Screening transferable microsatellite markers across genus *Phalaenopsis* (Orchidaceae)

Ya-Zhu Ko¹, Huei-Chuan Shih², Chi-Chu Tsai³,⁴, Hsing-Hua Ho¹, Pei-Chun Liao⁵ and Yu-Chung Chiang¹,⁶ *

Abstract

Background: Molecular identification based on microsatellite loci is an important technology to improve the commercial breeding of the moth orchid. There are more than 30,000 cultivars have been enrolled at the Royal Horticultural Society (RHS). In this study, genomic microsatellite primer sets were developed from *Phalaenopsis aphrodite* subsp. *formosana* to further examine the transferability of across 21 *Phalaenopsis* species.

Methods and results: Twenty-eight polymorphic microsatellite markers were obtained using the magnetic bead enrichment method, with high transferability of the 21 species of the genus *Phalaenopsis*, especially in the subgenus *Phalaenopsis*. The 28 newly developed polymorphic microsatellite markers with high polymorphism information content values. The best and second fit grouping (K) are inferred as two and four by the ΔK evaluation in the assignment test. This result indicates that these microsatellite markers are discernible to subgenus *Phalaenopsis*.

Conclusions: Our results indicate that these new microsatellite markers are useful for delimiting species within genus *Phalaenopsis*. As expected, the genetic relationships between species of subgenus *Phalaenopsis* can be well distinguished based on the assignment test. These molecular markers could apply to assess the paternity of *Phalaenopsis* as well as investigating hybridization among species of genus *Phalaenopsis*.

Keywords: *Phalaenopsis*, Microsatellites, Polymorphism, Transferability

Background

The subtropical Taiwan Island that is situated off the southeastern Asian continent has well-suited climate conditions for the growth of orchids. Since the high quality of breeding and micropropagation technology coupled with market demands of the orchid genus *Phalaenopsis* Blume (Orchidaceae), Taiwan has become one of the important exporting countries of orchids in the world (Chen and Chen 2007, 2011; Tang and Chen 2007). The genus *Phalaenopsis* belongs to the family Orchidaceae, subfamily Epidendroideae, tribe Vandeae and subtribe Aeridinae (Dressler 1993), which is often known as moth orchid and comprises approximately 66 species (Christenson 2001). *Phalaenopsis* species is broadly distributed across Himalayas of northern India, South India, Sri Lanka, Southeast China, Taiwan, Indonesia, Thailand, Myanmar, Malaysia, the Philippines, Papua New Guinea and northeastern Australia (Chen and Chen 2011; Christenson 2001). According to the pollinia numbers (Christenson 2001) and molecular evidences (Tsai et al. 2010), *Phalaenopsis* can be divided into five subgenera: the four pollinia clades of subgenera *Proboscidioides*, *Aphyllae*, and *Parishianae* and the two pollinium clades of subgenus *Polychilos* and *Phalaenopsis*. Among these subgenera, the *Polychilos* and *Phalaenopsis* was each subdivided into four sections *Polychilos*, *Fuscatae*, *Amboinenses*, *Zebri- nae* and *Phalaenopsis*, *Deliciosae*, *Esmeralda*, *Stauroglottis*, respectively (Dressler 1993; Christenson 2001).

The species of genus *Phalaenopsis* are most popular epiphytic monopodial orchids for their distinctive and...
varied flowers with the unique structure. Horticultural breeding by hybridization remixed floral characters, such as the colors, shapes, and sizes, to create diversified varieties and cultivars. Based on the high breeding and cultivation techniques for the regulation of light and feeding and the development in interspecific and intergeneric hybrids breeding and polyploidy, improvement of the long-lasting quality of the floral traits made *Phalaenopsis* as one of an important orchid source for cut-flower crop.

There are two indigenous species of *Phalaenopsis* native to Taiwan, the *P. aphrodite* subsp. *formosana* and *P. equestris* (Chen and Wang 1996). Both species were classified as the section *Phalaenopsis* (Christenson 2001). *Phalaenopsis aphrodite* subsp. *formosana*, commonly known as the Taiwan moth orchid, has been widely used as an important breeding hybrids parent, and it is one of the most important progenitors for the traits of modern large and white of floral organs commercial hybrids breeding (Tanaka et al. 2005). *Phalaenopsis equestris* is another important breeding parent for the miniature type of multi-flowers and artificial hybrids with white petals and sepals and a red lip (Men et al. 2003; Tang and Chen 2007).

Recently, intergeneric hybrids between *Phalaenopsis* and *Ascocenda* cultivars were developed to introduce orange color into hybrid cultivars (Liu et al. 2016). However, complex phenotype and long stage of juvenile make the identification of varieties and cultivars of *Phalaenopsis* plants difficult and time consuming. In addition, traditional horticultural breeding technique for new cultivars of *Phalaenopsis* by integrating the morphology, physiological development, and environmental factors as well as their complex interactions makes the breeding consequence unpredictable and uncertain. Molecular markers can provide sensitive and accurate tools for identifying species and cultivars. Therefore, development of highly reliable, rapid, and cheap technique for differentiating and identifying seedlings of species and cultivars of *Phalaenopsis* is necessary and useful for enhancing the efficiency of the breeding. Furthermore, development of molecular markers could apply to paternity analysis, phylogenetic reconstruction, and resolving long-standing issues on *Phalaenopsis* breeding. Microsatellite markers with characteristics of high level of polymorphism, codominant inheritance and reproducibility (Powell et al. 1996) are useful tools for application in plant genetics and crop breeding, including fruit tree (Chiang et al. 2012; Chiu et al. 2012; Tsai et al. 2013; Lai et al. 2015) and orchid (Tsai et al. 2014, 2015). Compared to previous studies (Sukma 2011; Tsai et al. 2015), we intend to use more microsatellite loci as well as more extensive species testing in this study to enhance the discriminatory power between *Phalaenopsis* genus.

The genome size is small for *P. aphrodite* subsp. *formosana* (Hsiao et al. 2011) and roughly 2.81 pg in diploid genome (Chen et al. 2013), which is suitable for the development of microsatellite markers. Here, the objective of this study was to develop transferable microsatellite markers from *P. aphrodite* subsp. *formosana* using the modified magnetic bead enrichment method. Based on these transferable markers, the molecular identification systems is able to be established for accessing the hybridization and introgression among species of the genus *Phalaenopsis* in future work.

Materials and methods

Plant materials

There are 21 species of the genus *Phalaenopsis* comprised of five subgenera used in this study. The taxonomy and nomenclature are followed (Christenson 2001), and specimens information are listed in Table 1. All samples were collected from the plants planted in the greenhouse at the Kaohsiung District Agricultural Improvement Station (KDAIS) in Taiwan by C. C. Tsai. Voucher specimens were deposited in herbarium of the National Museum of Natural Science, Taiwan (TNM).

Screening, sequencing microsatellite loci, and primer designation

Total DNA was extracted from tissue culture seedlings or young leaves following the procedure by a Plant Genomic DNA Extraction Kit (RBC Bioscience, Taipei, Taiwan). The DNA sample from *P. aphrodite* subsp. *formosana* was screened for microsatellites by digested with the restriction enzyme *Mse*I (Promega, Madison, Wisconsin, USA) and confirmed with 1.5% agarose gel electrophoresis. The digested fragment sizes with a range from 400 to 1000 bps were extracted using agarose gel and then ligated with *Mse*I-adapter pair (5′-TACTCAGGACTAAT-3′ and 5′-GACGATGAGTCTCTGAG-3′) using DNA T4 ligase. As the template DNA for the enrichment of the partial genomic library, the ligated products were then used to perform 20 cycles of pre-hybridization PCR amplification in a 20 μL reaction mixture using the adapter specific primer (*MseI*-N: 5′-GATGAGTCTCTGAGTAAN-3′). The PCR mixture contained 20 ng template DNA, 10 pmol *MseI*-N, 2 μL 10× reaction buffer, 2 mM dNTP mix, 2 mM MgCl₂, 0.5 U Taq DNA polymerase (Promega), and sterile water was added to total volume of 20 μL, with the PCR program of initial denaturation of 94 °C for 5 min, followed by 18 cycles of 30 s at 94 °C, 1 min at 53 °C, 1 min at 72 °C, and a final extension at 72 °C for 10 min using a Labnet MultiGene 96-well Gradient Thermal Cycler (Labnet, Edison, New Jersey, USA). The biotinylated oligonucleotide repeat probes (AG)₁₅, (AC)₁₅, (TCC)₁₀, and (TTG)₁₀ were used...
to hybridize with the amplicons at 68 °C for 1 h. The hybridization mixture was then enriched using 1 mg of streptavidin magnesphere paramagnetic particles (Promega) at 42 °C for 2 h and then eluted. Subsequently, DNA fragments containing microsatellites were purified and then amplified by 25-cycle-PCR using purified captured DNA fragments as templates (5 μL), MseI-N (10 pmol), 10× reaction buffer (2 μL), dNTP mix (2 mM), MgCl₂ (2 mM), 0.5 U Taq DNA polymerase (Promega), and supplement sterile water to 20 μL under the amplification conditions described above. The PCR products were purified by the HiYield™ Gel PCR DNA Fragments Extraction Kit (RBC Bioscience) and used for cloning. The purified DNA was ligated into the pGEM®-T Easy Vector System (Promega), and used to transformed into E. coli DH5α competent cells. The positive clones were randomly selected and used for sequencing. In total, 321 positive colonies were collected and amplified with T7 and SP6 primers and sequenced on an ABI PRISM 3700 DNA Sequencer (Applied Biosystems, Foster City, California, USA). Sequences containing microsatellites were detected using Tandem Repeats Finder version 4.09 (Benson 1999), and primer pairs were designed for microsatellite loci with suitable flanking regions to amplify using FastPCR software version 6.5.94 (Kalander et al. 2009). Each primer pairs were designed to amplify with a fragment in the range of 100–400 bp.

Microsatellites PCR amplification

To verify the effectiveness and polymorphisms of 28 microsatellite loci, all primer pairs designed for amplifying these microsatellites were tested using the *P.
aphrodite subsp. formosana DNA samples together with the other 20 Phalaenopsis species. The optimal annealing temperature was determined using gradient PCR on a Labnet MultiGene 96-well Gradient Thermal Cycler (Labnet). The PCR was carried out in a total reaction volume of 20 μL, in which the PCR reaction mixtures contained 20 ng template DNA, 0.2 μM forward and reverse primers, 2 μL 10× reaction buffer, 2 mM dNTP mix, 2 mM MgCl₂, and 0.5 U of Taq polymerase (Promega). The gradient PCR protocol was set at 94 °C for 5 min, followed by 35 cycles of 94 °C for 40 s, a temperature gradient 50–60 °C for 60 s, 72 °C for 60 s, and a final step of 72 °C for 10 min. Then, the PCR products were assessed using 10% polyacrylamide gel electrophoresis and stained with ethidium bromide and visualized (EtBr) under UV light exposure. The patterns and length of alleles were recorded digitally by Quantity One ver. 4.62 (Bio-Rad Laboratories, Hercules, California, USA).

Data analyses
In total, 146 repeatable amplicons with length variation were screened from 28 microsatellite primer pairs (Table 2) in 21 species (Table 1). The number and average of amplicons (alleles) per primer pairs and the polymorphism information content (PIC) value of each loci were estimated using Power-Marker version 3.25 (Liu and Muse 2005). The Bayesian clustering method was used to estimate genotyping group information and genetic components for 21 Phalaenopsis taxa with the assistance of STRUCTURE ver. 2.3.4 (Pritchard et al. 2000; Falush et al. 2003, 2007). The admixture model (Hubisz et al. 2009) was selected in the Bayesian clustering analysis. The posterior probability of the genetic grouping number (K = 1–21) was estimated using the Markov chain Monte Carlo (MCMC) approach and 10 independent runs with a first 10% discarding (burnin) followed by 5,000,000 MCMC steps for each grouping number. The first-two best grouping numbers were evaluated using ΔK process (Evanno et al. 2005) by STRUCTURE HARVESTER ver. 0.6.8 (Earl and vonHoldt 2012). The graphical display of the results was drawn by STRUCTURE HARVESTER program (Rosenberg 2004).

Results and discussion
All of 21 Phalaenopsis species reveal either zero, one or two PCR amplicons in each of 28 microsatellite loci. One or two PCR amplicons per locus represent homozygotes or heterozygotes, and no amplicon indicate lacking this homologous microsatellite locus (Table 2). The genome size of Phalaenopsis aphrodite subsp. formosana detected by flow cytometry reveals roughly 2.81 pg in diploid genome (Chen et al. 2013) and all diploid species of Phalaenopsis have 38 chromosome number (Christenson 2001). These related studies and our current results indicate that 21 Phalaenopsis taxa studied are diploid plants, except the P. lowii and P. minus are not listed in the study of Chen et al. (Christenson 2001; Chen et al. 2013).

In total, 146 amplicons (alleles) were identified by 28 microsatellite primer pairs across 21 native Phalaenopsis species, and the number of amplicons per primer pairs ranged from 2 to 12, with an average of 5.21 (Table 2). The cross-species amplification test for the 20 other species was conducted using 28 microsatellite primers developed by P. aphrodite subsp. formosana, and the species of P. amabilis (L.) Blume, P. schilleriana Rchb.f., P. chibae, P. equestris (Schauer) Rchb.f. and P. lindenii Loher have higher transferable loci. The above mentioned four species with P. aphrodite subsp. formosana are all classified under the genus Phalaenopsis. The microsatellite primers could be successfully transferable to an average of 6.21 species [range from two (PA7, PA11 and PA41) to 20 (PA101) species] (Table 3). Due to the high transferability to species of the subgenus Phalaenopsis, these newly developed microsatellite primers are able to apply to establish a standard molecular identification operating system in Phalaenopsis.

The allelic polymorphism information content (PIC) values reflect the extent of allele diversity among the species, the PIC values in the present study ranged from 0.38 to 0.87, with an average of 0.63 (Table 4). Previous studies showed that the PIC values ranged from 0.1754 to 0.6740 (Sukma 2011) and 0 to 0.682 (Tsai et al. 2015) for the genomic microsatellite loci and EST-SSR of Phalaenopsis species, respectively. Thus, the PIC value in our study is greater than previous studies on Phalaenopsis. This PIC result is consistent with genomic microsatellite studies in Scutellaria austrotaiwensis (Hsu et al. 2009), mango (Chiang et al. 2012), and Indian jujube (Chiou et al. 2012).

For genetically delimiting 21 species of the genus Phalaenopsis, a model-based Bayesian clustering algorithm was performed in STRUCTURE 2.3.4. The result showed that the first two best clustering numbers are K = 2 and K = 4 (Table 4). The ΔK was 96.55 and 2.31 when K = 2 and K = 4 in the Bayesian clustering analysis, respectively. Under K = 2, most species of the subgenus Phalaenopsis were assigned to the same cluster with high percent of Component 2 (pink segment in Fig. 1A) except P. pulcherrima that is genetically assigned to sections Esmeralda (subgenus Polychilos). The subgenus Proboscidioides, Aphyliae, and Parisiana, and Polychilos were consigned to the cluster with high percent of Component 2 (green segment in Fig. 1A) except P. kunstleri belonging to subgenus Polychilos which revealed an admixture genetic composition (56.8% of Component 1 and 43.2% of Component
Table 2 Characteristics of the 28 polymorphic microsatellite primers derived from *Phalaenopsis aphrodite* subsp. *formosana*

Locus	Primer sequences (5′–3′)	Repeat motif	Allelic size (bp)	Annealing temperature (°C)	No. of alleles	PIC
PA5-1	F: TCCCATTACCTCCCTCAC	(TC)$_{14}$	140–164	59	4	0.67
	R: GGTAGAGATATAGGGAGAG					
PA5-2	F: CTCTCTTTCTCTCTCACCTC	(TC)$_{12}$	98–104	58	4	0.61
	R: AAGATAGGGAGAGAGGATGG					
PA7	F: CTCTGTCTTCACCTTTTAC	(TC)$_{12}$	116–264	56	3	0.55
	R: GGACAGAAAGTGGAGAGAGAG					
PA10	F: TCTTCAGTCCCTCTCCTCAC	(CT)$_{14}$	132–152	58	7	0.75
	R: ACAAGCGGTTGAGGAGATATG					
PA11	F: ATCTATGCTCTTTGTCTCTC	(CT)$_{32}$	214–216	55	2	0.38
	R: TAGCAAAAGAGATGCAGAGAG					
PA14	F: TTTTACCTCTCTCCCTCTCC	(CT)$_{21}$	182–186	52	3	0.55
	R: GATGTAGAGAAGGAGGAGG					
PA15	F: TCTCCCTACTCCCTATCTGA	(CT)$_{25}$	306–310	56	3	0.55
	R: CTTGAAAGGAGAGAGAGAGAG					
PA19	F: TCTCCCTATATCTCTGCATC	(CTCC)$_{4}$	154–158	51	3	0.58
	R: TGGAAAGGAAAGGGTTCTGAG					
PA21	F: TCTTACCTTTTGCTACTGC	(CT)$_{14}$	134–146	57	6	0.77
	R: AAAGGGAAGTGGGAGAGAGG					
PA24	F: TTTGTCTCTCTCGACCCAC	(TG)$_{36}$	216–224	55	3	0.59
	R: AAAGAAGAGTGGATGAGGAG					
PA25-1	F: ACCCATTCTCTCTCTCTCC	(CT)$_{20}$	176–202	58	5	0.64
	R: GATGAAAGAGAGAGAGAGGC					
PA25-2	F: TCTCCCTCTCTTTACACCTC	(CT)$_{12}$	92–267	58	6	0.73
	R: GTGAGAGAGATAGGATGAGGC					
PA32-1	F: CTCTCCTCTCTCTCTGAGAG	(CT)$_{25}$	148–222	57	8	0.83
	R: AAGAGGTTGTGAGGAAAGAGG					
PA32-2	F: TCTCTACTCTCTCTCCTTG	(CT)$_{18}$	140–152	54	5	0.73
	R: GAGAAGAGTGAAGAGAGTGA					
PA36	F: CTCTACTTTTCTCTCTTCC	(TC)$_{19}$	220–250	55	4	0.67
	R: ATGAGCAGAAATAACTAGAG					
PA37	F: TTACCTCTTTTTCTCTAGCT	(TC)$_{23}$	226–234	50	4	0.67
	R: AAAGAAGGAGGAGGAGGAG					
PA38	F: CTCTCTACTCTCTATCTCC	(CT)$_{32}$	224–384	54	9	0.84
	R: AGCTAGATAGGAGGAGGAGAG					
PA40	F: GAGCAACATTCTACTAGAGAG	(CA)$_{14}$	258–320	56	6	0.79
	R: CTGGCAAAGCTTTGAGAAGG					
PA41	F: GAGGAGAATAAATATGTCCCG	(AG)$_{12}$	138–140	50	2	0.38
	R: AGACAACCTCTCACACCTTTC					
PA63	F: TTACCTACCTCTCTCCAC	(CT)$_{8}$	130–136	55	3	0.59
	R: GATAAGAAGAAGTAGATAGAG					
PA64	F: CTCTCCTTTTTCTCTTTTAC	(CT)$_{34}$	248–296	55	3	0.55
	R: TagAGAGATAGGAGGGCAAGC					
PA74-1	F: AATGACCTCTCTCTCTCTCC	(TC)$_{28}$	172–306	50	3	0.59
	R: GCAAGAGAGATTGGGAGATGG					
PA74-2	F: CATCCACACACTTCTCTTGC	(CT)$_{13}$	122–134	55	5	0.58
	R: AGTGCCTCAAGGAGGTTAGAGAC					
PA83-1	F: CCCTCTTCTCTCATTGCTCC	(TC)$_{9}$	190–198	54	2	0.35
	R: GGGACAGAGGTGCATAAGATG					
Table 2 continued

Locus	Primer sequences (5′-3′)	Repeat motif	Allelic size (bp)	Annealing temperature (°C)	No. of alleles	PIC
PA83‑2	F: CCTTATCTCTCTCTCTTCC	(TC)_{36}	168–210	50	12	0.87
	R: AGAAGGAGGGTAGGAGAG					
PA100‑1	F: TCTCTTATTTAGACACC	(TC)_{11}	132–136	52	2	0.35
	R: GGGAGGAGCAGAAGTG					
PA100‑2	F: TCTCTCTATTAGGACACC	(CT)_{16}	128–136	59	5	0.73
	R: GGATGGAGGGAGAGTG					
PA101	F: CCCACTCACTCTATCTCTC	(TC)_{11}	126–138	55	7	0.63
	R: AGGTCACACAGAAGAGG					
		Average			4.57	0.63

Table 3 The result of the 28 polymorphic microsatellite loci isolated from *Phalaenopsis aphrodite* subsp. *formosana* test on 21 samples

Locus	PN	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20	IS
PA5‑1	O	–	O	–	O	O	O	O	O	–	–	–	–	–	–	–	–	–	–	–	–	6
PA5‑2	O	–	–	–	O	O	–	O	E	–	–	–	–	–	–	–	–	–	–	–	–	5
PA7	E	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	2
PA10	O	O	O	E	E	O	E	–	–	O	–	O	–	–	–	–	–	–	–	–	–	12
PA11	O	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	2
PA14	O	–	–	–	–	O	O	–	–	–	–	–	–	–	–	–	–	–	–	–	–	4
PA15	O	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	4
PA19	O	–	–	–	–	O	O	O	O	–	–	–	–	–	–	–	–	–	–	–	–	8
PA21	O	–	O	O	O	O	O	O	O	E	–	O	–	–	–	–	–	–	–	–	–	11
PA24	O	–	–	–	–	O	O	–	–	–	–	–	–	–	–	–	–	–	–	–	–	3
PA25‑1	O	–	–	–	O	O	O	–	–	O	–	–	–	–	–	–	–	–	–	–	–	8
PA25‑2	O	–	–	–	O	O	–	–	–	O	–	–	–	–	–	–	–	–	–	–	–	5
PA32‑1	E	–	–	–	–	O	O	O	O	–	–	–	–	–	–	–	–	–	–	–	–	5
PA32‑2	O	–	–	–	–	O	E	–	–	–	–	–	–	–	–	–	–	–	–	–	–	6
PA36	O	–	–	–	–	–	–	–	–	–	O	–	–	O	–	–	–	–	–	–	–	5
PA37	E	–	–	–	–	O	O	E	–	–	–	–	–	–	–	–	–	–	–	–	–	3
PA38	O	–	–	–	O	O	O	E	O	O	–	–	–	–	–	–	–	–	E	–	–	9
PA40	E	–	–	–	O	E	–	–	–	O	–	–	–	–	–	–	–	–	–	–	–	4
PA41	O	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	2
PA63	O	–	–	–	O	O	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	3
PA64	O	–	–	–	O	O	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	4
PA74‑1	O	O	–	–	O	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	2
PA74‑2	O	–	–	–	O	O	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	6
PA83‑1	O	–	–	–	O	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	3
PA83‑2	E	O	O	–	E	O	O	O	–	E	–	–	–	–	–	–	O	E	E	–	–	14
PA100‑1	E	O	O	–	E	O	O	O	–	O	–	–	–	–	–	–	–	–	–	–	–	6
PA100‑2	O	–	–	–	O	O	O	O	O	O	–	–	–	–	–	–	O	–	–	–	–	9
PA101	O	O	O	O	O	E	E	O	O	O	O	O	O	O	O	O	O	O	–	–	20	
IS	28	4	4	6	13	18	20	11	2	16	5	5	1	4	5	4	1	8	4	12		

IS the number of successful amplified species, *IL* the number of successful amplification primer, *O* homozygote, *E* heterozygote
2) (Table 4). When \(K = 4 \), Component 1 of \(K = 2 \) was divided into three components, 1a (pink segment in Fig. 1B), 1b (orange segment in Fig. 1B), and 1c (purple segment in Fig. 1B) (Table 4). Under \(K = 4 \), sections Deliciosae and Esmeralda can be divided into different clusters, which are grouped together when \(K = 4 \). Two sections Phalaenopsis and Stauroglottis of subgenus Phalaenopsis were grouped together with high genetic similarity (Table 4 and Fig. 1B). In addition, section Fuscateae of subgenus Polychilos was genetically assigned to the subgenus Phalaenopsis cluster based on both section Fuscateae of subgenus Polychilos belong to pink segment group with more than 50% proportion of Component 1 (see Fig. 1A, B and Table 4). The assignment test by Bayesian clustering analysis reveals similar result with molecular phylogeny patterns described by Tsai et al. (2005). The Bayesian clustering analysis based on EST-SSR loci could not get high resolution between either subgenus or sections within subgenus (Tsai et al. 2015). Compare to EST-SSR results published by Tsai et al. (2015), these newly developed genomic microsatellite loci have higher resolution than EST-SSR loci when study on native moth orchids.

Conclusions

The Phalaenopsis species are important genetic resources for the breeding of hybrids in the horticultural market. The molecular identification markers are an important technology for breeder to improve the commercial cultivars. In this study, we developed 28 primer sets for the polymorphic microsatellite loci of Phalaenopsis aphrodite subsp. formosana, which are highly transferable among related species of the genus Phalaenopsis. Based on these transferable markers, delimitations between subgenera and between sections inferred by the Bayesian clustering analysis indicate that these SSR markers reveal

Table 4 Proportion of individuals of each pre-defined population in each of the 2 and 4 clusters

Subgenus	Section	\(K = 2 \)	\(K = 4 \)				
	Composition 1	Composition 2	Composition 1	Composition 2	Composition 3	Composition 4	
Phalaenopsis	Phalaenopsis	0.995	0.005	0.625	0.371	0.001	0.002
Phalaenopsis	Phalaenopsis	0.689	0.311	0.572	0.164	0.238	0.027
Phalaenopsis	Phalaenopsis	0.904	0.096	0.800	0.155	0.028	0.017
Phalaenopsis	Stauraglotis	0.988	0.012	0.824	0.145	0.003	0.029
Phalaenopsis	Stauraglotis	0.974	0.026	0.231	0.478	0.002	0.288
Phalaenopsis	Deliciosae	0.529	0.471	0.106	0.133	0.116	0.645
Phalaenopsis	Deliciosae	0.117	0.883	0.047	0.028	0.894	0.031
Phalaenopsis	Deliciosae	0.009	0.991	0.002	0.002	0.992	0.004
Phalaenopsis	Deliciosae	0.313	0.687	0.183	0.554	0.643	0.121
Phalaenopsis	Deliciosae	0.568	0.432	0.488	0.111	0.391	0.01
Phalaenopsis	Deliciosae	0.016	0.984	0.003	0.002	0.992	0.003
Phalaenopsis	Deliciosae	0.047	0.953	0.01	0.012	0.958	0.02
Phalaenopsis	Deliciosae	0.032	0.968	0.007	0.004	0.983	0.006
Phalaenopsis	Deliciosae	0.239	0.761	0.036	0.058	0.643	0.263
Phalaenopsis	Deliciosae	0.007	0.993	0.002	0.002	0.994	0.002
Phalaenopsis	Deliciosae	0.054	0.946	0.01	0.013	0.922	0.055
Phalaenopsis	Deliciosae	0.028	0.972	0.003	0.024	0.859	0.114
Phalaenopsis	Deliciosae	0.214	0.786	0.063	0.078	0.815	0.043
Phalaenopsis	Deliciosae	0.147	0.853	0.072	0.019	0.887	0.022
Phalaenopsis	Deliciosae	0.081	0.919	0.029	0.008	0.957	0.006
Phalaenopsis	Deliciosae	0.007	0.993	0.002	0.002	0.994	0.002

Italic values indicate major component of the species
high taxonomic resolution for paternity and hybridization application among genus *Phalaenopsis*. In this study, we provided useful and cheap DNA barcoding markers for molecular breeding.

Authors’ contributions
Conceived and designed the experiments: YZK and YCC. Performed the experiments: YZK, HCS, HHH, and YCC. Analyzed the data: YZK, HHH, and YCC. Contributed reagents/materials/analysis tools: HCS, CCT, HHH, PCL and YCC. Wrote the paper: YZK, PCL and YCC. Conceived of the study, edited the manuscript, and approved the final manuscript: YZK, HCS, CCT, HHH, PCL and YCC. All authors read and approved the final manuscript.

Author details
1 Department of Biological Sciences, National Sun Yat‑sen University, Kaohsiung 804, Taiwan. 2 Department of Nursing, Meihou University, Pingtung 912, Taiwan. 3 Kaohsiung District Agricultural Research and Extension Station, Pingtung 900, Taiwan. 4 National Pingtung University of Science and Technology, Pingtung 912, Taiwan. 5 Department of Life Science, National Taiwan Normal University, Taipei, Taiwan. 6 Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.

Acknowledgements
Achievement of this study is dedicated to the memory of the scientific contributions of Dr. C. C. Tsai who is the third author. Dr. C.C. Tsai died on November 05, 2015 in an unexpected stroke. Dr. C.C. This research was supported by funding from the Ministry of Science and Technology, Taiwan, MOST 105‑2621‑B‑110‑003‑MY3 and MOST 105‑2621‑B‑110‑001 to YCC and the Multidisciplinary and Data Science Research Center (MDSRC), NSYSU.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 August 2017 Accepted: 4 November 2017
Published online: 15 November 2017

References
Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580
Chen WH, Chen HH (2007) Orchid biotechnology. World scientific Publishing Co. Ltd, Singapore
Chen WH, Chen HH (2011) Orchid biotechnology II. World scientific Publishing Co. Ltd, Singapore
Chen WH, Wang YT (1996) Phalaenopsis orchid culture. Taiwan Sugar 43:11–16
Chen WH, Kao YL, Tang CY, Tsai CC, Lin TY (2013) Estimating nuclear DNA content within 50 species of the genus *Phalaenopsis* Blume (Orchidaceae). Sci Hortic 161:70–75
Chiang YC, Tsai CM, Chen YKH, Lee SR, Chen CH, Lin YS, Tsai CC (2012) Development and characterization of 20 new polymorphic microsatellite markers from *Mangifera indica* L. (Anacardiaceae). Am J Bot 99(5):e117–e119
Chiu CY, Chiang YC, Chen CH, Yen CR, Lee SR, Lin YS, Tsai CC (2012) Development and characterization of 38 polymorphic microsatellite markers from an economical fruit tree, the Indian jujube. Am J Bot 99(5):e199–e202
Christenson EA (2001) *Phalaenopsis*: a monograph. Timber Press, Portland
Dressler RL (1993) Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge
Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620
Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587
Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578
Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Shih HH, Chen WH, Tsai WC, Chen HH (2011) Research on orchid biology and biotechnology. Plant Cell Physiol 52(9):467–1486
Hsu TW, Kuo CC, Tsai CC, Chiang YC (2009) Isolation and characterization of 16 microsatellite markers from a rare and endemic species, Scutellaria austrotaiwanensis (Lamiaceae). Conserv Genet Resour 1(1):85–88
Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332
Kalendár R, Lee D, Schulman AH (2009) FastPCR software for PCR primer and probe design and repeat search. Genes Genomes Genomics 3(1):1–14
Lai JM, Tsai CC, Yen CR, Ko YZ, Chen SR, Weng IS, Lin YS, Chiang YC (2015) Molecular characterization of twenty polymorphic microsatellite markers in the polyploid fruit tree species Syzygium samarangense (Myrtaceae). Genet Mol Res 14(4):13013–13021
Liu K, Muse SY (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2126–2129
Liu YC, Lin BY, Lin JY, Wu WL, Chang CC (2016) Evaluation of chloroplast DNA markers for intraspecific identification of Phalaenopsis equestris cultivars. Sci Hort 203:86–94
Men S, Ming X, Wang Y, Liu R, Wei C, Li Y (2003) Genetic transformation of two species of orchid by biolistic bombardment. Plant Cell Rep 21(6):592–598
Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1(7):215–222
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
Rosenberg NA (2004) STRUCTURE: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138
Sukma D (2011) Development of sequence-based microsatellite marker for Phalaenopsis orchid. Hayati J Biosci 18:71–76
Tanaka Y, Katsumoto Y, Brugleria F, Mason J (2005) Genetic engineering in floriculture. Plant Cell Tissue Organ Cult 80(1):1–24
Tang CY, Chen WH (2007) Breeding and development of new varieties in Phalaenopsis. In: Chen WH, Chen HH (eds) Orchids biotechnology. World Scientific Publishing Co. Pvt. Ltd, Singapore, p 1–22
Tsai CC, Huang SC, Chou CH (2005) Molecular phylogeny of Phalaenopsis Blume (Orchidaceae) based on the internal transcribed spacer of the nuclear ribosomal DNA. Plant Syst Evol 256:1–16
Tsai CC, Chiang YC, Huang SC, Chen CH, Chou CH (2010) Molecular phylogeny of Phalaenopsis Blume (Orchidaceae) on the basis of plastid and nuclear DNA. Plant Syst Evol 288(1–2):77–98
Tsai CC, Chen YKH, Chen CH, Weng IS, Tsai CM, Lee SR, Lin YS, Chiang YC (2013) Cultivar identification and genetic relationship of mango (Mangifera indica) in Taiwan using 37 SSR markers. Sci Hortic 164:196–201
Tsai CC, Wu PY, Kuo CC, Huang MC, Yu SK, Hsu TW, Chiang TY, Chiang YC (2014) Analysis of microsatellites in the vulnerable orchid Gastrodia flavilabella: the development of microsatellite markers and cross-species amplification in Gastrodia. Bot Stud 55:72
Tsai CC, Shih HC, Wang HV, Lin YS, Chang CH, Chiang YC, Chou CH (2015) RNA-seq SSRs of moth orchid and screening for molecular markers across genus Phalaenopsis (Orchidaceae). PLoS ONE 10(11):e0141761