A Sublevel Moment-SOS Hierarchy for Polynomial Optimization

CHEN, Tong ∗
tchen@laas.fr
LASSERRE, Jean-Bernard ∗†
lasserre@laas.fr
MAGRON, Victor ∗†
vmagron@laas.fr
PAUWELS, Edouard ‡ †
edouard.pauwels@irit.fr

January 14, 2021

Abstract

We introduce a sublevel Moment-SOS hierarchy where each SDP relaxation can be viewed as an intermediate (or interpolation) between the d-th and $(d+1)$-th order SDP relaxations of the Moment-SOS hierarchy (dense or sparse version).

With the flexible choice of determining the size (level) and number (depth) of subsets in the SDP relaxation, one is able to obtain different improvements compared to the d-th order relaxation, based on the machine memory capacity. In particular, we provide numerical experiments for $d=1$ and various types of problems both in combinatorial optimization (Max-Cut, Mixed Integer Programming) and deep learning (robustness certification, Lipschitz constant of neural networks), where the standard Lasserre’s relaxation (or its sparse variant) is computationally intractable. In our numerical results, the lower bounds from the sublevel relaxations improve the bound from Shor’s relaxation (first order Lasserre’s relaxation) and are significantly closer to the optimal value or to the best-known lower/upper bounds.

1 Introduction

Consider the polynomial optimization problem (POP) of the following form:

$$f^* := \inf_{x \in \mathbb{R}^n} \{ f(x) : g_i(x) \geq 0, i = 1, \ldots, p \},$$

where f and g_i are polynomials in variable x for all $i = 1, \ldots, p$. Lasserre’s hierarchy [9] is a well-known method based on semidefinite programming (SDP) to approximate the optimal value of [POP], by solving a sequence of SDPs that provide a series of lower bounds and converges to the optimal value of the original problem. Under certain assumptions, such convergence is shown to be finite [10].

∗LAAS-CNRS, BP 54200, 7 avenue du Colonel Roche, 31031 Toulouse, Cédex 4, France.
†IMT, Université Toulouse 3 Paul Sabatier.
‡IRIT, Université de Toulouse, CNRS.
Related works Other related frameworks of relaxations, including DSOS \cite{17} based on linear programming (LP), SDSOS \cite{17} based on second-order cone programming (SOCP), and the hybrid BSOS \cite{11} combining the features of LP and SDP hierarchies, also provide lower bounds converging to the optimal value of a POP. Generally speaking, when comparing LP and SDP solvers, the former can handle problems of much larger size. On the other hand, the bounds from LP relaxations are significantly weaker than those obtained by SDP relaxations, in particular for combinatorial problems \cite{13}. Based on the standard Lasserre’s hierarchy, several further works have explored various types of sparsity patterns inside POPs to compute lower bounds more efficiently and handle larger-scale POPs. The first such extension can be traced back to Waki \cite{27} and Lasserre \cite{10} where the authors consider the so-called correlative sparsity pattern (CSP) with associated CSP graph whose nodes consist of the POP’s variables. Two nodes in the CSP graph are connected via an edge if the two corresponding variables appear in the same constraint or in same monomial of the objective. The standard sparse Lasserre’s hierarchy splits the full moment and localizing matrices into several smaller submatrices, according to subsets of nodes (maximal cliques) in a chordal extension of the CSP graph associated with the POP. When the size of the largest clique (a crucial parameter of the sparsity pattern) is reasonable the resulting SDP relaxations become tractable. There are many successful applications of the resulting sparse moment-SOS hierarchy, including certified roundoff error bounds \cite{15,14}, optimal power flow \cite{6}, volume computation of sparse semi-algebraic sets \cite{26}, approximating regions of attractions of sparse polynomial systems \cite{24,25}, noncommutative POPs \cite{7}, sparse positive definite functions \cite{16}. Similarly, the sparse BSOS hierarchy \cite{33} is a sparse version of BSOS for large scale polynomial optimization. Besides correlative sparsity, recent developments \cite{32,31} exploit the so-called term sparsity (TSSOS) or combine correlative sparsity and term sparsity (CS-TSSOS) \cite{30} to handle large scale polynomial optimization problems. The TSSOS framework relies on a term sparsity pattern (TSP) graph whose nodes consist of monomials of some monomial basis. Two nodes in a TSP graph are connected via an edge when the product of the corresponding monomials appears in the supports of polynomials involved in the POP or is a monomial of even degree. Extensions have been provided to compute more efficiently approximations of joint spectral radii \cite{28} and minimal traces or eigenvalue of noncommutative polynomials \cite{29}. More variants of the sparse moment-SOS hierarchy have been built for quantum bounds on Bell inequalities \cite{21}, condensed-matter ground-state problems \cite{1}, quantum many-body problems \cite{5}, where one selects a certain subset of words (noncommutative monomials) to decrease the number of SDP variables.

Recently, in \cite{2} the authors proposed a partial and augmented partial relaxation tailored to the Max-Cut problem. It strengthens Shor relaxation by adding some (and not all) constraints from the second-order Lasserre’s hierarchy. The same idea was already used in the multi-order SDP relaxation of \cite{6} for solving large-scale optimal power flow (OPF) problems. The authors set a threshold for the maximal cliques and include the second-order relaxation constraints for the cliques with size under the threshold and the first-order relaxation constraints for the cliques with size over the threshold.

Contribution This work is in the line of research concerned with extensions and/or variants of the Moment-SOS hierarchy so as to handle large-scale POPs out of reach by the standard hierarchy. We provide a principled way to obtain intermediate alternative SDP relaxations between the first- and second-order SDP relaxations of the Moment-SOS hierarchy for general POPs. It encompasses the above cited works \cite{6,2} as special cases for MAX-Cut and OPF problems. It can also be generalized to provide alternative SDP relaxations between (arbitrary) order-\(d\) and
order-$d+1$ relaxations of the Moment-SOS hierarchy when the order-$d+1$ relaxation is too costly to implement.

We develop what we call the sublevel hierarchy based on the standard Moment-SOS hierarchy. Compared with existing sparse variants of the latter, we propose several possible SDP relaxations to improve lower bounds for general POPs.

The basic principle is quite simple. In the sublevel hierarchy concerned with d-th and $(d+1)$-th orders of the sparse Moment-SOS hierarchy, from the maximal cliques of a chordal extension of the CSP graph, we further select several subsets of nodes (variables). Then in the d-th sparse SDP relaxation we also include $(d+1)$-th order moment and localizing matrices w.r.t. these subsets only. This methodology reveals helpful if the bound obtained by the d-th order relaxation of a POP is not satisfactory and if one is not able to solve the $(d+1)$-th order relaxation.

One important distinguished feature of the sublevel hierarchy is to not be restricted to POPs with a correlative sparsity pattern. Indeed it can also be applied to dense POPs or nearly-dense POPs where the problem is sparse except that there are a few dense constraints. As a result we are able to improve bounds obtained at the first-order relaxation (also called Shor’s relaxation). In [3], we proposed a heuristic method to deal with general nearly-dense POPs as a trade-off between the first-order and second-order relaxations of the Moment-SOS hierarchy. As we will see the heuristic [3] is also a special case of the sublevel hierarchy.

Another feature of the sublevel hierarchy is that we have more flexible ways to tune the resulting relaxation instead of simply increasing the relaxation order (a rigid and costly strategy). More specifically, there are two hyper-parameters in the sublevel hierarchy: (i) the size of the selected subsets, and (ii) the number of such subsets. Suppose m is the size of a maximal clique of a chordal extension of the CSP graph. Then we can choose q (called the depth) many subsets of size l (called the level) with $1 \leq l \leq m$ and $q \leq \binom{m}{l}$. For each maximal clique, we have a wide range of choices for the level and depth, yielding a good trade-off between the solution accuracy and the computational efficiency.

The outline of the paper is as follows: Section 2 introduces some preliminaries of dense and sparse Lasserre’s hierarchy; Section 3 is the theoretical part of the sublevel hierarchy and the sublevel relaxation; Section 4 explicitly illustrates the sublevel relaxation for several type of optimization problems; Section 5 shows the results of sublevel relaxation applied on the problems discussed in Section 4.

2 Preliminary background on Lasserre’s hierarchy

In this section we briefly introduce the Lasserre’s hierarchy [9] which has already many successful applications in and outside optimization [12]. First let us recall some notations in polynomial optimization. Given a positive integer $n \in \mathbb{N}$, let $x = [x_1, \ldots, x_n]^T$ be a vector of decision variables and $\mathbb{R}[x]$ be the space of real polynomials in variable x. For a set $I \subseteq \{1, 2, \ldots, n\}$, let $x_I := [x_i]_{i \in I}$ and let $\mathbb{R}[x_I]$ be the space of real polynomials in variable x_I. Denote by $\mathbb{R}[x]$ (resp. $\mathbb{R}[x]_d$) the vector space of polynomials (resp. of degree at most d) in variable x; $\mathbb{P}[x] \subseteq \mathbb{R}[x]$ (resp. $\mathbb{P}_d[x] \subseteq \mathbb{R}[x]_d$) the convex cone of nonnegative polynomials (resp. nonnegative polynomials of degree at most d) in variable x; $\Sigma[x] \subseteq \mathbb{P}[x]$ (resp. $\Sigma[x]_d \subseteq \mathbb{P}_d[x]$) the convex cone of SOS polynomials (resp. SOS polynomials of degree at most $2d$) in variable x.
In the context of optimization, Lasserre’s hierarchy allows one to approximate the global optimum of \(\text{POP} \) by solving a hierarchy of SDPs of increasing size. Each SDP is a semidefinite relaxation of \(\text{POP} \) in the form:

\[
\rho_d^{\text{dense}} = \inf_y \left\{ L_y(f) : L_y(1) = 1, M_d(y) \succeq 0, \right\},
\]

where \(\omega_i = \lfloor \deg(g_i)/2 \rfloor \), \(y = (\alpha)_{\alpha \in \mathbb{N}_d^n}, L_y : \mathbb{R}[x] \rightarrow \mathbb{R} \) is the so-called Riesz linear functional:

\[
f = \sum_\alpha f_\alpha x^\alpha \mapsto L_y(f) := \sum_\alpha f_\alpha y_\alpha, \quad f \in \mathbb{R}[x],
\]

and \(M_d(y), M_{d-\omega_i}(g_iy) \) are moment matrix and localizing matrix respectively; see [12] for precise definitions and more details. The semidefinite program \(\text{Mom-d} \) is the \(d \)-th order moment relaxation of problem \(\text{POP} \). As a result, when the semialgebraic set \(K := \{ x : g_i(x) \geq 0, i = 1, \ldots, p \} \) is compact, one obtains a monotone sequence of lower bounds \((\rho_d)_{d \in \mathbb{N}} \) with the property \(\rho_d \uparrow f^* \) as \(d \rightarrow \infty \) under a certain technical Archimedean condition; the latter is easily satisfied by including a redundant quadratic constraint \(M - \|x\|^2 \geq 0 \) for some well-chosen \(M > 0 \) in the definition of \(K \) (redundant as \(K \) is compact and \(M \) is large enough). At last but not least and interestingly, generically the latter convergence is finite [18]. Ideally, one expects an optimal solution \(y^* \) of \(\text{Mom-d} \) to be the vector of moments up to order \(2d \) of the Dirac measure \(\delta_{x^*} \) at a global minimizer \(x^* \) of \(\text{POP} \).

The hierarchy \(\text{Mom-d} \) is often referred to as dense Lasserre’s hierarchy since we do not exploit any possible sparsity pattern of the POP. Therefore, if one solves \(\text{Mom-d} \) with interior point methods (as current SDP solvers usually do), then the dense hierarchy is limited to POPs of modest size. Indeed the \(d \)-th order dense moment relaxation \(\text{Mom-d} \) involves \((n+2d) \) variables and a moment matrix \(M_d(y) \) of size \((n+d)^2 \) at fixed \(d \). Fortunately, large-scale POPs often exhibit some structured sparsity patterns which can be exploited to yield a sparse version of \(\text{Mom-d} \), as initially demonstrated in [27]. As a result, wider applications of Lasserre’s hierarchy have been possible.

Assume that the set of variables in \(\text{POP} \) can be divided into \(r \) several subsets indexed by \(I_k \), for \(k \in \{1, \ldots, r\} \), i.e., \(\{1, \ldots, n\} = \bigcup_{k=1}^r I_k \). Suppose that the following assumptions hold:

\[\text{A1:} \ \text{The function } f \text{ is a sum of polynomials, each summand involving variables of only one subset, i.e., } f(x) = \sum_{k=1}^r f_k(x_{I_k}); \]

\[\text{A2:} \ \text{Each constraint also involves variables of only one subset, i.e., } g_i \in \mathbb{R}[x_{I_{k(i)}}] \text{ for some } k(i) \in \{1, \ldots, r\}; \]

\[\text{A3:} \ \text{The subsets } I_k \text{ satisfy the Running Intersection Property (RIP): for every } k \in \{1, \ldots, r-1\}, \]

\(I_{k+1} \cap \bigcup_{j=1}^k I_j \subseteq I_s \), for some \(s \leq k \).

It turns out that the maximal cliques in the chordal extension of the CSP graph induced by the POP satisfy the RIP [27]. From now on, we will call these subsets cliques, in order to distinguish from the subsets in the sublevel hierarchy that will be discussed in the next section. A POP with a sparsity pattern is of the form:

\[
\inf_{x \in \mathbb{R}^n} \{ f(x) : g_i(x_{I_k}) \geq 0, i = 1, \ldots, p; \ i \in I_k \}, \quad \text{(SpPOP)}
\]
and its associated sparse Lasserre’s hierarchy reads:

\[\rho_d^{\text{sp}} = \inf_{y} \left\{ L_y(f) : L_y(1) = 1, M_d(y, I_k) \geq 0, i \in \{1, \ldots, r\}, \right\}, \]

\[M_{d-\omega}(g_i y, I_k) \geq 0, i \in \{1, \ldots, p\}; i \in I_k \}, \]

(Spmom-d)

where \(d, \omega, y, L_y \) are defined as in (Mom-d) but with a crucial difference. The matrix \(M_d(y, I_k) \) (resp. \(M_{d-\omega}(g_i y, I_k) \)) is a submatrix of the moment matrix \(M_d(y) \) (resp. localizing matrix \(M_{d-\omega}(g_i y) \)) with respect to the clique \(I_k \), and hence of much smaller size \((\tau_k + d) \) if \(|I_k| =: \tau_k \ll n \). Finally, \(\rho_d^{\text{sp}} \leq f^* \) for all \(d \) and moreover, if the cliques \(I_k \) satisfy the RIP, then we still obtain the convergence \(\rho_d^{\text{sp}} \rightarrow f^* \) as \(d \to \infty \), as for the dense relaxation (Mom-d).

Finally, for each fixed \(d \), the dual of (Mom-d) reads:

\[\sup_{t} \{ f - t = \theta + \sum_{i=1}^{p} \sigma_i g_i \}, \]

(SOs-d)

where \(\theta \) is a sum-of-squares (SOS) polynomial in \(\mathbb{R}[x] \) of degree at most \(2d \), and \(\sigma_j \) are SOS polynomials in \(\mathbb{R}[x] \) of degree at most \(2(d - \omega) \) with \(\omega = \lceil \deg(g_i)/2 \rceil \). The right-hand-side of the identity in (SOS-d) is nothing less than Putinar’s positivity certificate [20] for the polynomial \(x \mapsto f(x) - t \) on the compact semialgebraic set \(K \).

Similarly, the dual problem of (SpMom-d) reads:

\[\sup_{t} \{ f - t = \sum_{k=1}^{m} (\theta_k + \sum_{i \in I_k} \sigma_{i,k} g_i) \}, \]

(SpSos-d)

where \(\theta_k \) is an SOS in \(\mathbb{R}[x_{I_k}] \) of degree at most \(2d \), and \(\sigma_{i,k} \) is an SOS in \(\mathbb{R}[x_{I_k}] \) of degree at most \(2(d - \omega) \) with \(\omega = \lceil \deg(g_i)/2 \rceil \), for each \(k = 1, \ldots, p \). Then (SpSos-d) implements the sparse Putinar’s positivity certificate [10, 27].

Example 1 Let \(x \in \mathbb{R}^6, x_{1:4} := [x_{i}]_{i=1}^{4}, x_{3:6} := [x_{i}]_{i=3}^{6} \). We minimize \(f(x) = -||x||_2^2 \), under the semialgebraic set defined by \(g_1(x) = 1 - ||x_{1:4}||_2^2 \geq 0 \) and \(g_2(x) = 1 - ||x_{3:6}||_2^2 \geq 0 \). Then, the second-order dense Lasserre’s relaxation reads

\[\sup_{t} \{ f(x) - t = \theta(x) + \sigma_1(x) g_1(x) + \sigma_2(x) g_2(x) \} \]

where \(\theta \) is a degree-4 SOS polynomial in variable \(x \), \(\sigma_1, \sigma_2 \) are degree-2 SOS polynomials in variable \(x \). Define \(I_1 = \{1, 2, 3, 4\} \) and \(I_2 = \{3, 4, 5, 6\} \), then \(g_1 \in \mathbb{R}[x_{I_1}] \) and \(g_2 \in \mathbb{R}[x_{I_2}] \). The second-order sparse Lasserre’s relaxation reads

\[\sup_{t} \{ f(x) - t = (\theta_1(x_{I_1}) + \sigma_1(x_{I_1}) g_1(x)) + (\theta_2(x_{I_2}) + \sigma_2(x_{I_2}) g_2(x)) \} \]

where \(\theta_k \) is a degree-4 SOS polynomials in variable \(x_{I_k} \), and \(\sigma_k \) is a degree-2 SOS polynomials in variable \(x_{I_k} \), for each \(k = 1, 2 \).

3 Sublevel hierarchy

As seen in Section 2, the way to reduce the size of the moment and localizing matrices in (Mom-d) is either by reducing the relaxation order or the number of variables/terms in the SOS weights involved.
in the Putinar’s representation. The authors from [6] propose the multi-order Lasserre’s hierarchy to deal with large-scale optimal power flow problems. In this hierarchy, one reduces the relaxation order with respect to the constraints with large number of variables. This approach is reused as the so-called partial relaxation to solve Max-Cut problems in [2]. The authors in [2] also proposed the augmented partial relaxation as an extended version of the partial relaxation, to improve the bounds further. In this section, we develop the sublevel hierarchy which is a generalization of several existing frameworks for both sparse and non-sparse POPs, and show that in the case of Max-Cut problems, the partial and augmented partial relaxation can be cast as special instances of the sublevel relaxation.

3.1 Deriving the sublevel hierarchy

For problem (POP), the d-th order dense Lasserre’s relaxation relates to the Putinar’s certificate $f - t = \sigma_0 + \sum_{i=1}^{n} \sigma_i g_i$ where σ_0 is an SOS in $\mathbb{R}[x]$ of degree at most $2d$ and σ_i are SOS in $\mathbb{R}[x]$ of degree at most $2(d - \omega_i)$ with $\omega_i = \lceil \deg(g_i)/2 \rceil$. In this section, we are going to choose some subsets of the variable x to decrease the number of terms involved in the SOS multipliers σ_0 and σ_i, and define the intermediate sublevel relaxations between the d-th and $(d+1)$-th order relaxations.

Note that in the dense variant of Lasserre’s hierarchy, one approximates the cone of positive polynomials from the inside with the following hierarchy of SOS cones:

$$R = \Sigma[x]_0 \subseteq \Sigma[x]_1 \subseteq \ldots \subseteq \Sigma[x]$$

with $\bigcup_{d=0}^{\infty} \Sigma[x]_d = \Sigma[x]$. Similarly, in the sparse variant, one relies on the following hierarchy of direct sums of SOS cones:

$$R = \oplus_{k} \Sigma[x_{I_k}]_0 \subseteq \oplus_{k} \Sigma[x_{I_k}]_1 \subseteq \ldots \subseteq \oplus_{k} \Sigma[x_{I_k}]$$

with $\bigcup_{d=0}^{\infty} (\oplus_{k} \Sigma[x_{I_k}]_d) = \oplus_{k} \Sigma[x_{I_k}]$.

Definition 1 (Sublevel hierarchy of SOS cones) Let n be the number of variables in (POP). For $d \geq 1$ and $0 \leq l \leq n$, the l-th level SOS cone associated to $\Sigma[x]_d$, denoted by $\Sigma[x]_d^l$, is an SOS cone lying between $\Sigma[x]_d$ and $\Sigma[x]_{d+1}$, which is defined as

$$\Sigma[x]_d \subseteq \Sigma[x]_{d+1} := \Sigma[x]_d + \Sigma[x]_{d+1} \subseteq \Sigma[x]$$

where $\Sigma[x]_{d+1} := \left\{ \sum_{|I|=l} \sigma_I(x_I) : I \subseteq \{1, \ldots, n\}, \sigma_I(x_I) \in \Sigma[x]_{d+1} \right\} \subseteq \Sigma[x]_{d+1}$, i.e., the SOS polynomials in $\Sigma[x]_{d+1}$ are the elements in $\Sigma[x]_{d+1}$ which can be decomposed into several components where each component is an SOS polynomial in l variables. Let us use the convention $\Sigma[x]_d^0 := \Sigma[x]_d$.

Then, for the dense case, we rely on the sublevel hierarchy of inner approximations of the cone of positive polynomials:

$$\Sigma[x]_d = \Sigma[x]_0^d \subseteq \Sigma[x]_1^d \subseteq \ldots \subseteq \Sigma[x]_{d+1}^d = \Sigma[x]$$

Similarly, suppose that $\{I_k\}_{1 \leq k \leq \tau}$ are the cliques of the sparse problem (SpPOP). For $l \leq \tau_k := |I_k|$, we define the l-th level SOS cone of $\Sigma[x_{I_k}]_d$, denoted by $\Sigma[x_{I_k}]_d^l$, as

$$\Sigma[x_{I_k}]_d \subseteq \Sigma[x_{I_k}]_{d+1} := \Sigma[x_{I_k}]_d + \Sigma[x_{I_k}]_{d+1} \subseteq \Sigma[x_{I_k}]_{d+1}$$
where $\tilde{\Sigma}[x_{i_k}]_{d+1}^q := \left\{ \sum_{|I|=l} \sigma_I(x_I) : I \subseteq I_k, \sigma_I(x_I) \in \Sigma[x_I]_{d+1} \right\} \subseteq \Sigma[x_{i_k}]_{d+1}$, i.e., the SOS polynomials in $\tilde{\Sigma}[x_{i_k}]_{d+1}^q$ are the elements in $\Sigma[x_{i_k}]_{d+1}$ which can be decomposed into several components in which each component is an SOS polynomial in l variables indexed by I_k. Then, for the sparse case, we rely on the sublevel hierarchy of inner approximations of the cone of positive polynomials:

$$\Sigma[x_{i_k}]_d = \Sigma[x_{i_k}]_d^0 \subseteq \Sigma[x_{i_k}]_d^1 \subseteq \ldots \subseteq \Sigma[x_{i_k}]_d^p = \Sigma[x_{i_k}]_{d+1}$$

Remark 1 Lasserre’s hierarchy relies on a hierarchy of SOS cones, while the sublevel hierarchy relies on a hierarchy of sublevel SOS cones. Take the sparse case for illustration, solving the d-th order relaxation of the standard sparse Lasserre’s hierarchy boils down to finding SOS multipliers in the cone $\Sigma[x_{i_k}]_d \oplus \Sigma[x_{i_k}]_{d-\omega_i}$ for each clique I_k, i.e., $\bigoplus_k (\Sigma[x_{i_k}]_d \oplus \Sigma[x_{i_k}]_{d-\omega_i})$. Solving the d-th order sublevel hierarchy boils down to finding SOS multipliers in the intermediate cones $\bigoplus_k (\Sigma[x_{i_k}]_d^q \oplus \Sigma[x_{i_k}]_{d-\omega_i}^q)$ for some $0 \leq l_k \leq \tau_k$. This cone approximates the standard cone $\bigoplus_k (\Sigma[x_{i_k}]_d^q \oplus \Sigma[x_{i_k}]_{d-\omega_i}^q) = \bigoplus_k (\Sigma[x_{i_k}]_d \oplus \Sigma[x_{i_k}]_{d-\omega_i})$. We will see in the next definition that this is the so-called sublevel relaxation, and we call the vector $\{l_k\}$ the vector of sublevels of the relaxation. Each l_k determines the size of the subsets in the clique I_k and is called a sublevel.

Definition 1 (Sublevel hierarchy of moment-SOS relaxations) Let n be the number of variables in POP. For each constraint $g_i \geq 0$ in POP, we define a sublevel $0 \leq l_i \leq n$ and a depth $0 \leq q_i \leq n$. Denote by $l_i = [l_i]_{i=1}^p$ the vector of sublevels and $q_i = [q_i]_{i=1}^p$ the vector of depths. Then, the (l, q)-sublevel relaxation of the d-th order dense SOS problem (SOS-d) reads

$$\sup_{t \in \mathbb{R}} \left\{ t : f - t = \theta_0 + \sum_{i=1}^{p} (\tilde{\theta}_i + (\sigma_i + \tilde{\sigma}_i)g_i) \right\},$$

where θ_0 (resp. σ_i) are SOS polynomials in $\Sigma[x]^d_d$ (resp. $\Sigma[x]_{d-\omega_i}$), and $\tilde{\theta}_i$ (resp. $\tilde{\sigma}_i$) are SOS polynomials in $\Sigma[x]_d^q$ (resp. $\Sigma[x]_{d-\omega_i+1}$) with $\omega_i = \lceil \deg(g_i)/2 \rceil$. Moreover, each $\tilde{\theta}_i$ is a sum of q_i SOS polynomials where each sum term involves variables in a certain subset $\Gamma_{i,j} \subseteq \{1, 2, \ldots, n\}$ with $|\Gamma_{i,j}| = l_i$, i.e., $\tilde{\theta}_i = \sum_{j=1}^{q_i} \tilde{\theta}_{i,j}$ where $\tilde{\theta}_{i,j} \in \Sigma[x_{\Gamma_{i,j}}]_{d-\omega_i+1}$. Each $\tilde{\theta}_i$ is also a sum of q_i SOS polynomials where the sum terms share the same variable sets $\Gamma_{i,j}$, i.e., $\tilde{\theta}_i = \sum_{j=1}^{q_i} \tilde{\theta}_{i,j}$ where $\tilde{\theta}_{i,j} \in \Sigma[x_{\Gamma_{i,j}}]_{d-\omega_i+1}$. The equation $(\text{SubSOS-[d, l, q]})$ can be compressed as an analogical form of the standard dense Lasserre’s relaxation:

$$\sup_{t \in \mathbb{R}} \left\{ t : f - t = \sum_{i=1}^{p} (\tilde{\theta}_i + \tilde{\sigma}_i g_i) \right\},$$

where $\tilde{\theta}_i$ (resp. $\tilde{\sigma}_i$) are SOS polynomials in $\Sigma[x]_{d+1}$ (resp. $\Sigma[x]_{d-\omega_i+1}$).

Similarly, suppose that $(I_k)_{1 \leq k \leq p}$ are the cliques of the sparse problem (SpPOP) with $\tau_k = |I_k|$. For each constraint $g_i \geq 0$ in (SpPOP), denote by $k(i)$ the set of indices s such that $i \in I_s$. For each i and $s \in k(i)$, define a sublevel $0 \leq l_{i,s} \leq \tau_s$ and a depth $0 \leq q_{i,s} \leq \tau_s$. Denote by $l_i = [l_{i,s}]_{s \in k(i)}$ the vector of sublevels and $q_i = [q_{i,s}]_{s \in k(i)}$ the vector of depths. Then, the (l, q)-sublevel relaxation of the d-th order sparse SOS problem (SpSOS-d) reads

$$\sup_{t \in \mathbb{R}} \left\{ t : f - t = \sum_{k=1}^{m} \left(\theta_{0,k} + \sum_{i \in I_k} (\tilde{\theta}_{i,k} + (\sigma_{i,k} + \tilde{\sigma}_{i,k})g_i) \right) \right\},$$

$(\text{SubSpSOS-[d, l, q]})$
where \(\theta_{0,k} \) (resp. \(\sigma_{i,k} \)) are SOS polynomials in \(\Sigma[x_{I_k}] \) (resp. \(\Sigma[x_{I_k}]_{d-\omega_i} \)), and \(\tilde{\theta}_{i,k} \) (resp. \(\tilde{\sigma}_{i,k} \)) are SOS polynomials in \(\Sigma[x_{I_k}]_{d+1} \) (resp. \(\Sigma[x_{I_k}]_{d+\omega_i+1} \)) with \(\omega_i = \lceil \text{deg}(q_i)/2 \rceil \). Moreover, each \(\tilde{\sigma}_{i,k} \) with \(i \in I_k \) is a sum of \(q_{i,k} \) SOS polynomials where each sum term involves variables in a certain subset \(\Gamma_{i,k,j} \subseteq I_k \) with \(|\Gamma_{i,k,j}| = l_{i,k} \), i.e., \(\tilde{\sigma}_{i,k} = \sum_{j=1}^{q_{i,k}} \tilde{\sigma}_{i,k,j} \) where \(\tilde{\sigma}_{i,k,j} \in \Sigma[x_{\Gamma_{i,k,j}}]_{d-\omega_i+1} \). Each \(\tilde{\theta}_{i,k} \) is also a sum of \(q_{i,k} \) SOS polynomials where the sum terms share the same variable sets \(\Gamma_{i,k,j} \) as \(\tilde{\sigma}_{i,k,j} \), i.e., \(\tilde{\theta}_{i,k} = \sum_{j=1}^{q_{i,k}} \tilde{\theta}_{i,k,j} \) where \(\tilde{\theta}_{i,k,j} \in \Sigma[x_{\Gamma_{i,k,j}}]_{d+\omega_i+1} \). The equation \(\text{SubSpSOS}-(d, 1, q) \) can also be compressed as an analogical form of the standard sparse Lasserre’s relaxation:

\[
\sup_{t \in \mathbb{R}} \left\{ t : f - t = \sum_{k=1}^{m} \sum_{i \in I_k} (\tilde{\theta}_{i,k} + \tilde{\sigma}_{i,k,\emptyset}) \right\},
\]

where \(\tilde{\theta}_{i,k} \) (resp. \(\tilde{\sigma}_{i,k} \)) are SOS polynomials in \(\Sigma[x_{I_k}]_{d+1} \) (resp. \(\Sigma[x_{I_k}]_{d-\omega_i+1} \)).

Remark 2 (i). If one of the sublevel \(l_i \) (resp. \(l_{i,k} \)) in the dense (resp. sparse) sublevel relaxation is such that \(l_i = n \) (resp. \(l_{i,k} = r_k \)), then the depth \(q_i \) (resp. \(q_{i,k} \)) should automatically be 1.

(ii). The heuristics to determine the subsets \(\Gamma_{i,j} \) for the dense case and \(\Gamma_{i,k,j} \) for the sparse case in the sublevel relaxation will be discussed in the next section.

(iii). The size of the SDP Gram matrix associated to an SOS polynomial in \(\Sigma[x]^d \) (resp. \(\Sigma[x_{I_k}]^d \)) is \(\max\{\binom{n+d}{d}, \binom{l_{i,k}+d+1}{d+1}\} \) (resp. \(\max\{\binom{l_{i,k}+d}{d}, \binom{l_{i,k}+d+1}{d+1}\} \)). If the lower bound obtained by solving the SOS problem over \(\Sigma[x_{I_k}] \) (resp. \(\Sigma[x_{I_k}]_{d+1} \)) is not satisfactory enough, then we may try to find more accurate solutions in one of the cones of \(\Sigma[x]^d \) (resp. \(\Sigma[x_{I_k}]^d \)).

Example 2 Take the polynomials \(f, g_1 \) and \(g_2 \) as in Example 1. Define \(l = [2, 2] \) and \(q = [1, 1] \). We select subsets w.r.t. \(g_1 \) and \(g_2 \) respectively as \(\Gamma_{1,1} = \{1, 2\} \), \(\Gamma_{2,1} = \{5, 6\} \). Then, the second-order dense (1, q)-sublevel relaxation reads

\[
\sup_{t \in \mathbb{R}} \left\{ t : f(x) - t = \theta_0(x) + \left(\tilde{\theta}_1(x_{\Gamma_{1,1}}) + \sigma_1(x_{\Gamma_{1,1}})g_1(x) \right) + \left(\tilde{\theta}_2(x_{\Gamma_{2,1}}) + \sigma_2(x_{\Gamma_{2,1}})g_2(x) \right) \right\}
\]

where \(\theta_0 \) is a degree-2 SOS polynomial in variable \(x \), \(\tilde{\theta}_k \) are degree-4 SOS polynomials in variable \(x_{\Gamma_{k,1}} \), \(\sigma_1 \) are degree-2 SOS polynomials in variable \(x_{\Gamma_{k,1}} \). In other words, \(\theta_0 \in \Sigma[x]^2, \tilde{\theta}_k \in \Sigma[x_{\Gamma_{k,1}}], \sigma_1 \in \Sigma[x_{\Gamma_{k,1}}]^2 \).

Similarly, define \(\Gamma_{1,1,1} = \{1, 2\} \subseteq I_1 \) and \(\Gamma_{2,2,1} = \{5, 6\} \subseteq I_2 \), then the second-order sparse (1, q)-sublevel relaxation reads

\[
\sup_{t \in \mathbb{R}} \left\{ t : f(x) - t = \left(\theta_{0,1}(x_{I_1}) + \tilde{\theta}_1(x_{\Gamma_{1,1,1}}) + \sigma_1(x_{\Gamma_{1,1,1}})g_1(x) \right) + \left(\theta_{0,2}(x_{I_2}) + \tilde{\theta}_2(x_{\Gamma_{2,2,1}}) + \sigma_2(x_{\Gamma_{2,2,1}})g_2(x) \right) \right\}
\]

where \(\theta_{0,k} \) are degree-2 SOS polynomials in variable \(x_{I_k} \), \(\tilde{\theta}_k \) are degree-4 SOS polynomials in variable \(x_{\Gamma_{k,k,1}} \), \(\sigma_k \) are degree-2 SOS polynomials in variable \(x_{\Gamma_{k,k,1}} \). In other words, \(\theta_{0,k} \in \Sigma[x_{I_k}], \tilde{\theta}_k \in \Sigma[x_{\Gamma_{k,k,1}}], \sigma_k \in \Sigma[x_{\Gamma_{k,k,1}}]^2 \).

The standard Lasserre’s hierarchy and many of its variants are contained in the framework of sublevel hierarchy:

Example 3 (Dense Lasserre’s Relaxation) The dense version of the d-th order Lasserre’s relaxation is the dense \((d-1)\)-th order sublevel relaxation with \(I = [n, n, \ldots, n] \) and \(q = 1_p \), where \(1_p \) denotes the p-dimensional vector with all ones.
Example 4 (Sparse Lasserre’s Relaxation [10]) The sparse version of the \((d-1)\)-th order Lasserre’s relaxation is the sparse \(d\)-th order sublevel relaxation with \(l = ([\tau_1]_{s \in k(1)}; \ldots; [\tau_n]_{s \in k(n)})\) and \(q = 1_{[k(1)]\cup\ldots\cup [k(n)]}\).

Example 5 (Multi-Order/Partial Relaxation) The multi-order relaxation (used to solve the Optimal Power Flow problem in [6]), also named as partial relaxation (used to solve the Max-Cut problem in [2]), is a variant of the second-order sparse Lasserre’s relaxation. We first preset a value \(r\), then compute the upper bound of the Lipschitz constant of ReLU networks, is a variant of the second-order dense first-order relaxation (Shor’s relaxation), and choose subsets of moderate sizes (size 2 in [3]).

Example 6 (Augmented Partial Relaxation) This relaxation is the strengthened version of the partial relaxation used by the authors in [2] to solve Max-Cut problems. It is exactly the second-order sublevel relaxation restricted to Max-Cut problem.

Example 7 (Heuristic Relaxation) The heuristic relaxation proposed by the authors in [3] to compute the upper bound of the Lipschitz constant of ReLU networks, is a variant of the second-order dense Lasserre’s relaxation. The intuition is that some constraints in the POP are sparse, so let us denote by \(S\) the set of their indices, while their corresponding cliques are large, thus one cannot solve the second-order relaxation of the standard sparse Lasserre’s hierarchy. We then consider the dense first-order relaxation (Shor’s relaxation), and choose subsets of moderate sizes (size 2 in [3]) that contain the variable sets of these sparse constraints. For other constraints with larger variable sets, let us denote by \(T\) the set of their indices and let us consider the first-order moment matrices.

Then the heuristic relaxation is the second-order sublevel relaxation with \(l = ([0]_{s \in k(1)}; [\tau_1]_{s \in k(1)}; \ldots; [\tau_n]_{s \in k(n)})\) and \(q = ([0]_{s \in k(1)}; [1]_{s \in k(1)}; \ldots; [0]_{s \in k(n)}; [1]_{s \in k(n)})\).

Summarizing the above discussion, we have the following proposition:

Proposition 1 For the dense case, if \(l = [n, n, \ldots, n]\), then the \(d\)-th order \((l, q)\)-sublevel relaxation is exactly the dense \((d+1)\)-th order Lasserre’s relaxation.

For the sparse case, if \(l = ([\tau_1]_{s \in k(1)}; \ldots; [\tau_n]_{s \in k(n)})\), then the \(d\)-th order \((l, q)\)-sublevel relaxation is exactly the sparse \((d+1)\)-th order Lasserre’s relaxation.

3.2 Determining the subsets of cliques

There are different ways to determine the subsets \(\Gamma_{i,j}\) (or \(\Gamma_{i,k,j}\)) of the sublevel relaxation described in Definition 2. Generically, we are not aware of any algorithm that would guarantee that the selected subsets are optimal at a given level of relaxation. In this section, we propose several heuristics to select the subsets. Suppose that \(\{I_k\}_{1 \leq k \leq r}\) is the sequence of maximal cliques in the chordal extension of the CSP graph of the sparse problem \(\text{SpPOP}\) and that the level of relaxation is \(l \leq |I_k| =: \tau_k\). We need to select the “best” candidate among the \(\binom{\tau_k}{l}\) many subsets of size \(l\).

However, in practice, the number \(\binom{\tau_k}{l}\) might be very large since \(\binom{\tau_k}{l} \approx \tau_k^l\) when \(l\) is fixed.

In order to make this selection procedure tractable, we reduce the number of sample subsets to \(\tau_k\). Precisely, suppose \(I_k := \{i_1, i_2, \ldots, i_{\tau_k}\}\), define \(I_{k,j} := \{i_j, i_{j+1}, \ldots, i_{j+l}\}\) for \(j = 1, 2, \ldots, \tau_k\) and \(1 \leq l \leq \tau_k\). By convention, \(i_j = i_k\) if \(j \equiv k \mod \tau_k\). Denote by \(p\) the depth of the relaxation.
Then we use the following heuristics to choose \(p \) subsets among the candidates \(I_{k,j} \). Without loss of generality, we assume that \(l < \tau_k \) (otherwise one has \(l \geq \tau_k \), then we only need to select one subset \(I = I_k \)).

- **H1 (Random Heuristic).** For each \(i \) and clique \(I_k \), we randomly select \(p \) subsets \(\Gamma_{i,k,j} \subseteq I_k \) for \(j = 1, \ldots, p \), such that \(|\Gamma_{i,k,j}| = l \) for all \(j \).

- **H2 (Ordered Heuristic).** For each \(i \) and clique \(I_k \), we select one after another \(\Gamma_{i,k,j} = I_{k,j} \subseteq I_k \) for \(j = 1, \ldots, p \). For \(p = \tau_k \), we also call this heuristic the cyclic heuristic.

The heuristics H1 and H2 do not depend on the problem, thus they might not fully explore the specific structure hidden in the POPs. We can also try the heuristic that selects the subsets according to the value of the moments in the first-order moment relaxation (Shor’s relaxation).

- **H3 (Moment Heuristic).** First of all, we solve the first-order sparse relaxation. For each \(i \) and clique \(I_k \), suppose \(M_k \) is the first-order moment matrix indexed by 1 and the monomials in \(x_{I_k} \). Denote by \(M_k(I_{k,j}) \) the submatrix whose rows and columns are indexed by 1 and \(x_{I_{k,j}} \) for \(j = 1, 2, \ldots, \tau_k \). We reorder the subsets \(I_{k,j} \) w.r.t. the infinity norm of the submatrices \(M_k(I_{k,j}) \), i.e.,

\[
||M_k(I_{k,1})||_\infty \geq ||M_k(I_{k,2})||_\infty \geq \cdots \geq ||M_k(I_{k,\tau_k})||_\infty
\]

Then we pick the first \(p \) subsets \(\Gamma_{i,k,1} = I_{k,1}, \Gamma_{i,k,2} = I_{k,2}, \ldots, \Gamma_{i,k,p} = I_{k,p} \) after reordering.

In particular, for Max-Cut problem, the authors in [2] proposed the following heuristics that take the weights in the graph or the maximal cliques in the chordal graph into account. We briefly introduce the idea of these heuristics, readers can refer to [2] for details. For heuristic H4 to H4-6, denote by \(L \) the Laplacian matrix of the graph.

- **H4 (Laplacian Heuristic).** For each clique \(I_k \), denote by \(L(I_{k,j}) \) the submatrix of the moment matrix \(M_k \) whose rows and columns are indexed by 1 and \(x_{I_{k,j}} \) for \(j = 1, 2, \ldots, \tau_k \). We reorder the subsets \((I_{k,j}) \) w.r.t. the infinity norm of the submatrices \(L(I_{k,j}) \), i.e.,

\[
||L(I_{k,1})||_\infty \geq ||L(I_{k,2})||_\infty \geq \cdots \geq ||L(I_{k,\tau_k})||_\infty
\]

Then we pick the first \(p \) subsets \(\Gamma_{i,k,1} = I_{k,1}, \Gamma_{i,k,2} = I_{k,2}, \ldots, \Gamma_{i,k,p} = I_{k,p} \) after reordering.

- **H5 (Max-Repeated Heuristic).** We select subsets contained in many maximal cliques.

- **H6 (Min-Repeated Heuristic).** We select subsets contained in few maximal cliques.

- **H4-5.** We combine heuristic H4 and H5 to select the subsets that are not repeated in other maximal cliques and contain variables with large weights.

In the spirit of the heuristic H4-5, we can also combine H5 with the moment heuristic H3:

- **H3-5.** We combine H3 and H5 to select the subsets that are not repeated in other maximal cliques and contain variables with large moments.

Table 1: Comparison of different heuristics for Max-Cut instances \(g_{20} \) and \(w01_{100} \).

Heuristics	\(\text{lv}=4 \), \(p=1 \)	\(\text{lv}=4 \), \(p=2 \)	\(\text{lv}=6 \), \(p=1 \)	\(\text{lv}=6 \), \(p=2 \)	Count
H1	548.4, 725.6	539.0, 720.0	526.6, 709.5	522.0, 700.4	4
H2	**546.4**, 728.0	539.9, 721.1	526.9, **705.7**	523.1, 701.7	2
H3	550.6, 728.8	541.8, 723.2	528.5, 713.9	524.2, 705.6	0
H4	549.7, **723.4**	542.0, **718.6**	526.9, 710.5	523.6, 701.5	**2**
H5	553.5, 731.0	543.1, 725.8	529.3, 715.6	525.2, 708.4	0
H6	553.3, 731.2	543.2, 726.6	529.3, 717.2	525.2, 710.3	0
H3-5	550.5, 729.5	541.8, 726.6	528.5, 713.8	524.2, 704.8	0
H4-5	549.8, 726.6	542.0, 719.3	526.9, 710.4	523.6, **700.4**	**1**
There is no general guarantee that one of the heuristics always performs better than the others. In Table 4, we show the upper bounds obtained by the above heuristics for two Max-Cut instances \(g_{20} \) and \(w_{01,100} \) (the detail of the numerical settings and the results is referred to Section 5), for level 4, 6, and depth 1, 2, respectively. For each heuristic, we count the number of times that the heuristic performs the best. We see that, surprisingly, the random heuristic \(H_1 \) performs the best among other heuristics. The ordered heuristic \(H_2 \) and Laplacian heuristic \(H_4 \) also performs well. For the sake of simplicity, we will only consider the ordered heuristic \(H_2 \) and its variants for the forthcoming examples.

4 Applications of sublevel hierarchy

In this section, we explicitly build different sublevel relaxations for different classes of polynomial optimization problems: Maximum Cut (Max-Cut), Maximum Clique (Max-Cliq), Mixed Integer Quadratically Constrained Programming (MIQCP) and Quadratically Constrained Quadratic Problem (QCQP). We also consider two classes of problems arising from deep learning: robustness certification and Lipschitz constant estimation of neural networks. For many deep learning applications, the targeted optimization problems are often dense or nearly-dense, due to the composition of affine maps and non-linear activation functions such as ReLU. In this case, the sublevel hierarchy is indeed helpful. A simple application for Lipschitz constant estimation was previously considered by the authors in [3].

For simplicity, unless stated explicitly, we always assume that all the levels \((l_i)\) (resp. \((l_{i,k})\)) and depths \((q_i)\) (resp. \((q_{l,k})\)) are identical, i.e., \(l_i = q_i = q\) for all \(i\) (resp. \(l_{i,k} = l, q_{l,k} = q\) for all \(i, k\)). We say that this simplified sublevel relaxation is of level \(l\) and depth \(q\). Note that the sublevel relaxation of level 0 and depth 0 is equivalent to Shor’s relaxation. By convention, if \(l_{i,k} \geq \tau_k\), then this sublevel \(l_{i,k}\) should automatically be \(\tau_k\) and the depth \(p\) should be 1. For all the examples, we consider the ordered heuristic \(H_2\) or its variants to select the subsets in the sublevel relaxation.

4.1 Examples from optimization

The examples listed in this section are typical in optimization.

Maximum cut (Max-Cut) problem

Given an undirected graph \(G(V, E)\) where \(V\) is a set of vertices and \(E\) is a set of edges, a cut is a partition of the vertices into two disjoint subsets. The Max-Cut problem consists of finding a cut in a graph such that the number of edges between the two subsets is as large as possible. It can be formulated as follows:

\[
\max_{x} \{x^T L x : x \in \{-1,1\}^n\}, \tag{Max-Cut}\]

where \(L\) is the Laplace matrix of the given graph of \(n\) vertices, i.e., \(L := \text{diag}(W_{1,n}) - W\) where \(W\) is the weight matrix of the graph. The constraints \(x \in \{-1,1\}^n\) are equivalent to \((x_i)^2 = 1\) for all \(i\). Suppose that \((I_k)\) are the maximum cliques in the chordal extension of the given graph. For \(i = 1, 2, \ldots, n\), denote by \(k(i)\) the set of indices \(s\) such that \(i \in I_s\). For \(s \in k(i)\), suppose that \(I_s = \{i_1, \ldots, i_{\tau_s}\}\) so that \(i_{j(i)} = i\) for \(1 \leq j(i) \leq \tau_s\). Then we select the \(q\) subsets of size \(l\) by order as: \(I_s = \{i_{j(i)}, i_{j(i)} + t, \ldots, i_{j(i)} + t - 1\}\) for \(t = 1, 2, \ldots, q\). If we consider the dense sublevel hierarchy, then we directly select the subsets by order as \(I_t = \{i, i + t, \ldots, i + t + l - 2\}\) for \(t = 1, 2, \ldots, q\).
Maximum clique (Max-Cliq) problem

Given an undirected graph $G(V, E)$ where V is a set of vertices and E is a set of edges, a clique is defined to be a set of vertices that is completely interconnected. The Max-Cliq problem consists of determining a clique of maximum cardinality. It can be stated as a nonconvex quadratic programming problem over the unit simplex $[19]$ and its general formulation is:

$$\max \{ x^T A x : \sum_{i=1}^{n} x_i = 1, x \in [0,1]^n \},$$

(Max-Cliq)

where A is the adjacency matrix of the given graph of n vertices. The constraints $x \in [0,1]^n$ are equivalent to $x^T(x^i - 1) \leq 0$ for $i = 1, 2, \ldots, n$. The Max-Cliq problem is dense since we have a constraint $\sum_{i=1}^{n} x_i = 1$ involving all the variables. Therefore, we apply the dense sublevel hierarchy. To handle the constraint $\sum_{i=1}^{n} x_i = 1$, we select the q subsets of size l by order as $I_t = \{ t, t+1, \ldots, t+l-1 \}$ for $t = 1, 2, \ldots, q$. For the constraints $x_i(x_i - 1) \leq 0$, we select the subsets by order as $I_t = \{ i, i+t, \ldots, i+t+l-2 \}$ for $t = 1, 2, \ldots, q$.

Mixed integer quadratically constrained programming (MIQCP)

The MIQCP problem is of the following form:

$$\min \{ x^T Q_0 x + b_0^T x : x^T Q_i x + b_i^T x \leq c_i, i = 1, \ldots, p, \quad \text{Ax = b}, \quad 1 \leq x \leq u, x \in \mathbb{Z} \},$$

(MIQCP)

where each Q_i is a symmetric matrix of size $n \times n$, A is a matrix of size $n \times n$, b, b_i, l, u are n-dimensional vectors, and each c_i is a real number. The constraints $x^T Q_i x + b_i^T x \leq c_i$ are called quadratic constraints, the constraints $Ax = b$ are called linear constraints. The constraints $1 \leq x \leq u$ and $x \in \mathbb{Z}$ bound the variables and restrict some of them to be integers. In our benchmarks, we only consider the case where $x \in \{ 0,1 \}^n$, which is also equivalent to $x_i(x_i - 1) = 0$ for $i = 1, 2, \ldots, n$. If we only have bound constraints, then we use the same ordered heuristic as for the Max-Cut problem to select the subsets. If in addition we also have quadratic constraints or linear constraints, then the problem is dense and therefore we consider the dense sublevel hierarchy. For quadratic constraints, we don’t apply the sublevel relaxation to them, i.e., $l = q = 0$. However, if Q_i equals the identity matrix, then we use the same heuristic as the linear constraints: we select the subsets by order as $I_t = \{ t, t+1, \ldots, t+l-1 \}$ for $t = 1, 2, \ldots, q$.

Quadratically constrained quadratic problems (QCQP)

A QCQP can be cast as follows:

$$\min \{ x^T Q_0 x + b_0^T x : x^T Q_i x + b_i^T x \leq c_i, i = 1, \ldots, p, \quad Ax = b, \quad 1 \leq x \leq u \},$$

(QCQP)

where each Q_i is a symmetric matrix of size $n \times n$, A is a matrix of size $n \times n$, b, b_i, l, u are n-dimensional vectors, and each c_i is a real number. This is very similar to the MIQCP except that we drop out the integer constraints. Therefore, we use the same strategy to select the subsets in the sublevel relaxation.
4.2 Examples from deep learning

The following examples are picked from the recent deep learning topics.

Upper bounds of lipschitz constants of deep neural networks [3]

We only consider the 1-hidden layer neural network with ReLU activation function, the upper bound of whose Lipschitz constant results in a QCQP as follows:

$$
\max_{x,u,t} \{ t^T A^T \text{diag}(u) c : u(u - 1)/2, (u - 1/2)(Ax + b) \geq 0; \quad t^2 \leq 1, (x - \bar{x} + \epsilon)(x - \bar{x} - \epsilon) \leq 0 \} \quad \text{(Lip)}
$$

where A is a matrix of size $p_2 \times p_1$, \bar{x} is a p_1-dimensional vector, b, c are p_2-dimensional vectors, and ϵ is a positive real number. When $\epsilon = 10$ (resp. $\epsilon = 0.1$), we compute the upper bounds of the global (resp. local) Lipschitz constant of the neural network. Assume the matrix A is dense, then the maximal cliques in the chordal extension of $\{\text{Lip}\}$ are $I = \{x_1, \ldots, x_{p_1}; u_1, \ldots, u_{p_2}\}$ and $I_k = \{u_1, \ldots, u_{p_2}, t_k\}$ for $k = 1, \ldots, p_1$. Therefore, we consider the sparse sublevel relaxation. For the constraints $t_k^2 \leq 1$, we choose the subsets by order as $I_{k,i} = \{u_i, \ldots, u_{i+1-2}; t_k\}$ for $i = 1, \ldots, q$. For the constraints $(x_i - \bar{x}_k + \epsilon)(x_i - \bar{x}_k - \epsilon) \leq 0$, we compute the subsets by order as $I_i = \{x_k, x_{k+i}, \ldots, x_{k+i/2-2}; u_i, \ldots, u_{i+i/2-2}\}$ for $i = 1, \ldots, q$. For the constraints $u_j(u_j - 1) = 0$ and $(u_j - 1/2)(A^T x + b_j) \geq 0$, we choose the subsets by order as $I_i = \{x_i, \ldots, x_{i+i/2-1}; u_j, u_{j+i}, \ldots, u_{j+i+i/2-2}\}$ for $i = 1, \ldots, q$.

Robustness certification of deep neural networks [22]

We also consider the 1-hidden layer neural network with ReLU activation function. Then the robustness certification problem can be formulated as a QCQP as follows:

$$
\max_{x,u} \{ c^T u : u(u - Ax - b) = 0, u \geq Ax + b, u \geq 0, \quad (x - \bar{x} + \epsilon)(x - \bar{x} - \epsilon) \leq 0 \} \quad \text{(Cert)}
$$

where A is a matrix of size $p_2 \times p_1$, \bar{x} is a p_1-dimensional vector, b, c are p_2-dimensional vectors, and ϵ is a positive real number. Assume the matrix A is dense, then the maximal cliques in the chordal extension of $\{\text{Cert}\}$ are $I_k = \{x_1, \ldots, x_{p_1}; u_k\}$ for $k = 1, \ldots, p_2$. Similarly to the Lipschitz problem $\{\text{Lip}\}$, we consider the sparse sublevel relaxation. For all the constraints, we choose the subsets by order as $I_{k,i} = \{x_i, \ldots, x_{i+i-2}; u_k\}$ for $i = 1, \ldots, q$.

5 Numerical results

In this section, we apply the sublevel relaxation to different type of POPs both in optimization and deep learning, as discussed in the previous section. Most of the instances in optimization are taken from the Big-Mac library [23] and the QPLIB library [4]. others are generated randomly. We calculate the ratio of improvements (RI) of each sublevel relaxation, compared with Shor’s relaxation, namely $RI = \frac{\text{Shor-sublevel}}{\text{Shor-solution}} \times 100\%$. We also compute the relative gap (RG) between the sublevel relaxation and the optimal solution, given by $RG = \frac{\text{sublevel-solution}}{\text{solution}} \times 100\%$. For each instance, we only show the ratio of improvements and relative gap corresponding to the results of
the last sublevel relaxation. The larger the ratio of improvements or the smaller the relative gap, the better the bounds. If the optimal solution is not known so far, it is replaced by the (best-known) valid upper bounds (UB) or lower bounds (LB). We implement all the programs on Julia, and use Mosek as back-end to solve SDP relaxations. The running time (with second as unit) displayed in all tables refers to the time spent by Mosek to solve the SDP relaxation. All experiments are performed with an Intel 8-Core i7-8665U CPU @ 1.90GHz Ubuntu 18.04.5 LTS, 32GB RAM.

5.1 Examples from optimization

Max-Cut instances

The following classes of problems and their solutions are from the Biq-Mac library. For each class of problem, we choose the first instance, i.e., \(i = 0 \), and drop the suffix “.i” in Table 3:

- \(g_{05}n.i \), unweighted graphs with edge probability 0.5, \(n = 60, 80, 100 \).
- \(pm1sn.i \), \(pm1dn.i \), weighted graph with edge weights chosen uniformly from \(\{-1, 0, 1\} \) and density 10\% and 99\% respectively, \(n = 80, 100 \).
- \(wd_{n.i} \), \(pwd_{n.i} \), graph with integer edge weights chosen from \([−10, 10]\) and \([0, 10]\) respectively, density \(d = 0.1, 0.5, 0.9, n = 100 \).

The instances named \(g_n \) and the corresponding upper bounds are from the CS-TSSOS paper \[30\].

The instances named \(G_n \) are from the G-set library by Y.Y. Ye\[1\], and their best-known solutions are taken from \[8\].

In Table 2 we give a summary of basic information and the graph structure of each instance: \(nVar \) denotes the number of variables, \(Density \) denotes the percentage of non-zero elements in the adjacency matrix, \(nClique \) denotes the number of cliques in the chordal extension, \(MaxClique \) denotes the maximum size of the cliques, \(MinClique \) denotes the minimum size of the cliques.

\[1\] http://web.stanford.edu/~yyye/yyye/Gset/
Table 2: Summary of the basic information and graph structure of the Max-Cut instances.

	nVar	Density	nCliques	MaxClique	MinClique
g05_20	60	50%	12	88	37
g05_40	80	50%	12	60	28
g05_100	100	50%	13	88	37
pm1d_20	80	99%	2	79	76
pm1d_100	100	99%	2	99	95
pm1s_20	80	10%	14	37	4
pm1s_100	100	10%	14	54	4
pmw1_20	80	10%	14	54	4
pmw1_100	100	10%	14	97	83
pmw1_100	100	10%	14	97	83
pmw1_100	100	10%	14	97	83
pmw1_100	100	10%	14	97	83
pmw1_100	100	10%	14	97	83
g20	505	1.6%	369	15	1
g40	1005	0.68%	756	15	1
g60	1505	0.43%	756	15	1
g80	2005	0.30%	1556	15	1
g100	2505	0.23%	1930	15	1
g120	3005	0.19%	2383	15	1
g140	3505	0.16%	2702	15	1
g160	4005	0.13%	3131	15	1
g180	4505	0.12%	3429	15	1
g200	5005	0.11%	3886	15	1
c111	800	0.25%	595	24	5
c132	800	0.25%	595	24	5
g133	800	0.25%	595	24	5
c134	2000	0.1%	1498	76	5
c135	2000	0.1%	1498	76	5
c136	2000	0.1%	1498	76	5

In Table 2, we display the upper bounds and running times corresponding to the sublevel relaxations of depth 1, and level 0, 4, 6, 8, respectively. Notice that the authors in [2] use the partial relaxation to compute upper bounds for instances g_{20} to g_{200}. The sublevel relaxation we consider here is actually what they call the augmented partial relaxation, which is a strengthened relaxation based on partial relaxation. From the ratio of improvement, we see that the more sparse structure the graph has, the better the sublevel relaxation performs. Notice that if we obtain better upper/lower bounds than the current best-known bounds, the ratio of improvements will be larger than 100% and the relative gap will become negative. Particularly, our method provides better bounds for all the instances g_n in the CS-TSSOS paper [30], and computes upper bounds very close to the best-known solution for the instances G_n in G-set.

Moreover, if the number of variables is of moderate size, the dense sublevel relaxation might perform faster than the sparse one. For example, the instance g_{100} has 13 maximal cliques with maximum size 88 and minimum size 37. The sparse sublevel relaxation consists of 13 first-order moment matrices of size from 37 to 88. However, the dense version only consists of 1 first-order moment matrix of size 100. In fact, the dense sublevel relaxation gives an upper bound of 1463.5 at level 0 in 10 seconds, yielding the same bound as the sparse case at level 0 but with much less computing time, and 1458.1 at level 8 in 178.1 seconds, providing better bounds than the sparse case at level 6, with less computing time.
MIQCP instances

The following classes of problems and their solutions are from the Biq-Mac library, where there are neither quadratic constraints $x^TQx + b^Tx \leq c_i$ nor linear constraints $Ax = b$. We only have integer bound constraints $x \in \{0, 1\}^n$.

- **bqtn-i**, with 10% density. All the coefficients have uniformly chosen integer values in $[-100, 100]$, $n = 50, 100, 250, 500$.
- **gkaa**, with dimensions in $[30, 100]$ and densities in $[0.0625, 0.5]$. The diagonal coefficients lie in $[-100, 100]$ and the off-diagonal coefficients belong to $[-100, 100]$.
- **gkarb**, with dimensions in $[20, 125]$ and density 1. The diagonal coefficients lie in $[-63, 0]$ and the off-diagonal coefficients belong to $[0, 100]$.
- **gkai**, dimensions in $[40, 100]$ and densities in $[0.1, 0.8]$. Diagonal coefficients in $[-100, 100]$, off-diagonal coefficients in $[-50, 50]$.
- **gkad**, with dimension 100 and densities in $[0.1, 1]$. The diagonal coefficients lie in $[-75, 75]$ and the off-diagonal coefficients belong to $[-50, 50]$.

We also select some instances and their solutions from the QPLIB library with ID 0032, 0067, 0633, 2512, 3762, 5935 and 5944, in which we have additional linear constraints $Ax = b$. For the instance 0032, there are 50 continuous variables and 50 integer variables. For the two instances 5935 and 5944, we maximize the objective, the others are minimization problems.

Similarly to the Max-Cut instances, Table 4 summarizes the basic information and structures of each instance. Table 5 is a summary of basic information and the number of quadratic, linear, bound constraints of the instances from the QPLIB library.
Table 4: Summary of the basic information and sparse structure of the MIQCP instances.

Instance	nVar	Density	nCliques	MaxClique	MinClique	nQuad	nLin	nBound
bqp50-1	50	10%	36	15	3	0	0	50
bqp100-1	100	10%	52	20	3	0	0	100
gka1a	50	10%	36	15	1	0	0	50
gka2a	60	10%	44	27	3	0	0	70
gka3a	70	10%	48	33	4	0	0	80
gka4a	80	10%	48	33	4	0	0	80
gka5a	50	20%	25	26	4	0	0	50
gka6a	30	10%	11	20	7	0	0	30
gka7a	10	10%	11	20	7	0	0	10
gka8a	10	10%	11	20	7	0	0	10
gka9a	10	10%	11	20	7	0	0	10
gka10a	10	10%	11	20	7	0	0	10

Table 5: Summary of the basic information and constraint structure of the MIQCP instances from QPLIB library.

Instance	nVar	Density	nQuad	nLin	nBound
qplib0032	100	89%	0	52	100
qplib0067	80	89%	0	1	80
qplib0633	75	99%	0	75	75
qplib5935	100	28%	0	20	100
qplib5944	80	28%	0	1237	100
qplib5944	100	28%	0	2415	100

In Table 6, we show the lower bounds and running time obtained by solving the sublevel relaxations with depth 1 and level 0, 4, 6, 8, respectively. We see that when the problem has a good sparsity structure or is of low dimension, the sublevel relaxation performs very well and provides the exact solution, in particular for the two instances gka2a and gka7a. For dense problems, we are not able to find the exact solution, but still have improvements between 20% and 40% compared to Shor’s relaxation. Notice that for the instances gka1b to gka10b, even though we have an im-
The document contains statistical data and results from an experiment involving sublevel relaxations of MIQCP problems. The table presents various instances, their solution densities, and the improvement in solving times compared to Shor's relaxation. The data is structured as follows:

- **Table 6: Results obtained with sublevel relaxations of MIQCP problems.**

The table includes columns for instance names, density levels, lower and upper bounds, and solving times. The instances range from simple to complex, with densities varying from 10% to 100%. The results show significant improvements in solving times, with relative gaps ranging from 24.0% to 77.9%, indicating the effectiveness of the sublevel relaxation technique.

Max-Cliq instances

We take the same graphs as the ones considered in the Max-Cut instances. Some instances share the same adjacency matrix with different weights, in which case we delete these repeated graphs. LB denotes the lower bound of a given instance, computed by 10⁶ random samples. By contrast with sublevel relaxation, the Max-Cliq problem remains challenging.
the strategy used for the Max-Cut instances, we use sublevel relaxations with level 2 and depth 0, 20, 40, 60, respectively. From Table 7 we see that the sublevel relaxation yields large improvement compared to Shor’s relaxation. The Max-Cliq problem remains hard to solve as emphasized by the large relative gap, ranging from 662.5% to 3660%.

Table 7: Results obtained with sublevel relaxations of Max-Cliq problems.

LB	nVar	Density	nQuad	nLin	nBound	upper bounds (HI, RG)	solving time (s)
gb50	0.8	60 50%	29.9	19.3	8.3	6.4 (81.8%, 662.5%)	0.6 1.8 3.6 2.4
gb50	0.9	80 50%	39.9	29.1	20.1	8.9 (79.5%, 888.9%)	2.8 7.4 7.5 8.3
gb50	0.8	100 50%	40.0	39.1	29.9	13.4 (64.2%, 2200.0%)	6.5 30.9 31.1 33.0
pm1d	1.0	80 99%	78.2	57.5	37.6	17.9 (78.1%, 1690.0%)	2.3 5.4 9.6 4.4
pm1d	0.7	80 10%	8.9	6.2	4.6	4.6 (52.1%, 567.4%)	2.6 6.1 6.4 9.0
pw03	0.6	100 10%	10.6	8.2	5.9	5.4 (51.8%, 800.0%)	7.5 30.7 20.0 29.6
pw03	0.8	100 50%	69.8	39.7	25.9	15.9 (63.0%, 2262.5%)	7.6 21.9 24.0 26.3
pw03	0.8	100 90%	89.2	70.2	51.9	34.0 (62.5%, 3300%)	8.5 15.0 33.2 28.9

QCQP instances

We take the MIQCP instances from the Biq-Mac library with size larger or equal than 50, then add one dense quadratic constraint $||x||^2 = 1$, and relax the integer bound constraints $x \in \{0, 1\}^n$ to linear bound constraints $x \in [0, 1]^n$. UB denotes the upper bound obtained by selecting the minimum value over 10^6 random evaluations.

We also select some instances and their solutions from the QPLIB library with ID 1535, 1661, 1675, 1703 and 1773. These instances have more than one quadratic constraint and involve linear constraints.

Table 8 is a summary of basic information as well as the number of quadratic, linear, and bound constraints of the instances from the QPLIB library.

Table 8: Summary of the basic information and constraint structure of the QCQP instances from the QPLIB library.

	nVar	Density	nQuad	nLin	nBound
qplib1535	60	94%	60	6	60
qplib1601	60	95%	60	12	60
qplib1675	60	49%	60	12	60
qplib1703	60	98%	60	6	60
qplib1773	60	95%	60	6	60

In Table 9 we show the lower bounds and running time obtained by the sublevel relaxation with depth 1 for the instances from the QPLIB library, 10 for the instances adapted from the Biq-Mac library, and level 0, 4, 6, 8, respectively. We see that the sublevel relaxation yields a uniform improvement compared to Shor's relaxation. However, for the QCQP problems adapted from the MIQCP instances, it is very hard to find the exact optimal solution as the relative gap varies from 60.5% to 77.0%. This is in deep contrast with the instances from the QPLIB library which are relatively easier to solve as the relative gap varies from 9.4% to 13.8%.
5.2 Examples from deep learning

Lipschitz constant estimation

We generate random 1-hidden layer neural networks with parameters A, b, c. We denote by $\text{net}_{\epsilon, n}$ the instances of 1-hidden layer networks of size n, and compute the upper bounds corresponding to $\epsilon = 0.1, 10, \text{by the sublevel relaxations of depth 1 and level 0, 4, 6, 8, respectively}$.

We see in Table 10 that we have a relatively high improvement ratio and low gap for the global case, while Table 11 dedicated to the local case, shows that the improvement ratio is decreasing and the gap is increasing. The underlying rationale is that local Lipschitz constants of neural networks are harder to estimate than the global ones.
Table 10: Results obtained with sublevel relaxation of Lipschitz constant problems, $\epsilon = 10$.

Sol./LB	nVar	Sublevel relaxation, lv = 0/4/6/8, p = 1 (level 0 = Shor)	upper bounds (RI, RG)	solving time (s)
net_015	0.38	15	0.44/0.39/0.38/0.38	0.02/0.01/1.77/7.01
net_010	0.69	30	0.72/0.70/0.69/0.69	0.10/0.90/4.18/26.05
net_015	1.72	45	1.86/1.81/1.76/1.78	0.35/2.19/10.56/69.66
net_020	2.08	60	2.83/2.83/2.77/2.75	0.17/0.63/20.38/166.15
net_025	3.50	90	3.83/3.74/3.69/3.68	2.19/8.72/20.38/166.15
net_030	5.00	90	6.16/6.11/6.08/6.06	8.45/11.68/33.29/220.39
net_035	7.74	105	8.92/8.79/8.73/8.66	16.69/26.55/74.28/267.19
net_040	7.04	120	9.07/8.97/8.86/8.78	33.19/56.15/116.37/333.65

Table 11: Results obtained with sublevel relaxations of Lipschitz constant problems, $\epsilon = 0.1$.

Sol./LB	nVar	Sublevel relaxation, lv = 0/4/6/8, p = 1 (level 0 = Shor)	upper bounds (RI, RG)	solving time (s)
net_15	0.247	15	0.251/0.251/0.247/0.247	0.04/0.04/1.25/6.72
net_10	0.581	30	0.610/0.608/0.606/0.605	0.18/0.84/4.65/38.56
net_15	1.384	45	1.449/1.441/1.441/1.435	0.42/1.43/27.29/60.27
net_20	1.73	60	2.23/2.22/2.20/2.19	4.21/3.82/23.11/83.14
net_25	2.03	75	2.73/2.67/2.65/2.64	4.79/7.08/23.31/134.50
net_30	3.10	90	3.09/3.07/3.06/3.04	19.10/13.60/28.29/146.17
net_35	4.84	105	7.12/7.08/7.07/7.03	56.46/28.35/47.06/192.31
net_40	5.02	120	7.30/7.21/7.15/7.07	144.28/58.01/80.27/354.22

Certification instances

We use the same network net_1n as the one generated for the above Lipschitz problems, and compute the upper bounds corresponding to $\epsilon = 0.1, 10$, by the sublevel relaxations of depth 1 and level 0, 4, 6, 8, respectively.

As for the Lipschitz problem, Table 12 and 13 indicate that in the local case it is much harder to improve and find the exact optimal solution than in the global case. Furthermore, the difficulty of the problem also increases with the dimension. When the number of variables gets larger, the improvement ratio decreases while the relative gap increases.

Table 12: Results obtained with sublevel relaxations of certification problems, $\epsilon = 10$.

Sol./LB	nVar	Sublevel relaxation, lv = 0/4/6/8, p = 1 (level 0 = Shor)	upper bounds (RI, RG)	solving time (s)
net_15	2.63	10	3.51/3.00/2.74/2.74	0.01/0.01/1.79/1.83
net_10	3.49	20	4.88/4.09/4.00/4.05	0.06/0.09/4.23/30.35
net_15	5.64	30	8.20/8.10/7.84/7.41	0.19/1.02/6.93/40.41
net_20	9.24	40	16.48/16.03/15.75/15.48	0.66/2.35/9.69/67.31
net_25	14.40	50	26.68/26.28/25.89/25.57	2.24/5.67/17.40/66.99
net_30	17.62	60	35.06/34.72/34.52/34.39	5.98/14.92/24.02/102.54
net_35	26.74	70	55.18/54.64/54.28/53.90	10.69/25.79/40.96/136.35
net_40	22.94	80	57.59/56.08/54.69/54.18	25.22/44.74/65.04/146.91
net_45	22.57	90	57.56/56.34/55.67/54.68	44.67/85.88/107.12/186.94
net_50	27.34	100	73.59/72.10/71.19/69.92	81.64/144.61/165.18/333.42
Table 13: Results obtained with sublevel relaxations of certification problems, $\epsilon = 0.1$.

Obj. / LB	nVar	Sublevel relaxation, lv = 0/4/6/8, p = 1 (level 0 = Shor)	solving time (s)								
net-0-0	0.190	10	0.191	0.191	0.191	0.191	(0.00%, 0.53%)	0.01	0.13	0.74	0.73
net-1-0	0.021	20	0.025	0.025	0.025	0.024	(25.00%, 14.29%)	0.15	0.51	3.16	17.68
net-2-0	0.027	30	0.053	0.053	0.053	0.053	(0.00%, 96.00%)	0.17	0.55	2.82	17.01
net-3-0	0.269	40	0.299	0.299	0.299	0.298	(3.33%, 10.78%)	0.79	2.36	7.83	40.08
net-4-0	0.104	50	0.129	0.128	0.131	0.131	(7.59%, 40.19%)	2.37	8.77	13.22	54.81
net-5-0	0.669	60	0.810	0.807	0.806	0.803	(4.96%, 20.03%)	6.34	10.66	21.85	84.82
net-6-0	0.825	70	1.107	1.107	1.107	1.107	(0.00%, 34.18%)	12.61	18.44	34.07	102.26
net-7-0	0.741	80	0.949	0.943	0.942	0.940	(4.33%, 26.86%)	34.70	52.44	56.64	163.67
net-8-0	0.285	90	0.603	0.602	0.600	0.599	(1.18%, 126.04%)	85.99	89.39	115.78	206.94
net-9-0	0.914	100	0.920	0.919	0.916	0.914	(1.96%, 48.86%)	105.68	194.41	194.64	400.68

The two latter examples show us that finding the guaranteed bounds for optimization problems arising from deep learning is much harder than the usual sparse problems coming from the classical optimization literature. Hence, it remains a big challenge to adapt our approach to large real networks, involving a large number of variables and more complicated structures such as convolutional or max-pooling layers.

6 Conclusion

In this paper, we propose a new semidefinite programming hierarchy based on the standard dense and sparse Lasserre’s hierarchies. This hierarchy provides a wider choice of intermediate relaxation levels, lying between the d-th and $(d + 1)$-th order relaxations in Lasserre’s hierarchy. With this technique, we are able to solve problems where the standard relaxations are untractable. Our experimental results demonstrate that the sublevel relaxation often allows one to compute more accurate bounds by comparison with existing frameworks such as Shor’s relaxation or term sparsity, in particular for dense problems.

Sublevel relaxations offer a large choice of parameters tuning, as one can select the level, depth, and subsets for each relaxation. We can benefit from this to potentially perform better than state-of-the-art methods. However, the flexibility of our approach also comes together with a drawback since the more flexible it is, the more difficult for the users it is to tune the parameters. One important and interesting future topic would be to design an algorithm that searches for the optimal level, depth and subsets in sublevel relaxations.

Acknowledgement

This work has benefited from the Tremplin ERC Stg Grant ANR-18-ERC2-0004-01 (T-COPS project), the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions, grant agreement 813211 (POEMA) as well as from the AI Interdisciplinary Institute ANITI funding, through the French “Investing for the Future PIA3” program under the Grant agreement n° ANR-19-P3A-0004. The third author was supported by the FMJH Program PGMO (EPICS project) and EDF, Thales, Orange et Criteo. The fourth author acknowledges the support of Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant numbers FA9550-19-1-7026, FA9550-18-1-0226, and ANR MasDol.
References

[1] Thomas Barthel and Robert Hübener. Solving condensed-matter ground-state problems by semidefinite relaxations. Physical Review Letters, 108(20), May 2012.

[2] Juan S Campos, Ruth Misener, and Panos Parpas. Partial Lasserre relaxation for sparse Max-Cut. 2020.

[3] Tong Chen, Jean B Lasserre, Victor Magron, and Edouard Pauwels. Semialgebraic Optimization for Lipschitz Constants of ReLU Networks. Advances in Neural Information Processing Systems, 33, 2020.

[4] Fabio Furini, Emiliano Traversi, Pietro Belotti, Antonio Frangioni, Ambros Gleixner, Nick Gould, Leo Liberti, Andrea Lodi, Ruth Misener, Hans Mittelmann, et al. Qplib: a library of quadratic programming instances. Mathematical Programming Computation, 11(2):237–265, 2019.

[5] Arbel Haim, Richard Kueng, and Gil Refael. Variational-correlations approach to quantum many-body problems, 2020.

[6] Cédric Josz and Daniel K Molzahn. Lasserre hierarchy for large scale polynomial optimization in real and complex variables. SIAM Journal on Optimization, 28(2):1017–1048, 2018.

[7] Igor Klep, Victor Magron, and Janez Povh. Sparse noncommutative polynomial optimization, 2019.

[8] Gary A Kochenberger, Jin-Kao Hao, Zhipeng Lü, Haibo Wang, and Fred Glover. Solving large scale max cut problems via tabu search. Journal of Heuristics, 19(4):565–571, 2013.

[9] Jean B Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on optimization, 11(3):796–817, 2001.

[10] Jean B Lasserre. Convergent sdp-relaxations in polynomial optimization with sparsity. SIAM Journal on Optimization, 17(3):822–843, 2006.

[11] Jean B Lasserre, Kim-Chuan Toh, and Shouguang Yang. A bounded degree sos hierarchy for polynomial optimization. EURO Journal on Computational Optimization, 5(1-2):87–117, 2017.

[12] Jean Bernard Lasserre. An introduction to polynomial and semi-algebraic optimization, volume 52. Cambridge University Press, 2015.

[13] Monique Laurent. A comparison of the sherali-adams, lovász-schrijver, and lasserre relaxations for 0–1 programming. Mathematics of Operations Research, 28(3):470–496, 2003.

[14] Victor Magron. Interval enclosures of upper bounds of roundoff errors using semidefinite programming. ACM Transactions on Mathematical Software (TOMS), 44(4):1–18, 2018.

[15] Victor Magron, George Constantinides, and Alastair Donaldson. Certified roundoff error bounds using semidefinite programming. ACM Transactions on Mathematical Software (TOMS), 43(4):1–31, 2017.
[16] Ngoc Hoang Anh Mai, Victor Magron, and Jean-Bernard Lasserre. A sparse version of Reznick’s Positivstellensatz, 2020.

[17] A. Majumdar, A. A. Ahmadi, and R. Tedrake. Control and verification of high-dimensional systems with DSOS and SDSOS programming. In Proceedings of the 53rd IEEE Conference on Decision and Control, pages 394–401. IEEE, 2014.

[18] Jiawang Nie. Optimality conditions and finite convergence of Lasserre’s hierarchy. Mathematical programming, 146(1-2):97–121, 2014.

[19] Panos M. Pardalos and A. T. Phillips. A global optimization approach for solving the maximum clique problem. International Journal of Computer Mathematics, 33(3-4):209–216, 1990.

[20] Mihai Putinar. Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics Journal, 42(3):969–984, 1993.

[21] Károly F. Pál and Tamás Vértesi. Quantum bounds on Bell inequalities. Physical Review A, 79(2), Feb 2009.

[22] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for certifying robustness to adversarial examples. In Advances in Neural Information Processing Systems, pages 10877–10887, 2018.

[23] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. A branch and bound algorithm for Max-Cut based on combining semidefinite and polyhedral relaxations. In International Conference on Integer Programming and Combinatorial Optimization, pages 295–309. Springer, 2007.

[24] Corbinian Schlosser and Milan Korda. Sparse moment-sum-of-squares relaxations for nonlinear dynamical systems with guaranteed convergence. arXiv preprint arXiv:2012.05572, 2020.

[25] Matteo Tacchi, Carmen Cardozo, Didier Henrion, and Jean Lasserre. Approximating regions of attraction of a sparse polynomial differential system. arXiv preprint arXiv:1911.09500, 2019.

[26] Matteo Tacchi, Tillmann Weisser, Jean-Bernard Lasserre, and Didier Henrion. Exploiting sparsity for semi-algebraic set volume computation, 2019.

[27] Hayato Waki, Sunyoung Kim, Masakazu Kojima, and Masakazu Muramatsu. Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM Journal on Optimization, 17(1):218–242, 2006.

[28] Jie Wang, Martina Maggio, and Victor Magron. SparseJSR: A Fast Algorithm to Compute Joint Spectral Radius via Sparse SOS Decompositions. arXiv preprint arXiv:2008.11444, 2020.

[29] Jie Wang and Victor Magron. Exploiting term sparsity in noncommutative polynomial optimization. arXiv preprint arXiv:2010.06956, 2020.

[30] Jie Wang, Victor Magron, Jean B Lasserre, and Ngoc Hoang Anh Mai. CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization. arXiv preprint arXiv:2005.02828, 2020.
[31] Jie Wang, Victor Magron, and Jean-Bernard Lasserre. Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension. *SIAM Journal on Optimization*, 31(1):114–141, 2021.

[32] Jie Wang, Victor Magron, and Jean-Bernard Lasserre. TSSOS: A Moment-SOS hierarchy that exploits term sparsity. *SIAM Journal on Optimization*, 31(1):30–58, 2021.

[33] Tillmann Weisser, Jean B Lasserre, and Kim-Chuan Toh. Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity. *Mathematical Programming Computation*, 10(1):1–32, 2018.