Reactivation of BK virus (BKV) remains a dreaded complication in immunosuppressed states. Conventionally, BKV is known as a cause for BKV-associated nephropathy and allograft dysfunction in kidney transplant recipients. However, emerging studies have shown its negative impact on native kidney function and patient survival in other transplants and its potential role in diseases such as cancer. Because BKV-associated nephropathy is driven by immunosuppression, reduction in the latter is a convenient standard of care. However, this strategy is risk prone due to the development of donor-specific antibodies affecting long-term allograft survival. Despite its pathogenic role, there is a distinct lack of effective anti-BKV therapeutics. This limitation combined with increased morbidity and health care cost of BKV-associated diseases add to the complexity of BKV management. While summarizing recent advances in the pathogenesis of BKV-associated nephropathy and its reactivation in other organ transplants, this review illustrates the limitations of current and emerging therapeutic options and provides a compelling argument for an effective targeted anti-BKV drug.

INTRODUCTION

BK virus (BKV) is a common opportunistic pathogen in kidney transplant recipients and one of the most challenging causes of allograft dysfunction and loss. This virus was named after a Sudanese kidney transplant recipient with ureteric stenosis who was the first patient to have BKV isolated from the urine. It is a double-stranded circular DNA virus, member of the Betapolyomavirus genus in the Polyomaviridae family.\(^1\) To date, many other polyomaviruses have been identified,\(^1\) including JC virus (the causative agent of progressive multifocal leukoencephalopathy), Simian virus 40 (SV40), and Merckle cell virus.\(^2\)

Based on differences of the VP1 protein or gene sequence, BKV has been divided into 12 subtypes.\(^3,4\) Their distribution varies across geographical regions. Important features of the BKV biology are shown in Figure 1.\(^3,5,6\) which includes viral DNA protected by an icosahedral capsid structure consisting of 72 pentamers made up of VP1, a structural protein. Readers are referred to 2 in-depth reviews that discuss the fundamentals of BKV biology.\(^2,5\)

BACKGROUND

Epidemiology

Several studies suggest that BKV coevolved with humans, which explains the high prevalence and low morbidity in healthy individuals.\(^6,7\) In the first months of life, maternal antibodies protect infants from BKV infection,\(^8\) and after their disappearance, BKV infection starts to occur, as demonstrated by 10% to 30% seropositivity in infants\(^8\) and 65% to >90% between 5 and 10 years of age.\(^7,10\) Primary BKV infection in immunocompetent patients is usually a subclinical event or associated with mild nonspecific symptoms,\(^8\) after which BKV persists in the kidney, peripheral-blood leukocytes, and possibly the brain.\(^8\)

Pathogenesis

Following primary infection, BKV spreads and infects renal tubular epithelial cells and epithelial cells of the urogenital tract, where it remains latent.\(^11,12\) Several factors including allograft, viral, and host factors influence reactivation of BKV.\(^11-14\)

Upon reactivation, the infected renal tubular epithelial cells develop an increase in nuclear size and generate intranuclear basophilic inclusions. These cells detach from the basement membrane and appear in urine as decoy cells.\(^3,12\) A wide array of genomic changes follows within 48 hours of viral proliferation in the human tubular epithelial cells that regulate fundamental biological processes such as cell cycle, apoptosis, DNA damage, and release of immune mediators, all of which contribute to the lytic phase of viral reactivation and its persistence in the renal allograft.\(^13\) Eventually the virions egress by cell lysis, leading to viruria,\(^12\) and subsequently cross to the interstitium and into capillaries, leading to viremia.\(^12\) All these events culminate in necrosis and lytic destruction of the renal tubulointerstitium with profound inflammation (BKV-associated nephropathy) in kidney transplant recipients or hemorrhagic cystitis in hematopoietic stem cell transplant recipients.\(^11,12\)

Although the innate immune system is considered important in controlling the primary BKV infection,\(^13\) its role in controlling BKV reactivation or BKV-associated nephropathy is limited. The adaptive humoral response might play a role in controlling or limiting BKV reactivation given that seronegative recipients experience an increased risk for viremia and BKV-associated
nephropathy,15,16 with the highest risk in donor-positive and recipient-negative pairs.15,17-20 Additionally, patients who develop viremia have lower pretransplantation antibody titers against BKV,21 and higher BKV antibody titers are correlated with lower plasma viral loads and shorter times until resolution of the infection.22 Although these studies underscore the importance of anti-BKV antibodies, most patients with BKV-associated nephropathy are seropositive before transplantation23,24 and develop active infection despite the development of high anti-BKV antibody titers.21

This disconnect between the anti-BKV antibodies and their lack of efficacy in preventing viremia was explored in a recent study.25 Solis et al25 showed that in 95\% of cases, the replicating BKV strains are of donor origin. This results in a mismatch between the recipient’s anti-BKV neutralizing antibodies (nAbs) and replicating BKV strain, which renders the nAbs ineffective.25 However, they found that the genotype-specific nAbs can be a predictive marker for stratification of patients into lower and higher BKV disease risk groups before and after transplantation.25 Collectively, these studies indicate that BKV-specific nAbs may not protect against BKV-associated nephropathy. However, testing for antibodies against BKV before transplantation is currently not recommended.26,27

Cellular immunity and in particular memory cell function is considered to be the cornerstone for controlling the latent viral state and suppressing viremia and BKV-associated nephropathy.17 Healthy seropositive individuals have a strong BKV-specific T-cell response,
whereas seronegative healthy individuals do not.28 Following kidney transplantation, patients with no signs of BKV replication or those with viremia but not viruria have a positive BKV-specific T-lymphocyte response compared with healthy seropositive controls.28 In contrast, patients with viremia or BKV-associated nephropathy have undetectable levels of BKV-specific T-cell response.12,24,28-31 Patients who develop a self-resolved viremia mount a BKV-specific T-cell response quickly, whereas patients who develop BKV-associated nephropathy elicit a T-cell response only after immunosuppression has been reduced.28,29 Taken together, the efficient control of BKV reactivation and its sequela is most likely dependent on the induction of stable antiviral memory T-cell responses.32

Mounting an effective BKV-specific cellular response is associated with stabilization or reduction of serum creatinine levels in patients with BKV-associated nephropathy.29,30 This argues against the notion of the tissue damage being caused by the immune response. In contrast, BKV-induced hemorrhagic cystitis in hematopoietic stem cell transplant recipients occurs after engraftment,30,33 raising the possibility of the damage being caused by an immune reconstitution syndrome.

CLINICAL FEATURES

BKV reactivation results in tubulointerstitial nephritis and, infrequently, ureteric stenosis in kidney transplant recipients and hemorrhagic cystitis in hematopoietic stem cell transplant recipients. However, case reports exist of BKV causing pneumonitis, retinitis, vasculopathy, meningitis, encephalitis, and Guillain-Barré syndrome, among other manifestations.34 In animal models, BKV infection results in several tumors due to inactivation of tumor suppressors such as p53 and pRb proteins by the large-tumor antigen (Tag).35 The presence of BKV DNA and/or proteins was detected in brain tumors, neuroblastoma, bone, insulina, prostate, Kaposi sarcoma, etc and summarized in International Agency for Research on Cancer monographs by the World Health Organization.36 BKV infection increases the risk for invasive bladder cancer in kidney transplant recipients37 and prostate cancer (odds ratio, 1.9-125) in the general population.38 All these studies raise the possibility that BKV is a contributing tumorigenic factor,39 an area that warrants further investigation to define a precise mechanism and the implication of a targeted anti-BKV agent in the therapy of cancer.

BKV-Associated Nephropathy

Clinical Manifestations

Following kidney transplantation, BKV reactivation can manifest as viruria in 30% to 40%, viremia in 10% to 20%, or BKV-associated nephropathy in 1% to 10% of patients.23,40-44 When BKV-associated nephropathy develops, it usually manifests as acute or progressive allograft dysfunction with decreasing glomerular filtration rate (GFR), hematuria in 19% of patients, and proteinuria with protein excretion < 1 g/d in 48% of patients.45

Risk Factors

Several risk factors have been identified for the development of BKV-associated nephropathy (Box 115,17-20,23,31,42,46-58). The most important is the level of immunosuppression.17,40,59 The degree of immunosuppression as gauged by T-cell function assays has been proposed to determine which patients are at higher risk for BKV replication.31,46

The type of immunosuppressive agent also has bearing on BKV-associated nephropathy. Thymoglobulin, either as induction therapy or treatment of rejection, increases the risk for BKV infection.23,42,47 Neither alemtuzumab nor interleukin 2 receptor antibody (ie, basiliximab) use appear to increase the risk for BKV infection.17,42,47 Tacrolimus increases BKV replication in vitro, mediated through FK binding protein 12, independent of its immunosuppressive effect. Conversely, cyclosporine and sirolimus inhibit BKV replication.60 However, clinical studies have not proven a direct link between any individual immunosuppressive agent and BK viremia or BKV-associated nephropathy. Some42,48,49 but not all5,23,47,60,61 clinical studies have shown increased risk with tacrolimus compared to cyclosporine. Of note, a randomized controlled trial (RCT) comparing tacrolimus and cyclosporine showed no difference in viremia development.50 Conversely, mammalian target of rapamycin (mTOR) inhibitors appear to be protective from BKV in most

Box 1. Risk Factors for BK Virus Infection

Virus-associated factors	Transplant factors	Receptor factors	Donor factors
- Rearrangement of the NCCR Region	- Degree of immunosuppression	- Decreased cellular immunity	- BK seropositive donor (especially D+/R− pairs)
- Thymoglobulin use	- Thymoglobulin use	- Age (<17-18 and >55-60 y)	- Deceased donor
- Higher steroid use	- High degree of HLA antigen mismatch	- Sex (male)	- Donated donor
- Tacrolimus-based regimens (controversial)	- Blood type ABO-incompatible transplantation	- Race (African American)	- Donation after circulatory death
- Rejection episodes	- Temperature C19	- Ureteral stent placement	- Blood type ABO-incompatible transplantation
- Delayed allograft function	- Delayed allograft function	- Degree of immunosuppression	- Blood type ABO-incompatible transplantation
- Higher degree of HLA antigen mismatch	- Thymoglobulin use	- Race (African American)	- Blood type ABO-incompatible transplantation

Abbreviation: NCCR, noncoding control region.
The risk for BKV replication is increased with higher cumulative steroid dose, corticosteroid pulses as rejection treatment, and steroid maintenance compared with steroid withdrawal regimens.

Although immunosuppression is the most important risk factor, patients with a nonkidney solid-organ transplant requiring similar or even higher immunosuppression than kidney transplant recipients rarely develop BKV-associated nephropathy in native kidneys. Because BKV remains latent in kidney and urothelial cells and transmission of the virus with organ transplantation is proven, one hypothesis is that the viral load of the transplanted tissue is a major factor predisposing kidney transplant recipients to be more susceptible to BKV infection than patients with nonkidney solid-organ transplants. Ischemia-reperfusion injury experienced by transplanted kidneys but not the native kidneys of nonkidney solid-organ transplant recipients may also play a role.

Screening and Noninvasive Diagnostic Tests

BKV replication can be detected before the development of BKV-associated nephropathy. BK viruria precedes viremia by a median of 4 weeks, and viremia precedes BKV-associated nephropathy by a median of 8 weeks. Moreover, detection of viruria or viremia with subsequent reduction of immunosuppression is effective in preventing BKV-associated nephropathy and allograft survival in patients with BKV-associated nephropathy is better in those with early histologic changes compared with more advanced disease. Therefore, monitoring for BKV replication is recommended in all kidney transplant recipients to detect it before histologic damage occurs.

Screening using molecular techniques with real-time polymerase chain reaction (PCR) either in urine or blood is currently the technique more commonly used. Viruria (>1 × 10⁷ copies/mL) has a negative predictive value for BKV-associated nephropathy of 100% but a positive predictive value of only 31% to 67% (Table 1). Viremia (>1 × 10⁴ copies/mL) has the best sensitivity (100%), specificity (88%-96%), positive predictive value (50%-82%), and negative predictive value (100%) of existing screening methods (Table 1). Persistently high-level viremia significantly decreases allograft survival. Therefore, BKV PCR in blood or plasma is the preferred screening method recommended by the 2019 American Society of Transplantation Infectious Disease Community of Practice (AST-IDCOP) guidelines. A definitive diagnosis of BKV-associated nephropathy requires other histologic features such as intranuclear homogeneous basophilic viral inclusions without surrounding halo seen on light and electron microscopy may make BKV-associated nephropathy more likely. These findings are complemented by

Table 1. Noninvasive Diagnostic Tests for BK Virus–Associated Nephropathy

Test	Threshold Value	Sensitivity	Specificity	PPV	NPV	References
Decoy cells	>10 cells/cytospin	25%-100%	71%-96%	5%-57%	97%-100%	22, 48, 68-70
Urine BK PCR	>1 × 10⁷ copies/mL	100%	92%-96%	31%-67%	100%	70,71
Blood/plasma BK PCR	>1 × 10⁴ copies/mL	100%	88%-96%	50%-82%	100%	22, 68, 70,71
Haufen	≥1 tight 3-dimensional polyomavirus clusters	100%	99%	97%	100%	72
VP1 urinary mRNA	6.54 × 10⁷ copies/ng	93.8%-100%	93.9%-97%	97%	100%	73,74
Blood microRNA	Cq of 31.9	100%	94.9%	77.8%	100%	75
Urinary exosome microRNA	5.9 log₁₀ copies/mL	100%	98.5%	92.3%	100%	76

Abbreviations: mRNA, messenger RNA; NPV, negative predictive value; PCR, polymerase chain reaction; PPV, positive predictive value.
immunohistochemistry using antibodies against the TAg of SV40, which cross-reacts with the TAg of other polyomaviruses. The caveat of this technique is that SV40-TAg does not differentiate between BKV and JC virus infection, and in rare cases, polyomavirus-associated nephropathy due to JC virus has been described. Nevertheless, differentiation between BKV-associated nephropathy and acute rejection can be challenging, and in some instances, both these biological processes co-exist.

The Banff Working Group on Polyomavirus Nephropathy established a classification dividing BKV-associated nephropathy into 3 distinct classes based on 2 histologic characteristics (Table 2). The intrarenal polyomavirus load (percentage of tubules with polyomavirus replication in the entire biopsy sample, defined as at least 1 cell in the tubule with intranuclear inclusion bodies or SV40-TAg positivity) and the Banff interstitial fibrosis of cortical area score. This classification correlates with clinical presentation and allograft outcomes in terms of GFR decline and allograft failure despite similar rates of BKV-associated nephropathy resolution.

Ureteral Stenosis

BKV infection has been implicated in late ureteral stenosis (>1 month posttransplantation) because BKV replication has been demonstrated in the urothelium of patients experiencing ureteral stenosis. Ureteral BKV infection is initially focal, followed by a destructive phase in which the uroepithelium and smooth muscle cells are affected. This phase is characterized by marked inflammation and ulcerations, ultimately leading to ureteral stenosis. The clinical presentation consists of asymptomatic hydronephrosis leading to a decrease in GFR. The diagnosis is confirmed by ultrasound. BKV replication should be investigated in cases of late ureteral stenosis.

Hemorrhagic Cystitis

Hemorrhagic cystitis is a serious complication that occurs in 25% of recipients of hematopoietic stem cell transplants in children and young adults. It can present with pain, urinary obstruction, and hematuria and is associated with prolonged hospitalization and significant morbidity. A recent prospective study of 193 hematopoietic stem cell transplant recipients from 2 centers noted hemorrhagic cystitis in 22.3% of participants. Among the 147 asymptomatic patients, 40% had BKV viremia ≥ 10,000 copies/mL. In the entire cohort and asymptomatic subset, BKV viremia was associated with lower eGFRs at 1 and 2 years post–hematopoietic stem cell transplant and 6-fold higher risk for receiving dialysis. This study showed that in hematopoietic stem cell transplant recipients, a significant number of asymptomatic patients developed high-grade BKV viremia and the patients with BKV viremia experienced greater mortality and higher risk for chronic kidney disease irrespective of symptoms. The current standard of care does not recommend regular screening for BKV in hematopoietic stem cell transplant recipients and supports the treatment of symptomatic patients with BKV viremia with agents such as cidofovir, which was not found to be effective in controlling viremia in this study. While underscoring the need for regular screening for BKV viruria and viremia in this cohort of patients, this study suggests a need to treat asymptomatic patients with BKV viremia to prevent long-term complications.

MANAGEMENT

Advances in our understanding of polyomavirus-induced diseases are limited by the absence of translationally relevant cell-based and animal models. Unlike other viruses, polyomaviruses lack conventional enzymatic antiviral therapeutic targets such as proteases or integrases. Efforts to target the helicase activity of BK/JC-TAg have been unsuccessful. The VP1 capsid protein is an attractive target due to its critical role in multiple phases of the BKV lifecycle, such as assembly, entry, trafficking, and disassembly, and its implication in BKV-associated nephropathy pathogenesis. Capsid modifiers have recently been pharmacologically validated and are in clinical development for other viruses.
Study (year)	Study Design	Immunosuppression Adjustment Strategy	Viremia/BKAN	BKV Clearance	Allograft Loss	Acute Rejection After BK Treatment	Mean Follow-up	Comments
Hirsch23	Prospective cohort	Varied: CNI minimization or switch of agent	10/5	3/5	0/10	NR	1.6 y post-KTx	4/5 patients with BKAN also had concurrent rejection and received antirejection treatment and adjustment of IS
Ramos44	Retrospective cohort	15/67 no reduction; 34/67 CNI minimization; 8/67 tac → CyA; 3/67 CNI → mTORi; 36/67 MMF d/c; 14/67 MMF 50% reduction	NR/67	5/67	11/67	8/67	1 y post-BKAN	6/67 patients developed ureteral obstruction
Celik112	Case series	Not described; 31/66 biopsies had initial steroid treatment followed by decreased IS, 6/66 no change in IS, 29/66 decreased IS from outset	NR/31	11/45	11/31	NR	NR	No long-term difference was seen with initial treatment with steroids or IS reduction from outset
Brennan50	Prospective cohort	Discontinuation of antiproliferative agent (AZA or MMF); if viremia did not clear after 4 wk, CNI dose was reduced (target CyA 100-200 ng/mL, Tac 3-5 ng/mL)	23/0	22/23	0/23	2/23	1 y post-KTx	Patients randomly assigned to Tac or CyA before BK diagnosis; no difference in incidence between groups and no significant differences in patient survival or allograft loss
Saad113	Case series	50% reduction of MMF, CNI, and/or mTORi	24/16	24/24	1/24	3/24	3.6 y post-KTx; 2.6 y post-BK	71% had stable or improved kidney function; 29% had kidney function decline; the single allograft failure was due to BKAN recurrence during pregnancy
Almeras114	Prospective cohort	Viremia: 25% reduction in CNI and 50% reduction in MMF; BKAN: 25% reduction in CNI and discontinuation of MMF	13/3	8/11 viremic w/o BKAN patients; 1/3 BKAN patients	0/13	3/13	1 y post-KTx	
Weiss115	Case series	BKAN: Withdrawal group (n = 17) d/c either antiproliferative (20%) or CNI (80%); Reduction group (n = 18) tac 3-6 ng/mL, CyA 75-150 ng/mL, MMF 500 BID, sirolimus 2 mg/d (goal < 8 ng/mL); Viremia w/o BKAN: withdrawal of CNI (n = 2), IS reduction (n = 28)	65/35	NR	BKNAN 16/35; viremia w/o BKAN 0/30	2/35	Up to 5 y	65% of patients were on CNI/mTORi regimen before BKAN diagnosis; antiviral therapy used in many patients: cidofovir (n = 7), IVIG (n = 16), leflunomide (n = 9); 1 y allograft survival: 87.8% in withdrawal group vs 56.2% in reduction group (P = 0.03); HR of IS withdrawal: 0.28 (95% CI, 0.08-0.93; P = 0.04)
Schaub116	Prospective cohort	Sustained viremia: CNI minimization followed by MMF dose reduction if viremia persisted	38/13	35/38	0/38	10/35 patients who cleared viremia	2.9 y post-KTx	7/38 (18%) patients had concurrent treatment for rejection; 1 with rituximab and IVIG, 6 with steroid pulses

(Continued)
Study (year)	Study Design	Immunosuppression Adjustment Strategy	Viremia/ BKAN	BKV Clearance	Allograft Loss	Acute Rejection After BK Treatment	Mean Follow-up	Comments
Hardinger116 (2010)	Retrospective cohort	Discontinuation of antiproliferative agent (AZA or MMF); if viremia did not clear after 4 wk CNI dose was reduced (target CyA 100-200 ng/mL, Tac 3-5 ng/mL)	23/0	22/23	4/23; 1/23 DCGL	5/23	5 y post-KTx	5 y follow-up of study by Brennan et al50
Sawinski111 (2015)	Retrospective cohort	Discontinuation of antiproliferative agent (MMF or AZA); if viremia did not clear, CNI was reduced; if viremia did not clear Tac was switched to CyA	132/12	NR	8/132 NR	3 y post-KTx	Class II DSA development was more common in patients with persistent BK viremia than that in patients with no viremia (OR, 2.53; 95% CI, 1.40-4.59); BK viremia was not associated with allograft loss (HR, 0.80; 95% CI, 0.37-1.73)	
Seifert117 (2017)	Retrospective cohort	Discontinuation of antiproliferative agent (AZA or MMF); if viremia did not clear after 4 wk CNI dose was reduced (target CyA 100-200 ng/mL, Tac 3-5 ng/mL)	20/0	19/20	7/20; 1/20 DCGL	NR	10 y post-KTx	10 y follow-up of study by Brennan et al50; 4/20 patients with BK viremia developed rejection, but the timing in respect to viremia (before or after) was not reported
Bischof118 (2018)	Retrospective cohort	Sustained viremia: CNI minimization followed by MMF dose reduction if viremia persisted	105/33	101/105	Viremia: 6/105; BKAN: 2/33; 1/33 DCGL	6.6 y post-KTx; 5 y post-BK viremia	24 viremic patients had low-level viremia (<10,000 copies/mL); 12/101 who cleared viremia had relapse in viremia; 12/105 had concurrent rejection. 6 of them were treated with increased IS; 5/33 allograft loss due to rejection	
Baek119 (2018)	Retrospective cohort	Not described: minimization or discontinuation or CNI or antiproliferative	79/12	61/79	NR	17/79	6 y post-KTx	MMF discontinuation vs reduction was protective for acute rejection (OR, 0.11; 95% CI, 0.02-0.61); CNI level reduction ≥ 20% associated with acute rejection (OR, 33.75; 95% CI, 4.26-267.25)

LFN

| Josephson100 (2006) | Case series | LFN alone (n = 19) or LFN + cidofovir (n = 7) coupled with IS reduction (d/c MMF, Tac through target 4-6 ng/mL). LFN dose: LD 100 mg/d ×5 d, MD 20-60 mg/d; target blood level 50-100 μg/ mL | 26/26 | 11/26 | 4/26 | NR | 0.5-3.3 y post-KTx | All patients were treated with IS reduction before starting antiviral therapy; there were kidney-pancreas recipients (n = 7), heart-kidney-pancreas recipient (n = 1), and kidney recipients (n = 18) |
| Faguer101 (2007) | Case series | MMF replaced by LFN (LD 100 mg/d ×5 8/12 d, MD 40 mg/d, target levels 40-80 mg/L), and Tac decreased to target level of 6-10 ng/mL | 5/12 | 2/12 | 1/12 | 1.3 y post-KTx | 3 patients had concurrent acute cellular rejection treated with steroid pulses |

(Continued)
Study (year)	Study Design	Immunosuppression Adjustment Strategy	Viremia/ BKAN	BKV Clearance	Allograft Loss	Acute Rejection After BK Treatment	Mean Follow-up	Comments
Basse103 (2007)	Case series	BK viremia (n = 1); MMF halved; BKAN + rejection (n = 4); steroid pulses, MMF replaced by LFN (target level 40-100 mg/L)	7/4	NR	0/7	NR	1.2-2 y post-KTx	All 4 cases of BKAN had concurrent allograft rejection on kidney biopsy
Leca104 (2008)	Case series	MMF replaced by LFN (LD 60 mg/d ×3 d, MD 20 mg/d) and Tac level decreased to 5 ng/mL; 2 groups based on LFN levels: “low level” <40 μg/mL (n = 12) and “high level” >40 μg/mL (n = 9)	21/21; low level 6/12; high level 5/9	4/21; low level 3/12; high level 7/9	2/21; low level 0/12; high level 2/9	1.1 y-KTx	8 patients also received cidofovir, and 3 patients received IVIG; 2 patients developed TMA after leflunomide treatment	
Teschner105 (2009)	Case series	MMF replaced with LFN (LD 100 mg/d ×3 d, MD 20 mg/d, target level 40 μg/mL) + Tac level decreased to 4-6 ng/mL	13/13	11/13	1/13	0/13	2 y post-KTx; 1.3 y post-BKAN	
Kris102 (2012)	Retrospective cohort	MMF replaced by LFN, CNI minimization (LFN group, n = 52); MMF minimization or d/c, CNI minimization (CNT group, n = 24)	76/33; LFN 15/24; CNT 24/1	LFN 16/52; CNT 20/24	LFN 8/52; CNT 2/24	LFN 10/52; CNT 2/24	1.1-1.4 y post-BKAN	
Tong120 (2004)	Case series	IS reduction alone (n = 2); IS reduction + cidofovir (0.25 mg/kg q4d; n = 5)	7/7	5/7	0/7	NR	1.5 y post-BKAN	
Kuypers99 (2005)	Retrospective cohort	IS reduction + cidofovir (0.5-1 mg/kg qw) (n = 8); IS reduction alone (n = 13)	21/21	20/21	1/13	2/13	2 y post-KTx; 1.3 y post-BKAN	
Wadei110 (2006)	Case series	IS reduction (either decrease overall IS, or switch to CyA-based regimen; n = 23); IS reduction + cidofovir (0.25 mg/kg q2w ×4, if BKAN persisted 0.5 mg/kg q2w ×4-5) (n = 20); IS reduction + cidofovir + IVIG (2.5 g/kg; n = 10); IS reduction + IVIG (n = 2)	31/55	NR	8/55	9/55; 6/30 in cidofovir treated; 3/25 without cidofovir	1.6 y post-BKAN	
Kuypers121 (2008)	Prospective cohort	IS reduction + cidofovir (0.5-1 mg/kg qw; 41/41 n = 26); IS reduction alone (n = 15)	Cidofovir 15/26; no cidofovir 7/15	Cidofovir 4/26; no cidofovir 11/15	Cidofovir 4/26; no cidofovir 1/15	2.5 y post-BKAN		

(C)ontinued
Table 3 (Cont’d). Treatment Strategies for BKV Infection

Study (year)	Study Design	Immunosuppression Adjustment Strategy	Viremia/ BKAN	BKV Clearance	Allograft Loss	Acute Rejection After BK Treatment	Mean Follow-up	Comments
Fluoroquinolones								
Lee et al. (2014)	Prospective, double-blind, placebo-controlled, randomized trial	IS reduction + levofloxacin (30-d course; n = 20); IS reduction alone (n = 19)	Levofloxacin 8/20; control 6/19	Levofloxacin 0/20; control 2/19	0.5 y postviremia	Reduction of BK viral load was similar at 3 and 6 mo in both groups; leflunomide was also used in 6 patients		
mTORi								
Wall et al. (2004)	Case series	50% reduction in IS followed 12 wk after d/c of Tac and MMF, and starting sirolimus (target level 10-12 ng/mL)	3/3	0/3	0/3	1.5 y post-BKAN		
Jacob et al. (2013)	Retrospective cohort	Low viremia (10^3-10^4 copies/mL): reduction CNI by 30% and MMF by 50% (n = 15). If viremia persists, change to sirolimus (target 5-8 ng/mL) + low CyA (target 60-80 ng/mL) regimen (n = 7), or other regimens (n = 4); high viremia (>10^4 copies/mL) or BKAN: change to sirolimus (target 5-8 ng/mL) + low CyA (target 60-80 ng/mL) regimen (n = 13), or other regimens (n = 2), or reduction in IS (n = 7)	48/22	43/48	5/48	3/48	1.8 y post-KTx	Overall viral replication did not differ between different treatment groups of patients with either BK viremia or BKAN
IVIG								
Sener et al. (2006)	Case series	50% reduction in IS + IVIG (2 g/kg)	7/8	4/8	1/8	1/5	1.25 y post-BKAN	2 patients were initially misdiagnosed as having ACR
Vu et al. (2015)	Retrospective cohort	MMF replaced by LFN (40 mg/d), if persistent after 4 wk CNI was decreased (CyA target 100-200 ng/mL or Tac 3-5 ng/mL; n = 23), if persistent after 4 wk IVIG (1 g/kg) given (n = 30)	53/10	23/53 with IS reduction only; 27/30 with IVIG	1/30	1/30	1.5 y post-BKAN	
Kable et al. (2017)	Retrospective cohort	MAT (Tac reduction or conversion to CyA + MMF reduction or conversion to LFN or AZA + ciprofloxacin 500 mg/ d × 30 d + cidofovir 0.5 mg/kg q2w × 10 wk) + IVIG 100 mg/kg qw × 10 wk (n = 22); MAT alone (n = 28)	50/50	MAT + IVIG 18/22; MAT 16/28	DCGL 21/50; MAT + IVIG 6/22 MAT 15/28	MAT + IVIG 14/22; MAT 16/28	5 y post-KTx	In multivariate analysis, IVIG was associated with more effective clearance of viremia (HR, 6.82; 95% CI, 1.03-45.11; P = 0.046); salvage IVIG was used in 7 patients after multidimensional antiviral therapy failed

Abbreviations: ACR, acute cellular rejection; AZA, azathioprine; BKAN, BK virus–associated nephropathy; BKV, BK virus; CNI, calcineurin inhibitor; CNT, control; CyA, cyclosporine A; d/c, discontinue; DCGL, death-censored graft loss; DSA, donor-specific antibody; HR, hazard ratio; IS, immunosuppression; IVIG, intravenous immunoglobulin; KTx, kidney transplant; LD, loading dose; LFN, leflunomide; MAT, multidimensional antiviral therapy; MD, maintenance dose; MMF, mycophenolate mofetil; mTORi, mammalian target of rapamycin inhibitor; NR, not reported; OR, odds ratio; q4d, every 4 days; qw, every week; Tac, tacrolimus; TMA, thrombotic microangiopathy; w/o, without.
Due to lack of a direct targeted anti-BKV agent, most current therapeutic options are empirical and backed up by suboptimal studies that use different inclusion criteria (ie, viruria vs viremia vs biopsy-proven BKV-associated nephropathy) and not all reported allograft loss or rejection episodes, making it difficult to reach definitive conclusions (Table 323,44,50,68,98-122). The need for a direct, targeted, safe, and orally available anti-BKV agent is urgent.

Immunosuppression Reduction
Immunosuppression reduction is the most widely accepted management option. A 2010 systematic review123 described 8 cohort studies and 13 case series in which immunosuppression reduction alone was instituted. The strategy used to decrease immunosuppression varied significantly, including discontinuation of antiproliferative agents, decreasing immunosuppression by 25% or 50%, and switching calcineurin inhibitors.123 The pooled allograft failure rate was 8/100 patient-years (95% CI, 4-12; range, 0-44). Other outcomes included rejection rates (0%-75%), allograft failure (0%-67%), and clearance of viruria (40%-96%) and viremia (7%-80%; Table 3). No consensus exists regarding what agent should be reduced or stopped following diagnosis of BKV infection. Intuitively different strategies for patients with stable versus decreased GFRs and high versus low immunologic risk would be prudent. However, any recommendations on an optimal approach to decrease immunosuppression are opinion based.

mTOR Inhibitors
Immunosuppression regimens have also been modified in patients with BKV infection to include an mTOR inhibitor given evidence that they inhibit BKV replication in vitro60 and the lower incidence of BKV infection with mTOR inhibitor use at baseline.42,47,61,62 In contrast, the data supporting mTOR inhibitor–based immunosuppression as treatment for BKV infection are limited and mainly originate from a retrospective study that compared immunosuppression reduction or conversion to an mTOR inhibitor in patients with BKV-associated nephropathy.98 Conversion to mTOR inhibitor therapy was associated with short-term higher GFRs, but clearance of viremia was similar between groups and episodes of rejection were not reported.98 Currently, the use of mTOR inhibitors as treatment of BKV infection cannot be recommended. However, 2 RCTs comparing immunosuppression reduction versus changing to an mTOR inhibitor–based regimen (NCT01649609 and NCT01624948) will hopefully determine the role of mTOR inhibitors in BKV-associated nephropathy management.

Cidofovir
Cidofovir is an antiviral agent with broad activity against DNA virus infections.124 In vitro, cidofovir inhibits BKV replication in primary human renal proximal tubular epithelial cells.125 A small retrospective study compared low-dose cidofovir (0.5-1.0 mg/kg) in only 8 kidney transplant recipients with no cidofovir in patients with BKV-associated nephropathy in conjunction with immunosuppression reduction.97 Of cidofovir-treated patients, 75% cleared the infection. No allograft loss was seen in 24.8 months of follow-up and cidofovirus-related toxicity was not observed. In comparison, in the control group, only 46% cleared the infection and 70% lost their allograft after a median of 8 months. A 2010 systematic review123 found 11 additional case series with a pooled allograft failure rate of 8/100 patient-years (95% CI, 3-13), similar to the effect of immunosuppression reduction alone. The potential nephrotoxicity and reported incidence of anterior uveitis and an effect similar to immunosuppression reduction make this agent less attractive.

Brincidofovir (CMX001, a lipid conjugate of cidofovir that is not yet commercially available) has an EC50 400 times lower than that of cidofovir in vitro studies126 and with no apparent nephrotoxicity127 but is not commercially available. Overall, the clinical benefit of both these agents cannot be established.

Leflunomide
Leflunomide is an immunosuppressive agent used for rheumatoid arthritis. However, in vitro studies show activity against BKV.124 Leflunomide has always been paired with immunosuppression reduction100-104 and with cidofovir in 3 studies.100,102,104 Acute rejection and viremia clearance occurred in 0% to 19% and 30% to 92% of patients treated with leflunomide, respectively.100-102,104,105 A 2010 systematic review123 found a pooled allograft failure rate with leflunomide use of 13/100 patient-years (95% CI, 2-23). A recent retrospective study with larger sample size found no difference in allograft failure (15% vs 7%; P = 0.32), acute rejection (19% vs 9%; P = 0.32), or viral clearance (odds ratio, 1.10; 95% CI, 0.19-6.5; P = 0.92).102 Furthermore, leflunomide use resulted in anemia in up to 50% of patients, with 19% developing hemolytic anemia; thrombotic microangiopathy, mild thrombocytopenia, and elevated liver enzyme levels.100,101,104 Of note, its level is difficult to monitor (measured as teriflunomide) and shows wide interpatient fluctuations due to variable leflunomide metabolism. Overall, RCTs are needed to precisely define its role in BKV-associated nephropathy and to balance putative benefit against potential complications.

Fluoroquinolones
Fluoroquinolones interfere with the helicase function of the TAg and the DNA topoisomerase of BKV, thus inhibiting its replication in vitro.124,128 However, the clinical experience has been disappointing. Prophylactic fluoroquinolone use does not decrease the rate of BKV infection and increases the risk for bacterial resistance.129-131 Furthermore,
a prospective, multicenter, double-blind, placebo-controlled trial in patients with BK viremia found that a 30-day course of levofloxacin did not significantly improve allograft function or BK viral load reduction.106

Intravenous Immunoglobulin

Intravenous immunoglobulin (IVIG) is an attractive option because commercially available IVIG formulations contain neutralizing antibodies against all BKV genotypes.132 IVIG is used in transplant recipients as treatment for antibody-mediated rejection, and an impact on BKV-associated nephropathy management would be convenient because both diseases can coexist and are difficult to differentiate.

Clinical experience with IVIG as treatment for BKV infection is limited to case series and retrospective studies. In a case series of 8 patients with biopsy-proven BKV-associated nephropathy who were treated with 50% reduction of immunosuppression and 2 g/kg of IVIG,107 after a mean follow-up of 15 months, 1 patient lost the allograft and the rest had reduced but stable allograft function; 4 patients cleared the viremia, and no acute rejection occurred.107 A retrospective analysis of 50 patients with biopsy-proven BKV-associated nephropathy treated with various strategies including immunosuppression reduction, leflunomide, ciprofloxacin, and cidovir included 22 patients who also received 1 g/kg of IVIG.108 Despite heterogeneity in immunosuppression modifications, patients who received IVIG cleared the viremia more frequently than the no-IVIG group (81% vs 57%) and had less allograft loss (27% vs 53%).108 A retrospective study reported 30 patients with BKV-associated nephropathy treated with 1 g/kg of IVIG after failing to clear BK viremia after 8 weeks of immunosuppression reduction and leflunomide treatment.109 BK viremia was cleared in 90% of patients, GFRs remained stable in most patients, and only 1 patient experienced allograft failure due to cellular rejection.109 Another retrospective study of 55 patients with biopsy-proven BKV-associated nephropathy that included 12 treated with IVIG found no difference in the rate of allograft loss or decreased GFR.110

In all studies, IVIG was well tolerated107-110 but a major limitation to its use is the cost. An RCT (NCT02659891) of IVIG as treatment of BKV-associated nephropathy will hopefully clarify its role. Recently, a monoclonal antibody against BKV VP1 (MAU868; Amplyx Pharmaceuticals) was developed that can bind and likely prevent BKV entry into the cells. However, no clinical data are available about its efficacy.

There are key limitations of immunoglobulins for BKV-associated nephropathy, including their inability to pass through the glomerular basement membrane to suppress BKV viuria and penetrate intracellularly, where BKV is known to induce profound changes and eventual graft loss.14,133 Moreover, the short half-life of immunoglobulin and the lack of cumulative effect after 3 doses further compromise the cost-effectiveness.134 Importantly, as mentioned, neutralizing anti-BKV antibodies is not sufficient to prevent BKV replication. Taken together, use of the immunoglobulin approach warrants rigorous clinical studies and is less likely to affect fundamental biological processes within the renal tubular cells induced by BKV that result in allograft failure.

Adoptive Immunotherapy

Given the importance of cellular immunity in the fight against BKV, augmenting the BKV-specific cellular response by infusing autologous BKV-specific T cells from kidney transplant recipients expanded ex vivo could be beneficial for the treatment of BKV-related diseases.135 Only a few hematopoietic stem cell transplant recipients have been treated with adoptive immunotherapy against BKV.136,137 Some crucial issues, such as the safety, scalability, cost, and ability of the cells to expand and persist after transfer into patients, represent some of the limitations in widely adopting cellular therapies.

PROGNOSIS

Following diagnosis with BKV-associated nephropathy, a large proportion of patients experience allograft dysfunction and allograft loss,45 with a 3-year allograft survival of 79% compared to 90% in patients without BKV-associated nephropathy.13 A recent biopsy series reported allograft loss rates of 15% to 38%, with half due to rejection episodes in the setting of reduced immunosuppression due to BKV-associated nephropathy.45,78,138 BKV-associated nephropathy has also been associated with the development of class II de novo donor-specific antibodies (hazard ratio, 2.55; 95% CI, 1.30–4.98), a widely accepted risk factor for kidney allograft failure. It remains unclear whether immunosuppression can be safely increased after resolution of BKV infection. An individualized approach to immunosuppression modifications is advised considering the immunologic risk of the patient and close monitoring of GFR, BK viremia, and donor-specific antibodies.

BKV-associated nephropathy in kidney transplant recipients leads to significant financial burden to the health care system due to the need for close monitoring with frequent BKV real-time PCR, allograft biopsies, and Luminex single-antigen bead assays to detect donor-specific antibody formation. Furthermore, the development of acute rejection post–BKV-associated nephropathy would require treatment with expensive therapies that usually include plasmapheresis and IVIG, among others. Finally, the higher risk for allograft loss and return to kidney replacement therapies after BKV-associated nephropathy is probably the highest financial burden to Medicare.

Retransplantation appears to be safe among patients who lost their allograft to BKV-associated nephropathy. In one study,139 126 patients were identified who received a second transplant after losing their first allograft to BKV-associated nephropathy. Following retransplantation, 1 of
3 allograft failures was attributed to BKV-associated nephropathy recurrence.139 The 1- and 3-year allograft survival rates were 98.5% and 93.6%, respectively.139 This study did not report BK viremia status before retransplantation, but a common practice is to wait until resolution of viremia before retransplantation. Because BKV remains latent in the failed allograft, some have advocated for allograft nephrectomy before retransplantation,140 but this approach remains a controversial practice with inadequate evidence to support or reject it.

CONCLUSIONS

Despite advances in our understanding of BKV biology and the risk factors that predispose kidney transplant recipients to develop BKV-associated nephropathy, it continues to be one of the most challenging causes of allograft dysfunction. Screening and early diagnosis of viral replication and BKV-associated nephropathy are of paramount importance to allow effective management strategies before severe allograft damage ensues. Although immunosuppression reduction is the standard of care of BKV-associated nephropathy, it is associated with harmful effects by increasing the risk for donor-specific antibody development and acute rejection episodes. Emerging therapeutic strategies have several limitations that highlight the imminent need for a targeted anti-BKV therapy.

ARTICLE INFORMATION

Authors' Full Names and Academic Degrees: Abraham Cohen-Bucay, MD, Silvia Ramirez, MD, Craig E. Gordon, MD, Jean M. Francis, MD, and Vipul Chitalia, MD, PhD.

Authors' Affiliations: Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (AC-B, SER-A); Nephrology Department, American British Cowdray Medical Center, Mexico City, Mexico (AC-B); Division of Nephrology, Tufts Medical Center (CEG); Section of Nephrology, Brigham and Women’s Hospital, Harvard Medical School (JMF); Renal Section, Boston University Medical Center, Boston (JMF, VCC); Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA (VCC); and Veteran Affairs Boston Healthcare System, Boston, MA (VCC).

Address for Correspondence: Vipul Chitalia, MD, PhD, Department of Medicine, EBRX X-540, Boston University Medical Center, 650 Albany St, 5th Fl, Boston, MA 02118. E-mail: vchital@bu.edu

Support: This work was funded in part by National Institutes of Health, United States, R01HL132325 and R01CA175382, Evans Faculty Merit award (Boston University, Dr Chitalia).

Financial Disclosure: Dr Francis is a consultant for Orthogen Therapeutics LLC and Alexion Pharmaceuticals. Dr Chitalia is a recipient of a grant from Philips and a consultant for Orthogen Therapeutics LLC, Piramal Life Sciences, and Abbott laboratories. The remaining authors declare that they have no relevant financial interests.

Acknowledgements: We thank Elisia Heilig and Saran Lotfollahzadeh (BUSM) for proofreading this manuscript. JMF and VC contributed equally to this work.

Peer Review: Received January 4, 2020, in response to an invitation from the journal. Evaluated by 2 external peer reviewers, with editorial input from an Acting Editor-in-Chief (Editorial Board Member Elisa J. Gordon, PhD, MPH). Accepted in revised form June 29, 2020. The involvement of an Acting Editor-in-Chief to handle the peer-review and decision-making processes was to comply with Kidney Medicine’s procedures for potential conflicts of interest for editors, described in the Information for Authors & Journal Policies.

REFERENCES

1. Moens U, Calvignac-Spencer S, Lauber C, et al. ICTV virus taxonomy profile: polyomaviridae. J Gen Virol. 2017;98:1159-1160.
2. Cubitt CL. Molecular genetics of the BK virus. In: Ahsan N, ed. Advances in Experimental Medicine and Biology. Springer; 2006:85-95.
3. Morell V, Martin E, Francois C, et al. A simple and reliable strategy for BK virus subtyping and subgrouping. J Clin Microbiol. 2017;55:1177-1185.
4. Zhong S, Randhawa PS, Ikegaya H, et al. Distribution patterns of BK polyomavirus (BKV) subtypes and subgroups in American, European and Asian populations suggest co-migration of BKV and the human race. J Gen Virol. 2009;90:144-152.
5. Helle F, Brochet O, Handala L, et al. Biology of the BKPyV: an update. Viruses. 2017;9:327-344.
6. Hurdiss DL, Morgan EL, Thompson RF, et al. New structural insights into the genome and minor capsid proteins of bk polyomavirus using cryo-electron microscopy. Structure. 2016;24:528-536.
7. Yogo Y, Sugimoto C, Zhong S, Homma Y. Evolution of the BK polyomavirus: epidemiological, anthropological and clinical implications. Rev Med Virol. 2009;19:185-199.
8. Knowles WA. The epidemiology of BK virus and the occurrence of antigenic and genomic subtypes. In: Khalili K, Stoner GL, eds. Human Polyomaviruses: Molecular and Clinical Perspectives. Wiley-Liss; 2001:527-559.
9. Flaggstad T, Ronne K, Filipe AR, Traavik T. Prevalence of anti BK virus antibody in Portugal and Norway. Scand J Infect Dis. 1989;21:145-147.
10. Stolt A, Sasnauskas K, Koskela P, Lehtinen M, Dillner J. Seroprevalence of the human polyomaviruses. J Gen Virol. 2003;84:1499-1504.
11. De Gascun CF, Carr MJ. Human polyomavirus reactivation: disease pathogenesis and treatment approaches. Clin Dev Immunol. 2013;2013:375357.
12. Sawinski D, Goral S. BK virus infection: an update on diagnosis and treatment. Nephrol Dial Transplant. 2015;30:209-217.
13. Comoli P, Binggeli S, Ginevri F, Hirsch HH. Polyomavirus-associated nephropathy: update on BK virus-specific immunity. Transpl Infect Dis. 2006;8:86-94.
14. Abend JR, Low JA, Imperiale MJ. Global effects of BKV infection on gene expression in human primary kidney epithelial cells. Virology. 2010;397:73-79.
15. Ginevri F, De Santis R, Comoli P, et al. Polyomavirus BK infection in pediatric kidney-allograft recipients: a single-center analysis of incidence, risk factors, and novel therapeutic approaches. Transplantation. 2003;75:1266-1270.
16. Smith JM, McDonald RA, Finn LS, Healey PJ, Davis CL, Limaye AP. Polyomavirus nephropathy in pediatric kidney transplant recipients. Am J Transplant. 2004;4:2109-2117.
17. Wunderink HF, van der Meijden E, van der Blij-de Brouwer CS, et al. Pretransplantation donor-recipient pair seroreactivity against BK polyomavirus predicts viremia and nephropathy after kidney transplantation. Am J Transplant. 2017;17:161-172.
18. Abend JR, Changala M, Sathe A, et al. Correlation of BK virus neutralizing serostatus with the incidence of BK viremia in kidney transplant recipients. Transplantation. 2017;101:1495-1505.

19. Bohl DL, Storch GA, Ryschkewitsch C, et al. Donor origin of BK virus in renal transplantation and role of HLA C7 in susceptibility to sustained BK viremia. Am J Transplant. 2005;5:2213-2221.

20. Sood P, Senanayake S, Sujeet K, et al. Donor and recipient BKV-specific IgG antibody and posttransplantation BKV infection: a prospective single-center study. Transplantation. 2013;95:896-902.

21. Bohl DL, Brennan DC, Ryschkewitsch C, Gaudreau-Keen M, Major EO, Storch GA. BK virus antibody titers and intensity of infections after renal transplantation. J Clin Virol. 2008;43:184-189.

22. Hariran S, Cohen EP, Vasudev B, et al. BK virus-specific antibodies and BKV DNA in renal transplant recipients with BKV nephritis. Am J Transplant. 2005;5:2719-2724.

23. Hirsch HH, Knowles W, Dickenmann M, et al. Prospective study of polyomavirus type BK replication and nephropathy in renal-transplant recipients. N Engl J Med. 2002;347:488-496.

24. Schachtner T, Stein M, Sefrin A, Babel N, Reinke P. Inflammatory activation and recovering BKV-specific immunity correlate with self-limited BKV replication after renal transplantation. Transplant Int. 2014;27:290-301.

25. Solis M, Velay A, Porcher R, et al. Neutralizing antibody-mediated response and risk of BK virus-associated nephropathy. J Am Soc Nephrol. 2018;29:326-334.

26. KDIGO. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9:s1-s155.

27. KDIGO. KDIGO clinical practice guideline on the evaluation and management of candidates for kidney transplantation, public review draft. 2018. https://kdigo.org/wp-content/uploads/2018/08/KDIGO-Txp-Candidate-GL-Public-Review-Draft-Oct-22.pdf. Accessed December 30, 2019.

28. Comoli P, Azzi A, Maccario R, et al. Polyomavirus BK-specific immunity after kidney transplantation. Transplantation. 2004;78:1229-1232.

29. Schachtner T, Muller K, Stein M, et al. BK virus-specific immunity kinetics: a predictor of recovery from polyomavirus BK-associated nephropathy. Am J Transplant. 2011;11:2443-2452.

30. Comoli P, Hirsch HH, Ginevi F. Cellular immune responses to BK virus. Curr Opin Organ Transplant. 2008;13:569-574.

31. Schachtner T, Stein M, Babel N, Reinke P. The loss of BKV-specific immunity from pretransplantation to posttransplantation identifies kidney transplant recipients at increased risk of BKV replication. Am J Transplant. 2015;15:2159-2169.

32. Comoli P, Cioni M, Basso S, et al. Immunity to polyomavirus BK infection: immune monitoring to regulate the balance between risk of BKV nephropathy and induction of alloimmunity. Clin Dev Immunol. 2013;2013:256923.

33. Hirsch HH, Steiger J, Polyomavirus BK. Lancet Infect Dis. 2003;3:611-623.

34. Replog MD, Storch GA, Clifford DB. BK virus: a clinical review. Clin Infect Dis. 2001;33:191-202.

35. Abend JR, Jiang M, Imperiale MJ. BK virus and human cancer: innocent until proven guilty. Semin Cancer Biol. 2009;19:252-260.

36. Monographs I. BK POLYOMAVIRUS, International Agency for Research on Cancer, World Health Organization 2012;104:215-259.

37. Gupta G, Kuppachi S, Kalil RS, Buck CB, Lynch CF, Engels EA. Treatment for presumed BK polyomavirus nephropathy and risk of urinary tract cancers among kidney transplant recipients in the United States. Am J Transplant. 2018;18:245-252.

38. Delbue S, Ferrante P, Provenzano M. Polyomavirus BK and prostate cancer: an unworthy scientific effort? Oncoscience. 2014;1:296-303.

39. Das D, Woji K, Imperiale MJ. BK virus as a cofactor in the etiology of prostate cancer in its early stages. J Virol. 2008;82:2705-2714.

40. Cohen-Bucay A, Gordon CE, Francis JM. Non-immunological complications following kidney transplantation. F1000Res. 2019;8.

41. Hirsch HH, Brennan DC, Drachenberg CB, et al. Polyomavirus-associated nephropathy in renal transplantation: interdisciplinary analyses and recommendations. Transplantation. 2005;79:1277-1286.

42. Dharmidharka VR, Cherikh WS, Abbott KC. An OPTN analysis of national registry data on treatment of BK virus allograft nephropathy in the United States. Transplantation. 2009;87:1019-1026.

43. Bohl DL, Brennan DC. BK virus nephropathy and kidney transplantation. Clin J Am Soc Nephrol. 2007;2(suppl 1):S36-S46.

44. Ramos E. Clinical course of polyoma virus nephropathy in 67 renal transplant patients. J Am Soc Nephrol. 2002;13:2145-2151.

45. Nickelet P, Singh HK, Randhawa P, et al. The Banff Working Group classification of definitive polyomavirus nephropathy: morphologic definitions and clinical correlations. J Am Soc Nephrol. 2018;29:680-693.

46. Batal I, Zeevi A, Heider A, et al. Measurements of global cell-mediated immunity in renal transplant recipients with BK virus reactivation. Am J Clin Pathol. 2008;129:587-591.

47. Thangaraju S, Gill J, Wright A, Dong J, Rose C, Gill J. Risk factors for BK polyoma virus treatment and association of treatment with kidney transplant failure: insights from a paired kidney analysis. Transplantation. 2016;100:854-861.

48. Hirsch HH, Vincenti F, Friman S, et al. Polyomavirus BK replication in de novo kidney transplant patients receiving tacrolimus or cyclosporine: a prospective, randomized, multicenter study. Am J Transplant. 2013;13:136-145.

49. Huang G, Chen LZ, Qiu J, et al. Prospective study of polyomavirus BK replication and nephropathy in renal transplant recipients in China: a single-center analysis of incidence, reduction in immunosuppression and clinical course. Clin Transplant. 2010;24:599-609.

50. Brennan DC, Agha I, Bohl DL, et al. Incidence of BK with tacrolimus versus cyclosporine and impact of preemptive immunosuppression reduction. Am J Transplant. 2005;5:582-594.

51. Shenagari M, Monfared A, Eghtedari H, et al. BK virus replication in renal transplant recipients: analysis of potential risk factors may contribute in reactivation. J Clin Virol. 2017;96:7-11.

52. Awadalla Y, Randhawa P, Ruppert K, Zeevi A, Duquesnoy RJ. HLA mismatching increases the risk of BK virus nephropathy in renal transplant recipients. Am J Transplant. 2004;4:1691-1696.

53. Schold JD, Rehman S, Kayle LK, Magliocca J, Srinivas TR, Meier-Kriesche HU. Treatment for BK virus: incidence, risk factors and outcomes for kidney transplant recipients in the United States. Transpl Int. 2009;22:626-634.

54. Gosert R, Rinaldo CH, Funk GA, et al. Polyomavirus BK with rearranged noncoding control region emerge in vivo in renal
transplant patients and increase viral replication and cytopathology. J Exp Med. 2008;205:841-852.

55. Sharif A, Alachkar N, Bagnasco S, et al. Incidence and outcomes of BK virus allograft nephropathy among ABO- and HLA-incompatible kidney transplant recipients. Clin J Am Soc Nephrol. 2012;7:1320-1327.

56. Gabard S, Townsend K, Martin ST, Chandraker A. Evaluating the impact of pre-transplant desensitization utilizing a plasma-pheresis and low-dose intravenous immunoglobulin protocol on BK viremia in renal transplant recipients. Transpl Infect Dis. 2013;15:361-368.

57. Siparsky NF, Kushner LF, Gallichio MH, Conti DJ. Ureteral stents: a risk factor for poliovirus BK viremia in kidney transplant recipients undergoing protocol screening. Transplant Proc. 2011;43:2641-2644.

58. Thomas A, Dropulic LK, Rahman MH, Geetha D. Ureteral stents: a novel risk factor for poliovirus nephropathy. Transplantation. 2007;84:433-436.

59. Suwelack B, Malyar V, Koch M, Sester M, Sommerer C. The influence of immunosuppressive agents on BK virus risk following kidney transplantation, and implications for choice of regimen. Transplant Rev (Orlando). 2012;26:201-211.

60. Hirsch HH, Yakhontova K, Lu M, Manzetti J. BK polyomavirus replication in renal tubular epithelial cells is inhibited by sirolimus, but activated by tacrolimus through a pathway involving FKBP-12. Am J Transplant. 2016;16:821-832.

61. Tedesco Silva H Jr, Cibrik D, Johnston T, et al. Everolimus plus reduced-exposure CsA versus mycophenolic acid plus standard-exposure CsA in renal-transplant recipients. Am J Transplant. 2010;10:1401-1413.

62. Moscarelli L, Caroti L, Antognoli G, et al. Everolimus leads to a lower risk of BKV viremia than mycophenolic acid in de novo renal transplantation patients: a single-center experience. Clin Transplant. 2013;27:546-554.

63. Mallat SG, Tanios BY, Itani HS, et al. CMV and BKPyV infections in renal transplant recipients receiving an mTOR inhibitor-based regimen versus a CNI-based regimen: a systematic review and meta-analysis of randomized, controlled trials. Clin J Am Soc Nephrol. 2017;12:1321-1336.

64. Randhawa P, Uhrmacher J, Pasculle W, et al. A comparative study of BK and JC virus infections in organ transplant recipients. J Med Virol. 2005;77:238-243.

65. Vigil D, Konstantinov NK, Barry M, et al. BK nephropathy in the native kidneys of patients with organ transplants: clinical spectrum of BK infection. World J Transplant. 2016;6:472-504.

66. Viswesh V, Yost SE, Kaplan B. The prevalence and implications of BK virus replication in non-renal solid organ transplant recipients: a systematic review. Transplant Rev (Orlando). 2015;29:175-180.

67. Schwarz A, Linnenweber-Held S, Heim A, Framke T, Hailer H, Schmitt C. Viral origin, clinical course, and renal outcomes in patients with BK virus infection after living-donor renal transplantation. Transplantation. 2016;100:844-853.

68. Schaub S, Hirsche HH, Dickemann M, et al. Reducing immunosuppression preserves allograft function in presumptive and definitive polyomavirus-associated nephropathy. Am J Transplant. 2010;10:2615-2623.

69. Nickleit V, Kimkat T, Binet IF, et al. Testing for polyomavirus type BK DNA in plasma to identify renal-allograft recipients with viral nephropathy. N Engl J Med. 2000;342:1309-1315.

70. Hirsch HH. Polyomavirus BK nephropathy: a re-emerging complication in renal transplantation. Am J Transplant. 2002;2:25-30.

71. Viscount HB, Eid AJ, Espy MJ, et al. Polyomavirus polymerase chain reaction as a surrogate marker of polyomavirus-associated nephropathy. Transplantation. 2007;84:340-345.

72. Randhawa P, Ho A, Shapiro R, et al. Correlates of quantitative measurement of BK polyomavirus (BKV) DNA with clinical course of BKV infection in renal transplant patients. J Clin Microbiol. 2004;42:1176-1180.

73. Singh HK, Andreoni KA, Madden V, et al. Presence of urinary Haufen accurately predicts polyomavirus nephropathy. J Am Soc Nephrol. 2009;20:416-427.

74. Ding R, Medeiroso M, Dadhania D, et al. Noninvasive diagnosis of BK virus nephritis by measurement of messenger RNA for BK virus VP1 in urine. Transplantation. 2002;74:987-994.

75. Dadhania D, Snopkowski C, Ding R, et al. Validation of noninvasive diagnosis of BK virus nephropathy and identification of prognostic biomarkers. Transplantation. 2010;90:189-197.

76. Li JY, McNicholas K, Yong TY, et al. BK virus encoded microRNAs are present in blood of renal transplant recipients with BK viral nephropathy. Am J Transplant. 2014;14:1183-1190.

77. Kim MH, Lee YH, Seo JW, et al. Urinary exosomal viral microRNA as a marker of BK virus nephropathy in kidney transplant recipients. PLoS One. 2017;12:e0190068.

78. Nankivell BJ, Renthawa J, Sharma RN, Kable B, O’Connell PJ, Chapman JR. BK virus nephropathy: histological evolution by sequential pathology. Am J Transplant. 2017;17:2065-2077.

79. Hoffman NG, Cook L, Atienza EE, Limaye AP, Jerome KR. Marked variability of BK virus load measurement using quantitative real-time PCR among commonly used assays. J Clin Microbiol. 2008;46:2671-2680.

80. Singh HK, Bubendorf L, Mihatsch MJ, Drachenberg CB, Nickleit V. Urine cytology findings of polyomavirus infections. In: Ahsan N, ed. Polyomaviruses and Human Diseases. Springer; 2006:201-212.

81. Sellares J, de Freitas DG, Mengel M, et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant. 2012;12:388-399.

82. Sachdeva MS, Nada R, Jha V, Sakhuga V, Joshi K. The high incidence of BK polyoma virus infection among renal transplant recipients in India. Transplantation. 2004;77:429-431.

83. Hirsch HH, Randhawa PS; American Society of Transplantation Infectious Diseases Community of Practice (ASTIDCoP). BK polyomavirus in solid organ transplantation—guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019;33:e13528.

84. Randhawa PS, Finkelstein S, Scantlebury V, et al. Human polyoma virus-associated interstitial nephritis in the allograft kidney. Transplantation. 1999;67:103-109.

85. Drachenberg CB, Beskow CO, Cangro CB, et al. Human polyoma virus in renal allograft biopsies: morphological findings and correlation with urine cytology. Hum Pathol. 1999;30:970-977.

86. Delbue S, Ferreresso M, Ghio L, et al. A review on JC virus infection in kidney transplant recipients. Clin Dev Immunol. 2012;19:343-351.

87. Atsumi H, Asaka M, Kimura S, et al. A case of second renal transplantation with acute antibody-mediated rejection complicated with BK virus nephropathy. Transplantation. 2002;74:987-994.

88. Roufosse C, Simmonds N, Claesen-van Groningen M, et al. 2018 reference guide to the Banff Classification of Renal Allograft Pathology. Transplantation. 2018;102:1795-1814.
Cohen-Bucay et al

Kidney Medicine

89. Mylonakis E, Goes N, Rubin RH, Cosimi AB, Colvin RB, Fiehnman JA. BK virus in solid organ transplant recipients: an emerging syndrome. *Transplantation*. 2001;72:1587-1592.

90. Gardner SD, Field AM, Coleman DV, Hulme B. New human papovavirus (B.K.) isolated from urine after renal transplantation. *Lancet*. 1971;1:1253-1257.

91. Karam G, Maillet F, Parant S, Souillou JP, Giral-Classe M. Ureteral necrosis after kidney transplantation: risk factors and impact on graft and patient survival. *Transplantation*. 2004;78:725-729.

92. Coleman DV, Mackenzie EF, Gardner SD, Poullding JM, Amer B, Russell WJ. Human polyomavirus (BK) infection and ureteric stenosis in renal allograft recipients. *J Clin Pathol*. 1978;31:338-347.

93. Laskin BL, Denburg MR, Furth SL, et al. The natural history of BK polyomavirus and the host immune response after stem cell transplantation [published online ahead of print December 18, 2019]. *Clin Infect Dis*. 2019; https://doi.org/10.1093/cid/ciz1194.

94. Bonafoux D, Nathakumar S, Bandarage UK, et al. Fragment-based discovery of dual JCV virus and BK virus helicase inhibitors. *J Med Chem*. 2016;59:7138-7151.

95. Shadrick WR, Ndjomou J, Kolli R, Mukherjee S, Hanson AM, Frick DN. Discovering new medicines targeting helicases: challenges and recent progress. *J Biomol Screen*. 2013;18:761-781.

96. Luo C, Hirsch HH, Kant J, Randhawa P. VP-1 quasispecies in human infection with polyomavirus BK. *J Med Virol*. 2012;84:152-161.

97. Singh K, Gallazzi F, Hill KJ, et al. GS-CA compounds: first-in-class HIV-1 capsid inhibitors covering multiple grounds. *Front Microbiol*. 2019;10:1227.

98. Jacobi J, Prignitz A, Buttner M, et al. BK viremia and polyomavirus BK-associated nephropathy after kidney transplantation. 2004;78:1069-1073.

99. Kuypers DR, Vandooren AK, Lerut E, et al. Kidney transplant function and histological clearance of virus following diagnosis of polyomavirus-associated nephropathy (PVAN). *Am J Transplant*. 2004;4:1253-1258.

100. Josephson MA, Gillen D, Javaid B, et al. Treatment of renal transplant patients. *Transplantation*. 2015;26:966-975.

101. Celik B, Shapiro R, Vats A, Randhawa PS. Polyomavirus allograft nephropathy: sequential assessment of histologic viral load, tubulitis, and graft function following changes in immunosuppression. *Am J Transplant*. 2003;3:1378-1382.

102. Saad ER, Bresnahan BA, Cohen EP, et al. Successful treatment of BK viremia does not increase intermediate-term graft loss but is associated with de novo donor-specific antibodies. *J Am Soc Nephrol*. 2015;26:966-975.

103. Seifert ME, Gunasekaran M, Horwedel TA, et al. Polyomavirus reactivation and immune responses to kidney-specific self-antigens in transplantation. *J Am Soc Nephrol*. 2017;28:1314-1325.

104. Almeras C, Foulonneau V, Carrigue V, et al. Does reduction in immunosuppression in viremic patients prevent BK virus nephropathy in de novo renal transplant recipients? A prospective study. *Transplantation*. 2008;85:850-854.

105. Weiss AS, Gralla J, Chan L, Klem P, Wiseman AC. Aggressive immunosuppression minimization reduces graft loss following diagnosis of BK virus-associated nephropathy: a comparison of two reduction strategies. *Clin J Am Soc Nephrol*. 2008;3:1812-1819.

106. Hardinger KL, Koch MJ, Bohl DJ, Storch GA, Brennan DC. BK virus and the impact of pre-emptive immunosuppression reduction: 5-year results. *Am J Transplant*. 2010;10:407-415.

107. Sener A, House AA, Jevnikar AM, et al. Intravenous immunoglobulin as a treatment for BK virus associated nephropathy: one-year follow-up of renal allograft recipients. *Transplantation*. 2006;81:117-120.

108. Kable K, Davies CD, O’Connell PJ, Chapman JR, Nankivel BJ. Clearance of BK virus nephropathy by combination antiviral therapy with intravenous immunoglobulin. *Transplant Direct*. 2017;3:e142.

109. Yu D, Shah T, Ansari J, Naraghi R, Min D. Efficacy of intravenous immunoglobulin in the treatment of persistent BK viremia and BK virus nephropathy in renal transplant recipients. *Transplant Proc*. 2015;47:394-398.

110. Wadei HM, Rule AD, Lewin M, et al. Kidney transplant function and histological clearance of virus following diagnosis of polyomavirus-associated nephropathy (PVAN). *Am J Transplant*. 2008;6:1025-1032.

111. Sawinski D, Forde KA, Trofe-Clark J, et al. Persistent BK viremia does not increase intermediate-term graft loss but is associated with de novo donor-specific antibodies. *J Am Soc Nephrol*. 2015;26:966-975.

112. Coleman DV, Mackenzie EF, Gardner SD, Poullding JM, Amer B, Russell WJ. Human polyomavirus (BK) infection and ureteric stenosis in renal allograft recipients. *J Clin Pathol*. 1978;31:338-347.

113. Basse G, Mengelle C, Kamar N, et al. Prospective evaluation of BK virus DNAemia in renal transplant patients and their transplant outcome. *Transplant Proc*. 2007;39:84-87.

114. Baek CH, Kim H, Yu H, Yang WS, Han DJ, Park SK. Risk factors of acute rejection in patients with BK nephropathy after reduction of immunosuppression. *Ann Transplant*. 2018;23:704-712.

115. Tong CY, Hilton R, MacMahon EM, et al. Monitoring the progress of BK virus associated nephropathy in renal transplant recipients. *Nephrol Dial Transplant*. 2004;19:2598-2605.

116. Kuypers DR, Bammens B, Claes K, Evenepoel P, Lerut E, Vanrenterghem Y. A single-centre study of adjuvant cidofovir therapy for BK virus interstitial nephritis (BKVIN) in renal allograft recipients. *J Antimicrob Chemother*. 2009;63:417-419.

117. Wali RK, Drachenberg C, Hirsch HH, et al. BK virus-associated nephropathy in renal allograft recipients: rescue therapy by sirolimus-based immunosuppression. *Transplantation*. 2004;78:1069-1073.

118. Johnston O, Jaswal D, Gill JS, Doucette S, Fergusson DA, Knoll GA. Treatment of polyomavirus infection in kidney transplant recipients: a systematic review. *Transplantation*. 2010;89:1057-1070.
124. Kuypers DR. Management of polyomavirus-associated nephropathy in renal transplant recipients. *Nat Rev Nephrol*. 2012;8:390-402.

125. Bernhoff E, Gutteberg TJ, Sandvik K, Hirsch HH, Rinaldo CH. Cidofovir inhibits polyomavirus BK replication in human renal tubular cells downstream of viral early gene expression. *Am J Transplant*. 2008;8:1413-1422.

126. Rinaldo CH, Gosert R, Bernhoff E, Finstad S, Hirsch HH. 1-O-hexadecyloxypropyl cidofovir (CMX001) effectively inhibits polyomavirus BK replication in primary human renal tubular epithelial cells. *Antimicrob Agents Chemother*. 2010;54:4714-4722.

127. Hostetler KY. Alkoxylalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity: current state of the art. *Antiviral Res*. 2009;82:A84-A98.

128. Anwar S, Brennan DC. Treatment of BK viremia after renal transplantation: are fluoroquinolones a false dawn? *Clin J Am Soc Nephrol*. 2014;9:445-447.

129. Knoll GA, Humar A, Fergusson D, et al. Levofloxacin for BK virus prophylaxis following kidney transplantation: a randomized clinical trial. *JAMA*. 2014;312:2106-2114.

130. Song TR, Rao ZS, Qiu Y, et al. Fluoroquinolone prophylaxis in preventing BK polyomavirus infection after renal transplant: a systematic review and meta-analysis. *Kaohsiung J Med Sci*. 2016;32:152-159.

131. Patel SJ, Knight RJ, Kuten SA, et al. Ciprofloxacin for BK viremia prophylaxis in kidney transplant recipients: results of a prospective, double-blind, randomized, placebo-controlled trial. *Am J Transplant*. 2019;19:1831-1837.

132. Randhawa P, Pastrana DV, Zeng G, et al. Commercially available immunoglobulins contain virus neutralizing antibodies against all major genotypes of polyomavirus BK. *Am J Transplant*. 2015;15:1014-1020.

133. Mannon RB, Hoffmann SC, Kampen RL, et al. Molecular evaluation of BK polyomavirus nephropathy. *Am J Transplant*. 2005;5:2883-2893.

134. Velaz A, Solis M, Benotmane I, et al. Intravenous immunoglobulin administration significantly increases BKPyV genotype-specific neutralizing antibody titers in kidney transplant recipients. *Antimicrob Agents Chemother*. 2019;63:e00393-19.

135. Davies SI, Muranski P. T cell therapies for human polyomavirus diseases. *Cytotherapy*. 2017;19:1302-1316.

136. Papadopoulou A, Gerdemann U, Katari UL, et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. *Sci Transl Med*. 2014;6:242ra83.

137. Pello OM, Innes AJ, Bradshaw A, et al. BKV-specific T cells in the treatment of severe refractory haemorrhagic cystitis after HLA-haploidentical haematopoietic cell transplantation. *Eur J Haematol*. 2017;98:632-634.

138. Drachenberg CB, Papadimitriou JC, Chaudhry MR, et al. Histological evolution of BK virus-associated nephropathy: importance of integrating clinical and pathological findings. *Am J Transplant*. 2017;17:2078-2091.

139. Dharnidharka VR, Cherikh WS, Neff R, Cheng Y, Abbott KC. Retransplantation after BK virus nephropathy in prior kidney transplant: an OPTN database analysis. *Am J Transplant*. 2010;10:1312-1315.

140. Ramos E, Vincenti F, Lu WX, et al. Retransplantation in patients with graft loss caused by polyoma virus nephropathy. *Transplantation*. 2004;77:131-133.