Exploring degeneracies in modified gravity with weak lensing

C. Danielle Leonard† Tessa Baker‡ and Pedro G. Ferreira†
Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK

By considering linear-order departures from general relativity, we compute a novel expression for the weak lensing convergence power spectrum under alternative theories of gravity. This comprises an integral over a ‘kernel’ of general relativistic quantities multiplied by a theory-dependent ‘source’ term. The clear separation between theory-independent and -dependent terms allows for an explicit understanding of each physical effect introduced by altering the theory of gravity. We take advantage of this to explore the degeneracies between gravitational parameters in weak lensing observations.

I. INTRODUCTION

In recent years, weak gravitational lensing has been put forth as a promising method of testing gravity on cosmological scales [1–8], with some exciting first constraints having been found already [6, 8]. Moreover, advances in relevant data analysis (for example, [9]) and the coming relevant data analysis (for example, [9]) and the coming potential of weak lensing.

Stronger constraints on gravity are obtained by combining weak gravitational lensing with other probes. One observable which is commonly touted as providing particularly complimentary constraints to weak lensing is \(f\sigma_8(a) \). Here, \(f(a) \) is the linear growth rate of structure, defined as:

\[
f(a) = \frac{d \ln \Delta_M(a)}{d \ln a}
\]

where \(\Delta_M(a) \) is the amplitude of the growing mode of the matter density perturbation, and \(\sigma_8(a) \) is the amplitude of the matter power spectrum within spheres of radius 8 Mpc/h. The combination \(f\sigma_8(a) \) can be constrained through measurements of redshift-space distortions in galaxy surveys.

In [10], an expression for \(f\sigma_8(a) \) was derived in the case of linear deviations from the model of general relativity (GR) with \(\Lambda\text{CDM} \). Here we build on this work by constructing a similar expression for \(P_\kappa(\ell) \), the angular power spectrum of the weak lensing observable convergence (\(\kappa \)). The main advantage of our expression is that it clearly distinguishes the physical source of all modified gravity effects to \(P_\kappa(\ell) \), which allows for a more thorough interpretation and understanding of these effects than previously possible. While we focus on \(P_\kappa(\ell) \) in this work, recall that the two main weak lensing observables, convergence and shear, can be trivially interconverted [11]. Therefore, we treat convergence as a proxy for weak lensing more generally, and all expressions which we derive could be equivalently and easily formulated in terms of shear.

This paper is structured as follows: in Section II we detail the derivation of the expression for \(P_\kappa(\ell) \). Section III discusses how weak lensing degeneracy directions between gravitational parameters can be understood with the help of our expression. Finally, Section IV provides forecast constraints on deviations from GR+\(\Lambda\text{CDM} \) from future surveys, and interprets these constraints using our expression for \(P_\kappa(\ell) \). We conclude in Section V.

II. CONVERGENCE IN MODIFIED GRAVITY: THE LINEAR RESPONSE APPROACH

In what follows, we use the scalar perturbed Friedmann-Robertson-Walker (FRW) metric in the conformal Newtonian gauge, with the following form:

\[
ds^2 = a(\tau)^2 \left[-(1 + 2\Psi)\, d\tau^2 + (1 - 2\Phi)\, dx_i\, dx^i\right].
\]

Our parameterisation of modified theories of gravity makes use of the quasistatic approximation (see [12] for a good discussion of this). The quasistatic approximation amounts to the statement that, within the range of scales relevant for current galaxy surveys, the most significant effects of a sizeable class of modified theories can be captured by introducing two functions of time and scale into the linearised field equations of GR. Specifically, these functions play the role of a modified gravitational constant in the Poisson equation, and a non-unity (late-time) ratio of the two scalar gravitational potentials:

\[
2\nabla^2 \Phi(a, k) = 8\pi G a(\tau)^2 \mu(a, k) \bar{\rho}_M \Delta_M(a, k)
\]

\[
\Phi(a, k) \over \Psi(a, k) = \gamma(a, k).
\]

In GR, both \(\gamma(a, k) \) and \(\mu(a, k) \) are equal to 1.

Clearly equation 3 can only be an effective description of more complicated, exact sets of field equations (see derivations and discussions in [13–22]). However, several works have numerically verified that the quasistatic approximation is indeed valid in many gravity theories (notably those with one new degree of freedom) on the distance scales considered here [23–27].

We first compute the power spectrum of the convergence in general relativity, and then generalise to alternative theories of gravity. We make the simplifying assumption that radiation can be neglected for all

†Electronic address: danielle.leonard@astro.ox.ac.uk
‡Electronic address: tessa.baker@astro.ox.ac.uk
§Electronic address: p.ferreira1@physics.ox.ac.uk
redshifts of interest in this paper. That is, we take \(\Omega_M^G(z) + \Omega_X^R(z) = 1 \).

A. Calculating convergence: general relativity

The convergence, \(\kappa \), describes how much an image is magnified or de-magnified due to lensing. Assuming a metric theory of gravity, this effect is captured by the geodesic equation for the displacement of a photon transverse to the line of sight. In general relativity, this is given by:

\[
\frac{d^2}{d\chi^2} (\theta^b) = -2\Phi, \tag{4}
\]

where \(b \) indicates a partial derivative with respect to \(\theta^b \), \(\chi \) is the radial comoving distance, and \(\chi \theta^b = (\chi \theta^1, \chi \theta^2) \) is a two-component vector representing on-sky position. This expression can be integrated to obtain the ‘true’ on-sky position of the light source as a function of the observed on-sky position. The convergence is then given by taking the two-dimensional on-sky Laplacian \((\nabla^2) \) of this expression:

\[
\kappa_{GR}(\theta) = \frac{1}{2} \int_0^{\chi_\infty} d\chi \, \nabla^2 \Phi(\theta, \chi) g(\chi) \tag{5}
\]

where \(g(\chi) \) is the lensing kernel, which depends on the normalised redshift distribution of the source galaxies \(W(\chi) \):

\[
g(\chi) = 2\chi \int_0^{\chi_\infty} d\chi' \left(1 - \frac{\chi}{\chi'} \right) W(\chi') \tag{6}
\]

and \(\chi_\infty \) is the comoving distance at \(a \to 0 \).

We are interested in not simply the convergence, but its power spectrum. For clarity, we present here several steps in the derivation thereof, following closely the method laid out in \[28\].

We let \(\ell \) be the two-dimensional on-sky Fourier-space variable, and we take the small angle approximation. First, it is straightforward to find:

\[
P_{\kappa-j}^{i,j}(\ell) = \frac{1}{4} \int d^2 \theta \, e^{-i\vec{x} \cdot \vec{\theta}} \int_0^{\chi_\infty} d\chi \, g_i(\chi) \int_0^{\chi_\infty} d\chi' \, g_j(\chi') \times \int \frac{d^3 k}{(2\pi)^3} P_F(k) k^4 e^{i\vec{k} \cdot [\vec{x} - \vec{x}']} \tag{7}
\]

where \(\vec{x} \) labels three-dimensional position such that \(\vec{x} = (\chi \theta_1, \chi \theta_2, \chi) \) and \(\vec{x}' = (0, 0, \chi') \). \(i \) and \(j \) label the source redshift bins to be considered; \(i = j \) represents the auto-correlation case while \(i \neq j \) is the case of cross-correlating two source bins.

Evaluating the integrals in \(\theta_1 \) and \(\theta_2 \) produces the Dirac delta functions \(\delta(l_1 - \chi k_1) \) and \(\delta(l_2 - \chi k_2) \), where \(\vec{k} = (k_1, k_2, k_3) \). Performing then the integrals over \(k_1 \) and \(k_2 \) allows us to set \(k_1 = \frac{\ell}{\chi} \) and \(k_2 = \frac{\ell}{\chi} \), as well as producing a factor of \(\frac{1}{\chi^2} \):

\[
P_{\kappa-j}^{i,j}(\ell) = \frac{1}{4} \int_0^{\chi_\infty} d\chi \, \frac{\delta(\chi)}{\chi^2} \int_0^{\chi_\infty} d\chi' \, g_i(\chi') g_j(\chi') \times \int \frac{d^3 k}{2\pi} P_F(k) \left(\sqrt{\frac{k_3^2 + \ell^2}{\chi^2}} \right) k^4 e^{i\vec{k} \cdot [\vec{x} - \vec{x}']}. \tag{8}
\]

Finally, the Limber approximation \[29, 30\] is employed, which tells us that in the small-angle limit, \(k_3 \ll \frac{\chi}{\ell} \), and therefore \(k \approx \frac{\chi}{\ell} \). The integral over \(k_3 \) thus provides the Dirac Delta function \(\delta(\chi - \chi') \). The small angle limit also means that \(P_{\kappa-j}^{i,j}(l) \approx P_{\kappa-j}^{i,j}(\ell) \), where \(\ell \) labels an angular multipole \[31\]. We find:

\[
P_{\kappa-j}^{i,j}(\ell) = \frac{1}{4} \int_0^{\chi_\infty} d\chi \, \frac{g_i(\chi) g_j(\chi)}{\chi^6} P_F \left(\frac{\ell}{\chi}, \chi \right). \tag{9}
\]

The Limber approximation is valid in this case for \(\ell \gtrsim 10 \). We have computed here the power spectrum of the convergence; that of the shear could be straightforwardly calculated by replacing equation \[5\] with the appropriate, similar definition.

B. Calculating convergence: modified gravity

As indicated in equation \[8\] generally in non-GR theories \(\Phi \neq \Psi \). So, in modified gravity equation \[9\] becomes:

\[
\frac{d^2}{d\chi^2} (\theta^b) = -\left(\Phi_{,b} + \Psi_{,b} \right). \tag{10}
\]

The convergence then becomes:

\[
\kappa_{MG} = \frac{1}{4} \int_0^{\chi_\infty} d\chi \, \nabla^2 \left[\Phi(\theta, \chi) + \Psi(\theta, \chi) \right] g(\chi) = \frac{1}{4} \int_{-\infty}^{0} dx \, \frac{c}{H(x)} \nabla^2 \left[\Phi(\vec{x}, x) + \Psi(\vec{x}, x) \right] g(\chi(x)) \tag{11}
\]

where hereafter we will use \(x = \ln(a) \) instead of \(\chi \) or \(a \), and we have converted the integration measure to \(x \) using \(d\chi = -c/H \, dx \), where \(H = aH \) is the conformal Hubble factor. Note that \(x \) here is distinct from the three-dimensional position variable \(\vec{x} \).

To calculate the power spectrum of the convergence under modifications to GR, we follow \[10\] and perturb our field equations about those of the GR+ΛCDM model. Our reasoning here is that current observations only permit theories which can match GR+ΛCDM predictions to leading order; we are interested in determining next-to-leading order corrections that are still permitted. Note that we are building a theory of linear perturbations in model space, which is distinct from spacetime perturbation theory.
We define the perturbations of the quasistatic functions μ and γ about their GR values using:

\[
\mu(x, k) = 1 + \delta \mu(x, k),
\gamma(x, k) = 1 + \delta \gamma(x, k).
\]

In addition, we would like to consider the possibility of a deviation from the ΛCDM expansion history of the universe. We do this by introducing a perturbation about the standard value of the effective equation of state of the non-matter sector, $w(x)$:

\[
w(x) = -1 + \beta(x),
\]

and we define the useful related quantity:

\[
u(x) = \int_0^x \beta(x') \, dx'.
\]

We now consider how these linear perturbation variables propagate through to κ and hence $P_\kappa^{\nu, J}(\ell)$. Firstly, from equation 3 we can write:

\[
\Phi(x, k) + \Psi(x, k) = \left(1 + \frac{1}{\gamma(x, k)}\right) \Phi(x, k)
\approx (2 - \delta \gamma(x, k)) \Phi(x, k).
\]

In order to express our results as corrections to GR+ΛCDM, we want to relate $\Phi(x, k)$ to $\Phi_{GR}(x, k)$. There are two effects to be accounted for. Firstly, as encapsulated by our $\delta \mu(x, k)$, the relationship between $\Phi(x, k)$ and matter density perturbations can be altered (for example, if there is a fifth force contribution to $\Phi(x, k)$ from a scalar field). Secondly, if the field equations are modified, $\Delta M(x, k)$ will evolve at a different rate, and hence will be displaced from its GR value. To account for this we introduce the deviation $\delta \Delta(x, k) = \Delta M(x, k)/\Delta M^R(x, k) - 1$. In it was shown that $\delta \Delta(x, k)$ is given by the following integral expression:

\[
\delta \Delta(x, k) = \frac{3}{2} \int_{-\infty}^{x} \Omega_M^{GR}(\tilde{x}) I(x, \tilde{x}) \delta S_f(\tilde{x}, k) \, d\tilde{x}.
\]

The integrand above separates into two parts: $\delta S_f(\tilde{x}, k)$, which encapsulates all deviations from GR+ΛCDM, and $\Omega_M^{GR}(\tilde{x}) I(x, \tilde{x})$, which is a weighting function containing GR+ΛCDM quantities only. It will be useful for us to present the explicit form of $\delta S_f(x, k)$ here, derived in 10:

\[
\delta S_f(x, k) = \delta \mu(x, k) - \delta \gamma(x, k) + \left(1 - \frac{\Omega_M^{GR}}{\Omega_M}
ight) \left(3 \Omega_M^{GR} (1 + f_{GR}(x)) u(x) + f_{GR}(x) \beta(x)\right).
\]

The explicit form of $I(x, \tilde{x})$ is not needed here, but it can be found in 10.

With these modifications in hand, the parameterised Poisson equation becomes:

\[
-2k^2 \Phi(x, k) = 8\pi G c^2 x \Omega_M^{GR}(x) \Delta M(x, k) (1 + \delta \mu(x, k))
= 3H_{GR}(x)\Omega_M^{GR}(x) \Delta M^R(x, k)
\times (1 + \delta \Delta(x, k)) (1 + \delta \mu(x, k))
\]

where in going from the first to the second line, we have used the fact that the combination $H_{GR}(x)\Omega_M^{GR}(x)$ is unchanged by our modifications to the background expansion rate, as shown in Appendix A. Hence, $\Phi(x, k)$ is given in terms of $\Phi_{GR}(x, k)$ by:

\[
\Phi(x, k) \approx \Phi_{GR}(x, k) (1 + \delta \Delta(x, k) + \delta \mu(x, k)).
\]

Combining equations 15 and 11 we now have an expression for $\Phi + \Psi$ in modified gravity in terms of the GR potential plus perturbative correction factors:

\[
\Phi(x, k) + \Psi(x, k) \approx \Phi_{GR}(x, k) \left(2 - \delta \gamma(x, k) + 2\delta \Delta(x, k) + 2 \delta \mu(x, k)\right).
\]

So, referring to equation 11 κ becomes:

\[
\kappa_{MG} = \frac{1}{4} \int_{-\infty}^{0} \frac{c \theta(\chi(x))}{H(x)} G(\chi(x)) G_j(\chi(x)) P_{GR}^{\Phi} \left(\frac{I}{\chi(x)}\right) \times (1 + 2\delta \mu(x, k) - 2\delta \gamma(x, k) + 2\delta \Delta(x, k)).
\]

At this stage, it becomes more convenient to work directly with the power spectrum $P_\kappa^{\nu, J}(\ell)$. This can be computed to linear order in deviations from GR+ΛCDM, in direct analogy to the method outlined for the GR case in Section 11 Λ. We find:

\[
P_\kappa^{\nu, J}(\ell) = \frac{1}{4} \int_{-\infty}^{0} \frac{c \theta(\chi(x))}{H(x)} G(\chi(x)) G_j(\chi(x)) P_{GR}^{\Phi} \left(\frac{I}{\chi(x)}\right) \times (1 + 2\delta \mu(x, k) - 2\delta \gamma(x, k) + 2\delta \Delta(x, k)).
\]

where we have defined $G_i(\chi(x)) = \frac{\theta(\chi(x))}{\chi(x)^i}$ for convenience. Note that in squaring the bracketed term, we have dropped all terms above linear order in non-GR+ΛCDM quantities, and that a factor of 4 in this term has cancelled with one overall factor of $1/4$.

There are still two non-GR effects to account for, both originating from the modified expansion history. If $\beta(x) \neq 0$ in equation 13 $\mathcal{H}(x)$ and $\chi(x)$ will scale differently with the time variable x. Using the expression for $\delta \mathcal{H}(x) = \mathcal{H}(x) - \mathcal{H}_{GR}(x)$ derived in equation A4 in the Appendix, we find that

\[
\frac{1}{\mathcal{H}(x)} = \frac{1}{\mathcal{H}_{GR}(x)} \left(1 - \frac{\delta \mathcal{H}}{\mathcal{H}_{GR}(x)}\right)
= \frac{1}{\mathcal{H}_{GR}(x)} \left(1 - \frac{3}{2} u(x)(1 - \Omega_M^{GR}(x))\right),
\]

and hence

\[
\chi(x) \approx \int_x^0 \frac{c}{\mathcal{H}_{GR}(x')} \left(1 - \frac{\delta \mathcal{H}(x')}{\mathcal{H}_{GR}(x')}\right) \, dx'
\Rightarrow \delta \chi(x) \approx \frac{3}{2} \int_x^0 \frac{c}{\mathcal{H}_{GR}(x')} u(x') (1 - \Omega_M^{GR}(x')) \, dx'
\]

where $\delta \chi = \chi - \chi_{GR}$.
The deviation of $\chi(x)$ from its GR value will also affect quantities which depend on $\chi(x)$, such as $G(\chi)$ and $P^G(\ell/\chi(x))$. We allow for this by expanding these in a Taylor series around χ_{GR}, to first order:

$$P^G(\ell/\chi_{MG}) \approx P^G(\ell/\chi_{GR}) \left[1 + \frac{\partial \ln P_\delta}{\partial \ln \chi} \bigg|_{\chi_{GR}} \right]^{\delta \chi}_{\chi_{GR}}$$

(25)

where $\delta \chi$ is given by equation (24) above. We have now accounted for all modified gravity effects, and these are summarised in Table I.

Finally, it will be more convenient for us to work in terms of P_δ, the matter power spectrum, instead of P_k. We do so via the following expression, where for clarity we temporarily omit the label ‘GR’ on all quantities:

$$P_\delta(x, k) = \frac{1}{k^4/2} \left(\frac{H(x)}{c} \right)^4 \Omega_M^2(x) D(x)^2 P_\delta(x = 0, k).$$

(27)

Drawing together, then, equations (22, 23, 26, 28) and (29) and using equation (27) we obtain our final expression for the convergence power spectrum under modifications to general relativity:

$$P^G(\ell/\chi_{GR}) \approx P^G(\ell/\chi_{GR}) \times \left[1 - \frac{\partial \ln (k^{-4} P^G(\ell = 0, k))}{\partial \ln k} \right]^{\delta \chi}_{\chi_{GR}}.$$

(28)

The major advantage of equation (29) is that it neatly separates the convergence power spectrum into the familiar GR expression (the non-bracketed quantity) and a correction factor (the bracketed terms). It is then easy to pick out contributions from:

- the modified clustering properties (described by $\delta \mu$ and $\delta \gamma$),
- the modified expansion history (described by β, κ, and $\delta \chi$), and
- the modified growth rate of matter density perturbations (encapsulated in $\delta \Delta$, see equation (10)).

It will be useful for us to write equation (29) in a form which explicitly highlights the GR expression and the correction factor:

$$P^G_\kappa(\ell) = \int_{-\infty}^{\infty} dx \, K(x, l)(1 + \delta S_{WL}(x, l)).$$

(30)

Here we have defined the ‘kernel’ term:

$$K(x, l) = \frac{9}{16} \frac{g_i(\chi_{GR}(x))g_j(\chi_{GR}(x))}{\chi_{GR}(x)^2} P^G_\delta(\ell/\chi_{GR}(x)) D^2_{GR}(x) \frac{H^3_{GR}(x)}{c^3} \Omega^2_G(x) \times \left[1 + 3 \kappa u(x) (1 - \Omega^G_{GR}(x)) \right]$$

(31)

and the ‘source’ term:

$$\delta S_{WL}(x, l) = \frac{3}{2} u(x) (1 - \Omega^G_{GR}(x)).$$

It is then easy to substitute $P^G_\kappa(\ell)$ and $P^0_\kappa(\ell)$ into equation (21) to obtain our final expression for the convergence power spectrum:

$$P_{\kappa, \delta}(\ell) = \int_{-\infty}^{\infty} dx \, K(x, l) (1 + \delta S_{WL}(x, l)).$$

(32)
We have at hand an expression (equation 29) for $P^{\kappa,j}_{\kappa} (\ell)$ under modifications to general relativity. Let us now investigate what this can teach us about the degeneracies between gravitational parameters in weak lensing observations. Note that we restrict ourselves to discussing degeneracies between parameters describing modifications to gravity. We do not examine degeneracies between gravitational and cosmological parameters, nor do we investigate degeneracies with the galaxy bias. We leave these questions for future work.

In this section, we consider the case in which $\delta \mu$ and $\delta \gamma$ are independent of scale, due to the fact that the scale-dependence of these functions is expected to be sub-dominant to their time-dependence in the fiducial scenario (here, in GR+ΛCDM). For example, if this relationship is $a = b$, then the relevant observation can probe only $a - b$, not a or b individually.

In the case of weak lensing, degeneracy directions can be understood in the following schematic way. First, define the fractional difference between $P^{\kappa,j}_{\kappa} (\ell)$ in an alternative gravity theory and in GR+ΛCDM:

$$\delta P^{\kappa,j}_{\kappa} (\ell) = \frac{P^{\kappa,j}_{\kappa} (\ell) - P^{\kappa,j}_{\kappa,GR} (\ell)}{P^{\kappa,j}_{\kappa,GR} (\ell)}. \quad (33)$$

To find the degeneracy direction, we find the relationship which exists between parameters when $\delta P^{\kappa,j}_{\kappa} (\ell) = 0$. If we consider a two parameter case (call them a and b), straightforward algebra allows us to find an expression of the form

$$a = D(\ell)b \quad (34)$$

where $D(\ell)$ may be a complicated expression, but depends only on GR+ΛCDM quantities. The degeneracy direction, we see, depends on ℓ in the weak lensing case.

In order to calculate $\delta P^{\kappa,j}_{\kappa} (\ell)$, we need to specify W_ℓ, the normalised redshift distribution of the source galaxies.
in the redshift bin i. We select a source number density with the following form:

$$u(z) \propto z^\alpha e^{-\left(\frac{z}{z_0}\right)^\beta}, \quad (35)$$

and we select $\alpha = 2$, $\beta = 1.5$, and $z_0 = z_m/1.412$ where $z_m = 0.9$ is the median redshift of the survey, mimicking the number density of a Dark Energy Task Force 4 type survey [2, 3]. In this section, we will simply consider all galaxies between $z = 0.5$ and $z = 2.0$ to be in a single redshift bin, with $W(x)$ given by normalising equation 33.

To break parameter degeneracy in a two parameter case, a second observable with a different (ideally orthogonal) degeneracy direction is introduced. Here, we choose this second observable to be redshift-space distortions, as it is known to provide complimentary constraints to weak lensing. We will therefore often employ results from [10]. Particularly, we reproduce here their equation for the deviation of $f \sigma_8(x)$ from its GR value, analogous to our equation 33:

$$\delta f \sigma_8(x) = \frac{f \sigma_8(x) - f \sigma_8^{GR}(x)}{f \sigma_8^{GR}(x)} = \int_{-\infty}^{x} G_f(x, \tilde{x}) \delta S_f(\tilde{x}) d\tilde{x} \quad (36)$$

where $\delta S_f(x)$ is given as in our equation [14] and $G_f(x, \tilde{x})$ is a general relativistic kernel given in equation 34 of [10]. Note that $f \sigma_8(x)$ above is independent of k, because we are considering a case where μ and γ are functions of time only.

The degeneracy direction of a measurement of $f \sigma_8(x)$ can then be computed in a directly analogous way to that described above for weak lensing. The sole difference is that instead of depending on multipole ℓ, the degeneracy direction is dependent on the time of observation, x.

With this information in hand, we now explore degeneracy directions of weak lensing and redshift-space distortions in the space of the parameters of $\delta \mu(x)$ and $\delta \gamma(x)$.

B. Degeneracy directions in the $\bar{\mu}_0 - \Sigma_0$ plane

As mentioned above, redshift-space distortions are the preferred choice of an additional observation to break weak lensing degeneracy in this scenario. Upon closer examination, this statement hinges upon the chosen time-dependent ansatz for the functions which parameterise deviations from GR. As there is no clear front-runner amongst alternative theories of gravity, typically a phenomenological ansatz is chosen, in which deviations from GR become manifest at late times in order to mimic accelerated expansion. It is for this type of phenomenological ansatz that redshift-space distortion and weak lensing observations are known to provide complimentary constraints [11].

However, it may also be desirable to constrain the parameters of a specific theory of gravity. The functions which parameterise the deviation of an alternative gravity theory from GR can, in principle, take on a wide range of time-dependencies. Is the combination of weak lensing and redshift-space distortions still an effective way to break degeneracies and constrain the parameters of the theory we consider? A priori, this is unknown.

To explore this issue, we consider now the degeneracy directions of weak lensing and redshift-space distortions under two different ansatxes for the functions which parameterise deviations from GR. For this section only, we make the simplifying assumption that $\beta(x) = 0$ (i.e. the expansion history is ΛCDM-like). We expect that the effect of this assumption on our qualitative findings will be small.

First, we perform a simple operation on $\delta \mu(x)$ and $\delta \gamma(x)$ to obtain a more observationally-motivated set of functions. Let us call these $\bar{\mu}(x)$ and $\Sigma(x)$, in keeping insofar as possible with the notation used in [11]. The choice of this set of functions allows nearly orthogonal constraints in the $\bar{\mu}_0 - \Sigma_0$ plane for the phenomenological choice of time-dependence. The mapping between the two sets of functions, as shown in Appendix 13, is given by:

$$\Sigma(x) = \delta \mu(x) - \frac{1}{2} \delta \gamma(x)$$

$$\bar{\mu}(x) = \delta \mu(x) - \delta \gamma(x). \quad (37)$$

We can rewrite the linear response ‘source’ terms for both weak lensing (equation 52) and redshift space distortions (equation 36) in terms of $\bar{\mu}(x)$ and $\Sigma(x)$ (in the $\beta(x) = 0$ case):

$$\delta S_{WL}(x) = 2 \Sigma(x) + 3 \int_{-\infty}^{x} \Omega_M^{GR}(\tilde{x}) I(x, \tilde{x}) \bar{\mu}(\tilde{x}) d\tilde{x}$$

$$\delta S_f(x) = \bar{\mu}(x). \quad (38)$$

We see that $\delta S_f(x)$ depends solely on $\bar{\mu}(x)$.

The expression for $\delta S_{WL}(x)$ requires slightly more pause. It depends on $\Sigma(x)$, but it also contains another term, which comprises an integral over $\bar{\mu}(x)$ and some general relativistic quantities. By comparing with equation 10, we can easily recognise this term as $2 \delta \Delta(x)$. This term quantifies a correction to the degeneracy direction of weak lensing away from $\Sigma_0 = 0$. It is clearly dependent upon the ansatz of time-dependence chosen for $\bar{\mu}(x)$. Particularly, we note that due to the integral nature of the correction term, choices of $\bar{\mu}(x)$ which persist significantly over longer times will result in greater deviations to the degeneracy direction.

We now consider two ansatxes for $\bar{\mu}(x)$ and $\Sigma(x)$. First, consider a phenomenological ansatz, for which we know weak lensing and redshift-space distortions to be an effective combination in constraining gravity theories. This choice is a specific case of the form proposed in [33] and
has been used in, for example, [7]. It is given by:

\[
\bar{\mu}(x) = \tilde{\mu}_0 \frac{\Omega^{GR}_A(x)}{\Omega^{GR}_A(x = 0)}
\]

\[
\Sigma(x) = \Sigma_0 \frac{\Omega^{GR}_A(x)}{\Omega^{GR}_A(x = 0)}
\]

(39)

where \(\Omega_A^{GR}(x)\) is the time-dependent energy density of dark energy in the fiducial \(\Lambda\)CDM cosmology.

We insert \(\delta S_{WL}(x)\) (equation 38) into equations 33 and 39 with our chosen \(\bar{\mu}(x)\) and \(\Sigma(x)\). We then follow the procedure sketched in Section III A to find the degeneracy directions of weak lensing and redshift-space distortion in the \(\bar{\mu}_0 - \Sigma_0\) plane. In this particular case the degeneracy direction of redshift-space distortions does not depend on time. This is because \(\delta S_f(x)\) is independent on only one parameter, \(\bar{\mu}_0\), and therefore the only degeneracy direction is \(\bar{\mu}_0 = 0\).

The degeneracy directions for this ansatz can be seen in Figure 1(a). In the case of weak lensing, we have plotted the degeneracy direction for \(\ell = 50\); directions for other multipoles \(\ell = 10 - 100\) differ only within 5%. We see that, indeed, the degeneracy directions are nearly orthogonal, with only a slight correction of the weak lensing degeneracy direction away from \(\Sigma = 0\) plane. In this particular case the degeneracy direction is \(\bar{\mu}_0 = 0\) since \(\Sigma = 0\) in Figure 1(b).

Now, consider selecting an ansatz with a very different time-dependence. To guide our selection, recall that we expect choices of \(\bar{\mu}(x)\) which persist over longer times to result in a greater value of the integral term in equation 38 and hence a greater deviation of the weak lensing degeneracy direction from \(\Sigma = 0\). Therefore, with no attempt to correspond to any particular gravity theory, we select the simplest possible choice which persists over long times: constant \(\bar{\mu}(x)\) and \(\Sigma(x)\).

\[
\Sigma(x) = \Sigma_0
\]

\[
\bar{\mu}(x) = \tilde{\mu}_0.
\]

(40)

In reality, we use step functions beginning at \(z = 15\) rather than true constants to allow for the numerical computation of the degeneracy directions. The degeneracy directions are calculated as before, and are plotted in Figure 1(b). Clearly, they are less orthogonal than in the previous case, as expected from the comments above.

What does this example tell us about the effectiveness of combining weak lensing and redshift-space distortions? The ansatz for \(\bar{\mu}(x)\) and \(\Sigma(x)\) given by equation 40 deviates from \(\Lambda\)CDM at all times after \(z = 15\). As mentioned above, most cosmologically-motivated alternative theories of gravity present deviations from \(\Lambda\)CDM at late times only, mimicking accelerated expansion. Therefore, we treat the case of equation 40 as a heuristic ‘upper bound’ on the cumulative effect produced by the integral term of equation 38.

The effect of this term can be quantified by considering the angle of the weak lensing degeneracy direction with respect to the vertical. We find that for the range of \(\ell\) which we consider and for the ansatz given by equation 40 the maximum possible value of this angle is \(\theta \approx 50^\circ\). Although the degeneracy directions in this case are certainly no longer orthogonal (\(\theta = 0^\circ\)), they are sufficiently distinct that we expect the resulting constraints to be reasonable (if not ideal). We have therefore shown that the effectiveness of combining weak lensing with redshift-space distortions in the \(\beta(x) = 0\) case is relatively robust to the chosen form of \(\mu(x)\) and \(\Sigma(x)\).

IV. FORECAST CONSTRAINTS FROM FUTURE SURVEYS

In addition to providing an understanding of degeneracies, our expression for \(P^{\kappa,j}(\ell)\) enables the forecasting of constraints. The straightforward form of equation 30 renders the calculation of Fisher matrices very simple, and clarifies the interpretation of the resulting forecasts. We take advantage of these features to forecast constraints on gravitational parameters for a Dark Energy Task Force 4 (DETF4) type survey, as defined in the classification of [34]. We focus on combined constraints from weak lensing and redshift-space distortions, with some consideration given as well to baryon acoustic oscillations.

As mentioned above, the forecasts presented here employ the technique of Fisher forecasting (see, for example, [35]). The key quantity of this method is the Fisher information matrix:

\[
F_{ab} = -\left\langle \frac{\partial^2 \ln \mathcal{L}}{\partial p_a \partial p_b} \right\rangle
\]

(41)

where \(p_i\) are the relevant parameters, and \(\mathcal{L}\) is the likelihood. For redshift-space distortions, straightforwardly build on the results of [10] to construct the appropriate Fisher matrix. However, for weak lensing we require a slightly different expression. Although our equation 29 allows for the cross-correlation of source galaxy redshift bins, we have until now considered only a single wide redshift bin. In practice, weak lensing data are normally considered in a number of tomographic redshift bins. In [36], the Fisher matrix for such a situation is shown to be given by:

\[
F_{ab} = \sum_{l=l_{\text{max}}}^{l_{\text{min}}} \left(l + \frac{1}{2} \right) f_{\text{sky}} \text{Tr} \left[C^{-1}_{GR} C_{ab} C^{-1}_{GR} C_{,b} \right]
\]

(42)

where \(a\) is a derivative with respect to \(p_a\), \(f_{\text{sky}}\) is related to the fraction of the sky observed (\(f_{\text{sky}} = 0.375\) for a DETF4-type survey), and \(C\) is an \(N_b \times N_b\) matrix where \(N_b\) is the number of tomographic redshift bins. \(C\) represents the observed power spectrum of the convergence, and is given by the following expression 36:

\[
C^{ij}(l) = P^{\kappa,j}(l) + \frac{\langle \kappa^2 \rangle_{\text{int}}}{n_i} \delta_{ij}
\]

(43)

where \(\kappa\) is the number density of galaxies per steradian in bin \(i\) and \(\langle \kappa^2 \rangle_{\text{int}}\) is the rms intrinsic shear, equal to 0.22 for a DETF4-type survey.
Fig. 1: Degeneracy directions of weak lensing ($\ell = 50$, dashed red) and redshift-space distortions (solid green) in the $\mu_0 - \Sigma_0$ plane, where $\mu(x)$ and $\Sigma(x)$ scale as $\Omega_{\Lambda}^{50}(x)$ (left), and as constants (right).

Computing the appropriate value of \bar{n}_i requires the selection of source redshift bins. In practice, once in possession of data, the selected bins are those which are maximal in number while maintaining shot noise sufficiently below the signal. For our forecasting purposes, we instead follow, for example, [2] and [3]. We select redshift bins by subdividing $n(z)$ of equation 9 into 5 sectors, such that the number of galaxies in each bin is equal. The value of \bar{n} for the total redshift range for a DETF4-type survey is given by $\bar{n} = 3.55 \times 10^8$, so the value in each tomographic bin is simply $\bar{n}_i = \bar{n}/5$.

In the following subsections, we use the Fisher formalism to compute forecast constraints in a number of scenarios. We first consider constraints on the parameters of $\delta \mu(x)$ and $\delta \gamma(x)$ in the case where we fix the expansion history to mimic ΛCDM. We then incorporate expected measurements of w_0 and w_a from Baryon Acoustic Oscillations to forecast constraints on the parameters of $\delta \mu(x)$ and $\delta \gamma(x)$ in the case where we marginalise over the parameters of $\beta(x)$. We finish by discussing the directions of best constraint in the parameter space of the scale-dependent ansatz for $\mu(x, k)$ and $\gamma(x, k)$ put forth in [12].

A. ΛCDM-like expansion history: $\beta(x) = 0$

We first consider constraints on the parameters of $\delta \mu(x)$ and $\delta \gamma(x)$ in the case where the expansion history is fixed to be ΛCDM-like. As in equation 37, we transform $\delta \mu(x, k)$ and $\delta \gamma(x, k)$ to $\mu(x)$ and $\Sigma(x)$, and we choose the time-dependence given by equation 38.

To compute these constraints, we calculate the 2×2 Fisher matrix for lensing, for redshift-space distortions, and for both observations combined. For this, we require expressions for the derivatives $\frac{\partial f_{\sigma_0}(x)}{\partial \mu_0}$, $\frac{\partial f_{\sigma_0}(x)}{\partial \Sigma_0}$ and

$$\frac{\partial}{\partial \mu_0} \left(P_{\kappa}^{i,j}(\ell) + \frac{\langle \gamma_{i,n}^2 \rangle}{\bar{n}_i} \delta_{ij} \right) = \frac{\partial P_{\kappa}^{i,j}(\ell)}{\partial \mu_0}$$

$$\frac{\partial}{\partial \Sigma_0} \left(P_{\kappa}^{i,j}(\ell) + \frac{\langle \gamma_{i,n}^2 \rangle}{\bar{n}_i} \delta_{ij} \right) = \frac{\partial P_{\kappa}^{i,j}(\ell)}{\partial \Sigma_0}$$

These are found in a straightforward manner from equations 49 and 50; we present them in Appendix C.

The resulting forecast constraints are illustrated in Figure 2. As discussed in Section III, the degeneracy directions of the two observables are nearly orthogonal in this case. Combining them results in promising forecast constraints on μ_0 and Σ_0. We see that we can expect a DETF4-type survey to provide constraints at a level of approximately 4% in this plane, in the case where $\beta(x)$ is assumed to be fixed at 0.

B. The effect of marginalising over $\{w_0, w_a\}$

In reality, $\beta(x)$ is not fixed to zero, but rather the associated parameters will also be constrained with some non-zero error. While weak lensing and redshift-space distortions will provide some constraints on these, it is baryon acoustic oscillation (BAO) measurements which are expected to provide the best constraints on the expansion history of the universe.

In this section, we use a CPL-type ansatz for $\beta(x)$ as proposed in [77, 78]: $\beta(x) = w_0 + 1 + w_a (1 - e^x)$. We incorporate forecast BAO constraints on w_0 and w_a and use these to obtain expected constraints in the $\bar{\mu}_0 - \Sigma_0$ plane. We first marginalise over only w_0, while holding w_a to its fiducial value of 0; then we examine the effect of allowing w_a to vary as well.
The resulting constraints from the combination of weak lensing, BAO, and redshift-space distortions are shown in Figure 3 and Figure 4. Figure 3 shows in the left-hand panel the forecast constraints on $\bar{\mu}_0$ for cases 1 - 3 above when marginalising over w_0 and Σ_0; the right-hand panel displays the same for Σ_0 when marginalising over w_0 and $\bar{\mu}_0$. Figure 4 shows the 68.3% forecast joint constraints on $\bar{\mu}_0 - \Sigma_0$ in scenarios 1 - 3 while marginalising over w_0 only.

We note from Figure 4 that the degeneracy direction of the combined constraint in the $\bar{\mu}_0 - \Sigma_0$ plane changes considerably between the three scenarios. $\bar{\mu}_0$ and Σ_0 are mildly negatively correlated in scenario 1, whereas in scenario 2 they are positively correlated, and in scenario 3 even more so. This can be understood by considering the joint forecast constraints in the $\bar{\mu}_0 - w_0$ and $\Sigma_0 - w_0$ planes, marginalised in each case over the other non-w_a parameter. These are displayed at a 68.3% level in Figure 4 for scenario 3. Both $\bar{\mu}_0$ and Σ_0 are shown therein to exhibit a positive correlation with w_0. This implies that $\bar{\mu}_0$ and Σ_0 are also positively correlated with each other, except in the case where w_0 is fixed or constrained so tightly that this effect is negated. As the constraint on w_0 is loosened, moving from scenario 1 through scenario 2 to scenario 3, this positive correlation becomes more pronounced.

We notice also from Figure 4 that the constraint on Σ_0 is relatively insensitive to the level of BAO constraint on w_0, whereas the constraint on $\bar{\mu}_0$ changes considerably between scenarios 1 - 3. This is consistent with Figure 5, in which we see that the degeneracy direction in the $\bar{\mu}_0 - w_0$ plane has a far greater positive slope than that in the $\Sigma_0 - w_0$ plane. These degeneracy directions, and hence the relative sensitivity of $\bar{\mu}_0$ and Σ_0 constraints to w_0 constraints, can be understood by considering the expressions for $P_{k,x}^{ij}(\ell)$ (equation 29) and $\delta f{\sigma}_G(x)$ (equations 17 and 50). Both $P_{k,x}^{ij}(\ell)$ and $\delta f{\sigma}_G(x)$ are given by integrals in time over a kernel and a source term. In the case of $\delta f{\sigma}_G(x)$ the general relativistic kernel $G_f(x, \tilde{x})$ is significant back to $z \simeq 15$, whereas in the weak lensing case, the kernel is non-zero only as far back in redshift as the furthest source galaxies ($z = 2$ in this case). In the current model of $\beta(x)$, deviations from a ΛCDM expansion history are more significant at early times, whereas $\bar{\mu}(x)$ and $\Sigma(x)$ are both chosen to be significant only at late times (below $z \simeq 5$). Therefore, the $\delta f{\sigma}_G(x)$ integration from $z \simeq 15$ favours sensitivity to the background expansion variable w_0 over $\bar{\mu}_0$, whereas the weak lensing integral, significant only from $z \simeq 2$, results in relatively greater sensitivity to Σ_0. This results in the relative sensitivity of the $\bar{\mu}_0$ constraint to the w_0 constraint level, as seen in Figure 4. Note that we have not accounted here for any uncertainty in galaxy bias models at high redshifts, which may have significant effects on the sensitivity of $f{\sigma}_G(x)$ to the background expansion at early times.

Finally, we note that there is clearly a direction in the $\bar{\mu}_0 - \Sigma_0$ plane which is entirely insensitive to the change in w_0. This is in fact expected due to the nature of the contours displayed. Given the hypothetical 3D confidence

1. **Marginalising over w_0; $w_a = 0$**

We first demonstrate how constraints in the $\bar{\mu}_0 - \Sigma_0$ plane are affected by marginalising over w_0 when w_a is held fixed to its fiducial value of 0.

Because we are now incorporating information about three parameters ($\bar{\mu}_0$, Σ_0 and w_0), our Fisher matrices are 3×3 in dimension. In order to compute these, we now require additional derivatives of $P_{k,x}^{ij}(\ell)$ and $f{\sigma}_G(x)$ with respect to w_0; all are listed in Appendix C. Because transverse measurements of BAO are independent of non-background gravitational effects [39], the Fisher matrix of BAO is non-zero only in the (w_0, w_0) component. The value of this matrix component is equal to $\frac{1}{\sigma_{w_0,BAO}^2}$, where $\sigma_{w_0,BAO}$ is the 1-σ error on w_0 from BAO measurements.

To explore the effect of marginalising over w_0, we consider three levels of constraint from BAO:

1. For comparison: the case where w_0 is fixed to its fiducial value. This is identical to the case considered in Section IV A.

2. The case where $\sigma_{w_0,BAO} = 1\%$. This scenario mimics best-case constraints from a DETF4-type survey.

3. The case where $\sigma_{w_0,BAO} = 5\%$. This lies between current best constraints and scenario 2 above.

The resulting constraints from the combination of weak lensing, BAO, and redshift-space distortions are shown in Figure 2. Figure 2 shows three levels of constraint from BAO:

FIG. 2: Forecast constraints for weak lensing (orange), redshift-space distortions (green) and both observables combined (blue) for a DETF4-type survey, in the $\bar{\mu} - \Sigma_0$ plane with $\beta(x)$ fixed to 0. Contours represent the 68.3% and 95.4% confidence regions.
FIG. 3: Forecast constraints from weak lensing, redshift-space distortions, and BAO in the case where w_0 has been marginalised over and w_a has been fixed to 0. The left-hand panel shows the confidence region for $\bar{\mu}_0$ when Σ_0 is marginalised over, while the right-hand panel shows the confidence region for Σ_0 with $\bar{\mu}_0$ marginalised over. Black, solid: w_0 fixed; red, dashed: BAO error on $w_0 = 1\%$ (DETF4); green, dotted: BAO error on $w_0 = 5\%$.

FIG. 4: Forecast 68.3\% confidence regions in the $\bar{\mu}_0 - \Sigma_0$ plane, marginalising over w_0, for the case where $w_a = 0$. Black, solid: w_0 fixed; red, dashed: BAO error on $w_0 = 1\%$ (DETF4); green, dotted: BAO error on $w_0 = 5\%$.

region in the space of $\bar{\mu}_0$, Σ_0 and w_0, the marginalised constraint of scenario 3 is equivalent to projecting this ellipsoid into the $\bar{\mu}_0 - \Sigma_0$ plane. When we reduce the error in only the w_0 direction as in scenario 2 – that is, reducing the error in the direction orthogonal to the plane of projection – the resulting projection will, by simple geometrical considerations, coincide with the first projection in two locations. The same argument can then be extended to the case of fixed w_0, which involves simply taking a slice of the 3D ellipsoid at the location of the $\bar{\mu}_0 - \Sigma_0$ plane.

2. **Marginalising over $\{w_0, w_a\}$**

We now consider the case where we do not fix w_a to zero. In this scenario, there is information present about 4 parameters ($\mu_0, \Sigma_0, w_0, w_a$), so all Fisher matrices are 4×4. In addition to the previous derivative expressions, we now need derivatives with respect to w_a of $P_{\kappa}^{-1}(\ell)$ and $f\sigma_8(x)$. Once again, these are computed from equations 23 and 26 and listed in Appendix C. In this scenario, the BAO Fisher matrix is slightly more complicated, as the entire 2×2 block related to w_0 and w_a is non-zero.

In analogy to the above, we consider three scenarios:

1. The scenario where w_0 and w_a are fixed to their fiducial values. Again, this for comparison, and is identical to the case considered in Section IV A.

2. The scenario where the BAO Fisher matrix represents the best-case expected constraints from a DETF4-type survey. In this scenario, the components of the BAO-only covariance matrix (the inverse of the Fisher matrix) are given by: $C_{w_0, w_0} = 0.0010$, $C_{w_a, w_0} = -0.0038$, and $C_{w_a, w_a} = 0.016$.

3. The scenario where the BAO-only covariance matrix is obtained by multiplying the covariance matrix listed above in scenario 2 by an overall factor of $(8.2)^2$. This corresponds to the case where the projected 68.3\% error on w_0 from BAO is 5\% and all other elements of the covariance matrix are scaled up accordingly.
The left-hand panel of Figure 6 presents the combined weak lensing, redshift-space distortion and BAO forecast constraints on $\bar{\mu}_0$ while marginalising over w_0 and Σ_0; the right-hand panel does the same for constraints on Σ_0 while marginalising over w_0, w_a and $\bar{\mu}_0$. Figure 7 meanwhile, presents the 68.3% confidence regions in the $\bar{\mu}_0 - \Sigma_0$ plane while marginalising over w_0 and w_a.

We see that the forecast constraint on Σ_0 is now slightly more sensitive to the level of BAO constraint on w_0 and w_a than in the above case where w_a is fixed. This is particularly noticeable in scenario 3, in which the expansion history is the least well-constrained. Turning to $\bar{\mu}_0$, we see from Figure 6 that the forecast constraint remains sensitive to our knowledge of the expansion history in much the same way as in the w_a fixed case. That is, the constraint in scenario 3 is broadened considerably relative to that in scenario 2, and both are slightly broader than in the above case where w_a fixed. Finally, examining the combined plot in Figure 7 we see that the confidence regions therein are slightly larger than those in the corresponding Figure 4 where w_a is fixed (other than for scenario 1, which is the same in both figures by design).

We surmise that allowing for a time-dependence in the equation of state of the effective dark energy component (via $\beta(x)$) loosens the expected constraints on $\bar{\mu}_0$ and Σ_0, but not catastrophically so. In fact, the level of constraint provided by BAO measurements on the expansion history of the universe appears to have a greater effect on forecast constraints in the $\bar{\mu}_0 - \Sigma_0$ plane than does our assumption regarding the time-dependence of that expansion history.

C. Scale-dependent $\mu(x, k)$ and $\gamma(x, k)$

Until this point, we have neglected any scale-dependence of $\mu(x, k)$ and $\gamma(x, k)$, focusing only on time-dependence. We now consider a scale-dependent ansatz.

It has been shown that in the quasistatic regime and for local theories of gravity, $\mu(x, k)$ and $\gamma(x, k)$ can be expressed as a ratio of polynomials in k with a specific form [12]:

$$\gamma(x, k) \simeq \frac{p_1(x) + p_2(x)k^2}{1 + p_3(x)k^2}$$

$$\mu(x, k) \simeq \frac{1 + p_4(x)k^2}{p_4(x) + p_5(x)k^2}.$$ \hfill (46)

This form has recently been considered in [22], in which a Principle Component Analysis was undertaken for a combined future data set including weak lensing and galaxy count measurements from the Large Synoptic Survey Telescope (LSST), as well as Planck measurements and upcoming supernova data. Therein, the primary goal was to provide insight into future constraints on $\mu(x, k)$ and $\gamma(x, k)$ as well as on the overall scale-dependence. Here, we use the Fisher matrix formalism to find the level of forecast constraint on various parameter space directions from a DETF4-type survey. Our expression for P_k^{ij} will then allow us to understand the related degeneracy structure of the parameter space.

Because we are interested only in broadly understanding the best-constrained directions of the parameter space, we fix $\beta(x) = 0$ for simplicity. In GR+ΛCDM, $p_1(x) = p_4(x) = 1$ and $p_2(x) = p_3(x) = p_5(x) = 0$. Therefore, in keeping with our linear response approach, we define:

$$p_1(x) = 1 + \delta p_1(x)$$

$$p_2(x) = \delta p_2(x)$$

$$p_3(x) = \delta p_3(x)$$

$$p_4(x) = 1 + \delta p_4(x)$$

$$p_5(x) = \delta p_5(x).$$ \hfill (47)

Then, by dropping higher-order terms in $\delta p_i(x)$, we find...
expressions for $\mu(x,k)$ and $\gamma(x,k)$:

$$\mu(x,k) \simeq 1 + \delta p_3(x)k^2 - \delta p_4(x) - \delta p_5(x)k^2$$
$$\gamma(x,k) \simeq 1 + \delta p_1(x) + \delta p_2(x)k^2 - \delta p_3(x)k^2. \quad (48)$$

Our previous choices for $\delta \mu(x,k)$ and $\delta \gamma(x,k)$ have been consistent with equation (48) we have simply assumed that $\delta p_2(x)$, $\delta p_3(x)$, and $\delta p_5(x)$ have been sub-dominant, and let $-\delta p_4(x) = \delta \mu(x)$ and $\delta p_1(x) = \delta \gamma(x)$.

It will be useful to have the equivalent expressions for $\bar{\mu}(x,k)$ and $\Sigma(x,k)$. We find them using equation (47):

$$\bar{\mu}(x,k) \simeq -\delta p_1(x) - \delta p_4(x) + k^2(-\delta p_2(x) + \delta p_5(x))$$
$$\Sigma(x,k) \simeq -\frac{1}{2} \delta p_1(x) - \delta p_4(x) + k^2 \left(-\frac{1}{2} \delta p_2(x) + \frac{3}{2} \delta p_5(x) - \delta p_4(x) \right) . \quad (49)$$

As usual, in order to forecast constraints using Fisher matrices, we must select an ansatz for the functions $\delta p_i(x)$. From equation (46) we see that in fact, while $\delta p_1(x)$ and $\delta p_4(x)$ are dimensionless, $\delta p_2(x)$, $\delta p_3(x)$ and $\delta p_5(x)$ must have dimensions of length squared. We choose a form similar to that of equation (49) for both sets of functions, introducing a mass scale where necessary to account for their different dimensionalities:

$$\delta p_{(1,4)}(x) = p_0^{(1,4)} \frac{\Omega^{GR}_\Lambda(x)}{\Omega^{GR}_\Lambda(x = 0)}$$
$$\delta p_{(2,3,5)}(x) = p_0^{(2,3,5)} c^2 \frac{\Omega^{GR}_\Lambda(x)}{(20H_0)^2 \Omega^{GR}_\Lambda(x = 0)}. \quad (50)$$

Thus, the parameter space is five-dimensional, with parameters $\{p_0^{(1,4)}, p_0^{(2,3,5)}\}$. The scale $c/20H_0$ has been chosen as it provides sensible numerical eigenvalues. We will see below that the numerical value of this scale is irrelevant to our results.

To compute the Fisher matrices we require derivatives of $P_{\delta \Phi}^{\delta \Phi}$ and $f\sigma_8$ with respect to the parameters p_i. These are computed in a straightforward manner from equations (43) and (45) and are presented in Appendix C. As can be seen there, or as is obvious from equation (46) some of these derivative expressions are dependent upon...
In the weak lensing case, this is trivially dealt with, as the Limber approximation allows us to set $k = \frac{2}{c}$. However, the derivatives of $f\sigma_8$ with respect to p_0^0, p_0^3 and p_0^5 are truly k-dependent.

In order to treat this case, we abandon the usual (general relativistic) notion that all scale-dependence of $f\sigma_8$ is factored out, and instead divide our forecast observations into five bins in k. As in [11], we let these bins have edges $k = [0.005, 0.02, 0.05, 0.08, 0.12, 0.15]$, stopping short of entering the regime where nonlinearities dominate. We select the error on the measurement in each k-bin based on the assumption that a DETF4-type survey, which covers a large fraction of the sky, will result in tighter measurements of large-scale modes than of small-scale modes. To model this, we divide the total error budget of each redshift bin, given by [11], into the five k-bins listed above. The first redshift bin (between $k = 0.005$ and $k = 0.02$) receives 4% of the error budget, the next two bins ($k = 0.02 - 0.05$ and $k = 0.05 - 0.08$) receive 12% of the error budget each, and the final two bins ($k = 0.08 - 0.12$ and $k = 0.12 - 0.15$) receive 36% of the error budget each.

We can now construct the Fisher matrices for weak lensing and redshift-space distortions, recalling in the redshift-space distortions case to sum over bins of scale as well as of redshift. We invert the total combined Fisher matrix to obtain the covariance matrix, and diagonalise to obtain five eigenvectors with corresponding eigenvalues.

Before examining and interpreting these eigenvalues and eigenvectors, we pause to consider more fully the implications of the difference in dimensionality of $\delta p_1(\vec{r})$ and $\delta p_2(\vec{r})$, $\delta p_3(\vec{r})$ and $\delta p_5(\vec{r})$. In equation [50], p_2^0, p_3^0 and p_5^0 have essentially been scaled by $\left(\frac{c}{2\Omega_{\Lambda}}\right)^2$. This scaling factor is arbitrary, and using a different scaling factor would alter the numerical value of the eigenvalues of the covariance matrix. Therefore, although all eigenvalues of the covariance matrix are dimensionless, any forecast constraint on p_2^0, p_3^0 or p_5^0, or on any combination thereof, must be multiplied by $\left(\frac{c}{2\Omega_{\Lambda}}\right)^2$ (or the appropriate scaling factor). This provides a physically meaningful value with dimensions length squared, which represents a constraint on the combination $p_{2,3,5}^0 \times \left(\frac{c}{2\Omega_{\Lambda}}\right)^2$. Without introducing a prior, it is impossible to meaningfully compare numerical constraints on parameter combinations within two different parameter sub-spaces: that of p_1^0 and p_4^0 and that of p_2^0, p_3^0, and p_5^0.

First, consider those eigenvectors in the subspace of p_1^0 and p_4^0. We list them here, along with the square root of the associated eigenvalue $\sqrt{\sigma^2}$. This acts as a measure of how well the parameter space is constrained in the direction of the eigenvector. We have:

$$\vec{\alpha}_1 = 0.8\hat{p}_1 - 0.004\hat{p}_2 + 0.001\hat{p}_3 + 0.6\hat{p}_4 + 0.002\hat{p}_5$$

$$\approx 0.8\hat{p}_1 + 0.6\hat{p}_4$$

with $\sqrt{\sigma^2} \approx 0.01$, and

$$\vec{\alpha}_2 = -0.6\hat{p}_1 + 0.0003\hat{p}_2 + 0.0002\hat{p}_3 + 0.8\hat{p}_4 - 0.0006\hat{p}_5$$

$$\approx -0.8\hat{p}_1 + 0.6\hat{p}_4$$

with $\sqrt{\sigma^2} \approx 0.2$. Clearly, due to the numerical nature of the Fisher matrix calculation, some sub-dominant contributions in the directions of \hat{p}_2, \hat{p}_3 and \hat{p}_5 persist; we ignore these. We see here that $\vec{\alpha}_1$, the better constrained of the two parameter space directions, is essentially a weighted sum of the directions \hat{p}_1 and \hat{p}_4. $\vec{\alpha}_2$ is the vector orthogonal to $\vec{\alpha}_1$, and consists of a weighted difference.

In order to interpret the level of constraint placed on the eigenvectors, we consider equation [19]. Recall that because we have chosen an ansatz for $\delta p_1(\vec{r})$ which is non-negligible at late times only (equation [50], $\Sigma(x, k)$, is the dominant non-GR+ACDM contribution to $P_{k}^{-3}(\ell)$, while only $\mu(x, k)$ contributes to $f\sigma_8$. In examining equation [19] it is clear why a sum of directions \hat{p}_1 and \hat{p}_4 is forecast to be better constrained than a difference: both $\Sigma(x, k)$ and $\mu(x, k)$ are directly sensitive to weighted sums of $\delta p_1(x)$ and $\delta p_4(x)$.

We now consider eigenvectors in the subspace of p_2^0, p_3^0 and p_5^0. These are given by:

$$\vec{\alpha}_3 = 0.0005\hat{p}_1 + 0.3\hat{p}_2 - 0.8\hat{p}_3 + 0.0009\hat{p}_4 + 0.5\hat{p}_5$$

$$\approx 0.3\hat{p}_2 - 0.8\hat{p}_3 + 0.5\hat{p}_5$$

with $\sqrt{\sigma^2} \approx 10^{-5}$, and

$$\vec{\alpha}_4 = -0.004\hat{p}_1 - 0.8\hat{p}_2 + 0.1\hat{p}_3 - 0.002\hat{p}_4 + 0.6\hat{p}_5$$

$$\approx -0.8\hat{p}_2 + 0.1\hat{p}_3 + 0.6\hat{p}_5$$

with $\sqrt{\sigma^2} \approx 4 \times 10^{-4}$, and

$$\vec{\alpha}_5 = -1 \times 10^{-6}\hat{p}_1 + 0.6\hat{p}_2 + 0.6\hat{p}_3 + 5 \times 10^{-5}\hat{p}_4 + 0.6\hat{p}_5$$

$$\approx 0.6\hat{p}_2 + 0.6\hat{p}_3 + 0.6\hat{p}_5$$

with $\sqrt{\sigma^2} \approx 2$. Recall that it is not meaningful to directly compare these $\sqrt{\sigma^2}$ values with those for eigenvectors $\vec{\alpha}_1$ and $\vec{\alpha}_2$.

In order to understand the relative constraints on the eigenvectors in this subspace, we first find the relationships between parameter values along the eigenvector directions. We then use these relationships in equation [19] to find simpler expressions for $\Sigma(x, k)$ and $\mu(x, k)$:

- In the direction $\vec{\alpha}_3$, $p_2^0 \approx -\frac{1}{3}p_3^0$ and $p_5^0 \approx -\frac{2}{5}p_2^0$.

Therefore, $\Sigma(x, k) \approx \frac{7}{3}(2\Omega_{\Lambda})^2 \frac{\Omega_\Lambda^2(x=0)}{\Omega_{\Lambda}^2(x=0)} k^2$, and

$$\mu(x, k) \approx 3 \frac{p_2^0 c^2}{(2\Omega_{\Lambda})^2} \frac{\Omega_\Lambda^2(x=0)}{\Omega_{\Lambda}^2(x=0)} k^2$$.

- In the direction $\vec{\alpha}_4$, $p_2^0 \approx 8p_3^0$ and $p_5^0 \approx 6p_2^0$.

$$\Sigma(x, k) \approx -\frac{1}{2}(2\Omega_{\Lambda})^2 \frac{\Omega_\Lambda^2(x=0)}{\Omega_{\Lambda}^2(x=0)} k^2$$, and

$$\mu(x, k) \approx 4 \frac{p_2^0 c^2}{(2\Omega_{\Lambda})^2} \frac{\Omega_\Lambda^2(x=0)}{\Omega_{\Lambda}^2(x=0)} k^2$$.

- In the direction $\vec{\alpha}_5$, $p_2^0 \approx p_3^0$ and $p_5^0 \approx p_2^0$.

$\Sigma(x, k) \approx 0$, and

$$\mu(x, k) \approx 0$$.
With this manipulation, it can be seen why the direction \(\vec{\alpha}_4 \) is better constrained than \(\vec{\alpha}_3 \). The expressions for \(\Sigma(x,k) \) demonstrate that a small change in parameter values along direction \(\vec{\alpha}_3 \) has a numerically larger effect on the value of \(\Sigma(x,k) \) than does a small change along direction \(\vec{\alpha}_4 \), by a factor of \(\frac{1}{\mu_0} \). Although \(\bar{\mu}(x,k) \) is affected slightly more by a change along the \(\vec{\alpha}_4 \) direction than along the \(\vec{\alpha}_3 \) direction (by a factor of \(\frac{1}{\mu_0} \)), this effect is clearly subdominant. It is also plain to see why the direction \(\vec{\alpha}_3 \) is by far the worst constrained of this set. As long as \(p^0_i = p^0_3 = p^0_0 \), both \(\Sigma(x,k) \) and \(\bar{\mu}(x,k) \) are entirely insensitive to the value taken by these parameters.

It is tempting to attempt a comparison of the above results directly with those of \cite{22}. However, this would be misleading, as the Principle Component Analysis employed in that work allows the functions \(p_i(x) \) to take any time-dependence, whereas we restrict that time-dependence to that given in equation \cite{20}. Additionally, the authors of \cite{22} choose to impose a prior upon the variance of each function \(p_i(x) \), enabling them to meaningfully discuss constraints on directions which combine the two parameter subspaces which we have considered. Nevertheless, there is some small comparison we can draw: in \cite{22} it was found that the functions \(p_i(x) \) can not be individually constrained, and we similarly find no evidence of any well-constrained direction corresponding to a single \(p^0_0 \).

V. CONCLUSIONS

The goal of this work has been to understand how weak lensing measurements are affected by the individual physical effects of alternative theories of gravity. In this spirit, we have chosen to prioritise clarity. We have therefore restricted ourselves to considering gravitational parameters, and have not included uncertainty in galaxy bias or in the standard cosmological parameter values at this time.

We have constructed an expression for the power spectrum of the weak lensing observable convergence, as given in equation \cite{20}. By considering only small deviations from GR+ΛCDM, we have derived an expression which separates into an integral over two terms: a general relativistic kernel, and a source term which encompasses all deviations from general relativity. This source term is composed of additive terms which are themselves each representative of a different effect due to modifying general relativity. This neat separation, first of the full expression into kernel and source and then of the source expression into physical effects, allows degeneracies between gravitational parameters to be physically interpreted. We note also that our expression is reliable in the ΛCDM-like case of \(\beta(x) = 0 \), whereas complimentary works employing a fluid model have found this limit difficult to constrain \cite{12}.

With equation \cite{20} in hand, we first investigated degeneracies in the simplified case of a ΛCDM-like expansion history, showing how the degeneracy direction of weak lensing in the \(\bar{\mu}_0 - \Sigma_0 \) plane relies on the time-dependent ansatz for \(\bar{\mu}(x) \). However, we also demonstrated that even for an extreme ansatz, weak lensing and redshift-space distortion measurements remain non-degenerate in this plane, and hence are a viable combination of observables to offer joint constrains on \(\bar{\mu}_0 \) and \(\Sigma_0 \).

We then moved on to exploit the full potential of our expression, allowing the effective equation of state of the dark energy component to take a CPL form, given in Section \textsection IV B. We showed that in the case where \(w_a = 0 \) and a phenomenological ansatz for \(\bar{\mu}(x) \) and \(\Sigma(x) \) is assumed, forecast constraints on \(\mu_0 \) from weak lensing and redshift-space distortions are highly sensitive to the level of constraint on \(w_0 \) from BAO. Forecast constraints on \(\Sigma_0 \), on the other hand, were shown to be nearly unaffected. We were able to easily explain this phenomenon by examining equations \cite{23} and \cite{25} - a high sensitivity of redshift-space distortions to early time effects was seen to be the source. Relaxing the requirement that \(w_a = 0 \), we saw that constraints in the \(\bar{\mu}_0 - \Sigma_0 \) plane were only moderately affected by marginalising over \(w_a \). This offers the exciting prospect that the analysis of data from a DETF4-type survey may be able to allow for a time-dependent background expansion without sacrificing much constraining power in the \(\bar{\mu}_0 - \Sigma_0 \) plane.

Finally, we used our expression for \(P_{\kappa\lambda} \), in combination with that for \(f_{\sigma_8} \), to understand the best-constrained directions in the space of parameters of the scale-dependent ansatz given in \cite{12}. Using again a linear response approach, we were able to explain why a weighted sum of the parameters not associated with scale-dependence is forecast to be well-constrained, and why a direct sum of the parameters associated with scale-dependence is totally unconstrained. This work expands upon the work of \cite{22}, both by forecasting for a different survey, but also by providing clear reasons for the forecast constraints found, something that is non-trivial to do using a Principle Component Analysis method.

The methods we have developed to better understand the effect of altering the theory of gravity could in principle be extended to understanding degeneracies in other scenarios of observational cosmology. We hope that we have provided here the groundwork for such developments. As previously noted, in the interest of clarity we have not included uncertainty on the galaxy bias or on standard cosmological parameters in our forecasting. Ideally, these would be included to provide more accurate forecasting and more general conclusions. However, in seeking to include these additional parameters, the clarity of equation \cite{23} is compromised, and as such we anticipate that future work in this direction will necessarily involve the sacrifice of the descriptive power shown here. In such future work, forecasting methods involving sampling the posterior of the joint probability distribution of the relevant parameters are likely to be more appropriate.
We would like to thank Phil Bull, Lance Miller and Catherine Heymans for helpful discussions. CDL is supported by the Rhodes Trust. TB is supported by All Souls College, University of Oxford. PGF acknowledges support from STFC, BIPAC, a Higgs visiting fellowship and the Oxford Martin School.

Appendix A: Derivation of $H^2Ω_M|_{MG} = H^2Ω_M|_{GR}$

Here we derive a) the formula for $δH(x)$ used in equation (23) and b) the relation $H^2Ω_M|_{MG} = H^2Ω_M|_{GR}$ used in Section II B.

First we write the Friedmann equation as:

$$H^2(x) = \frac{8πG}{3} a^2 [ρ_M(a) + ρ_D(a)]$$

$$= \frac{8πG}{3} [ρ_{M0}e^{-x} + ρ_{D0}e^{-δw_D(x')}x']$$

$$= H^2_{0}Ω_{M0}e^{-x} \left[1 + R e^{3x} - 3f(x')β(x')\right]$$ \hspace{1cm} (A1)

where in the second line we have changed the independent variable to $x = \ln(a)$ and used the energy density evolution for a fluid with a general equation of state w_D. In the third line we have defined $R = Ω_{A0}/Ω_{M0}$, identifying the present fractional energy density in the dark fluid ($Ω_{D0}$) with that of the apparent cosmological constant today ($Ω_{A0}$). We have also made use of $w_D(x) = -1 + β_x$ as introduced in equation (13).

We define $u(x) = \int_0^x β(x') dx'$ as in equation (13) and assume as in Section II B that for a viable cosmology $β(x) \ll 1$ and $|u(x)| \ll 1$. Then, expanding the exponential and taking a square root leads to:

$$H(x) = H_0 \sqrt{Ω_{M0}e^{-x} \left[1 + Re^{3x}(1 - 3u(x))\right]}$$

$$= H_0 \sqrt{Ω_{M0}e^{-x} \left[1 + Re^{3x} \left[1 - \frac{3}{2} \left(u(x)Re^{3x}\right)\right]\right]}$$

$$= H_{GR}(x) \left[1 - \frac{3}{2} \left(u(x)Re^{3x}\right)\right]$$ \hspace{1cm} (A2)

where in the second line we have used a Taylor expansion to linear order. Finally, we use the (easily derived) result that in ΛCDM, and assuming negligible radiation,

$$(1 - Ω_{M}^{GR}) = \frac{Re^{3x}}{1 + Re^{3x}}$$ \hspace{1cm} (A3)

to obtain:

$$δH(x) = H(x) - H_{GR}(x) = -\frac{3}{2}H_{GR}(x)u(x) \left(1 - Ω_{M}^{GR}\right).$$ \hspace{1cm} (A4)

With this result in hand, it is simple to show that the combination $H^2Ω_M$ does not change under the perturbations about the GR+ΛCDM model. Expanding to first order about the fiducial model:

$$H^2Ω_M = (H_{GR} + δH)^2 (Ω_{M}^{GR} + δΩ_M)$$

$$≈ H^2_{GR}Ω_{M}^{GR} \left[1 + 2\frac{δH}{H_{GR}} + \frac{δΩ_M}{Ω_{M}^{GR}}\right] + O(δH^2).$$ \hspace{1cm} (A5)

We call upon a result derived in Appendix A of [10] (for brevity’s sake we will not repeat the derivation here):

$$δΩ_M = 3u(x)Ω_{M}^{GR} \left[1 - Ω_{M}^{GR}\right].$$ \hspace{1cm} (A7)

Substituting equations (A4) and (A7) into equation (A6) one finds $H^2Ω_M = H^2_{GR}Ω_{M}^{GR}$, as stated in the text.

Appendix B: Converting between $\{δµ(x), δγ(x)\}$ and $\{μ(x), Σ(x)\}$

We derive here the relationship, given in equation (37) between two sets of functions which parameterise deviations from GR+ΛCDM in the quasistatic limit: $\{δµ(x, k), δγ(x, k)\}$ and $\{μ(x), Σ(x, k)\}$. In doing so, we will refer heavily to equations 4 and 5 of [15]. For reference, we reproduce them here, changing to our time variable $x = ln(a)$ and making some minor notational alterations in order to maintain our conveniences:

$$Ψ(x, k) = [1 + δµ(x, k)]Ψ_{GR}^S(x, k)$$

$$Ψ(x, k) + Φ(x, k) = [1 + Σ(x, k)](Ψ_{GR}(x, k) + Φ_{GR}^S(x, k)).$$ \hspace{1cm} (B1)

We have labelled the general relativistic potentials with an S due to the fact that they are slightly different from what we call $Ψ_{GR}(x, k)$ and $Φ_{GR}(x, k)$. $Ψ_{GR}(x, k)$ and $Φ_{GR}(x, k)$ follow a general relativistic Poisson equation and slip relation, but they may generally still have a different value than $Ψ(x, k)$ and $Φ(x, k)$, due to any difference in the history of the growth of overdensities.

Now, from equation (18) above, we see that

$$Φ(x, k) = [1 + δµ(x, k)](1 + δΔ(x, k))Ψ_{GR}(x, k).$$ \hspace{1cm} (B2)

In fact, $Φ_{GR}^S(x, k) = [1 + δΔ(x, k))Φ_{GR}(x, k)$, so that we have:

$$Φ(x, k) = [1 + δµ(x, k)]Φ_{GR}^S(x, k).$$ \hspace{1cm} (B3)

We also know from equation (37) that in the quasistatic regime, $Φ(x, k) = (1 + δγ(x, k))Ψ(x, k)$. Therefore:

$$Ψ(x, k) = \frac{1 + δµ(x, k)}{1 + δγ(x, k)}Φ_{GR}(x, k)$$

$$= \frac{1 + δµ(x, k)}{1 + δγ(x, k)}Ψ_{GR}^S(x, k)$$

$$\approx (1 + δµ(x, k) - δγ(x, k))Ψ_{GR}^S(x, k)$$ \hspace{1cm} (B4)

where the second line comes from the fact that $Φ_{GR}^S(x, k) = Ψ_{GR}^S(x, k)$. Referring to equation (B3) we see that

$$μ(x, k) = δµ(x, k) - δγ(x, k),$$ \hspace{1cm} (B5)

Acknowledgements

We would like to thank Phil Bull, Lance Miller and Catherine Heymans for helpful discussions. CDL is supported by the Rhodes Trust. TB is supported by All Souls College, University of Oxford. PGF acknowledges support from STFC, BIPAC, a Higgs visiting fellowship and the Oxford Martin School.
as in equation 37
From here, we can use equations 16 and 15 to write (suppressing time- and scale-dependence for brevity):

\[
\Psi + \Phi = \frac{1 + \delta \mu}{1 + \delta \gamma} \Psi_{GR}^S + (1 + \delta \mu) \Phi_{GR}^S \\
= \frac{1 + \delta \mu}{1 + \delta \gamma} \Psi_{GR}^S + (1 + \delta \mu) \Phi_{GR}^S \\
= \frac{1}{2} \left[\frac{1 + \delta \mu}{1 + \delta \gamma} + (1 + \delta \mu) \right] (\Phi_{GR}^S + \Psi_{GR}^S) \\
\simeq \left(1 + \delta \mu - \frac{1}{2} \delta \gamma \right) (\Phi_{GR}^S + \Psi_{GR}^S) \quad (B6)
\]

and by comparison with equation 31 we have that

\[
\Sigma(x, k) = \delta \mu(x, k) - \frac{1}{2} \delta \gamma(x, k) \quad (B7)
\]

Appendix C: Derivatives of \(P_{\kappa}^{(k)} \) and \(f_{\sigma_0} \)

We present here the derivatives of \(P_{\kappa}^{(k)}(\ell) \) and \(f_{\sigma_0}(x) \) which are required for forecasting in Section IV. These are determined in a straightforward manner by differentiating equations 28 and 30. For brevity, we will use \(K(x, l) \) as defined in equation 31 to denote the general relativistic kernel in the definition of \(P_{\kappa}^{(k)}(\ell) \), and \(G_f(x, \bar{x}) \) as defined in equation 34 of 10 to denote the general relativistic kernel in the case of redshift-space distortions.

First, the derivatives with respect to \(\bar{\mu}_0 \) and \(\Sigma_0 \) are given as:

\[
\frac{\partial P_{\kappa}^{(k)}}{\partial \bar{\mu}_0} = \int_{-\infty}^{0} dx K(x, l) \left[\frac{3}{2} \int_{-\infty}^{\bar{x}} d\bar{\xi} I(x, \bar{x})(1 - \Omega_{GR}^{(k)}(\bar{x})) \left\{ \frac{3}{2} \Omega_{GR}^{(k)}(\bar{x})(1 + f_{GR}^{(k)}(\bar{x})) \bar{x} + f_{GR}^{(k)}(\bar{x}) \right\} + \frac{3}{2} \left(1 - \Omega_{GR}^{(k)}(x) \right) \right]
\]

Next, derivatives with respect to \(w_0 \) and \(w_a \):

\[
\frac{\partial P_{\kappa}^{(k)}}{\partial w_0} = \int_{-\infty}^{0} dx K(x, l) \left\{ \frac{3}{2} \int_{-\infty}^{\bar{x}} d\bar{\xi} I(x, \bar{x})(1 - \Omega_{GR}^{(k)}(\bar{x})) \left\{ \frac{3}{2} \Omega_{GR}^{(k)}(\bar{x})(1 + f_{GR}^{(k)}(\bar{x})) \bar{x} + f_{GR}^{(k)}(\bar{x}) \right\} + \frac{3}{2} \left(1 - \Omega_{GR}^{(k)}(x) \right) \right\}
\]

Finally, derivatives with respect to \(\{ p_0 \} \):

\[
\frac{\partial P_{\kappa}^{(k)}}{\partial p_0} = -\int_{-\infty}^{0} dx K(x, k) \left[\frac{\Omega_{GR}^{(k)}(x)}{\Omega_{GR}^{(k)}(x = 0)} + 3 \int_{-\infty}^{\bar{x}} d\bar{x} I(x, \bar{x}) \Omega_{GR}^{(k)}(x') \Omega_{GR}^{(k)}(x) \right]
\]

\[
\frac{\partial P_{\kappa}^{(k)}}{\partial p_0} = -\int_{-\infty}^{0} dx K(x, l) \left[\frac{\Omega_{GR}^{(k)}(x)}{\Omega_{GR}^{(k)}(x = 0)} \frac{l^2}{\chi_{GR}(x)} + 3 \int_{-\infty}^{\bar{x}} d\bar{x} I(x, \bar{x}) \Omega_{GR}^{(k)}(x') \Omega_{GR}^{(k)}(x) \right]
\]
\begin{equation}
\frac{\partial P_{k}^{\mu}(l)}{\partial p_{0}^{k}} = -\int_{-\infty}^{0} dx K(x, l) \left[2 \frac{\Omega_{k}^{GR}(x)}{\Omega_{A}^{GR}(x = 0)} \frac{l^{2}}{\chi_{GR}(x)} + 3 \int_{-\infty}^{x} dx' I(x, x') \frac{\Omega_{M}^{GR}(x')}{\Omega_{A}^{GR}(x = 0)} \right]
\end{equation}

\begin{equation}
\frac{\partial P_{s}^{\mu}(l)}{\partial p_{0}^{s}} = -\int_{-\infty}^{0} dx K(x, l) \left[2 \frac{\Omega_{s}^{GR}(x)}{\Omega_{A}^{GR}(x = 0)} \frac{l^{2}}{\chi_{GR}(x)} + 3 \int_{-\infty}^{x} dx' I(x, x') \frac{\Omega_{M}^{GR}(x')}{\Omega_{A}^{GR}(x = 0)} \right]
\end{equation}

\begin{equation}
\frac{\partial f_{s}(x)}{\partial p_{0}^{s}} = -\int_{-\infty}^{x} G_{f}(x, x) \frac{\Omega_{s}^{GR}(x')}{\Omega_{A}^{GR}(x = 0)} \frac{l^{2}}{\chi_{GR}(x)} dx'
\end{equation}

\begin{equation}
\frac{\partial f_{s}(x)}{\partial p_{0}^{s}} = -\int_{-\infty}^{x} G_{f}(x, x) \frac{\Omega_{s}^{GR}(x')}{\Omega_{A}^{GR}(x = 0)} k^{2} dx'
\end{equation}

\begin{equation}
\frac{\partial f_{s}(x)}{\partial p_{0}^{s}} = -\int_{-\infty}^{x} G_{f}(x, x) \frac{\Omega_{s}^{GR}(x')}{\Omega_{A}^{GR}(x = 0)} dx'
\end{equation}

\begin{equation}
\frac{\partial f_{s}(x)}{\partial p_{0}^{s}} = -\int_{-\infty}^{x} G_{f}(x, x) \frac{\Omega_{s}^{GR}(x')}{\Omega_{A}^{GR}(x = 0)} k^{2} dx'.
\end{equation}

\[\text{(C4)}\]
(2010), arXiv: astro-ph/1003.4231.
[34] A. Albrecht et al., ArXiv Astrophysics e-prints (2006), astro-ph/0609591.
[35] B. A. Bassett, Y. Fantaye, R. Hlozek, and J. Kotze, International Journal of Modern Physics D 20, 2559 (2011), arXiv: astro-ph/0906.0993.
[36] W. Hu, The Astrophysical Journal Letters 522, L21 (1999), arXiv: astro-ph/9904153.
[37] M. Chevallier and D. Polarski, International Journal of Modern Physics D 10, 213 (2001), arXiv: astro-ph/0009008.
[38] E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003), arXiv: astro-ph/0208512.
[39] B. Bassett and R. Hlozek, Cambridge, UK (2010), arXiv: astro-ph/0910.5224.
[40] P. Bull, Private communication.
[41] E. Majerotto et al., Monthly Notices of the Royal Astronomical Society 424, 1392 (2012), arXiv: astro-ph/1205.6215.
[42] R. A. Battye, A. Moss, and J. A. Pearson, (2014), arXiv: astro-ph/1409.4650.
[43] Note that this remains true even though we have already related the power spectrum of the modified potentials to P_{Φ}^{GR}. Effectively, we have so far accounted for the modified perturbations, but not for the modified background expansion.