Electromagnetic power of merging and collapsing compact objects

Maxim Lyutikov
Department of Physics, Purdue University,
525 Northwestern Avenue, West Lafayette, IN 47907-2036
Abstract

Understanding possible electromagnetic signatures of the merging and collapsing compact object is important for identifying possible sources of LIGO signal. Electromagnetic emission can be produced as a precursor to the merger, as a prompt emission during the collapse of a neutron star and at the spin-down stage of the resulting Kerr-Newman black hole. For the NS-NS mergers, the precursor power scales as \(L \approx B_{\text{NS}}^2 GM_{\text{NS}} R_{\text{NS}}^8 / (R_{\text{orb}}^7 c) \), while for the NS-BH mergers, it is \((GM/(c^2 R_{\text{NS}}))^2\) times smaller.

We demonstrate that the time evolution of the axisymmetric force-free magnetic fields can be expressed in terms of the hyperbolic Grad-Shafranov equation and formulate the generalization of the Ferraro's law of iso-rotation to time-dependent angular velocity. We find exact non-linear time-dependent Michel-type (split-monopole) structure of magnetospheres driven by spinning and collapsing neutron star in Schwarzschild geometry.

Based on this solution, we argue that the collapse of a NS into the BH happens smoothly, without natural formation of current sheets or other dissipative structures on the open field lines and, thus, does not allow the magnetic field to become disconnected from the star and escape to infinity. Thus, as long as an isolated Kerr black hole can produce plasma and currents, it does not lose its open magnetic field lines, its magnetospheric structure evolved towards a split monopole and the black hole spins down electromagnetically (the closed field lines get absorbed by the hole). The "no hair theorem", which assumes that the outside medium is a vacuum, is not applicable in this case: highly conducting plasma introduces a topological constraint forbidding the disconnection of the magnetic field lines from the black hole. Eventually, a single random large scale spontaneous reconnection event will lead to magnetic field release, shutting down the electromagnetic black hole engine forever. Overall, the electromagnetic power in all the above cases is expected to be relatively small.

We also discuss the nature of short Gamma Ray Bursts and suggest if the magnetic field is amplified to \(\sim 10^{14} \) G during the merger or the core collapse, the similarity of the early afterglows properties of long and short GRBs can be related to the fact that in both cases a spinning black hole can retains magnetic field for sufficiently long time to extract a large fraction of its rotation energy and produce high energy emission via the internal dissipation in the wind.
I. INTRODUCTION

Estimating possible electromagnetic signature of merging and collapsing neutron stars is most desirable for the gravitation waves searchers by LIGO and for identifying possible progenitors of short Gamma Ray Bursts. Collapse of a neutron star into black hole may proceed either through the accretion induced collapse (AIC) or during binary neutron star mergers. We expect at late stages both processes proceed along a somewhat similar path: in case of the merger, the two collapsing neutron stars form a transient supermassive neutron star which then collapses into the black hole. Both an accreting neutron star (in case of an AIC) and the transient supermassive neutron star are expected to be magnetized. In addition, in case of merging neutron stars the strong shearing of the matter may increase magnetic field well above the initial values.

In case merger of compact stars the electromagnetic power can be generated as a precursor to the merger due to either effective friction of the neutron star magnetospheres, or due to purely general relativistic effect, see §II Later, and in the case of the AIC, several types of electromagnetic emission can be foreseen. First, the electromagnetic power in vacuum may be generated directly, due to the changing magnetic moment of the collapsing star [1, 2]. Even if the outside medium is highly conducting, electromagnetic may be generated via effective (resistive) disconnection of the external magnetic fields, provided that the collapse naturally leads to formation of narrow dissipative current structure. Second, a pulsar-like electromagnetic power generated by the rotation of the neutron stars and extracted via the magnetic field. As we argue below, as long as the black hole can produce plasma via vacuum breakdown, it can self-generate electric currents, retain the magnetic fields and spin-down electromagnetically for time periods much longer than the collapse time, see §IV.

Conventionally, in estimating the possible electromagnetic signatures it was first assumed that a fraction R_{NS}/R_G of the initial external magnetic energy (also built-up by the collapse and compression of the magnetic field) is radiated away on time scale of the order of the collapse time [3]. Ref. [4, 5] considered radiation from accelerated changes in the magnetic moment during collapse, producing energy $E \sim B_0^2 (R_G R_{NS})^{3/2}$ (somewhat smaller than the energy of the magnetic field before the collapse). Along the similar lines, Ref. [2] employed GRMHD simulations and followed a collapse of a non-rotating neutron star into the black hole.
In our view the main limitation of these models is that the external medium was treated as a vacuum. Electrodynamically, vacuum is a highly resistive medium, with the impedance of the order of $4\pi/c = 477 \Omega$. As a result, nothing prevents magnetic fields from becoming disconnected from the star and escaping to infinity. We expect that the magnetic field dynamics would be drastically different if the external magnetosphere were treated as a highly conducting medium. This is a common consequence in relativistic astrophysical sources, since ample supply of plasma is available through vacuum breakdown. For example, investigating the dynamics of the magnetic field in the simulations in Ref. [2] [see also 3] shows that during the collapse the magnetic field becomes effectively disconnected from the star, at distances somewhat larger than the Schwarzschild radius. If the outside medium were treated as highly conducting plasma, such processes would be prohibited. The importance of resistive effects in the magnetosphere was stressed early on in the original paper by [1], who point out that "for spherically-symmetric collapse there is no energy released to the outside at all."

Magnetic field may still escape to infinity if the collapse naturally creates conditions favorable for reconnection, e.g., by forming narrow current sheets or leading to the overall breakdown of fluid approximation by creating regions where electric field exceed magnetic field (the latter regions are naturally created both in pulsar magnetospheres [7] and near black holes moving through the external magnetic field [8]). In this paper we address a question "does the collapse of rotating magnetized neutron star naturally creates condition for efficient reconnection of magnetic field lines well before the foot points cross the horizon?" We argue that this does not happen.

The plan of the paper is the following. In §II we discuss possible types of precursor emission in NS-NS, NS-BH and BH-BH mergers. In §III we make estimates of the classical (non-GR-modified) pulsar-like prompt electromagnetic power during collapse. In the main §IV we find exact solutions for the structure of collapsing magnetospheres. Based on this solution we argue that as long as the resulting black hole can produce plasma and currents by vacuum breakdown, it may produce electromagnetic much longer that the collapse time.
II. PRECURSOR EMISSION IN MERGERS

For merging compact objects (NS-NS, BH-NS, BH-BH) a number of mechanism can generate precursor or afterglow emission. In case of merging neutron stars, one expects an electromagnetic precursor due to effective 'friction' of the neutron stars' magnetospheres \[9\] \[11\]. Qualitatively, a neutron star moving through magnetic field generates an inductive potential drop, which induced real charges on the surface, which in turn produce a component of the electric field along the magnetic field and electric currents. The estimate of the corresponding power is

\[L_U \approx B_{NS}^2 R_{NS}^2 \beta^2 c = B_{NS}^2 GM \frac{R_{NS}^8}{R_{\text{orb}}^7 c}, \tag{1} \]

where \(B_{NS}\) is the surface magnetic field of a neutron star, \(R_{NS}\) is its initial radius and \(M\) is its mass, \(\beta = v/c\) is the dimensionless velocity of a neutron star. The last equality in Eq. (1) assumes a Keplerian orbit with radius \(R_{\text{orb}}\). The estimate (1) can be derived by calculating the potential drop across the neutron star, \(\Delta \Phi \approx \beta B_{NS} R_{NS}\) and assuming the resistance of the resulting electric circuit to be close to the vacuum inductance \(\sim 4\pi/c\).

Just before the contact, the unipolar power (1) is

\[L_{U, \text{max}} = 6 \times 10^{45} \text{ergs}^{-1} \left(\frac{B_{NS}}{10^{12} \text{G}} \right)^2 \tag{2} \]

for \(M_{NS} = 1.4M_{\odot}\) and \(R_{NS} = 10\) km.

The total electromagnetic energy produced by the unipolar induction mechanism can be found by integrating power (1) with the radius evolving due to radiation of gravitational waves, \(R = R_{LC} (1 - (GM)^{3/4}/(c^5 R_{LC}^4))^{1/4}\) and magnetic field scaling as \(B = B_{NS}(R_{NS}/R)^3\) (the model becomes applicable when the magnetospheres of the neutron stars touch at the light cylinder distance \(R_{LC}\); at earlier time the interaction is through winds and scales as a sum of the spin-down powers of the neutron stars), see \[11\],

\[E_{\text{tot}, U} = \int_{t(R_{LC})}^{t(R_{NS})} L_{U, GR} dt \approx B_{NS}^2 R_{NS}^3 \left(\frac{R_{NS}}{R_G} \right)^2 = 3 \times 10^{43} \text{erg} \left(\frac{B_{NS}}{10^{12} \text{G}} \right)^2 \tag{3} \]

In addition, there is a purely general relativistic effect, when the motion of the compact object across magnetic field in vacuum generates parallel electric field, which in turn leads to generation of plasma and the production of electromagnetic outflows with power \[8\]

\[L_{U, GR} = \frac{(GM)^2 B_0^2 c}{c^3} = \frac{(GM)^3 B_0^2}{c^5 R_{\text{orb}}} \tag{4} \]
This type of interaction is important for BH-NS and BH-BH mergers, in which case there are no real induced charges to produce the parallel electric field, the parallel electric field is a pure vacuum effect, resulting from the curvature of the spacetime. This power is smaller than for NS-NS coalescence by a factor \((R_G/R_{NS})^2\), where \(R_G = 2GM/c^2\) is the Schwarzschild radius.

Qualitatively, the power \((4)\) can be estimated from the potential drop across the Schwarzschild horizon. There is an important difference between NS-NS and BH-NS electromagnetic interaction, though: in case of the NS-NS system, the parallel electric field is produced by real surface charges \([14]\), while in case of the black holes the parallel electric field is a pure vacuum effect, resulting from the curvature of the spacetime \([8]\).

For NS-BH system just before the contact, the general relativistic unipolar power \(L_{U,GR}\) is

\[
L_{U,GR} = 3 \times 10^{44} \text{ergs}^{-1} \left(\frac{B_{NS}}{10^{12} \text{G}}\right)^2 \tag{5}
\]

The total emitted energy is

\[
E_{tot,U} = \int_{t(R_{LC})}^{t(R_{NS})} L_{U,GR} dt \approx B_0^2 R_{NS}^3 = 10^{42} \text{erg} \left(\frac{B_{NS}}{10^{12} \text{G}}\right)^2 \tag{6}
\]

(Relations \((5,6)\) assume equal masses of the merging objects; it is straightforward to generalize them to unequal masses.) Thus, the total energy dissipated via the general-relativistic unipolar induction mechanism is of the order of the magnetic energy of the neutron star. Note, that the energy is taken from the linear motion of the neutron stars, and not from the energy of the magnetic field.

In addition, a more involved electromagnetic signatures are expected due to the perturbations that the merging black holes induce in the possible surrounding gas \([15,20]\).

III. PULSAR-LIKE PROMPT ELECTROMAGNETIC POWER DURING COLLAPSE

In this section we discuss pulsar-like electromagnetic power during the prompt stage of the neutron star collapse, treating the collapse approximately, in a classical regime up to the Schwarzschild radius \(R_G\). As the neutron star collapses, it spins up, \(\Omega \propto R^{-2}\), magnetic field increases due to flux conservation, \(B \propto R^{-2}\), while the radius decreases. Let us first discuss
how electromagnetic power evolves during the prompt stage of the collapse, neglecting, for
the time being, the effects of General Relativity.

If the dipole spin-down formula remains valid, the dipolar electromagnetic power increases
according to

\[L_d \propto B_s^2 R_s^6 \Omega^4 = L_{NS} \left(\frac{R_{NS}}{R} \right)^6 \]

(7)

where \(L_{NS} \approx B_{NS}^2 R_{NS}^6 \Omega_{NS}^4 / c^3 \) is the standard pulsar dipolar spin-down. (Note that the
magnetic moment \(\propto B R^3 \propto R \) decreases during the collapse.) In case of a free-fall of
the neutron star surface, \(R_s = R_{NS} (1 - t/t_c)^{2/3} \), where \(t_c = (2/3)R_{NS}^{3/2} / \sqrt{GM} \), resulting in
luminosity evolution

\[L = \frac{L_{NS}}{(1 - t/t_c)^4} \]

(8)

Limiting the collapse to the fall time down to the Schwarzschild radius, \(t_f = (2\sqrt{2}/3)(R_{NS}^{3/2} - R_G^{3/2}) / (c\sqrt{R_G}) \), the total released energy is relatively small.

\[E_{tot} = \frac{2\sqrt{2}}{9} \frac{(R_{NS}^{9/2} - R_G^{9/2}) R_{NS}^{3/2}}{c R_G^5} L_{NS} \approx L_{NS} R_{NS} / c \]

(9)

The pulsar-like luminosity of the collapsing neutron star may be a bit larger than given
by Eq. (7). Under the ideal MHD condition, the magnetic field is frozen into plasma. Thus,
for field lines penetrating the star, the angular velocity of the field lines is locally equal to
the angular velocity of the foot-point. The collapse is expected to produce strong shearing
of the magnetic field lines’ foot-points. As a result, large scale currents will be launched into
the magnetosphere, increasing the spin-down power. Increased currents will tend to inflate
the magnetosphere, resulting in an increased magnetic flux through the light cylinder and
higher spin-down luminosity [21]. As the upper limit, we can use the spin-down power of
the split monopole solution,

\[L_m = \frac{2}{3} \left(\frac{B_s R_s^2}{c} \right)^2 \Omega_s^2 \approx \left(\frac{c}{R_{NS} \Omega_{NS}} \right)^2 \left(\frac{R_{NS}}{R_s} \right)^4 L_{NS} = \left(\frac{c}{R_{NS} \Omega_{NS}} \right)^2 \frac{L_{NS}}{(1 - t/t_c)^{8/3}} \]

(10)

Larger currents in the magnetosphere lead to the increase of power, but for the collapsing
neutron star the power increases slower with the decreasing radius. As a result, the total
energy released during the collapse time \(t_c \) remains fairly small

\[E_{tot} \approx \left(\frac{c}{R_{NS} \Omega_{NS}} \right)^2 \frac{L_0}{\Omega_0} t_c \]

(11)

Since the collapse time is short and \(R_{NS} \) not much larger than \(R_G \), the increase in power is
mild at best, while the total released energy is small.
IV. MAGNETOSPHERES OF COLLAPSING NEUTRON STARS

A. Direct emission of electromagnetic waves during collapse

As a neutron star experiences a collapse, the frozen-in magnetic field evolves with time, generating electric field and a possible electromagnetic signal. Historically, the first treatment of the electromagnetic fields of a collapsing neutron stars was done in the quasi-static approach \[1\], in which case the electric field follows from the slow evolution of the magnetic field. The quasi-static approach was later demonstrated to give the incorrect asymptotic decay of the fields with time \[22\]. As the neutron star contracts, the magnetic moment decreases \(\propto R_s\). The scaling of the decay of the fields on the BH calculated in Ref. \[22\] was confirmed by \[2\], who performed numerical simulations of the neutron star collapse into BH and saw a predicted power-law decay of the electromagnetic fields.

Most of the power in the calculations done in Ref. \[2\] was emitted at times of the order of the collapse time, well before the predicted asymptotic limit. Overall, the simulations are dominated by heavy resistivity effects intrinsic to the vacuum approximation: the disconnection of the magnetic field field lines from the star typically (except in the Kerr-Schild coordinates) occurs at the time when the strong compression of the magnetic field against the horizon and the corresponding effects of the numerical resistivity becomes important.

The assumption of a highly conducting exterior changes the overall dynamics of the electromagnetic fields. As we argue below, the high conductivity of the external plasma would prevent the formation of disconnected magnetic surfaces, formally prohibiting the processes described in Ref. \[2\].

B. Force-free approximation in General Relativity

There is a broad range of astrophysical problems where the magnetic fields play a dominant role, controlling the dynamics of the plasma \[23\]. The prime examples are pulsar and black hole magnetospheres; Gamma-Ray bursts, AGN jet may also be magnetically dominated at some stage \[e.g., 24\]. If the magnetic field energy density dominates over the plasma energy density, the fluid velocity, enthalpy density and a pressure become small perturbations to the magnetic forces. The dynamics then can be described in a force-free approximation \[25\]. In the non-relativistic plasma the notion of force-free fields is often
related to the stationary configuration attained asymptotically by the system (subject to some boundary conditions and some constraints, \textit{e.g.}, conservation of helicity). This equilibrium is attained on time scales of the order of the Alfvén crossing times. In strongly magnetized relativistic plasma the Alfvén speed may become of the order of the speed of light \(c\), so that the crossing times becomes of the order of the light travel time. But if plasma is moving relativistically its state is changing on the same time scale. This leads to a notion of dynamical force-free fields.

MHD formulation assumes (explicitly) that the second Poincare electro-magnetic invariant \(\vec{E} \cdot \vec{B} = 0\) and (implicitly) that the first electro-magnetic invariant is positive \(B^2 - E^2 > 0\). This means that the electro-magnetic stress energy tensor can be diagonalized and, equivalently, that there is a reference frame where the electric field is equal to zero, the plasma rest frame. This assumption is important since we are interested in the limit when matter contribution to the stress energy tensor goes to zero; the possibility of diagonalization of the electro-magnetic stress energy tensor distinguishes the force-free plasma and vacuum electro-magnetic fields, where such diagonalization is generally not possible.

The equations of the force-free electrodynamics can be derived from Maxwell equations and a constraint \(\vec{E} \cdot \vec{B} = 0\). This can be done in a general tensorial notations from the general relativistic MHD formulation in the limit of negligible inertia \cite{26}. This offers an advantage that the system of equations may be set in the form of conservation laws \cite{27}. A more practically appealing formulation involves the 3+1 splitting of the equations of general relativity \cite{28,29}. The Maxwell equations in the Kerr metric then take the form

\begin{equation}
\begin{aligned}
\nabla \cdot \vec{E} &= 4\pi \rho \\
\nabla \cdot \vec{B} &= 0 \\
\nabla \times (\alpha \vec{B}) &= 4\pi \alpha \vec{j} + D_t \vec{E} \\
\nabla \times (\alpha \vec{E}) &= -D_t \vec{B}
\end{aligned}
\end{equation}

where \(D_t = \partial_t - \mathcal{L}_\beta\) is the total time derivative, including Lie derivative along the velocity of the zero angular momentum observers (ZAMOs), \(\nabla\) is a covariant derivative with the radial vector \(e_r = \alpha \partial_r\) and \(\alpha = \sqrt{1 - 2M/r}\). Taking the total time derivative of the constraint \(\vec{E} \cdot \vec{B} = 0\) and eliminating \(D_t \vec{E}\) and \(D_t \vec{B}\) using Maxwell equations, one arrives at the
corresponding Ohm’s law in Kerr metric [8], generalizing the result of [25]:

\[
\vec{j} = \left(\vec{B} \cdot \nabla \times (\alpha \vec{B}) - \vec{E} \cdot \nabla \times (\alpha \vec{E}) \right) \vec{B} + \alpha (\nabla \cdot \vec{E}) \vec{E} \times \vec{B} \over 4\pi \alpha B^2 \tag{13}
\]

Note that this expression does not contain the shift function \(\vec{\beta} \).

The generic limitation of the force-free formulation of MHD is that the evolution of the electromagnetic field leads, under certain conditions, to the formation of regions with \(E > B \) [e.g., 7], since there is no mathematical limitation on \(B^2 - E^2 \) changing a sign under a strict force-free conditions. In practice, the particles in these regions are subject to rapid acceleration through \(\vec{E} \times \vec{B} \) drift, following by a formation of pair plasma via various radiative effects and reduction of the electric field. Thus, regions with \(E > B \) are necessarily resistive. This breaks the ideal assumption and leads to the slippage of magnetic field lines with respect to plasma. In addition, evolution of the magnetized plasma often leads to formation of resistive current sheets, with the similar effect on magnetic field. If such processes were to happen in the magnetospheres of the collapsing neutron star, this might potentially lead to disconnection of the magnetic field lines form the star and a magnetic field-powered signal. Below we argue that in case of collapsing neutron stars this does not happen.

V. THE RESTRICTED WAVE GRAD-SHAFRANOV EQUATIONS

Let us derive a dynamic equation that describes the temporal evolution of the force-free fields in special relativity under the assumption that the fields remain axially-symmetric. Previously the equations governing general time-dependent force-free motion has been written by [30, 31].

In relativistic plasma the force-free condition is given by the Ohm’s law (13), where in this section we set \(\alpha = 1 \). Generally, any function can be represented as a sum of a gradient and a curl of a vector function. Under the assumption of axial symmetry and zero divergence for magnetic field, we can express electric and magnetic fields as

\[
\begin{align*}
\vec{B} &= \frac{\nabla P \times \hat{e}_\phi}{r \sin \theta} - \frac{2I}{r \sin \theta} \hat{e}_\phi \\
\vec{E} &= -\nabla \Phi + \frac{\nabla K \times \hat{e}_\phi}{r \sin \theta} - \frac{2L}{r \sin \theta} \hat{e}_\phi \tag{14}
\end{align*}
\]
where P is the magnetic flux function $P = A_\phi \varpi$, $\varpi = r \sin \theta$, A_ϕ, is the electric potential and K and L are some arbitrary functions to be determined, I is the poloidal current through a flux cross-section divided by 2π. The Maxwell equation $\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$ gives

\begin{align}
L &= \partial_t P/2 \\
\partial_t I &= \frac{1}{2} \left(\partial_r^2 K + \frac{1}{r^2} \sin \theta \partial_\theta \left(\frac{\partial_\theta K}{\sin \theta} \right) \right) = \frac{1}{2} \Delta^* K
\end{align}

(15)

\begin{align}
\Delta^* &= r^2 \sin^2 \theta \nabla \left(\frac{\nabla}{r^2 \sin^2 \theta} \right)
\end{align}

(16)

The ideal condition $\bar{E} \cdot \bar{B} = 0$ implies

\begin{align}
2I\partial_t P &= - (\nabla K + r \sin \theta \nabla \Phi \times \mathbf{e}_\phi) \cdot \nabla P
\end{align}

(17)

Equations (15)-(17) highlight two separate types of non-stationarity: (i) due to the variations of the current $I(t)$ for a given shape of the flux function (Eq. (16)); (ii) due to the variations of the shape of the flux function for a given current I (Eq. (17)).

A. Constant shape of flux functions, $\partial_t P = 0$, variable current

Let us first consider the case when $\partial_t P = 0$. Then Eq. (17) implies that $\nabla K_0 + r \sin \theta \nabla \Phi \times \mathbf{e}_\phi$ is orthogonal to ∇P (and is thus along the poloidal magnetic field). Above, K_0 denotes a particular case when the P is constant in time. Thus

\begin{align}
\nabla K_0 &= -r \sin \theta \nabla \Phi \times \mathbf{e}_\phi + r \sin \theta \Omega \nabla P \times \mathbf{e}_\phi \\
\bar{E} &= -\Omega \nabla P = -v_\phi \mathbf{e}_\phi \times \bar{B} \\
\partial_t I &= -\frac{r \sin \theta}{2} \nabla P \times \nabla \Omega \cdot \mathbf{e}_\phi = \frac{\varpi^2}{2} (\bar{B} \cdot \nabla \Omega)
\end{align}

(18)

(19)

where Ω is an arbitrary function, which can be identified with the angular velocity of the rotation.

The ϕ component of the induction equation then becomes the time-dependent Grad-Shafranov equations for the restricted case when the shape of the flux surfaces remain constant, but the angular velocity Ω and, thus, the poloidal current are time and space-depended:

\begin{align}
\varpi^2 \nabla \left(\frac{1 - \varpi^2 \Omega^2}{\varpi^2} \nabla P \right) + \frac{4I(\nabla P \cdot \nabla I)}{(\nabla P)^2} + \varpi^2 \Omega (\nabla P \cdot \nabla \Omega) = 0
\end{align}

(20)
This is a Grad-Shafranov for axisymmetric force-free structures that rotate with arbitrarily varying angular velocity, but keep the shape of the flux functions constant.

The poloidal components of the induction equation give

$$\partial_t \Omega = -\frac{2 \nabla \times \nabla I \cdot e_\phi}{\varpi (\nabla P)^2} = \frac{2}{(\nabla P)^2} (\vec{B} \cdot \nabla I)$$ \hspace{1cm} (21)

Note that Eqns \((19)\) and \((21)\) involve only poloidal magnetic field which under assumption \(\partial_t P = 0\) remain constant in time.

Eqns \((19)\) and \((21)\) can be combined to determine the evolution of \(\Omega\):

$$\partial^2_t \Omega = \frac{\varpi^2}{(\nabla P)^2} (\vec{B} \cdot \nabla (\vec{B} \cdot \nabla \Omega)) = \frac{\vec{B} \cdot \nabla (\vec{B} \cdot \nabla \Omega)}{B_p^2}$$ \hspace{1cm} (22)

where \(B_p\) is the poloidal magnetic field. Eq. \((22)\) is the generalization of the Ferraro’s law of iso-rotation to time-dependent angular velocity.

Eqns \((19, 20, 21)\) constitute a closed system of equations for variables \(P, I, \Omega\) under the assumptions of time-dependent \(I\) and \(\Omega\) and stationary \(P\). Generally, it is not guaranteed that there is a physically meaningful solution of this system: recall that this system describes a restricted motion of force-free plasma, when the shape of the flux function remains constant.

B. Variable shape of flux functions

By virtue of \((17)\) and \((19)\) variable shapes of the flux functions can be described by the addition to \(\nabla K_0\) of a term proportional to \(\nabla P\): \(K = K_0 + F(P)\).

Let us first consider \(K = F(P)\) separately, neglecting the cross-terms in electric field. The \(\vec{E} \cdot \vec{B} = 0\) gives

$$\nabla F \cdot \nabla P = 2I \partial_t P$$ \hspace{1cm} (23)

or, since \(F = F(P)\),

$$F' (\nabla P)^2 = 2I \partial_t P$$ \hspace{1cm} (24)

The Maxwell equation \(\partial_t \vec{B} = -\nabla \times \vec{E}\) gives

$$\partial_t I = \frac{1}{2} \Delta^* F = \frac{1}{2} \left(F' \Delta^* P + (\nabla P)^2 F'' \right)$$ \hspace{1cm} (25)

The \(\phi\) component of the induction equation then gives the Grad-Shafranov eq.

$$\Delta^* P - \partial_t^2 P + \frac{4I (\nabla P \cdot \nabla I)}{(\nabla P)^2} - 2 \partial_t \left(\frac{I^2 \partial_t P}{(\nabla P)^2} \right) = 0$$ \hspace{1cm} (26)
This is a wave (hyperbolic) Grad-Shafranov for non-rotating axisymmetric force-free structures that evolve with time. The current I here is determined from Eqns. (24)-(25).

The wave Grad-Shafranov equation can be written in a general case, when both current and the flux function evolve with time (Appendix A), but its overly complicated form makes it not useful for practical purposes.

C. Time-dependent Michel’s split-monopole solution in flat space

Both in the case of accretion induced collapse and for NS-NS mergers, right before the final plunge the NS is expected to rotate with a spin close to break-up limit of ~ 1 msec. As a result, the light cylinder is located close to the NS surface. The theory of pulsar magnetospheres predicts that outside the light cylinder the magnetic field structure resembles the split monopole structure [32]. This is confirmed by direct numerical simulations [33].

In §V we derived hyperbolic wave Grad-Shafranov equation, describing time-dependent force-free electromagnetic fields. It may be verified directly, that the Michel’s monopole solution for rotating force-free magnetosphere [32] is valid for time-dependent angular velocity Ω, surface magnetic field B_s and neutron star radius R_s. For monopole field, Eq. (22) gives a radially propagating fast wave

$$\partial_t^2 \Omega = \partial_r^2 \Omega$$
$$\Omega = \Omega(r \pm t)$$ (27)

The flux conservations requires $B_s R_s^2 = \text{const} = B_{NS} R_{NS}^2$. Then the Grad-Shafranov equation (20) has a slit-monopole-type solution for electromagnetic fields of the collapsing neutron star:

$$B_r = \left(\frac{R_s}{r}\right)^2 B_s, \quad B_\phi = -\frac{R_s^2 \sin \theta}{r} B_s, \quad E_\theta = B_\phi$$
$$j_r = -2 \left(\frac{R_s}{r}\right)^2 \cos \theta \Omega B_s$$
$$P = (1 - \cos \theta) B_s R_s^2$$
$$\Phi = -P \Omega$$
$$I = -\frac{P(P - 2B_s R_s^2) \Omega}{2B_s R_s^2} = \frac{1}{2} B_s R_s^2 \Omega \sin^2 \theta$$ (28)

where P is the flux function, and Φ is the electric potential and $\Omega = \Omega(r - t)$. It may be verified directly that Eq. (19) is satisfied.
Thus, we found exact solutions for time-dependent non-linear relativistic force-free configurations. Though the configuration is non-stationary (there is a time-dependent propagating wave), the form of the flux surfaces remains constant.

VI. ELECTRODYNAMICS OF NEUTRON STAR COLLAPSE

A. Force-free collapse in Schwarzschild metric

Next we apply the solutions obtained in the previous section to the electrodynamics of neutron star collapse taking into account general relativistic effects. The split monopole solution may be a good approximation for several reasons. First, the collapse is likely to induce strong shear of the surface foot-points. As a result, strong electric current will be launched in the magnetosphere strongly distorting it. Highly twisted magnetic field lines will tent to open up to infinity, so that the magnetosphere will resemble a monopolar solution at each moment corresponding to the changing angular velocity of the surface foot-points. For a general case of strongly sheared foot-points, a time-depended angular velocity will break a force-balance. Still, we expect that the overall dynamical behavior will be similar to the time-dependent Michel’s solution.

Second, as we argue below, the open field lines cannot slip off the horizon, while the closed field lines will quickly be absorbed by the black hole. Thus, the magnetosphere of the black hole will naturally evolve towards the split monopole solution, Fig. 1. Finally, in a more restricted sense, the fully analytically solvable dynamics of the monopolar magnetosphere collapse can be used to estimate the physical effects occurring on the open field lines.

The stationary Michel’s solution has been generalized to Schwarzschild metric \[34\] (BZ below). Extending the time-dependent solution \[28\] to the general relativistic case by the principle of minimal coupling (or the convention ”comma becomes a semi-colon”), the Michel’s solution \[28\] remains valid for arbitrary \(\Omega(r_{\text{fast}} - t)\) in General relativity. The argument of \(\Omega\) should be evaluated at the position of a radially propagating fast mode in the Schwarzschild metric with \(dr_{\text{fast}}/dt = \alpha^2\),

\[
\Omega \equiv \Omega \left(r - t + r(1 - \alpha^2) \ln(r\alpha^2) \right)
\]

The Michel solution in GR has the same flux function as in the flat space (see Eq. \[28\]), the poloidal magnetic field is derived from \(\Phi\) using a covariant derivative, while toroidal
FIG. 1. Cartoon of the structure of magnetic fields around a collapsing rotating neutron star. Initially, left panel, the magnetic field is that of an isolated pulsar, with a set of field lines closing within the light cylinder (dashed vertical lines). Immediately after the collapse, central panel, the structure is similar. The closed field lines are absorbed by the black hole, while the open field lines remain attached to the black hole; the system relaxes to the monopole structure (right panel).

magnetic field and poloidal electric field change according to $B_\phi \rightarrow B_\phi/\alpha$ and $E_\theta \rightarrow E_\theta/\alpha$. Thus, the exact non-linear general relativistic time-dependent force-free fields corresponding to the arbitrary solid-body rotation are

$$B_r = \left(\frac{R_s}{r}\right)^2 B_s,$$
$$B_\phi = -\frac{R_s^2 \Omega \sin \theta}{\alpha r} B_s, \quad E_\theta = B_\phi$$
$$j_r = -2 \left(\frac{R_s}{r}\right)^2 \cos \theta \Omega B_s$$

with Ω given by Eq. (29). It may be verified by direct calculations that fields (30) satisfy the Maxwell equations (12) with the Ohm’s law (13).

As the surface of the neutron star approaches the black hole horizon, $R_s \rightarrow R_G$, $B_s \rightarrow (R_{NS}/R_G)^2 B_{NS}$, while its angular velocity approaches a finite limit which we estimate next. Let initially the neutron star rotate with angular velocity Ω_{NS}. The moment of inertia of a neutron star can be written

$$I_{NS} = \frac{(2/5)\chi}{\mathcal{M}_{NS}} R_{NS}^2$$

where $\chi \sim 0.1 - 0.5$ is an equation of state dependent variable that describes how centrally condensed the star is [35]. The spin angular momentum is thus

$$S = \frac{(2/5)\chi \mathcal{M}_{NS}}{\mathcal{M}_{NS}} R_{NS}^2 \Omega_{NS}$$

where \mathcal{M}_{NS} is the initial spin period. The dimensionless Kerr parameter is then

$$a = \frac{(2/5)\chi}{c/G} \frac{R_{NS}^2 \Omega_{NS}}{\mathcal{M}_{NS}} = 0.04 \chi_{-1} P_{NS,-3}^{-1}$$
where \(P_{\text{NS}, -3} = P_{\text{NS}}/1\text{msec} \). For merging neutron stars the Kerr parameter is expected to be much higher.

For a collapsing star, the time dilation near the horizon and the frame-dragging of the horizon lead to the "horizon locking" condition: objects are dragged into corotation with the hole’s event horizon, which has a frequency associated with it of

\[
\Omega_H = \frac{a c^3}{2 G r_H} \approx \frac{\chi}{5} \frac{c^4 R_{\text{NS}}^3}{(G M_{\text{NS}})^2} \Omega_{\text{NS}} = 2.9 \times 10^9 \text{rads}^{-1} \chi^{-1} P_{\text{NS}, -3}^{-1} \tag{34}
\]

where \(r_H = (1 + \sqrt{1 - a^2}) GM/c^2 \approx R_G \) is the coordinate radius of the horizon of the Kerr black hole. (Note that for the chosen parameters the final spin is smaller than the initial spin, \(\Omega_H/\Omega_{\text{NS}} = 0.46 \chi^{-1} \), due to the assumption of highly centrally concentrated initial mass distribution, \(\chi \ll 1 \).)

The electromagnetic power produced by the Michel’s rotator is then (see Eq. (10))

\[
L = \frac{2}{3} \frac{(B_s R_s^2)^2 \Omega_H^2}{c} = \frac{2}{75} \chi^2 c^7 B_{\text{NS}}^2 R_{\text{NS}}^8 \Omega_H^2 \approx 2 \times 10^{44} \text{ergs}^{-1} \chi^{-1} B_{\text{NS}, 12}^{-2} P_{\text{NS}, -3}^{-2} \tag{35}
\]

It will lead to the black hole spin-down on a time scale

\[
\tau = \frac{6}{c^3 B_{\text{NS}}^2 R_{\text{NS}}^3} \frac{G^2 M_{\text{NS}}^3}{\Omega_{\text{NS}}} = 2 \times 10^7 \text{sec} B_{\text{NS}, 12}^{-2} \tag{36}
\]

(Michel solution corresponds to the spin-down index of \(n = 1 \), so that the spin evolution is described by a decaying exponential.) It is unlikely, though, that the assumptions of the model will be applicable for such a long time, see below.

In addition, the neutron star with dipolar magnetic field has a net charge \(Q = (1/3) B_{\text{NS}} r_{\text{NS}}^3 \Omega_{\text{NS}}/c \).

As long as the assumption of the model are satisfied (that the black hole produces a wind, see below), this charge is not canceled by the electrostatic attraction of charges from the surrounding medium. Thus, the black hole settles to the Kerr-Newman solution. The corresponding Newman parameter is small

\[
b = \sqrt{\frac{Q^2 G/c^4}{R_H}} = \frac{Q}{2 \sqrt{G M_{\text{NS}}}} \approx \frac{B_{\text{NS}} R_{\text{NS}}^3 \Omega_{\text{NS}}}{6 c M_{\text{NS}}} = 4 \times 10^{-8} B_{\text{NS}, 12} P_{\text{NS}, -3}^{-1} \tag{37}
\]

As we argued above, the closed magnetic field lines will be quickly absorbed by the black hole, so that the magnetosphere will settle to the monopolar magnetic field structure with no electric charge, Fig. [12]
B. How a neutron star collapse proceeds

To summarize the above discussion, first, the space-time of the collapsing neutron star temporarily passes through the Kerr-Newman solution with parameters given by (33), (37); quickly the electric charge is lost due to the absorption of the closed field lines. (We stress that the loss of the electric charge is driven by the internal electrodynamics and not by the attraction of charges from the surrounding medium.) Second, and most importantly, we have demonstrated that collapsing neutron star does not produce any narrow current structures or other dissipative/resistive structure that could have became dissipative and "released" the overlaying magnetic field to the infinity: the field always remain connected to the surface of the star.

The fate of the magnetic field lines connected to the surface of the star then depends on whether it is a closed magnetic field line, or the one open to infinity. For closed loops, both footpoints are dragged toward the horizon and eventually absorbed by the black hole. On the other hand, the open magnetic field lines remain open and connected to the hole, without "sliding off the black hole", as long as the assumptions of the model remain satisfied. Thus, for black hole surrounded by highly conducting plasma the open magnetic field lines never become disconnected from the black hole. As a result, the electromagnetic power emitted by the black hole may continue for times much longer than the immediate collapse time.

The key difference here from the conventional BZ mechanism is that in the latter case the magnetic field is assumed to be produced by the currents in externally supplied accretion disk, while here the magnetic field is produced by the currents generated by the black hole itself. Also note, that this result does not violate the "no hair" theorem [e.g., 36], which assumes that the outside is vacuum. In our case the outside medium is assumed to be high conducting plasma all the way down to the black hole horizon. Under this assumption the magnetic field lines cannot disconnect from the black hole.

There is a natural limit of applicability of the present model. The electric currents that support the magnetic field on the black hole are assumed to be self-produced by the black hole via the vacuum breakdown, and not supplied by the external current, like in the BZ case. Vacuum breakdown requires a sufficiently high electric potential. As the black hole spins down, the potential available for particle acceleration decreases. After some time, the black hole will not be able to break vacuum. It would cross a death-line (using pulsar
terminology) after which moment no particles are produced anymore, the outside becomes vacuum, and by the no hair theorem the black hole will lose its black hole. Also, starting this moment the black hole will be able to attract charges of the opposite sign, canceling the internal charge.

In fact, a somewhat different scenario is likely to play out. Our experience with pulsars indicate that the plasma production in the magnetosphere is a highly non-stationary process. If there is an interruption in the plasma production for sufficiently long time, the magnetic field will able to slide off the black hole, shutting down the electromagnetic power forever.

VII. ON THE NATURE OF SHORT GAMMA RAY BURSTS

The above results further highlight possible difficulties with the progenitors of short GRBs being the merging neutron stars [37]. On the one hand, numerical simulations indicate that the active stage of NS-NS coalescence typically takes 10-100 msec. Only small amount, \(\leq 0.1 M_\odot \) of material may be ejected during the merger and accretes on time-scales of 1-10 secs, depending on the assumed \(\alpha \) parameter of the resulting disk [e.g., 38-40]. Thus, there is not enough baryonic matter left outside the BH to power a short GRB. Any energetically dominant activity on much longer time scales contradicts the NS-NS coalescence paradigm for short GRBs. This seem to contradict observations that some short GRBs have long extended X-ray tails observed over time scales of tens to hundreds of seconds. The tail fluence can dominates over the primary burst [by a factor of 30 as in GRB080503, 41]. In addition, powerful flares appear late in the afterglows of both short and long GRBs (e.g., in case of GRB050724 there is a powerful flare at 10^5 sec). In the standard forward shock model of afterglows this requires that at the end of the activity, lasting 10-100 msec, the source releases more energy than during the prompt emission in a form of low \(\Gamma \) shells, which collides with the forward shock after \(\sim 10^6 \) dynamical times, a highly fine-tuned scenario.

On the other hand, the expected electromagnetic powers estimated in the present paper are fairly low for all the discussed processes. Since the above results are based on the analytical Michel-type structure of the black hole magnetospheres, which for a given surface magnetic field and the spin has the largest amount of open magnetic field lines and the largest electromagnetic power, the numerical estimates above can be considered as upper limits.
The only exception to the above could be that an efficient magnetic dynamo mechanism operates either during neutron star merger (for short GRBs) or during a core collapse of a massive star (for long GRBs), resulting in a formation of a millisecond magnetar-type object with magnetic field reaching 10^{14} G\cite{42}. Since, as we argue, the black hole can retain its magnetic field for a long period of time, the spindown time scale\cite{36} may become sufficiently short, hundreds to thousands of seconds, so that the magnetic field can electromagnetically extract a large fraction of the total rotation energy of the black hole

$$E_{\text{tot}} = \frac{1}{2} I_{\text{NS}} \Omega_{\text{NS}}^2 = 2 \times 10^{51} \text{erg} \chi^{-1} P_{\text{NS}}^{-2}$$\hspace{1cm}(38)$$

The fact that the electromagnetic extraction of the rotational energy of the black hole can operate both in long and shot GRBs may explain a surprising observation that early afterglows of long and short GRBs look surprisingly similar, forming a continuous sequence, e.g., in relative intensity of X-ray afterglows as a function of prompt energy\cite{43}. This is surprising in a forward shock model: the properties of the forward shock do depend on the external density, while the prompt emission is independent of it. The difference between circumburst media densities in Longs (happening in star forming regions) and Short (happening in low density galactic or even extragalactic medium) is many orders of magnitude. In defense of the forward shock model, one might argue that afterglow dynamics depends on E_{ejecta}/n, both of which are orders of magnitude smaller for short GRBs if compared with long GRBs. Yet afterglows are very similar and, most importantly, form a continuous sequence.

We suggest that the similarity of the early afterglows properties of long and short GRBs, at times $\leq 10^5$ sec, can be related to the fact that in both cases a spinning black hole can retains magnetic field for sufficiently long time to power the prompt and early afterglow emission via internal dissipation in the wind\cite{37}.

VIII. DISCUSSION

In this paper we discuss possible electromagnetic signatures of the merging and collapsing compact objects. At the in-spiraling stage, in case of NS-NS system, the peak Poynting power is $L_{U,max} = 6 \times 10^{45} \text{erg s}^{-1} (B_{\text{NS}}/10^{12} \text{G})^2$, while for BH-NS systems it is an order of magnitude smaller. Both the peak power and the total energy of the precursor emission are
fairly small, see [11]. Only for magnetar-type magnetic fields the corresponding emission can be observed at cosmological distances, see [11].

We found Michel-type solution for the structure of time-dependent force-free magnetospheres in General relativity. Based on this solution, we argue that contrary to the previous estimates the direct emission of the electromagnetic field, powered by the magnetic energy stored outside of the neutron star, does not produce a considerable electromagnetic signal: such process is prohibited by the high conductivity of the surrounding plasma.

Most importantly, as long as the black hole is able to produce a highly conducting plasma via the vacuum breakdown, magnetic field cannot "slide off" the black hole. As a result, a black hole can retain magnetic field for much longer time that is predicted by the "no hair" theorem, producing an electromagnetic power for a long time after the collapse, without a need for an externally supplied magnetic field. The "no hair" theorem does not apply here due to the assumed high conductivity of the plasma surrounding the black hole. (Pulsars produce plasma and currents all by themselves, without an external accretion disk.) Since in the force-free limit the structures in the current sheet are flying away with the speed of light [cf. , the corrugated current current sheet solution in Ref. [44], any magnetic field reconnection occurring beyond the light cylinder does not affect the global solution. The moment the black hole fails to produce the plasma (e.g., due to spontaneous reconnection within the light cylinder), it will quickly lose its magnetic field and stop producing any electromagnetic power. (It takes one malfunction to break the black hole electromagnetic engine). It will likely to be a random processes, with no typical time-scale, that will terminate the EM emission well before the BH spins down.

I would like to thank Thomas Baumgarte, Vasily Beskin, Scott Hughes, Luis Lehner, Harald Pfeiffer, Eric Poisson, Stuart Shapiro and Alexander Tchekhovskoy for discussions.

[1] V. Ginzburg and L. Ozernoi, JETP 20, 689 (1965).
[2] T. W. Baumgarte and S. L. Shapiro, ApJ 585, 930 (2003), arXiv:astro-ph/0211339.
[3] D. M. Eardley and W. H. Press, ARA&A 13, 381 (1975).
[4] R. N. Henriksen, W. Y. Chau, and K. L. Chan, ApJ 227, 1013 (1979).
[5] P. D. Morley and I. Schmidt, A&A 384, 899 (2002), arXiv:astro-ph/0201512.
[6] S. L. Liebling, L. Lehner, D. Neilsen, and C. Palenzuela, Phys. Rev. D 81, 124023 (2010), 1001.0575.
[7] D. A. Uzdensky, ApJ 598, 446 (2003), arXiv:astro-ph/0305288.
[8] M. Lyutikov, Phys. Rev. D 83, 064001 (2011), 1101.0639.
[9] S. D. Drell, H. M. Foley, and M. A. Ruderman, J. Geophys. Res. 70, 3131 (1965).
[10] P. Goldreich and D. Lynden-Bell, ApJ 156, 59 (1969).
[11] B. M. S. Hansen and M. Lyutikov, MNRAS 322, 695 (2001), arXiv:astro-ph/0003218.
[12] C. Palenzuela, T. Garrett, L. Lehner, and S. L. Liebling, Phys. Rev. D 82, 044045 (2010), 1007.1198.
[13] S. T. McWilliams and J. Levin, ArXiv e-prints (2011), 1101.1969.
[14] P. Goldreich and W. H. Julian, ApJ 157, 869 (1969).
[15] P. J. Armitage and P. Natarajan, ApJ 567, L9 (2002), arXiv:astro-ph/0201318.
[16] J. H. Krolik, ApJ 709, 774 (2010), 0911.5711.
[17] M. Milosavljević and E. S. Phinney, ApJ 622, L93 (2005), arXiv:astro-ph/0410343.
[18] J. R. van Meter, J. H. Wise, M. C. Miller, C. S. Reynolds, J. Centrella, J. G. Baker, W. D. Boggs, B. J. Kelly, and S. T. McWilliams, ApJ 711, L89 (2010), 0908.0023.
[19] P. Chang, L. E. Strubbe, K. Menou, and E. Quataert, MNRAS 407, 2007 (2010), 0906.0825.
[20] N. Stone and A. Loeb, MNRAS 412, 75 (2011), 1004.4833.
[21] C. Thompson, M. Lyutikov, and S. R. Kulkarni, ApJ 574, 332 (2002), astro-ph/0110677.
[22] R. H. Price, Phys. Rev. D 5, 2439 (1972).
[23] R. D. Blandford, in Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology, edited by M. Gilfanov, R. Sunyeav, & E. Churazov (2002), pp. 381–+.
[24] M. Lyutikov, New Journal of Physics 8, 119 (2006), arXiv:astro-ph/0512342.
[25] A. Gruzinov, ArXiv Astrophysics e-prints (1999), astro-ph/9902288.
[26] T. Uchida, Phys. Rev. E 56, 2181 (1997).
[27] S. S. Komissarov, MNRAS 336, 759 (2002), arXiv:astro-ph/0202447.
[28] K. S. Thorne, R. H. Price, and D. A. MacDonald, Black holes: The membrane paradigm (Black Holes: The Membrane Paradigm, 1986).
[29] X. Zhang, Phys. Rev. D 39, 2933 (1989).
[30] S. J. Park and E. T. Vishniac, ApJ 337, 78 (1989).
Appendix A: Hyperbolic Grad-Shafranov equation

Generally, we can write

$$\nabla K = -r \sin \theta \nabla \Phi \times \mathbf{e}_\phi + r \sin \theta \Omega \nabla P \times \mathbf{e}_\phi + \nabla F(P)$$

$$\vec{E} = -\Omega \nabla P - \frac{\partial_t P}{\omega} \mathbf{e}_\phi + \vec{B}_p F'$$

$$\vec{E} \cdot \vec{B} = 0 \rightarrow F' = \frac{2I \partial_t P}{(\nabla P)^2} \quad (A1)$$

The ϕ component of the induction equation gives (the poloidal components are satisfied identically)

$$\partial_t I = \frac{1}{2} (\Delta^* F + \omega (\nabla \Omega \times \nabla P)) = \frac{1}{2} \left(\Delta^* F + \omega^2 (\vec{B} \cdot \nabla \Omega) \right) \quad (A2)$$

The ϕ component of the Ampere’s law gives the hyperbolic wave Grad-Shafranov equation

$$\omega^2 \nabla \left(\frac{1 - \omega^2 \Omega^2}{\omega^2} \nabla P \right) - \partial_t^2 P + \left\{ -4(\Delta^* P) I^2 - 2IF'' \partial_t P (\nabla P)^2 + IF'' \partial_t (\nabla P)^2 \right\} \quad (A3)$$
$$4(\nabla P \cdot \nabla I) + 4 \Delta^* P \omega^2 I^2 \Omega^2 - 2 \omega I \Omega^2 (\nabla P \times \nabla (\partial_t P/\Omega)) \cdot e_\phi - 2(\Delta^* P) I F' \partial_t P$$
$$+ \left((\nabla P)^2 + 8 I^2 \omega^2 \Omega (\nabla P \cdot \nabla \Omega) + 8 \omega I^2 \Omega^2 (\nabla P \cdot \nabla (r \sin \theta)) \right) \frac{1}{(\nabla P)^2 + 4 I^2} = 0 \quad (A3)$$