Photoinduced E to Z isomerization of tetraphenylethylene derivatives within organometallic supramolecular assemblies

Xiao-Xu Liu†, Yang Li†, Xin Li, F. Ekkehardt Hahn* & Ying-Feng Han*

1College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China; 2Institut für Anorganische und Analytische Chemie Westfälische Wilhelms-Universität Münster Corrensstrasse 30, 48149 Münster, Germany

Received April 29, 2021; accepted June 4, 2021; published online August 19, 2021

Isolation of E-$1,2$-bis(4-bromophenyl)-$1,2$-diphenyl-ethylene from the E/Z isomer mixture obtained by a McMurry coupling reaction and reaction of this isomer with imidazole followed by N-alkylation with nBuBr and anion exchange yielded the bisimidazolium tetraphenylethylene (TPE) derivative H_2E-1(PF$_6$)$_2$. The reaction of H_2E-1(PF$_6$)$_2$ with Ag$_2$O yielded the dinuclear metallarectangle $[Ag_2(E-1)_2](PF_6)_2$ where the two bis-NHC donors $E-1$ bridge two silver atoms. Irradiation of $[Ag_2(E-1)_2](PF_6)_2$ leads to E/Z isomerization of the di-NHC ligand and formation of Z-1 in the mononuclear complex $[Ag(Z-1)]PF_6$. Demetallation of the di-NHC ligand with NH$_4$Cl/NH$_4$PF$_6$ yielded bisimidazolium salt H_2Z-1(PF$_6$)$_2$. The unique isomerization of the E-TPE derivative into its Z-isomer via metal complex formation/irradiation/demetallation cannot be achieved by irradiation of the individual imidazolium salt. The emissive properties of the TPE complexes $[Ag_2(E-1)_2](PF_6)_2$ and $[Ag(Z-1)]PF_6$ have been investigated.

N-heterocyclic carbene, tetraphenylethylene, photochemical isomerization, fluorescence, EZI process

Citation: Liu XX, Li Y, Li X, Hahn FE, Han YF. Photoinduced E to Z isomerization of tetraphenylethylene derivatives within organometallic supramolecular assemblies. Sci China Chem, 2021, 64: 1709–1715, https://doi.org/10.1007/s11426-021-1041-8

1 Introduction

Tetraphenylethylene (TPE) and its derivatives have become the most extensively studied aggregation-induced-emission (AIE) luminogens. They have found multiple applications since the introduction of the concept of AIE by Tang and co-workers [1,2]. Many TPE derivatives exhibit strong fluorescence in the solid state or as colloidal aggregates due to restricted intramolecular rotation (RIR), whereas the observation of almost no or only weak fluorescence in dilute solution is generally ascribed to the dynamic intramolecular rotation of the phenyl groups against the ethylene stator [3–5]. The radiationless relaxation of excitons by the RIR mechanism has been established by a wealth of theoretical and experimental research. In addition, TPE can also undergo E/Z isomerization (EZI) under light irradiation or by heating (Scheme 1). Whether or not the EZI process leads to an emission reduction for TPE derivatives is still subject of discussion [6–9].

The photoinduced isomerization is difficult to observe for symmetrical TPE derivatives. Therefore, the EZI process has been studied with unsymmetrically disubstituted TPE derivatives [6–17]. Apart from being ideal candidates for the study of the EZI process, pure E- and Z-isomers of disubstituted TPE and the investigation of their properties has recently attracted interest based on the differences in their optical properties, host-guest chemistry and related features [18–28]. Disubstituted TPE derivatives are conventionally synthesized by the McMurry coupling of unsymmetrically substituted ketones. This protocol normally yields a mixture of E- and Z-isomers (Scheme 1) [29–32]. Separation of these isomers by column chromatography proved difficult owing

†These authors contributed equally to this work.
*Corresponding authors (email: yfhan@nwu.edu.cn; fehahn@uni-muenster.de.)
to the similarity in the properties of the isomers [29–33]. Increasing the difference in polarity of the isomers is the usual but not the only method to achieve separation of the isomers [9,34]. The isomerization of disubstituted TPE derivatives under ultraviolet (UV) irradiation or by thermal treatment constitutes a promising method to obtain pure E- and Z-isomers. However, the quantitative conversion of one isomer into the other one has not been realized so far [8,31,34], although the isomerization rate of the E- to the Z-isomer is lower than the reverse isomerization of the Z- to E-isomer due to the higher stability of the E-isomer (Scheme 1) [30,31,35]. Thus, the acquisition of pure E- and Z-isomers of disubstituted TPE derivatives remains a challenge both in terms of synthesis and separation technology.

The chemistry of metal complexes bearing N-heterocyclic carbene (NHC) ligands has rapidly evolved over the last years with interesting applications ranging across a diverse set of fields. Recently a number of studies have focused on metallosupramolecular assemblies obtained from poly-NHC ligands and their postsynthetic modifications [36–44]. The synthesis of poly-NHC-AgI assemblies from Ag2O and poly-NHC precursors has been most extensively investigated. This protocol benefits not only from the simplicity of the synthetic procedure but also from the lability of the Ag–CNHC bond [39], allowing the formation of the thermodynamically most stable reaction product and the transmetallation of the poly-NHC from silver to other metals [45–48].

We have demonstrated turn-on fluorescence by rigidification as an alternative to AIE in dinuclear complexes of tetra-NHC-substituted TPE of type A (Scheme 2, top) [49,50]. In complexes of type A both the RIR and the EZI mechanism for radiationless relaxation are disabled through the formation of two metallacycles involving Z-NHC donors. Inspired by the stability of the Z-arrangement of the NHC donors in A and the lability of the Ag–C_NHC bond in general, we assumed that dinuclear silver complexes of di-NHC substituted TPE derivatives in E-configuration might undergo the isomerization to the Z-complexes upon UV irradiation via the EZI process.

Here we describe the molecular rectangle [Ag2(E-1)2](PF6)2 from H2-E-1(PF6)2, the irradiation induced transformation to [Ag(Z-1)]PF6 and demetallation of [Ag(Z-1)]PF6 to give H2-Z-1(PF6)2 (color online).

2 Results and discussion

The bisimidazolium salt H2-E-1(PF6)2 was obtained by the copper-catalyzed coupling reaction of 1,2-bis(4-bromophenyl)-1,2-diphenylethene and imidazole. The resulting bis(4-imidazophenyl)-1,2-diphenylethene was obtained as a mixture of E and Z isomers and the latter one was removed by multiple crystallization steps [51]. A subsequent double N-alkylation with n-butylbromide gave the dibromide salt which was converted into the hexafluorophosphate salt H2-E-1(PF6)2 by reaction with NH4PF6 (Scheme S1, for experimental details see the Supporting Information online).

The bisimidazolium salt H2-E-1(PF6)2 was fully characterized by nuclear magnetic resonance (NMR) spectroscopy and high-resolution electrospray ionization (HR ESI) mass spectrometry (see the Supporting Information online).
In addition, the molecular structure of H₂-E-1(PF₆)₂ was established by an X-ray diffraction study (Figure S1, Supporting Information online).

Reaction of H₂-E-1(PF₆)₂ with an excess of Ag₂O in dry acetonitrile at 55 °C for 24 h under exclusion of light yielded complex [Ag₄(E-1)₂](PF₆)₂ in 70% yield (Scheme 2 and Scheme S2, see the Supporting Information online). The formation of the organometallic rectangle was confirmed by NMR and mass spectrometry. The ¹H NMR spectrum of [Ag₄(E-1)₂](PF₆)₂ (Figure 1b) did not feature the resonance for the imidazolium H₂ proton anymore, which was observed for the bisimidazolium salt at δ = 8.79 ppm (Figure 1a). The ¹³C{¹H} spectrum of [Ag₄(E-1)₂](PF₆)₂ featured the resonance for the C₄NIC carbon atoms at δ = 181.6 ppm (by ¹H-¹³C heteronuclear multiple bond correlation spectroscopy in CD₃CN, Figure S12). The base peak in the HR ESI mass spectrum (positive ions) was detected at m/z = 1513.4960 (calcd for [Ag₄(E-1)₂][PF₆]₂ = 1513.4249) (Figure 1c).

The absorption and emission spectra of H₂-E-1(PF₆)₂ and [Ag₄(E-1)₂](PF₆)₂ are depicted in Figure 2. The bisimidazolium salt H₂-E-1(PF₆)₂ and the dinuclear complex [Ag₄(E-1)₂](PF₆)₂ exhibit essentially identical absorption spectra (Figure 2a) except for the slightly enhanced vibration structure observed for [Ag₄(E-1)₂](PF₆)₂.

The emission spectra (Figure 2b) showed the expected weak emission for H₂-E-1(PF₆)₂ due to nonradiative decay enabled by rotation of the TPE benzene rings. After complex formation to give [Ag₄(E-1)₂](PF₆)₂, partial rigidification induced fluorescence enhancement [11] with a concurrent red-shift of the emission from λ = 385 nm (for H₂-E-1(PF₆)₂) to λ = 492 nm for [Ag₄(E-1)₂](PF₆)₂.

Based on the observation of the UV radiation induced EZI process in TPE derivatives (Scheme 1), we became interested in extending this isomerization to complexes obtained from suitably substituted TPE derivatives. Isomerization of the di-NHC ligand E-1 in the dinuclear complex [Ag₄(E-1)₂](PF₆)₂ would lead to ligand Z-1, which due to steric reasons will form a mononuclear dicarbene chelate complex [Ag(Z-1)PF₆] similarly to the previously described tetra-NHC substituted TPE derivatives in complex A (Scheme 2) [49]. The freely less stable Z-TPE derivative is then stabilized in the chelate complex. Removal of the TPE derivative from [Ag(Z-1)PF₆] yields H₂-Z-1(PF₆)₂ (Scheme 2) and would then result in the selective transformation of the more stable E- into the less stable Z-derivative via a complex formation/ isomerization reaction sequence.

Irradiation of complex [Ag₄(E-1)₂](PF₆)₂ in acetonitrile with a Philips mercury high-pressure lamp (λ = 365 nm) at ambient temperature yielded indeed the mononuclear chelate complex [Ag(Z-1)PF₆]. After irradiating of [Ag₄(E-1)₂](PF₆)₂ for 5 min, a new set of ¹H NMR signals for [Ag(Z-1)PF₆] emerged at δ = 7.46 (H5), 7.37 (H4), 7.20-7.26 (H12-H14), 7.17 (H7), 6.97 (H8), 4.25 (H15) 1.94 (H16), 1.42 (H17) and 0.99 (H18) ppm, while the intensity of the signals for the starting complex [Ag₄(E-1)₂](PF₆)₂ diminishes (Figure 3).

The fraction of [Ag(Z-1)PF₆] in the irradiated mixture rapidly increased to 68% over the first 20 min. Subsequently, the rate of EZI slowed down and after 55 min, no resonance for [Ag₄(E-1)₂](PF₆)₂ were detected anymore confirming complete transformation to [Ag(Z-1)]PF₆. The isomerization to give [Ag(Z-1)]PF₆ was also supported by mass spectroscopy, showing only one intense peak at m/z = 683.2305 (calcd for [Ag(Z-1)]⁺ = 683.2297) with the correct isotope distribution (Figure S20) for the compound obtained after irradiation of [Ag₄(E-1)₂](PF₆)₂.

Finally, the conversion of dinuclear [Ag₄(E-1)₂](PF₆)₂ to mononuclear [Ag(Z-1)]PF₆ can be monitored by the concurrent changes in the fluorescence emission spectra of the two complexes (Figure 4). With irradiation time, the intensity of the emission observed for [Ag₄(E-1)₂](PF₆)₂ at λ = 492 nm gradually decreases and a new red-shifted peak emerges at λ = 512 nm for complex [Ag(Z-1)]PF₆. The conversion rate monitored by fluorescence emission spec-
troscopy is essentially identical to the rate observed by 1H NMR spectroscopy (Figure 3). The fluorescence lifetimes of complexes [Ag$_2$(E-1)$_2$(PF$_6$)$_2$] and [Ag(Z-1)]PF$_6$ both in solution and the solid state have been determined. All values fall in the nanosecond range, suggesting fluorescence deactivation from the lowest singlet states (Table S3, Supporting Information online).

Single crystal of [Ag(Z-1)]PF$_6$ suitable for an X-ray diffraction analysis was grown by slow diffusion of diethyl ether into a concentrated acetonitrile solution of the compound at ambient temperature. The X-ray diffraction study (Figure 5) confirmed the composition and geometry of [Ag(Z-1)]PF$_6$ as concluded from NMR and mass spectrometric analysis. The two imidazolylidene donors attached to the TPE core are located on the same side of the olefin bond. They are linked by coordination to one silver atom to form a planar chelate ring. The C–Ag bond lengths of 2.084(7) and 2.092(7) Å and the C–Ag–C angle of 177.4(4)$^\circ$ fall in the typical range for silver (I) di-NHC complexes[10–12].

The Z-TPE bridged dicarbene ligand in [Ag(Z-1)]PF$_6$ was liberated as the bisimidazolium salt H$_2$-Z-I(PF$_6$)$_2$ by reaction of the complex with NH$_4$Cl in a methanol and acetonitrile solvent mixture followed by anion exchange with NH$_4$PF$_6$ in methanol (Scheme 2). Compound H$_2$-Z-I(PF$_6$)$_2$ was characterized by multinuclear NMR spectroscopy and mass spectrometry (Figures S21–S23). The 1H NMR spectrum exhibits the resonance for the imidazolium N–CH–N proton at $\delta = 8.81$ ppm. The base peak in the mass spectrum was
recorded at \(m/z = 723.3044\) (calcd for \([\text{H}_2\text{Z-1}]^{+}\) 723.3046).

Inspired by the irradiation induced conversion of \([\text{Ag}(E-1)_2](\text{PF}_6)_2\) to \([\text{Ag}(Z-1)]\text{PF}_6\), an equimolar mixture of the isomeric imidazolium salts \(\text{H}_2\text{E-1}(\text{PF}_6)_2\) and \(\text{H}_2\text{Z-1}(\text{PF}_6)_2\) was prepared from a 1:1 isomer mixture of \(E/Z,1,2\)-bis(4-bromophenyl)-1,2-diphenylethene and imidazole followed by \(N\)-alkylation (Scheme 3, for experimental details see the Supporting Information online). Irradiation of this mixture of bisimidazolium salts does not yield only one, the slightly more stable \(E\)-isomer (Figure S30). Instead, the composition of the mixture of isomeric salts does not change noticeably upon irradiation. In addition, irradiation of the single isomer \(\text{H}_2\text{E-1}(\text{PF}_6)_2\) leads to partial isomerization and formation of a mixture of isomeric salts \(\text{H}_2\text{E/Z-1}(\text{PF}_6)_2\) as shown by \(^1\text{H}\) NMR spectroscopy (Figure S30).

Contrary to these observations, reaction of an equimolar mixture of the isomeric bisimidazolium salts \(\text{H}_2\text{E-1}(\text{PF}_6)_2\) and \(\text{H}_2\text{Z-1}(\text{PF}_6)_2\) with \(\text{Ag}_2\text{O}\) followed by irradiation of the formed complexes mixture of \([\text{Ag}(E-1)_2](\text{PF}_6)_2\) and \([\text{Ag}(Z-1)]\text{PF}_6\) with a mercury high-pressure lamp (\(\lambda = 365\) nm) for 35 min yielded exclusively complex \([\text{Ag}(Z-1)]\text{PF}_6\) (Scheme 3). This selectivity must be attributed to the stabilization of the \(Z\)-dicarbene ligand in complex \([\text{Ag}(Z-1)]\text{PF}_6\) which thus becomes the only reaction product upon irradiation of the complex mixture. Such stabilization cannot occur in the bisimidazolium salts.

The transformation of the complex mixture \([\text{Ag}(E-1)_2](\text{PF}_6)_2]/[\text{Ag}(Z-1)]\text{PF}_6\) into pure \([\text{Ag}(Z-1)]\text{PF}_6\) was monitored by \(^1\text{H}\) NMR spectroscopy. The \(^1\text{H}\) NMR spectrum of the complex mixture (Figure 6, top) shows resonances for both \([\text{Ag}(E-1)_2](\text{PF}_6)_2\) and \([\text{Ag}(Z-1)]\text{PF}_6\). The spectrum after 35 min of irradiation only exhibits resonances for mononuclear \([\text{Ag}(Z-1)]\text{PF}_6\).

Given the rigidification-induced desirable emission properties of dinuclear complexes of type \(A\) (Scheme 2) [12], we became interested in the emission properties of the less rigid complexes \([\text{Ag}(E-1)_2](\text{PF}_6)_2\) and \([\text{Ag}(Z-1)]\text{PF}_6\). The emission spectra of the complexes have been recorded in \(\text{CH}_3\text{CN}/\text{H}_2\text{O}\) solution with varying water fractions. Apparently due to intramolecular phenyl rotation, the emission is weak for \([\text{Ag}(E-1)_2](\text{PF}_6)_2\) in acetonitrile and does not change significantly as long as the water content is less than 60%. A sudden increase in emission intensity due to agglomeration accompanied by a blue shift of the emission maximum from 492 to 443 nm was observed when the water content was increased to 70% (Figure 7a). When the water content was further increased to 90%, the emission intensity increased approximately the 19 fold magnitude relative to the emission intensity in pure \(\text{CH}_3\text{CN}\) solution (Figure 7b) and the emission colour changed from invisible green to bright blue visible to the naked eye. The fluorescence quantum yield (\(\Phi_f\)) reached 47% for the aggregated state in the \(\text{CH}_3\text{CN}/\text{H}_2\text{O}\) solvent mixture (with 90% water content) from \(\Phi_f = 2\%\) observed for the pure \(\text{CH}_3\text{CN}\) solution (Table S9). Similarly to \([\text{Ag}(E-1)_2](\text{PF}_6)_2\), complex \([\text{Ag}(Z-1)]\text{PF}_6\) exhibited a blue
shift (~19 nm) of the emission maximum and a significant increase in emission intensity (Φ up to 26.60%) as the water content of the acetonitrile/water solution reached 90% (Figures S47–S50 and Table S10).

Finally, the fluorescence behavior of complex [Ag(Z-1)]PF$_6$ at different temperatures was investigated [52,53]. No obvious influence on the emission wavelength was observed by temperature dependent fluorescence spectroscopy (Figure 8a) aside from an approximately linear decrease in emission intensities with increasing temperatures (Figure 8b). The emission intensities recovered when the solutions were allowed to cool. Listings of all photophysical properties of complexes [Ag(E-Z)$_2$](PF$_6$)$_2$ and [Ag(Z-1)]PF$_6$ are presented in the Supporting Information online.

3 Conclusions

We have demonstrated the quantitative isomerization of E- to Z-isomers of bisimidazolium substituted TPE by a light-triggered structural transformation via a dinuclear silver(I) molecular rectangle featuring an E-di-NHC bridge to a mononuclear silver(I) complex featuring a chelating Z-di-NHC. The E- to Z-isomerization is not possible directly with the bisimidazolium salts without their previous transformation into di-NHC complexes. The isomerization process of the complexes has been monitored by NMR and fluorescence emission spectroscopy. Significantly different fluorescence properties of the complexes bearing the E or Z di-NHC ligands have been observed. In addition, the complexes exhibit classical AIE characteristics. Our study provides a simple and efficient approach towards the controlled isomerization of Z to E disubstituted TPE derivatives through organometallic intermediates, paving the way for further studies of the EZI process in TPE derivatives.

Acknowledgements This work was supported by the National Natural Science Fund for Distinguished Young Scholars of China (22025107), the National Youth Top-notch Talent Support Program of China, and Key Science and Technology Innovation Team of Shaanxi Province (2019TD-007, 2019LZ-02). The FM&EM International Joint Laboratory of Northwest University is gratefully acknowledged. FEH gratefully acknowledges financial support from the DFG (SFB 858, IRTG 2027).

Conflict of interest The authors declare no conflict of interest.

Funding note Open Access funding enabled and organized by Projekt DEAL.

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

1 Luo J, Xie Z, Lam JYW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ. Chem Commun, 2001, 1740–1741
2 Mei J, Leung NLC, Kwok RTK, Lam JYW, Tang BZ. Chem Rev, 2015, 115: 11718–11940
3 Ding D, Li K, Liu B, Tang BZ. Acc Chem Res, 2013, 46: 2441–2453
4 Hong Y, Lam JYW, Tang BZ. Chem Soc Rev, 2011, 40: 5361–5388
5 Mei J, Hong Y, Lam JYW, Qin A, Tang Y, Tang BZ. Adv Mater, 2014, 26: 5429–5479
6 Zhao GJ, Han KL, Lei YB, Dou YS. J Chem Phys, 2007, 127: 094307
7 Xiong JB, Yuan YX, Wang L, Sun JP, Qiao WG, Zhang HC, Duan M, Han H, Zhang S, Zheng YS. Org Lett, 2018, 20: 373–376
8 Kokado K, Machida T, Iwasa T, Taketsugu T, Sada K. J Phys Chem C, 2018, 122: 245–251
9 Prlj A, Došlić N, Corminboeuf C. Phys Chem Chem Phys, 2016, 18: 11606–11609
10 Yang Z, Qin W, Leung NLC, Arseneault M, Lam JYW, Liang G, Sun HHY, Williams ID, Tang BZ. J Mater Chem C, 2016, 4: 99–107
11 Liu Y, Ye X, Liu G, Lv Y, Zhang X, Chen S, Lam JYW, Kwok HS, Tao X, Tang BZ. J Mater Chem C, 2014, 2: 1004–1009
12 He L, Liu X, Liang J, Cong Y, Weng Z, Bu W. Chem Commun, 2015, 51: 7148–7151
13 Garg K, Ganapathi E, Rajakannu P, Ravikanth M. Phys Chem Chem Phys, 2015, 17: 19465–19473
14 Xie N, Liu Y, Hu R, Leung NLC, Arseneault M, Tang BZ. J Phys Chem C, 2014, 18: 958–966
15 Wang Z, Cheng X, Qin A, Zhang H, Sun JZ, Tang BZ. J Phys Chem B, 2012, 116: 2165–2176
16 Le Bras L, Adamo C, Perrier A. J Phys Chem C, 2017, 121: 25603–25616
17 Ghosh KR, Saha SK, Gao JP, Wang ZY. Chem Commun, 2014, 50: 716–718
18 Hurlock MJ, Kan Y, Lécrivain T, Lapka J, Nash KL, Zhang Q. Cryst Growth Des, 2018, 18: 6197–6203
19 Ye X, Liu Y, Lv Y, Liu G, Zheng X, Han Q, Jackson KA, Tao X. Angew Chem Int Ed, 2015, 54: 7976–7980
20 Xu J, Zhang C, Wang X, Jiang J, Wang F. Acta Chim Sin, 2017, 75: 472–478
21 Zhou SY, Wan HB, Zhou F, Gu PY, Xu QF, Lu JM. Chin J Polym Sci, 2019, 37: 302–326
