Lactobacilli displacement and *Candida albicans* inhibition on initial adhesion assays: a probiotic analysis

Robert Josue Rodríguez-Arias†, Bryan Omar Guachi-Álvarez†, Dominique Esther Montalvo-Vivero and António Machado*

Abstract

Objective: This study evaluates the probiotic activity of three vaginal *Lactobacillus gasseri* (H59.2, IMAUF8014, and JCM131) and one non-vaginal *L. plantarum* ATCC14917 against three *Candida albicans* (ATCC10231, candidiasis, and healthy vaginal microbiota). Displacement of lactobacilli and adhesion inhibition of *C. albicans* were evaluated on an abiotic surface through adhesion assays with different experimental settings (ES) through low (1.0E+03 CFU/ml) and high (1.00E+09 CFU/ml) levels of colonization. ES simulated dysbiosis (ES1 and ES4), candidiasis (ES2), and healthy vaginal microbiota (ES3).

Results: At ES2 and ES3, *L. gasseri* H59.2 showed discrepant inhibition values among *C. albicans* isolates (ES2: *P* = 0.008, ES3: *P* = 0.030; two-way ANOVA). *L. plantarum* was only displaced by 23%, 31%, 54%, and 94% against low and high levels of *C. albicans* ATCC10231. *L. plantarum* was less displaced, when compared to *L. gasseri* strains (ES1: 61–84%, ES2: 82–96%, ES3: 83–95%, and ES4: 73–97%), showing multiple statistical differences (ES1: *P* = < 0.001, ES2: *P* = 0.003, and ES3: *P* = < 0.001; two-way ANOVA). *L. plantarum* also showed a superior inhibition of *C. albicans* ATCC10231 in ES1 (81%) and ES2 (58%) when compared to *L. gasseri* strains (ES1: 27–73%, *P* < 0.001; and ES2:1–49%, *P* < 0.001; two-way ANOVA).

Keywords: *Candida albicans*, Initial adhesion, *Lactobacillus gasseri*, *Lactobacillus plantarum*, Probiotics

Introduction

The vaginal microbiota is colonized by several microorganisms [1], where commensal *Lactobacillus* species act as defense mechanism [2]. Lactobacilli can adhere and biosynthesize antimicrobial compounds reducing colonization by pathogens [1] associated with bacterial vaginosis, aerobic vaginitis, and candidiasis [3]. Thus, probiotics could be an efficient alternative to antimicrobial treatment, which reduces commensal microbiota and increases resistance [4, 5]. Lactobacilli may restore healthy microbiota, as postulated by Mitrea and colleagues [5]. Although *Candida* spp. is commensal, this genus can become an opportunistic pathogen in high levels [6, 7] leading to vulvovaginal candidiasis and evolving in more serious urinary tract infections and venereal diseases [8, 9]. Studies reported the application of lactobacilli biofilms and biosurfactants against pathogens [10–13]. However, these approaches are designed to treat established infections and do not endure in vaginal microbiota [14]. Another approach could be the colonization of the mucosal epithelia by new and more probiotic lactobacilli [15], allowing a permanent integration in the microbiota. However, the inhibition of the initial
adhesion of pathogens by lactobacilli is not fully understood [16, 17]. It is important to compare the variability of vaginal and non-vaginal lactobacilli to inhibit the adhesion of pathogens and to avoid their displacement. This study evaluated the probiotic ability of three vaginal

Lactobacillus gasseri (one isolate from a healthy vaginal microbiota, and another from candidiasis), and *C. albicans* ATCC10231 and *L. plantarum* ATCC14917 were used in this study. *Lactobacillus* strains were grown in Sabouraud Dextrose Agar at 37 °C for 18 h [19, 20]. *C. albicans* strains were grown in Sabouraud Dextrose Agar at 37 °C under microaerophilic conditions [19, 20]. *C. albicans* strains were grown in Sabouraud Dextrose Agar at 37 °C under microaerophilic conditions [19, 20].

Initial adhesion assays

Each microorganism was concentrated in 5 ml of sterile phosphate-buffered saline (PBS) solution. Both suspensions were collected by centrifugation (4000 g, 12 min, at room temperature), and washed twice with PBS. The pellet was resuspended according to the growth curves to 1.0E+03 colony-forming unit (CFU)/ml and 1.0E+09 CFU/ml (Additional files 1 and 2) by optical density at 600 nm (OD600). Four experimental settings (ES) were made from concentration combinations (Additional file 3), varying on low levels of lactobacilli (1.0E+03 CFU/ml) against low and high levels of *C. albicans* (ES1 and ES2, respectively) and then on high levels of lactobacilli (1.0E+09 CFU/ml) against low and high levels of *C. albicans* (ES3 and ES4, respectively). These ES mimicked dysbiosis conditions (ES1 and ES4), candidiasis (ES2), and healthy vaginal microbiota (ES3). Initial adhesion assays were realized using a preincubation of lactobacilli for 4 h at 37 °C with 120 rpm [22, 23] and then evaluating the initial adhesion of *Candida albicans* with the pre-adhered lactobacilli during 30 min at same conditions [23–26], as illustrated in the flowchart (Additional file 4) [27, 28]. Non-adherent microorganisms were removed by PBS washing. All experimental assays were repeated three times on different days.

Microscopy analysis and cell quantification

After adhesion assay, a PBS washing step was carried out on coverslips, which were fixed with ethanol (96%; v/v) and stained with crystal violet at 3% for 1 min [29]. From each coverslip, 15 random fields were photographed in Olympus BX50 microscope under 1000x [23, 30] using the AmScope MU633-FL camera. The number of *Lactobacillus* spp. and *C. albicans* were counted from each picture (Additional file 5), being expressed as the number of cells per glass surface ± standard deviation (Additional file 6 and Additional file 7).

Statistical analysis

The statistical analysis was realized through two-tailed ANOVA (ANalysis Of VAriance) with post-hoc Tukey HSD (Honestly Significant Difference) and Student t-test using JASP software version 0.13. ANOVA analysis evaluated differences in and between ES, post-hoc Tukey HSD test analyzed differences between species on the same ES, and Student t-test assessed differences between samples and controls. *P* values ≤ 0.050 were statistically significant.

Results

Initial adhesion assays were realized through different experimental settings, simulating dysbiosis conditions (ES1 and ES4), candidiasis (ES2), and healthy vaginal microbiota (ES3). The lactobacilli displacement was evaluated on low levels (ES1 and ES2) against low and high concentrations of *C. albicans* and then on high levels (ES3 and ES4), as shown in Additional file 6. On low levels of lactobacilli, the displacement was between 15 and 99% (see Fig. 1). At ES1, *C. albicans* ATCC10231 induced bigger displacement of *L. gasseri* IMAUFB014 (84%; *P* = 0.010, two-way ANOVA) and H59.2 (83%; *P* < 0.001, two-way ANOVA) showing significant differences among *C. albicans* (Tukey’s post hoc, *P* < 0.05). Likewise, all *C. albicans* showed to be statistically different in their displacement ability among the *L. gasseri*. *C. albicans* from healthy vaginal microbiota was able to displace 99% of *L. gasseri* IMAUFB014, while *C. albicans* isolated from candidiasis demonstrated 99% of displacement against *L. gasseri* JCM1131. At ES2, no significant differences were found in the displacement among *L. gasseri*. At ES3, *C. albicans* isolated from candidiasis showed statistical differences, evidencing a greater ability to displace *L. gasseri* H59.2 (90%; *P* < 0.001, two-way ANOVA). *L. gasseri* JCM1131 showed only 15% of displacement by *C. albicans* isolated from candidiasis, being statistically different when compared to *C. albicans* ATCC10231 (83%; *P* = 0.001, Tukey’s post hoc) and *C. albicans* isolated from healthy vaginal microbiota (84%; *P* < 0.001, Tukey’s post
At ES4, *L. gasseri* JCM1131 showed 65% of displacement by *C. albicans* isolated from candidiasis, but it only evidenced a significant difference against *C. albicans* isolated from healthy vaginal microbiota (93%; $P = 0.045$, Tukey’s post hoc).

The adhesion inhibition of *C. albicans* by *L. gasseri* was also evaluated (see Fig. 2). At ES1, *L. gasseri* JCM1131 and *L. gasseri* IMAUF014 showed statistical differences among *C. albicans* ($L. gasseri$ JCM1131 $P = 0.006$, and *L. gasseri* IMAUF014 $P = 0.002$; two-way ANOVA). *L. gasseri* JCM1131 evidenced the lowest inhibition rate against *C. albicans* ATCC10231 (27%), illustrating significant values when compared against *C. albicans* isolated from candidiasis (60%; $P = 0.016$, Tukey’s post hoc) and *C. albicans* isolated from healthy vaginal microbiota (67%; $P = 0.006$, Tukey’s post hoc). While *L. gasseri* IMAUF014 showed a more efficient inhibition rate against *C. albicans* isolated from candidiasis (76%; $P = 0.002$, Tukey’s post hoc). At ES2, *L. gasseri* H59.2 was the only strain to show statistically inhibition values among *C. albicans* isolates ($P = 0.008$; two-way ANOVA). Again, at ES3, only *L. gasseri* H59.2 demonstrated a statistical difference in its inhibition ability ($P = 0.030$; two-way ANOVA) against *C. albicans* ATCC10231 (61%) and *C. albicans* isolated from candidiasis (89%; $P = 0.034$, Tukey’s post hoc). At ES4, all *C. albicans* showed significant inhibition rates (*C. albicans* ATCC10231: $P = 0.010$; *C. albicans* isolated from candidiasis: $P = 0.011$; *C. albicans* isolated from healthy microbiota: $P = 0.025$, two-way ANOVA analysis). *L. gasseri* IMAUF014 showed the highest inhibition rate against *C. albicans* isolated from healthy microbiota (80%), being statistically different to *C. albicans* ATCC10231 (47%; $P = 0.016$, Tukey’s post hoc).

Probiotic ability of *Lactobacillus plantarum* ATCC14917 was realized against *C. albicans* ATCC10231 and compared with *L. gasseri* evidencing significant displacement and inhibition values (see Additional file 7 and Fig. 3A). The displacement values of *L. plantarum* were 23% and 54% against low (ES1) and high (ES2) levels of *C. albicans*, respectively. These values were significantly inferior to *L. gasseri* (ES1: 61–99% and ES2: 82–96%), more exactly: *L. gasseri* IMAUF014 (ES1: $P < 0.001$ and ES2: $P = 0.002$, Tukey’s post hoc); *L. gasseri* JCM1131 (ES1: $P = 0.003$ and ES2: $P = 0.025$, Tukey’s post hoc); and *L. gasseri* H59.2 (ES1: $P < 0.001$ and ES2: $P = 0.012$,
Fig. 2 The probiotic activity of *Lactobacillus gasseri* against *Candida albicans* showed in initial adhesion assays. Inhibition of *C. albicans* by *L. gasseri* after initial adhesion treatments with the experimental setting of high and low inoculum in the glass surface. The percentage of adhesion of *C. albicans* is the result of the variation in the adhesion of *L. gasseri* and *C. albicans* strains to coverslip in comparison to controls (CT, 100% of adhesion) when incubated alone at the same conditions. Statistical analysis: *P* < 0.05 when using t-student statistical analysis (95% confidence interval) for comparison of candida control and sample tested in the adhesion assay; † *P* < 0.05 analyzed using two-tailed ANOVA statistical test (95% confidence interval) for comparison of inhibition values between experimental setting (ES) for each evaluated *C. albicans* isolated in the adhesion assay.

Fig. 3 Preliminary analysis of the displacement of *Lactobacillus plantarum* by *Candida albicans* and its probiotic activity on *C. albicans* through initial adhesion assays. A Displacement of *L. plantarum* ATCC 14917 by *C. albicans* ATCC 10231 after initial adhesion treatments with the experimental setting of high and low inoculum in the glass surface. Statistical analysis: *P* < 0.05 when using t-student statistical analysis (95% confidence interval) for comparison of lactobacilli control and sample tested in the adhesion assay; † *P* < 0.05 analyzed using two-tailed ANOVA statistical test (95% confidence interval) for comparison of displacement values between *L. plantarum* and *L. gasseri* strains in the adhesion assay at same experimental setting. B Inhibition of *C. albicans* by *L. plantarum* after initial adhesion treatments with the experimental setting of high and low inoculum in the glass surface. Statistical analysis: *P* < 0.05 when using t-student statistical analysis (95% confidence interval) for comparison of candida control and sample tested in the adhesion assay; † *P* < 0.05 analyzed using two-tailed ANOVA statistical test (95% confidence interval) for comparison of inhibition values between experimental setting (ES) for each evaluated *C. albicans* ATCC 10231 isolated in the adhesion assay. No statistically significant values were found.
Tukey’s post hoc). At ES3, L. plantarum was only displaced by 31% evidencing again a better resistance when compared to L. gasseri (ES3: 83–95%), specifically; L. gasseri IMAUFBO14 ($P<0.001$, Tukey’s post hoc); L. gasseri H59.2 ($P<0.001$, Tukey’s post hoc); and L. gasseri JCM1131 ($P=0.001$, Tukey’s post hoc). At ES4, L. plantarum was displaced 94% without statistical differences. As shown in Fig. 3B, the adhesion inhibition of C. albicans by L. plantarum demonstrated a superior activity in ES1 (81%) and ES2 (58%) when compared to L. gasseri (ES1: 27–73% and ES2: 1–49%; both $P<0.001$, two-way ANOVA). At ES3 and ES4, L. plantarum showed the lowest inhibition rate (50–56%) without statistical differences.

Discussion

The use of Lactobacillus as a low-risk alternative for antimicrobial resistance and its adverse effects [31]. It is well-known that a prerequisite for C. albicans’ pathogenicity is the initial adhesion to host cells [32] before leading to genital or urinary tract infections [8, 9]. This study focused on the intrinsic probiotic activity of lactobacilli against C. albicans. Although studies reported lactobacilli biofilm/biosurfactant activities against pathogens [10–13], few authors evaluated the inhibition of the initial adhesion of pathogens [16, 17, 23, 33]. Some studies previously characterized the inhibition of the initial adhesion of certain pathogens, such as Gardnerella vaginalis, Prevotella bivia, Mobiluncus mulieris [23], Listeria monocytogenes [34], and Streptococcus mutans [17]. Recently, He et al. [35] evaluated the probiotic activities of Lactobacillus species on the inhibition of the initial adhesion of several pathogens. However, only L. gasseri demonstrated a more probiotic activity against C. albicans, when compared to L. crispatus. Our results agreed with He et al. [35], reporting differences in probiotic activity among Lactobacillus species/strains against C. albicans isolates. However, there is still scarce information about how these Candida albicans can be inhibited by Lactobacillus strains/species or even to displace different lactobacilli.

An alternative approach could be used by the colonization of new and more probiotic lactobacilli in this environment [15], being permanently assimilate in the vaginal microbiota. Once incorporated, certain lactobacilli species should be able to produce supernatant and eventually evolve in biofilm formation [15, 36], such as L. plantarum. So, the initial adhesion is a vital step for the human epithelial colonization and the inhibition of pathogens being worthy to study.

The present study evaluated three L. gasseri as inherent vaginal lactobacilli and a single L. plantarum (ATCC 14917) as a strong probiotic species atypical of the vaginal microbiota. Our results evidenced statistical differences between the displacement values of L. gasseri strains by the same C. albicans isolate and the variability of each Lactobacillus to inhibit different C. albicans. This variability agrees with a study realized by De Gregorio et al. [11] with Lactobacillus crispatus on the adhesion of Candida species, which evidenced the strain-specific probiotic activity of L. crispatus. So, it is plausible to assume that the remaining Lactobacillus species could also evidence discrepancies in their probiotic ability and displacement resistance against different C. albicans isolates, as proposed by Zangl et al. [15]. The application of different lactobacilli from other biological sources in the human epithelial colonization could increment the probiotic activity of the remaining commensal microbiota, as suggested in other studies [37–39]. These studies together with our results of low displacement values in L. plantarum against low or normal levels of C. albicans suggested the potential application of non-human lactobacilli to sustain a more resilient healthy microbiota. L. plantarum ATCC 14917 demonstrated high inhibition percentages of C. albicans ATCC 10231, being more efficient and statistically different when compared to L. gasseri. Our results surpassed the rates of inhibition on C. albicans reported by Dos Santos et al. [12]. Further studies should evaluate longitudinal colonization between non-vaginal lactobacilli and vaginal lactobacilli against Candida species in vitro assays.

Limitations

There are some major limitations in this study: (1) it is a preliminary study realized on an abiotic surface and unable to establish an efficient report on human epithelial colonization; (2) the study did not evaluate the longitudinal colonization between lactobacilli and C. albicans; and (3) the study only compared the probiotic activity of L. plantarum against a single Candida albicans.

Abbreviations

Abbreviation	Description
MRS	De Man, Rogosa and Sharpe agar;
SDA	Sabouraud dextrose agar;
BHI	Brain heart infusion;
PBS	Phosphate buffered saline;
CFU	Colony-forming unit;
ES	Experimental setting;
ANOVA	Analysis of variance;
Tukey HSD	Tukey honestly significant difference test.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13104-022-06114-z.

Additional file 1: Figure S1. Comparison of growth calibration curves between Lactobacillus gasseri strains and Lactobacillus plantarum ATCC 14917 used in this study.

Additional file 2: Figure S2. Comparison of growth calibration curves between C. albicans strains used in this study.
Acknowledgements
A special recognition deserves all colleagues of the Microbiology Institute of USFQ and CCOIBA, as well as the research Office of Universidad San Francisco de Quito and COCIBA for their financial support in this study.

Author contributions
AM was responsible for the study and analysis design. Conceptualization, author contributions, and the displacement of pre-adhered lactobacilli during 30 min. A Random field (1000x) of L. gasseri IMAUFB014 (1.00E+03 CFU/ml) against C. albicans ATCC 10231 (1.00E+03 CFU/ml) at ES1. B Random field (1000x) of L. gasseri IMAUFB014 (1.00E+03 CFU/ml) against C. albicans ATCC 10231 (1.00E+03 CFU/ml) at ES2. C Random field (1000x) of L. gasseri IMAUFB014 (1.00E+09 CFU/ml) against C. albicans ATCC 10231 (1.00E+09 CFU/ml) at ES5.

Funding
This work was supported by COCIBA Research Grant 2018–2019 through project ID: 12260 entitled “Adhesion inicial y resistencia antimicrobiana de Candida sp. aisladas de la microbiota humana”, under regulations of the Ministry of Health of Ecuador (Contrato Marco de Acceso a los Recursos Genéticos No. MAF-DNB-CM-2016-0046).

Availability of data and materials
All the data supporting the study findings are within the manuscript. Additional detailed information and raw data are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participants
No human participants; human material, or human data were involved in this study.

Consent for publication
Not applicable.

Competing interests
The authors have no conflict of interests.

Received: 3 May 2022 Accepted: 15 June 2022 Published online: 07 July 2022

References
1. Borges S, Silva J, Teixeira P. The role of lactobacilli and probiotics in maintaining vaginal health. Arch Gynecol Obstet. 2013;289:479–89.
2. Hickey RJ, Zhou X, Persson JD, Ravel J, Forney LJ. Understanding vaginal microbiome complexity from an ecological perspective. Transl Res. 2012;160:267–82.
3. Salinas AM, Osorio VG, Herrera DP, Vivanco JS, Trueba AF, Machado A. Vaginal microbiota evaluation and prevalence of key pathogens in Ecuadorian women: an epidemiologic analysis. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-74655-z.
4. Lannitti T, Palmieri B. Therapeutic use of probiotic formulations in clinical practice. Clin Nutr. 2010;29:701–25.
5. Mitrea L, Calinoufi LF, Precup G, Bindea M, Rusu B, Trif M, et al. Inhibitory potential of Lactobacillus plantarum on Escherichia coli. Bull Univ Agric Sci Vet Med Cluj Napoca Food Sci Technol. 2017;74:99.
6. Allorins CN, Vandenhuevel D, Derelamens EFM, Petrova MI, Donders GGc, Cos P, et al. Inhibition of Candida albicans morphogenesis by chitinase from Lactobacillus rhamnosus GG. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-39625-0.
7. Mitrea L, Ranga F, Fetea F, Dulf FV, Rusu A, Trif M, et al. Biodiesel-derived glycerol obtained from renewable biomass—a suitable substrate for the growth of Candida zeylanoides yeast strain ATCC 30367. Microorganisms. 2019;7:265. https://doi.org/10.3390/microorganisms7080265.
8. Behzadi P, Behzadi E, Rangbar B. Urinary tract infections and Candida albicans. Cent Eur J Urol. 2015;68:96–101.
9. Behzadi P, Behzadi E, Pawlak-Adamska EA. Urinary tract infections (UTIs) or genital tract infections (GTIs)? It’s the diagnostics that count. GMS Hyg Infect Control. 2022;2019(14).1–12. https://doi.org/10.3205/dghk000320.
10. Jalilsood T, Baradaran A, Song AAL, Foo HL, Mustafa S, Saad WZ, et al. Inhibition of pathogenic and spoilage bacteria by a novel biofilm-forming Lactobacillus isolate: a potential host for the expression of the heterologous proteins. Microb Cell Fact. 2015;14:1–14.
11. De Gregorio PR, Parolin C, Abruzzo A, Luppi B, Protti M, Mercolini L, et al. Biosurfactant from vaginal Lactobacillus crispatus BC1 as a promising agent to interfere with Candida adhesion. Microb Cell Fact. 2020;19:1–16. https://doi.org/10.1186/s12934-020-01390-5.
12. Dos Santos CI, França YR, Campos CDL, Bomfim MRQ, Melo BO, Holanda RA, et al. Antifungal and antivirulence activity of vaginal Lactobacillus spp. Products against Candida vaginal isolates. Pathogens. 2019;8:1–20.
13. Martínez S, García JG, Williams R, Elmasry M, West A, Hamood A, et al. Lactobacilli spp.: Real-time evaluation of biofilm growth. BMC Microbiol. 2020;20:1–9.
14. Di Cerbo A, Palmieri B, Aponte M, Morales-Medina JC, Iannitti T. Mechanisms and therapeutic effectiveness of lactobacilli. J Clin Pathol. 2016;69:187–203.
15. Zangl I, Pari A, Aspöck C, Strihaier T, Schüller C. The role of lactobacillus species in the control of Candida adhesion. Mycobacterium. 2020;69:187–203.
16. Machado A, Almeida C, Salgueiro D, Henriques A, Vaneechoutte M, De Gregorio PR, et al. Inhibition of Candida albicans biofilm formation and adhesion to Hela cells. Mycopathologia. 2018;183:691–700.
17. Pachá-Herrera D, Vásco G, Cruz-Betancourt C, Galarza JM, Barragán V, Machado A. Vaginal microbiota evaluation and Lactobacilli quantification by qPCR in pregnant and non-pregnant women: a pilot study. Front Cell Infect Microbiol. 2020;10:1–13. https://doi.org/10.3389/fcimb.2020.00303.
18. Ribeiro FC, de Barros PP, Rossini RD, Junqueira JC, Jorge AO. Lactobacillus rhamnosus inhibits Candida albicans virulence factors in vitro and modulates immune system in Galleria mellonella. J Appl Microbiol. 2017;122:201–11.
19. Matsuba VA, Wang Y, Bandara HMHN, Mayer MPA, Samarayake LP. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl Microbiol Biotechnol. 2016;100:6415–26.
20. Nkpa SF, Barbosa JO, Rossoni RO, Santos JD, Prata MCA, Anbinder AL, et al. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence. 2015;6:29–39.

Additional file 3: Figure S3. Representation of the experimental settings in adhesion assays simulating dysbiosis conditions (ES1 and ES4), candidiasis (ES2), and healthy vaginal microbiota (ES3).

Additional file 4: Figure S4. Illustration of the flowchart on the procedures used in the initial adhesion assays of the present study. The flowchart was realized using the online software CmapTools (https://cmap.ihmc.us/) [28].

Additional file 5: Figure S5. Comparison of sample for L. gasseri IMAUFB014 against C. albicans ATCC 10231 observed in the OLYMPUS BX50 microscope for each experimental setting (ES), evaluating the initial adhesion of C. albicans and the displacement of pre-adhered lactobacilli during 30 min. A Random field (1000x) of L. gasseri IMAUFB014 (1.00E+03 CFU/ml) against C. albicans ATCC 10231 (1.00E+03 CFU/ml) at ES1. B Random field (1000x) of L. gasseri IMAUFB014 (1.00E+03 CFU/ml) against C. albicans ATCC 10231 (1.00E+09 CFU/ml) at ES2. C Random field (1000x) of L. gasseri IMAUFB014 (1.00E+09 CFU/ml) against C. albicans ATCC 10231 (1.00E+09 CFU/ml) at ES5.
22. Nishiyama K, Seto Y, Yoshioka K, Kakuda T, Takai S, Yamamoto Y, et al. Lactobacillus gasseri SBT2055 reduces infection by and colonization of Campylobacter jejuni. PLoS ONE. 2014;9:e108827.

23. Machado A, Jefferson KK, Cerca N. Interactions between Lactobacillus crispatus and bacterial vaginosis (BV)-associated bacterial species in initial attachment and biofilm formation. Int J Mol Sci. 2013;14:12004–12. https://doi.org/10.3390/ijms14062004.

24. Castro J, Henriques A, Machado A, Henriquez M, Jefferson KK, Cerca N. Reciprocal interference between Lactobacillus spp. and Gardnerella vaginalis on initial adherence to epithelial cells. Int J Med Sci. 2013;10:1193–8.

25. Fidel PL, Barousse M, Espinosa T, Ficarra M, Sturtevant J, Martin DH, et al. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun. 2004;72:2939–46.

26. Seneviratne CJ, Samaranayake LP, Ohshima T, Maeda N, Jin L. Identification of antifungal molecules from novel probiotic Lactobacillus bacteria for control of Candida infection. Hong Kong Med J. 2016;22(7):34–6.

27. Behzadi P, Gajdács M. Writing a strong scientific paper in medicine and the biomedical sciences: a checklist and recommendations for early career researchers. Biol Future. 2021;72:395–407. https://doi.org/10.1007/s42977-021-00095-z.

28. Novak JD, Cañas AJ. The Theory Underlying Concept Maps and How to Construct and Use Them, Technical Report IHMC CmapTools 2006–01. Rev 01–2008. IHMC C. 2008:1–36. http://www.cde.state.or.us/teach/learn/subjects/science/resources/mf/2010-theory_underlying_conce pt_maps.pdf#%Cnpapers/dee23dad0-e34b-4588-b624-87b46d7b3d/Paper/p348. Accessed 24 May 2022.

29. Weerasekera MM, Wijesinghe GK, Jayarathna TA, Gunasekara CP, Fernando N, Kottingoda N, et al. Culture media profoundly affect Candida albicans and Candida tropicalis growth, adhesion and biofilm development. Mem Inst Oswaldo Cruz. 2016;111:697–702.

30. Chauviere G, Coconnier M-H, Kerneis S, Fourniat J, Servin AL. Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells. J Gen Microbiol. 1992;138:1689–96.

31. Jeavons HS. Prevention and treatment of vulvovaginal candidiasis using exogenous Lactobacillus. J Obstet Gynecol Neonatal Nurs. 2003;32:287–96.

32. Graf K, Last A, Gratz R, Allert S, Linde S, Westermann M, et al. Keeping Candida commensal: How lactobacilli antagonize pathogenicity of Candida albicans in an in vitro gut model. Dis Model Mech. 2019;12:1–16.

33. Alves P, Castro J, Sousa C, Cereja TB, Cerca N. Gardnerella vaginalis outcompetes 29 other bacterial species isolated from patients with bacterial vaginosis, using in an in vitro biofilm formation model. J Infect Dis. 2014;210:593–6. https://doi.org/10.1093/infdis/jiu131.

34. Lezzoum-Atek S, Bouayad L, Hamdi TM. Influence of some parameters on the ability of Listeria monocytogenes, Listeria innocua, and Escherichia coli to form biofilms. Vet World. 2019;12:459–65.

35. He Y, Niu X, Wang B, Na R, Xiao B, Yang H. Evaluation of the inhibitory effects of Lactobacillus gasseri and Lactobacillus crispatus on the adhesion of seven common lower genital tract infection-causing pathogens to vaginal epithelial cells. Front Med. 2020. https://doi.org/10.3389/fmed.2020.00284.

36. Alves R, Barata-Antunes C, Casal M, Brown AJP, van Dijck P, Paiva S. Adapting to survive: how Candida overcomes host-imposed constraints during human colonization. PLoS Pathog. 2020;16:e1008476.

37. Hasslof P, Hedberg M, Tvetman S, Stecksen-Blicks C. Growth inhibition of oral mutants streptococci and candida by commercial probiotic lactobacilli - an in vitro study. BMC Oral Health. 2010. https://doi.org/10.1186/1472-6831-10-18.

38. Wash R, Abd El-Rahman OA, Zafer MM, Ashour HM. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cell Mol Med. 2018;22:1972–83.

39. Wang W, He J, Pan D, Wu Z, Guo Y, Zeng X, et al. Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress. PLoS ONE. 2018;13:e0196231.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.