Hip fracture among elderly people: a single cohort study from Kurdistan of Iraq

Asso Amin1, Hersh Haider Hama Ali2, Saman Anwar Faraj3, Sara Noori Ghafoor4, Saman Hama Shareef5, Saman Sadeq6, Soran Noori7, Khalid Anwar Hama ghareeb8, Mohammed Ibrahim Mohialdeen Gubari9

ABSTRACT

Background: Hip fracture is considered a major health problem worldwide. The current study aimed to investigate hip fracture characteristics among older people in Iraq and factors involving postoperative mortality.

Method: A single cohort study was carried out in Sulaimani and Shar Teaching hospitals in Sulaimani from the 1st of July 2018 to 30th of June 2019. Hip fracture was diagnosed by a specialist physician using X-Ray. The data collected by the researcher through direct interviews and filling a prepared uniform questionnaire. The data was analyzed by SPSS and p-value<0.05 was significant.

Results: From the total of 100 hip fracture patients included, the average age of patients was 74.45±8.18 years. Fifty-nine patients aged 60 to 75 years, while the rest were older than 75 years. Female consisted of 59.0% of the total samples. Non-mechanical falls accounted for (84%) of all falls. Most patients had intertrochanteric fractures (65%), while 35% had femoral neck fractures. The Proximal femoral nail (PFN) operation was the primary type of operation (77%) performed. Most patients (94%) were discharged after two days. There was a significant association between gender and postoperative mortality; female patients had worse prognosis and higher mortality, relative risk (95%CI) 0.18 (0.0424 to 0.7788). Older patients aged 75 and more had a remarkably poorer prognosis than younger patients, relative risk (95%CI) 0.30 (0.10 to 0.93). There was a strong relationship between poor cognitive function (moderate to severe depression) and postoperative mortality rate with relative risk (95%CI) 0.04 (0.006 to 0.36). Finally, patients on three or more medications also had an outstanding worse prognosis, relative risk (95%CI) 0.022 (0.001 to 0.37).

Conclusion: Hip fracture was more common among women and people aged above 75 years. The prevalence of intertrochanteric fractures was nearly double the femoral neck fractures. Age, female, depression, and polypharmacy had a statistically significant association with three-month mortality in hip fracture patients.

Keywords: hip fracture, elderly, geriatric depression scale (GDS)

Cite this Article: Amin, A.; Ali, H.H.H.; Faraj, S.A.; Ghafoor, S.N.; Shareef, S.H.; Sadeq, S.; Noori, S.; Ghaeeb, K.A.H.; Gubari, M.I.M. 2020. Hip fracture among elderly people: a single cohort study from Kurdistan of Iraq. Bali Medical Journal 9(3): 934-939. DOI: 10.15562/bmj.v9i3.1970

INTRODUCTION

The global size of the elderly population is significantly increasing, and the burden of non-communicable disease is rising concordantly. However, falls can happen at any age, the severity and frequency of fall-related injury and fracture increase with age. People over the age of 65 are more prone to falls; the incidence of falls increases from 25% at 70 to 35% at 75. Falls are responsible for more than 90% of hip fractures. Moreover, researchers have concluded that hip fracture incidence is similarly growing and that hip fracture will remain a major public health problem worldwide.

Studies have shown geographical variation in the incidence and characteristics of hip fracture across the continent and different parts of each region over the last few decades. The frequency of hip fracture in North America and Europe is higher, with seven-fold higher rates than in Southern European countries. Similarly, the prevalence of hip fracture is lower in Asian and Latin American populations. However, as three-quarters of the world populations live in Asia, it is expected that Asia will contribute more to the pool of hip fracture in the coming 25 to 30 years. Furthermore, it is predicted that by 2050 more than 50% of osteoporotic fractures will occur in Asia.

Postoperative mortality varies between the continent and in between countries within each continent. A study from Argentine has shown that increasing age, type of operation (hemiarthroplasty) and comorbidities had worse prognosis. Additionally, a study from North America has highlighted that poor cognitive function, mainly depression, and advancing age have a negative impact on mortality in patients with hip fracture postoperatively. In this study, one-year mortality was 15%.
Most data for hip fractures come from western societies. Sulaimani is a town located in Kurdistan, an autonomous region from the Iraqi central government since 1991. This paper explores the risk factors and characteristics for hip fractures and mortality related risk factors in elderly patients within this population. In obtaining a more clear apprehension of hip fracture causes in this group, a more relevant prevention strategy can be established in developing countries instead of relying upon western guidelines.

Patients and Methods

A single cohort study design was carried out in Sulaimani and Shar Teaching hospitals in Sulaimani from 1st of July 2018 to 30th of June 2019. A convenient sample of 100 patients with hip fractures was taken. Patients with hip fractures were admitted to Sulaimani and Shar Teaching hospitals in Sulaimani. The data was collected by the researcher through direct interviews and filling a prepared uniform questionnaire. Patients were diagnosed as having hip fractures by a specialist physician using X-Ray. Multiple fractures, pathological fractures and patients who underwent organ transplants were the main exclusion criteria for the current study.

Regarding history taking, if the patients were unable to give information, history was taken from relatives and patients chart. Moreover, a 3-month follow-up for all patients was done to determine the mortality rate among all participants. They were asked questions about sociodemographic characteristics, medical history, history of hip fracture and psycho-social characteristics. Verbal consent was taken from each patient and/or their relatives to be included in the study. Confidentiality was taken into consideration. The researcher was responsible, along with other colleagues, for providing full examination and treatment of the patients. Data were collected and coded. The collected data were reviewed and analyzed using Statistical Package for Social sciences (SPSS version 22). Descriptive statistics, such as frequency and percentage, were calculated. P-value was obtained for a categorical variable using chi-square. P-value was considered significant if it was less than 0.05.

RESULTS

A total of 100 hip fracture patients were included in the current study. The average age of patients was 74.45±8.18 years. Fifty-nine patients were between 60 to 75 years of age, and the rest were older than 75. Of 100 cases, 59 were females. Most of the patients (82%) were city residents, and most of them (75%)
were illiterate. Only 24 patients were smokers, and 6 of them consumed alcohol (Table 1).

Medical history of the patients

Out of 100 cases, 48% of the patients had diabetes mellitus, while 43% had hypertension, and 15% had ischemic heart diseases. Additionally, a significant proportion (75%) of the samples have used 4 or more medications for chronic diseases (Table 2).

History of hospitalization

A remarkable fraction of patients (84%) were admitted with a history of non-mechanical fall. Most had intertrochanteric fractures (65%). At the same time, 35% had femoral neck fractures. A significant number of the patients had proximal femoral nail (PFN) operation. Almost all patients had been operated on within the last 48 hours (Table 3).

Psycho-social characteristics of the patients

It was found that a small number of patients were living alone (6%). Additionally, most of the patients were living without any aid (69%). 45% of the patients did not develop depression according to the Geriatric Depression Scale (GDS) on admission (Table 4).

Mortality and follow-up of the patients after three months

It was cleared that after 3-month follow-ups, 13% of the patients died. Also, the depression among the patients decreased after three months (62%) according to the Geriatric Depression Scale (GDS) (Table 5).

Mortality related factors

Table 6 summarizes the correlation between hip fracture patients’ mortality after three months with some risk factors. There was statistically strong association between gender and mortality of hip fracture patients’ relative risk (95%CI) 0.18 (0.0424 to 0.7788). Female candidates had higher mortality and worse prognosis. Additionally, older patients aged 75 years and more had a remarkably worse prognosis, relative risk (95%CI) 0.30 (0.10 to 0.93). Moreover, patients with moderate to severe depression had high mortality, relative risk (95%CI) 0.04 (0.006 to 0.36). Finally, patients on four or more medications had substantially higher death rate, relative risk (95%CI) 0.022 (0.001 to 0.37) (Table 6).

DISCUSSION

This is the first study investigating hip fracture characteristics among older people in Iraq and factors involving postoperative mortality. In this study, we have discovered that 65% of the cases with hip fracture were females, and the samples selected were obtained from patients above the age of 60 years with 41 patients above 75 years. Several descriptive characteristics identified in this study were consistent with previous studies.12-15 Old age

Table 3. Hospitalization history of hip fracture patients (n= 100)

Medical history	Frequency	Percent
Cause of fall		
Mechanical	16	16.0
Non-Mechanical	84	84.0
Type of fracture		
Right intertrochanteric	32	32.0
Left intertrochanteric	33	33.0
Right femoral neck	17	17.0
Left femoral neck	18	18.0
Type of operation		
Proximal femoral nail (PFN)	77	77.0
Bipolar Hip arthroplasty	23	23.0
Duration admission to operation		
≤ 2 days	96	96.0
>2 days	4	4.0

Table 4. Psycho-social characteristics of the patients (n= 100)

Functional capacity	Frequency	Percent
Independent	69	69.0
With aid	31	31.0
Lives alone		
Yes	6	6.0
No	94	94.0
Geriatric Depression Scale (GDS) on admission		
0 – 4	45	45.0
More than 5	55	55.0

Table 5. Mortality and depression after three months

Mortality after three months	Frequency	Percent
Mortality		
Live	87	87.0
Died	13	13.0
GDS		
0 – 4	62	62.0
5 – 15	25	25.0
Table 6. Factors associated with mortality

Factors	Mortality after 3 months	Relative risk (95% CI) *	
	Live	Died	
Sex			
Male	39(44.82)	2(15.38)	0.18
Female	48(55.18)	11(84.62)	(0.0424 to 0.7788)
Age			
60 – 75	55(63.21)	4(30.76)	
> 75	32(36.78)	9(69.23)	0.30 (0.10 to 0.93)
GDS			
0 – 4	62(71.26)	1(7.69)	0.04 (0.006 to 0.36)
More than 5	25(28.74)	12(92.31)	
Polypharmacy medications			
Yes	62(71.26)	13(100.0)	0.022
No	25(28.74)	0(0.0)	(0.001 to 0.37)

*CI: confidence interval

and female sex were identified as essential hallmarks of hip fracture cases by a few studies. Old age is usually accompanied by loss of musculoskeletal and vestibular functions with the ultimatums, such as loss of balance, coordination, and strength, leading to fall and fracture. A population-based study from California showed that males were half as likely to have hip fractures as females. Most of the cases (65%) had intertrochanteric fractures, and the rest had femoral neck fractures (35%). Proximal Femoral Nair (PFN) was the modality of treatment in 77% of the cases, and 23% received bipolar hip arthroplasty. A similar study from Pakistan established higher incidence of intertrochanteric fracture. Likewise, Frisch et al. revealed that intertrochanteric fractures were more common and had higher mortality than femoral neck fractures.

Hypertension was the most common comorbidity among our cases, followed by diabetes. Similar studies also identified hypertension and diabetes as the most prevalent comorbidities among hip fracture cases. Similarly, Tebé et al. highlighted the association between hip fracture and type 2 Diabetes Mellitus (DM) indicated worse prognosis. On the other hand, a study from China revealed a 53% higher risk of hip fracture for patients with cardiovascular diseases (CVDs). A registry-based survey of the entire population of Norway aged 60 years and above showed that antihypertensive medications reduced hip fracture risk. Other factors identified by similar studies regarding hip fracture were age, gender, body mass index, cognitive impairment, cardiovascular disease, smoking status, antidepressants, anxiolytics, hypnotics and anticholinergic drugs.

In this study, most of the patients (69%) with hip fracture were independent. A few studies tried to show the association between being independent and better functional status as a fracture predictor. Independent old age individuals ambulate frequently and try to perform every activity by themselves, which may increase fracture risk compared to dependent individuals. This hypothesis may not work with the fully functional and independent portion.

In this study, the three-month post-fracture mortality was 13%, which is lower than 3–6-month mortality (15.8%) reported from a meta-analysis study, and the three-month mortality reported from Pakistan (22%). However, the present study’s mortality rate is higher than the loss of life rate revealed in Korea (7.3%) and Italy (10.3%). This difference might be due to the differences in the quality of care. It may also indicate better patient care in the Kurdistan region than in other middle-income countries. Mainly, this might be explained by the short waiting time for surgical operation.

In the current study, age, gender, depression, and polypharmacy drug use showed a statistically significant association with mortality after three months. Several factors were identified by similar studies that affect the risk of mortality up to 12 months: cognitive impairment, age, body mass index, pre-fracture mobility, gender, intra-capsular fracture type, smoking status, high ASA grade, high Charlson comorbidity score on admission, cardiovascular disease, diabetes, antidepressants, anxiolytics, hypnotics and anticholinergic drugs.

The main limitations of this study emanate from its small sample size and retrospective nature. The small sample size hampers thorough investigation of different management modalities’ effect on patient mortality and performs fundamental statistical analysis to identify mortality predictors. This study shares all the limitations of retrospective studies, like the low level of evidence, difficulty ascertaining the data’s authenticity, and confounding.

CONCLUSION

This study highlighted that hip fracture was more common among women and people aged above 75 years. The prevalence of intertrochanteric fractures was nearly double the femoral neck fractures. Hip fractures were common among functionally independent geriatrics. Chronic illnesses like hypertension and diabetes were more common in hip fracture patients. Age, sex, depression and use of multiple medications had a statistically significant correlation with three-month mortality in hip fracture patients.

DISCLOSURES

CONFLICT OF INTEREST

The authors do not have any conflict of interest.
FUNDING

These authors have no support or funding to report.

ETHICAL CONSIDERATIONS

Ethical approval was obtained from the University of Sulaimani/ethic committee/ Ministry of Higher Education and Scientific Research, Kurdistan, under the ethical clearance 4586/2018/05/08.

AUTHOR CONTRIBUTION

Asso Amin, Hersh H Ali, Saman A Faraj, Sara N Ghafoor, Saman H Shareef; research design, data collection. Saman Sadeq, Soran Noori, Khalid Anwar Hama ghareeb, Mohammed I.M. Gubari; data analysis, writing. Asso Amin; article editing

REFERENCES

1. Kalache A, Keller I. The greying world: a challenge for the twenty-first century. Sci Prog. 2000;83 (Pt 1):33-54. PubMed PMID: 10800373.
2. Hoidrup S, Sorensen TJ, Gronbaek M, Schroll M. Incidence and characteristics of falls leading to hospital treatment. J Scand Public Health. 2003;31:24–30.
3. Tinetti ME, Speechley M. Prevention of falls among the elderly. J Ne Engl Med. 1989;320:1055-9.
4. Parker MJ, Gillespie WJ, Gillespie LD. Effectiveness of hip protectors for preventing hip fractures in elderly people: systematic review. BMJ. 2006 the 9th of March; 332(7541):571–4.
5. Johnell O, Gullberg B, Allander E, Kanis JA. The apparent incidence of hip fracture in Europe: A study of national register sources. MEDOS Study Group. Osteoporos Int. 1992;2:298–302. [PubMed]
6. Dinesh K Dhanwal, Elaine M Dennison, Nick C Harvey, and Cyrus Cooper. Epidemiology of hip fracture: Worldwide geographic variation. Indian Journal of Orthopaedics. 2011, 45(1):15–22.
7. Iglesias SL, Gentile Vanoli et al., femoral neck fracture in the elderly: from risk factors to prognostic feature for survival; Trauma Critical Care 2017;1(1):16-21.
8. Mossey JA et al. determines of recovery 12 months after hip fracture: The importance of psychological factors. American Journal of Public Health. 1989;79(3):3.
9. Hershkovit A et al, Factors Affecting Short Term Rehabilitation Outcome of Disabled Elderly Patients with Proximal Hip Fracture. The American Congress of Rehabilitation. 2007;7(7):916-920.
10. Maalouf G, Bachour F, Hlais S, Maalouf NM, Yabchez P, Yagh Y, et al. Epidemiology of hip fractures in Lebanon: A nationwide survey. Orthop Traumatol Surg Res. 2013 the 1st of October:99(6):675–80.
11. Yoo J-I, Lee Y-K, Koo K-H, Park Y-J, Ha Y-C. Concerns for Older Adult Patients with Acute Hip Fracture. Yonsei Med J. 2018 the 1st of December;59(10):1240–4.
12. Zullo AR, Sorial MN, Lee Y, Lary CW, Kiel DP, Berry SD. Predictors of hip fracture despite treatment with bisphosphonates among frail older adults. Journal of the American Geriatrics Society. 2020;68(2):256-60.
13. Rincon Gomez M, Hernandez Quiles C, Garcia Gutierrez M, Galindo Ocana J, Parra Alcaraz R, Alfaro Lara V, et al. Hip fracture co-management in the elderly in a tertiary referral hospital: A cohorts study. Revista clinica espanola. 2020;220(1):1-7.
14. Gamboa-Arango A, Duaso E, Formiga F, Marimon P, Sandiumenge M, Salgado MT, et al. Pronostic factors of good functionality at 12 months of a hip fracture. Malac Anota study. Revista espanola de cirugia ortopedica y traumatologia. 2020;64(1):57–63.
15. Jamieson HA, Nishitaka PS, Scrase R, Deely JM, Abey-Nebisit R, Hilmer SN, et al. Drug burden index and its association with hip fracture among older adults: a national population-based study. The Journals of Gerontology: Series A. 2019;74(7):1127-33.
16. Chinyo MA, Gulzar Naqvi SZ, Khan MA, Ahmed SK, Muhammad MG. Nottingham Hip Fracture Score as a predictor of 3 months postoperative mortality in patients undergoing surgical fixation of hip fractures: A prospective study. JPMA The Journal of the Pakistan Medical Association. 2020;70(Suppl 1)(2):S3-S5.
17. Marufu TC, Elphick HL, Ahmed FB, Moppett IK. Short-term morbidity factors associated with length of hospital stay (LOS): Development and validation of a Hip Fracture specific postoperative morbidity survey (HF-POMS). Injury. 2019;50(4):931-8.
18. Sullivan KJ, Husak LE, Altebarmakan M, Brox WT. Demographic factors in hip fracture incidence and mortality rates in California, 2000–2011. Journal of orthopaedic surgery and research. 2016;11(1):4.
19. Frisch NB, Wessell N, Charters M, Greenstein A, Shaw J, Peterson E, et al. Hip Fracture Mortality: Differences Between Intertrochanteric and Femoral Neck Fractures. Journal of surgical orthopaedic advances. 2018;27(1):64-71.
20. Tebé C, Martínez-Laguna D, Carbonell-Abella C, Reyes C, Moreno V, Diez-Pérez A, et al. The association between type 2 diabetes mellitus, hip fracture, and post-hip fracture mortality: a multi-state cohort analysis. Osteoporosis International. 2019;30(12):2407-15.
21. Xu B, Han L, Liu H, Wang J, Bao X-Y, Xi H-X, et al. Cardiovascular disease and hip fracture among older inpatients in Beijing, China. BioMed research international. 2013.
22. Ruths S, Bakken MS, Ranhoff AH, Hunksaar S, Engesater LB, Engeland A. Risk of hip fracture among older people using antihypertensive drugs: a nationwide cohort study. BMC geriatrics. 2015;15(1):153.
23. Bakken MS, Engeland A, Engesater LB, Ranhoff AH, Hunksaar S, Ruths S. Risk of hip fracture among older people using anxiolytic and hypnotic drugs: a nationwide prospective cohort study. European journal of clinical pharmacology. 2014;70(7):873-80.
24. Wolinsky FD, Bentler SE, Liu L, Obizran M, Cook EA, Wright KB, et al. Recent hospitalization and the risk of hip fracture among older Americans. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2009;64(2):249-55.
25. Chen JS, Sambrook PN, Simpson JM, Cameron ID, Cumming RG, Seibel MJ, et al. Risk factors for hip fracture among institutionalised older people. Age and ageing. 2009;38(4):429-34.
26. Mukamel K, Robbins JA, Cauley J, Kern L, Siscovick D. Alcohol consumption, bone density, and hip fracture among older adults: the cardiovascular health study. Osteoporosis international. 2007;18(5):593-602.
27. Tromp A, Smit J, Deeg D, Bouter L, Lips P. Predictors for falls and fractures in the Longitudinal Aging Study Amsterdam. Journal of bone and mineral research. 1998;13(12):1932–9.
28. Hu F, Jiang C, Shen J, Tang P, Wang Y. Preoperative predictors for mortality following hip fracture surgery: a systematic
29. Choi J-Y, Cho K-J, Kim S-w, Yoon S-J, Kang M-g, Kim K-i, et al. Prediction of mortality and postoperative complications using the hip-multidimensional frailty score in elderly patients with hip fracture. Scientific reports. 2017;7:42966.

30. Rostagno C, Buzzi R, Campanacci D, Boccacini A, Cartei A, Virgili G, et al. In hospital and 3-month mortality and functional recovery rate in patients treated for hip fracture by a multidisciplinary team. PloS one. 2016;11(7).

31. Novoa-Parra CD, Hurtado-Cerezo J, Morales-Rodriguez J, Sanjuan-Cervero R, Rodrigo-Perez JL, Lizaur-Utrilla A. Factors predicting one-year mortality of patients over 80 years operated after femoral neck fracture. Revista espanola de cirugia ortopedica y traumatologia. 2019;63(3):202-8.

32. Karres J, Kieviet N, Eerenberg JP, Vrouenraets BC. Predicting Early Mortality After Hip Fracture Surgery: The Hip Fracture Estimator of Mortality Amsterdam. Journal of orthopaedic trauma. 2018;32(1):27-33.

33. Tsang C, Boulton C, Burgon V, Johansen A, Wakeman R, Cromwell D. Predicting 30-day mortality after hip fracture surgery: evaluation of the National Hip Fracture Database case-mix adjustment model. Bone & joint research. 2017;6(9):550-6.

34. Lystad RP, Cameron CM, Mitchell RJ. Mortality risk among older Australians hospitalised with hip fracture: a population-based matched cohort study. Archives of osteoporosis. 2017;12(1):67.

35. Von Friesendorff M, McGuigan FE, Wizert A, Rogmark C, Holmberg AH, Woolf AD, et al. Hip fracture, mortality risk, and cause of death over two decades. Osteoporosis International. 2016;27(10):2945-53.