A cuboidal \([\text{Cu}_4(\text{SO}_4)_4]\) structure supported by \(\beta\)-picoline ligands

Ava M. Park,\(^a\) James A. Golen\(^b\) and David R. Manke\(^b\)*

\(^a\)Portsmouth Abbey School, 285 Cory’s Lane, Portsmouth, RI, 02871, USA, and \(^b\)University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA. *Correspondence e-mail: dmanke@umassd.edu

The solid-state structure of the cobalt–\(\beta\)-picoline–sulfate complex tetra-\(\mu_3\)-sulfato-tetrakis[bis(3-methylpyridine)cobalt(II)], \([\text{Co}_4(\text{SO}_4)_4(\text{C}_8\text{H}_7\text{N})_8]\), is reported. The tetrameric cobalt cluster contains a cuboidal core comprised of four cobalt(II) cations and four sulfate anions at alternate cube vertices. The cobalt corners are each capped with two \(\beta\)-picoline ligands. The sulfate anions adopt a rare [3.2110] bridging motif, and the cuboidal cluster is unprecedented in coordination chemistry.

1. Chemical context

For the past few years, our lab has examined the solid-state structures of first-row transition-metal–pyridine–sulfate complexes (Park et al., 2019; Pham et al., 2018; Roy et al., 2018). Despite the first such compound being reported in 1886 (Jørgensen, 1886; Manke, 2021), the structures of only two had been described in the literature when we started exploring this class of compounds. A series of these structures including Fe, Co, Ni, and Zn, showed one-dimensional coordination polymers exhibiting sulfate dianions bridging in \(\mu_3\)-sulfato-\(\kappa^2\text{O:O'}\) modes. Interestingly, by modifying growth conditions, cobalt demonstrated two additional crystalline forms with variation in the bridging mode of sulfate ions that was not observed for the other metals. We have also explored the structural chemistry of such complexes with substituted pyridines, including \(\gamma\)-picoline, which showed similar structural chemistry to that observed with the pyridine ligand (Pham et al., 2019). When we looked at the reaction of cobalt sulfate with \(\beta\)-picoline, a unique structure was obtained, a tetramer exhibiting an unprecedented cuboidal \([\text{Cu}_4(\text{SO}_4)_4]\) core, described herein.
2. Structural commentary

The asymmetric unit of the title compound contains one cobalt cation, one sulfate anion, and two \(\beta \)-picoline ligands (Fig. 1). When grown out, the cobalt center demonstrates a pseudo-octahedral coordination environment. This consists of two \(\beta \)-picoline nitrogen atoms, two oxygen atoms of a chelating sulfate ligand, one oxygen atom of a second sulfate anion, which bridges to another metal, and one terminal oxygen atom of a third sulfate ligand. The grown-out structure forms a tetramer of \((\beta\text{-pic})_2\text{CoSO}_4\) units, demonstrating a cuboidal core in which four vertices are occupied by cobalt cations, and the other four vertices are occupied by sulfate anions (Fig. 2). The sulfate anions all bridge three Co\(^{2+}\) cations, demonstrating [3.2110] bridging by Harris notation (Fig. 3). Harris notation is written as \([X\text{-}YYYY]\) where \(X\) is the number of metals that a ligand bridges, and the \(Y\)s are the number of metals connected to each donor atom in the ligand (Papatriantafyllopoulou et al., 2009). The [3.2110] bridging motif is rare in sulfates and has only been observed in 1D coordination polymers of copper (Li et al., 2008) and lanthanide/iron mixed-metal 3D coordination polymers (He et al., 2017). There are two C—H···O interactions between the ortho hydrogens of one \(\beta \)-picoline ligand and the oxygens of two sulfate ions (Table 1). This results in a plane-to-plane angle between the CoN\(_3\)O plane and the pyridine ring of 16.25 (9)°. These interactions are not present in the second unique picoline ligand, giving a larger plane-to-plane angle of 26.95 (9)°.

3. Supramolecular features

The crystal packing for the compound is shown in Fig. 4. The are weak C—H···O interactions between the trans-hydrogen atom of one picoline ligand and one of the terminal sulfate oxygens of a neighboring cuboid \([C3\cdots H3\cdots O2^h]\), symmetry code: (ii) \(\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} - z\), Table 1). This interaction might

| & \(D - H \) & \(H \cdots A \) & \(D \cdots A \) & \(D - H \cdots A \) |
|---|---|---|---|---|
| C1—H1···O4\(^i\) & 0.93 & 2.53 & 3.116 (4) & 121 |
| C3—H3···O2\(^a\) & 0.93 & 2.46 & 3.135 (4) & 129 |
| C5—H5···O1 & 0.93 & 2.49 & 3.070 (4) & 121 |

Symmetry codes: (i) \(y, -x + 1, -z + 1\); (ii) \(x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}\).
assists in the interdigitation of the cuboids in the structure. No significant \(\pi-\pi \) interactions are observed.

Table 2
Experimental details.

Parameter	Value
Chemical formula	\([\text{Co}_4(\text{SO}_4)_4(\text{C}_6\text{H}_7\text{N})_8]\)
Density	1.3649 g/cm\(^3\)
Crystal system, space group	Tetragonal, \(\text{P} \bar{4}2_1 \)
Temperature (K)	298
\(a\), \(c\) (Å)	15.6121 (16), 11.8359 (13)
\(V\) (Å\(^3\))	2884.9 (7)
\(Z\)	2
Radiation type	Mo Kα
\(\mu\) (mm\(^{-1}\))	1.35
Crystal size (mm)	0.24 \(\times\) 0.22 \(\times\) 0.20

Data collection

Diffractometer	Bruker D8 Venture CMOS
Absorption correction	Multi-scan (SADABS, Bruker, 2018)
\(T_{\text{min}}\) - \(T_{\text{max}}\)	0.517, 0.562
No. of measured, independent and observed	54595, 2744, 2624
\(R_{\text{int}}\)	0.037
\(\sin \theta/\lambda_{\text{max}}\) (Å\(^{-1}\))	0.611

Refinement

\(R(F^2 > 2\sigma(F^2))\), \(wR(F^2)\)	0.019, 0.046, 1.14
No. of reflections	2744
No. of parameters	184
H-atoms treatment	H-atoms parameters constrained
\(\Delta \rho_{\text{max}},\Delta \rho_{\text{min}}\) (e Å\(^{-3}\))	0.16, -0.20
Absolute structure	Flack \(x\) determined using 1117 quotients \([I(\bar{I})-\langle I(\bar{I})\rangle]/[\langle I(\bar{I})\rangle+\langle I(\bar{I})\rangle]\) (Parsons et al., 2013)
Absolute structure parameter	0.087 (4)

Database survey

The reported structures demonstrating sulfate ions with [3.2110] bridging modes are with copper (DOHKIV, DOHKIB: Li et al., 2008) or mixtures of lanthanides with iron (He et al., 2017), including dysprosium (DADNOO), erbium (DADPEG), europium (DADNII), gadolinium (DADNUU) and samarium (DADPAC). The prior structures of metal–pyridine sulfate complexes include three variations with pyridine (QIBFOZ: Pham et al., 2018; QOXJAR, QOXJEV: Park et al., 2019) and one with \(\gamma \)-picoline (ROFIL: Pham et al., 2019), all of which demonstrate 1D coordination polymers that are structurally quite different than the cuboidal compound reported here.

Synthesis and crystallization

32 mg of \(\text{CoSO}_4\cdot7\text{H}_2\text{O} \) were dissolved in 2.0 mL of 3-methylpyridine (Aldrich) and heated at 343 K for 24 h. Dark-pink crystals suitable for X-ray analysis were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed in calculated positions [C—H = 0.93 Å \((sp^2)\) and 0.96 Å \((sp^3)\)]. Isotropic displacement parameters were set to \(1.2U_{eqC}(sp^2)\) or \(1.5U_{eqC}(sp^3)\).

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

Bruker (2018). \textit{APEX3, SAINFT, and SADABS}. Bruker AXS Inc., Madison, Wisconsin, USA.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). \textit{J. Appl. Cryst.} 42, 339–341.

He, X., Cheng, W., Lin, Q., Dong, Y. & Xu, Y. (2017). \textit{Cryst. Growth Des.} 17, 347–354.

Jørgensen, S. M. (1886). \textit{J. Prakt. Chem.} 33, 489–538.

Li, G., Xing, Y., Song, S., Xu, N., Liu, X. & Su, Z. (2008). \textit{J. Solid State Chem.} 181, 2406–2411.

Manke, D. R. (2021). \textit{Bull. Hist. Chem.} 46, 179–185.

Papatriantafyllopoulou, C., Manessi-Zoupa, E., Escuer, A. & Perlepes, S. P. (2009). \textit{Inorg. Chim. Acta.} 362, 634–650.

Park, A. M., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). \textit{Acta Cryst.} E75, 1944–1948.

Parsons, S., Flack, H. D. & Wagner, T. (2013). \textit{Acta Cryst.} B69, 249–259.

Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). \textit{Acta Cryst.} E74, 857–861.

Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2019). \textit{Acta Cryst.} C75, 568–574.

Roy, M., Pham, D. N. K., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). \textit{Acta Cryst.} C74, 263–268.

Sheldrick, G. M. (2015a). \textit{Acta Cryst.} A71, 3–8.

Sheldrick, G. M. (2015b). \textit{Acta Cryst.} C71, 3–8.

Westrip, S. P. (2010). \textit{J. Appl. Cryst.} 43, 920–925.

Figure 4
The crystal packing of the title compound shown along the \(c\) axis. H atoms have been omitted for clarity.
Acta Cryst. (2022). E78, 108-110 [https://doi.org/10.1107/S2056989022000780]

A cuboidal \([\text{Cu}_4(\text{SO}_4)_4]\) structure supported by \(\beta\)-picoline ligands

Ava M. Park, James A. Golen and David R. Manke

Computing details
Data collection: *APEX3* (Bruker, 2018); cell refinement: *SAINT* (Bruker, 2018); data reduction: *SAINT* (Bruker, 2018); program(s) used to solve structure: *SHELXT2014* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov et al., 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

[Tetra-\(\mu_3\)-sulfato-tetrakis(3-methylpyridine)cobalt(II)]

Crystal data

\([\text{Co}_4(\text{SO}_4)_4(\text{C}_6\text{H}_7\text{N})_8]\)

\(M_r = 1364.96\)

Tetragonal, \(P\bar{4}2_1\)

\(a = 15.6121\) (16) \(\text{Å}\)

\(c = 11.8359\) (13) \(\text{Å}\)

\(V = 2884.9\) (7) \(\text{Å}^3\)

\(Z = 2\)

\(F(000) = 1400\)

\(D_x = 1.571 \text{ Mg m}^{-3}\)

Mo \(K\alpha\) radiation, \(\lambda = 0.71073 \text{ Å}\)

Cell parameters from 9496 reflections

\(\theta = 2.9–25.7^\circ\)

\(\mu = 1.35 \text{ mm}^{-1}\)

\(T = 298 \text{ K}\)

BLOCK, pink

0.24 \times 0.22 \times 0.20 \text{ mm}

Data collection

Bruker D8 Venture CMOS
diffractometer

\(\phi\) and \(\omega\) scans

Absorption correction: multi-scan
(SADABS; Bruker, 2018)

\(T_{\text{min}} = 0.517, T_{\text{max}} = 0.562\)

54595 measured reflections

2744 independent reflections

2624 reflections with \(I > 2\sigma(I)\)

\(R_{\text{int}} = 0.037\)

\(\theta_{\text{max}} = 25.7^\circ, \theta_{\text{min}} = 2.9^\circ\)

\(h = -19\rightarrow19\)

\(k = -19\rightarrow19\)

\(l = -14\rightarrow14\)

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\(R[F^2 > 2\sigma(F^2)] = 0.019\)

\(wR(F^2) = 0.046\)

\(S = 1.14\)

2744 reflections

184 parameters

0 restraints

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

\(w = 1/[\sigma^2(F^2) + (0.0165P)^2 + 1.2064P]\)

where \(P = (F^2 + 2F_c^2)/3\)

\((\Delta\sigma)_{\text{max}} = 0.001\)

\(\Delta\rho_{\text{max}} = 0.16 \text{ e} \text{Å}^{-3}\)

\(\Delta\rho_{\text{min}} = -0.20 \text{ e} \text{Å}^{-3}\)

Extinction correction: *SHELXL-2018/3* (Sheldrick 2015b), \(F_c^2 = kF_c[1+0.001xF_c^2\lambda^2/\sin(2\theta)]^{-1/4}\)

Extinction coefficient: 0.0049 (4)

Absolute structure: Flack \(x\) determined using 1117 quotients \([(I^-)-(I^+)/[(I^+)+(I^-)]\] (Parsons et al., 2013)

Absolute structure parameter: 0.007 (4)
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

Atom	x	y	z	Uiso*	Ueq
Co1	0.64636 (2)	0.49053 (2)	0.41389 (3)	0.02066 (11)	
S1	0.52522 (4)	0.64004 (4)	0.35520 (5)	0.02043 (15)	
O1	0.58168 (12)	0.57205 (12)	0.30908 (15)	0.0267 (4)	
O2	0.49144 (15)	0.69145 (13)	0.26473 (17)	0.0370 (5)	
O3	0.45605 (11)	0.59894 (11)	0.42553 (16)	0.0240 (4)	
O4	0.57034 (12)	0.69234 (11)	0.43961 (15)	0.0258 (4)	
N1	0.75982 (14)	0.57112 (15)	0.4121 (2)	0.0319 (5)	
N2	0.70169 (16)	0.42286 (15)	0.2775 (2)	0.0293 (5)	
C1	0.82170 (19)	0.5691 (2)	0.4896 (3)	0.0400 (7)	
H1	0.813680	0.534627	0.552786	0.048*	
C2	0.8976 (2)	0.6156 (2)	0.4819 (3)	0.0489 (8)	
C3	0.9084 (2)	0.6660 (2)	0.3863 (3)	0.0546 (10)	
H3	0.958296	0.697697	0.376688	0.065*	
C4	0.8451 (2)	0.6690 (2)	0.3064 (3)	0.0541 (10)	
H4	0.851466	0.702977	0.242445	0.065*	
C5	0.7719 (2)	0.6210 (2)	0.3218 (3)	0.0434 (8)	
H5	0.729157	0.623471	0.267110	0.052*	
C6	0.9650 (3)	0.6110 (3)	0.5724 (4)	0.0829 (15)	
H6A	0.946445	0.572676	0.630913	0.124*	
H6B	0.973938	0.667009	0.603611	0.124*	
H6C	1.017567	0.590328	0.540358	0.124*	
C7	0.6638 (2)	0.4183 (2)	0.1768 (3)	0.0340 (7)	
H7	0.611734	0.446338	0.167140	0.041*	
C8	0.6978 (2)	0.3738 (2)	0.0853 (3)	0.0422 (7)	
C9	0.7741 (2)	0.3311 (2)	0.1032 (3)	0.0499 (9)	
H9	0.798504	0.299413	0.045000	0.060*	
C10	0.8143 (2)	0.3351 (2)	0.2062 (3)	0.0490 (9)	
H10	0.865907	0.306837	0.218114	0.059*	
C11	0.7766 (2)	0.3817 (2)	0.2914 (3)	0.0386 (8)	
H11	0.803962	0.384829	0.361126	0.046*	
C12	0.6512 (3)	0.3707 (3)	−0.0255 (3)	0.0732 (12)	
H12A	0.590895	0.377919	−0.012705	0.110*	
H12B	0.661205	0.316328	−0.061099	0.110*	
H12C	0.671634	0.415746	−0.073630	0.110*	

Atomic displacement parameters (Å²)

Atom	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
Co1	0.01998 (17)	0.02203 (18)	0.01997 (16)	0.00207 (14)	0.00180 (15)	0.00176 (14)
Geometric parameters (Å, °)

	2.7458 (7)	2.0441 (19)	2.2037 (19)	2.1274 (18)	2.1229 (18)	2.173 (2)	2.114 (2)	1.4839 (19)	1.438 (2)	1.5069 (18)	1.491 (2)	1.332 (4)	1.336 (4)	1.333 (4)	1.345 (4)	0.9300	1.392 (4)	1.389 (5)	1.503 (5)	0.9300
S1						2.215 (2)	2.114 (2)	C7—H7	1.391 (4)	1.5069 (18)	1.491 (2)	1.332 (4)	1.336 (4)	1.333 (4)	1.345 (4)	0.9300	1.392 (4)	1.389 (5)	1.503 (5)	0.9300
O1																				
O2																				
O3															C8—C12					
N1																				
N2																				
N3																				
C1																				
C2																				
C3																				
C4																				
C5																				
C6																				
C7																				
C8																				
C9																				

Supporting information

Acta Cryst. (2022). E78, 108-110
Bond	Distance (Å)	Bond	Distance (Å)	Distance (Å)
O1—Co1—N2	92.84 (9)	C3—C2—C6	121.5 (3)	
O3i—Co1—S1i	33.21 (5)	C2—C3—H3	120.2	
O3ii—Co1—S1i	81.36 (5)	C4—C3—C2	119.7 (3)	
O3i—Co1—O3i	86.57 (8)	C4—C3—H3	120.2	
O3i—Co1—N1	173.44 (9)	C3—C4—H4	120.4	
O4i—Co1—S1i	32.58 (5)	C3—C4—C5	119.3 (3)	
O4i—Co1—O3ii	83.94 (7)	C5—C4—H4	120.4	
O4i—Co1—O3i	65.55 (7)	N1—C5—C4	122.6 (4)	
O4—Co1—N1	90.16 (9)	N1—C5—H5	118.7	
N1—Co1—S1i	95.20 (8)	C4—C5—H5	118.7	
N1—Co1—O3i	93.61 (8)	C2—C6—H6A	109.5	
N2—Co1—S1i	136.90 (7)	C2—C6—H6B	109.5	
N2—Co1—O3i	170.11 (9)	C2—C6—H6C	109.5	
N2—Co1—O3ii	91.63 (8)	H6A—C6—H6B	109.5	
N2—Co1—O4i	104.59 (8)	H6A—C6—H6C	109.5	
N2—Co1—N1	87.07 (9)	H6B—C6—H6C	109.5	
O1—S1—Co1iii	116.43 (7)	N2—C7—H7	118.2	
O1—S1—O3	108.92 (10)	N2—C7—C8	123.6 (3)	
O1—S1—O4	109.93 (11)	C8—C7—H7	118.2	
O2—S1—Co1ii	133.48 (9)	C7—C8—C12	120.8 (3)	
O2—S1—O1	110.07 (11)	C9—C8—C7	116.8 (3)	
O2—S1—O3	112.71 (12)	C9—C8—C12	122.4 (3)	
O2—S1—O4	112.15 (12)	C8—C9—H9	119.7	
O3—S1—Co1iii	53.22 (7)	C10—C9—C8	120.6 (3)	
O4—S1—Co1ii	50.06 (7)	C10—C9—H9	119.7	
O4—S1—O3	102.82 (11)	C9—C10—H10	120.6	
S1—O1—Co1	121.04 (10)	C9—C10—C11	118.7 (3)	
Co1ii—O3—Co1iii	124.11 (9)	C11—C10—H10	120.6	
S1—O3—Co1ii	141.48 (12)	N2—C11—C10	122.3 (3)	
S1—O3—Co1iii	93.57 (9)	N2—C11—H11	118.9	
S1—O4—Co1ii	97.36 (9)	C10—C11—H11	118.9	
C1—N1—Co1	124.8 (2)	C8—C12—H12A	109.5	
C1—N1—C5	117.5 (3)	C8—C12—H12B	109.5	
C5—N1—Co1	117.4 (2)	C8—C12—H12C	109.5	
C7—N2—Co1	121.9 (2)	H12A—C12—H12B	109.5	
C7—N2—C11	118.1 (3)	H12A—C12—H12C	109.5	
C11—N2—Co1	120.0 (2)	H12B—C12—H12C	109.5	

Bond	Distance (Å)
Co1ii—S1—O1—Co1	-1.75 (15)
Co1ii—S1—O3—Co1ii	-168.6 (2)
Co1—N1—C1—C2	173.9 (3)
Co1—N1—C5—C4	-174.0 (3)
Co1—N2—C7—C8	-179.4 (2)
Co1—N2—C11—C10	178.4 (2)
O1—S1—O3—Co1iii	109.34 (9)
O1—S1—O3—Co1ii	-59.3 (2)
O1—S1—O4—Co1iii	-108.29 (10)
O2—S1—O1—Co1	176.64 (13)

Acta Cryst. (2022). E78, 108-110
O2—S1—O3—Co1iii −128.20 (11) C6—C2—C3—C4 −179.4 (4)
O2—S1—O3—Co1ii 63.1 (2) C7—N2—C11—C10 −0.6 (4)
O2—S1—O4—Co1iii 128.92 (11) C7—C8—C9—C10 −1.5 (5)
O3—S1—O1—Co1 −59.31 (15) C8—C9—C10—C11 0.6 (5)
O3—S1—O4—Co1iii 7.57 (11) C9—C10—C11—N2 0.5 (5)
O4—S1—O1—Co1 52.63 (15) C11—N2—C7—C8 −0.5 (4)
O4—S1—O3—Co1ii −175.90 (17) C12—C8—C9—C10 −179.4 (3)

Symmetry codes: (i) y, −x+1, −z+1; (ii) −x+1, −y+1, z; (iii) −y+1, x, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C1—H1···O4i	0.93	2.53	3.116 (4)	121
C3—H3···O2iv	0.93	2.46	3.135 (4)	129
C5—H5···O1	0.93	2.49	3.070 (4)	121

Symmetry codes: (i) y, −x+1, −z+1; (iv) x+1/2, −y+3/2, −z+1/2.