Harlequin Syndrome after Thoracoscopic Repair of a Child with Tracheoesophageal Fistula (TEF)

Richard Wagner1 Martin Lacher1 Andreas Merkenschlager2 Moritz Markel1

1 Klinik und Poliklinik für Kinderchirurgie, Universitätsklinikum Leipzig, Leipzig, Sachsen, Germany
2 Klinik für Neuropädiatrie, Universitätsklinikum Leipzig Klinik und Poliklinik für Kinder- und Jugendmedizin, Leipzig, Sachsen, Germany

Address for correspondence Moritz Markel, MD, Department of Pediatric Surgery, Universitätsklinikum Leipzig, Liebigstraße 20a, Leipzig 04103, Germany (e-mail: moritz.markel@medizin.uni-leipzig.de).

Eur J Pediatr Surg Rep 2019;7:e63–e65.

Abstract

Harlequin syndrome (HS) is a rare dysautonomia of the sympathetic nervous system leading to asymmetric facial flushing and sweating. In the literature, only a few cases of HS after thoracoscopic tracheoesophageal fistula (TEF) repair are reported. We report on a newborn with TEF who developed HS after thoracoscopic repair. On the first day of life, the girl (3,480 g, gestation age: 41 week) underwent thoracoscopic repair of a type C esophageal atresia (TEF; OR time 105 minute) without complications. The postoperative course was uneventful, the patient swallowed and thrived well and did not require esophageal dilations. At 2 years of age, missing facial flushing, transpiration, and warming on the right side of her face during agitation were noticed. As no further intervention was required, the girl and her parents adapted well to the symptoms. Our report shows that the late onset of HS after the surgical procedure is unlikely a direct causal relation to the thoracoscopic operation but rather a shared embryological pathogenesis, like a neurocristopathy.

Keywords

► Harlequin syndrome
► esophageal atresia
► thoracoscopic repair
► neurocristopathy

New Insights and the Importance for the Pediatric Surgeon

Harlequin syndrome is a rare occurrence after esophageal atresia repair with unknown etiology.

Introduction

Harlequin syndrome (HS) is a very rare and seemingly benign condition characterized by unilateral loss of facial sympathetic functions. It was first described by Lance, an Australian professor of neurology, in 1988 in adults who showed unilateral flushing and sweating. He hypothesized that these syndromes occurred due to an idiopathic ipsilateral affection of the sympathetic outflow of the third root.1

Since then, several reports and reviews have been published on this disorder. The cause of HS can be idiopathic and iatrogenic in both adults and children.1–4 Most of the pediatric cases are related to a certain cause, for example, surgical procedure close to the autonomous nervous system in the upper chest, whereas the pathogenesis of congenital cases of the syndrome is still unclear. Leading to disturbance of autonomous functions like sweating and thermoregulation of the skin HS can be regarded as autonomous dysautonomia. It is different from other partial dysautonomias, although etiological and clinical overlap seems possible.5 We report the third case of postoperative HS following thoracoscopic repair of a tracheoesophageal fistula (TEF).6–8

Case Report

A Caucasian baby girl of healthy parents was delivered spontaneously in the 41th week of gestation with a birth weight of...
Figure 1: Girl with a loss of facial flushing and warming of the right side after exertion (age of 3 years; picture shown with parental approval).
nervous system during embryogenesis can result in dysregulated sympathetic innervation. There is evidence for an association of EA and autonomic disturbances such as hyperhidrosis during feeding and hyperthermia. Moreover, the association of EA with certain cardiovascular anomalies may suggest an underlying neurocristopathy of the caudal pharyngeal arch. In this context, one case of HS associated with rare cardiovascular anomalies has been described. It is tempting to speculate that both conditions, EA and HS, could be a result of disturbed neural crest migration. Due to the very limited number of reported cases of HS in children and in particular in association with EA, this conclusion is only hypothetical and further research addressing the pathogenesis of HS is needed.

Conclusion

We report the third case of HS in a 3-year-old girl with EA after uncomplicated thoracoscopic repair. The late presentation of the HS in these cases makes a direct causal relation to the surgical procedure implausible. HS may therefore be a (primary) neurocristopathy associated with EA/TEF.

Conflict of Interest

None.

References

1. Lance JW, Drummond PD, Gandevia SC, Morris JG. Harlequin syndrome: the sudden onset of unilateral flushing and sweating. J Neurol Neurosurg Psychiatry 1988;51(05):635–642
2. Irtan S, Auvrignon A. Harlequin syndrome after stellate ganglia neuroblastoma resection. J Pediatr 2016;176:215–215.e1
3. Kang JH, Shahzad Zafar M, Werner KE. Child neurology: an infant with episodic facial flushing: a rare case and review of congenital harlequin syndrome. Neurology 2018;91(06):278–281
4. Jung JM, Lee MH, Won CH, et al. Iatrogenic harlequin syndrome: a new case. Ann Dermatol 2015;27(01):101–102
5. Jain P, Arya R, Jaryal A, Gulati S. Idiopathic harlequin syndrome: a pediatric case. J Child Neurol 2013;28(04):527–530
6. Lacher M, Kuebler JF, Dingemann J, Ure BM. Minimal invasive surgery in the newborn: current status and evidence. Semin Pediatr Surg 2014;23(05):249–256
7. Wu Y, Kuang H, Lv T, Wu C. Comparison of clinical outcomes between open and thoracoscopic repair for esophageal atresia with tracheoesophageal fistula: a systematic review and meta-analysis. Pediatr Surg Int 2017;33(11):1147–1157
8. Mascianica KA, Smigiel R, Patkowski D. The Harlequin phenomenon after thoracoscopic repair of esophageal atresia and tracheoesophageal fistula: is there any coincidence? J Pediatr Surg Case Rep 2015;3:473–475
9. Padda GS, Cruz DA, Silen ML, Krock JL. Skin conductance responses in pediatric Harlequin syndrome. Paediatri Anaesth 1999;9(02):159–162
10. Willaert WI, Scheltinga MR, Steenhuisen SF, Hiel JA. Harlequin syndrome: two new cases and a management proposal. Acta Neurol Belg 2009;109(03):214–220
11. Swan MC, Nicolaou M, Paes TR. Iatrogenic harlequin syndrome. Postgrad Med J 2003;79(931):278
12. Cozzi DA, Mele E, Totonelli G, Ceccanti S, Frediani S, Cozzi F. Asymmetric sweating and flushing in infants with esophageal atresia. J Pediatr Surg 2009;44(06):E27–E29
13. Yamaguchi H, Yokoi A, Kamimura K, Ishida Y, Toyoshima D, Maruyama A. Harlequin Syndrome. Indian J Pediatr 2018;85(08):700–701
14. Holcomb GW III. Thoracoscopic surgery for esophageal atresia. Pediatr Surg Int 2017;33(04):475–481
15. Lee DH, Seong JY, Yoon TM, Lee JK, Lim SC. Harlequin syndrome and Horner syndrome after neck schwannoma excision in a pediatric patient: a case report. Medicine (Baltimore) 2017;96(45):e8548
16. Cozzi F, Myers NA, Piacenti S, et al. Maturational dysautonomia and facial anomalies associated with esophageal atresia: support for neural crest involvement. J Pediatr Surg 1993;28(06):798–801
17. Cozzi DA, Zani A, Conforti A, Colarizi P, Moretti C, Cozzi F. Pathogenesis of apparent life-threatening events in infants with esophageal atresia. Pediatr Pulmonol 2006;41(05):488–493
18. Morini F, Cozzi DA, Ilari M, Casati A, Cozzi F. Pattern of cardiovascular anomalies associated with esophageal atresia: support for a caudal pharyngeal arch neurocristopathy. Pediatr Res 2001;50(05):565–568
19. Góes Junior AMO, Koury Junior A, Paschoal EHA, Jeha SAH. Three extremely rare findings in the same patient: Harlequin syndrome, thyrocervical trunk aneurysm, and systemic-pulmonary arterio-arterial fistula. Ann Vasc Surg 2017;45:267.e7–267.e12