Diversity of *Trichoderma* spp. causing *Pleurotus* green mould diseases in Central Europe

Lidia Błaszczyk · Marek Siwulski ·
Krzysztof Sobieralski · Dorota Frużyńska-Jóźwiak

Received: 13 February 2012 / Accepted: 13 November 2012 / Published online: 29 November 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract The present study includes the molecular characteristics of *Trichoderma pleurotum* and *Trichoderma pleuroticola* isolates collected from green moulded cereal straw substrates at 47 oyster mushroom farms in Poland. The screening of the 80 *Trichoderma* isolates was performed by morphological observation and by using the multiplex PCR assay. This approach enabled specific detection of 47 strains of *T. pleurotum* and 2 strains of *T. pleuroticola*. Initial identifications were confirmed by sequencing the fragment of internal transcribed spacer regions 1 and 2 (ITS1 and ITS2) of the rRNA gene cluster and the fragment including the fourth and fifth introns and the last long exon of the translation–elongation factor 1-alpha (*tef1*) gene. ITS and *tef1* sequence information was also used to establish the intra- and interspecies relationship of *T. pleurotum* and *T. pleuroticola* originating from the oyster mushroom farms in Poland and from other countries. Comparative analysis of the ITS sequences showed that all *T. pleurotum* isolates from Poland represent one haplotype, identical to that of *T. pleurotum* strains from Hungary and Romania. Sequence analysis of the *tef1* locus revealed two haplotypes ("T" and "N") of Polish *T. pleurotum* isolates. The “T” type isolates of *T. pleurotum* were identical to those of strains from Hungary and Romania. The “N” type isolates possessed a unique *tef1* allele. Detailed analysis of the ITS and *tef1* sequences of two *T. pleuroticola* isolates showed their identicalness to Italian strain C.P.K. 1540.

Introduction

Pleurotus ostreatus (Jacq.) P. Kumm. is one of the most important commercial crop edible mushrooms in Poland. Together with Italy and Hungary, Poland is the main producer of *P. ostreatus* in Europe. However, significant disintegration of oyster mushroom production and differences in cultivation conditions affect the appearance of many pests and diseases. In recent years, severe symptoms of green mould have been observed in oyster mushroom farms, resulting in crop losses.

The first reported appearance of green mould on *P. ostreatus* was in North America (Sharma and Vijay 1996). Serious cases of this disease in commercially grown *P. ostreatus* were detected thereafter in South Korea (Park et al. 2004a, b), Italy (Woo et al. 2004), Romania (Kredics et al. 2006), Hungary (Hatvani et al. 2007), and most recently in Spain (Gea 2009).

The causal agents of the *Pleurotus* green mould are two species of *Trichoderma*, which have been recently described as *Trichoderma pleurotum* S.H. Yu & M.S. Park and *Trichoderma pleuroticola* S.H. Yu & M.S. Park (Park et al. 2004a, b; 2006; Komon-Zelazowska et al. 2007). Phenotypically, *T. pleurotum* and *T. pleuroticola* species are significantly different. *T. pleuroticola* shows a typical pachybasium-like conidiophore developing in fascicles or pustules which is typical for the Harzianum clade, whereas *T. pleurotum* is characterised by a gliocladium-like...
Morphological analysis

Identification was performed by observation of phenotypic characteristics of the colonies and by microscopic studies of the conidia and conidiophores. Colony characteristics were examined from cultures grown in darkness at 25 °C for 7 days on PDA. Microscopic observations were made according to Park et al. (2006).

DNA isolation and amplification

Mycelium for DNA extraction was obtained as described previously (Blaszczyk et al. 2011). Isolation of total DNA was performed using the CTAB method (Doohan et al. 1998).

Until now, it has not been clear which species of *Trichoderma* is the causative agent of the green mould in oyster mushroom farms of Central Europe. The present study was carried out to confirm the association of the *T. pleurotum* and *T. pleuroticola* species with *P. ostreatus* cultivated in Poland based on morphological and molecular analysis of collected *Trichoderma* isolates originating from Polish oyster mushroom farms.

Materials and methods

Fungal collection

Four *T. pleurotum* (E135, E136, E138, E139) and five *T. pleuroticola* strains (E137, M141, M142, M143, M144), used as the reference strains, were kindly supplied by Dr. Monika Komon-Zelazowska, Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Austria. Eighty *Trichoderma* isolates were collected from green moulded cereal straw substrates at 47 oyster mushroom farms in Poland. The small fragments of cereal straw were taken from substrates used for cultivation of *P. ostreatus*. Basidiomes were suspended in 10 mL sterile distilled water and 0.2 mL Tween 20 (Sigma), incubated at 25 °C for 10 min on a rotary shaker (120 rpm) and diluted 1:10 with sterile distilled water. Inoculation was performed from the resultant fungal colonies were transferred to new plates of PDA and incubated as described above. The strains collected from Polish mushroom farms and investigated in this study are listed in Table 1.
Table 1 The list of strains collected from oyster mushroom farms in Poland and identified on the basis of multiplex PCR and ITS and tef1 sequence analysis

Culture code	Origin–localization	ITS and tef1 sequence-based identification
T24/T	Western Poland	T. pleurotocola
TH/24	Babimost	T. harzianum
T72/A	Budziłowo	T. pleurotum
TV72/C	Budziłowo	T. atroviride
T63/DR	Chobienice	T. pleurotum
T14/L	Chrośnica	T. pleurotum
T58/2A	Kalisz	T. atroviride
Tv57/2B	Konin	T. pleurotum
T83/T	Łódź	T. pleurotum
T15	Łobez	T. harzianum
TH55/F	Łobez	T. harzianum
TH25/A	Łobez	T. atroviride
TV55/L	Łobez	T. pleurotum
T16/2/A	Łobez	T. pleurotum
TH370	Nowy Tomyśl	T. pleurotum
T37/10	Nowy Tomyśl	T. harzianum
T71/B	Pleszew	T. pleurotum
T83/TB	Skoków	T. pleurotum
T12/B	Widzim Stary	T. pleurotocola
TP53/L	Wielichowo	T. pleurotum
Th530	Wielichowo	T. harzianum
T52/2D	Witaszyce	T. pleurotum
Th55	Witaszyce	T. atroviride
TP81R	Wolszyn	T. pleurotum
T2/DR	Wroniary	T. pleurotum
TP12/S	Northern Poland	Czlopa
T05C	Gryfino	T. pleurotum
TB40/M	Jakubowo Kisielickie	T. pleurotum
TI3/CB	Kamionki	T. pleurotum
Tv130/A	Kamionki	T. atroviride
T77/3	Kłębowski	T. pleurotum
TB63	Kłębowski	T. pleurotum
T76/D	Kłębowski	T. atroviride
Th76/K	Kłębowski	T. harzianum
T50A	Kołaczkowo	T. pleurotum
T36/Bi	Koszalin	T. pleurotum
Th37/Ci	Koszalin	T. atroviride
Th6/AR	Krępsko	T. pleurotum
TP32M	Kudypy	T. pleurotum
TH320	Łudzyb	T. harzianum
T41/T	Opatów	T. pleurotum
TH410	Opatów	T. harzianum
TB18/A	Przechlewo	T. pleurotum
TP19/S	Zblewo	T. pleurotum
Th19/B	Zblewo	T. harzianum
T270/C	Żodyń	T. pleurotum
The comparative analyses were based on the ITS and tef1 sequences of the 49 T. pleurotum/T. pleuroticola isolates obtained in the present study and 9 reference strains, as well as on the sequences of 21 other T. pleurotum/T. pleuroticola strains, deposited in NCBI GeneBank (Table 2). The sequences of 8 T. pleurotum, and 13 T. pleuroticola strains, sourced from Hungary, Italy, Romania, Canada, USA, Netherlands, and Colombia, were used in order to determine the relationship of these strains and the isolates originating from Poland. ClustalW (Thompson et al. 1994) was used to align the sequences.

Results

Identification of T. pleurotum and T. pleuroticola isolates

Preliminary identifications of the 80 Trichoderma isolates collected from the 47 oyster mushroom farms in Poland and...
9 reference strains (E135, E136, E137, E138, E139, M141, M142, M143, M144) were based both on phenetic observations and multiplex PCR assay. PCR amplification with primers FPforw1, FPrev1, and PSrev1 expressed 447- and 218-bp fragments in 47 examined isolates and 4 reference strains (E135, E136, E138, E139), characterised as T. pleurotum. Only the larger band of 447 bp was observed in two examined isolates (T12/B, T24/T) and five references strains (E137, M141, M142, M143, M144) of Trichoderma. This indicated the presence of T. pleuroticola. However, no amplified product was detected in the remaining (31) Trichoderma isolates.

The initial identifications of 2 T. pleuroticola and 47 T. pleurotum isolates collected from Poland as well as 9 reference Trichoderma strains were confirmed by sequencing two different phylogenetic markers: the fragment of the ITS1-5.8S-ITS2 rRNA region and the fragment of the tef1 gene (Table 1). The sequence analyses were also used to identify the remaining Trichoderma isolates collected from oyster mushroom farms in Poland. These isolates were identified as Trichoderma harzianum Rifai (17 isolates) and Trichoderma atroviride P. Karst (14 isolates) (Table 1).

Table 2 The list of Trichoderma strains selected from the NCBI GeneBank database and used for the comparative analysis

Strain no.	Other collection	Origin	Habitat	NCBI GenBank accession no. ITS	tef1
T. pleurotum					
C.P.K. 2113	CBS121147, DAOM 236051	Hungary	P. ostreatus substratum	EF392808	EF392773
C.P.K. 2096	Hungary	P. ostreatus substratum	EF392797	EF392770	
C.P.K. 2097	Hungary	P. ostreatus substratum	EF392798	EF392771	
C.P.K. 2100	Hungary	P. ostreatus substratum	EF392801	EF392772	
C.P.K. 2116	CBS 121148	Hungary	P. ostreatus substratum	EF392810	EF392774
C.P.K. 2117	Hungary	P. ostreatus substratum	EF392811	EF392775	
C.P.K. 1532	CBS 121216	Italy	P. ostreatus substratum	EF392795	EF601678
C.P.K. 2815	Romania	P. ostreatus substratum	EF601675	EF601680	
T. pleuroticola					
DAOM 175924	CBS121144	Canada	Acer sp.	AY605726	AY605769
DAOM 229916	CBS121145	USA	Forest soil	AY605738	AY605781
C.P.K. 1540	CBS 121217	Italy	P. ostreatus incubating bales	EF392782	EF392762
C.P.K. 1544	Italy	P. ostreatus incubating bales	EF392786	EF392763	
C.P.K. 1550	Italy	Mushroom farm	EF392791	EF392765	
C.P.K. 1551	Italy	Mushroom farm	EF392792	EF392766	
C.P.K. 2104	CBS 121145	Hungary	P. ostreatus substratum	EF392794	EF392769
C.P.K. 3266	Hungary	P. ostreatus substratum	EF918148	EF918160	
C.P.K. 3193	Hungary	P. ostreatus substratum	EU918140	EU918160	
C.P.K. 2816	Romania	P. ostreatus substratum	EF601676	EF601681	
C.P.K. 2817	Romania	P. ostreatus substratum	EF601677	EF601682	
G.J.S. 95–81	The Netherlands	P. ostreatus substratum	EU280071.1	EU279973.1	
T 1295	Colombia	Soil			

Comparison of ITS and tef1 sequences of T. pleurotum and T. pleuroticola isolates

The comparative analyses were based on the ITS and tef1 sequences of the T. pleurotum and T. pleuroticola strains both obtained in this study and published previously by Hatvani et al. (2007), Komon-Zelazowska et al. (2007), and Kredics et al. (2009).

DNA sequence alignment showed that the ITS allele detected in 47 T. pleurotum isolates from Poland was identical to that of T. pleurotum strains from Hungary (C.P.K. 2113, C.P.K. 2096, C.P.K. 2097, C.P.K. 2100, C.P.K. 2116, C.P.K. 2117) and Romania (C.P.K. 2814) but differed by one single nucleotide polymorphism (SNP) from the Italian strain C.P.K. 1532. Similarly, 2 T. pleuroticola isolates from Poland and 11 strains from: Canada (DAOM 175924), USA (DAOM 22996), Italy (C.P.K. 1540), Romania (C.P.K. 2816, C.P.K. 2817), Hungary (C.P.K. 2104, C.P.K. 3266), Netherlands (G.J.S. 95–81), and Colombia (T 1295) possessed an identical allele in the ITS locus, while their ITS1 sequences were different by one SNP from the sequences of Italian strain C.P.K. 1550 and Hungarian strain C.P.K. 3193. Single nucleotide polymorphism (A/C transversion) was
also observed between ITS alleles of *T. pleurotum* and *T. pleuroticola* isolates used in the present study. The intra- and interspecies variability in the ITS sequences, deriving from single nucleotide indel or transition (A-C), is given in Fig. 1.

As shown in Fig. 2, *T. pleurotum* and *T. pleuroticola* were clearly divergent in the *tef1* analysis. Their *tef1* sequences were separated by several indel and nucleotide substitutions. The set of 47 *T. pleurotum* isolates originating from Poland were found to be polymorphic and represented two single nucleotide insertion/deletion (Fig. 2, Table 1). Nineteen Polish isolates of *T. pleurotum* possess the *tef1* allele (“T” type) identical to three isolates from Hungary (C.P.K. 2113, C.P.K. 2116, C.P.K. 2117) and Romania (C.P.K. 2814), but different from the alleles represented by Hungarian strain C.P.K. 2096, C.P.K. 2097, and C.P.K. 2100, and Italian strain C.P.K. 1532. The “N” type of the *tef1* allele, found in the remaining *T. pleurotum* isolates from Poland, has one position (indel or transition A/G) that differs from the allele type of five strains from Hungary (C.P.K. 2113, C.P.K. 2116, C.P.K. 2117, C.P.K. 2110) and Romania (C.P.K. 2814), two positions (indel and transition A/G) that differ from the allele type of two Hungarian strains C.P.K. 2096 and C.P.K. 2097, and several positions that differ from the allele type of Italian strain C.P.K. 1532. The *tef1* sequences of two *T. pleuroticola* isolates from Poland were identical to that of *T. pleuroticola* strains DAOM 175924 from Canada, DAOM 229916 from the USA, and C.P.K. 1540 and C.P.K. 1544 from Italy, but different by four A/G and T/C transitions from the sequences of C.P.K. 3266, C.P.K. 3193, C.P.K. 2816, C.P.K. 2817, and T 1295 strains. More polymorphism was detected between the *tef1* sequences of Polish *T. pleuroticola* isolates and that of C.P.K. 2104, C.P.K. 1550, and C.P.K. 1551 strains.

Discussion

The present study states the association of *T. pleurotum* and *T. pleuroticola* with *Pleurotus* green mould in Polish mushroom farms. *T. pleurotum* was also the most common species collected from Hungarian oyster mushroom farms (Komon-Zelazowska et al. 2007). The predominance of *T. pleurotum* species in samples originating from Polish and Hungarian *Pleurotus* farms may be due to the use of similar technologies in the production of cereal straw substratum for mushroom cultivation. These technologies are different from the methods used in Italy (probably adverse for the *T. pleurotum* infection), where *T. pleuroticola* was the major contaminant of *Pleurotus* substratum (Komon-Zelazowska et al. 2007).

Other species isolated from green moulded substrata for *Pleurotus* cultivation in Poland were: *T. harzianum* and *T. atroviride*. The presence of these species in the cultivation of *P. ostreatus* was also noted by Hatvani et al. (2007). Additionally, Hatvani et al. (2007) found individual isolates of *Trichoderma longibrachiatum* Rifai, *Trichoderma ghanense* Yoshim. Dói, Y. Abe & Sugiy., and *Trichoderma asperellum* Samuels, Lieckf. & Nirenberg. Five of these seven species, namely *T. pleuroticola*, *T. harzianum*, *T. atroviride*, *T. longibrachiatum*, and *T. asperellum*, were isolated from the substrate and the basidiomes of wild-grown *P. ostreatus* in Hungary. *T. pleurotum* was not found in these samples.

The preliminary identification of the collected *Trichoderma* isolates was based on phenetic observations and multiplex PCR assay. DNA markers used in the present work and
specific for *T. pleurotum* and *T. pleurotocola* were recently described by Kredics et al. (2009). These authors (Kredics et al. 2009) demonstrated that *T. pleurotum* and *T. pleurotocola* can be distinguished from each other, as well as from other fungal species, using three oligonucleotide primers: FPfor1, FPrev1, and PSev1, based on tef1 sequences. The present paper validates the specificity and the usefulness of the multiplex PCR assay developed by Kredics et al. (2009). As shown here, the PCR markers enabled the rapid screening of 80 *Trichoderma* isolates and specific detection of *T. pleurotum* and *T. pleurotocola*, collected from green moulded substrata for *Pleurotus* cultivation.

The ITS and tef1 sequence information was used to establish the intra- and interspecies relationship of *T. pleurotum* and *T. pleurotocola* originating from the oyster mushroom farms in Poland and those from other countries. The comparative analysis of the ITS sequences showed that all *T. pleurotum* isolates from Poland represent one haplotype, identical to that of *T. pleurotum* strains C.P.K. 2113, C.P.K. 2096, C.P.K. 2097, C.P.K. 2100, C.P.K. 2116, C.P.K. 2117 from Hungary and C.P.K. 2814 from Romania, but different from Italian strain C.P.K. 1532. However, the sequence analysis of the tef1 locus revealed two haplotypes of Polish *T. pleurotum* isolates—"T" type and "N" type. The "T" type isolates of *T. pleurotum* have identical tef1 allele to that of strains C.P.K. 2113, C.P.K. 2116, C.P.K. 2117 from Hungary and C.P.K. 2814 from Romania, whereas the "N" type isolates are unique at the tef1 locus. As observed in the present study, the distribution of "T" type and "N" type isolates in Poland is not correlated with the location of the mushroom farms from which they originated (Table 1). According to a previous study (Komon-Zelazowska et al. 2007), the source of *T. pleurotum* infection is the substratum for mushroom cultivation. Thus, the composition of two *T. pleurotum* haplotypes most likely depends on the manufacturer (source) of the cereal straw substratum used for the mushroom cultivation. The trading (import–export) of the *Pleurotus* substratum among European countries could also explain the identicalness of the "T" type isolates to the
Hungarian and Romanian \textit{T. pleurotum} strains. Interestingly, a similar mechanism of \textit{T. aggressivum} distribution in \textit{Agaricus} mushroom farms has been observed (Hatvani et al. 2007). It is noteworthy that \textit{T. aggressivum}, just like \textit{T. pleurotum}, has so far never been isolated from the natural environment. As observed in the previous studies, the major source of \textit{T. aggressivum} infection was the compost and the origin of its constituents (Hatvani et al. 2007; Komon-Zelazowska et al. 2007). Hatvani et al. (2007) performed the comparison of two populations of \textit{T. aggressivum} \textit{f. europaeum} isolates from the British Islands and Hungary. The analysis of mtDNA showed that Hungarian isolates of \textit{T. aggressivum} \textit{f. europaeum} belong to the same population as the first isolates from Northern Ireland and England, while they all proved to be clearly different from \textit{T. aggressivum} \textit{f. aggressivum} isolates. Furthermore, the complete identity or low levels of variability of ITS1 and ITS2 sequences were also observed for \textit{T. aggressivum} \textit{f. europaeum} strains examined by Muthumeenaski et al. (1998), Samuels et al. (2002), and Blaszczyk et al. (2011). These studies indicated that \textit{T. aggressivum} \textit{f. europaeum} strains most likely derived from the Western European epidemic lineage.

The detailed analysis of the ITS and \textit{tef1} sequences showed that two \textit{T. pleuroticolata} isolates from Polish mushroom farms are identical to strains DAOM 175924 from Canada, DAOM 229916 from the USA, and C.P.K. 1540 and C.P.K 1544 from Italy, whereas they are different from the Hungarian and Romanian strains. It is known that \textit{T. pleuroticolata} occur in association with \textit{P. ostreatus} growing in natural environments and in mushroom farms (Park et al. 2004a, b, 2006; Szekeres et al. 2005; Komon-Zelazowska et al. 2007; Kredics et al. 2009). This is why the sources of \textit{T. pleuroticolata} infection may be various (Kredics et al. 2009). A study of the vectors for \textit{T. pleuroticolata} into mushroom farms could explain the distribution of this pathogenic species in Polish mushroom farms. This need is highlighted by the present paper and previous work (Komon-Zelazowska et al. 2007).

Acknowledgments This work was supported by the Ministry of Science and Higher Education in Poland, project no. NN310 203037.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Blaszczyk L, Popiel D, Chelkowski J, Koczyk G, Samuels GJ, Sobieralski K, Siwulski M (2011) Species diversity of \textit{Trichoderma} in Poland. J Appl Genetics 52:233–243

Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

Chelkowski J, Golka L, Stepień J (2003) Application of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher. J App Genet 44:323–338

Doohan FM, Parry DW, Jenkinson P, Nicholson P (1998) The use of species-specific PCR-based assays to analyse Fusarium ear blight of wheat. Plant Pathol 47:197–205

Druzhinina IS, Kopchinskiy AG, Komon M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in \textit{Trichoderma} and \textit{Hyphocrea}. Fungal Genol Biol 42:813–828

Gea FJ (2009) First report of \textit{Trichoderma pleurotum} on oyster mushroom crops in Spain. J Plant Pathol 91:504

Hatvani L, Antal Z, Manczinger L, Szekeres A, Druzhinina IS, Kubicek CP, Nagy A, Nagy E, Vágvölgyi C, Kredics L (2007) Green mould diseases of \textit{Agaricus} and \textit{Pleurotus} spp. are caused by related but phylogenetically different \textit{Trichoderma} species. Phytopathology 97:532–537

Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS (2005) \textit{Hyphocrea voglmayrvi} sp. nov. from the Austrian Alps represents a new phylogenetic clade in \textit{Hyphocrea/Trichoderma}. Mycologia 97:1365–1378

Komon-Zelazowska M, Bisset J, Zafari D, Hatvani L, Manczinger L, Woo S, Lorioto M, Kredics L, Kubicek CP, Druzhinina IS (2007) Genetically closely related but phenotypically divergent \textit{Trichoderma} species cause green mold disease in oyster mushroom farms worldwide. Appl Environ Microbiol 73:7415–7426

Kopchinskiy A, Komon M, Kubicek CP, Druzhinina IS (2005) \textit{TrichoblAST}: a multilocus database for \textit{Trichoderma} and \textit{Hyphocrea} identifications. Mycol Res 109:657–660

Kredics L, Hatvani L, Antal Z, Manczinger L, Druzhinina IS, Kubicek CP, Szekeres A, Nagy A, Vágvölgyi C, Nagy E (2006) Green mould disease of oyster mushroom in Hungary and Transylvania. Acta Microbiol Immunol Hung 53:306–307

Kredics L, Kocsuba S, Nagy L, Komon-Zelazowska M, Manczinger L, Sajben E, Nagy A, Vágvölgyi C, Kubicek CP, Druzhinina IS, Hatvani L (2009) Molecular identification of \textit{Trichoderma} species associated with \textit{Pleurotus ostreatus} and natural substrates of the oyster mushroom. Microb Lett 300:58–67

Muthumeenaski S, Brown AE, Mills PR (1998) Genetic comparison of the aggressive weed mold strains of \textit{Trichoderma harzianum} from mushroom compost in North America and the British Isles. Mycol Res 102:385–390

Park MS, Bae KS, Yu SH (2004a) Molecular and morphological analysis of \textit{Trichoderma} isolates associated with green mold epidemic of oyster mushroom in Korea. J Huazhong Agric Univ 23:157–164

Park MS, Bae KS, Yu SH (2004b) Morphological and molecular analysis of \textit{Trichoderma} species associated with green mold epidemic of oyster mushroom in Korea. New Challenges in Mushroom Science. Proceedings of the 3rd Meeting of Far East Asia for Collaboration on Edible Fungi Research, Suwon, Korea, pp 143–158

Park MS, Bae KS, Yu SH (2006) Two new species of \textit{Trichoderma} associated with green mold of oyster mushroom cultivation in Korea. Mycobiology 34:111–113

Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrin O (2002) \textit{Trichoderma} species associated with the green mold epidemic of commercially grown \textit{Agaricus bisporus}. Mycologia 94:146–170

Szekeres A, Kredics L, Antal Z, Hatvani L, Manczinger L, Vágvölgyi C (2005) Genetic diversity of \textit{Trichoderma} strains isolated from winter wheat rhizosphere in Hungary. Acta Microbiol Immunol Hung 52:156

Sharma SR, Vijay B (1996) Yield loss in \textit{Pleurotus ostreatus} spp. caused by \textit{Trichoderma viride}. Mushroom Res 5:19–22

\textcopyright Springer
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

Woo SL, Di Benedetto P, Senatore M, Abadi K, Gigante S, Soriente I, Ferraioli S, Scala F, Lorito M (2004) Identification and characterization of Trichoderma species aggressive to Pleurotus in Italy. J Zhejiang Univ Agric Life Sci 30:469–470