Dysregulation profile defined by Child Behavior Checklist in a sample of preschool children

Perfil de desregulación definido mediante el instrumento Child Behavior Checklist en preescolares

Rodrigo Sierra Rosalesa, Paula Bedregalb

aDepartment of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile.
bDepartment of Public Health, School of Medicine, Pontificia Universidad Católica de Chile.

Received: 12-3-2018; Approved: 15-11-2018

Abstract

Introduction: The dysregulation profile (DP) is a relevant clinical entity in the children and adolescent area since its association with future psychopathology. DP is defined by the Child Behavior Checklist (CBCL), combining internalizing symptoms (anxiety/depression) and externalizing ones (aggressiveness, attention problems). Objectives: To study the frequency of CBCL-DP in a sample of Chilean preschoolers. Patients and Method: A sociodemographic survey and CBCL 1.5-5 was applied to caregivers of children aged 30 to 48 months in a national representative sample of public health system users. Frequency was estimated using the Kim et al. method and an explanatory model was made using binary logistic regression of DP using the child, caregiver, and contextual variables. Results: The sample size was n = 1,429 preschool children and their caregivers. The frequency of DP was 11.6% (95% CI 9.9-13.5%). The variables that allow to classify DP in 88.6% of cases were: current depressive symptoms in the main caregiver (OR: 2.24; 95% CI 1.37-3.67); number of stressful events experienced by the main caregiver (p = 0.005); number of available elements for child development stimulation in the home (p = 0.001); number of chronic diseases of the child (p = 0.006). Conclusions: DP has a high frequency in preschoolers, which implies a relevant mental health burden. This finding points to the need for interventions in this area and also longitudinal monitoring of this subgroup.

Keywords: Dysregulation profile; Childhood Behavior Checklist; preschoolers

Correspondence: Paula Bedregal pbedrega@gmail.com

How to cite this article: Rev Chil Pediatr 2019;90(2):157-165. DOI: 10.32641/rchped.v90i2.657
Introduction

Based on the psychopathology, there has been a permanent interest in identifying children and adolescents who present simultaneously mood, attention, and behavior alterations, as a separate clinical entity. The application of standardized clinical evaluation instruments, such as the Achenbach Child Behavior Checklist (CBCL), has allowed identifying a symptomatic profile that is generically called the CBCL-dysregulation profile (CBCL-DP). This profile attempted to bring together the symptomatic fields of attention problems, anxiety/depression problems, and aggressive behavior.

Initially, this profile was associated with a higher frequency of bipolar disorder diagnosis in pediatric age according to DSM-I-V; however, long-term follow-ups have had difficulties in maintaining this association, mainly by emphasizing the search for mood episodes with clear onset and end, or delusions of grandeur presence in mental examination, to differentiate from an attention-deficit hyperactivity disorder (formerly attention-deficit disorder)7-9.

Despite this questioning, CBCL-DP has concept reliability beyond its diagnostic association in categorical terms, it constitutes a phenotypic homogeneity tool to compare studies in different populations. Thus, genetic bases for the profile has11-13 and the possibility of longitudinal follow-up could even be considered.

In this last aspect, prospective cohorts have shown a significant evolution towards bipolar disorder14,15. However, what is most interesting to analyze is the evolution towards severe and joint alterations of affective disorders, cognition and behavior, in what has been described as the “ABC” of developmental self-regulation (Affective, Behavioral, Cognitive).

Findings in longitudinal follow-up of patients have included diverse forms of psychopathology, in addition to the persistence over time of a consistent symptomatic pattern14,15, where an increased suicidality has been observed in adolescence, higher substance use rate, impaired functionality, higher rate of Cluster B personality disorders in adulthood, higher rate of anxiety disorders diagnosis, major depressive disorder, and behavioral disorders16-19.

Interest has also emerged in the early identification of children with such characteristics20. A study in preschoolers found several associations that involve important environmental factors21, such as the rate of psychopathology in parents and the presence of maladaptive parenting techniques, in addition to significant psychiatric symptoms in the state of mind and behavior already at that age.

It is important to point out that, in the psychopathological discussion, a new diagnosis for child and adolescent age has appeared, listed in the DSM-5 manual, called “Disruptive Mood Dysregulation Disorder”22. There is still some discussion about the implications of this diagnosis. However, the diagnostic criteria have not been tested for their association with the CBCL scale, in addition to considering specific age and temporal criteria, which do not make it comparable with the dysregulation profile described in the previous paragraphs.

Having identified this powerful marker of current and future psychopathology, and the lack of descriptions made in the Chilean population, even less so in the preschool population, this research is proposed with the objective to study the CBCL-DP frequency from a sample of Chilean preschoolers and subsequently to explore associations that help to understand its distribution in the studied population.

Patients and Method

Sample size and selection

Secondary data analysis was carried out with the collected information based on the results evaluation of the Program to Support Biopsychosocial Development, from the Social Protection Subsystem Chile Crece Contigo (“Chile grows with you”).

The program is carried out in the public health care network and its objective is to monitor the children development since the gestation to the age of six. In this evaluation, data were collected from a representative sample of the Program users. The sample framework corresponded to children between 30 and 48 months of age (in 2013) who received their benefits from gestation, in public primary health centers in Chile. The public health sector serves 85% of the population aged 1-5. In order to obtain a representative national sample, a cluster sampling was carried out stratified in three stages. The first sampling unit was stratified by public communal networks of organized primary care services. The second sampling unit corresponded to the random selection of a facility to comply with the foreseen quota; if this was not sufficient, another facility of the same commune was selected. Finally, the study units correspond to the children treated in these facilities.

The estimated sample size was 1,400 of children aged 30-48 months at the time of the evaluation. This size allows obtaining national frequencies with at least 95% reliability, with a power close to 90% based on European prevalence of development problems of approximately 10%.
Construction of the variable “Dysregulation Profile”

For the CBCL-DP measurement, data from the CBCL application in its version for preschoolers aged 18 to 60 months were used. This instrument has high validity and reliability levels and has been validated in this version for Chilean preschoolers. This instrument consists of 99 items that represent behaviors which are answered as 0 = not present in the child, 1 = the behavior is sometimes presented in the child, and 2 = it is always presented. A total gross score is established with the sum of each item, which is then standardized, using the proposed criteria by the manual.

The CBCL-DP variable was constructed following the recommendations of Kim et al. under this modality, each item mentioned above (attention problems, anxiety/depression, aggressiveness) was standardized independently. A new variable was then generated based on the standardized scores sum of each one and was studied with cut-off points from the standardized scores sum in T ≥ 180. This method allows a comparison between both report samples in preschools of different nationalities.

Other used instruments

Child development was assessed with the Battelle Developmental Inventory 1 (BDI), which is used for the development diagnosis between 0-8 years of age considering the personal-social, social adaptation, motor skills, communication, and cognition aspects. Battelle is considered altered if the instrument shows a significant age lag with respect to the expected accomplishments for the test reference. In the studied sample, the internal reliability of the instrument BDI (Cronbach’s Alpha) was 0.96.

Other studied variables of interest come from the Chile Crece Contigo Survey. It includes family sociodemographic variables such as socioeconomic level measured by ESOMAR method, and family functioning, using a translation of the subscale of McMaster Family Assessment Device which evaluates family functioning and main caregiver variables, such as history of consumption of alcohol, drugs, and smoking. The internal reliability (Cronbach’s Alpha) of the family functioning scale in this sample was 0.842.

In addition, the history of depression in pregnancy and depression diagnosis made by a physician at some point in life were included, and current depressive symptoms were evaluated through the Composite International Diagnostic Interview Short Form (CIDI-SF) for major depression, in the Spanish version used in three National Health Surveys of Chile. On the other hand, it was analyzed the caregiver perception of stressful events in the last twelve months, and perception of general health and domestic violence (psychological, financial, physical, and sexual abuse towards the caregiver, and violence in general at home). Among the variables of the child was considered the presence of childhood chronic diseases according to the Survey. In addition, aspects relating to parenting available in the Survey were considered, such as the number of available elements at home to stimulate (which proposes a list of 12) and the parents’ participation in stimulation areas (reading, singing, playing, visiting relatives, walking).

Statistical analysis

Based on an integrated database construction, the analysis was performed using the statistical software SPSS 17.0 and STATA. The frequency was studied according to the described methods with 95% confidence intervals. Secondly, an association was pursued between the several available exhibitions through the used instruments and the dysregulation profile emergence. Candidate variables were evaluated with bivariate analysis using chi-squared or T-student tests as appropriate. Statistically significant results were considered with p-value < 0.05. Additionally, an explanatory model was created using binary logistic regression with the conditional method, starting with those variables that were significantly associated in the bivariate analysis.

Ethical considerations

The study was approved by the research ethics committee of the Eastern Metropolitan Health Service (at the request of the Ministry of Health) and required informed consent from the caregivers participating in the study. No additional funding was required to conduct this secondary analysis.

Results

The resulting sample consisted of 1,429 preschoolers users of the public health system. The average age of the preschoolers sample was 41.2 ± 4.8 months; 51.2% were male. The educational level of the main caregiver in years was 9.5±3.6. Table 1 describes the main characteristics of the studied population (Table 1).

The CBCL-DP frequency was 11.6% (95% CI 9.9-13.5%), which in males was somewhat higher than in females. The CBCL-DP was significantly associated with impairment in the Battelle cognitive aspect, family functioning, and the presence of depressive symptoms in the main caregiver. A trend towards a higher frequency was observed in the case of maternal depression history during pregnancy (Table 2).

Table 3 shows how the averages of some continuous variables differ in the case CBCL-DP. In a statistically significant way, there is a higher average of chronic...
diseases in those with CBCL-DP, a higher number of stressful vital events experienced by the main caregiver in the last twelve months, and a higher number of suffered types of violence. By contrast, a higher number of areas of the main caregiver involvement in children’s activities is observed in those children without CBCL-DP.

Finally, table 4 shows the CBCL-DP explanatory model using binary logistic regression. By entering all statistically significant variables in the bivariate analysis and observing behavior step-by-step, only four variables remain in the model: current depressive symptoms of the main caregiver, number of stressful events experienced in the last 12 months by the main caregiver, number of stimulation elements available at home (as protector), and the number of chronic diseases of the evaluated children, explaining 88.6% of the classification coincidences.

Discussion

This study is the first report on the national frequency of dysregulation profile according to CBCL in Chilean preschoolers between 36 and 48 months of age, users of the public health system. In addition, it is the first frequency report close to the prevalence estimate of the country. It points out that the frequency tends to be higher in males than in females, and that there are factors of the main caregiver that importantly explain the presence CBCL-DP. In our study, the educational level of the caregiver and the socioeconomic level by ESOMAR method did not show significant associations, possibly given the homogeneity in this aspect due to the type of population under study (Chilean public health sector).

The CBCL-DP presentation frequency in the sample is close to the only frequency reported in individuals of the same age, in the study of Kim et al. (21), who report a frequency in a sample of similar size (n=955), separated by the report of the mother (11.1% frequency with n=549), and of the father (6.4% frequency with n=406). The reported frequency in the total sample was 9.1%.

Given the results, a first theoretical model is proposed that interrelates the found associations (Figure 1).

In general, the variables are grouped into intrinsic elements of the child, the elements of the main caregiver, and the relational elements between them, which occur together in the environment, where factors are also identified. First of all, among the child’s elements, the proposed model shows the number of chronic diseases in the child. It is hypothesized that the physical symptoms presence predisposes to discomfort that can be associated with the greater presence of behavioral symptoms and indicators of internalizing discomfort, as has been observed in bronchial asthma36, which has even had physiopathological mechanisms proposed from neuroendocrine systems37.

Prenatal risk factors associated with this profile have also been reported, such as the educational level of the mother, passive smoking, and identification of mycoplasma in placental samples38, which would fall within the category of intrinsic factors of the child, but which were not included in the studied factors in this sample.

Secondly, among the analyzed elements of the care-

Table 1. Sociodemographic characteristics of studied sample

Sociodemographic characteristics of children and their caregivers	Total sample n = 1429
From the child	Mean / % SD
Age (months)	40.95 / 4.6
Male sex	51.3
Attends kindergarten	50.0
Number of chronic diseases in infancy	1.1 / 1.3
From the main caregiver	Mean / % SD
Age (years)	31.6 / 10.2
Male sex	2.5
Civil Status	
Divorced	14.8
Not divorced	85.2
Employment	
Currently employed	82.2
Currently unemployed	17.8
Educational level	
Without elementary instruction	1.1
Elementary instruction	20.4
High school instruction	66.7
Higher education	11.8
Years of studying	9.5 / 3.6
Number of stressful vital events (max: 9)	1.2 / 1.5
From the family group	
Socioeconomic classification (ESOMAR)	
High	8.3
Middle-High	14.1
Middle	36.7
Middle-Low	33.3
Low	7.6
Family functioning	
Better functioning	63.6
Worse functioning	36.4
Table 2. Frequencies of dysregulation profile and association* with categorical variables

Study variable	Frequency	p
Sex		
Male	13.2%	0.055
Female	10.0%	
Batelle Classification Cognitive Area		
Normal	9.9%	0.006
Altered	15.5%	
Socioeconomic classification (ESOMAR)		
B	8.7%	0.476
Ca	11.7%	
Cb	10.6%	
D	11.2%	
E	16.3%	
Family Functioning		
Normal	9.3%	0.004
Altered	14.7%	
Depressive symptoms in main caregiver		
Yes	10.0%	< 0.001
No	23.7%	
History of maternal depression during pregnancy		
Yes	16.1%	0.051
No	11.0%	
History of medical diagnosis of depression in main caregiver		
Yes	13.1%	0.230
No	10.9%	

*χ² test and Fischer test.

Table 3. Frequencies of dysregulation profile and association* with continuous variables

Study variable	Dysregulation profile	Mean and Standard deviation	p
Number of chronic diseases in infancy	Yes	m = 1.497 s = 1.529	< 0.001
	No	m = 1.043 s = 1.276	
Participation of father figure in children activities	Yes	m = 13.240 s = 4.152	0.147
	No	m = 13.762 s = 4.491	
Participation of mother figure in children activities	Yes	m = 16.067 s = 3.289	0.158
	No	m = 16.578 s = 3.301	
Participation of main caregiver in children activities	Yes	m = 15.951 s = 3.1120	0.040
	No	m = 16.470 s = 3.4884	
Number of available stimulation resources at home	Yes	m = 8.394 s = 2.580	< 0.001
	No	m = 9.506 s = 2.516	
Number of stressful vital events lived by the main caregiver during last 12 months	Yes	m = 1.624 s = 1.579	<0.01
	No	m = 1.167 s = 1.4831	
Number of addictive substances that main caregiver consumes (alcohol, tobacco, other drugs)	Yes	m = 0.794 s = 0.880	0.046
	No	m = 0.685 s = 0.800	
Number of types of violence suffered by main caregiver (physical, psychological, sexual, economic)	Yes	m = 0.479 s = 0.8380	< 0.001
	No	m = 0.290 s = 0.6791	

*T-student . m = mean; s = standard deviation.
From external factors in this model, appears the number of stressful life events. Stressful environments have been suggested as modulators of neuroendocrine responses that are also related to long-term general health outcomes in individuals who experience it41. Stressful events are related to the onset of depressive symptoms and link the factors mentioned earlier in this model.

Thus, a factors confluence of the child, the caregiver, the interaction and the environment can be considered, which determine the risk of presenting this poor capacity for self-regulation described in this symptomatic profile. However, we must remember that, in the development, these aspects also modify psychological and neurophysiological factors41, which maintain a cycle where the child with dysregulation causes responses from the environment (caregivers), since they become part of the dynamics, and can lead to a factor of self-perpetuation in time.

While these results are important in relation to reporting frequencies and associations, they also have extrapolation limitations, since they do not include children users of the private health system. On the other hand, the explanatory model includes proxy variables to elements difficult to quantify in the dyadic interaction. It is also important to note that the Chilean population is undergoing significant changes in relation to migration, which are not represented in this database42.

As a projection, it is proposed to identify the model based on the suggested theory, in addition to carrying out a symptomatic re-evaluation of this population in later years, in order to check the evolution reported in the literature of other countries and possibly to study factors susceptible of intervention for the improvement of the mental health standards of this population. It is worth mentioning that to date there are no published studies that test interventions to modify the evolution of this symptomatology profile, which is proposed to encourage research in this area.

In conclusion, the CBCL-Dysregulation Profile, proposed as a construct that combines indicators of

Table 4. Explanation model for the dysregulation profile in preschoolers from 36 to 48 months of age

Variable included in equation	Beta	p	B (exp)	IC 95% B (exp)
Current depressive symptoms in main caregiver (Yes/No)	0.808	0.001	2.243	1.370 – 3.672
Number of available stimulation resources at home (possible range: 0-12)	-0.147	0.001	0.864	0.811 – 0.919
Number of stressful vital events lived by the main caregiver during last 12 months (possible range: 0-9)	0.163	0.005	1.177	1.051 – 1.319
Number of chronic diseases in infancy (possible range: 0 – 1 or more)	0.156	0.006	1.169	1.045 – 1.307
Constant	-1.206	0.001	0.300	

Figure 1. Theorical model. From the found results and in relation to other studies, we propose a schematic representation of hypothetical relationships between study variables and presentation of the dysregulation profile in Chilean preschoolers.
psychopathology in cognitive, emotional and behavioral areas, has a high presentation frequency in this representative sample of Chilean preschoolers, users of the public health system. This implies an important mental health burden in the long term, given the international observations that show a high psychopathology incidence of varied nature. The need for interventions in this area to test their effectiveness, in addition to longitudinal monitoring of this subpopulation, may provide technical guidelines for the development of public policies in child and adolescent mental health.

Ethical Responsibilities

Human Beings and animals protection: Disclosure the authors state that the procedures were followed according to the Declaration of Helsinki and the World Medical Association regarding human experimentation developed for the medical community.

Data confidentiality: The authors state that they have followed the protocols of their Center and Local regulations on the publication of patient data.

Rights to privacy and informed consent: The authors have obtained the informed consent of the patients and/or subjects referred to in the article. This document is in the possession of the correspondence author.

References

1. Carlson GA. Early onset bipolar disorder: clinical and research considerations. J Clin Child Adolesc Psychol 2005;34(2):333-43.
2. Achenbach TM, Edelbrock CS. The classification of child psychopathology: A review and analysis of empirical efforts. Psychol Bull 1978;85(6):1275-301.
3. Althoff R. Dysregulated Children Reconsidered. J Am Acad Child Adolesc Psychiatry 2010;49(4):302-5.
4. Biederman J, Wozniak J, Kiely K, et al. CBCL clinical scales discriminate prepubertal children with structured interview-derived diagnosis of mania from those with ADHD. J Am Acad Child Adolesc Psychiatry 1995;34(4):464-471.
5. Galanter CA, Carlson GA, Jensen PS, et al. Response to methylphenidate in children with attention deficit hyperactivity disorder and manic symptoms in the multimodal treatment study of children with attention deficit hyperactivity disorder titration trial. J Child Adolesc Psychopharmacol 2003;13(2):123-36.
6. Faraone SV, Althoff RR, Hudziak JJ, Monuteaux M. Biederman J. The CBCL predicts DSM bipolar disorder in children: a receiver operating characteristic curve analysis. Bipolar Disord 2005;7(6):518-24.
7. Diler RS, Birmaher B, Axelson D, et al. The Child Behavior Checklist (CBCL) and the CBCL–bipolar phenotype are not useful in diagnosing pediatric bipolar disorder. J Child Adolesc Psychopharmacol 2009;19(1):23-30.
8. Hazell PL, Lewin TJ, Carr VI. Confirmation that Child Behavior Checklist clinical scales discriminate juvenile mania from attention deficit hyperactivity disorder. J Paediatr Child Health 1999;35(2):199-203.
9. Volk HE, Todd RD. Does the Child Behavior Checklist–juvenile bipolar disorder phenotype identify bipolar disorder? Biol Psychiatry 2007;62(2):115-20.
10. Althoff R, Ayer L, Rettew D, Hudziak J. Assessment of Dysregulated Children using the Child Behavior Checklist: A receiver operating Characteristic curve analysis. Psychol Assess 2010;22(3):609-17.
11. Boomsma DI, Rebello I, Derks EM, et al. Longitudinal stability of the CBCL–juvenile bipolar disorder phenotype: a study in Dutch twins. Biol Psychiatry 2006;60(9):912-20. 14.
12. Hudziak JJ, Althoff RR, Derks EM, Faraone SV, Boomsma DI. Prevalence and genetic architecture of Child Behavior Checklist–juvenile bipolar disorder. Biol Psychiatry 2005;58(7):562-8.
13. Althoff RR, Rettew DC, Faraone SV, Boomsma DI, Hudziak JJ. Latent class analysis shows strong heritability of the Child Behavior Checklist–Juvenile Bipolar Phenotype. Biol Psychiatry 2006;60(9):903-11.
14. Deutz M, Vossen H, De Haan A, Deković M, Van Baar A, Prinzie P. Normative development of the Child Behavior Checklist Dysregulation Profile from early childhood to adolescence: Associations with personality pathology. Dev Psychopathol 2018;30(2):437-47.
15. Meyer SE, Carlson GA, Youngstrom, E, et al. Long-term outcomes of youth who manifested the CBCL–Pediatric Bipolar Disorder phenotype during childhood and/or adolescence. J Affect Disord 2009; 113(3):227-35.
16. Holtmann M, Buchmann AF, Esser G, Schmidt MH, Banaschewski T, Laucht M. The Child Behavior Checklist-–Dysregulation Profile predicts substance use, suicidality, and functional impairment: a longitudinal analysis.
J Child Psychol Psychiatry 2011;52(2):139-47.
17. Holtmann M, Bolte S, Goth K, et al. Prevalence of the Child Behavior Checklist–pediatric bipolar disorder phenotype in a German general population sample. Bipolar Disord 2007;9(8):895-900.
18. Masi G, Pisano S, Milone A, Muratori P. Child behavior checklist dysregulation profile in children with disruptive behavior disorders: A longitudinal study. J Affect Disord 2015;186: 249-53.
19. Mick E, Biederman J, Pandina G, Farone SV. A preliminary meta-analysis of the child behavior checklist in pediatric bipolar disorder. Biol Psychiatry 2003;53(11):1021-7.
20. Liu J, Cheng H, Leung PWL. The child Behavior checklist dysregulation profile in children with disruptive behavior disorders: A longitudinal study. J Affect Disord 2015;186: 249-53.
21. Kim J, Carlson GA, Meyer SE, et al. Prevalence of the Child Behavior Checklist–pediatric bipolar disorder phenotype in a German general population sample. Bipolar Disord 2007;9(8):895-900.
22. Copeland WE, Angold A, Costello EJ, Egger H. Prevalence, Comorbidity, and Correlates of DSM-5 Proposed Disruptive Mood Dysregulation Disorder. Am J Psychiatry 2013;170:173-9.
23. Ministerio de Desarrollo Social, Departamento de Salud Pública, Escuela de Medicina PUC. (2013) Levantamiento y análisis de información sobre desarrollo infantil y sus principales determinantes sociales y económicos, del grupo de niños/as pertenecientes al PADB, en el contexto del Subsistema de Protección a la Infancia Chile Crece Contigo. Disponible en: http://www.crec(contigo.gob.cl/material-de-apoyo/material-para-equipos-chile-crece-contigo/estudios/1-filtroetapa=gestacion-y-nacimiento&filtrobeneficio. [Última visita: 1 de septiembre de 2018].
24. Ministerio de Desarrollo Social (2015). Informe de Política Social 2015. Disponible en http://www.ministeriodesarrollosocial.gob.cl/storage/docs/Libro_IDS_2015_final.pdf [Última visita: 1 de septiembre de 2018].
25. Achenbach TM, Rescorla LA. Manual for the ASEBA Preschool Forms & Profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, & Families. 2001.
26. Rey JM, Schrader E, Morris-Yates S. Parent-child agreement on children’s behaviours reported by the child behaviour checklist (CBCL) J Adolesc 1992;15:219-30.
27. Lecannelier F, Pérez JC, Giroissman S, et al. Validación del Inventario de Conductas Infantiles para niños de entre 1½-5 años (CBCL 1½-5) en la Ciudad de Santiago de Chile. Univ Psichol 2014;13(2):491-500.
28. Newborg, J. Battelle Developmental Inventory, 2nd edition. Rolling Meadows, IL: Riverside Publishing. 2005.
29. Grupo Adimark. El Nivel Socioeconómico. ESOMAR. 2000. Disponible en: http://epi.minsal.cl/encuesta-ens/ [Última visita: 1 de septiembre de 2018].
30. Group Adimark. El Nivel Socioeconómico ESOMAR. 2000. Disponible en: http://www.microweb.cl/idm/documentos/ESOMAR.pdf. [Última visita: 1 de septiembre de 2018].
31. Theo Epstein NB, Baldwin LM, Bishop DS, The McMaster family assessment device. J Marital Fam Ther 1983;9(2):171-80.
32. Taylor SE, Lerner JS, Sage RM, Lehman BJ Seeman TE. Early Environment, Parenting Behavior: A Meta-Analytic Review. Clin Psychol Rev 2000;20(5):561-92.
33. Wood BL, Lim JH, Miller BD, et al. M. Family Emotional Climate, Depression, Emotional Triggering of Asthma, and Disease Severity in Pediatric Asthma: Examination of Pathways of Effect. J Pediatr Psychol 2007;32(5):542-51.
34. Wood BL, Lim JH, Miller BD, et al. M. Family Emotional Climate, Depression, Emotional Triggering of Asthma, and Disease Severity in Pediatric Asthma: Examination of Pathways of Effect. J Pediatr Psychol 2007;32(5):542-51.
35. Wood BL, Lim JH, Miller BD, et al. M. Family Emotional Climate, Depression, Emotional Triggering of Asthma, and Disease Severity in Pediatric Asthma: Examination of Pathways of Effect. J Pediatr Psychol 2007;32(5):542-51.
36. Wood BL, Lim JH, Miller BD, et al. M. Family Emotional Climate, Depression, Emotional Triggering of Asthma, and Disease Severity in Pediatric Asthma: Examination of Pathways of Effect. J Pediatr Psychol 2007;32(5):542-51.
37. Wood BL, Lim JH, Miller BD, et al. M. Family Emotional Climate, Depression, Emotional Triggering of Asthma, and Disease Severity in Pediatric Asthma: Examination of Pathways of Effect. J Pediatr Psychol 2007;32(5):542-51.
38. Wood BL, Lim JH, Miller BD, et al. M. Family Emotional Climate, Depression, Emotional Triggering of Asthma, and Disease Severity in Pediatric Asthma: Examination of Pathways of Effect. J Pediatr Psychol 2007;32(5):542-51.
39. Wood BL, Lim JH, Miller BD, et al. M. Family Emotional Climate, Depression, Emotional Triggering of Asthma, and Disease Severity in Pediatric Asthma: Examination of Pathways of Effect. J Pediatr Psychol 2007;32(5):542-51.
40. Wood BL, Lim JH, Miller BD, et al. M. Family Emotional Climate, Depression, Emotional Triggering of Asthma, and Disease Severity in Pediatric Asthma: Examination of Pathways of Effect. J Pediatr Psychol 2007;32(5):542-51.
41. Wood BL, Lim JH, Miller BD, et al. M. Family Emotional Climate, Depression, Emotional Triggering of Asthma, and Disease Severity in Pediatric Asthma: Examination of Pathways of Effect. J Pediatr Psychol 2007;32(5):542-51.
42. Wood BL, Lim JH, Miller BD, et al. M. Family Emotional Climate, Depression, Emotional Triggering of Asthma, and Disease Severity in Pediatric Asthma: Examination of Pathways of Effect. J Pediatr Psychol 2007;32(5):542-51.
43. Wood BL, Lim JH, Miller BD, et al. M. Family Emotional Climate, Depression, Emotional Triggering of Asthma, and Disease Severity in Pediatric Asthma: Examination of Pathways of Effect. J Pediatr Psychol 2007;32(5):542-51.
