Pharmacological Manipulation of DNA Methylation in Adult Female Rats Normalizes Behavioral Consequences of Early-Life Maltreatment

Samantha M. Keller, Tiffany S. Doherty and Tania L. Roth*

Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States

Exposure to adversity early in development alters brain and behavioral trajectories. Data continue to accumulate that epigenetic mechanisms are a mediating factor between early-life adversity and adult behavioral phenotypes. Previous work from our laboratory has shown that female Long-Evans rats exposed to maltreatment during infancy display both aberrant forced swim behavior and patterns of brain DNA methylation in adulthood. Therefore, we examined the possibility of rescuing the aberrant forced swim behavior in maltreated-adult females by administering an epigenome-modifying drug (zebularine) at a dose previously shown to normalize DNA methylation. We found that zebularine normalized behavior in the forced swim test in maltreated females such that they performed at the levels of controls (females that had been exposed to only nurturing care during infancy). These data help link DNA methylation to an adult phenotype in our maltreatment model, and more broadly provide additional evidence that non-targeted epigenetic manipulations can change behavior associated with early-life adversity.

Keywords: epigenetics, DNMT, DNA methylation, development, maltreatment, early-life stress, females, behavioral outcomes

INTRODUCTION

The period after birth is a sensitive period during which environmental experiences are capable of altering the trajectory of brain development (Greenough et al., 1987; Rice and Barone, 2000; Knudsen, 2004). Exposure to adversity during this time has lifelong implications for the brain and, consequently, behavior (Fride et al., 1985; Heim et al., 1997; Brunson et al., 2001; McEwen, 2003; Lupien et al., 2009; Roth et al., 2009; Blaze and Roth, 2013, 2017; Blaze et al., 2013; Doherty et al., 2017). Caregiver maltreatment is a form of early-life adversity incurred by 10%–15% of the population in the United States (Gilbert et al., 2009; Lutz and Turecki, 2014). Individuals with a history of maltreatment are more likely to experience cognitive deficits such as problems with learning and memory (Rogosch et al., 1995; Pears and Fisher, 2005; De Bellis et al., 2013). Further, exposure to maltreatment confers susceptibility to developing psychiatric disorders including major depression, schizophrenia, and posttraumatic stress disorder (Beers and De Bellis, 2002; Cicchetti and Toth, 2005; Schenkel et al., 2005; Shea et al., 2005; Heim and Binder, 2012; Provencal and Binder, 2015).

Our laboratory implements a rodent model of caregiver maltreatment (Blaze and Roth, 2013, 2017; Blaze et al., 2013, 2015; Doherty et al., 2016, 2017) to better understand the
consequences of early adversity on brain and behavioral development. Previous work from our lab has shown that female rodents exposed to brief bouts of daily caregiver maltreatment exhibit as adults mild deficits in novel object recognition (NOR) and an increased latency to become immobile in the forced swim test (Doherty et al., 2017). Interestingly, when animals were tested on these behavioral assays in adolescence, no differences were observed in behavioral performance between animals with a history of maltreatment relative to animals with a history of nurturing care in infancy (Doherty et al., 2017).

One way through which these early-life experiences might induce long-term consequences on behavior is via epigenetic alterations (Weaver et al., 2004; Champagne et al., 2006; Murgatroyd et al., 2009; Roth et al., 2009; Heim and Binder, 2012; Roth, 2012; Kundakovic et al., 2013; Lewis and Olive, 2014; McGowan and Roth, 2015; Silberman et al., 2016; Blaze et al., 2017). Epigenetic alterations, which are changes to chromatin that are capable of influencing gene expression without altering the underlying genomic sequence, include DNA methylation and posttranslational histone modifications (Attwood et al., 2002; Kouzarides, 2007; Li et al., 2007). Our lab has uncovered a number of epigenetic alterations throughout the adult brain of female subjects with a history of caregiver maltreatment, including increased DNA methylation of the brain-derived neurotrophic factor (Bdnf) gene in the hippocampus and prefrontal cortex coinciding with reduced methylation in the amygdala (Roth et al., 2009, 2014; Blaze and Roth, 2013, 2017; Blaze et al., 2013, 2015; Doherty et al., 2016). These same brain regions are recruited for behaviors known to be aberrant as a result of maltreatment (Duncan et al., 1986, 1993; Drevets et al., 1997; Blair, 2008; Zierhut et al., 2010; Antunes and Biala, 2012; Warburton and Brown, 2015), suggesting that these neurobiological changes could be involved in maltreatment-induced phenotypes. However, the extent to which epigenetic modifications resulting from exposure to maltreatment contribute to the altered behavioral trajectories in these animals is unknown. The goal of this study was to determine the ability of some phenotypic outcomes associated with caregiver maltreatment to be normalized by altering adult DNA methylation. Further, a positive finding would lend support to our hypothesis that the epigenetic changes resulting from early-life maltreatment are linked to phenotypic outcomes.

Manipulating the adult epigenome has the capacity to rescue outcomes of stress in rodents, with some supporting evidence for this in humans. For example, previous work from our lab demonstrated the capability of administration of zebularine (at the same dose used in this study), a drug known to modify DNA methylation, to normalize Bdnf DNA methylation and gene expression in the prefrontal cortex of animals with a history of maltreatment (Roth et al., 2009). Further, in clinical studies individuals benefitting from pharmaceutical or therapeutic interventions demonstrate epigenetic changes in peripheral tissues (Lopez et al., 2013; Perroud et al., 2013). The current study aimed to expand upon previous findings from our lab and explore the implications of manipulating DNA methylation on behavioral outcomes of maltreatment in adult subjects. Because the phenotypes under investigation were found in female, but not male, subjects exposed to caregiver maltreatment (Doherty et al., 2017), only female subjects were utilized in the current study.

MATERIALS AND METHODS

Subjects and Infant Manipulations

All animal procedures were performed with approval from the University of Delaware Institutional Animal Care and Use committee following NIH established guidelines. Long-Evans rats (Blue Spruce outbred strain, obtained from Envigo) were bred in-house. Animals were given *ad libitum* access to food (Lab Diet 5P00, Prolab RMH 3000) and water, maintained on a 12-h light/dark cycle, and housed with Beta Chip heat-treated laboratory bedding. Multiparous dams (between the ages of 90 days and 1 year) were used for generating experimental litters and as stimulus dams. Fourteen total experimental litters were used in the study, derived from 10 different dams. The same breeder male (between the ages of 90 days and 1 year) and dam were only bred together one time so that each experimental litter had a different mother and father combination to promote genetic diversity in our experimental sample. Day of parturition was deemed postnatal day (PN) 0. On PN1, litters were culled to 12 pups (6 males and 6 females) when possible.

The scarcity-adversity model of low nesting resources was used as previously described (Roth et al., 2009; Doherty et al., 2016, 2017; Blaze and Roth, 2017; Walker et al., 2017). These manipulations were performed for 30 min daily from PN1–7. Briefly, we employed a within litter design whereby 1/3 of the experimental litter was exposed to maltreatment outside of the home cage (in a separate room from the vivarium), 1/3 of the same litter was cross-fostered to a nurturing dam outside of the home cage (in a separate room from the vivarium), and the remaining 1/3 of the litter remained in the home cage with the biological dam (in the vivarium). Pups from the cross-foster and maltreatment conditions were returned to the home cage with the biological dam immediately after the 30-min manipulations. The pups of the stimulus dams were placed into an incubator while the dams were being used for the experiment. Several (2–3 each) maltreatment and cross-foster dams were used for each weeklong experiment so that the same dam was not used for each day of the experiment. All dams (providing experimental litters or serving as maltreatment or cross-foster dams) were matched in postpartum age and diet, as it has been demonstrated that pups cannot distinguish between dams fed the same diet (Leon, 1975). The time of day the manipulations were conducted varied so that this would be an unpredictable stressor for dams and pups in the maltreatment condition. However, manipulations were always conducted during the light cycle from 7 AM to 7 PM.

For the maltreatment condition, the dam was given limited nesting resources (100 ml of Beta Chip bedding scattered on
Stereotaxic Surgery

Between PN70–80, stereotaxic surgery was performed. Anesthesia was induced using 5% isoflurane in oxygen. Following induction of anesthesia, animals were administered 2 mL of sterile saline and 0.03 mg/kg buprenorphine. Animals were subsequently placed into a stereotaxic frame and anesthesia was maintained using 2%–3% isoflurane in oxygen. A stainless steel guide cannula (22 gauge, 8 mm length, Plastics One Inc., Roanoke, VA, USA) was implanted into the left lateral ventricle (bregma, 1.5 mm posterior, 2.0 mm lateral, and 3.0 mm ventral relative to bregma). At the time of surgery, cannula placement was verified using gravitational saline let-down as has been done in other reports (Asok et al., 2010; Castagné et al., 2011; Doherty et al., 2017) and briefly described below. A timeline of experimental procedures can be seen in Figure 1. Testing was conducted in a room with white noise under red light. A camera placed on the ceiling above the behavioral apparatuses and Any-maze software (Stoelting Co., Wood Dale, IL, USA) were used to record all behavioral procedures. After behavioral testing, a subset of rats were sacrificed and their brains were harvested for slicing.

Drug Administration

After 1 day of recovery from stereotaxic surgery, intracerebroventricular (ICV) infusion of either zebularine or vehicle began as has been previously described (Roth et al., 2009). Zebularine, which is a cytidine analog, incorporates into DNA and prevents DNA methyltransferases (DNMTs) from adding methyl groups to DNA (Champion et al., 2010; Gnyszka et al., 2013). This drug has previously been demonstrated to alter levels of DNA methylation in the brains of adult animals (Lubin et al., 2008; Roth et al., 2009, 2015; Anier et al., 2010). Zebularine (Sigma Aldrich) was dissolved in dimethyl sulfoxide (DMSO) and subsequently diluted with sterile saline such that the solution was comprised of 10% DMSO. Zebularine was administered via an infusion cannula (28 gauge) attached to PE20 tubing at a dose of 600 ng/µl delivered at the rate of 1 µl per minute (2 µl volume). This dose was selected because it has been previously demonstrated to reverse maltreatment-induced DNA methylation of the Bdnf gene (Roth et al., 2009). An equivalent amount of vehicle (10% DMSO in sterile saline) was administered at the same rate. Previous studies have shown 10% DMSO to be an acceptable concentration and not cause cell toxicity or aberrations within neurons (Da Violante et al., 2002; Soltani et al., 2016). Zebularine or vehicle solution was administered once daily for 7 days.

Adult Behavior

One day after the final drug or vehicle infusion, behavioral testing commenced. Animals were run through open-field, NOR, and forced swim testing following protocols previously implemented by our lab and others (Arakawa, 2003; Oliveira et al., 2010; Castagné et al., 2011; Doherty et al., 2017) and briefly described below. A timeline of experimental procedures can be seen in Figure 1. Testing was conducted in a room with white noise under red light. A camera placed on the ceiling above the behavioral apparatuses and Any-maze software (Stoelting Co., Wood Dale, IL, USA) were used to record all behavioral procedures. After behavioral testing, a subset of rats were sacrificed and their brains were harvested for slicing.

Open-Field Testing

Rats were placed into a circular arena (84 cm diameter × 36 cm height) for 10 min. This test (as well as for all other tests) was conducted in a dark room under red light, as has been previously...
conducted by our lab (Doherty et al., 2017). Any-maze software (Stoelting Inc.) was used to score behavior in open-field testing. Time spent in the center of the field, number of entries into the center, and distance traveled were all recorded. The apparatus was cleaned using 70% ethanol in between subjects.

Novel Object Recognition

Novel object testing occurred in the same apparatus utilized for open-field testing. Animals were habituated to this chamber for an additional 2 days following open-field testing. Subjects were exposed to two identical objects for 15 min. Binder clips and conical tubes were used as objects (Doherty et al., 2017). Total time spent exploring the items was recorded. Twenty-four hours later, rats were exposed to one item from the previous day in addition to a novel item. Objects used and their placement in the apparatus were counterbalanced across experimental subjects. To quantify the amount of time the rats spent exploring the novel object, a ratio was computed whereby the total time spent exploring the novel object was divided by the total time spent exploring both the novel and familiar objects. Behavior was recorded using Any-maze software and later scored offline by trained scorers blind to experimental groups.

Forced Swim

One day after NOR, rats were placed into a bucket (29 cm diameter × 48 cm height) of 25°C water and given 15 min to swim. Once rats were removed from the water, they were dried using a microfiber cloth and their cage was placed on a heating pad under a heat lamp until they were completely dry. Twenty-four hours later, animals were returned to the water bucket for a 5-min test. Behavior was recorded using Any-maze software and later scored offline by trained scorers blind to experimental conditions. Time spent immobile, which was defined as performing only the motions necessary to keep the head above water, and latency until the first bout of immobility was measured. Twenty-four hours later, rats were exposed to one item from the previous day in addition to a novel object, a ratio was computed whereby the total time spent exploring the novel object was divided by the total time spent exploring both the novel and familiar objects. Behavior was recorded using Any-maze software and later scored offline by trained scorers blind to experimental groups.

Statistical Analyses

GraphPad Prism 7.03 software was used for all statistical analyses. Caregiving behavior data were analyzed using a two-way ANOVA (levels: caregiving behavior (i.e., nurturing and adverse), infant condition). Two-way ANOVAs (levels: infant condition, drug or vehicle) were used for analyzing behavioral data. For all analyses, p < 0.05 was used to denote statistical significance. A chi-squared analysis was conducted on estrus cycle stage of subjects. T-tests were used for post hoc analyses and Bonferroni corrections were applied where necessary.

RESULTS

Infant Manipulations

Two-way ANOVAs performed on nurturing and aversive care observed across our infant conditions revealed a main effect of caregiving behavior ($F_{(2,24)} = 67.74, p < 0.0001$) and a significant interaction of caregiving behavior and infant manipulation condition ($F_{(1,24)} = 51.72, p < 0.0001$), which is consistent with findings from other reports using this form of the scarcity-adversity model (Roth et al., 2009, 2014; Blaze and Roth, 2013; Hill et al., 2014; Doherty et al., 2016, 2017). As illustrated in Figure 2, post hoc analyses revealed that significantly more adverse behaviors were observed in the maltreatment condition relative to the cross-foster (p < 0.0001) and normal maternal (p < 0.0001) care conditions, while more nurturing behaviors were observed in the cross-foster (p < 0.0001) and normal maternal care (p = 0.0002) conditions relative to the maltreatment condition. No differences in nurturing (p = 0.4797) or adverse care (p = 0.9242) were observed between the cross-foster and normal care conditions. More nurturing care was observed relative to adverse care in both normal care (p < 0.0001) and cross-foster care (p < 0.0001) conditions, while more adverse care was observed relative to nurturing care in the maltreatment condition (p = 0.0003).

Estrus Cycle

A chi-squared analysis revealed that there were no significant differences in estrus cycle (i.e., estrus, diestrus day 1, diestrus day 2, and proestrus) status across experimental groups ($\chi^2(15, N = 71) = 20.8, p = 0.1688$).

Open-Field Testing

No statistically significant effects of infant caregiver condition or drug treatment were observed in the open-field test on any of the measures recorded including entries into the center (Figure 3A), time spent in the center (Figure 3B), or distance traveled (Figure 3C) within the behavioral apparatus (p’s > 0.05). Behavior did change over time in the open field test, however, the analyses did not reveal any group differences (p’s > 0.05). Specifically, animals regardless of drug treatment or infant condition traveled less distance over time during the test (p < 0.0001) and made less center entries across time (p = 0.0009). Time in the center did not change over time...
FIGURE 3 | No differences were found as a result of infant condition or drug treatment on number of entries into the center zone (A) time spent in zone (B) or distance traveled (C) in the open-field test. NMC, normal maternal care; CFC, cross-foster care; MAL, maltreatment. n = 11–13/group; error bars represent SEM. (p = 0.2929). These results suggest that locomotor behavior was not altered as a result of infant caregiver or drug treatment condition.

Novel Object Recognition

Neither infant caregiver condition nor drug treatment had a statistically significant effect on total time spent exploring the objects during habituation (Figure 4A, p’s > 0.05). There was likewise no significant effect of drug treatment or infant caregiver condition on the novel-to-familiar object ratio (Figure 4B, p’s > 0.05). As demonstrated by t-tests performed relative to chance (i.e., 50% exploration time with the novel object), subjects from all conditions were able to perform NOR (p’s < 0.05).

Forced Swim

For latency to immobility, a significant interaction was found between drug treatment and infant condition (F(2,64) = 8.234, p = 0.0007). Post hoc analyses revealed that the maltreatment group administered vehicle was significantly different from the normal (p = 0.0027) and cross-foster care (p = 0.0146) vehicle-treated control groups (Figure 5A). Further, the zebularine-treated animals with a history of maltreatment were significantly different from their vehicle-treated counterparts (p = 0.0022). This suggests that animals with maltreatment history display altered behavior (latency to immobility) in the forced swim test and zebularine administration in adulthood was able to normalize this behavior measure. No statistically significant differences were found as a result of drug treatment or infant condition on total time spent immobile (Figure 5B, p’s > 0.05).

DISCUSSION

We replicated our previous finding that exposure to adverse caregiving conditions in infancy induces alterations in forced swimming behavior in adult females (Doherty et al., 2017). Specifically, animals with a history of maltreatment took longer to demonstrate their first bout of immobility relative to animals with a history of nurturing care. The main finding from the current study was that administration of zebularine to maltreated-animals at a dose previously shown to decrease DNA methylation and rescue gene expression (Roth et al., 2009) was capable of normalizing this behavior, with no effect on forced swim behavior in animals with a history of nurturing care.

Several interpretations of behavior in the forced swim test have been proposed (Porsolt et al., 1977, 1978; Nishimura et al., 1988; De Pablo et al., 1989; West, 1990; de Kloet and Molendijk, 2016). One interpretation is that animals that learn to go immobile during this inescapable swim stressor are exhibiting an adaptive coping strategy, as immobility would allow for energy conservation (West, 1990; Andolina et al., 2015; de
Kloet and Molendijk, 2016; Campus et al., 2017). Using this interpretation of the test, our data would suggest that animals with a history of maltreatment are failing to exhibit adaptive coping when faced with a stressful situation. This interpretation would be consistent with other reports finding impairments in coping in individuals with a history of early-life stress (Dich et al., 2015; Wadsworth, 2015; Grace et al., 2017). Deficits in the forced-swim task may also be reflective of an inability to learn the immobility behavior (De Pablo et al., 1989). Using this interpretation, our data would suggest that animals with a history of maltreatment exhibit an inability to readily learn this behavior. This interpretation would be consistent with other reports of learning impairments in animals exposed to early adversity (Doherty et al., 2017; Walker et al., 2017). A reduction in the latency to immobility in the maltreated-animals that received zebularine could suggest that altering aberrant methylation levels promoted an adaptive coping strategy and/or facilitated learning of immobility behavior. Finally, it should be noted that the forced swim test is often used to screen for depressive-like behavior and the effects of antidepressant drugs on these behaviors, with antidepressants for example typically increasing the latency to first immobility (Porsolt et al., 1977, 1978). Using this interpretation, zebularine administration might be producing an undesirable effect in animals with a history of maltreatment. Though this study was not designed to parse out these interpretations, our data nonetheless demonstrate the ability of infusions of zebularine to change a phenotype associated with exposure to early adversity. Measures such as escape and mild swimming would be important variables to include in a future study to help understand the functional significance of this phenotype.

Previous work from our lab found a mild but significant deficit in NOR in adult female animals with a history of maltreatment (Doherty et al., 2017). While our maltreated animals did not exhibit a statistically significant deficit in NOR, this group did show a numerically lower novel object preference and more variability in their performance ($M = 59.01$, $SD = 10.99$) relative to vehicle-treated normal care animals ($M = 68.16$, $SD = 8.77$). While we neglected to replicate the modest deficit in NOR in females with a history of maltreatment, several methodological differences exist between our previous study and the current study that could explain this discrepancy. Due to our drug treatment regimen, animals here received daily handling for 1 week, whereas in our previous work animals were handled at most three times prior to the behavioral assays. Further, in our previous study, animals were pair-housed, while in the current study animals were single-housed immediately following surgery (to aid in recovery from surgery).

Interestingly, a reduction in novel object preference and increased variability was observed in our drug-treated normal care animals ($M = 61.69$, $SD = 10.63$), as about half the subjects in this group did not exhibit a novel object preference while all of the vehicle-treated normal maternal care animals did exhibit a preference. The lack of NOR performance in some of the zebularine-treated normal maternal care animals is consistent with a previous report finding an impairment in NOR in normal animals after administration of a DNMT inhibitor (Scott et al., 2017). Future research is warranted to elucidate the reasons for the variability in NOR performance and the effect, if any, of zebularine treatment and exposure to maltreatment on the ability to perform NOR in individual subjects.

In conclusion, data presented here are consistent with the hypotheses that epigenetic alterations produced by exposure to adverse caregiving conditions play a role in adult phenotypes and that non-targeted epigenetic manipulations can change behavior. The current study is one of few that have investigated the effects of zebularine to change a phenotype associated with exposure to early adversity. Measures such as escape and mild swimming would be important variables to include in a future study to help understand the functional significance of this phenotype.
AUTHOR CONTRIBUTIONS
SK and TR designed the study. SK and TD performed experiments and data analyses. All authors took part in interpretation of the results. SK wrote the first draft of the manuscript. TD and TR edited the manuscript.

FUNDING
This work was supported by funding from a University Doctoral Fellowship awarded to SK, a University Dissertation Fellowship awarded to TD, and The Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD087509) awarded to TR.

ACKNOWLEDGMENTS
We would like to thank Isabella Archer, Shannon Trombley, Anna Nowak, Ashley Atalese, Johanna Chajes, Richard Keller and Raymond Keller for their help in conducting this study and coding behavioral videos.
Keller et al. Maltreatment, Methylation and Forced Swim Behavior

benzodiazepine receptors. *Life Sci.* 36, 2103–2109. doi: 10.1016/0025-223X(85)90306-6

Gilbert, R., Widom, C. S., Browne, K., Fergusson, D., Webb, E., and Janson, S. (2009). Burden and consequences of child maltreatment in high-income countries. *Lancet* 373, 68–81. doi: 10.1016/s0140-6736(08)61706-7

Gnyszka, A., Jastrzebski, Z., and Flis, S. (2013). DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. *Anticancer Res.* 33, 2989–2996.

Grace, J. K., Martin-Gousset, L., and Angelier, F. (2017). Delayed effect of early-life corticosterone treatment on adult anti-predator behavior in a common passerine. *Physiol. Behav.* 177, 82–90. doi: 10.1016/j.physbeh.2017.04.018

Greenough, W. T., Black, J. E., and Wallace, C. S. (1987). Experience and brain development. *Child Dev.* 58, 539–559. doi: 10.2307/1130197

Hao, Y., Huang, W., Nielsen, D. A., and Kosten, T. A. (2011). Litter gender composition and sex affect maternal behavior and DNA methylation levels of the oprm1 gene in rat offspring. *Front. Psychiatry* 2:21. doi: 10.3389/fspyt.2011.00021

Heim, C., and Binder, E. B. (2012). Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. *Exp. Neurol.* 233, 102–111. doi: 10.1016/j.expneurol.2011.10.032

Heim, C., Owens, M. J., Plotsky, P. M., and Nemeroff, C. B. (1997). Persistent changes in corticosterone-releasing factor systems due to early life stress: relationship to the pathophysiology of major depression and post-traumatic stress disorder. *Psychopharmacol. Bull.* 33, 185–192.

Hill, K. T., Warren, M., and Roth, T. L. (2014). The influence of infant-caregiver experiences on amygdala Bdnf, OXTr, and NPY expression in developing and adult male and female rats. *Behav. Brain Res.* 272, 175–180. doi: 10.1016/j.bbr.2014.07.001

Keller, S. M., and Roth, T. L. (2016). Environmental influences on the female epigenome and behavior. *Environ. Epigenet.* 2:dwv007. doi: 10.1093/eeep/dwv007

Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior. *J. Cogn. Neurosci.* 16, 1412–1425. doi: 10.1162/089892904235649796

Kosten, T. A., Huang, W., and Nielsen, D. A. (2014). Sex and litter effects on anxiety and DNA methylation levels of stress and neurotrophin genes in adolescent rats. *Dev. Psychobiol.* 56, 392–406. doi: 10.1002/dev.21106

Kouzarides, T. (2007). Chromatin modifications and their function. *Cell* 128, 693–705. doi: 10.1016/j.cell.2007.02.005

Kundakov, M., Lim, S., Gudusk, K., and Champagne, F. A. (2013). Sex-specific and strain-dependent effects of early life adversity on behavioral and epigenetic outcomes. *Front. Psychiatry* 4:78. doi: 10.3389/fpsyt.2013.00078

Lupien, S. J., McEwen, B. S., Gunnar, M. R., and Heim, C. (2009). Effects of life stress. *Nat. Neurosci.* 12, 1559–1566. doi: 10.1038/nn.2436

Nishimura, H., Tsuda, A., Oguchi, M., Ida, Y., and Tanaka, M. (1988). Is benzodiazepine receptors. *Life Sci.* 36, 2103–2109. doi: 10.1016/0025-223X(85)90306-6

Moore, C. L., and Morelli, G. A. (1979). Mother rats interact differently with male and female offspring. *J. Comp. Physiol. Psychol.* 93, 677–684. doi: 10.1037/h0077599

Murgatroyd, C., Patchev, A. V., Wu, Y., Micale, V., Bockmühl, Y., Fischer, D., et al. (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. *Nat. Neurosci.* 12, 1559–1566. doi: 10.1038/nn.2436

Perroud, N., Salzmann, A., Prada, P., Nicastro, R., Hoeplli, M., Furrer, S., et al. (2013). Response to psychotherapy in borderline personality disorder and methylation status of the BDNF gene. *Transl. Psychiatry* 3:2c07. doi: 10.1038/tp.2012.140

Porsolt, R. D., Bertin, A., and Jalfre, M. (1977). Behavioral despair in mice: a primary screening test for antidepressants. *Arch. Int. Pharmacodyn. Ther.* 229, 327–336.

Porsolt, R. D., Bertin, A., and Jalfre, M. (1978). "Behavioural despair" in rats and mice: strain differences and the effects of imipramine. *Eur. J. Pharmacol.* 51, 291–294. doi: 10.1016/0014-2999(78)90144-4

Provencal, N., and Binder, E. B. (2015). The neurobiological effects of stress as contributors to psychiatric disorders: focus on epigenetics. *Curr. Opin. Neurobiol.* 31, 37–31. doi: 10.1016/j.conb.2014.08.007

Rice, D., and Barone, S. Jr. (2000). Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. *Environ. Health Perspect.* 108, 511–533. doi: 10.2307/3454543

Roth, T. L. (2012). Epigenetics of neurobiology and behavior during development and adulthood. *Dev. Psychobiol.* 54, 590–597. doi: 10.1002/dev.20550

Roth, T. L., Lubin, F. D., Funk, A. J., and Swett, J. D. (2009). Lasting epigenetic influence of early-life adversity on the BDNF gene. *Biol. Psychiatry* 65, 760–769. doi: 10.1016/j.biopsych.2008.11.028

Roth, T. L., Matt, S., Chen, K., and Blaze, J. (2014). Bdnf DNA methylation modifications in the hippocampus and amygdala of male and female rats exposed to different caregiving environments outside the homecage. *Dev. Psychobiol.* 56, 1753–1763. doi: 10.1002/dev.21238

Scott, H., Smith, A. E., Barker, G. R., Uney, J. B., and Warburton, E. C. (2017). DNA methylation regulates neurophysiological spatial representation in memory formation. *Neuroepigenetics* 2, 1–8. doi: 10.1016/j.nepig.2015.03.001

Schenkel, L. S., Spaulding, W. D., Dilillo, D., and Silverstein, S. M. (2005). Histories of childhood maltreatment in schizophrenia: relationships with premorbid functioning, symptomatology, and cognitive deficits. *Schizophr. Res.* 76, 273–286. doi: 10.1016/j.schres.2005.03.003

Scott, H., Smith, A. E., Barker, G. R., Uney, J. B., and Warburton, E. C. (2017). DNA methylation regulates neurophysiological spatial representation in memory formation. *Neuroepigenetics* 2, 1–8. doi: 10.1016/j.nepig.2015.03.001

Soltani, N., Mohammadi, E., Allahtavakoli, M., Shamsizadeh, A., Roohbakhsh, A., and Haghparast, A. (2016). Effects of dimethyl sulfoxide on neuronal response abilities and later peer relationship problems. *Psychoneuroendocrinology* 30, 162–178. doi: 10.1016/j.psyneuen.2004.07.001

Silberman, D. M., Acosta, G. B., and Zorrilla Zubilete, M. A. (2016). Long-term effects of early life stress exposure: role of epigenetic mechanisms. *Pharmacol. Res.* 109, 64–73. doi: 10.1016/j.phrs.2015.12.033

Sreenivasan, N., Mohammadi, E., Allahverdakoli, M., Shamshizadeh, A., Roohbakhsh, A., and Haghparast, A. (2016). Effects of dimethyl sulfoxide on neuronal response characteristics in deep layers of rat barrel cortex. *Basic Clin. Neurosci.* 7, 213–220. doi: 10.15412/JCN.03073036
Wadsworth, M. E. (2015). Development of maladaptive coping: a functional adaptation to chronic, uncontrollable stress. *Child Dev. Perspect.* 9, 96–100. doi: 10.1111/cdep.12112

Walker, C.-D., Bath, K. G., Joels, M., Korosi, A., Larauche, M., Lucassen, P. J., et al. (2017). Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. *Stress* 20, 421–448. doi: 10.1080/10253890.2017.1343296

Warburton, E., and Brown, M. (2015). Neural circuitry for rat recognition memory. *Behav. Brain Res.* 285, 131–139. doi: 10.1016/j.bbr.2014.09.050

Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. *Nat. Neurosci.* 7, 847–854. doi: 10.1038/nn1276

West, A. P. (1990). Neurobehavioral studies of forced swimming: the role of learning and memory in the forced swim test. *Prog. Neuropsychopharmacol. Biol. Psychiatry* 14, 863–877. doi: 10.1016/0278-5846(90)90073-p

Zierhut, K., Bogerts, B., Schott, B., Fenker, D., Walter, M., Albrecht, D., et al. (2010). The role of hippocampus dysfunction in deficient memory encoding and positive symptoms in schizophrenia. *Psychiatry Res.* 183, 187–194. doi: 10.1016/j.psychres.2010.03.007

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Keller, Doherty and Roth. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.