Standardy badań ultrasonograficznych Polskiego Towarzystwa Ultrasonograficznego – aktualizacja. Badanie ultrasonograficzne tarczycy oraz biopsja tarczycy pod kontrolą ultrasonografii

Standards of the Polish Ultrasound Society – update. Ultrasound examination of thyroid gland and ultrasound-guided thyroid biopsy

Anna Trzebińska¹, Katarzyna Dobruch-Sobczak², Wiesław Jakubowski³, Maciej Jędrzejowski⁴

¹ NZOZ Metabolik, Kielce, Polska
² Zakład Diagnostyki Ultrasonograficznej i Mammografii, Mazowiecki Szpital Bródnowski, Warszawa, Polska
³ Zakład Diagnostyki Obrazowej, II WL, Warszawski Uniwersytet Medyczny, Warszawa, Polska
⁴ Indywidualna Praktyka Lekarska Maciej Jędrzejowski, Warszawa, Polska

Streszczenie

Badanie ultrasonograficzne jest podstawowym badaniem obrazowym u osób z podejrzeniem chorób tarczycy. Pozwala na ocenę położenia, wielkości oraz echostruktury gruczołu, w tym wykrywanie zmian ogniskowych, wraz z określением ich rozmiaru, echogeniczności, echostruktury i unaczynienia. Na podstawie tych cech badanie ultrasonograficzne umożliwia wytypowanie nieprawidłowej zmiany ogniskowej do biopsji oraz monitorowanie toru igły biopsycyjnej. W publikacji przedstawiono standardy badania ultrasonograficznego tarczycy dotyczące wymogów technicznych aparatów ultrasonograficznych, techniki wykonywania badania, wskazań i pomiarów oraz opisu badania. Omówiono cechy ultrasonograficzne zwiększonego ryzyka złośliwości zmian ogniskowych (guzków) w tarczycy. Przedstawiono wskazania do biopsji aspiracyjnej cienkoigłowej tego gruczołu w przypadku uwidocznienia pojedynczego guzka (zmiany ogniskowej) oraz zmian mnogich, a także przeciwwskazania do biopsji tarczycy. Opisano technikę wykonywania biopsji, możliwe powiklania, jak również zasady monitorowania zmian łagodnych po biopsji. Praca stanowi aktualizację Standardów badania ultrasonograficznego Polskiego Towarzystwa Ultrasonograficznego wydanych w 2011 roku. Została przygotowana na podstawie aktualnego piśmiennictwa, z uwzględnieniem wiedzy zawartej w dwóch pozycjach: Badanie usg tarczycy oraz Zalecenia Polskiego Towarzystwa Ultrasonograficznego dotyczące wykonywania BACC tarczycy.

Słowa kluczowe
badanie ultrasonograficzne, tarczycy, standardy, choroby tarczycy, biopsja aspiracyjna cienkoigłowa

Key words
ultrasound imaging, thyroid, standards, thyroid diseases, fine needles biopsy

Abstract

Ultrasound examination is a primary imaging technique in patients with suspected thyroid disease. It allows to assess the location, size and echostructures of the thyroid gland as well as detect focal lesions, along with indication of their size, echogenicity, echostructure and vascularity. Based on these features, ultrasound examination allows to predict abnormal focal lesions for biopsy and monitor the biopsy needle track. This paper presents the standards of thyroid ultrasound examination regarding ultrasound apparatus technical requirements, scanning techniques, readings, measurements, and the description of the examination.

It discusses the ultrasound features of increased malignancy risk in focal lesions (nodules)
found in the thyroid gland. It presents indications for fine needle aspiration biopsy of the thyroid gland for the visibility of single nodules (focal lesions) and numerous lesions as well as discusses contraindications for thyroid biopsy. It describes the biopsy technique, possible complications and rules for post-biopsy monitoring of benign lesions. The paper is an update of the Standards of the Polish Ultrasound Society issued in 2011. It has been prepared on the basis of current literature, taking into account the information contained in the following publications: Thyroid ultrasound examination and Recommendations of the Polish Ultrasound Society for the performance of the FNAB of the thyroid.

Wprowadzenie
Badanie ultrasonograficzne (USG) to podstawowe badanie obrazowe u osób z podejrzeniem chorób tarczycy. Pozwala na ocenę położenia, wielkości oraz eckostruktury tego gru­culo, a także kontrolę miąższu pod kątem obecności zmian zapalnych i ogniskowych, w tym dokładne pomiary ich roz­miarów, określenie charakteru, monitorowanie toru igły biopsyjnej. Integralnym elementem badania USG tarczycy jest ocena okolicznych węzłów chłonnych. Dzięki zaawansowanym technologiom obrazowania radiologicznego i ultrasonograficznego wzrasta liczba przypadkowo wykry­wanych zmian ogniskowych w tarczycy. Według Krajowego Rejestru Nowotworów w Polsce zmiany guzkowe tego gru­culo występują często i dotyczą około połowy populacji. W większości mają charakter lądodny. Nowotwory złośliwe stanowią 1–2% wszystkich zmian stwierdzanych w tarczycy(3). Według danych American Thyroid Association guzki w tarczycy wykrywa się w badaniu USG u 19–67% osób badanych, z czego 5–15% stanowią raki(4).

W ciągu ostatnich dwóch dziesięcioleci znacząco wzrosła w Polsce liczba nowych zachorowań na nowotwory zło­sliwe tarczycy – w 2010 roku zarejestrowano 2192 przypadki (384 u mężczyzn i 1808 u kobiet). Przeżywalność 5-letnia wśród pacjentów z nowotworami tarczycy popra­wiła się i wyniosła u mężczyzn 76,8%, a u kobiet 90,7% (dane z 2009 roku). Szczyt zachorowania na raka tarczycy występuje między 40. a 50. rokiem życia(3).

Indications for thyroid ultrasound
• Enlarged thyroid without palpable nodules.
• A palpable nodule or nodular goiter.
• Accidental detection of a focal lesion in the thyroid during ultrasound examination, computed tomography, magnetic resonance imaging or positron emission tomogra­phy, all performed due to other indications.
• Suspicion of thyroid disease based on abnormal laboratory test results, including hyperthyroidism, hypothyroid­ism, thyroiditis.

Wskazania do badania USG tarczycy
• Powiększenie gruczołu bez wyczuwalnego guzka.
• Wyczuwalny palpacyjnie guzek lub wole guzkowe.
• Przypadkowe stwierdzenie zmiany ogniskowej w tar­czycy w czasie badania USG, tomografii komputerowej, rezonansu magnetycznego lub pozytonowej tomografii emisyjnej, wykonanych z innych wskazań.
• Podejrzenie choroby tarczycy na podstawie nieprawidło­wych wyników badań laboratoryjnych, w tym nadczyn­ności, niedoczynności, zapalenia tarczycy.

Over the past two decades the number of new cases of thyroid cancer in Poland has significantly increased – 2192 cases (384 men and 1808 women) were recorded in 2010. Five-year survival rate among thyroid cancer patients has improved and amounted to 76.8% in men and 90.7% in women (data from 2009). The peak incidence of thyroid cancer is between 40 and 50 years of age(3).

Introduction
Ultrasoundography (USG) examination is a primary imaging examination in patients with suspected thyroid disease. It allows to assess the location, size and eckostructure of the thyroid gland as well as check the parenchyma for inflammatory and focal lesions, including accurate measurements of their size, determining their nature and monitor­ing the biopsy needle track. An integral element of thy­roid ultrasound is the assessment of lymph nodes located in the vicinity. Thanks to advanced technologies of radiological and ultrasound imaging, the number of accidentally detected thyroid focal lesions has increased. According to the Polish National Cancer Registry, nodular lesions of the thyroid gland occur frequently, in approximately half of the population. The majority of them are benign. Malignant nodules represent 1–2% of all the abnormalities diagnosed in the thyroid gland(3). According to the American Thyroid Association, thyroid nodules are detected by ultrasound in 19–67% of the examined patients and 5–15% of them are carcinomas(4).
• Różnicowanie przyczyn nadczynności i niedoczynności tarczycy, kliniczne podejrzenie zapalenia tarczycy.
• Limfadenopatia szyjna (poza przypadkami etiologii infekcyjnej).
• Skrining w grupie podwyższonego ryzyka zachorowania na raka tarczycy (rodzinnym wywiad w kierunku raka tarczycy, nosicielstwo mutacji RET, przebyta ekspozycja szyi na promieniowanie jonizujące, szczególnie w dzieciństwie).
• Wybór zmiany ogniskowej o największym ryzyku złośliwości do biopsji aspiracyjnej cienkoigłową.
• Kontrola wielkości guzków/zmian ogniskowych łagodnych tarczycy.
• Kontrola efektów leczenia wola miąższowego.
• Kontrola po usunięciu tarczycy z powodu wola guzkowego w celu oceny skuteczności leczenia i monitorowania jego efektów (pierwsze badanie po 6 miesiącach, następnie co 12 miesięcy).
• Kontrola po usunięciu tarczycy z powodu raka tarczycy w celu oceny doszczętności zabiegu i monitorowania efektów leczenia.

Nie zaleca się przeprowadzania ultrasonograficznego skriningu pod kątem obecności niemnych klinicznie zmian ogniskowych u pacjentów bez zwiększonego ryzyka nowotworowego. Takie badania można rozważyć u osób otyłych (BMI >30)\(^5,6\).

Aparatura

Zgodnie ze standardami Polskiego Towarzystwa Ultrasonograficznego aparaty do badań USG tarczycy powinny spełniać następujące wymagania technologiczne\(^3\):

• elektroniczna głowica liniowa, szerokopasmowa w zakresie częstotliwości 7–12 MHz (14 MHz); w wolu guzkowym oraz u otyłych pacjentów przydatne mogą być głowice o częstotliwości 4–8 MHz;
• długość czoła głowicy nie krótsza niż 40 mm;
• minimum 128 kanałów nadawczo-odbiorczych;
• druga częstotliwość harmoniczna;
• opcja kolorowego dopplera i dopplera mocy;
• obsługa programów do obliczeń długości, pola powierzchni oraz objętości.

Zaleca się także stosowanie głowic z długim czołem 60–80 mm, opcji obrazowania panoramicznego lub rozszerzonego pola widzenia, które ułatwiają wykonanie badań u pacjentów z powiększeniem gruczołu. Ogniskowanie wiązki ultradźwiękowej powinno być ustawione w połowie grubości płata (płatów) tarczycy, z możliwością regulacji w celu optymalizacji obrazu na wybranych głębokościach. Należy korzystać z zaprogramowanych w aparacie parametrów nastawów dla badania tarczycy.

Technika badania oraz pomiary

Badanie USG tarczycy powinno zostać poprzedzone badaniem podmiotowym i przedmiotowym w zakresie chorób tarczycy.

Apparatus

According to the standards of the Polish Ultrasound Society, thyroid ultrasound apparatus should meet the following technological requirements\(^3\):

• electronic broadband linear transducer in the frequency range of 7–12 MHz (14 MHz); in case of nodular goiter and in obese patients transducers with a frequency of 4–8 MHz may prove useful;
• transducer head not shorter than 40 mm;
• at least 128 transceiver channels;
• second harmonic frequency;
• color Doppler and power Doppler modes;
• support programs for the calculation of length, surface area and volume.

It is also recommended to use transducers with 60–80 mm long heads, panoramic imaging mode or expanded field of view mode, which all facilitate the execution of the test in patients with enlarged thyroid. Ultrasonic beam focus should be set at half the thickness of thyroid lobe (lobes), with a possibility to adjust in order to optimize the image at selected depths. Pre-programmed setting parameters for thyroid scanning should be used.

Scanning technique and measurements

Thyroid ultrasound should be preceded by a subjective and objective examination in the field of thyroid disease.

As each ultrasound, also thyroid ultrasound requires the development of a certain pattern of conduct that will
Jak każde badanie ultrasonograficzne także USG tarczycy wymaga wypracowania pewnego schematu postępowania, które zagarantuje kompletną ocenę tego gruczołu. Badanie z reguły rozpoczyna się od przyłożenia głowicy poprzecznie w linii pośrodowej, w celu oceny położenia tarczycy w stosunku do linii pośrodowej ciała (tarczca położona prawidłowo lub przemieszczona na stronę prawą/lewaną). Następnie należy uzyskać obraz każdego płatku tarczycy w osi podłużnej i poprzecznej. Kolejno powinno się: zmierzyć wielkość płatów i cieśni, ocenić echogeniczność miąższu, echostruktury pod kątem obecności zmian ogniskowych, unaczeni miąższu oraz zmian ogniskowych, na końcu zbadać stan węzłów chłonnych wzdłuż naczyń syjnych. Echogeniczność gruczołu ocenia się w porównaniu z echogenicznością położonego do przodu od tarczycy mięśnia mostkowo-tarczowego i mostkowo-gnykowego – w prawidłowych warunkach jest wyższa niż w przypadku tych mięśni. Zdrowy gruczoł cechuje się jednorodną echostrukturą. Niejednorodna echostruktura może być wynikiem obecności zmian zapalnych albo ogniskowych. Echogeniczność zmian ogniskowych w obrębie tarczycy należy ocenić w odniesieniu do echogeniczności otaczanego miąższu gruczołu.

W celu określenia wielkości tarczycy kursory pomiarowe powinny być ustawione na zewnętrznych zarysach każdego płatka, odpowiadających torebcie. Należy zmierzyć trzy wymiary każdego płatka (grubość, szerokość, długość) oraz grubość cieśni. Pomiarów grubości płatów i cieśni oraz szerokości płatów dokonuje się na maksymalnym przekroju poprzecznym, zaś długości płatów – na maksymalnym przekroju podłużnym każdego płatka. Na ich podstawie obliczana jest objętość tarczycy z wykorzystaniem uproszczonego wzoru na objętość ellipsoidy obrotowej: \(V = 0.5 \times W \times H \times L \), gdzie \(V \) – objętość płatka, \(0.5 \) – uproszczone współczynniki, \(W \) – szerokość, \(H \) – grubość, \(L \) – długość. Objętość gruczołu tarczowego jest sumą objętości płata prawego i lewego. Objętość cieśni jest pomijana przy obliczaniu objętości tarczycy.

Powiększenie tarczycy rozpoznaje się na podstawie zwiększenia jej objętości, a nie wartości pojedynczych wymiarów. Prawidłowa objętość gruczołu u kobiet nie powinna przekraczać 20 ml, u mężczyzn 25 ml\(^{1,7} \).

W trakcie badania USG tarczycy należy ocenić:
- położenie tarczycy;
- wymiary płatów, grubość cieśni i objętość tarczycy;
- granice (równe, nierówne, pozaciągane, widoczne odcinkowo, niewidoczne);
- echogeniczność miąższu (prawidłowa, obniżona, podwyższona);
- echostrukturę (prawidłowa, niejednorodna w całości, bez obecności/obecnością zmian ogniskowych);
- obecność nieprawidłowych zmian ogniskowych, ich echogeniczność (normoechogeniczne, hipo-, hiperechogeniczne, o mieszaną echogeniczności) i echostrukturę (lite, płynowe, lito-płynowe);
- obecność zwapieni w miąższu tarczycy i w zmianach ogniskowych (makrozwapnienia o średnicy >2,0 mm, mikrozwapnienia o średnicy <2,0 mm);
- są one prawidłowe i ośmiorniaki poprzecznie w linii pośrodkowej, w celu oceny położenia tarczycy w stosunku do linii pośrodkowej ciała (tarczca położona prawidłowo lub przemieszczona na stronę prawą/lewą). Następnie należy uzyskać obraz każdego płatku tarczycy w osi podłużnej i poprzecznej. Kolejno powinno się: zmierzyć wielkość płatów i cieśni, ocenić echogeniczność miąższu, echostruktury pod kątem obecności zmian ogniskowych, unaczeni miąższu oraz zmian ogniskowych, na końcu zbadać stan węzłów chłonnych wzdłuż naczyń syjnych. Echogeniczność gruczołu ocenia się w porównaniu z echogenicznością położonego do przodu od tarczycy mięśnia mostkowo-tarczowego i mostkowo-gnykowego – w prawidłowych warunkach jest wyższa niż w przypadku tych mięśni. Zdrowy gruczoł cechuje się jednorodną echostrukturą. Niejednorodna echostruktura może być wynikiem obecności zmian zapalnych albo ogniskowych. Echogeniczność zmian ogniskowych w obrębie tarczycy należy ocenić w odniesieniu do echogeniczności otaczanego miąższu gruczołu.

In order to determine the size of the thyroid, measurement cursors should be positioned on the outer contours of each lobe corresponding to the sack. Three dimensions of each lobe (thickness, width and length) and the thickness of the isthmus must be measured. The thickness of the lobes and the isthmus, and the width of the lobes are measured at the maximum cross-section, and the length of the lobes – at the maximum longitudinal section of each lobe. Thyroid volume is calculated on their basis with a simplified formula for the volume of a sphere: \(V = 0.5 \times W \times H \times L \), where \(V \) – volume of the lobe, \(0.5 \) – simplified coefficient, \(W \) – width, \(H \) – height, \(L \) – length. The volume of the thyroid gland is the sum of the volumes of the right and left lobe. The volume of the isthmus is ignored when calculating the volume of the thyroid.

Enlarged thyroid is diagnosed on the basis of increased volume of the whole gland and not the values of individual dimensions. The correct volume of the thyroid should not exceed 20 ml in women and 25 ml in men\(^{1,7} \).

During thyroid ultrasound the following should be assessed:
- location of the thyroid;
- dimensions of the lobes, thickness of the isthmus and volume of the thyroid;
- borders (even, uneven, with signs of traction, visible in segments, invisible);
- parenchymal echogenicity (normal, reduced, increased);
- echostructure (normal, heterogeneous in its entirety, without the presence of/with the presence of focal lesions);
- presence of abnormal focal lesions, their echogenicity (normoechoic, hypoechoic, hyperechoic, with mixed echogenicity) and echostructure (solid, fluid-filled, solid and fluid-filled);
- presence of calcifications in the parenchyma and focal lesions in the thyroid (macrocalcifications of diameter >2.0 mm, microcalcifications of diameter <2.0 mm);
Opis badania

Opis badania USG tarczycy powinien zawierać następujące informacje:

- dane pacjenta (imię i nazwisko, data urodzenia/PESEL);
- nazwa aparatu USG, rodzaj i częstotliwość głowicy;
- nazwa jednostki, w której wykonano badanie;
- dane lekarza wykonującego badanie;
- opis badania, który powinien zawierać:
 - wymiary płatów oraz objętość tarczycy,
 - ocenę echogeniczności miąższu i granic,
 - ocenę echostruktury,
 - opis nieprawidłowych zmian morfologicznych w miąższu tarczycy o charakterze rozszynanym (zwrodnienia płynowe, zwapnienia, niejednorodność miąższu) lub ogieńskowym (zmiany lite, lito-torbielowate, torbielowate),
 - w przypadku zmian ogieniskowych: ich lokalizację, echogeniczność i echostrukturę, wymiary (trzy), obecność zwapien i zwrodnień płynowych; jakościową ocenę unaczynienia miąższu tarczycy i zmian ogieniskowych;
 - opis powiększonych węzłów chłonnych szynowych zlokalizowanych w okolicy gruczołu tarczowego, z uwzględnieniem ich morfologii oraz cech mogących wskazywać na obecność przerzutów do węzłów chłonnych. W przypadku uwidocznienia w trakcie badania USG tarczycy nieprawidłowości w tętnicach szynowych wspólnych i ich domózgowych rozgałęzieniach oraz otaczających tkankach miękkich należy zamieścić stosowną informację w opisie badania z zaznaczeniem konieczności dalszej diagnostyki. W opisie badania podaje się również ogólną informację o przebytym leczeniu operacyjnym lub radioderm, z powołaniem się na dane uzyskane od pacjenta („według danych uzyskanych od pacjenta”) lub informację szczegółową z podaniem daty leczenia w przypadku dostępu do dokumentacji medycznej.

W opisie badania należy także rozróżnić zmiany kliniczne (wyczuwalne w badaniu palpacyjnym), które trzeba określić jako guzki tarczycy, i zmiany niekliniczne (niewyczuwalne w badaniu palpacyjnym), które trzeba opisać jako nieprawidłowe zmiany ogieniskowe.

W opisie badania nie powinno się posiłować terminologią rozpoznów anatomopatologicznych, takich jak gruczołak

Description of the examination

Each description of thyroid ultrasound examination should include the following information:

- patient details (name and surname, date of birth/patient identification number);
- name of ultrasound apparatus, transducer type and frequency;
- name of the unit which carried out the examination;
- details of the examining physician;
- description of the examination which should include:
 - dimensions of the lobes and the volume of the thyroid,
 - assessment of the echogenicity of parenchyma and the borders,
 - assessment of the echostructure,
 - description of morphological abnormalities in the thyroid parenchyma of scattered (fluid degenerations, calcifications, parenchymal heterogeneity) or focal nature (solid, solid and cystic, cystic lesions),
 - in case of focal lesions: their location, echogenicity and echostructure, dimensions (three), presence of calcifications and fluid degenerations; qualitative assessment of the vascularity of thyroid parenchyma and focal lesions; description of enlarged cervical lymph nodes located in the thyroid gland area, including their morphology and features which may indicate lymph node metastases. If the thyroid ultrasound scan reveals abnormalities in carotid arteries, their branches supplying the brain and in the surrounding soft tissues, relevant information should be included in the description of the examination with indication of the need for further diagnosis. The description of the examination shall also include general information on the history of surgery or radioiodine treatment, with reference to the data obtained from the patient (“according to the data obtained from the patient”) or detailed information indicating the date of the treatment provided there is access to medical records.

The description of the examination should also distinguish between clinical lesions (palpable) which must be described as thyroid nodules, and non-clinical lesions (non-palpable) which must be described as an abnormal focal lesions.

Terminology of pathological diagnoses (such as adenoma or carcinoma) or clinical conditions (such as Graves’ disease,
Zalecenie Polskiego Towarzystwa Ultrasonograficznego dotyczące wykonywania biopsji aspiracyjnej cienkoigłowej celowanej tarczycy

Obecność zmian guzkowych w tarczycy związana jest z podwyższonym rygkiem raka. Badanie USG w prezentacji B wciąż nie pozwala, pomimo wykorzystania opcji kolorowego dopplera, doplerna mocy, obrazowania 3D/4D, elastografii i ultrasonograficznych środków kontrastujących, na jednoznaczne różnicowanie zmian łagodnych i złośliwych w tarczycy. Podstawowym badaniem służącym do rozpoznania raka tego gruczołu jest biopsja aspiracyjna cienkoigłowa celowana (BACC), wykonywana pod kontrolą obrazu USG. Nie wymaga specjalnego przygotowania, charakteryzuje się niewielką bolesnością, umożliwia szybkie ustalenie rozpoznania Objętych Z(9).

Badanie cytologiczne ma jednak pewne ograniczenia. Nie pozwala na różnicowanie raka i gruczołaka pęcherzykowego oraz niektórych przypadków raka brodawkowatego oraz autoimmunologicznego zapalenia tarczycy. BACC obarczona jest także stosunkowo dużym rygkiem wyników fałszywie ujemnych w raku tarczycy: 1,3–13,6%. Pociąga za sobą konieczność powtórzenia lub wykonania kontrolnego badania w niedoległym czasie w zmianach o wysokim prawdopodobieństwie nowotworu złośliwego w USG(9). Odsetek wyników fałszywie dodatnich w badaniu cytologicznym (biopsji cienkoigłowej) jest istotnie niższy i wynosi 0,25–3%(7).

Biopsja gruboigłowa (BG) tarczycy (19–20 Ga) jest dodatkową metodą wykorzystywaną w przypadkach, w których BACC jest nierzodtrzymująca. Stosuje się ją rzadko, praktycznie w sytuacji podejrzenia chłoniaka lub w diagnostyce różnicowej zmian włóknistych ubogokomórkowych, np. w zapaleniu tarczycy Riedla(10).

Recommendation by the Polish Ultrasound Society on the performance of ultrasound-guided fine needle aspiration biopsy of the thyroid

The presence of nodular lesions in the thyroid gland is associated with increased risk of cancer. Ultrasound examination in presentation B still does not allow, despite the use of color Doppler, power Doppler, 3D/4D imaging, elastography and ultrasound contrast agents, for unambiguous differentiation between benign and malignant thyroid lesions. The primary test used to diagnose thyroid cancer is ultrasound-guided fine needle aspiration biopsy (FNAB), performed under the control of ultrasound image. It does not require special preparation, results in minor pain and enables a rapid cytological diagnosis(7).

Cytology examination has some significant limitations. It does not allow for the differentiation between cancer and follicular adenoma as well as some cases of papillary carcinoma and autoimmune thyroiditis. FNAB is subject to a relatively high risk of false negative results in case of thyroid cancer: 1.3–13.6%. This entails the need to repeat or conduct a follow-up test relatively soon in case of lesions revealing a high probability of malignancy in ultrasound(9). The percentage of false positive cytology results (fine needle biopsy) is significantly lower and amounts to 0.25–3%(7).

Core needle biopsy (CNB) of the thyroid (19–20 Ga) is an additional method used when FNAB gives inconclusive results. It is rarely used, usually for suspected lymphoma or differential diagnosis of hypocellular fibrous lesions, e.g. Riedel’s thyroiditis(10).

(adenoma), rak (carcinoma), ani klinicznych, takich jak choroba Gravesa-Basedowa, choroba Hashimoto itp. Jeśli w miąższu płatków tarczycz są liczne zmiany ogni skowe (powyżej pięciu w każdym płacie), należy podać trzy wymiary zmiany największej i najmniejszej; jeśli zmiany tworzą konglomerat, należy podać trzy wymiary konglo meratu, z uwzględnieniem cech zwiększających ryzyko ich złośliwości. Jeśli liczba nieprawidłowych zmian ogni skowych w każdym płacie tarczycy nie przekracza pięciu, podaje się wymiary oraz lokalizację każdej z tych zmian.

Takie same standardy oceny, jak przedstawiono powyżej, dotyczą tarczycy operowanej. Opis badania USG tarczycy powinien zostać zakończony wnioskiem diagnostycznym, np. „tarczycą prawidłową”, „wole mięśzowską”, „wole guzk kową”, „podejrzenie zapalenia gruczołu”. W przypadku stwierdzenia odchylen od stanu prawidłowego we wniosku należy podać informacje o potrzebie kontrolnego badania USG tarczycy lub proponowanych innych badań diagno stycznych, takich jak zdjęcie przeglądowe klatki piersiowej, scyntyografia, biopsja cienkoigłowa, tomografia komputerowa. Do opisu badania trzeba dołączyć dokumentację zdjęciową, obrazującą nieprawidłowości(1).

The same evaluation standards apply to surgically treated thyroid. Description of the thyroid ultrasound should be completed by a diagnostic conclusion, such as “thyroid normal,” “parenchymal goiter,” “nodular goiter,” “sus-pected inflammation of the thyroid gland.” If there are deviations from the normal condition, the conclusion should provide information about the need for scheduling a follow-up thyroid ultrasound examination or other diagnostic tests such as chest X-ray, scintigraphy, fine needle biopsy, or computed tomography. The description of the examination must be accompanied by photographic documentation demonstrating the abnormalities(1).
Wskazania do BACC na podstawie badania klinicznego i USG tarczycy

Kliniczne czynniki podwyższonego ryzyka złośliwości zmian ogniskowej (guzka) tarczycy⁴,⁶,¹¹,¹²;

- szybki wzrost guzka, guzek twardy, nieulegający przemieszczaniu w trakcie badania klinicznego;
- obecność powiększonych węzłów chłonnych;
- dodatni wywiad rodzinny w kierunku raka tarczycy;
- przebyta ekspozycja na promieniowanie jonizujące;
- pojawienie się guzka przed 20 lub po 60. roku życia;
- wielkość guzka >4 cm.

Ultrasonograficzne cechy zwiększonego ryzyka złośliwości zmian ogniskowych (guzków) tarczycy⁴,⁶,¹¹,¹²:

- obecność nieprawidłowych węzłów chłonnych;
- naciekanie okolicznych narządów i tkank;
- obecność mikrozwapnień;
- niska echogeniczność zmian;
- przewaga wymiaru przednio-tynłego nad boczno-bocz- nym zmian (wysokość większa niż szerokość);
- lity charakter;
- nierregularne, zrażikowe brzegi;
- nacznia o wzmożonym przepływie i chaotycznym prze- biegu wewnętrz zmiany w badaniu dopplerem mocy.

Indications for FNAB based on clinical examination and thyroid ultrasound

Clinical factors of increased malignancy risk of thyroid focal lesions (nodules)⁴,⁶,¹¹,¹²:

- nodule rapidly growing, hard, non-displaceable during a clinical examination;
- enlarged lymph nodes;
- positive family history of thyroid cancer;
- history of exposure to ionizing radiation;
- nodule appearing before 20 or after 60 years of age;
- nodule size >4 cm.

Ultrasound features of increased malignancy risk of thyroid focal lesions (nodules)⁴,⁶,¹¹,¹²:

- abnormal lymph nodes;
- invasion of surrounding organs and tissues;
- microcalcifications;
- low echogenicity of lesions;
- predominance of the anterior-posterior dimension over the lateral dimension of lesions (height greater than width);
- solidity;
- irregular, lobular edges;
- power Doppler examination reveals vessels inside lesion with increased flow and chaotic course.

The above features occurring individually within focal lesions in the thyroid do not have enough predictive power to indicate cancerous nature (except metastases to cervical lymph nodes). Diagnosing two or more features greatly increases the risk of cancer and is an indication for scheduling FNAB. Selection (typing) of thyroid nodules for FNAB is carried out on the basis of the morphological characteristics and nodule size. If there are numerous lesions of similar morphology, a lesion dominant in terms of size should be biopsied.

Features of an ultrasound image with a higher predictive power of malignancy risk include: the presence of lymph node metastases, invasion of adjacent structures and micro- calcifications within focal lesions. Ultrasound image features such as very low echogenicity of nodules, solid echostruc- ture, predominance of anterior-posterior dimension over lateral dimension (height greater than width), irregular borders and presence of blood in the nodules of an irregular course have less predictive power of malignancy risk.

Wskazania do BACC w przypadku pojedynczego guzka (zmiany ogniskowej)

- Guzek wyczuwalny w badaniu fizykalnym i potwierdzony w USG, większy we wszystkich wymiarach od 5 mm – jeżeli nie jest scentygraficznie autonomiczny.
- Guzek niewyczuwalny w badaniu fizykalnym, wykryty w USG, większy we wszystkich wymiarach od 10 mm, zwłaszcza lity i hipoechogeniczny – jeśli nie ma innych ognisk o wyższym ryzyku złośliwości.

Indications for FNAB in case of a single nodule (focal lesion)

- Nodule palpable in physical examination and confirmed by ultrasound, larger than 5 mm in all dimensions – unless autonomous in terms of scintigraphy.
- Nodule non-palpable in physical examination, detected in ultrasound test, larger than 10 mm in all dimensions, particularly if solid and hypoechoic – unless there are no other foci demonstrating higher malignancy risk.
Wskazania do BACC w przypadku guzków (zmian ogniskowych) mnogich

- Wyboru guzka do biopsji dokonuje się zgodnie z kryteriami podanymi dla zmian pojedynczych; głównym kryterium są wymienione powyżej kliniczne i ultrasonograficzne cechy rzeczywistej złośliwości.
- W przypadku mnogich zmian o podobnej morfologii do biopsji kwalifikuje się przede wszystkim guzek największy.
- W przypadku obecności mnogich guzków spełniających kryteria kwalifikacji do biopsji wystarczające wykluczenie rzeczywistej złośliwości osiąga się dopiero po stwierdzeniu łagodnego charakteru 3–4 guzków. Dopuszczalne jest wykonwanie BACC kolejnych zmian w odstępach do 3–6 miesięcy. Kolejność przeprowadzania biopsji zależy od klinicznych i ultrasonograficznych kryteriów złośliwości guzków.

Wskazanie do BACC u pacjentów po operacji raka tarczycy

- Uwidocznienie w loży tarczycy zmian ogniskowych.
- Limfadenopatia szyjna (węzły okrągłe, bez węęki, o długości w osi długiej >1 cm, w osi krótkiej >5 mm, niejednorodne, hipoechogeniczne, ze zwrodnieniem torbielowatym, z obecną mikrozwapnieni oraz unacznionie brznie)(15).

Wskazania oraz interpretacja kliniczna BACC u dzieci i kobiet ciężarnych są takie same jak u pozostałych pacjentów.

Kryteria odstąpienia od BACC guzka tarczycy(1,4)

- Prosta torbiel tarczycy (ryzyko raka <1%).
- Pojedynczy guzek autonomiczny.
- Guzek autonomiczny w wołu guzkowym.
- Guzek normoechogeniczny o strukturze gąbczastej (drobnotorbielowatą).
- Guzek o średnicy <5 mm we wszystkich wymiarach, z wyjątkiem każdej wielkości guzka, jeżeli stwierdzono przerywany raka tarczycy do węzłów chłonnych lub odległe, wysokie stężenie kalcytoniny albo nosicielstwo mutacji RET, pre dysponującej do raka rdzeniastego.

Indications for FNAB in case of multiple nodules (focal lesions)

- Selection of a nodule for biopsy is carried out in accordance with the criteria specified for individual lesions, clinical and ultrasonographic characteristics of malignancy risk listed above being the main criterion.
- In case of multiple lesions of similar morphology, the largest nodule qualifies for biopsy as first.
- In case of multiple nodules that meet the eligibility criteria for biopsy, sufficient exclusion of malignancy risk is achieved only after diagnosing benignity of 3–4 nodules. It is permissible to perform FNAB of subsequent lesions in 3–6 month intervals. The order of performing the biopsies depends on the clinical and ultrasound criteria for malignancy of the nodules.

Indication for FNAB in case of thyroid cancer surgery patients

- Focal lesions visible in thyroid bed.
- Cervical lymphadenopathy (circular nodes without recesses, with a long axis of >1 cm and short axis >5 mm, heterogeneous, hypoechoic, displaying cystic degenerations and microcalcifications, vascularized on edges)(15).

Indications and clinical interpretation of FNAB in children and pregnant women are the same as in other patients.

Criteria for withdrawal from the FNAB of thyroid nodules(1,4)

- A simple thyroid cyst (cancer risk <1%).
- A single autonomous nodule.
- An autonomous nodule in multinodular goiter.
- A normoechogenic nodule of spongy (small cyst) structure.
- A nodule with a diameter of <5 mm in all dimensions, except for a nodule of any size if diagnosis revealed lymph nodes metastases or distant, high concentrations of calcitonin or RET mutation predisposing to medullary carcinoma.

- Nodule palpable in physical examination, detected in ultrasound test, measuring 5–10 mm – if at least one clinical or ultrasound feature of high predictive power of malignancy risk present or if two ultrasound features of smaller predictive power of malignancy risk coexist.
- Nodule size >4 cm, regardless of the presence of factors indicating benignity of the nodule.
- Nodule of any size, if diagnosis revealed lymph nodes metastases, distant and high concentration of calcitonin or RET mutation predisposing to medullary carcinoma.
- Nodule revealed in FDG-PET or scintigraphy (99Tc-MIBI) as a hot nodule(1,4,6).
Przed wykonaniem BACC zawsze należy uzyskać pisemną, świadomą zgodę pacjenta. W przypadku osób niepełnoletnich zgodę musi wyrazić rodzic lub opiekun prawny.

Przeciwwskazania do BACC tarczycy[1,4]

Bezwzględne:
- ciężka skaza krwotoczna;
- ropne ogniska na skórze szyi;
- brak współpracy ze strony pacjenta.

Względne:
- przyjmowanie leków przeciwcarkrzepowych.

Stosowanie leków przeciwcarkrzepowych może wiązać się ze zwiększeniem ryzyka krwawienia po biopsji tarczycy. Ryzyko to zależy od rodzaju i dawki przyjmowanych środków. W każdym przypadku przed wykonaniem BACC należy ustalić rodzaj leków, dawkowanie oraz wskazania do ich stosowania. Postępowanie przed planowaną biopsją uzależnione jest od ryzyka powikłań zakrzepowo-zatorowych. W przypadku niskiego ryzyka (np. przebyta żylna choroba zakrzepowo-zatorowa przed ponad rokiem lub migotanie przedsionków u chorego zakrzepowo-zatorowego przed ponad rokiem lub słyszenie rdzenia pracy ze strony pacjenta. W przypadku osób niepełnoletnich zgodę musi wyrazić rodzic lub opiekun prawny.

Przyjmowanie leków przeciwcarkrzepowych

Wynika, że stosowanie leków przeciwzakrzepowych może wiązać się ze zwiększeniem ryzyka krwawienia po biopsji tarczycy. Ryzyko to zależy od rodzaju i dawki przyjmowanych środków. W każdym przypadku przed wykonaniem BACC należy ustalić rodzaj leków, dawkowanie oraz wskazania do ich stosowania. Postępowanie przed planowaną biopsją uzależnione jest od ryzyka powikłań zakrzepowo-zatorowych. W przypadku niskiego ryzyka (np. przebyta żylna choroba zakrzepowo-zatorowa przed ponad rokiem lub migotanie przedsionków u chorego zakrzepowo-zatorowego przed ponad rokiem lub słyszenie rdzenia pracy ze strony pacjenta. W przypadku osób niepełnoletnich zgodę musi wyrazić rodzic lub opiekun prawny.

Zasady postępowania w zależności od rodzaju leków przeciwcarkrzepowych:

- leki przeciwpłytkowe:
 - NLPZ – dopuszczalne wykonanie biopsji,
 - aspiryna – dopuszczalne wykonanie biopsji przy stosowaniu dobowej dawki do 300 mg; przy wyższych dawkach wskazane odstawienie leku na 7 dni przed zabiegiem (u osób z niskim ryzykiem powikłań zakrzepowo-zatorowych),
 - clopidogrel – brak badań, ryzyko prawdopodobnie porównywalne do aspiryny; u osób z niskim ryzykiem powikłań zakrzepowo-zatorowych wskazane odstawienie leku na 5 dni przed zabiegiem;
 - doustne leki przeciwcarkrzepowe:
 - acenocumarol, warfaryna – dopuszczalne wykonywanie biopsji przy wskaźniku INR 2,5–3; konieczna kontrola INR na dzień przed biopsją;
 - heparyny drobnocząsteczkowe:
 - dawka profilaktyczna (niższe ryzyko zakrzepowo-zatorowe) – dopuszczalne wykonywanie biopsji po 8 godzinach od podania ostatniej dawki,
 - dawka terapeutyczna (wyższe ryzyko zakrzepowo-zatorowe) – dopuszczalne wykonywanie biopsji po 8 godzinach od podania ostatniej dawki;

Patient’s written, informed consent must be obtained prior to FNAB. In case of minors, consent must be given by the parent or legal guardian.

Contraindications to FNAB of the thyroid[1,4]

Mandatory:
- severe bleeding disorder;
- purulent foci in the skin of the neck;
- lack of cooperation from the patient.

Relative:
- treatment with anticoagulants.

Anticoagulant therapy may be associated with an increased risk of hematoma following thyroid biopsy. This risk depends on the type and dose of taken medicines. In any case, prior to FNAB one should determine the type of drugs, dosage and indications for their use. Proceedings before the scheduled biopsy is dependent on the risk of thromboembolic complications. In case of low risk (e.g. if the patient recovered from thromboembolism over a year ago, or suffers from atrial fibrillation with no history of internal diseases) it seems reasonable to interrupt the anticoagulation treatment. Moderate and high risk of thromboembolic complications justifies performing the biopsy during treatment or applying low molecular heparin bridging therapy. Biopsies in patients taking anticoagulants should be carried out using a needle with a diameter of 0.4 mm, with pressure applied on the puncture site for 5 minutes after the test.

Rules of procedure depending on the type of anticoagulants:

- antiplatelet drugs:
 - NSAIDs – biopsy permissible,
 - aspirin – biopsy permissible when daily dosage does not exceed 300 mg; at higher doses it is recommended to discontinue the medication for 7 days prior to the test (in patients with a low risk of thromboembolic complications),
 - clopidogrel – lack of research, probably comparable to aspirin; patients with a low risk of thromboembolic complications recommended to discontinue the drug 5 days prior to the test;
- oral anticoagulants:
 - acenocoumarol, warfarin – biopsy allowed at the rate of INR <2,5–3; it is necessary to check INR one day prior to the test,
 - low molecular weight heparins:
 - prophylactic dose (lower risk of thromboembolic events) – biopsy allowed 8 hours after the administration of the last dose,
 - therapeutic dose (higher risk of thromboembolic events) – biopsy allowed 8 hours after the administration of the last dose;
- new oral anticoagulants:
 - dabigatran (Pradaxa) – recommended discontinuation of the drug one day prior to the biopsy,
• nowe doustne leki przeciwickrzwowe:
 - dabigatran (Pradaxa) – wskazane przerwanie stosowania leku na dzień przed biopsją,
 - riwaroksaban (Xarelto) – wskazane przerwanie stosowania leku na dzień przed biopsją,
 - apixaban (Eliquis) – wskazane przerwanie stosowania leku na dzień przed biopsją[6,16,17].

Możliwe powikłania po BACC tarczycy[1,3,6]

• Ból, obrzęk.
• Omdlenie.
• Krwiak (zapobieganie – uciśnięcie, 30-minutowa obserwacja w przypadku zmian głęboko położonych).
• Krwotok lub krwiak wymagający interwencji chirurgicznej.
• Porażenie nerwu kraniowego wstecznego (0,036%) – dysfonia rozwijająca się zazwyczaj po 48 godzinach od BACC, ustejpują do 4 miesięcy.
• Zakażenie – rzadkie (zagrożenie życia), gryźmiące ukość, rzadkie (zagrożenie życia).
• Implentarja komórke raka wzdłuż torbieli zây BACC – minimalizuje to ryzyko powstania krwiaka.

Technika wykonywania BACC tarczycy[1,7]

1. Wybór i lokalizacja zmiany w badaniu USG.
2. Odkażenie skóry szyi 70-procentowym alkoholem lub innym środkiem odkazującym (dopuszczonym do użycia przez producenta aparatury ultrasonograficznej).
3. W nakłuciu zmian w tarczycy stosowanie igły o zewnętrznej średnicy 0,4–0,5 mm i długości 2,5–4,0 cm. Igły o średnicy do 0,8 mm są wykorzystywane do opróżniania torbieli z gęstą zawartością.
4. Przeklucie skóry pod kontrolą obrazu USG oraz wkłucie igły do zmiany w tarczycy i wykonanie nią szybkich ruchów posuwistych do czasu, kiedy w stózku igły pojawia się pierwszy poziom płynu. BACC tarczycy wykonuje się z „wolnej ręki” bez użycia strzykawki i uchwytów na strzykawkę w celu utworzenia podciśnienia w jej objętości. Stosowanie uchwytu powoduje trudności w manewrowaniu igłą.
5. Rejestracja końca igły po wkłuciu do zmiany na zdjęciu cyfrowym lub wideoendoskopii. Taka rejestracja stanowi potwierdzenie właściwego nakłucia. Zaleca się dołączenie zdjęcia z rejestracją położenia igły w zmianie do opisu badania materiału uzyskanego z BACC. Optis badania zazwyczaj się od słów: „Koniec igły w zmianie, patrz załączona dokumentacja zdjęciowa”.
6. Wystrzyknięcie na szkłko uzyskanego aspiratu oraz wykonanie cienkich rozmać, utrwalenie ich 96-procentowym alkoholem lub cytotiksem. Zabaranienie uzyskanych w ten sposób preparatów hematoksyliną i eozyną.
7. Ucisk miejsca nakłucia przez 5 minut po wykonaniu BACC – minimalizuje to ryzyko powstania krwiaka.

Possible complications after FNAB of the thyroid[1,3,6]

• Pain, swelling.
• Fainting.
• Hematoma (prevention – applying pressure, 30-minute observation in case of deeply located lesions).
• Hemorrhage or hematoma requiring surgical intervention.
• Paralysis of the recurrent laryngeal nerve (0.036%) – dysphasia and dysphonia usually develop after 48 hours after FNAB and take up to 4 months to subside.
• Infection – rare (at risk: patients with HIV, diabetes, tuberculosis or atopic dermatitis).
• Implementation of cancer cells along the needle track – does not occur when needles 23 Ga or smaller are used.

Performance technique of FNAB of the thyroid[1,7]

1. Selection and localization of a lesion in ultrasound test.
2. Disinfection of the skin of the neck with 70 percent alcohol or other disinfectant (approved for use by the manufacturer of ultrasound apparatus).
3. Puncturing the thyroid gland with a needle of the external diameter of 0.4–0.5 cm and the length of 2.5–4.0 cm. Needles with a diameter of 0.8 mm are used for emptying cysts with dense contents.
4. Puncturing the skin under the guidance of the ultrasound image, puncturing the needle into the lesion inside the thyroid and making quick sliding movements with it until the first level of liquid appears in the cone of the needle. Thyroid FNAB is performed “offhandly,” without the use of a syringe and syringe holders used to create sub-pressure in its volume. The holder makes it difficult to maneuver the needle.
5. Registering the tip of the needle after insertion into the lesion in a digital image or via a videoprinter. The registration confirms the correctness of the puncture. It is recommended to attach the picture of the registered position of the needle inside the lesion to the description of the material obtained from the FNAB. Description of the examination would begin with the words: “The tip of the needle in the lesion, see attached photo documentation.”
6. Injecting the obtained aspirate onto a glass and performing thin smears, preserving them subsequently with 96 percent alcohol or cytotik. Coloring thus obtained preparations with hematoxylin and eosin.
7. Applying pressure on the puncture site for 5 minutes after the FNAB – minimizes the risk of hematoma.
Monitorowanie łagodnych zmian ogniskowych/guzków po BACC

- Monitorowaniu klinicznym oraz USG co 6–18 miesięcy.
- Powiększenie się guzka (zwiększenie średnicy o 20% lub objętości o 50% przy wzroście co najmniej w dwóch wymiarach o co najmniej 2 mm) oraz pojawienie się cech podwyższonego ryzyka złośliwości jest wskazaniem do ponownej biopsji po 6–12 miesiącach.
- Należy rozważyć ponowne wykonanie BACC po 3 miesiącach w przypadku prawidłowego lub niediagnostycznego wyniku biopsji zmiany wykazującej cechy podejrzane w badaniu USG. Jeśli ocena guzka wskazuje na szczególnie wysokie prawdopodobieństwo złośliwości, okres powinien być krótszy niż 3 miesiące."{1,4,18}.

Nową techniką, dzięki której można różnicować zmiany ogniskowe w tarczy na podstawie ich odmiennej odkształcenalności, jest sonoelastografia. Opublikowane wyniki badań nie pozwalają przedstawić jednoznacznym kryteriom różnicujących zmiany łagodne od nowotworowych złośliwych. Jednak technika ta umożliwia wyróżnienie zmian podejrzanych o charakter nowotworowy złośliwy, które w prezentacji B nie były typowane do BACC, oraz może być pomocna w wyznaczeniu miejsca do biopsji. Liczne ograniczenia sonoelastografii, takie jak odczyt tętnicy szyjnej wspólnej, wielkość i złożona budowa zmian ogniskowych oraz problemy wynikające z małej powtarzalności metody (szczególnie elastografii kompresyjnej), nie pozwalamy użyć tej metody za alternatywę dla BACC{19,20}.

Podsumowanie
Przedstawiony artykuł stanowi aktualizację standardów badania USG tarczycy Polskiego Towarzystwa Ultrasonograficznego, które od 2 lat publikuje zaktualizowane – w oparciu o nowe wytyczne, kryteria i wiedzę – standardy badań USG różnych narządów{21–25}. Postępowanie zgodnie ze standardami jest warunkiem dobrej diagnozy, pozwala również na zredukcji błędów diagnostycznych, także w przypadku badania USG tarczycy{26}.

Konflikt interesów
Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpłynąć na treść publikacji oraz rościć sobie prawo do tej publikacji.

Piśmiennictwo/References
1. Trzcińska A, Jakubowski W: Badanie usg tarczycy. In: Jakubowski W (ed.): Standardy badań ultrasonograficznych Polskiego Towarzystwa Ultrasonograficznego. Roztoczańska Szkoła Ultrasonografii, Warszawa – Zamość 2011: 70–73.
2. Trzcińska A, Jakubowski W: Zalecenia Polskiego Towarzystwa Ultrasonograficznego dotyczące wykonywania BACC tarczycy. In: Jakubowski W (ed.): Standardy badań ultrasonograficznych Polskiego Towarzystwa Ultrasonograficznego. Roztoczańska Szkoła Ultrasonografii, Warszawa – Zamość 2011: 74–78.
3. Nowotwory złośliwe w Polsce. Krajowy Rejestr Nowotworów. Available from: www.onkologia.org.pl.
4. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer; Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL. Mandel SJ et al.: Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009; 19: 1167–1214.

Monitorowanie benign focal lesions/nodules after FNAB

- Clinical and ultrasound monitoring every 6–18 months.
- Enlargement of the nodule (increase in diameter by 20% or in volume by 50% with at least two dimensions increased by at least 2 mm) and emergence of high-risk malignancy features are an indication for re-biopsy to be scheduled after 6–12 months.
- Another FNAB should be considered after 3 months in case of correct or non-diagnostic biopsy result of a lesion displaying suspicious features in the ultrasound. If the assessment of the nodule indicates a high probability of malignancy, the period should be shorter than 3 months{1,4,18}.

A new technique which allows to differentiate focal lesions of the thyroid on the basis of their different deformability is sonoelastography. Published test results are not sufficient to present clear criteria for differentiating benign lesions from malignant ones. However, this method allows to distinguish abnormalities suspected of malignancy which were not typed for FNAB in presentation B, and may be helpful in determining biopsy sites. Numerous sonoelastography restrictions, such as the pulsation of the common carotid artery, the size and complex structure of focal lesions and problems resulting from low reproducibility of the method (especially compression elastography), prevent this method from being considered as an alternative to FNAB{19,20}.

Conclusion
The presented article is an update on thyroid ultrasound examination standards by the Polish Ultrasound Society. For the past two years, the Society has been releasing updated standards for ultrasound examinations of different organs{21–25} based on the most current guidelines, criteria and knowledge. Adherence to the standards is a prerequisite for a correct and accurate diagnosis, it also allows to reduce the number and the scope of diagnostic mistakes, including ones made in thyroid ultrasound evaluation{26}.

Conflict of interest
Authors do not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.
5. Yuen YH, Tong CSL, Ahuja AT: Sonography of the normal thyroid. In: Sofferman RA, Ahuja AT (eds.): Ultrasound of the Thyroid and Parathyroid Glands. Springer, New York – Dordrecht – Heidelberg – London 2012: 41–60.

6. Polska Grupa ds. Nowotworów Endokrynnych; Jarząb B, Sporny S, Lange D, Włoch J, Lewiński A et al.: Diagnostyka i leczenie raka tarczy – rekomendacje polskie. Endokrynol Pol 2010; 61: 518–568.

7. Białecki EJ, Jakubowski W (eds.): Ultrasonograficzna diagnostyka tarczycy, przytarczyc i węzłów chłonnycy sej. Rzeczyzna Wydawnicza, Warszawa – Zamość 2004.

8. Wong KT, Lee YYP, Ahuja AT: Malignant thyroid conditions. In: Sofferman RA, Ahuja AT (eds.): Ultrasound of the Thyroid and Parathyroid Glands. Springer, New York – Dordrecht – Heidelberg – London 2012: 107–149.

9. Sohn YM, Kim EK, Moon HJ, Kim SJ, Kwak JY: Suspiciously malignant lymph nodes on ultrasound after fine needle aspiration biopsy in a thyroid nodule with initially benign ultrasound and cytologic result: to repeat or to follow-up. Clin Imaging 2011; 35: 470–475.

10. Hahn SY, Shin JH, Han BK, Ko EY, Ko ES: Ultrasound-guided core needle biopsy for the thyroid nodule: does the procedure hold any benefit for the diagnosis when fine-needle aspiration cytology analysis shows inconclusive results? Br J Radiol 2013; 86: 20130007.

11. Sofferman RA: Fine needle aspiration cytology. In: Sofferman RA, Ahuja AT (eds.): Ultrasound of the Thyroid and Parathyroid Glands. Springer, New York – Dordrecht – Heidelberg – London 2012: 187–207.

12. Crockett JC: The thyroid nodule: fine-needle aspiration biopsy technique. J Ultrasound Med 2011; 30: 685–694.

13. Kim BK, Choi YS, Kwon HJ, Lee JS, Hco JJ, Han YJ et al.: Relationship between patterns of calcification in thyroid nodules and histopathologic findings. Endocr J 2013; 60: 155–160.

14. Hambly NM, Gonen M, Gerst SR, Li D, Jia X, Mironov S et al.: Implementation of evidence-based guidelines for thyroid nodule biopsy: a model for establishment of practice standards. AJR Am J Roentgenol 2011; 196: 655–660.

15. Leboulleux S, Girard E, Rose M, Travagli JP, Sabbah N, Caillou B et al.: Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J Clin Endocrinol Metab 2007; 92: 3590–3594.

16. García Rodríguez LA, Lin KJ, Hernández-Díaz S, Johansson S: Risk of upper gastrointestinal bleeding with low-dose acetylsalicylic acid alone and in combination with clopidogrel and other medications. Circulation 2011; 123: 1108–1115.

17. Camm AJ, Lip GYH, De Caterina R, Savelieva I, Atar D, Hohnloser SH et al.: 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation. Developed with the special contribution of the European Heart Rhythm Association. Eur Heart J 2012; 33: 2719–2747.

18. Chernyavsky VS, Shanker BA, Davidov T, Crystal JS, Eng O, Ibrahim K et al.: Is one benign fine needle aspiration enough? Ann Surg Oncol 2012; 19: 1472–1476.

19. Cantisani V, Lodise P, Grazhdani H, Mancuso E, Muggini E, Di Rocco G et al.: Ultrasound elastography in the evaluation of thyroid pathology. Current status. Eur J Radiol 2014; 83: 420–428.

20. Bhatia KS, Tong CS, Cho CC, Yuen EH, Lee YY, Ahuja AT: Shear wave elastography of thyroid nodules in routine clinical practice: preliminary observations and utility for detecting malignancy. Eur Radiol 2012; 22: 2397–2406.

21. Jakubowski W, Dobruch-Sobczak K, Migda B: Standards of the Polish Ultrasound Society – update. Sonomammography examination. J Ultrason 2012; 12: 245–261.

22. Walas MS, Skoczyłas K, Gierbiński I: Standards of the Polish Ultrasound Society – update. The liver, gallbladder and bile ducts examination. J Ultrason 2012; 12: 428–445.

23. Walczyk J, Walas MS: Standards of the Polish Ultrasound Society – update. Pancreas examination. J Ultrason 2013; 13: 50–64.

24. Cwik G: Standards of the Polish Ultrasound Society – update. Pancreas examination. J Ultrason 2013; 13: 167–177.

25. Tyloch JF, Woźniak MM, Wieczorek AP: Standards of the Polish Ultrasound Society – update. Ultrasound examination of the kidneys, ureters and urinary bladder. J Ultrason 2013; 13: 293–307.

26. Dobruch-Sobczak K, Jędrzejowski M, Jakubowski W, Trzebińska A: Errors and mistakes in ultrasound diagnostics of the thyroid gland. J Ultrason 2014; 14: 61–73.