KPC-2-NDM-1-producing Serratia marcescens: first description in Peru

Barbara Ymaña1, Nestor Luque2, Maria J. Pons1 and Joaquim Ruiz1
1 Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - “One Health”, Universidad Científica del Sur, Lima, Peru and 2 Escuela de Medicina Humana, Facultad de Ciencias de la Salud, Universidad Peruana Union (UPeU), Lima, Peru

Abstract

Two clonal extensively-resistant S. marcescens were isolated in Peru. The presence and transferability of extended-spectrum β-lactamases and IMP, KPC, NDM, OXA-48 and VIM were determined. The concomitant presence of KPC-2 and NDM-1 was confirmed in both isolates, with KPC-2 being able to be transferred.

© 2022 The Authors. Published by Elsevier Ltd.

Keywords: Americas, Bacterial infection

Original Submission: 23 June 2022; Revised Submission: 11 November 2022; Accepted: 14 November 2022

Article published online: 18 November 2022

Serratia marcescens is a human pathogen that often exhibits high levels of resistance to antimicrobial agents, including carbapenems [1]. Carbapenemase-producing microorganisms are of special concern, especially when they co-produce more than one carbapenemase [1]. KPC and NDM rank among the most relevant and frequent carbapenemases, with KPC being considered the most frequent worldwide [1].

The present study aimed to describe and characterise the first blaKPC-2-blaNDM-1-carrying S. marcescens isolated in Peru.

Two non-causing disease S. marcescens were isolated from nasopharyngeal (isolate 5Q) and hand swabs (isolate 5P) from a patient at ICU admission. Antimicrobial susceptibility to 15 antimicrobial agents was established by disk diffusion and clonal relationships by repetitive extragenic palindromic polymerase chain reaction (REP-PCR) [2]. The presence of ESBLs was established phenotypically [2], while blaIMP, blaKPC, blaNDM, blaOXA-48 and blaVIM were detected by PCR [3]. The entire blaKPC and blaNDM were amplified and sequenced (Macrogen, Seoul, South Korea) and their conjugability was established [2,4,5]. After each conjugation assay, 6 transconjugants were randomly selected and the presence of carbapenemases was determined by PCR. Co-transfer of resistance was established in one transconjugant representative of each assay.

The isolates displayed identical REP-PCR patterns, and were extensively resistant (XDR). Both isolates possessed the blaKPC-2 and blaNDM-1 genes, with only blaKPC-2 being conjugative. The transconjugants exhibited susceptibility to all tested antimicrobial agents except cephalosporins, carbapenems, as well as β-lactam plus β-lactamase inhibitors (Table 1).

The isolation of carbapenem-resistant S. marcescens is increasing worldwide [6], thus limiting the treatment options for this pathogen. In the present isolates, resistance to carbapenems was related to the presence of blaKPC-2 and blaNDM-1. The concomitant presence of blaKPC and blaNDM has been previously reported in S. marcescens, including South American countries such as Brazil [6].

Regarding Peru, a study reporting the isolation of S. marcescens carrying blaKPC and blaNDM has been found, with the microorganism being isolated from a physician cell-phone, but no data of exact KPC or NDM variant was reported [3]. To the best of our knowledge, this is the first report of an human blaKPC-2-blaNDM-1-carrying S. marcescens in Peru. These findings shows the hidden stable presence of blaKPC-2-blaNDM-1-carrying S. marcescens in the hospital and probably reflects the
lack of reports of circulating isolates, rather than the rarity of this genotype in the area.

The silent introduction of determinants of resistance to antimicrobial agents in areas such as ICUs is of special concern, since they may be carried by potential pathogens, as in the present case, or be horizontal transferred to nosocomial pathogens, for instance by conjugation as in the present study.

In a middle-income country, such as Peru, with uncontrolled access to antibacterial agents, and high levels of antimicrobial resistance in the community [2], this is probably a frequent, albeit little described, phenomenon.

The present report shows the presence of a non-disease causing XDR S. marcescens carrying blaKPC-2 and blaNDM-1 silently introduced in the ICU highlighting the need to implement surveillance measures in hospitals for early detection of non-disease causing microorganisms possessing antimicrobial resistant determinants of special concern.

Acknowledgments

We thank Dr. Roca for kindly providing the MC1061 AzIR Escherichia coli strain and Donna Pringle for English editing.

JR was supported by Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (FONDECYT - Perú), World Bank and Universidad Científica del Sur within the “Proyecto de Mejoramiento y Ampliación de los Servicios del Sistema Nacional de Ciencia, Tecnología e Innovación Tecnológica” [contract: 08-2019-FONDECYT-BM–INC–INV”].

References

[1] Bush K, Bradford PA. Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev 2020;33. https://doi.org/10.1128/CMR.00047-19. e00047-19.
[2] Alcedo K, Ruiz J, Ochoa TJ, Riveros M. High prevalence of blacTX-M in fecal commensal Escherichia coli from healthy children. Infect Chemother 2022;54:59–69. https://doi.org/10.3947/ic.2021.0102.
[3] Ymaña B, Luque N, Ruiz J, Pons MJ. Worrying levels of antimicrobial resistance in Gram-negative bacteria isolated from cell phones and uniforms of Peruvian intensive care unit workers. Trans R Soc Trop Med Hyg 2022;116:676–8. https://doi.org/10.1093/trstmh/trab186.
[4] Horna G, Velasquez J, Fernández N, Tamariz J, Ruiz J. Characterisation of the first KPC-2-producing Klebsiella pneumoniae ST340 from Peru. J Glob Antimicrob Resist 2017;9:36–40. https://doi.org/10.1016/j.jgar.2016.12.011.
[5] Nordmann P, Boulanger AE, Poirel L. NDM-1 metallo-β-lactamase with increased carbapenemase activity from Escherichia coli, Antimicrobial Agents Chemother 2012;56:2184–6. https://doi.org/10.1128/AAC.05961-11.
[6] Ferreira Firmino E, Bispo Beltrão EM, Ferreira da Silva FR, Alves LC, Brayner FA, Leal Veras D, et al. Association of blaNDM-1 with blaNDM-2 and aminoglycoside-modifying enzyme genes among Klebsiella pneumoniae, Proteus mirabilis and Serratia marcescens clinical isolates in Brazil. J Glob Antimicrob Resist 2020;21:255–61. https://doi.org/10.1016/j.jgar.2019.08.026.