Growth Factor Receptor-bound Protein 2 Interaction with the Tyrosine-phosphorylated Tail of Amyloid β Precursor Protein Is Mediated by Its Src Homology 2 Domain*

Received for publication, January 16, 2004, and in revised form, March 9, 2004
Published, JBC Papers in Press, March 30, 2004, DOI 10.1074/jbc.M400488200

Dawang Zhou‡§, Cristiano Noviello‡§, Chiara D’Ambrosio§, Andrea Scaloni, and Luciano D’Adamio‡‡

From the ‡Albert Einstein College of Medicine, Department of Microbiology & Immunology, Bronx, New York 10461, ¶Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Ceinge Biotecnologie Avanzate, Via Comunale Margherita 482, 80145 Naples, Italy, and §Proteomics and Mass Spectrometry Laboratory, Institute for Animal Production System in Mediterranean Environment, National Research Council, via Argine 1085, 80147 Naples, Italy

The sequential processing of the familial disease gene product amyloid β precursor protein (AβPP) by β- and γ-secretases generates amyloid β, which is considered to be the pathogenic factor of Alzheimer’s disease, and the AID peptide (AβPP intracellular domain). The AID peptide acts as a positive regulator of apoptosis and modulates transcription and calcium release. To gain clues about the molecular mechanisms regulating the function of AβPP and AID, proteins interacting with the AID region of AβPP have been isolated using the yeast two-hybrid system. Recent evidence indicates that AβPP undergoes post-translational modification events in the AID region and that phosphorylation might regulate its affinity for interacting proteins. To test this possibility and to uncover AβPP-binding partners whose interaction depends on AβPP phosphorylation, we used a proteomic approach. Here we describe a protein, growth factor receptor-bound protein 2 (Grb2), that specifically binds AβPP, phosphorylated in Tyr682. Furthermore, we show that this interaction is direct and that Grb2 binds to phospho-AβPP via its Src homology 2 region. Together with the evidence that Grb2 is in complex with AβPP in human brains and that these complexes are augmented in brains from Alzheimer’s cases, our data indicate that Grb2 may mediate some biological and possibly pathological AβPP-AID function.

Alzheimer’s disease (AD) constitutes approximately two-thirds of all cases of dementia (1, 2) and is the most common neurodegenerative disease. AD is genetically linked to a few molecules, one of which is the amyloid β precursor protein (AβPP), a type I transmembrane protein that undergoes processing by the secretases to produce various fragments. Processing by the β- and γ-secretases generates the Aβ fragment from the β to the γ sites and AβPP intracellular domain (AID) from the γ site to the C terminus (2, 3). Recently, another γ-secretase-dependent cleavage has been described to occur at the “e” site that lies within AID (4–7), generating a shorter AID fragment. The pathologic cascade, which leads to clinical manifestations of AD, has not been fully characterized although the “amyloid hypothesis” has been used to explain certain aspects of AD pathology. According to this hypothesis, the accumulation of Aβ is the primary event that leads to all subsequent events in the pathology of AD (8).

However, considering that Aβ and AID production is dependent on the γ-secretase, several groups have attempted to understand the biological effects of AID production. Indeed, it has been found that AID is able to trigger apoptosis or lower the threshold of the cell to other apoptotic stimuli (9–17) and to regulate Ca2+ release (18, 19) and possibly transcription (12, 16, 20, 21). To gain information about the mechanisms by which AID regulates these biological processes, the yeast-two-hybrid system has been used to identify proteins interacting with the cytoplasmic tail of AβPP. Using this method, several AβPP interactors have been identified. These include a class of cytoplasmic proteins containing a phosphotyrosine-binding (PTB) domain such as Fe65, X11, JIP1, JIP2, ARH, mDab1, Numb, Nbl, and AIDA (22–30). The PTB domain of these proteins interacts in a phosphorylation-independent manner with the YENPTY sequence present in the intracellular domain of AβPP.

Recent data have shown that the cytoplasmic tail of AβPP undergoes post-translational modification events such as Thr Tyr phosphorylation (31). AβPP Thr668 (numbering for the AβPP isoform) has been found to be constitutively phosphorylated in adult rat brain (32) and in neurons (33). Cdc2 kinase phosphorylates Thr668 during the G2/M phase of the cell cycle. In differentiated PC12 cells and in SH-SY5Y cells AβPP Thr668 phosphorylation is mediated by Cdk5 (34). Glycogen synthase-β and more efficiently c-Jun N-terminal kinase-3 also phosphorylate Thr668 in vitro (35, 36). More recently, it has been shown that c-Jun N-terminal kinase-1 and -2 phosphorylate Thr668 of AβPP in a JIP1-dependent (36, 37) and -independent manner (37) in vitro. Phosphorylation of Tyr682 (Y11ENPTY, following the AβPP isoform numbering) (where

* This work was supported in part by Alzheimer’s Disease Research Grant A2003-076 and National Institutes of Health Grants RO1 AG22024-01 and RO1 AG21588-01 (to L. D.), a Telethon Italia grant (to C. N.), and the Italian National Research Council (to A. S.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
† These authors contributed equally to this work.
‡ To whom correspondence should be addressed: Albert Einstein College of Medicine, Dept. of Microbiology & Immunology, 1300 Morris Park Ave., Bronx, NY 10461. E-mail: ldadamio@eacman.yu.edu.
§ The abbreviations used are: AD, Alzheimer’s disease; Aβ, amyloid β; AβPP, amyloid β precursor protein; AID, AβPP intracellular domain; PTB, phosphotyrosine binding; Grb2, growth factor receptor-bound protein 2; SH, Src homology; GST, glutathione S-transferase; fl, full-length; MALDI-TOF-MS, matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry; strep, streptavidin; YFP, yellow fluorescent protein; RTK, tyrosine kinase receptor; WT, wild type; WB, Western blot; MEF, mouse embryonic fibroblast; HEK, human embryonic kidney; MAPK, mitogen-activated protein kinase.

This paper is available on line at http://www.jbc.org
Tyrosine-phosphorylated
AβPP Interacts with Grb2

Yp is phosphhosorylase that can be mediated by a constitutively active form of the tyrosine kinase Abl (2, 38–40) or by overexpression of the nerve growth factor receptor TrkA (41). These phosphorylation events are detected in the brain of normal subjects as well as in patients with Alzheimer’s disease. We have found that phosphorylation of Tyr662 affects the interaction of AβPP with some binding partners. ShcA and -C, members of a family of cytoplasmic adaptor proteins that also includes ShcB, contain a PTB region that binds to the YENPTY AβPP motif (42). However, unlike the other PTB-containing proteins that interact with AβPP, ShcA and -C associate with AβPP only when Tyr662 is phosphorylated. Interestingly, the expression level of ShcA protein is augmented in AD brains as compared with normal brain samples (43, 44). Moreover, ShcA-AβPP complexes are found in human brains and are increased in AD samples.

These data underscore the biological relevance of AβPP phosphorylation. Moreover, they suggest that these phosphorylation events may control AβPP functions by regulating the affinity of AβPP for distinct binding partners. Because the yeast two-hybrid system is not ideal to identify interactions that are regulated by post-translational modification events, we used a biochemical approach to isolate brain proteins in which the binding to AβPP is modulated by AβPP phosphorylation. In this study, we describe one of the interactors isolated using this strategy, growth factor receptor-bound protein 2 (Grb2). We present data showing that Grb2 directly interacts with AβPP and that this interaction requires phosphorylation of Tyr662 in AβPP. Unlike the other interactors that bind the YENPTY AβPP motif via their PTB domain, Grb2 binds to Y′ENPTY via its Src homology (SH) 2 region. These data, together with the finding that a complex of Grb2-AβPP is formed in human brains and that these complexes are increased in AD brains, suggest that Grb2 may mediate some biological and perhaps pathological AβPP-AID function.

MATERIALS AND METHODS

Strep-tag Peptide Synthesis—Strep-tag peptides including the strep-tag alone (control), strep-tag AID, strep-tag AID phosphothreonine (AID-Thr(P)662), strep-tag AID phosphothreonine (AID-Thr(P)662), and strep-tag AID phosphophosphorynine (AID-Thr(P)662/Tyr(P)682) were synthesized and purified by Tufts University Core Facility (Boston, MA). The sequences of the peptides are indicated in Fig. 1A.

cDNA Constructs—The GST-Grb2 full-length (f1) and GST-Grb2 N- and C-terminal SH3 constructs were generously provided by Dr. Robert A. Weinberg. The GST-Grb2-SH2 construct was prepared by PCR amplification of the SH2 domain. The PCR primers used for the cloning (restriction sites are indicated in boldface) are the following: SH2 sense, 5′-AAAAAGGATCCGCGCGATCTGTTT-3′; SH2 antisense, 5′-AAGATCTGAGTTATCTCTACTGTC-3′. The amplified product was cloned into pGEX vector (Amersham Biosciences) and sequenced. The GST-AID constructs have been described previously (42). All of the YFP-Grb2 constructs were prepared by PCR amplification, cloned into YFP-N3 vector (Clontech), and sequenced.

Cell Culture—Stock cultures of wild-type and ShcA knock-out mouse embryonic fibroblast (MEF) cells (a gift from Dr. G. Pelicci) and human embryonic kidney 293 cells stably transfected with AβPP695 were maintained in Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 10% (v/v) fetal bovine serum (Biofluids, Rockville, MD) and penicillin/streptomycin in a humidified atmosphere containing 7% (v/v) CO2 at 37 °C.

GST Fusion Proteins—Recombinant GST fusion proteins were constructed as described above and expressed in Escherichia coli strain BL21 (Invitrogen) to make non-phosphorylated proteins and were expressed in strain TKB1 (Stratagene) to make tyrosine-phosphorylated proteins (42). Proteins were purified using glutathione-Sepharose beads (Amersham Biosciences). Phosphorylation of fusion proteins was confirmed by immunoblotting.

Antibodies—Rabbit polyclonal Grb2 antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, CA), and mouse monoclonal ShcA antibody was from Transduction Laboratories (Lexington, KY). Phospho-
yrosine-100 mouse monoclonal antibody was obtained from Cell Signal-
tech (Beverly, MA). Mouse monoclonal P2-1 antibody was a generous gift of W. E. Van Nostrand (45). 22C11 monoclonal antibody was purchased from Chemicon International (Temecula, CA), and horse-
radish peroxidase-conjugated secondary antibodies were purchased from Southern Biotechnology Associates (Birmingham, AL).

GST Pulldowns, Immunoprecipitation, and Western Blot Analysis—For GST pull-down experiments, cells were collected, washed with phosphate-buffered saline, and lysed with lysis buffer (50 mM Tris/HCl, pH 7.4, 70 mM NaCl, 1% (v/v) Triton X-100, 50 mM sodium fluoride, 1 mM sodium vanadate, pH 7.5) to which was added 2 μg/ml aprotinin, 10 μg/ml leupeptin, and 1 mM phenylmethanesulfonyl fluoride (42). 6 μg of each GST fusion protein was incubated with cell lysates for 2 h. Samples were washed four times with lysis buffer and then boiled with SDS-PAGE sample buffer. For immunoprecipitation experiments cells were collected 48 h after transfection, washed with phosphate-buffered saline, and lysed with lysis buffer. After 30 min of precleaving with ImmunopuroPlus immobilized protein AG (Pierce), cell lysates were incubated overnight with the antibodies and then processed as described previously. The eluted proteins were subjected to SDS-PAGE, transferred to nitrocellulose membranes, and probed with the primary antibodies for 1 h or overnight. Immunoblots were revealed using horseradish peroxidase-conjugated secondary antibodies followed by chemi-
luminescence (SuperSignal West Pico, Pierce).

In Vitro Protein Interaction Assays—Equivalent molar amounts (3 nmol) of strep-tag AID peptides were incubated with 30 μl of 50% Strep-Tactin matrix (IBA) in a total volume of 400 μl of NET-N buffer (150 mM NaCl, 1 mM EDTA, 50 mM Tris/HCl, 1% (v/v) Nonidet P-40, pH 8.0) for 1 h at 4 °C. The beads were washed two times with 400 μl of NET-N buffer and then incubated with 6 μg of each GST fusion protein in 400 μl of NET-N buffer for 2–4 h at 4 °C. The beads were then washed with 1 ml of NET-N four times. The bound proteins were eluted from the beads by boiling the samples at 95 °C in SDS-PAGE loading buffer for 4 min. Proteins were analyzed by NuPAGE® Novex Bis-Tris 4–12% gel (Invitrogen) electrophoresis, and then each gel was stained with Coomassie Blue.

Strept Pulldown from Mice Brain and MEF Cells—The strept pull-down experiment from MEFs was performed as the GST pull-down procedure described above, except that 3 nmol of strep-tag peptide were used instead of 6 μg of GST proteins. To prepare the mouse brain lysates, adult BALB/c mice (age 3 months) were euthanized, and brains were removed and homogenized in buffer containing 100 mM Tris/HCl, 150 mM NaCl, 1% (v/v) Triton X-100, 1 mM EDTA, pH 8.0, protease and phosphatase inhibitors. To preclarify the lysate, it was passed through the column containing strept-tag beads, and then equal amounts of precleared lysate were applied onto each column containing Strep-
Tactin matrix incubated previously with the different strept-tag peptides. The beads were washed four times with lysis buffer and then eluted with 10 μl desthiobiotin. The pulled samples were analyzed in parallel by SDS-PAGE followed by ammoniacal silver staining or West-
ern blotting.

Mass Spectrometry Analysis—Protein bands from SDS-PAGE were excised from the gel, trituated, and washed with water. Samples were reduced in gel, S-alkylated, and digested with trypsin as reported previously (46). Digests were subjected to a desalting/concentration step on μZipTipC18 (Millipore Corp., Bedford, MA) before mass analy-
sis. Peptide mixtures were loaded on the MALDI target together with α-cyano-4-hydroxycinnamic acid as matrix using the dried droplet tech-
nique. Samples were analyzed with a Voyager-DE PRO mass spectrom-
eter (Applied Biosystems, Framingham, MA) (47); spectra were ac-
tained by the manufacturer. Internal mass calibration was performed with peptides derived from enzyme autophosphorylation. The PROWl software package was used to identify bands unambiguously from independent Swiss Protein and NCBI non-redundant sequence data bases.

Enzyme-linked Immunosorbent Assay—The human amyloid β-(1–
42) enzyme-linked immunosorbent assay kit was purchased from Immuno-
Biological Laboratories (Fujisawa, Japan). 48 h after trans-
ient transfection of YFP and YFP-Grb2 fusion proteins, Aβ(1–40) was assayed in triplicates from conditioned media of HEK 293 stably transfected with AβPP695. The assay was performed according to the manufacturer’s instructions.

Results

Identification of Growth Factor Receptor-Bound Protein 2 as Binding Protein of Phosphorylated AβPP Tyrosine—With the
Tyrosine-phosphorylated AβPP Interacts with Grb2

The goal of identifying new AβPP interacting proteins in which binding is regulated by phosphorylation events, a direct AID-proteomic approach was used. Five synthetic peptides, i.e. control peptide, AID, AID phosphothreonine (AID-Thr(P)668), AID phosphotyrosine (AID-Tyr(P)682), and AID phosphothreonine and tyrosine (AID-Thr(P)668/Tyr(P)682) were immobilized on different samples of Strep-Tactin resin (Fig. 1A). A mouse brain cell lysate was applied in parallel on separate columns packed with these differently coated solid supports, was washed, and then was eluted by SDS-PAGE loading buffer. Pulled samples were analyzed in parallel by SDS-PAGE and stained by ammoniacal silver (Fig. 1B). These findings were confirmed by analyzing the same samples by SDS-PAGE and Western blot using an anti-Grb2 antibody (WB; αGrb2) (Fig. 1D). The αGrb2 antibody detected a component migrating at 28 kDa only in the samples eluted from the columns coated with AID-Tyr(P)682 and AID-Thr(P)668/Tyr(P)682 peptide and not with control, AID, and AID-Thr(P)668 peptides. The mass spectrum obtained by MALDI-TOF-MS is reported. Non-redundant sequence data base searching identified these 28-kDa proteins as Grb2. Mouse brain lysates precipitated by the synthetic peptides: control peptide, AID, AID-Thr(P)668, AID-Tyr(P)682, and AID-Thr(P)668/Tyr(P)682 (from the left) were analyzed by SDS-PAGE and Western blot (WB) with the αGrb2 antibody. A 28-kDa component is revealed only in the samples precipitated by AID-Tyr(P)682 and AID-Thr(P)668/Tyr(P)682, indicating that the interaction Grb2-AID is tyrosine phosphorylation-dependent.
Tyrosine-phosphorylated AβPP Interacts with Grb2

ShcA (αShcA) or an anti-Grb2 antibody. The lower part of the gel was stained with Coomassie Blue to verify that the same amount of peptides was used for each pulldown (Fig. 2A, lower panel). The three ShcA isoforms of 46, 52, and 66 kDa were identified in the total lysate of wild type but not ShcA knock-out MEFs (lane I). As shown in the top panel of Fig. 2A, the 52- and 46-kDa ShcA isoforms interacted with AID-Tyr(P)682 but not with control and AID peptides. Grb2 protein, which is highly expressed in both wild type and ShcA knock-out MEFs, also interacted specifically with AID-Tyr(P)682 peptide (Fig. 2A, WB αGrb2). Interestingly, AID-Tyr(P)682 was still able to recruit Grb2 from ShcA knock-out MEFs, suggesting that ShcA is not required for the formation of the Grb2-AID-Tyr(P)682 complex.

To further confirm these data we repeated the pull-down experiment using GST-AID fusion proteins. We expressed GST-AID in BL21 and TKB1 E. coli strains. The TKB1 strain is able to produce tyrosine-phosphorylated recombinant proteins (Fig. 2B), and this phosphorylation occurs on Tyr682 (42). To verify that the same amount of GST protein was used in the experiment, we analyzed the samples by SDS-PAGE and Coomassie Blue staining, as shown in the lower panel of Fig. 2B. We analyzed the precipitated samples by Western blot using αShcA and αGrb2 antibodies. The GST pull-down experiments were cleaner than the strep pull-down assays, and all ShcA isoforms were clearly pulled down by GST-AID-Tyr(P) but not by GST-AID (Fig. 2B, WB αGrb2). Consistent with the data obtained using synthetic peptides, Grb2 interacted specifically with GST-AID-Tyr(P), and this interaction was apparent in samples from both ShcA knock-out and wild type MEFs. These data indicate that the interaction between Grb2 and AID-Tyr(P) is not mediated by ShcA.

Grb2 Interacts Directly with AID-Tyr(P) via Its SH2 Domain—The above data indicate that ShcA is not necessary to bridge Grb2 to AβPP-Tyr(P)682. This suggests that the interaction between Grb2 and AβPP-Tyr(P)682 is direct. Alternatively, it is possible that ShcA knock-out cells may express low levels of ShcB and/or ShcC proteins sufficient to link Grb2 to AβPP. In addition, other proteins may mediate the binding of Grb2 to AID-Tyr(P). To distinguish among these possibilities, we performed in vitro interaction assays using recombinant proteins. For this purpose, we used the GST-Grb2 fusion proteins and GST AID synthetic peptides. We expressed and produced GST fused either to full-length Grb2 (Grb2 fl) or to the single Grb2 domains: the SH3 domain of Grb2 (SH3 C-terminal) and SH2 domains (SH2 C-terminal) (Fig. 3A). We incubated the GST-Grb2 proteins with AID, AID-Tyr(P)682, and the control peptides bound to the strep beads as described under “Materials and Methods.” The samples were eluted with SDS-PAGE loading buffer and were analyzed by SDS-PAGE followed by Coomassie Blue staining. In the left panel of Fig. 3, the input of the following GST fusion proteins is shown. When the GST fusion proteins were bound to the control peptide, a weak signal was revealed in each lane indicating an aspecific interaction with the control peptide. Low level of interaction, similar to the background aspecific binding seen with the control peptide, was also found between the AID peptide and GST-Grb2fl. Of note, GST-Grb2fl was strongly bound by the AID-Tyr(P)682 peptide, indicating that Grb2 can specifically and directly interact with Tyr-phosphorylated AID. Furthermore, whereas both of the GST-Grb2 SH3 domain fusion proteins did not interact with AID-Tyr(P)682, the GST-Grb2 SH2 recombinant protein was still able to interact with AID-Tyr(P)682, albeit less efficiently than GST-Grb2fl. These data indicate that Grb2 is a binding partner of AβPP-AID; this interaction is direct and involves the SH2 domain of Grb2.

Src Promotes AβPP-Tyrosine Phosphorylation and Increases the Formation of AβPP-Grb2 Complexes in Vivo—To evaluate the role of tyrosine phosphorylation in the formation of the AβPP-Grb2 complex in vivo, we overexpressed the constitutive active form of the tyrosine kinaseSrc (SrcY527P) (47, 51) and the...
empty vector as a control in HEK 293 cells stably transfected with the AβPP⁶⁹⁵ isoform. Forty-eight h after transfection, cells were harvested, lysed, and immunoprecipitated with the P2-1 antibody, which recognizes an epitope at the AβPP N terminus. The samples were eluted with SDS loading buffer and analyzed by Western blot with the anti-tyrosine-phosphorylated antibody (Fig. 4A), the anti-AβPP (22C11) antibody, and the anti-ShcA and the anti-Grb2 antibodies (Fig. 4B, top, middle, and bottom panels, respectively). The Western blotting with the anti-tyrosine-phosphorylated antibody clearly showed an increase in the total level of tyrosine phosphorylation in the cells transfected with Src^{Y527F} compared with the control. Furthermore, in the sample overexpressing Src^{Y527F} the P2-1 antibody immunoprecipitated a 98-kDa phosphorylated component, which could be either AβPP or a protein interacting with AβPP.

Interestingly, Western blot analysis with the anti-ShcA antibody indicated that, despite the fact that the level of ShcA proteins was the same in the total lysates of both the samples, Src^{Y527F} overexpression caused an increase in the amount of all the ShcA isoforms co-immunoprecipitated by the anti-AβPP antibody compared with the control. The same increase was observed for Grb2 as well. Since similar amounts of AβPP were immunoprecipitated from each sample, these results indicate that the regulation of AβPP tyrosine phosphorylation modulates the formation of AβPP-Grb2 and AβPP-Shc complexes in vivo.

Overexpression of Grb2-SH2 Domain Causes an Increase in Generation of Aβ-(1–40)—Several reports indicate the importance of the AβPP⁶⁸²YENPTY⁶⁸⁵ motif interacting proteins in AβPP trafficking and processing (52). To address whether Grb2 could regulate Aβ production, we overexpressed Grb2 full-length and the single Grb2 domains fused to the YFP in HEK 293 stably transfected with AβPP⁶⁹⁵. Forty-eight h after transfection we measured the accumulation of Aβ in the conditioned medium from the transfected cells. As shown in Fig. 5, the overexpression of YFP-Grb2 full-length (Grb2_{fl}) and Grb2 SH3 C- and N-terminal domain (Grb2 SH3-C and Grb2 SH3-N, respectively) fusion proteins did not alter the production of Aβ-(1–40). However, the overexpression of the YFP-Grb2 SH2 domain, which can interact with AβPP, caused a significant increase in the production of Aβ-(1–40). Because HEK 293 cells express high levels of endogenous Grb2 protein, it is possible that overexpression of exogenous Grb2 did not enhance the functional role of Grb2 in AβPP processing. Nonetheless, the evidence that overexpression of the Grb2-SH2 domain considerably enhanced Aβ-(1–40) production might suggest a role for Grb2 in Aβ production. Alternatively, Grb2-SH2 might either compete with other AβPP interactors that reduce Aβ production or enhance AβPP cleavage independently of its ability to bind AβPP.
Fig. 5. Aβ(1–40) measurement in HEK 293 stably expressing AβPP^{H9252} after transient transfection of several YFP-Grb2 fusion proteins. We overexpressed YFP, YFP-Grb2 full-length (Grb2 Full), Grb2 SH2, Grb2 SH3-C, and N-terminal domains (Grb2 SH3-C and Grb2 SH3-N, respectively) constructs in HEK 293 stably transfected with AβPP^{H9252}. Forty-eight h after transfection, we measured the accumulation of Aβ(1–40) in the conditioned medium of cultured cells. Stated deviations of triplicate experiments are reported. *, mean value is significantly different (p < 0.02) from that of the YFP control transfected cells.

![Diagram](image)

Fig. 6. Model illustrating the potential role(s) of AβPP-Tyr⁶⁸²-Grb2 interaction. A, extracellular or intracellular stimuli activate a tyrosine kinase (such as Abl or Src). B, AβPP is phosphorylated on Tyr⁶⁸² by activated tyrosine kinase (*). C, AβPP-Tyr⁶⁸² recruits Grb2 (via its SH2 domain). AβPP-Tyr⁶⁸²-bound Grb2 engages Sos via its SH3 domain, thereby activating the Ras/MAPK pathway (D). Alternatively, Grb2 can signal through Rab5 to promote endocytosis (E).

DISCUSSION

The cytoplasmic tail of AβPP contains a PTB-binding motif (Tyr⁶⁸²ENPTY⁶⁸⁷) that interacts with the PTB domain of various cytoplasmic proteins. It is important to note that the interaction of the cytoplasmic tail of AβPP with all of the proteins identified to date (Fe65, X11, JIP1, JIP2, ARH, mDab1, Numb, Nb1, and AIDA) does not require the phosphorylation of AβPP (22–27, 29, 30). The only exception is represented by Shc, which binds to AβPP upon phosphorylation of the first tyrosine of the AβPP PTB domain-binding motif (Tyr⁶⁸²) (42). In this report, we describe Grb2 as a protein that directly interacts with the cytoplasmic tail of AβPP. However, although both Shc and Grb2 are recruited to AβPP upon phosphorylation of Tyr⁶⁸², different modules mediate these interactions: the PTB domain of Shc and the SH2 region of Grb2, respectively.

Expression of either a constitutively active form of the tyrosine kinase Abl (38), Src (this report), or the nerve growth factor receptor TrkA is associated with phosphorylation of AβPP (41); moreover, Tyr phosphorylation of AβPP C-terminal fragments has been detected in the brains of elderly subjects. Also, Shc and Grb2 have been shown to associate with AβPP fragments in brain samples. It is noteworthy that the levels of Shc proteins and AβPP-Shc-Grb2 complexes are increased in AD cases as compared with control (53). However, these in vitro data did not clarify whether Grb2 was directly interacted with AβPP and whether post-translational modifications of AβPP were required to modulate this interaction. Our data clearly determine that Grb2 binding to AβPP is direct and that it requires phosphorylation of Tyr⁶⁸² in vitro and in vivo.

The physical association of endogenous AβPP and Grb2 in the adult human brain and the augmentation in AβPP-Grb2 complexes in AD patients underscore the biological and perhaps pathological relevance of these findings and prompt us to speculate about the possible functional consequences that this interaction has. The Grb2 SH3 domains interact with proline-rich regions of RAS-specific guanine nucleotide exchange factor Son of sevenless (Sos) (48), Dai2 (54), or GAB2 (55). Thus, through the formation of the phosphoprotein complexes, Grb2 links RTKs to Ras and to the activation of the mitogen-activated protein kinase (MAPK) pathways cascade. It is worth noting that MAPK activation is increased in AD brains (56) and that activated MAPKs can participate in the abnormal hyperphosphorylation of tau in Alzheimer’s disease (57–62). Interestingly, the docking site for Grb2 generated by phosphorylation of Tyr⁶⁸² in AβPP has the potential to mechanistically link AβPP to Ras and MAPK activation and suggests that the increase in AβPP-Grb2 complexes found in AD brains might participate in the hyperactivation of MAPKs in AD and possibly tau hyperphosphorylation. More recently, it has been shown that Grb2 activates the Rab5-mediated epidermal growth factor receptor endocytosis (63). Interestingly, Rab5 overexpression also up-regulates the endocytic pathway and increases AβPP intracellular cleavage and Aβ production (64); in fact, it has been reported that AβPP endocytosis modulates Aβ formation (65–68). Thus, it is tempting to speculate that the docking site for Grb2 generated by phosphorylation of Tyr⁶⁸² in AβPP has the potential to mechanistically link AβPP to Ras and MAPK activation as well as endocytosis and AβPP processing (Fig. 6). The plausibility of this hypothesis and whether the increase in AβPP-Grb2 complexes found in AD brains favors the activation of MAPKs, tau hyperphosphorylation and aberrant AβPP processing typical of AD pathology remains to be determined.

Acknowledgments—We thank Robert A. Weinberg for the GST-Grb2 constructs, W. E. Van Nostrand for the anti-AβPP P2-1 antibody, and J. Silvio Gutkind and Mario Chiarello for the Sre^{V₅₂₇} vector. We also thank the members of the D’Adamio laboratory for helpful advice and discussions.
Growth Factor Receptor-bound Protein 2 Interaction with the Tyrosine-phosphorylated Tail of Amyloid β Precursor Protein Is Mediated by Its Src Homology 2 Domain

Dawang Zhou, Cristiana Noviello, Chiara D'Ambrosio, Andrea Scaloni and Luciano D'Adamio

J. Biol. Chem. 2004, 279:25374-25380.
doi: 10.1074/jbc.M400488200 originally published online March 30, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M400488200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 68 references, 32 of which can be accessed free at http://www.jbc.org/content/279/24/25374.full.html#ref-list-1