2303. Post-Exposure Prophylaxis for Animal Bites: A Low Cost Model for Enhancing Reach and Affordability of Biologicals in High Burden Countries

Yajaman Belludi, Yajaman Belludi; MD; SHARE India, NA, AZ, India

Session: 251. Pediatric Potpourri
Saturday, October 7, 2017: 12:30 PM

Background. Rabies is a preventable fatal zoonotic disease of considerably high burden in low and middle income countries of Asia and Africa. Bites from rabid animals are the cause of human rabies. WHO post-exposure prophylaxis (PEP) guidelines recommend taking both vaccine and rabies immunoglobulin for category-III bites. Strict adherence to complete recommended PEP guidelines is the single most important factor in preventing human deaths. Need to calculate the required dose / quantity of rabies immunoglobulin, a key biological, needed for adherence to WHO PEP guidelines leads to prohibitively high cost of PEP and one key reason for bite victims taking in-complete PEP. An alternate published method to inject bite sites only with rabies immunoglobulin to enhance affordability was evaluated for cost-reduction and affordability.

Methods. 25 bite victims requiring rabies immunoglobulin according to category-III of WHO guidelines were part of the study. All the animal bite sites were injected with adequate quantity of rabies immunoglobulin to cover only the animal bite sites completely as per published alternate method. This is in contrast to WHO PEP guidelines where calculation of immunoglobulin is done as per body weight and after injecting all the animal bite sites, the remaining quantity of immunoglobulin is injected intra-muscularly. All victims were vaccinated by intra-muscular route only. There was diversity in the profile of the 25 victims in terms of age, sex, number of wounds and body weight. Analysis was done to determine the cost reduction due to reduced quantity of immunoglobulin required in following an alternate approach to the recommended WHO PEP regimen.

Results. Cost of rabies immunoglobulin was reduced on an average between (50–70)% if the quantity used was enough to cover the wound sites comprehensively instead of the recommended quantity based on body weight. Follow-up was done for (50–70)% if the quantity used was enough to cover the wound sites comprehensively instead of the recommended quantity based on body weight. Follow-up was done for (50–70)% if the quantity used was enough to cover the wound sites comprehensively.

Conclusion. An evaluation to check the extent of cost reduction that could make rabies immunoglobulin, a key PEP biological, more affordable was done. The significant cost reduction could be adapted for further studies so as to bring about changes in WHO PEP guidelines which would lead to more affordability for PEP and less deaths due to rabies.

Disclosures. All authors: No reported disclosures.

2304. Validation of a Definition for K-12 Student Absenteeism Due to Influenza-like Illness (ILI) for School-based Influenza Activity Monitoring in Oregon School District, Wisconsin—ORCHARDS (Oregon Child Absenteeism and Respiratory Disease Study)

Jonathan Temte, MD, PhD1; Shari Barlow, BA1; Amber Schemmel, BS2; Emily Temte, BA3; Maureen Landsverk, BS1; Brad Maerz, MS1; Yenlik Zhetyeva, MD, MPH4 and Anra Uzicanin, MD, MPH5; Family Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 4 Centers for Disease Control and Prevention, Atlanta, Georgia, 5 CDC, Atlanta, Georgia

Session: 251. Pediatric Potpourri
Saturday, October 7, 2017: 12:30 PM

Background. Syndrome-based absenteeism monitoring is proposed as an approach for early identification of influenza outbreaks in schools and surrounding communities, utilizing routinely collected attendance data. The availability of a simple, valid definition of ILI-related absence (a-ILI) is a prerequisite for monitoring.

Methods. We conducted a prospective study in children aged 4-19 years, between January 5, 2015 and April 11, 2017, which enrolled students with acute respiratory illness (ARI). Via home visits, the study team assessed participating students for symptoms (fever, cough, sore throat, nasal congestion, runny nose), collected nasal swabs for multiplex PCR testing, and ascertained school absence status. For analysis, ILI was defined as the presence of fever and a respiratory tract symptom (cough, sore throat, nasal congestion, or runny nose). We used multivariate binary logistic regression to assess the relationships between pathogens, absence status, and illness category.

Results. Of the total 661 participating students, 622 with ARI onset during school semesters remained in the analysis. Having an ILI was associated with absenteeism (X2=87.70; P < 0.001), and with PCR detection of influenza A (FluA) and B (FluB), adenosine (AD), and rhinovirus/enterovirus (RE) (Table). While FluA, FluB, AD, and RE were associated with positive likelihoods of a-ILI, the presence of R/E was associated with a negative likelihood of a-ILI. PCR detection of either FluA or Flu B was strongly associated with a-ILI (OR=8.48, 95% CI: 2.80–8.34; P < 0.001).

Conclusion. A simple definition for a-ILI (absent with fever and a respiratory symptom) is strongly associated with laboratory-confirmed influenza. Accordingly, a-ILI may serve as a proxy for influenza-specific absenteeism, thus allowing school-based absenteeism monitoring for influenza outbreaks.

Disclosures. All authors: No reported disclosures.

2305. Unbiased Screening of Kawasaki Disease Sera for Viral Antigen Exposure

Daniel Quiat, MD, PhD; Tomasz Kula, PhD; Chisato Shimizu, MD; John T. Kanegaye, MD1; Adriana H. Tremoulet, MD, MAS1; Zachary Pitowsky, BA1; MaryBeth Son, MD2; Jane Newburger, MD, MPH3; Stephen Elledge, PhD2 and Jane C. Burns, MD, FIDSA1; Cardiology, Boston Children’s Hospital, Boston, Massachusetts, 1 Genetics, Harvard Medical School, Boston, Massachusetts, 2UCSD School of Medicine, La Jolla, California, 3 Rady Children’s Hospital San Diego, San Diego, California, 4 University of California, San Diego, La Jolla, California, 5 Pediatrics/Rheumatology, Boston Children’s Hospital, Boston, Massachusetts

Session: 251. Pediatric Potpourri
Saturday, October 7, 2017: 12:30 PM

Background. While Kawasaki disease (KD) is currently diagnosed by clinical findings and laboratory markers, there are few tools to help screen sera for viral antigen exposure. As such, we sought to develop a novel approach to screen KD sera for viral antigen exposure that is both unbiased and efficient.

Methods. We utilized an unbiased screening approach, where candidate antigens were selected for KD sera screening through an unbiased computational algorithm. This algorithm screens for antigens that simultaneously meet criteria for a high likelihood ratio and a high frequency of viral antigen exposure in a KD cohort. The frequency of viral antigen exposure in the KD cohort was determined through a computational model that assigns a probability score to potential antigens based on KD prevalence rates. The likelihood ratio for each antigen was calculated based on its prevalence in the KD cohort. Using this frequency likelihood ratio approach, we selected a high likelihood ratio cutoff (10) for candidate antigens to screen KD sera for viral antigen exposure.

Results. We identified 10 candidate antigens with high likelihood ratios for viral antigen exposure in KD sera. The selected antigens included common pathogens such as adenovirus, parvovirus, rhinovirus, and enterovirus, as well as less common pathogens such as cytomegalovirus and herpes simplex virus. The selected antigens were then utilized to screen KD sera for viral antigen exposure, and we found a statistically significant increase in viral antigen exposure in KD sera compared to control sera.

Conclusion. This novel approach to screen KD sera for viral antigen exposure is an unbiased method that can help identify individuals at risk for KD development. Further studies will be needed to validate the utility of this approach in a larger cohort of KD patients.
Background. Kawasaki disease (KD) is a medium-vessel vasculitis with a predilection for coronary arteries and is of unknown etiology. KD is responsible for the majority of acquired pediatric cardiovascular disease in the industrialized world, and is associated with development of coronary artery aneurysms in approximately 25% of untreated patients. Epidemiologic, pathologic, and clinical characteristics of KD display notable overlap with common pediatric viral illnesses, leading some to hypothesize that a viral infection is the inciting agent for KD.

Methods. We investigated viral exposure history in KD patients by utilizing a recently developed technique to profile sera against the known human virome in an unenriched manner. We analyzed sera during the acute (pretreatment) and follow-up phases of illness from 35 patients meeting clinical diagnostic criteria for KD, preferentially selecting patients with coronary involvement and/or late presentation. Control samples included healthy children and patients with known viral infections. Using phage immunoprecipitation sequencing (PhIP-seq), the sera were screened against a phage display library expressing epitopes that cover the complete reference protein sequences of the known 206 viruses with human tropism.

Results. The mean patient age was 4.6 years (range 0.4–16.9) and mean day of illness at acute sample collection was 14.5 days (range 5 to 32). A majority of patients demonstrated coronary artery changes during the course of their illness (22/35, 62%). Sera from patients with KD demonstrated patterns of viral infection to common pediatric viruses with similar signal intensity and distribution to healthy control children.

Conclusion. Although sera obtained early in the disease course could have missed a titer rise, we conclude that patients with KD do not exhibit unique serologic evidence of infection to known viruses or a viral exposure history that differs from age-similar healthy children.

Disclosures. All authors: No reported disclosures.

2306. Familial and Environmental Impact on Colonization with Antibiotic-Resistant Organisms in the Neonatal Intensive Care Unit

Sonja Kytomaa, MPH, Jennifer Duchon, MPH, MD; Ryley Thompson, MCSE, Mary Boyle, MSN, PhD, MPH; Meghan Wallace, BS; Carey-An D. Burnham, PhD and Stephanie Fritz, MD, MSC; 1Pediatric Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri; 2Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri

Session: 251. Pediatric Potpourri
Saturday, October 7, 2017: 12:30 PM

Background. Colonization with antibiotic-resistant organisms (AROs), including methicillin-resistant St. aureus (MRSA), places neonatal intensive care unit (NICU) patients at increased risk for infection. Infants are routinely screened for MRSA colonization, but reservoirs for ARO acquisition in the NICU are poorly understood.

Methods. Infants with known MRSA colonization and a control group of infants with negative MRSA screening swabs, and their parents, were enrolled in a prospective cohort study. Weekly swabs were obtained to identify AROs from 4 infant body sites, 3 parental body sites, and 5 high-touch environmental surfaces in the NICU. Additional surveillance swabs were used to identify AROs.

Results. Samples were collected 1–14 times (median 7) from 11 MRSA-colonized infants, 7 control infants, 17 mothers, and 9 fathers. Of MRSA-colonized infants, 9 (82%) were colonized with MRSA in the nates, 6 (55%) in the umbilicus, 8 (73%) in the inguinal folds, and 6 (55%) in the rectum over the study period. Six (55%) MRSA-colonized infants had persistent colonization (i.e., 3 consecutive positive samples), despite receiving decolonization measures. One (14%) control infant was colonized with MRSA during longitudinal sampling. Sixteen (89%) infants were colonized with MRSA despite receiving decolonization measures. One (14%) control infant was colonized with MRSA over time and was assessed as being resistant to the non-susceptible use of gentamicin and 80% to cefazolin; 2 (11%) infants were isolated for 4 weeks (range 5 to 32) on the basis of positive cultures from extranasal body sites, parents, and environmental surfaces serving as potential reservoirs of ARO acquisition and transmission in NICU infants.

Conclusion. Although sera obtained early in the disease course could have missed a titer rise, we conclude that patients with KD do not exhibit unique serologic evidence of infection to known viruses or a viral exposure history that differs from age-similar healthy children.

Disclosures. All authors: No reported disclosures.

2307. Surveillance for Antimicrobial-resistant Organisms in Infants Transferred to the Neonatal Intensive Care Unit: Trends in Colonization and Practices

Jennifer Duchon, MDCM, MPH1; Philip Maykowski, MPH12; Pamela Good, MD; Sonja Kytomaa, MPH; Rebecca DeLaMora, MD3 and Lisa Saiman, MD, MPH1;
1Epidemiology, Mailman School of Public Health, New York, New York; 2Pediatrics, Columbia Presbyterian Medical Center, New York, New York; 3Pediatrics, Weill Cornell Medical College, New York, New York; 4Infection Prevention and Control, New York Presbyterian Hospital, New York, New York; 5Columbia Presbyterian Medical Center, New York, New York

Session: 251. Pediatric Potpourri
Saturday, October 7, 2017: 12:30 PM

Background. Infections with antibiotic-resistant organisms (AROs), i.e., methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and multi-drug-resistant Gram-negative rods (MDR-GNR) among infants hospitalized in the Neonatal Intensive Care Unit (NICU) are associated with mortality and serious morbidities. Implementing appropriate infection control policies may help prevent transmission of AROs. However, the most effective strategies for surveillance of AROs in the NICU are unclear. Prior data collected from infants transferred from outside hospitals to 2 NICUs affiliated with New York-Presbyterian (NYP) Hospital detected low rates of ARO colonization in the first week of life. Thus, in 2013 the strategy of allowing surveillance in NICU infants transferred from outside hospitals to 2 NICUs was changed to performing targeted surveillance on infants transferred at >7 days of age (DOL). The purpose of this study was to assess this change in surveillance strategy and monitor ARO colonization trends in the NICU.

Methods. Data from all infants transported to the NICUs at NYP from 2007 to 2016 were used. Risk factors for colonization with AROs including demographics and admitting diagnoses were explored using a multivariable binomial mixed model clustered by transferring hospital and controlled for NYP NICU. Trends in ARO colonization over time were assessed. Infant age at time of colonization was evaluated using negative binomial regression. Site 1 elected not to adopt the change in surveillance policy, and thus was used as a control.

Results. From 2007 to 2016, 2925 infants were transferred to the NYP NICUs, 1101 at Site 1 and 1824 at Site 2; 2571 (88%) had surveillance for at least 1 ARO. There were 226 positive surveillance cultures in 204 infants (8%); 93 (4.7%) for MRSA, 78 (3%) for VRE and 54 (2%) for MDR-GNR. In the final models, transfer DOL remained a highly significant (OR per day = 1.018, CI 1.014, 1.022, P < 0.001) predictor of colonization with any ARO. There was no significant increase in the incidence of transferred infants colonized with AROs over time in either NICU; this remained true in infants who were <7 days of life at Site 1.

Conclusion. These data continue to support the rationale for our change in surveillance policy. Further studies should evaluate the effect of this strategy on ARO transmission in the general NICU population.

Disclosures. All authors: No reported disclosures.

2308. Clinic Characteristics Are Not Associated with the Risk of Healthcare-associated Influenza-like Illness (HA-ILI) Among Young Children in Pediatric Primary Care Settings

Coden Ferguson, MD, MPH, MSHP1,2,3; Russell Localio, PhD1,4; Heather Griffin, PhD1; Tolisade Odenyi, MP1; Robert Grunmieder, MD1,2; Susan Coffin, MD, MPH, FSHEA, FPIDS2 and Joshua Metlay, MD, PhD3,4;
1Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; 2Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; 3PolicyLab and Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; 4Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; 5Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; 6Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; 7General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; 8Center for Pediatric Clinical Effectiveness, Pediatric Infectious Diseases Epidemiology and Antimicrobial Stewardship Research Group, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; 9Medicine, Harvard Medical School, Boston, Massachusetts

Session: 251. Pediatric Potpourri
Saturday, October 7, 2017: 12:30 PM

Background. The majority of pediatric healthcare encounters for influenza-like illness (ILI) take place in ambulatory settings where there may be multiple opportunities for respiratory virus transmission. Recent evidence shows that a prior clinic visit increases the risk of ILI among young children. We hypothesized that clinic factors would be associated with the risk of HA-ILI among children <6 years old after a primary care encounter.

Methods. We conducted a prospective cohort study of a sample of 1308 children presenting to any of the 31 primary care clinics in a large pediatric healthcare network for a non-ILI clinic visit during three consecutive respiratory seasons (2012/13 – 2014/15). HA-ILI cases were defined as any ILI encounter within 8 days after a non-ILI visit to the same clinic. Exposure factors for a non-ILI clinic visit during three consecutive seasons (2012/13 – 2014/15). HA-ILI cases were defined as any ILI encounter within 8 days after a non-ILI visit.

Results. Our cohort included 367 HA-ILI cases and 941 non-cases. The majority (48.6%) were ≤2 years and did not attend school, 52.8% were male, and 18.9% received flu vaccine. Mean clinic patient density was 44.2 patients/1000 square feet. In multivariable models, only the young age/daycare attendance composite variable was significantly associated with increased HA-ILI risk (OR 2.06, 95% CI 1.48,2.88). No clinic characteristics were associated with HA-ILI risk and risk did not vary by site.

Conclusion. In our cohort of young children, HA-ILI was not associated with the measured clinic characteristics that we hypothesized may increase respiratory virus transmission risk. Instead HA-ILI risk was highest in young daycare attendees who may be more likely to engage in behaviors that increase respiratory virus exposure risk or seek out healthcare services when sick. This suggests that HA-ILI may be more strongly influenced by non-clinical factors rather than clinic factors.

Disclosures. All authors: No reported disclosures.