Stability of feature selection utilizing Graph Convolutional Neural Network and Layer-wise Relevance Propagation

Hryhorii Chereda ¹, Andreas Leha ², Tim Beißbarth ¹,³, *

¹Medical Bioinformatics, University Medical Center Göttingen, Germany
²Medical Statistics, University Medical Center Göttingen, Germany
³Campus-Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany

* To whom correspondence should be addressed.

Abstract

High-throughput technologies are increasingly important in discovering prognostic molecular signatures and identifying novel drug targets. Molecular signatures can be obtained as a subset of features that are important for the decisions of a Machine Learning (ML) method applied to high-dimensional gene expression data. However, feature selection is inherently unstable in this case. Several studies have identified gene sets that provide predictive success for patient prognosis, but these sets usually have only a few genes in common. The stability of feature selection (and reproducibility of identified gene sets) can be improved by including information on molecular networks in ML methods. Graph Convolutional Neural Network (GCNN) is a contemporary deep learning approach applicable to gene expression data structured by a prior knowledge molecular network. Layer-wise Relevance Propagation (LRP) and SHapley Additive exPlanations (SHAP) are techniques to explain individual decisions of deep learning models. We used both GCNN+LRP and GCNN+SHAP techniques to explain GCNNs and to construct feature sets that are relevant to models by aggregating their individual explanations. We also applied more classical ML-based feature selection approaches and analyzed the stability, impact on the classification performance, and interpretability of selected feature sets.

Keywords: gene expression data, explainable AI, personalized medicine, precision medicine, classification of cancer, deep learning, prior knowledge, molecular networks.

Availability: https://gitlab.gwdg.de/UKEBpublic/graph-lrp

Contact: tim.beissbarth@bioinf.med.uni-goettingen.de

1 Introduction

Microarray and especially high-throughput technologies have become commonly used tools for genome-wide gene-expression profiling. Gene expression patterns elucidate the molecular mechanisms of such heterogeneous disease as breast cancer (Sørlie, 2007). As a result, large amounts of data produced by high-throughput sequencing are utilized to identify predictive gene signatures and discover individual biomarkers in cancer prognosis (Perera, Leha, and Beissbarth, 2019). To predict cancer outcomes, we can use ML to classify patients, and identify relevant genes by selecting features.

However, an ML model, trained on a high-dimensional gene expression dataset (the number of genes is much higher than the number of patients), has to deal with the “curse of dimensionality”, which leads to overfitting (Porzelius et al., 2011) and consequent instability in feature selection. Furthermore, the correlations between single genes and the clinical endpoint fluctuate strongly when measured over different subsets of patients (Ein-Dor et al., 2005) affecting the lists of candidates for predictive biomarkers. From the biomedical standpoint, it is crucial to guarantee the reproducibility of the given feature selection methods when finding candidate sets of biomarkers (Lee et al., 2011). Thus, the challenge is to find a subset of important features that are (i) stable (reproducible), (ii) biologically interpretable, (iii) contain the most information about the clinical outcome.

The stability (reproducibility) of a feature selection algorithm is essentially the robustness of the algorithm’s feature preferences: the feature selection is unstable when small changes in the training data lead to large changes in the chosen feature subsets (Nogueira, Sechidis, and Brown, 2011). The quantification of stability can be performed by providing different samples from the same training data and measuring the changes among chosen feature subsets.

Incorporation of prior knowledge of molecular networks (e.g. pathways) into an ML algorithm improves stability (Johannes et al., 2011) and biological interpretability (Kong and Yu, 2011 “Introduction” section of) of selected gene signatures. Molecular networks represent molecular processes in a given biological system and are widely used by biologists to interpret the results of a statistical analysis (Porzelius et al., 2011). Molecular networks can be used to approximate the interactions between features (genes). Genes connected in a close proximity within molecular network should have similar expression profiles (Johannes et al., 2011) and should not be treated independently.
The Graph Convolutional Neural Network (GCNN) (Defferrard, Bresson, and Vandergheynst, 2016) have been successfully applied to classify patients utilizing their gene expression profiles structured by a prior knowledge protein-protein interaction (PPI) network (Rhee, Seo, and Kim, 2018). Chereda et al., 2020] Ramirez et al., 2020] Pfeifer et al., 2021] Patient-specific predictions were further explained (Chereda et al., 2021) by adapting the Layer-wise Relevance Propagation (LRP) explanation method (Bach et al., 2015) to the graph convolutions layers of the GCNN method.

Here, we aggregate individual explanations delivered by LRP and SHAP (Lundberg and Lee, 2017) applied to a GCNN model to construct a feature set corresponding to a whole dataset. We estimate the stability of feature selection performed by the GCNN+LRP and GCNN+SHAP approaches w.r.t. different training samples. Comparing GCNN+LRP, GCNN+SHAP and other more classical ML-based feature selection techniques we analyzed the stability, impact on the classification performance, and interpretability of feature sets of varying size.

2 Materials and Methods

2.1 Protein-Protein Interaction Network

The gene expression data was structured with the Human Protein Reference Database (HPRD) protein-protein interaction (PPI) network (Keshava Prasad et al., 2009). It contains protein-protein interaction information based on yeast two-hybrid analysis, in vitro and in vivo methods. The set of binary interactions between pairs of proteins in the HPRD PPI network represented as an undirected graph. The graph has several connected components.

2.2 Breast Cancer Data

We utilized RNA-seq based gene expression dataset of human breast cancer patient samples. Each patient in this dataset is labeled with a molecular breast cancer subtype. Batch normalized expression (Illumina HiSeq, RNASeqV2) and clinical data are provided by The Cancer Genome Atlas (TCGA) and were downloaded from TCGA-BRCA PanCancer data (2018). The expression data comprise the collection of 20531 genes and 1082 samples. After mapping sample IDs to clinical data (containing subtype labels) we ended up with 981 samples in breast cancer, corresponding to five subtypes: luminal A (499 samples), luminal B (197 samples), basal-like (171 samples), HER2-enriched (78 samples) and normal-like (36 samples).

The gene expression data was normalized utilizing the gene length corrected trimmed mean of M-values (GeTMM) method (Smid et al., 2018). It allows for inter- and intra-sample analyses with the same scale. The expression data were mapped to vertices of PPI resulting in 8469 genes in the main connected component. Since GCNN requires an underlying graph to be connected, the rest of the genes were mostly singletons, thus not included in analyses.

2.3 Methods for feature selection

We use GCNN, Multi-Layer Perceptron (MLP), and Random Forest (RF) (Breiman, 2001) for predictive modelling. SHAP and LRP explanation methods were applied to the same GCNN and MLP models to generate individual explanations. These explanation were aggregated according to the the approach of (Marcílio and Eler, 2020) to deliver model-wide feature sets. The methods are described in the following subsections.

2.3.1 Predictive modelling with GCNN, MLP, and RF

The GCNN method (Defferrard, Bresson, and Vandergheynst, 2016) was applied to the breast cancer dataset (Breast Cancer Data). The HRPD PPI network (Protein-Protein Interaction Network) represents connections between genes and was used to structure gene expression data. The topology of the HPRD PPI network is used by GCNN and is the same for each patient. For a single patient, each vertex of the HPRD PPI network has a corresponding gene expression value as an attribute. A gene expression profile of a single patient creates a graph signal and GCNN performs graph signal classification.

MLP and RF were applied on the same dataset performing classification of patients, but without utilizing network topologies.

2.3.2 LRP and SHAP explanation methods

The LRP and SHAP methods were developed for delivering data point specific explanations. We apply those methods to MLP and GCNN models.

LRP computes a relevance value for each feature (gene) of an individual data point (cancer patient) by backpropagating the full relevance (output label) through the layers of a neural network to its input. To compute relevance values we utilized the \(z^+ \) propagation rule (Montavon et al., 2017) that was applied to each layer of GCNN and MLP.

The SHAP method estimates Shapley values, a term coming from cooperative game theory. According to Molnar, 2019 the game theory setup behind Shapley values is the following: The “game” is the prediction task for a single data point. The “payout” is the difference between the actual prediction for this data point and the average prediction for all instances. The “players” are the feature values of the data point that collaborate to receive the "payout" (predict a certain value). Shapley values indicate how fairly distribute the "payout" among the features. SHAP's DeepExplainer approach was applied to our Keras (Chollet, 2017) implementation of GCNN (Cherida, 2022).

A single Shapley value or relevance value computed by LRP represents how important a particular feature value is to a decision made by a classifier for a specific data point.

2.3.3 Aggregating individual explanations from LRP and SHAP to deliver a feature set

A single explanation can be represented as a vector of relevances or a vector of Shapley values estimates respectively. If gene expression data \(X \in \mathbb{R}^{n \times m} \) is given as an input to be explained, then the rows of the matrix \(E = (e_{ij}) \in \mathbb{R}^{n \times m} \) are transposed vectors of single explanations. \(n \) is the number of data points and \(m \) is the number of features. Let \(C \) be the set of classes, and \(|C| \) is the number of classes. Marcilio and Elér, 2020 suggest an approach to score features by aggregating SHAP values generated for each class of the dataset. We apply the same approach to aggregate relevance values computed by LRP. The aggregating approach is the following (Marcilio and Elér, 2020).

1. Generate explanations \(\{ E_{c} : c \in C\} \) for each class and take element-wise absolute values \(\{ E_{c}^{abs} : c \in C\} \). The latter set of matrices we combine into tensor

\[
E_{c}^{abs} = \{ |e_{c,j}| \in \mathbb{R}_+^{n \times m \times |C|} \}
\]

(1)

for explicitness of further notations.

2. For each matrix \(E_{c}^{abs} \) one computes mean values column-wise (feature-wise). The result is transposed vectors

\[
\{ v_{c} = \frac{1}{m} \sum_{j=1}^{m} e_{c,j}, \ldots, \frac{1}{m} \sum_{j=1}^{m} e_{c,m} : c \in C \},
\]

(2)

which we combine into matrix \(V = \{ v_{c} \in \mathbb{R}_+^{C \times m} \} \).
3. Let vector q be a representation of importance scores. The importance scores are obtained by summing vectors v_i, e.g.

$$q^T = \left(\sum_{i=1}^{C} v_i, \ldots, \sum_{i=1}^{C} v_{CM} \right).$$

(3)

The features then are sorted according to the importance scores. Fixing t as a number of features to select, one can construct a set of most important features $s_i, |s_i| = t$.

Within 10-fold cross validation, GCNN or MLP was trained on training data and the explanations are generated by LRP or SHAP on test data. LRP and SHAP methods were applied to exactly the same models.

2.3.4 Feature selection with SHAP and RF

Important features of a RF model were selected using two approaches: standard scoring of features on the basis of mean decrease in Gini impurity and application of SHAP’s TreeExplainer to RF. The SHAPley values were generated on test sets within 10-fold cross validation and the features were selected in the same way as described above.

2.4 Measuring the stability of feature selection

The input of a feature selection procedure is the data set $\{x_i, y_i\}_{i=1}^{M}$ where s is number of data points, each x_i is an n-dimensional feature vector, and y_i is the associated label. Feature selection identifies a feature subset s of dimensionality $k < m$ (Nogueira, Sechidis, and Brown, 2018). The subset s is selected to convey the most relevant information about the label y for the whole dataset $\{x_i, y_i\}_{i=1}^{M}$. The output of a feature selection approach is either a scoring on the features, a ranking of the features, or a subset of the features. Further in this paper, we do not consider the scoring approach as either a scoring on the features, a ranking of the features, or a subset of the features.

The input dataset of a feature selection technique is a finite sample of the dataset at hand, to apply a feature selection approach to each subset is the stability that we aim to measure. The selected feature subset may vary as well. The variation of the feature subset is the stability that we aim to measure.

2.5 Evaluating the impact of features prioritized by LRP and SHAP on classification performance

We adopt a “pixel-flipping” procedure (Montavon, Samek, and Müller, 2018; Bach et al., 2015) to quantify the impact of selected features on classifier’s performance by perturbing them. Within 10-fold cross-validation, we perturb features $\{x_{1}, \ldots, x_{20}\}$ of test sets by assigning their values zero, which would mean the absence of detected gene expression of particular genes in a gene expression profile of a patient in a test set. Then we apply ML models to perturbed test data and record an average of the predictive performance over 10 folds. Increasing the size of perturbed selected feature sets decreases classifier’s performance. We compare the drop of the classification importance across MLP+LRP, MLP+SHAP, GCNN+LRP, GCNN+SHAP, RF+SHAP, RF approaches by varying the size of a feature set $|s_i|$ from 100 to 1000 with a step 100.

2.6 Evaluating connectivity of the selected feature sets

We estimate the connectivity of selected feature (gene) sets as a measure of interpretability in the context of the prior knowledge HPRD PPI network. We build a PPI subnetwork, in which nodes are selected genes, and edges are from a PPI network, connecting those genes. Further, we count the number of connected components of the resulting PPI subnetwork. Lower number of connected components indicates higher connectivity, and thus better interpretability within a prior knowledge HPRD PPI network. The number of connected components is averaged over 10 feature sets obtained within 10-fold cross-validation. We repeat measurements varying the size of the feature set $|s_i|$ from 100 to 1000 with a step 100.

While only GCNN uses prior knowledge HPRD PPI network, we have also quantified the connectivity of feature sets delivered by MLP and RF methods without prior knowledge for comparison.

3 Results

3.1 Stability of feature selection

The stability metrics demonstrate (Figure 1) that the feature selection using GCNN+LRP (violet) is substantially more stable than using RF, MLP, or GCNN+SHAP. Classical feature selection with RF (blue) provides high stability as well and it almost the same as the stability of the RF+SHAP approach (orange). GCNN+SHAP (brown) shows slightly higher stability than that of MLP+SHAP (red) and MLP+LRP (green), which is the lowest. Interestingly, the stability slightly drops for RF with increased feature size, compared to other methods.
The focus of our paper is to holistically investigate the stability, impact on the classification performance, and interpretability of feature sets obtained by aggregating individual explanations from LRP and SHAP methods. We contrast the GCNN+LRP and GCNN+SHAP approaches that use HPRD PPI network as prior knowledge with other techniques such as MLP+LRP, MLP+SHAP, RF+SHAP, and RF (standard feature scoring) that do not use any prior knowledge.

GCNN+LRP leads in stability and connectivity of features, while GCNN+SHAP produces features that are more impactful for classification but less interpretable in terms of prior knowledge. RF also generates impactful features with high stability. One possible reason for GCNN+SHAP’s behavior is that SHAP’s DeepExplainer approach, which approximates SHAP values, assumes the input features are independent (Lundberg and Lee, 2017). However, DeepExplainer still uses a GCNN model that leverages network neighborhoods. To better understand this phenomenon, we would need to conduct more experiments using other explanation methods, such as integrated gradients (Sundararajan, Taly, and Yan, 2017) or different LRP rules (see (Montavon et al., 2017, Appendix A) of, Kothibrenner et al., 2020, but we leave this for future work.

The MLP+SHAP and MLP+LRP features provide less steep line than GCNN+LRP and GCNN+SHAP in the context of the impact on classification performance (Figure 2). It can be explained by the assumption that the MLP model in this case relies on different patterns learned from data, since patterns learned by GCNN are biased by the PPI networks. Furthermore, one has to take into consideration the non-triviality of estimating the impact of features on performance by perturbing them. For example, perturbed features might lead to artifacts, and it might be unclear if those artifacts originated from data, or a misbehaving model, or misbehaving explanation method (Sundararajan, Taly, and Yan, 2017) or different LRP rules (see (Montavon et al., 2017). Appendix A of). To minimize this effect, we perturbed features by making them equal zero and used the same models to which LRP and SHAP were applied. One could also consider an adaptation to graph domain a more advanced empirical approach described in (Samek et al., 2017). There are other feature selection approaches that could be considered in the same context. Ahn et al., 2018 suggest an empirical approach for analyzing gene’s contribution to a particular output of a deep neural network model. This approach could be also potentially applicable to GCNN. Kong and Yu, 2018 present a graph-embedded feed-forward network for feature selection. The model they propose is essentially an MLP where the first hidden embedding layer has its weights pruned by an adjacency matrix of the utilized molecular network. For feature selection they also developed a feature ranking method, which require input gene expression data to be standardized. In our case, the input data is not standardized because we use GetMM method (Smid et al., 2013) for data normalization. It allows for inter- and intra-sample analyses. Standardization treats genes independently distorting gene expression...
patterns formed in the same neighborhood of a molecular network in which would affect the interpretability of features (Chereda et al. 2022). The GNNSubNet approach from (Pfeifer, Saranti, and Holzinger, 2022) allows for feature selection utilizing a modified version of GNNExplainer (Ying et al., 2019) applied to the Graph Isomorphism Network GIN (Xu et al., 2018). GIN shows good performance in a multimodal setup (Pfeifer, Saranti, and Holzinger, 2022) however it does not converge well while utilizing only gene expression modality (see also Pfeifer, Saranti, and Holzinger, 2022). Nonetheless, adapting a modified version of GNNExplainer to our Keras (Chollet, 2015) implementation of GCNN (Chereda, 2022) is a development for future work.

While here we are concentrating on aggregating data point-specific explanations into a general scoring for features, there is no “gold standard” for performing general feature selection using explanation methods. The GCNN+LRP approach can deliver explanations as patient-specific subnetworks (Chereda et al., 2022) and it might be promising to work with subnetworks, rather than aggregating SHAP or relevance values. Authors in (Lapuschkin et al., 2019) perform spectral relevance analysis by clustering individual explanations, and in a graph domain one could cluster patient-specific subnetworks (Chereda et al., 2021) to deliver a model-wide subnetwork consisting of important features.

In addition to graph neural network-based approaches, there are methods that use ensembles of trees and leverage information from molecular networks: (Dutkowski and Idiak, 2011) and (Pfeifer et al., 2021). While this is a fascinating topic to cover, it is out of scope for this paper.

5 Conclusion

We evaluated different feature selection techniques for identifying prognostic gene sets: GCNN+LRP and GCNN+SHAP (using HPRD PPI network as prior knowledge), MLP+LRP, MLP+SHAP, RF+SHAP, and RF (using prior knowledge). We examined how the size of the feature sets affects their stability, classification performance, and interpretability. RF+SHAP and RF (standard scoring) produced similar and relatively stable and impactful features among all used in this paper ML methods, making it more suitable for biomarker discovery. MLP+LRP was the least reliable for feature selection as it had the lowest stability. GCNN+SHAP generated features that were less stable and interpretable than GCNN+LRP; but had more influence on the model’s performance. The SHAP method, applied to both MLP and GCNN, is useful when the features need to be more relevant to the model’s decisions.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements

We would like to acknowledge Johannes Söding for fruitful discussions. T.B. is a member of the Göttingen Campus Institute Data Science.

Funding

This work was supported by the German Ministry of Education and Research (BMBF) e:Med project MyPathSion [03IL0024]. Part of this work has been funded by the German Ministry of Education and Research (BMBF) FALPaCT project 01KD2006A.

References

Ahm, Tachi et al. (2018) “Deep Learning-based Identification of Cancer or Normal Tissue using Gene Expression Data”. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) pp. 1748-1752.

Buch, Sebastian et al. (2015) “On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation”, In: PLOS ONE 10.7, e013046.

Bustamante, Leo (2001) “Random Forests”. In: Machine Learning 45.1, pp. 5–32.

eBioPortal TCGA-BRCA PanCancer data (2018) [https://www.cbioportal.org/study/workflow?studyId=TCGA-BRCA_pan_cancer_atlas_2018]

Chereda, Herytorn et al. (2022) Graph Layer-wise Relevance Propagation (GLRP) [https://github.com/gchollet/keras]

Chollet, François (2015) Keras [https://github.com/keras-team/keras]

Dutkowski, Jacek and Troy Ideker (2011) “Protein networks as logic functions in development and cancer”. In: PLoS Comput Biol 7.6, e1002180.

Ein-Dor, Lior et al. (2005) “Outcome signature genes in breast cancer: is there a unique set?” In: Bioinformatics 21.2, pp. 171–178.

Johannes, Marc et al. (2010) “Integration of pathway knowledge into a two-sided recursive feature elimination approach for risk stratification of cancer patients”. In: Bioinformatics 26.17, pp. 2136–2144.

Kohlbrenner, Maximilian et al. (2020) “Towards Best Practice in Explaining Neural Network Decisions with LRP”. in: 2020 International Joint Conference on Neural Networks (IJCNN) ISSN: 2471-4407, pp. 1–7.

Kong, Yunchuan and Tianwei Yu (2018) “A graph-embedded deep feature learning model for disease outcome classification and feature selection using gene expression data”. In: Bioinformatics 34.21, pp. 3727–3737.

Lapuschkin, Sebastian et al. (2019) “Unmasking Clever Hans Predictors and Assessing What Machines Really Learn”. In: Nat Commun 10.1, arXiv: 1902.01078, p. 1096.

Lee, Hae Wook et al. (2013) “Robustness of chemokinesis-based feature selection methods in early cancer detection and biomarker discovery”. In: Statistical Applications in Genetics and Molecular Biology 12.2, pp. 207–223.

Lundberg, Scott and Su-In Lee (2017) “A Unified Approach to Interpreting Model Predictions”. In: arXiv:1705.07878 (preprint).

Marcilio, Wilson E. and Daniel M. Eiger (2020) “From explanations to feature selection: assessing SHAP values as feature selection mechanism”. In: 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). ISSN: 2377-5434, pp. 346–347.

Molnar, Christoph (2019) Interpretable Machine Learning. A Guide for Making Black Box Models Explainable.

Montavon, Grégoire, Wojciech Samek, and Klaus-Robert Müller (2018) “Methods for interpreting and understanding deep neural networks”. In: Digital Signal Processing 73, pp. 1–15.

Montavon, Grégoire et al. (2017) “Explaining nonlinear classification decisions with deep Taylor decompositions”. In: Pattern Recognition 65, pp. 211–222.

Montavon, Grégoire et al. (2019) “Layer-Wise Relevance Propagation: An Overview”. In: Explaining AI: Interpreting, Explaining and Visualizing Deep Learning. Ed by Wojciech Samek et al. Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 193–200.

Negrine, Sarah, Konstantion Schuld, and Garin Brown (2018) “On the Stability of Feature Selection Algorithms”. In: Journal of Machine Learning Research 18.176, pp. 1–54.

Peter, Julia, Andreas Luth, and Tim Breitbarth (2019) “Bioinformatic Methods and Resources for Biomarker Discovery, Validation, Development, and Integration”. In: Predictive Biomarkers in Oncology. Ed. by Samir Badre and George Kumar. Springer International Publishing. Chap. 11. pp. 149–164.

Pfeifer, Bastian, Anna Saranti, and Andreas Holzinger (2022) “GNN-SubNet: Disease subnetwork detection with explainable graph neural networks”. In: Bioinformatics 38.Supplement_2, pp. ii20–ii126.

Pfeifer, Bastian et al. (2022) “Multi-omics disease module detection with an explainable Greedy Decision Forests”. In: Sci Rep 12.1, p. 16637.
Pfeifer, Bastian et al. (2023) “Ensemble-GNN: federated ensemble learning with graph neural networks for disease module discovery and classification”. In: BioRxiv.

Porzelius, Christine et al. (2011) “Leveraging external knowledge on molecular interactions in classification methods for risk prediction of patients”. In: Biometrical Journal 53.2, pp. 190–203.

Ramirez, Ricardo et al. (2020) “Classification of Cancer Types Using Graph Convolutional Neural Networks”. English. In: Front. Phys. 8.

Rhee, Sungmin, Seokjun Seo, and Sun Kim (2018) “Hybrid Approach of Relation Network and Localized Graph Convolutional Filtering for Breast Cancer Subtype Classification”. In: Electronic proceedings of IJCAI 2018, pp. 3527–3534.

Samek, Wojciech et al. (2017) “Evaluating the Visualization of What a Deep Neural Network Has Learned”. In: IEEE Transactions on Neural Networks and Learning Systems 28, pp. 2660–2673.

Smid, Marcel et al. (2018) “Gene length corrected trimmed mean of M-values (GeTMM) processing of RNA-seq data performs similarly in intersample analyses while improving intra-sample comparisons”. In: BMC Bioinformatics 19.1, p. 236.

Sørlie, Therese (2007) “Molecular Classification of Breast Tumors: Toward Improved Diagnostics and Treatments”. In: Target Discovery and Validation Reviews and Protocols: Humana Press, pp. 91–114.

Sundararajan, Mukund, Ankur Taly, and Qiqi Yan (2017) “Axiomatic Attribution for Deep Networks”. In: arXiv:1703.01365 [cs].

Wald, Randall, Taghi Khoshgoftaar, and David Dittrich (2012) “A New Fixed-Overlap Partitioning Algorithm for Determining Stability of Bioinformatics Gene Rankers”. In: 2012 11th International Conference on Machine Learning and Applications. Vol. 2, pp. 170–177.

Xu, Keyulu et al. (2018) “How powerful are graph neural networks?” In: arXiv preprint arXiv:1810.00026.

Ying, Rex et al. (2019) “Goosmiller: Generating explanations for graph neural networks”. In: Advances in neural information processing systems 32, p. 9240.