RESEARCH

Negative emotional status and influencing factors among young employees in center of disease control and prevention

Lu Han1†, Qiyu Li2†, Yu Zhang1,3*, Tuo Liu4, Ran Niu5, Qi Wang6 and Lina Zhao3

Abstract

Background: Negative emotions among employees have become a public problem that increase the risk of developing the disease and accelerate its progression. This study aimed to investigate the status and influencing factors of negative emotions among young employees in center of disease control and prevention.

Methods: Participants included 6099 employees aged 40 or below in center of disease control and prevention (CDC) of 32 province of China were interviewed by online questionnaire survey. The emotional conditions of anxiety and depression, and their influencing factors were analyzed.

Results: A total of 5353 valid questionnaires were collected with the recovery rate of 87.77%. 2871 cases of young employees had different degrees of negative emotions at work, accounting for about 53.60%. Regression analysis showed that gender, professional title, educational level, job satisfaction, chronic diseases, daily sleep duration, average weekly overtime, physical activity time, and sugary beverage intake were the influencing factors of negative emotions ($P < 0.05$). Male, primary and below, never working overtime and daily physical activity time more than 30 min were protective factors for negative emotions (OR vale were 0.79, 0.68, 0.39 and 0.63, respectively, $P < 0.05$). Bachelor degree or above, poor job satisfaction, chronic disease, daily sleep duration less than 8 h and drinking one to three sugary drinks a week were the risk factors for negative emotion (OR vale were 1.21, 4.32, 2.16, 2.75 and 1.20, respectively, $P < 0.05$).

Conclusion: Due to the influence of work pressure, lifestyle, chronic diseases and other factors, young employees in CDC have a certain degree of negative emotions at work, which should be paid enough attention. Meanwhile, corresponding measures should be taken according to the influencing factors to reduce the occurrence of negative emotions.

Keywords: Young employees, CDC, Negative emotions, Influencing factors

Background

Negative emotions such as depression and anxiety caused by workplace stress have become important factors that increase the risk of developing the disease and accelerate its progression [1]. Previous studies have found that, medical and health practitioners are more prone to occupational stress and burnout because of high workload and strained interpersonal relationship [2]. It develops further when there is no relief, developing a tendency for...
negative emotions in the form of anxiety and depression at work [3]. The survey on perceived stress of residents in 15 provinces of China shows that the perceived stress of adult residents is related to age, marriage, working status, income and physical activity [4]. Although studies have found the young employees in public health and disease control institutions often suffer from great work pressure, especially in the process of dealing with public health emergencies [5, 6]. However, they mainly focus on status of job burnout and bad mood [7], and there are few studies on large sample sizes of influencing factors. However, it is urgent to analyze the factors that cause the increasing occupational pressure of young practitioners at present. Disease prevention and control practitioners face great work pressure in the process of epidemic treatment, which is also prone to lead to the emergence of bad emotions. Haiyan He, et al. [8], found that anxiety and depression were evident among CDC personnel during COVID-19, and these people need precise psychological intervention and humanistic care in order to have the best mental state to deal with the epidemic. On the other hand, the mental health status and influencing factors of CDC workers before the outbreak of the epidemic are also very important to understand the psychological changes before and after the epidemic. However, what was the mental health of young CDC workers before the outbreak of COVID-19?

This study was conducted in 2019, just before the outbreak of COVID-19, the main objective was to understand the situation of negative emotions in the daily work among young employees in CDC, and to analyze the influencing factors of this situation. This data can help us develop targeted health education programs to reduce the risk of related diseases. At the same time, it can also provide a data basis for studying the psychological changes and intervention measures of young CDC workers before and after the outbreak of COVID-19.

Materials and methods

Subjects
Six thousand ninety-nine employees aged 20 to 40 years from 32 provincial CDC were recruited to participate in this survey. The survey period was from October to November 2019. The protocols used in this study were approved by the Ethical Committee of Chinese Center for Disease Control and Prevention.

Questionnaire design and survey methods
The questionnaire was designed by the research team based on the survey needs and previous research, and contained 72 questions from four dimensions, including basic information, ideological status, emotion and health-related behavior [9, 10], and details have been described in our previous study [11]. Negative emotions at work include depression, anxiety and irritability [12]. Sleep duration in this paper refers to the average time of sleep per day during a week, the overtime, physical activity time and sugary drink intake are the average of overtime hours, exercise hours sugary drink amount during the week. In the design of the questionnaire, all sensitive questions are dealt with fuzzily.

In this study, the cluster sampling method was adopted to carry out a self-made online questionnaire survey, and relevant data were collected online by “scanning two-dimensional code or logging in to the survey link”. Before the survey, the investigators were trained and instructed to fill in the form online. The questionnaire data will be cleaned and coded by special personnel, and the questionnaires with inconsistent, incomplete and abnormal information will be eliminated.

Statistical analysis
The results are presented as the mean values ± standard deviation (SD), One-way ANOVA was used for comparisons between groups. The influencing factors were analyzed by Two-category Logistic multifactor analysis. All of the statistical analyses were performed using the Statistical Product and Service Solutions13.0 software, and significance was set to the $\alpha=0.05$ error rate.

Results

Participant characteristics
A total of 5353 valid questionnaires were included and used for statistical analysis, accounting for 87.77% of the total questionnaires. There are 1886 cases (35.23%) males and 3467 (64.77%) cases female. 1670 cases (31.20%) were aged between 18 and 30 years, and 3683 cases (68.80%) were aged between 31 and 40 years.

Status distribution of negative emotions
Two thousand eight hundred seventy-one cases had different degrees of negative emotions at work, accounting for about 53.63%, including 1958 cases of anxiety (68.20%), 429 cases of depression (14.94%), 484 cases of irritability (16.86%), shown as Tables 1 and 2. The proportion of negative emotion was higher in group of 31-40 years old, female, married, post-graduate degree and intermediate professional title. As shown in Table 2, the distribution differences of different types of negative emotions among age, gender, marital status and education level are statistically significant ($P<0.05$), while the differences among professional titles are not statistically significant ($P>0.05$).
Analysis results of influencing factors
Regression analysis showed that gender, professional title, educational level, job satisfaction, chronic diseases, daily sleep duration, average weekly overtime, physical activity time, and sugary beverage intake were the influencing factors of negative emotions ($P<0.05$). Male, primary and below, never working overtime and daily physical activity time more than 30 min were protective factors for negative emotions (OR vale were 0.79, 0.68, 0.39 and 0.63, respectively, $P<0.05$). Bachelor degree or above, poor job satisfaction, chronic disease, daily sleep duration less than 8 h and drinking one to three sugary drinks a week were the risk factors for negative emotion (OR vale were 1.21, 4.32, 2.16, 2.75 and 1.20, respectively, $P<0.05$), as shown in Table 3.

Discussion
Due to the nature of medical and health work, practitioners suffer from a high level of work stress and psychological stress, many studies have shown that long-term high-load work can easily cause negative emotions and increase the risk of depression and chronic diseases [7, 13, 14]. CDC is the primary agency for dealing with public health emergencies, especially SAS, avian influenza and COVID-19 [15], in which young people are the main force. Therefore, paying attention to the physical and mental health of young practitioners is not only of great significance to individuals, but also to the overall quality of disease control.

Previous studies have found that during the COVID-19 pandemic, the proportion of employees in CDC with anxiety was 33.87% and that of with depression was 38.88% [8]. In this study, we found that the proportion of anxiety and other negative emotions among young
practitioners was 53.60%, slightly lower than the results above, suggesting that the high workload brought by the epidemic increased the occurrence of negative emotions. Our study also found that the female employees have a higher proportion of negative situations, reaching 68.51%, which is basically consistent with the result (63.0%) obtained by Qiu Qianwen et al. in 2020 [7]. Walter Wurm et al. [16] in 2016 also found this phenomenon and believed that compared with men, women's physical and mental health were more easily affected by the environment, so they were more prone to negative emotions.

In a survey of 1344 employees from four coal mines in Xinjiang, Xian Tingyong et al. [17] found that weekly working hours, positions and duties were significant factors contributing to increased occupational stress among practitioners. Our study also found that those who often work overtime are more likely to have negative emotions than those who never work overtime. This may be related to the fact that overtime takes up more spare time and young people are unable to obtain psychological relaxation from leisure time [18]. At the same time, the study found that physical activity of 30 min or more per day was a protective factor against negative emotions compared with those who did not exercise and those who rarely exercised. Ioannis D. Morres et al. [19] observed 19 adult women with depression who experienced significant relief after 4 weeks of preferred intensity exercise rather than prescribed intensity exercise. A survey of 7200 Chinese adolescents aged 13–18 years from six regions of China also found that screen and exercise time are associated with psychological symptoms in Chinese adolescents [20].

On the other hand, this study found that poor job satisfaction and daily sleep duration less than 8 h were risk factors for negative emotions. People with poor job satisfaction were more likely to experience negative emotions than those with higher job satisfaction, which may be related to complaining more about their jobs. Previous studies have found that the higher the occupational self-concept and dedication, the lower the incidence of occupational burnout [7]. Because stress comes from work overload and the inability to juggle work and family, people with high job satisfaction are more likely to find a balance and put more energy into their work.

Studies have found an association between the quality and duration of sleep and depression [21]. Healthy China Initiative (2019–2030) calls for mental health promotion actions to slow the rise of insomnia, anxiety and depression, and advocate getting 7–8 h of sleep a day [4]. Dieter Riemann et al. systematically analyzed the correlation between sleep quality and depression, believing that the two affect each other. Chronic sleep deprivation and poor quality sleep can lead to symptoms of depression,
which can further worsen sleep quality [22]. In this study, it was also found that people who slept more than 8 h had a lower proportion of negative emotions, suggesting that lack of sleep was a risk factor. However, lack of sleep among CDC employees was also associated with heavier workloads and frequent overtime. Therefore, to address these problems fundamentally, consideration should be given to reducing the workload of young practitioners.

Conclusion
There may be some bias in this study due to the influence of sample size, which may affect the accuracy and credibility of the results. Despite some limitations, our findings still represent a significant step forward, especially for finding out the possible influencing factors such as high work pressure, insufficient sleep and exercise time, chronic disease. Under the combined action of these factors, the young staff of the disease prevention and control institutions had certain negative emotions before the outbreak of COVID-19.

Acknowledgements
We would like to thank all the provincial CDC of China for their support and cooperation during this study.

Authors’ contributions
HL is the first author. ZY initiated the concepts of the study, LT, LQ and NR collected the data. LT, LQ, and NR analyzed the data. HL drafted the manuscript. ZY contributed to the interpretation of the results and critical revision of the manuscript for important intellectual content and approved the final version of the manuscript. LQ, LT, NR, WQ, and ZL reviews and suggests the manuscript. All authors have read and approved the final manuscript. HL and ZY are the study guarantors.

Funding
This work was supported by the Scientific research project of Chinese Center for Disease Control and Prevention (grant number JY18–2-40).

Availability of data and materials
The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All methods are implemented in accordance with relevant guidelines and regulations. All experimental protocols were approved by the designated licensing Committee (Ethics Committee of China Center for Disease Control and Prevention). Informed consent was obtained from all subjects.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no conflict of interest.

Author details
1. Chinese Center for Disease Control and Prevention, Beijing 102206, China.
2. Jinzhou Medical University, Jinzhou 121000, China.
3. Gansu Center for Disease Control and Prevention, Lanzhou 730000, China.
4. National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
5. National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
6. Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China.

Received: 4 October 2021 Accepted: 15 February 2022
Published online: 25 February 2022

References
1. Fortes AM, Tian L, Hubeiner ES. Occupational stress and employees complete mental health: A cross-cultural empirical study. Int J Environ Public Health. 2020;17(10):3629.
2. Rotenstein LS, Torre M, Ramos MA, Rosales RC, Guille C, Sen S, et al. Prevalence of burnout among physicians: a systematic review. JAMA. 2018;320(11):1131–50.
3. Zhang Ste, Wang J, Xie F. A cross-sectional study of job burnout, psychological attachment, and the career calling of Chinese doctors. BMC Health Serv Res. 2020;20:193.
4. Lyu Y, Jiang H, Jia X, Chang S, Huang F, Niu R, et al. Perceived stress level and its related factors in China adult residents aged 18-65 in 15 provinces (autonomous regions and municipalities) in 2015. J Hygiene Res. 2020;49(2):201–7.
5. Liu C, Liu S, Yang S, Hui W. Association between transformational leadership and occupational burnout and the mediating effects of psychological empowerment in this relationship among CDC employees: a cross-sectional study. Psychol Res Behav Manag. 2019;12:437–46.
6. Zhang X, Qi X, Wang L, Wang X. A research on mental health status of public health aid professionals from Chinese Center for Disease Control and Prevention in Africa. J of Pub Health Prev Med. 2020;31(1):70–4.
7. Qiu Q, Huang B, Zhang H, Hao A, Li Z, Chen X, et al. Analysis of working conditions and correlated factors of emotional exhaustion among CDC staff during COVID-19 epidemic. J Jilin Univ (Natural Science & Medicine Edition). 2020;41(6):534–42.
8. He H, Zhang G, Si F, Wei Z, Zhao Y, Wu W, et al. Mental health status and countermeasures of CDC personnel under COVID-19 outbreak. J Pre Med Chin PLA. 2020;38(5):103–5.
9. Fortes AM, Lili Tian E, Hubeiner S. Occupational Stress and Employees Complete Mental Health: A Cross-Cultural Empirical Study. Int J Environ Res Public Health. 2020;17(10):3629.
10. Liu D, He L, Zhang X, Zhai Y, Zhang J, Yang X, et al. Establishment and application of food frequency questionnaire method among Chinese. J Hygiene Res. 2018;47(5):744–55.
11. Lu H, Liu J, Liu T, Liang S, Yu Z. Correlation between occupational identity and health related behaviors of disease control workers. Occupation Health. 2021;37(10):1379–82.
12. Ohta R, Kaneko M. Effects of practicing in remote Japanese islands on physicians’ control of negative emotions: A qualitative study. J Rural Med. 2017;12(2):91–7.
13. Lee MA, Kim E. Influences of hospital nurses’ perceived reciprocity and emotional labor on quality of nursing service and intent to leave. J Korean Acad Nurs. 2016;46(3):364–74.
14. Cordioli DFC, Junior JR, Gazetta CE, Silva AGD, Lourenco LG. Occupational stress and engagement in primary health care workers. Rev Bras Enferrn. 2019;72(6):1580–7.
15. Special Expert Group of the Epidemic of COVID-19 of the Chinese Preventive Medicine Association. Recommendation on the modernization of disease control and prevention. Chin J Epidemiol. 2020;41(4):453–60.
16. Wurm W, Vogel K, Holf A, Ebner C, Bayer D, Morlik S, et al. Depression-Burnout Overlap in Physicians. PLoS One. 2016;11(3):e0149913.
17. Yong X, Gao X, Zhang Z, Ge H, Sun X, Ma X, et al. Associations of occupational stress with job burn-out, depression and hypertension in coal miners of Xinjiang, China: a cross-sectional study. BMJ Open. 2020;10(7):e036087.
18. Levenson RW. Stress and illness: a role for specific emotions. Psychosom Med. 2019;81(8):720–30.
19. Ioannis D, Morres AH-B, Motakis E, Carter T, Callaghan P. A pragmatic randomized controlled trial of preferred intensity exercise in depressed adult women in the United Kingdom: secondary analysis of individual variability of depression. BMC Public Health. 2019;19:541.
20. Zhang F, Yin X, Bi C, Ji L, Wu H, Li Y, et al. Psychological symptoms are associated with screen and exercise time: a cross-sectional study of Chinese adolescents. BMC Public Health. 2020;20:1695.

21. Seow LSE, Tan XW, Chong SA, Vaingankar JA, Abdin E, Shafie S, et al. Independent and combined associations of sleep duration and sleep quality with common physical and mental disorders: Results from a multi-ethnic population-based study. PLoS One. 2020;15(7):e0235816.

22. Riemann D, Krone LB, Wulff K, Nissen C. Sleep, insomnia, and depression. Neuropsychopharmacology. 2020;45(1):74–89.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.