Border basis relaxation for polynomial optimization

Marta Abril Buceroa, Bernard Mourraina

aEPI GALAAD, INRIA Méditerranée, 204 Route des Lucioles, BP 93, 06902 Valbonne, France

Abstract

A relaxation method based on border basis reduction which improves the efficiency of Lasserre’s approach is proposed to compute the optimum of a polynomial function on a basic closed semi algebraic set. A new stopping criterion is given to detect when the relaxation sequence reaches the minimum, using a sparse flat extension criterion. We also provide a new algorithm to reconstruct a finite sum of weighted Dirac measures from a truncated sequence of moments, which can be applied to other sparse reconstruction problems. As an application, we obtain a new algorithm to compute zero-dimensional minimizer ideals and the minimizer points or zero-dimensional G-radical ideals. Experimentations show the impact of this new method on significant benchmarks.

Key words: Polynomial optimization, moment matrices, flat extension, border basis

1. Introduction

Computing the global minimum of a polynomial function f on a semi-algebraic set is a difficult but important problem, with many applications. A relaxation approach was proposed in (Lasserre., 2001) (see also (Parrilo, 2003), (Shor, 1987)) which approximates this problem by a sequence of finite dimensional convex optimization problems. These optimization problems can be formulated in terms of linear matrix inequalities on moment matrices associated to the set of monomials of degree $\leq t \in \mathbb{N}$ for increasing values of t. They can be solved by Semi-Definite Programming (SDP) techniques. The sequence of minima converges to the actual minimum f^* of the function under some hypotheses (Lasserre, 2001). In some cases, the sequence even reaches the minimum f^* in a finite number of steps (Laurent, 2007; Nie et al., 2006; Marshall, 2009; Demmel et al., 2007; Ha and Pham, 2010; Nie, 2011). This approach proved to be particularly fruitful in many problems (Lasserre, 2009). In contrast with numerical methods such as gradient descent

\textit{Email addresses:} Marta.Abril_Bucero@inria.fr (Marta Abril Bucero), Bernard.Mourrain@inria.fr (Bernard Mourrain).

Preprint submitted to Journal of Symbolic Computation June 24, 2014
methods, which converge to a local extrema but with no guaranty for the global solution, this relaxation approach can provide certificates for the minimum value \(f^* \) in terms of sums of squares representations.

From an algorithmic and computational perspective, some issues need however to be considered.

The size of the SDP problems to be solved is a bottleneck of the method. This size is related to the number of monomials of degree \(\leq t \) and is increasing exponentially with the number of variables and the degree \(t \). Many SDP solvers are based on interior point methods which provide an approximation of the optimal moment sequence within a given precision in a polynomial time: namely \(O((p s^{3.5} + c p^2 s^{2.5} + c p^3 s^{0.5}) \log(\epsilon^{-1})) \) arithmetic operations where \(\epsilon > 0 \) is the precision of the approximation, \(s \) is bounding the size of the moment matrices, \(p \) is the number of parameters (usually of the order \(s^2 \)) and \(c \) is the number of constraints [Nesterov and Nemirovski, 1994]. Thus reducing the size \(s \) or the number of parameters \(p \) can improve significantly the performance of these relaxation methods. Some recent works address this issue, using symmetries (see e.g. [Riener et al., 2013]) or polynomial reduction (see e.g. [Lasserre et al., 2012]). In this paper, we extend this latter approach.

While determining the minimum value of a polynomial function on a semi-algebraic set is important, computing the points where this minimum is reached if they exist, is also critical in many applications. Determining when and how these minimizer points can be computed from the relaxation sequence is a problem that has been addressed for instance in [Henrion and Lasserre, 2003; Nie, 2012] using full moment matrices. This approach has been used for solving polynomial equations [Laurent, 2007; Lasserre et al., 2008, 2009; Lasserre, 2009].

As an alternative approach, the optimization problem can be reformulated as solving polynomial equations related to the (minimal) critical value of the polynomial \(f \) on a semi-algebraic set. Polynomial solvers based for instance on Gröbner basis or border basis computation can then be used to recover the real critical points from the complex solutions of (zero-dimensional) polynomial systems (see e.g. [Parrilo and Sturmfels, 2003; Safey El Din, 2008; Greuet and Safey El Din, 2011]). This type of methods relies entirely on polynomial algebra and univariate root finding. So far, there is no clear comparison of these elimination methods and the relaxation approaches.

Contributions. We propose a new method which combines Lasserre’s SDP relaxation approach with polynomial algebra, in order to increase the efficiency of the optimization algorithm. Border basis computations are considered for their numerical stability [Mourrain and Trébuchet, 2005; Mourrain and Trébuchet, 2008]. In principle, any graded normal form techniques could be used here.

A new stopping criterion is given to detect when the relaxation sequence reaches the minimum, using a flat extension criterion from [Laurent and Mourrain, 2004]. We also provide a new algorithm to reconstruct a finite sum of weighted Dirac measures from a truncated sequence of moments. This reconstruction method can be used in other problems such as tensor decomposition [Brachat et al., 2010] and multivariate sparse interpolation [Giesbrecht et al., 2009].

As shown in [Abril Bucero and Mourrain, 2013; Nie et al. 2006; Demmel et al., 2007; Marshall, 2004; Nie, 2011; Ha and Pham, 2014], an exact SDP relaxation can be constructed for “well-posed” optimization problems. As an application, we obtain a new algorithm to compute zero-dimensional minimizer ideals and the minimizer points, or
zero-dimensional G-radical. Experimentations show the impact of this new method compared to the previous relaxation constructions.

Content. The paper is organized as follows. Section 2 describes the minimization problem, the SDP relaxation hierarchies and the concept of optimal linear form. Section 3 describes new algorithms to check exact relaxations and to compute the minimizers for zero-dimensional minimizer ideals. Section 4 analyses cases for which an exact relaxation can be constructed. Section 5 concludes with the description of the algorithmization and experimentation.

Notation. Let \(\mathbb{K}[x] \) be the set of the polynomials in the variables \(x = (x_1, \ldots, x_n) \), with coefficients in the field \(\mathbb{K} \). Hereafter, we will choose \(\mathbb{K} = \mathbb{R} \) or \(\mathbb{C} \). Let \(\overline{\mathbb{K}} \) denote the algebraic closure of \(\mathbb{K} \). For \(\alpha \in \mathbb{N}^n \), \(x^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n} \) is the monomial with exponent \(\alpha \) and degree \(|\alpha| = \sum \alpha_i \). The set of all monomials in \(x \) is denoted \(\mathcal{M} = \mathcal{M}(x) \). For a polynomial \(f = \sum f_\alpha x^\alpha \), its support is \(\text{supp}(f) := \{ x^\alpha | f_\alpha \neq 0 \} \), the set of monomials occurring with a nonzero coefficient in \(f \).

For \(t \in \mathbb{N} \) and \(F \subseteq \mathbb{K}[x] \), we introduce the following sets: \(F_t \) is the set of elements of \(F \) of degree \(\leq t \); \(\langle F \rangle = \{ \sum_{f \in F} \lambda_f f | \lambda_f \in \mathbb{K} \} \) is the linear span of \(F \); if \(F \) is a vector space, \(F^* \) is the dual space of linear forms from \(F \) to \(\mathbb{K} \); \(\{ \sum_{f \in F} p_f f | p_f \in \mathbb{K}[x], f \in F \} \) is the ideal in \(\mathbb{K}[x] \) generated by \(F \); \(\langle F \rangle_t \) is the vector space spanned by \(\{ x^\alpha f | f \in F_t, |\alpha| \leq t - \deg(f) \} \); \(F \cdot F := \{ pq | p, q \in F \} \); \(\Sigma^2(F) = \{ \sum_{i=1}^s f_i^2 | f_i \in F \} \) is the set of finite sums of squares of elements of \(F \); for \(F = \{ f_1, \ldots, f_m \} \subseteq \mathbb{K}[x] \), \(\prod(F) = \{ \prod_{i=1}^m f_i^{\epsilon_i} | \epsilon_i \in \{0,1\} \} \).

Hereafter, we will consider \(\mathbb{K} = \mathbb{R} \).

2. Minimization problem

Let \(f, g_1^+, \ldots, g_n^+ \in \mathbb{R}[x] \) be polynomial functions. The minimization problem that we consider all along the paper is the following: compute

\[
\inf_{x \in \mathbb{R}^n} f(x)
\]

\[
s.t. \quad g_1^0(x) = \cdots = g_n^0(x) = 0
\]

\[
g_i^+(x) \geq 0, \ldots, g_n^+(x) \geq 0
\]

More precisely, the objectives of the method we are going to describe are to compute the minimum value when \(f \) is bounded by below and the points where this minimum value is reached if they exist.

A set of constraints \(\mathbf{g} = \{ g_1^0, \ldots, g_n^0, g_1^+, \ldots, g_n^+ \} \in \mathbb{R}[x] \) is the union of a finite subset \(g^0 = \{ g_1^0, \ldots, g_n^0 \} \) corresponding to the equality constraints and a finite subset \(g^+ = \{ g_1^+, \ldots, g_n^+ \} \) corresponding to the non-negativity constraints. We say that \(\mathbf{g} \subset \mathbf{g}' \) if \(g^0 \subset g'^0 \) and \(g^+ \subset g'^+ \).

The basic semi-algebraic set defined by the constraints \(\mathbf{g} \) will be denoted \(S(\mathbf{g}) = \{ x \in \mathbb{R}^n | g_1^0(x) = \cdots = g_n^0(x) = 0, g_1^+(x) \geq 0, \ldots, g^+_n(x) \geq 0 \} \). Hereafter, \(S := S(\mathbf{g}) \) will correspond to the basic semi-algebraic set defined by the constraints of our minimisation problem (1). We assume that \(S \neq \emptyset \).

When \(n_1 = n_2 = 0 \), there is no constraint and \(S = \mathbb{R}^n \). In this case, we are considering a global minimization problem.
The points \(x^* \in \mathbb{R}^n \) which satisfies \(f(x^*) = \inf_{x \in S} f(x) \) are called the minimizers of \(f \) on \(S \). The set of minimizers is denoted \(V_{\min} = \{ x^* \in S \text{ s.t. } f(x^*) = f^* \} \). The ideal of \(\mathbb{R}[x] \) defining the set \(V_{\min} \) is denoted \(I_{\min} \).

If the set of minimizers is not empty, we say that the minimization problem is feasible. The minimization problem is not feasible means that \(V_{\min} = \emptyset \) and \(I_{\min} = \mathbb{R}[x] \).

2.1. Hierarchies of relaxation problems

In this section, we describe the finite dimensional convex optimization problems that we consider.

Definition 2.1. Given a finite dimensional vector space \(E \subset \mathbb{R}[x] \) and a set of constraints \(G \subset \mathbb{R}[x] \), we define the quadratic module of \(G \) on \(E \) as

\[
Q_{E,G} = \left\{ \sum_{g \in G^0} gh + \sum_{g' \in G^+} g' h' \mid h \in E, gh \in \langle E \cdot E \rangle, h' \in \Sigma^2(E), g' h' \in \langle E \cdot E \rangle \right\}.
\]

If \(G^* \subset \mathbb{R}[x] \) is the set of constraints such that \(G^{*0} = G^0 \) and \(G^{*+} = \prod(G^+) \), the (truncated) quadratic module \(Q_{E,G^*} \) is called the (truncated) preordering of \(G \) and denoted \(Q_{E;G} \) or \(\mathcal{P}_{E,G} \).

By construction, \(Q_{E,G} \subset \langle E \cdot E \rangle \) is a cone of polynomials which are non-negative on the semi-algebraic set \(S \).

We consider now its dual cone.

Definition 2.2. Given a finite dimensional vector space \(E \subset \mathbb{R}[x] \) which contains 1 and a set of constraints \(G \subset \mathbb{R}[x] \), we define

\[
\mathcal{L}_{E,G} := \{ \Lambda \in \langle E \cdot E \rangle^* \mid \Lambda(p) \geq 0, \forall p \in Q_{E,G}, \Lambda(1) = 1 \}.
\]

The convex set associated to the preordering \(Q_{E,G}^* = Q_{E,G^*} \) is denoted \(\mathcal{L}_{E,G}^* \).

By this definition, for any element \(\Lambda \in \mathcal{L}_{E,G} \) and any \(g \in \langle G^0 \rangle \cap E \), we have \(\Lambda(g) = 0 \).

We introduce now truncated Hankel operators, which will play a central role in the construction of the minimizer ideal of \(f \) on \(S \).

Definition 2.3. For a linear form \(\Lambda \in \langle E \cdot E \rangle^* \), we define the map \(H_\Lambda^E : E \to E^* \) by \(H_\Lambda^E(p)(q) = \Lambda(p)q \) for \(p, q \in E \). Thus \(H_\Lambda^E \) is called a truncated Hankel operator, defined on the subspace \(E \).

Its matrix in the monomial and dual bases of \(E \) and \(E^* \) is usually called the moment matrix of \(\Lambda \). The kernel of this truncated Hankel operator will be used to compute generators of the minimizer ideal, as we will see.

Definition 2.4. Let \(E \subset \mathbb{R}[x] \) such that \(1 \in E \) and a set of constraints \(G \subset \mathbb{R}[x] \). We define the following extrema:

- \(f^* = \inf_{x \in S} f(x) \),
- \(f^E_{E,G} = \inf \{ \Lambda(f) \text{ s.t. } \Lambda \in \mathcal{L}_{E,G} \} \),
- \(f^{\text{sos}}_{E,G} = \sup \{ \gamma \in \mathbb{R} \text{ s.t. } f - \gamma \in Q_{E,G} \} \).

By convention if the sets are empty, \(f^{\text{sos}}_{E,G} = -\infty \) and \(f^\mu_{E,G} = +\infty \).
If $E = \mathbb{R}[x]$, and $G^0 = \langle g^0 \mid 2t \rangle$, we also denote $f_{E,G}^\mu$ by $f_{t,G}^\mu$ and $f_{E,G}^{sos}$ by $f_{t,G}^{sos}$.

We easily check that $f_{E,G}^{sos} \leq f_{t,G}^\mu$, since if there exists $\gamma \in \mathbb{R}$ such that $f - \gamma = q \in Q_{E,G}$ then $\forall \Lambda \in L_{E,G}, \Lambda(f - \gamma) = \Lambda(f) - \gamma = \Lambda(q) \geq 0$.

If $S(G) \subset S$, we also have $f_{E,G}^\mu \leq f^*$ since for any $s \in S$, the evaluation $1_s : p \in \mathbb{R}[x] \mapsto p(\mathbf{s})$ is in $L_{E,G}$.

Notice that if $E \subset E'$, $G \subset G'$ then $Q_{E,G} \subset Q_{E',G'}$, $L_{E,G} \subset L_{E,G}$, $f_{E,G}^\mu \leq f_{E',G'}^\mu$ and $f_{E,G}^{sos} \leq f_{E',G'}^{sos}$.

2.2. Full moment matrix relaxation hierarchy

The relaxation hierarchies introduced in (Lasserre 2001) correspond to the case where $E = \mathbb{R}[x]$, $G^0 = \langle g^0 \mid 2t \rangle$ and $G^+ = g^+$. The quadratic module $Q_{\mathbb{R}[x],G}$ is denoted $Q_{t,g}$ and $L_{\mathbb{R}[x],G}$ is denoted $L_{t,g}$. Hereafter, we will also call Lasserre hierarchy, the full moment matrix relaxation hierarchy. It corresponds to the sequences

$$\ldots \subset L_{t+1,g} \subset \ldots \subset Q_{t,g} \subset Q_{t+1,g} \subset \ldots$$

which yield the following increasing sequences for $t \in \mathbb{N}$:

$$\ldots f_{t,g}^\mu \leq f_{t+1,g}^\mu \leq \ldots \leq f^* \quad \text{and} \quad \ldots f_{t,g}^{sos} \leq f_{t+1,g}^{sos} \leq \ldots \leq f^*.$$

The foundation of Lasserre’s method is to show that these sequences converge to f^*. This is proved under some conditions in (Lasserre 2001). It has also been shown that the limit can even be reached in a finite number of steps in some cases, see e.g. (Lasserre et al. 2009, Nie et al. 2006, Marshall 2009, Ha and Pham 2010, Nie 2011, Abril Bucero and Mourrain 2013). In this case, the relaxation is said to be exact.

2.3. Border basis relaxation hierarchy

In the following we are going to use another type of relaxation “hierarchies”, which involves border basis computation. It is aimed at reducing the size of the convex optimization problems solved at each level of the relaxation hierarchy. As we will see in Section 5.2, the impact on the performance of the relaxation approach is significant. We briefly recall the properties of border basis that we need and describe how they are used in the construction of this relaxation hierarchy.

Given a vector space $E \subseteq \mathbb{R}[x]$, its prolongation $E^+ := E + x_1 E + \ldots + x_n E$ is again a vector space.

The vector space E is said to be connected to 1 if $1 \in E$ and there exists a finite increasing sequence of vector spaces $E_0 \subset E_1 \subset \cdots \subset E$ such that $E_0 = \langle 1 \rangle$, $E_{i+1} \subset E_i^+$. For a monomial set $B \subseteq M$, $B^+ = B \cup x_1 B \cup \cdots \cup x_n B$ and $\partial B = B^+ \setminus B$. We easily check that $\langle B \rangle^+ = \langle B^+ \rangle$ and $\langle B \rangle$ is connected to 1 iff $1 \in B$ and for every monomial $m \neq 1$ in B, $m = x_{i_0} m'$ for some $i_0 \in [1, n]$ and some monomial $m' \in B$.

Definition 2.5. Let $B \subseteq M$ be connected to 1. A family $F \subseteq \mathbb{R}[x] = R$ is a border basis for B in degree $t \in \mathbb{N}$, if $\forall f, f' \in F$,

- $\text{supp}(f) \subseteq B^+ \cap R_t$,
- f has exactly one monomial in ∂B, denoted $\gamma(f)$ and called the leading monomial of f.
- $\gamma(f) = \gamma(f')$ implies $f = f'$,
\(\forall m \in \partial B \cap R_t, \exists f \in F \text{ s.t. } \gamma(f) = m, \)

\(R_t = \langle B \rangle_t + \langle F | t \rangle. \)

A border basis \(F \) for \(B \) in all degrees \(t \) is called a border basis for \(B \). \(F \) is graded if moreover \(\deg(\gamma(f)) = \deg(f) \forall f \in F. \)

There are efficient algorithms to check that a given family \(F \) is a border basis for \(B \) in degree \(t \) and to construct such family from a set of polynomials. We refer to \cite{Mourrain1993, Mourrain2003, Mourrain2008, Mourrain2012} for more details. We will use these tools as “black boxes” in the following.

For a border basis \(F \) for \(B \) in degree \(t \), we denote by \(\pi_{F,B} \) the projection of \(R_t \) on \(\langle B \rangle_t \) along \(\langle F | t \rangle \). We easily check that

\(\forall m \in \partial B_1 \cap R_t, \pi_{B,F}(m) = m, \)

\(\forall m \in \partial B \cap R_t, \pi_{B,F}(m) = m - f, \) where \(f \) is the (unique) polynomial in \(F \) for which \(\gamma(f) = m \), assuming the polynomials \(f \in F \) are normalized so that the coefficient of \(\gamma(f) \) is 1.

If \(F \) is a graded border basis in degree \(t \), one easily verifies that \(\deg(\pi_{F,B}(m)) \leq \deg(m) \) for \(m \in \mathcal{M}_t \).

Border basis hierarchy. The sequence of relaxation problems that we will use hereafter is defined as follows. For each \(t \in \mathbb{N} \), we construct the graded border basis \(F_{2t} \) of \(g^0 \) in degree \(2t \). Let \(B \) be the set of monomials (connected to 1) for which \(F \) is a border basis in degree \(2t \). We define \(E_t := \langle B \rangle_t \), \(G_t \) is the set of constraints such that

\[G_0^t = \{ m - \pi_{B,F}(m), m \in B_1 \cdot B_1 \} \quad \text{and} \quad G_+^t = \pi_{B,F}(g^+), \]

and consider the relaxation sequence

\[Q_{E_t,G_t} \subset \langle B_1 \cdot B_1 \rangle \quad \text{and} \quad L_{E_t,G_t} \subset \langle B_1 \cdot B_1 \rangle^* \]

for \(t \in \mathbb{N} \). Since the subsets \(B_i \) are not necessarily nested, these convex sets are not necessarily included one in the other one. However, by construction of the graded border basis of \(g \), we have the following inclusions

\[\cdots \subset \langle F_{2t-2} | 2t \rangle \subset \langle F_{2t+2} | 2t + 2 \rangle \subset \cdots \langle g^0 \rangle, \]

and we can relate the border basis relaxation sequences with the corresponding full moment matrix relaxation hierarchy, using the following proposition:

Proposition 2.6. Let \(t \in \mathbb{N} \), \(B \subset \mathbb{R}[x]_{2t} \) be a monomial set connected to 1, \(F \subset \mathbb{R}[x] \) be a border basis for \(B \) in degree \(2t \), \(E := \langle B \rangle_t \), \(E' := \mathbb{R}[x]_t \), \(G, G' \) be sets of constraints such that \(G^0 = \{ m - \pi_{B,F}(m), m \in B_1 \cdot B_1 \} \), \(G^+ = \langle F | 2t \rangle \), \(G' = G^+ \). Then for all \(\Lambda \in \mathcal{L}_{E,G} \), there exists a unique \(\Lambda' \in \mathcal{L}_{E',G'} \) which extends \(\Lambda \). Moreover, \(\Lambda' \) satisfies

\[\text{rank } H_{\Lambda'} = \text{rank } H_{\Lambda} \quad \text{and} \quad \ker H_{\Lambda'} = \ker H_{\Lambda} + \langle F | t \rangle. \]

Proof. As \(F \subset \mathbb{R}[x] \) is a border basis for \(B \) in degree \(2t \), we have \(\mathbb{R}[x]_{2t} = \langle F | 2t \rangle \). As \(\langle B_1 \cdot B_1 \rangle \subset \langle (B)_{2t} \oplus (G^0) \rangle, (G^0) \subset \langle G^0 \rangle = \langle F | 2t \rangle \) and \(\mathbb{R}[x]_{2t} = \langle (B)_{2t} \oplus (F | 2t) \rangle \), we deduce that for all \(\Lambda \in \mathcal{L}_{E,G} \), there exists a unique \(\Lambda' \in \mathbb{R}[x]_{2t} \) s.t. \(\Lambda' = \Lambda \) and \(\Lambda' \langle (F | 2t) \rangle = 0 \).

Let us first prove that \(\Lambda' \in \mathcal{L}_{E',G'} \). As any element \(q' \) of \(\mathcal{Q}_{E',G'} \) can be decomposed as a sum of an element \(q \) of \(\mathcal{Q}_{E,G} \) and an element \(p \in \langle F | 2t \rangle \), we have \(\Lambda' (q') = \Lambda' (q) + \Lambda' (p) = \Lambda (q) \geq 0 \). This shows that \(\Lambda' \in \mathcal{L}_{E',G'} \).

Let us prove now that \(\ker H_{\Lambda'} = \ker H_{\Lambda} + \langle F | t \rangle \) where \(E := \langle B \rangle_t \), \(E' := \mathbb{R}[x]_t \). As \(E \cdot \langle F | t \rangle \subset \langle F | 2t \rangle = G^0 \), we have \(\Lambda' (E \cdot \langle F | t \rangle) = 0 \) so that

\[\langle F | t \rangle \subset \ker H_{\Lambda'}. \quad (3) \]
For any element \(b \in \ker H^E_\Lambda \) we have \(\forall b' \in E, \Lambda(b)b' = \Lambda'(b)b' = 0 \). As \(\Lambda'(E \cdot \langle F \mid t \rangle) = 0 \) and \(E' = E \oplus \langle F \mid t \rangle \), for any element \(e \in E, \Lambda'(b'e) = 0 \). This proves that
\[
\ker H^E_\Lambda \subset \ker H^E_{\Lambda'}.
\]

Conversely as \(E' = E \oplus \langle F \mid t \rangle \), any element of \(E' \) can be reduced modulo \(\langle F \mid t \rangle \) to an element of \(E \), which shows that
\[
\ker H^E_{\Lambda'} \subset \ker H^E_\Lambda + \langle F \mid t \rangle.
\]

From the inclusions (3), (4) and (5), we deduce that \(\ker H^E_{\Lambda'} = \ker H^E_\Lambda + \langle F \mid t \rangle \) and that \(\rank H^E_{\Lambda'} = \rank H^E_\Lambda \).]

We deduce from this proposition that \(f^\mu_{E_i,G_i} = f^\mu_{t,(F_{2t}[2t])} \). The sequence of convex sets \(\mathcal{L}_{E_i,G_i} \) can be seen as the projections of nested convex sets
\[
\cdots \supset \mathcal{L}_{t,\emptyset} \supset \mathcal{L}_{t+1,\emptyset} \supset \cdots
\]
so that we have \(\cdots \leq f^\mu_{E_i,G_i} \leq f^\mu_{E_{i+1},G_{i+1}} \leq \cdots \leq f^* \). We check that similar properties hold for \(Q_{E_i,G_i}, Q_{t,\emptyset} \) and \(f^\mu_{sos} = f^\mu_{t,\emptyset} \), taking the quotient modulo \((F_{2t}[2t]) \).

2.4. Optimal linear form

We introduce now the notion of optimal linear form for \(f \), involved in the computation of \(I_{\min} \) (also called generic linear form when \(f = 0 \) in [Lasserre et al., 2003, 2012]):

Definition 2.7. \(\Lambda^* \in \mathcal{L}_{E,G} \) is optimal for \(f \) if
\[
\rank H^E_{\Lambda^*} = \max_{\Lambda \in \mathcal{L}_{E,G}, \Lambda(f) = f^\mu_{E,G}} \rank H^E_\Lambda.
\]

The next result shows that only elements in \(I_{\min} \) are involved in the kernel of a truncated Hankel operator associated to an optimal linear form for \(f \).

Theorem 2.8. Let \(E \subset \mathbb{R}[x] \) such that \(1 \in E \) and \(f \in (E \cdot E) \) and let \(G \subset \mathbb{R}[x] \) be a set of constraints with \(V_{\min} \subset S(G) \). If \(\Lambda^* \in \mathcal{L}_{E,G} \) is optimal for \(f \) and such that \(\Lambda^*(f) = f^* \), then \(\ker H^E_{\Lambda^*} \subset I_{\min} \).

Proof. The proof is similar e.g. to [Lasserre et al., 2012] (Theorem 4.9).

Let us describe how optimal linear forms are computed by solving convex optimization problems:

Algorithm 2.1: Optimal Linear Form

Input: \(f \in \mathbb{R}[x], B_t = (x^a)_{a \in A} \) a monomial set containing 1 of degree \(\leq t \) with \(f = \sum_{a \in A + A} f_a x^a \in \langle B_t \cdot B_t \rangle \), \(G \subset \mathbb{R}[x] \).

Output: the minimum \(f^\mu_{t,G} \) of \(\sum_{\alpha \in A + A} \lambda_\alpha f_\alpha \) subject to:
- \(H^E_{\Lambda^*} = (h_{\alpha,\beta})_{\alpha,\beta \in A} \succ 0 \),
- \(H^E_{\Lambda^*} \) satisfies the Hankel constraints
 - \(h_{0,0} = 1 \), and \(h_{\alpha,\beta} = h_{\alpha',\beta'} \) if \(\alpha + \beta = \alpha' + \beta' \),
 - \(\Lambda^*(g^0) = \sum_{\alpha \in A + A} g^0_\alpha \lambda_\alpha = 0 \) for all \(g^0 = \sum_{\alpha \in A + A} g^0_\alpha x^a \in G^0 \cap \langle B_t \cdot B_t \rangle \),
- \(H^E_{g^+_{\Lambda^*}} \succ 0 \) for all \(g^+ \in G^+ \) where \(w = \frac{r \deg(g^+)}{2} \).

and \(\Lambda^* \in \langle B_t \cdot B_t \rangle \) represented by the vector \([\lambda_\alpha]_{\alpha \in A + A} \).
This optimization problem is a Semi-Definite Programming problem, corresponding to the optimization of a linear functional on the intersection of a linear subspace with the convex set of Positive Semi-Definite matrices. It is a convex optimization problem, which can be solved efficiently by SDP solvers. If an Interior Point Method is used, the solution Λ^* is in the interior of a face on which the minimum $\Lambda^*(f)$ is reached so that Λ^* is optimal for f. This is the case for tools such as cdp, sdpa or sdpa-gap, that we will use in the experimentations.

3. Convergence certification

To be able to compute the minimizer points from an optimal linear form, we need to detect when the minimum is reached. In this section, we describe a new criterion to check when the kernel of a truncated Hankel operator associated to an optimal linear form for f yields the generators of the minimizer ideal. It involves the flat extension theorem of (Laurent and Mourrain, 2009) and applies to polynomial optimization problems where the minimizer ideal I_{min} is zero-dimensional.

3.1. Flat extension criterion

Definition 3.1. Given vector subspaces $E_0 \subset E \subset \mathbb{K}[x]$ and $\Lambda \in \langle E \cdot E \rangle^*$, H^E_Λ is said to be a flat extension of its restriction $H^{E_0}_{E_0}$ if $\text{rank} \; H^E_{E_0} = \text{rank} \; H^{E_0}_{E_0}$.

We recall here a result from (Laurent and Mourrain, 2009), which gives a rank condition for the existence of a flat extension of a truncated Hankel operator.

Theorem 3.2. Let $V \subset E \subset \mathbb{R}[x]$ be vector spaces connected to 1 with $V^+ \subset E$ and let $\Lambda \in \langle E \cdot E \rangle^*$. Assume that $\text{rank} \; H^V_\Lambda = \text{rank} \; H^V_{E_0} = \text{dim} \; V$. Then there exists a (unique) linear form $\tilde{\Lambda} \in \mathbb{R}[x]^*$ which extends Λ, i.e., $\tilde{\Lambda}(p) = \Lambda(p)$ for all $p \in \langle E \cdot E \rangle$, satisfying $\text{rank} \; H^E_{\tilde{\Lambda}} = \text{rank} \; H^E_\Lambda$. Moreover, we have $\ker \; H^E_{\tilde{\Lambda}} = (\ker \; H^E_\Lambda)$.

In other words, the condition $\text{rank} \; H^E_\Lambda = \text{rank} \; H^V_{E_0} = \text{dim} \; V$ implies that the truncated Hankel operator H^E_Λ has a (unique) flat extension to a (full) Hankel operator $H^E_{\tilde{\Lambda}}$ defined on $\mathbb{R}[x]$.

Theorem 3.3. Let $V \subset E \subset \mathbb{R}[x]$ be finite dimensional vector spaces connected to 1 with $V^+ \subset E$, $G^0 \cdot V \subset \langle E \cdot E \rangle$, $G^+ \cdot V \cdot V \subset \langle E \cdot E \rangle$.

Let $\Lambda \in \mathcal{L}_{E,G}$ such that $\text{rank} \; H^E_\Lambda = \text{rank} \; H^V_{E_0} = \text{dim} \; V$. Then there exists a linear form $\tilde{\Lambda} \in \mathbb{R}[x]^*$ which is extending Λ and supported on points of $S(G)$ with positive weights:

$$\tilde{\Lambda} = \sum_{i=1}^r \omega_i 1_{\xi_i} \text{ with } \omega_i > 0, \xi_i \in S(G).$$

Moreover, $(\ker \; H^E_{\tilde{\Lambda}}) = \mathcal{I}(\xi_1, \ldots, \xi_r)$.

1 In (Laurent and Mourrain, 2009), it is stated with a vector space spanned by a monomial set connected to 1, but its extension to vector spaces connected to 1 is straightforward.
that we consider here, this linear form is an optimal linear form for \(\sum \) defined on \(\langle \cdot, \cdot \rangle \). By Theorem 3.14 of \cite{lasserre2012}, \(\Lambda \) has a decomposition of the form \(\tilde{\Lambda} = \sum_{i=1}^{r} \omega_i \xi_i \) with \(\omega_i > 0 \) and \(\xi_i \in \mathbb{R}^n \).

By Lemma 3.5 of \cite{lasserre2012}, \(V \) is isomorphic to \(\mathbb{R}[x]/I(\xi_1, \ldots, \xi_r) \) and there exist (interpolation) polynomials \(b_1, \ldots, b_r \in V \) satisfying \(b_i(\xi_j) = 1 \) if \(i = j \) and \(b_i(\xi_j) = 0 \) otherwise. We deduce that for \(i = 1, \ldots, r \) and for all elements \(g \in G^0 \),

\[
\Lambda(b_i g) = 0 = \tilde{\Lambda}(b_i g) = \omega_i g(\xi_i).
\]

As \(\omega_i > 0 \) then \(g(\xi_i) = 0 \). Similarly, for all \(h \in G^+, \)

\[
\Lambda(b_i^2 h) = \tilde{\Lambda}(b_i^2 h) = \omega_i h(\xi_i) \geq 0
\]

and \(h(\xi_i) \geq 0 \), hence \(\xi_i \in S(G) \).

By Theorem 3.14 of \cite{lasserre2012} and Theorem 3.2, we have moreover \(\ker H_\Lambda = T(\xi_1, \ldots, \xi_r) = (\ker H_\Lambda^E) \). \(\square \)

This theorem applied to an optimal linear form \(\Lambda^* \) for \(f \) gives a convergence certificate to check when the minimum \(f^* \) is reached and when a generating family of the minimizer ideal is obtained. It generalizes the flat truncation certificate given in \cite{nie2012}. As we will see in the experimentation part, it allows to detect more efficiently when the minimum is reached. Notice that if the test is satisfied, necessarily \(I_{\min} \) is zero-dimensional.

3.2. Flat extension algorithm

In this section, we describe a new algorithm to check the flat extension property for a linear form for which some moments are known.

Let \(E \) be a finite dimensional subspace of \(\mathbb{R}[x] \) connected to 1 and let \(\Lambda^* \) be a linear form defined on \(\langle E \cdot E \rangle \) given by its “moments” \(\Lambda^*(e_i) := \Lambda_i^* \), where \(e_1, \ldots, e_s \) is a basis of \(\langle E \cdot E \rangle \) (for instance a monomial basis). In the context of global polynomial optimization that we consider here, this linear form is an optimal linear form for \(f \) (see Section 2.4) computed by SDP.

We define the linear functional \(\Lambda^* \) from its moments as \(\Lambda^* : p = \sum_{i=1}^{s} p_i e_i \in \langle E \cdot E \rangle \mapsto \sum_{i=1}^{s} p_i \Lambda_i \) and the corresponding inner product:

\[
E \times E \rightarrow \mathbb{R}
\]

\[
(p, q) \mapsto (p, q)_* := \Lambda^*(p q)
\]

To check the flat extension property, we are going to define inductively vector spaces \(V_i \) as follows. Start with \(V_0 = \langle 1 \rangle \). Suppose \(V_i \) is known and compute a vector space \(L_i \) of maximal dimension in \(V_i^+ \) such that \(L_i \) is orthogonal to \(V_i \): \(\langle L_i, V_i \rangle_* = 0 \) and \(L_i \cap \ker H_{\Lambda^*}^{V_i^+} = \{0\} \). Then we define \(V_{i+1} = V_i + L_i \).

Suppose that \(b_1, \ldots, b_{r_i} \) is an orthogonal basis of \(V_i \): \(\langle b_i, b_j \rangle_* = 0 \) if \(i \neq j \) and \(\langle b_i, b_i \rangle_* \neq 0 \). Then \(L_i \) can be constructed as follows: Compute the vectors

\[
b_{i,j} = x_j b_i - \sum_{k=1}^{r_i} \frac{\langle x_j b_i, b_k \rangle_*}{\langle b_k, b_k \rangle_*} b_k,
\]
generating V_i^+ in V_i^+ and extract a maximal orthogonal family b_{r+1}, \ldots, b_{r+s} for the inner product $\langle \cdot, \cdot \rangle_*$ that form a basis of L_i. This can be done for instance by computing a QR decomposition of the matrix $[(b_{i,j}, b_{r,j'})_*]_{1 \leq i, j, r \leq n}$. The process can be repeated until either

- $V_i^+ \not\subset E$ and the algorithm will stop and return failed,
- or $L_i = \{0\}$ and $V_i^+ = V_i \oplus \ker H_{\Lambda_i}^{V_i^+}$. In this case, the algorithm stops with success.

Here is the complete description of the algorithm:

Algorithm 3.1: DECOMPOSITION

Input: a vector space E connected to 1 and a linear form $\Lambda^* \in \langle E, E \rangle^*$.
- Take $B := \{1\}$; $s := 1$; $r := 1$;
- While $s > 0$ and $B^+ \subset E$ do
 - compute $b_{j,k} := x_j b_j - \sum_{i=1}^{r} \langle x_i b_i, b_j \rangle_* b_i$ for $j = 1, \ldots, r$, $k = 1, \ldots, n$;
 - compute a maximal subset $B' = \{b'_1, \ldots, b'_r\}$ of $\langle b_{j,k} \rangle_*$ of orthogonal vectors for the inner product $\langle \cdot, \cdot \rangle_*$ and let $B := B \cup B'$, $s := |B'|$ and $r := s$;
- If $B^+ \not\subset E$ then return failed else return success.

Output: failed or success with
- a basis $B = \{b_1, \ldots, b_r\} \subset \mathbb{R}[x]$;
- the relations $x_j b_j - \sum_{i=1}^{r} \langle x_i b_i, b_j \rangle_* b_i$, $j = 1 \ldots r$ $k = 1 \ldots n$.

Let us describe the computation performed on the moment matrix, during the main loop of the algorithm. At each step, the moment matrix of Λ^* on V_i^+ is of the form

$$H_{\Lambda_i}^{V_i^+} = \begin{bmatrix} H_{\Lambda_i}^{B_i,B_i} & H_{\Lambda_i}^{B_i,\partial B_i} \\ H_{\Lambda_i}^{\partial B_i,B_i} & H_{\Lambda_i}^{\partial B_i,\partial B_i} \end{bmatrix}$$

where ∂B_i is a subset of $\{b_{i,j}\}$ such that $B_i \cup \partial B_i$ is a basis of $(B_i^+)^*$. By construction, the matrix $H_{\Lambda_i}^{B_i,B_i}$ is diagonal since B_i is orthogonal for $\langle \cdot, \cdot \rangle_*$. As the polynomials $b_{i,j}$ are orthogonal to B_i, we have $H_{\Lambda_i}^{B_i,\partial B_i} = H_{\Lambda_i}^{\partial B_i,B_i} = 0$. If $H_{\Lambda_i}^{\partial B_i,\partial B_i} = 0$ then the algorithm stops with success and all the elements $b_{i,j}$ are in the kernel of $H_{\Lambda_i}^{\partial B_i,B_i}$. Otherwise an orthogonal basis b'_1, \ldots, b'_s is extracted. It can then be completed in a basis of $\langle b_{i,j} \rangle_*$ so that the matrix $H_{\Lambda_i}^{\partial B_i,\partial B_i}$ in this basis is diagonal with zero entries after the $(s+1)^{th}$ index. In the next loop of the algorithm, the basis B_{i+1} contains the maximal orthogonal family b'_1, \ldots, b'_s so that the matrix $H_{\Lambda_i}^{B_{i+1},B_{i+1}}$ remains diagonal.

Proposition 3.4. Let $\Lambda^* \in \mathcal{L}_{E,G}$ be optimal for f. If Algorithm 3.1 applied to Λ^* and E stops with success, then

1. there exists a linear form $\tilde{\Lambda} \in \mathbb{R}[x]^*$ which is extending Λ^* and supported on points in $\mathcal{S}(G)$ with positive weights:
 $$\tilde{\Lambda} = \sum_{i=1}^{r} \omega_i \mathcal{I}_{\xi_i}$$

2. $B = \{b_1, \ldots, b_r\}$ is a basis of $\mathcal{A}_{\tilde{\Lambda}} = \mathbb{R}[x]/I_{\tilde{\Lambda}}$ where $I_{\tilde{\Lambda}} = \ker H_{\tilde{\Lambda}}$.
3. $x_i b_j - \sum_{i=1}^{r} \langle x_i b_i, b_j \rangle_* b_i$, $j = 1, \ldots, r$, $k = 1, \ldots, n$ are generating $I_{\tilde{\Lambda}} = \mathcal{I}(\xi_1, \ldots, \xi_r)$.
4. $f_{E,G}^* = f^*$.
5. $V_{min} = \{\xi_1, \ldots, \xi_r\}$.
Proof. When the algorithm terminates with success, the set \(B \) is such that \(\text{rank } H_{A_k}^B = \text{rank } H_{A_k}^B = |B| \). By Theorem 3.3, there exists a linear form \(\Lambda \in \mathbb{R}[x]^* \) extending \(\Lambda^* \) and supported on points in \(S(G) \) with positive weights:

\[
\tilde{\Lambda} = \sum_{i=1}^r \omega_i \mathbf{1}_{\xi_i} \text{ with } \omega_i > 0, \xi_i \in S(G).
\]

This implies that \(A_{\tilde{\Lambda}} \) is of dimension \(r \) and that \(I_{\tilde{\Lambda}} = I(\xi_1, \ldots, \xi_r) \). As \(H_{A_k}^B \) is invertible, \(B \) is a basis of \(A_{\tilde{\Lambda}}^* \) which proves the second point.

Let \(K \) be the set of polynomials \(x_j b_i - \sum_{k=1}^r \frac{\langle x, b_k \rangle}{\langle b_k, b_k \rangle} b_k \). If the algorithm terminates with success, we have \(\text{ker } H_{A_k}^B = \langle K \rangle \) and by Theorem 3.3, we deduce that \(\langle K \rangle = (\text{ker } H_{A_k}^{B^*}) = I_{\tilde{\Lambda}} \), which proves the third point.

As \(\Lambda(1) = 1 \), we have \(\sum_{i=1}^r w_i = 1 \) and

\[
\tilde{\Lambda}(f) = \sum_{i=1}^r \omega_i f(\xi_i) \geq f^*
\]

since \(\xi_i \in S(G) \) and \(f(\xi_i) \geq f^* \). The relation \(f_{E,G}^\mu \leq f^* \) implies that \(f(\xi_i) = f^* \) for \(i = 1, \ldots, r \) and the fourth point is true: \(f_{E,G}^\mu = f^* \).

As \(f(\xi_i) = f^* \) for \(i = 1, \ldots, r \), we have \(\{\xi_1, \ldots, \xi_r\} \subset V_{\text{min}} \). By Theorem 2.8, the polynomials of \(K \) are in \(I_{\text{min}} \) so that \(V_{\text{min}} \subset \mathcal{V}(K) = \{\xi_1, \ldots, \xi_r\} \). This shows that \(V_{\text{min}} = \{\xi_1, \ldots, \xi_r\} \) and concludes the proof of this proposition. \(\Box \)

3.3. Computing the minimizers

The remaining step is the computation of the minimizer points, once Algorithm 3.1 stops with success for \(\Lambda^* \in \mathcal{L}_{E,G} \) optimal for \(f \). The minimizers can be computed from the eigenvalues of the multiplication operators \(M_k : a \in A_{\text{min}} \mapsto x_k a \in A_{\text{min}} \) for \(k = 1, \ldots, n \) where \(A_{\text{min}} = \mathbb{R}[x]/I_{\text{min}} \) and \(I_{\text{min}} = \text{I}(\xi_1, \ldots, \xi_r) \).

Proposition 3.5. The matrix of \(M_k \) in the basis \(B \) of \(A_{\text{min}} \) is \([M_k] = (\langle \Lambda^*(x_k b_i b_j) \rangle_{1 \leq i \leq r}) \).

The operators \(M_k, k = 1, \ldots, n \) have \(r \) common eigenvectors \(u_1, \ldots, u_r \) which satisfy \(M_k u_i = \xi_{i,k} u_i \), with \(\xi_{i,k} \) the \(k \)th coordinate of the minimizer point \(\xi_i = (\xi_{i,1}, \ldots, \xi_{i,n}) \in S \).

Proof. By Proposition 3.4 and by definition of the inner-product (6), \(B = \{b_1, \ldots, b_r\} \) is a basis of \(A_{\tilde{\Lambda}} \) and

\[
x_k b_j = \sum_{i=1}^r \frac{\Lambda^*(x_k b_i b_j)}{\Lambda^*(b_i b_i)} b_i \text{ mod } I_{\text{min}},
\]

for \(j = 1 \ldots r, k = 1 \ldots n \).

This yields the matrix of the operator \(M_k \) in the basis \(B \): \([M_k] = (\langle \Lambda^*(x_k b_i b_j) \rangle_{1 \leq i, j \leq r}) \).

As the roots of \(I_{\text{min}} \) are simple, by [Elkadi and Mourrain 2007, Theorem 4.23] the eigenvectors of all \(M_k, k = 1 \ldots n \) are the so-called idempotents \(u_1, \ldots, u_r \) of \(A_{\text{min}} \) and the corresponding eigenvalues are \(\xi_{1,k}, \ldots, \xi_{r,k} \). \(\Box \)
4. Finite convergence

Our approach to compute the minimizers relies on the fact that the border basis relaxation is exact.

By Proposition 2.6, the reduced border basis relaxation is exact if and only if the corresponding full moment matrix relaxation is exact. Though it is not always the case that the full moment matrix relaxation is exact, it is possible to add constraints so that the relaxation becomes exact. In Abril Bucero and Mourrain 2013, a general strategy to construct exact SDP relaxation hierarchies and to compute the minimizer ideal is described. It applies to the following problems:

Global optimization. Consider the case \(n_1 = n_2 = 0 \) with \(f^* = \min_{x \in \mathbb{R}^n} f(x) \) reached at a point of \(\mathbb{R}^n \). Taking \(G \) such that \(G^0 = \{ \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \} \) and \(G^+ = \emptyset \), the relaxation associated to the sequence \(L_{t,G} \) is exact and yields \(I_{\min} \) (see Nie et al. 2006, Abril Bucero and Mourrain 2013). If \(I_{\min} \) is finite then the border basis relaxation yields the points and the corresponding border basis.

Regular case.

We say that \(g = (g_1^0, \ldots, g_{n_1}^0; g_1^+, \ldots, g_{n_2}^+) \) is regular if for all points \(x \in S(g) \) with \(\{j_1, \ldots, j_k\} = \{j \in [1, n_2] | g_j^+(x) = 0\} \), the vectors \(\nabla g_1^0(x), \ldots, \nabla g_{n_1}^0(x), \nabla g_{j_1}^+(x), \ldots, \nabla g_{j_k}^+(x) \) are linearly independent.

For \(\nu = (j_1, \ldots, j_k) \subset [0, n_2] \) with \(|
u| \leq n - n_1 \), let

\[
\begin{align*}
A_\nu &= [\nabla f, \nabla g_1^0, \ldots, \nabla g_{n_1}^0, \nabla g_{j_1}^+, \ldots, \nabla g_{j_k}^+] \\
\Delta_\nu &= \det(A_\nu A_\nu^T) \\
g_\nu &= \Delta_\nu \prod_{j \notin \nu} g_j^+ .
\end{align*}
\]

Let \(G \subset \mathbb{R}[x] \) be the set of constraints such that \(G^0 = g^0 \cup \{g_\nu | \nu \subset [0, n_2], |
u| \leq n - n_1\} \).

Then the relaxation associated to the preordering sequence \(L_{t,G}^* \) is exact and yields \(I_{\min} \) (see Ha and Pham 2010, Abril Bucero and Mourrain 2013) or (Nie 2011) for \(\mathbb{C} \)-regularity and constraints \(G^0 \) that involve minors of \(A_\nu \).

If \(I_{\min} \) is non-empty and finite then the border basis relaxation (2) yields the points \(V_{\min} \) and the border basis of \(I_{\min} \).

Boundary Hessian Conditions. If \(f \) and \(g \) satisfies the so-called Boundary Hessian Conditions then \(f - f^* \in Q_{t,g} \) and the relaxation associated to \(L_{t,g} \) is exact and yields
I_{\min} \text{ (see} \text{[Marshall, 2009]). If moreover } I_{\min} \text{ is finite then the border basis relaxation yields the points } V_{\min} \text{ and the corresponding border basis of } I_{\min}.

g^+-radical computation. If we optimize } f = 0 \text{ on the set } S = S(g), \text{ then all the points of } S \text{ are minimizers, } V_{\min} = S \text{ and by the Positivstellensatz, } I_{\min} \text{ is equal to }\n
\sqrt{g^+} = \{ p \in \mathbb{R}[x] \mid \exists m \in \mathbb{N} \text{ s.t. } p^{2m} + q = 0, q \in \mathcal{P}_{\mathbb{R}[x], g} \}.

Here again, the preordering sequence } L^\ast_{g^+} \text{ is exact. If we assume that } S = S(g) \text{ is finite, then the corresponding border basis relaxation yields the points of } S \text{ and the generators of }\n
\sqrt{g^0}. \text{ See also } \text{[Lasserre et al., 2009, 2012] for zero dimensional real radical computation and } \text{[Ma et al., 2013].}

5. Minimizer border basis algorithm

In this section we describe the algorithm to compute the minimum of a polynomial on } S. \text{ It can be seen as a type of border basis algorithm, in which in the main loop we compute the optimal linear form, we check when the minimum is reached and eventually we compute the minimizers points. It is closely connected to the real radical border basis algorithm presented in } \text{[Lasserre et al., 2012].}

5.1. Description

Algorithm 5.1: Minimization of } f \text{ on } S

Input: A real polynomial function } f \text{ and a set of constraints } g \subset \mathbb{R}[x] \text{ with } V_{\min} \text{ non-empty finite.}

1. Take } t = \max(\lceil \deg(f) \rceil, d^0, d^+) \text{ where }\n
 d^0 = \max_{g^0 \in g^0}(\lceil \deg(g^0) \rceil), d^+ = \max_{g^+ \in g^+}(\lceil \deg(g^+) \rceil)\n
2. Compute the graded border basis } F_{2t} \text{ of } g^0 \text{ for } B \text{ in degree } 2t.\n
3. Let } B_t \text{ be the set of monomials in } B \text{ of degree } \leq t.\n
4. Let } G_t \text{ be the set of constraints such that } G^0_t = \{ m - \pi_{B_t, F_{2t}}(m), m \in B_t \cdot B_t \} \text{ and } G^+ = \pi_{B_t, F_{2t}}(g^+)\n
5. } [f^*_G, B_t, \Lambda^*] := \text{OPTIMAL LINEAR FORM}(f, B_t, G_t).\n
6. } [c, B', K] := \text{DECOMPOSITION}(\Lambda^*, B_t) \text{ where } c = \text{failed}, B' = \emptyset, K = \emptyset \text{ or } c = \text{success}, B' \text{ is the basis and } K \text{ is the set of the relations.}\n
7. if } c = \text{success} \text{ then } V = \text{MINIMIZER POINTS}(B', K) \text{ else go to step 2 with } t := t + 1.\n
Output: the minimum } f^* = f^*_G, B_t, \text{ the minimizers } V_{\min} = V, I_{\min} = (K) \text{ and } B' \text{ such that } K \text{ is a border basis for } B'.

5.2. Experimentation

In this section, we analyse the practical behavior of the algorithm. In all the examples the minimizer ideal is zero-dimensional hence our algorithm stops in a finite number of steps and yields the minimizer points and generators of the minimizer ideal.

The implementation of the previous algorithm has been performed using the BORDERBASIX package of the Mathemagix2 software, which provides a C++ implementation of

\footnote{www.mathemagix.org}
the border basis algorithm of (Mourrain and Trébuchet, 2012).
For the computation of border basis, we use as a choice function that is tolerant to numerical instability i.e. a choice function that chooses as leading monomial a monomial whose coefficient is maximal among the choosable monomials as described in (Mourrain and Trébuchet, 2008).

The Semi-Definite Programming problems are solved using SDPA\(^3\) software and also MOSEK\(^4\) software. For the link with SDPA we use a file interface since SDPA is not distributed as a library. In the case of MOSEK we use the distributed library.

Once we have computed the moment matrix, we call the Decomposer Algorithm which is available in the BORDERBASIX package.

The minimizer points are computed from the eigenvalues of the multiplication matrices. This is performed using Lapack routines.

Experiments are made on an Intel Core i5 2.40GHz

In Table 1, we compare our algorithm 5.1 (bbr) with the full moment matrix relaxation algorithm (fmr) inside the same environment. This latter reproduces the algorithm described in (Lasserre, 2009), which is also implemented in the package Gloptipoly of Matlab developed by D. Henrion and J.B. Lasserre. In this table, we record the problem name or the source of the problem, the number of decision variables (v), the number of inequality and equality constraints (c), the maximum degree of the constraints and of the polynomial to minimize (d), the number of minimizer points (sol). For the two algorithms bbr and fmr we report the total CPU time in seconds using SDPA(t) and using MOSEK(t_msk), the order of the relaxation (o), the number of parameters of the SDP problem (p) and the size of the moment matrices (s). The first part of the table contains examples of positive polynomials, which are not some of squares. New equality constraints are added following (Abril Bucero and Mourrain, 2013) to compute the minimizer points in the examples marked with ⋄. The fourth part of the table contains examples where the real radical \(g + \sqrt{g0}\) is computed. When there are equality constraints, the border basis computation reduces the size of the moment matrices, as well as the localization matrices associated to the inequalities. This speeds up the SDP computation. In the case where there are only inequalities, the size of the moment matrices is the same but once the optimal linear form is computed using the SDP solvers SDPA or MOSEK, the DECOMPOSITION algorithm which computes the minimizers is more efficient and quicker than the reconstruction algorithm used in the full moment matrix relaxation approach. The performance is not the only issue: numerical problems can also occur due to the bigger size of the moment matrices in the flat extension test and the reconstruction of minimizers. Such examples where the fmr algorithm fails because of the numerical rank problems are marked with *. The examples that Gloptipoly cannot treat due to the high number of variables (Lasserre, 2009) are marked with **.

These experiments show that when the size of the SDP problems becomes significant, most of the time is spent during sdp computation and the border basis time and reconstruction time are negligible. We also show that the use of mosek software reduces the time between 50 % and 80 %. In all the examples, the new border basis relaxation algorithm outperforms the full moment matrix relaxation method.

\[^{3}\text{http://sdpa.sourceforge.net}\]
\[^{4}\text{http://www.mosek.com}\]
In Table 2, we apply our algorithm \textit{bbr+msk} to find the best rank-1 and rank-2 tensor approximation for symmetrics and non symmetrics tensors on examples from \cite{Nie and Wang 2013} and \cite{Ottaviani et al. 2013}. For best rank-1 approximation problems with several minimizers (which is the case when there are symmetries), the method proposed in \cite{Nie and Wang 2013} cannot certify the result and uses a local method to converge to a local extrema. We apply the global border basis relaxation algorithm to find all the minimizers for the best rank 1 approximation problem.

The last example in Table 2 is a best rank-2 tensor approximation example from the paper \cite{Ottaviani et al. 2013}. The eight solutions come from the symmetries due to the invariance of the solution set by permutation and negation of the factors.

Acknowledgements

We would like to thank Philippe Trebuchet and Matthieu Dien for their development in the \textsc{borderbasix} package.

References

Abril Bucero, M., Mourrain, B., 2013. Exact relaxation for polynomial optimization on semi-algebraic sets, \url{http://hal.inria.fr/hal-00846977}.

Brachat, J., Comon, P., Mourrain, B., Tsigaridas, E., 2010. Symmetric tensor decomposition. Linear Algebra and Applications 433, 1851–1872.

Demmel, J., Nie, J., Powers, V., 2007. Representations of positive polynomials on non-compact semialgebraic sets via kkt ideals. Journal of Pure and Applied Algebra 209 (1), 189 – 200.

Elkadi, M., Mourrain, B., 2007. Introduction à la résolution des systèmes d’équations algébriques. Vol. 59 of Mathématiques et Applications. Springer-Verlag.

Floudas, C. A., Pardalos, P. M., Adjiman, C. S., Esposito, W. R., Gumus, Z. H., Harding, S. T., Klepeis, J. L., Meyer, C. A., Schweiger, C. A., 1999. Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers.

Giesbrecht, M., Labahn, G., Lee, W.-S., Aug. 2009. Symbolic-numeric sparse interpolation of multivariate polynomials. J. Symb. Comput. 44 (8), 943–959.

Greuet, A., Safey El Din, M., 2011. Deciding reachability of the infimum of a multivariate polynomial. In: Proceedings of the 36th international symposium on Symbolic and algebraic computation. ISSAC ’11. ACM, New York, NY, USA, pp. 131–138.

Ha, H. V., Pham, T., 2010. Representation of positive polynomials and optimization on noncompact semialgebraic sets. SIAM Journal on Optimization 20 (6), 3082–3103.

Henrion, D., Lasserre., J., 2005. Positive Polynomials in Control. Lectures Notes in Control and Information Sciences. Springer, Ch. Detecting Global Optimality and Extracting Solutions in GloptiPoly., pp. 293–310.

Lasserre., J., 2001. Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817.

Lasserre, J., 2009. Moments, positive polynomials and their applications. Imperial College Press.

Lasserre, J., Laurent, M., Rostalski., P., 2008. Semidefinite characterization and computation of real radical ideals. Foundations of Computational Mathematics 8 (5), 607–647.
problem	v	c	d	sol	\(a_{brr}\)	\(p_{brr}\)	\(s_{brr}\)	\(t_{brr}\)	\(t_{brr+msk}\)	\(\sigma_{f_{mrv}}\)	\(P_{f_{mrv}}\)	\(s_{f_{mrv}}\)	\(t_{f_{mrv}}\)
Robinson	2	0	6	8	4	21	15	0.15	0.10	7	119	36	*
Motzkin	2	0	6	4	4	26	15	0.17	0.080	9	189	55	*
Motzkin perturbed	3	1	6	1	5	167	56	3.78	0.90	5	286	56	9.57
L’01, Ex. 1	2	0	4	1	2	8	6	0.030	0.022	2	14	6	0.050
L’01, Ex. 2	2	0	4	1	2	8	6	0.030	0.022	2	14	6	0.050
L’01, Ex. 3	2	0	6	4	4	25	15	0.432	0.075	8	152	45	*
L’01, Ex. 5	2	3	2	3	2	14	6	0.045	0.037	2	14	6	0.053
F, Ex. 4.1.4	1	2	4	2	2	4	3	0.024	0.023	2	4	3	0.040
F, Ex. 4.1.6	1	2	6	2	3	6	4	0.027	0.023	3	6	4	0.044
F, Ex. 4.1.7	1	2	4	1	2	4	3	0.023	0.022	2	4	3	0.042
F, Ex. 4.1.8	2	5	4	1	2	13	6	0.060	0.031	2	14	6	0.077
F, Ex. 4.1.9	2	6	4	1	4	44	15	0.20	0.11	4	44	15	0.29
F, Ex. 2.1.1	5	11	2	1	3	461	56	7.60	4.61	3	461	56	12.23
F, Ex. 2.1.2	6	13	2	1	2	209	26	1.00	0.46	2	209	26	1.29
F, Ex. 2.1.3	13	35	2	1	2	2379	78	383.97	34.55	2	2379	78	417.96
F, Ex. 2.1.4	6	15	2	1	2	209	26	1.01	0.43	2	209	26	1.48
F, Ex. 2.1.5	10	31	2	1	2	1000	66	29.70	12.31	2	1000	66	44.29
F, Ex. 2.1.6	10	25	2	1	2	1000	66	28.60	6.05	2	1000	66	43.68
F, Ex. 2.1.7(1)	20	30	2	1	2	10625	231	33219.9	1083.60	2	10625	231	35310.7
F, Ex. 2.1.7(5)	20	30	2	1	2	10625	231	33475.2	1117.33	2	10625	231	36021.3
F, Ex. 2.1.8	24	58	2	1	2	3875	136	3929.23	311.54	2	20475	325	>14h
F, Ex. 2.1.9	10	11	2	1	2	714	44	12.3	1.98	2	1000	55	16.76
F, Ex. 3.1.3	6	16	2	1	2	209	26	0.96	0.61	2	209	26	1.42
L’09 cbms1	3	3	3	5	3	26	17	0.16	0.14	3	83	20	0.20
L’09 reff3	3	3	2	2	2	7	7	0.07	0.06	2	35	10	0.09
L’09 quadfor2	4	12	4	2	3	48	19	0.6	0.45	3	210	35	0.75
** simplex**	15	16	2	1	2	3059	12	674.534	65.73	2	3875	136	780.371

Table 1. Examples from F- (Floudas et al., 1999)), L’09- (Lasserre, 2009), L’01- (Lasserre, 2001).

Lasserre, J., Laurent, M., Rostalski, P., 2009. A unified approach for real and complex zeros of zero-dimensional ideals. In: Putinar, M., Sullivant, S. (Eds.), Emerging Applications of Algebraic Geometry. Vol. 149. Springer, pp. 125–156.

Lasserre, J.-B., Laurent, M., Mourrain, B., Rostalski, P., Trébuchet, P., 2012. Moment matrices, border bases and real radical computation. Journal of Symbolic Computation.
problem	v	c	d	sol	ahbr	phbr	sbbr	tbr-r+rank
(Nie and Wang, 2013) Ex. 3.1	2	1	3	1	2	8	5	0.028
(Nie and Wang, 2013) Ex. 3.2	3	1	3	1	2	24	9	0.025
(Nie and Wang, 2013) Ex. 3.3	3	1	3	1	2	24	9	0.035
(Nie and Wang, 2013) Ex. 3.4	4	1	4	2	2	24	9	0.097
(Nie and Wang, 2013) Ex. 3.5	5	1	3	1	2	104	20	0.078
(Nie and Wang, 2013) Ex. 3.6	5	1	4	2	4	824	105	15.39
(Nie and Wang, 2013) Ex. 3.8	3	1	6	4	3	48	16	1.14
(Nie and Wang, 2013) Ex. 3.11	8	4	4	8	3	84	25	0.17
(Nie and Wang, 2013) Ex. 3.12	9	3	3	4	2	552	52	1.55
(Nie and Wang, 2013) Ex. 3.13	9	3	3	12	3	3023	190	223.27
(Ottaviani et al., 2013) Ex. 4.2	6	0	8	4	8	2340	210	59.38

Table 2. Best rank-1 and rank-2 approximation tensors

Laurent, M., 2007. Semidefinite representations for finite varieties. Math. Progr 109, 1–26.
Laurent, M., Mourrain, B., July 2009. A generalized flat extension theorem for moment matrices. Arch. Math. (Basel) 93 (1), 87–98.
Ma, Y., Wang, C., L., Z., 2013. A certificate for semidefinite relaxations in computing positive dimensional real varieties, http://arxiv.org/abs/1212.4924
Marshall, M., 2009. Representations of non-negative polynomials, degree bounds and applications to optimization. Can. J. Math. 61 (1), 205–221.
Mourrain, B., 1999. A new criterion for normal form algorithms. In: Fossorier, M., Imai, H., Lin, S., Poli, A. (Eds.), Proc. AAECC. Vol. 1719 of LNCS. Springer, Berlin, pp. 430–443.
Mourrain, B., Trébuchet, P., 2005. Generalized normal forms and polynomials system solving. In: Kauers, M. (Ed.), ISSAC: Proceedings of the ACM SIGSAM International Symposium on Symbolic and Algebraic Computation. pp. 253–260.
Mourrain, B., Trébuchet, P., 2008. Stable normal forms for polynomial system solving. Theoretical Computer Science 409 (2), 229–240.
Mourrain, B., Trébuchet, P., Jul. 2012. Border basis representation of a general quotient algebra. In: van der Hoeven, J. (Ed.), ISSAC 2012, pp. 265–272.
Nesterov, Y., Nemirovski, A., 1994. Interior-point polynomial algorithms in convex programming. SIAM, Philadelphia.
Nie, J., 2011. An exact jacobian SDP relaxation for polynomial optimization. Mathematical Programming, 1–31.
Nie, J., 2012. Certifying convergence of Lasserre’s hierarchy via flat truncation. Mathematical Programming, 1–26.
Nie, J., Demmel, J., Sturmfels, B., 2006. Minimizing polynomials via sum of squares over gradient ideal. Math. Program. 106 (3), 587–606.
Nie, J., Wang, L., 2013. Semidefinite relaxations for best rank-1 tensor approximations, http://arxiv.org/abs/1308.6562v2
Ottaviani, G., Spaenlehauer, P.-J., Sturmfels, B., 2013. Exact solutions in structured low-rank approximation, http://arxiv.org/abs/1311.2376v2
Example 3.1: Consider the tensor $F \in S^3(\mathbb{R}^2)$ with entries
$F_{111} = 1.5578, F_{122} = 1.1226, F_{112} = -2.443, F_{221} = -1.0982$
We get the rank-1 tensor $F \cdot u \otimes 3$ with:
$\lambda = 3.11551, u = (0.926433, -0.376457)$ and $\|F - \lambda \cdot u \otimes 3\| = 3.9333$.

Example 3.2: Consider the tensor $F \in S^3(\mathbb{R}^3)$ with entries
$F_{111} = -0.1281, F_{112} = 0.0516, F_{113} = -0.0954, F_{122} = -0.1958, F_{123} = -0.1790,$
$F_{133} = -0.2676, F_{222} = 0.3251, F_{223} = 0.2513, F_{233} = 0.1773, F_{333} = 0.0338$
We get the rank-1 tensor $F \cdot u \otimes 3$ with:
$\lambda = 0.87298, u = (-0.392192, 0.7248, 0.5664)$ and $\|F - \lambda \cdot u \otimes 3\| = 0.4498.$

Example 3.3: Consider the tensor $F \in S^3(\mathbb{R}^3)$ with entries
$F_{111} = 0.0517, F_{112} = 0.3579, F_{113} = 0.5298, F_{122} = 0.7544, F_{123} = 0.2156,$
$F_{133} = 0.3612, F_{222} = 0.3943, F_{223} = 0.0146, F_{233} = 0.6718, F_{333} = 0.9723$
We get the rank-1 tensor $F \cdot u \otimes 3$ with:
$\lambda = 2.11102, u = (0.52048, 0.511264, 0.683891)$ and $\|F - \lambda \cdot u \otimes 3\| = 1.2672.$

Example 3.4: Consider the tensor $F \in S^4(\mathbb{R}^3)$ with entries
$F_{1111} = 0.2883, F_{1112} = -0.0031, F_{1113} = 0.1973, F_{1122} = -0.2458, F_{1123} = -0.2939,$
$F_{1133} = 0.3847, F_{1222} = 0.2972, F_{1223} = 0.1862, F_{1233} = 0.0919, F_{1333} = -0.3619,$
$F_{2222} = 0.1241, F_{2223} = -0.3420, F_{2233} = 0.2127, F_{2333} = 0.2727, F_{3333} = -0.3054$
We get the rank-1 tensor $F \cdot u_1 \otimes 3$ with:
$\lambda = -1.0960, u_1 = (-0.59148, 0.7467, 0.3042); u_2 = (0.59148, -0.7467, -0.3042)$ and
$\|F - \lambda \cdot u_1 \otimes 3\| = 1.9683.$

Example 3.5: Consider the tensor $F \in S^5(\mathbb{R}^5)$ with entries
$F_{i_1i_2i_3} = \frac{(-1)^{i_1}}{i_1} + \frac{(-1)^{i_2}}{i_2} + \frac{(-1)^{i_3}}{i_3}$
We get the rank-1 tensor $F \cdot u_1 \otimes 5$ with:
$\lambda = 9.9776, u = (-0.7313, -0.1375, -0.46737, -0.23649, -0.4146)$ and
$\|F - \lambda \cdot u_1 \otimes 5\| = 5.3498.$
Example 3.6: Consider the tensor $F \in S^4(\mathbb{R}^5)$ with entries
$$ F_{i_1i_2i_3i_4} = \arctan((-1)^{i_1} \frac{\lambda}{3}) + \arctan((-1)^{i_2} \frac{\lambda}{3}) + \arctan((-1)^{i_3} \frac{\lambda}{3}) + \arctan((-1)^{i_4} \frac{\lambda}{3}) $$
We get the rank-1 tensor $\lambda \cdot u_i \otimes u_i$ with:
$$ \lambda = -23.56525, \ u_1 = (0.4398, 0.2383, 0.5604, 0.1354, 0.6459); \\
||F - \lambda \cdot u_i \otimes u_i|| = 16.8501.$$

Example 3.8: Consider the tensor $F \in S^6(\mathbb{R}^3)$ with entries
$$ F_{111111} = 2, F_{111122} = 1/3, F_{111222} = 2/5, F_{112222} = 1/3, F_{112233} = 1/6, \\
F_{113333} = 2/5, F_{222222} = 2, F_{222233} = 2/5, F_{223333} = 1 $$
We get the rank-1 tensor $\lambda \cdot u_i \otimes u_i$ with:
$$ \lambda = 2, \ u_1 = (1, 0, 0); \ u_2 = (-1, 0, 0); \ u_3 = (0, 1, 0); \ u_4 = (0, -1, 0) \text{ and} \\
||F - \lambda \cdot u_i \otimes u_i|| = 20.59.$$

Example 3.11: Consider the tensor $F \in \mathbb{R}^{4 \times 2 \times 2 \times 2}$ with entries
$$ F_{1111} = 25.1, F_{1121} = 25.6, F_{2121} = 24.8, F_{2222} = 23 $$
We get the rank-1 tensor $\lambda \cdot u_1 \otimes u_2 \otimes u_3 \otimes u_4$ with:
$$ \lambda = 25.6, \ u_1 = (1, 0), u_2 = (0, 1), \ u_3 = (1, 0), u_4 = (0, 1); \\
||F - \lambda \cdot u_1 \otimes u_2 \otimes u_3 \otimes u_4|| = 42.1195.$$

Example 3.12: Consider the tensor $F \in \mathbb{R}^{3 \times 3 \times 3}$ with entries
$$ F_{111} = 0.4333, F_{121} = 0.4278, F_{131} = 0.4410, F_{211} = 0.8154, F_{221} = 0.0199, \\
F_{231} = 0.5598, F_{311} = 0.0643, F_{321} = 0.3815, F_{331} = 0.8834, F_{112} = 0.4866, \\
F_{122} = 0.8087, F_{132} = 0.2073, F_{212} = 0.7641, F_{222} = 0.9924, F_{232} = 0.8752, \\
F_{312} = 0.6708, F_{322} = 0.8296, F_{332} = 0.1325, F_{113} = 0.3871, F_{123} = 0.0769, \\
F_{133} = 0.3151, F_{213} = 0.1355, F_{223} = 0.7727, F_{233} = 0.4089, F_{313} = 0.9175, \\
F_{323} = 0.7726, F_{333} = 0.5526 $$
We get the rank-1 tensor $\lambda \cdot u_1 \otimes u_2 \otimes u_3$ with:
$$ \lambda = 2.8166, u_1 = (0.4279, 0.6556, 0.62209), u_2 = (0.5705, 0.6466, 0.5063), u_3 = (0.4500, 0.7093, 0.5425); \\
||F - \lambda \cdot u_1 \otimes u_2 \otimes u_3|| = 1.3510.$$

Example 3.13: Consider the tensor $F \in \mathbb{R}^{3 \times 3 \times 3}$ with entries
$$ F_{111} = 0.0072, F_{121} = -0.4413, F_{131} = 0.1941, F_{211} = -0.4413, F_{221} = 0.0940, \\
F_{231} = 0.5901, F_{311} = 0.1941, F_{321} = -0.4099, F_{331} = -0.1012, F_{112} = -0.4413, \\
F_{122} = 0.0940, F_{132} = -0.4099, F_{212} = 0.0940, F_{222} = 0.2183, F_{232} = 0.2950, \\
F_{312} = 0.5901, F_{322} = 0.2950, F_{332} = 0.2229, F_{113} = 0.1941, F_{123} = 0.5901, \\
F_{133} = -0.1012, F_{213} = -0.4099, F_{223} = 0.2950, F_{233} = 0.2229, F_{313} = -0.1012,
\(\mathcal{F}_{323} = 0.2229, \mathcal{F}_{333} = -0.4891 \)

We get the rank-1 tensor \(\lambda \cdot u_1^1 \otimes u_2^2 \otimes u_3^3 \) with \(\lambda = 1.000 \) and the 12 solutions

\[
\begin{align*}
&u_1^1 = (0.7955, 0.2491, 0.5524), u_2^1 = (-0.0050, 0.9142, -0.4051), u_3^1 = (-0.6060, 0.3195, 0.7285); \\
&u_1^2 = (-0.0050, 0.9142, -0.4051), u_2^2 = (-0.6060, 0.3195, 0.7285), u_3^2 = (0.7955, 0.2491, 0.5524); \\
&u_1^3 = (-0.6060, 0.3195, 0.7285), u_2^3 = (0.7955, 0.2491, 0.5524), u_3^3 = (-0.0050, 0.9142, -0.4051); \\
&u_1^4 = (0.7955, 0.2491, 0.5524), u_2^4 = (0.0050, -0.9142, 0.4051), u_3^4 = (0.6060, -0.3195, -0.7285); \\
&u_1^5 = (0.6060, -0.3195, -0.7285), u_2^5 = (0.7955, -0.2491, -0.5524), u_3^5 = (0.0050, -0.9142, 0.4051); \\
&u_1^6 = (0.7955, -0.2491, -0.5524), u_2^6 = (-0.0050, 0.9142, -0.4051), u_3^6 = (0.6060, -0.3195, -0.7285); \\
&u_1^7 = (-0.0050, 0.9142, -0.4051), u_2^7 = (0.6060, -0.3195, -0.7285), u_3^7 = (-0.7955, -0.2491, -0.5524); \\
&u_1^8 = (0.0050, -0.9142, 0.4051), u_2^8 = (0.6060, -0.3195, -0.7285), u_3^8 = (0.7955, 0.2491, 0.5524); \\
&u_1^9 = (0.0050, -0.9142, 0.4051), u_2^9 = (-0.6060, 0.3195, 0.7285), u_3^9 = (-0.7955, -0.2491, -0.5524).
\]

The distance between \(\mathcal{F} \) and one of these solutions is \(|| \mathcal{F} - \lambda \cdot u_1^1 \otimes u_2^2 \otimes u_3^3 || = 1.4143. \)

Example 4.2: Consider the tensor \(\mathcal{F} \in S^4(\mathbb{R}^3) \) with entries

\[
\begin{align*}
&\mathcal{F}_{1111} = 0.1023, \mathcal{F}_{1112} = -0.002, \mathcal{F}_{1113} = 0.0581, \mathcal{F}_{1122} = 0.0039, \mathcal{F}_{1123} = -0.00032569, \\
&\mathcal{F}_{1133} = 0.0407, \mathcal{F}_{1222} = 0.0017, \mathcal{F}_{1223} = -0.0012, \mathcal{F}_{1233} = -0.0011, \mathcal{F}_{1333} = 0.0196, \\
&\mathcal{F}_{2222} = 0.0197, \mathcal{F}_{2223} = -0.0029, \mathcal{F}_{2233} = -0.00017418, \mathcal{F}_{2333} = -0.0021, \\
&\mathcal{F}_{3333} = 0.1869
\end{align*}
\]

We get the rank-2 tensor \(\tilde{\mathcal{F}}(s, t, u) = (as + bt + cu)^4 + (ds + et + fu)^4 \) with the 8 solutions:

\[
\begin{align*}
&s_1 = (a, b, c, d, e, f) = (0.01877, 0.006239, -0.6434, -0.5592, 0.008797, -0.3522); \\
&s_2 = (-0.01877, -0.006239, 0.6434, 0.5592, -0.008797, 0.3522); \\
&s_3 = (0.01877, 0.006239, -0.6434, 0.5592, -0.008797, 0.3522); \\
&s_4 = (-0.01877, -0.006239, 0.6434, 0.5592, -0.008797, -0.3522); \\
&s_5 = (-0.5592, 0.008797, -0.3522, 0.01877, 0.006239, -0.6434); \\
&s_6 = (0.5592, -0.008797, 0.3522, -0.01877, -0.006239, 0.6434); \\
&s_7 = (-0.5592, -0.008797, -0.3522, -0.01877, -0.006239, 0.6434); \\
&s_8 = (0.5592, -0.008797, 0.3522, 0.01877, 0.006239, -0.6434).
\end{align*}
\]

The distance between \(\mathcal{F} \) and one of these solutions is \(|| \mathcal{F} - \tilde{\mathcal{F}} || = 0.0010843. \)

The other possible real rank-2 approximations \(\tilde{\mathcal{F}}(s, t, u) = \pm(as+bt+cu)^4 \pm(ds+et+fu)^4 \) yield solutions which are not as close to \(\mathcal{F} \) as these solutions.