On a common refinement of Stark units and Gross-Stark units.

Tomokazu Kashio*

早稲田大学整数論研究集会 (2019年3月13日-15日) において本稿と同タイトルのプレプリント (arXiv:1706.03198) の紹介させて頂きました. 本稿はその報告集原稿です.

概要

実素点に関する Stark 予想は, 多重ガムマ関数の積で Stark 単数と呼ばれる代数的数を表す予想式を与える. この Stark 単数はある種の相互法則を満たすことも予想されている. 一方で吉田予想は, 多重ガムマ関数の別の積で CM 周期と呼ばれる幾何的不変量の超越数部分を表す予想式を与える. 筆者はこれまでに, Stark 予想の “代数性部分” と吉田予想を, 一つの予想式に統一できることを発見している. 今回はこの “Archimedean” な予想の下で, (p 進 Hodge 理論の) p 進周期環に値をとる不変量を構成し, Stark 予想の “相互法則” の部分と, Stark 予想の p 進類似 (Gross-Stark 予想) の両方を細分化する予想を定式化する.

1 導入: フェルマー曲線と円単数 (とガウス和)

最初に, あまり知られていないと思われるが, 興味深い “別証明” を紹介したい: フェルマー曲線 \(F_n : x^n + y^n = 1 \) を使って, 以下の “代数性” を示すことができる.

\[
\Gamma\left(\frac{a}{n}\right) \Gamma\left(\frac{n-a}{n}\right) \in \pi\mathbb{Q}^\times.
\]

ただし, Euler の反射公式

\[
\frac{\pi}{\Gamma\left(\frac{\pi}{n}\right) \Gamma(1 - \frac{\pi}{n})} = \sin \frac{a\pi}{n}
\]

より直ちに従う事実であるので, その別証明ということになる. 更に Euler の反射公式はより多くの情報を含んでおり, この値は “円単数” に近いものであることも分かる.

“PROOF”. \(F_n \) 上の第二種微分形式 \(\eta_{r,s} := x^r y^{s-n} \frac{dx}{x} \) (1 \(\leq r, s < n, r + s \neq n \)) を考える. \(F_n(\mathbb{C}) \) 上の閉路 \(\gamma \) が \(\int_{\gamma} \eta_{r,s} \neq 0 \) を満たすとき, Rohrlich の公式 [Gr, Theorem in Appendix] により

\[
\int_{\gamma} \eta_{r,s} = \frac{\Gamma\left(\frac{\pi}{n}\right) \Gamma\left(\frac{\xi}{n}\right)}{\Gamma\left(\frac{\pi + \xi}{n}\right)} \mod \mathbb{Q}^\times
\]

*Tokyo University of Science, kashio.tomokazu@ma.noda.tus.ac.jp
が分かる。右辺はベータ関数

$$B\left(\frac{r}{n}, \frac{s}{n} \right) := \int_0^1 t^\frac{r}{n} (1-t)^\frac{s}{n} dt$$

と一致する。一方でカップ積

$$\cup: H^1(F_n) \times H^1(F_n) \to H^2(F_n) \cong H^1(\mathbb{G}_m)$$ (Lefschetz motive)

は環準同型であることより、周期の単項関係式

$$\int_\gamma \eta_{r,s} \cdot \int_{\gamma'} \eta_{n-r,n-s} = \int_{\gamma \cup \gamma'} \eta_{r,s} \cup \eta_{n-r,n-s} \equiv \oint \frac{dx}{x} = 2\pi i \mod \mathbb{Q}^\times$$

を導くことができる。合わせてベータ関数の積の “代数性”

$$(3)$$

$$B\left(\frac{r}{n}, \frac{s}{n} \right) B\left(\frac{n-r}{n}, \frac{n-s}{n} \right) \in \pi \mathbb{Q}^\times$$

を得る。更に Γ 関数の有理点での特殊値はベータ関数の有理点での特殊値で表せる。例えば

$$B\left(\frac{1}{3}, \frac{1}{3} \right)^2 \cdot B\left(\frac{2}{3}, \frac{2}{3} \right) = \frac{\Gamma\left(\frac{1}{3} \right)^4}{\Gamma\left(\frac{2}{3} \right)} = 3\Gamma\left(\frac{1}{3} \right)^3.$$

このことにより (3) から (1) が従う (より詳細な議論は [Ka2] を参照)。

筆者はこの “PROOF” の一般化を目指し、以下のような研究を行ってきた: 吉田氏は Rohrlich の公式 (2) の一般化にあたる予想 [Yo, Chap. III, Conjecture 3.9] を述べている。一方で、Stark 予想の一部 (Conjecture 1) である “Stark 単数 $u(\sigma)$ の代数性” は、代数性 (1) の一般化を与えている。これらに対し

吉田予想の自然な改良が、総実体上の Stark 単数の代数性 ($u(\sigma) \in \mathbb{Q}$) を含むことを示した ([Ka3, Proposition 5.6]).

Rohrlich の公式の p 進類似として、Coleman の公式 [Co, Theorems 1.7, 3.13] がある。これはフェルマー曲線上的絶対フロベニウス作用を p 進 Γ 関数で書き表したものであり、ガウス和を、同じく p 進 Γ 関数で表す Gross-Koblitz 公式的別証明への応用が知られており。別の応用として、筆者は Coleman の公式から “円単数の相互法則”

$$(4)$$

$$\sigma_b \left(\frac{\Gamma\left(\frac{a}{n} \right) \Gamma\left(\frac{n-a}{n} \right)}{\pi} \right) \equiv \frac{\Gamma\left(\frac{ab}{n} \right) \Gamma\left(\frac{n-ab}{n} \right)}{\pi} \mod \mu_\infty$$

を導くことを示した [Ka2, Corollary 7.6]. ここで μ_∞ は 1 のべき根全体のなす群であり、$\sigma_b \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ は $\sigma_b(\zeta_n) = \zeta_n^b$ ($\zeta_n := e^{\frac{2\pi i}{n}}$) を満たす任意の元とする。この相互法則 (4) も、やはり Euler の反射公式より直ちに従うが、
local な計算 (archimedean (Rohrlich の公式) + p-adic (Coleman の公式)) から
global なこと (円単数の “代数性 (1)” と “相互法則 (4)”) が導かれる
という点が興味深い。

プレプリント [Ka5] において、これらの結果の一般化にあたる予想を定式化できたので、
その概要を本稿で報告したい。§2 では、円単数の一般化にあたる Stark 単数 u(σ) と、
Rohrlich の公式の一般化にあたる吉田予想 (Conjecture 2) を紹介する。§3 では、Coleman
の公式の一般化にあたる予想式 (Conjecture 3) を紹介する。そして §4 では、Conjectures
2, 3 から “Stark 単数の相互法則”

\[\tau(u(\sigma)) \equiv u(\tau\sigma) \mod \mu_{\infty} \]

が導かれることが紹介する。なお、同プレプリントにおいて、同じ Conjectures 2, 3 から
Gross-Koblitz 公式の一般化にあたる予想式 ([KY1, KY2]) が導かれることも示してある
が、本稿では省略する。

2 Stark 予想と吉田予想

2.1 Stark 予想 (rank one abelian, 実素点の場合)

この小節では、代数体の有限次アーベル拡大 K/k と σ ∈ Gal(K/k) に付随する部分ゼータ関数

\[\zeta(s, \sigma) := \sum_{a \in (\mathbb{K}/k)^*} Na^{-s} \]

を考える。ただし a は k の整イデアルで、K/k の導手と互いに素であり、アルチン記号
\(\left(\frac{K/k}{\sigma} \right) \) での像が σ と一致するものを体を動く。

Conjecture 1 (Stark 予想 [St] の一部). K が総実体で、K が実素点 ρ: K ↪ R を持つとき

\[u(\sigma) := \exp(-2\zeta'(0, \sigma)) \in K \quad (\text{正確には } \in \rho(K) \subset \mathbb{R}) \]

であり、さらに “相互法則”

\[\tau(u(\sigma)) = u(\tau\sigma) \quad (\sigma, \tau \in \text{Gal}(K/k)) \]

を満たす (ただし K/k = Q/Q は例外)。この u(σ) を Stark 単数 と呼ぶ。

Remark 1. Conjecture 1 の主張

\[u(\sigma) \in K, \quad \tau(u(\sigma)) = u(\tau\sigma) \quad (\sigma, \tau \in \text{Gal}(K/k)) \]

は

\[u(\sigma) \in \mathbb{Q}, \quad \tau(u(\sigma)) = u(\tau|_K \sigma) \quad (\sigma \in \text{Gal}(K/k), \tau \in \text{Gal}(\mathbb{Q}/k)) \]

と同値である。

3
例 1. $K/k = \mathbb{Q}(\zeta_n + \zeta_n^{-1})/\mathbb{Q}$ は予想の仮定を満たしている。このとき
\[
\text{Gal}(\mathbb{Q}(\zeta_n + \zeta_n^{-1})/\mathbb{Q}) = \{\sigma_{\pm a} \mid \pm a \in (\mathbb{Z}/n\mathbb{Z})^\times\}, \quad \sigma_{\pm a}(\zeta_n + \zeta_n^{-1}) = \zeta_n^a + \zeta_n^{-a}
\]
であり、部分ゼータ関数は
\[
\zeta(s, \sigma_{\pm a}) = \sum_{N \equiv \pm a \mod n} k^{-s}
\]
というように Hurwitz ゼータ関数の和で書ける。よって Lerch の公式により
\[
u(\sigma_{\pm a}) := \exp(-2\zeta'(0, \sigma_{\pm a})) = \left(\frac{2\pi}{\Gamma(a/n)\Gamma(n-a/n)}\right)^2
\]
を得る。特に §1 の “PROOF” は、基礎体が \mathbb{Q} のときの Stark 単数の代数性
\[
u(\sigma_{\pm a}) \in \overline{\mathbb{Q}}
\]
の別証明となっている。

2.2 CM 周期 (F_n 上の積分 $\int_\gamma \eta_\gamma$ の一般化)
この小節では、CM 体 K と、その複素埋め込み $\sigma, \tau \in \text{Hom}(K, \mathbb{C})$ に対して定まる志村の周期記号 [Shim, Theorem 32.5]
\[
p_K(\sigma, \tau) \in \mathbb{C}^\times/\overline{\mathbb{Q}}^\times
\]
を考える。これは CM-type (K, Ξ) のアーベル多様体 $A/\overline{\mathbb{Q}}$ と、K-固有な正則微分形式 η_σ ($\sigma \in \Xi$) に対して以下を満たす。
\[
\pi \prod_{\tau \in \Xi} p_K(\sigma, \tau) \equiv \int_\gamma \eta_\sigma \mod \overline{\mathbb{Q}}^\times.
\]
ただし γ は $A(\mathbb{C})$ の閉路で $\int_\gamma \eta_\sigma \neq 0$ を満たすものを取る：用語を簡単に説明すると

- K を CM 体とする。$\overline{\mathbb{Q}}$ 上定義されたアーベル多様体 A が $K \cong \text{End}(A) \otimes \mathbb{Z} \mathbb{Q}$ を満たすとき、A は K の虚数乗法を持つ、という。

- アーベル多様体 $A/\overline{\mathbb{Q}}$ が K の虚数乗法を持つとき K の $(K = \text{End}(A) \otimes \mathbb{Z} \mathbb{Q}$ を通じての) 各種コホモロジー群への作用が得られる。とくに $H^1_{dR}(A, \mathbb{C})$ への作用の分解には K の 1 次元表現 (複素埋め込み) が全て一度ずつ現れ、$H^0(A, \Omega^1_A)$ にはその半分が現れる:
\[
K \langle H^1_{dR}(A, \mathbb{C}) \cong \mathbb{C}^{[K:\mathbb{C}]} = \bigoplus_{\sigma \in \text{Hom}(K, \mathbb{C})} \sigma
\]
\[
K \langle H^0(A, \Omega^1_A) \cong \mathbb{C}^{[K:\mathbb{C}]/2} = \bigoplus_{\sigma \in \Xi} \sigma.
\]
この $\Xi = \Xi_A \subset \text{Hom}(K, \mathbb{C})$ を A の CM-type と呼ぶ。

4
例題2. §1 の微分形 \(\eta_{r,s} = x^r y^s \) は、\(r + s < n \) のとき、\((F_n \) のリーマン多様体の既約成分上の) \(\mathbb{Q}(\xi_n) \) - 固有な正則微分形式となる。このとき

\[
\int \eta_{r,s} \equiv \pi \prod_{\tau \in \Xi_{r,s}} p_{\mathbb{Q}(\xi_n)}(\text{id}, \tau) \mod \mathbb{Q}, \quad \Xi_{r,s} = \left\{ \sigma_b \mid 1 \leq b \leq m, (b, n) = 1 \right\}
\]
となる ([Yo, Chap. III, §2], [Ka5, §6]). ただし \(\sigma_b \in \text{Gal}(\mathbb{Q}(\xi_n)/\mathbb{Q}) \) を \(\sigma_b(\xi_n) := \xi_n^b \) で定める。

2.3 吉田予想

この小節では、§1 の "RROOF" の一般化に関する予想と結果を紹介する。\(k \) を総実体、\(K/k \) を有限次アーベル拡大とする。新谷氏 [Shin] は、以下のような形の明示公式 (新谷公式、Lerch の公式の一般化) を与えた: \(\sigma \in \text{Gal}(K/k) \) に対し

\[
\exp(\zeta'(0, \sigma)) = \text{Barnes の多重ガンマ関数の特殊値の有限積} \times \text{補正項}.
\]

更に吉田氏 [Yo] は、以下のような新谷公式の "適切な分解" を発見した。簡単のために \(k \) の狭義類数 \(h_{k,+} \) が 1 の場合を考える。実素点 \(\rho: k \to \mathbb{R} \) と、\(K/k \) の \(\mathbb{Q} \) の基本領域 \(D \) で新谷のコーン分解で得られるものに対し

\[
(5) \quad \exp(X(\sigma, \rho)) := \exp \left(\frac{d}{ds} \left[\sum_{z \in D \cap \Omega_k, (K/k, (z)) = \sigma} \rho(z)^{-s} \right] \bigg|_{s=0} \right) \times \text{補正項}
\]

とおけば

\[
\exp(\zeta'(0, \sigma)) = \prod_{\rho: k \to \mathbb{R}} \exp(X(\sigma, \rho))
\]

を満たす [Yo, Chap. III, (3.11)]。\(\sum \cdots \) の部分は Barnes の多重ゼータ関数の有限和で書くことができ、その結果 \(\exp(\frac{d}{ds} \sum \cdots)_{s=0} \) は Barnes の多重ガンマ関数の有限積となる。

Remar 2. 厳密に言えば、[Yo] 等の各参考文献中での実際の定式化は、\(f \) を法とする ray class group の元 \(c \in C_f \) に付随する部分ゼータ関数 \(\zeta(s, c) := \sum_{a \in \mathfrak{c}_k, \mathfrak{c} \subseteq \mathfrak{c} N a^{-s}} \) に対して行われている。この場合 \(h_{k,+} > 1 \) なら、ある \(z \in k_{+} \) に対し \((z)a \in \mathfrak{c} \) となるイデアル \(\mathfrak{c} \) を用いて

\[
\exp(X(c, \rho)) := \exp \left(\frac{d}{ds} \left[\sum_{z \in D \cap \mathfrak{c} a^{-1}, (z)a \in \mathfrak{c}} \rho(z)^{-s} \right] \bigg|_{s=0} \right) \times \text{補正項}
\]

の形になる。本稿では記号の節約のため、少し修正して定式化している。
定義 (5) は D (や Remark 2 の a) の取り方によるが, 単元倍を除いて, これらの取り方には寄らないことが示せる:

$$\exp(X(\sigma, \rho)) \in \mathbb{C}^\times / \rho(O^\times_k)^\mathbb{Q}.$$

吉田氏はこの不変量 $\exp(X(\sigma, \rho))$ を用いて, 志村の周期記号の値を表す明示式を予想した. 以下はこの予想式を少し拡張したものである.

Conjecture 2 (吉田予想 [Yo, Chap. III, Conjecture 3.9] の拡張 [Ka3, Conjecture 5.5]).

K/k を上記の通りとする. K の最大 CM 部分体を K_{CM} とおくとき

$$\exp(X(\sigma, \mathrm{id})) \equiv \pi^{z(0,\sigma)} \prod_{\sigma' \in \mathrm{Gal}(K/k)} p_{K_{CM}}(\sigma|_{K_{CM}}, \sigma'|_{K_{CM}})^{\zeta(0,\sigma')_{K_{CM}}} \mod \mathbb{Q}^\times.$$

K が CM 体を含まないときは ($\zeta(0,\sigma) = 0$ なので), 右辺は 1 だと解釈する.

Theorem 1 ([Ka3, Proposition 5.6]). Conjecture 2 は, Conjecture 1 の代数性部分 ($u(\sigma) \in \mathbb{Q}$) を含む.

証明は, §1 の “PROOF” と同様に行われる.

3 p 進周期

Coleman の公式は, $H^1_{dR}(F_n, \mathbb{Q}_p)$ 上の絶対フロベニウス作用の明示公式である. これは具体的な基底 $\{\eta_{r,s} \mid 1 \leq r, s < n, r + s \neq n\}$ に関する表現行列を直接計算したものである. 一般に, 虚数乗法を持つアーベル多様体に対して, 同様の基底は明示的には書けない. そこで筆者は

$$[\mathrm{CM 周期; } p \text{ 進周期}] \text{ の形の “比”}

を導入することにより, 基底に寄らない定式化を行った. その結果, 吉田予想の p 進的類似であるにも関わらず (p 進でない) 多重ガンマ関数も定式化に必要になり, (p 進でない) Stark 予想も巻き込むことになる.

Remark 3. 筆者は最近 Coleman の公式の一部に対し, 直接計算をしない別証明を与えた ([Ka6]).

Fontaine の p 進周期環 B_{dR} に値をとる “p 進積分” $\int_{p,\gamma} \eta \in B_{dR}$ が定義され (p 進 Hodge 理論, [Bl1, Bl2, Fa, Fo1, Fo2, Ts]), さらに “自然な分解” により, p 進周期記号

$$p_{p,K}(\sigma, \tau) \in B_{dR}^\times / \mathbb{Q}^\times \text{ s.t. } \pi_p \prod_{\tau \in \Xi} p_{p,K}(\sigma, \tau) \equiv \int_{p,\gamma} \eta_\sigma \mod \mathbb{Q}^\times (\sigma \in \Xi)$$

を定義できる. さらに以下の性質を満たす.
Proposition 1 ([Ka5, §5.1]). (i) \(p_K(\sigma, \tau), p_{p,K}(\sigma, \tau) \) のそれぞれの値は、アーベル多様体 \(A \), 積分路 \(\gamma \), 微分形式 \(\eta \) などの取り方によるが、これらは “同変的” である:

\[
[p_K(\sigma, \tau) : p_{p,K}(\sigma, \tau)] \in (\mathbb{C}^\times \times B_{dR}^\times) / (\mu_\infty \times \mu_\infty) \overline{\mathbb{Q}}^\times.
\]

すなわち “比” は well-defined となる (\(\mu_\infty \) は “分解操作” でべき根を取るときに起きる不確定性).

(ii) \(A \) は虚数乗法をもつので、潜在的に良い選元をもつ。よって Weil 群 \(W \subset \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \) に付随する絶対フロベニウス作用

\[
\int_{p,\gamma} \eta \in B_{\text{cris}} \overline{\mathbb{Q}}_p \setminus \Phi^{\text{deg} \tau} \otimes \tau =: \Phi_\tau \quad (\tau \in W)
\]

が考えられる。ただし \(\Phi \) は \(p \) 進周期環 \(B_{\text{cris}} \) 上の絶対フロベニウスとする。

以下では再び \(k \) を総体, \(K/k \) を有限次アーベル拡大とする。埋め込み \(k \subset K \leftrightarrow \overline{\mathbb{Q}} \leftrightarrow \mathbb{C}, \mathbb{C}_p \) を固定し, \(k, K \) の \(p \) 進位相に対応する素イデアルをそれぞれ \(p, \mathfrak{P} \) とおき, \(K/k \) の導手を \(\text{cond}_{K/k} \) で表す。以下では簡単のため

\[
p \mid \text{cond}_{K/k}
\]

を仮定する。

Definition 1 ([Ka5, Definition 5]). Conjecture 2 が成立するという仮定の元、

\[
\Gamma(\sigma) := \frac{\exp(X(\sigma, \text{id})) \prod_{\sigma' \in \text{Gal}(K/k)} p_{KCM}(\sigma|_{K_{CM}}, \sigma') \left[\frac{\pi_p^{(0,\sigma')}}{\pi_p^{(0,\sigma)}} \right]}{\prod_{\sigma' \in \text{Gal}(K/k)} p_{KCM}(\sigma|_{K_{CM}}, \sigma') \left[\frac{\pi_p^{(0,\sigma')}}{\pi_p^{(0,\sigma)}} \right] \exp_p(X_p(\sigma, \text{id}))} \in \left(B_{\text{cris}} \overline{\mathbb{Q}}_p \right)^{Q/\mu_\infty}
\]

とおく。ただし \(\pi_p \in B_{\text{cris}}, \exp_p(X_p(\sigma, \text{id})) \in \overline{\mathbb{Q}}_p \) は, それぞれ \(\pi, \exp(X(\sigma, \text{id})) \) の \(p \) 進類似である。

Remark 4. (i) 吉田氏の定義は

\[
X(\sigma, \text{id}) = \sum_{z,v} \log \Gamma(z, v) + \sum_{a,b} a \log b
\]

の形 \((z, a, b \in k, v \in k \) 係数のベクトル). ただし

\[
\log \Gamma(z, v) := \frac{d}{ds} \sum_{m \in \mathbb{Z}_{\geq 0}} \left| \left. (z + m \cdot v)^{-s} \right|_{s=0} \quad (z \in \mathbb{R}_{>0}, \ v \in \mathbb{R}_{>0})
\]

7
は Barnes の多重ガンマ関数の対数 (の補正項部分を除いたもの) である。同じ \(z, v, a, b\) 達を用いて

\[
X_p(\sigma, \text{id}) := \sum_{z, v} \log_p \Gamma_p(z, v) + \sum_{a, b} a \log_p b
\]

と定める。ただし

\[
\log_p \Gamma_p(z, v) := \frac{d}{ds} \left[\sum_{m \in \mathbb{Z}_{>0}} (z + m \cdot v)^{-s} \right]_{|s=0}^{p \text{ 進補間}}
\]

は Barnes の多重ガンマ関数 (の対数) の \(p\) 進類似 ([Ka1]) である。この \(p\) 進補間に仮定: \(p \mid \text{cond}_{K/k}\) が必要となる。

(ii) \(\exp(X(\sigma, \text{id})), \exp_p(X_p(\sigma, \text{id}))\) のそれぞれの値は \(D, a\) の取り方によるが、これらもやはり “同変的” で、以下の “比” が well-defined となる ([Ka5, §2.3]).

\[
[\exp(X(\sigma, \text{id})): \exp_p(X_p(\sigma, \text{id}))] \in (\mathbb{C}^\times \times \mathbb{C}_p^\times)/\langle \mu_\infty \times \mu_\infty \rangle\mathbb{Q}^\times.
\]

(iii) Conjecture 2 より

\[
\frac{\exp(X(\sigma, \text{id}))}{\pi^{(0, \sigma)} \prod_{\sigma' \in \text{Gal}(K/k)} p_{KCM}(\sigma|_{KCM}, \sigma')} \in \mathbb{Q} \subset B_{cris} \mathbb{Q}_p\] となる。更に Proposition 1-(i) と、この Remark の (ii) より、\(\Gamma(\sigma)\) 全体として \(\mod \mu_\infty\) で well-defined になる。

Conjecture 3 ([Ka5, Conjecture 4]). \(k\) を総体体、\(K/k\) を有限次アーベル拡大とし、\(\sigma \in \text{Gal}(K/k), \tau \in W \cap \text{Gal}(K_{\overline{q}}/k_{\overline{p}})\) をとる。

(i) \(p \mid \text{cond}_{K/k}\) なら

\[
\Phi_\tau(\Gamma(\sigma)) \equiv \Gamma(\tau \sigma) \mod \mu_\infty.
\]

ただし右辺では \(\tau \in \text{Gal}(K_{\overline{q}}/k_{\overline{p}}) \subset \text{Gal}(K/k)\) とみなす。

(ii) \(p \nmid \text{cond}_{K/k}\) の時は少し複雑: 定式化の概要は

\[
\Gamma(\sigma) := \frac{\exp(X(\sigma, \text{id})) \pi^{(0, \sigma)} \prod_{\sigma' \in \text{Gal}(K/k)} p_{KCM}(\sigma|_{KCM}, \sigma') \pi^{(0, \sigma')}}{\prod_{\sigma' \in \text{Gal}(K/k)} p_{KCM}(\sigma|_{KCM}, \sigma') \pi^{(0, \sigma')}}
\]

に対して

\[
\Phi_\tau(\Gamma(\sigma)) \equiv \Gamma(\left(\frac{K/k}{p}\right) \sigma) \cdot \prod_{\tilde{\sigma} \in \text{Gal}(K/k)} \exp_p(X_p(\tilde{\sigma}, \text{id}))
\]

\(\tilde{\sigma}|_{K_k} = (K/k)^{\tilde{\sigma}}\)

という形になる。ただし \(\deg \tau = 1\) とし、\(\tilde{K} \supset K\) を \(p \mid \text{cond}_{K/k}\) を満たすように取る。
4 主結果

Theorem 2 ([Ka5, Theorems 1, 2, 3, 4]). $p
eq 2$ とする。

(i) $k = \mathbb{Q}$ の場合 Conjectures 2, 3 は, それぞれ Rohrlich の公式, Coleman の公式より成立する。

(ii) $k \neq \mathbb{Q}$ でも, K が \mathbb{Q} 上アーベルで, かつ

- p が k/\mathbb{Q} で惰性, または
- p が K/k で分岐

の場合に成立する。

(iii) Conjectures 2, 3 は, “Stark 単数の相互法則”

$$u(\sigma) \in \mathfrak{C}, \quad \tau(u(\sigma)) \equiv u(\tau \sigma) \mod \mu_\infty \quad (\sigma \in \text{Gal}(K/k), \tau \in \text{Gal}(\mathfrak{C}/k))$$

を含む。

(iv) Conjecture 2 を少し強めた仮定 ([Ka5, (35)]) と, Conjecture 3-(ii) は, Gross-Koblitz 公式の一般化 [KY1, Conjecture A'] (= Gross-Stark 予想の精密化) も含む。

証明の概略. (i) はほぼ自明 (そうなるように定式化を行った).

(ii) は基礎体が \mathbb{Q} の場合 (すなわち (i)) に帰着して示す. その際, 基礎体が \mathbb{Q}, k の場合の $\exp(X(\sigma, \text{id})), \exp_p(X_p(\sigma, \text{id}))$ を結びつける必要がある. ここに L 関数間の関数等式

$$L(s, \psi) = \prod_{\chi \in \text{Gal}(K/\mathbb{Q})} L(s, \chi) \left(\psi \in \text{Gal}(\mathfrak{C}/k) \right)$$

とその p 進補間, 及び, 新谷公式とその p 進類似 ([Ka1]) を用いる. p, \mathfrak{p} に関する条件は, 関数等式 (6) を p 進補間する際, 補正項によるズレの影響をなくすために必要となる.

(iii) 代数性は Theorem 1 より従う. 複素共役 c をとる. このとき §1 の “PROOF” のカップ積と同様の議論により, 積 $\Gamma(\sigma)\Gamma(c\sigma)$ の周期部分が消えることが示せる:

$$\Gamma(\sigma)\Gamma(c\sigma) \equiv \frac{\exp(X(\sigma, \text{id})) \exp(X(c\sigma, \text{id}))}{\exp_p(X_p(\sigma, \text{id})) \exp_p(X_p(c\sigma, \text{id}))}.$$

この右辺は, おおおよそ Stark 単数と一致することを [Ka4] において示した:

$$\frac{\exp(X(\sigma, \text{id})) \exp(X(c\sigma, \text{id}))}{\exp_p(X_p(\sigma, \text{id})) \exp_p(X_p(c\sigma, \text{id}))} \equiv u(\sigma).$$

さらに Φ_r は τ-semilinear ($\Phi_r|_{\mathfrak{p}^\cdot} = \tau$) なので, Conjecture 3 より

$$\tau(u(\sigma)) \equiv \Phi_r(\Gamma(\sigma)\Gamma(c\sigma)) \equiv \Gamma(\tau\sigma)\Gamma(c\tau\sigma) \equiv u(\tau\sigma)$$
を得る。これで p の分解群に対して題意が導けた。さらに p も動かすことで題意を得る。
(iv) (iii) の証明の複素共役をフロベニウスに置き換えて

$$
\prod_{i=0}^{[K:k]} \Gamma \left(\left(\frac{K/k}{p} \right)^i \sigma \right)
$$

に対して同様の議論を行う (ただし、本稿ではきちんと定義していない、$p \nmid \text{cond}_{K/k}$ の場合の $\Gamma(\sigma)$ を用いる).

参考文献

[Bl1] D. Blasius, On the critical values of Hecke L-series, *Ann. of Math. (2)* 124 (1986), no. 1, 23–63.

[Bl2] D. Blasius, A p-adic property of Hodge classes on abelian varieties, *Motives (Seattle, WA, 1991)*, Proc. Sympos. Pure Math., 55, Part 2, Amer. Math. Soc., Providence, RI, (1994), 293–308.

[Co] R. Coleman, On the Frobenius matrices of Fermat curves, *p-adic analysis*, Lecture Notes in Math. 1454 (1990), Springer, Berlin, 173–193.

[Fa] G. Faltings, Crystalline cohomology and p-adic Galois representations, *Algebraic Analysis, Geometry, and Number Theory* (J. I. Igusa, ed.), Johns Hopkins Univ. Press (1990), 25–79.

[Fo1] J. M. Fontaine, Sur certains types de représentations p-adiques du groupe de Galois d’un corps local; construction d’un anneaux de Barsotti-Tate, *Ann. of Math.*, 115 (1982), 529–577.

[Fo2] J. M. Fontaine, Le corps des périodes p-adiques (avec un appendice par P. Colmez), Exposé II, *Astérisque* 223 (1994), 59–111.

[Gr] B. H. Gross, On the periods of abelian integrals and a formula of Chowla and Selberg (with an appendix by D. E. Rohrlich), *Inv. Math.* 45 (1978), 193–211.

[Ka1] T. Kashio, On a p-adic analogue of Shintani’s formula, *J. Math. Kyoto Univ.* 45 (2005), 99–128.

[Ka2] T. Kashio, Fermat curves and a refinement of the reciprocity law on cyclotomic units, *J. Reine Angew. Math.*, 741 (2018), no. 3, 255–273.

[Ka3] T. Kashio, On the algebraicity of some products of special values of Barnes’ multiple gamma function *Amer. J. Math.* 140 (2018), no. 3, 617–651.
[Ka4] T. Kashio, On the ratios of Barnes’ multiple gamma functions to the p-adic analogues, *J. Number Theory* **199** (2019), 403–435.

[Ka5] T. Kashio, On a common refinement of Stark units and Gross-Stark units, preprint (arXiv:1706.03198).

[Ka6] T. Kashio, Note on Coleman’s formula for the absolute Frobenius on Fermat curves, preprint (arXiv:1904.02879).

[KY1] T. Kashio, and H. Yoshida, On p-adic absolute CM-Periods, I, *Amer. J. Math.* **130** (2008), no. 6, 1629–1685.

[KY2] T. Kashio, and H. Yoshida, On p-adic absolute CM-Periods, II, *Publ. Res. Inst. Math. Sci.* **45** (2009), no. 1, 187–225.

[Shim] G. Shimura, *Abelian varieties with complex multiplication and modular functions*, Princeton Math. Ser. **46**, Princeton University Press, 1998.

[Shin] Shintani, T., On values at $s = 1$ of certain L functions of totally real algebraic number fields, *Algebraic Number Theory, Proc. International Sympos., Kyoto, 1976*, Kinokuniya, Tokyo (1977), 201–212.

[St] H. M. Stark, L-functions at $s = 1$. IV. First derivatives at $s = 0$, *Adv. in Math.* **35** (1980), no. 3, 197–235.

[Ts] T. Tsuji, Semi-stable conjecture of Fontaine-Jannsen: A survey, *Astérisque* **279** (2002), 323–370.

[Yo] H. Yoshida, *Absolute CM-Periods*, Math. Surveys Monogr. **106**, Amer. Math. Soc., Providence, RI, (2003).