Original Article

Hepatitis C Genotype 4: Genotypic Diversity, Epidemiological Profile, and Clinical Relevance of Subtypes in Saudi Arabia

Hamad I Al Ashgar, Mohammed Q. Khan, Mohammed Al-Ahdal1, Sahar Al Thawadi2, Ahmad Salem Helmy1,3, Ahmed Al Qahtani1,3, Faisal M. Sana1,4

ABSTRACT

Background/Aim: Hepatitis C virus genotypes 4 (HCV-4) is the most prevalent genotype in Saudi Arabia, although its various subtypes, mode and route of transmission remains unknown. The aim of this study was to analyze (i) the variability of the HCV-4 subtypes, the route and source of HCV transmission and (ii) the influence of HCV-4 subtypes on their therapeutic response. Patients and Methods: Sixty-four HCV-4 patients were analyzed retrospectively for the prevalence of various sub-genotypes and the possible mode of transmission, and it was correlated with their treatment response to pegylated interferon (PEG-IFN) α-2a and ribavirin therapy. Results: Positive history of blood or blood products transfusion was noted in 22 patients (34%), hemodialysis in 10 patients (15.6%), surgery in 7 patients (11%), and unknown etiology in 25 patients (39%). Prevalence of HCV-4 subtypes was 4a 48.4% (31/64), 4d 39% (25/64), 4n 6.25% (4/64), and remaining combined (4m, 4l, 4r, 4o) 6.25% (4/64). No significant correlation between subtypes and the source of transmission was recognized (P = 0.62). Sustained virological response in all HCV-4 patients was 64% (41/64), while in each subtypes separately it was 4a 77.4% (24/31), 4d 52% (13/25), and combined (4m, 4l, 4r, 4o) 62.5% (5/8) (P = 0.046). Conclusion: No obvious cause for the mode of HCV transmission was noted in majority of the patients. No significant correlation was observed between HCV-4 subtypes and the source of HCV infection. 4a and 4d subtypes were the most common in Saudi Arabia, and patients infected with 4a subtype responded significantly better to combination therapy than to 4d subtype.

Key Words: Hepatitis C virus, HCV genotype 4, subtypes of HCV-4

Received: 11.6.2012 Accepted: 04.10.2012

How to cite this article: Al Ashgar HI, Khan MQ, Al-Ahdal M, Al Thawadi S, Helmy AS, Al Qahtani A, et al. Hepatitis C genotype 4: Genotypic diversity, epidemiological profile, and clinical relevance of subtypes in Saudi Arabia. Saudi J Gastroenterol 2013;19:28-33.
known in Saudi Arabia, such knowledge is crucial for clinical and epidemiological analyses that will be required for the development of effective vaccines and antiviral therapies against HCV-4.

PATIENTS AND METHODS

Patients
Sixty-four consecutive adult Saudi patients with chronic HCV-4, who were referred to King Faisal Specialist Hospital and Research Center (KFSHRC) between 2006 and 2008, treated with PEG-IFN α-2a and ribavirin, and had completed 48 weeks of treatment, were included in this study. Pre-treatment demographic, clinical, biochemical, serological, and virological data were retrieved from our previous database that was established while assessing the sustained virological response (SVR) to combination therapy. Serum samples collected for routine HCV quantification and genotyping in the molecular diagnostics laboratory were used for HCV-4 subtyping. All samples were stored at −70°C until assayed. The study was approved by the ethics committee of KFSHRC Research Advisory Council.

Treatment
All patients were treated with PEG-IFN α-2a 180 µg subcutaneously once weekly (Pegasys, F. Hoffmann-LaRoche, Basel, Switzerland) and ribavirin twice daily (Copegus, F. Hoffmann-LaRoche, Basel, Switzerland) at a total daily dose of 1000 mg for patients weighing <75 kg, and 1200 mg daily for those ≥75 kg. This standard combination therapy was administered for a total of 48 weeks and patient’s follow-up was continued for another 24 weeks after completion of treatment to achieve SVR. RVR was defined as undetectable HCV RNA (<15 IU/ml) after 4 weeks of therapy, and EVR were defined as ≥ 2 log_10 reduction in serum HCV RNA at 12 weeks of treatment. End of treatment virological response (ETVR) and SVR were defined as viral load < 15 IU/ml at 48 weeks and 24 weeks after the end of treatment, respectively. Pretreatment phylogenetically analyzed subtypes were assessed by univariate analyses in relation with the EVR, ETVR, and SVR.

HCV-RNA quantification
The concentration of HCV-RNA was determined by reverse transcription PCR of plasma using CobasAmplicor HCV Monitor version 2.0 (Roche Diagnostics, Branchburg, NJ) following manufacturer’s instructions. HCV-RNA quantification was performed at 4, 12, 48, and 72 weeks of therapy.

HCV Genotype
HCV genotype was performed using INNO-LiPA HCV II (Innogenetics NV, Ghent, Belgium).

Subgenotyping of HCV
Nucleic acids were extracted from sera using QIAamp MinElute Virus Spin Kit (QIAGEN, Santa Clarita, CA, USA) following manufacturer’s instructions. Extracted RNA was converted to cDNA as described before. Subgenotyping was performed according to the procedures described by Murphey et al. PCR product were sequenced using BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) following manufacturer’s recommendations. DNA sequence was then analyzed using BLASTN 2.2.23+ software (http://www.ncbi.nlm.nih.gov/blast/) against all sequences in the database for subgenotyping of each sample. The sequence that showed the lowest value and maximum identity was taken as the subgenotype of the sample analyzed.

Statistical analysis
Data were collected initially in a specialized data collection form, introduced into a Microsoft Excel worksheet, and finally transferred to the statistical package for social sciences (SPSS) version 13.0 (SPSS, Chicago, IL, USA) for analysis. Results were reported as mean ± SD. HCV RNA levels were logarithmically transformed for analysis. Continuous variables were compared using the two-tailed t-test. Categorical data were compared using the two-tailed χ² test or Fisher’s exact test. Factors associated with any specific subtype were analyzed by univariate analysis. P values ≤0.05 were considered statistically significant.

RESULTS

The average age of 64 (male:female = 41:23) Saudi patients was 38.7 ± 11.5 years. There was a positive history of transfusion of blood or blood products in 22 patients (34%) before 1991, while 25 patients (39%) did not give history of any significant illness in their life that could be attributed to the mode of HCV transmission. Another 10 patients (16%) were infected during the period of dialysis (they were HCV negative before the initiation of dialysis), and the remaining 7 (11%) had definite history of surgery (before 1991) but denied receiving blood transfusion [Figure 1]. None of the patient in our cohort had a history of IV drug abuse and only one patient had HIV that was transmitted by factor VIII (AIFH) transfusion (before the discovery of HCV virus). No family history of HCV infection and no history of vertical or sexual transmission were reported.

The prevalence of HCV-4 sub-genotypes were 4a = 48.4% (31/64), 4d = 39% (25/64), 4n = 6.25% (4/64), and the remaining combined sub-genotypes were 12.4% (4n was 4/64 = 6.25%, while others 4o = 1 (1.5%), 4l = 1 (1.5%), 4m = 1 (1.5%), and 4r = 1 (1.5%). The most common HCV-4 subtype in our cohort was 4a (48%), followed by 4d (39%) and then 4n (6.25%) [Figure 2].
The details of the various modes of transmissions and the distribution of HCV-4 subtypes are shown in Table 1. There was no significant relationship between the various subtypes and the route of transmission, \((P = 0.6296) \). There was no history of blood transfusion, minor or major surgery, hemodialysis, IV drug abuse, or any unusual sexual behavior in 25 patients (unknown etiology: 39%), with the majority belonging to subtype 4d. Out of the 64 patients, 22 (34%) reported a history of blood transfusion (subtype 4a 12/22 patients: 54%).

RVR, EVR, ETVR, and SVR were obtained in 18.8% (12/64), 81.0% (47/58), 81.0% (47/58), and 64.1% (41/64), respectively. Of the patients with RVR and EVR, 83% and 87.2% achieved SVR, respectively. The overall SVR in HCV-4 patients in our cohort was 64% (41/64), where 81.25% (52/64) were treatment naïve. When we analyzed the SVR in various sub-genotypes, 4a was achieved in 77% (24/31), 4d in 52% (13/25), and combined (4n, 4m, 4l, 4r, 4o) in 62.5% (5/8) the difference of response was statistically significant \((P = 0.046) \) [Figure 3].

DISCUSSION

The importance of HCV genotyping has considerably increased in the past few years. Genotyping has also been used to study relationships between type/subtype to epidemiology, clinical status, pathogenesis, and the outcome of a disease. Previous studies have confirmed the predominance of HCV genotype 4 (60-80%) in Saudi Arabia, but there is no sufficient data available on HCV-4 subtype. This study was designed to analyze the prevalence of HCV-4 subtypes and their effect on the spread of HCV infection in Saudi Arabia. There is only one previous report published regarding the prevalence of HCV-4 subtypes in Saudi Arabia which while reporting the prevalence of all HCV genotypes, also reported on the prevalent subtypes: 4c/4d: 33%, 4e: 7%, 4h: 14%, 4i: 20%, 1b: 14%, 3a: 5%, 5a: 1%, and 6a: 1%, but there was no specific reporting for HCV-4 subtype. Versant HCV genotype assay (LiPA) 1.0, used in a previous study, had an overall accuracy of 74% for the subtypes, while the new assay outperforms the previous version of the line probe assay. The newer Versant HCV genotype assay (LiPA) 2.0 (used in the present study) yields an interpretable genotype result for 96% of the samples, and 99.4% of the interpretable results agreed with the reference method, rendering it an accurate and reliable assay for genotyping. Many studies have shown that the NS5B region is discriminative for determining HCV genotypes and their subtypes. As such, in the present study, HCV subtype was determined by sequencing a fragment within NS5B region of the HCV genome.

In our cohort, predominant subtype among HCV-4 was 4a (48%) followed by 4d (39%), while in neighboring Egypt, the distribution of HCV-4 subtypes were completely diverse: 4a was detected in 80.6%, whereas 4g, 4l, 4n, 4o, 4f, and 4m were identified in 7.7%, 4.7%, 3.9%, 1.6%, 0.8%, and 0.8% of cases, respectively. Surprisingly, 4d was rarely reported (<1%) from Egypt. However, the route of transmission of HCV in any region detects the incidence of genotype and subtypes for that particular region. The spread of 4a infection in Egypt coincided with the mass campaigns of intravenous antimony treatment for schistosomiasis. In Saudi Arabia, 4a has been mainly imported from Egypt via blood donation from Egyptian volunteers in Saudi Arabia, and surgical procedures or IM/IV injections undertaken in rural Egypt. The higher prevalence (48%) of 4a subtypes among Saudi patients is attributed to many factors, including the presence of workers from the Middle East, in addition to African and Asian nationalities with higher incidence of 4a. These individuals may have donated blood that had been used among Saudi patients before the era of HCV testing as observed in our cohort, where 39% of 4a patients had history of blood transfusion. Sexual transmission may also occur, although it is less frequently noted from this region. Arif et al. clearly indicated that the intra-familial transmission of HCV was not the route

![Figure 1: Possible mode of hepatitis C virus transmission](Image)
of transmission among Saudis and their results argued against sexual transmission of HCV despite a relatively long duration of marriage. This hypothesis is supported by our data as there was no history of HCV transmission reported among spouses. Another large epidemiological study in 2008 from Saudi Arabia[^30] reported that HCV infection in children (0.012%) was much lower than that among adults (0.202%), suggesting that perinatal and childhood transmission was not a major mode of infection. In our cohort, none of the patients had a history of vertical transmission.

All European studies on HCV-4[^31-36] confirmed the presence of 4d in almost similar percentage (32-55%) as seen in Saudi Arabia, where 4a was mainly transmitted to Europe through IV drugs abusers from the Middle East and central African countries. In the present study, only a minority of 4d patients (4%, 6/25) had a history of blood transfusion. Mode of transmission was unknown in majority of 4d subtype (52%, 13/25), where no history of blood transfusion, surgery, dialysis, IV drug abuse, or abnormal sexual behavior was reported. In Saudi Arabia, the mode of transmission in 39% patients is unknown, but sporadic iatrogenic transmission is possible though not evident by previous studies from Saudi Arabia. Probably, in those group of patients, the infection might have occurred by needle-stick injuries among medical personnel, circumcision, cupping (Hijama), tattooing, ear and body piercing, razor sharing at barber shop, contaminated endoscopy, inadequately sterilized needles and syringes, tooth brush or syringe sharing, and unhygienic dental procedures. These varied probable causes could explain the presence of different subtypes among Saudi patients. There is a need to extend the molecular epidemiology for more prospective larger scale studies to other regions of the country to obtain a better evaluation of the HCV epidemic dynamics in Saudi Arabia.

Knowledge of HCV genotypes is essential not only for epidemiological reasons but also from a clinical standpoint. The overall SVR in HCV-4 patients in our cohort was 64% (41/64); this improved response to combination therapy was related to the inclusion of mostly naïve patients (81.25%) who had strict compliance to 48 weeks of combination therapy. We also analyzed the SVR in various subtypes, 4a achieved 77% (24/31), 4d 52% (13/25), and combined subtype 62.5% (5/8), and the difference of response was statistically significant ($P = 0.046$). A previous retrospective study[^37] showed similar response that was observed in French patients infected with HCV-4, where subtype 4a had significantly higher rate of SVR (58%) than subtype 4d (43%, $P = 0.053$). It was unclear from this study whether the difference in SVR was related to ethnicity, HIV infection, or IV drug use. Another study[^38] from France has reported a poorer response to 4d group of 10 HIV-positive patients, who were acutely infected. None of the 10 patients treated early with antiviral therapy had SVR, suggesting that this subtype is less sensitive to interferon-based therapy. However, in another larger study[^39] also from France, observed no significant difference in the virological responses of various HCV-4 subtypes. They reported SVR among 4a (51.3%), 4d (51.7%), and other subtypes (48%, $P = 0.16$), where 31.8% of the subjects were co-infected with HIV, 14% were cirrhotic, and 22% had received interferon therapy in the past; these factors did affect the response to therapy. Response to therapy in various other subtypes has not been reported earlier, except a very recent publication[^40] that showed the influence of HCV-1 subtypes on the virus response to combination therapy, where patients infected with HCV subtype 1b had a higher probability of SVR than those infected with subtype 1a.

In summary, around 60% of our cohort had H/O surgery, blood transfusion, or hemodialysis, but the remaining 40% did not have any significant history attributed to HCV infection.
where the mode of transmission can only be speculated as unknown. No significant correlation was observed between HCV-4 subtypes and the source of HCV infection.

ACKNOWLEDGEMENT

The authors are grateful to Mr. Syed Zeeshan Qadri (Statistician) for his statistical and scientific contributions to accomplish this study.

REFERENCES

1. World Health Organization. Hepatitis C. WHO fact sheet 164. Available from: http://www.who.int/mediacentre/factsheets/fs164/en/print.html [Last accessed on 2007 May 21].
2. Abd A, Sanai FM, Al-Faleh FZ. Epidemiology of viral hepatitis in Saudi Arabia: Are we off the hook? Saudi J Gastroenterol 2012;18:349-57.
3. Bashwari LA, Fawaz NA, Ahmad MS, Qadi AA, Almawi WY. Prevalence of seromarkers of HBV and HCV among blood donors in eastern Saudi Arabia, 1998-2001. Clin Lab Haematol 2004;26:225-8.
4. El-Hazmi MM. Prevalence of HBV, HCV, HIV-1, 2 and HTLV-I infections among blood donors in a teaching hospital in the Central region of Saudi Arabia. Saudi Med J 2004;25:26-33.
5. Shobokshi OA, Serebour FE, Al-Drees AZ, Mitwalli AH, Qahtani A, Skaikni IJ. Hepatitis C virus seroprevalence rate among Saudis. Saudi Med J 2003;24:81-6.
6. Osoba AO, Ibrahim M, Abdelao MA, Al-Mowallad A, Al Shareef B, Hussein BA. Hepatitis C virus genotype by polymerase chain reaction and DNA enzyme immunoassay among Saudi patients in the Western Province, Saudi Arabia. Ann Saudi Med 2000;20:394-7.
7. Kuiken C, Yuzum K, Boykin L, Richardson R. The Los Alamos HCV sequence database. Bioinformatics 2005;21:379-84.
8. Simmonds P, Buble J, Combet C, Deleage G, Enomoto N, Feinstone S, et al. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 2005;42:962-73.
9. Abdel Hamid M, El Daly M, Molnegren V, El-Kafrawy S, Abdel-Latif S, Remmel JM. The Los Alamos HCV sequence database. Bioinformatics 2005;21:379-84.
10. Albilash C, Flisiak R, Kowalczyk O, Wiercińska-Drapalo A, Pytel-Kroczuk B, Prokopowicz D, et al. High prevalence of genotype 4 among hepatitis C virus-infected intravenous drug users in North-Eastern Poland. J Med Virol 2008;80:615-18.
11. Ashgar H, Helmy A, Khan MQ, Al Khatani K, Al Quaiz MA, Rezeig M, et al. Predictors of sustained virological response to a 48-week course of pegylated interferon alfa-2a and ribavirin in patients infected with hepatitis C virus genotype 4. Ann Saudi Med 2009;29:4-14.
12. Ashgar, et al. Genetic diversity in hepatitis C virus in Egypt and possible association with hepatocellular carcinoma. J Gen Virol 2007;88:1526-31.
13. van Asten L, Verhaest I, Lamzira S, Hernandez-Aguado I, Zangerle R, et al. High prevalence of genotype 4c and subtypes in Saudi Arabia. J Hum Virol 2011;8:1015-23.
14. El-Ahdal MN, Rezeig MA, Kessig G. Genotyping of hepatitis C virus isolates from Saudi patients by analysis of sequences from PCR-amplified core region of the virus genome. Ann Saudi Med 1997;17:601-4.
15. Boriskin YS, Bakir TM, Al-Aska AI, Booth JC. Is hepatitis C virus genotype 4 predominant in Saudi Arabia? New Microbiol 1999;22:173-80.
16. Osoba AO. Hepatitis C virus genotype in Saudi Arabia. Saudi Med J 2002;23:7-12.
17. Fayekeh M, Zaki AM. Hepatitis C: Prevalence and common genotype among ethnic groups in Jeddah, Saudi Arabia. Am J Trop Med Hyg 1996;61:889-92.
18. Shobokshi OA, Serebour FE, Slakni IJ, Al-Saffy YH, Al-Hamad MN, Hepatitis C genotypes and subtypes in Saudi Arabia. J Med Virol 1999;58:44-8.
19. Burbeek J, Stanley MJ, Sieh J, Celis L, Huyck E, Wollants E, et al. Evaluation of Versant hepatitis C virus genotype assay (LiPA-2). J Clin Microbiol 2008;46:1901-6.
20. Saffar FE, Slakni IJ, Al-Saffy YH, Al-Hamad MN, Hepatitis C genotypes and subtypes in Saudi Arabia. J Med Virol 2000;20:394-7.
21. Al-Qahtani AA, Rubino S, Al-Ahdal MN. Sequence variation of the HVR1 untranslated region sequences. J Clin Microbiol 2007;45:1102-12.
22. Schreier E, Roggendorf M, Driselig M, Hohe M, Viazov S. Genotypes of hepatitis C virus isolates from different parts of the world. Arch Virol 1996;111:185-93.
23. Al-Ahdal MN, Rezeig MA, Kessig G. Genotyping of hepatitis C virus isolates from Saudi patients by analysis of sequences from PCR-amplified core region of the virus genome. Ann Saudi Med 1997;17:601-4.
24. Boriskin YS, Bakir TM, Al-Aska AI, Booth JC. Is hepatitis C virus genotype 4 predominant in Saudi Arabia? New Microbiol 1999;22:173-80.
25. Osoba AO. Hepatitis C virus genotype in Saudi Arabia. Saudi Med J 2002;23:7-12.
26. Fakeeh M, Zaki AM. Hepatitis C: Prevalence and common genotype among ethnic groups in Jeddah, Saudi Arabia. Am J Trop Med Hyg 1996;61:889-92.
27. Shobokshi OA, Serebour FE, Slakni IJ, Al-Saffy YH, Al-Hamad MN, Hepatitis C genotypes and subtypes in Saudi Arabia. J Med Virol 1999;58:44-8.
28. Saffar FE, Slakni IJ, Al-Saffy YH, Al-Hamad MN, Hepatitis C genotypes and subtypes in Saudi Arabia. J Med Virol 2000;20:394-7.
29. Al-Qahtani AA, Rubino S, Al-Ahdal MN. Genotyping of hepatitis C virus isolates from Saudi patients by analysis of sequences from PCR-amplified core region of the virus genome. Ann Saudi Med 1997;17:601-4.
30. Boriskin YS, Bakir TM, Al-Aska AI, Booth JC. Is hepatitis C virus genotype 4 predominant in Saudi Arabia? New Microbiol 1999;22:173-80.
31. Osoba AO. Hepatitis C virus genotype in Saudi Arabia. Saudi Med J 2002;23:7-12.
32. Fakeeh M, Zaki AM. Hepatitis C: Prevalence and common genotype among ethnic groups in Jeddah, Saudi Arabia. Am J Trop Med Hyg 1996;61:889-92.
33. Shobokshi OA, Serebour FE, Slakni IJ, Al-Saffy YH, Al-Hamad MN, Hepatitis C genotypes and subtypes in Saudi Arabia. J Med Virol 1999;58:44-8.
4d in Malaga (Spain): phylogenetic and epidemiological analyses. J Med Virol 2006;78:1429-35.

36. Katsoulidou A, Sypsa V, Tassopoulos NC, Boletis J, Karafoulidou A, Ketikoglou I, et al. Molecular epidemiology of hepatitis C virus (HCV) in Greece: Temporal trends in HCV genotype-specific incidence and molecular characterization of genotype 4 isolates. J Viral Hepat 2006;13:19-27.

37. Roulot D, Bourcier V, Grando V, Deny P, Baazia Y, Fontaine H, et al. Observational VHC4 Study Group. Epidemiological characteristics and response to peginterferon plus ribavirin treatment of hepatitis C virus genotype 4 infection. J Viral Hepat 2007;14:460-7.

38. Serpaggi J, Chaix ML, Batisse D, Dupont C, Vallet-Pichard A, Fontaine H, et al. Sexually transmitted acute infection with a clustered genotype 4 hepatitis C virus in HIV-1-infected men and inefficacy of early antiviral therapy. AIDS 2006;20:233-40.

39. Legrand-Abravanel F, Colson P, Leguillou-Guillemette H, Alric L, Ravaux F, Lunel-Fabiani F, et al. Influence of the HCV subtype on the virological response to pegylated interferon and ribavirin therapy. J Med Virol 2009;81:2029-35.

40. Nicot F, Alric L, Barange K, Métivier S, Dramard JM, Combis JM, et al. Influence of HCV genotype 1 subtypes on the virus response to PEG interferon alpha-2a plus ribavirin therapy. J Med Virol 2011;83:437-44.

Source of Support: Nil,

Conflict of Interest: Dr. Sanai is a consultant for, advises, is on the speakers’ bureau of, and received grants from Bristol-Myers Squibb. He is a consultant for, and has advised Scherring-Plough and Merck Sharp-Dohme, is on the speakers’ bureau of, and received grants from Roche and Glaxo Smith-Kline. Al-Ashgar is a consultant for, advises, and is on the speakers’ bureau of Bristol-Myers Squibb.

New features on the journal’s website

Optimized content for mobile and hand-held devices
HTML pages have been optimized of mobile and other hand-held devices (such as iPad, Kindle, iPod) for faster browsing speed. Click on [Mobile Full text] from Table of Contents page.

This is simple HTML version for faster download on mobiles (if viewed on desktop, it will be automatically redirected to full HTML version)

E-Pub for hand-held devices
EPUB is an open e-book standard recommended by The International Digital Publishing Forum which is designed for reflowable content i.e. the text display can be optimized for a particular display device. Click on [EPub] from Table of Contents page.

There are various e-Pub readers such as for Windows: Digital Editions, OS X: Calibre/Bookworm, iPhone/iPod Touch/iPad: Stanza, and Linux: Calibre/Bookworm.

E-Book for desktop
One can also see the entire issue as printed here in a ‘flip book’ version on desktops. Links are available from Current Issue as well as Archives pages. Click on View as eBook.