Clinical Practice

Occupational Asthma Caused by Inhalable Royal Jelly and Its Cross-reactivity with Honeybee Venom

Li-Sha Li, Kai Guan
Department of Allergy, Peking Union Medical College Hospital, Beijing 100730, China

Key words: Bee Venom; Cross-reactivity; Occupational Asthma; Royal Jelly

Royal jelly is a honeybee nutriment secreted from the glands in the hypopharynx of worker bees essential in the development of queen bees. Ingestion of royal jelly has been reported to trigger rhinitis, asthma, and anaphylaxis,[1] but occupational asthma occurring after inhalation of volatile royal jelly is rare. Here, we presented a case of occupational asthma induced by royal jelly with coexisting allergy to honeybee venom and investigated the immunoglobulin E (IgE) cross-reactivity between royal jelly and honeybee venom.

A 43-year-old Chinese woman was referred to Department of Allergy, Peking Union Medical College Hospital due to repeated wheezing for 10 years. The patient was a senior manager of a royal jelly processing factory with a work history of 11 years. She developed wheezing within half an hour of entering the processing workshop and gradually recovered following her departure without medical intervention. The patient also complained of edema after ingestion of royal jelly. In addition, the patient presented with a positive 5-year history of honeybee venom allergy. Upon being stung, she would present swelling with a lesion diameter exceeding 10 cm lasting longer than 24 h.

Skin prick test was positive to royal jelly: 11 mm × 9 mm. Intradermal tests for common aeroallergens (dust mites, fungi, pollens, and animal dander) were all negative. The total IgE was 297 kU/L, and specific IgEs were positive to i1 (2.465 kUA/L) and i208 (13.1 kUA/L) (ImmunoCAP, Phadia, Sweden). Baseline spirometry results were normal, and then we performed the workplace challenge test. The patient entered the factory processing workshop with a portable spirometer (eResearch Technology, Philadelphia, Pennsylvania, USA) and salbutamol aerosol. She measured and recorded her forced expiratory volume in 1 s (FEV1) and peak expiratory flow (PEF) every 30 min. She developed wheezing 1 h later. The spirometer showed that her FEV1 fell 44% (>20%) and PEF fell 56% (>20%) compared to the baseline level in the workshop, where the royal jelly was filtered and packed, indicating the uniquely high level of inhalable volatile royal jelly in the air of the workshop to be the cause of her asthma.

As mentioned above, this patient had allergic reactions to both royal jelly and honeybee venom. To clarify cross-reactivity between royal jelly and honeybee venom, competitive IgE enzyme-linked immunosorbent assay (ELISA) inhibition tests and immunoblotting inhibition assays were performed.

The royal jelly or honeybee venom extract (provided by the royal jelly processing factory where the patient worked) was incubated with a mixture containing the serum of the patient and the honeybee venom or royal jelly as inhibitors. The royal jelly managed to inhibit 82% of the total IgE binding to honeybee venom at 0.1 mg protein, whereas 0.1 mg of honeybee venom was required to inhibit 90% of the total IgE binding to royal jelly.

The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results of royal jelly and honeybee venom are shown in Figure 1a and 1b. Immunoblotting analysis of royal jelly extract with the serum of the patient showed one IgE-binding component.

Address for correspondence: Dr. Kai Guan, Department of Allergy, Peking Union Medical College Hospital, Beijing 100730, China
E-Mail: dr.guankai@126.com

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

© 2016 Chinese Medical Journal | Produced by Wolters Kluwer - Medknow

Received: 10-09-2016 Edited by: Yuan-Yuan Ji
How to cite this article: Li LS, Guan K. Occupational Asthma Caused by Inhalable Royal Jelly and Its Cross-reactivity with Honeybee Venom. Chin Med J 2016;129:2888-9.
associated with occupational asthma, but royal jelly had not been mentioned in the literature before 2016.\(^3\) Only in July 2016, Gómez Torrijos \textit{et al.}\(^4\) reported the first two cases of occupational asthma due to royal jelly. Our patient developed typical asthma symptoms each time she entered the workshop processing royal jelly and recovered once she left there. Her skin prick test was positive to royal jelly, and the workplace challenge test showed a dramatic decline of FEV1 and PEF after she entered the workshop, indicating definite diagnosis of occupational asthma caused by royal jelly. As mentioned above, Gómez Torrijos \textit{et al.}\(^4\) reported similar cases of occupational asthma due to volatile royal jelly, but those two patients did not present with coexisting bee venom allergy, which might explain the inconsistency of immunoblot analysis among the three cases. Our patient was a Chinese woman and had allergic reactions to both royal jelly and honeybee venom, whereas the two cases in the literature were from Spain and they only reported allergy to royal jelly.

As we know, royal jelly and honeybee venom are both produced by honeybees. Their homology makes it possible that they share similar allergenic components. In this case, ELISA inhibition tests indicated the presence of cross-reactive IgE antibodies that bound to royal jelly extract and inhibited their binding to honeybee venom. Immunoblotting inhibition also demonstrated that except the band of 135,000, the majority of allergen components were shared between royal jelly and honeybee venom. Based on the patient’s clinical history and results of immunoinhibition tests, we could see clear allergenic cross-reactivity between royal jelly and honeybee venom. However, further studies are required to confirm the risk of royal jelly allergy in the patients who have honeybee venom allergy, especially for those patients in processing bee products.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Leung R, Lam CW, Ho A, Chan JK, Choy D, Lai CK. Allergic sensitisation to common environmental allergens in adult asthmatics in Hong Kong. Hong Kong Med J 1997;3:211-7.
2. Torén K, Blanc PD. Asthma caused by occupational exposures is common – A systematic analysis of estimates of the population-attributable fraction. BMC Pulm Med 2009;9:7. doi: 10.1186/1471-2466-9-7.
3. Baar X, Bakehe P. Allergens causing occupational asthma: An evidence-based evaluation of the literature. Int Arch Occup Environ Health 2014;87:339-63. doi: 10.1007/s00420-013-0866-9.
4. Gómez Torrijos E, Méndez Díaz Y, Borja Segade JM, Feo Brito JF, Alfaya Arias T, Galindo Bonilla PA, \textit{et al.} Occupational allergic respiratory disease due to royal jelly. Ann Allergy Asthma Immunol 2016;117:102-3. doi: 10.1016/j.anai.2016.05.009.