Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications

Rima Hatoum, Steve Labrie and Ismail Fliss*

Nutraceuticals and Functional Foods Institute, STELA Dairy Research Centre, Université Laval, Québec, QC, Canada

The yeasts constitute a large and heterogeneous group of microorganisms that are currently attracting increased attention from scientists and industry. Numerous and diverse biological activities make them promising candidates for a wide range of applications not limited to the food sector. In addition to their major contribution to flavor development in fermented foods, their antagonistic activities toward undesirable bacteria, and fungi are now widely known. These activities are associated with their competitiveness for nutrients, acidification of their growth medium, their tolerance of high concentrations of ethanol, and release of antimicrobial compounds such as antifungal killer toxins or “mycocins” and antibacterial compounds. While the design of foods containing probiotics (microorganisms that confer health benefits) has focused primarily on *Lactobacillus* and *Bifidobacterium*, the yeast *Saccharomyces cerevisiae* var. *boulardii* has long been known effective for treating gastroenteritis. In this review, the antimicrobial activities of yeasts are examined. Mechanisms underlying this antagonistic activity as well as recent applications of these biologically active yeasts in both the medical and veterinary sectors are described.

Keywords: yeasts, antagonistic activities, probiotic, killer toxin, mycocin, veterinary, medical

INTRODUCTION

The term “yeast” was derived originally from the Dutch word “gist,” which refers to the foam formed during the fermentation of beer wort. Other words referring to yeast, such as the French word “levure,” refer to the role of yeast in causing bread dough to rise. Few other microbial organisms match the yeasts in terms of historical, economic, and scientific significance. In addition to their role in the production of fermented foods and beverages, the yeasts play various roles in livestock feeding and veterinary practices as well as in medicine and the biomedical and pharmaceutical industries. One of these roles consists primarily of antagonizing other microorganisms such as undesirable yeasts, molds, and bacteria.

The inhibitory activity of yeast was discovered first by Hayduck (1909). Somewhat later, other researchers reported the antagonistic action of yeasts against other yeasts, involving the production of secondary metabolites known as killer toxins or “mycocins” (Young and Yagi, 1978; Rosini and Cantini, 1987; Walker et al., 1995; Suzuki et al., 2001; Marquina et al., 2002). In summarizing the antimicrobial effects of yeasts present in fermented foods and beverages, Viljoen (2006) mentions actions of organic acids, antibiotic factors, volatile acids, hydrogen peroxide, and various other substrates excreted in the product. However, there has been relatively little study devoted to identifying the mechanisms of inhibition by yeasts.

In this chapter, the metabolic factors mentioned above as well as recent advances in knowledge of the antagonistic properties of yeasts will be discussed, with emphasis on the potential opportunities for application in various fields. Although only *Saccharomyces cerevisiae* var. *boulardii* has been studied in detail and its inhibitory mechanisms well defined, significant antagonistic activities have been associated with several other genera or species, and exploration of their potential industrial and biotechnological applications is expected.

YEASTS

GENERAL CONSIDERATION AND TAXONOMY

The yeasts described in this review are all members of the phylum *Ascomycota* and the class *Saccharomycycota*. Phylogenetic analysis of the phylum *Ascomycota* has significantly changed yeast classification in recent years (Hibbett et al., 2007; Kurtzman et al., 2011a,b). Yeasts are eukaryotic microorganisms widespread in natural environments including the normal microbial flora of humans, on plants, on airborne particles, in water, in food products, and in many other ecological niches. Yeasts are important in many complex ecosystems, as frequent early colonizers of nutrient-rich substrates (Kurtzman et al., 2011a,b). They are involved in many interactions with other microorganisms, including symbiosis, mutualism, parasitism, and competition. They also exhibit both asexual and sexual states. The asexual state of given yeast is called the anamorph, while the sexual state is the teleomorph. One result of this phenomenon is that there is a valid Latin name for each state, since no teleomorph has been found for many asexual forms or because the phylogenetic relationship between anamorph and teleomorph has not been confirmed.

The most common mode of vegetative growth of yeasts is by budding, which may be blastic or terminal. Anamorphic and teleomorphic genera may grow either as a “yeast-like” unicellular organism or as a “mold-like” filamentous organism, a phenomenon called dimorphism. Moreover, some species are able to form a true mycelium, while genera such as *Candida* produce a well-developed pseudomyelium, or both pseudo and true mycelium in the case of *Candida tropicalis* (Goldman, 2008).
Among the yeasts belonging to the phylum Ascomycota, the genus Saccharomyces is the most studied. Many of the approximately 20 species of this genus are of great biotechnological significance due to applications including alcoholic fermentation, bread-making, single cell protein, vitamin production, synthesis of recombinant proteins, and biological control (Webster and Weber, 2007). The most significant species is certainly S. cerevisiae (baker’s and brewer’s yeast), due to its economic impact. S. cerevisiae is used for the annual production of an estimated 60 million tons of beer, 30 million tons of wine, 800,000 tons of single cell protein, and 600,000 tons of baker’s yeast (Pretorius et al., 2003). The vegetative cells of S. cerevisiae are normally diploid, but some strains have been reported as aneuploid or tetraploid (Webster and Weber, 2007). Over the past four decades, a yeast first identified as Saccharomyces bouardii has been studied for its potential probiotic use (Buts, 2009). The taxonomic position of S. boulardii was determined using multi locus sequence analysis targeting the D1/D2 domain of the 26S rDNA subunit, the ITS1-5.8S rDNA-ITS2 sequence, and the mitochondrial cytochrome C oxidase II (COX2) gene. Each locus is highly similar to the corresponding loci in S. cerevisiae, which led to the proposal to assimilate S. boulardii into the S. cerevisiae species (Van Der Aa Kühle and Jespersen, 2003). The denomination S. cerevisiae var. boulardii has been proposed, but the designation S. boulardii is still largely used in the scientific literature.

YEAST METABOLISM

Yeasts are heterotrophic organisms, meaning that energy metabolism and carbon metabolism are intimately interconnected. Adenosine triphosphate (ATP) is provided by oxidation of organic molecules that also act as carbon sources for biosynthesis, and is ultimately used as the energetic intermediate for practically all cellular activities (Rodrigues et al., 2006). Yeasts have relatively simple nutritional requirements, a carbon source, a nitrogen source (ammonium salt, nitrate, amino acids, peptides, urea, purines, pyrimidines), phosphate, sulfate, lower concentrations of potassium, magnesium, calcium, iron, zinc, and in most cases a vitamin such as biotin, thiamine, or pantothenic acid making up a complete growth medium. It is well known that the principal carbon source employed by yeasts is carbohydrate, primarily hexose sugars as monosaccharides (glucose, fructose, galactose, or mannose) or disaccharides (maltose or sucrose). In addition, a wide range of other carbon sources (e.g., alcohols, organic acids) can be utilized under aerobic conditions (Deak, 2006).

Van Dijken and Scheffers (1985) classified yeasts physiologically according to the type of energy-generating process involved in sugar metabolism, namely non-fermentative, facultatively fermentative, or obligately fermentative. It was later found that basidiomycetous yeasts such as Cryptococcus, Rhodotorula, and others are non-fermentative and strictly aerobic (Goldman, 2008). Not even the obligate fermentative species can survive for very long under strict anaerobic conditions, since the synthesis of certain membrane constituents (i.e., sterols) requires oxygen (Deak, 2006). Yeast metabolism and physiology are thus strongly dependent on sugar and oxygen availability. Yeast aerobic respiration has been defined by Dawes (1986) as the complete oxidation of carbon-containing molecules to CO₂ and H₂O by the interrelated processes of the tricarboxylic acid (TCA) cycle and the electron transport chain coupled to phosphorylation with oxygen as the terminal electron acceptor. In yeast anaerobic metabolism, often called “alcoholic fermentation,” pyruvate produced by glycolysis is split into ethanol and CO₂ in a redox-neutral process (Van Dijken and Scheffers, 1986).

Finally, there are three frequently observed effects associated with the type of energy-generating processes involved in sugar metabolism and/or oxygen availability; Pasteur, Cabtree, and Custer effect (Van Dijken and Scheffers, 1985; Fredlund et al., 2004; Dickinson and Kruckeberg, 2006; Wijzeman et al., 1984). Due to its industrial importance, better understanding of yeast metabolism is needed in order to provide insight into the formation of primary and secondary metabolites and their impact on human health.

ANTAGONISTIC CHARACTERISTICS OF YEASTS

The use of antagonistic bacteria to inhibit pathogenic bacteria has been studied extensively over the years, while little attention has been given to yeasts in a similar role. The study and potential applications of antibacterial compounds secreted by yeasts are therefore still at an early stage of development.

Antagonism of microorganisms by yeasts has been attributed primarily to (1) competition for nutrients, (2) pH changes in the medium as a result of growth-coupled ion exchange or organic acid production, (3) production of high concentrations of ethanol, (4) secretion of antibacterial compounds and release of antimicrobial compounds such as killer toxins or “mycocins” (Suzuki et al., 2001; Golubev, 2006; Young and Yagi, 1978). Mycocins are extracellular proteins or glycoproteins that disrupt cell membrane function in susceptible yeasts, which bear receptors for the compound (Golubev, 2006). Their activity is directed primarily against yeasts closely related to the producer strain, which has a protective factor. The first mycocins were identified in association with S. cerevisiae in the brewing industry (Bevan and Somers, 1969). Several have since been isolated, frequently where yeast populations exist in high density and in highly competitive conditions. Mycocin production occurs among many yeast genera including Saccharomyces, Candida, Cryptococcus, Debaryomyces, Kluyveromyces, Pichia, Torulopsis, Williopsis, and Zygosaccharomyces (Young and Yagi, 1978; Magliani et al., 1997; Chen et al., 2000; Schmitt and Breinig, 2002; Golubev, 2006; Hodgson et al., 1995). Genetic and molecular studies have shown that the killer toxin trait may be carried on extra-chromosomal elements in the form of double-stranded RNA viruses (Wickner, 1996), on double-stranded linear DNA (Gunge et al., 1981; Hayman and Bolen, 1991), or on a chromosome (Kimura et al., 1993; Suzuki and Shimma, 1999). The well known mechanisms of the killer toxin are the interruption of cell division by blocking the DNA synthesis, inhibition of synthesis of the cell wall component β-1,3-glucan (Izgu and Altinbay, 2004), and ion leakage caused by the formation of channels on the cytoplasmic membrane (Kagan, 1983; Schmitt and Breinig, 2002; White et al., 1989; Figure 1). Unlike yeast-against-yeast antagonism, the antibacterial properties of yeast are much less documented.

Historically, the first positive indications of the antagonistic activity of yeasts published early in the twentieth century by Hayduck (1909) and Fernbach (1909; cited in Golubev, 2006) who reported a volatile thermolabile toxic extract from yeast probably...
an amine that inhibits the growth of *Escherichia coli* and Staphylococci (Viljoen, 2006). Fatichenti et al. (1983) showed that the antibacterial activity of *Debaryomyces hansenii* against *Clostridium tyrobutyricum* and *Clostridium butyricum* was related to its ability to produce both extracellular and intracellular antimicrobial compounds. Bilinski and Casey (1989) reported inhibition of the growth of the beer spoilage bacteria *Bacillus megaterium* and *Lactobacillus plantarum* due to the conversion of methylene blue into a pharmacologically active form by *Kloeckera apiculata* and *Kluyveromyces thermotolerans*. Dieuleveux et al. (1998) subsequently described inhibition of *Listeria* by a strain of *Geotrichum candidum* isolated from French red smear cheese. The two anti-listerial compounds (d-3-phenyllactic and d-3-indollactic acids) are stable over a wide pH range and can be heated to 120°C for 20 min. Also, Cavalero and Cooper (2003) demonstrated that *Candida bombicola* produces extracellular glycolipids called sophorosides, which have proven antibacterial activity against *Staphylococcus aureus* and also inhibit *Candida albicans*. Having tested hundreds of dairy yeasts, Goerges et al. (2006) reported a strain of *Candida intermedia* capable of reducing viable *Listeria* counts by 4 log CFU/cm² in co-culture on agar, while three *C. intermedia* and one *Kluyveromyces marxianus* suppressed *L. monocytogenes* growth by 3 log CFU/cm². The same group more recently found a strain of *Pichia norvegensis* (WSYC 592) able to reduce *L. monocytogenes* counts by 7 log cycles, while numerous strains of *Issatchenkia orientalis*, *Candida krusei*, and *K. marxianus* reduced *Listeria* counts by 4–5 log units in co-culture on agar (Goerges et al., 2011). However, strain WSYC 592 decreased *Listeria* counts on Tilsit cheese by only one log cycle. More recently, Hatoum et al. (2012) characterized anti-listerial hydrophobic peptides extracted from cultures of four wild dairy yeasts identified as *D. hansenii*, *P. fermentans*, *C. tropicalis*, and *W. anomalus*. In experiments using a Camembert curd model, the anti-listerial compounds of *D. hansenii* and *W. anomalus* were found to reduce *L. monocytogenes* counts by 3 log units during the first 9 days of ripening. The active principles are thermostable and apparently peptides and appear to induce leakage in bacterial cells and ultimately cause bacterial lysis (Figure 2).

APPLICATIONS OF ANTAGONISTIC ACTIVITIES OF YEASTS

The discovery of antagonistic activities of yeasts has had a significant impact in numerous fields such as food, agriculture, medicine,
Food and Agriculture

Processed food and beverages applications

The past decades have witnessed the application of antagonistic yeast starter cultures in various food processing industries. It is well known that final product quality in industries such as wine-making, sausage production, cheese ripening, bakery, and beer production (Young, 1981) sake production (Yoshiuchi et al., 2000), and in salted fermented foods such as miso, soy sauce, and salted vegetables (Kono and Himeno, 1997; Suzuki et al., 2001). It has been reported that the inhibitory activity of D. hansenii is enhanced by the presence of NaCl (Llorente et al., 1997), which enhance the cell membrane porosity. This phenomena has also been reported in dough production (Almeida and Pais, 1996) and bread (Bortol et al., 1986). Uses of mycocin-producing starter yeasts to prevent spoilage in yogurt (Lowes et al., 2000; Liu and Tsao, 2009b,c, 2010a,b), probiotic cheese (Jakobsen and Narvhus, 2003), and bread (Bortol et al., 1986). Uses of mycocin-producing starter yeasts to prevent spoilage in yogurt (Lowes et al., 2000; Liu and Tsao, 2009b,c, 2010a,b), probiotic cheese (Jakobsen and Narvhus, 2003), and bread (Bortol et al., 1986). Uses of mycocin-producing starter yeasts to prevent spoilage in yogurt (Lowes et al., 2000; Liu and Tsao, 2009b,c, 2010a,b), probiotic cheese (Jakobsen and Narvhus, 2003), and bread (Bortol et al., 1986). Uses of mycocin-producing starter yeasts to prevent spoilage in yogurt (Lowes et al., 2000; Liu and Tsao, 2009b,c, 2010a,b), probiotic cheese (Jakobsen and Narvhus, 2003), and bread (Bortol et al., 1986). Uses of mycocin-producing starter yeasts to prevent spoilage in yogurt (Lowes et al., 2000; Liu and Tsao, 2009b,c, 2010a,b), probiotic cheese (Jakobsen and Narvhus, 2003), and bread (Bortol et al., 1986).
Various authors have shown that surplus biomass from the fermentation industry, recyled as an additive to cattle, hog, and poultry diets, improves livestock performance and product quality (Dawson et al., 1990; Li et al., 2006; van Heugten et al., 2003). It was hypothesized that the yeast *S. cerevisae* provides vitamins B and organic acids that stimulate the rumen acetogens (Chiquette, 2009) which form acetic acid (a utilizable form of carbon) from hydrogen and carbon dioxide.

First isolated from litchi fruit in Indochina and described in 1984 as a saprophytic yeast, *S. cerevisiae* var. *boulardii* has emerged as a probiotic species for human consumption (Van Der Aa Kühle et al., 2005). This strain has also been recommended for the prevention and treatment of several types of gastroenteritis in children and adults (Kurugöl and Koturoğlu, 2005; Htwe et al., 2008). Nowadays, probiotic yeasts can be delivered either in fermented foods or as lyophilized cultures administered orally, for example, to patients who have been hospitalized as a consequence of severe diarrhea. Several yeast species, including *D. hansenii*, *Torulaspora delbrueckii* (Psani and Kotzekidou, 2006), *Klyuyveromyces lactis*, *Yarrowia lipolytica* (Chen et al., 2010), *K. marxianus*, *K. loderae* (Kumura et al., 2004) have been found strongly antagonistic to pathogenic bacteria and to tolerate passage through the gastrointestinal tract. In a recent *in vitro* study, Etienne-Mesmin et al. (2011) investigated the probiotic effect of *S. cerevisiae* CNCM 1-3856 against *E. coli* O157:H7. The results showed that the probiotic yeast exert the antagonistic effects in the distal part of the small intestine and that might be due to ethanol production. However, only *S. boulardii* is considered as a probiotic (Czerucka et al., 2007). Its probiotic efficiency has been well documented in numerous clinical studies (Sazawal et al., 2006).

The text that follows describes the various mechanisms that underlie the probiotic activities of *S. boulardii* against a variety of pathogens such as *Escherichia coli*, *Vibrio cholerae*, *Clostridium difficile*, and *Samonella* in clinical and animal studies.

Antibiotic associated diarrhea “AAD”. Antibiotic therapy is well known to destroy the normal bacterial population of the digestive tract, which allows harmful bacteria to colonize and irritate the host gut and cause antibiotic associated diarrhea (Coté and Buchman, 2006). Numerous placebo-controlled clinical studies have shown the beneficial effects of *S. boulardii* in preventing antibiotic associated diarrhea (D’Souza et al., 2002; Erdeve et al., 2004; Duman et al., 2005; Kotowska et al., 2005; Can et al., 2006; Cindoruk et al., 2007; Whelan, 2007; Bravo et al., 2008; Lewis et al., 1998). In a double-blind study, Adam et al. (1976) reported a significant reduction in AAD symptoms in the group that received 200 mg of *S. boulardii* (10^9 CFU/day) for 7 days. Only 4.5% of this group developed AAD, compared to 17.5% of the placebo group. In a study involving 193 hospitalized patients receiving β-lactam antibiotics (Mcfarland et al., 1994), one group received 1 g of *S. boulardii* while the other was given a placebo, both for periods lasting 3 days beyond the antibiotic treatment. AAD appeared in 7.2% of the *S. boulardii* group compared to 14.6% (*P < 0.05*) of the placebo group. In a study of the effect of 200 mg of *S. boulardii* (10^8 CFU/day) for 2 weeks beyond the antibiotic treatment, Surawicz et al. (1990) reported AAD in 9.5% of the probiotic-treated group versus 21.8% (*P < 0.05*) in the placebo group. In a study (involving 151 patients) of the preventive effect of *S. boulardii* given only for the duration of the antibiotic treatment, Can et al. (2006) found AAD in 1.4% of the probiotic-treated group versus 9.0% in the placebo group. Similar results have been obtained by Cremonini et al. (2002) and Duman et al. (2005).

Clostridium difficile associated diarrhea. The effects of *S. boulardii* on *C. difficile* have also been studied. *C. difficile* is responsible for 20% of antibiotic associated diarrhea cases (Kelly et al., 1994; Krämer and Bischoff, 2006) and causes pseudomembranous colitis, an infection of the colon. There are only two standard antibiotics for *C. difficile* infection, namely vancomycin and metronidazole, and the response rate to the later has been declining (McFarland, 2007). *S. boulardii* in combination with antibiotics has been shown effective for treating *C. difficile* associated diarrhea and colitis (Mcfarland et al., 1994; McFarland, 2010; Surawicz et al., 2000). In a randomized placebo-controlled trial of 124 patients suffering from *C. difficile* infection (Mcfarland et al., 1994), standard antibiotics were combined with *S. boulardii* (500 mg/day) or placebo. Patient follow-up revealed a significant reduction in *C. difficile* infection reoccurrence in those treated with *S. boulardii* (34.6% compared to 64.7% for the placebo, *P = 0.04*). In a similar study involving 170 patients (Surawicz et al., 2000), reoccurrence in the *S. boulardii*-treated group was 16.7% compared to 50% for the placebo group (*P = 0.05*). In a more recent comparison of the efficacy of a mixture of probiotics, McFarland et al. (2006) concluded that only *S. boulardii* was effective against *C. difficile* infection.

The effects of *S. boulardii* have also been studied *in vitro* and in animal models such as gnotobiotic mice (Elmer and Cothier, 1991; Elmer et al., 1999; Castex et al., 1990) rats (Karen et al., 2010; Sezer et al., 2009), and turkeys (Bradley et al., 1994). Czerucka and Rampal (2002) linked the effects of *S. boulardii* to the production of a 54-KDa protease. Its mechanism appears to degrade *C. difficile* toxins (Castagliuolo et al., 1996; Qamar et al., 2001), and could do likewise to the colonic cell surface receptors for *C. difficile* (Pothoulakis et al., 1993; Castagliuolo et al., 1996; Pothoulakis, 2009; Castagliuolo et al., 1999), or otherwise inhibit *C. difficile* attachment to intestinal cells (Buts and Bernasconi, 2005; Buts, 2009; Tasteyre et al., 2002). *S. boulardii* also appears to increase the immune response to *C. difficile* toxins A and B (Buts, 2009). It has been demonstrated that *S. boulardii* stimulates an increase in intestinal immunoglobulin A secretion during a *C. difficile* toxin A challenge in mice (Qamar et al., 2001; Figure 1).

Traveler’s diarrhea. Each year million of people worldwide develop traveler’s diarrhea. *S. boulardii* activities in the prevention of traveler’s diarrhea have been widely investigated. In 1016 travelers visiting various countries in the world Kollaritsch et al. (1993)
reported a significant reduction in diarrhea among patients receiving 5 billion CFU of \textit{S. boulardii}/day (34% versus 40% in patients receiving placebo \(P = 0.019 \)). Based on analysis of 12 studies of the use of probiotics to prevent traveler’s diarrhea, McFarland (2007) reported a significant benefit of two probiotics, namely \textit{S. boulardii} and a mixture of \textit{Lactobacillus acidophilus} and \textit{Bifidobacterium bifudum}.

\textbf{Acute diarrhea in adults and children.} Every year, an estimated 2 million deaths worldwide occur as a result of acute diarrhea (Biloo et al., 2006). Several studies have shown the beneficial effects of \textit{S. boulardii} in preventing acute diarrhea. In a group of 50 children (aged 2 months to 2 years) receiving 10 billion CFU of \textit{S. boulardii}/day or a placebo in combination with oral rehydration salt and nutritional support, Biloo et al. (2006) showed significant reductions in stool frequency and duration of diarrhea in the \textit{S. boulardii} group compared to the placebo group. In a double-blind randomized study, Kurugöl and Koturoglu (2005) noted a significant reduction in the number of days with diarrhea and hospitalization among 200 children treated with \textit{S. boulardii}. Similar results were found in another double-blind randomized study by Villarruel et al. (2007).

\textbf{Tube-feeding-associated diarrhea.} DeMeo et al. (1998) estimated that approximately 68% of tube-fed patients develop diarrhea. Several studies suggest the beneficial effects of \textit{S. boulardii} in restoring normal intestinal microflora and preventing tube-feeding-associated diarrhea. In a double-blind placebo-controlled trial involving 40 tube-fed patients, a 50% reduction in days with diarrhea was observed among patients given \textit{S. boulardii} compared to the placebo group (Tempé et al., 1983). Another double-blind placebo-controlled study following 128 critically ill tube-fed patients (Bleichner et al., 1997) showed a significant but small reduction in days with diarrhea among patients given 40 billion CFU of \textit{S. boulardii} four times/day (14.2 versus 18.9% in patients receiving placebo).

\textbf{Inflammatory bowel disorders.} Inflammatory bowel diseases (IBD), Crohn’s disease, ulcerative colitis and Irritable bowel syndrome are chronic inflammatory disorders of the gastrointestinal tract. Numerous studies showed that \textit{S. boulardii} hold promise for the treatment of inflammatory bowel disorders. In a double-blind study of 20 patients suffering from Crohn’s disease (Plein and Hotz, 1993) showed a significant reduction in the bowel movement among patients receiving \textit{S. boulardii} in addition to their conventional therapy. In a single-blind study of 32 patients with Crohn’s disease (Guslandi et al., 2000), similar results were reported for patients receiving \textit{S. boulardii} (20 \(\times \) 10\(^9\) CFU/day) compared to patients receiving 500 mg of mesalazine three times daily. Guslandi et al. (2003) reported improvement of 68% of patients with ulcerative colitis receiving mesalazine (3 g/day) and 250 mg of \textit{S. boulardii} in capsules three times daily for 4 weeks. Finally, \textit{S. boulardii} has been shown to exert promising beneficial effect in the treatment of IBD. One suggested mechanism unique action on inflammation by specific alteration of the migratory behavior of T cells, which accumulate in mesenteric lymph nodes (Dalmasso et al., 2006a,b). \textit{S. boulardii} treatment might thus limit the infiltration of T-helper 1 cells, and hence colonic inflammation and amplification thereof by pro-inflammatory cytokines.

\textbf{Chronic diarrhea in human immunodeficiency virus and others.} In a randomized double-blind study of 35 patients with AIDS-related diarrhea, Saint-Marc et al. (1995) reported a reduction in diarrhea among patients receiving \textit{S. boulardii} (3 g/day for 7 days). After 1 week of treatment with \textit{S. boulardii}, 61% of the patients were diarrhea-free compared with 12% in the placebo group. Finally, other studies revealed the efficacy of \textit{S. boulardii} to reduce diarrhea in people suffering from giardiasis (Besirbeylioglu et al., 2006), amebiasis (Mansour-Ghanaei et al., 2003; Tanyuksel and Petri, 2003) where \textit{S. boulardii} reduces the number of red cells adhering to amoeba and the number of amoebae bearing red cells (Rigotier et al., 1994), and \textit{Helicobacter pylori} gastritis (Duman et al., 2005). It was reported that \textit{S. boulardii} had improved the post-treatment dyspepsia symptoms of \textit{H. pylori} infection without having a significant effect on the rate of \textit{H. pylori} eradication (Cindoruk et al., 2007). Recently, Vandenplas et al. (2009) suggested that \textit{S. boulardii} alters the structure of \textit{H. pylori}. Further studies are required for better understanding of yeast probiotics mechanisms.

\textbf{Probiotic bacteria/yeast interaction.} Because probiotic yeast and bacteria have different mechanisms of action, a synergetic effect and higher viability might be expected from mixing both types of probiotics (Bisson et al., 2010 and Suharja et al., 2012). Several studies showed that yeasts could positively interact with probiotic bacterial by enhancing their survival and stimulating their growth (Gobbetti et al., 1994; Liu and Tsao, 2009a,b,c; Katakura et al., 2010; Suharja et al., 2012). This positive interaction between yeast and bacteria might be attributed to the production of nutrients such as peptides, amino acids, and/or vitamins (Gobbetti et al., 1994; Viljoen, 2001, 2006; Narhvas and Gadaga, 2003; Kawarai et al., 2007; Katakura et al., 2010). It is well known that the cell wall of yeasts is mainly composed of glucans, mannans, and chitin, all of which may play a role in co-aggregation and cohesion phenomena which play a major role in the survival of probiotic bacteria (Chafin et al., 1998; Millsap et al., 1998). Aggregation may involve the yeast mannans form a capsule-like structure where bacteria may associate with sugars by means of a lectin-like (Millsap et al., 1998). Katakura et al. (2010) identified proteins on the surface of \textit{Lactococcus lactis} IL1403, which recognize the yeast mannan involved in adhesion of lactic acid bacterium to the yeast. Also, in the study of interactions between microorganisms present in kefir grains, Golowczyz et al. (2009) showed that thermolabile non-covalently lectin-like surface proteins of several \textit{Lactobacillus} kefir strains can mediate the aggregation with \textit{S. liplytica} CIDCA 812 yeast cells. It has been hypothesized by Xie et al. (2012) that the aggregation of LAB with yeasts in gastric or intestinal juices might have positive effects on enhancing the tolerance of LAB. The same group concluded that proteins of the cell surface of \textit{Labuccilus paracasei}
Yeast as a source of protein, vitamins, and minerals in animal feeds and for accelerating growth and improving the well-being of cattle, has been used for a long time. The use of yeast as a feed additive has a rapid killing effect against a wide range of pathogenic yeasts including C. albicans, C. glabrata, and C. tropicalis. The killer toxin of L. rhamnosus, has a rapid killing effect against a wide range of pathogenic yeasts including C. albicans, C. glabrata, and C. tropicalis. The killer toxin of L. rhamnosus, has been used in many applications in fermented milk to control the growth of Salmonella typhimurium. The same group concluded that the use of yeast enhances the stability of probiotic bacteria in term milk by extending the product shelf-life and retaining its nutritional value (Liu and Tsao, 2003).

S. cerevisiae was first used in many applications in fermented milk to control the growth of Salmonella typhimurium. The same group concluded that the use of yeast enhances the stability of probiotic bacteria in term milk by extending the product shelf-life and retaining its nutritional value (Liu and Tsao, 2003).

The relatively recent discovery of the drug-like effects of yeast poly saccharides (Chiquette, 2009) has fueled the search for alternative strategies such as probiotics. Several studies of poultry have shown that S. boulardii increases the survival of the two probiotic bacteria, L. rhamnosus GG and L. fermentum, in the gut. These results have been obtained in ruminants. Until recently, the most consistent beneficial effect of feeding probiotics to animals (Lammerding et al., 1988; Morales-López et al., 2007) was that the use of yeast enhanced the stability of probiotic bacteria in term milk, thereby extending the product shelf-life and retaining its nutritional value (Liu and Tsao, 2003).

The relatively recent discovery of the drug-like effects of yeast poly saccharides (Chiquette, 2009) has fueled the search for alternative strategies such as probiotics. Several studies of poultry have shown that S. boulardii increases the survival of the two probiotic bacteria, L. rhamnosus GG and L. fermentum, in the gut. These results have been obtained in ruminants. Until recently, the most consistent beneficial effect of feeding probiotics to animals (Lammerding et al., 1988; Morales-López et al., 2007) was that the use of yeast enhanced the stability of probiotic bacteria in term milk, thereby extending the product shelf-life and retaining its nutritional value (Liu and Tsao, 2003).
REFERENCES
Adam, I., Barrett, A., and Barret-Bellet, C. (1976). Essai clinique controle en double issu de l'ultra leveur lyophilisee. Med. Clin. Diet. 5, 401–406.
Alexandre, H., Costello, P. I., Remire, F., Guzzo, J., and Guillon-Benatier, M. (2004). Saccharomyces cerevisiae – Oenococcus oeni inter-actions in wine: current knowledge and perspectives. Int. J. Food Microbiol. 93, 141–154.
Almeida, M. J., and Pais, C. (1996). Leav-ering ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs. Appl. Environ. Microbiol. 62, 4401–4404.
Anupama, X., and Ravindra, P. (2000). Value-added food: single cell pro-tein. Biotechnol. Adv. 18, 459–479.
Bekatorou, A., Psarianos, C., and Kouti-ri, I. Y., Beker, C. M., and Pahsa, C. (1999). Effects of a probiotic (Saccharomyces boulardii) in male outpatient with amox-icillin treatment. Rev. Med. Clin. 136, 981–988.
Buk, J.-P. (2005). Twenty-five years of research on Saccharomyces boulardii trophic effect: updates and perspec-tives. Dig. Dis. Sci. 54, 15–18.
Buts, J.-P., and Bernasconi, P. (2005). Saccharomyces boulardii: basic sci-ence and clinical applications in gas-troenterology. Gastroenterol. Clin. North Am. 34, 513–532.
Callaway, E. S., and Martin, S. A. (1997). Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utili-zate lactate and digest cellulose. J. Dairy Sci. 80, 2035–2044.
Castagliuolo, I., LaMont, J. T., and Pothoulakis, C. (1998). Purification and charac-terization of anti-Listeria com-ponents produced by Kluyveromyces phaffii DBVPG 6076 as a biopreserva-tive agent to control apiculate wine yeasts. Appl. Environ. Microbiol. 64, 378–385.
Cindoruk, M., Erkan, G., Karakan, T., Chen, W.-B., Han, Y.-F., Song, S.-C., and Chang, S.-C. (2000). Isola-tion, purification, and characterization of a killer protein from Schwan-nomyces occidentalis. Appl. Environ. Microbiol. 66, 1029–1035.
Chiquette, J. (2009). Evaluation of the protective effect of probiotics fed to dairy cows during a subacute rumi-nal acidosis challenge. Anim. Feed Sci. Technol. 153, 278–291.
Cianci, M., and Faticchini, F. (2001). Killer toxin of Kluyveromyces phaf-fii DBVP6676 as a biopreserva-tive agent to control apiculate wine yeasts. Appl. Environ. Microbiol. 67, 3058–3063.
Cindoruk, M., Erkan, G., Karakan, T., Dursun, A., and Unal, S. (2007). Efficacy and safety of Saccha-romyces boulardii in the 14-day triple anti-Helicobacter pylori therapy: a prospective randomized placebo-controlled double-blind study. Heli-coberterterter 12, 309–316.
Cominetti, F., De Ingeniis, J. P., Pepe, L., Mannazzu, L., and Ciani, M. (2004a). Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol. Lett. 238, 235–240.
Cominetti, F., Di Pietro, N., Zacchi, L., Mannazzu, L., and Ciani, M. (2004b). Kluyveromyces phaffii killer toxin active against wine spoilage yeasts: purification and characterization. Microbiology 150, 2535–2541.
Conti, S., Magliani, W., Arseni, S., Frazzi, R., Salati, A., Ravanetti, L., et al. (2002). Inhibition by yeast killer toxin-like antibodies of oral Strep-tococcus adhesion to tooth surfaces in an ex vivo model. Mol. Med. 8, 313–317.
Cotte, G. A., and Buchanan, A. L. (2006). Antibiotic-associated diar-rhoea. Expert Opin. Drug Saf. 5, 361–372.
Cremonini, F., Di Caro, S., Covino, M., Armuzzi, A., Gabrielli, M., Santarelli, L., et al. (2002). Effect of differ-ent probiotic preparations on anti-Helicobacter pylori therapy-related side effects: a parallel group, triple blind, placebo-controlled study. Am. J. Gastroenterol 97, 2744–2749.
Czeizler, D., Piche, T., and Rampal, P. (2007). Review article: yeast as probiotics – Saccharomyces boulardii. Aliment. Pharmacol. Ther. 26, 776–778.
Czerucka, D., and Rampal, P. (2002). Experimental effects of Saccha-romyces boulardii on diarrheal pathogens. Microbes Infect. 4, 733–739.
Dalmasso, G., Cottret, F., Névert, A., Lagadé, P., Peyron, J.-F., Ram-pal, P., et al. (2006a). Saccha-romyces boulardii inhibits inflam-matory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterology 131, 1812–1825.
Dalmasso, G., Loubat, A., Dahan, S., Calle, G., Rampal, P., and Czerucka, D. (2006b). Saccharomyces boulardii prevents TNF-alpha-induced apop-tosis in HEHEC-infected T48 cells. Res. Microbiol. 157, 456–465.
Dawes, E. A. (1986). Microbial enet-eric, Biochem. Educ. 95, 187.
Dawson, K. A., Newman, K. E., and Bol-ing, J. A. (1990). Effects of microbial supplements containing yeast and lactobacilli on roughage-fed ruminal microbial activities. J. Anim. Sci. 68, 3392–3398.
Deak, T. (2006). “Environmental factors influencing yeasts,” in Biodiversity and Ecophysiology of Yeasts (The Yeast Handbook series), eds G. Péter and C. Rosa (Berlin: Springer), 155–174.
DeMeo, M., Koli, S., Keshavarzian, A., Borton, M., Al-Hosni, M., Dyavana-palli, M., et al. (1998). Beneficial effect of a bile acid resin binder on enteral feeding induced diarrhea. Am. J. Gastroenterol. 93, 967–971.
Dickinson, J., and Kruegerke, A. (2006). “Carbohydrate metabolism,” in Yeasts in Food and Beverages, eds A. Querol and G. Fleet (Berlin: Springer), 215–242.
Dumery, S., Van Der Pyl, D., Chataud, J., and Gueguen, M. (1998). Purification and charac-terization of anti-Listeria com-pounds produced by Geotrichum candidum. Appl. Environ. Microbiol. 64, 800–803.
Frontiers in Microbiology | Food Microbiology
December 2012 | Volume 3 | Article 421 | 8

Antimicrobial properties of yeast

Hatoum et al.
D’Souza, A. L., Rajkumar, C., Cooke, J., and Bulpitt, C. J. (2002). Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis. BMJ 324, 1361.

Duman, D. G., Bor, S., Ozutemiz, O., Sahin, T., Oguz, D., Istan, F., et al. (2005). Efficacy and safety of Saccharomyces boulardii in prevention of antibiotic-associated diarrhoea due to Helicobacter pylori eradication. Eur. J. Gastroenterol. Hepatol. 17, 1357–1361.

Edens, F. W. (2003). An alternative for antibiotic se in poultry: probiotics. Rev. Bras. Cienc. Avic. 5, 75–97.

Elmer, G. W., and Corthier, G. (1991). Modulation of Clostridium difficile induced mortality as a function of the dose and the viability of the Saccharomyces boulardii used as a preventative agent in gnotobiotic mice. Can. J. Microbiol. 37, 315–317.

Elmer, G. W., and McFarland, L. V. (1987). Suppression by Saccharomyces boulardii of toxigenic Clostridium difficile overgrowth after vancomycin treatment in hamsters. Antimicrob. Agents Chemother. 31, 129–131.

Elmer, G. W., McFarland, L. V., Surawicz, C. M., Danko, L., and Greenberg, B. N. (1999). Behaviour of Saccharomyces boulardii in a recurrent Clostridium difficile disease patients. Aliment. Pharmacol. Ther. 13, 1663–1668.

El-nashawy, S. M., and Wilson, C. L. (1997). Nisin enhancement of biocontrol of postharvest diseases of apple with Candida oleophila. Postharvest Biol. Technol. 10, 9–14.

Erdeve, O., Tiras, U., and Dallar, Y. (2006). Effects and modes of action of live yeasts in the rumen. Biologia 61, 741–750.

Fredlund, E., Blank, L. M., Schnürer, J. S., Uauer, S., and Passoth, V. (2004). Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia ananassae. Appl. Environ. Microbiol. 70, 5905–5911.

Gao, Z., Zhang, H. F., Yu, S. H., Wu, S. G., Yoon, L., Quigley, L., et al. (2008). Effects of yeast culture in broiler diets on performance and immunomoduulatory functions. Poult. Sci. 87, 1377–1384.

Ghoneum, M., Wang, L., Agrawal, S., and Sakaguchi, K. (1981). Isolation and characterization of antilisterial compounds from kefir grains: evidence related from the elaboration of sea- urchin egg membranes. Int. J. Food Microbiol. 30, 214–216.

Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., Eriksdottir, G., et al. (2007). The phylogeny of life: a higher-level phylogenetic classification of the Fungi. Mycol. Res. 111, 509–547.

Hodgson, V. J., Button, D., and Walker, G. M. (1995). Anti-candida activity of a novel killer toxin from the yeast Wilyeopsis mikuri. Microbiology 141, 2003–2012.

Holck, P., Sletmoen, M., Stokke, B. T., and Periyakoil, S. P. (2007). Potentiation of histamine release by Microfungul (1→3)- and (1→6)-beta-1,3-glucan. Basic Clin. Pharmacol. Toxicol. 101, 455–458.

Hooge, D. M. (2004). Meta-analysis of broiler chicken pen trials evaluating dietary mannan oligosaccharide. 1993–2003. Int. J. Poult. Sci. 3, 163–174.

Hetwe, K., Yee, K. S., Tan, M., and Vandenus, Y. (2008). Effect of Saccharomyces boulardii in the treatment of acute watery diarrhoea in myanmar children: a randomized controlled study. Ann. Trop. Med. Hyg. 78, 214–218.

Ibeas, J. L., Lozano, I., Perdigones, C., and Jimenez, J. (1996). Detection of Dekkera/Brettanomyces strains in sherry by a nested PCR method. Appl. Environ. Microbiol. 62, 998–1003.

Iino, F., and Altinbay, D. (2004). Isolation and characterization of the K5-type yeast killer protein and its homolog with an exo-beta-1,3-glucanase. Biochim. Biophys. Acta. 1685, 685–693.

Izgu, F., Altinbay, D., and Acun, T. (2006). Killer toxin of Pichia ananassae NCGY 432: purification, characterization and its exo-beta-1,3-glucanase activity. Enzyme Microb. Technol. 39, 669–676.

Jaksch, M., and Navhas, J. (1996). Yeasts and their possible beneficial and negative effects on the quality of dairy products. Int. Dairy J. 6, 758–765.

Kagan, B. L. (1983). Mode of action of yeast killer toxins: channel formation in lipid bilayer membranes. Nature 302, 709–711.

Karen, M., Yuksel, A., Akyurek, N., Oflugoglu, E., Caglat, K., Sahin, T., et al. (2010). Probiotic agent Saccharomyces boulardii reduces the incidence of lung injury in acute necrotizing pancreatitis induced rats. J. Surg. Res. 160, 139–144.

Katamura, Y., Sano, R., Hashimoto, T., Ninomiya, K., and Shiroya, S. (2010). Lactic acid bacteria display on the cell surface cytosolic proteins that recognize yeast mannans. Appl. Microbiol. Biotechnol. 86, 319–326.

Kawarai, T., Furukawa, S., Ogihara, H., and Yamasaki, M. (2007). Mixed-species biofilm formation by lactic acid bacteria and rice wine yeasts. Appl. Environ. Microbiol. 73, 4673–4676.

Kelly, C. P., Poorthuis, L., and LaMont, J. T. (1994). Current concepts: Clostridium difficile colitis. N. Engl. J. Med. 330, 257–262.

Kimura, T., Kitanosato, M., Nakamura, K., Imaizu, Y., and Kito, Y. (1993). Isolation and nucleotide sequences of the genes encoding killer toxins from Hansenula mikuri and H. saturnus. Gene 137, 265–270.

Kimura, H. K., Hasebe, A., Ohmomo, S., Suto, E. G., Muraki, M., and Limura, Y. (1999). Prevention of aerobic spoilage of maize silage by a genetically modified killer yeast, Kluyveromyces lactis, defective in the ability to grow on lactic

www.frontiersin.org

December 2012 | Volume 3 | Article 421 | 9

Antimicrobial properties of yeast

Hatoum et al.
Kotowska, M., Albrecht, P., and Sza-Kollaritsch, H., Holst, H., Grobara, P., Klein, R. D., and Favreau, M. A. (1995). Frontiers in Microbiology. Hatoum et al. Antimicrobial properties of yeast. Kurugöl, Z., and Koturoglu, G. (2005). The Candida species: biochemistry, molecular biology, and industrial applications; in Food Biotechnology Microorganisms, eds Y. H. Hui and G. K. Khachatourians (New York: VCH publishers), 297–371. Kollaritsch, H., Holst, H., Grobara, P., and Wiedermann, G. (1993). Prevention of traveler’s diarrhea with Saccharomyces boulardi. Results of a placebo controlled double-blind study. Fortschr. Med. 111, 153–156. Kono, I., and Himeno, K. (1997). A novel killer yeast effective on Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem. 61, 563–564. Kotowska, M., Albrecht, P., and Sza-jewksa, H. (2005). Saccharomyces boulardi in the prevention of antibiotic-associated diarrhea in children: a randomized doubleblind placebo-controlled trial. Aliment. Pharmacol. Ther. 21, 583–590. Krämer, S., and Bischoff, S. C. (2006). Therapeutic possibilities of probiotics in antibiotic-related diarrhea. MMW Fortschr. Med. 148, 28–30. Kumura, H., Tanoue, Y., Tsukahara, M., Tanaka, T., and Shimazaki, K. (2004). Screening of dairy yeast strains for probiotic applications. J. Dairy Sci. 87, 4050–4056. Kurtzman, C. P., Fell, J. W., and Boekhout, T. (2011a). “Definition, classification and nomenclature of the yeasts,” in The Yeasts: A Taxonomic Study. Elsevier, Amsterdam: Elsevier Science, 3–9. Kurtzman, C. P., Fell, J. W., and Boekhout, T. (2011b). The Yeasts: A Taxonomic Study. Elsevier. Available at: http://books.google.cz/books? id=yf78FRkKFC. Kurugol, Z., and Kotrosz, G. (2005). Effects of Saccharomyces boulardi in children with acute diarrhoea. Acta Paediatr. 94, 44–47. Lammereing, A. M., Garcia, M. M., Mann, E. D., Robinson, Y., Dorward, W. J., Truscott, R. B., et al. (1988). Prevalence of Salmonella and thermophilic Campylobacter in fresh pork, beef, veal and poultry in Canada. J. Food Prot. 51, 47–52. Lewis, S. J., Petts, L. E., and Barry, R. E. (1998). The lack of therapeutically effective Saccharomyces boulardi in the prevention of antibiotic-related diarrhea in elderly patients. J. Infect. 36, 171–174. Li, J., Li, D., Gong, L., Ma, Y., Ye, Y., and Zhai, H. (2006). Effects of live yeast on the performance, nutrient digestibility, gastrointestinal microbiota and concentration of volatile fatty acids in weaning pigs. Arch. Anim. Nutr. 60, 277–288. Line, J. E., Bailey, J. S., Cox, N. A., Stern, N. J., and Tompkins, T. (1998). Effect of yeast-supplemented feed on Salmonella and Campylobacter populations in broilers. Poult. Sci. 77, 405–410. Liu, S., and Tsao, M. (2010a). Biocontrol of spoilage yeasts and moulds with Williopsis saturnus var. saturnus in yoghurt. Nutr. Food Sci. 40, 166–175. Liu, S.-Q., and Tsao, M. (2010b). Enhancing stability of lactic acid bacteria and probiotics by Williopsis saturnus var. saturnus in fermented milks. Nutr. Food Sci. 40, 314–322. Liu, S.-Q., and Tsao, M. (2009a). Biocontrol of dairy moulds by antagonistic dairy yeast Debaryomyces Hansenii in yoghurt and cheese at elevated temperatures. Food Control 20, 852–855. Liu, S.-Q., and Tsao, M. (2009b). Enhancement of survival of probiotic and non-lactic acid bacteria by yeasts in fermented milk under non-refrigerated conditions. Int. J. Food Microbiol. 135, 34–38. Liu, S.-Q., and Tsao, M. (2009c). Inhibition of spoilage yeasts in cheese by killer yeast Williopsis saturnus var. saturnus. Int. J. Food Microbiol. 131, 280–282. Llorente, P., Marquina, D., Santos, A., Peinado, J. M., and Spencer-Martins, I. (1997). Effect of salt on the killer phenotype of yeasts from olive brines. Appl. Environ. Microbiol. 63, 1165–1167. Loves, K. F., Shearmar, C. A., Payne, J., MacKenzie, D., Archer, D. B., Merry, R. J., et al. (2008). Prevention of yeast spoilage in feed and food by the yeast mycoinoc HMK. Appl. Environ. Microbiol. 66, 1066–1076. Lyons, T. P., Jacques, K. A., and Dawson, K. A. (1993). “Miscellaneous products from yeasts,” in The Yeasts, 2nd Edn, Vol. 5, eds A. H. Rose and J. S. Harrison (London: Academic), 293–325. Magliani, W., Conti, S., Brazzoli, P., Ravanetti, L., Maffei, D. L., and Polonelli, L. (2005). Protective anti-fungal yeast killer toxin-like antibodies. Curr. Mol. Med. 5, 443–452. Magliani, W., Conti, S., Gerloni, M., Bertolotti, D., and Polonelli, L. (1997). Yeast killer systems. Clin. Microbiol. Rev. 10, 369–400. Magliani, W., Conti, S., Travassos, L. R., and Polonelli, L. (2008). From yeast killer toxins to antibiotics and beyond. FEMS Microbiol. Lett. 288, 1–8. Mansour-Ghanaei, F., Dehnavi, H., Yazdanparast, K., and Shafaghi, A. (2003). Efficacy of Saccharomyces boulardii with antibiotics in acute amoebiasis. World J. Gastroenterol. 9, 1832–1833. Marquina, D., Perez, C., Caldas, F. V., Marques, J. F., Peinado, J. M., and Spencer-Martins, I. (1992). Characterization of the yeast population in olive brines. Lett. Appl. Microbiol. 14, 279–283. Marquina, D., Santos, A., and Peinado, J. M. (2002). Biology of killer yeasts. Int. Microbiol. 5, 65–71. Masih, E. L., and Paul, B. (2002). Secretion of beta-1,3-glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mold disease of the grapev. Curr. Microbiol. 44, 391–395. Masih, E. L., Slezak-Deschaumes, S., Marmaras, I., Barka, E. A., Vernet, G., Charpentier, C., et al. (2001). Characterisation of the yeast Pichia membranifaciens and its possible use in the biological control of Botrytis cinereae, causing the grey mould disease of grapev. FEMS Microbiol. Lett. 202, 227–232. McFarland, L. V. (2007). Meta-analysis of probiotics for the prevention of traveler’s diarrhea. Travel Med. Infect. Dis. 5, 97–105. McFarland, L. V. (2010). Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J. Gastroenterol. 16, 2202–2222. McFarland, L. V., Elmer, G. W., and McFarland, M. (2006). Meta-analysis of probiotics for the prevention and treatment of acute pediatric diarrhea. Int. J. Probiotics Prebiotics 1, 63–76. McFarland, L. V., Surawicz, C. M., Greenberg, R. N., Fekety, R., Elmer, G. W., Moyer, K. A., et al. (1994). A randomized placebo-controlled trial with standard antibiotics for Clostridium difficile disease. J. Am. Med. Assoc. 271, 1913–1918. Michalcáková, S., Sulo, P., and Michal, A. (2011). From Pichia anomala killer toxin through killer peptides to a comprehensive anti-infective strategy. Antonie Van Leeuwenhoek 99, 35–41. Pothoulakis, C. (2009). Review article: anti-inflammatory mechanisms of action of Saccharomyces boulardii. Aliment. Pharmacol. Ther. 30, 826–833. Pothoulakis, C., Kelly, C. P., Joshi, M. A., Gao, N., O’Keane, C. J., Castagliulo, L., et al. (1993). Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. Gastroenterology 104, 1108–1115. Pretorius, I. S., du Toit, M., and van Rensburg, P. (2003). Designer yeasts for the fermentation industry of the 21st century. Food Technol. Biotech. 41, 3–10.
Sauerwein, H., Schmitz, S., and Hiss, S. (2002). *FEMS Immunol. Med. Microbiol.* 22, 145–149.

Sekü, T., Choi, E.-H., and Ryu, D. (1985). Construction of killer wine yeast strain. *Appl. Environ. Microbiol.* 49, 1211–1215.

Sezer, A., Usta, U., and Cicin, I. (2009). The effect of Saccharomyces boulardii on reducing irinotecan-induced intestinal mucositis and diarrhea. *Med. Oncol.* 26, 350–357.

Spadaro, D., and Gullino, M. L. (2004). State of the art and future prospects of the biological control of postharvest fruit diseases. *Int. J. Food Microbiol.* 91, 185–194.

Suhartja, A. A. S., Henriksson, A., and Liu, S.-Q. (2012). Impact of Saccharomyces cerevisiae on viability of probiotic Lactobacillus rhamnosus in fermented milk under ambient conditions. *J. Food Process. Preserv.* doi:10.1111/j.1745-4549.2012.00780.x

Surawicz, C. M., Elmer, G. W., Speelman, P., McFarland, L. V., Chinn, J., and Van Belle, G. (1990). Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: a prospective study. *Z. Gastroenterol.* 28, 259–260.

Surawicz, C. M., McFarland, L. V., Greenberg, R. N., Rubin, M., Fekety, R., Mulligan, M. E., et al. (2000). The search for a better treatment for recurrent *Clostridium difficile* disease: use of high-dose vancomycin combined with *Saccharomyces boulardii*. *Oxford University Press*. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11049785

Suzuki, C., Ando, Y., and Machida, S. (2001). Interaction of SMKT, a killer toxin produced by *Pichia farinosa*, with the yeast cell membrane. *Yeast* 18, 1471–1478.

Suzuki, C., and Shimma, Y. I. (1999). P-type ATPase spf1 mutants show a pterin resistance mechanism for the killer toxin SMKT. *Mol. Microbiol.* 32, 813–823.

Swanson, K. S., Griezhop, C. M., Flickinger, E. A., Bauer, L. L., Healy, H.-P., Dawson, K. A., et al. (2002a). Supplemental fructooligosaccharides and mannanoligosaccharides influence immune function, ileal and total tract nutrient digestibilities, microbial populations and concentrations of protein catabolites in the large bowel of dogs. *J. Nutr.* 132, 980–989.

Swanson, K. S., Griezhop, C. M., Flickinger, E. A., Healy, H. P., Dawson, K. A., Merchn, R. N., et al. (2002b). Effects of suplemental fructooligosaccharides plus mannanoligosaccharides on immune function and ileal and fecal microbial populations in adult dogs. *Arch. Tierernährh.* 56, 309–318.

Tanyuskel, M., and Petri, W. A. (2003). Laboratory diagnosis of amebiasis. *Society 16, 713–729.

Tasterye, A., Banc, M.-C., Karjalainen, T., Bourlioux, P., and Collignon, A. (2002). Inhibition of in vitro cell adherence of *Clostridium difficile* by *Saccharomyces boulardii*. *Microbiol. Pathog.* 32, 219–225.

Tempe, J. D., Steidel, A. L., Blehaut, H., Hasselmann, M., Lutun, P., and Maurier, F. (1983). Prevention of diarrhea administering *Saccharomyces boulardii* during continuous enteral feeding. *Sem. Hop.* 59, 1409–1412.

Todd, B. E. N., Fleet, G. H., and Henchke, P. A. (2000). Promotion of autolysis through the interaction of killer and sensitive yeasts: potential application in sparkling wine production. *Am. J. Enol. Vitic.* 51, 65–72.

Valdés-Stauber, N., Scherer, S., and Seiler, H. (1997). Identification of yeasts and coryneform bacteria from the surface microflora of brick cheeses. *Int. J. Food Microbiol.* 34, 115–129.

van Der Aa Kühle, H., and Jespersen, L. (2003). The taxonomic position of *Saccharomyces boulardii* as evaluated by sequence analysis of the D1/D2 domain of 26S rDNA, the ITS1:5-8S rDNA-ITS2 region and the mitochondrial cytochrome c oxidase II gene. *Syst. Appl. Microbiol.* 26, 564–571.

van Der Kühle, A., and Jespersen, L. (2005). In vitro screening of probiotic properties of *Saccharomyces cerevisiae* var. *boulardii* and food-borne *Saccharomyces cerevisiae* strains. *Int. J. Food Microbiol.* 101, 29–39.

Van Dijken, J. P., and Scheffers, W. F. (1986). Redox balances in the metabolism of sugars by yeasts. *FEMS Microbiol. Lett.* 32, 199–224.

van Heugten, E., Funderburke, D. W., van Dijken, J. P., Van Kleeff, B. H., and Scheffers, W. J. (2003). Growth of *Zygosaccharomyces bailii* in yeast autolysate through the interaction of killer yeasts and pathogenic fungi. *FEMS Microbiol. Ecol.* 44, 81–88.

Saint-Marc, T., Blehaut, H., Musial, C., Rodrigues, F., Ludovico, P., and Leão, C. (2001). Antimicrobial properties of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. *World J. Microbiol.* Biotechnol.* 22, 1329–1336.

Swanson, K. S., Grieshop, C. M., Flickinger, E. A., Bauer, L. L., Healy, H.-P., Dawson, K. A., et al. (2002a). Supplemental fructooligosaccharides and mannanoligosaccharides influence immune function, ileal and total tract nutrient digestibilities, microbial populations and concentrations of protein catabolites in the large bowel of dogs. *J. Nutr.* 132, 980–989.

Szekely, M., and Petri, W. A. (2003). Laboratory diagnosis of amebiasis. *Society 16, 713–729.

Tasterye, A., Banc, M.-C., Karjalainen, T., Bourlioux, P., and Collignon, A. (2002). Inhibition of in vitro cell adherence of *Clostridium difficile* by *Saccharomyces boulardii*. *Microbiol. Pathog.* 32, 219–225.

Tempe, J. D., Steidel, A. L., Blehaut, H., Hasselmann, M., Lutun, P., and Maurier, F. (1983). Prevention of diarrhea administering *Saccharomyces boulardii* during continuous enteral feeding. *Sem Hop.* 59, 1409–1412.

Todd, B. E. N., Fleet, G. H., and Henchke, P. A. (2000). Promotion of autolysis through the interaction of killer and sensitive yeasts: potential application in sparkling wine production. *Am. J. Enol. Vitic.* 51, 65–72.

Valdés-Stauber, N., Scherer, S., and Seiler, H. (1997). Identification of yeasts and coryneform bacteria from the surface microflora of brick cheeses. *Int. J. Food Microbiol.* 34, 115–129.

Van Der Kühle, H., and Jespersen, L. (2003). The taxonomic position of *Saccharomyces boulardii* as evaluated by sequence analysis of the D1/D2 domain of 26S rDNA, the ITS1:5-8S rDNA-ITS2 region and the mitochondrial cytochrome c oxidase II gene. *Syst. Appl. Microbiol.* 26, 564–571.

Van Der Kühle, A., and Jespersen, L. (2005). In vitro screening of probiotic properties of *Saccharomyces cerevisiae* var. *boulardii* and food-borne *Saccharomyces cerevisiae* strains. *Int. J. Food Microbiol.* 101, 29–39.

Van Dijken, J. P., and Scheffers, W. F. (1986). Redox balances in the metabolism of sugars by yeasts. *FEMS Microbiol. Lett.* 32, 199–224.

van Heugten, E., Funderburke, D. W., van Dijken, J. P., Van Kleeff, B. H., and Scheffers, W. J. (2004). Inhibition of fermentation and growth in batch cultures of the yeast *Brettanomyces intermedium* upon a shift from aerobic to anaerobic conditions (*Cuatres effect*). *Antonie Van Leeuwenhoek* 90, 183–192.

Wijsman, M. R., Van Dijken, J. P., Van Kleeff, B. H., and Scheffers, W. A. (1984). Inhibition of fermentation and growth in batch cultures of the yeast *Brettanomyces intermedium* upon a shift from aerobic to anaerobic conditions (*Cuatres effect*). *Antonie Van Leeuwenhoek* 50, 183–192.

Wyder, M., and Puhani, Z. (1999). Role of selected yeasts in cheese ripening: an evaluation in aerated cheese curd (*Turku variety*). *International Dairy J.* 9, 3–10.

Xie, N., Zhou, T., and Li, B. (2012). Kefir yeasts enhance probiotic properties of *Lactobacillus paracasei* H19: the positive effects of coaggregation between the two strains. *Food Res. Int.* 45, 394–401.

Antimicrobial properties of yeasts
Yoshiuchi, K., Watanabe, M., and Nishimura, A. (2000). Breeding of a non-urea producing sake yeast with killer character using a kar1-1; mutant as a killer donor. *J. Ind. Microbiol. Biotechnol.* 24, 203–209.

Young, T. W. (1981). The genetic manipulation of killer character into brewing yeast. *J. Inst. Brew.* 87, 292–295.

Young, T. W., and Yagi, M. (1978). A comparison of the killer character in different yeasts and its classification. *Antonie Van Leeuwenhoek* 44, 59–77.

Zhang, A. W., Lee, B. D., Lee, S. K., Lee, K. W., An, G. H., Song, K. B., et al. (2005). Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks. *Poult. Sci.* 84, 1015–1021.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 06 August 2012; accepted: 21 November 2012; published online: 19 December 2012.

Citation: Hatoum R, Labrie S and Fliss I (2012) Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. *Front. Microbio.* 3:421. doi: 10.3389/fmicb.2012.00421

This article was submitted to Frontiers in Food Microbiology, a specialty of Frontiers in Microbiology.

Copyright © 2012 Hatoum, Labrie and Fliss. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.