Pause Point Spectra in DNA Constant-Force Unzipping

J. D. Weeks*, J. B. Lucks#, Y. Kafri*, C. Danilowicz*, D. R. Nelson* and M. Prentiss*

* Department of Physics, Harvard University, Cambridge, MA 02138 and
Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138

(Dated: April 19, 2004)

Under constant applied force, the separation of double-stranded DNA into two single strands is known to proceed through a series of pauses and jumps. Given experimental traces of constant-force unzipping, we present a method whereby the locations of pause points can be extracted in the form of a pause point spectrum. A simple theoretical model of DNA constant-force unzipping is demonstrated to produce good agreement with the experimental pause point spectrum of lambda phage DNA. The locations of peaks in the experimental and theoretical pause point spectra are found to be nearly coincident below 6000 bp. The model only requires the sequence, temperature and a set of empirical base pair binding and stacking energy parameters, and the good agreement with experiment suggests that pause points are primarily determined by the DNA sequence. The algorithm for extracting the pause point spectrum might also be useful for studying related systems which exhibit pausing behavior such as molecular motors.

I. INTRODUCTION

The unbinding of double-stranded DNA (dsDNA) into single-stranded DNA (ssDNA) is a ubiquitous event central to many cellular processes. Much research has focused on understanding the thermal unbinding of dsDNA (Wartell and Benight, 1985). These studies have revealed quantitative aspects of the thermal unbinding transition through the extraction of sequence-dependent free energy differences between bound and unbound DNA (Blossey and Carlon, 2003; Rouzina and Bloomfield, 1999; SantaLucia et. al, 1996). In living cells, however, the unbinding of dsDNA is typically achieved using molecular motors which utilize chemical energy and exert forces to pull apart the strands of dsDNA. To have a quantitative understanding of these processes it is important to first study the simpler case of unbinding of dsDNA by a constant external force. This process is typically referred to as ‘unzipping’ of dsDNA. For early experiments which unzip lambda phage DNA with a constant velocity and a fluctuating force, see (Bockelmann et. al, 2002).

Recently, single-molecule experiments have allowed study of this process (see Fig. 1 for a schematic illustration of the experiment). Both theory (Bhattacharjee, 2000; Cocco et. al, 2001, 2002; Kafri et. al 2002; Lubensky and Nelson, 2000, 2002; Marenduzzo et. al, 2002; Nelson, 2003; Sebastian, 2000) and experiments (Danilowicz et al, 2003a) show that at a given temperature the dsDNA separates into ssDNA when the applied force exceeds a critical value F_c. Moreover, for forces near F_c, the dynamics of the unzipping process is highly irregular (Danilowicz et al, 2003a), as displayed in the time evolution of the junction between the separated ssDNA and the bound dsDNA. This junction is referred to as the unzipping fork. Rather than a smooth time evolution, the position of the unzipping fork progresses through a series of long pauses separated by rapid bursts of unzipping.

Pauses and jumps in constant-force unzipping can have several origins. For temperatures near the dsDNA melting transition, portions of the dsDNA can unbind and form transient ‘bubbles’ below the unzipping fork. In addition, because of the helical nature of the dsDNA structure, a natural twist can be accumulated during the force-induced unzipping process. If the unzipping fork encounters a thermal bubble in the course of its progress, then we would expect a jump in its position. Furthermore, if the unzipping occurs on time scales much faster than the time scales associated with unwinding, then one would expect pauses when the DNA has to unravel accumulated twist (Thomen et. al, 2002). Moreover, since AT and CG base pairs (bp) have different interaction strengths (and associated base pair stacking energies - see Table I), pauses and jumps could also be due to effects associated with the particular sequence of the DNA.

Experiments on multiple identical copies of the same DNA have shown that locations of pauses are highly conserved from one strand to another (Danilowicz et al, 2003a). Hence, it seems likely that in these experiments at least, transient bubbles and accumulated twist play only a minor role in determining the jumps and pauses. In this work we study the location of the pause points both experimentally and theoretically. To facilitate this study, we introduce a pause point spectrum which is a function of the number of base pairs unzipped. The locations of peaks in the pause point spectrum signify the location of pause points in unzipping, and peak areas can be used as a measure of the strength of pause points. We predict pause point locations by adapting a model of the dynamics of the unzipping fork in a constant-force unzipping experiment on heterogeneous DNA (Lubensky and Nelson, 2002). The only input information into the analysis is the DNA sequence, free-energy differences between dsDNA and ssDNA obtained using...
melting experiments, and temperature. Both thermal bubbles and build up of twist are ignored within our treatment. We find that we can predict most experimentally observed pause points, thus confirming that pause point locations are primarily a function of sequence. Our algorithm might also prove useful for analyzing pause points arising in other single molecule experiments, such as RNA polymerase and exomuclease (Davenport et al., 2000; Neuman et al., 2003; Perkins et al., 2003; Wang et al., 1998).

The paper is organized as follows: In section II, we describe constant-force unzipping experiments performed on lambda phage DNA. In section III, we present an algorithm for constructing a pause point spectrum from experimental traces of unzipping fork position versus time. Section IV.A describes a theoretical model of DNA constant-force unzipping which defines a free energy landscape as a function of the number of bases unzipped, \(m \), used to describe the unzipping process. In section IV.B this free energy landscape is used as a surface on which to perform Monte Carlo simulations mimicking the unzipping experiments. In the same way as performed for experimental unzipping trajectories, these trajectories are combined to form theoretical pause point spectra, which are compared with experiment in section V.

II. EXPERIMENTAL METHOD

The experimental procedure has been discussed previously in (Assi et al., 2002; Damlitchuk et al., 2003). As shown in Figure 2, our setup consisted of two pieces of lambda phage DNA, covalently bound to each other. One strand of DNA was used as a spacer between the glass capillary and the other strand, which was to be unzipped. The spacer strand of DNA was attached to the capillary with a digoxigenin/anti-digoxigenin antibody bond. The capillary was coated with digoxigenin antibody while the spacer strand of DNA was hybridized with a digoxigenin labeled oligonucleotide. One end of the strand of DNA to be unzipped was hybridized and ligated with a biotinylated oligonucleotide which specifically bound to a streptavidin-coated super-paramagnetic bead. When a magnetic field was applied, the force induced on the bead slowly unzipped the DNA. The unzipping direction (order of nucleotides unzipped) was controlled by the selection of oligonucleotides.

Figure 2b shows the round, antibody coated capillary inside an uncoated square microcell. The round capillary was 0.5 mm in diameter, while the square microcell was 0.8 mm across, leaving a space for a solution of DNA, beads and buffer inside the microcell but outside the sealed, empty, round capillary. The capillary was incubated in a solution containing digoxigenin antibody at 5°C for at least two days. The DNA solution and bead suspension were also individually kept at 5°C prior to the experiment. We inserted a digoxigenin antibody coated capillary and the DNA and bead suspension into the microcell and then incubated it at 37°C for 45 minutes, allowing the DNA to bind to the capillary via the antigen-antibody bond. Finally, we rotated the microcell so the beads that had settled on top of the round capillary were hanging off of its side. We focused using a microscope objective on the beads that were attached to the outermost point on the capillary so that we could accurately measure the distance between the beads

FIG. 1 Schematic diagram of the DNA constant-force unzipping experiment. One strand of the dsDNA is attached to a fixed support, typically via a linker DNA strand (not shown). The other strand is pulled with a constant force, \(F \), via a magnetic bead (not to scale) attached to the strand. If the force is large enough, the dsDNA separates into two ssDNA strands. The unzipping which defines a free energy landscape as a function of the number of bases unzipped, \(m(t) \), locates the unzipping fork. See Figure 2 for a more detailed description of the experimental setup used in this paper.
FIG. 2 Molecular construction and square cell. (A) Schematic of the DNA binding to the inner glass capillary and the magnetic bead such that pulling the bead away from the surface will cause the dsDNA shown on the right side of the diagram to be separated into two single DNA strands. Note that the figure is not to scale, considering that lambda DNA contains 48,502 bp.

(B) Schematic of the side view of the square capillary containing the round glass capillary to which the DNA molecules are bound. The magnetic tweezer apparatus exerts the controlled force on the magnetic beads, a microscope is used for observation, and two thermoelectric coolers are used to control the temperature of the sample during the initial incubation. The magnetic beads are pulled to the right in a direction parallel to the bottom and top surfaces of the square capillary, and perpendicular to the surface of the round capillary at a height equal to the radius of the round capillary, where we focus the microscope. This design allows us to view DNA molecules that are offset from the surfaces of the square capillary, and to infer the number of separated base pairs (bp) by measuring the separation between the magnetic bead and the surface of the round capillary.

We applied a magnetic force by bringing a stack of small magnets mounted on an xyz translation stage near the microcell. The magnets could be approximated as a solenoid with its long axis in the z-direction, so the field gradient acted in the z-direction only and was essentially uniform \cite{Assi et al., 2002} over our field of view, which was much smaller than the solenoid radius.

We measured the distance the DNA molecules had unzipped by tracking their attached beads. We took still digital photographs of the field of view through a 10x objective lens once every 10 seconds. An image processing program found the coordinates of each bead in each frame. Figure 3 shows part of our field of view at two different times. In Figure 3(a), we had just applied the magnetic field. Figure 3(b) shows the same beads 28 frames, or just over 3 minutes later.

In each experiment, we saw approximately 50 beads in our field of view. Approximately 10 beads unzipped slowly over the course of the experiment, pausing at various points. An individual bead paused at fixed extension until, through thermal fluctuations, the unzipping proceeded. After overcoming an energy barrier which we attribute to sequence heterogeneity, the strand unzipped up to the next pause point, where the same process repeated. Pause points seemed very reproducible in experiment from bead to bead (each attached to a genetically identical DNA), even when force and temperature varied considerably. This statement will be quantified below.

In order to compare simulation results to experimental data, we converted microns unzipped to the numbers of base pairs unzipped. The centers of beads attached to fully zipped strands of lambda phage DNA under a force near 15 pN were observed 16.5 \(\mu m \) from the round capillary in experiments. The centers of beads attached to fully unzipped strands of lambda phage DNA under a force of 15 pN were observed 77.4 \(\mu m \) from the round capillary in experiments. Thus DNA strands being unzipped were stretched to a length of 60.9 \(\mu m \). Lambda phage DNA is 48,502 base pairs long, so to convert from \(\mu m \) to base pairs, we use the conversion factor 48,502bp/60.9\(\mu m \approx 800bp/\mu m \). Since two strands of ssDNA are produced during unzipping, the monomer spacing along a ssDNA strand is found from the
FIG. 3 Photographs from above the square capillary shown in Figure 2(b). The dark bar on the left is the inner round capillary to which the beads are tethered. The dark dots are the beads. (a) shows the beads immediately after a 15 pN force was introduced. Most of the beads are in the fully zipped position, approximately 17 µm from the surface of the capillary. (b) shows the beads three minutes later. More DNA strands have unzipped, causing the beads to jump farther from the round capillary.

inverse of this factor divided by two to be $a \approx 0.6$nm. Such a linear interpolation seems reasonable given the fairly large forces ($\sim 15 - 20$ pN) acting on the unzipped 'handles'.

III. PAUSE POINT ALGORITHM

Figure 5(b-c) displays several experimental unzipping trajectories. As can be seen in the trajectories, the unzipping fork progresses through long pauses at specific locations, separated by rapid transitions between these pauses. Moreover, a sample of trajectories from identical DNA sequences display a uniformity in the locations at which the DNA unzipping pauses. Note also that pauses at certain locations seem consistently longer than others. From these considerations, we are motivated to develop a method for combining many trajectories to form a distribution reflecting the location and relative strengths of pause points.

A pause point ‘spectrum’ can be computed as follows (see Figure 4 for an example):

1. Create a histogram (area normalized to 1) based on the position of the unzipping fork during the time duration of the experiment for all trajectories using the highest resolution possible.

2. In order to smooth this histogram according to the real experimental resolution, define a window centered around each position of the histogram, with a width equal to the experimental resolution.

3. Compute the average histogram peak height within this window, and assign the value of this average to the position of the center of the window in the pause point spectrum.

The location of the peaks in a pause point spectrum correspond to the distances at which the trajectories paused, and thus correspond to pause points. In addition, the peak area is proportional to the amount of time trajectories spent at the peak locations. Hence, relative peak area can be used as a measure of the relative strength of pause points. As can be seen from direct comparison between the spectrum and trajectories (Figure 5), this method of analysis provides an excellent summary of pauses and jumps observed in experiment. From this intuition, we expect that higher experimental spatial resolution would allow us to resolve further peaks in the spectrum.

The experimental pause point spectrum was computed using 15 unzipping trajectories of which 10 are shown in Figure 5(b-c). In addition to applying the above algorithm, the following steps were taken: Trajectories were first
FIG. 4 Sample window averaged results. The high resolution (1 bp) pause time histogram is shown in black. The grey spectrum is created by sliding a window of size 400 bp along the x-axis, and assigning a y-value to the midpoint of the window equal to the average of the high resolution histogram within that window. Note that highly localized pause points appear as broad peaks according to a much lower resolution in the window average.

FIG. 5 (a) Experimental pause point spectrum alongside sample experimental unzipping trajectories at $T = 298K$ ($25^\circ C$) with (b) $F = 15pN$ and (c) $F = 20pN$. The experimental spatial resolution is 0.5 μm (about 400 bp), which determined the size of the window used to calculate the spectrum. The structure of some peaks indicate multiple underlying pause points that are only partially resolved at this resolution. The full experimental pause point spectrum was computed with 15 experimental trajectories, only 10 of which are shown.

Individually shifted so that the starting position of each trajectory was zero μm. This was done in order to subtract the linker length from the measured distance for each bead. In order to collect as many trajectories as possible for better statistics, the experimental resolution was 0.5 μm. The spectrum was thus created with a window of 0.5 μm, corresponding to about 400 bp. In each of the experimental trajectories, there was a period in the beginning that was noisy due to transient bead adjustments in the turning on of the magnetic field (Figure 5). These regions were not included in the experimental spectra. To convert from μm to bp, we multiplied by (48502 bp/ 60.9 μm), which represents the appropriate bp/μm factor for lambda phage under these experimental conditions (Section II).

IV. THEORETICAL STUDY OF PAUSE POINTS

A. Defining the Free Energy Landscape

We consider the DNA unzipping experiment (Figure 1) as a chemical reaction from dsDNA \rightarrow 2 ssDNA. This system possesses a natural one-dimensional reaction coordinate, namely the number of base pairs (bp) unzipped m, or equivalently the spatial location of the unzipping fork. Theoretical descriptions can then be naturally reduced from a complicated, three-dimensional system to a one-dimensional description with some of the interactions renormalized,
expressing the three-dimensional nature of the problem.

A very simple one-dimensional effective model (Lubensky and Nelson, 2000, 2002) can then be written down based on the above picture. We define a free energy as a function of the number of bases unzipped, \(\mathcal{E}(m) \), which represents the difference in free energy between the states with \(m \) base pairs unzipped and the fully zipped states (\(\mathcal{E}(m = 0) = 0 \)). There is a contribution to \(\mathcal{E}(m) - \mathcal{E}(m - 1) \) from the free energy difference between the bound and unbound \(m \)-th base pair, \(\Delta G_{bp} = k_B T \bar{\eta}(m) \), and as well as a contribution due to adding two additional monomers to the free ssDNA strands under a tension, \(F \), denoted as \(2k_B T g(F) \). We can write these contributions as

\[
\frac{\mathcal{E}(m) - \mathcal{E}(m - 1)}{k_B T} = 2g(F) + \bar{\eta}(m).
\]

The DNA sequence information is stored in the function \(\bar{\eta}(m) \). In principle, this function might depend on time due to transient bubbles or twists in the DNA. At forces low enough (\(F < 5pN \)) such that hairpin formation in the unzipped handles is possible (Dessinges et al. 2002; Montanari and Mézard, 2001), \(g(F) \) could also be sequence dependent. These compilations are neglected here. If we iterate equation (1) until we reach \(m = 0 \), we have

\[
\frac{\mathcal{E}(m)}{k_B T} = 2g(F)m + \sum_{n=0}^{m} \bar{\eta}(n),
\]

Here we are setting \(\bar{\eta}(0) = 0 \), which ensures \(\mathcal{E}(0) = 0 \). The long DNA sequences we are considering should be insensitive to such edge effects.

Thermodynamically we expect in equilibrium that unzipping of a dsDNA molecule of \(M \) bases will occur when \(\mathcal{E}(M) < \mathcal{E}(0) \), with the transition region between ds and ss DNA occurring when \(\mathcal{E}(M) = \mathcal{E}(0) \). If we define the shifted function \(\eta(n) = \bar{\eta}(n) - \overline{\eta} \), where \(\overline{\eta} \) is the average of \(\bar{\eta}(n) \) over the sequence, we can rewrite (2) in the form

\[
\frac{\mathcal{E}(m)}{k_B T} = f m + \sum_{n=0}^{m} \eta(n)
\]

The parameter \(f \) is a reduced-force, which defines the overall tilt of the free energy landscape (FEL), with the particular base sequence overlaid on this tilt with the function \(\sum_{n=0}^{m} \eta(n) \). With this definition, the critical reduced force is defined by the equation \(f = 0 \). Values of \(f > 0 \) represent forces too low to unzip, while values \(f < 0 \) represent forces where full equilibrium unzipping is thermodynamically favorable. In all of the above, we have assumed that thermal bubbles do not form under the experimental unzipping conditions. This simple model can be defined in a more rigorous fashion by integrating out three-dimensional degrees of freedom in a statistical mechanical microscopic definition of the system. Effects due to bubbles can be incorporated into a coarse grained model, with renormalized parameters (Lubensky and Nelson, 2002).

It is interesting to note that even for this simple model, non-trivial phenomena can occur due to the build up of free energies naturally present in \(\bar{\eta} \). Indeed, for the case of a completely random base sequence of length \(M \), a sum over the independent random variables in \(\bar{\eta} \) would give an energy barrier \(\sim k_B T \sqrt{M} \) (Lubensky and Nelson, 2002). Since GC base pairs are \(\sim k_B T \) stronger than AT pairs at room temperature (Table I), we expect large peaks to appear due to the presence of long GC-rich regions. For a sequence of length \(M = 48,000 \), one expects barriers of the order of 200 \(k_B T \).

In practice, FEL’s are computed for a particular genome sequence using the experimentally determined free energies of base quartet formation (SantaLucia et al. 1996). There are 10 distinct base quartets, where \(m \) now represents the \(m\)-th base quartet, while \(\bar{\eta}(m) \) represents this base quartet’s free energy (Table II). These free energy parameters are determined through thermal denaturation studies on short dsDNA fragments, and were found for temperatures of around 310 \(K \). By using base quartet free energies, base stacking interactions are included, which are thought to be more important for overall dsDNA stability than the hydrogen bonds in between base pairs (Blossey and Carlon, 2003; Grosberg and Khokhlov, 1994). To compute FEL’s for different temperatures, the free energies for a given quartet were calculated from \(k_B T \bar{\eta}(m) = \Delta G_q = \Delta H_q - T \Delta S_q \). Here \(\Delta H_q (\Delta S_q) \) is the enthalpy (entropy) difference between the bound and unbound DNA base quartet. Once temperature and \(f \) are specified, the FEL is computed with equation (1) or (3).

The case of lambda phage DNA is particularly interesting since it is known that this genome consists of a GC-rich half connected to an AT-rich half 1. Using the free energy parameters of (SantaLucia et al. 1996), one finds that

1 The lambda phage genome can be found at http://www.ncbi.nlm.nih.gov/ with sequence accession number NC_001416.
Base Quartet	$\Delta G_{qt}/k_B T$
5'-GC-3'	4.46
CG	4.22
GG	3.46
GA	2.79
GT	2.96
CA	2.79
CT	2.20
AA	2.31
AT	1.52
TA	1.33

TABLE I Base quartet free energies ΔG_{qt} for the bound to unbound transition for $T = 298K$ (25°C) taken from SantaLucia et al. (1996), using $\Delta G_{qt} = \Delta H_{qt} - T\Delta S_{qt}$. Only two nucleotides of the base quartet are shown, the other two obtained from the usual complementarity A-T and G-C. Free energies are expressed in units of $k_B T = 0.59$ kcal/mol at $T = 298K$ (25°C).

FIG. 6 Free energy landscape for the lambda phage genome at $f = -0.15$, $T = 298K$ (25°C) corresponding to $F \approx 16pN$. A closer view is given in the inset. Because the lambda phage genome splits into a GC-rich ‘front end’, followed by an AT-rich region, the effective critical unzipping force is the one shown here, which produces an approximately flat energy landscape for the first $\sim 20,000$ base pairs. Note that there are still energy barriers $\sim 20k_B T$ in this region due to sequence heterogeneity.

the large GC-rich region creates a peak of approximately $3000k_B T$ at $f = 0$ and $T = 298K$ (25°C), representing an insurmountable barrier to unzipping, and which is much larger than that expected for a random sequence. For the lambda phage genome, we thus define an operational critical reduced force of unzipping as the value of f such that $E(0) = E(m_{GC})$, where m_{GC} is the boundary of the GC-rich region. As can be seen in Figure 6 this operational critical reduced force corresponds to approximately $f = -0.15$. Forces greater than this should allow easier unzipping since the AT-rich portion of the FEL has a negative slope for these forces. However, even at these large forces, there are barriers on the order of $20k_B T$ to unzip (Figure inset.) Using a Freely-Jointed Chain (FJC) model for the single strands, with monomer spacing, $a = 0.6nm$ (corresponding to the bp/µm conversion factor in section II), and Kuhn length, $b = 1.9nm$ (Smith, Cui and Bustamante 1996), a reduced force value of $f = -0.15$ corresponds to an experimental force value of $F \approx 16pN$.

B. Dynamics

To study the location of the pause points one has to study the dynamics related to moving along the chemical reaction coordinate, m. Macroscopic unzipping occurs only if $f < 0$, when the equilibrium state of the system is unbound. In this case, the experimental traces of DNA unzipping represent the approach of the system toward its equilibrium single-stranded state.
As outlined in [Lubensky and Nelson 2002], there are four dynamical time scales associated with DNA constant-force unzipping in the setup shown in Figure 1. τ_{rad} and τ_{bulk} represent base pairing and unpairing at the end of the strand and in the bulk, respectively; $\tau_{\text{m}}(m)$ represents the relaxation time of the liberated single strands; and $\tau_{\text{rot}}(m)$ represents the relaxation time of twist built up in the zipped portion of the strand due to the helical nature of the DNA. The latter two time scales vary as a function of m. The dynamics of unzipping are determined by the slowest of these time scales. Here we assume that this time scale, for any value of m, is related to the unbinding of base pairs.

In the analysis below, we assume that the slowest timescale is m-independent. Furthermore, it can be argued that bubble formation is suppressed in DNA for the relevant experimental conditions because of strong base stacking interactions [Blossey and Carlon 2002].

We will be interested in the unzipping dynamics for $f < 0$, that is for forces above the critical force of unzipping where it is thermodynamically favorable to unzip. However, even under these conditions, the approach to thermodynamic equilibrium is far from simple. Smooth progress of the unzipping fork is hampered by very large energy barriers in $\mathcal{E}(m)$ that can be caused by the buildup of positive $\eta(m)$. As mentioned above, for random DNA sequences of length M, these barriers can grow as \sqrt{M}. Forces slightly above the critical force are unable to remove these barriers through tilting the landscape, and we expect to observe difficulty in traversing these barriers. Since the barriers are sequence dependent, it is possible that the dynamics of unzipping display characteristic signatures of the sequence.

To study the behavior of a particular DNA sequence, and to make direct contact with experiments, it is useful to have a dynamical model that closely mimics the experiment. This can be achieved most simply through Monte Carlo (MC) simulations of a random walker on the one-dimensional FEL for the specific DNA sequence under study, at the specified reduced force and temperature conditions. The position of the walker on the FEL represents the position of the unzipping fork in experiments. The walker moves from position m to a nearest neighbor position $m \pm 1$ with the rate

$$w[m \rightarrow (m \pm 1)] = \min\left\{1, e^{-\left[\mathcal{E}(m \pm 1) - \mathcal{E}(m)\right]/k_B T}\right\}. \quad (5)$$

Details of the algorithm are outlined in Appendix A.

To calculate the theoretical pause point spectra, simulations were performed at a variety of reduced forces, f, and on FEL’s at the same temperature of the experiments. Each simulated trajectory consisted of 107 Monte Carlo steps, and 300 trajectories were used to create the theoretical histograms. Corresponding to the 0.5μm experimental resolution, the window averages were taken over 400 base pairs with a length per base pair for lambda phage DNA under these conditions of 60.9μm/48502 bp as discussed in Section II. For f values in which some of the trajectories reached the fully unzipped state ($m = 48, 502$ bp), the trajectories were cutoff past 48,000 base pairs before being included in the spectra.

V. DISCUSSION

An examination of a few experimental unzipping trajectories (Figure 6) reveals that the pausing locations are often encountered by multiple copies of the same DNA. These copies are subject to different realizations of thermal noise, but share the same base sequence, an indication that sequence is a strong factor in governing pause point locations.

Experimental and theoretical pause point locations can be compared by examining the peak positions in the corresponding pause point spectra (Table II). There is strong agreement between experimental and theoretical pause point locations at distances less than 6000 bp. In addition, theory predicts a gap in the pause point spectra of ~ 9000 bp starting at 5400 bp, which is similar in size and location to that observed in experiment. The fact that the positions of the pause points and gaps match to such a high degree between experiment and theory are evidence that for these experimental conditions, the approximations inherent in the concept of dynamics on the FEL representing DNA constant-force unzipping as a model for the experiments are sound. Since the theoretical model only requires
FIG. 7 Sample theoretical unzipping trajectories, \(m(t) \), where \(\tau = 10000 \) steps. (a) \(f = -0.26 \), (b) \(f = -0.39 \), (c) \(f = -0.50 \), (d) \(f = -5 \). For \(t/\tau \geq 15 \), (a) shows intricate two-state behavior caused by nearly degenerate minima on the FEL. In (d) the unzipping is smooth, but does not fully unzip in 80,000 time steps indicating dwell time at some sites. Note that pause points are reproducible in the simulations, and that very large forces are required to smooth out the large barriers present in lambda phage DNA and allow smooth unzipping.

Experiment (±200 bp)	Theory (±200 bp)
1000	600
2400	2500
3400	3400
4700	4600
5600	5400
6100	
7100	
Gap = 6400	Gap = 8800
13500	
14700	

TABLE II Experimental vs. theoretical pause point locations (bp) for the first 15000 bp corresponding to unzipping the front-half of the lambda phage genome (Figure 6). The pause point locations are the positions of the centers of the peaks in the pause point spectra (Figure 5), and have errorbars of ±200 bp due to experimental resolution. The theoretical pause points include those found for \(f = -0.29, -0.39, -0.47, -0.50 \). Also listed are the size of the gap regions in the spectra where no pause points are found. Note that every theoretical peak less than 6000 bp is within the errorbars of an experimental peak, and the theoretical and experimental gaps are roughly the same size and in the same location in the pause point spectra.
the base sequence and thermodynamic parameters for base quartet formation, the agreement is proof that pause point locations are strongly governed by base sequence. The good comparison also shows that neglect of bubble formation for these temperatures is appropriate, as is also found by other means (Blossey and Carlon, 2003).

The pause point spectra contain much more information than the pause point locations. Theoretical and experimental pause point spectra are shown in Figure 8. The values of f used in the simulations lie in the range $-0.25 \leq f \leq -0.5$. Recall that $f = -0.15$ corresponds roughly to a flat average FEL in the GC-rich region of the lambda phage DNA (Figure 6). A value of $F \approx 17\mu N$ corresponds to $f = -0.37$ under these conditions, which is within this range. We have compared experimental and theoretical pause points in the front half of the unzipping process. The much steeper energy landscape in the back half (see Figure 6) eliminates most pause points. As the values of f are gradually decreased from $f = -0.25$, the theoretical pause point spectra grow into more peaks at larger distances, although low base pair peaks are still preserved. Thus the locations of pause points are fairly robust with respect to f values. Once the forces are high enough to allow exploration of the whole FEL, the location of the peaks in the spectra do not change, and peak areas are adjusted reflecting a changing of the strength of the pause points.

There are some noticeable disagreements in pause point location between experiment and theory. In particular, the experimental doublet peak at 7100 bp was not observed in any theoretical spectra for a variety of parameters, including longer simulation times. The pair of peaks centered around 14000 bp in the experimental spectra are also not picked up in the theoretical spectra, rather a single peak lying in the middle of the experimental peaks is found. This most likely does not represent an averaging of the two pause point locations in the theoretical spectrum because we would expect a broad peak covering the two locations in this scenario. The doublet of experimental peaks represents
FIG. 9 Experimental (black) and theoretical (grey) pause point spectra for lambda phage simulations of 10^8 steps at 298K (25°C). (a) $f = -0.39$, (b) $f = -0.50$. The longer run times in the simulations produce different pause point strengths, but similar pause point locations to Figure 8.

The longer run times in the simulations produce different pause point strengths, but similar pause point locations to Figure 8.

While the peak positions in the experimental and theoretical pause point spectra coincide quite well, the peak areas noticeably differ. One source of this discrepancy is due to the time scales of the DNA unzipping. Each step in the Monte Carlo propagation of the unzipping can be thought to occur on the microscopic time scale governing the DNA unzipping, which is estimated to be $\sim 10^{-7}$ s (Danilowicz et al., 2003a), with a large error in the exponent (Mathé et. al., 2004). The accuracy of this figure is not high enough to allow direct comparison with theoretical and experimental time scales. As mentioned above, the particular choice of Monte Carlo algorithm can change the characteristic unzipping times of simulations and could account for the discrepancy between theoretical and experimental time scales.

Figure 9 shows pause point spectra obtained for simulations of 10^8 steps. A reduced force of $f = -0.39$ is not strong enough to allow DNA's to unzip under this length of time. Comparing to the 10^7 step simulations (Figure 8), we see that longer times in this case allow peaks at slightly higher base pair to be observed, but mainly result in a change in peak area. For $f = -0.50$, which allows for some fraction of unzipping even with 10^7 step runs, longer runs only serve to change peak areas (compare with Figure 8). Longer simulation times do not give spectra that approach the experimental pause point spectrum. We thus expect that even longer times will not provide quantitative agreement of pause point strength with the current MC algorithm. The choice of the Metropolis MC algorithm is an efficient choice to satisfy the detailed balance condition (A1), but it is not the only choice for MC algorithm. Other choices for algorithms can give different pause times at pause points which result in different peak areas in pause point spectra.

The discrepancy of unzipping timescales between experiment and theory is also reflected in the fact that multiple values of f needed to be used to obtain the theoretical pause point information. At low f values, theoretical simulations could not pass certain barriers of the FEL, as is seen in the abrupt cutoff of peaks in Figure 8(a-c), which necessitated further tilting of the landscape. The technique of increasing the force is also used in experiment to probe farther out regions of the unzipping landscape (Figure 5). However, the range of reduced forces used in the theoretical simulations corresponds roughly to 15-17pN, while the experimental range is roughly 15-30pN (Danilowicz et al., 2003b).

We might expect discrepancies between experimental and theoretical pause point locations to be due to large A-rich regions in the genome, since these are more susceptible to bubble formation due to the weaker base pairing and stacking interactions (Table I). Thus further investigation into these pause point discrepancies can lead to interesting genomic information. Experiments involving higher temperatures and different ionic conditions will help elucidate these discrepancies (Danilowicz et al., 2003b).

This procedure to investigate pause points in DNA unzipping is easily extended to the study of other genomes since all that is required is the base sequence and temperature of interest. As an example, we theoretically investigated the data from two separate runs, and thus a slight miscalibration in the 800bp/µm conversion factor (Section III) for those particular runs could cause the two peaks to separate, since a miscalibration has a larger effect for longer distance pause points. For strong enough forces, theoretical pause point spectra also display many more peaks than present in the experimental spectra. It could be that more experimental trajectories need to be included to observe these peaks.

While the peak positions in the experimental and theoretical pause point spectra coincide quite well, the peak areas noticeably differ. One source of this discrepancy is due to the time scales of the DNA unzipping. Each step in the Monte Carlo propagation of the unzipping can be thought to occur on the microscopic time scale governing the DNA unzipping, which is estimated to be $\sim 10^{-7}$ s (Danilowicz et al., 2003a), with a large error in the exponent (Mathé et. al., 2004). The accuracy of this figure is not high enough to allow direct comparison with theoretical and experimental time scales. As mentioned above, the particular choice of Monte Carlo algorithm can change the characteristic unzipping times of simulations and could account for the discrepancy between theoretical and experimental time scales.

Figure 9 shows pause point spectra obtained for simulations of 10^8 steps. A reduced force of $f = -0.39$ is not strong enough to allow DNA's to unzip under this length of time. Comparing to the 10^7 step simulations (Figure 8), we see that longer times in this case allow peaks at slightly higher base pair to be observed, but mainly result in a change in peak area. For $f = -0.50$, which allows for some fraction of unzipping even with 10^7 step runs, longer runs only serve to change peak areas (compare with Figure 8). Longer simulation times do not give spectra that approach the experimental pause point spectrum. We thus expect that even longer times will not provide quantitative agreement of pause point strength with the current MC algorithm. The choice of the Metropolis MC algorithm is an efficient choice to satisfy the detailed balance condition (A1), but it is not the only choice for MC algorithm. Other choices for algorithms can give different pause times at pause points which result in different peak areas in pause point spectra.

The discrepancy of unzipping timescales between experiment and theory is also reflected in the fact that multiple values of f needed to be used to obtain the theoretical pause point information. At low f values, theoretical simulations could not pass certain barriers of the FEL, as is seen in the abrupt cutoff of peaks in Figure 8(a-c), which necessitated further tilting of the landscape. The technique of increasing the force is also used in experiment to probe farther out regions of the unzipping landscape (Figure 5). However, the range of reduced forces used in the theoretical simulations corresponds roughly to 15-17pN, while the experimental range is roughly 15-30pN (Danilowicz et al., 2003b).

We might expect discrepancies between experimental and theoretical pause point locations to be due to large A-rich regions in the genome, since these are more susceptible to bubble formation due to the weaker base pairing and stacking interactions (Table I). Thus further investigation into these pause point discrepancies can lead to interesting genomic information. Experiments involving higher temperatures and different ionic conditions will help elucidate these discrepancies (Danilowicz et al., 2003b).

This procedure to investigate pause points in DNA unzipping is easily extended to the study of other genomes since all that is required is the base sequence and temperature of interest. As an example, we theoretically investigated the
FIG. 10 Free energy landscape for the BP-φX174 genome at \(f = -0.15, T = 298K \) (25°C) corresponding to \(F \approx 16pN \). A closer view is given in the inset of the approximately horizontal plateau region.

FIG. 11 Sample simulation trajectories displayed below the relevant segment of the BP-φX174 FEL at \(f = -0.25 \) (25°C). The three trajectories start at the left of the figure at \(m = 600bp, t = 0 \). Simulation time has units \(\tau = 5385 \) steps corresponding to the genome length. Pause points are denoted by arrows on the FEL. Note that very intricate multi-state behavior is seen in the walker trajectories. In particular, the region from 725 – 775 bp shows the presence of several minima of the same depth on the FEL, and shows up as oscillations in the trajectories.

Pause point unzipping spectrum for the microvirus Bacteriophage Phi-X174 (BP-φX174) \((M = 5386)\). The FEL for BP-φX174 has barriers that are on the order of \(\sqrt{M} \), and is a good example of a landscape which can be approximated by an integrated random walk (Figure 10). Figure 11 plots several sample simulation trajectories alongside a segment of the BP-φX174 FEL for \(f = -0.25 \), and figure 12 plots pause point spectra for several values of \(f \), all at \(T = 298K \) (25°C). Once again we see that for low values of \(f \), the spectra grow into peaks at higher base pair as the value of \(f \) is increased. A value of \(f = -0.45 \) is large enough to cause unzipping, and we can see that the spectrum at this value has contributions from the whole surface. For BP-φX174, \(f = -0.45 \) corresponds to \(F \approx 17pN \) at 298K (25°C).

2 The BP-φX174 genome can be found at http://www.ncbi.nih.gov/ with sequence accession number NC_001422.
FIG. 12 Theoretical pause point spectra for BP-φX174 at $T = 298K$ $(25^\circ C)$: (a) $f = -0.15$, (b) $f = -0.20$, (c) $f = -0.25$, (d) $f = -0.45$. Each spectrum was created using 300 traces of 10^7 steps each. A value of $f = -0.45$ corresponds to $F \approx 17$pN.

VI. CONCLUSION

We have presented experimental evidence that the dynamics of DNA constant force unzipping are not smooth, but rather display characteristic pauses and jumps. Furthermore, we have given strong evidence that the locations of these pauses are primarily governed by the DNA sequence at room temperature $(25^\circ C)$. We have also presented a general scheme for computing pause point spectra for any DNA sequence, with the only inputs being the sequence, temperature, and a set of ten empirical parameters representing DNA duplex stability.

The ideas presented above can be applied to any system in which the concept of a pause point can be well defined, or in which a ‘spectrum’ representation of trajectory data can be useful in other ways. We can then enumerate the steps involved in constructing a theoretical representation of the system in order to facilitate comparison with experiments:

1. Using chemical intuition, reduce the system to one degree of freedom. Equilibrium statistical mechanics can be used to justify, or derive, the resulting FEL description of the system.

2. To model experiments, use Monte Carlo simulation with the appropriate algorithm to create theoretical trajectories.

3. Compute trajectory spectra using the above procedure for both experimental and theoretical trajectories.

Such systems, of which DNA constant force unzipping is one, also include topics of current interest such as the motion of molecular motors on biopolymers (Davenport et. al. 2000; Keller and Bustamante 2000; Neuman et. al. 2003; Perkins et. al. 2003; Wang et. al. 1998).
VII. ACKNOWLEDGMENTS

JBL would like to acknowledge the financial support of the John and Fannie Hertz Foundation. Work by JDW, CD and MP was funded by grants: MURI: Dept. of the Navy N00014-01-1-0782; Materials Research Science and Engineering Center (MRSEC): NSF Grant No. DMR-0213805 and NSF Award PHY-9876929. Work by DRN and YK was supported primarily by the National Science Foundation through the Harvard Materials Research Science and Engineering Laboratory via Grant No. DMR-0213805 and through Grant No. DMR-0231631. YK was also supported through NSF Grant No. DMR-0229243.

APPENDIX A: Monte Carlo Algorithm

The Monte Carlo technique is designed to sample an ergodic system according to the equilibrium distribution for long simulation times. The distribution is specified by the detailed balance condition

$$\frac{w_{m \rightarrow m+1}}{w_{m+1 \rightarrow m}} = e^{-\left(E(m+1)-E(m)\right)/k_BT}, \quad \text{(A1)}$$

where $w_{m \rightarrow m+1}$ is the rate of taking the step from m to $m+1$ base pairs unzipped. The ratio on the right hand side of (A1) insures relaxation to the Boltzmann distribution for long times \(^{[1999]}\). Specifying the distribution, and thus the detailed balance criterion, still offers a large degree of flexibility in choosing an algorithm. Our goal in this study is to be able to predict the pause points of the DNA unzipping process, and to this end, we expect many choices of Monte Carlo algorithm to give equivalent pause points. The simplest algorithm to achieve the detailed balance is known as the Metropolis Criterion \(^{[1999]}\). For an unzipping fork location at m,

1. Choose a direction to move $(m+\delta, \delta = \pm 1)$.
2. If $E(m+\delta) - E(m) < 0$, accept the move and GOTO 1.
3. If $E(m+\delta) - E(m) > 0$, accept the move with the probability according to the Boltzmann distribution $(e^{-\left(E(m+\delta)-E(m)\right)/k_BT})$. Else stay at this m. GOTO 1.

In order to prevent the random walkers from trying to unzip (rezip) beyond the end (beginning) of the dsDNA strand, we artificially inserted infinite barriers to these transitions in the simulations.

References

Assi F., Jenks R., Yang J., Love C., Prentiss M. 2002. Massively parallel adhesion and reactivity measurements using simple and inexpensive magnetic tweezers. J. Appl. Phys. 92:5584-5586.

Battaljarchee S. M. 2002. Unzipping DNAs: towards the first step of replication. J. Phys. A 33:L423-L428.

Blossey R., Carlon E. 2003. Reparameterizing the loop entropy weights: Effect on DNA melting curves. Phys. Rev. E 68:06911.

Bockelmann U., Thoman Ph., Essevat-Roulet B., Viasnoff V., Heslot F. 2002. Unzipping DNA with Optical Tweezers: High Sequence Sensitivity and Force Flips. Biophys. J. 82:1537-1553.

Cocco S., Marko J. F., Monasson R. 2001. Force and kinetic barriers to unzipping of the DNA double helix. Proc. Natl. Acad. Sci. USA 98:8608-8613.

Cocco S., Monasson R., Marko J. F. 2002. Force and kinetic barriers to initiation of DNA-unzipping. Phys. Rev. E 65:041907

Danilowicz C., Coljee V. W., Bouziguex C., Lubensky D. K., Nelson D. R. and Prentiss M. 2003a. DNA unzipped under a constant force exhibits multiple metastable intermediates. Proc. Natl. Acad. Sci. USA 100:1694-1699.

Danilowicz C., Kafri, Y., Conroy R. S., Coljee V. W., Weeks J., Prentiss M. 2003b. Measurement of the Phase Diagram of DNA Unzipping in the Temperature-Force Plane cond-mat/0310633.

Davenport R. J., Wuite G. J. L., Landick R., Bustamante C. 2000. Single-molecule study of transcriptional pausing and arrest by E-coli RNA polymerase. Science 287:2497-2500.

Dessinges M.-N., Maier B., Zhang Y., Peliti M., Bensimon D., Croquette V. 2002. Stretching Single Stranded DNA, a Model Polyelectrolyte Phys. Rev. Lett. 89:248102.

Grosberg A. Yu. and Khokhlov A. R. 1994. Statistical Physics of Macromolecules (AIP Press, New York).

Kafri Y., Mukamel D., Peliti L. 2002. Melting and Unzipping of DNA. European Phys. Jour. B 27:135-146.

Keller D., Bustamante C. 2000. The mechanochemistry of molecular motors. Biophys. J. 78:541-556.

Lubensky D. K. and Nelson D.R. 2000. Pulling pinned polymers and unzipping DNA. Phys. Rev. Lett. 85:1572-1575.

Lubensky D. K. and Nelson D. R. 2002. Single molecule statistics and the nucleotide unzipping transition. Phys. Rev. E 65:031917.
Marenduzzo D., Bhattacharjee S. M., Maritan A., Orlandini E., Seno F. 2002. Dynamical scaling of the DNA unzipping transition. *Phys. Rev. Lett.* 88:028102.

Mathé J., Hasina V., Viasnoff V., Rabin Y., Meller A. 2004. Nanopore force spectroscopy of individual DNA hairpin molecules. Submitted to *PNAS*.

Montanari A., Mézard M. 2001. Hairpin Formation and Elongation of Biomolecules. *Phys. Rev. Lett.* 86:2178.

Nelson D. R. 2003. Statistical Physics of Unzipping DNA. cond-mat/0309559.

Neuman K. C., Abbondanzieri E. A., Landick R., Gelles J., Block S. M. 2003. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. *Cell* 115:437-447.

Newman M. E. J. and Barkema G. T. 1999. *Monte Carlo Methods in Statistical Physics* (Clarendon Press, Oxford).

Perkins T. T., Dalal R. V., Mitsis P. G., Block S. M. 2003. Sequence-dependent pausing of single lambda exonuclease molecules. *Science* 301:1914-1918.

Rouzina I., Bloomfield V. A. 1999. Heat Capacity Effects on the Melting of DNA. 1. General Aspects. *Biophys. J.* 77:3242-3251.

SantaLucia J., Allawi H. T., Seneviratne P. A. 1996. Improved Nearest-Neighbor Parameters for Predicting DNA Duplex Stability. *Biochemistry* 35:3555-3562.

Sebastian K. L. 2000. Pulling a polymer out of a potential well and the mechanical unzipping of DNA. *Phys. Rev. E* 62:1128-1132.

Smith S. B., Cui Y, Bustamante C. 1996. Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules. *Science* 271:795-799.

Tkachenko A. V. 2003. Unfolding and unzipping of single-stranded DNA by stretching cond-mat/0304250.

Wartell R. M., Benight A. S. 1985. Thermal Denaturation of DNA Molecules: A Comparison of Theory with Experiment. *Phys. Rep.* 126:67-107.