BMJ Paediatrics Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Paediatrics Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjpaedsopen.bmj.com).

If you have any questions on BMJ Paediatrics Open’s open peer review process please email info.bmjpo@bmj.com
Neonatal outcomes associated with mode of subsequent birth after a previous caesarean section in a first pregnancy: a Swedish population-based register study between 1999 and 2015

Journal	BMJ Paediatrics Open
Manuscript ID	bmjpo-2022-001519
Article Type	Original research
Date Submitted by the Author	20-Apr-2022
Complete List of Authors	Dencker, Anna; Sahlgrenska Academy, Institute of health and care sciences Lyckestam Thelin, Ida; University of Gothenburg Institute of Health and Care Sciences; Västra Götalandsregionen, Munkebäck Antenatal Clinic Smith, Valerie; Trinity College Dublin, The School of Nursing and Midwifery Lundgren, Ingela; University of Gothenburg Institute of Health and Care Sciences; UiT The Arctic University of Norway, Institute of Health and Care Sciences Nilsson, Christina; Västra Götalandsregionen, Munkebäck Antenatal Clinic Li , Huiqi; Sahlgrenska Academy, School of Public Health and Community Medicine, Institute of Medicine Ladfors, Lars; Sahlgrenska Academy, Department of Obstetrics and Gynecology, Institute of Clinical Sciences Elfvin, Anders; University of Gothenburg Sahlgrenska Academy, Department of Pediatrics, Institute of Clinical Sciences; Sahlgrenska University Hospital, Department of Pediatrics
Keywords	Neonatology

https://mc.manuscriptcentral.com/bmjpo
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Title:

Neonatal outcomes associated with mode of subsequent birth after a previous caesarean section in a first pregnancy: a Swedish population-based register study between 1999 and 2015

Authors:
Anna Dencker, Ida Lyckestam Thelin, Valerie Smith, Ingela Lundgren, Christina Nilsson, Huiqi Li, Lars Ladvors, Anders Elfvin

Affiliations, email-addresses and ORCHID of authors:

Anna Dencker, corresponding author
RN, RM, PhD, Associate Professor in Reproductive and Neonatal Health
Sahlgrenska Academy, Institute of Health and Care Sciences, University of Gothenburg, Sweden
Postal address: Box 457, 40530 Göteborg, Sweden
Telephone: +46317866099
Fax number: -
Email: anna.dencker@gu.se
ORCHID: 0000-0001-6047-330X

Ida Lyckestam Thelin
RN, RM, Doctoral student
1. Institute of Health and Care Sciences, Sahlgrenska Academy, Göteborg, Sweden
2. Västra Götalandsregionen, Munkebäck Antenatal Clinic, Gothenburg, Sweden
Email: ida.lyckestam@vgregion.se
ORCHID: 0000-0001-5368-7983

Valerie Smith
RNM, PhD, Professor in Midwifery
Trinity College Dublin, The School of Nursing and Midwifery, Dublin, Ireland
Email: SMITHV1@ted.ie
ORCHID: 0000-0003-2249-6038

Ingela Lundgren
RN, RM, PhD, Professor in Reproductive and Neonatal Health
1. Institute of Health and Care Sciences, Sahlgrenska Academy, Göteborg, Sweden
2. Institute of Health and Care Sciences, The Arctic University of Norway, Tromsø, Norway
Email: ingela.lundgren@gu.se
ORCHID: 0000-0002-0965-6650

Christina Nilsson
RNM, PhD, Associate Professor in Sexual and Reproductive Health
Västra Götalandsregionen, Munkebäck Antenatal Clinic, Gothenburg, Sweden
Email: christina.nilsson@vgregion.se
ORCHID: 0000-0002-3195-5702

Huiqi Li
Statistician, PhD in Occupational and Environmental Medicine
Sahlgrenska Academy, School of Public Health and Community Medicine, Institute of Medicine, Goteborg, Sweden
Email: huiqi.li@gu.se
ORCHID: 0000-0002-1127-0829

Lars Ladfors
Obstetrician, PhD, Associate Professor in Obstetrics and Gynaecology
Sahlgrenska Academy, Department of Obstetrics and Gynecology, Institute of Clinical Sciences Goteborg, Sweden
Email: lars.ladfors@vgregion.se
ORCHID:

Anders Elfvin
Neonatologist/Paediatrician, PhD, Associate Professor in Neonatology/Paediatrics
1. University of Gothenburg Sahlgrenska Academy, Department of Pediatrics, Institute of Clinical Sciences, Goteborg, Sweden
2. Sahlgrenska University Hospital, Department of Pediatrics, The Queen Silvia Children’s Hospital, Goteborg, Sweden
Email: anders.elfvin@vgregion.se
ORCHID: 0000-0002-1912-9563

Key words: Neonatology, Vaginal birth after caesarean, Mode of birth, Neonatal health

Word count: 2,150
Title: Neonatal outcomes associated with mode of subsequent birth after a previous caesarean section in a first pregnancy: a Swedish population-based register study between 1999 and 2015

Abstract

Objective To investigate neonatal outcomes within 28 days in the subsequent birth in women who gave birth to their first baby by caesarean section (CS).

Design and setting National retrospective population-based register study. A cohort of 94,451 neonates who were born in Sweden between 1999 and 2015 as a second child to a mother who had her first birth by emergency or planned caesarean.

Methods Data was retrieved from the national registers held by Statistics Sweden and the National Board of Health and Welfare. Logistic regression was used to calculate unadjusted and adjusted odds ratios (aAOR) with 95% Confidence Intervals for each outcome.

Main outcome measures Neonatal infection, neonatal asphyxia/respiratory distress, neonatal hospital care, and neonatal death within 28 days.

Results Emergency CS and instrumental vaginal birth were associated with an increased risk of neonatal infection (aOR 2.1 and 1.8) and elective CS with a decreased risk (aOR 0.5). Compared to spontaneous vaginal birth, an increased risk of birth asphyxia and/or respiratory distress and of neonatal hospital care with all other modes of birth was identified (aOR 2.1-3.3). All modes of birth except spontaneous vaginal birth were associated with neonatal hospital care (aOR 1.3-1.9).

Emergency CS and instrumental vaginal birth, but not elective CS, were related to an increased mortality rate during the neonatal period, compared to spontaneous vaginal birth.

Conclusions In childbirth following a previous birth by CS, spontaneous vaginal birth appears to confer better neonatal outcomes within 28 days after birth overall than other modes of birth.
INTRODUCTION

The rate of caesarean section (CS), which is rising in many countries, is of general concern due to the increased risk of associated maternal mortality and morbidity. ¹ Repeat CS has been noted as a common factor attributing to the increased CS rate. ² Although Sweden has a low CS rate, it has increased from 5% in the early 1970s to 17.9% in 2020. ³ During 2020, 27% of all CS in Sweden was a repeat CS. ⁴

In pregnancies subsequent to a CS birth, the possibility for repeat elective CS or a planned vaginal birth after caesarean (VBAC) must be considered by women and clinicians (midwives and obstetricians). ⁵ A systematic review and a meta-analysis from 2010 ⁶ demonstrated that risk of maternal mortality (RR 0.33, 95% CI 0.13–0.88) was decreased if a woman had a planned VBAC compared with an elective repeat CS (ERCS). On the other hand, perinatal mortality increased in cases of planned VBAC compared with ERCS, although absolute rates were low (0.13% compared to 0.05%). ⁶ The increased risk of perinatal morbidity and mortality is greater among women who attempt a VBAC but ultimately have an emergency CS. ⁵ These findings complicate the decision-making process as women and clinicians attempt to balance the risks and benefits involved for both the mother and the baby. ⁶

A Swedish population based registry study ⁷ investigated vitality (Apgar score <7 at 5 min after birth) and mortality of the neonate in women who had a VBAC following a previous CS birth compared to women who had undergone vaginal birth only. The study found increased risks for low Apgar score and/or neonatal death in the neonates of women who had a previous CS. An increased frequency of unexplained stillbirth has also been found in women who have previously undergone CS. ⁸ It is thus important to consider neonatal risks in future studies exploring outcomes associated with VBAC, and while some studies have investigated this few studies have been carried out in countries with low CS and high VBAC rates such as Sweden and the Scandinavian countries. ⁷⁹ ¹⁰ The aim of this study was to investigate neonatal outcomes within 28 days in women’s subsequent birth to a first birth that was a CS in Sweden between the years of 1999–2015.
METHODS

Study design

A large nationwide population based retrospective study based on data from national registers held by Statistics Sweden and the National Board of Health and Welfare; the Swedish Medical Birth Register, the Swedish National Patient Register and the Cause of Death Register. A unique 10 digit Personal Identification Number (PIN) assigned for all residents at birth or at immigration was used to link information from these registers.

Study population

The study population included all second birth neonates during the study period 1999-2015 of women who underwent an elective or emergency CS birth with their first baby. For inclusion, both births must have occurred in Sweden.

Outcomes

Outcome variables included neonatal infection (ICD 10 codes P35-P39); asphyxia and/or respiratory distress (ICD 10 codes P20-P29); admission to neonatal hospital care (NICU); and neonatal death (all causes). Diagnoses included in the code ranges for neonatal infection and asphyxia and/or respiratory distress are shown in Table 1. All outcomes were measured within 28 days after birth.

Table 1. Range of used diagnose codes

Code	Description
P35	Congenital viral diseases
P36	Bacterial sepsis of newborn
P37	Other congenital infectious and parasitic diseases
P38	Omphalitis of newborn
P39	Other infections specific to the perinatal period
Asphyxia and/or respiratory distress (ICD 10 codes P20-P29)

P20 Intrauterine hypoxia
P21 Asphyxia at birth
P22 Respiratory distress of newborn
P23 Congenital pneumonia
P24 Neonatal aspiration
P25 Interstitial emphysema and related conditions originating in the perinatal period
P26 Pulmonary hemorrhage originating in the perinatal period
P27 Chronic respiratory disease originating in the perinatal period
P28 Other respiratory conditions originating in the perinatal period
P29 Cardiovascular disorders originating in the perinatal period

Statistical analysis/data management

Each individual is identified with a unique PIN in the registers. This PIN was replaced by a running number (LopNr) by the registers before sending data to the study team. The key file denoting the correspondence between PIN and LopNr is hold at Statistics Sweden, and therefore the data file we received was anonymous. We linked data from different registers by using the LopNr provided. We identified the mode of birth from the information in the Swedish Medical Birth Register. We calculated the number of cases and the percentage in each mode of birth category and for each outcome. Logistic models were adopted to calculate the odds ratios (OR) with 95% confidence intervals (CI) using spontaneous vaginal birth as the reference group. Unadjusted and adjusted ORs (aOR) were calculated for each outcome. Adjustments included the maternal factors of age, smoking, diabetes (type I and type II), obesity (body mass index ≥30), psychological/mental disorder, and neonatal prematurity (up to week 36+6). There were no missing data on maternal age, maternal BMI, maternal psychiatric care, mode of birth, neonatal infection, neonatal asphyxia and/or respiratory distress, neonatal hospital care and neonatal death within 28 days due to use of national registers. Missing data for variables used in the adjusted analyses: maternal smoking (5.3% missing), maternal
diabetes (1.5% missing) and for prematurity up to week 36+6 (0.04% missing). Data management and statistical analyses were performed using STATA 16 (StataCorp LLC, TX, USA).

Patient and public involvement

Neither patients nor the public were involved in the study design.

RESULTS

During the study period, 1999 to 2015, the total number of babies born was 362,488. Of these births, 94,451 neonates were born in Sweden as a second child to a woman who had a CS birth with her first child. Proportionately, the mode of birth of these 94,451 neonates was: 36% spontaneous vaginal birth, 8.6% instrumental vaginal birth and 55.4% second CS (elective or emergency) (Table 2).
Table 2. Adjustment variables per outcome variable versus mode of birth in the study population, n= 94,451

	Vaginal spontaneous	Vacuum / forceps	Elective CS	Emergency CS	Total
Count, N (%)	34,007 (36.0)	8,076 (8.55)	30,326 (32.1)	22,042 (23.3)	94,451 (100)
Outcomes					
Neonatal infection, N (%)	277 (0.81)	111 (1.37)	129 (0.43)	504 (2.29)	1,021 (1.08)
Asphyxia and/or respiratory distress, N (%)	776 (2.28)	406 (5.03)	1262 (4.16)	2159 (9.79)	4,603 (4.87)
Neonatal care/hospital care, N (%)	3,070 (9.03)	1,057 (13.09)	3,280 (10.82)	4,615 (20.94)	12,022 (12.73)
Neonatal death, N (%)	33 (0.1)	14 (0.17)	29 (0.1)	114 (0.52)	190 (0.2)
Maternal conditions					
Age, mean (SD)	31.11 (4.44)	32.07 (4.29)	32.78 (4.72)	32.23 (4.58)	31.99 (4.61)
Smoking, N (%)	1,892 (5.85)	380 (4.94)	1,773 (6.18)	1,261 (6.07)	5,306 (5.93)
Diabetes, N (%)	192 (0.56)	92 (1.14)	647 (2.13)	507 (2.3)	1,438 (1.52)
BMI ≥ 30, N (%)	7,199 (21.17)	1,575 (19.5)	7,649 (25.22)	6,443 (29.23)	22,866 (24.21)
Mental illness, N (%)	269 (0.79)	75 (0.93)	515 (1.7)	282 (1.28)	1,141 (1.21)
Neonatal condition					
Prematurity, N (%)	1,378 (4.05)	238 (2.95)	800 (2.64)	3,055 (13.87)	5,471 (5.79)
The results of logistic models are presented in Table 3. Compared to spontaneous vaginal birth, the associated risk for neonatal infection within 28 days of birth was lower after elective CS but higher after instrumental vaginal birth and after emergency CS. An increased risk for asphyxia and/or respiratory distress was associated with instrumental vaginal birth and all CS (elective CS and emergency CS) compared to spontaneous vaginal birth. Neonatal care/hospital care within 28 days was significantly increased in neonates of women who had an instrumental vaginal birth and any category of CS (elective CS and emergency CS). Increased neonatal death within 28 days after emergency CS and instrumental vaginal birth compared to spontaneous vaginal birth was found, but elective CS was not associated with an altered risk for neonatal death. In the adjusted model, only those with complete information on all of the adjustment variables were included in the analysis (n=89477).
Table 3. Adverse neonatal outcomes associated with second mode of birth in women who had a CS first birth. Odds ratio (OR) was obtained by logistic models. Both unadjusted and adjusted results are presented. P-value of adjusted model is presented, n=94,451

Outcome	Unadjusted OR (95% CI)	Adjusted OR (95% CI)	p-value adjusted OR
Neonatal infection within 28 days			
Vaginal spontaneous	Reference	Reference	
Vacuum/forceps	1.697 (1.360, 2.118)	1.805 (1.435, 2.271)	<0.001
Elective CS	0.520 (0.422, 0.641)	0.545 (0.438, 0.679)	<0.001
Emergency CS	2.849 (2.458, 3.303)	2.077 (1.769, 2.439)	<0.001
Asphyxia and/or respiratory distress			
Vaginal spontaneous	Reference	Reference	
Vacuum/forceps	2.267 (2.005, 2.562)	2.550 (2.242, 2.900)	<0.001
Elective CS	1.859 (1.698, 2.036)	2.064 (1.874, 2.273)	<0.001
Emergency CS	4.650 (4.276, 5.057)	3.299 (3.011, 3.615)	<0.001
Neonatal care/hospital care within 28 days			
Vaginal spontaneous	Reference	Reference	
Vacuum/forceps	1.518 (1.409, 1.635)	1.651 (1.525, 1.788)	<0.001
Elective CS	1.222 (1.160, 1.287)	1.287 (1.217, 1.362)	<0.001
Emergency CS	2.669 (2.540, 2.803)	1.949 (1.844, 2.060)	<0.001
Neonatal death within 28 days			
Vaginal spontaneous	Reference	Reference	
Vacuum/forceps	1.788 (0.956, 3.342)	2.047 (1.037, 4.043)	0.039
	Adjusted OR	95% CI	p-value
------------------	---------------	-----------------	---------
Elective CS	0.985	(0.598, 1.623)	0.553
Emergency CS	5.352	(3.632, 7.888)	<0.001

Adjusted OR: adjustments were made for mother’s age, smoking, diabetes, BMI ≥30, mental illness and prematurity (up to week 36+6). In all adjusted models n=89,477
DISCUSSION

The present study showed that spontaneous vaginal birth after previous CS was associated with a lower risk of neonatal hospital care and the combined outcome of asphyxia and/or respiratory distress when compared to any other mode of birth. Furthermore the study showed that spontaneous vaginal birth was associated with a lower risk of neonatal death within 28 days when compared to instrumental vaginal birth and emergency CS.

There was an increased risk for neonatal infection (P35-P39, ICD 10 codes) after instrumental vaginal birth and emergency CS, compared to spontaneous vaginal birth. It might be reasonable to assume that an increased infection risk after emergency CS and instrumental vaginal birth could be related to the indication for the procedure, for example, the occurrence of an infection in the foetus or labour that has been prolonged, as well as the procedure itself.

During the time period prophylactic antibiotics were administered to all women undergoing emergency CS and was also introduced for women undergoing elective CS in some hospitals. Profylactic antibiotics are shown to reduce the risk of maternal infections but have not demonstrated a reduction in neonatal sepsis (RR 0.76, 95% CI 0.51-1.13). Correspondingly, elective CS was related to a reduced risk of infection in the newborn. This may be related to that an elective CS is performed on a woman without clinical infection. If a woman has an infection before the scheduled elective CS she will get antibiotics and probably an emergency CS instead of waiting for the elective CS. Furthermore, the amniotic membranes are intact, a protection for infection in elective CS.

An interesting finding is the increased risk of diagnoses related to asphyxia/respiratory distress (code range P20-P29) after all instrumental births, as well as elective CS. It is well-known that asphyxia is related to emergency CS and instrumental vaginal birth due to intrauterine asphyxia/hypoxia being an indication to perform an emergency CS or an instrumental vaginal birth. The increased risk of respiratory distress and/or asphyxia after elective CS in these results may be explained by the increased risk of respiratory distress such as transient tachypnoea of the newborn (TTN), so called wet lungs in neonates not being exposed to uterine contractions. As discussed in a review by...
Ramchandrappa et al many studies have shown an increased risk of respiratory distress following elective CS. We were not able to differentiate asphyxia (P21) from respiratory distress of the newborn (P22).

Need of hospital care for the neonate was increased with all modes of birth compared to spontaneous vaginal birth. Neonatal care is an important outcome and reflects the health status of the newborn, including transient and long-lasting health problems. One explanation for the increased risk for neonatal care is the increased risk for TTN after elective CS. TTN is often treated successfully in neonatal care but could also occur as a feature of a more severe condition. The annual report from the Swedish Neonatal Quality Register (SNQ) showed that around 10% of all newborn infants in Sweden were admitted to a neonatal ward during 2020.

The risk of death within 28 days for the neonate increased after emergency CS and after instrumental vaginal birth. This increased risk is probably related to the increased occurrence of asphyxia/respiratory distress and neonatal infection. The risk of death was not increased in the elective CS group.

An increasingly important issue is the development of guidelines or recommendations for VBAC or elective CS after a first caesarean birth and to counsel women on the best clinical choice for birth after CS. Repeat elective CS vary dependent on both clinical and non-clinical factors, like different hospital practice and guidelines for management of birth after a previous CS differ substantially.

In Sweden, where this study was carried out, women do not have the right automatically to opt for a CS in the absence of medical or obstetric reasons for a CS. However, individual circumstances – for example, intense fear of childbirth – are sometimes resulting indications for having a CS. The VBAC culture in Sweden, Finland, and the Netherlands (countries with low CS rates and high VBAC rates) is homogenous, i.e. have the same commonly acknowledged guidelines followed by all, professionals as well as women. Usually, women are involved in the care but the obstetricians are the professionals who make the final decision about mode of birth. A planned VBAC may culminate in an emergency CS or an instrumental vaginal birth leading to worse health outcomes but the absolute
risks for the neonate are low. A recent study on preterm infants showed that a preterm trial of labour did not increase the risk for neonatal morbidity when compared to elective repeat CS in women without previous vaginal birth.

Strengths and limitations

The strength of this study is the large sample contributing data to the analysis, and a dataset that spans 16 years. A limitation is not having information as to how many women might have planned a VBAC but ultimately had a CS versus those who chose an elective CS (planned repeat CS) from the outset. Furthermore, some planned CSs may have been classified as an emergency CS if contractions, rupture of membranes or complications occurred before the planned CS day. Limitations also include ranges of diagnostic codes for neonatal outcomes. The present study was only able to obtain information regarding the compound of ICD10 codes P20-P29, and P35-P39 respectively. The study was not able to differentiate between asphyxia (diagnose code P20) and respiratory distress of the newborn (diagnose code P22).

Conclusion

In conclusion the present study found that spontaneous vaginal birth after previous CS was related to a lower risk of neonatal hospital care and the combined outcome of asphyxia and/or respiratory distress when compared to any other mode of birth. Furthermore the study found that spontaneous vaginal birth was associated with a lower risk of neonatal death within 28 days when compared to instrumental vaginal birth and emergency CS. There was an association between increased risk of neonatal infection and emergency CS or instrumental vaginal birth compared to spontaneous vaginal birth. The present study shows that VBAC seems to be a safe option and may be safely recommended as mode of birth after previous CS.

ETHICS APPROVAL

The Central Ethical Review Board in Gothenburg, Sweden, approved the study (T546-17).
COMPETING INTERESTS

None declared.

CONTRIBUTIONS TO AUTHORSHIP

X1, X2, X3, X4, X5, X6, X7 and X8 designed the study. X6 performed the data analyses and made the results tables. X1, X2, X6 and X8 wrote the paper. All authors reviewed and revised the manuscript and approved of submission of the final manuscript.
What is already known on this topic

- Caesarean section (CS) rates are rising in many countries
- Repeat elective CS is common after previous CS
- A planned vaginal birth after previous CS may result in an emergency CS and risk of worse neonatal outcomes

What this study adds

- Spontaneous vaginal birth after previous CS was related to lower risk of neonatal asphyxia and/or respiratory distress when compared to any other mode of birth
- Spontaneous vaginal birth after previous CS was related to a lower risk of neonatal hospital care when compared to any other mode of birth
- Spontaneous vaginal birth after previous CS was associated with better neonatal outcomes compared to other modes of birth

How this study might affect research, practice or policy

- Vaginal birth may be recommended as a safe option after previous CS
REFERENCES

1. Euro-Peristat Project. European Perinatal Health Report. Core indicators of the health and care of pregnant women and babies in Europe in 2015. November 2018. Available at: https://www.europeristat.com/index.php/reports/european-perinatal-health-report-2015.html.

2. Souza JP, Gulmezoglu A, Lumbiganon P, et al.Caesarean section without medical indications is associated with an increased risk of adverse short-term maternal outcomes: the 2004-2008 WHO Global Survey on Maternal and Perinatal Health. *BMC medicine* 2010; 8:71.

3. Socialstyrelsen 2021. Retrieved from: https://www.socialstyrelsen.se/globalassets/sharepoint-dokument/artikellkatalog/statistik/2021-12-7651.pdf (2022-02-20).

4. ACOG. Practice Bulletin No. 184: Vaginal Birth After Cesarean Delivery. *Obstetrics & Gynecology* 2017; 130(5):e217-e33.

5. Guise J-M, Denman MA, Emeis C, et al. Vaginal Birth After Cesarean: New Insights on Maternal and Neonatal Outcomes. *American Journal of Obstetrics & Gynecology* 2005; 193(1):169-77.

6. Ramachandrappa A, Jain L. Elective caesarean section: its impact on neonatal respiratory outcome. *Cochrane library* 2014; 2014(12):CD009516-CD16.

7. Shinohara S, Amemiya A, Takizawa M. Association between uterine contractions before elective caesarean section and transient tachypnoea of the newborn: a retrospective cohort study. *BMJ open* 2020; 10(3):e033154-e54.

8. Wiklund I, Andolf E, Lilja H, et al. Indications for cesarean section on maternal request--guidelines for counseling and treatment. *Sex Reprod Healthcare* 2012; 3(3):99-106.

9. Lundgren I, Morano S, Nilsson C, et al. Cultural perspectives on vaginal birth after previous caesarean section in countries with high and low rates - A hermeneutic study. *Women Birth* 2020; 33(4):e339-e47.

10. Landon MB, Hauth JC, Leveno KJ, et al. Maternal and Perinatal Outcomes Associated with a Trial of Labor after Prior Cesarean Delivery. *The New England journal of medicine* 2004; 351(25):2581-89.

11. Suresh SC, Dude A. Neonatal intensive care unit admission is associated with lower breastfeeding in late preterm infants. *Am J Obstet Gynecol* 2021; 225(2):197-98.
BMJ Paediatrics Open

Neonatal outcomes associated with mode of subsequent birth after a previous caesarean section in a first pregnancy: a Swedish population-based register study between 1999 and 2015

Journal: BMJ Paediatrics Open

Manuscript ID: bmjpo-2022-001519.R1

Article Type: Original research

Date Submitted by the Author: 10-Jun-2022

Complete List of Authors:
Dencker, Anna; Sahlgrenska Academy, Institute of health and care sciences
Lyckestam Thelin, Ida; University of Gothenburg Institute of Health and Care Sciences; Västra Götalandsregionen, Munkebäck Antenatal Clinic
Smith, Valerie; Trinity College Dublin, The School of Nursing and Midwifery
Lundgren, Ingela; University of Gothenburg Institute of Health and Care Sciences; UiT The Arctic University of Norway, Institute of Health and Care Sciences
Nilsson, Christina; Västra Götalandsregionen, Munkebäck Antenatal Clinic
Li, Huiqi; Sahlgrenska Academy, School of Public Health and Community Medicine, Institute of Medicine
Ladfors, Lars; Sahlgrenska Academy, Department of Obstetrics and Gynecology, Institute of Clinical Sciences
Elfvin, Anders; University of Gothenburg Sahlgrenska Academy, Department of Pediatrics, Institute of Clinical Sciences; Sahlgrenska University Hospital, Department of Pediatrics

Keywords: Neonatology

https://mc.manuscriptcentral.com/bmjpo
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Title page

Title:

Neonatal outcomes associated with mode of subsequent birth after a previous caesarean section in a first pregnancy: a Swedish population-based register study between 1999 and 2015

Authors:

Anna Dencker, Ida Lyckestam Thelin, Valerie Smith, Ingela Lundgren, Christina Nilsson, Huiqi Li, Lars Ladhors, Anders Elfvin

Affiliations, email-addresses and ORCID of authors:

Anna Dencker, corresponding author
RN, RM, PhD, Associate Professor in Reproductive and Neonatal Health
Sahlgrenska Academy, Institute of health and care sciences, University of Gothenburg, Sweden
Postal address: Box 457, 40530 Goteborg, Sweden
Telephone: +46317866099
Fax number: -
Email: anna.dencker@gu.se
ORCID: 0000-0001-6047-330X

Ida Lyckestam Thelin
RN, RM, Doctoral student
1. Institute of Health and Care Sciences, Sahlgrenska Academy, Goteborg, Sweden
2. Västra Götalandsregionen, Munkebäck Antenatal Clinic, Gothenburg, Sweden
Email: ida.lyckestam@vgregion.se
ORCID: 0000-0001-5368-7983

Valerie Smith
RNM, PhD, Professor in Midwifery
Trinity College Dublin, The School of Nursing and Midwifery, Dublin, Ireland
Email: SMITHV1@ted.ie
ORCID: 0000-0003-2249-6038

Ingela Lundgren
RN, RM, PhD, Professor in Reproductive and Neonatal Health
1. Institute of Health and Care Sciences, Sahlgrenska Academy, Goteborg, Sweden
2. Institute of Health and Care Sciences, The Arctic University of Norway, Tromsø, Norway
Email: ingela.lundgren@gu.se
ORCHID: 0000-0002-0965-6650

Christina Nilsson
RN, PhD, Associate Professor in Sexual and Reproductive Health
Västra Götalandsregionen, Munkebäck Antenatal Clinic, Gothenburg, Sweden
Email: christina.nilsson@vgregion.se
ORCHID: 0000-0002-3195-5702

Huiqi Li
Statistician, PhD in Occupational and Environmental Medicine
Sahlgrenska Academy, School of Public Health and Community Medicine, Institute of Medicine, Goteborg, Sweden
Email: huiqi.li@gu.se
ORCHID: 0000-0002-1127-0829

Lars Ladfors
Obstetrician, PhD, Associate Professor in Obstetrics and Gynaecology
Sahlgrenska Academy, Department of Obstetrics and Gynecology, Institute of Clinical Sciences Goteborg, Sweden
Email: lars.ladfors@vgregion.se
ORCHID: 0000-0002-7512-2059

Anders Elfvin
Neonatologist/Paediatrician, PhD, Associate Professor in Neonatology/Paediatrics
1. University of Gothenburg Sahlgrenska Academy, Department of Pediatrics, Institute of Clinical Sciences, Goteborg, Sweden
2. Sahlgrenska University Hospital, Department of Pediatrics, The Queen Silvia Children’s Hospital, Goteborg, Sweden
Email: anders.elfvin@vgregion.se
ORCHID: 0000-0002-1912-9563

Key words: Neonatology, Vaginal birth after caesarean, Mode of birth, Neonatal health

Word count: 2,500
Title: Neonatal outcomes associated with mode of subsequent birth after a previous caesarean section in a first pregnancy: a Swedish population-based register study between 1999 and 2015

Abstract

Objective To investigate neonatal outcomes within 28 days in the subsequent birth in women who gave birth to their first baby by caesarean section (CS).

Design and setting National retrospective population-based register study. A cohort of 94,451 neonates who were born in Sweden between 1999 and 2015 as a second child to a mother who had her first birth by emergency or planned caesarean.

Methods Data was retrieved from the national registers held by Statistics Sweden and the National Board of Health and Welfare. Logistic regression was used to calculate unadjusted and adjusted odds ratios (aAOR) with 95% Confidence Intervals for each outcome.

Main outcome measures Neonatal infection, neonatal asphyxia/respiratory distress, neonatal hospital care, and neonatal death within 28 days.

Results Emergency CS and instrumental vaginal birth were associated with a doubled risk of neonatal infection (aOR 2.0) and planned CS with a decreased risk (aOR 0.7) compared to spontaneous vaginal birth. Compared to spontaneous vaginal birth, an increased risk of birth asphyxia and/or respiratory distress was identified with all other modes of birth (aOR 2.2-3.2). Emergency CS and instrumental vaginal birth, but not planned CS, were associated with neonatal hospital care (aOR 1.8 and 1.7) and an increased mortality rate during the neonatal period (aOR 2.9 and 3.2), compared to spontaneous vaginal birth.

Conclusions In childbirth following a previous birth by CS, spontaneous vaginal birth appears to confer better neonatal outcomes within 28 days after birth overall than other modes of birth.
INTRODUCTION

The rate of caesarean section (CS), which is rising in many countries, is of general concern due to the increased risk of associated maternal mortality and morbidity. Repeat CS has been noted as a common factor attributing to the increased CS rate. Although Sweden has a low CS rate, it has increased from 5% in the early 1970s to 17.9% in 2020. During 2020, 27% of all CS in Sweden was a repeat CS.

In pregnancies subsequent to a CS birth, the possibility for repeat planned CS or a planned vaginal birth after caesarean (VBAC) must be considered by women and clinicians (midwives and obstetricians). A systematic review and a meta-analysis from 2010 demonstrated that risk of maternal mortality (RR 0.33, 95% CI 0.13–0.88) was decreased if a woman had a planned VBAC compared with an planned repeat CS. On the other hand, perinatal mortality increased in cases of planned VBAC compared with planned repeat CS, although absolute rates were low (0.13% compared to 0.05%). The increased risk of perinatal morbidity and mortality is greater among women who attempt a VBAC but ultimately have an emergency CS. These findings complicate the decision-making process as women and clinicians attempt to balance the risks and benefits involved for both the mother and the baby.

A Swedish population based registry study investigated vitality (Apgar score <7 at 5 min after birth) and mortality of the neonate in women who had a VBAC following a previous CS birth compared to women who had undergone vaginal birth only. The study found increased risks for low Apgar score and/or neonatal death in the neonates of women who had a previous CS. An increased frequency of unexplained stillbirth has also been found in women who have previously undergone CS. It is thus important to consider neonatal risks in future studies exploring outcomes associated with VBAC, and while some studies have investigated this few studies have been carried out in countries with low CS and high VBAC rates such as Sweden and the Scandinavian countries. The aim of this study was to investigate neonatal outcomes within 28 days in women’s subsequent birth to a first birth that was a CS in Sweden between the years of 1999–2015.
METHODS

Study design

A large nationwide population based retrospective study based on data from national registers held by Statistics Sweden and the National Board of Health and Welfare; the Swedish Medical Birth Register, the Swedish National Patient Register and the Cause of Death Register. A unique 10 digit Personal Identification Number (PIN) assigned for all residents at birth or at immigration was used to link information from these registers.

Study population

The study population included all second birth neonates during the study period 1999-2015 of women who underwent an planned or emergency CS birth with their first baby. For inclusion, both births must have occurred in Sweden.

Outcomes

Outcome variables included neonatal infection (ICD 10 codes P35-P39); asphyxia and/or respiratory distress (ICD 10 codes P20-P29); admission to neonatal hospital care (NICU); and neonatal death (all causes). Diagnoses included in the code ranges for neonatal infection and asphyxia and/or respiratory distress are shown in Table 1. All outcomes were measured within 28 days after birth.

Table 1. Range of used diagnose codes

P35	Congenital viral diseases
P36	Bacterial sepsis of newborn
P37	Other congenital infectious and parasitic diseases
P38	Omphalitis of newborn
P39	Other infections specific to the perinatal period
Asphyxia and/or respiratory distress (ICD 10 codes P20-P29)

- P20 Intrauterine hypoxia
- P21 Asphyxia at birth
- P22 Respiratory distress of newborn
- P23 Congenital pneumonia
- P24 Neonatal aspiration
- P25 Interstitial emphysema and related conditions originating in the perinatal period
- P26 Pulmonary hemorrhage originating in the perinatal period
- P27 Chronic respiratory disease originating in the perinatal period
- P28 Other respiratory conditions originating in the perinatal period
- P29 Cardiovascular disorders originating in the perinatal period

Statistical analysis/data management

Each individual is identified with a unique PIN in the registers. This PIN was replaced by a running number (LopNr) by the registers before sending data to the study team. The key file denoting the correspondence between PIN and LopNr is held at Statistics Sweden, and therefore the data file we received was anonymous. We linked data from different registers by using the LopNr provided. We identified the mode of birth from the information in the Swedish Medical Birth Register. We calculated the number of cases and the percentage in each mode of birth category and for each outcome. Logistic models were adopted to calculate the odds ratios (OR) with 95% confidence intervals (CI) using spontaneous vaginal birth as the reference group. Unadjusted and adjusted ORs (aOR) were calculated for each outcome. Adjustments included the maternal factors of age, smoking, diabetes (type I and type II), BMI, psychological/mental disorder, and neonatal prematurity (up to week 36+6). There were no missing data on maternal age, maternal BMI, maternal psychiatric care, mode of birth, neonatal infection, neonatal asphyxia and/or respiratory distress, neonatal hospital care and neonatal death within 28 days due to use of national registers. Missing data for variables used in the adjusted analyses: maternal smoking (5.3% missing), maternal diabetes (1.5% missing) and for...
prematurity up to week 36+6 (0.04% missing). Data management and statistical analyses were performed using STATA 16 (StataCorp LLC, TX, USA).

Patient and public involvement

Neither patients nor the public were involved in the study design.

RESULTS

During the study period, 1999 to 2015, the total number of babies born was 1,774,984. Of these births, 94,451 neonates were born in Sweden as a second child to a woman who had a CS birth with her first child. Proportionately, the mode of birth of these 94,451 neonates was: 36% spontaneous vaginal birth, 8.6% instrumental vaginal birth and 55.4% second CS (planned or emergency) (Table 2).
Table 2. Adjustment variables per outcome variable versus mode of birth in the study population, n= 94,451

	Vaginal spontaneous	Vacuum / forceps	Planned CS	Emergency CS	Total
Count, N (%)	34,007 (36.0)	8,076 (8.55)	30,326 (32.1)	22,042 (23.3)	94,451 (100)
Outcomes					
Neonatal infection, N (%)	277 (0.81)	111 (1.37)	129 (0.43)	504 (2.29)	1,021 (1.08)
Asphyxia and/or respiratory distress, N (%)	776 (2.28)	406 (5.03)	1,262 (4.16)	2,159 (9.79)	4,603 (4.87)
Neonatal care/hospital care, N (%)	3,070 (9.03)	1,057 (13.09)	3,280 (10.82)	4,615 (20.94)	12,022 (12.73)
Neonatal death, N (%)	33 (0.1)	14 (0.17)	29 (0.1)	114 (0.52)	190 (0.2)
Maternal conditions					
Age, mean (SD)	31.11 (4.44)	32.07 (4.29)	32.78 (4.72)	32.23 (4.58)	31.99 (4.61)
Smoking, N (%)	1,892 (5.85)	380 (4.94)	1,773 (6.18)	1,261 (6.07)	5,306 (5.93)
Diabetes, N (%)	192 (0.56)	92 (1.14)	647 (2.13)	507 (2.3)	1,438 (1.52)
BMI≥30, N (%)	7,199 (21.17)	1,575 (19.5)	7,649 (25.22)	6,443 (29.23)	22,866 (24.21)
Mental illness, N (%)	269 (0.79)	75 (0.93)	515 (1.7)	282 (1.28)	1,141 (1.21)
Neonatal condition					
Prematurity, N (%)	1,378 (4.05)	238 (2.95)	800 (2.64)	3,055 (13.87)	5,471 (5.79)
The results of logistic models are presented in Table 3. Compared to spontaneous vaginal birth, the associated risk for neonatal infection within 28 days of birth was lower after planned CS but higher after instrumental vaginal birth and after emergency CS. An increased risk for asphyxia and/or respiratory distress was associated with instrumental vaginal birth and all CS (planned CS and emergency CS) compared to spontaneous vaginal birth. Neonatal care/hospital care within 28 days was significantly increased in neonates of women who had an instrumental vaginal birth and any category of CS (planned CS and emergency CS). Increased neonatal death within 28 days after emergency CS and instrumental vaginal birth compared to spontaneous vaginal birth was found, but planned CS was not associated with an altered risk for neonatal death.

In the adjusted model, emergency CS and instrumental vaginal birth were associated with significantly increased risk of neonatal infection, neonatal hospital care and neonatal death within 28 days, compared to spontaneous vaginal birth. Planned CS was associated with a significantly decreased risk of neonatal infection, compared to spontaneous vaginal birth. Compared to spontaneous vaginal birth, significantly increased risk of birth asphyxia and/or respiratory distress was identified with all other modes of birth. In the adjusted model, only those with complete information on all of the adjustment variables were included in the analysis (n=89477).
Table 3. Adverse neonatal outcomes associated with second mode of birth in women who had a CS first birth. Odds ratio (OR) was obtained by logistic models. Both unadjusted and adjusted results are presented. P-value of adjusted model is presented, n=94,451

Outcome	Mode	Unadjusted OR (95% CI)	Adjusted OR (95% CI)	p-value adjusted OR
Neonatal infection within 28 days	Vaginal spontaneous Reference	Reference	Reference	
n= 93,430	Vacuum/forceps 1.70 (1.36, 2.12)	2.00 (1.58, 2.53)	<0.001	
	Planned CS 0.52 (0.42, 0.64)	0.68 (0.53, 0.86)	0.002	
	Emergency CS 2.85 (2.46, 3.30)	2.03 (1.71, 2.40)	<0.001	
Asphyxia and/or respiratory distress	Vaginal spontaneous Reference	Reference	Reference	
n= 89,848	Vacuum/forceps 2.27 (2.01, 2.56)	2.74 (2.39, 3.13)	<0.001	
	Planned CS 1.86 (1.70, 2.04)	2.16 (1.93, 2.41)	<0.001	
	Emergency CS 4.65 (4.28, 5.06)	3.24 (2.94, 3.57)	<0.001	
Neonatal care/hospital care within 28 days	Vaginal spontaneous Reference	Reference	Reference	
n= 82,429	Vacuum/forceps 1.52 (1.41, 1.63)	1.70 (1.57, 1.84)	<0.001	
	Planned CS 1.22 (1.16, 1.29)	1.02 (0.95, 1.08)	0.603	
	Emergency CS 2.67 (2.54, 2.80)	1.79 (1.69, 1.90)	<0.001	
Neonatal death within 28 days	Vaginal spontaneous Reference	Reference	Reference	
n= 94,261	Vacuum/forceps 1.79 (0.96, 3.34)	3.15 (1.55, 6.39)	0.001	
	Planned CS 0.99 (0.60, 1.62)	1.73 (0.94, 3.19)	0.077	
	Emergency CS	5.35 (3.63, 7.89)	2.88 (1.82, 4.57)	<0.001

Adjusted OR: adjustments were made for mother’s age, smoking, diabetes, BMI, mental illness and prematurity (up to week 36+6) in all adjusted models

n=89,477
DISCUSSION

The present study showed that spontaneous vaginal birth after previous CS was associated with an increased risk of the combined outcome of asphyxia and/or respiratory distress when compared to any other mode of birth. Furthermore the study showed that spontaneous vaginal birth was associated with a lower risk of neonatal hospital care and neonatal death within 28 days when compared to instrumental vaginal birth and emergency CS.

There was an increased risk for neonatal infection (P35-P39, ICD 10 codes) after instrumental vaginal birth and emergency CS, and a decreased risk after planned CS, compared to spontaneous vaginal birth. It might be reasonable to assume that an increased infection risk after emergency CS and instrumental vaginal birth could be related to the indication for the procedure, for example, the occurrence of an infection in the foetus or labour that has been prolonged, as well as the procedure itself.

During the time period prophylactic antibiotics were administered to all women undergoing emergency CS and was also introduced for women undergoing planned CS in some hospitals. Profylactic antibiotics are shown to reduce the risk of maternal infections but have not demonstrated a reduction in neonatal sepsis (RR 0.76, 95% CI 0.51-1.13). Correspondingly, planned CS was related to a reduced risk of infection in the newborn. This may be related to that an planned CS is performed on an woman without clinical infection. If a women has an infection before the scheduled planned CS she will get antibiotics and probably an emergency CS instead of waiting for the planned CS. Furthermore, the amniotic membranes are intact, a protection for infection in planned CS.

An interesting finding is the increased risk of diagnoses related to asphyxia/respiratory distress (code range P20-P29) after all instrumental births, as well as planned CS. It is well-known that asphyxia is related to emergency CS and instrumental vaginal birth due to intrauterine asphyxia/hypoxia being an indication to perform an emergency CS or an instrumental vaginal birth. The increased risk of respiratory distress and/or asphyxia after planned CS in these results may be explained by the increased risk of respiratory distress such as transient tachypnoea of the newborn (TTN), so called wet
lungs in neonates not being exposed to uterine contractions. TTN is often treated successfully in neonatal care but could also occur as a feature of a more severe condition. As discussed in a review by Ramachandrappa et al, many studies have shown an increased risk of respiratory distress following planned CS. We were not able to differentiate asphyxia (P21) from respiratory distress of the newborn (P22).

Need of hospital care for the neonate was increased after emergency CS and instrumental vaginal birth compared to spontaneous vaginal birth. Neonatal care is an important outcome and reflects the health status of the newborn, including transient and long-lasting health problems. The annual report from the Swedish Neonatal Quality Register (SNQ) showed that around 10% of all newborn infants in Sweden were admitted to a neonatal ward during 2020.

The risk of death within 28 days for the neonate increased after emergency CS and after instrumental vaginal birth. This increased risk is probably related to the increased occurrence of asphyxia/respiratory distress and neonatal infection. The risk of death was not increased in the planned CS group.

An increasingly important issue is the development of guidelines or recommendations for VBAC or planned CS after a first caesarean birth and to counsel women on the best clinical choice for birth after CS. A recent study on preterm infants showed that a preterm trial of labour did not increase the risk for neonatal morbidity when compared to planned repeat CS in women without previous vaginal birth. Repeat planned CS vary dependent on both clinical and non-clinical factors, like different hospital practice and guidelines for management of birth after a previous CS differ substantially.

In Sweden, where this study was carried out, women do not have the right automatically to opt for a CS in the absence of medical or obstetric reasons for a CS. However, individual circumstances – for example, intense fear of childbirth – are sometimes resulting indications for having a CS. The VBAC culture in Sweden, Finland, and the Netherlands (countries with low CS rates and high VBAC rates) is homogenous, i.e. have the same commonly acknowledged guidelines followed by all professionals as well as women. Usually, women are involved in the care but the obstetricians are the
professionals who make the final decision about mode of birth. A planned VBAC may culminate in an emergency CS or an instrumental vaginal birth leading to worse health outcomes but the absolute risks for the neonate are low.

Strengths and limitations

The strength of this study is the large sample contributing data to the analysis, and a dataset that spans 16 years. A limitation is not having information as to how many women might have planned a VBAC but ultimately had a CS versus those who chose an planned CS (planned repeat CS) from the outset. Furthermore, some planned CSs may have been classified as an emergency CS if contractions, rupture of membranes or complications occurred before the planned CS day. Limitations also include ranges of diagnostic codes for neonatal outcomes. The present study was only able to obtain information regarding the compound of ICD10 codes P20-P29, and P35-P39 respectively. The study was not able to differentiate between asphyxia (diagnose code P20) and respiratory distress of the newborn (diagnose code P22).

Conclusion

In conclusion the present study found that spontaneous vaginal birth after previous CS was related to a lower risk of a combined outcome of asphyxia and/or respiratory distress when compared to any other mode of birth. Furthermore the study found that spontaneous vaginal birth was associated with a lower risk of neonatal infection, neonatal hospital care and neonatal death within 28 days when compared to instrumental vaginal birth and emergency CS. Planned CS was associated with a lower risk of neonatal infection. The present study shows that VBAC seems to be a safe option and may be safely recommended as mode of birth after previous CS.

ETHICS APPROVAL

The Central Ethical Review Board in Gothenburg, Sweden, approved the study (T546-17).
COMPETING INTERESTS

None declared.

CONTRIBUTIONS TO AUTHORSHIP

AD, ILT, VS, IL, CN, HL, LL and AE designed the study. HL performed the data analyses and made the results tables. AD, ILT, HL and AE wrote the paper. All authors reviewed and revised the manuscript and approved of submission of the final manuscript.
What is already known on this topic

- Caesarean section (CS) rates are rising in many countries
- Repeat planned CS is common after previous CS
- A planned vaginal birth after previous CS may result in an emergency CS and risk of worse neonatal outcomes

What this study adds

- Spontaneous vaginal birth after previous CS was related to lower risk of neonatal asphyxia and/or respiratory distress when compared to any other mode of birth
- Spontaneous vaginal birth after previous CS was related to a lower risk of neonatal hospital care when compared instrumental vaginal or emergency CS birth
- Spontaneous vaginal birth after previous CS was related to a lower risk of neonatal death when compared instrumental vaginal or emergency CS birth

How this study might affect research, practice or policy

- Vaginal birth may be recommended as a safe option after previous CS
REFERENCES

1. Euro-Peristat Project. European Perinatal Health Report. Core indicators of the health and care of pregnant women and babies in Europe in 2015. November 2018. Available at: https://www.europeristat.com/images/EPHR2015_Euro-Peristat.pdf

2. Souza JP, Gulmezoglu A, Lumbiganon P, et al. Caesarean section without medical indications is associated with an increased risk of adverse short-term maternal outcomes: the 2004-2008 WHO Global Survey on Maternal and Perinatal Health. *BMC medicine* 2010;8:71.

3. Socialstyrelsen 2021. Retrieved from: https://www.socialstyrelsen.se/globalassets/sharepoint-dokument/artikelkatalog/statistik/2021-12-7651.pdf (2022-02-20).

4. Swedish Society of Obstetrics and Gynecology. Annual Report 2020. Retrieved 2022-03-01: https://www.sfog.se/start/ar-grupper/robson-arg/rapporter/%C3%A5r-2020/.

5. ACOG. Practice Bulletin No. 184: Vaginal Birth After Cesarean Delivery. *Obstetrics & Gynecology* 2017;130(5):e217-e33.

6. Guise J-M, Denman MA, Emeis C, et al. Vaginal Birth After Cesarean: New Insights on Maternal and Neonatal Outcomes. *Obstetrics and gynecology (New York 1953)* 2010;115(6):1267-78.

7. Carlsson Wallin M, Ekstrom P, Marsal K, et al. Apgar score and perinatal death after one previous caesarean delivery. *BJOG: An International Journal of Obstetrics & Gynaecology* 2010;117(9):1088-97.

8. Smith GCS, Pell JP, Bobbie R. Caesarean section and risk of unexplained stillbirth in subsequent pregnancy. *The Lancet* 2003;362(9398):1779-84.

9. Daltveit AK, Tollanes MC, Pihlstrom H, et al. Cesarean delivery and subsequent pregnancies. *Obstetrics and gynecology* 2008;111(6):1327-34.

10. Hemminki E, Shelley J, Gissler M. Mode of delivery and problems in subsequent births: A register-based study from Finland. *American Journal of Obstetrics and Gynecology* 2005;193(1):169-77.

11. Adatara P, Afaya A, Salia SM, et al. Risk Factors for Neonatal Sepsis: A Retrospective Case-Control Study among Neonates Who Were Delivered by Caesarean Section at the Trauma and Specialist Hospital, Winneba, Ghana. *BioMed research international* 2018;2018:6153501-7.

12. Mackeen AD, Packard RE, Ota E, et al. Timing of intravenous prophylactic antibiotics for preventing postpartum infectious morbidity in women undergoing cesarean delivery. *Cochrane library* 2014;2014(12):CD009516-CD16.

13. Shinohara S, Amemiya A, Takizawa M. Association between uterine contractions before elective caesarean section and transient tachypnoea of the newborn: a retrospective cohort study. *BMJ open* 2020;10(3):e033154-e54.

14. Ramachandrappa A, Jain L. Elective caesarean section: its impact on neonatal respiratory outcome. *Clin Perinatol* 2008;35(2):373-93, vii.

15. Swedish Neonatal Quality Register. Annual Report 2020. Retrieved 2022-03-01: https://www.medscinet.com/PNQ/uploads/website/SNQ%C3%85rsrapport%202020%20(v2).pdf

16. Suresh SC, Dude A. Neonatal intensive care unit admission is associated with lower breastfeeding in late preterm infants. *Am J Obstet Gynecol* 2021;225(2):197-98.

17. Clarke M, Devane D, Gross MM, et al. OptiBIRTH: a cluster randomised trial of a complex intervention to increase vaginal birth after caesarean section. *BMC pregnancy and childbirth* 2020;20(1):143.

18. Foureur M, Ryan CL, Nicholl M, et al. Inconsistent Evidence: Analysis of Six National Guidelines for Vaginal Birth After Cesarean Section. *Birth (Berkeley, Calif)* 2010;37(1):3-10.

19. Wiklund I, Andolf E, Lilja H, et al. Indications for cesarean section on maternal request--guidelines for counseling and treatment. *Sex Reprod Healthc* 2012;3(3):99-106.

20. Lundgren I, Morano S, Nilsson C, et al. Cultural perspectives on vaginal birth after previous caesarean section in countries with high and low rates - A hermeneutic study. *Women Birth* 2020;33(4):e339-e47.

21. Landon MB, Hauth JC, Leveno KJ, et al. Maternal and Perinatal Outcomes Associated with a Trial of Labor after Prior Cesarean Delivery. *The New England journal of medicine* 2004;351(25):2581-89.
