Effects of Dietary Boron in Rats Fed a Vitamin D-deficient Diet

John N. Dupre, Michael J. Keenan, Maren Hegsted, and Andrea M. Bruedovold

School of Human Ecology, Louisiana State University Agricultural Center, Louisiana State University, Baton Rouge, Louisiana

Although boron has long been known to be a required nutrient for plants since the early part of the 20th century (1). Early studies with dietary boron in rats had equivocal results and further investigation of boron as a required nutrient for animals was ignored (1). It was not until 1981 when Hunt and Nielsen discovered a possible need for boron in the diet of the chick that the study of boron in animals received further interest (2). Hunt and Nielsen observed that vitamin D-deficient chicks responded with improved growth and lowered concentrations of serum alkaline phosphatase when boron was added to the diet. Hunt later demonstrated that in the vitamin D-deficient chick, boron decreased body growth but enhanced initiation of cartilage calcification (3). In chicks with concomitant magnesium deficiency, boron had the opposite effect (3). However, most effects of low boron diets were seen when vitamin D in the diet was also low. In growing male rats, Brommage (R. Brommage personal communication, 1989) found no differences in calcium, magnesium, and phosphorus apparent balance as well as serum concentrations of 25-hydroxyvitamin D, and 1,25-dihydroxyvitamin D, when the only difference between dietary treatment groups was supplemental boron. Although both diets contained adequate vitamin D, it was not clear whether the diet unsupplemented with boron provided a low amount of the element since the diet was never analyzed for boron. Boron has been reported to have an effect in rats when other nutrients such as magnesium, calcium, or methionine are fed in amounts below recommended dietary guidelines (4-7). Researchers in our laboratory recently investigated the effects of supplemental (2.72 ppm) or low (0.16 ppm) dietary boron on rats fed a vitamin D-deprived diet for 12 weeks (8).

Table 1. Composition of rat diet for initial boron study.

Ingredient	Amount, g/kg dry diet
Casein, high protein a	160.00
Ground corn, acid washed a	708.00
Corn oil a	75.00
Methionine, L c	3.00
Mineral mix a	42.00
Choline bitartrate c	2.00
AIN-76A vitamin mix a	10.00

*United States Biochemical Corporation, Cleveland, OH. "Mazola corn oil." Sigma Chemical, St. Louis, MO. *Mineral mix contained (in g/kg of diet): sodium chloride, 2.0; magnesium acetate, 3.5; manganese acetate, 0.1125; copper sulfate, 0.03; potassium iodide, 0.0004; zinc acetate, 0.05; sodium selenite, 0.0003; ammonium molybdate, 0.004; chromic chloride, 0.002; ammonium vanadate, 0.0003; nickel chloride, 0.002; sodium arsenate, 0.005; potassium chloride, 3.5; potassium acetate, 4.53; sodium metasilicate, 0.05; potassium fluoride, 0.0025; ferrous sulfate, 0.2; calcium phosphate (dibasic), 17; acid-washed ground corn, 11.011. This mineral mix yielded a dietary calcium, magnesium, and phosphorus content of 0.5%, 0.04%, and 0.39% respectively. The boron-supplemented diet contained 0.017 g boric acid/kg diet, to provide 3 mg B/g diet.
were magnesium, phosphorus, and boron. Univariate procedure of SAS was used to distribute the data quartiles and indicate the mean (#), median (central horizontal line), and the 25th and 75th percentiles (designated by the lower and upper horizontal lines, respectively). The zero above the extending "whiskers" of the box plot in the first panel indicates that the data point is outside of the 1.5 interquartile range, which is equal to the distance between the 25th and 75th percentiles.

Table 2. Table of significant effects of boron on tissue calcium and phosphorus.

Tissue	Treatment	Total P, mg / g	mg P / g a
Liver	2.72	23.9 ± 2.16	2.64 ± 0.23
	0.16	29.8 ± 1.74	3.21 ± 0.10
Cerebellum	2.72	0.645 ± 0.063	2.78 ± 0.25
	0.16	0.873 ± 0.063	3.48 ± 0.19
Brain cortex	2.72	0.053 ± 0.002	0.043 ± 0.007
	0.16	0.082 ± 0.008	0.065 ± 0.000

aSee Hegsted et al. (8). bWet weight basis. cAmount of boron in diet per analysis (ppm). dBoron effect, p<0.05. eBoron effect, p<0.02.

The rats used in our study were from a colony supplemented with 3000 IU of vitamin D/kg of diet. We have previously used rats from a low-vitamin D Harlan Sprague-Dawley colony that had no supplemental vitamin D added to their customary, unrefined diet (13). The rats from the low-vitamin D colony had lower vitamin D stores than the rats from the regular (vitamin D-supplemented) Harlan Sprague-Dawley colony. Weanling rats from the low-vitamin D colony exhibited vitamin D deficiency signs earlier when fed a vitamin D-deficient diet (American Institute of Nutrition-76A); higher apparent calcium, magnesium, and phosphorus balance at the end of the study (64–72 days of age) when fed a vitamin D-adequate.

Further Studies and Results

The rats in our study were from a colony supplemented with 3000 IU of vitamin D/kg of diet. We have previously used rats from a low-vitamin D Harlan Sprague-Dawley colony that had no supplemental vitamin D added to their customary, unrefined diet (13). The rats from the low-vitamin D colony had lower vitamin D stores than the rats from the regular (vitamin D-supplemented) Harlan Sprague-Dawley colony. Weanling rats from the low-vitamin D colony exhibited vitamin D deficiency signs earlier when fed a vitamin D-deficient diet (American Institute of Nutrition-76A); higher apparent calcium, magnesium, and phosphorus balance at the end of the study (64–72 days of age) when fed a vitamin D-adequate.
diet; and slower initial growth rate, followed by accelerated growth when fed a vitamin D-adequate diet. Therefore, use of low-vitamin D colony rats to investigate the effects of boron may enhance results. Our results from experiments with low-vitamin D and regular colony rats were similar to the results of Halloran (16). He also observed that low-vitamin D-fed rats and regular-diet rat colonies develop hypocalcemia at different rates.

Results from our laboratory support our hypothesis that a delay in depletion of variable vitamin D stores limits the response of rats to dietary boron (17). In the first of two studies with low-vitamin D-fed colony weaning rats, problems with the cornmeal-based diet (fed 1 week), resulted in a switch to rat chow (fed 12 hr) and then to a vitamin D-deficient, purified diet (17). (Table 3; diet is similar to the AIN-76A diet). The calculated value for the amount of boron added to the purified diet was 3 mg/kg diet or 3 ppm. However, the value from the analysis was 1.08 mg/kg diet (analyzed by Dr. Curtiss Hunt). The unsupplemented diet had an analyzed value of 0.23 mg boron/kg diet. Following 5 weeks on this diet, a small but significantly higher total plasma calcium (p<0.05) in the 8-week-old boron-supplemented rats indicated the need for a second study. In the second study, the rats fed supplemental boron had higher total plasma calcium at 8 (p<0.001), 10 (p<0.0005) and 12 (p<0.05) weeks of age. These results suggest that supplemental boron prevents the severe hypocalcemia of vitamin D deficiency. This condition occurs earlier in low-vitamin D-fed colony rats than in vitamin D-supplemented colony rats, during a time period associated with rapid bone growth.

Our most recent results also demonstrated effects of supplemental dietary boron using a purified (17) diet. Diet preparation time and effort are much reduced when feeding animals a purified diet. Although further work is needed to confirm that purified diets provide low bone content, use of a purified diet with an analyzed low-boron content instead of the acid-washed cornmeal-based diet may simplify future rat studies with boron.

Table 3. Purified diet fed to rats from low-vitamin D colony.

Ingredient	Percent
Casein high nitrogen	15.2
dl-methionine	0.3
Cornstarch	32.8
Sucrose	32.8
Fiber-cellul	5.6
Corn oil *	8.1
AIN mineral mixture *	4.0
AIN-76A vitamin mixture	1.0
without cholecalciferol	0.2

* BHT was added at 0.01% of corn oil. * Mineral mixture composition (g/kg): calcium phosphate, dibasic (CaHPO4), 500; sodium chloride, 74; potassium citrate monohydrate, 220; potassium sulfate (K2SO4), 52; magnesium oxide (MgO), 24; manganese carbonate (MnCO3) (43-48% Mn), 3.5; ferric citrate (16-17% Fe), 6; zinc carbonate (70% ZnO), 1.6; cupric carbonate (53-55% Cu), 0.3; K3D3, 0.01; sodium selenite, 0.01; chromium potassium sulfate, 0.55. * Vitamin mixture composition (mg/kg): thiamine HCl, 600; riboflavin, 600; pyridoxine HCl, 700; nicotinic acid, 3000; d-calcium pantothenate, 1800; folic acid, 200; b-biotin, 20; cyanocobalamin, 1; retinyl palmitate premix (500,000 IU/g); 1; dl-tocopheryl acetate premix (250 IU/g), 20,000; menadione (vitamin K), 50.

REFERENCES

1. Nielsen FH. Boron—an overlooked element of potential nutritional importance. Nutr Today 23:4-7 (1988).
2. Hunt CD, Nielsen FH. Interaction between boron and cholecalciferol in the chick. In: Trace Element Metabolism in Man and Animals, 4th International Conf. (Howell JM, Gawthorne JM, White CL, eds). Canberra, Australia: Australian Academy of Sciences, 1981;597-600.
3. Hunt CD. Dietary boron modified the effects of magnesium and molybdenum on mineral metabolism in the cholecalciferol-deficient chick. Biol Tr Elem Res 22:201-220 (1989).
4. McCoy H, Irwin A, Kenney MA, Williams L. Effects of boron supplements on bones from rats fed calcium and magnesium deficient diets. FASEB J 5: A1309 (1991).
5. McCoy H, Montgomery C, Kenney MA, Williams L. Effects of boron on bones from rats fed low-calcium diets. FASEB J 4:A1050 (1990).
6. Brossart B, Nielsen FH. Boron affects magnesium and calcium metabolism in the rat. ND Acad Sci 40:128 (1986).
7. Nielsen FH, Shuler TR, Zimmerman TJ, Uhus EO. Magnesium and methionine deprivation affect the response of rats to boron deprivation. Biol Tr Elem Res 17:91-107 (1988).
8. Hegsted M, Keenan, MJ, Siver F, Wozniak P. Effect of boron on vitamin D deficient rats. Biol Tr Elem Res 28:243-255 (1991).
9. Penland JG. Effects of low dietary boron (B) and magnesium (Mg) on the brain function of healthy adults. FASEB J 3:A1242 (1989).
10. Penland JG. Magnesium (Mg) and boron (B) depletion influences brain electrophysiology in older women. FASEB J 4:A1045 (1990).
11. Underwood JL, Phelps ME, DeLuca HF. Complex carbohydrate diets are not capable of maintaining normal plasma calcium and phosphorus levels in vitamin D-deficient rats. Proc Natl Acad Sci USA 81:2352-2353 (1984).
12. National Research Council. Nutrient Requirements of Laboratory Animals, 3rd ed. Washington: National Academy of Sciences (1978).
13. Keenan MJ, Hegsted M, Siver, F, Mohan R, Wozniak P. Recovery of rats from vitamin D-deficient mothers. Ann Nutr Metab 35:315-327 (1991).
14. Clark SA, Boasa A, Tovendal SU. Effects of high dietary contents of calcium and phosphorus on mineral metabolism and growth of vitamin D-deficient suckling and weaned rats. Bone Min 2: 257-270 (1987).
15. Kollenkirchen U, Fox J, Walters MR. Normocalcemia without hyperparathyroidism in vitamin D-deficient rats. J Bone Min Res 6:273-278 (1991).
16. Halloran BP. Diet and vitamin D deficiency in the rat. Nutr Rep Int 31:1149-1153 (1985).
17. Dupre JN, Keenan MJ, Hegsted M, Brudevold AM. Boron supplementation for low vitamin D colony rats fed a vitamin D-deprived purified diet. FASEB J 7:A204 (1993).
18. American Institute of Nutrition. Report of the AIN Ad Hoc Committee on Standards for Nutritional Studies. J Nutr 107:1340-1348 (1977).