Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton+jets final states produced in pp collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

Abstract

The W boson helicity fractions from top quark decays in $t\bar{t}$ events are measured using data from proton-proton collisions at a centre-of-mass energy of 8 TeV. The data were collected in 2012 with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.8 fb$^{-1}$. Events are reconstructed with either one muon or one electron, along with four jets in the final state, with two of the jets being identified as originating from b quarks. The measured helicity fractions from both channels are combined, yielding $F_0 = 0.681 \pm 0.012$ (stat) ± 0.023 (syst), $F_L = 0.323 \pm 0.008$ (stat) ± 0.014 (syst), and $F_R = -0.004 \pm 0.005$ (stat) ± 0.014 (syst) for the longitudinal, left-, and right-handed components of the helicity, respectively. These measurements of the W boson helicity fractions are the most accurate to date and they agree with the predictions from the standard model.

Published in Physics Letters B as doi:10.1016/j.physletb.2016.10.007.
1 Introduction

The data from proton-proton (pp) collisions produced at the CERN LHC provide an excellent environment to investigate properties of the top quark, in the context of its production and decay, with unprecedented precision. Such measurements enable rigorous tests of the standard model (SM), and deviations from the SM predictions would indicate signs of possible new physics [1–4].

In particular, the W boson helicity fractions in top quark decays are very sensitive to the Wtb vertex structure. The W boson helicity fractions are defined as the partial decay rate for a given helicity state divided by the total decay rate:

\[F_{L,R,0} \equiv \frac{\Gamma_{L,R,0}}{\Gamma}, \]

where \(F_L, F_R, \) and \(F_0 \) are the left-handed, right-handed, and longitudinal helicity fractions, respectively. The helicity fractions are expected to be \(F_0 = 0.687 \pm 0.005, F_L = 0.311 \pm 0.005, \) and \(F_R = 0.0017 \pm 0.0001 \) at next-to-next-to-leading order (NNLO) in the SM, including electroweak effects, for a top quark mass \(m_t = 172.8 \pm 1.3 \) GeV [5]. Anomalous Wtb couplings, i.e. those that do not arise in the SM, would alter these values.

Experimentally, the W boson helicity can be measured through the study of angular distributions of the top quark decay products. The helicity angle \(\theta^\ast \) is defined as the angle between the direction of either the down-type quark or the charged lepton arising from the W boson decay and the reversed direction of the top quark, both in the rest frame of the W boson. The distribution for the cosine of the helicity angle depends on the helicity fractions in the following way,

\[
\frac{1}{\Gamma} \frac{d\Gamma}{d \cos \theta^*} = \frac{3}{8} (1 - \cos \theta^*)^2 F_L + \frac{3}{4} (\sin \theta^*)^2 F_0 + \frac{3}{8} (1 + \cos \theta^*)^2 F_R. \tag{1}
\]

This dependence is shown in Fig. 1 for each contribution separately, normalised to unity, and for the SM expectation. Charged leptons (or down-type quarks) from left-handed W bosons are preferentially emitted in the opposite direction of the W boson, and thus tend to have lower momentum and be closer to the b jet from the top quark decay, as compared to charged leptons (or down-type quarks) from longitudinal or right-handed W bosons.

![Figure 1: Predicted cos\(\theta^*\) distributions for the different helicity fractions. The distributions for the fractions \(F_0\), \(F_L\), and \(F_R\) are shown as dashed, dotted, and dash-dotted lines, respectively, and the sum of the three contributions according to the SM predictions is displayed as a solid line.](image)

The measurement of the W boson helicity is sensitive to the presence of non-SM couplings between the W boson, the top quark, and the bottom quark. A general parametrisation of the
Wtb vertex can be expressed as \cite{1,6}

$$\mathcal{L}_{Wtb} = - \frac{g}{\sqrt{2}} \gamma^{\mu} (V_L P_L + V_R P_R) t W_{\mu}^\nu - \frac{g}{\sqrt{2}} \bar{b} i \gamma^{\mu} q_\nu (g_L P_L + g_R P_R) t W_{\mu}^\nu + \text{h.c.}, \quad (2)$$

where V_L, V_R, g_L, g_R are vector and tensor couplings (complex constants), $q = p_t - p_b$, and p_t (p_b) is the four-momentum of the top quark (b quark), P_L (P_R) is the left (right) projection operator, and h.c. denotes the Hermitian conjugate. Hermiticity conditions on the possible dimension-six Lagrangian terms also impose $\text{Im}(V_L) = 0 \cite{7}$. In the SM and at tree level, $V_L = V_{tb}$, where $V_{tb} \approx 1$ is the Cabibbo–Kobayashi–Maskawa matrix element connecting the top and the bottom quarks and $V_R = g_L = g_R = 0$. The relationships between the W boson helicity fractions and the anomalous couplings including dependences on the b quark mass are given in Ref. \cite{8}.

The helicity fractions of W bosons in top quark decays were first measured at the Tevatron Collider \cite{9,10,11}. They have been also measured at the LHC, using samples containing $t\bar{t}$ events obtained in pp collisions at 7 TeV, and having either one \cite{12,13} or two \cite{12} charged leptons in the final state. The CMS Collaboration also reported measurements using event topologies that contain one single reconstructed top quark \cite{14}, in pp collisions at 8 TeV. Limits on anomalous couplings have also been reported, derived from W boson helicity measurements \cite{12,14}, and from single top quark differential cross section production measurements \cite{15}.

This Letter describes a measurement of the W boson helicity fractions in $t\bar{t}$ events involving one lepton and multiple jets, $t\bar{t} \rightarrow (W^+ b) (W^- \bar{b}) \rightarrow (\ell^+ \nu/\ell^- \bar{\nu}) (q\bar{q}'b)$, and its charge conjugate, where ℓ is an electron or a muon, including those from leptonic decays of a tau lepton. Final states corresponding to such processes are referred to as lepton+jets. The measurement relies on the analysis strategy described in Ref. \cite{13}. The measurement is performed using pp collisions at centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.8 fb$^{-1}$, collected during 2012 by the CMS detector.

2 The CMS detector

The CMS detector is a multipurpose apparatus of cylindrical design with respect to the proton beams. The main features of the detector relevant for this analysis are briefly described here. Charged particle trajectories are measured by a silicon pixel and strip tracker, covering the pseudorapidity range $|\eta| < 2.5$. The inner tracker is immersed in a 3.8 T magnetic field provided by a superconducting solenoid of 6 m in diameter that also encompasses several calorimeters. A lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadronic calorimeter surround the tracking volume and cover the region $|\eta| < 3$. Quartz fibre and steel hadron forward calorimeters extend the coverage to $|\eta| \leq 5$. Muons are identified in gas ionisation detectors embedded in the steel return yoke of the magnet. The data for this analysis are recorded using a two-level trigger system. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. \cite{16}.

3 Data and simulated samples

Signal events corresponding to top quark pairs that decay to lepton+jets final states are expected to contain one isolated lepton (electron or muon) together with at least four jets, two of which originate from b quark fragmentation. Such events are referred to separately as e+jets
or \(\ell+\text{jets}\), respectively, or when combined as \(\ell+\text{jets}\). Background events containing a single isolated lepton and four reconstructed jets arise mainly from processes that produce events containing a single top quark, processes that produce multijet events in association with a W boson that decays leptonically (W+jets), or Drell–Yan processes accompanied by multiple jets (DY+jets) when one of the leptons is misidentified as a jet or goes undetected. Multijet processes can also mimic lepton+jets final states, if a jet is reconstructed as an electromagnetic shower or, more unlikely, if a nonprompt muon from a hadron decay in flight fulfils all identification criteria of a prompt muon.

Simulated Monte Carlo (MC) samples, interfaced with Geant4 [17], are used to account for detector resolution and acceptance effects, as well as to estimate the contribution from background processes that have characteristics similar to lepton+jets final states in \(t\bar{t}\) decays. A signal \(t\bar{t}\) sample, which also provides a reference for the SM (see Eq. (5)), is simulated using MadGraph v5.1.3.30 [18] with matrix elements having up to three extra partons in the final state. The parton distribution function (PDF) set CTEQ6L1 [19] is used when simulating this reference \(t\bar{t}\) sample. The MadGraph generator is interfaced with Pythia 6.426 [20], tune Z2* [21], to simulate hadronisation and parton fragmentation, and also with TAUOLA v27.121.5 [22] to simulate \(\tau\) lepton decays. This SM reference \(t\bar{t}\) sample is simulated assuming \(m_t = 172.5\) GeV, which results in the following leading-order (LO) W boson helicity fractions for that sample:

\[
F_{0}^{\text{SM}} = 0.6902, \quad F_{L}^{\text{SM}} = 0.3089, \quad F_{R}^{\text{SM}} = 0.0009.
\]

(3)

Single top quark events in the \(s\), \(t\), and \(tW\) channels are generated using Powheg v1.0 [23] and Pythia interfaced with TAUOLA, with the PDF set CTEQ6M [19]. Background W+jets and DY+jets processes are simulated using MadGraph with the PDF set CTEQ6L1, followed by Pythia for fragmentation and hadronisation. Finally, background multijet processes are simulated using the Pythia event generator.

Corrections are applied to the simulated samples so that resolutions, energy scales, and efficiencies as functions of \(p_T\) and \(\eta\) of jets [24] and leptons [25] measured in data are well described. The effect of multiple pp collisions occurring in the same bunch crossing (pileup) is also taken into account in the simulation.

The data samples selected for this measurement were recorded using inclusive single-lepton triggers, which require at least one isolated electron (muon) with \(p_T > 27\) (24) GeV, used to define the e+jets (\(\mu+\text{jets}\)) data sample.

The decay products of candidate top quarks are reconstructed using the CMS particle-flow (PF) algorithm, described in detail elsewhere [26, 27]. Individual charged particles identified as coming from pileup interactions are removed from the event. Effects of neutral particles from pileup interactions are mitigated by applying corrections based on event properties. Leptons are required to originate from the primary vertex of the event [28]. A lepton is determined to be isolated using a variable computed as the total transverse momentum of all particles (except the lepton itself) contained within a cone of radius 0.4, centred on the lepton direction, relative to the transverse momentum of the lepton. Electrons are identified by using a multivariate analysis (MVA) [29] based on information from the inner tracker and the ECAL. Events are selected for the e+jets data sample if the identified electron has an MVA discriminant value greater than 0.9, is determined to be isolated, has \(p_T > 30\) GeV, and \(|\eta| < 2.5\). Muons are identified by matching information from the inner tracker and the muon spectrometer [30]. Events are selected for the \(\mu+\text{jets}\) data sample if they contain an isolated muon, \(p_T > 26\) GeV, and \(|\eta| < 2.1\). Events with at least one additional isolated electron or muon are vetoed to reject backgrounds from dileptonic decay modes of \(t\bar{t}\) and DY+jets processes. Jets are reconstructed...
Reconstruction of the \(\bar{t}t \) system and reweighting method

[24] using the anti-\(k_T \) clustering algorithm [31], with a distance parameter of 0.5. The selected or vetoed leptons described above are not allowed to be clustered into jets, to avoid ambiguities.

The event selection requires at least four reconstructed jets having \(|\eta| < 2.4\), of which the four most energetic jets are required to have \(p_T \) higher than 55, 45, 35, and 20 GeV. Events with additional jets are not vetoed. The transverse momentum imbalance of the event \(p_{\text{T}}^{\text{miss}} \) is determined by summing the negative transverse momentum over all reconstructed particles, excluding those charged particles not associated with the primary vertex.

The event selection requires at least four reconstructed jets having \(|\eta| < 2.4\), of which the four most energetic jets are required to have \(p_T \) higher than 55, 45, 35, and 20 GeV. Events with additional jets are not vetoed. The transverse momentum imbalance of the event \(p_{\text{T}}^{\text{miss}} \) is determined by summing the negative transverse momentum over all reconstructed particles, excluding those charged particles not associated with the primary vertex.

The transverse mass of the W boson is defined as

\[
M_T = \sqrt{2 p_T^{\ell} p_{\text{T}}^{\text{miss}}(1 - \cos(\Delta\phi))},
\]

where \(p_T^{\ell} \) is the transverse momentum of the lepton, \(p_{\text{T}}^{\text{miss}} \) is the magnitude of \(p_{\text{T}}^{\text{miss}} \), and \(\Delta\phi \) is the angle in the \((x,y)\) plane between the direction of the lepton and \(p_{\text{T}}^{\text{miss}} \). To reduce the multijet background and suppress dilepton events from \(t\bar{t} \) processes, events are required to have \(30 < M_T < 200 \) GeV. All backgrounds are further suppressed by requiring that at least two jets be identified as originating from b quarks. All jets with \(p_T > 20 \) GeV are considered as b quark candidates, including those that are not among the four most energetic.

The combined secondary vertex algorithm [32, 33] tags b quark jets with an efficiency of about 70\% and mistags jets originating from gluons, u, d, or s quarks with a probability of about 1\%, for the typical \(p_T \) ranges (30–100 GeV) probed in \(t\bar{t} \) events. Charm jets have a probability of \(\approx 20\% \) of being tagged as b quark jets. The residual multijet backgrounds, already strongly suppressed by requiring that at least two jets be identified as originating from b quarks. All jets with \(p_T > 20 \) GeV are considered as b quark candidates, including those that are not among the four most energetic.

The method [13] employed to measure the W boson helicity fractions \((F_L, F_0, F_R) \equiv \bar{F}) consists
of maximising a binned Poisson likelihood function constructed using the number of observed events in data $N_{\text{data}}(i)$ and expected events from MC simulation $N_{\text{MC}}(i; \vec{F})$, in each bin i of the reconstructed $\cos \theta^*_{\text{rec}}$ distribution,

$$L(\vec{F}) = \prod_i N_{\text{MC}}(i; \vec{F}) \frac{N_{\text{data}}(i)}{[N_{\text{data}}(i)]!} \exp [-N_{\text{MC}}(i; \vec{F})].$$

(4)

While the charged lepton is easily identified in the leptonic branch of $t\bar{t}$ decays, the down-type quark jet arising from the W boson decay in the hadronic branch of $t\bar{t}$ decays can not be experimentally distinguished from the up-type quark jet. Due to this ambiguity, only the absolute value $|\cos \theta^*_{\text{rec}}|$ can be reconstructed for the hadronic branch. Hence, only the leptonic branch measurement of $\cos \theta^*_{\text{rec}}$ is used in this analysis. The expected numbers of events from background processes, $N_{W+jets}(i), N_{DY+jets}(i)$, and $N_{\text{multijet}}(i)$ represent W boson production in association with multiple jets, Drell–Yan production in association with multiple jets, and production of multiple jets, which do not depend on the W boson helicity fractions. For the processes containing top quarks, the number of expected events in a given bin i is modified by reweighting each event in that bin by a factor w, defined for each decaying branch as

$$w_{\text{lep/had/singlet}}(\cos \theta^*_\text{gen}; \vec{F}) = \frac{\frac{3}{8} F_L (1 - \cos \theta^*_\text{gen})^2 + \frac{3}{4} F_0 \sin^2 \theta^*_\text{gen} + \frac{3}{8} F_R (1 + \cos \theta^*_\text{gen})^2}{\frac{3}{8} F_L^\text{SM} (1 - \cos \theta^*_\text{gen})^2 + \frac{3}{4} F_0^\text{SM} \sin^2 \theta^*_\text{gen} + \frac{3}{8} F_R^\text{SM} (1 + \cos \theta^*_\text{gen})^2},$$

(5)

where θ^*_gen is the helicity angle (specified at matrix element level) of a particular decay branch, and $F_L^\text{SM}, F_0^\text{SM}, F_R^\text{SM}$ are given in Eq. (3). Therefore, the number of expected events, as a function of the helicity fractions to be measured, is

$$N_{\text{MC}}(i; \vec{F}) = N_{t\bar{t}}(i; \vec{F}) + N_{\text{singlet}}(i; \vec{F}) + N_{W+jets}(i) + N_{DY+jets}(i) + N_{\text{multijet}}(i),$$

(6)

where

$$N_{t\bar{t}}(i; \vec{F}) = \mathcal{F}_{t\bar{t}} \left[\sum_{\text{t\bar{t} events in bin } i} w_{\text{lep}}(\cos \theta^*_\text{gen}; \vec{F}) \times w_{\text{had}}(\cos \theta^*_\text{gen}; \vec{F}) \right],$$

(7)

$$N_{\text{singlet}}(i; \vec{F}) = \sum_{\text{singlet events in bin } i} w_{\text{singlet}}(\cos \theta^*_\text{gen}; \vec{F})$$

(8)

represent the expected number of events fulfilling event selection criteria for processes involving top quark pair, and single top quark production, respectively. The normalisation factor $\mathcal{F}_{t\bar{t}}$ for the $t\bar{t}$ sample is a single free parameter in the fit across all bins. The expected cross section for the simulated reference $t\bar{t}$ sample is $252.9^{+13.3}_{-13.5}$ pb, calculated at NNLO and next-to-next-to-leading-log (NNLL) accuracy [34, 35], and describes the data well. The fitted values of $\mathcal{F}_{t\bar{t}}$ in both $e+jets$ and $\mu+jets$ channels are compatible with 1.00 within 3%. The overall normalisation factor for simulated single top quark events is not modified in the fit and the uncertainty in the assumed cross section is considered as a source of systematic uncertainty. Finally, the unitarity constraint ($F_L + F_0 + F_R = 1$) is imposed, so that one of the helicity fractions, namely F_R, is bound by the measurement of the other two.

The method was validated using pseudo-experiments, where the fitting procedure was performed on pseudo-data, mimicking altered helicity fractions. Linearity tests show that the fitting procedure correctly retrieves the helicity fractions of altered input values for $F_0 \in [0.50, 0.85]$ and $F_L \in [0.20, 0.50]$. Likewise the corresponding statistical uncertainties were verified using sets of statistically uncorrelated pseudo-data.
Table 1: Systematic uncertainties on the measurements of the W boson helicity fractions from lepton+jets events. The cases in which the statistical precision of the limited sample size was assigned as systematic uncertainties are denoted by the symbol (\(^\ast\)).

	e+jets	\(\mu\)+jets	\(\ell\)+jets			
	\(\pm \Delta F_0\)	\(\pm \Delta F_L\)	\(\pm \Delta F_0\)	\(\pm \Delta F_L\)		
JES	0.004	0.003	0.005	0.003		
JER	0.001	0.002	0.004	0.003		
b tagging eff.	0.001	\(<10^{-3}\)	0.001	\(<10^{-3}\)		
Lepton eff.	0.001	0.002	0.001	0.001		
Single top normal.	0.002	\(<10^{-3}\)	0.003	0.001		
W+jets bkg.	0.008	0.001	0.007	0.001		
DY+jets bkg.	0.002	\(<10^{-3}\)	0.001	\(<10^{-3}\)		
Multijet bkg.	0.023	0.007	0.007	0.003		
Pileup	0.001	0.001	\(<10^{-3}\)	\(<10^{-3}\)		
Top quark mass	0.012	0.008	0.010 (\(^\ast\))	0.008 (\(^\ast\))	0.010	0.007
\(t\bar{t}\) scales	0.011	0.008 (\(^\ast\))	0.014	0.007 (\(^\ast\))	0.012	0.007
\(t\bar{t}\) match. scale	0.011 (\(^\ast\))	0.007 (\(^\ast\))	0.010	0.007		
\(t\bar{t}\) MC and hadronisation	0.015	0.009	0.005	0.003		
\(t\bar{t}\) \(p_T\) reweight	0.011	0.010	\(<10^{-3}\)	0.001	\(<10^{-3}\)	0.002
Limited MC size	0.002	0.001	0.002	0.001		
PDF	0.004	0.001	0.002	0.001		
Total	0.037	0.020	0.024	0.014		

5 Systematic uncertainties

Systematic effects which could potentially bias the measurement of the W boson helicity fractions have been investigated and their corresponding uncertainties determined, as presented in Table 1.

Residual corrections are applied in simulation to the jet energy scale (JES), to account for differences between data and simulation. The momenta of the jets in simulation are also smeared so that the jet energy resolution (JER) in simulation agrees with that in data. These corrections and smearings are propagated into \(\vec{p}_T^{\text{miss}}\) to correct its momentum scale. The uncertainties associated with the JES and JER corrections are also propagated to \(\vec{p}_T^{\text{miss}}\), and the full analysis, including the \(t\bar{t}\) reconstruction and the resulting measurements of the W boson helicity fractions, is repeated. Scale factors are used to correct the b tagging efficiency in simulation, where those corrections are shifted by their estimated uncertainties, and the full analysis repeated. Scale factors are also used to correct leptons for their identification, isolation and trigger efficiencies, which are varied within their uncertainties so as to maximise potential shape variations of the predicted \(\cos \theta^*\) distributions.

To account for any possible bias of the W boson helicity measurements due to uncertainties in the normalisation of simulated backgrounds, the assumed cross section for each sample is varied individually [13]. An uncertainty of 30% is used for the normalisation of DY+jets, single top quark, and W boson production in association with light-quark or gluon jet production. Since the modelling of the simulated heavy-flavour content of the W+jets sample is known to
Several uncertainties from possible systematic effects related to theoretical modelling of the signal are estimated by replacing the default $t\bar{t}$ samples with alternative $t\bar{t}$ samples and repeating the entire analysis. Specifically, for the MadGraph interfaced with PYTHIA event generation, the default m_t value of 172.5 GeV is shifted up and down by 1 GeV; the renormalisation and factorisation scales are varied down (up) by a factor of 0.5 (2); the kinematic scale used to match jets to partons (matching threshold) is varied down (up) by factor of 0.5 (2); finally, the parton shower and hadronisation modelling is studied in a $t\bar{t}$ sample simulated with MC@NLO v3.41.
Figure 3: Left: the measured W boson helicity fractions in the \((F_0, F_L)\) plane. The dashed and solid ellipses enclose the allowed two-dimensional 68% and 95% CL regions, for the combined \(\ell+\text{jets}\) measurement, taking into account the correlations on the total (including systematic) uncertainties. The error bars give the one-dimensional 68% CL interval for the separate \(F_0\) and \(F_L\) measurements, with the inner-tick (outer-tick) mark representing the statistical (total) uncertainty. Right: the corresponding allowed regions for the real components of the anomalous couplings \(g_L\) and \(g_R\) at 68% and 95% CL, for \(V_L = 1\) and \(V_R = 0\). A region near \(\text{Re}(g_L) = 0\) and \(\text{Re}(g_R) \gg 0\), allowed by the fit but excluded by the CMS single top quark production measurement, is omitted. The SM predictions are shown as stars.

[38] using the PDF set CTEQ6M and interfaced with HERWIG v6.520 [39].

Uncertainties in the helicity fractions arising from the limited size of the simulated \(\ell\ell\) samples are taken into account, both in the main analysis and in the determination of the modelling uncertainties. In the former case, these effects are added as a separate source of uncertainty. In the latter case, the systematic uncertainties in the W boson helicity are assigned to be the larger of either (i) the statistical precision of the limited sample size or (ii) the systematic shift of the central value with respect to the reference \(\ell\ell\) sample.

The shape of the \(p_T\) spectrum for top quarks, as measured by the differential cross section for top quark pairs [25, 40], has been found to be softer than the predictions from MADGRAPH simulation. The effect of this mismodelling is estimated by reweighting the events in the simulated \(\ell\ell\) sample, so that the top quark \(p_T\) at parton level in the MC describes the unfolded data distribution. Further, the systematic effects due to the PDFs used to simulate the signal and background samples are estimated according to the prescriptions described in [41, 42], using NNPDF21 [43] and MSTW2008lo68cl [44] PDF sets as alternatives to those used at generation. Finally, uncertainties related to the modelling of the pileup in simulated events are also taken into account.

The total systematic uncertainty is given by the sum in quadrature of all uncertainties described above.
6 Results

The measurements of the W boson helicity fractions, using $\cos \theta^*$ from the leptonic branch of $t\bar{t}$ events that decay into $e+\text{jets}$ or $\mu+\text{jets}$, including the full combination of these two measurements, are shown in Table 2. Within an individual channel, the helicity parameters F_0 and F_1 are fit simultaneously, but they are strongly anti-correlated due to the unitarity constraint $F_L + F_0 + F_R = 1$, as indicated by the statistical correlation coefficient $\rho_{0,L}$ given in the table. The separate helicity measurements from the $e+\text{jets}$ and $\mu+\text{jets}$ channels are combined into a single $\ell+\text{jets}$ measurement using the BLUE method [45, 46], taking into account all uncertainties and their possible correlations. Uncertainties related to lepton efficiency, multijet background estimations, and statistical uncertainties are considered uncorrelated between the $e+\text{jets}$ and $\mu+\text{jets}$ analyses, while all other uncertainties are assumed to be fully correlated. The combined $\ell+\text{jets}$ measurement of the helicity fractions is dominated by the $\mu+\text{jets}$ channel, with weights more than double those of the $e+\text{jets}$ channel. The χ^2 of the combination is 2.13 for 2 degrees of freedom, corresponding to a probability of 34.5%. The measurement uncertainties are dominated by systematic effects that are correlated between both the $e+\text{jets}$ and $\mu+\text{jets}$ channels. The combined F_0 and F_L values are anti-correlated with a statistical correlation coefficient $\rho_{0,L} = -0.959$. The total correlation coefficient, considering both statistical and systematic uncertainties, is found to be -0.870. The measured helicity fractions presented in Table 2 are consistent with the SM predictions given at NNLO accuracy [5]. Figure 2 shows, separately for the $e+\text{jets}$ and $\mu+\text{jets}$ channels, the distributions for the cosine of the helicity angles from the leptonic branch, which are used in the helicity measurements, and the distributions of the corresponding absolute values from the hadronic branch, for comparison purposes. The simulated samples involving top quarks used in the figure were produced using the measured values for the W boson helicity fractions, as determined from the combined $\ell+\text{jets}$ fit. Left-handed W bosons tend to populate the region at $\cos \theta^* \approx -1$, where the charged lepton overlaps with the b quark. However, the angular separation requirement between leptons and jets removes most of the events near $\cos \theta^* = -1$. Very few events are expected in the region preferred by right-handed bosons, near $\cos \theta^* = +1$. However, due to resolution effects, the reconstructed distribution does not fall as rapidly as expected in that region, where the charged lepton and b quark have opposite directions. For these reasons, the shape of the reconstructed $\cos \theta^*$ distribution differs from that expected in the SM (Fig. 1). These features are well reproduced by the simulation, and taken into account in the measurement.

Table 2: Measurements of the W boson helicity fractions from lepton+jets final states in $t\bar{t}$ decays. The helicity fractions F_0 and F_L are measured simultaneously and are strongly anti-correlated, as indicated by a correlation coefficient $\rho_{0,L}$, because F_R is derived from the unitarity condition.

Channel	$F_0 \pm (\text{stat}) \pm (\text{syst})$	$F_L \pm (\text{stat}) \pm (\text{syst})$	$F_R \pm (\text{stat}) \pm (\text{syst})$	$\rho_{0,L}$
$e+\text{jets}$	0.705±0.013±0.037	0.304±0.009±0.020	−0.009±0.005±0.021	−0.950
$\mu+\text{jets}$	0.685±0.013±0.024	0.328±0.009±0.014	−0.013±0.005±0.017	−0.957
$\ell+\text{jets}$	0.681±0.012±0.023	0.323±0.008±0.014	−0.004±0.005±0.014	−0.959

Using these results, limits on anomalous couplings are obtained by fixing the two vector couplings in Eq. 2 to their SM values, $V_L = 1$ and $V_R = 0$, and choosing the tensor couplings, $\text{Re}(g_{1L})$ and $\text{Re}(g_{1R})$, as free parameters. The combined $\ell+\text{jets}$ measurement of the W boson helicity fractions F_0 and F_L is reinterpreted in terms of the tensor couplings, $\text{Re}(g_{1L})$ and $\text{Re}(g_{1R})$, using the relationships between the W boson helicity fractions given in Ref. [8].
The W boson helicity measurements are displayed in the \((F_0, F_L)\) plane in Fig. 3 (left), together with their one-dimensional statistical (inner-tick mark) and total (outer-tick mark) error bars. The full two-dimensional confidence level (CL) contours corresponding to 68% (dashed line) and 95% (solid line) probabilities are also displayed for the combined measurement. The SM prediction is shown as a star and lies within the 68% CL contour. The corresponding regions in the \((\text{Re}(g_L), \text{Re}(g_R))\) plane, allowed at 68% (dark contour) and 95% CL (light contour), are shown in Fig. 3 (right), together with the SM value. They are derived from Fig. 3 (left), using the relationships between the W boson helicity fractions and the anomalous couplings given in Ref. 8. A region near \(\text{Re}(g_L) = 0\) and \(\text{Re}(g_R) \gg 0\), allowed by the fit but excluded by the CMS single top quark production measurement [47], is not shown.

If the right-handed component \(F_R\) is bound to zero, consistently with the SM within the precision of the current measurement, the combined \(\ell+\text{jets}\) measurement amounts to \(F_0 = 0.661 \pm 0.006\) (stat) \(\pm 0.021\) (syst). In this case, \(F_L\) is obtained via the unitarity constraint and yields \(F_L = 0.339 \pm 0.006\) (stat) \(\pm 0.021\) (syst).

7 Summary

A measurement of the W boson helicity fractions in top quark pair events decaying in the \(e+\text{jets}\) and \(\mu+\text{jets}\) channels has been presented, using proton-proton collision data at \(\sqrt{s} = 8\) TeV, and corresponding to an integrated luminosity of 19.8 fb\(^{-1}\). The helicity fractions \(F_0\) and \(F_L\) are measured with a precision of better than 5%, yielding the most accurate experimental determination of the W boson helicity fractions in \(t\bar{t}\) processes to date. The measured W boson helicity fractions are \(F_0 = 0.681 \pm 0.012\) (stat) \(\pm 0.023\) (syst), \(F_L = 0.323 \pm 0.008\) (stat) \(\pm 0.014\) (syst), and \(F_R = -0.004 \pm 0.005\) (stat) \(\pm 0.014\) (syst), with a correlation coefficient of \(-0.87\) between \(F_0\) and \(F_L\), and they are consistent with the expectations from the standard model.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMDO, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOL and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TÜBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the Alfred P. Sloan...
Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Mobility Plus programme of the Ministry of Science and Higher Education (Poland); the OPUS programme of the National Science Center (Poland); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.
References

[1] J. A. Aguilar-Saavedra et al., “Probing anomalous Wtb couplings in top pair decays”, *Eur. Phys. J. C* 50 (2007) 519, [doi:10.1140/epjc/s10052-007-0289-4](http://dx.doi.org/10.1140/epjc/s10052-007-0289-4), [arXiv:hep-ph/0605190](http://arxiv.org/abs/hep-ph/0605190).

[2] C. Bernardo et al., “Studying the Wtb vertex structure using recent LHC results”, *Phys. Rev. D* 90 (2014) 113007, [doi:10.1103/PhysRevD.90.113007](http://dx.doi.org/10.1103/PhysRevD.90.113007), [arXiv:1408.7063](http://arxiv.org/abs/1408.7063).

[3] G. A. González-Sprinberg and J. Vidal, “The top quark right coupling in the tbW vertex”, *Eur. Phys. J. C* 75 (2015) 615, [doi:10.1140/epjc/s10052-015-3844-4](http://dx.doi.org/10.1140/epjc/s10052-015-3844-4), [arXiv:1510.02153](http://arxiv.org/abs/1510.02153).

[4] M. Fabbrichesi, M. Pinamonti, and A. Tonero, “Limits on anomalous top quark gauge couplings from Tevatron and LHC data”, *Eur. Phys. J. C* 74 (2014) 3193, [doi:10.1140/epjc/s10052-014-3193-8](http://dx.doi.org/10.1140/epjc/s10052-014-3193-8), [arXiv:1406.5393](http://arxiv.org/abs/1406.5393).

[5] A. Czarnecki, J.G. Körner, J.H. Piclum, “Helicity fractions of W bosons from top quark decays at NNLO in QCD”, *Phys. Rev. D* 81 (2010) 111503(R), [doi:10.1103/PhysRevD.81.111503](http://dx.doi.org/10.1103/PhysRevD.81.111503), [arXiv:1005.2625](http://arxiv.org/abs/1005.2625).

[6] J. A. Aguilar-Saavedra, “A minimal set of top anomalous couplings”, *Nucl. Phys. B* 812 (2009) 181, [doi:10.1016/j.nuclphysb.2008.12.012](http://dx.doi.org/10.1016/j.nuclphysb.2008.12.012), [arXiv:0811.3842](http://arxiv.org/abs/0811.3842).

[7] J. A. Aguilar-Saavedra, “A minimal set of top-Higgs anomalous couplings”, *Nucl. Phys. B* 821 (2009) 215, [doi:10.1016/j.nuclphysb.2009.06.022](http://dx.doi.org/10.1016/j.nuclphysb.2009.06.022), [arXiv:0904.2387](http://arxiv.org/abs/0904.2387).

[8] J. A. Aguilar-Saavedra and J. Bernabeu, “W polarisation beyond helicity fractions in top quark decays”, *Nucl. Phys. B* 840 (2010) 349, [doi:10.1016/j.nuclphysb.2010.07.012](http://dx.doi.org/10.1016/j.nuclphysb.2010.07.012), [arXiv:1005.5382](http://arxiv.org/abs/1005.5382).

[9] V.M. Abazov, et al., D0 Collaboration, “Measurement of the W boson helicity in top quark decays using 5.4 fb\(^{-1}\) of p\(\bar{p}\) collision data”, *Phys. Rev. D* 83 (2011) 032009, [doi:10.1103/PhysRevD.83.032009](http://dx.doi.org/10.1103/PhysRevD.83.032009), [arXiv:1011.6549](http://arxiv.org/abs/1011.6549).

[10] T. Aaltonen, et al., CDF Collaboration, “Measurement of W-boson polarization in top-quark decay using the full CDF Run II data set”, *Phys. Rev. D* 87 (2012) 031104(R), [doi:10.1103/PhysRevD.87.031104](http://dx.doi.org/10.1103/PhysRevD.87.031104), [arXiv:1211.4523](http://arxiv.org/abs/1211.4523).

[11] T. Aaltonen, et al., CDF and D0 Collaborations, “Combination of CDF and D0 measurements of the W boson helicity in top quark decays”, *Phys. Rev. D* 85 (2012) 071106(R), [doi:10.1103/PhysRevD.85.071106](http://dx.doi.org/10.1103/PhysRevD.85.071106), [arXiv:1202.5272](http://arxiv.org/abs/1202.5272).

[12] ATLAS Collaboration, “Measurement of the W boson polarization in top quark decays with the ATLAS detector”, *JHEP* 06 (2012) 088, [doi:10.1007/JHEP06(2012)088](http://dx.doi.org/10.1007/JHEP06(2012)088), [arXiv:1205.2484](http://arxiv.org/abs/1205.2484).

[13] CMS Collaboration, “Measurement of the W-boson helicity in top-quark decays from t\(\bar{t}\) production in lepton+jets events in pp collisions at \(\sqrt{s} = 7\) TeV”, *JHEP* 10 (2013) 167, [doi:10.1007/JHEP10(2013)167](http://dx.doi.org/10.1007/JHEP10(2013)167), [arXiv:1308.3879](http://arxiv.org/abs/1308.3879).

[14] CMS Collaboration, “Measurement of the W boson helicity in events with a single reconstructed top quark in pp collisions at \(\sqrt{s} = 8\) TeV”, *JHEP* 01 (2015) 053, [doi:10.1007/JHEP01(2015)053](http://dx.doi.org/10.1007/JHEP01(2015)053), [arXiv:1410.1154](http://arxiv.org/abs/1410.1154).
[15] ATLAS Collaboration, “Search for anomalous couplings in the Wtb vertex from the measurement of double differential angular decay rates of single top quarks produced in the t-channel with the ATLAS detector”, *JHEP* **04** (2016) 023, doi:10.1007/JHEP04(2016)023, arXiv:1510.03764.

[16] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[17] S. Agostinelli, et al., “GEANT4 – a simulation toolkit”, *Nucl. Instrum. Meth. A* **506** (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[18] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, *JHEP* **07** (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[19] J. Pumplin et al., “New generation of parton distributions with uncertainties from global QCD analysis”, *JHEP* **07** (2002) 012, doi:10.1088/1126-6708/2002/07/012, arXiv:hep-ph/0201195.

[20] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 physics and manual”, *JHEP* **05** (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[21] CMS Collaboration, “Jet and underlying event properties as a function of charged-particle multiplicity in proton-proton collisions at $\sqrt{s} = 7$ TeV”, *Eur. Phys. J. C* **73** (2013) 2674, doi:10.1140/epjc/s10052-013-2674-5, arXiv:1310.4554.

[22] N. Davidson et al., “Universal interface of TAUOLA: technical and physics documentation”, *Comput. Phys. Commun.* **183** (2012) 821, doi:10.1016/j.cpc.2011.12.009, arXiv:1002.0543.

[23] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO vector-boson production matched with shower in POWHEG”, *JHEP* **07** (2008) 060, doi:10.1088/1126-6708/2008/07/060, arXiv:0805.4802.

[24] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, *JINST* **6** (2011) P11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.

[25] CMS Collaboration, “Measurement of the differential cross section for top quark pair production in pp collisions at $\sqrt{s} = 8$ TeV”, *Eur. Phys. J. C* **75** (2015) 542, doi:10.1140/epjc/s10052-015-3709-x, arXiv:1505.04480.

[26] CMS Collaboration, “Particle–flow event reconstruction in CMS and performance for jets, taus, and E_{T}^{miss}”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009.

[27] CMS Collaboration, “Commissioning of the particle–flow event reconstruction with the first LHC collisions recorded in the CMS detector”, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010.

[28] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, *JINST* **9** (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.
[29] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, *JINST* **10** (2015) P06005, doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.

[30] CMS Collaboration, “The performance of the CMS muon detector in proton-proton collisions at $\sqrt{s} = 7$ TeV at the LHC”, *JINST* **8** (2013) P11002, doi:10.1088/1748-0221/8/11/P11002, arXiv:1306.6905.

[31] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_t jet clustering algorithm”, *JHEP* **04** (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[32] CMS Collaboration, “Identification of b-quark jets with the CMS experiment”, *JINST* **8** (2013) P04013, doi:10.1088/1748-0221/8/04/P04013, arXiv:1211.4462.

[33] CMS Collaboration, “Performance of b tagging at $\sqrt{s} = 8$ TeV in multijet, tt and boosted topology events”, CMS Physics Analysis Summary CMS-PAS-BTV-13-001, 2013.

[34] A. Ferroglia, B. D. Pecjak, and L. L. Yang, “Top-quark pair production at high invariant mass: an NNLO soft plus virtual approximation”, *JHEP* **09** (2013) 032, doi:10.1007/JHEP09(2013)032, arXiv:1306.1537.

[35] H. T. Li et al., “Top-quark pair production at small transverse momentum in hadronic collisions”, *Phys. Rev. D* **88** (2013) 074004, doi:10.1103/PhysRevD.88.074004, arXiv:1307.2464.

[36] N. Kidonakis, “Differential and total cross sections for top pair and single top production”, (2012). arXiv:1205.3453 presented at XX International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS2012), Bonn, Germany.

[37] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush, “FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order”, *Comput. Phys. Commun.* **182** (2011) 2388, doi:10.1016/j.cpc.2011.06.008, arXiv:1011.3540.

[38] S. Frixione and B. R. Webber, “Matching NLO QCD computations and parton shower simulations”, *JHEP* **06** (2002) 029, doi:10.1088/1126-6708/2002/06/029, arXiv:hep-ph/0204244.

[39] G. Corcella et al., “HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes)”, *JHEP* **01** (2001) 010, doi:10.1088/1126-6708/2001/01/010, arXiv:hep-ph/0011363.

[40] CMS Collaboration, “Measurement of differential top-quark pair production cross sections in pp collisions at $\sqrt{s} = 7$ TeV”, *Eur. Phys. J. C* **73** (2013) 2339, doi:10.1140/epjc/s10052-013-2339-4, arXiv:1211.2220.

[41] S. Alekhin et al., “The PDF4LHC Working Group interim report”, (2011). arXiv:1101.0536.

[42] M. Botje et al., “The PDF4LHC Working Group interim recommendations”, (2011). arXiv:1101.0538.

[43] NNPDF Collaboration, “Impact of heavy quark masses on parton distributions and LHC phenomenology”, *Nucl. Phys. B* **849** (2011) 296, doi:10.1016/j.nuclphysb.2011.03.021, arXiv:1101.1300.
[44] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Parton distributions for the LHC”, *Eur. Phys. J. C* 63 (2009) 189,[doi:10.1140/epjc/s10052-009-1072-5], arXiv:0901.0002.

[45] L. Lyons, D. Gibaut, and P. Clifford, “How to combine correlated estimates of a single physical quantity”, *Nucl. Instrum. Meth. A* 270 (1988) 110,[doi:10.1016/0168-9002(88)90018-6].

[46] A. Valassi, “Combining correlated measurements of several different physical quantities”, *Nucl. Instrum. Meth. A* 500 (2003) 391,[doi:10.1016/S0168-9002(03)00329-2].

[47] CMS Collaboration, “Measurement of the t-channel single-top-quark production cross section and of the $|V_{tb}|$ CKM matrix element in pp collisions at $\sqrt{s} = 8$ TeV”, *JHEP* 06 (2014) 090,[doi:10.1007/JHEP06(2014)090], arXiv:1403.7366.
The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut f"ur Hochenergiephysik, Wien, Austria
W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler1, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck1, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium
H. Brun, C. Caillol, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang2

Ghent University, Ghent, Belgium
A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, D. Poyraz, S. Salva, R. Schöfbeck, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
C. Beluffi3, O. Bondu, S. Brochet, G. Bruno, A. Cauldon, L. Cearb, S. De Visscher, C. Delaere, M. Delcourt, L. Fonthonne, B. Francois, A. Giammanco, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz

Université de Mons, Mons, Belgium
N. Belty

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato4, A. Custódio, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote4, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahuja a, C.A. Bernardes b, S. Dogra a, T.R. Fernandez Perez Tomei a, E.M. Gregores b,
P.G. Mercadanteb, C.S. Moona,5, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargas

\textbf{Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria}
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

\textbf{University of Sofia, Sofia, Bulgaria}
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

\textbf{Beihang University, Beijing, China}
W. Fanga

\textbf{Institute of High Energy Physics, Beijing, China}
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen7, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao

\textbf{State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China}
Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

\textbf{Universidad de Los Andes, Bogota, Colombia}
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. González Hernández, J.D. Ruiz Alvarez, J.C. Sanabria

\textbf{University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia}
N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano

\textbf{University of Split, Faculty of Science, Split, Croatia}
Z. Antunovic, M. Kovac

\textbf{Institute Rudjer Boskovic, Zagreb, Croatia}
V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic

\textbf{University of Cyprus, Nicosia, Cyprus}
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

\textbf{Charles University, Prague, Czech Republic}
M. Finger8, M. Finger Jr.8

\textbf{Universidad San Francisco de Quito, Quito, Ecuador}
E. Carrera Jarrin

\textbf{Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt}
Y. Assran9,10, T. Elkafrawy11, A. Ellithi Kamel12, A. Mahrous13

\textbf{National Institute of Chemical Physics and Biophysics, Tallinn, Estonia}
B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken

\textbf{Department of Physics, University of Helsinki, Helsinki, Finland}
P. Eerola, J. Pekkanen, M. Voutilainen

\textbf{Helsinki Institute of Physics, Helsinki, Finland}
J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Peltola, J. Tuominiemi, E. Tuovinen, L. Wendland
Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besançon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri,
S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher,
E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon,
C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Miné, I.N. Naranjo,
M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois,
T. Strebler, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute
Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert,
N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, A.-C. Le
Bihan, J.A. Merlin, K. Skovpen, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules,
CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique
Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici,
D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch,
G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot,
S. Perries, A. Popov, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret

Georgian Technical University, Tbilisi, Georgia
T. Toriashvili

Tbilisi State University, Tbilisi, Georgia
D. Lomidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk,
M. Preuten, F. Raupach, S. Schael, C. Schomakers, J.F. Schulte, J. Schulz, T. Verlage, H. Weber,
V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch,
R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer,
A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, P. Papacz, T. Pook, M. Radziej,
H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, F. Hoehle, B. Kargoll, T. Kress, A. Künsken,
J. Lingemann, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, C. Asawatangtrakuldee, I. Asin, K. Beernaert, O. Behnke, U. Behrens,
A.A. Bin Anuar, K. Borras, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza,
C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, E. Gallo, J. Garay Garcia, A. Geiser, A. Giziho, J.M. Grados Luyando, P. Gunnellini, A. Harb, J. Hauk, M. Hempel, H. Jung, A. Kalogeropoulos, O. Karacheban, M. Kasemann, J. Keaveney, J. Kieseler, C. Kleinwort, I. Korol, W. Lange, A. Lelek, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.O. Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, K.D. Trippkewitz, G.P. Van Onsem, R. Walsh, C. Wisnog

University of Hamburg, Hamburg, Germany
V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, K. Goebel, D. Gonzalez, J. Haller, M. Hoffmann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, J. Ott, F. Pantaleo, T. Peiffer, A. Perieanu, J. Poehlsen, C. Sander, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, E. Butz, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, S. Fink, R. Friese, M. Giffels, A. Gilbert, D. Haitz, F. Hartmann, S.M. Heindl, U. Husemann, I. Katkov, P. Lobelle Pardo, B. Maier, H. Mildner, M.U. Mozer, T. Müller, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, S. Röcker, F. Roscher, M. Schröder, G. Sieber, H.J. Simonis, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhram, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioánnina, Ioánnina, Greece
I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
N. Filipovic

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnar, Z. Szillasi

University of Debrecen, Debrecen, Hungary
M. Bartók, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati, S. Choudhury, P. Mal, K. Mandal, A. Nayak, D.K. Sahoo, N. Sahoo, S.K. Swain
Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, R. Gupta, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, A. Mehta, M. Mittal, J.B. Singh, G. Walia

University of Delhi, Delhi, India
Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India
R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty15, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhowmik26, R.K. Dewanjee, S. Ganguly, A.K. Mohanty, K. Mazumdar, B. Parida, T. Sarkar26, N. Wickramage27

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, A. Kapoor, K. Kothekar, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Bakhshiansohi, H. Behnamian, S. Chenarani28, E. Eskandari Tadavani, S.M. Etesami28, A. Fahim29, M. Khakzad, M. Mohammad Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa, C. Calabriaa, C. Caputoa, A. Colaleoa, D. Creanzaa,c, L. Cristella,a,b, N. De Filippisa,c, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia, G. Minielloa,b, S. Mya,b, S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c, R. Radogna,b, A. Ranieri, G. Selvaggiab, L. Silvestrisa,15, R. Vendittia,b, P. Verwillingen

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendia, C. Battilana, D. Bonacorsia, S. Braibant-Giacomelli, L. Brigliadori, R. Campaninib, B. Capiluppi, A. Castro, F.R. Cavallib, S.S. Chhibrab, G. Codispotic, M. Cuffiani, G.M. Dallavalle, F. Fabbrib, A. Fanfani, D. Fasanellab, P. Giacomelli, C. Grandib, L. Guiducci, S. Marcellinib, G. Masetti, A. Montanari, F.L. Navarria, A. Perrottab, A.M. Rossia,b, T. Rovelli, G.P. Sirollia,b, N. Tosi,15

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
S. Albergo, M. Chiorbolia, B. Costa, A. Di Mattiaa, F. Giordanob, R. Potenza, A. Tricomib, C. Tuvea,b
A The CMS Collaboration

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbaglia, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, V. Gori, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, L. Viliani

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera

INFN Sezione di Genova, Università di Genova, Genova, Italy
V. Calvelli, F. Ferro, M. Lo Vetere, M.R. Monge, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
L. Brianza, M.E. Dinardo, S. Fiorendi, S. Gennai, A. Ghezzi, P. Govoni, S. Malveuzzi, R.A. Manzoni, B. Marzocchi, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Pigazzini, S. Ragazzi, T. Tabarelli de Fatis

INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Napoli, Italy, Università della Basilicata
S. Buontempo, N. Cavallo, G. De Nardo, S. Di Guida, M. Esposito, F. Fabozzi, A.O.M. Iorio, G. Lanza, L. Lista, S. Meola, M. Merola, P. Paolucci, C. Sciaccà, F. Thyssen

INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento
P. Azzi, N. Bacchetta, L. Benato, D. Bisello, A. Boletti, R. Carlin, A. Carvalho Antunes, P. Checchia, M. Dall’Osso, P. De Castro Manzano, T. Dorigo, U. Dosselli, F. Gasparini, U. Gasparini, A. Gozzelino, S. Lacapra, M. Margoni, A.T. Meneguzzo, J. Pazzini, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Zanetti, P. Zotto, A. Zucchetta

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
L. Alunni Solestiz, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, R. Leonardi, G. Mantovani, M. Menichelli, A. Saha, A. Santocchia

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
K. Androsov, P. Azzurri, G. Bagliesi, J. Bernardini, T. Boccali, R. Castaldi, M.A. Ciocci, R. Dell’Orso, S. Donato, G. Fedi, A. Giassi, M.T. Grippo, F. Ligabue, T. Lomtadze, L. Martin, A. Messineo, F. Palla, A. Rizzi, A. Savoy-Navarro, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini

INFN Sezione di Roma, Università di Roma, Roma, Italy
L. Barone, F. Cavallari, M. Cipriani, G. D’imperio, D. Del Re, M. Diemoz, S. Gelli, C. Jordà, E. Longo, F. Margaroli, P. Meridiani, G. Organtini, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio

INFN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, C. Biino, N. Cartiglia, F. Cenna, M. Costa, R. Covarelli, A. Degano, N. Demaria, L. Finco, B. Kianii, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Monteil, M.M. Obertino, L. Pacheco, M. Pelliccioni, G.L. Pinna Angioni, F. Ravera,
A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b, A. Staianoa, P. Traczyka,b

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, C. La Licataa,b, A. Schizzia,b, A. Zanettia

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang

Chonbuk National University, Jeonju, Korea
H. Kim, A. Lee

Hanyang University, Seoul, Korea
J.A. Brochero Cifuentes, T.J. Kim

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, B. Lee, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh

Seoul National University, Seoul, Korea
J. Almond, J. Kim, S.B. Oh, S.H. Seo, U.K. Yang, H.D. Yoo, G.B. Yu

University of Seoul, Seoul, Korea
M. Choi, H. Kim, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, J. Goh, C. Hwang, D. Kim, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali33, F. Mohamad Idris34, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz35, A. Hernandez-Almada, R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas
National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccoli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadrucio, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
L. Chchhipounov, V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov, V. Rusinov, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, S.V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Klyukhin, O. Kodolova, N. Korneeva, I. Lokhtin, I. Miagkov, S. Obraztsov, V. Savrin, P. Volkov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uznian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, D. Devetak, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz,
A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. García-Abia, O. González Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, J.R. Castiñeiras De Saa, E. Curras, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, A. Bonato, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, M. D’Alfonso, D. d’Enterria, A. Dabrowski, V. Dalponte, A. David, M. De Gruttola, F. De Guio, A. De Roeck, E. Di Marco, M. Dobson, M. Dordvick, B. Dorney, P. Duggan, M. Dunster, N. Dupont, A. Elliott-Peisert, S. Fantin, G. Franzoni, J. Fulcher, W. Funk, D. Giga, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Guthoff, J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, H. Kirschenmann, V. Knünz, A. Kornmayer, M.J. Kortelainen, K. Kousouris, M. Krammer, P. Lecoq, C. Lourenço, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, A. Racz, T. Reis, G. Roland, M. Rovere, M. Ruan, H. Sakulin, J.B. Sauvan, C. Schäfer, C. Schwick, M. Seidel, A. Sharma, P. Silva, M. Simon, P. Spichias, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns, G.I. Veres, N. Wardle, A. Zagozdzinska, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomte, W. Lüstermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schönberger, A. Starodumov, M. Takahashi, V.R. Tavolaro, K. Theofilatos, R. Wallny

Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler, L. Caminada, M.F. Canelli, V. Chiochia, A. De Cosa, C. Galloni, A. Hinzmann, H. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, Y. Yang

National Central University, Chung-Li, Taiwan
V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushkikh, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov, S.S. Yu
National Taiwan University (NTU), Taipei, Taiwan
Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Paganis, A. Psallidas, J.f. Tsai, Y.M. Tzeng

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal, O. Kara, U. Kiminsu, M. Oglakci, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, D. Sunar Cerci, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, S. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya, O. Kaya, E.A. Yetkin, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, S. Sen

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, R. Lane, C. Laner, R. Lucas, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, C. Seez, A. Tapper, K. Uchida, M. Vazquez Acosta, T. Virdee, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika
The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA
G. Benelli, E. Berry, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, O. Jesus, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, R. Syarif

University of California, Davis, Davis, USA
R. Breedon, G. Breto, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
R. Cousins, P. Everaerts, A. Florent, J. Hauser, M. Ignatenko, D. Saltzberg, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
K. Burt, R. Clare, J. Ellison, J.W. Gary, H. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Malberti, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USA
J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech66, C. Welke, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, N. Mccoll, S.D. Mullin, A. Ovcharova, J. Richman, D. Stuart, I. Suarez, C. West, J. Yoo

California Institute of Technology, Pasadena, USA
D. Anderson, A. Apresyan, J. Bendavid, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
M.B. Andrews, V. Azzolini, B. Carlson, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Fairfield University, Fairfield, USA
D. Winn
Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L. A. T. Bauer, A. Beretvas, J. Berryhill, P. C. Bhat, G. Bolla, K. Burkett, J. N. Butler, H. W. K. Cheung, F. Chlebana, S. Cihangir, M. Cremonesi, V. D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, D. Hare, R. M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J. M. Marraffino, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, C. Newman-Holmes, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. Sexton-Kennedy, A. Soha, W. J. Spalding, L. Spiegel, S. Stoynev, N. Strobbe, L. Taylor, S. Tkaczyk, N. V. Tran, L. Updegger, E. W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H. A. Weber, A. Whitbeck

University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, S. Das, R. D. Field, I. K. Furic, J. Konigsberg, A. Korytov, P. Ma, K. Matchev, H. Mei, P. Milenovic, G. Mitselmakher, D. Rank, L. Schutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton

Florida International University, Miami, USA
S. Linn, P. Markowitz, G. Martinez, J. L. Rodriguez

Florida State University, Tallahassee, USA
A. Ackert, J. R. Adams, T. Adams, A. Askew, S. Bein, B. Diamond, S. Hagopian, V. Hagopian, K. F. Johnson, A. Khatiwada, H. Prosper, A. Santra, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M. M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M. R. Adams, L. Apanasevich, D. Berry, R. R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C. E. Gerber, D. J. Hofman, P. Kurt, C. O’Brien, I. D. Sandoval Gonzalez, P. Turner, N. Varelas, Z. Wu, M. Zakaria, J. Zhang

The University of Iowa, Iowa City, USA
B. Bilki, W. Clarida, K. Dilsiz, S. Durugut, R. P. Gandrajula, M. Haytmyradov, V. Khristenko, J. – P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
I. Anderson, B. Blumenfeld, A. Cocoress, N. Eminizer, D. Fehling, L. Feng, A. V. Gritsan, P. Maksimovic, M. Osherson, J. Roskes, U. Sarica, M. Swartz, M. Xiao, Y. Xin, C. You

The University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, J. Bowen, C. Bruner, J. Castle, R. P. Kenny III, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J. D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L. K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, USA
D. Lange, F. Rebassoo, D. Wright
K. Jung, D.H. Miller, N. Neumeister, B.C. Radburn-Smith, X. Shi, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, USA
J.P. Chou, E. Contreras-Campana, Y. Gerštejn, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, K. Nash, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA
O. Bouhali, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamorn, V. Krutelyov, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USA
A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, P. Lamichhane, J. Sturdy

University of Wisconsin - Madison, Madison, WI, USA
D.A. Belknap, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, A. Sharma, N. Smith, W.H. Smith, D. Taylor, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
6: Also at Université Libre de Bruxelles, Bruxelles, Belgium
7: Also at Deutsches Elekronen-Synchrotron, Hamburg, Germany
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Now at British University in Egypt, Cairo, Egypt
11: Also at Ain Shams University, Cairo, Egypt
12: Now at Cairo University, Cairo, Egypt
13: Now at Helwan University, Cairo, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
16: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
17: Also at Tbilisi State University, Tbilisi, Georgia
18: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
19: Also at University of Hamburg, Hamburg, Germany
20: Also at Brandenburg University of Technology, Cottbus, Germany
21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
22: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
23: Also at University of Debrecen, Debrecen, Hungary
24: Also at Indian Institute of Science Education and Research, Bhopal, India
25: Also at Institute of Physics, Bhubaneswar, India
26: Also at University of Visva-Bharati, Santiniketan, India
27: Also at University of Ruhuna, Matara, Sri Lanka
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
31: Also at Universitá degli Studi di Siena, Siena, Italy
32: Also at Purdue University, West Lafayette, USA
33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
35: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
37: Also at Institute for Nuclear Research, Moscow, Russia
38: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
40: Also at University of Florida, Gainesville, USA
41: Also at P.N. Lebedev Physical Institute, Moscow, Russia
42: Also at California Institute of Technology, Pasadena, USA
43: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
44: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
45: Also at National Technical University of Athens, Athens, Greece
46: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy
47: Also at National and Kapodistrian University of Athens, Athens, Greece
48: Also at Riga Technical University, Riga, Latvia
49: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
50: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
51: Also at Gaziosmanpasa University, Tokat, Turkey
52: Also at Mersin University, Mersin, Turkey
53: Also at Cag University, Mersin, Turkey
54: Also at Piri Reis University, Istanbul, Turkey
55: Also at Adiyaman University, Adiyaman, Turkey
56: Also at Ozyegin University, Istanbul, Turkey
57: Also at Izmir Institute of Technology, Izmir, Turkey
58: Also at Marmara University, Istanbul, Turkey
59: Also at Kafkas University, Kars, Turkey
60: Also at Istanbul Bilgi University, Istanbul, Turkey
61: Also at Yildiz Technical University, Istanbul, Turkey
62: Also at Hacettepe University, Ankara, Turkey
63: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
64: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
65: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
66: Also at Utah Valley University, Orem, USA
67: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
68: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
69: Also at Argonne National Laboratory, Argonne, USA
70: Also at Erzincan University, Erzincan, Turkey
71: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
72: Also at Texas A&M University at Qatar, Doha, Qatar
73: Also at Kyungpook National University, Daegu, Korea