Socio-Ecological Correlates of Attitude towards KVK Functioning: A Multivariate Analytical Approach

S. K. Acharya\(^1\), Arindam Ghosh\(^1\), Mrityunjoy Mahato\(^{1,}\), Monirul Haque\(^1\), Debashis Mazumder\(^1\), Swagata Ghoshal\(^1\) and Amitava Biswas\(^1\)

\(^1\)Department of Agricultural Extension, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, Pin-741252, India.

ABSTRACT

Krishi Vigyan Kendra was established initially to impart training to the different stakeholders of the farming community as a method of technology delivery system. As the time passed by this grass root institution has undergone a tremendous change, starting from technology generation, testing, verification and ultimately onwards transmission to the end users for the enhancement of the productivity in particular and for the overall socio-economic development of the rural people in general with its mandated programmes. The work was conducted with 10 independent variables and one dependent variables- Attitude towards KVK activities (y). Purposive as well as simple random techniques were adopted for the study. For selection of state & district purposive sampling techniques and for block & villages simple random technique were employed for selection of respondents. Among 50 adopted KVK farmers of the selected villages only 22 adopted farmers have been randomly selected and more 22 non adopted farmers and thus altogether 44 farmers have been randomly selected for the study. Analyzing the data using the statistical tools range, mean, coefficient of variation, coefficient of correlation, regression analysis, path analysis, factor analysis,

*Corresponding author: E-mail: mmahato276@gmail.com;
Keywords: Adoption; farm mechanization; Krishi Vigyan Kendra; KVK mandates; technology transfer.

1. INTRODUCTION

Krishi Vigyan Kendra, the lighthouse for farmers in India, is an institutional project of ICAR to demonstrate the application of science and technology input of agricultural research and education in the farmers field in the rural areas. Krishi Vigyan Kendras-KVKS (Farm Science Centers) have been established by the Indian Council of Agricultural Research in 569 districts. The thrust areas of KVKS are refinement and demonstration of technologies, and training of farmers and extension functionaries. Imparting vocational trainings in agriculture and allied fields for the rural youth is one of its mandates [1]. India is shifting from 'Agriculture for subsistence' to 'Agriculture for quality of life through income security.' Food security and nutritional security, the other issues are coming in a big way across the globe. In 2025, approximately 44 m. ha. Of irrigated rice areas in Asia would face 'economic, water scarcity' (Expensive water), and additional 17 m. ha. May confront 'physical water crisis' (Dry up). Indian agriculture needs 'Inclusive growth' which includes social justice, equity, balanced growth and economic wellbeing of the farmers. There is a wide gap between scientific know-how and field levels do-how. Emphasis is to be given on the demand driven production system to supply driven production system. Adoption of improved and newer technology requires decision by farmers. Scientific orientation is a degree to which respondents is oriented to the use of scientific methods in relation to adoption behavior. It is important psychological factor in decision making process. Innovations which is the main theme of KVK training, is the degree of an individual interest and desire to seek changes in farming techniques and to introduce each change into his own operations as and when found practicable and feasible. Present study revealed that out of nine independent variables, correlation coefficient has shown positive and significant relationship in case of variables namely, occupation, experience in farming, training received at KVK, scientific orientation and innovation while, non significant relationship in case of age education, size of land holding and animal possession with attitude of the farmers toward training organized by KVK. It is concluded that farmers with progressive attitude will always try to involve themselves in all activities through which more annual income can be achieved. Thus, such kinds of farmers are always optimistic and try to get maximum information and benefit from KVK trainings [2]. The overall annual income in the KVK's adopted villages was increased after taking the different schemes / programme implemented in both the districts and the overall incremental employment generates in man days per annum on KVK's adopted villages enhanced as compare to the non-adopted KVK's villages, even the impact of KVK's training / programme on their overall knowledge level was enhanced with 22.00 per cent, which was found to be positive and statistically significant at 5 per cent level [3]. Training is an organized activity aimed at imparting information and/or knowledge or skill there by improves the trainee performance. It is a learning process that involves the acquisition of knowledge, sharpening of skills, concepts, rules, or changing of attitudes and behaviors to enhance the performance of employees [4].

At present there are 716 KVKS in 739 districts. One of the main tasks of Krishi Vigyan Kendra is to provide and improve the level of knowledge of the trainees about the improved farm practices, because knowledge is cognitive component of individual's mind and plays an important role in covert as well as overt behavior and individuals with a greater knowledge of technical nature of improved practices would lead to a high adoption possibly because knowledge is not inert. Krishi Vigyan Kendras (KVKS) act as a crucial player in technology assessment, refinement and demonstration. Technology adoption to be successful depends on successful technology assessment, refinement and demonstration. Hence, the role of KVKS is of paramount importance in the above processes [5]. Overall adoption quotients for different aspects of agricultural production practices were highly skewed towards beneficiary respondents [6].
Once knowledge is acquired and retained, it undergoes and produces changes in the thinking process and of mental alchemy.

In India 1650 dialects, 18 constitutionally approved languages and 10 Indic scripts are spoken. ICT provides a new opportunity to build a confident, skilled Kisan Knowledge Management System (KKMS). 44 Agricultural Technology CD’s in 15 regional languages have been released. KVK & SAU’s were made eligible to apply for CRS (Community Radio Service) licenses and establish and run them indecently.

The growth of Indian agriculture is dependent on 118.9 million farm families cultivating 155.2 million hectares of land. It is impossible to reach such a huge number of farmers. The effective dissemination and transfer of appropriate technologies to needy farmers is very much essential for increasing agricultural production in the country. Technology Development (also called technology innovation) in agriculture/fishery is a process consisting of all the decision and activities which a scientist does from recognition of a need/ problem with planning, testing, conducting research, verification, testing and dissemination for adoption. During the same time, some problems on the technology might get back to the scientist for solution thus resulting in refinement of the same. Thus, technology development is a continuous process. The KVK scientists have to equip themselves for ‘technology application’ - a process which includes the above mentioned processes; thus contributing their part in the overall process of agricultural/fishery technology development [7]. The transfer of technology is a issue way forward for the KVK and the entire stakeholders involved are to upscale the interventions in terms of technologies considering vertical and horizontal spread [8].

Today KVK stands as a bridge between the research laboratories and the application of modern agricultural science in rural India through the technology development and delivery system.

1.1 Mandates of KVK

i) Conducting "On-farm Testing" (OFTS) for identifying technologies in terms of Location specific sustainable land use system.

ii) Organizing training to update the extension personnel with emerging advances in agricultural research on regular basis.

iii) Organize short and long term vocational training course in agriculture and Allied vocations for the farmers and rural youths with emphasis on "learning by doing" for higher production on farms and generating self employment.

iv) Organize frontline demonstration on various crops to generate production data and feedback information.

The Krishi Vigyan Kendras (KVK) is of national importance which would help in accelerating the agricultural production and also in improving the socio-economic conditions of the farming community [9]. The overall activities of the KVK is to perfectly synchronized with the research or technology generation system by linking with SAUs and others research organization and in technology delivery system the hierarchy would be ATMA, Basic District Level Interactive Extension Model (BDLIEM), Zonal Agricultural Research Station (ZARS) and KVK would be the main partners under the new model. Imparting training to farming community and more particularly to tribal people is very much essential and also important activities of Krishi Vigyan Kendra. The scientists of KVK should be knowledgeable, experienced, and cooperative and assume responsibility. Well-furnished training hall, residential accommodation, library and reading room facilities are to be developed in KVK ensuring good learning environment in KVK to provide better training for the benefits of tribal people [10].

To fulfill the mandates of the KVK generally programme formulation is done on the basis of the recommendation of the Scientific Advisory Committee (SAC). The Committee meets twice in a year before kharif season and before rabi season. The Opinion of the multistakeholders of the programme generally discussed, approved and finally become a document of the KVK activities or KVK programmes. Training provided by KVK helps resulted in the gain in knowledge and skill of farmers, adoption level, productivity, Economic condition, self-confidence, social recognition and materials possession [11]. One of the important mandates of the KVK is to impart training to the different stakeholders groups like practicing farmers (PF), vocational training for rural youth and rural women and village level extension workers. The methodology, duration and topic of the training generally decided on the basis of the intervention points of the mandated KVK programmes. Besides training there are other important mandates are 'On Farm Trial and 'Front line Demonstration. Krishi Vigyan Kendra
is conducting vocational training programmes for rural youth with a view to equipping the technological skill and employment related to agriculture and allied sectors. Vocational training helps to correlate education with the source of living. It is an activity directed to identifying and developing human capabilities for a productive and satisfying working life [12].

By the term impact analysis we deemed and design to estimate the effect as well as performance of anything in term of quality and quantity implication or duration. In other words, we can say that Impact analysis is the Assessment of pros and cons of pursuing a course of action in light of its possible consequence, or the extent and nature of change it may cause.

In the present context impact Assessment was done on the overall performances of KVK without considering the mandates of KVK.

In this context the General Objective of the study was Performance of kalian KVK and the changes analysis form a system vision in Purulia district. The Specific Objectives of the study were to identify the clients or beneficiaries of KVK by studying the socio-personal, socio-economic & communication status of the farmers in the selected areas, to select and assess the variables in the form of antecedent variable (personal and socioeconomic) and consequent variables. Attitude towards KVK activities, Knowledge gained through KVK’s activity, Exposure towards communication sources of KVK and Yield of the crops, to intervene and analyze the general impact of the antecedent variables among the adopted KVK farmers and to understand the impact on yield of crops cultivated and introduced by the Krishi Vigyan Kendra.

2. RESEARCH METHODOLOGY

The deliberation on the methodology has been made to understand to concept, methods and techniques which utilized to design the study, collection of information, analysis of the data and interpretation of the findings for revelation of truths and formulation of theories. This present chapter deals with the method and a procedure used in the study and consists of eight main parts.

2.1 Locale of Research

Villages namely Hatuara and Birgiri of the Purulia II block of the Purulia district in West Bengal was selected for the study. The area had been selected for the study because of (a) KVK adopted this village as their operational area, (b) Acquaintance with the local people as Meir as the local language and (c) Provision of relevant information.

2.2 Sampling Techniques

Purposive as well as simple random sampling techniques have been adopted for the study. For selection of state and district, purposive sampling technique has been adopted because the area would be ideal with respect to the problem, convenient for researcher and having the infrastructural facilities and in case of selection of block, villages and farmers or respondents simple random sampling technique was taken up.

Among 50 adopted KVK farmers of the selected villages, only 22 adopted farmers have been randomly selected and more 22 non adopted farmers and thus altogether 44 farmers have been randomly selected for the study.

2.3 Pilot Study

Before taking up actual study a pilot study was conducted to understand the areas, it people, institutions, the KVK activities in the research area, Basis of situational and background information of respondents were collected during the period of pilot study.

2.4 Preparation of the Interview Schedule

On the basis of findings of pilot study a preliminary interview schedule was formed with the help of literature, discussion with the KVK functionaries and by the assistance of Chairman of Advisory Committee. The interview schedule consisted of two major parts according to the specific objectives of the study.

2.5 Pre-Testing of Schedule

Before starting final data collection, entire schedule was pretested for elimination, addition and alternation with non-sample respondents of the study area.

2.6 Techniques of Field Data Collection

The total 44 KVK adopted and non-adopted farmers were personally interviewed during puja.
vacation and summer vacation. The items were asked in Bengali as well as English version in a simple term so that the members could understand easily. The entries were done in the schedule by student investigator himself at the time of interview.

2.7 Attributes and their Measurement

After reviewing various literature related to the field of study and consultation with the respected chairman of Advisory Committee and other expert, a list of variables was prepared. On the basis of selected variables, a schedule was formed.

2.8 Independent Variables

2.8.1 Age(x_1)

Chronological age has been considered for the study.

2.8.2 Education(x_2)

The attribute education had been operationalized as the formal education, taken by the respondent in a particular social system. The education had been divided into seven categories that is illiterate, can read only, can read and write, primary, secondary, higher secondary, graduate and above. It had been measured with the help sale developed by Pareek and Trivedi (1964) scale is socio-economic status (rural) and the weightages had been given as Illiterate - (0), Can read only - (1), Can read and write(2), Primary - (3), Secondary - (4), Higher Secondary (5), Graduate and Above –(6).

2.8.3 Family type(x_3)

The attribute family type had been operationalized as the family type of our rural system. The family type had been divided into two categories of the social system at is up to 5 members and above 5 members. It had been measured with the help of development of Pareek and Trivedi (1964) scale is socio-economic status (rural) and the weightages had been given as upto 5 members - (1) and above 5 members - (2).

2.8.4 Size of holding(x_4)

The attribute land holding had been operationalized as the land holding of the respondent in the social system. It had been measured with the scale developed by the Pareek and Trivedi (1964) and weightages as the no land, less than one acre, 1-5 acre, 5-10 acre, 10-15 acre, 15-20 acre, more than 20 acre. Socio-economic status (rural) and the weightages had been given as No land - (0), less than one acre - (1), 1-5 acre - (2), 5-10 acre - (3), 10-15 acre - (4), 15-20 acre - (5), more than 20 acre - (6).

2.8.5 Farm power(x_5)

The attribute farm power had been operationalized as the farm power of the respondent in the social system. It had been measured with the scale developed by the Pareek and Trivedi (1964) and weightages as the no drought animal, 1-2 drought animal, 3-4 drought animal, 5-6 drought animal or tractor or power tiller. Socio-economic status (rural) and the weightages had been given as No drought animal - (0), 1-2 drought animal -(2), 3-4 drought animal -(4), 5-6 drought animal -(5), power tiller or tractor or-(8).

2.8.6 No. of training in KVK(x_6)

Structured schedule was developed and score assigned to each respondent 1 mark for each training programme, without having any training programme score assigned 0.

2.8.7 Family income(x_7)

Structured schedule was developed to quantify the Secondary occupation of the respondents. The Family income had been further divided in to two categories of the social system that is income from farm source and income from off farm source. It had been measured with the help of development of Pareek and Trivedi (1964) scale is socio-economic status (rural) and the weightages had been given as income from farm source (1) and income from off farm source (2).

2.8.8 No. of school (x_8)

The attribute education had been operationalized as the formal education, taken by the respondent in a particular social system. The education had been divided into seven categories that is primary, secondary, higher secondary, graduate and above. It had been measured with the help sale developed by Pareek and Trivedi (1964) scale is socio-economic status (rural) and the weightages had been given as Primary - (1), Secondary - (2), Higher Secondary (3), Graduate and Above –(4).

2.8.9 Cropping intensity (x_9)

The attribute cropping intensity had been operationalised as the formal cropping, taken by
the respondent in a particular social system. The cropping intensity had been divided into three categories that are kharif, ravi and pre-kharif. It had been measured with the help sale developed by Pareek and Trivedi (1964) scale is socio-economic status (rural) and the weightages had been given as Kharif (1), Rabi (2) and Pre-kharif (3).

2.8.10 Forest coverage (x\textsubscript{10})

The attribute forest coverage had been operationalised as the formal cropping, taken by the respondent in a particular social system. It had been measured with the help sale developed by Pareek and Trivedi (1964) scale is socio-economic status (rural) and the weightages had been given as forest coverage.

2.9 Dependent Variables

2.9.1 Attitude towards KVK activities (y)

Structured schedule was developed and score assigned to each respondent on the basis of 5 point scale to the statement strongly agree (5), agree (4), undecided (3), disagree (2) and strongly disagree (1). Summation of total score obtained by a respondent was taken into account.

3. RESULTS AND DISCUSSION

3.1 Correlation Coefficient: The Attitude towards KVK Activities (y) and Independent Variables for All Respondents

Table 1, Presents the Coefficient of correlation between the Attitude towards KVK activities (y) and 10 independent variables in case of all the KVK adopted and non adopted respondents. It has been found that the variable education (x\textsubscript{2}), No. of training in KVK(x\textsubscript{6}), mechanization in family (x\textsubscript{7}) has recorded a positive and prevalent impact on Attitude towards KVK activities (Y\textsubscript{1}) and variable age (x\textsubscript{1}) has recorded negative impact on attitude towards KVK activities(y).

Education is an important factor for improvement of KVK activities. Higher education level helps to improve KVK activities through knowledge. Training and mechanization in family helps people to adopt new technologies.

3.2 Multiple Regression Analysis: Attitude towards KVK Activities (y) Vs. 10 Causal Variables (x\textsubscript{1}-x\textsubscript{10})

Table2 does present the Regression analysis; Attitude towards KVK activities (y) vs. 10 Causal variable (x\textsubscript{1}-x\textsubscript{10}). The full model on regression analysis depicts that, with the communication of 10 causal variables together; only 94.60% of the variance in nutritional availability has been explained. This suggests that more number of relevant variables caused have been included in this study.

3.3 Stepwise Regression Analysis: Attitude towards KVK Activities (y) Vs. 10 Causal Variables

Table3 does present the Stepwise regression analysis suggest that age (x\textsubscript{1}), no of training in KVK (x\textsubscript{6}) and education (x\textsubscript{2}) these three variables retained in the last step and has contributed 93.50% of the variable explained.

Sl. No.	Independent Variables	‘r’ Value	Remarks
1.	Age (x\textsubscript{1})	-.943	**
2	Education (x\textsubscript{2})	.931	**
3	Family type (x\textsubscript{3})	-.106	
4	Size of holding (x\textsubscript{4})	-.146	
5	Farm power (x\textsubscript{5})	-.209	
6	No. of training in KVK (x\textsubscript{6})	.942	**
7	Family income (x\textsubscript{7})	.355	*
8	No. of school (x\textsubscript{8})	-.066	
9	Cropping intensity (x\textsubscript{9})	-.023	
10	Forest coverage(x\textsubscript{10})	.010	

Correlation is significant at the 0.01 level *Correlation is significant at the 0.05 level
Adoption of improved and newer technology requires decision by farmers, and scientific orientation is a degree to which respondents can oriented to the use of scientific methods in relation to adoption behavior. It is an important psychological factor in decision making process. It is concluded that people with progressive attitude will always try to involve themselves in all activities through which more annual income can be achieved and education plays a vital role for adoption process. Training plays important role for improvement of KVK. Training makes people more optimistic and provides maximum information about new technologies.

3.4 Path Analysis: Decomposition of Total Effect into Direct, Indirect and Residual Effect: Attitude towards KVK Activities (y) Vs. Exogenous Variables (x₁-x₁₀)

Table 4 presents the Path analysis: decomposition of total effect direct, indirect and residual effect; Attitude towards KVK activities (y) vs. exogenous variable (x₁-x₁₀). Age has recorded the highest direct effect on attitude towards KVK activities. Education has recorded highest indirect effect on attitude towards KVK activities. Variable age has enrooted highest individual indirect effect with maximum six exogenous variables.

Table 2. Multiple regression analysis: Attitude towards KVK activities (y) Vs. 10 causal variables (x₁-x₁₀)

Sl. No.	Variables	Reg.Coeff. B	S.E. B	Beta	t Value
1	Age (x₁)	-.357	.109	-.357	-3.269
2	Education (x₂)	.259	.105	.259	2.464
3	Family type (x₃)	.027	.044	.027	.610
4	Size of holding (x₄)	-.030	.061	-.030	-.501
5	Farm power (x₅)	-.009	.068	-.009	-.135
6	No. of training in KVK (x₆)	-.007	.042	-.010	.256
7	Family income (x₇)	.080	.043	.080	1.857
8	No. of school (x₈)	-.015	.063	-.015	-.244
9	Cropping intensity (x₉)	-.065	.039	-.065	-1.687
10	Forest coverage (x₁₀)	-.021	.062	-.021	-.342

R square: 94.60 per cent; The standard error of the estimate: 0.260

Table 3. Stepwise regression analysis: Attitude towards KVK activities (y) Vs. 10 causal variables

Sl. No.	Variables	Reg.coef.B	S.E. B	Beta	t value
1	Age (x₁)	-.374	.106	-.374	-3.515
2	No. of training in KVK (x₆)	.377	.109	.365	3.445
3	Education (x₂)	.256	.104	.256	2.463

R square: 93.50%; The standard error of the estimate: 0.263

Table 4. Path analysis: Decomposition of total effect into direct, indirect and residual effect: attitude towards KVK activities (y) Vs. exogenous variables (x₁-x₁₀)

Sl. No	Variables	Total Effect	Direct Effect	Indirect Effect	Highest Individual Indirect Effect
1	Age (x₁)	-0.943	-0.357	-0.586	-0.325 (x₆)
2	Education (x₂)	0.931	0.26	0.671	0.326 (x₁)
3	Family type (x₃)	-0.106	0.027	-0.133	-0.058 (x₆)
4	Size of holding (x₄)	-0.146	-0.032	-0.114	-0.040 (x₆)
5	Farm power (x₅)	-0.209	-0.008	-0.201	-0.068 (x₁)
6	No. of training in KVK (x₆)	0.942	0.355	0.587	0.327 (x₁)
7	Family income (x₇)	0.355	0.079	0.276	0.118 (x₁)
8	No. of school (x₈)	-0.066	-0.015	-0.051	-0.027 (x₆)
9	Cropping intensity (x₉)	-0.023	-0.065	0.042	0.016 (x₁)
10	Forest coverage (x₁₀)	0.010	-0.021	0.031	0.023 (x₁)

Residual effect: 0.054
4. CONCLUSION
The result of the impact study revealed that with the rapid changing scenario in Indian agriculture, the Krishi Vigyan Kendra has also changed its role and plays a pivotal role and has become a ‘light house’ in the application of modern agricultural science in rural India, aiming at technology assessment, refinement and frontline demonstration of the technology. The rural clientele developed a positive attitude and its dissemination through training of farmers and extension personnel. Attitude and strong orientation towards the KVK and they are benefitted with the ‘bucketful technology’ offered to them under varied socio and agro-economic milieu. Productivity increases significantly barring one or two minor crops. The study further revealed that knowledge management through communication sources of Krishi Vigyan Kendra have a strong bearing on the KVK adopted beneficiaries rather than non-adopted beneficiaries. So, far as the management dimension is concern, human resource development through training, planning orientation, market orientation has got tremendous impact almost in every sphere of KVK activities.

DISCLAIMER
Authors have declared that no competing interests exist. The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

CONSENT
As per international standard or university standard, respondents’ written consent has been collected and preserved by the author(s).

ACKNOWLEDGEMENTS
My deepest sense of respect and heartfelt gratitude to my guide Prof. S.K. Acharya and Prof. Amitava Biswas, Department of Agricultural Extension, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia for suggesting the topic, ceaseless and sagacious guidance, sustained interest, valuable suggestions, ever encouraging inspiration and constructive criticisms during the course of investigation and also during the preparation of the manuscript.

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES
1. Singh K, Peshin R, Saini SK. Evaluation of the agricultural vocational training programmes conducted by the Krishi Vigyan Kendras (Farm Science Centers) in Indian Punjab. Journal of Agriculture and Rural Development in the Tropics and Sub Tropics. 2010; 111(2):65-77.
2. Bhatt JH, Katole SB. Impact analysis of activities of Krishi Vigyan Kendra. Gujrat Journal of Extension Education. 2017; 28(2):267-270.
3. Jamir I, Sharma A. Impact of knowledge gain, income and employment through intervention of Krishi Vigyan Kendra Training programmes in Nagaland. International Journal of Current Microbiology and applied Sciences. 2018; 7(11):2323-2331. Available: https://doi.org/10.20546/ijcmas.2018.711.262
4. Balan SKC, Latha MR, Anandaraja N. Effectiveness of the portrayal vegetable nursery training conducted by Krishi Vigyan Kendra, Pudukkatsi, Tamil Nadu. International Journal of Chemical Studies. 2019; 6:644-646.
5. Sankar RK, Nirmala G, Nagasree K, Pankaj PK, Samuel J, Sindhu K, Raju BMK, Kumar VS, Chary RG. Adoption outcomes of Krishi Vigyan Kendra, Central Research Institute for Dry land Agriculture Technologies by Farmers in South India. Asian Journal of Agricultural Extension, Economics and Sociology. 2019; 37(4):1-13. DOI- 10.9734/AJAEES/2019/v37i430275
6. Singhal S, Vatta L. Impact of Krishi Vigyan kendra on adoption of improved agricultural production practices. International Journal of Science, Environment and Technology. 2017; 6(2):993-1000.
7. Sajeev MV. Technology application, refinement and transfer through KVKs. ICAR- Central Institute of Fisheries Technology; 439.

8. Nagaraj KH, Bai KS, Kulkarni RL. Technology dissemination and impact of KVK activities in the district of Ramanagara, India. International Journal of Current Microbiology and Applied Sciences. 2017;6(7):3931-3939. Available:https://doi.org/10.20546/ijcmas.2017.607.405.

9. Behera SK, Maharana JR, Acharya P. Transfer of technology through Krishi Vigyan Kendra for the tribal farmers in hilly areas of Koraput District. Indian Journal of Hill Farming. 2014;27(2):34-37.

10. Bar N, Padhiary AK, Behera S, Rout S. Krishi Vigyan Kendra training Programmes and Suggestions of the Tribal People of Odisha: An Overview. Multilogic in Science. 2017;7(24):125-128.

11. Medhi S, Sigha AK, Singh R, Singh RJ. Effectiveness of training programmes of Krishi Vigyan Kendra (KVK) towards Socio-economic Development of Farmers in Meghalaya. Economic Affairs. 2017;62(4):677-682.

12. Rana KK, Rajan P, Singh SRK. Assessing impact of Krishi Vigyan Kendra on employment generation of rural youth. International Journal of Current Microbiology and Applied Sciences. 6; 2822-2826.