A Realistic Model under which the Genetic Code is Optimal

Harry Buhrman · Peter T. S. van der Gulik · Gunnar W. Klau · Christian Schaffner · Dave Speijer · Leen Stougie

Abstract. The genetic code has a high level of error robustness. Using values of hydrophobicity scales as a proxy for amino acid character, and the Mean Square measure as a function quantifying error robustness, a value can be obtained for a genetic code which reflects the error robustness of that code. By comparing this value with a distribution of values belonging to codes generated by random permutations of amino acid assignments, the level of error robustness of a genetic code can be quantified. We present a calculation in which the standard genetic code is shown to be optimal. We obtain this result by (1) using recently updated values of polar requirement as input; (2) fixing seven assignments (Ile, Trp, His, Phe, Tyr, Arg, and Leu) based on aptamer considerations; and (3) using known biosynthetic relations of the 20 amino acids. This last point is reflected in an approach of subdivision (restricting the random reallocation of assignments to amino acid subgroups, the set of 20 being divided in four such subgroups). The three approaches to explain robustness of the code (specific selection for robustness, amino acid-RNA interactions leading to assignments, or a slow growth process of assignment patterns) are reexamined in light of our findings. We offer a comprehensive hypothesis, stressing the importance of biosynthetic relations, with the code...
evolving from an early stage with just glycine and alanine, via intermediate
stages, towards 64 codons carrying today’s meaning.

Keywords Genetic code · error robustness · origin of life · polar requirement

1 Introduction

The genetic code is a basic feature of molecular biology. It sets the rules according to which nucleic-acid sequences are translated into amino-acid sequences. The genetic code probably evolved by a process of gradual evolution from a proto-biological stage, via many intermediary stages, to its present form (see e.g. [12,43,71]). During this process, error robustness was built into the code (see e.g. [8,13,12,31,12,10,52,78,51,15]). Two different kinds of error robustness can be observed [71] by even the most superficial inspection of the Standard Genetic Code (SGC). On one hand, codons assigned to the same amino acid are almost always similar, see Table 1. As an example, all codons ending with a pyrimidine (U or C) in a codon box (the four codons sharing first and second nucleotides) are without exception assigned to the same amino acid (e.g. UAU and UAC both code for Tyr). On the other hand, similar codons are mostly assigned to similar amino acids, e.g. codons with U in the second position are all assigned to hydrophobic amino acids [73,76,77]. This is illustrated in Table 1 when looking at the values of polar requirement: overall, low values of polar requirement correspond to hydrophobic amino acids.

Codon	Amino Acid	Polar Requirement
UUU	Phe (4.3)	
UUC	Phe (4.5)	
UUA	Leu (4.4)	
UUG	Leu (4.4)	
CUC	Leu (4.4)	
CUA	Leu (4.4)	
CUG	Leu (4.4)	
AUC	Ile (5.0)	
AUA	Ile (5.0)	
AUG	Met (5.0)	
GUC	Val (6.2)	
GUA	Val (6.2)	
GUG	Val (6.2)	
GUU	Val (6.2)	

Table 1 The standard genetic code. Assignment of the 64 possible codons to amino acids or stop signals, with updated polar requirement values indicated in brackets.

Three main approaches exist to explain the emergence of this robustness of the code: specific selection for robustness (see e.g. [30,21,71]), amino acid-RNA interactions leading to assignments (see e.g. [73,84]), and a slow growth process of assignment patterns reflecting the history of amino acid repertoire growth.
A Realistic Model under which the Genetic Code is Optimal

The concept that all three competing hypotheses are important has also been brought forward [11]. In the present study we make adjustments to earlier mathematical work in this field (see e.g. [30,21,6]) which integrate the three concepts into a single mathematical model. We will now, one by one, introduce these three adjustments.

1.1 Polar Requirement

The polar requirement [76] is not just a measure related to hydrophobicity. Several different measures of hydrophobicity exist, each focusing on different aspects of it. Polar requirement specifically focuses on the nature of the interaction between amino acids and nucleic acids. Stacking interactions between e.g. the planar guanidinium group of arginine and the planar purine ring systems and pyrimidine ring systems of RNA is an example of that. Woese chose to chemically model the nucleotide rings by using pyridine as the solvent system in the measurements leading to the polar requirement scale [36,60,74]. This interaction between amino acids and nucleic acids has been stressed as an especially important aspect of early protein chemistry because one possibility for the very first function of coded peptides was suggested to be the enlargement of the number of conformations accessible for RNA (realized by the binding of small, oligopeptide cofactors). Thus polar requirement could have been among the most important aspects of an amino acid during early stages of genetic code evolution.

The remarkable character of polar requirement as a measure of amino acids in connection to the genetic code was found again and again throughout the years. Firstly, Woese found that distinct amino acids coded by codons differing only in the third position are very close in polar requirement, despite differences in general character [77]. The pair cysteine and tryptophan nicely exemplifies this. Secondly, Haig and Hurst [30] discovered that polar requirement showed the SGC to be special to a much larger degree than another scale of hydrophobicity (the hydropathy scale of Kyte and Doolittle [42]). Thirdly, when Mathew and Luthey-Schulten updated the values of polar requirement [52] by in silico methods (the most important change was believed to be due to a cellulose-tyrosine interaction artefact in the original experiments), the SGC showed a further factor 10 increase [9] in error robustness calculations. In all these developments the expectation that polar requirement would behave in a special way, as interaction between nucleotides and amino acids is biochemically important, was more than borne out by the results. One of the adjustments we introduce in our work compared to our earlier calculations [6] is that in the present work we use the new, updated values of polar requirement (see Table 1).
1.2 Aptamers

Oligonucleic-acid molecules that bind to a specific target molecule (e.g. a specific amino acid) are called aptamers [18]. Over the last two decades, many results have been obtained regarding specific binding of amino acids by RNA aptamers, mainly by Yarus and co-workers [18,35,84]. For several amino acids, codons and anticodons were found in binding sites, in quantities higher than would be expected to occur by chance [84]. In Table 2, a list of occurrences of anticodons in binding sites of RNA sequences is given, together with the articles in which these sequences were reported. Please note that the definition of anticodons used in these articles is: triplets complementary to codons. These anticodons are therefore not necessarily identical to the triplets found in tRNA molecules which are normally meant with the word ‘anticodon’. As an example: the triplet AUG is considered as an His anticodon because it is complementary to the His codon CAU. In tRNAs, however, the anticodon recognizing CAU is GUG (see [38,27] for reviews on codon-anticodon interaction). We summarize published details on the aptamers for seven amino acids, and subsequently formulate a conclusion regarding the implications of the existence of these molecules for genetic-code error-robustness calculations. This conclusion is based on reasoning presented by the Yarus group concerning the existence of specific relationships between certain triplets and certain amino acids. These relationships could have led to evolutionary conserved assignments of these amino acids to these triplets, e.g. by a mechanism as presented in [84].

For Ile, Trp, and His, three binding motifs were described, respectively named the ‘UAUU-motif’ [45], the ‘CYA-motif’ [49,46], and the ‘histidine-motif’ [47]. As can be seen from the names, the anticodons UAU for Ile, and CCA for Trp, are characteristic for the motifs (‘CYA’ stands for ‘CUA or CCA’). In the case of His, both GUG and AUG (the anticodons for the two His codons CAC and CAU) are found in quantities higher than would be expected by chance [17].

Amino Acid	Anticodon	References
Ile	UAU	[84] pages 415-419
Trp	CCA	[46] page 1918
His	GUG, AUG	[84] pages 413-414
Phe	GAA, AAA	[84] page 420
Tyr	GUA, AUA	[84] page 423
Arg	CCU, UCU, ACG, GCG, UCG, CCG	[36] page 2
Leu	CAA, GAG, UAG	[84] page 420

Table 2 The occurrence of anticodons in binding sites of the RNA sequences of amino-acid binding aptamers, and the references in which the actual RNA sequences can be found.

Although binding sites for Phe and Tyr have so far not been studied as extensively as those for Ile, Trp, and His, the analysis of Yarus et al. [84] shows that the anticodons (GAA and AAA for Phe, and GUA and AUA for
Tyr) are present in the binding sites more often than would be expected on a random basis.

Both the CCU anticodon and the UCG anticodon are present in Arg binding sites more often than would be expected on a random basis. Thus, a physico-chemical background was observed, compatible with: (1) Arg having more than 4 codons, and (2) all 6 Arg codons sharing the same middle nucleotide.

A similar observation can be made for Leu, the other amino acid which is encoded by six codons all having the same middle nucleotide. For this amino acid, however, only a single RNA sequence was found binding the amino acid with specificity. Inspection of this sequence shows anticodons UAG, GAG, and CAA to be present in its binding parts.

Taking the combined results of Yarus and co-workers into consideration, we propose to fix assignments of Ile, Trp, His, Phe, Tyr, Arg, and Leu for calculations using random variants of the SGC.

1.3 Gradual Growth

In Section 2 we present our approach in detail. We use Haig and Hurst’s ‘mean square’ measure, (as first proposed in [30]) to quantify the error robustness of a given code. With this measure, a relatively error-robust code gets a low value when compared to the average value of a large set of codes produced by random allocation of amino-acid assignments (see [6] for a more in-depth treatment of the approach). The space of codes allowed to exist by the allocation procedure can be large (in the original work of Haig and Hurst [30] the space has a size of exactly $20!$ codes, which is $\approx 2.433 \cdot 10^{18}$ codes). We call a code optimal if it reaches the minimum in error robustness calculations among all possible codes in a particular setting.

In 1975, Wong proposed the coevolution theory of the genetic code [79]. According to this proposal, SGC codons assigned to an amino acid biosynthetically derived from another amino acid, were originally assigned to that ‘precursor’ amino acid. As an example: Pro is biosynthetically derived from Glu. According to coevolution theory, the four Pro codons (CCN) would have originally encoded Glu. Without embracing all details of the original coevolution theory, or modern refinements of the theory [81,15], something remarkable can be noted as a result of this way of looking at the SGC. Shikimate-derived amino-acids (Phe, Tyr, and Trp) all have U in the first position of the codon (Phe: UUY; Tyr: UAY; and Trp: UGG). Glu-derived amino-acids (Pro, Gln, and Arg) almost always have C in the first position of the codon (Pro: CCN; Gln: CAR, which stands for ‘CAA or CAG’; and Arg: AGR and CGN, where N stands for all 4 nucleotides). Asp-derived amino-acids (Ile, Met, Thr, Asn, and Lys) all have A in the first position of the codon (Ile: AUY and AUA; Met: AUG; Thr: ACN; Asn: AAY; and Lys: AAR). Codons with G in the first posi-
tion all code for amino acids produced in Urey-Miller experiments (Val: GUN; Ala: GCN; Asp: GAY; Glu: GAR; and Gly: GGN). This ‘layered structure’ of the SGC was first pointed out explicitly by Taylor and Coates [69]. It may indeed suggest a sequential development of the repertoire of amino acids specified in the developing code, and a possibly sequential introduction of use of G, A, C, and U as first nucleotide in codons. The ‘layered structure’ of the SGC is a regularity different from the well-known error-robust distribution of polar requirement [30], which is pronounced in the first and the third, but not in the second position of the codon (please note: having, as a group, all the same nucleotide in the first position, gives error robustness for the group character to changes in the second and third position). As is shown in Appendix A.1 it is possible to prove the presence of the ‘layered structure’ quantitatively, when the appropriate set of values is developed and used as input.

Freeland and Hurst [22] followed the concept of Taylor and Coates, and formally divided the 20 amino acids in four groups of five amino acids each: Gly, Ala, Asp, Glu, and Val in a first group which could be called ‘the prebiotic group’; a second group of amino acids with codons starting with A (Ile, Met, Thr, Asn, and Lys); a third group with codons mainly starting with C (Leu, Pro, His, Gln, and Arg); and, finally, a group with codons mainly starting with U (Phe, Ser, Tyr, Cys, and Trp). Division of the set of twenty in these four subsets was subsequently incorporated in the calculations on code error robustness [22]. This approach reduced the size of the space from which codes could be sampled randomly in a drastic way: from a size of about $2 \cdot 10^{18}$ codes (see above) to a size of $(5!)^4$ codes (which is exactly $2.0736 \cdot 10^8$ codes). This space was called the ‘historically reasonable’ set of possible codes [22]. By sampling from the historically reasonable set of possible codes, we incorporate in the current study the notion of a chronologically-determined, layered structure of the SGC.

1.4 Integration of assumptions

We have found that if: (1) the updated values for polar requirement are used as amino-acid attributes; (2) the assignments of seven amino-acids to codons are fixed following the rationale given above; and (3) the subdivision leading to the historically reasonable set of possible codes is used to define the space of code variations (which is also reduced in size by (2)), then the SGC is optimal. It is important to note that the constraints applied drastically reduce the size of the space: with applying both (2) and (3), the “realistic space” has a size of 11520 codes.

1 For a recent update on prebiotic synthesis see [61] and references therein.
2 Methods

We use the mean-square method developed by Alif-Steinberger [2], Wong [80], Di Giulio [14], and Haig and Hurst [30]. For the mathematical formulation, we follow the approach of [6] and consider the undirected graph $G = (V, E)$ that has the 61 codons as its vertices and an edge between any two codons if they differ in only one position, yielding 263 edges. A code F maps each codon c to exactly one amino acid $F(c)$. We denote by $r_{F(c)}$ the polar requirement of the amino acid that codon c encodes in the code F and by r the full vector of 20 values. The mean-square error function of code F is then given by

$$MS^\alpha_{0-r}(F) = \frac{1}{N} \sum_{(c,c') \in E} \alpha_{c,c'} \left(r_{F(c)} - r_{F(c')} \right)^2$$

where the $\alpha_{c,c'}$ are the weights of the different mutations that can occur (corresponding to edges of the graph) and $N = \sum_{(c,c') \in E} \alpha_{c,c'}$ is the total weight. Following Haig and Hurst [30], we use a subscript 0 to indicate the overall measure. If we set all 263 weights $\alpha_{c,c'}$ to 1, we get the original function described by [30] which we simply denote by $MS_0(F)$. We also consider the following set of weights introduced by Freeland and Hurst [21] which differentiates between transition errors (i.e. U to C, C to U, A to G, G to A) and transversion errors and the position where they occur in the codon:

- $\alpha_{c,c'} = 0.5$ if (c, c') is a transversion in the first position or a transition in the second position,
- $\alpha_{c,c'} = 0.1$ if (c, c') is a transversion in the second position,
- $\alpha_{c,c'} = 1$ otherwise.

Using weights for different codon positions implies the existence of a tRNA with a triplet anticodon during the process of code evolution. As we consider a process of gradual expansion of the repertoire of amino acids during the evolution of the SGC (see e.g. [12,43,3]) as the most likely mechanism -with duplication of tRNA genes, and subsequent divergence (cf. [59]) of their sequences and functions- we think this assumption is acceptable. This assumption does not necessarily imply the existence of protein aminoacyl-tRNA synthetases during all or part of the process of code evolution, as there could originally have been ribozymes which fulfilled their function. The value of error-robustness of a code F using the set of weights introduced above will be denoted by $MS^F_{FH_0}(F)$.

In principle, there are at least three ways in which one can improve the model of [30] to reflect biological reality more accurately. The first possibility is to change how the level of error robustness is measured, e.g. by introducing weighting factors as described above. Variations of the weighting factors used in the calculation show an even higher error robustness of the SGC, as noticed by e.g. [21,25,6]. The rationale behind changing weighting factors is improved reflection of natural selection pressures. It is, however, difficult to decide which

\[\text{In the original calculation, Haig and Hurst ignored the three “stop codons” encoding chain termination.}\]
weighting factors adequately reflect the natural selection pressures operating during the early evolution of the genetic code (see comment 4 of Ardell in [58] and the exchange of thoughts with respect to ‘column 4’ in [31]).

The second way to improve the model is to change the set of values representing amino-acid properties used as input in the error-robustness calculation. For instance, one can use the values of hydropathy from [42], or the matrix of [25] instead of the polar requirement scale. In our paper, we use the values of the 2008 update of polar requirement by in silico methods [52] given in Table 1. Work concerning the issue what an ‘ideal’ set of twenty values would look like, and work considering different known sets of amino-acid properties is presented in appendices A.2 and A.3.

The third way to improve the model is to change the size of the space from which random codes are sampled [6]. The incentive to enlarge that space (as was done in [6]) is the wish to work from a space that encompasses all possible codes, or at least, all known codes. As indicated in [6], larger spaces are increasingly difficult to work with. The frequency distributions obtained by sampling from the larger spaces in [6] highly coincide with the frequency distribution obtained from the original space (as presented in [30]). From this viewpoint, working in the original space is acceptable as a simplification. In the current study, we shrink the size of the space, based on considerations of fixed assignments of certain codons, and combining this with the constraint of the historically reasonable set of possible codes of [22], as outlined in Section 1.

MATLAB-programs were used for the error-robustness calculations and visualizations. All software can be found as supplemental information, or downloaded from https://github.com/cschaffner/gcode.

3 Results

Among all genetic codes (in this particular setting of the problem), the SGC is optimal in terms of error-robustness if:

1. We use the updated values of polar requirement [52].
2. We use fixation for Phe, Tyr, Trp, His, Leu, Ile, and Arg, based on aptamer experiments [84][36].
3. We use the historically reasonable set of possible codes [22].

Figure 1 shows a histogram of $MS_{FH}^E(F)$-values resulting from this procedure. When, the original error function $MS_0(F)$ from [30] is used, the result is essentially the same: the SGC is the optimal code. We wondered if by fixation of just one or two more assignments, the SGC would be optimal in the space resulting from the combination of these fixations with the random permutations of amino acid assignments according to the method used by Haig and Hurst [30], without the constraint of the historically reasonable set of possible codes [22]. This was not the case (as is reported in Appendix A.4).
4 Discussion

What is the biological relevance of the mathematical result presented, if any? Can we indeed conclude that natural selection steered the translation system toward better and better variants of the assignments (in terms of error-robustness) within realistic boundaries? Stated differently, when making a model, should one respect that seven assignments are fixed, and that the system evolved gradually (as reflected by using the historically reasonable set of possible codes), until the optimal code (within these boundaries) was reached? Or is it rash to arrive at such a conclusion, and could one imagine positive selection for error-robustness to be an illusion?

The space of codes resulting from the constraints imposed on the calculations is a space of very limited size: only 11520 codes ($2! \cdot 2! \cdot 4! \cdot 5!$). The fact that the SGC is optimal in this space is impressive, but of a different order of magnitude than the near-optimalities in significantly larger spaces presented in earlier studies (e.g. [21,23,24,9,6]). The impact of the different fixed assignments varies: for the MS_0^F-values, it would theoretically suffice to fix the three assignments of Phe, Trp, and Arg (or any set containing them) in order to find the SGC to be optimal in the resulting space. In this way, the SGC can be thought of as the global optimum in a space of $3! \cdot 4! \cdot 5! \cdot 5! = 2073600$ codes. We

When using the Freeland and Hurst weights (and hence the MS_0^{FH}-values), it is possible to fix another set of three amino-acids Phe, His, Trp in order to make the SGC optimal.
further refrain from presenting it thus, because in doing so we would abandon the physico-chemical facts which were the starting point for our calculations with fixed assignments.

It is also possible to increase the number of fixed assignments (and in this way decrease the size of the space of random code variants) even further. A recent article [39] suggests that more than the seven assignments (listed in Table 2) are fixed.

The logical extreme of fixing assignments is that all assignments of the SGC are fixed, as argued recently by Erives [20]. In his theory, a kind of RNA cage (pacRNA: proto-anti-codon RNA) is presented, in which different amino acids are bound by different kinds of ‘walls’, which are exposing anticodons to the different amino acids. Although this model combines elegant explanations for several aspects of present-day tRNA functioning, it is very hard to get an objective measure for the specificity of amino acid-anticodon interactions in this model. In particular, the different possibilities allowed by ‘breathing’ of the cage cast doubt on interaction specificity. Some objections can also be raised regarding the tRNA activation mechanism. Yarus and co-workers recently reported a very small ribozyme (only five nucleotides in length) which was experimentally shown to aminoacylate certain small RNAs using aminoacyl-NMPs as activated precursors [70,83]. Such an early activation mechanism, using NTPs as source of energy, is different from the one in Erives’ model, where the 5′ end of the pacRNA is performing this role.

Taking all considerations sketched above into account, it is possible to draw a tentative picture of genetic code evolution which is compatible with the indications concerning which aspects of code evolution are important. Code evolution probably followed classical mechanisms of gene duplication and subsequent diversification (here of ‘tRNA’ genes and genes involved in aminoacylation). Evolution would be mainly by stop-to-sense reassignments [43], with occasional reassignments in only slightly different new or developing uses of codons (cf. [47,71]), not yet massively present in protein-coding sequences (cf. the frozen accident concept [12]). In a proto-biological stage, RNA would be absent while very small peptides could have been synthesized, e.g. by the Salt-Induced Peptide Formation (SIPF) reaction [59,65]. Under prebiotic conditions especially Ala and Gly would be expected to be present in relatively large amounts (see e.g. [62]). Asp-containing peptides could possibly play a role in the origin of RNA, as they could position Mg\(^{2+}\) ions in the correct orientation to help polymerize nucleotides, and, concomitantly, keep these ions from stimulating RNA hydrolysis [68]. Asp content of peptides could be enriched in the presence of carboxyl-group binding montmorillonite surfaces [64].

In the first stages of coded peptide synthesis, GCC and GGC probably were the only codons in mRNAs [16], and coded peptides would consist of Ala and Gly. The remaining codons effectively would be stop codons [43], although functioning without release factors: water would break bonds between tRNA and peptide whenever codons stayed unoccupied for too long. The ‘single-step biosynthetic distance’ between Ala and pyruvate suggests a
carbon storage role for these peptides; Gly allowing folding of such molecules. A mRNA/tRNA system functioning without a ribosome has been proposed by several authors \([13,70,43]\). The first rRNA could then have been functioning in improved termination (see above). At this stage the proposal that coded peptides enlarge the possible range of RNA conformations should be taken into account \([57]\).

In the next stage of coded peptide synthesis, Asp and Val could have been added to the repertoire (see e.g. \([16,3,33,31,28]\)). This would have been a crucial step: enabling directed production of the important Asp-containing peptides \([68,28]\) as well as formation of something resembling protein structure, characterized by hydrophobic cores (Val) and hydrophilic exteriors (Asp). The emerging polypeptides could have functioned in carbon storage, as mentioned above. Having started with trimucleotide codons, this aspect was retained, not because four nucleotide codons are in principle impossible, but this system allowed a further robust development (cf. \([71]\)). Depletion of prebiotic pools of either Ala, Gly, Asp, or Val (e.g. by excessive storage in coded peptides) could have led to the biosynthetic routes involving Gly, Ser, Val, Asp, Ala, and pyruvate. In this way the lack of an amino acid could in principle be resolved by use of the other three (cf. the hypothesized carbon storage function of coded peptides).

In a further stage, Ser, and Asp-derived amino acids like Asn and Thr would be added to the repertoire. Asn would be the first amino acid with an entirely biosynthetic origin (it is relatively unstable, and does not accumulate prebiotically). The production of Asn is known to be originally linked to enzymatic conversion of Asp to Asn on a tRNA (see e.g. \([81]\)). When instead of two molecules of pyruvate, one molecule of pyruvate and one molecule of alpha-keto-butyrate are fed into the Val biosynthesis pathway, Ile is produced instead. Therefore, when both Thr and Val biosynthesis are present, the evolution of just one enzyme (making alpha-keto-butyrate from Thr) suffices for the emergence of Ile. Aptamers can handle this amino acid, and these two factors (easy development from existing biochemistry and easy manipulation by RNA) could be responsible for the ‘choice’ of Ile (cf. \([62]\)).

Larger amino acids like His and Gln would have appeared in a later stage of code development than Asp-derived amino acids like Asn and Thr. The reactions catalyzed by the few enzymes in the Leu biosynthesis which are not enzymes involved in Val biosynthesis (apart from leucine aminotransferase) are reminiscent of the first three reactions of the citric acid cycle \([72]\). Jensen \([37]\) hypothesized that originally enzymes would have had much broader substrate specificity. With the citric acid cycle being ‘old’, as well as important for bioenergetic reasons, and Val biosynthesis being present, the system could have produced an excess of Leu. Again, aptamers would be able to ‘handle’ Leu. Existing biochemistry and aptamer potential would thus answer the question why Ile and Leu are part of the Set of Twenty, and e.g. norleucine and alpha-amino butyric acid are not (cf. \([62]\)). Linked to the citric acid cycle and important in nitrogen management are Glu and Gln. A further expansion of the repertoire with a Glu-derived amino acid is the expansion with Arg. Two of the enzymes
of the urea (nitrogen management) cycle are related to pyrimidine synthesis enzymes, two others to purine synthesis enzymes [4]. The last enzyme in the cycle is arginase. This suggests an ancient accumulation of Arg as a side effect of RNA synthesis, upon Glu becoming a major cell component. Arginase could function in bringing the Arg concentration down to acceptable levels. Aptamers could also have evolved to manipulate Arg levels, allowing Arg to become part of the Set of Twenty. Again Jensen’s concept of primordial broad substrate specificity [37] is essential to get a possible answer to the ‘Why these 20?’ question: Arg could be part of the set, rather than ornithine and citrulline, because Arg accumulates, and Arg can be manipulated by aptamers.

In an advanced stage of code development aromatic amino acids would be added to the repertoire, and release factors would evolve. Van der Gulik and Hoff [29] have argued that codons UUA, AUA, UUA, CAA, AAA, GAA, UGA, and AGA could not function unambiguously until the anticodon modification machinery was developed, which is seen by them as the last development leading to the full genetic code. Because archaea and bacteria have different solutions for the ‘AUA problem’ (agmatidinylation vs. lysidinylation [29]), unambiguous sense assignment of AUA must have been late indeed.

The SGC has probably evolved in a genetic environment characterized by rampant horizontal gene-flow [71]. The interaction between genetic systems with slightly different, still-evolving codes, is thought to have caused both universality and optimality of the SGC [71]. Universality, because the genetic code functioned as an innovation sharing protocol [71]. Optimality, because competition allowed selection for the ability to translate the genetic information accurately [71]. The work presented in our paper illuminates constraints within which this process of genetic code development took place. Both the step-by-step increasing complexity of biochemistry, and the stereochemical relationship between at least some amino acids and triplets, are factors which have to be taken into account.

In summary, although there are at least two different lines of research suggesting a greater number of fixed assignments than the seven given in Table 2 (based on the work of Yarus and co-workers [84,36]), for now it is not clear that more (or even all [20]) assignments are fixed. Thus, the observed error-robustness still needs explanation. It is possible that the optimality of the SGC we found results from positive selection for error-robustness, though starting within a more restricted set of possibilities than previously thought.

Acknowledgements We thank the EiC and two anonymous reviewers for suggestions which improved the manuscript. Part of this research has been funded by NWO-VICI Grant 639-023-302, by the NWO-CLS MEMESA Grant, by the Tinbergen Institute, and by a NWO-VENI Grant.

References

1. Aboderin, A.A.: An empirical hydrophobicity scale for α-amino-acids and some of its applications. International Journal of Biochemistry 2(11), 537–544 (1971)
A realistic model under which the genetic code is optimal

2. Alff-Steinberger, C.: The genetic code and error transmission. Proceedings of the National Academy of Sciences of the United States of America 64(2), 584–591 (1969)

3. Ardell, D.H.: On error minimization in a sequential origin of the standard genetic code. Journal of Molecular Evolution 47(1), 1–13 (1998)

4. Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry. W.H. Freeman and Company (2007). Sixth edition, p. 664

5. Biou, V., Gibrat, J.F., Levin, J.M., Robson, B., Garnier, J.: Secondary structure prediction: Combination of three different methods. Protein Engineering 2(3), 185–191 (1988)

6. Buhrman, H., van der Gulik, P.T.S., Kelk, S.M., Koolen, W.M., Stougie, L.: Some mathematical refinements concerning error minimization in the genetic code. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(5), 1358–1372 (2011)

7. Burkard, R., Derigs, U.: Assignment and matching problems: solution methods with FORTRAN-programs. Lecture notes in economics and mathematical systems. Springer-Verlag (1980). URL: http://books.google.nl/books?id=0jvZQAIAIAJ

8. Burkard, R.E., Rendl, F.: A thermodynamically motivated simulation procedure for combinatorial optimization problems. European Journal of Operational Research 17(2), 169–174 (1984)

9. Butler, T., Goldenfeld, N., Mathew, D., Luthey-Schulten, Z.: Extreme genetic code optimality from a molecular dynamics calculation of amino acid polar requirement. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 79(6), 060,901(R) (2009)

10. Caporaso, J.G., Yarus, M., Knight, R.: Error minimization and coding triplet/binding site associations are independent features of the canonical genetic code. Journal of Molecular Evolution 61(5), 597–607 (2005)

11. Cornette, J.L., Cease, K.B., Margalit, H., Spouge, J.L., Berzofsky, J.A., DeLisi, C.: Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. Journal of Molecular Biology 195(3), 659–685 (1987)

12. Crick, F.H.C.: The origin of the genetic code. Journal of Molecular Biology 38(3), 367–379 (1968)

13. Crick, F.H.C., Barnett, L., Brenner, S., Watts-Tobin, R.J.: General nature of the genetic code for proteins. Nature 192(4809), 1227–1232 (1961)

14. Di Giulio, M.: The extension reached by the minimization of the polarity distances during the evolution of the genetic code. Journal of Molecular Evolution 29(4), 288–293 (1989)

15. Di Giulio, M.: An extension of the coevolution theory of the origin of the genetic code. Biology Direct 3, 37 (2008)

16. Eigen, M., Schuster, P.: The hypercycle. A principle of natural self organization. Part C: The realistic hypercycle. Naturwissenschaften 65(7), 341–369 (1978)

17. Eisenberg, D., McLachlan, A.D.: Solvation energy in protein folding and binding. Nature 319(6050), 199–203 (1986)

18. Ellington, A.D., Szostak, J.W.: In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990)

19. Epstein, D.: Setting parameters by example. SIAM Journal on Computing 32(3), 643–653 (2003)

20. Erives, A.: A model of proto-anti-codon RNA enzymes requiring L-amino acid homochirality. Journal of Molecular Evolution 73, 10–22 (2011). DOI 10.1007/s00239-011-9453-4

21. Freeland, S.J., Hurst, L.D.: The genetic code is one in a million. Journal of Molecular Evolution 47(3), 238–248 (1998)

22. Freeland, S.J., Hurst, L.D.: Load minimization of the genetic code: History does not explain the pattern. Proceedings of the Royal Society B: Biological Sciences 265(1410), 2111–2119 (1998)

23. Freeland, S.J., Knight, R.D., Landweber, L.F., Hurst, L.D.: Early fixation of an optimal genetic code. Molecular biology and evolution 17(4), 511–518 (2000)

24. Freeland, S.J., Wu, T., Keulmann, N.: The case for an error minimizing standard genetic code. Origins of Life and Evolution of the Biosphere 33(4-5), 457–477 (2003)
25. Gilis, D., Massar, S., Cerf, N.J., Rooman, M.: Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome biology 2(11), R49 (2001)
26. Grantham, R.: Amino acid difference formula to help explain protein evolution. Science 185(4154), 862–864 (1974)
27. Grosjean, H., de Crecy-Lagarde, V., March, C.: Deciphering synonymous codons in the three domains of life: Co-evolution with specific tRNA modification enzymes. FEBS Letters 584(2), 252–264 (2010)
28. van der Gulik, P., Massar, S., Gilis, D., Buhrman, H., Rooman, M.: The first peptides: The evolutionary transition between prebiotic amino acids and early proteins. Journal of Theoretical Biology 261(4), 531–539 (2009)
29. van der Gulik, P.T.S., Hoff, W.D.: Unassigned codons, nonsense suppression, and anticodon modifications in the evolution of the genetic code. Journal of Molecular Evolution 73(3-4), 59–69 (2011)
30. Haig, D., Hurst, L.D.: A quantitative measure of error minimization in the genetic code. Journal of Molecular Evolution 33(5), 412–417 (1991)
31. Higgs, P.G.: A four-column theory for the origin of the genetic code: Tracing the evolutionary pathways that gave rise to an optimized code. Biology Direct 4, 16 (2009)
32. Higgs, P.G., Pudritz, R.E.: A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology 9(5), 483–490 (2009)
33. Ikehara, K.: Origins of gene, genetic code, protein and life: Comprehensive view of life systems from a GNC-SNS primitive genetic code hypothesis. Journal of Biosciences 27(2), 165–186 (2002)
34. Ikehara, K., Omori, Y., Arai, R., Hirose, A.: A novel theory on the origin of the genetic code: A GNC-SNS hypothesis. Journal of Molecular Evolution 54(4), 530–538 (2002)
35. Illangasekare, M., Yarus, M.: Phenylalanine-binding RNAs and genetic code evolution. Journal of Molecular Evolution 54(3), 298–311 (2002)
36. Janas, T., Widmann, J.J., Knight, R., Yarus, M.: Simple, recurring RNA binding sites for L-arginine. RNA 16(4), 805–816 (2010)
37. Jensen, R.A.: Enzyme recruitment in evolution of new function. Annual Review of Microbiology 30, 409–425 (1976)
38. Johansson, M.J.O., Esberg, A., Huang, B., Bjork, G.R., Bystrom, A.S.: Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Molecular and Cellular Biology 28(10), 3301–3312 (2008)
39. Johnson, D.B.F., Wang, L.: Imprints of the genetic code in the ribosome. Proceedings of the National Academy of Sciences of the United States of America 107(18), 8298–8303 (2010)
40. Kawashima, S., Ogata, H., Kanchisa, M.: AAindex: Amino acid index database. Nucleic Acids Research 27(1), 368–369 (1999)
41. Knight, R.D., Freeland, S.J., Landweber, L.F.: Selection, history and chemistry: The three faces of the genetic code. Trends in Biochemical Sciences 24(6), 241–247 (1999)
42. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157(1), 105–132 (1982)
43. Lehman, N., Jukes, T.H.: Genetic code development by stop codon takeover. Journal of Theoretical Biology 135(2), 203–214 (1988)
44. Li, Y., Pardalos, P., Resende, M.: A greedy randomized adaptive search procedure for the quadratic assignment problem. Quadratic assignment and related problems 16, 237–261 (1994)
45. Lozupone, C., Changayil, S., Majerfeld, I., Yarus, M.: Selection of the simplest RNA that binds isoleucine. RNA 9(11), 1315–1322 (2003)
46. Majerfeld, I., Chocholousova, J., Malaya, V., Widmann, J., McDonald, D., Reeder, J., Iyer, M., Illangasekare, M., Yarus, M., Knight, R.: Nucleotides that are essential but not conserved; a sufficient L-tryptophan site in RNA. RNA 16(10), 1915–1924 (2010)
47. Majerfeld, I., Puthevedu, D., Yarus, M.: RNA affinity for molecular L-histidine; genetic code origins. Journal of Molecular Evolution 61, 226–235 (2005)
48. Majerfeld, I., Yarus, M.: An RNA pocket for an aliphatic hydrophobe. Nature Structural Biology 1(5), 287–292 (1994)
49. Majerfeld, I., Yarus, M.: A diminutive and specific RNA binding site for L-tryptophan. Nucleic Acids Research 33(17), 5482–5493 (2005). DOI 10.1093/nar/gki861
50. Massey, S.E.: A sequential "2-1-3" model of genetic code evolution that explains codon constraints. Journal of Molecular Evolution 62(6), 809–810 (2006)
51. Massey, S.E.: A neutral origin for error minimization in the genetic code. Journal of Molecular Evolution 67(5), 510–516 (2008)
52. Mathew, D.C., Luthey-Schulten, Z.: On the physical basis of the amino acid polar requirement. Journal of Molecular Evolution 66(5), 519–528 (2008)
53. MATLAB: version 7.12.0 (R2011a). The MathWorks Inc., Natick, Massachusetts (2011)
54. Meirovitch, H., Rackovsky, S., Scheraga, H.A.: Empirical studies of hydrophobicity. 1. effect of protein size on the hydrophobic behavior of amino acids. Macromolecules 13(6), 1398–1405 (1980)
55. Miyazawa, S., Jernigan, R.L.: Estimation of effective interresidue contact energies from protein crystal structures: Quasi-chemical approximation. Macromolecules 18(3), 534–552 (1985)
56. Miyazawa, S., Jernigan, R.L.: Self-consistent estimation of inter-residue protein contact energies based on an equilibrium mixture approximation of residues. Proteins: Structure, Function and Genetics 34(1), 49–68 (1999)
57. Noller, H.F.: The driving force for molecular evolution of translation. RNA 10(12), 1833–1837 (2004)
58. Novozhilov, A.S., Wolf, Y.I., Koonin, E.V.: Evolution of the genetic code: Partial optimization of a random code for robustness to translation error in a rugged fitness landscape. Biology Direct 2 (2007)
59. Ohno, S.: Evolution by Gene Duplication. Springer (1970)
60. Obatake, M., Ooi, T.: An analysis of non bonded energy of proteins. Journal of Theoretical Biology 67(3), 567–584 (1977)
61. Parker, E.T., Cleaves, H.J., Dworkin, J.P., Glavin, D.P., Callahan, M., Aubrey, A., Lazcano, A., Bada, J.L.: Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proceedings of the National Academy of Sciences of the United States of America 108(14), 5526–5531 (2011)
62. Philip, G.K., Freeland, S.J.: Did evolution select a nonrandom “alphabet” of amino acids? Astrobiology 11(3), 235–240 (2011)
63. Ponnuswamy, P.K., Prabhakaran, M., Manavalan, P.: Hydrophobic packing and spatial arrangement of amino acid residues in globular proteins. BBA - Protein Structure 623(2), 301–316 (1980)
64. Rahman, S., Bashton, M., Holliday, G., Schrader, R., Thornton, J.: Small molecule subgraph detector (SMD) toolkit. Journal of Cheminformatics 1(1), 12 (2009). DOI 10.1186/1758-2946-1-12. URL http://www.jcheminf.com/content/1/1/12
65. Rode, B.M., Son, H.L., Suwannachot, Y., Bujdak, J.: The combination of salt induced peptide formation reaction and clay catalysis: A way to higher peptides under primitive earth conditions. Origins of Life and Evolution of the Biosphere 29(3), 273–286 (1999)
66. Schwendinger, M.G., Rode, B.M.: Possible role of copper and sodium in prebiotic evolution of peptides. Analytical Sciences 5, 411–414 (1989)
67. Sweet, R.M., Eisenberg, D.: Correlation of sequence hydrophobicities measures similarity in three-dimensional protein structure. Journal of Molecular Biology 171(4), 479–488 (1983)
68. Szostak, J.W.: The eightfold path to non-enzymatic rna replication. Journal of Systems Chemistry 3, 2 (2012)
69. Taylor, F.J.R., Coates, D.: The code within the codons. BioSystems 22(3), 177–187 (1989)
70. Turk, R.M., Chumachenko, N.V., Yarus, M.: Multiple translational products from a five-nucleotide ribozyme. Proceedings of the National Academy of Sciences of the United States of America 107(10), 4585–4589 (2010)
71. Vetsigian, K., Woese, C., Goldenfeld, N.: Collective evolution and the genetic code. Proceedings of the National Academy of Sciences of the United States of America 103(28), 10,696–10,701 (2006)
72. Voet, D., Voet, J.G.: Biochemistry. John Wiley and Sons, Inc. (1995). Second edition, p. 773
73. Woese, C.R.: Order in the genetic code. Proceedings of the National Academy of Sciences of the United States of America 54(1), 71–75 (1965)
A Appendices

Four further observations are reported here. Firstly, as explained in Section 1, consideration of the biosynthetic pathways leading to the different amino acids suggests an aspect of organization of the SGC in which GNN codons tend to be assigned to ‘prebiotic amino acids’, ANN codons to comparatively small, aspartate-derived amino acids, CNN codons to larger amino acids, and UNN codons to the largest, or (in the case of cysteine) the most instable and reactive amino acid. In other words: the first position of the codon might have a link with the complexity of biochemistry, e.g. the UNN codons being the only ones encoding aromatic amino acids and the instable cysteine, and reflecting the most advanced stage of biochemistry during the evolution of the genetic code (when the biochemistry was sufficiently complex to handle cysteine, and to build tryptophan). In Appendix A.1, we study this link with the biosynthetic development of amino acids by measuring how many one-atom changes are required to transform one amino acid into another. With respect to this distance measure, amino acids derived from the same precursor (like e.g. Ile and Thr) are comparatively close, because they share structure parts. Changing the second position of the codon (in the case of Ile and Thr: changing AUU to ACU) would then replace an amino acid by one with a comparatively similar structure, reflecting their membership of the same biosynthetic family. If the error-robustness calculation is performed with these molecular-structure distances, the SGC is found to have error protection in substitution mutations in the second position (and therefore grouping e.g. ANU codons together). The results are given in Appendix A.1.

Secondly, we tried to find numerical values for the 20 amino acids which make the SGC optimal in terms of error robustness among all possible genetic codes. Using a numerical optimization approach developed by Eppstein [19], we were able to find 20 such values. In fact, many different sets of 20 values have this property. Details about these SGC-optimality calculations can be found in Appendix A.2.

Thirdly, we screened a large list of physico-chemical amino-acid characteristics on their performance in our error-robustness calculations. Polar requirement was one of the best performing measures. This strongly supports the remark by Haig and Hurst (“The natural code is very conservative with respect to polar requirement. The striking correspondence
between codon assignments and such a simple measure deserves further study.” [30]). The observation of Vetsigian, Woese, and Goldenfeld (“Although we do not know what defines amino-acid ‘similarity’ in the case of the code, we do know one particular amino-acid measure that seems to express it quite remarkably in the coding context. That measure is amino-acid polar requirement [...]” [71]) should also be mentioned. More details are given in Appendix A.3.

Finally, we wondered if, by fixing just one or two more assignments, the SGC would be optimal without using the subdivision leading to the historically reasonable set of possible codes (as explained in Section 1). This was not the case. When working with Haig-Hurst weights (i.e. equal weighting), there exist 34 sets of 9 fixed assignments which do have this characteristic. However, none of these 34 sets consists of the seven fixed assignments based on aptamer considerations plus two more amino acids. The smallest set containing the seven has size 10. When working with Freeland-Hurst weights (see Section 2), sets of 8 or 9 fixed assignments with the required characteristic, do not exist. This work is presented in Appendix A.4.

A.1 Molecular Structure Matrix

Polar requirement is just one physico-chemical aspect of amino acids. The discovery that only 1 in 10000 random codes has a lower error-robustness value than the SGC when polar requirement is used as an amino-acid characteristic [30] is compelling evidence that error robustness is present in the SGC. When a conservative attitude is taken, and a phenomenon is considered noteworthy only when the probability to encounter it as a random effect is less than 0.1 %, the SGC is clearly noteworthy. If one considers the error-robustness values for the three positions separately (please refer to [6] for details) the results in the left column of Figure 2 are obtained. The third position is in the less than 0.1 % category, the first position is in the less than 1 percent category, while the second position, with about 22 %, is not even in the less than 5 % category, and can thus not be considered special.

This result is not entirely satisfactory, because the codons of several pairs of similar amino acids are related by second position changes. For instance, a change from phenylalanine (Phe) to tyrosine (Tyr) is clearly a conservative change from a biological viewpoint. To develop a measure for this kind of amino-acid relatedness, we introduce a new way of measuring amino-acid similarity by one-atom changes which yields a measure of similarity in terms of molecular structure. We should stress that this measure does not reflect actual chemical reactions/steps. As an example, we compute the distance between Phe and Tyr to be 3 as follows: the hydrogen atom at the end of the side chain of Phe is taken off as a first step. An oxygen atom is placed on the position which the hydrogen atom had before as a second step. The Tyr molecule is completed by addition of a hydrogen atom on top of this oxygen atom, producing the hydroxyl group at the end of the side chain of Tyr, and this is the third and final step. Generally, the distance between two molecules is defined to be the minimal number of “allowed one-atom changes” to transform one molecule into the other, where the allowed one-atom changes are the following:

- taking off or attaching an arbitrary single atom,
- creating or destroying a single bond (thereby possibly opening or closing a ring structure),
- changing a single bond to a double bond or vice versa.

It is not hard to see that an algorithmic way of computing the distance between two molecules m_1 and m_2 is to find the maximal common sub-graph m_c of their molecular structure and to sum up how many steps are required to go from m_1 to m_c and from m_2 to m_c. The distance matrix between the 20 amino acids in Table 3 has been obtained in this way, using the Small Molecule Subgraph Detector (SMSD) toolkit [64] to find the maximal common subgraph and post-processing this information with a python script. The software code can be found in the supplemental information.

In order to perform the error-robustness calculations, we followed the procedure by Haig and Hurst [30] and considered the squared distances. In this way, the zeroes in the diagonal
updated polar requirement
molecular distance squared

Fig. 2 Histograms of the MS-values of 10 million random samples using updated polar requirement [52] (4 histograms on the left) and molecular-structure distances from Table 3 (4 histograms on the right). The top row shows the MS_0 value, the second row is the component from the first codon position ($MScore_1$), third and forth row the components from the middle ($MScore_2$) and last ($MScore_3$) codon position. In contrast to the original definition [30] of MS_i for $i \geq 1$, we have chosen to normalize $MScore_i$ with the same constant as MS_0 so that $MS_0 = \sum_{i=1}^{3} MScore_i$. The dashed red line indicates the value of the SGC.
A Realistic Model under which the Genetic Code is Optimal

Amino Acid	0	15	21	22	17	20	19	16	18
Phe	0	15	21	22	17	20	19	16	18
Leu	0	15	21	22	17	20	19	16	18
Ile	0	15	21	22	17	20	19	16	18
Met	0	15	21	22	17	20	19	16	18
Val	0	15	21	22	17	20	19	16	18
Ser	0	15	21	22	17	20	19	16	18
Pro	0	15	21	22	17	20	19	16	18
Thr	0	15	21	22	17	20	19	16	18
Ala	0	15	21	22	17	20	19	16	18
Tyr	0	15	21	22	17	20	19	16	18
His	0	15	21	22	17	20	19	16	18
Gln	0	15	21	22	17	20	19	16	18
Asn	0	15	21	22	17	20	19	16	18
Lys	0	15	21	22	17	20	19	16	18
Asp	0	15	21	22	17	20	19	16	18
Glu	0	15	21	22	17	20	19	16	18
Cys	0	15	21	22	17	20	19	16	18
Trp	0	15	21	22	17	20	19	16	18
Arg	0	15	21	22	17	20	19	16	18
Gly	0	15	21	22	17	20	19	16	18

Table 3: Molecular structure matrix. The entry in row i and column j denotes the number of steps required to transform the ith amino acid into the jth. (The gray tones are for ease of reading only, they do not carry special meaning.)

remain zero. The values for small changes become slightly larger (so the edge from Phe to Tyr gets a value 9) while the values for large changes (like going from Gly to Tyr) become considerably larger (in the case of Gly to Tyr 20 becomes 400). Large changes thus get stronger emphasis. Whether squaring is the right way to make these kind of calculations has been discussed elsewhere. We just want to compare molecular structure as an input to characteristics like polar requirement, hydropathy, volume and isoelectric point, as studied by Haig and Hurst. The histograms of the error-robustness in terms of molecular structure are shown in the right column of Figure 2.

Although not producing (unlike polar requirement) a result in the less than 0.1% category, it is still remarkable that the SGC is, with 0.151%, in the less than 1% category when molecular structure is used as input. This means that this matrix is performing better than volume or the hydropathy scale of hydrophobicity in the work of Haig and Hurst. Even more remarkable, the error robustness comes mainly from the second position, using this measure (Figure 2).

A.2 Inverse Parametric Optimization

Instead of asking the question “What is the most error-robust genetic code in terms of e.g. polar requirement?”, one could also ask the question “Is there a set of numerical values for the 20 amino-acids such that the SGC is the optimal code in terms of error robustness?” If one particular set of 20 values turns out to have that property, one can compare this set with different sets of amino-acid characteristics, and suggest which characteristic resembles the “ideal values” best. This then might be the factor playing a selective role during evolution of the SGC.

Let A be the set of amino acids and let F be the set of all codes. We aim at solving the following problem: Find a non-trivial vector $\mathbf{x} \in \mathbb{R}_{\geq 0}^A$ of amino acid property values such that $MS_{\alpha,\mathbf{x}}(SGC) = \arg \min_{F \in F} MS_{\alpha,\mathbf{x}}(F)$.
To solve this problem, we used a modification of the method of Eppstein [19]. We define variables $x \in \mathbb{R}^{20}$ and consider the following constraint satisfaction problem: Find x such that

$$x \neq 0 \quad (1)$$

$$x \geq 0 \quad (2)$$

$$MS^{\alpha,x}_0(SGC) \leq MS^{\alpha,x}_0(F) \quad \text{for all } F \in \mathcal{F} \quad (3)$$

Note that the number of inequalities (3) equals the size of the code space, which can be quite large. To deal with the potentially large number of constraints we follow a cutting plane approach. We work with intermediate solutions x_i, start with $i = 0$, and set x_0 to some random values that satisfy constraints (1) and (2). We then solve the separation problem for the class of constraints (3). That is, we have to find a code F such that $MS^{\alpha,x}_0(x_i)_0(F) < MS^{\alpha,x}_0(SGC)$ or prove that no such code exists. We can answer this question by finding

$$F^* = \arg \min_{F \in \mathcal{F}} MS^{\alpha,x}_0(x_i)_0(F) ,$$

using the quadratic assignment approach described in [6]. In fact, for the actual procedure it suffices to use much faster QAP heuristics, e.g., based on simulated annealing [8] or the GRASP heuristic [44], instead of full QAP solvers. If we find an F with $MS^{\alpha,x}_0(x_i)_0(F) < MS^{\alpha,x}_0(SGC)$, we have found a violated inequality

$$MS^{\alpha,x}_0(SGC) \leq MS^{\alpha,x}_0(F) ,$$

which we add to the constraint satisfaction problem. We solve this set of quadratic constraints using the non-linear constraint solver \texttt{fmincon} from MATLAB’s optimization toolbox [53], obtain a new set of values x_{i+1} and iterate the process until no more violated inequalities can be separated. A final solution x^* can be verified by a QAP solver such as [7]. All software used is provided as supplemental information.

Using this procedure, we found many different sets of 20 values under which the SGC is optimal with respect to error-robustness. We steered the values towards the polar requirement values r by using the distance to r as the objective function in our approach. See Figure 3 for an illustration of some of the solutions we found.

An analysis of the correlation coefficients of these “ideal” values with a database of 744 known amino-acid properties from the literature (AAindex: [40]) shows no correlation above 0.82 except with polar requirement. In other words, we do not know of any sets of straightforward physico-chemical amino-acid properties which resemble one of these “ideal” sets. This might suggest that a combination of several aspects of code evolution and amino-acid properties (as suggested by e.g. Higgs [31]) resulted in the configuration of the SGC.

A.3 Scan of Other Amino-Acid Properties

We performed error-robustness calculations for all (complete) amino-acid properties of the AAindex-database [40]. For the purpose of comparison, we extended the database to include the original polar requirements [76], and the updated polar requirements [52], as well as two sets of numerical values found by the procedure described in [A.2]

In a first scan, 50000 random codes were sampled from

1. all codes,
2. codes with the 7 assignments of Phe, Tyr, Trp, His, Leu, Ile, and Arg fixed,
3. codes with 7 fixed assignments and respecting the structure enforced by the constraint of the historically reasonable set of possible codes (all 11520 codes were computed in this case).
A Realistic Model under which the Genetic Code is Optimal

Fig. 3 Eight examples of sets of values for the 20 amino-acids that make the SGC the most error-robust genetic code. The (artificial) values are found by using inverse parametric optimization as described in Appendix A.2. All sets have been normalized to have mean 0 and standard deviation 1. For comparison, we also show the original polar requirements on top (1), and the updated polar-requirement values on the second row (2). Value sets 3 to 6 make the SGC optimal with respect to MS_0. Value sets 7 to 10 make the SGC optimal with respect to MS_{FH}.

For all of the three settings above, error-robustness values were computed using Haig-Hurst and Freeland-Hurst weights (the same random samples were used for the two weight sets, the results are thus statistically correlated).

Out of the 55 best-performing codes, the same calculations as above were performed with 10^6 samples. The 20 best performing properties are presented in Table 4. Not surprisingly, our two sets of (artificial) numerical values found by inverse parametric optimization (described in Appendix A.2) end up on the top.

Furthermore, we observe that the SGC is error-robust in terms of several measures of polar requirement (as noted, e.g., in [71]). One of these (for which this is not immediately obvious) is Grantham’s polarity scale [26], which is a combination of Aboderin’s scale [1] and polar requirement. It is especially noteworthy that the updated polar requirement [52] is consistently showing up within the best four sets of numerical values. When the sets found by inverse parametric optimization are left out, the updated values of polar requirement are in all three settings (no blocks fixed, 7 blocks fixed, and the set of 11520 codes resulting from 7 fixed blocks plus the constraint of the historically reasonable set of possible codes) the best set of values when Freeland-Hurst weights are used.

A.4 Minimal Number of Fixed Assignments

In this appendix, we investigate how many amino-acid assignments need to be fixed such that the SGC is the most error-robust genetic code with respect to the updated polar requirements [52], when we do not use the constraint of the historically reasonable set of possible codes.

For the case of the Haig-Hurst weights, there are 67 different minimal subsets $S_1, S_2, \ldots, S_{67} \subseteq \{\text{Phe, Leu, Ile, \ldots, Ser, Gly}\}$ such that for any $i \in \{1, 2, \ldots, 67\}$, fixing the assignments
Table 4 Table of the 20 most error-robust amino acid properties from the AAindex-database [40]. The numbers indicate how many codes were found that are strictly more error-robust than the standard genetic code. The numbers in parentheses denote the rank among the 55 properties that have been analyzed. Description in italic indicate that this property is not included in the AAindex-database, but has been added for comparison.

Sequence	Description	
HH	FH	
10^4 random codes	10^6 random codes	11520 codes
no blocks fixed	7 blocks fixed	7 fixed, subsets
0 (1)	0 (1)	0 (1)
1 (2)	0 (1)	0 (1)
10 (3)	4 (6)	11 (10)
17 (4)	0 (1)	0 (1)
24 (5)	60 (16)	21 (13)
35 (7)	57 (18)	44 (18)
40 (8)	130 (31)	27 (15)
46 (9)	57 (18)	205 (21)
51 (10)	26 (11)	185 (20)
58 (11)	42 (17)	55 (12)
96 (12)	12 (6)	173 (19)
98 (13)	58 (20)	423 (37)
108 (14)	34 (10)	322 (23)
112 (15)	37 (14)	330 (24)
119 (16)	3 (5)	41 (8)
127 (17)	23 (10)	109 (16)
136 (18)	2 (4)	28 (6)
218 (19)	95 (28)	452 (31)
279 (20)	16 (9)	120 (17)

Table 4 Table of the 20 most error-robust amino acid properties from the AAindex-database [40]. The numbers indicate how many codes were found that are strictly more error-robust than the standard genetic code. The numbers in parentheses denote the rank among the 55 properties that have been analyzed. Description in italic indicate that this property is not included in the AAindex-database, but has been added for comparison. HH=Haig-Hurst, FH=Freeland-Hurst.

of all amino acids in S_i makes the SGC the most error-robust genetic code. Any super-set of these 67 minimal subsets will also have this property, because fixing more assignments only limits the number of possible genetic codes. Out of the 67 minimal subsets, 34 of them are of size 9, 15 of size 10, 15 of size 11, and 3 of size 12.

When fixing the seven assignments of Phe, Tyr, Trp, His, Leu, Ile, and Arg (based on aptamer experiments) the minimal sets of assignments that need to be fixed in addition are: \{Ser, Gln, Cys\} or \{Met, Ser, Gln\}. For the case of the Freeland-Hurst weights, there are 186 different minimal subsets: 2 subsets of size 10, 4 of size 11, 13 of size 12, 44 of size 13, 52 of size 14, 45 of size 15, 21 of size 16, and 5 of size 17. When fixing the seven assignments of Phe, Tyr, Trp, His, Leu, Ile, and Arg (based on aptamer experiments) there are 6 different minimal sets (of size 6) each of which can be fixed in addition in order to make the SGC the most error-robust genetic code.