Immune-Related Adverse Events by Immune Checkpoint Inhibitors Significantly Predict Durable Efficacy Even in Responders with Advanced Non-Small Cell Lung Cancer

Hiroaki Akamatsu,a, Eriko Murakami,a Jun Oyanagi,a Ryota Shibaki,a Takahiro Kaki,a Eri Takase,a Masanori Tanaka,a Yuhei Harutani,a Nao Yamagata,a Yuka Okuda,a Katsuyuki Furuta,a Takeya Sugimoto,a Shunsuke Teraoka,a Atsushi Hayata,a Nahomi Tokudome,b Yuichi Ozawa,a Keita Mori,a Yasuhiro Koh,a Nobuyuki Yamamotoa

aInternal Medicine III, Wakayama Medical University, Wakayama City, Wakayama, Japan; bClinical Trial Management Department, Shizuoka Cancer Center, Shizuoka, Japan

Disclosures of potential conflicts of interest may be found at the end of this article.

Key Words. Immune-related adverse event • Immune checkpoint inhibitor • Predictive marker

ABSTRACT

Background. Although predictive value of immune-related adverse events (irAEs) induced by immune checkpoint inhibitors (ICIs) have been suggested by several studies, their assessments were insufficient because patients were categorized only by the occurrence of irAEs. It has not been elucidated whether irAEs also play a significant role even in responders.

Materials and Methods. Between December 2015 and September 2018, 106 patients with advanced non-small cell lung cancer treated with ICIs were enrolled in our prospective biomarker study. Twenty-three of these were responders, defined as those with complete or partial response. We investigated the proportion of irAEs among overall and responders. For responders, progression-free survival (PFS) and overall survival of ICIs were compared between those with and without irAEs. As an exploratory analysis, we measured 41 proteins from peripheral blood before and after ICI treatment.

Results. The proportion of irAEs was significantly higher in responders than nonresponders (65.2% vs. 19.3%, p < .01). Among responders, clinical characteristics did not differ regardless of the occurrence of irAEs. However, there was a significant difference in PFS among responders (irAE group 19.1 months vs. non-irAE group 5.6 months; hazard ratio: 0.30 [95% confidence interval: 0.10–0.85]; p = .02). Of 41 protein analyses, fibroblast growth factor-2 at baseline and monocyte chemoattractant protein fold change showed significant differences between them (p < .04).

Conclusion. Although this is a small sample-sized study, irAEs might be a predictive factor of durable efficacy, even in patients who responded to ICIs. Investigation into the significance of irAEs in responders will contribute to the establishment of optimal administration of ICI.

The Oncologist 2020;25:e679–e683

Implications for Practice: Although the predictive value of immune-related adverse events (irAEs) induced by immune checkpoint inhibitors (ICIs) has been suggested by several studies, it has not been elucidated whether irAEs also play a significant role even in responders. This study showed that more than 60% of responders had irAEs. It demonstrated the strong correlation between irAEs and efficacy even in responders. Investigation into the significance of irAEs in responders will contribute to the establishment of optimal administration of ICI.

INTRODUCTION

Immune checkpoint inhibitors (ICIs) have become the standard treatment of advanced non-small cell lung cancer (NSCLC) [1–3]. ICIs sometimes achieve durable efficacy, which has never been experienced with any other chemotherapeutic drugs. Longer follow-up data reported that the 3-year survival rate of pretreated patients with NSCLC reached about 17% [4]. On the other hand, some patients demonstrated immune-related adverse events...
(irAEs) such as pneumonitis, thyroid hormone disorder, or colitis.

The predictive value of irAEs in efficacy has been suggested by several studies [5–7]. However, their assessments were insufficient because patients were categorized only by the occurrence of irAEs. Thus, it has not been elucidated whether irAEs also play a significant role even in responders. Additionally, it may also be critical to explore the biomarkers of irAEs. Here, we report the result of a prospective biomarker study of patients who were treated with ICIs.

Material and Methods

Between December 2015 and September 2018, 106 patients with advanced NSCLC were treated with ICIs in our department and provided written informed consent to our prospective biomarker study, which prespecified the timing of blood collection and radiological evaluation. Administration of ICI and evaluation of efficacy and toxicity were determined by each investigator. Radiological evaluation was done every 6–8 weeks according to RECIST version 1.1. We defined responders as patients whose best response was either complete response (CR) or partial response (PR). We calculated the period from the day of ICI initiation to death or the latest visit. Toxicity was also judged by each physician followed by Common Terminology Criteria for Adverse Events version 4.0. Immune-related adverse events were defined as previously described [8], having a potential immunological basis that required more frequent monitoring and potential intervention with immune suppression and/or endocrine replacement therapy. At the time of this analysis, ICI plus cytotoxic chemotherapy was not yet approved in Japan. Thus, all the patients in this study underwent ICI monotherapy (nivolumab, pembrolizumab, or atezolizumab).

In this study, 25 mL of peripheral blood was collected just before ICI treatment, at weeks 4–6, 8–12, and 24, and at the time of progression. Using peripheral blood, multiplexed serum proteins (supplemental online Table 1) were analyzed using Luminex 200 analyzer (Luminex, Austin, TX) with Milliplex MAP system (Millipore, Billerica, MA), and the number of circulating tumor cells was also detected using a microcavity array system. Programmed death-ligand 1 (PD-L1) immunohistochemistry was done using tumor tissue specimen with 22C3 pharmDx antibody (clone 22C3; Dako North America, Inc., Carpinteria, CA) in accordance with recommended methods. Results from the initial analysis were already published by Oyanagi et al. [9].

Table 1. Patient characteristics

Characteristics	Overall responders (n = 23)	Responders with irAEs (n = 15)	Responders without irAEs (n = 8)	p value	
Age, years	69 (52–90)	69 (52–90)	69.5 (57–85)	.96	
Sex, n (%)				1.00	
Male	18 (78)	12 (80)	6 (75)		
Female	5 (22)	3 (20)	2 (25)		
Smoking history, n (%)				1.00	
Smoker	17 (74)	11 (73)	6 (75)		
Non- or light smoker	6 (26)	4 (27)	2 (25)		
ECOG PS, n (%)				.59	
0–1	19 (83)	13 (87)	6 (75)		
2	4 (17)	2 (13)	2 (25)		
Histology, n (%)				.12	
Non-squamous cell carcinoma	18 (78)	10 (67)	8 (100)		
EGFR mutated/wild-type	1/0	0/0	1/0		
Squamous cell carcinoma	5 (22)	5 (33)	0		
PD-L1 expression, n (%)				.72	
≥ 50%	10 (43)	6 (40)	4 (50)		
1%–49%	2 (9)	1 (7)	1 (13)		
< 1%	3 (13)	1 (7)	2 (25)		
Unknown	8 (35)	7 (46)	1 (13)		
No. of prior chemotherapeutic regimens, n (%)	0	8 (35)	5 (33)	3 (38)	1.00
	≥ 1	15 (65)	10 (67)	5 (62)	
Fisher’s exact test or chi-square test. Among responders, PFS with ICIs was calculated by using the Kaplan-Meier method and compared between those with and without irAEs by Cox proportional hazards regression. As an exploratory analysis of serum proteins, baseline values and fold changes were compared between responders with and without irAEs using Mann-Whitney U test. To calculate fold changes, each values measured at the first time point (4–6 weeks of treatment) were divided by those at baseline. Statistical analyses were conducted with GraphPad Prism version 7.00 for Windows (GraphPad Software, San Diego, CA). If the p value was <.05, we considered the difference significant. For biomarker testing, we did not change the significance level because this was an exploratory analysis.

This study was approved by the institutional review board in our hospital and registered at the University Medical Hospital Information Network (UMIN) Clinical Trials Registry (UMIN000024414).

RESULTS
Of 106 patients enrolled in this study, overall response rate was 21.7% (n = 23; 2 CR and 22 PR) and median PFS was 2.9 months. Median follow-up time was 19.3 months. Characteristics of the responders are shown in Table 1. Median age was 69 years (range: 52–90). Male and smoker made up about 80% of the patients. In 10 patients, their tumors expressed PD-L1 ≥ 50%, and 8 of them were chemo-naïve. Regarding the ICIs administered, 11 patients were treated with pembrolizumab, 11 patients were treated with nivolumab, and 1 patient was treated with atezolizumab.

Of 23 responders, 15 (65.2%) had at least one irAE (25 events in total). Among 83 nonresponders, 16 (19.3%) had at least one irAE (Fig. 1). These indicated that incidence of irAEs was significantly higher in responders (relative risk 7.85 [95% confidence interval (CI): 2.84–21.70]; p < .01).
Among responders with irAEs, median number of ICI administra-
tion was 6 (range: 1–53). Median time from ICI treat-
ment to irAE onset was 50 days (range: 1–692), and more
than 70% of irAEs occurred within 3 months. Nine patients
experienced multiple irAEs. Of 25 events, 4 were grade
3 (2 pneumonitis, 1 aspartate aminotransferase elevation,
and 1 hyperthyroidism), but no one died as a result of irAEs.
Two common irAEs were pneumonitis (n = 7) and hyper-
thyroidism (n = 6).

Between responders with or without irAEs, baseline charac-
teristics were not different (Table 1). Among responders with
irAEs, median PFS was 19.1 months (95% CI: 5.5 months to not
reached), whereas that of non-irAE responders was 5.6 months
(95% CI: 1.6–9.9 months). PFS rate at 1 year was 53.3% in irAE
responders and 12.5% in non-irAE responders. Between these
two groups, there was a statistically significant difference in
PFS (hazard ratio [HR]: 0.30 [95% CI: 0.10–0.85]; p = .02; Fig. 2).
Details of the clinical course among responders are shown in
Figure 3. Among the irAE group, 11 patients (73.3%) discon-
tinued ICI treatment because of irAEs, but their response was
maintained for a long time (median: 16.8 months; range: 3.6–
39.9 months). Regarding OS, responders with irAEs showed
median OS of 27.8 months (95% CI: 10.5 months to not
reached), whereas those without irAEs showed median OS of
16.1 months (95% CI: 6.8 months to not reached). There was
not a significant difference between them (HR: 0.45 [95% CI:
0.11–1.88]; p = .25; Fig. 4).

Regarding 41 proteins collected from peripheral blood, fibro-
blast growth factor-2 at baseline and monocyte chemoattractant
protein fold change showed significant differences between
them (p < .04). Interferon gamma-induced protein 10 and mac-
rophage-derived chemokine at baseline also showed marked,
but not significant, difference (supplemental online Fig. 1).

Second, they could not completely exclude nonresponders
from the non-irAE group. Thus, the predictive value of irAEs
might be overestimated. Based on these, proper analysis
with responders has been warranted. In this study, we ini-
tially demonstrated that responders had sevenfold higher
incidence of irAEs than nonresponders. In addition, our
study clearly showed that irAEs were strong predictive fac-
tors of efficacy (HR 0.30), even in responders. In other
words, among those who achieved CR or PR in the early
course of ICI treatment, PFS was eventually unsatisfactory
(median 5.6 months) if they did not show irAEs.

In this context, to predict the onset of irAEs should be
important. Similar to previous reports, we could not find
any clinical features to predict irAEs. Most irAEs occurred
within 3 months of ICI treatment, indicating that immune
reaction during the early period may maximize the efficacy
of ICIs. Regarding efficacy biomarker, several attempts have
been reported. Mezuquita et al reported that derived neu-
trophils/leukocytes ratio and lactate dehydrogenase were
related to efficacy [11]. As a predictive marker of safety,
our analysis suggested some potential serum pro-
teins. Of those, IP-10 was also detected as a predictive
marker of efficacy in the entire population [9]. On the con-
trary, a recent report showed the importance of CXCL2 and
MMP2 [12]. Although serum biomarker has more advan-
tages in its convenience, cost-effectiveness, and less inva-
siveness, these results should be interpreted cautiously
because any definite mechanism between these proteins
and clinical phenomenon has not been clearly shown. A vali-
dation study with a larger sample size is required to prove
its significance.

Our study had several limitations. We could not assess
the significance of severity and number of irAEs because of
the small sample size. Second, assessment of antitumor
response and irAE were dependent on each investigator.
Nonetheless, our results are evidently consistent with those
of previous studies. Third, we did not consider the in-
fluence of clinical characteristics on values of biomarkers even
though some few patients received multiple lines of systemic
treatment and had poor performance status. We speculate
that these factors may influence but not have an impact on
the difference between the arms, which were well balanced.
We believe that our data among a properly enriched popula-
tion may provide useful information into our practice.

CONCLUSION
Although this is a small sample-sized study, irAEs might be
a predictive factor of durable efficacy, even in patients who
responded to ICIs. Investigation into the significance of
irAEs in this population will contribute to the establish-
ment of optimal administration of ICI.

ACKNOWLEDGMENTS
We thank Benjamin Phillis at Wakayama Medical University
for proofreading and editing. This work was supported by
Grant-in-Aid for Scientific Research 18K07271 and Project
for Cancer Research and Therapeutic Evolution (P-CREATE)
from the Japan Agency for Medical Research and

DISCUSSION
Although previous reports suggested that patients with
irAEs were likely to benefit from ICIs, their assessment had
several drawbacks. First, they did not assess the significance
of responder without irAEs. In a phase III trial, about 6% of
the patients completed 2 years of ICI treatment without
severe toxicity, and most of them were responders [10].
Development, AMED (grant numbers 16cm0106418h0001 and 17cm0106418h0002).

AUTHOR CONTRIBUTIONS

Conception/design: Hiroaki Akamatsu, Eriko Murakami, Jun Oyanagi, Yasuhiro Koh, Nobuyuki Yamamoto

Provision of study material or patients: Hiroaki Akamatsu, Eriko Murakami, Jun Oyanagi, Takahiro Kaki, Eri Takase, Masanori Tanaka, Yuhei Harutani, Nao Yamagata, Yuka Okuda, Katsuyuki Furuta, Takeya Sugimoto, Shunsuke Teraoka, Atsushi Hayata, Nahomi Tokudome, Yuichi Ozawa

Collection and/or assembly of data: Hiroaki Akamatsu, Eriko Murakami, Jun Oyanagi, Yasuhiro Koh

Data analysis and interpretation: Hiroaki Akamatsu, Eriko Murakami, Jun Oyanagi, Yasuhiro Koh

Final approval of manuscript: Hiroaki Akamatsu, Eriko Murakami, Jun Oyanagi, Ryota Shibaki, Takahiro Kaki, Eri Takase, Masanori Tanaka, Yuhei Harutani, Nao Yamagata, Yuka Okuda, Katsuyuki Furuta, Takeya Sugimoto, Shunsuke Teraoka, Atsushi Hayata, Nahomi Tokudome, Yuichi Ozawa

REFERENCES

1. Reck M, Rodríguez-Abreu D, Robinson AG et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823–1833.

2. Brahmer J, Reckamp KL, Baas P et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015;373:123–135.

3. Borghaei H, Paz-Ares L, Horn L et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015;373:1627–1639.

4. Vokes EE, Ready N, Felip E et al. Nivolumab versus docetaxel in previously treated advanced non-small-cell lung cancer (CheckMate 017 and CheckMate 057): 3-year update and outcomes in patients with liver metastases. Ann Oncol 2018;29:959–965.

5. Harutani K, Hayashi H, Chiba Y et al. Association of immune-related adverse events with nivolumab efficacy in non-small-cell lung cancer. JAMA Oncol 2018;4:374–378.

6. Sato K, Akamatsu H, Murakami E et al. Correlation between immune-related adverse events and efficacy in non-small cell lung cancer treated with nivolumab. Lung Cancer 2018;115:71–74.

7. Teraoka S, Fujimoto D, Morimoto T et al. Early immune-related adverse events and association with outcome in advanced non-small cell lung cancer patients treated with nivolumab: A prospective cohort study. J Thorac Oncol 2017;12(suppl 1):S254–S255.

8. Weber JS, Hodi S, Wolchok JD et al. Safety profile of nivolumab monotherapy: A pooled analysis of patients with advanced melanoma. J Clin Oncol 2017;35:785–792.

9. Oyanagi J, Koh Y, Sato K et al. Predictive value of serum protein levels in patients with advanced non-small cell lung cancer treated with nivolumab. Lung Cancer 2019;132:107–113.

10. Herbst RS, Garon EB, Kim DW et al. KEYNOTE-010: Durable clinical benefit in patients with previously treated, PD-L1-expressing NSCLC who completed pembrolizumab. J Thorac Oncol 2017;12(suppl 1):S254–S255.

11. Mezquita L, Aucelin E, Ferrara R et al. Association of the Lung Immune Prognostic Index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol 2018;4:351–357.

12. Matsuo N, Azuma K, Hattori S et al. Association between soluble immune mediators and tumor responses in patients with nonsmall cell lung cancer treated with anti-PD-1 inhibitor. Int J Cancer 2019;144:1170–1179.

See http://www.TheOncologist.com for supplemental material available online.