Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Treatment of a case of COVID-19 by intravenous immunoglobulin

Mustafa Çolaka, Serdar Kalemcb, Aydin Sarhanc,*

a Department of Chest Diseases, Isparta City Hospital, Isparta, Turkey
b Department of Chest Diseases, Medical Park Gehrze Hospital, Kocaeli, Turkey
c Department of Emergency Medicine, Manisa City Hospital, Manisa, Turkey

Article info

Article history:
Received 11 May 2020
Received in revised form 17 November 2020
Accepted 6 December 2020
Available online 24 December 2020

Keywords:
COVID-19
Coronavirus
intravenous immunoglobulin

Abstract

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus. Since the first cases were reported by China in December 2019, an outbreak has emerged. The World Health Organization (WHO) named the disease caused by SARS-CoV-2 as coronavirus disease 2019 (COVID-19) [1]. As of today, no specific treatment has been found for COVID-19. Intravenous immunoglobulin (IVIG) therapy has been used for the prevention of life-threatening infections in patients with primary and secondary immune deficiencies and autoimmune/inflammatory conditions. It has been shown that IVIG has the ability to provide passive immune protection against various pathogens. Here we report a case of COVID-19 treated with IVIG.

A 49-year-old man with a history of irregular type 2 diabetes mellitus presenting with fever >38 °C during the last 2 days and accompanying cough for 1 week was admitted to the hospital. Physical examination revealed that both his heart rate and blood pressure were in the normal range, whereas his oxygen saturation was 90% under ambient air. Laboratory analysis showed a blood glucose level of 279 mg/dL (normal range, 74–106 mg/dL), a white blood cell count of 10.120/\mu L (normal range, 4000–10,000/\mu L), a neutrophil percentage of 87.3% (normal range, 50–70%), a lymphocyte percentage of 9.1% (normal range, 20–40%), and a C-reactive protein level of 34.3 mg/dL (normal range, 0.0–0.8 mg/dL) and a procalcitonin level of 0.45 ng/mL (normal range, 0.10–0.49 ng/mL). Chest radiography revealed reticulonodular densities in all bilateral zones (Fig. 1). The chest computed tomography (CT) examination showed widespread patchy ground-glass opacities in the lungs (Fig. 2). The patient was hospitalised and treated with oxygen at 2 L/min using a nasal mask. He was given piperacillin/tazobactam 4.5 g intravenously every 8 h, azithromycin 500 mg orally, hydroxychloroquine 400 mg orally every 12 h and oseltamivir 75 mg orally every 12 h. The result of the nasopharyngeal swab for COVID-19 was positive. On his second day on the ward, he was admitted to the intensive care unit (ICU) owing to low oxygen saturation and tachypnoea despite receiving higher oxygen concentrations. In the meantime, the second test result of the nasopharyngeal swab for COVID-19 was positive. Therefore, piperacillin/tazobactam was discontinued and favipiravir 1600 mg orally every 12 h and meropenem 1 g intravenously every 8 h were added to the treatment. On his second day in the ICU, the patient had tachypnoea with a decreased ratio of partial arterial pressure of oxygen to fractional inspired concentration of oxygen (PAO\textsubscript{2}/FiO\textsubscript{2}) of 190; he was then intubated and placed on ventilatory support. It was then decided to administer IVIG 0.5 g/kg intravenously followed by a dose of 1 g/kg on the next day. His respiratory parameters improved and he was extubated on the fourth day of ICU stay. Chest radiography showed a dramatic regression of the pulmonary infiltrates (Fig. 3). He was discharged from the ICU with full recovery on the sixth day.

IVIG is a widely used therapy to prevent life-threatening infections in patients with primary and secondary immune deficiencies. However, the use of IVIG as a therapeutic agent in
SARS-CoV-2 infection for the modulation of inflammation is very limited. IVlg may lessen the inflammatory response in COVID-19 owing to the presence of autoreactive antibodies that bind cytokines or form complexes with other antibodies. In addition, IgG dimers in IVlg may obstruct the activation of FcγR on innate immune effector cells [3]. In a case series of patients with severe COVID-19, those who received IVlg at 0.3–0.4 g/kg/day for 5 days showed reduced fever on the second day of the treatment and relief of respiratory symptoms within 5 days. Antiviral agents were given to the two of the three patients whereas one patient received steroids, which may greatly affect the ability to make a conclusion regarding the efficacy of IVlg. However, the authors were not able to obtain precise results where co-morbidities, stage of illness and the effect of other treatments were not taken into account [4]. Furthermore, IVlg used for SARS-CoV has been reported in several studies. Another single-centre study in Taiwan in patients infected with SARS-CoV in which IVlg was given for leukopenia, thrombocytopenia or rapid progression of lesions on radiography revealed that IVlg results in an increase in leukocyte and thrombocyte counts [5]. Moreover, another case with Middle East Respiratory syndrome (MERS) where IVlg was used for thrombocytopenia showed improvement in the thrombocyte count [6]. All of these studies demonstrate the lack of evidence to support IVlg use for the treatment of coronaviruses, including SARS-CoV, SARS-CoV-2 and MERS-CoV.

In conclusion, this case report reveals that IVlg administration could be beneficial in the treatment of patients with severe COVID-19.

Funding

None.

Conflict of interest

None declared.

Ethical approval

Written informed consent was obtained from the patient in accordance with the Declaration of Helsinki.

References

[1] Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;579:265–9, doi:http://dx.doi.org/10.1038/s41586-020-2008-3.
[2] Nguyen AA, Habiballah SB, Platt CD, Geha RS, Chou JS, McDonald DR. Immunoglobulins in the treatment of COVID-19 infection: proceed with caution! Clin Immunol 2020;216:108459, doi:http://dx.doi.org/10.1016/j.clim.2020.108459.
[3] Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 2013;13:176–89, doi:http://dx.doi.org/10.1038/nri3401.
[4] Cao W, Liu X, Bai T, Fan H, Hong K, Song H, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis 2020;7:, doi:http://dx.doi.org/10.1093/ofid/ofaa102 ofaa102.
[5] Wang JT, Sheng WH, Fang CT, Chen YC, Wang JTL, Yu CJ, et al. Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients. Emerg Infect Dis 2004;10:818–24, doi:http://dx.doi.org/10.3201/ eid1005.030640.
[6] Mustafa S, Balkhy H, Gabere MN. Current treatment options and the role of peptides as potential therapeutic components for Middle East respiratory syndrome (MERS): a review. J Infect Public Health 2018;11:9–17, doi:http://dx.doi.org/10.1016/j.jiph.2017.08.009.