Analysis of the Impact of Features on the Ranking of Urgency of Land Consolidation Works

Justyna Wojcik-Len 1, Zanna Strek 1, Przemysław Len 1

1Department of Environmental Engineering and Geodesy, University of Life Sciences, 20-069 Lublin, 7 kr. St. Leszczyńskiego street, Poland

przemyslaw.len@up.lublin.pl

Abstract. In EU member states the restructuring of rural areas based on consolidation is a common measure, thus Poland’s membership of the EU provided an opportunity for developing such zones through the financial support of the measures. The development of agriculture in Poland and its production capacity is much differentiated in terms of space. One of the reasons for such a situation is the process of long-term transformations of agricultural management in areas with different social and economic situation continuing for many years. The objective of land consolidation works is creating more favourable management conditions in agriculture and forestry by improving the territorial structure of farms, forests and forestland, reasonable configuration of land, aligning the limits of real properties with the irrigation and drainage system, roads and terrain. The studies were carried out in the rural community (gmina of Poświętne), situated in Opoczno poviat in Central Poland, which consisted of 17 villages covering a total area of 14081.0 ha. For the purposes of creating the ranking of urgency of the land consolidation and exchange works in the community (gmina) of Poświętne, 26 most significant features characterizing respective villages were selected. Those features were calculated based on data obtained from the register of land and buildings maintained by the Poviat Administration in Opoczno. The ranking was created using the zero unitarization method. This method allows standardizing diagnostic variables by testing the range of the characteristic. Standardized measures fall within the range <0;1>. The results can be interpreted as an average of optimum values achieved by each of the objects. Thus, the higher the synthetic measure, the higher position of the object in the ranking being created. This paper is a continuation of surveys during which the authors studied the impact of single features on the position of respective villages in the ranking. This paper aimed to analyze the impact of features on the ranking of urgency of land consolidation works by leaving out 2 or 3 features which described the analyzed villages and checking their impact on the results of the ranking of urgency of land consolidation and exchange works in respective villages within the analyzed community.

1. Introduction
The problem of highly defective spatial structure of agricultural land is common in many countries. In the first place, it is a result of social, economic or historical transformations which have often continued for hundreds of years [13], [2], [1], [14], [3], [4], [9], [16], [11]. Consolidation and exchange of land is a tool for improving the defective spatial structure. With regard to limited funds allocated for the purposes of such measures, it is necessary to identify objects where such works should be carried out as a priority [6]. However, for the purposes of hierarchization of land consolidation and exchange works, it is necessary to carry out a number of surveys and analyses...
leading to the identification of a set of features characterizing the analyzed region [Leń 2018]. At present, the spatial structure of land in Poland is affected by the following factors: demographic relations, socio-economic and legal relations, arrangement of marriages, dividing large estates into parcels before and after World War II, agriculture, and the settlement of the ownership status of farms. Reconstruction of the spatial structure of rural areas is necessary to ensure permanent and sustainable development of such grounds [15]. Land consolidation, as a space management tool, leads to desirable structural changes but it must be carried out systematically and it must become an element of the long-term policy of regional governments with respect to the development of rural areas. Consolidation and exchange works should be comprehensive and they should be connected with post-consolidation management. Only then multi-functional development of rural areas is possible. Such works are an effective tool to rectify the identified defects and provide an option for alternative management of unfavourable, useless agricultural land – the so-called agricultural problem areas [18], [19], [17]. In order to identify areas where land consolidation and exchange works are the most urgent, it is necessary to carry out detailed surveys and select relevant features facilitating effective identification of areas with the most defective spatial structure [5], [8] within a specific village or group of villages. At the first stage of works undertaken to identify factors affecting the condition of spatial structure of the analyzed areas, it is necessary to gather current and reliable information about the object of study, including the maximum possible amount of quantitative data by means of which the analyzed area can be described to improve the utilization of rural space [12]. Here, it should be emphasized that rural areas can be described by means of many different features providing information about the degree of defectiveness of the spatial structure of land. Some features can be represented by means of synthetic measures describing their intensity, which facilitates partial reduction of the data set. This paper aims to analyze the impact of features on the ranking of urgency of land consolidation works by leaving out 2 or 3 features which describe the analyzed villages and checking their impact on the results of the ranking of urgency of land consolidation and exchange works in respective villages within the analyzed gmina.

After first paragraph, other paragraphs are indented as you can see in this paragraph. After Introduction, divide your article into clearly defined and numbered sections.

2. Materials and methods

For the purposes of creating the ranking of urgency of the consolidation and exchange of land in the gmina of Poświętne, 26 factors characterizing respective villages were identified. Those features were calculated based on data obtained from the register of land and buildings maintained by the Poviat Administration in Opoczno. Preliminary analysis covers a general description of the distribution of values of respective variables presented in the form of descriptive statistics (Tables 1, 2). Each variable was determined as either an LTB (larger-the-better) characteristic or an STB (smaller-the-better) characteristic for the needs of the consolidation process. With regard to the ranking method, all features were adopted as LTB characteristics. Six groups of features were classified as LTB characteristics. The first group is general information, including: x₁ – total area, x₂ – total number of plots, x₃ – number of residents, x₄ – number of residents per km², x₅ – % of the area of land owned by individual farmers, x₆ – % of the number of plots owned by individual farmers, x₇ – average area of the plot owned by individual farmers. Another group comprises information referring to land owned by individual farmers, such as: x₈ – number of registration units in subgroup 7.1, x₉ – % of registration units in subgroup 7.1, x₁₀ – number of plots of a registration unit in subgroup 7.1, x₁₁ – area of the plots of a registration unit in subgroup 7.1, x₁₂ – % of the number of plots in subgroup 7.1, in relation to group 7, x₁₃ – % of the area of the plots in subgroup 7.1, in relation to group 7, x₁₄ – average number of plots per registration unit, x₁₅ – average area of a registration unit. Another group is the productivity ratio calculated for x₁₆ – arable land and for x₁₇ – grassland. A further group is the structure of ownership, including: x₁₈ – % of land owned by the Agricultural Property Agency of the State Treasury and x₁₉ – land owned by gminas. One more group, i.e. plots without access to roads,
includes: x20 – % of the number of plots without access to roads and x21 – % of the area of plots without access to roads.

Table 1. Features adopted as LTB characteristics

Selected features	LTB charact.	Mean	Me	min	max	V
x1 – total area	↑	828.1530	616.2823	227.8799	3313.1911	89.2900
x2 – total number of plots	↑	926.8824	866.0000	317.0000	2097.0000	49.6956
x3 – number of residents	↑	210.7059	170.0000	32.0000	602.0000	73.8262
x4 – number of residents per km2	↑	32.6919	23.2917	8.3610	142.1520	96.0501
x5 – % of the area of land owned by individual farmers	↑	69.4794	83.3400	26.4600	96.4200	38.7200
x6 – % of the number of plots owned by individual farmers	↑	88.1500	89.9700	74.4500	95.3200	7.0103
x7 – average area of plots owned by individual farmers	↑	0.6106	0.5628	0.2900	1.5236	48.6444
x8 – number of registration units in subgroup 7.1	↑	124.2353	116.0000	34.0000	260.0000	52.6269
x9 – % of registration units in subgroup 7.1	↑	62.0979	67.5439	19.4757	85.2234	29.2477
x10 – number of plots per registration unit in subgroup 7.1	↑	718.5882	624.0000	187.0000	1849.0000	59.4184
x11 – area of plots per registration unit in subgroup 7.1	↑	424.9470	388.5660	178.6368	1125.6581	55.9632
x12 - % of the number of plots in subgroup 7.1 in relation to group 7	↑	85.4459	89.4000	58.2700	96.5600	12.9814
x13 - % of the area of plots in subgroup 7.1 in relation to group 7	↑	93.1753	95.1500	76.4800	98.8700	6.4771
x14 – average number of plots per registration unit	↑	6.2815	5.3935	2.5616	14.9481	51.9700
x15 – average area of a registration unit	↑	3.7304	3.3035	1.5783	8.2958	43.9270
x16 – productivity ratio of cropland	↑	28.5146	25.1789	22.7577	37.4526	18.0599
x17 – productivity ratio of grassland	↑	34.8197	35.6678	24.2452	45.4630	14.6519
x18 - % of land owned by the Agricultural Property Agency of the State Treasury	↑	0.0229	0.0000	0.0000	0.1200	184.1407
x19 - % of land owned by the gminas	↑	1.6735	1.6800	0.3300	4.3100	58.6780
x20 - % of the number of plots without access to roads	↑	16.3165	14.2500	2.7400	36.9500	59.9646
x21 - % of the area of plots without access to roads	↑	16.5700	13.8500	4.0500	44.7500	69.5256

Source: Elaborated based on [10]
The STB characteristics were (Table 2): x_{22} – fragmentation ratio, x_{23} – % of orchards, x_{24} – % of forests, x_{25} – average elongation ratio and x_{26} – synthetic ratio of plot elongation for the precinct.

Table 2. Features adopted as STB characteristics

Selected features	STB characteristics	Mean	Me	min	max	V
x_{22} – fragmentation ratio	↓	4.0545	4.0911	3.3393	4.7918	9.9507
x_{23} - % of orchards	↓	0.3674	0.1858	0.0000	1.4700	132.2613
x_{24} - % of forests	↓	48.1053	50.7400	13.0100	77.0700	45.6128
x_{25} – average elongation ratio	↓	2.4452	2.4244	1.0596	4.1016	32.6724
x_{26} – synthetic ratio of plot elongation for the precinct	↓	2.6290	2.8212	1.4854	3.7366	30.8116

Source: Elaborated based on [10]

Prior to preparing a synthetic ranking based on the output values of diagnostic features, they are often subject to preliminary selection. The most popular criteria refer to not including variables with low level of variation in the analysis (it is often assumed that these are the characteristics for which the coefficient of variation (V) is lower than 20%). They often assume the elimination of features that are highly correlated (with regard to the fact that they convey similar information about the hierarchy of the ordered objects) [7]. The criterion of the coefficient of variation is not satisfied by: % of the number of plots owned by individual farmers (V=7.0%), % of the number of plots in subgroup 7.1 in relation to group 7 (V=13.0%), % of the area of plots in subgroup 7.1 in relation to group 7 (V=6.5%), cropland productivity ratio (V=18.1%), grassland productivity ratio (V=14.7%) and fragmentation ratio (V=10.0%). Due to their substantive value, these features were retained for the purposes of objective analysis. For other variables the coefficient of variation exceeds 20%. A detailed calculation algorithm for the zero unitarization method is presented in the publication [8].

3. Results and discussions

Based on 15 tests in which 2 or 3 features were left out, one ranking was developed including the mean value from all tests. The results are illustrated in Table 3 and Figures 1 and 2. According to the surveys, the most urgent need for land consolidation works was identified in Brudzewice. The analyzed village was first in all rankings. However, in one case it was second when features such as: x_1 – total area and x_3 – number of residents were not included in the analysis, which is a proof that this is the largest precinct with a high percentage of residents.
Table 3. Ranking of urgency of land consolidation based on tests

Ranking position	Value of synthetic measure	Village
1	0.614	Brudzewice
2	0.553	Kolonia Gapinin
3	0.536	Buczek
4	0.532	Gapinin
5	0.489	Wólka Kuligowska
6	0.450	Dęba
7	0.433	Małoszyce
8	0.432	Dęborzeczka
9	0.429	Studzianna
10	0.413	Kolonia Brudzewice
11	0.39	Stefanów
12	0.383	Kozłowiec
13	0.369	Poświętne
14	0.353	Poręby
15	0.341	Mysiakowice
16	0.282	Ponikła
17	0.266	Anielin

Kolonia Gapinin, which was second in most rankings when one variable was left out, comes first in the ranking in which: x_1 – total area and x_3 – number of residents were not included, which is a proof that this is a small village characterized by a low percentage of residents. On the other hand, this village comes third or fourth in rankings in which: x_{17} – productivity ratio for grassland, x_{26} – synthetic elongation ratio for plots within the precinct, x_8 – number of registration units in subgroup 7.1, x_{23} – % of the area of plots without access to roads, x_{23} – % of orchards, or x_{18} – % of land owned by the Agricultural Property Agency of the State Treasury were not included. This testifies to a high productivity ratio for grassland, large elongation of plots, high number of registration units in subgroup 7.1, small area of plots without access to roads, small percentage of orchards and small area of land owned by the Agricultural Property Agency of the State Treasury in that village.

Buczek, which was the third or fourth village in the rankings when one variable was left out, comes second in the ranking in which: x_{18} – % land owned by the Agricultural Property Agency of the State Treasury, x_{21} – % of the area of plots without access to roads and x_{23} – % of orchards were not included, which is a proof that the area of land owned by the Agricultural Property Agency of the State Treasury is small, that the area covered by plots without access to roads is small and that there are not many orchards in that village. Gapinin, which was the third or fourth village in most rankings when one variable was left out, comes second in the rankings in which: x_{17} – productivity ratio for grassland, x_{26} – synthetic elongation ratio for plots within the precinct, x_8 – number of registration units in subgroup 7.1, x_{23} – % of the area of plots without access to roads, x_{23} – % of orchards, were not included. It testifies to a high productivity ratio for grassland, small elongation of plots, small number of registration units in subgroup 7.1, average area of plots without access to roads, and the lack of orchards in that village. On the other hand, this village was fifth in rankings in which: x_{18} – % of land owned by the Agricultural Property Agency of the State Treasury, x_{22} – fragmentation ratio, x_{21} – % of the area of plots without access to roads and x_{23} – % of orchards were not included. It testifies
to a large area of land owned by the Agricultural Property Agency of the State Treasury, large fragmentation of plots, average area of plots without access to roads and the lack of orchards in that village. Wólka Kuligowska, which was the fifth or sixth village in the rankings when one variable was left out, comes fourth in the rankings in which: \(x_{18} - \%\) of land owned by the Agricultural Property Agency of the State Treasury, \(x_{22} - \text{fragmentation ratio}\), \(x_{21} - \%\) of the area of plots without access to roads or \(x_{23} - \%\) of orchards were not included. It testifies to the lack of land owned by the Agricultural Property Agency of the State Treasury, small fragmentation of plots, small area of plots without access to roads and the lack of orchards in that village.

Figure 2. Chart presenting position changes in 15 rankings for respective villages in the gmina of Poświętne

In turn, Ponikła, which alternately with Anielin, was sixteenth and seventeenth in the rankings when one variable was left out, comes sixteenth in the rankings in which more than one variable was left out, except rankings in which: \(x_{18} - \%\) of land owned by the Agricultural Property Agency of the State Treasury, \(x_{22} - \text{fragmentation ratio}\), \(x_{5} - \%\) of the area of land owned by individual farmers and \(x_{6} - \%\) of the number of plots owned by individual farmers, were not included. It testifies to the lack of land owned by the Agricultural Property Agency of the State Treasury, large fragmentation of plots and large area and number of plots owned by individual farmers in that village. The village comes seventeenth in such rankings. Anielin, which alternately with Ponikła, was sixteenth and seventeenth in the rankings when one variable was left out, comes seventeenth in the rankings in which more than one variable was left out, except rankings in which: \(x_{18} - \%\) of land owned by the Agricultural Property Agency of the State Treasury, \(x_{22} - \text{fragmentation ratio}\), \(x_{5} - \%\) of the area of land owned by individual farmers and \(x_{6} - \%\) of the number of plots owned by individual farmers, were not included. It testifies to the lack of land owned by the Agricultural Property Agency of the State Treasury, small fragmentation of plots and small area and number of plots owned by individual farmers in that village.

4. Conclusions
Surveys regarding the analysis of the impact of features on the ranking of urgency of land consolidation works showed that the selection of features was very significant for creating the rankings of urgency of works since correctly collected data provides reliable information regarding the
analyzed object. The results of tests showed that villages characterized by a very defective spatial structure, despite leaving out 2 or 3 features, were still high in the ranking of the needs for land consolidation works (Brudzewice, Kolonia Gapinina, Buczek, Gapinina). The same was applicable to villages which occupied end positions in the rankings (Poświętne, Poręby). Such a state of affairs shows that if any features are left out accidentally, the position in the ranking should not differ much from that of objects where land consolidation and exchange works are the most urgent. The situation is slightly different in villages in the middle of the ranking because for them leaving out 2 or 3 features led to huge changes in the ranking positions. Such a state of affairs is due to the fact that in those villages the value of the synthetic measure ranges from 0.341 in Mysiakowiec to 0.489 in Wólka Kuligowska. The small span of the measure contributes to large changes in the hierarchization of the consolidation works. The authors propose that an additional, independent statistical method should be used in order to verify the results of analyses.

References
[1] Cay, T., Ayten, T. and Iscan, F. Effects of different land reallocation models on the success of land consolidation projects: Social and economic approaches. Land Use Policy, 27(2), pp. 262–269, 2010.
[2] Gonzalez, X. P., Alvarez, C. J. and Crecente, R. Evaluation of land distributions with joint regard to plot size and shape. Agricultural Systems, 2004. https://doi.org/10.1016/j.agsy.2003.10.009.
[3] Hudecová, L., Geisse, R., Vardžáková, M., Turan, P. Calculation of land fragmentation. Kartografické listy / Cartographic letters, 2016, 24 (1), pp. 12–22, 2016.
[4] Hudecová L., Geisse R., Gasincova S., Bajtala M. Quantification of Land Fragmentation in Slovakia. GEODETSKI LIST, Volume: 71, Issue: 4, pp. 327-338, 2017.
[5] Leń P., Oleniacz G., Skrzypczak I., Mika M. The Hellwig’s and zero unitarisation methods in creating a ranking of the urgency of land consolidation and land exchange work. 16th International Multidisciplinary Scientific GeoConference SGEM 2016, www.sgem.org, SGEM2016 Conference Proceedings, ISBN 978-619-7105-59-9 / ISSN 1314-2704, June 28 - July 6, 2016, Book2 Vol. 2, pp.617-624, 2016. DOI: 10.5593/SGEM2016/B22/S09.080.
[6] Leń P., Oleniacz G., Skrzypczak I., Mika M. Methodology for assessing the size and liquidation of the outer patchwork of land. World Multidisciplinary Earth Sciences Symposium (WMESS 2017). IOP Conf. Series: Earth and Environmental Science 95 032020, 2017. DOI:10.1088/1755-1315/95/3/032020.
[7] Leń P., Król, Z. Analysis of economic and environmental effects of land consolidation on the example of Hucisko village. Journal of Ecological Engineering. Volume 17, Issue 5, Nov. 2016, pp. 232–239, 2016. DOI: 10.12911/22998993/65090.
[8] Leń P., Mika M. Determination of the urgency of undertaking land consolidation works in the villages of the Sławno municipality. Journal of Ecological Engineering Volume 17, Issue 4, Sept. 2016, pp. 163–169, 2016. DOI: 10.12911/22998993/64827.
[9] Leń P. The ranking destination areas for land consolidation works, due to the size checkerboard land on the example of Białaczów. “Environmental Engineering” 10th International Conference Vilnius Gediminas Technical University. eISSN 2029-7092 / eISSN 978-609-476-044-0, 2017. DOI: https://doi.org/10.3846/enviro.2017.212.
[10] Leń P. An algorithm for selecting groups of factors for prioritization of land consolidation in rural areas. Computers and Electronics in Agriculture, 144, pp. 216–221, 2018. DOI: 10.1016/j.compag.2017.12.014.256.
[11] Leń P., Noga K. Prioritization of Land Consolidation Interventions in the Villages of Central Poland. JOURNAL OF ECOLOGICAL ENGINEERING, Volume: 19, Issue: 2, pp. 246-254, 2018.
[12] Madsen, L. M., Adriansen, H. K. Understanding the use of rural space: the need for multi-methods. Journal of Rural Studies (2004), pp. 485–497, 2004.
[13] Noga, K. Analiza międzywioskowej szachownicy gruntów na przykładzie wsi położonych w górnym dorzeczu Soły (Analysis of the inter-village patchwork of plots on the example of villages located in the upper basin of the Soła). ZN AR w Krakowie Vol. 133, Sesja Naukowa 7, 1977.

[14] Pašakarnis, G. and Maliene, V. Towards sustainable rural development in Central and Eastern Europe: Applying land consolidation. Land Use Policy, 27(2), pp. 545–549, 2010. https://doi.org/10.1016/j.landusepol.2009.07.008.

[15] Sobolewska-Mikulśka K., Stańczuk-Gałwiaczek M. The assessment of the scope of implementation of the idea of multifunctional rural development in land consolidation projects in Poland, w: Journal of Agribusiness and Rural Development, nr 1 (47), pp. 81-88, 2018. DOI:10.17306/J.JARD.2018.00375.

[16] Strek Z. Engineering for rural development analysis of demand for land consolidation in Milejów commune, Łęczna district. ENGINEERING FOR RURAL DEVELOPMENT, Jelgava, 24.-26.05.2017, pp. 593-599, 2017. DOI: 10.22616/ERDev2017.16.N119.

[17] Wójcik-Leń J., Stręk Ż. Proposal for land consolidation project solutions for selected problem areas. World Multidisciplinary Earth Sciences Symposium (WMESS 2017). Earth and Environmental Science 95 (2017) 032016, 2017. DOI:10.1088/1755-1315/95/3/032016.

[18] Wójcik-Leń J., Sobolewska-Mikulśka K. Specific features of development of selected agricultural problematic areas in the land consolidation process. Journal of Water and Land Development. No. 34, pp. 249–258, 2017. DOI: 10.1515/jwld-2017-0060.

[19] Wójcik-Leń J., Sobolewska-Mikulśka K. Issues related to marginal lands with reference to selected agricultural problematic areas. Journal of Water and Land Development. No. 35 pp. 265–273, 2017. DOI: 10.1515/jwld-2017-0093.