Uniaxial anisotropy, intrinsic and extrinsic damping in Co$_2$FeSi Heusler alloy thin films

Binoy Krishna Hazra1, S. N. Kaul1, S. Srinath1

1School of Physics, University of Hyderabad, Hyderabad-500046, India

M. Manivel Raja2

2Defence Metallurgical Research Laboratory, Hyderabad-500056, India

E-mail: sn.kaul@uohyd.ac.in and srinath@uohyd.ac.in

Abstract.

Ferromagnetic resonance (FMR) technique has been used to study the magnetization relaxation processes and magnetic anisotropy in two different series of the Co$_2$FeSi (CFS) Heusler alloy thin films, deposited on the Si(111) substrate by ultra high vacuum magnetron sputtering. While the CFS films of fixed (50 nm) thickness, deposited at different substrate temperatures (T_S) ranging from room temperature (RT) to 600$^\circ$C, constitute the series-I, the CFS films with thickness t varying from 12 nm to 100 nm and deposited at 550$^\circ$C make up the series-II. In series-I, the CFS films deposited at $T_S = RT$ and 200$^\circ$C are completely amorphous, the one at $T_S = 300^\circ$C is partially crystalline, and those at $T_S = 450^\circ$C, 550$^\circ$C and 600$^\circ$C are completely crystalline with B2 order. By contrast, all the CFS films in series-II are in the fully-developed B2 crystalline state. Irrespective of the strength of disorder and film thickness, angular variation of the resonance field in the film plane unambiguously establishes the presence of global 'in-plane' uniaxial anisotropy. The uniaxial anisotropy field decreases as the crystalline order in the films increases and goes through a minimum at $t = 50$ nm as a function of film thickness. Landau–Lifshitz–Gilbert damping and two-magnon scattering dominantly contribute to the line-broadening in both 'in-plane' and 'out-of-plane' configurations. The two-magnon scattering has larger magnitude in the amorphous films than in the crystalline ones. Angular variation of the linewidth in the film plane reveals that, in the CFS thin films of varying thickness, a crossover from the 'in-plane' local four-fold symmetry (cubic anisotropy) to local two-fold symmetry (uniaxial anisotropy) occurs as t exceeds 50 nm. Gilbert damping parameter α decreases monotonously from 0.047 to 0.0078 with decreasing disorder strength (increasing T_S) and jumps from 0.008 for the CFS film with $t = 50$ nm to 0.024 for the film with $t = 75$ nm. Such variations of α with T_S and t are understood in terms of the changes in the total (spin-up and spin-down) density of states at the Fermi level caused by the disorder and film thickness. Spin pumping across the Co$_2$FeSi film/Ta cap-layer interface makes negligible contribution to α. We propose that disorder and/or the film thickness can be used as control parameters to tune α, whose value is decisive in choosing a ferromagnetic film for a given spintronics application.

Keywords: Uniaxial anisotropy, Two-magnon scattering, Gilbert damping parameter, Heusler alloy, thin films
1. INTRODUCTION

Recognition of the fundamental role of spin polarization and magnetization dynamics in spintronics devices has led to a surge in the number of investigations of the magnetic relaxation phenomenon in thin films with long-range magnetic order. Among various experimental techniques, ferromagnetic resonance (FMR) has been widely used to investigate the relaxation processes in magnetic thin films. Magnetic anisotropy constant, Landé g-factor, Gilbert damping parameter are extracted from the resonance field and FMR linewidth. The Gilbert damping parameter (\(\alpha \)) is, by far, the most crucial factor in deciding whether or not a given magnetic system is an appropriate choice for spintronics devices \[1\]. For instance, a small value of \(\alpha \) is required for magnetic tunnel junction devices and spin-torque transfer-based devices; in the latter case, for reducing the current density (and hence minimizing the power consumption) required for the spin transfer torque switching \[2, 3\]. On the other hand, a large value of \(\alpha \) is needed to improve thermal stability in current-perpendicular-to-plane giant magnetoresistance (GMR) read sensors \[4, 5\]. The magnitude of spin current that can be generated using spin pumping, is inversely proportional to the Gilbert damping parameter \[6, 7\]. Furthermore, Gilbert damping is directly related to density of the states at the Fermi level \[8, 9, 10, 11, 12, 13\]. Though there are indications that the anti-site disorder substantially changes \(\alpha \) in many Heusler alloy thin films, systematic investigations of how disorder affects \(\alpha \) are still lacking. A low value of the Gilbert damping parameter \(\alpha = 0.0022 \) was reported \[14\] for the L2₁ ordered Co₂FeSi film after post-deposition annealing at 650°C. In sharp contrast, a recent investigation of \(\alpha \) in Co-based Heusler alloys reveals that as-deposited amorphous Co₂FeSi films and the B2 ordered films annealed at 300°C have a lower \(\alpha \) (0.008) compared to the relatively large \(\alpha \) (0.04) of the L2₁ ordered film annealed at 400°C \[15\]. In the same study, it was shown that, as a function of annealing temperature, \(\alpha \) goes through a minimum at 300°C in Co₂MnAl and Co₂MnSi films.

The Gilbert damping parameter \(\alpha \) for Co-based Heusler alloys has been determined either from the angular variation of the FMR linewidth at a fixed frequency or from the frequency dependence of linewidth or both \[10, 13, 16, 17, 18, 19\]. The measured FMR linewidth has contributions from the intrinsic (Gilbert damping) as well as extrinsic (such as the defect-induced two-magnon scattering, inhomogeneity in magnetization, angular spread of crystallite misorientation and spin pumping) linewidth broadening mechanisms. Thus, only when the relative magnitudes of all the contributions to FMR linewidth are unambiguously determined, FMR linewidth can provide accurate determination of \(\alpha \) and a quantitative measure of the degree of magnetic inhomogeneity \[20, 21\] in a given system. By not considering one or more of the extrinsic linewidth broadening contributions, many of the earlier investigations of magnetic relaxation process in Cobalt-based Heusler alloys \[10, 14, 15, 16, 17, 18, 19\] are somewhat flawed. The conflicting results \[14, 15\] about the effect of crystal structure on \(\alpha \) may also be a consequence of a total neglect of some of the extrinsic linewidth contributions.

In this work, the effect of disorder and film thickness on magnetic anisotropy and Gilbert damping in Co₂FeSi Heusler alloy thin films is brought out unambiguously from the observed angular variations of the resonance field and linewidth in the ‘in-plane’ and ‘out-of-plane’ sample configurations. In addition to the intrinsic Landau-Lifshitz-Gilbert (LLG) damping, all possible extrinsic magnetic relaxation mechanisms (stated above) are considered in order to accurately determine \(\alpha \).
2. EXPERIMENTAL DETAILS

Ultra high vacuum dc magnetron sputtering was used to deposit two different series of Co$_2$FeSi (CFS) Heusler alloy thin films on the Si (111) substrate. The series I comprises CFS thin films of fixed thickness 50 nm, deposited at the constant substrate temperatures $T_S = 27 \degree C$ (room temperature, RT), 200 \degree C, 300 \degree C, 450 \degree C, 550 \degree C and 600 \degree C and labeled as the RT, TS200, TS300, TS450, TS550 and TS600 films. The CFS thin films of thicknesses 12 nm, 25 nm, 50 nm, 75 nm and 100 nm, deposited at the fixed substrate temperature $T_S = 550 \degree C$, constitute the series II. The details of the film deposition conditions and parameters can be found elsewhere [22]. Previously reported [22, 23] grazing-incidence x-ray diffraction (GIXRD) patterns, taken on the films of fixed thickness (50 nm), have revealed the amorphous nature of the CFS films deposited at room temperature (RT) and 200\degree C and the initiation of crystallinity in the otherwise amorphous film deposited at 300\degree C. The remaining films, deposited at 450\degree C, 550\degree C and 600\degree C, are in the fully-developed crystalline state but the one deposited at 550\degree C has the most well-defined B2 ordered structure. Thus, the CFS films of different thicknesses (series II) were deposited at $T_S = 550 \degree C$. While the CFS thin films with varying degree of disorder (i.e., the RT, TS200, TS300, TS450, TS550 and TS600 thin films; series I) permit an in-depth study of the effect of disorder, the series II enables determination of how the film thickness affects the magnetic anisotropy, Gilbert damping and the extrinsic line-broadening contributions. Another important aspect of this work is that the deposition at fixed substrate temperatures is preferred to the customary practice of annealing the films at different temperatures after they have been deposited at room temperature. The rationale behind this preference is that the post-deposition annealing promotes inter-layer diffusion between the film, the cap-layer and/or the buffer layer, with the result the investigations involving post-deposition annealing often lead to inconclusive results. On the contrary, in the present case, only after the substrate (and hence the deposited film) had cooled down to room temperature in the ultra high vacuum chamber, the CFS film was capped with 2 nm Ta layer [22]. This arrangement not only prevents surface oxidation but also the film/cap-layer inter-diffusion.

To investigate the type of magnetic anisotropy present in Co$_2$FeSi (CFS) films, and to unambiguously separate out the intrinsic and extrinsic contributions to the FMR linewidth and accurately determine their relative magnitudes, FMR spectra have been recorded at various azimuthal (‘in-plane’) field angles, φ_H, and polar (‘out-of-plane’) field angles, θ_H, on the square-shaped CFS thin films. The ‘in-plane’ and ‘out-of-plane’ sample-mounting configurations as well as the polar coordinate system, defining the ‘in-plane’ (‘out-of-plane’) field and magnetization angles, φ_H and φ_M (θ_H and θ_M), are shown in figure 1.

3. THEORETICAL CONSIDERATIONS

3.1. Angular variation of resonance field

In the coordinate system, shown in figure 1, xy plane represents the film plane and z axis is normal to the film plane. The angle between the magnetic field, H, (magnetization, M) direction and the film normal is denoted by θ_H (θ_M). The projection of the magnetic field (magnetization) on xy plane makes an angle φ_H (φ_M) with the x axis. The anisotropy field is assumed to be in the xy plane, making
Uniaxial anisotropy and two-magnon scattering in Co$_2$FeSi

Figure 1. (a): Schematic representation of the coordinate system pertinent to the in-plane (IP) and out-of-plane (OP) FMR measurements. (b) and (c): Thin films mounted on solid quartz rod and half-cut quartz rod in IP and OP configurations. The directions of the alternating (H_{ac}) and static (H_{dc}) magnetic fields are also indicated.

Therefore, the total energy can be written as [24]

\[F = -MH [\sin \theta_M \sin \theta_H \cos (\varphi_M - \varphi_H) + \cos \theta_M \cos \theta_H] + 2\pi M^2 \cos^2 \theta_M + K_a [1 - \sin^2 \theta_M \cos^2 (\varphi_M - \varphi_K)] \]

(1)

The equilibrium conditions for magnetization can be found from $\partial F/\partial \theta_M = 0$ and $\partial F/\partial \varphi_M = 0$. The resonance condition, which relates the free energy with the resonance frequency, is [25]

\[\left(\frac{\omega}{\gamma} \right)^2 = \frac{1}{M^2 \sin^2 \theta_M} \left[\left(\frac{\partial^2 F}{\partial \theta_M^2} \right) \left(\frac{\partial^2 F}{\partial \varphi_M^2} \right) - \left(\frac{\partial^2 F}{\partial \theta_M \partial \varphi_M} \right)^2 \right] \]

(2)

In the ‘in-plane’ (IP) case, both M and H vectors are confined to the sample.
Uniaxial anisotropy and two-magnon scattering in Co$_2$FeSi plane (xy plane), i.e., $\theta_M = \theta_H = \frac{\pi}{2}$ and the angles φ_M, φ_H and φ_k are measured with respect to the x-axis in the sample plane. The resonance condition is given by [24, 26]

$$\left(\frac{\omega}{\gamma}\right)^2 = H_1^\parallel \times H_2^\parallel$$

(3)

where $H_1^\parallel = [H_r^\parallel \cos(\varphi_H - \varphi_M) + (4\pi M + H_k^\parallel \cos^2 \varphi_M)]$ and $H_2^\parallel = [H_r^\parallel \cos(\varphi_H - \varphi_M) + H_k^\parallel \cos 2\varphi_M]$ denote the stiffness fields for the IP case.

Equilibrium condition for magnetization $[\partial F/\partial \varphi_M = 0]$ has the form [24, 26]

$$2H_r^\parallel \sin(\varphi_H - \varphi_M) = H_k^\parallel \sin(2\varphi_M)$$

(4)

In the ‘out-of-plane’ (OP) case, H, M and H_K are confined to the xz plane so that $\varphi_H = \varphi_M = \varphi_K = 0$ and the angles θ_H and θ_M are measured with respect to the z-axis (normal to the film plane). The OP resonance condition is [24, 26]

$$\left(\frac{\omega}{\gamma}\right)^2 = H_1^\perp \times H_2^\perp$$

(5)

where, $H_1^\perp = [H_r^\perp \cos(\theta_H - \theta_M) + (4\pi M + H_k^\perp) \cos 2\theta_M]$ and $H_2^\perp = [H_r^\perp \cos(\theta_H - \theta_M) - 4\pi M \cos^2 \theta_M + H_k^\perp \sin^2 \theta_M]$ represent the stiffness fields in the OP sample configuration.

The corresponding equilibrium condition for magnetization $[\partial F/\partial \theta_M = 0]$ is [24, 26]

$$\frac{\cos \theta_H}{\cos \theta_M} - \frac{\sin \theta_H}{\sin \theta_M} = \frac{4\pi M_s + H_k^\perp}{H_r^\perp}$$

(6)

with $4\pi M_{eff} = 4\pi M_s + H_k^\perp$, where M_s is the saturation magnetization.

3.2. Angular variation of linewidth

The ‘peak-to-peak’ ferromagnetic resonance linewidth, ΔH, is a measure of the rate at which magnetization relaxes back to equilibrium once the static magnetic field is switched off. In the Arias-Mills approach [27, 28, 29, 30], which considers both the intrinsic and extrinsic damping mechanisms, FMR linewidth can be written as

$$\Delta H = \Delta H^{LLG} + \Delta H^{TMS}$$

(7)

The first term in the expression for ΔH (Eq.(7)) denotes the intrinsic Gilbert damping contribution, which is proportional to the microwave field frequency (ω)

$$\Delta H^{LLG} = \frac{2}{\sqrt{3}} \frac{\alpha \omega}{\gamma M_s \Xi}$$

(8)

In Eq.(8), the prefactor $\frac{2}{\sqrt{3}}$ is needed to obtain the ‘peak-to-peak’ linewidth and α is the Gilbert damping parameter. A deviation of external field angle from the equilibrium magnetization angle leads to the dragging of magnetization by field and is expressed in terms of the dragging function, defined as
Uniaxial anisotropy and two-magnon scattering in Co$_2$FeSi

\[\Xi = \frac{1}{(H_1 + H_2)} \frac{d(\omega/\gamma)^2}{dH_r} \]

where H_1 and H_2 are the stiffness fields, defined earlier. The second term (ΔH^{TMS}) in Eq.(7) represents the extrinsic damping contribution, arising from the two-magnon scattering (TMS). ΔH^{TMS} is given by the following expression

\[\Delta H^{TMS} = \frac{\Gamma}{\gamma \Xi} \]

Γ is the two-magnon scattering rate, which depends on the microwave field frequency and the static magnetic field angle. The TMS originates from the nonuniform magnon modes with wavevector $q \neq 0$ [31, 32].

Besides the Gilbert and TMS contributions, the inhomogeneity in magnetization and the angular spread of crystallite misorientation cause additional broadening of the linewidth [33, 34]. These contributions to ΔH are given by

\[\Delta H^{4\pi M_{eff}} = \left| \frac{\partial H_r}{\partial (4\pi M_{eff})} \right| \Delta(4\pi M_{eff}) \]

\[\Delta H^{\xi_H} = \frac{\partial H_r}{\partial \xi_H} \Delta(\xi_H) \]

where ξ_H stands for φ_H or θ_H, while $\Delta(4\pi M_{eff})$ and $\Delta(\xi_H)$ are the average spread in $4\pi M_{eff}$, and in the easy (preferred) direction of magnetization within the film plane, dictated by the magnetic anisotropy.

Combining Eqs.(3) or (5), (4) or (6), (8) - (12), yields the final expressions for different contributions to FMR linewidth as [16, 35, 36]

\[\Delta H^{LLG} = \frac{2}{\sqrt{3}} \frac{\alpha \omega}{\gamma M_s} \quad \text{... for (IP)} \]

\[\Delta H^{LLG} = \frac{2}{\sqrt{3}} \frac{\alpha \omega}{\gamma M_s \cos(\theta_H - \theta_M)} \quad \text{... for (OP)} \]

\[\Delta H^{TMS} = [\Gamma_0 + \Gamma_2 \cos 2(\varphi_H - \varphi_2) + \Gamma_4 \cos 4(\varphi_H - \varphi_4)] \]

\[\times \arcsin \left(\frac{f}{\sqrt{f^2 + f_0^2 + f_0}} \right) \quad \text{... for (IP)} \]

\[\Delta H^{TMS} = \frac{2}{\sqrt{3}} \Gamma(H_0, \theta_H) \sin^{-1} \left(\frac{H_0^\perp}{H_0^\perp + M_{eff} \cos^2 \theta_m} \right) \quad \text{... for (OP)} \]

where $f_0 = \gamma M_{eff}$, Γ_2 and Γ_4 are the strengths of the magnetic anisotropies of the two-fold and four-fold symmetry, respectively.

\[\Delta H^{4\pi M_{eff}} = \frac{H_2^\parallel}{(H_1^\parallel + H_2^\parallel)} \Delta(4\pi M_{eff}) \quad \text{... for (IP)} \]

\[\Delta H^{4\pi M_{eff}} = \frac{H_2^\perp \sin^2 \theta_m - H_1^\perp \cos 2\theta_m}{(H_1^\perp + H_2^\perp)} \Delta(4\pi M_{eff}) \quad \text{... for (OP)} \]
\[
\Delta H^\varphi = H^\parallel \tan (\varphi_H - \varphi_M) \Delta \varphi_H \quad \text{for} \ (IP) \\
\Delta H^\theta = H^\perp \tan (\theta_H - \theta_M) \Delta \theta_H \quad \text{for} \ (OP)
\]

\[\Delta H^\varphi = H^\parallel \tan (\varphi_H - \varphi_M) \Delta \varphi_H \quad \text{for} \ (IP)\]

\[\Delta H^\theta = H^\perp \tan (\theta_H - \theta_M) \Delta \theta_H \quad \text{for} \ (OP)\]

Figure 2. (a): Static magnetic field dependence of the field derivative of the resonant microwave power absorption in the IP sample configuration, \(dP/dH\), at a fixed field angle \((\varphi_H = 0^\circ)\) in the 50 nm CFS films, deposited at different \(T_S\). (b) - (d): Variations of the resonance field, \(H^R\), FMR linewidth, \(\Delta H^\parallel\), saturation magnetization, \(M_s\) and 'in-plane' anisotropy field, \(H^K\), with \(T_S\) at the field angle \(\varphi_H = 0^\circ\) in the parallel sample geometry for the CFS films of fixed thickness (50 nm).

4. **RESULTS and DISCUSSION**

4.1. ‘In-plane’ (IP) configuration

Derivative of the microwave power absorption with respect to static magnetic field (H), in the parallel configuration [i.e., when the angle \(\varphi_H\) between static magnetic field and the \(x\)-axis in the \(xy\) (sample) plane, as shown in figure 1(a), equals zero], \(\left(\frac{dP}{dH}\right)_\parallel\), has been recorded at room temperature on the Co2FeSi (CFS) films belonging to the series I and II. The \(\frac{dP}{dH}\) versus H curves, recorded at \(\varphi_H = 0^\circ\) in the ‘in-plane’
Uniaxial anisotropy and two-magnon scattering in Co$_2$FeSi

Figure 3. Variation of (a) the resonance field and FMR linewidth, and (b) $M_s \times t$, with the film thickness, t, at fixed field angle $\phi_H = 0^\circ$ in the parallel geometry for the CFS films of different thicknesses.

configuration on the thin films comprising the series I, representative of the series II as well, are depicted in figure 2(a) along with the theoretical fits (continuous curves) yielded by the lineshape (LS) analysis [37, 38, 39, 40], based on the Landau-Lifshitz-Gilbert (LLG) equation of motion for dynamic magnetization. To arrive at these optimum fits, saturation magnetization (M_s), Landé splitting factor (g), anisotropy field ($H_\parallel k$) and FMR linewidth (ΔH_\parallel) are treated as free-fitting parameters. Regardless the value of T_S (or the degree of disorder present) and/or film thickness, the Landé splitting factor has the value $g = 2.04(2)$.

The resonance field, $H_\parallel r$, ΔH_\parallel, M_s and $H_\parallel k$, obtained from the LS analysis, are plotted as functions of T_S in Fig.2(b) - (c). While $H_\parallel r$, ΔH_\parallel, and $H_\parallel k$ go through a minimum at $T_S = 550^\circ$C, M_s peaks at the same T_S value. The numerical values of M_s and $H_\parallel k$ are listed in Table 1. Considering that the FMR linewidth is a measure of the magnetic inhomogeneity in a ferromagnetic system [21, 41], the decrease in ΔH_\parallel and increase in M_s with increasing T_S up to 550°C obviously stem from the suppression of anti-site disorder and the consequent progressive improvement in crystallographic B2 ordering [23]. The subsequent increase (decrease) in ΔH_\parallel (M_s) at $T_S > 550^\circ$C, most likely, results from the Si inter-diffusion at the interface between the CFS film and the Si substrate. Similar variation of M_s with the post-deposition annealing temperature is observed in many cobalt-based Heusler alloys [15, 42]. The opposite variations of $H_\parallel r$ and M_s with T_S, evident in Fig.2(b) and 2(c), can be understood in terms of the Kittel FMR condition [43] which relates H_r and M_s as $(\omega/\gamma)^2 = H_r^2 + 4\pi M_s$.

In amorphous ferromagnets, magnetization does not saturate even in static magnetic fields, H_{dc}, as large as a few hundreds of kOe because of the distribution in local magnetization prevalent in them. On the other hand, in FMR experiments, the measured value for M_s corresponds to fields $H_{dc} = H_\parallel k \approx 1$ kOe (Fig.3(a)). FMR, thus, invariably measures a lower value of M_s in the amorphous films of given composition and thickness than that obtained from the bulk magnetization measurements where much stronger fields are applied in order to saturate the magnetization. Thus, it is
not surprising that, in the crystalline films, where magnetization can be saturated at much lower fields, FMR and direct magnetization measurements yield nearly identical values for the saturation magnetization [44, 45].

Figure 3 depicts the variations of H_{r}, ΔH_{r} and $M_{s} \times t$ with the film thickness, t. Fig.3(b) demonstrates that the $M_{s} \times t$ versus t plot is linear with 0.12 nm as the intercept on the thickness axis. Note that $t_{dl} = 0.12$ nm is the thickness of the magnetically ‘dead’ layer because $M_{s} = 0$ in this layer. That M_{s} obeys the relation $M_{s} = a + b/t$ has also been previously reported [16, 17, 46] in Co_{2}FeAl and $\text{Co}_{2-x}\text{Ir}_{x}\text{MnSi}$ Heusler-alloy thin films. H_{r}^{K} goes through a minimum at $t = 50$ nm (not shown in Fig.3; see Table 2 for the actual values of H_{r}^{K}).

Figure 4. Polar plots of the resonance field, H_{r}, versus ϕ_{r} for the 50 nm thick CFS films at $T = 300$ K in the IP configuration. The continuous curves through the data points represent the best least-squares fits based on Eqs.(3) and (4).
Figure 5. Polar plots of resonance field, \(H_\parallel \), versus \(\varphi_H \) for the CFS films of different thicknesses at \(T = 300 \) K in the IP configuration. The continuous curves through the data points represent the best least-squares fits, based on Eqs.(3) and (4).

Figure 6. Variation of the IP equilibrium magnetization angle, \(\varphi_M \), with the IP field angle, \(\varphi_H \), for (a) the 50 nm CFS thin films and (b) the CFS films with thickness in the range 12-100 nm.
Uniaxial anisotropy and two-magnon scattering in Co$_2$FeSi

4.1.1. Angular variations of the resonance field and FMR linewidth

The lowest resonance field (H^\parallel) for a particular ϕ_H is identified as H^\parallel corresponding to $\phi_H = 0^\circ$, which represents the ‘in-plane’ easy axis of magnetization. In the ‘in-plane’ (IP) configuration, the FMR spectra have been recorded at 5° intervals starting from $\phi_H = 0^\circ$. The variation of resonance field, H^\parallel, with ϕ_H, deduced from FMR spectra, are displayed as polar plots in figures 4 and 5 for the CFS films belonging to the series I and II, respectively. From these figures, it is evident that, for all the films, $H^\parallel(\phi_H)$ goes through minima at $\phi_H = 0^\circ$ and $\phi_H = 180^\circ$, signifying the ‘in-plane’ easy axes of magnetization, and maxima at $\phi_H = 90^\circ$ and $\phi_H = 270^\circ$, denoting the ‘in-plane’

Figure 7. Polar plots of the FMR linewidth, ΔH^\parallel, versus ϕ_H for the 50 nm thick CFS films at room temperature in the IP configuration. The continuous curves through the data points represent the theoretical fits based on Eqs.(13), (15), (17) and (19).
Figure 8. Polar plots of FMR linewidth, ΔH^\parallel, versus φ_H for the CFS films of different thicknesses at room temperature in the IP configuration. The continuous curves through the data points represent the theoretical fits based on Eqs. (13), (15), (17) and (19).

Table 1. Values of the resonance field, H^\parallel_r, along the ‘in-plane’ easy axis ($\varphi_H = 0^\circ$) and hard axis ($\varphi_H = 90^\circ$), magnetic anisotropy field, $H^\parallel_k = [H^\parallel_r(\varphi_H = 90^\circ) - H^\parallel_r(\varphi_H = 0^\circ)]/2$, obtained from the fits, based on Eqs.(3) and (4), to the $H^\parallel_r(\varphi_H)$ data for the 50 nm CFS films, deposited at different substrate temperatures. The values for M_s and H^\parallel_k, obtained from the lineshape (LS) analysis, are also included for comparison.

Sample	H^\parallel_r at $\varphi_H = 0^\circ$ (Oe)	H^\parallel_r at $\varphi_H = 90^\circ$ (Oe)	H^\parallel_k (Oe)	M_s from LS fit (Gauss)	H^\parallel_k from LS fit (Oe)
RT	1038	1133	47.5	670	44
TS200	956	1058	51.0	730	54
TS300	904	965	30.5	801	32
TS450	710	736	13.0	1074	13
TS550	711	727	8.0	1084	8
TS600	778	814	18.0	963	18
Figure 9. Variation of resonance field, H^\perp_r, as a function of the field angle, θ_H, for 50 nm CFS thin films at room temperature in the OP configuration. The continuous curves through the data points represent the theoretical fits based on Eqs.(5) and (6).

hard axes of magnetization. H^\parallel_r has the same minimum (maximum) values at $\varphi_H = 0^\circ$ and 180° ($\varphi_H = 90^\circ$ and 270°). The lower value of H^\parallel_r along the easy axes $\varphi_H = 0^\circ$ and 180°, and higher values along the hard axes $\varphi_H = 90^\circ$ and 270° establishes the presence of ‘in-plane’ uniaxial anisotropy in all the CFS films, irrespective of the strength of disorder and the film thickness. The observed uniaxial anisotropy may have its origin in the elongated grains, that form and grow due to the self-shadowing effect during the oblique-angle deposition of the CFS films [47, 48, 49, 50]. A self-consistent procedure [24, 26] is followed to fit the $H^\parallel_r(\varphi_H)$ data, as illustrated below. In the first step, equilibrium ‘in-plane’ magnetization angle (φ_M), corresponding to
Uniaxial anisotropy and two-magnon scattering in Co_2FeSi

Figure 10. The resonance field, H_r^\perp, as a function of θ_H for the CFS films with thickness in the range 12-100 nm at room temperature in the OP configuration. The continuous curves through the data points represent the theoretical fits based on Eqs.(5) and (6).

The field angle (φ_H), is extracted from the fit to $H_r^\parallel(\varphi_H)$, based on Eq.(4), with the saturation magnetization (M_s) and anisotropy field (H_{k}^{\parallel}) fixed at the values obtained from the lineshape analysis. In the second step, Eq.(3) is used to fit $H_r^\parallel(\varphi_H)$ with φ_M fixed at the value, obtained in the first step, and by treating M_s and H_{k}^{\parallel} as the free fitting parameters. The M_s and H_{k}^{\parallel} values, obtained in second step, are used again in Eq.(4) to arrive at the new value of φ_M, which is then used in Eq.(3) to get the new M_s and H_{k}^{\parallel}. This iterative procedure is repeated till the values of M_s, H_{k}^{\parallel} and φ_M, for a given value of φ_H, do not change. The final fits to $H_r^\parallel(\varphi_H)$, so
Uniaxial anisotropy and two-magnon scattering in Co$_2$FeSi

Figure 11. Variation of the OP equilibrium magnetization angle, θ_M, with the OP field angle, θ_H, for (a) the 50 nm CFS thin films deposited at various T_S and (b) the CFS films with thickness in the range 12-100 nm deposited at $T_S = 550^\circ$C.

obtained, are denoted as the continuous curves in Figs. 4 and 5. These theoretical fits represent the experimental data quite well for all the films and the fit parameters are listed in the Tables 1 and 2. The values of the anisotropy field calculated from the relation $H^\parallel_M = |H^\parallel_H(\varphi_H = 90^\circ) - H^\parallel_H(\varphi_H = 0^\circ)|/2$, included in these tables for comparison, serve as a cross-check for the values of H^\parallel_M obtained from the $H^\parallel_H(\varphi_H)$ data.

The reduction in H^\parallel_M with increasing deposition temperature is directly related to the defect density in the multi-domain films [51]. The equilibrium magnetization angle, φ_M, is plotted against the corresponding field angle φ_H for all the CFS films in figure 6. The observation that $\varphi_M \approx \varphi_H$ implies that the ‘in-plane’ uniaxial anisotropy field is too small (clearly borne out by the values of H^\parallel_M listed in the Tables 1 and 2) to counter the external magnetic field ($\simeq H^\parallel_H$) with the result that, irrespective of the value of φ_H, the magnetization vector points in the magnetic field direction.

The variation of linewidth, ΔH^\parallel_H, for different CFS thin film samples, with φ_H is shown in figures 7 and 8. Like the resonance field H^\parallel_H, ΔH^\parallel_H, in all the cases, except for the films with $t = 12$ nm, 25 nm and 50 nm deposited at the optimum substrate temperature $T_S = 550^\circ$C (where ΔH^\parallel_H exhibits four-fold symmetry), shows two-fold symmetry. However, the values of φ_H, at which the minima and maxima in $\Delta H^\parallel_H(\varphi_H)$ occur, do not match with those of φ_H corresponding to the extrema in the resonance field, H^\parallel_H. The effect of disorder (T_S) gets clearly reflected in the $\Delta H^\parallel_H(\varphi_H)$ curve. The maximum variation of the ‘in-plane’ linewidth $[\delta(\Delta H^\parallel_H)]$ is 10 Oe for the RT film, decreases systematically with T_S and is the lowest ($\delta(\Delta H^\parallel_H) \sim 5$ Oe) for the most ordered films of thickness in the range 12 nm - 100 nm. This proves that the RT film is more disordered compared to the completely ordered TS550 films of different thicknesses, as linewidth is a measure of magnetic inhomogeneity [21, 41]. The fits to $\Delta H^\parallel_H(\varphi_H)$, based on Eqs.(13), (15), (17) and (19), which consider the contributions to ΔH^\parallel_H due to LLG, two-magnon scattering (TMS), inhomogeneity in magnetization and angular spread of crystallite orientations [16], are denoted by solid curves in Figs. 7 and 8. These figures clearly demonstrate that, in the CFS thin films
Table 2. Values of the resonance field, H^\parallel_{r}, along the ‘in-plane’ easy axis ($\varphi_H = 0^\circ$) and hard axis ($\varphi_H = 90^\circ$), magnetic anisotropy field, H^\parallel_k, obtained from the fits, based on Eqs.(3) and (4), to the $H^\parallel_{r}(\varphi_H)$ data for the CFS films of different thicknesses, deposited at 550°C. The values for M_s and H^\parallel_k, obtained from the lineshape (LS) analysis, are also included for comparison.

t (nm)	H^\parallel_{r} at $\varphi_H = 0^\circ$ (Oe)	H^\parallel_{r} at $\varphi_H = 90^\circ$ (Oe)	H^\parallel_k from LS fit (Oe)	M_s from LS fit (Oe)	H^\parallel_k from LS fit (Oe)
12	704	728	12.0	1087	12
25	709	727	9.0	1090	10
50	711	727	8.0	1084	8
75	731	754	11.5	1044	12
100	682	715	16.5	1120	16

of varying thickness, a crossover from the four-fold symmetry (cubic anisotropy) to two-fold symmetry (uniaxial anisotropy) occurs as t exceeds 50 nm. The two-fold (the term with prefactor Γ_2 in Eq.(15)) or four-fold symmetry (the term with prefactor Γ_4 in Eq.(15)) of $\Delta H^\parallel(\varphi_H)$ mainly originates from the TMS, since LLG damping does not depend on φ_H in the IP case, as is evident from Eqs.(13) and (15).

At this stage, it should be emphasized that, since TMS is extremely sensitive to local structural distortions, defects and imperfections, the crossover from the four-fold to two-fold local symmetry, easily detected in $\Delta H^\parallel_{TMS}(\varphi_H)$, eludes detection in $H^\parallel_{r}(\varphi_H)$ because the long-wavelength ($q = 0$) uniform precession mode, excited at resonance, detects only the global two-fold symmetry (uniaxial anisotropy) but fails to recognize the presence of local structural inhomogeneities that lead to the four-fold to two-fold local symmetry crossover.

4.2. ‘Out-of-plane’ (OP) configuration

In the ‘out-of-plane’ (OP) configuration, FMR spectra have been recorded at 5° ($\sim 2^\circ$) intervals starting from $\theta_H = -90^\circ$ to $+90^\circ$ (near 0°). The variations of the resonance field, H^\perp_{r}, with θ_H for the series I and II CFS thin films, deduced from the FMR spectra, are displayed in figures 9 and 10, respectively. H^\perp_{r} has the same values at the angles $\theta_H = -90^\circ$ and $\theta_H = 90^\circ$, and increases rapidly so as to reach a value as high as ~ 13 kOe [the upper instrumental limit for the static field ~ 13 kOe] as $\theta_H = 0^\circ$ is approached either from below or above. It follows from this angular variation of H^\perp_{r} that the magnetization prefers to lie within the film plane for all the CFS films. When $\theta_H = -90^\circ$ or $\theta_H = 90^\circ$, the magnetic field (\mathbf{H}) lies within the film plane and points along the easy axis of magnetization while \mathbf{H} points along the film normal when $\theta_H = 0^\circ$. The resonance field at $\theta_H = 0^\circ$ is ~ 12 kOe for the RT film but shifts to higher fields for the remaining films. A self-consistent procedure [24, 26] is followed to fit the $H^\perp_{r}(\theta_H)$, based on Eq.(5) and Eq.(6), with saturation magnetization and anisotropy field as the free fitting parameters, in a way similar to that described earlier in the IP case. The above procedure yields the theoretical fits to the $H^\perp_{r}(\theta_H)$, shown in Figs. 9 and 10 as continuous curves, that represent the experimental data (open circles) quite well for all the films. The equilibrium magnetization angle, θ_M, is plotted against θ_H, in figure 11. $\theta_M = \theta_H$ at $\theta_H = -90^\circ$ or $= +90^\circ$, i.e., the
Uniaxial anisotropy and two-magnon scattering in Co$_2$FeSi

Figure 12. ΔH^\perp as a function of the field angle, θ_H, for 50 nm CFS thin films at $T = 300$ K in the OP configuration. The continuous curves through the data points represent the theoretical fits based on Eqs.(14), (16), (18) and (20). The angular variation of the individual contributions, denoted by the dotted, dot-dashed and dashed lines, are also depicted.

magnetization vector points in the field direction only when H lies within the film plane because the ‘in-plane’ anisotropy field is too small compared to H (as in the ‘in-plane’ case). From $\theta_H = \pm 90^\circ$ to $\theta_H \approx \pm 20^\circ$, θ_M does not deviate significantly from $\pm 90^\circ$ and only when $\theta_H \to 0^\circ$, θ_M also approaches 0°. This observation implies that, except for θ_H in the range $-20^\circ \leq \theta_H \leq +20^\circ$, the applied static magnetic field ($= H^\perp$) is not strong enough (compared to the ‘in-plane’ anisotropy field) to extract the magnetization vector out of the film plane.

The variations of the OP-FMR linewidth, ΔH^\perp, with θ_H for the series I and II CFS films are displayed in figures 12 and 13. For the RT film, ΔH^\perp initially increases...
Uniaxial anisotropy and two-magnon scattering in Co$_2$FeSi

Figure 13. ΔH^\perp as a function of θ_H for the CFS films of different thicknesses at $T = 300$ K in the OP configuration. The continuous curves through the data points represent the theoretical fits based on Eqs. (14), (16), (18) and (20). The angular variation of the individual contributions, denoted by the dotted, dot-dashed and dashed lines, are also depicted.

up to $\theta_H = 10^\circ$ or $\theta_H = -10^\circ$ and then gives rise to a dip at $\theta_H = 0^\circ$. Such a dip at $\theta_H = 0^\circ$ is not observed for the remaining films because H^\perp shifts to fields higher than the upper instrumental limit of ~ 13 kOe. The Gilbert damping parameter can be extracted from the $\Delta H^\perp(\theta_H)$ data as follows. In permalloy [34] and Heusler alloy [11, 14, 52] thin films, it is reported that the LLG damping along with inhomogeneous broadening due to the distribution in local magnetization and the angular spread in crystallite misorientation, contribute to ΔH^\perp. In the present study, however, we demonstrate that the observed $\Delta H^\perp(\theta_H)$ in the CFS thin films cannot be reproduced unless the two-magnon scattering (TMS) is taken into consideration together with
Uniaxial anisotropy and two-magnon scattering in Co$_2$FeSi

The theory of TMS was originally proposed for the FMR line-broadening in magnetic insulators [53]. In many ferromagnetic metals, LLG damping alone could not account for the observed linewidth. Thus, the theory of TMS was extended to metallic ferromagnets by Heinrich et al. [53, 54]. The alternating microwave field excites magnon modes of different wave vectors (\(q \neq 0\)) that interact with one another and give rise to the TMS in metallic films. Another possible mechanism of line-broadening is the exchange conductivity contribution, which is ruled out as the skin depth (\(\sim 1 \, \mu m\)) is larger than the thickness of the CFS films [53]. In the present study, the angular variation of \(\Delta H^\perp\) is fitted considering the LLG contribution (\(\Delta H^{LLG}\)), the line-broadening due to inhomogeneity in magnetization (\(\Delta H^{4\pi M_{eff}}\)), line-broadening arising from the angular spread in the crystallite misorientation (\(\Delta H^{\theta_H}\)) and TMS (\(\Delta H^{TMS}\)). The equilibrium ‘out-of-plane’ magnetization angle, obtained from the fit to \(H^\perp_x(\theta_H)\), is used to calculate the above-mentioned contributions to linewidth. The theoretical fits to \(\Delta H^\perp(\theta_H)\), based on the Eqs.(14), (16), (18) and (20), are depicted by the solid curves in figures 12 and 13. The individual linewidth contributions are also plotted in these figures. The fit parameters such as the Gilbert damping parameter (\(\alpha\)), the magnitude of TMS, \(H^\perp_x\), \(\Delta(4\pi M_{eff})\) and \(\Delta\theta_H\) are plotted as functions of \(T_S\) and \(t\) in the panels (a) - (d) of the figures 14 and 15.

The following inferences can be drawn from the theoretical fits to \(\Delta H^\perp(\theta_H)\),

![Figure 14](image-url)

Figure 14. (a) - (d) Variations of the Gilbert damping parameter (\(\alpha\)), strength of TMS, \(H^\perp_x\), \(\Delta(4\pi M_{eff})\) and \(\Delta\theta_H\) with \(T_S\), deduced from the \(\Delta H^\perp \) versus \(\theta_H\) fits, based on Eqs.(14), (16), (18) and (20).
Uniaxial anisotropy and two-magnon scattering in Co$_2$FeSi

Figure 15. (a) - (d) Variation of Gilbert damping parameter (α), strength of TMS, H_{\perp}^{K}, $\Delta(4\pi M_{\text{eff}})$ and $\Delta(\theta_H)$ with thickness (t) deduced from the ΔH_{\perp} versus θ_H fit based on Eqs.(14), (16), (18) and (20).

shown in Figs.12 and 13.

(i) The LLG and ΔH^{θ_H} contributions increase slowly as $\theta_H \to 30^\circ$ or -30° and then give rise to a dip around $\theta_H = 0^\circ$. Experimentally, ΔH_{\perp} shows a dip at $\theta_H = 0^\circ$ only in the RT film. This dip basically originates from the LLG and ΔH^{θ_H} contributions. However, such a dip is not observed in the remaining films because of the shift in the resonance field to higher fields. While the two-magnon scattering is entirely responsible for the divergence in ΔH_{\perp} as $\theta_H \to 0^\circ$, the LLG mechanism largely determines ΔH_{\perp} in the θ_H intervals -90° to -45° and $+45^\circ$ to $+90^\circ$. With increasing T_S, the Gilbert (LLG) damping parameter, α, decreases from the value 0.047 for the RT film to 0.0078 for the TS450 and TS550 films (Fig.14(a)) whereas α jumps from 0.008 for the CFS film with $t = 50$ nm to 0.024 for $t = 75$ nm (Fig.15(a)). To understand the observed variations of α with T_S and t, use is made of the torque correlation model $[8, 12]$, which yields the relation

$$\alpha = (1/\gamma M_s \tau) \mu_B^2 N(E_F) (g - 2)^2$$

(21)

where $N(E_F)$ is the total spin ($S \uparrow$ and $S \downarrow$) density of states at the Fermi level E_F and τ is the conduction electron scattering time. Considering that τ^{-1} is proportional to the electrical resistivity (ρ) and our finding that the factor $(g - 2)^2$ (which is a measure of the orbital magnetic moment) does not change significantly with disorder.
Uniaxial anisotropy and two-magnon scattering in Co_2FeSi

and/or film thickness, t, it follows from Eq. (21) that $\alpha \sim (\rho/M_s) N(E_F)$. Use of the variations with T_S (or disorder) and t of M_s, observed in this work, and of ρ, reported previously in [22, 23], in Eq. (21) permits us to conclude that the observed $\alpha(T_S)$ and $\alpha(t)$ can be mimicked only when $N(E_F)$ increases (decreases) with disorder (T_S) and exhibits an abrupt jump at $t \gtrsim 50\text{nm}$. Consistent with our finding, the first principles calculations [12], based on the torque correlation model [8], clearly bear out that $N(E_F)$ (and hence α) increases with increasing disorder strength in the Co-based Heusler alloys Co_2MnAl, Co_2MnSi and Co_2FeSi.

(ii) The extrinsic linewidth contribution due to inhomogeneity in magnetization, $\Delta(4\pi M_{\text{eff}})$, shows up only for θ_H very close to 0° and that too for the amorphous films alone (Fig. 12(a) - (c)), decreases with increasing T_S, and vanishes for the crystalline

Figure 16. uniform ($q=0$) and non-uniform ($q \neq 0$) precession spin-wave modes excited at resonance in the 'out-of-plane' configuration in the RT CFS film.
films irrespective of their thickness (Fig.14(c) and Fig.15(c)). It immediately follows from this result that magnetization is more inhomogeneous in the amorphous films than in the crystalline counterparts, as expected. (iii) From Figs.12 and 13, it is evident that the TMS makes negligible contribution to $\Delta H^\perp(\theta_H)$ in the ranges $-90^\circ \leq \theta_H \lesssim -30^\circ$ and $30^\circ \leq \theta_H \leq 90^\circ$, but in the θ_H range $\gtrsim -30^\circ$ to $\lesssim +30^\circ$, TMS increases rapidly. The TMS contribution is larger in the amorphous films than in the crystalline films because, unlike crystalline ferromagnets, amorphous counterparts have a spatial distribution in the local exchange interaction, local magnetization and local anisotropy fields: all such local inhomogeneities are additional sources of two-magnon scattering [54]. As $\theta_H \to 0^\circ$, TMS scattering is more effective since the spin wave modes with wave vector $q \neq 0$ are excited in the perpendicular configuration ($\theta_H = 0^\circ$) rather than in the ‘in-plane’ ($\theta_H = 90^\circ$) configuration for a fixed microwave frequency. We could clearly observe such resonant microwave field-excited spin-wave modes with wave vector $q \neq 0$, apart from the uniform precession spin-wave modes with wave vector $q = 0$, in the FMR spectra taken on the RT Co$_2$FeSi (CFS) Heusler alloy 50 nm thick films in the ‘out-of-plane’ sample configuration, as is evident from figure 16. This is so because, in this sample alone, the resonance corresponding to the $q = 0$ uniform precession mode could be detected right up to $\theta_H = 0^\circ$.

Lastly, we comment on the effect of spin-pumping on α. For uniform ‘out-of-plane’ precession, excited in a ferromagnetic (FM) layer at the resonant microwave frequencies in a FMR experiment, the spins, pumped from a FM layer into a non-ferromagnetic (NM) layer, diffuse into the NM layer in a direction perpendicular to the FM/NM interface. For each FM/NM interface, the spin-pumping increases α from its (spin-pumping free) FM bulk value, α_0, by the amount [55, 56, 57]

$$\Delta \alpha = \alpha - \alpha_0 = \frac{g \mu_B}{4\pi M_s t_{FM}} g^{\uparrow\downarrow}_{\downarrow\uparrow}$$

(22)

where t_{FM} is the thickness of the FM layer and $g^{\uparrow\downarrow}_{\downarrow\uparrow}$ is the effective spin-mixing conductance. In the present case, the relevant FM/NM interface is between the Co$_2$FeSi thin film and the 2 nm thick Ta cap layer. Our finding that α has the same value (within the uncertainty limits) for the 50 nm thick CFS films, deposited at RT, with and without Ta cap layer, rules out a possible spin-pumping contribution to α. This conclusion is further supported by the observation that, for practically constant (film thickness-independent) values of M_s and $g^{\uparrow\downarrow}_{\downarrow\uparrow}$, Eq.(22) predicts that the spin-pumping contribution to α decreases with increasing t_{FM} whereas a completely opposite trend is observed (Fig.15(a)).

5. SUMMARY AND CONCLUSIONS

FMR spectra have been taken at different static magnetic field angles in the ‘in-plane’ and ‘out-of-plane’ thin film configurations at room temperature on 50 nm thick Co$_2$FeSi (CFS) Heusler alloy thin films, deposited at the Si(111) substrate temperatures (T_S) ranging from room temperature to 600°C, and on the CFS films with thickness (t) in the range 12 nm to 100 nm, deposited at the optimum substrate temperature $T_S = 550^\circ$C. Use is made of an elaborate data analysis of the angular variations of the resonance field (H_r) and linewidth (ΔH) in the ‘in-plane’ ([I]) and ‘out-of-plane’ ([OP, \perp]) configurations, that, besides the Landau-Lifshitz-Gilbert damping (LLG, ΔH^{LLG}), considers all possible extrinsic FMR linewidth contributions
such as the two-magnon scattering (TMS, ΔH_{TMS}^H), the line-broadening due to inhomogeneity in magnetization ($\Delta H_{4\pi M_{eff}}^\theta$), and that ($\Delta H^\theta$) arising from the angular spread in the crystallite misorientation. The results of this analysis enable us to draw the following conclusions unambiguously.

(I) Regardless of the disorder strength and CFS film thickness, global IP uniaxial anisotropy exists whose strength decreases with improving crystalline order in the films. (II) The OP uniaxial anisotropy field, H_{k}^\parallel, is an order of magnitude higher than the IP counterpart, H_{k}^\perp. (III) In the CFS thin films of varying thickness, a crossover from the ‘in-plane’ local four-fold symmetry (cubic anisotropy) to local two-fold symmetry (uniaxial anisotropy) occurs as t exceeds 50 nm. (IV) In both IP and OP cases, Landau–Lifshitz–Gilbert damping and two-magnon scattering make dominant contributions to the FMR linewidth. (V) The two-magnon scattering has larger magnitude in the amorphous films than in the crystalline ones. (VI) Gilbert damping parameter, α, decreases monotonously from 0.047 to 0.0078 with decreasing disorder strength (increasing T_S) and jumps from 0.008 for the CFS film with $t = 50$ nm to 0.024 for the film with $t = 75$ nm. Such variations of α with T_S and t are understood in terms of the changes in the total (spin-up and spin-down) density of states at the Fermi level caused by the disorder and film thickness. (VII) Spin pumping across the Co$_2$FeSi film/Ta cap-layer interface makes negligible contribution to α. (VIII) Our results suggest that disorder and/or the film thickness can be used as control parameters to tune α in the CFS thin films to make them suitable for a given spintronics application.

ACKNOWLEDGMENTS

B. K. Hazra acknowledges the financial assistance (SRF) from UGC-BSR and thanks the Central Instruments Laboratory, University of Hyderabad, for permitting the use of the JEOL-FA200 Electron Spin Resonance Spectrometer. This work was supported by Indian National Science Academy under Grant No.: SP/SS/2013/1971.

References

[1] Tanja Graf, Claudia Felser, Stuart S.P. Parkin 2011 *Progress in Solid State Chemistry* **39** 1e50.
[2] L. Berger 1996 *Phys. Rev. B* **54** 9353.
[3] J. C. Slonczewski 1996 *J. Magn. Magn. Mater.* **159** L1.
[4] Smith N and Arnett P 2001 *Appl. Phys. Lett.* **78** 1448.
[5] Liu X, Zhang W, Carter M J and Xiao G 2011 *J. Appl. Phys.* **110** 033910.
[6] K. Ando, S. Takahashi, J. Ieda, H. Kurebayashi, T. Trpiniotis, C. H. W. Barnes, S. Maekawa, and E. Saitoh 2011 *Nature Mater.* **10** 655.
[7] H. Kurebayashi, T. D. Skinner, K. Khazen, K. Olejnk, D. Fang, C. Ciccarelli, R. P. Campion, B. L. Gallagher, L. Fleet, A. Hirohata, and A. J. Ferguson 2013 *Appl. Phys. Lett.* **102** 062415.
[8] V. Kambersky 1970 *Can. J. Phys.* **48** 2906; V. Kambersky 2007 *Phys. Rev. B* **76** 134416.
[9] T. Kubota, S. Tsunegi, M. Oogane, S. Mizukami, T. Miyazaki, H. Naganuma, and Y. Ando 2009 *Appl. Phys. Lett.* **94** 122504.
[10] S. Mizukami, D. Watanabe, M. Oogane, Y. Ando, Y. Miura, M. Shirai, and T. Miyazaki 2009 *J. Appl. Phys.* **105** 07D306.
[11] M. Oogane, T. Kubota, T. Kataoka, S. Mizukami, H. Naganuma, and A. Sakuma 2020 *Appl. Phys. Lett.* **106** 252501.
[12] A. Sakuma 2015 *J. Phys. D: Appl. Phys.* **48** 164011.
[13] M. A. W. Schoen, D. Thonig, M. L. Schneider, T. J. Silva, H. T. Nembach, O. Eriksson, O. Karis and J. M. Shaw 2016 *Nat. Phys.* **12** 839.
[14] F. J. Yang, C. Wei, and X. Q. Chen 2013 *Appl. Phys. Lett.* **102** 172403.
[15] M Oogane, T Kubota, H Naganuma and Y Ando 2015 *J. Phys. D: Appl. Phys.* **48** 164012.
Uniaxial anisotropy and two-magnon scattering in Co$_2$FeSi

[16] M. Belmeguenai, H. Tuzcuoglu, M. S. Gabor, T. Petrisor Jr., C. Tiusan, D. Berling, F. Zighem, T. Chauveau, S. M. Cherif and P. Moch 2013 Phys. Rev. B 87 184431.

[17] A. Köhler, L. Wollmann, D. Ebke, S. Chadov, C. Kaiser, Z. Diao, Y. Zheng, Q. Leng and C. Felser 2016 Phys. Rev. B 93 094410.

[18] C. Sterwerf, S. Paul, B. Khodadadi, M. Meinert, J-M. Schmalhorst, M. Buchmeier, C. K. A. Mewes, T. Mewes and G. Reiss 2016 cond-mat.mtrl-Sci arXiv:1605.06797v1.

[19] L. Bainsla, R. Yilgin, M. Tsujikawa, K. Z. Suzuki, M. Shirai and S. Mizukami 2018 J. Phys. D: Appl. Phys. 51 495001.

[20] B. Heinrich 1987 Phys. Rev. Lett. 59 15.

[21] W. Platow, A. N. Anisimov, G. L. Dunifer, M. Farle, and K. Baberschke 1998 Phys. Rev. B 58 5611.

[22] B. K. Hazra, S. N. Kaul, S. Srinath, M. Manivel Raja, R. Rawat and Archana Lakhani 2017 Phys. Rev. B 96 184434.

[23] B. K. Hazra, S. N. Kaul, S. Srinath, M. Manivel Raja, R. Rawat and Archana Lakhani 2019 J. Magn. Magn. Mater. at press.

[24] V. Siruguri and S. N. Kaul 1996 J. Phys.: Condens. Matter 8 4567.

[25] H. Suhl 1955 Phys. Rev. 97 55.

[26] G. A. Basheed, S. N. Kaul and M. Vazquez 2011 J. Phys.: Condens. Matter 23 3192.

[27] S. Mizukami, Y. Ando and T. Miyazaki 2001 Jpn. J. Appl. Phys. 40 580.

[28] D. L. Mills and R. Arias, 2000 J. Appl. Phys. 87 5455.

[29] S. N. Kaul and V. Siruguri, 1987 J. Phys. F: Met. Phys. 17 L255.

[30] S. N. Kaul and V. Siruguri, 1992 J. Phys.: Condens. Matter 4 505.

[31] S. N. Kaul and P. D. Babu 1992 Phys. Rev. B 45 295.

[32] V. Siruguri and S. N. Kaul 1996 J. Phys.: Condens. Matter 8 4545.

[33] M. Farle, Y. Henry, and K. Ounadjela 1996 Phys. Rev. B 53 11562.

[34] M. Belmeguenai, H. Tuzcuoglu, M. S. Gabor, T. Petrisor, Jr., C. Tiusan, F. Zighem, S. M. Cherif, and P. Moch 2014 J. Appl. Phys. 115 043918.

[35] C. Kittel, Introduction to Solid State Physics, 7th ed. Wiley, New York, 1996, p. 505.

[36] J.-M. L. Beaujoura and A. D. Kent, D. W. Abraham and J. Z. Sun 2008 J. Appl. Phys. 103 07B519.

[37] Y. Wei, R. Bruscas, K. Gunnarsson, I. Harward, Z. Celinski and P. Svedlindh 2013 J. Phys. D: Appl. Phys. 46 495002.

[38] M. Belmeguenai, H. Tuzcuoglu, M. Gabor, T. Petrisor, C. Tiusan, D. Berling, F. Zighem and S. M. Cherif 2015 J. Magn. Magn. Mater. 373 140143.

[39] Y. Hoshi, E. Suzuki and M. Naie 1996 J. Appl. Phys. 79 4945.

[40] R. D. McMichael, C. G. Lee, J. E. Boneich, P. J. Chen, W. Miller, and W. F. Egelhoff 2000 J. Appl. Phys. 88 5296.

[41] D-X Ye, Y-P Zhao, G-R Yang, Y-G Zhao, G-C Wang and T-M Lu 2002 Nanotechnology 13 615.

[42] Y. Fukuma, Z. Lu, H. Fujiwara, G. J. Mankey, W. H. Butler, and S. Matsumuna 2009 J. Appl. Phys. 106 076101.

[43] V. Barwal, S. Hussein, N. Behera, E. Goyat, and S. Chaudhary 2018 J. Appl. Phys. 123 053901.

[44] M. Oogane, R. Yilgın, M. Shinano, S. Yakata, Y. Sakuraba, Y. Ando and T. Miyazaki 2007 J. Appl. Phys. 101 07B519.

[45] J. F. Cochran, R. W. Qiao and B. Heinrich 1989 Phys. Rev. B 39 4399 and references therein.

[46] B. Heinrich, J. F. Cochran and R. Hasegawa 1985 J. Appl. Phys. 57 3690.

[47] Y. Tserkovnyak, A. Brataas and G. E. W. Bauer 2002 Phys. Rev. B 66 224403.

[48] M. L. Polianski 2004 Phys. Rev. Lett. 92 026602.

[49] C. T. Boone, H. T. Nembach, J. M. Shaw and T. J. Silva 2013 J. Appl. Phys. 113 153906.