Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate

Laura M. Carroll,a Ahmed Gaballa,a Claudia Guldimann,b Genevieve Sullivan,a Lory O. Henderson,a,c Martin Wiedmanna

aDepartment of Food Science, Cornell University, Ithaca, New York, USA
bInstitute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
cDepartment of Microbiology, Cornell University, Ithaca, New York, USA

ABSTRACT Mobilized colistin resistance (mcr) genes are plasmid-borne genes that confer resistance to colistin, an antibiotic used to treat severe bacterial infections. To date, eight known mcr homologues have been described (mcr-1 to -8). Here, we describe mcr-9, a novel mcr homologue detected during routine in silico screening of sequenced Salmonella genomes for antimicrobial resistance genes. The amino acid sequence of mcr-9, detected in a multidrug-resistant (MDR) Salmonella enterica serotype Typhimurium (S. Typhimurium) strain isolated from a human patient in Washington State in 2010, most closely resembled mcr-3, aligning with 64.5% amino acid identity and 99.5% coverage using Translated Nucleotide BLAST (tblastn). The S. Typhimurium strain was tested for phenotypic resistance to colistin and was found to be sensitive at the 2-mg/liter European Committee on Antimicrobial Susceptibility Testing breakpoint under the tested conditions. mcr-9 was cloned in colistin-susceptible Escherichia coli NEB5α under an IPTG (isopropyl-β-D-thiogalactopyranoside)-induced promoter to determine whether it was capable of conferring resistance to colistin when expressed in a heterologous host. Expression of mcr-9 conferred resistance to colistin in E. coli NEB5α at 1, 2, and 2.5 mg/liter colistin, albeit at a lower level than mcr-3. Pairwise comparisons of the predicted protein structures associated with all nine mcr homologues (Mcr-1 to -9) revealed that Mcr-9, Mcr-3, Mcr-4, and Mcr-7 share a high degree of similarity at the structural level. Our results indicate that mcr-9 is capable of conferring phenotypic resistance to colistin in Enterobacteriaceae and should be immediately considered when monitoring plasmid-mediated colistin resistance.

IMPORTANCE Colistin is a last-resort antibiotic that is used to treat severe infections caused by MDR and extensively drug-resistant (XDR) bacteria. The World Health Organization (WHO) has designated colistin as a “highest priority critically important antimicrobial for human medicine” (WHO, Critically Important Antimicrobials for Human Medicine, 5th revision, 2017, https://www.who.int/foodsafety/publications/antimicrobials-fifth/en/), as it is often one of the only therapies available for treating serious bacterial infections in critically ill patients. Plasmid-borne mcr genes that confer resistance to colistin pose a threat to public health at an international scale, as they can be transmitted via horizontal gene transfer and have the potential to spread globally. Therefore, the establishment of a complete reference of mcr genes that can be used to screen for plasmid-mediated colistin resistance is essential for developing effective control strategies.

KEYWORDS Salmonella enterica, antibiotic resistance, colistin, mcr genes, mcr-9, mobilized colistin resistance, multidrug resistance, plasmid-mediated resistance
Until recently, bacterial resistance to colistin, a last-resort antibiotic reserved for treating severe infections, was thought to be acquired solely via chromosomal point mutations (1). However, in 2015, plasmid-mediated colistin resistance gene mcr-1 was described in *Escherichia coli* (1). Mcr-1 is a phosphoethanolamine transferase that modifies cell membrane lipid A head groups with a phosphoethanolamine residue, reducing affinity to colistin (2). Since then, seven additional mcr homologues (mcr-2 to -8) have been identified in *Enterobacteriaceae* (3–9). Here, we report novel *mcr* homologue mcr-9, which was identified in a *Salmonella enterica* serotype Typhimurium (S. Typhimurium) genome.

In silico identification of mcr-9 in an MDR S. Typhimurium genome. MDR *S. Typhimurium* strain HUM_TYPH_WA_10_R9_3274 (NCBI RefSeq accession no. GCF_002091095.1) was isolated from a patient in Washington State in 2010 (10). It had previously been tested for resistance to a panel of 12 antimicrobials that did not include colistin (10). ABRicate version 0.8 (https://github.com/tseemann/abricate) identified 20 antimicrobial resistance (AMR) genes in the HUM_TYPH_WA_10_R9_3274 assembly using the ResFinder database (accessed 11 June 2018) (11) and minimum identity and coverage thresholds of 75 and 50% (10), respectively, none of which had been previously described to confer colistin resistance (see Table S1 in the supplemental material). Four plasmid replicons, including IncHI2 and IncHI2A, were detected with at least 80% identity and 60% coverage using ABRicate and PlasmidFinder (accessed 11 June 2018 [Table S1]) (12).

To detect *mcr*-9 in the HUM_TYPH_WA_10_R9_3274 assembly, all colistin resistance-conferring nucleotide sequences available in ResFinder (52 sequences, accessed 22 January 2019 [see Table S2 in the supplemental material]) were translated into amino acid sequences using EMBOSS Transeq (reading frame 1 (https://www.ebi.ac.uk/Tools/st/emboss_transeq/)). The implementation of Translated Nucleotide BLAST (tblastn) (13) in BTyper version 2.3.2 (14) selected *mcr*-3.17 as the highest-scoring *mcr* allele, which aligned to *mcr*-9 with 64.5% amino acid identity and 99.5% coverage (Table S1).

MUSCLE version 3.8.31 (15) was used to construct alignments of the amino acid sequence of *mcr*-9 (NCBI protein accession no. WP_001572373.1) and the following: (i) the 52 *mcr* amino acid sequences from ResFinder (53 sequences [Table S2]), (ii) the top 100 hits produced when *mcr*-9 was queried against NCBI’s non-redundant protein (nr) database using the Protein BLAST (blastp) web server (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) [accessed 22 January 2019]; 152 sequences excluding *mcr*-9’s self-match [see Table S3 in the supplemental material]), and (iii) amino acid sequences of 61 putative phosphoethanolamine transferases used in other papers describing novel *mcr* genes (4, 5, 8, 9) (213 sequences [see Table S4 in the supplemental material]). For each alignment, RAxML version 8.2.12 (16) was used to construct a phylogeny using the PROTGAMMAAUTO method and 1,000 bootstrap replicates.

The amino acid sequence of *mcr*-9 most closely resembled those of *mcr*-3 and *mcr*-7 (Fig. 1A; see Fig. S1 in the supplemental material). However, the *S. Typhimurium* isolate in which *mcr*-9 was detected was not resistant to colistin at the >2-mg/liter European Committee on Antimicrobial Susceptibility Testing (EUCAST) (http://www.eucast.org) breakpoint when a broth microdilution method was used to determine the colistin MIC (see Table S5 in the supplemental material).

mcr-9 confers resistance to colistin when cloned into colistin-susceptible E. coli

NEB5a. Coding regions of *mcr*-9 and *mcr*-3 were cloned under the control of an IPTG (isopropyl-β-D-thiogalactopyranoside)-induced SPAC/lacOid promoter and expressed in *E. coli* NEB5a (see Text S1 in the supplemental material). Colistin killing assays (Fig. 1B; see Fig. S2 in the supplemental material) were performed by incubating *E. coli* harboring the empty pLIV2 vector (negative control), pLIV2 with *mcr*-3 (positive control), or pLIV2 with *mcr*-9 with different concentrations of colistin (0, 1, 2, 2.5, and 5 mg/liter). *E. coli* cells harboring the empty vector failed to survive at all tested colistin concentrations >0 mg/liter. While *mcr*-3 expression conferred clinical levels of colistin resistance (i.e., beyond the 2-mg/liter EUCAST breakpoint) in *E. coli* at all tested concentrations,
mcr-9 expression conferred clinical resistance at 1, 2, and 2.5 mg/liter, but not 5 mg/liter of colistin (Fig. 1B; Fig. S2).

Mcr-3, Mcr-4, Mcr-7, and Mcr-9 are highly similar at the structural level.

Three-dimensional (3D) structural models of all nine Mcr homologues (Fig. 2A) based on EptA (2) were constructed using the Phyre2 server (17) and visualized using UCSF Chimera (18). Congruent with the phylogeny based on their amino acid sequences (Fig. 1A), comparisons of different Mcr protein models using Dali (19) revealed that Mcr-3, Mcr-4, Mcr-7, and Mcr-9 were closely related at the structural level (Fig. 1C).

Proteins encoded by mcr-1 to -9 revealed high levels of conservation for both the membrane-anchored domain and the soluble catalytic domain (Fig. 2A). Interestingly, analyses of structural models of the nine Mcr homologues using the ESPript 3 server (20) showed that both amino acids and structural elements were conserved on the C-terminal catalytic domain, while only structural elements were conserved on the membrane-anchored N-terminal domain (Fig. 2B).
Numerous genera of Enterobacteriaceae harbor mcr-9 on IncHI2 plasmids. blastp searches of mcr-9 against NCBI's nr database revealed that mcr-9 was present in multiple genera of Enterobacteriaceae (Table S3). The 10 highest-scoring hits in the nr database matched mcr-9 with at least 99% amino acid identity (including mcr-9 characterized here [Table S3 and Fig. S1A]); the amino acid identities of the remaining hits with high query coverage (> 90%) dropped below 88% identity (Table S3 and Fig. S1A). mcr-9 was detected in 335 genomes linked to NCBI identical protein groups (IPGs) associated with the 10 highest-scoring protein accession numbers (accessed 23 January 2019 [see Tables S3 and S6 in the supplemental material]). Analysis of the mcr-9 promoter region in 321 of these genomes (Text S1) showed conserved putative ρ70-family-dependent −35 and −10 regions and an inverted repeat (Fig. 2C). The con-
served DNA motif in the mcr-9 promoter is likely a recognition sequence for a transcription regulator, suggesting that additional factors or induction/derepression conditions might be needed for full expression of wild-type mcr-9. Promoter variation (21) and testing conditions (22, 23) have been shown to influence mcr expression and the colistin MIC, which may explain why the S. Typhimurium strain queried here was colistin susceptible under the tested conditions.

Of the 335 genomes in which mcr-9 was detected, 65 had at least one plasmid replicon (detected using ABRicate and PlasmidFinder as described above) present on the same contig as mcr-9; in 59 of these 65 genomes, IncHI2 and/or IncHI2A replicons were detected on the same contig as mcr-9 (Table S6). In 32 of the 37 closed genomes in which it was detected, mcr-9 was harbored on a plasmid (Table S6). These results indicate that mcr-9 has the potential to reduce susceptibility to colistin, up to and beyond the EUCAST breakpoint, and can be found extrachromosomally in multiple species of Enterobacteriaceae, making it a relevant threat to public health. Future studies querying the plasmids that harbor mcr-9 (e.g., transferability, stability, and copy number variation) will offer further insight into the potential role that mcr-9 plays in the dissemination of colistin resistance worldwide.

Accession number(s). The nucleotide and amino acid sequences of mcr-9 are available under NCBI reference sequence accession no. NZ_NAAN01000063.1 (NCBI protein accession no. WP_001572373.1).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio.00853-19.

ACKNOWLEDGMENTS
This material is based on work supported by the National Science Foundation (NSF) Graduate Research Fellowship Program under grant no. DGE-1650441, with additional funding provided by an NSF Graduate Research Opportunities Worldwide (GROW) grant through a partnership with the Swiss National Science Foundation (SNF).

We thank Julie Siler (Cornell University) for providing colistin resistance testing materials.

REFERENCES
1. Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu L-F, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu J-H, Shen J. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168. https://doi.org/10.1016/S1473-3099(15)00424-7.

2. Anandan A, Evans GL, Condic-Jurkic K, O’Mara ML, John CM, Phillips NJ, Jarvis GA, Wills SS, Stubbs KA, Moraes I, Kahler CM, Viaelink A. 2017. Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding. Proc Natl Acad Sci U S A 114:2218–2223. https://doi.org/10.1073/pnas.1612927114.

3. Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, Malhotra-Kumar S. 2016. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli. Belgium, 2016. Euro Surveill 21:30280. https://doi.org/10.2807/1560-7917.ES.2016.21.27.30280.

4. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, Zhang R, Walsh TR, Shen J, Wang Y. 2017. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. mBio 8:e00543-17. https://doi.org/10.1128/mBio.00543-17.

5. Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, Pezzotti G, Magistrati CF. 2017. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill 22:30589. https://doi.org/10.2807/1560-7917.ES.2017.22.31.30589.

6. Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B. 2017. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother 72:3317–3324. https://doi.org/10.1093/jac/dkx327.

7. AbuOun M, Stuberfeld EJ, Duggett NA, Kirchner M, Dormer L, Nunez-Garcia J, Randall LP, Lemma F, Crook DW, Teale C, Smith RP, Anjum MF.
8. Yang YQ, Li YX, Lei CW, Zhang AY, Wang HN. 2018. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J Antimicrob Chemother 73:1791–1795. https://doi.org/10.1093/jac/dky111.

9. Wang X, Wang Y, Zhou Y, Li J, Yin W, Wang S, Zhang S, Shen J, Shen Z, Wang Y. 2018. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect 7:122. https://doi.org/10.1038/s41426-018-0124-z.

10. Carroll LM, Wiedmann M, den Bakker H, Siler J, Warchocki S, Kent D, Lyalina S, Davis M, Sischo W, Besser T, Warnick LD, Pereira RV. 2017. Whole-genome sequencing of drug-resistant Salmonella enterica isolates from dairy cattle and humans in New York and Washington States reveals source and geographic associations. Appl Environ Microbiol 83:e00140-17. https://doi.org/10.1128/AEM.00140-17.

11. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. https://doi.org/10.1093/jac/dks261.

12. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. https://doi.org/10.1128/AAC.02412-14.

13. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421.

14. Carroll LM, Kovac J, Miller RA, Wiedmann M. 2017. Rapid, high-throughput identification of anthrax-causing and emetic Bacillus cereus group genomes using BTyper, a computational tool for virulence-based classification of Bacillus cereus group isolates using nucleotide sequencing data. Appl Environ Microbiol 83:e01096-17. https://doi.org/10.1128/AEM.01096-17.

15. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340.

16. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033.

17. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858. https://doi.org/10.1038/nprot.2015.053.

18. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084.

19. Holm L, Laakso LM. 2016. Dali server update. Nucleic Acids Res 44:W351–W355. https://doi.org/10.1093/nar/gkw357.

20. Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324. https://doi.org/10.1093/nar/gku316.

21. Huang B, He Y, Ma X, Cai R, Zeng J, Lu Y, Zhang W, Lan K, E S, Tang YW, Kreiswirth BN, Chen C, Chen L. 2018. Promoter variation and gene expression of mcr-1-harboring plasmids in clinical isolates of Escherichia coli and Klebsiella pneumoniae from a Chinese hospital. Antimicrob Agents Chemother 62:e00018-18. https://doi.org/10.1128/AAC.00018-18.

22. Zhang H, Miao M, Yan J, Wang M, Tang YW, Kreiswirth BN, Zhang X, Chen L, Du H. 2017. Expression characteristics of the plasmid-borne mcr-1 colistin resistance gene. Oncotarget 8:107596–107602. https://doi.org/10.18632/oncotarget.22538.

23. Gwozdzinski K, Azarderakhsh S, Imirzalioglu C, Falgenhauer L, Chakraborty T. 2018. An improved medium for colistin susceptibility testing. J Clin Microbiol 56:e01950-17. https://doi.org/10.1128/JCM.01950-17.

24. Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res 14:1188–1190. https://doi.org/10.1101/gr.849004.