Supplementary Information

An Unexpected All-Metal Aromatic Tetranuclear Silver Cluster in Human Copper Chaperone Atox1

Xiuxiu Wanga, b, Zong-Chang Hanc, Wei Wei*a, b, f, Hanshi Huc, Pengfei Lid, Peiqing Sunb, Xiangzhi Liua, Zhijia Lvg, Feng Wangg, Yi Caod, Zijian Guo*a, b, e, Jun Lic, h and Jing Zhao*a, b, e, f

a State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
b School of Life Sciences, Nanjing University, Nanjing 210023, China.
c Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
d National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210023, China.
e Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210023, China.
f Shenzhen Research Institute, Nanjing University, Shenzhen, 518000, China.
g Elias James Corey Institute of Biomedical Research, Wuxi Biortus Biosciences Co., Ltd, Jiangyin, 214437, China.
h Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
Experimental

Protein Sample preparation for Single-molecule AFM. Glasses were first immersed into chromic acid for 2h to remove impurities. After rinsing with Mili-Q water, glasses was covered by silane-PEG-NHS solution in DMSO (Nanocs inc, 5kDa, 1mg ml$^{-1}$) for 2h. Glasses were rinsed with large amount of DMSO to remove the unreacted silane-PEG-NHS. Then glasses was covered by NH$_2$-BG solution in DMSO (10μg ml$^{-1}$) for 2h, so protein snap can directly bind to glasses. Finally, rinsing glasses with Mili-Q water to remove unreacted NH$_2$-BG. Glasses was used immediately after finishing the modification process. For cantilever was coated by Au, protein cys-Xmod-doc can directly bind on it.

Crystallization. Crystal screening was performed at 293 K by the sitting-drop vapour-diffusion method. A 200 nanolitre protein solution (27 mg/mL) was mixed with 200 nanolitre reservoir solution and equilibrated against 30 microlitre reservoir solution. Commercial crystallization kits from Hampton Research and Qiagen were used for crystal screening. Initial crystals of Atox1 were observed under the following condition: 0.2 M tri-sodium citrate, 20 % (w/v) PEG 3350. Single crystals were obtained by further optimization of salt concentration and pH values. For heavy atom derivative crystals preparation, we added 5 mM AgNO$_3$ to a cryo-protection solution (0.2 M tri-sodium citrate, 20 % (w/v) PEG 3350, 25% glycerol), soaked the crystals for about 4 hours and then the data were collected at home source diffraction system. For Crystal optimizing, protein was incubated with 5mM TCEP and 5mM AgNO3 on ice for 3 hours. A 200 nanolitre protein solution (29 mg/mL) was mixed with 180 nanolitre reservoir solution and 20 nanolitre lysozyme seed, and equilibrated against 15 microlitre reservoir solution. Final crystals of Atox1 were observed under the following condition: 0.2M LiCl, 0.1M Tris pH 8, 20% PEG 6,000. For heavy atom derivative crystals preparation, we added 5 mM AgNO$_3$ and 5 mM TCEP to a reservoir solution (0.2M LiCl, 0.1M Tris pH 8, 20% PEG 6,000), soaked the crystals for about 4 hours, and then added 5 mM AgNO3 to a cryo-protection solution. The data were collected at SSRF BL18U1.

The contents of the unit cell were analysed using the Matthews coefficient (Matthews, 1968). Molecular replacements were performed using MOLREP (Vagin & Teplyakov, 2010) and Phaser (McCoy, 2007). The models were refined by iterative cycles of manual building using Coot (Emsley et al., 2010) followed by simulated annealing. Subsequent stages of refinement were carried out with REFMAC5 (Murshudov et al., 2011) within the CCP4 suite (Winn et al., 2011; Collaborative Computational Project, Number 4, 1994) and manual improvement in Coot. All structural representations were generated using PyMOL (DeLano, 2002) with subsequent ray tracing.

Protein expression. The DNA fragment encoding the Homo sapiens protein Atox1 protein was synthesis by Nanjing GenScript Biotechnology Corporation. The fusion protein 6×His-TEV-Atox1 was sub-cloned into a pET28a vector by standard polymerase chain reaction (PCR) methods, and the resulting construct was subsequently transformed into BL21 (DE3) cells. The fusion protein was expressed in LB medium containing 50 μg/mL kanamycin after induction with 1 mM IPTG at 15°C. To obtain purified Atox1, *E.coli* BL21 (DE3) cells containing the recombinant plasmid that had been cultured overnight were collected by centrifugation. The pellet was re-suspended in buffer (50 mM Tris-HCl pH 7.0, 500 mM NaCl and 5% v/v glycerol) and dissociated by microfluid. The supernatant was obtained by centrifuging the cell lysate at 20,000 rpm and 277 K for 1 h. Standard Ni-affinity chromatography (His-Trap FF) was performed for preliminary purification of the His-tagged fusion protein from the supernatant. The enrichment fusion protein was digested by TEV
protease at 277 K overnight. Ni-affinity chromatography (His Trap HP) was used again to obtain Atox1, which was separated from the 6×His -TEV fusion protein. High purity Atox1 was obtained after further purified by size-exclusion chromatography (Superdex 30) and was concentrated.

For the loop bypass mutant, the sequence of Coh-(GB1)4-Atox1-linker-Atox1-(GB1)4-Snap is as follows:

Coh:
MGTALTDGRMTYDLPKGSSAATKPVEVTKVFDTAADAAGQTVEFKVSAGAEKGYATTGYHIVYDER LEVVATKGTAYAKGAALEDSLAKAENNGNGVFSAGADDDFGADGVMWTVLKVPAADAKAGDVYPIIDV AYQWDPSKGDLDFTDNKDAQGKLMQAYFFTQGIKSSSNpstDEYLVKA-NATYADGVIAYIAIKAGEP

GB1:
MDTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVGEWYTDDATKTFTVTE ATOX1:
MPKHEFSVMTCGGCAGAEAVSRVLKLGGVKVIDLPPNKKVCIIEHSMDDLALTLKKTGKTIVSYLGE
Linker:
RSGGSGGSRS
Snap:
GGGMDKDCEMKRTTLPANTYPANLHYYNNATLKDAGFYEGGLAVKEWLLAHEHRLGKPGLGA

Cys-Xmod-Doc:
CGGNTVTSAVTQVYEIESVDFGYFNFETFDFTAQIKKAVLHTVYMETYGTDGDGVAVVLRWEYSEPVDITAEL TFGDATPANTYKAVNKFYEPVQYNATLKDAGFYEGGLAVKEWLLAHEHRLGKPGLGA

Mass Spectrometry. Proteins were injected into a reverse phase HPLC (Agilent 1200 series HPLC, Agilent Technologies) with a ProSwift™ RP-3U LC Column (4.6×50 mm, SS, Thermo Scientific™). Positive ion Electrospray Ionization (ESI) mass spectra for intact protein were obtained with an Agilent 6224 mass spectrometer equipped with an ESI interface and a time-of-flight (TOF) mass detector (Agilent Technologies). Mass spectra were analyzed and deconvoluted using an Agilent software MassHunter version B.04.00 (Agilent Technologies).

Inductively coupled plasma mass spectrometry (ICP-MS) experiments. To confirm the binding condition of Atox1 fusion protein and Ag, we conducted ICP-MS detection in a 220 μl complex solution containing Atox1 fusion protein and Ag. As a result, we found that the molar ratio of Ag (0.278 × 10⁻⁴ mol) and Atox1 (0.064 × 10⁻⁶ mol) was about 4.34 in Ag-Atox1 complex.

Single-molecule AFM experiments. Single-molecule AFM experiments were carried out on a commercial AFM (Force Robot 300, JPK, Berlin, Germany). All the force-extension experiments were carried out in Tris-HCl buffer (25mM Tris, 72mM NaCl). Protein sample (0.1mg ml⁻¹,150μl) was directly deposited on a freshly cleaved glass surface for 2h and was washed with buffer to remove unreacted protein. We modified the cantilever tip with cys-Xmod-doc. The gold-coated
cantilever was immersed in a protein solution (0.1 mg ml\(^{-1}\)) for 1 hour at room temperature to allow the formation of gold-thiol linkage. The physically adsorbed proteins were removed by rinsing the cantilever tip with deionized water for at least 5 times in an incubator. Then, the sample chamber was filled with 1ml buffer before the measurement. The spring constant of the AFM cantilevers (Biolever-RC-150VB-70 from Olympus) was calibrated using the equipartition theorem before each experiment, with a typical value of 6pN nm\(^{-1}\). The pulling speed was 400 nm s\(^{-1}\) for all traces.

EPR measurement. 0.2 mM Atox1 was incubated with 10 molar equivalents of AgNO\(_3\) in 20 mM Tris buffer containing 200 mM NaCl. Then the spin-trapping agent 5,5-dimethylpyrroline-N-oxide (DMPO) was added to the reaction mixture. After shaking for 1 minute, the sample was transferred to a quartz capillary tube. For MTSSL labeling, 0.2 mM Atox1 was incubated with 10 molar equivalents of MTSSL overnight at 4°C. Then the reaction mixture was added to Ni-NTA to remove free spin label. The continuous-wave electron paramagnetic resonance (CW-EPR) spectra were recorded on a Bruker A300 spectrometer (Bruker Biospin GmbH, Rheinstetten, Germany) at X-band (9.5 GHz).

Crystallization. Crystal screening was performed at 293 K by the sitting-drop vapour-diffusion method. A 200 nanolitre protein solution (27 mg/mL) was mixed with 200 nanolitre reservoir solution and equilibrated against 30 microlitre reservoir solution. Commercial crystallization kits from Hampton Research and Qiagen were used for crystal screening. Initial crystals of Atox1 were observed under the following condition: 0.2 M tri-sodium citrate, 20 % (w/v) PEG 3350. Single crystals were obtained by further optimization of salt concentration and pH values. For heavy atom derivative crystals preparation, we added 5 mM AgNO\(_3\) to a cryo-protection solution (0.2 M tri-sodium citrate, 20 % (w/v) PEG 3350, 25% glycerol), soaked the crystals for about 4 hours and then the data were collected at home source diffraction system.

Crystal optimizing was performed at 293 K by the sitting-drop vapour-diffusion method. Protein was incubated with 5mM TCEP and 5mM AgNO\(_3\) on ice for 3 hours. A 200 nanolitre protein solution (29 mg/mL) was mixed with 180 nanolitre reservoir solution and 20 nanolitre lysozyme seed, and equilibrated against 15 microlitre reservoir solution. Final crystals of Atox1 were observed under the following condition: 0.2M LiCl, 0.1M Tris pH 8, 20% PEG 6,000. For heavy atom derivative crystals preparation, we added 5 mM AgNO\(_3\) and 5 mM TCEP to a reservoir solution (0.2M LiCl, 0.1M Tris pH 8, 20% PEG 6,000), soaked the crystals for about 4 hours, and then added 5 mM AgNO\(_3\) to a cryo-protection solution. The data were collected at SSRF BL18U1.

The contents of the unit cell were analysed using the Matthews coefficient (Matthews, 1968). Molecular replacements were performed using MOLREP (Vagin & Teplyakov, 2010) and Phaser (McCoy, 2007). The models were refined by iterative cycles of manual building using Coot (Emsley et al., 2010) followed by simulated annealing. Subsequent stages of refinement were carried out with REFMAC5 (Murshudov et al., 2011) within the CCP4 suite (Winn et al., 2011; Collaborative Computational Project, Number 4, 1994) and manual improvement in Coot. All structural representations were generated using PyMOL (DeLano, 2002) with subsequent ray tracing.

Theoretical Analyses and Computational Modeling.

In Figure 3, the electronic structure of Ag\(_{42}^{2+}\) cluster based on the experimentally measured geometry (Figure 2) have been investigated using density functional theory (DFT) with Amsterdam Density Functional 2019 program. The calculations were done using PBE exchange-correlation functional and the TZP Slater basis sets. Frozen core
approximation was applied to the [1s^2…4p^6] core of Ag, and Zeroth-Order Regular Approximation to the Dirac Equation (ZORA) was used to account for the scalar relativistic (SR) effect.

The constrained DFT geometry optimization was done at the level of SR-ZORA PBE/DZP with Grimme D3-BJ Dispersion Correction. The model of constrained geometry optimization adopted [Ag_4]^q+ cluster inside the frozen experimental cavity, with size about 5 Å around the [Ag_4]^q+ core. The calculated molecular orbital (MO) energy levels and wavefunctions of Ag_4^{2+} cluster are listed in Table S3-S5, which were analyzed using Hückel method based on three kinds of geometry structures with T_d, D_{4h} and D_{2h} symmetry. The MO energies and frontier MOs of optimized geometry structures with T_d, D_{4h} and D_{2h} symmetries and experimentally measured structure with C_2 symmetry were studied by ADF 2019 program with level of PBE/TZP, frozen core approximation and ZORA scalar relativistic method.

The ELF color-filled map and multicenter bond index were calculated using Gaussian-16B and Multiwfn-3.8 at the level of PBE0/def2-TZVP. The nucleus-independent chemical shift (NICS) of Ag_4^{2+} cluster based on the experimentally measured geometry was studied using Multiwfn and Gaussian with level of B3LYP/def2-SVP.

Cartesian Coordinates of Geometry Structures

Experimental structure of Ag_4-(Atox1)_2 7DC1:

Element	X	Y	Z
Ag	-27.203000	46.371000	7.945000
Ag	-29.133000	45.802000	9.934000
Ag	-26.557000	46.744000	11.514000
Ag	-25.099000	48.131000	9.525000
N	-28.361000	48.860000	4.792000
C	-27.081000	49.589000	4.574000
C	-25.891000	48.627000	4.676000
C	-26.946000	50.740000	5.578000
O	-27.127000	50.312000	6.930000
H	-26.820000	51.001000	7.524000
H	-28.777896	49.166964	5.647553
H	-25.999884	51.192138	5.473347
N	-26.071000	47.402000	5.159000
C	-24.953000	46.440000	5.296000
C	-25.498000	45.017000	5.233000
Atom	x	y	z
------	-------	-------	-------
H	-30.047000	49.522000	12.131000
H	-27.715817	48.692270	13.809163
H	-31.334040	48.113718	13.985628
N	-28.016000	46.279000	14.300000
C	-27.742000	44.830000	14.163000
C	-26.237000	44.590000	14.226000
O	-25.502000	45.571000	14.221000
C	-28.370000	44.300000	12.863000
S	-27.427000	44.616000	11.334000
H	-29.351000	44.763000	12.753000
H	-27.307000	46.940000	14.018000
H	-28.197000	44.279000	14.986000
H	-28.399000	43.216000	12.971000
N	-25.839000	43.341000	14.289000
H	-26.507184	42.599581	14.227122
N	-24.223000	43.428000	12.051000
C	-23.426000	43.710000	10.846000
C	-22.787000	45.095000	10.920000
O	-21.827000	45.385000	10.095000
H	-24.061230	43.662325	9.986285
H	-25.219626	43.373298	11.989804
N	-23.287000	45.955000	11.803000
C	-22.813000	47.356000	11.926000
C	-21.364000	47.398000	12.437000
O	-20.645759	48.406067	12.210060
C	-23.761000	48.198000	12.775000
S -25.290000 48.687000 11.927000			
H -23.235000 49.103000 13.080000			
H -24.023000 45.640000 12.418000			
H -22.816000 47.806000 10.933000			
H -24.058000 47.576000 13.620000			
N -19.574000 47.352000 9.242000			
C -19.899000 48.589000 8.487000			
C -21.367000 48.923000 8.616000			
H -21.697000 49.462000 7.728000			
H -20.357313 46.730866 9.217233			
H -19.660005 48.444394 7.454106			
H -21.523000 49.544000 9.498000			
H -21.941000 48.002000 8.715000			
C -25.232000 53.048000 10.431000			
C -25.384000 51.557000 10.600000			
N -26.443000 51.013000 9.724000			
H -26.739000 50.112000 10.072000			
H -24.315127 53.366371 10.881427			
H -25.638000 51.342000 11.638000			
H -26.085000 50.911000 8.785000			
H -25.219998 53.289418 9.388660			
H -24.440000 51.086000 10.325000			
O -28.102000 48.675000 9.730000			
O -24.500000 50.069000 7.917000			
H -24.854000 49.476000 8.584000			
H -24.476000 50.964000 8.264000			
Atom	X-Coordinate	Y-Coordinate	Z-Coordinate
------	--------------	--------------	--------------
O	-28.468000	51.143000	11.618000
H	-28.631000	51.743000	10.887000
H	-28.219000	50.281000	11.276000
H	-19.317839	49.400287	8.872961
H	-18.781616	46.905970	8.825845
H	-31.410458	39.645987	10.175530
H	-33.123137	41.430587	10.585878
H	-24.918352	43.101477	5.060124
H	-25.276182	41.946486	6.779506
H	-25.887694	41.107471	8.704739
H	-33.345573	49.336101	8.556107
H	-28.983998	49.045776	4.032157
H	-27.093978	50.003599	3.587674
H	-27.713832	51.469906	5.354642
H	-20.965998	46.570093	12.985693
H	-23.767818	43.291125	12.930815
H	-22.655830	42.972869	10.754481
H	-24.867553	43.130722	14.398882
H	-29.848057	41.442364	6.473268
H	-25.482274	48.523065	3.692618
H	-25.150599	49.102190	5.285017
H	-29.281473	46.330082	15.766375
H	-29.948755	46.332473	14.173964
H	-29.757537	48.465496	15.871345
H	-27.507097	48.809032	15.424549
H	-30.716503	49.736480	14.104463
Optimized structure of \([\text{Ag}_4]^+\) in constrained 7DC1 cavity:

- Ag: -27.174248, 46.886293, 7.647061
- Ag: -28.912106, 45.580500, 9.744174
- Ag: -26.811643, 46.856738, 11.823799
- Ag: -24.848644, 47.709082, 9.780124
- N: -28.361000, 48.860000, 4.792000
- C: -27.081000, 49.589000, 4.574000
- C: -25.891000, 48.627000, 4.676000
- C: -26.964000, 50.740000, 5.578000
- O: -27.127000, 50.312000, 6.930000
- H: -26.820000, 51.001000, 7.524000
- H: -28.77896, 49.166964, 5.647553
- H: -25.999884, 51.192138, 5.473347
- N: -26.071000, 47.402000, 5.159000
- C: -24.953000, 46.440000, 5.296000
- C: -25.498000, 45.017000, 5.233000
- O: -26.714000, 44.871000, 5.238000
- C: -24.180000, 46.719000, 6.596000
- S: -24.925000, 46.060000, 8.125000
- H: -24.091000, 47.800000, 6.706000
- H: -26.998000, 47.118000, 5.441000
- H: -24.248000, 46.558000, 4.473000
- H: -23.226000, 46.203000, 6.487000
- N: -24.615000, 44.048000, 5.170000
- H: -23.638879, 44.256229, 5.231875
N -25.498000 42.692000 7.408000
C -26.141000 42.143000 8.613000
C -27.660000 42.282000 8.539000
O -28.391000 41.595000 9.364000
H -25.782175 42.669416 9.472669
H -24.658993 43.170734 7.666614
N -28.155000 43.145000 7.656000
C -29.605000 43.435000 7.533000
C -30.366000 42.201000 7.022000
O -31.598116 42.083025 7.249031
C -29.860000 44.677000 6.684000
S -29.519000 46.245000 7.532000
H -30.906000 44.674000 6.379000
H -27.514000 43.625000 7.041000
H -29.993000 43.662000 8.526000
H -29.173000 44.624000 5.839000
N -31.221000 40.627000 10.217000
C -32.130000 41.528000 10.972000
C -31.685000 42.966000 10.843000
H -31.594000 43.409000 11.835000
H -30.419820 41.001675 9.750384
H -32.124594 41.248882 12.004939
H -32.419000 43.523000 10.261000
H -30.719000 43.003000 10.339000
C -33.325000 48.376000 9.028000
C -31.958000 47.762000 8.859000
N -30.957000 48.407000 9.735000
H -30.670000 47.758000 10.454000
H -34.059238 47.741331 8.577457
H -31.645000 47.875000 7.821000
H -33.540104 48.486214 10.070345
H -32.022000 46.709000 9.134000
H -30.154000 48.677000 9.186000
H -27.840000 49.445000 9.220000
H -28.104000 48.893000 10.664000
O -31.111000 46.252000 11.542000
H -30.238000 45.932000 11.782000
H -31.435000 45.761000 10.784000
N -28.134000 48.991000 14.667000
C -29.405000 48.247000 14.885000
C -29.167000 46.736000 14.783000
C -30.460000 48.722000 13.881000
O -30.008000 48.649000 12.529000
H -30.047000 49.522000 12.131000
H -27.715817 48.692270 13.809163
H -31.334040 48.113718 13.985628
N -28.016000 46.279000 14.300000
C -27.742000 44.830000 14.163000
C -26.237000 44.590000 14.226000
O -25.502000 45.571000 14.221000
C -28.370000 44.300000 12.863000
S -27.427000 44.616000 11.334000
H -29.351000 44.763000 12.753000
H -27.307000 46.940000 14.986000
H -28.197000 44.279000 14.986000
H -28.399000 43.216000 12.971000
N -25.839000 43.341000 14.289000
H -26.507184 42.599581 14.227122
N -24.223000 43.428000 12.051000
C -23.426000 43.710000 10.846000
C -22.787000 45.095000 10.920000
O -21.827000 45.385000 10.095000
H -24.061230 43.662325 10.986285
H -25.219626 43.373298 11.989804
N -23.287000 45.955000 11.803000
C -22.813000 47.356000 11.926000
C -21.364000 47.398000 12.437000
O -20.645759 48.406067 12.210060
C -23.761000 48.198000 12.775000
S -25.290000 48.687000 11.927000
H -23.235000 49.103000 13.080000
H -24.023000 45.640000 12.418000
H -22.816000 47.806000 10.933000
H -24.058000 47.576000 13.620000
N -19.574000 47.352000 9.242000
C -19.899000 48.589000 8.487000
C -21.367000 48.923000 8.616000
H -21.697000 49.462000 7.728000
| Element | X | Y | Z |
|---------|---------|---------|---------|
| H | -20.357313 | 46.730866 | 9.217233 |
| H | -19.660005 | 48.444394 | 7.454106 |
| H | -21.523000 | 49.544000 | 9.498000 |
| H | -21.941000 | 48.002000 | 8.715000 |
| C | -25.232000 | 53.048000 | 10.431000 |
| C | -25.384000 | 51.557000 | 10.600000 |
| N | -26.443000 | 51.013000 | 9.724000 |
| H | -26.739000 | 50.112000 | 10.072000 |
| H | -24.315127 | 53.366371 | 11.638000 |
| H | -25.638000 | 51.342000 | 11.638000 |
| H | -26.085000 | 50.911000 | 8.785000 |
| H | -25.219998 | 53.289418 | 9.388660 |
| H | -24.440000 | 51.086000 | 10.325000 |
| O | -28.102000 | 48.675000 | 9.730000 |
| O | -24.500000 | 50.069000 | 7.917000 |
| H | -24.854000 | 49.476000 | 8.584000 |
| H | -24.476000 | 50.964000 | 8.264000 |
| O | -28.468000 | 51.143000 | 11.618000 |
| H | -28.631000 | 51.743000 | 10.887000 |
| H | -28.219000 | 50.281000 | 11.276000 |
| H | -19.317839 | 49.400287 | 8.872961 |
| H | -18.781616 | 46.905970 | 8.825845 |
| H | -31.410458 | 39.645987 | 10.175530 |
| H | -33.123137 | 41.430587 | 10.585878 |
| H | -24.918352 | 43.101477 | 5.060124 |
| H | -25.276182 | 41.946486 | 6.779506 |
| Atom | X (Å) | Y (Å) | Z (Å) |
|------|-------|-------|-------|
| H | -25.887694 | 41.107471 | 8.704739 |
| H | -33.345573 | 49.336101 | 8.556107 |
| H | -28.983998 | 49.045776 | 4.032157 |
| H | -27.093978 | 50.003599 | 3.587674 |
| H | -27.713832 | 51.469906 | 5.354642 |
| H | -20.965998 | 46.570093 | 12.985693 |
| H | -23.767818 | 43.291125 | 12.930815 |
| H | -22.655830 | 42.972869 | 10.754481 |
| H | -24.867553 | 43.130722 | 14.398882 |
| H | -29.848057 | 41.442364 | 6.473268 |
| H | -25.482274 | 48.523065 | 3.692618 |
| H | -25.150599 | 49.102190 | 5.285017 |
| H | -29.281473 | 46.330082 | 15.766375 |
| H | -29.948755 | 46.332473 | 14.173964 |
| H | -29.757537 | 48.465496 | 15.871345 |
| H | -27.507097 | 48.809032 | 15.424549 |
| H | -30.716503 | 49.736480 | 14.104463 |
| H | -26.053039 | 53.545990 | 10.903018 |

Optimized structure of [Ag₄]^{2+} in constrained 7DC1 cavity:

Atom	X (Å)	Y (Å)	Z (Å)
Ag	-27.189764	47.238952	7.715822
Ag	-28.860772	45.762323	9.769021
Ag	-27.301700	47.134770	11.812722
Ag	-25.130535	47.709555	9.787557
N	-28.361000	48.860000	4.792000
C	-27.081000	49.589000	4.574000
Element	X	Y	Z
---------	-----	-----	-----
C	-25.891	48.627	4.676
C	-26.964	50.740	5.578
O	-27.127	50.312	6.930
H	-26.820	51.001	7.524
H	-28.778	49.167	5.648
H	-25.999	51.192	5.473
N	-26.071	47.402	5.159
C	-24.953	46.440	5.296
C	-25.498	45.017	5.233
O	-26.714	44.871	5.238
C	-24.180	46.719	6.596
S	-24.925	46.060	8.125
H	-24.091	47.800	6.706
H	-26.998	47.118	5.441
H	-24.248	46.558	4.473
H	-23.226	46.203	6.487
N	-24.615	44.048	5.170
H	-23.639	44.256	5.232
N	-25.498	42.692	7.408
C	-26.141	42.143	8.613
C	-27.660	42.282	8.539
O	-28.391	41.595	9.364
H	-25.782	42.669	9.473
H	-24.658	43.170	7.666
N	-28.155	43.145	7.656
C	-29.605	43.435	7.533
	X-Coordinate	Y-Coordinate	Z-Coordinate
---	------------------	------------------	------------------
C	-30.366000	42.201000	7.022000
O	-31.598116	42.083025	7.249031
C	-29.860000	44.677000	6.684000
S	-29.519000	46.245000	7.532000
H	-30.906000	44.674000	6.379000
H	-27.514000	43.625000	7.041000
H	-29.993000	43.662000	8.526000
H	-29.173000	44.624000	5.839000
N	-31.221000	40.627000	10.217000
C	-32.130000	41.528000	10.972000
C	-31.685000	42.966000	10.843000
H	-31.594000	43.409000	11.835000
H	-30.419820	41.001675	9.750384
H	-32.124594	41.248882	12.004940
H	-32.419000	43.523000	10.261000
H	-30.719000	43.003000	10.339000
C	-33.325000	48.376000	9.028000
C	-31.958000	47.762000	8.859000
N	-30.957000	48.407000	9.735000
H	-30.670000	47.758000	10.454000
H	-34.059238	47.741331	8.577458
H	-31.645000	47.875000	7.821000
H	-33.540104	48.486214	10.070346
H	-32.022000	46.709000	9.134000
H	-30.154000	48.677000	9.186000
H	-27.840000	49.445000	9.220000
Atom	X	Y	Z
------	-----	-----	-----
H	-28.104000	48.893000	10.664000
O	-31.111000	46.252000	11.542000
H	-30.238000	45.932000	11.782000
H	-31.435000	45.761000	10.784000
N	-28.134000	48.991000	14.667000
C	-29.405000	48.247000	14.885000
C	-29.167000	46.736000	14.783000
C	-30.460000	48.722000	13.881000
O	-30.008000	48.649000	12.529000
H	-30.047000	49.522000	12.131000
H	-27.715817	48.692270	13.809163
H	-31.334040	48.113718	13.985628
N	-28.016000	46.279000	14.300000
C	-27.742000	44.830000	14.163000
C	-26.237000	44.590000	14.226000
O	-25.502000	45.571000	14.221000
C	-28.370000	44.300000	12.863000
S	-27.427000	44.616000	11.334000
H	-29.351000	44.763000	12.753000
H	-27.307000	46.940000	14.018000
H	-28.197000	44.279000	14.986000
H	-28.399000	43.216000	12.971000
N	-25.839000	43.341000	14.289000
H	-26.507184	42.599581	14.227122
N	-24.223000	43.428000	12.051000
C	-23.426000	43.710000	10.846000
	X	Y	Z
----	--------	--------	-------
H	-24.867553	43.130722	14.398882
H	-29.848057	41.442364	6.473268
H	-25.482274	48.523065	3.692618
H	-25.150599	49.102190	5.285017
H	-29.281473	46.330082	15.766375
H	-29.948755	46.332473	14.173964
H	-29.757537	48.465496	15.871345
H	-27.507097	48.809032	15.424549
H	-30.716503	49.736480	14.104463
H	-26.053039	53.545990	10.903018

Experimental structure (C₂) of Ag₄ Cluster:

	X	Y	Z
Ag	-0.514904	-1.748836	0.236102
Ag	-2.305118	0.390645	-0.236102
Ag	0.514904	1.748836	0.236102
Ag	2.305118	-0.390645	-0.236102

Optimized T₆-[Ag₄]²⁺ Cluster:

	X	Y	Z
Ag	1.060049	-1.060049	1.060049
Ag	-1.060049	1.060049	1.060049
Ag	-1.060049	-1.060049	-1.060049
Ag	1.060049	1.060049	-1.060049

Optimized D₄h-[Ag₄]²⁺ Cluster:

	X	Y	Z
Ag	-1.469085	-1.469085	0.000000
Ag	-1.469085	1.469085	0.000000
Ag	1.469085	-1.469085	0.000000
Ag	1.469085	1.469085	0.000000
Optimized D_{2h}-$[\text{Ag}_4]^{2+}$ Cluster:

Element	X	Y	Z
Ag	2.692548	0.000000	0.000000
Ag	0.000000	1.448782	0.000000
Ag	0.000000	-1.448782	0.000000
Ag	-2.692548	0.000000	0.000000

Optimized D_{4h}-$[\text{C}_4\text{H}_4]^{2+}$ Cluster:

Element	X	Y	Z
C	0.000000	0.952783	0.000000
C	0.000000	0.000000	1.061328
C	0.000000	-0.952783	0.000000
C	0.000000	0.000000	-1.061328
H	0.000000	2.040396	0.000000
H	0.000000	-2.040396	0.000000
H	0.000000	0.000000	2.129351
H	0.000000	0.000000	-2.129351
Single thiol-metal bond	Protein	ref	
------------------------	---------	----	
Au-S	~165 pN	1	
Cu-S	~171 pN	1	
Zn-S	~170 pN	2	
Zn-S	~90 pN	3	
Fe-S	~211 pN	4	
Fe-N	~160 pN	5	
Fe-O	~127 pN	6	
Ag-S	~64 pN Atox1	This work	
Protein	Atox1 for 5F0W	Atox1 for 7DC1	
--------------------	------------------------------------	------------------------------------	
Method	Sitting-drop vapour-diffusion	Sitting-drop vapour-diffusion	
Plate type	Corning 3552	Corning 3552	
Temperature (K)	293	293	
Protein concentration	27 mg/mL	29 mg/mL	
Buffer composition of protein solution	50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM TCEP	50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM TCEP	
Composition of reservoir solution	0.2 M tri-sodium citrate, 20 % (w/v) PEG 3350	0.2M LiCl, 0.1M Tris pH 8, 20% (w/v) PEG 6,000	
Volume and ratio of drop	200 nL protein/200 nL reservoir	200 nL protein/200 nL reservoir	
Volume of reservoir	microlitre.	microlitre.	
Table S3. X-ray data collection and refinement statistics

We finished all of the data collection works by use F-RE++ and R-AXIS IV of RIGAKU.

Data collection	5F0W	7DC1
Space group	P6_2	P3_21
Cell dimensions		
a,b,c(Å)	112.49, 112.49, 56.63	104.49, 104.493, 29.188
α,β,γ(°)	90.00, 90.00, 120.00	90.000, 90.000, 120.000
Resolution	50.00-2.70	19.47-1.75
Rmerge	12.9(43.7)	5.6 (61.6)
I/σI	17.78(4.68)	17.0 (2.3)
Completeness(%)	90.2(87.4)	98.5 (97.1)
Redundancy	6.2(6.3)	4.6 (4.3)

Refinement

	5F0W	7DC1
Resolution(Å)	24.48-2.70	19.47-1.75
No. unique reflections	10336	18311 (1002)
R_work / R_free	0.26/0.29	0.18/0.20
No. atoms		
Protein	2056	1019
Ligand/ion	8	4
Water	12	133
B-factors		
Protein	31.55	28.44
Ligand/ion	38.73	27.41
Water	23.05	39.01
R.m.s.deviations		
Bond lengths	0.014	0.005
Bond angles	1.62	1.259

*Values in parentheses are for highest-resolution shell.
Table S4. The Hückel MO energies and MO wavefunctions of planar D$_{2h}$-Ag$_4$ cluster.

MO	Eigenvalue	Energy	Eigenfunctions
LUMO+2(a$_g$)	$\chi_4 = 1.5616$	$\alpha - 1.5616 \beta$	$\Psi_4 = (0.4352 \phi_1 + 0.4352 \phi_2 - 0.5573 \phi_3 - 0.5573 \phi_4)$
LUMO+1(a$_u$)	$\chi_3 = 1.0000$	$\alpha - \beta$	$\Psi_3 = (0.7071 \phi_1 - 0.7071 \phi_2)$
LUMO(b$_u$)	$\chi_2 = 0.0000$	α	$\Psi_2 = (-0.7071 \phi_3 + 0.7071 \phi_4)$
HOMO(a$_g$)	$\chi_1 = -2.5616$	$\alpha + 2.5616 \beta$	$\Psi_1 = (0.5573 \phi_1 + 0.5573 \phi_2 + 0.4352 \phi_3 + 0.4352 \phi_4)$

Table S5. The Hückel MO energies and wavefunctions of square planar D$_{4h}$-Ag$_4$ cluster.

MO	Eigenvalue	Energy	Eigenfunctions
LUMO+1(a$_g$)	$\chi_4 = 2.0000$	$\alpha - 2.0000 \beta$	$\Psi_4 = (0.5000 \phi_1 - 0.5000 \phi_2 + 0.5000 \phi_3 - 0.5000 \phi_4)$
LUMO(b$_{2u}$)	$\chi_3 = 0.0000$	α	$\Psi_3 = (0.7071 \phi_1 - 0.7071 \phi_3)$
LUMO(b$_{1u}$)	$\chi_2 = 0.0000$	α	$\Psi_2 = (0.7071 \phi_1 - 0.7071 \phi_4)$
HOMO(a$_g$)	$\chi_1 = -2.0000$	$\alpha + 2.0000 \beta$	$\Psi_1 = (0.5000 \phi_1 + 0.5000 \phi_2 + 0.5000 \phi_3 + 0.5000 \phi_4)$

Table S6. The Hückel MO energies and wavefunctions of the tetrahedron T$_d$-Ag$_4$ cluster.

MO	Eigenvalue	Energy	Eigenfunctions
LUMO(t$_2$)	$\chi_4 = 1.0000$	$\alpha - 1.0000 \beta$	$\Psi_4 = (0.5000 \phi_1 - 0.5000 \phi_2 + 0.5000 \phi_3 - 0.5000 \phi_4)$
LUMO(t$_2$)	$\chi_3 = 1.0000$	$\alpha - 1.0000 \beta$	$\Psi_3 = (0.5000 \phi_1 + 0.5000 \phi_2 - 0.5000 \phi_3 - 0.5000 \phi_4)$
LUMO(t$_2$)	$\chi_2 = 1.0000$	$\alpha - 1.0000 \beta$	$\Psi_2 = (0.5000 \phi_1 - 0.5000 \phi_2 - 0.5000 \phi_3 + 0.5000 \phi_4)$
HOMO(a$_1$)	$\chi_1 = -3.0000$	$\alpha + 3.0000 \beta$	$\Psi_1 = (0.5000 \phi_1 + 0.5000 \phi_2 + 0.5000 \phi_3 + 0.5000 \phi_4)$
Table S7. The MO contours and energy of the frontier MOs of T_d, D_{4h}, D_{2h} and the C_2 experimental measured structures $[\text{Ag}_4]^{2+}$ cluster (isosurface = 0.03 a.u.) .

MO diagram	T_d	D_{4h}	C_2, Exp	D_{2h}
E / Hartree	![MO diagram](image)	![MO diagram](image)	![MO diagram](image)	![MO diagram](image)
LUMO+2	![MO diagram](image)	![MO diagram](image)	![MO diagram](image)	![MO diagram](image)
	t_2, $E = -0.4406$	b_{2g}, $E = -0.3784$	a, $E = -0.3859$	a_g, $E = -0.3961$
LUMO+1	![MO diagram](image)	![MO diagram](image)	![MO diagram](image)	![MO diagram](image)
	t_2, $E = -0.4406$	e_{1u}, $E = -0.4611$	b, $E = -0.4450$	b_u, $E = -0.4247$
LUMO	![MO diagram](image)	![MO diagram](image)	![MO diagram](image)	![MO diagram](image)
	t_2, $E = -0.4406$	e_{1u}, $E = -0.4611$	b, $E = -0.4717$	b_u, $E = -0.4760$
HOMO	![MO diagram](image)	![MO diagram](image)	![MO diagram](image)	![MO diagram](image)
	a_1, $E = -0.5699$	a_{1g}, $E = -0.5468$	a, $E = -0.5450$	a_g, $E = -0.5459$
Table S8. The calculated NICS values (ppm) of the Ag$_4^{2+}$ cluster

Structure	Number of Bq$_{x}^{a}$	NICS (ppm)b
	1	-15.9
	2	-16.4
	3	-16.4
	4	-8.3
	5	-9.7

a Bq$_{x}$ represents the ghost atom with numbering x. b For benzene: -8.0 ppm at the center and -10.2 ppm at 1 Å above the ring plane.

Table S9. Constrained DFT optimization results of the [Ag$_4$]$^{q+}$ core in the experimental cavity of 7DC1.

Specie	Total Charge	q	Bond Length (Å)	Dihedral Angle (°)						
Ag$_4$-(Atox1)$_2$ 7DC1 (Experiment)			Ag1-Ag2	Ag1-Ag4	Ag2-Ag3	Ag3-Ag4	Ag1-Ag3	Ag2-Ag4	Ag1-Ag2-Ag4-Ag3	Ag2-Ag1-Ag3-Ag4
			2.83	3.17	3.17	2.83	3.65	4.68	150.8	157.0
[Ag$_4$] in cavity of 7DC1	0	+4	3.02	3.26	3.22	2.96	4.19	4.59	166.3	167.4
	-2	+2	3.03	2.96	2.91	3.02	4.10	4.21	151.8	152.5
	-4	0	null (not converged)							

Figure S1. The liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS) measurement of Atox1 and silver ions. (A) LC-ESI-MS of Atox1 protein (Found: 7458.55Da, expected: 7458.94Da) and Atox1 in complex with different equivalents of Ag ion. (B) (C) (D) ESI-MS of Atox1 protein and Atox1 in complex with different equivalents of Ag ion in the different buffer conditions including 0.01 to 1 mM DTT.
Figure S2. NMR analysis of Ag⁺ binding to Atox1. (A) Overlay of 1H,15N-HSQC NMR spectra of Atox1 apo-Atox1 before (red) and after (blue) adding equimolar Ag⁺. (B) Chemical shift perturbation $\Delta\delta$ against the residue number ($\Delta\delta = \sqrt{(\Delta\delta_n)^2 + (\Delta\delta_\alpha / 5)^2}$).

Figure S3. Atox1 crystal structures in the presence of metals (Cu-Atox12 PDB accession code 1FEE, Hg-Atox12 PDB accession code 1FE4, Cd-Atox12 PDB accession code 1FE0, CisPt-Atox12 PDB accession code 3IWX).
Figure S4. The rare cases we observed in the single-molecule force spectroscopy experiments. The SMFS measurements on the engineered chimeric polyprotein in the presence of Ag, and the rupture of Ag4-(Atox1)2 complex proceeded in two steps.
Figure S5. Reported Atox1 crystal structures in the presence of metals and Ag₄-(Atox1)₂ in this work. Crystal structure of Ag bound to an Atox1 dimer with 2.70 Å (PDB accession code 5F0W).
Figure S6. Close-up view showing details of the tretrasilver cluster in Atox1 dimer(5F0W). The distance between Ag1 and Ag4 is 3.01 Å. The distance between Ag1 and Ag3 is 2.95 Å. The distance between Ag2 and Ag3 is 2.95 Å. The distance between Ag2 and Ag4 is 2.89 Å. The Angle Ag4-Ag1-Ag3 is 65.01°, and the angle Ag4-Ag2-Ag3 is 66.56°. The four silver ions are situated nearly on the same plane, forming four Ag-Ag bonds with an average dihedral angle of 171°.
Figure S7. (A) Crystal structure of Ag bound to an Atox1 dimer with 1.75 Å (PDB accession code 7DC1). (B) The superimposed 2Fo-Fc electron density map of Ag₄-(Atox1)₂. 2Fo-Fc electron density map (gray, 1.00σ) of Ag₄-(Atox1)₂ metal center with anomalous difference Fourier density showing the Ag ions superimposed (green, 6σ).
Figure S8. The ELF color-filled map of Ag₄²⁺ generated by Multiwfn. Significant electron-pair density in the center of the cluster supported delocalized 4-center weak bonding.
Figure S9. The CW-EPR spectra measurement of Atox1, Atox1-Ag, Ag-Atox1 with DMPO and MTSSL-Atox1.
References

1. W. Wei, Y. Sun, M. Zhu, X. Liu, P. Sun, F. Wang, Q. Gui, W. Meng, Y. Cao and J. Zhao, *J Am Chem Soc*, 2015, **137**, 15358-15361.

2. S. R. Ainavarapu, J. Brujic, H. H. Huang, A. P. Wiita, H. Lu, L. Li, K. A. Walther, M. Carrion-Vazquez, H. Li and J. M. Fernandez, *Biophys J*, 2007, **92**, 225-233.

3. I. C. Shaw, *Chem Rev*, 1999, **99**, 2589-2600.

4. S. Chernousova and M. Epple, *Angew Chem Int Edit*, 2013, **52**, 1636-1653.

5. G. B. Song, F. Tian, H. X. Liu, G. Q. Li and P. Zheng, *J Phys Chem Lett*, 2021, **12**, 3860-3867.

6. G. D. Yuan, H. X. Liu, Q. Ma, X. Li, J. Y. Nie, J. L. Zuo and P. Zheng, *J Phys Chem Lett*, 2019, **10**, 5428-5433.