INTRODUCTION

Pancreatic cancer is the fifth most common cause of cancer-related deaths in South Korea, and the fourth leading cause of cancer-related deaths in the United States and Europe (1-4). Surgical resection is considered to be the only potentially curative treatment for pancreatic cancer. The majority of pancreatic cancer patients are diagnosed in locally advanced or metastatic status. Only 15% to 20% of pancreatic cancer patients are candidates for surgical resection (5).

The role of imaging has been evolving in line with the development of pancreatic cancer treatment, and imaging plays a crucial role in the screening, diagnosis, preoperative staging, postoperative surveillance, and treatment response evaluation of pancreatic cancer. This review focused on the latest treatment strategies for pancreatic cancer, as well as the role, limitations, and the future direction of imaging.

Current Treatment Strategy for Pancreatic Cancer

Pancreatic cancer is divided into four categories according to the local tumor extent and the presence of disseminated disease (Fig. 1). Treatment options vary for each category as follows (5-7):

1) Resectable: tumors with a high probability of margin-negative resection

2) Borderline resectable: tumors that are involved with nearby structures and are neither resectable nor clearly unresectable with a high chance of an positive microscopic margin (R1) resection

3) Locally advanced: tumors that are involved with nearby structures to an extent that renders them unresectable despite the absence of evidence of metastatic disease

4) Metastatic: tumors that have disseminated.

Margin-negative (R0) resection of localized pancreatic cancer is considered as the only potentially curative treatment. The 5-year survival rate is approximately 18–24% when a R0 resection is achieved (8). R0 resection
Localized pancreatic cancers with a low likelihood of R0 resection can be divided into borderline resectable and locally advanced disease. Borderline resectable pancreatic cancer indicates tumors that are potentially downstaged and resectable upon favorable response to neoadjuvant therapy. Neoadjuvant therapy can increase the R0 resection rate in subsequent surgical resection, treat micrometastasis at an earlier stage, and provide an observation period to exclude pancreatic cancer showing rapid progression and poor response to therapy. Chemotherapy or chemoradiation therapies are more likely to be tolerated in the preoperative stage than in the postoperative stage (14, 19). Two meta-analyses illustrated that approximately one-third of the borderline resectable pancreatic cancers could be completely resected, and the 5-year survival rate of those cases was promising (> 20%) (20, 21). Chemotherapy with or without subsequent chemoradiation is commonly used in patients with good performance status (17, 18).
Role of Imaging in Pancreatic Ductal Adenocarcinoma

neoadjuvant therapy (22). However, no specific regimen is recommended due to limited evidence (5).

In unresectable pancreatic cancers, including locally advanced and metastatic disease, systemic chemotherapy is commonly employed. There are numerous options for a chemotherapeutic regimen. FOLFIRINOX/modified FOLFIRINOX, gemcitabine + nab-bound paclitaxel, and gemcitabine + cisplatin are the preferred regimens for patients with good performance status, while gemcitabine, capecitabine, and 5-FU monotherapy are the preferred regimens for patients with poor performance status. Chemoradiation or stereotactic body radiation therapy may be added for definitive treatment in locally advanced disease, and for palliative measures in metastatic disease.

Conventional Role of Imaging

Surveillance of Pancreatic Cancer

Surveillance is not recommended for asymptomatic general populations. In general populations, in which the incidence of pancreatic cancer is low (lifetime risk < 1.3%), the yield of surveillance is also low.

High-risk individuals (> 5% lifetime risk of pancreatic cancer) could be potential candidates for pancreatic cancer surveillance. High-risk individuals include 1) first-degree relatives (FDRs) of patients with pancreatic cancer from a familial pancreatic cancer kindred with at least two affected FDRs; 2) patients with Peutz-Jeghers syndrome; and 3) p16, BRCA2, and hereditary non-polyposis colorectal cancer mutation carriers with ≥ 1 affected FDRs (23). The detection of T1N0M0 pancreatic cancer that could be treated with R0 resection and high-grade dysplastic lesions should be the goal of surveillance. As screening modalities, endoscopic ultrasound (EUS) and magnetic resonance imaging (MRI) are preferred. These imaging modalities have excellent sensitivity for small pancreatic lesions and do not use ionizing radiation. A few studies compared the diagnostic accuracy of EUS and MRI in a surveillance setting (24, 25), and showed that EUS is more accurate in the detection of small solid lesions (24). However, MRI is more sensitive in the detection of cystic lesions and main pancreatic duct communication, allowing the diagnosis of intraductal papillary mucinous neoplasm, which is considered to be a precancerous lesion (24, 26).

Imaging Diagnosis of Pancreatic Cancer

For imaging diagnosis of pancreatic cancer, diverse imaging modalities, including transabdominal ultrasound (US), computed tomography (CT), MRI and magnetic resonance cholangiopancreatography (MRCP), positron emission tomography (PET), and EUS are commonly used. The characteristics of these imaging modalities are summarized in Table 1.

Transabdominal Ultrasound

US is commonly used for initial imaging evaluation in asymptomatic or symptomatic patients. It is non-invasive, relatively inexpensive, and easily accessible. Pancreatic cancer often appears as a distinct or infiltrative hypoechoic focal pancreatic lesion, commonly accompanied by dilatation of the main pancreatic duct or bile duct. In conventional US, most focal pancreatic lesions exhibit hypoechoogenicity; therefore, it is difficult to distinguish between pancreatic cancer and other focal pancreatic lesions. The diagnosis of pancreatic cancer in transabdominal US is highly dependent on the operator’s technique, patient’s body habitus, as well as the location and size of the tumor. The sensitivity and specificity of transabdominal US are considerably variable, ranging 68–95% and 50–100%, respectively (27-29). The limited diagnostic performance of US limits its role in the initial evaluation and lesion detection; therefore, US is rarely used for diagnosis, resectability evaluation, and response evaluation of pancreatic cancer.

Computed Tomography

CT shows excellent temporal and spatial resolution as well as wide anatomic coverage. It is recommended as the primary imaging modality for resectability evaluation according to the National Comprehensive Cancer Network (NCCN) and European Society for Medical Oncology (ESMO) guidelines (5, 7). The use of CT for treatment decision-making should include a thin (preferably submillimeter) and continuous section and ≤ 3 mm reconstruction, multiplanar reformation including the coronal plane, and maximal intensity projection or three-dimensional (3D) volumetric thick section images for vascular evaluation. For a proper evaluation of pancreatic lesions and adjacent vascular structures, both the pancreatic phase (40–50 seconds from intravenous contrast injection) and venous phase (65–70 seconds) should be included (6, 7). If the CT images do not conform to the pancreatic protocol, re-examination using a high-quality pancreatic protocol CT is recommended for precise evaluation of tumor staging (30). Since pancreatic cancer can show rapid progression and dissemination,
echo dynamic images including precontrast, pancreatic, venous, and equilibrium phases; and T2-weighted MRCP sequences (7). The availability of various sequences and the superior soft-tissue contrast of MRI could assist in the detection and characterization of small, subtle, cystic, or isoattenuating pancreatic lesions and small liver lesions (Fig. 2). MRCP can non-invasively visualize abnormalities of the entire pancreatic and bile duct, including anatomic variations and obstructive dilatation. With these advantages, MRI is used as a problem-solving tool for indeterminate pancreatic lesions (especially small or isoattenuating tumors) or small liver lesions. MRI also shows some disadvantages, such as lower spatial resolution, vulnerability to motion artifacts, and limited multiplanar reformation capability. With its own advantages and disadvantages, MRI has shown similar diagnostic performance as CT. In meta-analyses, MRI has shown sensitivity of 84–93% and specificity of 82–89% for the diagnosis of pancreatic cancer (32-34, 40). In candidates for upfront surgery, MRI with DWI can detect hepatic metastasis in about 1.5–2.3% of patients with no hepatic lesions on CT, and about 10.5–13.6% of those with indeterminate liver lesions on CT (41). Particularly, MRI with hepatobiliary contrast using gadoxetic acid demonstrates higher sensitivity than CT (85% vs. 69%) and imaging evaluation should be performed within a month of definitive treatment (31).

Pancreatic cancer is usually seen as a mass lesion that exhibits hypoenhancement compared to the adjacent parenchyma in the pancreatic phase. It may cause interruption and upstream dilatation of the pancreatic or bile duct, abutment or encasement of adjacent vascular structures, direct invasion of adjacent organs, and regional lymph node enlargement. In meta-analyses, CT has shown sensitivity of 89–91% and specificity of 85–90% for the diagnosis of pancreatic cancer (32-34). Liver, peritoneum, and distant lymph nodes are the most common metastatic sites. Approximately 5% of pancreatic cancer may exhibit isoattenuation in both the pancreatic parenchymal and venous phases (35, 36). In addition, CT shows low diagnostic accuracy for small liver, peritoneal, or lymph node metastasis (37-39).

Magnetic Resonance Imaging and Magnetic Resonance Cholangiopancreatography

MRI for pancreatic cancer evaluation is recommended to include the following sequences: T2-weighted fast spin-echo; T1-weighted in-and-out of phase gradient-echo; T2-weighted fat-suppressed fast spin-echo; diffusion weighted imaging (DWI); 3D T1-weighted fat-suppressed gradient-
higher accuracy for differentiating between metastasis and hepatic microabscess (37, 42). With increased sensitivity for liver metastasis, an additional MRI may change the results of resectability assessments in a significant number of patients (14.4%) (Fig. 3) (43).

Pancreatic cancer shows hypointensity in precontrast T1-weighted images. In T2-weighted images with or without fat suppression, the signal intensity of pancreatic cancer is variable (44). After contrast enhancement, the tumor usually shows hypoenhancement in the pancreatic phase, and occasionally delayed enhancement in the equilibrium phase. Since the majority of pancreatic cancers show restricted diffusion, DWI could help detect pancreatic cancer (45, 46). However, pancreatitis could appear as restricted diffusion, which is often indistinguishable from pancreatic cancer on DWI. In addition, DWI has poor spatial resolution and is vulnerable to artifacts caused by motion or bowel gas (47). Pancreatic cancer also often exhibits upstream pancreatic duct dilatation or cutoff on MRCP or T2-weighted imaging.

Positron Emission Tomography

18Fluorine-2-fluoro-2-deoxy-D-glucose (18FDG) is the most widely used radiotracer in PET scans. As a glucose analogue, 18FDG allows in vivo imaging of glycolytic activity, which is usually elevated in solid tumors, including pancreatic cancer. Both KRAS mutation, which is observed in most (> 90%) pancreatic cancers, and a hypoxic microenvironment increase 18FDG uptake by upregulating HK2 and GLUT1 expression. Since focal pancreatitis can also exhibit increased 18FDG uptake, it is difficult to distinguish between pancreatic cancer and focal pancreatitis (48). The potential additional benefits of 18FDG-PET or 18FDG-PET/CT over pancreatic CT in the diagnosis of pancreatic cancer remain debatable (34, 49-51). 18FDG-PET/CT shows a sensitivity of 89–91% and specificity of 70–72% for diagnosis of pancreatic cancer (33, 34). PET/CT covers the entire body and is beneficial for finding distant metastases. It may also be useful in lymph node staging (51, 52). The NCCN guidelines recommend that PET/CT should not be a substitute for pancreatic CT or MRI; however, it
should not be delayed when clinical suspicion of pancreatic cancer is high (7). However, biopsy should be performed for patients with unresectable disease before initiating neoadjuvant or systemic chemotherapy with or without radiation. FNA using EUS is commonly performed for pathologic diagnosis. According to a recent meta-analysis, EUS-guided FNA has a sensitivity of 91% and specificity of 97% (56). Owing to the shorter penetration depth of EUS-guided FNA, in comparison with percutaneous CT or US-guided FNA, the diagnostic yield is similar, and the probability of postprocedural complications and peritoneal seeding is low (57, 58). Even in patients with resectable disease, FNA was not significantly associated with increased mortality, suggesting that FNA can be safely performed without having a significant impact on the patient’s clinical course (59). If EUS-guided FNA for a tumor is not possible, other methods such as brushing cytology with cholangiography, CT- or US-guided percutaneous biopsy, and laparoscopic biopsy could be performed as alternatives. Percutaneous biopsy is contraindicated in potentially resectable pancreatic cancer, due to the risk of tumor seeding (5).

Recently, the importance of genetic profiling of tumors has been gradually emphasized. In the recently updated NCCN guidelines, genetic profiling of tumor tissue was

Fig. 3. Detection of small liver metastasis in MRI. A 65-year-old male patient was admitted for chronic pancreatitis and pancreatic body cancer. Since there was no apparent vascular invasion in CT (A) and no demonstrable metastatic lesion in CT (B) and PET/CT (C), the pancreatic lesion was considered to be resectable. However, MRI showed multiple small hepatic lesions (white arrows) with peripheral enhancement in the pancreatic phase (D), hypointensity in the venous phase (E), decreased uptake in the hepatobiliary phase (F), hyperintensity in the T2-weighted image (G), and high signal intensity in the diffusion weighted image (b = 800) (H), suggesting liver metastases.
strongly recommended (17). Genetic profiling may require additional tissue sampling; however, it could provide clinically relevant information. Targeted DNA sequencing and analysis using biopsied tissue could be performed without delaying routine diagnostic workup for pancreatic cancer, which could identify potentially actionable targets in 17–26% of patients (60, 61).

Staging of Pancreatic Cancer

For pathologic staging, tumor-node-metastasis (TNM) staging developed by the American Joint Committee on Cancer is commonly used. Recently, TNM staging was updated to the 8th edition (62). In the 8th edition, T stage was changed to be based on the tumor size, and the extrapancreatic extension and resectable status were removed from the definition of T stage (Table 2). Regional lymph node metastasis was subdivided into N1 and N2, according to the number of metastatic lymph nodes. With the changed definitions of T and N stages, the 8th edition provides better reproducibility and improved prognostic accuracy compared to the 7th edition (63-66). Particularly, the newly introduced N2 stage is highly prognostic, emphasizing the importance of nodal staging (63, 64).

The treatment strategy for pancreatic cancer is determined by the resectability status, and pathologic staging is only possible in resected pancreatic cancers; therefore, the clinical utility of pathologic TNM stage is limited.

Resectability Evaluation

The resectability of pancreatic cancer plays a pivotal role in deciding the treatment strategy. Localized pancreatic cancers can be categorized as resectable pancreatic cancers that are candidates for upfront surgical resection, borderline resectable pancreatic cancers that could be candidates for surgical resection upon favorable response to neoadjuvant therapy, and locally advanced pancreas cancers in which surgical resection is difficult to attempt and chemotherapy and/or radiation therapy are preferred. Several resectability criteria have been proposed (Table 3), and they share key anatomic structures for determining resectability, including the celiac artery, common hepatic artery (CHA), superior mesenteric artery (SMA), superior mesenteric vein (SMV), and portal vein (PV) (6, 7, 14, 67). Detailed assessment of vascular contact or involvement should be performed, including abutment (tumor involvement of ≤ 180° of the vascular circumference), encasement (tumor involvement of > 180° of the vascular circumference), deformity, occlusion, and thrombosis (bland or tumor) (Fig. 4).

The main difference between guidelines is related to the inclusion of surgical reconstructability of artery and vein in the determination of borderline resectability. For SMV/PV, in all guidelines, surgically reconstructable involvement of pancreatic cancer was used as a criterion for borderline resectability. For CHA, the MD Anderson and Alliance for Clinical Trials in Oncology group criteria use surgically reconstructable involvement as a criterion for borderline resectability; however, the NCCN criteria use celiac axis or CHA-ceeliac bifurcation involvement as a criterion. For the celiac axis, surgically reconstructable involvement is a criterion for borderline resectability in MD Anderson criteria. In contrast, NCCN criteria describe the cases of borderline resectability in detail, according to tumor location. For SMA, all guidelines use the criteria for tumor abutment rather than surgical reconstructability in determining borderline resectability.

Although the definition of resectability is debatable, both the NCCN and ESMO guidelines currently recommend the use of NCCN resectability criteria, which is adapted from a consensus statement of the Society of Abdominal Radiology and the American Pancreatic Association (8, 68). When resectability was evaluated by NCCN guidelines, the R0 resection rate in upfront surgery was reported to be 73%, 55%, and 16% in resectable, borderline resectable, and locally advanced status, respectively (69).

The resectability of pancreatic cancer should be determined through a multidisciplinary consultation, ideally including diagnostic imaging, interventional endoscopy, medical oncology, radiation oncology, surgery, pathology, geriatric medicine, and palliative care (7). For proper communication among experts in various fields, the use of a structured reporting form is recommended for radiologic reporting (68).

In a meta-analysis performed in 2005, sensitivity and specificity of helical CT for resectability were 81% and 82%, respectively, while those of MRI were 82% and 78%, respectively (32). A prospective study published in 2004 also showed that helical CT has a superior diagnostic performance (sensitivity and specificity of 76% and 97%, respectively) compared to MRI (57% and 90%) and EUS (23% and 100%) (70). In these reports, most of the CTs were helical CT, not multidetector CT, with limited 3D reformatting capability, and MRI showed low spatial resolution with two-dimensional T1 sequences (≥ 5 mm...
Table 2. Pathologic Tumor-Node-Metastasis Staging System of the AJCC

T Category	AJCC 7th Edition	AJCC 8th Edition	Changes in 8th Edition
TX	Primary tumor cannot be assessed	Primary tumor cannot be assessed	
T0	No evidence of primary tumor	No evidence of primary tumor	
Tis	Carcinoma in situ, including PanIN with high-grade dysplasia	Carcinoma in situ, including PanIN, IPMN, ITPN, and MCN with high-grade dysplasia	IPMN, ITPN, and MCN with high grade dysplasia were added to this category
T1	Tumor limited to the pancreas, 2 cm or less in greatest dimension	Tumor ≤ 2 cm in greatest dimension	
	T1a: tumor ≤ 0.5 cm in greatest dimension		
	T1b: tumor > 0.5 cm and < 1 cm in greatest dimension		
	T1c: tumor 1–2 cm in greatest dimension		
	T1 were subcategorized into T1a, T1b, and T1c based on size		
T2	Tumor limited to the pancreas, more than 2 cm in greatest dimension	Tumor > 2 cm and ≤ 4 cm in greatest dimension	
	Definitions of T2, T3 were based on size		
T3	Tumor extends beyond the pancreas, but without involvement of the celiac axis or the SMA	Tumor > 4 cm in greatest dimension	
	Extrapancreatic extension was removed from the criteria		
T4	Tumor involves the celiac axis or the SMA (unresectable primary tumor)	Tumor involves celiac axis, SMA, and/or CHA, regardless of size	
	Resectability was removed from the definition		

N Category	N Criteria	N Criteria
NX	Regional lymph nodes cannot be assessed	Regional lymph nodes cannot be assessed
N0	No regional lymph node metastasis	No regional lymph node metastasis
N1	Regional lymph node metastasis	Metastasis in one to three regional lymph nodes
	Regional lymph node positivity was divided to N1 and N2 based on the number of metastatic lymph nodes	
N2	Metastasis in four or more regional lymph nodes	

M Category	M Criteria	M Criteria
M0	No distant metastasis	No distant metastasis
M1	Distant metastasis	Distant metastasis

Prognostic Stage Groups

Criteria

Stage Group	Criteria
0	Tis N0 M0
IA	T1 N0 M0
IB	T2 N0 M0
IIA	T3 N0 M0
IIB	T1 N1 M0
	T2 N1 M0
	T3 N1 M0
III	T4 (any N) M0
IV	(Any T) (any N) M1

AJCC = American Joint Committee on Cancer, CHA = common hepatic artery, IPMN = intraductal papillary mucinous neoplasm, ITPN = intraductal tubulopapillary neoplasm, MCN = mucinous cystic neoplasm, PanIN = pancreatic intraepithelial neoplasia, SMA = superior mesenteric artery
Role of Imaging in Pancreatic Ductal Adenocarcinoma

section thickness). More recently, several studies compared the diagnostic performance for resectability between multidetector CT and MRI with a 3D T1 sequence for dynamic phases. They showed similar diagnostic performance of multidetector CT (sensitivity and specificity of 87–88% and 63–86%, respectively) and MRI (sensitivity and specificity of 83–93% and 50–75%, respectively). Although MRI shows similar diagnostic performance as that of CT, CT is preferred over MRI due to the limited availability and high cost of MRI.

A problem with resectability evaluations using the current imaging modalities is the debate in interobserver agreements. One study reported a very high interobserver agreement on NCCN criteria (71), while another study demonstrated low interobserver agreement even with experienced radiologists, particularly for borderline resectability.

Table 3. Comparison of Resectability Criteria for Pancreatic Cancer without Distant Metastasis

Resectability Status	MD Anderson (14)	AHPBA/SSAT/SSO (6)	Alliance (60)	NCCN (7)
Celiac artery				
Resectable	No involvement	No involvement	No involvement	No involvement
Borderline	Short-segment abutment or encasement	Abutment (≤ 180°) (Body/tail only) encasement (> 180°) without aorta nor gastroduodenal artery, reconstructable with modified Appleby procedure		
Locally advanced	Encasement and no technical option for reconstruction	Encasement (> 180°) (Head/uncinate only) encasement (> 180°) (Body/tail only) encasement (> 180°), surgically unreconstructable		
CHA				
Resectable	No involvement	No involvement	No involvement	No involvement
Borderline	Short-segment abutment or encasement	Abutment (≤ 180°) or gastroduodenal artery encasement up to hepatic artery	Any surgically reconstructable involvement	Any involvement without celiac axis or CHA bifurcation
Locally advanced	Encasement and no technical option for reconstruction	Encasement (> 180°)	Surgically unreconstructable involvement	Any involvement with celiac axis or CHA bifurcation
SMA				
Resectable	No involvement	No involvement	No involvement	No involvement
Borderline	Abutment (≤ 180°)	Abutment (≤ 180°)	Abutment (≤ 180°)	Abutment (≤ 180°)
Locally advanced	Encasement (> 180°)	Encasement (> 180°)	Encasement (> 180°)	Encasement (> 180°)
SMV/PV				
Resectable	Patent	No abutment, distortion, tumor thrombus, or encasement	No involvement or abutment (≤ 180°), without vein contour irregularity	
Borderline	Short-segmental occlusion and surgically reconstructable	Any surgically reconstructable involvement	Any surgically reconstructable involvement	Encasement (> 180°), or abutment (> 180°) with venous contour irregularity or thrombosis, but surgically reconstructable
Locally advanced	Occluded and no technical option for reconstruction	Surgically unreconstructable involvement	Surgically unreconstructable involvement	Surgically unreconstructable involvement or occlusion

AHPBA = American Hepato-Pancreato-Biliary Association, NCCN = National Comprehensive Cancer Network, PV = portal vein, SMV = superior mesenteric vein, SSAT = Society for Surgery of the Alimentary Tract, SSO = Society of Surgical Oncology
becomes unresectable and the treatment strategy must be changed.

Radiologic evaluation of tumor regression is known to be more difficult than tumor progression in pancreatic cancer, especially after neoadjuvant therapy. Radiologic response does not accurately reflect pathological tumor regression (77). Neoadjuvant therapy induces necrosis, edema, inflammation, and fibrosis of the tumor, interfering with the radiologic evaluation of tumor regression (77, 78). Therefore, neoadjuvant therapy decreases the accuracy of CT scans in determining resectability. Overestimation of the remaining tumor size and vascular invasion is commonly known to occur (79). Thus, changes in tumor size are not well-associated with resectability after neoadjuvant therapy (80).

In a retrospective study, among 122 borderline resectable patients who underwent neoadjuvant therapy, only a small proportion demonstrated a radiologic complete response (0%) or partial response (12%), while the majority showed stable disease (69%). Radiologic downstaging from borderline resectable to resectable status was only observed in one (0.8%) patient. Despite the limited radiologic response, 66% (85/129) of the patients underwent surgical resection, and R0 resection was achieved in 95% (81/85) of patients who underwent surgery. Tumor response evaluated by the Response Evaluation Criteria In Solid Tumors (RECIST) 1.1 was not associated with overall survival (81).

Another study showed that the majority of patients who underwent neoadjuvant therapy and surgical resection continued to exhibit a locally advanced or borderline resectable stage.
Role of Imaging in Pancreatic Ductal Adenocarcinoma

(70%) on CT. However, R0 resection was possible in 92% of cases (82).

To overcome the limitations of radiologic response evaluation, several alternative assessment methods have been investigated (83-85). A recent prospective study suggested that partial regression of tumor contact with vascular structures on pancreatic CT indicates a high likelihood of R0 resection and suitability for surgical exploration (86). A perivascular halo in post-neoadjuvant therapy CT could also be a sign of regression of tumor-vascular contact and the possibility of R0 resection (87). Increased tumor attenuation in the pancreatic and venous phases of post-neoadjuvant CT, compared to pre-neoadjuvant CT, was most likely attributed to increased fibrosis and was associated with R0 resection (88). However, changes in tumor attenuation require prospective validation, as other studies have shown contradictory results (86, 89).

Recent studies have indicated that quantitative radiomic analysis is promising for predicting histologic tumor response. In patients with appropriate histologic response to chemoradiation, a decreased mean CT number, skewness, and increased kurtosis have been observed in posttreatment unenhanced CT (90).

Perfusion or diffusion parameters could also be used to predict resectability after neoadjuvant treatment. A high value of the volume transfer constant in pretreatment CT or MRI was significantly correlated with radiologic tumor response (91, 92). Preoperative or postoperative apparent diffusion coefficient (ADC) values were significantly associated with R0 resection (93, 94). An increased ADC in post-chemoradiation MRI compared to that in pre-chemoradiation MRI was associated with a histopathological response of pancreatic cancer, suggesting that ADC is a potential biomarker for pathological response (94). A small prospective study showed an association between the metabolic response in PET/CT (≥ 30% decreased \(^{18}\)FDG uptake after neoadjuvant therapy) and histologic tumor regression (95). Another study also showed that better pathologic response is expected in a metabolic responder (pretreatment standardized uptake value [SUV] ≥ 4.7 and ≥ 46% decreased \(^{18}\)FDG uptake after neoadjuvant therapy) (96).

These novel imaging parameters, including radiomics, perfusion, diffusion, and metabolic imaging, demonstrate promising results; however, there is limited evidence for predicting R0 resection before surgical resection.

Response Evaluation in Locally Advanced Pancreatic Cancer

In patients with unresectable disease, the World Health Organization (WHO) guidelines or RECIST version 1.0 or 1.1 are widely used for evaluation of response to chemotherapy and/or chemoradiation. In recent phase III clinical trials comparing combined chemotherapy regimens (FOLFIRINOX or gemcitabine + nab-paclitaxel) and gemcitabine monotherapy, RECIST 1.0 was used for response assessment (97, 98). In these studies, progression-free survival increased along with the overall survival in the combined chemotherpay group, suggesting that progression defined by RECIST 1.0 has clinical relevance. However, evaluation of imaging response in unresectable disease is associated with the same problems as those encountered in cases undergoing neoadjuvant therapy, including difficulties in size measurement in infiltrative or irregular tumors as well as inaccuracies in the assessment of tumor regression (Fig. 5). In a consensus statement from the National Cancer Institute clinical trials planning meeting on pancreatic cancer treatment, tumor shrinkage assessed by either WHO or RECIST was not recommended as a primary endpoint of clinical trials, as they are poor surrogates for overall survival (99).

In the nab-paclitaxel + gemcitabine phase III trial, metabolic response defined by decreased SUV on \(^{18}\)FDG-PET/CT was more frequently observed than radiologic response, and metabolic response was associated with longer overall survival (100).

Predicting Prognosis in Patients with Upfront Surgery

According to the current guidelines, resectable pancreatic cancers are recommended for upfront surgery (5, 7, 18). However, resectable pancreatic cancers with high-risk features, such as high serum CA19-9 levels, large primary tumors, large regional lymph nodes, as well as excessive weight loss and extreme pain, could also be candidates for neoadjuvant therapy (7). Recently, the role of neoadjuvant strategy has been gradually increasing. In a recent meta-analysis, surgery after neoadjuvant therapy was reported to improve overall survival compared to adjuvant chemotherapy after upfront surgery (101). To date, no large-scale phase III trial has been published; however, small prospective trials showed better survival using neoadjuvant strategies (102). If we could perform preoperative survival stratification of the candidates for upfront surgery, patients with predicted poor prognosis may be good candidates for
enhancing areas of pancreatic cancer correspond to necrotic or fibrotic areas, which contribute to the aggressive nature of the disease (108).

DWI is another imaging method that reflects the fibrotic stromal component of pancreatic cancer (109, 110). However, the prognostic significance of ADC is variable; some studies showed strong association between low ADC values and poor overall survival, while others demonstrated no significant association (103, 111-113). Recently, the low ADC value of the upstream pancreas was reported to be significantly associated with overall survival after curative resection, suggesting an association between inflammation and pancreatic cancer progression (111).

18FDG-PET/CT can also be used to predict the postsurgical outcome of pancreatic cancer. Several studies have reported neoadjuvant strategies. Imaging studies are expected to play an important role in the survival stratification and assessment of resectability. However, only a limited number of studies are being performed on the imaging prognostic biomarker.

Pancreatic cancers with irregular rim-like enhancement and a relatively hypovascular central area on dynamic MRI showed poor differentiation and frequent tumor necrosis, as well as poorer disease-free survival and overall survival (103). Similarly, several studies demonstrated that lower enhancement of pancreatic cancer in the venous phase of CT was associated with poor overall survival (104-106). A CT texture analysis revealed that low average attenuation and standard deviation in the pancreatic phase image was associated with poor disease-free survival (107). Poorly enhancing areas of pancreatic cancer correspond to necrotic or fibrotic areas, which contribute to the aggressive nature of the disease (108).

Fig. 5. Pancreatic cancer showing partial response after a long period of chemotherapy. A 55-year-old female was diagnosed with pancreatic cancer in the uncinate process. A, B. The pancreatic phase of initial CT showed an infiltrative hypoenhancing mass lesion (white arrows) involving the uncinate process and retroperitoneal margin, as well as encasing superior mesenteric artery (white arrowheads) and its jejunal branches, suggesting locally advanced tumor. C, D. After approximately 2 years of FOLFIRINOX chemotherapy, the lesion (black arrows) showed a reduction in size and extent of vascular involvement. It was apparent that the tumor became smaller with chemotherapy, but it was difficult to determine exactly how much of the viable tumor remained. The patient underwent pancreaticoduodenectomy, and margin negative (R0) resection was achieved without resection of vessels.
that the metabolic tumor volume, total lesion glycolysis, or maximum SUV (SUVmax) were associated with disease-free survival or overall survival. In particular, pancreatic cancers with high SUVmax values showed consistently poor overall survival, although the cutoff point was different among studies (114-117).

Summary

In pancreatic cancer, imaging plays an essential role in the surveillance, diagnosis, resectability evaluation, and response evaluation. With the development of therapeutic strategies for pancreatic cancer, the role of imaging has been gradually changing. Surveillance of pancreatic cancer should be performed only in high-risk individuals, and MRI and EUS are the preferred imaging modalities. CT is primarily used for imaging diagnosis and resectability evaluation of pancreatic cancers, and MRI, PET-CT, and EUS could be optionally used at the radiologist's discretion. It is not accurate to evaluate the regression of pancreatic cancer in imaging after chemotherapy or chemoradiation therapy, and tumor shrinkage in imaging is a poor surrogate for overall survival of pancreatic cancer. Although innovative evaluation methods using new radiologic criteria (i.e., perfusion imaging, radiomics, DWI, PET/CT, etc.) have been proposed, there is insufficient evidence for their clinical usefulness. Post-surgical outcome prediction in resectable pancreatic cancers, treatment response evaluation, and prognosis prediction of unresectable pancreatic cancers are problems that remain unsolved.

Conflicts of Interest
The authors have no potential conflicts of interest to disclose.

ORCID iDs
Hyungjin Rhee
https://orcid.org/0000-0001-7759-4458
Mi-Suk Park
https://orcid.org/0000-0001-5817-2444

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68:7-30
2. Malvezzi M, Carli G, Bertuccio P, Boffetta P, Levi F, La Vecchia C, et al. European cancer mortality predictions for the year 2019 with focus on breast cancer. Ann Oncol 2019;30:781-787
3. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 2018;103:356-387
4. Jung KW, Won YJ, Kong HJ, Lee ES. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2016. Cancer Res Treat 2019;51:417-430
5. Dureux M, Cuhna AS, Caramella C, Hollebecque A, Burtin P, Goër D, et al. Cancer of the pancreas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2015;26 Suppl 5:v66-v68
6. Callery MP, Chang KJ, Fishman EK, Talamonti MS, William Traverso L, Linehan DC. Pretreatment assessment of resectable and borderline resectable pancreatic cancer: expert consensus statement. Ann Surg Oncol 2009;16:1727-1733
7. Tempo MA, Malafa MP, Al-Hawary M, Asbun H, Bain A, Behrmann SW, et al. Pancreatic adenocarcinoma, version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2017;15:1028-1061
8. Gilbert JW, Wolpin B, Clancy T, Wang J, Mamon H, Shinagare AB, et al. Borderline resectable pancreatic cancer: conceptual evolution and current approach to image-based classification. Ann Oncol 2017;28:2067-2076
9. Konstantinidis IT, Warshaw AL, Allen JN, Blaszkowsky LS, Castillo CF, Deshpande V, et al. Pancreatic ductal adenocarcinoma: is there a survival difference for R1 resections versus locally advanced unresectable tumors? What is a “true” R0 resection? Ann Surg 2013;257:731-736
10. Bockhorn M, Uzunoglu FG, Adham M, Imrie C, Milicevic M, Sandberg AA, et al. Borderline resectable pancreatic cancer: a consensus statement by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2014;155:977-988
11. Bilimoria KY, Talamonti MS, Sener SF, Bilimoria MM, Stewart AK, Winchester DP, et al. Effect of hospital volume on margin status after pancreaticoduodenectomy for cancer. J Am Coll Surg 2008;207:510-519
12. Winter JM, Cameron JL, Campbell KA, Arnold MA, Chang DC, Coleman J, et al. 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience. J Gastrointest Surg 2006;10:1199-1211
13. Neoptolemos JP, Stocken DD, Dunn JA, Almond J, Beger HG, Pederzoli P, et al. Influence of resection margins on survival for patients with pancreatic cancer treated by adjuvant chemoradiation and/or chemotherapy in the ESPAC-1 randomized controlled trial. Ann Surg 2001;234:758-768
14. Varadhachary GR, Tamm EP, Abbruzzese JL, Xiong HQ, Crane CH, Wang H, et al. Borderline resectable pancreatic cancer: definitions, management, and role of preoperative therapy. Ann Surg Oncol 2006;13:1035-1046
15. Neoptolemos JP, Palmer DH, Ghaneh P, Psarelli EE, Vallee JW, Halloran CM, et al. Comparison of adjuvant gemcitabine and
capcitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. *Lancet* 2017;389:1011-1024

16. Conroy T, Hammel P, Hebbbar M, Ben Abdelghani M, Wei AC, Raoul JL, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. *N Engl J Med* 2018;379:2395-2406

17. Tempero MA. NCCN guidelines updates: pancreatic cancer. *J Natl Compr Canc Netw* 2019;17:603-605

18. Khorana AA, McKernin SE, Berlin J, Hong TS, Mahtra A, Moravek C, et al. Potentially curable pancreatic adenocarcinoma: ASCO clinical practice guideline update. *J Clin Oncol* 2019;37:2082-2088

19. Mornex F, Girard N, Delpero JR, Partensky C. Radiochemotherapy in the management of pancreatic cancer—Part I: neoadjuvant treatment. *Semin Radiat Oncol* 2005;15:226-234

20. Gillen S, Schuster T, Meyer Zum Büschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. *PloS Med* 2010;7:e1000267

21. Assifi MM, Lu X, Eibl G, Reber HA, Li G, Hines OJ. Neoadjuvant therapy in pancreatic adenocarcinoma: a meta-analysis of phase II trials. *Surgery* 2011;150:466-473

22. Laurence JM, Tran PD, Morarji K, Eslick GD, Lam VW, Sandroussi C. A systematic review and meta-analysis of survival and surgical outcomes following neoadjuvant chemoradiotherapy for pancreatic cancer. *J Gastrointest Surg* 2011;15:2059-2069

23. US Preventive Services Task Force; Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, Caughey AB, et al. Screening for pancreatic cancer: US preventive services task force reaffirmation recommendation statement. *JAMA* 2019;322:438-444

24. Harinck F, Konings IC, Klijn J, Poley JW, van Hooft JE, van Dullemen HM, et al. A multicentre comparative prospective blinded analysis of EUS and MRI for screening of pancreatic cancer in high-risk individuals. *Gut* 2016;65:1505-1513

25. Canto MI, Hruban RH, Fishman EK, Kamel IR, Schullick R, Zhang Z, et al. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. *Gastroenterology* 2012;142:796-804

26. Capurso G, Signoretti M, Valente R, Arnello U, Lohr M, Poley JW, et al. Methods and outcomes of screening for pancreatic adenocarcinoma in high-risk individuals. *World J Gastrointest Endosc* 2015;7:833-842

27. Karlson BM, Ekbom A, Lindgren PG, Källskog V, Rastad J. Abdominal US for diagnosis of pancreatic tumor: prospective cohort analysis. *Radiology* 1999;213:107-111

28. Maringhini A, Ciambra M, Raimondo M, Baccelli E, Piazza G, Grasso R, Dardanoni G, et al. Clinical presentation and ultrasonography in the diagnosis of pancreatic cancer. *Pancreas* 1993;8:146-150

29. Xu MM, Sethi A. Imaging of the pancreas. *Gastroenterol Clin North Am* 2016;45:101-116

30. Walters DM, Lapar DJ, de Lange EE, Sarti M, Stokes JB, Adams RB, et al. Pancreas-protocol imaging at a high-volume center leads to improved preoperative staging of pancreatic ductal adenocarcinoma. *Ann Surg Oncol* 2011;18:2764-2771

31. Raman SP, Reddy S, Weiss MJ, Manos LL, Cameron JL, Zheng L, et al. Impact of the time interval between MDCT imaging and surgery on the accuracy of identifying metastatic disease in patients with pancreatic cancer. *AJR Am J Roentgenol* 2015;204:W37-W42

32. Bipat S, Phoa SS, van Delden OM, Bossuyt PM, Gouma DJ, Laméris JS, et al. Ultrasonography, computed tomography and magnetic resonance imaging for diagnosis and determining resectability of pancreatic adenocarcinoma: a meta-analysis. *J Comput Assist Tomogr* 2005;29:438-445

33. Treadwell JR, Zafar HM, Mitchell MD, Tipton K, Teitelbaum U, Jue J. Imaging tests for the diagnosis and staging of pancreatic adenocarcinoma: a meta-analysis. *Pancreas* 2016;45:789-795

34. Toft J, Hadden WJ, Laurence JM, Lam V, Yuen L, Janssen A, et al. Imaging modalities in the diagnosis of pancreatic adenocarcinoma: a systematic review and meta-analysis of sensitivity, specificity and diagnostic accuracy. *Eur J Radiol* 2017;92:17-23

35. Prokesch RW, Chow LC, Beaulieu CF, Bammer R, Jeffrey RB Jr. Isoattenuating pancreatic adenocarcinoma at multi-detector row CT: secondary signs. *Radiology* 2002;224:764-768

36. Kim JH, Park SH, Yu ES, Kim MH, Kim J, Byun JH, et al. Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations. *Radiology* 2010;257:87-96

37. Motosugi U, Ichikawa T, Morisaka H, Sou H, Muhi A, Kimura K, et al. Detection of pancreatic carcinoma and liver metastases with gadoxetic acid-enhanced MR imaging: comparison with contrast-enhanced multi-detector row CT. *Radiology* 2011;260:446-453

38. Roche CJ, Hughes ML, Garvey CJ, Campbell F, White DA, Jones L, et al. CT and pathologic assessment of prospective nodal staging in patients with ductal adenocarcinoma of the head of the pancreas. *AJR Am J Roentgenol* 2003;180:475-480

39. Dirisamer A, Schima W, Heinisch M, Weber M, Lehner HP, Haller J, et al. Detection of histologically proven peritoneal carcinomatosis with fused 18F-FDG-PET/MDCT. *Eur J Radiol* 2009;69:536-541

40. Chen FM, Ni JM, Zhang ZY, Zhang L, Li B, Jiang CJ. Presurgical evaluation of pancreatic cancer: a comprehensive imaging comparison of CT versus MRI. *AJR Am J Roentgenol* 2016;206:526-535

41. Jeon SK, Lee JM, Joo I, Lee DH, Ahn SJ, Woo H, et al. Magnetic resonance with diffusion-weighted imaging improves assessment of focal liver lesions in patients with potentially resectable pancreatic cancer on CT. *Eur Radiol* 2018;28:3484-3493
Role of Imaging in Pancreatic Ductal Adenocarcinoma

42. Choi SY, Kim YK, Min JH, Cha DJ, Jeong WK, Lee WJ. The value of gadoxetic acid-enhanced MRI for differentiation between hepatic microabscesses and metastases in patients with periampullary cancer. *Eur Radiol* 2017;27:4383-4393

43. Kim HJ, Park MS, Lee JY, Han K, Chung YE, Choi JY, et al. Incremental role of pancreatic magnetic resonance imaging after staging computed tomography to evaluate patients with pancreatic ductal adenocarcinoma. *Cancer Res Treat* 2019;51:24-33

44. Tamm EP, Bhosale PR, Vikram R, de Almeida Marcal LP, Balachandran A. Imaging of pancreatic ductal adenocarcinoma: state of the art. *World J Radiol* 2013;5:98-105

45. Ichikawa T, Erturk SM, Motosugi U, Sou H, Iino H, Araki T, et al. High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. *AJR Am J Roentgenol* 2007;188:409-414

46. Matsuki M, Inada Y, Nakai G, Tatsugami F, Tanikake M, Narabayashi I, et al. Diffusion-weighted MR imaging of pancreatic carcinoma. *Abdom Imaging* 2007;32:481-483

47. Fukukura Y, Takumi K, Kamimura K, Shindo T, Kumagae Y, Tateyama A, et al. Imaging of pancreatic adenocarcinoma: variability of diffusion-weighted MR imaging findings. *Radiology* 2012;263:732-740

48. Kato K, Nihashi T, Ikeda M, Abe S, Iwano S, Itoh S, et al. Limited efficacy of 18F-FDG PET/CT for differentiation between metastasis-free pancreatic cancer and mass-forming pancreatitis. *Clin Nucl Med* 2013;38:417-421

49. Rijkers AP, Valkema R, Duivenvoorden HJ, van Eijck CH. Usefulness of F-18-fluoroectomy positron emission tomography to confirm suspected pancreatic cancer: a meta-analysis. *Eur J Surg Oncol* 2014;40:794-804

50. Matsumoto I, Shirakawa S, Shizuki M, Asari S, Goto T, Ajiki T, et al. 18-fluoroectomy positron emission tomography does not aid in diagnosis of pancreatic ductal adenocarcinoma. *Clin Gastroenterol Hepatol* 2013;11:712-718

51. Ghaneh P, Hanson R, Titman A, Lancaster G, Plumpton C, Lloyd-Williams H, et al. PET-PANC: multicentre prospective diagnostic accuracy and health economic analysis study of the impact of combined modality 18fluorine-2-fluoro-2-deoxy-d-glucose positron emission tomography with computed tomography scanning in the diagnosis and management of pancreatic cancer. *Health Technol Assess* 2018;22:1-114

52. Farma JM, Santillan AA, Melis M, Walters J, Belinc D, Chen DT, et al. PET/CT fusion scan enhances CT staging in patients with pancreatic neoplasms. *Ann Surg Oncol* 2008;15:2465-2471

53. Agarwal B, Abu-Hamda E, Molke KL, Correa AM, Ho L. Endoscopic ultrasound-guided fine needle aspiration and multidetector spiral CT in the diagnosis of pancreatic cancer. *Am J Gastroenterol* 2004;99:844-850

54. Nawaz H, Fan CY, Kloke J, Khalid A, McGrath K, Landsittel D, et al. Performance characteristics of endoscopic ultrasound in the staging of pancreatic cancer: a meta-analysis. *JOP* 2013;14:484-497

55. Säftoiu A, Wilmann P. Role of endoscopic ultrasound in the diagnosis and staging of pancreatic cancer. *J Clin Ultrasound* 2009;37:1-17

56. Banafa O, Mghanga FP, Zhao J, Zhao R, Zhu L. Endoscopic ultrasonography with fine-needle aspiration for histological diagnosis of solid pancreatic masses: a meta-analysis of diagnostic accuracy studies. *BMJ Gastroenterol* 2016;16:108

57. Okasha HH, Naga MI, Esmat S, Naguib M, Hassanein M, Hassani M, et al. Endoscopic ultrasound-guided fine needle aspiration versus percutaneous ultrasound-guided fine needle aspiration in diagnosis of focal pancreatic masses. *Endosc Ultrasound* 2013;2:190-193

58. Micamnes C, Jowell PS, White R, Paulson E, Nelson R, Morse M, et al. Lower frequency of peritoneal carcinomatosis in patients with pancreatic cancer diagnosed by EUS-guided FNA vs. percutaneous FNA. *Gastrointest Endosc* 2003;58:690-695

59. Ngamruengphong S, Swanson KM, Shah ND, Wallace MB. Preoperative endoscopic ultrasound-guided fine needle aspiration does not impair survival of patients with resected pancreatic cancer. *Gut* 2015;64:1105-1110

60. Singhi AD, George B, Greenbowe JR, Chung J, Suh J, Maitra A, et al. Real-time targeted genome profile analysis of pancreatic ductal adenocarcinomas identifies genetic alterations that might be targeted with existing drugs or used as biomarkers. *Gastroenterology* 2019;156:2242-2253.

61. Lowery MA, Jordan EJ, Basturk O, Ptashkin RN, Zehir A, Berger MF, et al. Real-time genomic profiling of pancreatic ductal adenocarcinoma: potential actionability and correlation with clinical phenotype. *Clin Cancer Res* 2017;23:6094-6100

62. Amin MB, Edge SB, Greene FL, Byrd DR, Brookland RK, Washington MK, et al. *AJCC cancer staging manual*, 8th ed. Chicago: Springer, 2017

63. Schlitter AM, Jesinghaus M, Jäger C, Konukiewitz B, Muckenhuber A, Demir IE, et al. pT but not pN stage of the 8th TNM classification significantly improves prognostication in pancreatic ductal adenocarcinoma. *Eur J Cancer* 2017;84:121-129

64. van Roessel S, Kasumova GG, Verheij J, Najarian RM, Maggino LP, Balachandran A. Imaging of pancreatic ductal adenocarcinoma with periampullary cancer. *Endoscopy* 2013;51:24-33

65. Lowery MA, Jordan EJ, Basturk O, Ptashkin RN, Zehir A, Berger MF, et al. Real-time genomic profiling of pancreatic ductal adenocarcinoma: potential actionability and correlation with clinical phenotype. *Clin Cancer Res* 2017;23:6094-6100

66. van Roessel S, Kasumova GG, Verheij J, Najarian RM, Maggino LP, Balachandran A. Imaging of pancreatic ductal adenocarcinoma with periampullary cancer. *Endoscopy* 2013;51:24-33
Validation of the American Joint Commission on Cancer (AJCC) 8th edition staging system for patients with pancreatic adenocarcinoma: a surveillance, epidemiology and end results (SEER) analysis. Ann Surg Oncol 2017;24:2023-2030

67. Katz MH, Marsh R, Herman JM, Shi Q, Collisson E, Venook AP, et al. Borderline resectable pancreatic cancer: need for standardization and methods for optimal clinical trial design. Ann Surg Oncol 2013;20:2787-2795

68. Al-Hawary MM, Francis IR, Chari ST, Fishman EK, Hough DM, Lu DS, et al. Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the society of abdominal radiology and the American Pancreatic Association. Radiology 2014;270:248-260

69. Hong SB, Lee SS, Kim JH, Kim HJ, Byun JH, Hong SM, et al. Pancreatic cancer CT: prediction of resectability according to NCCN criteria. Radiology 2018;289:9-99

70. Soriano A, Castells A, Ayuso C, Ayuso JR, de Caralt MT, Ginés MA, et al. Preoperative staging and tumor resectability assessment of pancreatic cancer: prospective study comparing endoscopic ultrasonography, helical computed tomography, magnetic resonance imaging, and angiography. Am J Gastroenterol 2004;99:492-501

71. Loizou I, Duran CV, Axelsson E, Andersson M, Keussen I, Strinnholm J, et al. Radiological assessment of local resectability status in patients with pancreatic cancer: interreader agreement and reader performance in two different classification systems. Eur J Radiol 2018;106:69-74

72. Joo I, Lee JM, Lee ES, Son JY, Lee DH, Ahn SJ, et al. Preoperative CT classification of the resectability of pancreatic cancer: interobserver agreement. Radiology 2019;293:34-39

73. Witkowski ER, Smith JK, Ragulin-Coyne E, Ng SC, Shah SA, Tseng JF. Is it worth looking? Abdominal imaging after pancreatic cancer resection: a national study. J Gastrointest Surg 2012;16:121-128

74. Sheffield KM, Crowell KT, Lin YL, Djukom C, Goodwin JS, Riall TS. Surveillance of pancreatic cancer patients after surgical resection. Ann Surg Oncol 2012;19:1670-1677

75. Tseng CW, Abbott DE, Cantor SB, Fleming JB, Lee JE, Pisters PW, et al. Frequency and intensity of postoperative surveillance after curative treatment of pancreatic cancer: a cost-effectiveness analysis. Ann Surg Oncol 2013;20:2197-2203

76. Daamen LA, Groot VP, Heerkens HD, Intvseen MW, van Santvoort HC, Molenaar IQ. Systematic review on the role of serum tumor markers in the detection of recurrent pancreatic cancer. HPB (Oxford) 2018;20:297-304

77. White RR, Paulson EK, Freed KS, Keoghan MT, Hurwitz HI, Lee C, et al. Staging of pancreatic cancer before and after neoadjuvant chemoradiation. J Gastrointest Surg 2001;5:626-633

78. Sasson AR, Wetherington RW, Hoffman JP, Ross EA, Cooper H, Meropol NJ, et al. Neoadjuvant chemoradiotherapy for adenocarcinoma of the pancreas: analysis of histopathology and outcome. Int J Gastrointest Cancer 2003;34:121-128

79. Cassinotto C, Cortade J, Belleannée G, Lapuyade B, Terrebonne E, Vendrely V, et al. An evaluation of the accuracy of CT when determining resectability of pancreatic head adenocarcinoma after neoadjuvant treatment. Eur J Radiol 2013;82:589-593

80. Michelakos T, Pergolini I, Castillo CF, Honselmann KC, Cai L, Deshpande V, et al. Predictors of resectability and survival in patients with borderline and locally advanced pancreatic cancer who underwent neoadjuvant treatment with FOLFIRINOX. Ann Surg 2019;269:733-740

81. Katz MH, Fleming JB, Bhosale P, Varadhachary G, Lee JE, Wolff R, et al. Response of borderline resectable pancreatic cancer to neoadjuvant therapy is not reflected by radiographic indicators. Cancer 2012;118:5749-5756

82. Ferrone CR, Marchegiani G, Hong TS, Ryan DP, Deshpande V, McDonnell EJ, et al. Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Ann Surg 2015;261:12-17

83. Balian V, Kordbacheh H, Parakh A, Kambadakone A. Response assessment in pancreatic ductal adenocarcinoma: role of imaging. Abdom Rad (NY) 2018;43:435-444

84. Cassinotto C, Sa-Cunha A, Trillaud H. Radiological evaluation of response to neoadjuvant treatment in pancreatic cancer. Diagn Interv Imaging 2016;97:1225-1232

85. Gassner EM, Poskaite P. Imaging response evaluation after novel neoadjuvant treatments of pancreatic cancer. European Surgery 2019;51:146-152

86. Cassinotto C, Moursies A, Lafourcade JP, Terrebonne E, Belleannée G, Blanc JF, et al. Locally advanced pancreatic adenocarcinoma: reassessment of response with CT after neoadjuvant chemotherapy and radiotherapy. Radiology 2014;273:108-116

87. Kim YE, Park MS, Hong HS, Kang CM, Choi JY, Lim JS, et al. Effects of neoadjuvant combined chemotherapy and radiation therapy on the CT evaluation of resectability and staging in patients with pancreatic head cancer. Radiology 2009;250:758-765

88. Marchegiani G, Todaro V, Boninsega E, Negrelli R, Sureka B, Bonamini D, et al. Surgery after FOLFIRINOX treatment for locally advanced and borderline resectable pancreatic cancer: increase in tumour attenuation on CT correlates with R0 resection. Eur Radiol 2018;28:4265-4273

89. Wagner M, Antunes C, Pietrasz D, Cassinotto C, Zappa M, Sa Cunha A, et al. CT evaluation after neoadjuvant FOLFIRINOX chemotherapy for borderline and locally advanced pancreatic adenocarcinoma. Eur Radiol 2017;27:3104-3116

90. Chen X, Oshima K, Schott D, Wu H, Hall W, Song Y, et al. Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on quantitative radiomic analysis of daily CTs: an exploratory study. PLoS One 2017;12:e0178961

91. Park MS, Klotz E, Kim MJ, Song SY, Park SW, Cha SW, et al.
Role of Imaging in Pancreatic Ductal Adenocarcinoma

Perfusion CT: noninvasive surrogate marker for stratification of pancreatic cancer response to concurrent chemo- and radiation therapy. *Radiology* 2009;250:110-117

92. Akisik MF, Sandrasegaran K, Bu G, Lin C, Hutchins GD, Chiorean EG. Pancreatic cancer: utility of dynamic contrast-enhanced MR imaging in assessment of antiangiogenic therapy. *Radiology* 2010;256:441-449

93. Okada KI, Hirono S, Kawai M, Miyazawa M, Shimizu A, Kitahata Y, et al. Value of apparent diffusion coefficient prior to neoadjuvant therapy is a predictor of histologic response in patients with borderline resectable pancreatic carcinoma. *J Hepatobiliary Pancreat Sci* 2017;24:161-168

94. Dalah E, Erickson B, Oshima K, Schott D, Hall WA, Paulson E, et al. Correlation of ADC with pathological treatment response for radiation therapy of pancreatic cancer. *Transl Oncol* 2018;11:391-398

95. Heinrich S, Schäfer M, Weber A, Hany TF, Bhure U, Pestalozzi BC, et al. Neoadjuvant chemotherapy generates a significant tumor response in resectable pancreatic cancer without increasing morbidity: results of a prospective phase II trial. *Ann Surg* 2008;248:1014-1022

96. Kittaka H, Takahashi H, Ohigashi H, Gotoh K, Yamada T, Tomita Y, et al. Role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in predicting the pathologic response to neoadjuvant chemoradiation therapy in patients with resectable T3 pancreatic cancer. *World J Surg* 2013;37:169-178

97. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. *N Engl J Med* 2013;369:1691-1703

98. Conroy T, Desseigne F, Ychou M, Bouché O, Guilloo R, Bécouarn Y, et al.; The Groupe Tumeurs Digestives of Oncode and the PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. *N Engl J Med* 2011;364:1817-1825

99. Philip PA, Mooney M, Jaffe D, Eckhardt G, Moore M, Meropol N, et al. Consensus report of the National Cancer Institute clinical trials planning meeting on pancreas cancer treatment. *J Clin Oncol* 2009;27:5660-5669

100. Ramanathan RK, Goldstein D, Korn RL, Arena F, Moore M, Siena S, et al. Positron emission tomography response evaluation from a randomized phase III trial of weekly nab-paclitaxel plus gemcitabine versus gemcitabine alone for patients with metastatic adenocarcinoma of the pancreas. *Ann Oncol* 2016;27:648-653

101. Bradley A, Van Der Meer R. Upfront surgery versus neoadjuvant therapy for resectable pancreatic cancer: systematic review and bayesian network meta-analysis. *Sci Rep* 2019;9:4354

102. Raufi AG, Manji GA, Chabot JA, Bates SE. Neoadjuvant treatment for pancreatic cancer. *Semin Oncol* 2019;46:19-27

103. Lee S, Kim SH, Park HK, Jang KT, Hwang JA, Kim S. Pancreatic ductal adenocarcinoma: rim enhancement at MR imaging predicts prognosis after curative resection. *Radiology* 2018;288:456-466

104. Zha L, Shi X, Yue H, Wu H, Chen G, Sun H, et al. CT imaging biomarkers predict clinical outcomes after pancreatic cancer surgery. *Medicine (Baltimore)* 2016;95:e2664

105. Fukukura Y, Takumi K, Higashi M, Shinichi H, Kamimura K, Yoneyama T, et al. Contrast-enhanced CT and diffusion-weighted MR imaging: performance as a prognostic factor in patients with pancreatic ductal adenocarcinoma. *Eur J Radiol* 2014;83:612-619

106. Cassinotto C, Chong J, Zogopoulos G, Reinhold C, Chiche L, Lafourcade JP, et al. Resectable pancreatic adenocarcinoma: role of CT quantitative imaging biomarkers for predicting pathology and patient outcomes. *Eur J Radiol* 2017;90:152-158

107. Yun G, Kim YH, Lee YJ, Kim B, Hwang JH, Choi DJ. Tumor heterogeneity of pancreatic heads cancer assessed by CT texture analysis: association with survival outcomes after curative resection. *Sci Rep* 2018;8:7226

108. Hattori Y, Gabata T, Zen Y, Mochizuki K, Kitagawa H, Matsui O. Poorly enhanced areas of pancreatic adenocarcinomas on late-phase dynamic computed tomography: comparison with pathological findings. *Pancreas* 2010;39:1263-1270

109. Muraoaka N, Uematsu H, Kimura H, Imamura Y, Fujiiwara Y, Murakami M, et al. Apparent diffusion coefficient in pancreatic cancer: characterization and histopathological correlations. *J Magn Reson Imaging* 2008;27:1302-1308

110. Wang Y, Chen ZE, Nikolaidis P, McCarthy RJ, Merrick L, Sternick LA, et al. Diffusion-weighted magnetic resonance imaging of pancreatic adenocarcinomas: association with histopathology and tumor grade. *J Magn Reson Imaging* 2011;33:136-142

111. Hayano K, Miura F, Wada K, Suzuki K, Takeshita K, Amano H, et al. Diffusion-weighted MR imaging of pancreatic cancer and inflammation: prognostic significance of pancreatic inflammation in pancreatic cancer patients. *Pancreatology* 2016;16:121-126

112. Chen BB, Tien YW, Chang MC, Cheng MF, Chang YT, Yang SH, et al. Multimparametric PET/MR imaging biomarkers are associated with overall survival in patients with pancreatic cancer. *Eur J Nucl Med Mol Imaging* 2018;45:1205-1217

113. Kurosawa J, Tawada K, Mikata R, Ishihara T, Tsuyuguchi T, Akisik MF, et al. Maximum standardized uptake value on 18F-fluoro-2-deoxy-glucose positron emission tomography and glucose transporter-1 expression correlates with survival in invasive ductal carcinoma of the pancreas. *Pancreatology* 2018;8:7226
pancreas. *Pancreas* 2014;43:1060-1065

116. Yamamoto T, Sugiura T, Mizuno T, Okamura Y, Aramaki T, Endo M, et al. Preoperative FDG-PET predicts early recurrence and a poor prognosis after resection of pancreatic adenocarcinoma. *Ann Surg Oncol* 2015;22:677-684

117. Lee JW, Kang CM, Choi HJ, Lee WJ, Song SY, Lee JH, et al. Prognostic value of metabolic tumor volume and total lesion glycolysis on preoperative 18F-FDG PET/CT in patients with pancreatic cancer. *J Nucl Med* 2014;55:898-904