ВЛИЯНИЕ РАЗМЕРА ДИСПЕРСНЫХ ЧАСТИЦ НА МОДУЛЬ УПРУГОСТИ СМЕСЕЙ ПОЛИМЕРОВ

Дан анализ различных вариантов смесей несовместимых полимеров и их модулей упругости. Эти смеси представляют собой тонкие дисперсии одного из полимеров в полимерной матрице другого полимера. Проанализированы следующие варианты: присутствие твердых дисперсий в эластомере, когда твердые частицы дисперсии химически реагируют с эластомером или когда они инертны по отношению к эластомерной матрице; дисперсия твердого полимера в твердом аморфном полимере; дисперсия твердого аморфного полимера в твердом аморфном полимере; дисперсия частично кристаллического полимера в твердом аморфном полимере.

Зависимости модулей упругости от средней и объемной доли обла- дают различной формой, завися от Ван-дер-Ваальсова объема компонентов, молекулярного веса повторяющихся звеньев, плотности компонентов, объема доменов и т.д. Сама форма зависимостей определяется физическим состоянием (высокозластический полимер, кристаллический полимер, твердый аморфный полимер) смешиваемых компонентов.

Ключевые слова: совместимость полимеров, модуль упругости, химическое взаимодействие, компоненты смеси, дисперсные частицы, интерполимеры, полицистин, полиамид, полиметилметакрилат.

1 Работа выполнена при финансовой поддержке Министерства образования и науки РФ (задание № 7.2200.2014/К).

© Мацеевич Т.А., Попова М.Н., Володина А.Е., Аскадский А.А., 2014
В настоящее время создание новых полимерных материалов идет, как правило, не путем синтеза новых полимеров, а путем создания смесей известных полимеров. Вопросы, связанные с влиянием микроразностного расслоения, термодинамической и технологической совместимости полимеров, химического строения и состава смесей на механические свойства, привлекают наибольшее внимание. Изучены смеси полицерола и АБС-пластик и найдено, что механические свойства смесей лучше, чем аналогичные свойства составляющих компонентов [1]. Авторы объясняют это хорошей совместимостью данных полимеров. Механические свойства смесей линейных полимеров и полимерных сеток проанализированы по материалам конференции [2]. Рассмотрены различные расчетные методы оценки модуля упругости в зависимости от состава смесей. Эти зависимости могут иметь разную кривизну, показывая, что модули упругости смесей могут превосходить средние значения для различных составов. Проведен динамический механический анализ несовместимых смесей полидиметилсилоксана и полиизопрена, измерены температурные зависимости модулей накопления и потерь [3]. Обнаружено наличие двух релаксационных механизмов, которые можно подавить с помощью компатиблизаторов, представляющих собой диглок-сополимеры тех же компонентов.

Исследованы морфология и свойства смесей полистиrola с сополимером стиrola с акрилонитрилом. Измерен модуль упругости смесей, который описывается с помощью теории Дои — Оhta [5]. Найдено, что основную роль играет увеличение

Nowadays, new polymeric materials are created, as a rule, not by the synthesis of new polymers, but by creating blends of known polymers. Problems, related to the influence of microphase separation, thermodynamic and technological polymer compatibility, the chemical structure and mixing formula on the mechanical properties attract the most attention. The authors [1] studied a blend of polystyrene and ABS-plastics and found that the mechanical properties of the blend are better than the similar properties of the components. The authors explain this by good compatibility of these polymers. Mechanical properties of linear polymer and polymer network blend were analyzed according to the conference materials [2]. We regarded various calculation methods for estimating modulus of elasticity depending on mixing formula. These dependencies can have different curvatures, showing that the modulus of elasticity of the blends can exceed the average values for different blends. The authors made a dynamic mechanical analysis of incompatible blends of polydimethylsiloxane and polyisoprene, the measured temperature dependence of accumulation and loss modules [3]. They detected two relaxation mechanisms, which can be suppressed by using computerization representing the diblock copolymers of the same components.

The authors investigated the morphology and properties of polystyrene and copolymer blends and styrene and acrylonitrile blends. They measured the modulus of elasticity of the blends, which was described using the theory of Doi — Ohta [5]. It was found out that the gain in particle size connected with the change in interfacial tension and viscosity of the blends plays the main role. Several works [6—10] studied the influence of interfacial tension in incompatible poly-
Research of building materials

Research of building materials

...size, related to the change in interfacial tension and viscosity of blends. The works [11—16] pay much attention to the morphology of blends, particle size, preparation attempts of finely dispersed blends and the influence of these factors on the modulus of elasticity and other mechanical properties.

Despite the large number of works on the structure and mechanical properties of the blends, the problems analyzed in this work do not always find adequate consideration. First of all, it relates to the ability of predicting polymer compatibility based on their chemical structure and phase state, the evaluation of the modulus of elasticity of the blend considering the phase state of the mixed polymer (dispersion of solid polymer in the elastomer, the dispersion of the two solid, glassy or crystalline polymers). There may be or may be no chemical interaction between microphases. All this affects the modulus of elasticity of the materials based on polymer blends, and these questions are at issue in the given article.

Theoretical analysis and experiment. Let us analyze different blends and the influence of the chemical structure of the components, the concentration of dispersed particles and their volume, the physical state of the polymer matrix on the elastic modulus of the blends.

A. Solid polymer dispersion in the elastomer

Here we consider two variants.

1) Solid disperse particles provoke a chemical reaction with the elastomer matrix. An example of such a system is the interaction of polychlorobutadiene (PTCB) with polystyrene (PS):
В результате такого взаимодействия образуется интерполямер (ИП), наиболее детально описанный в [17]. Химическое взаимодействие может происходить на поверхности частиц ПС в дисперсии. Прежде чем перейти к анализу влияния химически связанных частиц дисперсии твердого полимера в эластомере необходимо убедиться, что эти частицы не совмещаются с эластомерной матрицей и не растворяются в ней. Для анализа используем критерий совместимости полимеров [18—19]. Несовместимость наблюдается, когда при введении первого полимера во второй

\[
\mu_1 = \frac{\delta_{n,1}^2}{\delta_{n,2}^2} > 1.374 \beta_1,
\]

а при введении второго полимера в первый

\[
\mu_2 = \frac{\delta_{n,2}^2}{\delta_{n,1}^2} > 1.374 \beta_2,
\]

где \(\delta_{n,1} \) и \(\delta_{n,2} \) — параметры растворимости полимеров 1 и 2 соответственно; \(\beta_1 \) и \(\beta_2 \) — критерий совместимости полимеров 1 и 2 соответственно.

\[
\beta_1 = \Phi \left(\Phi - \sqrt{ \Phi^2 - \frac{\gamma_{n,1}}{\gamma_{n,2}} - 2\Phi \left(\frac{\gamma_{n,1}}{\gamma_{n,2}} \right)^{0.5}} \right),
\]

\[
\beta_2 = \Phi \left(\Phi - \sqrt{ \Phi^2 - \frac{\gamma_{n,2}}{\gamma_{n,1}} - 2\Phi \left(\frac{\gamma_{n,2}}{\gamma_{n,1}} \right)^{0.5}} \right),
\]

где \(\gamma_{n,1} \) и \(\gamma_{n,2} \) — поверхностные энергии полимеров 1 и 2 соответственно.

\[
\Phi = \frac{4 \left(V_{n,1} V_{n,2} \right)^{1/3}}{\left(V_{n,1}^{1/3} + V_{n,2}^{1/3} \right)^2},
\]

где \(V_{n,1} \) и \(V_{n,2} \) — молярные объемы полимеров 1 и 2 соответственно.

Such an interaction results in interpolymer (IP) formation, described in detail in [17]. Chemical interaction may occur on the surface of PS particles in the dispersion. Before analyzing the effects of chemically related disperse particles of solid polymer in the elastomer, it is necessary to ensure that the particles do not coincide with the elastomeric matrix and do not dissolve in it. In the analysis we use the criterion of polymer compatibility [18—19]. Incompatibility occurs at adding the first polymer to the second

\[
\mu_1 = \frac{\delta_{n,1}^2}{\delta_{n,2}^2} > 1.374 \beta_1,
\]

and at adding the second polymer to the first one

\[
\mu_2 = \frac{\delta_{n,2}^2}{\delta_{n,1}^2} > 1.374 \beta_2,
\]

where \(\delta_{n,1} \) and \(\delta_{n,2} \) are solubility parameters of the polymers 1 and 2 respectively; \(\beta_1 \) and \(\beta_2 \) are compatibility parameters of the polymers 1 and 2.

\[
\beta_1 = \Phi \left(\Phi - \sqrt{ \Phi^2 - \frac{\gamma_{n,1}}{\gamma_{n,2}} - 2\Phi \left(\frac{\gamma_{n,1}}{\gamma_{n,2}} \right)^{0.5}} \right),
\]

\[
\beta_2 = \Phi \left(\Phi - \sqrt{ \Phi^2 - \frac{\gamma_{n,2}}{\gamma_{n,1}} - 2\Phi \left(\frac{\gamma_{n,2}}{\gamma_{n,1}} \right)^{0.5}} \right),
\]

where \(\gamma_{n,1} \) and \(\gamma_{n,2} \) are surfaces energies of the polymers 1 and 2 respectively.

\[
\Phi = \frac{4 \left(V_{n,1} V_{n,2} \right)^{1/3}}{\left(V_{n,1}^{1/3} + V_{n,2}^{1/3} \right)^2},
\]

where \(V_{n,1} \) and \(V_{n,2} \) are molar volumes of the polymers 1 and 2 respectively.
Для анализа совместимости ПС с сополимером ПБ (полибутадиен) и ИП оценим физические параметры каждого из компонентов (tabl. 1).

Табл. 1. Физические параметры компонентов смеси
Параметры / Parameters
Параметр растворимости δ, (Дж/см3)$^{0.5}$ / Solubility parameter δ, (J/cm3)$^{0.5}$
Поверхностная энергия γ, мН/м / Surface energy γ, mN/m
Молярный объем V_m, см3/моль / Molar volume V_m, cm3/mol

Проведенные расчеты показали, что когда в составе эластомерной матрицы содержится $\geq 90\%$ мол ПБ и $\leq 10\%$ мол ИП имеет место несовместимость ПС с эластомерной матрицей. Поэтому при дальнейшем анализе механических свойств смесей будем в качестве эластомерной матрицы использовать СПЛ, содержащий 90% мол (68,4 % вес) ПБ и 10% мол (31,6 % вес) ИП.

Влияние дисперсных частиц, химически связанных с эластомерной матрицей, на модуль упругости смесей будем описывать с учетом того, что эти частицы играют роль эффективных узлов полимерной сетки (junctions), поскольку они химически связаны с эластомерной матрицей. Обобщенное уравнение для оценки модуля высокоэластичности полимеров выглядит следующим образом [18—19]:

$$E = \frac{3\rho_p RT \left(1 + \frac{B}{n}\right)}{M_c},$$

где ρ_p — плотность полимера; R — универсальная газовая постоянная; T — абсолютная температура; n — среднее число повторяющихся звеньев линейной цепи, находящихся в межузловых фрагментах; M_c — молекулярная масса полимера.

In order to analyze PS and copolymer PB (polybutadien) compatibility with IP, let us estimate physical parameters of each component (Tab. 1)

Tab. 1. Physical parameters of the blend components
Parameters / Parameters
Solubility parameter δ, (J/cm3)$^{0.5}$
Surface energy γ, mN/m
Molar volume V_m, cm3/mol

The calculations showed that when the elastomeric matrix contains $\geq 90\%$ mol of PB and $\leq 10\%$ mol of IP there is an incompatibility of PS with elastomeric matrix. Therefore, in the further analysis of the mechanical properties of the blends for an elastomeric matrix we shall use IP containing 90% mol (68.4 % weight) of PB and 10% mol (31.6 % weight) of IP.

The influence of the dispersed particles chemically bonded with the elastomeric matrix on the elasticity modulus of the blends will be described considering the fact that these particles play the role of effective polymer network junctions, because they are chemically bonded to the elastomeric matrix. The generalized equation for estimation of rubber elasticity modulus of polymers is as follows [18—19]:

$$E = \frac{3\rho_p RT \left(1 + \frac{B}{n}\right)}{M_c},$$

where ρ_p — polymer density; R — universal gas constant; T — absolute temperature; n — the average number of recurring units of the linear network in interjunction units;
\[\beta = \left(\frac{\sum \Delta V_i}{\sum \Delta V_i_{\text{п.зв}}} \right)_y, \] \hspace{1cm} (7)

где \(\left(\sum \Delta V_i \right)_y \) — Ван-дер-Ваальсов объём узла (y); \(\left(\sum \Delta V_i \right)_{\text{п.зв}} \) — Ван-дер-Ваальсов объем повторяющегося звена (п.зв) в линейных фрагментах сетки между сшивками.

Принимая во внимание, что \(n = \frac{M_c}{M_0} \), где \(M_0 \) — молекулярный вес повторяющегося звена, получаем

\[\beta = \frac{\nu_d}{\left(\sum \Delta V_i \right)_{\text{п.зв}}}, \] \hspace{1cm} (9)

где \(\nu_d \) — объем дисперсной частицы.

Теперь рассмотрим 1 моль эластомерной матрицы. Если степень заполнения обозначена как \(\alpha_z \), следует записать, что все дисперсные частицы содержат \(\alpha_z N_d \) повторяющихся единиц, где \(N_d \) — число Авогадро. Эластомерная часть смеси содержит \((1 - \alpha_z)N_d \) повторяющихся единиц. Число \(m \) дисперсных частиц в одном моле равно:

\[m = \frac{\alpha_z V_m}{\nu_{dс}}, \] \hspace{1cm} (10)

где \(V_m \) — молярный объем эластомерной матрицы; \(\nu_{dс} \) — средний объем дисперсной частицы.

Молярный объем эластомерной матрицы равен:

\[3 \rho_0 RT \left(1 + \frac{M_0}{M_c} \beta \right) \] \hspace{1cm} \frac{E}{M_c}, \] \hspace{1cm} (8)

Когда твердые дисперсные частицы играют роль эффективных узлов сшивки, величина \(\beta \) определяется соотношением

\[\text{When solid disperse particles act as effective cross-link joints the value is calculated by ratio} \]

\[\beta = \frac{\nu_{d}}{\left(\sum \Delta V_i \right)_{\text{п.зв}}}, \] \hspace{1cm} (9)

где \(\nu_d \) is a disperse particle volume.

Now let's regard 1 mol of elastomeric matrix. If occupation degree is defined as \(\alpha_z \), we must write down that all the disperse particles have \(\alpha_z N_d \) incurring units, where \(N_d \) is Avogadro's number. Elastomeric part of the blend has \((1 - \alpha_z)N_d \) incurring numbers. Number \(m \) of disperse particles in 1 mol is equal to:

\[m = \frac{\alpha_z V_m}{\nu_{dс}}, \] \hspace{1cm} (10)

где \(V_m \) is molar volume of elastomeric matrix; \(\nu_{dс} \) — average volume of disperse particle.

Molar volume of elastomeric matrix is equal to:
В м = α3 В м.д + (1 − α3) В м.а,
где $V_{м.д}$ — молярный объем дисперсионной частицы; $V_{м.а}$ — молярный объем полимерной матрицы. $V_{м.д} = M_д / \rho_д$, $V_{м.а} = M_а / \rho_а$ ($M_д$ и $M_а$ — молекулярные веса; $\rho_д$ и $\rho_а$ — плотности дисперсионной частицы и аморфной эластомерной матрицы соответственно).

$V_{м} = V_{м.д} + α_3 (V_{м.д} − V_{м.а})$.

Теперь, учитывая (10) и (12), мы можем рассчитать число дисперсных частиц m:

$$m = \frac{α_3 (V_{м.д} + α_3 (V_{м.д} − V_{м.а}))}{V_{дс}}.$$

Молекулярный вес всех повторяющихся единиц в эластомерной матрице равен $M_c = M_0 N_A (1 − α_3)$, а величина M_c описывается следующим соотношением:

$$M_c = \frac{M_0 N_A (1 − α_3) v_{дс}}{m}.$$

Если величина $v_{дс}$ выражена в Å³, тогда $N_д = 0.6022$. Подставляя (14) в (8), получаем:

$$E = \frac{3 \rho_д RT}{\alpha_3 (V_{м.д} + α_3 (V_{м.д} − V_{м.а}))} \left[\frac{1 + \frac{α_3 (V_{м.д} + α_3 (V_{м.д} − V_{м.а}))}{N_A (1 − α_3) \sum \Delta V_{л.зв}}} {\sum \Delta V_{л.зв}} \right].$$

Формула (15) позволяет провести расчет модуля высокоэластичности в зависимости от концентрации дисперсных частиц, их объема, и всех параметров, таких как: средний объем дисперсной частицы $v_{дс}$, плотность аморфной матрицы $\rho_а$ и Ван-дер-Ваальсов объем повторяющегося звена $\sum \Delta V_{л.зв}$ линейных фрагментов, связывающих дисперсные частицы.

The formula (15) allows to calculate the rubber elasticity modulus considering disperse particle density, their volume, and all their parameters, such as the average volume of disperse particle $v_{дс}$, amorphous matrix density $\rho_а$ and Van der Waals volume of recurring units $\sum \Delta V_{л.зв}$ in linear fragments, bonding disperse particles.
В качестве примера рассмотрим расчеты модуля упругости для смеси ПС с эластомерной матрицей ПБ, содержащей 10 % мол ИП. Исходные данные для такой смеси содержатся в табл. 2 (все расчеты проведены с помощью ЭВМ-программы «Каскад», ИНЭОС РАН).

Табл. 2. Физические параметры компонентов смеси

Компонент / Component	$\left(\sum_{i} \Delta V_i \right)_{\text{п.м.}}$ Å3	M'_n	M'_a	ρ_a, г/см3 / ρ_a, г/см3	$\rho_{d'}$, г/см3 / $\rho_{d'}$, г/см3
ПС / PS	110	—	104	—	1,07
90 % ПБ + 10 % ИП / 90 % PB + 10 % IP	76,9	71,2	—	1,00	—

Подставляя эти параметры в формулу (15), получаем зависимости модуля высокозластичности от концентрации дисперсных частиц α_z при различном размере дисперсной частицы $v_{d'}$. Эти зависимости показаны на рис. 1.

Рис. 1. Зависимости модуля высокозластичности от степени заполнения α_z. Объем дисперсной частицы равен: 1 — 2000; 2 — 1500; 3 — 1000; 4 — 500; 5 — 300Å3

As an example let's regard elasticity modulus calculation for the blend of PS with elastomeric matrix PB containing 10 % mol of IP. The basic data for the blend is given in Tab. 2 (all the calculations were made by the computer program "Kaskad", Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences)

Tab. 2. Physical parameters of blend components

Component / Component	$\left(\sum_{i} \Delta V_i \right)_{\text{p.m.}}$ Å3	M'_n	M'_a	ρ_a, г/см3 / ρ_a, г/см3	$\rho_{d'}$, г/см3 / $\rho_{d'}$, г/см3
ПС / PS	110	—	104	—	1,07
90 % ПБ + 10 % ИП / 90 % PB + 10 % IP	76,9	71,2	—	1,00	—

Inserting these parameters in the formula (15), we obtain the dependence of the rubber elasticity modulus from the disperse particle density α_z at different disperse particle size $v_{d'}$. Fig. 1 shows the dependencies.

Fig. 1. The dependencies of the rubber elasticity modulus on occupation degree α_z. The disperse particle volume is equal to: 1 — 2000; 2 — 1500; 3 — 1000; 4 — 500; 5 — 300Å3
Можно видеть, что модуль высокоэластичности увеличивается со степенью заполнения, и чем меньше размер твердых частиц, тем больше модуль высокоэластичности. Причина заключается в том, что имеется конкуренция между β — величиной, зависящей от объема дисперсной частицы, и величиной \(M_c \). Небольшие частицы обеспечивают резкое уменьшение \(M_c \) при одной и той же их концентрации и уменьшение величины β. Обе эти характеристики входят в выражение (8), и влияние \(M_c \) больше, чем влияние β.

2) Твердые частицы дисперсии химически не реагируют с высокоэластичной матрицей. Зависимость модуля упругости от химического строения полимеров в смеси будем описывать с помощью уравнения (16), которое было предложено в [18—20]. Это уравнение записывается следующим образом:

\[
E = \frac{\sum_i \Delta V_i S_i}{\sum_i \Delta V_i S_i k_i l_i},
\]

где \(\Delta V_i \) — Ван-дер-Ваальсов объем \(i \)-го атома в повторяющемся звене; \(S_i \) — Ван-дер-Ваальсовая поверхность \(i \)-го атома, через которое передается межмolecularное взаимодействие; \(k_i \) — коэффициент упругости связи \(i \)-го атома; \(l_i \) — характеристический размер связи.

Величина \(\sum_i \frac{\Delta V_i S_i}{k_i l_i} \) может быть записана как

\[
\sum_i \frac{\Delta V_i S_i}{k_i l_i} = \frac{\sum_i \Delta V_i}{E}.
\] (17)

С учетом выражения (17) зависимость для описания модуля упругости смеси от концентрации компонента 2 для двухкомпонентной системы с учетом того, что \(a_{m,1} + a_{m,2} = 1 \), выглядит следующим образом:

It is clear that the rubber elasticity modulus increases with the occupation degree, and the less are the solid particles the more is the rubber elasticity modulus. The reason is that there is a concurrence between \(\beta \) — value, depending on the disperse particle volume and volume \(M_c \). Small particles ensure sharp decrease of \(M_c \) at the same density, and the decrease of the volume \(\beta \). Both of the characteristics are included in the formula (8), and the influence of \(M_c \) is greater than the influence of \(\beta \).

2) Solid disperse particles do not provoke a chemical reaction with high-elasticity matrix. The dependence of the modulus of elasticity on the polymer chemical structure in the blend can be expressed by the equation (16), which was presented in [18—20]. This equation is written down as:

\[
E = \frac{\sum_i \Delta V_i S_i}{\sum_i \Delta V_i S_i k_i l_i},
\]

where \(\Delta V_i \) — Van der Waals volume of \(i \)-th atom in the repeating unit; \(S_i \) — Van der Waals surface of \(i \)-th atom, which transmits intermolecular interaction; \(k_i \) — elasticity coefficient of \(i \)-th atom binding; \(l_i \) — characteristic size of binding.

Value \(\sum_i \frac{\Delta V_i S_i}{k_i l_i} \) can be written down as

\[
\sum_i \frac{\Delta V_i S_i}{k_i l_i} = \frac{\sum_i \Delta V_i}{E}.
\] (17)

Considering (17) the dependence for describing the modulus of elasticity of the blend on component density 2 for 2-component system, considering that, \(a_{m,1} + a_{m,2} = 1 \), is as follows:
где $\alpha_{m,1}$ и $\alpha_{m,2}$ — мольные доли полимеров 1 и 2 соответственно; E_1 и E_2 — модули упругости полимеров 1 и 2 соответственно; $\left(\sum_i \Delta V_i\right)_1$ и $\left(\sum_i \Delta V_i\right)_2$ — Ван-дер-Ваальсовы объёмы повторяющихся звеньев для полимеров 1 и 2 соответственно.

Проведем некоторые оценки в качестве примера. Рассмотрим несовместимую систему ПММА (полиметилметакрилат) и СПЛ 1,4 (80 % мол) и 1,2-ПБ (20 % мол). Расчетный модуль упругости ПММА (полимер 2) при комнатной температуре равен 2570 МПа (рассчитано по методу Бицерано [21]). Для упомянутого СПЛ (полимер 1) $E_1 = 0,756$ МПа (рассчитано с помощью ЭВМ-программы "Каскад", ИНЭОС РАН). При введении дисперсии твердых частиц в эластомерную матрицу зависимость E от молярной доли $\alpha_{m,2}$ ПММА показана на рис. 2.

Теперь проанализируем влияние Ван-дер-Ваальсовых объемов повторяющихся звеньев компонентов смеси на модуль упругости. Рассмотрим гипотетический случай, при котором модули упругости E_1 и E_2 исходных компонентов остаются постоянными, но отношения Ван-дер-Ваальсовых объемов различны. Расчеты по формуле (18) приводят к следующим зависимостям модуля упругости от содержания твердого полимера (рис. 3).
Рис. 2. Зависимость модуля упругости смеси от молярной доли ПММА

Fig. 2. The dependence of module of blend elasticity on molar fraction of PMMA

Рис. 3. Зависимости модуля упругости от молярной доли твердого полимера в эластомерной матрице. Отношение

\[
\left(\frac{\sum \Delta V_i}{\sum \Delta V_i}\right)_2 / \left(\frac{\sum \Delta V_i}{\sum \Delta V_i}\right)_1 \text{ равно: } 1 - 0,5; 2 - 0,7; 3 - 0,9; 4 - 1,1; 5 - 1,3; 6 - 1,5
\]

Fig. 3. The dependence of the modulus of elasticity on the molar fraction of the solid polymer in the elastomeric matrix. The ratio

\[
\left(\frac{\sum \Delta V_i}{\sum \Delta V_i}\right)_2 / \left(\frac{\sum \Delta V_i}{\sum \Delta V_i}\right)_1 \text{ is equal to: } 1 - 0,5; 2 - 0,7; 3 - 0,9; 4 - 1,1; 5 - 1,3; 6 - 1,5
\]
Видно, что чем выше отношение Ван-дер-Ваальсовых объемов \(\frac{\sum \Delta V_i}{\sum \Delta V_i} \), тем больше величина модуля упругости при одинаковой молярной доле твердого полимера. Проведенный анализ показал, что при введении дисперсии твердого полимера в эластомерную матрицу, который химически не реагирует с ней, модуль упругости увеличивается незначительно даже при заметной концентрации твердых частиц.

Б. Дисперсия твердого полимера 1 в твердом полимере 2

Для проведения анализа используем формулу (18). Проведем некоторые оценки в качестве примера. Например, если \(E_1 = 2000 \) МПа и \(E_2 = 4000 \) МПа, зависимости модуля упругости от молярной доли \(\alpha_{m,2} \) полимера 2 являются следующими (рис. 4).

It is seen that the higher is the ratio of Van der Waals volumes \(\frac{\sum \Delta V_i}{\sum \Delta V_i} \), the greater is the value of the modulus of elasticity with the same molar fraction of solid polymer. The analysis showed that in case of incorporating of solid polymer dispersion in the elastomeric matrix, which does not provoke chemical reaction with it, the modulus doesn't increase greatly even at the big concentration of solid particles.

B. Dispersion of solid polymer 1 in the solid polymer 2

For the analysis we use the formula (18). Let's give some evaluations as an example. For example, if \(E_1 = 2000 \) MPa and \(E_2 = 4000 \) MPa, the dependences of the elasticity modulus on the molar fraction \(\alpha_{m,2} \) of polymer 2 are the following (Fig. 4).

![Рис. 4. Зависимости модуля упругости от молярной доли полимера 2 при различных отношениях](image_url)

Рис. 4. Зависимости модуля упругости от молярной доли полимера 2 при различных отношениях \(\frac{\sum \Delta V_i}{\sum \Delta V_i} = r \). Величины \(r \) равны: 1 — 0,5; 2 — 0,75; 3 — 1,0; 4 — 1,25; 5 — 1,50; 6 — 2,0; 7 — 3,0

Fig. 4. The dependences of the modulus of elasticity on molar fraction of polymer 2 in different ratios \(\frac{\sum \Delta V_i}{\sum \Delta V_i} = r \). Values \(r \) are equal to: 1 — 0.5; 2 — 0.75; 3 — 1.0; 4 — 1.25; 5 — 1.50; 6 — 2.0; 7 — 3.0
Рис. 4 демонстрирует зависимости E от $\alpha_{м,2}$ при различных отношениях $\left(\sum \Delta V_i\right)_2 / \left(\sum \Delta V_i\right)_1 = r$. Можно видеть, что чем ниже значение отношения r, тем меньше величина модуля при одной и той же молярной доле полимера 2, а сами зависимости меняют кривизну.

В. Дисперсия твердого частично кристаллического полимера 1 в твердом аморфном полимере 2

Для описания модуля упругости частично кристаллического полимера используется уравнение (18). Обозначим кристаллический полимер как полимер 1 и аморфный полимер как полимер 2. Используя уравнение (18), получаем:

$$E = \frac{1 + \alpha_{м,2} \left(\sum \Delta V_i\right)_1^2 - 1}{A + \alpha_{м,2} \left(\sum \Delta V_i\right)_2 - \frac{A}{B}}$$

(19)

где

$$A = \frac{0,6022 \left(1 - \alpha_{кр}\right) \rho_{кр} \rho_a V_{кр}}{\alpha_{кр} \left(\rho_a - \rho_{кр}\right)},$$

$$B = \frac{3 \rho_a R T}{1 + \frac{M_{кр,0} \alpha_{кр} \left(\rho_a - \rho_{кр}\right) + \rho_{кр}}{0,6022 \left(1 - \alpha_{кр}\right) \rho_{кр} \rho_a \left(\sum \Delta V_i\right)_{кр}}}.$$
сальная газовая постоянная; T — абсолютная температура; $M_{кр,0}$ — молекулярный вес повторяющегося звена кристаллического полимера.

Теперь проведем некоторые оценки. Введем следующие физические характеристики: $\rho_a = 0.9$ г/см3, $\rho_{кр} = 1.0$ г/см3, $M_{кр,0} = 28$, $\left(\sum_i \Delta V_i\right)_{кр} = \left(\sum_i \Delta V_i\right)_1 = 25$ Å3, $\left(\sum_i \Delta V_i\right)_2 = 80$ Å3. Подставляя эти характеристики в уравнение (19), получаем зависимости модуля упругости от молярной доли твердого аморфного полимера $\alpha_{м,2}$ (рис. 5) при разной степени кристалличности частично-кристаллического полимера 1. Можно видеть, что модуль упругости смеси "частино-кристаллический полимер + твердый аморфный полимер" увеличивается с молярной долей $\alpha_{м,2}$. Когда степень кристалличности увеличивается, модуль упругости также возрастает.

Рис. 5. Зависимости модуля упругости от молярной доли аморфного твердого полимера $\alpha_{м,2}$. Объем кристаллита $V_{кр} = 1000$ Å3. Степень кристалличности полимера 1 равна: $1 — 0.3; 2 — 0.4; 3 — 0.5; 4 — 0.6; 5 — 0.7$

Fig. 5. The dependence of the modulus on molar fraction of amorphous solid polymer $\alpha_{м,2}$. Crystallite volume $V_{кр} = 1000$ Å3. Crystallinity degree of the polymer 1 is equal to: $1 — 0.3; 2 — 0.4; 3 — 0.5; 4 — 0.6; 5 — 0.7$
Таким образом, возможность расчета модуля упругости продемонстрирована для различных ситуаций: дисперсия твердого полимера в высокозластической матрице; дисперсия твердого полимера 1 в твердом полимере 2; дисперсия твердого частино-кристаллического полимера в твердом полимере 2. Зависимости модулей упругости от молярной и объемной долей обладают различной формой, зависят от Ван-дер-Ваальсова объема компонентов, молекулярного веса повторяющихся звеньев, плотности компонентов, объема доменов и т.д. Сама форма зависимостей определяется физическим состоянием (высокоэластический полимер, кристаллический полимер, твердый аморфный полимер) смешиваемых компонентов.

Thus, the possibility of calculating the modulus of elasticity is presented for different situations: the dispersion of the solid polymer in the high-elasticity matrix, the dispersion of the solid polymer 1 in solid polymer 2; the dispersion of solid partially crystalline polymer in the solid polymer 2. The dependence of the modulus of elasticity on molar and volume fraction have different forms, depending on Van der Waal component volume, the molecular weight of the recurring units, component density, domain volume, etc. The very form of the dependency is determined by the physical state (high-elasticity polymer, crystalline polymer, solid amorphous polymer) of the blend components.

References

1. Buthaina A. Ibrahim, Karrer M. Kadum. Influence of Polymer Blending on Mechanical and Thermal Properties // Modern Applied Science. 2010, vol. 4, no. 9, pp. 157—161. DOI: http://dx.doi.org/10.5539/mas.v4n9p157.

2. Saxe P., Freeman C., Rigby D. Mechanical Properties of Glassy Polymer Blends and Thermosets // Materials Design. Inc. Angel Fire: NM and San Diego. CA. LAMMPS Users’ Workshop and Symposium: Albuquerque, NM. August 8, 2013. Available at: http://lammps.sandia.gov/workshops/Aug13/Rigby/DRigby_LammpsWorkshop_Aug2013.pdf. Date of access: 12.04.2014.

3. Van Hemelrijck E., Puyvelde V., Velankar S., Macosko C.W., Moldenaers P. Interfacial Elasticity and Coalescence Suppression in Compatibilized Polymer Blends // J. Rheol. 2004, vol. 48, no. 1, pp. 143—158. DOI: http://dx.doi.org/10.1122/1.1634987.

4. López-Barrón C.R., Macosko C.W. Rheological and Morphological Study of Cocontinuous Polymer Blends during Coarsening // J. Rheol. 2012, vol. 56, no. 6, pp. 1315—1334. DOI: http://dx.doi.org/10.1122/1.4739067.
5. Doi M., Ohta T. Dynamics and rheology of complex interfaces // J. Chem. Phys. 1991. Vol. 95. Pp. 1242—1248.
6. Anastasiadis S.H., Gancarz I., Koberstein J.T. Interfacial tension of immiscible polymer blends: temperature and molecular weight dependence // Macromolecules. 1988. Vol. 21 (10). Pp. 2980—2987.
7. Biresaw G., Carriere C., Sammler R. Effect of temperature and molecular weight on the interfacial tension of PS/PDMS blends // Rheol. Acta. 2003. Vol. 42. No. 1—2. Pp. 142—147.
8. Ellingson P.C., Strand D.A., Cohen A., Sammler R.L., Carriere C.J. Molecular Weight Dependence of Polystyrene/Poly(Methyl Methacrylate) Interfacial Tension Probed by Imbedded-Fiber Retraction // Macromolecules. 1994. Vol. 27. No. 6. Pp. 1643—1647.
9. Gramespacher H., Meissner J. Interfacial tension between polymer melts measured by shear oscillations of their blends // J. Rheol. 1992. Vol. 36. No. 6. Pp. 1127—1141.
10. Lacroix C., Bousmina M., Carreau P.J., Favis B.D., Michel A. Properties of PETG/EVA Blends: 1. Viscoelastic, Morphological and Interfacial Properties // Polymer. 1996. Vol. 37. No. 14. Pp. 2939—2947.
11. Li R., Yu W., Zhou C. Rheological characterization of droplet-matrix versus co-continuous morphology // J. Macromol. Sci. Series B. Physics. 2006, vol. 45, no. 5, pp. 889—898.
12. Chopra D., Kontopoulou M., Vlassopoulos D., Hatzikiriakos S. Effect of Maleic Anhydride Content on the Rheology and Phase behavior of Poly(styrene-co-maleic anhydride)/Poly(methyl methacrylate) blends // G. Rheol. Acta. 2001. Vol. 41. Pp. 10—24.
13. Guenther G.K., Baird D.G. An evaluation of the Doi-Ohta theory for an immiscible polymer blend // J. Rheol. 1996. Vol. 40. No. 1. Pp. 1—20.
14. Hashimoto T., Takenaka M., Jinmai H. Scattering Studies of Self-assembling Processes of Polymer Blends in Spi-
14. Hashimoto T., Takenaka M., Jinai H. Scattering Studies of Self-assembling Processes of Polymer Blends in Spinodal Decomposition. J. Appl. Crystallogr. 1991, vol 24, pp. 457—466. DOI: http://dx.doi.org/10.1107/S0021889891000444.

15. Jinai H., Koga T., Nishikawa Y., Hashimoto T., Hyde S.T. Curvature Determination of Spinodal Interface in a Condensed Matter System. Phys. Rev. Lett. 1997, vol 78, no. 11, pp. 2248—2251. DOI: http://dx.doi.org/10.1103/PhysRevLett.78.2248.

16. Lee H.M., Park O.O. Rheology and Dynamics of Immiscible Polymer Blends. J. Rheol. 1994, vol. 38, No. 5, pp. 1405—1425.

17. Vointseva I.I., Askadskii A.A. Interpolymers (Paired Polymers) // Chemistry Reviews: Soviet Scientific Reviews. Paris, Philadelphia, Tokyo, Melbourne : Harwood Academic Publishers, Chur-Reading, 1991. Vol. 16. Part 2. 86 p.

18. Askadskii A.A. Physical Properties of Polymers: Prediction and Control. Amsterdam: Gordon and Breach Publishers, 1996. 350 p.

19. Askadskii A.A. Computational Materials Science of Polymers. Cambridge : Cambridge International Science Publishing, 2003. 650 p.

20. Askadskiy A.A., Matveev Yu.I., Matveeva T.P. Обобщенное уравнение для оценки равновесного модуля высокой эластичности и величины Мс, действующее для редких и частых сеток // Высокомолекулярные соединения. 1988. Т. 30. № 12. Серия А. С. 2542—2550.

21. Bicerano J. Prediction of Polymer Properties. New York : Marcel Dekker, Inc., 1996. 528 p.

Поступила в редакцию в июне 2014 г.

Об авторах: Мацеевич Татьяна Анатольевна — кандидат физико-математических наук, доцент, профессор кафедры высшей математики, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26, tmats@rambler.ru;

Попова Марина Николаевна — доктор химических наук, доцент, профессор кафедры технологии композиционных материалов и прикладной химии, Московский государственный строительный университет (ФГБОУ ВПО

About the authors: Matseevich Tat’yana Anatol’evna — Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Higher Mathematics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe

nodal Decomposition // J. Appl. Crystallogr. 1991. Vol. 24. pp. 457—466.

15. Jinai H., Koga T., Nishikawa Y., Hashimoto T., Hyde S.T. Curvature determination of spinodal interface in a condensed matter system // Phys. Rev. Lett. 1997. Vol. 78. No. 11. Pp. 2248—2251.

16. Lee H.M., Park O.O. Rheology and dynamics of immiscible polymer blends // J. Rheol. 1994. Vol. 38. No. 5. Pp. 1405—1425.
shosse, Moscow, 129337, Russian Federation, tmats@rambler.ru;

Popova Marina Nikolaevna — Doctor of Chemical Sciences, Associate Professor, Department of Composite Materials Technology and Applied Chemistry, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation, popovavologda@yandex.ru;

Volodina Aleksandra Evgen’evna — postgraduate student, Department of Composite Materials Technology and Applied Chemistry, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation, volodinaalex@mail.ru;

Askadskiy Andrey Aleksandrovich — Doctor of Chemical Sciences, Professor, Department of Composite Materials Technology and Applied Chemistry, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation, fndrey@ineos.ac.ru.

F o r c i t a t i o n: Matseevich T.A., Popova M.N., Volodina A.E., Askadskiy A.A. Vliyanie razmera dispersnykh chastits na modul’ uprugosti smesey polimerov / Influence of Disperse Particles on the Modulus of Elasticity of Polymer Blends. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 8, pp. 73—90.