Evaluation of residual stress on shot peened spring steel surface by X-ray cosα method

Tomohiro YAMAZAKI†1, Yuji SODA†1, Takuya YAMAOKA†1 and Toshihiko SASAKI‡2

†1 Research and Development Center, Mitsubishi Steel MFG. Co., Ltd.
1-6 Yawata, Kaigandori, Ichihara-shi, Chiba 290-0067, Japan
†2 Department of Materials Science and Engineering, Kanazawa University
Kakumun-machi, Kanazawa-shi, Ishikawa 920-1192, Japan

Abstract
The purpose of this study is to carry out the basic verification necessary for the correct evaluation of the residual stress of shot peened spring steel by the cosα method. Spring steel (JIS-SUP9) was used as the specimen. Shot peening (SP) was performed on the surface of the specimen by changing the direction and the number of SP. In the X-ray stress measurement, the Debye ring was measured from five directions for each measurement point and used to determine the residual stress. We also examined the effects of changing X-ray incident angles. Residual stress was determined assuming plane stress or tri-axial stress, respectively. As a result, it was found that out-of-plane shear stress (τxz) may occur depending on the direction of SP, and in that case, if stress analysis assuming plane stress is performed, a measurement error will occur. Furthermore, it was found that the smaller the incident angle of X-rays, the larger the measurement error.

Keywords : Shot-peening, Residual stress, X-ray, cosα method, Debye ring, Tri-axial stress, SUP9

1. 緒 言
自動車用のコイルスプリングやスタビライザ, トラック用のリーフスプリングに用いられる懸架ばねには, 乗り心地の向上, 軽量化・省スペース化等の要求がある. その中でも燃費向上を目的とした軽量化のニーズが高まっており, ばね設計による応力低減, 素材となる材料開発, さらに, 加工技術による疲労強度の向上等の取り組みが行われている。加工技術の一つであるショットピーニング処理は、懸架ばね全般に広く用いられている。本処理は、対象によって大小さまざまな鋼、もしくは非鉄材の細粒を高速でばねに投射する手法である。これにより、ばね表面には圧縮の残留応力が付与され、ばねの使用中に発生する応力（引張およびせん断応力）を緩和する効果があり、疲労強度の向上が期待できる（ショットピーニング最適化に関する研究委員会, 2002, ばねの高強度・信頼性化技術研究委員会, 2011）。

なお、懸架ばねの残留応力状態の評価には、X線応力測定法（sin²ψ法）が広く採用されている。懸架ばねのうち、コイルスプリングやスタビライザは曲率形状を有するため、位置によっては投射角度のついた状態でショットピーニングが施されている、このような処理面には、表面直下のX線線入深さ領域に面外せん断応力（σxz等）が付与され、sin²ψ線図が非線形となるψスプリット現象が観察される（ここで、xは測定面内の軸、zは法線方向の軸）。榊原らは、既に投射角度をつけてショットピーニングを施したばね鋼においてψスプリットが生じることを報告している（榊原他, 2005）。このような場合には、sin²ψ法を拡張したDölle-Hauk法による三軸応力解析（Dölle, 1979）が有効であるが、この方法は6方向からのsin²ψ線図を必要とするため、1箇所の測定に約1
時間以上を要し、測定箇所の多い場合など広範囲の測定を行うには不向きである。これに対して、最近登場した \(\cos \alpha \) 法は単一入射によって取得する回折環（Debye ring）から応力が決定可能であり、短時間かつ容易に測定できる特長を持つ。さらに、\(\psi \) スプリットの原因となる\(\tau \)は1回の回折環測定で得られるため（佐々木他，2009），大幅な測定時間の短縮が望め、現状では\(\sin^2 \psi \)法の約1/20以下にできる。

このような \(\cos \alpha \) 法は、1978年に平ら（平他，1978）によって最初に提案され、初期には写真法による検証がなされた。その後、吉岡ら（吉岡，大谷，1993），佐々木ら（佐々木，広瀬，1995）によるイメージングプレート（IP）をX線検出器に用いた研究を経て、それに続く佐々木ら（佐々木，広瀬，1995b, 1995c, 佐々木他，2009, Sasaki et al., 2014a）や田中（Tanaka, 2018, 田中, 2018）による三軸応力解析等への測定理論の拡張へと続いた。

その後、2009年にJST新技術説明会において佐々木により装置化が提唱され、これが契機となり2012年に世界初の専用機が登場した（丸山他, 2015）。これにより、本装置を用いた基礎検証がフェライト系鋼（Miyazaki and Sasaki, 2014, 藤本他, 2015）,オーステナイト系ステンレス鋼（Miyazaki and Sasaki, 2016）,アルミニウム合金（嘉村他, 2017）,ニッケル合金（Sasaki et al., 2014b）などに対して行われ、現在も適用範囲が拡大しつつある。その他、\(\cos \alpha \)法を用いることによりマッピング測定（Sasaki et al., 2020）,粗大結晶粒の測定（佐々木他, 1997, 佐々木, 広瀬, 1997）,多相材料（佐々木他, 1996）,中性子応力測定（佐々木, 廣瀬, 2005）に対しても有効なことが判明している。

本研究では、このような \(\cos \alpha \)法を、ばね部品の製造現場での残留応力評価に応用することを目的とし、ショットピーニング処理を施したばね鋼（SUP9）の場合について、基礎的検討を行った。以下では、\(\cos \alpha \)法の標準理論である平面応力解析結果を適用した場合において、ショットピーニング処理条件やX線測定条件によって一部に三軸応力の影響が現れ、評価結果に対して注意が必要であることを示し、その原因について考察した。

2. 実験

2・1 試験片

試験片には、ばね鋼SUP9を用いた。表1, 表2に、SUP9の化学的組成および機械的性質をそれぞれ示す（JIS G 4801, 2005）。試験片の作製方法として、まず、長さ300 mm, 幅70 mm, 厚さ8 mmの材料を13.5分間, 880℃に保持した後に焼入れを行い、さらに、410℃において60分間の焼戻しを行った。以上の処理後のピッカース硬度はHV 493であった。続いて切断、研削により、長さ150 mm, 幅20 mm, 厚さ3 mmの短冊状に成形した。研削加工後の試験片表面には、約400 MPaの圧縮残留応力が付与されていた。最後に、試験片全面について、化学研磨処理を用いて約50μmだけ表面層を除去した。化学研磨処理後の表面の残留応力は数MPa程度となり、概ね加工による残留応力を除去できた。以上により、合計3種類の試験片を作製し、以下で説明するショットピーニング処理を施した後、X線応力測定に供した。

Table 1 Chemical composition of SUP9 (Unit : wt.%).

C	Si	Mn	P	S	Cr
0.52～0.60	0.15～0.35	0.65～0.95	0.030≧	0.030≧	0.65～0.95

Table 2 Main mechanical properties of SUP9.

Proof stress [MPa]	Tensile strength [MPa]	Elongation [%]	Hardness [HBW]
1080≦	1230≦	9≦	363～429

2・2 ショットピーニング処理

試験片の片側の中央部分に対し、以下の条件でショットピーニング処理を行った。

まず、ショットピーニング装置には新東工業製SBT-1A型を使用し、ショットメディアとして粒径φ0.43 mmの硬鋼線材（JIS G 3506 SWRH）を用いた。このときの投射圧は0.5 MPa, ノズル径はφ10 mmとし、投射時間10 sec
とした。また、図1に示すように、ショットの投射角度は次のような合計3種類とした。1つ目は、加工面に垂直な方向（0°）とし、以下では本試験片をTP1と呼ぶ。2つ目は45°の方向とし、以下ではTP2-1と呼ぶ。TP2-1ではそれぞれ1回ずつ投射を行った。3つ目は、45°方向から投射した後、その反対側の-45°の方向から2回目の投射を行った。以下では、TP2-2と呼ぶ。本研究では、生産現場にてショットピーニングの管理指標のひとつであるアークヘイト条件を同一にし、投射角度の影響を検討するため、投射角度によって投射距離D=400 mmまたは200 mmに調整した。ショットピーニング後の試験片表面には、X線侵入深さの推定値と同様なレベルの算術平均粗さ（Ra）が形成され、表面粗さの影響が懸念されるが、回折環全体の強度分布はショットピーニング処理以外のサンプルの測定の場合と比較してとくに顕著な違いは認められず、a1-cosα線図においても、良好な直線的傾向を示したことから、表面粗さの影響は測定に支障無いと判断される。

Fig. 1 Three types of peening angles used in the shot peening process, and specimen identification names (TP1~TP2-1) and shot distance between nozzle and specimen D.

2.3 X線応力測定

本研究におけるX線応力測定には、市販のcosα法方式の専用装置（パルステック工業製、μ-X360s）を使用した。本装置は、X線検出器として2次元検出器の1種であるイメージングプレート（IP）を用いている。コリメーター径は内径φ1.0 mmを用い、図2に市販の放射線フィルムに入射角ψ₀=0°およびψ₀=35°でX線照射した際の照射領域を示す。入射角ψ₀=0°の照射面積は約φ2 mmに対し、入射角ψ₀=35°では楕円形状となり、X線ビームの発散のため長手方向で約2.6 mm、短手方向では約2.0 mmとなる。本研究では、特性X線として鋼に対する標準的な測定条件であるCrKα線を用い、試験片中の主要な構成相の一つであるフェライト相からの211回折線（回折環、Debye ring）を計測してデータ解析を行った。なお、本試験片の場合のように微細な多結晶の集合体からなる材料からは、X線の照射点を頂点とする円錐状に回折X線が発生する。これに対し、本X線測定では、発生する回折環（入射X線ビームに垂直な断面）全体を一度に計測した（図3（a））。このようなにして、cosα法の測定手順に従ってデータ解析を行い、応力を決定した。本研究で用いた主なX線応力測定条件を表3にまとめて示す。cosα法による応力の算出方法については、次章で詳述する。

Fig. 2 X-ray irradiation area at the X-ray incident angle. At the X-ray incident angle ψ₀= 0°, it is an irradiation region of about φ2 mm. On the other hand, at the X-ray incident angle ψ₀= 35°, it is about 2.6 mm in the longer direction and about 2.0 mm in the width direction.
3. X線応力解析

まず、各測定点における残留応力成分を次式のように定義する。

\[
\sigma_{ij} = \begin{pmatrix}
\sigma_x & \tau_{xy} & \tau_{xz} \\
\tau_{xy} & \sigma_y & \tau_{yz} \\
\tau_{xz} & \tau_{yz} & \sigma_z
\end{pmatrix}
\] \(i, j = x, y, z \) である。以下では、試験片の長手方向を \(x \) 軸、それに直角な方向を \(y \) 軸、法線方向を \(z \) 軸とする。図3 (b) に示すように、測定した回折環の4箇所からX線ひずみを決定し、次式で定義されるパラメータ \(a_1, a_2 \) を算出する（平他, 1978）。

Fig. 3 X-ray optics and symbols used in X-ray stress measurement by cosα method, and definition of X-ray strains.
\[a_1 \equiv \frac{(\epsilon_a - \epsilon_{a+n}) + (\epsilon_a - \epsilon_{a-n})}{2} \quad (2) \]

\[a_2 \equiv \frac{(\epsilon_a - \epsilon_{a+n}) - (\epsilon_a - \epsilon_{a-n})}{2} \quad (3) \]

\(a_1 \) と \(a_2 \) は、いずれも回折環の中心角 \(\alpha \) が図 3 (b) に示すような角度関係を取る 4 節所 \((\alpha, \pi + \alpha, -\alpha, \pi - \alpha) \) から得られる X 線ひずみの組み合わせにより求められる。両パラメータは、応力に対して次式の関係を示す。

\[a_1(\varphi_0, \psi_0) = -\frac{1 + \nu}{E} \left[(\sigma_x \cos^2 \psi_0 + \tau_{xy} \sin 2 \varphi_0 + \sigma_y \sin^2 \psi_0 - \sigma_z) \sin 2 \psi_0 + 2 (\tau_{xz} \cos \varphi_0 + \tau_{yz} \sin \varphi_0) \cos 2 \psi_0 \right] \sin 2 \psi_0 \cos \alpha \quad (4) \]

\[a_2(\varphi_0, \psi_0) = -\frac{1 + \nu}{E} \left[(\sigma_x - \sigma_y) \sin 2 \varphi_0 - 2 \tau_{xy} \cos 2 \varphi_0 \right] \sin \psi_0 + 2 (\tau_{xz} \sin \varphi_0 - \tau_{yz} \cos \varphi_0) \cos 2 \psi_0 \sin 2 \eta \sin \alpha \quad (5) \]

ここで、\(E \) はヤング率、\(\nu \) はボアソン比、\(\eta \) は Bragg 角 \(\theta \) の余角である \((\eta = \pi / 2 - \theta) \)。なお、\(E \) と \(\nu \) は、測定で用いた回折面に依存する性質がある。本研究では、Kröner モデルによる計算値 \((E=224 \text{ GPa}, \nu=0.28) \) を使用した（Noyan and Cohen, 1987, 田中他, 2006）。\(\varphi_0 \) は測定サンプルの表面 \((xy \text{ 面}) \) への入射 X 線ビームの投影と x 軸とのなす角である。cosα 法では、通常、平面応力状態 \((\sigma_z = \tau_{xz} = \tau_{yz} = 0) \) を仮定し、また、\(\varphi_0 = 0^\circ \) において行われる場合が多い。これに対して、式 (4), (5) は任意の二軸応力状態と任意の \(\varphi_0 \) 方向に対する cosα 法の一般式である。本研究では、ショットピーニング処理した面に対して、\(\varphi_0, \psi_0 \) が種々異なる場合について検討を行った（すなわち、\(\varphi_0 = 0^\circ, 90^\circ, 180^\circ, 270^\circ \), また、\(\psi_0 = 0^\circ \sim 35^\circ \)）。また、平面応力解析による \(\sigma_x, \sigma_y \) の決定と共に、三軸応力解析により \((\sigma_x, \sigma_y, \sigma_z), (\sigma_x, \sigma_y, \tau_{xz}, \tau_{yz}) \) も決定した。なお、垂直応力成分の差は比較的精度よく測定できるが、各垂直応力成分を分離する場合には X 線ひずみを高精度に測定しなければならない。この性質は、従来の \(\sin^2 \psi \) 法を拡張した Dölle と Hauk らによる X 線三軸応力測定の場合と同様である（英, 藤原, 1982）。このため、本研究では、垂直応力成分を分離せず、その差を求めて比較検討を行った。以下では、本研究で用いた各応力解析方法について詳述する。

3・2 平面応力解析

3・2・1 \(\sigma_x \) の決定 (PLANE0, PLANE180)

図 4（a）に示すように、入射 X 線ビームを試験片の法線から \(\varphi_0 = 0^\circ \) 方向（x 軸方向）、または、\(\varphi_0 = 180^\circ \) 方向（x 軸方向）にそれぞれ \(\psi_0 \) 傾けて回折環を測定し、上記と同様に cosα 線図の傾き \((\partial a_1 / \partial \cos \alpha) \) を求めた。続いて、それぞれの測定結果に対して次式を適用して垂直応力 \(\sigma_z \) を決定した。

\[\sigma_x = \frac{E}{1 + \nu \sin 2 \psi_0 \sin 2 \eta} \left(\frac{\partial a_1 (0^\circ)}{\partial \cos \alpha} \right) = -\frac{E}{1 + \nu \sin 2 \psi_0 \sin 2 \eta} \left(\frac{\partial a_1 (180^\circ)}{\partial \cos \alpha} \right) \quad (6) \]

式 (6) の第 2 式は cosα 法における \(\sigma_x \) の標準的な決定式であり、平面応力状態を仮定している。区別のため、以降では式 (6) の第 2 式を用いる方法を PLANE0、第 3 式を用いる場合を PLANE180 と呼ぶ。平面応力状態の場合、PLANE0 と PLANE180 の結果は、測定理論上、一致する。なお、表 4 に本研究で用いた各応力計算法に対する略号および計算条件をまとめて示す。

3・2・2 \(\sigma_y \) の測定 (PLANE90, PLANE270)

次に、図 4（a）に示すように入射 X 線ビームを測定面の法線から \(\varphi_0 = 90^\circ \) 方向（y 軸方向）、または、\(\varphi_0 = 270^\circ \) 方向（y 軸方向）にそれぞれ \(\psi_0 \) 傾けて回折環を測定し、上記と同様に cosα 線図の傾きを求め、平面応力状態に対する次式を適用して垂直応力 \(\sigma_z \) を決定した。

\[
\sigma_y = -\frac{E}{1+\nu} \left(\frac{1}{\sin 2\psi \sin 2\eta} \right) \left(\frac{\partial a_5(90^\circ)}{\partial \cos \alpha} \right) = \frac{E}{1+\nu} \left(\frac{1}{\sin 2\psi \sin 2\eta} \right) \left(\frac{\partial a_5(270^\circ)}{\partial \cos \alpha} \right)
\]

(7)

以降では, 式 (7) の第 2 式を用いる方法を PLANE90, 第 3 式を用いる方法を PLANE270 と呼ぶ.

3.3 三軸応力解析

図 4 に示す計 5 方向から測定した各回折環を組み合わせて利用すると, X 線照射位置における三軸応力成分が決定できる. 解析理論の詳細については文献に譲り (佐々木他, 2009), 以下では, 本研究で求めた垂直応力成分差, \((\sigma_x-\sigma_y)\) および \((\sigma_y-\sigma_z)\), 並びに面外せん断応力, \(r_x\) および \(r_y\) に関する算出方法に絞り要点のみを説明する.

3.3.1 \((\sigma_x-\sigma_y)\) の測定 (TRI-2X)

図 4 (a) に示す \(\psi_0=0^\circ\) および 180°の 2 方向から測定した回折環に対して, それぞれ \(\cos \alpha\) 線図の傾きを求め, 次式を適用して \((\sigma_x-\sigma_y)\) を決定した.

\[
(\sigma_x - \sigma_y) = -\frac{E}{2(1+\nu)\sin 2\psi \sin 2\eta} \left(\frac{\partial a_5(90^\circ)}{\partial \cos \alpha} + \frac{\partial a_5(180^\circ)}{\partial \cos \alpha} \right)
\]

(8)

以降では, 本方法を TRI-2X と呼ぶ.

3.3.2 \((\sigma_y-\sigma_z)\) の測定 (TRI-2Y)

図 4 (a) に示す \(\psi_0=90^\circ\) および 270°の方向から測定した回折環に対して, それぞれ \(\cos \alpha\) 線図の傾きを求め, 次式を適用して \((\sigma_y-\sigma_z)\) を決定した.

\[
(\sigma_y - \sigma_z) = -\frac{E}{2(1+\nu)\sin 2\psi \sin 2\eta} \left(\frac{\partial a_5(90^\circ)}{\partial \cos \alpha} + \frac{\partial a_5(270^\circ)}{\partial \cos \alpha} \right)
\]

(9)

以降では, 本方法を TRI-2Y と呼ぶ.

3.3.3 \((\sigma_x-\sigma_z), (\sigma_y-\sigma_z), r_x\) および \(r_y\) の測定 (TRI-3X, TRI-3Y)

図 4 (b) に示すように, z 軸方向からの X 線照射により測定した回折環に対して \(\cos \alpha\) 線図の傾きを求め, 次式を適用して \(r_x\) および \(r_y\) を決定した.

\[
r_{xx} = -\frac{E}{2(1+\nu)\sin 2\eta} \left(\frac{\partial a_5(0^\circ)}{\partial \cos \alpha} \right) \psi_0=0^\circ
\]

(10)

\[
r_{yz} = \frac{E}{2(1+\nu)\sin 2\eta} \left(\frac{\partial a_5(0^\circ)}{\partial \sin \alpha} \right) \psi_0=0^\circ
\]

(11)

ここで, \(a_5\) は既に式 (3) で定義されている. 次に, 式 (10) で求めた \(r_x\) と, 図 4 (b) の \(\psi_0=0^\circ\) 方向の回折環からの \(\cos \alpha\) 線図の傾きを求め, 次式によって \((\sigma_x-\sigma_y)\) を決定した.

\[
(\sigma_x - \sigma_y) = -\frac{E}{1+\nu} \left(\frac{1}{\sin 2\psi \sin 2\eta} \right) \left(\frac{\partial a_5(0^\circ)}{\partial \cos \alpha} \right) - 2r_{xx}\cot 2\psi_0
\]

(12)

また, 同様に, 式 (11) で求めた \(r_y\) と, 図 4 (b) の \(\psi_0=90^\circ\) 方向の回折環からの \(\cos \alpha\) 線図の傾きを求め, 次式によって \((\sigma_y-\sigma_z)\) を決定した.
以降では，式 (10) と (12) による方法を TRI-3X，また，式 (11) と (13) による方法を TRI-3Y と呼ぶ。

\[
\left(\sigma_y - \sigma_z \right) = -\frac{E}{1+\nu} \frac{1}{\sin2\psi_0 \sin\theta} \left(\frac{\alpha_x(90^\circ)}{\cos\alpha} \right) - 2\tau_{xy} \cot2\psi_0 \tag{13}
\]

Fig. 4 Explanation of measurement of Debye rings, and definition of labels classifying tri-axial stress analysis method.

Fig. 5 X-ray penetration depth of diffracted X-rays due to changes in the position of the Debye ring central angle \(\alpha \) in the case of two types of X-ray incident angles. From this figure, it can be seen that the X-ray penetration depth is constant with respect to \(\alpha \) when the X-ray incident angle \(\psi_0 = 0^\circ \). It can also be seen that when the X-ray incident angle is tilted, the X-ray penetration depth becomes a curve that becomes the minimum value at \(\alpha = 180^\circ \).

Table 4 List of types of stress analysis methods and analysis conditions performed in this study.

Label	Stress state assumed	\(\varphi_0 \) [deg.]	\(\psi_0 \) [deg.]	Stresses obtained in this study	Equations used for determining stresses
PLANE0	Plane stress	0	35	\(\sigma_x \)	Eq.(6)
PLANE90	Plane stress	90	35	\(\sigma_y \)	Eq.(7)
PLANE180	Plane stress	180	35	\(\sigma_x \)	Eq.(6)
PLANE270	Plane stress	270	35	\(\sigma_y \)	Eq.(7)
TRI-2X	Tri-axial stress	0 & 180	35	\(\sigma_x - \sigma_z \)	Eq.(8)
TRI-2Y	Tri-axial stress	90 & 270	35	\(\sigma_x - \sigma_z \)	Eq.(9)
TRI-3X	Tri-axial stress	0	0 & 35	\(\sigma_x - \sigma_z \) & \(\tau_{xz} \)	Eq.(10) & (12)
TRI-3Y	Tri-axial stress	0 & 90	0 & 35	\(\sigma_y - \sigma_z \) & \(\tau_{yz} \)	Eq.(11) & (13)
3.4 基礎的仮定およびX線侵入深さ

式 (4) より, \(\varphi_0 = 0^\circ \) かつ三軸応力状態の場合は, \(\cos \alpha \) 線図の傾きには \(\sigma_1 \) の他に \(\sigma_2 \) と \(\tau_{xz} \) が含まれることが分かる。平面応力状態では, \(\sigma_2 = \tau_{xz} = 0 \) であるため, \(\cos \alpha \) 線図の傾きには応力成分として \(\sigma_1 \) のみが残り, 式 (8) は式 (6) と一致する。このとき, 同様に式 (9) は式 (7) と一致する。

なお, 式 (4) ～ (12) は, 前提条件（基礎的仮定）として, 測定部分が力学的に均質で等方であること, 応力が均一で勾配を持たないこと, 測定面が平坦であることなどを仮定している。これらに対し, 鋼の測定においてはフェライトの他に, セメンタイトや残留オーステナイト等も含まれる場合があることに伴う不均質性, 試験片製造過程で形成される集合組織による弾性異方性, 試験片表面における粗さや曲率, 表面の加工変質層（深さ方向に応力勾配）, などの影響がある程度現れる可能性がある。

また, \(\cos \alpha \) 法の解析で重要な回折環は, Bragg の法則を満たす種々の方位をとる結晶格子から回折した X 線ビームによって形成され, 回折環上の各点はそれぞれ異なる試験片内の経路を取る結果, 試験片の内部での吸収減衰量がそれぞれ異なり, X 線侵入深さが一定ではなく変化する。佐々木ら（佐々木, 広瀬, 1995b, 佐々木, 廣瀬 2005）によれば, 本研究における回折環上の X 線侵入深さは図 5 のように変化する。図 5 には, 本研究で用いた X 線入射角 \(\varphi_0 \) が 0° と 35° の場合について図示されているが, 前者では横軸の中心角 \(\alpha \) に対して X 線侵入深さ（縦軸）は一定（約 5.6 µm）であるのに対し, 後者の 35° 傾斜させた場合は \(\alpha = 180^\circ \) を最小値とする \(\cos \alpha \) 型の変化を示し, 前者より平均的に浅い測定深さ（約 4.6 µm）となる。

4. 実験結果

4.1 X 線測定結果および断面組織

図 6, 図 7 に, 本研究により測定された回折環と \(\cos \alpha \) 線図の例を示す。図に示されているように, 回折環は, いずれも均一な回折強度を示しており, 結晶粒が粗い兆候, あるいは, X 線照射面積が不足している兆候は見られない。なお, 入射 X 線の \(\varphi_0 \) 傾斜のための回折 X 線強度の減衰（図 6 の上下方向に関する変化）が, ショット方向の違いによってやや相違している傾向が見られており, ショットピーニング処理で生じた塑性フロー（後述の図 8）による集合組織の形成の影響が推定される。一方, \(\cos \alpha \) 線図に関しては測定誤差の範囲内で概ね直線的な分布を示しており, \(\cos \alpha \) 法の測定理論の予測と一致している。回折環と \(\cos \alpha \) 線図については, 他の測定結果についてもほぼ同様な傾向であった。以下では, 集合組織の影響はとくに考慮せずに応力を決定した。なお, 測定された半価幅は約 4.5° ～ 5.5° の範囲であった。

![Fig. 6 Comparison of Debye rings obtained from shot peened surfaces at three different peening angles. The measurement position of the specimen is the center of the shot area. The reason why the diffracted X-ray intensity differs between the top and bottom of the Debye ring and the upper side becomes higher is due to the inclination of the X-ray incident angle. On the other hand, the difference in diffraction intensity between the left and right sides of the Debye ring is thought to be due to the formation of texture by shots.](image-url)
Fig. 8 EBSD images of the cross section of each shot peened specimen. The arrows in the figure indicate the direction of the shot. It can be seen that the slope of the plastic flow of the surface layer of the specimen differs depending on the shot direction. Moreover, in each case, it can be seen that the crystal grains are finely divided on the surface.

4.2 垂直投射 (TP1)

Fig. 9 に、測定面に対して垂直な方向からショットを1回投射した場合（TP1）に対する残留応力の測定結果を示す。測定範囲は幅方向中央部のx軸上にて、長手方向50mmの領域を2mm間隔で測定した。図の横軸0mmの位置が投射の中心である。図には、試験片の法線方向からX軸の正の方向に35°傾斜して入射X線ビームを照射した場合（φ₀=0°、図4 (a)）に対するcosα法による平面応力解析結果（PLANE0）と共に、x軸の負の方向（φ₀=180°）に入射X線ビームを傾斜させた場合に対する結果（PLANE180）を併記した。また、両測定
データに対して三軸応力解析法（式（8））を適用した結果（TRI-2X）も併記した。さらに、入射 X 線ビームを試験片の法線方向から照射した場合（ψ0=0°, φ0=0°, 式（10））の測定データと、上記のψ0=35°のデータの組み合わせから三軸応力解析法を適用した結果（TRI-3X）も併記した。なお、PLANE0 および PLANE180 からは垂直応力成分σzが得られ、また、TRI-2X および TRI-3X からは（σx-σz）, τxz が得られる。同図には、さらに、各回折環から得られた半価幅（回折環全体からの平均値）も示した。

以上の結果、図 9（a）に見られるように、計 4 種類の応力解析結果は、ほぼ同様な残留応力分布を示していることが分かる。また、各残留応力は、測定位置による変化が少なく、ほぼ一定で平坦な分布を示しているが、細かく見るとわずかに図の中央部が低い圧縮応力値を示し、全体的にやや凸状の分布を示している。これは、ショットの投射が、図の横軸の 0 mm を中心に行われたことに対応し、ショットの中心からの距離に伴い、投射エネルギーが、ショットが試験片に至るまでの距離、投射角度が変わることなどによるものと考えられる。得られた半価幅も残留応力と同様に緩やかな凸状の分布を示した。

次に、図 4（b）に示すように入射 X 線ビームをφ0=90°方向にψ0=35°傾斜させた場合（PLANE90）およびφ0=270°方向にψ0=35°傾斜させた場合（PLANE270）についてcosα法を適用した平面応力解析結果を図 9（b）に示す。さらに、同図には両データを用いて三軸応力解析法を適用した結果（TRI-2Y）、測定面の法線方向から X 線を照射して測定した回折環を用いた結果（TRI-3Y）も併記した。図 9（b）より、y 軸方向に関する測定結果も概ね図 9（a）と同様な傾向を示しており、4 種類の応力解析法の差は見られない。また、測定範囲内の応力分布もほぼ一定である。ただし、残留応力の値は約 50 MPa だけ図 9（b）の方が圧縮側に大きくなっている。半価幅に関しては、図 9（a）と（b）の差は見られない。

Fig. 9 Residual stress distribution when one shot is performed from the vertical direction. From the figure, it can be seen that the stress distribution is almost flat, and the results of the plane stress analysis and the tri-axial stress analysis are almost the same. The full-width at half maximum (FWHM) shows an upward convex distribution.

4・3 45°投射（TP2-1）

次に、ショットを 45°の方向から 1 回投射した場合（図 1（b））について、前節と同様に X 線応力測定を行った結果を図 10 にまとめて示す。まず図 10（a）では、4 種類の X 線応力解析法によって求めた結果がそれぞれ異なる応力値を示していることが分かる。とくに、PLANE0 と PLANE180 の差が大きく、TRI-2X、TRI-3X の差は比較的小さい。後者は、PLANE0、PLANE180 の間に位置すると共に、TRI-2X は PLANE0 と PLANE180 の中央付近に位置し、TRI-3X は PLANE0 の中央部に寄っている。なお、残留応力の分布は、いずれも図の両端部で変化が比較的大きく、それ以外の中央部では緩やかな凹凸状の分布を示している。横軸の 0 mm の位置がショットの中心部分であることおよび、図 10（a）の凹凸状の分布はショットの影響が中央部分と、そこから外周側に離れることで異なっていくためであると考えられる。両端部についてはショット範囲の境界付近であり、周囲の未ショッ
ト部分による拘束が影響している可能性が考えられるが、詳細については未調査である。このため、以下では主として中央部分について検討する。

なお、TRI-2X と TRI-3X に見られる差異の原因は、X 線侵入深さ（測定深さ）の影響が考えられる。すなわち、TRI-2X で用いた 2 種類の X 線回折データ（図 4 (a)）の X 線侵入深さは互いに等しいのに対し（約 4.6 µm、図 5）、TRI-3X では X 線入射角が異なる 2 種類の回折環からのデータを組み合わせて解析を行っているため、互いに X 線侵入深さが異なるデータが用いられて応力が計算されている（φ0=0°のとき約 5.6 µm、φ0=35°のとき約 4.6 µm）。

ショットピーニング処理後の表面には急激な応力勾配が深さ方向に対して発生していることが考えられ、X 線侵入深さが異なる測定データを組み合わせたことで、測定領域内の平均値が異なることによる影響が現れたものと推察される。なお、X 線応力測定結果に対する応力勾配の影響に関しては、Dölle ら（Dölle, 1979）の研究など、従来の sin2ψ 法に関して多くの報告例がある。図 10 (b) は、y 方向に φ0=±35° 傾斜した 2 種類の入射 X 線ビームに対する測定結果（PLANE90, PLANE270, TRI-2Y）および φ0=0° と φ0=180° を用いた結果（TRI-3Y）を示している。なお、PLANE90, PLANE270 は平面応力状態を仮定したときの σx を与え、TRI-2Y, TRI-3Y は三軸応力状態を仮定した場合の（σx,σy,σz），τxy を与えている。以上の結果、図 10 (b) より、4 種類の解析方法の結果は互いによく一致し、また、中央部分の残留応力は、すり鉢状に凹面状の分布を示していることが分かる。

図 10 (a), (b) の測定結果について、三軸応力解析結果と平面応力解析結果との相関関係を図示した結果を図 10 (c) に示す。その結果、図 10 (a) から得られた関係は、図に複線で示した 1:1 の関係から外れており、一方、図 10 (b) の結果は 1:1 の線上によく載っていることが分かる。このような傾向が得られた原因については次章で考察する。

図 10 (d) は、式 (10), (11) を用いて 2 種類の面外せん断応力 τxy, τxz を求めて、測定位置に対してプロットした結果を表している。図より、τxy は約 20 MPa から 55 MPa の範囲にあり、中央部分ではほぼ一定となっている。τxz は、値が小さく約 0 MPa から 20 MPa の範囲を示している。なお、τxy, τxz 共に正値を示している。なお、TRI-2X, TRI-2Y からもそれぞれ τxy, τxz が得られ、τxy と τxz は図 10 (d) よりやや大きい値を示した。

以上の結果からは、同一の試験片においても応力測定方向 φ0 が互いに 90° 異なることで、平面応力を仮定した場合（PLANE）と、三軸応力状態を仮定した場合（TRI）の残留応力値が異なる場合があることが判明する。なお、それぞれの X 線測定条件における代表的な cosα 線図（図 7）を示した。図 9 に示した垂直投射の場合と比べると、中央部の分布パターンは類似しているものの、最大値は増加している。
図11は、4.3節の試験片に対して、さらに反対方向の-45°から2回目のショットの投射を行った場合に対するX線応力測定結果を示している。すなわち、投射角は1回目が45°、2回目が-45°である（図11(c)）。その結果、図11の分布は図10の場合と全体的に類似したものとなった。ただし、詳細にみると、両図は図の左右方向に関してほぼ反転した分布パターンとなっていることが分かる。また、PLANE0とPLANE180、TRI-2XとTRI-3Xの残留応力の大小関係も、図10とは逆になっている。こうした残留応力の分布の変化は、ショットの投射回数と共に関係していることが考えられる。また、2回投射した場合には最後の投射方向の影響が大きいことが分かる。

図11(a), (b)の測定結果について、三軸応力解析結果と平面応力解析結果との相関関係を図示した結果を図11(c)に示す。その結果、図11(a)から得られた関係は、図に破線で示した1:1の関係から外れている。一方、図11(b)の結果は1:1の線上によく載っていることが分かる。このような結果が得られた原因については前節と同様に次章で考察する。

図11(d)は、式(10), (11)を用いて2種類の面外せん断応力\(\tau_{xz}\), \(\tau_{yz}\)を求めて、測定位置ごとにプロットした結果である。図より、\(\tau_{xz}\)は約-20 MPaから-50 MPaの範囲にあり、負の値となっている。また、分布形状に関しては、測定範囲の右端部で絶対値が減少し、中央部分は緩やか上がりの勾配を示している。一方、\(\tau_{yz}\)は全測定範囲においてほぼ0 MPaを示している。\(\tau_{xz}\), \(\tau_{yz}\)はいずれも値が小さいため測定精度面から見て明確なことは言い難いが、図10(d)と図11(d)を比べると、応力の符号が互いに反対になっていることが分かる。
4.5 X線入射角の影響 (TP2-2)

図12 は、前節で示した45°および-45°方向からの合計2回投射を行った試験片 (TP2-2) における試験片中央の1箇所 (x=0 mm) に対し、X線入射を8°から35°まで6種類変化させて前節までと同様なX線応力測定を行った場合の結果である。図の横軸はX線入射角φの値である。なお、図12 (a) は入射X線ビームを0°と180°方向に傾斜させた場合の結果であり、同図 (b) は90°、270°方向へ傾斜させた結果である (TRI-3X、TRI-3Yではφ=0°のデータも使用)。その結果、図12 (a) では、φ0が小さくなるほど各解析方法から得られた応力値の差が大きくなることが分かる。また、平面応力解析結果における変化が三軸応力解析結果と比べて大きく、また、平面応力解析結果における変化が三軸応力解析結果と比べて大きくなっている。図5より、φ0が低角度になると、X線侵入深さが平均的に大きくなり、同時に、cosα線図の傾きが小さくなるため測定精度 (ひずみ感度) が低下する。さらに、次章の考察においても述べるように、cosα線図の傾きに対する各三軸応力成分の影響度も複雑に変化する。図12の結果は、こうした影響が総合されることにより、つまり、一方、図12 (b) ではφ0に対する変化や測定方向φ0による差はいずれも小さい。次章では、これらの原因について考察する。

© The Japan Society of Mechanical Engineers
前章に示したように、ショットビーニング処理した鋼材の表面部分に発生した残留応力は、処理条件や測定条件によって異なると共に、X線応力解析方法（応力状態の仮定）によっても種々の差が生じることが判明した。以下では、まず、応力解析方法による差異の発生原因について考察する。

標準的なcosα法（式（6）の第2式）では、応力状態として平面応力を仮定して測定理論が導出されている。これに対し、本研究で行ったようにショットの投射方向を傾斜して行った場合には、面外せん断応力τxz、τyzが測定されることが図10（d）、図11（d）より確認された。このようなτxzおよびτyzが発生した場合に対するcosα法の測定理論は、既に佐々木らにより提案され、一般的な三軸応力状態の場合にも応力測定が可能になっている。以下では、このような測定理論から導出された式（8）～（13）に基づいて前章の測定結果を考察する。

まず、図9に示したショットを垂直方向から投射した場合（TP1）は、φ0=0°方向からの測定結果と、φ0=180°方向からの測定結果は互いに概ね一致する結果を示しており、このケースにおいては、τxzが発生していなかったことが式（12）、（13）を用いて行った解析結果から別に確認されている。ただし、σzの存在については現時点では判別が困難である。一方、図10に示した45°方向から投射した結果（TP2-1）では、図10（d）よりτxzが存在し正値を有するため、φ0=0°方向からの測定結果は、φ0=180°方向からの測定結果より

\[
\left(\frac{\partial \sigma_x(0)}{\partial \sigma_{0a}} \right) - \left(\frac{\partial \sigma_x(180)}{\partial \sigma_{0a}} \right) = -\frac{4(1+\nu)}{\varepsilon} \tau_{xz} \cos 2\psi_0 \sin 2\eta
\] (14)

平面応力状態の場合やTP1の場合には、τz=0であるため、上式の右辺の値は0となり、φ0=0°方向とφ0=180°方向の差は生じないが、τzが発生した場合（TP2-1、TP2-2）には式（14）に起因した差が発生する。一方、図11の例のように、2回目のショットの投射が1回目と反対側から行われた場合には、発生するτzの値の符号が反転する結果（図11（d）、φ0=0°方向からの測定結果と、φ0=180°方向からの測定結果との大小関係は逆転（符号が反転）し、平面応力解析結果はφ0=0°方向からの測定結果の方がより大きな圧縮残留応力を示すことになる。

次に、図12に示したX線投射角を変化させた場合の結果について同様な観点から考察を行う。図12では、ショットの投射を2回行った後（TP2-2）、同一測定位置に対してX線投射角φ0を変化させた場合の応力解析結果を表しており、φ0が減少するほど平面応力解析結果間の差が大きく一方、三軸応力解析結果の方は比較的差

![Fig. 12 Comparison of stress values obtained from four types of stress analysis methods for changing the X-ray incident angle.](image-url)

Fig. 12 Comparison of stress values obtained from four types of stress analysis methods for changing the X-ray incident angle. The direction of the shot was 45° for the first shot and -45° for the second shot, for a total of two shots. As a result, it was found that the smaller the X-ray incident angle, the greater the difference in the plane stress analysis depending on the X-ray measurement direction. It was also found that the results of tri-axial stress analysis did not show a large change depending on the X-ray incident angle.
線図の傾きは次式で与えられる

\[
\frac{\partial \varphi}{\partial \cos \alpha} = -\frac{1+\nu}{E}[(\sigma_x-\sigma_z)\sin 2\psi_0 + 2\tau_{xz}\cos 2\psi_0\sin 2\eta]
\]

(15)

上式より, \(\cos \alpha\) 線図の傾きに含まれる応力成分は \((\sigma_x, \sigma_z)\) および \(\tau_{xz}\) であり, それぞれ係数として前者には \(\sin 2\psi_0\), 後者には \(\cos 2\psi_0\) が掛かる. このため, \(\psi_0 = 0\) に近づくとき, \(\sin 2\psi_0 = 0\) に, また \(\cos 2\psi_0\) は \(1\) にそれぞれ漸近する. その結果, \(\cos \alpha\) 線図の傾きが減少することにより測定感度が低下することも図

\[
\sigma_y - \sigma_z
\]

線図の傾きに含まれる応力成分は \((\sigma_x, \sigma_z)\) の関係に注目して考え \(\tau_{xz}\) の变形を小さく, \(\sigma_y\) の変化に対する凸状の変化について \(\sigma_y - \sigma_z\) が低 \(\cos \psi_0\) が掛かる. このため, 平面応力解析による測定結果は, \(\psi_0 = 0\) に近づくほど変形が増大する. このため, 平面応力解析による測定結果は, \(\psi_0 = 0\) に近づくほど \(\sigma_y - \sigma_z\) の場合と \(\psi_0 = 180\) の場合と差が拡大する. 同様に理由により, \(\psi_0 = 45\) に近づくほど差が縮小する. 一方, 三軸応力解析の場合, \(\tau_{xz}\) の影響は正確に処理されるため, 平面応力解析と同様な変異は生じない.

なお, 図 12 の (a) に示される三軸応力解析結果 (TRI-2X, TRI-3X) の差や, \(\psi_0\) の変化に対する凸状の変化については, \(X\) 線入深さと測定精度（ひずみ感度）の影響によることが考えられる. これらの影響の詳細については

Fig. 13 Comparison of two types of normal stress components generated by shot peening. The results for three types of shot conditions are shown. However, the deviations of the normal stress components, \(\sigma_x, \sigma_z\), and \(\tau_{xz}\) were compared. As a result, it can be seen that the samples of \(\sigma_x, \sigma_z\), and \(\tau_{xz}\) are small when the shot is taken vertically, but the absolute value of the latter residual stress is large when the shot is tilted by \(\pm 45\)°. There was no different in the results of the two tri-axial stress analysis methods.
6. 結 言

(1) 垂直方向からショットを投射した場合、投射面内において互いに 90°ずつ異なる方向 (φ₀=0°, 90°, 180°, 270°) における cosα 法による平面応力解析結果 σₓ, σᵧ は、本実験条件ではほぼ一致し、散乱 50 mm の範囲において概ね一定の残留応力分布を示す。また、三軸応力状態を考慮した応力解析法の結果、(σₓ-σᵧ), (σᵧ-σz) とも一致する。

(2) 45°傾斜した方向からショットを投射した場合、投射方向側 (φ₀=0°) に対する平面応力解析結果は、それに対して反対側の方向 (φ₀=180°) の応力解析結果と一致せず、両者の差はショットビーニング処理によって生じた面外せん断応力 τxz に比例する。

(3) 45°方向からショットを投射した後、続いて -45°傾斜した方向からショットを投射した場合、残留応力分布は 1 回目の投射後のときと応力値、面内分布パターン共に互いに反転した結果となる。これらの原因は、ショットの投射方向によって異なる値や符号を有する τxz が発生し、これは cosα 線図の傾きに反映され、各応力解析結果に影響を与えたと解釈できる。

(4) τxz が発生している場合に cosα 法による平面応力解析を行うと、X 線入射角 ψ₀ が小さくなるほど φ₀=0° と φ₀=180° との差が増大する。この原因は、τxz の影響が cos2ψ₀ に比例すると同時に、(σₓ-σᵧ) が sin2ψ₀ に比例することに起因し、ψ₀ が 0°に近づくほど τxz の関与が増すためである。

謝 辞

本研究において、金沢大学研究員・柳嘉代子女史に X 線実験およびデータ解析面に関して献身的に協力していただいたことを記し感謝の意を表す。また、本論文の執筆に際し、金沢大学秘書・弥生亮子女史に献身的な協力を得たことを記し感謝の意を表す。

文 献

Dölle, H., The influence of multiaxial stress states, Stress gradients and elastic anisotropy on the evaluation of (residual) stress by X-rays, Journal of Applied Crystallography, No.12 (1979), pp.489-501.

藤本洋平, 宮崎利行, 佐々木敏彦, デバイリングのフーリエ解析による鉄鋼材料の X 線応力測定, 材料, Vol.64, No.7 (2015), pp.567-572.

英崇夫, 藤原晴夫, 有向性加工層の X 線的応力測定における ψ スプリットと微視的残留応力について, 材料, Vol.31, No.342 (1982), pp.227-233.

JIS G 4801, ばね鋼鋼材, 日本規格協会 (2005), pp.2-14.

嘉村直哉, 宮崎利行, 佐々木敏彦, X 線回折環のフーリエ解析によるアルミニウム合金の応力測定, 非破壊検査, Vol.66, No.10 (2017), pp.492-497.

丸山光一, 宮崎利行, 佐々木敏彦, イメージングプレートを用い cosα 法に適した X 線応力測定装置の開発と検証, 材料, Vol.64, No.7 (2015), pp.560-566.

Miyazaki, T. and Sasaki, T., X-ray stress measurement with two-dimensional detector based on Fourier analysis, International Journal of Materials Research, Vol.105, No.9 (2014), pp.922-927.

Noyan, I. C. and Cohen, J. B., Residual Stress Measurement by Diffraction and Interpretation (1987), pp.69-72, Springer.

佐々木敏彦, 広瀬幸雄, 2 次元的 X 線検出器イメージングプレートを用いた全平面応力成分の単一入射 X 線応力測定, 材料, Vol.44, No.504 (1995a), pp.1138-1143.
佐々木敏彦、広瀬幸雄, イメージングプレートを用いた \(\alpha \) 基準法によるX線三軸応力測定, 日本材料学会, 第31回X線材料強度に関するシンポジウム講演論文集 (1995b), pp.20-25.

佐々木敏彦, 広瀬幸雄, イメージングプレートによる二次元検出回折像を用いたX線三軸応力解析, 日本機械学会論文集 A編, Vol.61, No.590 (1995c), pp.2288-2295.

佐々木敏彦, 広瀬幸雄, イメージングプレートを用いたX線的残留応力のコンピュータートモグラフィ, 日本機械学会論文集 A編, Vol.63, No.614 (1997), pp.2196-2204.

佐々木敏彦, 広瀬幸雄, cos\(\alpha \)法による中性子応力測定に関する基礎的研究, 日本機械学会論文集 A編, Vol.71, No.704 (2005), pp.670-676.

佐々木敏彦, 塩川俊一, イメージングプレートを用いた粗大結晶粒材料のX線マクロ応力測定, 日本機械学会論文集 A編, Vol.63, No.607 (1997), pp.533-541.

佐々木敏彦, 林政, 広瀬幸雄, イメージングプレートによる二次元検出回折像を用いたX線三軸応力解析, 日本機械学会論文集 A編, Vol.62, No.604 (1996), pp.2741-2749.

佐々木敏彦, Maruyama, Y., Ohba, H. and Ejiri, S., Two-dimensional imaging of Debye-Scherrer ring for tri-axial stress analysis of industrial materials, Journal of Instrumentation, Vol.9, No.7, C07006 (2014a).

佐々木敏彦, Miyazaki, T., Ito, H., Furukawa, T. and Mihara, T., X-ray residual stress analysis of Nickel base alloys, Advanced Materials Research, Vol.922 (2014b), pp. 274-279.

佐々木敏彦, Shin-ya, M., Mitsui, S., Nishimura, R., Yanagi, K., Miyoshi, T. and Arai, Y., X-ray tri-axial stress analysis system using two monolithic SOI pixel detectors, Nuclear Inst. and Methods in Physics Research, A, Vol.979 (2020), 164426.

佐々木敏彦, 高橋俊一, 佐々木勝成, 小林裕一, エリアディテクタ方式のX線三軸応力測定法の改良に関する研究, 日本機械学会論文集 A編, Vol.75, No.750 (2009), pp.219-227.

平修二, 田中啓介, 山崎利春, 細束X線応力測定の一方法とその疲労き裂伝ぱ問題への応用, 材料, Vol.27, No.294 (1978), pp.251-256.

田中啓介, X-ray measurement of triaxial residual stress on machined surfaces by cos\(\alpha \) method using a two-dimensional detector, Journal of Applied Crystallography, Vol.51 (2018), pp.1329-1338.

田中啓介, 機械加工面の3軸残留応力のcos\(\alpha \)法によるX線測定, 材料, Vol.67, No.7 (2018), pp.686-693.

田中啓介, 秋庭義明, 鈴木賢二, 残留応力のX線評価 (2006), pp.345-354, 講談社.

ばねの高強度・信頼性化技術研究委員会, ばねの高強度・信頼性化技術研究委員会報告, ばね論文集, No.56 (2011), pp.49-57.

若林三記夫, 中山守, 細束X線応力測定の一方法とその疲労き裂伝放問題への応用, 材料, Vol.43, No.6 (1977), pp.661-665.

吉岡靖夫, 大谷真一, イメージングプレートによる微細領域のX線応力測定, 非破壊検査, Vol.42, No.12 (1993), pp.669-673.

References

Dölle, H., The influence of multiaxial stress states, Stress gradients and elastic anisotropy on the evaluation of (residual) stress by X-rays, Journal of Applied Crystallography, No.12 (1979), pp.489-501.

Fujimoto, Y., Miyazaki, T. and Sasaki, T., X-ray stress measurement of ferritic steel using fourier analysis of debye-scherrer ring, Journal of the Society of Materials Science, Japan, Vol.64, No.7 (2015), pp.567-572 (in Japanese).

Hanabusa, T. and Fujiwara, H., Relation between \(\psi \)-splitting and microscopic residual shear stress in X-ray stress measurement on uni-directionally deformed layers, Journal of the Society of Materials Science, Japan, Vol.31, No.342 (1982), pp.227-233 (in Japanese).

JIS G 4801, Spring steels, Japanese Standards Association (2005), pp.2-14 (in Japanese).

Kamura, N., Miyazaki, T. and Sasaki, T., Stress measurement of Aluminum alloy using fourier analysis of X-ray diffraction rings, Journal of JSNDI, Vol.66, No.10 (2017), pp.492-497 (in Japanese).

Maruyama, Y., Miyazaki, T. and Sasaki, T., Development and validation of an X-ray stress measurement device using an image plate suitable for the cos\(\alpha \) method, Journal of the Society of materials Science, Japan, Vol.64, No.7 (2015), pp.560-566 (in Japanese).

Miyazaki, T. and Sasaki, T., X-ray stress measurement with two-dimensional detector based on Fourier analysis, International Journal of Materials Research, Vol.105, No.9 (2014), pp.922-927.

Miyazaki, T. and Sasaki, T., X-ray residual stress measurement of austenitic stainless steel based on Fourier analysis, Nuclear...
Technology, Vol.194 (2016), pp.111-116.
Noyan, I. C. and Cohen, J. B., Residual Stress Measurement by Diffraction and Interpretation (1987), pp.69-72, Springer.
Research Committee for Optimizing a Shot-Peening Process, Report of research committee for optimizing a shot-peening process, Transactions of JSSE, No.47 (2002), pp.43-61 (in Japanese).
Sakakibara, T., Ogata, N. and Sato, Y., Effect of chemical composition to ψ-splitting in 2θ-$\sin^2\psi$ diagram on residual stress measurement of shot peening material, Transactions of JSSE, No.50 (2005), pp.17-22 (in Japanese).
Sasaki, T., Tri-axial residual stress analysis of a railway rail using two-dimensional X-ray diffraction method, 11th International Conference on Contact Mechanics and wear of Rail/Wheel Systems (CM2018), Delft, The Netherlands, September (2018), pp.24-27.
Sasaki, T. and Hirose, Y., Single incidence X-ray stress measurement for all plane stress components using imaging plate of two-dimensional X-ray detector, Journal of the Society of Materials Science, Japan, Vol.44, No.504 (1995a), pp.1138-1143 (in Japanese).
Sasaki, T. and Hirose, Y., X-ray measurement of tri axial stress and stress gradient from diffraction pattern detected with imaging plate, The Society of Materials Science, Japan, Proceedings of the 31st symposium on X-ray studies on mechanical behavior of materials (1995b), pp.20-25 (in Japanese).
Sasaki, T. and Hirose, Y., X-ray tri-axial stress analysis using whole diffraction ring detected with imaging plate, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.61, No.590 (1995c), pp.2288-2295 (in Japanese).
Sasaki, T. and Hirose, Y., Application of computerized tomography to residual stress obtained by X-ray diffraction method using imaging plate, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.63, No.614 (1997), pp.2196-2204 (in Japanese).
Sasaki, T. and Hirose, Y., Study on application of the cosα method to neutron stress measurement, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.71, No.704 (2005), pp.670-676 (in Japanese).
Sasaki, T., Hirose, Y. and Yasukawa, S., X-ray stress measurement of Coarse-Grained polycrystalline materials by imaging plate method, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.63, No.607 (1997), pp.533-541 (in Japanese).
Sasaki, T., Lyn, Z. and Hirose, Y., X-ray measurement of microstresses using imaging plate and its application to ferritic and austenitic dual-phase stainless steel, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.62, No.604 (1996), pp.2741-2749 (in Japanese).
Sasaki, T., Maruyama, Y., Ohba, H. and Ejiri, S., Two-dimensional imaging of Debye-Scherrer ring for tri-axial stress analysis of industrial materials, Journal of Instrumentation, Vol.9, No.7, C07006 (2014a).
Sasaki, T., Miyazaki, T., Ito, H., Furukawa, T. and Mihara, T., X-ray residual stress analysis of Nickel base alloys, Advanced Materials Research, Vol.922 (2014b), pp.274-279.
Sasaki, T., Shin-ya, M., Mitsui, S., Nishimura, R., Yanagi, K., Miyoshi, T. and Arai, Y., X-ray tri-axial stress analysis system using two monolithic SOI pixel detectors, Nuclear Inst. and Methods in Physics Research, A, Vol.979 (2020), 164426.
Sasaki, T., Takahashi, S., Sasaki, K. and Kobayashi, Y., A Study on improvements in multiaxial stress analysis with area detector type diffraction method, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.75, No.750 (2009), pp.209-227 (in Japanese).
Taira, S., Tanaka, K. and Yamazaki, T., A method of X-ray microbeam measurement of local stress and its application to fatigue crack growth problems, Journal of the Society of materials Science, Japan, Vol.27, No.294 (2003), pp.251-256 (in Japanese).
Tanaka, K., X-ray measurement of triaxial residual stress on machined surfaces by cosα method using a two-dimensional detector, Journal of Applied Crystallography, Vol.51 (2018), pp.1329-1338.
Tanaka, K., X-ray measurement of tri-axial residual stress on machined surfaces by the cosα method, Journal of the Society of materials Science, Japan, Vol.67, No.7 (2018), pp.686-693 (in Japanese).
Tanaka, K., Suzuki, K. and Akiniwa, Y., Evaluation of residual stress by X-ray diffraction (2006), pp.345-354, Yokendo (in Japanese).
The Research Committee of the High Strength and Reliability for Spring, The research committee report of the high strength and reliability for spring, Transactions of JSSE, No.56 (2011), pp.49-57 (in Japanese).
Wakahayashi, M., Nakayama, M. and Nagata, A., Influence of grinding direction on residual strains measured by X-ray, The Japan Society for Precision Engineering, Vol.43, No.6 (1977), pp.661-667 (in Japanese).
Yoshioka, Y. and Ohya, S., X-ray measurement of stress in a local area by use of imaging plate, Journal of the Japanese
Society for Non-destructive Inspection, Vol.42, No.12 (1993), pp.669-673 (in Japanese).