ON THE MAXIMUM PRINCIPLE FOR THE RIESZ TRANSFORM

VLADIMIR EIDERMAN AND FEDOR NAZAROV

Abstract. Let \(\mu \) be a measure in \(\mathbb{R}^d \) with compact support and continuous density, and let
\[
R^s \mu(x) = \int \frac{y - x}{|y - x|^{s+1}} \, d\mu(y), \quad x, y \in \mathbb{R}^d, \quad 0 < s < d.
\]
We consider the following conjecture:
\[
\sup_{x \in \mathbb{R}^d} |R^s \mu(x)| \leq C \sup_{x \in \text{supp} \mu} |R^s \mu(x)|, \quad C = C(d, s).
\]
This relation was known for \(d - 1 \leq s < d \), and is still an open problem in the general case. We prove the maximum principle for \(0 < s < 1 \), and also for \(0 < s < d \) in the case of radial measure. Moreover, we show that this conjecture is incorrect for non-positive measures.

1. Introduction

Let \(\mu \) be a non-negative finite Borel measure with compact support in \(\mathbb{R}^d \), and let \(0 < s < d \). The truncated Riesz operator \(R^s_{\mu, \varepsilon} \) is defined by the equality
\[
R^s_{\mu, \varepsilon} f(x) = \int_{|y - x| > \varepsilon} \frac{y - x}{|y - x|^{s+1}} f(y) \, d\mu(y), \quad x, y \in \mathbb{R}^d, \quad f \in L^2(\mu), \quad \varepsilon > 0.
\]
For every \(\varepsilon > 0 \) the operator \(R^s_{\mu, \varepsilon} \) is bounded on \(L^2(\mu) \). By \(R^s_{\mu} \) we denote a linear operator on \(L^2(\mu) \) such that
\[
R^s_{\mu} f(x) = \int \frac{y - x}{|y - x|^{s+1}} f(y) \, d\mu(y),
\]
whenever the integral exists in the sense of the principal value. We say that \(R^s_{\mu} \) is bounded on \(L^2(\mu) \) if
\[
\|R^s_{\mu}\| := \sup_{\varepsilon > 0} \|R^s_{\mu, \varepsilon}\|_{L^2(\mu) \to L^2(\mu)} < \infty.
\]
In the case \(f \equiv 1 \) the function \(R^s_{\mu} 1(x) \) is said to be the \(s \)-Riesz transform (potential) of \(\mu \) and is denoted by \(R^s \mu(x) \). If \(\mu \) has continuous density with respect to the Lebesgue measure \(m_d \) in \(\mathbb{R}^d \), that is if \(d\mu(x) = \rho(x) \, dm_d(x) \) with \(\rho(x) \in C(\mathbb{R}^d) \), then \(R^s \mu(x) \) exists for every \(x \in \mathbb{R}^d \).

By \(C, c \), possibly with indexes, we denote various constants which may depend only on \(d \) and \(s \).

We consider the following well-known conjecture.

Conjecture 1.1. Let \(\mu \) be a nonnegative finite Borel measure with compact support and continuous density with respect to the Lebesgue measure in \(\mathbb{R}^d \). There is a constant \(C \) such that
\[
\sup_{x \in \mathbb{R}^d} |R^s \mu(x)| \leq C \sup_{x \in \text{supp} \mu} |R^s \mu(x)|. \tag{1.1}
\]
For \(s = d - 1 \) the proof is simple. Obviously,
\[
R^s \mu(x) = \nabla U^s_\mu(x), \tag{1.2}
\]
where
\[U^s_\mu(x) = \frac{1}{s-1} \int \frac{d\mu(y)}{|y-x|^{s-1}}, \quad s \neq 1, \quad U^1_\mu(x) = - \int \log|y-x| d\mu(y). \]

Thus each component of the vector function \(R^s_\mu(x), \ s = d - 1, \) is harmonic in \(\mathbb{R}^d \setminus \text{supp} \mu. \)

Applying the maximum principle for harmonic functions we get (1.1).

For \(d - 1 < s < d, \) the relation (1.1) was established in [2] under stronger assumption that \(\rho \in C^\infty(\mathbb{R}^d). \) In fact it was proved that (1.1) holds for each component of \(R^s_\mu \) with \(C = 1 \) as in the case \(s = d - 1. \) The proof is based on the formula which recovers a density \(\rho \) from \(U^s_\mu. \) But this method does not work for \(s < d - 1. \)

The problem under consideration has a very strong motivation and also is of independent interest. In [2] it is an important ingredient of the proof of the following theorem. By \(\mathcal{H}^s \) we denote the \(s \)-dimensional Hausdorff measure.

Theorem 1.2 ([2]). Let \(d - 1 < s < d, \) and let \(\mu \) be a positive finite Borel measure such that \(\mathcal{H}^s(\text{supp} \mu) < \infty. \) Then \(\| R^s_\mu \|_{L^\infty(\mu)} = \infty \) (equivalently, \(\| R^s_\mu \| = \infty). \)

If \(s \) is integer, the conclusion of Theorem 1.2 is incorrect. For \(0 < s < 1 \) Theorem 1.2 was proved by Prat [10] using different approach. The obstacle for extension of this result to all noninteger \(s \) between 1 and \(d - 1 \) is the lack of the maximum principle. The same issue concerns the quantitative version of Theorem 1.2 obtained by Jaye, Nazarov, and Volberg [3].

The maximum principle is important for other problems on the connection between geometric properties of a measure and boundedness of the operator \(R^s_\mu \) on \(L^2(\mu) \) – see for example [3], [5], [6], [7]. All these results are established for \(d - 1 < s < d \) or \(s = d - 1. \)

The problem of the lower estimate for \(\| R^s_\mu \| \) in terms of the Wolff energy (a far going development of Theorem 1.2) which is considered in [3], [5], was known for \(0 < s < 1. \) And the results in [6], [7] are \((d - 1) \)-dimensional analogs of classical facts known for \(s = 1 \) (in particular, [7] contains the proof of the analog of the famous Vitushkin conjecture in higher dimensions). For \(0 < s \leq 1, \) the proofs essentially use the Melnikov curvature techniques and do not require the maximum principle. But this tool is absent for \(s > 1. \)

At the same time the validity of the maximum principle itself remained open even for \(0 < s < 1. \) It is especially interesting because the analog of (1.1) does not hold for each component of \(R^s_\mu \) when \(0 < s < d - 1 \) unlike the case \(d - 1 \leq s < d \) – see Proposition 2.1 below.

We prove Conjecture 1.1 for \(0 < s < 1 \) in Section 2 (Theorem 2.3). The proof is completely different from the proof in the case \(d - 1 \leq s < d. \) In Section 3 we prove Conjecture 1.1 in the special case of radial density of \(\mu \) (that is when \(d\mu = h(|x|) \, dm_d(x) \)), but for all \(s \in (0, d). \) Section 4 contains an example showing that Conjecture 1.1 is incorrect for non-positive measures, even for radial measures with \(C^\infty \)-density (note that in [14, Conjecture 7.3] Conjecture 1.1 was formulated for all finite signed measures with compact support and \(C^\infty \)-density).

2. The case \(0 < s < 1 \)

We start with a statement showing that the maximum principle fails for every component of \(R^s_\mu \) if \(0 < s < d - 1. \)
Proposition 2.1. For any $d \geq 2$, $0 < s < d - 1$, and any $M > 0$, there is a positive measure μ in \mathbb{R}^d with C^∞-density such that

$$\sup_{x \in \mathbb{R}^d} |R^s_1 \mu(x)| > M \sup_{x \in \text{supp } \mu} |R^s_1 \mu(x)|,$$

where $R^s_1 \mu$ is the first component of $R^s \mu$.

Proof. Let $E = \{(x_1, \ldots, x_d) \in \mathbb{R}^d : x_1 = 0, x_2^2 + \cdots + x_d^2 \leq 1\}$, and let E_δ, $\delta > 0$, be a δ-neighborhood of E in \mathbb{R}^d. Let $\mu = \mu_\delta$ be a positive measure supported on E_δ with $\mu(E_\delta) = 1$ and with C^∞-density $\rho(x)$ such that $\rho(x) < 2/\text{vol}(E_\delta) \leq C_d \delta$. Then

$$|R^s_1 \mu(x')| > A_\delta,$$

where $x' = (1,0,\ldots,0)$, $0 < \delta < 1/2$.

On the other hand, for $x \in \text{supp } \mu$ integration by parts yields

$$|R^s_1 \mu(x)| < \int_{|y-x| < \delta} \frac{1}{|y-x|^s} \, d\mu(y) + \int_{|y-x| \geq \delta} \frac{\delta}{|y-x|^{s+1}} \, d\mu(y)$$

$$= \frac{\mu(B(x, \delta))}{\delta^s} + s \int_0^{\mu(B(x, r))} dr + \delta(s + 1) \int_\delta^\infty \frac{\mu(B(x, r))}{r^{s+2}} dr$$

$$< C \frac{C_d \delta^d}{\delta^s} + C \frac{s}{\delta} \int_0^{\delta} \frac{r^d}{r^{s+1}} dr + C \delta(s + 1) \int_\delta^2 \frac{r^{d-1}}{r^{s+2}} dr + C \delta.$$

Here by C we denote different constants depending only on d, and $B(x, r) := \{y \in \mathbb{R}^d : |y-x| < r\}$. We have

$$\delta \int_\delta^2 \frac{r^{d-1}}{r^{s+2}} dr = \begin{cases} \delta \ln \frac{2}{\delta}, & s = d - 2, \\ \frac{1}{d - s - 2}(2^{d-s-2} - \delta^{d-s-1}), & s \neq d - 2. \end{cases}$$

Thus, all terms in the right-hand side of the estimate for $|R^s_1 \mu(x)|$ tend to 0 as $\delta \to 0$, and we may choose δ and a corresponding measure μ satisfying (2.1). \qed

We need the following lemma. The notation $A \approx B$ means that $cA < B < CB$ with constants c, C which may depend only on d and s.

Lemma 2.2. Let μ be a non-negative measure in \mathbb{R}^d with continuous density and compact support. Let $0 < s < d - 1$. Then for every ball $B = B(x_0, r)$,

$$\left| \int_{\partial B} (R^s \mu \cdot \mathbf{n}) \, d\sigma \right| \approx r^{d-s-1} \mu(B) + r^d \int_r^\infty \frac{d\mu(B(x_0, t))}{ts^{s+1}},$$

where \mathbf{n} is the outer normal vector to B and σ is the surface measure on ∂B.

Proof. We will use the Ostrogradsky-Gauss Theorem and differentiation under the integral sign. To justify these operations and make an integrand sufficiently smooth, we approximate $K(x) = x/|x|^{s+1}$ by the smooth kernel K_ε in the following standard way. Let $\phi(t)$, $t \geq 0$, be a C^∞-function such that $\phi(t) = 0$ as $0 \leq t \leq 1$, $\phi(t) = 1$ as $t \geq 2$, and $0 \leq \phi'(t) \leq 2$, $t > 0$. Let $\phi_\varepsilon(t) := \phi(t/\varepsilon)$, $K_\varepsilon(x) := \phi_\varepsilon(|x|)K(x)$, and $\tilde{R}^s_\varepsilon \mu := K_\varepsilon * \mu$. We have

$$\int_{\partial B} (\tilde{R}^s_\varepsilon \mu \cdot \mathbf{n}) \, d\sigma = \int_B \nabla \cdot \tilde{R}^s_\varepsilon \mu(x) \, dm_d(x) = \int_B \left[\int_{\mathbb{R}^d} \nabla \cdot \phi_\varepsilon(|y-x|) \frac{y-x}{|y-x|^{s+1}} \, d\mu(y) \right] dm_d(x).$$

The inner integral is equal to

$$\int_{|y-x| \leq 2\varepsilon} \nabla \cdot \phi_\varepsilon(|y-x|) \frac{y-x}{|y-x|^{s+1}} \, d\mu(y) + \int_{|y-x| > 2\varepsilon} \nabla \cdot \frac{y-x}{|y-x|^{s+1}} \, d\mu(y) =: I_1(x) + I_2(x).$$
One can easily see that
\[
\left| \frac{\partial}{\partial x_i} \phi(x)(y) \right| \frac{y - x}{|y - x|^{s+1}} \leq C \left(\frac{1}{1 + |x|} + \frac{1}{1 + |y|} \right) < \frac{C}{|y - x|^{s+1}} , \quad |y - x| \leq 2 \varepsilon.
\]
Hence,
\[
|I_1(x)| \leq C \int_{|y-x| \leq 2 \varepsilon} \frac{1}{|y - x|^{s+1}} d\mu(y) < C \int_0^{2 \varepsilon} \frac{1}{t^{s+1}} d\mu(B(x,t)) \approx \frac{\mu(B(x,2 \varepsilon))}{(2 \varepsilon)^{s+1}} + \int_0^{2 \varepsilon} \frac{\mu(B(x,t))}{t^{s+2}} dt.
\]
Since \(\mu \) has a continuous density with respect to \(m_d \), we have \(\mu(B(x,t)) \leq A_{\mu,B} t^d \) as \(t \leq 2 \varepsilon < 1 \), \(x \in B \). Taking into account that \(s < d - 1 \), we obtain the relation \(\int_B I_1(x) \, dm_d(x) \to 0 \) as \(\varepsilon \to 0 \).

To estimate the integral of \(I_2(x) \) we use the equality \(\nabla \cdot \frac{x}{|x|^{s+1}} = \frac{d-s-1}{|x|^{s+1}} \). Thus,
\[
\left| \int_B I_2(x) \, dm_d(x) \right| = C \int_B \left[\int_{|y-x| > 2 \varepsilon} \frac{d\mu(y)}{|y - x|^{s+1}} \right] dm_d(x)
\]
\[
= C \left(\int_{B(x_0,r+2 \varepsilon)} \left[\int_{B \cap \{|y-x| > 2 \varepsilon\}} \frac{dm_d(x)}{|y - x|^{s+1}} \right] d\mu(y) \right.
\]
\[
+ \int_{\mathbb{R}^d \setminus B(x_0,r+2 \varepsilon)} \left[\int_B \frac{dm_d(x)}{|y - x|^{s+1}} \right] d\mu(y) \bigg) =: C(J_1 + J_2).
\]
Obviously,
\[
\int_B \frac{dm_d(x)}{|y - x|^{s+1}} \approx \left\{ \begin{array}{ll}
\int_0^r \frac{t^{d-1}}{t^{s+1}} dt & \approx r^{d-s-1} , |y - x_0| \leq r , \\
\int_r^{+\infty} \frac{r^d}{(|y-x_0|^{s+1}} & |y - x_0| > r .
\end{array} \right.
\]

In order to estimate \(J_1 \) we note that for sufficiently small \(\varepsilon \),
\[
\int_{B \cap \{|y-x| > 2 \varepsilon\}} \frac{dm_d(x)}{|y - x|^{s+1}} \approx \int_B \frac{dm_d(x)}{|y - x|^{s+1}} \approx r^{d-s-1} , \quad y \in B(x_0,r+2 \varepsilon).
\]
Hence, \(J_1 \approx r^{d-s-1} \mu(B(x_0,r+2 \varepsilon)) \). Moreover,
\[
J_2 \approx \int_{\mathbb{R}^d \setminus B(x_0,r+2 \varepsilon)} \frac{r^d}{|y - x_0|^{s+1}} d\mu(y) = r^d \int_{r+2 \varepsilon}^{+\infty} \frac{d\mu(B(x_0,t))}{t^{s+1}}.
\]
Passing to the limit as \(\varepsilon \to 0 \), we get (2.2) \(\Box \).

Now we are ready to prove our main result.

Theorem 2.3. Let \(\mu \) be a non-negative measure in \(\mathbb{R}^d \) with continuous density and compact support. Let \(0 < s < 1 \). Then (1.1) holds with a constant \(C \) depending only on \(d \) and \(s \).

Proof. Let us sketch the idea of proof. Let a measure \(\mu \) be such that \(\mu(B(y,t)) \leq C t^s, \quad y \in \mathbb{R}^d, \quad t > 0 \). For Lipschitz continuous compactly supported functions \(\varphi, \psi \), define the form \(\langle R^s(\psi \mu), \varphi \rangle \) by the equality
\[
\langle R^s(\psi \mu), \varphi \rangle = \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{y - x}{|y - x|^{s+1}} (\psi(y) \varphi(x) - \psi(x) \varphi(y)) \, d\mu(y) \, d\mu(x);
\]
the double integral exists since \(|\psi(y) \varphi(x) - \psi(x) \varphi(y)| \leq C_{\psi, \varphi} |x-y| \). If we assume in addition that \(\int \psi \, d\mu = 0 \), we may define \(\langle R^s(\psi \mu), \varphi \rangle \) for any (not necessarily compactly supported)
bounded Lipschitz continuous function φ on \mathbb{R}^d; here we follow [4]. Let $\text{supp } \psi \in B(0, R)$. For $|x| > 2R$ we have

$$\left| \int_{\mathbb{R}^d} \frac{y-x}{|y-x|^{s+1}} \psi(y) \, d\mu(y) \right| = \left| \int_{\mathbb{R}^d} \left[\frac{y-x}{|y-x|^{s+1}} + \frac{x}{|x|^{s+1}} \right] \psi(y) \, d\mu(y) \right| \leq \frac{C}{|x|^{s+1}} \int_{\mathbb{R}^d} |y\psi(y)| \, d\mu(y) = \frac{C_{\psi}}{|x|^{s+1}}.$$

Choose a Lipschitz continuous compactly supported function ξ which is identically 1 on $B(0, 2R)$. Then we may define the form $\langle R^s(\psi \mu), \varphi \rangle_\mu$ as

$$\langle R^s(\psi \mu), \varphi \rangle_\mu = \langle R^s(\psi \mu), \xi \varphi \rangle_\mu + \int_{\mathbb{R}^d} \left[\int_{\mathbb{R}^d} \frac{y-x}{|y-x|^{s+1}} \psi(y) \, d\mu(y) \right] (1 - \xi(x)) \varphi(x) \, d\mu(x).$$

The repeated integral is well defined because

$$\int_{|x| > 2R} \frac{d\mu(x)}{|x|^{s+1}} \leq C \int_{2R}^\infty \frac{\mu(B(0, t))}{t^{s+2}} \, dt \leq C \int_{2R}^\infty \frac{1}{t^2} \, dt.$$

Assuming that Theorem 2.3 is incorrect and using the Cotlar inequality we establish the existence of a positive measure ν such that ν has no point masses, the operator R_n^s is bounded on $L^2(\nu)$, and $\langle R^s(\psi \nu), 1 \rangle_\nu = 0$ for every Lipschitz continuous function ψ with $\int \psi \, d\mu = 0$. It means that ν is a reflectionless measure, that is a measure without point masses with the following properties: R_n^s is bounded on $L^2(\nu)$, and $\langle R^s(\psi \nu), 1 \rangle_\nu = 0$ for every Lipschitz continuous compactly supported function ψ such that $\int \psi \, d\mu = 0$. But according to the recent result by Prat and Tolsa [11] such measures do not exist for $0 < s < 1$. We remark that the proof of this result contains estimates of an analog of the Melnikov’s curvature of a measure. This is the obstacle to extent the result to $s \geq 1$. We now turn to the details.

Suppose that C satisfying (1.1) does not exists. Then for every $n \geq 1$ there is a positive measure μ_n such that

$$\sup_{x \in \mathbb{R}^d} |R^s \mu_n(x)| = 1, \quad \sup_{x \in \text{supp } \mu_n} |R^s \mu_n(x)| \leq \frac{1}{n}.$$

Let

$$\theta_\mu(x, r) := \frac{\mu(B(x, r))}{r^s}, \quad \theta_\mu := \sup_{x, r} \theta_\mu(x, r).$$

We prove that

$$0 < c < \theta_\mu < C. \quad (2.3)$$

The estimate from above is a direct consequence of Lemma 2.2. Indeed, for any ball $B(x, r)$ (2.2) implies the estimate

$$c_d r^{d-1} \geq \left| \int_{\partial B} (R^s \mu_n \cdot n) \, d\sigma \right| \geq C r^{d-s-1} \mu_n(B),$$

which implies the desired inequality.

The estimate from below follows immediately from a Cotlar-type inequality

$$\sup_{x \in \mathbb{R}^d} |R^s \mu_n(x)| \leq C \left[\sup_{x \in \text{supp } \mu_n} |R^s \mu_n(x)| + \theta_\mu \right]$$

(see [8, Theorem 7.1] for a more general result).
Let $B(x_n, r_n)$ be a ball such that $\theta_{\mu_n}(x_n, r_n) > c = c(s, d)$, and let $\nu_n(\cdot) = r_n^{-s}\mu_n(x_n + r_n\cdot)$. Then
\[
R_s\mu_n(x) = R_s\nu_n\left(\frac{x - x_n}{r_n}\right), \quad \theta_{\nu_n}(y, t) = \theta_{\mu_n}(r_ny + x_n, r_nt).
\]
In particular, $\nu_n(B(0, 1)) = \theta_{\mu_n}(x_n, r_n) > c$. Choosing a weakly converging subsequence of $\{\nu_n\}$, we obtain a positive measure ν. If we prove that
(a) $\nu(B(y, t)) \leq Ct^s$,
(b) $\langle R^s\nu, \psi \rangle_\nu = 0$ for every Lipschitz continuous compactly supported function ψ with $\int \psi d\nu = 0$,
(c) the operator R_s^ν is bounded on $L^2(\nu)$,
then ν is reflectionless, and we come to contradiction with Theorem 1.1 in [11] mentioned above. Thus, the proof would be completed.

The property (a) follows directly from (2.3). For weakly converging measures ν_n with $\theta_{\mu_n} < C$, we may apply Lemma 8.4 in [4] which yields (b). To establish (c) we use the inequality
\[
R_{s, \varepsilon}^* \mu(x) := \sup_{\varepsilon > 0} |R_{\mu, \varepsilon}^* 1(x)| \leq \|R_s^\nu\|_{L^\infty(m_\rho)} + C, \quad x \in \mathbb{R}^d, \quad C = C(s),
\]
for any positive Borel measure μ such that $\mu(B(x, r)) \leq r^s$, $x \in \mathbb{R}^d$, $r > 0$, – see [12, Lemma 2] or [13, p. 47], [1, Lemma 5.1] for a more general setting. Thus, $R_{\nu_n}^n(x) := R_{s, \varepsilon}^* \mu_n(x) \leq C$ for every $\varepsilon > 0$. Hence, $R_{s, \varepsilon}^* \mu_n(x) \leq C$ for $\varepsilon > 0$, $x \in \mathbb{R}^d$, and the non-homogeneous $T1$-theorem [9] implies the boundedness of $R_{s, \varepsilon}^* \nu_n$ on $L^2(\nu)$.

3. The case of radial density

Lemma 2.2 allows us to prove the maximum principle for all $s \in (0, d)$ in the special case of radial density.

Proposition 3.1. Let $d\mu(x) = h(|x|) \, dm_\rho(x)$, where $h(t)$ is a continuous function on $[0, \infty)$, and let $s \in (0, d - 1)$. Then (1.1) holds with a constant C depending only on d and s.

We remind that for $s \in [d - 1, d)$ Conjecture 1.1 is proved in [2] for any compactly supported measure with C^∞ density. Thus, for compactly supported radial measures with C^∞ density (1.1) holds for all $s \in (0, d)$.

Proof. Because μ is radial, by (2.2) we have
\[
c_{d}r^{d-1}|R_s^\mu(x)| = \left| \int_{\partial B(0, r)} (R_s^\mu \cdot \mathbf{n}) \, d\sigma \right|
\approx r^{d-s-1}\mu(B(0, r)) + r^d \int_r^\infty \frac{d\mu(B(0, t))}{ts^{s+1}}, \quad r = |x|.
\]
Thus,
\[
|R_s^\mu(x)| \approx \frac{\mu(B(0, r))}{r^s} + r \int_r^\infty \frac{d\mu(B(0, t))}{ts^{s+1}}.
\]
Fix $w \notin \text{supp} \mu$, and let $r = |w|$. If
\[
\frac{\mu(B(0, r))}{r^s} \geq r \int_r^\infty \frac{d\mu(B(0, t))}{ts^{s+1}},
\]
then there is \(r_1 \in (0, r) \) such that \(\{ y : |y| = r_1 \} \subset \text{supp } \mu \) and \(\mu(B(0, r)) = \mu(B(0, r_1)) \). Hence,

\[
|R^s \mu(w)| \approx \frac{\mu(B(0, r))}{r^s} < \frac{\mu(B(0, r_1))}{r_1^s} \leq C|R^s \mu(x_1)|, \quad |x_1| = r_1.
\]

If

\[
\frac{\mu(B(0, r))}{r^s} < r \int_r^\infty \frac{d\mu(B(0, t))}{t^{s+1}},
\]

then there is \(r_2 > r \) such that \(\{ y : |y| = r_2 \} \subset \text{supp } \mu \) and \(\mu(B(0, r)) = \mu(B(0, r_2)) \). Hence,

\[
\frac{\mu(B(0, r_2))}{r_2^s} < \frac{\mu(B(0, r))}{r^s} < r \int_{r_2}^\infty \frac{d\mu(B(0, t))}{t^{s+1}},
\]

and we have

\[
|R^s \mu(w)| \approx r \int_{r_2}^\infty \frac{d\mu(B(0, t))}{t^{s+1}} \leq C|R^s \mu(x_2)|, \quad |x_2| = r_2.
\]

\[
\Box
\]

4. Counterexample

Given \(\varepsilon > 0 \), we construct a signed measure \(\nu = \nu(\varepsilon) \) in \(\mathbb{R}^5 \) with the following properties:

(a) \(\nu \) is a radial signed measure with \(C^\infty \)-density;

(b) \(\text{supp } \nu \subset D_\varepsilon := \{ 1 - \varepsilon \leq |x| \leq 1 + \varepsilon \} \);

(c) \(|R^2 \nu(x)| < \varepsilon \) for \(x \in \text{supp } \nu \); \(|R^2 \nu(x)| > a > 0 \) for \(|x| = 2 \), where \(a \) is an absolute constant. Here \(R^2 \nu \) means \(R^s \nu \) with \(s = 2 \).

Let \(\Delta^2 := \Delta \circ \Delta \), and let

\[
u(x) = \begin{cases}
2/3, & |x| \leq 1, \\
\frac{1}{|x|} - \frac{1}{3|x|^3}, & |x| > 1.
\end{cases}
\]

Note that \(\Delta(\frac{1}{|x|}) = 0 \) and \(\Delta^2(\frac{1}{|x|}) = 0 \) in \(\mathbb{R}^5 \setminus \{0\} \). Hence, \(\Delta^2 u(x) = 0, |x| \neq 1 \). Moreover, \(\nabla u \) is continuous in \(\mathbb{R}^5 \) and \(\nabla u(x) = 0, |x| = 1 \).

For \(\delta \in (0, \varepsilon) \), let \(\varphi_\delta(x) \) be a \(C^\infty \)-function in \(\mathbb{R}^5 \) such that \(\varphi_\delta > 0 \), \(\text{supp } \varphi_\delta = \{ x \in \mathbb{R}^5 : |x| \leq \delta \} \), and \(\int \varphi_\delta(x) \, dm_5(x) = 1 \) (for example, a bell-like function on \([0, \delta] \)). Let \(U_\delta := u \ast \varphi_\delta \). Then \(\nabla \Delta U_\delta(x) = 0 \) as \(x \notin D_\delta \). Also, \(\Delta U_\delta(x) \to 0 \) as \(|x| \to \infty \). Hence, the function \(\Delta U_\delta \) can be represented in the form \(\Delta U_\delta = c(\frac{1}{|x|} \ast \Delta^2 U_\delta) \) (here and in the sequel by \(c \) we denote various absolute constants). Set \(d\nu_\delta = \Delta^2 U_\delta \, dm_5 \). Then \(\text{supp } \nu_\delta \subset D_\delta \), and (b) is satisfied. Since \(\Delta(\frac{1}{|x|}) = \frac{\delta}{|x|^2} \), we have \(\Delta U_\delta = c(\frac{1}{|x|} \ast \Delta^2 U_\delta) \), that is \(U_\delta = c(\frac{1}{|x|} \ast \Delta^2 U_\delta) + h \), where \(h \) is a harmonic function in \(\mathbb{R}^5 \). Since both \(U_\delta \) and \(\frac{1}{|x|} \ast \Delta^2 U_\delta \) tend to 0 as \(x \to \infty \), we have

\[
U_\delta = c\left(\frac{1}{|x|} \ast \Delta^2 U_\delta \right).
\]

Thus,

\[
R^2 \nu(x) = c \int \frac{y-x}{|y-x|^3} \, d\nu_\delta(y) = c \nabla U_\delta(x).
\]

Obviously, \(\nabla U_\delta = \nabla (u \ast \varphi_\delta) = (\nabla u) \ast \varphi_\delta \), and hence \(\max_{x \in D_\delta} |\nabla U_\delta(x)| \to 0 \) as \(\delta \to 0 \). On the other hand, for fixed \(x \) with \(|x| > 1 \) (say, \(|x| = 2 \)) we have \(\lim_{\delta \to 0} (\nabla u \ast \varphi_\delta) = |\nabla u(x)| > 0 \). Thus, (c) is satisfied if \(\delta \) is chosen sufficiently small.
Remark. It is well-known that the maximum principle (with a constant C) holds for potentials $\int K(|x-y|)d\mu(y)$ with non-negative kernels $K(t)$ decreasing on $(0, \infty)$, and non-negative finite Borel measures μ. Our arguments show that for non-positive measures the analog of (1.1) fails even for potentials with positive Riesz kernels. In fact we have proved that for every $\varepsilon > 0$, there exists a signed measure $\eta = \eta(\varepsilon)$ in \mathbb{R}^2 with C^∞-density and such that $\sup \eta \in D_\varepsilon := \{1-\varepsilon \leq |x| \leq 1+\varepsilon\}$, $|u_\eta(x)| < \varepsilon$ for $x \in \sup \eta$, but $|u_\eta((2,0,\ldots,0))| > b > 0$, where $u_\eta(x) := \int \frac{d\eta(y)}{|y-x|}$, and b is an absolute constant.

Indeed, for the first component $R^2_1 \nu$ of $R^2 \nu$ we have

$$R^2_1 \nu = c \frac{\partial}{\partial x_1} U_\delta = c \left(\frac{1}{|x|} \ast \frac{\partial}{\partial x_1} (\Delta^2 U_\delta) \right) = cu_\eta, \text{ where } d\eta = \frac{\partial}{\partial x_1} (\Delta^2 U_\delta) d\nu.$$

REFERENCES

[1] D. R. Adams, V. Ya. Eiderman, Singular operators with antisymmetric kernels, related capacities, and Wolff potentials, Internat. Math. Res. Notices 2012, first published online January 4, 2012, doi:10.1093/imrn/nrn258.

[2] V. Eiderman, F. Nazarov, A. Volberg, The s-Riesz transform of an s-dimensional measure in \mathbb{R}^2 is unbounded for $1 < s < 2$, J. Anal. Math. 122 (2014), 1–23; arXiv:1109.2260.

[3] B. Jaye, F. Nazarov, A. Volberg, The fractional Riesz transform and an exponential potential, Algebra i Analiz 24 (2012), no. 6, 77–123; reprinted in St. Petersburg Math. J. 24 (2013), no. 6, 903–938; arXiv:1204.2135.

[4] B. Jaye, F. Nazarov, Reflectionless measures for Calderón-Zygmund operators I: general theory, to appear in J. Anal. Math., arXiv:1409.8556.

[5] B. Jaye, F. Nazarov, M. C. Reguera, X. Tolsa, The Riesz transform of codimension smaller than one and the Wolff energy, arXiv:1602.02821.

[6] F. Nazarov, X. Tolsa, A. Volberg, On the uniform rectifiability of AD regular measures with bounded Riesz transform: the case of codimension 1, Acta Math. 213 (2014), no. 2, 237–321; arXiv:1212.5229, 88 p.

[7] F. Nazarov, X. Tolsa, A. Volberg, The Riesz transform, rectifiability, and removableness for Lipschitz harmonic functions, Publ. Mat. 58 (2014), no. 2, 517–532, arXiv:1212.5431, 15 p.

[8] F. Nazarov, S. Treil, and A. Volberg, Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 1998, no. 9, 463–487.

[9] F. Nazarov, S. Treil, and A. Volberg, The Tb-theorem on non-homogeneous spaces, Acta Math. 190 (2003), no. 2, 151–239.

[10] L. Prat, Potential theory of signed Riesz kernels: capacity and Hausdorff measure, Internat. Math. Res. Notices, 2004, no. 19, 937–981.

[11] L. Prat, X. Tolsa, Non-existence of reflectionless measures for the s-Riesz transform when $0 < s < 1$, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 2, 957–968.

[12] M. Vihtilä, The boundedness of Riesz s-transforms of measures in \mathbb{R}^n, Proc. Amer. Math. Soc. 124 (1996), no. 12, 3797–3804.

[13] A. Volberg, Calderón-Zygmund capacities and operators on nonhomogeneous spaces. CBMS Regional Conference Series in Mathematics, 100. AMS, Providence, RI, 2003.

[14] A. L. Volberg, V. Ya. Eiderman, Nonhomogeneous harmonic analysis: 16 years of development, Uspekhi Mat. Nauk 68 (2013), no. 6(414), 3–58 (Russian); translation in Russian Math. Surveys 68 (2013), no. 6, 973–1026.