Evaluation of the anti-diabetic drug sitagliptin as a novel attenuate to SARS-CoV-2 evidence-based in silico: molecular docking and molecular dynamics

José Ednésio da Cruz Freire1,2,3 · José Edvar Monteiro Júnior4 · Daniel Pascoalino Pinheiro5 · Grayce Ellen da Cruz Paiva Lima1,2,3,6 · Camila Lopes do Amaral1,2,3 · Victor Rezende Veras1,2 · Mayara Ponte Madeira1,2,3,7 · Erika Bastos Lima Freire1,2,3,7 · Renan Galvão Ozório1,2 · Virgínia Oliveira Fernandes1,2,3,8 · Ana Paula Dias Rangel Montenegro1 · Raquel Carvalho Montenegro2 · Jeová Keny Baima Colares3 · Renan Magalhães Montenegro Júnior1,2,3,8

Received: 30 July 2022 / Accepted: 30 September 2022 / Published online: 7 November 2022 © King Abdulaziz City for Science and Technology 2022

Abstract
The current outbreak of COVID-19 cases worldwide has been responsible for a significant number of deaths, especially in hospitalized patients suffering from comorbidities, such as obesity, diabetes, hypertension. The disease not only has prompted an interest in the pathophysiology, but also it has propelled a massive race to find new anti-SARS-CoV-2 drugs. In this scenario, known drugs commonly used to treat other diseases have been suggested as alternative or complementary therapeutics. Herein we propose the use of sitagliptin, an inhibitor of dipeptidyl peptidase-4 (DPP4) used to treat type-II diabetes, as an agent to block and inhibit the activity of two proteases, 3CLpro and PLpro, related to the processing of SARS-CoV-2 structural proteins. Inhibition of these proteases may possibly reduce the viral load and infection on the host by hampering the synthesis of new viruses, thus promoting a better outcome. In silico assays consisting in the modeling of the ligand sitagliptin and evaluation of its capacity to interact with 3CLpro and PLpro through the prediction of the ligand bioactivity, molecular docking, overlapping of crystal structures, and molecular dynamic simulations were conducted. The experiments indicate that sitagliptin can interact and bind to both targets. However, this interaction seems to be stronger and more stable to 3CLpro ($\Delta G = -7.8$ kcal mol$^{-1}$), when compared to PLpro ($\Delta G = -7.5$ kcal mol$^{-1}$). This study suggests that sitagliptin may be suitable to treat COVID-19 patients, beyond its common use as an anti-diabetic medication. In vivo studies may further support this hypothesis.

Keywords COVID-19 · iDPP4 · Sitagliptin · 3CLpro · PLpro · Anti-SARS-CoV-2

Introduction
The 2019 coronavirus disease (COVID-19) was first reported in Wuhan, China, and it is caused by a novel β-Coronavirus, a zoonotic emerging pathogen identified in 2019. Systemic complications associated with COVID-19 disease, usually involve gastrointestinal infections, renal injury, heart failure (Amaral et al. 2022), leading to a relatively high mortality rate. Since the clinical manifestations of this disease resemble those caused by the classic SARS-CoV virus, the new pathogen was named SARS-CoV-2. COVID-19 has been reported as the most devastating outbreak known to humans to date being responsible (Singh et al. 2021, 2022), only in Brazil, for a total of 683,965 deaths (https://covid.saude.gov.br/), until August 2022.

All CoVs are featured by a positive single-stranded RNA (Freire et al. 2020), and the increased lethality of this group is partly related to the presence of a high mutation rate due to their propensity to errors during the replication. In addition, it has been shown that during the infection, a mixture of different CoVs viral strains commonly causes an RNA homologous recombination of around 20% (Denison et al. 2011), which is assumed to explain the high tropism and pathogenicity the virus presents to the host (Cui et al. 2019).
Most CoVs, including SARS-CoV-2, use the C-terminal domain (CTD) of S subunit of the glycoprotein spike to bind to the angiotensin-converting enzyme 2 (ACE2). The high affinity of the CTD to ACE2 induces the virus-cell fusion (Huang et al. 2020) that later may result in serious organic disorders or death. SARS-CoV-2 is also capable to bind and interact with the transmembrane protease DPP4/CD26 (dipeptidyl peptidase 4), and this has been proposed as an alternative pathway the virus may use to enter the host cell (Li et al. 2020). DPP4 functions as a chemical modulator for several other molecules, such as cytokines, chemokines and growth factors, and some studies have reported that a high incidence of mortality and complications in diabetic patients suffering from MERS-CoV (a virus similar to SARS-CoV-2) infection may be related to dysregulated immune responses mediated by the DPP4 (Li et al. 2017; Fan et al. 2018).

Gliptins are a class of oral antihyperglycemic agents with demonstrated efficacy in the treatment of type-II diabetes (Scheen 2013) acting as DPP4 inhibitors (iDPP4). Sitagliptin is a member of the gliptin family that beyond its anti-diabetic effects presents low cardiovascular risks (Green et al. 2015; Yoshikawa et al. 2020). Considering that DPP4 is an additional receptor which SARS-CoV-2 may recognize to enter the host cells, we propose that an iDPP4, as sitagliptin, may act as an antiviral drug. In fact, a recent paper has shown that sitagliptin significantly reduced SARS-CoV-2 titer in cell culture supernatants from infected cells (Narayan et al. 2022).

Once inside the cell SARS-CoV-2 uses two key proteases, a chymotrypsin-like protease (3CLpro), and a papain-like protease (PLpro), to process the precursors of its 16 non-structural proteins (NSPs) (Yilmaz et al. 2020; Ravi et al. 2022; Yavarian et al. 2022), by a cascade of cleavage process as schematized in Fig. 1. Thus, the roles of 3CLpro and PLpro are of critical importance to the successful of the viral infection, making these proteases important targets to antiviral drugs addressing to SARS-CoV-2.

The discovery and development of drugs against any disease or a target is a cumbersome and time-demanding task. On the other hand, as observed in several cases around the world, many clinical professionals have reported the use of the repositioning approach (off label treatment) to treat COVID-19 patients (Abd-Elsalam et al. 2021; Kashour et al. 2021; Amaral et al. 2022); therefore, the aim of this work was to carried out a detailed in silico analysis to evaluate the potential of the molecule sitagliptin as bifunctional candidate to be used as a new anti-SARS-CoV-2 drug targeting not only the human DPP4, but also the 3CLpro and PLpro SARS-CoV-2 proteases.

Methods

Domain analysis and linker prediction of the target receptors

The structures and amino acid sequences of the papain-like protease PLpro from SARS-CoV (Ratia et al. 2006) and chymotrypsin-like protease - 3CLpro (Su et al. 2020) from SARS-CoV-2 (Accession PDB IDs: 2FE8 and 6M2N, respectively) were downloaded in.pdb and .fasta formats from the Protein Data Bank (Burley et al. 2021). In order to identify possible boundary domains as well as to predict linker sequences, the amino acids sequences of PLpro and 3CLpro were submitted to the following servers: Database of Protein Domains, Families and Functional Sites - Prosite (Sigrist et al. 2012), Conserved Domains Database and Resources - CDD (Lu et al. 2020), and Classification of Protein Families - InterPro (Blum et al. 2021). The algorithms employed by FTSite (Ngan et al. 2012), FTMap (Kozakov et al. 2015), and CASTp (Tian et al. 2018) servers were used to identify the interaction regions (hotspots).

Ligand design, bioactivity prediction, and molecular docking studies

The structure of the ligand (sitagliptin) was designed with the software MarvinSketch 6.2.2 (ChemAxon - http://www.chemaxon.com/products/marvin/marvinsketch/). The output file was submitted to Molinspiration Virtual Screening (www.molinspiration.com) and ChEMBL (Mendez et al. 2019) servers to calculate the molecular properties and bioactivity score of sitagliptin.

Docking simulations were conducted with the AutoDock Vina software v. 1.1.2 (Trott and Olson 2010). Initially, in order to validate our molecular docking, site-directed redocking simulations were carried out under conditions where all the torsion connections of the ligand and amino acids present in the catalytic site of the receptor were free to rotate. All hydrogen polar atoms were previously added to the receptor and then parameterized with Gasteiger charges. The ligand was prepared by addition of Kollman charges. The simulation has been performed in the following conditions: number of conformations = 50, exhaustiveness = 33, and seed = 1000. The dimensions of the boxes in all cases were: X = 58 Å, Y = 80 Å, and Z = 62 Å. The crystal structure (PDB ID: 6M2N) of 3CLpro co-crystallized with the ligand baicalein was used for this challenge. Afterward, simulations employing the same strategy were performed using the ligand and the crystal structures of both the PLpro and 3CLpro as targets. Predictions made by CASTp, FTMap, and FTSite servers
were also used to determine the selected sites in PLpro and 3CLpro proteases for the molecular docking simulations. All torsional bonds of the ligand (sitagliptin) were free to rotate, whereas the PLpro protease was held rigid except for the amino acids Trp107, Asp109, Cys112, Tyr113, Cys163, Gly164, Tyr265, Tyr269, Gln270, Cys271, His273, Tyr274, and Asp287. Similarly, the amino acids from 3CLpro protease (Thr25, Thr26, Leu27, Arg40, His41, Val42, Met49, Asn142, Gly143, Ser144, Cys145, His163, His164, Glu166, and Gln189) were kept free to rotate. The following coordinates: $X = -20.941$, $Y = 50.041$, and $Z = -2.974$ to the PLpro, and $X = 115.371$, $Y = -17.804$, and $Z = 62.399$ to the 3CLpro were used based on the predicted hotspots.
Molecular dynamics simulation and schematic representations

Sitagliptin-PLpro and sitagliptin-3CLpro complexes presenting the lowest binding energy according to docking simulations were submitted to stability tests by MD analysis using the GROMACS package, version 2019.5 (Abraham et al. 2015). The electroneutrality of both complexes was maintained by adding Na+ ions in the required amounts. System solvation was conducted using SPC/E (extended simple point charge model) water molecules in a periodic box (90×90×90 nm3 volume) containing buffer to enable substantial fluctuations of the conformation during MD simulations. MD simulations were performed using the GROMOS 54a7 force field, a force field recently developed from three previous force fields (GROMOS 45A3, 53A6, and 54A7), and validated to simulate the folding equilibrium of β-peptides (as in the case of sitagliptin). The energy minimization (2000 steps steepest descent followed by 200-ps-long MD simulation) was performed before initiating MD simulations to remove initial steric clashes. MD simulations were performed under constant pressure using anisotropic diagonal position scaling with a time step of 0.002 ps. The electrostatic interactions were assessed based on the principle of PME (Particle Mesh Ewald) previously defined with short-range cutoffs of 1.2 nm (Essmann et al. 1995). The temperature of the system was parameterized to gradually increase from 100 up to 310 K at 1 bar pressure in 1000 ps. The Berendsen weak-coupling algorithm (Berendsen et al. 1984) with a constant time of 0.2 ps was used. The LINCS algorithm (Hess 2008) was used to constrain the equilibrium distances between all bonds allowing only internal motions of bending and torsion during MD simulations. Finally, the 25-ns MD simulations were performed under the same conditions as the equilibration procedure.

Two-dimensional representations of the best ligand–protein complexes based on the theoretical binding energy value were generated using the ProteinsPlus server (Schöning-Stierand et al. 2020). The software PyMol Molecular Graphics System, version 1.7.4 (Schrodinger, LLC), and the Protein–Ligand Interaction Profiler server (Adasme et al. 2021) were used to build the three-dimensional structures.

Results

Domain analysis and linker prediction of the target receptors

CDD-based annotation data showed that PLpro belongs to the conserved protein domain family CoV-NSP\textsubscript{3}, also called β-\textit{Coronavirus} non-structural protein 3, whereas 3CLpro is a member of the conserved protein domain family CoV-NSP\textsubscript{5}, also called β-\textit{Coronavirus} non-structural protein 5, or Main protease (Mpro). The analyses of the CDD-based annotation to PLpro and 3CLpro showed predictions with confidence indices in accordance with data previously presented: E-value (208-177, and 080), Bit-Score (492.10, and 565.11), and interval (4 to 306, and 4 to 300 amino acids residues), respectively. All data reported above are in agreement with the predictions obtained by Prosite and InterPro servers. Mapping based of binding hotspots data showed that PLpro presents only one organic probe cluster (site1), whereas for the 3CLpro the results suggest the existence of four organic probe clusters (site1, site2, site3, and site4). The position of the interaction sites on both receptors identified here (PLpro and 3CLpro) did not differ from those previously reported (Abdizadeh et al. 2022; Zhao et al. 2022).

Ligand bioactivity prediction

In silico predictions of sitagliptin bioactivity using Molinspiration Virtual Screening provided a score of 0.56, suggesting that this ligand can inhibit a broad range of proteases. In addition, the analysis returned a score of 0.25 which suggests that sitagliptin can bind to the G protein-coupled receptors (GPCR), while presented a reduced inhibitory activity against kinases, score of 0.01. The bioactivity of the whole ligand is predicted as the sum of the bioactivity scores of all individual fragments (a number typically ranging from -3 to 3). The results obtained from the ChEMBL server, indicated a significative pharmacological activity against the human DPP\textsubscript{4}, as indicated by confidence score values of 70%, 80%, and 90%, with a threshold value of 6. Furthermore, the analyses also suggested a probable interaction between sitagliptin and the viral proteins: \textit{Human Immunodeficiency virus} - 1 integrase, and the RNA-dependent RNA polymerase from \textit{Hepatitis C virus} NS\textsubscript{4B}, as showed by a confidence score value of 90%, also determined by a threshold value of 6 (Table 1).

Molecular docking studies and Molecular Dynamics

Molecular docking and molecular dynamics study: PLpro and 3CLpro proteases and the ligand sitagliptin

A total of 20 simulations (molecular docking) were performed for both systems: PLpro-sitagliptin and 3CLpro-sitagliptin. Molecular docking experiments for PLpro-sitagliptin and 3CLpro-sitagliptin returned best performance Δ\textit{G} = −7.5 and Δ\textit{G} = −7.8 kcal mol-1, respectively. It is important to note that Δ\textit{G} values represent the combined result of the van der Waals dispersive and electrostatic interaction energy which indicates the approximate binding energy between ligand and receptor.
Molecular dynamics (MD) analysis demonstrated that some amino acids of the active site of PL-pro and 3CL-pro were capable to interact with sitagliptin, keeping a maximum distance of ligation of around 4.0 Å. After MD has been finalized, around 53.8% of PL-pro amino acid residues that were kept flexible during docking simulations (Trp107, Cys112, Tyr113, Gly164, Gln270, His273, and Asp287) interacted with sitagliptin. From all the residues that were allowed to be flexible in 3CL-pro (Thr26, His41, Gly143, Cys145, His163, Gln189, Gly164, and Gln270), 43% showed some interaction with the ligand (Figs. 2a, b, 3a, b). The MD results show that both PL-pro-sitagliptin and 3CL-pro-sitagliptin complexes encompass a network characterized by the presence of charge and aromatic ring centers, hydrophobic interactions, hydrogen bonds, and π-cation (Figs. 2c, d, 3c, d, and Supplementary materials 1 and 2).

Figure 4 compares the root-mean-square deviation (RMSD) and the radius of gyration (Rg) of PL-pro and 3CL-pro uncompleted or completed with the ligand. A steady RMSD of around 0.2 nm during all the simulation time (25 ns) was observed for 3CL-pro (Fig. 4c), while a slight variation on the stability of the PL-pro-sitagliptin complex has been observed, especially in the range of 15–25 ns (Fig. 4a). This result suggests that, as a target, PL-pro appears to have less affinity to sitagliptin than 3CL-pro, despite both proteins had shown similar ligation energies with ΔG values of −7.8 and −7.5 kcal mol⁻¹, for 3CL-pro and PL-pro, respectively. The variation on the Rg as a function of time of simulation was also a little different in both systems with the PL-pro-sitagliptin complex displaying a profile that likely indicates a more compact and rigid folding of the target protein (Fig. 4b). In contrast, the 3L-pro-sitagliptin complex showed a more relaxed and favorable conformation which is observed by the tendency of increase in the Rg values when compared to the non-complexed (uncompleted) target, mainly at the final nanoseconds of the simulation (Fig. 4d). All together these results suggest that 3CL-pro seemingly behaves as a better target for sitagliptin than PL-pro which clearly displayed a less stable interaction.

Discussion

Pockets and cavities in receptors usually coincide with the active sites responsible for the biological processes; therefore, it is fundamental to pay close attention to them. The precise mapping of binding hotspots for macromolecules was determined for the catalytic pockets of SARS-CoV-2 PL-pro and 3CL-pro proteases, after the analysis of different positions with small organic molecules as probes. Canonical, hotspots are regions on the surface of a protein with the major contributions to the ligand binding free energy. The combination of the results obtained in our work revealed the presence of three “hotspots” in PL-pro (Fig. 2a) and one “hotspot” in 3CL-pro (Fig. 3a) as regions that can contribute to the ligand binding free energy (Gibbs free energy).

On the other hand, in silico prediction of sitagliptin ligand, using the Molinspiration Virtual Screening, indicated a bioactivity score of 0.56, suggesting that interactions between this ligand can occur with multiple proteases. As previously reported, sitagliptin appears to be a potent inhibitor of this group of enzymes (Chittepu et al. 2019; Abbas and Hegazy 2020; Solerte et al. 2020). Furthermore, the analysis with Molinspiration also suggested that sitagliptin has the ability (0.25) to bind to G protein-coupled receptors (GPCR) and poor capacity to inhibit protein kinases (0.01). Analysis using the ChEMBL server (Mendez et al. 2019) suggested a possible activity of sitagliptin against proteases belonging to two human viruses (Table 1). A previous study reported that the use of gliptins in the treatment of type-II diabetes attenuated the risk of several kind of infections including human viral infections (Yang et al. 2016). Based on the analysis presented by the ChEMBL server the sitagliptin was predicted to be able to bind and inhibit two viral proteins: an integrase from *Hepatitis C virus* and an RNA-dependent RNA polymerase from *Hepatitis C virus NS5B*, with a confidence score value of 90%, according to a confidence level greater than 30%. Other reports have demonstrated a correlation among sitagliptin, diabetes, and HIV infection (Best et al. 2015). Taking together these results

Table 1

The table shows ChEMBL targets which are predicted to interact with sitagliptin (ChEMBL1422).

Target protein	Source	Conf. 70%	Conf. 80%	Conf. 90%	Activity threshold
Dipeptidyl peptidase IV Integrase	Homo sapiens	Active	Active	Active	6
	Human immuno-deficiency virus - 1	Empty	Empty	Active	6
RNA-dependent RNA polymerase	Hepatitis C virus	Empty	Empty	Active	6

The target prediction returns four classes: ‘active’ or ‘inactive’ depending on whether the ligand is predicted to interact or not with the target. The value returned can also be ‘empty’ if the model was not able to predict the compound or ‘both’ if it could not conclude. The predictions are given at three different confidence levels. More information on the methodology is available at: https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0325-4
are in agreement with our findings. In addition, the server showed that sitagliptin is also capable to bind and inhibit the human DPP₄, as expected, as demonstrated by a confidence level greater than 30%.

Here, we show that the catalytic site of PLₚro contains an active site formed by the classic catalytic triad (Cys¹¹², His²⁷₃, and Asp²₈⁷) which are well conserved in terms of positioning and functionality at the interface of the thumb and palm sub-domains (Supplementary material 1). When the catalytic site of PLₚro is not occupied by a ligand, the Cys¹¹² is positioned at the N-terminal region of an α-helix α₄ in the thumb domain with the side chain sulfur atom being stabilized at a 3.7 Å distance from the pros(π)-nitrogen atom of the His²⁷₃ residue. This histidine is located at the foot of the palm domain, near to the flexible loop BL₂, also known as Gly³⁶⁷–Gly³⁷² loop (Ratia et al. 2006) or β-turn (Báez-Santos et al. 2014). In contrast, one of the oxygen atoms of the side chain of Asp²₈⁷ is located at a 2.7 Å distance from the tele(τ)-nitrogen of the His²⁷₃ residue at the foot of the palm domain, while the side chain of Trp¹⁰⁷ is buried inside the oxyanion hole. In addition, the indole-ring nitrogen of Trp¹⁰⁷ seems to be pivotal for the stabilization of negatively charged tetrahedral intermediates produced throughout the reaction. Remarkably, in vitro experiments using PLₚro protease inhibitors showed that those inhibitors were prone to interact and bind in a cavity next to the catalytic triad (Báez-Santos et al. 2014).

Our results suggest that SARS-CoV-2 protease PLₚro can be a potential receptor for the sitagliptin ligand, as verified by the binding free energy of the interaction.
The results point to a molecular mechanism of interaction by which sitagliptin forms a covalent adduct with PLpro protease through direct interaction with the Cys^{112} residue with high statistic confidence. The stable binding between the nitrile group of Cys^{112} and sitagliptin molecule would result in an inhibition of the PLpro activity (Supplementary material 2), thereby potentially inhibiting the natural pathway of SARS-CoV-2 replication. A number of compounds have been identified, using in silico approaches, as potential inhibitors of the PLpro catalytic site (Table 2), with Gibbs free energy ranging from −10.9 to −6.5 kcal mol⁻¹. Therefore, the Gibbs free energy obtained in our analysis is in agreement with previous analysis which used the PLpro protease as a ligand receptor. Different scientific approaches have demonstrated that negative functional implications of the innate immune response during SARS-CoV-2 infection can occur due to the presence of the PLpro. In so many cases, PLpro have been implicated in functions such as deubiquitinating (DUB) and deISGylating (deISG) during cellular infection by SARS-CoV-2, removing the ubiquitin (Ub) using a chemical mechanism similar to the ubiquitin-like protein ISG15–interferon-stimulated gene 15 (Clasman et al. 2020). Therefore, increasing pools of ISG15 are capable of modulation by downregulating USP18 (ubiquitin-specific protease 18) levels, resulting, in turn, in the upregulation of IFN-α/β exacerbated signaling in COVID-19 patients (Mielech et al. 2014; Speer et al. 2016; Moustaqil et al. 2021).

In addition, inhibition of the synthesis of cytokines involved in the activation of the host’s innate immune response during SARS-CoV-2 infection can occur due to the presence of the PLpro.
response against the SARS-CoV-2, and chemokines such as CCL5 and CXCL10, seems to be associated with the presence of PLpro (Báez-Santos et al. 2015). On the other hand, the increase in C-reactive protein (CRP) and inflammatory factors in the plasma, like the interleukins IL2, IL4, IL6, IL7, IL10, IL12, IL13, IL17, TNF-α, GCSF, M-CSF, IP-10, MCP1, and HGF can trigger a cytokine storm in the body of critical patients affected by SARS-CoV-2 (Guo et al. 2020; Prompetchara et al. 2020; Singhal, 2020; Zu et al. 2020). Therefore, the discovery of new therapeutics and/or drug repositioning approaches intended to inhibit the PLpro protease (SARS-CoV-2) are of great interest to prevent the emergence of new cases of COVID-19, since the number of cases grows up all over the world.

In addition to PLpro, SARS-CoV-2 3CLpro protease may also trigger some negative effects to the organism of infected patients such as the antagonization of IFN-stimulated response elements - ISRE (Wu et al. 2020; McGill et al. 2021; Moustaqil et al. 2021), cleavage of both the NF-kappa β essential modulator (NEMO), and the signal transducer and activator of transcription 2 - STAT 2 (Fehr et al. 2016; Chen et al. 2019) resulting in the downregulation of

Table 2 In silico studies reporting molecules potentially able to inhibit SARS-CoV-2 PLpro protease

PubChem Cid	ΔG (kcal mol⁻¹)	Interacting residues	Refs
Darunavir (24941262)	−8.7	Lys₁⁰⁵, Trp¹⁰⁶, Leu¹⁶², Asp¹⁶⁴, Pro²⁴⁸, Tyr²⁶⁴, Asn²⁶⁷, Tyr²⁶⁸, Asp²⁷⁰, Ala²⁸⁸	Li et al. (2021)
Cyanidin-3O-glucoside (165558)	−9.4	Lys¹⁵⁷, Leu¹⁶², Asp¹⁶⁴, Arg¹⁶⁶, Glu¹⁶⁷, Tyr²⁶⁴, Tyr²⁶⁸, Gln²⁶⁹, Gly²⁷¹, Thr³⁰¹	Pitsillou et al. (2020)
Hypericin (3663)	−6.5	Leu¹⁶², Gly¹⁶³, Asp¹⁶⁴, Tyr²⁶⁴, Tyr²⁶⁸, Gln²⁶⁹, Gly²⁷¹, Tyr²⁷³	Pitsillou et al. (2020)
Rutin (5280805)	−10.9	Asp¹⁶⁴, Arg¹⁶⁶, Glu¹⁶⁷, Tyr²⁶⁴, Tyr²⁶⁸, Gln²⁶⁹, Gly²⁷¹, Thr³⁰¹	Pitsillou et al. (2020)
(−)-epigallocatechin gallate (65064)	−7.9	Lys¹⁵⁷, Asp¹⁶⁴, Arg¹⁶⁶, Glu¹⁶⁷, Tyr²⁶⁴, Tyr²⁶⁸, Gln²⁶⁹, Gly²⁷¹, Thr³⁰¹	Pitsillou et al. (2020)
Stock 1N69160 (33201386)	−8.4	Gly¹⁶⁴, Asp¹⁶⁵, Arg¹⁶⁷, Tyr²⁶⁵, Tyr²⁶⁹, Gln²⁷⁰	Elekofehinti et al. (2021)
Quercetin 374-triglucoside-44259184	−8.6	Leu¹¹¹, Ser²¹², Tyr²¹³, Glu²ⁱ⁴, Lys²¹⁷, Tyr²⁵¹, Glu²⁵², Lys²⁵⁴, Gly²⁵⁶, Thr²⁵⁷, Phe²⁵⁸, Thr²⁵⁹, Ser²⁷⁸, Lys²⁷⁹, Tyr²⁸⁵, Lys³⁰⁶, Gln³⁰⁷, Asn³⁰⁸, Ser³⁰⁹, Tyr³¹⁰	Adegbola et al. (2021)
Isorhamnetin 4-glucoside (44259381)	−8.9	Tyr²¹³, Glu²¹⁵, Lys²¹⁷, Tyr²⁵¹, Glu²⁵², Leu²⁵³, Lys²⁵⁴, Thr²⁵⁷, Phe²⁵⁸, Tyr²⁵⁹, Lys³⁰⁶, Gln³⁰⁷, Tyr³¹⁰	Adegbola et al. (2021)
IGSs, and the interaction with E3 ligase of tripartite motif-containing protein 25 - TRIM25 (Wu et al. 2020), and the interferon regulatory factor 3 - IRF3 (Moustaqil et al. 2021). Intriguingly, 3CLpro was also able to induce changes in the metabolism of the phosphorylation of IFN-mediated STAT\textsubscript{1}, resulting in metabolic damage due to a localized increase in the levels of autophagosomal membrane proteins - LC\textsubscript{3}B (Xia et al. 2020).

Furthermore, it was previously documented that 3CLpro is capable of inducing the cleavage of NLR family pyrin domain containing 12 (NLPR\textsubscript{12}) and TGF-β activated kinase 1 (MAP\textsubscript{3}K\textsubscript{2}) binding protein 1 (TAB\textsubscript{1}), as well as to induce an intense synthesis of cytokines and accentuated inflammatory response in SARS-CoV-2-infected patients (Moustaqil et al. 2021).

Analysis of the 3CLpro catalytic site showed a general topology quasi-ellipsoid due to the presence of three distinct domains (named domain I, domain II, and domain III), which are connected with flexible loops, being domains I and II related to the catalytic activity, and domain III to dimerization (Shi et al. 2004; Wang et al. 2020). The catalytic dyad His-Cys (His41 and Cys145) of 3CLpro, as previously reported in the literature (Yang et al. 2003; Das et al. 2020; Tahir ul Qamar et al. 2020), is located in a relatively shallow cavity between domains I and II defining the catalytic site (Supplementary material 3), to an optimum distance in the levels of autophagosomal membrane proteins - LC\textsubscript{3}B (Xia et al. 2020).

When the catalytic site of 3CLpro is not occupied by a ligand, the side chain sulfur atom of the Cys145 residue (Domain II) is located at a 3.6 Å distance from the tele(τ)-nitrogen atom of the His41 residue of the α-helix 2 (α\textsubscript{2}) of the sheet A (Domain I). Alternatively, the Glu166 residue also located in the Domain II is positioned at a distance in which the presence of two water molecules is necessary for the interaction with potential inhibitors of the 3CLpro (Table 3) catalytic site.

The binding free energy we encountered in our study suggests that SARS-CoV-2 3CLpro protease can be a potential receptor for sitagliptin (Supplementary material 4), with a $\Delta G = -7.8$ kcal.mol-1. This result was nearly identical to what we found for PLpro protease ($\Delta G = -7.5$ kcal.mol-1). A list of compounds (Tables 2 and 3) has been identified, using in silico approaches, as potential good inhibitors for 3CLpro with Gibbs free energy values ranging from −10.9 to −6.5 (kcal mol-1). The results obtained here agree with these observations suggesting that, as observed for PLpro, sitagliptin may potentially be repositioned to be used as a drug directed to inhibit SARS-CoV-2 3CLpro and consequently suppress the spread and evolution of SARS-CoV-2 infection.

Table 3: In silico studies reporting molecules potentially able to inhibit SARS-CoV-2 3CLpro protease

PubChem Cid	ΔG (kcal mol-1)	Interacting residues	Refs
Baicalin (64982)	−8.1	Leu141, Asn142, Gly143, Met165, Glu166, Pro168, Gln189	Islam et al. (2020)
Carnosol (442009)	−8.2	Thr25, Thr26, Leu27, His31, Cys44, Thr45, Ser46, Met49, Asn142, Gly143, Cys145, His163, Met165, Glu166, Arg188, Gln189	Umesh et al. (2020)
Crocin (5281233)	−8.2	Phe5, Arg6, Lys9, Arg131, Thr135, Lys137, Asp197, Thr199	Aanouz et al. (2021)
Cyanidin 3-glucoside (197081)	−8.4	Thr26, Met99, Asn142, Gly143, Cys145, His163, His164, Glu166, Asp187, Gln189	Islam et al. (2020)
Fluvasistan (446155)	−7.7	His163, Glu166	Reiner et al. (2020)
Glabridin (124052)	−8.1	His41, Met49, Leu141, Met165, Glu166	Islam et al. (2020)
Quercetin 3-vicianoside (44259139)	−8.3	Thr25, Thr26, His41, Leu141, Phe40, Asn142, Gly143, Ser144, Cys145, His163, Met165, Glu166, Asp187, Arg188, Gln189	Bhardwaj et al. (2021)
Myricitrin (5281673)	−8.9	Thr26, Leu7, His49, Met49, Tyr54, Phe140, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Asp187, Arg188	Joshi et al. (2020)
Rosmanol (13966122)	−7.9	Thr25, His41, Met49, Phe140, Leu141, Asn142, Gly143, Ser144, Cys145, His163, Met165, Glu166	Umesh et al. (2020)
22-Hydroxyhopan-3-one (21582894)	−8.6	Met49, Cys155, Met165, Arg189	Gyebi et al. (2020)
Some recent studies have proposed that DPP₄ inhibitors (iDDP4) with antiviral action might be useful for controlling the infection caused by SARS-CoV-2, especially for patients with diabetes (Drucker 2020; Eleftheriou et al. 2020; Iacobellis 2020), a group that deserves special attention due to its elevated risk to developing the severe acute respiratory syndrome, a very serious complication of COVID-19 disease. In the context of iDDP4, a series of indirect findings suggests that these drugs could be useful therapeutic off-target effects (Valencia et al. 2020), although there are several ongoing clinical discussions. About the gliptins (iDPP₄ canonical class), it is important to emphasize that the use of these drugs is preferred in the treatment of individuals with diabetes, associated with chronic kidney disease or cardiovascular disease (Hansen and Jandeleit-Dahm 2019). Therapeutic applications of sitagliptin in type 2 diabetic patients reduced the levels of C-reactive protein, interleukin-6 in mononuclear cells (Hussain et al. 2019; Katsiki and Ferrannini 2020), circulating TNF-α, interleukin-1β, and intracellular adhesion molecules (Tremblay et al. 2014), while it induced an increase in flow-mediated vasodilation in diabetic adults (Barchetta et al. 2019), and cardioprotection in diabetic patients with chronic kidney disease reducing the angiotensin II/angiotensin-(1–7) ratio (Tremblay et al. 2014; Beraldo et al. 2019; Barchetta et al. 2019).

Conclusion

By a series of in silico assays we demonstrated here that sitagliptin, a drug commonly used for treatment of type-II diabetes, exhibited potential dual-target inhibitory activity compatible with the active sites of two main SARS-CoV-2 proteases, 3CLpro, and PLpro. These findings justify the implementation of additional in vitro and in vivo studies aiming to validate the use of this drug as a repositioning medication in the fight against COVID-19 disease.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s13205-022-03406-w.

Author contributions JEdCF, JEMJ, DPP, GEdCPL, CLdA, VRV, MPM, EBLF, RGO helped in conceptualization, methodology, data curation, writing—original draft preparation, validation, writing—reviewing and editing. VOF, APDRM, RCM performed visualization, investigation. RMMJ supervised the study.

Declarations

Conflict of interest Authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals.

References

Aaoun I, Belhassan A, El-Khatibi K et al (2021) Moroccan medicinal plants as inhibitors against SARS-CoV-2 main protease: computational investigations. J Biomol Struct Dyn 39:2971–2979. https://doi.org/10.1080/07391102.2020.1758790

Abbas HA, Hegazy WAH (2020) Repurposing anti-diabetic drug “Sitagliptin” as a novel virulence attenuating agent in Serratia marcescens. PLoS ONE 15:e0231625. https://doi.org/10.1371/journal.pone.0231625

Abd-Elsalam S, Noor RA, Badawi R et al (2021) Clinical study evaluating the efficacy of ivermectin in COVID-19 treatment: a randomized controlled study. J Med Virol 93:5833–5838. https://doi.org/10.1002/jmv.27122

Abdzizadeh R, Hadzizadeh F, Abdzizadeh T (2022) In silico analysis and identification of antiviral coumarin derivatives against 3-chymotrypsin-like main protease of the novel coronavirus SARS-CoV-2. Mol Divers 26:1053–1076. https://doi.org/10.1007/s11030-021-10230-6

Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

Adasme MF, Linnemann KL, Bolz SN et al (2021) PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res 49:W530–W534. https://doi.org/10.1093/nar/gkab294

Adegbola PI, Semire B, Fadahunsi OS, Adegoke AE (2021) Molecular docking and ADMET studies of Allium cepa, Azadirachta indica and Xylopia aethiopica isolates as potential anti-viral drugs for Covid-19. Virus Dis 32:85–97. https://doi.org/10.1007/s13337-021-00682-7

Amaral CML, Magalhaes ICL, Bezerra AS et al (2022) Insight into possible adjuvant role of phytol to fight SARS-CoV-2. Curr Sci 122:1241–1242

Báez-Santos YM, Barraza SJ, Wilson MW et al (2014) X-ray structural and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain-like proteases. J Med Chem 57:2393–2412. https://doi.org/10.1021/jm401712t

Báez-Santos YM, St. John SE, Mesecar AD (2015) The SARS-coronavirus papain-like protease: structure, function and inhibition designed by antiviral compounds. Antiviral Res 115:21–38. https://doi.org/10.1016/j.antiviral.2014.12.015

Barchetta I, Ciccarelli G, Barone E et al (2019) Greater circulating DPP4 activity is associated with impaired flow-mediated dilatation in adults with type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 29:1087–1094. https://doi.org/10.1016/j.numecd.2019.07.010

Beraldo JI, Benetti A, Borges-Júnior FA et al (2019) Cardioprotection of individuals with diabetes, associated with chronic kidney disease or cardiovascular disease (Hansen and Jandeleit-Dahm 2019). Therapeutic applications of sitagliptin in type 2 diabetic patients reduced the levels of C-reactive protein, interleukin-6 in mononuclear cells (Hussain et al. 2019; Katsiki and Ferrannini 2020), circulating TNF-α, interleukin-1β, and intracellular adhesion molecules (Tremblay et al. 2014), while it induced an increase in flow-mediated vasodilation in diabetic adults (Barchetta et al. 2019), and cardioprotection in diabetic patients with chronic kidney disease reducing the angiotensin II/angiotensin-(1–7) ratio (Tremblay et al. 2014; Beraldo et al. 2019; Barchetta et al. 2019).

Conclusion

By a series of in silico assays we demonstrated here that sitagliptin, a drug commonly used for treatment of type-II diabetes, exhibited potential dual-target inhibitory activity compatible with the active sites of two main SARS-CoV-2 proteases, 3CLpro, and PLpro. These findings justify the implementation of additional in vitro and in vivo studies aiming to validate the use of this drug as a repositioning medication in the fight against COVID-19 disease.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s13205-022-03406-w.

Author contributions JEdCF, JEMJ, DPP, GEdCPL, CLdA, VRV, MPM, EBLF, RGO helped in conceptualization, methodology, data curation, writing—original draft preparation, validation, writing—reviewing and editing. VOF, APDRM, RCM performed visualization, investigation. RMMJ supervised the study.

Declarations

Conflict of interest Authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals.
Blum M, Chang H-Y, Chuguransky S et al (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49:D344–D354. https://doi.org/10.1093/nar/gkaa977

Burley SK, Bhikadiya C, Bi C et al (2021) RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 49:D437–D451. https://doi.org/10.1093/nar/gkaa1038

Chen S, Tian J, Li Z et al (2019) Feline infectious peritonitis virus NSP, inhibits type I interferon production by cleaving NEMO at multiple sites. Viruses 12:43. https://doi.org/10.3390/v12010043

Chittepu VCSR, Kalhotra P, Osorio-Gallardo T et al (2019) New molecular insights into the inhibition of dipeptidyl peptidase-4 by natural cyclic peptide oxytocin. Molecules 24:3887. https://doi.org/10.3390/molecules24213887

Clasman JR, Everett RK, Srinivasan K, Mesecar AD (2020) Decoupling deISGylating and deubiquitinating activities of the MERS virus papain-like protease. Antiviral Res 174:104661. https://doi.org/10.1016/j.antiviral.2019.104661

Cui J, Li F, Shi Z-L (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17:181–192. https://doi.org/10.1038/s41579-018-0118-9

Das S, Sarmah S, Lyndem S, Singha Roy A (2020) An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1763201

Denison MR, Graham RL, Donaldson EF et al (2011) Coronaviruses—a brief analysis of the history of an asymptomatic patient. Mil Med Res 7:11. https://doi.org/10.1021/ct700200b

Drucker DJ (2020) Coronavirus infections and type 2 diabetes—shared diversity. RNA Biol 8:270–279. https://doi.org/10.4161/rna.8.2.15013

Drucker DJ (2020) Coronavirus infections and type 2 diabetes—shared susceptibility to infection by authentic and pseudotyped MERS-CoV. Nat Protoc 10:448. https://doi.org/10.1038/s41401-020-0485-4

Drukker AN, Rafighi MA, Iqbal J, Akhtar L (2019) Effect of sitagliptin and glimepiride on C-reactive protein (CRP) in overweight Type-2 diabetic patients. Pakistan J Med Sci 35:1–5. https://doi.org/10.1016/j.pjms.35.2.645

Iacobellis G (2020) COVID-19 and diabetes: can DPP4 inhibition play a role? Diabetes Res Clin Pract 162:108125. https://doi.org/10.1016/j.diabres.2020.108125

Islam R, Parves MR, Paul AS et al (2020) A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J Biomol Struct Dyn 2020:1–12. https://doi.org/10.1080/07391102.2020.1761883

Joshi RS, Jagdale SS, Bansode SB et al (2020) Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1760137

Kashour Z, Riaz M, Garbati MA et al (2021) Efficacy of chloroquine or hydroxychloroquine in COVID-19 patients: a systematic review and meta-analysis. J Antimicrob Chemother 76:30–42. https://doi.org/10.1093/jac/dkaa403

Katsiki N, Ferrannini E (2020) Anti-inflammatory properties of anti-diabetic drugs: a ‘promised land’ in the COVID-19 era? J Diabet Complications 34:107723. https://doi.org/10.1016/j.jdiacomp.2020.107723

Kozakov D, Grove LE, Hall DR et al (2015) The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc 10:733–755. https://doi.org/10.1038/nprot.2015.043

Li K, Wohlfahrt-Leneane CL, Channappanavar R et al (2017) Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4knockin mice. Proc Natl Acad Sci 114:E3119–E3128. https://doi.org/10.1073/pnas.1619109114

Li Y, Zhang Z, Yang L et al (2020) The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience 23:101160. https://doi.org/10.1016/j.isci.2020.101160

Li D, Luan J, Zhang L (2021) Molecular docking of potential SARS-CoV-2 papain-like protease inhibitors. Biochem Biophys Res Commun 538:72–79. https://doi.org/10.1016/j.bbrc.2020.11.083

Lu S, Wang J, Chitsaz F et al (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–D268. https://doi.org/10.1093/nar/gkaa272

Mielech AM, Chen Y, Mesecar AD, Baker SC (2014) Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities. Viruses 194:184–190. https://doi.org/10.1016/j.viruses.2014.01.025
Moustaqi M, Ollivier E, Chiu H-P et al (2021) SARS-CoV-2 pro- teases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg Microbes Infect 10:178–195. https://doi.org/10.1080/22221751.2020.1870414

Nar H, Schnapp G, Hucck O et al (2021) Action of dipeptidyl pepti- dase-4 inhibitors on SARS-CoV-2 main protease. ChemMedChem 16:1425–1426. https://doi.org/10.1002/cmdc.202000921

Narayanan A, Narwal M, Majowicz SA et al (2022) Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell protease assay. Commun Biol 5:169. https://doi.org/10.1038/s42003-022-03090-9

Ngan C, Hall DR, Zerbe B et al (2012) FTSite: high accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics 28:286–287. https://doi.org/10.1093/bioinfor- matics/bts651

Pitsilou E, Liang J, Ververis K et al (2020) Identification of small molecule inhibitors of the deubiquitinating activity of the SARS- CoV-2 papain-like protease: in silico molecular docking studies and in vitro enzymatic activity assay. Front Chem 8:1–15. https://doi.org/10.3389/fchem.2020.623971

Promptchanta E, Ketloy C, Palaga T (2020) A review of DPP4 and ACE2 in diabetes and in COVID-19. Indian J Pediatr 87:281–286. https://doi.org/10.1007/s12325-020-01293-2

Speer SD, Li Z, Buta S et al (2016) ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun 7:11496. https://doi.org/10.1038/ncomms11496

Su H, Yao S, Zhao W et al (2020) Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol Sin 41:1167–1177. https://doi.org/10.1038/s41401-020-0483-6

Tahir ul Qamar M, Alqahtani SM, Alamri MA, Chen L (2020) Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 10:313–319. https://doi.org/10.1016/j.jpha.2020.03.009

Tian W, Chen C, Lei X et al (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46:W363–W367. https://doi.org/10.1093/nar/gky473

Tremblay AJ, Lamarche B, Deacon CF et al (2014) Effects of sita- lipidin therapy on markers of low-grade inflammation and cell adhesion molecules in patients with type 2 diabetes. Metabolism 63:1141–1148. https://doi.org/10.1016/j.metabol.2014.06.004

Trot L, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334.AutoDock

Umesh KD, Selvaraj C et al (2020) Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS- CoV-2 main protease as target. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1763202

Valencia I, Peiró C, Lorenzo O et al (2020) DPP4, L-DOPA, and ACE2 in diabetes and COVID-19: therapeutic targets for cardiovascular complications? Front Pharmacol 11:1–14. https://doi.org/10.3389/fphar.2020.01161

Vankadari N, Wilce JA (2020) Emerging COVID-19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect 9:601–604. https://doi.org/10.1080/22221751.2020.1739565

Wang H, He S, Deng W et al (2020) Comprehensive insights into the catalytic mechanism of middle east respiratory syndrome 3C-like protease and severe acute respiratory syndrome 3C-like protease. ACS Catal 10:5871–5890. https://doi.org/10.1021/acscatal.0c00101

Wu Y, Ma L, Zhuang Z et al (2020) Main protease of SARS-CoV-2 serves as a bifunctional molecule in restricting type I interferon antiviral signaling. Signal Transduct Target Ther 5:221. https://doi.org/10.1038/s41392-020-00332-2

Xia H, Cao Z, Xie X et al (2020) Evasion of type I interferon by SARS- CoV-2. Cell Rep 33:108234. https://doi.org/10.1016/j.celrep.2020.108234

Yang H, Yang M, Ding Y et al (2003) The crystal structures of severe respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci 100:13190–13195. https://doi.org/10.1073/pnas.183567510

Yang W, Cai X, Han X, Ji L (2016) DPP-4 inhibitors and risk of infections: a meta-analysis of randomized controlled trials. Diabetes Metab Res Rev 32:391–404. https://doi.org/10.1002/dmr.2723

Yavarian J, Nejati A, Salimi V et al (2022) Whole genome sequencing of SARS-CoV2 strains circulating in Iran during five waves of pandemic. PLoS ONE 17:e0267847. https://doi.org/10.1371/journal.pone.0267847

Yilmaz E, Akyön Y, Serdar M (2020) The molecular footprints of COVID-19. Turkish J Biochem 45:241–248. https://doi.org/10. 15156/jtb-2020-0255

Yoshikawa K, Tsuchiya A, Kido T et al (2020) Long-term safety and efficacy of sitagliptin for type 2 diabetes mellitus in Japan: results of a multicentre, open-label, observational post-marketing surveillance study. Adv Ther 37:2442–2459. https://doi.org/10.1007/s12325-020-01293-2

Zhao Y, Tian Y, Pan C et al (2022) Target-based in silico screening for phytoactive compounds targeting SARS-CoV-2. Interdiscip Sci Comput Life Sci 14:64–79. https://doi.org/10.1007/s12539-021-00461-4
Zu ZY, Di JM, Xu PP et al (2020) Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology 296:E15–E25. https://doi.org/10.1148/radiol.2020200490

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

José Ednélio da Cruz Freire1,2,3, José Edvar Monteiro Júnior4, Daniel Pascoalino Pinheiro5, Grayce Ellen da Cruz Paiva Lima1,2,3,6, Camila Lopes do Amaral1,2,3, Victor Rezende Veras1,2, Mayara Ponte Madeira1,2,3,7, Erika Bastos Lima Freire1,2,3,7, Renan Galvão Ozório1,2, Virginia Oliveira Fernandes1,2,3,8, Ana Paula Dias Rangel Montenegro1,2, Raquel Carvalho Montenegro2, Jeová Keny Baima Colares3, Renan Magalhães Montenegro Júnior1,2,3,8

José Edvar Monteiro Júnior
edvarjunior1@gmail.com

Daniel Pascoalino Pinheiro
danielpascoalino@gmail.com

Grayce Ellen da Cruz Paiva Lima
grayceellen@yahoo.com.br

Camila Lopes do Amaral
camilalamaral@gmail.com

Victor Rezende Veras
rezende_veras@hotmail.com

Mayara Ponte Madeira
mayara.madeira@hotmail.com

Erika Bastos Lima Freire
erikaendocrinologia@gmail.com

Renan Galvão Ozório
nan.ozorio@hotmail.com

Virginia Oliveira Fernandes
virginiafernande@hotmail.com

Ana Paula Dias Rangel Montenegro
apdmontenegro@gmail.com

Raquel Carvalho Montenegro
rcm.montenegro@gmail.com

Jeová Keny Baima Colares
kenycolares@gmail.com

Renan Magalhães Montenegro Júnior
renanmmjr@gmail.com

1 Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
2 Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
3 PostGraduate Program in Medical Sciences, University of Fortaleza, Fortaleza, CE, Brazil
4 Biology Department, Federal University of Ceará, Fortaleza, Brazil
5 Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
6 Health Sciences Center, University of Fortaleza, Fortaleza, Brazil
7 Health Sciences Center, Christus University Center, Fortaleza, Brazil
8 Department of Community Health, Federal University of Ceará, Fortaleza, Brazil