Article Type:
Research Paper

Original Title of Article:
The effect of design based science education applications of science teacher candidates on their perceptions of engineering education and engineer

Turkish Title of Article:
Fen bilimleri öğretmen adaylarının tasarım temelli fen eğitimi uygulamalarının mühendislik eğitimi ve mühendis algılarına etkisi

Author(s):
Ayşegül ERGÜN, Gülbin KIYICI

For Cite in:
Ergün, A. & Kıyıcı, G. (2019). The effect of design based science education applications of science teacher candidates on their perceptions of engineering education and engineer. Pegem Eğitim ve Öğretim Dergisi, 9(4), 1031-1062. http://dx.doi.org/10.14527/pegegog.2019.033

Makale Türü:
Özgün Makale

Orijinal Makale Başlığı:
The effect of design based science education applications of science teacher candidates on their perceptions of engineering education and engineer

Makalenin Türkçe Başlığı:
Fen bilimleri öğretmen adaylarının tasarım temelli fen eğitimi uygulamalarının mühendislik eğitimi ve mühendis algılarına etkisi

Yazar(lar):
Ayşegül ERGÜN, Gülbin KIYICI

Kaynak Gösterimi İçin:
Ergün, A. & Kıyıcı, G. (2019). The effect of design based science education applications of science teacher candidates on their perceptions of engineering education and engineer. Pegem Eğitim ve Öğretim Dergisi, 9(4), 1031-1062. http://dx.doi.org/10.14527/pegegog.2019.033
The effect of design based science education applications of science teacher candidates on their perceptions of engineering education and engineer

Aysegul ERGUN *, Gülbin KIYICI **

* Manisa Celal Bayar University, Education Faculty, Manisa/Turkey

Abstract
The purpose of this study was to determine the effect of Design Based Science Education (DBSE) applications on the perceptions of science teacher candidates about engineering education and engineers. In the quantitative part of the study in which the mixed method was involved, a semi-experimental design with single group pre-test post-test was used while a case study design was adopted in the qualitative part of the study. The study group of the research consisted of 52 juniors who were receiving education at a university in the Aegean Region in the 2016-2017 academic year. The quantitative data of the study were obtained through the 'Engineering Education Survey' and the qualitative data through 'Draw an Engineer Test.' The quantitative data were analyzed using a statistics software program and the qualitative data through content analysis. It was determined as a result of the study that DBSE applications positively affect the perceptions of teacher candidates about engineering education and engineers. It was also determined that the teacher candidates' stereotypical perceptions about engineers being male and working on their own decreased and their perceptions about the work area and activities of engineers changed in a positive manner. In the light of the findings obtained in the study, the importance of design based applications in STEM education was underlined.

Fen bilimleri öğretmen adaylarının tasarım temelli fen eğitimi uygulamalarının mühendislik eğitimi ve mühendis algılarına etkisi

Makale Bilgisi
DOI: 10.14527/pegegog.2019.033

Makale Geçmişi:
Gele 30 Ocak 2019
Düzelte 23 Mayıs 2019
Kabul 04 Ağustos 2019
Çevrimi 18 Eylül 2019

Anahtar Kelimeler:
Tasarım temelli fen eğitimi, Mühendislik eğitimi, Mühendis algoritma, STEM eğitimi.

Makale Türü:
Ozgün makale

Öz
Bu araştırmanın amacı, Tasarım Temelli Fen Eğitimi (TTFE) uygulamalarının fen bilimleri öğretmeni adaylarının mühendislik eğitimi ve mühendis algılara etkisini belirlemesidir. Karma yöntemin kullanıldığı araştırmanın nicel bölümünde tek gruptu ön test-son test yar testi deneyesel desen, nitel bölümünde ise durum çalışması deseni kullanılmıştır. Araştırmanın çalışma grubu, 2016-2017 eğitim öğretim yılında Ege bölgesinde bir üniversitede öğrenim gören 52 üçüncü sınıf öğrencisinden oluşmaktadır. Araştırmanın nicel verileri 'Mühendislik Eğitimi Anketi', nitel verileri ise 'Bir Mühendis Çiz Testi' ile elde edilmiştir. Nicel veriler istatistik paket programları kullanılarak, nitel veriler ise içerik analizi ile değerlendirilmiştir. Araştırma sonucunda gerçekleştirilen TTFE uygulamalarının, öğretmen adaylarının mühendislik eğitimi ve mühendis algılara olumlu yönde etkilediğini belirlemiştir. Uygulamalar sonrasında öğretmen adaylarının, mühendisin erkek olduğu ve bireysel olarak çalıştığı şeklindeki basmakalp algılarının azaldığı ayrıca mühendisin çalışma alanı ve yaptığı aktiviteleri yönelik algılarını da olumlu yönde değiştirdiği belirlendi. Araştırımda elde edilen bulgular ışığında STEM eğitiminde tasarım temelli uygulamaların önemi vurgulanmıştır.

* Author: ergunaysegul@gmail.com
** Author: gulbin.kiyici@gmail.com

Orcid ID: https://orcid.org/0000-0002-1481-4019
Orcid ID: https://orcid.org/0000-0002-5402-0117
Introduction

Although there is a consensus about the need for understanding the basic knowledge in the disciplines of science, technology, engineering and mathematics (STEM) and turning this knowledge into skills in order to be able to train science and technology literate individuals in 21st century, only science and mathematics among these disciplines are a part of educational programs at the K12 level (National Academy of Engineering [NAE], 2010). It is stated that technology and engineering disciplines should be a part of educational programs to make STEM education possible (Bybee, 2010). Even though all of the STEM disciplines are a part of the educational program, the program cannot be successful if it does not include links between these disciplines (Dugger, 2010). In the USA, STEM has become a government policy (NAE, 2010; National Research Council [NRC], 2010) and the importance given to STEM disciplines and STEM education in many European countries has increased (Çorlu, Capraro, & Capraro, 2014). In this respect, it has become a necessity for Turkey as well that modern science education is restructured by the integration of STEM disciplines into educational programs and students are introduced to the discipline of engineering at early ages.

In Turkey, the first step towards STEM integration was taken in 2005 with the 'Science and Technology' lesson educational program (Ministry of National Education [MoNE], 2006). The 'Science and Engineering Applications' unit and 'Engineering and Design Skills' were added to the Science Lesson Educational Program which was updated in 2017 in terms of the engineering discipline of STEM education (MoNE, 2017). The program published in 2018 also included “Science, Engineering and Entrepreneurship Applications” in all units. By integrating the STEM disciplines through these practices, it is aimed that students deal with the problems of daily life from an interdisciplinary perspective and create a product for the solution of problems by using knowledge and skills they acquire (MoNE, 2018).

In the literature, the approaches in which engineering design problems form a context for science education are defined as 'Design Based Science Education' (DBSE). In this approach, it is stated that teaching science concepts and processes takes place through scientific research and engineering design process which involve engineering problems (Daugherty, 2012; Kolodner, 2002; Wendell, 2008). In DBSE, the learning process begins with a problem which contains science and mathematics. The steps of the engineering design process are applied over this problem and a product is created as a result. Science and mathematics subjects are taught through this product (Culver, 2012).

In a study in which lego pieces were used for the applications in a science lesson based on design, the cycle engineers use while creating designs and the steps in this cycle were modelled. The design process is at the center of the model and process of the science lesson which will be taught within the axis of this process is at the perimeter of the model (Wendell et al., 2010). According to the process at the center, the first step consists of the identification of the problem and this corresponds to the step of stating the design challenge in the science lesson. In this step, the students are asked to express what they know and what they need to learn in order to be able to carry out the big design challenge. The second step of the design cycle is researching possible solutions and the students are asked in this step to carry out small design challenges and small scientific researches for the big design challenge. The design challenge and researches in question are suggested to be rather in the form of creating physical products and testing these products. Students use the findings they obtain in this step in identifying the most suitable solution step. The last step of the process is creating prototype and testing prototype. This step includes activities for the big design challenge in which students create, test and improve prototypes, and make presentations to their group mates (Ercan, 2014; Wendell et al., 2010). The process is summarized in Figure 1.

A teacher who will use the DBSE approach should firstly determine learning outcomes to be gained and then determine the big design challenge which embodies these learning outcomes. The teacher should also plan applications which involve required knowledge and skills for students in their process of carrying out the big design challenge and prepare a learning environment and provide tools and equipment necessary for building and testing a prototype in order for students to make their big designs
within the scope of these applications. (Bozkurt Altan, Yamak, & Buluş Kirikkaya, 2016). Therefore, it seems important that science teacher candidates acquire the skill to integrate DBSE and engineering into science lessons and carry out applications in line with this in their undergraduate education. In this respect, it was aimed in this study to determine the effect of DBSE applications on the perceptions of science teacher candidates about engineering education and engineers.

Figure 1. Science lesson taught within the axis of design process cycle (Wendell et al., 2010).

Related studies

In recent years, the increasing popularity of the STEM education approach has led to an increase in the number of studies on DBSE in all grades at the K-12 level. In the literature, there are studies on DBSE carried out with primary and middle-school students (Ercan, 2014; Kolodner et al., 2003; Marulcu, 2010; Penner, Giles, Lehrer, & Schauble, 1997; Roth, 2001; Sadler, Coyle, & Schwartz, 2000; Schnittka & Bell, 2011). In these studies, it is stated that DBSE applications increase the academic success of students (Ercan, 2014; Marulcu, 2010; Roth, 2001), develop their skills related to scientific process and decision making (Ercan, 2014; Sadler et al., 2000) and contribute to the development of their knowledge level related to engineering (Ercan, 2014).

In the literature, there are studies carried out with teacher candidates on DBSE applications as well (Bozkurt, 2014; Bozkurt Altan et al., 2016; Capobianco, 2011; Hacıoğlu, 2017; Hacıoğlu, Yamak, & Kavak, 2016; Kınık Topalsan, 2018; Marulcu & Sungur, 2012; Sungur Gül & Marulcu, 2014; Yıldırım, 2018). In these studies, teacher candidates indicated that the design process is based on questioning, makes permanent learning possible and that the big design challenge is motivating (Bozkurt Altan et al., 2016); it was concluded in these studies that DBSE applications develop the scientific creativity and critical thinking (Hacıoğlu, 2017), decision making and scientific process skills of teacher candidates (Bozkurt, 2014) and that although the teacher candidates report some negative views on DBSE, they mostly have positive views and wish to carry out DBSE activities in their lessons (Hacıoğlu et al., 2016).

According to the findings of another study, teacher candidates were found to have engineering knowledge at a basic level and they did not have competence to carry out science lessons based on design process (Marulcu & Sungur, 2012). In her study on evaluating design based activities developed by classroom teacher candidates, Kınık Topalsan (2018) determined that the teacher candidates displayed a low performance concerning the step in which they defined the problem and that their
performance on the steps of finding the suitable solution and forming models was low as well due to the difficulty they experienced in this step. In another study, it was determined that, following the DBSE applications, teacher candidates’ opinions about these applications, engineering, engineers and the design differed positively and prospective teachers thought that DBSE developed characteristics such as creativity, curiosity, self-confidence and empathy (Yıldırım, 2018). In another study, it was determined that teacher candidates’ knowledge about engineers and engineering was at a basic level and that they did not have competence to structure science lessons on the axis of design process and use lego pieces in this process (Süngür Gül & Marulcu, 2014).

Based on the results of previous studies, it can be concluded that although teacher candidates mostly had positive views on DBSE applications, they also expressed negative views; although they wished to use the applications in their professional life, they experienced difficulties during these applications and they had basic level knowledge about engineering. When the difficulties teacher candidates experienced about DBSE applications are taken into consideration, it is found important that each teacher candidate receives theoretical and applied training about DBSE in their undergraduate education. In this study, science teacher candidates were given theoretical and applied training for 14 weeks on DBSE in the Science Education Laboratory Applications II lesson and they were provided with the opportunity to carry out design based applications in cooperative groups. It is considered that the study is important in the sense that it contributes to teacher candidates to gain competence in terms of carrying out DBSE applications in their professional lives and development of STEM education in Turkey. In this study, it was aimed at determining the effect of DBSE applications on the perceptions of science teacher candidates about engineering education and engineers. With this purpose in mind, it was attempted to answer the following research questions:

1. Do the DBSE applications have a meaningful effect on the perceptions of science teacher candidates about engineering education?

2. Do the DBSE applications have a meaningful effect on the perceptions of science teacher candidates about engineers?

Method

Research Design

This is a mixed method study in which the quantitative and qualitative methods were used together. It is stated that the mixed method is superior compared to a research method used alone and that using quantitative and qualitative methods together for solving any problem allows a better understanding of the problem (Creswell & Plano Clark, 2007). The quantitative part of the study was carried out using a single group pre-test post-test semi-experimental design. In this experimental design, the measurements of the subjects concerning dependent variables as a single group are obtained using the same measurement tools through a pre-test prior to the experimental process and a post-test after the experimental process (Büyüköztürk, Kılıç-Çakmak, Akgün, Karadeniz, & Demirel, 2016). The single group pre-test post-test semi-experimental design is one of weakest experimental designs. However, in studies in which a new educational approach is applied, it is stated that the preference of the single group experimental design is due to the nature of the study (Creswell, 2012). In the qualitative part of the study, the explanatory/descriptive case study design was used. Case study is a method which mostly has the characteristics of qualitative research approaches and seeks answers to the questions “how, why and what” (Çepni, 2007). In case study method, it is quite important that the data are presented in a detailed manner and through the statements of participants as much as possible (Ekiz, 2009; Patton, 1990). In this study, freehand drawings and expressions of teacher candidates regarding drawings were used in order to be able to determine in more detail teacher candidates’ perceptions about engineer.
Study Group

The participants of the study consisted of 52 juniors (42 female and 10 male) who were receiving education at a medium-sized university in the Aegean Region in the spring semester of the 2016-2017 academic year and taking the Science Education Laboratory Applications II lesson. Criterion sampling, one of the purposeful sampling methods, was used to determine the study group. In this sampling method, the researcher deals with all aspects which meet certain criteria which s/he predetermines (Yıldırım & Şimşek, 2016, p. 122). The primary criterion in this study is that the participants took the Science Education Laboratory Applications II lesson. The reason why this criterion was determined is that the participants received theoretical knowledge on DBSE for a semester within the scope of this lesson and that, in the applied part of the lesson, DBSE applications were carried out in cooperative groups in line with the theoretical knowledge received.

Data Collection Tools

With the purpose of determining the effect of DBSE applications on the perceptions of teacher candidates about engineering education and engineers, the ‘Engineering Education Survey’ and the ‘Draw an Engineer Test’ were used.

The Engineering Education Survey: In the study, the survey developed by Yaşar, Baker, Robinson-Kurpius and Roberts (2006) with the purpose of determining the perceptions of K-12 teachers about engineering education and adapted to Turkish by Sungur (2013) was used. The original survey consists of 4 factors and 41 items covering importance of engineering (18 items), familiarity with engineering (12 items), stereotypical characteristics of engineers (5 items) and characteristics of engineering and engineers (6 items). The researchers calculated the Cronbach alpha reliability coefficient values related to the survey’s sub-dimensions and to the whole survey successively as .91, .83, .76, .66 and .88 (Yaşar et al., 2006). The survey adapted to Turkish consists of 3 factors and 36 items involving importance of engineering (18 items), familiarity with engineering (10 items) and characteristics of engineering and engineers (8 items). In this study, the Cronbach alpha reliability coefficient values related to the pre and post-test data were calculated in order to determine the reliability of the survey. The analysis results are given in Table 1.

The sub-dimensions and the Survey	Cronbach alpha Pre-test	Cronbach alpha Post-test
Importance of Engineering	.83	.87
Familiarity with Engineering	.70	.79
Characteristics of Engineering and Engineers	.60	.67
The Engineering Education Survey	.84	.89

Results in Table 1 show that the Cronbach alpha coefficients related to the pre-test and post-test data are over the value of .70 for the whole survey. According to Büyüköztürk (2017), the survey is reliable since the Cronbach alpha value being .70 and over is acceptable for the reliability of the survey.

Draw an Engineer Test: In the study, a drawing form was created taking the ‘Draw an Engineer Test’ (DAET) developed by Knight and Cunningham (2004) into consideration with the purpose of determining teacher candidates’ perceptions of engineers. In the form, teacher candidates are required to draw a picture of a working engineer in an empty box and answer to the question under the box “What is the engineer you have drawn doing? Briefly, explain”. Pre-service teachers’ answers to the open-ended question were used to better evaluate the drawings.

Data Collection and Procedure

Before starting the application process, ethics committee approval was obtained from the ethics committee of the university where the research was carried out. The Science Education Laboratory Applications II lesson which was focused on the DBSE applications was carried out for 14 weeks with the
teacher candidates. The 52 teacher candidates receiving education in two classes formed 13 heterogeneous cooperative learning groups. The students are placed in two classes determined by the university information system in line with their lesson selections at the beginning of the semester. A total of 13 groups were formed, 7 in class A and 6 in class B, consisting of 4 students for each class. In the determination of the groups, volunteering basis and heterogeneity in terms of gender were taken into consideration. The DBSE applications carried out in these groups included a wind turbine, a house which produces its own electricity, an anti-bacterial toothbrush holder, a rocket, a bridge, a solar energy car, an ecological city, a small sailing boat, a robot, a hydraulic arm, a hydraulic bridge, a plane and a high-speed train. The application process was carried out by the researchers who gave the lessons in the two classes. After the researchers gave the theoretical information about DBSE, they guided the students in the applications carried out afterwards. The activities carried out during the application are given in Table 2.

Table 2.
The Application Process of the Study.

Weeks	Applications Carried Out	Duration (min.)
1st week	What is STEM education? Making presentations on introducing STEM areas	40+40+40+40
2nd week	Making presentations on “What is design based science education? How is it applied?”	40+40+40+40
3rd week	Making presentations on “What is the engineering design process? What are the steps of the process?”	40+40+40+40
4th week	Presenting application examples based on engineering design process in science education	40+40+40+40
5th week	Forming cooperative groups and giving information about the implementation process by determining applications to be realized	40+40+40+40
6th week	Research and activities carried out by teacher candidates related to their design applications	40+40+40+40
7th week	Daily life problem determined by teacher candidates related to their designs and announcement of the big engineering design challenge	40+40+40+40
8th week	Search for possible solutions, carrying out mini design tasks and mini scientific researches	40+40+40+40
9th week	Determination of the most suitable solution	40+40+40+40
10th week	Creating and testing of the prototype	40+40+40+40
11th week	Improving the prototype and a presentation to be made by teacher candidates about their process and products for their classmates in another group	40+40+40+40
12-13-14th weeks	Presentation made by teacher candidates about their process and products for their classmates in another group	40+40+40+40

A few selected examples from the DBSE applications carried out by the teacher candidates are given in Table 3.

Data Analysis

Analysis of quantitative data: In the study, prior to the analysis of quantitative data, the normality of the distribution of the pretest and posttest scores obtained from the engineering education survey and its sub-dimensions was determined. In samples higher than 50, it is suggested to use the Kolmogorov-Smirnov normality test (Büyüköztürk, 2017); since the sample size of the study was 52, the Kolmogorov-Smirnov test was used. The results of the analysis are given in Table 4.
Table 3.
Information on DBSE Application Examples and Contents.

Visual of the Design	Content of the Design and Student Learning Outcomes in Curriculum
An antibacterial toothbrush holder	A design using UV lights on toothbrush to solve bacteria growth problem.
1. S/he observes microscopic creatures with a microscope.
2. S/he takes necessary precautions for safety and hygiene while observing microscopic creatures.
3. S/he creates a design which prevents the growth of microorganisms. |
| A small sailing boat | Creating a design that can stand on water and carry the maximum load to solve any fishing problems at sea.
1. S/he explains the basic characteristics of the material using five senses.
2. S/he defines density and indicates its unit.
3. S/he measures and compares the mass and volume of the materials.
4. S/he defines the material by using measurable characteristics.
5. S/he builds a small sailing boat using materials with suitable density. |
| A car running with solar energy | Designing a vehicle with clean energy to overcome the problems of air pollution and increasing gasoline prices.
1. S/he understands the importance of using renewable energy resources for the environment.
2. S/he realizes that solar energy can be converted into electrical energy.
3. S/he designs a vehicle with a simple motor circuit which produces electricity using a solar panel. |
| A house which produces its own electricity | Creating a design which makes use of renewable energy resources to overcome the problem of excess energy consumption and high bills.
1. S/he knows about renewable energy resources.
2. S/he understands the transformation of energy.
3. S/he creates a design which produces its own electricity by using energy transformation. |
Table 4.
Results of the Normality Test Related to the Pre-Test and Post-Test Data.

Sub-dimensions and the Survey	Test	Statistics	df	p
Importance of Engineering	Pre	.09	52	.14
	Post	.08	52	.83
Familiarity with Engineering	Pre	.13	52	.36
	Post	.08	52	.42
Characteristics of Engineering and Engineers	Pre	.09	52	.14
	Post	.11	52	.18
The Engineering Education Survey	Pre	.09	52	.87
	Post	.07	52	.70

Results in Table 4 show that the pre-test and post-test scores obtained from the survey and its sub-dimensions display a normal distribution ($p > .05$). Therefore, dependent samples t-test was used in the comparison of the teacher candidates’ pre-test and post-test scores.

Analysis of qualitative data: Content analysis was used in the analysis of data obtained from the ‘Draw an Engineer’ test. Through content analysis, data displaying similar characteristics are gathered together within certain concepts and themes and organized and interpreted so that they can be understood by readers (Yıldırım & Şimşek, 2016). While evaluating the teacher candidates’ drawings, the answers they gave to the open-ended question regarding the drawing they made in the drawing form were also used. All of the drawings of the teacher candidates were analyzed and coded by the researchers, the codes were turned into themes under certain headings and data was digitized and compared. Based on their conclusions, the two researchers calculated the frequency and the percentages related to codes in themes expressed by the teacher candidates. Since more than one code was formed in the analysis of activities carried out by the engineer and in materials detected, the sum of frequency was found to be higher than the size of the study group.

The reliability of data was calculated with the $[\text{Consensus} / (\text{Consensus} + \text{Dissensus})] \times 100$ formula suggested by Miles and Huberman (1994). In the study, this formula was used and the concordance percentage in the codes was calculated as 84.00%. According to Yıldırım and Şimşek (2016), when the concordance percentage in the calculation of reliability is 70.00%, then it means that the reliability percentage is reached. Therefore, the values obtained show that the coding reliability of the researchers is sufficient. The drawings of the teacher candidates were evaluated through a drawing evaluation form created by the researchers under the sub-headings of gender of the engineer, number of engineers, activity of the engineer, materials in the drawing and the area of engineering. Forms used to evaluate engineer drawings in studies in literature were referred while creating drawing evaluation form (Fralick, Kearn, Thompson, & Lyons, 2009; Gülhan & Şahin, 2018; Karataş, Micklos, & Bodner, 2011; Knight & Cunningham, 2004). Drawings with stickman or gender not clearly understood were evaluated in ambiguous category while drawings of engineers working in group of men and women were considered as in female category.

Results

Results Related to the First Research Question

The pre-test and post-test scores obtained from the survey and its sub-dimensions were compared with dependent samples t-test with the purpose of determining the effect of DBSE applications on the perceptions of teacher candidates about engineering education. The results of the analysis are given in Table 5.

Results in Table 5 revealed a statistically significant difference between the pre-test and post-test scores of the teacher candidates’ engineering education survey ($t_{51} = -7.08, p < .05$). In addition, there is a statistically significant difference between pre-test and post-test scores in the sub-dimensions of
importance of engineering \((t_{51} = -6.74, p < .05)\), familiarity with engineering \((t_{51} = -5.28, p < .05)\) and characteristics of engineering and engineers \((t_{51} = -4.28, p < .05)\). When the pre-test and post-test score averages of the survey in general and its sub-dimensions are analyzed, it can be seen that the difference is in favor of the post-test.

Table 5.
Results of the t Test Analysis for Dependent Samples Related to the Pre-test and Post-test Scores.

Sub-dimensions and the Survey	Measurement	N	\(\bar{X}\)	Sd	df	t	p
Importance of Engineering	Pre-test	52	3.96	.44	51	-6.74	.00
	Post-test		4.34	.41			
Familiarity with Engineering	Pre-test	52	3.33	.54	51	-5.28	.00**
	Post-test		3.78	.59			
Characteristics of Engineering and Engineers	Pre-test	52	3.93	.41	51	-4.28	.00**
	Post-test		4.18	.42			
The Engineering Education Survey	Pre-test	52	3.74	.34	51	-7.08	.00**
	Post-test		4.10	.38			

** p < .05.

Results Related to the Second Research Question

With the purpose of determining the effect of DBSE applications on teacher candidates' perceptions of engineers, the drawing of engineers was evaluated with the drawing evaluation form in the sub-dimensions of gender of the engineer, number of engineers, activity of the engineer, materials in the drawing and the area of engineering. The analysis results are given in Tables 6, 7, 8, 9 and 10. The results of the analysis on the gender of engineers in the teacher candidates’ pre and post-drawings are given in Table 6.

Table 6.
Findings Related to Gender of Engineers in the Drawings.

Gender of engineers	Pre-drawing	Post-drawing						
	Gender of the Teacher Candidate							
	Female	%	Male	%	Female	%	Male	%
Female engineer	6	14.30	1	10.00	15	35.71	3	30.00
Male engineer	32	76.20	8	80.00	25	59.53	7	70.00
Ambiguous	4	9.52	1	10.00	2	4.76	0	0.00

According to Table 6, the female participants drew female engineers in 14.30% and male engineers in 76.20% of the pre-drawings. They drew female engineers in 35.71% and male engineers in 59.53% of the post-drawings. As for the male participants, they drew female engineers in 10.00% and male engineers in 80.00% of the pre-drawings and female engineers in 30.00% and male engineers in 70.00% of the post-drawings.

The number of engineers in the teacher candidates’ drawings was determined and it was seen that they perceived engineering as a profession based on teamwork. The results of the analysis are given in Table 7.

Table 7.
Findings Related to the Number of Engineers in the Drawings.

Number of Engineers	Pre-drawing	Post-drawing		
	f	%	f	%
Single	51	98.08	32	61.54
Team work	1	1.92	20	38.46
Total	52	100.00	52	100.00
According to the analysis results in Table 7, 98.08% of the engineers were described as single and 1.92% working as a team in the pre-drawings while, in the post-drawings, 61.54% of them were reported as single and 38.46% working as a team.

Activities performed by engineers in the drawings of the teacher candidates were evaluated and the results of the analysis are given in Table 8.

Table 8.
Findings Related to the Activities of Engineers in the Drawings.

Activity	Pre-drawing		Post-drawing	
	f	%	f	%
Constructing	19	20.88	10	9.71
Repairing	14	15.38	8	7.77
Using materials	6	6.60	5	4.85
Designing	8	8.80	21	20.38
Developing	7	7.70	15	14.56
Calculating	5	5.50	10	9.71
Doing research/analysis	9	9.90	14	13.60
Supervising	17	18.68	12	11.65
Doing experiments	3	3.30	8	7.77
No activity	3	3.30	-	-
Total	91	100.00	103	100.00

* Total frequency related to the activities of engineers drawn by the teacher candidates

As can be seen in Table 8, the constructing activity which was 20.88% in the pre-drawing lessened to 9.71% in the post-drawing; the repairing activity decreased from 15.38% to 7.77%, the supervising activity from 18.68% to 11.65% and the activity of using materials from 6.60% to 4.85%. The activities whose rate of being drawn in the post-drawings increased were determined as designing (from 8.80% to 20.38%), developing (from 7.70% to 14.56%), calculating (from 5.50% to 9.71%), doing research/analysis (from 9.90% to 13.60%) and doing experiments (from 3.30% to 7.77%). Examples from the pre and post-drawings of the teacher candidates and their statements about what the engineers are doing in these drawings are given in Figure 2.

In the visual in Figure 2, the female student with the code S21 stated that engineer she drew in the pre-drawing was conducting an inspection, whereas she stated that the solar and wind energy engineer she drew in her post-drawing was doing a calculation. The materials seen in the work space of engineers in the drawings of the teacher candidates were evaluated and the results of the analysis are given in Table 9.
Table 9.
Findings Related to the Materials Found in the Drawings.

Materials Found in the Drawings	Pre-drawing f	Pre-drawing %	Post-drawing f	Post-drawing %
Repair tools (English monkey wrench, hammer, etc.)	13	11.81	6	5.40
Safety helmet	11	10.00	3	2.70
Plans/Projects/Map	11	10.00	17	15.32
Pencils	9	8.18	12	10.81
Desk/Table	11	10.00	11	9.90
T square	9	8.18	10	9.00
Constructions such as bridges and buildings	12	10.90	8	7.20
Laboratory equipment	6	5.45	14	12.61
Wind turbine	3	2.72	9	8.11
Computer and computer equipment	9	8.18	6	5.40
Cables/Electrical devices	9	8.18	5	4.50
Ship/Car	7	6.36	10	9.00
Total	110	100.00	111	100.00

*Total frequency related to the materials found in the drawings of the teacher candidates

According to the analysis results in Table 9, the materials in the drawings whose number decreased in the post-drawings compared to the pre-drawings were determined as repair tools (English monkey wrench, hammer, etc.), safety helmet, constructions such as bridges and buildings, computer and computer equipment, cables/electrical devices. The materials in the drawings whose number increased in the post-drawings compared to the pre-drawings were determined as plan/projects/map, pencils, t square, laboratory equipment, wind turbine and ship/car. Examples related to the objects in the pre and post-drawings of the teacher candidates and their statements on what the engineers in these drawings are doing are given in Figure 3.

In the first visual in Figure 3, the male student with the code S32 drew, in his pre-drawing, a male construction engineer with repair tools in his hand and a female chemical engineer who is using experiment materials in the laboratory in his post-drawing. In the second visual in Figure 3, the male student with the code S12 did not indicate the activity of the engineer in his pre-drawing and drew repair tools, whereas he drew, in his post-drawing, a construction engineer who is presenting his design on a project.

The workspaces of engineers in the drawings of the teacher candidates were evaluated and the results of the analysis are given in Table 10. According to Table 10, construction engineering is shown at a lower rate in the post-drawings (11.54%) compared to the pre-drawings (51.92%). While workspaces were not stated with 11.54% in the pre-drawings, it was observed that they were indicated in all of the drawings in the post-drawings. While energy systems were not found in the pre-drawings, they were indicated with 5.77% in the post-drawings. The engineering areas whose rate increased in the post-drawings compared to the pre-drawings were indicated as mining, genetics, chemistry, ship machines, computer, electricity, machinery, food, map, industry and the automotive sector. Examples related to the workspaces of engineers in the pre and post-drawings of the teacher candidates and their statements about the activities the engineers are carrying out are given in Figure 4.

In the first visual in Figure 4, the male student with the code S6 drew a construction engineers who is doing repair work whereas he drew a mechanical engineer who is doing a design in the post-drawing. In the second visual, the female student with the code S20 drew a construction engineer who is building a house in the pre-drawing whereas she drew a food engineer who is doing development research for food production. The female student in the third visual with the code S45 drew a mining engineer who is doing supervision in the pre-drawing where as she drew a survey engineer who is doing a calculation in the post-drawing.
Figure 3. Examples related to the objects found in the pre and post-drawings.

Table 10.
Findings Related to the Workspace of Engineers in the Drawings.

Workspace	Pre-drawing	Post-drawing
	f %	f %
Not indicated	6 11.54	- -
Construction	27 51.92	6 11.54
Mining	2 3.84	4 7.69
Genetics	1 1.92	3 5.77
Chemistry	1 1.92	4 7.69
Energy systems	- -	3 5.77
Ship machines	1 1.92	3 5.77
Computer	2 3.84	4 7.69
Electricity	2 3.84	5 9.61
Machinery	3 5.77	5 9.61
Food	2 3.84	4 7.69
Map	2 3.84	4 7.69
Industry	1 1.92	3 5.77
Automotive industry	2 3.84	4 7.69
Total	52 100.00	52 100.00
Discussion, Conclusion & Implications

As a result of this study, which aimed at determining the effect of DBSE applications on the perceptions of science teacher candidates about engineering education and engineers, it was determined that the applications positively affected the teacher candidates’ perceptions of engineering education. After the applications carried out by the teacher candidates, it was observed that their perceptions about importance of engineering, familiarity with engineering, characteristics of engineering and engineers changed in a positive manner. In another study using legos in the design process, similar to the findings of the present study, it was determined that the perceptions of pre-service teachers about engineering education changed positively after the applications (Sungur Gül &
Marulcu, 2014). Results of previous research in the literature showed that, following DBSE applications, the perceptions of teacher candidates changed positively related to these applications, engineering, engineers and design (Yıldırım, 2018) and that prospective teachers stated positive opinions about DBSE (Bozkurt, 2014; Bozkurt Altan et al., 2016; Hacıoğlu, 2017).

In the study, the freehand drawings of the teacher candidates were also evaluated to determine the effect of DBSE applications on the perceptions of the science teacher candidates about engineers. The findings support the quantitative findings obtained with the engineering education survey. According to the findings, it was determined that DBSE applications positively affected the teacher candidates’ perceptions of engineers. The majority of teacher candidates reflected the stereotypical thought that engineering was a male profession before their applications. It was determined that the presence of female engineers increased in the drawings created after the applications. Unlike the results of the present study, it was determined that most teacher candidates used male figures in engineer drawings in a case study where teacher candidates’ drawings were evaluated after DBSE applications (Yıldırım, 2018). It is stated in the results of other studies in the literature that students and teacher candidates adopted the stereotypical idea that engineers are mostly male (Fralick et al., 2009; Karataş et al., 2011; Ünlü & Dökme, 2017; Yıldırım, 2018).

In the study, it was seen in the pre-drawings of the teacher candidates that they mostly drew engineers as a people working on their own whereas the number of engineers working in teams increased in the post-drawings. It can be said that DBSE applications carried out by teacher candidates in collaborative groups played an effective role in the emergence of this result. It was determined that prior to the applications, the activities carried out by engineers depicted in the drawings of the teacher candidates were mostly constructing, repairing and using materials whereas these activities decreased in the post-drawings and activities of designing, developing, calculating, doing research/analysis and doing experiments increased. Similarly, it was determined that the number of materials mostly seen in the drawings which were related to constructing and repairing activities decreased in the post-drawings and the rate of activities such as designing, developing, calculating, doing research/analysis and doing experiments increased in the post-drawings. The statements of the teacher candidates on the activities of the engineers in the pre and post-drawings also support these findings. For instance, the student with the code S6 stated, “The construction engineer in the drawing is repairing the damage on the bridge” in his pre-drawing whereas he stated, “The mechanical engineer is designing a car which works with solar energy” in his post-drawing. Similarly, the student with the code S21 stated, “The construction engineer I have drawn is going to his workspace to do supervision” in the pre-drawing whereas the student stated, “The solar and wind energy engineer is calculating the productivity of the wind turbine” in the post-drawing.

In the studies in the literature, it is stated that both teachers and students describe engineers as individuals who do repair and construction work (Capobianco, Diefes-Dux, Mena, & Weller, 2011; Cunningham, Lachapelle, & Lindgren-Streicher, 2006; Fralick et al., 2009; Karataş et al., 2011; Knight & Cunningham, 2004; Yıldırım, 2018). It was determined in the study that DBSE applications positively affected the perceptions of the teacher candidates about the work area of engineers. While mostly construction engineers were described in the pre-drawings, it was seen that different work areas such as mining, genetics, chemistry, ship machines, computer, electricity, machinery, food, map, industry, automotive and energy systems were also depicted in the post-drawings. Unlike this finding, in a case study in which the perceptions of classroom teacher candidates about engineers were determined after DBSE applications, Yıldırım (2018) stated that the drawings of teacher candidates mostly included civil engineer figures followed by computer and agricultural engineer figures, respectively. As a result, it can be expressed that the DBSE applications related to different engineering areas carried out in this study positively affected the perceptions of the teacher candidates about the work areas of engineers and thus, the work areas which were not found in the pre-drawings were depicted in the post-drawings.
In our country, there is a great role to be assumed by teachers in STEM branches in terms of carrying out the Science, Engineering and Entrepreneurship Applications which is a part of the 2018 science education program. In the education program, although there are learning outcomes related to STEM education, there are no application examples of how these learning outcomes can be achieved. DBSE is one of the widely used approaches to implement STEM education. It is considered important that teachers receive both theoretical and applied education in their undergraduate training concerning how they should implement DBSE. In this respect, selective or compulsory classes related to DBSE can be provided in teaching programs of science education in education faculties and teaching programs in other areas of STEM. In this study, the perceptions of teacher candidates about engineers were identified through drawings. Besides the drawings, researchers can conduct interviews or use different measurement tools to determine teacher candidates’ perceptions of engineer. Experimental studies with control groups can be carried out and the effect of different STEM education approaches on the perceptions of teacher candidates about engineering education and engineers can be identified.

This study is limited with the DBSE applications developed by 52 juniors who received education in the science education program in a medium sized university’s faculty of education located in the Aegean region in the spring semester of 2016-2017 academic year and took the Science Education Laboratory Applications II lesson. The researchers can conduct studies using different DBSE applications in different teaching programs, involving different grade levels and different lessons. It is suggested that these studies are carried out in cooperative groups in line with the nature of DBSE and engineering.
Giriş

21. yüzyılda ihtiyaç duyulan fen ve teknoloji okuryazarı bireylerin yetiştirilmesi için fen bilimleri, teknoloji, mühendislik ve matematik (STEM) disiplinlerindeki temel bilgileri kavrama ve bu bilgileri beceriye dönüştürme gerekliliği yönünde bir fikir birliği bulunmaktadır, bu disiplinlerden sadece fen ve matematik, K12 düzeyindeki öğretim programlarında bulunmaktadır (National Academy of Engineering [NAE], 2010). STEM eğitiminin gerçekleştirilme için öğretim programlarında teknoloji ve mühendislik disiplinlerinin de yer alması gerektiği belirtilmektedir (Bybee, 2010). STEM disiplinlerinin tamamının öğretim programında yer aldığı ancak disiplinler arasındaki bağlantılılar yer verilmediği takdirde de başarılı olamayacağı ifade edilmektedir (Dugger, 2010). Amerika’da STEM bir hükümet politikası haline gelmiş (NAE, 2010; National Research Council [NRC], 2010) ve birçok Avrupa ülkesinde, STEM disiplinlerine ve STEM eğitimine verilen önem artmıştır (Çorlu, Capraro, & Capraro, 2014).

Bu bağlamda çağdaş fen eğitiminin, STEM disiplinlerinin öğretim programlarına entegrasyonu ile yeniden yapılandırılması ve mühendislik disiplinileyle öğrencilerin erken yaşlarda tanışması Türkiye için de bir gereklilik halini almıştır.

Türkiye’de STEM entegrasyonuna yönelik ilk adım 2005 yılında “Fen ve Teknoloji” dersi öğretim programı ile atılmıştır (Milli Eğitim Bakanlığı [MEB], 2006). 2017 yılında güncellenen Fen Bilimleri Dersi Öğretim Programı’na STEM eğitiminin mühendislik disiplinine yönelik olarak “Fen ve Mühendislik Uygulamaları” ünitesi ile “Mühendislik ve Tasarım Becerileri” eklenmiştir (MEB, 2017). 2018 yılında yayınlanan programda ise tüm ünitelerde “Fen, Mühendislik ve Girişimcilik Uygulamaları”na yer verilmiştir. Söz konusu bu uygulamalar aracılığıyla STEM disiplinlerinin bütünleştirilmesi sağlanarak, öğrencilerin günlük hayat problemlerini disiplinler arası bir bakış açısıyla ele almaları, edindikleri bilgi ve becerileri kullanarak problemlerin çözümüne yönelik bir ürün oluşturmayı amaçlanmaktadır (MEB, 2018).

Literatürde mühendislik tasarım problemlerinin fen bilimleri eğitimini için bir bağlam oluşturduğu yaklaşımlar “Tasarım Temelli Fen Eğitimi” (TTFE) olarak adlandırılmaktadır. Bu yaklaşımda fen kavram ve süreçlerinin öğreniminin, mühendislik problemlerini aracılığıyla bilimsel araştırma ve mühendislik tasarım süreci yoluyla geçmişte belirtilmektedir (Daugherty, 2012; Kolodner, 2002; Wendell, 2008). TTFE’de öğrenme süreci fen ve matematik alanlarının içeren bir probleme başlar. Bu problem üzerinden mühendislik tasarım sürecinin basamakları uygulanır ve sonucu bir ürün oluşturur. Bu ürün aracılığıyla fen ve matematik konuları öğrenilir (Culver, 2012).

Tasarım temelli bir fen dersinde legoların uygulamalar için kullanıldığı bir araştırmada, mühendisleri tasarım yaparken kullanıkları döngü ve bu döngüde yer alan basamakları modellemiştir. Modelin merkezinde tasarım süreci, çevresinde ise bu süreç esnasında yürütülecek fen bilimleri dersinin süreci yer almaktadır (Wendell et al., 2010). Merkeze yer alan süreçte göre problem belirlenmesi ilk basamağı oluşturmaktadır ve bu basamak fen bilimleri dersinde tasarım görüşünün açıklanması basamağında karşılık gelmektedir. Bu basamakta öğrencilere büyük tasarım görevini gerçekleştirebilmeleri için neleri bildiklerini ve neleri öğrenmeleri gerektiğini ifade etmeleri istenir. Tasarım dönemünün ikinci basamağı, olası çözümlerin araştırılması oluş bu basamakta öğrencilere büyük tasarım görevi için mini tasarım görüşlerini ve mini bilimsel arastırımları yerine getirmeleri istenir. Söz konusu tasarım görüşleri ve araştırma çalışmalarının daha çok fiziksel ürün oluşturma ve bu ürünleri test etme şekilde olması tavisye edilmektedir. Öğrenciler, bu basamakta elde ettikleri bulgular en uygun çözümün belirlenmesi basamakında kullanılabilmektedir. Sürecin son basamağı ise prototip yapımı ve test edilmesidir. Bu basamak, öğrencilerin büyük tasarım görevi için prototip yapma, test etme, iyileştirme ve son olarak grup arkadaşlarına sunum yapma faaliyetlerini içermektedir (Ercan, 2014; Wendell et al., 2010). Sürec Şekil 1’de özetlenmiştir.
Derslerinde TTFE yaklaşımlını kullanacak bir öğretmen, öncelikle derste kazandırmayı hedeflediği kazanımları, ardından bu kazanımları içeren büyük tasarım görevini belirlemelidir. Sonrasında büyük tasarım görevini gerçekleştirmeleri sürecinde öğrencileri gereken bilgi ve becerileri kapsayan uygulamalar planlamalı ve öğrencilerin bu uygulamalar kapsamında büyük tasarım görevlerini yapmaları için prototip oluşturma ve prototipi test etme sürecinde gerekli öğrenme ortamını hazırlamalı, araç ve gereçleri temin etmelidir (Bozkurt Altan, Yamak, & Buluş Kırıkkaya, 2016). Dolayısı ile fen bilimleri öğretmeni adaylarının TTFE ile mühendisliği fen derslerine entegre edebilme yeterliliği kazanmaları ve lisans eğitimlerinde buna yönelik uygulamalar yapmaları önemlidir. Bu bağlamda araştırmada TTFE uygulamalarının fen bilimleri öğretmeni adaylarının mühendislik eğitimi ve mühendis algılara etkisinin belirlenmesi amaçlanmıştır.

İlgili Araştırmalar

Son yıllarda STEM eğitimi yaklaşımsının artan popülaritesi, K-12 düzeyinde tüm kademelerde TTFE konulu araştırma sayısı artmışdır. Literatürde ilkokul ve ortaokul öğrencileri ile gerçekleştirilen TTFE konulu araştırmalar bulunmaktadır (Ercan, 2014; Kolodner et al., 2003; Marulcu, 2010; Penner, Giles, Lehrer, & Schauble, 1997; Roth, 2001; Sadler, Coyle, & Schwartz, 2000; Schnittka & Bell, 2011). Bu araştırmalarda TTFE uygulamalarının öğrencilerin akademik başarısını artırdığı (Ercan, 2014; Marulcu, 2010; Roth, 2001), bilimsel süreç becerilerinin ve karar verme becerilerinin gelişimini sağladığı (Ercan, 2014; Sadler et al., 2000) ve mühendisliğe yönelik bilgi düzeylerinin gelişimine katkı sağladığı belirtilmiştir (Ercan, 2014).

Literatürde öğretmen adayları ile gerçekleştirilen ve TTFE uygulamalarını konu edinen araştırmalar da bulunmaktadır (Bozkurt, 2014; Bozkurt Altan et al., 2016; Capobianco, 2011; Hacıoğlu, 2017; Hacıoğlu, Yamak, & Kavak, 2016; Kink Topalsan, 2018; Marulcu & Sungur, 2012; Sungur Gül & Marulcu, 2014; Yıldırım, 2018). Bu araştırmalarda öğretmen adaylarının, tasarım sürecinin sorgulama ve eleştirel düşünceye dayalı olduğunun, kalıcı öğrenmeyi sağladığı ve büyük tasarım görevinin güdüleyici olduğu bilirtilmektedir (Bozkurt Altan et al., 2016; TTFE uygulamalarının öğretmen adaylarının bilimsel yaratıcılık ve eleştirel düşünceye dayalıاقتصادi becerilerini (Hacıoğlu, 2017), karar verme ve bilimsel süreç becerilerini geliştirdiği (Bozkurt, 2014) ve öğretmen adaylarının TTFE’ye yönelik olumsuz görüşler belirtebilecek olabilecekleri sonuçlara ulaşılmıştır (Hacıoğlu et al., 2016).
Diğer bir araştırmanın bulgularına göre, öğretmen adaylarının mühendislik alanında ilişkin bilgilerinin temel seviyede olduğu ve fen bilimleri dersini tasarım süreci ekseninde yürütebilecek yeterliliğe sahip olmayarak belirlenmiştir (Marulcu & Sungur, 2012). Kınık Topalsan (2018), sınıf öğretmeni adaylarının démarche dünyasında bu alanına ilişkin bilgilerinin temelli etkinlikleri değerlendirildiği araştırma dünyasında, öğretmen adaylarının problemi tanımlama basamağında düşük performans gösterdiğini, bu basamaktaki skıntı derslerinde bu skıntı olarak tespit edilmekte. Başka bir araştırma TTTE uygulamaları sonucunda öğretmen adaylarının, söz konusu uygulamalar, mühendislikte, mühendise ve tasarım sürecinin ilgili görüşlerinin olumlu bir şekilde farklılaştırıldığı ve öğretmen adaylarının TTTE’nin yaratıcılık, merak, özgüven, empati gibi özellikleri geliştirdiğini belirlenmiştir (Yıldırım, 2018). Diğer bir araştırma ise, sınıf öğretmen adaylarının mühendis ve mühendislikle ilgili fen bilimleri öğretmen adaylarının temel seviyede olduğu, fen bilimleri dersini tasarım süreci ekseninde yapılandırabilecek ve legoları bu süreçte kullanabilecek düzeyde yeterliliklerinin bulunmadığı tespit edilmektedir (Sungur Gül & Marulcu, 2014).

Araştırma sonuçlarına göre öğretmen adaylarının TTTE uygulamalarına yönelik çoğunlukla olumlu düşüncelere sahip olmalarına rağmen olumsuz düşünceler de belirttiler; uygulamaları meslektel hayattan kullanmak istemelerine rağmen uygulamaların esnasında skıntı yaşadıkları ve mühendislikle ilgili temel düzeyde bilgiye sahip oldukları ifade edilmektedir. Öğretmen adaylarının TTTE uygulamaları ile ilgili karşi çatışmaları skıntılar göz önune alındığında her öğretmen adayının lisans eğitiminde TTTE’ye yönelik teorik ve uygulamalı eğitim almasını önemli olduğu düşünülmektedir. Bu araştırma, fen bilimleri öğretmen adaylarıyla, Fen Öğretimi Laboratuvar Uygulamaları II dersinde TTTE’ye yönelik olarak 14 hafta boyunca teorik ve uygulamalı eğitim verilmiş, öğretmen adaylarının işbirlikli gruplarında tasarım temelli uygulamaları yapmaları sağlanmıştır. Araştırma, öğretmen adaylarının meslektel hayatlarında TTTE uygulamalarını gerçekleştirmeye yeterlilik kazanmaları ve ulkmidec STEM eğitiminin gelişimine katkı sağlanması noktasında önemli olduğu düşünülmektedir. Bu araştırmada TTTE uygulamalarının fen bilimleri öğretmen adaylarının mühendislik eğitimi ve mühendis algılarına etkisi analitiğinde amaçlanmıştır. Bu amaçla aşağıdaki araştırma soruları yanıtlanmaya çalışılmıştır.

1. TTTE uygulamalarının fen bilimleri öğretmeni adaylarının mühendislik eğitimi algısına anlamlı etkisi var mıdır?
2. TTTE uygulamalarının fen bilimleri öğretmeni adaylarının mühendis algılarına anlamlı etkisi var mıdır?

Yöntem

Araştırmanın Deseni

Bu araştırma, nicel ve nitel yöntemlerin bir arada kullanıldığı bir karma yöntemi araştırmaştır. Karma yönteminin, tek başına kullanılan bir araştırma yönteminden daha üstün olduğu ve problemin çözümünde nitel ve nicel verilerin beraber işe koşulması problemin daha iyi anlaşılağını sağladığı belirtilmektedir (Creswell & Plano Clark, 2007). Araştırmanın nicel bölümü tek gruplu ön test-son test yöntemi deneyde desen kullanılarak gerçekleştirmiştir. Bu deneyde desende tek bir grup olan deneklerin başlangıç skıntılarını ilan edilmiş, mühendislikte ilgili bilgileri sahip oldukları ifade edilmektedir. Öğretmen adaylarının, TTTE uygulamalarının mühendislik eğitimi ve mühendis algılarına etkisi araştırması, öğretmen adaylarının TTTE uygulamalarının fen bilimleri öğretmeni adaylarının mühendislik eğitimi ve mühendis algılarına etkisi araştırmasına katkı sağlamaktadır. Bu amaçla aşağıdaki araştırma soruları yanıtlanmaya çalışılmıştır.

1. TTTE uygulamalarının fen bilimleri öğretmeni adaylarının mühendislik eğitimi algısına anlamlı etkisi var mıdır?
2. TTTE uygulamalarının fen bilimleri öğretmeni adaylarının mühendis algılarına anlamlı etkisi var mıdır?
Çalışma Grubu

Araştırmadaki çalışma grubu, 2016-2017 öğretim yılı bahar döneminde Ege bölgesindeki orta büyüklüktedeki bir üniversitenin Fen Bilgisi Öğretmenliği programında öğrenim gören ve Fen Öğretimi Laboratuvar Uygulamaları II dersini alan 52 (42 kız, 10 erkek) üçüncü sınıf öğrencisinden oluşmaktadır. Çalışma grubunun belirlenmesinde, amaçlı örnekleme yöntemlerinden, ölçüt örnekleme yöntemi kullanılmıştır. Bu örnekleme yönteminde araştırmacı, önceden belirlediği belli bir takım ölçütleri karşılayan bütün durumları ele almaktadır (Yıldırım & Şimşek, 2011, p. 122). Bu araştırmadaki başlıca ölçü, katılımcıların Fen Öğretimi Laboratuvar Uygulamaları II dersini alıyor olmalarıdır. Bu ölçünün belirlenmesinin nedeni ise bu ders kapsamında katılımcılar bir dönem boyunca TTFE’ye ilişkin teorik bilgi verilmesi ve dersin uygulama kısmında alınan teorik bilgi doğrultusunda işbirlikli gruplarda TTFE uygulamalarının gerçekleştirilmesidir.

Veri Toplama Araçları

Araştırmada yapılan TTFE uygulamalarının, öğretmen adaylarının mühendislik eğitimi ve mühendis algılara etkisini belirlemek amacı ile ‘Mühendislik Eğitimi Anketi’ ve ‘Bir Mühendis Çiz Testi’ kullanılmıştır.

Mühendislik Eğitimi Anketi: Araştırmada Yaşar, Baker, Robinson-Kurpius ve Roberts (2006) tarafından kadarın K-12 öğretmenlerinin mühendislik eğitimi algılarnını belirlemek amacıyla geliştirilen, Sungur (2013) tarafından Türkçe ‘ye uyarlanan anket kullanılmıştır. Orijinal anket mühendisliğin önemi (18 madde), mühendisliğe aşinalık (12 madde), mühendislerin basmakalıp özellikleri (5 madde) ve mühendisliğin ve mühendislerin özellikleri (6 madde) olmak üzere 4 faktör ve 41 maddeden oluşmaktadır. Araştırmacılar anket alt boyutlarına ve tamamına ilişkin Cronbach alpha güvenilirlik katsayı değerlerini sırasıyla .91, .83, .76, .66 ve .88 olarak hesaplamıştır (Yaşar et al., 2006). Türkçe uyarlanan anketin güvenilirliğini belirlemek için ön test ve son test verilerine ilişkin Cronbach alpha güvenilirlik katsayı değerleri hesaplanmıştır. Analiz sonuçları Tablo 1’dede sunulmuştur.

Tablo 1.
Mühendislik Eğitimi Anketinin Güvenirlik Analizi Sonuçları.

Alt Boyutları ve Anket	Cronbach alpha Ön Test	Cronbach alpha Son Test
Mühendisliğin Önemi	.83	.87
Mühendisliğe Aşinalık	.70	.79
Mühendisliğin ve Mühendislerin Özellikleri	.60	.67
Mühendislik Eğitimi Anketi	.84	.89

Tablo 1’deki analiz sonuçlarına göre ön test ve son test verilerine ait Cronbach alpha katsaylarının anketin tamamında .70 değerinin üzerinde olduğu görülmektedir. Büyüköztürk’e (2017) göre Cronbach alpha değerinin .70 ve üzerinde olması ölçme aracının güvenilirliği için kabul edilebilir olduğundan anketin güvenilir olduğu söylenebilir.

Bir Mühendis Çiz Testi: Araştırmada öğretmen adaylarının mühendis algılarnını belirlemek amacıyla Knight ve Cunningham (2004) tarafından geliştirilen ‘Bir Mühendis Çiz Testi’ göz önünde bulundurularak bir çizim formu oluşturulmuştur. Formda boş bir kutucuğun içerisinde çalışan bir mühendis çizinin iadesi bulunmakta ve kutucuğun altında “Çizdiğin mühendis ne yapıyor? Kısaca açıklayın.” sözü yer almaktadır. Öğretmen adaylarının açık uçlu soruya verdiği verilerden yanıtlandan çizimlerin daha iyi değerlendirilmesi noktasında yararlanılmıştır.
Verilerin Toplanması ve Araştırmaının Uygulama Süreci

Uygulama sürecine geçmeden önce araştırmanın yürütüldüğü üniversitenin ilgili etik kurulu birimine başvurulacak araştırmanın gerçekleştirilmesi için gerekli olan etik izin raporu alınmıştır. Öğretmen adayları ile TTFE uygulamaları odaklı Fen Öğretimi Laboratuvar Uygulamaları II dersi 14 hafta boyunca yürütülmüştür. İki şubede öğrenim gören 52 öğretmen adayı, 13 adet heterojen özellikte işbirlikli öğrenme grubu oluşturulmuştur. Öğrenciler düşень başına derse seçimleri doğrultusunda, üniversite bilgi sistemince belirlenen iki şubede yer almaktadır. Her bir şubedeki öğrencilere, 4’er kişiden oluşan, A şubesinde 7 adet, B şubesinde ise 6 adet olmak üzere toplam 13 grup oluşturulmuştur. Grupların belirlenmesinde öngürlülük esas ile birlikte cinsiyet bakımından heterojenlik özelliği dikkate alınmıştır.

Bu gruplarda gerçekleştirilen TTFE uygulamaları ise rüzgar türbini, kendi elektriğini üreten ev, anti bakteriye ilaç, roket, köprü, güneş enerjisi ile hareket eden araba, eko şehir, taka, robot, hidrolik kol, hidrolik köprü, uçak ve hız treni şeklindedir. Uygulama süreci iki şubede dersi yürüten araştırmacılar tarafından gerçekleştirilmiştir. Araştırmacılar, TTFE ile ilgili teorik bilgileri verdikten sonra gerçekleştirilen uygulamalarla öğrencileri rehberlik yapmıştır. Uygulama sürecinde gerçekleştirdikleri çalışmalar Tablo 2'de sunulmuştur. Öğretmen adaylarının gerçekleştirildikleri TTFE uygulamalarından seçilen bazı örnekler Tablo 3'te sunulmuştur.

Tablo 2. Araştırmaının Uygulama Süreci.

Haftalar	Gerçekleştirilen Uygulamalar	Süre (dk)
1. Hafta	STEM eğitimi nedir? STEM alanlarının tanıtımı konulu sunum yapılması	40+40+40+40
2. Hafta	Tasarım Temelli Fen Eğitimi Nedir? Nasıl uygulanır? Konulu sunum yapılması	40+40+40+40
3. Hafta	Mühendislik tasarım süreci nedir? Sürecin basamakları nelerdir? Konulu sunum yapılması	40+40+40+40
4. Hafta	Fen eğitiminde mühendislik tasarım sürecine dayalı uygulama önemi ve örneklerinin katılmacılara sunulması	40+40+40+40
5. Hafta	Gerçekleştirilerek uygulamaların belirlenerek, işbirliktelik grupların oluşumu	40+40+40+40
6. Hafta	Öğretmen adaylarının tasarımlarına ilişkin uygulamaların yörenin 40+40+40+40 araştırma ve çalışmaları gerçekleştirilmesi	40+40+40+40
7. Hafta	Öğretmen adaylarının tasarımlarına ilişkin günlük hayat problemi 40+40+40+40 belirleneleri ve büyük mühendislik tasarım görevinin açıklanması	40+40+40+40
8. Hafta	Olası çözümüların araştırılması, mini tasarım görevlerinin ve mini bilimsel araştırmaların yapılması	40+40+40+40
9. Hafta	En uygun çözümün belirlenmesi	40+40+40+40
10. Hafta	Prototipin yapılması ve test edilmesi	40+40+40+40
11. Hafta	Prototipin iyileştirilmesi ve öğretmen adaylarının diğer gruplara prototipin sunulması	40+40+40+40
12-14. Hafta	Öğretmen adaylarının diğer gruplara prototipin sunulması	40+40+40+40

Verilerin Analizi

Nicel verilerin analizi: Araştırma nicel verilerin analizine geçmiş önce, mühendislik eğitimi anketi ve alt boyutlarından elde edilen ön test ve son test puanlarının normalliğini belirlemiştir. 50'den büyük örneklemelerde Kolmogorov-Smirnov normallık testinin kullanılması önerilmektedir (Büyüköztürk, 2017); araştırma örneklemesi büyükliği 52 olduğundan analiz için Kolmogorov-Smirnov testi kullanılmıştır. Analiz sonuçları Tablo 4'te sunulmuştur.
Tablo 3.

Tasarının Görseli	Tasarının İçeriği ve Öğretim Programındaki Öğrenci Kazanımları
Antibakteriyel Diş Fırçalık	**Diş fırçasının üzerine bakteri üremesi problemine çözüm için UV ışınlarının kullanılması** bir tasarım yapılması.
1. Mikroskobik canlıları mikroskop ile gözlemler.
2. Mikroskobik canlıları gözlemlerken güvenlik ve hijyen ile ilgili gerekli tedbirleri alır.
3. Mikroorganizmaların üremesini engelleyen bir tasarım yapar. |
| **Taka** | **Denizde balık tutma problemine çözüm için su üzerinde durabilen ve en fazla yük taşıyabilen bir tasarım yapılması.**
1. Beş duyusunu kullanarak maddenin temel özelliklerini açıklar.
2. Yoğunluğu tanımlar ve birimini belirter.
3. Maddelerin kütle ve hacimlerini ölçerek karşılaştırır.
4. Ölçülebilir özellikleri kullanarak maddeyi tanımlar.
5. Uygun yoğunluktaki maddeleri kullanarak taka inşa eder. |
| **Güneş enerjisi ile hareket eden araba** | **Enerji tüketimi fazla olduğu ve yüksek fatura problemine çözüm için yenilenebilir enerji kaynaklarınızı kullanın** bir tasarım yapması.
1. Çevre için yenilenebilir enerji kaynaklarınıın önemini kavrar.
2. Güneş enerjisinin elektrik enerjisine dönüştürebileceğini fark eder.
3. Güneş paneli kullanarak elektrik üreten basit motor devreli bir araç tasarlar. |
| **Kendi elektriğini üreten ev** | **Tablo 4’teki analiz sonuçlarına göre anket ve alt boyutlarından alınan ön test ve son test puanları normal bir dağılım göstermektedir (p > .05). Bu nedenle öğretmen adaylarının ön test ve son test puanlarının karşılaştırılmasında bağımsız örneklemeler için t testi kullanılmıştır.** |
Tablo 4.
Ön Test ve Son Test Verilerinin Normallik Test Sonuçları.

Alt boyutları ve Anket	Test	İstatistik	sd	p
Mühendisliğin Önemi	Ön	.09	52	.14
	Son	.08	52	.83
Mühendisliğe Aşinalık	Ön	.13	52	.36
	Son	.08	52	.42
Mühendisliğin ve Mühendislerin Özellikleri	Ön	.09	52	.14
	Son	.11	52	.18
Mühendislik Eğitimi Anket	Ön	.09	52	.87
	Son	.07	52	.70

**Nitel verilerin analizi: “Bir Mühendis Çiz” testinden elde edilen verilerin analizinde içerik analizi kullanılmıştır. İçerik analizi ile benzerlik gösteren veriler belirli kavramlar ve temalar çerçevevesinde bir araya getirilir ve okuyucunun anlayabileceği şekilde düzenlenerek yorumlanır (Yıldırım & Şimşek, 2016). Öğretmen adaylarının çizimleri değerlendirilirken çizim formunda yaptıkları çizim içerikli olarak açıklanan verilerin altı temalar çerçevevesinde bir araya getirilir ve okuyucunun anlayabileceği şekilde düzenlenerek yorumlanır (Yıldırım & Şimşek, 2016). Öğretmen adaylarının çizimlerinin tamamı araştırmacilar tarafından incelemektedir. Çizimlerin jarar mühendisinin yaptığı aktivite ve bulunan nesnelerin algılanması ve birden fazla kod oluşturulmuş duruma gelmektedir. Öğretmen adaylarının çizimleri, mühendis cinsiyeti, mühendis sayısı, yapılan aktivite, çizimde bulunan nesneler ve mühendislik alanları alt başlıklarında, araştırmacılardan oluşturulan bir çizim değerlendirme formu aracılığı ile değerlendirilmiştir. Çizim değerlendirmesi formu oluşturulurken, literatürde yer alan araştırmalarda mühendis çizimlerini değerlendirmek üzere kullanılan formlardan yararlanılmıştır (Fralick, Kearn, Thompson, & Lyons, 2009; Gülhan & Şahin, 2018; Karataş, Micklos, & Bodner, 2011; Knight & Cunningham, 2004). Çöp adam ya da cinsiyeti net olarak anlaşılan çizimler belirsiz kategorisinde, kadın ve erkek grup çalışısı yapan mühendis çizimleri ise kadın kategorisinde değerlendirilmiştir.

Bulgular

Birinci Araştırma Sorusuna İlişkin Bulgular

TTFE uygulamalarının öğretmen adaylarının mühendislik eğitiminin yönlendirme sonuçları etkisini belirlemek amacı ile anket ve alt boyutlarından alınan ön test ve son test puanları bağlımlı örneklemeler için t testi ile karşılaştırılmıştır. Analiz sonuçları Tablo 5’teki sunmuştur. Tablo 5’teki analiz sonuçlarına göre, öğretmen adaylarının mühendislik eğitimi anketi ön test ve son test puanları arasında istatistiksel olarak anlamlı bir fark bulunmamaktadır ($t_{513} = -7.08$, $p < .05$). Ayrıca anketin, mühendisliğin önemi alt boyutunda ($t_{513} = -6.74$, $p < .05$), mühendisliğe așinalık alt boyutunda ($t_{513} = -5.28$, $p < .05$) ve mühendisliğin ve mühendislerin özelliklerini alt boyutu ($t_{513} = -4.28$, $p < .05$) ön test ve son test puanları arasında istatistiksel olarak anlamlı bir fark bulunmamaktadır. Anket genelindeki ve alt boyutlardaki ön test ve son test puan ortalamalarına bakıldığında farkın son test lehine olduğu görülmektedir.
Tablo 5.
Ön Test ve Son Test Puanlarına İlişkin Bağımlı Örneklemler İçin t Testi Analiz Sonuçları.

Alt boyutları ve anket	Ölçüm	N	X̅	S	sd	t	p
Mühendisliğin Önemi	Ön test	52	3.96	.44	51	-6.74	.00**
	Son test		4.34	.41			
Mühendisliğe Aşinalık	Ön test	52	3.33	.54	51	-5.28	.00**
	Son test		3.78	.59			
Mühendisliğin ve Mühendislerin Özellikleri	Ön test	52	3.93	.41	51	-4.28	.00**
	Son test		4.18	.42			
Mühendislik Eğitimi Anketi	Ön test	52	3.74	.34	51	-7.08	.00**
	Son test		4.10	.38			

** p < .05.

İkinci Araştırma Sorusuna İlişkin Bulgular

TTFE uygulamalarının öğretmen adaylarının mühendis algılarına etkisini belirlemek amacı ile mühendis çizimleri, mühendisin cinsiyeti, mühendis sayısı, yapılan aktivite, çizimde bulunan nesneler ve mühendislik alanı alt başlıklarında çizim değerlendirme formu ile değerlendirilmiştir. Analiz sonuçları Tablo 6, 7, 8, 9 ve 10'da sunulmuştur. Öğretmen adaylarının ön ve son çizimlerindeki mühendislere cinsiyetine ilişkin analiz sonuçları Tablo 6'da sunulmuştur.

Tablo 6.
Çizimlerdeki Mühendis Cinisiyetine İlişkin Bulgular.

Mühendis Cinisiyeti	Ön Çizim	Son Çizim				
	Kadın %	Erkek %				
	f	%	f	%		
Kadın Mühendis	6	14.30	15	35.71	3	30.00
Erkek Mühendis	32	76.20	25	59.53	7	70.00
Belirsiz	4	9.52	2	4.76	0	0.00

Tablo 6'da sunulan analiz sonuçlarına göre, ön çizimde kadın katılımcılar %14.30 oranında kadın mühendis, %76.20 oranında erkek mühendis çizmiştir. Son çizimde ise %35.71 oranında kadın mühendis, %59.53 oranında erkek mühendis çizmiştir. Erkek katılımcılar ön çizimde, %10.00 oranında kadın mühendis, %80.00 oranında erkek mühendis çizmiştir; son çizimde ise %30.00 oranında kadın mühendis, %70.00 oranında erkek mühendis çizmiştir. Öğretmen adaylarının çizimlerindeki mühendis sayısı belirlenerek, mühendisliğin takım çalışmasına dayanan bir meslek olduğu yönündeki algıları tespit edilmiştir. Analiz sonuçları Tablo 7 da sunulmuştur.

Tablo 7.
Çizimlerdeki Mühendis Sayısına İlişkin Bulgular.

Mühendis Sayısı	Ön Çizim	Son Çizim		
	f	%	f	%
Tek	51	98.08	32	61.54
Takım çalışması	1	1.92	20	38.46
Toplam	52	100.00	52	100.00

Tablo 7'deki analiz sonuçlarına göre, ön çizimde tek olarak betimlenen mühendis oranı %98.08, takım çalışması yapan mühendis oranı ise %1.92'dir. Son çizimlerde ise %61.54 oranında tek, %38.46 oranında takım çalışması yapan mühendis bulunmaktadır. Öğretmen adaylarının çizimlerindeki mühendislerin yaptıkları aktiviteler değerlendirilmiştir ve analiz sonuçları Tablo 7'de sunulmuştur.

Tablo 8'e göre, ön çizimde %20.88 olan inşa etme faaliyeti, son çizimde %9.71'e; ön çizimde %15.38 olan tamir etme faaliyeti, son çizimde %7.77'ye; ön çizimde %18.68 olan denetleme faaliyeti son çizimde %11.65'e ve ön çizimde %6.60 olan araç kullanma faaliyeti son çizimde %4.85'e düşmüştür. Son çizimde...
çizilme oranı artan faaliyetler ise tasarım yapmak (%8.80'den %20.38'e), geliştirmek (%7.70'ten %14.56'ya), hesaplamak (%5.50'den %9.71'e), araştırma/inceleme yapmak (%9.90'dan %13.60'a) ve deney yapmak (%3.30'dan %7.77'ye) olarak belirlenmiştir. Öğretmen adaylarının ön ve son çizimlerinden örnekler ve bu çizimlerdeki mühendislerin yaptıkları işlere ilişkin olarak yazdıkları cümleler Şekil 2'de sunulmuştur.

Tablo 8.
Çizimlerdeki Mühendis Aktivitelerine İlişkin Bulgular.

Aktivite	Ön Çizim	%	Son Çizim	%
İnşa etmek	19	20.88	10	9.71
Tamir/Onarım yapmak	14	15.38	8	7.77
Araç kullanmak	6	6.60	5	4.85
Tasarım yapmak	8	8.80	21	20.38
Geliştirmek	7	7.70	15	14.56
Hesaplamak	5	5.50	10	9.71
Araştırma/İnceleme Yapmak	9	9.90	14	13.60
Denetleme	17	18.68	12	11.65
Deney yapmak	3	3.30	8	7.77
Aktivite yok	3	3.30	-	-
Toplam	91*	100.00	103*	100.00

*Öğretmen adaylarının çizdiği mühendislerin yaptığı aktivitelere ilişkin toplam slik frekansıdır.

Şekil 2. Ön ve son çizimlerdeki mühendis aktivitelerine ilişkin örnekler.

Şekil 2’deki görselde Ö21 kodlu kadın öğrenci ön çizimde çizdiği inşaat mühendisi denetim yaptığını belirtirken, son çizimde ise çizdiği güneş ve rüzgar enerjisi mühendisinin hesaplaması yaptığıını belirtmiştir.

Öğretmen adaylarının çizimlerinde mühendisin çalışma ortamında bulunan nesneler değerlendirilmiş ve analiz sonuçları Tablo 9’da sunulmuştur. Tablo 9’daki analiz sonuçlarına göre çizimlerde betimlenen nesnelerden, son çizimde ön çizime göre sayışı azalanlar, tamir aletleri (ingiliz anahtarı, çekiç vb), kask, köprü/bina gibi yapılar, bilgisayar ve malzemeleri, kablolari/elektrikli aletler olarak belirlenmiştir. Son çizimde ön çizime göre çizilmiş orana artan nesneler ise plan/proje/harita, kalemler, T cetvel/gönye, laboratuar malzemeleri, rüzgar türbini ve gemi/araba olarak tespit edilmiştir. Öğretmen adaylarının ön ve son çizimlerinde yer alan nesnelere ilişkin örnekler ve bu çizimlerdeki mühendislerin yaptıkları işlere ilişkin olarak yazdıkları cümleler Şekil 3’te sunulmuştur.

Şekil 3’teki ilk görselde, Ö12 kodlu erkek öğrenci ön çizimde çizdiği inşaat mühendisi, son çizimde ise laboratuvarda deney malzemeleri kullanmak için cadir kimya mühendisi çizmiştir. Şekil 3’teki ikinci görselde Ö12 kodlu erkek öğrenci, ön çizimde mühendisin faaliyetini belirten mesaj ve çizimde tamir aletleri resmetmiştir, son çizimde ise yaptığı tasarıma proje üzerinde sunan inşaat mühendisi çizmiştir.
Tablo 9.
Çizimlerde Bulunan Nesnelere İlişkin Bulgular.

Çizimlerde Bulunan Nesneler	Ön Çizim	Son Çizim
Tamir Aletleri (İngiliz anahtarı, çekiç vb.)	13	6
Kask	11	3
Plan/Proje/Harita	11	17
Kalemler	9	12
Sıra/Masa	11	11
T cetvel/Gönye	9	10
Köprü/Bina Gibi Yapılar	12	8
Laboratuvar Malzemeler	6	14
Rüzgar Türbini	3	9
Bilgisayar ve Malzemeler	9	6
Kablolar/Elektrikli Aletler	9	5
Gemi/Araba	7	10
Toplam	110	111

*Öğretmen adaylarının çizimlerinde yer alan nesnelere ilişkin toplam sıklık frekansıdır.

Şekil 3. Ön ve son çizimlerde bulunan nesnelere ilişkin örnekler.

Öğretmen adaylarının çizimlerindeki mühendislerin çalışma alanları değerlendirilmiş ve analiz sonuçları Tablo 10’da sunulmuştur. Tablo 10’da göre, inşaat mühendisliği, son çizimde (%11.54) ön çizime (%51.92) göre daha düşük bir oranda tasvir edilmiştir. Ön çizimde %11.54 oranında çalışma alanı belirtilmezken, son çizimde bütün çizimlerde çalışma alanının belirtildiği görülmüştür. Enerji sistemleri mühendisliği ön çizimde yer almazken, son çizimde %65.77 oranında betimlenmiş.
Çalışma Alanı	Ön Çizim	Son Çizim
Belirtilmemiş	6	-
İnşaat	27	6
Maden	2	4
Genetik	1	3
Kimya	1	4
Enerji sistemleri	-	3
Gemi makineleri	1	3
Bilgisayar	2	4
Elektrik	2	5
Makine	3	5
Gıda	2	4
Harita	2	4
Endüstri	1	3
Otomotiv	2	4
Toplam	52	52
	100.00%	100.00%

Son çizimde ön çizime göre çizilme oranı artan mühendislik alanları maden, genetik, kimya, gemi makineleri, bilgisayar, elektrik, makine, gıda, harita, endüstri ve otomotiv olarak belirlenmiştir. Öğretmen adaylarının ön ve son çizimlerindeki mühendislerin çalışma alanlarına ilişkin örnekler ve bu çizimlerdeki mühendislerin yaptıkları işlere ilişkin olarak yazdıkları cümleler Şekil 4’tede sunulmuştur.

Şekil 4’teki ilk görselde Ö6 kodlu erkek öğrenci, ön çizimde onarım yapan bir inşaat mühendisi çizerken, son çizimde tasarım yapan bir makine mühendisi çizmiştir. İkinci görselde Ö20 kodlu kadın öğrenci, ön çizimde bina inşası yapan bir inşaat mühendisi çizerken, son çizimde gıda üretimi geliştirme çalışmalari yapan bir gıda mühendisi çizmiştir. Üçüncü görseldeki Ö45 kodlu kadın öğrenci, ön çizimde denetim yapan bir maden mühendisi çizerken, son çizimde hasaplama yapan bir harita mühendisi çizmiştir.

Tartışma, Sonuç ve Öneriler

TTFE uygulamalarının fen bilimleri öğretmeni adaylarının, mühendislik eğitimi ve mühendis algılarına etkisini belirlemeyi amaçlayan bu araştırma sonucunda, uygulamaların öğretmen adaylarının mühendislik eğitimi algılarını olumlu yönde etkilediği belirlenmiştir. Öğretmen adaylarının gerçekleştirildikleri uygulamaların ardından mühendisliğin önumsuz, mühendisliğe aşısalik, mühendisliğin ve mühendislerin özellikleriyle yönelik algıları, uygulama öncesine göre olumlu yönde değişmiştir. Tasarım sürecinde legoların kullanıldığı diğer bir araçtırmda, bu araştırma bulgusu ile benzer olarak, öğretmen adaylarının uygulamalar sonrasında mühendislik eğitimi ilişkin algılarının olumlu yönde değiştiği belirlenmiştir (Sungur Gül & Marulcu, 2014). Literatürde yer alan diğer araştırma sonuçlarında da TTFE uygulamaları sonucunda öğretmen adaylarının söz konusu uygulamalarla, mühendisliğe, mühendise ve tasarım yönelik düşüncelerinin olumlu yönde değiştiği (Yıldırım, 2018), öğretmen adaylarının TTFE’ye yönelik olumlu görüşleri belirtikleri tespit edilmiştir (Bozkurt, 2014; Bozkurt Altan et al., 2016; Hacıoğlu, 2017).

Araştırımda TTFE uygulamalarının fen bilimleri öğretmeni adaylarının mühendis algılarına etkisi belirlemek için öğretmen adaylarının serbest çizimleri de değerlendirilmiştir. Çizimlerin değerlendirildikleri sonucu elde edilen bulgular, mühendislik eğitimi anketiyle elde edilen nicel bulguları destekler niteliktidir. Elde edilen bulgulara göre TTFE uygulamalarının öğretmen adaylarının mühendis algılarını olumlu yönde etkilediği belirlenmiştir. Öğretmen adaylarının büyük çoğunluğu, uygulamalar öncesinde mühendisliğin erkek mesleği olduğu şeklindeki bazı mali bir durumda bulunan eğitimcileri yansıtmıştır.
Aysel ERGÜN, Gülbin KIYICI – Pegem Eğitim ve Öğretim Dergisi, 9(4), 2019, 1031-1062

Son çizim (Ö6)

Resimdeki inşaat mühendisi köprüdeki hasarları onarıyor.

Son çizim (Ö6)

Makine mühendisi güneş enerjisiyle çalışan bir araba tasarılıyor.

Ön çizim (Ö20)

Çizdiğim inşaat mühendisi evin temelini atıp inşa ediyor.

Son çizim (Ö20)

Resimdeki gıda mühendisi gıdaların güvenilir şekilde üretimi için geliştirme çalışmaları yapıyor.

Ön çizim (Ö45)

Çizdiğim maden mühendisi, madenden kömür çıkarılırken işçilerin denetimini yapıyor.

Son çizim (Ö45)

Çizdiğimiz harita mühendisi hesaplamalar yapıyor.

Şekil 4. Ön ve son çizimlerdeki mühendislerin çalışma alanlarına ilişkin örnekler.

Uygulamalar sonrası yapılan çizimlerde ise kadın mühendislerin oranının arttığı belirlenmiştir. Bu araştırmalar sonucunda farklı olarak TTTE uygulamaları sonrasında öğretmen adaylarının mühendis çizimlerinin değerlendirildiği bir durum araştırmasında, öğretmen adaylarının çoğunun mühendis çizimlerinde erkek figürü kullandıkları belirlenmiştir (Yıldırım, 2018). Literatürde yer alan diğer araştırma sonuçlarında da öğrencilerin ve öğretmen adaylarının, mühendislerin çoğunlukla erkek olduğu şeklindeki basmakalıp düşünceleri benimsedikleri belirtilmektedir (Fralick et al., 2009; Karataş et al., 2011; Ünlü & Dökme, 2017; Yıldırım, 2018).
Araştırma da öğretmen adaylarının uygulama öncesi çizimlerinde mühendisi çoğunlukla tek çizdikleri, uygulama sonrasında çizimlerde ise işbirlikli çalışma yapan mühendislerin arttığını görmürdür. Bu sonucun ortaya çıkmasına, araştırmada öğretmen adaylarının işbirliktirilmiş grupta gerçekleştirdikleri TTFE uygulamalarının etkili bir rol olduğunu söylenebilir. Öğretmen adaylarının çizimlerinde mühendislerin yaptıkları faaliyet uygulama öncesinde çoğunlukla inşa, tamir ve araç kullanma olarak belirtilmiştir. Öğretmen adaylarının çizimlerinde mühendislerin uygulama sonrası yerleşik faaliyetlerin arttığını belirtmiştir. Benzer olarak öğrencinin çizimlerinde mühendislerin inşa ve tamir faaliyetlerini yapmaları alanı olarak belirtilmiştir. Öğretmen adaylarının uygulama öncesi çizimlerinde inşa ve tamir faaliyetleri yapan mühendis genellikle aynı mühendis figürünü tekrarstattırırken, uygulama sonrası çizimlerinde ise bu figürün yanı sıra diğer mühendis figürleri de yer almasını belirtilmiştir. Bu bulguların önemünün anlaşılabilmesi için, araştırmacıların çizimlerin yanı sıra mülakatları yaparak ya da farklı ölçme araçlarını kullanarak, öğretmen adaylarının mühendis algılarını belirleyebilirler. Bu tür deneyler perdeyi açacaktır.
References

Bozkurt, E. (2014). Mühendislik tasarım temelli fen eğitiminin fen bilgisi öğretmen adaylarının karar verme becerisi, bilimsel süreç becerileri ve süreçe yönelik algılara etkisi. Unpublished doctorate dissertation, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.

Bozkurt Altan, E., Yamak, H., & Buluş Kırıkkaya, E. (2016). FeTeMM eğitim yaklaşıının öğretmen eğitiminde kullanılmasına yönelik bir öneri: Tasarım temelli fen eğitimi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 6(2), 212-232.

Büyüköztürk, Ş., Kılıç-Çakmak, E., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2016). Bilimsel araştırma yöntemleri. Ankara: Pegem Akademi Yayıncılık.

Büyüköztürk, Ş. (2017). Sosyal bilimler için veri analizi el kitabı istatistik, araştırma deseni SPSS uygulamaları ve yorum (23. ed). Ankara: Pegem Akademi Yayıncılık.

Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30-35.

Capobianco, B. M. (2011). Exploring a science teacher’s uncertainty with integrating engineering design: An action research study. Journal of Science Teacher Education, 22(7), 645-660.

Capobianco, B. M., Diefes-dux, H. A., Mena, I., & Weller, J. (2011). What is an engineer? Implications of elementary school student conceptions for engineering education. Journal of Engineering Education, 100(2), 304–328.

Creswell, J. W., & Plano Clark, V. (2007). Designing and conducting mixed methods research. Thousand Oask, CA: Sage.

Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (4th ed.). Boston: Pearson.

Culver, D. E. (2012). A qualitative assessment of preservice elementary teachers’ formative perceptions regarding engineering and K-12 engineering education. Unpublished master’s thesis, Iowa State University, USA.

Cunningham, C. M., Lachapelle, C. P., & Lindgren-Streicher, A. (2006). Elementary teachers’ understandings of engineering and technology. Presented at the American Society for Engineering Education Annual Conference & Exposition. Chicago, IL: American Society for Engineering Education. Retrieved January 20, 2019, from https://peer.asee.org/200.

Çepni, S. (2007). Araştırma ve proje çalışmalarına giriş (3rd ed.). Trabzon: Celepler Matbaacılık.

Çorlu, M. S., Capraro, R. M., & Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers in the age of innovation. Education and Science, 39(171), 74–85.

Daugherty, J. (2012). Infusing engineering concepts: Teaching engineering design. National Center for Engineering and Technology Education. Retrieved January 21, 2019, from https://digitalcommons.usu.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir =1&article=1160&context=ncete_publications.

Dugger, W. E. (2010). Evolution of STEM in the United States. Retrieved January 20, 2019, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.5804&rep=rep1&type=pdf.

Ekiz, D. (2009). Bilimsel araştırma yöntemleri. Ankara: Anı Yayıncılık.

Ercan, S. (2014). Fen eğitiminde mühendislik uygulamalarının kullanımı: Tasarım temelli fen eğitimi. Unpublished doctorate dissertation, Marmara Üniversitesi Eğitim Bilimleri Enstitüsü, İstanbul.

Fralick, B., Kearn, J., Thompson, S., & Lyons, J. (2009). How middle schoolers draw engineers and scientists. Journal of Science Education and Technology, 18(1), 60-73. doi: 10.1007/s10956-008-9133-3.
Aşşegül ERGÜN, Gülbin KİYICI – Pegem Eğitim ve Öğretim Dergisi, 9(4), 2019, 1031-1062

Gülhan, F., & Şahin, F. (2018). A comparative investigation of middle school 5th and 7th grade students' of perceptions on engineers and scientists. Nectatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimleri Dergisi, 12(1), 309-338.

Hacıoğlu, Y. (2017). Fen, teknoloji, mühendislik ve matematik (STEM) eğitim temelli etkinkillerin fen bilgisi öğretmen adaylarının eleştirel düşünceye becerilerine etkisi. Unpublished master’s thesis, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.

Hacıoğlu, Y., Yamak, H., & Kavak, N. (2016). Mühendislik tasarım temelli fen eğitimi ile ilgili öğretmen görüşleri. Bartın Üniversitesi Eğitim Fakültesi Dergisi, 5(3), 807-830.

Karataş, F. O., Micklos, A., & Bodner, G. M. (2011). Sixth-grade students’ views of the nature of engineering and images of engineers. Journal of Science Education and Technology, 20(2), 123–135.

Kınık Topalsan, A. (2018). Sınıf öğretmenliği öğretmen adaylarının geliştirikleri mühendislik tasarım temelli fen öğretim etkinliklerinin değerlendirilmesi. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 15(1), 186-219.

Knight, M., & Cunningham, C. (2004). Draw an engineer test (DAET): Development of a tool to investigate students’ ideas about engineers and engineering. Paper presented at the 2004 Annual Conference, Salt Lake City, Utah. Retrieved January 20, 2019, from https://www.eie.org/engineering-elementary/research/articles/draw-engineer-test-daet-development-tool-investigate.

Kolodner, J. L. (2002). Facilitating the learning of design practices: Lessons learned from an inquiry into science education. Journal of Industrial Teacher Education, 39(3), 9-40.

Kolodner, J. L., Camp, P., Crismond, D., Fasse, B., Gray, J., Holbrook, J., Puntembekar S., Ryan, M. (2003). Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning by design(tm) into practice. Journal of the Learning Sciences, 12(4), 495-547.

Marulcu, İ. (2010). Investigating the impact of a lego-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders’ content learning of simple machines. Unpublished doctorate dissertation, Lynch School of Education, Boston College, USA.

Marulcu, İ. & Sungur, K. (2012). Fen bilgisi öğretmen adaylarının mühendis ve mühendislik algılarının ve yöntem olarak mühendislik-dizaynı bâkış açılarının incelenmesi. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 12(1), 13-23.

Miles, M. B. & Huberman A. M. (1994). Qualitative data analysis: A sourcebook of new methods. Newbury Park, CA: Sage.

Milli Eğitim Bakanlığı [MEB] (2006). İlköğretim fen ve teknoloji dersi (6, 7 ve 8. sınıflar) öğretim programı, Ankara: Talim ve Terbiye Kurulu Başkanlığı.

Milli Eğitim Bakanlığı [MEB] (2017). Fen bilimleri dersi öğretim programı (ilkokul ve ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar). Retrieved October 11, 2017, from http://mufredat.meb.gov.tr.

Milli Eğitim Bakanlığı [MEB] (2018). Fen bilimleri dersi öğretim programı (ilkokul ve ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar), Retrieved May 05, 2018, from http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=325.

National Academy of Engineering [NAE]. (2010). Standards for K-12 engineering education? Washington, DC: National Academies Press.

National Research Council [NRC]. (2010). Exploring the intersection of science education and 21st century skills: A workshop summary. Washington, DC: National Academies Press.

Patton, M.Q. (1990). Qualitative evaluation and research methods. USA: Sage.

Penner, D., Giles, N., Lehrer, R., & Schauble, L. (1997). Building functional models: Designing an elbow. Journal of Research in Science Teaching, 34(2), 125-143.

Roth, W. (2001). Learning science through technological design. Journal of Research in Science Teaching, 38(7), 768-790.
Sadler, P. M., Coyle, H. P., & Schwartz, M. (2000). Engineering competitions in the middle school classroom: Key elements in developing effective design challenges. *The Journal of the Learning Sciences, 9*(3), 299–327.

Schnittka, C., & Bell, R. (2011). Engineering design and conceptual change in science: Addressing thermal energy and heat transfer in eighth grade. *International Journal of Science Education, 33*(13), 1861-1887.

Sungur, K. (2013). Yöntem olarak mühendislik-dizayna ve ders materyali olarak legolara öğretmen ve öğretmen adaylarının bakış açılarının incelenmesi. Unpublished master’s thesis, Erciyes Üniversitesi Eğitim Bilimeleri Enstitüsü, Kayseri.

Sungur Gül, K., & Marulcu, İ. (2014). Yöntem olarak mühendislik-dizayna ve ders materyali olarak legolara öğretmen ile öğretmen adaylarının bakış açılarının incelenmesi. *Electronic Turkish Studies, 9*(2), 761-786.

Ünlü, Z. K., & Dökme, İ. (2016). Özel yetenekli öğrencilerin FeTeMM’in mühendisliği hakkındaki imajları. *Trakya University Journal of Education Faculty, 7*(1), 196-204.

Wendell, K. B. (2008). *The theoretical and empirical basis for design-based science instruction for children*. Unpublished Qualifying Paper, Tufts University.

Wendell, K. B., Connolly, K. G., Wright, C. G., Jarvin, L., Rogers, C., Barnett, M., & Marulcu, İ. (2010). *Incorporating engineering design into elementary school science curricula*. American Society for Engineering Education Annual Conference & Exposition, Louisville, KY. Retrieved January 20, 2019, from https://peer.assee.org/poster-incorporating-engineering-design-into-elementary-school-science-curricula.pdf.

Yaşar, S., Baker, D., Robinson-Kurpius, S., & Roberts, C. (2006). Development of a survey to assess K-12 teachers’ perceptions of engineers and familiarity with teaching design, engineering, and technology. *Journal of Engineering Education, 95*(3), 205-216.

Yıldırım, A., & Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri (10. ed). Ankara: Seçkin Yayıncılık.

Yıldırım, B. (2018). Sınıf öğretmeni adaylarının tasarım temelli öğrenmeye yönelik görüşleri. *Akdeniz Eğitim Araştırmaları Dergisi, 12*(24), 272-293.