GENERIC EXPONENTIAL SUMS ASSOCIATED TO LAURENT POLYNOMIALS IN ONE VARIABLE

CHUNLEI LIU AND NIU CHUANZE

Abstract. The generic Newton polygons for L-functions of exponential sums associated to Laurent polynomials in one variable are determined when p is large. The corresponding Hasse polynomials are also determined.

Key words: exponential sum, L-function, generic Newton polygon

MSC2000: 11L07, 14F30

1. Introduction

We shall determine the generic Newton polygon of L-functions of exponential sums associated to Laurent polynomials in one variable.

Throughout this paper, p denotes a prime number, and q denotes a power of p. Write $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$. Let $\bar{\mathbb{F}}_p$ be a fixed algebraic closure of the finite field \mathbb{F}_p, and \mathbb{F}_q the finite field with q elements in $\bar{\mathbb{F}}_p$.

Let f be a Laurent polynomial over \mathbb{F}_q. We assume that the leading exponents of f are prime to p. One associates to f the Artin-Schreier curve

$$C_f : y^q - y = f(x).$$

Let N_k be the number of \mathbb{F}_{q^k}-rational points including the infinities on C_f. The zeta function of C_f is defined by

$$Z(t, C_f, \mathbb{F}_q) = \exp(\sum_{k=1}^{+\infty} N_k t^k).$$

Let \mathcal{Q} be a fixed algebraic closure of \mathbb{Q}. Let ψ denote any nontrivial character of \mathbb{F}_p into \mathcal{Q}^\times. Let V_f be the affine line \mathbb{A} over \mathbb{F}_q if f is a polynomial, and let V_f be the one-dimensional torus \mathbb{T} over \mathbb{F}_q if f is not a polynomial. We have

$$N_k = q^k + 1 + \sum_{\alpha \in \mathbb{F}_q^\times} S(k, \alpha f, \mathbb{F}_q),$$

where the exponential sum $S(k, f, \mathbb{F}_q)$ is defined by

$$S(k, f, \mathbb{F}_q) = \sum_{x \in V_f(\mathbb{F}_{q^k})} \psi(\text{Tr}_{\mathbb{F}_q^k/\mathbb{F}_p}(f(x))).$$

So we have

$$(1 - t)(1 - qt)Z(t, C_f, \mathbb{F}_q) = \prod_{\alpha \in \mathbb{F}_q^\times} L(t, \alpha f, \mathbb{F}_q),$$

This project is supported by NSFC Grant No. 10671015.
where the L-function $L(t, f, \mathbb{F}_q)$ is defined by

$$L(t, f, \mathbb{F}_q) = \exp\left(\sum_{k=1}^{+\infty} S(k, f, \mathbb{F}_q) t^k \right).$$

It is well-known that the function $L(t, f, \mathbb{F}_q)$ is a polynomial in t with coefficients in \mathbb{Q}.

Let \mathbb{Z}_p be the ring of p-adic integers, and \mathbb{Q}_p the field of p-adic numbers. Fix an embedding of \mathbb{Q} into \mathbb{Q}_p. Let $\text{ord}_p(\cdot)$ be the p-adic order function of \mathbb{Q}_p, and define the q-adic order function as $\text{ord}_q(\cdot) = \frac{1}{\text{ord}_p(q)} \cdot \text{ord}_p(\cdot)$. As $L(t, f, \mathbb{F}_q)$ has coefficients in \mathbb{Q}, one can talk about the p-adic absolute values of its reciprocal roots. These p-adic absolute values are completely determined by the Newton polygon of $L(t, f, \mathbb{F}_q)$ defined as follows.

Definition 1.1. Let $g(t) = 1 + \sum_{i=1}^{n} c_i t^i$ be a polynomial in t with coefficients $c_i \in \mathbb{Q}_p$. The q-adic Newton polygon of g is the lower convex closure of the points $(0, 0), (n, \text{ord}_q(c_n)), n = 1, \cdots, u$.

It is very hard to determine the Newton polygon of $L(t, f, \mathbb{F}_q)$ in general. However, it is easier to give a good lower bound. The simplest one is the Hodge polygon defined as follows.

Definition 1.2. Let d be a positive integer. The Hodge polygon of the interval $[0, d]$ is the polygon whose vertices are $(n, \frac{n(n+1)}{2d}), n = 0, 1, 2, \cdots, d-1$.

Definition 1.3. Let d and e be positive integers. The Hodge polygon of $[-e, d]$ is the polygon with initial point $(0, 0)$, end point $(d+e, d+e) = (d, d)$, and the vertices $(m+n+1, \frac{m(n+1)}{2e} + \frac{n(n+1)}{2d})$ with (m,n) running over pairs satisfying $-\frac{1}{e} < \frac{m}{e} - \frac{n}{d} < \frac{1}{d}, 0 \leq m < e, 0 \leq n < d$.

Let $\Delta(f)$ be the smallest closed interval of the real line containing 0 and the exponents of the monomials of f. So $\Delta(f) = [0, d]$ if f is a polynomial of degree d, and $\Delta(f) = [-e, d]$ if f is a Laurent polynomial with leading term $a_{-e} x^{-e} + a_d x^d$. The well-known Hodge bound is stated as the following theorem.

Theorem 1.4 (Hodge bound). The q-adic Newton polygon of $L(t, f, \mathbb{F}_q)$ lies above the Hodge polygon of $\Delta(f)$. Moreover, both polygons have the same initial point and the same end point.

By Grothendieck’s specialization lemma (Confer [K76] and [W04]), the q-adic Newton polygon of $L(t, f, \mathbb{F}_q)$ is constant for a generic f with fixed $\Delta(f) = \Delta$. That constant polygon is called the generic Newton polygon of Δ. Let $d > 0$ and $e \geq 0$ be integers. Let $D = d$ if $e = 0$, and let D be the least common multiple of d and e if $e > 0$. We assume that D is prime to p. The following theorem says that in nice situations the generic polygon coincides with the Hodge polygon.

Theorem 1.5 (Stickelberger’s theorem [W93]). The generic Newton polygon of $[-e, d]$ coincides with its Hodge polygon if and only if $p \equiv 1 \pmod{D}$.
As a special case of a conjecture of Wan [W04], the following theorem says that the Hodge bound is approximately the best.

Theorem 1.6 (Zhu [Zh03, Zh04, Zhu04]). *The generic Newton polygon of \([-e, d]\) goes to its Hodge polygon as \(p\) goes to infinity.*

In proving the above theorem in the case \(e = 0\), Zhu used Dwork’s \(p\)-adic theory, a kind of Diéonné-Manin diagonalization, and some force computations to produce a list of polynomials she denoted as \(f_i\)’s. She then used a kind of maximal-monomial-locating technique to prove that one of these \(f_i\)’s does not vanish. Blache-Férard [BF] discovered that Zhu’s maximal-monomial-locating technique can prove the nonvanishing of \(f_0\). This enabled them to get the following theorem.

Theorem 1.7 (Blache-Férard). *If \(p \geq 3D\), the generic Newton polygon of \([0, d]\) is the polygon with vertices*

\[
(n, \frac{1}{p-1} \sum_{i=1}^{n} \left| \frac{pi - n}{d} \right|), \quad n = 0, 1, \ldots, d-1.
\]

The condition \(p \geq 3D\) in the theorem is very clean. To achieve that clean condition Blache-Férard abolished Zhu’s Diéonné-Manin diagonalization technique, and made recourse to Dwork’s original method.

It should be mentioned that Yang [Ya] computed the Newton polygons for \(L\)-function of exponential sums associated to polynomials of the form \(x^d + \lambda x\), and Hong [H01, H02] computed the Newton polygons for \(L\)-function of exponential sums associated to polynomials of degree 4 and 6.

From now on we assume that \(e > 0\). We shall determine the generic Newton polygon of \([-e, d]\).

Write

\[
p_{[0,d]}(n) = \frac{1}{p-1} \sum_{i=1}^{n} \left| \frac{pi - n}{d} \right|, \quad n = 0, 1, \ldots, d.
\]

And write

\[
p_{[-e,d]}(0) = 0, \quad p_{[-e,d]}(d + e) = \frac{d + e}{2},
\]

\[
p_{[-e,d]}(k) = \min_{(m,n) \in I_k} \{p_{[0,e]}(m) + p_{[0,d]}(n)\}, \quad k = 1, \ldots, d + e - 1,
\]

where

\[
I_k = \{(m,n) \mid m + n + 1 = k, -\frac{1}{e} \leq \frac{m}{e} - \frac{n}{d} \leq \frac{1}{d}, 0 \leq m < e, 0 \leq n < d\}.
\]

Definition 1.8. *The arithmetic polygon of \([-e, d]\) is defined to be the graph of the function on \([0, d + e]\) which is linear between consecutive integers and takes on the value \(p_{[-e,d]}(k)\) at integers \(k = 0, 1, \ldots, d + e\).*

We shall prove the following theorem.

Theorem 1.9. *The generic Newton polygon of \([-e, d]\) coincides with its arithmetic polygon if \(p \geq 3D\).*
It would be interesting if one can extend the result to twisted exponential sums and to exponential sums associated to functions studied in [Zhu04] and [BFZ].

Acknowledgement. The first author thanks Lei Fu and Daqing Wan for discussions. He also thanks Daqing Wan for sending the work of Blache and Férard.

2. THE ARITHMETIC POLYGON

Recall that, for $k=1,\cdots,d+e-1$,

$$I_k = \{(m,n) \mid m+n+1 = k, -\frac{1}{e} \leq \frac{m}{e} - \frac{n}{d} \leq \frac{1}{d}, 0 \leq m < e, 0 \leq n < d\}.$$

Let V_k be the subset of I_k consisting pairs at which the function

$$(m,n) \mapsto p_{[0,e]}(m) + p_{[0,d]}(n)$$

takes on the minimal value. In this section we shall prove the following theorem.

Theorem 2.1. Let $p > 3D$. Then the arithmetic polygon of $[-e,d]$ is convex. Moreover, $(k,p_{[-e,d]}(k))$ $(0 < k < d+e)$ is a vertex if and only if V_k contains only one pair.

We begin with the following lemma.

Lemma 2.2. The set I_k contains one or two pairs. If $I_k = \{(m,n)\}$, then

$$-\frac{1}{e} < \frac{m}{e} - \frac{n}{d} < \frac{1}{d}.$$

If I_k contains exactly two pairs, then it is of form $\{(m,n), (m+1,n-1)\}$ with

$$\frac{m+1}{e} = \frac{n}{d}.$$

Proof. Define a degree function on \mathbb{Z} by

$$\deg(i) = \begin{cases} i/d, & i \geq 0, \\ -i/e, & i \leq 0. \end{cases}$$

There is a positive integer u such that

$$k = \#\{i \in \mathbb{Z} \mid \deg(i) \leq u/D\},$$

or

$$\#\{i \in \mathbb{Z} \mid \deg(i) \leq u/D\} < k < \#\{i \in \mathbb{Z} \mid \deg(i) \leq (u+1)/D\}.$$

If $k = \#\{i \in \mathbb{Z} \mid \deg(i) \leq u/D\}$, then I_k is of form $\{(m,n)\}$ with

$$-\frac{1}{e} < \frac{m}{e} - \frac{n}{d} < \frac{1}{d}.$$

If $\#\{i \in \mathbb{Z} \mid \deg(i) \leq u/D\} < k < \#\{i \in \mathbb{Z} \mid \deg(i) \leq (u+1)/D\}$, then I_k is of form $\{(m,n), (m+1,n-1)\}$ with

$$\frac{m+1}{e} = \frac{n}{d}.$$

The lemma is proved.

It is easy to see that Theorem 2.1 follows from the following three theorems.
Theorem 2.3. Let $k = 1, 2, \cdots, d + e - 1$. If V_k contains two pairs, then

$$2p_{[-e,d]}(k) = p_{[-e,d]}(k - 1) + p_{[-e,d]}(k + 1).$$

Theorem 2.4. Let $k = 1, 2, \cdots, d + e - 1$. If I_k contains two pairs but V_k contains only one pair, then

$$2p_{[-e,d]}(k) < p_{[-e,d]}(k - 1) + p_{[-e,d]}(k + 1).$$

Theorem 2.5. Let $p > 3D$. Let $k = 1, 2, \cdots, d + e - 1$. If I_k contains only one pair, then

$$2p_{[-e,d]}(k) < p_{[-e,d]}(k - 1) + p_{[-e,d]}(k + 1).$$

Proof of Theorem 2.3. Suppose that V_k contains two pairs. Then so does I_k. Assume that $I_k = \{(m,n), (m+1,n-1)\}$. Then $\frac{m+1}{e} = \frac{n}{d}$. It follows that $I_{k-1} = \{(m,n-1)\}$ and $I_{k+1} = \{(m+1,n)\}$. Note that

$$p_{[-e,d]}(k) = p_{[0,e]}(m) + p_{[0,d]}(n) = p_{[0,e]}(m + 1) + p_{[0,d]}(n - 1).$$

It follows that

$$2p_{[-e,d]}(k) = p_{[0,e]}(m) + p_{[0,d]}(n) + p_{[0,e]}(m + 1) + p_{[0,d]}(n - 1) = p_{[-e,d]}(k - 1) + p_{[-e,d]}(k + 1).$$

Theorem 2.3 is proved.

Proof of Theorem 2.4. Assume that $I_k = \{(m,n), (m+1,n-1)\}$. Then $\frac{m+1}{e} = \frac{n}{d}$. It follows that $I_{k-1} = \{(m,n-1)\}$ and $I_{k+1} = \{(m+1,n)\}$. Without loss of generality, we assume that $V_k = \{(m,n)\}$. Then

$$p_{[0,e]}(m) + p_{[0,d]}(n) < p_{[0,e]}(m + 1) + p_{[0,d]}(n - 1).$$

It follows that

$$2p_{[0,e]}(m) + 2p_{[0,d]}(n) < p_{[0,e]}(m) + p_{[0,d]}(n) + p_{[0,e]}(m + 1) + p_{[0,d]}(n - 1).$$

That is,

$$2p_{[-e,d]}(k) < p_{[-e,d]}(k - 1) + p_{[-e,d]}(k + 1).$$

Theorem 2.4 is proved.

Proof of Theorem 2.5. Assume that $I_k = \{(m,n)\}$. Then

$$\frac{1}{e} < \frac{m}{e} - \frac{n}{d} < \frac{1}{d}.$$

Let $(m_1,n_1) \in V_{k-1}$. Then $m_1 = m$ or $n_1 = n$. Without loss of generality, we assume that $m_1 = m$. Then $n_1 = n - 1$. Let $(m_2,n_2) \in V_{k+1}$. Then $m_2 = m$ or $n_2 = n$.

First, we assume that $m_2 = m$. Then $n_2 = n + 1$. Note that

$$p_{[0,d]}(n + 1) - p_{[0,d]}(n) \geq \frac{1}{p - 1}([p - 1]\frac{n + 1}{d} - 1),$$

and

$$p_{[0,d]}(n) - p_{[0,d]}(n - 1) \leq \frac{1}{p - 1}([p - 1]\frac{n}{d}],$$

and

$$[p - 1]\frac{n + 1}{d} < [p - 1]\frac{n}{d} - 1.$$

It follows that

$$2p_{[0,d]}(n) < p_{[0,d]}(n + 1) + p_{[0,d]}(n - 1).$$
Therefore
\[2p_{[0,e]}(m) + 2p_{[0,d]}(n) = p_{[0,e]}(m) + p_{[0,d]}(n + 1) + p_{[0,e]}(m) + p_{[0,d]}(n - 1). \]
That is,
\[2p_{[-e,d]}(k) < p_{[-e,d]}(k - 1) + p_{[-e,d]}(k + 1). \]
Secondly, we assume that \(n_2 = n \). Then \(m_2 = m + 1 \). Note that
\[p_{[0,e]}(m + 1) - p_{[0,e]}(m) \geq \frac{1}{p - 1} \left(\left\lceil \frac{m + 1}{e} \right\rceil - 1 \right), \]
\[p_{[0,d]}(n) - p_{[0,d]}(n - 1) \leq \frac{1}{p - 1} \left(\left\lceil \frac{n}{d} \right\rceil \right), \]
and
\[\left\lceil \frac{(p - 1)n}{d} \right\rceil < \left\lceil \frac{(p - 1)(m + 1)}{e} \right\rceil - 1. \]
It follows that
\[p_{[0,e]}(m) + p_{[0,d]}(n) < p_{[0,e]}(m + 1) + p_{[0,d]}(n - 1). \]
Therefore
\[2p_{[0,e]}(m) + 2p_{[0,d]}(n) < p_{[0,e]}(m + 1) + p_{[0,d]}(n) + p_{[0,e]}(m) + p_{[0,d]}(n - 1). \]
That is,
\[2p_{[-e,d]}(k) < p_{[-e,d]}(k - 1) + p_{[-e,d]}(k + 1). \]
Theorem 2.5 is proved.

3. HASSE POLYNOMIAL

For \(\vec{a} = (a_{-e}, \cdots, a_d) \in \mathbb{F}_q^{d+e+1} \), we write
\[f_{\vec{a}}(x) = \sum_{i=-e}^{d} a_i x^i. \]
It is easy to see that the Newton polygon of \(L(t, f_{\vec{a}}, \mathbb{F}_q) \) is independent of \(a_0 \). So one can take \(a_0 \) to be any preferred number. We take \(a_0 = 1 \) so that Lemmas 5.2 and 5.3 are expressed in a simpler form.

In this section we define a polynomial \(H \) such that the Newton polygon of \(L(t, f_{\vec{a}}, \mathbb{F}_q) \) coincides with the generic Newton polygon of \([-e,d]\) if and only if \(H(\vec{a}) \neq 0 \).

Definition 3.1. Let \(k = 1, 2, \cdots, d + e - 1 \) be such that \(V_k = \{(m, n)\} \). We define \(S_k \) to be the set of permutations \(\tau \) of \(\{-m, -m + 1, \cdots, n\} \) such that
\[
\tau(i) = \begin{cases}
\geq n - d \left\{ -\frac{e - n}{d} \right\}, & \text{if } i > 0, \\
= 0, & \text{if } i = 0, \\
\leq -m + e \left\{ \frac{d + m}{e} \right\}, & \text{if } i < 0.
\end{cases}
\]
Let
\[E(t) = \exp\left(\sum_{i=0}^{\infty} \frac{t^p}{p^i} \right). \]

It is a power series in \(\mathbb{Z}_p[[t]] \), and we call it the Artin-Hasse exponential series. We write
\[E(t) = \sum_{n=0}^{+\infty} \lambda_n t^n. \]

Definition 3.2. Let \(k = 1, 2, \ldots, d + e - 1 \) be such that \(V_k = \{(m, n)\} \). We write \(r_i = \begin{cases} n - d\left\lfloor \frac{p_i - n}{d} \right\rfloor + d, & 1 \leq i \leq n, \\ m - e\left\lfloor \frac{p_i + m}{e} \right\rfloor + e, & -m \leq i \leq -1. \end{cases} \)

We define a polynomial \(H_k \) in the variables \(x_{-e}, \ldots, x_d \), by
\[H_k(x) = \sum_{\tau \in S_k} u_\tau \prod_{i=-m}^{-1} x_{-r_i - \tau(i)} \prod_{i=1}^{n} x_{r_i - \tau(i)}, \]
where
\[u_\tau = \text{sgn}(\tau) \left(\prod_{i=1}^{n} \lambda_{\left\lfloor \frac{p_i - \tau(i)}{d} \right\rfloor} \lambda_{\left\lfloor \frac{p_i + \tau(i)}{e} \right\rfloor} \right) \prod_{i=-m}^{-1} \lambda_{\left\lfloor \frac{-p_i + \tau(i)}{e} \right\rfloor} \lambda_{\left\lfloor \frac{-p_i - \tau(i)}{d} \right\rfloor} \in \mathbb{Z}_p^\times. \]

Definition 3.3. The Hasse polynomial \(H \) of \([-e, d]\) is defined by
\[H = x_d x_{-e} \prod_{V_k=1} \hat{H}_k, \]
where \(\hat{H}_k \) is the reduction of \(H_k \) modulo \(p \).

We shall prove the following theorem.

Theorem 3.4. The Hasse polynomial \(H \) of \([-e, d]\) is non-zero.

Let \(k = 1, 2, \ldots, d + e - 1 \) be such that \(V_k = \{(m, n)\} \). It is easy to see that Theorem 3.4 follows from the following one.

Theorem 3.5. Among the monomials
\[\prod_{i=-m}^{-1} x_{-r_i - \tau(i)} \prod_{i=1}^{n} x_{r_i - \tau(i)}, \tau \in S_k, \]
there is a monomial which appears exactly once.

That theorem plays a crucial role in the determination of the generic Newton polygon of \([-e, d]\). In the case \(e = 0 \), Blache-Férand [BF] used Zhu’s maximal-monomial-locating technique to prove the theorem. In the case \(e > 0 \), the maximal-monomial-locating technique no longer works. Fortunately, a minimal-monomial-locating technique will play the role.

Set \(x_1 < x_2 < \cdots < x_d \) and \(x_{-1} < x_{-2} < \cdots < x_{-e} \). Define \(\prod_{i \in I} x_i > \prod_{j \in J} x_j \) and \(\prod_{i \in I} x_i > \prod_{j \in J} x_j \) if \(I \) and \(J \) are finite subsets of positive integers and there is an \(i \in I \) which is greater than all \(j \in J \). Define \(g_1 g_3 \geq g_2 g_4 \) if \(g_1, g_2, g_3, g_4 \) are monomials such that \(g_1 \geq g_2 \) and \(g_3 \geq g_4 \).

It is easy to see that Theorem 3.5 follows from the following one.
Theorem 3.6. Among the monomials
\[\prod_{i=-m}^{-1} x_{-r_i - \tau(i)} \prod_{i=1}^{n} x_{r_i - \tau(i)}, \quad \tau \in S_k, \]
the minimal monomial appears exactly once.

Proof. Note that \(r_i \neq r_j \) and \(r_i \neq r_j \) if \(i \) and \(j \) are distinct positive integers. So we can order them such that
\[
\begin{align*}
 r_{i_1} > r_{i_2} > \cdots > r_{i_n}, \quad i_j > 0,
\end{align*}
\]
and
\[
\begin{align*}
 r_{t_1} > r_{t_2} > \cdots > r_{t_m}, \quad t_j < 0.
\end{align*}
\]
Note that \(r_{i_j} \leq n + d \) and \(r_{t_j} \leq m + e \). So we have
\[
\begin{align*}
 r_{i_j} &\leq n + d + 1 - j, \quad \text{and} \quad r_{t_j} \leq m + e + 1 - j.
\end{align*}
\]
Recall that \(\tau \in S_k \) if and only if \(\tau(i) \geq r_i - d \) if \(i > 0 \), and \(\tau(i) \leq -r_i + e \) if \(i < 0 \). Hence, if we define \(\tau_0 \) by
\[
\begin{align*}
 \tau_0(i_j) &= n + 1 - j, \quad \text{and} \quad \tau_0(t_j) = -(m + 1 - j),
\end{align*}
\]
then \(\tau_0 \in S_k \).

We claim that, for any \(\tau \in S_k \),
\[
\prod_{j=1}^{n} x_{r_{i_j} - \tau(i_j)} \geq \prod_{j=1}^{n} x_{r_{i_j} - (n+1-j)}
\]
with equality holding if and only if \(\tau(i_j) = n + 1 - j \) for all \(1 \leq j \leq n \). Suppose that \(\tau(i_j) \neq n + 1 - j \) for some \(1 \leq j \leq n \). Let \(j_0 \) be the least one with this property. Then
\[
\tau(i_{j_0}) < n + 1 - j_0.
\]
Hence
\[
\begin{align*}
 r_{i_{j_0}} - \tau(i_{j_0}) > r_{i_{j_0}} - (n + 1 - j_0) \geq r_{i_j} - (n + 1 - j), \quad \text{for all} \quad j \geq j_0,
\end{align*}
\]
Therefore
\[
\prod_{j=1}^{n} x_{r_{i_j} - \tau(i_j)} > \prod_{j=1}^{n} x_{r_{i_j} - (n+1-j)}
\]
as claimed.

Similarly, we can prove that, for any \(\tau \in S_k \),
\[
\prod_{j=1}^{m} x_{-r_{t_j} - \tau(t_j)} \geq \prod_{j=1}^{m} x_{-r_{t_j} + (m+1-j)}
\]
with equality holding if and only if \(\tau(t_j) = -(m + 1 - j) \) for all \(1 \leq j \leq m \). It follows that the monomial
\[
\prod_{j=1}^{n} x_{r_{i_j} - (n+1-j)} \prod_{j=1}^{m} x_{-r_{t_j} + (m+1-j)}
\]
is minimal and occurs in the monomials
\[
\prod_{i=-m}^{-1} x_{-r_i - \tau(i)} \prod_{i=1}^{n} x_{r_i - \tau(i)}, \quad \tau \in S_k.
\]
The theorem is proved.

4. DWORK’S p-ADIC ANALYTIC METHOD

In this section we give a brief survey on Dwork’s p-adic analytic method. Proofs of theorems in this section may be omitted. Interested readers may consult [Dw62, Dw64] and [AS87, AS89] for detailed proofs.

Write $\mathbb{Z}_q := \mathbb{Z}_p[\mu_{q-1}]$ and $\mathbb{Q}_q := \mathbb{Q}_p(\mu_{q-1})$, where μ_n is the group of n-th roots of unity.

Recall that

$$E(t) = \exp\left(\sum_{i=0}^{\infty} \frac{t^p^i}{p^i}\right) = \sum_{n=0}^{+\infty} \lambda_n t^n \in \mathbb{Z}_p[[t]]$$

is the Artin-Hasse exponential series. Choose $\pi \in \mathbb{Q}_p(\mu_p)$ such that $E(\pi) = \psi(1)$. We have $\text{ord}_p(\pi) = \frac{1}{p-1}$ and $\sum_{i=0}^{\infty} \frac{\pi^p^i}{p^i} = 0$.

Let L be the Banach space over $\mathbb{Q}_q[\pi^{1/D}]$ with formal basis $\pi^{\deg(i)}x^i$, $i \in \mathbb{Z}$. That is, $L = L_0 \otimes_{\mathbb{Z}_q} \mathbb{Q}_q$ with $L_0 = \{ \sum_{i \in \mathbb{Z}} c_i \pi^{\deg(i)}x^i : c_i \in \mathbb{Z}_q[\pi^{1/D}] \}$.

The space is closed under multiplication. So it is an algebra.

For $\vec{a} = (a_{-e}, \cdots, a_d) \in \mathbb{F}_q^{d+e+1}$, we write

$$E_{\vec{a}}(x) := \prod_{i = -e}^{d} E(\pi a_i x^i),$$

where \hat{a}_i is the Teichmüler lifting of a_i. As each $E(\pi a_i x^i)$ lies in L, so does $E_{\vec{a}}$.

The Galois group $\text{Gal}(\mathbb{Q}_q/\mathbb{Q}_p)$ acts on L but keeps $\pi^{1/D}$ and x fixed. Let σ be the Frobenius element of that Galois group. Write

$$\hat{E}_{\vec{a}}(x) = \prod_{j=0}^{+\infty} E^{\sigma j}_{\vec{a}}(x^{p^j}).$$

Define an operator $\partial : L \to L$ by

$$\partial(g) = xg'(x) + g(x)x \frac{d \log \hat{E}_{\vec{a}}(x)}{dx}.$$

It is easy to see that L_0 is stable under ∂.

Define an operator $\psi_p : L \to L$ by

$$\psi_p \left(\sum_{i \in \mathbb{Z}} c_i x^i \right) = \sum_{i \in \mathbb{Z}} c_{pi} x^i.$$

And write

$$\Psi_p := \sigma^{-1} \circ \psi_p \circ E_{\vec{a}}.$$

That is,

$$\Psi_p (g) = \sigma^{-1}(\psi_p (gE_{\vec{a}})).$$

Note that Ψ_p is $\mathbb{Q}_p[\pi^{1/D}]$-linear, but $\mathbb{Q}_q[\pi^{1/D}]$-semi-linear.
Define $\Psi_p^n = \Psi_p^q$. So $\Psi_q^n = \Psi_q^q$. It is easy to check that Ψ_q is $\mathbb{Z}_q[\pi^{1/D}]$-linear. Moreover, we have

$$q\partial \Psi_q = \Psi_q \partial.$$

Let $\tilde{\Psi}_p$ be the induced operator of Ψ_p on $L/(\partial L)$. We have the following three theorems.

Theorem 4.1. We have

$$L(s, f, \mathbb{F}_q) = \det(1 - s\tilde{\Psi}_q | L/(\partial L) \text{ over } \mathbb{Q}_q(\pi^{1/D})).$$

Theorem 4.2. The q-adic Newton polygons of $\det(1 - s^b \tilde{\Psi}_q | L/(\partial L) \text{ over } \mathbb{Q}_q(\pi^{1/D}))$ and $\det(1 - s \tilde{\Psi}_p | L/(\partial L) \text{ over } \mathbb{Q}_p(\pi^{1/D}))$ coincide.

Theorem 4.3. Over $\mathbb{Z}_q[\pi^{1/D}]$, the lattice $L_0/(\partial L_0)$ has a basis represented by

$$\pi^{\deg(i)} x^i, -e \leq i \leq d - 1.$$

5. Elementary estimates

In this section we give some elementary estimates on the matrix coefficients of the operator $\tilde{\Psi}_p$ on $L/(\partial L)$.

Write

$$E_{\tilde{a}}(x) = \sum_{i \in \mathbb{Z}} \gamma_i x^i.$$

We have

$$\gamma_i = \sum_{\sum_{j=-e}^d n_j = i} \prod_{j=-e}^d \lambda_j \tilde{a}_j^{n_j}.$$

Definition 5.1. We write $\alpha = O(\pi^t)$ to mean that $\text{ord}_\pi(\alpha) \geq t$, where $\text{ord}_\pi(\cdot) = \frac{1}{\text{ord}_p(\pi) \text{ord}_p(\cdot)}$.

Lemma 5.2. If $i \geq 0$,

$$\gamma_i = \pi^\left\lfloor \frac{i}{d} \right\rfloor \lambda_{\left\lfloor \frac{i}{d} \right\rfloor} \lambda_{\left\{ \frac{i}{d} \right\}} \hat{a}_d^{\left\lfloor \frac{i}{d} \right\rfloor} \hat{a}_{\left\{ \frac{i}{d} \right\}} + O(\pi^\left\lceil \frac{i}{d} \right\rceil + 1).$$

Proof. If $\sum_{j=-e}^d j n_j = i$ ($n_j \geq 0$), then $\sum_{j=-e}^d n_j \geq \left\lfloor \frac{i}{d} \right\rfloor$ with equality holding if and only if

$$n_j = \begin{cases} \left\lceil \frac{i}{d} \right\rceil, & j = d \\ \left\{ \frac{i}{d} \right\}, & j = d \left\{ \frac{i}{d} \right\} \\ 0, & \text{otherwise}. \end{cases}$$

The lemma now follows.

Similarly, we have the following lemma.

Lemma 5.3. If $i < 0$,

$$\gamma_i = \pi^\left\lceil \frac{-i}{d} \right\rceil \lambda_{\left\lceil \frac{-i}{d} \right\rceil} \lambda_{\left\{ \frac{-i}{d} \right\}} \hat{a}_d^{\left\lceil \frac{-i}{d} \right\rceil} \hat{a}_{\left\{ \frac{-i}{d} \right\}} + O(\pi^\left\lfloor \frac{-i}{d} \right\rfloor + 1).$$

From the last two lemmas we infer the following corollary.
Corollary 5.4. We have
\[
\gamma_i = O(\pi^{\deg(i)}).
\]

Let \(F = (F_{ij})_{-e \leq i,j \leq d-1} \) be the matrix defined by
\[
\psi_p \circ E_{\mathbf{a}}(x^j) \equiv \sum_{i=-e}^{d-1} F_{ij} x^i \pmod{\partial L}.
\]

Lemma 5.5. Let \(p \geq 3D \), and \(-e \leq i,j \leq d-1\). We have
\[
F_{ij} = \gamma_{pi-j} + \begin{cases}
O(\pi^{\deg(p_i)+2}), & i \neq -e \\
O(\pi^p), & i = -e.
\end{cases}
\]

Proof. We have
\[
\psi_p \circ E_{\mathbf{a}}(x^j) = \sum_{i_0 \in \mathbb{Z}} \gamma_{pi_0-j} x^{i_0} = \sum_{i_0=-e}^{d-1} \gamma_{pi_0-j} x^{i_0} + \sum_{i_0 \not\in \{-e, \cdots, d-1\}} \gamma_{pi_0-j} x^{i_0}.
\]

For \(i_0 \not\in \{-e, \cdots, d-1\} \), we write
\[
\pi^{\deg(i_0)} x^{i_0} = \sum_{i=-e}^{d-1} c_{i_0} \pi^{\deg(i)} x^i \pmod{\partial L}, \quad c_{i_0} \in \mathbb{Z}_q[\pi^{1/(de)}].
\]

Then
\[
\psi_p \circ E_{\mathbf{a}}(x^j) = \sum_{i=-e}^{d-1} x^i (\gamma_{pi-j} + \sum_{i_0 \not\in \{-e, \cdots, d-1\}} c_{i_0} \pi^{\deg(i)-\deg(i_0)} \gamma_{pi_0-j}) \pmod{\partial L}.
\]

It follows that
\[
F_{ij} = \gamma_{pi-j} + \sum_{i_0 \not\in \{-e, \cdots, d-1\}} c_{i_0} \pi^{\deg(i)-\deg(i_0)} \gamma_{pi_0-j}.
\]

If \(i_0 \not\in \{-e, -(e-1), \cdots, d-1\} \), and \(i \neq -e \), we have
\[
\deg(i) - \deg(i_0) + \ord_{\pi}(\gamma_{pi_0-j}) \geq \deg(i) - \deg(i_0) + \deg(p_i) - 1
\]
\[
\geq \deg(p_i) + (p-1)(\deg(i_0) - \deg(i)) - 1
\]
\[
\geq \lceil \deg(p_i) \rceil + \frac{p-1}{D} - 1 \geq \lceil \deg(p_i) \rceil + 2.
\]

If \(i_0 \not\in \{-e, -(e-1), \cdots, d-1, d\} \), and \(i = -e \), we also have
\[
\deg(i) - \deg(i_0) + \ord_{\pi}(\gamma_{pi_0-j}) \geq \lceil \deg(p_i) \rceil + 2.
\]

If \(i_0 = d \), and \(i = -e \), we have
\[
\deg(i) - \deg(i_0) + \ord_{\pi}(\gamma_{pi_0-j}) \geq p.
\]

Therefore
\[
F_{ij} = \gamma_{pi-j} + \begin{cases}
O(\pi^{\deg(p_i)+2}), & i \neq -e \\
O(\pi^p), & i = -e.
\end{cases}
\]

The lemma is proved.
6. Generic polygon

In this section we prove Theorem 1.9. It follows immediately from the following theorem.

Theorem 6.1. Let \(p \geq 3D \). Then the \(q \)-adic Newton polygon of \(L(t, f_{\vec{a}}, \mathbb{F}_q) \) coincides with the arithmetic polygon of \([-e, d]\) if and only if \(H(\vec{a}) \neq 0 \).

Write
\[
\det(1 - s\bar{\Psi}_p \mid L/(\partial L) \text{ over } \mathbb{Q}_p(\pi^{1/D})) = \sum_{i=0}^{b(d+e)} (-1)^i c_i s^i.
\]

By Theorems 4.2 and 2.1, Theorem 6.1 follows from the following two theorems.

Theorem 6.2. Let \(p > 3D \). Let \(k = 1, 2, \cdots, d + e - 1 \) be such that \(V_k \) contains two pairs. Then
\[
\ord_q(c_{bk}) \geq p([-e, d]) (k).
\]

Theorem 6.3. Let \(p > 3D \). Let \(k = 1, 2, \cdots, d + e - 1 \) be such that \(V_k \) contains exactly one pair. Then
\[
\ord_q(c_{bk}) \geq p([-e, d]) (k)
\]
with equality holding if and only if \(\bar{H}_k(\vec{a}) \neq 0 \).

From now on, we suppose that \(q = p^b \), and let \(\zeta \) be a primitive \((q-1)\)-th roots of unity.

Definition 6.4. We define the matrix \(G = (G(i,u),(j,w))_{-e \leq i,j < d-1, 0 \leq u,w \leq b-1} \) by
\[
(\zeta^w)^{\sigma-1} F_{ij}^{\sigma-1} = \sum_{u=0}^{b-1} G(i,u),(j,w) \zeta^u.
\]

Lemma 6.5. We have
\[
\Psi_p(\zeta^w x^j) \equiv \sum_{i=-e}^{d-1} \sum_{u=0}^{b-1} G(i,u),(j,w) \zeta^u x^i \pmod{\partial L}.
\]

That is, \(G \) is the matrix of \(\bar{\Psi}_p \) with respect to the basis over \(\mathbb{Q}_p(\pi^{1/D}) \) represented by \(\zeta^u x^i, \ -e \leq i \leq d-1, 0 \leq u \leq b-1 \).

Proof. Recall that
\[
\psi_p \circ E_{\vec{a}}(x^j) \equiv \sum_{i=-e}^{d-1} F_{ij} x^i \pmod{\partial L}.
\]

So
\[
\Psi_p(\zeta^w x^j) \equiv (\zeta^w)^{\sigma-1} \sum_{i=-e}^{d-1} F_{ij}^{\sigma-1} x^i \pmod{\partial L}.
\]

By definition,
\[
(\zeta^w)^{\sigma-1} F_{ij}^{\sigma-1} = \sum_{u=0}^{b-1} G(i,u),(j,w) \zeta^u.
\]

The lemma now follows.
Corollary 6.6. We have
\[\det(1 - s\tilde{\Psi}_p \mid L/(\partial L) \text{ over } \mathbb{Q}_p(\pi^{1/D})) = \det(1 - sG). \]

In particular,
\[c_{bk} = \sum_T \det((G_{i,u},(j,w))(i,u),(j,w) \in T), \]
where \(T \) runs over subsets of
\[\{(i, u) \mid -e \leq i \leq d - 1, 0 \leq u \leq b - 1\} \]
with cardinality \(bk \).

Lemma 6.7. Let \(T_1 \) and \(T_2 \) be two finite sets with equal cardinality. Let \(g_1 \) and \(g_2 \) be real-valued functions on \(T_1 \) and \(T_2 \) respectively. Suppose that \(g_1 \) and \(g_2 \) agree on \(T_1 \cap T_2 \), and that \(g_2(t_2) \geq g_1(t_1) \) for \(t_2 \in T_2 \setminus T_1 \) and \(t_1 \in T_1 \setminus T_2 \). Then
\[\sum_{i \in T_2} g_2(t) \geq \sum_{i \in T_1} g_1(t). \]

Moreover, if \(g_2(t_2) > g_1(t_1) \) for \(t_2 \in T_2 \setminus T_1 \) and \(t_1 \in T_1 \setminus T_2 \), then the equality holds if and only if \(T_1 = T_2 \).

Proof. Obvious.

We are now ready to prove Theorem 6.2.

Proof of Theorem 6.2. It suffices to show that, for any subset \(T \) of
\[\{(i, u) \mid -e \leq i \leq d - 1, 0 \leq u \leq b - 1\} \]
with cardinality \(bk \), and any permutation \(\tau \) of \(T \), we have
\[\text{ord}_\pi\left(\prod_{(i,u) \in T} G_{i,u,\tau(i,u)} \right) \geq b(p-1)p_{[-e,d]}(k). \]

Let \(V_k = \{(m-1,n+1),(m,n)\} \). Then \(\frac{n+1}{d} = \frac{m}{e} \). Moreover, the cardinality of the set \(\{1 \leq i \leq m-1 \mid pi \equiv m \pmod{e}\} \) is equal to that of \(\{1 \leq i \leq n \mid pi \equiv n + 1 \pmod{d}\} \). Without loss of generality, we assume that both of them are of cardinality 1. Then
\[(p-1)p_{[-e,d]}(k) = \sum_{i=1}^{n} \left\lfloor \frac{pi - n}{d} \right\rfloor + \sum_{i=1}^{m-1} \left\lfloor \frac{pi - m + 1}{e} \right\rfloor + \left\lfloor \frac{(p-1)m}{e} \right\rfloor - 1. \]

Note that
\[\text{ord}_\pi(G_{i,u,\tau(i,u)}) = \text{ord}_\pi(F_{i,\tau(i)}). \]
So, if \(i > 0 \), then
\[\text{ord}_\pi(G_{i,u,\tau(i,u)}) \geq \begin{cases} \left\lfloor \frac{pi-n}{d} \right\rfloor, & \tau(i) \leq n, \\ \left\lfloor \frac{pi-n}{d} \right\rfloor - 1, & \tau(i) > n, \end{cases} \]
\[\begin{cases} \left\lfloor \frac{pi-m+1}{e} \right\rfloor, & i > n + 1. \end{cases} \]

Similarly, if \(i < 0 \), then
\[\text{ord}_\pi(G_{i,u,\tau(i,u)}) \geq \begin{cases} \left\lfloor \frac{-pi+1}{d} \right\rfloor, & \tau(i) \geq -m + 1, \\ \left\lfloor \frac{-pi-m+1}{e} \right\rfloor - 1, & \tau(i) \leq -m, \\ \frac{pm}{e} + 1, & i < -m. \end{cases} \]
Therefore
\[
\text{ord}_\pi \left(\prod_{(i,u) \in T} G_{(i,u), \tau((i,u))} \right) \geq \sum_{(i,u) \in T: 1 \leq i \leq n} \left\lfloor \frac{pi - n}{d} \right\rfloor + \sum_{(-i,u) \in T: 1 \leq i \leq m-1} \left\lfloor \frac{pi - m + 1}{e} \right\rfloor
+ \left\lfloor \frac{(p-1)m}{e} \right\rfloor \sum_{(i,u) \in T: i=n+1 \text{ or } i=-m} 1 + \sum_{(i,u) \in T: i>n+1 \text{ or } i<-m} \left\lfloor \frac{pm}{e} \right\rfloor
+ \left(\left\lfloor \frac{(p-1)m}{e} \right\rfloor - 1 \right) \sum_{(i,u) \in T: i=n+1 \text{ or } i=-m} 1 + \sum_{(i,u) \in T: i>n+1 \text{ or } i<-m} \left\lfloor \frac{pm}{e} \right\rfloor.
\]

By Lemma 6.7, we have
\[
\text{ord}_\pi \left(\prod_{(i,u) \in T} G_{(i,u), \tau((i,u))} \right) \geq b \left(\sum_{i=1}^{n} \left\lfloor \frac{pi - n}{d} \right\rfloor + \sum_{i=1}^{m-1} \left\lfloor \frac{pi - m + 1}{e} \right\rfloor + \left\lfloor \frac{(p-1)m}{e} \right\rfloor - 1 \right).
\]

The proof is completed.

It remains to prove Theorem 3.3

Lemma 6.8. Let \(p > 3D \). Let \(k = 1, 2, \ldots, d + e - 1 \) be such that \(V_k = \{(m, n)\} \). Then
\[
c_{bk} = \det((G_{(i,u), (j,w)})_{-m \leq i, j, 0 \leq u, w \leq b-1}) + O(\pi^{\min(1)\cdot\pi^{e\cdot\pi^{d}(k)+\frac{1}{2}}}).
\]

Proof. It suffices to show that, for any subset \(T \) of
\[
\{(i, u) \mid -e \leq i \leq d - 1, 0 \leq u \leq b - 1\}
\]
with cardinality \(bk \) which is different from \(\{-m, \ldots, n\} \times \{0, \ldots, b-1\} \), and any permutation \(\tau \) of \(T \), we have
\[
\text{ord}_\pi \left(\prod_{(i,u) \in T} G_{(i,u), \tau((i,u))} \right) > b(p - 1)\pi^{(p|e\cdot\pi^{d}(k)}(k).
\]

First we suppose that \(I_k = \{(m, n)\} \). Note that, if \(i > 0 \), then
\[
\text{ord}_\pi(G_{(i,u), \tau((i,u))}) \geq \begin{cases}
\left\lfloor \frac{pi - n}{d} \right\rfloor, & \tau(i) \leq n, \\
\left\lfloor \frac{pi - n}{d} \right\rfloor - 1, & \tau(i) = n, \\
\left\lfloor \frac{pm}{e} \right\rfloor + \frac{e}{d} - 2, & i > n.
\end{cases}
\]

Similarly, if \(i < 0 \), then
\[
\text{ord}_\pi(G_{(i,u), \tau((i,u))}) \geq \begin{cases}
\left\lfloor \frac{-pi - m}{e} \right\rfloor, & \tau(i) \geq -m, \\
\left\lfloor \frac{-pi - m}{e} \right\rfloor - 1, & \tau(i) = -m, \\
\left\lfloor \frac{pm}{e} \right\rfloor + \frac{e}{d} - 2, & i < -m.
\end{cases}
\]

So
\[
\text{ord}_\pi \left(\prod_{(i,u) \in T} G_{(i,u), \tau((i,u))} \right) \geq \sum_{(i,u) \in T: 1 \leq i \leq n} \left\lfloor \frac{pi - n}{d} \right\rfloor + \sum_{(-i,u) \in T: 1 \leq i \leq m} \left\lfloor \frac{pi - m}{e} \right\rfloor
\]
\[
\begin{align*}
&\sum_{(i,u)\in T: i>n} \left\lfloor \frac{pm}{d} \right\rfloor + \sum_{(i,u)\in T: i>m} \left\lfloor \frac{pm}{e} \right\rfloor \\
&+ \sum_{(i,u)\in T: i>n \text{ or } i<-m} \left(\frac{p}{D} - 2 \right) - \sum_{(i,u)\in T: \tau(i)>n \text{ or } \tau(i)<-m} 1 \\
&> \sum_{(i,u)\in T: 1\leq i\leq n} \left\lfloor \frac{pi - n}{d} \right\rfloor + \sum_{(i,u)\in T: 1\leq i\leq m} \left\lfloor \frac{pi - m}{e} \right\rfloor \\
&+ \sum_{(i,u)\in T: i>n} \left\lfloor \frac{pm}{d} \right\rfloor + \sum_{(i,u)\in T: i>m} \left\lfloor \frac{pm}{e} \right\rfloor
\end{align*}
\]

By Lemma 6.7, we have

\[
\text{ord}_n \left(\prod_{(i,u)\in T} G_{(i,u),\tau(i,u)} \right) > b(p - 1)p_{[-e,d]}(k).
\]

Secondly, we suppose that \(I_k \) contains two pairs. Without loss of generality, we may assume that \(I_k = \{(m,n), (m+1,n-1)\} \). Then \(\frac{m+1}{e} = \frac{n}{d} \),

\[
pi \equiv m + 1 (\text{ mod } e), \quad 1 \leq i \leq m,
\]

and there is exactly one \(1 \leq i \leq n - 1 \) such that

\[
pi \equiv n (\text{ mod } d).
\]

So

\[
(p - 1)p_{[-e,d]}(k) = \sum_{i=1}^{n-1} \left\lfloor \frac{pi - n + 1}{d} \right\rfloor + \sum_{i=1}^{m} \left\lfloor \frac{pi - m - 1}{e} \right\rfloor + \left\lfloor \frac{(p - 1)n}{d} \right\rfloor - 1.
\]

Note that, if \(i > 0 \), then

\[
\text{ord}_n(G_{(i,u),\tau(i,u)}) \geq \left\{ \begin{array}{ll}
\left\lfloor \frac{pi-n+1}{d} \right\rfloor, & \tau(i) \leq n - 1, \\
\left\lfloor \frac{pi-n+1}{d} \right\rfloor - 1, & \tau(i) \geq n, \\
\left\lfloor \frac{pm}{d} \right\rfloor + \frac{p}{d} - 2, & i > n.
\end{array} \right.
\]

Similarly, if \(i < 0 \), then

\[
\text{ord}_n(G_{(i,u),\tau(i,u)}) \geq \left\{ \begin{array}{ll}
\left\lfloor \frac{-pi-m-1}{e} \right\rfloor, & \tau(i) \geq -m - 1, \\
\left\lfloor \frac{-pi-m-1}{e} \right\rfloor - 1, & \tau(i) \leq -m - 1, \\
\left\lfloor \frac{pm}{e} \right\rfloor + \frac{p}{e} - 2, & i < -m - 1.
\end{array} \right.
\]

So

\[
\text{ord}_n \left(\prod_{(i,u)\in T} G_{(i,u),\tau(i,u)} \right) \geq \sum_{(i,u)\in T: 1\leq i\leq n} \left\lfloor \frac{pi - n + 1}{d} \right\rfloor + \sum_{(i,u)\in T: 1\leq i\leq m} \left\lfloor \frac{pi - m - 1}{e} \right\rfloor \\
+ \left\lfloor \frac{(p - 1)n}{d} \right\rfloor + \sum_{(i,u)\in T: i=n \text{ or } i=-m-1} 1 + \sum_{(i,u)\in T: \tau(i)>n \text{ or } \tau(i)<-m-1} \left\lfloor \frac{pm}{d} \right\rfloor \\
+ \sum_{(i,u)\in T: i>n \text{ or } i<-m-1} \left(\frac{p}{D} - 2 \right) - \sum_{(i,u)\in T: \tau(i)>n \text{ or } \tau(i)<-m-1} 1.
\]
If \(\{(i, u) \in T : i > n \text{ or } i < -m - 1\} \neq \emptyset \), then

\[
\text{ord}_\pi \left(\prod_{(i, u) \in T} G_{(i,u), \tau(i,u)} \right) > \sum_{(i, u) \in T : 1 \leq i < n} \left\lfloor \frac{pi - n + 1}{d} \right\rfloor + \sum_{(-i, u) \in T : 1 \leq i \leq m} \left\lfloor \frac{pi - m - 1}{e} \right\rfloor \\
+ \left\lfloor \frac{(p - 1)n}{d} \right\rfloor - 1 \sum_{(i, u) \in T : i = n} 1 + \left\lfloor \frac{(p - 1)m}{d} \right\rfloor - 1.
\]

By Lemma 6.7, we have

\[
\text{ord}_\pi \left(\prod_{(i, u) \in T} G_{(i,u), \tau(i,u)} \right) \geq \sum_{(i, u) \in T : 1 \leq i < n} \left\lfloor \frac{pi - n + 1}{d} \right\rfloor + \sum_{(-i, u) \in T : 1 \leq i \leq m} \left\lfloor \frac{pi - m - 1}{e} \right\rfloor \\
+ \left\lfloor \frac{(p - 1)n}{d} \right\rfloor - 1 \sum_{(i, u) \in T : i = n} 1 + \left\lfloor \frac{(p - 1)m}{d} \right\rfloor - 1.
\]

By Lemma 6.7, we also have

\[
\text{ord}_\pi \left(\prod_{(i, u) \in T} G_{(i,u), \tau(i,u)} \right) > \sum_{i=1}^{n-1} \left\lfloor \frac{pi - n + 1}{d} \right\rfloor + \sum_{i=1}^{m} \left\lfloor \frac{pi - m - 1}{e} \right\rfloor + \left\lfloor \frac{(p - 1)n}{d} \right\rfloor - 1.
\]

The proof is completed.

Definition 6.9. We write \(\alpha \sim \beta \) to mean that \(\alpha = u\beta \) for some \(p \)-adic unit \(u \).

Theorem 6.10. Let \(p > 3D \). Let \(k = 1, 2, \ldots, d + e - 1 \) be such that \(V_k = \{(m, n)\} \). Then

\[
c_{bb} \sim \det((F_{ij})_{-m \leq i,j \leq n})^b + O(b^{(p-1)[p-\varepsilon,d(k)+\frac{1}{2}]})
\]

Proof. It suffices to show that

\[
\det((G_{(i,u),(j,w)})_{-m \leq i,j \leq n,0 \leq u,w \leq b-1}) \sim \det((F_{ij})_{-m \leq i,j \leq n})^b.
\]

Let \(V = \oplus_{i=-m}^{n-1} Q_q(\pi_1/D)e_i \) be a \(k \)-dimensional vector space over \(Q_q(\pi_1/D) \) with standard basis \(e_{-m}, \ldots, e_n \). Let \(F = (F_{ij})_{-m \leq i,j \leq n} \) act on it in the standard way, and let \(\sigma \) act on it coordinate-wise. Then

\[
\sigma^{-1} \circ F(\zeta^we_i) = (\zeta^w)^{\sigma^{-1}} \sum_{i=-m}^{n} F_i^{-1}e_i.
\]

Therefore, \(G \) is the matrix of \(\sigma^{-1} \circ F \) on \(V \) with respect to the basis over \(Q_p(\pi_1/D) \):

\[
\zeta^we_i, \quad -m \leq i \leq n, 0 \leq u \leq b - 1.
\]

As \(\sigma \) is just a re-ordering of the basis, we have

\[
\det((G_{(i,u),(j,w)})_{-m \leq i,j \leq n,0 \leq u,w \leq b-1}) \sim \det((F_{ij})_{-m \leq i,j \leq n})^b.
\]

The theorem is proved.
Lemma 6.11. Let \(p > 3D \). Let \(k = 1, 2, \ldots, d + e - 1 \) be such that \(V_k = \{(m, n)\} \). Then
\[
\det((F_{ij})_{-m \leq i,j \leq n}) = \sum_{\tau \in S_k} \text{sgn}(\tau) \prod_{i=-m}^{n} F_{i,\tau(i)} + O(\pi^{(p-1)p^{(e,d)(k+1/D)}}).
\]

Proof. For \(j \leq n \), we have
\[
\left\lfloor \frac{p_i - j}{d} \right\rfloor = \left\lfloor \frac{p_i - n + (n-j)}{d} \right\rfloor \geq \left\lfloor \frac{p_i - n}{d} \right\rfloor
\]
with equality holding if and only if
\[
j \geq n - d\left\{ \frac{p_i - n}{d} \right\}.
\]
Similarly, for \(j \geq -m \), we have
\[
\left\lfloor \frac{-p_i + j}{e} \right\rfloor = \left\lfloor \frac{-p_i - m + (m+j)}{e} \right\rfloor \geq \left\lfloor \frac{-p_i - m}{e} \right\rfloor
\]
with equality holding if and only if
\[
j \leq -m + e\left\{ \frac{p_i + m}{e} \right\}.
\]
So, if \(\tau \notin S_k \) is a permutation of \(\{-m, -(m-1), \ldots, n\} \), then
\[
\text{ord}_\pi\left(\prod_{i=-m}^{n} F_{i,\tau(i)} \right) \geq \sum_{i=-m}^{n} \left\lfloor \text{deg}(p_i - \tau(i)) \right\rfloor
\]
\[
\geq 1 + \sum_{i=1}^{n} \left\lfloor \frac{p_i - n}{d} \right\rfloor + \sum_{i=1}^{m} \left\lfloor \frac{p_i - m}{e} \right\rfloor.
\]
Hence
\[
\det((F_{ij})_{-m \leq i,j \leq n}) = \sum_{\tau \in S_k} \text{sgn}(\tau) \prod_{i=-m}^{n} F_{i,\tau(i)} + O(\pi^{(p-1)p^{(e,d)(k+1/D)}}).
\]
The lemma is proved.

We are now ready to prove Theorem 6.3. By the above lemmas, it suffices to prove the following theorem.

Theorem 6.12. Let \(p > 3D \). Let \(k = 1, 2, \ldots, d + e - 1 \) be such that \(V_k = \{(m, n)\} \). Then
\[
\det((F_{ij})_{-m \leq i,j \leq n}) = \pi^{(p-1)p^{(e,d)(k)}} \hat{a}_d^u \hat{a}_e^v H_k(\tilde{a}) + O(\pi^{(p-1)p^{(e,d)(k+1/D)}}),
\]
where \(\tilde{a} = (\hat{a}_e, \ldots, \hat{a}_d) \), and \(u, v \) are integers depending on \(k \).

Proof. By Lemmas 6.11 and 5.3, we have
\[
\det((F_{ij})_{-m \leq i,j \leq n}) = \sum_{\tau \in S_k} \text{sgn}(\tau) \prod_{i=-m}^{n} \gamma_{p_i,\tau(i)} + O(\pi^{(p-1)p^{(e,d)(k+1/D)}}).
\]
By Lemmas 5.2 and 5.3, we have
\[
\gamma_{p_i,\tau(i)} = \begin{cases}
\pi^{\left\lfloor \frac{p_i - n}{d} \right\rfloor} \lambda_{\left\lfloor \frac{p_i - n}{d} \right\rfloor} \hat{a}_d^{\left\lfloor \frac{p_i - n}{d} \right\rfloor - 1} a_{r_i,\tau(i)} + O(\pi^{\left\lfloor \frac{p_i - n}{d} \right\rfloor}), & i > 0 \\
\pi^{\left\lfloor \frac{-p_i - m}{e} \right\rfloor} \lambda_{\left\lfloor \frac{-p_i - m}{e} \right\rfloor} \hat{a}_e^{\left\lfloor \frac{-p_i - m}{e} \right\rfloor - 1} a_{-e,\tau(i)} + O(\pi^{\left\lfloor \frac{-p_i - m}{e} \right\rfloor + 1}), & i < 0.
\end{cases}
\]
The theorem now follows.

References

[AS87] A. Adolphson and S. Sperber, Newton polyhedra and the degree of the L-function associated to an exponential sum, Invent. Math. 88 (1987), 555-567.
[AS89] A. Adolphson and S. Sperber, Exponential sums and Newton polyhedra: cohomology and estimates, Ann. Math. 130 (1989), 367-406.
[BF] R. Blache and E. Férard, Newton stratification for polynomials: the open stratum, J. Number Theory, 123 (2007), 456-472.
[BFZ] R. Blache, E. Férard and J.H. Zhu, Hodge- Stickelberger polygons for L-functions of exponential sums of $P(x^s)$, preprint, 2007.
[Dw62] B. Dwork, On the zeta function of a hyper surface, Publ. Math. I.H.E.S. 12 (1962), 5-68.
[Dw64] B. Dwork, On the zeta function of a hyper surface II, Ann. Math. 80 (1964), 227-299.
[H01] Shaofang Hong, Newton polygons of L-functions associated with exponential sums of polynomials of degree four over finite fields, Finite Fields & Appl. 7 (2001), 205-237.
[H02] Shaofang Hong, Newton polygons for L-functions of exponential sums of polynomials of degree six over finite fields, J. Number Theory. 97 (2002), 368-396.
[K76] N. Katz, Slope filtration of F-crystals, Astérisque 63 (1976), 113-163.
[K80] N. Katz, Sommes exponentielles, Astérisque 79 (1980).
[Ma] B. Mazure, Frobenius and the Hodge filtration, Bull. Amer. Math. Soc. 78 (1972), 653-667.
[Se] J-P. Serre, Algèbre locale. Multiplicités, Lecture Notes in Math. 11, Springer, Berlin-Heidelberg-New York, 1965.
[W93] D. Wan, Newton polygons of zeta functions and L-functions, Ann. Math. 137 (1993), 247-293.
[W04] D. Wan, Variation of p-adic Newton polygons for L-functions of exponential sums, Asian J. Math. 8 (2004), 427-474.
[Ya] R. Yang, Newton polygons of L-functions of polynomials of the form $x^d + \lambda x$, Finite Fields & Appl., 9 (2003), no. 1, 59-88.
[Zhu03] H. J. Zhu, P-adic variation of L-functions of exponential sums I, Amer. J. Math. 125 (2003), 669-690.
[Zhu04] H. J. Zhu, Asymptotic variation of L-functions of one-variable exponential sums, J. Reine. Angew. Math. 572 (2004), 219-233.
[Zhu04] H. J. Zhu, L-functions of exponential sums over one-dimensional affinoids : Newton over Hodge, Inter. Math. Research Notices, no 30 (2004), 1529-1550.

The School of Mathematical Sciences, Beijing Normal University, Beijing 100875