a implementação de um imposto de carbono global, para 150 regiões do mundo, sobre commodities alimentares. Usaram o modelo global de equilíbrio parcial IMPACT, acoplando uma estrutura para modelagem da agricultura e saúde. Um dos resultados mais importantes é que o potencial global de mitigação das mudanças climáticas via preços de emissões em commodities alimentares pode ser substancial e a cobrança de impostos sobre os GEE dessas commodities, se adequadamente planejada, pode ser considerada uma política climática de promoção da saúde em países não só de alta de renda, mas de grande parte daqueles com baixa e média renda.

Segundo, ainda, os autores acima, poupar os grupos de alimentos vistos como benéficos para a saúde em relação à tributação, compensar seletivamente as perdas de
renda associadas aos aumentos de preços vinculados à imposição do imposto e usar uma parcela da receita tributária para a promoção da saúde são opções políticas passíveis de contribuir para se evitar grande parte dos impactos negativos verificados nos grupos de vulneráveis. Desta forma, é possível promover mudanças para dietas mais ambientalmente sustentáveis.

Assim, a literatura que examina a implementação de uma tributação sobre o carbono no setor agropecuário ou de alimentos ainda não é muito extensa, e em termos de estudos específicos contemplando o setor de interesse para este artigo, destacam-se as análises para o Canadá, com foco na tributação na cadeia da carne e para a União Europeia, com foco na tributação do consumo dos derivados animais. O primeiro identifica a dificuldade de repassar o impacto sobre os confinadores para os segmentos posteriores da cadeia produtiva; enquanto o segundo relata resultados pouco significativos sobre as emissões.

4.2.2 Emissões na Agropecuária

O setor agrícola no Brasil é notável, não apenas em termos de suas contribuições macroeconômicas, mas também em termos de proteção ambiental. A agricultura tem um potencial relevante para aumentar suas externalidades positivas, tal como o reforço das Áreas de Preservação Permanente, que, legalmente, devem ser mantidas nas propriedades rurais, de acordo com o Código Florestal. Contudo, esse setor também gera externalidades negativas, e em algumas situações, significativas, tal como no caso das emissões por fermentação entérica na atividade pecuária.

A desagregação das emissões do setor agropecuário mostra que as atividades desse setor que mais emitem CO2 e são as relativas à produção bovina, resultado principalmente das emissões de metano via fermentação entérica (processo biológico de digestão desses animais). A atividade pecuária bovina também emite pelo tipo de manejo do esterco e pela lixiviação de dejetos no solo. Estes dados são apresentados no Gráfico 1.
Gráfico 1 - Emissões totais pelo setor agropecuário em CO2e(t) GWP-AR5, discriminadas por fonte de emissão, 1990-2018, Brasil
Fonte: SEEG (2020a).

Na apresentação das estimativas de emissões brasileiras, nem o SEEG nem o Terceiro Inventário Brasileiro de Emissões e Remoções Antrópicas de GEE, publicado pelo Ministério da Ciência, Tecnologia, Inovação e Comunicações (MCTI), consideram as emissões líquidas dos setores, em razão, principalmente, de dificuldades metodológicas. Isso significa que as remoções e emissões de carbono que podem ocorrer no manejo das pastagens não foram incluídas no cômputo das emissões divulgadas para a agropecuária. Também nos dados divulgados pelo SEEG, as emissões não contemplam as remoções do setor agropecuário. Esta é uma ressalva importante que deve ser feita, tendo em vista que as metas da NDC brasileira no Acordo de Paris e do Plano ABC estão também atreladas à captura de carbono proporcionada pela recuperação de pastagens34 (MCTI; EMBRAPA, 2015).

34 Cabe destacar que um estudo realizado pelo Imaflora (2018) mostrou que, caso estimadas as emissões líquidas, o Brasil emitiria ainda mais GEE em razão das emissões de pastagens degradadas serem maiores que a capacidade de captura de GEE por pastagens bem manejadas.
Especialistas consideram que uma das principais razões para o volume expressivo de emissões da bovinocultura brasileira é sua baixa produtividade média, nos sistemas de produção pecuária prevalecentes em muitas regiões do Brasil. A análise dos indicadores de produção de carne (em quilogramas) ou leite (em litros) por bovinos (animal) quando examinados por unidade de terra (por hectare), geralmente evidencia esse quadro. Esse baixo desempenho contribui para aumentar as taxas de desmatamento doméstico, pois a inefficiência técnica impulsiona a produção de gado para novas áreas, em vez de promover a otimização e um uso mais sustentável da terra já ocupada (ANUALPEC, 2015; MARGULIS; MIRANDA, 2018).

Estimativas mostram que os bovinos são responsáveis por cerca de 80% das emissões totais do setor agropecuário no Brasil, das quais 10% vinculadas à cadeia de bovinocultura leiteira, o que qualifica a pecuária leiteira como a segunda maior fonte de emissão da agropecuária, atrás apenas da bovinocultura de corte (IMAFLORA, 2018). Por outro lado, como observado acima, esse setor é muito heterogêneo, tecnologicamente e em termos de escala e de desempenho financeiro. Deste modo, acredita-se que há espaço de manobra para as políticas em prol da mitigação das emissões pecuárias ao se reduzir esses gaps nas diferentes regiões e biomas.

Consequentemente, parece estratégico avançar em estudos que possam esclarecer se um imposto sobre o carbono é viável como ferramenta para promover a redução de emissões de GEE na cadeia da bovinocultura leiteira. Adicionalmente, também parece estratégico avaliar se esse tipo de política ambiental pode afetar a viabilidade econômica desses negócios.

Por outro lado, a pecuária, como atividade econômica rural, é marcada também pela diversidade agrária, da escala produtiva, de estrutura familiar rural e do perfil do trabalho empregado nas propriedades, e assume-se que a sustentabilidade financeira particularmente das atividades pecuárias é sensível às políticas, inclusive, às ambientais. Desta forma, é conveniente que os estudos examinando os potenciais impactos da tributação do carbono levem em consideração essa diversidade de situações encontradas na pecuária leiteira brasileira.
4.3 Metodologia e dados

4.3.1 Painel de custos de produção e indicadores usados

Os dados das fazendas típicas empregados como base do presente estudo são provenientes do banco de dados Painel Centro de Estudos Avançados em Economia Aplicada da ESALQ-Universidade de São Paulo (CEPEA)-Confederação Nacional da Agricultura (CNA), representando cada fazenda típica um painel. O Painel CEPEA-CNA contempla informações detalhadas sobre os sistemas de produção identificados como os modais na região em que são levantados, ou seja, sistemas que caracterizam a chamada propriedade típica ou modal. Esses painéis são, em geral, atualizados anualmente ou a cada dois anos.

Cada painel representa uma propriedade típica em termos de tamanho e distribuição no uso da terra, assim como em seu sistema de produção, entendido como um conjunto de técnicas e o nível tecnológico adotado na região sob análise. Embora o painel receba o nome de um município, a propriedade modal que representa pode ser também a mais frequente em outros municípios da mesma região ou mesmo de boa parcela do estado em que se situa, a depender do grau de diversificação das atividades e dos sistemas de produção de tais atividades prevalecentes nas regiões ou estados pesquisados.

Ressalta-se que um mesmo município, sendo importante na produção por exemplo de leite, pode ter mais de um painel para representar os sistemas de produção prevalecentes na região. A ideia é que cada painel seja representativo de um modal de produção que seja relevante para caracterizar os sistemas de produção mais frequentemente adotados na região de estudo. Cabe ressaltar que a escolha dos municípios do Painel CEPEA-CNA se dá, de modo geral, com foco na representatividade do município/estado na atividade agropecuária ou em um certo tipo de tecnologia de interesse.

Os painéis de fazendas modais de bovinocultura, além de contemplarem informações a respeito dos indicadores zootécnicos do rebanho e para pastagem, também apresentam informações detalhadas sobre os custos de produção e a receita da atividade. Incluem a caracterização do uso do solo, indicando, por exemplo, a presença de áreas de proteção florestal, o tipo de mão de obra empregada e número de pessoas
envolvidas em cada atividade, formas de financiamento e os canais de escoamento da produção, entre outros aspectos.

Do total de 33 painéis de levantamento de custo de produção de leite disponíveis na base de dados CEPEA-CNA, três propriedades típicas foram escolhidas, buscando para a análise um recorte tecnológico que evidencie a diversidade dos sistemas encontrados na pecuária leiteira brasileira e representando:

- **Alta intensidade tecnológica:** Castro, no Paraná, apresenta alto nível de produtividade (média de 30 litros de leite/dia/vaca em lactação), com vacas da raça holandesa, inseminadas artificialmente e sistema de produção em confinamento Free Stall;

- **Média intensidade tecnológica:** Caçu, localizada em Góias, apresenta nível de produtividade médio (média de 12 litros de leite/dia/vaca em lactação), com vacas girolando 3/4, monta natural e sistema de produção extensivo, com pastagens conservadas. Este sistema tem grande potencial de melhorias da dieta bovina.

- **Baixa intensidade tecnológica:** Leopoldina, propriedade típica da região em Minas Gerais, com baixa produtividade (média de 8 litros de leite/dia/vaca em lactação), animais girolandos meio sangue, reprodução com monta natural (touro) e sistema de produção extensivo, com uso de pastagens degradadas e ausência de investimentos em sua conservação. É um sistema com elevado potencial de melhoria da dieta bovina.

Este detalhamento permite analisar a viabilidade financeira da atividade, tornando possível obter informações para se traçar uma linha de base para o cenário sem adoção do imposto ambiental do Carbono (Cenário A / de referência) e simular um cenário em que se incorpore o imposto (Cenário B / de adoção do imposto ambiental).

Os indicadores econômicos construídos no painel CEPEA-CNA seguem a metodologia sugerida por Matsunaga et al (1976). No escopo deste trabalho, de simulação de impactos microeconômicos da imposição de um imposto ambiental sobre emissões de GEE da atividade pecuária leiteira, selecionaram-se os indicadores de Custo Operacional Efetivo (COE) e de Custo Operacional Total (COT) para análise e discussão.

O Custo Operacional Efetivo (COE) diz respeito a todos os gastos realizados pela propriedade no período de um ano, divididos entre custos variáveis e fixos. Entre os principais custos variáveis do estabelecimento podem-se ressaltar: gastos com a alimentação dos bovinos (concentrados e volumosos), vacinas, medicamentos,
suplementação mineral, manutenção de benfeitorias, máquinas, das forrageiras perenes e anuais, entre outros (SANTOS, 2015).

Santos (2015) explica que o Custo Operacional Total compreende o montante do COE somado ao custo da depreciação linear encontrado para a fazenda modal, acrescido do pró-labore do produtor. O valor da depreciação inclui as depreciações de benfeitorias, máquinas, implementos, animais de serviço, pastagens (estimando o custo dos insumos para reforma e remuneração da mão de obra), entre outros (MATSUNAGA ET AL, 1976).

Além das informações de custos, o Painel CEPEA-CNA também fornece indicadores zootécnicos dos sistemas representados pelas propriedades típicas. No presente estudo, esses indicadores são necessários para a elaboração dos inventários de carbono das fazendas modais, e, dentre eles, destacam-se: produção diária de leite, quantidade de animais no rebanho discriminada por categoria (vaca em lactação, bezerro, vaca seca, touro), peso dos animais, ganho de peso diário, entre outros.

A caracterização da propriedade típica é determinada a partir de reuniões que a equipe do CEPEA conduz junto aos pecuaristas dos municípios, e técnicos da própria região. Nessas reuniões são levantadas diversas informações que buscam caracterizar o que seria o modelo de estabelecimento de produção leiteira mais frequente na região, estruturando a descrição de uma “fazenda modal” representativa para cada tipo de sistema de produção considerado mais importante (frequente) no município/região, considerando seu nível tecnológico, produtos existentes na região e outras informações sobre a propriedade e o perfil dos proprietários e da gestão da atividade na região.

Os painéis do CEPEA contemplam uma série de informações das propriedades típicas, das quais se destacam:

- Tipo de produção bovina;
- Tipo de alimentação (sistema intensivo, semi-intensivo ou extensivo);
- Custo de insumos e discriminação dos insumos e de suas quantidades;
- Distribuição do rebanho por idade dos bovinos;
- Diversas categorias do bovino (bezerro, vaca em lactação etc);
- Permanência do animal na propriedade;
- Idade de abate;
- Taxa de lotação;
- Ganho de peso diário;
- Produtividade;
- Aplicação de calcário;
- Aplicação de fósforo;
- Aplicação de nitrogênio;
- Utilização de produtos veterinários;
- Taxa de desfrute;
- Presença de equipamentos para ordenha;
- Uso de máquinas agrícolas na atividade; entre outros.

Ao todo, até dezembro de 2019, havia 148 painéis para bovinocultura (corte e leite) no banco de dados CEPEA-CNA, dos quais 33 específicos para a bovinocultura leiteira. A Tabela 1 apresenta os painéis da bovinocultura leiteira organizados por estados e por tipo de produção, e dentre os quais foram selecionados os três já citados – Castro/PR, Caçu (GO) e Leopoldina (MG), representando três dos estados mais relevantes na produção de leite do Brasil.

Tabela 4 - Quantidade de painéis de custo de produção pecuária, por tipo produção bovina leiteira, municípios, estados, Brasil

Gado de Leite:	Quantidade de painéis	Municípios	Estados
Leite	32	32	7
Cria, Recria Engorda	1	1	1

Fonte: Elaborado com base de dados Painel CEPEA-CNA

Os dados levantados via painel foram utilizados para caracterizar os indicadores de produção, zootecnicos, economicos e ambientais, no ano base do estudo e para a projeção da linha de base, no período de simulação analisado, para os três painéis analisados.

4.3.2 Cálculo do imposto ambiental
No que se refere à metodologia para o cálculo do valor de Imposto ambiental, primeiramente, foi realizado o cálculo do valor do imposto por cabeça, para cada categoria do bovino considerada neste artigo. Para tal objetivo, se realizou a multiplicação do fator de emissão (medido em tCOe) por cabeça da categoria animal pelos preços da tCOe estimado neste estudo.

Como não se encontraram muitos elementos na literatura apontando os limites que seriam apropriados para definição de eventuais alíquotas de impostos sobre o carbono, nas condições brasileiras e, especificamente para o setor pecuário, nas simulações deste estudo optou-se por determinar alíquotas referenciadas ao valor de comercialização dos créditos de carbono nos mercados em funcionamento\(^\text{35}\).

A literatura destaca que a maior fonte de emissões em propriedades de leite é também a fermentação entérica e a gestão do esterco (MCTI; EMBRAPA, 2015). Portanto, o imposto sobre carbono varia com o número e categoria de animais da propriedade, além do estado onde a fazenda típica está localizada.

A fim de estimar a quantidade emitida de CO2e por animal, utiliza-se como referência o Terceiro Inventário Brasileiro de Emissões e Remoções Antrópicas de GEE, publicado pelo Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTI; EMBRAPA, 2015). Este relatório mostra as estimativas de emissões anuais por bovinos, de acordo com diferentes categorias do rebanho (gado leiteiro, jovem e touro) e por estado brasileiro (MCTI; EMBRAPA, 2015). Foi selecionado o terceiro inventário para estimativa das emissões neste artigo em razão dele ser um documento oficial e público que detalha, por categoria de rebanho bovino e estado, as emissões por cabeça, informação que não é encontrada pública facilmente por outros órgãos que realizam o inventário brasileiro, tais como o SEEG, que apresentam até estimativas de emissões mais recentes que o MCTI.

A metodologia de um inventário de estimativa de GEE é dividida em três categorias em razão do grau de complexidade para o seu desenvolvimento. Essas classes são chamadas de “Tier” e quanto mais alta a Tier, mais complexa é a categoria em questão. O Quadro 6 apresenta as classes de inventário, conforme o Painel Intergovernamental sobre Mudanças Climáticas (IPCC).

\(^{35}\) Outras possibilidades para definir as alíquotas para simulação seriam a adoção arbitrária de diversos valores e até mesmo buscando identificar as alíquotas de breakeven para cada fazenda típica. Esta e outras possibilidades podem ser avaliadas em trabalhos futuros.
Quadro 6 - Categorias do inventário de emissões baseadas no IPCC (2006)

Tipo	Descrição do Tier
Tier 1	Neste método valores padrão ou default estabelecidos pelo IPCC são adotados para os fatores de emissão; é o método básico e mais utilizado, cuja escolha e emprego estão atrelados, principalmente, às dificuldades de obtenção de dados.
Tier 2	Este método possui um grau intermediário de complexidade; na tier 2 os fatores de emissão contemplam informações mais específicas sobre o território a ser analisado, considerando por exemplo, práticas industriais do país, clima, entre outras informações.
Tier 3	É o nível mais complexo e necessita de informações ainda mais detalhadas para sua elaboração; muitas vezes a Tier 3 está atrelada à elaboração de modelos específicos para execução de fatores de emissão mais próximos da realidade, o que acaba tornando sua elaboração mais difícil.

Fonte: Elaboração própria com base em IPCC (2006).

Para estimar o imposto sobre o carbono, adotaram-se as seguintes hipóteses neste estudo:

- Cada cabeça de bovino da fazenda típica analisada tem uma média de emissão anual que está medida na unidade de tCOe (tonelada de carbono equivalente). O valor desta média de emissão é o Fator de Emissão Anual por animal bovino do estado para o qual se levantou o modelo de fazenda típica. Esta informação é extraída do Terceiro Inventário Brasileiro de Emissões e Remoções Antrópicas de GEE (MCTI; EMBRAPA, 2015).
- Para cada fazenda típica existem três fatores de emissão diferentes: para o gado leiteiro (que contemplam todas vacas em lactação e secas), para o gado jovem (todos animais jovens que nunca entraram em lactação) e para o touro.
- Para estimar o valor do imposto, multiplica-se a quantidade de tonelada de carbono equivalente emitida por animal, ou seja, seu fator de emissão anual, pelo preço da tonelada de carbono considerada. Este preço é discutido adiante e foi obtido a partir dos dados do Carbon Market Trade Book.

A seleção das três fazendas típicas de Leopoldina (MG), Caçu (GO) e Castro (PR) tem como objetivo proporcionar uma análise de estabelecimentos rurais que
representem grande parte da realidade dos produtores de leite brasileiros. Na seleção destas três fazendas típicas buscou-se representar tanto a diversidade regional destes produtores quanto a diversidade tecnológica, na medida em que foram selecionadas fazendas de regiões distintas e também níveis de intensidade tecnológica dispares.

A Tabela 5 mostra a informação mais recente disponível sobre os Fatores de Emissão (FE)36, por categoria de animal, para os estados de Minas Gerais (fazenda típica de Leopoldina), Goiás (Caçu) e Paraná (Castro). Para as vacas em lactação e para as vacas secas, o FE seguiu o Terceiro Inventário Brasileiro, para rebanho leiteiro. Como este inventário não fornece fatores de emissão específicos para touros e animais jovens37 bovinos leiteiros, estes foram substituídos pelos fatores de emissão para estas duas categorias para os bovinos de corte, estes, sim, disponíveis no inventário (MCTI; EMBRAPA, 2015).

36 O Terceiro Inventário Brasileiro fornece dados completos para todos os estados do Brasil, de 1990 a 2010.

37 A categoria de animais jovens compreende bezerros jovens, bezerros e novilhas de 12 a 24 meses e novilhas de 24 a 36 meses.
Tabela 5 - Fatores de emissão para Paraná, Góias e Minas Gerais tCO2e, 2010, GWP-AR5 (Tier2)

Categoria do gado para FE para Fermentação Entérica	FE para Fermentação de Dejetos	Total da emissão por cabeça	
Paraná			
Gado leiteiro	1,9320	0,0672	1,9992
Touro	1,5400	0,0448	1,5848
Gado jovem	1,2040	0,0280	1,2320
Goiás			
Gado leiteiro	1,6240	0,0448	1,6688
Touro	1,4280	0,0392	1,4672
Gado jovem	1,1200	0,0224	1,1424
Minas Gerais			
Gado leiteiro	1,7920	0,0504	1,8424
Touro	1,4560	0,0420	1,4980
Gado jovem	1,1480	0,0252	1,1732

Fonte: Elaborado com base no Terceiro Inventário Brasileiro de Emissões e Remoções Antrópicas de GEE (MCTI; EMBRAPA, 2015).

Os fatores de emissão foram utilizados para estimar as emissões dos bovinos desagregadas por categorias, conforme a sua representatividade no rebanho de cada fazenda típica. Na Tabela 3 encontram-se informações gerais sobre as fazendas típicas analisadas; enquanto na Tabela 4, verifica-se a distribuição dos animais nas propriedades típicas selecionadas, por categorias. A partir destes dados, notam-se diferenças significativas entre as três propriedades modais.
Tabela 6 - Informações gerais das fazendas Castro, Caçu e Leopoldina

Informações Gerais	Castro	Caçu	Leopoldina
Intervalo entre partos (meses)	14	16	14
Período de lactação (meses)	12	12	9
Idade a primeira cria (meses)	24	36	36
Produção vaca/dia (litros)	30	12	8
Produção diária (litros)	5500	550	300
Tipo/Raça:	Hollandês	Girolando 3/4	Girolando 1/2
Utilização da área	Área Integral	Área Integral	Área Integral
Área total (ha)	120,00	96,00	70,00
Área de benfeitorias (ha)	5,0	2,0	2,0
Área reserva (ha)	24,0	19,0	5,0
Taxa de juros real (%)	6,00%	6,00%	6,00%
Área agricultável (ha)	91,0	75,0	63,0
Km de cerca:	4,38 km	3,92 km	3,35 km
Estoque de capital (R$)	7.807.970,64	1.598.284,26	1.330.880,47
Margem líquida (R$)	409.646,10	7.818,19	-56.423,97
Taxa de remuneração do capital (%)	5,25%	0,50%	-4,2%

Fonte: Elaborado com base no banco de dados do Painel CEPEA-CNA.
Tabela 7 - Quantidade de cabeças de cada categoria de bovinos das fazendas típicas de pecuária de leite de Castro, Caçu e Leopoldina

Categoria do Gado	Castro	Caçu	Leopoldina
Bezerros em aleitamento	0	20	0
Bezerros desmamados	0	0	0
Garrotes	0	0	0
Boi Magro	0	0	0
Boi Gordo	0	0	0
Touro Reprodutor	1	1	1
Bezerros em aleitamento	82	22	16
Bezerros desmamadas	80	21	16
Novilhas 12 a 24 meses	79	19	16
Novilhas 24 a 36 meses	0	17	15
Novilhas 36 a 48 meses	0	0	0
Vacas em lactação primíparas	45	13	10
Vacas em lactação multíparas	139	32	27
Vaca solteira/seca	31	15	21

Total de animais de produção: 375 141 107

Fonte: Elaborado com base no banco de dados do Painel CEPEA-CNA.

Para determinar um intervalo de preços para a tonelada de CO2e, adotou-se como referência a tendência observada a partir dos valores dos créditos de carbono comercializados no mercado voluntário brasileiro\(^{38}\). Tendo em vista que não há, no

\(^{38}\) O comércio de emissões consiste em um sistema global em que compras e vendas de crédito de carbono ocorrem e no qual cada crédito de carbono equivale a uma tonelada de carbono equivalente (tCO2e) que deixou de ser emitida na atmosfera, por meio de um projeto de mitigação. O mercado de emissões se baseia em um mercado criado, anteriormente, nos Estados Unidos, visando reduzir emissões de dióxido de enxofre (SO2), um gás de efeito estufa responsável pela chuva ácida (JURAS, 2012). Há dois mercados para estas emissões: o mercado regulado de Quioto e o mercado voluntário. O mercado regulado compreende empresas e governos que, com base em suas legislações nacionais, devem calcular suas emissões. Este mercado é regulado por regimes mandatórios, impostos pela Organização das Nações Unidas a países signatários do Protocolo de Quioto, e que têm obrigação de reduzir as emissões de GEE.
Brasil, um sistema que consolide as vendas de créditos de carbono do mercado voluntário, foram usados os dados disponíveis no *Carbon Market Trade Book*. Este projeto é uma colaboração entre consultores e compradores de créditos de carbono (companhias) brasileiros que simula compras e vendas de títulos de crédito de carbono (BVRIO’S, 2019). De acordo com os especialistas da área, o preço dos créditos de carbono comercializados no mercado regulado está muito baixo atualmente, e inferior ao custo real para mitigar as emissões39.

Os dados do *Carbon Market Trade Book* são disponibilizados para uma série que se inicia em 2014. Neste trabalho, foi considerado todo o período disponibilizado até julho de 2019. Um preço médio para o crédito de carbono foi calculado a partir de todos os valores dos créditos disponíveis na BVRio’s. Esses valores foram deflacionados pelo IPCA, e trazidos a preços constantes de agosto de 2018, que é o período base também dos dados de custos de produção das propriedades típicas.

Para obter um intervalo de valores de comercialização dos créditos de carbono e, a partir destes estabelecer alíquotas para a simulação do imposto sobre as emissões, calculou-se o preço médio de transação dos créditos de carbono e verificaram-se os valores máximo e mínimo da série do *Carbon Market Trade Book*. 40

Como resultado, obtiveram-se os valores em reais, moeda na qual são registradas as informações nessa fonte utilizada para o ano de 2018, incluídos na simulação para análise de impacto sobre a viabilidade econômica das propriedades de leite.

Por outro lado, o mercado voluntário funciona sob regras mais flexíveis, embora também obedeça a padrões e esteja submetido a auditorias.

39 Consulta a especialistas em mercados voluntários de carbono.

40 Embora estes valores para a comercialização de créditos de carbono representem o mercado voluntário, que não necessariamente seriam referência para a definição de uma eventual política de precificação compulsória, tal como a taxação das emissões, a simulação não tem como objetivo identificar uma alíquota ótima ou uma metodologia para definição de alíquotas para subsidiar a precificação. O objetivo maior com a proposição de alíquotas distintas é analisar e comparar a sensibilidade de propriedades com distintos níveis tecnológicos a uma eventual política de taxação de emissões.
Tabela 8 - Impostos ambientais usados para simular os cenários A e B (por tCO2e)

Valores	Alíquotas	R$/t
Valor mínimo	Cenário 1	18,00
Valor médio	Cenário 2	38,07
Valor máximo	Cenário 3	101,50

Fonte: elaborado com base em dados de Carbon Market Trade Book (BVRIO’S, 2019).

4.4 Resultados

A Tabela 9 mostra os valores de impostos calculados para o período de um ano e usados na simulação da implementação de uma política de imposto sobre o carbono, taxando as emissões de GEE por animal, com montantes distintos para cada fazenda típica analisada.

Para estimar esse valor anual do imposto para cada fazenda típica, o fator de emissão (EF), estimado em tCO2e, é multiplicado, para cada categoria de animal, pelo número de animais nessa categoria (por ano) e, novamente, multiplicado pelas três alíquotas propostas para este exercício analítico. A última linha da Tabela 9, para as últimas três colunas, sintetiza os resultados do impacto economico-financeiro da adoção de um potencial imposto pigouviano sobre o carbono emitido pelo rebanho bovino nas três fazendas típicas analisadas. As primeiras colunas identificam as informações calculadas para a linha de base, referentes ao ano de 2018, de número de cabeças de animais e emissões totais por categoria e por animal nas três propriedades leiteiras.
Tabela 9 - Estimativa do montante anual do Imposto Ambiental incidente sobre o rebanho leiteiro nas propriedades típicas, em R$.

Categoria rebanho	Emissão por cabeça (tCO2e)	Número de cabeças	Emissão por categoria (tCO2e)	Recolhimento: Cenário 1 R$18/tonelada	Recolhimento: Cenário 2 R$38,07/tonelada	Recolhimento: Cenário 3 101,5/tonelada
Fazenda típica de pecuária leiteira – Leopoldina – MG						
Gado de leite	1.8424	58	107,47	1.934,52	4.091,51	10.908,54
Touro	1.498	1	1,50	26,96	57,03	152,05
Gado Jovem	1.1732	63	74,25	1.336,47	2.826,63	7.536,18
Total	123	183,22	3.297,95	6.975,16	18.596,77	
Fazenda típica de pecuária leiteira – Caçu – GO						
Gado de leite	1.6688	61	101,98	1.758,17	3.719,29	9.914,71
Touro	1.4672	1	1,47	25,29	53,51	142,64
Gado Jovem	1.1424	99	113,57	1.957,88	4.141,75	11.040,88
Total	162	217,02	3.741,35	7.914,55	21.098,23	
Fazenda típica de pecuária leiteira – Castro – PR						
Gado de leite	1.9992	214	427,61	7.696,92	16.278,99	43.402,08
Touro	1.5848	0	0,00	0,00	0,00	0,00
Gado Jovem	1.232	241	297,05	5.346,92	11.308,73	30.150,67
Total	455	724,66	13.043,84	27.587,72	73.552,75	

Fonte: Elaboração própria.

Enquanto na Tabela 9, é possível comparar o impacto direto nas três propriedades da simulação de três alíquotas distintas de um imposto ambiental sobre emissões, da despesa adicional à composição do custo de produção de leite nas mesmas, na Tabela 7, verificam-se os resultados da simulação dessas alíquotas sobre os indicadores econômico-financeiros das atividades analisadas.

A Tabela 7 permite comparar o efeito das três alíquotas distintas impostas sobre três propriedades de leite com estruturas de custo de produção diferentes sobre a
viabilidade econômica dessas atividades. O primeiro indicador apresentado é a Receita Bruta da propriedade com a produção e venda de leite. Nota-se que esta não se altera em função da imposição de um novo imposto, já que pressupõe-se que a produção de leite, para um recorte temporal de um ano, não é afetada pela política simulada.

Por outro lado, os indicadores relacionados a custo de produção e resultados financeiros da atividade mostram que o imposto simulado impacta diferentemente a viabilidade econômico-financeira das propriedades, em função de sua própria diferença inicial de desempenho econômico.

Os dados permitem inferir que a imposição de um imposto ambiental, nos moldes propostos neste estudo, poderia resultar em um choque significativo sobre o desempenho e viabilidade econômica de sistemas produtivos de baixa e média tecnologia.

Antes da imposição do imposto, nota-se, ao considerar os dados originais dos painéis, a níveis de preços e custos de 2018, nas três regiões representadas pelos painéis, que a atividade leiteira em Leopoldina, Minas Gerais, caracterizada pela baixa tecnologia e baixa produtividade, já apresentava resultados financeiros ruins, destacadamente com margem líquida negativa. Claramente, a margem líquida da produção de leite em Castro, alta tecnologia, é bastante mais elevada não somente em relação à Leopoldina, mas também à Caçu, sistema representativo de uma tecnologia média.

Um importante resultado da simulação é a maior capacidade da fazenda de alta tecnologia em relação às fazendas de intensidade tecnológica média e baixa de absorver o impacto do imposto. O melhor indicador para este tipo de comparação, contudo, é o que reflete o impacto em termos relativos, que é o Imposto por litro de leite, medido em reais por litro. Este indicador evidencia a importância da eficiência técnica, ou seja, dada uma certa tecnologia, obter o máximo de produtividade possível, o que permite reduzir o impacto do imposto sobre os resultados econômicos das atividades, ou seja, permitem reduzir o peso do imposto ambiental por litro de leite comercializado pelo produtor.
Indicadores financeiros	Castro	Caçu	Leopoldina
(Antes dos impostos)			
Receita Bruta (RB)	2.790.750,00	269.800,00	147.918,33
Custo Operacional Total (COT)	2.381.103,90	261.981,81	204.342,30
Margem Líquida (RB-COT)	409.646,10	7.818,19	-56.423,97
Produção de leite (litros)	2.007.500,00	349.250,00	109.500,00
Valor do imposto	0,00	0,00	0,00
Imposto por litro de leite (R$)	-38,07/tCO2e	-38,07/tCO2e	-38,07/tCO2e

Indicadores financeiros	Castro	Caçu	Leopoldina
(Após imposto 1)			
Receita Bruta (RB)	2.790.750,00	269.800,00	147.918,33
Custo Operacional Total (COT)	2.394.147,74	265.723,16	207.640,25
Margem Líquida (RB-COT)	396.602,26	4.076,84	-59.721,92
Produção de leite (litros)	2.007.500,00	349.250,00	109.500,00
Valor do imposto	13.043,84	3.741,35	3.297,95
Imposto por litro de leite (R$)	-13.043,84	-3.741,35	-3.297,95

Indicadores financeiros	Castro	Caçu	Leopoldina
(Após imposto 2)			
Receita Bruta (RB)	2.790.750,00	269.800,00	147.918,33
Custo Operacional Total (COT)	2.408.691,62	269.896,36	211.317,47
Margem Líquida (RB-COT)	382.058,38	-96,36	-63.399,13
Produção de leite (litros)	2.007.500,00	349.250,00	109.500,00
Valor do imposto	27.587,72	7.914,55	6.975,16
Imposto por litro de leite (R$)	27.587,72	7.914,55	6.975,16

Indicadores financeiros	Castro	Caçu	Leopoldina
(Após imposto 3)			
Receita Bruta (RB)	2.790.750,00	269.800,00	147.918,33
Custo Operacional Total (COT)	2.454.656,65	283.080,05	222.939,08
Margem Líquida (RB-COT)	336.093,35	-13.280,05	-75.020,74
Produção de leite (litros)	2.007.500,00	349.250,00	109.500,00
Valor do imposto	73.552,75	21.098,23	18.596,77
Imposto por litro de leite (R$)	73.552,75	21.098,23	18.596,77

Fonte: Elaboração Própria com base em dados dos painéis de pecuária leiteira CEPEA-CNA e Terceiro Inventário Brasileiro de Emissões e Remoções Antrópicas de GEE (MCTI; EMBRAPA, 2015).

A definição da magnitude da carga tributária a ser imposta via taxação do carbono é também relevante. Nota-se que quando se simula o cenário 2 (com imposto de R$ 38,07/tCO2e), em comparação ao cenário 1 (R$18,00/tCO2e), a atividade leiteira na propriedade típica de Caçu deixa de ser economicamente viável. Ou seja, diferentes
magnitudes do imposto sobre as emissões deverão afetar de modo distinto a lucratividade dos diferentes sistemas produtivos, inclusive podendo comprometer a viabilidade dos mesmos. É o caso da propriedade modal de Caçu, que na simulação do Cenário 3, deixa de apresentar viabilidade econômica.

Neste contexto, vale ressaltar sobre a característica extra-fiscal desse imposto. Como mencionado anteriormente, quando as fazendas leiteiras possuem o nível mais alto em termos de produtividade e as vacas lactantes apresentam uma produção média de leite mais elevada, ou seja, melhor produtividade, embora os custos de produção aumentem, o impacto relativo do imposto ambiental por litro de leite é menor, como evidencia a Tabela 7.

Cabe ressaltar que esta análise não tem a pretensão de fazer inferências sobre a efetividade deste instrumento de precificação na redução de emissões de GEE na pecuária. Evidencia-se, somente, que a busca da melhoria na eficiência produtiva e econômica das propriedades leiteiras, pode constituir uma estratégia importante para a sustentabilidade dos produtores de leite em um cenário eventual de imposição de um tributo ambiental sobre emissões na produção, ou seja, de uma política de precificação de carbono nesse setor.

4.5 Considerações Finais

Este estudo teve como objetivo promover uma reflexão sobre potenciais impactos e elementos relevantes que devem ser considerados ao se aventurar a possibilidade de estabelecer um imposto sobre emissões de GEE sobre a atividade pecuária bovina. Em particular, utilizando dados de custos de produção e sistemas de produção de pecuária bovina leiteira, para três regiões distintas do Brasil, em termos tecnológicos e de produtividade, verificou-se que, os efeitos de um imposto ambiental do tipo pigouviano sobre a atividade produtiva pode comprometer o desempenho econômico-financeiro da atividade. Este comprometimento é tanto mais crítico e limitante quanto mais ineficiente o sistema de produção de leite, em termos de produtividade.

Os resultados obtidos da comparação, a princípio, permitem avaliar que propriedades com produtividade mais alta e mais eficientes em termos econômicos, no momento da imposição do imposto ambiental, tem melhores condições para se
manterem viáveis na atividade após a política. Contudo, propriedades com baixa produtividade deverão se ressentir mais economicamente desse tipo de política ambiental, agravando sua situação econômica. Portanto, nível tecnológico, resultados financeiros e de produtividade dos diferentes sistemas de produção leiteira e uma definição adequada das alíquotas de impostos devem ser considerados nas avaliações de impactos de futuras políticas ambientais visando a mitigação da poluição atmosférica.

Estudos sobre a possível aplicação de impostos ambientais no Brasil são escassos, principalmente para a agricultura e o setor pecuário, e, portanto, este artigo também pretende contribuir para o debate deste assunto e para a proposição de novas pesquisas sobre o tema.

Um aspecto interessante a destacar é que os resultados da simulação da alíquota mostram a natureza extra-fiscal dessa ferramenta política. Quando a produtividade do gado é maior (medida pela produção leiteira de vacas lactantes), embora o tributo sobre o carbono pago pelo agricultor seja o mesmo por bovino de uma mesma categoria e estado, a razão dada pelo valor do imposto por litro de leite mostra tendência de declínio. Esta é uma evidência de que os produtores de leite mais eficientes poderiam pagar menos tributos ambientais por litro de leite.

Outro resultado já esperado nas simulações deste artigo, mostram que o impacto da política fiscal por litro de leite aumenta significativamente à medida que o valor do tributo sobre o carbono aumenta, resultado logicamente coerente com a simulação.

Por outro lado, é importante ressaltar que este artigo não permite inferir sobre a eficácia do instrumento da tributação sobre emissões para a redução e mitigação da poluição gerada na atividade. Apenas se considera que, tendo em vista as opções de mitigação de emissões na pecuária bovina, já apontadas na literatura, se relacionarem à incorporação de melhorias tecnológicas nesse setor, propriedades com maior nível tecnológico e mais eficientes tecnicamente e economicamente, têm melhores condições de viabilidade diante de uma eventual tributação ambiental sobre as emissões.

Este artigo faz parte de uma ampla pesquisa, que tem como objetivo evidenciar as implicações da heterogeneidade tecnológica e econômica do setor pecuarista no Brasil no que tange aos efeitos de políticas futuras para a mitigação de emissões na agropecuária e de precificação de carbono, e a discussão da eventual necessidade de compensação ou mesmo de eventual exclusão de algumas categorias de produtores dessas políticas, entre outros aspectos.
Entre tais aspectos, uma pergunta interessante é como estimular os produtores rurais a, voluntariamente, adotar tecnologias menos intensivas em carbono? Espera-se que, ao se comparar diferentes sistemas de produção que ilustram a diversidade da pecuária nacional, evidenciando a possibilidade de menores impactos econômicos para aqueles mais eficientes no uso de recursos produtivos, possa ajudar a responder a essa pergunta. Em suma, busca-se explorar a ideia de que a adoção de tecnologias para melhorar a produtividade na pecuária leiteira, e que têm potencial para mitigar suas emissões, torna essa atividade mais resiliente a possíveis intervenções para precificação do carbono via tributação.

4.6 Referências

ANGELO, C.; RITTL, C. Análise das Emissões Brasileiras de Gases de Efeito Estufa e suas implicações para as metas do Brasil. São Paulo, 2019. Disponível em: <http://www.observatoriodoclima.eco.br/wp-content/uploads/2019/11/OC_SEEG_Relatorio_2019.pdf.pdf>.

ANUALPEC. Anuário da Pecuária Brasileira. São Paulo: Informa Economics / FNP – Consultoria e Agroinformativos, 2015.

AZEVEDO, T. R.; RITTL, C. Análise da evolução das emissões de GEE no Brasil (1990-2012). São Paulo: Observatório do Clima, 2014.

BRASIL. Câmara dos Deputados Praça 3 Poderes Consultoria Legislativa Anexo III-Térreo Brasília-DF Ilidia da Ascenção Garrido Martins Jurus. 2012;.

BANCO MUNDIAL. Estudo de Baixo Carbono para o Brasil. Washington: The World Bank, 2010.

BVRIO’S. Carbon Market Trade Book: Emissions Trade System - Empresas pelo Clima. Disponível em: <https://www.bvrio.org/carbono/plataforma/preparado>. 2019.

CHRISTIANSEN, A. C.; WETTESTAD, J. The EU as a frontrunner on greenhouse gas emissions trading: How did it happen and will the EU succeed? Climate Policy, v. 3, n. 1, p. 3–18, 2003.

CORNES, R.; SANDLER, T. The Theory of Externalities, Public Goods, and Club Goods. Cambridge: Cambridge University Press, 1996. Disponível em: <https://books.google.com.br/books?hl=en&lr=&id=sN1ktBy2Fl4C&oi=fnd&pg=PR17&dq=externalities+economics+theory&ots=kUBBHg0mKa&sig=UJd3dTZGqzP9gDE
IMAFLORA. Relatório SEEG 2018 - Emissões do Setor de Agropecuária., 2018. Disponível em: <http://seeg.eco.br/wp-content/uploads/2018/06/relatorios-SEEG-2018-agro-final-v1.pdf>. Acesso em: 30 jun. 2018.

IPCC. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, 2018. Disponível em: <https://www.ipcc.ch/sr15/>.

IPCC. Climate Change and Land: An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, 2020. Disponível em: <https://www.ipcc.ch/srccl/ >.

JANSSON, T.; SÄLL, S. Environmental consumption taxes on animal food products to mitigate greenhouse gas emissions from the European union. Climate Change Economics, v. 9, n. 4, 1 nov. 2018.

MARDONES, C.; BAEZA, N. Economic and environmental effects of a CO2 tax in Latin American countries. Energy Policy, v. 114, p. 262–273, 1 mar. 2018.

MARGULIS, S. Elaboração de estudos setoriais (energia elétrica, combustíveis, indústria e agropecuária) e proposição de opções de desenho de instrumentos de precificação de carbono - Componente 1 da fase de implementação do PMR, 2018.

MARGULIS, S.; MIRANDA, S. H. G. Elaboração de estudos setoriais (energia elétrica, combustíveis, indústria e agropecuária) e proposição de opções de desenho de instrumentos de precificação de carbono: Diagnóstico de Agropecuária. . Piracicaba:, 2018. Disponível em: <http://mediadrawer.gvces.com.br/PMR-brasil/original/relatorio-para-consulta-p4-agropecuaria.pdf>. Acesso em: 30 jul. 2018.

MATSUNAGA ET AL. Metodologia de custo de produção utilizado pelo IEA. Agricultura em São Paulo, v. 23, p. 123–139, 1976.

MCTI; EMBRAPA. Terceiro Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases Efeito Estufa: Setor Agropecuária, 2015.

PINTO, L. F. G. et al. Análise das Emissões de GEE do Brasil (1990-2012): Setor Agropecuário. São Paulo: Observatório do Clima, 2014.

SANTOS, M. C. As mudanças da bovinocultura de corte no Brasil : evidências a partir
de Mato Grosso do Sul (2004 - 2015). 2015. Unicamp, 2015. Disponível em: <http://repositorio.unicamp.br/jspui/handle/REPOSIP/304746>. Acesso em: 28 jan. 2019.

SOUZA, K. R. Economia verde e decoupling: uma aplicação para o setor canavieiro do Brasil. Dissertação (Economia Aplicada) – Universidade São Paulo (USP). Piracicaba, 2013.

SCHAUFELE, B. Carbon Taxes and Cattle: Evidence From Canadian Feedlots. SSRN Electronic Journal, 16 maio 2018.

SLADE, P. The Effects of Pricing Canadian Livestock Emissions. Canadian Journal of Agricultural Economics/Revue canadienne d’agroéconomie, v. 66, n. 2, p. 305–329, 1 jun. 2018. Disponível em: <http://doi.wiley.com/10.1111/cjag.12157>. Acesso em: 27 mar. 2020.

SPASH, C. L. The brave new world of carbon trading. New Political Economy, v. 15, n. 2, p. 169–195, jun. 2010.

SPRINGMANN, M. et al. Mitigation potential and global health impacts from emissions pricing of food commodities. Nature Climate Change, v. 7, n. 1, p. 69–74, 1 jan. 2017.

STAVINS, R. N. The future of U.S. Carbon-Pricing Policy: normative assessment and positive prognosis. Environmental and Energy Policy and the Economy, v. 1, 2020. Disponível em: <https://www.nber.org/chapters/c14285.pdf>.

WORLD BANK. Brazil low-carbon country case study. World Bank - Sustainable Development Department of the Latin America and Caribbean Region: 2010. Disponível em: <http://documents.worldbank.org/curated/en/322451468021257141/pdf/630290PUBOR_EPL00Box369273B00PUBLIC0.pdf>.

WORLD BANK. Home | Partnership for Market Readiness (PMR). Disponível em: <https://www.thepmr.org/>. Acesso em: 26 fev. 2020.

ZHANG, X.; WANG, Y. How to reduce household carbon emissions: A review of experience and policy design considerations. Energy Policy, v. 102, p. 116–124, 1 mar. 2017.
CONSIDERAÇÕES FINAIS

Como considerações finais desta dissertação, tendo em vista os estudos realizados, ressalta-se que há possibilidade de implementação de tecnologias que têm potencial para, simultaneamente, mitigar ou reduzir emissões no setor pecuário e aumentar sua produtividade, e, inclusive, melhorar seu desempenho econômico e financeiro. Esta é uma indicação relevante para os pecuaristas, na medida em que pode ser um incentivo para acelerar o processo de absorção de tecnologias menos carbono-intensivas em suas propriedades.

Para o caso específico da produção de leite, os estudos sugerem que a incorporação de melhorias, com custos relativamente baixos, como algumas melhorias na dieta dos animais, pode reduzir as emissões de GEE relativas, ou seja emissões por litro de leite produzido. Pela análise ilustrada com duas fazendas típicas de níveis tecnológicos e de eficiência técnica distintos, parece haver indicação que a adoção de melhores níveis tecnológicos, e consequentemente, elevação da produtividade promove um decoupling relativo da atividade. Ademais, ao se estimar o custo marginal de abatimento da melhoria na dieta bovina, verificou-se que este é negativo em termos também relativos, ou seja, por litro de leite.

Estas constatações corroboram com os resultados do estudo de simulação de um imposto sobre o carbono, incidindo sobre as propriedades de leite, também se analisando comparativamente seu impacto em três propriedades típicas, com níveis tecnológicos e desempenho financeiro diferentes. Novamente, há indicações de que o nível tecnológico da fazenda também dita o impacto desse imposto ambiental sobre as variáveis financeiras da fazenda. Os resultados mostraram que quando a produtividade do gado é maior (medida pela produção leiteira de vacas lactantes), a razão dada pelos impostos por litro de leite mostrou-se inferior aos casos de modelos de produção menos eficientes.

Os estudos apresentados nesta dissertação fortalecem o discurso de que a heterogeneidade tecnológica e econômica do setor pecuarista no Brasil é relevante no âmbito do debate sobre a definição de políticas futuras para a mitigação das emissões na agropecuária e de precificação do carbono nesse setor, seus potenciais efeitos, e eventual necessidade de compensações aos agentes.