Numerical simulation of the stability of three-dimensional elastic composite structures based on the finite element method

Yu I Dimitrienko and I O Bogdanov
Department of Computational Mathematics and Mathematical Physics, Bauman Moscow State Technical University, 5 Baumanskaya 2-ya, Moscow, 105005, Russia

E-mail: dimit.bmstu@gmail.com, ibogdanov@bmstu.ru

Abstract. A numerical method for solving the problem of the stability theory of linearly elastic bodies with small deformations in a general three-dimensional formulation is considered. The problems of this class are poorly studied in contrast to the two-dimensional problems of stability theory. At the same time, classical approaches do not allow one to take into account the effect on the structural stability of various three-dimensional effects: areas of compounds, zones of defects, etc. The study formulates a variation formulation of the problem of the three-dimensional stability theory. Based on the finite element method, a numerical statement is obtained in the form of a generalized eigenvalue problem with symmetric global stiffness matrix. The application of the proposed method is demonstrated by the example of calculating the stability of a composite plate under longitudinal compression. The simulation was carried out using the SMCM software package developed at the Department of Calculus Mathematics and Mathematical Physics of Bauman Moscow State Technical University.

1. Introduction
When operating products made of composite materials, of particular importance is the assessment of the influence of various three-dimensional effects (defects, joint areas, fastenings) on the stability of structures [1-5]. Using the classical approaches of one-dimensional and two-dimensional stability theories [6-17] does not allow to provide a sufficient level of accuracy in solving problems of this class. In this regard, the problem of studying the structures stability within the framework of the general three-dimensional theory has recently become relevant [18].

This paper describes a method for solving the three-dimensional problem of the stability theory of linearly elastic bodies with small deformations in a general three-dimensional formulation [19-27].

2. The mathematical model of the three-dimensional stability theory
We introduce three body configurations: reference \(\hat{K} \), actual \(K \), and varied \(\hat{K} \), which differs from the true actual configuration by small displacement. The indicated configurations are shown in Figure 1.
Figure 1. Reference, actual and varied body configurations

The stability problem consists in finding a varied configuration \tilde{K} (i.e., a vector \mathbf{w}), and using it to search for a possible non-unique solution that determines the unstable state of the body. As shown in [18], in this case, the mathematical model of the stability theory of a linearly elastic body with small deformations consists in the formulation of two main problems solved together. The first of them is the equilibrium problem for the ground (stable) state has the form:

$$\nabla \cdot \mathbf{\sigma}^0 = 0,$$

$$\mathbf{\sigma}^0 = ^4 C \cdot \varepsilon^0, \; \varepsilon^0 = \frac{1}{2} \left(\nabla \otimes \mathbf{u}^0 + \nabla \otimes \mathbf{u}^{0T} \right),$$

$$\mathbf{n} \cdot \mathbf{\sigma}^0|_{\mathbf{\ell}_{\mathbf{w}}} = \lambda \mathbf{S}_e, \; \mathbf{u}^0|_{\mathbf{\ell}_{\mathbf{w}}} = \lambda \mathbf{u}_e,$$

where $\mathbf{\sigma}^0$ is stress tensor; ε^0 is small strain tensor; \mathbf{u}^0 is displacement vector; $^4 C$ is 4th rank elastic modules tensor; \mathbf{S}_e and \mathbf{u}_e are vectors of external surface forces and displacements, respectively; λ is coefficient for vectors of external surface forces and displacements. The second task is actually the problem of stability theory:

$$\nabla \cdot \mathbf{\sigma} - \mathbf{\sigma}^0 \cdot (\mathbf{B} \cdot \mathbf{e}) = 0,$$

$$\mathbf{\sigma} = ^4 C \cdot \varepsilon (\mathbf{w}), \; \varepsilon (\mathbf{w}) = \frac{1}{2} \left(\nabla \otimes \mathbf{w} + \nabla \otimes \mathbf{w}^T \right),$$

$$\mathbf{B} = \nabla \otimes \mathbf{w}, \; \mathbf{\omega} = \frac{1}{2} \mathbf{e} \cdot \Omega (\mathbf{w}), \; \Omega (\mathbf{w}) = \frac{1}{2} \left(\nabla \otimes \mathbf{w} - \nabla \otimes \mathbf{w}^T \right),$$

$$\mathbf{n} \cdot (\mathbf{\sigma} - \mathbf{\sigma}^0 \cdot \mathbf{e} \cdot \mathbf{\omega})|_{\mathbf{\ell}_{\mathbf{w}}} = 0, \; \mathbf{w}^0|_{\mathbf{\ell}_{\mathbf{w}}} = 0,$$

where $\mathbf{\sigma}$ is stress tensor; ε is small strain tensor; \mathbf{w} is displacement vector in a varied configuration; \mathbf{e} is Levi-Civita tensor.

The solution of problems (1) – (2) is carried out in accordance with the following algorithm:

1. Solve the problem (1) for the ground state with the parameter value $\lambda = 1$.
2. Calculate the $\mathbf{\sigma}^0(1)$ stress tensor field. Due to the linearity of the problem, the field of the stress tensor $\mathbf{\sigma}^0(\lambda) = \lambda \mathbf{\sigma}^0(1)$ corresponds to any other value of the parameter λ.
3. Substituting the field $\sigma^0(\lambda)$ in (2), we obtain the stability theory problem (eigenvalue problem).

4. Find the system of eigenvalues λ and eigenfunctions w.

3. Variation formulation of the problem

Consider the equilibrium problem for the ground (stable) state [18, 19]. We introduce the kinematically admissible field $\Psi^0 = \delta u^0$, where δu^0 is the variation of the displacement vector u^0, understood as the difference of two kinematically admissible fields. This field must satisfy the zero boundary condition on part of the surface Σ_u of the region V. Multiplying the equilibrium equation from the system (1) by Ψ^0 and integrating the expression over the region V, taking into account the Gauss-Ostrogradsky theorem, we obtain the variation equation for the equilibrium problem in the ground state:

$$
\int_V \varepsilon^T \cdot \varepsilon^0 \left(u^0 \right) \cdot \delta \varepsilon^0 \left(u^0 \right) dV - \int_{\Sigma_u} \varepsilon_s \cdot \delta u^0 d\Sigma = 0.
$$

Applying a similar approach to the stability problem (2), we arrive at the variation equation:

$$
\int_V \left(\varepsilon^T C \cdot \varepsilon(w) + \sigma^0 \cdot \Omega(w) \right) \cdot \delta \varepsilon \left(u^0 \right) dV = 0.
$$

The relation (4) is an eigenvalue problem in which it is required to find the eigenvalues λ and the corresponding eigenfunctions w. The least eigenvalue λ_{min} is of most practical interest since it corresponds to the critical load σ_{cr}, which leads to the first form of stability loss. All other λ values will correspond to other forms of structural stability loss.

4. The finite element method for solving the problem of stability theory

Consider the numerical formulation of the problem of stability theory. To formulate it in this paper, we used the finite element method [20, 21]. We assume that for the triangulation of the computational domain, a tetrahedral simplex element with three degrees of freedom at each node is used.

Introducing the matrix analogues of the quantities included in the variation formulation (3), and then applying the classical procedure of the finite element method, we obtain a numerical formulation of the equilibrium problem in the ground state, which can be written in the form:

$$
\begin{bmatrix}
K_{12} & F_{12}
\end{bmatrix}_{12} = \begin{bmatrix}
F
\end{bmatrix}_{12},
$$

where the notations are introduced:

$$
\begin{bmatrix}
K_{12} & F_{12}
\end{bmatrix}_{12} = \int_V \begin{bmatrix}
B^T & C
\end{bmatrix}_{12} \begin{bmatrix}
S \end{bmatrix}_{12} dV,
\begin{bmatrix}
F
\end{bmatrix}_{12} = \int_{\Sigma_u} \begin{bmatrix}
S \end{bmatrix}_{12} d\Sigma,
\begin{bmatrix}
B_i
\end{bmatrix} = \begin{bmatrix}
L_i
\end{bmatrix}_{3 \times 12},
\end{bmatrix}_{3 \times 12}.
$$

Here $[C]$ is the matrix of the elastic modulus tensor $4C$ components, $[N]$ is the matrix of the shape functions, $[L_i]$ is the differentiation operator, $[S \Sigma]$ is the vector of external surface forces.

Let us consider the numerical formulation of the problem for a varied state. To do this, we introduce the following notation:

$$
\begin{bmatrix}
\sigma^R
\end{bmatrix}_6 = \begin{bmatrix}
\sigma_{11} & \sigma_{22} & \sigma_{33} & \sigma_{23} & \sigma_{13} & \sigma_{12}
\end{bmatrix}_6
$$

– vector of stress tensor components;

$$
\begin{bmatrix}
\varepsilon^R
\end{bmatrix}_6 = \begin{bmatrix}
\varepsilon_{11} & \varepsilon_{22} & \varepsilon_{33} & 2\varepsilon_{23} & 2\varepsilon_{13} & 2\varepsilon_{12}
\end{bmatrix}_6
$$

– vector of the small strain tensor components;

$$
\begin{bmatrix}
W^R
\end{bmatrix}_3 = \begin{bmatrix}
W_1 & W_2 & W_3
\end{bmatrix}_3
$$

– finite element (FE) displacement vector in a varied configuration;
the displacement vector in the nodes of the finite element in a varied configuration;

\[
\left\{ w \right\}_{12}^T = (w_{11} w_{12} w_{13} w_{21} w_{22} w_{23} w_{31} w_{32} w_{33} w_{41} w_{42} w_{43})
\]

– matrix of stress tensor components in the ground state;

\[
\{R\} = (R_{11} R_{12} R_{13} R_{21} R_{22} R_{23} R_{31} R_{32} R_{33})
\]

– a vector whose components are derivatives of the form \(\partial w_j / \partial x_i \);

\[
[T] = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

– transpose matrix.

Given the notation introduced, the generalized Hooke’s law (the second of the equations in (2)) can be written in the following equivalent form:

\[
\{ \sigma \} = [C] \{ \varepsilon \},
\]

and the Cauchy relations (the third of the equations in (2)) take the form:

\[
\{ \varepsilon \} = [L] \{ W \},
\]

where the displacement vector of a finite element (FE) in a varied configuration is related to the displacement vector of its nodes as:

\[
\{ W \} = [N] \{ w \}.
\]

Variations of the vector of the small strain tensor \(\{ \varepsilon \} \) components and vector \(\{ R \} \) can be expressed as follows, respectively:

\[
\{ \delta \varepsilon \} = [L] \{ \delta W \}, \quad \{ \delta R \} = [L] \{ \delta W \}, \quad \{ \delta W \} = [N] \{ \delta w \}.
\]
where the following notations are introduced:

\[
\begin{align*}
[K] &= \int \left([B^T] [C] [B] \right) dV, \\
[S] &= \frac{1}{2} \int \left([B^T_2] [\Sigma^0] [B_2] \right) dV, \\
[S^0] &= \frac{1}{2} \left([\Sigma^0] + [\Sigma^0]^T \right), \\
[\Sigma^0] &= \left(\begin{bmatrix} \Sigma^0_{yx} \\ \Sigma^0_{zy} \end{bmatrix} \right), \\
\left([T] - [E] \right) &= \left[\begin{bmatrix} \sigma_{yx} \\ \sigma_{zy} \end{bmatrix} \right], \\
[B_2] &= \left[L_2 \right] [N].
\end{align*}
\]

Here \([L_2]\) is the differentiation operator, \([B^T_2]\) and \([B_2]\) are the matrices of derivative functions of the form.

5. Stability of the composite plate

Let us demonstrate the application of the considered model by the example of a multilayer composite plate with a hole. The test plate consists of two layers of ST-12026 twill weaving carbon fabric with reinforcement structure \((0^\circ/90^\circ)\) and one layer of biaxial diagonal fiberglass SM-42020 with reinforcement structure \((+45^\circ/-45^\circ)\) (see Figure 2). The total thickness is 0.01 m. The effective elastic constants of this material are shown in Table 1 and were calculated separately [22].

![Figure 2. Reinforcement scheme of a multilayer composite plate](image)

Effective elastic constants	Designation	Value
Young’s modulus along the \(x\) axis, MPa	\(E_1\)	47752.5
Young’s modulus along the \(y\) axis, MPa	\(E_2\)	9039.68
Young’s modulus along the \(z\) axis, MPa	\(E_3\)	47752.5
The shear modulus in the \(xy\) plane, MPa	\(G_{12}\)	3831.02
The shear modulus in the \(xz\) plane, MPa	\(G_{13}\)	10430.6
The shear modulus in the \(yz\) plane, MPa	\(G_{23}\)	3831.02
Poisson's ratio in the \(xy\) plane	\(v_{12}\)	0.315505
Poisson's ratio in the \(xz\) plane	\(v_{13}\)	0.158262
Poisson's ratio in the \(yz\) plane	\(v_{23}\)	0.0597261

The paper considers two calculations for stability under longitudinal compression. In each of the calculations, the plate had a size of \(0.5 \text{ m} \times 1 \text{ m}\). The initial load, set at the short end of the plate, was 0.2 GPa, the opposite end was rigidly fixed (zero components of the displacement vector were specified). In the first case, a hole with a diameter of 0.05 m was located in the centre in the upper part of the plate, in the second, in the lower right.
Table 2 shows the calculated critical loads. Figure 3 shows examples of the results of solving the problem for the ground state with symmetrical location of the hole, Figure 4 shows examples of the results of solving the problem for the varied state with symmetrical location of the hole, Figures 5-6 show examples of results, respectively, for the ground and varied states with an asymmetric location of the hole.

Figure 3. Examples of fields obtained by solving the problem for the ground state with the symmetrical location of the hole: a) component u_i^0 of the displacement vector; b) component u_i^0 of the displacement vector; c) component σ_{33}^0 of the stress tensor

Figure 4. Examples of fields obtained by solving the problem for a varied state with the symmetrical location of the hole: a) component w_i of the displacement vector; b) component w_i of the displacement vector; c) component w_i of the displacement vector

Figure 5. Examples of fields obtained by solving the problem for the ground state with an asymmetric location of the hole: a) component u_i^0 of the displacement vector; b) component u_i^0 of the displacement vector; c) component σ_{33}^0 of the stress tensor

Figure 6. Examples of fields obtained by solving the problem for a varied state with an asymmetric location of the hole: a) component w_i of the displacement vector; b) component w_i of the displacement vector; c) component w_i of the displacement vector

From the results shown in Table 2, it is seen that the critical loads at different positions of the holes are quite close.

Table 2. Values of calculated critical loads

Hole position	The value of the critical load, MPa
Top center	17.449
6. Conclusions
The work considers a method for solving the stability theory of linearly elastic bodies with small deformations in a general three-dimensional formulation. The main advantage of this approach is the ability to take into account the influence of three-dimensional effects on the loss of structural stability. In the paper, a variation formulation of the problem is formulated and reduced to a generalized eigenvalue problem based on the use of the finite element method. The results of applying the considered model are presented on the example of studying the stability of a multilayer composite plate with a hole.

References
[1] Belov P A, Borodulin A S, Kobets L P and Malysheva G V 2016 Kinetics of fiber impregnation by a binder. Gradient generalization of Navier–Stokes–Darcy equations Polymer Science - Series D 9 205-208
[2] Golovatov D, Mikhaylov M and Bosov A 2016 Computational studies of connections of spatial composite structures of space-rocket techniques Indian Journal of Science and Technology 9 107495
[3] Magnitsky I V, Odinabekov F R and Sergeeva E S 2018 The development of multi-directional spatially reinforced material structural theory Solid State Phenomena 284 SSP 146-151
[4] Belyaeva A A and Evseev K B 2020 Analysis viscoelastic properties of the composite leaf spring. IOP Conference Series: Materials Science and Engineering 709 033011
[5] Barinov D Y and Prosuntsov P V 2019 Modelling of destruction of carbon-ceramic composite materials with variable density AIP Conference Proceedings 2171 170011
[6] Timoshenko S P and Gere J M 1961 Theory of elastic stability. 2nd ed. (New York/Toronto/London: McGraw-Hill) p 356
[7] Timoshenko S P 1971 Stability of cores, plates and covers (Moscow: Nauka Publ.) p 808
[8] Simites G J 1976 An introduction to the elastic stability of structures (Prentice Hall, NJ) p 256
[9] Donnell L G 1982 Beams, plates and covers (Moscow: Nauka Publ.) p 568
[10] Iyengar N.G.R. 1986 Structural stability of columns and plates (New Delhi: Affiliated East-West Press) p 284
[11] Bazant Z P and Cedolin L 1990 Stability of structures (Oxford: Oxford University Press) p 316
[12] Bazant Z P 2000 Stability of Elastic, Anelastic, and Disintegrating Structures: A Conjectures of Main Results ZAMM, Z Angew.Math.Mech. 80(11-12) pp 709-32.
[13] Pikul V V 2007 To the theory of stability of covers Proceedings of the Academy of Sciences, 416(3) pp 341-43
[14] Zhukov A E and Volkov V M 2007 Experimental and theoretical research of stability of plates with cracks Problems of durability and plasticity: Interuniversity collection. 69, pp. 13-17
[15] Pikul V V 2008 Current state of the theory of stability of covers Bulletin of the Far Eastern Branch of the Russian Academy of Sciences 3 pp. 3-9
[16] Vanko V I 2014 Sketches according to the theory of stability of elements of designs (Moscow: BMGTU Publ.) p 220
[17] Solomonov Yu S Georgievskij V P Nedbaj A Ya and Andryushin V A 2014 Applied problems of mechanics of composite cylindrical covers (Moscow: Fizmatlit Publ.) p 408
[18] Kohanenko Yu V 2009 Three-dimensional stability of the cylinder at a non-uniform initial state Reports of the National Academy of Sciences of Ukraine 1, pp. 60-62
[19] Dimitrienko Yu I and Bogdanov I O 2016 Finite-element method for three-dimensional problems of elastic structures buckling theory Herald of the Bauman Moscow State Technical University. Series Natural Sciences 6 pp 73-92
[20] Dimitrienko Yu I 2013 Generalized three-dimensional theory of elastic bodies stability. Part 1: finite deformations Herald of the Bauman Moscow State Tech. Univ., Nat. Sci. 4 (51) pp. 79-95
[21] Dimitrienko Yu I 2014 Generalized three-dimensional theory of elastic bodies stability. Part 2:
small deformations *Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.* 1 pp. 17-26

[22] Dimitrienko Yu I 2014 Generalized three-dimensional theory of elastic bodies stability. Part 3. theory of shell stability *Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.* 2 pp 77-89

[23] Dimitrienko Yu I 2013 *Continuum mechanics* vol. 4. *Fundamentals of solid mechanics* (Moscow: BMSTU Publ.) p 624

[24] Dimitrienko Yu I 2011 *Continuum mechanics*. vol. 1. *Tensor analysis* (Moscow: BMSTU Publ.) p 367

[25] Dimitrienko Yu I and Yurin Yu V 2015 Finite element modelling of the intense deformed condition of rocks taking into account creep *Mathematical modelling and Computational methods* 3 pp 101-118

[26] Dimitrienko Yu I and Kashkarov A I 2002 Calculation of effective characteristics of composites with periodic structure by final element method *Herald of the Bauman Moscow State Tech. Univ., Nat. Sci* 2, pp. 95-108

[27] Dimitrienko Yu I and Dimitrienko ID 2019 Computations of stresses and energy dissipation in composite thin laminates with the asymptotic vibration theory *Computers & Mathematics with Applications*. 78(8) pp.2541-2559