Oscillations due to time-delayed driving of a ball in a water jet—a challenging problem of the International Physicists’ Tournament 2019

S Michalke1, A Fösel2 and M Schmiedeberg3

1 Department Physik, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstr 7, 91058 Erlangen, Germany
2 Didaktik der Physik, Department Physik, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstr 7, 91058 Erlangen, Germany
3 Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen–Nürnberg, Staudtstr 7, 91058 Erlangen, Germany

E-mail: michael.schmiedeberg@fau.de

Received 6 March 2020, revised 10 April 2020
Accepted for publication 12 May 2020
Published 14 August 2020

Abstract
The International Physicists’ Tournament (IPT) 2019 dealt with 17 challenging problems. In this article, we present experimental as well as theoretical approaches as examples of one of these tasks. A ball placed on a hard and flat surface can oscillate when being hit by a jet of water from above. To explain the oscillations, a theoretical model is introduced and its predictions are compared to experimental measurements. Furthermore, the structure of the IPT itself is characterized briefly in this article, as well as the idea of a new and innovative seminar, which was set up at Erlangen University to prepare and assist students in taking part in the IPT. Furthermore, the educational relevance of physics tournaments such as IPT for physics education at university is discussed in detail.

Keywords: physics competitions, International Physicists’ Tournament, nonlinear oscillation, time-delayed force, water jet
1. Introduction

The International Physicists’ Tournament (IPT) is a competition where physics students work on experiments, perform simulations or develop theoretical approaches in order to solve open problems. During the tournament the students have to present their solutions and discuss the approaches of other participants. The characteristics of a (physics) tournament, especially in comparison to a non-tournament (physics) competition, are described in ‘International Physicists’ Tournament—the team competition in physics for university students’ by Vladimir Vanovskiy, member of the IPT executive committee [1].

The German Physicists’ Tournament (GPT) is a corresponding competition in Germany with problems from the upcoming IPT. The winning team of the GPT obtains the possibility to qualify for the IPT. In order to support the students who participate in the competitions a new type of a seminar was developed at the Friedrich-Alexander-University (FAU) Erlangen–Nürnberg, where students can both work on IPT problems and obtain credits for their studies.

In this work, we present the experimental as well as a theoretical approach to one of the problems of the IPT as an example, namely problem number 5 from the 11th IPT, which reads [2]:

When a ball lying on a hard and flat surface is hit by a jet of water that falls perpendicular to the surface, it may start to oscillate. Investigate how the oscillations depend on the relevant parameters.

The situation is shown in figure 1. The ball, in this case a ping-pong ball, lies on a stone slab and is hit by a jet of water. The water jet pulls the ball back into the middle and can induce a self-driven oscillation that will be studied in detail in this article. Note that the oscillations are caused by an effective restoring force, which occurs for any displacement away from the resting position. However, a restoring force alone is not sufficient to keep oscillations alive in a system with friction. We will report on the time delay between the displacement and the restoring force that results in the driving of the oscillator.

The article is organized as follows: after a short introduction to the IPT, the GPT and the related seminar in section 2, we discuss in section 3 the educational relevance of these scientific tournaments for physics studies at university, which follow the specific ideas of the IPT. The theoretical and experimental results on the considered problem are presented in sections 4–6. To be specific, we report our observations concerning the phenomena seen in the chosen problem in section 4. In section 5 we develop a theoretical description of the system. In section 6 our theoretical predictions are compared to experiments. Finally, we conclude and give an outlook on possible future developments of the competition in section 7.

2. International Physicists’ Tournament, German Physicists’ Tournament and preparatory seminar at Erlangen University

Students have been able to compete in the IPT every year since 2009. Between the months of June to August in the year before the international tournament, a set of 17 open problems is published that teams of up to six students can try to solve with experiments, simulations or theoretical calculations. The teams are welcome to puzzle over all of the 17 problems. According to the official rules of the IPT [3] a competing team can tackle several of the problems and each team is able to reject some of the challenges. However, if a team rejects too many challenges it
might be penalized. Therefore, it is recommended to prepare a total of about 13 problems for the IPT.

The problems usually deal with physical phenomena or questions that cannot be answered in a unique way but often allow for many possible treatments. For example, the problems of IPT 2019 [2] asked students to build a radio with a potato (problem No 3), to analyse in a non-invasive way whether the graphite rod of a pencil is broken (problem No 6), to use the time-delay in a camera to measure the speed of light (problem No 16) or to study the oscillations of a ball in a water jet (problem No 5). As an example of all the challenging problems of IPT 2019, the last of these phenomena is discussed in this article (see sections 4–6). At the actual tournament itself each round consists of so-called physics fights, where one student (the ‘reporter’) presents the results of the team concerning one of the problems. Afterwards, a student from another team (the ‘opponent’) tries to criticize the reporting student. Finally, a student from a third team (the ‘reviewer’) should comment on both the report and the criticism raised by the opposing student. In 2019, the IPT took place in April in Lausanne with 19 participating teams from 16 different countries. In order to qualify for that international tournament a team has to be successful in an online qualification process. In some countries, there is a national competition instead, and the team winning that qualifies for the IPT.

In Germany, the latter procedure is practised to find the team that will represent the country in the IPT, and the national competition is called the German Physicists’ Tournament (GPT). It usually takes place in November or December in the year before the IPT. In December 2018 three teams competed in Frankfurt in order to qualify for the IPT 2019. The GPT 2019, which aimed to be the preselection to find the team to represent Germany at the IPT 2020, took place in the physics department of FAU Erlangen–Nürnberg in December 2019 (for further information, see the current website of GPT [4]). The GPT is based on the same set of rules as the IPT with the sole modification that each team has to name the problems it has worked on (at least four per team) and that only these problems can be challenged.

While the IPT fosters the autonomy of the students and trains them to deal with complex challenges, the work on the problems usually also requires a lot of time, which might be hard for students who already have to deal with the large workload of their physics studies. As a consequence, there are approaches to integrate the work on IPT problems as elective modules into the curriculum of physics education at the university. At the FAU Erlangen–Nürnberg we created a new type of seminar, called ‘Problems of the International Physicists’ Tournament’
at two credit hours and five European credit transfer system (ECTS) points, corresponding to a workload of about 140 h.

That seminar first took place in the winter term of 2018/2019 (from mid-October 2018 until mid-February 2019), and thus started significantly after the publication of the IPT 2019 problems. Six students who later formed a team at the tournament participated in the seminar. Each student was assigned a supervisor, e.g. a PhD student interested in the tournament. The task of the supervisors was to help the students with the theoretical background of the problems, e.g. by finding literature, explaining typical approaches in theoretical modelling, as well as by helping with code development if simulations were employed. Furthermore, the supervisors enabled contacts to other researchers at the university who are closer to the field of the problem. Finally, contacts to the practical training courses were supported. The supervisors worked for the seminar as part of their mandatory teaching load. In addition, they benefited from obtaining insights into how physical questions can be attacked in various fields of physics, including questions that are outside their own field of research.

The seminar consisted of two elements: first, the participating students presented their approaches as well as the physical background concerning one IPT problem of their choice in talks of 45 min. Approaches to a task included various ideas of how a problem can be solved. Not all of these ideas had to be worked out in detail. Usually one or two of those ideas were followed in more detail, e.g. by presenting results of preliminary experiments or simulations. However, it was not necessary to present a worked-through, single solution in the style of a presentation in a physics fight, but the students had to show that a problem can be approached from various directions. The talks were followed by an extensive discussion with all members of the audience, who consisted not only of the other students but also of other members of the university whose interests might be related to the field of the particular problem. The purpose of these talks is that the students not only learn about possible approaches to solve the considered problems, but they also discuss related phenomena and their explanations if known in the literature. As a result of these talks the seminar could be graded and counted with five credits. The grades were given by the professor after a brief discussion with the respective supervisor. Therefore, the effort of the students in puzzling over the IPT problems is well appreciated.

Second, training fights according to the rules of the IPT took place such that the students could discuss their approaches to the problems in a similar way to that at the IPT. The training fights were not mandatory for the seminar participants, but the students enjoyed engaging and preparing for the competition.

Note that in each meeting of the seminar, there was first a talk and then a fight with other students. Therefore, some students first had a talk in the seminar and a few weeks later their presentation in a physics fight. Other students first presented one possible solution in a physics fight and later had to present the problem in a talk from a broader perspective. In both cases the students were able to include the feedback on their first presentation or talk when they took the stage for the second time. The tight schedule was chosen because all talks and all test fights should be scheduled between the start of the semester in October and the date of the GPT, which took place in December. Therefore, at the GPT, the six participants of the seminar had prepared six problems well, which is sufficient for the GPT. However, for the IPT the students had to work on additional problems, which turned out to be difficult without the full support of the seminar. Therefore, in future seminars each student will give a talk and a short presentation for a physics fight, but about different problems rather than the same one. To prevent too tight a schedule, future seminars are planned to start in the summer term.
The seminar was repeated in the winter term 2019/2020 and will take place again in 2020/2021, but this time we will start in the second half of the summer term (April–July 2020) and then continue in the first half of the winter term 2020/2021: students should already be familiar with discussing open problems in June or July, so that the team(s) for GPT could be fixed just before the student summer holidays in August. Of course, there might be the problem that the tasks of IPT 2021 will not then have been published, but in order to become familiar with the structure of IPT problems, one could work on those from earlier years. Based on our experiences with the previous seminars, the time spent in training fights probably will be reduced, i.e. training fights will mainly be performed just before the GPT. Instead we want to enable more free discussions about possible ways of working on the IPT problems. This might include short presentations on ideas for experiments, simulations or calculations. That way, more problems can be discussed and the exchange between the students is intensified.

3. Educational relevance of physics competitions for physics education

Though there do not exist any studies at all investigating the effectiveness of using physics competitions for physics education at university, we definitely think that there are quite a few arguments for including them in physics education at university. This is especially true for those so-called physics tournaments that deal with creative, innovative and challenging open tasks and which ask for qualifications and competencies far beyond just specialised knowledge in physics. In the following, we will present and illustrate some of the arguments.

Including physics competitions in science education allows the methodical and didactic ideas of active learning to be taken into account (see e.g. [5, 6]). The following text passage may illustrate the main ideas: in 1988, the American theoretical physicist Richard Feynman gave an account of his interactions with his father in the essay ‘How to become a Scientist?’ published in his book ‘What Do You Care What Other People Think? Further adventures of a curious character’ [7]. Feynman’s father taught him to carefully observe phenomena, and he triggered him to ask questions arising from an observation (e.g. ‘Why do you think birds pick at their feathers?’). Feynman’s father never gave the answer immediately, but rather he would get Feynman to think of an explanation, to devise an experiment or to provide an explanation—to understand the meaning of the phenomena. So the point was not in giving the answer, but rather in getting Feynman to learn ‘the difference between knowing the name of something and knowing something’ ([7], p 14) by being active in learning. Thus active learning in the context of physics tournaments such as IPT, with all the open problems mostly arising from observations from daily life, means that students make the observations by themselves, e.g. they carefully look at the oscillations of the driven ball. They have to design experiments in a self-contained way, provide appropriate theories and find possible solutions. In the contest itself, they present and defend their own ideas and solutions.

(Science) Competitions provide students with an opportunity to evaluate their performance with others’. Student competitions can thus play a crucial role in identifying talented students. This is quite a good opportunity for students at university to get to know their own subject-specific competencies (being talented in doing experiments or in making theoretical approaches) as well as to find out something about competencies concerning soft skills (e.g. when getting an award for ‘best presenter’ or ‘best opponent’). And this is not only a chance for students, but for researchers at university, too: via competitions they get to know talented
and/or highly motivated students, whom they can encourage to take part in research studies in their department.

The empiricist J R Campbell stated that participation in science competitions helps students become aware of their potential and contributes to their self-confidence (see [8–10]). This is a statement about students in schools; it might be true as well for students at university, though empirical studies are still lacking, and without studies there is no evidence that one can infer from one population (students in schools) to another (students at university).

Various studies of interest have shown that physics competitions increase the interest and the motivation of students in schools (see [11], pp 7–15; [12, 13]), at least of those students who have been successful.

Integrating IPT in physics education promotes familiarity with scientific methods, and scientific methods such as ‘observing’, ‘measuring’, ‘testing hypotheses’, ‘modelling’, ‘experimenting’ and ‘interpreting’ help with learning concepts and principles of science (learning of science). Getting to know scientific methods helps in understanding the nature of science (learning about science), and scientific methods are a way towards ‘goals’ that are not specific to just one subject, e.g. learning how to solve problems or acquiring critical faculties (doing science). While solving the open problems, students apply different scientific methods and therefore learn of science, they also learn about science and—most importantly—they do science. A wide range of literature about the subjects ‘scientific methods and science education’ and ‘nature of science’ has been published. Wynne Harlen, for example, discusses scientific methods in the context of teaching, learning and assessing science [14]. McComas [15], Höttinger [16] and Neumann [17] introduce the nature of science.

Presenting, discussing and defending the problems in the contest itself finally fosters (self-) criticism as well as competencies concerning communication and decision-making.

4. Qualitative description of the phenomena

We observe three qualitatively different behaviours of the ball that is hit by the jet of water from above. First, damped oscillations can be seen in the case of a weak water jet. The resting position of the oscillations is the position where the ball is hit symmetrically from above, i.e. where the jet impacts above the centre of the ball. If the ball is displaced from the resting position there is a restoring force acting towards the resting position. The oscillations are damped, and for weak water jets there is no driving sufficient to maintain the oscillations. Second, in the case of an increased water flow, the oscillations persist due to a driving mechanism that we will discuss in this article. Third, if the water jet becomes too strong it is deflected from the ball and might splash in different directions. Thus the motion of the ball becomes chaotic and consequently hard to predict.

Since the task of the competition concerns the oscillations, we especially studied the first and second cases, where either damped or persistent oscillations are observed. The water from the jet flows along the surface of the ball until it hits the surface on which the ball is placed.

In order to study how the water flows along the surface of the ball, we consider a hanging ball that is targeted by a vertical water jet in a slightly asymmetric way, i.e. the water jet does not hit the ball directly on the top but a short distance away (see figure 2(a) for a photograph and figure 2(b) for a sketch). The water then flows all over the ball and forms a new jet at the bottom. Interestingly, the outgoing water jet does not leave the ball vertically but rather in a direction that is opposite to the side on which incoming jet lands.

In this article we will explain that the momentum carried by the outgoing water jet is essential for understanding the driving mechanism. Since the water jet is deflected by the ball, there
Figure 2. (a) A jet of water hits a hanging ball and flows along its surface. If the water hits the ball off-centre, a new water jet forms at the bottom of the ball and leaves it in a direction opposite to the side where ball was hit initially. (b) Geometry of the incoming and outgoing water jets. The angle of the incoming jet is termed α_{in} and that of the outgoing one α_{out}. Note that in the stationary case we observe $\alpha_{\text{in}} = \alpha_{\text{out}}$. However, in the case of a moving ball, α_{out} is time-delayed with respect to α_{in}, i.e. $\alpha_{\text{out}}(t) = \alpha_{\text{in}}(t - \Delta t)$ with a delay time Δt.

is a transfer of momentum onto the ball that leads to the restoring force towards the resting position of the oscillations. We argue in section 5 that the driving is due to a time delay of the restoring force. Note that we assume that a similar momentum is transferred to the water layer if the ball is placed on a surface.

5. Theory of the oscillator

5.1. Equation of motion with velocity-dependent restoring force

The motion of a ball that is displaced in an arbitrary direction parallel to the surface is described by the equation

$$m \ddot{\vec{r}}(t) = \vec{F} \left(\vec{r}(t), \dot{\vec{r}}(t) \right) - \gamma \dot{\vec{r}}(t),$$

(1)

where $\vec{r}(t)$ is the displacement of the centre of the ball from its resting position, m is the mass of the ball or, if rotation is involved, a term that denotes the inertia in general, $\vec{F} \left(\vec{r}(t), \dot{\vec{r}}(t) \right)$ is the restoring force, which in the harmonic approximation would be $\vec{F} \left(\vec{r}(t), \dot{\vec{r}}(t) \right) = -k \vec{r}(t)$, and $\gamma \dot{\vec{r}}(t)$ with a friction coefficient γ is the damping force.

Note that we neglect contributions due to the rotation of the ball because we do not observe any rapid rotations. Slow rotations, such as for a ball that is not just displaced from its resting position but rolls by a small angle, do not change the qualitative form of the equation of motion in the case of small displacements from the resting position.

The restoring force mainly originates from the deflection of the water jet. In the case of a ball that is fixed with a certain displacement \vec{r} but no velocity (i.e. $\dot{\vec{r}} = \vec{0}$) this leads to a force \vec{F}_0 that depends on the absolute value of the displacement, i.e.

$$\vec{F}_0(\vec{r}) = \vec{F} \left(\vec{r}, \dot{\vec{r}} = \vec{0} \right) = -f(\|\vec{r}\|) \frac{\vec{F}}{\|\vec{r}\|},$$

(2)
Figure 3. The outgoing jet that leaves the ball at the bottom is delayed with respect to the incoming jet. The delay can be estimated by using the delay length $L(\vec{r}(t))$ and the typical velocity v_w of the water flowing around the ball.

Again, in a harmonic approximation $f(\vec{r}) = k\vec{r}$, which we will later assume for simplicity in our more detailed analysis.

During the oscillation, the ball is obviously never at rest for any constant displacement \vec{r}. Therefore, we have to think about how the force $\vec{F}(\vec{r}(t), \dot{\vec{r}}(t))$ depends on the velocity $\dot{\vec{r}}(t)$. In order to consider such a velocity-dependent force, we take another look at figure 2(b). The restoring force is due to the deflection of the water jet. To be specific, the momentum that is transferred to the ball in the horizontal direction is opposite to the momentum that is carried away by the outgoing jet. Note, however, that the outgoing water jet is delayed with respect to the incoming jet. The delay can be roughly estimated from the delay length $L(\vec{r}(t))$ as sketched in figure 3 and the typical velocity v_w of the water flowing around the ball, i.e. the time delay is

$$\Delta t = \frac{L(\vec{r}(t))}{v_w}.$$ (3)

As a consequence, the time-delayed force is approximately

$$\vec{F}(\vec{r}(t), \dot{\vec{r}}(t)) \approx \vec{F}_0 \left(\vec{r}(t) - \Delta t \dot{\vec{r}}(t) \right) = \vec{F}_0 \left(\vec{r}(t) - \frac{L(\vec{r}(t))}{v_w} \dot{\vec{r}}(t) \right).$$ (4)

For this approximation, we assumed that the time delay is small such that the velocity $\dot{\vec{r}}(t)$ can be considered to be approximately constant during it. As we will show in the following, this time delay is the origin of the driving of the oscillations.
In the harmonic approximation the equation of motion with a time-delayed harmonic restoring force is
\[
\ddot{\vec{r}}(t) = -k (\vec{r}(t) - \frac{L}{v_w}) - \dot{\vec{r}}(t) = -k \vec{r}(t) + \left(k \frac{L(\vec{r}(t))}{v_w} - \gamma \right) \vec{r}(t) \\
= -k \vec{r}(t) - \gamma_{\text{eff}}(\vec{r}(t)) \vec{r}(t).
\] (5)

In the last step we introduced an effective friction constant \(\gamma_{\text{eff}}(\vec{r}(t)) = \gamma - k \frac{L(\vec{r}(t))}{v_w} \). Therefore, the equation of motion corresponds to an oscillator with a harmonic restoring force \(-k \vec{r}(t)\) and a damping contribution \(-\gamma_{\text{eff}}(\vec{r}(t)) \vec{r}(t)\). The effective friction constant \(\gamma_{\text{eff}}(\vec{r}(t)) \) can depend on the position, such that the equation becomes nonlinear. Furthermore, \(\gamma_{\text{eff}}(\vec{r}(t)) \) might be positive, indicating that there is an overall driving instead of pure dissipation.

Finally, the delay length \(L(\vec{r}(t)) \) is given by (see figure 3)
\[
L(\vec{r}(t)) = R \left[\pi - \arcsin \left(|\vec{r}(t)| / R \right) \right] \approx \pi R - |\vec{r}(t)|,
\] (6)
where \(R \) is the radius of the ball. Therefore, the equation of motion is
\[
\ddot{\vec{r}}(t) = -k \vec{r}(t) - \gamma_{\text{eff}}(\vec{r}(t)) \vec{r}(t)
\] (7)
with
\[
\gamma_{\text{eff}}(\vec{r}(t)) = \gamma - k \frac{\pi R - \arcsin \left(|\vec{r}(t)| / R \right) R}{v_w}
\] (8)
or as an approximation:
\[
\gamma_{\text{eff}}(\vec{r}(t)) \approx \gamma - k \frac{\pi R - |\vec{r}(t)|}{v_w}.
\] (9)

5.2. Trajectories of the oscillations in phase space
Equations (7) and (8) can be used to simulate the trajectory numerically. This has been done using a fourth-order Runge–Kutta method. In figure 4 the trajectory of a damped and unbound oscillation is shown in black. The derivatives are indicated by green arrows.

5.3. Estimation of the amplitude in the case of self-sustaining oscillations
In the following, we estimate the amplitude of oscillations in the case of a steady state where the work added by the driving is equal to the work dissipated.

In order to determine the work we integrate over half a period:
\[
W = \int_0^{\pi/\omega} m \dddot{\vec{r}}(t) \dddot{\vec{r}}(t) \, dt
\] (10)
using a harmonic oscillation as a rough estimate:
\[
\vec{r}(t) = \vec{A} \cos(\omega t),
\] (11)
\[
\ddot{\vec{r}}(t) = -A\omega^2 \sin(\omega t),
\] (12)
Figure 4. (a) Trajectory of a damped oscillation in phase space. The trajectory starts at $\vec{r}(0) = (x_0, 0)$ with $x_0 = 0.9R$ and zero velocity. (b) Trajectory converging to a limiting cycle. The trajectories start with $x_0 = 0.05R$. (c) Trajectory of an oscillator where the driving is stronger than the damping. The trajectory starts with $x_0 = 0.2R$ and zero velocity. The parameters of the simulation are $k_m/\gamma = 19.34$ in all cases and (a) $R\gamma/(v_w m) = 10.0 \times 10^{-4}$, (b) $R\gamma/(v_w m) = 8.4 \times 10^{-4}$ and (c) $R\gamma/(v_w m) = 7.0 \times 10^{-4}$.

where A is the steady-state amplitude and ω the circular frequency. Using equations (7) and (9) one finds

$$W = \left. \int_0^{\pi/\omega} \left[-k\vec{r}(t) - \left(\gamma - k\frac{\pi R}{v_w} |\vec{r}(t)| \right) \dot{\vec{r}}(t) \right] \vec{r}(t) \, dt \right|_{\vec{r}(0) = (x_0, 0)}$$

$$= A^2 \omega m \left[\frac{3\pi}{2} \left(\frac{k\pi R}{v_w} - \gamma \right) + \frac{2}{3} A \frac{k}{v_w} \right].$$

(13)

A self-sustained oscillation is achieved if the energy does not change, i.e. if the work integrated over half a period vanishes. For $W = 0$ in equation (13) one obtains an estimate for the amplitude of a self-sustained oscillation:

$$A = \frac{3\pi}{4} \left(\frac{\pi R - \gamma v_w}{k} \right).$$

(14)

Note that the estimate given in this section is only valid for sufficiently small amplitudes because of the approximation used in equations (9), (11), and (12).

6. Experimental verification

Experiments were performed in order to verify the calculations. First we investigate the dependence of the frequency on the properties of the water jet.

6.1. Water jet characterization

The water jet is characterized by the height h_w, the volume flow per time unit $\frac{\Delta V}{\Delta t}$ and the nozzle diameter d_N. Using the mass flow and the nozzle diameter, the exit velocity of the water jet $v_{exit} = \frac{\Delta V}{\pi d_N^2}$ can be computed. The height between the exit nozzle and the ball can then be
Figure 5. The view of the camera.

used to derive the velocity of the water jet when it hits the ball v_w:

$$v_w = \sqrt{v_{\text{exit}}^2 + 2gh_w} = \sqrt{\left(\frac{\Delta V}{\Delta t} \frac{1}{d_N^2} \pi \right)^2 + 2gh_w}. \quad (15)$$

g denotes the gravitational constant. Multiplying the final water velocity v_w by the volume flow and the density of the liquid ρ results in the force of the water jet F_w or equivalently the momentum per unit time:

$$F_w = v_w \frac{\Delta V}{\Delta t} \rho. \quad (16)$$

Using the assumption made in figure 2, we expect the jet to bend by an angle of 90° if the ball is at the position $|r| = R$. This results in full momentum transfer. The constant of proportionality k in the harmonic force approximation of the restoring force is therefore

$$k = \frac{F_w}{R}. \quad (17)$$

6.2. Experimental setup

The setup consists of a flat slab with a ping-pong ball on top being hit by a water jet. Its movement is tracked using a camera looking at the jet from the side. The position is calibrated using the diameter of the ball, which is 40 mm. The view of the camera is shown in figure 5.

In order to excite oscillations, a ruler is used to push the side of the ball and is then removed quickly enough to allow it to oscillate freely. Then either the motion of the ball is damped until it comes to rest or, in case of sufficient driving, the ball continues to oscillate with a specific amplitude.

6.3. Data fitting and extraction of oscillation parameters

The video is analysed using ‘OpenCV v2’ [18]. The following function was fitted to the measurement data:

$$y(x) = A(x) \sin(2\pi f(x) \times (x + x_{\text{off}})) + y_{\text{off}}. \quad (18)$$
where the amplitude and frequency approach constant values according to the exponential ansatz

\[A(t) = (A_0 - A_\infty) \cdot e^{-\gamma f t} + A_\infty \] \hspace{1cm} (19)

and

\[f(t) = (f_0 - f_\infty) \cdot e^{-\gamma f t} + f_\infty. \] \hspace{1cm} (20)

The result of fitting is shown in figure 6. Note that in principle the plane of oscillation might change slightly, which would require an additional correction for long runs.

The asymptotic amplitude \(A_\infty \) that is approached for \(t \to \infty \) corresponds to the steady-state amplitude calculated in equation (14) and depends on the product of \(\gamma \) and \(v_w \). Therefore, for a measured \(A_\infty \) the product of \(\gamma \) and \(v_w \) can be determined:

\[\gamma v_w = k \left(\pi R - \frac{4 A_\infty}{3 \pi} \right). \] \hspace{1cm} (21)

In order to determine \(\gamma \) and \(v_w \) individually, we compare our experimental results to the results of the numerical simulation that was used to generate the plots in figure 4.

Starting with the phenomenological fit to the results of the experiment (see figure 6) we extract the decay of the envelope function. Then, we perform numerical simulations with different parameters, determine the maximum and minimum of the simulation results and compare their positions to the envelope function of the fit to the experiment. To be specific, we vary \(v_w \) and \(\gamma \) in the numerical simulations until the sum of the differences between the simulated extrema and the experimental envelope function are minimal. Figure 7(a) shows a comparison of the optimized simulations and the experimental results.

Table 1 shows the parameters of simulations that best fit the experiments.

Using those values it is possible to check the plausibility of the theory. The first expected behaviour is that the inverse drag mobility constant \(\mu^{-1} = \gamma / 6 \) and the water velocity \(v_w \) should depend only on the geometry of the setup, the velocity of the water and the mass flow rate. This is confirmed when looking at the first two rows in table 1. The water force was varied using higher or lower flow with the same nozzle and therefore a faster or slower water jet at the exit of the nozzle. This can also be confirmed by looking at the velocity of the water on the surface.
Figure 7. (a) Comparison of the results from numerical simulations (stars) and the phenomenological fit to experimental data (magenta curve). The parameters of the numerical simulation are varied until the deviations between the numerical extrema and the envelope function are minimal. (b) Example of the amplitudes obtained from a fit to simulations (crosses) and the amplitudes according to the fit to the experimental results (curve). The results are similar, but from (a) and (b) it is clearly visible that the simulation does not implement slipping and therefore does not fit perfectly. Most importantly, the change in frequency in the experiment in (a) is not reproduced by the numerical simulations without slip.

Table 1. The values resulting from simulations that best fit the results from experiments. m_e denotes the mass of the ball, F_w the water force, damping constant $\gamma = \gamma / m_e$, v_w the velocity of water on the surface of the ball, and $\mu^{-1} = \gamma \times m_e / 6 = \gamma / 6$ the inverse drag mobility constant of water.

m_e (g)	F_w (mN)	γ (s$^{-1}$)	v_w/R (s$^{-1}$)	μ^{-1} (g s$^{-1}$)
2.679 ± 0.005	53.0 ± 1.3	118 ± 10	10.8 ± 1.0	0.53 ± 0.05
1.864 ± 0.003	53.0 ± 1.3	168 ± 20	10.6 ± 1.3	0.52 ± 0.07
2.679 ± 0.005	31.3 ± 0.5	82 ± 13	6.6 ± 1.0	0.37 ± 0.06
2.679 ± 0.005	73.1 ± 2.1	106 ± 18	21.0 ± 3.4	0.47 ± 0.08

Interestingly, the drag force decreases for larger water force in the last row. This can be explained by the ball starting to lift up and slip, which results in less friction.

6.4. Observation of frequency

The k value from equation (17) can be used to determine the frequency from our theory:

$$\frac{k}{m_e} = \frac{F_w}{m_e R} = \omega^2 \Rightarrow f_\infty = \frac{1}{2\pi} \sqrt{\frac{F_w}{m_e R}},$$

where m_e effectively denotes all inertial effects, including inertial contributions due to rotation. For our ping-pong ball we assume that the mass is in a thin layer at radius R. The inertial constant m_e therefore is $m_e = m + \frac{I}{R^2} = \frac{5}{3}m$. Five different water velocities have been used. The theory and experiment are compared in figure 8. Note there are no free parameters used in this comparison.

For small water forces F_w the experimentally determined frequency (depicted magenta in figure 8) agrees with the theoretical prediction (green). However, for large forces slipping occurs, such that $m_e = \frac{5}{3}m$ is no longer a suitable assumption for the inertial contribution. For a slipping ball the inertia is mainly due to the mass, because rotation does not occur, i.e.
Figure 8. The asymptotic frequency f_∞ that is approached for long times depending on water force F_w. The measurement results are depicted in magenta. The theoretical predictions without slip are depicted in green. The blue dashed line represents the theory for a slipping ball using the ball mass as the effective mass.

$m_e = m$. Therefore, in figure 8 the prediction for $m_e = m$ is shown by a blue dashed line that is in agreement with the measurements at large water forces.

7. Conclusions and outlook

We studied the oscillations that occur if a ball on a flat surface is hit from above by a water jet. Obviously it is too complicated to try to describe all details of the forces occurring: such a detailed description would require a hydrodynamic exploration of the water film that surrounds the sphere as well as various considerations concerning frictional and viscous forces and of course is far beyond what students (and even most experts in the field) can calculate. The major step towards solving the task is to find out what matters for the oscillations that should be studied. In this article we have shown that the restoring force can be understood as momentum transfer on the ball due to deflection of the water jet on the ball. However, an instantaneous restoring force could not explain any steady state with oscillations. By taking the time delay of the restoring force into account, we have shown that this causes an effective driving force that leads to the observed self-sustained oscillations. Furthermore, we have compared our theoretical predictions with results from experiments.

The way in which this problem has been handled is typical for problems of the IPT. An important step is to find the correct level of abstraction such that important ingredients (e.g. the time delay) are preserved while complicated details (e.g. of the hydrodynamic forces) are not considered. Students who learn to attack the problems of the IPT in such a way are therefore taught a lot about how they can handle complex research questions that they will probably deal with at later stages of their career.

In future, the GPT will be supported by a network with locations at various German universities (see [4] for details). The network was founded in December 2019 and is motivated by the successful network of the German Young Physicists’ Tournament (GYPT), which is a similar competition for high school students [19] and is used as national qualification tournament for the International Young Physicists’ Tournament (IYPT) [20]. The goal is to learn from the success story of the GYPT and the IYPT in order to increase the visibility of the GPT and the IPT such that more students have the opportunity to participate in these competitions.
Acknowledgments

We gratefully acknowledge helpful discussions with the other members of the team from the FAU Erlangen–Nürnberg who participated in the GPT and IPT 2019, called ‘FAUltiere’: Aakash Bhat, Paul Fadler, Andreas Gramann, Lucia Härer and Janna Vischer.

ORCID iDs

S Michalke https://orcid.org/0000-0003-2151-8047
A Fösel https://orcid.org/0000-0002-1948-1866
M Schmiedeberg https://orcid.org/0000-0001-7833-4906

References

[1] Vanovskiy V 2014 International Physicists’ Tournament—the team competition in physics for university students Eur. J. Phys. 35 064003
[2] International Organizing Committee (IOC) of the IPT 2019 Problems for IPT http://iptnet.info/ipt-2019-problem-list/
[3] International Organizing Committee (IOC) of the IPT 2019 Rules of International Physicists’ competition http://iptnet.info/wp-content/uploads/2019/07/
[4] Schmiedeberg M, Fösel A and Michalk S 2020 Website of German Physicists’ Tournament https://germany.iptnet.info
[5] Shepard R 1997 Curricular physical activity and academic performance Pediatr. Exerc. Sci. 9 113–26
[6] Diamond A 2000 Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex J. Child Dev. 71 44–56
[7] Feynman R P and Leighton R 1988 What Do You Care What Other People Think? Further Adventures of a Curious Character (New York: Norton)
[8] Campbell J R 1996 Early identification of mathematics talent has long-term positive consequences for career contributions Int. J. Educ. Res. 25 497–522
[9] Campbell J R 2002 Promoting the development of talent in technical areas: obstacles to females pursuing technical careers in Europe, Scandinavia Countries, Asia, and the United States J. Res. Educ. 12 75–9
[10] Campbell J R, Wagner H and Walberg H J 2002 Academic competitions and programs designed to challenge the exceptionally talented ed K A Heller, F J Monks, R Subotnik and R J Sternberg International Handbook of Giftedness and Talent 2nd edn (Amsterdam: Pergamon) pp 523–36
[11] Lind G and Friege G 2001 What characterizes participants at the Olympiad besides their physics problem solving abilities? Phys. Competitions 3 7–15
[12] Dziob D, Górska U and Kolodziej T 2017 Chain experiment competition inspires learning of physics Eur. J. Phys. 38 034002
[13] Höfler T N, Bonin V and Parchman I 2017 Science vs sports: motivation and self-concepts of participants in different school competitions Int. J. Sci. Math. Educ. 15 817–36
[14] Harlen W 2006 Teaching, Learning and Assessing Science vol 5–12 (London: SAGE)
[15] McComas W F, Clough M P and Almazroa H 1998 The role and character of the nature of science The Nature of Science in Science Education—Rationales and Strategies (Dordrecht: Kluwer)
[16] Höttecke D 2001Die Natur der Naturwissenschaften historisch verstehen: Fachdidaktische und wissenschaftshistorische Untersuchungen (Berlin: Logos) (in German)
[17] Neumann I 2011 Beyond Physics Content Knowledge. Modeling Competence Regarding Nature of Scientific Inquiry and Nature of Scientific Knowledge (Berlin: Logos)
[18] Citebay 2019 http://citebay.com/how-to-cite/opencv/ (Citebay)
[19] Carstensen J, Ostermaier F, Steck M and Engelmann F 2019 Website of German Young Physicists’ Tournament (GYPT) http://gypt.org
[20] Plesch M 2019 Website of International Young Physicists’ Tournament (IYPT) http://iyp.org