Modulation of Voltage-dependent Properties of a Swelling-activated Cl\(^{-}\) Current

THOMAS VOETS, GUY DROOGMANS, and BERND NILIUS

From KU Leuven, Laboratorium voor Fysiologie, Campus Gasthuisberg, B-3000 Leuven, Belgium

ABSTRACT We used the patch-clamp technique to study the voltage-dependent properties of the swelling-activated Cl\(^{-}\), current (I_{Cl,swell}) in BC\(_3\)H1 myoblasts. This Cl\(^{-}\) current is outwardly rectifying and exhibits time-dependent inactivation at positive potentials (potential for half-maximal inactivation of +75 mV). Single-channel Cl\(^{-}\) currents with similar voltage-dependent characteristics could be measured in outside-out patches pulled from swollen cells. The estimated single-channel slope conductance in the region between +60 and +140 mV was 47 pS. The time course of inactivation was well described by a double exponential function, with a voltage-independent fast time constant (~60 ms) and a voltage-dependent slow time constant (>200 ms). Recovery from inactivation, which occurred over the physiological voltage range, was also well described by a double exponential function, with a voltage-dependent fast time constant (10–80 ms) and a voltage-dependent slow time constant (>100 ms). The inactivation process was significantly accelerated by reducing the pH, increasing the Mg\(^{2+}\) concentration or reducing the Cl\(^{-}\) concentration of the extracellular solution. Replacing extracellular Cl\(^{-}\) by other permeant anions shifted the inactivation curve in parallel with their relative permeabilities (SCN\(^{-}\) > I\(^{-}\) > NO\(_3\) > Cl\(^{-}\) >> gluconate). A leftward shift of the inactivation curve could also be induced by channel blockers. Additionally, the permeant anion and the channel blockers, but not external pH or Mg\(^{2+}\), modulated the recovery from inactivation. In conclusion, our results show that the voltage-dependent properties of I_{Cl,swell} are strongly influenced by external pH, external divalent cations, and by the nature of the permeant anion.

KEY WORDS: anion channel • hypotonic cell swelling • kinetic model • voltage dependence

INTRODUCTION

A chloride current activated by cell swelling (I_{Cl,swell}) has been described in numerous mammalian and non-mammalian cell types (for review, see Nilius et al., 1996; Strange et al., 1996). This current is involved in a number of cellular processes including volume regulation (Hoffmann and Simonsen, 1989; Sarkadi and Parker, 1991; Kubo and Okada, 1992), transport of organic osmotolites (Kirk et al., 1992; Strange and Jackson, 1995), and possibly cell proliferation (Schlichter et al., 1996; Schumacher et al., 1995; Voets et al., 1995, 1997). I_{Cl,swell} in the different cell types shares many properties, including a \(I^{-} > Br^{-} > Cl^{-} >>\) gluconate permeability sequence, outward rectification, block by NPPB, and a dependence on intracellular ATP (Nilius et al., 1996). In contrast, large differences have been observed in the rate and extent of current inactivation at depolarizing potentials, which is prominent in many cell types, such as Xenopus oocytes (Ackerman et al., 1994), C\(_6\) glioma cells (Jackson and Strange, 1995a), intestine 407 epithelial cells (Kubo and Okada, 1992), T84 human colonic cancer cells (Worrell et al., 1989), M-1 cortical collecting duct cells (Meyer and Korbmacher, 1996), and osteoblast (Gosling et al., 1995), but very weak or absent in parotid acinar cells (Arreola et al., 1995), endothelial cells (Nilius et al., 1994), T lymphocytes (Schumacher et al., 1995), and skate hepatocytes (Jackson et al., 1996). It is unclear whether these differences in voltage-dependent behavior arise from differences at the level of the channel molecule or from differences in the cellular environment and/or in the experimental conditions.

In this study, we describe the voltage-dependent properties of I_{Cl,swell} in BC\(_3\)H1 myoblasts. We show that extracellular pH, extracellular Mg\(^{2+}\), the permeant anion, and channel blockers have profound effects on these voltage-dependent properties. These results may help to explain the observed differences between the different cell types and give additional clues to elucidate the molecular nature of the channel proteins underlying I_{Cl,swell}.

MATERIALS AND METHODS

Culture of BH\(_3\)H1 Cells

BC\(_3\)H1 cells (American Type Culture Collection, Rockville, MD) were grown in DMEM containing 10% fetal calf serum, 2 mM l-glutamine, 100 U/ml penicillin, and 100 mg/liter streptomycin. Cultures were maintained at 37°C in a humidified atmosphere of 10% CO\(_2\) in air. The culture medium was exchanged every 48 h. Cells were detached by exposure to 0.5 g/liter trypsin in
a Ca^{2+}- and Mg^{2+}-free solution for ~180 s and reseeded on gela-
tin-coated cover slips. Cells were used 2–5 d after reseeding.

Solutions
The normal, isotonic bath solution was a modified Krebs solution
containing (mM): 150 NaCl, 6 KCl, 1 MgCl$_2$, 1.5 CaCl$_2$, 10 glu-
cose, 10 HEPES, adjusted to pH 7.4 with NaOH. The osmolality,
as measured with a vapor pressure osmometer (Wescor 5500 os-
mometer; Schlag Instruments, Gladbach, Germany), was 320 ± 5
mOsm. The normal hyposmotic solution contained (mM): 82
NaCl, 6 KCl, 1 MgCl$_2$, 1.5 CaCl$_2$, 10 glucose, 10 HEPES, adjusted
to pH 7.4 with 1 M NaOH. For anion selectivity experiments,
NaCl was replaced by an equivulam amount of NaSCN, NaI,
NaNO$_3$, or Na-glucuronate. To evaluate the effect of different ex-
ternal Cl$^-$ or Mg$^{2+}$ concentrations, we used a hyposmotic solu-
tion containing 90 Nmethyl-n-glucamine (NMDG)-Cl$^-$, 10 glu-
cose, and 10 HEPES. External Cl$^-$ was then lowered by replacing
NMDG-Cl with MgCl$_2$ in a way that the Cl$^-$ concentration re-
mained unaltered. The osmolality of all hyposmotic solutions was
adjusted to 200 ± 5 mOsm with mannitol. The internal pipette
solution contained (mM): 40 KCl, 100 K$^+$-aspartate, 1 MgCl$_2$, 4
Na$_2$ATP, 0.1 EGTA, 10 HEPES, pH 7.2 with 1 M KOH. Stock solu-
tions of niflumic acid, flufenamic acid (Sigma Chemical Co., St.
Louis, MO) and 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB;
Research Biochemicals International, Natick, MA) were made in
DMSO (final DMSO concentration ≤0.1%).

Current Measurements
Currents were monitored with an EPC-7 (List Electronic, Lam-
brecht/Pfalz, Germany) patch clamp amplifier. Patch electrodes
had DC resistances between 2 and 4 MΩ. An Ag-AgCl wire was
used as reference electrode. In Cl$^-$ substitution experiments, a
3-M KCl-agar bridge was used and membrane voltages were cor-
corrected for liquid junction potentials if necessary. Whole-cell
membrane currents were measured using ruptured patches. Cur-
cents were sampled at 1- or 2-ms intervals and filtered at 500 or
200 Hz, respectively. Only patches with series resistances <8 MΩ
were retained and between 70 and 80% of the series resistance
was compensated to minimize voltage errors. Single-channel cur-
cents were sampled at 500-μs intervals and filtered at 500 Hz. Membrane currents under nonswollen conditions were usually small (<2% of the maximal current during cell swelling, see Fig.
1, A and B) and were not subtracted for analysis. The different
video protocols are described in the figures. Unless stated oth-
erwise, the holding potential was −80 mV, and the frequency of
pulse delivery was 0.1 Hz. All experiments were performed at
room temperature, between 22 and 25°C.

Data Analysis
Current voltage relations were constructed from the current dur-
ing a 5-s voltage ramp from −100 to +120 mV, applied every 15 s.
The time course of activation of $I_{Cl,swell}$ was constructed by mea-
suring the average current in a small voltage window around +60
mV in successive traces.

The current traces during voltage steps were fit by a biexpo-
nential function:

$$I(t) = A_{fast} \exp\left(-\frac{t}{\tau_{fast}}\right) + A_{slow} \exp\left(-\frac{t}{\tau_{slow}}\right) + A_{a}$$

(1)

where I is current amplitude, A_{fast} and A_{slow} are amplitudes cor-
responding to the time constants τ_{fast} and τ_{slow}, and A_{a} is the steady
state component. The first 3 ms after onset of a voltage step were
excluded from the fit.

To obtain the voltage dependence of inactivation, we applied
prepulses to different voltages and measured the instantaneous
current amplitude during a step to a fixed potential of +120 mV.
These values, normalized to that after a 1-s test pulse to −120
mV, were plotted as a function of the prepulse potential. This
plot yields the voltage dependence of the “apparent” open prob-
ability (apparent P_{open}) at the end of the prepulse, assuming that
P_{open} equals 1 after 1 s at −120 mV. The cells did not tolerate de-
polarizing prepulses of several seconds, which were required to
obtain a complete steady state. We have therefore used the non-
inactivating current component A_{a}, as obtained from the fits to
Eq. 1 and normalized to I_{peak} as a measure of the steady state
P_{open}. Plots of the steady state P_{open} versus potential were fitted by
a Boltzmann function:

$$P_{open} = \frac{1 - P_{min}}{1 + \exp\left(\frac{V - V_{1/2}}{k_{V}}\right)} + P_{min}$$

(2)

where $V_{1/2}$ is the membrane potential for half maximal inactiva-
tion, k_{V} is the slope factor, and P_{min} is a voltage-independent con-
ant. A_{peak}/I_{peak} and A_{min}/I_{peak} were calculated to estimate the
contribution of the fast and slowly inactivating components.

We used “triple pulse” voltage protocols to obtain the voltage
dependence of the recovery from inactivation. The first voltage
step, a 1-s step to +120 mV, induced current inactivation. Recov-
ery from inactivation during the second voltage step of variable
length and to various voltages, was assessed from the current dur-
ing a third voltage step to +120 mV. The normalized instana-
aneous current amplitude at +120 mV plotted versus the preced-
ing potential yields the voltage dependence of the recovery from
inactivation, expressed as percent. Dose–response curves were fit-
ted with a Hill equation:

$$y = \frac{1}{1 + \left(\frac{E_{C_{50}}}{C}\right)^{n}}$$

(3)

where C is concentration, $E_{C_{50}}$ is the concentration for half-maxi-
mal effect, and n is the Hill coefficient.

Relative ion permeabilities (P_{X}/P_{Cl}) were calculated from the
shifts in reversal potential induced by the anion substitution us-
ing a modified Goldman-Hodgkin-Katz equation:

$$P_{X}/P_{Cl} = \frac{[Cl]_{0} \exp\left(-\Delta E_{rev}/RT\right) - [Cl]_{s}}{[X]_{s}}$$

(4)

where ΔE_{rev} is the shift of the reversal potential, $[Cl]_{0}$ and $[Cl]_{s}$
are the extracellular Cl$^-$ concentrations in the normal and anion
substituted hyposmotic solutions, and $[X]_{s}$ is the concentra-
tion of the substituting anion X. R, $T,$ and F have their usual mean-
ings.

Rate constants were fitted according to Eyre’s absolute reaction
rate theory, using the equation

$$k_{V} = k_{0}e^{AV}$$

(5)

where k_{0} is the rate constant, V is voltage, k_{0} is the rate constant
at 0 mV and A determines the voltage sensitivity (see Jackson and
Strange, 1995a).

Fitting of the data with the different models was done using
home-written software. The whole cell current can be calculated
as $I(t) = N \cdot i \cdot P_{open}(t)$, with N the number of channels and i the
single channel conductance. The differential equations describ-
ing the kinetic model were solved analytically for each set of rate constants, and \(P_{\text{open}}(t) \) was calculated. The product \(N \cdot i \) was then obtained from a linear regression of the measured current \(i(t) \) as a function of \(P_{\text{open}}(t) \). The simplex method was used to determine a set of rate constants that minimizes the residual sum of squares of the linear regression.

For the simulation of current traces, \(P_{\text{open}}(t) \) was analytically calculated using the Mathcad plus 6.0 software (Mathsoft, Inc., Cambridge, MA), and values for \(N \cdot i \) at the different potentials were estimated from whole-cell data.

All data points represent mean values \(\pm \) SEM from at least four different cells.

R E S U L T S

Cell-swelling Activates a Chloride Current, \(I_{\text{Cl,swell}} \)

Superfusion of BC3H1 cells with the normal hyposmotic solution caused cell swelling accompanied by a large increase in membrane currents in all the tested cells (Fig. 1 A). Membrane currents returned to basal level after switching back to isosmotic solution (Voets et al., 1997). Current–voltage relations reconstructed from voltage ramps applied during the hyposmotic challenge (Fig. 1 B) show that the swelling-activated current reverses close to \(E_{\text{Cl}} \) (\(-20 \) mV). We have previously shown that this current is a Cl\(^{-}\) current, \(I_{\text{Cl,swell}} \), with an \(I^- > Br^- > Cl^- > > > \) gluconate anion permeability sequence and that it is efficiently blocked by niflumic acid, flufenamic acid, and NPPB (Voets et al., 1997). This current inactivates during voltage steps to positive potentials > +40 mV (Fig. 1 C). The negative slope of the current–voltage relation seen at very positive potentials (Fig. 1 B) is due to inactivation of the current during the slow voltage ramp.

We observed single-channel Cl\(^{-}\) currents in outside-out patches pulled from BC3H1 cells in which \(I_{\text{Cl,swell}} \) had been previously activated in the whole-cell configuration. Successful patches contained either no \((n = 15) \) or multiple \((5-8; \ n = 17) \) active channels. This might indicate that these Cl\(^{-}\) channels are clustered, as has been proposed by others (Jackson and Strange, 1995b), or alternatively that some unknown compound needs to be present in the outside-out patch to have channel activity. Fig. 1 D shows some typical single-channel measurements during a voltage step to +120 mV. This outside-out patch initially contained three active channels (Fig. 1 D), \((\text{upper trace}) \), but the number of active channels decreased during the experiment and activity vanished after 45 s. The ensemble current (Fig. 1 E) inactivates with a time course similar to that of the current measured in whole-cell mode (Fig. 1 C). The amplitude histogram shows four distinct current levels with a closed peak at 0.0 pA, and open peaks at 4.9, 10.0, and 15.1 pA (Fig. 1 F), indicating a single-channel amplitude of 5 pA at +120 mV. Single-channel currents could be measured during voltage steps to potentials between +60 and +140 mV, and the single-channel amplitudes at these potentials are summarized in Fig. 1 G. The slope conductance, obtained from a linear fit

![Figure 1](image.jpg)

The dotted line represents the best fit with the sum of four gaussian functions. Single channel amplitude was 5.0 pA. (G) Single-channel current–voltage relation for the region between +60 and +140 mV. Full line represents a linear fit through the data, yielding a slope conductance of 47 pS. Data points are from two to eight different patches.
through the data points, was 47 pS, which is close to values obtained in cortical collecting duct cells (55 pS; Meyer and Korbacher, 1996), C6 glioma cells (57.2 pS; Jackson and Strange, 1995b), and T$_{84}$ epithelial cells (50–60 pS; Worrell et al., 1989). A more thorough kinetic analysis of single-channel currents was not feasible due to the rapid loss of channel activity in the outside-out patches.

Characterization of the Voltage-dependent Properties of I$_{Cl,swell}$

The voltage-dependent properties of I$_{Cl,swell}$ were studied after a stable current level was reached, which usually required a hyposmotic challenge of ~5 min (Fig. 1 A). Fig. 2 A (inset) shows the protocol that was used to study the depolarization-induced inactivation of the current. From a holding potential of -80 mV, 1-s lasting steps to potentials between $+30$ and $+140$ mV were applied, followed by a short step to $+120$ mV. Current inactivation occurred at potentials $> +40$ mV (Fig. 2 A). Both rate and extent of inactivation increased at more positive potentials. As illustrated in Fig. 2 B, the time course of inactivation was better fitted by a double than by a single exponential. Fitting was not further improved by including a third exponential term, even when pulses of longer duration were fitted (not shown). The time constants of the double exponential fits at various potentials are depicted in Fig. 2 C. The fast time constant, τ_{fast}, was only weakly voltage dependent, whereas τ_{slow} clearly decreased with stronger depolarizations. The contribution of the fast component increased monotonously (Fig. 2 D) with depolarization, whereas the contribution of the slow component first increased, and then decreased (Fig. 2 E, bell shape). The contribution of the steady state component A_{ss}, which was used to estimate the steady state P_{open}, was well fitted by a Boltzmann equation with values for $V_{1/2}$ of $+75$ mV and for k_{V} of 14.1 mV (Fig. 2 F). It can be seen that this steady state open probability deviates significantly from the apparent P_{open} at the end of the 1-s voltage steps.

Recovery from inactivation was studied using a protocol in which a 1-s voltage step to 120 mV and a second 50-ms voltage step to the same potential were separated by voltage steps to 0, -40, -80, or -120 mV with variable duration (t_v; 10–1,000 ms). As illustrated in Fig. 3 A, the peak current during the second step to $+120$ mV gradually increased, eventually reaching the same peak

Figure 2. Inactivation of I$_{Cl,swell}$ during depolarizing voltage steps. (A) The voltage protocol and resulting current traces showing inactivation of I$_{Cl,swell}$ during depolarizing steps. (B) The current decay during the 1-s step to $+140$ and $+80$ mV is shown together with monoexponential (solid line) and biexponential (dotted lines) fits. (C) Time constants τ_{fast} (•) and τ_{slow} (○) for the double exponential fits at the different potentials. (D and E) Voltage dependence of the relative amplitudes of the fast and slow inactivating components. (F) P_{open} at the end of the 1-s step (●) and steady state P_{ss} (○). The dotted line represents the best fit with Eq. 2.

Figure 3. Recovery from inactivation. (A) After current inactivation during a 1-s step to $+120$ mV, recovery of the current increases as the duration (t_v) of the voltage step to -80 mV increases. (B) Time course of current recovery at 0 (●), -40 (○), -80 (●), and -120 mV (○). Dotted lines represent double exponential fit to the data points.
level as during the first step. The recovery of the current as a function of pulse duration t_v and voltage is shown in Fig. 3 B. It is clear that the recovery is significantly accelerated at more negative potentials.

This voltage dependency of the current recovery was also studied with the protocol shown in Fig. 4 A. After a 1-s voltage step to 120 mV, the membrane potential was stepped to potentials between −120 and +20 mV for 500 ms, followed by a 50-ms voltage step to +120 mV. It can be clearly seen that the inward current at potentials more negative than the reversal potential for chloride ($E_{Cl} = −20$ mV) rapidly increases, indicating that inactivated channels reopen at these potentials. Fig. 4 B shows the fraction of the current that has recovered at the end of the 500-ms step as a function of potential. The time course of the currents at potentials ($≤−40$ mV) was better fitted by a double than by a single exponential (Fig. 4 C). Both τ_{slow} and τ_{fast} were voltage dependent and decreased with more hyperpolarized potentials (Fig. 4 D). Similar values for τ_{slow} and τ_{fast} were obtained by fitting the data in Fig. 3 B with Eq. 1. Additionally, the relative contributions of the fast and the slow components were voltage dependent, as the contribution of the fast component increased with hyperpolarization (Fig. 4 E).

It has been recently proposed that $I_{Cl,s swell}$ undergoes steady state inactivation in the negative potential range ($V_{1/2}$ at −72 mV), similar to the behavior of voltage-gated Na$^+$ and K$^+$ channels (Braun and Schulman, 1996). Using a similar prepulse protocol as Braun and Schulman (1996), we could observe a decrease in the peak outward current during a voltage step to +120 mV after a prepulse to voltages between −120 and −30 mV (Fig. 5, A and C). Such a decrease of the peak outward current does not, however, necessarily imply a steady state inactivation, as it could also be due to an incomplete recovery of the current during the interpulse interval at holding potential −30 mV. Indeed, when the holding potential between the pulses was changed to −100 mV, allowing a complete recovery from inactivation, the peak outward current at +120 mV was no longer influenced by the preceding potential, even for $6 \times$ longer prepulses (Fig. 5 B and C). We therefore conclude that, at least in BC3H1 cells, steady state inactivation in the negative potential range is not present.

Figure 4. Voltage dependence of recovery from inactivation. (A) Voltage protocol and current traces showing the voltage dependence of recovery from inactivation. (B) Recovery during the 500-ms step to the different voltages. (C) Current traces measured during the 500-ms step to −120, −80, and −40 mV are shown together with single exponential (solid lines) and double exponential (dotted lines) fits. (D) Values for τ_{fast} (○) and (●), and τ_{slow} (◇) and (●), obtained from fits to current traces as in Fig. 4 C (open symbols) or to the data points in Fig. 3 B (filled symbols). (E) Fractional contribution of the fast component to the recovery from inactivation.

Figure 5. $I_{Cl,s swell}$ does not undergo steady state inactivation. (A) From a holding potential of −30 mV, 500-ms prepulses to potentials ranging from −120 to −30 mV were applied, followed by a 300-ms pulse to +120 mV. Frequency of pulse delivery was 0.2 Hz. (B) Same protocol as in A, but the prepulse duration was 3 s and the holding potential was −100 mV. (C) P_{open} in function of the prepulse for protocol A (●) and B (◇).
Evaluation of Kinetic Models

Jackson and Strange (1995a) proposed a simple linear model to describe the voltage-dependent behavior of $I_{Cl,swell}$ in C6 glioma cells. They could simulate the observed whole-cell data by manually adjusting the kinetic parameters of a model with one open and three inactive states. However, their model predicts a complete inactivation of the current at positive potentials, which is not completely in agreement with their and our experimental data. We were interested to know whether such a simple linear model could describe the voltage-dependent behavior of $I_{Cl,swell}$ in BC3H1 cells and could be used to quantify the effects of modulators on this voltage dependence. We therefore evaluated linear models with one open and two and three closed states by fitting these models to both inactivating and recovering currents. The model with two closed states provided good fits to the inactivation of $I_{Cl,swell}$ at potentials ≥ 80 mV, but the fits to the recovery from inactivation at potentials ≤ -60 mV were relatively poor (Fig. 6 A). Better results were obtained using the model with one open and three closed states (Jackson and Strange, 1995a), which provided good fits to both inactivation and recovery of $I_{Cl,swell}$ (Fig. 6 B). The rate constants for this model could be reasonably well fitted with Eq. 5 (Fig. 6, C–E), which yielded the parameters of the kinetic model listed in Table I. These parameters were subsequently used to simulate currents traces, which were compared with the experimental data.

Simulated traces during 1-s voltage steps from -80 mV to potentials ranging from -120 to $+120$ mV (Fig. 7 A) strongly resembled the experimental current data (Fig. 7 B; average current from five cells), with similar time courses of current inactivation at positive potentials. The predicted open probabilities at the end of the 1-s voltage steps were also relatively well in agreement with the experimental data, although the model predicts a somewhat lower open probability at the end of the steps to potentials above $+120$ mV (Fig. 7 C).

Simulated traces using the voltage protocol from Fig. 4 A are shown in Fig. 7 D, along with the experimental data (Fig. 7 E; average current from five cells). It can be clearly seen that, especially at potentials less negative than -80 mV, the current recovers from inactivation to a much lesser extent than predicted by the model. For better comparison, the predicted and experimental recovery from inactivation after 500 ms are summarized in Fig. 7 F.

These results indicate that the linear model with one open and three closed states (Jackson and Strange, 1995a) provides a good description of the inactivation at positive potentials and of the recovery from inactivation at sufficiently negative potentials, but obviously fails to describe the recovery from inactivation over the whole voltage range. We therefore preferred to use the double exponential fitting instead of this kinetic model to describe the effects of modulators on the voltage-dependent properties of $I_{Cl,swell}$.

Figure 6. Kinetic models. (A and B) Currents recorded during 1-s voltage steps to $+80$, $+100$, $+120$, and $+140$ mV as in Fig. 2 A (left) and during 500-ms voltage steps to -60, -80, -100, and -120 mV as in Fig. 5 A (right), were fitted with the indicated models (thin lines). For the curves at positive potentials, we assumed that all the channels were in the open state at the beginning of the voltage step. For the curves at negative potentials, the distribution of channels in the different states was obtained by fitting the preceding 1-s voltage step to $+120$ mV (see Fig. 5 A). (C–E) Rate constants for the linear model with one open and three closed states, with forward (○) and backward (●) rate constants. The straight lines represent the best fits with Eq. 5. Parameters of these fits are listed in Table I.

Table I. Parameters of the Kinetic Model

Rate constant	k_0 (s$^{-1}$)	A (mV$^{-1}$)
k_1	0.790	0.0180
k_2	51.5	-0.0131
k_3	0.199	0.0278
k_4	11.8	-0.0161
k_5	0.416	0.00887
k_6	2.61	-0.0135
Modulation of the Voltage-dependent Properties of $I_{\text{Cl,swell}}$

Effect of pH. We examined the effect of extracellular pH on the inactivation and recovery of $I_{\text{Cl,swell}}$. Fig. 8 A shows current traces in response to 1-s voltage steps to +120 mV in hypsomotic solutions at pH 6.4, 7.4, and 8.4. The effect of pH on the peak current amplitude is marginal, but lower pH values clearly accelerate the depolarization-induced inactivation. Whereas τ_{fast} was not significantly altered (data not shown), τ_{slow} was clearly decreased at lower pH (Fig. 8 B). Lower pH values caused a leftward shift of the inactivation curves and a decrease of the slope factor k_v (Fig. 8 C). Additionally, the contribution of the fast inactivating component to the total current was increased at lower pH (Fig. 8 D). In contrast, the rate of recovery from inactivation was apparently not affected by external pH (Fig. 8 E and F).

Effect of Mg$^{2+}$ and Ca$^{2+}$. Extracellular Mg$^{2+}$ had a similar effect on the voltage-dependent kinetics as extracellular protons. Fig. 9 A shows currents measured in response to 1-s voltage steps to +120 mV in hypsomotic solutions with different Mg$^{2+}$ concentrations. High Mg$^{2+}$ concentrations clearly accelerate the depolarization-induced inactivation, with a similar decrease of τ_{slow} as with lower pH values (data not shown). A dose–response curve for the inactivation, measured after 1 s

Figure 7. Simulation of current traces. Model currents (A) and average currents from five cells (B) during 1-s voltage steps to potentials ranging from −120 to 120 mV from a holding potential of −80 mV. (C) Comparison of the predicted open probability at the end of the voltage steps (dotted lines) with the experimental data. Model currents (D) and average currents from five cells (E) obtained with the voltage protocol shown in Fig. 4 A. (F) Comparison of the predicted recovery from inactivation (dotted lines) with the experimental data.

Figure 8. Effect of extracellular pH. (A) Comparison of the current inactivation during 1-s voltage step to +120 mV at three different external pH values. (B) Slow time constant (τ_{slow}) for current inactivation at the different pH values. (C) Steady state inactivation curves at the different extracellular pH values. Eq. 2 fitted to the data points yielded values for $V_{1/2}$ of 57, 75, and 86 mV and for k_v of 11.4, 14.1, and 16.2 mV at pH 6.4, 7.4, and 8.4, respectively. (D) Voltage and pH dependence of the relative amplitude of the fast inactivating component. (E) Time constants for the recovery from inactivation at different pH values. (F) Voltage and pH dependence of the recovery from inactivation after 500 ms, determined with the same protocol as in Fig. 3 A. Symbols in B–F: ●, pH 6.4; ○, pH 7.4; and ●, pH 8.4.
at +120 mV is presented in Fig. 9 B. The concentration for half-maximal effect, obtained by fitting the data with Eq. 3 was at 2.2 mM. Increasing external Mg²⁺ concentration from 0.5 to 20 mM caused a leftward shift of the inactivation curve and a decrease of k_V and P_{min} (Fig. 9 C). As for lower pH values, higher Mg²⁺ concentrations increased the contribution of the fast inactivating component (Fig. 9 D). The rate of recovery from inactivation was again not significantly affected (Fig. 9, E and F). Extracellular Ca²⁺ also affected the inactivation of the current, albeit with a lower potency. During a 1-s step to +120 mV, the current inactivated to 39 ± 5% of the peak value with 10 mM external Ca²⁺, compared with 24 ± 3% with 10 mM external Mg²⁺. No significant changes in the kinetics of the current were observed when Mg²⁺ in the internal solution was either removed or increased to 5 mM, indicating that Mg²⁺ acts from the outside.

Effect of extracellular Mg²⁺ and other permeant anions. We examined the effect of different external Cl⁻ concentrations on the voltage-dependent properties of $I_{Cl,swell}$. As expected for a Cl⁻-selective current, lowering the external Cl⁻ concentration resulted in a decrease of the outward current and a rightward shift of the reversal potential. Lowering external Cl⁻ also accelerated the depolarization-induced inactivation. In Fig. 10 A, current traces are shown in response to a 1-s step to 120 mV with different external Cl⁻ concentrations. For a better comparison, traces were scaled to an identical current level at the beginning of the step. Inactivation is clearly accelerated at lower Cl⁻ concentrations. Whereas τ_{fast} was not significantly altered (data not shown), τ_{slow} was clearly decreased at lower Cl⁻ concentrations (Fig. 10 B). Lowering external Cl⁻ caused a leftward shift of the inactivation curve (Fig. 10 C) and an increase of the contribution of the fast inactivating component (Fig. 10 D). Further-
more, the rate of recovery from inactivation was clearly decreased with lower external \(\text{Cl}^- \) concentrations, as can be deduced from the slower time constants (Fig. 10 B) and from the recovery after 500 ms (Fig. 10 F).

Swelling-activated \(\text{Cl}^- \) channels are not only permeable for \(\text{Cl}^- \), but also for a number of other inorganic and organic anions. We therefore investigated the effects of a number of anions (with different permeabilities as compared with \(\text{Cl}^- \)) on the voltage-dependent properties of \(I_{\text{Cl,swell}} \). Fig. 11 A gives the relative permeabilities of the tested anions, as calculated from the shifts in the reversal potential according to Eq. 4. Fig. 11 B shows current traces in response to 1-s steps to +120 mV with three different external anions, rescaled as in Fig. 10 B. With the less permeant anion gluconate as major charge carrier, inactivation is clearly faster than with \(\text{Cl}^- \), while with the more permeant anion SCN\(^-\) the inactivation is significantly slower. In general, the permeant anions shift the inactivation curve in parallel with their permeability (Fig. 11 C). With the most permeant anions (\(\text{I}^- \) and SCN\(^-\)) as major charge carriers, the contribution of the fast inactivating component becomes almost negligible, resulting in a quasi monoeponential inactivation behavior. On the other hand, external gluconate causes an important increase in the contribution of the fast inactivating component (Fig. 11 D). Furthermore, the rate of recovery from inactivation clearly increased with external gluconate, as compared with \(\text{Cl}^- \) and SCN\(^-\) (Fig. 11, E and F).

Effect of channel blockers. Various drugs are known to inhibit \(I_{\text{Cl,swell}} \). Fig. 12 A shows current traces in response to a 1-s step to +120 mV before and during superfusion with a solution containing 250 \(\mu \text{M} \) niflumic acid. Niflumic acid not only blocks \(I_{\text{Cl,swell}} \) in a voltage-independent manner (Voets et al., 1997), but also accelerates the depolarization-induced inactivation (Fig. 12 B). The channel blockade caused a leftward shift of the inactivation curve and an increase in the contribution of the fast inactivating component (Fig. 12 C and D). Furthermore, the rate of recovery was slower in the presence of channel blockers (Fig. 12, E and F). Similar effects on the inactivation of the current were obtained with two other channel blockers, flufenamic acid and NPPB (data not shown).

Discussion

Voltage-dependent Properties of the Swelling-activated \(\text{Cl}^- \) Current in BC\(_2\)H1 Cells

Swelling-activated \(\text{Cl}^- \) currents with similar permeation properties and pharmacology have been described in numerous cell types (Nilius et al., 1996; Strange et al., 1996). In this study, we focused on the voltage-dependent properties of \(I_{\text{Cl,swell}} \) in BC\(_2\)H1 myoblasts. A typical characteristic of this current is its time-dependent inactivation during depolarizing voltage steps. This has been observed in many other cells, although the voltage sensitivity of the inactivation process seems to vary largely between different cell types. Reported values for the midpoint of inactivation are scattered between +40 mV for T\(_{\text{84}}\) epithelial cells (Braun and Schulman, 1996), and +105 mV for myeloma cells (Levitan and Garber, 1995), whereas in other cell types inactivation of \(I_{\text{Cl,swell}} \) seems to be very weak or completely absent. The variability in the composition of the hyposmotic solutions used in the different studies on \(I_{\text{Cl,swell}} \) may explain some of the differences in voltage-dependent behavior. Standard hyposmotic solutions used in the different studies differ significantly in their content of...
Modulation of the Voltage Dependence of $I_{Cl,swell}$

Mg$^{2+}$ (between 0 and 5 mM) and Cl$^{-}$ (between 55 and 170 mM), which, as shown in this work, can have profound effects on the inactivation of $I_{Cl,swell}$. It is also possible that cells with only weak inactivation of $I_{Cl,swell}$ contain Cl$^{-}$ channels with a much lower sensitivity to the different channel modulators. We could indeed show that $I_{Cl,swell}$ in calf pulmonary endothelial cells inactivates to a similar extent as $I_{Cl,swell}$ in BC3H1 cells when the extracellular Mg$^{2+}$ concentration was increased to 30 or 60 mM (Voets, Droogmans and Nilius, unpublished observation). This indicates that the Mg$^{2+}$ sensitivity of the Cl$^{-}$ channels in endothelial cells is at least one order of magnitude lower than in BC3H1 cells.

Modulation by Extracellular pH and Divalent Cations

Low extracellular pH has been shown to accelerate the inactivation of $I_{Cl,swell}$ in *Xenopus* oocytes (Ackerman et al., 1994; Voets et al., 1996), and C6 glioma cells (Jackson and Strange, 1995a), but did not affect the kinetic properties of this current in M-I cortical collecting duct cells (Meyer and Korbmacher, 1996) and parotid acinar cells (Arreola et al., 1995). In BC3H1 cells, extracellular pH strongly influenced the kinetic behavior of $I_{Cl,swell}$ without significantly affecting the instantaneous current amplitude. The inactivation curve was shifted to less positive voltage and τ_{slow} decreased when the extracellular pH was lowered from 8.4 to 6.4. In contrast, recovery from inactivation seemed to be unaffected by these pH changes.

Increasing the extracellular Mg$^{2+}$ and/or Ca$^{2+}$ concentration had a comparable effect on the current inactivation as lowering the pH. Similar results obtained in cervical carcinoma cells led to the hypothesis that the influx of Cl$^{-}$ anions at positive membrane potentials forces the Mg$^{2+}$ ions and/or protons into a blocking site within the channel pore (Anderson et al., 1995). How-
ever, lowering the external Cl− concentration and hence the influx of Cl− anions did not cause the expected decrease in inactivation, but, on the contrary, resulted in a faster and more pronounced inactivation. It seems very unlikely that under these conditions Mg2+ ions can reach a blocking site within the channel, against the large electrical field. We therefore propose that extracellular Mg2+ ions and possibly also protons bind to an extracellular site, likely outside the electrical field, and that this binding enhances the inactivation of the channel.

Modulation by the Permeant Anion and by Channel Blockers

An important finding is that the voltage-dependent properties are dependent on the permeant anion itself. Indeed, lowering the extracellular Cl− concentration caused a shift of the inactivation curve to less positive potentials and of the recovery from inactivation to more negative potentials. Moreover, replacing extracellular Cl− with gluconate, NO\textsubscript{3}−, I−, or SCN− caused a shift of the inactivation curve, parallel with the relative permeability of these different anions. The recovery process was also favored when extracellular anions with a higher permeability were present. Similarly, the rate of inactivation of \(I_{\text{Cl,swell}} \) in M-1 cortical collecting duct cells was shown to decrease when extracellular Cl− was replaced by SCN−, I−, or Br− (Meyer and Korbmacher, 1996). These findings indicate that binding of an extracellular anion to the channel, possibly to a site within the ion-selective channel pore, prevents the channel from closing at depolarizing potentials and favors the reopening at more negative potentials. The observed modulation of the voltage-dependent properties by blockers of \(I_{\text{Cl,swell}} \) (Gosling et al., 1996) may then result from the fact that these blockers hinder the entering of the anions into the pore.

Comparison with Cloned Cl− Channels

The molecular nature of the channel that underlies \(I_{\text{Cl,swell}} \) is still far from being resolved (Nilius et al., 1996). Based on several phenotypical similarities between \(I_{\text{Cl,swell}} \) and the chloride current induced by over-expression in *Xenopus* oocytes of pIC\textsubscript{Cl} (Paulmichl et al., 1992), \(I_{\text{Cl,swell}} \) was proposed to be mediated by a porin-like channel consisting of pIC\textsubscript{Cl} molecules (Gschwentner et al., 1995; Jackson and Strange, 1995a, 1995b; Strange et al., 1996). This hypothesis is, however, incompatible with our recent findings that the pIC\textsubscript{Cl}-induced current is endogenous to *Xenopus* oocytes but different from \(I_{\text{Cl,swell}} \) (Buyse et al., 1997; Voets et al., 1996).

Some of the properties of \(I_{\text{Cl,swell}} \) described in this work are reminiscent of the characteristics of voltage-gated chloride channels belonging to the CIC family (Jentsch et al., 1995). A first point of similarity is the effect of the permeant anion on the kinetic properties. Modulation of the gating of CIC-0 (the major Cl− channel from the *Torpedo* electric organ) and CIC-1 (the major skeletal muscle Cl− channel) by external Cl− and other permeant anions has been extensively studied (Pusch et al., 1995; Chen and Miller, 1996; Fahlke et al., 1996; Rychkov et al., 1996). It was proposed that Cl− ions can bind to an anion binding site accessible only from the exterior, and that this binding and possibly the movement of the bound Cl− ion within the pore causes the voltage dependency of the gating (Chen and Miller, 1996; Pusch et al., 1995). The third member of the CIC family, the ubiquitously expressed CIC-2, was shown to be activated by cell swelling (Gründler et al., 1992; Thiemann et al., 1992). Additionally, the gating of \(I_{\text{Cl,swell}} \) and of CIC-0, CIC-1, and CIC-2 is modulated by
external pH (Hanke and Miller, 1983; Fahlke et al., 1996; Rychkov et al., 1996; Jordt and Jentsch, 1997). Other biophysical properties of these ClC channels (inward rectification, $Cl^- > Br^- > I^-$ permeability sequence, single-channel conductances below 10 pS) are, however, incompatible with those of $I_{\text{Cl,swell}}$ described in this work. It can, however, not be excluded that $I_{\text{Cl,swell}}$ is mediated by another (not yet cloned) member of the still expanding ClC family.

We thank Drs. J. Eggermont, V. Manolopoulos, and F. Viana for their helpful comments.

This work was supported by the European grant BMH4-CT96-0602 (coordinator B. Nilius).

REFERENCES

Ackerman, M.J., K.D. Wickman, and D.E. Clapham. 1994. Hypotonicity activates a native chloride current in Xenopus oocytes. J. Gen. Physiol. 103:153–179.

Anderson, J.W., J.D. Jirsch, and D. Fedida. 1995. Cation regulation of anion current activated by cell swelling in two types of human epithelial cancer cells. J. Physiol. (Camb.). 483:549–557.

Arreola, J., J.E. Melvin, and T. Begenisich. 1995. Volume-activated chloride channels in rat parotid acinar cells. J. Physiol. (Camb.). 484:667–687.

Braun, S., and H. Schulman. 1996. Distinct voltage-dependent gating behaviors of a swelling-activated chloride current in human epithelial cells. J. Physiol. (Camb.). 495:743–753.

Gosling, M., D.R. Poyner, and J.W. Smith. 1996. Effects of arachidonic acid upon the volume-sensitive chloride current in rat osteoblast-like (ROS 17/2.8) cells. J. Physiol. (Camb.). 493:613–623.

Gosling, M., J.W. Smith, and D.R. Poyner. 1995. Characterization of a volume-sensitive chloride current in rat osteoblast-like (ROS 17/2.8) cells. J. Physiol. (Camb.). 485:671–682.

Gründer, S., A. Thiemann, M. Pusch, and T.J. Jentsch. 1992. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature (Lond.). 360:759–762.

Gschwentner, M., U.O. Nagl, E. Woll, A. Schmarda, M. Ritter, and M. Paulmichl. 1995. Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels. Pflügers Archiv. 430:464–470.

Hanke, W., and C. Miller. 1983. Single chloride channels from Torpedo Electroleptus: activation by protons. J. Gen. Physiol. 82:25–45.

Hoffmann, E.K., and L.O. Simonsen. 1989. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69:315–382.

Jackson, P.S., K. Churchwell, N. Ballatori, J.L. Boyer, and K. Strange. 1996. Swelling-activated anion conductance in skate hepatocytes: regulation by cell Cl^- and ATP. Am. J. Physiol. 39: C57–C66.

Jackson, P.S., and K. Strange. 1995a. Characterization of the voltage-dependent properties of a volume-sensitive anion conductance. J. Gen. Physiol. 105:661–676.

Jackson, P.S., and K. Strange. 1995b. Single-channel properties of a volume-sensitive anion conductance. Activation occurs by abrupt switching of closed channels to an open state. J. Gen. Physiol. 105:643–660.
Voets, T., G. Buyse, J. Tytgat, G. Droogmans, J. Eggermont, and B. Nilius. 1996. The chloride current induced by expression of the protein pICln in Xenopus oocytes differs from the endogenous volume-sensitive chloride current. *J. Physiol. (Camb.)* 495:441–447.

Voets, T., G. Szücs, G. Droogmans, and B. Nilius. 1995. Blockers of volume-activated Cl\(^{-}\) currents inhibit endothelial cell proliferation. *Pflügers Archiv* 431:132–134.

Voets, T., L. Wei, P. De Smet, W. Van Driessche, J. Eggermont, G. Droogmans, and B. Nilius. 1997. Down regulation of volume-activated Cl\(^{-}\) currents during muscle differentiation. *Am. J. Physiol.* 272:C667–C674.

Worrell, R.T., A.G. Butt, W.H. Cliff, and R.A. Frizzell. 1989. A volume-sensitive chloride conductance in human colonic cell line T84. *Am. J. Physiol.* 256:C1111–C1119.