A CHARACTERIZATION OF GVZ GROUPS IN TERMS OF FULLY RAMIFIED CHARACTERS

SHAWN T. BURKETT AND MARK L. LEWIS

Abstract. In this paper, we obtain a characterization of GVZ-groups in terms of commutators and monolithic quotients. This characterization is based on counting formulas due to Gallagher.

Throughout this paper, all groups are finite. For a group G, we write $\text{Irr}(G)$ for the set of irreducible characters of G. In this paper, we present a new characterization of GVZ-groups. A group G is a GVZ-group if every irreducible character $\chi \in \text{Irr}(G)$ satisfies that χ vanishes on $G \setminus Z(\chi)$.

The term GVZ-group was introduced by Nenciu in [12]. Nenciu continued the study of GVZ-groups in [13] and the second author further continued these studies in [10]. In our paper [2], we showed that GVZ-groups can be characterized in terms of another class of groups that have appeared in the literature.

An element $g \in G$ is called flat if the conjugacy class of G is $g[|g,G|]$. In [14], they defined a group G to be flat if every element in G is flat. In fact, groups satisfying this condition had been studied even earlier. Predating each of these references, Murai [11] referred to such groups as groups of Ono type. In [14], they proved that if G is nilpotent and flat, then G is a GVZ-group. Improving this result, we prove in [2] that a group G is a GVZ-group if and only if it is flat.

In this paper, we characterize GVZ-groups using fully ramified characters. For a normal subgroup N of G, we say that the character $\chi \in \text{Irr}(G)$ is fully ramified over N if χ_N is homogeneous and $\chi(g) = 0$ for every element $g \in G \setminus N$.

Following the literature, a group G is called central type if there is an irreducible character of G that is fully ramified over the center $Z(G)$. Results about central type groups are in [4], [5], [6], and [7].

With this as motivation, we define an irreducible character χ of G to be central type if χ, considered as a character of $G/\ker(\chi)$, is fully ramified over $Z(G/\ker(\chi))$. (I.e., $G/\ker(\chi)$ is a group of central type with faithful character χ.) It is not difficult to see that G is a GVZ-group if and only if every character $\chi \in \text{Irr}(G)$ is of central type.

Recall from the literature that a group is called monolithic if it has a unique minimal normal subgroup. It is easy to see that if N is a normal subgroup of G and G/N is monolithic, then N appears as the kernel of some irreducible character of G. Also an irreducible character χ is called monolithic if the quotient group $G/\ker(\chi)$ is monolithic. Thus, monolithic quotients correspond to monolithic characters.

The purpose of this paper is to give a new characterization of central type characters based on ideas of Gallagher that are encapsulated in [9, Theorem 1.19 and
Lemma 1.20], thereby obtaining a new characterizations of GVZ-groups. In particular, we prove the following theorem.

Theorem 1. Let G be a nonabelian group. Then the following are equivalent:

1. G is a GVZ-group.
2. For every monolithic character $\chi \in \text{Irr}(G)$ and for every element $g \in G \setminus Z(\chi)$, there exists an element $x \in G$ so that $[g, x] \in Z(\chi) \setminus \ker(\chi)$.
3. G is nilpotent, and for every normal subgroup N of G for which G/N is monolithic and for every element $g \in G$ satisfying $[g, G] \not\leq N$, there exists an element $x \in G$ such that $[g, x] \not\in N$ and $[[g, x], G] \leq N$.

Our proof relies on the following lemma, which we will see is an immediate consequence of some arguments of Gallagher that can be found in [9, Theorem 1.19 and Lemma 1.20]. For an element $g \in G$, we set $D_G(g) = \{x \in G' \mid [x, g] \in Z(G)\}$. Observe that $D_G(g)/Z(G) = C_{G/Z}(gZ(G))$, so $D_G(g)$ is always a subgroup of G.

Lemma 2. Let G be a group. If the character $\vartheta^G \in \text{Irr}(Z(G))$ is faithful, then ϑ is fully ramified with respect to $G/Z(G)$ if and only if $[g, D_G(g)] \neq 1$ for every element $g \in G \setminus Z(G)$.

Proof. By Theorem 1.19 and Lemma 1.20 of [9], the number of irreducible constituents of ϑ^G equals the number of conjugacy classes of cosets $gZ(G) \in G/Z(G)$ that satisfy $[g, D_G(g)] = 1$. Observe that if $g \in Z(G)$, then $[g, D_G(g)] = 1$. Hence, the only way that there can be only one conjugacy class of elements of in $G/Z(G)$ satisfying this condition is if $[g, D_G(g)] \neq 1$ for all elements $g \in G \setminus Z(G)$. Since ϑ is fully ramified with respect to $G/Z(G)$ if and only if ϑ^G has a unique irreducible constituent, it follows that ϑ is fully ramified with respect to $G/Z(G)$ if and only if there is only one conjugacy class satisfying the condition. This gives the desired result. \hfill \square

We get a slightly stronger statement without much difficulty.

Lemma 3. Let G be a group. If $\lambda \in \text{Irr}(Z(G))$ is a character, then λ is fully ramified with respect to $G/Z(G)$ if and only if $[g, D_G(g)] \not\leq \ker(\lambda)$ for every element $g \in G \setminus Z(G)$.

Proof. Let $Z = Z(G)$ and let $K = \ker(\lambda)$. Suppose first that λ is fully ramified with respect to G/Z. Since λ is fully ramified with respect to G/Z, it follows that $Z/K = Z(G/K)$. Applying Lemma 2, we have that $[gK, D_{G/K}(gK)] \neq 1$ for all cosets $gK \in G/K \setminus Z/K$. It is not difficult to see that this implies that $[g, D_G(g)] \not\leq K$ for all elements $g \in G \setminus Z$. Conversely, suppose that $[g, D_G(g)] \not\leq K$ for all $g \in G \setminus Z$. Hence, we have $[gK, D_{G/K}(gK)] \neq 1$ for all $gK \in G/K \setminus Z/K$. This implies that $[gK, G/K] \neq 1$ for all cosets $gK \in G/K \setminus Z/K$, and so $Z(G/K) \leq Z/K$. Since $Z/K \leq Z(G/K)$ obviously holds, we have $Z(G/K) = Z/K$. Notice that λ is a faithful character of Z/K, so we may apply Lemma 2 to see that λ is fully ramified with respect to G/K. \hfill \square

Let G be a group, fix a character $\chi \in \text{Irr}(G)$, and write $\chi_{Z(G)} = \chi(1)\lambda$ for some character $\lambda \in \text{Irr}(Z(G))$. Note that $\ker(\lambda) = \ker(\chi) \cap Z(G)$. Consider an element $g \in G$. Since $[g, D_G(g)] \leq Z(G)$, we have $[g, D_G(g)] \not\leq \ker(\lambda)$ if and only if $[g, D_G(g)] \not\leq \ker(\chi)$. Furthermore, $[g, D_G(g)] \not\leq \ker(\chi)$ if and only if there exists an
element \(x \in G\) so that \([g, x] \in Z(G) \setminus \ker(\chi)\). Hence, Lemma 3 can be equivalently stated as follows.

Lemma 4. Let \(G\) be a group. A character \(\chi \in \text{Irr}(G)\) is fully ramified over \(Z(G)\) if and only if for every element \(g \in G \setminus Z(G)\), there exists an element \(x \in G\) for which \([g, x] \in Z(G) \setminus \ker(\chi)\).

This yields the desired characterization of central type characters.

Theorem 5. The character \(\chi \in \text{Irr}(G)\) has central type if and only if for every element \(g \in G \setminus Z(\chi)\), there exists an element \(x \in G\) for which \([g, x] \in Z(\chi) \setminus \ker(\chi)\).

Proof. Note that \(\chi\) is a faithful irreducible character of \(G/\ker(\chi)\) and \(Z(G/\ker(\chi)) = Z(\chi)/\ker(\chi)\). Thus we see from Lemma 4 that \(\chi\), regarded as a character of \(G/\ker(\chi)\), has central type if and only if for every element \(g \in G \setminus Z(\chi)\), there exists an element \(x \in G\) for which \(1 \neq [g, x] \ker(\chi) \in Z(G/\ker(\chi))\). It is easy to see that this is equivalent to the statement that was to be proved. \(\square\)

Remark 6. Observe that Theorem 5 implies the well-known result that \(\chi\) has central type if \(G/Z(\chi)\) is abelian (see [8, Theorem 2.31], for example).

Before proceeding, we discuss monolithic groups and characters. We need one more result to prove Theorem 1. This result is proved in our paper [1].

Theorem 7. The group \(G\) is nilpotent if and only if \(Z(\chi) > \ker(\chi)\) for each nonprincipal, monolithic character \(\chi \in \text{Irr}(G)\).

We now prove Theorem 1.

Proof of Theorem 1. First note the the statement (1) implies (2) follows immediately from Theorem 5.

Next we show that (2) implies (3). Let \(\chi \in \text{Irr}(G)\) be monolithic. By Theorem 5, \(\chi\) has central type. In particular \(\chi(1)^2 = |G : Z(\chi)|\), from which we deduce that \(Z(\chi) > \ker(\chi)\) if \(\chi\) is nonprincipal. Thus \(G\) is nilpotent by Theorem 7. Now, let \(N\) be a normal subgroup of \(G\) for which \(G/N\) is monolithic. Then \(G/N\) has a faithful irreducible character, and thus \(N = \ker(\chi)\) for some character \(\chi \in \text{Irr}(G)\). Let \(g \in G\) such that \([g, G] \not\leq N\). Then \(gN \not\in Z(G/N) = Z(\chi)/N\) and so \(g \not\in Z(\chi)\). By (1), there exists \(x \in G\) such that \([g, x] \in Z(\chi) \setminus N\). Since \(Z(\chi)/N = Z(G/N)\), we see that \([g, x], G] \leq N\).

To complete the proof, we show that (3) implies (1). Fix a prime \(p\) that divides \(|G|\), a Sylow subgroup \(P \in \text{Syl}_p(G)\), and a character \(\psi \in \text{Irr}(P)\). Consider the character \(\xi = \psi \times 1_H \in \text{Irr}(G)\), where \(H\) is a normal \(p\)-complement of \(G\). Then \(G/\ker(\xi) \cong P/\ker(\psi)\) is monolithic, by [8, Theorem 2.32]. So \(\xi\) is fully ramified over \(Z(\xi) = Z(\psi) \times H\) by Theorem 5, and this implies that \(\psi\) is fully ramified over \(Z(\psi)\). Now, consider a character \(\chi \in \text{Irr}(G)\). To show that \(G\) is a GVZ-group, it suffices to show that \(\chi\) is fully ramified over \(Z(\chi)\). Suppose that \(G = P_1 \times \cdots \times P_r\) is a factorization of \(G\) into a direct product of its Sylow subgroups. Then there exist characters \(\nu_i \in \text{Irr}(P_i)\) so that \(\chi = \nu_1 \times \cdots \times \nu_r\). Observe that \(Z(\chi) = Z(\nu_1) \times \cdots \times Z(\nu_r)\). We have already shown that each \(\nu_i\) is fully ramified over \(Z(\nu_i)\) and so it follows that \(\chi\) is fully ramified over \(Z(\chi)\), as desired. This proves (1). \(\square\)
References

[1] S. T. Burkett and M. L. Lewis, Characters with nontrivial center modulo their kernel, preprint.
[2] S. T. Burkett and M. L. Lewis, GVZ-groups, flat groups, and CM-groups, preprint.
[3] S. T. Burkett and M. L. Lewis, Partial GVZ-groups, preprint.
[4] F. R. DeMeyer and G. J. Janusz, Finite groups with an irreducible character of large degree, Math. Z. 108 (1969), 145-153.
[5] A. Espuelas, On certain groups of central type, Proc. Amer. Math. Soc. 97 (1986), 16-18.
[6] S. M. Gagola, Jr., Characters fully ramified over a normal subgroup, Pacific J. Math. 55 (1974), 107-126.
[7] R. B. Howlett and I. M. Isaacs, On groups of central type, Math. Z. 179 (1982), 552-569.
[8] I. M. Isaacs, Character theory of finite groups, Dover Publications, Inc., New York, 1994.
[9] I. M. Isaacs, Characters of solvable groups, American Mathematical Society, Providence, RI, 2018.
[10] M. L. Lewis, Groups where the centers of the irreducible characters form a chain, Monatsh. Math. 192 (2020), 371–399.
[11] M. Murai, Characterizations of p-nilpotent groups, Osaka J. Math. 31 (1994), 1–8.
[12] A. Nenciu, Isomorphic character tables of nested GVZ-groups, J. Algebra Appl. 11 (2012), 1250033, 12 pp.
[13] A. Nenciu, Nested GVZ-groups, J. Group Theory 19 (2016), 693-704.
[14] H. Tandra, and W. Moran, Flatness conditions on finite p-groups, Comm. Algebra, 32 (2004), 2215–2224.

Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242, U.S.A.

Email address: sburkett@math.kent.edu

Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242, U.S.A.

Email address: lewis@math.kent.edu