Thermal aspects of the ABJM theory: currents and condensations

Dongsu Bak1 and Sangheon Yun2

1Physics Department, University of Seoul, Seoul 130-743, Korea
2Korea Institute for Advanced Study, Hoegiro 87, Dondaemun-gu, Seoul 151-747, Korea

E-mail: dsbak@uos.ac.kr and sanhan@kias.re.kr

Received 7 April 2010, in final form 8 August 2010
Published 28 September 2010
Online at stacks.iop.org/CQG/27/215011

Abstract
To study thermal aspects of the ABJM theory in the strongly coupled regime, we carry out the \mathbb{CP}^3 invariant dimensional reduction of the type IIA supergravity down to four dimensions. We then investigate zero and finite temperature responses of the operators which are dual to the AdS scalar and vector fields. Two scalar operators are shown to have finite-temperature condensations by coupling of the constant source term. The currents dual to the massless and massive gauge fields are not induced by coupling of the constant boundary vector potential, which implies that the phase described by the black brane background is not superconducting. We also discuss a generalization to charged (dyonic) black holes.

PACS numbers: 11.25.Tq, 11.25.−w, 04.50.−h

1. Introduction
There has been remarkable progress in the understanding of the AdS/CFT correspondence between string theories and conformal field theories [1–3]. Type IIB string theory on AdS$_5 \times S^5$ is dual to the four-dimensional $\mathcal{N} = 4$ super Yang–Mills theory[1], which is by now tested to a convincing level. Thus, one may now apply this duality to explore some new physics or to gain some precise understanding of the strongly coupled regime of field theories where our direct field-theoretic understanding is limited. The Janus correspondence as a controlled deformation of AdS$_5$/CFT$_4$[4] is one such example, which leads to interesting predictions for the interface conformal field theories [5]. It also serves as an excellent toy model for understanding the strongly coupled aspects of the real world QCD at finite temperature. The Debye correlation length and the thermalization time scale of finite temperature $\mathcal{N} = 4$ super Yang–Mills theory in the strongly coupled regime are examples of such toy application [6, 7].
The type IIA counterpart has been proposed recently, in which the ABJM theory is three-dimensional $\mathcal{N} = 6 U(N) \times \overline{U}(N)$ superconformal Chern–Simons theory with level $(k, -k)$ and proposed to be dual to the type IIA superstring theory on the $\text{AdS}_4 \times \mathbb{CP}_3$ background [8]. Some test of this new duality has been carried out based on the integrabilities with indication of some additional structure [9, 10]. It is based on the large N limit where one is taking $N, k \to \infty$ while holding the ’t Hooft coupling $\lambda = \frac{N}{k}$ to be fixed. If λ is small, the superconformal Chern–Simons theory can be studied by perturbative analysis while, for the strongly coupled regime of large λ, the supergravity is a valid description.

In this paper, using the supergravity description, we shall study thermal aspects of the ABJM field theory in the strongly coupled regime. This may have a potential application in understanding the strongly coupled aspects of $(2 + 1)$-dimensional condensed matter systems. Especially, the charged background we shall find will be interesting in clarifying the nature of the non fermi-liquid systems of interacting fermions [11–13] and the symmetry-breaking phase transitions in the strongly coupled thermodynamic systems [14]. This will be particularly interesting in the sense that the above is the only known example, in which the field theory and gravity dual descriptions are known at the same time, showing the strongly correlated aspects of $(2 + 1)$-dimensional condensed matter systems in a full fledged form.

In order to identify the low energy dynamics, we first carry out the consistent, CP_3 invariant compactification of the type IIA supergravity down to four dimensions. (See also [15] for a related M theory dimensional reduction, in which extra modes are present compared to its type IIA counterpart.) The resulting potential is minimized at the AdS_4 vacuum and depends on three bulk scalars which are dual to operators of dimensions 4, 5 and 6. Using this 4D action, one may consistently study full nonlinear effects without being limited to just small fluctuations.

In addition the theory involves two bulk $U(1)$ gauge fields satisfying Maxwell-type equations. One combination is the usual massless $U(1)$ gauge field which implies the existence of global $U(1)$ current of dimension 2. In the field theory side, one has the so-called di-baryon charge [8] which is always accompanied by magnetic flux due to the Gauss law constraint of Chern–Simons theories. Turning on the corresponding global charge will lead to a charged AdS black hole which is necessarily deformed due to the nontrivial dependence on the scalars. The other combination of bulk gauge fields turns out to be massive due to the Higgs mechanism where one scalar that is 4D hodge dual to the NS–NS three-form gets absorbed into gauge degrees. This massive gauge field is dual to the dimension 5 current operator on the boundary field theory side.

In this paper, to understand the low-energy dynamics of the ABJM system, we study the response of these operators at zero and finite temperatures considering respectively AdS_4 and the black brane backgrounds whose global structures are different from each other.

We shall demonstrate that, at zero temperature, none of these operators develops a non-zero expectation value under a constant source term. We also compute exact expressions for ac conductivity of the two currents at zero temperature. At the finite temperature phase, the dimension 4 and 5 scalar operators possess nonvanishing expectation values meaning condensations. The magnitudes of condensation are proportional to the source term and we shall compute these proportionality constants.

The vector dynamics is particularly interesting. The source term coupled to boundary current operators is interpreted as a boundary vector potential. If the presence of this boundary vector potential implies nonvanishing boundary current, this is precisely the superconducting current which is proportional to the vector potential [16, 17]. The system is then in a
superconducting phase. For finite temperatures, we first show that the supercurrent exists for the current of general dimensions with exceptions of $\Delta = 3n \pm 1$ ($n \in \mathbb{N}$). The $\Delta = 2$, 5 cases belong to this exceptional category and, hence, there exists no superconducting current for our black brane background.

The paper is organized as follows. Section 2 is a brief description of the type IIA supergravity and the $\text{AdS}_4 \times \mathbb{C}P_3$ backgrounds. In section 3, we carry out the $\mathbb{C}P_3$ invariant dimensional reduction down to four dimensions. We pay particular attention to the consistency of ansatz with the original supergravity equations of motion. For completeness, we also include the dimensional reduction for the skew-whiffed background [18] corresponding to the anti-D2 branes instead of the D2 branes of the ABJM background. Section 4 describes the scalar dynamics and finite temperature condensation of dual field theory operators. Section 5 describes the vector dynamics. We find that both dimension 2 and 5 currents are not superconducting currents. The last section is devoted to concluding remarks and further directions of the study.

2. Type IIA supergravity and the $\text{AdS}_4 \times \mathbb{C}P_3$ background

We begin our discussion from the type IIA supergravity description of the ABJM field theory. The supergravity description is valid in the limit $N \to \infty$ with the ’t Hooft coupling $\lambda = \frac{1}{N}$ kept fixed and large, i.e. $\lambda \gg 1$. Hence, the corresponding dual CFT is necessarily strongly coupled. Of course the small λ region can be studied by direct perturbative analysis of the ABJM field theory. The ABJM theory possesses $SO(3, 2) \times SU(4)$ global bosonic symmetries. The 4D conformal group of $SO(3, 2)$ corresponds to the global symmetry of AdS_4 spacetime. The Chern–Simons theory also possesses $SU(4)$ R-symmetry, which is the symmetry of the $\mathbb{C}P_3$ directions. Their supersymmetric completion is described by the supergroup of $Osp(4|6)$. The Chern–Simons theory has one additional global $U(1)$ symmetry, which we shall discuss later on. We also consider the finite temperature version of this field theory in the large λ regime, which can be described by the IIA supergravity in the AdS_4 black brane background.

In this section, we shall briefly review the type IIA supergravity and some relevant thermodynamic properties of the AdS_4 black brane background. The bosonic part of the Einstein frame type IIA supergravity is described by the action

$$S_{\text{IIA}} = S_{NS} + S_R + S_{CS},$$ \hspace{1cm} (2.1)

where

$$S_{NS} = \frac{1}{2k^2_{10}} \int d^{10}x \sqrt{-g} \left[R(g) - \frac{1}{2} \nabla_m \phi \nabla^m \phi - \frac{1}{12} e^{-\phi} H_{mnp} H^{mnp} \right],$$

$$S_{R} = \frac{1}{2k^2_{10}} \int d^{10}x \sqrt{-g} \left[-\frac{1}{4} e^{\phi} F_{mn} F^{mn} - \frac{1}{48} e^{\phi} \tilde{F}_{mnpq} \tilde{F}^{mnpq} \right],$$

$$S_{CS} = \frac{1}{2k^2_{10}} \int \left[\frac{1}{2} B_{[2]} \wedge F_{[4]} \wedge F_{[4]} \right].$$ \hspace{1cm} (2.2)

The 10D gravity coupling in this action is given by $2k^2_{10} = (2\pi)^7 \ell_s^6 g_s^2$ where g_s denotes the string coupling and ϕ as its nonzero mode by subtracting its constant part $\hat{\phi}$ related to the string coupling $g_s = e^{\hat{\phi}}$. The gauge invariant four-form field strength $\tilde{F}_{[4]}$ is defined by

$$\tilde{F}_{[4]} = dA_{[3]} + dB_{[2]} \wedge A_{[1]},$$ \hspace{1cm} (2.3)

and the NS–NS three-form field strength by $H_{[3]} = dB_{[2]}$. The string frame metric is given by the transformation $g'_{mn} = e^{\phi} g_{mn}$, but we shall not use it in this paper.
The supergravity equations read
\[R_{mn} = \frac{1}{2} \nabla_m \phi \nabla_n \phi + \frac{1}{2} e^{\frac{2}{3} \phi} \left[F_{mp} F^n_p - \frac{1}{16} g_{mn} F_{pq} F^{pq} \right] + \frac{1}{4} e^{-\phi} \left[H_{mpq} H^n_{pq} - \frac{1}{12} g_{mn} H_{pqr} H^{pqr} \right] + \frac{1}{2} e^{\frac{4}{3} \phi} \left[\tilde{F}_{mpq} \tilde{F}^p_{nqr} - \frac{3}{16} g_{mn} \tilde{F}_{pqr} \tilde{F}^{pqr} \right], \] (2.4)

\[96 \Box \phi = 36 e^{\frac{2}{3} \phi} F_{mn} F^{mn} - 8 e^{-\phi} H_{mpq} H^{mpq} + e^{\frac{4}{3} \phi} \tilde{F}_{mpq} \tilde{F}^{mpq}, \] (2.5)

\[\nabla_m [e^{\frac{2}{3} \phi} F^{mn}] = -\frac{1}{2} e^{\frac{2}{3} \phi} \tilde{F}^{mpq} H_{pqr}, \] (2.6)

\[\nabla_m [e^{-\phi} H^{mpq}] + \frac{1}{2} e^{\phi} \tilde{F}^{mpq} F_{mqq} = - \frac{1}{144} e^{npr} \tilde{r}_{r_1 r_2 r_3 r_4} \tilde{F}^{r_1 r_2 r_3 r_4}, \] (2.7)

\[\nabla_m [e^{\frac{4}{3} \phi} \tilde{F}^{mpq}] - \frac{1}{144} e^{npr} \tilde{r}_{r_1 r_2 r_3 r_4} \tilde{F}^{r_1 r_2 r_3 r_4} H_{mrs} = 0, \] (2.8)

which agree with those in [19].

The supergravity background of the ABJM theory is given by [8, 19]
\[ds^2 = R_s^2 \left[\frac{1}{4} ds^2(AdS_4) + ds^2(CP_3) \right], \]
\[e^{2\phi} = g_s^2 = \frac{R_s^2}{k^2 \ell_s^2}, \]
\[F_{[4]} = \frac{3}{8} k g_s R_s^2 \tilde{s}_4, \]
\[F_{[2]} = k g_s d\omega = 2 k g_s J, \] (2.9)

where the IIA curvature radius \(R_s \) is
\[R_s^2 = 4\pi \sqrt{2} \ell_s^* . \] (2.10)

The unit-radius AdS Poincaré metric is given by
\[ds^2(AdS_4) = \frac{1}{\xi^2} [- dr^2 + dx^2 + dy^2 + dz^2], \] (2.11)

and \(\tilde{s}_4 \) denotes its 4D volume form. We parametrize the \(CP_3 \) metric as [22]
\[ds^2(CP_3) = d\xi^2 + \frac{\sin^2 2\xi}{4} \left(d\psi + \frac{\cos \theta_1}{2} d\phi_1 - \frac{\cos \theta_2}{2} d\phi_2 \right)^2 + \frac{1}{4} \cos^2 \xi (d\theta_1^2 + \sin^2 \theta_1 d\phi_1^2) \]
\[+ \frac{1}{4} \sin^2 \xi (d\theta_2^2 + \sin^2 \theta_2 d\phi_2^2), \] (2.12)

where \(0 \leq \phi_1 < 2\pi, 0 \leq \theta_1, \theta_2 \leq \pi, 0 \leq \xi \leq \frac{\pi}{2} \) and \(0 \leq \psi < 2\pi \). Note that the volume of unit \(CP_3 \) space is given by \(\pi^4/6 \). The unit \(S^7 \) can be presented as a Hopf fibration over \(CP_3 \):
\[ds^2(S^7) = ds^2(CP_3) + (d\theta_{10} + \omega)^2, \] (2.13)

with \(0 \leq \theta_{10} < 2\pi \). The one-form \(\omega \) is explicitly given by
\[\omega = -\frac{1}{4} (\cos 2\xi d\psi + \cos^2 \xi \cos \theta_1 d\phi_1 + \sin^2 \xi \cos \theta_2 d\phi_2). \] (2.14)
Then, the Kähler two-form $J = \frac{i}{2} \omega$ takes the form

$$J = \frac{1}{4} (\sin 2\xi \, d\xi \wedge (2d\psi + \cos \theta_1 d\phi_1 - \cos \theta_2 d\phi_2)
+ \cos^2 \xi \, \sin \theta_1 d\phi_1 \wedge d\phi_1 + \sin^2 \xi \, \sin \theta_2 d\phi_2 \wedge d\phi_2).$$ (2.15)

Below we shall use the following properties of J:

$$\nabla_a J_{bc} = 0,$$

$$J_{ab} J_{bc} = - \delta^c_a,$$

$$8 J^{[ef} = \varepsilon^{abcdef} J_{ab} J_{cd},$$ (2.16)

where the indices are raised by the unit $\mathbb{C}P_3$ metric.

We also consider the well-known black brane solution with a planar symmetry. In this solution, one is replacing the AdS_4 metric in (2.12) by the black hole metric

$$dx^2 = \frac{1}{z^2} \left[\frac{dz^2}{h(z)} - h(z) dt^2 + dx^2 + dy^2 \right].$$ (2.17)

where

$$h(z) = 1 - \left(\frac{z}{z_H} \right)^3.$$ (2.18)

This black brane background is dual to the finite temperature version of the ABJM theory. Due to the quantum scale invariance of the theory, this finite temperature field theory depends only on the one dimensionful parameter which is the temperature T. Hence the theory possesses only one finite-temperature phase corresponding to the high temperature limit. This temperature is identified with the Hawking temperature of the black brane

$$T = \frac{1}{4\pi} |h'(z_H)| = \frac{3}{4\pi} \frac{1}{z_H}.$$ (2.19)

The basic thermodynamic quantities are as follows: the Bekenstein–Hawking entropy density [3] reads

$$S = \frac{N^2}{3 \sqrt{2 \lambda}} \frac{1}{z_H^2} = \frac{N^2}{3 \sqrt{2 \lambda}} \left(\frac{4\pi}{3} \right)^2 T^2,$$ (2.20)

which corresponds to the horizon area density, which is defined by the horizon area over the boundary area $L_x L_y = \int_0^{L_x} \int_0^{L_y} dy$ of the boundary system, divided by $\kappa_{10}^2/(2\pi)$. The energy density may be evaluated as

$$\mathcal{E} = \frac{N^2}{6\pi \sqrt{2 \lambda}} \frac{1}{z_H^2} = \frac{2N^2}{9 \sqrt{2 \lambda}} \left(\frac{4\pi}{3} \right)^2 T^3,$$ (2.21)

and the pressure $p = \mathcal{E}/2$ as dictated by the conformal symmetry, where we use the standard method of computing the boundary stress tensor developed in [20]. We see here that the number of effective degrees in the strongly coupled regime is proportional to $N^2/\sqrt{\lambda}$. Since the number of degrees in the weakly coupled, small λ region is simply proportional to N^2, the effective number of degrees is reduced greatly down by the factor of $\sqrt{\lambda}$.

In order to simplify the notation, we set up our convention as follows. We note that only R_s dependence remains in the above background while the k dependence disappears completely. The gravity equations themselves do not involve any explicit k dependence either. Then, we set $R_s = 1$ taking R_s as a length unit if necessary.
3. Compactification on \mathbb{CP}_3

We perform a consistent, \mathbb{CP}_3 invariant dimensional reduction by taking the following ansatz 3:

\[
\begin{align*}
\text{d}s^2 &= \frac{1}{2}e^{-3\sigma}\text{d}s^2_6 + e^{\sigma}\text{d}s^2(\mathbb{CP}_3),
F_{ab} &= 2J_{ab}, \quad F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu, \\
H_{\mu\nu\lambda} &= \frac{3}{2}e^{\phi-6\sigma}e^{\delta_6}(\pm A_\lambda - \bar{A}_\lambda - \nabla_\lambda \psi), \quad H_{\mu\nu\lambda} = (\partial_\mu \chi)J_{ab}, \\
\bar{F}_{\mu\nu\lambda} &= -\frac{1}{8}e^{\frac{x}{2} - 9\sigma}g_{\mu\nu\lambda\delta}(\pm 1 + \chi^2), \\
\tilde{F}_{\mu\nu ab} &= e^{\frac{x}{2}-\sigma}F_{\mu\nu ab}, \quad \tilde{F}_{abcd} = -2\chi(J \wedge J)_{abcd},
\end{align*}
\]

where we use $\varepsilon_{\mu\nu\lambda\delta}$ with a convention $\varepsilon_{0123} = -1$ for the totally antisymmetric number $\bar{F}_{\mu\nu\lambda\delta}$. The 4D hodge dual is then defined by $^*F_{\mu\nu} = \frac{1}{2}\varepsilon_{\mu\nu ab}F^{ab}$ and $\tilde{F}_{\mu\nu ab}$ is simply an antisymmetric tensor field not defined by the vector potential. We shall turn off all the remaining components. The upper signs in the above ansatz and below correspond to the ABJM theory whereas the lower signs are for the skew-whiffed background $^{[19]}$ corresponding to the anti-D2 branes. From $^{[19]}$, one can check that all of the \mathbb{CP}_3 invariant modes are included in the above ansatz. Note also that there are no \mathbb{CP}_3 invariant fermionic modes $^{[19]}$.

The resulting equations of motion can be derived from the action

\[
\mathcal{L}_4 = -\frac{1}{16\pi G_4}(\mathcal{L}_g + \mathcal{L}_c),
\]

where

\[
\begin{align*}
\mathcal{L}_g &= R_4(g) - \frac{1}{2}(\nabla\phi)^2 - 6(\nabla\sigma)^2 - \frac{3}{2}e^{\phi-2\sigma}(\nabla\chi)^2 - e^{2\phi+3\sigma}F_{\mu\nu}F^{\mu\nu} - 3e^{-\frac{x}{2}-\sigma}\tilde{F}_{\mu\nu\lambda\delta}\tilde{F}^{\mu\nu\lambda\delta} \\
&\quad - 18e^{\phi-6\sigma}(\pm A - \bar{A} - \nabla\psi)^2 + 12e^{-4\sigma} - \frac{9}{2}e^{-\frac{x}{2}-9\sigma}(\pm 1 + \chi^2)^2 \\
&\quad - \frac{3}{2}e^{\phi-5\sigma} - 6\chi^2e^{\frac{x}{2}-7\sigma},
\end{align*}
\]

and

\[
\begin{align*}
\mathcal{L}_c &= 6e^{-\frac{x}{2}-\sigma}\Lambda^{\mu\nu}(\tilde{F}_{\mu\nu} - 2\chi e^{\frac{x}{2}-\sigma}F_{\mu\nu} - \chi^2 F_{\mu\nu} - \partial_\mu \bar{A}_\nu + \partial_\nu \bar{A}_\mu) \\
&\quad + 6\chi e^{-\phi-2\sigma}F_{\mu\nu} + 6\chi F^{\mu\nu}(^*F_{\mu\nu} + 2\chi e^{-\frac{x}{2}-\sigma}F_{\mu\nu}) - 4\chi^3 F_{\mu\nu}^*F^{\mu\nu}.
\end{align*}
\]

In this action, \bar{A}_μ, $\tilde{F}_{\mu\nu}$ and $\Lambda^{\mu\nu}$ are taken as independent fields, which are subject to independent variations to get corresponding equations of motion. The $\Lambda^{\mu\nu}$ variation leads to the constraint

\[
\tilde{F}_{\mu\nu} - 2\chi e^{\frac{x}{2}-\sigma}F_{\mu\nu} - \chi^2 F_{\mu\nu} - \bar{F}_{\mu\nu} = 0,
\]

where $\tilde{F}_{\mu\nu} \equiv \partial_\mu \bar{A}_\nu - \partial_\nu \bar{A}_\mu$. The $\tilde{F}_{\mu\nu}$ variation determines $\Lambda_{\mu\nu}$ by

\[
\Lambda_{\mu\nu} = \tilde{F}_{\mu\nu} - \chi e^{\frac{x}{2}+\sigma}F_{\mu\nu}.
\]

The $g_{\mu\nu}$, ϕ and σ equations are solely following from the variations of \mathcal{L}_g. The ϕ and σ variations of \mathcal{L}_c are vanishing completely, which one may check using (3.5) and (3.6). The $g_{\mu\nu}$ variation of \mathcal{L}_c also vanishes as discussed in the appendix. The remaining equations are

\[
\begin{align*}
\nabla_\mu [e^{\frac{x}{2}+3\sigma}F^{\mu\nu}] &= 3(\partial_\mu \chi)^*F^{\mu\nu} + 9e^{\phi-6\sigma}(\pm 1 + \chi^2)(\pm A^\nu - \bar{A}^\nu - \nabla^\nu \psi), \\
\nabla_\mu [e^{\frac{x}{2}-\sigma}\tilde{F}^{\mu\nu}] &= (\partial_\mu \chi)^*F^{\mu\nu} - 3e^{\phi-6\sigma}(\pm A^\nu - \bar{A}^\nu - \nabla^\nu \psi), \\
\nabla_\mu [e^{-\phi-2\sigma}\nabla^\nu \chi] &= 4\chi e^{\frac{x}{2}-7\sigma} + 6\chi(\pm 1 + \chi^2)e^{-\frac{x}{2}-9\sigma} - 2\chi F^{\mu\nu}(\tilde{F}_{\mu\nu} - e^{\phi-2\sigma}\tilde{F}_{\mu\nu}).
\end{align*}
\]

3 For the compactification spectrum, see $^{[18, 19, 21–23]}$. See also $^{[15]}$ for the related dimensional reduction from the M theory whose spectra are different from those of the type IIA theory.
Details of derivation are relegated to the appendix. The constraint (3.5) can be solved in terms of vector potentials by
\[\tilde{F} = \frac{1}{1 + 4 \chi^2 e^{-\phi - 2\sigma}} \left[\tilde{F} + \chi^2 F + 2\chi e^{-\phi - 2\sigma} (\tilde{F} + \chi^2 F) \right]. \] (3.8)

Note that the system in (3.2) possesses the $U(1) \times U(1)$ gauge symmetry:
\[A_\mu \rightarrow A_\mu + \partial_\mu \Lambda, \quad \bar{A}_\mu \rightarrow \bar{A}_\mu + \partial_\mu \bar{\Lambda}, \quad \psi \rightarrow \psi \mp \Lambda + \bar{\Lambda}, \] (3.9)
which follows from the symmetries of the original type IIA supergravity backgrounds.

For the field theory interpretation, one needs the 4D Newton constant whose value is given by
\[\frac{1}{16\pi G_4} = \frac{N^2}{12\pi \sqrt{2} \lambda}. \] (3.10)

As identified in [8], the field $F_{\mu\nu}$ electrically couples to D0 brane current while its magnetic hodge dual couples to D6 branes wrapping \mathbb{CP}_3. The other field $\tilde{F}_{\mu\nu}$ couples electrically to D4 branes wrapping \mathbb{CP}_2 cycle and magnetically to D2 wrapping \mathbb{CP}_1 cycle of \mathbb{CP}_3.

Finally, we note that all the 4D equations are R_5 independent and scale invariant. One may further set the only length scale $z_H = 1$ in the black brane metric as $h(z) = 1 - z^3$. This corresponds to the mass unit $4\pi T / 3$, which will be recovered whenever needed. Below we shall be only interested in the case of the ABJM background for the further analysis.

4. Scalar dynamics

There are three scalars, ϕ, σ, and χ for our low energy effective action. Unlike the AdS$_5$ case of the type IIB theory, all of them become massive. In this section we shall explore their zero and finite temperature dynamics.

Under ϕ and χ changes, the gravity potential in (3.2) becomes infinitely large when $|\phi|$ and $|\chi| \rightarrow \infty$. The potential has an absolute minimum at $\phi = \sigma = \chi = 0$, at which the potential takes a value -6. When $\sigma \rightarrow -\infty$, the potential becomes infinitely large as well. In the other limit $\sigma \rightarrow \infty$, the potential goes to zero. The latter corresponds to the decompactification limit where the volume of \mathbb{CP}_3 becomes infinitely large.

For the small fluctuations to the linear order, the ϕ and σ fields can be diagonalized by the linear combinations
\[\phi_+ = \frac{\phi + 18\sigma}{\sqrt{28}}, \quad \phi_- = \frac{\sqrt{3}(3\phi - 2\sigma)}{\sqrt{28}}. \] (4.1)

which lead to the massive scalar equation
\[\nabla^2 \Phi - m_{\phi}^2 \Phi = 0, \] (4.2)
with masses $m_{\phi_+}^2 = 18$ and $m_{\phi_-}^2 = 4$ respectively. The χ field, on the other hand, is already diagonal with mass $m_{\chi}^2 = 10$. As is well known, the scalar field in the AdS$_4$ space behaves, near the boundary $z=0$, as [24]
\[\Phi(x, z) \approx a_{\phi}(x) z^{-\Delta} + b_{\phi}(x) z^{\Delta} + \cdots, \] (4.3)
where \cdots denotes all the remaining powers of z and x_μ is for the boundary directions x_0, x_1, x_2.

The number Δ in the above expression is given by
\[\Delta = \frac{1}{2} \left(3 + \sqrt{9 + 4m_{\phi}^2} \right), \] (4.4)
which can be identified with the scaling dimension of the field theory operator dual to $\Phi[2]$. It follows that the dimensions of the dual operators O_{ϕ_+}, O_{ϕ_-} and O_χ are respectively 6,
4 and 5. This is quite consistent with the fact that these operators should belong to some low-lying protected supermultiplets where dimensions of component operators do not receive any quantum corrections such that their bosonic sector consisting of even number of fields have only integer dimension.

Turning on \(a/\Phi_1\) in (4.3) in the supergravity side corresponds to turning on the source term in the field theory side,

\[
\delta \mathcal{L}_{FT} = a\phi(x)O\phi(x). \tag{4.5}
\]

Then, the operator expectation value \(\langle O\phi(x) \rangle\) is evaluated as

\[
\langle O\phi(x) \rangle = \frac{\delta I_{SUGRA}}{\delta a\phi} = \frac{3\alpha}{32\pi G_4}a\phi(x), \tag{4.6}
\]

where \(\alpha\) is an extra factor in the scalar kinetic term \(-\nabla^2\Phi/2\) in \(\mathcal{L}_E\) related to the normalizations of our scalar field. In this evaluation, we use the standard AdS/CFT dictionary in [2]. The boundary condition for the scalar field at the horizons at \(z = 1\) or \(z = \infty\) \((T = 0)\) is

\[
h\Phi'|_{z=1,\infty} = 0, \tag{4.7}
\]

where prime denotes a derivative with respect to \(z\). This is the requirement that there should not be any boundary contribution from the horizon when one evaluates the on-shell supergravity action\(^4\) and the regularity condition of the perturbation at the horizon from the purely geometric viewpoint.

Now we consider the massive scalar equation with an ansatz \(\Phi = U(z)\) in order to study the finite temperature condensation of operators. For \(T = 0\), the scalar equation becomes

\[
z^2U'' - 2zU' - m_\phi^2U = 0, \tag{4.8}
\]

which leads to the simple solution,

\[
U = a\phi z^{3-\Delta} + b\phi z^\Delta. \tag{4.9}
\]

For \(\Delta = 4, 5, 6\) of our problem, the boundary condition at \(z = \infty\) demands \(b\phi = 0\). Hence, there is no zero-temperature condensation of operators by coupling of the source term on the field theory side.

The equation for \(T \neq 0\) becomes

\[
z^4 \left(\frac{h}{z^2} U' \right)' - m_\phi^2 U = 0. \tag{4.10}
\]

This leads to the general solution

\[
U = a\phi z_2^{3-\Delta} F_1 \left(\frac{3 - \Delta}{3}, \frac{3 - \Delta}{3}; \frac{6 - 2\Delta}{3}; z^3 \right) + b\phi z_2^\Delta F_1 \left(\frac{\Delta}{3}, \frac{\Delta}{3}; \frac{2\Delta}{3}; z^3 \right), \tag{4.11}
\]

where \(\frac{1}{\Gamma(\alpha, \beta; \gamma; x)}\) is the hypergeometric function. For \(\Delta = 6\) of \(m_\phi^2 = 18\), the hypergeometric function can be simplified to

\[
U = a\phi \left(\frac{1}{z^3} - \frac{1}{2} \right) - 6b\phi \left(2 + (2z^{-3} - 1) \ln(1 - z^3) \right). \tag{4.12}
\]

The boundary condition at the horizon dictates then

\[
b\phi \frac{a\phi}{a\phi} = -\frac{4\Gamma \left(\frac{4}{3} - \frac{4}{3} \right)}{4^\frac{4}{3} \Gamma \left(\frac{\Delta}{3} - \frac{4}{3} \right) \Gamma \left(\frac{\Delta}{3} + \frac{4}{3} \right)} \left(\frac{4\pi T}{3} \right)^{2\Delta - 3}. \tag{4.13}
\]

\(^4\text{In principle, the } \Phi = 0 \text{ boundary condition is allowed but this in general leads to the null solution besides some special cases which are not relevant to us.}\)
where our mass unit is recovered. For $\Delta = \frac{3}{2} + 3n$ $(n = 1, 2, \ldots)$, one has $a_\phi = b_\phi = 0$, which means turning on the operator is not allowed. For the other case $\Delta = 3n$ $(n = 1, 2, \ldots)$, one finds $b_\phi = 0$. Hence, there is no condensation of the corresponding operators. The ϕ_- fluctuation belongs to this category where $\Delta = 6$. The massless case of $\Delta = 3$ is special. Both a_ϕ and b_ϕ are allowed and independent of each other. For the generic mass, the above ratio is nonvanishing. In particular, the ϕ_- and χ fluctuations belong to this category leading to finite-temperature condensations. For $m_\phi^2 = 4$ with $\Delta = 4$, one has

$$\langle O_{\phi_-} \rangle = \frac{3}{32\pi G_4} \sqrt{3} \left[\frac{\Gamma \left(\frac{1}{2} \right)}{16\pi^3} \right]^6 \left(\frac{4\pi}{3} T \right)^5 a_{\phi_-} = \frac{2\pi \sqrt{6} \Gamma \left(\frac{1}{2} \right)}{1215} \frac{N^2 T^5}{\sqrt{\lambda}} a_{\phi_-},$$

where we recover our mass unit. For $m_\phi^2 = 10$ with $\Delta = 5$, one has

$$\langle O_{\chi} \rangle = -\frac{9}{32\pi G_4} \frac{9\sqrt{3} \left[\frac{\Gamma \left(\frac{1}{2} \right)}{16\pi^3} \right]^6}{56\pi^3} \left(\frac{4\pi}{3} T \right)^7 a_{\chi} = -\frac{128\sqrt{6} \pi^3 \Gamma \left(\frac{1}{2} \right)}{567} \frac{N^2 T^7}{\sqrt{\lambda}} a_{\chi}.$$

Therefore, at finite temperature, the condensations of O_{χ} and O_{ϕ_-} occur if one dials the corresponding source terms. This also verifies that the $T \neq 0$ phase of the ABJM theory is distinct from that of $T = 0$.

5. Vector dynamics and superconducting current

We now turn to the analysis of the vector fields, A_μ and \bar{A}_μ. At the linear order, $\tilde{F}_{\mu\nu} \sim \tilde{F}_{\mu\nu}$ and the combination $A_\mu - \bar{A}_\mu$ becomes massive due to the Higgs mechanism. The absorbed scalar ψ is four-dimensional hodge dual to the three-form field $H_{\mu\nu\lambda}$. Including this combination, the gauge kinetic terms can be diagonalized by the linear combinations

$$A_H^\mu = \frac{\sqrt{3}}{2} (A_\mu - \bar{A}_\mu), \quad A_B^\mu = \frac{1}{2} (A_\mu + 3\bar{A}_\mu),$$

with masses $m_H^2 = 12$ and $m_B^2 = 0$. The massless field A_B^μ couples to the di-baryon current J_B^μ of the ABJM theory. The field equation including the Gauss law constraint takes the form

$$\frac{k}{4\pi} \#_3 \text{tr} (F_{U(N)} + F_{\bar{U}(N)}) = J_B.$$

where $\#_3$ denotes the three-dimensional hodge dual of the boundary theory and $F_{U(N)}$ and $F_{\bar{U}(N)}$ are the 3D field strengths of $U(N)$ and $\bar{U}(N)$ gauge fields. Hence, the charge of J_B is always accompanied by the magnetic flux, which is an important characteristic of Chern–Simons theories. Since the dual AdS gauge field A_H^μ is massless, one may turn on the di-baryon charge and consider the charged AdS black hole background. The scalar fields, ϕ, σ and χ, can be consistently set to zero leading to a simple charged (dyonic) black hole solution with $A_\mu = \bar{A}_\mu[15]$. We shall get back to this issue later on.

To the linear order the gauge field equation satisfies

$$\nabla_\mu F^{\mu\nu} - m_c^2 A^\nu = 0.$$
If \(m^2_\psi \neq 0 \), the consistency of the above equation requires \(\nabla_\mu A^\mu = 0 \), which also follows from the scalar equation \(\psi \) in the gauge \(\psi = 0 \). The massless case is special but the treatment is basically the same.

As in the scalar case, the fields, in the near boundary region of \(z = 0 \), behave as

\[
A_\bar{\mu} = a_\bar{\mu}(x)z^{2-\Delta} + b_\bar{\mu}(x)z^{\Delta - 1} + \cdots ,
\]

(5.4)

where barred indices are for the boundary spacetime directions, i.e. \(\bar{\mu} = 0, 1, 2 \). The number \(\Delta \),

\[
\Delta = \frac{1}{2}(3 + \sqrt{1 + 4m^2_\psi}).
\]

(5.5)

is the dimension of current operator dual to the bulk gauge field \(A_\mu \) [2]. For our cases of \(m^2_\psi = 0 \) and \(12 \), we find \(\Delta = 2 \) and \(5 \), respectively. The dimension 2 current operator is the di-baryon current \(J_B \) as we already mentioned. The other dimension 5 current is dual to the massive gauge field, which includes dynamics of the absorbed scalar degree.

We begin with the zero temperature case. With an ansatz \(A_\bar{\mu} = A_\bar{\mu}(z) \), the Maxwell equation becomes

\[
z^2 A''_\bar{\mu} - m^2_\psi A_\bar{\mu} = 0,
\]

(5.6)

whose solution is simply

\[
A_\bar{\mu} = a_\bar{\mu}z^{2-\Delta} + b_\bar{\mu}z^{\Delta - 1}.
\]

(5.7)

The vanishing boundary contribution at \(z = \infty \) leads to \(b_\bar{\mu} = 0 \) for \(\Delta \geq 2 \). Consequently, there is no induced current by the coupling of the constant vector potential \(a_\bar{\mu} \).

We now turn to the ac response of current at zero temperature. For this purpose, we shall consider only transverse current with an ansatz, \(A_\parallel = A_\parallel(z) e^{-i\omega t + \xi z} \). The Maxwell equation is reduced to

\[
z^2 A''_\parallel + ((\omega^2 - p^2)z^2 - m^2_\psi) A_\parallel = 0,
\]

(5.8)

whose general solution is

\[
A_\parallel = C_1 z^\frac{\nu}{2} I_\nu(z\sqrt{p^2 - \omega^2}) + C_2 z^\frac{\nu}{2} K_\nu(z\sqrt{p^2 - \omega^2}),
\]

(5.9)

with \(\nu = \Delta - \frac{3}{2} \). For \(p^2 > \omega^2 \), \(I_\nu(x) \) becomes exponentially large at the horizon \(z = \infty \) so that one requires \(C_1 = 0 \). If \(p^2 < \omega^2 \), one may use the so-called purely ingoing boundary condition where flux near the horizon region should be directed toward the horizon. This again leads to \(C_1 = 0 \). Since \(K_\nu(x) \) behaves as

\[
K_\nu(z) = \frac{\pi}{2 \sin(\nu \pi)} \left[\frac{z^{-\nu}}{2^{\nu-1}\Gamma(1-\nu)} - \frac{z^\nu}{2^{\nu}\Gamma(1+\nu)} \right] + \cdots
\]

(5.10)

for the small \(z \), we conclude

\[
b_\parallel = \frac{\pi(\omega^2 - p^2)^{\Delta - \frac{3}{2}}}{(2i)^{\Delta - 3}\Gamma(\Delta - \frac{1}{2})\Gamma(\Delta - \frac{3}{2}) \sin \left(\Delta - \frac{1}{2} \right)\pi}.
\]

(5.11)

For the massless case of \(\Delta = 2 \), the ac conductivity for the baryon current is then evaluated as

\[
\sigma_B = \frac{J_y}{i\omega a_y} = \frac{1}{8\pi G_4} \frac{b_y}{i\omega a_y} = \frac{N^2}{6\pi \sqrt{2\lambda}} \left(1 - \frac{p^2}{\omega^2} \right)^{\frac{3}{2}},
\]

(5.12)

while

\[
\sigma_H = \frac{N^2}{9450\pi \sqrt{2\lambda}} \omega^6 \left(1 - \frac{p^2}{\omega^2} \right)^{\frac{7}{2}}.
\]

(5.13)
The overall dependence on the frequency is basically dictated by the underlying conformal symmetry and dimension of the current operator.

For the finite temperature, we again consider turning on the vector potential that is independent of the boundary coordinates. The Lorentz symmetry is now broken due to the non-zero temperature but the rotation and translation symmetries remain. We take an ansatz $A_i = A_i^0(z)$ as in the $T = 0$ case. For A_i ($i = 1, 2$), the Maxwell equation becomes

$$z^2(h A_i')' - m_i^2 A_i = 0.$$
(5.14)

While turning on the constant vector potential, the existence of the current proportional to the vector potential as $J_i \propto a_i$ corresponds to superconducting current [17]. The existence of such current implies that the system under consideration is in a superconducting phase. We shall focus on the investigation of this possibility within our dimensionally reduced system\(^5\).

The general solution of the above equation can be given by

$$A_i = a_i z^{2-\Delta} F_1\left(\frac{2-\Delta}{3}, \frac{1-\Delta}{3}; \frac{6-2\Delta}{3}; z^3\right) + b_i z^{\Delta-1} F_1\left(\frac{\Delta-1}{3}, \frac{\Delta+1}{3}; \frac{2\Delta}{3}; z^3\right),$$

(5.15)

in terms of the hypergeometric functions. The boundary condition $h A_i' = 0$ at $z = 1$ leads to the ratio

$$\frac{b_i}{a_i} = -\frac{\Gamma\left(\frac{6-2\Delta}{3}\right)\Gamma\left(\frac{\Delta+1}{3}\right)\Gamma\left(\frac{\Delta+2}{3}\right)}{\Gamma\left(\frac{2\Delta}{3}\right)^3} \left(\frac{4\pi}{3} T\right)^{2\Delta-3}.$$
(5.16)

This is in general nonvanishing with an exception specified below and leads to the nonvanishing supercurrent in the presence of a constant vector potential in the boundary theory. The exception corresponds to $\Delta = 3n - 1, 3n + 1$ where n is a natural number. Interestingly, our cases of $\Delta = 2, 5$ belong to this exceptional category. Therefore, there is no superconducting current implying that our system is not in a superconducting phase. Note also that the hypergeometric functions for $\Delta = 2, 5$ are greatly simplified and can be given in terms of simple elementary functions. But we shall not present their detailed forms here.

For the time component, the equation is reduced to

$$z^2 h A_0' - m_0^2 A_0 = 0,$$

(5.17)

whose solution is

$$A_0 = a_0 z^{2-\Delta} F_1\left(\frac{2-\Delta}{3}, \frac{1-\Delta}{3}; \frac{6-2\Delta}{3}; z^3\right) + b_0 z^{\Delta-1} F_1\left(\frac{\Delta-1}{3}, \frac{\Delta-2}{3}; \frac{2\Delta}{3}; z^3\right).$$

(5.18)

This is not a valid solution when $\Delta = 3n$ ($n \in \mathbb{N}$). But we shall not consider $\Delta = 3n$ since they are not relevant to our analysis. The boundary condition required for the vanishing contribution at the horizon can be identified as $A_0 = 0$ unless $\Delta = 2$. This leads to the ratio

$$\frac{b_0}{a_0} = -\frac{\Gamma\left(\frac{6-2\Delta}{3}\right)\Gamma\left(\frac{\Delta+1}{3}\right)\Gamma\left(\frac{\Delta+2}{3}\right)}{\Gamma\left(\frac{2\Delta}{3}\right)^3} \left(\frac{4\pi}{3} T\right)^{2\Delta-3}.$$
(5.19)

The source term a_0 can be related to a chemical potential while b_0 is an induced charge density. Hence, the non-zero chemical potential induces corresponding charge density unless $\Delta = 3n + 2, 3n + 1$ ($n \in \mathbb{N}$). For $\Delta = 3n + 2, 3n + 1$ ($n \in \mathbb{N}$), the ratio vanishes and there is no induced charge density. J_0^T belongs to this exceptional category.

\(^5\) For the discussion of superconductivity arising in the more general dimensional reduction, see [15, 25].
Thus, it is not possible to turn on a nonvanishing charge density by adjusting the chemical potential.

Finally for $\Delta = 2$, the solution simply becomes

$$A_0 = a_0^B + b_0^B z,$$

(5.20)

where a_0^B is a constant which can be shifted away and b_0^B is the di-baryon charge density which can be freely adjusted. Hence, this fluctuation describes the deformation of charged AdS black hole at linear order.

6. Conclusions

In this paper, we considered the thermal aspects of the ABJM field theories in the strongly coupled regime using the supergravity description. For this purpose, we carry out the \mathbb{CP}^3 invariant dimensional reduction of type IIA supergravity down to four dimensions. We then study the zero and finite temperature responses of various operators which are dual to bulk scalar and vector fields. We have shown that condensations of dimension 4 and 5 scalar operators occur at finite temperature by the coupling of the constant source term. The currents, on the other hand, are not induced by the coupling of the boundary vector potential, which implies that the system is not in a superconducting phase. We have also computed the ac conductivities at zero temperature.

The existence of condensation implies that the finite temperature phase is distinct from the zero temperature phase of the ABJM theory. This is rather obvious since the temperature breaks the scale invariance introducing the dimensionful temperature scale. The situation may turn into a more interesting case if one dials the global $U(1)$ charge that is dual to the massless bulk gauge field. It is described by the charged AdS black hole, which is known to have the zero temperature limit. Unlike the case of the R-charged AdS5 black holes [26, 27], the zero temperature phase appears to be thermodynamically stable. Its phase structure and thermodynamic properties are of interest [28]. The relation between charge and energy near zero temperature [13] and the peculiar ground state entropy demand a further understanding of the ABJM system with finite di-baryon charge density. It is described by the charged AdS black hole, which is known to have the zero temperature limit. Unlike the case of the R-charged AdS5 black holes [26, 27], the zero temperature phase appears to be thermodynamically stable. Its phase structure and thermodynamic properties are of interest [28]. The relation between charge and energy near zero temperature [13] and the peculiar ground state entropy demand a further understanding of the ABJM system with finite di-baryon charge density. The scalar χ and the gauge field A^H, both are dual to the dimension 5 operators, get mixed up if one turns on (dyonic) charges and may lead to a very nontrivial response properties. These issues are currently under investigation.

The other is on the spatial correlation length scales of the ABJM theory in the strongly coupled regime. As discussed in [6], the longest correlation is governed by the true mass gap and the Debye mass for the charged excitation is the lowest in the CT-odd sector of the spectrum. Our four-dimensional gravity action is particularly suited for this problem. This is also currently under investigation [29].

Acknowledgments

This work was supported in part by Mid-Career Researcher Program through NRF funded by MEST R01-2008-000-10656-0 and by NRF SRC-CQUeST-2005-0049409.

Appendix A. \mathbb{CP}^3 invariant dimensional reduction

In this appendix, we shall explain some key ingredients of the dimensional reduction and show that all the equations of motion may be derived from the four-dimensional effective Lagrangian. The starting point is to solve the Bianchi identity, $d\hat{F}_{[4]} = -H_{[3]} \wedge F_{[2]}$. We take the ansatz
where $\tilde{F}_{\mu\nu\lambda} = \check{F}_{\muabc} = H_{\mu\nu\lambda} = 0$ and $F_{ab} = 2J_{ab}$. By setting $\check{F}_{\mu\nu\lambda\rho} = -2\chi (J \wedge J)_{ab\cdots}$ together with $\check{F}_{\mu\nu\lambda} = e^{-\frac{\chi}{2}} (\chi^* + \chi^* \chi)$, we get

$$H_{\mu\nu\lambda} = \nabla_{\mu} J_{\nu\lambda}$$

and

$$\nabla_{\mu} (e^{-\frac{\chi}{2}} \check{F}_{\mu
u \lambda}) = \nabla_{\mu} \chi^* F_{\mu\nu} - \frac{1}{2} e_{\mu\nu\lambda\rho} H_{\mu\nu\lambda\rho}, \quad (A.1)$$

from the Bianchi identity. With a further ansatz, $\check{F}_{\mu\nu\lambda\rho} = \chi e^{-\frac{\chi}{2}} e_{\mu\nu\lambda\rho}$, the Bianchi identity can be solved by

$$\check{F}_{\mu\nu\lambda\rho} = -\frac{1}{2} (e^{2\chi} + e^{-2\chi}) e_{\mu\nu\lambda\rho}.$$

Equation (2.8) for $\check{F}_{\mu\nu\lambda}$ leads to the constraint equation in (3.5), which can be solved by introducing \bar{A}_μ as $\check{F}_{\mu
u} = \partial_\nu \bar{A}_\mu - \partial_\mu \bar{A}_\nu = \check{F}_{\mu
u} - 2\chi e^{-\frac{\chi}{2}} + e^{-\frac{\chi}{2}} e_{\mu\nu\lambda\rho} H_{\mu\nu\lambda\rho}$. The 10D equation for $H_{\mu\nu\lambda\rho}$ is then solved by

$$H_{\mu\nu\lambda\rho} = \frac{1}{2} e^{\phi - 6\sigma} e_{\mu\nu\lambda\rho}(\pm A_\lambda - \bar{A}_\lambda - \nabla_\lambda \psi). \quad (A.3)$$

The Bianchi identity $(dH)_{\mu\nu\lambda} = 0$ corresponds to the field equation $\nabla_\mu \left[e^{\phi - 6\sigma} (\nabla_\nu \psi \mp A^\mu + \bar{A}^\mu) \right] = 0$, which follows from the variation of the action (3.2) with respect to the field ψ. Using the Lagrange multiplier $\Lambda_{\mu\nu}$, we incorporate the above constraint into the Lagrangian. After straightforward calculation, we come to the dimensionally reduced effective Lagrangian in (3.2). This Lagrangian possesses two kinds of auxiliary fields, $\check{F}_{\mu\nu}$ and $\Lambda_{\mu\nu}$. Variation with respect to $\check{F}_{\mu\nu}$ leads to

$$\Lambda_{\mu\nu} = \check{F}_{\mu\nu} - \chi e^{\frac{\chi}{2}} e_{\mu\nu\lambda\rho} F_{\mu\nu\lambda\rho}.$$

while $\Lambda_{\mu\nu}$ variation gives us the constraint (3.5). The variations with respect to \bar{A}_ν and A_ν lead to

$$\nabla_\mu \left(e^{-\frac{\chi}{2}} A_{\mu\nu} + 2e^{\phi - 6\sigma} (\pm A^\nu - \bar{A}^\nu - \nabla^\nu \psi) \right) = 0 \quad (A.5)$$

and

$$\nabla_\mu \left(e^{\frac{\chi}{2} + \frac{3}{2} \tau} F_{\mu\nu\lambda\rho} - 3\nabla_{\mu} \chi^* \check{F}_{\mu\nu\lambda\rho} - 9e^{\phi - 6\sigma} (\pm 1 + \chi^2) (\pm A^\nu - \bar{A}^\nu - \nabla^\nu \psi) \right) = 0, \quad (A.6)$$

respectively. The equations of motion for ϕ and σ following from the effective Lagrangian read

$$\nabla^2 \phi = -\frac{3}{2} e^{-\phi} (\nabla \chi)^2 + \frac{9}{2} e^{\frac{\chi}{2}} - 5\sigma + 3\chi^2 e^{-2\sigma} - 9e^{-\frac{\chi}{2} - 9\sigma} (\pm 1 + \chi^2)^2$$

$$+ \frac{e^{\frac{\chi}{2} + \frac{3}{2} \tau}}{2} F_{\mu\nu\lambda\rho} F_{\mu\nu\alpha\beta} + 18e^{\phi - 6\sigma} (\pm A^\nu - \bar{A}^\nu - \nabla^\nu \psi)^2 - \frac{e^{-\frac{\chi}{2} - 9\sigma}}{2} F_{\mu\nu\lambda\rho} F_{\mu\nu\alpha\beta}, \quad (A.7)$$

$$4\nabla^2 \sigma = -e^{-\phi - 2\sigma} (\nabla \chi)^2 + 16e^{-\phi} - 5e^{\frac{\chi}{2} - 5\sigma} - 14\chi^2 e^{-\phi} - 22e^{-\frac{\chi}{2} - 9\sigma} (\pm 1 + \chi^2)^2$$

$$+ e^{\frac{\chi}{2} + \frac{3}{2} \tau} F_{\mu\nu\lambda\rho} F_{\mu\nu\alpha\beta} - 36e^{\phi - 6\sigma} (\pm A^\nu - \bar{A}^\nu - \nabla^\nu \psi)^2 - e^{-\phi - 6\sigma} \check{F}_{\mu\nu\lambda\rho} \check{F}_{\mu\nu\alpha\beta}, \quad (A.8)$$

which are consistent with the 10D equations. From the metric variation, one has

$$R_{\mu\nu} = \frac{1}{2} \nabla_\mu \phi \nabla_\nu \phi + 6\nabla_\mu \sigma \nabla_\nu \sigma + \frac{3}{2} e^{-\phi - 2\sigma} \nabla_\mu \chi \nabla_\nu \chi + 2e^{\frac{\chi}{2} + \frac{3}{2} \tau} \left(F_{\mu\nu\alpha\beta} F_{\mu\nu\alpha\beta} - \frac{1}{2} g_{\mu\nu} F_{\alpha\beta} F_{\alpha\beta} \right)$$

$$+ 6e^{-\frac{\chi}{2} - \sigma} \left(\check{F}_{\mu\nu} \check{F}_{\mu\nu} - \frac{1}{2} g_{\mu\nu} \check{F}_{\mu\nu} \check{F}_{\mu\nu} \right) + 18e^{\phi - 6\sigma} \left(\pm A_\mu - \bar{A}_\mu \right)$$

$$\times \left(\nabla_\mu \psi - \nabla_\mu \bar{A}_\mu \right) \left(\pm A_\nu - \bar{A}_\nu - \nabla_\nu \psi \right)$$

$$- \frac{1}{2} g_{\mu\nu} \left[12e^{-\phi} - 3e^{\frac{\chi}{2} - 5\sigma} - 6\chi^2 e^{-\phi} - 9e^{-\frac{\chi}{2} - 9\sigma} (\pm 1 + \chi^2)^2 \right] \quad (A.9)$$

which is consistent with the 10D Einstein equation in (2.4). Note that one needs to impose the $\check{F}_{\mu\nu}$ constraint before taking the metric variation. Namely, one has to plug the constraint, $\Lambda_{\mu\nu} = \check{F}_{\mu\nu} - \chi e^{\frac{\chi}{2} + 3\tau} F_{\mu\nu\lambda\rho}$, into the action because the metric variation of $\sqrt{-g} \Lambda_{\mu\nu}$
which involves both $\sqrt{-g} F^{\mu\nu}$ and $\sqrt{-g} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$ is not well defined before imposing the constraint.

References

[1] Maldacena J M 1998 The large N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 2 231
Maldacena J M 1999 Int. J. Theor. Phys. 38 1113 (arXiv:hep-th/9711200)
[2] Witten E 1998 Adv. Theor. Math. Phys. 2 253 (arXiv:hep-th/9802150)
Gubser S S, Klebanov I R and Polyakov A M 1998 Phys. Lett. B 428 105 (arXiv:hep-th/9802109)
[3] Witten E 1998 Anti-de Sitter space, thermal phase transition, and confinement in gauge theories Adv. Theor. Math. Phys. 2 305 (arXiv:hep-th/9803131)
[4] Bak D, Gutperle M and Hirano S 2003 A dilatonic deformation of AdS(5) and its field theory dual J. High Energy Phys. JHEP05(2003)072 (arXiv:hep-th/0304129)
[5] Papadimitriou I and Skenderis K 2004 Correlation functions in holographic RG flows J. High Energy Phys. JHEP10(2004)075 (arXiv:hep-th/0407071)
Clark A B, Freedman D Z, Karch A and Schnabl M 2005 The dual of Janus ((<;: < -- > (:>-)) an interface CFT Phys. Rev. D 71 066003 (arXiv:hep-th/0407073)
[6] Bak D, Karch A and Yaffe L G 2007 Debye screening in strongly coupled $N = 4$ supersymmetric Yang–Mills plasma J. High Energy Phys. JHEP08(2007)049 (arXiv:0705.0994 [hep-th])
[7] Bak D, Gutperle M and Karch A 2007 Time dependent black holes and thermal equilibration J. High Energy Phys. JHEP12(2007)034 (arXiv:0708.3691 [hep-th])
[8] Bak D, Gutperle M and Hirano S 2007 Three dimensional Janus and time-dependent black holes J. High Energy Phys. JHEP02(2007)068 (arXiv:hep-th/0701108)
[9] Aharony O, Bergman O, Jafferis D L and Maldacena J 2008 $N = 6$ superconformal Chern–Simons–matter theories, M2-branes and their gravity duals J. High Energy Phys. JHEP10(2008)091 (arXiv:0806.1218 [hep-th])
[10] Minahan J A and Zarembo K 2008 The Bethe ansatz for superconformal Chern–Simons J. High Energy Phys. JHEP09(2008)040 (arXiv:0806.3951 [hep-th])
Bak D and Rey S J 2008 Integrable spin chain in superconformal Chern–Simons theory J. High Energy Phys. JHEP10(2008)053 (arXiv:0807.2063 [hep-th])
[11] Bak D, Min H and Rey S J 2010 Generalized dynamical spin chain and 4-loop integrability in $N = 6$ superconformal Chern–Simons theory Nucl. Phys. B 827 381 (arXiv:0904.4677 [hep-th])
Bak D, Min H and Rey S J 2009 Integrability of $N = 6$ Chern–Simons theory at six loops and beyond arXiv:0911.0689 [hep-th]
[12] Varma C M, Nussinov Z and van Saarloos W 2002 Phys. Rep. 361 267
[13] Lee S 2009 Phys. Rev. D 79 086006 (arXiv:0809.3402 [hep-th])
[14] Rey S J 2009 String theory on thin semiconductors: holographic realization of Fermi points and surfaces Prog. Theor. Phys. Suppl. 177 128 (arXiv:0911.5295 [hep-th])
Bak D and Rey S J 2009 Composite fermion metals from dyon black holes and S-duality arXiv:0912.0939 [hep-th]
[15] Bak D, Kim K K and Yun Y 2010 in preparation
[16] Gauntlett J P, Kim S, Varela O and Waldram D 2009 Consistent supersymmetric Kaluza–Klein truncations with massive modes J. High Energy Phys. JHEP04(2009)102 (arXiv:0901.0676 [hep-th])
[17] Hartnoll S A, Herzog C P and Horowitz G T 2008 Building a holographic superconductor Phys. Rev. Lett. 101 031601 (arXiv:0803.3295 [hep-th])
Hartnoll S A, Herzog C P and Horowitz G T 2008 Holographic superconductors J. High Energy Phys. JHEP12(2008)015 (arXiv:0810.1563 [hep-th])
[18] Basu P, Mukherjee A and Shieh H H 2009 Supercurrent: vector hair for an AdS black hole Phys. Rev. D 79 045010 (arXiv:0809.4494 [hep-th])
[19] Duff M J, Nilsson B E W, Pope C N and Warner N P 1984 On the consistency of the Kaluza–Klein ansatz Phys. Lett. B 149 90
[20] Nilsson B E W and Pope C N 1984 Hopf fibration of eleven-dimensional supergravity Class. Quantum Grav. 1 499
[21] Balasubramanian V and Kraus P 1999 Commun. Math. Phys. 208 413 (arXiv:hep-th/9902121)
[21] Casher A, Englert F, Nicolai H and Rooman M 1984 The mass spectrum of supergravity on the round seven sphere Nucl. Phys. B 243 173

[22] Cvetic M, Lu H and Pope C N 2001 Consistent warped-space Kaluza–Klein reductions, half-maximal gauged supergravities and CP(n) constructions Nucl. Phys. B 597 172 (arXiv:hep-th/0007109)

[23] Halyo E 2000 Supergravity on AdS(5/4) x Hopf fibrations and conformal field theories Mod. Phys. Lett. A 15 397 (arXiv:hep-th/9803193)

[24] Balasubramanian V, Kraus P, Lawrence A E and Trivedi S P 1999 Holographic probes of anti-de Sitter space-times Phys. Rev. D 59 104021 (arXiv:hep-th/9808017)

[25] Gauntlett J P, Sonner J and Wiseman T 2009 Holographic superconductivity in M-theory Phys. Rev. Lett. 103 151601 (arXiv:0907.3796 [hep-th])

Gauntlett J, Sonner J and Wiseman T 2009 Quantum criticality and holographic superconductors in M-theory arXiv:0912.0512 [hep-th]

[26] Chamblin A, Emparan R, Johnson C V and Myers R C 1999 Charged AdS black holes and catastrophic holography Phys. Rev. D 60 064018 (arXiv:hep-th/9902170)

[27] Bak D and Janik R A 2007 From static to evolving geometries: R-charged hydrodynamics from supergravity Phys. Lett. B 645 303 (arXiv:hep-th/0611304)

[28] Fujita M, Li W, Ryu S and Takayanagi T 2009 Fractional quantum hall effect via holography: Chern–Simons, edge states, and hierarchy J. High Energy Phys. JHEP06(2009)066 (arXiv:0901.0924 [hep-th])

Hikida Y, Li W and Takayanagi T 2009 ABJM with flavors and FQHE J. High Energy Phys. JHEP07(2009)065 (arXiv:0903.2194 [hep-th])

[29] Bak D, Fadafan K B and Min H 2010 Phys. Lett. B 689 181 (arXiv:1003.5227 [hep-th])