Ammonia and autophagy: An emerging relationship with implications for disorders with hyperammonemia

Leandro R. Soria1 | Nicola Brunetti-Pierri1,2

1Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
2Department of Translational Medicine, Federico II University, Naples, Italy

Correspondence
Nicola Brunetti-Pierri, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Italy.
Email: brunetti@tigem.it

Communicating Editor: Johannes Häberle

Funding information
Fondazione Telethon, Grant/Award Number: TCBP37TELC and TCBM3TEL; H2020 European Research Council, Grant/Award Number: IEMTx; H2020 Marie Skłodowska-Curie Actions, Grant/Award Number: DTI-IMPORT

Abstract
(Macro)autophagy/autophagy is a highly regulated lysosomal degradative process by which cells recycle their own nutrients, such as amino acids and other metabolites, to be reused in different biosynthetic pathways. Ammonia is a diffusible compound generated daily from catabolism of nitrogen-containing molecules and from gastrointestinal microbiome. Ammonia homeostasis is tightly controlled in humans and ammonia is efficiently converted by the healthy liver into non-toxic urea (through ureagenesis) and glutamine (through glutamine synthetase). Impaired ammonia detoxification leads to systemic hyperammonemia, a life-threatening condition resulting in detrimental effects on central nervous system. Here, we review current understanding on the role of ammonia in modulation of autophagy and the potential implications in the pathogenesis and treatment of disorders with hyperammonemia.

KEYWORDS
autophagy inducers, hyperammonemia, liver, mTORC1, TFEB, ureagenesis

1 INTRODUCTION

The term autophagy (from the Greek: auto-self; phagy-eating) was first introduced by the Nobel laureate Christian De Duve in the 1960s to describe the process resulting in lysosomal degradation of intracellular components.1 However, the mechanisms underlying autophagy and its role in health and diseases have been elucidated only several decades later. In recognition of the importance of this process, a Nobel Prize has been awarded to cell biologist Yoshinori Ohsumi in 2016.2,3 Autophagy-mediated degradation of proteins and organelles generates amino acids, sugars, and lipids that can be recycled for synthesis of new cellular components and for energy production.4 Autophagy is now recognized as a key process in cell homeostasis and plays an important role in multiple cellular processes, such as resistance to stress due to lack of nutrients or oxygen, immune response, aging, cancer, and neurodegeneration.

Recent studies revealed that ammonia activates autophagy in several disease conditions.5–7 Ammonia is generated as a bioproduct of the catabolism of nitrogen-containing molecules, is highly diffusible and neurotoxic at high concentrations. In acquired liver diseases or inherited deficiencies of urea cycle enzymes, ammonia is poorly removed from the circulation resulting in hyperammonemia, a life-threatening condition with potentially irreversible brain damage.
In this review, we provide a brief description of autophagy functions in liver and we review recent data on the interplay between autophagy and ammonia.

2 | AUTOPHAGY: GENERAL CONSIDERATIONS

Autophagy is a highly conserved and regulated cellular process resulting in delivery of cytoplasmic components, such as proteins and organelles to lysosomes for their degradation. Three main types of autophagy have been defined: macro-autophagy/autophagy (hereafter referred to as autophagy), chaperone-mediated autophagy, and endosomal (micro)autophagy. Autophagy begins with the dynamic formation of a membrane vesicle called phagophore or isolation membrane from autophagy-related (ATG) proteins and lipids derived from plasma membrane and organelles including mitochondria, endoplasmic reticulum (ER), Golgi complex, and endosomes [for detailed review on phagophore biogenesis see10]. Next, the isolation membrane expands engulfing cytosolic components and macromolecules such as glycogen, proteins, and lipid droplets and finally, it seals into a double membrane organelle named autophagosome that is the distinctive intracellular structure of autophagy (Figure 1A). Autophagy substrates can be sequestered either in bulk or selectively. Selective autophagy depends on specific recognition by ligand receptors or scaffold proteins acting as bridges between cargos targeted for degradation and ATG8 proteins, including the light-chain 3 (LC3) and gamma-aminobutyric acid receptor-associated proteins (GABARAP) on the autophagosome.11 Following fusion of autophagosomes with lysosomes, degradation of cargos and their autophagosome membranes occurs in the autolysosome by means of acidic hydrolases. Amino acids, sugars, and lipids are then transported out of the autolysosomes for cellular re-cycling by permeases located on the autolysosome membrane12 (Figure 1A).

All organisms and cell types have a constitutive basal level of autophagy. Nevertheless, autophagy is finely regulated and is strongly induced by stress conditions including lack of nutrients and energy, low oxygen levels, dysfunctional (or excessive number of) organelles, accumulation of unfolded protein aggregates, oxidative stress, DNA lesions, and pathogen infections.13–15 Several signaling pathways regulate autophagy16–18, including the mechanistic target of rapamycin kinase complex 1 (mTORC1) and the energy and glucose sensor adenosine monophosphate-activated protein kinase (AMPK) that result in inhibition or stimulation of autophagy, respectively.19 Moreover, autophagy is controlled by extracellular factors, mainly hormones such as insulin, glucagon, thyroid hormones, and several growth factors,20 and cytokines including tumor necrosis factor alpha (TNF-α) and several interleukins.21

The major regulator of cell growth and metabolism mTORC1 inhibits autophagosome biogenesis, maturation, and fusion with lysosomes by phosphorylation of Unc-51 like autophagy activating kinase 1 (ULK1) initiation complex,22 UV radiation resistance associated gene protein (UVRAG),23 and beclin-1-associated autophagy-related key regulator (BARKOR/ATG14).24 In addition, mTORC1 regulates autophagy through inhibition of the nuclear translocation/export of transcription factors EB (TFEB) and E3 (TFE3), two master regulators of autophagy and lysosomal biogenesis.25–29

Because autophagy has been implicated in a wide range of human disorders from neurodegenerative conditions to hepatic and metabolic disorders, cardiovascular diseases, infectious diseases and cancer, there is strong effort towards the development of drugs enhancing autophagy with the goal of increasing lysosomal degradation of accumulated toxic cargos including protein aggregates, dysfunctional organelles, lipid droplets, and invading microorganisms.30,31

![FIGURE 1](image-url) (A) Schematic representation of (macro) autophagy/autophagy pathway. (B) Known mechanisms of ammonia-mediated induction of autophagy (arrows indicate activation). (C) Ammonia-induced autophagy according to different cell/tissue contexts.
3 | LIVER AUTOPHagy

Being a central organ in metabolism, it is not surprising that autophagy is highly active in liver.\(^9,32\) Liver autophagy is inhibited under conditions of nutrient abundance but strongly activated by fasting, mainly in response to reduced blood amino acids.\(^33\) By autophagy, hepatocytes sustain acute interruptions of trans-placental nutrient supply occurring at birth, allowing survival of neonates facing severe starvation until supply can be restored through milk nutrients.\(^34,35\) Proteins, glycogen, and lipid droplets are degraded to release amino acids, glucose, and free fatty acids which can either be reutilized for synthesis of new proteins and macromolecules, or enter the tricarboxylic acid cycle to generate ATP in mitochondria.\(^12\) Moreover, autophagy regulates hepatic metabolism by controlling the energetic balance through fine-tuned modulation of the number and quality of hepatic mitochondria and peroxisomes.\(^36,37\) Autophagy also protects liver from various insults including damaged or misfolded/aggregated proteins, dysfunctional organelles, excessive nutrient load, and high fat diet.\(^32\) Defective autophagy has been involved in the pathogenesis of several congenital and acquired liver diseases, such as alpha-1 antitrypsin deficiency, acetaminophen (APAP) overdose, alcohol-induced injury, and nonalcoholic fatty liver disease (NAFLD).\(^9,32,38\)

Autophagy functions as protective response against genotoxic and proteotoxic insults preventing the development of hepatocellular carcinoma (HCC).\(^39\) However, after tumor formation, autophagy favors cancer progression and resistance to chemotherapy by supplying tumor cells with a powerful machinery to overcome intracellular and environmental stress (i.e. low nutrients, hypoxia and cytotoxic drugs).\(^40\) Therefore, drugs blocking autophagy are thought to be valuable for cancer only at advanced stages.

4 | AMMONIA AND AUTOPHagy

Ammonia is a highly diffusible weak base found in body fluids either in its neutral (NH\(_3\)) or ionized (NH\(_4^+\)) form. However, at physiologic pH approximately 99% of ammonia is present as NH\(_4^+\). In mammals, free ammonia is continuously released by the catabolism of amino acids and other nitrogen-containing molecules, such as nucleotides and amines. In addition, ammonia is generated from the gut microbiome.\(^41\) Waste ammonia is efficiently converted into non-toxic urea and glutamine.\(^42\) Therefore, plasma ammonia concentrations are maintained below 40 to 50 μM under physiologic conditions.\(^43\) Liver failure\(^44\) or inherited deficiencies of urea cycle enzymes result in hyperammonemia with plasma ammonia levels ranging from 0.5 to 5 mM, causing neuronal dysfunction, increased intracerebral pressure and death due to cerebral edema if left untreated.\(^45,46\)

Besides its toxic and life-threatening effects on brain cells, ammonia induces multiple alterations in several other cell types, such as pH changes, electrolyte imbalance and metabolic dysfunction.\(^47\)

Ammonia has a dual effect on autophagy in vitro: inhibition at high concentrations and activation at lower concentrations. At elevated concentrations (above 20 mM), ammonia impairs lysosomal function because it increases lysosomal pH and water influx which secondarily result in defective substrate degradation and lysosome swelling, respectively.\(^48,49\) In contrast, ammonia strongly activates autophagy at lower concentrations (from 0.2 to 10 mM) both in vitro and in vivo.\(^5,7,50–53\) Ammonia derived from glutamine catabolism also strongly induces autophagy in cancer cells.\(^54\)

Ammonia induces autophagy by several mechanisms (Figure 1B). It was initially reported that ammonia-induced autophagy was independent of mTORC1 but dependent on ULK1 kinase.\(^54\) Another study showed that ammonia can directly engage the autophagy machinery in an mTORC1 and ULK1/2 independent-manner requiring ATG5.\(^50\) However, ammonia-dependent inhibition of mTORC1 and autophagy activation were observed in multiple cell lines.\(^52,55\) Studies in cells suggested that ammonia also promotes autophagy through activation of dopamine receptor D3 (DRD3) and subsequent mTORC1 inhibition.\(^52\) Moreover, activation of AMPK and components of the unfolded protein response (UPR) have been involved in ammonia-mediated induction of autophagy.\(^51\) In addition, induced autophagy in vivo was observed in livers and skeletal muscles of mice with hyperammonemia.\(^5,7,56\) The reasons underlying such differences in mTORC1 response to ammonia are unknown but they could depend on cell and tissue contexts.

mTORC1 is regulated by several signals including growth factors, hypoxia, energy and nutrients such as amino acids and alpha-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate.\(^57,58\) During hyperammonemia, liver autophagy is activated by inhibition of mTORC1 due to depletion of hepatic α-KG without affecting AMPK signaling.\(^7\) Depletion of α-KG is indeed known to activate mTORC1 on the lysosome surface.\(^59,60\) Interestingly, increased amino acid flux activates AMPK through increased AMP generated by the urea cycle enzyme argininosuccinate synthetase (ASS).\(^61\) Therefore, both ammonia through mTORC1 and amino acids through AMPK converge towards activation of autophagy.

In skeletal muscle, impairment of mTORC1 signaling during hyperammonemia can occur as consequence of: (a) elevated levels of myostatin\(^62\); (b) increased phosphorylation and activation of either the amino acid deficiency sensor general control non-pressible 2 kinase (GCN2) or the eukaryotic initiation factor 2 alpha (eIF2α), an essential
factor for protein synthesis\cite{56}; and (c) an impaired production of energy with excessive cataplerosis of α-KG\cite{63,64}. The consequences of ammonia-induced autophagy vary depending on the target cell or tissue (Figure 1C). Ammonia was found to activate liver autophagy supporting ureagenesis.\cite{7} In skeletal muscle, ammonia-induced autophagy plays a key role in sarcopenia induced by chronic hyperammonemia during liver cirrhosis and is involved in degradation of abnormally tyrosine-nitratred proteins.\cite{6,65} Noteworthy, two established ammonia-lowering strategies, namely rifaximin and L-ornithine-L-aspartate, reduced autophagy and improved the sarcopenia.\cite{5} Although the deleterious consequences of hyperammonemia on brain cells and particularly astrocytes have been extensively investigated,\cite{45-47} the consequence of hyperammonemia on autophagy flux in cells of the central nervous system has been not addressed so far. Nevertheless, ammonia has been proposed as a possible etiological factor in neurodegenerative disorders such as Alzheimer disease,\cite{66} a condition in which autophagy has been heavily implicated.\cite{67}

In cancer cells, induction of autophagy by ammonia is detrimental because it is cytoprotective thus permitting cell survival under adverse conditions. In interstitial fluids from human tumor xenografts, higher concentrations of ammonia (2-5 mM) stimulate autophagy both in an autocrine and paracrine manner, favoring cancer development and progression in the face of reduced nutrient and/or oxygen availability, particularly under cytotoxic chemotherapies.\cite{54,68}

5 | GLUTAMINE AND AUTOPHAGY

Glutamate-ammonia ligase also known as glutamine synthetase (GS) catalyzes the incorporation of ammonia into glutamine and is another major ammonia detoxification system in humans besides the urea cycle.\cite{69,70} Glutamine is the most abundant free amino acid in the human body and plays a major role in metabolic pathways, cell signaling, proliferation, and autophagy. Glutamine-dependent regulation of autophagy is especially relevant in cancer cells which support their proliferation by increased uptake and catabolism of glutamine required as source of nitrogen and for anaplerosis.\cite{58,71} Glutamine generated by GS inhibits mTORC1 thus activating autophagy in cancer cells\cite{72} whereas sequential reactions catalyzed by glutaminase (GLS) and glutamate dehydrogenase (GDH) enzymes generate α-KG from glutamine that stimulates mTORC1 and inhibits autophagy.\cite{60,73,74} Therefore, enhanced oxidative/proteotoxic stress induced by simultaneous inhibition of GLS (a source of glutathione) and heat shock protein 90 (HSP90) strongly induces programmed cell death in models of cancer driven by mTORC1 hyper-activation.\cite{75} Hence, selective GLS inhibition has been investigated as anti-cancer target for mTORC1-driven cancers.\cite{73} Interestingly, glutaminolysis was also reported to strongly activate autophagy upon ammonia release.\cite{53,54}

6 | UREAGENESIS AND AUTOPHAGY

In mammals, under physiologic conditions the flux through the urea cycle is estimated to be 20% to 50% of its full capacity\cite{43} and increases during starvation or with intake of high amounts of proteins. When liver is facing high ammonia, intra-hepatic protein catabolism provides aspartate to fuel the urea cycle.\cite{76,77} Previous studies have also shown that exogenous supply of urea cycle intermediates prevented ammonia toxicity after an acute nitrogen load in wild-type\cite{78,79} and ornithine transcarbamylase (OTC)-deficient rodents.\cite{80,81} Consistent with these studies, hepatic autophagy was recently found to be involved in ammonia detoxification under conditions of excessive ammonia levels by furnishing the urea cycle with intermediates and energy that increase urea cycle flux.\cite{7} Liver-specific deficiency of autophagy impaired ammonia detoxification whereas its enhancement resulted in increased urea synthesis and protection against hyperammonemia in various mouse models, including mice with OTC deficiency.\cite{7} In agreement with these data, hepatic activation of autophagy by everolimus, a derivative of rapamycin, resulted in reduced serum ammonia levels in a mouse model of ischemia-reperfusion injury, although urea production was not directly evaluated.\cite{82} Therefore, drugs enhancing autophagy have potential for treatment of urea cycle disorders.\cite{83} Furthermore, activation of autophagy should be considered as a mechanism of action of drugs under investigation for hyperammonemia. Notably, sodium phenylbutyrate used as ammonia scavenger in urea cycle disorders has been also reported to activate autophagy in liver cells.\cite{84}

Hepatic autophagy is under the control of nutrients and hormones. Interestingly, there is an overlap in signaling pathways which stimulate liver autophagy and ureagenesis. One of the first autophagy-inducing stimuli discovered by De Duve was glucagon\cite{65} that also activates ureagenesis. To maintain systemic glucose and amino acids homeostasis during starvation, glucagon induces hepatic autophagy to supply substrates for gluconeogenesis and ketogenesis.\cite{86,87} Glucagon regulates ureagenesis\cite{88} by increasing N-acetylglutamate (NAG) that activates the urea cycle in the short term\cite{89,90} and by inducing expression of urea cycle enzymes\cite{91,92} and a mitochondrial ammonia transporter in the long term.\cite{93} Several actions elicited by glucagon during starvation are mediated by the cAMP response element binding protein
(CREB)94 that is involved in transcriptional regulation of autophagy together with the farnesoid X receptor (FXR).95 While FXR acts as a physiological repressor of autophagy in the fed-state, CREB upregulates autophagy genes under fasting condition. Upon glucagon signaling, CREB also stimulates urea synthesis by transcriptional induction of carbamoyl-phosphate synthetase 1 (CPS1), ASS, and N-acetylglutamate synthase (NAGS).96–98 In summary, ureagenesis and hepatic autophagy are both activated by CREB.

Sirtuins (SIRTs) are protein deacetylases which have also been involved in both autophagy and ureagenesis.99 Mitochondrial SIRT5 is involved in ammonia-induced autophagy and mitophagy53 as well as urea synthesis via activation of CPS1.100–102 Moreover, mitochondrial SIRT3 has been implicated in ureagenesis by deacetylation and activation of OTC103 and regulation of liver autophagy by modulation of AMPK-mTORC1 signaling pathways.104 In conclusion, autophagy and ureagenesis are regulated by overlapping pathways supporting the concept that they cooperate in ammonia detoxification.

7 | CONCLUDING REMARKS

Depending on the target tissue, hyperammonemia-induced autophagy can have either beneficial or detrimental consequences. In liver, evidence from in vivo studies suggests that autophagy cooperates with the urea cycle in ammonia homeostasis and, importantly, its enhancement protects against hyperammonemia. These findings also suggest that selective activation of hepatic autophagy can be exploited to treat hyperammonemia due to acquired or inherited diseases. In muscle, ammonia-induced autophagy contributes to muscle mass depletion due to cirrhosis. In cancer cells, the activation of autophagy by ammonia likely acts as a cell protective process promoting survival under adverse conditions. Whether autophagy is also involved in damage induced by hyperammonemia in brain and other tissues remains to be addressed.

In conclusion, emerging evidence indicates that modulation of autophagy by ammonia has implications in the pathogenesis of various disorders presenting with hyperammonemia. While detrimental in liver cancer and in sarcopenia due to cirrhosis, activation of autophagy in liver has been identified as a potential therapeutic target for inherited urea cycle disorders and other liver disorders causing hyperammonemia.

ACKNOWLEDGMENTS

This work was supported by the European Research Council (IEMTx) (N.B.-P.); Fondazione Telethon Italy Grants TCBP37TELC and TCBM3TELD (to N.B.-P.). L.R.S. was partially supported by the Dibulbeco Telethon Institute International Mobility for Postdoctoral Research Training (DTI-IMPORT) Marie Skłodowska-Curie COFUND program.

CONFLICTS OF INTEREST

The authors have no conflicts of interest to report.

ORCID

Nicola Brunetti-Pierri https://orcid.org/0000-0002-6895-8819

REFERENCES

1. De Duve C. The lysosome. \textit{Sci Am.} 1963;208:64-72.
2. Levine B, Klionsky DJ. Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: Breakthroughs in baker’s yeast fuel advances in biomedical research. \textit{Proc Natl Acad Sci USA.} 2017;114:201-205.
3. Tooze SA, Dikic I. Autophagy captures the Nobel Prize. \textit{Cell.} 2016;167:1433-1435.
4. Rabinowitz JD, White E. Autophagy and metabolism. \textit{Science.} 2010;330:1344-1348.
5. Kumar A, Davuluri G, Silva RNE, et al. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteinostasis. \textit{Hepatology.} 2017;65:2045-2058.
6. Qiu J, Tsien C, Thapalaya S, et al. Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. \textit{Am J Physiol Endocrinol Metab.} 2012;303:E983-E993.
7. Soria LR, Allegri G, Melck D, et al. Enhancement of hepatic autophagy increases ureagenesis and protects against hyperammonemia. \textit{Proc Natl Acad Sci USA.} 2018;115:391-396.
8. Tekirdag K, Cuervo AM. Chaperone-mediated autophagy and endosomal microautophagy: Joint by a chaperone. \textit{J Biol Chem.} 2018;293:5414-5424.
9. Ueno T, Komatsu M. Autophagy in the liver: functions in health and disease. \textit{Nat Rev Gastroenterol Hepatol.} 2017;14:170-184.
10. Yu L, Chen Y, Tooze SA. Autophagy pathway: Cellular and molecular mechanisms. \textit{Autophagy.} 2018;14:207-215.
11. Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. \textit{Nat Cell Biol.} 2018;20:233-242.
12. Kaur J, Deb Nath J. Autophagy at the crossroads of catabolism and anabolism. \textit{Nat Rev Mol Cell Biol.} 2015;16:461-472.
13. Anding AL, Baehrecke EH. Cleaning House: Selective Autophagy of Organelles. \textit{Dev Cell.} 2017;41:10-22.
14. Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. \textit{Nat Rev Mol Cell Biol.} 2018;19:349-364.
15. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. \textit{Cell.} 2011;147:728-741.
16. Baek SH, Kim KL. Epigenetic Control of Autophagy: Nuclear Events Gain More Attention. \textit{Mol Cell.} 2017;65:781-785.
17. Pietrocola F, Izzo V, Niso-Santano M, et al. Regulation of autophagy by stress-responsive transcription factors. \textit{Semin Cancer Biol.} 2013;23:310-322.
18. Xie Y, Kang R, Sun X, et al. Posttranslational modification of autophagy-related proteins in macroautophagy. *Autophagy*. 2015;11:28-45.

19. Alers S, Loffer AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. *Mol Cell Biol*. 2012;32:2-11.

20. Sinha RA, Singh BK, Yen PM. Reciprocal crosstalk between autophagic and endocrine signaling in metabolic homeostasis. *Endocr Rev*. 2017;38:69-102.

21. Harris J. Autophagy and cytokines. *Cytokine*. 2011;56:140-144.

22. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. *Nat Cell Biol*. 2011;13:132-141.

23. Kim YM, Jung CH, Seo M, et al. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. *Cell Mol Biol*. 2015;57:207-218.

24. Yan X, Sun Q, Ji J, Zhu Y, Liu Z, Zhong Q. Reconstitution of leucine-mediated autophagy via the mTORC1-Barkor pathway in vitro. *Autophagy*. 2012;8:213-221.

25. Martina JA, Diab HI, Lishu L, et al. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. *Sci Signal*. 2014;7:ra9.

26. Napolitano G, Esposito A, Choi H, et al. mTOR-dependent phosphorylation controls TFEB nuclear export. *Nat Commun*. 2018;9:3312.

27. Rocznia-Ferguson A, Petit CS, Froehlich F, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. *Sci Signal*. 2012;5:ra42.

28. Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. *Science*. 2011;332:1429-1433.

29. Settembre C, Zoncu R, Medina DL, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. *EMBO J*. 2012;31:1095-1108.

30. Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. *Nat Rev Drug Discov*. 2017;16:487-511.

31. Levine B, Packer M, Codogno P. Development of autophagy inducers in clinical medicine. *J Clin Invest*. 2015;125:14-24.

32. Schneider JL, Cuervo AM. Liver autophagy: much more than just taking out the trash. *Nat Rev Gastroenterol Hepatol*. 2014;11:187-200.

33. Naito T, Kuma A, Mizushima N. Differential contribution of insulin and amino acids to the mTORC1-autophagy pathway in the liver and muscle. *J Biol Chem*. 2013;288:21074-21081.

34. Komatsu M, Waguri S, Ueno T, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. *J Cell Biol*. 2005;169:425-434.

35. Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. *Nature*. 2004;432:1032-1036.

36. Paliaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. *Nat Cell Biol*. 2018;20:1013-1022.

37. Manjithaya R, Nazarko TY, Farre JC, Subramani S. Molecular mechanism and physiological role of pexophagy. *FEBS Lett*. 2010;584:1367-1373.

38. Chao X, Wang H, Jaeschke H, Ding WX. Role and mechanisms of autophagy in acetaminophen-induced liver injury. *Liver Int*. 2018;38:1363-1374.

39. White E. The role for autophagy in cancer. *J Clin Invest*. 2015;125:42-46.

40. Galluzzi L, Pietrocata F, Bravo-San Pedro JM, et al. Autophagy in malignant transformation and cancer progression. *EMBO J*. 2015;34:856-880.

41. Adeva MM, Souto G, Blanco N, Donapetry C. Ammonia metabolism in humans. *Metabolism*. 2012;61:1495-1511.

42. Haussinger D. Nitrogen metabolism in liver: structural and functional organization and physiological relevance. *Biochem J*. 1990;267:281-290.

43. Walker V. Ammonia metabolism and hyperammonemic disorders. *Adv Clin Chem*. 2014;67:73-150.

44. Lee WM, Squires RH Jr, Nyberg SL, Doo E, Hoofnagle JH. Acute liver failure: Summary of a workshop. *Hepatology*. 2008;47:1401-1415.

45. Butterworth RF. Pathophysiology of hepatic encephalopathy: a new look at ammonia. *Metab Brain Dis*. 2002;17:221-227.

46. Felipo V. Hepatic encephalopathy: effects of liver failure on brain function. *Nat Rev Neurosci*. 2013;14:851-858.

47. Dasarathy S, Mookerjee RP, Rackayova V, et al. Ammonia toxicity: from head to toe? *Metab Brain Dis*. 2017;32:529-538.

48. Rejingoud DJ, Oud PS, Kas J, Tager JM. Relationship between medium pH and that of the lysosomal matrix as studied by two independent methods. *Biochim Biophys Acta*. 1976;448:290-302.

49. Seglen PO, Reith A. Ammonia inhibition of protein degradation in isolated rat hepatocytes. Quantitative ultrastructural alterations in the lysosomal system. *Exp Cell Res.* 1976;100:276-280.

50. Cheong H, Lindsten T, Wu J, Lu C, Thompson CB. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. *Proc Natl Acad Sci USA*. 2011;108:11121-11126.

51. Harder LM, Bunkenborg J, Andersen JS. Inducing autophagy: a comparative phosphoproteomic study of the cellular response to ammonia and rapamycin. *Autophagy*. 2014;10:339-355.

52. Li Z, Ji X, Wang W, et al. Ammonia induces autophagy through dopamine receptor D3 and mTORC1 signaling. *PLoS One*. 2016;11:e0153526.

53. Polletta L, Vernucci E, Carnevale I, et al. SIRT5 regulation of autophagy in acetaminophen-induced liver injury. *Autophagy*. 2016;12:999-1010.

54. Eng CH, Yu K, Lucas J, White E, Abraham RT. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. *Sci Signal*. 2010;3:ra31.

55. Merthi A, Delree P, Marin AM. The metabolic waste ammonium regulates mTORC2 and mTORC1 signaling. *Sci Rep*. 2017;7:44602.

56. Davuluri G, Krokowski D, Guan BJ, et al. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis. *J Hepatol*. 2016;65:929-937.

57. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. *Cell*. 2017;168:960-976.

58. Villar VH, Merthi F, Djavaheri-Mergny M, Duran RV. Glutaminolysis and autophagy in cancer. *Autophagy*. 2015;11:1198-1208.

59. Duran RV, MacKenzie ED, Boulahbel H, et al. HIF-independent role of prolyl hydroxylases in the cellular response to amino acids. *Oncogene*. 2013;32:4549-4556.
60. Duran RV, Oppliger W, Robitaille AM, et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell. 2012;47:349-358.

61. Madiraju AK, Alves T, Zhao X, et al. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism. Proc Natl Acad Sci USA. 2016;113:E4342-E4340.

62. Qiu J, Thapaliya S, Runkana A, et al. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-kappaB-mediated mechanism. Proc Natl Acad Sci USA. 2013;110:18162-18167.

63. Davuluri G, Allawy A, Thapaliya S, et al. Hyperammonaemia induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress. J Physiol. 2016;594:7341-7360.

64. Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016;65:1232-1244.

65. Loudo K, Alsahl M, Althaus BC. Ammonia as a Potential Neurotoxic Factor in Alzheimer’s Disease. Front Mol Neurosci. 2016;9:57.

66. Menzies FM, Fleming A, Caricasole A, et al. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron. 2017;93:1015-1034.

67. Marino G, Kroemer G. Ammonia: a diffusable factor released by skeletal muscle during starvation. Autophagy. 2017;13:829-837.

68. Beppu A, Yamasaki Y, Kohno S, et al. Calcium-dependent O-GlcNAc phosphorylation-dependent factor CREB. Mol Cell. 2010;35:427-433.

69. Hakevoot TB, He Y, Kulik W, et al. Pivotal role of glutamine synthetase in ammonia detoxification. Hepatology. 2017;5:281-293.

70. Qvartrskhava N, Lang PA, Gorg B, et al. Hyperammonemia in gene-targeted mice lacking functional hepatic glutamine synthetase. Proc Natl Acad Sci USA. 2015;112:5521-5526.

71. Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35:427-433.

72. van der Vos KE, Eliasson P, Proikas-Cezanne T, et al. Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy. Nat Cell Biol. 2012;14:829-837.

73. Lorin S, Toll MJ, Bauvy C, et al. Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy. 2013;9:1850-1860.

74. Li MX, Nakajima T, Fukushige T, Kobayashi K, Seiler N, Saheki T. Aberrations of ammonia metabolism in ornithine carbamoyltransferase-deficient spf-ash mice and their prevention by treatment with urea cycle intermediate amino acids and an ornithine aminotransferase inactivator. Biochim Biophys Acta. 1999;1455:1-11.

75. Marin J, Lee B, Garlick PJ. Ornithine restores ureagenesis capacity and mitigates hyperammonemia in Otc(spfa-ash) mice. J Nutr. 2006;136:1834-1838.

76. Lee SC, Kim KH, Kim OH, Lee SK, Kim SJ. Activation of Autophagy by Everolimus Confers Hepatoprotection Against Ischemia-Reperfusion Injury. Am J Transplant. 2016;16:2042-2054.

77. Soria LR, Brunetti-Pierri N. Targeting autophagy for therapy of hyperammonemia. Autophagy. 2018;14:1273-1275.

78. Nissar AU, Sharma L, Mudasir MA, et al. Chemical chaperone 4-phenyl butyric acid (4-PBA) reduces hepatocellular lipid accumulation and lipotoxicity through induction of autophagy. J Lipid Res. 2017;58:1855-1868.

79. Deter RL, Baudhuin P, De Duve C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol. 1967;35:1-16.

80. Ezaki J, Matsumoto N, Takeda-Ezaki M, et al. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy. 2011;7:727-736.

81. Ruan HB, Ma Y, Torres S, et al. Calcium-dependent O-GlcNac signaling drives liver autophagy in adaptation to starvation. Genes Dev. 2017;31:1655-1665.

82. Hamberg O, Vilstrup H. Regulation of urea synthesis by glucose and glucagon in normal man. Clin Nutr. 1994;13:183-191.

83. Nissim I, Yudkoff M, Brosnan JT. Regulation of [15N]urea synthesis from [5-15N]glutamate. Role of pH, hormones, and pyruvate. J Biol Chem. 1996;271:31234-31242.

84. Staddon JM, Bradford NM, McGivan JD. Effects of glucagon in vivo on the N-acetylglutamate, glutamate and glutamine contents of rat liver. Biochem J. 1984;217:855-857.

85. Sodoggard PJ, Lin RC, Muller WA, Aoki TT. Induction of urea cycle enzymes of rat liver by glucagon. J Biol Chem. 1978;253:2748-2753.

86. Uhlebrcht C, Sodoggard PJ. Coordinate induction of the urea cycle enzymes by glucagon and dexamethasone is accomplished by three different mechanisms. Arch Biochem Biophys. 1993;301:237-243.

87. Soria LR, Marrone J, Calamita G, Marinelli RA. Ammonia detoxification, ureagenesis in rat hepatocytes involves mitochondrial aquaporin-8 channels. Hepatology. 2013;57:2061-2071.

88. Mayer B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001;2:599-609.

89. Seok S, Fu T, Choi SE, et al. Transcriptional regulation of autophagy via CREB by an FXR-CREB axis. Nature. 2014;516:108-111.

90. Guei TR, Liu MC, Yang CP, Su TS. Identification of a liver-specific gene-targeted mice lacking functional hepatic glutamine synthetase. Proc Natl Acad Sci USA. 2008;105:1855-1860.

91. Heibel SK, Lopez GY, Panglao M, et al. Transcriptional regulation of N-acetylglutamate synthetase. PLoS One. 2012;7:e29527.

92. Schoneveld OJ, Hoogenkamp M, Stallen JM, Gaemers IC, Lamers WH. cyclicAMP and glucocorticoid responsiveness of...
the rat carbamoylphosphate synthetase gene requires the inter-
play of upstream regulatory units. *Biochimie.* 2007;89:574-580.

99. Ng F, Tang BL. Sirtuins’ modulation of autophagy. *J Cell Phys-
iol.* 2013;228:2262-2270.

100. Du J, Zhou Y, Su X, et al. Sirt5 is a NAD-dependent protein
lysine demalonylase and desuccinylase. *Science.* 2011;334:
806-809.

101. Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 Deacety-
lates carbamoyl phosphate synthetase 1 and regulates the urea
cycle. *Cell.* 2009;137:560-570.

102. Tan M, Peng C, Anderson KA, et al. Lysine glutarylation is a
protein posttranslational modification regulated by SIRT5. *Cell
Metab.* 2014;19:605-617.

103. Hallows WC, Yu W, Smith BC, et al. Sirt3 promotes the urea
cycle and fatty acid oxidation during dietary restriction. *Mol Cell.*
2011;41:139-149.

104. Li S, Dou X, Ning H, et al. Sirtuin 3 acts as a negative regulator
of autophagy dictating hepatocyte susceptibility to lipotoxicity.
Hepatology. 2017;66:936-952.

How to cite this article: Soria LR, Brunetti-Pierri N.
Ammonia and autophagy: An emerging relationship
with implications for disorders with hyperammonemia.
J Inherit Metab Dis. 2019;42:1097-1104. https://doi.org/10.1002/jimd.12061