Galois-theoretic features for 1-smooth pro-p groups

Claudio Quadrelli

Abstract. Let p be a prime. A pro-p group G is said to be 1-smooth if it can be endowed with a continuous representation $\theta : G \to \text{GL}_1(\mathbb{Z}_p)$ such that every open subgroup H of G, together with the restriction $\theta|_H$, satisfies a formal version of Hilbert 90. We prove that every 1-smooth pro-p group contains a unique maximal closed abelian normal subgroup, in analogy with a result by Engler and Koenigsmann on maximal pro-p Galois groups of fields, and that if a 1-smooth pro-p group is solvable, then it is locally uniformly powerful, in analogy with a result by Ware on maximal pro-p Galois groups of fields. Finally we ask whether 1-smooth pro-p groups satisfy a "Tits' alternative".

1 Introduction

Throughout the paper p will denote a prime number, and \mathbb{K} a field containing a root of unity of order p. Let $\mathbb{K}(p)$ denote the compositum of all finite Galois p-extensions of \mathbb{K}. The maximal pro-p Galois group of \mathbb{K}, denoted by $G_{\mathbb{K}}(p)$, is the Galois group $\text{Gal}(\mathbb{K}(p)/\mathbb{K})$, and it coincides with the maximal pro-p quotient of the absolute Galois group of \mathbb{K}. Characterising maximal pro-p Galois groups of fields among pro-p groups is one of the most important — and challenging — problems in Galois theory. One of the obstructions for the realization of a pro-p group as maximal pro-p Galois group for some field \mathbb{K} is given by the Artin-Schreier theorem: the only finite group realizable as $G_{\mathbb{K}}(p)$ is the cyclic group of order 2 (cf. [1]).

The proof of the celebrated Bloch-Kato conjecture, completed by M. Rost and V. Voevodsky with Ch. Weibel’s “patch” (cf. [12, 27, 29]) provided new tools to study absolute Galois groups of field and their maximal pro-p quotients (see, e.g., [2, 3, 17, 21]). In particular, the now-called Norm Residue Theorem implies that the \mathbb{Z}/p-cohomology algebra of a maximal pro-p Galois group $G_{\mathbb{K}}(p)$

$$H^*(G_{\mathbb{K}}(p), \mathbb{Z}/p) := \bigoplus_{n \geq 0} H^n(G_{\mathbb{K}}(p), \mathbb{Z}/p),$$

with \mathbb{Z}/p a trivial $G_{\mathbb{K}}(p)$-module and endowed with the cup-product, is a quadratic algebra: i.e., all its elements of positive degree are combinations of products of elements of degree 1, and its defining relations are homogeneous relations of degree 2 (see § 2.3 below). For instance, from this property one may recover the Artin-Schreier obstruction (see, e.g., [17, § 2]).

2020 Mathematics Subject Classification: Primary 12G05; Secondary 20E18, 20J06, 12F10.

Keywords: Galois cohomology, Maximal pro-p Galois groups, Bloch-Kato conjecture, Kummerian pro-p pairs, Tits' alternative.
More recently, a formal version of Hilbert 90 for pro-p groups was employed to find further results on the structure of maximal pro-p Galois groups (see [9, 19, 21]). A pair $\mathcal{G} = (G, \theta)$ consisting of a pro-p group G endowed with a continuous representation $\theta: G \rightarrow \text{GL}_1(\mathbb{Z}_p)$ is called a pro-p pair. For a pro-p pair $\mathcal{G} = (G, \theta)$ let $\mathbb{Z}_p(1)$ denote the continuous left G-module isomorphic to \mathbb{Z}_p, as an abelian pro-p group, with G-action induced by θ (namely, $g.v = \theta(g) \cdot v$ for every $v \in \mathbb{Z}_p(1)$). The pair \mathcal{G} is called a Kummerian pro-p pair if the canonical map

$$H^1(G, \mathbb{Z}_p(1)/p^n) \rightarrow H^1(G, \mathbb{Z}_p(1)/p),$$

is surjective for every $n \geq 1$. Moreover the pair \mathcal{G} is said to be a 1-smooth pro-p pair if every closed subgroup H, endowed with the restriction $\theta|_H$, gives rise to a Kummerian pro-p pair (see Definition 2.1). By Kummer theory, the maximal pro-p Galois group $G_{\mathbb{K}}(p)$ of a field \mathbb{K}, together with the pro-p cyclotomic character $\theta_{\mathbb{K}}: G_{\mathbb{K}}(p) \rightarrow \text{GL}_1(\mathbb{Z}_p)$ (induced by the action of $G_{\mathbb{K}}(p)$ on the roots of unity of order a p-power lying in $\mathbb{K}(p)$) gives rise to a 1-smooth pro-p pair $\mathcal{G}_{\mathbb{K}}$ (see Theorem 2.8).

In [5] — driven by the pursuit of an "explicit" proof of the Bloch-Kato conjecture as an alternative to the proof by Voevodsky — C. De Clerq and M. Florence introduced the 1-smoothness property, and formulated the so-called "Smoothness Conjecture": namely, that it is possible to deduce the surjectivity of the norm residue homomorphism (which is acknowledged to be the "hard part" of the Bloch-Kato conjecture) from the fact that $G_{\mathbb{K}}(p)$ together with the pro-p cyclotomic character is a 1-smooth pro-p pair (see [5, Conj. 14.25] and [15, § 3.1.6], and Question 2.10 below).

In view of the Smoothness Conjecture, it is natural to ask which properties of maximal pro-p Galois groups of fields arise also for 1-smooth pro-p pairs. For example, the Artin-Scherier obstruction does: the only finite p-group which may complete into a 1-smooth pro-p pair is the cyclic group C_2 of order 2, together with the non-trivial representation $\theta: C_2 \rightarrow \{\pm 1\} \subseteq \text{GL}_1(\mathbb{Z}_2)$ (see Example 2.9 below).

A pro-p pair $\mathcal{G} = (G, \theta)$ comes endowed with a distinguished closed subgroup: the θ-center $Z(\mathcal{G})$ of \mathcal{G}, defined by

$$Z(\mathcal{G}) = \left\{ h \in \text{Ker}(\theta) \mid ghg^{-1} = h^{\theta(g)} \forall g \in G \right\}.$$

This subgroup is abelian, and normal in G. In [11], A. Engler and J. Koenigsmann showed that if the maximal pro-p Galois group $G_{\mathbb{K}}(p)$ of a field \mathbb{K} is not cyclic then it has a unique maximal normal abelian closed subgroup (i.e., one containing all normal abelian closed subgroups of $G_{\mathbb{K}}(p)$), which coincides with the $\theta_{\mathbb{K}}$-center $Z(\mathcal{G}_{\mathbb{K}})$, and the short exact sequence of pro-p groups

$$\{1\} \rightarrow Z(G_{\mathbb{K}}) \rightarrow G_{\mathbb{K}}(p) \rightarrow G_{\mathbb{K}}(p)/Z(G_{\mathbb{K}}) \rightarrow \{1\}$$

splits. We prove a group-theoretic analogue of Engler-Koenigsmann’s result for 1-smooth pro-p groups.

Theorem 1.1 Let G be a torsion-free pro-p group, $G \neq \mathbb{Z}_p$, endowed with a representation $\theta: G \rightarrow \text{GL}_1(\mathbb{Z}_p)$ such that $\mathcal{G} = (G, \theta)$ is a 1-smooth pro-p pair. Then $Z(\mathcal{G})$ is the unique maximal normal abelian closed subgroup of G, and the quotient $G/Z(\mathcal{G})$ is a torsion-free pro-p group.
In [28], R. Ware proved the following result on maximal pro-p Galois groups of fields: if $G_{\mathbb{K}}(p)$ is solvable, then it is locally uniformly powerful, i.e., $G_{\mathbb{K}}(p) \cong A \rtimes \mathbb{Z}_p$, where A is a free abelian pro-p group, and the right-side factor acts by scalar multiplication by a unit of \mathbb{Z}_p (see § 3.1). We prove that the same property holds also for 1-smooth pro-p groups.

Theorem 1.2 Let G be a solvable torsion-free pro-p group, endowed with a representation $\theta: G \to \text{GL}_1(\mathbb{Z}_p)$ such that $\mathcal{G} = (G, \theta)$ is a 1-smooth pro-p pair. Then G is locally uniformly powerful.

This gives a complete description of solvable torsion-free pro-p groups which may be completed into a 1-smooth pro-p pair. Moreover, Theorem 1.2 settles the Smoothness Conjecture positively for the class of solvable pro-p groups.

Corollary 1.3 If $\mathcal{G} = (G, \theta)$ is a 1-smooth pro-p pair with G solvable, then G is a Bloch-Kato pro-p group, i.e., the \mathbb{Z}/p-cohomology algebra of every closed subgroup of G is quadratic.

Remark 1.4 After the submission of this paper, I. Snopce and S. Tanushevski showed in [24] that Theorems 1.2–1.1 hold for a wider class of pro-p groups. A pro-p group is said to be Frattini-injective if distinct finitely generated closed subgroups have distinct Frattini subgroups (cf. [24, Def. 1.1]). By [24, Thm. 1.11 and Cor. 4.3], a pro-p group which may complete into a 1-smooth pro-p pair is Frattini-injective. By [24, Thm. 1.4] a Frattini-injective pro-p group has a unique maximal normal abelian closed subgroup, and by [24, Thm. 1.3] a Frattini-injective pro-p group is solvable if, and only if, it is locally uniformly powerful.

A solvable pro-p group does not contain a free non-abelian closed subgroup. For Bloch-Kato pro-p groups — and thus in particular for maximal pro-p Galois groups of fields containing a root of unity of order p — Ware proved the following Tits’ alternative: either such a pro-p group contains a free non-abelian closed subgroup; or it is locally uniformly powerful (see [28, Cor. 1] and [17, Thm. B]). We conjecture that the same phenomenon occurs for 1-smooth pro-p groups.

Conjecture 1.5 Let G be a torsion-free pro-p group which may be endowed with a representation $\theta: G \to \text{GL}_1(\mathbb{Z}_p)$ such that $\mathcal{G} = (G, \theta)$ is a 1-smooth pro-p pair. Then either G is locally uniformly powerful, or G contains a closed non-abelian free pro-p group.

2 **Cyclotomic pro-p pairs**

Henceforth, every subgroup of a pro-p group will be tacitly assumed to be closed, and the generators of a subgroup will be intended in the topological sense.

In particular, for a pro-p group G and a positive integer n, G^{p^n} will denote the closed subgroup of G generated by the p^n-th powers of all elements of G. Moreover, for two elements $g, h \in G$, we set

$$h^g = g^{-1}hg, \quad \text{and} \quad [h, g] = h^{-1} \cdot h^g,$$
and for two subgroups H_1, H_2 of G, $[H_1, H_2]$ will denote the closed subgroup of G

generated by all commutators $[h, g]$ with $h \in H_1$ and $g \in H_2$. In particular, G' will
denote the commutator subgroup $[G, G]$ of G, and the Frattini subgroup $G^p \cdot G'$ of G
is denoted by $\Phi(G)$. Finally, $d(G)$ will denote the minimal number of generator of G,
i.e., $d(G) = \dim(G/\Phi(G))$ as a \mathbb{Z}/p-vector space.

2.1 Kummerian pro-p pairs

Let $1 + p\mathbb{Z}_p = \{ 1 + p\lambda \mid \lambda \in \mathbb{Z}_p \} \subseteq \text{GL}_1(\mathbb{Z}_p)$ denote the pro-p Sylow subgroup of the

group of units of the ring of p-adic integers \mathbb{Z}_p. A pair $\mathcal{G} = (G, \theta)$ consisting of a pro-p

group G and a continuous homomorphism

$$\theta : G \longrightarrow 1 + p\mathbb{Z}_p$$

is called a cyclotomic pro-p pair, and the morphism θ is called an orientation of G (cf. [7, § 3] and [21]).

A cyclotomic pro-p pair $\mathcal{G} = (G, \theta)$ is said to be torsion-free if $\text{Im}(\theta)$ is torsion-free:
this is the case if p is odd; or if $p = 2$ and $\text{Im}(\theta) \subseteq 1 + 4\mathbb{Z}_2$. Observe that a cyclotomic
pro-p pair $\mathcal{G} = (G, \theta)$ may be torsion-free even if G has non-trivial torsion—e.g., if G
is the cyclic group of order p and θ is constantly equal to 1. Given a cyclotomic pro-p
pair $\mathcal{G} = (G, \theta)$ one has the following constructions:

(a) if H is a subgroup of G, $\text{Res}_H(\mathcal{G}) = (H, \theta|_H)$;

(b) if N is a normal subgroup of G contained in $\text{Ker}(\theta)$, then θ induces an orientation

$$\theta : G/N \longrightarrow 1 + p\mathbb{Z}_p,$$

and we set $\mathcal{G}/N = (G/N, \theta)$;

(c) if A is an abelian pro-p group, we set $A \rtimes \mathcal{G} = (A \rtimes G, \theta \circ \pi)$, with $a^g = a^{\theta(g)-1}$ for

all $a \in A$, $g \in G$, and π the canonical projection $A \rtimes G \rightarrow G$.

Given a cyclotomic pro-p pair $\mathcal{G} = (G, \theta)$, the pro-$p$ group G has two distinguished
subgroups:

(a) the subgroup

$$K(\mathcal{G}) = \left\{ h^{-\theta(h)} \cdot h^{\theta^{-1}} \mid g \in G, h \in \text{Ker}(\theta) \right\}$$

introduced in [9, § 3];

(b) the θ-center

$$Z(\mathcal{G}) = \left\{ h \in \text{Ker}(\theta) \mid ghg^{-1} = h^\theta g \forall g \in G \right\}$$

introduced in [17, § 1].

Both $Z(\mathcal{G})$ and $K(\mathcal{G})$ are normal subgroups of G, and they are contained in $\text{Ker}(\theta)$.
Moreover, $Z(\mathcal{G})$ is abelian, while

$$K(\mathcal{G}) \supseteq \text{Ker}(\theta)' \quad \text{and} \quad K(\mathcal{G}) \subseteq \Phi(G).$$

Thus, the quotient $\text{Ker}(\theta)/K(\mathcal{G})$ is abelian, and if \mathcal{G} is torsion-free one has an isomor-
phism of pro-p pairs

$$\mathcal{G}/K(\mathcal{G}) \cong (\text{Ker}(\theta)/K(\mathcal{G})) \rtimes (\mathcal{G}/\text{Ker}(\theta)),$$
namely, $G/K(G) \simeq (\text{Ker}(\theta)/K(G)) \times (G/\text{Ker}(\theta))$ (where the action is induced by θ, in the latter), and both pro-p groups are endowed with the orientation induced by θ (cf. [18, Prop. 3.1]).

Definition 2.1 Given a cyclotomic pro-p pair $G = (G, \theta)$, let $\mathbb{Z}_p(1)$ denote the continuous G-module of rank 1 induced by θ, i.e., $\mathbb{Z}_p(1) \simeq \mathbb{Z}_p$ as abelian pro-p groups, and $g \cdot \lambda = \theta(g) \cdot \lambda$ for every $\lambda \in \mathbb{Z}_p(1)$. The pair G is said to be Kummerian if for every $n \geq 1$ the map

$$H^1(G, \mathbb{Z}_p(1)/p^n) \to H^1(G, \mathbb{Z}_p(1)/p),$$

induced by the epimorphism of G-modules $\mathbb{Z}_p(1)/p^n \to \mathbb{Z}_p(1)/p$, is surjective. Moreover, G is 1-smooth if $\text{Res}_H(G)$ is Kummerian for every subgroup $H \subseteq G$.

Observe that the action of G on $\mathbb{Z}_p(1)/p$ is trivial, as $\text{Im}(\theta) \subseteq 1 + p\mathbb{Z}_p$. We say that a pro-$p$ group G may complete into a Kummerian, or 1-smooth, pro-p pair if there exists an orientation $\theta : G \to 1 + p\mathbb{Z}_p$ such that the pair (G, θ) is Kummerian, or 1-smooth.

Kummerian pro-p pairs and 1-smooth pro-p pairs were introduced in [9] and in [5, § 14] respectively. In [21], if $G = (G, \theta)$ is a 1-smooth pro-p pair, the orientation θ is said to be 1-cyclotomic. Note that in [5, § 14.1], a pro-p pair is defined to be 1-smooth if the maps (2.4) are surjective for every open subgroup of G, yet by a limit argument this implies also that the maps (2.4) are surjective also for every closed subgroup of G (cf. [21, Cor. 3.2]).

Remark 2.1 Let $G = (G, \theta)$ be a cyclotomic pro-p pair. Then G is Kummerian if, and only if, the map

$$H^1_{\text{cts}}(G, \mathbb{Z}_p(1)) \to H^1(G, \mathbb{Z}_p(1)/p),$$

induced by the epimorphism of continuous left G-modules $\mathbb{Z}_p(1) \to \mathbb{Z}_p(1)/p$, is surjective (cf. [21, Prop. 2.1]) — here H^1_{cts} denotes continuous cochain cohomology as introduced by J. Tate in [26].

One has the following group-theoretic characterization of Kummerian torsion-free pro-p pairs (cf. [9, Thm. 5.6 and Thm. 7.1] and [20, Thm. 1.2]).

Proposition 2.2 A torsion-free cyclotomic pro-p pair $G = (G, \theta)$ is Kummerian if and only if $\text{Ker}(\theta)/K(G)$ is a free abelian pro-p group.

Remark 2.3 Let $G = (G, \theta)$ be a cyclotomic pro-p pair with $\theta \equiv 1$, i.e., θ is constantly equal to 1. Since $K(G) = G'$ in this case, G is Kummerian if and only if the quotient G/G' is torsion-free. Hence, by Proposition 2.2, G is 1-smooth if and only if H/H' is torsion-free for every subgroup $H \subseteq G$. Pro-p groups with such property are called absolutely torsion-free, and they were introduced by T. Würfel in [30]. In particular, if $G = (G, \theta)$ is a 1-smooth pro-p pair (with θ non-trivial), then $\text{Res}_{\text{Ker}(\theta)}(G) = (\text{Ker}(\theta), 1)$ is again 1-smooth, and thus $\text{Ker}(\theta)$ is absolutely torsion-free. Hence, a pro-p group which may complete into a 1-smooth pro-p pair is an absolutely torsion-free-by-cyclic pro-p group.
Example 2.4
(a) A cyclotomic pro-p pair (G, θ) with G a free pro-p group is 1-smooth for any orientation θ: $G \to 1 + p\mathbb{Z}_p$ (cf. [21, § 2.2]).

(b) A cyclotomic pro-p pair (G, θ) with G an infinite Demushkin pro-p group is 1-smooth if and only if $\theta: G \to 1 + p\mathbb{Z}_p$ is defined as in [14, Thm. 4] (cf. [9, Thm. 7.6]). E.g., if G has a minimal presentation

$$G = \left\{ x_1, \ldots, x_d \mid x_1^{p^d}, [x_1, x_2] \cdots [x_{d-1}, x_d] = 1 \right\}$$

with $f \geq 1$ (and $f \geq 2$ if $p = 2$), then $\theta(x_2) = (1 - p^f)^{-1}$, while $\theta(x_i) = 1$ for $i \neq 2$.

(c) For $p \neq 2$ let G be the pro-p group with minimal presentation

$$G = \langle x, y, z \mid [x, y] = z^p \rangle.$$

Then the pro-p pair (G, θ) is not Kummerian for any orientation θ: $G \to 1 + p\mathbb{Z}_p$ (cf. [9, Thm. 8.1]).

(d) Let

$$H = \left\{ \begin{pmatrix} a & b & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{Z}_p \right\}$$

be the Heisenberg pro-p group. The pair $(H, 1)$ is Kummerian, as $H/H' \cong \mathbb{Z}_p^2$, but H is not absolutely torsion-free. In particular, H can not complete into a 1-smooth pro-p pair (cf. [18, Ex. 5.4]).

(e) The only 1-smooth pro-p pair (G, θ) with G a finite p-group is the cyclic group of order $2 G \cong \mathbb{Z}/2$, endowed with the only non-trivial orientation $\theta: G \to \{\pm 1\} \subseteq 1 + 2\mathbb{Z}_2$ (cf. [9, Ex. 3.5]).

Remark 2.5
By Example 2.4–(e), if $G = (G, \theta)$ is a torsion-free 1-smooth pro-p pair, then G is torsion-free.

A torsion-free pro-p pair $G = (G, \theta)$ is said to be θ-abelian if the following equivalent conditions hold:

(i) $\text{Ker}(\theta)$ is a free abelian pro-p group, and $G \cong \text{Ker}(\theta) \rtimes (G/\text{Ker}(\theta))$;

(ii) $Z(G)$ is a free abelian pro-p group, and $Z(G) = \text{Ker}(\theta)$;

(iii) G is Kummerian and $K(G) = \{1\}$

(cf. [17, Prop. 3.4] and [20, § 2.3]). Explicitly, a torsion-free pro-p pair $G = (G, \theta)$ is θ-abelian if and only if G has a minimal presentation

$$G = \langle x_0, x_i, i \in I \mid [x_0, x_i] = x_j^q, [x_i, x_j] = 1 \forall i, j \in I \rangle \cong \mathbb{Z}_p^I \rtimes \mathbb{Z}_p$$

for some set I and some p-power q (possibly $q = p^\infty = 0$), and in this case $\text{Im}(\theta) = 1 + q\mathbb{Z}_p$. In particular, a θ-abelian pro-p pair is also 1-smooth, as every open subgroup U of G is again isomorphic to $\mathbb{Z}_p^I \rtimes \mathbb{Z}_p$, with action induced by $\theta|_U$, and therefore $\text{Res}_U(G)$ is $\theta|_U$-abelian.

Remark 2.6
From [9, Thm. 5.6], one may deduce also the following group-theoretic characterization of Kummerian pro-p pairs: a pro-p group G may complete into a Kummerian oriented pro-p group if, and only if, there exists an epimorphism of pro-p groups.
Galois-theoretic features for 1-smooth pro-p groups

2.2 The Galois case

Let $\varphi : G \to G$ such that G has a minimal presentation (2.5), and $\operatorname{Ker}(\varphi)$ is contained in the Frattini subgroup of G (cf., e.g., [22, Prop. 3.11]).

Remark 2.7 If $G \cong \mathbb{Z}_p$, then the pair (G, θ) is θ-abelian, and thus also 1-smooth, for any orientation $\theta : G \to 1 + p\mathbb{Z}_p$.

On the other hand, if $G = (G, \theta)$ is a θ-abelian pro-p pair with $d(G) \geq 2$, then θ is the only orientation which may complete G into a 1-smooth pro-p pair. Indeed, let $G' = (G, \theta')$ be a cyclotomic pro-p pair, with $\theta' : G \to 1 + p\mathbb{Z}_p$ different to θ, and let $\{x_0, x_i, i \in I\}$ be a minimal generating set of G as in the presentation (2.5) — thus, $\theta(x_i) = 1$ for all $i \in I$, and $\theta(x_0) \in 1 + q\mathbb{Z}_p$. Then for some $i \in I$ one has $\theta' \mid_H \neq \theta \mid_H$, with H the subgroup of G generated by the two elements x_0 and x_i. In particular, one has $\theta([x_0, x_i]) = \theta'([x_0, x_i]) = 1$.

Suppose that G' is 1-smooth. If $\theta'(x_i) \neq 1$, then

$$x_i^q = x_i \cdot x_i^q \cdot x_i^{-1} = (x_i^q)^{\theta'(x_i)} = x_i^{q \theta'(x_i)},$$

hence $x_i^{q(1 - \theta'(x_i))} = 1$, a contradiction as G is torsion-free by Remark 2.5. If $\theta'(x_i) = 1$ then necessarily $\theta'(x_0) \neq \theta(x_0)$, and thus

$$x_i^{\theta(x_0)} = x_0 \cdot x_i \cdot x_0^{-1} = x_i^{\theta(x_0)},$$

hence $x_i^{\theta(x_0) - \theta'(x_0)} = 1$, again a contradiction as G is torsion-free. (See also [21, Cor. 3.4].)

2.2 The Galois case

Let \mathbb{K} be a field containing a root of 1 of order p, and let μ_{p^∞} denote the group of roots of 1 of order a p-power contained in the separable closure of \mathbb{K}. Then $\mu_{p^\infty} \subseteq \mathbb{K}(p)$, and the action of the maximal pro-p Galois group $G_{\mathbb{K}}(p) = \operatorname{Gal}(\mathbb{K}(p)/\mathbb{K})$ on μ_{p^∞} induces a continuous homomorphism

$$\theta_{\mathbb{K}} : G_{\mathbb{K}}(p) \to 1 + p\mathbb{Z}_p$$

— called the pro-p cyclotomic character of $G_{\mathbb{K}}(p)$ —, as the group of the automorphisms of μ_{p^∞} which fix the roots of order p is isomorphic to $1 + p\mathbb{Z}_p$ (see, e.g., [8, p. 202] and [9, § 4]). In particular, if \mathbb{K} contains a root of 1 of order p^k for $k \geq 1$, then $\operatorname{Im}(\theta_{\mathbb{K}}) \subseteq 1 + p^k\mathbb{Z}_p$.

Set $G_{\mathbb{K}} = (G_{\mathbb{K}}(p), \theta_{\mathbb{K}})$. Then by Kummer theory one has the following (see, e.g., [9, Thm. 4.2]).

Theorem 2.8 Let \mathbb{K} be a field containing a root of 1 of order p. Then $G_{\mathbb{K}} = (G_{\mathbb{K}}(p), \theta_{\mathbb{K}})$ is 1-smooth.

1-smooth pro-p pairs share the following properties with maximal pro-p Galois groups of fields.

Example 2.9 (a) The only finite p-group which occurs as maximal pro-p Galois group for some field \mathbb{K} is the cyclic group of order 2, and this follows from the pro-p version of the Artin-Schreier Theorem (cf. [1]). Likewise, the only finite p-group
which may complete into a 1-smooth pro-p pair, is the cyclic group of order 2 (endowed with the only non-trivial orientation onto \{± 1\}), as it follows from Example 2.4–(e) and Remark 2.5.

(b) If x is an element of $G_\mathbb{K}(2)$ for some field \mathbb{K} and x has order 2, then x self-centralizes (cf. [4, Prop. 2.3]). Likewise, if x is an element of a pro-2 group G which may complete into a 1-smooth pro-2 pair, then x self-centralizes (cf. [21, § 6.1]).

2.3 Bloch-Kato and the Smoothness Conjecture

A non-negatively graded algebra $A_\bullet = \bigoplus_{n \geq 0} A_n$ over a field F, with $A_0 = F$, is called a quadratic algebra if it is 1-generated — i.e., every element is a combination of products of elements of degree 1 —, and its relations are generated by homogeneous relations of degree 2. One has the following definitions (cf. [5, Def. 14.21] and [17, § 1]).

Definition 2.2 Let G be a pro-p group, and let $n \geq 1$. Cohomology classes in the image of the natural cup-product

$$H^1(G, \mathbb{Z}/p) \times \ldots \times H^1(G, \mathbb{Z}/p) \xrightarrow{\cup} H^n(G, \mathbb{Z}/p)$$

are called symbols (relative to \mathbb{Z}/p, viewed as trivial G-module).

(i) If for every open subgroup $U \subseteq G$ every element $\alpha \in H^n(U, \mathbb{Z}/p)$, for every $n \geq 1$, can be written as

$$\alpha = \text{cor}_{V_i, U}^n(\alpha_1) + \ldots + \text{cor}_{V_i, U}^n(\alpha_r),$$

with $r \geq 1$, where $\alpha_i \in H^n(V_i, \mathbb{Z}/p)$ is a symbol and

$$\text{cor}_{V_i, U}^n : H^n(V_i, \mathbb{Z}/p) \to H^n(U, \mathbb{Z}/p)$$

is the corestriction map (cf. [16, Ch. I, § 5]), for some open subgroups $V_i \subseteq U$, then G is called a weakly Bloch-Kato pro-p group.

(ii) If for every closed subgroup $H \subseteq G$ the \mathbb{Z}/p-cohomology algebra

$$H^\bullet(H, \mathbb{Z}/p) = \bigoplus_{n \geq 0} H^n(H, \mathbb{Z}/p),$$

endowed with the cup-product, is a quadratic algebra over \mathbb{Z}/p, then G is called a Bloch-Kato pro-p group. As the name suggests, a Bloch-Kato pro-p group is also weakly Bloch-Kato.

By the Norm Residue Theorem, if \mathbb{K} contains a root of unity of order p, then the maximal pro-p Galois group $G_\mathbb{K}(p)$ is Bloch-Kato. The pro-p version of the “Smoothness Conjecture”, formulated by De Clerq and Florence, states that being 1-smooth is a sufficient condition for a pro-p group to be weakly Bloch-Kato (cf. [5, Conj. 14.25]).

Conjecture 2.10 Let $\mathcal{G} = (G, \theta)$ be a 1-smooth pro-p pair. Then G is weakly Bloch-Kato.

In the case of $\mathcal{G} = G_\mathbb{K}$ for some field \mathbb{K} containing a root of 1 of order p, using Milnor K-theory one may show that the weak Bloch-Kato condition implies that $H^\bullet(G, \mathbb{Z}/p)$ is 1-generated (cf. [5, Rem. 14.26]). In view of Theorem 2.8, a positive answer to the
Galois-theoretic features for 1-smooth pro-p groups

Smoothness Conjecture would provide a new proof of the surjectivity of the norm residue isomorphism, i.e., the "surjectivity" half of the Bloch-Kato conjecture (cf. [5, § 1.1]).

Conjecture 2.10 has been settled positively for the following classes of pro-p groups.

(a) Finite p-groups: indeed, if $G = (G, \theta)$ is a 1-smooth pro-p pair with G a finite (non-trivial) p-group, then by Example 2.4–(e) $p = 2$, G is a cyclic group of order two and $\theta: G \to \{\pm 1\}$, so that $G \cong (\text{Gal}(\mathbb{C}/\mathbb{R}), \theta_{\mathbb{R}})$, and G is Bloch-Kato.

(b) Analytic pro-p groups: indeed if $G = (G, \theta)$ is a 1-smooth pro-p pair with G a p-adic analytic pro-p group, then by [18, Thm. 1.1] G is locally uniformly powerful and thus Bloch-Kato (see § 3.1 below).

(c) Pro-p completions of right-angled Artin groups: indeed, in [25] it is shown that if $G = (G, \theta)$ is a 1-smooth pro-p pair with G the pro-p completion of a right-angled Artin group induced by a simplicial graph Γ, then necessarily θ is trivial and Γ has the diagonal property — namely, G may be constructed starting from free pro-p groups by iterating the following two operations: free pro-p products, and direct products with \mathbb{Z}_p —, and thus G is Bloch-Kato (cf. [25, Thm. 1.2]).

3 Normal abelian subgroups

3.1 Powerful pro-p groups

Definition 3.1 A finitely generated pro-p group G is said to be powerful if one has $G' \subseteq G^p$, and also $G' \subseteq G^4$ if $p = 2$. A powerful pro-p group which is also torsion-free and finitely generated is called a uniformly powerful pro-p group.

For the properties of powerful and uniformly powerful pro-p groups we refer to [6, Ch. 4].

A pro-p group whose finitely generated subgroups are uniformly powerful, is said to be locally uniformly powerful. As mentioned in the Introduction, a pro-p group G is locally uniformly powerful if, and only if, G has a minimal presentation (2.5) — i.e., G is locally powerful if, and only if, there exists an orientation $\theta: G \to 1 + p\mathbb{Z}_p$ such that (G, θ) is a torsion-free θ-abelian pro-p pair (cf. [17, Thm. A] and [3, Prop. 3.5]).

Therefore, a locally uniformly powerful pro-p group G comes endowed authentically with an orientation $\theta: G \to 1 + p\mathbb{Z}_p$ such that $G = (G, \theta)$ is a 1-smooth pro-p pair. In fact, finitely generated locally uniformly powerful pro-p groups are precisely those uniformly powerful pro-p groups which may complete into a 1-smooth pro-p pair (cf. [18, Prop. 4.3]).

Proposition 3.1 Let $G = (G, \theta)$ be a 1-smooth torsion-free pro-p pair. If G is locally powerful, then G is θ-abelian, and thus G is locally uniformly powerful.

It is well-known that the \mathbb{Z}/p-cohomology algebra of a pro-p group G with minimal presentation (2.5) is the exterior \mathbb{Z}/p-algebra $H^*(H, \mathbb{Z}/p) \cong \bigwedge_{n \geq 0} H^1(H, \mathbb{Z}/p)$.
— if \(p = 2 \) then \(\wedge_{n \geq 0} V \) is defined to be the quotient of the tensor algebra over \(\mathbb{Z}/p \) generated by \(V \) by the two-sided ideal generated by the elements \(v \otimes v, v \in V \), so that \(H^*(G, \mathbb{Z}/p) \) is quadratic. Moreover, every subgroup \(H \subseteq G \) is again locally uniformly powerful, and thus also \(H^*(H, \mathbb{Z}/p) \) is quadratic. Hence, a locally uniformly powerful pro-\(p \) group is Bloch-Kato.

3.2 Normal abelian subgroups of maximal pro-\(p \) Galois groups

Let \(K \) be a field containing a root of 1 of order \(p \) (and also \(\sqrt{-1} \) if \(p = 2 \)). In Galois theory one has the following result, due to A. Engler, J. Koenigsmann and J. Nogueira (cf. [10] and [11]).

Theorem 3.2 Let \(K \) be a field containing a root of 1 of order \(p \) (and also \(\sqrt{-1} \) if \(p = 2 \)), and suppose that the maximal pro-\(p \) Galois group \(G_K(p) \) of \(K \) is not isomorphic to \(\mathbb{Z}_p \). Then \(G_K(p) \) contains a unique maximal abelian normal subgroup. By [21, Thm. 7.7], such a maximal abelian normal subgroup coincides with the \(\theta_K \)-center \(Z(G_K) \) of the pro-\(p \) pair \((G_K(p), \theta_K) \) induced by the pro-\(p \) cyclotomic character \(\theta_K \) (cf. § 2.2). Moreover, the field \(K \) admits a \(p \)-Henselian valuation with residue characteristic not \(p \) and non-\(p \)-divisible value group, such that the residue field \(\kappa \) of such a valuation gives rise to the cyclotomic pro-\(p \) pair \(G\kappa \) isomorphic to \(G_K/Z(G_K) \), and the induced short exact sequence of pro-\(p \) groups

\[
\{1\} \rightarrow Z(G_K) \rightarrow G_K(p) \rightarrow G\kappa(p) \rightarrow \{1\} \tag{3.1}
\]
splits (cf. [11, § 1] and [8, Ex. 22.1.6] — for the definitions related to \(p \)-henselian valuations of fields we direct the reader to [8, § 15.3]). In particular, \(G_K(p)/Z(G_K) \) is torsion-free.

Remark 3.3 By [21, Thm. 1.2 and Thm. 7.7], Theorem 3.2 and the splitting of (3.1) generalize to 1-smooth pro-\(p \) pairs whose underlying pro-\(p \) group is Bloch-Kato. Namely, if \(G = (G, \theta) \) is a 1-smooth pro-\(p \) pair with \(G \) a Bloch-Kato pro-\(p \) group, then \(Z(G) \) is the unique maximal abelian normal subgroup of \(G \), and it has a complement in \(G \).

3.3 Proof of Theorem 1.1

In order to prove Theorem 1.1 (and also Theorem 1.2 later on), we need the following result.

Proposition 3.4 Let \(G = (G, \theta) \) be a torsion-free 1-smooth pro-\(p \) pair, with \(d(G) = 2 \) and \(G = \langle x, y \rangle \). If \([[x, y], y] = 1 \), then \(\text{Ker}(\theta) = \langle y \rangle \) and

\[xyx^{-1} = y^{\theta(x)}. \]

Proof Let \(H \) be the subgroup of \(G \) generated by \(y \) and \([x, y] \). Recall that by Remark 2.5, \(G \) (and hence also \(H \)) is torsion-free.
If \(d(H) = 1 \) then \(H \cong \mathbb{Z}_p \), as \(H \) is torsion-free. Moreover, \(H \) is generated by \(y \) and \(x^{-1}y, \) and thus \(xHx^{-1} \subseteq H. \) Therefore, \(x \) acts on \(H \cong \mathbb{Z}_p \) by multiplication by \(1 + p\lambda \) for some \(\lambda \in \mathbb{Z}_p. \) If \(\lambda = 0 \) then \(G \) is abelian, and thus \(G \cong \mathbb{Z}_p^2 \) as it is absolutely torsion-free, and \(\theta \equiv 1 \) by Remark 2.7. If \(\lambda \neq 0 \) then \(x \) acts non-trivially on the elements of \(H, \) and thus \(\langle x \rangle \cap H = \{1\} \) and \(G = H \rtimes \langle x \rangle \) by (2.5), \((G, \theta') \) is a \(\theta' \)-abelian pro-\(p \) pair, with \(\theta' : G \rightarrow 1 + p\mathbb{Z}_p \) defined by \(\theta'(x) = 1 + p\lambda \) and \(\theta'(y) = 1. \) By Remark 2.7, one has \(\theta' \equiv \theta, \) and thus \(\theta(x) = 1 + p\lambda \) and \(\theta(y) = 1. \)

If \(d(H) = 2, \) then \(H \) is abelian by hypothesis, and torsion-free, and thus \((H, \theta') \) is \(\theta' \)-abelian, with \(\theta' \equiv 1 : H \rightarrow 1 + p\mathbb{Z}_p \) trivial. By Remark 2.7, one has \(\theta' = \theta|_H, \) and thus \(y, [x, y] \in \text{Ker}(\theta). \) Now put \(z = [x, y] \) and let \(U \) be the open subgroup of \(G \) generated by \(x, z, t. \) Clearly, \(\text{Res}_U(G) \) is again 1-smooth. By hypothesis one has \(z^{y} = z, \) and hence commutator calculus yields

\[
[x, t] = [x, y^p] = z\cdot z^{y} \cdots z^{y^{p-1}} = z^p. \tag{3.2}
\]

Put \(\lambda = 1 - \theta(x)^{-1} \in p\mathbb{Z}_p. \) Since \(t \in \text{Ker}(\theta), \) by (2.1) \([x, t] \cdot t^{-\lambda} \) lies in \(K(\text{Res}_U(G)). \) Since \(t \) and \(z \) commute, from (3.2) one deduces

\[
[x, t]t^{-\lambda} = z^p\cdot t^{-\lambda} = z^p\cdot t^{-\lambda/p} = \left(z^p(t^{-\lambda/p})\right)^p \in K(\text{Res}_U(G)). \tag{3.3}
\]

Moreover, \(z^p(t^{-\lambda/p}) \in \text{Ker}(\theta|_U). \) Since \(\text{Res}_U(G) \) is 1-smooth, by Proposition 2.2 the quotient \(\text{Ker}(\theta|_U)/K(\text{Res}_U(G)) \) is a free abelian pro-\(p \) group, and therefore (3.3) implies that also \(z^p(t^{-\lambda/p}) \) is an element of \(K(\text{Res}_U(G)). \)

Since \(K(\text{Res}_U(G)) \subseteq \Phi(U), \) one has \(z \equiv t^{\lambda/p} \mod \Phi(U). \) Then by [6, Prop. 1.9] \(d(U) = 2 \) and \(U \) is generated by \(x \) and \(t. \) Since \([x, t] \in U^p \) by (3.2), the pro-\(p \) group \(U \) is powerful. Therefore, \(\text{Res}_U(G) \) is \(\theta|_U \)-abelian by Proposition 3.1. In particular, the subgroup \(K(\text{Res}_U(G)) \) is trivial, and thus

\[
[x, y] = z = t^{\lambda/p} = y^{1-\theta(x)^{-1}},
\]

and the claim follows.

\[\square\]

Proposition 3.4 is a generalization of [18, Prop. 5.6].

Theorem 3.5 Let \(G = (G, \theta) \) be a torsion-free 1-smooth pro-\(p \) pair, with \(d(G) \geq 2. \)

(i) The \(\theta \)-center \(Z(G) \) is the unique maximal abelian normal subgroup of \(G. \)

(ii) The quotient \(G/Z(G) \) is a torsion-free pro-\(p \) group.

\[\text{Proof} \quad \text{Recall that} \ G \text{ is torsion-free by Remark 2.5. Since} \ Z(G) \text{ is an abelian normal subgroup of} \ G, \text{ by definition, in order to prove (i) we need to show that if} \ A \subset Z(G). \text{ then} \ A \subseteq Z(G). \]

First, we show that \(A \subseteq \text{Ker}(\theta). \) If \(A \cong \mathbb{Z}_p, \) let \(y \) be a generator of \(A. \) For every \(x \in G \) one has \(xyyx^{-1} \in A, \) and thus \(xyyx^{-1} = y^\lambda, \) for some \(\lambda \in 1 + p\mathbb{Z}_p. \) Let \(H \) be the subgroup of \(G \) generated by \(x \) and \(y, \) for some \(x \in G \) such that \(d(H) = 2. \) Then the pair \((H, \theta') \) is \(\theta' \)-abelian for some orientation \(\theta' : H \rightarrow 1 + p\mathbb{Z}_p \) such that \(y \in \text{Ker}(\theta'), \) as \(H \) has a presentation as in (2.5). Since both \(\text{Res}_H(G) \) and \((H, \theta') \) are 1-smooth pro-\(p \) pairs, by Remark 2.7 one has \(\theta' = \theta|_H, \) and thus \(A \subseteq \text{Ker}(\theta). \)
If \(A \neq \mathbb{Z}_p \), then \(A \) is a free abelian pro-\(p \) group with \(d(A) \geq 2 \), as \(G \) is torsion-free. Therefore, by Remark 2.3 the pro-\(p \) pair \((A, 1)\) is 1-smooth. Since also \(\text{Res}_A(G) \) is 1-smooth, Remark 2.7 implies that \(\theta|_A = 1 \), and hence \(A \subseteq \text{Ker}(\theta) \).

Now, for arbitrary elements \(x \in G \) and \(y \in A \), put \(z = [x, y] \). Since \(A \) is normal in \(G \), one has \(z \in A \), and since \(A \) is abelian, one has \([z, y] = 1\). Then Proposition 3.4 applied to the subgroup of \(G \) generated by \(\{x, y\} \) yields \(xyx^{-1} = x^{\theta(x)} \), and this completes the proof of statement (i).

In order to prove statement (ii), suppose that \(y^p \in Z(G) \) for some \(y \in G \). Then \(y^p \in \text{Ker}(\theta) \), and since \(\text{Im}(\theta) \) has no non-trivial torsion, also \(y \) lies in \(\text{Ker}(\theta) \). Since \(G \) is torsion-free by Remark 2.5, \(y^p \neq 1 \). Let \(H \) be the subgroup of \(G \) generated by \(y \) and \(x \), for some \(x \in G \) such that \(d(H) \geq 2 \). Since \(xy^p x^{-1} = (y^p)^{\theta(x)} \), commutator calculus yields
\[
y^p(x^{1-\theta(x)^{-1}}) = [x, y^p] = [x, y] \cdot [x, y]^p \cdot \cdots \cdot [x, y]^p = 1.
\]
(3.4)

Put \(z = [x, y] \), and let \(S \) be the subgroup of \(H \) generated by \(y, z \). Clearly, \(\text{Res}_S(G) \) is 1-smooth, and since \(y, z \in \text{Ker}(\theta) \), one has \(\theta|_S = 1 \), and thus \(S/S' \) is a free abelian pro-\(p \) group by Remark 2.3. From (3.4) one deduces
\[
y^{p(1-\theta(x)^{-1})} \cdot z^{-p} \equiv \left(y^{1-\theta(x)^{-1}} \cdot z^{-1}\right)^p \equiv 1 \mod S'. \tag{3.5}
\]
Since \(S/S' \) is torsion-free, (3.5) implies that \(z \equiv y^{1-\theta(x)^{-1}} \mod \Phi(S) \), so that \(S \) is generated by \(y \), and \(S \approx \mathbb{Z}_p \), as \(G \) is torsion-free. Therefore, \(S' = \{1\} \), and (3.5) yields \([x, y] = y^{1-\theta(x)^{-1}} \), and this completes the proof of statement (ii).

\begin{remark}
Let \(G \) be a pro-\(p \) group isomorphic to \(\mathbb{Z}_p \), and let \(\theta \colon G \to 1 + p\mathbb{Z}_p \) be a non-trivial orientation. Then by Example 2.4–(a), \(G = (G, \theta) \) is 1-smooth. Since \(G \) is abelian and \(\theta(x) \neq 1 \) for every \(x \in G \), \(x \neq 1 \), \(Z(G) = \{1\} \), still every subgroup of \(G \) is normal and abelian.

In view of the splitting of (3.1) (and in view of Remark 3.3), it seems natural to ask the following question.
\end{remark}

\begin{question}
Let \(G = (G, \theta) \) be a torsion-free 1-smooth pro-\(p \) pair, with \(d(G) \geq 2 \). Is the pro-\(p \) pair \(G/Z(G) = (G/Z(G), \theta) \) 1-smooth? Does the short exact sequence of pro-\(p \) groups
\[
1 \longrightarrow Z(G) \longrightarrow G \longrightarrow G/Z(G) \longrightarrow 1
\]
split?
\end{question}

If \(G = (G, \theta) \) is a torsion-free pro-\(p \) pair, then either \(\text{Ker}(\theta) = G \), or \(\text{Im}(\theta) \approx \mathbb{Z}_p \), hence in the former case one has \(G \cong \text{Ker}(\theta) \rtimes (G/\text{Ker}(\theta)) \), as the right-hand factor is isomorphic to \(\mathbb{Z}_p \), and thus \(p \)-projective (cf. [16, Ch. III, § 5]). Since \(Z(G) \subseteq Z(\text{Ker}(\theta)) \) (and \(Z(G) = Z(G) \) if \(\text{Ker}(\theta) = G \)), and since \(\text{Ker}(\theta) \) is absolutely torsion-free if \(G \) is 1-smooth, Question 3.7 is equivalent to the following question (of its own group-theoretic interest): if \(G \) is an absolutely torsion-free pro-\(p \) group, does \(G \) split as direct product
\[
G \cong Z(G) \times (G/Z(G))?
\]
One has the following partial answer (cf. [30, Prop. 5]): if \(G \) is absolutely torsion-free, and \(Z(G) \) is finitely generated, then \(\Phi_n(G) = Z(\Phi_n(G)) \times H \), for some \(n \geq 1 \) and some subgroup \(H \subseteq \Phi_n(G) \) (here \(\Phi_n(G) \) denotes the iterated Frattini series of \(G \), i.e., \(\Phi_1(G) = G \) and \(\Phi_{n+1}(G) = \Phi(\Phi_n(G)) \) for \(n \geq 1 \)).

4 Solvable pro-\(p \) groups

4.1 Solvable pro-\(p \) groups and maximal pro-\(p \) Galois groups

Recall that a (pro-\(p \)) group \(G \) is said to be meta-abelian if there is a short exact sequence

\[
\{1\} \longrightarrow N \longrightarrow G \longrightarrow \overline{G} \longrightarrow \{1\}
\]

such that both \(N \) and \(\overline{G} \) are abelian; or, equivalently, if the commutator subgroup \(G' \) is abelian. Moreover, a pro-\(p \) group \(G \) is solvable if the derived series \((G^n)_{n \geq 1} \) of \(G \) is finite, namely \(G^{(N+1)} = \{1\} \) for some finite \(N \).

Example 4.1 A non-abelian locally uniformly powerful pro-\(p \) group \(G \) is meta-abelian: if \(\theta : G \rightarrow 1 + p\mathbb{Z}_p \) is the associated orientation, then \(G' \subseteq \ker(\theta)^p \), and thus \(G' \) is abelian.

In Galois theory one has the following result by R. Ware (cf. [28, Thm. 3], see also [13] and [17, Thm. 4.6]).

Theorem 4.2 Let \(\mathbb{K} \) be a field containing a root of 1 of order \(p \) (and also \(\sqrt{-1} \) if \(p = 2 \)). If the maximal pro-\(p \) Galois group \(G_{\mathbb{K}}(p) \) is solvable, then \(G_{\mathbb{K}} \) is \(\theta_{\mathbb{K}} \)-abelian.

4.2 Proof of Theorem 1.2 and Corollary 1.3

In order to prove Theorem 1.2, we prove first the following intermediate results — a consequence of Würfel’s result [30, Prop. 2] and of [18, Prop. 6.11] —, which may be seen as the “1-smooth analogue” of [28, Thm. 2].

Proposition 4.3 Let \(G = (G, \theta) \) be a torsion-free 1-smooth pro-\(p \) pair. If \(G \) is meta-abelian, then \(G \) is \(\theta \)-abelian.

Proof Assume first that \(\theta \equiv 1 \) — i.e., \(G \) is absolutely torsion-free (cf. Remark 2.3). Then \(G \) is a free abelian pro-\(p \) group by [30, Prop. 2].

Assume now that \(\theta \neq 1 \). Since \(G \) is 1-smooth, also \(\text{Res}_{\text{Ker}(\theta)}(G) \) and \(\text{Res}_{\text{Ker}(\theta)^p}(G) \) are 1-smooth pro-\(p \) pairs, and thus \(\text{Ker}(\theta) \) and \(\text{Ker}(\theta)^p \) are absolutely torsion-free. Moreover, \(\text{Ker}(\theta)^p \subseteq G' \), and since the latter is abelian, also \(\text{Ker}(\theta)^p \) is abelian, i.e., \(\text{Ker}(\theta) \) is meta-abelian. Thus \(\text{Ker}(\theta) \) is a free abelian pro-\(p \) group by [30, Prop. 2]. Consequently, for arbitrary \(y \in \text{Ker}(\theta) \) and \(x \in G \), the commutator \([x, y] \) lies in \(\text{Ker}(\theta) \) and \([[x, y], y] = 1 \). Therefore, Proposition 3.4 implies that \(x y x^{-1} = y^{\theta(y)} \) for every \(x \in G \) and \(y \in \text{Ker}(\theta) \), namely, \(G \) is \(\theta \)-abelian.

\[\square\]
Note that Proposition 4.3 generalizes [30, Prop. 2] from absolutely torsion-free pro-p groups to 1-smooth pro-p groups. From Proposition 4.3, we may deduce Theorem 1.2.

Proposition 4.4 Let $G = (G, \theta)$ be a torsion-free 1-smooth pro-p pair. If G is solvable, then G is locally uniformly powerful.

Proof Let N be the positive integer such that $G^{(N)} \neq \{1\}$ and $G^{(N+1)} = \{1\}$. Then for every $1 \leq n \leq N$, the pro-p pair Res$_{G^n}(G)$ is 1-smooth, and $G^{(n)}$ is solvable, and moreover $\theta|_{G^{(n)}} \equiv 1$ if $n \geq 2$.

Suppose that $N \geq 3$. Since $G^{(N-1)}$ is metabelian and $\theta|_{G^{(N-1)}} \equiv 1$, Proposition 4.3 implies that $G^{(N-1)}$ is a free abelian pro-p group, and therefore $G^{(N)} = \{1\}$, a contradiction. Thus, $N \leq 2$, and G is meta-abelian. Therefore, Proposition 4.3 implies that the pro-p pair G is θ-abelian, and hence G is locally uniformly powerful (cf. § 3.1).

Proposition 4.4 may be seen as the 1-smooth analogue of Ware’s Theorem 4.2. Corollary 1.3 follows from Proposition 4.4 and from the fact that a locally uniformly powerful pro-p group is Bloch-Kato (cf. § 3.1).

Corollary 4.5 Let $G = (G, \theta)$ be a torsion-free 1-smooth pro-p pair. If G is solvable, then G is Bloch-Kato.

This settles the Smoothness Conjecture for the class of solvable pro-p groups.

4.3 A Tits’ alternative for 1-smooth pro-p groups

For maximal pro-p Galois groups of fields one has the following Tits’ alternative (cf. [28, Cor. 1]).

Theorem 4.6 Let \mathbb{K} be a field containing a root of 1 of order p (and also $\sqrt{-1}$ if $p = 2$). Then either $G_{\mathbb{K}}$ is $\theta_{\mathbb{K}}$-abelian, or $G_{\mathbb{K}}(p)$ contains a closed non-abelian free pro-p group.

Actually, the above Tits’ alternative holds also for the class of Bloch-Kato pro-p groups, with p odd: if a Bloch-Kato pro-p group G does not contain any free non-abelian subgroups, then it can complete into a θ-abelian pro-p pair $G = (G, \theta)$ (cf. [17, Thm. B], this Tits’ alternative holds also for $p = 2$ under the further assumption that the Bockstein morphism $\beta: H^1(G, \mathbb{Z}/2) \to H^2(G, \mathbb{Z}/2)$ is trivial, see [17, Thm. 4.11]).

Clearly, a solvable pro-p group contains no free non-abelian subgroups.

A pro-p group is p-adic analytic if it is a p-adic analytic manifold and the map $(x, y) \mapsto x^{-1}y$ is analytic, or, equivalently, if it contains an open uniformly powerful subgroup (cf. [6, Thm. 8.32]) — e.g., the Heisenberg pro-p group is analytic. Similarly to solvable pro-p groups, a p-adic analytic pro-p group does not contain a free non-abelian subgroup (cf. [6, Cor. 8.34]).

Even if there are several p-adic analytic pro-p groups which are solvable (e.g., finitely generated locally uniformly powerful pro-p groups), none of these two classes of pro-p groups contains the other one: e.g.,
Galois-theoretic features for 1-smooth pro-p groups

(a) the wreath product $\mathbb{Z}_p \wr \mathbb{Z}_p \cong \mathbb{Z}_p \rtimes \mathbb{Z}_p$ is a meta-abelian pro-p group, but it is not p-adic analytic (cf. [23]);

(b) if G is a pro-p-Sylow subgroup of $\text{SL}_2(\mathbb{Z}_p)$, then G is a p-adic analytic pro-p group, but it is not solvable.

In addition, it is well-known that also for the class of pro-p completions of right-angled Artin pro-p groups one has a Tits’ alternative: the pro-p completion of a right-angled Artin pro-p group contains a free non-abelian subgroup unless it is a free abelian pro-p group (i.e., unless the associated graph is complete) — and thus it is locally uniformly powerful.

In [18], it is shown that analytic pro-p groups which may complete into a 1-smooth pro-p pair are locally uniformly powerful. Therefore, after the results in [18] and [25], and Theorem 1.2, it is natural to ask whether a Tits’ alternative, analogous to Theorem 4.6 (and its generalization to Bloch-Kato pro-p groups), holds also for all torsion-free 1-smooth pro-p pairs.

Question 4.7 Let $\mathcal{G} = (G, \theta)$ be a torsion-free 1-smooth pro-p pair, and suppose that \mathcal{G} is not θ-abelian. Does G contain a closed non-abelian free pro-p group?

In other words, we are asking whether there exists torsion-free 1-smooth pro-p pairs $\mathcal{G} = (G, \theta)$ such that G is not analytic nor solvable, and yet it contains no free non-abelian subgroups. In view of Theorem 4.6 and of the Tits’ alternative for Bloch-Kato pro-p groups [17, Thm. B], a positive answer to Question 4.7 would corroborate the Smoothness Conjecture.

Observe that — analogously to Quesion 3.7 — Question 4.7 is equivalent to asking whether an absolutely torsion-free 1-smooth pro-p group which is not abelian contains a closed non-abelian free subgroup. Indeed, by Proposition 3.4 (in fact, just by [18, Prop. 5.6]), if $\mathcal{G} = (G, \theta)$ is a torsion-free 1-smooth pro-p pair and $\text{Ker}(\theta)$ is abelian, then \mathcal{G} is θ-abelian.

Acknowledgement

The author thanks I. Efrat, J. Minac, N.D. Tǎn and Th. Weigel for working together on maximal pro-p Galois groups and their cohomology; and P. Guillot and I. Snopce for the interesting discussions on 1-smooth pro-p groups. Also, the author wishes to thank the editors of CMB-BMC, for their helpfulness, and the anonymous referee.

References

[1] E. Becker, Euklidische Körper und euklidische Hüllen von Körpern. Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, II, J. Reine Angew. Math. 268/269 (1974), 41–52.
[2] S. Chebolu, I. Efrat, J. Mináč, Quotients of absolute Galois groups which determine the entire Galois cohomology. *Math. Ann.* 352 (2012), no. 1, 205–221.
[3] S. Chebolu, J. Mináč, C. Quadrelli, Detecting fast solvability of equations via small powerful Galois groups. *Trans. Amer. Math. Soc.* 367 (2015), no. 12, 8439–8464.
[4] T. Craven, T. Smith, Formally real fields from a Galois-theoretic perspective. *J. Pure Appl. Algebra* 145 (2000), no. 1, 19–36.
[5] C. De Clercq, M. Florence, Lifting theorems and smooth profinite groups. Preprint (2017), arXiv:1711.
[6] J. Dixon, M. du Sautoy, A. Mann, D. Segal, *Analytic pro-p groups*. Cambridge Studies in Advanced Mathematics 61, Cambridge University Press, Cambridge, 1999.

[7] I. Efrat, Small maximal pro-p Galois groups. *Manuscripta Math.* 95 (1998), no. 2, 237–249.

[8] I. Efrat, *Valuations, orderings, and Milnor K-theory*. Mathematical Surveys and Monographs 124, American Mathematical Society, Providence RI, 2006.

[9] I. Efrat, C. Quadrelli, The Kummerian property and maximal pro-p Galois groups. *J. Algebra* 525 (2019), 284–310.

[10] A. Engler, J. Nogueira, Maximal abelian normal subgroups of Galois pro-2-groups. *J. Algebra* 166 (1994), 481–505.

[11] A. Engler, J. Koenigsmann, Abelian subgroups of pro-p Galois groups. *Trans. Amer. Math. Soc.* 350 (1998), no. 6, 2473–2485.

[12] C. Haesemeyer, C. Weibel, *The norm residue theorem in motivic cohomology*. Annals of Mathematics Studies 200, Princeton University Press, Princeton NJ, 2019.

[13] J. Koenigsmann, Solvable absolute Galois groups are metabelian. *Invent. Math.* 144 (2001), no. 1, 1–22.

[14] J. Labute, Classification of Demushkin groups. *Canad. J. Math.* 19 (1967), 106–132.

[15] J. Mináč, F. Pop, A. Topaz, K. Wickelgren, Nilpotent Fundamental Groups. Report of the workshop "Nilpotent Fundamental Groups", Banff AB, Canada, June 2017, https://www.birs.ca/workshops/2017/17w5112/report17w5112.pdf.

[16] J. Neukirch, A. Schmidt, K. Wingberg, *Cohomology of number fields*. Grundlehren der Mathematischen Wissenschaften 323, Springer-Verlag, Berlin (2008).

[17] C. Quadrelli, Bloch-Kato pro-p groups and locally powerful groups. *Forum Math.* 26 (2014), no. 3, 793–814.

[18] C. Quadrelli, I-smooth pro-p groups and Bloch-Kato pro-p groups. Preprint (2019), [arXiv:1904.00667](https://arxiv.org/abs/1904.00667).

[19] C. Quadrelli, Two families of pro-p groups that are not absolute Galois groups. *J. Group Theory* (2021), to appear.

[20] C. Quadrelli, Chasing maximal pro-p Galois groups with 1-cyclotomicity. Preprint (2021), [arXiv:2106.00335](https://arxiv.org/abs/2106.00335).

[21] C. Quadrelli, T. Weigel, Profinite groups with a cyclotomic p-orientation. *Doc. Math.* 25 (2020), 1881–1916.

[22] C. Quadrelli, T. Weigel, Oriented pro-ℓ groups with the Bogomolov property. Preprint (2021), [arXiv:2103.12438](https://arxiv.org/abs/2103.12438).

[23] A. Shalev, Characterization of p-adic analytic groups in terms of wreath products. *J. Algebra* 145 (1992), no. 1, 204–208.

[24] I. Snopce, S. Tanushevski, Frattini-injectivity and maximal pro-p Galois groups. Preprint (2020), [arXiv:2009.09297](https://arxiv.org/abs/2009.09297).

[25] I. Snopce, P. Zaleskii, Right-angled Artin pro-p-groups. Preprint (2020), [arXiv:2005.01685](https://arxiv.org/abs/2005.01685).

[26] J. Tate, Relations between K_2 and Galois cohomology. *Invent. Math.* 36 (1976), 257–274.

[27] V. Voevodsky, On motivic cohomology with \mathbb{Z}/l-coefficients. *Ann. of Math.* (2) 174 (2011), no. 1, 401–438.

[28] R. Ware, Galois groups of maximal p-extensions. *Trans. Amer. Math. Soc.* 333 (1992), no. 2, 721–728.

[29] C. Weibel, 2007 Trieste lectures on the proof of the Bloch-Kato conjecture. ICTP Lect. Notes 23, Abdus Salam Int. Cent. Theoret. Phys., Trieste (2008), 277–305.

[30] T. Würtel, On a class of pro-p groups occurring in Galois theory, *J. Pure Appl. Algebra* 36 (1985), no. 1, 95–103.

Department of Mathematics and Applications, University of Milano–Bicocca, Milano, I-20125, Italy-EU

e-mail: claudio.quadrelli@unimib.it.