Registro Brasileiro da Cardiologia Intervencionista durante a pandemia da COVID-19 (RBCI-COVID19)

ABSTRACT – Background: The outbreak of coronavirus disease 2019 (COVID-19), a disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was characterized as a pandemic by the World Health Organization, with high fatality rate. The number of registered cases skyrocketed, as well as the number of deaths. Half of the patients with COVID-19 have chronic conditions, especially cardiovascular and cerebrovascular diseases, followed by diabetes mellitus, increasing their morbidity and mortality. Several studies have demonstrated this correlation, however a concomitant SARS-CoV-2 infection may trigger new clinical manifestations, such as myocarditis, arrhythmias, left ventricular dysfunction, systemic embolism and myocardial infarction, and this need to be understood within the context of each country’s reality. Delays in diagnosis and treatment of these patients could result in a poorer prognosis. Methods: This will be a prospective, multicenter registry including approximately 2,000 patients in 40 cath labs in Brazil. We will include male and female patients, aged over 18 years, admitted to interventional cardiology labs to perform a cardiovascular procedure during the COVID-19 pandemic. The primary outcomes will be death of any cause, acute myocardial infarction and stroke, and need for reintervention. As secondary outcomes, we will observe delays in completing the procedures due to the COVID-19 pandemic, and symptom-to-door, door-to-balloon, and door-to-table times. The availability and proper use of standard personal protective equipment will also be analyzed. Conclusion: The analysis of the outcomes of this multicenter registry will allow for a better understanding of the scenario of cardiovascular diseases.
Introdução

Em 11 de março de 2020, a Organização Mundial da Saúde (OMS) caracterizou o surto da doença pelo coronavírus 2019 (COVID-19), provocado pelo coronavírus da síndrome respiratória aguda grave (SARS-CoV-2), como uma pandemia. Após 66 dias desse anúncio, os casos confirmados relatados já somavam mais de 5 milhões em 188 países, com aproximadamente 332 mil mortes, a maioria nos Estados Unidos, Reino Unido, Itália, França, Espanha e Brasil. Até a presente data, 21 de maio de 2020, o Brasil já registrou perto de 310 mil casos e 20 mil mortes, com letalidade estimada de 6,66%. Esses números vêm aumentando vertiginosamente desde o início da pandemia.

Metade dos pacientes com COVID-19 apresenta condições crônicas, em especial doenças cardiovasculares (DCV) e cerebrovasculares, seguidas por diabetes melito, elevando sua morbimortalidade. Uma metanálise de seis estudos conduzidos na China, incluindo 1.527 pacientes com COVID-19, avaliou a prevalência de DCV e evidenciou as seguintes proporções: 17,1% de hipertensão, 16,4% de doença cardíaca e cerebrovascular e 9,7% de diabetes. Outro estudo com 44.672 casos confirmados de COVID-19 na China demonstrou comorbidades preexistentes, como DCV (10,5%), diabetes (7,3%) e hipertensão (6%), que foram relacionadas à letalidade de 2,3%. Esses registros alertam para a importância das DCV no contexto da COVID-19, porém é importante mencionar que esses estudos não foram ajustados por sexo e idade, e muitos não tinham todos os dados completos, podendo apresentar viés de seleção e aferição.

Esse último aspecto torna-se mais importante pela observação de que os homens têm maior suscetibilidade para a COVID-19, e há maior taxa de mortalidade nos pacientes idosos. Modelos murinos e amostras de autópsia humana demonstraram que o SARS-CoV-2 pode regular a vias da enzima conversora da angiotensina 2 (ECA2) do miocárdio e do pulmão, mediando inflamação do miocárdio, edema pulmonar e insuficiência respiratória aguda, o que pode ser uma explicação para o envolvimento cardiovascular nos pacientes graves. Dados experimentais mostraram que o 17-beta-estradiol aumenta a expressão e a atividade da ECA2 no tecido adiposo e no rim. Camundongos machos hipertensos têm maior expressão de ECA2 do miocárdio do que as fêmeas, e seus níveis diminuíram após orquiectomia. Por outro lado, os estudos de necropsia minimamente invasiva reportaram presença do SARS-CoV-2 nos testículos. Essa é uma das hipóteses para a diferença de letalidade entre os sexos observada nos estudos.

A injúria miocárdica ocorre em 8% a 12% dos casos de COVID-19. Lesão miocárdica direta, efeito da inflamação sistêmica, incompatibilidade de oferta, demanda miocárdica de oxigênio, evento coronariano agudo, estado de hipercoagulabilidade e disfunção endotelial parecem ser os mecanismos mais comuns responsáveis pela lesão cardíaca e foram associados com elevação dos níveis de biomarcadores, como troponina I, peptídeo natriurético do tipo B (BNP) e dímero D. Ao tratar pacientes com COVID-19, os cardiologistas devem estar atentos às novas manifestações clínicas, como miocardite, arritmias, disfunção ventricular esquerda e embolia sistêmica, que podem estar relacionadas àquela condição, bem como a ocorrência de infarto do miocardio precipitado pela concomitância da infecção pelo SARS-CoV-2.

A pandemia por COVID-19 poderia afetar também os sistemas de atendimento dos portadores de DCV agudas, como o infarto agudo do miocardio (IAM). A definição da abordagem do IAM no paciente com COVID-19 deve levar em consideração os recursos locais disponíveis, como serviços de hemodinâmica estruturados, leitos de uniidade coronariana e/ou unidade de terapia intensiva (UTI) e adequação do ambiente às medidas de proteção da COVID-19. A Sociedade Brasileira de Hemodinâmica e Cardiologia Intervencionista (SBHCI) recomenda postergar a realização de procedimentos eletivos em pacientes infectados ou suspeitos; limitar a realização de procedimentos hemodinâmicos a situações de emergência cardiovasculares (nos casos sem critérios de instabilidade, postergar até o momento em que se encontre em uma fase não infectante); nos serviços com mais de uma sala de hemodinâmica, recomenda-se reservar uma delas para procedimentos em pacientes infectados.

No IAM com supradesnivelamento do segmento ST (IAMCST) com estabilidade hemodinâmica, a realização de fibrinólise em pacientes positivos para COVID-19 pode ser uma alternativa em epidemias respiratórias, sendo necessário categorizar o risco desses pacientes. É importante avaliar o tempo de permanência nos hospitais decorrente da espera por novos procedimentos, para obtenção da revascularização completa. As decisões devem ser individualizadas, levando em consideração o risco de exposição à COVID-19 versus o risco de atraso no diagnóstico ou na terapia. Além disso, é importante o diagnóstico diferencial do IAM por instabilização de placas com o IAM tipo II ou a miocardite.

Os desafios impostos durante a pandemia são grandes, não só para abordar os pacientes com DCV que precisam continuar seu tratamento e podem ou não estar acometidos pela COVID-19, bem como para o tratamento das manifestações cardiovasculares complexas do SARS-CoV-2 exemplificadas pela miocardite, pelo síndrome de Takotsubo e pela injúria miocárdica, que podem mimetizar o IAMCST. Aumentam-se, ainda, nessa equação, o retardo dos pacientes para chegar ao hospital em busca de tratamento com receio de contaminação, o aumento do número de IAM e de lesão obstrutiva e a descrição de pior prognóstico nos casos de infarto associado com a ocorrência da COVID-19.
Estudo reportando a experiência de Campania, na Itália, durante 60 dias, a partir de janeiro de 2020, demonstrou que houve redução da taxa de incidência de intervenção coronariana percutânea (ICP) para IAM de 178 para 120 casos/100 mil residentes, durante o período de 4 semanas antes e após o surto de COVID-19 (taxa de incidência de 0,68), ocorrendo redução para IAM tanto como com sem supradesenvolvimento do segmento ST (de 80 a 54 e 98 a 66 casos de ICP/100 mil residentes por ano, respectivamente). A diminuição foi mais evidente em mulheres e nos pacientes mais idosos.28 Dados de pacientes chineses durante a COVID-19 demonstraram tempos medianos numericamente mais longos em todos os componentes quando comparados com dados históricos do ano anterior (início dos sintomas ao primeiro contato médico, tempo porta para o dispositivo e chegada ao laboratório de cateterismo). A maior diferença verificada foi entre o início dos sintomas e o primeiro contato médico.27

Novos estudos prospectivos precisam ser implementados para avaliar o atendimento dos pacientes portadores de cardiopatia durante a pandemia do COVID-19. O objetivo do Registro Brasileiro da Cardiologia Intervencionista durante a pandemia do COVID-19 (RBCI-COVID19) será reportar o atendimento dos pacientes portadores de cardiopatia durante a pandemia do COVID-19 que necessitarem de atendimento nos laboratórios de Cardiologia Intervencionista dos centros hospitalares envolvidos no registro, durante o período de 4 meses, ou enquanto durar o estado de pandemia da COVID-19 (Figura 1). Pretende-se, ainda, registrar as variáveis clínicas, laboratoriais e de imagem, bem como os desfechos na internação e aqueles decorrentes dos procedimentos realizados nos laboratórios de cardiologia intervencionista. Busca-se também observar se as diferenças entre os sexos e as faixas etárias serão replicadas nos casos reportados no Brasil.

Figura 1. Logomarca do Registro Brasileiro da Cardiologia Intervencionista durante a pandemia do COVID-19.

MÉTODOS

Seleção de pacientes e critérios de inclusão e exclusão

Registro prospectivo, multicêntrico, que incluirá aproximadamente 2.000 pacientes em 40 centros de hemodinâmica no Brasil. Serão incluídos pacientes de ambos os sexos, com idade superior a 18 anos, admitidos nos laboratórios de cardiologia intervencionista para realização de procedimento cardiovascular. Serão excluídos os pacientes, ou responsáveis legais, que se recusarem a assinar o Termo de Consentimento Livre e Esclarecido (https://www.mulheresemacao.online/rbci-covid19); os procedimentos de intervenção neurológicos e vasculares peri-féricos e os implantes de dispositivos para estimulação cardíaca artificial.

Centros participantes

Os centros participantes foram incluídos por demanda espontânea após divulgação do registro e convite realizado por meio de mídias sociais, contatos telefônicos e WhatsApp feitos a laboratórios de hemodinâmica de todas as regiões do Brasil. Os primeiros centros incluídos e seus responsáveis estão listados na tabela 1.

Tabela 1. Centros participantes do estudo e investigador principal

Investigador principal	Instituição
Alysson Moça Fadiga/Marcos Hertz	Clínica Angiopar, São José dos Pinhais (PR)
Ana Tereza Azeredo Basto	Hospital das Clínicas da Universidade Federal de Goiás, Goiânia (GO)
André Francisco de Paula Antônio	Hospital Universitário Onofre Lopes, Natal (RN)
Antonio Augusto Farias	Hospital Prontocor, Rio de Janeiro (RJ)
Cesar de Oliveira Lopes Dusilek	Hospital do Rocio, Campo Largo (PR)
Cristiano Guedes/Thais C. V. Tamanato	Hospital Ana Nery, Salvador (BA)
Cyro Rodrigues	Hospital de Cardiologia São Vicente de Paulo, Jundiaí (SP)
Dunilu Makud	Hospital das Clínicas Luiza de Pinho Melo, Mogi das Cruzes (SP)
Eder Vololini	Hospital Nossa Senhora Aparecida, Unmuarama (PR)
Edgard Quintella	Instituto Estadual de Cardiologia Aloysio de Castro/Instituto do Coração de Petrópolis, Rio de Janeiro/Petrópolis (RJ)
Énio Eduardo Guirieri	Hospital PilarHospital/Hospital de Clínicas da Universidade Federal do Paraná, Curitiba (PR)
Esmeralci Ferreira	Hospital Universitário Pedro Ernesto, Rio de Janeiro (RJ)
Felipe Bertot César	Hospital Santa Rita de Cássia, Vitória (ES)
Fernanda Marinho Mangione/José Armando Mangione	A Beneficência Portuguesa de São Paulo, São Paulo (SP)
Flávio Azevedo/Rodrigo Cantarella	Hospital Metropolitano Sul Don Helder Câmera, Cabo de Santo Agostinho (PE)
Frederico Toledo Campo D’Orto	Hospital do Coração de Poços de Caldas, Poços de Caldas (MG)
Gabriella de Araújo Cunha Lima Nobrega	Hospital Alberto Uzquiza Wanderley, João Pessoa (PB)
Giordana Zeferino Mariano	Hospital do São João Batista, Curitiba (SC)
Gustavo Ishammar Souto Maia	Instituto Neuro Cardiovascular de Campina Grande, Campina Grande (PB)
Luciano de Moura Santos	Hospital Santa Lúcia, Brasília (DF)
Luiz Fernando Alves Campos	Hospital do Coração, Natal (RN)
Luiz Kohn	Hospital Universitário Severino Sombra, Vassouras (RJ)
Marcel Rogers Ravanelli	Hospital Universitário Evangélico Mackenzie, Curitiba (PR)
Marcelo Harada	SOS Cardin, Florianópolis (SC)
Maricio José da Costa Montenegro	Hospital Casa São Bernardo, Rio de Janeiro (RJ)
Maria Cristina Meira Ferreira	Hospital Federal dos Servidores do Estado, Rio de Janeiro (RJ)
Mayara Viana	Hospital São Rafael, Imperatriz (MA)
Rafael de Souza Henud	Hospital CEMERU, Rio de Janeiro (RJ)
Renato Serpa	Hospital Santa Casa de Misericórdia de Vitoria, Vitoria (ES)
Ricardo Barbosa	Fundação Santa Casa de Misericórdia de Franca, Franca (SP)
Ricardo Monteiro Lourenço	Hospital Angélica Carn/Hospital Pilar, Campina Grande do Sul/Curitiba (PB)
Rodrigo Costa Guerreiro	EMOE (Hospital do Coração de Nova Iguaçu), Rio de Janeiro (RJ)
Stefan Costa Silveira	Hospital das Nações, Curitiba (PR)
Wangles Jaté Cavalheiro	Hospital Prometer, Natal (RN)
Wellington Guimarães	Hospital Antônio Prudente, Natal (RN)
Procedimentos operacionais e desfechos
Os procedimentos a serem desenvolvidos durante o estudo estão demonstrados na figura 2. Os desfechos primários serão a ocorrência de morte por qualquer causa, IAM e acidente vascular cerebral (AVC) e necessidade de reintervenções. Como desfechos secundários, serão observados retardo na realização dos procedimentos decorrentes da pandemia pela COVID-19 e tempos sintomas-porta, porta-balão e porta-mesa, exemplificados na figura 3. Também serão analisados disponibilidade e uso adequado dos Equipamentos de Proteção Individual (EPIs) padronizados.28

Figura 2. Procedimentos a serem realizados no laboratório de hemodinâmica e 30 dias após o procedimento.

Coleta de dados
As informações sobre o estudo serão apresentadas a possíveis participantes da pesquisa (ou seu representante legalmente autorizado) e/ou testemunha imparcial, e perguntas serão feitas para determinar possível elegibilidade. Os procedimentos de triagem começarão somente após o TCLE ser apresentado, discutido e assinado. O estudo contará com um número telefônico para contato direto com um dos coordenadores do estudo, assim como mensagens pelo WhatsApp, que serão respondidas de imediato, sobre elegibilidade dos pacientes e obtenção dos dados, bem como sua inserção no banco de dados.

Os dados serão coletados a partir de fichas eletrônicas padronizadas, via internet, no e-CRFm (https://covid.rbcionline) e inseridos pelas equipes dos centros, devidamente treinados pelo centro coordenador. Todos os pacientes incluídos no estudo terão seus dados clínicos e informações pertinentes ao estudo coletados por pessoal qualificadas e treinadas relacionados a confidencialidade das informações e ao armazenamento seguro. Os voluntários que, porventura, desistem de sua participação durante o seguimento do estudo terão os seus dados clínicos coletados e armazenados até a data do declínio de sua participação. Os investigadores das unidades hospitalares manterão a confidencialidade dos dados e dos meios de acesso à plataforma eletrônica, protegendo a privacidade e a confidencialidade das informações, de acordo com os órgãos regulatórios nacionais. O preenchimento do e-CRF deverá ser realizado logo após a inclusão do paciente, em acordo com o documento fonte. Todos os membros da equipe devem estar formalmente autorizados pelo investigador principal do centro de pesquisa e adequadamente treinados em sua função dentro do estudo. No tratamento informatizado dos dados realizado pelo proponente, após a revisão dos e-CRFs, podem-se gerar pedidos adicionais de informações, devido a discrepâncias. Estes devem ser confirmados ou modificados pelo investigador dentro de até 3 dias úteis.

Análise estatística
Para a análise dos dados, será utilizado o Software R29 (R. CORE TEAM, 2019). Os testes inicialmente empregados serão Kolmogorov-Smirnov, Mann-Whitney, Kruskal-Wallis e qui-quadrado. Os resultados serão apresentados como frequência, média ± desvio padrão, mediana e intervalo interquartil, sendo significativos quando p<0,05.

Serão ainda elaborados modelos paramétricos, com regressões estimadas com elastic net para a escolha das covariables relevantes e, em seguida, reestimadas, mantendo-se as variáveis significantes, e não paramétricos, com árvores de regresseão e classificação (CART), com as variáveis resultantes dos modelos paramétricos.30

Aspecto éticos
O estudo será realizado em conformidade com as normas brasileiras e internacionais descritas na resolução brasileira 466/12 e no documento do Ministério da Saúde Guidelines
for Good Clinical Practice ou Guia de Boas Práticas Clínicas do ICH E6(R2) (http://portal.anvisa.gov.br/). O protocolo do estudo, o TCLE e os demais documentos pertinentes a esta pesquisa foram alocados pelo Comitê de Ética em Pesquisa do centro coordenador, enviados para avaliação pela Comissão Nacional de Ética em Pesquisa (CONEP) e aprovados com CAAE 30564720.0.0000.5292. Todos os pacientes selecionados para participação no estudo assinarão o TCLE antes que qualquer registro pertinente ao estudo seja realizado. Para aqueles em estado grave de saúde, serão utilizados assentimentos junto aos representantes legais. Os participantes da pesquisa ou seus representantes legais serão informados de que sua participação é voluntária e que eles poderão retirar seu consentimento de participação a qualquer momento. Eles serão informados de que, por se tratar de estudo observacional de mundo real, a escolha em participar ou não do registro não afetará o cuidado que eles receberão para o tratamento de sua doença.

Confidencialidade
Nenhum dado de identificação dos pacientes será divulgado. O sistema de captação de dados identificará os pacientes e centros por um número. Os dados de registros médicos impressos serão mantidos em sigilo por cada centro participante, armazenados em armários/gavetas trancados. A confidencialidade dos pacientes em qualquer relatório e momento do estudo será preservada.

Temporalidade da coleta de dados
O registro iniciou a coleta de dados em maio de 2020 e perdurará por 120 dias, ou enquanto durar a pandemia pela COVID-19.

Gerenciamento da qualidade dos dados
Vários procedimentos garantirão a qualidade dos dados, incluindo: todos os pesquisadores participarão de sessão de treinamento antes do início do estudo, para garantir consistência da coleta dos dados; será disponibilizado telefone de contato 7 dias por semana, por 24 horas por dia, para os centros participantes sanarem dúvidas com o centro coordenador, armazenados em armários/gavetas trancados. A confidencialidade dos pacientes em qualquer relatório e momento do estudo será preservada.

Normas para publicação
Os resultados serão publicados tendo como autores o Comitê Diretivo do Estudo, em nome dos investigadores, os quais serão citados no final do artigo. Serão considerados até três integrantes (a critério do investigador principal) por equipe de pesquisa que participou de cada fase do estudo. Solicitações de inclusão de outros nomes serão avaliadas individualmente pelo Comitê de Publicação. Poderá o investigador, após a primeira publicação do estudo, solicitar a disponibilidade dos dados para uso em publicações, mediante apresentação prévia de protocolo de projeto de pesquisa aprovado pelo CEP e pelo comitê diretivo e executivo do registro.

Orçamento do estudo
Os procedimentos realizados durante a pesquisa não serão reembolsados, por se tratar de um estudo observacional para verificar o impacto da pandemia de COVID-19 em pacientes portadores de cardiopatias que foram atendidos nos laboratórios de hemodinâmicas brasileiros.

Conflito de interesse
Os coordenadores do estudo não têm conflitos de interesse para este registro.

ORGANIZAÇÃO
Comitê Operacional Diretivo: Viviana Guzzo Lemke, Maria Sanali Moura Paiva, Giordana Zeferino Mariano, Gláucia Maria Moraes de Oliveira e Ricardo Alves da Costa.

REFERÊNCIAS
1. World Health Organization (WHO). WHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 March 2020 [Internet]. Geneva: WHO; 2020 [cited 2020 Mar 25]. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19--11-march-2020
2. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533-534. https://doi.org/10.1016/S1473-3099(20)30120-1
3. Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020;133(9):1025-31. https://doi.org/10.1097/CM9.000000000000744
4. Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr. 2020 May-Jun;14(3):247-250. https://doi.org/10.1016/j.dsx.2020.03.013
5. Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109(5):531-8. https://doi.org/10.1016/j.ccr.2020.03.013
6. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the chinese center for disease control and prevention. JAMA. 2020 Feb 24. https://doi.org/10.1001/jama.2020.2648
7. Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin
Invest. 2009;39(7):618-25. https://doi.org/10.1111/j.1365-2362.2009.02153.x

8. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653-9. https://doi.org/10.1056/NEJMsr2005760

9. La Vignera S, Cannarella R, Condorelli RA, Torre F, Aversa A, Calogero AE. Sex-specific SARS-CoV-2 mortality: among hormone-modulated ACE2 expression, risk of venous thromboembolism and hypovitaminosis D. Int J Mol Sci. 2020;21(8):2948. https://doi.org/10.3390/ijms21082948

10. Dalpiaz PL, Lamas AZ, Caliman IF, Ribeiro RF Jr, Abreu GR, Moyaes MR, et al. Sex hormones promote opposite effects on ACE and ACE2 activity, hypertrophy and cardiac contractility in spontaneously hypertensive rats. PLoS One. 2015;10(5):e0127515. https://doi.org/10.1371/journal.pone.0127515. Erratum in: PLoS One. 2015;10(7):e0133225.

11. Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-19 infection. Clin Chem Lab Med. 2020 Mar 3. https://doi.org/10.1515/cclin-2020-0198

12. Lippi G, Navie CJ, Sanchis-Gomar F. Cardiac troponin in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog Cardiovasc Dis. 2020 Mar 10. https://doi.org/10.1016/j.pcd.2020.03.001

13. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus Infection in Wuhan, China [published online ahead of print, 2020 Feb 7]. JAMA. 2020;323(11):1061-9. https://doi.org/10.1001/jama.2020.1585

14. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. https://doi.org/10.1016/S0140-6736(20)30566-3

15. Oliveira GM, Pinto FJ. COVID-19: A matter close to the heart. Int J Cardiovasc Sci. 2020. https://doi.org/10.36600/ijcvs.20200057

16. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-8. https://doi.org/10.1007/s00134-020-05991-x. Erratum in: Intensive Care Med. 2020 Apr 6.

17. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 Apr;8(4):420-2. https://doi.org/10.1016/S2213-2600(20)30076-X. Erratum in: Lancet Respir Med. 2020 Feb 25.

18. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020 Mar;63(3):364-374. https://doi.org/10.1007/s11427-020-1643-8

19. Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020 Mar 27. doi: https://doi.org/10.1001/jamacardio.2020.1096

20. Clerkin KJ, Fried JA, Raikhelkar J, Sayer G, Griffin JM, Masoumi A, et al. COVID-19 and cardiovascular disease. Circulation. 2020;141(20):1648-55. https://doi.org/10.1161/CIRCULATIONAHA.120.046941

21. Welt FG, Shah PB, Aronow HD, Bortnick AE, Henry TD, Sherwood MW, Young MN, Davidson LJ, Kadavath S, Mahmud E, Kirtane AJ; American College of Cardiology’s Interventional Council and the Society for Cardiovascular Angiography and Interventions. Catheterization laboratory considerations during the coronavirus (COVID-19) pandemic: from the ACC’s Interventional Council and SCAI. J Am Coll Cardiol. 2020;75(18):2372-5. https://doi.org/10.1016/j.jacc.2020.03.021

22. Sociedade Brasileira de Hemodinâmica e Cardiologia Intervencionista (SBHCI). Comunicado n° 04/2020. Posicionamento da Sociedade Brasileira de Hemodinâmica e Cardiologia Intervencionista (SBHCI) sobre a pandemia COVID-19 [Internet]. São Paulo: SBHCI; 2020 [citado 2020 Mai 25]. Disponível em: https://www.sbhci.org/post/comunicado-04-2020

23. Mahmud E, Dauerman HL, Welt FG, Messenger JC, Rao SV, Grines C, et al. Management of acute myocardial infarction during the COVID-19 pandemic. J Am Coll Cardiol. 2020 Apr 20. https://doi.org/10.1016/j.jacc.2020.04.039

24. Rosenbaum L. The Untold Toll - The Pandemic’s Effects on Patients without Covid-19. N Engl J Med. 2020 Apr 17. https://doi.org/10.1056/NEJMms2009984

25. Bangalore S, Sharma A, Slotwiner A, Yatskar L, Harari R, Shah B, et al. ST-Segment elevation in patients with Covid-19 - A Case Series. N Engl J Med. 2020 Apr 17:NEJMc2009020. https://doi.org/10.1056/NEJMmc2009020

26. Bonow RO, Fonarow GC, O’Gara PT, Yancy CW. Association of Coronavirus Disease 2019 (COVID-19) With Myocardial Injury and Mortality. JAMA Cardiol. 2020 Mar 27. https://doi.org/10.1001/jamacardio.2020.1105

27. Piccolo R, Bruzzese D, Mauro C, Aloia A, Baldi C, Boccalatte M, et al. Population trends in rates of percutaneous coronary revascularization for acute coronary syndromes associated with the COVID-19 outbreak. Circulation. 2020 Apr 30. https://doi.org/10.1161/CIRCULATIONAHA.120.047457

28. Tam CF, Cheung KS, Lam S, Wong A, Yung A, Sze M, et al. Impact of coronavirus disease 2019 (COVID-19) outbreak on ST-segment-elevation myocardial infarction care in Hong Kong, China. Circ Cardiovasc Qual Outcomes. 2020;13(4):e006631. https://doi.org/10.1161/CIRCOUTCOMES.120.006631

29. Mariano GZ, Lemke VG, Paiva MS, Oliveira GM. COVID-19 and safety in the cath lab: where we are and where we are headed. International Journal of Cardiovascular Sciences [Internet]. 2020 [cited 2020 May 27];33(3):388-94. Available from: http://publicacoes.cardiol.br/portal/ijcs/ingles/2020/v3303/pdf/i3303020.pdf

30. R Core Team. The R project for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2019 [cited 2020 Mai 25]. Available from: https://www.R-project.org/

31. Hothorn T, Zeileis A. partykit: A Modular Toolkit for Recursive Partitioning in R. J Mach Learn Res [Internet]. 2015 [cited 2020 Jun 4];16(118):3905-909. Available from: https://www.jmlr.org/papers/volume16/hothorn15a/hothorn15a.pdf