STAR-COLORING SPLITTING GRAPHS OF CYCLES

SUMUN IYER

ABSTRACT. A star coloring of a graph G is a proper vertex coloring such that the subgraph induced by any pair of color classes is a star forest. The star chromatic number of G is the minimum number of colors needed to star color G. In this paper we determine the star-chromatic number of the splitting graphs of cycles of length n with $n \equiv 1 \pmod{3}$ and $n = 5$, resolving an open question of Furnmańczyk, Kowsalya, and Vernold Vivin.

2010 Mathematics Subject Classification: 05C15; 05C75.

Keywords: Star coloring; splitting graph; cycle.

1. Introduction

Let $G = (V, E)$ be a simple, undirected graph. A proper vertex n-coloring of G is a surjective mapping $\phi : V \to \{1, 2, \ldots, n\}$ such that if u is adjacent to v, then $\phi(u) \neq \phi(v)$. An n-star-coloring of G is a proper vertex n-coloring with one additional condition: each path on four vertices in G is colored by at least three distinct colors. Alternatively, a star coloring of G is a coloring such that the subgraph induced by any pair of color classes of G is a star forest. Star coloring strengthens the notion of acyclic coloring in which the subgraph induced by any pair of color classes is a forest. The star chromatic number of G, denoted $\chi_s(G)$, is the minimum number of colors needed to star color G.

Star coloring was first introduced by Branko Grünbaum in 1973 in the context of strengthening acyclic colorings of planar graphs [9]. Star coloring also arises naturally in combinatorial computing. As one would imagine, finding an optimal star coloring of a general graph is NP-hard. Coleman and Moré showed that star-coloring remains an NP-hard problem even on bipartite graphs [3]. Coloring variants (like acyclic or star coloring) have been used to compute sparse Hessian and Jacobian matrices with techniques like finite differences and automatic differentiation. Gebremedhin, Tarafdar, Manne, and Pothen provided algorithms for finding heuristic solutions to star coloring and acyclic coloring problems [8]. Their techniques utilize the structure of subgraphs induced by color classes and their findings have applications to efficient computation of Hessian matrices. Because the problems of computing these matrices can be recast as graph coloring problems, employing graph coloring as a model for computation can yield particularly effective algorithms. See [7] for a detailed survey of using graph coloring to compute derivatives.

In 2004 Fertin, Raspaul, and Reed determined the star chromatic number of trees, cycles, complete bipartite graphs, and other families of graphs [4]. Star chromatic numbers of other types of graphs—such as sparse graphs, bipartite planar graphs, and planar graphs with high girth—are studied in [2], [10], [11], and [12].
For a vertex v of a graph $G = (V, E)$, let $N(v)$ denote the open neighborhood of v. The splitting graph, $S(G)$, is obtained by adding a new vertex v' corresponding to each v in V and edges from v' such that $N(v) = N(v')$ (see Figure 1). The splitting graph construction plays an important role in the theory of graph labeling. For a comprehensive survey of results in graph labeling and more references on splitting graphs see Gallian’s “Dynamic survey of graph labeling” [6]. In 2017 Furmańczyk, Kowsalya, and Vernold Vivin determined the star chromatic number of splitting graphs of complete and complete bipartite graphs, paths, and some cycles [5]. They posed as an open question the problem of determining the star chromatic number of splitting graphs of cycles on n vertices where $n = 5$ or $n \equiv 1 \pmod{3}$. In this paper we provide a construction that shows that $\chi_S(S(C_n)) = 4$ for all $n \equiv 1 \pmod{3}$, $n \geq 10$ and prove that $\chi_S(S(C_4)) = \chi_S(S(C_5)) = \chi_S(S(C_7)) = 5$.

2. Splitting graphs of cycles

We include the following two results for completeness. The first is due to Fertin, Raspaud, and Reed [4] and the second is due to Furmańczyk, Kowsalya, and Vernold Vivin [5].

Theorem 2.1. (Fertin, Raspaud, Reed) Let C_n be a cycle on $n \geq 3$ vertices. Then,

$$\chi_S(C_n) = \begin{cases} 4 & \text{when } n = 5 \\ 3 & \text{otherwise.} \end{cases}$$

Theorem 2.2. (Furmańczyk, Kowsalya, Vernold Vivin) Let C_n be a cycle on $n \geq 3$ vertices. Then

$$\chi_S(S(C_n)) = \begin{cases} 4 & \text{if } n \equiv 1 \pmod{3} \text{ and } n \neq 5 \\ \leq 5 & \text{otherwise.} \end{cases}$$

To resolve the case of splitting graphs of cycles C_n with $n \equiv 1 \pmod{3}$, we first present a construction that shows that $\chi_S(S(C_n))$ is 4 for $n \geq 10$.

Theorem 2.3. If $n \equiv 1 \pmod{3}$ and $n \geq 10$, then $\chi_S(S(C_n)) = 4$.

Proof. Let $n \in \mathbb{N}$ with $n \equiv 1 \pmod{3}$ and $n \geq 10$. By [5], we know that for all n, $\chi_S(S(C_n)) \geq 4$. We now provide a construction to star color $S(C_n)$ with four colors. Label the vertices of the copy of C_n in $S(C_n)$ with $v_0, v_1, \ldots, v_{n-1}$ clockwise. Label the vertex corresponding to v_i in the splitting graph construction with v'_i for $0 \leq i \leq n - 1$.

Define $\phi: V(S(C_n)) \rightarrow \{1, 2, 3, 4\}$ as follows. For $0 \leq i \leq n - 8$:

$$\phi(v_i) = \begin{cases} 1 & \text{if } n \equiv 0 \pmod{3}; \\ 2 & \text{if } n \equiv 1 \pmod{3}; \\ 3 & \text{if } n \equiv 2 \pmod{3}. \end{cases}$$

We color the remaining seven vertices of C_n as follows. Let $\phi(v_{n-1}) = \phi(v_{n-4}) = 4$, $\phi(v_{n-2}) = \phi(v_{n-5}) = 3$, $\phi(v_{n-3}) = \phi(v_{n-7}) = 1$, and $\phi(v_{n-6}) = 2$.

Now, we color the splitting vertices. Let $\phi(v'_i) = 4$ for $1 \leq i \leq n - 6$. Let $\phi(v'_j) = 2$ for $n - 4 \leq j \leq n - 1$. Let $\phi(v'_8) = 3$ and $\phi(v'_{n-5}) = 1$.

We claim that ϕ is a star coloring of $S(C_n)$. The proof follows from Figure 1 and Figure 2. Figure 1 shows the four star coloring of $S(C_{10})$. If $n = 10 + 3k$, then our construction for ϕ.
essentially glues a copy of Figure 2 with 3k nodes at the appropriate spot (marked by dotted lines) in Figure 1. It is easy to check that this does not create any new 2-colored P_4’s and so ϕ is a four star coloring of $S(C_n)$.

We will now argue that the star-chromatic numbers of $S(C_4)$, $S(C_5)$, and $S(C_7)$ are five. All three proofs have essentially the same flavor with some additional technical detail for $S(C_7)$. The idea of two colored graphs being “the same” will be useful and so we provide a formal definition:

Definition 2.4. Let G_1 and G_2 be two graphs with vertex sets $V(G_1)$ and $V(G_2)$ respectively and vertex colorings ϕ_1 and ϕ_2 respectively. Then, G_1 and G_2 are isomorphic as vertex-colored graphs if there are bijective functions $\pi : V(G_1) \to V(G_2)$ and $\theta : \{\phi_1(v) : v \in V(G_1)\} \to \{\phi_2(v) : v \in V(G_2)\}$ such that u is adjacent to v in G_1 if and only if $\pi(u)$ is adjacent to $\pi(v)$ in G_2 and for all $v \in V(G_1)$ we have $\theta(\phi_1(v)) = \phi_2(\pi(v))$.

Theorem 2.5. The star chromatic number of the splitting graph of C_4 is 5.

Proof. Label the vertices of C_5 clockwise with v_0, v_1, v_2, v_3 and the vertex corresponding to v_i under the splitting graph construction with v'_i. Suppose for sake of contradiction that ϕ is a four star-coloring of $S(C_4)$. By Theorem 2.1 it suffices to consider the following two cases.

Case 1: Suppose that ϕ uses all four colors to color the copy of C_4 in $S(C_4)$. Since ϕ is a proper vertex coloring, either $\phi(v'_0) = \phi(v_0)$ or $\phi(v'_0) = \phi(v_2)$. If $\phi(v'_0) = \phi(v_0)$, then it follows that $\phi(v'_1) = \phi(v_3)$. Then, $v'_1 \to v_0 \to v_3 \to v'_0$ is a 2-colored P_4, a contradiction. On the other hand, if $\phi(v'_0) = \phi(v_2)$, then it follows from considering the path $v'_1 \to v_1 \to v_2 \to v'_3$ that $\phi(v'_3) = \phi(v_3)$. Now, $v'_0 \to v_3 \to v_2 \to v'_3$ is a 2-colored P_4, a contradiction.

Case 2: Suppose ϕ uses three colors to color the copy of C_4 in $S(C_4)$. Without loss of generality, we can assume $\phi(v_0) = \phi(v_2)$ (the other cases are isomorphic as vertex-colored graphs). Since ϕ is a proper vertex coloring, either $\phi(v'_0) = \phi(v_3)$ or $\phi(v'_0) = \phi(v_1)$. In the former case, $v'_3 \to v_2 \to v_3 \to v_0$ is a 2-colored P_4 and in the latter case, $v'_3 \to v_0 \to v_1 \to v_2$ is a 2-colored P_4, a contradiction. □
Theorem 2.6. The star chromatic number of the splitting graph of $S(C_5)$ is 5.

Proof. Label the vertices of C_5 clockwise with v_0,\ldots,v_4 and label the vertex corresponding to v_i under the splitting graph construction with v'_i.

Suppose for the sake of contradiction that ϕ is a four star coloring of $S(C_5))$. By Theorem 2.1, ϕ uses all four colors to color C_5. Since ϕ is a proper star coloring, ϕ must use one of the four colors to color two distinct vertices and the other three colors to color the remaining three vertices. Without loss of generality, we can assume $\phi(v_0)$ is used twice. We now consider two cases depending on which other vertex of C_5 has the same color as v_0.

Case 1: Suppose $\phi(v_0) = \phi(v_2)$. This implies $\phi(v_4) = \phi(v'_4)$ and therefore that $\phi(v'_0) = \phi(v_3)$. Then, $v'_0 \to v_4 \to v_3 \to v'_4$ is a 2-colored P_4, a contradiction.

Case 2: Suppose $\phi(v_0) = \phi(v_3)$. This implies $\phi(v_1) = \phi(v'_1)$ and therefore that $\phi(v'_0) = \phi(v_2)$. Then, $v'_0 \to v_1 \to v_2 \to v'_1$ is a 2-colored P_4, a contradiction.

Thus, $\chi_{S}(S(C_5)) = 5$. \square

To prove that the star chromatic number of $S(C_7)$ is 5, we first give two helpful lemmas.

Lemma 2.7. Suppose C_7 is three star colored. Then, some P_3 in C_7 is 2-colored.

Proof. Suppose for the sake of contradiction that $\phi : V(C_7) \to \{1,2,3\}$ is a three star coloring of C_7 with no bi-colored P_3. Label the vertices of C_7 clockwise with v_0,\ldots,v_6. Since ϕ is a star coloring, for some i we know $\phi(v_i) = 1$. Since ϕ has no bi-colored P_3, we know $\phi(v_{i-1}) \neq \phi(v_{i+1})$. Suppose without loss of generality (the other case is symmetric) that $\phi(v_{i-1}) = 2$ and $\phi(v_{i+1}) = 3$. The fact that ϕ has no 2-colored P_3 completely determines the colors of the remaining vertices and it follows that $v_{i-2} \to v_{i-3} \to v_{i+3}$ is a 2-colored P_3, a contradiction. \square

Lemma 2.8. Label the vertices of C_n clockwise with v_0,\ldots,v_{n-1} and label the vertex corresponding to v_i under the splitting graph construction with v'_i. Suppose ϕ is a k-star coloring of $S(C_n)$ and there exists i such that $\phi(v_i) = \phi(v_{i+2}) = \phi(v_{i+4})$. Then $k \geq 5$.

Proof. Since ϕ is a star coloring, $\phi(v_{i+1}) \neq \phi(v_{i+3})$. It follows that ϕ assigns v'_{i+1} a different color from the three distinct colors used to color $v_i, v_{i+1},$ and v_{i+3} (if the color of v_{i+1} matches any of the three colors used to color $v_i, v_{i+1},$ or v_{i+3}, then it is easy to check that ϕ is not a star coloring). Considering the path $v_i \to v'_{i+1} \to v_{i+2} \to v'_{i+3}$, we see that $\phi(v'_{i+1}) \neq \phi(v'_{i+3})$. Thus, $k \geq 5$. \square

Theorem 2.9. The star chromatic number of $S(C_7)$ is 5.
Proof. Suppose for the sake of contradiction that ϕ is a four star-coloring of $S(C_7)$. We then consider two cases depending on whether ϕ uses three or four colors to color C_7.

Case 1: Suppose ϕ uses three colors to color C_7. We know by Lemma 2.7 that, colored by ϕ, C_7 has some 2-colored P_3. That is, for some i, $\phi(v_{i-1}) = \phi(v_{i+1})$. Since ϕ is a proper vertex coloring, $\phi(v_{i+2}) \neq v_{i-1}$ and similarly, $\phi(v_{i-2}) \neq \phi(v_{i-1})$. Since ϕ is a star coloring, we have that $\phi(v_{i+2}) \neq \phi(v_{i})$ and $\phi(v_{i+2}) \neq \phi(v_{i})$. This implies that either $\phi(v_{i-3}) = \phi(v_{i+1})$ or $\phi(v_{i+3}) = \phi(v_{i+1})$. In either case, Lemma 2.8 gives a contradiction.

Case 2: Suppose ϕ uses four colors to color C_7. It is easy to check that ϕ cannot assign any one color to three distinct vertices of C_7. The proof now proceeds through two subcases.

Case 2a: Suppose ϕ has a bi-colored P_3. That is, there exists i such that $\phi(v_{i-1}) = \phi(v_{i+1})$. Since ϕ is a star-coloring, $\phi(v_{i-2}) \neq \phi(v_{i})$ and $\phi(v_{i+2}) \neq \phi(v_{i})$. It is easy to see that $\phi(v_{i-2}) = \phi(v_{i+2})$ (otherwise, v_i' requires a fifth color to be properly star colored). Since ϕ is a star coloring that uses four colors to star color C_7, one of $\phi(v_{i-3})$ or $\phi(v_{i+3})$ is distinct from $\phi(v_{i})$, $\phi(v_{i+1})$, and $\phi(v_{i+2})$. Because the two cases are symmetric, we may suppose $\phi(v_{i-3})$ is the distinct color. Lemma 2.8 and the fact that ϕ is a proper vertex coloring imply that $\phi(v_{i+3}) = \phi(v_{i})$. Now, it follows that $\phi(v_i') = \phi(v_{i-3})$. This implies $\phi(v_{i+2}) = \phi(v_{i+2})$ and thus $\phi(v_{i+3}) = \phi(v_{i+1})$. Then, $v_{i+3}' \rightarrow v_{i+2} \rightarrow v_{i+1} \rightarrow v_{i+2}'$ is a 2-colored P_3, a contradiction.

Case 2b: Assume next that ϕ has no bi-colored P_3. One can check that any four star coloring of C_7 without any 2-colored P_3 is isomorphic as a vertex coloring to the coloring presented in Figure 3.

First, we claim that for some i, $\phi(v_i) = \phi(v_i')$. Suppose for the sake of contradiction that for all i, $\phi(v_i) \neq \phi(v_i')$. Because ϕ has no 2-colored path with three vertices in C_7, this fully determines the color of each of the vertices added in the splitting construction. If we label the vertices of C_7 (clockwise by v_0, \ldots, v_6) such that $\phi(v_i) = 4$, then we can check that this leads to the 2-colored P_4 $v_{i-2}' \rightarrow v_{i-1} \rightarrow v_i \rightarrow v_{i+1}'$, a contradiction.

Thus, there exists an i, $0 \leq i \leq 6$, such that $\phi(v_i) = \phi(v_i')$. Since C_7 has no 2-colored path with three vertices, the condition $\phi(v_i) = \phi(v_i')$ for any i fully determines ϕ. It is easy to check that for a fixed i with $0 \leq i \leq 6$, the coloring ϕ determined by setting $\phi(v_i) = \phi(v_i')$ contains a 2-colored P_3.

3. Conclusion

Here we have computed the star chromatic number of splitting graphs of cycles. It would be interesting to consider star colorings of splitting graphs of other families—including complete multipartite graphs and direct products (alternatively called tensor products or Kronecker products) of cycles and paths. The shadow graph is another common construction in graph labeling (see [12]). One could also bound the star chromatic number of the shadow graphs of various basic families.

4. Acknowledgments

This research was conducted at the 2017 REU at the University of Minnesota Duluth, supported by NSF/DMS-1659047. We would like to thank Joe Gallian for his incredible support at the REU as well as for reading through this paper.
References

[1] M. O. Albertson, G. G. Chappell, H. A. Kierstead, A. Kündgen, and R. Ramamurthi, Coloring with no 2-colored P_4’s, *Electron. J. Combin.* 11 (2004), #R26.

[2] Y. Bu, D. W. Cranston, M. Montassier, A. Raspaud, and W. Wang, Star coloring of sparse graphs, *J. Graph Theory* 62(3)(2009), 201-219.

[3] T. F. Coleman and J. J. Moré, Estimation of spare Hessian matrices and graph coloring problems, *Math. Program.* 28(1984), 243-270.

[4] G. Fertin, A. Raspaud, and B. Reed, On star coloring of graphs, *J. Graph Theory* 47(3)(2004), 163-182.

[5] H. Furmańczyk, Kowsalya V., and Vernold Vivin J., On Star Coloring of Splitting Graphs, arXiv:1705.09357 [math.CO] May 2017.

[6] J. Gallian, A dynamic survey of graph labeling, *Electron. J. Combin.* (2016) # DS6.

[7] A. H. Gebremedhin, F. Manne, and A. Pothen, What color is your Jacobian? Graph coloring for computing derivatives, *SIAM Review* 47(4) (2005), 629-705.

[8] A. H. Gebremedhin, A. Tarafdar, F. Manne, and A. Pothen, New acyclic and star coloring algorithms with application to computing Hessians, *SIAM J. Sci. Comput.* 29(3)(2007), 1042-1072.

[9] B. Grünbaum, Acyclic colorings of planar graphs, *Israel J. Math.* 14(4)(1973), 390-408.

[10] H. A. Kierstead, A. Kündgen, and C. Timmons, Star coloring bipartite planar graphs, *J. Graph Theory* 60(1)(2009), 1-10.

[11] B. Mohar and S. Špacapan, Degenerate and star colorings of graphs on surfaces, *European J. Combin.* 33(3)(2012), 340-349.

[12] C. Timmons, Star coloring high girth planar graphs, *Electron. J. Combin.* (2008) # R124.