Enfoques de sistemas socioecológicos, esenciales para comprender y responder a los impactos complejos de COVID-19 en las personas y el medio ambiente

Social–ecological systems approaches are essential for understanding and responding to the complex impacts of COVID-19 on people and the environment

Andrew N. Kadykalo†, Christine Beaudoin, Diana M. Hackenburg, Nathan Young y Steven J. Cooke

Resumen

La pandemia de la enfermedad del coronavirus 2019 (COVID-19) está impactando dramaticamente los sistemas sociales planetarios y humanos que están inseparablemente vinculados. Las enfermedades zoonóticas como la COVID-19 exponen cómo el bienestar humano está inextricablemente interconectado con el medio ambiente y con otras crisis socioecológicas convergentes (impulsadas por los humanos), como las pérdidas dramáticas de biodiversidad, el cambio en el uso de la tierra y el cambio climático. Argumentamos que el COVID-19 es en sí mismo una crisis socioecológica, pero hasta ahora las respuestas no han incluido la resiliencia ecológica, en parte porque la metáfora de la “Antropausa” ha creado una sensación poco realista de comodidad que excusa la inacción. Las narrativas de la antropausa desmienten el hecho de que la extracción de recursos ha continuado durante la pandemia y que los negocios como de costumbre continúan causando una degradación generalizada del ecosistema que requiere atención política inmediata. En algunos casos, las medidas de política de COVID-19 contribuyeron aún más al problema, como la reducción de los impuestos ambientales o la aplicación de las normas. Mientras que algunos sistemas socioecológicos (SSE) están experimentando impactos reducidos, otros están experimentando lo que llamamos un "Antrochoque", con más visitantes y un uso intensificado. Las diversas causas e impactos de la pandemia se pueden comprender mejor con una lente socioecológica. Los conocimientos socioecológicos son necesarios para planificar y desarrollar la resiliencia necesaria para enfrentar la pandemia y futuras crisis socioecológicas. Si nosotros, como sociedad, nos tomamos en serio la reconstrucción mejor de la pandemia, debemos adoptar un conjunto de respuestas de investigación y políticas informadas por el pensamiento SSE.

Abstract

The Coronavirus Disease 2019 (COVID-19) pandemic is dramatically impacting planetary and human societal systems that are inseparably linked. Zoonotic diseases like COVID-19 expose how human well-being is inextricably interconnected with the environment and to other converging (human driven) social–ecological crises, such as the dramatic losses of biodiversity, land use change, and climate change. We argue that COVID-19 is itself a social–ecological crisis, but responses so far have not been inclusive of ecological resiliency, in part because the “Antropause” metaphor has created an unrealistic sense of comfort that excuses inaction. Anthropause narratives belie the fact that resource extraction has continued during the pandemic and that business-as-usual continues to cause widespread ecosystem degradation that requires immediate policy attention. In some cases, COVID-19 policy measures further contributed to the problem such as reducing environmental taxes or regulatory enforcement. While some social–ecological systems (SES) are experiencing reduced impacts, others are experiencing what we term an “Anthrocrush,” with more visitors and intensified use. The varied causes and impacts of the pandemic can be better understood with a social–ecological lens. Social–ecological insights are necessary to plan and build the resilience needed to tackle the pandemic and future social–ecological crises. If we as a society are serious about building back better from the pandemic, we must embrace a set of research and policy responses informed by SES thinking.
Introducción

En 2019, una evaluación global histórica realizada por la Plataforma Intergubernamental de Ciencia y Política sobre Biodiversidad y Servicios de los Ecosistemas (IPBES) advirtió que 1 millón de especies estaban en riesgo de extinción [1,2]. En 2020, la comunidad internacional no logró alcanzar un solo objetivo de biodiversidad para detener la destrucción de la naturaleza [3]. Ahora, en 2022, estamos entrando en el tercer año de una pandemia humana vinculada a esta crisis de biodiversidad, causada por una enfermedad infecciosa que presumiblemente se originó a partir de un evento de contagio de los reservorios de vida silvestre natural a la población humana.

La pandemia de la enfermedad por coronavirus 2019 (COVID-19) (en adelante, "la pandemia") está impactando dramaticamente los sistemas planetarios [4]. La rápida propagación de COVID-19 a casi todos los territorios habitados por humanos en la Tierra tiene impactos masivos (potencialmente permanentes) en la comunidad global, en la vida y la salud de las personas, los medios de vida y los comportamientos, lo que lleva a la mortalidad, la agitación, el sufrimiento, el aislamiento, y vulnerabilidad. Además de causar enfermedad y muerte, la pandemia y las medidas de salud pública asociadas, como el distanciamiento físico y los confinamientos, han afectado la salud mental y el bienestar (p. ej., ansiedad, fatiga, estrés, consumo de sustancias) uso y trauma) [5-7].

Otras interrupciones personales incluyen la pérdida de empleos, la inseguridad alimentaria, los retrasos en la atención médica y las perturbaciones en las cadenas de suministro. Estos impactos se han sentido en todas las escalas de sociedad (individuos, familias, comunidades, instituciones y naciones) tanto en áreas urbanas como rurales y en países de ingresos altos y bajos. Más allá de estas consecuencias sobre sociedad humana, también debemos atender a las consecuencias de la pandemia en el entorno biofísico que está indisolublemente ligado al bienestar humano. En el campo de las ciencias ambientales, la pandemia y los bloqueos globales asociados se han enmarcado como un "Experimento de confinamiento humano global" no planificado [8].

Para ayudar a los investigadores a revelar los impactos de la sociedad humana en entornos biofísicos, Rutz et al. [9] denominaron el periodo de actividad y movilidad humana inusualmente reducida debido a las restricciones de COVID-19 como "Antropausa". Los sistemas socioecológicos (SSE) conceptualizan cómo los "sistemas humanos" sociales (p. ej., individuos, comunidades e instituciones) y los "sistemas naturales" ecológicos (p. ej., ecosistemas, biodiversidad y clima) están explícita e inherentemente interrelacionados a través de relaciones bidireccionales. Sugerimos que el concepto SSE es esencial para comprender y responder a los impactos complejos de COVID-19. Interpretar el COVID-19 (y otras crisis de la naturaleza humana como la crisis de la biodiversidad [10]) a través del lente SSE es esencial por una variedad de razones prácticas: los estudios integrados de sistemas humanos y naturales acoplados, revelan patrones y procesos nuevos y complejos como la dinámica no lineal, los ciclos de retroalimentación, los puntos de inflexión y los retrasos de tiempo no son evidentes cuando los científicos sociales o naturales los estudian por separado [11,12]. Por ejemplo, los impactos relacionados con la pandemia se pueden sentir de inmediato (inicio de la pandemia) a corto plazo (en el primer año) o a largo plazo.

Estos patrones y procesos vuelven a ser evidentes solo cuando se toma el SSE completo como unidad de análisis y, al hacerlo, se pueden informar respuestas de políticas más holísticas y efectivas. Los SSE pueden apoyar el análisis integrado de la pandemia, reconociendo: i) la necesidad de colaboraciones entre antecedentes profesionales, culturales, geográficos y disciplinarios para abordar problemas complejos; ii) que los sistemas existen y funcionan en múltiples escalas de tiempo, espacio y organización social; y iii) que los efectos socioambientales interactúan y se acumulan en el espacio y el tiempo y no respetan los límites jurisdiccionales o temporales. Los SSE también pueden actuar como un objeto límite que proporciona un lenguaje y una terminología comunes que se pueden adaptar a diferentes contextos disciplinarios o profesionales, lo que permite la colaboración entre las ciencias naturales y sociales al abordar problemas complejos como el COVID-19 [13].

Un aspecto importante del pensamiento SSE es la resiliencia [14] o la capacidad de un SSE para absorber o resistir perturbaciones y otros factores estresantes. La resiliencia generalmente se refiere a la capacidad de las personas, sociedad, o sistemas para adaptarse al cambio y la adversidad. En esencia, la resiliencia es la capacidad de recuperarse y disminuir la vulnerabilidad ante futuras crisis. Si bien hemos enfrentado muchos traumas individuales y colectivos durante la pandemia de COVID-19, prácticas como el autocuidado y permanecer conectados en línea con nuestros seres queridos durante...
los confinamientos nos han ayudado a adaptarnos, crecer y ser resilientes ante circunstancias difíciles. La misma idea se aplica a la naturaleza: la resiliencia ecológica es la capacidad de la naturaleza para absorber o resistir las perturbaciones y el estrés mientras mantiene su estructura y funciones. Por ejemplo, en los ecosistemas agrícolas que producen cultivos frutíferos dependientes de polinizadores, aquellos que dependen de un solo polinizador como la abeja tienen más probabilidades de verse afectados por el trastorno del colapso de colonias, un fenómeno que ocurre cuando la mayoría de las abejas obreras en una colonia desaparecen [15]. Por el contrario, es más probable que un agroecosistema sea resistente a las enfermedades cuando admite una gran diversidad de polinizadores [16]. La resiliencia socioecológica encarna la capacidad de los SES vinculados para absorber perturbaciones recurrentes y retener estructuras, procesos y relaciones esenciales [17].

En muchos sentidos, el COVID-19 puede verse como una perturbación que trasciende los supuestos límites de los sistemas humanos y ambientales. Resultados inesperados y retroalimentación continua los bucles de la pandemia requerirán investigaciones y acciones proactivas e integrales para abordar los impactos negativos. Si nosotros, como sociedad, nos tomamos en serio reconstruir mejor a partir de la pandemia, nuestros esfuerzos deberán ser integrales, ambiciosos e inclusivos de la resiliencia socioecológica. A través de este lente, el COVID-19 puede conceptualizarse como un problema de crisis socioecológica. Las interrelaciones entre los sistemas ecológicos y sociales revelan que la creciente magnitud y tasa de impactos negativos en el bienestar humano (como los causados por la pandemia) están inextricablemente asociadas con la rápida pérdida de biodiversidad y la rápida degradación de los ecosistemas que sustentan a las sociedades humanas [18].

Sobre la base de los conceptos de SSE y resiliencia, presentamos varios argumentos centrales que sirven como hoja de ruta para esta revisión:

- El COVID-19 es una crisis socioecológica, pero hasta ahora las respuestas no han incluido la resiliencia ecológica, en parte porque la metáfora de la “Antropausa” ha creado una sensación poco realista de comodidad sobre el estado de la naturaleza que justifica la inacción.
- La pandemia ha tenido impactos negativos tangibles en SSE.
- Las causas y los impactos de la pandemia se pueden entender mejor con una lente SSE.
- Se necesita resiliencia socioecológica para enfrentar la pandemia y futuras crisis socioecológicas.
- Debemos adoptar un conjunto de respuestas de investigación y políticas informadas por SSE.

El COVID-19 es una crisis socioecológica

Sostenemos que la pandemia es una crisis socioecológica, que destaca nuestro ecosistema de producción global cada vez más conectado, simplificado e intensificado [19] y la perversa humanidad, la relación con el medio ambiente y la biodiversidad [20]. La mayoría de las pandemias de enfermedades zoonóticas (es decir, transmitidas o transmitidas por animales) se desarrollan a partir de la explotación insostenible de la naturaleza [21] y, de hecho, las señales apuntan a que el COVID-19 es un “flagelo causado por nuestra consideración desenfocada por la naturaleza” [22]. En 2016, el Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) encontró un aumento global en las epidemias zoonóticas, con los orígenes del 75% de las enfermedades infecciosas emergentes identificadas como estrechamente relacionadas con los cambios ambientales [23]. Las enfermedades zoonóticas como COVID-19 exponen cómo el bienestar humano está inextricablementemente interconectado con el medio ambiente y otras crisis socioecológicas convergentes (impulsadas por humanos), como las pérdidas drásticas de biodiversidad, el cambio en el uso del suelo y el cambio climático (figura 1).

Todas estas son crisis socio-ecológicas que involucran a las personas y al medio ambiente. Por ejemplo, los hallazgos de una evaluación global realizada por IPBES en 2019 pueden interpretarse a través de una lente SSE, ya que encontraron que la pérdida de biodiversidad reduce la capacidad de la naturaleza para regular la función del sistema inmunológico del cuerpo humano y mitigar el brote y la propagación de enfermedades, lo que subraya la importancia central y fundamental papel de la biodiversidad en la regulación de la salud humana y ecológica [1,2]. Cada vez es más evidente que las enfermedades infecciosas zoonóticas emergentes pueden verse exacerbadas por actividades humanas como la limpieza de tierras y la fragmentación del hábitat, lo que demuestra aún más el vínculo entre el bienestar humano y el medio ambiente [1,2,24,25].
Además, se espera que los patógenos transmitidos por vectores que infectan a los humanos, el ganado y la vida silvestre se propaguen más rápido y con mayor frecuencia con el calentamiento inducido por el cambio climático [26] y la degradación ambiental [24]. Tomadas individualmente o en conjunto, estas crisis amenazan la seguridad global al socavar la resiliencia de SSE. “Todas [las principales crisis socioecológicas] están interrelacionadas, con muchas de las mismas causas y soluciones”, como señaló Cristian Samper de la Wildlife Conservation Society en la Cumbre One Planet de líderes mundiales en París en enero de 2021 [22]. Una lente SSE es fundamental para alejarse del tratamiento de la naturaleza como algo que puede ser explotado y degradado, para reconocer la naturaleza como un socio integral de la vida en la tierra.

Las respuestas actuales a la pandemia no tienen en cuenta la complejidad socio-ecológica

A pesar de cierto reconocimiento de la necesidad de abordar el COVID-19 como una crisis socioecológica (p. ej.,[27,28]), la mayoría de los esfuerzos de respuesta a la pandemia se han centrado exclusivamente en la resiliencia humana e invertir dinero nuevo en viejas estructuras. Por ejemplo, muchos países de ingresos más altos (por ejemplo, Alemania, Japón, Reino Unido y Estados Unidos de América) implementaron rápidamente políticas para mejorar la resiliencia financiera, económica y/o social, como la compra de bonos del gobierno, los subsidios salariales y de alquiler, los rescates, los préstamos y otros programas de estímulo económico. Vivid Economics [29] expone que el “índice de estímulo verde” evaluó los esfuerzos de estímulo del COVID-19 de los países del G20 y otras economías importantes en relación con la acción climática y los objetivos de la biodiversidad. Encontraron que en julio de 2021, han existido intervenciones financieras gubernamentales sin precedentes en respuesta al COVID-19 con paquetes de estímulo que van desde los 2000 millones de USD (Islandia) hasta los 5.8 billones
Enfoques de sistemas socioecológicos, esenciales para comprender y responder a los impactos complejos de COVID-19 en las personas y el medio ambiente

de USD (EE. UU.), lo que representa un estímulo total medido de 17.2 billones de dólares. Sin embargo, en su evaluación, Vivid Economics [29] encontró que del total del paquetes de estímulo COVID-19 anunciados, solo US $1.8 billones han sido "verdes".

Además, resumieron que los paquetes de estímulo “... tendrá un impacto ambiental negativo en 15 de los países y economías del G20, y en cinco de los otros diez países analizados” e “incluso entre los países líderes, la naturaleza y la biodiversidad han sido particularmente descuidadas”. Así, los políticos y los gobiernos aún no han comprendido por qué la resiliencia ecológica es igualmente importante como respuesta a la crisis, y mucho menos la importancia de apoyar la resiliencia socioecológica para la recuperación y prevención de futuras crisis. Lo que sugiere el índice Greenness of Stimulus [29] es que muchos países han canalizado recursos limitados hacia necesidades urgentes de atención médica en lugar de esfuerzos de conservación donde las acciones y los resultados son más lentos y más inciertos. Por lo tanto, existe una disyuntiva entre las necesidades inmediatas para mitigar la pandemia y las acciones a más largo plazo para prevenir este tipo de crisis en el futuro. Las respuestas sociales a la pandemia y otras crisis socioecológicas también se ven obstaculizadas por la falta de voluntad para tomar decisiones frente a la incertidumbre y por la "normalidad progresiva" [30] donde los cambios importantes se aceptan como normales cuando en realidad ocurren lentamente a través de cambios menores, a menudo, imperceptibles incrementos.

La Antropausa como base para la in-acción sobre la resiliencia ecológica

El descuido de la naturaleza puede haber sido excusado inadvertidamente por las discusiones académicas y mediáticas sobre una "Antropausa" causada por los bloqueos [9] y las restricciones de viaje [8]. La narrativa de la antropausa era popular y (falsamente) reconfortante, ya que implicaba que la naturaleza se estaba "curando" durante la pandemia debido a la ausencia humana y, por lo tanto, no necesitaba atención política o un impulso de resiliencia, absolviendo así a los humanos de la responsabilidad de promulgar cambios más difíciles a largo plazo [31]. A pesar de los impactos inmediatos aparentemente positivos de la Antropausa en la naturaleza (p. ej., la distribución de especies animales y los cambios en la abundancia atribuidos a la reducción actividad humana), un meta-análisis reciente reveló que los impactos ecológicos son complejos y mixtos. Por ejemplo, el confinamiento también produjo efectos negativos, como el aumento de la caza ilegal y pesca, minería, comercio de vida silvestre, contaminación ambiental y deforestación [32]. Por lo tanto, las narrativas de la Antropausa desmienten el hecho de que la extracción de recursos ha continuado durante la pandemia y que las cosas como siempre continúan causando una degradación generalizada del ecosistema [33] que requiere atención política inmediata. En algunos casos, las medidas de política del COVID-19 contribuyeron aún más al problema, como la reducción de los impuestos ambientales o la aplicación de las normas [32,33].

Impactos socio-ecológicos de la pandemia COVID-19

La mayor parte de la investigación sobre los efectos de COVID-19 hasta el momento se ha centrado principalmente en los impactos sociales o ecológicos, aunque trasciende los sistemas singulares, este énfasis no es inesperado dado que las primeras investigaciones del COVID-19 han sido en gran medida oportunistas [34]. De hecho, muchas publicaciones sobre los impactos (ecológicos) del COVID-19 se produjeron muy rápidamente al principio de la pandemia [35], pero cuando se sintetizan más tarde, sugieren efectos verdaderamente mixtos [32]. Además, como enfatizamos, las respuestas políticas a la pandemia se han centrado singularmente en la resiliencia humana y han sido relativamente reactivas y no planificadas.

Aquí, demostramos cómo la pandemia ha influido en las interacciones socioecológicas en varios SSE comunitarios, que sirven como casos de ejemplo. Estos casos ejemplifican los impactos socio-ecológicos de la pandemia así como las interacciones socioecológicas complejas y retroalimentaciones que surgen de la causalidad no lineal [36]. Reconocemos que existen muchos otros casos que van más allá del alcance de esta revisión. Argumentamos que una lente SSE ayuda aún más a reconocer que estos impactos son el resultado de las desigualdades sistémicas socioecológicas.

Antropausa y Antrochoque en SSE rurales y urbanos

La pandemia ha tenido efectos contrastantes en los SSE
rurales y urbanos. La narrativa de la Antropausa ofrece solo una imagen parcial del impacto de la pandemia en las interacciones entre humanos y la naturaleza. Mientras que algunos SSE están experimentando menos visitantes e impactos reducidos, otros están experimentando lo que llamamos un "Antrochoque", con más visitantes y un uso intensificado (p. ej., [38]). Las restricciones de viajes internacionales e interregionales, junto con el deseo de los habitantes urbanos de escapar de la ciudad cuando sea posible, han aumentado el uso de áreas "abiertas"adyacentes, un fenómeno al que algunos se refieren como "efectos indirectos" [39]: políticas que benefician a la naturaleza en cierta área que puede impactar negativamente la naturaleza en otro lugar, es decir, en otra jurisdicción.

Es probable que el efecto indirecto del Antrochoque se sienta de manera más aguda en las periferías de los principales centros de población (p. ej., [40]) y tiene consecuencias significativas para ciertos SSE, mientras que otros se ven menos afectados. Por ejemplo, Ontario Parks (un sistema provincial canadiense de parques y áreas protegidas) ha visto un aumento en las reservas para acampar de hasta un 110% desde 2020, que a su vez aumentó un 50% desde 2019, mientras que el uso diurno aumentó hasta un 120% desde 2019 (comunicación personal). Los parques y su personal se han visto sometidos a un enorme estrés ecológico (p. ej., contaminación) y social (p. ej., acoso, abuso, fatiga y emocional) (comunicación personal). Además, "la burbuja atlántica", un área restringida para viajes que comprende cuatro provincias atlánticas en Canadá, probablemente haya reducido la presión sobre SSE en estas provincias que antes eran muy transitadas por vacaciones. En comparación, otras provincias como Columbia Británica, Alberta, Ontario y Quebec probablemente hayan experimentado un Antrochoque porque tienen grandes poblaciones urbanas que estaban restringidas a viajar dentro o entre estas provincias seleccionadas. Los resultados y los comentarios después de la Antropausa también requerirán investigación y atención política, como los cambios en los patrones de viaje que pueden exacerbar la Antropausa. Por ejemplo, los "viajes de venganza", la explosión anticipada en el turismo después de la demanda reprimida de personas que desean recuperar el tiempo perdido, hará que la recuperación del SSE pase rápidamente del aislamiento al uso excesivo [41].

Existen otros impactos socioecológicos rurales-urbanos inconsistentes del COVID-19 incluidos los considerados a escala local. En la India, por ejemplo, los ríos muy contaminados fluyan mucho más claramente, sin embargo, las comunidades locales recurrieron a los peces de agua dulce en peligro de extinción como alimento [42]. Además, en contradicción con la Antropausa, el aumento del desempleo urbano ha provocado que las personas de países de bajos ingresos, regresen a áreas rurales con ecosistemas sensibles, promoviendo la idea de un Antrochoque precipitante [43]. La pandemia también ha tenido efectos profundos e inmediatos en las capacidades de las personas para prevenir daños a los ecosistemas y la biodiversidad; interrumpió muchos esfuerzos de conservación tradicional como el monitoreo en tierra y el cumplimiento de las regulaciones [32,44].

En parte debido a las restricciones del COVID-19 (por ejemplo, cierres), la pesca ilegal, la caza furtiva, la deforestación, la expansión agrícola y la minería han florecido en varias partes del mundo, especialmente en áreas que dependían en gran medida de los ingresos turísticos antes de la pandemia [43–45]. Por ejemplo, la deforestación casi se duplicó entre 2019 y 2020 en los trópicos globales [44], un 51% más que hace un año en la Amazonía brasileña y aumentó hasta un 136% en los trópicos africanos [43,46]. En marzo de 2020, 27 aves rapaces protegidas fueron asesinadas ilegalmente en Europa Central y Oriental [47] y en el Báltico, la falta de turistas llevó a que la presencia de águilas de cola blanca Haliaeetus albicilla se multiplicara por 7, causando un 26% menos de productividad reproductiva de aros comunes Uria aalge que el promedio a largo plazo [48]. En los países africanos y asiáticos, la caza furtiva, la recolección de carne de animales silvestres y el tráfico han aumentado [49–50], la pesca comercial en aguas protegidas se disparó en Filipinas y Brasil [51–52]. Algunas de estas tendencias negativas (por ejemplo, tasas más altas de cosecha y tráfico de carne de animales silvestres y deforestación) aumentan el riesgo de futuros brotes de enfermedades zoonóticas que demuestren un ciclo de retroalimentación positiva [53–54].

SSE marginados y justicia ambiental

Los impactos de la pandemia también afectan de manera desproporcionada a los SSE marginados, lo que hace que los problemas de (in)justicia ambiental se centren aún más en el centro de atención [55–57]. Las disparidades raciales y de ingresos se manifiestan en una mayor exposición a los contaminantes ambientales y un mayor riesgo de infección y muerte por COVID-19 debido a la
Enfoques de sistemas socioecológicos, esenciales para comprender y responder a los impactos complejos de COVID-19 en las personas y el medio ambiente

proximidad con la contaminación [58–59]. Además, en todo el espectro urbano-rural, la exposición a niveles mucho más altos de productos químicos industriales, contaminación del aire, metales pesados venenosos y patógenos puede exacerbar las condiciones de salud preexistentes, muchas de las cuales son factores de riesgo de COVID-19 grave [56,60]. Sin lugar a dudas, en algunas de las partes más pobres y también con mayor biodiversidad del planeta, la Antropausa y la perturbación económica más amplia causada por la pandemia han aumentado la pobreza y la inseguridad alimentaria al tiempo que han devastado el ecoturismo y otras fuentes de sustento [43].

Comunidades indígenas y los SSE

La pandemia ha tenido impactos únicos en los pueblos y comunidades indígenas. Una encuesta con encuestados de 40 países ha revelado efectos mixtos para los NSE indígenas [61]. Específicamente, encontró algunos resultados positivos, como la adopción de la medicina tradicional y un aumento de la solidaridad comunitaria, pero también resultados negativos, como la pérdida de empleos o medios de subsistencia. Sin embargo, las comunidades indígenas en regiones remotas enfrentan tremendos desafíos, incluida la falta de atención médica accesible, viviendas superpobladas y la falta de control político sobre los recursos naturales de las zonas adyacentes [61,62]. La resiliencia comunitaria en las comunidades indígenas está vinculada al reconocimiento de los derechos y la capacidad de gobernar y acceder a las propias tierras, recursos y conocimiento. Esta resiliencia amortigua los impactos de la pandemia, aunque también se vio comprometida durante los cierres [61–62]. Por ejemplo, además del COVID-19, las comunidades en Fiji y Benín, enfrentaron crisis adicionales como los ciclones y el cierre de mercados para comprar alimentos, lo que afectó negativamente la resiliencia de la comunidad [61]. Además, la resiliencia disminuye cuando las comunidades dependen en gran medida de las organizaciones no gubernamentales (NAU: tenga en cuenta que las ONG se han definido como organizaciones no gubernamentales en la frase Además; GO) o los gobiernos, ya que se vuelven cada vez más dependientes de la financiación o el conocimiento externos [61]. Los impactos en estos casos de los SSE, así como las posibles políticas para abordarlos, simplemente no son visibles cuando los científicos sociales o naturales los estudian por separado y, por lo tanto, requieren marcos de contexto de SSE [63] para comprender y responder a las crisis que son de naturaleza socioecológica.

El valor del enfoque de los sistemas socioecológicos

A medida que más investigaciones y acciones se centran en varios aspectos de las causas y los impactos de la pandemia, es necesario pensar de manera más holística y movilizar las herramientas conceptuales existentes, como los SSE. Los impactos socioecológicos de la pandemia no se comprenden bien [64], pero es precisamente esta percepción la que necesitamos para ayudar a las sociedades humanas a adaptar sus respuestas a esta y futuras crisis socioecológicas. Como afirma New Scientist [65] con respecto a nuestra falta de progreso en este espacio, “nuestra comprensión de la red de dependencias que nos vinculan con el mundo natural es quizás 30 o 40 años detrás de la ciencia del cambio climático”. La pandemia ejemplifica por qué también es necesario adoptar soluciones integradoras e innovadoras informadas por los SSE para desarrollar la resiliencia socioecológica. Los marcos contextuales de los SSE pueden analizar holísticamente la pandemia como un tipo de problema perverso, aquellos que son difíciles de resolver debido a soluciones incompletas, inconsistentes y cambiantes que son difíciles de distinguir [66].

La investigación ecológica tradicionalmente ha subestimado los factores sociales, mientras que la investigación de las ciencias sociales sobre las relaciones humano-ambientales presenta una historia de antropocentrismo (p. ej., [67]). Por el contrario, los marcos contextuales SSE (por ejemplo, Driver-Pressure-State-Impact-Response (DPSIR), los servicios ecosistémicos y Human-Environment Systems (HES)) estudian sistemas complejos y acoplados que consideran la interconexión de la sociedad y el medio ambiente para lograr diversos objetivos, objetivos empíricos, analíticos y/o socio-ecológicos [68]. Las prácticas estratégicas en el campo de investigación de los SSE incluyen la transdisciplinariedad para potenciar diferentes tipos de conocimiento e insumos, el pluralismo metodológico (uso de múltiples métodos) para permitir el diseño de investigación colaborativa y la generación de recomendaciones para los formuladores de políticas con un enfoque en la sostenibilidad de los SSE [69]. Los marcos contextuales SSE ayudan a pensar y planificar a través de escalas mediante la identificación de desajustes socioecológicos entre las escalas de gestión y la(s) escala(s) de los procesos ecológicos que se gestionan.
[70,71]. Por ejemplo, los enfoques SSE facilitaron la transdisciplinariedad para generar conocimientos únicos sobre vías fluviales, incluidos los desajustes entre la calidad del agua en secciones de canales, ríos y lagos interconectados y su gestión, lo que ayuda a identificar reducciones en la resiliencia de los SSE [72,73]. Otro ejemplo de investigación en Namibia reveló que la recuperación de los SSE locales derribando las cercas del Parque Nacional, puede beneficiar la conservación a largo plazo de los ecosistemas de sabana y elefantes, mientras que la población local obtendría beneficios del turismo y el pastoreo de ganado [74].

Varios conceptos de salud ambiental consistentes con los marcos contextuales SSE hancobrado impulso y enfatizan el bienestar social y ecológico y reconocen a los humanos y el medio ambiente como correguladores del planeta: One Health [75–76], Planetary Health [77] y Socio-Ecological System Health (SESH) [78]. La implementación práctica efectiva y la evaluación de estos enfoques de salud ambiental, dependen de abordar la resiliencia los SSE específicamente [79]. Los conceptos de salud ambiental informados por los SSE revelan parcialmente las causas, los desafíos y las respuestas inadecuadas al COVID-19 y los cambios socioecológicos que conducen a la propagación de la enfermedad no se alinean con la vigilancia epidemiológica, la gestión de la salud pública ni la gestión de los recursos naturales, evitando la necesaria gobernanza adaptativa de los SSE vinculados [79].

En respuesta al COVID-19, Schneider et al. [80] describen 6 principios socioecológicos específicamente diseñados para dar forma a prácticas futuras de coexistencia de sociedades y naturaleza para prevenir futuras enfermedades infecciosas que incluyen: i) cambiar el enfoque en las relaciones entre la sociedad y la naturaleza; ii) permitir la coexistencia de diferentes grupos sociales, pero también humanos y no humanos asignaturas; iii) definir y reflexionar sobre los límites, en términos de escala espacial, temporal, social y ecológica; iv) lidiar con la complejidad del enredo social y natural requiere la aceptación de nuestro grado limitado de control; v) fortalecimiento de la resiliencia de los SSE y vi) la participación de todos los actores en estos principios metodológicos.

Reconstrucción de un mejor sistema socio-ecológico con un conjunto informado de respuestas de investigación y política

En muchos sentidos, la llegada de la enfermedad infecciosa COVID-19 no debería sorprender dada la evidencia de cómo las actividades humanas contribuyen a cambios planetarios indeseables y desestabilizadores. El concepto de “límites planetarios” [81,82], cuyo objetivo es delinear un espacio operativo seguro para la humanidad, descubrió que ya hemos cruzado 4 de 9 límites (es decir, cambio climático, pérdida de integridad de la biosfera, cambio del sistema terrestre y ciclos biogeocínicos alterados), lo que socava la integridad, la resiliencia y la capacidad de los ecosistemas para sostener los servicios de los ecosistemas [83]. La pandemia demuestra el peligro de violar estos límites planetarios, en particular la integridad de la biosfera y el cambio del sistema terrestre, que reducen la capacidad de la naturaleza para amortiguar, regular y controlar las enfermedades. Ahora está muy claro que en el Antropoceno, los humanos están impulsando un ciclo de degradación de los ecosistemas en los SSE cada vez más estrechamente conectados que tiende a convertir los servicios de los ecosistemas (por ejemplo, la regulación de la salud) en perjuicios (por ejemplo, enfermedades infecciosas). La pandemia del COVID-19 es una crisis planetaria y una llamada de atención de que el bienestar humano depende del bienestar de los ecosistemas que nos rodean. La transición hacia un futuro global deseable y sostenible requerirá una transformación social que reconcilie a la humanidad con la naturaleza en la que ya no podamos ignorar a la naturaleza en estrategias de resiliencia más amplias [84]. Por lo tanto, se necesitan con urgencia enfoques SES para formular políticas holísticas basadas en evidencia y medidas de gestión que minimicen de manera rentable el riesgo para el bienestar humano y ambiental simultáneamente [85]. Específicamente con respecto a la pandemia del COVID-19, estas transformaciones podrían lograr perspectivas holísticas de los SSE tanto en la ciencia como en la formulación de políticas:

1. Alentar a los legisladores y gobiernos a adoptar la resiliencia social y ecológica simultáneamente (es decir, la resiliencia socioecológica) como una respuesta importante a la crisis en donde: i) se desarrollen resúmenes de políticas que se enmarquen dentro del uso de los SSE; ii) desarrollar conjuntos de respuestas...
políticas y medidas de gestión basadas en los SSE con lecciones aprendidas para futuras pandemias; iii) proponer y adoptar esfuerzos de estímulos COVID-19 “verdes” con trayectorias económicas que mejoren la naturaleza y responder al cambio climático sin comprometer la biodiversidad; iv) invertir en soluciones basadas en la naturaleza (acciones inspiradas, respaldadas o copiadas de la naturaleza), como la protección forestal, la restauración de ecosistemas y la agricultura regenerativa para ayudar a abordar los riesgos para la salud pública; v) adoptar y fortalecer enfoques que evalúen simultáneamente los impactos ecológicos y la salud humana (por ejemplo, One Health, Planetary Health y SESH). El PNUMA podría anclar estos enfoques en una iniciativa más amplia con los Objetivos de Desarrollo Sostenible [79]; vi) recomendar y prescribir iniciativas como “una receta para la naturaleza” (PaRx, https://www.parkprescriptions.ca) y “terapia de bosque” (https://crc.ca/who-weare/educacion/forestoterapia) para mejorar la salud física y mental de los pacientes relacionándolos con la naturaleza.

2. Financiar la investigación sobre COVID-19 y la respuesta a la pandemia que incluya los SSE, centrada en los impactos sociales y ecológicos de la pandemia a saber: i) Permitir la investigación interdisciplinaria y transdisciplinaria integrada que involucre a las comunidades indígenas y locales y a los poseedores de conocimientos, que han tenido relaciones de larga data con ecosistemas interconectados y cuyas prácticas y formas de conocimiento podrían ayudar a aliviar los desajustes socioecológicos [86,87]; ii) identificar posibles intermediarios del conocimiento que podrían permitir el diálogo transdisciplinario entre los departamentos gubernamentales y los equipos de investigación interdisciplinarios.

Debemos llevar adelante las lecciones de la pandemia, reconociendo que la salud planetaria y quienes la administran, son esenciales frente a todos nuestros perversos desafíos socioecológicos. Si incluimos de manera proactiva y estratégica la resiliencia ecológica en las medidas de respuesta a la pandemia, podemos reducir la probabilidad de futuras crisis socioecológicas y nuestra vulnerabilidad a ellas, al mismo tiempo que la reducción de los costos totales soportados por la sociedad. Por ejemplo, gracias a los esfuerzos concertados al principio de la crisis, Canadá y Dinamarca han reorientado sus economías a través del gasto de estímulo para hacer más contribuciones positivas que negativas para construir resiliencia a través de la protección del clima y la biodiversidad [29]. La lección más importante puede ser la más simple: “La relación entre las personas y la naturaleza debe ser de interdependencia, de lo contrario corremos el riesgo de pasar por alto algo que los pueblos indígenas han sabido siempre: que somos naturaleza y la naturaleza somos nosotros y fallar en ver esta simple verdad es lo que nos ha metido en este lío en primer lugar”–Tonio Sadik, Director de Medio Ambiente en la Asamblea de las Primera Naciones, el principal activista de la organización que representa a los Pueblos Indígenas en Canadá [88].

Consentimiento para publicación

Los autores leyeron y aprobaron la versión final del manuscrito.

Conflicto de interés

Los autores declaran no poseer ningún tipo de conflicto de interés. Este documento solo refleja sus puntos de vista y no de las instituciones a las cuales pertenecen.

Perfil de autoría

Andrew N. Kadykalo
Departamento de Biología e Instituto de Ciencias Ambientales e Interdisciplinarias, Universidad de Carleton Ottawa, Ontario, Canadá. Estancia Post-Doctoral. https://andrewkadykalo.com/
Científico conservacionista interdisciplinar que aplica herramientas de ciencias naturales y sociales, incluidas síntesis de evidencia sistemática relevante para políticas ambientales y mapeo cognitivo con el fin de explorar las relaciones entre las personas y la naturaleza. Sus intereses de investigación se centran en la predicción del pronóstico de servicios ecosistémicos regulatorios (polinización, regulación de inundaciones) y el uso de pruebas en la gestión de la vida silvestre y la conservación de la biodiversidad.

Christine Beaudoin
Doctoranda en Estudios Sociológicos y Antropológicos, Facultad de Ciencias Sociales Universidad de Ottawa, Canadá. Sus intereses de investigación se centran en explorar las tensiones ambientales e inclusión de no humanos en la investigación de las ciencias sociales. Ha trabajado con ecologistas, biólogos, biofísicos y artistas. Ha completado una Maestría en Antropología y una Licenciatura con Honores en Psicología. Está afiliada a HumAnimal en la Universidad de Ottawa y también es cofundadora y miembro de la junta de Biotown, un laboratorio de biología comunitaria.
Diana M. Hackenburg
Como estudiante de doctorado en la Escuela Rubenstein, Diana forma parte de un equipo interdisciplinario que examina la relación entre la proliferación de algas nocivas en el lago Champlain y el bienestar humano. Se centrará en cómo y por qué las comunidades toman medidas, específicamente en cómo entienden y utilizan los datos científicos para informar los procesos de toma de decisiones.

Nathan Young
Es un sociólogo ambiental con un gran interés en los recursos naturales, el desarrollo rural y el papel de los diferentes tipos de conocimiento en la gestión ambiental y la toma de decisiones. Su investigación reciente se ha centrado en las representaciones mediáticas del cambio climático, los conflictos sobre la pesca y la acuicultura, y la resiliencia de la comunidad frente a los cambios ambientales. Colabora regularmente con científicos naturales en la investigación de las dimensiones humanas de los problemas ambientales. Su último libro (2015) se titula An Environmental Sociology for the Twenty-First Century (Oxford), y su libro de 2010 The Aquaculture Controversy in Canada (en coautoria con Ralph Mathews) ganó el premio K.D. Premio Srivastava a la excelencia académica en publicación: libro del año de UBC Press. Se interesa por la relación entre la naturaleza y las sociedades humanas. Su investigación se centra en las controversias ambientales, la política ambiental y la toma de decisiones, las percepciones del medio ambiente, el papel de la ciencia y el conocimiento local/tradicional en las afirmaciones sobre el medio ambiente, la resiliencia y adaptación de la comunidad y las desigualdades ambientales.

Steven J. Cooke
Profesor tiempo Departamento de Biología, Instituto de Ciencias Ambientales e Interdisciplinarias, Universidad de Carleton, Ottawa, Ontario, Canadá. Tiene diversos intereses en biología integrativa, ciencias de la conservación y manejo de recursos naturales. Su trabajo abarca las ciencias naturales y sociales con un enfoque particular en el desarrollo de soluciones a los problemas que enfrentan los peces y otros organismos acuáticos. Los proyectos específicos de los últimos tiempos se han centrado en cuestiones y temas como la migración de los peces, las interacciones entre los peces y la energía hidroeléctrica, la sostenibilidad de la pesca recreativa, la restauración del hábitat acuático, la ecología del movimiento de los peces, la ecología del estrés en los peces salvajes y la biología invertal. También ha estado profundamente involucrado en la definición de la nueva disciplina de “Fisiología de la conservación”, un campo dedicado a comprender los mecanismos subyacentes a los problemas de conservación. Tiene mucha experiencia trabajando con profesionales, formuladores de políticas y partes interesadas para co-crear conocimiento utilizable. Cooke fundó el Centro Canadiense para la Conservación Basada en Evidencia y está trabajando con diversos socios para desarrollar la capacidad de síntesis de evidencia en sus diversos roles en la Colaboración para la Evidencia Ambiental. Ha publicado más de 700 artículos revisados por pares sobre temas como la ciencia de la conservación, la movilización del conocimiento y la habilitación de la interdisciplinariedad, pero reconoce que el intercambio de conocimiento bidireccional con usuarios potenciales del conocimiento es aún más gratificante. Cooke es miembro de la Royal Canadian Geographical Society y es secretaria del Colegio de la Royal Society of Canada.

Referencias
[1] IPBES. Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (S. Díaz, J. Settele, E. Brondizio, & H. T. Ngo, Eds.). IPBES Secretariat; 2019. https://doi.org/10.5281/zenodo.3831674
[2] IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (S. Díaz, J. Settele, E. Brondizio, & H. T. Ngo, Eds.). IPBES Secretariat; 2019. https://doi.org/10.5281/zenodo.3553579
[3] Erdelen WR. Shaping the Fate of Life on Earth: The Post-2020 Global Biodiversity Framework. Glob Policy. 2020; 11(3):347–359. https://doi.org/10.1111/1758-5899.12773
[4] Chakraborty I, Maity P. COVID-19 outbreak: migration, effects on society, global environment and prevention. Sci Total Environ. 2020; 728:138882 https://doi.org/10.1016/j.scitotenv.2020.138882
[5] Panchal N, Kamal R, Cox C, Garfield R. The implications of COVID-19 for mental health and substance use. Kaiser family foundation; 2021. https://www.kff.org/coronavirus-covid-19/issuebrief/the-implications-of-covid-19-for-mental-health-and-substance-use/
[6] Pfefferbaum B, North CS. Mental Health and the Covid-19 Pandemic. N Engl J Med. 2020; 383:510–512. https://doi.org/10.1056/NEJMp2008017
[7] Vindegaard N, Benros ME. COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. Brain Behav Immun. 2020; 89:531–542. https://doi.org/10.1016/j.bbi.2020.05.048
[8] Bates AE, Primack RB, Moraga P, Duarte CM. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol Conserv. 2020; 248:108665. https://doi.org/10.1016/j.bioccons.2020.108665
[9] Rutz C, Loretto M-C, Bates AE, Davidson SC, Duarte CM, Jetz W, et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat Ecol Evol. 2020; 4(9):1156–1159. https://doi.org/10.1038/s41559-020-1237-2
[10] Mehring M, Bernard B, Hummel D, Liehr S, Lux A. Halting biodiversity loss: how social–ecological biodiversity research makes a difference. Int J Biodivers Sci Ecosyst Serv Manag. 2017; 13(1):172–180. https://doi.org/10.1080/21513732.2017.1289246.
[11] Berkes F, Folke C. 1. Linking Social and Ecological Systems for Resilience and Sustainability. In: Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience. Cambridge: 1998. pp. 1–26.
[12] Berkes F, Ibrahia MA, Armitage D, Charles T, Loucks L, Makino M, et al. Guidelines for Analysis of Social-Ecological Systems. Community Conservation Research Network (CCRN). 2014. https://www.communityconservation.net/wp-content/uploads/2016/01/FINAL_CCRN-Guidelinesfor-Analysis-of-Social-Ecological-Systems-September-2014.pdf.
[13] Hertz T, Schluter M. The SES-Framework as Boundary Object to Address Theory Orientation in Social–ecological System Research: The SES-Thor Approach.” Ecol Econ. 2015; 116:12–24. https://doi.org/10.1016/j.ecolecon.2015.03.022.

[14] Folke C. Resilience: the emergence of a perspective for social-ecological systems analyses. Glob Environ. 2006; 16(3):253–267. https://doi.org/10.1016/j.gloenvcha.2006.04.002

[15] United States Environmental Protection Agency. Colony Collapse Disorder. 2021. https://www.epa.gov/pollinator-protection/colony-collapse-disorder

[16] Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarico R, Cunningham SA, et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science. 2013; 339(6127):1608–11. https://doi.org/10.1126/science.1230200

[17] Fiksel J. Designing resilient, sustainable, systems. Environ Sci Technol. 2003; 37(23):5330–5339. https://doi.org/10.1021/es0344819

[18] Brown C, Rounsevell M. How can social-ecological system models simulate the emergence of social ecological crises? People Nat. 2020; 3(1):88–103. https://doi.org/10.1002/pan3.10167

[19] Nystro´m M, Jouffray JB, Norstro´m AV, Crona B, Sgaard Jorgensen P, Carpenter SR, et al. Anatomy and resilience of the global production ecosystem. Nature. 2019; 575(7781):98–108. https://doi.org/10.1038/s41586-019-1712-3

[20] Dandy N. 2020. Behaviour, Lockdown and the Natural World. Environ Values. 2020; 29(3):253–259. https://doi.org/10.13177/096327120X15868540131215

[21] Patz JA, Daszak P, Tabor GM, Aquirre AA, Pearl M, Epstein J, et al. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ Health Perspect. 2004; 112(10):1092–1098. https://doi.org/10.1289/ehp.8677

[22] Lawton G. Rescue plan for nature: How to fix the biodiversity crisis. New Sci. 17 February 2021. https://www.newscientist.com/article/mg24933252-000-096327120X15868540131215

[23] UNEP. Emerging zoonotic diseases and links to ecosystem health–UNEP Frontiers 2016 chapter.2016. https://wedocs.unep.org/bitstream/handle/20.500.11822/36614/1FB16eh2.pdf

[24] Everard M, Johnston P, Santillo D, Staddon C. The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environ Sci Policy. 2020; 111:7–17. https://doi.org/10.1016/j.envsci.2020.05.017

[25] Plowright RK, Reaser JK, Locke H, Woodley SJ, Patz JA, Becker DJ, et al. Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. Lancet Planet Health. 2021; 5(4):e237–e245. https://doi.org/10.1016/S2542-5196(21)00031-0

[26] Bartlow AW, Manore C, Xu C, Kaufeld KA, Del Valle S, Ziemann A, et al. Forecasting Zoonotic Infectious Disease Response to Climate Change: Mosquito Vectors and a Changing Environment. Vet Sci. 2019; 6(2):40. https://doi.org/10.3390/vetsci6020040

[27] Samuelsson K, Barthel S, Colding J, Macassa G, Giusti M. Urban nature as a source of resilience during social distancing amidst the coronavirus pandemic. OSF Preprints. 2020. https://doi.org/10.31219/osf.io.5w35a

[28] Zabaniotou A. A systemic approach to resilience and ecological sustainability during the COVID-19 pandemic: Human, societal, and ecological health as a system-wide emergent property in the Anthropocene. Glob Transit. 2020; 2:116–126. https://doi.org/10.1016/j.glt.2020.06.002

[29] Vivid Economics. Greenness of Stimulus Index: An assessment of COVID-19 stimulus by G20 countries and other major economies in relation to climate action and biodiversity goals. July 2021. https://www.vivideconomics.com/wp-content/uploads/2021/07/Green-Stimulus-Index-6th-Edition_final_report.pdf

[30] Diamond J. Collapse: How societies choose to fail or succeed. Penguin, 2011.

[31] Searle A, Turnbull J. Resurgent natures? More-than-human perspectives on COVID-19. Dialogues Hum Geogr. 2020; 10:291–295. https://doi.org/10.1177/2043820620933859

[32] Bates AE, Primack RB, Biggar BS, Bird TJ, Clinton ME, Command RJ, et al. Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biol Conserv. 2021; 263:109175. https://doi.org/10.1016/j.biocon.2021.109175

[33] McElwee P, Turnout E, Chiroleu-Assouline M, Clapp J, Isenhour C, Jackson T, et al. Ensuring a Post-COVID Economic Agenda Tackles Global Biodiversity Loss. One Earth. 2020; 3(4):448–461. https://doi.org/10.1016/j.oneear.2020.09.011

[34] Morris D. Research exceptionalism and opportunism during the coronavirus pandemic. J BUON. 2020; 25(6):2533–6. PMID: 33455093.

[35] Kadykalo AN, Haddaway NR, Rytwinski T, Cooke SJ. Ten principles for generating accessible and useable COVID-19 environmental science and a fit-for-purpose evidence base. Ecol Solutions Evidence. 2021; 2(1):e12041. https://doi.org/10.1021/2668-83191.12041

[36] Soga M, Evans MJ, Cox DTC, Gaston KJ. Impacts of the COVID-19 pandemic on human–nature interactions: Pathways, evidence and implications. People Nat. 2021; 3:518–527. https://doi.org/10.1002/pan3.10201

[37] Young N, Kadykalo AN, Beaudoin C, Hackenberg DM, Cooke SJ. Is the Anthropause a useful symbol and metaphor for raising environmental awareness and promoting reform? Environ Conserv. 2021; 48(4):274–277. https://doi.org/10.1017/S0376892921000024

[38] Geng DC, Innes J, Wu W, Wang G. Impacts of COVID-19 pandemic on urban park visitation: a global analysis. J For Res. 2021; 32:553–6. https://doi.org/10.11176/020-01249-w

[39] Andre’s SM, Mir LC, Bergh JC, Ring I, Verburg PH. Ineffective biodiversity policy due to five rebound effects. Ecosyst Serv. 2012; 1:101–110. https://doi.org/10.1016/j.ecoser.2012.07.003

[40] Grima N, Corcoran W, Hill-James C, Langton B, Sommer H, Fisher B. The importance of urban natural areas and urban ecosystem services during the COVID-19 pandemic. PLoS ONE. 2020; 15:e0243344. https://doi.org/10.1371/journal.pone.0243344

[41] Robbins J. Revenge travel is coming after a year of pent-up demand. The Globe and Mail. Published March 12, 2021. https://www.theglobeandmail.com/life/travel/article-revenge-travel-coming-are-you-ready/

[42] Pinder AC, Raghavan R, Britton JR, Cooke SJ. COVID-19 and biodiversity: The paradox of cleaner rivers and elevated extinction risk to iconic fish species. Aquat Conserv. 2020; 30(6):1061–1062. https://doi.org/10.1002/aqc.3416

[43] Lu D. Covid-19 hit biodiversity across the globe. Here’s how to fix things. New Sci. 10 March 2021. https://www.newscientist.com/article/mg24933252-700-covid-19-hit-
biodiversity across the globe—heres how to fix things—https://doi.org/10.1016/j.worlddev.2018.08.011

[44] Brancalion PHS, Broadbent EN, de-Miguel S, Cardil A, Rosa MR, Almeida CT, et al. Emerging threats linking tropical deforestation and the COVID-19 pandemic. Perspect Ecol Conserv. 2020; 18(4):243–246. https://doi.org/10.1016/j.pconcm.2020.09.006

[45] Evans KL, Ewen JG, Guillera-Arroita G, Johnson JA, Penteriani V, Ryan SJ, et al. Conservation in the maelstrom of Covid—19—a call to action to solve the challenges, exploit opportunities and prepare for the next pandemic. Anim Conserv. 2020; 23(3):235–238. https://doi.org/10.1111/acv.12601

[46] Spring J. Illegal loggers uncowed by coronavirus as deforestation rises in Brazil. Reuters. 10 April 2020. https://www.reuters.com/article/us-brazil-environment-illegal-loggers-uncowed-by-coronavirus-as-deforestation-rises-in-brazil-idUKKCN21SIII1?edition=hko

[47] Rare Bird Alert. Wildlife criminals taking advantage of COVID-19 crisis. 13 April 2020. https://www.rarebirdbirdalert.co.uk/v2/Content/Criminals_taking_advantage_of_COVID_19_crisis.aspx?sid=690721291

[48] Hentati-Sundberg J, Berglund P-A, Hejidstro¨m A, Olsson O. COVID-19 lockdown reveals visitors as seabird guardians. Biol Conserv. 2021; 254:108950. https://doi.org/10.1016/j.biocon.2021.108950

[49] Conservation International. Conservation International Reports Increase in Poaching and Tropical Deforestation Due To COVID-19 Restrictions. 21 April 2020. https://www.conservation.org/press-releases/2020/04/21/conservation-international-reports-increase-in-poaching-and-tropicaldeforestation-due-to-covid-19-restrictions.

[50] Rondeau D, Perry B, Grimard F. The Consequences of COVID-19 and Other Disasters for Wildlife and Biodiversity. Environ Econ. 2020; 76:945–961. https://doi.org/10.1007/s10640-020-00480-7

[51] Lima EC. In COVID’s Shadow, Illegal Fishing Flourishes. Hakai Magazine. 8 July 2020. https://hakaimagazine.com/news/in-covids-shadow-illegal-fishing-flourishes/

[52] Mongabay. Lockdown allowed illegal fishing to spike in Philippines, satellite data suggest. 7 June 2020. https://news.mongabay.com/2020/06/lockdown-allowed-illegal-fishing-to-spike-in-philippines-satellite-data-suggest/

[53] Cunningham AA, Daszak P, Wood JLN. (2017). One Health, emerging infectious diseases and wildlife: two decades of progress? Philos Trans R Soc Lond B Biol Sci. 2017; 372:20160167. https://doi.org/10.1098/rstb.2016.0167

[54] Faust CL, McCallum HI, Bloomfield LSP, Gottdenker NL, Gillespie TR, Torney CJ, et al. Pathogen spillover during land conversion. Ecol Lett. 2018; 21:471–483. https://doi.org/10.1111/ele.12904

[55] Figliozzi M, Unnikrishnan A. Home-deliveries before-during COVID-19 lockdown: Accessibility, environmental justice, equity, and policy implications. Transp Res D Transp Environ. 2021; 93:102760. https://doi.org/10.1016/j.trd.2021.102760

[56] Cole HVS, Anguelovski I, Baró F, García-Lamarca M, Kotsila P, Pérez del Pulgar C, et al. The COVID-19 pandemic: power and privilege, gentrification, and urban environmental justice in the global north. Cities Health; 2020. https://doi.org/10.1080/25748834.2020.1785176

[57] Washington HA. How environmental racism is fueling the coronavirus pandemic. Nature. 2020; 581:241. https://doi.org/10.1038/d41586-020-01453-y

[58] Brandt EE, Beck AF, Mersha TA. Air pollution, racial disparities, and COVID-19 mortality. J Allergy Clin Immunol. 2020; 146(1):61–63. https://doi.org/10.1016/j.jaci.2020.04.035

[59] Terrell KA, James W. Racial Disparities in Air Pollution Burden and COVID-19 Deaths in Louisiana, USA, in the Context of Long-Term Changes in Fine Particulate Pollution. Environ Justice. 2020. https://doi.org/10.1089/env.2020.0018

[60] Wu X, Nethery RC, Sabath MB, Braun D, Dominici F. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci Adv. 2020; 6(45):eaab4049. https://doi.org/10.1126/sciadv.ab4049

[61] Walters G, Broome NP, Cracco M, Dash T, Dudley N, Elias S, et al. Covid-19, Indigenous Peoples, Local Communities and Natural Resource Governance. PARKS. 2021; 27. https://doi.org/10.2305/IUCN.CH.2021.PARKS-27-SIGW

[62] Menton M, Milanez F, Machado de Andrade Souza J, Cruz FSM. The COVID-19 pandemic intensified resource conflicts and indigenous resistance in Brazil. World Dev. 2021; 138:105222. https://doi.org/10.1016/j.worlddev.2020.105222

[63] Schoon M, Van der Leeuw S. The Shift toward Social-Ecological Systems Perspectives: Insights into the Human-Nature Relationship. Nat Sci Soc. 2015; 23(2):166–174. https://doi.org/10.1015/nss.2015034

[64] Mueller JT, McConnell K, Burow PB, Pofahl K, Merdjanoff AA, Farrell J. Impacts of the COVID-19 pandemic on rural America. Proc Natl Acad Sci U S A. 2021; 118(1):2019378118. https://doi.org/10.1073/pnas.2019378118

[65] New Scientist. Covid-19 is a wake-up call to stop abusing the ecosystems we depend on. NewSci17 February 2021. https://www.newscientist.com/article/mg24933223-900-covid-19-is-a-wake-up-call-to-stop-abusing-the-ecosystems-we-depend-on-

[66] Sahin O, Salim H, Suprun E, Richards R, MacAskill S, Heilgeist S, et al. Developing a Preliminary Causal Loop Diagram for Understanding the Wicked Complexity of the COVID-19 Pandemic. Systems. 2020; 8(2):20. https://doi.org/10.3390/systems8020020

[67] Kadykalo AN, Kelly LA, Berberi A, Reid JL, Findlay CS. Research effort devoted to regulating and supporting ecosystem services by environmental scientists and economists. PLoS ONE. 2021; 16(5):e0252463. https://doi.org/10.1371/journal.pone.0252463

[68] Binder CR, Hinkel J, Bots PWG, Pahl Wostl C. Comparison of frameworks for analyzing social-ecological systems. Ecol Soc. 2013; 18(4):26. https://doi.org/10.5751/ES-05331-180426

[69] Rissman AR, Gillson S. Where is Ecology and Biodiversity in Social–Ecological Systems Research? A Review of Research Methods and Applied Recommendations. Conserv Lett. 2017; 10(1):86–93. https://doi.org/10.1111/conl.12250

[70] Cumming GS, Cumming DMG, Redman CL. Scale mismatches in social-ecological systems: causes, consequences, and solutions. Ecol Soc. 2006; 11(1):14. https://doi.org/10.5751/ES-01569-110114

[71] Cumming GS, Olsson P, Chaplin III, Holling CS. Resilience, experimentation, and scale mismatches in social-ecological landscapes. Landsc Ecol. 2013; 28:1139–1150. https://doi.org/10.1007/s10741-012-9725-4

[72] Beaudoin C, Mistry I, Young N. Collaborative knowledge mapping to inform environmental policy-making: The case of Canada’s Rideau Canal National Historic Site. Environ Sci Policy. 2022; 128:299–309. https://doi.org/10.1016/j.envsci.2021.12.001
Enfoques de sistemas socioecológicos, esenciales para comprender y responder a los impactos complejos de COVID-19 en las personas y el medio ambiente

[72] Mistry I, Beaudoin C, Kotecha J, Evans H, Stevens M, Vermaire JC, et al. Action research to improve water quality in Canada’s Rideau Canal: how do local groups reshape environmental governance? Local Environ. 2021; 26(5):575–594. https://doi.org/10.1080/13549839.2021.1904857

[74] Hoole A, Berkes F. Breaking down fences: Recoupling social-ecological for biodiversity conservation in Namibia. Geoforum. 2010; 41(2):304–317. https://doi.org/10.1016/j.geoforum.2009.10.009

[75] Zinsstag J, Schelling E, Waltner-Toews D, Tanner M. From “one medicine” to “one health” and systemic approaches to health and well-being. Prev Vet Med. 2011; 101(3–4):148–156. https://doi.org/10.1016/j.prevetmed.2010.07.003

[76] Gibbs EPJ. The evolution of One Health: a decade of progress and challenges for the future. Vet Rec. 2014; 174(4):85–91. https://doi.org/10.1136/vr.g143

[77] Sellentinich N. Down to earth: the emerging field of planetary health. Environ Health Perspect. 2018;126:7. https://doi.org/10.1289/EHP2374

[78] de Garine-Wichatitsky M, Binot A, Ward I, Caron A, Perron A, Ross H, et al. "Health in" and "Health of" Social-Ecological Systems: A practical framework for the management of healthy and resilient agricultural and natural ecosystems. Front Public Health. 2021; 8:982. https://doi.org/10.3389/fpubh.2020.616328

[79] de Garine-Wichatitsky M, Binot A, Morand S, Kock R, Roger F, Wilcox BA. Will the COVID-19 crisis trigger a One Health coming-of-age? Lancet Planet Health. 2020; 4(3):e377–e378. https://doi.org/10.1016/S2542-5196(20)30179-0

[80] Schneider F, Matias D, Burkhart S, Drees L, Tickel T, Hummel D, et al. Biodiversity conservation as infectious disease prevention: Why a social-ecological perspective is essential. Global Sustainability.2021; 4:E13. https://doi.org/10.1017/sus.2021.11

[81] Rockstro¨m J, Steffen W, Noone K, Persson A, Stuart Chapin F III, Lambin E, et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc. 2009; 14(2):32. https://doi.org/10.5751/ES-03180-140232

[82] Rockstro¨m J, Steffen W, Noone K, Persson A, Stuart Chapin F III, Lambin EF, et al. A safe operating space for humanity. Nature. 2009; 461:472–475. https://doi.org/10.1038/461472a

[83] Steffen W, Richardson K, Rockstro¨m J, Cornell SE, Fetzer I, Bennett EM, et al. Planetary boundaries: Guiding human development on a changing planet. Science. 2015; 347(6223):129855. https://doi.org/10.1126/science.1259855

[84] Diaz S, Settele J, Brondizio ES, Ngo HT, Agard J, Arneth A, et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science. 2019; 366(6471):eaax3100. https://doi.org/10.1126/science.aaax3100

[85] Auld G., Bernstein S., Cashore B. et al. Managing pandemics as super wicked problems: lessons from, and for, COVID-19 and the climate crisis. Policy Sci 54, 707–728 (2021). https://doi.org/10.1007/s11077-021-09442-2

[86] Herse MR, Lyver PO’ B, Scott N, McIntosh AR, Coats SC, Gormley AM, et al. Engaging Indigenous Peoples and Local Communities in Environmental Management Could Alleviate Scale Mismatches in Social–Ecological Systems. Bioscience. 2020; 70(8):699–707. https://doi.org/10.1093/biosci/biaa066

[87] Redvers N, Poelina A, Schultz C, Kobei DM, Githaiga C, Perdrisat M, et al. Indigenous Natural and First Law in Planetary Health. Challenges. 2020; 11(2):29. https://doi.org/10.3390/chal11020029

[88] Hess L. “We are nature and nature are us” And more quotes from the 2020 Global Landscapes Forum Biodiversity Digital Conference: One World–One Health. 30 October 2020. https://news.globallandscapesforum.org/48134/we-are-nature-and-nature-is-us/.