N-Acetylcysteine Attenuates Monocrotophos-induced Toxicity by Mitigating Oxidative Stress and Structural Changes in Rat Liver

Jagjeet Singh
Maharshi Dayanand University Rohtak

Annu Phogat
Maharshi Dayanand University Rohtak

Chandra Prakash
Jawaharlal Nehru University School of Life Sciences

Vijay Kumar
Maharshi Dayanand University Rohtak

Vinay Malik (✉ vinaymalik71@gmail.com)
Maharshi Dayanand University Rohtak https://orcid.org/0000-0001-8909-9542

Research Article

Keywords: Oxidative stress, N-acetylcysteine, monocrotophos, liver, FTIR, antioxidant

DOI: https://doi.org/10.21203/rs.3.rs-534704/v1

License: ☒ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The present study evaluated the effect of N-acetylcysteine (NAC) against sub chronic monocrotophos (MCP) exposure induced oxidative stress in rat liver. Albino wistar rats were divided into control, NAC treated, MCP and MCP treated groups. An oral dose of MCP (0.9 mg/kg b.wt) and NAC (200 mg/kg b.wt) was administered for 28 days. We observed high oxidative stress generation on MCP exposure in liver tissue as evident by significant increase in lipid peroxidation, protein oxidation and decreased glutathione content followed by altered activities of superoxide dismutase, catalase and acetylcholinesterase. Sub chronic MCP exposure caused an array of cellular and structural alternations in lipids and proteins of liver tissue as depicted by the FTIR, histopathological and electron microscopic analysis. N-acetylcysteine attenuated the loss of glutathione and prevented lipid peroxidation and protein oxidation. Pre-treatment of NAC also restored histological and ultra space structural alternations. So NAC protects oxidative stress and tissue damage induced by sub chronic MCP exposure in rat liver; suggesting the therapeutic and antioxidant potential of NAC.

Introduction

Monocrotophos (MCP) insecticide is used to control sucking and chewing pests of fruits and vegetables. Despite its restricted to use label, it is used extensively in various crops like rice, cotton, soybeans, sugarcane, maize, groundnut, etc. (Kumar et al. 2018; Dash and Osborne 2020). Due to its wide spread use, MCP possesses major environmental risk factors for nematodes, arthropods, fishes and mammals including humans. Monocrotophos has been detected in water, soil, as well as in agriculture products(Waite et al. 1992). Exposure of MCP and its residues is known to induce hepatotoxicity(Arora 2009), nephrotoxicity(Malik et al. 2021), neurotoxicity(Sankhwar et al. 2016), genotoxicity(Mahboob et al. 2002) in mammals and in vitro toxicity(Siddiqui et al. 1992). The toxic effects of MCP exposure are attributed to the synergic effects of acetylcholinesterase (AChE) inhibition and generation of reactive oxygen species (ROS).

The liver has long been considered as major target organ of MCP exposure and its metabolites thus it is mostly affected by MCP intoxication (Hanafy et al. 1991). Studies have demonstrated that MCP exposure induces morphological and physiological changes in liver(Yaduvanshi et al. 2010; Begum and Rajini 2011). The disturbance of balance between the degree of ROS generation and antioxidant capabilities is a key factor for MCP-induced hepatotoxicity. In fact, MCP-exposure has been reported to alter the enzymatic as well as non enzymatic antioxidants inside the liver suggestive of liver oxidative stress(Yaduvanshi et al. 2010). Monocrotophos mediated oxidative stress generation is associated with increased lipid peroxidation, protein oxidation, decreased antioxidant enzymatic activity and reduced glutathione content in liver(Desai et al. 1984; Siddiqui et al. 1990; Yaduvanshi et al. 2010; Begum and Rajini 2011). Chronic MCP exposure also mediates structural changes including degeneration of hepatocytes, fatty and hydropic changes, vacuolization, fibrosis, congestion and infiltration of red blood cells in rat liver tissue(Arora 2009).
Antioxidants are chemical compounds capable of inducing the normal response of a biological system to reduce chemical-induced toxicity. Antioxidants primarily include natural extracts of plants and animals having chemically active groups such as thiols, polyphenols, isoquinolines, etc. These compounds are assumed to protect the biological system from oxidative stress by scavenging free radicals resulting from metabolites of synthetic chemical pesticides. N-acetylcysteine (NAC) is a thiol-containing reducing agent and possess many pharmaceutical characteristics such as anti-apoptotic, anti-oxidative, anti-inflammatory and anti-neoplastic properties (Malik et al. 2007; Rakshit et al. 2009; Wang et al. 2009; Jiao et al. 2016; Mokhtari et al. 2017). N-acetylcysteine has been reported to exert an array of ameliorative pharmacological effects against pesticide exposure mediated hepatic-renal toxicity, pulmonary toxicity, neurotoxicity and reproductive toxicity (Shohrati et al. 2008; Falluel-Morel et al. 2012; Abdel-Daim et al. 2019; Owumi et al. 2021). In the literature survey, no study has reported the role of NAC against MCP-induced chronic hepatotoxicity. Further due to the persistence of MCP in fruits and vegetables, humans are susceptible to long-term exposure even if the contamination is below acceptable limits. Thus, the present study was designed to evaluate the effects of NAC against MCP-induced chronic biochemical alteration and structural changes in liver tissue of Wistar rats.

Materials And Methods

Chemicals

Monocrotophos and NAC were purchased from Sigma-Aldrich, St Louis, USA. 5,5-dithiobis-2-nitrobenzoic acid (DTNB), Thiobarbituric acid (TBA), Ethylene diamine tetraacetic acid (EDTA) 2,4-dinitrophenylhydrazine (DNPH), and Trichloroacetic acid (TCA) were from Sisco Research Laboratory, Mumbai, India. Glassware and plastic ware used in the study were autoclaved and sterilized before use.

Animals and their care

Albino rats of Wistar strain weighing 150-180 g were procured from the approved animal house source and kept in polyvinyl carbon cages in well-ventilated room. All protocols related to rats experiments were according to the guidelines of the Committee for Control and Supervision of Experiments on Animals, India. Permission to use of animals was duly approved by the Institutional Animal Ethical Committee.

Experimental Design

A total of 20 rats were randomly assigned to the following four groups containing 5 rats in each group:

1. Control group: Rats received an equal volume of distilled water (vehicle) through oral gavage for 28 days, as administered to the rats of the MCP-treated group.

2. N-acetylcysteine treated group: Rats received NAC (200 mg/kg b.wt) mixed in distilled water through oral gavage for 28 days.

3. Monocrotophos-treated group: Rats received MCP (0.9 mg/kg b.wt, i.e. 1/20th of LD₅₀) dissolved in distilled water through oral gavage for 28 days.
4. **Monocrotophos + NAC treated group:*** Rats received MCP (0.9 mg/kg b.wt) dissolved in distilled water through oral gavage and NAC (200 mg/kg b.wt) mixed in water through oral gavage.

Dose and time of NAC treatment was based on previous studies that have shown the selected dose significantly effective against stress conditions (Ahmad et al. 2013; Galal et al. 2019). Dose of MCP was selected based on previous studies that have reported the selected dose to cause hepatic toxicity in rats (Nagaraju et al. 2020).

Rats were euthanized via carbon dioxide asphyxiation after last dose administration. Liver tissue was dissected out, washed in 0.9% ice-cold normal saline and was used for preparation of tissue homogenate. A part of liver tissue was used for histology and electron microscopy also.

Acetylcholine esterase (AChE) activity assay

Acetylcholine esterase activity in serum and liver tissue homogenate was estimated using method of Ellman et al. (1961). The reaction mixture was read at 412 nm for 2 min. Results were expressed as nmol product formed/min/mg protein.

Estimation of lipid peroxidation

Liver tissue was homogenate was used to calculate lipid peroxidation following method of Wills (1971). Proteins were precipitated using TCA and supernatant was mixed with 0.67% TBA followed by placing it in boiling water bath to develop colour. The amount of TBARS formed was determined and used to express peroxidation of lipids as nmol malondialdehyde (MDA)/mg protein.

Estimation of protein carbonylation

The protein carbonyl in liver tissue homogenate was quantified after derivatization with DNPH (Levine et al. 1990). The protein carbonyl content was calculated results were expressed as nmol carbonyl/mg protein.

Antioxidant enzyme assays

Catalase (CAT) activity in liver homogenate was assayed by monitoring the enzyme-catalyzed degradation of H$_2$O$_2$ at 240 nm for 3 min (Johansson and Borg 1988). Results were expressed as μmole H$_2$O$_2$ decomposed/min/mg protein.

Superoxide dismutase (SOD) activity in liver homogenate was determined by measurement of the nitrobluetetrazolium reduction (Sun et al. 1988). The reaction mixture was read at 560 nm for 3 min. Results were expressed as U/mg protein.

Glutathione (GSH) estimation
Glutathione content in liver tissue homogenate of rats was estimated using DTNB as a substrate (Ellman 1959). The yellow colour developed was read immediately at 412 nm and the results were expressed as nmol/mg protein.

Fourier Transforms Infrared (FTIR) Analysis

Liver tissue samples were prepared for FTIR as described earlier (Akkas et al. 2007) and spectra was recorded in the region 4000 – 400 cm\(^{-1}\) on an FTIR spectrometer (Alpha, Bruker Optics, Ettlingen, Germany). The obtained spectra was further analyzed in two separate regions (3800– 2700 cm\(^{-1}\) and 1800–1400 cm\(^{-1}\)) using ORIGIN® 19 software (Origin Lab Corporation, Massachusetts, USA)

Histopathology study

For histological analysis dissected liver tissues were stored in 70% ethanol after 24 h of fixation in formalin followed by dehydration in different grades of alcohol. After dehydration, the fixed tissues were embedded in paraffin wax after saturating with xylene and wax. Tissue sections (5 µm thickness) were cut using microtome and fixed on slides using egg albumin and heat. Slides were dipped in xylene to deparaffinised the tissue sections and processed for Hematoxyline (stain nucleus) and Eosin (stain cytoplasm), and Van Geison (stain connective tissues) staining; and mounted with Dibutylphthalate Polystyrene Xylene and cover glasses. Slides were observed under the Nikon microscope and were photographed.

Electron microscopy

For electron microscopy tissues of the liver (1-2 mm\(^2\)) were fixed in 2.5% glutaraldehyde and post-fixation storage was done in phosphate buffer at room temperature. After primary fixation tissues were fixed in secondary fixative (osmium tetraoxide) and were embedded in epoxy resin after graded dehydration in ethanol. Then epoxy resins were dried at 55°C for 48 h and cut into thin sections using ultra-microtome. Prepared sections were stained and examined under transmission electron microscope at Sophisticated Analytical Instrumentation Facility, All India Institute of Medical Science in New Delhi, India.

Protein Determination

Protein content in each sample was determined using bovine serum albumin as standard (Lowry et al. 1951).

Statistical analysis

All data was analyzed for statistically significance with help of one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test. Results with values for \(p \leq .05\) were considered as statistically significant.

Results
Acetylcholine esterase activities

Significant depletion of AChE activities in serum and liver tissue was observed in animals exposed to MCP insecticides as compared to control rats. Pre-treatment of NAC with MCP for 28 days significantly elevated both serum and liver AChE activities as compared to MCP administrated group, while NAC alone treated group showed no significant change in AChE activity both in serum and liver tissues compared to control rats (Fig 1 & 2).

Lipid peroxidation

Monocrotophos exposure for 28 days significantly caused peroxidation of lipids in rats as compared to the control group. Administration of NAC to the MCP treated group significantly prevented lipid peroxidation as compared with MCP group. N-acetylcysteine alone treatment showed no significant change in lipid peroxidation of liver tissue as compared with control groups (Fig 3).

Protein Oxidation

Protein oxidation was significantly increased in MCP exposed rats. In contrast, prior administration of NAC to MCP-treated animals significantly declined protein oxidation as compared to those of MCP intoxicated animals while NAC alone treatment showed no significant change in protein oxidation as compared to those of the control group (Figure 4).

Antioxidant enzyme activities

Monocrotophos exposure for 28 days significantly decreased the activities of SOD and CAT as compared to the control group. Pre treatments of NAC to MCP intoxicated animals significantly restored both SOD and CAT activities as compared to MCP alone exposed group. Administration of NAC alone showed no significant changes in antioxidant enzyme activities as compared to the control group (Table 1).

Glutathione content

Monocrotophos exposure significantly decreased the level of GSH content as compared to control rats. Treatment of NAC prior to MCP exposure significantly increased GSH content as compared to MCP exposed rats. Control and NAC alone administered group showed comparable GSH content (Table 1).

Fourier Transforms Infrared analysis of lipids and proteins

The FTIR absorption spectra between 4000 cm\(^{-1}\) to 400 cm\(^{-1}\) was analysed for protein and lipid structure in rat liver. Second derivative FTIR spectra was studied in two different regions i.e. 3800-2750 cm\(^{-1}\) and 1800-1400 cm\(^{-1}\) (Fig 5 & 6). The peak assignment (Table 3) shows changes in lipids and proteins among control and treated groups. As shown in Table 2, the peaks appeared at 3297 and 3080 cm\(^{-1}\) arise from N-H and =CH stretching of proteins (Amide A & B regions). Table 3 shows that there was a significant decrease in band area of N-H stretch of Amide A and B following MCP exposure. Olefinic acid band
observed at 3014 cm\(^{-1}\) mainly arise due to C-H stretching on HC=CH groups was also found to be decreased. Peak assigned to CH\(_3\) asymmetrical (~2959 cm\(^{-1}\)), CH\(_2\) asymmetric (~2925 cm\(^{-1}\)) and CH\(_2\) symmetric (~2854 cm\(^{-1}\)) stretch of lipids were also reduced significantly in area in MCP-exposed group (Table 3). Slight change in peak positions was also observed for these regions (Table 2). The treatment of NAC to MCP-exposed group restored the area of the peaks representing lipid and protein structure in the region (3700-2750 cm\(^{-1}\)) towards control values (Table 3).

In 1800-1400 cm\(^{-1}\) region (Fig 6), sub-chronic MCP exposure significantly affected the peak area of C=O stretch (~1652 cm\(^{-1}\)) of amide A; N-H and C-N stretch (~1541 cm\(^{-1}\)) of Amide B (Table 3). Treatment of MCP also caused significant decrease in peak area of C=O stretch (~1745 cm\(^{-1}\)), -CH\(_2\) bend (~1456 cm\(^{-1}\)) and COO- stretch (~1397 cm\(^{-1}\)) of lipids and fatty acids (Table 3). Slight shifts in peak positions of these regions were observed in MCP exposure group (Table 2). Administration of NAC to MCP exposure group significantly prevented the structural alterations corresponding to proteins and lipids caused by MCP exposure, as evident from restoration of altered peak position and area values (Table 3).

Histopathological analysis

Haematoxylin and Eosin staining of liver tissue sections of rats exposed to MCP for 28 days showed histopathological abnormalities as compared to the control group. Control tissues exhibited normal architecture of bile duct, portal triads and hepatocyte. Hexagonal hepatocytes were arranged radiating from the central vein, separated by blood sinusoids with uniform cytoplasm. Monocrotophos exposure caused edema, sinusoidal disruption and dilation of the portal triad and central vein. Focal necrosis, inflammation, apoptosis in the hepatocyte, hyperchromatic nuclei were observed in MCP exposed rat liver sections. Administration of NAC effectively normalised the onset of histopathological changes caused by MCP exposure as evident by absence of focal necrosis, hyperchromatic nuclei, and apoptotic damage in hepatocyte, inflammation, edema and architecture. N-acetylcysteine only treated group showed normal histological architecture as that of the control group (Fig 7a-d and Table 4).

Van Geison's stain is used for differential staining of collagen and other connective tissues and detects fibrosis in tumours, and other pathological conditions. Van Geison's staining of liver sections of rats exposed to MCP showed hepatic necrotic plaques along with fibrotic generations. Replication of collagen fibres and degeneration of smooth muscles of the central vein was detected in MCP exposed liver tissues. In the group pre-treated with NAC histopathological analysis exhibited a significant reduction in fibrotic generation and necrotic plaques as compared to MCP exposed group. Replication of collagen fibres and smooth muscle degeneration were reduced after pre-treatment of NAC to MCP exposed group. Control and NAC only treated group showed normal connective tissue arrangements in hepatic tissue sections (Fig 8a-d and Table 5).

Transmission Electron Microscopy
Monocrotophos exposed liver tissue sections showed marked alterations in nuclear structure as compared to controls tissue sections. Ovulated and hyperchromatic nucleus and break in the nuclear envelope were observed as major alterations in MCP exposed rats. Pre-treatment of NAC to MCP exposed rats’ maintained normal spherical nucleus and intact nuclear envelope as compared to MCP exposed animal tissue sections. Control and NAC treated group showed normal shape and size of the nucleus and nuclear envelop (Fig 9a-d and Table 6).

Discussion

Monocrotophos is a class I highly toxic organophosphate pesticide. Despite its restricted to use a label, its unplanned application in agriculture is responsible for environmental exposure to humans and mammals. The residue of MCP have been reported in fruits, vegetables, dairy products, soil and water(Leuthold 2013; Mishra 2013; Kumar et al. 2014; Singh et al. 2021). Monocrotophos exposure is known to induce oxidative stress, reduction of antioxidant levels and causes apoptosis that could lead to multi-organ failure and genetic alterations(Velmurugan et al. 2013; Sankhwar et al. 2016; Mandal et al. 2020). Recent studies have suggested liver as the prime targeted organ for pesticide related toxicity(Yilmaz et al. 2017; Milošević et al. 2018; Refaie et al. 2020). N-acetylcysteine is precursor of amino acid and natural source of sulfhydryl group(Dean et al. 2011; Bhardwaj and Saraf 2017). N-acetylcysteine has also shown effective protection against paraquat acute poisoning(Firouzian et al. 2019), deltamethrin mediated in-vitro cytotoxicity(Romero et al. 2012) and against fipronil induced hepatic injuries(Abdel-Daim et al. 2019). Based on the strong antioxidant potential of NAC against pesticide toxicity, we also evaluated the antioxidant potential of NAC against sub-chronic MCP exposure mediated hepatotoxicity in rats. The major finding of the study indicated the antioxidant properties of NAC; oral pre-treatment of NAC for 28 days ameliorated oxidative stress and restored antioxidant levels by regulating enzymatic activities in hepatic tissue and protected tissue damage.

Monocrotophos is a well-known AChE inhibitor and causes cholinergic toxicity inside the body. The present study shows that MCP exposure causes decline of AChE activity both in serum and liver homogenate. Inside body, MCP is readily bio-transformed to reactive metabolites which block esteratic site of acetylcholine esterase and inhibit AChE activity. Previous studies have also shown AChE inhibition in mammalian tissues following MCP exposure(Dwivedi et al. 2010; Joshi and Rajini 2012). Pre-treatment of NAC to MCP exposure recovered tissue and serum AChE level. Our results are in agreement with the findings of previous study that has reported AChE recovery on NAC treatment in carbofuran toxicity in rats(Kamboj et al. 2008). The present study reports non cholinergic effect of NAC against MCP induced oxidative stress in mammals.

Oxidative stress is a central mechanism of tissue injury. Oxidative stress arises when the critical balance between oxidants and antioxidants is disrupted inside the body(Oldham and Bowen 1998; Birben et al. 2012; Pisoschi and Pop 2015). The disruption between oxidants and antioxidants could be attributed to free radical accumulation or antioxidants depletion or both. These free radicals may lead to further biotransformation and attack lipids and proteins’ side chains. Quantification of lipid peroxidation and
protein oxidation is a tool to investigate oxidative stress-mediated toxicity (Suntres 2002; Tarantino et al. 2009). In the present study, MCP exposure for 28 days was observed to cause lipid peroxidation and protein oxidation in rat liver that was significantly reversed by NAC administration along with MCP. The effects of NAC against MCP-induced damage to lipids and proteins were also evident in FTIR findings that indicate possible change to lipid and proteins structural backbone. Reduction in band area and shift in band position of 3297 cm\(^{-1}\), 3080 cm\(^{-1}\), 1652 cm\(^{-1}\) and 1540 cm\(^{-1}\) are indicative of structural rearrangement of proteins inside cell. It is well known that CH\(_2\) stretching band at 2854 cm\(^{-1}\) is indicator of “state of order” of biological membrane (Kartheek and David 2018). Decrease in band area at 2854 cm\(^{-1}\) confirmed MCP mediated alteration in biological membrane and mobility of fatty acids. Further, changes in CH\(_2\) asymmetric and CH\(_2\) symmetric stretching of lipids also depicts conformational disorder and lipid acyl chain flexibility. Alteration in olefinic =CH band area at 3014 cm\(^{-1}\) indicates change in quantity of unsaturated lipids. The study shows that the decrease in peak of the amide I and II were consistent with the decline in amide A band area. Any change in the position of amide bands or decrease in peak area of amide bands may quantitatively reflect alterations in composition of protein secondary structure. This may be attributed to the increased protein oxidation and peroxidation of lipids indicating reduction in free radical scavengers due to MCP exposure in rat liver as evident by biochemical and histological studies also. The administration of NAC along with MCP effectively ameliorated these structural and molecular alterations in lipids and proteins. The results further support the various previous in vitro studies showing that NAC can directly scavenge free radicals (Custódio et al. 2002; Sadegh Soltan-Shari et al. 2007; Kamboj et al. 2008).

Oxidative stress due to toxic insults is also attributed to alteration of cellular antioxidants such as SOD and CAT (Kaur and Sandhir 2006; Lasram et al. 2014). SOD and CAT are the main enzymes that assist the elimination of oxidants formed during the bio-activation of pesticides and function as a first-line of defense against oxidative stress (Turkmen et al. 2019). These enzymes convert superoxide radicals and peroxides radicals into water and oxygen, thus removes ROS (Bhattacharjee and Sil 2006). In relation to this, we found decrease in SOD and CAT activities in rat liver suggesting decreased scavenging of free radicals. The depletion of cellular antioxidants following MCP exposure has also been reported by various studies in liver tissue (Rao 2006; Yaduvanshi et al. 2010; Begum and Rajini 2011). The depletion of antioxidant enzyme activity reported in this study could be tracked to their overutilization in quenching free radicals produced during bio-activation of MCP. N-acetylcysteine-induced augmentation of CAT and SOD activities in the MCP exposed group could be a result of reduced lipid peroxidation and protein oxidation. The nucleophilic and oxidant quenching properties of NAC could have played a role in the positive concomitant loop manner by reducing ROS generation. Being an antioxidant, NAC treatment might have prevented the overutilization of CAT and SOD and could have restored their activity.

Intracellular GSH is a thiol-containing non-enzymatic antioxidant and plays pivotal role in detoxification and metabolism of both endogenous and exogenous substances (Eraslan et al. 2009). It is an important index of cellular antioxidant status and also a biomarker to detect oxidative stress (Yurumez et al. 2007). The present study shows that MCP exposure was associated with severe depletion of cellular GSH levels.
The decline of GSH content is in concordance with various *in vivo* and *in vitro* studies that have implicated GSH depletion in MCP-induced toxicity (Siddiqui et al. 1990; Rao 2006; Dwivedi et al. 2010). Further, NAC has been reported to increase cellular GSH levels both *in vivo* and *in vitro* studies against pesticides-induced oxidative stress in rat tissues (Mostafalou et al. 2012; El-Bini Dhouib et al. 2015; Galal et al. 2019). We also observed significant augmentation of GSH content by prior oral administration of NAC to the MCP exposed group. In fact, NAC is a source of cysteine that is a precursor of de novo GSH synthesis (Sadowska et al. 2007). After the incorporation of NAC into cells, NAC is readily deacylated to deliver intact cysteine for GSH generation. Further NAC has direct antioxidant properties that might have reduced free radicals and have protected GSH from oxidation.

The histopathological and electron microscopy assessment of liver tissue further confirmed the biochemical and structural changes following MCP exposure for 28 days. The findings of the present study showed noticeable degenerative and ultra structural changes in liver sections which are direct shreds of evidence to oxidative damage and apoptosis reported in the study. Ultra structural changes like nuclear membrane breakage, shrinking of nucleus and constriction of chromatids as seen in our study are testimony to MCP-induced apoptosis and lipid damages. Further, the intact nuclear membrane and proper shape and size of nucleus in NAC pre-treatment group marked its anti-apoptotic and antioxidant potential against MCP toxicity. Histopathological findings of the present study are in agreement with previous studies that depicted oxidative stress as the main vehicle for MCP-mediated toxicity in liver tissue (Karami-Mohajeri et al. 2017). Administration of NAC prior to MCP exposure reduced histopathological alternations. Histological restoration of liver architecture by NAC administration to MCP treated group indicates its anti-inflammatory and antioxidant potential. The ameliorative potential can be mainly traced to its antioxidant properties (Abdel-Daim et al. 2019).

The findings of the present study suggest that NAC significantly ameliorates oxidative stress-mediated MCP hepatotoxicity in rats. Reduction of lipid peroxidation, protein oxidation and augmentation of antioxidant enzymes is a major protective evidence of NAC against MCP exposure. In addition, the results depicted that NAC also attenuates pathogenesis, apoptosis and ultra structural anomalies of the liver. The ameliorative potential of NAC and other potent antioxidants is still obscure and more scientific approach via in vivo and in vitro investigation is warranted to identify the molecular mechanism and their effectiveness.

Declarations

Ethics approval: The study was duly approved by Institutional Animal Ethical Committee (Approval No. 210-19).

Consent to participate: Not applicable

Consent for publication: Not applicable.

Availability of data and materials: Not applicable.
Competing interest: Not applicable.

Funding: Not applicable.

Authors’ contribution: All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jagjeet Singh, Annu Phogat and Vijay Kumar. The first draft of the manuscript was written by Jagjeet Singh. Visualization and validation were completed by Chandra Prakash and Vijay Kumar. Vinay Malik and Vijay Kumar reviewed and edited the final draft. All authors read and approved the final manuscript.

Acknowledgement

Authors are thankful to Council of Scientific and Industrial Research, New Delhi and University Grant Commission, New Delhi for providing fellowships to Jagjeet Singh and Annu in form of Senior Research Fellowship and Junior Research Fellow respectively. The authors are highly thankful to Sophisticated Analysis and Instrumentation Facility at All India Institute of Medical Sciences; New Delhi for Transmission Electron Microscopy.

References

Abdel-Daim MM, Dessouki AA, Abdel-Rahman HG, et al (2019) Hepatorenal protective effects of taurine and N-acetylcysteine against fipronil-induced injuries: The antioxidant status and apoptotic markers expression in rats. Science of The Total Environment 650:2063–2073. https://doi.org/10.1016/j.scitotenv.2018.09.313

Ahmad I, Shukla S, Kumar A, et al (2013) Biochemical and molecular mechanisms of N-acetyl cysteine and silymarin-mediated protection against maneb- and paraquat-induced hepatotoxicity in rats. Chem Biol Interact 201:9–18. https://doi.org/10.1016/j.cbi.2012.10.027

Akkas SB, Severcan M, Yilmaz O, Severcan F (2007) Effects of lipoic acid supplementation on rat brain tissue: An FTIR spectroscopic and neural network study. Food Chemistry 105:1281–1288

Arora K (2009) Toxic Effects of Monocrotophos (an organophosphate) on Histoarchitecture of Liver–Histopathological Studies. International Journal of Biotechnology and Biochemistry 5:445–450

Begum K, Rajini PS (2011) Monocrotophos augments the early alterations in lipid profile and organ toxicity associated with experimental diabetes in rats. Pesticide Biochemistry and Physiology 99:33–38. https://doi.org/10.1016/j.pestbp.2010.10.001

Bhardwaj JK, Saraf P (2017) N-acetyl cysteine-mediated effective attenuation of methoxychlor-induced granulosa cell apoptosis by counteracting reactive oxygen species generation in caprine ovary. Environ Toxicol 32:156–166. https://doi.org/10.1002/tox.22221
Bhattacharjee R, Sil PC (2006) The protein fraction of Phyllanthus niruri plays a protective role against acetaminophen induced hepatic disorder via its antioxidant properties. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 20:595–601

Birben E, Sahiner UM, Sackesen C, et al (2012) Oxidative stress and antioxidant defense. World Allergy Organization Journal 5:9–19

Custódio JB, Cardoso CM, Almeida LM (2002) Thiol protecting agents and antioxidants inhibit the mitochondrial permeability transition promoted by etoposide: implications in the prevention of etoposide-induced apoptosis. Chemico-biological interactions 140:169–184

Dash DM, Osborne JW (2020) Biodegradation of monocrotophos by a plant growth promoting Bacillus aryabhattai (VITNNDJ5) strain in artificially contaminated soil. International Journal of Environmental Science and Technology 17:1475–1490

Dean O, Giorlando F, Berk M (2011) N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci 36:78–86. https://doi.org/10.1503/jpn.100057

Desai AK, Joshi UM, Ambadkar PM (1984) Histological observations on the liver of Tilapia mossambica after exposure to monocrotophos, an organophosphorus insecticide. Toxicology letters 21:325–331

Dwivedi N, Bhutia YD, Kumar V, et al (2010) Effects of combined exposure to dichlorvos and monocrotophos on blood and brain biochemical variables in rats. Human & Experimental Toxicology 29:121–129. https://doi.org/10.1177/0960327109357212

El-Bini Dhouib I, Annabi A, Jrad A, et al (2015) Carbosulfan-induced oxidative damage following subchronic exposure and the protective effects of N-acetylcysteine in rats. Gen Physiol Biophys 34:249–261. https://doi.org/10.4149/gpb_2015005

Ellman GL (1959) Tissue sulphhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6

Ellman GL, Courtney KD, Andres Jr V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology 7:88–95

Eraslan G, Kanbur M, Silici S (2009) Effect of carbaryl on some biochemical changes in rats: the ameliorative effect of bee pollen. Food and Chemical Toxicology 47:86–91

Falluel-Morel A, Lin L, Sokolowski K, et al (2012) N-acetyl cysteine treatment reduces mercury-induced neurotoxicity in the developing rat hippocampus. Journal of neuroscience research 90:743–750

Firouzian F, Pourshoja P, Nili-Ahmadabadi A, Ranjbar A (2019) Hepatoprotective effect of N-acetylcysteine loaded niosomes on liver function in paraquat-induced acute poisoning. Pestic Biochem Physiol
Galal AAA, Ramadan RA, Metwally MMM, El-Sheikh SMA (2019) Protective effect of N-acetylcysteine on fenitrothion-induced toxicity: The antioxidant status and metabolizing enzymes expression in rats. Ecotoxicol Environ Saf 171:502–510. https://doi.org/10.1016/j.ecoenv.2019.01.004

Hanafy MSM, Arbid MS, Afify MMH (1991) Biochemical and histopathological effects of the organophosphorus insecticide(Tamaron) in rats. Indian Journal of Animal Sciences 61:43–47

Jiao Y, Ma S, Wang Y, et al (2016) N-Acetyl cysteine depletes reactive oxygen species and prevents dental monomer-induced intrinsic mitochondrial apoptosis in vitro in human dental pulp cells. PloS one 11:e0147858

Johansson LH, Borg LH (1988) A spectrophotometric method for determination of catalase activity in small tissue samples. Analytical biochemistry 174:331–336

Joshi AKR, Rajini PS (2012) Hyperglycemic and stressogenic effects of monocrotophos in rats: evidence for the involvement of acetylcholinesterase inhibition. Experimental and toxicologic pathology 64:115–120

Kamboj SS, Chopra K, Sandhir R (2008) Neuroprotective effect of N-acetylcysteine in the development of diabetic encephalopathy in streptozotocin-induced diabetes. Metabolic brain disease 23:427–443

Karami-Mohajeri S, Ahmadipour A, Rahimi H-R, Abdollahi M (2017) Adverse effects of organophosphorus pesticides on the liver: a brief summary of four decades of research. Arhiv za higijenu rada i toksikologiju 68:261–275

Kartheek RM, David M (2018) Assessment of fipronil toxicity on wistar rats: A hepatotoxic perspective. Toxicology Reports 5:448–456. https://doi.org/10.1016/j.toxrep.2018.02.019

Kaur M, Sandhir R (2006) Comparative effects of acute and chronic carbofuran exposure on oxidative stress and drug-metabolizing enzymes in liver. Drug and Chemical Toxicology 29:415–421

Kumar V, Singh S, Singh R, et al (2018) Spectral, structural and energetic study of acephate, glyphosate, monocrotophos and phorate: an experimental and computational approach. Journal of Taibah University for Science 12:69–78

Kumar V, Upadhyay N, Kumar V, et al (2014) Environmental exposure and health risks of the insecticide monocrotophos—a review. J Biodivers Environ Sci 5:111–120

Lasram MM, Lamine AJ, Dhouib IB, et al (2014) Antioxidant and anti-inflammatory effects of N-acetylcysteine against malathion-induced liver damages and immunotoxicity in rats. Life sciences 107:50–58
Leuthold U (2013) Monocrotophos–Overview on. Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews 139:215

Levine RL, Garland D, Oliver CN, et al (1990) Determination of carbonyl content in oxidatively modified proteins. Meth Enzymol 186:464–478. https://doi.org/10.1016/0076-6879(90)86141-h

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein estimation by Lowry’s method. J Biol Chem 193:265

Mahboob M, Rahman MF, Danadevi K, et al (2002) Detection of DNA damage in mouse peripheral blood leukocytes by the comet assay after oral administration of monocrotophos. Drug Chem Toxicol 25:65–74. https://doi.org/10.1081/dct-100108472

Malik F, Kumar A, Bhushan S, et al (2007) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis 12:2115–2133

Malik V, Singh J, Kumar A, Kumar V (2021) Protective effect of coenzyme Q10 nanoparticles against monocrotophos induced oxidative stress in kidney tissues of rats. Biologia. https://doi.org/10.1007/s11756-021-00732-x

Mandal M, Jaiswal P, Mishra A (2020) Curcumin loaded nanoparticles reversed monocrotophos induced motor impairment and memory deficit: Role of oxidative stress and intracellular calcium level. Journal of Drug Delivery Science and Technology 56:101559

Milošević MD, Paunović MG, Matić MM, et al (2018) Role of selenium and vitamin C in mitigating oxidative stress induced by fenitrothion in rat liver. Biomedicine & Pharmacotherapy 106:232–238. https://doi.org/10.1016/j.biopha.2018.06.132

Mishra D (2013) Evaluation of monocrotophos residues in soils of bathinda, punjab and its viodegradation through microbial isolates of contaminated soil

Mokhtari V, Afsharian P, Shahhoseini M, et al (2017) A review on various uses of N-acetyl cysteine. Cell Journal (Yakhteh) 19:11

Mostafalou S, Abdollahi M, Eghbal MA, Saeedi Kouzehkonani N (2012) Protective effect of NAC against malathion-induced oxidative stress in freshly isolated rat hepatocytes. Adv Pharm Bull 2:79–88. https://doi.org/10.5681/apb.2012.011

Nagaraju R, Joshi AKR, Vamadeva SG, Rajini PS (2020) Deregulation of hepatic lipid metabolism associated with insulin resistance in rats subjected to chronic monocrotophos exposure. Journal of Biochemical and Molecular Toxicology 34:e22506. https://doi.org/10.1002/jbt.22506
Oldham KM, Bowen PE (1998) Oxidative stress in critical care: is antioxidant supplementation beneficial? Journal of the American Dietetic Association 98:1001–1008

Owumi SE, Akomola FE, Imosemi IO, et al (2021) N-acetyl cysteine co-treatment abates perfluorooctanoic acid-induced reproductive toxicity in male rats. Andrologia e14037

Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: A review. European journal of medicinal chemistry 97:55–74

Rakshit S, Bagchi J, Mandal L, et al (2009) N-acetyl cysteine enhances imatinib-induced apoptosis of Bcr-Abl+ cells by endothelial nitric oxide synthase-mediated production of nitric oxide. Apoptosis 14:298–308

Rao JV (2006) Biochemical alterations in euryhaline fish, Oreochromis mossambicus exposed to sub-lethal concentrations of an organophosphorus insecticide, monocrotophos. Chemosphere 65:1814–1820

Refaie AA, Ramadan A, Sabry NM, et al (2020) Over-gene expression in the apoptotic, oxidative damage and liver injury in female rats exposed to butralin. Environ Sci Pollut Res 27:31383–31393. https://doi.org/10.1007/s11356-020-09416-6

Romero A, Ramos E, Castellano V, et al (2012) Cytotoxicity induced by deltamethrin and its metabolites in SH-SY5Y cells can be differentially prevented by selected antioxidants. Toxicol In Vitro 26:823–830. https://doi.org/10.1016/j.tiv.2012.05.004

Sadegh Soltan-Sharifi M, Mojtabahzedeh M, Najafi A, et al (2007) Improvement by N-acetylcysteine of acute respiratory distress syndrome through increasing intracellular glutathione, and extracellular thiol molecules and anti-oxidant power: evidence for underlying toxicological mechanisms. Human & experimental toxicology 26:697–703

Sadowska AM, Manuel-Y-Keenoy B, De Backer WA (2007) Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review. Pulmonary pharmacology & therapeutics 20:9–22

Sankhwar ML, Yadav RS, Shukla RK, et al (2016) Monocrotophos induced oxidative stress and alterations in brain dopamine and serotonin receptors in young rats. Toxicology and Industrial Health 32:422–436. https://doi.org/10.1177/0748233713500834

Shohrati M, Aslani J, Eshraghi M, et al (2008) Therapeutics effect of N-acetyl cysteine on mustard gas exposed patients: evaluating clinical aspect in patients with impaired pulmonary function test. Respiratory medicine 102:443–448

Siddiqui MKJ, Mahboob M, Mustafa M (1992) Interaction of monocrotophos and its novel thion analogues with microsomal cytochrome P-450: in vivo and in vitro studies in rat. Toxicology 76:133–139. https://doi.org/10.1016/0300-483X(92)90160-G
Siddiqui MKJ, Mahboob M, Mustafa M (1990) Hepatic and extra hepatic glutathione depletion and glutathione-S-transferase inhibition by monocrotophos and its two thiol analogues. Toxicology 64:271–279. https://doi.org/10.1016/0300-483X(90)90120-6

Singh S, Kumar V, Kanwar R, et al (2021) Toxicity and detoxification of monocrotophos from ecosystem using different approaches: A review. Chemosphere 130051

Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500

Suntres ZE (2002) Role of antioxidants in paraquat toxicity. Toxicology 180:65–77

Tarantino G, Di Minno MND, Capone D (2009) Drug-induced liver injury: is it somehow foreseeable? World journal of gastroenterology: WJG 15:2817

Turkmen R, Birdane YO, Demirel HH, et al (2019) Antioxidant and cytoprotective effects of N-acetylcysteine against subchronic oral glyphosate-based herbicide-induced oxidative stress in rats. Environ Sci Pollut Res Int 26:11427–11437. https://doi.org/10.1007/s11356-019-04585-5

Velmurugan G, Venkatesh Babu DD, Ramasamy S (2013) Prolonged monocrotophos intake induces cardiac oxidative stress and myocardial damage in rats. Toxicology 307:103–108. https://doi.org/10.1016/j.tox.2012.11.022

Waite DT, Sommerstad H, Grover R, et al (1992) Pesticides in ground water, surface water and spring runoff in a small Saskatchewan watershed. Environmental Toxicology and Chemistry: An International Journal 11:741–748

Wang B, Navath RS, Romero R, et al (2009) Anti-inflammatory and anti-oxidant activity of anionic dendrimer–N-acetyl cysteine conjugates in activated microglial cells. International journal of pharmaceutics 377:159–168

Wills ED (1971) Effects of lipid peroxidation on membrane-bound enzymes of the endoplasmic reticulum. Biochem J 123:983–991. https://doi.org/10.1042/bj1230983

Yaduvanshi SK, Ojha A, Pant SC, et al (2010) Monocrotophos induced lipid peroxidation and oxidative DNA damage in rat tissues. Pesticide biochemistry and physiology 97:214–222

Yilmaz M, Rencuzogullari E, Canli M (2017) Investigations on the effects of etoxazole in the liver and kidney of Wistar rats. Environ Sci Pollut Res 24:19635–19639. https://doi.org/10.1007/s11356-017-9601-5

Yurumez Y, Cemek M, Yavuz Y, et al (2007) Beneficial effect of N-acetylcysteine against organophosphate toxicity in mice. Biol Pharm Bull 30:490–494. https://doi.org/10.1248/bpb.30.490
Tables

Table 1 Effects of NAC on MCP exposure induced alterations in hepatic antioxidant status of rats

Group	SOD (U/mg protein)	Catalase (μmole H₂O₂ decomposed /min/mg protein)	GSH (nmole/mg protein)
Control	8.73±0.35	50.80±4.82	41.66±4.08
NAC	8.41±0.60	52.17±4.60	43.73±2.77
MCP	5.44±0.51^a***	28.20±3.56^a***	25.61±2.03^a***
NAC+MCP	7.03±0.37^b***	40.20±5.07^b***	36.94±2.01^b***

The values represented are mean ± S.D. (N=5). ^a as compared to control group; ^b as compared to MCP treated group. *** p<0.001, significant different

Table 2 Description of frequency assignment of FTIR spectra in rat liver

Wave number cm⁻¹	Peak assignment			
Control	NAC	MCP	NAC+MCP	
3297	3297	3294	3296	N-H stretch of proteins: mainly Amide A
3080	3081	3077	3080	N-H stretch of proteins: mainly Amide B
3014	3014	3012	3014	Olefinic=C-H stretch: unsaturated lipids
2959	2961	2952	2957	CH₃ asymmetric stretching: mainly lipids
2925	2926	2921	2923	CH₂ asymmetrical stretching: mainly lipids
2854	2854	2852	2854	CH₂ symmetric stretch: lipids
1745	1744	1738	1742	Ester C=O stretch: lipids
1652	1653	1649	1652	C=O stretch of proteins: Amide I
1541	1541	1537	1540	N-H bend, C=N stretch of proteins: Amide II
1456	1456	1451	1456	CH₂ bend: lipid and protein
1397	1398	1393	1396	COO- symmetric stretch: fatty acids

Table 3 Effect of NAC on peak area values of FTIR spectra in hepatic tissue of rat exposed to MCP for 28 days
Peak position	Experiment groups			
	Control	NAC	MCP	NAC+MCP
3297 cm⁻¹	170.33 ± 3.42	169.95 ± 2.96	108.00 ± 4.07^a^{***}	163.05 ± 3.17^b^{***}
3080 cm⁻¹	17.97 ± 1.35	18.44 ± 1.73	12.46 ± 0.93^a^{***}	16.73 ± 1.12^b^{***}
3014 cm⁻¹	2.53 ± 0.35	2.69 ± 0.41	1.77 ± 0.14^a^{***}	2.44 ± 0.27^b^{***}
2959 cm⁻¹	9.49 ± 0.86	9.53 ± 0.94	07.70 ± 1.01^a[*]	08.72 ± 0.78^b[*]
2925 cm⁻¹	14.08 ± 0.61	14.14 ± 0.53	11.25 ± 0.76^a^{**}	12.58 ± 0.62^b^{**}
2854 cm⁻¹	20.70 ± 0.77	21.07 ± 0.87	14.67 ± 1.12^a^{***}	18.88 ± 0.68^b^{***}
1745 cm⁻¹	01.53 ± 0.15	01.62 ± 0.12	0.93 ± 0.12^a^{***}	01.37 ± 0.08^b^{***}
1652 cm⁻¹	29.96 ± 1.73	29.12 ± 1.23	14.68 ± 1.52^a^{***}	25.28 ± 1.28^b^{***}
1540 cm⁻¹	17.41 ± 1.27	16.77 ± 1.02	09.01 ± 1.36^a^{***}	14.89 ± 1.11^b^{***}
1456 cm⁻¹	04.39 ± 0.38	04.58 ± 0.59	02.38 ± 0.37^a^{***}	03.49 ± 0.45^b^{***}
1397 cm⁻¹	05.69 ± 0.72	05.87 ± 0.44	03.23 ± 0.60^a^{***}	04.48 ± 0.19^b^{***}

The values represented are mean ± S.D. (N=3). ^a as compared to control; ^b as compared to MCP exposed group. * p<0.05; ** p<0.01; *** p<0.001, significantly different

Table 4 Description of histopathological alterations in different groups of the study (N=3)

Parameters	Control	NAC	MCP	NAC+MCP
Central vein degeneration	-	-	+++	+
Sinusoidal space broadening	-	-	+++	+
Macrophage Infiltration	-	-	+++	+
Focal Hepatocellular necrosis	-	-	++	+
Edema	-	-	+++	+
Hepatocyte apoptosis	-	-	YYYY	+
Portal triad dilation	-	-	+++	-

Table 5 Description of connective tissue alterations in different groups of the study (N=3)
Table 6 Ultra structural assessment of hepatic cells in different groups of the study (N=3)

Parameters	Control	NAC	MCP	NAC+MCP
Focal necrosis plaques	-	-	++++	++
Replication of collagen fibers	-	-	+++	+
Fibrotic generation	-	-	++++	++
Degeneration of smooth muscles in the central vein	-	-	++++	+

Figures
Figure 1

Effect of NAC on MCP exposure induced alteration of AChE activity in serum of the different experimental groups. The values represented are mean ± S.D. (N=5). a as compared to control group; b as compared to MCP treated group. *** p<0.001, significant different
Effect of NAC on MCP exposure induced alteration of AChE activity in liver homogenate of the different experimental groups. The values represented are mean ± S.D. (N=5). a as compared to control group; b as compared to MCP treated group. *** p<0.001, significant different
Figure 3

Effect of NAC on MCP exposure induced lipid peroxidation in rat liver tissue homogenate. The values represented are mean ± S.D. (N=5). a as compared to control group; b as compared to MCP treated group. *** p<0.001, significant different
Figure 4

Effect of NAC on MCP exposure induced protein oxidation in rat liver tissue homogenate. The values represented are mean ± S.D. (N=5). a as compared to control group; b as compared to MCP treated group. *** p<0.001, significant different
Figure 5

Effect of NAC on MCP exposure induced structural alterations as represented by FTIR spectra of rat liver in region 3700 to 2750 cm⁻¹. The spectra are representative of N = 3.
Figure 6

Effect of NAC on MCP exposure induced structural alterations as represented by FTIR spectra of rat liver in region 1800 to 1200 cm\(^{-1}\). The spectra are representative of N = 3
Figure 7

Histopathological examination of liver tissues stained with H & E (200X) (a) Control group; (b) NAC group; (c) MCP group; (d) NAC+MCP group; depicting Apoptosis (narrow arrow), Edema (filled triangle), Sinusoidal broadening (bold arrow) and central vein degeneration (rhombus). CV - Central Vein; BD - Bile Duct; HA - Hepatic Artery; Mif - Macrophage Infiltration
Figure 8

Photomicrographs of liver tissue of experimental groups stained with Van-Geison stain (200X) (a) Control group; (b) NAC group; (c) MCP group; (d) NAC+MCP group; depicting the fibrotic generation (narrow arrow), collagen fibre replication (bold arrow), smooth muscle degeneration (star), focal necrosis plaques (asterside). CV - Central Vein, PT - Portal Triad, HA - Hepatic Artery
Figure 9

Transmission Electron Microscopy images to represent ultra structure of hepatocytes nuclei in rat (a) Control group; (b) NAC group; (c) MCP group; (d) NAC+MCP group