Modern head and neck brachytherapy: from radium towards intensity modulated interventional brachytherapy

György Kovács, MD, PhD
Interdisciplinary Brachytherapy Unit, University of Lübeck/University Hospital Schleswig-Holstein Campus Lübeck, Germany

Abstract

Intensity modulated brachytherapy (IMBT) is a modern development of classical interventional radiation therapy (brachytherapy), which allows the application of a high radiation dose sparing severe adverse events, thereby further improving the treatment outcome. Classical indications in head and neck (H&N) cancers are the face, the oral cavity, the naso- and oropharynx, the paranasal sinuses including base of skull, incomplete resections on important structures, and palliation. The application type can be curative, adjuvant or perioperative, as a boost to external beam radiation as well as without external beam radiation and with palliative intention. Due to the frequently used perioperative application method (intraoperative implantation of inactive applicators and postoperative performance of radiation), close interdisciplinary cooperation between surgical specialists (ENT-, dento-maxillary-facial-, neuro- and orbital surgeons), as well interventional radiotherapy (brachytherapy) experts are obligatory. Published results encourage the integration of IMBT into H&N therapy, thereby improving the prognosis and quality of life of patients.

Key words: brachytherapy, head and neck, interdisciplinary, organ preservation, systematic review.

Purpose

Head and neck (H&N) is one of the most challenging anatomic sites of the human body. Both regional anatomy and physiology are uniquely complex and the basic functions of speaking, hearing, seeing and swallowing, as well as smelling, are concentrated in this area of the body. An additional difficulty is that a H&N implant is technically challenging. The procedure requires special skills and continuous training, including the ability to organize and perform multidisciplinary applications with a high level of expertise.

The appearance and function of the H&N are critical to an individual’s self image. The treatment of H&N cancer at any cost without trying to reduce treatment related toxicity is no longer an accepted startegy. In the modern era, H&N cancer management requires interdisciplinary thinking and multidisciplinary approaches [1-5].

Head and neck is one of the few anatomic sites where locoregional control of the cancer plays such an important role in ultimate survival. Much of the failure patterns after H&N cancer treatments are local and regional rather than systemic. Distinct from most other sites, in H&N cancer patients lymph node (LN) treatment affects not only regional control, but also influences survival. A large cohort data analysis showed that local control (LC) was the most significant variable affecting the development of distant metastasis in patients with the most common H&N cancers [6]. If local and regional control are important and brachytherapy represents a better method of delivering effective therapy to a biologically significant target compared to other treatment options, brachytherapy should also be important. However, in the absence of mature phase III trial results or other high level evidence, this remains the belief of a small group of enthusiastic experts in the field.

Both primary and recurrent squamous cell carcinoma of the H&N are classic indications for brachytherapy. A high rate of local tumor control at the cost of limited morbidity can be achieved with brachytherapy through good patient selection, meticulous source implantation, and careful treatment planning [7].

Interstitial brachytherapy is ideal for selectively delivering a high dose exclusively to the primary tumor volume, thus minimizing treatment related toxicity. Considerable experience has been accumulated with low-dose-rate (LDR) brachytherapy in the treatment of carcinoma of the lip, tongue, floor of the mouth, oral mucosa, base of the tongue, tonsillar region, soft palate, nasophary-
Modern head and neck brachytherapy

Analyses of large clinical series have demonstrated the effectiveness of this treatment method, but also indicate that LDR brachytherapy modalities should be optimized to increase the therapeutic ratio. Low-dose-rate brachytherapy is now challenged by high-dose-rate (HDR) brachytherapy and pulsed-dose-rate (PDR) brachytherapy [9]. High-dose-rate/PDR stepping source technologies offer the advantage of optimizing dose distribution by varying dwell times. Preliminary and mature results obtained with these two latter modalities are now available [10,11]. However, important knowledge on brachytherapy target definition rules, as well as on the importance of optimal implantation geometry remain obligatory. Pernot et al. [12] proved the importance of a safety margin around the tumor surface (CTV is smaller than PTV) after analysing the outcome of 448 tongue cancer implants, and Siebert et al. stated the importance of the use of the Paris System geometry in individually optimized dose distributions [13]. On the other hand, in the early 90ies, interdisciplinary cooperation with surgical specialities during perioperative implantations (intraoperative implantation of inactive applicators combined with complete or incomplete surgical resection, followed by a postoperative volume optimized treatment planning and fractionated radiation procedure) already opened up a new era in function/cosmesis preserving interdisciplinary H&N cancer treatments [14-17].

In the following, a literature overview is presented according to the published results in different H&N anatomy sites.

Cancer of the lip

Squamous cell cancers (SCC) of the lip are one of the oldest indications for interstitial radiotherapy [18]. Following excellent results with LDR/PDR brachytherapy [19-24], Guinot et al. introduced HDR treatments resulting in excellent outcome and low toxicity [25] and published long term outcome data [26]. Also Ayyerra et al. stated the meaningful switch from linear sources to stepping source technology [27]. Representative treatment results of large cohorts are summarized in Table 1.

The most common treatment related side effects are ulcers/superficial necroses, which are very rare under a dose of 50 Gy, and were observed with a strong dose dependency in 5-8% of patients in the dose range of 50-100 Gy. Over 100 Gy, there is a nearly 30% probability of ulceration. Dose rate was also found to be a significant risk factor for ulceration [28].

Commissural location results in an eight fold higher rate of functional disturbances (4.2%) than were seen in the lower lip (0.5%) and upper lip (0.0%) cases. The size of the lesion is also an important factor: cosmetic and functional disturbances were observed fold more frequently in T3 cancers (9%) than in T1 (1%) [19].

Table 1. Representative brachytherapy results in lip cancer (LDR/HDR/PDR)

Author	n	Dose (Gy)	HDR	PDR	5 years local control (%)	5 years OS (%)	Toxicity
Beauvois et al.	237	65-68	192Ir	-	95	74	9.5% necrosis
Gerbaulet et al.	231	76	192Ir	-	95	n.d.	13.0% necrosis
Tombolini et al.	57	62	HDR	-	90 (10 yrs)	n.d.	n.d.
Guinot et al.	104	9 x 5.0 bid	HDR	IMBT	95.2	64.4	0%
Lock et al.	51	55	198Au	-	97.8	87.9	Good cosmesis
Serkies et al.	32	60-70	-	PDR	98	58.9	2% soft tissue necrosis, 2% bone necrosis
Johansson et al.	43	60	-	PDR	94.5 (10 yrs)	39.1 (10 yrs)	2% soft tissue necrosis, 2% bone necrosis

LDR – low-dose-rate, HDR – high-dose-rate, PDR – pulsed-dose-rate, OS – overall survival, bid – twice a day fractions (min. 6 hours interval), 10 yrs – 10 years data, IMBT – intensity modulated brachytherapy.
monotherapy, between 60-65 Gy in the adjuvant setting following R0 resections, and between 10-25 Gy in the case of a local boost complementary to external beam therapy (EBRT) [47]. A dose rate of > 0.7 Gy/h was associated with a higher risk of necrosis [31], whilst a total combined dose of > 80 Gy (EBRT + implantation) resulted in improved outcome data [55]. If the resection margins were not clear, patients with a postoperative dose of > 68 Gy had significantly less local recurrences [48]. In addition, it has been proven that custom made protection materials (distance and/or lead protectors) reduce the severity of OAR toxicity [49] – if no individual dose conformation on the OAR’s is performed.

Most of the published series report local recurrence rates in T1/T2/T3 cancers of 0-7%/20-25%/45-80%, respectively (Table 2). The most common late toxicities are ulceration (3-25%) and tongue hemiatrophy (G1/G2: 70%). The development and course of mucosal reaction are slightly faster with the use of HDR than with LDR/PDR, although the peak time is similar at approximately 10 days postimplant [50]. Tongue atrophy is a very late developing side effect (> 72 months postimplant), and has a significant correlation with the treated volume. Nevertheless, most patients can usually maintain their activities of daily life without severe restriction [51].

Table 2. Representative brachytherapy results in oral cavity cancer (LDR/HDR/PDR)

Author	n	Anatomic site	Dose (Gy)	LDR	HDR	PDR	5 years local control (%)	5 years OS (%)	Toxicity
Pernot et al.	552	Mobile tongue	70-75	Ⅰ2Ir, wire	–	–	St. I: 95	St. I: 71	Grade I: 20%
							St. II: 65	St. II: 43	Grade II: 9%
							St. III: 54	St. III: 33	Grade III: 4%
							St. IV: 36	St. IV: 23	Grade IV: 0.2%
Pernot et al.	207	Floor of mouth	70-75	Ⅰ2Ir, wire	–	–	St. I: 97	St. I: 74	Grade I: 20%
							St. II: 73	St. II: 46	Grade II: 9%
							St. III: 64	St. III: 39	Grade III: 4%
							St. IV: 0	St. IV: 0	Grade IV: 0.2%
Yoshida et al.	70	Mobile tongue	70	Ⅰ2Ir, 226Ra	–	–	78	80 CSS	n.d.
							71 (10 yrs)	72 (10 yrs) CSS	
Inoue et al.	58	Mobile tongue	6 × 10	–	HDR	–	T1/T2 = 82/79	T1/T2 = 83/82, CSS	10%
Inoue et al.	341	Mobile tongue	70	Ⅰ2Ir, 226Ra	–	–	T1/T2 = 85/80	T1/T2 = 85/79, CSS	6%
Marsiglai et al.	160	Floor of mouth	60-70	Ⅰ2Ir, 226Ra	–	–	T1/T2 = 93/88	76	18% bone necrosis
									10% soft tissue necrosis
Strnad et al.	67	Floor of mouth	50-64	–	–	PDR 24 hours	Approx. 87	9.7% soft tissue necrosis	
								Approx. 77	7.2% bone necrosis
Strnad et al.	103	Mobile tongue	50-64	–	–	PDR 24 hours	Approx. 87	9.7% soft tissue necrosis	
								Approx. 67	7.2% bone necrosis
Guinot et al.	50	Mobile tongue	11 × 4	–	HDR	IMBT bid	–	79	4% bone necrosis
									16% soft tissue necrosis
Yamazaki et al.	80	Mobile tongue	6 × 10	–	HDR	–	T1/T2/T3	82/79/89	T1/T2/T3 17%/20%/0%
LDR – low-dose-rate, HDR – high-dose-rate, PDR – pulsed-dose-rate, OS – overall survival, CSS – cause specific survival, bid – twice a day fractions (min. 6 hours interval), IMBT – intensity modulated brachytherapy.									
noma treatments [59-63]. Additionally, in the case of base of tongue cancers, mature reports in the literature stated the advantage of definitive radiotherapy versus surgery [64-66]. There are currently several factors supporting the use of modern intensity modulated brachytherapy (IMBT). It offers individually optimized brachytherapy target dose distribution including local dose escalation complementary to EBRT, better function preservation compared to aggressive EBRT, and economic advantages.

With highly sophisticated EBRT treatments using the latest technology, the majority of local recurrences were found within the 100% dose area. As a result, the need for further local dose escalation was raised [67], and interstitial brachytherapy was proven to be the most optimal method to achieve this aim [68].

The lower toxicity advantage associated with the use of IMRT technology in EBRT (compared to 3D conformal techniques) can optimally be paired with the excellent local dose escalation potential of interstitial IMBT [69]. This theory was also supported by the knowledge obtained, when IMBT and EBRT patients were evaluated independently in a bivariate model. The IMBT patients fared significantly better than the EBRT patients [69]. Future comparative and prospective clinical trials are needed to confirm this observation. A further advantage of local dose escalation by IMBT is less target movement during the course of radiation compared to EBRT, especially if highly conformal (minimal security margins around the CTV) external beam techniques are used [70]. A strong argument for advising IMBT alone or as a part of multimodality treatment for oropharyngeal carcinomas is the published favorable long-term outcome data [71-79]. Usually, LC rates of 65-90% are independent of tumour stage, but do depend on patient selection, dose level of the combined EBRT, and combination with chemotherapy. The combination of EBRT and neck dissection accounts for the high likelihood of regional control in most published series [80]. Representative outcome details are presented in Table 3.

Nasopharynx cancer

Since the early days of radiotherapy, irradiation with or without chemotherapy, has played an important role in the treatment of nasopharynx cancer (NPC) [81,82]. High dose EBRT alone cured many patients, but often at the expense of severe late toxicities [83]. When local control was proven to be an independent prognostic factor for the development of distant metastases [84], combined EBRT + brachytherapy treatments were introduced and a dose-tumor control relationship was realized [85]. Many authors reported a successful combination of EBRT with an intracavitary brachytherapy boost as local dose escalation. However, the treatment only presented excellent results in small T-stage cancers [86-94].

Brachytherapy represents a valuable therapy option, not only in primary NPC, but also in carefully selected locally recurrent disease [95,96]. The introduction of chemotherapy, significantly enhanced the outcome especially in locally advanced disease [97,98]. Chemotherapy as well as high-technology treatment techniques for advanced NPC obviously increases the treatment costs. However, the costs generated by conventional treatment schemes and modalities in other head and neck tumor sites are in a similar range [99]. Most of the publications represent results of descriptive statistical evaluations of monoinstitutional patient cohorts. To answer the question if brachytherapy boost in combination with EBRT and chemotherapy improves the outcome in loco-regionally advanced NPC, a prospective randomized trial led by the International Atomic Energy Agency (IAEA) was performed [100]. The study results showed no statistical difference between the use of brachytherapy or external radiochemotherapy alone. However, in a different analysis by the Rotterdam group, which contained parts of the IAEA trial cohort, significant differences in local control were found between patients treated with or without a brachytherapy boost in the pooled analysis for T1-T2 N+ tumors, thus confirming the results of previous studies for patients with early local disease [101,102]. The authors stated that for the applied cumulative dose level (81 Gy), the IMRT or stereotactic (SRT) boost method was associated with better outcomes in ≥ T3 disease. One can speculate that in the case of larger tumors, the intracavitary implantation technique resulted in geometrical failure on the target. These thoughts seem to be supported by the excellent outcome results of endoscopically guided combined intracavitary + interstitial implantations, where IMBT boost was found to be a promising therapeutic solution for deep-seated residual NPC [103]. A selection of treatment results is presented in Table 4.

Intra- and perioperative implantations (IOBT and POBT)

The idea to combine surgery and immediate (intra-operative) brachytherapy is not new. Early use of radium and later LDR Ir-192 or I-125 implants have already played an important role in cancer treatments [104-113]. The integration of cross sectional imaging into brachytherapy dose planning [114,115] made it possible to introduce IMBT in the perioperative and fractionated settings [116-122]. Later, the techniques of intraoperative placed flaps and single shot radiation by means of individual dose painting methods also became available [123,124]. Due to these developments, it became possible to treat local tumor masses successfully with less toxicity compared to wide field EBRT [125] or reduce the radicality of surgical resections in order to preserve function [126-128]. Although intraoperative brachytherapy is an appealing interdisciplinary treatment alternative, higher complication rates in patients undergoing microvascular free tissue transfer have been reported. However, this should not deter or alter the aggressiveness of cancer therapy used for advanced/recurrent H&N cancer [129,130]. If one speculates, the radiobiological and dose painting advantage of fractionated perioperative IMBT compared to single shot intraoperative techniques may result in further toxicity reduction in future studies.

Also in recurrent cancers of the neck, best results were obtained with perioperative brachytherapy in combination with surgical excision and reconstruction of the skin using a vascularized myocutaneous flap. This resulted
in < 10% severe toxicities (fistulation, haemorrhage and wound break down) [131]. Selected results of H&N intra- and perioperative treatments are highlighted in Table 5.

Surface molds

The most frequently used H&N brachytherapy application form is the interstitial implantation. The majority of treatments with surface molds are for superficial malignomas on the skin (including the scalp) or those on the oral mucosa. While interstitial brachytherapy requires hospitalization, fractionated IMBT treatments based on customized mold and dental techniques can be performed as an outpatient service. The use of custom made molds and IMBT are common and offer an advantage for patients, especially in complex anatomic locations such as the ear, the external auditory canal, the periauricular region, the gingiva or hard palate, the maxillary sinus, and the eyeless orbit, etc. [133-142]. Furthermore, superficial buccal or lip cancers can also be successfully treated with HDR/PDR mold treatments [143, 144]. Most of these are mold based monoplanar implants.

In certain situations (for example nasopharynx), the quality of the dose distribution of a brachytherapy boost complementary to EBRT can be improved by the use of anatomically customized mold-type applicators [145].

Table 3. Representative brachytherapy results in oropharynx cancer (LDR/HDR/PDR)

Author	n	Anatomic site	Dose (Gy)	LDR	HDR	PDR	5 years local control (%)	5 years OS (%)	Toxicity				
Pernot et al. [35]	271	Tonsil, soft palate	70-75	192Ir, wire	–	–	T1/T2/T3/T4	T1/T2/T3/T4	Grade I: 20%				
							96/95/76/78		Grade II: 9%				
							68/69/51/46		Grade III: 4%				
									Grade IV: 0.2%				
	90	Pharyngoglossal sulcus	70-75	192Ir, wire	–	–	T1/T2/T3/T4	T1/T2/T3/T4	Grade I: 20%				
							79/73/53/4		Grade II: 9%				
							60/45/23/0		Grade III: 4%				
									Grade IV: 0.2%				
Levendag et al. [59]	38	Soft palate, tonsillar fossa	40-66	–	1 fraction & bid	–	Daytime & 24 hours	87	60	2 × ulcers	3 × scarring	2 × severe pain	
									29% transient soft tissue necrosis				
Nose et al. [63]	83	Soft palate, anterior pilar, posterior pilar, base of tongue, vallecula	48	–	bid	–	–	84	51	5% bone necrosis	4% soft tissue ulceration	5% bone necrosis	
Takácsi Nagy et al. [71]	30	Base of tongue	EBRT 60	BT 12-30	–	10 × IMBT, bid	–	62	43	1% bone necrosis	3% ulceration		
Johansson et al. [74]	83	Base of tongue	EBRT 50	BT 30	–	–	24 hours, PDR	89	65	10% permanent feeding tube	5% soft tissue necrosis		
							85 (10 yrs)	45 (10 yrs)			11%		
Cano et al. [76]	18	Base of tongue	EBRT 50	BT 24.5	192Ir, seeds	–	–	89	52	11%			
Gibbs et al. [79]	41	Base of tongue	EBRT 50	BT 26	192Ir, seeds	–	–	82	66	5% bleeding	8% infection	7% soft tissue ulceration	5% bone necrosis

LDR – low-dose-rate, HDR – high-dose-rate, PDR – pulsed-dose-rate, OS – overall survival, bid – twice a day fractions (min. 6 hours interval), IMBT – intensity modulated brachytherapy, EBRT – external beam therapy, BT – brachytherapy, *At 3 years
Table 4. Representative brachytherapy results in nasopharynx cancer (LDR/HDR/PDR)

Author	n	EBRT dose (Gy)	BT dose (Gy)	LDR	HDR	PDR	5 years local control (%)	5 years OS (%)	Toxicity	
Teo et al. [85]	163	60	18-24	–	3 fractions intracavitary	–	94.5	86	6% ulceration, 5% cranial nerve palsy, 23% epistaxis/BND	
Lee et al. [92]	55	65 primary 39 recurrent	10-54 LDR 5-7 HDR	226Ra 137Cs 60Co	2 fractions IMBT bid	24 hours	89 primary 64 recurrent	86 primary 91 recurrent	No G3/G4 toxicity	
Leung et al. [95]	145	66	10-12	–	2 x weekly fractions	–	95.8	91.1	10.5%	
Levendag et al. [101]	91	60-70	11-17	–	IMBT 11 Gy in 3 fx, 17 Gy in 5 fx	–	T1-T2/T3-T4 96/67*	T1-T2/T3-T4 80/67*	n.d.	
Ren et al. [154]	40	60	16	–	IMBT bid	–	97.5	92.5 DFS	5 pts hearing impairment, 7 pts ulceration	
Wu et al. [88]	175	58	20	–	IMBT bid	–	94 (10 yrs)	71.7 (10 yrs)	11% cranial neuropathy, 2.3% ulceration, 1% temporal lobe necrosis	
Rosenblatt et al. [100]	135	70	11 Gy LDR 3 x 3.0 Gy HDR	192Ir, wires	IMBT	–	54.4 (3 yrs)	63.3 (3 yrs)	33 out of 135 G3/G4	
Wan et al. [103]	171	63	14 ICBT 11 IBT	–	IMBT	–	94.4 ICBT	97.4 IBT	93.6 ICBT	4.7% late G3/4 in ICBT, 2.4% late G3/4 in IBT

EBRT – external beam therapy, LDR – low-dose-rate, HDR – high-dose-rate, PDR – pulsed-dose-rate, IMBT – intensity modulated brachytherapy, BT – brachytherapy, ICBT – intracavitary brachytherapy, IBT – interstitial brachytherapy, DFS – disease free survival

Palliative treatments

Cure or overall survival may not be the ultimate goal in palliative treatments, and as such, surgery as well as systemic agents and radiation are important means of locoregional control [146]. Phase III study results indicate that postoperative full-dose EBRT reirradiation combined with chemotherapy after salvage surgery significantly improved disease free survival, but had no significant impact on overall survival. Regarding toxicity, an increase in both acute and late toxicity was observed [147]. The palliative effect of a given treatment is strongly correlated with the prolongation of the survival time, and may contribute to improving the remaining survival time in patients with metastatic/advanced cancer with a poor performance status [148]. Brachytherapy is ideal for palliation in nearly all anatomic sites and has excellent outcome data, independent of the applied form of brachytherapy (LDR/HDR/PDR) [120,149-165]. Compared to external beam reirradiation series [159], IMBT offers significantly better local control rates.

Dose and fractionation, documentation and combination with external beam therapy (+/- chemotherapy)

By using the classical Paris System and Ir-192 wires or seed implants, the dose distribution could be forecast when performing the implant [166]. Furthermore, the Paris System has demonstrated its practicability in many clinical situations in large cohorts and over a long time. There is mature experience in the literature that total dose of a successful radiation therapy depends on many factors, including tumor and surrounding normal tissue radiosensitivity, size of target volume, and proportion of hypoxic areas within the target volume. Usually, the total dose of brachytherapy in H&N should be comparable to 50-70 Gy continuous LDR dose [47]. In the modern era, following the introduction of cross sectional image based volume optimized treatment planning, its limitations have become more and more evident. Nevertheless, we still need a system to describe and understand
the relationship between applied inhomogeneous target dose and clinical outcome, as well the ability to compare treatment results of different reported experiences [167,168]. The Paris System geometry rules should be used as a pedestal to build a new system, where due to dedicated target dose inhomogeneities biological planning could be realized [13]. Since literature data regarding the relationship between IMBT dose inhomogeneity and late toxicities are rare in H&N cancer, the systematic collection and documentation of implant quality measures (COIN, DNR, etc.) for future evaluations are advisable [47].

Regarding applied doses/dose rates there are different reported experiences in the literature

Seed implants

The use of of 80-200 Gy D$_{90}$ values on the postimplant CT’s was reported as feasible in H&N cancers if 125I was used as a permanent implant [107,108,156,169-171]. If molds are used, 125I can be applied as a temporary implant. In this case, excellent outcome data were published with a mean dose of 55 Gy at 0.5 cm depth from the applicator surface [172]. In the case of 198Au, the applied dose was similar, 50-55 Gy [173].

High-dose-rate brachytherapy

Unfavorable outcomes have been documented in patients treated with large single shot doses; however, dose painting can lower normal tissue toxicity [124]. In general, the use of fractionation in HDR brachytherapy is advisable. Excellent clinical results are presented with fraction doses of 2.5-6.0 Gy. It is possible to shorten the total treatment time by using two fractions daily, with a minimum of 6 hours between each fraction [26,47]. However, it seems to be advisable to keep the fraction dose low if the target volume is large.

Table 5. Representative results in intra-and perioperative brachytherapy (LDR/HDR/PDR)
Author
Vikram et al. [107]
Nag et al. [112]
Strege et al. [120]
Nutting et al. [132]
Teudt et al. [129]
Gaztanaga et al. [126]

LDR – low-dose-rate, HDR – high-dose-rate, PDR – pulsed-dose-rate, DFS – disease free survival, CSR – crude survival rate, WOF – without flap, WF – with flap, OS – overall survival, bid – twice a day fractions (min. 6 hours interval), IMBT – intensity modulated brachytherapy, fx – fraction
Pulsed-dose-rate brachytherapy

All brachytherapy applications with more than two fractions per day are denoted as PDR. Depending on the daily number of fractions, two different types of fractionation can be followed: the daytime PDR (only during office hours) and continuous PDR (delivering fractions over 24 hours). In the interest of normal tissue preservation (keeping the dose rate low), PDR machines work with low initial activity (approx. 37.0 GBq) HDR sources. Following fractionation studies in animals [174,175], PDR treatments with longer pulse (fraction) intervals of up to 3 hours were proven to replace continuous LDR treatments [56]. The probability of local control and development of severe toxicities are in correlation with the irradiated volume, and with the dose maxima/dose inhomogeneity [176]. An analysis investigating the safety of “office time” versus 24 hour PDR applications found equality with both methods [177]. Regarding clinical outcome comparisons, there are no large cohort comparisons published in connection with H&N cancer.

Combined external beam therapy (+/- chemotherapy)

The combination of EBRT and/or chemotherapy (most frequently platinum based) with brachytherapy in the H&N is feasible [7,99,164,178]. Additional hyperthermia was proven as a modality improving radiotherapy treatment results in both brachytherapy and EBRT [47,179]; however, the method is not widely practiced. The use of IMBT as a boost complementary to EBRT can be performed in different ways: in combination with surgery as a “boost first” in the setting of perioperative IMBT or following the completed EBRT. The prolongation of total treatment time due to a long (>14 days) time interval between IMBT boost dose and EBRT can negatively impact outcome results [180]. The usual IMBT boost dose varies between 10-20 Gy, complementary to 45-60 Gy EBRT dose [13,47].

Conclusions

Technical developments and multidisciplinary teamwork lead to better understanding of the role of IMBT in H&N cancer treatments and its place in up-to-date treatment regimes. Since surgery has also developed in the past decades, there has been a change in the role of IMBT; instead of focusing on the cure of small tumors. The current focus is on local dose escalation complementary to EBRT, function preservation through perioperative applications, and successful treatment of recurrent disease. However, to offer the full benefits to patients, IMBT in H&N cancer needs to be performed by experienced (multidisciplinary) teams in dedicated centres with a high workload in the field.

Disclosure

Author reports no conflict of interest.

References

1. Levendag P, Nijdam W, Noever I et al. Brachytherapy versus surgery in carcinoma of tonsillar fossa and/or soft palate: late adverse sequelae and performance status: can we be more selective and obtain better tissue sparing? Int J Radiat Oncol Biol Phys 2004; 59: 713-724.
2. Meyer JE, Brocks C, Gehrking E et al. Brachytherapy in combination with function-preserving surgery. An interdisciplinary challenge. HNO 2008; 4: 471-478.
3. Strege RJ, Kovács G, Meyer JE et al. Perioperative intensity-modulated brachytherapy for refractory orbital rhabdomyosarcomas in children. Strahlenther Onkol 2009; 185: 789-798.
4. Martinez-Monge R, Cambero M, Moreno M et al. Interaction of 2-Gy equivalent dose and margin status in perioperative high-dose-rate brachytherapy. Int J Radiat Oncol Biol Phys 2011; 79: 1158-1163.
5. Teckie S, Scala LM, Ho F et al. High-dose-rate intraoperative brachytherapy and radical surgical resection in the management of recurrent head-and-neck cancer. Brachytherapy 2013; 12: 228-234.
6. Merino OR, Lindberg RD, Fletcher GH. An analysis of distant metastase from squamous cell carcinoma of the upper respiratory and digestive tracts. Cancer 1997; 40: 145-151.
7. Mazeron JJ, Ardiet J-M, Haie-Médic C et al. GEC-ESTRO recommendations for brachytherapy for head and neck squamous cell carcinomas. Radiother Oncol 2009; 91: 150-156.
8. Mazeron JJ, Noël G, Simon JM. Head and neck brachytherapy. Semin Radiat Oncol 2002; 2: 95-108.
9. Sethi R, Ash DV, Flynn A et al. Replacement of hairpin and loop implants by optimised straight line sources. Radiother Oncol 1996; 39: 117-121.
10. Lapeyre M, Bellière A, Hofstetter S et al. Curietherapie des cancers de la tête et du cou. Cancer Radiother 2008; 12: 515-521.
11. Visser AG, van den Aardweg CJ, Levendag PC. Pulsed dose rate and fractionated high dose rate brachytherapy: choice of brachytherapy schedules to replace low dose rate treatments. Int J Radiat Oncol Biol Phys 1996; 34: 497-505.
12. Pernet M, Malissard L, Hofstetter S et al. The study of tumoral, radiobiological, and general health factors that influence results and complications in a series of 448 oral tongue carcinomas treated exclusively by irradiation. Int J Radiat Oncol Biol Phys 1994; 29: 673-678.
13. Siebert F-A, Born T, Häring S et al. A dosimetric analysis of interstitial intensity modulated implants for pelvic recurrences, base of tongue and orbita tumors with specific references to the ICRU-58. Radiother Oncol 2009; 79: 298-303.
14. Kovács G, Rochels R, Mehdorn HM et al. Eye preservation Brachytherapy for Orbital and adjacent tumors: Preliminary results. In: Wiegel T, Bornfeld N, Hinkelbein W (eds.). Radiotherapy of ocular disease, Vol. 30. Front Radiat Ther Oncol - Recommendations for brachytherapy for head and neck squamous cell carcinomas treated exclusively by irradiation. Int J Radiat Oncol Biol Phys 1997; 39: 5-9.
15. Martinez-Monge R, Azinovic I, Alcalde J et al. IORT in the management of locally advanced or recurrent head and neck cancer. Front Radiat Ther Oncol 1997; 31: 122-125.
16. Martinez-Monge R, Azinovic I, Alcalde J et al. IORT in the management of locally advanced or recurrent head and neck cancer. Front Radiat Ther Oncol 1997; 31: 122-125.
17. Corones PCS, Cox HJ, Rhys-Evans PR et al. Salvage treatment for inoperable neck nodes in head and neck cancer using combined iridium-192 brachytherapy and surgical reconstruction. Brit J Surg 1996; 83: 1620-1622.
18. Scott JM. Radiation treatment of the cancer of the lip. JAMA 1918; 70: 1255; doi: 10.1001/jama.1918.0260017005031
19. Mazeron JJ, Richard P. Lip cancer, report of the 18th annual meeting of European Curietherapy Group. J Eur Radiotherapy 1984; 5: 50-56.
20. Johansson B, Karlsson L, Hardell L et al. Long term results of PDR brachytherapy for lip cancer. J Contemp Brachyther 2011; 3: 65-69.
21. Beauvois S, Hofstetter S, Peiffert D et al. Brachytherapy for lower lip epidermoid cancer: tumoral and treatment factors
61. Patra NB, Gossamoi J, Basu S et al. Outcomes of high dose rate interstitial boost brachytherapy after external beam radiation therapy in head and neck cancer – an Indian (single institution) learning experience. Brachytherapy 2009: 8: 248-254.

62. Strenta V, Melzner W, Geiger M et al. Role of interstitial PDR brachytherapy in the treatment of oral and oropharyngeal cancer. A single-institute experience of 236 patients. Strahlenther Onkol 2005; 181: 762-767.

63. Nose T, Koizumi M, Nishiyama K. High-dose-rate interstitial brachytherapy for oropharyngeal carcinoma: results of 83 lesions in 82 patients. Int J Radiat Oncol Biol Phys 2004; 59: 983-991.

64. Mendenhall WM, Amdur RJ, Stringer PE et al. Radiation therapy for squamous cell carcinoma of the tonsillar region: a preferred alternative to surgery? J Clin Oncol 2000; 18: 2219-2225.

65. Van de Pol M, Levendag PC, de Bree RR et al. Radical radiotherapy compared with surgery for advanced squamous cell carcinoma of the base of tongue. Brachytherapy 2004; 3: 7-86.

66. Barrett WL, Gluckman JL, Wilson KM et al. A comparison of treatments of squamous cell carcinoma of the base of tongue: Surgical resection combined with external radiation therapy, external radiation therapy alone, and external radiation therapy combined with interstitial irradiation. Brachytherapy 2004; 3: 240-245.

67. Storme G, Farray A, Vorrederkers ME et al. Pattern of failure after helical tomotherapy in head and neck cancer. Strahlenther Onkol 2010; 186: 511-516.

68. Teguh DN, Levendag, PC, Noever I et al. Treatment techniques and site considerations regarding dysphagia-related quality of life in cancer of the oropharynx and nasopharynx. Int J Radiat Oncol Biol Phys 2008; 72: 1119-1127.

69. Levendag PC, Schmitz PIM, Jansen PP et al. Fractionated high-dose-rate and pulse dose rate brachytherapy: first clinical experience in squamous cell carcinoma of the tonsillar fossa and soft palate. Int J Radiat Oncol Biol Phys 1997; 38: 497-506.

70. Prévost J-B, de Boer H, Pottel J et al. Analysis of the motion of oropharyngeal tumors and consequences in planning target volume determination. Radiother Oncol 1988; 87: 268-273.

71. Takácsei Nagy Z, Oberna F, Somogyi A et al. Teletherapy versus teletherapy and “boost” brachytherapy in the treatment of base of tongue tumors: 5-year results. Magy Onkol 2004; 48: 297-301.

72. Takácsei Nagy Z, Kásler M. Brachytherapy of head and neck cancer. Magy Onkol 2008; 52: 145-150.

73. Takácsei-Nagy Z, Oberna F, Koltai P et al. Long-term outcomes with high-dose-rate brachytherapy for the management of base of tongue cancer. Brachytherapy 2013; 12: 535-541.

74. Johansson B, Karlsson L, Reizenstein J et al. Pulsed dose rate brachytherapy as the boost in combination with external beam irradiation in base of tongue cancer. Long-term results from a uniform clinical series. J Contem Brachytherapy 2011; 3: 11-17.

75. Harrison LB, Zelefsky MJ, Armstrong JG et al. Performance status after treatment for squamous cell cancer of the base of tongue – a comparison of primary radiation therapy versus primary surgery. Int J Radiat Oncol Biol Phys 1994; 30: 953-957.

76. Cano ER, Johnson JT, Carrau R et al. Brachytherapy in the treatment of Stage IV carcinoma of the base of tongue. Brachytherapy 2004; 3: 41-48.

77. Hu K, Harrison LB. Brachytherapy versus intensity-modulated radiation therapy in the management of base of tongue cancers. Brachytherapy 2005; 4: 1-4.

78. Nijdam WM, Levendag PC, Noever I et al. Longitudinal changes in quality of life and costs in long-term survivors of tumors of the oropharynx treated with brachytherapy or surgery. Brachytherapy 2008; 7: 343-350.

79. Gibbs I, Le Q-T, Shah RD et al. Long-term outcomes after external beam irradiation and brachytherapy boost for base-of-tongue cancers. Int J Radiat Oncol Biol Phys 2003; 57: 489-494.

80. Lee HI, Zelefsky MJ, Kaus DH et al. Long-term regional control after radiation therapy and neck dissection for base of tongue carcinoma. Int J Radiat Oncol Biol Phys 1997; 38: 995-1000.

81. Rudd KD, Green AE Jr., Morrow RM et al. Radium source appliance for treatment of nasopharyngeal cancer. J Am Dent Assoc 1966; 72: 862-866.

82. Sooy FA. Experimental treatment of recurrent carcinoma of the nasopharynx with electrodication, radioactive cobalt and x-ray radiation. Am J Otol Rhinol Laryngol 1956; 65: 723-735.

83. Tuan JKL, Ha TC, Ong WS et al. Late toxicities after conventional radiation therapy alone for nasopharyngeal carcinoma. Radiother Oncol 2012; 104: 305-311.

84. Kwong DL, Sham JS, Choy D. The effect of loco-regional control on distant metastatic dissemination in carcinoma of the nasopharynx: an analysis of 1301 patients. Int J Radiat Oncol Biol Phys 1994; 30: 1029-1036.

85. Too PM, Leung SF, Lee WY et al. Intracavitary brachytherapy significantly enhances local control of early T-stage nasopharyngeal carcinoma: the existence of a dose-tumor-control relationship above conventional tumoricidal dose. Int J Radiat Oncol Biol Phys 2000; 46: 445-458.

86. Yamashita S, Kondo M, Inuyama Y et al. Improved survival of patients with nasopharyngeal squamous cell carcinoma. Int J Radiat Oncol Biol Phys 1986; 12: 307-312.

87. Zhang EP, Lian, PG, Cai KL et al. Radiation therapy of nasopharyngeal carcinoma: prognostic factors based on a 10-year follow-up of 1302 patients. Int J Radiat Oncol Biol Phys 1989; 16: 301-305.

88. Wu J, Guo Q, LU JJ et al. Addition of intracavitary brachytherapy to external beam radiation therapy for T1-T2 nasopharyngeal carcinoma. Brachytherapy 2012; 12: 479-486.

89. Chang JT, See L-C, Tang SC et al. The role of brachytherapy in early stage nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 1996; 36: 1019-1024.

90. Wang CC. Decision making for re-irradiation of nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 1997; 26: 903.

91. Syed N, Puthawala A, Damore et al. Brachytherapy for primary and recurrent nasopharyngeal carcinoma: 20 years’ experience at Long Beach Memorial. Int J Radiat Oncol Biol Phys 2000; 47: 1311-1312.

92. Lee N, Hoffman R, Phillips TL et al. Managing nasopharyngeal carcinoma with intracavitary brachytherapy: one institution’s 45-year experience. Brachytherapy 2002; 1: 74-82.

93. Leung T-W, Wong WYW, Sze W-K et al. High dose rate intra- vaginal brachytherapy boost for early T stage nasopharyngeal carcinoma (PRIVATE). Int J Radiat Oncol Biol Phys 2008; 70: 361-367.

94. Yeo R, Fong KW, Hee SW et al. Brachytherapy boost for T1/ T2 nasopharyngeal carcinoma. Head Neck 2009; 31: 1610-1618.

95. Wang CC. Re-irradiation of recurrent nasopharyngeal carcinoma – treatment techniques and results. Int J Radiat Oncol Biol Phys 1987; 13: 953-956.

96. McLean M, Chow E, O’Sullivan B et al. Prognostic significance of the total dose of cysplatin administered during concurrent chemotherapy in patients with locoregionally advanced nasopharyngeal carcinoma. Radiother Oncol 2012; 104: 300-304.

97. Al-Sarraf M, LeBlanc M, Giri PG et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: Phase III randomized intergroup study 0099. J Clin Oncol 1998; 16: 1310-1317.

535-541.

83. Tuan JKL, Ha TC, Ong WS et al. Late toxicities after conventional radiation therapy alone for nasopharyngeal carcinoma. Radiother Oncol 2012; 104: 305-311.

82. Sooy FA. Experimental treatment of recurrent carcinoma of the nasopharynx with electrodication, radioactive cobalt and x-ray radiation. Am J Otol Rhinol Laryngol 1956; 65: 723-735.

81. Rudd KD, Green AE Jr., Morrow RM et al. Radium source appliance for treatment of nasopharyngeal cancer. J Am Dent Assoc 1966; 72: 862-866.

80. Lee HI, Zelefsky MJ, Kaus DH et al. Long-term regional control after radiation therapy and neck dissection for base of tongue carcinoma. Int J Radiat Oncol Biol Phys 1997; 38: 995-1000.

79. Gibbs I, Le Q-T, Shah RD et al. Long-term outcomes after external beam irradiation and brachytherapy boost for base-of-tongue cancers. Int J Radiat Oncol Biol Phys 2003; 57: 489-494.

78. Hu K, Harrison LB. Brachytherapy versus intensity-modulated radiation therapy in the management of base of tongue cancers. Brachytherapy 2005; 4: 1-4.

77. Nijdam WM, Levendag PC, Noever I et al. Longitudinal changes in quality of life and costs in long-term survivors of tumors of the oropharynx treated with brachytherapy or surgery. Brachytherapy 2008; 7: 343-350.
99. Leventag PC, Nijdam WM, van Aghoven M et al. Chemo-
therapy and high-dose-rate brachytherapy in the manage-
ment of advanced cancers of the nasopharynx: clinical im-
pact of high-precision technology - is it worth the cost? Brachytherapy 2002; 1: 11-20.
100. Rosenblatt E, Abdel-Wahab M, El-Gantiry M et al. Brachyther-
apy boost in loco-regionally advanced nasopharyngeal carci-
noma: a prospective randomized trial of the International Atomic Energy Agency. Radiat Oncol 2014; 9: 67-78.
101. Leventag PC, Lagerwaard FJ, de Pan C et al. High-dose, high precision treatment options for boosting cancer of the nasopharynx. Radiother Oncol 2002; 63: 67-74.
102. Leventag PC, Keskin-Cambay F, Teguh DN et al. Brachytherapy, a highly focused technique for applying high booster doses of radiation. Can it be of value in reduc-
ing the local relapse rate in advanced cancer of the naso-
pharynx? Int J Radiat Oncol Biol Phys 2011; 81: 510-511.
103. Wan X-B, Jiang R, Xie F-Y et al. Endoscope-guided intersti-
tial intensity-modulated brachytherapy and intracavitary brachytherapy as boost irradiation for primary early T stage nasopharyngeal carcinoma. PLoS One 2014; 9: e90048.
104. Wikham and Degre. Vortrag gehalten auf dem 17. Interna-
tionalen medizinischen Kongress in London am 6.-12. Au-
gust 1913. Strahlentherapie 1913; 3: 472.
105. Hilaris BS, Henschke UK. General principles and tech-
niques of interstitial therapy. In: Hilaris BS (ed.). Handbook of interstitial brachytherapy. Publishing Sciences Group, Acton 1975; pp. 61-86.
106. Syed AMN. Iridium-192 afterloading implant in the retreat-
ment of head and neck cancer. Br J Radiol 1978; 51: 814-820.
107. Vikram B, Hilaris BS, Anderson LL et al. Permanent io-
dine-125 implants in head and neck cancer. Cancer 1983; 51: 1310-1314.
108. Fee WE, Goffinet DR, Paryani S. Intraoperative iodine-125 implants. Arch Otolaryngol 1983; 109: 727-730.
109. Goffinet DR, Martinez A, Fee WE et al. 1-125 curie suture implants as a surgical adjuvant in cancer of the head and neck. Int J Radiat Oncol Biol Phys 1985; 11: 390-402.
110. Freeman SB, Hamaker RC, Singer MI et al. Intraoperative radiotherapy of head and neck cancer. Arch Otolaryngol Head Neck Surg 1990; 116: 165-168.
111. Kupfermann ME, Morrison WH, Santillian AA et al. The role of interstitial brachytherapy with salvage surgery for the management of recurrent head and neck cancers. Cancer 2007; 109: 2052-2057.
112. Nag S, Schuller D, Pak V et al. Pilot study of intraoperative high dose rate brachytherapy for head and neck cancer. Ra-
diother Oncol 1995; 41: 125-130.
113. Freeman SB, Hamaker RC, Singer MI et al. Intraoperative radiotherapy of skull base cancer. Laryngoscope 1991; 101: 507-509.
114. Kovacs G, Pütter R, Prettl FJ et al. The Münster experience with magnetic resonance imaging assisted treatment planning used for high-dose-rate afterloading therapy of gyn-
ecological and nasopharynx cancer. In: Breit A (ed.). Tumor response monitoring and treatment planning. Springer, Berlin-Heidelberg 1991; pp. 661-665.
115. Pütter R, Kovacs G, Lenzen B et al. Technique of MRI assist-
ed treatment planning. Selectron Brachytherapy Journal 1991; 5: 145-148.
116. Kovacs G, Rochels R, Mehdorn HM. Möglichkeiten der intra-
operative computergestützten Brachytherapie bei orbita- und schä-
delbasisnahen Tumoren. In: Draf W (ed.). Entzündungen an der Schädelbasis. Einhorn, Reinbeck 1994; pp. 200-207.
117. Kovacs G, Hebbringhaus D, Dennert P et al. Conformal treat-
ment planning for interstitial brachytherapy. Strahlentherapie 1996; 172: 469-474.
118. Hebbringhaus D, Kovacs G, Kohr P et al. The Kiel confor-
mal HDR/PDR interstitial brachytherapy planning system incorporating cross-sectional digital imaging. Endocuriether-
apy/Hyperthermia Oncology 1996; 12: 81-86.
119. Kovacs G, Kohr P, Zimmermann J et al. Initial PDR brachytherapy experience at Kiel. In: Fietkau R, Mould RF (eds.). Brachytherapy. State of the Art in Germany. Nucle-
tron International, Veenendaal 1993; pp. 88-97.
120. Stroge RJ, Kovacs G, Maune S et al. Feasibility of com-
bined operation and perioperative intensity-modulated brachytherapy of advanced/recurrent malignancies involv-
ing the skull base. Strahlentherapie 2005; 181: 97-107.
121. Kovacs G. Pulsed dose rate brachytherapy for head and neck cancer. In: Bruggmoser G, Mould RF (eds.). Freiburg Oncology Series Monograph, No 1: Brachytherapy Review. Medical Physics Publishing, Madison 1994; pp. 171-180.
122. Werner J, Rochels R, Kovacs G. Therapieprinzipien bei ma-
ligen Nasennebenhöhlenmalignomen mit Orbitabeteiligung. In: Rochels R, Behrendt S (eds.). Orbita – Chirurgie. Ein-
horn, Reinbeck 1997; pp. 93-101.
123. Kolkman-Deurloo IK, Nuyttens JJ, Hanssens PE et al. Intra-
operative HDR brachytherapy for rectal cancer using a flex-
ible intraoperative template: standard plans versus individ-
ual planning. Radiother Oncol 2004; 70: 75-79.
124. Morikawa LK, Zelefsky MJ, Cohen GN et al. Intraoperative high-dose-rate brachytherapy using dose painting tech-
nique: evaluation of safety and preliminary clinical out-
comes. Brachytherapy 2013; 12: 1-7.
125. Graml D, Esche B, Lamothe A et al. Intertitial brachyther-
apy in the management of persistent head and neck disease after definitive external beam radiation therapy. Brachyther-
apy 2009; 8: 284-289.
126. Gaztanaga M, San Miguel I, Rodriguez ME et al. Limited vol-
ume perioperative HDR brachytherapy as a substitute for wide-field EBRT in resected head & neck cancer. Radiother Oncol 2011; 99: 15.
127. Meyer JE, Brockes C, Gehrking E et al. Brachytherapy in combination with function-preserving surgery. An interdis-
ciplinary challenge. HNO 2008; 56: 471-478.
128. Stroge RJ, Eichmann T, Holland D et al. Combined operation and brachytherapy for pediatric malignancies involving the orbit and the skull base. Childs Nerv Syst 2001; 17: 430-431.
129. Teut I, Meyer JE, Ritter M et al. Perioperative image-adapted brachytherapy for the treatment of paranasal sinus and nasal cavity malignancies. Brachytherapy 2013; 13: 178-186.
130. Smith RV, Krevitt L, Yi SM et al. Early wound complications in advanced head and neck cancer treated with surgery and Ir-192 brachytherapy. Laryngoscope 2000; 110: 8-12.
131. Ross DA, Hundal JS, Son YH et al. Microsurgical free flap reconstruction outcomes in head and neck cancer patients after surgical extirpation and intraoperative brachytherapy. Laryngoscope 2004; 114: 1170-1176.
132. Nutting C, Horlock N, A’Herrn R et al. Manually after-loaded Ir-192 low dose rate brachytherapy after subtotal excision and flap reconstruction of recurrent cervical lymphadenopathy from head and neck cancer. Radiother Oncol 2006; 80: 39-42.
133. Bahadir E. Custom Made Mold Brachytherapy. In: Bas-
al Cell Carcinoma. Madan V (ed.). Intech, 2012; available from: http://www.intechopen.com/books/basal-cell-carcinoma/custom-made-mold-brachytherapy-2012
134. Ariji E, Hayashi N, Kimura Y et al. Customized mold brachytherapy for oral carcinomas through use of high-
dose-rate remote afterloading apparatus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999; 87: 508-512.
135. Yenghom I. Ir-192 pellet source HDR brachytherapy using wax surface mould applicators in head and neck cancer: A single institute experience. J Clin Oncol 2013; 31: e17029.
136. Nishimura Y, Yokoe Y, Nagata Y et al. High-dose-rate brachytherapy using molds for oral cavity cancer: the technique and its limitation. Int J Clin Oncol 1998; 3: 351-356.
137. Artaj JD, Hayakawa T, Kimura Y. Customized mold brachytherapy for oral carcinomas through use of high-dose-rate remote afterloading apparatus. Oral Surg Oral Med Oral Pathol 1999; 87: 508-512.
138. Daniel EJ, Subir N. Technique for construction of dental molds for high-dose-rate remote brachytherapy. Special Care Dent 1992; 12: 219-224.
139. Obinata K, Ohmori K, Shirato H et al. Experience of high-dose-rate brachytherapy in Centre Alexis Vautrin. Int J Radiat Oncol Biol Phys 1992; 23: 6-15.
140. Garrán C, Montesdeoca N, Martínez-Monge R. Treatment of upper gum carcinoma with high-dose-rate customized-mold brachytherapy, Brachytherapy 2008; 7: 267-269.
141. Liebmann A, Pohlmann S, Heinicke F et al. Helmet mold-based surface brachytherapy for homogeneous scalp treatment: a case report. Strahlenther Onkol 2007; 183: 211-217.
142. Garrán C, Montesdeoca N, Martínez-Monge R. Treatment of recurrent head and neck cancer. Head Neck 2014; 36: 144-151.
143. Yamaguchi S, Ohguri T, Matsuki Y et al. Palliative radiotherapy in patients with a poor performance status: the palliative effect is correlated with prolongation of the survival time. Radiat Oncol 2013; 8: 166-173.
144. Ho A, Kraus DH, Ganly I et al. Decision making in the management of recurrent head and neck cancer. Head Neck 2014; 36: 144-151.
145. Levendag PC, Peters R, Meeuwis CA et al. A new applicator design for endocavitary brachytherapy of cancer in the nasopharynx. Radiother Oncol 1997; 45: 95-98.
146. Janot F, Raucourt D, Benhamou E et al. Randomized trial of postoperative reirradiation combined with chemother-apy after salvage surgery compared with salvage surgery alone in head and neck carcinoma. J Clin Oncol 2008; 26: 5518-5523.
147. Skowronek J, Wierzbicka M, Milecki P et al. Palliative HDR brachytherapy with concomitant chemotherapy and interstitial hyperthermia in patients with recurrent head-and-neck cancer. Brachytherapy 2002; 1: 149-153.
148. Geiger M, Strnad V, Lotter M et al. Re-irradiation in inoperable recurrent cervical lympha- why from head and neck cancer. Radiother Oncol 2010; 98: 57-62.
149. Puthawala A, Syed AM, Puthawala A et al. Salvage high-dose-rate (HDR) brachytherapy for recurrent head-and-neck cancer. Int J Radiat Oncol Biol Phys 2005; 62: 1444-1450.
150. Strnad V, Lotter M, Kreppner S et al. Re-irradiation with interstitial pulsed-dose-rate brachytherapy for unresectable recurrent head and neck carcinoma. Brachytherapy 2014; 13: 187-195.
151. Marinello G, Pierquin B. The Paris system, optimization of dose, and calculation of treatment time. In: Pierquin B, Marinello G (eds.). A practical manual of brachytherapy. Medical Physics Publishing, Madison 1997; pp. 53-61.
152. Henneguin C, Mazeron JJ, Chotin G. How to use the Paris system in the year 2001? Prat Radiat Oncol 2001; 58: 7-14.
153. Van der Laar R. The stepping source dosimetry system as an extension of the Paris system. Medical Physics Publishing, Madison 1997; pp. 53-61.
154. Mohr RM, Chen KY, Silverman CL. Intersitial iodine 125 in advanced recurrent squamous cell carcinoma of the head and neck with follow-up evaluation of carotid artery by ultrasonic, Acta Otohinolaryngol Pol 2004; 58: 721-729.
155. Langlois D, Hoffstetter S, Malissard L et al. Salvage irradiation of oropharynx and mobile tongue about 192 iodium brachytherapy in Centre Alexis Vautrin. Int J Radiat Oncol Biol Phys 1998; 41: 849-853.
156. Skowronek J, Wierzbicka M, Milecki P et al. Palliative HDR and PDR brachytherapy in treatment of head and neck cancer relapses. Otolarngology Pol 2004; 58: 721-729.
157. Langlois D, Hoffstetter S, Malissard L et al. Salvage irradiation of oropharynx and mobile tongue about 192 iodium brachytherapy in Centre Alexis Vautrin. Int J Radiat Oncol Biol Phys 1998; 41: 849-853.
158. Mazeron J, Langlois D, Glaubiger D et al. Salvage irradiation of oropharyngeal cancers using iodium 192 wire implants: 5 year results of 70 cases. Int J Radiat Oncol Biol Phys 1987; 13: 957-962.
159. Le Berris F, Meeuwis CA, Visser AG. Reirradiation of recurrent head and neck cancers: external and/or interstitial radiation therapy. Radiat Oncol 1992; 29: 6-11.
160. Marinello G, Pierquin B. The Paris system, optimization of dose, and calculation of treatment time. In: Pierquin B, Marinello G (eds.). A practical manual of brachytherapy. Medical Physics Publishing, Madison 1997; pp. 53-61.
161. Zhu L, Jiang Y, Wang J et al. An investigation of 125I seed permanent implantation for recurrent carcinoma in the head and neck after surgery and external beam radiotherapy. World J Surg Oncol 2013; 11: 60-67.
162. Huang M-W, Liu S-M, Zheng L et al. A digital model individual template and CT-guided 125I seed implants for ma-
lignant tumors of the head and neck. J Radiat Res 2012. doi: 10.1093/jrr/rsr046.

173. Lock M, Cao JQ, D’Sousa P et al. Brachytherapy with permanent gold grain seeds for squamous cell carcinoma of the lip. Radiother Oncol 2011; 98: 352-356.

174. Veninga T, Visser AG, van den Berg AP et al. Equivalence of hyperfractionated and continuous brachytherapy in a rat tumor model and remarkable effectiveness when preceded by external irradiation. Int J Radiat Oncol Biol Phys 2001; 49: 1351-1360.

175. Harms W, Peschke P, Weber KJ et al. Dose-dependent differential effects of low and pulsed dose rate brachytherapy in a radioresistant syngeneic rat prostate tumor model. Int J Radiat Oncol Biol Phys 2002; 78: 617-623.

176. Melzner WJ, Lotter M, Sauer R et al. Quality of interstitial PDR-brachytherapy-implants of head-an-neck cancers: Predictive factors for local control and late toxicity? Radiother Oncol 2007; 82: 167-173.

177. Koedooder K, Van Herten Y, Van der Grient HN et al. Safety aspects of pulsed dose rate brachytherapy: analysis of 1225 patients. Nowotwory, Journal of Oncology 2007; 57: 230e-232e.

178. Krempien RC, Grehn C, Haag C et al. Feasibility report for treatment of locally recurrent head-and-neck cancers by combined brachy-chemotherapy using frameless image-guided 3D interstitial brachytherapy. Brachytherapy 2005; 4: 154-162.

179. Seegenschmiedt MH, Sauer R. The current role of interstitial thermo-radiotherapy. Strahlenther Oncol 1992; 168: 119-140.

180. Hofstetter S, Marchal C, Peiffert D et al. Treatment duration as a prognostic factor for local control and survival in epidermoid carcinoma of the tonsillar region treated by combined external beam irradiation and brachytherapy. Radiother Oncol 1997; 45: 141-148.