Supplementary Material

Substrate binding on the APC/C occurs between the co-activator CDH1 and the processivity factor DOC1

Bettina A. Buschhorn1,6, Georg Petzold1,6, Marta Galova1, Prakash Dube2, Claudine Kraft1,3, Franz Herzog1,4, Holger Stark2,5 and Jan–Michael Peters1

To whom correspondence should be addressed. E–mail:
Holger Stark
\texttt{hstark1@gwdg.de}
Jan–Michael Peters
\texttt{peters@imp.ac.at}

This supplement includes:
Supplementary Material and Methods
Supplementary Figures 1 to 5
Supplementary Tables 1 to 5
Supplementary References
Supplementary Material and Methods

Doc1 mutagenesis and expression. To generate “long” and “short” versions of Doc1, PCR products were generated from a DOC1 cDNA template containing both start codons with primers 5’–ATCGATTAATACGACTCTATAGGGCTCGAGGCCGCCACCATGGGGCAAAATAAGCGCCGTCTATAT–3’ (forward primer “long”) or 5’–ATCGATTAATACGACTCTATACTTCGGGCCGCCACCATGGACCCGATTGGAATAAACAAAGT–3’ (forward primer “short”) and 5’–GTGCTCTCGAGTTACATCATGGATCCTTAACGTAATATAAGCCTGGTAAATTTGT–3’ (reverse primer for both). PCR products were used as templates in coupled in vitro transcription/translation reactions.

N–terminal tagging of Doc1 with tdimer2. A doc1 deletion strain was transformed with a plasmid system (kindly provided by Gwenael Rabut) allowing the exchange of the G418 selection cassette by a tagged gene version of DOC1. The TDIMER2 ORF was subcloned from pGR20 (kind gift of G. Rabut) via PacI/NotI. The DOC1 promoter, introducing an AgeI site at the 5’ end, and a START codon and a PacI site (ATG TTA ATT AA) at the 3’ end, was amplified from genomic DNA. NotI (plus an extra nucleotide, GCG GCC GCT ATG) and XhoI restriction sites were introduced when amplifying DOC1 from cDNA and DOC1 was ligated into pGR51. The resulting construct was cleaved with AgeI and NotI enzymes, and promoter and TDIMER2 were inserted simultaneously. The resulting plasmid was cut with AgeI and PmeI, releasing the tagged construct, which was transformed into a heterozygous doc1 deletion strain (Mata/alpha DOC1/doc1::KanMX, J464) strain and positive transformants were selected on plates lacking histidine.

(tmd)phe–tRNA. (tmd)phe was obtained from Botanica GmbH, Sins, Switzerland. Alternatively, it was generated from (tmd)phe–pdCpA (generous gift from J. Brunner) and tRNA^{SUP}_{(-pdCpA)} following the protocol by1, with two major exceptions. The template for the transcription reaction was generated by PCR amplification from pTHG73 (ref. 2) using primers 5’–GCCTCTACTGGGGATT–3’ and 5’–AATTCGTAATACGACTCTATATAG–3’. The PCR product was extracted with phenol pH 7.9 and chloroform followed by ethanol precipitation. About 5 µg PCR product were used for a 100 µl transcription reaction. Secondly,
N–(4–)pentenoyl–protected (tmd)phe was deprotected with 25 mM I_2 in 1:1 tetrahydrofuran–water^3.

Gradient centrifugation and APC/C immunoprecipitation. *CDC16–HA3/CDC16–myc6* cells were lysed in a freezer mill, extracts were cleared by subsequent ultracentrifugation. The soluble fraction was diluted to a concentration of 4 mg ml\(^{-1}\) in LB50 buffer (20 mM Hepes KOH pH 8.0, 50 mM KCl, 1.5 mM MgCl\(_2\), 0.1% (v/v) NP40, 1 mM DTT) or LB400 buffer (LB50 + 350 mM KCl), supplemented with 5% (v/v) glycerol. 4 mg of extract were separated through a 10 to 40% (v/v) glycerol gradient prepared in buffer LB50 or LB400. Centrifugation was carried out at 34000 rpm for 18 h at 4°C in a Beckman SW40 rotor in a Beckman Optima MAX ultracentrifuge (Beckman Coulter). Gradients were fractionated into 400 µl aliquots using an ISCO fractionator. APC/C was immunoprecipitated in each fraction using 12CA5 (HA) antibody beads. Beads were washed with LB50 containing 10% (v/v) glycerol. Proteins were eluted with 100 mM glycine pH 2.2 and analyzed by western blotting. Apc1–myc/Apc1–HA coimmunoprecipitations were carried out as described^4. Briefly, 12CA5 and 9E10 antibodies were bound to protein A sepharose (Biorad) and GammaBind G sepharose (GE Healthcare) beads, respectively. Extracts were prepared in buffer (50 mM Tris pH 7.5, 50 mM NaCl, 10% (v/v) glycerol, 0.2% (v/v) Triton X–100, 1 mM DTT) by bead beating. 10 µl beads each were incubated with cleared lysates containing 2 mg protein for 90 min at 4°C. Beads were washed with buffer, and bound proteins were eluted with 15 µl 100 mM glycine pH 2.2.

Antibodies. Antibodies against Apc1, Cdc16, Cdc23, Doc1 and Apc11 were raised by immunizing rabbits with peptides coupled to Keyhole Limpet Hemocyanin (Apc1: CDDERSSNGSDISDPTAYLEDKKDIDDDHYG; Cdc16: CALRKGGHDSKTGSNNADDDFDAD; Cdc23: SLADESPLRNKQGPQMFC; Doc1: CSNEPHQDTHEWAQTLPETNNV; Apc11: CVDFDEPIRQNTDNPIGRQQV). 9E10 and 12CA5 antibodies were used for immunoprecipitation and immunodetection of the myc– and HA–epitopes, respectively.

Cryo–Negative Stain Electron microscopy. Purified APC/C or APC/C–antibody complexes were adsorbed to a thin film of carbon and then transferred to an electron microscopic grid.
covered with a perforated carbon film. The bound APC/C particles were stained with 2% (w/v) uranyl formate, blotted and air dried for ~1 min at room temperature. For cryo–negative staining the grids were subsequently plunged into liquid nitrogen. Images were recorded at a magnification of 155,000x on a 4k x 4k CCD camera (TVIPS GmbH) using two–fold pixel binning (1.8 Å per pixel) in a Philips CM200 FEG electron microscope (Philips/FEI) operated at 160 kV acceleration voltage. APC/C–antibody complexes were imaged at room temperature using the same magnification.

Image Processing. Particle images (200 x 200 pixel) were selected using the semiautomated software boxer as part of the Eman package. Images were coarsened by a factor of two resulting in 100 x 100 pixels per image with a sampling of ~3.8 Å per pixel. After CTF correction⁵, images were aligned using an exhaustive multi–reference alignment based on re–sampling to polar coordinates⁶. To obtain the initial 3D reconstructions we made use of random–conical–tilt imaging and weighted averaging of 3D volumes⁷. Characteristic views were obtained by averaging after multivariate statistical analysis and classification⁸. Angular reconstitution⁹ was used to determine the relative orientations of the projection images prior to computing the 3D reconstruction. 3D structures were visualized with the software AmiraDev 2.3 (TGS Europe, Merignac Cedex).
Supplementary Figures

Supplementary Figure 1 Doc1 characterization and localization using tdimer2 tagging and antibody labeling. (a) Yeast cell extracts only contained a 30 kDa version of the Doc1 subunit, which can be co–purified with wild type APC/C and is absent in APC/CΔDoc1. In vitro translated (IVT) products of either the short or the long DOC1 ORF version serve as reference. The asterisk marks the TAP–tag recognized by the Cdc16 antibody in the cell extract. (b) Doc1 is absent in doc1 deletions strains. Both wild type and doc1 deletion strains were used to TAP–tag purify APC/C via the Apc4 subunit. (c) N–terminal tdimer2–labeling of yeast Doc1. Western blot analysis of TAP–tag purified APC/C shows that Doc1 labeling results in a mobility shift from ~30 to ~80 kDa. (d) Localization of human DOC1 protein by antibody labeling. The orientation of APC/C within the APC/C–antibody complex was evaluated based on the known APC/C structure. Rectangles were modeled to the APC/C 3D structure at the respective binding sites of the antibody and the binding site was determined as the main crossing 3D area of all rectangles. (e) The antibody epitope is marked on the surface of the human APC/C 3D model and labeling
accuracy is indicated by the size of the area. A structurally similar domain compared to yeast APC/C Doc1 is situated within this area, indicating a conserved localization of the Doc1 subunit in yeast and human APC/C.
Supplementary Figure 2 Yeast APC/C subunit localization using td2–labeling. (a) Subunit labeling of the yeast Apc1 subunit. Apc1 was tagged with a tmonomer–tag and TAP–tag purified via Apc4. Apc1 undergoes a mobility shift upon tmonomer labeling in the silver stained SDS–PAGE. Apc4–CBP indicates calmodulin binding protein remaining on Apc4 after TEV cleavage. (b) SDS–PAGE of Apc5–tdimer2 labeled APC/C TAP–tag purified via the Cdc16 subunit. (c) Western blot analysis of tdimer2 labeled Apc11. Yeast APC/C complexes were TAP–tag purified via the Cdc16 subunit. (d) Yeast APC/C 3D models indicating subunit localization of Apc1, Apc5 and Apc11 by colored extra density elements representing the tdimer2 label.
Supplementary Figure 3 Analysis of yeast APC/C dimers. (a) Electron microscopic raw images of cryo–negative stained yeast APC/C monomers and dimers. Continuous circles exemplify monomeric, dashed circles dimeric yeast APC/C. (b) Yeast extracts primarily contain dimeric APC/C, which can be dissociated into monomers applying high salt conditions. Fractions of the
gradients were analyzed by Western blot. Fatty acid synthase (41 S) and the 26 S proteasome subunit Rpn5 (ref. 11) serve as sedimentation markers. (c) Dimeric APC/C dissociates into monomers under high–salt conditions. Extracts from a diploid CDC16–HA2/CDC16–myc6 yeast strain were used for glycerol density gradient centrifugation in the presence of either high or low salt concentrations. After gradient fractionation, APC/C was immunoprecipitated with HA antibodies from each fraction and analyzed by Western blotting. Under both conditions, Cdc16–HA2 co–immunoprecipitated Cdc16–myc6, demonstrating that monomeric yeast APC/C contains at least two copies of the Cdc16 subunit. (d) Self association of Apc1 is not impaired in the absence of Doc1. Wild type or doc1Δ diploid yeast strains carrying indicated epitope–tagged Apc1 versions were used for immunoprecipitation experiments. Apc1 is believed to be present as one copy within monomeric APC/C12,13. Apc1–HA3 could co–immunoprecipitate Apc1–myc9 (and vice versa) when co–expressed in presence and absence of Doc1, which indicates that APC/C dimerization does not depend on Doc1. (e) Yeast APC/C dimer interface involves bulky domains located on the back side of the TPR–rich arc lamp domain, labeled 2 and 3. Due to structural resemblance, similar domains could be identified and allocated in human APC/C. Compared to yeast APC/C the human 3D model carries a significant extra mass inserted within the dimer interface between domain 2 and 3, resulting in a more extended appearance of the arc lamp domain. This insertion might prevent dimerization of human APC/C.
Supplementary Figure 4 APCCDH1–Hsl1 and APCCDH1 depicted with different surface rendering thresholds. In the 3D model of APCCDH1–Hsl1 a second extra density could be resolved near the platform domain. This second density disappears upon increase of the threshold parameter for surface rendering, indicating a structural heterogeneity in the platform region among APCCDH1–Hsl1 complexes contained in the dataset. The two extra densities in the APCCDH1–Hsl1 3D model might represent two distinct domains of the bound His–Flag–td2–Hsl1667–872 molecule. Importantly, using high threshold parameter settings, the density intercalated between CDH1 and DOC1 remained appreciable compared to APCCDH1.
Supplementary Figure 5 Comparison of human apo–APC/C, APC/C^{MCC} and APC/C^{CDH1–Hsl1}.
Supplementary Figure 5 Comparison of human apo–APC/C, APC/CMCC and APC/CCDH1–Hsl1. The three different complexes are shown in their front, side, back and bottom view orientation. As reported previously10, the mitotic checkpoint complex is inserted into the central cavity located at the front side of the platform domain. In the APC/CMCC 3D model, the position of the co–activator density (CDC20) is changed compared to the position of CDH1 in the APC/C structure bound to a substrate molecule. These orientational differences might contribute to decreased substrate recognition as shown for APC/CMCC (ref. 10) by disrupting the bipartite substrate receptor. In apo–APC/C, the APC2–APC11 module contacts an unknown subunit located in the platform domain, which is also observed in the APC/CMCC structure (back view orientation). Interestingly, in the 3D model of APC/CCDH1–Hsl1 this connection to the platform is absent and instead, APC2–APC11 forms a new contact to the co–activator density (back and bottom view orientation).
Supplementary Tables

Supplementary Table 1 Doc1 sites exchanged with photo–activatable amino acids.

Site of incorporation	Site in “long” Doc1	Location of site in structure
Arg37	Arg70	Back side
His67	His100	N–terminal helix
Gln71	Gln104	N–terminal helix
Lys91	Lys124	Front side
Lys96	Lys129	Front side
Leu97	Leu130	Front side
Phe103	Phe136	Front side
Asp110	Asp143	Front side
Asp116	Asp149	Front side
Ser128	Ser161	C–terminal region
Lys129	Lys162	C–terminal region
Arg130	Arg163	C–terminal region
Glu146	Glu179	Back side
Lys154	Lys187	Front side
Arg182	Arg215	Back side
Arg199	Arg232	Front side
Asn205	Asn238	Processivity loop
His206	His239	Processivity loop
Glu207	Glu240	Processivity loop
Asn208	Asn241	Processivity loop
Lys210	Lys243	Processivity loop
Asp211	Asp244	Processivity loop
Glu239	Glu272	IR–tail
Phe244	Phe277	IR–tail

For easier comparison with previous studies\(^{14}\), corresponding positions in the “long” Doc1 construct are provided. Regions within Doc1 were classified based on orientation in Figure 1e.
Supplementary Table 2 List of all Doc1 interactions identified by photo–crosslinking.

site of incorporation	site in “long” Doc1	interaction partner	abundance
Ser128	Ser161	Apc1	(+++)
		Cdc16	(+)
Lys129	Lys162	Cdc16	(+++)
		Apc1	(+)
Lys154	Lys187	Apc1	(+++)
Arg182	Arg215	Cdc16	(+++)
Asn205	Asn238	Apc1	(+)
Phe244	Phe277	Cdc27	(+++)

+++ abundant, + less abundant crosslinks. Listed crosslinks were observed in at least five experiments.
Supplementary Table 3: Statistics on EM image analysis.

Sample	Number of particles	Resolution
Yeast APC/C monomer	55434	25 Å
Yeast APC/C dimer	1271	35 Å
Human APC/C^{CDH1}–Hsl1	14813	28 Å
Human APC/C^{CDH1}	17075	27 Å
Yeast APC/C^{ΔSwm1}	6256	33 Å
Yeast APC/C^{ΔDoc1}	28383	30 Å
Yeast APC/C–Apc1–tmomonomer	10474	30 Å
Yeast APC/C–Apc2–tdimer2	12171	32 Å
Yeast APC/C–Apc3–tdimer2	11767	39 Å
Yeast APC/C–Apc5–tdimer2	10291	35 Å
Yeast APC/C–Apc6–tdimer2	14421	38 Å
Yeast APC/C–Apc11–tdimer2	13480	32 Å
Yeast APC/C–Swm1–tdimer2	6273	34 Å
Yeast APC/C–Doc1–tdimer2	9228	30 Å
Supplementary Table 4 Summary of subunit localization experiments. Methods used in this and previous studies for the localization of different subunits and interacting proteins in the 3D structure of the APC/C from different species.

Subunit	Subunit deletion	td2 tagging	Antibody labeling	Recombinant protein addition
Species	S. cerevisiae	S. cerevisiae	H. sapiens, X. laevis	H. sapiens, X. laevis
Apc1	–	1	2	–
Apc2	–	–	2,3	–
Cdc27	–	1	2	–
Apc4	–	–	2	–
Apc5	–	1	2	–
Cdc16	–	1	–	–
Cdc23	–	–	–	–
Apc7	n.i.	n.i.	–	–
Apc9	–	–	n.i.	n.i.
Doc1	1	1	1	–
Apc11	–	1	–	–
Apc16	n.i.	n.i.	4	–
Mnd2	–	–	n.i.	n.i.
CDH1	–	–	–	1,2,3
CDC20	–	–	–	2
Swm1/Apc13	1	1	–	–
BUBR1	–	–	2	–
Hsl1	–	–	–	1

Indicated sources are: [1] this study; [2] (ref. 10); [3] (ref. 12); [4] (ref. 15); n.i. not identified.
Supplementary Table 5 Yeast strains used in this study.

Strain	Relevant genotype	background	Source		
K6201	MATa APC1–ha3::HIS3	W303	(ref. 4)		
K6202	MATalpha APC1–myc6::HIS3	W303	(ref. 4)		
K6203/YWZ1	MATa/MATalpha,CDC16–myc6::URA3/CDC16–ha3::URA3	W303	Gift from Kim Nasmyth		
Z1850	MATalpha CDC16TAP::KITRP1 pep4::URA3	W303	(ref. 16)		
Z2304	Matalpha, CDC16–Tap::KITRP1, swm1::KanMX4, pep4::URA3	W303	Gift from Kim Nasmyth		
J9	MATa APC4–TAP::KITRP1	W303	this study		
J180	MATa APC4–TAP::KITRP1 doc1::KanMX	W303	this study		
J182	MATa APC4–TAP::KITRP1 doc1::KanMX	W303	this study		
J187	MATa APC4–TAP::KITRP1	W303	this study		
J189	MATa APC4–TAP::KITRP1	W303	this study		
J220	MATa doc1::KanMX	W303	this study		
J235	MATa APC4–TAP::TRP1	W303	this study		
Strain	Description	Strain	Description		
---------	---	---------	---		
J266	MATa APC4–TAP::KlTRP1	W303	this study		
	CDC27–myc9::TRP1				
	doc1::KanMX				
J319	MATalpha APC4–TAP::KlTRP1 pep4::URA3	W303	this study		
J320	MATa CDC16TAP::KlTRP1	W303	this study		
	doc1::KanMX pep4::URA3				
J323	MATa APC4–TAP::KlTRP1	W303	this study		
	doc1::KanMX pep4::URA3				
J325	MATa/alpha APC1–ha3::HIS3/ APC1–myc6::HIS3	W303	this study		
J326	MATa APC1–ha3::HIS3	W303	this study		
	doc1::KanMX				
J327	MATalpha APC1–myc6::HIS3	W303	this study		
	doc1::KanMX				
J328	MATa/alpha APC1–ha3::HIS3/ APC1–myc6::HIS3	W303	this study		
	doc1::KanMX				
J329	MATa APC4–TAP::KlTRP1	W303	this study		
	APC1–tmono::SpHIS5				
	pep4::URA3				
J347	MATalpha CDC16TAP::KlTRP1	W303	this study		
	pep4::URA3 APC4–tdimer2::SpHIS5				
J376	MATalpha CDC16TAP::KlTRP1	W303	this study		
	CDC27–tdimer2::spHIS5				
	pep4::URA3				
J378	MATa APC4–TAP::KlTRP1	W303	this study		
Strain Code	Chromosomal Changes	Strain Code	Chromosomal Changes	Strain Code	Chromosomal Changes
-------------	---------------------	-------------	---------------------	-------------	---------------------
J380	MATalpha CDC16–TAP::KITRP1, APC5–tdimer2::SpHIS5, pep4::URA3	W303	this study	J406	MATa CDC16TAP::KITRP1, pep4::URA3, CDC26–tdimer2::SpHIS5
J407	MATa CDC16TAP::KITRP1, pep4::URA3, MND2–tdimer2::SpHIS5	W303	this study	J408	MATa CDC16TAP::KITRP1, pep4::URA3, APC2–tdimer2::SpHIS5
J422	MATa CDC16–TAP::KITRP1, pep4::URA3, APC11–tdimer2::SpHIS5	W303	this study	J428	MATa CDC16TAP::KITRP1, pep4::URA3, SWM1–tdimer2::SpHIS5
J464	MATa/MATalpha, doc1::KanMX/DOC1	W303	this study	J475	MATalpha, N–tdimer2–DOC1::HIS3, CDC16–TAP::KITRP1, pep4::URA3
J477	Mata, mnd2::KanMX, CDC16–TAP::KITRP1, pep4::URA3	W303	this study	J497	Mata, CDC16–tdimer2::SpHIS5, pep4::URA3

W303 is a yeast strain commonly used in research.
cdc26::KIURA3,CDC16–
TAP::KlTRP1
BY4741 hi3D1 leu2Δ0 met15ΔD0 S288C Euroscarf
ura3Δ0
yCK350 BY4741 doc1::KanMX S288C this study

All strains used in this study are derivatives of K699 (MATa ade2–1 trp1–1 can1–100 leu2–3,112 his3–11,15 ura3–1, GAL psi) and K700 (MATalpha ade2–1 trp1–1 can1–100 leu2–3,112 his3–11,15 ura3–1, GAL psi) with the exception of the strains used for spotting experiments which are derivatives of S288C (hi3D1 leu2D0 met15D0 ura3D0 doc1::KanMX). Kl denotes the TRP1 gene from *Klyveromyces lactis*, Sp the HIS5 gene from *Schizosaccharomyces pombe*.
Supplementary References

1. Graf, R., Brunner, B., Dobberstein, B. & Martoglio, B. Probing the molecular environment of proteins by site-specific photocrosslinking. In Cell Biology, A Laboratory Handbook., Vol. 4 (ed. In Celis, J.E.) 495-502 (Academic Press, San Diego, CA, 1998).

2. Saks, M.E. & Sampson, J.R. Variant minihelix RNAs reveal sequence-specific recognition of the helical tRNA(Ser) acceptor stem by E.coli seryl-tRNA synthetase. Embo J 15, 2843-9 (1996).

3. Lodder, M., Wang, B. & Hecht, S.M. The N-pentenoyl protecting group for aminoacyl-tRNAs. Methods 36, 245-51 (2005).

4. Zachariae, W., Shin, T.H., Galova, M., Obermaier, B. & Nasmyth, K. Identification of subunits of the anaphase-promoting complex of Saccharomyces cerevisiae. Science 274, 1201-4. (1996).

5. Sander, B., Golas, M.M. & Stark, H. Automatic CTF correction for single particles based upon multivariate statistical analysis of individual power spectra. J Struct Biol 142, 392-401 (2003).

6. Sander, B., Golas, M.M. & Stark, H. Corrim-based alignment for improved speed in single-particle image processing. J Struct Biol 143, 219-28 (2003).

7. Sander, B., Golas, M.M., Luhrmann, R. & Stark, H. An approach for de novo structure determination of dynamic molecular assemblies by electron cryomicroscopy. Structure 18, 667-76.

8. van Heel, M. Multivariate statistical classification of noisy images (randomly oriented biological macromolecules). Ultramicroscopy 13, 165-83 (1984).

9. Van Heel, M. Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21, 111-23 (1987).

10. Herzog, F. et al. Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex. Science 323, 1477-81 (2009).

11. Glickman, M.H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615-23 (1998).
12. Dube, P. et al. Localization of the coactivator Cdh1 and the cullin subunit Apc2 in a cryo-electron microscopy model of vertebrate APC/C. *Mol Cell* 20, 867-79 (2005).

13. Passmore, L.A. et al. Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation. *Mol Cell* 20, 855-66 (2005).

14. Carroll, C.W., Enquist-Newman, M. & Morgan, D.O. The APC subunit Doc1 promotes recognition of the substrate destruction box. *Curr Biol* 15, 11-8 (2005).

15. Hutchins, J.R. et al. Systematic analysis of human protein complexes identifies chromosome segregation proteins. *Science* 328, 593-9 (2010).

16. Schwickart, M. et al. Swm1/Apc13 is an evolutionarily conserved subunit of the anaphase-promoting complex stabilizing the association of Cdc16 and Cdc27. *Mol Cell Biol* 24, 3562-76 (2004).