The Difference in Birthweight in Singletons Born After Fresh Embryo Transfer and After Frozen Embryo Transfer Becomes Significant in the Late Third Trimester

Yu-Chen Chen
Chang Gung Memorial Hospital Kaohsiung Branch

Pei-Fang Lee
Chang Gung Memorial Hospital Kaohsiung Branch

Te-Yao Hsu
Chang Gung Memorial Hospital Kaohsiung Branch

Ni-Chin Tsai
Chang Gung Memorial Hospital Kaohsiung Branch

Ching-Chang Tsai
Chang Gung Memorial Hospital Kaohsiung Branch

Fu-Jen Huang
Chang Gung Memorial Hospital Kaohsiung Branch

Kuo-Chung Lan (✉ lankuochung@gmail.com)
Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University college of Medicine, Kaohsiung, Taiwan
https://orcid.org/0000-0003-3702-0091

Research

Keywords: frozen embryo transfer, fresh embryo transfer, birthweight, singletons

DOI: https://doi.org/10.21203/rs.3.rs-74070/v1

License: 😊 This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Although it seems to be the consensus that the birth weight of the fetus has increased in FET, few studies have explored the pattern of fetal weight change during pregnancy. The purpose of this study is to explore when fetal weight begins to differ between singletons born after fresh embryo transfer (ET) and those born after frozen embryo transfer (FET).

Methods: This was a hospital-based cohort study using clinical data from the Kaohsiung Chang Gung Memorial Hospital Obstetric and Neonatal Database (KCGMHOND) from January 1, 2007, to December 1, 2018. A sample of 784 eligible women who had singleton pregnancies and live-born deliveries after 428 fresh ET or 356 FET between January 2007 and December 2018.

Results: Compared to those in the fresh ET group, singletons in the FET group had higher birthweight (3137 g [2880-3441] vs. 3060 g [2710-3340], P<0.05), were born later (39.0 weeks of gestation [38.0-40.0] vs. 38.0 weeks of gestation [37.0-39.0], P<0.05) and had a lower ratio of preterm birth (10.4% vs. 15.2%, P<0.05).

The difference in birthweight was not associated with maternal body weight (BW) and body mass index (BMI), maternal BW gained in the third trimester or total BW gained during pregnancy. When second- and third-trimester gestational ages were compared by estimated date of delivery (EDD, days) using ultrasound measurement, there were also no significant differences.

Conclusions: The birthweight of singletons born following FET and fresh ET became significant in the late third trimester. The main reason is that singletons conceived from FET were at a lower relative risk of preterm delivery and had a higher gestational age at birth.

Background

The first birth after embryo freezing occurred in 1984 [1]. With the improvement of vitrification techniques, the number of frozen embryo transfers has steadily increased in recent years. Frozen embryo transfer (FET) can increase the cumulative pregnancy rate, reducing the risk of multiple pregnancy and hyperstimulation syndrome[2]. In the past ten years, many studies have compared obstetrics and perinatal outcomes in singletons following fresh embryo transfer (ET) and FET. It has been reported that singletons conceived from FET were at a lower relative risk of preterm delivery, low birth weight and small for gestational age (SGA) than were those conceived from fresh ET, but the risks of hypertensive disorders of pregnancy, large for gestational age (LGA) and high birth weight are relatively increased[3, 4].

Many studies have tried to explain the adverse perinatal outcomes and birthweight differences associated with fresh ET and FET. It has been hypothesized that FET may provide a more favorable intrauterine environment for embryo implantation and placentation through the avoidance of premature endometrial maturation[5–7], which often occurs after ovarian hyperstimulation in fresh ET. Hyperestrogenism as a result of ovarian stimulation in fresh ET was hypothesized to impair endometrial
angiogenesis that leads to reduced implantation and abnormal placentation, which may account for increased risks of small for gestational age, preterm delivery and low birth weight\[8–10\]. Another possible explanation for why FETs have better perinatal outcomes is that the freezing-thawing procedure may alter epigenetic modification and leave only the superior embryos with better fetal growth potential by filtering away "weak" embryos\[11–14\].

The birthweight and LGA of singletons born after FET are higher than those of fresh ET and naturally conceived singletons. The mechanism of how the FET procedure influences birth weight or LGA is still unclear. Obviously, the difference between the length of gestational age after fresh ET and FET leads to a difference in fetal birth weight. It may be related to intrinsic maternal factors but may also be partly related to freezing/thawing procedures per se\[11\]. Korosec et al found that FET and maternal BMI are risk factors for LGA birth weight in IVF patients, but smoking, hypertension, multiparity, Gestational Diabetes Mellitus (GDM), ICSI procedure, or the number of embryos transferred do not influence LGA birth weight risk significantly\[15\].

Although it seems to be the consensus that the birth weight of the fetus has increased in FET, few studies have explored the pattern of fetal weight change during pregnancy. We agree that obstetric or perinatal outcomes should be studied using the singleton model due to cases of multiple neonates of differences in treatment strategies for obstetrical and neonatal management and various complications found in each of the institutes \[16\]. The main goal of our study is to explore when fetal weight begins to differ between singletons born after fresh ET and FET.

Material And Methods

Study design and participants

This was a hospital-based cohort study using clinical data from the Kaohsiung Chang Gung Memorial Hospital Obstetric and Neonatal Database (KCGMHOND) from January 1, 2007, to December 1, 2018. The KCGMHOND records all live births and stillbirths weighing at least 500 grams and pregnancies delivered after 20 weeks gestation (calculated using the date of the last normal menstrual period, if available, or the estimated date of confinement by ultrasound otherwise) at a tertiary university hospital in Kaohsiung, Taiwan. Maternal age, parity, birth weight, gestational age (GA) at delivery, mode of delivery, and sex were recorded for all live births. We supplemented prenatal data and medical comorbidities, including chronic hypertension, diabetes mellitus, renal disease, and hypothyroidism, from KCGMH prenatal clinic charts matched to the index pregnancy in the KCGMHOND.

The reproductive clinic data were linked with the KCGMHOND using unique patient identifiers as well as the date and time of delivery associated with the fresh IVF/ICSI fertility treatment procedures. The study was conducted following the approval of the Ethics Committee of the Institutional Review Board (CGMH 201901565B0). Among those who were eligible, those who gave birth to live-born (≥25 weeks of gestation) singletons were enrolled. Women were excluded if they had utilized donor oocytes or fetuses with malformation need for intervention.
Laboratory protocols

Our previous research described the methods used for controlled ovarian stimulation (COS), oocyte retrieval, embryo culture, and embryo transfer (ET) [17, 18]. The long protocol and the GnRH-ant protocol for COS were individualized according to each patient’s ovarian reserve, age, baseline level of serum follicle-stimulating hormone (FSH), and prior response to COS. One team of embryologists oversaw all laboratory procedures to ensure standardization. Our program has routinely offered elective blastocyst transfer to patients with three or more 8-cell embryos on day 3[18]. Luteal phase support continued until the day pregnancy was confirmed by detection of hCG in the urine. If conception occurred, micronized progesterone supplementation was provided for an additional 4 weeks. In our institute, patients may provide one or more frozen blastocysts for storage. The protocol for vitrification and warming was adapted from publications by Mukaida et al. and other researchers [19, 20]. The blastocysts were assessed based on their morphologic appearance and the presence of blastocoel expansion under a dissecting microscope approximately 2 h after warming. Blastocysts with a morphologically intact inner cell mass, a trophectoderm, and a re-expanding blastocoel were determined to have survived. The endometrium was prepared either by artificial hormone replacement or by natural cycling[21]. The embryos were transferred on day 6 of progesterone administration.

Gestational age by the estimated date of delivery

GA according to fresh IVF was calculated by adding 14 days from the day of oocyte retrieval[22, 23], Thaw blastocyst and transfer program GA according was calculated by adding 9 days from the day of transfer. For fetuses with IVF gestation age less than 12 weeks, all CRL measurements were performed using transvaginal ultrasound (Voluson GE 739, P6, E8) by the method described by Bovicelli et al[24]. we also followed the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) Practice Guidelines: performance of first-trimester fetal ultrasound scan to establish gestational age accurately[25] and to appropriate assessment of fetal biometry and diagnosis of fetal growth disorders[26].

Obstetric outcomes

The primary outcomes were birth weight, second trimester gestational age (21-23 weeks gestation+6 days), third trimester gestational age (30-33 weeks gestation+6 days) by ultrasound measurement compared with gestational age by the estimated date of delivery (EDD, days), maternal body weight (BW) and body mass index (BMI) before pregnancy, BW at second trimester at the time of ultrasound measurement, BW and BMI during labor, BW gained at the third trimester, and total BW gained during pregnancy.

The secondary outcomes were gestational age at delivery, preterm birth (PTB, <37 weeks), low birth weight (LBW, <2500 g), very low birth weight (VLBW, <1500 g), small for gestational age (SGA, < 10%
below the nationwide singleton birth weight percentiles in Taiwan), large for gestational age (LGA, > 90% above the nationwide singleton birth weight percentiles in Taiwan)[27], high birthweight (>4000 g, macrosomia), pregnancy-related hypertensive disorders (including HELLP syndrome, eclampsia, severe preeclampsia, preeclampsia, pregnancy-induced hypertension) and gestational diabetes mellitus (GDM) [28].

Statistical analysis

The differences between fresh ET and FET were analyzed by statistical analysis using the Statistical Package for the Social Sciences (SPSS) version 23 (SPSS Inc., Chicago, IL, USA). P<0.05 was considered statistically significant. Categorical variables were expressed as percentages of occurrence (%), and continuous variables were expressed as medians (interquartile ranges [IQRs]) or means ± SDs, as appropriate. The Shapiro-Wilk normality test was used to check for normality, in addition to visual inspection of the distributions. Continuous and categorical variables were compared using the Mann-Whitney U test and Fisher's exact test, respectively.

Results

From January 2007 through December 2018, 784 singletons met the eligibility criteria. Among them, 428 singletons were born following fresh ET, and 356 singletons were born following FET. Singletons in the fresh ET group were born earlier than those in the FET group (38.0 weeks of gestation [37.0–39.0] vs. 39.0 weeks of gestation [38.0–40.0], P < 0.05) and had a higher ratio of preterm birth (15.2% vs. 10.4%, P < 0.05).

Singletons born after FET had a higher birthweight (3137 g [2880–3441] vs. 3060 g [2710–3340], P < 0.001) and a lower proportion of LBW (< 2500 g, 8.5% vs. 13.5%, P < 0.05). Pregnancy-related hypertensive disorders were also higher in the FET group (11.9% vs. 6.1%, P < 0.05). No significant differences could be found regarding cesarean section rate, maternal age, placenta weight, VLBW (< 1500 g), high birth weight (BW > 4000 g), SGA, LGA, GDM, second- and third-trimester gestational age by ultrasound measurement compared with gestational age by EDD (days), maternal BW and BMI before pregnancy, BW at second trimester at the time of ultrasound measurement, BW and BMI during labor, BW gained during the third trimester or total BW gained during pregnancy (Table 1, Table 2).
Table 1
Comparison of perinatal outcomes of singleton pregnancies after Fresh-embryo transfer and Frozen-embryo transfer (FET)

	Fresh-embryo transfer	FET	P value
Deliveries, n	428	356	
Maternal age(year)	35.0 [21.0–37.3]	34.9 [31.4–37.1]	0.812
Parity nulliparity	327 (76.4%)	257 (72.2%)	0.178
Gestational age at delivery(weeks)	38.0 [37.0–39.0]	39.0 [38.0–40.0]	0.005
Birthweight(g)	3060 [2710–3340]	3137 [2880–3441]	0.001
Placenta weight(g)	620 [460–780]	640 [480–800]	0.326
Preterm birth < 37 weeks, n(%)	65 (15.2%)	37 (10.4%)	0.047
Low birth weight(LBW,<2500 g), n(%)	57 (13.5%)	30 (8.5%)	0.028
Very low birth weight(VLBW,<1500 g), n(%)	11 (2.6%)	4 (1.1%)	0.138
Small for gestational age(SGA,birthweight < 10%), n(%)	46 (10.9%)	28 (7.9%)	0.161
Large for gestational age(LGA,birthweight > 90%), n(%)	34 (8.0%)	38 (10.7%)	0.197
High birth weight(birthweight > 4000 g), n(%)	4 (1.2%)	7 (2.0%)	0.225
Pregnancy related Hypertensive disorder, n(%)	15/246 (6.1%)	22/185 (11.9%)	0.034
Gestational diabetes mellitus, n(%)	18 (7.3%)	19 (10.3%)	0.279
Infant sex, male(%)	54.4%	55.5%	0.771

Results expressed as median [interquartile range], or n (%).
Table 2
Comparison of prenatal maternal body weight and fetus by ultrasound measurement in singleton pregnancies after Fresh-embryo transfer and Frozen-embryo transfer(FET)

	Fresh-embryo transfer	FET	P value
Second trimester gestational age by ultrasound measurement compared with gestational age by EDD(days)	1.0 [-1.5-4.0]	1.0 [-1.0-4.0]	0.676
Third trimester gestational age by ultrasound measurement compared with gestational age by EDD(days)	1.0 [-4.0-6.0]	2.0 [-6.0-7.0]	0.328
BW before pregnancy(kg),	56.0 [51.0–63.0]	56.8 [51.8–62.0]	0.711
BMI before pregnancy	21.7 [20.0-24.2]	21.9 [20.3-24.1]	0.380
BW at second trimester at the time of ultrasound measurement(kg)	62.5 [58.0–70.0]	63.7 [57.8–71.0]	0.680
BW when in labor(kg)	69.2 [63.0–76.0]	69.4 [63.2–76.9]	0.359
BMI when in labor	26.9 [24.7–29.3]	26.9 [24.9–30.1]	0.369
BW gained at third trimester(kg)	6.6 [4.3–8.5]	6.3 [4.0–9.0]	0.581
Total BW gained during pregnancy(kg)	12.1 [9.0–15.7]	12.3 [8.7–16.5]	0.805

Results expressed as median [interquartile range], or n (%).

BW: body weight, BMI: body mass index, EDD: estimated date of delivery

To eliminate birth method interference, we divided the singletons into a normal spontaneous delivery (NSD) group and a cesarean section (CS) group. Compared with those born in the fresh ET/NSD group, singletons born in the FET/NSD group had higher birthweight (3132 g [2896–3450] vs. 3090 g [2775–3345], $P < 0.05$) and were born at later gestational age (39.0 weeks of gestation [38.0–40.0] vs. 39.0 weeks of gestation [37.0–39.0], $P < 0.05$). Additionally, compared with those born in the fresh ET/CS group, singletons born in the FET/CS group also had higher birthweight (3130 g [2860–3420] vs. 3025 g [2640–3300], $P < 0.05$) but showed no difference in gestational age at delivery. No significant differences were observed in the cesarean section rate, maternal age, preterm birth rate, LBW, VLBW, high birth weight, SGA, LGA, GDM, pregnancy-related hypertensive disorders, second- and third-trimester gestational age by
ultrasound measurement compared with gestational age by EDD (days), maternal BW and BMI before pregnancy, BW in the second trimester at the time of ultrasound measurement, BW and BMI during labor, BW gained in the third trimester or total BW gained during pregnancy (Table 3, Table 4).
	NSD (n = 415)	CS (n = 362)		FET	P value	Fresh-embryo transfer	FET	P value
Deliveries, n(%)	239 [57.6%]	176 [42.4%]	185 [51.1%]	177 [48.9%]				
Maternal age(year)	34.0 [31.0-36.5]	34.5 [31.1-36.4]	35.6 [32.1-38.0]	35.1 [32.1-37.7]	0.821			
Gestational age at delivery(weeks)	39.0 [37.0-39.0]	39.0 [38.0-40.0]	38.0 [37.0-39.0]	38.0 [37.0-39.0]	0.001			
Birthweight(g)	3090 [2775-3345]	3132 [2896-3450]	3025 [2640-3300]	3130 [2860-3420]	0.031			
Placenta weight(g)	620 [515-720]	620 [555-705]	632 [540-700]	660 [581-728]	0.385			
Preterm birth < 37 weeks, n(%)	29 (12.1%)	13 (7.4%)	34 (18.4%)	24 (13.6%)	0.113			
Low birth weight(LBW, <2500 g), n(%)	28 (11.8%)	12 (6.9%)	19 (15.8%)	18 (10.2%)	0.097			
Very low birth weight(VLBW, <1500 g), n(%)	6 (2.5%)	2 (1.1%)	5 (2.7%)	2 (1.1%)	0.476			
Small for gestational age(SGA, birthweight < 10%), n(%)	25 (10.5%)	18 (10.3%)	20 (10.9%)	10 (5.6%)	0.947			
Large for gestational age(LGA, birthweight > 90%), n(%)	11 (4.6%)	10 (5.7%)	23 (12.6%)	26 (14.7%)	0.615			
High birth weight(birthweight > 4000 g), n(%)	2 (0.8%)	4 (2.3%)	2 (1.1%)	3 (1.7%)	0.247			
Pregnancy related Hypertensive disorder, n(%)	7/156 (4.5%)	8/109 (7.3%)	8/90 (8.9%)	14/76 (18.4%)	0.323			
Gestational diabetes mellitus, n(%)	11 (7.1%)	8 (7.3%)	7 (7.8%)	11 (14.5%)	0.929			
Infant sex, male(%)	56.1%	54.9%	52.2%	56.5%	0.808			

NSD: Normal Spontaneous Delivery, CS: Cesarean Section
NSD (n = 415)	CS (n = 362)				
Fresh-embryo transfer	FET	P value	Fresh-embryo transfer	FET	P value

Results expressed as median [interquartile range], or n (%).

NSD: Normal Spontaneous Delivery, CS: Cesarean Section
Table 4
Comparison of prenatal maternal body weight and in singleton pregnancies after Fresh-embryo transfer (FET): Vaginal delivery and Cesarean section

	NSD (n = 415)	CS (n = 362)	P value	NSD (n = 415)	CS (n = 362)	P value
	Fresh-embryo transfer	FET	P value	Fresh-embryo transfer	FET	P value
Second trimester gestational age by ultrasound measurement compared with gestational age by EDD(days)	1.0 [-1.0-4.0]	1.0 [-1.0-4.0]	0.758	1.0 [-2.0-4.0]	1.0 [-1.8-4.0]	0.711
Third trimester gestational age by ultrasound measurement compared with gestational age by EDD(days)	1.0 [-4.0-6.0]	2.0 [-7.0-8.5]	0.551	1.0 [-4.0-7.0]	2.0 [5.0-7.0]	0.560
BW before pregnancy (kg)	55.0 [51.0-61.0]	56.0 [52.0-61.0]	0.469	57.0 [51.0-64.0]	57.0 [51.8-62.3]	0.980
BMI before pregnancy	21.5 [19.8-23.4]	21.4 [20.4-23.4]	0.464	22.0 [20.0-24.9]	22.4 [20.3-24.6]	0.583
BW at second trimester at the time of ultrasound measurement (kg)	62.2 [57.0-68.6]	63.8 [58.2-69.3]	0.164	64.4 [59.0-75.0]	70.3 [63.4-77.8]	0.245
BW when in labor (kg)	68.0 [62.0-75.0]	69.3 [64.4-76.9]	0.113	71.1 [65.0-80.0]	70.3 [63.4-77.8]	0.535
BMI when in labor	26.2 [24.3-28.5]	26.7 [24.4-29.7]	0.152	27.9 [25.5-31.0]	27.1 [25.4-30.5]	0.493
BW gained at third trimester (kg)	6.6 [4.6-8.4]	6.6 [5.0-9.1]	0.316	6.6 [3.5-8.6]	5.5 [2.8-8.7]	0.768
Total BW gained during pregnancy (kg)	12.0 [9.0-16.0]	12.3 [9.3-16.3]	0.625	13.0 [8.9-15.4]	12.9 [8.0-16.9]	0.868

Results expressed as median [interquartile range], or n (%).

BW: body weight, BMI: body mass index, EDD: estimated date of delivery, NSD: Normal Spontaneous Delivery, CS: Cesarean Section

Discussion

Our findings are consistent with the pre-existing meta-analysis[3, 29] and retrospective studies[30, 31] published until 2018 showing that singletons born after FET have higher birth weight and higher gestational age at birth but a higher risk of hypertensive disorders of pregnancy, while singletons born
after fresh ET tend to have a higher risk of preterm birth and low birthweight. However, our single-center singleton study showed that compared to those born after fresh ET, singletons born after FET had higher birth weight but not increased LGA. The birthweight difference was also not associated with maternal BW and BMI before pregnancy or during labor, maternal BW gained after the second trimester, and total BW gained during pregnancy. Furthermore, the birth weight increase in our FET subgroup seems favorable due to a lower frequency of preterm birth and no increase in the proportion of births with LGA or macrosomia. When the second- and third-trimester gestational ages by ultrasound measurement were compared with EDD and estimated fetal weight, there were also no significant differences. Thus, the difference in birthweight among singletons born after FET and fresh ET becomes significant in the late third trimester. The main reason is that singletons conceived from FET were at a lower relative risk of preterm delivery and had greater gestational age at birth.

The absolute sequence of events that trigger and sustain human parturition has not yet been fully clarified. However, there are several factors involved in the initiation of human parturition\[32\]. Placental corticotropin-releasing hormone production seems to serve as a placental clock that might be set to ring earlier or later, determining the duration of pregnancy and timing of labor\[32\]. In addition, infection and microbe invasion resulting in chorioamnionitis also represents a common cause of early preterm labor\[32\].

In a mouse model, ART treatment can disturb mouse placental and fetal development during late gestation; ART can result in the own regulation of a majority of placental nutrient transporters and reduce placental efficiency during mid- to late gestation\[33\]. After humans receive ART, is it possible that fetal weight growth or initiation parturition will only start to make a difference from the second to the third trimester?

A single-center retrospective cohort study compared crown-rump length (CRL) at the first trimester (T1: 11–13 weeks of gestation [WG] + 6 days) and estimated fetal weight (EFW) at the second (T2: 21–23 WG + 6 days) and third (T3: 31–33 WG + 6 days) trimesters in singleton pregnancies conceived after ICSI, IVF, FET, and IUI. It was found that for all ART fetuses, growth kinetics differed from T2 but became significant at T3. For all ART fetuses, the ultrasounds of CRL at T1 and EFW at T2 were significantly higher than the reference curves. However, only FET singletons remained to have a greater EFW above the reference curve at T3. The EFW of ICSI, IVF, and IUI dropped below the reference curves at T3, indicating a higher proportion of decelerated growth from the second trimester than among those in the FET group\[34\]. Our study did not find a difference in T3. Besharati et al. also examined fetal growth trajectories following infertility treatment and suggested no significant differences in fetal growth of fresh ET and FET conception\[35\].

It is possible that imprinted genes may also play a role in the regulation of placental development and the control of nutrient transporter expression, and, in this way, they may also indirectly control fetal growth, development or parturition\[36\]. Some studies claim that both ovulation induction and embryo vitrification may disrupt genomic imprinting by interfering with imprinting maintenance during preimplantation\[37\],
Loss of imprinting caused by embryo manipulations was also found in mid-gestation extraembryonic tissues in mice[39, 40].

In our singleton study, the mean birth weight was 134 g heavier in the FET group than in the fresh ET group. A similar result was also observed for the different delivery methods: 133 g heavier in the FET/NSD group and 128 g heavier in the FET/CS group. These findings were consistent with those previously published in the literature. Multiple studies[41, 42] have found that newborns born after FET have higher birthweight than do newborns born in controlled groups or their siblings born after fresh ET. The differences in birthweight were reported to be 50 ~ 250 g greater among those born after FET than among those born after fresh ET: 50 g in China [10], 91 ~ 100 g in Japan[16, 43], 133 g in a Nordic cohort study[9], 145 g in Australia and New Zealand[44], 162 g in France[45], 166 g in the United States [41], 191 g in Spain[46] and 167 ~ 250 g in Denmark[11, 47, 48]. Interestingly, the reports of weight differences in Asia are lower than those in European and American countries.

Judging from our research, the increase in the birth weight of fetuses in FET cycles should not be viewed as negative, but the risk of the main complication, namely, preeclampsia, is still high, and this issue cannot be ignored because it is reflected in our data. Multiple studies have reported an increased risk of pregnancy-induced hypertension or preeclampsia in women conceiving by IVF with frozen embryo transfer (FET) [3, 4, 49–51]. A possible explanation for the increased risk of preeclampsia is related to the absence of the corpus luteum and the use of endometrial priming with estrogens performed during artificial FET cycles [50, 52].

One strength of our study is the large sample size (784 live singleton births) in comparison to that of other single-center studies. Most of the included cases received prenatal care and were delivered at our hospital. Thus, the data for second- and third-trimester ultrasound, perinatal maternal body weight and BMI, and maternal and neonatal outcomes were well recorded. We also took into account factors that are known to influence fetal weight, such as fetal sex, maternal age, weight, and GDM, although no significant differences in these factors were observed between the FET and fresh ET groups. To our knowledge, only one study has analyzed fetal growth by reproductive method in the second and third trimesters using ultrasound measurements[34]. The limitations include the fact that this study uses retrospective data, which are not as rigorously controlled as data collected for a prospective research study. Although the study was conducted in a single center, the embryo transfer was performed by different operators, the stimulation protocols were slightly different, some data were missing, and some patients did not return for follow-up after embryo transfer, so we could contact participants only by telephone for outcomes and associated information. Additionally, the patients in this study were Taiwanese women, so it is necessary to exercise caution when applying our results to other ethnic and racial groups.

Conclusion
The birth weight of singletons born after FET and fresh ET became significant in the late third trimester and was irrelevant to maternal BMI before pregnancy or total body weight gained during pregnancy. The main reason is that singletons conceived from FET were at a lower relative risk of preterm delivery and had greater gestational age at birth.

Abbreviations

BMI: body mass index; BW: body weight; CRL: crown-rump length; CS: cesarean section; EDD: estimated date of delivery; ET: embryo transfer; FET: frozen embryo transfer; GA: gestational age; GDM: Gestational Diabetes Mellitus; ICSI: Intracytoplasmic sperm injection; LBW: low birth weight; LGA: large for gestational age; SGA: small for gestational age; NSD: normal spontaneous delivery; PTB: preterm birth; VLBW: very low birth weight

Declarations

Acknowledgments

We sincerely appreciate the Biostatistics Center, Kaohsiung Chang Gung Memorial Hospital, for performing the statistical analysis.

Ethics approval

This study was approved by the Institutional Review Board of Chang Gung Memorial Hospital (CGMH 201901565B0).

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding
This study was supported by CMRPG8J1451, CMRPG8K0061 from Chang Gung Memorial Hospital.

Authors' contributions

Conception and design of study: YCC, TYH, KCL; enrolled the subjects: YCC, PFL, KCL; analysis of data and writing of the manuscript: KCL, YCC, PFL; critical revision of the article for intellectual content: KCL, YCC, PFL, TYH, NCT, CCT, FJH. All authors read and approved the final manuscript.

References

1. Zeilmaker GH, Alberda AT, van Gent I, Rijkmans CM, Drogendijk AC. Two pregnancies following transfer of intact frozen-thawed embryos. Fertil Steril. 1984;42:293–6.
2. Bergh C, Werner C, Nilsson L, Hamberger L. Cumulative birth rates following cryopreservation of all embryos in stimulated in vitro fertilization (IVF) cycles. J Assist Reprod Genet. 1995;12:191–4.
3. Maheshwari A, Pandey S, Amalraj Raja E, Shetty A, Hamilton M, Bhattacharya S. Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Hum Reprod Update. 2018;24:35–58.
4. Sha T, Yin X, Cheng W, Massey IY. Pregnancy-related complications and perinatal outcomes resulting from transfer of cryopreserved versus fresh embryos in vitro fertilization: a meta-analysis. Fertil Steril. 2018;109:330–42 e339.
5. Martinez-Conejero JA, Simon C, Pellicer A, Horcajadas JA. Is ovarian stimulation detrimental to the endometrium? Reprod Biomed Online. 2007;15:45–50.
6. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfers in high responders. Fertil Steril. 2011;96:516–8.
7. Roque M, Valle M, Guimaraes F, Sampaio M, Geber S. Freeze-all policy: fresh vs. frozen-thawed embryo transfer. Fertil Steril. 2015;103:1190–3.
8. Rallis A, Tremellen K. Controlled ovarian hyper-stimulation during IVF treatment does not increase the risk of preterm delivery compared to the transfer of frozen-thawed embryos in a natural cycle. Aust N Z J Obstet Gynaecol. 2013;53:165–9.
9. Wennerholm UB, Henningsen AK, Romundstad LB, Bergh C, Pinborg A, Skjaerven R, Forman J, Gissler M, Nygren KG, Tiitinen A. Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group. Hum Reprod. 2013;28:2545–53.
10. Hu XL, Feng C, Lin XH, Zhong ZX, Zhu YM, Lv PP, Lv M, Meng Y, Zhang D, Lu XE, et al. High maternal serum estradiol environment in the first trimester is associated with the increased risk of small-for-gestational-age birth. J Clin Endocrinol Metab. 2014;99:2217–24.
11. Pinborg A, Henningsen AA, Loft A, Malchau SS, Forman J, Andersen AN. Large baby syndrome in singletons born after frozen embryo transfer (FET): is it due to maternal factors or the cryotechnique? Hum Reprod. 2014;29:618–27.

12. Henningsen AK, Pinborg A. Birth and perinatal outcomes and complications for babies conceived following ART. Semin Fetal Neonatal Med. 2014;19:234–8.

13. Bartolac LK, Lowe JL, Koustas G, Grupen CG, Sjoblom C. Vitrification, not cryoprotectant exposure, alters the expression of developmentally important genes in in vitro produced porcine blastocysts. Cryobiology. 2018;80:70–6.

14. Zhao X, Hao H, Du W, Zhu H. Effect of vitrification on the microRNA transcriptome in mouse blastocysts. PLoS One. 2015;10:e0123451.

15. Korosec S, Frangez HB, Steblovnik L, Verdenik I, Bokal EV. Independent factors influencing large-for-gestation birth weight in singletons born after in vitro fertilization. J Assist Reprod Genet. 2016;33:9–17.

16. Nakashima A, Araki R, Tani H, Ishihara O, Kuwahara A, Irahara M, Yoshimura Y, Kuramoto T, Saito H, Nakaza A, Sakumoto T. Implications of assisted reproductive technologies on term singleton birth weight: an analysis of 25,777 children in the national assisted reproduction registry of Japan. Fertil Steril. 2013;99:450–5.

17. Tsai YR, Huang FJ, Lin PY, Kung FT, Lin YJ, Lin YC, Lan KC. Progesterone elevation on the day of human chorionic gonadotropin administration is not the only factor determining outcomes of in vitro fertilization. Fertil Steril. 2015;103:106–11.

18. Lan KC, Huang FJ, Lin YC, Kung FT, Hsieh CH, Huang HW, Tan PH, Chang SY. The predictive value of using a combined Z-score and day 3 embryo morphology score in the assessment of embryo survival on day 5. Hum Reprod. 2003;18:1299–306.

19. Mukaida T, Takahashi K, Kasai M. Blastocyst cryopreservation: ultrarapid vitrification using cryoloop technique. Reprod Biomed Online. 2003;6:221–5.

20. Lin PY, Huang FJ, Kung FT, Wang LJ, Chang SY, Lan KC. Comparison of the offspring sex ratio between fresh and vitrification-thawed blastocyst transfer. Fertil Steril. 2009;92:1764–6.

21. Tsai NC, Su YT, Lin YJ, Chiang HJ, Huang FJ, Kung FT, Lan KC. Developmental potential of surplus morulas with delayed and/or incomplete compaction after freezing-thawing procedures. Reprod Biol Endocrinol. 2019;17:87.

22. Tunon K, Eik-Nes SH, Grottum P, Von During V, Kahn JA. Gestational age in pregnancies conceived after in vitro fertilization: a comparison between age assessed from oocyte retrieval, crown-rump length and biparietal diameter. Ultrasound Obstet Gynecol. 2000;15:41–6.

23. Wu FS, Hwu YM, Lee RK, Li SH, Sun FJ, Lin MH, Lin SY. First trimester ultrasound estimation of gestational age in pregnancies conceived after in vitro fertilization. Eur J Obstet Gynecol Reprod Biol. 2012;160:151–5.

24. Bovicelli L, Orsini LF, Rizzo N, Calderoni P, Pazzaglia FL, Michelacci L. Estimation of gestational age during the first trimester by real-time measurement of fetal crown-rump length and biparietal
25. Salomon LJ, Alfirevic Z, Bilardo CM, Chalouhi GE, Ghi T, Kagan KO, Lau TK, Papageorghiou AT, Raine-Fenning NJ, Stirnemann J, et al. ISUOG practice guidelines: performance of first-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol. 2013;41:102–13.

26. Salomon LJ, Alfirevic Z, Da Silva Costa F, Deter RL, Figueras F, Ghi T, Glanc P, Khalil A, Lee W, Napolitano R, et al. ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet Gynecol. 2019;53:715–23.

27. Hsieh WS, Wu HC, Jeng SF, Liao HF, Su YN, Lin SJ, Hsieh CJ, Chen PC. Nationwide singleton birth weight percentiles by gestational age in Taiwan, 1998–2002. Acta Paediatr Taiwan. 2006;47:25–33.

28. Committee on Practice B-O. ACOG Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet Gynecol. 2018;131:e49–64.

29. Maheshwari A, Pandey S, Shetty A, Hamilton M, Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril. 2012;98:368–77 e361–9.

30. Maheshwari A, Raja EA, Bhattacharya S. Obstetric and perinatal outcomes after either fresh or thawed frozen embryo transfer: an analysis of 112,432 singleton pregnancies recorded in the Human Fertilisation and Embryology Authority anonymized dataset. Fertil Steril. 2016;106:1703–8.

31. Zhang J, Du M, Li Z, Wang L, Hu J, Zhao B, Feng Y, Chen X, Sun L. Fresh versus frozen embryo transfer for full-term singleton birth: a retrospective cohort study. J Ovarian Res. 2018;11:59.

32. Ravanos K, Dagklis T, Petousis S, Margioulia-Siarkou C, Prapas Y, Prapas N. Factors implicated in the initiation of human parturition in term and preterm labor: a review. Gynecol Endocrinol. 2015;31:679–83.

33. Chen S, Sun FZ, Huang X, Wang X, Tang N, Zhu B, Li B. Assisted reproduction causes placental maldevelopment and dysfunction linked to reduced fetal weight in mice. Sci Rep. 2015;5:10596.

34. Ginod P, Choux C, Barberet J, Rousseau T, Bruno C, Khallouk B, Sagot P, Astruc K, Fauque P. Singleton fetal growth kinetics depend on the mode of conception. Fertil Steril. 2018;110:1109–17 e1102.

35. Besharati M, von Versen-Hoynck F, Kapphahn K, Baker VL. Examination of fetal growth trajectories following infertility treatment. J Assist Reprod Genet. 2020;37:1399–407.

36. Sibley CP, Coan PM, Ferguson-Smith AC, Dean W, Hughes J, Smith P, Reik W, Burton GJ, Fowden AL, Constancia M. Placental-specific insulin-like growth factor 2 (Igf2) regulates the diffusional exchange characteristics of the mouse placenta. Proc Natl Acad Sci U S A. 2004;101:8204–8.

37. Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet. 2010;19:36–51.

38. Denomme MM, Zhang L, Mann MR. Embryonic imprinting perturbations do not originate from superovulation-induced defects in DNA methylation acquisition. Fertil Steril. 2011;96:734–8 e732.
39. Mann MR, Lee SS, Doherty AS, Verona RI, Nolen LD, Schultz RM, Bartolomei MS. Selective loss of imprinting in the placenta following preimplantation development in culture. Development. 2004;131:3727–35.

40. Fortier AL, Lopes FL, Darricarrere N, Martel J, Trasler JM. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet. 2008;17:1653–65.

41. Shapiro BS, Daneshmand ST, Bedient CE, Garner FC. Comparison of birth weights in patients randomly assigned to fresh or frozen-thawed embryo transfer. Fertil Steril. 2016;106:317–21.

42. Luke B, Brown MB, Wantman E, Stern JE, Toner JP, Coddington CC. Increased risk of large-for-gestational age birthweight in singleton siblings conceived with in vitro fertilization in frozen versus fresh cycles. J Assist Reprod Genet. 2017;34:191–200.

43. Ishihara O, Araki R, Kuwahara A, Itakura A, Saito H, Adamson GD. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril. 2014;101:128–33.

44. Li Z, Wang YA, Ledger W, Edgar DH, Sullivan EA. Clinical outcomes following cryopreservation of blastocysts by vitrification or slow freezing: a population-based cohort study. Hum Reprod. 2014;29:2794–801.

45. Laval M, Garlantezec R, Guivarc’h-Leveque A. Birthweight difference of singletons conceived through in vitro fertilization with frozen versus fresh embryo transfer: An analysis of 5406 embryo transfers in a retrospective study 2013–2018. J Gynecol Obstet Hum Reprod. 2020;49:101644.

46. Vidal M, Vellve K, Gonzalez-Comadran M, Robles A, Prat M, Torne M, Carreras R, Checa MA. Perinatal outcomes in children born after fresh or frozen embryo transfer: a Catalan cohort study based on 14,262 newborns. Fertil Steril. 2017;107:940–7.

47. Pinborg A, Loft A, Aaris Henningsen AK, Rasmussen S, Andersen AN. Infant outcome of 957 singletons born after frozen embryo replacement: the Danish National Cohort Study 1995–2006. Fertil Steril. 2010;94:1320–7.

48. Henningsen AK, Pinborg A, Lidegaard O, Vestergaard C, Forman JL, Andersen AN. Perinatal outcome of singleton siblings born after assisted reproductive technology and spontaneous conception: Danish national sibling-cohort study. Fertil Steril. 2011;95:959–63.

49. Chen ZJ, Shi Y, Sun Y, Zhang B, Liang X, Cao Y, Yang J, Liu J, Wei D, Weng N, et al. Fresh versus Frozen Embryos for Infertility in the Polycystic Ovary Syndrome. N Engl J Med. 2016;375:523–33.

50. Roque M, Haahr T, Geber S, Esteves SC, Humaidan P. Fresh versus elective frozen embryo transfer in IVF/ICSI cycles: a systematic review and meta-analysis of reproductive outcomes. Hum Reprod Update. 2019;25:2–14.

51. Ginstrom Ernstad E, Wennerholm UB, Khatibi A, Petzold M, Bergh C. Neonatal and maternal outcome after frozen embryo transfer: Increased risks in programmed cycles. Am J Obstet Gynecol. 2019;221:126.e121–6.e118.

52. von Versen-Hoynck F, Schaub AM, Chi YY, Chiu KH, Liu J, Lingis M, Stan Williams R, Rhoton-Vlasak A, Nichols WW, Fleischmann RR, et al. Increased Preeclampsia Risk and Reduced Aortic Compliance
With In Vitro Fertilization Cycles in the Absence of a Corpus Luteum. Hypertension. 2019;73:640–9.