A peer-reviewed version of this preprint was published in PeerJ on 7 August 2019.

View the peer-reviewed version (peerj.com/articles/7479), which is the preferred citable publication unless you specifically need to cite this preprint.

Bang JH, Hong CE, Raveendar S, Bang KH, Ma KH, Kwon SW, Ryu H, Jo IH, Chung J. 2019. Development of genomic simple sequence repeat markers for *Glycyrrhiza lepidota* and cross-amplification of other *Glycyrrhiza* species. PeerJ 7:e7479 https://doi.org/10.7717/peerj.7479
Development of genomic simple sequence repeat markers for *Glycyrrhiza lepidota* and cross-amplification of other *Glycyrrhiza* species

Jun Hyoung Bang¹, Chi Eun Hong², Sebastin Raveendar³, Kyong Hwan Bang², Kyung Ho Ma², Soon Wook Kwon⁴, Hojin Ryu⁵, Ick Hyun Jo Corresponds.², Jong Wook Chung Corresponds.¹

¹ Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, South Korea
² Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Eumseong, South Korea
³ National Agrobiodiversity Center, National Institute of Agricultural Science, Jeonju, South Korea
⁴ Department of Plant Bioscience, Pusan National University, Miryang, South Korea
⁵ Department of Biology, Chungbuk National University, Cheongju, South Korea

Corresponding Authors: Ick Hyun Jo, Jong Wook Chung
Email address: intron@korea.kr, jwchung73@chungbuk.ac.kr

Background. Licorice (*Glycyrrhiza* spp. L.) is used as a natural sweetener and medicinal herb. Molecular studies have been conducted to find differences between wild and cultivated species because most wild species are highly resistant to abiotic and biotic stresses compared with their cultivated counterparts. However, few molecular markers have been developed for studying the genetic diversity and population structure of licorice species and to identify differences between cultivars. Thus, the present study aimed to develop a set of genomic simple sequence repeat (SSR) markers for molecular studies of these species.

Methods. We designed 100 SSR markers based on the whole-genome sequence data of wild *Glycyrrhiza lepidota* and selected 62 SSR markers.

Results. The genetic diversity analysis using these markers identified 2–23 alleles, and the major allele frequency, observed heterozygosity, genetic diversity, and polymorphism information content were 0.11–0.91, 0–0.90, 0.17–0.94, and 0.15–0.93, respectively. Interspecies transferability values were 93.5%, 91.6%, and 91.1% for *G. echinata*, *G. glabra*, and *G. uralensis*, respectively. Phylogenetic analysis clustered cultivated (group 1) and wild (group 2) species into three and two subgroups, respectively. The SSR markers developed here can be applied to genetic diversity, population structure, and cultivar differentiation studies, as well as to breeding of licorice varieties.
Development of genomic simple sequence repeat markers for *Glycyrrhiza lepidota* and cross-amplification of other *Glycyrrhiza* species

Jun Hyoung Bang¹, Chi Eun Hong², Sebastin Raveendar³, Kyong Hwan Bang², Kyung Ho Ma², Soon Wook Kwon⁴, Hojin Ryu⁵, Ick Hyun Jo², Jong Wook Chung¹

¹ Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
² Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
³ National Agrobiodiversity Center, National Institute of Agricultural Science, RDA, Jeonju 54874, Republic of Korea
⁴ Department of Plant Bioscience, Pusan National University, Miryang 50463, Republic of Korea
⁵ Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea

Corresponding Authors:
Ick Hyun Jo², Jong Wook Chung¹

Email address: intron@korea.kr (I. H. Jo); jwchung73@chungbuk.ac.kr (J. W. Chung)

Abstract

Background. Licorice (*Glycyrrhiza* spp. L.) is used as a natural sweetener and medicinal herb. Molecular studies have been conducted to find differences between wild and cultivated species because most wild species are highly resistant to abiotic and biotic stresses compared with their cultivated counterparts. However, few molecular markers have been developed for studying the genetic diversity and population structure of licorice species and to identify differences between cultivars. Thus, the present study aimed to develop a set of genomic simple sequence repeat (SSR) markers for molecular studies of these species.

Methods. We designed 100 SSR markers based on the whole-genome sequence data of wild *Glycyrrhiza lepidota* and selected 62 SSR markers.
Results. The genetic diversity analysis using these markers identified 2–23 alleles, and the major allele frequency, observed heterozygosity, genetic diversity, and polymorphism information content were 0.11–0.91, 0–0.90, 0.17–0.94, and 0.15–0.93, respectively. Interspecies transferability values were 93.5%, 91.6%, and 91.1% for *G. echinata*, *G. glabra*, and *G. uralensis*, respectively. Phylogenetic analysis clustered cultivated (group 1) and wild (group 2) species into three and two subgroups, respectively. The SSR markers developed here can be applied to genetic diversity, population structure, and cultivar differentiation studies, as well as to breeding of licorice varieties.

Keywords: Cross-amplification, Genetic diversity, Licorice, Simple sequence repeat marker, Transferability

Introduction

The genus *Glycyrrhiza* L. (family Leguminosae) comprises approximately 20 recognized species distributed worldwide, most of which are perennial plants. Generally, licorice refers to the roots of *Glycyrrhiza glabra*, *Glycyrrhiza uralensis*, and *Glycyrrhiza inflata* (Jung et al., 2015). Licorice has been used as a medicinal herb to treat various diseases such as diabetes and depression. Glycyrrhizin, a triterpene found in the roots of *Glycyrrhiza* spp., exhibits pharmacological activities, including anticancer, detoxification, and anti-oxidant activities (Montoro et al., 2011). In addition, licorice root is a natural sweetener, and it is used as a flavoring agent in food production worldwide (Snow, 1996; Gyawali et al., 2008; Zhang and Ye, 2009). Licorice is sold in the form of slices or powder, and therefore, it is difficult to visually determine its variety and origin of production. Various studies have been conducted to identify varieties to secure their sovereignty at the national level in agreement with the Nagoya Protocol,
an international treaty for sharing profits resulting from the utilization of biological resources (Bang et al., 2011; Zhao et al., 2012).

Several types of molecular markers utilize variations in DNA sequences, including random amplified polymorphic DNA, amplified fragment length polymorphism, single nucleotide polymorphism, and simple sequence repeat (SSR) markers. The genomes of plants and eukaryotic organisms contain a large number of SSRs (Hamada, Petrino & Kakunaga, 1982; Delseny, Laroche & Penon, 1983; Tautz & Renz, 1984), which are widely distributed in the coding and non-coding regions of nuclear and organellar DNA (Vieira et al., 2016). The SSR markers are co-dominant and have higher polymorphism and reproducibility than other DNA markers. Therefore, they are broadly used for identifying species and cultivars, as well as for analyzing genetic diversity and population structure (Kalia et al., 2011; Ya et al., 2017). Because SSR markers can be transferred between species (Lichtenzveig et al., 2005), they are suitable not only for determining genetic diversity but also for cross-species amplification, which reduces the cost and time associated with such analyses.

Wild species usually present higher resistance to abiotic and biotic stresses compared to cultivated plant species, and some lineages have desirable genetic traits. Genetic studies have been conducted on wild and cultivated species of crops such as potato and tomato (Rick & Chetelat, 1995; Singh, Ocampo & Robertson, 1998). Similarly, Ashurmetov (1996) examined the genetic relationships between wild and cultivated species of licorice. Recently, SSR markers were developed for licorice species based on the chloroplast genomes of *G. uralensis*, which is a cultivated species (Liu et al., 2015), and *G. lepidota*, which is a wild species (Raveendar et al., 2017; Jo et al., 2018); on the transcriptome of *G. uralensis* and *G. glabra*, also a cultivated species (Um et al., 2016); and on the nuclear genome of *G. lepidota* (Lee et al., 2019). However,
to the best of our knowledge, molecular studies on genomic SSR markers of licorice have not been conducted. Thus, the present study aimed to develop genomic SSR markers for licorice molecular genetic studies, including the differentiation between wild and cultivated species, their genetic diversity, and population structure.

Materials & Methods

Plant material and DNA isolation

The materials used in the present study comprised 11 accessions of *G. uralensis* and *G. glabra* obtained from the Ginseng Research Division at the National Institute of Horticultural and Herbal Science (NIHHS), South Korea, and 12 accessions obtained from the United States Department of Agriculture (USDA), including *G. uralensis*, *G. glabra*, *G. lepidota*, *G. echinata*, and *Glycyrrhiza* spp. (Table 1). Seedlings of each licorice accession were grown in pots of sterile soil in a greenhouse with three plants per accession. Leaf samples were purposively sampled from three plants per accession from 4-week-old seedlings and ground to powder using liquid nitrogen in a pestle–mortar; their genomic DNA was extracted using the Plant gDNA Extraction Kit (GeneAll, Seoul, Korea) following the manufacturer’s protocol.

Primer design and polymerase chain reaction

In our previous study, the chloroplast genome of *G. lepidota* (NCBI accession no. KY038482) was obtained by the *de novo* assembly of the low-coverage whole-genome sequence via a bioinformatics pipeline (http://phyzen.com) (Raveendar et al., 2018). We mined SSRs based on a whole-genome sequence that was not used in the chloroplast genome analysis of *G. lepidota*. Approximately 28,000 SSRs (including di-, tri-, tetra-nucleotide repeats) were identified in the
whole-genome sequence information of *G. lepidota* using MlcroSAtellite (MISA; http://pgrc.ipk-gatersleben.de/misa/) (Table S1). Among them, we randomly selected 100 primers composed of 60 sets of dinucleotide repeat motifs (six motifs that included AC, AG, and GT) and 40 sets of trinucleotide repeat motifs (16 motifs that included AAC, GTT, and TTA) (Table S2). The first polymerase chain reaction (PCR) using all the primer sets was performed for four accessions of *G. lepidota* (CBG20-23) to establish the PCR conditions. The primers resulting in successful amplifications were then applied to assess the genetic diversity of the 23 Glycyrrhiza spp. accessions. The PCR mixture (total volume, 40 μL) contained 20 ng genomic DNA, 10 pmol each primer, 2.5 mM MgCl$_2$, 0.25 mM dNTPs, and 0.5 U Taq polymerase (Inclone, Deajeon, Korea). The amplification was performed on a CFX96 PCR detection system (Bio-Rad Laboratories, Hercules, CA, USA) and included 30 cycles of pre-denaturation at 94 °C for 5 min, denaturation at 94 °C for 30 s, annealing at 55–60 °C for 45 s, and extension at 72 °C for 1 min. The PCR products were separated and visualized using a Fragment Analyzer (Agilent Technologies, Santa Clara, CA, USA).

Data analyses

The number of alleles, major allele frequency, genetic diversity, observed heterozygosity, and polymorphism information content (PIC) were analyzed using PowerMarker 3.25 (https://brcwebportal.cos.ncsu.edu/powermarker/). The rate of cross-amplification (transferability) among the 23 licorice accessions was measured using the following equation:

\[
\text{Transferability} \% = \frac{\text{amplicons (bands amplified by PCR)}}{\text{theoretical amplicons (primer number \times sample size)}} \times 100
\]

(Lee et al., 2015; Raveendar et al., 2015). Phylogenetic analysis was performed using the Cavalli-Sforza chord distance (Cavalli-Sforza & Edwards, 1967) included in
PowerMarker; the phylogenetic tree was constructed in MEGA4 (Tamura et al., 2007) using the unweighted pair group method with arithmetic mean.

Results

Diversity of SSR markers and interspecies cross-amplification

Sixty-two of the 100 selected primers amplified all the four accessions of G. lepidota (CBG20-23). Thus, these 62 primers were used to analyze the diversity of the 23 licorice accessions, which resulted in the identification of 549 alleles; the number of alleles per marker ranged from 2 (GL-gSSR-019) to 23 (GL-gSSR-028), with a mean of 9.6 alleles. The major allele frequency ranged from 0.11 (GL-gSSR-088) to 0.91 (GL-gSSR-019), with a mean of 0.349. The observed heterozygosity ranged from 0 (GL-gSSR-006, -019, -023, -068, -090, -097, and -100) to 0.70 (GL-gSSR-095), with a mean of 0.264. The maximum values of genetic diversity and PIC, indicating the genetic diversity of the markers, were 0.94 and 0.93, respectively, in GL-gSSR-028, whereas the minimum values were 0.17 and 0.15, respectively, in GL-gSSR-019. The mean values of genetic diversity and PIC were 0.760 and 0.730, respectively (Table S1). Cross-amplification analysis among licorice species revealed that G. echinata had the highest transferability (93.5%), followed by G. glabra (91.6%) and G. uralensis (91.1%); the mean value was 92.07% (Table 2).

Phylogenetic analysis

The 23 accessions were classified into two clusters (Fig. 1), one corresponding to the cultivated plant species (group 1) and the other to the wild species (group 2). The 15 accessions within group 1 were arranged into three subgroups: group 1-1 contained two G. glabra accessions;
group 1-2 contained six *G. uralensis* accessions, one *G. glabra* accession, and one *Glycyrrhiza* sp. accession; and group 1-3 contained two *G. glabra* accessions and three *Glycyrrhiza* sp. accessions. The seven accessions within group 2 were arranged into two subgroups, groups 2-1 and 2-2, which contained six *G. lepidota* and two *G. echinata* accessions, respectively.

Discussion

Diversity of the SSR markers

The mean PIC value of the SSR markers developed in the present study using wild (*G. lepidota* and *G. echinata*) and cultivated (*G. uralensis* and *G. glabra*) licorice accessions was 0.730, which is higher than that reported for other medicinal plants: 0.314 for *Zingiber officinale* (Pandotra et al., 2013), 0.57 for *Codonopsis lanceolata* (Kim et al., 2016), and 0.272 for *Festuca arundinacea* (Tehrani et al., 2009). These results showed that the SSR markers developed in the present study have a higher diversity than those developed for other species. Moreover, Um et al. (2016) reported the PIC value of 0.56 for eight SSR markers based on *G. uralensis* genome using 22 accessions of cultivated licorice species (*G. uralensis* and *G. glabra*). To compare the markers developed in the present study with those previously reported, the PIC values of the 11 accessions of cultivated licorice species (*G. uralensis* and *G. glabra*) were measured, and a mean value of 0.624 was obtained. Thus, the SSR markers developed in the present study had a higher mean PIC value than those previously developed for *G. uralensis*, despite the lower number of accessions and higher number of primers used here. This might be attributed to the fact that the primers with PIC value higher than 0.63 accounted for 66.13% of the total primers. These results suggested that the markers developed in the present study should be more efficient for molecular genetic studies than those reported in previous studies due to their higher diversity.
In the diversity analysis based on repeat motifs, the mean PIC values of dinucleotide repeat motifs (32 sets of primers) and trinucleotide repeat motifs (30 sets of primers) were 0.796 and 0.688, respectively, showing a higher value for the dinucleotide repeat motifs. The higher mean PIC value for dinucleotide repeats might be related to the fact that dinucleotide repeats are distributed throughout the genome, whereas trinucleotide repeats are mostly present in coding regions. Furthermore, trinucleotide repeats are under a relatively weaker selection pressure against mutations that alter the reading frame compared with the dinucleotidic repeats, leading to a lower genetic diversity in the trinucleotide repeats (Kalia et al., 2011; Vieira et al., 2016).

Considering that dinucleotide repeats had higher PIC values than trinucleotide repeats, despite the similar number of primers, the primers based on dinucleotide repeats are expected to be more useful for studies regarding diversity analysis.

Interspecies cross-amplification

The mean interspecies transferability of licorice was 92.5%. The mean interspecies transferabilities of *Rubus coreanus* and *Allium sativum* were 73.52% (Lee et al., 2015) and 58.85% (Lee et al., 2011), respectively, and that of *Triticum aestivum* and *Secale cereale* were 48.4% and 35.3%, respectively (Kuleung, Baenziger & Dweikat, 2004). According to the report of Erayman et al. (2014), the transferabilities of SSR markers developed for *Medicago truncatula*, *Phaseolus vulgaris*, and *Cicer arietinum* to *G. glabra*, *G. echinata*, and *G. flavescens* were 33% for *M. truncatula*, 11% for *P. vulgaris*, and 6% for *C. arietinum*. These results indicated that the markers developed for *Glycyrrhiza* accessions in the present study had higher transferability than those developed for other species. Interspecies crossing rates between *G. lepidota* and other licorice species were 51–75% (Ashurmetov, 1996), suggesting that crossing
may occur under natural conditions, and genes of *G. lepidota* could affect other licorice species. We postulated that these are the likely reasons why interspecies transferability has become relatively high. In particular, *G. lepidota* had a high transferability with *G. echinata*, another wild species, possibly because these are more closely related to each other than to cultivated species. Such results showed that the SSR markers developed for the wild species *G. lepidota* can be efficiently used for other licorice species. However, as the number of resources used in the present study was smaller than that in other studies, future studies should include various species.

Phylogenetic analysis of licorice accessions

In the present study, although CBG4 and CBG6 (*G. glabra* accessions) clustered with CBG16 and CBG17 (also *G. glabra* accessions), they were separated into groups 1-1 and 1-3, respectively. Such clustering could be due to the random selection of markers. In addition, the separation of *G. glabra* into two subgroups might be due to their genetic differences arising from their production origins. The four *Glycyrrhiza* spp. accessions CGB08, CGB09, CGB10, and CGB11 were separated into two groups, suggesting that CBG09 is genetically closer to *G. uralensis*, whereas CBG08, CGB10, and CGB11 are genetically closer to *G. glabra*. Accession CBG3 (*G. glabra*) clustered with *G. uralensis*, which might be due to either incomplete identification of resources during collection or insufficient numbers of licorice accessions (Jo et al., 2018; Lee et al., 2019). However, Jo et al. (2018) estimated that the wild species *G. echinata* was genetically close to the cultivated species *G. uralensis*.

Conclusion
The clustering pattern obtained in the present study was congruent with the results of Lee et al. (2019), indicating that the SSR markers that allow the analysis of intra-species diversity might also be efficient for interspecies differentiation. Moreover, the SSR markers developed in the present study might be successfully applied in molecular genetic studies aiming to differentiate wild and cultivated licorice and to determine their diversity.

Acknowledgements

The authors thank Dr. Lee (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea) for his assistance in collecting the licorice sample.

Competing Interests

The authors declare that they have no competing interests.

Author Contributions

References

Ashurmetov O. 1996. Selection of parental pairs for obtaining hybrids in the genera *Glycyrrhiza* L. and *Meristotropis* Fisch. et Mey. *Genet Resour Crop Evol* 43:167–171 DOI: https://doi.org/10.1007/BF00126760.

Bang KH, Chung JW, Kim YC, Lee JW, Jo IH, Seo AY, Kim OK, Hyun DY, Kim DH, Cha SW. 2011. Development of SSR markers for identification of Korean ginseng (*Panax ginseng*...
CA Meyer) cultivars. *Korean J Med Crop Sci* 19:185–190 DOI: 10.5142/jgr.2011.35.4.504.

Cavalli-Sforza LL, Edwards AW. 1967. Phylogenetic analysis: models and estimation procedures. *Evolution* 21:550–570.

Delseny M, Laroche M, Penon P. 1983. Detection of sequences with Z-DNA forming potential in higher plants. *Biochem Biophy Res Commun* 116:113–120.

Erayman M, Ilhan E, Guzel Y, Eren AH. 2014. Transferability of SSR markers from distantly related legumes to *Glycyrrhiza* species. *Turk J Agric For* 38:32–38 DOI: 10.3906/tar-1303-47.

Gyawali R, Seo HY, Shim SL, Ryu KY, Kim W, You SG, Kim KS. 2008. Effect of γ-irradiation on the volatile compounds of licorice (*Glycyrrhiza uralensis* Fischer). *Eur Food Res Technol* 226:577–582 DOI: 10.1007/s00217-007-0591-2.

Hamada H, Petrino MG, Kakunaga T. 1982. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. *Proc. Natl. Acad. Sci. USA* 79:6465–6469.

Jo IH, Sung J, Hong CE, Raveendar S, Bang KH, Chung JW. 2018. Development of cleaved amplified polymorphic sequence (CAPS) and high-resolution melting (HRM) markers from the chloroplast genome of *Glycyrrhiza* species. *3 Biotech* 8:220. DOI: 10.1007/s13205-018-1245-8.

Jung JC, Lee YH, Kim SH, Kim KJ, Kim KM, Oh S, Jung YS. 2015. Hepatoprotective effect of licorice, the root of *Glycyrrhiza uralensis* Fischer, in alcohol-induced fatty liver disease. *BMC Complement Altern Med* 16:19 DOI: 10.1186/s12906-016-0997-0.
Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK. 2011. Microsatellite markers: an overview of the recent progress in plants. *Euphytica* 177:309–334 DOI: https://doi.org/10.1007/s10681-010-0286-9.

Kim S, Jung JH, Chung H, Kim JH, Gil J, Yoo J, Um Y, Kim OT, Kim TD, Kim YY, Lee DH, Kim HB, Lee Y. 2016. Simple sequence repeat marker development from *Codonopsis lanceolata* and genetic relation analysis. *J Plant Biotechnol* 43:181–188 DOI: 10.5010/JPB.2016.43.2.181.

Kuleung C, Baenziger PS, Dweikat I. 2004. Transferability of SSR markers among wheat, rye, and triticale. *Theor Appl Genet* 108:1147–1150 DOI: 10.1007/s00122-003-1532-5.

Lee GA, Kwon SJ, Park YJ, Lee MC, Kim HH, Lee JS, Lee SY, Gwag JG, Kim CK, Ma KH. 2011. Cross-amplification of SSR markers developed from *Allium sativum* to other *Allium* species. *Sci Hort* 128:401–407.

Lee GA, Song J, Choi HR, Chung JW, Jeon YA, Lee JR, Ma KH, Lee MC. 2015. Novel microsatellite markers acquired from *Rubus coreanus* Miq. and cross-amplification in other *Rubus* Species. *Molecules* 20:6432–6442.

Lee KJ, Raveendar S, Choi JS, Gil J, Lee JH, So YS, Chung JW. 2019. Development of chloroplast microsatellite markers for identification of *Glycyrrhiza* species. *Plant Genet Resour* 17:95–98 DOI: 10.1017/S1479262118000308.

Lichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB. 2005. Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, *Cicer arietinum* L. *Theor Appl Genet* 110:492–510 DOI: 10.1007/s00122-004-1857-8.
Liu Y, Zhang P, Song M, Hou J, Qing M, Wang W, Liu C. 2015. Transcriptome analysis and
development of SSR molecular markers in *Glycyrrhiza uralensis* Fisch. *PLOS ONE*
10:e0143017 DOI: 10.1371/journal.pone.0143017.

Montoro P, Maldini M, Russo M, Postorino S, Piacente S, Pizza C. 2011. Metabolic profiling of
roots of liquorice (*Glycyrrhiza glabra*) from different geographical areas by ESI/MS/MS
and determination of major metabolites by LC-ESI/MS and LC-ESI/MS/MS. *J Pharm
Biomed Anal* 54:535–544 DOI: 10.1016/j.jpba.2010.10.004.

Pandotra P, Gupta AP, Husain MK, Gupta S. 2013. Evaluation of genetic diversity and chemical
profile of ginger cultivars in north-western Himalayas. *Biochem Syst Ecol* 48:281–287.

Raveendar S, Lee GA, Jeon YA, Lee Y, Lee JR, Cho GT, Cho JH, Park JH, Ma KH, Chung JW.
2015. Cross-amplification of *Vicia sativa* subsp. sativa microsatellites across 22 other *Vicia*
species. *Molecules* 20:1543–1550 DOI: 10.3390/molecules20011543.

Raveendar S, So YS, Lee KJ, Lee DJ, Sung J, Chung JW. 2017. The complete chloroplast
genome sequence of *Glycyrrhiza lepidota* (Nutt.) Pursh - An American wild licorice. *J
Crop Sci Biotechnol* 20:295–303.

Rick CM, Chetelat RT. 1995. Utilization of related wild species for tomato improvement. In:
Fernández-Muñoz R, Cuartero J, Gómez-Guillamón ML (eds) International Symposium on
Solanaceae for Fresh Market. *Acta Hortic* 412:21–38.

Singh KB, Ocampo B, Robertson LD. 1998. Diversity for abiotic and biotic stress resistance in
the wild annual *Cicer* species. *Genet Resour Crop Evol* 45:9–17 DOI:
https://doi.org/10.1023/A:1008620002136.

Snow J. 1996. *Glycyrrhiza glabra* monograph. *J Bot Med* 1:9–14.
Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. *Mol Biol Evol* 24:1596–1599 DOI: 10.1093/molbev/msm092.

Tautz D, Renz M. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. *Nucleic Acids Res* 12:4127–4138.

Tehrani MS, Mardi M, Sahebi J, Catalan P, Diaz-Perez A. 2009. Genetic diversity and structure among Iranian tall fescue populations based on genomic-SSR and EST-SSR marker analysis. *Plant Syst Evol* 282:57–70 DOI: https://doi.org/10.1007/s00606-009-0207-3.

Um Y, Jin ML, Lee Y, Hur M, Cha SW, Jung CS, Kim SM, Lee JH. 2016. Genetic diversity analysis of *Glycyrrhiza uralensis* using 8 novel polymorphic microsatellite markers. *J Plant Biotechnol* 43:174–180 DOI: http://dx.doi.org/10.5010/JPB.2016.43.2.174.

Vieira MLC, Santini L, Diniz AL, Munhoz CDF. 2016. Microsatellite markers: what they mean and why they are so useful. *Genet Mol Biol* 39:312–328 DOI: 10.1590/1678-4685-GMB-2016-0027.

Ya N, Raveendar S, Bayarsukh N, Ya M, Lee JR, Lee KJ, Shin MJ, Cho GT, Ma KH, Lee GA. 2017. Genetic diversity and population structure of Mongolian wheat based on SSR markers: Implications for conservation and management. *Plant Breed Biotech* 5:213–220 DOI: https://doi.org/10.9787/PBB.2017.5.3.213

Zhang Q, Ye M. 2009. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). *J Chromatogr A* 1216:1954–1969 DOI: 10.1016/j.chroma.2008.07.072.

Zhao Y, Williams R, Prakash CS, He G. 2012. Identification and characterization of gene-based SSR markers in date palm (*Phoenix dactylifera* L.). *BMC Plant Biol* 12:237 DOI: 10.1186/1471-2229-12-237.
Figure 1

Phylogenetic tree of the 23 *Glycyrrhiza* sp. accessions based on 62 simple sequence repeat markers developed here, as well as on the Cavalli-Sforza chord genetic distance.
Table 1 (on next page)

Glycyrrhiza sp. accessions used in the present study
Accession code	Species	Origin	Institution
CBG1	*Glycyrrhiza uralensis*	CAN	NIHHS
CBG2	*G. uralensis*	RUS	NIHHS
CBG3	*Glycyrrhiza glabra*	CHN	NIHHS
CBG4	*G. glabra*	CAN	NIHHS
CBG5	*G. uralensis*	MNG	NIHHS
CBG6	*G. glabra*	UZB	NIHHS
CBG7	*G. uralensis*	CHN	NIHHS
CBG8	*Glycyrrhiza spp.*	KOR	NIHHS
CBG9	*Glycyrrhiza spp.*	KOR	NIHHS
CBG10	*Glycyrrhiza spp.*	KOR	NIHHS
CBG11	*Glycyrrhiza spp.*	KOR	NIHHS
CBG12	*Glycyrrhiza echinata*	YUG	USDA ARS
CBG13	*G. echinata*	DEU	USDA ARS
CBG14	*G. uralensis*	KAZ	USDA ARS
CBG15	*G. uralensis*	KGZ	USDA ARS
CBG16	*G. glabra*	KGZ	USDA ARS
CBG17	*G. glabra*	KGZ	USDA ARS
CBG18	*Glycyrrhiza lepidota*	USA	USDA ARS
CBG19	*G. lepidota*	USA	USDA ARS
CBG20	*G. lepidota*	USA	USDA ARS
CBG21	*G. lepidota*	USA	USDA ARS
CBG22	*G. lepidota*	USA	USDA ARS
CBG23	*G. lepidota*	USA	USDA ARS

*Refers to the region where the specimen was collected: CAN, Canada; RUS, Russia; CHN, China; MNG, Mongolia; UZB, Uzbekistan; KOR, Korea; YUG, Yugoslavia; DEU, Germany; KAZ, Kazakhstan; KGZ, Kyrgyzstan; USA, United States of America

*bRefers to the institution where the accessions are deposited: NIHHS, National Institute of Horticultural and Herbal Science; USDA ARS: United States Department of Agriculture Agricultural Research Service
Table 2 (on next page)

Transferability of the 62 Glycyrrhiza lepidota simple sequence repeat (SSR) markers to other Glycyrrhiza species
Table 2 Transferability of the 62 *Glycyrrhiza lepidota* simple sequence repeat (SSR) markers to other *Glycyrrhiza* species

Species (Sample size)	Theoretical amplicons (number)	Amplicons (number)	Transferability (%)
Glycyrrhiza uralensis (6)	372	339	91.1
Glycyrrhiza glabra (5)	310	284	91.6
Glycyrrhiza echinata (2)	124	116	93.5
Mean		268.6	92.07