Thermal blurring of a coherent Fermi gas

H. Kurkjian, Y. Castin & A. Sinatra
Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France, Paris, France

Coherent gases of ultracold atoms confined in immaterial non-dissipative traps are unique examples of isolated macroscopic quantum systems. The value of their intrinsic coherence time is then a fundamental question. But it is also a practical issue for all the applications which exploit macroscopic coherence, such as interferometry [1] or quantum engineering where one generates non-trivial entangled states by coherent evolution [2, 3]. Coherence time measurements are presently being performed in cold Bose gases [4, 5]. Experiments on Fermi gases, that up to now focused on traditional aspects of the N-body problem, such as thermodynamic properties [6, 7], are moving towards correlation and coherence measurements [8]. This turn will open a new research field, including the strong coupling regime: that of fermionic quantum optics [9]. However a theory predicting the coherence time of a pair-condensed Fermi gas was missing, except in the limiting case of zero temperature [10]. In this paper we present the first microscopic theory bridging this theoretical gap in a general way. Our results hold for other physical systems, such as mesoscopic Josephson Junctions, provided that the environment-induced decoherence is sufficiently reduced.

Setting the stage: For a Bose-condensed gas of bosons, the finite coherence time is due to the spreading of the condensate phase probability distribution. At zero temperature and in the absence of interactions, a ballistic phase spreading is caused by atom number fluctuations in the sample. This effect has been observed by interfering two initially mutually-coherent condensates, whose particle number fluctuates due to lattice noise [11, 12]. Contrarily to lasers, which are open quantum systems, for a large system, we split the ballistic spreading persists in Bose-Einstein condensates for a fixed atom number at non-zero temperature [13, 14, 12]. Fluctuations of the energy, another conserved quantity, then play the same role as number fluctuations.

For an unpolarized pair-condensed Fermi gas, the study of coherence time presupposes a clear definition of the condensate phase and of the corresponding operator \(\hat{\theta}_0 \). Furthermore, at non-zero temperature the speed of variation of the phase should include the contribution of two excitation branches: the fermionic pair-breaking one and the bosonic one exciting the pair motion. For the fermionic branch Anderson’s Random Phase Approximation (RPA) [14] is enough. For the bosonic branch however, we need the equivalent for fermions of the Bogoliubov method to construct quasiparticle creation \(\hat{b}_\lambda \) and annihilation \(\hat{b}_\alpha \) operators, and to express \(d\hat{\theta}_0/dt \) in terms of these operators. More than that, we need to include interactions among quasiparticles in the evolution of the \(\hat{b}_\alpha \). This is a non-trivial consequence of the dependence of condensate wavefunction on the total number of particles \(N \) even for a spatially homogeneous system, and clearly goes beyond the RPA program.

Correlation function decay: Below the critical temperature, the time-correlation function of the pairing field \(\hat{\psi}_\lambda \) where \(\hat{\psi}_\alpha \) is the fermionic field operator of the spin \(\sigma \) component, is dominated at long times by the condensate contribution:

\[
g_1(t) = \langle \hat{a}_0^\dagger(t) \hat{a}_0(0) \rangle
\]

where \(\hat{a}_0 = \int d^3r \int d^3r' \varphi_0(r, r') \hat{\psi}^\dagger_\downarrow(r) \hat{\psi}_\uparrow(r') \) is the component of the pairing field on the condensate wavefunction [12]. At equilibrium the system is in a mixture of \(N \)-body eigenstates \(\langle \psi_\lambda \rangle \), with weights \(\Pi_\lambda \). We then study the correlation function \(g_1^\lambda(t) \) in the eigenstate \(\langle \psi_\lambda \rangle \) of energy \(E_\lambda \) and particle number \(N_\lambda \). To exploit the weak relative fluctuations in the number of condensed pairs for a large system, we split \(\hat{a}_0 \) into modulus and phase operators [12].

\[
\hat{a}_0 = e^{i\hat{\theta}_0} \hat{N}_0^{1/2},
\]

and we approximate \(\hat{N}_0 \) by its mean value \(\bar{N}_0 \) in the equilibrium state, to obtain

\[
g_1^\lambda(t) \simeq \bar{N}_0 \bar{a}_0^\dagger W t/\hbar \langle \psi_\lambda | e^{-i(\hat{H} + \hat{W})t/\hbar} | \psi_\lambda \rangle
\]

The operator \(\hat{W} \), difference between \(\hat{H} \) transformed by \(e^{i\hat{\theta}_0} \) and \(\hat{H} \),

\[
\hat{W} = e^{-i\hat{\theta}_0} \hat{H} e^{i\hat{\theta}_0} - \hat{H} = -i[\hat{\theta}_0, \hat{H}] - \frac{1}{2} [\hat{\theta}_0, [\hat{\theta}_0, \hat{H}]] + \ldots
\]

is approximatively \(N \) times smaller than \(\hat{H} \). Indeed \(e^{i\hat{\theta}_0} \), like \(\hat{a}_0 \), changes the total particle number by a quantity \(O(N^0) \). While \(\hat{H} \) is an extensive observable, \(\hat{W} \) is intensive. In equation (3) formally appears the evolution operator of the Hamiltonian \(\hat{H} \) perturbed by \(\hat{W} \), and restricted to the eigenstate \(|\psi_\lambda\rangle \) of \(\hat{H} \). Up to a phase factor, the function \(g_1^\lambda/N_0 \) is then proportional to the probability amplitude that the system prepared in \(|\psi_\lambda\rangle \) is still in that state after a time \(t \). A standard way to obtain a non-perturbative approximation of this amplitude is to use the Green function or the resolvent operator \(\hat{G}(z) = (z 1 - (\hat{H} + \hat{W}))^{-1} \) of the perturbed Hamiltonian. Within the projectors method [17], we introduce an effective non-hermitian Hamiltonian \(\hat{H}_{\text{eff}}(z) \) governing the evolution restricted to \(|\psi_\lambda\rangle \), which gives
\[\langle \psi | \hat{G}(z) | \psi \rangle = \left(z - \langle \psi | \hat{H}_{\text{eff}}(z) | \psi \rangle \right)^{-1}. \]

Keeping in \(\hat{H}_{\text{eff}}(z) \) terms up to order two in \(\hat{W} \) and neglecting its \(z \) dependence \(\hat{H}_{\text{eff}}(z) \approx \hat{H}_{\text{eff}}(E_\lambda + i0^+) \) (pole approximation), we obtain

\[
g_1^\lambda(t) \approx \tilde{N}_0 e^{-i \langle \psi | \hat{W} | \psi \rangle / \hbar} e^{-i (\delta \lambda + \gamma \lambda) t}
\]

(5)

Introducing \(\tilde{Q}_\lambda = \hat{I} - |\psi \rangle \langle \psi | \), the projector orthogonal to \(|\psi \rangle \), and the notation \(\langle \hat{A} \rangle_\lambda \equiv \langle \psi | \hat{A} | \psi \rangle \) one has:

\[
h(\delta \lambda - i \gamma \lambda) = \langle \hat{W} \tilde{Q}_\lambda \rangle \langle \hat{E}_\lambda + i0^+ \rangle \tilde{Q}_\lambda - Q_\lambda H \tilde{Q}_\lambda \langle \hat{W}_\lambda \rangle
\]

(6)

The leading term under the exponential is \([15]\), \(\langle \psi | \hat{W} | \psi \rangle \), of order \(N^0 \) like \(\hat{W} \). A first step in its interpretation is to remark that, according to the expansion \([4]\), \(\hat{W} = \hbar \partial \hat{b}_0 / dt + O(1/N) \). We then use a central relation, proved in the next section, giving the coarse grained time average of \(d \hat{b}_0 / dt \) in a weakly excited gas

\[
- \frac{\hbar}{2} \frac{d \hat{b}_0}{dt} = \mu_0(\bar{N}) + \sum_{s,F,B} \frac{d \epsilon_{s,\alpha}}{d N} \hat{n}_{s,\alpha}
\]

(7)

The sum on the right side hand side runs over both the gapped quasi-particles fermionic branch of excitation (in the homogenous case \(\alpha \) includes both a spin and an orbital index, \(\alpha = \mathbf{k}, \sigma \) and the bosonic one which, in the thermodynamic limit and for an homogeneous system, has a phononic behaviour (\(\alpha \) is then only orbital, \(\alpha = q \)). The coarse grained time average is taken over a time long with respect to the inverse of the quasi-particle eigen-frequencies \(\epsilon_{s,\alpha} / \hbar \), yet short with respect to the typical time-scale of variation of the occupation numbers \(\hat{n}_{s,\alpha} \). Finally \(\mu_0(\bar{N}) \) is the zero temperature chemical potential of the gas with \(N \) particles. We interpret \(d \hat{b}_0 / dt \) as the adiabatic derivative of the energy that is at fixed quasi-particle populations. By taking the average of equation \([7]\) in the stationary state \(|\psi \rangle \) and using the Eigenstate thermalization hypothesis \([13]\) to identify the quantum average in an eigenstate with the microcanonical average, we recognize the microcanonical chemical potential \(\mu_{\text{mc}} \) at energy \(E_\lambda \) and particle number \(N_\lambda \) and obtain:

\[
\langle \psi | \hbar \frac{d \hat{b}_0}{dt} | \psi \rangle = -2 \mu_{\text{mc}}(E_\lambda, N_\lambda)
\]

(8)

The next-to-leading term under the exponential in \([4]\), is of order \(1/N \). In order to prove it, we express it in terms of the correlation function of \(d \hat{b}_0 / dt \) in \(|\psi \rangle \):

\[
\gamma_\lambda + i \delta_\lambda = \int_0^{+\infty} dt \left[\langle \frac{d \hat{b}_0(t)}{dt} \frac{d \hat{b}_0(0)}{dt} \rangle_{\lambda} - \langle \frac{d \hat{b}_0}{dt} \rangle_{\lambda}^2 \right]
\]

(9)

This is equivalent to \([6]\) as can be checked by inserting a closure relation. The \(t = 0 \) value of the integrand is \(\text{Var}_\lambda(d \hat{b}_0 / dt) = O(1/N) \) (this comes from adding up the variances of independent quasi-particles numbers in the canonical ensemble and overestimates the microcanonical variance) : the function then decays in a time \(\tau_c \) which is the typical collision time of quasi-particles and hence the correlation time of the \(\hat{n}_{s,\alpha} \). Altogether we estimate \(|\gamma_\lambda + i \delta_\lambda| \approx \tau_c \text{Var}(d \hat{b}_0 / dt) = O(1/N) \). The energy shift \(\delta_\lambda \) is thus of the same order in \(N \) as the neglected term \([\hat{b}_0, [\hat{b}_0, \hat{H}]] \) in \(\hat{W} \), that is \(N \) times smaller than \([5]\); we neglect it for a large system. In contrast, we keep \(\gamma_\lambda \), the only term leading to an exponential decay of the correlation function \(g_1^\lambda \). It is in fact the phase diffusion coefficient of a system prepared in the microcanonical ensemble corresponding to \(|\psi \rangle \), \(\gamma_\lambda = D(E_\lambda, N_\lambda) \). Finally:

\[
g_1^\lambda(t) \approx \tilde{N}_0 e^{2 \mu_{\text{mc}}(E_\lambda, N_\lambda) t / \hbar - t^2 / 22t_n e^{-D(E_\lambda, N_\lambda) t}}
\]

(10)

The final step is to take the statistical average over the probability distribution \(\Pi_\lambda \) of the states \(|\psi \rangle \). For large \(N \), we assume that energy and atom number fluctuations around the mean values \(\bar{E} \) and \(\bar{N} \) are weak in relative value. This is the case if \(\Pi_\lambda \) describes a canonical or grand canonical ensemble. We assume Gaussian fluctuations and linearize \(\mu_{\text{mc}} \) around \((E, \bar{N}) \). To this order, we keep only the central value \(D(E, \bar{N}) \) of the next-to-leading term. Altogether this leads to the main result of this work :

\[
g_1(t) \approx \tilde{N}_0 e^{2 \mu_{\text{mc}}(E, \bar{N}) t / \hbar - t^2 / 22t_n e^{-D(E, \bar{N}) t}}
\]

(11)

At long times, the thermal blurring thus consists in a Gaussian decay of the correlation function \(g_1(t) \), with a characteristic time

\[
(2t_n / \hbar)^{-2} = \text{Var} \left(N \frac{\partial \mu_{\text{mc}}}{\partial N} (E, \bar{N}) + E \frac{\partial \mu_{\text{mc}}}{\partial E} (E, \bar{N}) \right)
\]

(12)

which diverges \(N^{1/2} \) for normal fluctuations. The phase diffusion coefficient \(D \) leads to an exponential decay with a characteristic time diverging as \(N \). As expected it is a subleading effect at long times, except if the system is prepared in the microcanonical ensemble.

Microscopic derivation of the dynamical equation of the phase : We give here the first (to our knowledge) microscopic derivation of equation \([7]\), relating the evolution of the phase of a pair-condensed gas to what one could call the chemical potential operator.

The contribution of the fermionic branch of excitations to \(d \hat{b}_0 / dt \) can be obtained from the linearized equations of motion for small fluctuations of the pair operators \(\psi_\uparrow \psi_\uparrow ^\dagger, \psi_\downarrow \psi_\downarrow ^\dagger \) and \(\psi_\sigma ^\dagger \psi_\sigma \) around the mean-field state \([10]\). Using equation (120) of reference \([12]\) to extract the time average of \(d \hat{b}_0 / dt \), and rewriting equation (86) of \([12]\) in terms of the fermionic quasi-particle occupation numbers, we get

\[
- \frac{\hbar^2}{2} \frac{d^2}{dt^2} \sum_{\alpha=k,s} \mu(\bar{N}) + \frac{d \mu}{d N} (\bar{N} - \bar{N}) + \sum_{\alpha=k,s} \frac{d \epsilon_{F,\alpha}}{d N} \hat{n}_{F,\alpha}
\]

(13)
where $\epsilon_{F,k,\sigma}$ is the BCS excitation spectrum of an homogeneous system and \bar{N} the BCS average particle number in the grand canonical ensemble of chemical potential μ.

The result 1.3 does not include the contribution of the phonon branch because at the linear order of the RPA the phase of the condensate (formed of pairs at rest) is not coupled to moving pairs operators. One could expect to obtain such coupling by pushing the expansion to the quadratic order. Unfortunately the operators of the RPA, although linearly independent, are linked by non-linear relations, as one can see by rearranging the pair operators using fermionic anticommutation relations. As a consequence, if one inserts the modal expansion obtained from the linearized equations of motion in a nonlinear expression such as $d\phi_0/dt$, the coefficient of $b_{\mathbf{q}}^\dagger b_{\mathbf{q}}$ is not uniquely determined. We then decided to treat the nonlinearity with a variational approach based on a time-dependent coherent state including moving pairs:

$$|\psi\rangle = N(t) \exp \left(b^\dagger \sum_{\mathbf{r},\mathbf{r}'} \Gamma(\mathbf{r}, \mathbf{r}'; t) \hat{\psi}_{\mathbf{r}}^\dagger(\mathbf{r}) \hat{\psi}_{\mathbf{r}'}(\mathbf{r}') \right) |0\rangle,$$

(14)

Here N ensures normalization and the $\Gamma(\mathbf{r}, \mathbf{r}')$ form a set of independent variables. The space has been discretized on a cubic lattice of step b, which we take to zero in the end of the calculations. The field operators obey anticommutation relations of the kind:

$$\{ \hat{\psi}_{\mathbf{r}}(\mathbf{r}), \hat{\psi}_{\mathbf{r}'}^\dagger(\mathbf{r}') \} = \delta_{\mathbf{r},\mathbf{r}'}/b^3.$$

Reference 19 constructs from $\Gamma(\mathbf{r}, \mathbf{r}')$, $\Gamma^\dagger(\mathbf{r}, \mathbf{r}')$ the set of canonically conjugate variables $\Phi(\mathbf{r}, \mathbf{r}')$, $\Phi^\dagger(\mathbf{r}, \mathbf{r}')$. This field Φ has no simple relationship with the usual pairing field $\langle \hat{\psi}_{\mathbf{r}} \hat{\psi}_{\mathbf{r}'} \rangle$. The square of its norm is exactly the mean number of pairs in $|\psi\rangle$:

$$N/2 = \|\Phi\|^2 \equiv b^6 \sum_{\mathbf{r},\mathbf{r}'} |\Phi(\mathbf{r}, \mathbf{r}'; t)|^2.$$

(15)

Its evolution is governed by the classical Hamiltonian:

$$\mathcal{H}(\Phi, \Phi^\dagger) = \langle \psi | \hat{H} | \psi \rangle.$$

(16)

In the following we will need only the invariance of \mathcal{H} under a global phase change $\Phi(\mathbf{r}, \mathbf{r}') \rightarrow e^{i\theta} \Phi(\mathbf{r}, \mathbf{r}')$, $\forall \gamma \in \mathbb{R}$ ($U(1)$ symmetry), consequence of the conservation of the particle number \bar{N} by evolution with \hat{H}. At zero temperature and for a fixed \bar{N} the field $\Phi(\mathbf{r}, \mathbf{r}')$ is fixed, up to a global phase factor, into the minimizer $\Phi_0(\mathbf{r}, \mathbf{r}') = (N/2)^{1/2} \phi_0(\mathbf{r}, \mathbf{r}')$ of \mathcal{H}. ϕ_0 is chosen real and normalized to one. It depends on N even in the spatially homogeneous case and differs from the condensate wavefunction ϕ_0 in the same way that Φ differs from the pairing field $\langle \hat{\psi}_{\mathbf{r}} \hat{\psi}_{\mathbf{r}'} \rangle$. At sufficiently low temperature one can expand \mathcal{H} in powers of the small deviations of Φ away from the circle $\gamma \rightarrow e^{i\theta} \phi_0(\mathbf{r}, \mathbf{r}')$, locus of the minima of \mathcal{H} for fixed \bar{N}. We split the field into its components parallel and orthogonal to ϕ_0:

$$\Phi(\mathbf{r}, \mathbf{r}') = e^{i\theta} [n^{1/2} \phi_0(\mathbf{r}, \mathbf{r}') + \Lambda(\mathbf{r}, \mathbf{r}')]$$

(17)

The phase θ can reach arbitrarily large values while Λ is bounded. This framework allows us to develop a systematization perturbation theory in powers of the field Λ (cf. Appendix A, fermionic equivalent of the Bogoliubov $U(1)$-symmetry conserving approach for bosons [20]). Provided that Λ stays small, the phase θ remains close to the condensate phase θ_0 as we shall see. We then write down the equations of motion of θ and of the fields Λ, Λ^\dagger. At the end of the calculations we systematically eliminate the condensate variables with the relation $n = \|\Phi\|^2 - \|\Lambda\|^2$, consequence of (15), and we restrict ourselves to order 2 in Λ, Λ^\dagger.

The main challenge of the calculation is the occurrence of a term linear in Λ, Λ^\dagger in $d\theta/dt$, resulting from the fact that ϕ_0 depends on the number of pairs [12]. Without this term, one would simply expand the field Λ on the eigenmodes of its small linear oscillations, obtained from a quadratization of the Hamiltonian \mathcal{H} at fixed N:

$$\left(\Lambda(\mathbf{r}, \mathbf{r}'; t) \right) = b_{\alpha}(t) \left(u_{\alpha}(\mathbf{r}, \mathbf{r}') \right) + b_{\alpha}^*(t) \left(v_{\alpha}(\mathbf{r}, \mathbf{r}') \right)$$

(18)

where the sum runs over the eigenmodes of positive energy ϵ_α, normalized as $\|u_\alpha\|^2 - \|v_\alpha\|^2 = 1$. At this order, $b_{\alpha}(t) = b_{\alpha}(0) e^{-i\epsilon_\alpha t/\hbar}$. One would insert the expansion (18) into $d\theta/dt$ and take a coarse grained temporal average to get rid of the oscillating terms. $d\theta/dt$ would then contain the expected linear combination of the numbers of bosonic quasi-particles $n_{B,\alpha} = |b_{\alpha}|^2$. In reality, the problem is more subtle: due to the interaction among the quasi-particles, $\overline{b_{\alpha}}$ does not vanish and is of order two in Λ and Λ^\dagger. The contribution of the linear term in $d\theta/dt$ is then comparable to the quadratic terms. It is calculated in the Appendix A exploiting in particular the bounded nature of the field Λ (consequence of the $U(1)-$symmetry preserving nature of expansion (17)) and the Hellmann-Feynman theorem. One finds

$$-\frac{\hbar}{2} \frac{d\theta}{dt} = \mu_0(N) + \sum_\alpha \frac{d\epsilon_\alpha}{dN} |b_{\alpha}|^2 + O(\|\Lambda\|^3).$$

(19)

We now briefly discuss the form of the energy spectrum ϵ_α for a spatially homogeneous system, in the continuous limit $\delta \rightarrow 0$ for a s-wave contact interaction with a fixed scattering length between opposite spin fermions. For each value of the total wave vector \mathbf{q}, there exists (i) at most one discrete value $\epsilon_{F,\mathbf{q},\uparrow}$, (ii) a continuum parametrized by two wave vectors $(k_1, \uparrow; k_2, \downarrow) \rightarrow \epsilon_{F,k_1,\uparrow} + \epsilon_{F,k_2,\downarrow}$ of constant sum $(k_1 + k_2 = \mathbf{q})$, where $\epsilon_{F,k,\sigma}$ is the BCS dispersion relation. The branch $\epsilon_{F,\mathbf{q},\uparrow}$ coincides with that of reference 21, as we have checked. It has a phononic start and corresponds to the bosonic elementary excitations of the Fermi gas, whose contribution to the phase dynamics was missing. It must be included in (19). The continuum corresponds to the excitation of two fermion quasi-particles. Indeed, since the Hamiltonian \hat{H} contains an even number of factors $\hat{\psi}$ and $\hat{\psi}^\dagger$, each annihilating or creating one quasi-particle,
fermionic quasi-particles can only be created by pairs from the ground state. The corresponding biexcitations are not physically independent and are redundant with the RPA contribution to $d\theta_0/dt$. They must not be included in (13).

Two more remarks are needed to obtain (7). (i) The fields $\langle \hat{\psi}_1 \hat{\psi}_\uparrow \rangle$ and Φ differ and so do the phases θ_0 and θ. Their coarse grained temporal averages, however, only differ by a term of order $||A||^2$, which, bounded hence negligible in the long time limit, does not contribute to the phase blurring of the condensate of pairs. (ii) The phase θ of our variational approach is a classical variable, whereas θ_0 in (7) is a quantum operator. This gap can be bridged by using the quantization procedure exposed in Chapter 11 of reference [19], where the b_{α} are in the end replaced by bosonic operators \hat{b}_{α}, $[\hat{b}_{\alpha}, \hat{b}_{\alpha}^\dagger] = 1$. We argue that equation (7), linking $d\theta_0/dt$ to the chemical potential operator, and the resulting equation (11) should hold beyond the validity range of the microscopic variational derivation presented above, and should apply even to the strongly interacting regime, provided that the temperature is low enough for the quasi-particles lifetime to be much longer than the inverse of their eigenfrequency. Indeed, in the limiting case where one can neglect the fermionic excitation branch and drop the non-phononic part of the bosonic branch, equation (7) can be derived from the irrotational version of the quantum hydrodynamic theory of Landau and Khalatnikov [22] (see Appendix [13]).

![FIG. 1: Trapping configuration proposed here to measure $g_1(t)$ via Ramsey interferometry: the condensed paired Fermi gas is confined in the main trap (with a flat bottom on the figure); one transfers a small number of atoms (in the form of dimers) in the (very narrow) secondary trap via a resonant tunneling effect, which can be tuned by a barrier of adjustable height; in this way, one creates a phase reference, which is made to interfere with the condensate after an evolution time t.](image)

Let us briefly explain how an experimental evidence of the thermal blurring of a condensate of pairs could be obtained. The key idea is to bosonize the atomic Cooper pairs into deeply bound weakly interacting dimers during the preparation and the measurement stage. This can be done in an adiabatic reversible way [23] by tuning the scattering length to a small and positive value thanks to a magnetic Feshbach resonance. It allows one to (i) produce a sample of dimers with weak number fluctuations from a melted Mott phase of an experimental realization of the Bose Hubbard model [24], (ii) control tunneling between the main trap (containing the N particles) and a very narrow secondary trap by adjusting the height of a potential barrier [3] (Fig. 1), (iii) detect by fluorescence a single dimer [25] in this secondary trap. For the measurement of the $g_1(t)$ function, we adopt [26] the interferometric Ramsey method of two Rabi pulses at a time interval t to the case of paired fermions. The bosonized pairs are prepared initially in the main trap. A first pulse of angle ϵ transfers on average less than one dimer to the secondary trap; in this way, the thermal blurring is not masked by partition noise. Then the system evolves during a time t with interactions set to the value at which phase dynamics is to be studied. Last, the gas is rebosonized and a second pulse of angle ϵ closes the interferometer, and the number n_{sec} of dimers in the secondary trap is measured.

![FIG. 2: Thermal blurring time of a coherent Fermi gas in the unitary limit in the canonical ensemble, as a function of temperature T in units of the Fermi temperature $T_F = \epsilon_F/k_B$. Discs: from the equation of state measured in reference [4]. Dashed line: expression (20) deduced from an approximated equation of state (see text).](image)

Finally, we estimate the blurring time for a unitary Fermi gas prepared in the canonical ensemble, that is with energy fluctuations of variance $\text{Var}E = k_B T^2 \partial_T \bar{E}$. From the equation of state of the unpolarized unitary gas measured in reference [4], and for a spatially homogeneous system (in a flat bottom potential [27]), we find the thermal blurring times t_{br} plotted as discs in figure 2. For example, at a temperature $T = 0.12$ $T_F \simeq 0.7 T_c$, we find $t_{\text{br}} \approx 7N^{1/2} \hbar/\epsilon_F$ corresponding to 20 milliseconds for a typical Fermi temperature $T_F = \epsilon_F/k_B = 1 \mu K$ and a typical atom number $N = 10^5$. As in reference [28], one can also estimate the equation of state of the unitary gas from simple dispersion relations for the elementary excitations. For the bosonic branch one takes [29] $\epsilon_{B,q} = hcq$ with c the $T = 0$ sound velocity, $mc^2 = \frac{\hbar^2}{8\pi\xi \epsilon_F}$ and ξ the Bertsch parameter. For the fermionic branch, one takes [29] $\epsilon_{F,k,\sigma} = \Delta + (k^2/m^2 - \epsilon_0)^2/(2\phi_0)$, where Δ is the gap, and ϵ_0 and ϕ_0 give the location of the minimum and the curvature of the dispersion relation. Keeping each branch
contribution to its leading order at low temperature, as in reference 28, and using the experimental values 3, 30, \(\xi = 0.376, \Delta = 0.44\epsilon_F, \epsilon_0 = 0.85\epsilon_F \) and the theoretical value \(\phi_0 = 0.84\epsilon_F \), we find

\[
\frac{N\hbar^2}{(h_F^2 \epsilon_F)^2} \simeq \left(\frac{\theta}{0.296} \right)^5 \frac{(1 + 2r)^2}{(1 + r)}
\]
(20)

where \(\theta = T/T_F \) and \(r \simeq (\frac{2.36}{\theta})^{9/2} e^{-0.44/\theta} \) gives the relative weight of the two excitation branches. This formula, plotted as a dashed line in figure 2, is an exact equivalent to \(t_{br} \) in the limit \(\theta \to 0 \). The good agreement with the experimental data has to be taken cautiously. If one treats the two branches to all order in \(\epsilon_F \), one gets an upward shift of \(t_{br}/(hN^{1/2}) \) more or less constant and equal to 5 over the temperature range of figure 2.

Conclusion: We have presented the first microscopic theory of the thermal blurring of the phase of a condensate of pairs of fermions (11), revealing a ballistic blurring and a subleading phase diffusion. The blurring time depends on the variance of the total energy of the gas, and on the derivative of the microcanonical chemical potential with respect to the energy. This relies crucially on the fact that the time derivative of the condensate phase is given by the chemical potential operator of the gas, see equation (2). We have derived this central relation in a fully microscopic way, including both the bosonic and the fermionic branches of excitation. Last, we have proposed a realistic experimental protocol to measure this blurring time, that we estimated to be tens of milliseconds for a coherent gas prepared in the unitary limit in the canonical ensemble.

Acknowledgments

We acknowledge support from the European project QIBEC.

Appendix A: More on the pair coherent state variational calculation

In a first stage, it is convenient to treat the real quantity \(n \) and the complex field \(\Lambda \) as independent variables, that is one does not fix the value of \(\| \Phi \| \). To include interactions among the quasi-particles, one must go up to third order in \(\Lambda \) and \(\Lambda^* \), so that

\[
\mathcal{H}(\Phi, \Phi^*) = \mathcal{T}_0[n, \phi_0(N)] + \sum_{j=1}^3 \mathcal{T}_j[n, \phi_0(N)](\Lambda, \Lambda^*) + O(\|\Lambda\|^4)
\]
(A1)

where the tensor \(\mathcal{T}_j \) is of rank \(j \) so that \(\mathcal{T}_j(\Lambda, \Lambda^*) \) is exactly of order \(j \) in \(\Lambda \) and \(\Lambda^* \). It may be expressed in terms of the differential of order \(j \) of \(\mathcal{H} \) taken at \((\Phi, \Phi^*) = (n^{1/2}\phi_0, n^{1/2}\phi_0) \) and restricted to the subspace orthogonal to \((\phi_0, 0) \) and \((0, \phi_0)\). It does not depend on the phase \(\theta \) due to the \(U(1) \) symmetry. For a fixed total number of particles, the energy does not vary to first order around the minimizer so that \(\mathcal{T}_1[N/2, \phi_0(N)] = 0 \). This apparently not very inspiring equation is actually the famous gap equation when the system is spatially homogeneous. Furthermore, one can check that \(\partial_n \mathcal{T}_0[N/2, \phi_0(N)] = 2\mu_0(N) \) where \(\mu_0(N) = dE_0(N)/dN \) is the chemical potential at zero temperature, \(E_0(N) = \mathcal{T}_0[N/2, \phi_0(N)] \) being the ground state energy.

The phase and the modulus square of the amplitude of the field \(\phi_0 \) on the mode \(\phi_0 \) are canonically conjugate variables, so that \(-i\hbar \partial \phi_0/dt = \partial_n \mathcal{H}(\Phi, \Phi^*) \). Once this derivative is taken in (A1) for fixed \(\Lambda \) and \(\Lambda^* \), one can fix the norm of \(\Phi \) to the value \((N/2)^{1/2} \) (that is the total particle number is fixed to \(N \)), and eliminate \(n \) through the identity \(n = \|\Phi\|^2 = \|\Lambda\|^2 \); the field \(\Lambda \) then remains the only dynamical variable of the problem. The resulting expression is useful up to order 2 in \(\Lambda, \Lambda^* \):

\[
-\hbar \frac{d\theta}{dt} = \partial_n \mathcal{T}_0[N/2, \phi_0(N)] - \|\Lambda\|^2 \partial_n^2 \mathcal{T}_0[N/2, \phi_0(N)] + \sum_{j=1}^2 \partial_n \mathcal{T}_j[N/2, \phi_0(N)](\Lambda, \Lambda^*) + O(\|\Lambda\|^3)
\]
(A2)

The Hamiltonian that determines the evolution of \(\Lambda \) at fixed particle number is obtained by replacing \(n \) with \(N/2 - \|\Lambda\|^2 \) in (A1) and by expanding the resulting expression up to order three in \(\Lambda, \Lambda^* \):

\[
\mathcal{H}_N(\Lambda, \Lambda^*) = E_0(N) + \tilde{\mathcal{T}}_2[N](\Lambda, \Lambda^*) + \mathcal{T}_3[N/2, \phi_0(N)](\Lambda, \Lambda^*) - \|\Lambda\|^2 \partial_n \mathcal{T}_1[N/2, \phi_0(N)](\Lambda, \Lambda^*) + O(\|\Lambda\|^4)
\]
(A3)

where the quadratic form \(\tilde{\mathcal{T}}_2[N](\Lambda, \Lambda^*) \) is obtained by subtracting \(2\mu_0(N)\|\Lambda\|^2 \) from \(\mathcal{T}_2[N/2, \phi_0(N)](\Lambda, \Lambda^*) \). The trick is then to directly write the temporal derivative of the imaginary part of the component of the field \(\Lambda \) on the function \((N/2)^{1/2}d\phi_0/dN \),

\[
Y = \frac{\hbar \theta}{2i} \sum_{r, r'} \left(\frac{N}{2} \right)^{1/2} \frac{d\phi_0(r, r')}{dN}(\Lambda(r, r') - \Lambda^*(r, r'))
\]
(A4)
Since $\hbar \partial_t \Lambda = b^{-6} \partial_\Lambda \cdot \mathcal{H}_N(\Lambda, \Lambda^*)$, one gets

$$-2\hbar \frac{dY}{dt} = D \cdot \mathcal{H}_N(\Lambda, \Lambda^*) + D \cdot \mathcal{T}_2[N][\Lambda, \Lambda^*] = D \cdot \mathcal{H}_N^{\text{cub}}(\Lambda, \Lambda^*) + O(||\Lambda||^3)$$

(A5)

where $\mathcal{H}_N^{\text{cub}}$ is the component of \mathcal{H}_N of order three in Λ, Λ^*. We have introduced the differential operator

$$D = \sum_{r,r'} \left(\frac{N}{2} \right)^{1/2} \frac{d\phi_0(r,r')}{dN} \left(\partial_{\Lambda(r,r')} + \partial_{\Lambda^*(r,r')} \right)$$

(A6)

We shall now take advantage of two identities that exactly hold for all Λ orthogonal to ϕ_0:

$$\partial_\Lambda T_1(\Lambda, \Lambda^*) + 2D \cdot \mathcal{T}_2[N][\Lambda, \Lambda^*] = 0$$

(A7)

$$2D \cdot \mathcal{H}_N^{\text{cub}}(\Lambda, \Lambda^*) = 2 \frac{d}{dN} \mathcal{T}_2(\Lambda, \Lambda^*) - 2 \frac{d}{dN} \mathcal{T}_2(\Lambda, \Lambda^*) + ||\Lambda||^2 \partial_\Lambda^2 T_0$$

(A8)

where all the tensors are taken at $[n = N/2, \phi_0(N)]$ or simply at N for \mathcal{T}_2. To prove these relations, one formally considers a field Φ' with $N + \delta N$ particles and determines in two different ways the quadratic expansion of $\mathcal{H}_{N+\delta N}(\Lambda', \Lambda'^*)$ in powers of Λ' and Λ'^*, where Λ' is as in (17) (written for $N + \delta N$ particles) the component of Φ' orthogonal to $\phi_0'(N + \delta N)$. First, one simply replaces N with $N + \delta N$ and Λ with Λ' in (A3), and then expands to first order in δN. The tensor $d\mathcal{T}_2/dN[N]$ naturally appears from this expansion. Second, one applies to $\mathcal{H}(\Phi', \Phi'^*)$ the expansion (11) around $\Phi_0(N)$ and takes into account the fact that, to first order in δN, the component of Φ' orthogonal to $\phi_0(N)$ contains, in addition to Λ'_\perp coming from Λ', a contribution coming from $d\phi_0/dN$:

$$\Lambda(r,r') = \delta N \left(\frac{N}{2} \right)^{1/2} \frac{d\phi_0}{dN}(r,r') + \Lambda'_\perp(r,r') + O(\delta N^2, \delta N ||\Lambda'||, ||\Lambda'||^2)$$

(A9)

This infinitesimal shift proportional to δN along the direction of $d\phi_0/dN$ is responsible for the occurrence of the operator D. Equations (A7) and (A8) are finally obtained by identification of the two resulting expressions of $\mathcal{H}_{N+\delta N}(\Lambda', \Lambda'^*)$ respectively to first and second order in Λ' and Λ'^*.

At this stage most of the work has been done. It remains to combine equations (A2), (A5), (A7), and (A8) after a coarse grained temporal average (over a time scale much longer than the oscillation period of the modal amplitudes b_α but much shorter than the evolution time of the quasi-particle numbers $|b_\alpha|^2$), to obtain

$$-\frac{\hbar}{2} \frac{d\Lambda}{dt} = \mu_0(N) + \frac{d\mathcal{T}_2}{dN}[N][\Lambda, \Lambda^*] + O(||\Lambda||^3)$$

(A10)

where we used the crucial property that $d\Lambda/dt$ vanishes (and so does dY/dt), since the range of variation of the field Λ is bounded. The quadratic form $\mathcal{T}_2[N]$ is represented by the matrix $\eta \mathcal{L}[N]$ with $\eta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, using a block notation and the scalar product \langle , \rangle generating the norm $|||$

$$\mathcal{T}_2[N](\Lambda, \Lambda^*) = \frac{1}{2} \left\langle \left(\begin{array}{c} \Lambda \\ \Lambda^* \end{array} \right), \eta \mathcal{L}[N] \left(\begin{array}{c} \Lambda \\ \Lambda^* \end{array} \right) \right\rangle$$

(A11)

Then one inserts the modal decomposition (18) in the derivative with respect to N of the equation (A11); we recall that ϵ_α and (u_α, v_α), $-\epsilon_\alpha$ and (v_α^*, u_α^*) are the eigenvalues and the eigenvectors of \mathcal{L}. The coarse grained temporal average gets rid of the crossed terms, and the Hellmann-Feynman theorem ensures that $\langle u_\alpha^*, -v_\alpha^* \rangle \frac{d\mathcal{L}[N]}{dN}(u_\alpha, v_\alpha) = \epsilon_\alpha$ $d\alpha/dN$ and finally leads to equation (19).

Appendix B: Irrotational quantum hydrodynamics

To calculate the viscosity of superfluid helium at low temperature, Landau and Khalatnikov have developed in 1949 the theory of quantum hydrodynamics [22, 31]. It allows one to determine, to leading order in T, the effect of a non-zero temperature on the quantum fluid, at least on the observables that only involve low energy scales and large
length scales. Remarkably, the only specific ingredient is the zero-temperature equation of state of the fluid, which is here the energy per unit volume $e_0(\rho)$ of the ground state of the spatially homogeneous system of density ρ.

To obtain the time derivative of the phase operator of the condensate of fermion pairs, we refine the theory in two ways: by regularizing ultraviolet divergences and by specializing to the irrotational case.

First, we solve the issue of the Landau-Khalatnikov Hamiltonian ground state energy, that diverges due to the zero-point motion of the system eigenmodes. We discretize the space in a cubic lattice of spacing b, a sub-multiple of the size L of the quantization volume, which is much smaller than the typical wavelength $2\pi/q_{th}$ of the thermal excitations of the fluid but much larger than the mean interparticle distance $\rho^{-1/3}$,

$$\rho^{-1/3} \ll b \ll q_{th}^{-1} \quad \text{(B1)}$$

both conditions being compatible at sufficiently low temperature. This is in the spirit of the validity range of hydrodynamics, which relies on a spatial coarse graining, and it provides a natural cut-off for the wave vectors q by restricting them to the first Brillouin zone $\mathcal{D} = [-\pi/b,\pi/b]^3$. In the Hamiltonian one must then replace the differential operators such as the gradient, the divergence and the Laplacian, by their discrete versions, as we shall implicitly do below, and introduce the bare energy density $e_{0,0}(\rho)$, which depends on the lattice spacing b. Following the ideas of renormalization, the zero-point energy of the modes, that formally diverges when $b \to 0$, adds up to $e_{0,0}(\rho)$ to exactly reconstruct the effective or true energy density $e_0(\rho)$, that does not depend on b and is what is measured experimentally.

Second, we specialize the theory to the case of an irrotational velocity field operator $\mathbf{\hat{v}}(\mathbf{r},t)$ that can then be written as the gradient of the phase field operator $\hat{\phi}(\mathbf{r},t)$, itself canonically conjugate to the density field operator $\hat{\rho}(\mathbf{r},t)$:

$$\mathbf{\hat{v}}(\mathbf{r},t) = \frac{\hbar}{m} \text{grad} \hat{\phi}(\mathbf{r},t) \quad \text{with} \quad [\hat{\rho}(\mathbf{r},t),\hat{\phi}(\mathbf{r}',t)] = i\frac{\delta_{\mathbf{r},\mathbf{r}'}}{b^3} \quad \text{(B2)}$$

This amounts to neglecting the transverse component of the field $\mathbf{\hat{v}}(\mathbf{r},t)$, as done in reference [22] to determine the phonon-phonon interaction and go forward in the computation of viscosity. In the particular scale invariant case of the unitary Fermi gas, this was justified within the effective field theory in reference [32]. We note en passant that the density of fermionic quasi-particles is exponentially small in $1/T$ and is directly omitted by hydrodynamic theory.

The steps that follow are rather usual. One starts form the equations of motion of the fields in Heisenberg picture, that is the quantum continuity equation and the quantum Euler equation for the potential (whose gradient gives the quantum Euler equation for the velocity):

$$\partial_t \hat{\rho} + \text{div} \left\{ \frac{1}{2} \{ \hat{\rho}, \mathbf{\hat{v}} \} \right\} = 0 \quad \text{(B3)}$$

$$\hbar \partial_t \hat{\phi} = -\frac{1}{2} mv^2 - \mu_{0,0}(\hat{\rho}) \quad \text{(B4)}$$

where $\{ \hat{A}, \hat{B} \} = \hat{A}\hat{B} + \hat{B}\hat{A}$ is the anticommutator of two operators and

$$\mu_{0,0}(\rho) = \frac{d}{d\rho} e_{0,0}(\rho) = e'_{0,0}(\rho) \quad \text{(B5)}$$

is the bare ground state chemical potential at density ρ. The quantum spatial density and phase fluctuations are weak provided that $\rho^{1/3}b$ is large enough: the thermal ones are weak if in addition $q_{th}b$ is small enough [33]. Under these conditions one can linearize as in [22] the equations of motion around the spatially uniform solution:

$$\hat{\rho}(\mathbf{r},t) = \hat{\rho}_0 + \delta \hat{\rho}(\mathbf{r},t) \quad \text{(B6)}$$

$$\hat{\phi}(\mathbf{r},t) = \hat{\phi}_0(t) + \delta \hat{\phi}(\mathbf{r},t) \quad \text{(B7)}$$

The operator $\hat{\rho}_0$ reduces to $\hat{\mathcal{N}}/L^3$, where $\hat{\mathcal{N}}$ is the operator giving the total number of particles, and is a constant of motion. The operator $\hat{\phi}_0$ is the phase operator of the condensate; one has here

$$\hat{\phi}_0 = \hat{\theta}_0/2 \quad \text{(B8)}$$

since the phase operator $\hat{\theta}_0$ in equation [2] takes the pairs as the building block, whereas equations [B3,B4] are build on the fermionic particles. The spatial fluctuations $\delta \hat{\rho}$ and $\delta \hat{\phi}$, of vanishing (discrete) integral over the whole space,
can be expanded on the plane waves of non-zero wave vector q, and commute with $\hat{\rho}_0$. One solves the linearized equations for $\delta \hat{\rho}$ and $\delta \hat{\phi}$ and one can use the usual expansion on eigenmodes:

$$
\delta \hat{\rho}(r, t) = \frac{\hbar^{1/2}}{L^{3/2}} \sum_{q \in \mathbb{Z}^3 \cap D} \left(\frac{hq}{2m \omega_{0, q}} \right)^{1/2} \left(\hat{B}_q + \hat{B}^\dagger_{-q} \right) e^{iq \cdot r} \\
(\text{B9})
$$

$$
\delta \hat{\phi}(r, t) = \frac{-1}{\hbar^{1/2} L^{3/2}} \sum_{q \in \mathbb{Z}^3 \cap D} \left(\frac{m \omega_{0, q}}{2h} \right)^{1/2} \left(\hat{B}_q - \hat{B}^\dagger_{-q} \right) e^{iq \cdot r} \\
(\text{B10})
$$

where the creation operator \hat{B}^\dagger_q and the annihilation operator \hat{B}_q of a phonon with wave vector q and energy $h \omega_{0, q}$ obey bosonic commutation relations $[\hat{B}_q, \hat{B}^\dagger_{q'}] = \delta_{q, q'}$ and where we introduced the zero-temperature bare sound velocity operator

$$
\hat{c}_{0, 0} = \frac{\left(\hat{\rho}_0 \mu'_{0, 0}(\hat{\rho}_0) \right)^{1/2}}{m} \\
(\text{B11})
$$

It remains to expand the right-hand side of (B13) up to second order in $\delta \hat{\rho}$ and $\delta \hat{\phi}$, to extract the zero wave vector Fourier component, to perform a coarse grained temporal average to get rid of the oscillating crossed terms $\hat{B}_q \hat{B}_{-q}$ and $\hat{B}^\dagger_{-q} \hat{B}^\dagger_q$, and to use the identity

$$
\frac{d}{d\rho} \left[\rho \mu_{0, 0}(\rho) \right]^{1/2} = \frac{\mu'_{0, 0}(\rho) + \rho \mu''_{0, 0}(\rho)}{2\rho [\rho \mu_{0, 0}(\rho)]^{1/2}} \\
(\text{B12})
$$

to obtain

$$
\hbar \frac{d}{d\rho} \hat{c}_{0, 0} = -\mu_{0, 0}(\hat{\rho}_0) - \sum_{q \in \mathbb{Z}^3 \cap D} \left(\frac{hq}{dN} \frac{d}{d\rho} \hat{c}_{0, 0} \right) \left(\hat{B}_q \hat{B}_q + \frac{1}{2} \right) \\
(\text{B13})
$$

At this order of the expansion, one can collect in (B13) the zero-point contribution of the modes (the term 1/2 in between parentheses) and the bare chemical potential $\mu_{0, 0}(\hat{\rho}_0)$ to form the true chemical potential $\mu_{0, 0}(\hat{\rho}_0)$ of the fluid at zero temperature, and one can identify $\hat{c}_{0, 0}$ in the prefactor of the phonon number operator $\hat{B}^\dagger_q \hat{B}_q$ with the true sound velocity at zero temperature, $\hat{c}_0 \equiv [\hat{\rho}_0 \mu'_{0, 0}(\hat{\rho}_0)/m]^{1/2}$. One then obtains the (low temperature) phononic limit of relation (7), without any constraint on the interaction strength.

\[\text{References}\]

[1] H. Müntinga, H. Ahlers, M. Krutzik, A. Wenzlawski, S. Arnold, D. Becker, K. Bongs, H. Dittus, H. Dunker, N. Gaaloul, C. Gherasim, E. Giese, C. Grzeschik, T. W. Hänsch, O. Hellmig, W. Herr, S. Herrmann, E. Kajari, S. Kleinert, C. Lämmerzahl, W. Lewoczko-Adamczyk, J. Malcolm, N. Meyer, R. Nolte, A. Peters, M. Popp, J. Reichel, A. Roura, J. Rudolph, M. Schiemangk, M. Schneider, S. T. Seidel, K. Sengstock, V. Tamma, T. Valenzuela, A. Vogel, R. Walser, T. Wendrich, P. Windpassinger, W. Zeller, T. van Zoest, W. Ertmer, W. P. Schleich, and E. M. Rasel. Interferometry with Bose-Einstein Condensates in Microgravity. Phys. Rev. Lett., 110:093602, Feb 2013.

[2] Markus Greiner, Olaf Mandel, Theodor W. Hansch, and Immanuel Bloch. Collapse and revival of the matter wave field of a Bose-Einstein condensate. Nature, 419(6902):51–54, 09 2002.

[3] J. Esteve, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler. Squeezing and entanglement in a Bose-Einstein condensate. Nature, 455(7217):1216–1219, 10 2008.

[4] Max F. Riedel, Pascal Böhi, Yun Li, Theodor W. Hänsch, Alice Sinatra, and Philipp Treutlein. Atom-chip-based generation of entanglement for quantum metrology. Nature, 464(7292):1170–1173, 04 2010.

[5] G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss. Long phase coherence time and number squeezing of two Bose-Einstein condensates on an atom chip, Phys. Rev. Lett., 98:030407, Jan 2007.

[6] M. Egorov, R. P. Anderson, V. Ivannikov, B. Opanchuk, N. Gaaloul, C. Gherasim, E. Giese, C. Grzeschik, T. W. Hänsch, O. Hellmig, W. Herr, S. Herrmann, E. Kajari, S. Kleinert, C. Lämmerzahl, W. Lewoczko-Adamczyk, J. Malcolm, N. Meyer, R. Nolte, A. Peters, M. Popp, J. Reichel, A. Roura, J. Rudolph, M. Schiemangk, M. Schneider, S. T. Seidel, K. Sengstock, V. Tamma, T. Valenzuela, A. Vogel, R. Walser, T. Wendrich, P. Windpassinger, W. Zeller, T. van Zoest, W. Ertmer, W. P. Schleich, and E. M. Rasel. Interferometry with Bose-Einstein Condensates in Microgravity. Phys. Rev. Lett., 110:093602, Feb 2013.

[7] Markus Greiner, Olaf Mandel, Theodor W. Hansch, and Immanuel Bloch. Collapse and revival of the matter wave field of a Bose-Einstein condensate. Nature, 419(6902):51–54, 09 2002.

[8] J. Esteve, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler. Squeezing and entanglement in a Bose-Einstein condensate. Nature, 455(7217):1216–1219, 10 2008.

[9] Max F. Riedel, Pascal Böhi, Yun Li, Theodor W. Hänsch, Alice Sinatra, and Philipp Treutlein. Atom-chip-based generation of entanglement for quantum metrology. Nature, 464(7292):1170–1173, 04 2010.

[10] G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss. Long phase coherence time and number squeezing of two Bose-Einstein condensates on an atom chip, Phys. Rev. Lett., 98:030407, Jan 2007.

[11] M. Egorov, R. P. Anderson, V. Ivannikov, B. Opanchuk, N. Gaaloul, C. Gherasim, E. Giese, C. Grzeschik, T. W. Hänsch, O. Hellmig, W. Herr, S. Herrmann, E. Kajari, S. Kleinert, C. Lämmerzahl, W. Lewoczko-Adamczyk, J. Malcolm, N. Meyer, R. Nolte, A. Peters, M. Popp, J. Reichel, A. Roura, J. Rudolph, M. Schiemangk, M. Schneider, S. T. Seidel, K. Sengstock, V. Tamma, T. Valenzuela, A. Vogel, R. Walser, T. Wendrich, P. Windpassinger, W. Zeller, T. van Zoest, W. Ertmer, W. P. Schleich, and E. M. Rasel. Interferometry with Bose-Einstein Condensates in Microgravity. Phys. Rev. Lett., 110:093602, Feb 2013.
interferometer for Bose-Einstein condensates. Nature Communication, 4, June 2013.

[8] S. Nascimbène, N. Navon, K. J. Jiang, F. Chevy, and C. Salomon. Exploring the thermodynamics of a universal Fermi gas. Nature, 463(7284):1057–1060, 02 2010.

[9] Mark J. H. Ku, Ariel T. Sommer, Lawrence W. Cheuk, and Martin W. Zwierlein. Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas. Science, 335(6068):563–567, 2012.

[10] C. Kohstall, S. Riedl, E. R. Sánchez Guajardo, L. A. Sidorenkov, J. Hecker Denschlag, and R. Grimm. Observation of interference between two molecular Bose-Einstein condensates. New Journal of Physics, 13(6):065027, June 2011.

[11] Jacopo Carusotto and Yvan Castin. Atom Interferometer Detection of the Pairing Order Parameter in a Fermi Gas. Phys. Rev. Lett., 94:223202, June 2005.

[12] H. Kurkjian, Y. Castin, and A. Sinatra. Phase operators and blurring time of a pair-condensed Fermi gas. Phys. Rev. A, 88:063623, Dec 2013.

[13] D. Jaksch, C. W. Gardiner, K. M. Gheri, and P. Zoller. Quantum kinetic theory. IV. Intensity and amplitude fluctuations of a Bose-Einstein condensate at finite temperature including trap loss. Phys. Rev. A, 58:1450–1464, Aug 1998.

[14] A. Sinatra, Y. Castin, and E. Witkowski. Nondiffusive phase spreading of a Bose-Einstein condensate at finite temperature. Phys. Rev. A, 75:033616, 2007.

[15] A. B. Kuklov and Joseph L. Birman. Orthogonality catastrophe and decoherence of a confined Bose-Einstein condensate at finite temperature. Phys. Rev. A, 63:013609, Dec 2000.

[16] F.W. Anderson. Random-Phase Approximation in the Theory of Superconductivity. Phys. Rev., 112:1900–1916, 1958.

[17] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Processus d’interaction entre photons et atomes. InterEditions et Éditions du CNRS, Paris, 1988.

[18] Marcos Rigol, Vanja Dunjko, and Maxim Olshanii. Thermalization and its mechanism for generic isolated quantum systems. Nature, 452(7189):854–858, 04 2008.

[19] Jean-Paul Blaizot and Georges Ripka. Quantum Theory of Finite Systems. MIT Press, Cambridge, Massachusetts, 1985.

[20] Yvan Castin and Ralph Dum. Low-temperature Bose-Einstein Condensates in Time-dependent traps. Phys. Rev. A, 57:3008–3021, 1998.

[21] R. Combescot, M. Yu. Kagan, and S. Stringari. Collective mode of homogeneous superfluid Fermi gases in the BEC–BGS crossover. Phys. Rev. A, 74:042717, Oct 2006.

[22] Lev Landau and Isaak Khalatnikov. Teoriya vyazkosti Gel’ia-II. Zh. Eksp. Teor. Fiz., 19:637, 1949.

[23] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, and R. Grimm. Crossover from a Molecular Bose-Einstein Condensate to a Degrenate Fermi Gas. Phys. Rev. Lett., 92:120401, Mar 2004.

[24] Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W. Hansch, and Immanuel Bloch. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature, 415(6867):39–44, 01 2002.

[25] Jacob F. Sherson, Christof Weitenberg, Manuel Endres, Marc Cheneau, Immanuel Bloch, and Stefan Kuhr. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature, 467(7311):68–72, 09 2010.

[26] Yvan Castin and Alice Sinatra. Spatial and Temporal Coherence of a Bose-condensed Gas. In M. Modugno and A. Bramati, editors, Quantum fluids: Hot topics and New Trends. Springer, 2012.

[27] Alexander L. Gaunt, Tobias F. Schmidt, Igor Gotlibovich, Robert P. Smith, and Zoran Hadzibabic. Bose-Einstein Condensation of Atoms in a Uniform Potential. Phys. Rev. Lett., 110:200406, May 2013.

[28] Aurel Bulgac, Joaquin E. Drut, and Piotr Magierski. Spin 1/2 Fermions in the Unitary Regime: A Superfluid of a New Type. Phys. Rev. Lett., 96:090404, Mar 2006.

[29] Yusuke Nishida and Dam Thanh Son. c-Expansion for a Fermi Gas at Infinite Scattering Length. Phys. Rev. Lett., 97:050403, Aug 2006.

[30] André Schirotzek, Yong-il Shin, Christian H. Schunck, and Wolfgang Ketterle. Determination of the Superfluid Gap in Atomic Fermi Gases by Quasiparticle Spectroscopy. Phys. Rev. Lett., 101:140403, Oct 2008.

[31] Isaak M. Khalatnikov. An Introduction to the Theory of Superfluidity. Perseus Publishing, Cambridge, Massachusetts, 2000.

[32] D.T. Son and M. Wingate. General coordinate invariance and conformal invariance in nonrelativistic physics: Unitary Fermi gas. Ann. Physics, 321:197–224, 2006.

[33] (u_{a_n} - v_{a_n}) is the dual vector of (u_{a_n}, v_{a_n}) since (\eta \mathcal{L})^\dagger = \eta \mathcal{L}.

[34] We also require that \frac{mcb}{\hbar} > 1, where c is the T = 0 sound velocity, so that the elementary excitations of the system remain phononic over the whole domain D. This condition results from the already assumed one, b\rho \approx 0, there is the additional thermal contribution \frac{\hbar}{mcb} (\frac{b\rho}{\hbar})(\frac{b\rho}{\hbar}) \approx 0, using (B1) and the note [34]. At T > 0, there is the additional thermal contribution \frac{\hbar}{mcb} (\frac{b\rho}{\hbar})(\frac{b\rho}{\hbar}) \approx 0, which is \ll 1 for the same reasons. Second, one checks that the phase fluctuations between two neighboring lattice sites are small in absolute value. To this end, one notes from (B10) that \frac{\hbar}{mcb} (\frac{b\rho}{\hbar})(\frac{b\rho}{\hbar}) = (\frac{mcb}{\hbar})(\frac{b\rho}{\hbar})(\frac{b\rho}{\hbar})/\rho^2. To conclude, it remains to use mcb/\hbar = O(1), a property that holds in the whole BEC-BGS crossover, as well as the previous estimates of (\delta \rho^2)/\rho^2.
Brouillage thermique d’un gaz cohérent de fermions

H. Kurkjian, Y. Castin & A. Sinatra
Laboratoire Kastler Brossel, ENS-PSL, UPMC, CNRS, UPMC-Sorbonne Universités, Collège de France, Paris, France

Les gaz cohérents d’atomes froids dans des pièges immatériels non dissipatifs sont des exemples uniques de systèmes quantiques macroscopiques isolés. Se pose alors le problème de leur temps de cohérence intrinsèque. Cette question fondamentale présente également un intérêt pratique, pour toutes les applications qui mettent à profit la cohérence macroscopique, par exemple en interférométrie 1 ou en ingénierie quantique où l’on crée des états intriqués non triviaux par évolution cohérente 2,3,4. Des mesures de temps de cohérence sont déjà accessibles avec des gaz de bosons 3,5. Les expériences sur les gaz de fermions qui se sont pour l’instant concentrées sur les propriétés thermodynamiques 5,6,7, donc sur les aspects traditionnels du problème à N-corps, commencent à s’interêter aux mesures de corrélations et de cohérence 10, ce qui ouvrira un nouveau domaine de recherche, y compris dans le régime d’interaction forte : l’optique quantique fermionique 11. Cependant, il n’y a à ce jour aucune prévision sur le temps de cohérence d’un condensat de paires de fermions, sauf à température nulle 12. Dans cet article nous présentons la première théorie microscopique permettant de combler ce vide théorique en toute généralité. Notre résultat vaut pour d’autres systèmes physiques, tels que les jonctions de Josephson méssoscopiques, pourvu qu’on arrive à réduire suffisamment la déscohérence due à l’environnement.

Position du problème : pour un gaz de bosons condensé, le temps de cohérence est déterminé par l’étalage de la distribution de probabilité de la phase du condensat. À température nulle et en présence d’interactions, cet étalage balistique, est dû aux fluctuations du nombre de particules. Cet effet a été observé par interférence de deux condensats initialement cohérents, dont le nombre de particules fluctue du fait du bruit de partition 13, 14. Contrairement au cas du laser, qui est un système quantique ouvert, et de façon inattendue 13, un étalage balistique de la phase subsiste dans ces systèmes isolés pour un nombre de particules fixé si le gaz est à température non nulle 14,15, les fluctuations de cette autre quantité conservée qu’est l’énergie remplaçant celles du nombre de particules.

Dans le cas d’un gaz non polarisé de fermions condensés par paires, l’étude du temps de cohérence présume une définition claire de la phase du condensat, et une construction explicite de l’opérateur $\hat{\theta}_0$ correspondant 12. À température non nulle elle requiert en outre de pouvoir inclure dans la vitesse de variation de la phase la contribution des deux branches d’excitation, celle fermionique (par brisure des paires) et celle bosonique (par interférence du centre de masse des paires). Pour la branche fermionique, la RPA d’Anderson 13 suffit. Pour la branche bosonique en revanche, nous avons besoin d’un équivalent pour les fermions de la méthode de Bogolioubov permettant de construire les opérateurs de création \hat{b}^\dagger_{α} et d’annihilation \hat{b}_{α} de quasi-particles et d’exprimer $d\hat{\theta}_0/dt$ en termes de ces opérateurs. Qui plus est, il faut prendre en compte les interactions entre les quasi-particles dans l’évolution des \hat{b}_{α}. Ceci est une conséquence non évidente du fait que la fonction d’onde du condensat de paires dépend du nombre total de particules N, même dans un système spatialement homogène, et va au-delà du programme de la RPA.

Décroissance de la fonction de cohérence : Aux températures inférieures à la température critique, la fonction de cohérence temporelle du champ de paires $\hat{\psi}_\downarrow(\mathbf{r}, t)\hat{\psi}_\uparrow(\mathbf{r}, t)$ pour la composante de spin σ, est dominée aux temps longs par celle du condensat :

$$g_\sigma(t) = \langle \hat{\theta}_0^\dagger(t)\hat{\theta}_0(0) \rangle$$

où $\hat{\theta}_0 = \int d^3r d^3r' \varphi_0(\mathbf{r}, \mathbf{r}')\hat{\psi}_\downarrow(\mathbf{r})\hat{\psi}_\uparrow(\mathbf{r}')$ est la composante du champ de paires sur la fonction d’onde du condensat 12. Comme le système à l’équilibre est dans un modèle statistique d’états propres à N corps $|\psi_\lambda\rangle$, avec des poids Π_λ, nous sommes amenés à l’étude de la fonction de cohérence $g_\sigma(t)$ dans l’état propre $|\psi_\lambda\rangle$, d’énergie E_λ et de nombre de particules N_λ. Pour tirer parti des faibles fluctuations relatives du nombre de paires condensées pour un grand système, on utilise la décomposition 12 en les opérateurs hermitiens phase et module

$$\hat{\theta}_0 = e^{i\hat{\theta}_0}\hat{N}_0^{1/2},$$

et on approxime \hat{N}_0 par sa valeur moyenne \bar{N}_0 dans l’état d’équilibre du système, pour obtenir

$$g_\sigma(t) \approx \bar{N}_0 e^{iE_\lambda t/\hbar} \langle \psi_\lambda | e^{-i(\hat{H} + \hat{W})t/\hbar} | \psi_\lambda \rangle$$

où l’opérateur \hat{W}, différence entre le transformé de \hat{H} par $e^{i\hat{\theta}_0}$ et \hat{H},

$$\hat{W} = e^{-i\hat{\theta}_0}\hat{H}e^{i\hat{\theta}_0} - \hat{H} = -i[\hat{\theta}_0, \hat{H}] - \frac{1}{2}[\hat{\theta}_0, [\hat{\theta}_0, \hat{H}]] + \ldots$$

est approximativement N fois plus petit que \hat{H}. En effet, comme $\hat{\theta}_0$, $e^{i\hat{\theta}_0}$ change le nombre total de particules d’un $O(N^0)$. Alors que \hat{H} est une observable extensive, \hat{W} est un opérateur intensif.

Il apparait formellement dans l’équation 3 un opérateur d’évolution correspondant au hamiltonien \hat{H}

...
perturbé par \(\hat{W} \), restreint à l’état propre \(|\psi_\lambda\rangle \) de \(\hat{H} \).
La fonction \(g_0^2/N_0 \) est donc, à un facteur de phase près, proportionnelle à l’amplitude de probabilité que le système initialement préparé dans \(|\psi_\lambda\rangle \) y soit encore au bout d’un temps \(t \). Une approche naturelle pour obtenir une approximation non perturbative de cette amplitude est celle des fonctions de Green ou de l’opérateur résolvante \(\hat{G}(z) = (z - (\hat{H} + \hat{W}))^{-1} \) du hamiltonien perturbé. Par la méthode des projecteurs [17], on définit un hamiltonien effectif non hermitien \(\hat{H}_{\text{eff}}(z) \) gouvernant l’évolution restreinte à \(|\psi_\lambda\rangle \), donc tel que \(\langle \psi_\lambda | \hat{G}(z) |\psi_\lambda\rangle = (z - \langle \psi_\lambda | \hat{H}_{\text{eff}}(z) |\psi_\lambda\rangle)^{-1} \). En se limitant dans \(\hat{H}_{\text{eff}}(z) \) à l’ordre deux en \(\hat{W} \) et en négligeant sa dépendance en \(z \) (approximation du pôle), \(\hat{H}_{\text{eff}}(z) \approx \hat{H}_{\text{eff}}(E_\lambda + i0^+) \), on obtient

\[
g_1^\lambda(t) \approx \tilde{N}_0 e^{-it\langle \psi_\lambda | \hat{W} |\psi_\lambda\rangle /\hbar} e^{-(i\delta_\lambda + \gamma_\lambda)t} \tag{5}
\]

avec, en termes de \(\hat{Q}_\lambda = \hat{I} - |\psi_\lambda\rangle \langle \psi_\lambda| \), projecteur orthogonal à \(|\psi_\lambda\rangle \), et de la notation \(\langle \hat{A}\rangle \equiv \langle \psi_\lambda | \hat{A} |\psi_\lambda\rangle \):

\[
h(\delta_\lambda - i\gamma_\lambda) = \langle \hat{W} \hat{Q}_\lambda \rangle \langle E_\lambda + i0^+ \rangle \hat{Q}_\lambda - \hat{Q}_\lambda \hat{H} \hat{Q}_\lambda \tag{6}
\]

Le terme dominant sous l’exponentielle dans (5) est \(\langle \psi_\lambda | \hat{W} |\psi_\lambda\rangle \), d’ordre \(N^0 \) comme \(\hat{W} \). Afin de l’interpréter, on constate d’abord que, d’après le développement [11], \(\hat{W} = h\hat{\theta}_0/dt + O(1/N) \). On utilise ensuite une propriété cruciale établie dans la suite par un calcul variationnel, et qui donne la moyenne temporelle à gros grains, notée [33], de \(d\hat{\theta}_0/dt \) dans un gaz avec une faible densité d’excitations:

\[
- \frac{h}{2} \frac{d\hat{\theta}_0}{dt} = \mu_0(\tilde{N}) + \sum_{s=F,B} \sum_\alpha \frac{d\epsilon_{s,\alpha}}{dN} \bar{n}_{s,\alpha} \tag{7}
\]

La somme au second membre porte sur les deux branches d’excitation, celle des quasi-particules fermioniques (\(\alpha \) inclut un indice de spin et un indice orbital, \(\alpha = k, \sigma \) pour un système spatialement homogène) qui présente une bande interdite, et celle des quasi-particules bosoniques (\(\alpha \) est uniquement orbital, \(\alpha = q \) dans l’exemple précédent) dont le départ, à la limite thermodynamique et pour un système homogène, est phononique. La moyenne temporelle à gros grains est prise sur un temps long devant l’inverse des pulsations propres \(\epsilon_{s,\alpha}/h \) de ces quasi-particules mais court devant leur temps de collision, c’est-à-dire le temps typique de variation des \(\bar{n}_{s,\alpha} \), ce qui suppose que ces quasi-particules sont dans le régime faiblement collisionnel de Knudsen. Enfin \(\mu_0(N) \) est le potentiel chimique à température nulle du gaz non polarisé à \(N \) particules. \(d\hat{\theta}_0/dt \) s’interprète donc comme une dérivée adiabatique de l’énergie, c’est-à-dire à populations des quasi-particules fixées. En prenant la moyenne de l’équation 1 dans \(|\psi_\lambda\rangle \) et en utilisant l’hypothèse de thermicité des états propres [13] pour identifier moyenne dans un état propre et moyenne d’ensemble microcanonique, on fait ainsi apparaitre la dérivée adiabatique de l’énergie par rapport à \(N \), c’est-à-dire le potentiel chimique microcanonique \(\mu_{\text{mc}} \) à l’énergie \(E_\lambda \) et au nombre de particules \(N_\lambda \):

\[
\langle \psi_\lambda | \hbar \frac{d\hat{\theta}_0}{dt} |\psi_\lambda\rangle = -2\mu_{\text{mc}}(E_\lambda, N_\lambda) \tag{8}
\]

Le terme suivant sous l’exponentielle dans (5) est d’ordre \(N^{-1} \) donc sous-dominant. Pour le voir, on le relie à la fonction de corrélation temporelle de \(d\hat{\theta}_0/dt \) dans l’état \(|\psi_\lambda\rangle \):

\[
\gamma_\lambda + i\delta_\lambda = \int_0^{+\infty} dt \left(\frac{d\hat{\theta}_0(t)}{dt} \frac{d\hat{\theta}_0(0)}{dt} \right)_\lambda - \left(\frac{d\hat{\theta}_0}{dt} \right)_\lambda^2 \tag{9}
\]

qui redonne bien [4] après injection d’une relation de fermeture sur les états propres de \(\hat{H} \). L’intégrande a comme valeur initiale \(\var{\lambda}(\hbar \theta_0/dt) = O(1/N) \) (ceci s’obtient en additionnant les variances des nombres de quasi-particules, ce qui correspond à un gaz parfait de quasi-particules dans l’ensemble canonique et surestime donc la variance microcanonique) et décroît sur le temps typique de corrélation \(\tau_c \) des \(\bar{n}_{s,\alpha} \), c’est-à-dire le temps typique de collision entre les quasi-particules. Ceci permet d’estimer \(|\gamma_\lambda + i\delta_\lambda| \approx \var{\lambda}(\hbar \theta_0/dt) = O(1/N) \), le déplacement \(\delta_\lambda \) est donc du même ordre en \(N \) que le terme sous-dominant \(\var{\theta_0, \theta_0, H} \) dans \(\hat{W} \), et \(N \) fois plus faible que \(\delta \) : on néglige pour un grand système. En revanche \(\gamma_\lambda \), qui correspond au coefficient de diffusion de la phase lorsque le système est préparé dans l’ensemble microcanonique correspondant à \(|\psi_\lambda\rangle \), \(\gamma_\lambda = D(E_\lambda, N_\lambda) \), est le seul à conduire à une décroissance exponentielle de la fonction de cohérence microcanonique \(g_1^\lambda \) et doit être conservé. Nous retenons finalement:

\[
g_1^\lambda(t) \approx \tilde{N}_0 e^{2\mu_{\text{mc}}(E_\lambda, N_\lambda)/\hbar - D(E_\lambda, N_\lambda)t} \tag{10}
\]

Il nous reste maintenant à effectuer la moyenne statistique sur les états \(|\psi_\lambda\rangle \) constituant l’état du système. Aux grands \(N \), on suppose que l’ensemble généralisé donné par les \(\Pi_\lambda \) conduit à des fluctuations de l’énergie totale et du nombre de particules très faibles en valeur relative autour de leur valeur moyenne \(\bar{E} \) et de \(N \) (c’est le cas par exemple des ensembles canonique et grand cano-
nique). On en prend donc une approximation gaussienne et on linéarise \(\mu_{\text{mc}} \) autour de \((\bar{E}, \bar{N}) \). À cet ordre, on peut remplacer \(D \), déjà sous-dominant d’un facteur \(N \), par \(D(\bar{E}, \bar{N}) \). On obtient alors le résultat central de ce travail:

\[
g_1(t) \approx \tilde{N}_0 e^{2\mu_{\text{mc}}(E, N)/\hbar - t^2/2t^2_{\text{eff}} - D(E, N)t} \tag{11}
\]

Aux temps longs, le brouillage thermique prend la forme d’une décroissance gaussienne de la fonction de cohérence
\[g_1(t), \text{ avec un temps caractéristique} \]

\[
(2t_{\text{tr}}/h)^{-2} = \text{Var} \left(N \frac{\partial \mu_{\text{NC}}}{{\partial N}}(\bar{E}, \bar{N}) + E \frac{\partial \mu_{\text{NC}}}{{\partial E}}(\bar{E}, \bar{N}) \right) \tag{12}
\]

devient en \(N^{1/2} \) pour des fluctuations normales. Le coefficient de diffusion de la phase \(D \) donne, quant à lui, un temps de décroissance caractéristique qui diverge en \(N \); c’est donc bien une contribution sous-dominante aux temps longs, sauf dans l’ensemble microcanonique où elle est la seule qui amortit encore \(g_1(t) \).

Dérivation microscopique de l’équation fondamentale d’évolution de la phase : Comme promis, nous donnons maintenant à notre connaissance la première démonstration microscopique de l’équation (7), reliant la vitesse de variation de la phase d’un condensat de paires plus habituel à la premièr

La contribution de la branche d’excitation fermionique à \(d\theta_0/dt \) peut s’obtenir par des équations du mouvement linéarisées pour des fluctuations des opérateurs de paires \(\hat{\psi}_\downarrow \hat{\psi}_\uparrow \) et \(\hat{\bar{\psi}}_\downarrow \hat{\bar{\psi}}_\uparrow \) autour de l’état de champ moyen, ce qui constitue la RPA d’Anderson \(\Phi_0 \). En effet, en calculant la moyenne temporelle de \(d\theta_0/dt \) grâce à l’équation (120) de la référence 12 et en récitant l’équation (86) de cette équation en termes des nombres d’occupation des quasi-particles fermioniques, on obtient

\[
-\hbar \frac{d\theta_0}{dt} \bigg|_{\text{RPA}} = \mu(\bar{N}) + \frac{\partial \mu}{\partial N} (\bar{N} - \bar{N}) + \sum_{\alpha=k,\sigma} \frac{\partial \epsilon_{F,\alpha}}{\partial N} \hat{n}_{F,\alpha} \tag{13}
\]

où \(\epsilon_{F,k,\sigma} \) est le spectre d’excitation BCS, ici pour un système spatialement homogène, et \(\bar{N} \) le nombre moyen de particules dans l’ensemble grand canonicale de potentiel chimique \(\phi_0 \).

Le résultat (13) n’inclut pas la contribution de la branche de phonons car à l’ordre linéaire de la RPA, la phase du condensat (formé de paires au repos) n’est pas coupée aux opérateurs de paires en mouvement. On pourrait espérer obtenir ce couplage en allant à l’ordre quadratique. Malheureusement, les opérateurs introduits dans la RPA, bien que linéairement indépendants, sont liés par des relations non linéaires, comme on le voit en dissociant et réassociant les opérateurs de paires grâce aux relations d’anticommutation fermioniques. Ainsi, on peut certes définir un opérateur de création de phonon \(b_q^\dagger \) par combinaison linéaire des variables de la RPA mais, si l’on injecte la décomposition modale dans une expression non linéaire telle que \(d\theta_0/dt \), le coefficient de \(b_q^\dagger b_q \) n’est pas univoque. Nous avons alors choisi de traiter la non-linéarité de manière variationnelle avec un état cohérent de paires dépendant du temps, dont les variables ont le bon goût d’être indépendantes et canoniquement conjuguées.

Le point de départ est l’état BCS normalisé le plus général pour un gaz non polarisé, incluant en particulier des paires en mouvement,

\[|\psi\rangle = \mathcal{N}(t) \exp \left(b_0^\dagger \sum_{r,r'} \Gamma(r,r';t) \hat{\psi}_\downarrow^\dagger(r) \hat{\psi}_\uparrow^\dagger(r') \right) |0\rangle, \tag{14} \]

écrit ici après discrétisation de l’espace réel en un réseau cubique de pas \(b \) (que l’on fait tendre vers 0 à la fin des calculs), les opérateurs champ obéissant alors à des relations d’anticommutation du type \(\{ \hat{\psi}_\alpha(r), \hat{\psi}_{\alpha'}(r') \} = \delta_{\alpha,\alpha'} \delta_{r,r'}/b^3 \). Le jeu de variables canoniquement conjuguées associé, \(\Phi(r, r'), \Phi^*(r, r') \) est construit dans la référence 13. Le champ \(\Phi \) n’est pas relié de façon simple, en tout cas linéaire, au champ de paires plus habituel \(\langle \hat{\psi}_\downarrow \hat{\psi}_\uparrow \rangle \). Le hamiltonien régissant son évolution

\[\mathcal{H}(\Phi,\Phi^*) = \langle \psi | \mathcal{H} | \psi \rangle \tag{15} \]

pourrait être explicité à l’aide du théorème de Wick, mais nous aurons ici besoin seulement de son invariance par changement de phase globale \(\Phi(r, r') \rightarrow e^{i\theta} \Phi(r, r') \), \(\forall \gamma \in \mathbb{R} \) (symétrie \(U(1) \)), qui découle de la conservation du nombre total de particules \(N \) par \(\mathcal{H} \). On obtient par un calcul simple la relation exacte entre la norme au carré du champ \(\Phi \) et le nombre moyen \(N \) de particules dans \(|\psi\rangle \) :

\[\frac{N}{2} = |\Phi|^2 \equiv b_0^\dagger \sum_{r,r'} |\Phi(r,r';t)|^2 \tag{16} \]

À température nulle, le champ \(\Phi(r, r') \) à \(N \) fixé est figé, à une phase globale près, dans le minimum \(\Phi_0(r, r') = (N/2)^{1/2} \phi_0(r, r') \) de \(\mathcal{H} \), où \(\phi_0 \), réel et normalisé à l’unité, dépend de \(N \) même dans le cas spatialement homogène. \(\phi_0 \) diffère de la fonction d’onde du condensat \(\phi_0 \) de la même manière que \(\Phi \) diffère du champ de paires \(\langle \hat{\psi}_\downarrow \hat{\psi}_\uparrow \rangle \). À température suffisamment faible, on peut développer \(\mathcal{H} \) en puissances des petites déviations de \(\Phi \) par rapport au cercle \(\gamma \rightarrow e^{i\theta} \Phi_0(r, r') \), lieu des minima de \(\mathcal{H} \) à \(N \) fixé. On décompose donc le champ en ses composantes colinéaire et orthogonale à \(\phi_0 \) :

\[\Phi(r, r') = e^{i\theta} [n^{1/2} \phi_0(r, r') + \Lambda(r, r')] \tag{17} \]

où l’excursion de la phase \(\theta \) peut être arbitrairement grande, contrairement à celle de \(\Lambda \). Ce cadre permet de développer une théorie perturbative systématique en puissances du champ \(\Lambda \) (cf. Annexe A), qui est l’analogue pour les fermions de la théorie de Bogolioubov sans brisure de symétrie \(U(1) \) pour les bosons. Comme nous le verrons, la phase \(\theta \) reste proche de la phase \(\theta_0 \) du condensat si \(\Lambda \) est assez petit. On écrit donc les équations du mouvement pour \(\theta \) et pour les champs de l’espace orthogonal \(\Lambda, \Lambda^* \). Dans la forme finale des équations, on fait systématiquement disparaitre le mode du condensat grâce à la relation \(n = |\Phi|^2 - |\Lambda|^2 \), conséquence de (10), et on se limite à l’ordre 2 en \(\Lambda, \Lambda^* \).
La difficulté centrale de notre problème provient de l'existence d'un terme linéaire en Λ, Λ' dans $d\theta/dt$, conséquence de la dépendance de ϕ_0 en le nombre de paires \cite{12}. En l'absence de ce terme linéaire, il suffirait de développer le champ Λ sur les modes propres de ses petites oscillations linéaires, déduits de l'approximation quadratique du hamiltonien \hat{H} à N fixé :

$$
\begin{align*}
(\Lambda(r,r';t), \\
\Lambda^*(r,r';t)) = \sum_\alpha b_\alpha(t) \left(\begin{array}{c}
\langle u_\alpha(r,r') \\
\langle v_\alpha(r,r')
\end{array} \right) + b_\alpha^*(t) \left(\begin{array}{c}
\langle v_\alpha^*(r,r') \\
\langle u_\alpha^*(r,r')
\end{array} \right)
\end{align*}
$$

(18)

où la somme porte sur les modes propres d'énergie positive ϵ_α, avec la normalisation $\|u_\alpha\|^2 - \|v_\alpha\|^2 = 1$. À cet ordre, $b_\alpha(t) = b_\alpha(0)e^{-i\epsilon_\alpha t}/h$. Il n'y aurait qu'à injecter la décomposition (18) dans $d\theta/dt$ et à prendre une moyenne temporelle à gros grains pour tuer les termes de battement entre les modes; $d\theta/dt$ contiendrait alors la combinaison linéaire attendue des nombres de quasi-particules bosoniques $n_{B,\alpha} = |b_\alpha|^2$. La réalité est plus subtile : à cause de l'interaction entre les quasi-particules, b_α n'est pas nul mais d'ordre deux en Λ et Λ', si bien que le terme linéaire dans $d\theta/dt$ contribue à la même hauteur que les termes quadratiques. On doit donc calculer \tilde{b}_α, ce que l'on fait dans l'Annexe A en utilisant en particulier le caractère borné du champ Λ, conséquence du respect de la symétrie $U(1)$ dans le développement \cite{17}, puis en appliquant le théorème de Hellmann-Feynman, pour trouver :

$$
-\frac{h}{2} \frac{d\theta}{dt} = \mu_0(N) + \sum_\alpha \frac{d\epsilon_\alpha}{dN} |b_\alpha|^2 + O(\|\Lambda\|^3)
$$

(19)

Discutons brièvement le spectre ϵ_α dans le cas d'un système spatialement homogène, à la limite continue $b \to 0$ pour une interaction de contact dans l'onde s de longueur de diffusion fixée entre fermions de spin opposé. Pour chaque valeur du vecteur d'onde total \mathbf{q}, il se compose d'une plus une énergie discrète $\epsilon_{B,\mathbf{q}}$, et d'un continuum paramétré par deux vecteurs d'onde $(\mathbf{k}_1, \uparrow; \mathbf{k}_2, \downarrow) \mapsto \epsilon_{\mathbf{k},\uparrow} + \epsilon_{\mathbf{k},\downarrow}$ de somme fixée $(\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{q})$, où $\epsilon_{\mathbf{k},\sigma}$ est la relation de dispersion BCS. La branche $q \mapsto \epsilon_{\mathbf{q},\downarrow}$ coïncide bien avec celle de la référence \cite{21}, comme nous l'avons vérifié. De départ phononique, elle correspond aux excitations élémentaires bosoniques du gaz de fermions dont nous cherchions la contribution à la dynamique de phase. Elle doit donc être gardée dans \cite{19}. En revanche, le continuum correspond à l'excitation de deux quasi-particules fermioniques; celles-ci ne peuvent en effet être excitées que par paires à partir du fondamental car le hamiltonien \hat{H} contient un nombre pair de facteurs ψ et ψ^\dagger, qui détruisent ou créent chacun une quasi-particule. Ces biexcitations ne sont pas physiquement indépendantes \cite{25}, et font double emploi avec la contribution de la RPA à $d\theta_0/dt$. Il ne faut donc pas les inclure dans \cite{19}.

Deux dernières remarques nous séparent de \cite{17}. (i) Les champs $(\hat{\psi}, \hat{\psi}^\dagger)$ et Φ sont distincts, aussi les phases θ et $\hat{\theta}$ ne coïncident-elles pas exactement. Leur valeur moyenne temporelle à gros grains ne diffèrent cependant que par un terme d'ordre $\|\Lambda\|^2$, borné, négligeable aux temps longs, ne contribuant pas au broufflage de phase du condensat de paires. (ii) La phase de notre approche variationnelle est une variable classique, alors que θ_0 dans \cite{17} est un opérateur quantique. Ce hiatus est comblé par application au résultat \cite{19} de la procédure de quantification du chapitre 11 de la référence \cite{19}, puisque les b_α y sont remplacés par des opérateurs bosoniques \hat{b}_α, $[\hat{b}_\alpha, \hat{b}_\alpha^\dagger] = 1$. Nous pensons que la validité de l'équation \cite{17}, reliant $d\theta_0/dt$ à l'opérateur potentiel chimique, et donc du résultat \cite{11}, dépasse celle de notre dérivation microscopique variationnelle et inclut le régime d'interaction forte pourvu que les quasi-particules aient une durée de vie beaucoup plus longue que l'inverse de leur fréquence propre, ce qui est le cas à température suffisamment basse. Dans le cas limite où l'on peut négliger la branche d'excitation fermionique et se limiter à la partie phononique de la branche bosonique, c'est bien ce que prédit la variante irrotationnelle de la théorie de l'hydromécanique quantique de Landau et Khalatnikov \cite{22} (voir Annexe B).

![Figure 1: Configuration de piégeage proposée pour mesurer $g_1(t)$ par interférométrie de Ramsey](image1.png)

Figure 1: Configuration de piégeage proposée pour mesurer $g_1(t)$ par interférométrie de Ramsey : le condensat de paires de fermions est confiné dans le piège principal (à fond plat sur la figure); on transfère un petit nombre d'atomes (sous forme de dimères) dans le piège secondaire (très étroit) par effet tunnel résonnant d'amplitude ajustable par une barrière de hauteur variable ; on crée ainsi une référence de phase avec laquelle on fait interférer le condensat de paires après un temps d'évolution t. Esquissons maintenant un protocole de mise en évidence expérimentale du broufflage thermique d'un condensat de paires. L'idée centrale est, dans les phases de préparation et de mesure, de bosoniser de manière adiabatique réversible \cite{24} les paires de Cooper atomiques sous forme de dimères fortement liés et faiblement interagissants, en ajustant la longueur de diffusion à une faible valeur positive grâce à une résonance de Feshbach magnétique. Ceci permet (i) de produire un échantillon à nombre faiblement fluctuant de dimères, en faisant fondre une phase de Mott préparée par réalisation du modèle de Hubbard bosonique \cite{23}, (ii) de créer un couplage tunnel entre le piège principal renfermant les N particules et un piège secondaire très étroit, à travers une barrière de hauteur ajustable \cite{1} (Fig.1), (iii) de détecter par fluorescence un dimère unique \cite{22} dans ce piège secondaire. Pour mesurer la fonction $g_1(t)$, nous adaptons \cite{20} aux paires de fermions la méthode interférométrique de Ramsey où sont appliquées deux impulsions de Rabi...
à un intervalle de temps t. On prépare initialement les paires bosonisées dans le piège principal. La première impulsion est d’angle ϵ suffisamment faible pour transférer en moyenne moins d’un dimère dans le piège secondaire et éviter ainsi le bruit de partition qui masquerait le brouillage thermique. Pour la branche bosonique, on prend $\epsilon_{B,\Phi_i} = hcq$ avec c la vitesse du son à $T = 0$, $mc^2 = \frac{2}{\xi}k\xi F$, et ξ le paramètre de Bertsch. Pour la branche fermionique, on prend $\epsilon_{F,k,\sigma} = \Delta + (\frac{k^2}{2m} - \epsilon_0)^2/(2\Phi_0)$, où Δ est le gap et où ϵ_0 et Φ_0 donnent la position du minimum et la courbure de la relation de dispersion. En gardant pour chaque branche sa contribution d’ordre dominant à basse température comme dans la référence [28], et en utilisant les valeurs expérimentales \[30, 30\] $\xi = 0.376$, $\Delta = 0.44\epsilon_F$, $\epsilon_0 = 0.85\epsilon_F$ et la valeur théorique \[29\] $\Phi_0 = 0.846\epsilon_F$, nous trouvons

$$
\frac{Nh^2}{(t_{br}\epsilon_F)^2} \approx \left(\frac{\theta}{0.296}\right)^5 \frac{(1 + 2r)^2}{9(1 + r)}
$$

où $\theta = T/T_F$ et où $r \approx (\frac{218}{2m})^{9/2} e^{-0.44/\phi}$ mesure l’importance relative des deux branches d’excitation. Cette formule, représentée en tireté sur la figure 2, donne un équivalent exact de t_{br} quand $\theta \to 0 \[30\].

Conclusion : Nous avons présenté la première théorie microscopique du brouillage thermique de la phase d’un condensat de paires de fermions \[11\], et mis en évidence un brouillage balistique et une diffusion de phase sous-dominante. Le temps de brouillage dépend de la variance de l’énergie totale du gaz, ainsi que de la dérivée du potentiel chimique microcanonique du gaz par rapport à l’énergie. Pour établir ce résultat, nous avons utilisé de façon centrale le fait que la vitesse de variation de la phase du condensat de paires est reliée à l’opérateur potentiel chimique du gaz par l’équation \[7\], dont nous avons donné une dérivation microscopique incluant les deux branches d’excitation du gaz, bosonique et fermionique. Nous avons enfin proposé un protocole expérimental réaliste de mesure de ce temps, que nous avons estimé être de l’ordre de la dizaine de millisecondes pour un gaz cohérent de fermions préparé à la limite unitaire dans l’ensemble canonique.

Remerciements : Ce travail a bénéficié d’un financement européen via le projet QIBEC.

Annexe A : Compléments sur le calcul variationnel avec un état cohérent de paires

Il est commode dans un premier temps de traiter la variable réelle n et le champ complexe λ comme des variables indépendantes, c’est-à-dire de ne pas fixer $\|\Phi\|$. Pour inclure les interactions entre les quasi-particules, il faut aller jusqu’à l’ordre trois en λ et λ^*, si bien que

$$
\mathcal{H}(\Phi, \Phi^*) = \mathcal{T}_0[n, \phi_0(N)] + \sum_{j=1}^3 \mathcal{T}_j[n, \phi_0(N)](\Lambda, \Lambda^*) + O(\|\Lambda\|^4)
$$

(A1)
où le tenseur T_j, de rang j si bien que $T_j(\Lambda, \Lambda^*)$ est d’ordre exactement j en Λ et Λ^*, peut s’exprimer en termes de la différentielle $j^{ème}$ de H prise en $(\Phi, \Phi^*) = (n^{1/2}\phi_0, n^{1/2}\phi_0)$ restreinte au sous-espace orthogonal à $(\phi_0, 0)$ et $(0, \phi_0)$, et ne dépend pas de la phase θ du fait de la symétrie $U(1)$. À nombre total de particules fixé, l’énergie ne varie pas au premier ordre autour du minimiseur si bien que $T_j[N/2, \phi_0(N)] = 0$. Cette innocente équation n’est autre que la célèbre équation du gap lorsque le système est spatialement homogène. De plus, on vérifie que $\partial_\theta T_0[N/2, \phi_0(N)] = 2\mu_0(N)$ où $\mu_0(N) = dE_0(N)/dN$ est le potentiel chimique du gaz à température nulle, $E_0(N) = T_0[N/2, \phi_0(N)]$ étant l’énergie de l’état fondamental.

Les variables phase et module au carré de l’amplitude du champ Φ dans le mode ϕ_0 sont canoniquement conjuguées, si bien que $-\hbar d\theta/dt = \partial_\theta H(\Phi, \Phi^*)$. Une fois effectuée cette dérivée dans (A1) à Λ et Λ^* fixés, on peut fixer la norme de Φ à $(N/2)^{1/2}$ (c’est-à-dire le nombre total de particules à N) et éliminer n grâce à la relation $n = ||\Phi||^2 - ||\Lambda||^2$; le champ Λ reste alors la seule variable dynamique du problème. L’expression est utile seulement jusqu’à l’ordre deux en Λ, Λ^* :

$$-\hbar d\theta/dt = \partial_\theta T_0[N/2, \phi_0(N)] - ||\Lambda||^2 \partial_\Lambda T_0[N/2, \phi_0(N)] + 2 \sum_{j=1}^2 \partial_\Lambda T_j[N/2, \phi_0(N)](\Lambda, \Lambda^*) + O(||\Lambda||^3) \quad (A2)$$

Le hamiltonien régissant l’évolution de Λ à nombre de particules fixé s’obtient en remplaçant n par $N/2 - ||\Lambda||^2$ dans (A1) et en développant jusqu’à l’ordre trois en Λ, Λ^* :

$$H_N(\Lambda, \Lambda^*) = E_0(N) + \tilde{T}_2[N](\Lambda, \Lambda^*) + \tilde{T}_3[N/2, \phi_0(N)](\Lambda, \Lambda^*) - ||\Lambda||^2 \partial_\Lambda T_1[N/2, \phi_0(N)](\Lambda, \Lambda^*) + O(||\Lambda||^4) \quad (A3)$$

où la forme quadratique $\tilde{T}_2[N](\Lambda, \Lambda^*)$ est obtenue en soustrayant $2\mu_0(N)||\Lambda||^2$ à $T_2[N/2, \phi_0(N)](\Lambda, \Lambda^*)$. Il est astucieux d’écrire alors directement la dérivée temporelle de la partie imaginaire du champ Λ projetée sur la fonction $(N/2)^{1/2}d\phi_0/dN$,

$$Y = \frac{\hbar^2}{2i} \sum_{r,r'} \left(\frac{N}{2} \right)^{1/2} \frac{d\phi_0(r, r')}{dN}(\Lambda(r, r') - \Lambda^*(r, r')) \quad (A4)$$

Comme $i\hbar \partial_t \Lambda = b^{-6} \partial_\Lambda \cdot H_N(\Lambda, \Lambda^*)$, il vient

$$-2\hbar \frac{dY}{dt} = D \cdot H_N(\Lambda, \Lambda^*) = D \cdot \tilde{T}_2[N](\Lambda, \Lambda^*) + D \cdot H_N^{\text{cub}}(\Lambda, \Lambda^*) + O(||\Lambda||^3) \quad (A5)$$

où H_N^{cub} est la partie de H_N d’ordre trois en Λ, Λ^*. On a introduit l’opérateur différentiel

$$D = \sum_{r,r'} \left(\frac{N}{2} \right)^{1/2} \frac{d\phi_0(r, r')}{dN} \left(\partial_\Lambda(r, r') + \partial_{\Lambda^*}(r, r') \right) \quad (A6)$$

Nous allons maintenant mettre à profit en cascade deux relations vérifiées pour tout Λ orthogonal à $\phi_0(N)$:

$$\partial_\Lambda T_1(\Lambda, \Lambda^*) + 2D \cdot \tilde{T}_2[N](\Lambda, \Lambda^*) = 0 \quad (A7)$$

$$2D \cdot H_N^{\text{cub}}(\Lambda, \Lambda^*) = 2 \frac{d}{dN} \tilde{T}_2(\Lambda, \Lambda^*) - \partial_\Lambda \tilde{T}_2(\Lambda, \Lambda^*) + ||\Lambda||^2 \partial_\Lambda^2 T_0 \quad (A8)$$

où tous les tenseurs sont évalués en $[n = N/2, \phi_0(N)]$ ou simplement en N dans le cas de \tilde{T}_2. On établit ces relations en considérant formellement un champ Φ' à $N + \delta N$ particules et en obtenant de deux façons différentes l’approximation quadratique en Λ^* et Λ^* de $H_{N+\delta N}(\Lambda', \Lambda'^*)$ où Λ' est comme dans (A7) (écrite pour $N + \delta N$ particules) la composante de Φ' orthogonale à $\phi_0(N + \delta N)$. D’une part, on remplace simplement N par $N + \delta N$ et Λ par Λ' dans (A3), puis on développe au premier ordre en δN, ce qui fait apparaître $d\tilde{T}_2/dN[N]$. D’autre part, on applique à $H(\Phi', \Phi'^*)$ le développement (A1) autour de $\Phi_0(N)$ sachant qu’au premier ordre en δN, la composante de Φ' orthogonale à $\phi_0(N)$ contient, en plus de celle Λ_\perp' de Λ', une contribution venant de $d\phi_0/dN$:

$$\Lambda(r, r') = \delta N \left(\frac{N}{2} \right)^{1/2} \frac{d\phi_0(r, r')}{dN} + \Lambda_\perp'(r, r') + O(\delta N^2, ||\Lambda'||^2, ||\delta N||^2) \quad (A9)$$

C’est ce décalage infinitésimal proportionnel à δN dans la direction de $d\phi_0/dN$ qui fait apparaître l’opérateur D. Les équations (A7) et (A8) résultent de l’identification aux ordres un et deux en Λ' et Λ^* des deux expressions de $H_{N+\delta N}(\Lambda', \Lambda'^*)$ obtenues.
Le plus gros du travail a été accompli. Il reste à combiner les équations (A2), (A3), (A7), et (A8), ou plus précisément leur moyenne temporelle à gros grains (sur une échelle de temps longue devant la période d’oscillation des amplitudes modales \(b_\alpha \) mais courte devant le temps d’évolution des nombres de quasi-particules \(|b_\alpha|^2\) pour obtenir

\[
- \frac{\hbar \, d\theta}{2 \, dt} = \mu_0(N) + \frac{d\mathcal{Z}_2(N)}{dN}|(\Lambda, \Lambda^*)| + O(||\Lambda||^3)
\]

où nous avons utilisé de façon cruciale la nullité de \(\frac{d\mathcal{A}}{dt} \) (et donc de \(\frac{d\mathcal{Y}}{dt} \)) pour le champ \(\Lambda \), dont l’excursion est bornée. La forme quadratique \(\mathcal{Z}_2[N] \) est représentée par la matrice \(\eta \mathcal{L}[N] \) avec \(\eta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \), soit, en notation par blocs et avec le produit scalaire \(\langle \cdot, \cdot \rangle \) dont découle la norme |||| :

\[
\mathcal{Z}_2[N](\Lambda, \Lambda^*) = \frac{1}{2} \left\langle (\Lambda, \Lambda^*), \eta \mathcal{L}[N](\Lambda, \Lambda^*) \right\rangle
\]

Il reste à injecter la décomposition modale (18) dans l’équation (A11) préalablement dérivée par rapport à \(N \), les \(\epsilon_\alpha \) et \((u_\alpha, v_\alpha) \), \(-\epsilon_\alpha \) et \((v_\alpha^*, u_\alpha^*) \) étant les valeurs propres et vecteurs propres de \(L \). La valeur moyenne à gros grains se charge d’éliminer les termes croisés et le théorème d’Hellmann-Feynman assure que

\[
\langle (u_\alpha^*, v_\alpha^*), \frac{d\mathcal{L}[N]}{dN}(u_\alpha, v_\alpha) \rangle = \frac{d\epsilon_\alpha}{dN},
\]

et permet ainsi de conclure sur l’équation (19).

Annexe B: Hydrodynamique quantique irrotationnelle

En 1949, pour calculer la viscosité de l’hélium superfluide à basse température, Landau et Khalatnikov ont développé la théorie de l’hydrodynamique quantique [22, 31], qui permet de déterminer, de manière exacte à l’ordre dominant en \(T \), les effets d’une température non nulle sur les observables d’un fluide quantique, du moins sur celles dépendant seulement des faibles échelles d’énergie et des grandes échelles de longueur. De façon remarquable, le seul ingrédient spécifique est l’équation d’état du fluide à température nulle, c’est-à-dire ici la densité volumique d’énergie \(\epsilon_0(\rho) \) de l’état fondamental du système spatialement homogène de densité \(\rho \).

Afin d’obtenir la dérivée temporelle de l’opérateur phase du condensat de paires de fermions, nous apportons deux raffinements à la théorie, une régularisation des divergences ultraviolettes et une spécialisation au cas irrotationnel.

D’une part, nous résolvons les problèmes de divergence du niveau d’énergie fondamental du hamiltonien de Landau-Khalatnikov, due à l’énergie quantique de point zéro des modes propres du système, en discrétisant l’espace en un réseau cubique de pas \(b \), sous-multiples de la longueur \(L \) de la boîte de quantification, beaucoup plus petit que la longueur d’onde typique \(2\pi/q_{\text{th}} \), des excitations du fluide peuplées thermiquement, mais beaucoup plus grand que la distance moyenne \(\rho^{-1/3} \) entre particules,

\[
\rho^{-1/3} \ll b \ll q_{\text{th}}^{-1}
\]

ce qui est réalisable à suffisamment basse température ; ce maillage souscrit au régime de validité de l’hydrodynamique, celui d’une description spatiale à gros grains, et fournit une couche naturelle ultraviolette dans l’espace des vecteurs d’onde \(q \), en les restreignant à la première zone de Brillouin [11] \(\mathcal{D} = [-\pi/b, \pi/b]^3 \). Dans le hamiltonien, il faut alors remplacer les opérateurs différentiels (gradient, divergence, laplacien) par leurs équivalents discrets, comme il sera implicitement fait plus bas, et il faut utiliser la densité volumique d’énergie \(\mu \epsilon_0(\rho) \), fonction du pas du réseau \(b \) ; suivant les idées de la résolution, l’énergie quantique de point zéro des modes, formellement divergente lorsque \(b \to 0 \), s’ajoute alors à \(\epsilon_0(\rho) \) pour reconstruire précisément la densité volumique d’énergie effective ou vraie \(\epsilon_0(\rho) \), indépendante de \(b \), et qui est celle mesurée expérimentalement.

D’autre part, nous spécialisons la théorie au cas d’un opérateur champ de vitesse \(\mathbf{v}(r,t) \) irrotationnel, qu’on peut donc écrire comme le gradient d’un opérateur champ de phase \(\hat{\phi}(r,t) \), canoniquement conjugué à l’opérateur champ de densité \(\hat{\rho}(r,t) \) :

\[
\mathbf{v}(r,t) = \frac{\hbar}{m} \text{grad} \hat{\phi}(r,t) \quad \text{avec} \quad [\hat{\rho}(r,t), \hat{\phi}(r',t)] = i \frac{\delta_{rr'} \mathbf{r} \cdot \mathbf{r}}{b^3}
\]

Ceci revient à négliger la composante transverse du champ \(\mathbf{v}(r,t) \), comme l’a fait la référence [22] pour déterminer l’interaction entre phonons et avancer dans le calcul de la viscosité. Dans le cas particulier invariant d’échelle du gaz de fermions unitaire, une justification en est donnée dans la référence [32] dans le cadre de la théorie effective des
champs. Notons en passant que la densité de quasi-particules fermioniques, exponentiellement petite en $1/T$, est elle directement omise par la théorie hydrodynamique.

La suite est assez classique. On part des équations du mouvement des champs en représentation de Heisenberg, respectivement l’équation de continuité quantique et l’équation d’Euler quantique sur le potentiel (dont le gradient donne l’équation d’Euler quantique sur la vitesse) :

$$\partial_t \hat{\rho} + \text{div} \left[\frac{1}{2} \{ \hat{\rho}, \hat{\mathbf{v}} \} \right] = 0 \quad \text{(B3)}$$

$$\hbar \partial_t \hat{\theta} = -\frac{1}{2} m \mathbf{v}^2 - \mu_{0,0}(\hat{\rho}) \quad \text{(B4)}$$

où $\{ \hat{A}, \hat{B} \} = \hat{A} \hat{B} + \hat{B} \hat{A}$ est l’anticommutateur de deux opérateurs et

$$\mu_{0,0}(\rho) = \frac{d}{d\rho} \epsilon_{0,0}(\rho) = \epsilon_3' \rho (\rho) \quad \text{(B5)}$$

est le potentiel chimique nu de l’état fondamental à la densité ρ. Les fluctuations spatiales de densité et de phase sont faibles, parce que $\rho^{1/3} b$ est assez grand si elles sont quantiques, parce que $q_b b$ est de plus assez petit si elles sont thermiques [22]. On peut donc, comme dans [22], linéariser les équations du mouvement autour de la solution spatialement uniforme :

$$\hat{\rho}(\mathbf{r}, t) = \hat{\rho}_0 + \delta \hat{\rho}(\mathbf{r}, t) \quad \text{(B6)}$$

$$\hat{\theta}(\mathbf{r}, t) = \hat{\theta}_0(\mathbf{r}) + \delta \hat{\theta}(\mathbf{r}, t) \quad \text{(B7)}$$

L’opérateur $\hat{\rho}_0$ vaut simplement \hat{N}/L^3, où \hat{N} est l’opérateur nombre total de particules ; c’est une constante du mouvement. L’opérateur $\hat{\theta}_0$ est l’opérateur phase du condensat, ici

$$\hat{\theta}_0 = \hat{\theta}_0/2 \quad \text{(B8)}$$

puisque l’opérateur phase $\hat{\theta}_0$ de l’équation (22) prend les paires pour objets élémentaires, alors que les équations [13,14] privilégient les particules fermioniques. Les fluctuations spatiales $\delta \hat{\rho}$ et $\delta \hat{\theta}$, d’intégrale (discrète) nulle sur tout l’espace, se développent seulement sur les ondes planes de vecteur d’onde \mathbf{q} non nul, et commutent avec $\hat{\rho}_0$. Après résolution des équations linéarisées sur $\delta \hat{\rho}$ et $\delta \hat{\theta}$, on dispose de l’habituel développement sur les modes propres :

$$\delta \hat{\rho}(\mathbf{r}, t) = \frac{\hat{\rho}_0}{L^{3/2}} \sum_{\mathbf{q} \in \mathbb{Z}^3 \cap \mathbb{D}} \left(\frac{\hbar q}{2 m c_{0,0}} \right)^{1/2} (\hat{B}_{\mathbf{q}} + \hat{B}_{-\mathbf{q}}) e^{i \mathbf{q} \cdot \mathbf{r}} \quad \text{(B9)}$$

$$\delta \hat{\theta}(\mathbf{r}, t) = -\frac{1}{\rho_0^{1/2} L^{3/2}} \sum_{\mathbf{q} \in \mathbb{Z}^3 \cap \mathbb{D}} \left(\frac{m c_{0,0}}{2 \hbar q} \right)^{1/2} (\hat{B}_{\mathbf{q}} - \hat{B}_{-\mathbf{q}}) e^{i \mathbf{q} \cdot \mathbf{r}} \quad \text{(B10)}$$

où les opérateurs de création $\hat{B}_{\mathbf{q}}^\dagger$ et d’annihilation $\hat{B}_{\mathbf{q}}$ d’un phonon de vecteur d’onde \mathbf{q} et d’énergie $\hbar q c_{0,0}$ obéissent aux relations de commutation bosoniques, par exemple $[\hat{B}_{\mathbf{q}}, \hat{B}_{\mathbf{q}'\dagger}] = \delta_{\mathbf{q}, \mathbf{q}'}$, et où l’on a introduit l’opérateur vitesse du son nuè à température nulle

$$\hat{c}_{0,0} \equiv \left(\frac{\hat{\rho}_0 c_{0,0}(\hat{\rho}_0)}{m} \right)^{1/2} \quad \text{(B11)}$$

Il reste alors à développer le second membre de (B10) jusqu’à l’ordre deux inclus en $\delta \hat{\rho}$ et $\delta \hat{\theta}$, à en extraire la composante de Fourier de vecteur d’onde nulle, à effectuer une moyenne temporelle à gros grains pour supprimer les termes croisés oscillants $\hat{B}_{\mathbf{q}} \hat{B}_{-\mathbf{q}}$ et $\hat{B}_{\mathbf{q}'\dagger} \hat{B}_{-\mathbf{q}'\dagger}$, puis à reconnaître l’identité

$$\frac{d}{d\rho} [\rho \mu_{0,0}'(\rho)]^{1/2} = \frac{\mu_{0,0}'(\rho) + \rho \mu_{0,0}''(\rho)}{2 [\rho \mu_{0,0}(\rho)]^{1/2}} \quad \text{(B12)}$$

pour obtenir

$$\hbar \frac{d}{dt} \hat{\theta}_0 = -\mu_{0,0}(\hat{\rho}_0) - \sum_{\mathbf{q} \in \mathbb{Z}^3 \cap \mathbb{D}} \left(\hbar q \frac{d}{d\mathbf{r}} \hat{c}_{0,0} \right) \left(\hat{B}_{\mathbf{q}} \hat{B}_{\mathbf{q}} + \frac{1}{2} \right) \quad \text{(B13)}$$
À cet ordre du développement en les fluctuations spatiales, on peut regrouper dans la contribution de point zéro des modes (le terme 1/2 entre parenthèses) avec le potentiel chimique nu $\mu_{0,0}(\tilde{\rho})$ pour former le potentiel chimique vrai $\mu_0(\tilde{\rho})$ du fluide à température nulle, et identifier $\tilde{c}_0,0$ dans le préfacteur des opérateurs nombres de phonons $B_0^\dagger B_0$ avec la vitesse du son vraie à température nulle, $\tilde{c}_0 \equiv |\tilde{\rho}_0\mu_0(\tilde{\rho})/m|^{1/2}$. On obtient alors la limite phononique (de basse température) de la relation (9), et ceci sans hypothèse sur la force (ou la faiblesse) des interactions.

[1] H. Münstinga, H. Ahlers, M. Krutzik, A. Wenzlawski, S. Arnold, D. Becker, K. Bongs, H. Dittrich, H. Duncker, N. Gaaloul, C. Gherasim, E. Giese, C. Grzeschik, T. W. Hänsch, O. Hellwig, W. Herr, S. Herrmann, E. Kajari, S. Kleinert, C. Lämmerzahl, W. Lewoczko-Adamczyk, J. Malcolm, N. Meyer, R. Nolte, A. Peters, M. Popp, J. Reichel, A. Roua, J. Rudolph, M. Schiemangk, M. Schneider, T. T. Seidel, K. Sengstock, V. Tamma, T. Valenzuela, A. Vogel, R. Walser, T. Wendrich, P. Windpassinger, W. Zeller, T. van Zoest, W. Ertmer, W. P. Schleich et E. M. Rasel: Interferométrie avec Bose-Einstein Condensats en Microgravité. Phys. Rev. Lett., 110:093602, Feb 2013.

[2] Markus Greiner, Olaf Mandel, Theodor W. Hänsch et Immanuel Bloch: Collapse and revival of the matter wave field of a Bose-Einstein condensate. Nature, 419(6902):51–54, 09 2002.

[3] J. Esteve, C. Gross, A. Weller, S. Giovanazzi et M. K. Oberthaler: Squeezing and entanglement in a Bose-Einstein condensate. Nature, 455(7217):1216–1219, 10 2008.

[4] Max F. Riedel, Pascal Böhi, Yun Li, Theodor W. Hänsch, Alice Sinatra et Philipp Treutlein: Atom chip-based generation of entanglement for quantum metrology. Nature, 464(7292):1170–1173, 04 2010.

[5] G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Sara, W. Ketterle, D. E. Pritchard, M. Vengalattore et M. Prentiss: Long phase coherence time and number squeezing of two Bose-Einstein condensates on an atom chip. Phys. Rev. Lett., 98:030407, Jan 2007.

[6] M. Egorov, R. P. Anderson, V. Ivanikov, B. Opanchuk, P. Drummond, B. V. Hall et A. I. Sidorov: Long-lived periodic revivals of coherence in an interacting Bose-Einstein condensate. Phys. Rev. A, 84:021605, Aug 2011.

[7] T. Berrada, S. van Frank, R. Bücker, T. Schumm, J.-F. Schaff et J. Schmiedmayer: Integrated Mach-Zehnder interferometer for Bose-Einstein condensates. Nature Communication, 4, juin 2013.

[8] S. Naschimbene, N. Navon, K. J. Jiang, F. Chevy et C. Salomon: Exploring the thermodynamics of a universal Fermi gas. Nature, 463(7284):1057–1060, 02 2010.

[9] Mark J. H. Ku, Ariel T. Sommer, Lawrence W. Cheuk et Martin W. Zwierlein: Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas. Science, 335(6068):563–567, 2012.

[10] C. Kohstall, S. Riedl, E. R. Sánchez Guajardo, L. A. Sidorenkov, J. Hecker Denschlag et R. Grimm: Observation of interference between two molecular Bose-Einstein condensates. New Journal of Physics, 13(6):065027, juin 2011.

[11] Iacopo Carusotto et Yvan Castin: Atom Interferometric Detection of the Pairing Order Parameter in a Fermi Gas. Phys. Rev. Lett., 94:223202, juin 2005.

[12] H. Kurkjian, Y. Castin et A. Sinatra: Phase operators and blurring time of a pair-condensed Fermi gas. Phys. Rev. A, 88:063623, Dec 2013.

[13] D. Jakšic, C. W. Gardiner, K. M. Gheri et P. Zoller: Quantum kinetic theory. IV. Intensity and amplitude fluctuations of a Bose-Einstein condensate at finite temperature including trap loss. Phys. Rev. A, 58:1450–1464, Aug 1998.

[14] A. Sinatra, Y. Castin et E. Witkowska: Nondiffusive phase spreading of a Bose-Einstein condensate at finite temperature. Phys. Rev. A, 75:033616, 2007.

[15] A. B. Kuklov et Joseph L. Birman: Orthogonality catastrophe and decoherence of a confined Bose-Einstein condensate at finite temperature. Phys. Rev. A, 63:013609, Dec 2000.

[16] P.W. Anderson: Random-Phase Approximation in the Theory of Superconductivity. Phys. Rev., 112:1900–1916, 1958.

[17] C. Cohen-Tannoudji, J. Dupont-Roc et G. Grynberg: Processus d’interaction entre photons et atomes. InterEditions et Éditions du CNRS, Paris, 1988.

[18] Marcos Rigol, Vanja Dunjko et Maxim Olshanii: Thermalization and its mechanism for generic isolated quantum systems. Nature, 452(7189):854–858, 04 2008.

[19] Jean-Paul Blaizot et Georges Ripka: Quantum Theory of Finite Systems. MIT Press, Cambridge, Massachussets, 1985.

[20] Yvan Castin et Ralph Dum: Low-temperature Bose-Einstein Condensates in Time-dependent traps. Phys. Rev. A, 57:3008–3021, 1998.

[21] R. Combescot, M. Yu. Kagan et S. Stringari: Collective mode of homogeneous superfluid Fermi gases in the BEC-BCS crossover. Phys. Rev. A, 74:042717, Oct 2006.

[22] Lev Landau et Isaak Khalatnikov: Teoriya vyzkosti Gelya-II. Zh. Eksp. Teor. Fiz., 19:637, 1949.

[23] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag et R. Grimm: Crossover from a Molecular Bose-Einstein Condensate to a Degenerate Fermi Gas. Phys. Rev. Lett., 92:120401, Mar 2004.

[24] Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W. Hänsch et Immanuel Bloch: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature, 415(6867):39–44, 01 2002.

[25] Jacob F. Sherson, Christof Weitenberg, Manuel Endres, Marc Cheneau, Immanuel Bloch et Stefan Kuhr: Single-atom-resolved fluorescence imaging of an
[26] Yvan CASTIN et Alice SINATRA : Spatial and Temporal Coherence of a Bose-condensed Gas. In M. MODUGNO et A. BRAMATI, éditeurs : Quantum fluids : Hot topics and New Trends. Springer, 2012.

[27] Alexander L. GAUNT, Tobias F. SCHMIDUTZ, Igor GOTTLOBOVYCH, Robert P. SMITH et Zoran HADZIBABIC : Bose-Einstein Condensation of Atoms in a Uniform Potential. Phys. Rev. Lett., 101:140403, Oct 2008.

[28] Aurel BULGAC, Joaquin E. DRUT et Pietr MAGIERSKI : Spin 1/2 Fermions in the Unitary Regime : A Superfluid of a New Type. Phys. Rev. Lett., 96:090404, Mar 2006.

[29] Yusuke NISHIDA et Dam Thanh SON : ϵ-Expansion for a Fermi Gas at Infinite Scattering Length. Phys. Rev. Lett., 97:050403, Aug 2006.

[30] André SCHIROTZEK, Yong-Il SHIN, Christian H. SCHUNCK et Wolfgang KETTERLE : Determination of the Superfluid Gap in Atomic Fermi Gases by Quasiparticle Spectroscopy. Phys. Rev. Lett., 101:140403, Oct 2008.

[31] Isaac M. KHALATNIKOV : An Introduction to the Theory of Superfluidity. Perseus Publishing, Cambridge, Massachussets, 2000.

[32] D.T. SON et M. WINGATE : General coordinate invariance and conformal invariance in nonrelativistic physics : Unitary Fermi gas. Ann. Physics, 321:197–224, 2006.

[33] Il y a derrière l’approximation du pôle l’hypothèse que le continuum auquel |ψ> est couplé est large en fréquence. Aussi [32] ne vaut-elle qu’aux temps longs devant l’inverse de cette largeur, c’est-à-dire ici devant le temps de corrélation τρ des quasi-particules introduit plus bas.

[34] On remarque que ∂n\ket{F,k,↑} + ∂n\ket{F,-k,↓} où le membre de gauche fait référence aux notations de [12], et on se sert de son équation (74) pour reconnaître de\ket{F,k,σ}/dμ.

[35] L’équation [12] est écrite en réintroduisant le terme de phase trivial −2μ(\bar{N})μ/h qui n’apparaît pas dans la référence [12] du fait de l’utilisation du hamiltonien grand canonique.

[36] Par exemple dans l’espace de Fourier et avec les notations d’Anderson [11], ρk\bar{ρ}_{k+q} = b_0\ket{k+q}\bar{b}_k, comme le montre l’égalité c_{k,q}c_{k,-q}c_{k,-q}c_{k+q} = c_{k+q}c_{k-\bar{q}}c_0\bar{b}_k\bar{c}_k.

[37] Il y a derrière l’approximation du pôle l’hypothèse que le membre de gauche fait référence aux notations de [12], et on se sert de son équation (74) pour reconnaître de\ket{F,k,σ}/dμ.

[38] Si Γ et Φ sont les matrices de coefficients respectivement b^3Γ(r,r') et b^3Φ(r,r') alors Φ = −Γ1Γ2Γ3−1/2.

[39] Il faut aussi que mcb/h > 1, où c est la vitesse du son à T = 0, afin que les excitations élémentaires du système restent phoniques sur tout le domaine D. Cette condition découle de celle déjà invoquée, bρ^{1/3} ≫ 1, dans le régime d’interaction forte ou dans la limite de BCS, puisque ϵ y est d’ordre la vitesse de Fermi. Elle doit être ajoutée explicitement dans la limite dite de CBE, où les paires de fermions, assimilables à des bosons, forment un condensat en interaction faible.

[40] (ua, −vb) est le vecteur dual de (ua, vb) car (ηL)² = L. Il faut aussi que mcb/h > 1, où c est la vitesse du son à T = 0, afin que les excitations élémentaires du système restent phoniques sur tout le domaine D. Cette condition découle de celle déjà invoquée, bρ^{1/3} ≫ 1, dans le régime d’interaction forte ou dans la limite de BCS, puisque ϵ y est d’ordre la vitesse de Fermi. Elle doit être ajoutée explicitement dans la limite dite de CBE, où les paires de fermions, assimilables à des bosons, forment un condensat en interaction faible.