Gene Classification Based on Amino Acid Motifs and Residues: The DLX (distal-less) Test Case

Nuno A. Fonseca1,2, Cristina P. Vieira1, Jorge Vieira1*

1 Instituto de Biologia Molecular e Celular (IBMC); University of Porto, Porto, Portugal, 2 CRACS-INESC Porto, Universidade do Porto, Porto, Portugal

Abstract

Background: Comparative studies using hundreds of sequences can give a detailed picture of the evolution of a given gene family. Nevertheless, retrieving only the sequences of interest from public databases can be difficult, in particular, when working with highly divergent sequences. The difficulty increases substantially when one wants to include in the study sequences from many (or less well studied) species whose genomes are non-annotated or incompletely annotated.

Methodology/Principal Findings: In this work we evaluate the usefulness of different approaches of gene retrieval and classification, using the distal-less (DLX) gene family as a test case. Furthermore, we evaluate whether the use of a large number of gene sequences from a wide range of animal species, the use of multiple alternative alignments, and the use of amino acids aligned with high confidence only, is enough to recover the accepted DLX evolutionary history.

Conclusions/Significance: The canonical DLX homeobox gene sequence here derived, together with the characteristic amino acid variants here identified in the DLX homeodomain region, can be used to retrieve and classify DLX genes in a simple and efficient way. A program is made available that allows the easy retrieval of synteny information that can be used to classify gene sequences. Maximum likelihood trees using hundreds of sequences can be used for gene identification. Nevertheless, for the DLX case, the proposed DLX evolutionary is not recovered even when multiple alignment algorithms are used.

Introduction

When performing comparative studies, the first step is often to collect the sequences of interest from very divergent species from public databases using BLAST. Nevertheless, when genes belong to large gene families, thus showing homology with many different genes, retrieving only the sequences of interest can be difficult. For instance, two rounds of genome duplication in the lineage leading to the common ancestor of jawed vertebrates, as well as an extra gene family as a test case. Furthermore, the proposed DLX evolutionary is not recovered even when multiple alignment algorithms are used.

The identification of characteristic short amino acid sequences has been suggested as an efficient way of retrieving and classifying genes belonging to specific gene lineages (see for instance [5]). The presence of characteristic gap alignments has been also suggested as a diagnostic feature (see for instance [6]), but this approach relies on the assumption that the alignment is not ambiguous. Gene structure may also be used as a way to classify genes (see for instance [7]).

Synteny is often used to corroborate the inferred phylogeny or to suggest an alternative explanation for the data that is not supported by the inferred phylogeny. Although the genomes of many species are now available, the annotation process is far from being completed. An apparent lack of synteny can be due to an incomplete annotation of the genome. Since a large fraction of genes in any genome are still labeled as unknown or putative, the use of synteny is often far from trivial.

In this work, we assess the utility of using diagnostic amino acid residues in evolutionary studies using the distal-less (DLX) gene family as a test case. DLX genes belong to the large animal homeobox gene family, and play important roles in bilaterian and non-bilaterian embryonic development [8].

A single DLX gene is found in non-bilaterian animals [9] and in all Protostomes [10] studied to date. Three genes are found in the Urochordate Ciona intestinalis, with two of them arranged as a convergently transcribed bi-gene cluster [11].
DLX genes are found but only one convergently transcribed bi-gene cluster has been identified [10,12]. In vertebrates, three convergently transcribed bi-gene clusters are observed [10,11]. In some vertebrate species, however, additional DLX copies can be found that are not arranged as bi-gene clusters [10,11,13,14].

The above observations suggest that a DLX tandem gene duplication most likely occurred after the separation of the Cephalocordata and Urochordata/Vertebrata species. Furthermore, that the three DLX bi-gene clusters observed in vertebrate species are the result of two rounds of genome duplication, followed by the loss of one DLX bi-gene cluster [10]. The additional DLX copies that are not arranged as bi-gene clusters may be the result of single copy DLX duplications.

In order to corroborate the proposed evolutionary scenario for this gene family, Stock ([10]) performed phylogenetic analyses using a limited number of DLX gene sequences. Although the proposed evolutionary hypothesis predicts that all Urochordate DLX genes should be members of one or the other of the two main clades of vertebrate DLX genes (DLX genes 1/4/6 and DLX 2/3/5), only DLXc weakly clusters with the DLX 1/4/6 clade, while DLXa and DLXb genes do not cluster with members of one of the two main clades. One out of the three Urochordate genes is predicted to be a duplication of one of the two genes in the Urochordate bi-gene cluster but the phylogenetic analyses reported by Stock do not support this view. Surprisingly, in Stock’s phylogenetic analyses the Urochordate DLXa gene clusters with Protostome and amphioxus genes.

In this work we evaluate whether the use of a large number of gene sequences from a wide range of animal species, as well as the use of multiple alternative alignments, and the use of amino acids aligned with high confidence only, is enough to recover the expected DLX evolutionary history. Furthermore, on the basis of the current genome annotation, the use of synteny information for large scale studies is also considered. The identification of characteristic amino acid residues in the homeodomain region (a region where the alignment is generally not ambiguous; see for instance [6]) is also considered as an alternative/complementary gene identification approach.

Materials and Methods

Identification of informative homeodomain amino acid residues

In order to identify fixed (or almost fixed) amino acid differences between DLX genes, as well as between DLX clades 1/4/6 and 2/3/5, the DLX data set compiled by ENSEMBL, containing 370 putative DLX sequences (ENSEMBL’s database protein family; ENSF00000000699; ENSEMBL release 48) were used. Partial homeodomain DLX sequences were not used. Very divergent sequences that could not be unambiguously aligned with all other DLX sequences were also excluded. Non-annotated sequences that, at the amino acid level, and in the homeodomain region, were identical to annotated sequences were also used, and were given the same annotation as the annotated sequence(s). In few cases, sequences labeled as different DLX genes had identical homeodomain amino acid sequence. For instance, although the Bos taurus entry ENSTAP00000044029 is labeled as DLX1, the corresponding homeodomain amino acid sequence is identical to the homeodomain sequence of 19 DLX2 sequences from mammalian and amphibian species. These are very likely annotation mistakes and were treated as such. Table S1 shows ENSEMBL’s accession numbers for the used DLX amino acid sequences.

Synteny analyses: In order to efficiently retrieve synteny information centered on a given DLX gene, a web-based application was developed (http://evolution.ibmc.up.pt/~al/ensyntex/). This application accepts both ENSEMBL’s gene, transcript or protein accession numbers. Only two parameters must be specified, namely the number of genes to be reported on either side of the reference gene (N) and the size of the region (in Kb) to be considered (S). For this study we used N = 2 and S = 500. A single annotated DLX protein accession was used per gene.

Phylogenetic analyses

The NCBI protein database, as well as ENSEMBL database (release 53), were queried using BLASTP and the canonical DLX sequence presented in Figure 1. The non-default settings used for BLASTP in NCBI and ENSEMBL were: W = 2, E = 0.001, and Max.Sequences (B) = 10000. Sequences that did not have a start and stop codon or the DLX characteristic motifs TQTQV/TQTQI/SQTQV (see Results) were discarded. The final dataset contains 222 different sequences. (Sequence identifiers can be found in Table S2).

The multiple alignment algorithms implemented in the following software were used to align the amino acid sequences: M-Coffee [15], T-coffee [4], and Muscle [16]. Furthermore, as suggested by Notredame et al. ([4]), we considered only amino acid aligned positions without gaps and with a score greater than 3. The number of such positions obtained using M-coffee, T-coffee, and Muscle was, respectively, 43, 48, and 39. The amino acid alignments were used as a guide to obtain the corresponding nucleotide alignment and only the nucleotide positions corresponding to amino acid positions with a score greater than 3 were used in the phylogenetic analyses.

In order to infer the relationship of the 222 nucleotide sequences retrieved from NCBI and ENSEMBL, a fast maximum likelihood method of tree reconstruction, as implemented in GARLI [17], was used with the default options. The model used was the generalized time-reversible (GTR) model of sequence evolution, allowing for among-site rate variation and a proportion of invariable sites. For large datasets containing very divergent sequences, as it is here the case, this is almost always the best fit model of sequence evolution [17]. Majority-rule consensus trees were computed using five hundred trees that resulted from five hundred independent executions of GARLI.

Results

A simple method for the retrieval of DLX genes

In order to establish a simple method for the retrieval of DLX sequences only, the large set of DLX sequences compiled by ENSEMBL was used to derive a canonical sequence for the DLX homeodomain (Fig. 1). This sequence can be used to query public databases using BLAST. It should be noted that mammalian

Figure 1. Canonical DLX sequence. The DLX specific TQTQV motif is highlighted in red.

doi:10.1371/journal.pone.0005748.g001
DLX6 sequences can differ in as many as 9 positions from the canonical sequence. On the other hand, the DLX homeodomain sequence from *Nematostella vectensis* (a non-bilaterian cnidarian; accession ABB86447) differs from the canonical sequence at a single position.

When using a large homeodomain data set, Fonseca et al. [18] identified a region that can be used to classify HOX genes (homeodomain amino acid residues 41 to 45). In this region, the vast majority of DLX sequences compiled by ENSEMBL show the TQTQV amino acid motif, including one sequence from the non-bilaterian species *Trichoplax adhaerens*. The same is true for the *Nematostella vectensis* DLX homeodomain sequence (not included in the ENSEMBL dataset; accession ABB86447).

The exceptions are the *Dasyxus nosomincetus* DLX4, *Takifugu rubripes* DLX1, *Oryctolagus cuniculus* DLX6, *Caenorhabditis sp.*. DLXa genes. It should be noted that, at this stage, it is not possible to rule out sequencing errors as the cause of the observed exceptions. Nevertheless, the *Caenorhabditis* sp. and *Ciona* sp. DLXa sequences are supported by multiple entries from different species. The TQTQV, TQTQI and SQTQV motifs (the latter two present in several sequences, and thus likely not sequencing errors) are absent from the sample of more than 1200 non-DLX homeodomain amino acid sequences analyzed by Fonseca et al. [18] from the HoxL, NKI, PRD, LIM, POU, HNF, SINE, TALE, CUT, PROS, ZF, and CERS classes (data not shown).

Given the observation that the TQTQV/TQTQI/SQTQV motifs do not occur outside the DLX gene family, it is very likely that these motifs are functionally important in DLX genes. Therefore, DLX genes can be easily identified in non-annotated genomes by looking for sequences showing homology with the canonical DLX homeodomain sequence, and then by filtering for those showing these motifs.

Synteny as a tool for DLX gene identification in species containing multiple DLX genes

When using very divergent species and gene sequences, synteny is often used to corroborate the inferred phylogeny or even to suggest an alternative explanation for the data that is not supported by the inferred phylogeny. Table 1 shows the gene names that are most often associated with a given DLX gene. Genes without a proper name, i.e., those with a general identifier only, cannot be considered when doing large scale studies, since they likely have different identifiers in different species. Therefore, additional time consuming analyses would need to be performed in order to confirm the possible orthology of different gene sequences. In our study we use ENSEMBL’s gene annotations to derive the synteny information. Note that ENSEMBL already provides synteny information at the chromosome level only, unfortunately this excludes many genomes.

From the results presented in Table 1 it is clear that synteny can be useful as a tool for gene identification. However, the retrieved information greatly depends on genome annotation. It should be noted that the identification of DLX genes using synteny information depends on the correct identification of genes that also belong to large gene families such as *Ige* and *Sle* genes. The most important issue is that not all genomes are equally well annotated. In Urochordate species, in the region where DLX genes (DLXa, DLXb and DLXc) are located, genes have only a general identifier, thus Urochordate DLX genes are not shown in Table 1.

A simple method for the identification of vertebrate DLX genes

The homeodomain region is in the vast majority of cases possible to align unambiguously [6]. Therefore, it is of interest to determine whether, in this region, there are characteristic amino acid residues that allow an easy classification of vertebrate DLX genes. Since a DLX tandem gene duplication is likely involved in the origin of the DLX bi-gene cluster, we also looked at amino acid residues that may be characteristic of one or the other main DLX gene classes (DLX 1/4/6 and DLX 2/3/5; the vertebrate bi-gene clusters are: DLX1/2; DLX 4/3; DLX 6/5; [10]). The results are presented in Tables 2 and 3.

Table 2 shows that there are characteristic amino acid residues for DLX2, DLX3, DLX4, DLX4b (in Teleostei), DLX5 and DLX6. Therefore, it is possible to classify DLX sequences in species with 3 bi-gene clusters (excluding Teleostei) by looking at four amino acid sites only (positions 18, 23, 56 and 60). DLX1 sequences are classified as sequences that do not fit the rules for the other DLX genes. In Teleostei fish where eight DLX genes are found, it is possible to distinguish DLX2a from DLX2b by looking at position 17. It is not possible to distinguish DLX2a from DLX2b as at the amino acid level, in the homeodomain region, sequences from the two genes are always identical. The *Takifugu rubripes* DLX genes 1 to 6 follow the pattern described in Table 2, with the exception of the DLX4 amino acid sequence that does not show a Q at position 18.

Three differences are observed between the two main DLX gene classes (at sites 11, 14 and 17; Table 3). For these sites it is possible to infer the ancestral state by comparison with Protostome DLX sequences. DLX genes 1/4/6 show the ancestral amino acid variant at these positions.

Table 1. Annotated flanking genes (number of occurrences in brackets) in the close vicinity of DLX genes.

DLX gene	Annotated flanking genes	
DLX1 (24)	DLX2 (14), Hat1 (12), Itga8 (6), U6 (2), Metap1 (2), Slc25a12 (2)	
DLX2 (13)	DLX1 (10), Itga8 (7), Pdk1 (2)	
Teleostei DLX2a (2)	DLX1a (2)	
DLX3 (15)	DLX4 (12), Itga3 (7), Pdk2 (6), Myst2 (3), Ace (2), Samd14 (2), U6 (2)	
DLX4 (16)	DLX3 (9), Itga3 (7), Tac4 (4), Myst2 (3), Slc35b1 (2), U6 (2)	
Teleostei DLX4a (2)		
Teleostei DLX4b (2)	DLX3 (2), Myst2 (2)	
DLX5 (22)	DLX6 (14), Acnr9 (11), Shfm1 (5), Taq1 (2), Elf2c2 (2), Mpp6 (2)	
DLX6 (22)	DLX5 (18), Acnr9 (11), Shfm1 (9), Elf2c2 (2), Slc25a13 (2)	

doi:10.1371/journal.pone.0005748.t001
Table 2. Fixed amino acid differences between a given DLX gene and all other DLX genes (excluding fast evolving sequences).

Gene	Amino acid position	17	18	23	56	60
DLX2		W				
DLX3		A				
DLX4a		Q				
DLX4b		Y				
DLX5						ILM
DLX6		H				

*Including Teleostei sequences.
- sequences from Teleostei.
- An H is observed in the Elasmobranchii DLX4 sequence.
- Not observed in DLX4 Ornithochordus anatinus. Amphibian DLX1 and DLX6 sequences also show a Y at this position.
- An H is also observed in Amphibian DLX1 sequences and in the Elasmobranchii DLX4 sequence.

Table 3. Fixed amino acid differences between DLX genes 1/4/6 and 2/3/5.

DLX genes	Amino acid position*	11	14	17
DLX 1/4/6	L, V	Q	N, H, K	
DLX 2/3/5	F, Y	A	Q	
Protostomes	L, I	Q	N	

*In bold are shown rare (three or less occurrences) amino acid variants.

In conclusion, the information given on Tables 1 and 2 can be combined to identify all DLX genes but the Teleostei genes DLX2a and DLX2b since the homeodomain amino acid sequence of these two genes is identical.

Testing Stock’s evolutionary hypothesis

Stock’s hypothesis regarding the evolution of DLX genes was not strictly based on the interpretation of the phylogenetic analyses presented by this author. For instance, the placement of Urochordate sequences offered little or no support for the hypothesis regarding the evolution of novel evolutionary features. Nevertheless, retrieving only the sequences of interest by BLAST from public databases can be a challenging problem when working with highly divergent species. Here we show that, at least for the DLX gene family, the characteristic homeodomain amino acid motifs (TQTQV/TQTQI/SQTQV) can be used to only retrieve the sequences of interest. It should be noted that the homeodomain region can be usually non-ambiguously aligned [6]. Further work must be conducted to determine whether such an approach works for any homeobox gene and for non-homeobox genes. However, it should be noted that Vieira et al. [5] presented characteristic amino acid motifs that allow the identification of plant T2-RNases belonging to a lineage that is at least 120 million years old. Those characteristic amino acid patterns were found in the plant T2-RNase conserved active site region.

The use of sequence information from non-annotated, non-curated, or partially annotated genomes poses also challenging problems, regarding gene identification. A phylogenetic approach can and should be used to classify gene sequences. Nevertheless, when using very divergent species many unexpected features are likely to be shown in the inferred phylogenetic trees, as here shown for the DLX family test case.

When genome annotation is available, synteny can be used to confirm gene classification. A web-based program for the easy retrieval of synteny information is here made available. Nevertheless, at present, it is still impractical to use information from genes that are identified by general identifiers only. As an alternative/complementary procedure, we have shown that DLX sequences can be accurately classified using characteristic amino acid residues, located in a region of the protein that can be usually non-ambiguously aligned [such as the homeobox region; [6]]. Further work must be conducted to determine whether such an approach works for any homeobox containing gene and for non-homeobox genes.

The three DLX bi-gene clusters observed in higher vertebrates have been proposed to be the result of a tandem duplication followed by two rounds of genome duplication and the loss of one DLX bi-gene cluster [10]. Urochordata are the sister group of Vertebrata while Cephalocorda are the sister group to be basal, they are shown intermingled with Deuterostome sequences. Moreover, although the DLX 2/3/5 clade is highly supported in two out of the three phylogenetic trees, there is little evidence for the presence of an DLX 1/4/6 clade.

Discussion

Large scale studies using hundreds of sequences can give a more detailed picture of the evolution of a given gene family. For instance, in principle, it can highlight duplication and amino acid substitution events that may correlate with the evolution of novel evolutionary features. Nevertheless, retrieving only the sequences of interest by BLAST from public databases can be a challenging problem when working with highly divergent species. Here we show that, at least for the DLX gene family, the characteristic homeodomain amino acid motifs (TQTQV/TQTQI/SQTQV) can be used to only retrieve the sequences of interest. It should be noted that the homeodomain region can be usually non-ambiguously aligned [6]. Further work must be conducted to determine whether such an approach works for any homeobox gene and for non-homeobox genes. However, it should be noted that Vieira et al. [5] presented characteristic amino acid motifs that allow the identification of plant T2-RNases belonging to a lineage that is at least 120 million years old. Those characteristic amino acid patterns were found in the plant T2-RNase conserved active site region.

The use of sequence information from non-annotated, non-curated, or partially annotated genomes poses also challenging problems, regarding gene identification. A phylogenetic approach can and should be used to classify gene sequences. Nevertheless, when using very divergent species many unexpected features are likely to be shown in the inferred phylogenetic trees, as here shown for the DLX family test case.

When genome annotation is available, synteny can be used to confirm gene classification. A web-based program for the easy retrieval of synteny information is here made available. Nevertheless, at present, it is still impractical to use information from genes that are identified by general identifiers only. As an alternative/complementary procedure, we have shown that DLX sequences can be accurately classified using characteristic amino acid residues, located in a region of the protein that can be usually non-ambiguously aligned [such as the homeobox region; [6]]. Further work must be conducted to determine whether such an approach works for any homeobox containing gene and for non-homeobox genes.

The three DLX bi-gene clusters observed in higher vertebrates have been proposed to be the result of a tandem duplication followed by two rounds of genome duplication and the loss of one DLX bi-gene cluster [10]. Urochordata are the sister group of Vertebrata while Cephalocorda are the sister group to
Figure 2. Maximum likelihood phylogenetic trees based on a set of 222 sequences (four NK2 and 218 DLX sequences) aligned using different multiple alignment algorithms. A) M-Coffee [15]; B) Muscle [16]; C) T-coffee [4]. As suggested by Notredame et al. [4]), only amino acid aligned positions without gaps and with a score greater than 3 were used. Numbers are the number of times a given cluster is obtained out of 500 replicates. Blue – NK2 gene sequences; Red – Non-bilaterian species; Plum – Mammals; Light orange – Aves; Green – Teleostei fish; Gray 50% - Urochordata; Teal – Protostomes; Gold – Reptiles; Brown – Elasmobranchii; Light green – Hemichordata; Turquoise – Cephalocordata; Pink – Amphibians; Lavender – Hyperoartia. Arrows point to sequences that do not show the region where the characteristic DLX amino acids are located.

doi:10.1371/journal.pone.0005748.g002
Urochordata/Vertebrata [19]. In Cephalocordata species there is no DLX bi-gene cluster while in Urochordata species there is a single DLX bi-gene cluster. Thus, the DLX tandem gene duplication most likely occurred after the separation of the Cephalocordata and Urochordata/Vertebrata species. All DLX genes from Urochordata and Vertebrata species must thus belong to one of the two gene lineages defined by the DLX tandem duplication [10]. It should be noted that, in the phylogeny shown in Figure 2, there is little evidence for a DLX 2/3/5 and a DLX 1/4/6 clade, but there are fixed amino acid differences between genes from the two clades (see Table 3). In lampreys (Vertebrata), where a single bi-gene cluster is present, the DLXa gene sequences follow the pattern shown in Table 1 for DLX 1/4/6, while DLXb, b, and c show the pattern for DLX 2/3/5 gene sequences. Thus, the differentiation between the two genes of the ancestral bi-gene cluster ended before the appearance of the lamprey lineage. Nevertheless, Urochordata DLX genes cannot be unambiguously classified using the information given on Table 3. DLXc shows the ancestral state at all positions listed in Table 3. It could be thus, classified as belonging to the DLX 1/4/6 clade. This interpretation depends, however, on the assumption that the differentiation between the two DLX genes of the ancestral bi-gene cluster started before the appearance of the Urochordata lineage.

In the phylogenetic analyses here presented DLXc is shown as being closely related to DLXa sequences thus offering some support to the hypothesis that it does belong to the DLX 1/4/6 clade. DLXa shows the derived amino acid residue at position 11. It could be thus tentatively classified as belonging to the DLX 2/3/5 lineage, although it does not present the derived amino acid residue at position 14. At position 17 it uses an amino acid residue (V) not used in Vertebrate DLX genes. Nevertheless, in the phylogenetic analyses DLXa always clusters with Protostome DLX sequences and Deuterostome DLX4 sequences. DLXb is difficult to classify since it shows putatively derived amino acid residues at position 11 and 17. The first one suggests that this gene belongs to the DLX 2/3/5 lineage while the second one suggests that it belongs to the DLX 1/4/6 lineage. It could be that the same amino acid substitution appeared twice during evolution. Nevertheless, a non-homologous recombination event that creates a chimeric gene cannot be ruled out either. Depending on the alignment, DLXb clusters with sequences of the 1/4/6 or 2/3/5 clade. In any case, the extreme conservation of the amino acid differences found between DLX genes 1/4/6 and 2/3/5 suggests that these changes are functionally important. It should be noted that there are no fixed amino acid differences between Protostome and Deuterostome DLX sequences because a fraction of the genes that belong to the DLX 1/4/6 lineage (but not those that belong to the DLX 2/3/5 lineage) show the ancestral state at positions 11, 14 and 17 (Table 3). None of these positions are part of the recognition helix 3 that is essential for successful and specific DNA binding [20]. The identification of gene and gene lineage characteristic amino acids will also help focus experimental studies onto investigating the biochemical functions of key DLX amino acid residues.

Supporting Information

Table S1	DLX accession numbers.
Found at:	doi:10.1371/journal.pone.0005748.s001 (0.06 MB DOC)

Table S2	Accession numbers for the sequences used in the phylogenetic analyses (see Figure 2).
Found at:	doi:10.1371/journal.pone.0005748.s002 (0.16 MB DOC)

Author Contributions

Conceived and designed the experiments: NAF CPV JV. Analyzed the data: NAF CPV JV. Wrote the paper: NAF CPV JV.

References

1. Sundstrom G, Larson TA, Larhammar D (2008) Phelogenetic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters. BMC Evol Biol 8: 254.
2. Essoussi N, Boujenfa K, Limam M (2008) A comparison of MSA tools. Bioinformation 2: 452–455.
3. Golubchik T, Wise MJ, Jermiin LS (2007) Mind the gaps: evidence of bias in estimates of multiple sequence alignments. Mol Biol Evol 24: 2453–2442.
4. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302: 205–217.
5. Vieira J, Fonseca NA, Vieira CP (2008) An S-RNase-based gametophytic self-incompatibility system evolved only once in eudicots. J Mol Evol 67: 179–190.
6. Holland PW, Booth HA, Bradford EA (2007) Classification and nomenclature of all human homeobox genes. BMC Biol 5: 47.
7. Kaiserman D, Bird PI (2005) Analysis of vertebrate genomes suggests a new model for clade B serpin evolution. BMC Genomics 6: 167.
8. Adamska M, Dognan SM, Green KM, Adamski M, Craigie A, et al. (2007) Wnt and TGF-beta expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS ONE 2: e1301.
9. Monteiro AS, Schierwater B, Dellaporta SL, Holland PW (2006) A low diversity of ANTP class homeobox genes in Placozoa. Evol Dev 8: 174–182.
10. Stock DW (2005) The Dlx gene complement of the leopard shark, Triakis semifasciata, resembles that of mammals: implications for genomic and morphological evolution of jawed vertebrates. Genetics 169: 807–817.
11. Sunamiya K, Irvine SQ, Ruddie FH (2003) The role of gene duplication in the evolution and function of the vertebrate Dlx/distal-less gene clades. J Struct Funct Genomics 3: 151–159.