In the past two decades, pandemics of several fatal coronaviruses have posed enormous challenges for public health, including SARS-CoV (2003), MERS-CoV (2012), and SARS-CoV-2 (2019). Among these, SARS-CoV-2 continues to ravage the world today and has lead to millions of deaths and incalculable economic damage. Till now, there is no clinically proven antiviral drug available for SARS-CoV-2. However, the bioactive molecules of natural origin, especially medicinal plants, have been proven to be potential resources in the treatment of SARS-CoV-2, acting at different stages of the viral life cycle and targeting different viral or host proteins, such as PLpro, 3CLpro, RdRp, helicase, spike, ACE2, and TMPRSS2. They provide a viable strategy to develop therapeutic agents. This review presents fundamental biological information on SARS-CoV-2, including the viral biological characteristics and invasion mechanisms. It also summarizes the reported natural bioactive molecules with anti-coronavirus properties, arranged by their different targets in the life cycle of viral infection of human cells, and discusses the prospects of these bioactive molecules for the treatment of COVID-19.

Keywords: coronavirus, COVID-19, SARS-CoV-2, antiviral agents, natural bioactive molecules, therapeutic targets

INTRODUCTION

Coronaviruses, which cause respiratory tract infections in mammals and birds, are a group of enveloped, single-stranded, positive-sense RNA viruses that consist of the second-largest RNA genome (26–32 kb) only after planarian secretory cell nidovirus (PSCNV) (41.1 kb) to date (Ziebuhr, 2004; Saberi et al., 2018). Based on different antigenic cross-reactivity and genetic composition, the 26 known coronavirus species are classified into four genera (Alphacoronavirus, Betacoronavirus, Deltacoronavirus, and Gammacoronavirus)—α and β genera contain strains that are pathogenic to humans (Cleri et al., 2010). Before December 2019, six of the known coronaviruses, namely, HCoV-229E (α-CoV), HCoV-NL63 (α-CoV), HCoV-OC43 (β-CoV), HCoV-HKU1 (β-CoV), SARS-CoV (β-CoV), and MERS-CoV (β-CoV), were reported to cause diseases in humans (Arabi et al., 2017; Skariyachan et al., 2019). The first four have caused localized epidemics where patients exhibited primarily mild and self-limiting symptoms, whereas the last two can cause diseases with severe symptoms and have swept parts of the world in 2003 and 2012, respectively (Hui, 2017; Paules et al., 2020). In January 2020, another novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the seventh coronavirus contagious to humans and had been characterized as a new member of the β-coronavirus genus (Figure 1A) (Lu et al., 2020; Wu et al., 2020).

Coronavirus disease 2019 (COVID-19) has been sweeping the world since its initial detection in Wuhan, China, in December 2019. The COVID-19 pandemic has lead to unprecedented uncertainty
to modern human civilization and unforeseeable changes to global society. With more than 100 million confirmed cases and more than four million deaths, the world encounters economic contraction and the global economy declines. Many countries resorted to stringent social distancing measures to contain the spread of the virus, which included canceling group activities and limiting the movement of people. Meanwhile, numerous efforts have been devoted to SARS-CoV-2 studies, including biological characteristics, infection mechanisms, vaccine designs, and therapeutic drugs. In the foreseeable future, the continuing impacts of COVID-19 are inevitable. Anti-viral medications against SARS-CoV-2 are the key to tackling the pandemic.

New prescription medicine development is a decade-long and expensive (over $1 billion) process that consists of preclinical research, clinical trials, and commercialization (Hughes et al., 2011). Facing such challenging work, bioactive molecules of natural origin have been proven to be an excellent source for drug discovery, especially for cancer, infectious diseases, cardiovascular diseases, and multiple sclerosis (Atanasov et al., 2021). Their wide range of pharmacological activities include anti-cancer, anti-bacterial, anti-viral, anti-malaria, anti-inflammatory, anti-oxidation, anti-ageing, anti-hypertension, anti-diabetic, and immune regulation activities (Tu, 2011; Adnan et al., 2018a; Adnan et al., 2018b; Patel et al., 2019; Adnan et al., 2020; Mandadi et al., 2020; Patel et al., 2020; Siddiqui et al., 2020). In addition, the synergy of natural bioactive molecules with conventional drugs has been widely demonstrated and applied in clinical treatments (Lee et al., 2008; Sung and Lee, 2008; Russo et al., 2017). Therefore, it is a feasible strategy to identify and screen natural bioactive molecules as therapeutic agents that can effectively treat COVID-19. This review will summarize the viral biological characteristics and invasion mechanisms and highlight potential drug targets for the treatment of COVID-19. More significantly, the listed natural products with anti-CoV properties will be arranged by their different targets in the viral life cycle, mainly focusing on natural bioactive molecules with clear targets and activity data.

![Viral Biological Characteristics](image)

VIRAL BIOLOGICAL CHARACTERISTICS

Genome Organization

As a novel β-coronavirus, the first SARS-CoV-2 genome sequence (NC_045512.2) was immediately reported in the early stage of the outbreak, which is closely related to BatCoV RaTG13 (about 96.3%), SARS-CoV (about 79%), and MERS-CoV (about 50%) (Lu et al., 2020; Paraskevis et al., 2020; Wu et al., 2020). Its 29.9 kb genome encodes as many as 14 open reading frames (ORFs), including five functional ORFs and nine putative accessory...
factors (Figure 1B). From 5′ to 3′, ORF1a and ORF1b occupy two-thirds of the whole genome and encode two polyproteins which are auto-proteolytically processed into 16 non-structural proteins (Nsp1-16). Then, the genome encodes four structural proteins—spike (S), envelope (E), membrane (M), and nucleocapsid (N)—with nine putative accessory factors encoded between them. Compared with SARS-CoV, the genome organization of SARS-CoV-2 shows few differences in the ORFs and Nsps. The main differences between the two are concentrated in just ORF3b, ORF8, ORF10, and spike (Chen et al., 2020; Chellapandi and Saranya, 2020; Gordon et al., 2020; Hu et al., 2020).

Genomic Products

Non-structural Gene Products

Viruses express their genome products by hijacking the host’s translation machinery. The large ORF1a/b are initially translated into polyproteins (pp1a, pp1ab) and then auto-proteolytically processed into 16 non-structural proteins (Nsps) that possess specific and essential roles in the viral life cycle. Due to their almost identical sequences in many of the genomic products, the functions and roles of gene products of SARS-CoV-2 are predicted with confidence based on previous extensive studies on those of SARS-CoV. Nsp1 is predicted to be a host translation inhibitor that forms interaction with the 40S ribosomes of the host and induces host mRNA degradation (Kamitani et al., 2006; Narayan et al., 2008; Tohya et al., 2009; Huang et al., 2011). Nsp3, known as papain-like protease (PLpro), is the largest multi-domain protein produced by CoVs and acts as a scaffold protein to interact with itself and to bind to other viral Nsps or host proteins; for example, Nsp3, Nsp4, and Nsp6 form a complex and are involved in viral replication (von Brunn et al., 2007; Imbert et al., 2008; Pfefferle et al., 2011; Chen et al., 2014; Ma-Lauer et al., 2016; Lei et al., 2018). Nsp5, also named main protease (Mpro), or 3C-like protease (3CLpro), is a cysteine protease that can cleave the polyproteins at 11 sites and plays a vital role for the viral replication (Chou et al., 2003; Yin et al., 2007; Pfefferle et al., 2011; Chellapandi and Saranya, 2020). Interestingly, Nsp3 and Nsp5 divide the important work to complete the cleavage of the polyproteins: the former cleaves Nsp1–Nsp3, while the latter cleaves Nsp4–Nsp16 (Anand et al., 2003; Stadler et al., 2003; Prentice et al., 2004). Hence, these two proteases are considered as important targets for the design and development of anti-CoV drugs. Nsp7-Nsp8 complex acts as a primase which assists Nsp12, the viral RNA-dependent RNA polymerase (RdRp), to complete RNA synthesis, and Nsp12, as a core enzyme for the viral RNA replication, is another popular drug target against CoVs (Imbert et al., 2006; te Velthuis et al., 2010; te Velthuis et al., 2012; Xiao et al., 2012; Kirchdoerfer and Ward, 2019). Nsp13, known as NTPase/helicase, is an enzyme of the SF1 family with NTP hydrolysis activity and is translocated along with the nucleic acids by hydrolyzing ATP to retain both dsRNA and dsDNA unwinding activities; it is also considered as an attractive target for anti-CoVs (Seybert et al., 2000; Tanner et al., 2003; Ivanov et al., 2004b; Lee et al., 2010; Adedjei et al., 2012). Nsp10, a critical co-factor for activation of multiple replicative enzymes, is known to interact with both Nsp14 and Nsp16, stimulating their respective 3′-5′ exoribonuclease (ExoN) and 2′-O-methyltransferase activities (Decroly et al., 2008; Lugari et al., 2010; Decroly et al., 2011; Bouvet et al., 2012; Bouvet et al., 2014). In addition to the N-terminal ExoN function, the C-terminal of Nsp14 serves as N7-methyltransferase (N7Tase) (Chen et al., 2009). Nsp15, known as uridylate-specific endoribonuclease (NendoU), cooperates with Nsp14 to finish the precise cleavage of the viral RNA genome (Ivanov et al., 2004a; Bhardwaj et al., 2006; Fehr and Perlman, 2015; Xu et al., 2020).

Structural Gene Products

Four structural proteins, spike (S), envelope (E), membrane (M), and nucleocapsid (N), are expressed in host cells and play crucial roles in the viral infestation, assembly, and release. The S protein of SARS-CoV-2, which contains an N-terminal S1 subunit (residue 14–685) and a C-terminal S2 region (residue 686–1273), is essential for the viral infestation by binding to the same cell surface receptor of SARS-CoV, angiotensin-converting enzyme 2 (ACE2) (Hoffmann et al., 2020; Ou et al., 2020). The S1 subunit contains a receptor-binding domain (RBD), which can bind to the peptidase domain (PD) of ACE2, and shares around 70% identity with SARS-CoV. On the other hand, the S2 subunit, which helps the viral envelope fuse with the cellular membranes, shares 99% identity with SARS-CoV (Chan et al., 2020; Chellapandi and Saranya, 2020; Hu et al., 2020; Wrapp et al., 2020). Due to the essential role in viral infestation, targeting the S protein is a promising strategy for developing a drug to fight against SARS-CoV-2 (Xia et al., 2019). The small E protein plays an essential role in virus assembly and release and is implicated in the induction of host apoptosis (Liu et al., 2007; Ruch and Machamer, 2012; Schoeman and Fielding, 2019). The M protein, which is the most abundant viral constituent and acts as a scaffold protein, controls the assembly of viral particles and ensures the correct morphology of the virion (Arndt et al., 2010; Siu et al., 2014; Fung and Liu, 2019). The N protein forms the viral nucleocapsid with the RNA genome and participates in the viral RNA synthesis (Hatakeyama et al., 2008; Chang et al., 2014; McBride et al., 2014).

Other Gene Products

Beyond the functional proteins, the viral genome controls the expression of nine accessory proteins, which are usually regarded as dispensable for replication or structure but play other not entirely clear roles in the viral life cycle. For example, product of ORF3a is the largest accessory protein to be efficiently expressed on the cell surface and acts as an ion channel that may promote virus release (Lu et al., 2006; Michel et al., 2020). Several studies have shown that various ORF3b proteins of bat SARS-related-CoV strains have different interferon antagonistic activities. However, ORF3b of SARS-CoV-2 encodes a novel protein with no homology to ORF3b of SARS-CoV, whose function has yet to be investigated (Kopecky-Bromberg et al., 2007; Zhou et al., 2012; Chan et al., 2020). ORF8 of SARS-CoV is one of the most rapidly evolving regions among SARS-CoV genomes and is related to the viral adaptation to humans following interspecies transmission and replication, while ORF8 of SARS-CoV-2 is distant from that of known CoVs.
Overall, accessory proteins have not been adequately studied due to their dispensable roles in viral replication or structure and the fact that ORFs are short and overlapping, posing a challenge for bioinformatic prediction. However, further studies of these accessory proteins may reveal the promise of these proteins in the diagnosis, treatment, and prevention of coronaviruses because of their unique roles.

VIRAL INVASION MECHANISMS

After SARS-CoV-2 enters the human body, it infects the host cells mainly through these processes: virus attachment and entry, genome replication and transcription, virion assembly, and release (Figure 2). These processes are accomplished through the interaction of the virus and the host cell.

Viral Attachment and Entry

Proteolytic activation of the S protein plays a crucial role in SARS-CoV-2 attachment to and entry into host cells. The following steps complete this process: 1) recognition of the S protein and binding it to the cellular receptor; 2) alteration of the conformation and proteolysis of the S protein; 3) activation of fusion of the virion and endocytosis (Pillay, 2020).

The first step, also regarded as the beginning of SARS-CoV-2 life cycle, is the interaction of the S protein with the cell surface receptor ACE2, in which the RBD located at the S1 subunit binds to the carboxypeptidase domain of ACE2. Then, this interaction triggers a dramatic conformational change in the S2 subunit, leading to exposure and cleavage of the cleavage site at the S2 subunit which can be processed by the host cellular proteases such as cell surface transmembrane protease serine 2 (TMPRSS2) (Hoffmann et al., 2020; Matsuyama et al., 2020; Ou et al., 2020). After proteolysis of the S protein, the virion begins to fuse with the host cell membrane and enter the host cell through endocytosis.

The cleavage of the S protein is significant for SARS-CoV-2 infection and can occur at two cleavage sites processed by different proteases. The first cleavage site located at the S2 subunit can be targeted by the host cellular proteases such as TMPRSS2, which has a crucial role in activating membrane fusion between the virus and the host cell. Similarly, TMPRSS4, another serine protease in the same family, plays a similar role to TMPRSS2 in SARS-CoV-2 infection. Furthermore, recent studies have shown that camostat mesylate, a selective inhibitor of TMPRSS, can inhibit SARS-CoV-2 infection (Hoffmann et al., 2020; Zang et al., 2020). In addition, some other host cell proteases, such as cathepsin L (CatL), can also proteolytically activate the S protein of SARS-CoV-2 and then
initiate the process of cellular entry (Ou et al., 2020). The second cleavage site is the furin cleavage site (Arg-Arg-Ala-Arg) between the S1 and S2 domains, common to other human CoVs like MERS-CoV but interestingly absent from SARS-CoV. The furin cleavage site can reduce the stability of the S protein and facilitate the conformational change required for RBD exposure and the subsequent binding to ACE2. Furin-like proteases are widely expressed in various cell types, especially in the respiratory tract, so the presence of the furin cleavage site in the S protein is thought to increase the infectivity of SARS-CoV-2 or alter its pathogenicity (Walls et al., 2020; Wrobel et al., 2020).

Genome Replication and Transcription

After the completion of virus attachment and entry, the nucleocapsid is released into the host cytoplasm; then, virus replication is initiated in the cytoplasm. The virus hijacks the ribosome of the host cell; this is followed by the translation and auto-proteolysis of the polyproteins pp1a and pp1ab into 16 Nsp, which altogether form the replicase-transcriptase complex (RTC) that controls the processes of replication and transcription. Mediated by RTC, the viral genomic RNA is replicated to full-length negative-sense (−)RNA; then, the (−)RNA is used as a template to synthesize new genomic (+)RNA and a series of different sgRNAs, the latter of which are translated into viral structural and accessory proteins (Ziebuhr, 2005; Masters, 2006).

Virion Assembly and Release

When the base components are prepared, the virion assembly follows. First, the membrane-bound structural proteins, E, M, and S, are inserted into the endoplasmic reticulum (ER) and then transported to the ER-Golgi intermediate compartment (ERGIC). The N protein wraps the new genomic RNA to form a nucleocapsid, which then transits to ERGIC. The nucleocapsid and membrane-bound components coalesce to assemble virion mediated by the M protein in ERGIC. Finally, progeny virions are transported to the plasma membrane in smooth-walled vesicles and released by exocytosis (Masters, 2006; Fung and Liu, 2019; Russo et al., 2020).

ANTI-COV BIOACTIVE MOLECULES TARGETING DIFFERENT PROTEINS

In the previous sections, we have described fundamental biological information of SARS-CoV-2, the vast majority of which is conserved among other known coronaviruses especially SARS-CoV. In this dire SARS-CoV-2 pandemic with no effective drug, screening natural bioactive molecules from natural products with known anti-CoV activity can significantly accelerate the development of effective drugs against SARS-CoV-2. In this section, we will summarize natural bioactive molecules that have been reported to exhibit anti-CoV activity targeting different viral proteins, including several crucial viral and host proteins. As natural agents against SARS-CoV are the most widely reported, we will mainly focus on natural bioactive molecules found in SARS-CoV studies and introduce a few natural inhibitors against MERS-CoV or SARS-CoV-2. The description of these natural bioactive molecules will be developed according to their different targets.

Viral Proteins

Viral Proteases

During the replication of the virus, PI$_{pro}$ and 3CL$_{pro}$ are responsible for the cleavage of the polyproteins; as a result, they are considered as the most popular targets for the design and development of anti-CoV drugs. Many synthetic compounds targeting these proteases have been reported, such as rupintrivir, lopinavir, and ritonavir. Due to the inherent peptidase activity, a lot of work has been done in designing peptidomimetic inhibitors for these proteases, which will not be discussed here in detail (Hu et al., 2020; Christy et al., 2021). Furthermore, many natural bioactive molecules, mostly flavonoids, have also been shown to inhibit PI$_{pro}$ and 3CL$_{pro}$ (Figure 3; Table 1).

Among the natural products studied for their activity against SARS-CoV, the largest number of bioactive molecules has been reported to have 3CL$_{pro}$ inhibitory activity (I, Figure 3A). Lin et al. used cell-free and cell-based cleavage assays to study anti-SARS-CoV 3CL$_{pro}$ activities of *Isatis tinctoria* L. root extract, five major compounds of *Isatis tinctoria* L. root, and seven plant-derived phenolic compounds. Their study showed that *Isatis tinctoria* L. root extract (1), indigo (2), sinigrin (3), aloemodin (4), and hesperetin (5) exhibited significant inhibitory activity against SARS-CoV 3CL$_{pro}$ in the micromolar range. In particular, hesperetin showed the best activity among these compounds and dose-dependently inhibited cleavage activity of SARS-CoV 3CL$_{pro}$ with IC$_{50}$ values of 60.00 and 8.30 μM in cell-free and cell-based cleavage assays, respectively (Lin et al., 2005). Interestingly, although quercetin was reported to have anti-SARS-CoV activity, it did not show anti-3CL$_{pro}$ activity in this study (Yi et al., 2004; Lin et al., 2005). However, in several subsequent studies, quercetin showed inhibitory activity against SARS-CoV 3CL$_{pro}$ or was used as a positive control. A natural glycoside derivative of quercetin, quercetin-3-β-galactoside (6), was shown to block the cleavage activity of SARS-CoV 3CL$_{pro}$ with an IC$_{50}$ of 42.76 μM. Through molecular modeling and Q189A mutation of 3CL pro, Gln189 was identified as an important amino acid residue that played a vital role in quercetin-3-β-galactoside binding to 3CL$_{pro}$. The Q186A mutation did not change the enzymatic activity of 3CL$_{pro}$, while the SPR and FRET assay results showed that both the binding affinity and the inhibitory potency of quercetin-3-β-galactoside to the mutated 3CL$_{pro}$ were significantly lower than those to the wild-type 3CL$_{pro}$ (Chen et al., 2006). Ryu et al. implemented FRET assay to evaluate the anti-SARS-CoV 3CL$_{pro}$ activity of 12 compounds extracted from *Torreya nucifera* (L.) Siebold & Zucc., including eight diterpenoids and four flavonoids, and abietic acid (15, IC$_{50}$ = 58.00 μM), apigenin (20, IC$_{50}$ = 280.80 μM), luteolin (21, IC$_{50}$ = 20.20 μM), and quercetin (22, IC$_{50}$ = 23.80 μM) were used as positive control compounds. Among these 12 compounds, the biflavone amentoflavone (16) showed the most potent 3CL$_{pro}$ inhibitory effect with an IC$_{50}$ of 8.30 μM (Ryu et al., 2010a). In another study, the anti-3CL$_{pro}$ activities of seven flavonoid compounds were evaluated by *in vitro* 3CL$_{pro}$ inhibition and kinetic assays,
FIGURE 3 | Chemical structure of different natural compounds targeting (A) 3CLpro, (B) both 3CLpro and PLpro, and (C) PLpro. Quercetin-3-β-galactoside (6), quercetin (22), curcumin (31), and kaempferol (57) inhibit both 3CLpro and PLpro but are not repeatedly displayed in (B).
No	Viral strain	Compound	IC50 (μM)	Target	References
1	SARS-CoV	L. tinctoriaia L. root extract	53.80 µg/ml	3CLpro	Lin et al. (2005)
2	SARS-CoV	Indigo	300.00 µM	3CLpro	Lin et al. (2005)
3	SARS-CoV	Singrin	121.00 µM	3CLpro	Lin et al. (2005)
4	SARS-CoV	Aloe emodin	132.00 µM	3CLpro	Lin et al. (2005)
5	SARS-CoV	Hesperetin	60.00 µM	3CLpro	Lin et al. (2005)
6	SARS-CoV	Quercetin-3-O-galactoside	42.79 µM	3CLpro	Chen et al. (2006)
7	SARS-CoV	18-Hydroxyferruginol	45.80 µM	3CLpro	Ryu et al. (2010a)
8	SARS-CoV	Honokiol	39.10 µM	3CLpro	Ryu et al. (2010a)
9	SARS-CoV	Ferruginol	92.70 µM	3CLpro	Ryu et al. (2010a)
10	SARS-CoV	18-Oxoferruginol	70.50 µM	3CLpro	Ryu et al. (2010a)
11	SARS-CoV	O-acetyl-18-hydroxyferruginol	78.60 µM	3CLpro	Ryu et al. (2010a)
12	SARS-CoV	Methyl dehydroabietaate	46.70 µM	3CLpro	Ryu et al. (2010a)
13	SARS-CoV	Isoflavonic acid	28.90 µM	3CLpro	Ryu et al. (2010a)
14	SARS-CoV	Kayadil	7.50 µM	3CLpro	Ryu et al. (2010a)
15	SARS-CoV	Abietic acid	58.00 µM	3CLpro	Ryu et al. (2010a)
16	SARS-CoV	Amentoflavanone	8.30 µM	3CLpro	Ryu et al. (2010a)
17	SARS-CoV	Bilobetin	72.30 µM	3CLpro	Ryu et al. (2010a)
18	SARS-CoV	Ginkgetin	32.00 µM	3CLpro	Ryu et al. (2010a)
19	SARS-CoV	Sciadopitysin	38.40 µM	3CLpro	Ryu et al. (2010a)
20	SARS-CoV	Apigenin	280.80 µM	3CLpro	Ryu et al. (2010a)
21	SARS-CoV	Luteolin	20.20 µM	3CLpro	Ryu et al. (2010a)
22	SARS-CoV	Quercetin	23.80 µM	3CLpro	Ryu et al. (2010a)
23	SARS-CoV	Quercetin	73.00 µM	3CLpro	Nguyen et al. (2012)
24	SARS-CoV	Epigallocatechin gallate	73.00 µM	3CLpro	Nguyen et al. (2012)
25	SARS-CoV	Gallicatechin gallate	47.00 µM	3CLpro	Nguyen et al. (2012)
26	SARS-CoV	Tannic acid	3.00 µM	3CLpro	Chen et al. (2005)
27	SARS-CoV	3-Isorhamnetin-3-gallate (TF2B)	7.00 µM	3CLpro	Chen et al. (2005)
28	SARS-CoV	Theaflavin-3,3′-digallate (TF3)	9.50 µM	3CLpro	Chen et al. (2005)
29	SARS-CoV	Betulic acid	10.00 µM	3CLpro	Wen et al. (2007)
30	SARS-CoV	Savinin	25.00 µM	3CLpro	Wen et al. (2007)
31	SARS-CoV	Curcumin	40.00 µM	3CLpro	Wen et al. (2007)
32	SARS-CoV	Curcumin	23.50 µM	3CLpro	Ryu et al. (2010b)
33	SARS-CoV	Celastrol	10.30 µM	3CLpro	Ryu et al. (2010b)
34	SARS-CoV	Pristimerin	5.50 µM	3CLpro	Ryu et al. (2010b)
35	SARS-CoV	Tingenone	9.90 µM	3CLpro	Ryu et al. (2010b)
36	SARS-CoV	Igeisterin	2.60 µM	3CLpro	Ryu et al. (2010b)
37	SARS-CoV	Rheum palmatum L. extract (RH121)	13.76 µg/ml	3CLpro	Luo et al. (2009)
38	SARS-CoV	Herbacetin	33.17 µM	3CLpro	Jo et al. (2020)
39	SARS-CoV	Rhatolin	27.45 µM	3CLpro	Jo et al. (2020)
40	SARS-CoV	Pectolinarin	37.78 µM	3CLpro	Jo et al. (2020)
41	SARS-CoV	Herbacetin	40.59 µM	3CLpro	Jo et al. (2019)
42	SARS-CoV	Isobavachalcone	35.85 µM	3CLpro	Jo et al. (2019)
43	SARS-CoV	Quercetin-3-O-D-glucoside	37.03 µM	3CLpro	Jo et al. (2019)
44	SARS-CoV	Pisoneretin	67.04 µM	3CLpro	Jo et al. (2019)
45	SARS-CoV	Quercetin	5.47 µM	3CLpro	Jo et al. (2019)
46	SARS-CoV	Kaempferol	4.10 µM	3CLpro	Shi et al. (2020)
47	SARS-CoV	Hematoporphyrin	3.90 µM	3CLpro	Shi et al. (2020)
48	SARS-CoV	Andrographolide	15.05 µM	3CLpro	Shi et al. (2020)
49	SARS-CoV	Δ6-Tetrahydrocannabinol	10.25 µM (antiviral activity)	3CLpro	Raj et al. (2021)
50	SARS-CoV	Cannabidiol	7.91 µM (antiviral activity)	3CLpro	Raj et al. (2021)
51	SARS-CoV	Kaempferol	34.46 µM (antiviral activity)	3CLpro	Khan et al. (2021)
52	SARS-CoV	Hirsutenone	36.20 µM	3CLpro	Park et al. (2012b)
53	SARS-CoV	3CLpro	4.10 µM	3CLpro	Park et al. (2012b)

(Continued on following page)
TABLE 1 (Continued) Natural compounds targeting viral proteins: 3CL\(_{\text{pro}}\) (I), PL\(_{\text{pro}}\) (II), RdRp (III), NTPase/helicase (IV), S protein (V), and N protein (VI).

No	Viral strain	Compound	IC\(_{50}\)/EC\(_{50}\)	Target	References
58	SARS-CoV	Hirsutanonol	105.60 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2012b)
59	SARS-CoV	Oregonin	129.50 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2012b)
60	SARS-CoV	Rubranol	144.60 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2012b)
61	SARS-CoV	Rubranoside B	105.30 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2012b)
62	SARS-CoV	Rubranoside A	102.10 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2012b)
63	SARS-CoV	Curcumin	5.70 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2012b)
64	SARS-CoV	Tanshinone IIA	89.10 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2012c)
65	SARS-CoV	Methyl tanshinonate	21.10 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2012c)
66	SARS-CoV	Cryptotanshinone	226.70 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2012c)
67	SARS-CoV	Tanshinone I	38.70 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2012c)
68	SARS-CoV	Dihydrotanshinone I	14.40 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2012c)
69	SARS-CoV	Rosmariquinone	21.10 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2012c)
70	SARS-CoV	Isobavachalcone	39.40 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2016)
71	SARS-CoV	4-Hydroxyderricin	81.40 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2016)
72	SARS-CoV	Xanthoangelol	38.40 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2016)
73	SARS-CoV	Xanthoangelol F	34.10 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2016)
74	SARS-CoV	Xanthoangelol D	5.60 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2016)
75	SARS-CoV	Xanthoangelol E	19.30 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2016)
76	SARS-CoV	Xanthoangelol B	11.70 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2016)
77	SARS-CoV	Xanthoangelol G	129.80 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2016)
78	SARS-CoV	Xanthoangelol A	44.10 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2016)
79	SARS-CoV	Broussochalcone B	57.80 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2017)
80	SARS-CoV	Broussochalcone A	88.10 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2017)
81	SARS-CoV	4-Hydroxyisolonchocarpin	202.70 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2017)
82	SARS-CoV	Papyriflavonol A	103.60 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2017)
83	SARS-CoV	3'-3-(3-Methylbut-2-enyl)-3',4,7-trihydroxyflavane	30.20 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2017)
84	SARS-CoV	Kazinol A	84.80 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2017)
85	SARS-CoV	Kazinol B	233.30 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2017)
86	SARS-CoV	Broussoflavan A	92.40 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2017)
87	SARS-CoV	Kazinol F	43.30 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2017)
88	SARS-CoV	Kazinol J	64.20 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2017)
89	SARS-CoV	Isoliquiritigenin	61.90 \(\mu\)M	3CL\(_{\text{pro}}\)	Park et al. (2017)

(Continued on following page)
TABLE 1 | (Continued) Natural compounds targeting viral proteins: 3CLpro (I), PLpro (II), RdRp (III), NTPase/helicase (IV), S protein (V), and N protein (VI).

No	Viral strain	Compound	IC\textsubscript{50}/EC\textsubscript{50}	Target	References
56	SARS-CoV	Kaempferol	116.30 µM	3CLpro	Park et al. (2017)
22	SARS-CoV	Quercetin	16.30 µM	PLpro	Park et al. (2017)
6	SARS-CoV	Quercetin-3-β-galactoside	52.70 µM	3CLpro	Park et al. (2017)
90	SARS-CoV-2	Ginkgolic acid	128.80 µM	3CLpro	Park et al. (2017)
91	SARS-CoV-2	Anacardic acid	122 SARS-CoV	3CLpro	Park et al. (2017)
92	SARS-CoV	N-trans-cafeoyltyramine	4.60 µM	3CLpro	Park et al. (2017)
93	SARS-CoV	N-trans-caumaryltyramine	5.00 µM	3CLpro	Park et al. (2017)
94	SARS-CoV	N-trans-feruloyltyramine	21.50 µM	3CLpro	Park et al. (2017)
95	SARS-CoV	Terrestramide	2.60 µM	3CLpro	Park et al. (2017)
96	SARS-CoV	Terrestramine	12.70 µM	3CLpro	Park et al. (2017)
98	SARS-CoV	Tomentin A	6.20 µM	3CLpro	Park et al. (2017)
99	SARS-CoV	Tomentin B	6.10 µM	3CLpro	Park et al. (2017)
100	SARS-CoV	Tomentin C	11.60 µM	3CLpro	Park et al. (2017)
102	SARS-CoV-2	Tomentin D	12.50 µM	3CLpro	Park et al. (2017)
103	SARS-CoV-2	Tomentin E	5.00 µM	3CLpro	Park et al. (2017)
104	SARS-CoV-2	Tomentin F	9.50 µM	3CLpro	Park et al. (2017)
106	SARS-CoV-2	Tomentin G	12.70 µM	3CLpro	Park et al. (2017)
107	SARS-CoV-2	Tomentin H	14.40 µM	3CLpro	Park et al. (2017)
108	SARS-CoV-2	Tomentin I	10.40 µM	3CLpro	Park et al. (2017)
109	SARS-CoV-2	Tomentin J	13.90 µM	3CLpro	Park et al. (2017)
110	SARS-CoV-2	Tomentin K	38.40 µM	3CLpro	Park et al. (2017)
111	SARS-CoV-2	Tomentin L	18.30 µM	3CLpro	Park et al. (2017)
112	SARS-CoV-2	Tomentin M	7.30 µM	3CLpro	Park et al. (2017)
113	SARS-CoV-2	Tomentin N	10.10 µM	3CLpro	Park et al. (2017)
114	SARS-CoV-2	Tomentin O	4.20 µM	3CLpro	Park et al. (2017)
115	SARS-CoV-2	Tomentin P	3.22 µM	3CLpro	Park et al. (2017)
116	SARS-CoV-2	Tomentin Q	4.71 µM	3CLpro	Park et al. (2017)
117	SARS-CoV-2	Tomentin R	251.10 µg/ml	RdRp	Fung et al. (2011)
118	SARS-CoV-2	Tomentin S	41.90 µg/ml	RdRp	Fung et al. (2011)
119	SARS-CoV-2	Tomentin T	108.40 µg/ml	RdRp	Fung et al. (2011)
120	SARS-CoV-2	Tomentin U	198.60 µg/ml	RdRp	Fung et al. (2011)
22	SARS-CoV-2	Quercetin	8.10 µM	NTPase/helicase	Lee et al. (2009b)
121	SARS-CoV-2	Quercetin	2.71 µM	NTPase/helicase	Yu et al. (2012)
122	SARS-CoV-2	Quercetin	0.86 µM	NTPase/helicase	Yu et al. (2012)
123	SARS-CoV-2	Quercetin	4.50 nM (antiviral activity)	S protein	Yi et al. (2004)
21	SARS-CoV-2	Lysozyme	10.60 µM (antiviral activity)	S protein	Yi et al. (2004)
24	SARS-CoV-2	Lysozyme	200.00 µM (antiviral activity)	S protein	Ho et al. (2007)
125	SARS-CoV-2	Sabinin	48–94 nM (antiviral activity)	S protein	O’Keefe et al. (2010)
126	SARS-CoV-2	Sabinin	0.60–2.60 µg/ml (antiviral activity)	S protein	Kurumi et al. (2011)
127	SARS-CoV-2	Sabinin	1.81 µM	N protein	Roht (2012)
128	SARS-CoV-2	Sabinin	0.05 µg/ml	N protein	Roht (2012)

among which quercetin (22), epigallocatechin gallate (23), and galloecatechin gallate (24) showed inhibitory effects on SARS-CoV 3CLpro with IC\textsubscript{50} values of 73.00, 73.00, and 47.00 µM, respectively (Nguyen et al., 2012). Through screening a natural product library consisting of 720 compounds and evaluating extracts of several types of tea, including green tea, oolong tea, Puer tea, and black tea, three natural products—tannic acid (25, IC\textsubscript{50} = 3.00 µM), 3-isodeflavin-3-gallate (26, IC\textsubscript{50} = 7.00 µM), and theaflavin-3, 3′-digallate (27, IC\textsubscript{50} = 9.50 µM)—were found to be SARS-CoV 3CLpro inhibitors (Chen et al., 2005). Wen et al. evaluated the anti-SARS-CoV activity of 221 phytocompounds using a cell-based assay measuring SARS-CoV-induced cytopathogenic effect on Vero E6 cells and found that 22 compounds were potent inhibitors at concentrations between 3.30 and 10.00 µM. Of these, betulinic acid (28), savinin (29), and curcumin (30) displayed potent inhibition toward 3CLpro with IC\textsubscript{50} values of 10.00, 25.00, and 40.00 µM, respectively, and the first two blocked the cleavage activity of the 3CLpro by
competitive inhibition (Wen et al., 2007). Curcumin (30, IC₅₀ = 23.50 μM) was used as a positive control in another study which reported that four quinone-methide triterpene derivatives isolated from *Tripterygium wilfordii* Hook. f., namely, celastrol (31), pristimerin (32), tingenone (33), and iguesterin (34), were identified as inhibitors of SARS-CoV 3CLₚₒᵣᵢ with IC₅₀ values of 33.17, 27.45, and 2020. Andrographis paniculata L. showed high inhibitory activity against SARS-CoV 3CLₚₒᵣᵢ in *in vitro* assay. The most active among them, RH121 (35), had an IC₅₀ of 13.76 μg/mL, and the inhibition rate was up to 96% (Luo et al., 2009). Jo et al. applied a flavonoid library to screen and identify herbacetin (36), rhoifolin (37), and pectolinarin (38) as prominent inhibitors blocking the activity of SARS-CoV 3CLₚₒᵣᵢ with IC₅₀ values of 33.17, 27.45, and 37.78 μM, respectively (Jo et al., 2020). In addition, the same author reported that herbacetin (36), isobavachalcone (39), quercetin-3-β-D-glucoside (40), and helichrysin (41) were inhibitors against MERS-CoV 3CLₚₒᵣᵢ with IC₅₀ values of 40.59, 35.85, 37.03, and 67.04 μM, respectively (Jo et al., 2019).

With the SARS-CoV-2 outbreak, a lot of effort has been devoted to the discovery of natural bioactive molecules against SARS-CoV-2. Quercetin (22), a well-known flavonoid reported as an anti-SARS-CoV natural product, was identified to inhibit 3CLₚₒᵣᵢ of SARS-CoV-2 with an inhibition constant K_i of 7.00 μM in an experimental screening of a small chemical library (Abian et al., 2020). Shuanghuanglian preparation is a traditional Chinese medicine with a long history in treating respiratory tract infection in China, and it received widespread attention after the SARS-CoV-2 pandemic. Su et al. recently reported that the oral liquid of Shuanghuanglian, the lyophilized powder of Shuanghuanglian for injection, and their lyophilized products, namely, isoliquiritigenin (54) and cannabidiol (55) as effective agents against SARS-CoV-2 with IC₅₀ values of 10.25 and 7.91 μM. Molecular dynamic simulation and density functional theory showed the two compounds formed stable conformations with the active binding pocket of SARS-CoV-2 3CLₚₒᵣᵢ (Raj et al., 2021). Khan et al. employed similar approaches and reported that kaempferol (56) had an anti-SARS-CoV-2 activity with an IC₅₀ value of 34.46 μM in *in vitro* assay and targeted SARS-CoV-2 3CLₚₒᵣᵢ (Khan et al., 2021).

Another protease, PLₚᵣₒᵢ, is also regarded as an ideal anti-CoV drug target, and a lot of natural inhibitors targeting this protease have been reported (II, Figure 2). Among these bioactive molecules, some have inhibitory activity against both PLₚᵣₒᵢ and 3CLₚₒᵣᵢ, although most are also somewhat selective (Figure 3B). Park et al. published several excellent articles reporting a range of natural bioactive molecules that inhibited both PLₚᵣₒᵢ and 3CLₚₒᵣᵢ (Park et al., 2012b; Park et al., 2012c; Park et al., 2016; Park et al., 2017). In 2012, they reported nine diarylethannoids from *Alnus japonica* (Thunb.) Steud. and evaluated their inhibitory activities against SARS-CoV PLₚᵣₒᵢ and 3CLₚₒᵣᵢ using *in vitro* assays, and six of these compounds selectively exhibited stronger inhibitory activities against PLₚᵣₒᵢ than 3CLₚₒᵣᵢ. Hirsutenede (57) displayed the most potent PLₚᵣₒᵢ inhibitory activity with an IC₅₀ value of 4.10 μM, similar to positive control curcumin (30, IC₅₀ = 5.70 μM) (Park et al., 2012b). They reported that seven tanshinones derived from *Salvia miltiorrhiza* Bunge exhibited excellent inhibitory activities against both PLₚᵣₒᵢ and 3CLₚₒᵣᵢ of SARS-CoV in the same year. Nevertheless, these extract components showed stronger activities against PLₚᵣₒᵢ than 3CLₚₒᵣᵢ, of which cryptoptashinone (66) had the lowest IC₅₀ value of 0.80 μM against SARS-CoV PLₚᵣₒᵢ (Park et al., 2012c). Using cell-free and cell-based assays, the inhibitory activities of 13 constituents from *Angelica keiskei* (Miq.) Koidz. against SARS-CoV proteases were determined, which showed that chalcones were potent inhibitors against PLₚᵣₒᵢ and 3CLₚₒᵣᵢ of SARS-CoV. Among them, xanthoangelol E (75) exhibited the most potent inhibitory activities against PLₚᵣₒᵢ and 3CLₚₒᵣᵢ with IC₅₀ values of 1.20 and 11.40 μM (Park et al., 2016). Moreover, 10 polyphenols from *Broussonetia papyrifera* (L.) L’Hér. ex Vent. and four natural products, namely, isoquistiretinigenin (89), kaempferol (56), quercetin (22), and quercetin-β-galactoside (6), were identified as inhibitors against both PLₚᵣₒᵢ and 3CLₚₒᵣᵢ of SARS-CoV or MERS-CoV. Similar to their previous studies, all bioactive molecules were more potent against PLₚᵣₒᵢ than 3CLₚₒᵣᵢ. The most potent inhibitor was papyriflavanol A (82), which presented anti-SARS-CoV PLₚᵣₒᵢ activity with an IC₅₀ of 3.70 μM (Park et al., 2017). In addition to these excellent studies of this team, Chen et al. recently reported ginkgolic acid (90) and anacardic acid (91) as potent covalent inhibitors of both PLₚᵣₒᵢ and 3CLₚₒᵣᵢ of SARS-CoV-2, and the two compounds showed inhibitory activities against SARS-CoV-2 replication *in vitro* at non-toxic concentrations (Chen et al., 2021).
Some other studies only reported on natural bioactive molecules that inhibited PL_{pro} (Figure 3C). Six cinnamic amides derived from Tribulus terrestris L. fruits exhibited inhibitory activities against SARS-CoV PL_{pro}, of which terestrimine (97) was the most potent inhibitor with an IC₅₀ of 15.80 μM (Song et al., 2014). Cho et al. isolated 12 compounds from Paulownia tomentosa (Thunb.) Steud. fruits, including 5 novel geranylated flavonoid derivatives containing an unusual 3,4-dihydro-2H-pyran moiety. All derived components dose-dependently inhibited PL_{pro} with an IC₅₀ range of 5.00–14.40 μM, and the 3,4-dihydro-2H-pyran moiety allowed them to inhibit PL_{pro} more strongly, especially tomentinin E (102) with an IC₅₀ of 5.00 μM (Cho et al., 2013). Moreover, six aromatic compounds from Psoralea corylifolia (L.) seeds were identified as potent inhibitors against SARS-CoV PL_{pro}. Of these bioactive molecules, isobavachalcone (112, IC₅₀ = 7.30 μM) and psoraladin (114, IC₅₀ = 4.2 μM) were the two most promising compounds that inhibit PL_{pro} by reversible mixed type I mechanisms, which meant that the compounds preferred to interact with the free enzyme as opposed to the enzyme-substrate complex (Kim et al., 2014).

Replicase-Transcriptase Complex Proteins

As previously described, the RTC plays a dominant role in generating new genomic and sgRNAs, which are responsible for synthesizing various components of new viruses. RdRp is the core component of RTC and has been considered as an attractive drug target. Despite the development of several well-known drug molecules, such as remdesivir, ribavirin, and favipiravir, as RdRp inhibitors, a few studies have reported natural biomolecular inhibitors against RdRp (III, Table 1). Fung et al. reported a randomized, double-blind, placebo-controlled clinical trial result of a Chinese herbal formula named Kwan Du Bu Fei Dang (KDBFD), thought to be a potent anti-SARS-CoV agent. Further, they determined the anti-RdRp activities of KDBFD extract (116) and the extracts of other four traditional Chinese medicines, namely, Houttuynia cordata Thunb. extract (117), Ganoderma lucidum (Leyss. ex Fr.) Karst. extract (118), Coriolus versicolor (L. ex Fr.) Quel. extract (119), and Sinomenium acutum (Thunb.) Rehder & E. H. Wilson extract (120). The research indicated that these extracts all inhibited SARS-CoV RdRp in a dose-dependent manner with IC₅₀ values ranging between 41.90 and 471.30 μg/ml (Fung et al., 2011).

NTPase/helicase is also essential for viral replication and represents a potential target against coronaviruses. Several flavonoids were determined as inhibitors of NTPase/helicase (IV, Figure 4). Quercetin (22) was reported in several studies as an effective anti-SARS-CoV agent, and, as previously mentioned, it showed potent inhibitory activities against several targets of interest. Lee et al. investigated aryl diketoacids and its biosisostere dihydroxychromone derivatives to reveal the structure activity relationship of such compounds to selectively inhibit the duplex DNA-unwinding activity of SARS-CoV NTPase/helicase. In their study, quercetin (22, IC₅₀ = 8.10 μM) was indicated to selectively inhibit the duplex DNA-unwinding activity in the micromolar range (Lee et al., 2009a; Lee et al., 2009b). What is more, this team introduced arylmethyl substituent at the 7-OH position of quercetin by chemical synthesis, resulting in a significant increase in inhibitory activity against SARS-CoV helicase. Of these, 4-CIPhCH₂, 3-CIPhCH₂, and 3-CNPhCH₂ derivatives exhibited inhibitory activity against helicase with an IC₅₀ range of 2.70–5.20 μM (Park et al., 2012a). However, another two flavonoids, myricetin (121) and scutellarein (122), were also reported to inhibit SARS-CoV Nsp13 by affecting its ATPase activity, not the unwinding activity, with IC₅₀ values of 2.71 and 0.86 μM, respectively.

Structural Proteins

Structural proteins are essential for viral morphology and life activities. Among the four structural proteins, the S protein is the most prominent potential target for anti-CoV drugs, because of its crucial role in virus attachment and entry through specific binding to the cellular receptor as well as conformational changes and proteolysis. Several natural products have been reported to exhibit anti-SARS-CoV activities by inhibiting the activity of the S protein or interfering with its interaction with ACE2 (V, Figure 5). Using frontal affinity chromatography-mass spectrometry (FAC/MS) and pseudotyped virus infection assay, Yi et al. screened 121 herbs used in traditional Chinese medicine and identified tetra-O-galloyl-β-d-glucose (TGG, 123) and luteolin (21), with significant affinity to the S2 protein (Asn733 to Asp734; Glu1190 of the SARS-CoV S protein), as agents against SARS-CoV with EC₅₀ values of 4.50 and 10.60 μM, respectively (Yi et al., 2004). Emodin (124), a bioactive component from Rheum officinale Baill. and Polygonum multiflorum Thunb., was reported to significantly block the binding of the S protein to the S2 protein.

![FIGURE 4](image-url) | Chemical structure of different natural compounds targeting viral helicase (IV).
to ACE2 with an IC\textsubscript{50} of 200.00 μM as well as inhibit the infectivity of the S protein-pseudotyped retrovirus to Vero E6 cells (Ho et al., 2007). Natural lectins are a class of proteins with specific carbohydrate-binding activity as one or more non-catalytic structural domains can bind specifically and reversibly to monosaccharides or oligosaccharides. Because of the highly glycosylation on the S protein, lectins are considered as potential anti-CoV candidates (Mitchell et al., 2017). Griffithsin (GRFT, 125, PDB: 2GTY), a lectin isolated from the red algae Griffithsia sp., was identified as a broad-spectrum agent against coronaviruses such as SARS-CoV and MERS-CoV (O'Keefe et al., 2010; Millet et al., 2016). This 12.7 kDa protein was shown to possess three almost identical carbohydrate-binding domains, which allowed GRFT to bind to specific oligosaccharides on envelope glycoproteins and block viral entry (Ziolkowska et al., 2006; Ziolkowska et al., 2007).

Isothermal titration calorimetry (ITC) assay showed that GRFT binds to the S protein of SARS-CoV with a stoichiometry of 3:1 and a dissociation constant (K\textsubscript{D}) of 24.90 nM. However, it was shown that the binding of GRFT did not interfere with the interaction between the S protein and ACE2 but inhibited in vitro infection of distinct strains of SARS-CoV, including Urbani, Tor-II, CuHK, and Frank strains, with EC\textsubscript{50} values ranging between 48.00 and 94.00 nM (O'Keefe et al., 2010). *Urtica dioica* L. agglutinin (UDA, 126, PDB: 1EN2), an 8.7 kDa plant monomeric lectin, was reported to inhibit the viral replication of distinct strains of SARS-CoV with an IC\textsubscript{50} range of 0.60–2.60 μg/ml in Vero 76 cells. In this study, UDA was also found to inhibit SARS-CoV replication in a lethal SARS-CoV BALB/c mouse model and neutralize the virus infectivity by binding to the S protein (Kumaki et al., 2011). In addition, Kobophenol A (127), a bioactive molecule from *Caragana sinica* (Buc'hoz) Rehder, was recently identified as a potential inhibitor that hinders the interaction between the ACE2 and the S protein in vitro with an IC\textsubscript{50} of 1.81 μM and inhibits the viral infection of SARS-CoV-2 in cells with an EC\textsubscript{50} of 71.60 μM (Gangadevi et al., 2021).

The N protein plays a vital role in virion assembly by enveloping the entire genomic RNA and participating in viral RNA synthesis. The N protein is also a major pathological determinant in the host and is important for early virus detection and disease diagnosis. Due to its crucial role, the N protein is also considered an important anti-CoV target (VI, Figure 5). Using a quantum dots-conjugated RNA oligonucleotide system, which simulated the direct binding of the viral RNA to the N protein on a designed biochip, Roh et al. screened 23 polyphenolic compounds to investigate potential inhibitors of the SARS-CoV N protein. (-)-Catechin gallate (128) and (-)-gallocatechin gallate (24) were found to inhibit the N protein binding to the RNA oligonucleotide in a concentration-dependent manner at 0.005 μg/ml or more. At the 0.05 μg/ml concentration, these two compounds displayed more than 40% inhibitory activity on the designed biochip (Roh, 2012).

FIGURE 5 | Chemical structure of different natural compounds targeting structural proteins. The S protein (V): tetra-O-galloyl-β-D-glucose (TGG, 123), luteolin (21), emodin (124), griffithsin (125, PDB: 2GTY), *Urtica dioica* L. agglutinin (UDA, 126, PDB: 1EN2), and kobophenol A (127). The N protein (VI): (-)-catechin gallate (128) and (-)-gallocatechin gallate (24).
Host Proteins

During SARS-CoV-2 infection of human cells, some important host proteins play critical roles, including receptor ACE2 and proteases TMPRSS2/4, CatL, furin, etc. In the drug discovery against SARS-CoV-2, targeting viral proteins may be the most direct and effective strategy. However, the fact that viruses can develop drug resistance cannot be ignored. Therefore, targeting these relevant host proteins is another viable strategy. Of course, the safety of this strategy must be carefully considered and evaluated, while it is encouraging that these host proteins have been well studied as therapeutic targets for other diseases and many of the corresponding inhibitors are already in clinical use or under investigation. In the following sections, natural bioactive molecules targeting host proteins will be displayed according to their different targets.

ACE2

ACE2 is a type I integral membrane protein with a full length of 805 amino acids, including an N-terminal signal peptide sequence of 17 amino acids and a C-terminal membrane-
anchored region as well as a HEXXH-E zinc-binding consensus sequence (Gheblawi et al., 2020). ACE2 has multiple roles, including the negative regulator of the renin-angiotensin system, amino acid transporter, and cellular receptor of SARS-CoV and SARS-CoV-2 (Li et al., 2003; Turner et al., 2004; Hashimoto et al., 2012; Yan et al., 2020). As previously described, after SARS-CoV or SARS-CoV-2 invades the body, the S protein binds specifically to ACE2, thus initiating the viral recognition process and entry into the host cell. As a result, drugs that could inhibit or regulate the activity of ACE2 might be potential candidates against SARS-CoV-2. An abundance of natural bioactive molecules have been reported to affect the activity of ACE2 (VII, Figure 6 and Table 2). Several natural products extracted from the leaves of Ailanthus excelsa Roxb., including apigenin (20), luteolin (21), kaempferol-3-O-α-arabinopyranoside (129), kaempferol-3-O-β-galactopyranoside (130), quercetin-3-O-α-arabinopyranoside (131), and luteolin-7-O-β-glucopyranoside (132), were identified as ACE2 inhibitors with an IC\textsubscript{50} range of 260.00–320.00 μM \textit{in vitro} using ACE2 via Elbl and Wagner methods (Loizzo et al., 2007). However, in another study, apigenin (20) was found to up-regulate the expression of ACE2 in the kidney in spontaneously hypertensive rats (Sui et al., 2010). Takahashi et al. synthesized various internally quenched fluorogenic substrates based on the cleavage site of ACE2 and identified Nma-His-Pro-Lys(Dnp) as the most suitable substrate that could be hydrolyzed by recombinant human ACE2. Using the recombinant human ACE2 and Dnp, nicotianamine (133), isolated from Glycine max (L.) Merr., was identified as a novel ACE2 inhibitor with an IC\textsubscript{50} of 84.00 nM (Takahashi et al., 2015).

Host Proteases

Coronaviruses have evolved multiple strategies for the S protein hydrolysis, which has been reported to be involved in various host

![Chemical structure of different natural compounds targeting host proteases.](image-url)

FIGURE 7 | Chemical structure of different natural compounds targeting host proteases. TMPRSS2 (VIII): aprotinin (123, PDB: 1BPI), tannic acid (25), and celastrol (31). CatL (IX): leupeptin (135), gallinamide A (136), panduratin A (138), nicolaidesin C (138), and grassypeptolide A-C (139–141).
proteases, such as TMPRSS2/4, CatL, furin, and trypsin (Millet and Whittaker, 2015). Recently, some of them have been considered potential targets for anti-CoV drugs. In the following, we will present some natural bioactive molecules that have been reported to target TMPRSS2 or CatL for their essential roles in the S protein hydrolysis (Figure 7; Table 2).

TMPRSS2 is a type II transmembrane serine protease, which cleaves the S protein after its binding to ACE2, resulting in viral fusion to the cell membrane. Although TMPRSS2 plays an essential role, few natural molecules have been reported to inhibit the activity of TMPRSS2 (VIII, Figure 7). Aprotinin (134, PDB: 1BPI), a polypeptide consisting of 58 amino acid residues purified from bovine lung, was identified as a potential agent against TMPRSS2 (Shen et al., 2017). This polypeptide was shown to inhibit influenza virus replication by inhibiting serine proteases and suppressing the cleavage of influenza virus HA. In addition, it was shown to be effective in mice and human patients and has been approved in Russia as an aerosol for the treatment of patients with mild influenza infections (Ovcharenko and Zhirnov, 1994; Zhirnov et al., 2011). However, more studies are needed to prove its therapeutic activity in coronavirus infections. Tannic acid (25), with inhibitory activities against 3CLpro of both SARS-CoV and SARS-CoV-2 as mentioned above, was recently reported to bind to TMPRSS2 with a K_d of 1.77 μM and dose-dependently inhibit TMPRSS2 activity with an IC_{50} of 2.31 μM (Wang et al., 2020). Thus, tannic acid has the promising potential to be a dual inhibitor against SARS-CoV-2. Similarly, celastrol (34), a 3CLpro inhibitor, was found to inhibit TMPRSS2 activity. Considering its anti-inflammatory activity by suppressing NF-κB signaling, celastrol was recently suggested to be a promising drug for the treatment of COVID-19 (Wei and Wang, 2017; Shi et al., 2018; Fernandez-Quintela et al., 2020; Habtemariam et al., 2020).

In addition to TMPRSS2, an endosomal cysteine protease CatL can also hydrolyze and initiate the S protein activity, allowing the viral membrane fusion via endocytosis. Although CatL is considered dispensable for viral spread and pathogenesis in the infected host compared to TMPRSS2, a variety of natural products have been reported to inhibit this protease and are potential candidates for the treatment of COVID-19 (IX, Figure 7). A pulse-chase experiment in primary cultures of rat hepatocytes showed that the intracellular processing of CatL consisted of two main steps: synthesis of the 39 kDa proenzyme and maturation of the enzyme, in which the 39 kDa proenzyme was processed into 30 and 25 kDa active mature forms of CatL. Leupeptin (135), a non-covalent inhibitor of CatL reported by several early studies, could inhibit the maturation of CatL and lead to intracellular accumulation of the 39 kDa proenzyme (Salminen and Gottesman, 1990; Nishimura et al., 1995). Gallinamide A (136), isolated from cyanobacterium Schizothrix sp., is the most active natural CatL inhibitor reported to date. This bioactive molecule selectively and irreversibly inhibited CatL with an IC_{50} value of 5.00 nM (Miller et al., 2014). Panduratin A (137) and nicolaidesin C (138), two cyclohexenyl chalcone Diels–Alder natural products, were identified as potential CatL inhibitors with IC_{50} values of 1.50 and 1.00 μM, respectively (Deb Majumdar et al., 2011). Notably, in a recent high-content screening of Thai medicinal plants, panduratin A was identified as an agent against SARS-CoV-2 with an IC_{50} of 0.81 μM and exhibited 99.9% inhibitory activities against SARS-CoV-2 at 10.00 μM (Kanjanasirirat et al., 2020). Although the antiviral mechanism of panduratin A was not fully revealed, its inhibitory activity of CatL might explain this observation. In addition, Kwan et al. investigated the inhibitory activities of several natural products against proteases. Three bis-thiazoline containing cyclic depsipeptides from Lyngbya confervoides, grasseptolides A–C (139–141), were shown to inhibit several proteases, of which these compounds inhibited CatL with IC_{50} values of 14.00, 21.30, and 20.40 μM, respectively (Kwan et al., 2014).

Unknown Targets

In search of anti-CoV agents, many natural bioactive molecules with unknown targets have been reported (X, Figure 8 and Table 3). Such natural products, which will be partially but not exclusively listed in this section, possess significant anti-CoV activity with unclear targets and mechanisms. Although more studies are needed to unravel their mechanisms, they remain worthy candidates for the treatment of COVID-19. As the primary effective extract of the well-known phytomedicine liquorice, the antiviral activity of glycyrrhizin (142) has been widely reported (Li et al., 2014). The study of Cinatl et al. showed that glycyrrhizin exhibited anti-SARS-CoV activity by inhibiting the viral adsorption, penetration, and replication, and it was more effective when used after the viral adsorption and exhibited the most effective inhibitory activity (EC_{50} of 300 mg/L) when given both during and after the adsorption period (Cinatl et al., 2003). Furthermore, recent studies attempted to explain the antiviral mechanism of glycyrrhizin through pharmacological analysis and in silico methods and suggested a variety of possibilities, including binding to ACE2, downregulating proinflammatory cytokines, inhibiting the accumulation of intracellular reactive oxygen species (ROS), inhibiting thrombin, inhibiting the hyperproduction of airway exudates, and inducing endogenous interferon. Although still insufficient to reveal the exact mechanism, glycyrrhizin may remain a potentially effective agent for the treatment of COVID-19 (Bailly and Vergoten, 2020; Luo et al., 2020; Muhssein et al., 2020). Three widely used clinical natural drugs, reserpine (143), aescin (144), and valinomycin (145), derived from Rauwolfia serpentina (L.) Benth. ex Kurz, Aesculus hippocastanum L., and Streptomyces spp., respectively, were reported to inhibit SARS-CoV at micromolar concentration levels (Wu et al., 2004). Considering their excellent bioavailability and safety profile, these clinically approved drugs may be expected to be used directly for COVID-19 treatment. Lycorine (146), an alkaloid from the plants of Amaryllidaceae family, was an outstanding agent against SARS-CoV replication with an EC_{50} of 15.70 nM in a large in vitro screening and was also proven to inhibit SARS-CoV-2 (EC_{50} = 0.31 μM) in Vero E6 cells (Li et al., 2005; Zhang Y. -N. et al., 2020). Lycorine was reported to effectively inhibit several human coronaviruses, including HCoV-OC43, MERS-CoV, and HCoV-NL63, which suggested that lycorine might be
Recently, several screenings of natural products for anti-SARS-CoV-2 have been published. A recent study reported several clinically approved drugs as promising candidates for the treatment of COVID-19, including an alkaloid from the root of *Stephania japonica* (Thunb.) Miers, cepharanthine (CEP, 147), which is clinically used for leukopenia treatment. The study suggested that CEP could be a wide-spectrum inhibitor of pan-beta-coronavirus (Fan et al., 2020). Another cell-based large-scale screening identified 30 natural hits exhibiting suitable anti-SARS-CoV-2 activities with EC\textsubscript{50} values ranging between 0.011 and 11.03 \(\mu\)M. Among these hits, quassinoid derivative bruceine A (148) was the most potent agent with an EC\textsubscript{50} of 0.011 \(\mu\)M (Zhang Z.-R. et al., 2020). All of the above natural bioactive molecules have significant anti-CoV activity, and further investigation of their target proteins and mechanisms is of great significance for the development of anti-CoV drugs.

Conclusion and Future Prospect

Natural products have been used as a treasure trove of drug discovery for a long time. These structurally diverse molecules exert a wide range of pharmacological activities, including outstanding antiviral activity. Considerable efforts have been devoted to the development of anti-CoV drugs from natural products, especially in the context of the challenges the world’s public health faces, such as the outbreaks of SARS-CoV in 2003 and the current SARS-CoV-2. In order to provide a more systematic understanding of the research on the anti-CoV activity of natural products, we reviewed relevant studies to date, excluding *in silico* only studies, and summarized numerous natural bioactive molecules based on their protein targets. Most of these natural products are enumerated as inhibitors against SARS-CoV and SARS-CoV-2 and a few molecules that act on MERS-CoV. Among them, flavonoids, alkaloids, terpenoids, and lectins showed encouraging anti-CoV activity, which might provide a large number of promising candidates for the development of anti-CoV drugs and offer potential weapons against SARS-CoV-2 in the present dilemma.

Nonetheless, these studies are often fragmented, and the molecules involved are essentially ubiquitous and represent only a small fraction of the structurally diverse natural products. One corresponding recommendation is to adopt high-throughput screening (HTS) and high-content screening (HCS) to systematically explore natural product resources, especially traditional natural medicines, to discover natural bioactive molecules with excellent anti-CoV activity. In addition, numerous problems still exist, such as the unclear anti-CoV mechanisms, the safety

Table 3 Natural compounds with significant anti-CoV activity and without clear targets and mechanisms (X).

No	Viral strain	Compound	EC\textsubscript{50}	References
142	SARS-CoV	Glycyrrhizin	300.00 mg/L	Cinatl et al. (2003)
143	SARS-CoV	Reserpine	3.40 \(\mu\)M	Wu et al. (2004)
144	SARS-CoV	Aescin	6.00 \(\mu\)M	Wu et al. (2004)
145	SARS-CoV	Valinomycin	0.85 \(\mu\)M	Wu et al. (2004)
146	SARS-CoV	Lycorine	15.70 nM	Li et al. (2006)
146	SARS-CoV-2	Lycorine	0.31 \(\mu\)M	Fan et al. (2020)
147	SARS-CoV-2	Cepharanthine	0.98 \(\mu\)M	Fan et al. (2020)
148	SARS-CoV-2	Bruceine A	0.011 \(\mu\)M	Zhang Z.-R. et al. (2020)

Figure 8 Chemical structure of different natural compounds with significant antiviral activity and without clear targets and mechanisms.
issues of natural products, and the drug resistance of coronaviruses. Technologies of structural biology, including nuclear magnetic resonance (NMR), X-ray crystal diffraction, and cryo-electron microscopy (Cryo-EM), may help to better reveal the anti-CoV mechanisms and targets of effective agents. Researchers can enhance the anti-CoV activity and the safety of natural bioactive molecules through target-based structural modifications and comprehensive safety valuation. Furthermore, to effectively fight against coronaviruses, the combination of natural agents with different targets may be a viable strategy, and the synergy between natural bioactive molecules and conventional drugs should be studied in depth.

In conclusion, there is indeed a long and winding road ahead to develop a feasible anti-CoV drug from natural bioactive lead candidates, which will predictably continue to be invested with more efforts, especially in the current SARS-CoV-2 pandemic.

REFERENCES

Abian, O., Ortega-Alarcon, D., Jimenez-Alesanco, A., Ceballos-Laita, L., Vega, S., Rayburn, H. T., et al. (2020). Structural Stability of SARS-CoV-2 3CLpro and Identification of Quercetin as an Inhibitor by Experimental Screening. *Int. J. Biol. Macromolecules* 164, 1693–1703. doi:10.1016/j.ijbiomac.2020.07.235

Abedjai, A. O., Marchand, B., Te Velthuis, A. J. W., Snijder, E. J., Weiss, S., Eiff, R. L., et al. (2012). Mechanism of Nucleic Acid Unwinding by SARS-CoV Helicase. *PLoS One* 7 (5), e36521. doi:10.1371/journal.pone.0036521

Adnan, M., Alshammari, E., Ashraf, S. A., Patel, K., Lad, K., and Patel, M. (2018a). Physiological and Molecular Characterization of Biosurfactant Producing Endophytic FungXylaria Regalis from the Cones of Thuja Plicata as a Potent Plant Growth Promoter with its Potential Application. *Biomed. Res. Int.* 2018, 1–11. doi:10.1155/2018/7362148

Adnan, M., Patel, M., Deshpande, S., Alreshadi, M., Siddiqui, A. J., Reddy, M. N., et al. (2020). Effect of Adriamycin Phospholine Extract on Biofilm Formation, Adhesion with its Antibacterial Activities against Foodborne Pathogens, and Characterization of Bioactive Metabolites: An In Vitro-In Silico Approach. *Front. Microbiol.* 11, 823. doi:10.3389/fmicb.2020.00882

Adnan, M., Patel, M., Reddy, M. N., and Alshammari, E. (2018b). Formulation, Evaluation and Bioactive Potential of Xylaria Primorskensis Terpenoid Nanoparticles from its Major Compound Xylaranic Acid. *Sci. Rep.* 8 (1), 1740. doi:10.1038/s41598-018-22037-7

Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., and Hilgenfeld, R. (2003). Coronavirus Main Proteinase (3CLpro) Structure: Basis for Design of Anti-SARS Drugs. *Science* 300, 1763–1767. doi:10.1126/science.1085658

Arabi, Y. M., Bakhly, H. H., Hayden, F. G., Bouchama, A., Luke, T., Baillie, J. K., et al. (2017). Middle East Respiratory Syndrome. *N. Engl. J. Med.* 376 (6), 584–594. doi:10.1056/NEJMsr1408795

Arndt, A. L., Larson, B. J., and Hogue, B. G. (2010). A Conserved Domain in the Coronavirus Membrane Protein Tail Is Important for Virus Assembly. *J. Virol.* 84, 11418–11428. doi:10.1128/jvi.01131-10

Atanasov, A. G., Zotchev, S. B., Zotchev, S. B., Dirsch, V. M., and Supuran, C. T. (2021). Natural Products in Drug Discovery: Advances and Opportunities. *Nat. Rev. Drug Discov.* 20 (3), 200–216. doi:10.1038/s41573-020-00114-z

Bailly, C., and Vergoten, G. (2020). Gycyrrhizin: An Alternative Drug for the Treatment of COVID-19 Infection and the Associated Respiratory Syndrome? *Pharmacol. Ther.* 214, 107618. doi:10.1016/j.pharmthera.2020.107618

Bhardwaj, K., Sun, J., Holzenburg, A., Guarnizo, L. A., and Kao, C. C. (2006). RNA Recognition and Cleavage by the SARS Coronavirus Endoribonuclease. *J. Mol. Biol.* 361 (2), 243–256. doi:10.1016/j.jmb.2006.06.021

Bouvet, M., Imbert, I., Subissi, L., Glausi, L., Canard, B., and Decroly, E. (2012). RNA 3’ end Mismatch Excision by the Severe Acute Respiratory Syndrome Coronavirus Nonstructural Protein Nsp10/nsp14 Exoribonuclease Complex. *Proc. Natl. Acad. Sci.* 109, 9357–9377. doi:10.1073/pnas.1201130109

Bouvet, M., Lugari, A., Posthuma, C. C., Zevenhoven, J. C., Bernard, S., Betzi, S., et al. (2014). Coronavirus Nsp10, a Critical Co-factor for Activation of Multiple Replicative Enzymes. *J. Biol. Chem.* 289 (37), 25783–25796. doi:10.1074/jbc.M114.577535

Ceraolo, C., and Giorgi, F. M. (2020). Genomic Variance of the 2019-nCoV Coronavirus. *J. Med. Virol.* 92 (5), 522–528. doi:10.1002/jmv.25700

Chen, J. F.-W., Kok, K.-H., Zhu, Z., Chiu, H., To, K. K.-W., Yuan, S., et al. (2020). Characterization of the 2019 Novel Human-Pathogenic Coronavirus Isolated from a Patient with Atypical Pneumonia after Visiting Wuhan. *Emerging Microbes & Infections* 9 (1), 221–236. doi:10.1080/22221751.2020.1719902

Chang, C.-K., Hou, M.-H., Chang, C.-F., Hsiao, C.-D., and Huang, T.-h. (2014). The SARS Coronavirus Nucleocapsid Protein - Forms and Functions. *Antiviral Res.* 103, 39–50. doi:10.1016/j.antiviral.2013.12.009

Chellappandi, P., and Saranya, S. (2020). Genomics Insights of SARS-CoV-2 (COVID-19) into Target-Based Drug Discovery. *Med. Res. Rev.* 39, 1777–1791. doi:10.1002/medr.2020.02610-8

Chen, C.-N., Lin, C. P. C., Huang, K.-K., Chen, W.-C., Hsieh, H.-P., Liang, P.-H., et al. (2005). Inhibition of SARS-CoV 3C-like Protease Activity by Theaflavin-3,3’-Digallate (TF3). *Evidence-Based Complement. Altern. Med.* 2 (2), 209–215. doi:10.1093/ecam/neh081

Chen, L., Li, J., Luo, C., Liu, H., Xu, W., Chen, G., et al. (2006). Binding Interaction of Quercetin-3-β-Galactoside and its Synthetic Derivatives with SARS-CoV 3CLpro: Structure-Activity Relationship Studies Reveals Salient Pharmacophore Features. *Bioorg. Med. Chem.* 14 (24), 8295–8306. doi:10.1016/j.bmc.2006.09.014

Chen, X., Yang, X., Zheng, Y., Yang, X., Xing, Y., and Chen, Z. (2014). SARS Coronavirus Papain-like Protease Inhibits the Type I Interferon Signaling Pathway through Interaction with the STING-Traf3-Tbk1 Complex. *Protein Cell* 5 (5), 369–381. doi:10.1007/s13238-014-0026-3

Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T., et al. (2009). Functional Screen Reveals SARS Coronavirus Nonstructural Protein Nsp14 as a Novel Cap N7 Methyltransferase. *Proc. Natl. Acad. Sci.* 106, 3484–3489. doi:10.1073/pnas.0808790106

Chen, Z., Cui, Q., Cooper, L., Zhang, P., Lee, H., Chen, Z., et al. (2021). Ginkgolic Acid and Anacardic Acid Are Specific Covalent Inhibitors of SARS-CoV-2 Cysteine Proteases. *Cell Biol.* 11 (1), 45. doi:10.1186/s13578-021-00564-x

Cho, J. K., Curtis-Long, M. J., Lee, K. H., Kim, D. W., Ryu, H. W., Yuk, H. J., et al. (2013). Geranylated Flavonoids Displaying SARS-CoV Papain-like Protease Inhibition from the Fruits of Paulownia Tomentosa. *Bioorg. Med. Chem.* 21 (11), 3051–3057. doi:10.1016/j.bmc.2013.03.027

Chou, K.-C., Wei, D.-Q., and Zhong, W.-Z. (2003). Binding Mechanism of Coronavirus Main Proteinase with Ligands and its Implication to Drug Design against SARS. *Biochem. Biophysical Res. Commun.* 308 (1), 148–151. doi:10.1016/s0006-291x(03)01342-1

AUTHOR CONTRIBUTIONS

YL contributed to conception and design of the review. ZW, YL, and YW wrote sections of the manuscript. All authors contributed to manuscript revision and read and approved the submitted version.

FUNDING

This work was supported by the National Natural Science Foundation of China (81973240).
Replication in a Lethal SARS-CoV BALB/c Mouse Model by Stinging Nettle Lectin, Urtica Dioica Agglutinin. Antiviral Res. 90 (1), 22–32. doi:10.1016/j.antiviral.2011.02.003

Kwan, J. C., Liu, Y., Ratnayake, R., Hatano, R., Kuribara, A., Morimoto, C., et al. (2014). Grasypeptolides as Natural Inhibitors of Dipeptidyl Peptidase 8 and T-Cell Activation. Chemobiotechnol 15 (6), 799–804. doi:10.1002/cbt.201300762

Lee, C., Lee, J. M., Lee, N.-R., Jin, B.-S., Jang, K. J., Kim, D.-E., et al. (2009a). Aryl Diketocinoids (ADK) Selectively Inhibit Duplex DNA-UNwinding Activity of SARS Coronavirus NTPase/helicase. Bioorg. Med. Chem. Lett. 19 (6), 1636–1638. doi:10.1016/j.bmcl.2009.02.010

Lee, C., Lee, J. M., Lee, N.-R., Kim, D.-E., Jeong, Y.-J., and Chong, Y. (2009b). Investigation of the Pharmacophore Space of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) NTPase/helicase by Dihydroxychrome Derivatives. Bioorg. Med. Chem. Lett. 19 (16), 4538–4541. doi:10.1016/j.bmcl.2009.07.009

Li, N.-R., Kwon, H.-M., Park, K., Oh, S., Jeong, Y.-I., and Kim, D.-E. (2010). Cooperative Translocation Enables the Unwinding of duplex DNA by SARS Coronavirus Helicase nsp13. Nucleic Acids Res. 38 (21), 7662–7666. doi:10.1093/nar/gkp5647

Lee, Y.-S., Kang, O.-H., Choi, J.-G., Oh, Y.-C., Chae, H.-S., Kim, J. H., et al. (2008). Synergistic Effects of the Combination of Galangin with Gentamicin against Methicillin-Resistant Staphylococcus aureus. J. Microbiol. 46 (3), 283–288. doi:10.1007/s12275-008-0012-7

Lei, J., Kusov, Y., and Hilgenfeld, R. (2018). Nsp3 of Coronaviruses: Structures and Functions of a Large Multi-Domain Protein. Antiviral Res. 149, 58–74. doi:10.1016/j.antiviral.2017.11.001

Li, J.-y., Cao, H.-y., Liu, P., Cheng, G.-h., and Sun, M.-y. (2014). Glycyrrhizic Acid Derived Phenolic Compounds. Antiviral Res. 113 (35), E5192–E5201. doi:10.1016/j.antiviral.2014.03.007

Ma-Lauer, Y., Carbajo-Lozoya, J., Hein, M. Y., Müller, M. A., Deng, W., Lei, J., et al. (2018). Nsp3 of Coronaviruses: Structures and Determinants of Coronavirus Tropism and Pathogenesis. Virus. Res. 202, 120–134. doi:10.1016/j.virusres.2014.11.021

Mitchell, C. A., Ramessar, K., and O’Keefe, B. R. (2017). Antiviral Lectins: Selective Inhibitors of Viral Entry. Antiviral Res. 142, 37–54. doi:10.1016/j.antiviral.2017.03.007

Mulseen, Z. T., Hameed, A. R., Al-Hasani, H. M. H., Tahir Ul Qamar, M., and Li, G. (2020). Promising Terpenes as SARS-CoV-2 Spike Receptor-Binding Domain (RBD) Attachment Inhibitors to the Human ACE2 Receptor: Integrated Computational Approach. J. Mol. Liquids 320, 114493. doi:10.1016/j.molliq.2020.114493

Nayaraman, K., Huang, C., Lokugamage, K., Kamitani, W., Ikegami, T., Tseng, C.-T. K., et al. (2008). Severe Acute Respiratory Syndrome Coronavirus Nsp1 Suppresses Host Gene Expression, Including that of Type I Interferon, in Infected Cells. J. Virol. 82 (9), 4471–4479. doi:10.1128/JVI.02472-07

Nguyen, T. T. H., Woo, H.-J., Kang, H.-K., Nguyen, V. D., Kim, Y.-M., Kim, D.-W., et al. (2012). Flavonoid-mediated Inhibition of SARS Coronavirus 3C-like Protease Expressed in Pichia pastoris. Biotechnol. Lett. 34 (5), 831–838. doi:10.1007/s10529-011-0845-8

Nishimura, Y., Kato, K., Furuno, K., and Himeno, M. (1995). Inhibitory Effect of Leupentin on the Intracellular Maturation of Lysosomal Cathepsin L in Primary Cultures of Rat Hepatocytes. Biol. Pharm. Bull. 18 (7), 945–950. doi:10.1248/bpb.18.945

O’Keefe, B. R., Giomarelli, B., Barnard, D. L., Shenoy, S. R., Chan, P. K. S., McMahon, J. B., et al. (2010). Broad-spectrum In Vitro Activity of Antiviral Agents. Antiviral Res. 85 (1), 2511–2521. doi:10.1128/JVI.02322-09

Ou, X., Liu, Y., Lei, X., Liu, Y., Mi, D., Ren, L., et al. (2020). Characterization of Spike Glycoprotein of SARS-CoV-2 on Virus Entry and its Immune Cross-Reactivity with SARS-CoV. Nat. Commun. 11 (1), 1620. doi:10.1038/s41467-020-15562-9

Ocvirkaven, A. V., and Zhirkov, O. P. (1994). Aprotinin Aerosol Treatment of Influenza and Paramyxovirus Bronchopneumonia of Mice. Antiviral Res. 23 (2), 107–118. doi:10.1101/0065-3542(94)90038-8

Park, H. R., Yoon, H., Kim, M. K., Lee, S. D., and Chong, Y. (2012a). Synthesis and Antiviral Evaluation of 7-O-Arylmethylquercetin Derivatives against SARS-Associated Coronavirus (SCV) and Hepatitis C Virus (HCV). Arch. Pharm. Res. 35 (1), 77–85. doi:10.1007/s12272-012-0108-9

Park, J.-Y., Jeong, H., Hoon Kim, J., Min Kim, Y., Park, S.-I., Kim, D., et al. (2012b). Diarylheptanoids from Alnus Japonica Inhibit Papain-like Protease of
Severe Acute Respiratory Syndrome Coronavirus. *Biol. Pharm. Bull.* 35 (11), 2036–2042. doi:10.1248/bpb.b12-00625

Park, J.-Y., Kim, J. H., Kim, Y. M., Jeong, H. J., Kim, D. W., Park, K. H., et al. (2012). Tanshinones Selective and Slow-Binding Inhibitors for SARS-CoV Cysteine Proteases. *Biorg. Med. Chem.* 20 (19), 5928–5935. doi:10.1016/j.bmc.2012.07.038

Park, J.-Y., Ko, J.-A., Kim, D. W., Kim, Y. M., Kwon, H.-J., Jeong, H. J., et al. (2016). Chalcones Isolated from Angelica Keiskei Inhibit Cysteine Proteases of SARS-CoV. *J. Enzyme Inhib. Med. Chem.* 31 (1), 23–30. doi:10.3109/14756366.2014.1003215

Park, J.-Y., Ryu, H. W., Lim, S. H., Kim, K. S., Park, K. H., et al. (2017). Evaluation of Polyphenols from Brosoussentia Papyrifera as Coronavirus Protease Inhibitors. *J. Enzyme Inhib. Med. Chem.* 32 (1), 504–512. doi:10.1080/14756366.2016.1265519

Patel, M., Ashraf, M. S., Siddiqui, A. J., Ashraf, S. A., Sachidanandan, M., Snoussi, M., et al. (2020). Profiling and Role of Bioactive Molecules from Puntius Sophore (Freshwater/Brackish Fish) Skin Mucus with its Potent Antibacterial, Antiadhesion, and Antibiofilm Activities. *Biomolecules* 10 (6), 920. doi:10.3390/biom10060920

Patel, M., Sachidanandan, M., and Adnan, M. (2019). Serine Arginine Protein Kinase 1 (SRPK1): a Moonlighting Protein with Theranostic Ability in Cancer Prevention. *Mol. Biol. Rep.* 46 (1), 1487–1497. doi:10.1007/s11033-019-0455-5

Paules, C. I., Marston, H. D., and Fauci, A. S. (2000). The Human Coronavirus Replicase Proteins. *J. Virol.* 74 (11), 5819–5827. doi:10.1128/JVI.74.11.5819-5827.2000

Prentice, E., McAuliffe, J., Lu, X., Subbarao, K., and Denison, M. R. (2004). 229E Superfamily 1 Helicase Has RNA and DNA Duplex-Unwinding Activities with 5′-to-3′ Polarity. RNA 6 (7), 1056–1068. doi:10.1017/s135538290000728

Shen, L., Niu, J., Wang, C., Huang, B., Wang, W., Zhu, N., et al. (2019). High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruses. *J. Virol.* 93 (12), e00233–e00019. doi:10.1128/JVI.00233-19

Shen, L. W., Mao, H. J., Wu, Y. L., Tanaka, Y., and Zhang, W. (2017). TMPRSS2: A Potential Target for Treatment of Influenza Virus and Coronavirus Infections. *Biochimie* 142, 1–10. doi:10.1016/j.biochi.2017.07.016

Shi, K., Chen, X., Xie, B., Yang, S. S., Liu, D., Dai, G., et al. (2018). Celastrus Alleviates Chronic Obstructive Pulmonary Disease by Inhibiting Cellular Inflammation Induced by Cigarette Smoke via the Ednrb/Kng1 Signaling Pathway. *Front. Pharmacol.* 9, 1276. doi:10.3389/fphar.2018.01276

Shi, T.-H., Huang, Y.-L., Chen, C.-C., Pi, W.-C., Hou, Y.-L., Lo, L.-C., et al. (2020). Andrographolide and its Fluorescent Derivative Inhibit the Main Proteases of 2019-nCoV and SARS-CoV through Covalent Linkage. *Biochim. Biophys. Acta. Biomembr.* 1868, 109195. doi:10.1016/j.bbamem.2020.109195

Seybert, A., Hegyi, A., Siddel, S. G., and Ziebuhr, J. (2000). The Human Coronavirus 229E Superfamily 1 Helicase Has RNA and DNA Duplex-Unwinding Activities with 5′-to-3′ Polarity. RNA 6 (7), 1056–1068. doi:10.1017/s135538290000728

Siu, K.-L., Chan, C.-P., Kok, K.-H., Chiu-Yat Woo, P., and Jin, D.-Y. (2014). Suppression of Innate Antiviral Response by Severe Acute Respiratory Syndrome Coronavirus M Protein Is Mediated through the First Transmembrane Domain. *Cell Mol Immunol.* 11 (2), 141–149. doi:10.1038/cmi.2013.61

Skariyachan, S., Challapalli, S. B., Packirisamy, S., Kumargowda, S. T., and Sridhar, V. S. (2019). Recent Aspects on the Pathogenesis Mechanism, Animal Models and Novel Therapeutic Interventions for Middle East Respiratory Syndrome Coronavirus Infections. *Front. Microbiol.* 10, 569. doi:10.3389/fmicb.2019.00569

Song, Y. H., Kim, D. W., Curtis-Long, M. J., Kuk, H. J., Wang, Y., Zhuang, N., et al. (2014). Papain-like Protease (PLpro) Inhibitory Effects of Cinnamic Amides from Tribulus Terrestria Fruits. *Biol. Pharm. Bull.* 37 (6), 1021–1028. doi:10.1248/bpb.b14-00026

Stadler, K., Masiagni, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H.-D., et al. (2003). SARS - Beginning to Understand a New Virus. *Nat. Rev. Microbiol.* 1 (3), 209–218. doi:10.1038/nrmicro775

Su, H.-x., Yao, S., Zhao, W.-f., Li, M.-j., Liu, J., Jiang, W.-j., et al. (2020). Anti-SARS-CoV-2 Activities *In Vitro* of Shuanghuanglian Preparations and Bioactive Ingredients. *Acta Pharmacol. Sin.* 41 (9), 1167–1177. doi:10.1038/s41401-020-0483-6

Sui, H., Yu, Q., Zhi, Y., Geng, G., Liu, H., and Xu, H. (2010). [Effects of Apigenin on the Expression of Angiotensin-Converting Enzyme 2 in Kidney from Spontaneously Hypertensive Rats]. *Weizheng Yan Jiu* 39 (6), 693–696.

Sung, W. S., and Lee, D. G. (2008). The Combination Effect of Korean Red Ginseng Saponins with Kanamycin and Cefotaxime against Meticillin-Resistant *Staphylococcus aureus*. *Biol. Pharm. Bull.* 31 (8), 1614–1617. doi:10.1248/bpb.31.1614

Takahashi, S., Yoshiha, T., Yoshizawa-Kumagaye, K., and Sugiyama, T. (2015). Nicotinamide is a Novel Angiotensin-Converting Enzyme 2 Inhibitor in Sobey. *Biomed. Res.* 36 (3), 219–224. doi:10.2220/biomedres.36.219

Tanner, J. A., Watt, R. M., Chai, Y.-B., Lu, L.-Y., Lin, M. C., Peiris, J. S. M., et al. (2003). The Severe Acute Respiratory Syndrome (SARS) Coronavirus NTase/ Helicase Belongs to a Distinct Class of 5′ to 3′ Viral Helicases. *J. Biol. Chem.* 278 (41), 39578–39582. doi:10.1074/jbc.C300328200

tel Velthuis, A. J. W., Arnold, J. J., Cameron, C. E., van den Worm, S. H. E., and Snijder, E. J. (2010). The RNA Polymerase Activity of SARS-CoV Nsp12 is Primer Dependent. *Nucleic Acids Res.* 38 (1), 203–214. doi:10.1093/nar/gkp904

tel Velthuis, A. J. W., van den Worm, S. H. E., and Snijder, E. J. (2012). The SARS-CoV Nsp7+nsp8 Complex Is A Unique Multimeric RNA Polymersase Capable of Both De Novo Initiation and Primer Extension. *Nucleic Acids Res.* 40 (4), 1377–1347. doi:10.1093/nar/gks889

Tohya, Y., Narayanan, K., Kamitani, W., Huang, C., Lokugamage, K., and Makino, S. (2009). Suppression of Host Gene Expression by SARS-CoV Nsp0 Proteins of Group 2 Nucleic Acids. *Nucleic Acids Res.* 37 (8), 2776–2785. doi:10.1093/nar/gkp125

Tu, Y. (2011). The Discovery of Artemisinin (Qinghaosu) and Gifts from Chinese Medicine. *Nat. Med.* 17 (10), 1217–1220. doi:10.1038/nm.2471
Turner, A. J., Hiscox, J. A., and Hooper, N. M. (2004). ACE2: from Vasopeptidase to SARS Virus Receptor. Trends Pharmacol. Sci. 25 (6), 291–294. doi:10.1016/j.tips.2004.01.001

von Brunn, A., Teepe, C., Simpson, J. C., Pepperkok, R., Friedel, C. C., Zimmer, R., et al. (2007). Analysis of Intraviral Protein-Protein Interactions of the SARS Coronavirus ORFeome. PLoS One 2 (5), e459. doi:10.1371/journal.pone.0000459

Walls, A. C., Park, Y.-J., Tortorici, M. A., San, B., McGuire, A. T., and Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181 (2), 281–292. doi:10.1016/j.cell.2020.02.058

Wang, S. C., Chen, Y., Wang, Y. C., Wang, W. J., Yang, C. S., Tsai, C. L., et al. (2020). Tannic Acid Suppresses SARS-CoV-2 as a Dual Inhibitor of the Viral Main Protease and the Cellular TMPRSS2 Protease. Am. J. Cancer Res. 10 (12), 4538–4546.

Wei, Y., and Wang, Y. (2017). Cestalost Attenuates Impairments Associated with Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome (ARDS) in Rats. J. Immunotoxicology 14 (1), 228–234. doi:10.1080/1547691X.2017.1394933

Yin, J., Niu, C., Cherney, M. M., Zhang, J., Huitema, C., Ellis, L. D., et al. (2007). A Mechanistic View of Enzyme Inhibition and Peptide Hydrolysis in the Active Site of the SARS-CoV 3C-like Peptidase. J. Mol. Biol. 371 (4), 1060–1074. doi:10.1016/j.jmb.2007.06.001

Yu, S. S., Lee, J., Lee, J. M., Kim, Y., Chin, Y.-W., Lee, J.-G., et al. (2012). Identification of Myricetin and Scutellarein as Novel Chemical Inhibitors of the SARS Coronavirus Helicase. naïP13, Bioorg. Med. Chem. Lett. 22 (12), 4049–4054. doi:10.1016/j.bmcl.2012.04.081

Zang, R., Castro, M. F. G., McCune, B. T., Zeng, Q., Rothlauf, P. W., Sonnek, N. M., et al. (2020). TMPRSS2 and TMPRSS4 Promote SARS-CoV-2 Infection of Human Small Intestinal Enterocytes. Sci. Immunol. 5. doi:10.1126/sciimmunol.abc3582

Zhang, Y.-N., Zhang, Q.-Y., Li, X.-D., Xiong, J., Xiao, S.-Q., Wang, Z., et al. (2020). Gemcitabine, Lycorine and Oxyosphoridine Inhibit Novel Coronavirus (SARS-CoV-2) in Cell Culture. Emerging Microbes & Infections 9 (1), 1170–1173. doi:10.1080/22221751.2020.1772676

Zhang, Z.-R., Zhang, Y.-N., Li, X.-D., Zhang, H.-Q., Xiao, S.-Q., Deng, F., et al. (2020). A Cell-Based Large-Scale Screening of Natural Compounds for Inhibitors of SARS-CoV-2. Sig Transduct Target. Ther. 5 (1), 218. doi:10.1126/sciadv.aav4580

Zhang, Y.-B., Ke, Z., Liu, C., Wang, Z., Liu, D., Zhang, L., et al. (2020). Systemic In Silico Screening in Drug Discovery for Coronavirus Disease (COVID-19) with an Online Interactive Web Server. J. Chem. Inf. Model. 60 (12), 5735–5745. doi:10.1021/acs.jcim.0c00821

Zhu, N., Ma, T., Wang, W., Liu, X., Jiang, L., Ren, Z., et al. (2020). A Novel Coronavirus (2019-nCoV) Outbreak and Epidemic in China: Molecular Characteristics and Clinical Lesions. Lancet 395 (10221), 799–803. doi:10.1016/S0140-6736(20)30251-8

Zhu, N., Song, F., Yan, B., Liu, W., Mei, N., Wang, W., et al. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl. J. Med. 382 (8), 727–733. doi:10.1056/NEJMoa2001017

Zhou, P., Yang, R., Wang, B., Hu, Y., Zhang, L., Zhang, W., et al. (2020). A Single Case of Coronavirus Disease 2019 in China with Multiple Outbreaks in Family Members. N Engl. J. Med. 382 (13), 1377–1379. doi:10.1056/NEJMoa2002032

Zhou, Y., Yang, R., Zhang, L., Wang, H., Hu, Y., Zhang, X., et al. (2020). Aasma a Pneumonia Outbreak Associated with a Novel Coronavirus in Wuhan, China. N Engl. J. Med. 382 (10), 970–978. doi:10.1056/NEJMoa2001191

Zhao, Q., Wang, L., Wang, X., Zhang, H., Su, J., Wu, C., et al. (2020). Replication of SARS-CoV-2 and Its Inhibitors in Human and Primate Cells. Cell 180 (4), 935–945.e15. doi:10.1016/j.cell.2020.02.032

Zhou, J. (2004). Small Molecules that Exhibits Primer-independent RNA Polymerase Activity. –

Zhuo, L., and Li, C. (2017). Development and Application of a Novel Pan-coronavirus Fusion Inhibitor. J. Virol. 81 (9), 4972–4979. doi:10.1128/JVI.00492-17

Zhuo, L., and Li, C. (2018). A Novel Pan-coronavirus Fusion Inhibitor Targeting the HR1 Domain of Human Coronavirus Spike. J. Mol. Biol. 426 (1), 19–31. doi:10.1016/j.jmb.2017.09.018

Zhuo, L., and Li, C. (2020). A Novel Pan-coronavirus Peptide Inhibitor. J. Virol. 84 (22), 10404–10410. doi:10.1128/JVI.01480-20

Zhuo, L., and Li, C. (2021). A Novel Pan-coronavirus Peptide Inhibitor. J. Virol. 85 (9), 4524–4532. doi:10.1128/jvi.02480-20

Zhuo, L., and Li, C. (2022). A Novel Pan-coronavirus Peptide Inhibitor. J. Virol. 86 (1), 4524–4532. doi:10.1128/JVI.01480-20

Zhuo, L., and Li, C. (2023). A Novel Pan-coronavirus Peptide Inhibitor. J. Virol. 87 (1), 4524–4532. doi:10.1128/JVI.01480-20

ZHUO, L., and Li, C. (2024). A Novel Pan-coronavirus Peptide Inhibitor. J. Virol. 88 (1), 4524–4532. doi:10.1128/JVI.01480-20

Zhuo, L., and Li, C. (2025). A Novel Pan-coronavirus Peptide Inhibitor. J. Virol. 89 (1), 4524–4532. doi:10.1128/JVI.01480-20

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.