Synthesis and Study of Heteronuclear Citrates

Nani Bidzina Zhorzholiani*, Iamze Alim Beshkenadze, Maia Avtandil Gogaladze and Givi Tengiz Begheluri

Petre Melikishvili Institute of Physical and Organic Chemistry, Ivane Javakhishvili Tbilisi State University, Tbilisi 0186, Georgia

Received: March 08, 2014 / Accepted: April 01, 2014 / Published: April 25, 2014.

Abstract: Terms of synthesis were determined for creation of new generation premixes and for their testing in experiments. Heteronuclear chelate citrates of general formula: $M_1^I M_2^{II} L_2 \cdot nH_2O$ (where, $M_1^I = \text{Zn, Co, Fe, Mn, Cu}$; $M_2^{II} = \text{Mn, Zn, Co, Cu}$; $n = O/4$) were synthesized. Identity and composition of synthesized compounds were defined by microelemental analysis, determination of melting temperature and X-ray diffraction analysis. X-ray diffraction method was used also to define crystallinity of the compounds and their citric acid (H_4L) component. X-ray amorphous and iso-structural orders were also revealed.

Key words: Bio-metals, chelate compounds, microelemental analysis, X-ray diffraction analysis.

1. Introduction

Even the most primitive forms of live organisms are unable to provide vital processes without participation of bio-metals. In optimal doses they are able to affect actively growth and development, propagation, productivity, resistance of organisms to diseases. Investigations of researchers prove that bio-metals play active role in the physiological and biological processes going on in poultry and animals. Up to 75 chemical elements are found in their organisms and namely this conditioned the interest shown to the so-called “vital metals” by wide specter of researchers. We considered five microelements (Zn, Co, Fe, Mn, Cu), because these microelements belong to a number of very critical and essential for life elements that animal organisms have. They play an important role in a water and organic compounds metabolism, absorption and utilization of nutrients. They generate optimal conditions for the normal function of many organs including cardiac muscle and nervous system [1-4]. Their role and significance are exemplified by the fact that one of the main factors which defines low quantity and quality indices of foodstuff is the deficiency of bio-metals in plants, soil, as well as in agricultural animals and poultry. Decisive role in the resolution of this problem is attributed to the provision of live organisms with optimal quantity and ratio of microelements. Since bio-metals in live organisms fulfill their functions in the form of chelates, at filling up of deficit in bio-metals in the form of chelates, we observe sharp increase in their biological activity [5-8].

2. Materials and Methods

For synthesis, we used the following original compounds: ZnO, MnCO_3, $\text{CoCO}_3\text{Co(OH)}_2$, $\text{CuCO}_3\text{Cu(OH)}_2$, $\text{Fe(CH}_3\text{COO)}_2\cdot 4\text{H}_2\text{O}$, and important for vital processes oxyacid-citric acid (H_4L). Composition of compounds and their identity were defined by well-known methods: microelemental analysis (CHN Analyser, Labertherm GmbH). Purity was determined by melting temperature measuring (Dynalon SMP10) and X-ray diffraction method on DPOH-3Mtype diffractometer, at copper anode emission. The same method was used to define their crystallinity, and X-ray amorphous and iso-structural orders were also revealed.

3. Results

Investigations are continued at the Laboratory of
Problems Agrarian Chemistry for creation of new generation premixes and for their testing in experiments [9-17]. With this in view heteronuclear chelate citrates of the following general formula:

\[\text{MI}_2\text{MII}_2\text{L}_2\text{nH}_2\text{O} \] (where, MI = Zn, Co, Fe, Mn, Cu; MII = Mn, Zn, Co, Cu; n = 0/4) were created. To obtain these citrates, we take a mix: (1) ZnO:MnbCO_3, (2) CoCO_3Co(OH)_2:ZnO, (3) CuCO_3Cu(OH)_2, (4) CoCO_3Co(OH)_2:MnCO_3, (5) CoCO_3Co(OH)_2:CuCO_3Cu(OH)_2, (6) Fe(CH_3COO)_2·4H_2O:MnCO_3, (7) Fe(CH_3COO)_2·4H_2O:ZnO, (8) Fe(CH_3COO)_2·4H_2O:CoCO_3Co(OH)_2 and (9) MnCO_3:CuCO_3Cu(OH)_2 at 2:1 molar ration on porcelain cup, crush intensely till it is reduced to fine dispersion condition, then we add citric acid dissolved in minimal volume of hot water. We observe intense isolation of CO_2 and changes of color. The obtained solutions are left at room temperature till the next day, are filtered and the residue after its washing by ether is dried on air.

Identity and composition of synthesized chelate composites: Zn\textsubscript{2}Mn\textsubscript{L}_2·2H\textsubscript{2}O, Co\textsubscript{2}Zn\textsubscript{L}_2, Cu\textsubscript{2}:Co\textsubscript{L}_2·H\textsubscript{2}O, Fe\textsubscript{2}:Mn\textsubscript{L}_2·2H\textsubscript{2}O, Co\textsubscript{2}:Mn\textsubscript{L}_2·4H\textsubscript{2}O, Co\textsubscript{2}Cu\textsubscript{L}_2·4H\textsubscript{2}O, Mn\textsubscript{2}Cu\textsubscript{L}_2·4H\textsubscript{2}O, Fe\textsubscript{2}Zn\textsubscript{L}_2·2H\textsubscript{2}O and Fe\textsubscript{2}Co\textsubscript{L}_2·4H\textsubscript{2}O were defined by microelemental analysis (Table 1), by melting temperature detection (Table 2), by X-ray diffraction method (Table 3).

We also defined their crystallinity and revealed X-ray amorphous and iso-structural orders by X-ray diffraction analysis.

Table 3 represents the results of relative intensities \((I/I_0)\), reflection angle \((2\theta)\), inter-plane distances \((d)\) obtained by deciphering of X-ray diffraction patterns of the composites.

4. Discussions

X-ray diffraction studies did not reveal presence of starting compounds in the samples in the form of separate phase. Therefore, we can conclude that

Table 1 Results of microelemental analysis of chelates.

#	Formula	Practical (%)	Theoretical (%)						
		MI	MII	C	H	MI	MII	C	H
1	Zn\textsubscript{2}Mn\textsubscript{L}_2·4H\textsubscript{2}O	20.94	9.05	24.03	2.15	21.69	9.17	24.00	2.34
2	Co\textsubscript{2}Zn\textsubscript{L}_2	20.87	10.72	25.09	2.17	21.01	11.58	25.66	2.49
3	Cu\textsubscript{2}:Co\textsubscript{L}_2·H\textsubscript{2}O	22.11	9.96	24.45	1.91	21.81	10.12	24.73	2.06
4	Co\textsubscript{2}:Mn\textsubscript{L}_2·4H\textsubscript{2}O	19.03	8.73	20.96	2.72	19.81	8.83	21.11	2.89
5	Co\textsubscript{2}:Cu\textsubscript{L}_2·4H\textsubscript{2}O	18.21	9.79	22.75	2.63	18.66	10.05	22.79	2.85
6	Fe\textsubscript{2}:Mn\textsubscript{L}_2·2H\textsubscript{2}O	19.33	9.14	24.62	2.15	19.27	9.46	24.77	2.41
7	Fe\textsubscript{2}:Zn\textsubscript{L}_2·2H\textsubscript{2}O	19.15	11.13	24.79	2.23	18.94	10.99	24.35	2.37
8	Fe\textsubscript{2}:Co\textsubscript{L}_2·4H\textsubscript{2}O	17.78	8.93	22.98	2.65	18.03	9.49	23.18	2.89
9	Mn\textsubscript{2}:Cu\textsubscript{L}_2·4H\textsubscript{2}O	17.17	10.09	22.97	2.77	17.63	10.18	23.08	2.89

Table 2 Results of measurements of composites melting temperatures.

#	Formula	Melting, T (°C)	Color
1	Zn\textsubscript{2}:Mn\textsubscript{L}_2·4H\textsubscript{2}O	> 286	White
2	Co\textsubscript{2}:Zn\textsubscript{L}_2	> 286	Lilac
3	Cu\textsubscript{2}:Co\textsubscript{L}_2·H\textsubscript{2}O	> 286	Dark light-blue
4	Co\textsubscript{2}:Mn\textsubscript{L}_2·4H\textsubscript{2}O	> 286	Grey-lilac
5	Co\textsubscript{2}:Cu\textsubscript{L}_2·4H\textsubscript{2}O	> 286	Dark lilac
6	Fe\textsubscript{2}:Mn\textsubscript{L}_2·2H\textsubscript{2}O	> 286	Mustard yellow
7	Fe\textsubscript{2}:Zn\textsubscript{L}_2·2H\textsubscript{2}O	> 286	Light brown
8	Fe\textsubscript{2}:Co\textsubscript{L}_2·4H\textsubscript{2}O	> 286	Grey-brown
9	Mn\textsubscript{2}:Cu\textsubscript{L}_2·4H\textsubscript{2}O	> 286	Light green
Table 3 Results of X-ray diffraction analysis of chelate composites and citric acid.

Zn₂Mn·L₂·4H₂O	Co₂·Mn·L₂	Cu₂·Co·L₂·H₂O	
2θ d J/J₀ d J/J₀	2θ d J/J₀	2θ d J/J₀	
11.5 0.3 2.5	10.66 8.301 0.0608	8.500 8.152 1.1696	10.89 8.120 0.2350
15.2 4.5 37.5	11.49 7.699 0.0043	11.37 7.782 0.0395	12.31 7.187 0.1800
17.0 1.6 13.3	11.93 7.419 0.0530	12.27 7.214 0.2606	13.30 6.656 0.1033
18.3 6.5 54.2	12.09 7.323 0.2286	13.32 6.645 0.1818	14.53 6.096 0.0100
19.0 0.4 3.3	13.06 6.778 0.0156	15.72 5.636 0.0909	15.81 5.605 1.0000
22.3 4.5 37.5	15.52 5.711 0.0486	15.83 5.599 0.2545	17.20 5.157 0.0866
23.1 12.0 100.0	15.50 5.717 0.0660	16.66 5.322 0.0303	18.41 4.820 0.0533
23.8 0.5 4.2	16.20 5.473 0.0173	17.23 5.147 0.0787	19.39 4.577 0.0683
24.5 1.0 8.3	16.93 5.238 0.0269	18.47 4.803 0.0484	19.86 4.470 0.2166
27.1 0.5 4.2	18.23 4.865 0.0026	20.03 4.434 1.0000	21.77 4.083 0.1316
28.8 0.4 3.3	19.38 4.579 0.0382	20.34 4.367 0.3454	22.82 3.896 0.0350
29.4 2.5 20.8	19.8 4.484 1.0000	20.67 4.298 0.0636	23.17 3.839 0.1533
30.8 1.5 12.5	20.13 4.411 0.0376	21.70 4.095 0.0757	23.72 3.751 0.0933
32.7 1.5 12.5	20.57 4.318 0.0339	21.75 4.085 0.1151	24.66 3.611 0.0816
33.5 0.8 6.7	21.39 4.155 0.0921	22.36 3.976 0.0515	25.44 3.502 0.1183
37.0 1.0 8.3	22.78 3.904 0.0269	22.90 3.881 0.1181	26.82 3.373 0.2483
41.9 0.5 4.2	23.51 3.784 0.0113	23.81 3.737 0.0818	28.15 3.170 0.0433
45.8 0.5 4.2	24.09 3.695 0.1052	24.31 3.661 0.0575	28.97 3.082 0.1216
56.8 0.5 4.2	24.4 3.648 0.0113	24.69 3.606 0.0303	30.44 2.937 0.0600
24.62 3.615 0.0147	26.54 3.358 0.2696	26.07 3.418 0.0400	28.79 3.101 0.1242
28.58 3.123 0.0800	29.41 3.035 0.0151	29.24 3.056 0.0756	29.99 2.979 0.0878
29.76 3.002 0.0939	31.07 2.879 0.2424	30.32 2.948 0.0182	31.89 2.806 0.1515
31.36 2.852 0.0313	32.43 2.761 0.0575	32.25 2.775 0.0521	34.37 2.609 0.0424
34.88 2.572 0.0252	35.87 2.503 0.0454	35.64 2.512 0.0800	38.56 2.335 0.0181
37.34 2.408 0.0443	40.26 2.240 0.0545	38.77 2.323 0.0243	40.58 2.223 0.0424
40.23 2.242 0.0104	42.22 2.190 0.0606	40.39 2.233 0.0260	
41.05 2.199 0.0330			
42.91 2.107 0.0252			
43.56 2.078 0.0269			
43.70 2.072 0.0339			
44.64 2.030 0.0313			
45.49 1.994 0.0034			
46.10 1.969 0.0243			
46.19 1.965 0.0078			
47.41 1.918 0.0365			
48.15 1.890 0.0313			
48.07 1.893 0.0495			
49.2 1.852 0.0269			
Table 3 continued

	4. Co₂·Mn·L₂·4H₂O	5. Co₂·Cu·L₂·4H₂O	6. Fe₂·Zn·L₂·2H₂O	7. Mn₂·Cu·L₂·4H₂O	
2θ	d	J/J₀	2θ	d	J/J₀
10.70	8.267	0.0636	9.800	9.024	0.0645
11.75	7.532	0.0454	10.84	8.160	0.1612
13.17	6.725	0.0606	12.28	7.206	0.1612
14.27	6.208	1.0000	15.49	5.719	0.0645
14.84	5.968	0.0666	15.77	5.619	1.0000
15.61	5.677	0.0909	17.07	5.193	0.0645
17.02	5.210	0.0303	18.30	4.847	0.0967
17.83	4.974	0.0393	19.77	4.488	0.1612
18.39	4.824	0.4121	21.32	3.845	0.2580
18.70	4.744	0.2303	23.28	3.820	0.1459
20.42	4.348	0.3333	24.62	3.616	0.0967
21.50	4.133	0.1333	25.36	3.511	0.1541
21.61	4.110	0.3272	26.25	3.394	0.0645
23.20	3.833	0.2303	27.48	3.245	0.0032
23.59	3.772	0.1939	28.31	3.151	0.0516
23.90	3.723	0.1393	29.30	3.047	0.0288
24.65	3.612	0.0575	31.00	2.884	0.1290
25.90	3.440	0.1606	31.49	2.840	0.0870
26.96	3.307	0.2303	34.5	2.599	0.0645
27.74	3.216	0.0606	37.41	2.404	0.0645
28.70	3.111	0.1666	42.00	2.120	0.0419
29.98	2.980	0.1515		48.95	1.861
31.74	2.819	0.100		55.10	1.666
32.64	2.795	0.1763		33.10	2.706
33.91	2.662	0.1536		33.56	2.671
35.86	2.504	0.1667		34.84	2.575
35.87	2.503	1.393		35.78	2.510
36.55	2.458	0.0787		36.87	2.438
38.12	2.361	0.0515		37.32	2.409
42.46	2.129	0.0939		39.85	2.262
43.21	2.094	0.1333		41.36	2.183
44.18	2.050	0.1288		43.67	2.073
47.45	1.916	0.1060		46.43	1.956
48.27	1.885	0.0303		47.94	1.898
49.08	1.856	0.0606			

absolutely new individual compounds are obtained which are in full conformity with the results of the above given micro elemental analysis and melting point measurements (Tables 1 and 2).

X-ray diffraction patterns of the composites Fe₂·Mn·L₂·H₂O and Fe₂·Co·L₂·4H₂O are characterized by weakly expressed diffuse peaks, therefore they represent X-ray-amorphous compounds. Other compounds are characterized by clearly expressed crystalline structures, various relative intensities (I/I₀), reflection angles (2θ), and definite intra-spatial distance (d) values. It should be stated that X-ray diffraction patterns of the composites Cu₂·Co·L₂·H₂O and Co₂·Cu·L₂·4H₂O are identical, which speaks of their iso-structure that is conditioned by analoguousness of their chemical composition and geometrical characteristics of crystalline structure, which can not be said about the composites: Zn₂·Mn·L₂·2H₂O, Co₂·Zn·L₂, Co₂·Mn·L₂·4H₂O, Mn₂·Cu·L₂·4H₂O, Fe₂·Zn·L₂·2H₂O (Table 3).
5. Conclusions

For the first time, we synthesized Heteronuclear chelate citrates of general formula: $M^{II}_1M^{III}_2L_2nH_2O$ by using modified and simplified methods. We studied identity and composition of synthesized compounds, determined their crystallinity, and revealed X-ray amorphous and iso-structural orders.

We have conducted preliminary studies on these synthesized compounds as new poultry premixes. Based on good preliminary data, we concluded to conduct large-scale studies in this direction.

Acknowledgments

We thank Science & Technology Center in Ukraine and ShotaRustaveli National Science Foundation. The work was implemented with the support of Science & Technology Center in Ukraine Project Proposal #5461 and ShotaRustaveli National Science Foundation Grant #30/06.

References

[1] Tanatarov, A. B. Mineral Elements in Biology and Their Use in Medicine and Agriculture. Moscow 1986, 3, 358.
[2] Kalashnikov, A. P.; Fisinin, V. I.; Scheglev, V. V. Norms and Rations in the Feeding of Agricultural Animals; Moscow, 2003; p 456.
[3] Menkin, V. K. The Feeding of Animals; Moscow, 2003; p 360.
[4] Draganov, I. F.; Buryakova, M. A. Working Program of Teaching Discipline “Essentials of Research in Agricultural Animals”; Timiryazeva, 2006; p 13.
[5] Dobrina, N. A. Biological Chemistry; Lomonosov Moscow State University: Moscow, 2007; p 36.
[6] Ribkina, T. I. Biological and Toxic Impact of Chemical Elements and Their Inorganic Compounds on Human Organism; Novomoskovsk, 1999; p 92.
[7] Dobrina, N. A. Bioinorganic Chemistry; Moscow, 2007; p 36.
[8] Lebedev, S. V.; Miroshnikov, S. A.; Sukhanova, O. N.; Rakhmatullin, S. G.; Malishesh, E. N.; Sipailova, O. Y.; et al. Method for Increase of Productivity of Chicken-Broilers. Patent 2,370,095, Oct. 20, 2010.
[9] Beshkenadze, I. A.; Tsitsishvili, V. G.; Urotadze, S. L.; Gogaladze, M. A.; Zhorzholiani, N. B. In Natural Zeolites and Biometal-Containing Composites, Proceedings of Materials of IV International Conference Sorbents as Factors of Life Quality and Health, Belgorod, Sept 24-28, 2012.
[10] Beshkenadze, I. A.; Gogaladze, M. A.; Zhorzholiani, N. B.; Urotadze, S. L.; Borkashvili, N. O.; Gogua, L. D. Synthesis of the Chelates Containing Amino Acids and Citric Acid for Creation of New Generation Premixes. Annals of Agrarian Science 2013, 11(2), 84-86.
[11] Beshkenadze, I.; Gogaladze, M.; Zhorzholiani, N. Chemical Admix to Poultry Fodder; National Center for Intellectual Property of Georgia: Tbilisi, 2000.
[12] Beshkenadze, I.; Gogaladze, M.; Zhorzholiani, N. Chemical Admix to Poultry Fodder; National Center for Intellectual Property of Georgia: Tbilisi, #P4917, 2008.
[13] Beshkenadze I., Zhorzholiani N., Gogaladze M. Chemical Admix to Poultry Fodder; National Center for Intellectual Property of Georgia: Tbilisi, #P4918, 2008.
[14] Beshkenadze, I.; Zhorzholiani, N.; Gogaladze, M. Chelate-Containing Chemical Admix for Poultry Feeding; 2013.
[15] Kozmanishvili, A.; Beshkenadze, I.; Zhorzholiani, N. Chemical Editions for Rabbit Food Ration: Bulletin of the Academy of Agricultural Sciences of Georgia: Tbilisi 2003.
[16] Beshkenadze, I.; Gogaladze, M.; Zhorzholiani, N. Synthesis of the Chelates Continuing Amino Acids and Citric Acid for Creation of New Generation Premixes. Annals of Agrarian Science 2013, 11(2), 84-86.
[17] Tsintsadze, G.; Beshkenadze, I.; Mestiaishvili, N.; Zhorzholiani, N. In Physical-Chemical Investigation of $M^{II}_1M^{III}_2$H$_2$O Heteronuclear Citrates, Proceedings of the Georgian Academy of Sciences, 2006.