Title
Plant and fungal products that extend lifespan in *Caenorhabditis elegans*.

Permalink
https://escholarship.org/uc/item/1m44w8t4

Journal
Microbial cell (Graz, Austria), 7(10)

ISSN
2311-2638

Authors
Martel, Jan
Wu, Cheng-Yeu
Peng, Hsin-Hsin
et al.

Publication Date
2020-07-09

DOI
10.15698/mic2020.10.731

Peer reviewed
Plant and fungal products that extend lifespan in Caenorhabditis elegans

Jan Martel1,2, Cheng-Yeu Wu1,3, Hsin-Hsin Peng1,2,4, Yun-Fei Ko2,5,6, Hung-Chi Yang7, John D. Young5 and David M. Ojcius1,2,8,*

1 Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan.
2 Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
3 Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan.
4 Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
5 Chang Gung Biotechnology Corporation, Taipei, Taiwan.
6 Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan.
7 Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
8 Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA.

* Corresponding Author: David M. Ojcius. Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, 155 Fifth Street, San Francisco, CA 94103, USA; Phone: 1-415-780-2095; E-mail: dojcius@pacific.edu

ABSTRACT The nematode Caenorhabditis elegans is a useful model to study aging due to its short lifespan, ease of manipulation, and available genetic tools. Several molecules and extracts derived from plants and fungi extend the lifespan of C. elegans by modulating aging-related pathways that are conserved in more complex organisms. Modulation of aging pathways leads to activation of autophagy, mitochondrial biogenesis and expression of antioxidant and detoxifying enzymes in a manner similar to caloric restriction. Low and moderate concentrations of plant and fungal molecules usually extend lifespan, while high concentrations are detrimental, consistent with a lifespan-modulating mechanism involving hormesis. We review here molecules and extracts derived from plants and fungi that extend the lifespan of C. elegans, and explore the possibility that these natural substances may produce health benefits in humans.

INTERVENTIONS TO DELAY AGING

Aging can be modulated by genes and lifestyle. For instance, specific gene variants of insulin-like growth factor-1 (IGF-1) receptor and forkhead box O3A (FOXO3A) are associated with longer lifespan in centenarians [1]. In terms of lifestyle, one of the most studied interventions that delay aging is caloric restriction (CR), which can increase lifespan in organisms ranging from yeasts to primates [2]. Diet composition also influences the aging process, with low-protein diets [3, 4] and high phytochemical intake [5, 6] being associated with a longer lifespan. Notably, a recent analysis suggests that the heritability of human longevity is below 10% [7], indicating that lifestyle choices play a major role in influencing aging and longevity.

Since interventions such as CR and dieting are difficult to implement and maintain over a long period, interest has focused on identifying molecules that produce effects similar to CR (i.e., the CR mimetics). This endeavor is based on the observation that signaling pathways that are modulated by CR, including 5′ adenosine-monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and sirtuin-1, can be targeted by small organic compounds [8]. Activation of these pathways induces autophagy, mitochondrial biogenesis and expression of antioxidant and detoxifying enzymes, which together can improve cellular function [2, 9, 10]. In a manner similar to CR, several organic compounds labeled as CR mimetics promote physiological functions and reduce the development

doi: 10.15698/mic2020.10.731
Received originally: 23.04.2020; in revised form: 23.06.2020, Accepted 25.06.2020, Published 09.07.2020.

Keywords: autophagy, caloric restriction mimetics, dietary supplements, hormesis, phytochemicals.

Abbreviations:
CR – caloric restriction;
EGCG – epigallocatechin gallate;
HSP – heat shock protein;
ROS – reactive oxygen species;
TOR – target of rapamycin.
of chronic diseases, thus improving both health and longevity [8].

The nematode Caenorhabditis elegans is a useful model organism for studying aging [11] (Figure 1). One of the main advantages of C. elegans is its short lifespan of about 20 to 25 days, allowing the rapid screening of substances that affect longevity. In addition, nematodes can be manipulated easily and single-gene deletion mutants are readily available, which facilitates the identification of signaling pathways involved in lifespan extension. Furthermore, many cellular pathways that control aging in C. elegans are conserved in more complex organisms, including fruit flies, mice and humans [12].

Modulation of the gut microbiota can also positively or negatively influence health and longevity in C. elegans [13, 14]. We review here the molecules and extracts derived from plants and fungi that are known to extend the lifespan of C. elegans, and discuss the possibility of using these substances in humans.

PLANT AND FUNGAL MOLECULES THAT EXTEND LIFESPAN IN C. ELEGANS

A survey of the literature indicates that a large number of molecules and extracts from plants and fungi extend the lifespan of C. elegans (Table 1). Many of these natural substances are consumed in the human diet, and are found in vegetables, fruits, mushrooms, spices, tea, coffee and wine, while other extracts are derived from herbal and fungal remedies used in traditional Chinese medicine (e.g., Ganoderma lucidum, Ginkgo biloba, and Rhodiola rosea). Some pharmaceutical drugs were originally derived from plants and fungi, such as acetylsalicylic acid (aspirin), lovastatin and metformin, as well as molecules that were isolated from herbal remedies, including celastrol, huperzine A and triptolide (Table 1). In addition, many of the plant and fungal extracts and molecules included here are used as dietary supplements (e.g., Antrodia cinnamomea, glucosamine, propolis, quercetin and resveratrol).

While many natural substances can extend the lifespan of nematodes, they act by regulating a small set of cellular pathways (Table 1 and Figure 2). One of the main cellular pathways that control C. elegans lifespan is the insulin pathway induced by food intake [12, 15]. This pathway consists of DAF-2 (the homolog of the human insulin receptor), several conserved protein kinases, and DAF-16 (the sole homolog of the FOXO family of transcription factors; Figure 2). In nematodes, insulin-like peptides bind to DAF-2 and induce intracellular signaling that leads to phosphorylation of DAF-16, thereby sequestering the transcription factor in the cytoplasm; in the absence of insulin-like peptides and DAF-2 signaling, as occurs when food is scarce, DAF-16 migrates into the nucleus where it induces expression of several genes including heat-shock proteins (HSPs) and antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT), as well as autophagy-related proteins (Figure 2) [12, 15].

Another pathway activated by food intake involves the target of rapamycin (TOR), which is activated by nutrients and amino acids (Figure 2). Inhibition of TOR activates skin-head 1 (SKN-1), the homolog of nuclear factor erythroid-2-related factor (Nrf) proteins, and defective pharyngeal development protein 4 (PHA-4), the homolog of human FOXA proteins, leading to expression of detoxifying enzymes and activation of autophagy, respectively [12]. TOR inhibition also activates autophagy by inducing basic helix-loop-helix protein 30 (HLH-30), the homolog of HLH transcription factor EB (TFEB) [16]. In addition, the nicotinamide adenine dinucleotide (NAD+)–dependent protein deacetylase Sir-2.1, the homolog of human sirtuin-1, induces anti-aging effects at least in part by stimulating DAF-16 activity (Figure 2).

Phytochemicals were previously believed to produce beneficial effects on health and longevity mainly by acting as antioxidants that scavenge reactive oxygen species (ROS).

FIGURE 1: Images of C. elegans nematode used as a model to study aging and longevity. (A) Light microscopy and (B) fluorescence microscopy images of transgenic C. elegans strain CGUIS-1 expressing the nucleolar protein fibrillarin 1 (FIB-1) coupled to green fluorescent protein (GFP). FIB-1 is a marker of nucleolus size that negatively correlates with longevity across taxa [161], making the CGUIS-1 strain useful for screening natural products that may extend lifespan. In B, GFP auto-fluorescence is induced by ultraviolet light. The images are unpublished observations made by the authors.
Substance	Chemical Class	Source	Mechanism (or Gene Involved)	Mean Lifespan	Maximum Lifespan	Ref.
Acetylsalicylic acid (aspirin)	Organic acid	Analgesic drug (derived from willow bark)	AAK-2/AMPK↑, DAF-16↑, SOD-3↑, ROS↓	+23% (ROS)		[21, 22]
Antcin M	Terpenoid	*Antrodia cinnamomea*	ROS↓	+7%		[47]
Aspalathin	Chalcone glycoside	Rooibos tea	DAF-16↑, ROS↓	+24% (high glucose only)		[48]
Baicalein	Flavonoid	*Scutellaria baicalensis*	SKN-1↑	+45%	+24%	[49, 50]
Betalains	Indole	Opuntia fruit	ROS↓	+34%		[51]
Boeravinone B	Rotenoid	*Boerhaavia diffusa*	DAF-16↑, SKN-1↑	+28%		[52]
Brazilin	Flavonoid	*Caesalpinia sappan*	DAF-16↑, HSP-16.2↑, SOD-3↑, ROS↓	+18%		[53]
Caffeic acid	Polyphenol	Plants	DAF-16↑, Sir-2.1, OSR-1	+15%		[54]
Caffeic acid phenyl ester	Polyphenol	Propolis	DAF-16↑	+9% (median)	+17%	[55]
Caffeine	Alkaloid	Coffee	DAF-16↑, CBP-1	+37%	+52%	[19, 56-58]
Calycosin	Isoflavone	*Astragalus membranaceus*	DAF-2, DAF-16↑	+25%		[59]
Carnosic acid	Terpenoid	*Rosmarinus officinalis*	SOD-3↑, SKN-1↑, HSF-1↑	+16%	+22%	[60]
Carnosol	Terpenoid	*R. officinalis*	SOD-3↑, ROS↓	+19%	+26%	[35]
Catechin	Flavonoid	Green tea	DAF-2	+15%		[61, 62]
Celastrol	Terpenoid	*Tripterygium wilfordii*	ND	+17%		[63]
Chlorogenic acid	Polyphenol	Coffee	DAF-2, DAF-16↑, SKN-1↑	+20%		[34]
Chlorophyll	Chlorin	Vegetables	DAF-16↑	+26%		[64]
Curcumin	Polyphenol	Turmeric	Sir-2.1, OSR-1	+55% (median)		[65, 66]
Damaurone D	Flavonoid	Damask rose	DAF-2, DAF-16↑, SOD-3↑	+17%	+21%	[67]
Dehydroabietic acid	Terpenoid	Conifer resin	Sir-2.1	+16%		[68]
Diallyl trisulfide	Organosulfor	Garlic	SKN-1↑	+13%		[69]
Diosgenin	Terpenoid	Plants	DAF-16↑, SOD-3↑	+20%		[70]
4,4′-Dimethoxychalcone	Chalcone	*Angelica keiskei koidzumi*	Autophagy↑	+20% (median)		[71]
Emodin	Anthraquinone	Rhubarb, buckthorn	Sir-2.1, DAF-16↑	+20%		[77]
Ellagic acid	Phenol	Fruits	DAF-16↑	+11%		[62, 78]
Ferulinsaic acid	Organic acid	Ferula plants	AGEs↓, ROS↓	+18%	+42%	[79]
Fisetin	Flavonoid	Fruits, vegetables	DAF-16↑, ROS↓	+6% (heat)		[80]
Flavonoids	Flavonoid	Onion	ND	+20%		[17]
Fruit extract	Mixture	Apple	ND	+39%	+25%	[81]
Fruit extract	Mixture	Blueberry	DAF-16↑, SKN-1↑, SOD-3↑	+44%	+24%	[82]
Fruit extract	Mixture	Mulberry	DAF-16↑, Sir-2.1	+20%	+9%	[83]
Fruit extract	Mixture	Orange	DAF-16↑, SOD-3↑, ROS↓	+26%	+26%	[84]
Fruit extract	Mixture	Pomegranate	DAF-16↑	+56%	+36%	[78]
Fruit extract	Mixture	Purple pitanga	DAF-16↑	ND		[85]
Fungal extract	Mixture	*Ganoderma lucidum*	GLP-1	+36%	+12%	[86]
TABLE 1 (continued). Examples of naturally-occurring substances and related pharmaceutical drugs that extend C. elegans lifespan.

Substance	Chemical Class	Source	Mechanism (or Gene Involved)	Mean Lifespan	Maximum Lifespan	Ref.
Gallic acid	Phenolic acid	Fruits	ND	+12%	[62]	
Genistein	Isoflavone	Soybean, coffee	SOD-3↑, HSP-16.2↑	+28%	[87]	
Glucosamine	Amino sugar	Dietary supplement (can be isolated from wheat or corn)	AAK-2/AMPK↑, mitochondrial biogenesis↑, autophagy↑	+30%	[30, 88]	
Glaucarubinone	Degraded terpenoid	Simaroubaceae plants	Cellular respiration↑	+8%	+8%	[89]
Huperzine A	Alkaloid	Huperzia serrata	ND	+13%	[90]	
10-Hydroxy-2-decenolic acid	Organic acid	Royal jelly	ND	+12%	+21%	[91]
Icarin	Flavonoid glycoside	Epimedium brevica- cornum	DAF-16↑	+21%	[92]	
Icariside II	Flavonoid glycoside	E. brevica- cornum	DAF-16↑, HSP-12.3↑	+31%	[92]	
Isorhamnetin	Flavonoid	Onion	ROS↓	+16%	+16%	[93]
Kaempferol	Flavonoid	Fruits, vegetables	DAF-16↑, ROS↓ (heat)	+10%	+7%	[80, 94]
Laricitrin	Flavonoid	Red grapes and wine	DAF-16↑	+55%	[95]	
Lignans	Polyphenol	Arctium lappa	DAF-16↑	+25%	[96]	
Lovastatin	Lactone	Mushrooms	DAF-16↑	+25%	[97]	
Metformin	Biguanide	Anti-diabetic drug (derived from French lilac)	AAK-2/AMPK↑, TOR↓, SKN-1↑, methionine↓, agmatine↑	+40% (median)	[37, 98-100]	
Monascin	Azaphilone	Monascus purpureus	DAF-16↑, SOD-1↑, (CL2006 strain)	+29%	[101]	
Myricetin	Flavonoid	Fruits, vegetables	DAF-16↑, ROS↓, Sir-2.1	+48%	+22%	[94, 95, 102, 103]
Myricetin-trimethylether	Flavonoid	Bridelia plant	DAF-16↑	+54%	[95]	
Naphthazarin	Naphthoquinone	Plants	SKN-1↑	+13%	+25%	[18]
NDGA	Polyphenol	Larrea tridentata	Autophagy↑	+21% (median)	[104]	
S'-Octanoyl salicylic acid	Organic acid	Skin exfoliating drug (aspirin derivative)	AAK-2/AMPK↑, TOR↓, autophagy↑, UPR↑	+19%	+12%	[105]
Oleanolic acid	Terpenoid	Plants	DAF-16↑, ROS↓	+17%	[106]	
Oxline	Naphthoquinone	Plants	ND	+15%	+10%	[18]
Piceatannol	Stilbenoid	Red grape, wine	DAF-2, DAF-16↑, Sir-2.1	+18% (median)	[107]	
Plant extract	Mixture	Alpinia zerumbet	SOD-3↑, HSP-16.2↑	+23%	+61%	[108]
Plant extract	Mixture	Anacardium occidentale	DAF-16↑, SKN-1↑, SOD-3↑	+20%	[109]	
Plant extract	Mixture	Betula utilis	DAF-16↑, HSF-1↑, SKN-1↑, ROS↓	+36%	[110]	
Plant extract	Mixture	Black tea	ND	ND	[111]	
Plant extract	Mixture	Caesalpinia mimosoids	DAF-16↑, ROS↓	+4%	[112]	
Plant extract	Mixture	Dammacanthus officinarum	ND	+10–30%	[113]	
Plant extract	Mixture	Dioscorea alata	HSP-16.2↑, SKN-1↑	+28%	[114]	
TABLE 1 (continued). Examples of naturally-occurring substances and related pharmaceutical drugs that extend C. elegans lifespan.

Substance	Chemical Class	Source	Mechanism (or Gene Involved)	Mean Lifespan	Maximum Lifespan	Ref.
Plant extract	Mixture	*Eleutherooccus senticosus*	DAF-16↑	+16%	+12%	[25]
Plant extract	Mixture	Garlic	DAF-16↑	+21%		[115]
Plant extract	Mixture	*Ginkgo biloba*	ROS↓	+8% (median)		[116, 117]
Plant extract	Mixture	*Glochidion zeylanicum*	DAF-16↑, SKN-1↑, SOD-3↑, HSP-16.2↓↑	+10%		[118]
Plant extract	Mixture	Green tea	EAT-2	ND		[111]
Plant extract	Mixture	Guarana	DAF-16↑	+14%		[119]
Plant extract	Mixture	*Hibiscus sabdariffa*	DAF-16↑, SKN-1↑	+24%		[120]
Plant extract	Mixture	*Lonicera japonica*	DAF-2, DAF-16↑, SOD-3↑, ROS↓	+22%		[121]
Plant extract	Mixture	Pu-er tea	ND	ND		[111]
Plant extract	Mixture	Ribes fasciculatum	DAF-2, AGE-1, DAF-16↑, Sir-2.1↑, SOD↓↑	+16%	+19%	[122]
Plant extract	Mixture	Rhodiola rosea	DAF-16↑	+15%	+12%	[25]
Plant extract	Mixture	Turkish medicinal plants	ND	+24%		[123]
Plumbagin		*Plumbago zeylanica*	DAF-16↑, SKN-1↑	+12%	+13%	[18]
Polydatin		Grape	DAF-16↑, SOD-3↑	+31%		[124]
Polysaccharides	Polysaccharide	*A. membranaceus*	DAF-16↑	+20% (median)		[125]
Polysaccharides	Polysaccharide	*Auricularia auricula*	DAF-16↑, SKN-1↑, Sir-2.1	-18%	+22%	[126]
Polysaccharides	Polysaccharide	*Chlorophytum borivilianum*	ND	+23% (median)		[127]
Polysaccharides	Polysaccharide	*Cordyceps militaris*	ND	+17%		[128]
Polysaccharides	Polysaccharide	*Lentinula edodes*	ND	+11%		[128]
Polysaccharides (lentinan)	Polysaccharide	*Panax notoginseng*	SOD↑, catalase↑, MDA↓	+21%		[129]
Polysaccharides	Polysaccharide	*G. lucidum*	DAF-16↑, autophagy↑	+44% (median)		[130], unpublished data
Polysaccharides	Polysaccharide	*Rehmannia glutinosa*	DAF-16↑	ND		[131]
Polyphenols	Polyphenol	Apple	Sir-2.1	+12%		[132]
Polyphenols	Polyphenol	Blueberry	ROS↓, OSR-1, SEK-1↑	+28%	+14%	[133]
Polyphenols	Polyphenol	Cocoa	DAF-16↑, Sir-2.1↑	+17% (median)		[134]
Quercetin	Flavonoid	Vegetables	AGE-1, DAF-2, DAF-16↑, SEK-1↑	+15%	+18%	[54, 93, 94, 135-138]
Quercetin-3-O-glicoside	Flavonoid glycoside	Vegetables	ND	+23%	+7%	[139]
Quinic acid	Polyol	*Uncaria tomentosa*	DAF-16↑, SOD-3↑	+7%		[140]
TABLE 1 (continued). Examples of naturally-occurring substances and related pharmaceutical drugs that extend C. elegans lifespan.

Substance	Chemical Class	Source	Mechanism (or Gene Involved)	Mean Lifespan	Maximum Lifespan	Ref.
Reserpine	Alkaloid	Indian snakroot, anti-hypertensive drug	Stress tolerance↑	+31%	[141]	
Resveratrol	Stilbenoid	Red wine, dietary supplement	Sir-2.1, autophagy↑	+18%	[142-147]	
Rosmarinic acid	Polyphenol	R. officinalis	DAF-16↑, SOD-1↑, SIR-1↑	+63%	[54,148]	
Royal jelly	Mixture	Dietary supplement	DAF-16↑	+9%	[91]	
S-allyl mercaptocysteine	Organosulfur	Garlic	SKN-1↑	+17%	[149]	
S-allyl mercaptocysteine	Organosulfur	Garlic	SKN-1↑	+21%	[149]	
Spermidine	Polyamine	Natto, mushrooms	Autophagy↑	+15%	[150]	
Silymarin	Flavonolignan	Milk thistle	DAF-16↑, SOD-3↑, ROS↓	+18%	[151]	
Simvastatin	Lactone	Cholesterol lowering drug	ND	+13%	[97]	
Syringetin	Flavonoid	Sichuan pepper	DAF-16↑	+36%	[95]	
Tamarixetin	Flavonoid	G. biloba	ROS↓	+29% (median)	[93,116]	
Tambulin	Flavonoid	Zanthoxyllum aramatum	DAF-16↑, SOD-1↑, SOD-3↑, ROS↓	+17%	[152]	
Tannic acid	Polyphenol	Plants	SEK-1↑	+19%	[62,153]	
Taurine	Amino sulfonic acid	Dietary supplement	ND	+11%	[154]	
Theanine	Amino acid	Tea, dietary supplement	ND	+14%	[154,155]	
Theophylline	Alkaloid	Coffee	ROS↓	+21%	[19]	
Tocotrienols	Tocopherol	Fruits, vegetables	ROS↓	+20%	[156]	
Tomatidine	Alkaloid	Unripe tomato	SKN-1↑	+7%	[157]	
Trehalose	Disaccharide	Vegetables, mushrooms	DAF-2	+30%	[158]	
Triptolide	Terpenoid	T. wilfordii	SOD-3↑, 16.2↑, ROS↓	+20%	+16%	[159]
Ursolic acid	Terpenoid	Plants	SKN-1↑	+31%	[160]	

The "Mechanism" column displays modulation of specific cellular components (e.g., DAF-16↑, SOD-1↑, ROS↓) or involvement of particular genes, proteins and enzymes (e.g., DAF-2, SIR-1, Sir-2.1). In the "Lifespan" column, the parentheses indicate that lifespan assays were performed in the presence of cellular stress such as high glucose, heat or paraquat; in some studies, extension of "median" lifespan was reported. Only the highest increase in mean, median or maximum lifespan is shown. Abbreviations: AAK-2, S’ adenosine-monophosphate-activated protein kinase catalytic subunit alpha 2; AGE-1, phosphatidylinositol 3-kinase age 1; AGES, advanced glycation endproducts; AMPK, S’-adenosine-monophosphate-activated protein kinase; CBP-1, calcineurin-binding protein-1; DAF, abnormal dauer formation protein; EGC, epigallocatechin gallate; FOX, forkhead box; GLP-1, abnormal germ line proliferation; HSF-1, heat shock factor 1; HSP, heat-shock protein; MDA, malondialdehyde; ND, not determined; NGDA, nordihydroguaiaretic acid; OSR-1, odd-skipped-related protein-1; ROS, reactive oxygen species; Sir, sirtuin; SKN-1, skinhead protein 1; SOD, superoxide dismutase; TOR, target of rapamycin; UPRSM, mitochondrial unfolded protein response.

However, several lines of evidence indicate that these molecules may act in other ways, notably by inducing stress resistance and anti-aging pathways [5, 6]. Accordingly, the antioxidant properties of phytochemicals in vitro do not correlate with anti-aging effects in C. elegans [17]. Moreover, some phytochemicals can, instead, extend C. elegans lifespan by inducing ROS formation, which in turn leads to expression of SKN-1 and antioxidant enzymes that protect from oxidative stress by inactivating ROS [18]. For example, theophylline, a methylxanthine compound found in cocoa, chocolate, tea and guarana, slightly increases ROS levels in C. elegans, which prolongs lifespan and increases resistance to the ROS-producer juglone [19]. Plant molecules that induce ROS formation may activate c-Jun N-terminal kinase 1 (JNK-1) and DAF-16 (Figure 2). Other phytochemicals act-
vate SKN-1 and lead to reduction of ROS in a similar manner (Table 1).

While several plant-derived compounds extend lifespan in nematodes, conflicting results have been obtained in some cases, possibly due to differences in study design or experimental conditions. For instance, the Caenorhabditis Intervention Testing Program, which aims to identify anti-aging compounds that prolong lifespan in genetically diverse cohorts of C. elegans, reported that aspirin does not extend lifespan [20], contradicting the results of previous studies [21, 22].

LIFESPAN EXTENSION OCCURS VIA HORMESIS

It has been proposed that many molecules derived from plants and fungi induce stress resistance and defense mechanisms via hormesis, i.e., which posits that cellular stress that is detrimental at high intensity can produce health benefits at low intensity [5, 6, 23]. By activating autophagy, mitochondrial biogenesis and expression of antioxidant and detoxifying enzymes, plant and fungal products reduce cellular damage and improve cellular functions, thus reducing aging and extending longevity [6]. This mechanism is consistent with the concept that, under conditions of stress such as CR, the organism allocates more energy for resistance and survival, instead of growth and reproduction [24].

The hormetic dose-dependence is observed in several studies listed in Table 1. For example, treatment of C. elegans with an extract of Siberian ginseng (Eleutherococcus senticosus) extends mean lifespan by 5% at low dose (100 μg/ml) and by 16% at intermediate dose (250 μg/ml), whereas the same extract reduces mean lifespan by 23% at high dose (2,500 μg/ml) [25]. Similar hormetic dose-responses involving lifespan extension at low doses and

FIGURE 2: Aging-related pathways modulated by plant and fungal molecules in C. elegans. Plant and fungal molecules extend nematode lifespan by inducing the formation of ROS, by activating AAK-2/AMPK, or by inhibiting the insulin or TOR pathway. General cellular pathways are shown here, but variations may occur between cells of different tissues. Human protein homologs are given in green. Abbreviations: AGE-1, phosphatidylinositol 3-kinase age 1; AMP, adenosine monophosphate; AAT, adenosine triphosphate; AAK-2, S' adenosine-monophosphate-activated protein kinase catalytic subunit alpha 2; AMPK, S' adenosine-monophosphate-activated protein kinase; CAT, catalase; DAF, abnormal dauer formation protein; FOX, forkhead box; HLH-30, basic helix-loop-helix protein 30; HSF-1, heat-shock factor 1; HSPs, heat-shock proteins; IGF-1, insulin-like growth factor 1; IGF-1R, insulin-like growth factor 1 receptor; IR, insulin receptor; JNK, c-Jun N-terminal kinase; mTOR, mammalian target of rapamycin; Nrf, nuclear factor erythroid 2-related factor; PDK-1, 3' phosphoinositide-dependent protein kinase 1; PHA-4, defective pharyngeal development protein 4; PI3K, phosphoinositol 3-kinase; ROS, reactive oxygen species; SKN-1, skinhead 1; SOD, superoxide dismutase; TFEB, HLH transcription factor EB; TOR, target of rapamycin.
lifespan shortening at high doses were obtained for plant extracts of *Rhodiola rosea* [25] and mistletoe [26], and for the tea polyphenol epigallocatechin gallate (EGCG) [27], to name a few. However, this dose dependence has been largely overlooked in many studies, while in other cases, a relatively narrow range of concentrations tested may have prevented the observation of hormetic dose-responses.

Another observation suggesting that plant and fungal compounds extend lifespan via hormesis is the fact that stress resistance pathways are activated in the treated worms. Thus, many plant and fungal compounds that include 4,4′-dimethoxychalcone, glucosamine, nordihydroguaiaretic acid (NDGA), resveratrol and spermidine extend the lifespan of *C. elegans* by activating autophagy (Table 1 and Figure 2), which in itself is a typical cellular response to stress [6, 28]. We also observed that polysaccharides isolated from the medicinal fungus *G. lucidum* extend the lifespan of *C. elegans* by inducing autophagy (unpublished data). In addition, several plant and fungal products increase the levels of HSPs and antioxidant and detoxifying enzymes (Table 1), reflecting a cellular response that aims to maintain homeostasis in response to stress.

Plant and fungal compounds can also induce mitochondrial biogenesis via a process referred to as “mitohormesis” [29]. High levels of ROS usually induce cellular damage, but as mentioned above some phytochemicals can induce the formation of low levels of ROS which in turn induce stress resistance mechanisms. In this case, cells respond by forming new mitochondria which in turn may improve cellular function and longevity. Examples of natural compounds that act this way in nematodes include EGCG [27] and glucosamine [30] (Table 1). Of note, excess intake of antioxidants such as vitamins C and E may reduce the health benefits of anti-aging interventions like exercise in humans by preventing mitohormesis [29].

In the studies consulted, plant and fungal extracts and molecules extend mean or median lifespan of nematodes by an average of 4 to 63% (Table 1). These lifespan extensions are consistent with the hormetic effects observed in a large number of studies reporting the responses of microbes, plants and animals to various forms of biological stress, in which maximum effects of 20–90% above control were reported [31]. While hormetic responses may be relatively modest in magnitude, they are nevertheless highly significant in view of their overall impact on health and longevity.

Of note, only some plant or fungal substances increase maximum lifespan, producing increases ranging from 7 to 68% (Table 1). While a description of the effects on maximum lifespan may have been omitted in some studies, this observation nonetheless suggests that the treatments may reduce the number of deaths in adult worms at some point in time but fail to extend the lifespan of old worms. Given that hormetic effects have been attributed to an overcompensation of homeostasis-regulating mechanisms and may thus rely on the capacity to maintain homeostasis [32], the absence of effects on maximum lifespan in some studies may indicate that very old individuals are unable to maintain homeostasis in response to biological stress, possibly due to a loss of resilience. Consistent with this possibility, feeding *C. elegans* with metformin late in life produces toxic effects and reduces lifespan by exacerbating age-related mitochondrial dysfunction [33], unlike the lifespan-enhancing effects of metformin seen in younger worms. Similarly, the lifespan-extension effects of EGCG decline with age [27]. This indicates that CR mimetics—and possibly other anti-aging interventions that work through hormesis—may be ineffective and even detrimental in very old individuals.

EFFECTS OF NATURAL PRODUCTS ON HEALTHSPAN VIA THE GUT MICROBIOTA

While studies in *C. elegans* have focused on extension of lifespan, many reports showed that natural substances that extend lifespan also produce beneficial effects on healthspan. For instance, plant-derived polyphenols such as chlorogenic acid, which is found in vegetables and coffee, improve insulin sensitivity and mobility in the treated worms [34]. Similarly, carnosic acid, a diterpene compound isolated from rosemary (*Rosmarinus officinalis*), improves mobility and aging-related pigmentation and neurodegeneration in nematodes [35]. These observations are consistent with the view that interventions that prolong lifespan may also improve physiological functions and reduce development of chronic disease.

Recent studies suggest that some of the beneficial effects on health and longevity in nematodes may take place via modulation of the gut microbiota. A key study showed that *Escherichia coli* mutants deficient in some biochemical components can extend nematode lifespan [36]. This study reported that production of the polysaccharide colanic acid by gut bacteria can extend lifespan and reduce age-related pathologies by inducing the unfolded protein response in the host. Similarly, metformin can extend lifespan and regulate host lipid metabolism via production of the metabolite agmatine by the gut microbiota [37]. Other studies showed that a strain of the probiotic *Lactobacillus rhamnosus* [38] or *Weissella* bacteria activated the DAF-16 pathway and extended *C. elegans* lifespan compared to feeding with *E. coli* [39]. However, these results may also be partially explained by the observation that *E. coli* becomes pathogenic for old worms and feeding with less pathogenic bacteria may therefore extend nematode lifespan [40]. Given that major differences exist between gut microbiota composition in *C. elegans* and humans—including the fact that the gut microbiota in nematodes studied *in vitro* usually consists of a single bacterial species provided as food—further studies are needed to assess the relevance of these observations in humans.

CHALLENGES AND OPPORTUNITIES

Our overview indicates that many plant and fruit extracts derived from blueberries to garlic, as well as plant molecules such as chlorophyll and caffeine, extend the lifespan of *C. elegans* (Table 1). Yet, many factors may partially limit the relevance of these findings for humans, including major differences in physiology and metabolism. Health and lon-

Table 1

Compound	Effect on Lifespan
NDGA	Extends lifespan by activating autophagy
Glucosamine	Extends lifespan via induction of autophagy
EGCG	Induces biogenesis of new mitochondria
Rhodiola rosea	Extends lifespan
gevity in humans depend on complex interactions between genetic background, lifestyle and diet, which can hardly be reproduced in experimental settings. It is likely that common lifestyle habits such as overeating, smoking, sedentariness, alcohol intake, stress and poor sleep, as well as environmental factors such as pollution, ultraviolet light and toxins, may reduce, suppress or even reverse the beneficial effects of phytochemicals and CR mimetics on health and longevity. Moreover, the appropriate concentrations and treatment schedule required to produce optimal health benefits remains largely unknown. The observations reported here also suggest that CR mimetics may become ineffective and even detrimental at very old age, therefore requiring the identification of optimal doses for older individuals and the development of new ways to monitor homeostasis and resilience.

Nonetheless, several epidemiological studies suggest that some of the plant-derived molecules described here may reduce human mortality and chronic diseases in humans. For instance, individuals who regularly consume coffee—arguably the highest source of polyphenols and caffeine in the human diet—live longer and show a reduced incidence of cancer, cardiovascular disease and Alzheimer’s disease compared with non-consumers [41, 42]. Similarly, people who regularly take metformin [43] or glucosamine [44, 45], as well as those who have a higher dietary intake of spermidine [46], live longer than non-users or controls. Finally, many CR mimetics derived from natural sources and studied in C. elegans, including quercetin, resveratrol and spermidine, have shown promising results in clinical trials [8]. It thus becomes a matter of when and how—as opposed to if—these plant and fungal molecules can be used in humans.

ACKNOWLEDGMENTS

We thank Dr. Szecheng J. Lo at Chang Gung University for helpful discussions and for providing reagents to study the effects of natural products in C. elegans. The authors’ work is supported by Primordia Institute of New Sciences and Medicine, by grant MOST 109-2311-B-182-001-MY2 from Taiwan’s Ministry of Science and Technology, and grant NMRPD1K0031 from Chang Gung University.

CONFLICT OF INTEREST

Y-F.K. is president of Chang Gung Biotechnology. J.D.Y. is Chairman of the Board of Chang Gung Biotechnology. The authors have filed patents related to the preparation and use of dietary supplements and probiotics.

COPYRIGHT

© 2020 Martel et al. This is an open-access article released under the terms of the Creative Commons Attribution (CC BY) license, which allows the unrestricted use, distribution, and reproduction in any medium, provided the original author and source are acknowledged.

Please cite this article as: Jan Martel, Cheng-Yeu Wu, Hsin-Hsin Peng, Yun-Fei Ko, Hung-Chi Yang, John D. Young and David M. Ojcius (2020). Plant and fungal products that extend lifespan in Caenorhabditis elegans. Microbial Cell 7(10): 255–269. doi: 10.15698/mic2020.10.731
Natural products that extend lifespan in *Caenorhabditis elegans*

14. Khan F, Jain S, Oloketyui SF (2018). Bacteria and bacterial products: Foe and friends to *Caenorhabditis elegans*. *Microbiol Res* 215: 102–113. doi: 10.1016/j.micres.2018.06.012

15. Uno M, Nishida E (2016). Lifespan-regulating genes in *C. elegans*. *NPJ Aging Mech Dis* 2(2): 1610. doi: 10.1038/npjamd.2016.10

16. Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O, Chang JT, Gelino S, Ong B, Davis AE, Iraoqui JE, Dillin A, Hanks M (2013). The TFEB orthologue HUL-30 regulates autophagy and modulates longevity in *Caenorhabditis elegans*. *Nat Commun* 4: 2267. doi: 10.1038/ncomms3267

17. Xue YL, Ahiko T, Miyakawa T, Amino H, Hu F, Furihata K, Kita S, Shirasawa T, Sawano Y, Tanokura M (2011). Isolation and *Caenorhabditis elegans* lifespan assay of flavonoids from onion. *J Agric Food Chem* 59(11): 5927–5934. doi: 10.1021/jf104798n

18. Hunt PR, Son TG, Wilson MA, Yu GS, Wood WH, Zhang Y, Becker KG, Greig NH, Mattson MP, Camandola S, Wolkow CA (2011). Extension of lifespan in *C. elegans* by naphthoquinones that act through stress hormesis mechanisms. *PLoS ONE* 6(7): e21922. doi: 10.1371/journal.pone.0021922

19. Li H, Roxo M, Cheng X, Zhang S, Cheng H, Wink M (2019). Pro-oxidant and lifespan extension effects of caffeine and related methykanthelines in *Caenorhabditis elegans*. *Food Chem* X 1: 100005. doi: 10.1016/j.fochx.2019.100005

20. Lucanic M, Plummer WT, Chen E, Lin CJ, Neve IAA, He J, Tay LWR, Sowa MS, Sivaramakrishnan P (2014). Estimating the range of the maximum hormetic stimulatory response. *Environ Res* 170: 337–343. doi: 10.1016/enures.2018.12.020

21. Calabrese EJ (2001). Overcompensation stimulation: a mechanism for hormetic effects. *Crit Rev Toxicol* 31: 425–470. doi: 10.1080/10528930110063779

22. Espada L, Dakhovnik A, Chaudhari P, Martirosyan A, Miek L, Poljiezhavia T, Schaub Y, Nair A, Döring N, Rahnis N, Wehr O, Koebel A, Kirkpatrick J, Ori A, Ermolaeva MA (2019). Late life metformin treatment limits cell survival and shortens lifespan by triggering an aging-associated failure of energy metabolism. *bioRxiv*. doi: doi.org/10.1101/863357

23. Zheng SQ, Huang XB, Xing TK, Ding AJ, Wu GS, Luo HR (2017). Chlorogenic acid extends the lifespan of *Caenorhabditis elegans* via insulin/IGF-1 signaling pathway. *J Gerontol A Biol Sci Med Sci* 72(4): 464–472. doi: 10.1093/gerona/glw105

24. Kirkwood TL, Kapahi P, Stanley DP (2005). Stress responses, hormetic phytochemicals and vitagenes in aging and extended lifespan. *Cell* 169(7): 1249–1262. doi: 10.1016/j.cell.2017.05.036

25. Pryor R, Norvaisas P, Marinos G, Best L, Thingholm LB, Quintaneiro N, Sjöqvist A, Du G, Wang J, Herman C, Wang MC (2017). Microbial genetic composition tunes host longevity. *Cell* 178(6): 1299–1312. doi: 10.1016/j.cell.2019.08.003

26. Calabrese EJ, Agathokleous E, Kozumbo WJ, Leonard D (2019). Cryptography reveals the spectrum of hormetic responses. *Nat Cell Biol* 21: 16/FOXO in *C. elegans*. *Nat Commun* 10: 462. doi: 10.1038/s41467-019-12253-y

27. Xiong LG, Chen Y, Jiang W, Geng YS, Huang JA, Liu ZH (2018). Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in *Caenorhabditis elegans*. *Redox Biol* 14: 305–315. doi: 10.1016/j.redox.2017.09.019

28. Martel J, Ojcius DM, Ko YF, Young JD (2020). Phytochemicals as prebiotics and biological stress inducers. *Trends Biochem Sci* 45(6): 462–471. doi: 10.1016/tibs.2020.02.008

29. Ristow M, Schmeisser K (2014). Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). *Dose Response* 12(2): 288–341. doi: 10.2203/dose-response.13-035.Ristow

30. Weiner S, Sibieys J, Kuhlow M, Groth M, Sibieys J, Mansfeld J, Meryy TL, Dubuis S, Laube B, Pfiffer AF, Schulz TJ, Guthke R, Platter M, Zamboni N, Zarse K, Ristow M (2014). D-Glucosamine supplementation extends life span of nematodes and of ageing mice. *Nat Commun* 5: 3563. doi: 10.1038/ncomms4563

31. Calabrese EJ, Agathokleous E, Kozumbo WJ, Stanek EJ, Leonard D (2019). Estimating the range of the maximum hormetic stimulatory response. *Environ Res* 170: 337–343. doi: 10.1016/enures.2018.12.020

32. Calabrese EJ (2001). Overcompensation stimulation: a mechanism for hormetic effects. *Crit Rev Toxicol* 31: 425–470. doi: 10.1080/10528930110063779
43. Bannister CA, Holden SE, Jenkins-Jones S, Morgan CL, Halcox JP, Schernthaner G, Mukherjee J, Currie CJ (2014). Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab 16(11): 1165–1173. doi: 10.1111/dom.12354

44. Pocobelli G, Kristal AR, Patterson RE, Potter JD, Lampe JW, Kolar A, Evans I, White E (2010). Total mortality risk in relation to use of less common dietary supplements. Am J Clin Nutr 91(6): 1791–1800. doi: 10.3945/ajcn.2009.28639

45. Bell GA, Kantor ED, Lampe JW, Shen DD, White E (2012). Use of glucosamine and chondroitin in relation to mortality. Eur J Epidemiol 27(8): 593–603. doi: 10.1007/s10654-012-9714-6

46. Kiechl S, Pechlaner R, Willeit P, Notdurf ter M, Paulweber B, Willeit K, Werner P, Ruckenstuhl C, Igliesed B, Weger S, Mainhofer B, Gartner M, Kedeno L, Chmelikova M, Stekovic S, Stuppern H, Oberhollenzer F, Kroemer G, Mayr M, Eisenberg T, Humpf HU, Watjen W (2018). Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr 108: 371–380. doi: 10.1093/ajcn/nqy102

47. Senthil KK, Gokila VM, Mau JL, Lin CC, Chu FH, Wei CC, Liao VH, Wang SY (2016). A steroid like phytochemical Atrin M is an anti-aging reagent that eliminates hyperglycemia-accelerated premature senescence in dermal fibroblasts by direct activation of Nrf2 and SIRT-1. Oncotarget 7(9): 62836–62861. doi: 10.18632/oncotarget.11229

48. Chen W, Sudji IR, Wang E, Joubert E, van Wyk BE, Wink M (2013). Amiloraic effect of aspalathin from rooibos (Aspalathus linearis) on acute oxidative stress in Caenorhabditis elegans. Phytomedicine 20(3–4): 380–386. doi: 10.1016/j.phymed.2012.10.006

49. Havermann S, Rohrig R, Chovolou Y, Humpf HU, Watjen W (2013). Molecular effects of baicalein in Hct116 cells and Caenorhabditis elegans: activation of the Nrf2 signaling pathway and prolongation of lifespan. J Agric Food Chem 61(9): 2158–2164. doi: 10.1021/jf304553g

50. Havermann S, Humpf HU, Watjen W (2016). Baicalein modulates stress-resistance and life span in C. elegans via SKN-1 but not DAF-16. Fitoterapia 113: 123–127. doi: 10.1016/j.fitote.2016.06.018

51. Guerrero-Rubio MA, Hernandez-Garcia S, Garcia-Carmona F, Gandia-Herrero F (2019). Extension of life-span using a RNAi model and in vivo antioxidant effect of Opuntia fruit extracts and pure betalains in Caenorhabditis elegans. Food Chem 274: 840–847. doi: 10.1016/j.foodchem.2018.09.067

52. Rathor L, Pandey R (2018). Age-induced diminution of free radicals by Boeravinone B in Caenorhabditis elegans. Exp Gerontol 111: 94–106. doi: 10.1016/j.exger.2018.07.005

53. Lee EB, Xing MM, Kim DK (2017). Lifespan-extending and stress resistance properties of brazilin from Coesalpinia sappan in Caenorhabditis elegans. Arch Pharm Res 40(7): 825–835. doi: 10.1007/s12277-017-0920-3

54. Pietsch K, Saul N, Chakraborti S, Sturzenbaum SR, Menzel R, Steinberg CE (2011). Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. Biogerontology 12(4): 329–347. doi: 10.1007/s10522-011-9334-7

55. Havermann S, Chovolou Y, Humpf HU, Watjen W (2014). Caffeic acid phenyletherlester increases stress resistance and enhances lifespan in Caenorhabditis elegans by modulation of the insulin-like DAF-16 signalling pathway. PLoS ONE 9(6): e100256. doi: 10.1371/journal.pone.0100256

56. Lublin A, Isoda F, Patel H, Yen K, Nguyen L, Hajie D, Schwartz M, Mobbs C (2011). FDA-approved drugs that protect mammalian neurons from glucose toxicity slow aging dependent on cbp and protect against proteotoxicity. PLoS ONE 6(11): e27762. doi: 10.1371/journal.pone.0027762

57. Suphin GL, Bishop E, Yanois ME, Moller RM, Kaeberlein M (2012). Caffeine extends life span, improves healthspan, and delays age-associated pathology in Caenorhabditis elegans. Longev Healthspan 1: 9. doi: 10.1186/2046-2395-1-9

58. Bridi JC, Barros AG, Sampaio LR, Ferreira JC, Antunes Soares FA, Romano-Silva MA (2015). Lifespan extension induced by caffeine in Caenorhabditis elegans is partially dependent on adenosine signaling. Front Aging Neurosci 7: 220. doi: 10.3389/fnagi.2015.00220

59. Lu L, Zhao X, Zhang J, Li M, Qi Y, Zhou L (2017). Calycosin promotes lifespan in Caenorhabditis elegans through insulin signaling pathway via daf-16, age-1 and daf-2. J Biosci Bioeng 124(1): 1–7. doi: 10.1016/j.jbiosc.2017.02.021

60. Lin C, Zhang X, Xiao J, Zhong Q, Kuang Y, Cao Y, Chen Y (2019). Effects on longevity extension and mechanism of action of carnosic acid in Caenorhabditis elegans. Food Funct 10(3): 1398–1410. doi: 10.1039/c8fo02371a

61. Saul N, Pietsch K, Menzel R, Sturzenbaum SR, Steinberg CE (2009). Catechin induced longevity in C. elegans: from key regulator genes to disposable soma. Mech Ageing Dev 130(8): 477–486. doi: 10.1016/j.mado.2009.05.005

62. Saul N, Pietsch K, Sturzenbaum SR, Menzel R, Steinberg CE (2011). Diversity of polyphenol action in Caenorhabditis elegans: between toxicity and longevity. J Nat Prod 74(8): 1713–1720. doi: 10.1002/jnp.200011a

63. Jung SK, Alemán-Meza B, Riepe C, Zhong W (2014). QuantWorm: a comprehensive software package for Caenorhabditis elegans phenotypic assays. PLoS ONE 9(1): e84830. doi: 10.1371/journal.pone.0084830

64. Wang E, Wink M (2016). Chlorophyll enhances oxidative stress tolerance in Caenorhabditis elegans and extends its lifespan. PeerJ 4: e1879. doi: 10.7717/peerj.1879

65. Alavez S, Vantipalli MC, Zucker DJ, Klang IM, Lithgow GJ (2011). Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 472(7342): 226–229. doi: 10.1038/nature09873

66. Liao VH, Yu CW, Chu YJ, Li WH, Hsieh YC, Wang TT (2011). Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Ageing Dev 132(10): 480–487. doi: 10.1016/j.mado.2011.07.008

67. Kim YS, Han YT, Jeon H, Cha DS (2018). Antiaging properties of Damaurome D in Caenorhabditis elegans. J Pharm Pharmacol 70(10): 1423–1429. doi: 10.1111/jphp.12979

68. Kim J, Kang YG, Lee JY, Choi DH, Cho YU, Shin JM, Park JS, Lee JH, Kim WG, Seo DB, Lee TR, Miyamoto Y, No KT (2015). The natural phytochemical dehydroabiatic acid is an anti-aging reagent that mediates the direct activation of SIRT1. Mol Cell Endocrinol 412: 216–225. doi: 10.1016/j.mce.2015.05.006

69. Powolny AA, Singh SV, Melov S, Hubbard A, Fisher AL (2011). The gut bacterial diacyl triosylphosphate increases lifespan of C. elegans via skn-1 activation. Exp Gerontol 46(4): 441–452. doi: 10.1016/j.exger.2011.01.005

70. Shanmugam G, Mohankumar A, Kalaiselvi D, Nivitha S, Murugesh E, Shanmughavel P, Sundararaj P (2017). Diosgenin a phytosterol substitute for cholesterol, prolongs the lifespan and mitigates glucose toxicity via DAF-16/FOXO and GST-4 in Caenorhabditis elegans. Biomed Pharmacother 95: 1693–1703. doi: 10.1016/j.biopharma.2017.09.096

71. Carmona-Gutierrez D, Zimmermann A, Kainz K, Pietrocola F, Chen G, Maglioni S, Schiavi A, Nah J, Mertel S, Beuschel CB, Castoldi F, Sica
82. Wang H, Liu J, Li T, Liu RH (2018). Blueberry extract promotes longevity and stress tolerance via DAF-16 in *Caenorhabditis elegans*. *Food Funct* 9(10): 5273–5282. doi: 10.1039/c8fo01680a

83. Yan F, Chen Y, Azat R, Zheng X (2017). Mulberry anthocyanin extract ameliorates oxidative stress in HepG2 cells and prolongs the lifespan of *Caenorhabditis elegans* through MAPK and Nrf2 pathways. *Oxid Med Cell Longev* 2017: 7956158. doi: 10.1155/2017/7956158

84. Wang J, Deng N, Wang H, Li T, Chen L, Zheng B, Liu RH (2020). Effects of orange extracts on longevity, healthspan, and stress resistance in *Caenorhabditis elegans*. *Molecules* 25(2): 351. doi: 10.3390/molecules25020351
Natural products that extend lifespan in *C. elegans*

99. Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, Weinkove D, Schuster E, Greene ND, GEMS D (2013). Metformin retards aging in *C. elegans* by altering microbial folate and methionine metabolism. *Cell* 153(1): 228–239. doi: 10.1016/j.cell.2013.02.035

100. Chen J, Ou Y, Li Y, Hu S, Shao LW, Liu Y (2017). Metformin extends *C. elegans* lifespan through lysosomal pathway. *Elife* 6: doi: 10.7554/elife.31268

101. Shi YC, Pan TM, Liao VH (2016). Monascin from monascus-fermented products reduces oxidative stress and amyloid-beta toxicity via DAF-16/FOXO in *Caenorhabditis elegans*. *J Agric Food Chem* 64(38): 7114–7120. doi: 10.1021/acs.jafc.6b02779

102. Büchter C, Ackermann D, Havermann S, Honnen S, Chovolou Y, Fritz G, Kämppöter A, Watjen W (2013). Myricetin-mediated lifespan extension in *Caenorhabditis elegans* is modulated by DAF-16. *Int J Mol Sci* 14(6): 11895–11914. doi: 10.3390/ijms140611895

103. Jung HY, Lee D, Ryu HG, Choi BH, Go Y, Lee N, Son HG, Jeon J, Kim SH, Yoon JH, Park SM, Lee SV, Lee IK, Choi KY, Ryu SH, Nohara K, Yoo SH, Chen Z, Kim KT (2017). Myricetin improves endurance capacity and mitochondrial density by activating SIRT1 and PGC-1alpha. *Sci Rep* 7(1): 6237. doi: 10.1038/s41598-017-05303-2

104. Tezil T, Chamoli M, Ng CP, Simon RP, Butler VJ, Jung M, Anderson J, Kao AW, Verdin E (2019). Lifespan-increasing drug nordihydroguaiaretic acid inhibits p300 and activates autophagy. *NPJ Aging Mech Dis* 5: 7. doi: 10.1038/s41537-019-00337-7

105. Shamalnasab M, Gravel SP, St-Pierre J, Breton L, Jager S, Aguilaniu H (2018). A salicylic acid derivative extends the lifespan of *Caenorhabditis elegans* by activating autophagy and the mitochondrial unfolded protein response. *Aging Cell* 17(6): e12830. doi: 10.1111/ace.12830

106. Zhang J, Lu L, Zhou L (2019). Ginkgo biloba extract EGB 761 increases stress resistance and extends lifespan of *Caenorhabditis elegans*. *Cell Mol Biol (Noisy-le-grand)* 48(6): 725–731. PMID: 12396085

107. Kämppöter A, Pielarski T, Rongh R, Timmel C, Chovolou Y, Watjen W, Kahl R (2007). The *Ginkgo biloba* extract EGB761 reduces stress sensitivity, ROS accumulation and expression of catalase and glutathione S-transferase 4 in *Caenorhabditis elegans*. *Pharmacol Res* 55(2): 139–147. doi: 10.1016/j.phrs.2006.11.006

108. Duangjan C, Rangsinth P, Gu X, Zhang S, Wink M, Tencomnao T (2019). *Glochidion zeylanicum* leaf extracts exhibit lifespan extension and oxidative stress resistance properties in *Caenorhabditis elegans* via DAF-16/FoxO and SKN-1/Nrf2 signaling pathways. *Phytomedicine* 64: 153061. doi: 10.1016/j.phymed.2019.153061

109. Peixoto H, Roxo M, Rongh R, Richling E, Wang X, Wink M (2017). Anti-aging and antioxidant potential of *Paulinia cupana* var. sorbilis: *Findings in Caenorhabditis elegans* indicate a new utilization for roasted seeds of guarana. *Medicina* 4(3): 10.3390/medicines4030061

110. Koch K, Weidße N, Baier S, Buchter C, Watjen W (2020). *Hibiscus sabdariffa* L. extract prolongs lifespan and protects against amyloid-beta toxicity in *Caenorhabditis elegans*: involvement of the FoxO and Nrf2 orthologues DAF-16 and SKN-1. *Eur J Nutr* 59(1): 137–150. doi: 10.1007/s00394-019-01894-w

111. Yang ZZ, Yu YT, Lin HR, Liao DC, Cui KH, Wang HB (2018). *Lonicerajaponica* extends lifespan and healthspan in *Caenorhabditis elegans*. *Free Radic Biol Med* 129: 310–322. doi: 10.1016/j.freeradbiomed.2018.09.035

112. Jeon H, Cha DS (2016). Anti-aging properties of Ribes fasciculatum in *Caenorhabditis elegans*. *Chin J Nat Med* 14(5): 335–342. doi: 10.3724/SP.J.1009.2016.00335

113. Ergen N, Hosbas S, Deliorman Orhan D, Aslan M, Sezik E, Atalay A (2018). Evaluation of the lifespan extension effects of several Turkish medicinal plants in *Caenorhabditis elegans*. *Turk J Biol* 42(2): 163–173. doi: 10.3906/biy-1711-5

114. Wen H, Gao X, Qin J (2014). Probing the anti-aging role of polydatin in *Caenorhabditis elegans* on a chip. *Integr Biol* 6(1): 35–43. doi: 10.1016/j.cib.2014.01.019

115. Zhang H, Pan N, Xiong S, Zou S, Li H, Xiao L, Cao Z, Tunnacclife A, Huang Z (2012). Inhibition of polyglutamate-mediated proteotoxicity by *Astragalus membranaceus* polysaccharide through the DAF-16/FoxO and SKN-1/Nrf2 transcription factor in *Caenorhabditis elegans*. *Biochem J* 441(1): 417–424. doi: 10.1042/Bij20110621

116. Feng Z, Chen Y, Wang G, Feng T, Shen M, Xiao B, Gu J, Wang W, Li J, Zhang Y (2019). Evaluation of the antioxidant effects of acid hydrolysates from *Auricularia auricula* polysaccharides using a *Caenorhabditis elegans* model. *Food Funct* 10(9): 5531–5543. doi: 10.1039/c8fo02589d
127. Pannakal ST, Jager S, Duranton A, Tewari A, Saha S, Radhakrishnan A, Roy N, Kurtz JF, Fermas S, James D, Mellor J, Misra N, Breton L (2017). Longevity effect of a polysaccharide from Chlorophyllum boriillavum on Caenorhabditis elegans and Saccharomyces cerevisiae. PLoS ONE 12(7): e0179813. doi: 10.1371/journal.pone.0179813

128. Liu X, Huang Y, Chen Y, Cao Y (2016). Partial structural characterization, as well as immunomodulatory and anti-aging activities of CPF-22-22 polysaccharide from Cordyceps militaris. RSC Adv 6(106): 104094. doi: 10.1039/C6RA23612j

129. Feng S, Cheng H, Xu Z, Shen S, Yuan M, Liu J, Ding C (2015). Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans. Int J Biol Macromol 81: 188–194. doi: 10.1016/j.ijbiomac.2015.07.057

130. Chuang MH, Chiou SH, Huang CH, Yang WB, Wong CH (2009). The lifespan-promoting effect of acetic acid and Reishi polysaccharide. Bioorg Med Chem 17(22): 7831–7840. doi: 10.1016/j.bmc.2009.09.002

131. Yuan Y, Kang N, Li Q, Zhang Y, Liu Y, Tan P (2019). Study of the effect of neutral polysaccharides from Rehmannia glutinosa on lifespan of Caenorhabditis elegans. Molecules 24(24): 4592. doi: 10.3390/molecules24244592

132. Sunagawa T, Shimizu T, Kanda T, Tagashira M, Sami M, Shirasawa T (2011). Procyandins from apples (Malus pumila Mill.) extend the lifespan of Caenorhabditis elegans. Planta Med 77(2): 122–127. doi: 10.1055/c-0303-1290204

133. Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, Wolkow CA (2009). Flavonoids quercetin and rutin on stress resistance in the model Caenorhabditis elegans. J Agric Food Chem 57(5): 2077–2085. doi: 10.1021/jf9014217g

134. Kampköter A, Nikownikam CG, Zawraski RF, Timpel C, Chovolou Y, Watjen W, Kahl R (2007). Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicol 234[1–2]: 113–123. doi: 10.1016/j.tox.2007.02.006

135. Kampköter A, Timpel C, Zawraski RF, Ruhl S, Chovolou Y, Proksch P, Watjen W (2008). Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp Biochem Physiol B Biochem Mol Biol 149(2): 314–323. doi: 10.1016/j.cbpb.2007.10.004

136. Saul N, Pietsch K, Menzel R, Steinberg CE (2008). Quercetin-mediated longevity in Caenorhabditis elegans: is DAF-16 involved? Mech Ageing Dev 129(10): 611–613. doi: 10.1016/j.mad.2008.07.001

137. Pietsch K, Saul N, Menzel R, Surtenbaum SR, Steinberg CE (2009). Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and uncon-43. Biogerontol 10(5): 565–578. doi: 10.1007/s10522-008-9199-6

138. Dueñas M, Surco-Lao F, Gonzalez-Manzano S, Gonzalez-Paramas AM, Gomez-Orte E, Cabello J, Santos-Buelga C (2013). Deglycosylation is a key step in biotransformation and lifespan effects of quercetin-3-O-glucoside in Caenorhabditis elegans. Pharmacol Res 76: 41–48. doi: 10.1016/j.phrs.2013.07.001

139. Zhang L, Zhang J, Zhao B, Zhao-Wilson X (2012). Quinic acid could be a potential rejuvenating natural compound by improving survival of Caenorhabditis elegans under deleterious conditions. Rejuvenation Res 15(6): 573–583. doi: 10.1089/rrj.2012.1342

140. Srivastava D, Arya U, Soundaranjan T, Dwivedi H, Kumar S, Subramaniam JR (2008). Resperine can confer stress tolerance and lifespan extension in the nematode C. elegans. Biogerontology 9(5): 309–316. doi: 10.1007/s10522-008-9139-5

141. Wood JG, Rogina B, Lauv S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004). Siruin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000): 668–689. doi: 10.1038/nature02789

142. Viswanathan M, Kim SK, Berdichevsky A, Guarente L (2005). A role for Sir-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9(5): 605–615. doi: 10.1016/j.devcel.2005.09.017

143. Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L (2007). Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev 128(10): 546–552. doi: 10.1016/j.mad.2007.07.007

144. Gruber J, Tang SY, Hallwell B (2007). Evidence for a trade-off between survival and fitness caused by resveratrol treatment of Caenorhabditis elegans. Ann N Y Acad Sci 1110: 530–542. doi: 10.1196/annals.1395.059

145. Morselli E, Mairi MC, Markaki M, Megalou E, Pasparaki A, Paliarakis K, Criollo A, Galuzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010). Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 1(1): e10. doi: 10.1038/cddis.2009.8

146. Banse SA, Lucanic M, Sedere CA, Coleman-Hubbert AL, Plummer WT, Chen E, Kish JL, Hall D, Onken B, Presley MP, Jones EG, Blue BW, Garrett T, Abbott M, Xue J, Guo S, Johnson E, Foulger AC, Chomali M, Falkowski R, Melentijevic J, Harinath G, Huyhn P, Patel S, Edgar D, Jarrett CM, Guo M, Kapahi P, Ligthow LG, Driscoll M, et al. (2019). Automated lifespan determination across Caenorhabditis strains and species reveals assay-specific effects of chemical interventions. GeroScience 41(6): 945–960. doi: 10.1038/s41337-019-00108-9

147. Lin C, Xiao J, Yi X, Zhang X, Zhong Q, Zheng H, Cao Y, Chen Y (2019). Rosmarinic acid improved antioxidant properties and healthspan via the IIS and MAPK pathways in Caenorhabditis elegans. Biofactors 45(5): 774–787. doi: 10.1002/biof.1536

148. Ogawa T, Kedera Y, Hirata D, Blackwell TK, Mizunuma M (2016). Natural thioallyl compounds increase oxidative stress resistance and lifespan in Caenorhabditis elegans by modulating SKN-1/Nrf. Sci Rep 6: 21611. doi: 10.1038/srep21611

149. Eisenberg T, Knauer H, Schauer A, Buttnar S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroder S, Magnes C, Antonacci L, Fusli H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren H, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich KU, Sinner F, Tavernarakis N, Minos M, Kroemer G, Madeo F (2009). Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11): 1305–1314. doi: 10.1038/ncb1975

150. Srivastava S, Sammi SR, Laxman TS, Pant A, Nagar A, Trivedi S, Bhatta RS, Tandon S, Pandey R (2017). Silymarin promotes longevity and alleviates Parkinson’s associated pathologies in Caenorhabditis elegans. J Funct Foods 31: 32–43. doi: 10.1016/j.jff.2017.01.029

151. Pandey T, Sammi SR, Nooreen Z, Mishra A, Ahmad A, Bhatta RS, Pandey R (2019). Anti-aging and anti-Parkinsonian effects of natural flavonol, tambulin from Zanthoxylum armatum promotes longevity in Caenorhabditis elegans. Exp Gerontol 120: 50–61. doi: 10.1016/j.exger.2019.02.016

152. Saul N, Pietsch K, Menzel R, Surtenbaum SR, Steinberg CE (2010). The longevity effect of tannic acid in Caenorhabditis elegans: disposable soma meets hordes. J Gerontol A Biol Sci Med Sci 65(6): 626–635. doi: 10.1093/gerona/glq051
154. Edwards C, Canfield J, Copes N, Brito A, Rehan M, Lipps D, Brunquell J, Westerheide SD, Bradshaw PC (2015). Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC Genet 16: 8. doi: 10.1186/s12863-015-0167-2

155. Zarse K, Jabin S, Ristow M (2012). L-Theanine extends lifespan of adult Caenorhabditis elegans. Eur J Nutr 51(6): 765–768. doi: 10.1007/s00394-012-0341-5

156. Adachi H, Ishii N (2000). Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 55(6): B280–B285. doi: 10.1093/gerona/55.6.b280

157. Fang EF, Waltz TB, Kassahun H, Lu Q, Kerr JS, Morevati M, Fivenson EM, Wollman BN, Marosi K, Wilson MA, Iser WB, Eckley DM, Zhang Y, Lehrmann E, Goldberg IG, Scheibye-Knudsen M, Mattson MP, Nilsen H, Bohr VA, Becker KG (2017). Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Sci Rep 7: 46208. doi: 10.1038/srep46208

158. Honda Y, Tanaka M, Honda S (2010). Trehalose extends longevity in the nematode Caenorhabditis elegans. Aging Cell 9(4): 558–569. doi: 10.1111/j.1474-9726.2010.00582.x

159. Kim SJ, Beak SM, Park SK (2017). Supplementation with triptolide increases resistance to environmental stressors and lifespan in C. elegans. J Food Sci 82(6): 1484–1490. doi: 10.1111/1750-3841.13720

160. Negi H, Saikia SK, Pandey R (2017). 3beta-Hydroxy-urs-12-en-28-oic acid modulates dietary restriction mediated longevity and ameliorates toxic protein aggregation in C. elegans. J Gerontol A Biol Sci Med Sci 72(12): 1614–1619. doi: 10.1093/gerona/glx118

161. Tiku V, Jain C, Raz Y, Nakamura S, Heestand B, Liu W, Spath M, Suchiman HED, Muller RU, Slagboom PE, Partridge L, Antebi A (2017). Small nucleoli are a cellular hallmark of longevity. Nat Commun 8: 16083. doi: 10.1038/ncomms16083