Oxidation of Protein Kinase A Regulatory Subunit PKAR1α Protects Against Myocardial Ischemia-Reperfusion Injury by Inhibiting Lysosomal-Triggered Calcium Release

BACKGROUND: Kinase oxidation is a critical signaling mechanism through which changes in the intracellular redox state alter cardiac function. In the myocardium, PKAR1α (type-1 protein kinase A) can be reversibly oxidized, forming interprotein disulfide bonds in the holoenzyme complex. However, the effect of PKAR1α disulfide formation on downstream signaling in the heart, particularly under states of oxidative stress such as ischemia and reperfusion (I/R), remains unexplored.

METHODS: Atrial tissue obtained from patients before and after cardiopulmonary bypass and reperfusion and left ventricular (LV) tissue from mice subjected to I/R or sham surgery were used to assess PKAR1α disulfide formation by immunoblot. To determine the effect of disulfide formation on PKAR1α catalytic activity and subcellular localization, live-cell fluorescence imaging and stimulated emission depletion super-resolution microscopy were performed in prkar1 knockout mouse embryonic fibroblasts, neonatal myocytes, or adult LV myocytes isolated from “redox dead” (Cys17Ser) PKAR1α knock-in mice and their wild-type littermates. Comparison of intracellular calcium dynamics between genotypes was assessed in fura2-loaded LV myocytes, whereas I/R-injury was assessed ex vivo.

RESULTS: In both humans and mice, myocardial PKAR1α disulfide formation was found to be significantly increased (2-fold in humans, \(P=0.023\); 2.4-fold in mice, \(P<0.001\)) in response to I/R in vivo. In mouse LV cardiomyocytes, disulfide-containing PKAR1α was not found to impact catalytic activity, but instead led to enhanced AKAP (A-kinase anchoring protein) binding with preferential localization of the holoenzyme to the lysosome. Redox-dependent regulation of lysosomal two-pore channels by PKAR1α was sufficient to prevent global calcium release from the sarcoplasmic reticulum in LV myocytes, without affecting intrinsic ryanodine receptor leak or phosphorylation. Absence of I/R-induced PKAR1α disulfide formation in “redox dead” knock-in mouse hearts resulted in larger infarcts (2-fold, \(P<0.001\)) and a concomitant reduction in LV contractile recovery (1.6-fold, \(P<0.001\)), which was prevented by administering the lysosomal two-pore channel inhibitor Ned-19 at the time of reperfusion.

CONCLUSIONS: Disulfide modification targets PKAR1α to the lysosome, where it acts as a gatekeeper for two-pore channel-mediated triggering of global calcium release. In the postischemic heart, this regulatory mechanism is critical for protection from extensive injury and offers a novel target for the design of cardioprotective therapeutics.

Key Words: calcium signaling • lysosome • protein kinase A phosphorylation • redox • reperfusion injury

Sources of Funding, see page 463
© 2020 The Authors. Circulation is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited. See: https://www.ahajournals.org/journal/circ
Clinical Perspective

What Is New?

• We offer the first evidence that ischemia/reperfusion injury, in humans and in mice, induces PKARIα (regulatory subunit Iα-containing protein kinase A) oxidation and disulfide formation.

• Disulfide formation enhances PKARIα intracellular anchoring and promotes compartmentation of the holoenzyme complex to the lysosome, where it acts as a negative regulator of two-pore channel–dependent calcium release.

• Using genetic loss of PKARIα disulfide formation, we demonstrate that this newly identified regulatory mechanism serves as a crucial, adaptive response to myocardial ischemia/reperfusion injury by inhibiting excess calcium release and limiting infarct size.

What Are the Clinical Implications?

• Inhibition of lysosomal two-pore channel–dependent calcium release by oxidized PKARIα prevents myocardial cell death in response to ischemia/reperfusion, revealing a previously unrecognized mechanism of cardioprotection that could be exploited for therapeutic intervention.

Oxidative stress plays a pivotal role in the pathogenesis of ischemia/reperfusion (I/R) injury, with early bursts of reactive oxygen species (ROS) initiating a cascade of deleterious cellular processes that promote cell death and cardiac dysfunction.1,2 Paradoxically, prevention of ROS generation by inhibiting specific oxidase systems exacerbates I/R injury.3,4 suggesting that some degree of ROS formation is necessary for cardioprotection.2,5 Evidence that ROS underpin the effects of preconditioning or some cardioprotective compounds6–8 supports this conclusion, as does the general failure of antioxidants to reduce reperfusion injury after coronary angioplasty9 or improve clinical outcomes in patients with acute myocardial infarction or heart failure.10 Although it is known that ROS signaling is mediated largely through covalent modification of specific cysteine thiols within redox-sensitive proteins,11 the exact mechanisms through which they exert their cardioprotective actions remain unclear.

Protein kinase A (PKA) is 1 of the master regulatory molecules in the heart. Under physiological conditions, PKA contributes to the cardiac response to catecholamine stimulation through catalyzed phosphorylation of proteins involved in excitation-contraction coupling, metabolism, and cardiomyocyte hypertrophy.12,13 In disease states, however, persistent activation of PKA signaling, or altered expression of PKA isotypes, has been linked to maladaptive remodeling, pathological hypertrophy, and the progression to heart failure,14 making pharmacological targeting of PKA an attractive therapy for the treatment of cardiac disease.

The ability for PKA to regulate a multitude of cellular processes occurs through differential expression and localization of 2 distinct isotypes (type-1 and type-2) composed of 2 catalytic (PKA-cat) and 2 regulatory subunits (RIα or RIβ and RII, respectively).15 Although all PKA isotypes depend on cAMP binding for activation, recent work has shown that PKARIα (type-1 PKA) possesses 2 cysteine residues within the RIα subunits that are sensitive to ROS-mediated oxidation.16,17 Studies in isolated hearts and cardiomyocytes, using exogenous oxidants, have shown that oxidation of these cysteines leads to formation of an interprotein disulfide bond within the RIα subunit,17 which may enhance the holoenzyme’s catalytic activity, independent of cAMP, or promote PKARIα subcellular targeting.16,18 Beyond this, however, little else is known about the endogenous triggers of PKARIα disulfide formation in the myocardium or how PKARIα oxidation affects cardiac function.

Here, we provide the first evidence for endogenous induction of PKARIα disulfide formation in the heart, occurring after I/R in both humans and mice. Using high spatial and temporal resolution imaging modalities, in conjunction with a “redox dead” PKARIα knock-in (KI) mouse model,19 we demonstrate that disulfide modification targets PKARIα to the lysosome, where it acts as a gatekeeper for two-pore channel (TPC)–mediated Ca2+ release and prevents inappropriate triggering of Ca2+ release from the sarcoplasmic reticulum (SR). In the postischemic heart, we find that inhibition of lysosomal Ca2+ release by oxidized PKARIα is crucial for limiting infarct size and preserving cardiac function during reperfusion, offering a novel target for the design of cardioprotective therapeutics.

METHODS

Supporting data and methods can be found in Methods in the Data Supplement and will be made available, on reasonable request, by contacting the corresponding author.

Human Samples

Biopsies of the right atrial appendage were obtained before and after cardiopulmonary bypass and reperfusion in patients undergoing on-pump coronary artery bypass surgery at the John Radcliffe Hospital (Oxford, United Kingdom). The study was approved by the Research Ethics Committee (reference no. 07/Q1607/38), and all patients gave written, informed consent.

Animals

“Redox dead” PKARIα KI mice (C57BL/6 background), in which the nucleotides encoding for cysteine at position 17 were mutated to nucleotides encoding for serine (Cys17Ser), were generated as previously described.19 Only male mice...
were used for assessment of infarct size. For all other studies, KI mice (12–18 weeks old) of both sexes were compared with their wild-type (WT) littermates. All experiments involving animals were carried out in accordance with the United Kingdom Home Office Guidance on the Operation of Animals (Scientific Procedures) Act of 1986 and approved by the University of Oxford Ethics Committee.

Statistical Analysis

All experimentation and data analysis, apart from immunoblots, were conducted blinded to genotype and intervention. Data were checked for normality of distribution before statistical analysis using a Shapiro-Wilk normality test. Comparisons between data were performed using either a Student t test or ANOVA with Bonferroni correction (normally distributed) or using the Mann-Whitney test or Kruskal-Wallis test (non-normally distributed). For Ca²⁺ handling data in cardiomyocytes, analyses were carried out in RStudio using a hierarchical statistical method,²⁰ taking into consideration clustering of single cells per animal and correcting for this in the statistical analysis. The incidence of spontaneous Ca²⁺ release events was compared using a Fisher exact test. A P value <0.05 was considered statistically significant.

RESULTS

Myocardial I/R Promotes PKARα Disulfide Formation

Although PKARα disulfide formation is known to occur in the heart in response to exogenous oxidant treatment,¹⁶–¹⁸ no evidence for endogenous induction of PKARα oxidation and disulfide formation has been reported. We therefore aimed to determine whether, in humans and mice, disease states associated with increased ROS production would promote PKARα disulfide bond formation. Atrial tissue biopsies taken from patients undergoing on-pump cardiac surgery showed a minimal degree of PKARα disulfide formation before cardiopulmonary bypass; however, in samples acquired from the same patient minutes after cardioplegia and reperfusion, the PKARα disulfide state was found to be significantly increased (Figure 1A and 1B).

Left ventricular (LV) tissue obtained from mice undergoing transient coronary artery ligation in vivo also displayed markedly enhanced PKARα disulfide formation compared with sham-operated mice, with increased PKARα oxidation seen in both the LV and the remote region of the LV (Figure 1C and 1D). Control experiments in human and mouse tissue showed a reduction of high molecular weight bands when samples were treated with reducing agents (Figure IA and IB in the Data Supplement), confirming that the higher molecular weight bands were disulfide dimerized PKARα. In mice, a second band just above the putative RIα monomer was also found after reduction. Further experiments revealed this to be a nonspecific band no longer present when PKARα was purified using cAMP-affinity capture (Figure IC in the Data Supplement). Unlike oxidative modifications that lead to protein degradation,²¹ PKARα oxidation was not associated with loss of total PKARα protein levels (as observed in Figure IA and IB in the Data Supplement), suggesting that this modification is regulatory in nature and likely has a functional role during I/R-injury.

RIα Disulfide Formation Enhances PKA Intracellular Anchoring Through A-Kinase Anchoring Protein Binding Without Affecting Catalytic Activity

For several kinases, regulatory oxidation of cysteine thiols increases their catalytic activity.²¹ To test whether this was the case for PKARα, we used real-time monitoring of PKA catalytic activity by the genetically encoded AKAR3ev fluorescence resonance energy transfer (FRET) biosensor, which we expressed in cultured adult LV cardiomyocytes isolated from PKARα “redox dead” KI mice or their WT littermates. Before use of the KI mouse model for mechanistic studies, detailed cardiac characterization was undertaken to rule out gross structural cardiac remodeling (Figure IIA through IID in the Data Supplement), neurohumoral abnormalities (Figure IIE through IIH in the Data Supplement), or alterations in baseline cardiac function (Table I in the Data Supplement).

As demonstrated in Figure 2A, genetic substitution of a serine for 1 of the critical, disulfide-forming cysteines in the RIα subunit (Cys17Ser)¹⁹ prevented KI mice from forming PKARα disulfide bonds, either under basal conditions or in response to H₂O₂ treatment. By contrast, freshly isolated WT cardiomyocytes showed a significant proportion of RIα in the disulfide state under basal conditions (52.6±3.6%), which was further increased by treatment with H₂O₂ (83.0±2.1%). Despite this marked difference in PKARα disulfide state between WT and KI cardiomyocytes, we found no change in the normalized FRET ratio over the course of the 8-minute H₂O₂ incubation (Figure 2B and 2C). Addition of saturating doses of forskolin and 3-isobutyl-1-methylxanthine at the end of each protocol confirmed that the sensor responded appropriately to a rise in intracellular cAMP and further indicated that no oxidant-induced potentiation of forskolin/3-isobutyl-1-methylxanthine activation occurred (Figure 2C).

Cardiomyocyte culture itself, which was necessary to allow adenosiviral gene transduction of the FRET sensor, was associated with a significant increase in the proportion of RIα disulfide formation (up to 72.1±5.8% after 24 hours in culture; Figure 2D). PKARα was found to be highly oxidized following culture or storage of cells under all ex vivo conditions assessed (Table II in the Data Supplement).
Supplement). As the near-complete induction of disulfide bond formation by culturing could have accounted for the failure of PKAR\(\alpha\) activity to increase in response to H\(_2\)O\(_2\), we also tested whether, in WT cardiomyocytes, PKAR\(\alpha\) exhibited greater intrinsic catalytic compared with KI, as evaluated using the H89-inhibitable fraction. As shown in Figure 2E, the FRET response to H89 did not differ between WT and KI cardiomyocytes, consistent with the overall conclusion that disulfide formation has no direct effect on PKAR\(\alpha\) catalytic activity.

Given that disulfide bonds form within the A-Kinase Anchoring Protein (AKAP)–binding domain of the Rl\(\alpha\) subunit,\(^{22}\) we asked whether PKAR\(\alpha\) intracellular anchoring was impacted by the oxidation state. To assess this, we conducted fluorescence recovery after photobleaching experiments—which offer the robust capability of measuring protein diffusion and mobility in live cells\(^{23}\)—in PKAR\(\alpha\) knock-out (pkar1\(\alpha^{-}\)) mouse embryonic fibroblasts expressing green fluorescent protein–tagged PKAR\(\alpha\) in the absence of endogenous PKAR\(\alpha\), which might compete for available AKAP-binding sites. Nonreduced immunoblotting confirmed the presence of disulfide bond formation in cells expressing PKAR\(\alpha\)(WT) or in cells expressing PKAR\(\alpha\)(H24A), a mutation known to substantially reduce PKAR\(\alpha\) AKAP-binding affinity without affecting disulfide formation,\(^{22}\) but not in PKAR\(\alpha\)(C17S)-expressing cells (Figure IIIA in the Data Supplement).

Compared with PKAR\(\alpha\)(WT), PKAR\(\alpha\)(C17S) showed a higher degree of green fluorescent protein–PKAR\(\alpha\) diffusive exchange within the photobleached region of interest, as indicated by the higher recovery index (Figure 3A). This difference was reflected quantitatively as a reduction in the immobile (ie, anchored) fraction of PKAR\(\alpha\) in C17S-expressing cells compared with WT (Figure 3B and 3C), indicating that, in the absence of disulfide formation, less PKAR\(\alpha\) is restricted to intracellular compartments. The relative reduction in the immobile fraction for PKAR\(\alpha\)(C17S)-expressing cells was equivalent to that found in PKAR\(\alpha\)(H24A)-expressing cells (Figure 3C). Diffusion rate constants for the mobile
fraction of PKAR\(\alpha\) were also calculated from the fluorescence recovery after photobleaching curves but were found not to differ between mutant and WT PKAR\(\alpha\) (Figure IIIB in the Data Supplement).

To test whether the reduction in immobile PKAR\(\alpha\) (C17S) was a result of a loss of disulfide-dependent anchoring to endogenous AKAPs, we repeated the fluorescence recovery after photobleaching experiments in cells expressing each of the constructs (WT or C17S) in combination with the RI\(\alpha\) anchoring disruptor (RIAD), which prevents PKAR\(\alpha\) interaction with AKAPs, with 50-fold selectivity over PKARII.\(^{24}\) In cells expressing PKAR\(\alpha\) (WT), disruption of AKAP binding by RIAD led to a reduction in the immobile fraction of PKAR\(\alpha\) to levels comparable with PKAR\(\alpha\) (C17S)-expressing cells (Figure 3D and 3E). The effect of RIAD was present only in PKAR\(\alpha\) (WT)-expressing cells, with no significant effect of RIAD on cells expressing the “redox dead” RI\(\alpha\) (C17S) mutant (Figure 3E). As before, we saw no effect of the C17S mutant or RIAD on the diffusion rates of the mobile fraction of Rlx (Figure IIIIC in the Data Supplement). Thus, the disulfide state of Rlx appears to influence the extent to which PKA is anchored within the cell, through AKAP binding, without affecting the diffusion rate of PKAR\(\alpha\)’s cytosolic fraction or its catalytic activity.

PKAR\(\alpha\) Disulfide Formation Localizes the Holoenzyme to Lysosomal Microdomains in Cardiomyocytes

If PKAR\(\alpha\) disulfide formation affects AKAP-mediated intracellular anchoring, then the disulfide state would also be expected to influence PKAR\(\alpha\) subcellular compartmentation; however, to date, the identity of these compartments has remained elusive. Taking advantage of the oxidizing conditions of cell culture, which was shown to induce near-complete PKAR\(\alpha\) disulfide formation, we determined whether the disulfide state influenced PKAR\(\alpha\) subcellular compartmentation in cardiomyocytes using immunofluorescence imaging in cultured WT and KI LV cardiomyocytes. In WT cardiomyocytes, PKAR\(\alpha\) was found to colocalize with mitochondria, the nucleus (Figure IVA in the Data Supplement).
and LAMP2-positive lysosomes (Figure 4A and 4B). Whereas confocal microscopy was sufficient to demonstration that localization to the mitochondria and nucleus was unaffected by the loss of PKARIα disulfide formation in KO cardiomyocytes (Figure IVB in the Data Supplement), superresolution stimulation emission depletion microscopy was required to quantify the extent of PKARIα association with the lysosome and assess the redox dependence of this interaction.

Stimulation emission depletion imaging allowed accurate identification of lysosomes (Figure 4C through 4E)—whose average diameter is less than the 200-nm resolution of standard confocal imaging—and significantly improved quantification of PKARIα fluorescence intensity at nanometer distances. By quantifying PKARIα fluorescence intensity at increasing radial distances from lysosomal foci (Figure 4F; radial increments=70 nm as determined in Figure VA in the Data Supplement) and comparing that with the PKARIα fluorescence intensity measured at randomly generated coordinates, we were able to demonstrate significant clustering of PKARIα to within 70 nm of lysosomes in
Figure 4. Both the RIα and PKAcat subunits are found clustered to the lysosome.

A, Representative confocal image (scale bar=5 µm) of a cultured WT mouse left ventricular cardiomyocyte immunostained for PKARlx (yellow) and LAMP2 (magenta), showing diffuse staining of endogenous PKARlx as well as punctate regions of staining (arrows). B, Magnified confocal images (scale bar=500 nm) indicate that PKARlx clustering occurs near LAMP2-positive lysosomes; however, (C) few lysosomes are identified, and their size estimates (full-width half maximum [FWHM]) are overestimated by the resolution of standard confocal microscopy. D, Imaging with stimulated emission depletion microscopy (STED) dramatically improves the resolution of LAMP2-positive lysosomes, with (E) increased identification and more reliable size estimates (FWHM). F, To quantify the degree of PKARlx clustering near lysosomes, as captured in STED mode, LAMP2-positive lysosomes were identified using a custom-build macro in ImageJ (left) and the PKARlx intensity quantified at increasing radial distances (green circles) from each lysosome (right). For comparisons against cytosolically diffuse PKARlx, the same analysis was repeated on each image using random, computer-generated coordinates. Scale bar=500 nm. G, Quantification of PKARlx fluorescence intensity in WT adult mouse cardiomyocytes as a function of distance from the lysosome. Fluorescence intensity expressed in arbitrary units (a.u.). Data are mean±SEM; repeated measures 2-way ANOVA with Bonferroni correction, P<0.01 for significant interaction between PKARlx fluorescence intensity and distance from the lysosome; n=38 cardiomyocytes, each from 3 mice. H, The degree of clustering between PKAcat (green) and LAMP2-positive lysosomes (magenta) was also assessed by STED imaging in WT cardiomyocytes using the same method as in F. Scale bar=5 µm for whole cell confocal and 1 µm for magnified STED images. I, Quantification of PKAcat fluorescence intensity as a function of distance from the lysosome. Fluorescence intensity expressed in arbitrary units (a.u.). Data are mean±SEM; repeated measures 2-way ANOVA with Bonferroni correction, P<0.01 for significant interaction between PKAcat fluorescence intensity and distance from the lysosome; n=35 cardiomyocytes, each from 3 mice. PKA indicates protein kinase A; PKAcat, protein kinase A catalytic subunit; PKARlx, regulatory subunit Iα-containing protein kinase A; and WT, wild-type.
WT cardiomyocytes (Figure 4G, Figure VB in the Data Supplement). Using the same approach, we found that PKA cat also clustered near lysosomes (Figure 4H and 4I), indicating that the entire holoenzyme complex was present in the lysosomal microdomain when PKA was highly oxidized. By contrast, in the absence of disulfide formation (ie, KI cardiomyocytes), PKARlα no longer clustered near lysosomes (Figure 5A). Clustering of PKA cat was also found to be reduced in KI cardiomyocytes, albeit to a lesser extent (Figure 5B; P value for significant interaction=0.009). The loss of PKA clustering to the lysosome, however, did not appear to affect gross lysosomal distribution (Figure VC in the Data Supplement).

We next assessed whether clustering of PKARlα to the lysosomal microdomain was mediated by AKAP binding. For this, stimulation emission depletion imaging experiments were repeated using the RIAD disruptor peptide in neonatal rat ventricular myocytes, which are more easily cultured and transfected than adult mouse cardiomyocytes. As with adult LV cardiomyocytes, control-transfected neonatal rat ventricular myocytes showed a high degree of PKARlα clustering to LAMP2-positive lysosomes (Figure 5C and 5D). RIAD transfection significantly reduced this colocalization—particularly at the nearest measurable distance—whereas transfection of cells with SuperAKAP-IS, a potent and specific disruptor of PKA-RII:AKAP interactions, did not (Figure 5C and 5E).

Collectively, these data provide strong evidence that induction of PKARlα disulfide formation facilitates localization of the holoenzyme complex to the lysosome of cardiomyocytes in a manner that is AKAP-dependent.

Intracellular Ca2+ Release Is Regulated by PKARlα Through Its Interaction With the Lysosomal TPCs

Lysosomes are known to couple with the mitochondria and the cardiomyocyte SR, forming structural microdomains through which lysosomal Ca2+ release may affect Ca2+ handling by these organelles. We initially assessed, therefore, whether loss of lysosomal-localized PKARlα in KI cardiomyocytes affected mitochondrial or SR Ca2+ handling (eg, release and reuptake) under steady-state conditions. As before, we found that the conditions required to assess intracellular Ca2+ handling in WT cardiomyocytes led to near-complete induction of PKARlα disulfide formation (94.5±2.3%; as reported in Table II in the Data Supplement). Using the same approach, we found that PKA cat also clustered near lysosomes (Figure 4H and 4I), indicating that the entire holoenzyme complex was present in the lysosomal microdomain when PKA was highly oxidized. By contrast, in the absence of disulfide formation (ie, KI cardiomyocytes), PKARlα no longer clustered near lysosomes (Figure 5A). Clustering of PKA cat was also found to be reduced in KI cardiomyocytes, albeit to a lesser extent (Figure 5B; P value for significant interaction=0.009). The loss of PKA clustering to the lysosome, however, did not appear to affect gross lysosomal distribution (Figure VC in the Data Supplement).

We next assessed whether clustering of PKARlα to the lysosomal microdomain was mediated by AKAP binding. For this, stimulation emission depletion imaging experiments were repeated using the RIAD disruptor peptide in neonatal rat ventricular myocytes, which are more easily cultured and transfected than adult mouse cardiomyocytes. As with adult LV cardiomyocytes, control-transfected neonatal rat ventricular myocytes showed a high degree of PKARlα clustering to LAMP2-positive lysosomes (Figure 5C and 5D). RIAD transfection significantly reduced this colocalization—particularly at the nearest measurable distance—whereas transfection of cells with SuperAKAP-IS, a potent and specific disruptor of PKA-RII:AKAP interactions, did not (Figure 5C and 5E).

Collectively, these data provide strong evidence that induction of PKARlα disulfide formation facilitates localization of the holoenzyme complex to the lysosome of cardiomyocytes in a manner that is AKAP-dependent.

Intracellular Ca2+ Release Is Regulated by PKARlα Through Its Interaction With the Lysosomal TPCs

Lysosomes are known to couple with the mitochondria and the cardiomyocyte SR, forming structural microdomains through which lysosomal Ca2+ release may affect Ca2+ handling by these organelles. We initially assessed, therefore, whether loss of lysosomal-localized PKARlα in KI cardiomyocytes affected mitochondrial or SR Ca2+ handling (eg, release and reuptake) under steady-state conditions. As before, we found that the conditions required to assess intracellular Ca2+ handling in WT cardiomyocytes led to near-complete induction of PKARlα disulfide formation (94.5±2.3%; as reported in Table II in the Data Supplement).

Direct measurement of mitochondrial Ca2+ handling (at 37°C) in permeabilized cardiomyocytes loaded with Rhod-2 showed equivalent levels of mitochondrial Ca2+ loading in WT and KI cells challenged with 100 nmol/L free [Ca2+] (Figure VIA and VIB in the Data Supplement). Likewise, similar rates of mitochondrial Ca2+ efflux were observed between genotypes (Figure VIC in the Data Supplement), indicating that mitochondrial Ca2+ handling was unaffected by PKARlα displacement from the lysosome.

Under steady-state pacing (3 Hz; 35±1°C), fura-2–loaded cardiomyocytes showed no significant differences in the intracellular Ca2+ transient amplitude or diastolic intracellular Ca2+ levels between genotypes, although a mild increase in the rate of intracellular Ca2+ decay was observed in KI cardiomyocytes (Figure 6A through 6D). Derivation of the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) and Na+/Ca2+ exchanger–dependent rate constants for free intracellular Ca2+ decay indicated a mild enhancement of SERCA-dependent uptake of Ca2+ into the SR in KI cardiomyocytes (Figure 6E), independent of phospholamban phosphorylation or an altered phospholamban:SERCA ratio (Figure VIIA through VIIID in the Data Supplement). However, measurement of total SR Ca2+ content, using rapid caffeine application, showed no genotype-dependent differences (Figure 6F), indicating that the modest increase in SERCA-mediated Ca2+ reuptake had no significant effect on SR Ca2+ loading under these conditions. In agreement with these findings, echocardiographic parameters of LV function were similar in both genotypes (as reported in Table I in the Data Supplement). Equally, we saw no genotype differences in fractional shortening or the rate of relaxation of isolated cardiomyocytes (Figure VIIE through VIIIG in the Data Supplement) in the peak and kinetics of the L-type Ca2+ current (Figure 6G and 6H) or in the Na+/Ca2+ exchanger current (Figure 6I). Nevertheless, KI cardiomyocytes displayed a higher incidence of spontaneous Ca2+ release events during a pause from steady-state pacing (Figure 6J through 6L), suggesting that the displacement of PKARlα from the lysosomal microdomain in KI cardiomyocytes may be leading to dysregulated lysosomal Ca2+ release sufficient to directly trigger ryanodine receptor (RyR) opening. For this to occur, close physical proximity between the 2 structures would have to take place. Stimulation emission depletion imaging confirmed that LAMP2-positive lysosomes were closely coupled with RyRs (Figure 7A and 7B), with nearest-neighbor distance histograms in WT and KI cardiomyocytes showing the majority of the lysosomes lying in close (ie, <200 nm) proximity to RyRs, with no significant difference between genotypes (Figure 7B).

We therefore assessed the dynamics of intracellular Ca2+ release from RyR by perfusing WT or KI cardiomyocytes with a 0Na+/0Ca2+ extracellular solution (which prevents triggering of RyR opening from extracellular sources) and included the use of the reversible RyR inhibitor, tetracaine, to allow for simultaneous quantification of intrinsic RyR Ca2+ leak. Cardiomyocytes showed stable Ca2+ release sufficient to directly trigger RyR opening, tetracaine, to allow for simultaneous quantification of intrinsically leak. Cardiomyocytes showed stable Ca2+ transient recordings under tetracaine perfusion, with no spontaneous events occurring in either genotype under these conditions. However, following tetracaine washout,
Figure 5. PKARIα shows AKAP-mediated lysosomal clustering when in the disulfide state.

A. Top, Stimulation emission depletion microscopy (STED) imaging of PKARIα (yellow) and LAMP2 (magenta) immunostaining in cardiomyocytes isolated from WT or KI mice. Bottom, Quantitative comparison of PKARIα intensity in WT and KI cardiomyocytes, normalized for each cell to the cytosolically diffuse intensity, plotted as a function of the radial distance from the lysosome. Normalized data for WT cells were calculated from those included in Figure 4G. Data shown as mean±SEM; repeated measures 2-way ANOVA with Bonferroni correction, \(P<0.001 \) for significant interaction between genotypes and distance; n=38 to 41 cardiomyocytes, each from 3 mice/genotype. B. Top, STED imaging of PKAcat (green) and LAMP2 (magenta) immunostaining in cardiomyocytes isolated from WT or KI mice. Bottom, Quantitative comparison of normalized PKAcat intensity in WT and KI cardiomyocytes as a function of the radial distance (Continued)
a significantly high proportion of KI cardiomyocytes developed dramatic Ca2+ oscillations (Figure 7C and 7D). No differences in the RyR leak/load relationship (an indirect assessment of RyR opening probability29; Figure 7E) or PKA-mediated RyR phosphorylation (Figure VIIH in the Data Supplement) were found between genotypes, indicating that the Ca2+ oscillations were unlikely to be driven by inherent changes in RyR opening. By contrast, depletion of lysosomal Ca2+ stores using acute bafilomycin A1 treatment completely abolished Ca2+ oscillations under 0Na+/0Ca2+ conditions (Figure 7F), whereas competitive inhibition of Ca2+-permeable lysosomal TPCs using Ned-19 significantly attenuated the incidence of Ca2+ oscillations (Figure 7G). Measurement of SR Ca2+ load (in nonoscillating cells) indicated that the ability of either drug to prevent global SR Ca2+ oscillations was not a consequence of reduced SR Ca2+ content (Figure VII I and VII J in the Data Supplement), supporting the conclusion that these events were a direct result of spontaneous lysosomal Ca2+ release from TPCs, occurring when PKAR\textalpha was no longer localized to the lysosome.

Despite the presence of spontaneous SR Ca2+ release in KI cardiomyocytes, we did not observe an increase in pacing-induced ventricular arrhythmias in these mice (Figure VIIIA in the Data Supplement). Likewise, there was no evidence for induction of Ca2+-activated stress responses in KI hearts. Specifically, transcript levels for multiple markers of the unfolded protein response—a conserved system of endoplasmic reticulum stress signaling cascades activated in response to protein misfolding or altered SR/endoplasmic reticulum Ca2+ content—showed no evidence of increased transcriptional activation in KI LVs (Figure VIII B in the Data Supplement). KI LVs also showed no marked difference in the conversion of LC3-I to LC3-II or degradation of p62 (Figure VIIIC in the Data Supplement), which, together, indicated that activation of the autophagosome-lysosome pathway was not altered in these mice.

Redox-Dependent Regulation of Lysosomal Ca2+ Release by PKAR\textalpha Is Cardioprotective Against I/R Injury

SR Ca2+ oscillations are known to occur in the initial period of myocardial reperfusion, leading to cell death and LV dysfunction.20 Given our observation that PKAR\textalpha disulfide formation is induced shortly after myocardial reperfusion in humans and mice, we posited that inhibition of global Ca2+ release by oxidized, lysosomally targeted PKAR\textalpha may confer cardioprotection in the postischemic heart. To test this hypothesis, hearts from WT and KI mice were subjected to ex vivo I/R, with LV function measured throughout and infarct size assessed following the 60 minutes reperfusion (Figure 8A). Furthermore, to determine the contribution of TPC-dependent lysosomal Ca2+ release, hearts of either genotype were administered Ned-19 (or dimethyl sulfoxide vehicle) at the time of reperfusion.

Although no difference in LV hemodynamic measurements were seen during the baseline stabilization period (Table III in the Data Supplement), KI hearts administered vehicle at reperfusion showed significantly lower LV developed pressures throughout the reperfusion period (Figure 8B) and displayed 2-fold larger infarcts compared with WTs (Figure 8C and 8D). Absence of differences in PKA-dependent RyR phosphorylation during I/R (Figure IX in the Data Supplement) ruled out the possibility that direct alterations in RyR accounted for the poorer outcome in vehicle-treated KI mice. Instead, inhibition of lysosomal Ca2+ release, by addition of Ned-19 at the time of reperfusion, was sufficient to restore both contractile function and infarct size in KI hearts to levels comparable with WT, with no further protective effects observed in WT hearts. These findings are consistent, therefore, with a model in which disulfide-modified PKAR\textalpha limits I/R-induced Ca2+ overload by decreasing lysosomal triggering of global SR Ca2+ release.

DISCUSSION

Our findings led us to 3 major conclusions: (1) PKAR\textalpha disulfide formation is a consistent and conserved response to myocardial I/R injury in vivo, occurring both in humans and mice; (2) oxidation of PKAR\textalpha serves as a means to compartmentalize PKAR\textalpha within the lysosomal microdomain, where it acts as an inhibitor of TPC-dependent Ca2+ release; and (3) this regulatory mechanism is an adaptive response to I/R, which allows the heart to limit the extent of injury and aid functional recovery.
Although redox modification of several kinases has been shown to promote catalytic activation,21 our data rule out the possibility that PKARlα disulfide formation has the same effect. Instead, we provide strong evidence that the principal regulatory function of PKARlα disulfide formation is to promote localization of the holoenzyme complex to distinct subcellular compartments through enhanced AKAP binding. This
Figure 7. KI cardiomyocytes display global SR Ca\(^{2+}\) oscillations triggered by 2-pore channel–mediated lysosomal Ca\(^{2+}\) release.

A, Whole cell confocal image of a representative adult mouse left ventricular (LV) cardiomyocyte communostained for RyR2 (cyan) and LAMP2 (magenta). Imaging in high-resolution stimulation emission depletion microscopy mode shows close proximity between LAMP2-positive lysosomes and RyR. Scale bars=1 μm (left zoomed image) and 500 nm (right zoomed image).

B, RyR-LAMP2 nearest-neighbor distance distributions in WT and KI cardiomyocytes calculated by measuring the distances from the center of the LAMP2-positive lysosome (or a random, computer-generated coordinate, as is the case for the Rdm-Lyso histogram) to the center of the nearest RyR cluster. n=18 to 19 cardiomyocytes, each from 3 mice/genotype. Statistical comparison of experimental (WT or KI) versus Rdm-Lyso distributions using a Mann-Whitney nonparametric test, *P<0.0001.

C, Protocol used to assess [Ca\(^{2+}\)]\(_i\) dynamics and RyR leak simultaneously for C through G, with trace showing the development of Ca\(^{2+}\) oscillations in a KI cardiomyocyte perfused with a modified Tyrode solution containing 0 Na\(^+\) and 0 Ca\(^{2+}\).

D, The percentage of WT and KI cardiomyocytes per isolation that developed Ca\(^{2+}\) oscillations in the presence or absence of tetracaine (10 mmol/L). The Kruskal-Wallis test was used to assess differences between groups; n=13 (WT) and 15 (KI) mice per group. Individual data and their median value are shown.

E, Oscillations occurred in the absence of differences in RyR leak, quantified by the RyR leak/SR Ca\(^{2+}\) load relationship in WT and KI mouse LV cardiomyocytes. All data points shown with median and interquartile range; Mann-Whitney nonparametric test; n=24 cardiomyocytes, each from 6 or 7 mice/genotype. The occurrence rate of Ca\(^{2+}\) oscillations was also assessed in cardiomyocytes treated with vehicle (dimethyl sulfoxide) versus (F) bafilomycin A1 (Bafilo; 100 nmol/L), or (G) Ned-19 (5 μmol/L). Fisher exact test; n=7 mice per group (Bafilo), n=9 mice per group (Ned-19). KI indicates knock-in; Rdm, random foci; RyR, ryanodine receptor; SR, sarcoplasmic reticulum; and WT, wild-type.
conclusion is at odds with some previous studies, which report increased PKA activity in response to elevations in ROS and reactive nitrogen species. However, the observed changes in PKA catalytic activity were inferred from downstream functional readouts—some of which have important limitations—or increased substrate phosphorylation, which make it difficult to distinguish between genuine increases in PKA catalytic activity versus focused subcellular targeting of the enzyme. The use of a genetically encoded FRET biosensor here, in conjunction with PKARIα KI cardiomyocytes, provided a robust means to directly assess changes in intrinsic catalytic activity with varying degrees of PKARIα disulfide formation, and showed no correlation between the 2, suggesting that previous findings may instead be a consequence of substrate-induced activation within specific microdomains, a characteristic unique to Rlα-containing PKA.

The observation that physically restricted pools of PKARIα are lost when disulfide formation is prevented (C17S mutation) argues strongly for a concomitant loss of AKAP-mediated anchoring of PKARIα that is dependent, at least in part, on the structural stability afforded by the disulfide bond. In support of this hypothesis, disruption of Rlα-AKAP interaction in fluorescence recovery after photobleaching experiments caused significant liberation of PKARIα from the immobile pool, an effect that was not observed in C17S-expressing cells. Likewise, in cardiomyocytes both the C17S "re-doX dead" mutation and disruption of Rlα-AKAP binding using RIAD resulted in displacement of the PKARIα holoenzyme from lysosomes. For the latter, lysosomal...
Regulation of Lysosomal Ca$^{2+}$ Release by PKARIα

Oxidation-dependent localization of PKARIα to the lysosome represents a significant, and entirely novel, mechanism through which PKA regulates Ca$^{2+}$ release in the heart. Our classic understanding of Ca$^{2+}$ regulation by PKA involves the rapid phosphorylation of key Ca$^{2+}$ handling proteins, including RyR, phospholamban, and the L-type Ca$^{2+}$ channel, which act concordantly to enhance contraction and relaxation. However, several studies suggest that these substrates are uniquely targeted by RI-containing pools of PKA, whereas activation of PKARIα has little effect on excitation-contraction coupling.36–38 Consistent with this, we find no evidence for differential phosphorylation of “classic” PKA targets (eg, in RyR or phospholamban), nor do we see differences in cardiomyocyte contractility or LV systolic function in vivo or in isolated hearts between WT and KI mice. Instead, we find that the striking Ca$^{2+}$ oscillations and spontaneous Ca$^{2+}$ release events observed in KI cardiomyocytes are a result of dysregulated Ca$^{2+}$ release from lysosomal TPCs when PKARIα is absent from this microdomain.

Lysosomal Ca$^{2+}$ efflux can promote SR Ca$^{2+}$ release either by triggering RyRs Ca$^{2+}$ release directly39 or by enhancing SR Ca$^{2+}$ loading.28 We observed minimal enhancement of SERCA-mediated Ca$^{2+}$ uptake in KI cardiomyocytes, with no obvious difference in SR Ca$^{2+}$ load or RyR leak compared with WT. Instead, we found spontaneous triggering of SR Ca$^{2+}$ release (in the absence of sarcoplasmal Na$/\text{Ca}^{2+}$ flux), which could be prevented by inhibiting RyR opening or lysosomal Ca$^{2+}$ release through TPC channels. These findings, and the fact that we found lysosomes lying in close physical proximity to the RyR, indicate that PKARIα directly modulates the crosstalk between lysosomal TPCs and RyRs. Of note, the prevention of SR Ca$^{2+}$ release by these drugs was not driven by a reduction in SR Ca$^{2+}$ load. In fact, in KI cardiomyocytes, Ned-19 significantly increased load. Because this would be expected to promote Ca$^{2+}$ oscillations by increasing RyR opening probability, it is not likely that the increased load had a direct effect on the inhibitory effects of Ned-19.

PKARIα Disulfide Formation as an Adaptive Response to I/R

Although early bursts of ROS are thought to be the primary mediators of reperfusion-induced injury,1,2 evidence indicates that some degree of ROS are needed at the time of reperfusion to protect the heart.4,5 In particular, I/R-induced elevations in NADPH oxidase (NOX)-derived ROS activate redox signaling pathways that promote cell survival.3,40,41 In this regard, compartmentation of oxidant sources and their downstream targets is suggested to be a discriminating factor between adaptive versus maladaptive signaling.3 Consistent with this, we observed that disulfide-dependent compartmentation of PKARIα was a necessary event to confer cardioprotection. When this response was lost in KI mice, cardiomyocytes exhibited dysregulated lysosomal Ca$^{2+}$ release, which ultimately led to exacerbated I/R injury.

The fact that pharmacological inhibition of TPCs at the time of reperfusion reduced infarct size and improved functional recovery in KI hearts highlights a causal role for lysosomal Ca$^{2+}$ release in mediating PKARIα’s adaptive response to I/R. Inhibition of TPCs, either pharmacologically or by genetic knockdown, has been shown to protect the heart against I/R injury, both in vitro and in vivo.42 It is interesting that pharmacological inhibition of TPC conferred cardioprotection in WT mice only when a more potent derivative of Ned-19, called Ned-K, was used.42 This may explain why, in keeping with the same report,42 we did not see an added benefit in WT hearts perfused with Ned-19.

Although our observations provide strong evidence for a cardioprotective role of oxidized PKARIα independent of increases in cAMP, it is conceivable that further activation of RII-containing pools of PKA by cAMP may provide additional protection from I/R injury. Glucagon-like peptide-1 and prostaglandin E1, which are currently being tested in clinical trials for their use in treating myocardial infarction43,44 and reperfusion injury,45,46 have both been found to promote selective activation of RII- but not RII-containing PKA in cardiomyocytes.36,38 Preclinical studies have already shown that the beneficial effects of these hormones rely on PKA,47,48 although the downstream mechanisms have yet to be fully elucidated. Our findings indicate that inhibition of lysosomal Ca$^{2+}$ release by PKARIα may contribute to the cardioprotective effects of these hormones and further suggest that targeted enhancement of lysosomal PKARIα, or inhibition of TPCs, offers a novel adaptive signaling pathway to exploit for the prevention of I/R injury.

Potential Limitations

Although we showed that disulfide formation is important for restricting PKARIα to lysosomal regions, it is not clear from our data whether regulation of lysosomal function occurs through a direct interaction between PKARIα and TPCs or through more distal PKA-dependent signaling events in this microdomain. In vitro PKA can directly phosphorylate TPCs and alter channel opening49; whether this occurs in vivo and is...
influenced by PKARlα disulfide formation remains to be explored. Similarly, we cannot exclude that differences in nicotinic acid adenine dinucleotide phosphate (the ligand for TPC channels) between genotypes may have contributed to our results. However, this seems unlikely, as altered nicotinic acid adenine dinucleotide phosphate levels have been shown primarily to increase SR Ca\(^{2+}\) loading and Ca\(^{2+}\) transient dynamics in cardiomyocytes,\(^5\) neither of which was found to be materially different between KI and WT mice. It should also be noted that the contribution of enhanced SR Ca\(^{2+}\) oscillations to the exacerbated I/R injury seen in KI mice was inferred from studies in isolated cardiomyocytes, as opposed to a direct assessment during I/R. Nevertheless, our data in KI mice showing that Ned-19 prevents SR Ca\(^{2+}\) oscillations in cardiomyocytes and limits myocardial I/R injury strongly support a link between them.

CONCLUSIONS

Our work identifies, for the first time, oxidation-dependent compartmentation of the PKARlα holoenzyme to the lysosomal microdomain, where it acts as a potent inhibitor of intracellular Ca\(^{2+}\) release. In the setting of I/R, where PKARlα disulfide formation is induced, this regulatory mechanism is critical for limiting infarct size and offers a novel target for the design of cardioprotective therapeutics.

ARTICLE INFORMATION

Received March 10, 2020; accepted November 9, 2020. The Data Supplement is available with this article at https://www.ahajournals.org/doi/suppl/10.1161/CIRCULATIONAHA.120.046761. This work was presented as an abstract at the American Heart Association Scientific Sessions, November 13–17, 2020.

Correspondence

Jillian N. Simon, PhD, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, 66, West Wing, Oxford, United Kingdom OX3 9DU. Email jillian.simon@cardiov.ox.ac.uk

Affiliations

Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., J.J., K.M.C., B.V.), Department of Physiology, Anatomy and Genetics (S.M., P.S., M.Z.), Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine (D.W.), University of Oxford, United Kingdom. Institute of Cardiovascular Sciences, University of Birmingham, United Kingdom (F.S., L.F.). Cardiothoracic Surgery, Oxford Heart Centre, Oxford University Hospitals National Health Service Foundation Trust, United Kingdom (R.S.). Department of Cardiology, University Hospitals Birmingham, United Kingdom (L.F.). William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, United Kingdom (P.E.).

Acknowledgments

The authors thank Pablo Hernandez-Varas and Christoffer Langerholm (Wolfson Imaging Centre, University of Oxford) for expertise in stimulation emission depletion microscopy; Ricardo Carnicer, Craig Lygate, and Debra McAndrews (University of Oxford) for the provision of left ventricular tissue from mice undergoing in vivo ischemia and reperfusion or sham surgery; and S. Nashitha Kabir (University of Birmingham) for technical assistance.

Sources of Funding

This work was supported by the British Heart Foundation (CH/12/3/29609 to B.C. and J.N.S.; RG/11/15/29375 to B.C. and R.J.; RG/16/12/32451 to B.C. and B.V.; FS/17/17/23238 to P.G.; RG/17/16/32944 to M.Z. and S.M.; PG/15/531110 to M.Z.; RG/15/9/31534 to PS.; RG/12/5/29576 to K.M.C. and S.C.; PG/17/44/33064 to P.E.; Accelerator Award AA/18/2/34218 to LF); the National Institute for Health Research Oxford Biomedical Research Center (to B.C.); the Medical Research Council (MR/P023150/1 to PE.; MR/S005382/1, MRC/BSRC/EPSC, and MRC/K01577X/1 to D.W.); the Garfield-Weston Foundation (MPS/VIMS/11/12–4032 to B.C. and N.R.); and the Wellcome Trust (099898/12/12/Z to O.L.).

Disclosures

None.

Supplemental Materials

Data Supplement Methods
Data Supplement Tables I–III
Data Supplement Figures I–IX
References S1–S6

REFERENCES

1. Zweier JL, Talukder MA. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res. 2006;70:181–190. doi: 10.1016/j.cardiores.2006.02.025
2. Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med. 2018;117:76–89. doi: 10.1016/j.freeradbiomed.2018.01.024
3. Matsushima S, Kuroda J, Agó T, Zhai P, Ikeda Y, Oka S, Fong GH, Tian R, Sadoshima J. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α. Circ Res. 2013;112:1135–1149. doi: 10.1161/CIRCRESAHA.111.300171
4. Matsuishima S, Tsutsui H, Sadoshima J. Physiological and pathologic functions of NADPH oxidases during myocardial ischemia-reperfusion. Trends Cardiovasc Med. 2014;24:202–205. doi: 10.1016/j.tcm.2014.03.003
5. Kleikers PW, Wingler K, Hermans JJ, Diebold, Altenhofen, Radermacher B.C. and B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), Department of Physiology, Anatomy and Genetics (S.M., P.S., M.Z.), Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine (D.W.), University of Oxford, United Kingdom OX3 9DU. Email jillian.simon@cardiov.ox.ac.uk

Circulation. 2021;143:449–465. DOI: 10.1161/CIRCULATIONAHA.120.046761

ORIGINAL RESEARCH
27. Aston D, Boknik P, Knapp J, Linck B, Liss H, Neumann J, Schmitz W, Simon et al. Cardioprotective Effects of Oxidized PKARI. J Biol Chem. 2005;280:13297–13304. doi: 10.1074/jbc.M413065200

28. Capel RA, Bolton EL, Lin WK, Aston D, Wang Y, Liu W, Wang X, Burton RA, Capel RA, Boknik P, Knapp J, Linck B, Liss H, Neumann J, Schmitz W. Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis. J Biol Chem. 2004;279:41352–41360. doi: 10.1074/jbc.M403827200

29. Curran J, Hinton MJ, Ríos E, Bers DM, Shannon TR. Beta-adrenergic enhancement of FRAP as a key tool for investigating protein dynamics. Biochem J. 2010;434:141–151. doi: 10.1042/BCJ20091042

30. García-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A. Effects of NOX-2-containing NADPH oxidase in early ischemic preconditioning. Free Radic Biol Med. 2015;83:201–209. doi: 10.1016/j.freeradbiomed.2015.03.013

31. Wagner S, Dantz C, Flebbe H, Azizian A, Sag CM, Engels S, Möllencamp J, Wagner S, Dantz C, Flebbe H, Azizian A, Sag CM, Engels S, Möllencamp J, et al. Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ Res. 2008;103:836–844. doi: 10.1161/CIRCRESAHA.107.174813

32. Di Benedetto G, Zoccarato A, Lissandron V, Arienti A, Husein DJ, Shah AM, Shattock MJ. Pivotal role of NOX-2-containing NADPH oxidase in early ischemic preconditioning. FASEB J. 2005;19:2037–2039. doi: 10.1096/fj.04-7747fje

33. Beck FK, Euler J, Eisel F, Beck M, Köhler Y, Sha BK, von Knethen A, Longen S, Pfeilschifter J. Cytokines induce protein kinase A-mediated signaling by a redox-dependent mechanism in rat renal mesangial cells. Biochem Pharmacol. 2015;93:362–369. doi: 10.1016/bcp.2014.11.009

34. Koschinski A, Zaccolo M. Activation of PKA in cell requires higher concentration of cAMP than in vitro: implications for compartmentalization of cAMP signaling. Sci Rep. 2017;7:14090. doi: 10.1038/s41598-017-13021-y

35. Viste K, Kopperud RK, Christensen AE, Dæskild SO. Substrate enhances the sensitivity of type 1 protein kinase A to cAMP. J Biol Chem. 2005;280:13279–13284. doi: 10.1074/jbc.M413065200

36. Vila Petroff MG, Egan JM, Wang X, Sollott SJ. Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ Res. 2001;89:445–452. doi: 10.1161/01.RES.89.3.445

37. Keely SL. Prostaglandin E1 activation of heart cAMP-dependent protein kinase: apparent dissociation of protein kinase activation from increases in phosphorylase activity and contractile force. Mol Pharmacol. 1979;15:225–245.

38. Di Benedetto G, Zoccarato A, Lissandron V, Arienti A, Husein DJ, Shah AM, Shattock MJ. Pivotal role of NOX-2-containing NADPH oxidase in early ischemic preconditioning. FASEB J. 2005;19:2037–2039. doi: 10.1096/fj.04-7747fje

39. Boittin FX, Galione A, Evans AM. Nicotinic acid adenine dinucleotide phosphate mediates Ca2+ signals and contraction in arterial smooth muscle via a two-pool mechanism. Circ Res. 2002;91:1168–1175. doi: 10.1161/01.RES.0000047507.22487.85

40. Bell RM, Cane AC, Johar S, Hearse DJ, Shah AM, Shattock MJ. Pivotal role of NOX-2-containing NADPH oxidase in early ischemic preconditioning. FASEB J. 2005;19:2037–2039. doi: 10.1096/fj.04-7747fje

41. Strandberg SM, Husein DJ, Shah AM, Shattock MJ. Pivotal role of NOX-2-containing NADPH oxidase in early ischemic preconditioning. FASEB J. 2005;19:2037–2039. doi: 10.1096/fj.04-7747fje

42. Davidson SM, Foote K, Kunuthur S, Gossan R, Tan N, Tyser R, Zhao YJ, Graeff F, Ganas A, Duchen MR, et al. Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via a two-pore channel 1 and opening of the mitochondrial permeability transition pore. Cardiovasc Res. 2015;108:357–366. doi: 10.1093/cvr/cvv226

43. Bethel MA, Patel RA, Perrill P, Lokhnygina Y, Buse JB, Rentz RJ, Pagidipati NJ, Chan JC, Gustavson SM, Isqaln N, et al. EXSCEL Study Group. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2018;6:105–113. doi: 10.1016/S2213-8587(17)30412-6

44. Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, Shannon RP. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109:962–965. doi: 10.1161/01.CIR.0000120505.91348.5B

45. Zhu H, Xu X, Ding Y, Zhou L, Huang J. Effects of prostaglandin E1 on reperfusion injury patients: A meta-analysis of randomized controlled trials. Medicine (Baltimore). 2017;96:e6591. doi: 10.1097/MD.0000000000006591

46. Nemeth G, Benke M, Daroczi I, Koltai A, Takacs J, Papp E, Mihalyi D, Kollonits M, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33:1491–1499. doi: 10.1093/eurheartj/ehs039

47. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54:146–151. doi: 10.23736/s0012-7240.04.03664-1

48. Ye Y, Keyses KT, Zhang C, Perez-Polo JR, Lin Y, Birnbaum Y. The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol. 2010;298:H1454–H1465. doi: 10.1152/ajpheart.00867.2009

49. Lee CS, Tong BC, Cheng CW, Hung HC, Cheung KH. Characterization of the two-pore channel 2 by nuclear membrane electrophysiology. Sci Rep. 2016;6:22028. doi: 10.1038/srep22028

50. Macgregor A, Yamasaki M, Rakovic S, Sanders L, Parkesh R, Churchill GC, et al. Two-pore channel 1 and opening of the mitochondrial permeability transition pore. Cardiovasc Res. 2015;108:357–366. doi: 10.1093/cvr/cvv226

February 2, 2021
and protects against injury following ischaemia-reperfusion. Circ Res. 2018;114:858–869. doi: 10.1093/circres/bvy054
52. Carnicer R, Hale AB, Suffredini S, Liu X, Reilly S, Zhang MH, Surdo NC, Bendall JK, Crabtree MJ, Lim GB, et al. Cardiomyocyte GTP cyclohydrolase I and tetrahydrobiopterin increase NOS1 activity and accelerate myocardial relaxation. Circ Res. 2012;111:718–727. doi: 10.1161/CIRCRESAHA.112.274464
53. Gold MG, Lygren B, Dekurno P, Hoshi N, McConnachie G, Taskén K, Carlson CR, Scott JD, Barford D. Molecular basis of AKAP specificity for PKA regulatory subunits. Mol Cell. 2006;24:383–395. doi: 10.1016/j.molcel.2006.09.006
54. Nadella KS, Kirschner LS. Disruption of protein kinase a regulation causes immortalization and dysregulation of D-type cyclins. Cancer Res. 2005;65:10307–10315. doi: 10.1158/0008-5472.CAN-05-3183
55. Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224(pt 3):213–232. doi: 10.1111/j.1365-2818.2006.01706.x
56. Puglisi JL, Bassani RA, Bassani JW, Amin JN, Bers DM. Temperature and relative contributions of Ca transport systems in cardiac myocyte relaxation. Am J Physiol. 1996;270(5 pt 2):H1772–H1778. doi: 10.1152/ajpheart.1996.270.5.H1772