RESEARCH ARTICLE

Genome-wide meta-analysis of QTL for morphological related traits of flag leaf in bread wheat

Binbin Du¹, Jia Wu¹, Md. Samiul Islam², Chaoyue Sun¹, Baowei Lu¹, Peipei Wei¹, Dong Liu¹, Cunwu Chen¹*

¹ College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China, ² Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China

* cunwuchen@163.com

Abstract

Flag leaf is an important organ for photosynthesis of wheat plants, and a key factor affecting wheat yield. In this study, quantitative trait loci (QTL) for flag leaf morphological traits in wheat reported since 2010 were collected to investigate the genetic mechanism of these traits. Integration of 304 QTLs from various mapping populations into a high-density consensus map composed of various types of molecular markers as well as QTL meta-analysis discovered 55 meta-QTLs (MQTL) controlling morphological traits of flag leaves, of which 10 MQTLs were confirmed by GWAS. Four high-confidence MQTLs (MQTL-1, MQTL-11, MQTL-13, and MQTL-52) were screened out from 55 MQTLs, with an average confidence interval of 0.82 cM and a physical distance of 9.4 Mb, according to the definition of hcMQTL. Ten wheat orthologs from rice (7) and Arabidopsis (3) that regulated leaf angle, development and morphogenesis traits were identified in the hcMQTL region using comparative genomics, and were speculated to be potential candidate genes regulating flag leaf morphological traits in wheat. The results from this study provides valuable information for fine mapping and molecular markers assisted selection to improve morphological characters in wheat flag leaf.

Introduction

Wheat is one of the world’s three major crops, providing approximately a quarter of food for human. The continuous increase of wheat yield is crucial to meet the challenge of increasing food consumption [1]. Increasing planting density by improving the plant architecture of wheat on limited land is an effective strategy to increase yield [2]. In crops, canopy leaves, especially flag leaf, are the main source of dry matter accumulation in the grain filling stage [3, 4], and flag leaf provide 41–43% of carbohydrates for grain filling [5]. Therefore, optimizing the morphological structure of flag leaves is a suitable method to improve plant architecture, photosynthetic efficiency and yield.
Wheat flag leaf morphological traits are quantitative traits influenced by many environmental factors and controlled by multiple genes [6–8]. Many genes and QTLs that control leaf size and angle have been reported in rice [9–13]. For example, the mutation of OsDWARF gene resulted in the defect of brassinosteroid synthesis, which led to the reduction of plant height and the upright leaves [14]. In maize, Ku et al. [15] detected a major QTL qLA2 controlling the angle of flag leaf on chromosome 2. Tian et al. [16] found that UPA1 and UPA2 genes can increase the planting density by regulating the leaf angle of plants, thus increasing the maize yield. QTLs for flag leaf length, width, area and angle have been identified on 21 chromosomes in wheat [17–22]. For example, Liu et al. [19] detected three major QTLs on 3D, 7B and 7D for flag leaf angle. Liu et al. [23] found that TaSPL8 regulated leaf development by influencing auxin signal and brassinolide biosynthesis pathway, and affected flag leaf angle in wheat. Wang et al. [24] introduced the chromosome 1P of the wild related species Agropyron cristatum into common wheat to significantly reduce plant height and leaf size, thereby improving plant architecture and achieving dense planting.

Currently, many QTLs for flag leaf morphological related traits in wheat have been identified in previous studies. In order to make more effective use of the QTL for flag leaf morphological traits in wheat breeding, and deeply understand the genetic mechanism underlying flag leaf morphological traits, it is necessary to comprehensively analyze these QTLs to identify stable major genetic loci in wheat. QTL meta-analysis has been shown to be an effective method for integrating QTLs from various experiments onto a consensus map, narrowing QTL confidence intervals, and identifying reliable and stable meta-QTLs (MQTL) [25]. This method has been widely used in different crops for various traits, such as nematode resistance in soybean [26], yield under drought conditions in rice [27], yield and quality traits in cotton [28], yield in maize [29], and yield, nitrogen use efficiency, quality traits, disease resistance and abiotic stress tolerance in wheat [30–37].

With the development of high-throughput SNP sequencing technology, QTL mapping for complex quantitative traits based on natural populations using genome-wide association studies (GWAS) has been widely applied in rice [38], maize [39], wheat [40] and barley [41]. In addition, certain important QTLs have been identified by cross-validation based on the results of GWAS and linkage analysis in previous studies [42, 43]. These studies indicated that the QTL location information identified by GWAS can effectively verify important QTLs, so that key genomic regions and candidate genes controlling important quantitative traits can be mined.

To date, QTL meta-analysis for flag leaf morphological traits has not been reported in wheat. In this study, QTL meta-analysis was performed based on QTL for flag leaf morphological traits published since 2010, and GWAS was used to further validate the MQTL. Comparative genomics was used to identify wheat orthologs from rice and Arabidopsis thaliana to discover genomic regions and important candidate genes affecting flag leaf morphology in wheat. The aim of this study was to better understand the genetic mechanism underlying flag leaf morphological traits, and to provide useful information for genetic improvement of plant architecture and yield potential in wheat.

Materials and methods

Collection of QTL for wheat flag leaf morphological traits

Using public databases such as China National Knowledge Infrastructure (CNKI, https://www.cnki.net/), National Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/) and Google Scholar (https://scholar.google.com/), 26 papers about QTL mapping for flag leaf length, width, area, length-width ratio and angle in wheat from 2010 to
concerned year were collected [17–22, 44–63]. The information including population type and number, molecular marker type, LOD value, contribution rate and confidence interval was summarized in Table 1. Twenty papers were set aside for analysis because QTL flanking markers identified in some studies were not integrated into the consensus map.

Integration of QTL for flag leaf morphological traits in wheat

In this study, the high-density map developed by Venske et al. [64] was used as the consensus map, which mainly includes three types of markers: SNP, DArT and SSR markers. SNP markers were derived from SNP array and genotyping-by-sequencing (GBS) [65, 66]. SSR markers came from three genetic maps (Wheat, Consensus SSR 2004, Wheat Composite 2004 and...
Wheat Synthetic (× OPATA) in [67, 68]. The diversity Array technology (DAR-T) marker was derived from the wheat consensus map 4.0 integrated by more than 100 genetic maps. According to the LOD value, phenotypic variation explained (PVE), confidence interval and position of QTL, the QTL for the target trait was mapped to the consensus map by using BioMercator v4.2 software [69], and the principle that the flanking marker of QTL interval corresponds to the consensus map interval was followed. Before mapping to the consensus map, the 95% confidence intervals (CI) of QTL identified in different studies were inferred by using the following formulas: (1) C.I. = 530 / (N×PVE); (2) C.I. = 163 / (N×PVE); (3) C.I. = 287 / (N×PVE). C.I. is the confidence interval of QTL, N is the size of mapping population, the value 530, 163 and 287 are specific population constants calculated by different simulations, formula (1), (2) and (3) is suitable for F_2 and backcross population, recombinant inbred line (RIL) population, and double haploid (DH) population, respectively [26, 70]. Details of these initial QTLs are listed in S1 Table.

QTL meta-analysis and verification by GWAS

QTL meta-analysis for flag leaf morphological traits in wheat was carried out by using BioMercator v4.2 software. According to the number of QTL on each chromosome, two different analysis methods were used. When the QTL count on each chromosome is less than 10, MQTL is calculated for n independent QTLs by the method of Goffinet et al. [25]. Among the five models of 1, 2, 3, 4 and N, the lowest Akaike information criterion (AIC) value is considered as the best fitting model. When the QTL count on each chromosome exceeds 10, the method of Veyrieras et al. [71] is selected to determine the best QTL model based on AIC, AICc, AIC3, bayesian information criterion (BIC) and average weight of evidence (AWE), and the model with the lowest value of the selection criterion was used to determine MQTL.

All the flanking markers sequences of MQTL were BLASTed against the wheat Chinese spring reference genome sequence (RefSeq v1.0) to obtain the physical position of MQTL. Ten papers published in the past five years on the genome-wide association studies of flag leaf morphology in wheat were collected (Table 2), and the physical location of the MTA (maker-trait-association) in these studies was used to verify the accuracy of the MQTL region.

Mining candidate genes based on homology

According to the standard of mining highly reliable MQTLs by Venske et al. [71], MQTL with physical distance less than 20 Mb, genetic distance less than 1 cM and at least five overlapping QTLs were further selected as high confidence MQTL (hcMQTL). Combining with the genome annotation (https://wheat-urgi.versailles.inra.fr/seq-repository/annotations), the genes in the physical region of hcMQTL were analyzed, and the wheat orthologs in the physical region of hcMQTL were identified based on the genes related to flag leaf morphological traits of rice and Arabidopsis thaliana in Ensembl plant database (http://plants.ensembl.org/).

Results

QTL integration for flag leaf morphological traits in wheat

A total of 465 QTLs related to flag leaf morphological traits were identified in the 20 papers published since 2010, covering 26 different mapping populations, among which 304 QTLs were projected into the consensus map. The number of QTL on each chromosome ranged from 2 on 3D to 38 on 5A, and the average number of QTLs on each chromosome was 14. Among them, 44.4% QTLs were distributed on A genome, 34.8% on B genome and 20.8% on D genome (Fig 1a). A total of 96 (31.6%), 104 (34.2%) and 80 QTLs (26.3%) were associated...
with flag leaf length, flag leaf width, and flag leaf area, respectively. Only 18 (5.9%) QTLs for flag leaf length-width ratio and 6 (2.0%) QTLs for flag leaf angle were identified (Fig 1b). The LOD score of individual QTLs ranged from 2.0 to 18.0, 54.28% of QTLs showed LOD scores from 3 to 4.5 (Fig 1c). The PVE range of individual QTL was 0.68–33.96%, and the PVE of 51.64% QTLs was within 3–9% (Fig 1d).

QTL meta-analysis for flag leaf morphological traits in wheat

A total of 304 QTLs were mapped to the consensus map, of which 275 QTLs were integrated into 55 MQTLs by meta-analysis, the remaining 29 QTLs were not integrated because they did not overlap with the above MQTLs (Table 3). These MQTLs were distributed on all chromosomes, with the number of MQTLs varying from one to four on each chromosome (Fig 2). The confidence interval of MQTL ranged from 0.06 to 16.45 cM, with the average interval size of 2.05 cM, which was 5.08-fold smaller than the initial QTL interval (Fig 3), the physical position interval ranged from 0.4 to 459.1 Mb, with the average physical distance of 66.5 Mb (Table 3).

MQTL validation by GWAS

Among the 55 MQTLs, 25 (45.45%) MQTLs were mapped into physical region smaller than 20 Mb in the wheat reference genome (Table 3). To determine the accuracy of MQTL region, GWAS studies on wheat flag leaf morphology reported in the past five years were used to verify MQTL. Since the decay distance of the wheat linkage disequilibrium was about 5 Mb, those overlapping MQTLs within 5 Mb of MTA were considered to be co-located with MQTL. Ten of the 25 MQTLs were verified in at least one GWAS study and co-located with 45 MTAs (Fig 4). The number of MTAs co-located in each MQTL ranged from 1 to 22, in which MQTL-10 co-located with 22 MTAs, followed by MQTL-13 that co-located with 11 MTAs. In addition, clusters or nested distributions of MQTL were observed, such as MQTL-6 (2A: 89.6–101.0

Table 2. The GWAS studies on flag leaf morphological traits used in this study.

No	Source of genotype	Population size	Trait	Marker type/number	Number of MTA	Environment	Reference
1	Yellow and Huai River Valleys Wheat Zone	166	FLL, FLW	SNP/326570	13	Anyang, Suixi, Shijiazhuang, China	[40]
2	Yellow and Huai Valley of China	163	FLL, FLWR, FLW	SNP/20689	495	Zhumadian, Yuanyang, Zhengzhou, China	[60]
3	Chinese landraces and six landrace-derivatives	723	FLL, FL, FLWR, FLW	DArT-sequ/52303	14	Ya’an, Wenjiang, Chongzhou, China	[72]
4	Yellow and Huai Valley of China	163	FLAG	SNP/20689	86	Zhengzhou, Anyang, Zhumadian, China	[73]
5	Yellow and Huai Winter Wheat Region	197	FLL, FLW, FLAG	SNP/369869	145	Zhengzhou, China	[74]
6	Indian Spring Wheat	404	FLL	SNP/14160	3	Karnal, Bhavnagar, India	[75]
7	Yellow and Huai Valley of China	197	FLL, FL, FLA, FLAG, FLWR	SNP/339266	439	Zhumadian, Shangqiu, Zhumadian, China	[76]
8	Chinese winter wheat cultivars and non-Chinese parental lines	543	FLL, FL, FLAG	SNP/11140	114	Baoding, Changzhou, Xingtai, China	[77]
9	Chinese winter wheat	319	FLL, FLW	SNP/22905	39	Wuhan, China	[78]

*a Marker-trait association number (MTA) detected in previous GWAS studies.

FLL flag leaf length, FLW flag leaf width, FLA flag leaf area, FLWR flag length-width ratio, FLAG flag leaf angle.

https://doi.org/10.1371/journal.pone.0276602.t002
Mb) & MQTL-23 (4A: 606.6–614.5 Mb) & MQTL-24 (4A: 596.8–605.0 Mb) (Fig 4).

Mining candidate genes based on homology within hcMQTL region

According to the definition of hcMQTL, MQTL-1, MQTL-11, MQTL-13 and MQTL-52 were eligible. These four MQTLs regulated multiple flag leaf traits with multi-effects, which indicated that they might have an important contribution to the regulation of flag leaf morphology. The mean confidence interval of the four hcMQTLs for MQTL-1, MQTL-11, MQTL-13, and MQTL-52 was 0.82 cM. The physical distances for MQTL-1, MQTL-11, MQTL-13, and MQTL-52 were 11.5 Mb, 12.7 Mb, 8 Mb, and 5.4 Mb, respectively, with the average physical distance of 9.4 Mb. The number of genes within the intervals were 453, 532, 380, and 149, respectively.
Table 3. Meta-analysis of QTL for morphological traits of flag leaf in wheat.

MQTL	Chr	Position/ cM	Confidence interval/ cM	Flanking marker	Physical interval/ Mb	Num. of QTL	Trait
MQTL-1	1A	28.11	27.64–28.38	wsnp_Ex_c57982_59470152—wPt-7014	8.3–19.8	9	FLL, FLW, FLA
MQTL-2	67.43	67.11–68.25	1000535–2280626				
MQTL-3	1B	38	37.94–38.06	3020845–1233770	25.0–124.0	14	FLL, FLW, FLA, FLANG
MQTL-4	79.72	78.36–81.08	3023037–1042679				
MQTL-5	1D	67.99	67.11–68.25	1000535–2280626	8.3–19.8	9	FLL, FLW, FLA
MQTL-6	2A	18.5	17.11–19.88	1151641–3958547	89.6–101.0	2	
MQTL-7	49.67	49.39–49.79	CAP12_rep_c1492_354—BS00065276_51				
MQTL-8	80.58	80.38–80.78	wsnp_Ex_rep_c66448_64683704—wsnp_Ex_c20370_29434410	84.9–93.9	3	FLL, FLW, FLA	
MQTL-9	97.51	97.14–97.87	Excalibur_c42512_584—BS00110386_51	685.5–718.8	4	FLL, FLW	
MQTL-10	2B	55	46.77–63.22	RAC875_rep_c109471_154—RAC875_c38003_164	4.4–23.5	4	FLL, FLA
MQTL-11	72.79	72.29–73.29	Kukri_c11809_824—wsnp_Ra_rep_c106119_89961852	15.7–28.4	5	FLL, FLW, FLA, FLWR	
MQTL-12	92.89	91.91–93.87	985860–3021999				
MQTL-13	2D	4.43	4.09–4.76	3027483—Kukri_c77179_54	2.5–10.5	9	FLL, FLW, FLA
MQTL-14	5.65	5.19–6.12	Xwmc087—Xwmc453a				
MQTL-15	3A	49.35	47.43–51.27	1112004—wsnp_Ex_c4069_7355431	5.3–36.2	3	FLL, FLW
MQTL-16	57.47	57.28–57.66	RAC875_c75448_80—Ku_c61039_98	600.9–605.8	3	FLL, FLW	
MQTL-17	67.74	67.0–68.48	wsnp_Ex_c13452_21183096—BS00091002_51	648.0–666.3	16	FLL, FLW, FLA, FLWR	
MQTL-18	26.63	25.83–27.43	Kukri_c1771_715—BS00047114_51	0.2–32.3	3	FLL, FLW, FLA	
MQTL-19	59.59	57.07–62.11	CAP8_c38651_206—wsnp_REL_Contig3845_4190041	40.3–47.7	3	FLL, FLW	
MQTL-20	75.65	73.71–77.58	1076556—Xbarc206				
MQTL-21	90.47	88.81–92.12	Excalibur_c33274_498—977833	704.5–749.8	3	FLL, FLW	
MQTL-22	43	42.11–44.88	1061456–1229016				
MQTL-23	42.21	21.96–24.25	1200937–1137855				
MQTL-24	47	40.73–45.26	TA005380—0966—wsnp_Ex_rep_c104448_89161562	596.8–605.0	2	FLL, FLA	
MQTL-25	65.59	65.46–65.71	3956825–1102806				
MQTL-26	80.82	78.87–82.77	Xbcd130—Xbarc78				
MQTL-27	4B	6.55	6.48–6.62	wPt—5559—1863050	2.3–2.7	3	FLL, FLA
MQTL-28	36.88	35.72–38.04	Xfba41—wsnp_CAP7_c1723_854530	20.6–21.6	6	FLL, FLW, FLA, FLWR	
MQTL-29	46.94	46.24–47.65	3946005—tPr—5342				
MQTL-30	56.09	55.85–56.33	Ku_c462_1417—1005100				

(Continued)
MQTL	Chr	Position/ cM	Confidence interval/ cM	Flanking marker	Physical interval/ Mb	Num. of QTL	Trait
MQTL-31	4D	30.02	29.82–30.71	Xwmc473–984589	11.5–227.2	3	FLL, FLW, FLANG
MQTL-32	33	33.53	31.63–35.43	Xwmc182–1094332	16.1–475.2	3	FLW, FLWR
MQTL-33	33	60.89	59.15–62.62	993587—Ex_c41034_812	209.2–380.2	4	FLL, FLW
MQTL-34	5A	39.63	39.57–39.68	Xwmc473–984589	11.5–227.2	3	FLL, FLW, FLA, FLWR
MQTL-35	35	43.6	43.47–43.73	Xwmc182–1094332	16.1–475.2	3	FLL, FLW
MQTL-36	36	5.11	5.02–5.22	992780—Excalibur_c41710_417	555.2–594.1	13	FLL, FLW
MQTL-37	37	74.62	74.13–75.11	Excalibur_c1954_930—BobWhite_c1763_558	680.5–681.9	4	FLL, FLW, FLA, FLWR
MQTL-38	5B	11.85	11.82–11.88	tPt—8475–1027318	355.2–437.8	6	FLL, FLW
MQTL-39	6A	22.63	21.68–23.58	Xwmc473–984589	11.5–227.2	3	FLL, FLW
MQTL-40	5A	4.2	4.07–4.23	Xwmc182–1094332	16.1–475.2	3	FLL, FLW
MQTL-41	5B	59.93	59.63–60.22	Xwmc473–984589	11.5–227.2	3	FLL, FLW
MQTL-42	5D	23.9	23.29–24.52	Xwmc473–984589	11.5–227.2	3	FLL, FLW
MQTL-43	6A	46.47	45.31–47.64	BobWhite_c10764_251—TA004396–0640	401.4–411.2	5	FLL, FLW, FLA
MQTL-44	6B	63.6	62.9–64.29	BobWhite_c10764_251—TA004396–0640	401.4–411.2	5	FLL, FLW, FLA
MQTL-45	6B	40.13	40.02–40.25	wsnp_JD_c2355_3205824–978170	685.6–590.5	2	FLL, FLA
MQTL-46	5B	52.07	51.77–52.37	996529—Xda507	556.5–669.4	5	FLL, FLW, FLA
MQTL-47	5B	59.56	59.34–59.79	4991087—RFL_Contig799_2434	686.4–707.9	2	FLL, FLW, FLA
MQTL-48	6D	63.11	62.19–64.03	1099552–1037337	39.5–447.1	2	FLL, FLW
MQTL-49	7A	64.91	64.29–65.53	WMC283—BS00044694_51	62.1–64.8	5	FLL, FLW, FLA
MQTL-50	5A	79.5	78.75–80.25	1047407–1074455	76.4–452.3	2	FLA, FLW, FLR
MQTL-51	7A	82.02	81.68–82.36	RAC875_rep_c105584_237—RAC875_c52124_90	26.4–93.1	3	FLW, FLA, FLWR
MQTL-52	7B	59.08	58.64–59.52	987864–978206	583.5–588.9	8	FLL, FLW, FLA
MQTL-53	7B	25.09	24.65–25.53	978017—Excalibur_c27950_459	3.1–5.4	5	FLL, FLW, FLA
MQTL-54	7D	93.95	91.49–96.42	Xbcd707—Xbarc26	174.4–386.4	4	FLL, FLW
MQTL-55	5B	99.14	97.11–100.09	Xwmc221—Xwg719	364.6–413.7	2	FLL, FLW

FLL flag leaf length, FLW flag leaf width, FLA flag leaf area, FLWR flag length-width ratio, FLAG flag leaf angle.

https://doi.org/10.1371/journal.pone.0276602.t003
In order to identify candidate genes related to leaf morphology among the four
hcMQTLs, based on the Ensembl plant database (http://plants.ensembl.org/), 11 genes (six for
rice and five for Arabidopsis) that regulate leaf morphology from the hcMQTL region were
identified, of which, seven wheat orthologs for Osmtd1, three orthologs for FRS7, two ortho-
logs for Roc8, and only one ortholog each for the other genes were found (Table 4).

Discussion

QTL meta-analysis developed by Goffinet et al. [25] is a method for identifying consistent and
stable QTLs and improving the accuracy of their genetic positions. The length, width, area,
and angle of flag leaves are all important factors in determining wheat plant architecture and
yield potential [5, 90–92]. Many genetic studies have been conducted to identify QTL for flag
leaf morphological traits in wheat (Table 1). Most of the initial QTLs collected in this study
were distributed on A genome, and the least on D genome, which was slightly different from
the results of previous studies regarding the distribution of initial QTLs for wheat yield and
related traits on the genome (the most QTLs were distributed on B genome, but the least on D
genome) [36, 93], which might be due to the limited number of QTLs for flag leaf morphologi-
cal traits, resulting in inconsistent results with previous studies. The less QTL on D genome
may be related to the low-level polymorphism on D genome [94].

In this study, the maximum likelihood estimation method was used in meta-analysis in
combination with the genetic locations of hundreds of QTLs for flag leaf morphological traits
in wheat, and with consideration of population size and other QTL information, 275 of the
304 QTLs were mapped onto the consensus map and integrated into 55 MQTLs in wheat. Due
to the pleiotropic effect of genes on flag leaf morphology in wheat, more than 90% (50/55) of
the MQTLs were associated with at least two flag leaf morphological traits, and about 43.64%
(24/55) of the MQTLs affected three or more flag leaf morphological traits simultaneously
(Table 3).

After integrating QTLs by meta-analysis, the average confidence interval of MQTL was 2.05
cM, which was about 5.08-fold smaller than the average confidence interval (10.41 cM) of the
initial individual QTL (Fig 3). Accordingly, the physical intervals of MQTL on chromosomes
were further reduced, improving the accuracy of QTL mapping. The primary QTL mapping to
fine mapping usually needs to increase molecular marker density [95] or construct fine map-
ping populations such as near-isogenic lines [96, 97]. In certain cases, QTL meta-analysis
could replace or enhance these approaches. For example, MQTL-52 was integrated by eight
QTLs for flag leaf length, flag leaf width, and flag leaf area from two different populations and
finally located within the interval of 58.64–59.52 cM on chromosome 7B, with the physical
interval of 583.5–588.9 Mb, which was much smaller than the confidence interval of the initial
QTL.

Compared with QTL linkage analysis mapping, linkage disequilibrium-based genome-wide
association studies (GWAS) is another method for precisely locating genomic regions of quan-
titative traits. In previous studies, the results of wheat MQTL verification by GWAS have been
reported [98, 99]. For example, Aduragbemi et al. [100] identified 51 MTA and 29 MQTLs co-
located for leaf rust resistance loci using GWAS. Yang et al. [101] verified MQTL for wheat
yield and yield-related traits using GWAS results published in recent years, and found that
about 60% of MQTLs were co-located with MTA. In this study, based on the GWAS results of
wheat flag leaf morphological traits published in recent years, 45 MTAs and 10 MQTLs were
identified, which indicated that these genomic regions controlling flag leaf morphological
traits might be less affected by the genetic background and environment. The 10 MQTLs veri-
fied by GWAS provided a basis for the accurate mining candidate genes that affect flag leaf
morphology in wheat. Loffler et al. [102] proposed the criteria for selection of MQTL for use in breeding programs: the MQTL with confidence interval genetic distance less than 2 cM, no less than 4 initial QTLs from different studies with PVE > 10%. On this basis, we determined three potential MQTLs, MQTL-1, MQTL-13 and MQTL-25, that could be used to improve wheat flag leaf morphological traits.
Flag leaf morphology is one of the important traits of plant architecture in wheat breeding. Moreover, previous studies reported the correlation between flag leaf morphology and plant structure traits such as plant height and tiller number [57, 78]. Hu et al. [57] revealed the genetic mechanism of yield-related traits in wheat using four RIL populations and found that plant height had a significant positive correlation with FLL and FLW, and QTL affecting both plant height and FLW were detected at 0–3.5 cM on chromosome 5A. In addition, Muhammad et al. [78] identified five SNP markers affecting PH, FLL and FLW simultaneously on chromosomes 1A, 3A, 3B, 5A, and 6B in natural populations of wheat. Some previously reported major QTLs and genes controlling plant height and tillering number in wheat were identified in the hcMQTL region in this study. The gene Csl-1A (chr1A:6.4 Mb) controlling the tiller number in wheat [103] was identified near MQTL-1. Saini et al. [36] collected QTLs for wheat yield and related traits in the past 20 years and identified 141 MQTLs, of which five MQTLs (MQTL1A.5, MQTL2B.3, MQTL2B.4, MQTL2B.5, and MQTL2D.2) affecting traits such as plant height and tillering number were located at approximately 5 Mb in the MQTL-1, MQTL-11, and MQTL-13 regions. These examples indicate that these three hcMQTLs may carry some major genes that improve the plant architecture of wheat, such as plant height and tiller.
In cereal with large complex genomes, such as wheat, barley and maize, localization based on homologous cloning is an effective way to identify important genes associated with complex traits. With the wide application of high-throughput sequencing technology, many crops genome sequences have been published, which conduces to identify conserved genome regions and key genes in different crops. For example, the rice OsLG1 gene encodes a SBP DNA binding protein, which affects the development of auricle and ligule [104], and the orthologous gene TaSPL8 in wheat has also been found to have similar function in rice [23].
In this study, a total of 20 wheat orthologs were identified in four hcMQTLs, 10 of which were low-confidence, and the annotation information might be inaccurate. The remaining 10 wheat orthologs were potential candidate genes for regulating the leaf morphology in wheat, including 7 from rice genes and 3 from *Arabidopsis* genes (Table 4). In total, 7 wheat orthologs of the rice gene *Osmtd1* were located in the MQTL-1 region, namely *TraesCS1A02G022100*, *TraesCS1A02G022200*, *TraesCS1A02G022300*, *TraesCS1A02G024800*, *TraesCS1A02G024900*, *TraesCS1A02G025000*, and *TraesCS1A02G025300*. *Osmtd1* gene encodes a putative inhibitor I family protein regulating rice tillering and leaf angle [80]. Therefore, these seven wheat orthologs may be reliable candidates for regulating wheat leaf angle as the *Osmtd1* gene in rice.

The wheat ortholog of *Arabidopsis PLL5* gene, *TraesCS1A02G033700*, is located in the MQTL-1 region and encodes a protein belonging to the phosphatase 2C family, which regulates leaf development. The mutant *pll5* has shorter, narrower and curlier leaves than the wild-type leaves [84]. Hence, it suggested that *TraesCS1A02G033700* is a credible candidate gene

Table 4. Eleven identified leaf morphology—Related genes of rice and *Arabidopsis thaliana* and their wheat orthologs in hcMQTLs region.

Gene ID	Gene Name	Function description	Species	Traits	Homologous gene ID in wheat	Corresponding MQTL region	Reference
AT3G06250	FRS7	FAR1-related sequence 7	*Arabidopsis*	flowering time, leaf growth	*TraesCS1A02G023000LC*	MQTL-1	[79]
LOC_Os08g34258	Osmtd1	Putative protease inhibitor I family protein, Control of plant architecture	Rice	tiller number, leaf angle	*TraesCS1A02G022100*, *TraesCS1A02G022200*, *TraesCS1A02G022300*, *TraesCS1A02G024800*, *TraesCS1A02G024900*, *TraesCS1A02G025000*, *TraesCS1A02G025300*	MQTL-1	[80]
AT1G09700	HYL1	dsRNA-binding domain-like superfamily protein	*Arabidopsis*	abscisic acid, auxin, and cytokinin	*TraesCS1A02G035900LC*	MQTL-1	[81]
LOC_Os06g10600	Roc8	Similar to Homeodomain protein HOX3	Rice	size of bulliform cells, lignin content	*TraesCS1A02G039400LC*, *TraesCS1A02G039500LC*	MQTL-1	[82]
LOC_Os01g15340	OsRAA1	encodes a 12.0-kD protein	Rice	leaf, flower, and root development	*TraesCS1A02G039800LC*	MQTL-1	[83]
AT1G07630	PLL5	pol-like 5	*Arabidopsis*	leaf morphology	*TraesCS1A02G033700*	MQTL-1	[84]
LOC_Os09g37400	OsSAUR45	Small auxin-up RNA (SAUR), Auxin-responsive SAUR gene family member, Auxin synthesis and transport, Plant growth	Rice	plant height, primary root length, adventitious roots, leaf width and seed setting	*TraesCS2B02G045900LC*	MQTL-11	[85]
LOC_Os05g11730	GSK2	GSK3/SHAGGY-like kinase, Brassinosteroid signalin	Rice	plant height, leaf angle, and grain size	*TraesCS2B02G046300LC*	MQTL-11	[86]
AT2G02560	CAND1	cullin-associated and neddylation dissociated	*Arabidopsis*	flowering, fertility, dwarfism and leaf development	*TraesCS2B02G051000*	MQTL-11	[87]
LOC_Os03g04680	SD37	Cytochrome P450 protein CYP96B4, Growth regulation, Drought stress response	Rice	plant height, leaves, panicles, and seeds	*TraesCS2D02G005000LC*	MQTL-13	[88]
AT5G61020	ECT3	evolutionarily conserved C-terminal region 3	*Arabidopsis*	timing of leaf formation, leaf morphology	*TraesCS2D02G012200*	MQTL-13	[89]

https://doi.org/10.1371/journal.pone.0276602.t004
affecting leaf development in wheat. The CAND1 gene encodes unmodified CUL1-interacting protein in Arabidopsis, and participates in many developmental pathways controlled by ubiquitin/proteasome-mediated degradation of protein [87]. The rosette leaves of cand1 mutants are much smaller than that of wild-type plants and have a wavy morphology. The ortholog TraesCS2B02G051000 of wheat located in MQTL-11 region encodes CUL1-related NEDD8 dissociation protein, which might be a candidate gene affecting the wheat leaves morphology. The ECT3 gene encodes the YTH domain protein in Arabidopsis, which has been previously proved to be related to leaf morphogenesis in Arabidopsis [89]. The wheat ortholog TraesCS2D02G012200, located in the MQTL-13 region, might be a reliable candidate gene involved in the regulation of leaf development.

In conclusion, using the high-density integration map developed by Venske et al. [64] as the consensus map and QTL meta-analysis, we integrated the QTL for flag leaf morphological traits previously identified in wheat, and validated 10 MQTLs with GWAS information. Three potential MQTLs, MQTL-1, MQTL-13 and MQTL-25 that regulate flag leaf morphological traits were identified in this study. These MQTL flanking markers can be used for molecular marker assisted breeding to improve flag leaf morphological traits in wheat. Furthermore, using functional annotation information from genes within the hcMQTL interval and a comparative genomics strategy, ten wheat orthologs were identified as potential candidate genes affecting wheat flag leaf morphology, providing potential targets for fine mapping, and gene cloning.

Supporting information

S1 Table. Initial QTL information for QTL meta-analysis.
(XLSX)

S2 Table. Gene annotation information in hcMQTL region.
(XLSX)

Acknowledgments

We sincerely thank Dr. Qifei Wang of Zhejiang Academy of Agricultural Sciences for his help in the investigation process.

Author Contributions

Conceptualization: Cunwu Chen.

Data curation: Binbin Du, Jia Wu.

Formal analysis: Binbin Du, Dong Liu, Cunwu Chen.

Funding acquisition: Cunwu Chen.

Investigation: Jia Wu.

Methodology: Chaoyue Sun, Dong Liu.

Resources: Baowei Lu, Peipei Wei.

Software: Chaoyue Sun, Baowei Lu, Peipei Wei.

Supervision: Md. Samiul Islam.

Validation: Md. Samiul Islam.
Writing – original draft: Binbin Du.
Writing – review & editing: Cunwu Chen.

References

1. Curtis T, Halford NG. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol. 2014; 164: 354–372. https://doi.org/10.1111/aab.12108 PMID: 25540461
2. Cao YY, Zhong ZJ, Wang HY, Shen RX. Leaf angle: a target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnol J. 2022; 20:426–436. https://doi.org/10.1111/pbi.13780 PMID: 35075761
3. Foy CH. The basis of source—sink interaction in leaves. Plant Physiol Bioch. 1987; 25: 649.
4. Li ZK, Pinson SRM, Stansel JW, Paterson AH. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol Breeding. 1998; 52: 1235–1246.
5. Sharma SN, Sain RS, Sharma RK. The genetic control of flag leaf length in normal and late sown durum wheat. J Agr Sci. 2003; 141: 323–331.
6. Simon MR. Inheritance of flag-leaf angle, flag-leaf area and flag-leaf area duration in four wheat crosses. Theor Appl Genet. 1999; 98: 310–314.
7. Coleman RK, Gill GS, Rebetzke GJ. Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.). Aust J Agr Res. 2001; 1038/cr.2010.109 PMID: 2064566.
8. Xiang JJ, Zhang GH, Qian Q, Xue HW. Semi-rolled leaf1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol. 2012; 159: 1488–1500. https://doi.org/10.1104/pp.112.199968 PMID: 22715111
9. Ham JG, Kim HY, Kim KM. QTL analysis related to the flag-leaf angle related with it gene in rice (Oryza sativa L.). Euphytica. 2019; 215: 1–8.
10. Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, et al. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J. 2002; 32: 495–508. https://doi.org/10.1046/j.1365-313x.2002.01438.x PMID: 12445121
11. Ku LX, Zhao WM, Zhang J, Wu LC, Wang PA, et al. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet. 2010; 121: 951–959.
12. Tian JG, Wang C, Xia J, Wu L, Xu G, Wu W, et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science. 2019; 365: 655–664. https://doi.org/10.1126/science.aax5482 PMID: 3141695.
13. Liu KY, Xu H, Liu G, Guan P, Zhou X, Peng H, et al. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theor Appl Genet. 2018; 131: 839–849.
14. Li YX, Tao Y, Wang Z, Guo Q, Wu F, Yang X, et al. Identification of QTL for flag leaf length in common wheat and their pleiotropic effects. Mol Breeding. 2018; 38: 11.
15. Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, et al. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theor Appl Genet. 2020; 133: 297–315. https://doi.org/10.1007/s00122-019-04558-6 PMID: 31628527
22. Tu Y, Liu H, Liu J, Tang H, Mu Y, Deng M, et al. QTL mapping and validation of bread wheat flag leaf morphology across multiple environments in different genetic backgrounds. Theor Appl Genet. 2021; 134: 261–278. https://doi.org/10.1007/s00122-020-03695-w PMID: 33026461

23. Liu KY, Cao J, Yu K, Liu X, Gao Y, Chen Q, et al. Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiol. 2019; 181: 179–194. https://doi.org/10.1104/pp.19.00248 PMID: 31209125

24. Wang X, Han BH, Sun YY, Kang XL, Zhang M, Han HM, et al. Introgression of chromosome 1P from Agropyron cristatum reduces leaf size and plant height to improve the plant architecture of common wheat. Theor Appl Genet. 2022; 135: 1951–1963.

25. Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis. Genetics. 2000; 155: 463–473. https://doi.org/10.1093/genetics/155.1.463 PMID: 10790417

26. Guo B, Sleper DA, Lu P, Shannon JG, Nguyen HT, Arelli PR. QTLs associated with resistance to soybean cyst nematode in soybean: meta-analysis of QTL locations. Crop Sci. 2006; 46: 595–602.

27. Swamy BM, Vikram P, Dixit S, Ahmed H, Kumar A. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics. 2011; 12: 1–18. https://doi.org/10.1186/1471-2164-12-319 PMID: 21679437

28. Said JI, Song MZ, Wang HT, Lin ZX, Zhang XL, Fang DD, et al. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics. 2015; 290: 1003–1025. https://doi.org/10.1007/s00438-014-0963-9 PMID: 25501533

29. Martinez AK, Soriano JM, Tuberosa R, Kouprouglou R, Jahrmann T, Salvi S. Yield QTLome distribution correlates with gene density in maize. Plant Sci. 2016; 242: 300–309. https://doi.org/10.1016/j.plantsci.2015.09.022 PMID: 26566847

30. Quraishi UM, Pont C, Ain Q-u, Flores R, Burlot L, Alaux M, et al. Combined genomic and genetic data integration of major agronomical traits in bread wheat (Triticum aestivum L.). Front Plant Sci. 2017; 8: 1843

31. Cai J, Wang S, Su ZQ, Li T, Zhang KH, Bai GH. Meta-analysis of QTL for Fusarium head blight resistance in Chinese wheat landraces. Crop J. 2019; 7: 784–798.

32. Kumar A, Saripalli G, Jan I, Kumar K, Sharma PK, Balyan HS, et al. Meta-QTL analysis and identification of candidate genes for drought tolerance in bread wheat (Triticum aestivum L.). Physiol Mol Biol Pla. 2020; 26: 1713–1725.

33. Saini DK, Chopra Y, Pal N, Chahal A, Srivastava P, Gupta PK. Meta-QTLs, ortho-MQTLs and candidate genes for nitrogen use efficiency and root system architecture in bread wheat (Triticum aestivum L.). Physiol Mol Biol Pla. 2021; 27: 2245–2267.

34. Pal N, Saini DK, Kumar S. Meta-QTLs, ortho-MQTLs and candidate genes for the traits contributing to salinity stress tolerance in common wheat (Triticum aestivum L.). Front Plant Sci. 2021; 27: 2767–2786.

35. Saini DK, Chahal A, Pal N, Srivastava P, Gupta PK. Meta-analysis reveals consensus genomic regions associated with multiple disease resistance in wheat (Triticum aestivum L.). Mol Breeding. 2022; 42: 1–23.

36. Saini DK, Srivastava P, Pal N, Gupta PK. Meta-QTLs, ortho-MQTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). Theor Appl Genet. 2022; 135: 1049–1081.

37. Gudi S, Saini DK, Singh G, Halladakeri P, Kumar P, Shamshad M, et al. Unravelling consensus genomic regions associated with quality traits in wheat using meta-analysis of quantitative trait loci. Planta. 2022; 255: 1–19. https://doi.org/10.1007/s00425-022-03904-4 PMID: 35508739

38. Li FM, Xie JY, Zhu XY, Wang XQ, Zhao Y, Ma XQ, et al. Genetic basis underlying correlations among growth duration and yield traits revealed by GWAS in rice (Oryza sativa L.). Front Plant Sci. 2018; 9: 650.

39. Wang M, Yan JB, Zhao JR, Song W, Zhang XB, Xiao YN, et al. Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci. 2012; 196: 125–131. https://doi.org/10.1016/j.plantsci.2012.08.004 PMID: 23017907

40. Li FJ, Wen WE, Liu JD, Zhang Y, Cao SH, He ZH, et al. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biol. 2019; 19: 168. https://doi.org/10.1186/s12870-019-1781-3 PMID: 31035920

41. Gyawali S, Mamidi S, Chao S, Bhardwaj SC, Shekhawat PS, Selvakumar R, et al. Genome-wide association studies revealed novel stripe rust resistance QTL in barley at seedling and adult-plant stages. Euphytica. 2021; 217: 1–18.
42. Zhang XX, Guan ZR, Li ZL, Liu P, Ma LL, Zhang YC, et al. A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments. Theor Appl Genet. 2020; 133: 2881–2895. https://doi.org/10.1007/s00122-020-03639-4 PMID: 32549266

43. Wu JH, Yu R, Wang HY, Zhou CE, Huang S, Jiao XH, et al. A large-scale genomic association analysis identifies the candidate causal genes conferring stripe rust resistance under multiple field environments. Plant Biotechnol J. 2021; 19: 177–191. https://doi.org/10.1111/pbi.13542 PMID: 32677132

44. Xue SL, Xu F, Li GQ, Zhou Y, Lin MS, Gao ZX, et al. Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.). Theor Appl Genet. 2013; 126: 1941–1949.

45. Chang X, Li FJ, Zhang ZP, Zhang XC, Liu LP, Yang X, et al. Mapping QTL for flag leaf length, width and area in wheat. Acta Bot Boreali Occident Sin. 2014; 34: 896–901.

46. Fan XL, Cui F, Zhao CH, Zhang W, Yang LJ, Zhao XQ, et al. QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Mol Breeding. 2015; 35: 1–16.

47. Yan X, Shi YG, Liang ZH, Yang B, Li XY, Wang SG, et al. QTL mapping for morphological related traits of flag leaf in wheat. Journal of Nuclear Agricultural Sciences. 2015; 29: 1253.

48. Zhao P, Xu F, Jiang WH, Qi P, Li CL, Bai HB, et al. Quantitative trait loci analysis of flag leaf length, width and chlorophyll content of spring wheat. J Triticeae Crops. 2015; 35: 603–608.

49. Gao S, Mo HJ, Shi HR, Wang ZQ, Lin Y, Wu FK, et al. Construction of wheat genetic map and QTL analysis of main agronomic traits using SNP genotyping chips technology. Chin J Appl Environ Biol. 2016; 22: 85–94.

50. Tian JF, Zhang DQ, Wu BJ, Song XP, Ma WJ, Zhou LM, et al. QTL mapping of flag leaf traits using an integrated high-density 90 K genotyping chip. J Triticeae Crops. 2016; 35: 689–698.

51. Lv XL, Bai HB, Dong JL, Hui J, Sun YN, Cai ZY, et al. QTL mapping for size traits of flag leaf in spring wheat. J Triticeae Crops. 2016; 36: 1587–1593.

52. Yang DL, Liu Y, Cheng HB, Chang L, Chen JJ, Chai SX, et al. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genet. 2016; 17: 94.

53. Lu LH, Yang B, Zhang T, Zhang W, Yuan K, Shi XF, et al. Quantitative trait loci analysis of flag leaf size and grain relative traits in winter wheat. Acta Agriculturae Boreali-sinica. 2018; 33: 1–8.

54. Wang Y, Zhao L, Dong ZD, Ren Y, Zhang N, Chen F. QTL mapping for plant height and flag leaf traits in common wheat. J Triticeae Crops. 2019; 39: 761–767.

55. Zhao CH, Bao YG, Wang XQ, Yu HT, Ding AM, Guan CH, et al. QTL for flag leaf size and their influence on yield-related traits in wheat. Euphytica. 2018; 214: 1–8.

56. Khanna-Chopra R, Singh K, Shukla S, Kadam S, Singh NK. QTLs for cell membrane stability and flag leaf area under drought stress in a wheat RIL population. J Plant Biochem Biot. 2019; 29: 276–286.

57. Hu JM, Wang XQ, Zhang GX, Jiang P, Chen WY, Hao YC, et al. QTL mapping for yield-related traits in wheat based on four RIL populations. Theor Appl Genet. 2020; 133: 917–933. https://doi.org/10.1007/s00122-019-03515-w PMID: 31897512

58. Yin JJ, Liu D, Qi YZ, Ma J, Zhen WC. Major QTL for Seven Yield-Related Traits in Common Wheat (Triticum aestivum L.). Front Genet. 2020; 11: 1012.

59. Yan X, Wang SG, Yang B, Zhang WJ, Cao YP, Shi YG, et al. QTL mapping for flag leaf-related traits and genetic effect of QFLW-6A on flag leaf width using two related introgression line populations in wheat. PLoS One. 2020; 15: e0229912. https://doi.org/10.1371/journal.pone.0229912 PMID: 32191715

60. Yan XF, Zhao L, Ren Y, Zhang N, Dong ZD, Chen F. Identification of genetic loci and a candidate gene related to flag leaf traits in common wheat by genome-wide association study and linkage mapping. Mol Breeding. 2020; 40: 58.

61. Yao JX, Zhang CL, Song XP, Xu XW, Xing YF, Lu DY, et al. QTL Analysis of Wheat Spike Length and Flag Leaf Length Based on 90K SNP Assay. J Triticeae Crops. 2020; 40: 1283–1289.

62. Ye XL, Li J, Zheng Z, Zhou H, Xiang DB. A Novel QTL Controlling Flag Leaf Width Located on Chromosome Arm 7A5 in Bread Wheat (Triticum Aestivum L.). Research Square. 2020.

63. Li XM, Wang SY, Ni SL. QTL Mapping for Traits of Flag Leaf and Seedling in Wheat. J Triticeae Crops. 2021; 41: 532.

64. Venske E, Dos Santos RS, Farias DdR, Rother V, da Maia LC, Pegoraro C, et al. Meta-analysis of the QTLome of Fusarium head blight resistance in bread wheat: refining the current puzzle. Front Plant Sci. 2019; 10: 727. https://doi.org/10.3389/fpls.2019.00727 PMID: 31263469

65. Cavanagh CR, Chao S, Wang SC, Huang BE, Stephen S, Kiani S, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and
cultivars. Proc Natl Acad Sci. 2013; 110: 8057–8062. https://doi.org/10.1073/pnas.1217133110 PMID: 23630259

66. Wang SC, Wong D, Forrest K, Allen A, Chao S, Huang BE, et al. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J. 2014; 12: 787–796. https://doi.org/10.1111/pbi.12183 PMID: 24646323

67. Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004; 109: 1105–1114.

68. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, et al. Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet. 2005; 110:550–60. https://doi.org/10.1007/s00122-004-1871-x PMID: 15655666

69. Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, et al. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics. 2004; 20: 2324–2326. https://doi.org/10.1093/bioinformatics/bth230 PMID: 15059820

70. Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet. 1997; 27: 125–132. https://doi.org/10.1023/a:105685324830 PMID: 9145551

71. Veyrieras J-B, Goffinet B, Charcosset A. MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics. 2007; 8: 49. https://doi.org/10.1186/1471-2105-8-49 PMID: 17288608

72. Liu YX, Lin Y, Gao S, Li ZY, Ma J, Deng M, et al. A genome-wide association study of 23 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnol J. 2017; 15: 953–969. https://doi.org/10.1111/pbi.12690 PMID: 28055148

73. Sun CW, Zhang FY, Yan XF, Zhang XF, Cui DQ, et al. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnol J. 2017; 15: 953–969. https://doi.org/10.1111/pbi.12690 PMID: 28055148

74. Chen SL, Cheng XY, Yu K, Chang XN, Bi HH, Xu HX, et al. Genome-wide association study of differences in 14 agronomic traits under low- and high-density planting models based on the 660k SNP array for common wheat. Plant Breeding. 2019; 139: 272–283.

75. Sheoran S, Jaiswal S, Kumar D, Raghav N, Sharma R, Pawar S, et al. Uncovering genomic regions associated with 36 agromorphological traits in Indian spring wheat using GWAS. Front Plant Sci. 2019; 10: 527. https://doi.org/10.3389/fpls.2019.00527 PMID: 31134105

76. Chen SL, Liu F, Wu WX, Jiang Y, Zhan KH. A SNP-based GWAS and functional haplotype-based GWAS of flag leaf-related traits and their influence on the yield of bread wheat (Triticum aestivum L.). Theor Appl Genet. 2021; 134: 3895–3909.

77. Gao L, Meng CS, Yi TF, Xu K, Cao HW, Zhang SH, et al. Genome-wide association study reveals the genetic basis of yield-quality-related traits in wheat. BMC Plant Biol. 2021; 21: 144. https://doi.org/10.1186/s12870-021-02925-7 PMID: 33740889

78. Muhammad A, Li JG, Hu WC, Yu JS, Khan MU, et al. Uncovering genomic regions controlling plant architectural traits in hexaploid wheat using different GWAS models. Sci Rep. 2021; 11: 6767. https://doi.org/10.1038/s41598-021-86127-z PMID: 33762669

79. Ritter A, Ihligo S, Fernández-Calvo P, Heyndrickx KS, Dhondt S, Shi H, et al. The transcriptional repressor complex FRS7-FRS12 regulates flowering time and growth in Arabidopsis. Nat Commun. 2017; 8: 15235.

80. Liu Q, Xu JK, Zhu YH, Mo YX, Yao XF, Wang RZ, et al. The Copy Number Variation of OsMTD1 Regulates Rice Plant Architecture. Front Plant Sci. 2021; 11: 2331.

81. Lu C, Fedoroff N. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell. 2000; 12: 2351–2365.

82. Sun J, Cui X, Teng S, Kunnong Z, Wang Y, Chen Z, et al. HD-ZIP IV gene Roco8 regulates the size of bulbill forms and lignin content in rice. Plant Biotechnol J. 2020; 18: 2559–2572.

83. Ge L, Chen H, Jiang J-F, Zhao Y, Xu M-L, Xu Y-Y, et al. Overexpression of OsaRA41 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol. 2004; 135: 1502–1513.

84. Song SK, Clark SE. POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis. Dev Biol. 2005; 285: 272–284.

85. Xu YX, Xiao MZ, Liu Y, Fu JL, He Y, Jiang DA. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice. Plant Mol Biol. 2017; 94: 97–107.

86. Xiao YH, Zhang G, Liu D, Niu M, Tong H, Chu C. GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice. Plant J. 2020; 102: 1187–1201.
87. Feng SH, Shen YP, Sullivan JA, Rubio V, Xiong Y, Sun TP, et al. Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin-proteasome-mediated protein degradation. Plant Cell. 2004; 16: 1870–1882.

88. Zhang J, Liu QX, Li SY, Cheng ZK, Li CY. The rice semi-dwarf mutant sd37, caused by a mutation in CYP96B4, plays an important role in the fine-tuning of plant growth. PLoS One. 2014; 9: e88068.

89. Laura AH, Bressendorff S, Hansen MH, Poulsen C, Brodersen P. An m6A-YTH module controls developmental timing and morphogenesis in Arabidopsis. Plant Cell. 2018; 30: 952–967.

90. Duncan WG. Leaf angles, leaf area, and canopy photosynthesis. Crop Sci. 1971; 11: 482–485.

91. Guitman MR, Arnozis PA, Barneix A. Effect of source-sink relations and nitrogen nutrition on senescence and N remobilization in the flag leaf of wheat. Physiol Plantarum. 1991; 82: 278–284.

92. Isidro J, Knox R, Clarke F, Singh A, DePauw R, Clarke J, et al. Quantitative genetic analysis and mapping of leaf angle in durum wheat. Planta. 2012; 236: 1713–1723. https://doi.org/10.1007/s00425-012-1728-5 PMID: 22868576

93. Liu H, Mullan D, Zhang SC, Li X, Zhang AM, Lu ZY, et al. Major genomic regions responsible for wheat yield and its components as revealed by meta-QTL and genotype-phenotype association analyses. Planta. 2020; 252: 65. https://doi.org/10.1007/s00425-020-03466-3 PMID: 32970252

94. Li H, Vikram P, Singh RP, Killian A, Carling J, Song J, et al. A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genomics. 2015; 16:216. https://doi.org/10.1186/s12864-015-1424-5 PMID: 25887001

95. Stasko AK, Wickramasinghe D, Nauth BJ, Acharya B, Ellis ML, Taylor CG, et al. High-density mapping of resistance QTL toward Phytophthora sojae, Pythium irregulare, and Fusarium graminearum in the same soybean population. Crop Sci. 2016; 56: 2476–2492.

96. Salvi S, Tuberosa R. To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci. 2005; 10: 297–304. https://doi.org/10.1016/j.tplants.2005.04.008 PMID: 15949764

97. Kim M, Schultz S, Nelson RL, Diers BW. Identification and fine mapping of a soybean seed protein QTL from PI 407788A on chromosome 15. Crop Sci. 2016; 56: 219–225.

98. Khahani B, Tavakol E, Shariati JV. Genome-wide meta-analysis on yield and yield-related QTLs in barley (Hordeum vulgare L.). Mol Breeding. 2019; 39: 56.

99. Khahani B, Tavakol E, Shariati V, Formara F. Genome wide screening and comparative genome analysis for Meta-QTLs, ortho-MQTLs and candidate genes controlling yield and yield-related traits in rice. BMC Genomics. 2020; 21: 294. https://doi.org/10.1186/s12864-020-6702-1 PMID: 32278822

100. Aduragbemi A, Soriano JM. Unravelling consensus genomic regions conferring leaf rust resistance in wheat via meta-QTL analysis. Plant Genome. 2021; 15: e20185. https://doi.org/10.1002/pag2.20185 PMID: 34918873

101. Yang Y, Amo A, Wei D, Chai YM, Zheng J, Qiao PF, et al. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theor Appl Genet. 2021; 134: 3083–3109. https://doi.org/10.1007/s00122-021-03881-4 PMID: 34142166

102. Loffler M, Schon CC, Miedaner T. Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breed. 2009; 23: 473–488.

103. Hyles J, Vautrin S, Pottolino F, MacMillan C, Stachurski Z, Breen J, et al. Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition. J Exp Bot. 2017; 68: 1519–1529. https://doi.org/10.1093/jxb/erx051 PMID: 28369427

104. Lee J, Park J-J, Kim SL, Yim J, An G. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Mol Biol. 2007; 65: 487–499. https://doi.org/10.1007/s11103-007-9196-1 PMID: 17594063