ON THE INFLUENCE OF THE THEIL-LIKE INEQUALITY MEASURE ON THE GROWTH

PAPE DJIBY MERGANE AND GANE SAMB LO

ABSTRACT. We set in this paper a coherent theory based on functional empirical processes to consider both the poverty and the inequality indices in one Gaussian field enabling to study the influence of the one on the other. We use the General Poverty Index (GPI), that is a class of poverty indices covering the most common ones and a functional class of inequality measure including the Entropy Measure, the Mean Logarithmic Deviation, the different inequality measures of Atkinson, Champernowne, Kolm and Theil called Theil-like Inequality Measures TLIM. Our results are given in a unified approach with respect to the two classes instead of their particular elements. We provide the asymptotic laws of the variations of each class over two given periods and the ratio of the variation and derive confidence intervals for them. Although the variances may seem somehow complicated, we provide R codes for their computations and apply the results for the pseudo-panel data for Senegal with simple analysis.

1. INTRODUCTION

In many cases, one has to monitor a specific situation through some risk measure J on some population. The variation of J over time is called growth in case of positive variation and recession alternatively. This growth or recession is not itself sufficient to describe the improvement or deterioration of the situation. Often, the distribution of the underlying variable over the population should also be taken into account in order to check whether the growth concerns a great number of individuals or is rather concentrated on a few number of them.

In the particular case of welfare analysis, one may measure poverty (or richness) with the help of poverty indices J based on the income variable X. Over two periods $s=1$ and $t=2$, we say that we have a
gain against poverty when \(\Delta J(s, t) = J(t) - J(s) \leq 0 \), or simply a growth against poverty. Before claiming any victory, one must be sure that meanwhile the income did not become more unequally distributed, that is the appropriate inequality coefficient \(I \) did not decrease. One can achieve this by studying the ratio \(R = \Delta J(s, t) / \Delta I(s, t) \).

To make the idea more precise, let us suppose that we are monitoring the poverty scene on some population over the period time \([1, 2]\) and let \((X^1, X^2)\) be the income variable of that population at periods 1 and 2. Let us consider one sample of \(n \geq 1 \) individuals or households, and observe the income couple \(Z_j = (X^1_j, X^2_j) \), \(j = 1, ..., n \). For each period \(i \in \{1, 2\} \), we compute the poverty measure \(J_n(i) \) and the inequality measure \(I_n(i) \). We draw the attention of the reader that we consider here classes of measures both for poverty and inequality rather than specific ones. This leads to very general results but requires extended notation.

For poverty, we consider the Generalized Poverty Index (GPI) introduced by Lo and al.\(^{30}\) as an attempt to gather a large class of poverty measures reviewed in Zheng\(^{35}\) defined as follows for period \(i \),

\[
J_n(i) = \frac{A(Q_n(i), n, Z(i))}{nB(Q_n(i))} \sum_{j=1}^{Q_n(i)} w(\mu_1 n + \mu_2 Q_n(i) - \mu_3 j + \mu_4) d\left(\frac{Z(i) - Y_{j,n}}{Z(i)}\right)
\]

where \(B(Q_n) = \sum_{j=1}^{n} w(j) \), \(\mu_1, \mu_2, \mu_3 \) and \(\mu_4 \) are constants, \(A(u, v, s) \), \(w(t) \), and \(d(y) \) are measurable functions of \((u, v, s) \in \mathbb{N} \times \mathbb{N} \times \mathbb{R}_+^* \), \(t = \mathbb{R}_+^* \), and \(y \in (0, 1) \). By particularizing the functions \(A \) and \(w \) and by giving fixed values to the \(\mu_i \)'s, we may find almost all the available indices, as we will do it later on. In the sequel, \((1.1)\) will be called a poverty index (indices in the plural) or simply a poverty measure according to the economists terminology.

This class includes the most popular indices such as those of Sen\(^{32}\), Kakwani\(^{22}\), Shorrocks\(^{11}\), Clark-Hemming-Ulph\(^{8}\), Foster-Greer-Thorbecke\(^{15}\), etc. See Lo\(^{24}\) for a review of the GPI. From the works of many authors\(^{28, 29}\) for instance, \(J_n(i) \) is an asymptotically sufficient estimate of the exact poverty measure

\[
J(i) = \int_{0}^{Z(i)} L(y, G_i) d\left(\frac{Z(i) - y}{Z(i)}\right) dG_i(y)
\]
where G_i is the distribution function of $X^i (i = 1, 2)$, and L is some weight function.

As for the inequality measure, we use this Theil-like family, where we gathered the Generalized Entropy Measure, the Mean Logarithmic Deviation ([14], [34], [9]), the different inequality measures of Atkinson ([3]), Champernowne ([7]) and Kolm ([23]) in the following form:

$$(1.3) \quad I_n(i) = \tau \left(\frac{1}{h_1(\mu_n(i))} \frac{1}{n} \sum_{j=1}^{n} h \left(X^i_j - h_2(\mu_n(i)) \right) \right)$$

where $\mu_n(i) = \frac{1}{n} \sum_{j=1}^{n} X^i_j$ denotes the empirical mean while $h, h_1, h_2, \text{and } \tau$ are measurable functions.

The inequality measures mentioned above are derived from (1.3) with the particular values of α, τ, h, h_1 and h_2 as described below for all $s > 0$:

(a) Generalized Entropy

$\alpha \neq 0, \alpha \neq 1, \quad \tau(s) = \frac{s - 1}{\alpha (\alpha - 1)}, \quad h(s) = h_1(s) = s^\alpha, \quad h_2(s) \equiv 0$;

(b) Theil’s measure:

$\tau(s) = s, \quad h(s) = s \log(s), \quad h_1(s) = s, \quad h_2(s) = \log(s)$;

(c) Mean Logarithmic Deviation

$\tau(s) = s, \quad h(s) = h_2(s) = \log(s^{-1}), \quad h_1(s) \equiv 1$;

(d) Atkinson’s measure:

$\alpha < 1$ and $\alpha \neq 0, \quad \tau(s) = 1 - s^{1/\alpha}, \quad h(s) = h_1(s) = s^\alpha, \quad h_2(s) \equiv 0$;

(e) Champernowne’s measure:

$\tau(s) = 1 - \exp(s), \quad h(s) = h_2(s) = \log(s), \quad h_1(s) \equiv 1$;

(f) Kolm’s measure:

$\alpha > 0, \quad \tau(s) = \frac{1}{\alpha} \log(s), \quad h(s) = h_1(s) = \exp(-\alpha s), \quad h_2(s) \equiv 0$.

We will see below that $I_n(i)$ converges to the exact inequality measure

$$(1.4) \quad I(i) = \tau \left(\frac{1}{h_1(\mu(i))} \int_{\mathbb{R}} h \left(x \right) dG_i(x) - h_2(\mu(i)) \right)$$
where \(\mu(i) = \mathbb{E}(X^i) \) is the mathematical expectation of \(X^i \) that we suppose finite here.

The motivations stated above lead to the study of the behavior of \((\Delta J_n(s, t), \Delta I_n(s, t)) \) as an estimate of the unknown value of \((\Delta J(s, t), \Delta I(s, t)) \). Precisely a confidence interval of

\[
R(s, t) = \frac{\Delta J(s, t)}{\Delta I(s, t)}
\]

will be an appropriate set of tools for the study of the influence of each measure on the other.

To achieve our goal we need a coherent asymptotic theory allowing the handling of longitudinal data as it is the case here and a stochastic process approach leading to asymptotic sub results with the help of the continuity mapping theorem.

We find that the functional empirical process, in the modern setting of weak convergence theory, provides that coherent asymptotic theory.

Indeed, we use bidimensional functional empirical processes \(\mathbb{G}_n \) associated with \(Z_1, Z_2, \ldots, Z_n \) and its stochastic Gaussian limit \(\mathbb{G} \) to entirely describe the asymptotic behaviour of \((\Delta J_n(s, t), \Delta I_n(s, t)) \) in the Gaussian field of \(\mathbb{G} \) and then find the law of \(R_n(s, t) = \Delta J_n(s, t)/\Delta I_n(s, t) \) as our best achievements.

The remainder of the paper is organized as follows. In Section 2, we remind key definitions and properties for functional empirical processes, and we state the asymptotic representation of the GPI of Lo stated in Theorem (1) that will be used later on. In Section 3, we give our main results and make some commentaries and data driven applications to Senegalese pseudo-panel data are considered. In Section 4, proof of the theorems. The paper is ended by concluding remarks in Section 5.

2. Functional Empirical Process and Representation of GPI

2.1. A brief reminder on Functional Empirical Processes. Let \(Z_1, Z_2, \ldots, Z_n \) a sequence independent and identically distributed of random elements with values in some metric space \((S, d)\). Given a
collection \mathcal{F} of measurable functions $f : S \to \mathbb{R}$, the functional empirical process (FEP) is defined by:

$$\forall f \in \mathcal{F}, G_n(f) = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} (f(Z_j) - \mathbb{E} f(Z_j)).$$

This process is widely studied in van der Waart [2] for instance. It is directly seen that whenever $\mathbb{E} (f(Z)^2) < \infty$, one has

$$\frac{1}{n} \sum_{j=1}^{n} f(Z_j) \to P(f) = \mathbb{E} f(Z) \quad \text{a.s.}$$

and

$$G_n(f) \to \mathcal{N}(0, \sigma_f^2),$$

as consequences of the real Law of Large Numbers (LLN) and the real Central Limit Theorem (CLT).

When using the FEP, we are often interested in uniform LLN’s and weak limits of the FEP considered as stochastic processes. This gives the so important results on Glivenko-Cantelli classes and Donsker ones. Let us define them here (for more details see [2]).

Definition 1. A class $\mathcal{F} \subset L_1(P)$ is called a Glivenko-Cantelli class for P, if

$$\lim_{n \to \infty} \left\| \frac{1}{n} \sum_{j=1}^{n} (f(Y_j) - \mathbb{E} f(Y_j)) \right\|_{\mathcal{F}} = \lim_{n \to \infty} \sup_{f \in \mathcal{F}} \left\| \frac{1}{n} \sum_{j=1}^{n} (f(Y_j) - \mathbb{E} f(Y_j)) \right\| = 0 \quad \text{as}. $$

Definition 2. A class $\mathcal{F} \subset L_2(P)$ is called a Donsker class for P, or P-Donsker class if $\{G_n(f); f \in \mathcal{F}\}$ converge in $L^\infty(\mathcal{F})$ to a centered Gaussian process $\{G(f); f \in \mathcal{F}\}$ with covariance function

$$\mathbb{E} (G(f) G(g)) = \int_{\mathbb{R}} (f(y) - \mathbb{E} f(Y)) (g(y) - \mathbb{E} g(Y)) \, dP_Y(y); \forall f, g \in \mathcal{F}.$$

Remark 1. When $S = \mathbb{R}$ and $\mathcal{F} = \{I_{(-\infty,x]}, x \in \mathbb{R}\}$, G_n is called real empirical process and is often denoted by α_n.

In this paper, we only use finite-dimensional forms of the FEP, that is $(G_n(f_i), i = 1, \ldots, k)$. And then, any family $\{f_i, i = 1, \ldots, k\}$ of measurable functions satisfying (2.1), is a Glivenko-Cantelli and a Donsker class, and hence

$$(G_n(f_i), i = 1, \ldots, k) \overset{d}{\to} (G(f_1), G(f_2), \ldots, G(f_k))$$

where G is the Gaussian process, defined in Definition [2].
We will make use of the linearity property of both G_n and G. Let f_1, \ldots, f_k measurable functions satisfying (2.1) and $a_i \in \mathbb{R}$, $i = 1, \ldots, k$, then
\[
\sum_{j=1}^{k} a_j G_n (f_j) = G_n \left(\sum_{j=1}^{k} a_j f_j \right) \xrightarrow{d} G \left(\sum_{j=1}^{k} a_j f_j \right).
\]

The materials defined here, when used in a smart way, lead to a simple handling the problem tackled here.

2.2. Representation of the GPI. In this paper, we use the GPI in unified approach that leads to an asymptotic representation for a large class of indices. For this, let it be the following hypotheses. Different kinds of conditions are needed.

First we consider this threshold condition:

(H1) There exist $\beta > 0$ and $0 < \xi < 1$ such that,
\[
0 < \beta < G(Z) < \xi < 1.
\]

Next we have form conditions (on the indices):

(H2a) There exist a function $h(p, q)$ where $(p, q) \in \mathbb{N}^2$ and a function $c(s, t)$ where $(s, t) \in (0, 1)^2$ such that, when $n \to +\infty$,
\[
\max_{1 \leq j \leq Q} \left| A(n, Q) h^{-1}(n, Q) w(\mu_1 n + \mu_2 Q - \mu_3 j + \mu_4) - c(Q/n, j/n) \right| = o_P(n^{-1/2});
\]

(H2b) There exists a function $\pi(s, t)$ with $(s, t) \in \mathbb{R}^2$ such that, when $n \to +\infty$,
\[
\max_{1 \leq j \leq Q} \left| w(j) h^{-1}(n, Q) - \frac{1}{n} \pi(Q/n, j/n) \right| = o_P(n^{-3/2}).
\]

Further we need regularity conditions on c and π:

(H3) The functions $c(\cdot)$ and $\pi(\cdot)$ have uniformly continuous partial derivatives, that is
\[
\lim_{(k,l) \to (0,0)} \sup_{(x,y) \in (0,1)^2} \left| \frac{\partial c}{\partial y}(x + l, y + k) - \frac{\partial c}{\partial y}(x, y) \right| = 0
\]
and
\[
\lim_{(k,l) \to (0,0)} \sup_{\beta \leq x \leq \xi, y \in (0,1)} \left| \frac{\partial c}{\partial x}(x + l, y + k) - \frac{\partial c}{\partial x}(x, y) \right| = 0;
\]
(H4) The functions \(y \to \frac{\partial c}{\partial y}(x, y) \) and \(y \to \frac{\partial \pi}{\partial y}(x, y) \) are monotonous.

(H5) The distribution function \(G \) is increasing.

(H6) There exist \(H_0 > 0 \) and \(H_\infty < +\infty \) such that

\[
H_0 < H_c(G) = \int_0^{+\infty} c(G(Z), G(y))\gamma(y)dG(y) < H_\infty,
\]

and

\[
H_0 < H_\pi(G) = \int_0^{+\infty} \pi(G(Z), G(y))e(y)dG(y) < H_\infty
\]

where

\[
\gamma(x) = d\left(\frac{Z-x}{Z}\right)I_{(x\leq Z)} \text{ and } e(x) = I_{(x\leq Z)} \text{ for } x \in \mathbb{R}.
\]

Finally define

\[
J(G) = H_c(G)/H_\pi(G),
\]

\[
g(\cdot) = H_\pi^{-1}(G)g_c(\cdot) - H_c(G)H_\pi^{-2}(G)g_\pi(\cdot) + K(G)e(\cdot),
\]

with

\[
g_c(\cdot) = c(G(Z), G(\cdot))\gamma(\cdot), \ g_\pi(\cdot) = \pi(G(Z), G(\cdot))e(\cdot),
\]

\[
K(G) = H_\pi^{-1}(G)K_c(G) - H_c(G)H_\pi^{-2}(G)K_\pi(G)
\]

where

\[
K_c(G) = \int_0^1 \frac{\partial c}{\partial x}(G(Z), s)\gamma(G^{-1}(s))ds, \ K_\pi(G) = \int_0^1 \frac{\partial \pi}{\partial x}(G(Z), s)e(G^{-1}(s))ds,
\]

\[
\nu(\cdot) = H_\pi^{-1}(G)\nu_c(\cdot) - H_c(G)H_\pi^{-2}(G)\nu_\pi(\cdot),
\]

and

\[
\nu_c(\cdot) = \frac{\partial c}{\partial y}(G(Z), G(\cdot))\gamma(\cdot), \nu_\pi(\cdot) = \frac{\partial \pi}{\partial y}(G(Z), G(\cdot))e(\cdot);
\]

\[
\alpha_n(g) = \frac{1}{\sqrt{n}} \sum_{j=1}^n g(Y_j) - \mathbb{E}g(Y_j)
\]

is the functional empirical process and

\[
\beta_n(\nu) = \frac{1}{\sqrt{n}} \sum_{j=1}^n \{G_n(Y_j) - G(Y_j)\} \nu(Y_j)
\]

is the reduced process of Sall et LO (see [27]).
The representation results of [27] for the GPI is the following.

Theorem 1. Suppose that (H1)-(H6) are true, then we have the following representation

\[(R) \quad \sqrt{n}(J_n(G) - J(G)) = \alpha_n(g) + \beta_n(\nu) + o_P(1).\]

Although these conditions may appear complicated, they are simple to check in real cases with the popular poverty measures. We will see this in Section 3.

We are going to state our main results.

3. Results and commentaries

3.1. Notations.

Let us consider the following Renyi representations. Let \(\{U_j\}_{j=1}^n\) and \(\{V_j\}_{j=1}^n\) two sequences of independent uniform rv’s on \(I = (0, 1)\). Then we have the representation, meant as equality in distribution:

\[X^1_j = G_1^{-1}(U_j) \quad \text{and} \quad X^2_j = G_2^{-1}(V_j), j \in \{1, ..., n\}\]

where \(G_i^{-1}\) is the generalized inverse of \(G_i\). We suppose that \(G_i\) is continuous. The copula associated with the couple \((X^1, X^2)\) is defined by

\[C(u, v) = G_{1,2}\left(G_1^{-1}(u), G_2^{-1}(v)\right), \forall (u, v) \in I^2\]

where \(G_{1,2}\) is the joint distribution function of \((X^1, X^2)\).

Next we consider the bidimensional functional empirical process based on \(\{(U_j, V_j)\}_{j=1}^n\), for some Donsker class \(\mathcal{F}\):

\[\forall f \in \mathcal{F}, \ G_n(f) = \frac{1}{\sqrt{n}} \sum_{j=1}^n \left(f(U_j, V_j) - \mathbb{P}_{U,V}(f) \right);\]

and the limiting centred Gaussian stochastic process \(\mathbb{G}\) defined by its variance-covariance function, for \((f, g) \in \mathcal{F}^2:\)

\[\mathbb{E}(\mathbb{G}(f) \mathbb{G}(g)) = \int_{I^2} \left(f(u, v) - \mathbb{P}_{U,V}(f) \right) \left(g(u, v) - \mathbb{P}_{U,V}(g) \right) dC(u, v)\]

where

\[\mathbb{P}_{U,V}(f) = \mathbb{E}(f(U, V)) = \int_{I^2} f(u, v) dC(u, v).\]
Now we introduce the following notation based on the functions τ, h, h_1, h_2 of (1.3) and on the functions g and ν of Theorem 1. The subscript i refers to the periods. The series of notations are about the variation of the inequality measures and are listed below. Let first

$$B_n(i) = \frac{1}{n} \sum_{j=1}^{n} h \left(X^i_j \right), \quad B(i) = \int_{\mathbb{R}} h(x) \, dG_i(x);$$

and next, for all $(u, v) \in I^2$,

$$\tilde{f}_i(u, v) = G_i^{-1} \circ \Pi_i(u, v)$$

where Π_i is the i^{th} projections of $(0,1)^2$,

$$f_{i,h}(u, v) = h \circ \tilde{f}_i(u, v).$$

And finally

$$F_{i,i}^{\star}(u, v) = K_i \left(\frac{1}{h_1(\mu(i))} f_{i,h}(u, v) - \left(\frac{B(i)h'_1(\mu(i))}{h_1^2(\mu(i))} + h'_2(\mu(i)) \right) \tilde{f}_i(u, v) \right)$$

where $K_i = \tau' \left(\frac{B(i)}{h_1(\mu(i))} - h_2(\mu(i)) \right)$ and $F_{i}^{\star}(u, v) = F_{i,i}^{\star}(u, v) - F_{1,i}^{\star}(u, v)$.

For our results on the variation of the GPI, we need the functions g_i and ν_i provided by the representation of the Theorem 1. Put accordingly with these functions:

$$g_i(x) = c \left(G_i(x) \right) q_i(x) \quad \text{and} \quad \nu_i(s) = c'(s)q_i \left(G_i^{-1}(s) \right).$$

We define for all $(u, v) \in I^2$

$$f_{i,s}(u, v) = \Pi_i \left(\mathbb{I}_{(o,s)}(u), \mathbb{I}_{(o,s)}(v) \right),$$

$$F_{i,i}^{\star}(u, v) = g_i \circ \tilde{f}_i(u, v) = g_i \circ G_i^{-1} \circ \Pi_i(u, v),$$

and

$$F_{i}^{\star}(u, v) = F_{2,i}^{\star}(u, v) - F_{1,i}^{\star}(u, v).$$
3.2. Main Theorems. We are now able to establish our theorems. The first concerns the variation of the inequality measure.

Theorem 2. Let $\mu(i)$ finite for $i = 1, 2$. Let $\mathbb{P}_{(U,V)} \left(F_i^{*2} \right) < \infty$, then we have the following convergence as $n \to \infty$

$$\sqrt{n} \left(\Delta I_n(1,2) - \Delta I(1,2) \right) \to_d \mathcal{N}(0, \Gamma_I(1,2))$$

where \to_d stands for the convergence in distribution and

$$\Gamma_I(1,2) = \int_{I^2} \left(F_i^*(u,v) - \mathbb{P}_{(U,V)}(F_i^*) \right)^2 dC(u,v).$$

The second concerns the variation of the GPI.

Theorem 3. Let $\mu(i)$ finite for $i = 1, 2$ and let each h_i continuously differentiable at each $\mu(i)$, $i = 1, 2$. Suppose that $\mathbb{P}_{(U,V)} \left((f_1,s)^2 \right), \mathbb{P}_{(U,V)} \left((f_2,s)^2 \right)$ and $\mathbb{P}_{(U,V)} \left(F_j^{*2} \right)$ are finite. Then

$$\sqrt{n} \left(\Delta J_n(1,2) - \Delta J(1,2) \right) \to_d \mathbb{G}(F_j^*) + \int_I \left(\mathbb{G}(f_2,s) - \mathbb{G}(f_1,s) \nu_1(s) \right) ds$$

which is a centered Gaussian process of variance-covariance function:

$$\Gamma_J(1,2) = \Gamma_1(1,2) + \Gamma_2(1,2) + 2 \Gamma_3(1,2)$$

where

$$\Gamma_1(1,2) = \int_{I^2} \left(F_j^*(u,v) - \mathbb{P}_{(U,V)}(F_j^*) \right)^2 dC(u,v);$$

$$\Gamma_2(1,2) = \gamma_1 - 2 \gamma_2 + \gamma_3$$

with

$$\gamma_1 = \int_{I^2} \nu_2(s) \nu_2(t) \left(\min \{s,t\} - s t \right) ds dt,$$

$$\gamma_2 = \int_{I^2} \nu_2(s) \nu_1(t) \left(C(t,s) - s t \right) ds dt,$$

$$\gamma_3 = \int_{I^2} \nu_1(s) \nu_1(t) \left(\min \{s,t\} - s t \right) ds dt;$$

and

$$\Gamma_3(1,2) = \int_I \left\{ \nu_2(s) \int_{(0,1) \times (0,s)} F_j^*(u,v) dC(u,v) - \nu_1(s) \int_{(0,s) \times (0,1)} F_j^*(u,v) dC(u,v) \right\} ds$$

$$- \mathbb{P}_{(U,V)}(F_j^*) \int_I s \left(\nu_2(s) - \nu_1(s) \right) ds.$$
Theorem 4. Supposing that the above mentioned hypotheses are true, then

\[
\left(\sqrt{n} (\Delta J_n(1, 2) - \Delta J(1, 2)), \sqrt{n} (\Delta I_n(1, 2) - \Delta I(1, 2)) \right)^t \stackrel{d}{\to} \mathcal{N}_2(0, \Sigma),
\]

with

\[
\Sigma = \begin{pmatrix} \Gamma_J(1, 2) & \Gamma_{I,J}(1, 2) \\ \Gamma_{I,J}(1, 2) & \Gamma_I(1, 2) \end{pmatrix}
\]

and

\[
\Gamma_{I,J}(1, 2) = \int_{I^2} \left(F^*_I(u, v) - \mathbb{P}_{(U,V)} (F^*_I) \right) \left(F^*_J(u, v) - \mathbb{P}_{(U,V)} (F^*_J) \right) dC(u, v)
\]

\[+ \int_I \left\{ \nu_2(s) \int_{(0,1) \times (0,s)} F^*_I(u, v) dC(u, v) - \nu_1(s) \int_{(0,s) \times (0,1)} F^*_I(u, v) dC(u, v) \right\} ds
\]

\[- \mathbb{P}_{(U,V)} (F^*_I) \int_I s (\nu_2(s) - \nu_1(s)) ds.
\]

In this case, let

\[
R = \frac{\Delta J(1, 2)}{\Delta I(1, 2)}, \quad a = \frac{1}{\Delta I(1, 2)} \quad \text{and} \quad b = \frac{\Delta J(1, 2)}{(\Delta I(1, 2))^2};
\]

then we have

\[
\sqrt{n} \left\{ R_n(1, 2) - R(1, 2) \right\} \text{ tends to a functional Gaussian process }
\]

\[
a \left(\mathbb{G} (F^*_I) + \int_I (\nu_2(s) \mathbb{G} (f_{2,s}) - \nu_1(s) \mathbb{G} (f_{1,s})) ds \right) - b \mathbb{G} (F^*_I);
\]

of covariance function

\[
\Gamma(1, 2) = a^2 \Gamma_J(1, 2) + b^2 \Gamma_I(1, 2) - 2 a b \Gamma_{I,J}(1, 2).
\]

3.3. Commentaries and applications. First of all, the results covers so many poverty measures and inequality indices. This explains why the notation seem heavy. Secondly, the variances of the limiting Gaussian processes seem also somehow tricky. But all of them are easily handled by modern computation means. We are going to particularise our results for famous measures and provide easy software codes for the computations.
3.4. Representation of some poverty indices. We may easily find the functions g and ν for the most common members of the GPI family (See [16, 27]) as listed below.

Measure	g	ν
Shorrocks	$2 \left(1 - G(y) \right) \left(\frac{Z - y}{Z} \right) \mathbb{I}_{(y \leq Z)} - 2 \left(\frac{Z - y}{Z} \right) \mathbb{I}_{(y \leq Z)}$	
Thon	$2 \left(1 - G(y) \right) \left(\frac{Z - y}{Z} \right) \mathbb{I}_{(y \leq Z)} - 2 \left(\frac{Z - y}{Z} \right) \mathbb{I}_{(y \leq Z)}$	
Sen	g_s	ν_s
Kakwani	g_k	ν_k

where

$$g_s(y) = \left\{ 2 \left[1 - \frac{G(y)}{G(Z)} \right] \left(\frac{Z - y}{Z} \right) - \frac{G(y)}{G(Z)} \left(J_s(G) \frac{G(y)}{G(Z)} \right) \right] + K_s(G) \right\} \mathbb{I}_{(y \leq Z)},$$

and

$$\nu_s(y) = -\frac{2}{G(Z)} \left[\left(\frac{Z - y}{Z} \right) + \frac{J_s(G)}{G(Z)} \right] \mathbb{I}_{(y \leq Z)}.$$

with

$$J_s(G) = 2 \int_0^{G(Z)} \left(1 - \frac{s}{G(Z)} \right) \left(\frac{Z - G^{-1}(s)}{Z} \right) ds,$$

$$K_s(G) = 2 \left(1 - \frac{1}{G(Z)} \right) \left(\frac{G}{G(Z)} \right) + J_s(G) \frac{G}{G(Z)}.$$

And

$$g_k(y) = \left\{ (k + 1) \left[\left(1 - \frac{G(y)}{G(Z)} \right)^k \left(\frac{Z - y}{Z} \right) - \frac{J_k(G)}{G(Z)} \left(\frac{G(y)}{G(Z)} \right)^k \right] + K_k(G) \right\} \mathbb{I}_{(y \leq Z)},$$

$$\nu_k(y) = -\frac{k(k + 1)}{G(Z)} \left[\left(1 - \frac{G(y)}{G(Z)} \right)^{k-1} \left(\frac{Z - y}{Z} \right) + \frac{J_k(G)}{G(Z)} \left(\frac{G(y)}{G(Z)} \right)^{k-1} \right] \mathbb{I}_{(y \leq Z)}.$$

where

$$J_k(G) = (k + 1) \int_0^{G(Z)} \left(1 - \frac{s}{G(Z)} \right)^k \left(\frac{Z - G^{-1}(s)}{Z} \right) ds,$$

and

$$K_k(G) = \frac{k(k + 1)}{G(Z)} \int_0^{G(Z)} \left(1 - \frac{s}{G(Z)} \right)^{k-1} \left(\frac{Z - G^{-1}(s)}{Z} \right) ds + J_k(G) \frac{G}{G(Z)}.$$
Notice that the functions are indexed with k for the Kakwani measure. For the FGT measure of index α, we have that $\nu = 0$ and
\[g(x) = \max(0, (Z - x)/Z)^\alpha. \]

3.5. Datadriven applications and variance computations.

3.5.1. Variance computations for Senegalese data. We apply our results to Senegalese data. We do not really have longitudinal data. So we have constructed pseudo-panel data of size $n = 116$, from two surveys: ESAM II conducted from 2001 to 2002 and EPS from 2005 to 2006. We get two series X^1 and X^2. We present below the values of $\Gamma_I(1, 2)$ denoted here $\gamma(1)$, $\Gamma_J(1, 2)$ denoted here $\gamma(2)$ and $\Gamma(1, 2)$ denoted here $\gamma(3)$.

When constructing pseudo-panel data, we get small sizes like $n=116$ here. We use these sizes to compute the asymptotic variances in our results with nonparametric methods. In real contexts, we should use high sizes comparable to those of the real databases, that is around ten thousands, like in the Senegalese case. Nevertheless, we back on medium sizes, for instance $n=696$, which give very accurate confidence intervals as shown in the tables below.

Before we present the outcomes, let us say some words on the packages. We provide different R script files at:

\[
\text{http://www.ufrsats.org/lerstad/resources/mergslo01.zip}
\]

The user should already have his data in two files data1.txt and data2.txt. The first script file named after $\text{gamma_mergslo1.dat}$ provides the values of $\gamma(1)$, $\gamma(2)$ and $\gamma(3)$ for the FGT measure for $\alpha = 0, 1, 2$ and for the six inequality measures used here. The second script file named as $\text{gamma_mergslo2.dat}$ performs the same for the Shorrocks measure. Lastly, $\text{gamma_mergslo3.dat}$ concerns the kakwani measures. Unless the user uploads new data1.txt and data2.txt files, the outcomes should the same as those presented in the Appendix.

3.5.2. Analysis. First of all, we find that, at an asymptotical level, all our inequality measures and poverty indices used here have decreased. When inspecting the asymptotic variance, we see that for the poverty indice, the FGT and the Kakwani classes respectively for $\alpha = 1$, $\alpha = 2$ and $k = 1$ and $= 2$ have the minimum variance, specially for $\alpha = 2$ and $k = 2$. This advocates for the use of the Kakwani and the FGT measures for poverty reduction evaluation. As for the inequality approach, it seems that Atkinson measure ATK(0.5) has the minimum variance.
and then is recommended.

As for the ratio of the poverty index over the inequality measure, we have a dependance of over 50% for the following couples:

\[(\text{SHOR, GE}(0.5)) [75.13\%], (\text{SHOR, THEIL}) [66.19\%], (\text{SHOR MLD}) [82.29\%], (\text{SHOR ATK}(0.5)) [153.06\%], (\text{SHOR ATK}(-0.5)) [68.37\%],
(\text{SHOR CHAMP}) [88.39\%], (\text{SEN, MLD}) [57.84\%], (\text{SEN, CHAMP}) [61.63\%], (\text{KAK}(2), \text{GE}(0.5)) [51.06\%], (\text{KAK}(2), \text{MLD}) [51.06\%], (\text{KAK}(2), \text{CHAMP}) [60.07\%], (\text{FGT}(1), \text{CHAMP}) [54.33\%].\]

The maximum ratio 3.024 is attained for the \text{FGT} (0) and \text{Atkinson} (0.5). Based on these data, and on the confidence intervals in Table \[6\], we would report at least of 46.43\% for these two measures and conclude that gain over poverty in Senegal between this two periods is signifcally \textit{pro-poor}. We would have worked with all couples with a ratio over 50\% to have the same conclusion.

The present analysis should be developped in a separated paper re-search since this one was devoted to theoritical basis. We plan to apply at a regional basis, that is for the countries of the UEMOA in West Africa.

We finish by the proofs that may be skipped by non mathematician readers.

\section*{4. Proofs of the theorems}

\textbf{Theorem 2} By using the delta-method, we have for all \(i \in \{1, 2\}:\)

\[
\sqrt{n} \left\{ h_1 (\mu_n(i)) - h_1 (\mu(i)) \right\} = h'_1 (\mu(i)) \sqrt{n} (\mu_n(i) - \mu(i)) + o_p(1)
\]

\[
= h'_1 (\mu(i)) \frac{1}{\sqrt{n}} \sum_{j=1}^{n} (X^j_i - \mathbb{E} (X^j_i)) + o_p(1)
\]

\[
= h'_1 (\mu(i)) \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left(\tilde{f}_i (U_j, V_j) - \mathbb{P}_{(U,V)} (\tilde{f}_i) \right) + o_p(1)
\]

\[
= h'_1 (\mu(i)) \mathbb{G}_n \left(\tilde{f}_i \right) + o_p(1).
\]

Then

\[
(4.1) \quad \sqrt{n} \left\{ h_1 (\mu_n(i)) - h_1 (\mu(i)) \right\} = \mathbb{G}_n \left(h'_1 (\mu(i)) \tilde{f}_i \right) + o_p(1).
\]
Similarly, we have

\[(4.2) \quad \sqrt{n} \{ h_2(\mu_n(i)) - h_2(\mu(i)) \} = G_n \left(h_2'(\mu(i)) \hat{f}_i \right) + o_p(1). \]

From this and (3.1), we have

\[
\sqrt{n} \{ B_n(i) - B(i) \} = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left(h(X_j^i) - \mathbb{E}(h(X_j^i)) \right)
\]

\[
= \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left(f_{i,h}(U_j, V_j) - \mathbb{P}(U, V)(f_{i,h}) \right);
\]

and then

\[(4.3) \quad \sqrt{n} \{ B_n(i) - B(i) \} = G_n(f_{i,h}). \]

Further

\[
\sqrt{n} \{ I_n(i) - I(i) \} = \sqrt{n} \left\{ \tau \left(\frac{B_n(i)}{h_1(\mu_n(i))} - h_2(\mu_n(i)) \right) - \tau \left(\frac{B(i)}{h_1(\mu(i))} + h_2(\mu(i)) \right) \right\}
\]

\[
= K_i \sqrt{n} \left\{ \frac{B_n(i)}{h_1(\mu_n(i))} - h_2(\mu_n(i)) - \frac{B(i)}{h_1(\mu(i))} + h_2(\mu(i)) \right\} + o_p(1).
\]

But

\[
\sqrt{n} \left\{ \frac{B_n(i)}{h_1(\mu_n(i))} - h_2(\mu_n(i)) - \frac{B(i)}{h_1(\mu(i))} + h_2(\mu(i)) \right\} = \sqrt{n} \left\{ \frac{B_n(i) - B(i)}{h_1(\mu_n(i))} \right\}
\]

\[
- \left(\frac{B(i) h_1'(\mu(i)) + h_2'(\mu(i))}{h_1(\mu(i)) h_1'(\mu_n(i))} \right) \sqrt{n} \left\{ \mu_n(i) - \mu(i) \right\} + o_p(1)
\]

\[
= \frac{1}{h_1(\mu_n(i))} G_n(f_{i,h}) - \left(\frac{B(i) h_1'(\mu(i)) + h_2'(\mu(i))}{h_1(\mu(i)) h_1'(\mu_n(i))} \right) G_n(\hat{f}_i) + o_p(1)
\]

\[
= G_n \left(\frac{1}{h_1(\mu(i))} f_{i,h} \right) - \left(\frac{B(i) h_1'(\mu(i)) + h_2'(\mu(i))}{h_1^2(\mu(i))} \right) \hat{f}_i + o_p(1).
\]

Thus

\[
\sqrt{n} \{ I_n(i) - I(i) \} = K_i G_n \left(\frac{1}{h_1(\mu(i))} f_{i,h} - \left(\frac{B(i) h_1'(\mu(i)) + h_2'(\mu(i))}{h_1^2(\mu(i))} \right) \hat{f}_i \right) + o_p(1),
\]

that is

\[(4.4) \quad \sqrt{n} \{ I_n(i) - I(i) \} = G_n(F^*_i, \hat{f}_i) + o_p(1). \]
Finally using the linearity of the FEP, we get
\[
\sqrt{n} \{ \Delta I_n(1,2) - \Delta I(1,2) \} = \sqrt{n} \{ I_n(2) - I(2) \} - \sqrt{n} \{ I_n(1) - I(1) \} \\
= \mathbb{G}_n \left(F_{2,I}^* \right) - \mathbb{G}_n \left(F_{1,I}^* \right) + o_p(1) \\
= \mathbb{G}_n \left(F_{2,I}^* - F_{1,I}^* \right) + o_p(1).
\]
and conclude by
\[
(4.5) \quad \sqrt{n} \{ \Delta I_n(1,2) - \Delta I(1,2) \} = \mathbb{G}_n \left(F_I^* \right) + o_p(1)
\]
and
\[
\Gamma_I(1,2) = \mathbb{E} \left((\mathbb{G} (F_I^*)^2 \right) = \int_{I^2} (F_I^*(u,v) - \mathbb{P}_{(U,V)}(F_I^*))^2 dC(u,v).
\]

Proof of Theorem 3. We have
\[
J_n(i) = \frac{1}{n} \sum_{j=1}^{n} c \left(G_{n}^i \left(X_{j,n}^i \right) \right) q_i \left(X_{j,n}^i \right)
\]
and then
\[
\sqrt{n} \{ J_n(i) - J(i) \} = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left(g_i \left(X_{j,n}^i \right) - \mathbb{E} g_i \left(X_{j,n}^i \right) \right) + \int_{I} \alpha_n(s) \nu_i(s) ds + o_p(1)
\]
\[
= \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left(g_i \circ G_{-1}^i \circ \Pi_i(U_{j,n}, V_{j,n}) - \mathbb{E} g_i \circ G_{-1}^i \circ \Pi_i(U_{j,n}, V_{j,n}) \right)
\]
\[
+ \int_{I} \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left(\Pi_i \left(\mathbb{I}_{(0,s)}(U_{j,n}), \mathbb{I}_{(0,s)}(V_{j,n}) \right) - \mathbb{E} \Pi_i \left(\mathbb{I}_{(0,s)}(U_{j,n}), \mathbb{I}_{(0,s)}(V_{j,n}) \right) \right) \nu_i(s) ds + o_p(1)
\]
\[
= \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left(F_{i,J}^* \left(U_{j,n}, V_{j,n} \right) - \mathbb{P}_{(U,V)}(F_{i,J}^*) \right)
\]
\[
+ \int_{I} \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left(f_{i,s} \left(U_{j,n}, V_{j,n} \right) - \mathbb{P}_{(U,V)}(f_{i,s}) \right) \nu_i(s) ds + o_p(1).
\]
We arrive at
\[
(4.6) \quad \sqrt{n} \{ J_n(i) - J(i) \} = \mathbb{G}_n \left(F_{i,J}^* \right) + \int_{I} \mathbb{G}_n \left(f_{i,s} \right) \nu_i(s) ds + o_p(1).
\]
ON THE INFLUENCE OF THE THEIL-LIKE INEQUALITY MEASURE ON THE GROWTH

We get the variation of \(J_n\) between to instants \(i = 1\) and \(i = 2\) as follows

\[
\sqrt{n} \{ \Delta J_n(1, 2) - \Delta J(1, 2) \} = \sqrt{n} \{ J_n(2) - J(2) \} - \sqrt{n} \{ J_n(1) - J(1) \}
\]

\[
= \mathbb{G}_n \left(F_{2,J}^* - F_{1,J}^* \right)
\]

\[
+ \int_I (\mathbb{G}_n(f_{2,s}) \nu_2(s) - \mathbb{G}_n(f_{1,s}) \nu_1(s)) \, ds + o_p(1).
\]

This leads to

\[
\sqrt{n} \{ \Delta J_n(1, 2) - \Delta J(1, 2) \}
\]

\[
= \mathbb{G}_n \left(F_{2,J}^* \right) + \int_I (\mathbb{G}_n(f_{2,s}) \nu_2(s) - \mathbb{G}_n(f_{1,s}) \nu_1(s)) \, ds + o_p(1).
\]

The proof will be complete with the expression of \(\Gamma_{J}(1, 2)\). We have

\[
\Gamma_{J}(1, 2) = \mathbb{E} \left(\left(\mathbb{G} \left(F_{j,J}^* \right) + \int_I (\mathbb{G}(f_{2,s}) \nu_2(s) - \mathbb{G}(f_{1,s}) \nu_1(s)) \, ds \right)^2 \right)
\]

\[
= \mathbb{E} \left(\mathbb{G} \left(F_{j,J}^* \right)^2 \right) + \mathbb{E} \left(\int_I \left(\mathbb{G}(f_{2,s}) \nu_2(s) - \mathbb{G}(f_{1,s}) \nu_1(s) \right) \, ds \right)^2
\]

\[
+ 2 \mathbb{E} \left(\mathbb{G} \left(F_{j,J}^* \right) \int_I (\mathbb{G}(f_{2,s}) \nu_2(s) - \mathbb{G}(f_{1,s}) \nu_1(s)) \, ds \right).
\]

\[
\equiv \Gamma_{1}(1, 2) + \Gamma_{2}(1, 2) + 2 \Gamma_{3}(1, 2).
\]

Let us compute these three numbers. First consider,

\[
\Gamma_{1}(1, 2) = \mathbb{E} \left(\mathbb{G} \left(F_{j,J}^* \right)^2 \right) = \int_{I^2} \left(F_{j,J}^*(u, v) - \mathbb{P}_{(U,V)} \left(F_{j,J}^* \right) \right)^2 dC(u, v).
\]

Secondly, compute

\[
\Gamma_{2}(1, 2) = \mathbb{E} \left(\int_I \left(\nu_2(s) \mathbb{G} \left(f_{2,s} \right) - \nu_1(s) \mathbb{G} \left(f_{1,s} \right) \right) \, ds \right)^2
\]

\[
= \mathbb{E} \left(\int_{I^2} \left[\nu_2(s) \mathbb{G} \left(f_{2,s} \right) - \nu_1(s) \mathbb{G} \left(f_{1,s} \right) \right] \left[\nu_2(t) \mathbb{G} \left(f_{2,t} \right) - \nu_1(t) \mathbb{G} \left(f_{1,t} \right) \right] \, ds \, dt \right)
\]

\[
= \int_{I^2} \nu_2(s) \nu_2(t) \mathbb{E} \left(\mathbb{G} \left(f_{2,s} \right) \mathbb{G} \left(f_{2,t} \right) \right) \, ds \, dt - \int_{I^2} \nu_2(s) \nu_1(t) \mathbb{E} \left(\mathbb{G} \left(f_{2,s} \right) \mathbb{G} \left(f_{1,t} \right) \right) \, ds \, dt.
\]
\[- \int_{I^2} \nu_1(s) \nu_2(t) \mathbb{E}(G(f_{1,s}) G(f_{2,t})) \, ds \, dt + \int_{I^2} \nu_1(t) \nu_1(t) \mathbb{E}(G(f_{1,s}) G(f_{1,t})) \, ds \, dt; \]

or

\[\mathbb{E}(G(f_{2,s}) G(f_{2,t})) = \mathbb{E}(\langle 1_{(0,s)}(V) - s \rangle \langle 1_{(0,t)}(V) - t \rangle) = \min(s, t) - st; \]

\[\mathbb{E}(G(f_{2,s}) G(f_{1,t})) = \mathbb{E}(\langle 1_{(0,s)}(V) - s \rangle \langle 1_{(0,t)}(U) - t \rangle) = C(t, s) - st, \]

then

\[\int_{I^2} \nu_2(s) \nu_2(t) \mathbb{E}(G(f_{2,s}) G(f_{2,t})) \, ds \, dt = \int_{I^2} \nu_2(s) \nu_2(t) (\min(s, t) - st) \, ds \, dt; \]

and

\[\int_{I^2} \nu_2(s) \nu_2(t) \mathbb{E}(G(f_{2,s}) G(f_{1,t})) \, ds \, dt = \int_{I^2} \nu_2(s) \nu_1(t) (C(t, s) - st) \, ds \, dt. \]

Similarly we obtain

\[\int_{I^2} \nu_1(s) \nu_2(t) \mathbb{E}(G(f_{1,s}) G(f_{2,t})) \, ds \, dt = \int_{I^2} \nu_1(s) \nu_2(t) (C(s, t) - st) \, ds \, dt; \]

\[\int_{I^2} \nu_1(s) \nu_1(t) \mathbb{E}(G(f_{1,s}) G(f_{1,t})) \, ds \, dt = \int_{I^2} \nu_1(s) \nu_1(t) (\min(s, t) - st) \, ds \, dt, \]

but

\[\int_{I^2} \nu_1(t) \nu_2(s) (C(t, s) - st) \, ds \, dt = \int_{I^2} \nu_1(s) \nu_2(t) (C(s, t) - st) \, ds \, dt. \]

We get identification

\[\Gamma_2(1, 2) = \gamma_1 - 2 \gamma_2 + \gamma_3 \]

and remind that these quantities were defined in Theorem (3). Finally, we have

\[\Gamma_3(1, 2) = \mathbb{E} \left(G(F^*_J) \int_{I} (G(f_{2,s}) \nu_2(s) - G(f_{1,s}) \nu_1(s)) \, ds \right) \]
ON THE INFLUENCE OF THE THEIL-LIKE INEQUALITY MEASURE ON THE GROWTH

\[
\begin{align*}
&= \int I \nu_2(s) \mathbb{E}(G(F^*_i)G(f_{2,s})) \, ds - \int I \nu_1(s) \mathbb{E}(G(F^*_j)G(f_{1,s})) \, ds. \\
&= \int I \left\{ \nu_2(s) \int_{(0,1) \times (0,s)} F^*_j(u,v) \, dC(u,v) - \nu_1(s) \int_{(0,s) \times (0,1)} F^*_j(u,v) \, dC(u,v) \right\} \, ds \\
&\quad - \mathbb{P}_{(U,V)}(F^*_j) \int_I s(\nu_2(s) - \nu_1(s)) \, ds.
\end{align*}
\]

This achieves the proof of Theorem (3).

Proof of Theorem 4.

By (4.5) and (4), it is clear that the bivariate

\[
(\sqrt{n} (\Delta J_n(1,2) - \Delta J(1,2)), \sqrt{n} (\Delta I_n(1,2) - \Delta I(1,2)))
\]

is asymptotically Gaussian with covariance

\[
\Gamma_{I,J}(1,2) = \mathbb{E} \left(G(F^*_i) \left(G(F^*_j) + \int_I (\nu_2(s)G(f_{2,s}) - \nu_1(s)G(f_{1,s})) \, ds \right) \right)
\]

\[
= \mathbb{E} (G(F^*_i)G(F^*_j)) + \int_I \nu_2(s) \mathbb{E}(G(F^*_i)G(f_{2,s})) \, ds \\
- \int_I \nu_1(s) \mathbb{E}(G(F^*_i)G(f_{1,s})) \, ds.
\]

Then

\[
\Gamma_{I,J}(1,2) = \int_{I^2} (F^*_i(u,v) - \mathbb{P}_{(U,V)}(F^*_i)) (F^*_j(u,v) - \mathbb{P}_{(U,V)}(F^*_j)) \, dC(u,v)
\]

\[
+ \int_I \left\{ \nu_2(s) \int_{(0,1) \times (0,s)} F^*_j(u,v) \, dC(u,v) - \nu_1(s) \int_{(0,s) \times (0,1)} F^*_j(u,v) \, dC(u,v) \right\} \, ds \\
- \mathbb{P}_{(U,V)}(F^*_i) \int_I s(\nu_2(s) - \nu_1(s)) \, ds.
\]

Next straightforward computations yield

\[
\sqrt{n} \{R_n(1,2) - R(1,2)\} = \sqrt{n} \left\{ \frac{\Delta J_n(1,2)}{\Delta I_n(1,2)} - \frac{\Delta J(1,2)}{\Delta I_n(1,2)} + \frac{\Delta J(1,2)}{\Delta I_n(1,2)} - \frac{\Delta J(1,2)}{\Delta I(1,2)} \right\}
\]

\[
= \frac{1}{\Delta I_n(1,2)} \sqrt{n} \{\Delta J_n(1,2) - \Delta J(1,2)\}
\]
\[- \frac{\Delta J(1, 2)}{\Delta I(1, 2) \Delta I_n(1, 2)} \sqrt{n} \{ \Delta I_n(1, 2) - \Delta I(1, 2) \} \]

\[= \frac{1}{\Delta I(1, 2)} \left(\mathbb{G} (F^*_J) + \int_I (\nu_2(s)\mathbb{G} (f_{2,s}) - \nu_1(s)\mathbb{G} (f_{1,s})) \, ds \right) \]

\[- \frac{\Delta J(1, 2)}{(\Delta I(1, 2))^2} \mathbb{G} (F^*_I) + o_p(1). \]

Then

\[\sqrt{n} \{ R_n(1, 2) - R(1, 2) \} = a \left(\mathbb{G}_n (F^*_J) + \int_I (\nu_2(s)\mathbb{G}_n (f_{2,s}) - \nu_1(s)\mathbb{G}_n (f_{1,s})) \, ds \right) \]

\[- b \mathbb{G}_n (F^*_I) + o_p(1). \]

We finish by computing its variance \(\Gamma(1, 2)\). For this, let

\[\mathbb{A}_J = \left(\mathbb{G} (F^*_J) + \int_I (\nu_2(s)\mathbb{G} (f_{2,s}) - \nu_1(s)\mathbb{G} (f_{1,s})) \, ds \right), \]

\[\mathbb{A}_I = \mathbb{G} (F^*_I) \]

and

\[\Gamma(1, 2) = \mathbb{E} \left((a \mathbb{A}_J - b \mathbb{A}_I)^2 \right) \]

\[= a^2 \mathbb{E} \left((\mathbb{A}_J)^2 \right) + b^2 \mathbb{E} \left((\mathbb{A}_I)^2 \right) - 2 a b \mathbb{E} (\mathbb{A}_J \mathbb{A}_I). \]

By using the notation of Theorem 4, where we introduced \(a\) and \(b\), we arrive at

\[\Gamma(1, 2) = a^2 \Gamma_J(1, 2) + b^2 \Gamma_I(1, 2) - 2 a b \Gamma_{J,I}(1, 2). \]

This completely achieves the proofs.

5. APPENDIX AND TABLES

We use the following abbreviations in the table:
ON THE INFLUENCE OF THE THEIL-LIKE INEQUALITY MEASURE ON THE GROWTH

Notations

Indices

GE(α), α = 0.5, 2, 3 Generalized Entropy with parameter α

Theil

MLD Mean Logarithmic Deviation

ATK(α), α = 0.5, −0.5 Atkinson with parameter α

CHAMP Champernowne

SHOR

SEN

KAK(k), k = 1, 2 Kakwani with parameter k

FGT(α), α = 0, 1, 2 Foster-Greer-Thorbecke with parameter α

We present the results in the following tables.

Indice I	∆I(1, 2)	Γ_{I}(1, 2)	CI_{95%}(ΔI(1, 2))
GE(0.5)	−0.04025832	0.01770106	−0.05588673, −0.03611789
GE(2)	−0.06408679	0.07224733	−0.09545863, −0.05552007
GE(3)	−0.1008038	0.1205114	−0.1495352, −0.09795348
THEIL	−0.04569319	0.02223474	−0.0635651, −0.04140879
MLD	−0.03645671	0.01523784	−0.05085476, −0.03251291
ATK(0.5)	−0.01976068	0.004225092	−0.02742201, −0.01776374
ATK(−0.5)	−0.04423886	0.02212773	−0.06159485, −0.03949192
CHAMP	−0.03421829	0.01283687	−0.04734396, −0.03050904

Table 1. Variations of the inequality indices

Indice J	∆J(1, 2)	Γ_{J}(1, 2)	CI_{95%}(ΔJ(1, 2))
SHOR	−0.03024621	0.02353406	−0.04264967, −0.01985518
KAK(1)	−0.02108905	0.01097123	−0.02982085, −0.01425729
KAK(2)	−0.02055994	0.01007820	−0.02961271, −0.01469601
FGT(0)	−0.05977098	0.3170756	−0.09355847, −0.009889805
FGT(1)	−0.01859332	0.00922992	−0.02620413, −0.01192899
FGT(2)	−0.00432289	0.0008381113	−0.007194404, −0.002892781

Table 2. Variations of the povrety indices
Table 3. Ratio of the variations with Shorrock's

Ratio	$R(1, 2)$	$\Gamma_{IJ}(1, 2)$	$\Gamma(1, 2)$	$CI_{95\%}(R(1, 2))$
SHOR/GE(0.5)	0.7513034	0.005477263	15.60737	[0.3858608, 0.9728719]
SHOR/GE(2)	0.471957	0.006487665	8.157275	[0.2018082, 0.6261873]
SHOR/GE(3)	0.3000503	0.009018111	2.851175	[0.1271085, 0.3780043]
SHOR/THEIL	0.6619413	0.005642781	12.36007	[0.3342390, 0.8566255]
SHOR/MLD	0.8296473	0.8296473	18.77303	[0.4278509, 1.071647]
SHOR/ATKIN(0.5)	1.530626	0.002695030	64.49043	[0.7866646, 1.979908]
SHOR/ATKIN(−0.5)	0.6837023	0.007288597	12.21780	[0.555278, 1.395697]
SHOR/CHAMP	0.8839194	0.005165236	20.86647	[0.4634852, 1.142229]

Table 4. Ratio of the variations with Sen

Ratio	$R(1, 2)$	$\Gamma_{IJ}(1, 2)$	$\Gamma(1, 2)$	$CI_{95\%}(R(1, 2))$
SEN/GE(0.5)	0.3290702	0.003121266	7.754599	[0.272201, 0.6859714]
SEN/GE(2)	0.3290702	0.003512353	4.013294	[0.1431155, 0.4407834]
SEN/GE(3)	0.2092089	0.005939808	1.354192	[0.0916464, 0.2645570]
SEN/THEIL	0.461536	0.003364929	6.035583	[0.237376, 0.6024165]
SEN/MLD	0.5784683	0.002968939	9.506736	[0.2996504, 0.7577893]
SEN/ATK(0.5)	1.067223	0.001542060	31.99108	[0.555278, 1.395697]
SEN/ATK(−0.5)	0.4360427	0.003368434	6.534366	[0.2461303, 0.625955]
SEN/CHAMP	0.6163094	0.003038844	10.33521	[0.3273292, 0.8050137]
Table 5. Ratio of the variations with Kakwani

Ratio	$R(1, 2)$	$\Gamma_{IJ}(1, 2)$	$\Gamma(1, 2)$	$CI_{95\%}(R(1, 2))$
KAK(2)/GE(0.5)	0.510601	0.002574653	7.443462	0.2788993, 0.6842854
KAK(2)/GE(2)	0.3207516	0.008486058	2.93814	0.1661299, 0.4208233
KAK(2)/GE(3)	0.2039203	0.005185377	1.276858	0.09508295, 0.2629838
KAK(2)/THEIL	0.4498688	0.002906321	5.72986	0.2442552, 0.5999303
KAK(2)/MLD	0.5638451	0.002365820	9.220372	0.3058926, 0.7570787
KAK(2)/ATK(0.5)	1.040245	0.001292464	30.63183	0.5694048, 1.391776
KAK(2)/ATK(-0.5)	0.4664579	0.001933209	6.672792	0.2464103, 0.630237
KAK(2)/CHAMP	0.6007296	0.002781442	9.709634	0.3376321, 0.8006341

Table 6. Ratio of the variations with FGT(0)

Ratio	$R(1, 2)$	$\Gamma_{IJ}(1, 2)$	$\Gamma(1, 2)$	$CI_{95\%}(R(1, 2))$
FGT(0)/GE(0.5)	1.484868	1.484868	192.9616	0.09236428, 2.156398
FGT(0)/GE(2)	0.9326576	0.02159780	82.69382	0.009587167, 1.360782
FGT(0)/GE(3)	0.5929437	0.03215672	31.62072	0.0002219161, 0.8357621
FGT(0)/THEIL	1.305894	0.01626234	149.7108	0.07643712, 1.894496
FGT(0)/MLD	1.639505	0.01332770	236.7108	0.09833456, 2.383401
FGT(0)/ATK(0.5)	3.024743	0.00717539	799.837	0.1882737, 4.390527
FGT(0)/ATK(-0.5)	1.351097	0.01606948	160.4669	0.08224307, 1.964480
FGT(0)/CHAMP	1.746755	0.01248913	266.9863	0.1148277, 2.542700

Table 7. Ratio of the variations with FGT(1)

Ratio	$R(1, 2)$	$\Gamma_{IJ}(1, 2)$	$\Gamma(1, 2)$	$CI_{95\%}(R(1, 2))$
FGT(1)/GE(0.5)	0.4618504	0.003359959	6.109622	0.2308332, 0.5981059
FGT(1)/GE(2)	0.29901272	0.004159761	3.140289	0.2316082, 0.4949175
FGT(1)/GE(3)	0.1844506	0.005815332	1.100702	0.0761356, 0.2320249
FGT(1)/THEIL	0.4069167	0.003487018	4.824886	0.2000723, 0.5264534
FGT(1)/MLD	0.5100109	0.003329621	7.371324	0.2557003, 0.6591174
FGT(1)/ATK(0.5)	0.9409253	0.001652060	25.25488	0.4705622, 1.217276
FGT(1)/ATK(-0.5)	0.4202938	0.004429351	4.81098	0.2142764, 0.5401868
FGT(1)/CHAMP	0.5433737	0.003126249	8.218207	0.2768286, 0.7027897

References

[1] A. Shorrocks. (1995). Revisiting the Sen Poverty Index. *Econometrica*, 63, 1225-1230.
[2] A. W. van der Vaart and J. A. Wellner(1996). *Weak Convergence and Empirical Processes With Applications to Statistics*. Springer, New-York.
[3] Atkinson A. (1970). On the Measurement of Inequality, *Journal of Economic Theory* 2, 244-263.
Ratio	$R(1,2)$	$\Gamma_{I_J}(1,2)$	$\Gamma(1,2)$	$CI_{0.05}(R(1,2))$
FGT(2)/GE(0.5)	0.1073788	0.000974483	0.5139224	0.05637792, 0.1628977
FGT(2)/GE(2)	0.06745369	0.001055690	0.2494247	0.02970793, 0.103916
FGT(2)/GE(3)	0.0428842	0.001371335	0.09271563	0.01813633, 0.0638001
FGT(2)/THEIL	0.09460689	0.000965389	0.4092489	0.04856479, 0.1436198
FGT(2)/MLD	0.118576	0.001013111	0.6110173	0.06292282, 0.1790699
FGT(2)/ATK(0.5)	0.2187623	0.000479573	2.126811	0.1148914, 0.3315849
FGT(2)/ATK(−0.5)	0.09771703	0.001424631	0.3939442	0.05315702, 0.1464178
FGT(2)/CHAMP	0.1263327	0.000954164	0.6848654	0.0680842, 0.1910499

Table 8. Ratio of the variations with FGT(2)

[4] Barrett, G. and Donald, S. (2000). Statistical Inference with Generalized Gini Indices of Inequality and Poverty. Available at: [http://www.eco.utexas.edu/˜donald/research/genginir.pdf](http://www.eco.utexas.edu/~donald/research/genginir.pdf)

[5] Barrett G. and Donald, S. (2009). Statistical inference with generalized Gini indices of inequality, poverty, and welfare. J. Bus. Econom. Statist. 27 (1), 1–17. (MR2484980) (2010c:62350) http://dx.doi.org/10.1198/jbes.2009.0001

[6] Boniface E. (xxx). Égalité, pauvreté et bien-être social. Fondements analytiques et normatifs.

[7] Champernowne, D. G. and Cowell, F. A. (1998). Economic inequality and income distribution. Cambridge: Cambridge University Press.

[8] Clark, S., Hemming, R. and Ulph, D. (1981). On Indices for the Measurement of Poverty. Economic Journal 91, 525-526.

[9] Cowell, F.A. (1980a). Generalized entropy and the measurement of distributional change. European Economic Review 13, 141759.

[10] Cowell, F.A. (1980b). On the structure of additive in equality measures. Review of Economic Studies 47, 521531.

[11] Cowell, F.A. (2000). Measurement of inequality. In A. B. Atkinson and F. Bourguignon (Eds.), Handbook of Income Distribution, Chapter 2, pp.87166. Amsterdam: North Holland.

[12] Cowell, F.A. and Kuga, K. (1981a). Additivity and the entropy concept: An axiomatic approach to inequality measure. Journal of Economic Theory 25, 131143.

[13] Cowell, F.A. and Kuga, K. (1981b). Inequality measurement: axiomatic approach. European Economic Review 15, 287305.

[14] Cowell, Frank A. (2003). Theil, Inequality and the Structure of Income Distribution. London School of Economics and Political Sciences. available at: http://eprints.lse.ac.uk/2288/

[15] Foster, J., Greer, J. and Shorrocks, A. (1984). A class of Decomposable Poverty Measures. Econometrica 52, 761-766.

[16] Gane Samb Lo (2010). A simple note on some empirical stochastic process as a tool in uniform L-statistics weak laws. Journal Afrika Statistika 5 (7), 245-251.

[17] Giné, E. and Zinn, J. (1980). Bootstrapping general empirical processes. Ann. Probab. 18 (2), 851-869.

[18] J.A. Bishop, J.P. Fornby, B.Zheng(1997). Statistical Inference and the Sen Index of Poverty. International Economic Review, 38 (2), 381-387.

[19] J.A Bishop, K. V. Chow, AND B. Zheng(1995). Statistical Inference and Decomposable Poverty Measures. Bulletin of Economic Research, 47, pp.329-340.

[20] Kakwani, N. (1993). Statistical Inference in the Measurement of Poverty. The Review of Economics and Statistics, Vol. 75, (No. 4), pp. 632-639.

[21] Kakwani, N. (2003). Issues on Setting Absolute Poverty Line. Poverty and Social Development, Papers, no.3, June, Asian Bank of Development Bank (ADB).

[22] Kakwani, N. (1980). On a Class of Poverty Measures. Econometrica, 48, 437-446.

[23] Kolm S. (1976) : Unequal Inequalities I, Journal of Economic Theory 12, 416-442.

[24] Lo, G. S. and Sall, S. T. (2009). The asymptotic theory of the Kakwani class of poverty measures. Afr. Diaspora J. Math. (N.S.) 8 (1), 54-67. (MR2511096) (2010g:62348).
ON THE INFLUENCE OF THE THEIL-LIKE INEQUALITY MEASURE ON THE GROWTH

[25] R. Davidson and J.Y. Duclos (2000). Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality. *Econometrica, 68*(6), pp.1435-1464.

[26] S. R. Chakravarty. (1983). A new Poverty Index. *Mathematical Social Science, 6*, 307-313.

[27] S.T. Sall and Lo, G. S. (2010). Asymptotic representation theorems for poverty indices. *Journal Afrika Statistika 5* (6), 238-244.

[28] Sall, S.T. and Lo, G.S., (2007). The Asymptotic Theory of the Poverty Intensity in View of Extreme Values Theory For Two Simple Cases. *Afrika Statistika, vol 2* (n°1), p.41-55

[29] Sall, S.T. and Lo, G.S., (2009). Uniform Weak Convergence of the time-dependent poverty Measure for Continuous Longitudinal Data. To appear in *Braz. J. Probab. Stat.*

[30] Sall, Serigne Touba; Seck, Cheikh Tidiane; Lo, Gane Samb. Une théorie générale asymptotique des mesures de pauvreté. *C. R. Math. Acad. Sci. Soc. R. Can.* 31 (2009), no. 2, 45–52. MR2535867 (2010m:91167)

[31] Seck, C. T. and Lo, G. S. (2008). Uniform Weak Convergence of the Nonweighted Poverty measure. To appear in *Comm. Statist., A*.

[32] Sen Amartya K. (1976). Poverty: An Ordinal Approach to Measurement. *Econometrica, 44*, 219-231.

[33] Shorack G.R. and Wellner J. A. (1986). Empirical Processes with Applications to Statistics, *wiley-Interscience, New-York.*

[34] Theil H. (1967) : Economics and Information Theory, Amsterdam, North Holland.

[35] Zheng, B.(1997). Aggregate Poverty Measures. *Journal of Economic Surveys, 11* (2), 123-162.

E-mail address: pdmergane@ufrsat.org

LERSTAD, UNIVERSITÉ GASTON BERGER DE SAINT-LOUIS.

E-mail address: gane-samb.lo@ugb.edu.sn

LSTA, UPMC, FRANCE AND LERSTAD, UNIVERSITÉ DE SAINT-LOUIS, SENEGAL.