Causality analysis of CO₂ emissions, foreign direct investment, gross domestic product, and energy consumption: Empirical evidence from SAARC countries

Md. Nur Mozahid (mozahid.aep@sau.ac.bd)
Sylhet Agricultural University
https://orcid.org/0000-0002-9487-6788

Sharmin Akter
Sylhet Agricultural University

Md. Hafiz Iqbal
Edwardes College

Research Article

Keywords: Greenhouse gas, Environmental Kuznets curve, Economic growth, Foreign direct investment, Energy, Pollution haven hypothesis, Pollution halo hypothesis

Posted Date: January 28th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1237874/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Over the period 1980-2016, this study looks into the causal relations among CO2 emissions, energy consumption (EC), foreign direct investment (FDI), and gross domestic product (GDP) in SAARC countries. To achieve the research objectives, panel unit root tests, panel cointegration autoregressive distributed lag (ARDL) model, and Granger causality tests are used. In the long-run, income has a positive impact on CO2 emissions, while squared income has a negative impact, confirming the occurrence of the Environmental Kuznets Curve (EKC) theory in SAARC countries. Among all SAARC countries, Bangladesh and Nepal support the pollution haven hypothesis, but India, Pakistan, and Sri Lanka support the pollution halo hypothesis. EC has a large positive impact on CO2 emissions across the country. In the long-run, the Granger causality test confirms one-way causation from EC to CO2 emissions and bidirectional causality of FDI and CO2. As a result, these countries might encourage clean energy technology through FDI without jeopardising GDP and environmental quality. This will allow these countries to reduce CO2 emissions to achieve a long-term green GDP and combat global warming.

1. Introduction

The world has tackled the challenges of worldwide warming and climate change issues throughout the last few decades. Despite substantial climate change due to greenhouse gas (GHG) emissions, the world community has endeavoured to meet these global environmental issues and preserve the planet's habitability. The Paris agreement under the United Nations Framework Convention on Climate Change (UNFCCC), for example, was a significant step toward addressing this environmental crisis. The major goal of this agreement is to reduce GHG emissions to keep global warming below 2 degrees Celsius (UNFCCC 2015). GHG emissions from the burning of fossil fuels in conjunction with various economic activities are major contributors to global climate change. Floods, droughts, and wildfires are some of the paraphernalia of climate change brought on by GHG emissions (IPCC 2014). It also leads to negative health effects from smog and air pollution, such as asthma and respiratory illnesses (IPCC 2014). Climate change also has a negative impact on crop productivity in many areas, resulting in food insecurity and poverty, particularly in developing countries (IPCC 2014). The IPCC emphasises the importance of anthropogenic carbon dioxide (CO2) emissions, which account for the majority of global GHG emissions. Over 80% of GHG emissions are caused by CO2 emissions, which are mostly generated by emerging countries seeking to fast-track their economic growth (EG) and increase domestic production to take advantage of expected economic conditions (IPCC 2019).

In recent years, the relationship between environmental pollutants, GDP, foreign direct investment (FDI), and energy consumption (EC) has gotten a lot of attention when it comes to climate change. Grossman and Krueger (1994) use the Environmental Kuznets Curve (EKC) theory to explain the link between environmental pollution and economic growth (EG). The EKC states that environmental contamination rises during the initial periods of economic development and subsequently cascades during the advanced phases (Al-Mulali and Ozturk 2015). FDI, on the other hand, has long been recognized as an important catalyst of EG in developing countries. It creates a lot of opportunities, such as employment, human capital development, technological enhancement, exchange rate stability, improved capital flow, and the creation of competitive markets in the host countries (Asongu et al. 2018). Nonetheless, in recent years, major and commonly discussed concerns about FDI and its negative effects on environmental value and worth have been raised. With the increase in FDI, various studies on FDI determinants in developing countries have been conducted. The environmental directive has been recognized as one of the most important determinants for FDI mobility among a variety of considerations (Hu et al. 2019). To escape expensive production and environmental costs, polluting firms from industrialized countries may invest in developing countries with limited environmental regulation (Islam and Kakinaka 2020). This investment leads to increased EC and CO2 levels in host countries, and the investing country eventually becomes a "haven" for polluting companies (Hao et al. 2020). The pollution haven hypothesis formalizes this link. Another concept about environmental pollution and FDI is linked with the pollution halo hypothesis, which states that firms form higher-income countries help to decrease GHG emissions in the host nation due to their green technology (Mert and Caglar 2020). EC is regarded as a major input for nearly all commodities and services in any modern economy. There is no possibility for GDP and development to progress without the utilization of energy (Ssali et al. 2019). However, using a hard energy source such as coal-fired power plants, natural gas-fired power plants, or oil refiner, instead of a soft energy source is regrettable. Fast economic expansion and rising energy demand in lower-income and middle-income countries have sparked concerns about supply issues, resource depletion, and environmental effects in recent years. Existing empirical studies have looked into the link between EC, GDP, and GHGs (Vasylieva et al. 2019; Kim 2019). Following that, growing carbon emissions, as well as their relationship with EC and GDP, will be at the forefront of the global warming debate (Sarwar and Wei 2019). As a result, understanding the dynamic link between GHG emissions, FDI, EC, and GDP is important for gaining control over GHG emissions and ensuring the long-term viability of economic development.

The South Asian Association for Regional Cooperation (SAARC) is a regional diplomatic and geopolitical organization made up of eight countries in South Asia. This is one of the most important economic areas for attracting FDI. The key drivers of FDI attraction and EG in these member nations have been recognized as political and macroeconomic stability, a well-designed investment atmosphere, and a plentiful supply of cheap labor (UNCTD 2019). Climate change also has a negative impact on crop productivity in many areas, resulting in food insecurity and poverty, particularly in developing countries (IPCC 2014). The IPCC emphasises the importance of anthropogenic carbon dioxide (CO2) emissions, which account for the majority of global GHG emissions. Over 80% of GHG emissions are caused by CO2 emissions, which are mostly generated by emerging countries seeking to fast-track their economic growth (EG) and increase domestic production to take advantage of expected economic conditions (IPCC 2019).

The South Asian Association for Regional Cooperation (SAARC) is a regional diplomatic and geopolitical organization made up of eight countries in South Asia. This is one of the most important economic areas for attracting FDI. The key drivers of FDI attraction and EG in these member nations have been recognized as political and macroeconomic stability, a well-designed investment atmosphere, and a plentiful supply of cheap labor (UNCTD 2019). Climate change also has a negative impact on crop productivity in many areas, resulting in food insecurity and poverty, particularly in developing countries (IPCC 2014). The IPCC emphasises the importance of anthropogenic carbon dioxide (CO2) emissions, which account for the majority of global GHG emissions. Over 80% of GHG emissions are caused by CO2 emissions, which are mostly generated by emerging countries seeking to fast-track their economic growth (EG) and increase domestic production to take advantage of expected economic conditions (IPCC 2019).
The subsequent segment includes an ephemeral literature review followed by econometric models and data sources. Next, the technical specifics of several econometric approaches are discussed. Following that, the test and model results are shown. The final section contains a summary of the entire study as well as a conclusion with policy recommendations.

2. Related Literature

For the past few years, the causal link between GHG emissions, EC, GDP, and FDI has been a topic of debate (Achour and Belloumi 2016). Social and environmental scientists have spent a lot of effort trying to figure out what causes the variables to interact in the way they do. However, no agreement has been reached on the causal link between the factors because of model misspecification, omitted variables bias, and the inclusion of other irrelevant factors (Niemand and Mai 2018). The technique utilized in the studies on the connection of CO$_2$ emissions, GDP EC, and FDI varies, as do the variables considered and the area covered (single country or multi-country). However, the current study, based on earlier research, divides the extant literature into three categories:

2.1 GDP and GHG emissions

The first group of studies examines the association between GDP and CO$_2$ emissions. Nonetheless, empirical evidence from the existing literature shows inconsistent results (Magazzino et al. 2021; Ameyaw and Yao 2018; Gong et al. 2019; Munir et al. 2020; Chemi and Jouini 2017; Abbasi et al. 2021; Mikayilov et al. 2018; Kim 2019; Mahmood et al. 2019; Hdom and Fuinhas 2020; Cai et al. 2018). According to an extensive body of empirical work, GDP per capita has a favourable impact on GHG emissions (unidirectional). This association was discovered by Narayan and Narayan (2010) and Zhu et al. (2016a) for 43 low-income and five member states of the Association of Southeast Asian Nations, respectively. Some researchers (Agras and Chapman 1999; Richmond and Kaufmann 2006) discovered bidirectional causal relationships between these two variables.

2.2 FDI and GHG emissions

The association of FDI and GHG emissions is examined in the second area of research. This connection has sparked a discussion among the researchers concerning the positive and negative effects of both variables. Rafindadi et al. (2018a) used panel data from 1990 to 2004 to observe the influence of FDI on GHG emissions in a few member states of the Gulf Cooperation Council (GCC). Using the ARDL method, they discovered that FDI encourages GHG emissions. Nguyen (2018) looked into the relationship between FDI and GHG emissions in Vietnam. They discovered a two-way (bidirectional) connection between FDI and CO$_2$ emissions using the ARDL-Granger causality test. Ssali et al. (2019) examined the causal association of FDI and GHG emissions in six Sub-Saharan African nations. They employed the pooled mean estimator with the ARDL model (ARDL-PMG). In the long-run, their findings revealed a unidirectional causal relationship between CO$_2$ and FDI, while no causal associations were discovered in the short-run. Likewise, many studies have determined that FDI drives GDP and has a substantial impact on CO$_2$ emissions (Behera and Dash 2017a; Riti et al. 2017). However, Mert and Bölük (2016) and Sung et al. (2018) found that FDI improves energy efficiency and reduces CO$_2$ emissions in host nations.

2.3 EC and CO$_2$ emissions

The final section emphasizes the link between EC and CO$_2$ emissions. A large body of empirical research found a strong relationship between EC and CO$_2$ emissions. Through direct or indirect causal relationships, EC is one of the main catalysts of CO$_2$ emissions (Leito and Balogh 2020; Nguyen 2018). Boutabba (2014) showed unidirectional causality from EC to India’s carbon emissions using the ARDL-VECM causality test. Lu (2017), who employed Granger causality in sixteen Asian nations, found similar findings. On the other hand, Dogan and Aslan (2017) found that EC and CO$_2$ emissions are bidirectional in a few countries of the European Union. Based on the panel cointegration test, Sterpu et al. (2018) showed that an increase in EC leads to an increase in CO$_2$ emissions in the atmosphere. They also pointed out that, in contrast to fossil fuels, renewable energy sources minimize CO$_2$ emissions in the atmosphere. All of the research presented in Tables 1, 2, and 3 used single or multiple nation analyses, different timeframes, and several econometric estimations to explain the association between energy consumption and CO$_2$ emissions. In terms of the number of studies, the results are inconclusive, citing mixed evidence in terms of direction. As a result, it’s critical to remember that while studying the link between variables, the influence or direction of the association can change.
Table 1
GDP and GHG emissions

Authors	Variables	Methodology	Relationship
Ameyaw and Yao (2018)	CO₂ emissions, GDP & EC	ARDL-VECM	GDP → CO₂
Munir et al. (2020)	CO₂ emissions, GDP & FDI	VECM	GDP → CO₂
Cherni and Jouini (2017)	CO₂ emissions, GDP, EC & population growth	ARDL-DOLS	GDP → CO₂
Chen et al. (2016)	CO₂ emissions, GDP & EC	VECM	GDP → CO₂
Cai et al. (2018)	CO₂ emissions, GDP & renewable energy	ARDL-VECM	GDP → CO₂
Abbasi et al. (2021)	CO₂ emissions, GDP & EC	ARDL-VECM	GDP → CO₂
Magazzino et al. (2021)	CO₂ emissions, GDP & EC	ARDL-VECM	EKC not valid
Narayan and Narayan (2010)	CO₂ emissions & GDP	Cointegration analysis	GDP → CO₂
Gong et al. 2019	CO₂ emissions, GDP, FDI & urbanization	ARDL-VECM	GDP ↔ CO₂
Obradović and Lojanica (2017)	CO₂ emissions, GDP, EC & FDI	VECM	Long-run GDP ↔ CO₂
Pao and Tsai (2011)	CO₂ emissions, GDP, EC & FDI	VECM	GDP ↔ CO₂
Pao and Chen (2019)	CO₂ emissions, GDP, EC & FDI	VECM	GDP ↔ CO₂
Hdm and Fuinhas (2020)	CO₂ emissions GDP & EC	ARDL-VECM	GDP ↔ CO₂
Saidi and Ben Mbarek (2016)	CO₂ emissions, nuclear energy, GDP, labour & capital	Dynamic panel	GDP ↔ CO₂
Zhu et al. (2016b)	CO₂ emissions, GDP & FDI	Panel quantile regression	GDP ↔ CO₂

Table 2
FDI and GHG Emissions

Authors	Variables	Methodology	Relationship
Behera and Dash (2017a)	CO₂ emissions, FDI, EC & GDP	Pedroni cointegration	FDI → CO₂↑
Lau et al. (2014)	CO₂ emissions, FDI, GDP & trade openness	ARDL-PMG	FDI → CO₂↑
Mert and Bölük (2016)	CO₂ emissions, FDI, EC & GDP & income	ARDL-Granger causality	FDI → CO₂↓
Pao and Tsai (2011)	CO₂ emissions, FDI, EC & GDP	VECM-Granger causality	FDI → CO₂↑
Rafindadi et al. (2018a)	CO₂ emissions, FDI, GDP, EC & relative income	ARDL-DFE	FDI → CO₂
Seker et al. (2015)	CO₂ emissions, FDI, GDP & EC	ARDL-VECM	FDI → CO₂↑
Salahuddin et al. (2018)	CO₂ emissions, FDI, GDP, & EC	ARDL-VECM	FDI → CO₂↑
Sarkodie and Strezov (2019)	CO₂ emissions, FDI & GDP	Panel quantile regression	FDI → CO₂
Sung et al. (2018)	CO₂ emissions, FDI, GDP & fixed capital stock	Panel quantile regression-GMM	FDI → CO₂↓
Ssali et al. (2019)	CO₂ emissions FDI, GDP & fixed capital stock	ARDL-PMG	FDI → CO₂↑
Nguyen (2018)	CO₂ emissions, FDI, GDP & EC	ARDL-Granger causality	FDI → CO₂↑
3. Econometric Model, Data Sources And Econometric Approach

Using a quadratic model as stated in Eq. (1), the study observed the relationship between GHG emissions, FDI, GDP, and EC in a few SAARC member states.

\[
\ln(CO_2) = \phi_1 + \phi_2 \ln(GDP)_t + \phi_3 \ln(GDP)_t^2 + \phi_4 FDI_t + \phi_5 TEC_t + \epsilon_t
\]

where metric tones per capita is used as a unit to measure CO_2 current US dollars is used to measure GDP, FDI is calculated as a net inflow percentage of GDP, and British Thermal Units (BTU) per capita is used to measure total EC. The subscript \(t \) indicates the time period and \(\phi_1 \) is the intercept where \(i = 1 \ldots 5 \). The error term is represented by \(\epsilon \). Except for total energy consumption, the time series data were captured from the database of the World Bank development indicator, 2021. The data on energy consumption comes from the World Energy Statistics 2021. All of the variables used in the regression model are converted to logarithms, which show the elasticity (or percentage change) of the dependent variable. The sign of the parameters \(\phi_2 \) and \(\phi_3 \) is predicted to be positive or negative based on the theory of the environmental Kuznets curve (EKC). At the primary stages of growth of any country, the positive sign of the coefficient \(\phi_2 \) implies a positive association between \(\ln(CO_2) \) and \(GDP \). Similarly, the non-linear inverted U-shaped relationship between \(CO_2 \) emissions and GDP per capita is confirmed by the negative sign of the squared parameter \(\phi_3 \) of the EKC. As a result, the presence of EKC for the panel is confirmed by the statistical significance of both the positive and negative signs of the concerned parameter. Furthermore, the sign of \(\phi_4 \) associated with FDI is used to test the legitimacy of the pollution halo hypothesis or the pollution haven hypothesis. The first hypothesis contends that FDI reduces GHG emissions, whereas the last hypothesis contends that FDI increases GHG emissions. As a result, the sign of the parameter \(\phi_4 \) contributes to the validation of these two hypotheses. Generally, an intensification in energy consumption is projected to result in an escalation of \(CO_2 \) emissions as a result of increased economic activity; consequently, the expected sign of \(\phi_5 \) is positive.

Cross-sectional dependence (CSD) is fairly prevalent and regularly encountered in practice when dealing with repeated cross-sectional data. It is self-evident to test for CSD before examining the stationary features of a time series or panel data. The use of unit root and cointegration methods could be adjusted by the CSD; otherwise, the estimate from the unit root and cointegration properties could be inconsistent (Silva et al. 2018). We used the lagrange multiplier (LM) test suggested by Breusch and Pagan (1980) and the CSD test suggested by Pesaran (2021) to regulate whether the panel data are cross-sectionally dependent or not. Both tests are calculated with cross-sectional independence as the null hypothesis and CSD as the alternative hypothesis. By assuming potential cross-sectional independence within the panel data, this work analyzed stationary qualities utilizing the second generation unit root tests such as cross-sectionally augmented dickey (CADF) and cross-sectionally Im-Pesaran-Shin (CIPS). Pearson (2007) suggested that the CADF and CIPS are superior to Levin, Lin and Chu (LLC) and Im Pesaran and Shin (IPS) panel unit root tests. The study used the Pedroni and Kao cointegration tests, as suggested by Pedroni (2004) and Kao (1999), to ensure that the investigated variables were cointegrated. Later, the study used ARDL to measure the long-run and short-run effects of our proposed variables on \(CO_2 \). The study also used the pooled mean group (PMG) estimator for further assessment. The Akaike information criterion (AIC) has been applied to select the best lag structure because it reduces the loss of degrees of freedom. It is also treated as the “parsimonious lag structure.” In this case, the PMG estimator is utilized because it maintains long-run coefficient control across all cross-sections while allowing short-run coefficient diversity across all cross-sections. The ARDL model has some practical advantages, such as the ability to estimate short-and long-term consistent estimates simultaneously, regardless of whether the series is I(0) or I(1). With such a model and a modest sample size, reliable findings can be produced. Due to the presence of rich
dynamics, the problem of multicollinearity can be readily solved (Dougherty 2016). Finally, because all variables are expected to be endogenous, the ARDL model removes the endogeneity issues that plague the Engel-Granger technique (Seker et al. 2015). The ARDL (pq) model contains lag p used as the outcome and lag q used as the explanatory variable. This model was developed by Ssali et al. (2019) and it takes the following form:

\[y_{it} = \mu_i + \sum_{j=1}^{p} \lambda_{ij} y_{it-j} + \sum_{j=0}^{q} \delta_{ij} x_{it-j} + \epsilon_{it} \]

where \(y_{it}\) denotes the outcome variable. The number of countries and time period used for analysis are symbolized by the subscript \(i = 12...N\) and \(t = 12...T\). The other subscript \(j\) is the number of cross-sections. The quantity of lags for the outcome and explanatory variables is expounded by \(p\) and \(q\). The explanatory variables \(x_{it-j}\) represent a \(m\) (row) \(\times\) \(n\) (column) vector. The scalar vector is also expressed by \(\lambda_{ij}\). The symbol \(\delta_{ij}\) shows the \(mx1\) coefficient vector and \(\epsilon_{ij}\) indicates the error term.

If there is cointegration between the variables under investigation, the ARDL model should be reformulated. In the ARDL model, cointegration could be a concern in short-run dynamics. To obtain a consistent estimate, the error correction term (ECT) should be added. The ECT is used to measure how quickly a dependent variable approaches long-run equilibrium while the independent variable changes. The ECT can be written like this:

\[\Delta y_{it} = \varphi_1 (\Delta y_{it-1} - \tau x_{it}) + \sum_{j=1}^{p-1} \lambda_{ij} \Delta y_{it-j} + \sum_{j=0}^{q-1} \delta_{ij} \Delta x_{it-j} + \epsilon_{it} \]

where \(\varphi = (1 - \sum_{j=1}^{p} \lambda_{ij})\) and \(\tau = \frac{\sum_{j=0}^{p} \delta_{ij}}{\varphi}\). In Eq. (3) \(\tau\) and \(\delta_{ij}\) show the long-run association between outcome and explanatory variables. The symbol \(\varphi_1\) is a part of ECT and is likely to be non-positive or less than one. The presence of cointegration is indicated by a negative sign, whereas the pace of adjustment is indicated by a fraction less than one. If \(\varphi_1 = 0\) there is no confirmation of a long-run relationship (no cointegration). Therefore, by combining the ECT, our model follows Eq. (4), where \(CO_2\) emission is the outcome variable, and other variables (GDP, GDP2, and FDI energy use) are the explanatory variables.

\[\Delta CO_{2i} = \alpha + \varphi_1 (\Delta CO_{2i} - \tau_{1i} GDP_{it} + \tau_{2i} GDP^2_{it} - \tau_{3i} FDI_{it} - \tau_{4i} TEC_{it}) + \sum_{j=1}^{p-1} \lambda_{2ij} \Delta CO_{2i-j} + \sum_{j=0}^{q-1} \delta_{2ij} \Delta GDP_{it-j} + \sum_{j=0}^{q-1} \delta_{3ij} \Delta GDP^2_{it-j} + \sum_{j=0}^{q-1} \delta_{3ij} \Delta GDP_{it-j} + \sum_{j=0}^{q-1} \delta_{3ij} \Delta GDP_{it-j} \]

While estimating Eq. (4), we chose the PMG estimator given by Pesaran et al. (1999) since it has various advantages over the others. For example, it accounts for differences in short-run coefficient intercepts and error variation among countries. Long-run estimates are similarly restricted by this estimator to being constant. According to Pesaran et al. (1999), the advantage of PMG is that it is robust to outliers as well as lag orders. The PMG has grown popular among researchers due to its application capacity (Baek and Choi 2017; Rafindadi et al. 2018b; Ssali et al. 2019; Yusuf et al. 2020). In order to justify the suitability of the pooling coefficient in the ARDL situation, we used Hausman poolability to diagnose the above-mentioned model. This diagnostic test checks if the null hypothesis of pooled long-run coefficients being identical for all cross-sections is true or not (Ssali et al. 2019). Finally, we applied the panel Granger causality test to measure the causality-based vector error correction's direction. The Granger causality test was done in two steps. The long-run relationship is estimated in the first phase in order to create an ECT for the second step. In the long run, an ECT is defined as one-period lagged residuals. The ECT sign specifies whether one or two variables are used to correct divergence from the long-run relationship. The VECM is also calculated using biased-corrected least square dummy variables (Bruno 2005). Boutabba (2014) defined the VECM as follows:

\[(1 - B) Y_{it} = \mu_{1it} + \sum_{j=1}^{p} (1 - B) \left[\lambda_{1jt} Y_{it-j} + \delta_{1jt} ECT_{it-j} \right] + \epsilon_{it} \]

where \(i = 12...N\) shows the country, \(t = 12...T\) presents the time, \(p\) indicates the lag length, \((1 - B)\) is the first difference operator, \(\epsilon_{it}\) is treated as a serially uncorrelated error term and a finite covariance matrix, and \(ECT_{it-j}\) shows for lagged ECT. The VECM is used to capture both long-run and short-run Granger causality. The F-test of lagged explanatory factors may be used to determine short-run dynamics, while the t-statistics on the coefficient of lagged error term can be used to determine the significance of long-run contributing effects. Our VECM-based modified model is applied to test the way of the causality, and that can be written as follows:
4. Result And Discussion

4.1 CSD test

We run Breusch-Pagan LM and Pesaran CSD tests before applying the unit root test. The CSD result for our model is shown in Table 4. The null hypothesis of cross-sectional independence is rejected for our model based on the various probability values. This means that the CSD test confirms that the panel series is cross-sectionally dependent. The unit root test is used in this study to account for cross-sectional dependence in the estimation process. Additionally, we apply the CADF and CIPS tests in the next step because traditional unit root tests are no longer viable in the presence of CSD and fail to account for cross-sectional dependence in the estimating process.

Table 4
Estimation of Breusch-Pagan LM and Pesaran CSD tests

Tests	Statistics
Breusch-Pagan LM	80.215***
P-Value	0.000
Pesaran CSD	1.790***
P-Value	0.001

Note. The asterisk *** ** and * specify statistical significance levels at 1% 5% and 10%.

4.2 Panel unit root test

To obtain the stationary property and analyze the sequence of integration amongst examining panel time series, this study uses CADF and CIPS unit root tests rather than the traditional unit root test. This is because the CADF and CIPS unit root tests produce valid results in the presence of CSD. As a result, Table 5 shows the outcomes of these two tests. The CADF and CIPS tests reveal that all variables except lnFDI have unit root (non-stationary) at levels, as indicated in Table 5. However, following the initial difference, they become stationary. Given the substantial evidence for a common sequence of integration among the variables under examination, I (1). After the first difference, the CADF and CIPS tests reject the null hypothesis that the variables are non-stationary, and the involved variables demonstrate the stationary property and I (1). Because the variables are stable at the first difference, the cointegration test is used to see if there is a long-term relationship between them.
Table 5
Results of unit root tests for CADF and CIPS

Variables	Level	1st difference	Order of integration		
		Intercept	Intercept & trend	Intercept	Intercept & trend
CADF test					
lnCO	-1.385	-1.945	-3.977***	-4.214***	I (1)
lnGDP	-2.295	-2.601	-4.026***	-4.140***	I (1)
lnGDP2	-2.295	-2.406	-3.397***	-3.413***	I (1)
lnFDI	-3.110*	-2.937*	-4.527***	-4.485***	I (0)/ I (1)
lnTEC	-2.509	-3.322	-4.988***	-5.176***	I (1)
CIPS test					
lnCO	-1.736	-2.287	-6.006***	-6.154***	I (1)
lnGDP	-2.263	-2.685	-5.626***	-5.796***	I (1)
lnGDP2	-2.027	-2.453	-5.626***	-5.796***	I (1)
lnFDI	-3.413	-3.301	-5.604***	-5.714***	I (1)
lnTEC	-2.491	-3.275	-5.884***	-6.077***	I (1)

Note. The Akaike Information Criterion is used to determine the optimal lags.

4.3 Panel cointegration test

The cointegration tests of Pedroni (2004) and Kao (1999) were utilized to confirm the existence of cointegration. Pedroni’s panel cointegration test results for several models are shown in Table 6, along with seven different test statistics. At the 1%, 5%, and 10% levels of significance, the majority of test findings, both panel-based and group-based, indicated evidence of panel cointegration among the variables. As a result, the null hypothesis of no cointegration is rejected at a different level of significance for the majority of the test statistics. By using the Kao (1999) cointegration test, the homogenous slope coefficient over the cross-section is also shown in Table 6. This test revealed that the investigating variables are cointegrated with a heterogeneous slope by rejecting the null hypothesis of no cointegration with a homogenous slope coefficient at a 10% level of significance. Both tests are statistically significant, indicating that the panel variables in the models have a long-run cointegrating relationship.

Table 6
Result of cointegration test for Pedroni and and Kao

Pedroni 2004	Statistics	Weighted Statistics	
Common AR coefficient (within dimensions)			
Panel v-statistic	-0.124	-0.617	
Panel rho-statistic	-2.73**	-2.456**	
Panel PP-statistic	-3.686**	-3.349**	
Panel ADF-statistic	-3.640**	-3.321**	
Common AR coefficient (within dimensions)			
Group rho-statistic	-1.60***	-	
Group pp-statistic	-3.319**	-	
Group ADF-statistic	-3.104***	-	
Kao	-	-	
ADF	-2.60**	-	

Note. The asterisk *** ** and * specify statistical significance levels at 1% 5% and 10%.

4.4 ARDL long-run and short-run elasticities using PMG

To estimate long-run and short-run estimates of CO$_2$ emissions, GDP, FDI, and ECE, this study used the PMG estimator using ARDL. Table 7 shows the findings of the PMG estimator. The Chi-squared test statistics of the Hausman test have a value of 72.425 with a connecting p-value of 0.377, according to the ARDL model using the PMG estimator. This p-value is greater than 0.05, indicating that the null hypothesis cannot be rejected and demonstrating that long-run coefficients for all cross-sections are equal. The null hypothesis is rejected, indicating that the homogeneity restriction is valid and that the PMG estimator is
more efficient. With an appropriate sign, the coefficient of lag ECT is statistically significant (the negative sign and less than unity). Any divergence from the long-run equilibrium of GDP per capita in one year is rectified by around 72 percent the following year, according to the coefficient of -0.715. Both the short-run and long-run coefficients of lnGDP are positive and significant at a 5% level. The coefficient of lnGDP\(^2\) on the other hand, as expected, reveals a negative association and is significant in both the short-and long-run. The presence of an inverted U-shaped relationship with CO\(_2\) emissions is revealed by the statistical significance of both linear and nonlinear factors of GDP per capita. The conclusion shows that a 1% increase in GDP per capita will result in a 0.68 percent increase in CO\(_2\) emissions per capita, whereas the negative nonlinear term appears to confirm the delinking of CO\(_2\) emissions by 0.024 percent with a higher level of GDP at 5% in the long-run. This positive and negative relationship holds true for estimates of short-run coefficients. These findings are consistent with the EKC hypothesis, which claims that economic growth is both a cause and a clarification for the rising GHG emissions. As a result, SAARC member states would not be afraid to pursue their economic growth strategies because, in the long run, economic growth would address the environmental challenges that arose during the primary stages of growth. This outcome backs up the conclusions of the previous studies by Nicholas and Ozturt 2015, Pata 2018, Rana and Sharma 2019, Ssali et al. 2019.

Apart from lnFDI, the other variable such as lnTEC is statistically significant. In the medium and long-run, a 1% increase in energy use results in 0.287 percent and 0.046 percent increases in CO\(_2\) emissions. Ssali et al. (2019) carried out research in a few selected Sub-African countries and revealed that energy use increases GHG emissions. Such a relationship is also consistent with the findings of Ahmed et al. (2017) for South Asia, Solarin et al. (2018) for 80 developing nations, Apergis & Payne (2015) for 11 South American countries, and Pata (2018) for Turkey.

Table 7

ARDL Long-run and short-run elasticities for PMG
\(\Delta \ln CO_2\) (12222)
Long-run
\(\Delta \ln GDP\)
\(\Delta \ln GDP^2\)
\(\Delta \ln FDI\)
\(\Delta \ln TEC\)
ECT
Short-run
\(\Delta \ln CO_2\)
\(\Delta \ln GDP\)
\(\Delta \ln GDP^2\)
\(\Delta \ln FDI\)
\(\Delta \ln TEC\)
Hausman
\(P\) value

Note. The asterisk *** **and * specify statistical significance levels at 1% 5% and 10% .

4.5 Country-specific ARDL model with PMG estimator

For each cross section, we also run the ARDL model using the PMG estimator. In order to be certain about the presence or lack of autocorrelation, we used the B-G LM test and the Autoregressive Conditional Heteroskedasticity (ARCH) test to evaluate heteroscedasticity. In addition to testing the model's stability, we ran cumulative CUSUM and CUSUMSQ tests on each cross-section. The serial correlation (B-G LM test) and heteroscedasticity (ARCH test) results in Table 8 show that these ARDL models are free from the autocorrelation and heteroscedastic problems. The estimated results of CUSUM and CUSUMSQ corroborate the stability of these models. The EKC can be verified by examining the long-run elasticity characteristics of two variables: \(\Delta \ln GDP\) and \(\Delta \ln GDP^2\). The long-run coefficients of \(\Delta \ln GDP\) and \(\Delta \ln GDP^2\) are statistically significant, with a positive and negative sign for Pakistan and Sri Lanka. Both the results for Pakistan and Sri Lanka support the EKC hypothesis and economic expansion for CO\(_2\) emissions in Pakistan and Sri Lanka. On the contrary, the anticipated parameters for \(\Delta \ln FDI\), has a favourable influence on CO\(_2\) emissions in Bangladesh and Nepal but has a negative impact in India, Pakistan, and Sri Lanka. The findings upkep the presence of the pollution haven hypothesis in Bangladesh and Nepal as well. Table 8 shows that the \(\Delta \ln TEC\) has a large favourable impact on CO\(_2\) emissions in all nations.
Table 8

Country specific ARDL PMG estimator

Dependent variable	Bangladesh	India	Nepal	Pakistan	Sri-Lanka
ΔlnCO₂	(3 21 20)	(4 2 1 3 3)	(1 4 4 0 3)	(3 4 1 4 1)	(2 0 1 1 0)
ΔlnGDP	1.971**	-0.238**	3.596	0.154***	0.333**
ΔlnGDP²	0.150**	0.020**	-0.315	-0.405***	-0.020**
ΔlnFDI	2.230**	-0.406	4.421**	-0.168	-0.544
ΔlnTEC	0.705***	0.662***	0.743***	0.442**	1.339**
ECT	-0.593*	-0.425**	-0.836***	-0.574***	-0.337**
Adj. R²	0.820	0.797	0.726	0.890	0.790

Long Run

4.6 Panel Granger causality test

After applying the ARDL approach to measure the direction of the effects, the VECM-based Granger causality test was used to evaluate the short-and long-run directions of causal effects. Table 9 shows the results of the panel Granger causality test. The short-run dynamics based on F-statistics imply unidirectional causality. Likewise, the statistical significance of lagged ECT indicates there is a long-run linkage of CO₂, FDI, TEC, and GDP. Panel Granger causality findings show unidirectional Granger causality between energy consumption and GHG emissions, FDI and GHG emissions, and energy consumption and GHG emissions. On the other hand, four bidirectional causalities such as GHG emissions and energy use, GHG emissions and FDI, energy use and GDP, and FDI and energy use have been discovered. The ECT coefficients in GHG emissions and FDI are significant, implying that there are two long-run panel causal links between energy use FDI and GDP to GHG emissions as well as energy use and GDP to FDI.

Table 9

The result of Panel Granger causality test

Dependent variable	Source of causation (Independent variables)			
	Short-run	Long Run		
ΔlnCO₂	—	2.424*	2.406*	
ΔlnGDP	0.141	—	1.350	
ΔlnGDP²	0.127	1.542	—	
ΔlnFDI	5.273**	7.867	7.270***	—
ΔlnTEC	7.462***	1.075	0.837	

Note. The asterisk *** ** and * specify statistical significance levels at 1% 5% and 10%.
5. Conclusion And Policy Implication

Climate change is attracting traction, as is the link between pollution and GDP, FDI, and energy consumption. The EKC hypothesis can be applied to assess the link between ecological impurity and economic growth. Furthermore, rising energy demand and FDI inflows may wreak havoc on developing countries’ environmental quality. However, there is continuing discussion over the impact of FDI and energy consumption on environmental norms. Over the last few decades, the trade-off between energy expansion and FDI emissions has also been a hotly disputed topic. Therefore, these variables are significant because of the assorted roles they play in designing policies for reducing CO₂ emissions. It is also rational for policymakers to set suitable plans to curb CO₂ emissions. Thus, in the context of SAARC countries, this study tried to bridge this gap by studying the causal link between these factors under a unified framework. SAARC member countries’ remarkable economic development and FDI interest pose various questions among policymakers. For instance, have the SAARC countries justified the principle of EKC in their environment? Does FDI lead to or clean the environment in this region? Is there a link between economic indicators like GDP, FDI energy consumption, and CO₂ emissions? Given the outstanding economic growth rate, verifying and assessing the relationship between energy use and inward FDI into SAARC countries is essential. This research examines five SAARC member states, including Bangladesh, India, Nepal, Pakistan, and Sri Lanka, using panel data from 1980 to 2016.

The empirical investigation begins with two CSD tests to determine whether the panel data series is cross-sectionally independent. The CSD tests show that there is cross-sectional dependence among the panel members. Because the unit root tests for the second stage are sensitive to cross-sectional dependence to authenticate the stationary qualities of a time series, cross-sectional dependence tests are reasonable. Given that the current study continues to use CADF and CIPS, which use cross-sectional dependence tests instead of traditional unit root tests in the estimating procedure. After having the first difference, the CADF and CIPS results show that variables confirm the stationary property and standard order of integration I(1). Because the variables are stationary at the first difference, the cointegration test is used to determine whether or not there is cointegration. Pedroni (2004) and the Kao cointegration test were used in this investigation. The statistical significance of both tests indicates that the panel variables in the models are cointegrated. The ARDL model was then used in the study, which was based on the PMG estimator. In the long run, a 1% increase in GDP per capita results in a 0.68 percent increase in CO₂ emissions per capita, according to our estimates. Furthermore, a 1% increase in energy consumption results in increases in CO₂ emissions of 0.287 percent and 0.046 percent in the medium and long run, respectively. The PMG estimates of GDP both in the short-and long-run indicate that GDP has a significant positive impact on GHG emissions, while GDP² negatively affects GHG emissions. The presence of an inverted U-shaped relationship with CO₂ emissions is revealed by the statistical significance of both linear and nonlinear factors of GDP per capita. Our findings also show that the error correction coefficient for GHG emissions reaches long-run equilibrium in the following year at a rate of 4.6 percent. For Pakistan and Sri Lanka, country-specific ARDL PMG estimations support the EKC hypothesis. On the other hand, FDI has been found to have a favourable influence on CO₂ emissions in Bangladesh and Nepal but a negative impact in India, Pakistan, and Sri Lanka. As a result, the pollution haven theory has been discovered for Bangladesh and Nepal, while the pollution halo hypothesis has been found to be true for India, Pakistan, and Sri Lanka. Energy use has a substantial positive impact on CO₂ emissions for all countries.

Table 9 depicts the direction of the causal relationship between our proposed variables. The VECM-based Granger causality test shows that unidirectional Granger causation exists between GDP and GHG emissions, FDI and GHG emissions, and energy use and GHG emissions. Similarly, there are four bidirectional causalities between GHG emissions and energy use, GHG emissions and FDI, energy usage and GDP, as well as FDI and energy use, which have been detected. However, there is no causal association between GDP and FDI. The statistical significance of ECT suggests that there are two long-run panel causal links between energy use FDI and GDP to GHG emissions, as well as between energy use GDP and GHG emissions to FDI.

The present study has gone some way towards enhancing our understanding of environmental pollution and four vibrant economic variables. It's important to remember that any changes in energy and FDI policies that reduce CO₂ emissions while maintaining economic growth must take into account variables other than the underlying variables in this study. This research can be expanded to include deforestation, institutional quality, rural development concerns, and other environmental variables in the context of SAARC countries as part of a prospective research opportunity. Furthermore, the impact of renewable and non-renewable energy use on CO₂ emissions by country could be a fascinating issue for additional research.

The generalisability of the present study is subjected to certain limitations. For instance, the study’s scope was limited to looking into the causal relationship between CO₂ emissions, GDP, FDI, and energy use in SAARC countries. Despite the fact that SAARC is made up of eight countries, this study only looks at five of them, based on data from two different sources. Furthermore, due to a lack of data, this study only covers a small number of observations and a short time period (1980-2016). Another potential flaw in this study is that it does not account for the structural breaks in individual data series when performing cointegration analysis. Finally, there is a limitation that is linked to the omitted variable bias. In order to avoid omitted variable bias, similar studies include variables that significantly contribute to CO₂ emissions and GDP. However, it was not done for this study, and it may be improved by adding more factors.

Our study's outcomes have a number of important insights for future practice. SAARC countries must change their investment strategies to include renewable energy sources in order to achieve economic progress. However, because they are energy-dependent economies, there must be a balance between economic growth and energy use. Alternative energy sources, such as wind energy, hydropower, nuclear energy, and solar energy, should be prioritized. This can be accomplished through expanding and strengthening renewable energy supplies in the targeted countries, as well as increasing energy efficiency around the globe. To counteract GHG emissions, green investment should be encouraged, and clean industries using green technology should be prioritized in these selected countries. Any plan that encourages current polluting industries to move to cleaner technology will have a particularly positive impact on the implementation of policies aimed at lowering GHG emissions. Furthermore, increased public awareness of the benefits of green technology and the environment would hasten the reduction of GHG emissions.

Declarations

Funding
The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Competing Interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Availability of Data and Materials

The datasets used during the current study are available from the corresponding author on reasonable ground and request.

Ethical Approval and Consent to Participate

Not applicable.

Authors Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Md. Nur Mozahid and Sharmin Akter. The first draft of the manuscript was written by Md. Nur Mozahid and the final draft of the manuscript was written by Md. Hafiz Iqbal. All authors read and approved the final manuscript.

References

1. Abbasi KR, Adedoyin FF, Abbas J, Hussain K (2021) The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation. Renewable Energy 180:1439–1450
2. Achour H, Belloumi M (2016) Investigating the causal relationship between transport infrastructure transport energy consumption and economic growth in Tunisia. Renew Sustain Energy Rev 56:988–998
3. Agras J, Chapman D (1999) A dynamic approach to the Environmental Kuznets Curve hypothesis. Ecol Econ 28(2):267–277
4. Ahmad N, Du L, Lu J, Wang J, Li HZ, Hashmi MZ (2017) Modelling the CO2 emissions and economic growth in Croatia: Is there any environmental Kuznets curve? Energy 123:164–172
5. Al-Mulali U, Ozturk I (2015) The effect of energy consumption urbanization trade openness industrial output and the political stability on the environmental degradation in the MENA (Middle East and North African) region. Energy 84:382–389
6. Ameyaw B, Yao L (2018) Analyzing the impact of GDP on CO2 emissions and forecasting Africa's total CO2 emissions with non-assumption driven bidirectional long short-term memory. Sustainability 10(9):3110
7. Asongu S, Akpan US, Ishak SR (2018) Determinants of foreign direct investment in fast-growing economies: evidence from the BRICS and MINT countries. Financial Innovation 4(1):1–17
8. Baek J, Choi YJ (2017) Does foreign direct investment harm the environment in developing countries? Dynamic panel analysis of Latin American countries. Economies 5(4):39. https://doi.org/10.3390/economies5040039
9. Behera SR, Dash DP (2017a) The effect of urbanization energy consumption and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region. Renew Sustain Energy Rev 70:96–106
10. Behera SR, Dash DP (2017b) The effect of urbanization energy consumption and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region. Renew Sustain Energy Rev 70:96–106
11. Boutabba MA (2014) The impact of financial development income energy and trade on carbon emissions: Evidence from the Indian economy. Econ Model 40:33–41
12. Breusch TS, Pagan AR (1980) The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics. Rev Econ Stud 47(1):239–253
13. Bruno GSF (2005) Approximating the bias of the LSDV estimator for dynamic unbalanced panel data models. Econ Lett 87(3):361–366
14. Cai Y, Sam CY, Chang T (2018) Nexus between clean energy consumption economic growth and CO2 emissions. J Clean Prod 182:1001–1011
15. Chen PY, Chen ST, Hsu CS, Chen CC (2016) Modeling the global relationships among economic growth energy consumption and CO2 emissions. Renew Sustain Energy Rev 65:420–431
16. Chemi A, Jouini SE (2017) An ARDL approach to the CO2 emissions, renewable energy and economic growth nexus: Tunisian evidence. Int J Hydrol Energy 42(48):29056–29066
17. Dogan E, Aslan A (2017) Exploring the relationship among CO2 emissions real GDP energy consumption and tourism in the EU and candidate countries: Evidence from panel models robust to heterogeneity and cross-sectional dependence. Renew Sustain Energy Rev 77:239–245
18. Dougherty C (2016) Introduction to Econometrics, 5th edn. Oxford University Press, United Kingdom
19. Essandoh OK, Islam M, Kakinaka M (2020) Linking international trade and foreign direct investment to CO2 emissions: any differences between developed and developing countries? Sci Total Environ 712:136437. https://doi.org/10.1016/j.scitotenv.2019.136437
20. Gong B, Zheng X, Guo Q, Ordieres-Meré J (2019) Discovering the patterns of energy consumption, GDP, and CO2 emissions in China using the cluster method. Energy 166:1149–1167
21. Grossman G, Krueger A (1994) Environmental Impacts of a North American Free Trade Agreement. In: Garber P (ed) The US–Mexico Free Trade Agreement. MIT Press, Cambridge, pp 1–57
22. Hao Y, Guo Y, Guo Y, Wu H, Ren S (2020) Does outward foreign direct investment (OFDI) affect the home country's environmental quality? The case of China. Struct Change Econ Dyn 52:109–119

23. Hdom HA, Fuinhas JA (2020) Energy production and trade openness: Assessing economic growth, CO2 emissions and the applicability of the cointegration analysis. Energy Strategy Reviews 30:100-488

24. Hu J, Wang Z, Huang Q, Zhang X (2019) Environmental regulation intensity foreign direct investment and green technology Spillover-An empirical study. Sustainability 11(10):6–8

25. Hwang JH, Yoo SH (2014) Energy consumption CO2 emissions and economic growth: Evidence from Indonesia. Quality and Quantity 48(1):63–73

26. Im KS, Pesaran MH, Shin Y (2003) Testing for unit roots in heterogeneous panels. J Econ 115(1):53–74

27. IPCC (2014) Climate Change 2014. In: Climate Change 2014: Synthesis Report. Contribution of Working Group III. and III to Fifth Assessment Report of Intergovernmental Panel on Climate Change (IPCC). https://www.ipcc.ch/report/ar5/wg3/ Accessed 27 March 2020

28. IPCC (2019) Task Force on National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change. https://www.ipcc-nggip.iges.or.jp/. Accessed 27 March 2021

29. Kao C (1999) Spurious regression and residual-based tests for cointegration in panel data. J Econ 90(1):1–44

30. Kim S (2019) CO2 emissions, foreign direct investments, energy consumption, and GDP in developing countries: a more comprehensive study using panel vector error correction model. Korean Economic Review 35(1):5–24

31. Lau LS, Choong CK, Eng YK (2014) Investigation of the environmental Kuznets curve for carbon emissions in Malaysia: DO foreign direct investment and trade matter? Energy Policy 68:490–497

32. Leitão NC, Balogh JM (2020) The impact of energy consumption and agricultural production on carbon dioxide emissions in Portugal. Agris On-Line Papers in Economics and Informatics 12(1):49–59

33. Levin A, Lin CF, Chu CSJ (2002) Unit root tests in panel data: asymptotic and finite-sample properties. J Econ 108(1):1–24

34. Lu WC (2017) Greenhouse gas emissions energy consumption and economic growth: A panel cointegration analysis for 16 Asian countries. Int J Environ Res Public Health 14(11):1436. https://doi.org/10.3390/ijerph14111436

35. Magazzino C, Mele M, Schneider N (2021) A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions. Renewable Energy 167:99–115

36. Mahmood H, Alkhateeb TTY, Al-Qahtani MMZ, Allam Z, Ahmad N, Furqan M (2019) Agriculture development and CO2 emissions nexus in Saudi Arabia. PLoS ONE 14(12):e0225865

37. Mikayilov JI, Hasanov FJ, Galeotti M (2018) Decoupling of CO2 emissions and GDP: A time-varying cointegration approach. Ecol Ind 95:615–628

38. Mert M, Bölük G (2016) Do foreign direct investment and renewable energy consumption affect the CO2 emissions? New evidence from a panel ARDL approach to Kyoto Annex countries. Environ Sci Pollut Res 23(21):21669–21681

39. Mert M, Caglar AE (2020) Testing pollution haven and pollution halo hypotheses for Turkey: a new perspective. Environ Sci Pollut Res 27(26):32933–32943

40. Munir Q, Lean HH, Smyth R (2020) CO2 emissions, energy consumption and economic growth in the ASEAN-5 countries: a cross-sectional dependence approach. Energy Econ 85:104571

41. Narayan PK, Narayan S (2010) Carbon dioxide emissions and economic growth: Panel data evidence from developing countries. Energy Policy 38(1):661–666

42. Nguyen DP (2018) The relationship between foreign direct investment, economic growth and environmental pollution in Vietnam: An autoregressive distributed lags approach. International Journal of Energy Economics and Policy 8(9):138

43. Niemand T, Mai R (2018) Flexible cutoff values for t indices in the evaluation of structural equation models. J Acad Mark Sci 46(6):1148–1172

44. Obradović S, Ljojanić N (2017) Energy use CO2emissions and economic growth – causality on a sample of SEE countries. Economic Research-Ekonomska Istrazivanja 30(1):511–526

45. Pao HT, Chen CC (2019) Decoupling strategies: CO2 emissions energy resources and economic growth in the Group of Twenty. J Clean Prod 206:907–919

46. Pao HT, Tsai CM (2011) Multivariate Granger causality between CO2 emissions energy consumption FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil Russian Federation India and China) countries. Energy 36(1):685–693

47. Pedroni P (1999) Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxf Bull Econ Stat 61:653–670

48. Pedroni P (2004) Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econom Theory 20(3):597–625

49. Pesaran MH (2021) General diagnostic tests for cross-sectional dependence in panels. Empirical Economics 60:13–50

50. Pesaran MH (2007) A Simple Unit Root Test in the Presence of Cross-Sectional Dependence. J Appl Econ 21:1–21

51. Pesaran MH, Pesaran MH, Shin Y, Smith RP (1999) Pooled Mean Group Estimation of Dynamic Heterogeneous Panels. J Am Stat Assoc 94(446):621–634

52. Rafindadi AA, Muye IM, Kaita RA (2018a) The effects of FDI and energy consumption on environmental pollution in predominantly resource-based economies of the GCC. Sustain Energy Technol Assess 25:126–137

53. Rafindadi AA, Muye IM, Kaita RA (2018b) The effects of FDI and energy consumption on environmental pollution in predominantly resource-based economies of the GCC. Sustain Energy Technol Assess 25:126–137
54. Richmond AK, Kaufmann RK (2006) Is there a turning point in the relationship between income and energy use and/or carbon emissions? Ecol Econ 56(2):176–189
55. Riti JS, Yang SDS, Kamah M (2017) The contribution of energy use and financial development by source in climate change mitigation process: A global empirical perspective. J Clean Prod 148:882–894
56. Saidi K, Ben MM (2016) Nuclear energy renewable energy CO2 emissions and economic growth for nine developed countries: Evidence from panel Granger causality tests. Prog Nucl Energy 88:364–374
57. Saidi K, Hammami S (2015) The impact of CO2 emissions and economic growth on energy consumption in 58 countries. Energy Reports 1:62–70
58. Salahuddin M, Alam K, Ozterk I, Sohag K (2018) The effects of electricity consumption economic growth financial development and foreign direct investment on CO2 emissions in Kuwait. Renew Sustain Energy Rev 81:2002–2010
59. Sarkodie SA, Strezov V (2019) Effect of foreign direct investments economic development and energy consumption on greenhouse gas emissions in developing countries. Sci Total Environ 646:862–871
60. Seker F, Ertugrul HM, Cetin M (2015) The impact of foreign direct investment on environmental quality: A bounds testing and causality analysis for Turkey. Renew Sustain Energy Rev 52:347–356
61. Shabestari BN (2018) Energy Consumption CO2 Emissions and Economic Growth: Sweden's case. Desertation, Södertörn University
62. Ssali MW, Du J, Mensah IA, Hongo DO (2019) Investigating the nexus among environmental pollution economic growth energy use and foreign direct investment in 6 selected sub-Saharan African countries. Environ Sci Pollut Res 26(11):11245–11260
63. Sterpu M, Soava G, Mehedintu A (2018) Impact of economic growth and energy consumption on greenhouse gas emissions: Testing environmental curves hypotheses on EU countries. Sustainability 10(9):3327. https://doi.org/10.3390/su10093327
64. Sung B, Song WY, Park S, Do (2018) How foreign direct investment affects CO2 emission levels in the Chinese manufacturing industry: Evidence from panel data. Econ Syst 42(2):320–331
65. UNCTD (2019) United Nations Conference on Trade and Development World Investment Report 2019: Special Economic Zones. https://unctad.org/system/files/official-document/wir2019_en.pdf. Accessed 17 May 2020
66. UNFCCC (2015) Adoption of the Paris Agreement. In Conference of the Parties on its twenty-first session. https://unfccc.int/resource/docs/2015/cop21/eng/09r01.pdf. Accessed 22 May 2020
67. Vasylieva T, Lyulyov O, Bilan Y, Streimikiene D (2019) Sustainable economic development and greenhouse gas emissions: The dynamic impact of renewable energy consumption, GDP, and corruption. Energies 12(17):3289
68. Yusuf AM, Abubakar AB, Mamman SO (2020) Relationship between greenhouse gas emission energy consumption and economic growth: evidence from some selected oil-producing African countries. Environ Sci Pollut Res 27(13):15815–15823
69. Zhu H, Duan L, Guo Y, Yu K (2016a) The effects of FDI economic growth and energy consumption on carbon emissions in ASEAN-5: Evidence from panel quantile regression. Econ Model 58:237–248
70. Zhu H, Duan L, Guo Y, Yu K (2016b) The effects of FDI economic growth and energy consumption on carbon emissions in ASEAN-5: Evidence from panel quantile regression. Econ Model 58:237–248

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Appendix.docx