Revealing interference by continuous variable discordant states

A. Meda, S. Olivares, I. P. Degiovanni, G. Brida, M. Genovese, and M. G. A. Paris

1INRIM, Strada delle Cacce 91, I-10135 Torino, Italy
2Dipartimento di Fisica, Università degli Studi di Milano, I-20133 Milano, Italy

In general, a pair of uncorrelated Gaussian states mixed in a beam splitter produces a correlated state at the output. However, when the inputs are identical Gaussian states the output state is equal to the input, and no correlations appear, as the interference had not taken place. On the other hand, since physical phenomena do have observable effects, and the beam splitter is there, a question arises on how to reveal the interference between the two beams. We prove theoretically and demonstrate experimentally that this is possible if at least one of the two beams is prepared in a discordant, i.e. Gaussian correlated, state with a third beam. We also apply the same technique to reveal the erasure of polarization information. Our experiments involve thermal states and the results show that Gaussian discordant states, even when they show a positive Glauber P-function, may be useful to achieve specific tasks.

Understanding the nature of correlations among quantum systems is one of the major tasks of current research. Quantum correlations, in fact, play a leading role in understanding the very foundations of quantum mechanics, and represent the basic resource for the development of quantum technologies. Different quantities and strategies to discriminate whether correlations have a quantum nature or not have been introduced, and it has also been pointed out that the criteria based on the informational point of view, such as the quantum discord, are somehow incompatible with the physical ones based on the Glauber-Sudarshan phase-space approach. A paradigmatic example in quantum optics is given by a thermal state divided at a beam splitter (BS). This state, which is characterized by Gaussian Wigner functions, is a classical one according to the Glauber approach, however, the bipartite state emerging from the BS displays non-zero Gaussian discord and, thus, from the informational point of view it contains a non-vanishing amount of quantum correlations. It is also worth noting that, for Gaussian states, the only bipartite states with zero Gaussian discord are the factorized ones and that there are evidences that the Gaussian discord could be the ultimate quantum discord for Gaussian states. In general, if a factorized state $\rho_{12} = \rho_1 \otimes \rho_2$ undergoes a unitary interaction described by the operator U_{12}, then the evolved state $\tilde{\rho}_{12} = U_{12} \rho_{12} U_{12}^\dagger$ may be correlated. The total amount of correlations can be quantified by the mutual information:

$$I[\tilde{\rho}_{12}] = S[\tilde{\rho}_1] + S[\tilde{\rho}_2] - S[\tilde{\rho}_{12}] = \Delta S_1 + \Delta S_2,$$

where $\rho_k = \text{Tr}_h[\tilde{\rho}_{12}]$, $h \neq k$, $S[\tilde{\rho}_k] = -\text{Tr}[\tilde{\rho}_k \ln \tilde{\rho}_k]$ is the von Neumann entropy and $\Delta S_k = S[\tilde{\rho}_k] - S[\rho_k]$. From the above equation we can see the rise of correlation as due to an increase of entropy between the input and output states $\tilde{\rho}_1$ and $\tilde{\rho}_2$, respectively. It is clear that if $\tilde{\rho}_k = \rho_k$, then $I[\tilde{\rho}_{12}] = 0$ (provided that the input is a factorized and thus uncorrelated state). For Gaussian states, this happens when the inputs have the same covariance matrix (CM) and U_{12} corresponds to a bilinear, energy-conserving interaction described by $H_1 \propto a^\dagger b + a b^\dagger$, where a and b are bosonic annihilation operators, $[a, a^\dagger] = 1$ and $[b, b^\dagger] = 1$.

When the initial state ρ_{12} and the evolved one $\tilde{\rho}_{12}$ are exited in the same factorized state, they cannot be discriminated and no correlations appear, as the interference of the two beams had not taken place. On the other hand, since physical phenomena do have observable effects, and the BS is there, a question arises on
how to reveal the interference between the two beams. In this letter we investigate the dynamics of correlations in this kind of systems and demonstrate, both theoretically and experimentally, that revealing interference is possible by adding an ancillary mode 3 correlated with one of the two beams, say beam 2. More explicitly, it is sufficient that the bipartite state \(\varrho_{23} \) has non zero Gaussian discord to reveal the interference between modes 1 and 2 even when the local states \(\varrho_2 = \text{Tr}_3[\varrho_{23}] \equiv \varrho_1 \) are identical and the interaction at the BS is not creating any correlations between them. Let us consider two generic zero-amplitude Gaussian states \(\varrho_k = S(r_k)N_k S^\dagger(r_k) \), where \(N_k = \sum_{n=0}^{\infty} (N_k)^n/(1 + N_k)^{n+1}|n\rangle\langle n| \) is a thermal equilibrium state with \(N_k \) thermal photons and \(S(r_k) = \exp\{\frac{1}{2}r_k[(a_k^\dagger)^2 - a_k^2] \} \) is the squeezing operator, \(a_k \) being mode operators, \(k = 1, 2 \). The \(2 \times 2 \) CM of the state \(\varrho_k \) can be written as \(\sigma_k = \sigma(N_{\text{tot}}, k, \delta_k) \), where \(\sigma(N, \beta) = \text{Diag}\{f_+(N, \beta), f_-(N, \beta)\}, \ f_\pm(N, \beta) = \frac{1}{2} + N \pm \sqrt{\beta N[1 + N(2 - \beta)]} \) and we introduced the total number of photons \(N_{\text{tot}} = \text{Tr}[a_k^\dagger a_k \varrho_k] \) and the squeezing fraction \(\beta \), with \(N_k = (1 - \beta)N_{\text{tot}, k} \). We have assumed \(r_k > 0 \) without loss of generality. With this notation, \(\beta = 0 \) and \(\beta = 1 \) correspond to the thermal and the squeezed vacuum state, respectively, while \(\sigma(0, 0) \equiv \sigma_0 \) is the CM of the vacuum state \(\varrho_0 = \langle 0 | \langle 0 | \). Under the action of a BS with transmissivity \(\tau \), the initial \(4 \times 4 \) CM \(\Sigma_0 = \sigma_1 \otimes \sigma_2 \) of the two-mode state \(\varrho_1 \otimes \varrho_2 \) transforms as \(\Sigma_0 \rightarrow \Sigma^{(\text{out})} = \left(\begin{array}{cc} \Sigma_1 \Sigma_12 & \Sigma_1 \Sigma_22 \\ \Sigma_1 \Sigma_21 & \Sigma_2 \Sigma_22 \end{array} \right) \), where \(\Sigma_1 = \tau \sigma_1 + (1 - \tau)\sigma_2, \Sigma_2 = \tau \sigma_2 + (1 - \tau)\sigma_1 \) and \(\Sigma_12 = \tau(1 - \tau)(\sigma_2 - \sigma_1) \). Note that \(\Sigma_12 \neq 0 \) denotes the presence of correlation between the outgoing modes. Notice that rewriting \(\Sigma_12 = \tau(1 - \tau)[(\sigma_2 - \sigma_0) + (\sigma_0 - \sigma_1)] \), we can identify two different contributions: the one, \(\propto (\sigma_2 - \sigma_1) \), which is equal to that obtained by mixing \(\varrho_1 \) with the vacuum, i.e., \(\varrho_2 \equiv \varrho_0 \); similarly, the other, \(\propto (\sigma_2 - \sigma_0) \), corresponds to that obtained by mixing \(\varrho_2 \) with \(\varrho_1 \equiv \varrho_0 \). On the other hand, interference cannot be seen as the simple sum of two contributions and this will be exploited later on in this letter in order to describe the results of our second experiment. As follows from the above analysis, if the input modes are prepared in the same initial state, i.e., \(\sigma_1 = \sigma_2 \), then the output beams are left in an uncorrelated, factorized state with \(\Sigma_0 \equiv \Sigma^{(\text{out})} \) and \(\Sigma_{12} = 0 \). In this case the two above-mentioned contributions cancel each others and the interaction leaves the system unchanged. In order to reveal interference, we correlate mode 2 with a third auxiliary mode 3, i.e., we prepare \(\varrho_{23} \neq \varrho_2 \otimes \varrho_3 \) such that \(\varrho_3 = \text{Tr}_3[\varrho_{23}] \equiv \varrho_1 \). Modes 1 and 2 are still left unchanged and uncorrelated after the interference, but now, because of the interaction, part of the correlations shared between modes 2 and 3 are now shared between modes 1 and 3. This monogamy effect \([19] \) can be seen by looking at the evolved CM of the whole state of the three modes. The \(6 \times 6 \) CM of the initial state \(\varrho_{123} = \varrho_1 \otimes \varrho_{23} \) reads: \(\Sigma_{123} = \sigma_1 \oplus \left(\begin{array}{ccc} \sigma_2 & \delta_{23} & \delta_{23} \\ \delta_{23}^\dagger & \sigma_3 & \delta_{23} \\ \delta_{23}^\dagger & \delta_{23} & \sigma_3 \end{array} \right) \) where \(\delta_{23} \) is the \(2 \times 2 \) single-mode CM of mode \(k = 1, 2, 3 \), \(\sigma_1 = \sigma_2 = \sigma(N, \beta), N \) being the total number of photons per mode. The block \(\delta_{23} \neq 0 \) contains the correlations between modes 2 and 3, which show nonzero Gaussian A- and B-discord \([20] \). After mixing mode 1 and 2 at the BS we have: \(\Sigma_{123} \rightarrow \Sigma_{123}^{(\text{out})} = \left(\begin{array}{cc} \sigma(N, \beta) & 0 \\ 0 & \sigma(N, \beta) \sqrt{1 - \tau} \delta_{23} \end{array} \right) \times \left(\begin{array}{cc} 0 & \sqrt{1 - \tau} \delta_{23} \\ \sqrt{1 - \tau} \delta_{23} & \sigma_3 \end{array} \right) \) . (1) The comparison between input and output CMs shows that while modes 1 and 2 are (locally) left unchanged and uncorrelated, both of them are now correlated with mode 3. Furthermore, the degree of correlations between the modes 2 and 3 is decreased \((\delta_{23} \rightarrow \sqrt{\delta_{23}}) \) for the benefit of the birth of correlations between the previously uncorrelated modes 1 and 3 \((0 \rightarrow \sqrt{1 - \tau} \delta_{23}) \). It is worth noting that the birth (reduction) of correlation between modes 1 and 3 (modes 2 and 3) is not merely due to the transmission (reflection) of beam 2, but it is due to its interference at the BS: beam 2 evolves in a two-mode correlated state, whose modes are thus correlated with mode 3. For the sake of clarity, we addressed only single-mode beams, but the same results hold also in the presence of multimode Gaussian beams since the phenomenon is essentially due to the tensor product nature of the multimode state, and to the pairwise nature of the interaction at the BS. In the experiment, we exploit correlations among three spatial multimode pseudo-thermal beams. We produce two independent unpolarized beams with thermal statistics addressing 1 ns laser pulses at 532 nm on two independent rotating ground glasses R1 and R2, with inhomogeneities of approximately 1 \(\mu \)m of size. The two speckled beams are collimated with two lenses \((L_1 \text{ and } L_2) \) of \(f = 1.5 \text{ m focal length put at a distance } f \text{ from the disks}. \) Beam 1 is directly sent to a balanced BS while the second is further divided into beams 2 and 3 (Fig. 1b). Each beam \(k = 1, 2, 3 \), is then sent to the corresponding detector \(D_k \), which is a portion of a CCD sensor. The speckled beams are imaged by means of a lens of focal length \(f_1 = 25 \text{ cm} \) on the array of pixels. Due to the presence of the lenses \(L_1 \text{ and } L_2 \), each speckle on the CCD array corresponds to a spatial mode of the pseudo-thermal beam. For each beam \(k \) we select an area \(A_k \) collecting \(M \) spatial modes and evaluate the intensity \(I_{jk}^{(k)} = \sum_{m=1}^{M} (a_{m,k}^\dagger a_{m,k}) \) for each frame \(j \) of the CCD where \(a_{m,k} \) is the field operator of the \(m \)-th mode impinging on the area \(k \). The correlation between the beams \(h \) and \(k \) is estimated by using the second order correlation coefficient \(c_{h,k} = \frac{\langle (I_{h}^j I_{k}^{(h)})_r - \langle I_{h}^j \rangle_r \langle I_{k}^{(h)} \rangle_r \Delta_n(I_{h}^j) \Delta_n(I_{k}^{(h)})_r \rangle_{\text{frame}}}{\sum_{j=1}^{N_{\text{frame}}} F_{j}} \) is the average over \(N_{\text{frame}} \) frames and \(\Delta_n(I_{h}^j) = \langle I_{h}^{j} \rangle^2 - \langle I_{h}^{j} \rangle^2 \). It is worth noting that \(c_{h,k} \) is independent on the number of modes \(M \), provided that all spatial modes of each beam
three lines in both panels of Fig. 3 correspond to three different values of the transmissivity of the beam splitter creating discord between modes 2 and 3. As expected from the form of the CM in Eq. (1), increasing the transmissivity of the beam splitter increases the output correlations between modes 2 and 3 at the expense of correlations between modes 1 and 3.

In order to further clarify the role of the ancillary mode 3 we now consider a different scenario, where the two input beams do not interact at the BS. As depicted in Fig. 1, this is achieved by two half wave plates $\lambda_{in,1}$ and $\lambda_{in,2}$, which set horizontal polarization (H) for beam 1, i.e., $\theta_{H}^{(V)}$, and vertical polarization (V) for beam 2, $\theta_{V}^{(V)}$. We assume that mode 2 and 3 have the same polarization. Due to the different polarizations, modes 1 and 2 no longer interfere at the BS; rather, they both interact with a vacuum mode with the same polarization entering the other port of the beam, thus giving rise to two couples of collinear, superimposed correlated beams one with V polarization, the other with H polarization. Overall, we have four modes, and the two states at the output are distinguishable. If we put two polarization filters after the BS, we can select beams with a fixed polarization $\alpha = H, V$, which are Gaussian states with CM given by

\[
(\text{we set } \tau = 1/2): \Sigma_{\text{out}}^{(H)} = \frac{1}{2} \left(\begin{array}{cc} \sigma_{1}^{(H)} + \sigma_{0} & \sigma_{0} - \sigma_{1}^{(H)} \\ \sigma_{0} - \sigma_{1}^{(H)} & \sigma_{0} + \sigma_{1}^{(H)} \end{array} \right)
\]

and

\[
(\text{we set } \tau = 1/2): \Sigma_{\text{out}}^{(V)} = \frac{1}{2} \left(\begin{array}{cc} \sigma_{2}^{(V)} + \sigma_{0} & \sigma_{2}^{(V)} - \sigma_{0} \\ \sigma_{2}^{(V)} - \sigma_{0} & \sigma_{2}^{(V)} + \sigma_{0} \end{array} \right),
\]

where $\sigma_{k}^{(\alpha)}$ are the same as σ_{k}, $k = 1, 2$, but now we emphasize the polarization dependence $\alpha = H, V$. Thanks to the polarization, we can clearly distinguish the correlations coming from the off diagonal $\alpha = (\sigma_{0} - \sigma_{1}^{(H)})$ and $\alpha = (\sigma_{2}^{(V)} - \sigma_{0})$. In this experiment, the physical action that we want to reveal is the erasure of the information about the polarization. This is done as in the quantum erasure protocol for discrete variables [22]; we insert two polarization rotators set at 45° after the BS and on the path of mode 3. After filtering, the
resulting three H-polarized (V-polarized) modes have the same CM as in Eq. (1) for a suitable choice of the input total energy and squeezing fraction. We measured the second order correlation coefficient between the two beams before and after the BS without acting on their polarizations, obtaining $c_{1,2}^{(H,V,in)} = -0.01$ and $c_{1,2}^{(H,V,out)} = 0.97$, respectively. In this case, because of the orthogonal polarizations, the beams do not interfere each other, and each input is divided into two correlated parties. After the interaction, all the beams are projected to the 45° polarization basis by means of three half wave plates $\lambda_{out,k}$ and three polarizers P_k oriented in the H direction, $k = 1, 2, 3$ (see Fig. 1). Again, we measure correlation $c_{1,2}^{(out)} ([@45^\circ])$, $c_{1,3}^{(out)} ([@45^\circ])$, and $c_{2,3}^{(out)} ([@45^\circ])$ between the corresponding beams. We then perform the same measurement projecting the modes onto the vertical basis removing the half wave-plates $[c_{1,2}^{(out)} (@V)]$, $c_{1,3}^{(out)} (@V)$ and $c_{2,3}^{(out)} (@V)$]. In fact, the

\[
\begin{align*}
c_{1,2}^{(out)} (@45^\circ) &= 0.10\ [0.25,0.46] \\
c_{1,3}^{(out)} (@45^\circ) &= 0.54\ [0.27,0.80] \\
c_{2,3}^{(out)} (@45^\circ) &= 0.53\ [0.24,0.81]
\end{align*}
\[
\begin{align*}
c_{1,2}^{(out)} (@V) &= 0.97\ [0.87,1.00] \\
c_{1,3}^{(out)} (@V) &= -0.01\ [0.38,0.36] \\
c_{2,3}^{(out)} (@V) &= 0.97\ [0.84,1.00]
\end{align*}
\]

Table 2. Measured correlations between the beams h, k after the BS with polarizers $[@45^\circ]$ and $[@V]$. Without polarization selection we have $c_{1,2}^{(H,V,in)} = -0.01$ and $c_{1,2}^{(H,V,out)} = 0.97$, see text for details.

erasure of information about polarization affects correlations between beam 1 and 2 (see Table 2). The correlations $c_{1,2}^{(H,V,out)} = 0.97$ reduce to $c_{1,2}^{(out)} (@45^\circ) = 0.10$ when the information about initial polarization is lost. Analogously, beams 2 and 3, which show high correlations in V basis, $c_{2,3}^{(out)} (@V) = 0.97$, lose correlation in the 45° basis $c_{2,3}^{(out)} (@45^\circ) = 0.53$, while the uncorrelated beam 1 and 3 gains correlation. Also in this case, the use of discordant states for beams 2 and 3 allows to reveal the physical action, here the erasure, performed on beams 1 and 2, despite the fact that this cannot be done by inspecting the involved beams only.

In summary, while a pair of uncorrelated Gaussian states mixed in a beam splitter produce, in general, a correlated bipartite state, two equal Gaussian states do not. No correlations appear at the output, and the interference cannot be detected looking at the two beams only. We have proved theoretically and experimentally that this task may be pursued using an ancillary beam, prepared in a discordant state with one of the two in-ferring beams, thus confirming that discord can be consumed to encode information that can only be accessed by coherent quantum interactions [23]. Our experiment involves thermal states and the results show that Gaussian discordant states, even when they show a positive Glauber P-function, may be useful to achieve specific tasks.

Acknowledgments—This research has received funding from the EU FP7 under grant agreement 308803 (BRISQ2), MIQC, Fondazione SanPaolo and MIUR (FIRB “LiCHIS” - RBFR10YQ3H, Progetto Premiale “Oltre i limiti classici di misura”).

References

[1] K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012).
[2] D. Girolami, G. Adesso, Phys. Rev. Lett. 108, 150403 (2012); Int. J. Quant. Inf. 9, 1773 (2011).
[3] A. Streltsov, S. M. Giampaolo, W. Roga, D. Bruss, F. Illuminati, Phys. Rev. A 87, 012313 (2013).
[4] A. Ferraro, M. Paris, Phys. Rev. Lett. 108, 260403 (2012).
[5] W. Vogel, Phys. Rev. Lett. 100, 013605 (2008); C. Gehrke, J. Sperling, W. Vogel, Phys. Rev. A 86, 052118 (2012).
[6] H. Ollivier, W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2002); W. H. Zurek, Phys. Rev. A 67, 012320 (2003).
[7] L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001).
[8] P. Giorda, M. Paris, Phys. Rev. Lett. 105, 020503 (2010).
[9] G. Adesso, A. Datta, Phys. Rev. Lett. 105, 030501 (2010).
[10] M. D. Lang, C. M. Caves, A. Shaji, Int. J. Quant. Inf. 9, 1553 (2011).
[11] R. Blandino, M. G. Genoni, J. Etesse, M. Barbieri, M. G. A. Paris, P. Grangier, R. Tualle-Brouri, Phys. Rev. Lett. 109, 180402 (2012).
[12] L. S. Madsen, A. Berni, M. Lassen, U. L. Andersen, Phys. Rev. Lett. 109, 030402 (2012).
[13] V. Madhok, A. Datta, Int. J. Mod. Phys. B 27, 1245041, 1245041 (2013).
[14] R. Glauber, Phys. Rev. 131, 2766 (1963).
[15] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
[16] S. Rahimi-Keshari, C. M. Caves, T. C. Ralph, Phys. Rev. A 87, 012119 (2013).
[17] P. Giorda, M. AllegrA, M. G. A. Paris, Phys. Rev. A 86, 052328 (2012).
[18] Since we are interested in correlations, we may safely assume that both the input states have zero first moments without any loss of generality.
[19] A. Streltsov, G. Adesso, M. Piani, D. Bruss, Phys. Rev. Lett. 109, 050503 (2012).
[20] S. Olivares, M. G. A. Paris, Int. J. Mod. Phys. B 27, 1245024 (2013).
[21] S. Olivares, M. G. A. Paris, Metrologia 49, L14 (2012).
[22] P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, Phys. Rev. A 45, 7729 (1992).
[23] M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T. C. Ralph, V. Vedral, P. Koy Lam, Nature Phys. 8 671 (2012).