New measurement of the 10B(n,α)7Li through the Trojan Horse Method

Roberta Spartá
Laboratori Nazionali del Sud, INFN, Catania, Italy
E-mail: rsparta@lns.infn.it

Abstract. 10B(n,α)7Li reaction cross section has been measured using the Trojan Horse method, with the specific aim to separate the α_1 contribution (coming from the first 7Li excited level) by the α_0 (related to the 7Li ground state), using a very thin target. Preliminary results are shown of the three-body 10B(d,α)7LiH cross section.

1. Introduction
Studying the 10B(n,α)7Li cross section has become always more important in these last years, because of the importance of its knowledge for applied physics (it is considered to be a standard in neutron induced cross section [1]). Applications regard nuclear energy production in actual and future plants (it is widely used to monitor the neutron flux through ionization chambers filled with 10B) [2] and medical cure. Indeed, it is used for the cure of melanomas and rheumatoid arthritis, with a treatment called Boron Neutron Capture Therapy (BNCT) [3] [4]; moreover, this reaction is helpful to study negative effects of the α particles doses on the human body [5].

This reaction has already been measured using Trojan Horse Method [6], but now a new measurement has been performed in order to separate the the two main contribution to this cross section, coming from the ground state and from the first excited state (energy 0.477 MeV) of the 7Li.

2. Experimental apparatus
The experimental run has been performed in 2014 in Laboratori Nazionali del Sud (LNS, Catania), using a 28 MeV 10B beam impinging on a CD$_2$ target, to measure the 10B(d,α)7LiH cross section. Outcoming particles of interest (α and 7Li) have been detected by four PSD detectors, symmetrically placed inside the chamber, shown in fig. 1. Details are reported in [7]. To get the two α contributions separated, it has been used a very this target (56 μg/cm2), because it helped in minimizing the energy straggling and loss.

3. Three-body reaction selection
Once α and 7Li produced have been discerned via their energy loss in isobutane inside the ionization chambers, the Q-value spectrum, reported in [7], clearly shows two separated peaks related to the two channels desired. From now on, it will be referred to α_0 and α_1 data meaning data under the two peaks in these Q-value spectra. The corresponding kinematical loci are in very nice agreement with the Monte Carlo simulations (fig. 2).
4. Quasi-free mechanism selection
As common procedure for Trojan Horse Experiment, the spectator (a proton, in this case) momentum distribution must be considered to select the quasi-free mechanism. In fig. 3 it is evident that data, for both the channels, show a Hultn function shape, that is the momentum distribution function of the proton inside the deuteron for the l=0 wave, peaked at $p_s = 0 \text{ MeV/c}$. This intends that proton acts as a spectator to the two body process, selecting data under this function, whose full width half maximum is in agreement with what expected experimentally, considering the transferred momentum \[8]. This confirms the presence of the quasi-free mechanism, leading the analysis to the following step, the cross section extraction.

5. Preliminary results
The preliminary three body cross section, considering only data with $p_s < |40| \text{ MeV/c}$, is shown in fig. 4, for both channels. In conclusion, the separation of the two α contributions (the primary aim of this measurement) has been reached, propelling the further analysis to the final result of the two body reaction cross section.
Figure 3. Spectator momentum distribution (black points) following the Hultn function, indicating the quasi-free mechanism presence.

Figure 4. Three body reaction cross section for α₀ and α₁ channel.

5.1. Acknowledgments
The authors acknowledge the support of the Italian Ministry of Education, University and Research under grant Progetto Premiale ASTROF.MIUR PFE, CD 19/12/2012 n. 12609.

6. References
[1] https://www-nds.iaea.org/standards/ International Atomic Energy Agency - IAEA
[2] C. Rangacharyulu, Physics of Nuclear Radiations: Concepts, Techniques and Applications, CRC Press (2014)
[3] R.F. Barth et al., Boron neutron capture therapy for cancer, Cancer, 70-12 (1992)
[4] J. C. Yanch et al., Boron neutron capture synovectomy: Treatment of rheumatoid arthritis based on 10B(n,α)7Li nuclear reaction, Med. Phys. 26, 364 (1999)
[5] N. Vulpis, Chromosome aberrations induced in human peripheral blood lymphocytes using heavy particles from 10B(n,α)7Li reaction, Mutation Research/Fundamental and Molecular Mechanism of Mutagenesis, 18-1 (1973)
[6] L. Lamia et al., Indirect study of (p,α) and (n,α) reactions induced on boron isotopes, Nuovo Cimento, 31 C (2008)
[7] R. Spartá et al., Indirect measurement of the 10B(n,α)7Li to discern the α_0 e α_1 contribution to the total cross section, LNS Activity Report (2009)
[8] R. G. Pizzone et al., Effects of distortion of the intercluster motion in 2H, 3He, 3H, 6Li, and 9Be on Trojan horse applications, Phys. Rev. C, 80-025807 (2009)