Disease progression despite protective HLA expression in an HIV-infected transmission pair

Jacqui Brener1*, Astrid Gall2, Rebecca Batorsky3, Lynn Riddell4, Soren Buus5, Ellen Leitman1, Paul Kellam2,6, Todd Allen3, Philip Goulder1 and Philippa C Matthews7

Abstract

Background: The precise immune responses mediated by HLA class I molecules such as HLA-B*27:05 and HLA-B*57:01 that protect against HIV disease progression remain unclear. We studied a CRF01_AE clade HIV infected donor-recipient transmission pair in which the recipient expressed both HLA-B*27:05 and HLA-B*57:01.

Results: Within 4.5 years of diagnosis, the recipient had progressed to meet criteria for antiretroviral therapy initiation. We employed ultra-deep sequencing of the full-length virus genome in both donor and recipient as an unbiased approach by which to identify specific viral mutations selected in association with progression. Using a heat map method to highlight differences in the viral sequences between donor and recipient, we demonstrated that the majority of the recipient’s mutations outside of Env were within epitopes restricted by HLA-B*27:05 and HLA-B*57:01, including the well-studied Gag epitopes. The donor, who also expressed HLA alleles associated with disease protection, HLA-A*32:01/B*13:02/B*14:01, showed selection of mutations in parallel with disease progression within epitopes restricted by these protective alleles.

Conclusions: These studies of full-length viral sequences in a transmission pair, both of whom expressed protective HLA alleles but nevertheless failed to control viremia, are consistent with previous reports pointing to the critical role of Gag-specific CD8+ T cell responses restricted by protective HLA molecules in maintaining immune control of HIV infection. The transmission of subtype CRF01_AE clade infection may have contributed to accelerated disease progression in this pair as a result of clade-specific sequence differences in immunodominant epitopes.

Keywords: HIV-1, HLA, CTL response, CRF01_AE Clade, Transmission pair, Ultra-deep sequencing

Background

Human leukocyte antigen (HLA) class I genotype has been consistently linked to outcome of HIV infection [1–5]. Among infected Caucasians, HLA-B*57 and HLA-B*27 are the best predictors of immune control [6, 7]. A better understanding of disease progression in subjects expressing protective HLA alleles such as these provides potentially valuable insights into the fundamental basis of HLA-mediated immune control, for which many distinct mechanisms have been proposed [8]. One mechanism believed to be important in contributing to the HLA associations with characteristic disease outcomes is the targeting of specific cytotoxic T lymphocyte (CTL) epitopes [9–17]. The subtype of HIV infection may therefore impact on disease control, by affecting the availability of certain specific T cell epitopes [18–20]. It remains unclear specifically which epitopes are most likely to induce the most effective anti-HIV immune responses. These considerations are important both for understanding the mechanisms of HLA-mediated immune control of viral replication and because CTL may play a critical role in HIV cure strategies [21].

Most studies of immune control in HIV-infected subjects expressing protective HLA alleles such as HLA-B*57:01 and B*27:05 have focused on Gag, and in particular the
dominant CD8+ T cell responses targeting epitopes within p24 Gag. We investigated the case of an HIV infected transmission pair in which the recipient expressed both HLA-B*27:05 and HLA-57:01. Despite expression of these protective HLA alleles, disease progression occurred over four years from aviremia (viral load <50 copies/ml plasma) to antiretroviral therapy (ART) initiation, following a decline in absolute CD4 count to <350 cells/mm³. This study pursues the hypothesis that the CD8+ T cell epitopes important for immune control are those in which escape is selected in association with, or prior to, disease progression. Conversely, if escape has not occurred in parallel with disease progression, this would imply responses that do not protect against progression. We ultra-deep sequenced full-length HIV genomes using the Illumina MiSeq platform in both donor and recipient in order to define the mutations associated with disease progression.

Results
Progression in a UK transmission pair with CRF01_AE virus infection
We studied an adult Caucasian transmission pair from the UK. The male donor (HLA-A*02:01/32:01 B*13:02/14:01 C*06:02/08:02) is believed to have acquired HIV infection in Thailand, and subsequently to have infected the female recipient (HLA-A*02:02/01 B*27:05/57:01 C*01:02/06:02) in the UK. Both partners were diagnosed more than 2 years later when the recipient was HIV-tested during pregnancy (referred to as ‘time 0’).

Using maximum likelihood analysis and Rega HIV-1 Subtyping Tool, we confirmed that the transmission pair was infected with CRF01_AE clade virus (Figure 1a and data not shown), the recombinant virus prevalent in Thailand [22, 23]. The close phylogenetic relationship of donor and recipient viruses suggests that these subjects are likely to be transmission partners (Figure 1b). As evidence to support the direction of transmission suggested by the clinical history, we found that an HLA-B*14:01 associated escape mutation, Gag-K302R (within the Gag-DAA9 epitope [24]) present in the HLA-B*14:01-positive donor’s autologous virus, was transmitted to the HLA-B*14:01-negative recipient and subsequently reverted to wild-type in the recipient (Figure 2). In contrast, the HLA-B*27:05 and HLA-B*57:01-driven mutants observed in the recipient were not present in the donor.

![Figure 1](image-url)
The HLA-B*27:05/57:01-positive recipient progressed to an absolute CD4+ T cell count of <350 cells/mm³, meeting the criteria for initiation of ART within 4.5 years of diagnosis (Figure 3b). The donor also progressed to ART initiation over a similar time period from diagnosis (Figure 3a) despite expressing three HLA molecules that have also been associated with some degree of protection against disease progression, HLA-A*32:01, HLA-B*13:02 and HLA-B*14:01 [6, 7, 25].

HLA-B*27 and -B*57 Gag escape mutations in the recipient

We initially focused on the well-studied Gag epitopes restricted by HLA-B*14, B*27 and B*57 identified by ultra-deep sequencing of an HIV transmission pair aligned to CRF01_AE clade consensus (bold) and B clade consensus sequence (grey). The frequency of minor variant haplotypes at the HLA-B*57 Gag-ISW9, HLA-B*57 Gag-KF11, HLA-B*57 Gag-TW10, HLA-B*27 Gag-KK10, and HLA-B*14 Gag-D9 epitopes above a cut-off of 1% are shown. Depth of coverage ranges from 560 to 240,000 reads. Position 146 (flanking HLA-B*57 Gag-ISW9), associated with selection of an HLA-B*57/58:01-selected A146P processing mutation in B clade infection, is also shown. Minor variant frequencies are rounded off to the nearest 1%.

Only six out of 20 HLA-B*27/B*57-restricted epitopes (HLA-B*57 Gag-TW10, Pol-IW9, Pol-KF9; HLA-B*27 Gag-IK9, Gag-KK10, Pol-KY9) previously shown to drive the selection of escape mutants [24], share the same consensus sequence in B and AE clades (Figure 4).

In the HLA-B*27:05/57:01-positive recipient, the earliest sample was available for sequencing at 20 months following diagnosis, by which time progression was already evident (Figure 3b). The T242N mutation within the B*57:01-restricted epitope TSTLQEIQGW (Gag 240–249, ‘TW10’) had already reached fixation by this time-point, being present in 100% of the intra-host population detected by ultra-deep sequencing (Figure 2). The other two HLA-B*57:01-restricted Gag epitopes, ISPRTLNAW (Gag 147–155, ‘ISW9’) and KAFSPEVIPMF (Gag 162–172, ‘KF11’) in consensus CRF01_AE Clade HIV already carry polymorphisms A146P/I147L and A163G/S165N that are well-characterized escape mutants within the B clade versions of these epitopes (Figure 4) [29, 30].

To investigate which HIV-specific CD8+ T cell responses were detectable at the earliest timepoint available in the recipient (20 months post-diagnosis), we undertook IFN-γ...
elispot assays using a panel of 410 overlapping 18mer peptides spanning the HIV proteome [31], and identified responses to 6 of these 18mers (Figure 5a). The dominant Gag responses were to the HLA-B*27-restricted epitope KRWIILGLNK (Gag 263–272, ‘KK10’), and to the B*57:01-restricted epitope TSTLQEQIGW. In addition, there was a subdominant Vpr response and a high frequency response to the HLA-B*27:05-restricted epitope in Integrase, KRKGIGGYY (Pol 901-909, ‘KY9’), a response that is typically co-dominant with HLA-B*27:05 Gag-KK10 [32]. Whereas the HLA-B*27:05-KK10 and HLA-B*57:01-TW10 epitopes had escaped by the first timepoint (20 months in the recipient), this was not the case for the other epitopes. HLA-B*27:05 Pol-KY9 did not drive selection of escape even at 52 months post-diagnosis. These data support the hypothesis that the dominant Gag epitopes, including HLA-B*27:05-KK10 and the HLA-B*57:01-TW10, are critical for maintaining immune control.

Although an IFN-γ ELISPOT response to the TW10 epitope was observed, no response to the autologous T242N variant was observed, and no CD8+ T cell responses were detectable in this subject to either the B clade or AE clade version of these ISW9 and KF11 epitopes (Figure 5). At 20 months after diagnosis, the HLA-B*27-restricted epitope KRWIILGLNK (Gag 263–272, ‘KK10’), believed to play an important role in HLA-B*27-mediated immune control of HIV [8, 26–28, 33], also contained the escape mutation N271H in 100% of the recipient sequences (Figure 2), despite persistence of a substantial ex vivo T cell response to the wild type and N271H variant epitopes (Figure 5b, c). Thus, in the case of the HLA-B*27:05/57:01-positive recipient, disease progression was seen in association with mutations in all four HLA-B27:05/*57:01-restricted p24 Gag epitopes.

The majority of sequence changes selected in the recipient are escape polymorphisms in known epitopes

To investigate whether other sequence changes outside of the well-studied region of p24 Gag might also have contributed to progression in the HLA-B*27:05/57:01-positive recipient, we next examined the ultra-deep sequence data of the full-length HIV genome. Heat maps were generated in order to visualize the proportion of amino acid variants at each position compared to a given baseline. We identified all sites of complete amino acid mismatch between the donor and recipient that reflect inter-host evolution using the donor consensus sequence at 8 months as the baseline for comparison to the recipient (Figure 6a). We also identified sites of amino acid diversity in the recipient at 52 months, demonstrating intra-host evolution, using the recipient consensus sequence at the same timepoint as the baseline for comparison (Figure 6b). The heat map analyses that were generated highlight the location of residues changing most rapidly.
in the recipient and which arose within CD8+ T cell epitopes (Figures 6, 7).

Using the donor consensus sequence at 8 months post-diagnosis as the closest approximation of the transmitted founder virus, we identified 16 residues across the full-length genome at which the residue in the donor (including minor variant residues) had been entirely replaced in the recipient by 52 months post-diagnosis. Excluding four residues within Env that are most likely to be susceptible to changes driven by neutralizing antibody

HLA-B*57-Restricted Epitopes	B Clade Consensus:	"AVRHEPRIE"	L
Gag-KW10 CRF01_AE Clade Consensus:	-	-	-
Donor Consensus (8 months):	-	-	-
Recipient Consensus (20 months):	-	-	-
Recipient Consensus (52 months):	-	-	-

HLA-B*27-Restricted Epitopes	B Clade Consensus:	"AVRHEPRIE"	L
Gag-KW10 CRF01_AE Clade Consensus:	-	-	-
Donor Consensus (8 months):	-	-	-
Recipient Consensus (20 months):	-	-	-
Recipient Consensus (52 months):	-	-	-

Figure 4 Alignment of HLA-B*27:05 and HLA-B*57:01-restricted epitopes in an HIV-1 transmission pair, showing sequences derived from donor and recipient, compared to consensus sequences for B clade and CRF01_AE clade. Known escape mutations in B clade infection are indicated in bold.
responses, eight of the remaining 12 were in or flanking known epitopes, in seven cases either restricted by HLA-B*27:05 or HLA-B*57:01 (Figure 7). None of these sites are within epitopes restricted by HLA alleles expressed by the donor, indicating that these sequence changes are attributable to active selection in the recipient, rather than reversion of transmitted mutants selected in the donor.
Although these data from this single transmission pair do not definitively limit the most effective CD8+ T cell responses to this group of seven epitopes, these data are consistent with the hypothesis that the most effective responses are among this group. Of note, these do not include many of the well-studied HLA-B*27:05/57:01-restricted epitopes that, like the Gag epitopes, ISPRTLNAW (Gag 147–155, 'ISW9') and KAFSPEVI-PMF (Gag 162–172, 'KF11'), are mutated in AE clade compared to B clade virus (Figure 4), and in this transmission pair did not differ between donor and recipient at the timepoints compared.

To identify additional sites across the full-length genome in the recipient that were subject to turnover without having reached fixation yet, we sought sites at which amino acid diversity of at least 10% was present in the intra-host population at 52 months post-diagnosis (Figure 6b, Additional file 1: Figure S1). This demonstrated diversity at only 2.6% of all amino acid residues, of which the majority (1.1%) were in Env, a highly variable region of the genome where mutations are driven largely by neutralizing antibody responses. Of the remaining sites of diversity, 16% were within or flanking recognized HLA-B*27/-B*57 epitopes. In both the donor/recipient.
comparison (Figure 6a) and intra-host diversity plot (Figure 6b) the evolving sites in Gag were frequently within known or predicted CTL epitopes restricted by the recipient’s HLA alleles, whereas those outside of Gag, especially in Env or Nef, were rarely within known or predicted epitopes (Figure 6c, d).

Sequence changes in the donor reflect escape polymorphisms selected in known epitopes

Finally, we examined the sequences in the donor, who progressed despite possessing the protective HLA-A*32:01, HLA-B*13:02 and HLA-B*14:01 alleles. Compared to the full-length CRF01_AE clade consensus sequence, there are six epitopes at which HLA-associated mutations are present in the donor, two of which are in p24 Gag. These are within epitopes restricted by HLA-B*13:02 (Gag 135–143, ‘VV9’) and B*14:01 (Gag 298–306, ‘DA9’) respectively (Additional file 2: Figure S2). Thus, as in the recipient, progression to HIV disease in the donor was associated with mutations in critical p24 Gag epitopes.

Discussion

This study capitalizes on longitudinal data from a well-characterized transmission pair, for whom we were able to maximize the depth (ultra-deep approach) and breadth (full-length HIV genomes) of sequence resolution. This allowed us to quantify precisely the evolution of escape mutations, including minor variants, in the context of what would usually be regarded as a highly favorable combination of HLA alleles, HLA-B*27:05 and HLA-B*57:01. Since both these alleles occur at a very low frequency within the Thai population (approximately 0.2 and 1.4% respectively [34]) finding this haplotype in the context of CRF01_AE clade infection is an ‘accident of nature’ which provides a unique opportunity to study the mechanisms of immune control.

There are conflicting data regarding the extent to which HLA-B*57 may be protective in Thai cohorts. Although a recent study in a particular Thai cohort, where the median CD4+ T cell count was only 86 T cells/mm³, reported that HLA-B*57:01 was protective [34], a parallel study of 116 transmission pairs found no benefit of HLA-B*57 [35]. The latter result fits with the picture we describe in our HLA-B*57-positive recipient, and is consistent with the abrogation of HLA-B*57-restricted Gag epitopes due to pre-existing polymorphisms in CRF01_AE clade virus that represent HLA-B*57 escape mutations. This highlights the extent to which clade of infection may be an important determinant of
immunological and clinical outcomes; even in an individual expressing a favourable combination of HLA alleles that are usually strongly linked to immune control, rapid progression may result in the context of infection with a viral sequence bearing pre-existing escape mutations.

Although HIV is recognised as a highly polymorphic virus, this study demonstrates that viral evolution is frequently constrained to specific amino acid residues, with the success of the CD8+ T cell response dependent on these sites. In fact, significant variability (>10%) was evident within the intra-host population at only 2.6% of amino acid residues in the recipient. Ultra-deep sequencing demonstrated a high degree of conservation within key HLA-B*27:05 and HLA-B*57:01-restricted epitopes (Figure 2), with the exceptions being at pre-defined sites of escape mutation, most often corresponding to anchor residues. This points to selection pressure that is very specifically directed at these particular sites, consistent with previous reports showing that selective escape from CD8+ T cell responses follows constrained evolutionary pathways [36].

Consistent with previous reports [35, 37], in the recipient, we observed the robust selection of the Gag HLA-B*57-selected T242N mutation in the Gag-TW10 epitope, that reaches fixation and is maintained in the host viral population. Within the Gag-KK10 epitope, strong selection pressure drives N271H selection almost to fixation. Subsequent reversion to the wildtype residue in a substantial proportion of the variants does, however, indicate more complexity in the adaption of the autologous virus at this site.

Explaining variation at certain sites is made more complicated by multiple influences on viral polymorphism. For example, Gag P146S is a common variant in CRF01_AE Clade infection (occurring in approximately 9.5% of sequences), but this site is also subject to selection pressure from both HLA-B*13:02 and HLA-B*57:01-mediated T cell responses [12, 18, 24]. Variation at this position in our study could therefore be attributed to selection pressure from either the donor or recipient CD8+ T cell response, or to a founder virus bearing a serine variant rather than the more common proline. An alternative explanation for sequence variation occurring over time in a transmission pair is that more than one transmission event has taken place; the introduction of a new founder virus could then alter the dominant quasispecies. In this instance, re-infection appears unlikely on the basis of phylogeny demonstrating clear clustering of donor and recipient sequences respectively, but cannot be excluded completely due to the limited number of samples analyzed over the time period of follow up.

It is striking that even by applying an unbiased approach to seeking sequence variability across the whole genome, the majority of polymorphisms identified in the recipient were within or flanking known epitopes, with HLA-B*27 and HLA-B*57-restricted epitopes being dominant, and Gag accounting for the greatest number of these. The observations made here, using the approach of this genome-wide search for polymorphisms, therefore corroborate previous data in studies that have used known CD8+ T cell epitopes or IFN-γ ELISpot assays as their starting point to identify sites of immune selection [30, 32, 37].

The unique nature of the circumstances described in this report mean that the findings are difficult to replicate, and can be presented as a case study only. An additional limitation for this transmission pair was lack of information about the precise timing of infection, and absence of samples from timepoints closer to the time of transmission. Furthermore, a lack of data on the epitopes restricted in the context of this rare combination of HLA allele and clade of infection has limited our analysis of epitopes to those that have been described in the context of B clade infection. It is noteworthy, for example, that the B*27:05-KK10 variant selected in the clade AE-infected recipient was N271H that has been rarely observed in B clade infection. In this case, a strong N271H-specific CTL response was observed, which may appear counter-intuitive if N271H is selected as an escape mutant. However, it has been well described with respect to escape mutants that affect T cell receptor recognition, such as the more commonly observed L268M within KK10 [38–40], that a high frequency response can be observed to a TCR-variant when it is recognised by a subset of CTL clones. Despite these caveats, this transmission pair provided a unique insight, gained by full-length ultra-deep sequencing data, supporting the association between the selection of polymorphisms to allow escape from HLA-B*27 and HLA-B*57-restricted epitopes, and loss of immunological control.

Conclusions

The unique opportunity to study CRF01_AE Clade HIV infection longitudinally in the context of a transmission pair with protective HLA alleles, using ultra-deep sequencing and an unbiased approach to full-length sequence analysis, has shown the extent to which the polymorphisms associated with disease progression are constrained to very specific amino acid sites, frequently within Gag-restricted epitopes. The extent to which selection of escape mutations is robust and predictable is surprising given the overall plasticity of the HIV genome. This observation is encouraging for the development of T cell vaccines for which meeting the challenges presented by viral escape is a major consideration.
Methods

Study subjects

This adult Caucasian transmission pair was recruited from the Thames Valley Cohort, UK, previously described [32]. A male donor, infected prior to 2007 subsequently infected his female partner. Both subjects gave written informed consent for their participation. Ethics approval was given by the Oxford Research Ethics Committee.

HLA typing

DNA extraction was performed from whole blood using PureGene reagents (Qiagen, UK). Four-digit high resolution Sequence Based Typing of HLA-A, -B, and -C was performed from genomic DNA in the CLIA/ASHI accredited laboratory of William Hildebrand, PhD, (ABHI) at the University of Oklahoma Health Sciences Center using a locus specific PCR amplification strategy and a heterozygous DNA sequencing methodology for exon 2 and 3 of the class I PCR amplicon. Relevant ambiguities [41] were resolved by homozygous sequencing.

Viral load and CD4 testing

HIV viral load testing was performed using the Roche Amplicor version 1.5 assay (Roche, Switzerland). CD4+ T cell counts were determined by flow cytometry.

RNA extractions and viral amplification using PCR

RNA extractions were performed using the Qiamp Viral RNA Mini Kit (Qiagen, UK). 1 ml aliquots of plasma were centrifuged for 1 h at 21,000 rpm and 860 μl of supernatant removed before proceeding according to the manufacturer’s instructions. Samples with a viral load below 3,000 copies/ml were concentrated by processing 3 aliquots of plasma on the same Qiamp column. PCR amplification of the full HIV genome was performed in four fragments using Superscript III One-Step RT PCR Kit with Platinum Taq High Fidelity enzyme (Invitrogen, UK) as previously described [42].

Ultra-deep sequencing and de novo assembly of consensus sequences

Ultra-deep sequencing of the HIV genome (complete amino acid coding region and partial long terminal repeats) was performed as previously described [43]. Amplicons were pooled for Illumina library preparation, including a unique bar code for each sample, and sequenced using MiSeq 250 bp paired-end technology in a pool of 9, 15 and 27 libraries, respectively [44]. Quality control (removing reads of <50 bp and trimming low-quality bases from the 3’-end of the reads until the median quality of the read was 30) was carried out using QUASR (http://www.sourceforge.net/projects/quasr/). A de novo assembly was constructed using SPAdes version 2.4.0 [45]. Resulting contiguous sequences were aligned with the sequence of the HIV CRF01_AE reference strain CM240 (accession number U54771), and a consensus sequence was generated using Abacas version 1.3.1 and MUMmer version 3.2 [46].

Minor variant analysis

The raw reads were assembled by Vicuna [47] and V-FAT [48] to form a single genome, which represents the majority base at each nucleotide position (the consensus assembly). The reads were then aligned to the consensus assembly using Mosaik [49]. V-Phaser2 [50] was used in order to call variants. This program uses both quality scores as well as covariation between variants (observation of two variants on the same read) to separate real variants from sequencing artifacts. We applied a modified strand bias cut-off to the variant calls. We required the odds-ratio of the appearance of a mutation between the two directions to be larger than 3.

Heat map analysis

Heat maps of intra-host diversity were created using Vprofiler [51] as well as custom programs written in Perl and R. We carried out diversity heat map analysis on the recipient at 52 months post-diagnosis (the earliest timepoint at which full-length sequencing data were available) and on the donor at 8 months post-diagnosis (representing the timepoint closest to the time of transmission). This method provides colour plots that represent the extent of variability across the HIV proteome, either comparing sequences between two individuals (in this case, donor and recipient), or representing diversity within one individual at a given time point (in this case, providing a snapshot of within-host diversity in the recipient at time 52 months).

Determination of haplotypes

Haplotypes in the epitope regions were determined using Vprofiler [51] by selecting reads that span the epitope region and which contain only accepted variants. This analysis is limited to positions that are within the sequence read length of 250 bp.

Epitopes known or predicted to be restricted by expressed HLA-alleles

We focused on HLA-B restricted epitopes, since the HLA-B alleles are most strongly linked to HIV disease outcome in HIV infection [52] and there are no significant HLA associations with disease control for the HLA-A and HLA-C alleles expressed by this transmission pair. Known epitopes were identified from The Los Alamos Immunology Database CTL Epitopes A-list [53].
Predicted epitopes were identified from described HLA footprints [24] and the HLArestrictor tool [54].

IFN-γ ELISpot assays

We tested cryopreserved peripheral blood mononuclear cells (PBMC) from the recipient collected at 20 and 42 months post-diagnosis against HLA-B*27:05 and HLA-B*57:06-restricted Gag epitope peptides including CRF01_AE clade-specific peptide variants, to screen for IFN-γ ELISpot responses as previously described [31]. IFN-γ ELISpot responses to 410 18mer overlapping peptides spanning the B clade proteome were also tested, as previously described [31].

Phylogenetic analysis

Maximum likelihood phylogenetic trees using the general time reversible model of nucleotide substitution, as determined by jModelTest version 0.1.1 [55], were constructed from near-full genome (6,803 bp) data with 1,000 bootstrap replicates using Mega 6.06 software and viewed using FigTree v1.4.0 software. Clade consensus sequences were generated using full-length sequences and the Simple Consensus Maker tool available from the Los Alamos HIV database (http://www.hiv.lanl.gov/). Eighty-two full-length AE clade reference sequences from Thailand collected from the same database were included as reference sequences. All reference sequences were based on data collected after 2004. Sequence subtypes were confirmed using REGA HIV-1 Subtyping Tool version 3.0 [56].

Peptide-MHC tetramer staining and flow cytometry

Peptide-MHC tetramers were generated as previously described [57]. Cryopreserved PBMC (1 million per strain) from the recipient collected at 20 and 42 months post-diagnosis were stained with PE-conjugated HLA-B*27:05-KK10 and HLA-B*57:01-KF11 peptide-MHC tetramers, anti-CD3 Pacific Orange (Invitrogen, UK), anti-CD4 AlexaFlour700 (BD Biosciences, UK) and anti-CD8 V450 (BD Biosciences, UK) antibodies and near-IR Live/Dead marker (Invitrogen, UK). Samples were analyzed using an LSRII flow cytometer (BD, UK) collecting a minimum of 500,000 events and gating on singlets, lymphocytes, live cells and CD3+ cells. Data were analyzed using FlowJo version 10.0.7.

Sequence accession numbers

The Illumina MiSeq sequencing data obtained in this study are available from the EMBL/GenBank/ DDBJ Sequence Read Archive under accession numbers: ERS250039, ERS250040, ERS250041, ERS250042, ERS394610 and ERS394611. Consensus sequences have been deposited in GenBank under the accession numbers: KP873161-KP873166.

Additional files

Additional file 1: Figure S1. Sites of amino acid diversity in the recipient from an HIV transmission pair at 52 months post-diagnosis. Diverse sites are defined as amino acid positions with diversity of ≥10% in the intra-host population. Sites that fall within or flanking known or predicted HLA-B*27:05, B*57:01 and C*01:02-restricted epitopes are shown in red, blue and green respectively. Duplicated sites, present due to overlap in the Gag/Pol and Vif/Vpr reading frames, are shown in grey.

Additional file 2: Figure S2. Sites of HLA-associated footprints in the donor from an HIV transmission pair at 8 months post-diagnosis aligned to B and CRF01_AE clade consensus sequence. Epitopes restricted by the favourable alleles expressed by the donor, A*3201, B*1302 and B*1401, are shown.

Abbreviations

ART: Antiretroviral therapy; CTL: cytotoxic T lymphocyte; DNA: deoxyribonucleic acid; ELSpot: enzyme-linked Immunosorbent spot assay; Env: envelope glycoproteins; Gag: group-specific antigen (capsid protein); HIV: human immunodeficiency virus; HLA: human leukocyte antigen; IFN: interferon; MHC: major histocompatibility complex; Nef: negative regulatory Factor protein; PBMC: peripheral blood mononuclear cells; PC: polymerase chain reaction; Pe: phycoerythrin; Pol: protease, reverse transcriptase and integrase polyprotein; Rev: regulator of expression of virion proteins; RNA: ribonucleic acid; RT: reverse transcriptase; Tat: trans-activator of HIV-1 gene expression; Vif: viral infectivity factor; Vpr: viral protein R; Vpu: viral protein U.

Authors’ contributions

JB carried out the molecular and cellular assays, data analysis and drafted the manuscript. Ultra-deep sequencing was performed in collaboration with AG and PK. AG performed the de novo assembly of consensus sequences. Ultra-deep sequencing analysis was performed in collaboration with RB and TA. RB produced the minor variant, heat map and haplotype analyses. LR recruited the study participants. SB produced the peptide-MHC tetramers. EL carried out the epitope predictions. PG and PM conceived and designed the study and drafted the manuscript. All authors read and approved the final manuscript.

Author details

1. Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK. 2. Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
3. Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA. 4. Integrated Sexual Health Services, Northamptonshire Healthcare NHS Foundation Trust, Northampton General Hospital, Cliftonville, Northampton NN1 5BD, UK. 5. Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark. 6. Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK. 7. Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK.

Acknowledgements

This work is funded by a Grant from the Wellcome Trust (WT 104748MA) to PJRG, and the Commonwealth Scholarship Commission (JB).

Compliance with ethical guidelines

Competing interests

The authors declare that they have no competing interests.

Received: 15 April 2015 **Accepted:** 2 June 2015 **Published online:** 30 June 2015
References

1. Kaslow R, Carrington M, Apple R, Park L (1996) Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med 2(4):405–411

2. Fellay J, Shinnick K, Ge D, Colombo S, Ledergerber B, Weale M et al (2007) A whole-genome association study of major determinants for host control of HIV-1. Science 317(5840):944–947

3. Kiepela P, Leslie A, Honeyborne I, Ramduth D, Thobakgale C, Sh moto M et al (2004) Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432(7018):769–775

4. Leslie A, Matthews PC, Listgarten J, Carlson JM, Kadie C, Ndung’u T et al (2010) Additive contribution of HLA class I alleles in the immune control of HIV-1 infection. J Virol 84(19):9879–9888

5. Bartha I, Carlson JM, Brumme CJ, McLaren PJ, Brumme ZL, John M et al (2013) A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control. Elife 2:e01123

6. Fellay J, Ge D, Shinnick K, Colombo S, Ledergerber B, Cirilli ET et al (2009) Common genetic variation and the control of HIV-1 in humans. PLoS Genet 5(12):e1000791

7. Pereyra F, Jia X, McLaren P (2010) The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Sci NY 330(6010):1551–1555

8. Caudwell CL, Walker BD (2012) HIV and HLA class I: an evolving relationship. Immunity 37:426–440

9. Kiepela P, Ngumbela K, Thobakgale C, Ramduth D, Honeyborne I, Moodley E et al (2007) CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med 13(1):46–53

10. Matthews PC, Prendergast A, Leslie A, Crawford H, Payne R, Rousseau C et al (2008) Central role of reversion in mutations in HLA associations with human immunodeficiency virus set point. J Virol 82(7):8548–8559

11. Sacha JB, Chung C, Rakasz EG, Spencer SP, Jonas AK, Bean AT et al (2007) Gag-specific CD8+ T lymphocytes recognize infected cells before aids-virus integration and viral protein expression. J Immunol 178(5):2746–2754

12. Crawford H, Lumen W, Leslie A, Schafer M, Boeras D, Prado JG et al (2009) Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-B*5703-positive individuals and their transmission recipients. J Exp Med 206(4):909–921

13. Miura T, Brockman MA, Schneidewind A, Lobritz M, Pereyra F, Rathod A et al (2009) HLA-B*57:01:01:01 human immunodeficiency virus type 1 elite controllers select for rare gag variants associated with reduced viral replication capacity and strong cytotoxic T-lymphocyte recognition. J Virol 83(6):2743–2755

14. Klevoripris HN, Stryhn A, Hamdahl M, van der Stok S, Payne RP, Matthews PC et al (2012) HLA-B*57:01:01:01 micropolymorphism shapes HLA allele-specific epitope immunogenicity, selection pressure, and HIV immune control. J Virol 86(2):919–929

15. Brockman MA, Brumme ZL, Brumme CJ, Miura T, Sela J, Rosato PC et al (2010) Early selection in Gag by protective HLA alleles contributes to reduced HIV-1 replication capacity that may be largely compensated for in chronic infection. J Virol 84(22):11937–11949

16. Bontoullet CL, Rowley CF, Essex M (2009) Reduced viral replication capacity that may be largely compensated for by endogenous limits. AIDS 23(3):405–411

17. Bontoullet CL, Rowley CF, Essex M (2009) Reduced viral replication capacity that may be largely compensated for by endogenous limits. AIDS 23(3):405–411

18. Boogaard C, Mangel A, de Boer RJ, Keşmir C (2007) HLA alleles associated with slow progression to AIDS truly prefer to present HIV-1 p24. J Virol 81(24):13202–13216

19. Honeyborne I, Prendergast A, Pereyra F, Leslie A, Crawford H, Payne R et al (2007) Control of human immunodeficiency virus type 1 is associated with HLA-B*8:013 and targeting of multiple gag-specific CD8+ T-cell epitopes. J Virol 81(7):3667–3672

20. Goulder PJ, Phillips RE, Colclough RA, McAdam S, Ogg G, Novak MA et al (1997) Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med 3(2):212–217

21. Goulder PJ, Brande K, Tang Y, Tremblay C, Colclough RA, Addo MM et al (2001) Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412(6844):334–338

22. Goulder PJ, Conde I, Cohen R, Dover G, Morgan B et al (1996) Novel, cross-restricted, conserved, and immunodominant cytoxic T lymphocyte epitopes in slow progressors in HIV type 1 infection. AIDS Res Hum Retroviruses 12(1):39–49

23. Leslie AJ, Pfafferott KJ, Chetty P, Draenert R, Addo MM, Feeney M et al (2004) HIV evolution: CTL escape mutation and reversion after transmission. Nat Med 10(3):282–289

24. Leslie A, Kavanagh D, Honeyborne I, Pfafferott K, Edwards C, Pillay T et al (2005) Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA. J Exp Med 201(6):891–902

25. Addo MM, Xu YG, Rothbard A, Cohen D, Eldridge RL, Strick D et al (2003) Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J Virol 77(3):2091–2092

26. Payne RP, Klevoripris H, Sacha JB, Brumme Z, Brumme C, Buus S et al (2010) Efficient and early antiviral activity of HIV Gag- and Pol-specific HLA-B*2705-restricted CD8+ T cells. J Virol 84(20):10543–10557

27. Nixon DF, Townsend AR, Elvin JG, Rizzio GA, Caffrey MJ, McMichael AJ (1988) HIV-1 gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides. Nature 336(6198):484–487

28. Mon M, Wiskichindha N, Myahara R, Rojanavivat V, Pathipanich P, Maekawa T et al (2014) HLA-B*53:05 is a protective allele with a unique structure among HIV-1 CRF01_AE-infected Thais, in whom the B*57 frequency is low. AIDS 28(7):959–967

29. Gesprasert G, Wiskichindha N, Mor M, Shiono T, Auvant W, Snawhandha B et al (2010) HIV-1 associated immune pressure on Gag in HLA-B*2705-restricted individuals and its association with plasma viral load. PLoS One 5(6):e11179

30. Allen TM, Atfield M, Geer SC, Kalife ET, Moore C, O’Sullivan K et al (2005) Selective escape from CD8+ T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution. J Virol 79(21):13239–13249

31. Martinez-picado J, Prado JG, Fry EE, Pfafferott K, Leslie A, Chetty S et al (2006) Fitness cost of escape mutations in p24 gag in association with plasma viral load. PLoS One 1(3):e166

32. Almeida JR, Price DA, Papagno L, Arkoub ZA, Sauce D, Bornstein E et al (2007) Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J Exp Med 204(10):2477–2485

33. Iglesias MC, Almeida JR, Fastenackels S, van Bockel DJ, Hashimoto M, Iglesias MC et al (2011) Escape from highly effective public CD8+ T-cell clonotypes by HIV. J Virol 85(24):12636–12642

34. Cano P, Klitz W, Mack SJ, Maers M, Marsh SGE, Noreen H et al (2007) Common and well-documented HLA alleles: report of the Ad-Hoc committee of the American society for histocompatibility and immunogenetics. Hum Immunol 68(5):392–417
42. Gall A, Ferns B, Morris C, Watson S, Cotten M, Robinson M et al (2012) Universal amplification, next-generation sequencing, and assembly of HIV-1 genomes. J Clin Microbiol 50(12):3838–3844
43. Gall A, Morris C, Kellam P, Berry N (2014) Complete genome sequence of the who international standard for HIV-1 RNA determined by deep sequencing. Genome Announc 2(11):e01254–13
44. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59
45. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477
46. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C et al (2004) Versatile and open software for comparing large genomes. Genome Biol 5(2):R12
47. Yang X, Charlebois P, Gnerre S, Lennon NJ, Levin JZ et al (2012) De novo assembly of highly diverse viral populations. BMC Genom 13:475
48. Charlebois P, Yang X, Newman R, Henn M, Zody M (2012) V-FAT: a post-assembly pipeline for the finishing and annotation of viral genomes. http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/v-fat
49. Lee W-P, Stromberg MP, Ward A, Stewart C, Garrison EP, Marth GT (2014) MOSAIK: a hash-based algorithm for accurate next-generation sequencing short-read mapping. PLoS One 9(3):e90581
50. Yang X, Charlebois P, Macalalad A, Henn MR, Zody MC (2013) V-Phaser 2: variant inference for viral populations. BMC Genom 14:674
51. Henn MR, Boutwell CL, Charlebois P, Lennon NJ, Power KA, Macalalad AR et al (2012) Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection. PLoS Pathog 8(3):e1002529
52. Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S et al (2004) Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432(7018):769–775
53. Llano A, Williams A, Ovra A, Silva-Arneta S, Brander C (2013) Best-characterized HIV-1 CTL epitopes: the 2013 update. In: Yusim K, Korber B, Brander C, Barouch D, de Boer R, Haynes BF, Koup R, Moore JP, Walker BD (eds) HIV molecular immunology. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM. LA-UR 13-27758, pp 3–19
54. Larsen ME, Kloverpris H, Stryhn A, Koofhethile CK, Sims S, Ndung’U T et al (2011) HLArestrictor-a tool for patient-specific predictions of HLA restriction elements and optimal epitopes within peptides. Immunogenetics 63:43–55
55. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256
56. Pineda-Peña AC, Faria NR, Imbrechts S, Libin P, Abecasis AB, Deforche K et al (2013) Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: performance evaluation of the new REGA version 3 and seven other tools. Infect Genet Evol. 19(126):337–348
57. Leisner C, Loeth N, Lambeth K, Justesen S, Sylvester-Hvid C, Schmidt EG et al (2008) One-pot, mix-and-read peptide-MHC tetramers. PLoS One 3(2):e1678
58. Williams I, Churchill D, Anderson J, Boffito M, Bower M, Cairns G et al (2014) British HIV Association guidelines for the treatment of HIV-1-positive adults with antiretroviral therapy 2012 (Updated November 2013. All changed text is cast in yellow highlight.). HIV Med 15(Suppl 1):1–85

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit