Impact of gene mutation in the development of Parkinson’s disease

Suganya Selvaraj a,*, Shanmughavel Piramanayagam b

a Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, 641046, India
b Professor, Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, 641046, India

Received 16 December 2018; accepted 31 January 2019
Available online 27 February 2019

Abstract Parkinson’s disease (PD) is the second most common age related neurodegenerative disorder worldwide and presents as a progressive movement disorder. Globally seven million to 10 million people have Parkinson’s disease. Parkinsonism is typically sporadic in nature. Loss of dopaminergic neurons from substantia nigra pars compacta (SNpc) and the neuronal intracelular Lewy body inclusions are the major cause of PD. Gene mutation and protein aggregation play a pivotal role in the degeneration of dopamine neurons. But the actual cause of dopamine degeneration remains unknown. However, several rare familial forms of PD are associated with genetic loci, and the recognition of causal mutations has provided insight into the disease process. Yet, the molecular pathways and gene transformation that trigger neuronal susceptibility are inadequately comprehended. The discovery of a mutation in new genes has provided a basis for much of the ongoing molecular work in the PD field and testing of targeted therapeutics. Single gene mutation in a dominantly or recessively inherited gene results a great impact in the development of Parkinson’s disease. In this review, we summarize the molecular genetics of PD.

Introduction Parkinson’s disease is a neurodegenerative disorder that affects predominately dopamine producing neurons in a specific area of the brain called substantia nigra (SN). Symptoms generally develop slowly over years. People with Parkinson’s disease may experience tremor, limb rigidity,
and gait, slowness of movements (bradykinesia), speech dysfunction, sleep disturbances, fatigue, behavioral changes, and sensory abnormalities. Psychiatric manifestations can be an eminent feature of the disease and may have depression and visual hallucinations. Depression occurs in 25–50% of PD patients. Later in disease progression, dementia eventually occurs in 20–40% of cases.

The occurrence of Parkinson’s disease increases with age, but an estimated four percent of people with PD are diagnosed before age 50. Each year around 60,000 Americans are diagnosed with PD. Comparatively, men are 1.5 times more likely to have Parkinson’s disease than women. The root cause of PD is unknown. Although there is no cure, treatments options vary include medications and surgery.

Genetic researches in PD have led to the recognition of numerous monogenic forms of the disorder and of several genetic threat factors increasing the risk to develop the neuron degeneration. In all cases, molecular testing is the most commonly recommended technique for individuals to diagnose the disease. Pedigree and cohort studies identified numerous susceptibility genes and loci were related to dopamine deficiency. During the past decade, few genes have been identified that are important in autosomal dominant and autosomal recessive form of PD. Whole genome linkage screening to distinguish chromosomal regions connected to the risk of PD or the time of PD diagnosis before age 50. Each year around 60,000 Americans have been identified by a single mutation in a dominantly or recessively inherited gene, are entrenched, although relatively account for about 30% of the familial cases. Most of the gene mutations resulting in mitochondrial DNA (mtDNA) damage, increased reactive oxygen species (ROS) production, reduced mitochondrial membrane potential (MMP), decreased ATP levels and structural imperfection to the organelle and the mitochondrial network are associated with mitochondrial dysfunction, these various phases of mitochondrial dysfunction have been responsible for developing PD.

S.No	Gene Symbol	Locus Name	Protein product	Chromosome Location	Type of Mutation	Mode of Inheritance
1	SNCA	PARK1	Alpha-synuclein	4q21.3–22	Missense, Point	AD
2	LRRK2	PARK8	Leucine-rich repeat kinase 2	12q12	Missense	AD
3	PRKN	PARK2	Parkin	6q25.2–q27	Missense, Frameshift, splice site, point, nonsense	AR
4	PINK1	PARK6	PTEN-induced putative kinase 1	1p36.12	Missense, Frameshift, splice site, point, Truncating	AR
5	DJ-1	PARK7	Protein DJ-1	1p36.23	Point, Missense, frameshift, exon deletion and splice site	AR
6	ATP13A2	PARK9	ATPase 13A2	1p36	Frameshift	AR
7	PLA2G6	PARK14	Phospholipase A2 Group VI	22q13.1	missense	AR
8	FBX07	PARK15	F-Box protein 7	22q12-2q13	Missense, splice site	AR
9	GIGYF2	PARK11	GRB810 interacting GYF protein2	2q36-37	Missense	AD
10	UCHL1	PARK5	Ubiquitin C-Terminal Hydrolase L1	4p14	Missense	AD

Numerous susceptibility genes have been identified from a British late-onset PD patient. The mutation transformation of A53T in exon 4, A30P in exon 3 and E46K results in the familial form of Parkinson’s disease. Consequent sequence analyses in thousands of patients have revealed that point mutations in SNCA are an unusual cause of familial or simplex Parkinson’s disease. Further analyses have shown that other types of alterations in SNCA and Duplication of SNCA and a tripllication of a huge chromosomal region containing SNCA has been shown to cause autosomal dominant PD.

SNCA

SNCA (Alpha-synuclein) gene codes for the protein, that is enormously present in neurons. α-synuclein is a highly conserved protein, which controls the vesicular neurotransmission as well as the human α-synuclein regulate the dopamine neurotransmission. A point mutation and missense mutation have been reported in the gene SNCA; the mutational transformation of A53T in exon 4, A30P in exon 3 and E46K results in the familial form of Parkinson’s disease. More recently two new point mutations (H50Q and G51D) have been identified from a British late-onset PD patient. Further analyses have shown that other types of alterations in SNCA and Duplication of SNCA and a tripllication of a huge chromosomal region containing SNCA has been shown to cause autosomal dominant PD.

Autosomal dominant PD
analysis of 2692 cases and 2652 controls has advance sus-
tain evidence that this marker, known as Rep1, is linked
with a slight, but significant, increase in the risk of PD. Rep1 is a dinucleotide replicate sequence that has three
prominent allele sizes. Analysis of the nearby DNA recom-
mends that two domains flanking the Rep1 repeat interact
to increase expression of SNCA whereas the repeat acts as a
negative modulator. In addition, various alleles can differ
the expression levels of SNCA in SH-SY5Y cells by up to
threefold. It is possible that even a subtle increase in
expression could, over the course of many decades, pre-
dispose an individual to develop neuronal loss. Although
mutations in SNCA have been known to cause PD for nearly
a decade, the mechanism by which these mutations lead to
disease is poorly understood. It is thought that abnormal
aggregation of the protein leads to cell damage and ulti-
mately neuronal death. However, further research is
essential to understand how mutations in SNCA or multi-
plication of SNCA result in Parkinsonism.6,128

LRRK2

The LRRK2 (Leucine-rich repeat kinase 2) gene gives di-
rections to making a 2527-amino acid cytoplasmic protein
known as Dardarin. LRRK2 is active in the brain and consists of
51 exons; it. Dardarin consists of five functional domains in the C
terminal129,51; a part of this protein is called leucine-rich region because it contains a large quantity of
Leucine amino acid (building block of protein). This protein
may also have an enzyme function such as kinase activity
(assist the transfer of phosphate group) as well as GTPase
activity (ROC domain function). It helps to maintain the
cytoskeletal dynamics (cell’s structural framework) vesic-
ular transport, autophagy and also involved in protein-
protein interaction.30,52 More than 100 types of missense and
nonsense mutations reported in a LRRK2 gene found in
families with Late-onset Parkinson’s disease and appear to
result in typical idiopathic PD1,51–53 and a possibility to
cause Crohn disease. This mutation replaces single amino
acid in the dardarin protein, which changes the structure and
function of a protein. Most commonly, the mutation
replaces the amino acid arginine and glycine at the protein
position leads to the population to get Parkinsonism.52
About twelve distinct mutational transformations have been
accounted for; the most widely recognized, G2019S,
has been found in around 1–2% of sporadic54 and 5–7% of
familial, autosomal dominant cases.55–57 These evaluations
have been gotten from the Northern European and North
American populations; the G2019S mutation seems to be
extremely uncommon in East Asia.58,59 Heterozygotes and
homozygotes for the G2019S mutation have the same clin-
ical features and these two genotypes show reduced
penetration.60 In some PD patients with LRRK2 gene trans-
formation identified with unique neuropathology, which
had included diffuse Lewy bodies, Lewy bodies confined to
the brain stem, front temporal lobar degeneration with
ubiquitinated neuronal intranuclear incorporations and
abnormal aggregation of tau protein in neurofibrillary
tangles.53,60–64 Moreover, LRRK2 gene was extremely
expressed in immune cells. Recent research shows that, in
early life, the expanded LRRK2 action may ensure against
opportunistic pathogenic infection however then later
enhance the possibility of promoting PD, this perception
called antagonistic pleiotropy.65

Autosomal recessive PD

PINK1

Early onset of an autosomal recessive form of PD caused by a
mutation in phosphatase and tensin homolog (PTEN)-induced
kinase 1 (PINK1). This mutational transformation was found
inside a huge Italian family pedigree on chromosome 1(PARK
6 locus) in 2001.66,67 Mutation in the PINK1 gene has been
responsible for 1–7% of early-onset PD in white
patients,68–70 and 9% of autosomal recessive PD in Japanese
patients.71 PINK6 contains 8 exons that encode the 581
amino acid protein PINK1,68 a highly conserved serine/threonine kinase domain, and a C-terminal auto-regulatory
domain.72 It maintains the regulation and health quality of
entire mitochondria by removal of dysfunctional mitochon-
dria.72 PINK1 encodes a mitochondrial protein68 and have
been hypothesized to have a proteasomally induced
apoptosis and a neuroprotective role against mitochondrial
dysfunction. Truncating mutations, point mutations and
frameshift mutations reported throughout the gene. Muta-
tion in PINK1 is hypothesized that may result in enhancing
the susceptibility to cellular stressors and other reactive
oxygen species and subsequently may result in PD.74 PINK1
mutation in a heterozygous state may enhance the chance of
developing PD.75–78 A solitary PINK1 mutation that exclu-
sively aims fractional decrease in enzymatic action could
likewise bring about a milder phenotype or contribute to
disease vulnerability later in life.72

PRKN

PRKN (Parkin) contains 12 exons that encode the 465 amino
acid protein42; it belongs to the group of E3 Ubiquitin ligase
composed of an amino-terminal ubiquitin-like (Ubl) domain
and a carboxyl-terminal ubiquitin ligase domain with two
ring finger motifs.72 Parkin plays a vital role in the cell’s
quality control system with the help of Ubiquitin proteasome
system (breaks down unwanted protein by tagging harmed
and remaining proteins with Ubiquitin) and maintains the
healthy mitochondrial network via the destruction of mito-
ochondria which are not having the proper function in the
cellular system. A mutational change in PRKN at the sixth
chromosome was the common cause of Autosomal Recessive
Juvenile Parkinsonism (AR-JP) and early onset of Parkin-
sonism.30 Up to date more than hundred different autosomal
recessive mutational transformations of PRKN gene have
been recognized involving the insertion and deletion of one
or more exons. In addition, when the reading frame has been
changed by point mutation cause premature termination of
translation or amino acid substitutions and half of the
depicted gene transformations are nonsense/missense
and remaining proteins with Ubiquitin) and maintains the
healthy mitochondrial network via the destruction of mito-
ochondria which are not having the proper function in the
cellular system. A mutational change in PRKN at the sixth
chromosome was the common cause of Autosomal Recessive
Juvenile Parkinsonism (AR-JP) and early onset of Parkin-
sonism.30 Up to date more than hundred different autosomal
recessive mutational transformations of PRKN gene have
been recognized involving the insertion and deletion of one
or more exons. In addition, when the reading frame has been
changed by point mutation cause premature termination of
translation or amino acid substitutions and half of the
depicted gene transformations are nonsense/missense
type.79–82 Heterozygous Parkin mutation is an evidently
dominant phase of the transmission, suggesting that carriers
of a solitary parkin mutation might be at the risk of devel-
oping PD manifestation.66,67
PINK1/parkin pathway

When mitochondria are harmed, PINK1 initiates phosphorylate parkin at the outer membrane of mitochondria (OMM). Parkin starts to tag pro-fusion mitochondrial proteins including Mitofusion 1 and 2 with ubiquitin, lead to their gradual reduction through the ubiquitin-proteasome framework. This drive a move from high mitochondrial organize network towards diminished fusion and expanded fission, and thus remove the affected mitochondria from a network of healthy mitochondria. These dysfunctional organelles engulfed by autophagosomes and they are processed by lysosomal enzymes through the procedure of mitophagy. This helps to take into account a consistent turnover of healthy mitochondria and prevents the mitochondrial dysfunctions such as the damage of mtDNA, increased ROS, decreased MMP and ATP level, morphological defects, and respiratory dysfunction of complex I (Fig. 1).

ATP13A2

ATP13A2 (ATPase 13A2) is a substantial gene contained 29 exons codes for 1180 amino acid protein. The ATP13A2 protein is ordinarily situated in the layer of lysosome with an ATPase domain and ten transmembrane domains. The encoded protein associated with the prevention of alpha-synuclein aggregation, abnormal mitochondrial/lysosomal function and neurodegeneration. Mutations in ATP13A2 have been found among patients with juvenile-onset PD (12–16 years). At first, a Chilean family found with EOPD. Around ten distinctive pathogenic gene transformations have been found in the compound heterozygous and homozygous state, which influence the function of transmembrane domains directly/indirectly. The vast majority of the genetic changes deliver unstable truncated proteins, which are retained in the endoplasmic reticulum and are consequently degraded by the proteasome. Yet, there is no amino acid aberrations (deletion, exonic deletion, multiplication) are found in the whole gene. The role of heterozygous missense mutations in PD pathogenicity is known, but the exact mechanism is still not clear. In addition, ATP13A2 gene mutations have been responsible for the other type of neurodegenerative disorders called neuronal ceroid lipofuscinoses (NCLs) and Kufor-Rakeb syndrome (KRS).

DJ-1

DJ-1 (protein DJ-1) gene has seven coding exons, which code for 189 amino acid long protein known as Parkinson protein 7. DJ-1 proteins expressed ubiquitously and function as a cellular sensor of oxidative stress. One of the major functions of DJ-1 is protecting the brain cells from oxidative stress. DJ-1 has acted as a chaperon particle, while protein folding. It assists the newly produced protein to fold into a correct possible three dimensional shape and aides refold damaged protein, deliver the selected proteins to proteasomes and also take a part in the process of production and regulate the RNA. Mutation in the DJ-1 gene is associated with 1%–2% of autosomal recessive Early Onset Parkinson Disease (EOPD).
In homozygous and compound heterozygous state, ten different gene transformations (exonic deletion and point mutation) have been described in this gene. Under physiological condition, it forms a dimeric structure. The dimeric structure of DJ-1 protein appears that have many diseases causing mutants (p.D149A, p.L166P, p.M26I, and p.E64D). After the mutation, the transformed proteins are not regulating their function properly. It starts to collapse the protein folding, stability and rapidly tainted by the proteasome. Along these lines, their antioxidant activity and neuroprotective capability have been ruined. DJ-1 protein levels are hoisted in the CSF (cerebrospinal fluid) of people with idiopathic PD, especially for those in the prior phases of the disease, recommending that DJ-1 may be helpful as a biomarker for neurodegenerative disease. Comparatively DJ-1 related PD seems to be very rare, there are not enough reports to say about the patients have been affected with PD due to the heterozygous mutation of the DJ-1 gene.

FBXO7

FBXO7 (F-box protein 7) gene encodes the FBX7 protein, which consist of approximately forty amino acid motif (N-terminal ubiquitin-like domain) and a C-terminal proline-rich region (PRR). It constitutes a ubiquitin protein ligase (subunit) complex termed SKP1-cullin-F-box (SCFs). Substrate recognition component of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase intervenes ubiquitination and consequent proteasomal deprivation of target proteins. Nevertheless, FBXO7 might also be implicated in non-proteasomal pathways, Ubiquitin-mediated and SCF-independent activity. FBPs serve as molecular scaffolds in the construction of protein complexes and have been involved in various functions such as cell cycle, genome stability, development, circadian rhythms and synapse formation. Homozygous truncating/missense mutation in the FBXO7 gene cause an autosomal recessive form of Juvenile Parkinsonism. Splice site mutation affects only the FBXO7 isoforms having exon 1A. A cDNA analysis revealed mutational changes in the FBXO7 transcripts by alternative combinations of exons like 1A/1B or 2A/2B. The splice site mutation evaluates the perpetual splice donor of the FBXO7 gene. The missense mutation of the FBXO7 isoforms having exon 1A. A cDNA analysis revealed mutational changes in the FBXO7 transcripts by alternative combinations of exons like 1A/1B or 2A/2B. The splice site mutation evaluates the perpetual splice donor of the FBXO7 gene.

PLA2G6

PLA2G6 (A2 phospholipase group VI) gene involves in the production of an enzyme called cytosolic, calcium-independent phospholipase A2. This enzymatic protein helps to regulate the amount of phosphatidylcholine in the cell membrane, and break down the phospholipid to help to regulate the amount of phosphatidylcholine in the cell membrane, and break down the phospholipid to maintain the integrity of the cell membrane. Mutations in PLA2G6 cause an aggressive and complex autosomal recessive early-onset dystonia Parkinson disease. As well as additional neurodegenerative diseases such as infantile neuroaxonal dystrophy and Karak syndrome.

The potential role of this mutation repeatedly shows brain-iron aggregation, which is an element of neurodegeneration related to brain—iron accumulation. The revealed clinical highlights of neurodegeneration related to the genetic transformation in the PLA2G6 gene are dystonia, axonal dystrophy, brain dystrophy, cerebellar signs and dementia with or without iron accumulation. Homozygous and heterozygous mutation in the PLA2G6 gene plays a significant role in the enhancement of PD in various populations. A novel heterozygous mutation shows C-to-G substitution in exon 17 resulting in a proline (nonpolar: hydrophobic amino acid) to arginine (polar: hydrophilic amino acid) change. This aminoacid substitution could affect the interaction of PLA2G6 with other proteins.

Autosomal dominant susceptibility genes

GIGYF2

The missense mutation in the GIGYF2 gene at the second chromosome leads to late-onset Parkinson disease (LOPD). The mutation results in aberration in GIGYF2, which leads to the formation of the GIGYF2 p.Arg610Gly mutation occurs in the GIGYF2 gene found in the heterozygous state compatible with the autosomal dominant mode of transmission, resulting in amino acid substitution like insertion or deletion. Initially Italian and French families (4.8%) were identified with familial PD due to the transformation in GIGYF2. The GIGYF2 p.Arg610Gly mutation occurs in the GYF domain of the encoded protein was anticipated be pathogenic and interrupt the ligand-binding function. The mutation results in aberration in GIGYF2, which leads insulin dysregulation and abnormal signaling pathway of insulin/IGF-1 receptor (IGF-1R: a homeostatic modulator for brain function) shows the causative mechanism for LOPD.

UCHL1

The UCHL1 (Ubiquitin carboxyl-terminal esterase L1) gene encodes an enzymatic protein, called ubiquitin thiolesterase. UCHL1 protein is abundantly present in nerve cells throughout the brain. This protein takes part in the Ubiquitin-proteasome system, act as a cell’s quality control system by removing misfolded proteins and abnormal proteins, including produce free ubiquitin monomers. UCHL1 and alpha-synuclein colocalize with synaptic vesicles and can be coimmunoprecipitated from human brain. Mutation in the UCHL1 gene causes autosomal dominant Parkinson’s disease. When the missense mutation, which replaces the amino acid isoleucine with methionine at the position 93 (Ile93Met/I93M). This mutation results to decreases catalytic hydrolase activity, which may interrupt the normal function of the ubiquitin-proteasome pathway. Later, another
missense mutation variant has been identified that the amino acid serine replaces with tyrosine (Ser18Tyr or S18Y) in UCHL1. This mutation reduces the ligase activity and increasing the hydrolase activity. These are the two common mutant variants considered as a pathological hallmark of Parkinson’s disease.\(^{19,122}\) Sequencing of the UCHL1 gene in French families with PD consequently recognized an uncommon A371C polymorphism in exon 5, driving to an M124L amino acid change.\(^{124,125}\) This variant did not segregate with PD and its role in disease development remains questionable.\(^{126}\)

Summary

Genes PRKN and LRRK2, all mutations are not equally penetrated, yet the accurate penetrances of both the genes are not known. Therefore, the molecular technique is not recommended for presymptomatic individuals. In 50% of early-onset PD patients (onset age before 40) have a mutation in DJ-1, PRKN or PINK1. In such a state of illness, prioritizing the diagnosis of mutational changes in PRKN gene would seem to be the effect. If the PRKN mutation found to be negative, it may be appropriate to consider screening DJ-1 and PINK1. The implication of a gene transformation in just a single of the two PRKN alleles isn’t yet known.\(^{5}\) The clinical and comparability of the disorder caused by PLA2G6 deficiency to those caused by ATP13A2 and PANK2 deficiencies recommended that each of the three genes and their encoded proteins may lie on a single biochemical pathway.\(^{103}\) PLA2G6 and FBXO7 generate clinically similar phenotype in that they develop a rapid Parkinsonism at first receptive to Levodopa and FBXO7 generate clinically similar phenotype in that they may be appropriate to consider screening DJ-1 and PINK1. The implication of a gene transformation in just a single of the two PRKN alleles isn’t yet known.\(^{5}\) The clinical and comparability of the disorder caused by PLA2G6 deficiency to those caused by ATP13A2 and PANK2 deficiencies recommended that each of the three genes and their encoded proteins may lie on a single biochemical pathway.\(^{103}\)

The function of FBXO7 in the human brain remains inadequately described, and its expression in PD pathology and many neurodegenerative diseases has not been explored.\(^{100}\) The continuous research of candidate genes has prompted the finding of a few susceptibility genes. However, most have neglected to reliably repeat in different populations.\(^{61}\) UCHL1 and GIGYF2 are the autosomal dominant susceptibility genes, it remains unclear how this amino acid variation might reduce the risk of developing Parkinson’s disease.\(^{126}\) This is not an exhaustive review of all gene examined as a candidate gene/biomarker of PD. Rather, we have reaped the genes that have been the topic of the most concentrated in recent years. The smallest genetic change in a gene causes a large degree of disease to the population. Every newly discovered gene and updated information of already existing genes is the stepping stone of researchers in PD. Thus genetic researches in PD results across the world are expected to discover a new treatment for the permanent cure.

Conflict of interest

The author declares that there is no conflict of interest.

Acknowledgement

Nil.

References

1. Ruiz PC, Jain S, Evans WE, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 2004;44(4):595–600.
2. Choi ML, Meleckyte R, Little D, et al. P-385 - overproduction of reactive oxygen species is the primary pathological event related to neuronal cell death in IPSC derived neurons from patients with familial Parkinson’s disease. Free Radic Biol Med. 2018;120(1):162.
3. Dooneief G, Mirabella E, Bell K, Marder K, Stern Y, Mayeux R. An estimate of the incidence of depression in idiopathic Parkinson’s disease. Arch Neurol. 1992;49(3):305–307.
4. Starkstein SE, Mayberg HS, Leiguarda R, Preziosi TJ, Robinson RG. A prospective longitudinal study of depression, cognitive decline, and physical impairments in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1992;55(5):377–382.
5. Pankratz N, Foroud T. Genetics of Parkinson disease. Genet Med. 2007;9(12):801–811.
6. Emre M. Dementia associated with Parkinson’s disease. Lancet Neurol. 2003;2(4):229–237.
7. Parkinson’s foundation http://www.parkinson.org/Understanding-Parkinsons/Causes-and-Statistics/Statistics.
8. Kalia LY, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912.
9. Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(1).
10. DeStefano AL, Golbe LI, Mark MH, et al. Genome-wide scan for Parkinson’s disease: the GenePD study. Neurology. 2001;57(6):1124–1126.
11. Pankratz N, Nichols WC, Uniake SK, et al. Genome screen to identify susceptibility genes for Parkinson disease in a sample without parkin mutations. Am J Hum Genet. 2002;71(1):124–135.
12. Li YJ, Scott WK, Hedges DJ, et al. Age at onset in two common neurodegenerative diseases is genetically controlled. Am J Hum Genet. 2002;70(4):985–993.
13. DeStefano AL, Lew MF, Golbe LI, et al. PARK3 influences age at onset in Parkinson disease: a genome scan in the GenePD study. Am J Hum Genet. 2002;70(5):1089–1095.
14. Pankratz N, Nichols WC, Uniake SK, et al. Genome-wide linkage analysis and evidence of gene-by-gene interactions in a sample of 362 multiplex Parkinson disease families. Hum Mol Genet. 2003;12(20):2599–2608.
15. Pankratz N, Uniake SK, Halter CA, et al. Genes influencing Parkinson disease onset: replication of PARK3 and identification of novel loci. Neurology. 2004;62(9):1616–1618.
16. Martinez M, Brice A, Vaughan JR, et al. Genome-wide scan linkage analysis for Parkinson’s disease: the European genetic study of Parkinson’s disease. J Med Genet. 2004;41(12):900–907.
17. Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol. 2002;52(3):296–301.
18. Hicks AA, Pettersson H, Jonsson T, et al. A susceptibility gene for late-onset idiopathic Parkinson’s disease. Ann Neurol. 2002;52(5):549–555.
19. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PTJ. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell. 2002;111(2):209–218.
20. Schultheis PJ, Hagen TT, O’Toole KK, et al. Characterization of the P5 subfamily of P-type transport ATPases in mice. Biochem Biophys Res Commun. 2004;323(3):731–738.
21. Scott WK, Nance MA, Watts RL, et al. Complete genomic screen in Parkinson disease: evidence for multiple genes. J Am Med Assoc. 2001;286(18):2239–2244.
Impact of gene mutation in the Parkinson’s disease

63. Rajput A, Dickson DW, Robinson CA, et al. Parkinsonism, LRRK2 G2019S, and tau neuropathology. Neurology. 2006; 67(8):1506–1508.

64. Dachsel JC, Ross OA, Mata IF, et al. LRRK2 G2019S substitution in frontotemporal lobar degeneration with ubiquitin-immunoreactive neuronal inclusions. Acta Neuropathol. 2007;113(5):601–606.

65. Alessi DR, Sammler E. LRRK2 kinase in Parkinson’s disease. Science. 2013;360(6384):36–37.

66. Lohmann E, Periquet M, Bonifati V, et al. How much phenotypic variation can be attributed to parkin genotype? Ann. Neurol. 2003;54(2):176–185.

67. Lincoln SJ, Maraganore DM, Lesnich TG, et al. Parkin variants in North American Parkinson’s disease: cases and controls. Mov. Disord. 2003;18(11):1306–1311.

68. Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158–1160.

69. Hatano Y, Li Y, Sato K, et al. Novel PINK1 mutations in early-onset parkinsonism. Ann. Neurol. 2004;56(3):424–427.

70. Healy DG, Abou-Sleiman PM, Gibson JM, et al. PINK1 (PARK6) associated Parkinson disease in Ireland. Neurology. 2004; 63(8):1486–1488.

71. Li Y, Tomiyama H, Sato K, et al. Clinico genetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism. Neurology. 2005;64(11):1955–1957.

72. Dominikaa T, Xua H, Thomas CR, Fabienne FC, Wolfdieter S. Dominika T, Xua H, Thomas CR, Fabienne FC, Wolfdieter S. Healy DG, Abou-Sleiman PM, Gibson JM, et al. PINK1 (PARK6) associated Parkinson disease in Ireland. Neurology. 2004; 63(8):1486–1488.

73. Clark IE, Dodson MW, Jiang C, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 2006;441(7097):1162–1166.

74. Abou-Sleiman PM, Muqit MW, McDonald NO, et al. A heterozygous effect for PINK1 mutations in Parkinson’s disease? Ann. Neurol. 2006;60(4):414–419.

75. Tang B, Xiong H, Sun P, et al. Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson’s disease. Hum. Mol. Genet. 2006;15(11):1816–1825.

76. Djamari A, Hedrich K, Svetel M, et al. Heterozygous PINK1 mutations: a susceptibility factor for Parkinson disease? Mov. Disord. 2006;21(9):1526–1530.

77. Toft M, Myhre R, Pielsticker L, White LR, Aasly JO. Toft M, Myhre R, Pielsticker L, White LR, Aasly JO. Djarmati A, Hedrich K, Svetel M, et al. Heterozygous PINK1 mutations: a susceptibility factor for Parkinson disease? Mov. Disord. 2006;21(9):1526–1530.

78. Anderson PC, Daggett V. Molecular basis for the structural instability of human DJ-1 induced by the L166P mutation associated with Parkinson’s disease. Biochemistry. 2008; 47(36):9380–9393.

79. Malgieri G, Eliezer D. Structural effects of Parkinson’s disease linked DJ-1 mutations. Protein. Sci. 2008;17(5):855–868.

80. Waragai M, Niki T, Taira T, Iguchi-Ariga SM, Ariga H. Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson’s disease patients. Biochem Biophys Res Commun. 2004;320(2):389–397.

81. Anderson PC, Daggett V. Molecular basis for the structural instability of human DJ-1 induced by the L166P mutation associated with Parkinson’s disease. Biochemistry. 2008;47(36):9380–9393.

82. Waragai M, Niki T, Taira T, Iguchi-Ariga SM, Ariga H. Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson’s disease patients. Biochem Biophys Res Commun. 2004;320(2):389–397.

83. Anderson PC, Daggett V. Molecular basis for the structural instability of human DJ-1 induced by the L166P mutation associated with Parkinson’s disease. Biochemistry. 2008;47(36):9380–9393.

84. Malgieri G, Eliezer D. Structural effects of Parkinson’s disease linked DJ-1 mutations. Protein. Sci. 2008;17(5):855–868.

85. Waragai M, Niki T, Taira T, Iguchi-Ariga SM, Ariga H. Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson’s disease patients. Biochem Biophys Res Commun. 2004;320(2):389–397.

86. Rusinova E, Tao RN, Whitworth AJ. Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitination of mitofusin. Proc. Natl Acad Sci Unit States Am. 2010;107(11):5018–5023.

87. Yang X, Xu Y. Mutations in the ATP13A2 gene and parkinsonism: A preliminary review. BioMed Res Int. 2014;371256.

88. Canet-Aviles RM, Wilson MA, Miller DW, et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfenic acid-driven mitochondrial localization. Proc. Natl Acad Sci Unit States Am. 2004;101(24):9103–9108.

89. Junn E, Taniguchi H, Jeong BS, Zhao X, Ichijo H, Mouradlian MM. Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc. Natl Acad Sci Unit States Am. 2005;102(27):9691–9696.

90. Pankratz N, Paucioiu MW, Elsaesser VE, et al. Mutations in DJ-1 are rare in familial Parkinson disease. Neurosci. Lett. 2006;408(3):209–213.

91. Macedo MG, Anar B, Bronner IF, et al. The DJ-1L166P mutant protein associated with early onset Parkinson’s disease is unstable and forms higher-order protein complexes. Hum. Mol. Genet. 2003;12(21):2807–2816.

92. Takahashi-Niki K, Niki T, Taira T, Iguchi-Ariga SM, Ariga H. Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson’s disease patients. Biochem Biophys Res Commun. 2004;320(2):389–397.

93. Anderson PC, Daggett V. Molecular basis for the structural instability of human DJ-1 induced by the L166P mutation associated with Parkinson’s disease. Biochemistry. 2008;47(36):9380–9393.

94. Malgieri G, Eliezer D. Structural effects of Parkinson’s disease linked DJ-1 mutations. Protein Sci. 2008;17(5):855–868.

95. Waragai M, Niki T, Taira T, Iguchi-Ariga SM, Ariga H. Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson’s disease patients. Biochem Biophys Res Commun. 2004;320(2):389–397.

96. Ho MS, Ou C, Chan YR, Chien CT, Pi H. The utility of F-box for protein destruction. Cell Mol Life Sci. 2008;65(13):1977–2000.

97. Kirk R, Laman H, Knowles PP, et al. Structure of a conserved dimerization domain within the F-box protein Fbxo7 and the PI31 proteasome inhibitor. J. Biol. Chem. 2008;283(32):22325–22335.

98. Hsiao FM, Lee YC, Yu CT, Huang CY. Fbx7 functions in the SCF complex regulating Cdk1-cyclin B-phosphorylated hepatoma up-regulated protein (HURP) proteolysis by a proline-rich region. J. Biol. Chem. 2004;279(31):32592–32602.

99. Fonzo DA, Dekker MCJ, Montagna P, et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian pyramidal syndrome. Neurology. 2009;72(3):240–245.

100. Zhao T, Severijnen LA, Weiden MV, et al. FBXO7 immunoreactivity in alpha synuclein-containing inclusions in Parkinson disease and multiple system Atrophy. J. Neurophil Exp. Neuroal. 2013;72(6):482–488.

101. Shojaee S, Sina F, Banhosseinli SS, et al. Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500K SNP arrays. Am. J Hum. Genet. 2008;82(6):1375–1384.

102. PL A2G6 gene - Genetics Home Reference - NIH https://ghr.nlm.nih.gov/gene/PLA2G6.

103. Ruiz CP, Bhatia PK, Li A, et al. Characterization of PL A2G6 as a locus for dystonia-parkinsonism. Ann. Neurol. 2009;65(1):19–23.

104. Hardy John. Genetic analysis of pathways to Parkinson disease. Neuron. 2010;68(2):201–206.
105. Morgan NV, Westaway SK, Morton JE, et al. PLA2G6 encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet. 2006;38(7):752–754.

106. Mubaidin A, Roberts E, Hampshire D, et al. Karak syndrome: a novel degenerative disorder of the basal ganglia and cerebellum. J Med Genet. 2003;40(7):543–546.

107. Tomiyama H, Yoshino H, Ogaki K, et al. PLA2G6 variant in Parkinson’s disease. J Hum Genet. 2011;56(5):401–403.

108. Kurian MA, Morgan NV, MacPherson L, et al. Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology. 2008;70(18):1623–1629.

109. Sina F, Shojaee S, Elahi E, Paisan Ruiz C. R632W mutation in PLA2G6 segregates with dystonia-parkinsonism in a consanguineous Iranian family. Eur J Neurol. 2009;16(1):101–104.

110. Tan EK, Ho P, Tan L, Prakash KM, Zhao Y. PLA2G6 mutations and Parkinson’s disease. Ann Neurol. 2010;67(1):147–148.

111. Giovannone B, Lee E, Laviola L, Giorgino F, Cleveland KA, Smith RJ. Two novel proteins that are linked to insulin-like growth factor (IGF-I) receptors by the Grb10 adapter and modulate IGF-I signaling. J Biol Chem. 2003;278(34):31564–31573.

112. Dufresne AM, Smith RJ. The adapter protein GRB10 is an endogenous negative regulator of insulin-like growth factor signaling. Endocrinology. 2005;146(10):4399–4409.

113. Holt LJ, Siddle K. Grb10 and Grb14: enigmatic regulators of insulin action—and more? Biochem J. 2005;388:393–406.

114. Langlais P, Dong LQ, Ramos FJ, et al. Negative regulation of insulin-stimulated mitogen-activated protein kinase signaling by Grb10. Mol Endocrinol. 2004;18(2):350–358.

115. Mori K, Giovannone B, Smith RJ. Distinct Grb10 domain requirements for effects on glucose uptake and insulin signaling. Mol Cell Endocrinol. 2005;230(1-2):39–50.

116. Lautier C, Goldwurm S, Durr A, et al. Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease. Am J Hum Genet. 2008;82(4):822–833.

117. Martinez JR, Krebs CE, Makarov V, Gorostidi A, Marti-Masso JF, Ruiz CP. GIGYF2 mutation in late-onset Parkinson’s disease with cognitive impairment. J Hum Genet. 2015;60(10):637–640.

118. Aleman A, Torres-Aleman I. Circulating insulin-like growth factor I and cognitive function: neuromodulation throughout the lifespan. Prog Neurobiol. 2009;89(3):256–265.

119. Doran JF, Jackson P, Kynoch PA, Thompson RJ. Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. J Neurochem. 1983;40(6):1542–1547.

120. Wilkinson KD, Lee KM, Deshpande S, Duersken-Hughes P, Boss JM, Pohl J. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science. 1989;246(4930):670–673.

121. Leroy E, Boyer R, Leube B, et al. The ubiquitin pathway in Parkinson’s disease. Nature. 1998;395(6701):451–452.

122. Nishikawa K, Li H, Kawamura R, et al. Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem Biophys Res Commun. 2003;304(1):176–183.

123. Maraganore DM, Farrer MJ, Hardy JA, Lincoln SJ, McDonnell SK, Rocca WA. Case-control study of the ubiquitin carboxyl-terminal hydrolase L1 gene in Parkinson’s disease. Neurology. 1999;53(8):1858–1860.

124. Maraganore DM, Lesnick TG, Elbaz A, et al. UCHL1 is a Parkinson’s disease susceptibility gene. Ann Neurol. 2004;55(4):512–521.

125. Farrer M, Destee A, Becquet E, et al. Linkage exclusion in French families with probable Parkinson’s disease. Mov Disord. 2000;15(6):1075–1083.

126. Schulte C, Gasser T. Genetic basis of Parkinson’s disease: inheritance, penetrance, and expression. Appl Clin Genet. 2011;4:67–80.

127. Ruiz CP, Guevara R, Fedoroff M, et al. Early-onset L-dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and spatacsin mutations. Mov Disord. 2010;25(12):1791–1800.

128. Konno T, Ross OA, Puschmann A, Dickson DW, Wszolek ZK. Autosomal dominant Parkinson’s disease caused by SNCA duplications. Park Relat Disord. 2016;22(1):1–6.

129. Zhou ZD, Sathiyamoorthy S, Angeles DC, Tan EK. Linking F-box protein 7 and parkin to neuronal degeneration in Parkinson’s disease (PD). Mol Brain. 2016;9:41.