SERPINA1 methylation and lung function in tobacco-smoke exposed European children and adults: a meta-analysis of ALEC population-based cohorts

Anna Beckmeyer-Borowko 1,2*, Medea Imboden 1,2, Faisal I. Rezwan 3, Matthias Wielscher 4, Andre F. S. Amaral 4,5, Ayoung Jeong 1,2, Emmanuel Schaffner 1,2, Juha Auvinen 6,7,8, Sylvain Sebert 5,9,10, Ville Karhunen 4,6, Robert Bettschart 11, Alexander Turk 12, Marco Pons 13, Daiana Stolz 14, Florian Kronenberg 15, Ryan Arathimos 16,17, Gemma C. Sharp 16,17,18, Caroline Relton 16,17, Alexander J. Henderson 16, Marjo-Riitta Jarvelin 4,5,9,19,20, Deborah Jarvis 5, John W. Holloway 3 and Nicole M. Probst-Hensch 1,2*

Abstract

Background: The pathophysiological role of SERPINA1 in respiratory health may be more strongly determined by the regulation of its expression than by common genetic variants. A family based study of predominantly smoking adults found methylation at two Cytosine-phosphate-Guanine sites (CpGs) in SERPINA1 gene to be associated with chronic obstructive pulmonary disease risk. The objective of this study was to confirm the association of lung function with SERPINA1 methylation in general population samples by testing a comprehensive set of CpGs in the SERPINA gene cluster. We considered lung function level and decline in adult smokers from three European population-based cohorts and lung function level and growth in tobacco-smoke exposed children from a birth cohort.

Methods: DNA methylation using Illumina Infinium Human Methylation 450 k and EPIC beadchips and lung function were measured at two time points in 1076 SAPALDIA, ECRHS and NFBC adult cohort participants and 259 ALSPAC children. Associations of methylation at 119 CpG sites in the SERPINA gene cluster (PP4R4-SERPINA13P) with lung functions and circulating alpha-1-antitripsin (AAT) were assessed using multivariable cross-sectional and longitudinal regression models.

Results: Methylation at cg08257009 in the SERPINA gene cluster, located 32 kb downstream of SERPINA1, not annotated to a gene, was associated with FEV1/FVC at the Bonferroni corrected level in adults, but not in children. None of the methylation signals in the SERPINA1 gene showed associations with lung function after correcting for multiple testing.

Conclusions: The results do not support a role of SERPINA1 gene methylation as determinant of lung function across the life course in the tobacco smoke exposed general population exposed.

Keywords: Chronic obstructive pulmonary disease; SERPINA1 methylation, DNA methylation, Epigenetics, Population based study, Smoking, Alpha-1 antitrypsin
Background
Tobacco smoke represents the most important COPD risk factor. Yet, not all smokers develop the disease during their lifetime [1]. The interaction between rare genetically determined alpha-1 antitrypsin (AAT) deficiencies and smoking on emphysema risk illustrates the relevance of genetic susceptibility and gene-environment interactions. The protease inhibitor AAT, encoded by SERPINA1, prevents the extracellular matrix degradation and destruction of alveoli by neutrophil. Both, tobacco smoke and AAT deficiency cause neutrophil recruitment in the lung. Pro-inflammatory and oxidative processes further diminish the anti-proteolytic AAT activity [2, 3].

Genome-wide association studies (GWAS) initially suggested that common SERPINA1 variants might influence COPD risk and associated lung function phenotypes. However, reported associations with common SERPINA1 single nucleotide polymorphisms (SNPs) were shown to reflect their linkage with more penetrant rare variants [4, 5]. In a recent GWAS, restricted to smokers, SERPINA1 variants were not associated with the level of lung function [6]. In the largest GWAS meta-analysis to date, a genetic risk score including 95SNPs, independently associated with lung function or COPD, did not contain SNPs from SERPINA1. Nevertheless, an over-representation of genetic variants related to elastic-fibre pathway was observed [7].

SERPINA1 gene is complex with eleven splicing isoforms differing in the SERPINA1 5′-UTR, tissue expression and secondary structure. This suggests that the gene’s pathophysiological role may be more strongly determined by differences in expression, regulation or posttranscriptional modification than by genetic variation [8]. A recent family-based study of predominantly smoking adults without severe AAT deficiency investigated SERPINA1 methylation. It was associated with COPD risk, forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) [9] at two CpG sites.

Our candidate gene study is the first to investigate the influence of SERPINA1 methylation on lung function in a general population. Specifically, we tested the association of a comprehensive set of methylation signals in the SERPINA4 gene cluster with lung function levels; with 10 to 15-year lung function decline in adult smokers from three population-based European cohorts; and with lung function growth in tobacco-smoke exposed children from the ALSPAC birth cohort.

Methods
Study design
Cross-sectional and longitudinal analyses used data from three European adult cohorts and one European birth cohort with longitudinal data on lung function and DNA methylation (DNAm).

Ethics approval and consent to participate
All studies were approved by the local ethics committees and participants or their guardians provided written consent prior to taking part in the study.

Adult cohorts and participants
Participants came from three population-based studies: Swiss Study on Air Pollution and Lung and Heart Disease in Adults (SAPALDIA) [10, 11], European Community Respiratory Health Survey (ECRHS) [12] and Northern Finland Birth Cohort 1966 [13]. Participation across the studies included structured questionnaires, pre-bronchodilation spirometry, and blood sampling for DNA extraction and analysis. SAPALDIA and ECRHS share a harmonized respiratory health protocol. The study sample was restricted to ever smokers, aged ≥25 years, with data on valid lung function, relevant covariates, and DNA samples from two follow-ups subjected to methyleme typing in the context of the Aging Lungs in European Cohorts (ALEC) project. The final sample size was 1076 (n = 561 SAPALDIA, n = 267 ECRHS, and n = 248 NFBC).

Children and adolescent cohort and participants
The Avon Longitudinal Study of Parents and Children (ALSPAC) consisted of 68 follow-up assessments between birth and 18 years [14]. Spirometry was performed at ages 8.5 and 15 years. Participants were restricted to children and adolescents with DNA methyleme and valid lung function data from two time points, as well as information on relevant covariates. The study sample included 259 children exposed to tobacco-smoke (mother smoked during pregnancy and/or lived with a smoker and/or reported smoking ≥ twice in their lifetime).

Lung function
Pre-bronchodilation spirometry was performed by trained personnel according to the ATS/ERS recommendations [15]. FEV1, FVC, and FEV1/FVC were the lung function parameters considered. In SAPALDIA, parameters were derived from 2001 and 2010 measurements and corrected for change in spirometers from SensorMedics to nnd EasyOne [16] in ECRHS they were derived from 1998 and 2008 measurements and were corrected from several spirometers to nnd EasyOne. In NFBC they were measures by Vidalograph P-model in 1997 and MasterScreen Pneumo spirometer in 2012. ALSPAC parameters were derived from 2000 and 2016 spirometries obtained from the same brand spirometer [17].

DNA methylation measurement
DNAm of autosomes obtained at two time points of lung function measurements was the predictor of interest. DNA was extracted from peripheral whole blood in all cohorts. In SAPALDIA and ALSPAC, DNAm was measured...
at both time points using the Infinium HumanMethylation450K BeadChip (Illumina, Inc.), in NFBC using the Infinium HumanMethylation450K BeadChip at the first time point and the EPIC BeadChip at the second time point and in ECRHS, at both time points using the EPIC BeadChip.

For ECRHS and SAPALDIA, randomized distribution of samples for bisulphite conversion was applied and for methylome typing batches, the samples from each time point from the same person were placed next to each other on the array. In NFBC1966 DNAm data were recorded in two batches following the clinical assessments of participants aged 31 and 46.

The methylation level (β value) was derived from raw intensities after pre-processing using R package using minfi [18] followed by beta-mixture quantile normalization (BMIQ) [19] in SAPALDIA or RnBeads [20] followed by quantile normalization (QN) in ECRHS. In NFBC, CPA-COR pipeline [21] was used to pre-process and prepare β values. In all adult cohorts, normalized beta scores were regressed on principle components derived from the array control probes reflecting technical bias. The resulting residuals were used as predictors in the associations with lung function.

In ALSPAC, analogous standard quality control procedures were applied, in addition, genotype probes on the HumanMethylation450K were compared between samples from the same individual and against SNP-chip data to identify and remove any sample mismatches. Data were pre-processed in R (version 3.0.1) with the Watermelon package according to the subset quantile normalization approach [22] to reduce the non-biological differences between probes. Technical batch effect for each methylation time-point was adjusted for by including ten surrogate variables into the models.

Methylation signals considered in SERPINA gene cluster

The human serine protease inhibitor (serpin) gene cluster is located at 14q32. It consists of eleven functionally diverse serpin genes within a region of approximately 400 kb in length. Gene sub-clusters consist of four, three, and four genes each. The best characterized and proximal sub-cluster with a length of about 107 kb includes SERPINA1 as well as an antitrypsin-related pseudogene (ATR, SERPINA2; ~13 kb downstream), the corticosteroid-binding globulin gene (CBG, SERPINA6; ~68 kb downstream), and the protein Z inhibitor gene (ZPI, SERPINA10; ~100 kb downstream).

Because the tissue-specific expression of different genes in the serpin cluster is regulated by chromosomal elements and chromatin structure, and in the absence of knowledge about the relevance of more distal methylation signals on gene expression, we included in the analysis all 119 CpGs located 99 kb downstream (PPP4R4) and 376 kb upstream (GSC) from the SERPINA1 gene. The CpGs were allocated to 12 genes: PPP4R4, SERPINA10, SERPINA6, SERPINA1, SERPINA11, SERPINA9, SERPINA12, SERPINA4, SERPINA5, SERPINA3, SERPINA13, and GSC (Fig. 1: location of CpG sites considered; Fig. 2: correlation of methylation at different CpGs at both time points).

Covariate information

Information on participant’s age, sex, education, height, and smoking status was derived from questionnaires administered during the two time-points. Cell proportions in the respective blood samples were estimated using the Houseman method [23] implemented in the minfi package [18].

For sensitivity analysis, SAPALDIA provided information on concentrations of high-sensitive C-reactive protein (CRP) and AAT in blood samples collected at the first time point. CRP and AAT concentrations were measured by latex-enhanced immunoturbidimetric assays (Roche Cobas Integra analyzer; Roche Diagnostics). Inter-assay coefficients of variation were below 5% and lower detection rate were 0.1 mg/l (CRP) and 0.21 (AAT) [24]. In addition, SAPALDIA provided genetic information on rare AAT deficiency variants PiZ and PiS [4].

Statistical analyses

Cohort-specific analyses on lung function and its decline in adults

Within each adult cohort, four statistical models were run: a) cross-sectional associations of DNAm with lung function at T1, b) cross-sectional associations of DNAm with lung function at T2, c) repeat cross-sectional associations of DNAm and lung function at both time points, and d) predictive associations of DNAm at T1 on annual
lung function decline between T1 and T2, calculated as (lung function at T2 - lung function at T1 divided by the time of follow-up in years).

The absolute levels of lung functions (FEV\textsubscript{1}, FVC, FEV\textsubscript{1}/FVC) were regressed on residuals of methylation by fitting linear regression models and a mixed-model with a random effect for the subject (repeat cross-sectional model), respectively. Sample size was kept constant across all models and analyses. Models were a priori adjusted for the following covariates associated with lung function level at P-value < 0.05: study center, age, age2, education, height, (height-mean(height))2, sex, sex*age, sex*age2, sex*education.

Fig. 2 a-b Heatmaps for correlation of methylation at 119 CpGs in SERPINA gene cluster in SAPALDIA. Heatmaps correlations at the first (a; T1) and second (b; T2) time-points. CpGs located on the SERPINA gene are highlighted in black and labeled. Both figures were created with the R software.
sex*height, sex*(height-mean(height))^2, and cell composition (CD8T; CD4T; NK; Bcell; Mono and Eos).

Meta-analysis of adult cohort results

The fixed-effect meta-analysis weighted by the inverse of variance was completed using METAL on the 119 CpG sites common to all three cohorts [25]. Associations with \(P\)-values<0.05 were considered as nominally significant. Since methylation of CpGs in the SERPINA cluster did not correlate throughout the whole genetic region (Fig. 2), the total number of CpGs was used as correction for multiple testing. A Bonferroni corrected \(P\)-value<4.2 \times 10^{-4} was considered statistically significant. Given the generally medium-to-high correlation between lung function parameters, associations of CpGs with different lung function parameters were not considered independent [7].

Cohort-specific analysis on lung function and its growth in children and adolescents

Four regression models equivalent to those assessed in adult cohorts were run to investigate cross-sectional and predictive associations of methylation at 119 CpGs in the SERPINA gene cluster with the absolute level and increase in FEV\textsubscript{1}, FVC, and FEV\textsubscript{1}/FVC in children and adolescents. The models were a priori adjusted for covariates associated with lung function at \(P\)-value<0.05: study center, age, mother's education, height, (height-mean(height))^2, sex, sex*age, sex*height, and estimated cell composition (CD8T; CD4T; NK; Bcell; Mono; Eos) [23].

Sensitivity analyses

Seven sensitivity analyses were conducted in SAPALDIA:(1) 119 CpGs from T1 were regressed on circulating AAT measured at T1 [24] by including the same set of covariates as in cross-sectional models on lung function at T1;(2) cross-sectional models at T1 were additionally adjusted for CRP and AAT;(3) for all phenotypes, all four statistical models were additionally adjusted for the presence of PiS and PiZ: 0, 1 or 2 alleles(4) for neutrophils(5) stratified by gender;(6) stratified by obesity (BMI 30 < vs. \(\geq \) 30 kg/m^2);(7) stratified by self-reported asthma (“Have you ever had asthma?”).

Results

Characteristics of adult cohort participants

Characteristics of the adult participants at the first time point (T1) and second time point (T2) are presented in Table 1. SAPALDIA participants were oldest, reported the highest number of pack-years, had lung function levels similar to ECHRS, but lower than NFBC, and exhibited the highest prevalence of COPD based on pre-bronchodilation spirometry and defined as FEV\textsubscript{1}/FVC below the lower limit of normal: in SAPALDIA 15.3% (T1) and 17.1% (T2), respectively, compared to 10.5% (T1) and 12.7% (T2) in ECHRS and 2.2% (T1) and 11.4% (T2) in NFBC. The prevalence of self-reported doctor's diagnosed asthma was between 10 and 20%, increasing with aging in all three cohorts.

Association of methylation at 119 CpGs in the SERPINA1 cluster with lung function in adult ever smokers

SERPINA1

Of the 119 CpGs, 17 were located in the SERPINA1 gene. DNA methylation at these 17 sites was not associated with any of the three lung function parameters at a Bonferroni-corrected \(P\)-value, irrespective of the model considered (Tables 2 and 3; Additional file 1: Table ES1). However, for FEV\textsubscript{1}, meta-analysis revealed three nominally significant associations at T1 (cg09968361, cg25968219, cg04179148) (Table 2). The positive association of cg09968361 with levels of FEV\textsubscript{1}, nominally significant at T1 (\(\beta \)=1.43, \(P\)-value = 0.04) was consistent in direction for T2 and the repeat cross-sectional analysis (\(\beta \)=0.72, \(P\)-value = 0.02). However for change in lung function, an increase in methylation at this CpG site was associated with accelerated FEV\textsubscript{1} decline (\(\beta \)=-0.10, \(P\)-value = 0.011). For FEV\textsubscript{1}/FVC (Table 3), meta-analysis also revealed three nominally significant associations at T1 (cg25968219, cg24621042, cg04179148), which in part overlapped with those associated with FEV\textsubscript{1} also in terms of direction of association. No association of methylation at SERPINA1 CpGs and FVC was observed (Additional file 1: Table ES1).

SERPINA gene cluster

Results from the meta-analysis on the association of methylation at the 119 CpGs with cross-sectional lung function and lung function decline for FEV\textsubscript{1}, FVC and FEV\textsubscript{1}/FVC are presented in Additional file 1: Tables ES2-S4. A single CpG at cg08257009, located 32 kb downstream of SERPINA1, withstood Bonferroni-correction for multiple testing. Methylation at this site was positively associated with increased FEV\textsubscript{1}/FVC in the repeat cross-sectional analysis (\(\beta \)=0.11; \(P\)-value = 2.6 \times 10^{-4}) (Additional file 1: Table ES3). The associations of this signal for the two cross-sectional time points were comparable (\(\beta \)=0.10; \(P\)-value = 0.01 at T1; \(\beta \)=0.14; \(P\)-value = 2.2 \times 10^{-3} at T2). Consistent with the observation that higher methylation at this site was associated with higher level of FEV\textsubscript{1}/FVC cross-sectionally, it also predicted attenuated decline of FEV\textsubscript{1}/FVC (\(\beta \)=0.0089; \(P\)-value = 9.1 \times 10^{-3}).

Association of methylation at 119 CpGs with circulating alpha-1 antitrypsin in adult ever smokers in SAPALDIA

None of the associations between methylation and circulating AAT in SAPALDIA participants reached multiple-testing-corrected statistical significance, but nominal statistical significance was observed at four CpG sites in the SERPINA1 gene (Tables 2 and 3) and at two additional sites outside SERPINA1 (Additional
In all instances, higher methylation was associated with lower AAT concentrations. These inverse associations with circulating AAT did not translate into statistically significant and inverse associations with any of the lung function parameters measured.

Table 1 Population characteristics of adult cohorts

	SAPALDIA2	SAPALDIA3	ECRHS 2	ECRHS 3	NFBC 1966 T1	NFBC 1966 T2
	T1, 2001	T2, 2010	T1, 1998	T2, 2008	1997	2012
N	561	561	267	267	248	248
Female, %	48.3	48.3	52.1	52.1	49.8	48.2
Age (years), mean (SD)	50.4 (10.8)	58.7 (10.7)	44.0 (6.0)	55.0 (6.0)	31.0 (0.3)	46.3 (0.4)
Height (cm), mean (SD)	170.2 (9.2)	169.5 (9.3)	170.0 (9.0)	170.0 (9.0)	172.0 (8.7)	172.0 (8.6)
Weight (kg), mean (SD)	73.9 (14.8)	75.6 (15.6)	74 (15.0)	77 (16.0)	72.1 (12.8)	80.8 (15.3)
Body mass index (kg/m²), mean (SD)	25.4 (4.2)	26.2 (4.6)	25.2 (4.2)	26.8 (4.5)	24.3 (3.6)	27.2 (4.5)
Smoking status, %						
Ex-smoker	52.0	63.0	54.7	69.3	46.8	69.2
Current smoker	48.0	37.0	45.3	30.7	53.2	30.8
Pack-years, mean (SD)	20.4 (20.2)	22.6 (22.1)	17 (17.0)	20 (21.0)	7.7 (5.9)	11.0 (9.6)
Education (%)						
SAPALDIA						
Low^a ≤16 years^b	5.0	4.0	10.9	10.9	0.4	0.4
Intermediate	66.0	67.0	30.5	30.5	61.9	61.9
High	29.0	29.0	58.6	58.6	37.7	37.7
FVC (L), mean (SD)	4.4 (1.0)	4.1 (1.0)	4.4 (1.0)	4.0 (1.0)	4.9 (1.0)	4.6 (0.9)
FVC % Predicted^d, mean (SD)	106.2 (13.4)	106.0 (13.4)	100.7 (13.0)	99.2 (13.5)	101.8 (10.8)	104.1 (11.2)
FEV₁ (L), mean (SD)	3.3 (0.8)	3.0 (0.8)	3.4 (0.8)	3.0 (0.7)	4.1 (0.8)	3.5 (0.7)
FEV₁/FVC, mean (SD)	99.3 (14.2)	97.9 (16.0)	96.5 (13.7)	93.8 (14.2)	102.1 (11.5)	100.1 (11.8)
COPD, defined by FEV₁/FVC < LLN^e	15.3	17.1	10.5	12.7	2.2	11.4
CRP (mg/L), mean (SD)	1.92 (2.8)	–	–	–	–	–
AAT (g/L), mean (SD)	1.27 (0.2)	–	–	–	–	–
COPD, defined by FEV₁/FVC < LLN^e	15.3	17.1	10.5	12.7	2.2	11.4
Doctor-diagnosed asthma, %	15.7	19.1	14.6	17.2	10.5	17.1
Respiratory medication (last 12 months), %	225.0	258.0	124.0	143.0	NA	NA
Spirometer brand and model, %	SensorMedics 2200	100.0	–	–	–	–
EasyOne NDD Medical Technologies	–	100.0	–	100.0	–	–
SensorMedics 2400	–	–	36.0	–	–	–
Jaeger Pneumotach	–	–	16.1	–	–	–
Biomedin Spirometer	–	–	47.9	–	–	–
Vitalograph P Model	–	–	–	–	100.0	–
MasterScreen Pneumo	–	–	–	–	100.0	–

Characteristics of ever smokers at first (T1) and second (T2) time points in adult cohorts: SAPALDIA, ECRHS and NFBC 1966

SD standard deviation

^aExcluding lifetime non-smokers

^bEducation: low corresponding to primary education; intermediate corresponding to secondary, middle, or vocational school; and high corresponding to technical college or University

^cAge at end of studies

^dPercentage of the predicted value estimated using GLI equations

^eLLN, lower limit of normal estimated using GLI2012 reference equations

file 1: Tables E82-S4), one of which was cg08257009, the only lung function associated signal withstanding multiple testing. In all instances, higher methylation was associated with lower AAT concentrations. These
Table 2 Results from Meta-Analyses, FEV1 and AAT, Adult Cohorts

CpG	Position	Gene Group	SAPALDIA Circulating AAT	Meta-Analysis of Lung Function Association in SAPALDIA, NFBC and ECRHS	Cross-Sectional T1	Cross-Sectional T2	Repeat Cross-Sectional	Change
cg10761141	94,844,776	3'UTR	-0.30 0.25	0.75 0.13 ++	0.63 0.21 ++	-0.04 0.84 ++	0.02 0.48 ++	++
cg25042671	94,849,061	Body	-0.59 0.04	-0.72 0.25 +	-0.80 0.21 +	-0.22 0.52 +	-0.03 0.44 +	+
cg20264087	94,849,703	3'UTR	-0.44 0.21	-0.15 0.82 ++	-0.05 0.94 ++	-0.33 0.79 ++	0.00 0.97 ++	+
cg26938334	94,849,747	5'UTR	1.16 0.42	-0.01 0.99 ++	-0.35 0.74 ++	-0.33 0.34 ++	-0.01 0.71 ++	+
cg16110645	94,850,433	5'UTR	-0.64 0.34	0.39 0.67 +	0.55 0.59 ++	0.08 0.85 +	-0.02 0.75 ++	-
cg10832639	94,850,965	5'UTR	-0.25 0.72	1.24 0.16 ++	0.01 0.99 ++	0.18 0.61 ++	0.00 0.95 ++	+
cg02126235	94,855,034	5'UTR	-0.30 0.58	0.76 0.45 ++	0.67 0.55 ++	-0.26 0.55 ++	0.02 0.69 ++	+
cg22828990	94,855,099	5'UTR	-0.09 0.82	0.19 0.79 +	0.30 0.68 -	0.69 0.03 +	-0.09 0.04 -	-
cg09968361	94,855,344	5'UTR	-0.33 0.44	1.43 0.04 ++	0.65 0.36 ++	0.72 0.02 ++	-0.10 0.01 -	-
cg13826459	94,855,505	TSS1500	-0.08 0.76	0.16 0.76 ++	0.98 0.05 ++	-0.05 0.83 +	0.04 0.15 ++	+
cg25968219	94,855,590	TSS1500	-1.81 0.01	3.29 0.003 ++	-1.29 0.37 ++	0.37 0.59 ++	-0.08 0.15 ++	+
cg01606800	94,855,990	TSS1500	-1.08 0.001	0.47 0.47 ++	-0.13 0.85 -	-0.11 0.73 -	-0.01 0.75 -	-
cg02181506	94,856,984	1stExon	-0.78 0.08	0.11 0.89 ++	0.65 0.40 ++	0.28 0.47 ++	0.02 0.71 ++	+
cg10070185	94,857,151	TSS200	-0.05 0.91	0.37 0.59 ++	1.08 0.16 ++	0.24 0.39 ++	0.04 0.29 +	+
cg24621042	94,857,275	TSS1500	-0.68 0.04	0.87 0.14 ++	1.16 0.06 ++	-0.15 0.60 -	-0.01 0.87 -	+
cg008202237	94,858,066	TSS1500	-0.07 0.81	-0.01 0.99 +	-0.48 0.40 -	0.12 0.67 ++	-0.03 0.35 +	-
cg04179148	94,858,339	TSS1500	-0.70 0.08	1.80 0.01 ++	0.29 0.67 ++	0.36 0.25 ++	-0.03 0.47 -	-

Cross-sectional and repeat cross-sectional models adjusted for: study center, age, age2, education, height, height2, sex, sex*age, (sex*age) 2, sex*height, (sex*height) 2, Bcc, CDAT, CDIT, Eos, Mono, NK. Repeat cross-sectional in addition ran with a random intercept on the subject. In predictive models, annual change in lung function was computed as the difference between T2 and T1 divided by time of follow-up. (T2-T1)/follow-up models adjusted for covariates from T1.

Sample size for circulating AAT for SAPALDIA n = 561. Cross-sectional and prediction models (change) n = 1076, and n = 1122 for repeat cross-sectional models.

Statistically significant results are highlighted in bold.

From SERPINA gene cluster located on chromosome 14 between positions: 94'641'781 and 95'235'125 (human genome build 37/hg19)

Nominal P-values, Bonferroni corrected significance level for 119 tests is P-value = 4.6 × 10⁻⁴.

Direction of effect for SAPALDIA, ECRHS and NFBC. A positive sign indicates that an increase in methylation is associated with higher levels of lung function (cross-sectional models) and with an attenuation of lung function decline, respectively (change model).
Table 3 Results from meta-analysis, FEV$_1$/FVC and AAT, adult cohorts

CpG	Position	Gene Group	SAPALDIA Circulating AAT	Meta-Analysis of Lung Function Association in SAPALDIA, NFBC and ECRHS												
			Coef.	P.valuea	Coef.	P.valuea	Directionb									
cg10761141	94,844,776	3UTR	−0.30	0.25	0.10	0.14	++	−0.02	0.79	++	−0.01	0.79	++	0.00	0.82	++
cg25042671	94,849,061	Body	−0.59	0.04	−0.09	0.29	−−	−0.12	0.22	−−	−0.12	0.03	++	0.00	0.62	++
cg20267408	94,849,703	3UTR	−0.44	0.21	−0.05	0.57	−−	0.05	0.59	−−	0.01	0.88	++	0.00	0.78	−−
cg26983344	94,849,747	3UTR	1.16	0.42	0.10	0.24	−−	−0.10	0.47	+++	0.01	0.84	+++	0.00	0.33	−−
cg10832639	94,850,965	3UTR	−0.25	0.72	0.16	0.14	++	0.02	0.86	−−	0.08	0.18	+++	0.01	0.32	+++
cg02126235	94,855,034	3UTR	−0.30	0.58	0.26	0.06	+++	0.06	0.71	−−	0.06	0.41	+++	0.00	0.90	−−
cg0968361	94,855,344	5UTR	−0.33	0.44	0.11	0.23	+++	0.00	0.99	+++	0.05	0.25	+++	−0.01	0.37	−−
cg13826459	94,855,505	TSS1500	−0.08	0.76	0.07	0.34	++	0.15	0.05	++	0.04	0.32	+++	0.01	0.24	−−
cg25968219	94,855,590	TSS1500	−1.81	0.05	0.31	0.02	+++	−0.16	0.43	−−	−0.01	0.90	++	0.00	0.59	++
cg01606800	94,855,990	TSS1500	−1.08	0.001	0.17	0.05	+++	0.01	0.96	−−	0.00	0.97	−−	0.00	0.73	++
cg02181506	94,856,884	1stExon	−0.78	0.08	−0.01	0.89	−−	0.05	0.64	−−	−0.03	0.58	−−	0.00	0.80	++
cg10070185	94,857,151	TSS200	−0.05	0.91	0.07	0.45	+++	0.19	0.09	−−	−0.01	0.81	−−	0.00	0.63	−−
cg24620142	94,857,275	TSS1500	−0.68	0.04	0.18	0.02	+++	0.16	0.08	+++	0.07	0.09	+++	−0.01	0.09	−−
cg00802237	94,858,066	TSS1500	−0.07	0.81	0.03	0.71	+++	−0.14	0.09	−−	0.00	0.96	−−	0.00	0.50	++
cg04117914	94,858,339	TSS1500	−0.70	0.06	0.20	0.03	+++	0.04	0.73	+++	0.12	0.02	+++	0.00	0.57	−−

Cross- sectional and repeat cross-sectional models adjusted for: study center, age, age2, education, height, height2, sex, sex*age, (sex*age) 2, sex*height, (sex*height)2, Bcell, CD4T, CD8T, Eos, Mono, NK. Repeat cross-sectional in addition ran with a random intercept on the subject. In predictive models, annual change in lung function was computed as the difference between T2 and T1 divided by time of follow-up: (T2-T1)/follow-up, models adjusted for covariates from T1

Sample size for circulating AAT for SAPALDIA n = 561. Cross-sectional and prediction models (change) n = 1076, and n = 1122 for repeat cross-sectional models

Results from Meta-Analysis of Lung Function Association of Methylation of CpGs in the SERPINA1* Gene with FEV1/FVC Level and Decline in Adult Ever-Smokers from SAPALDIA, ECRHS and NFBC and with Circulating AAT Concentrations in SAPALDIA

From SERPINA gene cluster located on chromosome 14 between positions: 94′641′781 and 95′235′125 (human genome build 37/hg19)

Statistically significant results are highlighted in bold

aNominal P-values, Bonferroni corrected significance level for 119 tests is P-value 4.6×10^{-8}

bDirection of effect for SAPALDIA, ECRHS and NFBC. A positive sign indicates that an increase in methylation is associated with higher level of lung function (cross-sectional models) and with an attenuation of lung function decline, respectively (change model)
Association of methylation at 119 CpGs with lung function in tobacco-smoke exposed children and adolescents

Characteristics of ALSPAC children and adolescents from the first (T1) and second (T2) time points are presented in Table 4. Height and weight increased during follow-up from a mean of 133 to 170 cm and from 31 to 63 kg, respectively. Twenty-two and 29% of children and adolescents had asthma and at the second time point, the majority (86%) of adolescents reported intake of asthma medication in the last 12 months. While FEV$_1$ and FVC increased during follow-up, on average, FEV$_1$/FVC remained stable.

SERPINA1

Focusing on the methylation sites in SERPINA1 (Additional file 1: Tables ES5-S7), again none of the signals reached Bonferroni-corrected significance in association with any lung function parameter or model. There were several nominally statistically significant associations, particularly for lung function growth (FEV$_1$: cg26938334; FVC: cg26938334, cg13826459, cg 24,621,042; FEV$_1$/FVC: cg10070185). Methylation at cg26938334 was inversely associated with growth in FEV$_1$ and FVC, and methylation at cg24621042 and cg10070185 was inversely associated with growth in FVC and in FEV$_1$/FVC, respectively. The associations of cg24621042 with FEV1/FVC change were inconsistent with those observed for FEV1/FVC decline in adults.

SERPINA gene cluster

Results from meta-analysis on the association of methylation at all 119 CpGs with cross-sectional lung function and lung function growth of FEV$_1$, FVC and FEV$_1$/FVC are presented in Additional file 1: Tables ES5-S7. No methylation signals remained statistically significant after Bonferroni correction. Methylation at cg08257009, 32 kb downstream of SERPINA1 gene, which showed statistically significant positive association with FEV1/FVC cross-sectionally in the adult cohort, was not associated with FEV$_1$ or FEV$_1$/FVC in children. However, there was evidence for an inverse, rather than a positive association with FVC at T1 (β: -0.91, P-value = 4.4 x 10$^{-3}$, Additional file 1: Table ES6). Overall, none of the SERPINA1 CpGs showed consistent associations across cross-sectional and longitudinal models.

Table 4 Characteristics of tobacco-smoke exposed children and adolescents a, ALSPAC

N
Females (%)
Age (years), mean (SD) b
Height (cm), mean (SD)
Weight (kg), mean (SD)
BMI
Maternal Education (%)
Ordinary Level or Lower
Advanced Level
University
Asthmatics (%)
Smoking Exposure (%)
In-utero smoking (smoking mother)
Second-hand exposure at home
Self-exposure (smoked > 2 times in a life-time)
COPD (FEV$_1$/FVC < LLN c) (%)
Asthma medications in the last 12 months (%)
FVC(L), mean (SD)
FEV$_1$(L), mean (SD)
FEV$_1$/FVC(L), mean (SD)

aChildren and adolescents exposed to tobacco-smoke defined as: mother smoked during pregnancy and/or lived with a smoker and/or reported smoking ≥ twice in their lifetime
bSD, standard deviation
cLLN, lower limit of normal estimated using GLI2012 reference equations
Replication of previously reported COPD signals
Relative hypomethylation of cg02181506 and cg24621042 were previously associated with COPD [9]. Table 5 summarizes the association of both signals with circulating AAT in SAPALDIA and with lung function and its change in adults as well as children. Contrary to expectation, relative hypermethylation, not hypomethylation at these two sites was associated with lower circulating AAT. For cg02181506, irrespective of age, no association of methylation with either FEV1/FVC or FEV1 was observed. For cg24621042, in adults, hypermethylation was positively associated with FEV1/FVC at T1 only, but not in the repeat cross-sectional analysis, and the inverse association of methylation at cg24621042 and FVC change was only observed in children. No lung function associations reached statistical significance at the nominal P-value < 0.05.

Sensitivity analyses in the SAPALDIA cohort
In the absence of consistent CpG and lung function associations, we restricted sensitivity analyses to the FEV1/FVC association between the CpG withstanding multiple testing (cg08257009) and the two CpGs (cg02181506 and cg24621042) previously associated with COPD [9] (Table 6, Additional file 1: Tables ES8-S9). Sensitivity analyses did not reveal a more consistent pattern of associations between methylation at these three sites and lung function.

Table 5
Circulating AAT	cg02181506	cg24621042		
Adults (SAPALDIA, NFBC66, ECRHS)				
FEV1, repeat cross-sectional	0.28	0.02	0.28	0.02
FEV1, change	0.02	0.02	0.02	0.02
Children and Adolescents (ALSPAC)				
FEV1, repeat cross-sectional	1.42	0.12	1.42	0.12
FEV1, change	0.54	0.54	0.54	0.54
Adults (SAPALDIA, NFBC66, ECRHS)				
FEV1/FVC, repeat cross-sectional	-0.03	0.00	-0.03	0.00
FEV1/FVC, change	0.00	0.00	0.00	0.00
Children and Adolescents (ALSPAC)				
FEV1/FVC, repeat cross-sectional	0.01	0.01	0.01	0.01
FEV1/FVC, change	-0.12	-0.12	-0.12	-0.12

Direction of effect for SAPALDIA, ECRHS and NFBC: a positive sign indicates that an increase in methylation is associated with higher level of lung function (cross-sectional models) and with an attenuation of lung function decline in the prediction models (change in lung function). In ALSPAC children, a positive sign indicates that an increase in methylation is associated with higher level of lung function (cross-sectional models) and with lung function growth in the prediction models (change in lung function).

Discussion
This is the first study to investigate the association of DNAm in the SERPINA gene cluster with lung function and its longitudinal change in ever-smoking adults from three European population-based adult cohort studies and in tobacco-smoke exposed children and adolescents from England. We observed methylation at cg08257009 not annotated to a gene in the SERPINA gene cluster, located 32 kb downstream of the SERPINA gene to be significantly associated with FEV1/FVC at the Bonferroni-corrected level. No methylation signals in the SERPINA gene showed associations with lung function level or change over time after correcting for multiple testing.

Few studies have reported associations between DNAm and lung function or COPD. Our results obtained in general population samples contradict the previous finding of hypomethylation at two CpG sites in SERPINA1 and COPD risk in two family-based studies. The first of these studies was restricted to smokers and the second consisted of participants with and without a history of smoking [9]. The functional relevance of the two CpG sites remains unclear, given that the associations of hypomethylation with COPD risk and circulating AAT are inconsistent in direction. Consistent with the inverse association observed with AAT in the blood, hypomethylation of the AAT gene has been associated with increased gene expression in rat models [26].

Our results are consistent with the results from a study comparing gene methylation in lung tissue of former smoker COPD patients and controls with normal lung function [27, 28]. Methylation in SERPINA1 was not associated with COPD risk. Similarly no cross-sectional association with post-bronchodilation lung function was observed for SERPINA1 gene methylation measured in blood samples from a small rural Korean COPD case-control study [29]. Furthermore, in a study of middle-aged monozygotic twins, DNAm in SERPINA1 was not associated with intra-pair differences in lung function decline [30].

Smoking exerts strong adverse effects on lung function and increases COPD risk. In a small proportion of smokers, it interacts with genetically determined rare AAT deficiency to cause COPD. The adverse respiratory effects on the lung tissue may therefore be mediated by altering DNAm in SERPINA1. Yet, the largest epigenome-wide association study for smoking did not identify a relevant association between epigenetic signatures in SERPINA1 and smoking [31]. Interestingly, the cg08257009 which reached Bonferroni corrected significance in the repeat cross-sectional analysis was previously reported as a smoking-related CpG in buccal cells in epithelial cancer [32]. In addition, cg08257009 and cg02181506 were reported to be smoking related signals in blood-derived DNA samples from participants in 16 cohorts, with cg02181506 showing weaker associations [31].
The use of blood instead of lung tissue to assess lung disease related methylation may be considered a limitation of the study. However, as previously discussed, COPD is a systemic disease related to low grade inflammation, which supports studying the peripheral blood methylome [9]. Teschendorff and others demonstrated the correlation between smoking related DNAm in blood and lung tissue as well as between normal and malignant lung tissue. Their results also pointed to the prognostic value of these signals in lung cancer patients [32–34].

Additional limitations of the study include the lack of cross-omics data to investigate the biological network related to AAT more comprehensively. This is important, given the fact that the most recent lung function GWAS suggests an important role of elastic-fibre pathways [7]. Furthermore, misclassification of smoking exposure could have biased the observed associations, most likely towards the null.

The advantages of the current study are several fold. First, the studies providing data for this investigation are well established respiratory population-based cohorts. They are known for high quality testing of lung function and large sample sizes. They share similarities in study protocols. Methylome analyses followed stringent quality control. Second, the study is based on longitudinal lung function data and prospectively and repeatedly measured DNAm. Repeated assessment of lung function and predictors may have helped improve the statistical power of the cross-sectional analysis. Prospective assessment of DNAm with change in lung function decreases the problem of reverse causation. Third, the integration of lung function from both adults and children offered the opportunity to study SERPINA1 methylation and lung function over the life course and investigate whether relevant time windows for genome-environment interactions may exist.
Conclusion
In conclusion, this first comprehensive study on DNAm in the SERPINA4 gene cluster provides weak evidence of an association with lung functions and its change across the life course. Larger studies based on post-bronchodilatation lung function need to be followed by investigating associations of SERPINA1 and elastin-related pathways and networks through cross-omics approaches.

Additional file

Additional file 1 Table ES1. Meta-Analysis of the association of methylation at CpGs in the SERPINA* Gene Cluster with FEV1 level and decline in adult ever smokers from SAPALDIA, ECRHS and NFBC (n = 1076) and with circulating AAT concentrations in SAPALDIA (n = 561). Table ES2. Meta-Analysis of the association of methylation at 119 CpGs in the SERPINA* cluster with FEV1 level and decline in adult ever smokers from SAPALDIA, ECRHS and NFBC (n = 1076) and with circulating AAT concentrations in SAPALDIA (n = 561). Table ES3. Meta-analysis of the association of methylation at 119 CpGs in the SERPINA* gene cluster with FEV1 level and decline in adult ever smokers from SAPALDIA, ECRHS and NFBC (n = 1076) and with circulating AAT concentrations in SAPALDIA (n = 561). Table ES4. Meta-analysis of the association of methylation at 119 CpGs in the SERPINA* gene cluster with FEV1 level and decline in adult ever smokers from SAPALDIA, ECRHS and NFBC (n = 1076) and with circulating AAT concentrations in SAPALDIA (n = 561). Table ES5. Association of methylation at 119 CpGs in the SERPINA* gene cluster with FEV1 level and decline in adult ever smokers from SAPALDIA, ECRHS and NFBC (n = 1076) and with circulating AAT concentrations in SAPALDIA (n = 561). Table ES6. Association of methylation at 119 CpGs in the SERPINA* gene cluster with FEV1 level and decline in adult ever smokers from SAPALDIA, ECRHS and NFBC (n = 1076) and with circulating AAT concentrations in SAPALDIA (n = 561). Table ES7. Association of methylation at 119 CpGs in the SERPINA* gene cluster with FEV1 level and decline in adult ever smokers from SAPALDIA, ECRHS and NFBC (n = 1076) and with circulating AAT concentrations in SAPALDIA (n = 561).

Acknowledgements
We thank the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics (funded by Wellcome Trust grant reference 090532/Z/09/Z) for the generation of Methylation data in SAPALDIA and the National Public Health Institute, Biomedicum Helsinki in Finland to have performed DNA extractions, sample quality controls, biobank up-keeping and aliquotting in NFBC. We would like to acknowledge the scientific teams, the field workers and the administrative staff of the SAPALDIA, ECRHS, NFBC, and ALSPAC teams. We are most grateful to all study participants and their families for having donated time, data, and biospecimens to these studies. We thank the late Professor Paula Rantakallio for the launch of the NFBC1966.

Funding
The ALEC Study is funded by the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No. 633212. The ALEC study leader is Deborah Jarvis. The manuscript was done under ALEC Work-package 5 led by Nicole Probst-Hensch. Other Work-package leaders in ALEC are Cecile Svanes, John Henderson, Judith Garcia-Aymerich, and Cosetta Minelli. The ALEC International Scientific Advisory Board is: Marike Boezen (University Medical Center Groningen, University of Groningen, Groningen, The Netherlands); Benrice Elger (Institute for Biomedical Ethics, University of Basel, Basel, Switzerland); Bo Alexander Beckmeyer-Borowko (The Norwegian Asthma and Allergy Association, Norway); Bas Hetjens (Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands); Isabelle Romieu (National Institute of Public Health, Cuernavaca, Mexico; and Emory University, Atlanta, US); John Thompson (Department of Health Sciences, University of Leicester, Leicester, UK).

The SAPALDIA Cohort is funded by the Swiss National Science Foundation (grants no. 33C530–148470/1&2, 33CSO–13276/1, 33CSO–108796, 324730/135673, 3247BO–104283, 3247BO–104288, 3247BO–104284, 3247–065896, 3100–059302, 3200–052720, 3200–042532, 4026–028099, PMPD3_129021/1, PMPD3_141671/1), the Federal Office for the Environment, the Federal Office of Public Health, the Federal Office of Roads and Transport, the canton’s government of Aargau, Basel-Stadt, Basel-Land, Generalitat de Catalunya, Ticino, Valais, and Zurich, the Swiss Lung League, the canton’s Lung League of Basel Stadt/ Basel Landschaft, Geneva, Ticino, Valais, Graubünden and Zurich, Stiftung ehemals Bündner Heilstätten, SUVA, Freiwillige Akademische Gesellschaft, UBS Wealth Foundation, Talcres Biotherapeutics GmbH, Abbott Diagnostics, Klinik Barmelweid, Hirslanden Klinik Aarau, European Commission (018996 GABRIEL), Wellcome Trust WT 084703MA, Exposomics EC FP7 grant (Grant agreement No. 308610). The ECRHS cohort was supported by France: Ministère de la Santé, Glaxo France, Institut Pneumologique de l’Aquitaine, Contrat de Plan État-Région Languedoc-Roussillon, CNMATS, CNMRT (00/MR/10, 91FA/6), Ministre Délégué de la Santé, RNSP, GSF, and Programme Hospitalier de Recherche Clinique National 2010. France (Grenoble): Direction de la Recherche Clinique de Grenoble 2000 (no. 2610), Ministère de l’Emploi et de la Solidarité, Direction Générale de la Santé, CHU Grenoble, Comité des Maladies Respiratoires de l’Isère, and Comité Scientifique AGIRadom 2011. France (Paris): Ministère de l’Emploi et de la Solidarité, Direction Générale de la Santé, Union Chimique Belge-Pharma, Aventis, Glaxo France, Agence Nationale de la Santé, Région Ile de France, and Domaine d’intérêt majeur: Germany: Bundesminister für Forschung und Technologie. Germany (Erfurt): DFG—German Research Foundation (FR1526/1-6, HE 3249/10-1), Norway: Bergen Norwegian Allergy Association, Glaxo Wellcome AS, Norway Research Fund, Western Norway Regional Health Authorities (no. 911631), and the Bergen Medical Research Foundation. Spain: Ministerio de Sanidad y Consumo (FIS (no. 91/001600/DOE-05E, no. 93/0393, no. 97/0035–01, no. 99/0034–01, no. 99/0034–02). Spain (Galdakao): Basque Health Department and FIS (no. 09/01511). Sweden (Gothenburg, Umeå, and Uppsala): the Swedish Medical Research Council, Swedish Heart-Lung Foundation, Swedish Association against Asthma and Allergy, Swedish Cancer and Allergy Foundation, and Swedish Council for Working Life and Social Research. European Commission (no. 018996–GABRIEL) and the Welcome Trust (WT084703MA). United Kingdom: Asthma UK (formerly known as National Asthma Campaign). Department of Health, South Thames Regional Health Authority, and the Medical Research Council (G00012141). The coordination of the European Community Respiratory Health Survey II was supported by the European Commission. The coordination of ECRHS III was supported by the Medical Research Council (G09012141). NFBC1966 received financial support related to the present work from the Academy of Finland (project grants 104781, 120215, 125269, 1114194, 24030796, 85547, Center of Excellence in Complex Disease Genetics), University Hospital Oulu, Biocenter, University of Oulu, Finland (75617). NHLBI grant SR01HL087679–02 through the STAMPED program (1RLMH083288–01). NHI-NIH (SR01MH63706–02). The EU FPS EURO-BLCS, QLG1–CT–2000–01643, ENGAGE project and grant agreement HEALTH–F4–2007–201413, EU FP7 EurHealthAgeing 277849, the Medical Research Council (MRC), UK (G0500539, G0600705, G0100219, PrevMetSyr/SALVE) and ERDF European Regional Development Fund Grant no. 539/2010 A31592. The program is currently being funded by the EU H2020–PHC–2014 DynaHEALTH action (grant agreements No. 633535). EU H2020-H20P–2004 HEALTH Action, EU H2020–PHC–2014 ALEC Action (grant agreement No. 633212). EU H2020–SC1–2016–2017 LIFECYCLE Action, EU H2020–MSCA–ITN–2016 CAPICE Action, Academy of Finland EGEA–project (285547) and MRC Grant no MR/M013138/1. In NFBC, DNA extractions, sample quality controls, biobank up-keeping and aliquotting was supported financially by the Academy of Finland and Biocentrum Helsinki. The ALSPAC work was supported by the MRC Integrative Epidemiology Unit, The UK Medical Research Council and Wellcome (Grant ref.: 02215/213/2) and the University of Bristol (MC_UU_12013_2, MC_UU_12013_5 and MC_UU_12013_8). The Accessible Resource for Integrated Epigenomics Studies (ARIES) which generated large-scale methylation data was funded by the UK Biotechnology and Biological Sciences Research Council (BB092571/1 and BB102563/1). Additional epigenetic profiling on the ALSPAC cohort was funded by the UK Medical Research Council Integrative Epidemiology Unit and the University of Bristol (MC_UU_12013_1, MC_UU_12013_2, MC_UU_12013_5 and MC_UU_12013_8), the Wellcome Trust (WT088806) and the United States National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK10324).
Availability of data and materials
The data that support the findings of this study are available from the corresponding author upon reasonable request and with permission of principal investigators of each cohort.

Authors' contributions
Conceived and designed current analysis: MRJ, DJ, JWH, NPH. Performed statistical analyses: ABB, MI, FJR, MW, AFSA, AJ, ES, RA. Drafted the manuscript: ABB, NPH. Supervised research and cohort data collection: JA, SS, VK, RB, AT, MP, DS, FK, GS, CR, AJH, MRJ, DJ, JWH, NPH. Provided critical input and revised the manuscript for important intellectual content: All. Approved the final manuscript: All. Take responsibility for the integrity of the data and the accuracy of the data analysis: All.

Ethics approval and consent to participate
All studies were approved by the local ethics committees and participants provided written consent prior to taking part in the study.

Consent for publication
Not applicable.

Competing interests
The following authors report no competing interests: ABB, MI, FR, MW, AFSA, AJ, ES, JA, SS, VK, RB, AT, MP, FK, RA, GCS, CR, MRJ, NPH. D’s reports consultancy at Roche AG, Novartis AG, Astra-Zeneca AG, GSK AG; grants and pending grants at Astra-Zeneca AG, Pan Gas AG, Weimann AG. Curetis AG, Swiss National foundation (PP00-P3 grants and pending grants at Astra-Zeneca AG, Pan Gas AG, Weimann AG, DS reports consultancy at Roche AG, Novartis AG, Astra-Zeneca AG, GSK AG; grants and pending grants at Astra-Zeneca AG, Pan Gas AG, Weimann AG. Curetis AG, Swiss National foundation (PP00-P3–128412/1), Astra Zeneca AG, and payments for lectures including speakers bureaus at Novartis AG. AHJ reports grants from Medical Research Council and grants from Wellcome during the conduct of the study. DJ and JWH report grants from European Union during the conduct of the study.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland. 2University of Basel, Basel, Switzerland. 3Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK. 4Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG, London, UK. 5Population Health and Occupational Disease, NHLI, Imperial College London, London, UK. 6Center for Life Course Health Research, University of Oulu, Oulu, Finland. 7Oulunkaari Health Center, Io, Oulu, Finland. 8Medical Research Center, University Hospital of Oulu, University of Oulu, Oulu, Finland. 9Department of Genomics of Common Diseases, School of Public Health, Imperial College London, London, UK. 10Lungenpraxis Aarau, Hirslanden Klinik, Aarau, Switzerland. 11Zürcher Höhenklinik, Wald, Switzerland. 12Ospedale Regionale di Lugano–Sede Civico, Lugano, Switzerland. 13Clinical of Pulmonary Medicine and Respiratory Cell Research, Basel, Switzerland. 14Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria. 15MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK. 16Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK. 17Bristol Dental School, University of Bristol, Bristol, UK. 18Department of Primary Health Care, Oulu University Hospital, OYS, Kajaanintie 50, 90020 Oulu, Finland. 19Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK.

Received: 14 May 2018 Accepted: 24 July 2018
Published online: 22 August 2018

References
1. Salvi SS, Barnes PJ. Chronic obstructive pulmonary disease in non-smokers. Lancet. 2009;374:733–43.
2. Hazan YM, Bashir A, Habib M, Bashir S, Habib H, Qasim MA, Shah NN, Haq E, Teckman J, Fazil KM. Alpha-1-antitrypsin deficiency: genetic variations, clinical manifestations and therapeutic interventions. Mutat Res. 2017;773:14–25.
3. Sandhaus RA, Stoller JK. Introduction to the 50th anniversary of the description of alpha-1 antitrypsin deficiency. COPD. 2013;10(Suppl1):1–2.
4. Thun GA, Iimboden M, Ferrarotti I, Kumar A, Obeidat M, Zorzetto M, Haun M, Curjuric I, Couto Alves A, Jackson VE, et al. Causal and synthetic associations of variants in the SERPINA gene cluster with alpha-1-antitrypsin serum levels. PLoS Genet. 2013;9:e1003585.
5. Busch R, Hobbs BD, Zhou J, Castaldi PJ, McGeechaj ME, Hardin ME, Hawrylukiewicz L, Sliwinski P, Yim JI, Kim WJ, et al. Genetic association and risk scores in a chronic obstructive pulmonary disease Meta-analysis of 16,707 subjects. Am J Respir Crit Care Med. 2017;195:733–50.
6. Lutz SM, Cho MH, Young X, Herich CP, Castaldi PJ, McDonald ML, Regan E, Mattheisen M, DeMeo DL, Parker M, et al. A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry. BMC Genet. 2015;16:38.
7. Wain LV, Shine N, Artigas MS, Ezuruuruogwu AM, Novert B, Bossini-Castillo L, Obeidat M, Henry AP, Portelli MA, Hall RJ, et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet. 2017;49:416–25.
8. Corley M, Sorensen G, Lackey L, Ziehe B, Vincent HA, Mustoe AM, Ramos SBV, Weeks KM, Moorman NJ, Laeradach A. An RNA structure-mediated, posttranscriptional modeling of human alpha-1-antitrypsin expression. Proc Natl Acad Sci U S A. 2017;114:E10244–53.
9. Qu W, Baccarelli A, Carey VJ, Bouatoua N, Bacherman H, Klanderman B, Rennard S, Aguisti A, Anderson M, Lomas DA, DeMeo DL. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am J Respir Crit Care Med. 2012;185:573–81.
10. Martin BW, Ackermann-Liebrich U, Leuenberger P, Kunstl N, Stutz EZ, Keller R, Zellweger JP, Wuthrich B, Monn C, Blaser K, et al. SAPALDIA: methods and participation in the cross-sectional part of the Swiss study on air pollution and lung diseases in adults. Soz Praventivmed. 1997;42:567–84.
11. Ackermann-Liebrich U, Kuna-Dibbert B, Probst-Hensch NM, Schindler C, Feller-Dietrich S, Zutz EZ, Bayer-Oglesby L, Baum F, Brandli O, Brutsche M, et al. Follow-up of the Swiss Cohort Study on Air Pollution and Lung Diseases in Adults (SAPALDIA 2) 1991-2003: methods and characterization of participants. Soz Praventivmed. 2005;50:245–63.
12. Janson C, Anto J, Burney P, Chim S, de Marco R, Heinrich J, Jarvis D, Kuenzli N, Leynaert B, Lucynska C, et al. The European Community respiratory health survey: what are the main results so far? European Community respiratory health survey II. Eur Respir J. 2001;18:596–611.
13. University of Oulu. Northern Finland Cohorts. 31-year follow-up study. 2018. http://www.oulu.fi/nrbc/node/18097. Accessed 18 Mar 2018.
14. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, Mollov L, Ness A, Ring S, Davey Smith G. Cohort profile: the children of the 90’s—the index offspring of the Avon longitudinal study of parents and children. Int J Epidemiol. 2013;42:11–27.
15. Miller MR, Hankinson J, Brasavos V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.
16. Bridevaux PO, Dupuis-Lозенор E, Schindler C, Keidel D, Gerbase MW, Probst-Hensch NM, Ettecker T, Egger P, Jenster L, Beck S. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. PLoS Genet. 2013;9:e1003585.
17. Curjuric I, Couto Alves A, Jackson VE, et al. Causal and synthetic associations of alpha-1 antitrypsin deficiency. COPD. 2013;10(Suppl1):1–2.
18. Ayee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irazary RA. Minfi: a flexible and comprehensive biocomputing package for the analysis of Illumina DNA methylation microarrays. Bioinformatics. 2014;30:1363–9.
19. Teckman J, Fazil KM. Alpha-1-antitrypsin deficiency: genetic variations, clinical manifestations and therapeutic interventions. Mutat Res. 2017;773:14–25.
20. Hasselbalch H, Stokholm J, Hasager CB, Petersen NJ, Olesen NH, Frisch S, et al. Comprehensive analysis of DNA methylation data with RnBeads. Nat Methods. 2014;11:138–40.
21. Lehne B, Drong AW, Loh M, Zhang W, Scott WR, Tan ST, Atzal U, Scott J, Javelin MR, Elliott P, et al. A coherent approach for analysis of the Illumina
HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Biol. 2015;16:37.

22. Touleimat N, Tost J. Complete pipeline for Infinium(R) human methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics. 2012;4:325–41.

23. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.

24. Senn O, Russi EW, Schindler C, Imboden M, von Eckardstein A, Brandli O, Zemp E, Ackermann-Liebrich U, Berger W, Rochat T, et al. Circulating alpha1-antitrypsin in the general population: determinants and association with lung function. Respir Res. 2008;9:35.

25. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.

26. Barton DE, Francke U. Activation of human alpha 1-antitrypsin genes in rat hepatoma x human fibroblast hybrid cell lines is correlated with demethylation. Somat Cell Mol Genet. 1987;13:635–44.

27. Morrow JD, Glass K, Cho MH, Hersh CP, Pinto-Plata V, Celli B, Marchetti N, Criner G, Bueno R, Washko G, et al. Human lung DNA methylation quantitative trait loci colocalize with COPD genome-wide association loci. Am J Respir Crit Care Med. 2018;197:1275–84.

28. Morrow JD, Cho MH, Hersh CP, Pinto-Plata V, Celli B, Marchetti N, Criner G, Bueno R, Washko G, Glass K, et al. DNA methylation profiling in human lung tissue identifies genes associated with COPD. Epigenetics. 2016;11:730–9.

29. Lee MK, Hong Y, Kim SY, Kim WD, London SJ. DNA methylation profiling in human lung tissue identifies genes associated with COPD. Epigenetics. 2016;9:971–84.

30. Bolund ACS, Starnawska A, Miller MR, Schlunsen V, Backer V, Bonglum AD, Christensen K, Tan Q, Christiansen L, Sigsgaard T. Lung function discordance in monozygotic twins and associated differences in blood DNA methylation. Clin Epigenetics. 2017;9:132.

31. Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviliya PR, Guan W, Xu T, Ellis CE, Atilbekyan S, et al. Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet. 2016;9:436–47.

32. Teschendorff AE, Yang Z, Wong A, Pipinikas CP, Jiao Y, Jones A, Anjum S, Hardy R, Salvesen HB, Thrivell C, et al. Epigenetic association of smoking-associated DNA methylation changes in Buccal cells with DNA methylation changes in epithelial Cancer. JAMA Oncol. 2015;1:476–85.

33. Stueve TR, Li WQ, Shi J, Marconnet CN, Zhang T, Yang C, Mullen D, Yan C, Wheeler W, Hua X, et al. Epigenome-wide association of DNA methylation in lung tissue shows concordance with blood studies and identifies tobacco smoke-inducible enhancers. Hum Mol Genet. 2017;26:3014–27.

34. Russo AL, Thiagalingam A, Pan H, Calafano J, Cheng HH, Ponte JF, Chinnappan D, Nemani P, Sidransky D, Thiagalingam S. Differential DNA hypermethylation of critical genes mediates the stage-specific tobacco smoke-induced neoplastic progression of lung cancer. Clin Cancer Res. 2005;11:2466–70.