Optimization of various tablet excipients

Conventional tablets

Excipients are utilized in traditional tablets to keep BAF in a compressible mass that can be crushed to release BAF from the tablet into body fluids. As a result, the tablet is known as a simple tablet [3]. For instant release tablets, the standard tablet is most commonly utilized [3–6]. Conventional tablets have been designed for herbal preparations, nutraceuticals, and even probiotic microorganisms in addition to their application in medicine [7–9]. In recent medication development trends, customized BAFs such as nanosuspension, liquid-solid, and solid dispersion drug are replacing regular tablets [10–12]. The survival of bacteria in the excipient, which is referred to as viability in the probiotic tablet, is also regarded as a significant element in formulation optimization [8].

Tablet preparations have very good reception. The ease of handling from the producer and patient side is the advantage of tablet preparations [2]. Therefore, many researchers are developing tablets with various matrices that have their intended use according to the need for safer and more effective therapy. This review summarizes various additives in tabletting. It's has been developed according to the type of tablet and the experimental design approach that has been used for development. Ordinarily, additives in different tablet types require properties to support the desired tablet profile. It is necessary to identify critical points in the relevant tablet evaluation. Reviewing the additives in various tablets will be useful information for formulators in preparing the tablet design.

Optimization of various tablet excipients

Conventional tablets

Excipients are utilized in traditional tablets to keep BAF in a compressible mass that can be crushed to release Drug Material into body fluids. As a result, the tablet has earned the moniker of "basic tablet" [3]. The regular tablet is most widely used for rapid-release tablets [3–6]. In addition to their use in medicine, conventional tablets have been produced for herbal preparations, nutraceuticals, and even probiotic bacteria [7–9]. In recent medication development trends, customized drug materials such as nanosuspension, liquid-solid, and solid dispersion drug materials are replacing regular tablets [10–12].

Excipients in traditional tablets are used to contain drug in a compressible mass that can be crushed to release BAF from the excipient into body fluids. As a result, the tablet is known as a simple tablet [3]. For instant release tablets, the standard tablet is most commonly utilized [3–6]. Conventional tablets have been designed for herbal preparations, nutraceuticals, and even probiotic microorganisms in addition to their application in medicine [7–9]. In recent medication development trends, customized BAFs such as nanosuspension, liquid-solid, and solid dispersion drug are replacing regular tablets [10–12]. The survival of bacteria in the excipient, which is referred to as viability in the probiotic tablet, is also regarded as a significant element in formulation optimization [8].

The formulation factors used as independent variables in the optimization of a conventional tablet include fillers, binders, disintegrants, glidants, and lubricants [5, 7]. In addition to formulation factors, process parameters are also involved in the development of conventional tablet preparations, which include the speed and duration of a mixing [7].

Several experimental designs that have been used for the development of conventional tablets include a variety of factorial designs [6, 9], central composite design [8, 11, 15], Box- Behnken design [4, 16, 17], simplex lattice design [7], simplex centroid design [13], optimal mixture design [18].

Fast disintegrating tablet (FDT)

FDT is a preparation with excipients capable of disintegrating in a liquid atmosphere in less than 1 minute. There are two ways to use FDT: dissolved in water and then drunk, and put in the mouth until the excipient disintegrates in the mouth. Tablets with a second use are referred to as orodispersible tablets (ODT). The purpose of FDT is to increase bioavailability in the pre-gastric area, increase the therapeutic effect, and increase drug adherence and acceptance in geriatric and pediatric patients [19–21].

Several quality characteristics in FDT tablets are of particular relevance, in addition to the physical quality parameters that apply to all tablets. Disintegration time with criteria that were faster than normal tablets, tablet wetting time, water absorption ratio, drug release, and flavor were the factors that were focused on while developing FDT excipients [22, 23]. The intended quality metrics, as well as the qualities of additives that affected these parameters, such as disintegrants and sweeteners, might be studied. The disintegrant material employed in FDT might be either a mixture or a super disintegrant [24].
Experimental designs that have been used for the development of FDT excipients include factorial designs [22, 23, 25], central composite design [1, 26], Box-Behnken design [27, 28], simplex lattice design [19, 20], simplex centroid design [29].

Effervescent tablets are tablet preparations that release CO2 when NaHCO3 reacts with organic acids, allowing them to disintegrate and disperse quickly in water. This medication was created for individuals who have trouble swallowing tablets, such as the elderly and children, as well as those who have dysphagia. Preparation was also produced to improve the therapeutic impact [30, 31].

Effervescent preparations, in addition to having physical quality parameters such as tablets in general, must also have a taste that is acceptable to the patient. In addition, foaming time, CO2 content, and pH are also important parameters in the development of effervescent preparations. Thus, formulation attributes that are important to maintaining these quality parameters are sweeteners and the combination of NaHCO3 and organic acids [31].

The experimental design approach to the development of effervescent preparations is still limited. Studies that have been reported have demonstrated the use of factorial and central composite designs [30–32].

Tablet oral mucoadhesive

Bioadhesives, or surfaces that can link to a biological surface, such as the mucosa around the mouth, are produced by excipients in mucoadhesive oral tablets, allowing the preparation to stick in the mouth. The two varieties of this preparation are buccal tablets, which are connected to the mucosa of the cheek area, and sublingual tablets, which are attached to the area under the tongue. The medicine is released into the mouth for rapid absorption through the permeable blood vessels surrounding the oral mucosa, avoiding gastric acid destruction and first-pass effects in the liver. The most prevalent medications produced in this procedure are peptide drugs. Usually, the drugs made in this preparation are peptide drugs. In addition, this preparation can be intended also to provide a local effect on the mouth [33, 34].

Modified release tablet

Excipients in modified-release tablets have the ability to hold the drug in such a way that its release can be controlled. This preparation is intended to increase the duration of action of the drug and reduce toxicity. Several excipients have been developed: hydrophilic excipients and osmotic pore excipients [48–50].

Gastroretentive tablet

Gastroretentive tablets can persist in the stomach. It was intended to increase the bioavailability of the drug in the stomach or maintain a local therapeutic effect on the stomach. There are several types of gastroretentive excipients: excipients that float in gastric fluid with low foaming or density mechanism, bioadhesive excipients, excipients that expand in gastric fluid, and excipients that sink in gastric fluid with a high-density mechanism. Several preparations with excipient combinations have also been developed [16, 27, 39–44].
The drug release profile is the typical quality parameter of this preparation because the objective of this excipient is to modify drug release. As a result, the elements that operate to contain the medication material are the formulation features that need to be adjusted. The formulation attribute for hydrophilic excipients is hydrophilic polymeric polymers. The formulation attribute for osmotic pore excipients is in situ pore-forming polymeric polymers [51–53]. The factorial design, central composite design, Box-Behnken design, and simplex centroid design have all been used in the creation of modified loose dosage forms [54–56].

Colon targeted tablets

Tablets that are colon-targeted do not break down in the digestive tract until they reach the small intestine. This formulation was designed to have a local therapeutic impact, similar to how antibiotics are used to treat infections of the large intestine. These formulations can be used to boost protein and peptide drug absorption [59, 60].

The ability of the dosage form to endure degradation in the gastrointestinal tract, the drug release profile in the large intestine, and the percentage of drug entrapment are all quality characteristics to consider in this preparation. Coating materials and hydrophilic polymer excipients are two formulation properties that must be maintained [61, 62]. The experimental designs that have been used, such as design factorial and central composite design [61, 62], are still limited.

CONCLUSION

The experimental design approach has become a new trend in the development of various tablet excipients. The various experimental designs, the factorial design is the most chosen because of its flexibility. In general, the development of effervescent, oral mucoadhesive, and colon targeted excipients, research with an experimental design approach is still limited to a small number of experiment design variations.

FUNDING

Nil

AUTHORS CONTRIBUTIONS

All authors have contributed equally.

CONFLICT OF INTERESTS

Declared none

REFERENCES

1. Singh S, Prajapati K, Pathak AK, Mishra A. Formulation and evaluation of floating tablet of captopril. Int J PharmTech Res. 2011;3:333-41.

2. Natoli D, Levin M, Tygian I, Liu L. Development, optimization, and scale-up process parameters: tablet compression. In: Developing solid oral dosage forms. Elsevier; 2017, p. 917-51.

3. Pratiwi PD, Nugroho AK, Lukitangingsih E. Optimasi tablet lepas cepat levofoksasin hidroklorida menggunakan crosipovidone sebagai disintegran dan studi disoluji efisiensi Majalah Farmasutik. 2020;16(1):58-63. doi: 10.22146/farmasutik.v16i1.48352.

4. Akhtar MF, Hanif M, Majeed A, Shah S. Formulation development and optimization of captopril containing tablets through Box-Behnken design. Lat Am J Pharm. 2018;37:1414-23.

5. Alpizar Ramos S, Gonzalez-de la Parra M. Application of the sequential design of experiments to develop ibuprofen (400 mg) tablets by direct compression. Asian J Chem Pharm Sci. 2017;2:10-5.

6. Bajwa PS, Sharma J, Bhargava A, Sharma S, Sharma AR, Raina BR. Design and development of immediate-release tablets of terbutaline sulfate using 32 factorial statistical design. APJPS. 2018;5(1):47-52. doi: 10.21276/apjps.2018.5.11.

7. Damayanti D, Sari IP, Sulaiman TN, Bestari AN, Setiawan IM. The formulation of pancing (Costus speciosus) extracts tablet by using Avicel®Ph 200 as filler-binder and amylog as disintegration agent. Indonesian J Pharm. 2018;29(1). doi: 10.14499/indonesianjpharm29iss1pp29.

8. Huq T, Vu KD, Riedl B, Bouchard H, Jan J, Lacroix M. Development of probiotic tablet using alginate, pectin, and cellulose nanocrystals as excipients. Carbohydrate. 2016;2(3):1967-78. doi: 10.1007/s10570-016-0905-2.

9. Hadisoegiwiyo L, Soegianto L, Ermiva M, Wijaya I, Santoso SD, Tania N. Formulation development and optimization of tablet containing a combination of Salam (Syzygium Polyanthum) and Sambilito (Andrographis paniculata) ethanolic extracts. Int J Pharm Pharm Sci. 2016;8:267-73.

10. Prapajati DB, Rao MS, Barot MT. Development, optimization and evaluation of lisinopril compact tablet of aripiprazole by using factorial design. Int J Pharcacol Res. 2020;12.

11. Tong Y, Zhang P, Dang L, Wei H. Monitoring of co-crystallization of ethamizamide–saccharin: insight into the kinetic process by in situ Raman spectroscopy. Chem Eng Res Des. 2016;109:249-57. doi: 10.1016/j.cherd.2016.01.032.

12. Dhand M, Jalpa M, Ramesh P, Kalpesh P, Jayant C. Formulation, evaluation and optimization of the felodipine nanosuspension to be used for direct compression to tablet for in vitro dissolution enhancement. Pak J Pharm Sci. 2016;29:1927-36.

13. Aminouraq A, Choi SR. The interaction of a binary/ternary interactive mixture of hydrophobic-hydrophilic materials on the drug distribution and drug release performance in the tablet formulation. IOP Conf Ser: Mater Sci Eng. 2017;176:1-6. doi: 10.1088/1757-899X/176/1/012006.

14. Asif M, Yasir M, Bhattacharya A, Bajpai M. Formulation and evaluation of gastroretentive dosage form for fluvastatin sodium. Pharm Glob Int J Comp Pharm. 2010;1:1-4.

15. Bushra R, Shaoba MH, Ali H, Zafar F, Naeem MI, Aslam N. Formulation design and optimization of aceclofenac tablets (100 mg) using central composite design with response surface methodology. Latin American Journal of Pharmacy. 2014;33:1009-18.

16. Hanif M, Abbas G. pH-responsive alginate–pectin polymeric rafts and their characterization. Adv Polym Techn. 2018;37(5):496-506. doi: 10.1002/adpt.21808.

17. Kushare SS, Gattani SG. Design and development of a microwave generated lactose monohydrate-microcrystalline cellulose-based multifunctional excipient composites for tablet formulation using box-Behnken design. J Drug Deliv Ther. 2019;9:1-7.

18. Oh DJ, Lee BC, Hwang SJ. Solubility of simvastatin and lovastatin in mixtures of dichloromethane and supercritical carbon dioxide. J Chem Eng Data. 2007;52(4):275-9. doi: 10.1021/je060019h.

19. Farahiyah D, Sulaiman TN. Pengaruhan kombinasi superdisintegran crosipovidone dan croscarmellose sodium pada sifat fisik dan disoluji fast disintegrating tablet hidroklorotiamid. Maj Farm. 2020;17:1-40.
23. Wulandari RS, Fudoli A, Herowati R. Optimization formula for double layer tablets with combination of Superdisintegrant primogel®, prémellose® and component effervescent with method simplex lattice design. Chikm Pharmaceutical Scientific Journal 2019;2:39-47.

24. Dave V, Yadav RR, Ahuja R, Yadav S. Formulation design and optimization of novel fast dissolving tablet of chlorphenamine maleate by using optimization techniques. Bull Fac Pharm Cairo Univ. 2017;55(1):31-9. doi: 10.1016/j.bfopcu.2016.12.001.

25. Kumor RK, Diskin Posner I, Goldberg I. Solid-state supramolecular chemistry of porphyrins. Ligand-bridged tetraphenylmetalloporphyrin dimers. J Inclus Phenom Chem. 2000;37(1):219-30. doi: 10.1023/A:1008181195159.

26. Talère C, Ylima Z, Abhra S, Yehualaw A. Formulation, in vitro characterization and optimization of taste-masked orally disintegrating co-trimoxazole tablet by direct compression. Metode simplex lattice design. Chmik Pharmaceutical Scientific Journal 2019;2:39-47.

27. Meka L, Kordan B, Chinnala KM, Vobalaboina V, Yasmanis MR. Preparation of a matrix type multiple-unit gastro retentive floating drug delivery system for captopril based on gas formation technique in vitro evaluation. AAPS PharmSciTech. 2008;9(2):612-9. doi: 10.1208/s12249-008-9009-4, PMID 18459051.

28. Patel D, Sawant KC. Self micro-emuflizing drug delivery system: formulation development and bio pharmaceuetical evaluation of lipophilic drugs. Curr Drug Deliv. 2009;6(4):419-24. doi: 10.2174/156720109789000519, PMID 19534704.

29. Saha T, Ahmad N, Hasan I, Reza MS. Preparation, characterization and optimization of mucoadhesive domperidone tablets by box Behken design. Dhaka Univ J Pharm Sci 2020;19(1):65-76. doi: 10.3329/dujps.v19i1.47802.

30. Sugimoto T, Yamazaki N, Hayashi T, Yuba E, Harada A, Kotaka A, Shinde C, Kumei T, Sumida Y, Fukushima M, Munekata Y, Maruyama K, Kono K. Preparation of dual-stimuli-responsive liposomes using methacrylate-based copolymers with pH and temperature sensitivities for precisely controlled release. CoBoids Surf B Biointerfaces. 2017;15:449-58. doi: 10.1016/j.colsurf.b.2017.04.043, PMID 28463812.

31. Moinuddin SM, Ruan S, Huang Y, Gao Q, Shi Q, Cai B, Cai T. Facile formation of co-amorphous atenolol and hydrochlorothiazide based on gas formation floating bilayer tablet for the treatment of hypertension. Int J Pharm. 2017;521(1):393-400. doi: 10.1016/j.ijpharm.2017.09.020, PMID 28893583.

32. Yang Y, Waring JF. Genomic approaches to drug-drug interactions. In: CEO APLPDP and, editor. Drug-drug interactions in pharmacological development [Internet]. John Wiley and Sons, Inc, 2007. p. 113-30.

33. Syed SM, Lahoti S, Syed AA. Controlled porosity osmotic tablet of atenolol: in vitro and in vivo evaluation. Marmara Pharm J. 2016;20(3):325-32. doi: 10.12159/mjps.20162040694.

34. Moin A, Roohi NKE, Rizvi SMD, Ashraf SA, Siddiqui AJ, Patel M, Ahmed SM, Gowda DV, Adam M. Design and formulation of release buccal bilayer tablets of carvedilol. Int J Health Sci. 2018;6:54.

35. Raval J, Yagnik A. Formulation and evaluation of buccoadhesive tablets of buspirone hydrochloride. Highlights Med Sci. 2021;2:14-26.

36. Minka L, Kordan B, Chinnala KM, Vobalaboina V, Yasmanis MR. Preparation of a matrix type multiple-unit gastro retentive floating drug delivery system for captopril based on gas formation technique in vitro evaluation. AAPS PharmSciTech. 2008;9(2):612-9. doi: 10.1208/s12249-008-9009-4, PMID 18459051.

37. Patel D, Sawant KC. Self micro-emulsifying drug delivery system: formulation development and bio pharmaceuticall evaluation of lipophilic drugs. Curr Drug Deliv. 2009;6(4):419-24. doi: 10.2174/156720109789000519, PMID 19534704.
polymeric nanosponge tablets with enhanced solubility for combination therapy. RSC Adv. 2020;10(57):34869-84. doi: 10.1039/D0RA06611G.

55. Gunda RK, Manchineni PR. Statistical design and optimization of sustained-release formulations of pravastatin. Turk J Pharm Sci. 2020;17(2):221-7. doi: 10.4274/tjps.galenos.2019.70048, PMID 32454783.

56. Iffat W, Shoaib MH, Yousuf RI. Hydrophillic and hydrophobic polymer combination: formulation development and optimization of nicorandil sustained release tablet. Lat Am J Pharm. 2017;36:907-17.

57. Kraisit P. Impact of hydroxypropyl methylcellulose (HPMC) type and concentration on the swelling and release properties of propranolol hydrochloride matrix tablets using a simplex centroid design. Int J App Pharm. 2019;11:143-51. doi: 10.22159/ijap.2019v11i2.31127.

58. Morovati A, Ghaffari A, Erfani Jabarian L, Mehramizi A. Single layer extended-release two-in-one guaifenesin matrix tablet: Formulation method, optimization, release kinetics evaluation and its comparison with mucinex® using box-behnken design. Iran J Pharm Res. 2017;16(4):1349-69. PMID 29552045.

59. Parmar K, Patel J, Sheth N. Self nano-emulsifying drug delivery system for Embelin: Design, characterization and in vitro studies. Asian J Pharm Sci. 2015;10(5):396-404. doi: 10.1016/j.ajps.2015.04.006.

60. Bharti C, Nagaich U, Pandey J, Jain S, Jain N. Development of nitazoxanide-loaded colon-targeted formulation for parasitic intestinal infections: centre composite design-based optimization and characterization. Future J Pharm Sci. 2020;6:1-17.

61. Kotadiya RM, Savant NP, Upadhyay UM. Colon targeted Moringa gum compression coated tablets of capcitabine: A factorial approach. Pharmacophore. 2019;10(1).

62. Kim MS, Kim JS, Hwang SJ. Enhancement of wettability and dissolution properties of cilostazol using the supercritical anti-solvent process: effect of various additives. Chem Pharm Bull (Tokyo). 2010;58(2):230-3. doi: 10.1248/cpb.58.230, PMID 20118585.