Models of diffusion of emergency emissions from railway tanks with petroleum products

V V Kulneva¹, A V Zvyagintseva²,⁵, S A Sazonova³ and N V Akamsina⁴

¹ Department of training and certification of scientific and pedagogical personnel, Voronezh State Technical University, Voronezh State Technical University, 84 October 20th Anniversary Street, Voronezh, 394006, Russia
² Department of Chemistry and Chemical Technology, Voronezh State Technical University, 84 October 20th Anniversary Street, Voronezh, 394006, Russia
³ Department of Technosphere and Fire Safety, Voronezh State Technical University, 84 October 20th Anniversary Street, Voronezh, 394006, Russia
⁴ Department of Control Systems and Information Technologies in Construction, Voronezh State Technical University, 84 October 20th Anniversary Street, Voronezh, 394006, Russia
⁵ E-mail: zvygincevaav@mail.ru

Abstract. In the event of the destruction or explosion of tanks with oil products, basic schemes for the distribution of pollutants have been developed in the area of a technical stop of a train at a distance of up to 1000 meters in all directions, taking into account all structures located in the study area. On the basis of an analytical assessment of the consequences of an emergency, it was shown that in the event of the destruction or explosion of railway tanks with oil products, from 90 to 95 % of economic and public facilities will be located in the zone of exceeding the MPC by 2-300 times. The limits for exceeding the permissible concentrations of polluting components in the parking area and flushing of tanks intended for the transit of oil and oil products have been established. The greatest excess will be at a distance of 300 meters from the tank car parking, where, for all priority polluting components, it is possible to exceed the MPC by 300 times. For a distance from the source of emissions more than 1000 meters in each direction of light, the calculation of the maximum permissible concentration of polluting components was performed.

1. Introduction
The calculation of diffusive inflating of the PC by air flows was diagnosed after fixing the number of abnormal spills of the PC produced as a result of exploding or breaking the tightness of the container for storage and transit of oil and oil products.

Initial data for the purpose of fixing the amount of PC dispersed by air jets due to diffusion are illustrated in table 1.

2. Analytical justification of diffusion of pollutants formed during evaporation from railway tanks with oil products, and fixing their surface concentrations
The calculation for priority pollutants released from tanks with oil products has been made. The maps of pollutants distribution in case of the destruction or explosion of tanks with oil for a distance up to 1000 meters in all directions have been made. The maps contain the information about specific
residential areas, indicating the numbers of houses within the area of influence of the item technical stop of the train with oil products and applying them for each pollutant. We also note that the calculation was performed at a distance from the emission source up to 1000 meters, divided into sectors of 300, 650 and 995 meters with fixing at these points of the PC maximum concentration.

Table 1. Initial information for fixing the PC amount scattered by air flows.

PC	Hazard class acc. to [1-4]	Gross splash, g/s
H₂S	2	75
CH₃O	2	36
C₆H₆	2	525
C₇H₈	3	595
h/c in total	3	1375

Calculation of the diffusion spacing of PC from the side of the genesis of an abnormal short-term burst of large-scale PC cumulation is accompanied by the fixation of their maximum surface concentrations (SC). From the genesis of this order the smoke of the air zone of the object and the territory of the location of this source is diagnosed by the expression [5, 6]:

\[
C_m = \frac{A M m n \eta}{H^2 \sqrt{V_1 \Delta T}}. \tag{1}
\]

The interval for reaching the maximum SC is fixed by the expression:

\[
X_m = \frac{5 - F}{4} dH. \tag{2}
\]

Designation: \(C_m \) – maximum PC, mg/m³; \(F \) is the exponent describing the features of the PC sedimentation according to their size in the atmosphere, dimensionless; \(F = 1 \) for the gaseous components; \(\Delta T \) – the difference in temperature between pours gas mixture and the surrounding background air; the temperature of the background is governed by [6] average maximum temperature of the hottest month for Voronezh region – 26 °C; \(H \) – the height of emission source tank, m; \(V_1 \) is the flow rate of the gas mixture from the mouth of the generator, m³/s; \(m \) - aerodynamic index – temperature, the speed of the eruption; \(n \) - meteorological indicator-direction, wind speed, temperature stratification; \(\eta \) – the topographic indicator that fixes the terrain, the nature of the development; dimensionless; \(D \) – the diameter of the mouth of the emission generator, m; \(X \) – the length from the Genesis of emissions up to the regulated mark, appropriate for fixing, m; \(d \) – the aerodynamic indicator, dimensionless; \(A \) – the dimensionless multiplier, \(A = 180 \); \(M \) – the number of ejected PC over a time period, g/s, table 3; \(\tau \) –the duration of ejection of the \(i \)-th PC, for example, is equivalent to 10 seconds; \(m \cdot n = 1 \) in the first approximation.

The height of the 4-axle tank for viscous oil products, model 15-1566, is 4.65 meters; for light petroleum products model 15-16782 - 4.58 meters. The average value is 4.6 meters.

Indicator A takes into account the negative meteorological background, for which the peak PC cumulation in the air is recorded, for Voronezh region it is regulated by the equivalent 180, according to the climatic and geographical characteristics of this region. The height of the emission source (4-axle tank) is up to 10 meters and it is regulated by a low one.

The peak value of the PC maximum concentration (MC) due to the splash of the air-gas flow from an isolated point generator with a model orifice of a round shape is realized during a negative meteorological situation at a certain interval from the generator. The realized analytical fixation of MC: H₂S, CH₃O, C₆H₆, C₇H₈, h/c in total, is shown in table 2. For analytical calculation of the surface concentrations of \(i \) - ingredients carried by air flows from the parking place of oil tanks, the "Ecolog" software (version 3.0) was used.
The calculation of air pollution of the territory of the special facility by emissions from generators is implemented with the application of the UPRZA "Ecolog" software (unified program for calculating atmospheric pollution, version 3.0) by the INTEGRAL company, agreed with the Voeikov main geophysical observatory and recommended for diagnostics of surface accumulation of impurities. The priority in the calculations is the fixation of the PC propagation in all directions from a low source - a model ejection tank and overlaying it on the map of this part of Voronezh. The use of information technologies is noted in works [7-14]. All publications are aimed at reducing the technogenic load, especially in megacities.

Table 2. The results of calculating surface concentrations of pollutants during emissions from emergency sources.

Substances	Value by object numbers C_a, mg/m³								
	North	North-East	East	South-East	South	South-West	West	North-West	
hydrogen sulphide (H₂S)	0.094	0.113	0.337	0.173	0.129	0.099	0.179	0.135	
	0.125	0.274	0.586	0.225	0.173	0.103	0.221	0.147	
	0.226	0.376	0.656	0.293	0.216	0.18	0.293	0.213	
	0.231	0.741	1.036	0.307	0.262	0.469	0.416	0.332	
	0.433	0.968	1.285	0.593	0.314	0.469	0.523	0.405	
	0.586	1.395	1.629	1.195	0.391	2.254	1.036	0.633	
	6.780	2.419	2.234	1.654	0.554	71.268	47.784	1.431	
						71.265	1.621	660.000	4.692
formaldehyde (CH₂O)	0.045	0.054	0.163	0.084	0.062	0.048	0.086	0.065	
	0.060	0.132	0.283	0.109	0.084	0.049	0.106	0.071	
	0.109	0.181	0.317	0.141	0.104	0.087	0.141	0.103	
	0.111	0.358	0.501	0.148	0.126	0.227	0.201	0.155	
	0.209	0.468	0.623	0.286	0.152	0.971	0.253	0.196	
	0.283	0.672	0.787	0.780	0.189	34.456	0.501	0.305	
	3.275	1.180	1.071	0.800	0.267	319.000	23.100	0.677	
						34.415	0.787	2.260	
benzene (C₆H₆)	0.750	0.890	2.684	1.374	1.024	0.785	1.421	1.071	
	0.990	2.171	4.655	1.795	1.374	0.811	1.755	1.176	
	1.791	2.980	5.200	2.326	1.710	1.436	2.322	1.692	
	1.835	5.886	8.235	2.420	2.083	3.722	3.200	2.554	
	3.441	7.683	10.211	4.717	2.498	3.724	4.151	3.212	
	4.657	11.638	12.960	9.552	3.100	15.925	8.238	5.020	
	53.798	19.427	17.710	13.120	4.392	565.000	378.000	11.124	
						565.000	12.93	5236.000	37.205
toluene (C₇H₈)	0.666	0.795	2.364	1.215	0.900	0.691	1.251	0.914	
	0.870	1.922	4.152	1.576	1.211	0.720	1.545	1.075	
	1.583	2.631	4.595	2.053	1.516	1.266	2.050	1.496	
	1.623	5.186	7.265	2.151	1.832	3.282	2.914	2.253	
	3.031	6.773	9.023	4.154	2.274	3.286	3.666	2.847	
	4.152	9.733	11.41	8.377	2.743	14.062	7.261	4.436	
	47.641	17.121	15.66	11.580	3.878	498.000	334.000	9.810	
						498.000	11.41	4620.000	32.800
h/c in total	1.731	2.071	6.191	3.184	2.374	1.821	3.284	2.484	
	2.293	5.023	10.750	4.136	3.189	1.896	4.052	2.710	
	4.155	6.893	12.020	5.385	3.966	3.315	5.386	3.923	
	4.244	13.592	19.023	5.638	4.815	8.613	7.632	5.925	
	7.957	17.758	23.637	10.895	5.763	8.613	9.624	7.434	
	10.754	25.496	29.866	21.965	7.184	3685	19.000	11.621	
	124.000	44.888	40.964	30.321	10.156	1306.000	875.000	25.690	
						1306.000	29.863	12100.000	86.050
Comparing the indicators recorded in the course of the quantitative assessment of the PC cumulation in the surface layer during their expiration due to the destruction or explosion of railway oil containers, with the MPC value for the i-th PC, illustrated in table 1 it is permissible to summarize. The maximum permissible PC concentration for each direction is realized at an interval of more than 1000 m from the source (the tank). The calculated indicators for the diffusion propagation of the PC along the cardinal points from the source - the tank during its destruction or explosion are shown in a graphical representation in the format of a map - a diagram, illustrated in figure 1-5. The designations for all the figures are the same: in the squares there is a number indicating the house number in the residential area of the object.
Figure 5. Model of h/c in total diffusion due to the oil tanks destruction or explosion.
- the object for which the C_A is 300 times greater than the MPC in the event of an accident;
- the object for which the C_A is 100 times greater than the MPC in the event of an accident;
- the object for which the C_A is 50 times greater than the MPC in the event of an accident;
- the object for which the C_A is 10 times greater than the MPC in the event of an accident;
- the object for which the C_A is 2 times greater than the MPC in the event of an accident;
- temporary parking place for railway tanks with petroleum products;
- corresponds to 300 m from the parking place of the tank;
- corresponds to 650 m from the parking place of the tank;
- corresponds to 995 m from the parking place of the tank.

3. Conclusion
The issues of optimizing the safety of OP transportation by railway transport have been considered:

- the calculation of ground-level concentrations of pollutants when released from emergency sources has been made;
- the schematic maps of the pollutants distribution in case of the destruction or explosion of tanks with petroleum products at a distance of up to 1000 meters in all directions have been developed.
The "Ecolog" software (version 3.0) have been used for analytical calculation of the surface concentrations of \(i\)-ingredients: \(\text{H}_2\text{S}, \text{CH}_3\text{O}, \text{C}_6\text{H}_6, \text{C}_3\text{H}_8\) h/c in total, carried by air flows from the oil tanks parking place.

According to the implemented quantitative assessment of PC emissions, it has been found that in case of the oil railway tanks destruction or explosion from 90 to 95% of economic and public entities from technosphere objects to residential areas (depending on the source (tank) and the nature of the \(i\)-th ingredient) will be in the zone of large-scale overlap of the MPC by 2-300 times.

As for the significant and potentially dangerous PC, included in the petroleum products, they are, respectively: \(\text{H}_2\text{S}, \text{CH}_3\text{O}, \text{C}_6\text{H}_6, \text{C}_3\text{H}_8\) h/c in total.

It should be noted that the MPC is exceeded at the points where the tanks for the oil and petroleum products transit are parked and washed. The highest excess was recorded at a distance of 300 meters from the source (the parking lot), exceeding the MPC by 300 times for all prior PC categories: \(\text{H}_2\text{S}, \text{CH}_3\text{O}, \text{C}_6\text{H}_6, \text{C}_3\text{H}_8\) and h/c in total.

The MPC for each direction is implemented at a distance of more than 1000 m from the source (the tank).

References

[1] Zvyagintseva A V, Sazonova S A, Kulneva V V and Panteleev I N 2020 Justification of methods for reducing ground-level gas pollution from operating aircraft engines *IOP Conference Series: Materials Science and Engineering*. I International conference "CAMSTech-I 2020" 919 062034
[2] Hygienic standards 2.2.5.3532-18 Maximum permissible concentration (MPC) of harmful substances in the air of the working area (Electronic resource) http://docs.cntd.ru/document/557235236
[3] Hygienic standard 2.1.6.3492-17 Maximum permissible concentrations (MPC) of pollutants in the atmospheric air of urban and rural settlements (Electronic resource) http://docs.cntd.ru/document/556185926
[4] Hygienic requirements for ensuring the quality of atmospheric air in populated areas 2001 On the introduction of sanitary rules SanPiN 2.1.6.1032-01 (Electronic resource) http://docs.cntd.ru/document/901787814
[5] Method of conducting an inventory of pollutants emissions into the atmosphere at railway transport enterprises (calculated method) 1992 *Date of actualization 01.02.2020* (Electronic resource) https://meganorm.ru/Index2/1/4293852/42938520249.htm
[6] Methodological guide for calculating, regulating and controlling emissions of pollutants into the air 2012 (Electronic resource) https://meganorm.ru/Data2/1/4293792/4293792228. pdf
[7] Zvyagintseva A V, Sazonova S A, Kulneva V V and Panteleev I N 2020 Modeling of metalwork and welding technological processes *IOP Conference Series: Materials Science and Engineering*. I International conference "CAMSTech-I 2020" 919 062036
[8] Zvyagintseva A V, Kulneva V V and Sazonova S A 2020 *IOP Conference Series: Materials Science and Engineering*. I International conference "CAMSTech-I 2020" 919 062036
[9] Zvyagintseva A V 2020 Potential possibilities of hydrogen accumulation in Nickel based solid-state materials *IOP Conference Series: Materials Science and Engineering*. I International conference "CAMSTech-I 2020" 919 062054
[10] Zvyagintseva A V 2020 Mathematical model for process of the hydrogen permeability management of metals with internal stresses taking into account the formation and decay of motionless complexes *Bulletin of the Russian Academy of Sciences: Physics* 9(84) 1097-9
[11] Zvyagintseva A V, Sazonova S A and Kulneva V V 2020 Measures to Improve Working Conditions and Reduce Dust and Gas Emissions in the Quarries of the Mining and Processing Plant *IOP Conference Series: Earth and Environmental Science International science and technology conference "FarEastCon-2019"* 459 052047
[12] Zvyagintseva A V, Sazonova S A and Kulneva V V 2019 Modeling of Fugitive Emissions of
Dust and Gases Into the Atmosphere in Open Pits Mining And Processing Plants, and Improving Measures to Improve Working Conditions Proceedings of the Seventh International Environmental Congress (Ninth International Scientific-Technical Conference) "Ecology and Life Protection of Industrial-Transport Complexes ELPIT 2019" 212-26

[13] Konorev M M and Nesterenko G F 2005 The issue of reducing the negative environmental impact of mass explosions in quarries Mining Information and Analytical Bulletin 1 109-13

[14] Mudan K S 1985 Thermal Radiation from Hydrocarbon Pool and Vapor Fires Arthur D. Little Inc. Report 50688 59-80