Measurements of t\(\bar{t}H\) production and the CP structure of the Yukawa interaction between the Higgs boson and top quark in the diphoton decay channel

The CMS Collaboration

Abstract

The first observation of the t\(\bar{t}H\) process in a single Higgs boson decay channel with the full reconstruction of the final state (H → \(\gamma\gamma\)) is presented, with a significance of 6.6 standard deviations (\(\sigma\)). The CP structure of Higgs boson couplings to fermions is measured, resulting in an exclusion of the pure CP-odd structure of the top Yukawa coupling at 3.2\(\sigma\). The measurements are based on a sample of proton-proton collisions at a center-of-mass energy \(\sqrt{s} = 13\text{ TeV}\) collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb\(^{-1}\). The cross section times branching fraction of the t\(\bar{t}H\) process is measured to be \(\sigma_{t\bar{t}H} B_{\gamma\gamma} = 1.56^{+0.34}_{-0.32}\text{ fb}\), which is compatible with the standard model prediction of \(1.13^{+0.08}_{-0.11}\text{ fb}\). The fractional contribution of the CP-odd component is measured to be \(f_{\text{CP}} = 0.00 \pm 0.33\).

Submitted to Physical Review Letters
Since its observation [1–3], the properties of the Higgs boson (H) have been studied using a variety of decay channels and production modes. Among these properties, the tree-level top quark Yukawa (Htt) coupling and its CP structure can be tested by studying H production in association with a top quark-antiquark pair (t\(\bar{t}\)). The CMS [4] and ATLAS [5] Collaborations reported the observation of the t\(\bar{t}\)H process by combining several H decay channels, with a cross section compatible with the standard model (SM) expectation. One of the most important channels for probing the t\(\bar{t}\)H process is H \(\rightarrow\) \(\gamma\gamma\). By probing the interaction between the H and vector bosons, CMS [6–13] and ATLAS [14–19] have determined that the H quantum numbers are consistent with \(J^{PC} = 0^{+}+\). However, small anomalous contributions were not excluded, and studies of the Htt coupling provide an alternative and independent path for CP tests in the Higgs sector [20–22].

This Letter reports on the measurement of the production rate of t\(\bar{t}\)H with H \(\rightarrow\) \(\gamma\gamma\), giving the first observation of the tree-level Htt coupling in a single H decay channel, along with a first test of its CP structure. Results are based on data from proton-proton (pp) collisions at a center-of-mass energy of \(\sqrt{s} = 13\) TeV collected with the CMS detector at the LHC between 2016 and 2018, corresponding to an integrated luminosity of 137 fb\(^{-1}\).

The central feature of the CMS apparatus [23] is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Inside the solenoid there is a silicon tracker, a lead-tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter. Forward calorimeters extend the coverage to higher pseudorapidity (\(\eta\)), and muon detectors are embedded in the flux-return yoke of the solenoid.

The particle-flow (PF) algorithm [24] reconstructs individual particles (photons, charged and neutral hadrons, muons, and electrons) by combining information from all detectors. Jets are built from PF particles with the anti-\(k_T\) algorithm [25, 26] with a distance parameter of 0.4. The missing transverse momentum (\(p_T^\text{miss}\)) is defined as the negative vector sum of the transverse momenta (\(p_T\)) of all PF particles. The primary pp interaction vertex is taken as the vertex with the largest value of summed physics-object \(p_T^2\) [27]. Charged hadrons originating from additional pp interactions are removed from the analysis. Jets from the hadronization of bottom quarks are tagged by a secondary vertex algorithm based on the score from a deep neural network (DNN) [28].

Signal and background processes are generated with several Monte Carlo (MC) programs. All H production processes are modeled with MadGraph5_aMC@NLO 2.4.2 at next-to-leading order (NLO) [29] in quantum chromodynamics (QCD), with cross sections and decay branching fractions taken from Ref. [30]. A separate t\(\bar{t}\)H sample, generated with POWHEG 2.0 [31, 32] at NLO in QCD, is used to increase the number of events used for training the multivariate discriminants described below. For the CP study, t\(\bar{t}\)H anomalous coupling samples of CP-odd, CP-even, and a mixture of the two, are generated at leading order (LO) with JHUGEN 7.0.2 [22, 35–37] and reweighted with the MELA matrix element library [22, 35–37], which are also used for the study of CP effects in the tH process. The MadGraph5_aMC@NLO program is also used to generate most background processes, e.g., t\(\bar{t}\) + \(\gamma\gamma\), t\(\bar{t}\) + jets, \(\gamma\) + jets, \(V + \gamma\), Drell–Yan, diboson, t + V, where V is a W or a Z boson. In contrast, the diphoton background (\(\gamma\gamma + \text{jets}\)) is generated with SHERPA 2.2.4 [38], which includes tree-level processes with up to three additional jets, as well as box processes at LO accuracy. In all MC samples, the parton fragmentation/hadronization and the underlying events are modeled with PYTHIA 8.205 [39], with the CUETP8M1 [40] (CP5 [41]) tune used for the simulation of 2016 (2017/2018) data. Finally, the detector response is simulated with the GEANT4 package [42].

The trigger [43] selects diphoton events with a loose calorimetric identification [44], and asym-
metric photon transverse energy (E_T) thresholds of 30 and 18 (22) GeV for the data collected during 2016 (2017/2018). The trigger efficiency is >95% and is measured as a function of E_T, η, and R_9 of the photons using an alternative trigger, where R_9 is the energy sum of the 3 × 3 crystals centered on the most energetic crystal in the cluster divided by the energy of the photon.

H candidates are built from pairs of photon candidates, which are reconstructed from energy clusters in the ECAL not linked to charged-particle tracks (with the exception of converted photons). The photon energies are corrected for the containment of electromagnetic showers in the clustered crystals and the energy losses of converted photons with a multivariate regression technique based on simulation [44]. The ECAL energy scale in data is corrected using $Z \rightarrow e^+e^-$ simulated events smeared to reproduce the energy resolution measured in data. The offline diphoton selection criteria are similar to, but more stringent than, those used in the trigger [44].

Photons are further required to satisfy a loose identification (photons ID [44]) criterion based on a boosted decision tree (BDT) classifier trained to separate photons from jets. The shower shape and isolation variables (inputs to the photon ID) in simulation are corrected with a chained quantile regression method [45] based on studies of $Z \rightarrow e^+e^-$ events. Each variable is corrected with a separately trained BDT, taking the photon kinematics, per-event energy density, and the previously corrected features as inputs, to ensure that correlations between the inputs are preserved and closer to those in data. This method improves the modeling of the photon ID BDT discriminant in MC simulation with respect to the previous CMS $H \rightarrow \gamma\gamma$ results [44].

After the preselection described above, we require $100 < m_{\gamma\gamma} < 180$ GeV, $p_T/m_{\gamma\gamma} > 1/3$ and 1/4 for the leading (in p_T) and subleading photons respectively and then divide events into two channels. The leptonic channel is aimed at selecting events where at least one top quark decays leptonically, and demands the presence of ≥ 1 jet with $p_T > 25$ GeV and $|\eta| < 2.4$, ≥ 1 isolated e (μ) of $p_T > 10$ (5) GeV and $|\eta| < 2.4$. The hadronic channel targets $t\bar{t}$ hadronic decays by requiring at least three jets, at least one b-tagged jet, and no isolated leptons (e/μ).

A dedicated BDT-bkg discriminant is employed in each channel to distinguish between $t\bar{t}H$ and background events. These BDTs are trained with the XGBOOST [46] framework on signal and background MC samples, with one exception as noted below. The background MC samples include $\gamma+\text{jets}$, $\gamma\gamma+\text{jets}$, $t\bar{t}+\text{jets}$, $t\bar{t}+\gamma$, $t\bar{t}+\gamma\gamma$, $Z+\gamma$, and $W+\gamma$ processes, as well as a variety of other rarer backgrounds. Non-$t\bar{t}H$ production modes of H are also treated as background. The dominant background in the hadronic channel consists of $\gamma+\text{jets}$ events, where one jet is misidentified as a photon. To improve the performance of the hadronic BDT-bkg, the $\gamma+\text{jets}$ background is modeled from a large sample of data events with one photon candidate failing the photon ID requirement, these are almost exclusively multi-jet and $\gamma+\text{jets}$ events. For each such event, the photon ID value of the misidentified jet is replaced by a value drawn from the MC distribution of photon ID values of misidentified jets passing the photon ID requirement. These events, appropriately weighted, are then used in the hadronic BDT-bkg training instead of the $\gamma+\text{jets}$ MC sample.

Input features of BDT-bkg include kinematic properties of jets, leptons, photons and diphotons (but not $m_{\gamma\gamma}$), jet and lepton multiplicity, b-tagging scores of jets, and p_T^{miss}. The inclusion of b-tagging scores reduces the non-$t\bar{t}$ background; further, jets and leptons in $t\bar{t}H$ events tend to have higher p_T and smaller $|\eta|$ than in background events. The BDT-bkg also uses output of the photon ID BDT, and the outputs of other machine learning (ML) algorithms described below as input features. One such ML algorithm is a top quark tagger BDT (top tagger) [47] to distinguish events with top quarks decaying into three jets from events that do not contain top quarks.
quarks. We also use long short-term memory based \cite{DNN} DNNs trained to separate t\bar{t}H from the dominant backgrounds in a signal-enriched phase space: \(\gamma\gamma + \text{jets}\) and t\bar{t} + \(\gamma\gamma\) (hadronic channel); and t\bar{t} + \(\gamma\gamma\) (leptonic channel). In addition to the features that are used in BDT-bkg, the DNNs exploit low-level information including the full four-vectors of each jet and lepton and the jet flavor scores \cite{flavor}. The four-vectors allow for a more effective use of event kinematics and the jet flavor scores allow the differentiation of the origins of hadronic jets between t\bar{t}H and \(\gamma\gamma + \text{jets}\) (t\bar{t} + \(\gamma\gamma\)) events. The DNNs are used as additional inputs to the BDT-bkg, rather than in place of the BDT-bkg, because they provide superior performance over BDTs when many training instances are available (DNNs trained with fewer instances, as is the case for other background samples, suffer from severe overfitting and sub-optimal performance). The modeling of the input features has been validated by comparing data and MC distributions for events passing the preselection in both channels. The BDT-bkg score has been validated by comparing the distributions in data and MC in both the \(m_{\gamma\gamma}\) sidebands, satisfying either 100 < \(m_{\gamma\gamma}\) < 120 GeV or 130 < \(m_{\gamma\gamma}\) < 180 GeV (as in Fig. 1) as well as in dedicated control regions which target t\bar{t}Z events.

![Figure 1](image)

Figure 1: Distributions of BDT-bkg output used for event categorization, for the hadronic (left) and the leptonic (right) channels. Category boundaries for the signal strength (CP) measurements are shown with thinly (thickly) dashed lines. Events shown are taken from the \(m_{\gamma\gamma}\) sidebands, satisfying either 100 < \(m_{\gamma\gamma}\) < 120 GeV or 130 < \(m_{\gamma\gamma}\) < 180 GeV. Events in the grey shaded region are not considered in the analysis. Statistical (statistical \(\oplus\) systematic) background uncertainties are represented by the black (red) shaded bands.

Events are either rejected or further divided into eight (four) categories to maximize expected significance (sensitivity to CP structure of the Htt amplitude), according to their BDT-bkg output as shown in Fig. 1 and Table 1. We perform a simultaneous binned maximum likelihood fit to the \(m_{\gamma\gamma}\) distributions in the eight categories to extract the product of the t\bar{t}H cross section and H \(\rightarrow\gamma\gamma\) branching fraction \((\sigma_{t\bar{t}H}B_{\gamma\gamma})\) and the signal strength \(\mu_{t\bar{t}H}\), defined as the ratio of the measured to SM expected H \(\rightarrow\gamma\gamma\). In the fit, all other H production modes are constrained
Table 1: The expected number of H events in the hadronic and leptonic channels per category and the fractional contribution per H production mode.

	Total	tH (%)	tH (%)	ggH (%)	VH (%)	VBF (%)	b±H (%)
Had1	5.8	89.1	6.8	3.3	0.8	<0.1	0.1
Had2	4.2	82.9	6.8	8.7	1.4	0.2	0.1
Had3	11.6	78.6	7.2	10.3	3.5	0.3	0.1
Had4	13.6	65.4	7.7	19.3	6.9	0.7	0.1
Lep1	5.8	90.6	7.9	0.5	1.0	<0.1	<0.1
Lep2	4.9	90.0	6.7	0.4	2.9	<0.1	<0.1
Lep3	3.5	86.2	7.4	0.4	6.0	<0.1	<0.1
Lep4	5.7	78.1	8.2	1.1	12.7	<0.1	<0.1
Total	55.1	79.5	7.4	8.2	4.7	<0.1	<0.1

to their SM predictions.

The ttH signal distribution is parameterized using a double-sided Crystal Ball [49] plus Gaussian function. The background is modeled from data with the discrete profiling method [50], which accounts for the uncertainty associated with the choice of analytic function used to model the background mγγ distribution.

All other systematic uncertainties are also included as nuisance parameters, and results are obtained using asymptotic distributions of test statistics based on the profile likelihood ratio [51–53]. The dominant theoretical uncertainty (of 8%) in µttH arises from the SM prediction of the ttH cross section, and is estimated by varying the QCD renormalization and factorization scales [30]. The uncertainties in parton distribution functions, QCD coupling, underlying event and parton showers, and the H → γγ branching fraction each affect µttH by 2–5%. The main experimental uncertainties that affect µttH are those related to the b quark and photon identification, the jet energy scale and resolution, and the integrated luminosity [54–56]. Their effects are in the 2–6% range. Other systematic uncertainties, including those related to preselection and trigger efficiencies, the lepton identification, and pmiss T have a <2% effect on the measurement of µttH and σttH Bγγ.

The data and fit results are shown in Fig. 2. We find σttH Bγγ = 1.56^{+0.34}_{−0.32} fb = 1.56^{+0.33}_{−0.30} (stat) +0.09_{−0.08} (syst) fb, and µttH = 1.38^{+0.36}_{−0.29} = 1.38^{+0.29}_{−0.27} (stat) +0.21_{−0.11} (syst) with the H mass (mH) profiled. The SM prediction of the σttH Bγγ is 1.13^{+0.08}_{−0.11} fb [30]. The observed significance relative to the background-only hypothesis is 6.6 standard deviations (σ), while the expected significance assuming the SM H is 4.7σ.

The CP structure of the Htt amplitude can be parameterized as [22]:

\[A(Htt) = -\frac{m_t}{v} \bar{\psi}_t \left(\kappa_t + i\bar{\kappa}_t \gamma_5 \right) \psi_t, \]

where \(\bar{\psi}_t \) and \(\psi_t \) are the Dirac spinors, \(m_t \) is the top quark mass, \(v \) is the SM H field vacuum expectation value, and \(\kappa_t \) and \(\bar{\kappa}_t \) are the CP-even and CP-odd Yukawa couplings. In the SM, \(\kappa_t = 1 \) and \(\bar{\kappa}_t = 0 \). We measure the CP structure with

\[f_{CP}^{Htt} = \frac{\left|\bar{\kappa}_t\right|^2}{\left|\kappa_t\right|^2 + \left|\bar{\kappa}_t\right|^2} \text{sign}(\bar{\kappa}_t / \kappa_t). \]

When the cross sections of the CP-even and CP-odd contributions are equal, \(f_{CP}^{Htt} = 0.72 \) [22].
Figure 2: Invariant mass distribution for the selected events (black points) weighted by \(S/(S+B) \), where \(S \) (B) is the numbers of expected signal (background) events in a ±1\(\sigma_{\text{eff}} \) mass window centered on \(m_{H} \). The \(\sigma_{\text{eff}} \) is defined as the smallest interval containing 68.3% of the \(m_{\gamma\gamma} \) distribution, and ranges from 1.2 to 1.6% for different categories. We show curves for fitted signal + background (solid red) and for background only (dashed red), with bands covering the ±1\(\sigma \) and ±2\(\sigma \) uncertainties in the fitted background. The inner panel shows the likelihood scan for \(\mu_{tH} \) with \(m_{H} \) profiled.

It has been shown in Ref. [22] that an optimal analysis of the CP structure in the \(t\bar{t}H \) process can be performed with two observables, \(D_{0-} \) and \(D_{CP} \). They could be obtained by using full kinematic information with the matrix element or ML techniques with the same sensitivity [57]. In this study, we use a BDT to obtain \(D_{0-} \) and do not include \(D_{CP} \) since it requires tagging the flavor of light jets. As a consequence, it is not possible to measure the relative sign, or phase, of the \(\kappa_{t} \) and \(\tilde{\kappa}_{t} \) couplings. Nonetheless, this sign is incorporated into the \(f_{CP}^{Htt} \) definition in Eq. 2 for consistency with other possible studies sensitive to the sign of \(f_{CP}^{Htt} \), such as in the gluon fusion production with the top-quark loop [57].

We train a BDT to distinguish CP-even and CP-odd contributions. The observables used in the training include the kinematic variables of the first six jets (in \(p_{T} \)) and the diphoton system (but not \(m_{\gamma\gamma} \)), the b-tagging scores of jets, and in the leptonic channel, the lepton multiplicity and the kinematic variables of the leading lepton. The output of the BDT is the \(D_{0-} \) observable. Simulation shows that \(D_{0-} \) has negligible correlation with the BDT-bkg discriminant. The events selected for the signal strength measurements are split into 12 categories, leptonic or hadronic, two BDT-bkg categories shown in Fig. 1, and three \(D_{0-} \) bins, as shown in Fig. 3.

A simultaneous fit to the \(m_{\gamma\gamma} \) distribution is performed using the 12 categories to measure \(f_{CP}^{Htt} \). The \(\mu_{tH} \) parameter is left unconstrained. An additional systematic uncertainty is introduced to cover possible small differences in the modeling of the distributions with the JHUGEN generator used for variation of the CP structure of the \(t\bar{t}H \) coupling and MadGraph5_aMC@NLO generator used to model SM distributions. However, statistical uncertainties dominate the measurement of \(f_{CP}^{Htt} \). In addition to the \(t\bar{t}H \) process, we parameterize the \(tH \) production with the \(\mu_{tH} \) and \(f_{CP}^{Htt} \) parameters, where the H couplings to other particles are constrained to their SM values and the sign of \(\kappa_{t} \) is taken to be positive [58]. The weak dependence of \(D_{0-} \) distributions for the \(tH \) events is neglected, decreasing very slightly the sensitivity of \(f_{CP}^{Htt} \). The other
processes are constrained to their SM predictions.

The fit results are shown in Fig. 3 and are obtained using the profile likelihood method as \(f_{CP}^{Htt} = 0.00 \pm 0.33 \), with the constraint \(|f_{CP}^{Htt}| < 0.67\) at 95% confidence level (CL). The coverage was determined with pseudo-datasets and found to agree with that expected in the asymptotic limit \({59}\). The pure pseudoscalar model of CP structure of the Htt coupling (\(f_{CP}^{Htt} = 1 \)) is excluded at 3.2\(\sigma \). The expected constraints based on SM simulation are \(f_{CP}^{Htt} = 0.00 \pm 0.49 \) at 68% CL, \(|f_{CP}^{Htt}| < 0.82\) at 95% CL, and 2.6\(\sigma \) exclusion of the \(f_{CP}^{Htt} = 1 \) model.

Figure 3: The distribution of events weighted by \(S/(S + B) \), as in Fig. 2, in three bins of the \(D_{0-} \) discriminant. In this display, leptonic/hadronic channels and BDT-bkg categories are combined in the mass range \(115 < m_{\gamma\gamma} < 135 \) GeV and the background contribution, as determined in the fit to data, is subtracted. The inner panel shows the likelihood scan for \(|f_{CP}^{Htt}|\).

To conclude, we presented the first single-channel observation of the \(t\bar{t}H \) process and the first measurement of the CP structure of the Htt coupling using the \(H \rightarrow \gamma\gamma \) channel. The cross section of the \(t\bar{t}H \) process is measured to be \(\sigma_{t\bar{t}H} B_{\gamma\gamma} = 1.56^{+0.34}_{-0.32} \) fb, corresponding to \(1.38^{+0.36}_{-0.29} \) times the SM prediction, with a significance of 6.6\(\sigma \). The data disfavor the pure CP-odd model of the Htt coupling at 3.2\(\sigma \), and a possible fractional CP-odd contribution is constrained to be \(f_{CP}^{Htt} = 0.00 \pm 0.33 \) at 68% CL.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia);
RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[1] ATLAS Collaboration, “Observation of a new particle in the search for the standard model Higgs boson with the detector at the LHC”, Phys. Lett. B 716 (2012) 1, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.

[2] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

[3] CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp collisions at $\sqrt{s} = 7$ and 8 TeV”, JHEP 06 (2013) 081, doi:10.1007/JHEP06(2013)081, arXiv:1303.4571.

[4] CMS Collaboration, “Observation of $t\bar{t}H$ production”, Phys. Rev. Lett. 120 (2018) 231801, doi:10.1103/PhysRevLett.120.231801, arXiv:1804.02610.

[5] ATLAS Collaboration, “Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector”, Phys. Lett. B 784 (2018) 173, doi:10.1016/j.physletb.2018.06.004, arXiv:1806.00425.

[6] CMS Collaboration, “On the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs”, Phys. Rev. Lett. 110 (2013) 081803, doi:10.1103/PhysRevLett.110.081803, arXiv:1212.6639.

[7] CMS Collaboration, “Measurement of the properties of a Higgs boson in the four-lepton final state”, Phys. Rev. D 89 (2014) 092007, doi:10.1103/PhysRevD.89.092007, arXiv:1312.5353.

[8] CMS Collaboration, “Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV”, Phys. Rev. D 92 (2015) 012004, doi:10.1103/PhysRevD.92.012004, arXiv:1411.3441.

[9] CMS Collaboration, “Limits on the Higgs boson lifetime and width from its decay to four charged leptons”, Phys. Rev. D 92 (2015) 072010, doi:10.1103/PhysRevD.92.072010, arXiv:1507.06656.

[10] CMS Collaboration, “Combined search for anomalous pseudoscalar HVV couplings in VH ($H \to b\bar{b}$) production and $H \to VV$ decay”, Phys. Lett. B 759 (2016) 672, doi:10.1016/j.physletb.2016.06.004, arXiv:1602.04305.
[11] CMS Collaboration, “Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state”, Phys. Lett. B 775 (2017) 1, doi:10.1016/j.physletb.2017.10.021, arXiv:1707.00541

[12] CMS Collaboration, “Measurements of the Higgs boson width and anomalous HVV couplings from on-shell and off-shell production in the four-lepton final state”, Phys. Rev. D 99 (2019) 112003, doi:10.1103/PhysRevD.99.112003, arXiv:1901.00174

[13] CMS Collaboration, “Constraints on anomalous HVV couplings from the production of Higgs bosons decaying to τ lepton pairs”, Phys. Rev. D 100 (2019) 112002, doi:10.1103/PhysRevD.100.112002, arXiv:1903.06973

[14] ATLAS Collaboration, “Evidence for the spin-0 nature of the Higgs boson using ATLAS data”, Phys. Lett. B 726 (2013) 120, doi:10.1016/j.physletb.2013.08.026, arXiv:1307.1432

[15] ATLAS Collaboration, “Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector”, Eur. Phys. J. C 75 (2015) 476, doi:10.1140/epjc/s10052-015-3685-1, arXiv:1506.05669

[16] ATLAS Collaboration, “Test of CP invariance in vector-boson fusion production of the Higgs boson using the optimal observable method in the ditau decay channel with the ATLAS detector”, Eur. Phys. J. C 76 (2016) 658, doi:10.1140/epjc/s10052-016-4499-5, arXiv:1602.04516

[17] ATLAS Collaboration, “Measurement of inclusive and differential cross sections in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, JHEP 10 (2017) 132, doi:10.1007/JHEP10(2017)132, arXiv:1708.02810

[18] ATLAS Collaboration, “Measurement of the Higgs boson coupling properties in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel at $\sqrt{s} = 13$ TeV with the ATLAS detector”, JHEP 03 (2018) 095, doi:10.1007/JHEP03(2018)095, arXiv:1712.02304

[19] ATLAS Collaboration, “Measurements of Higgs boson properties in the diphoton decay channel with 36 fb$^{-1}$ of pp collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector”, Phys. Rev. D 98 (2018) 052005, doi:10.1103/PhysRevD.98.052005, arXiv:1802.04146

[20] J. F. Gunion and X.-G. He, “Determining the CP nature of a neutral Higgs boson at the LHC”, Phys. Rev. Lett. 76 (1996) 4468, doi:10.1103/PhysRevLett.76.4468, arXiv:hep-ph/9602226

[21] F. Demartin et al., “Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction”, Eur. Phys. J. C 74 (2014) 3065, doi:10.1140/epjc/s10052-014-3065-2, arXiv:1407.5089

[22] A. V. Gritsan, R. Röntsch, M. Schulze, and M. Xiao, “Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques”, Phys. Rev. D 94 (2016) 055023, doi:10.1103/PhysRevD.94.055023, arXiv:1606.03107

[23] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
[24] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.

[25] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\kT jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[26] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[27] CMS Collaboration, “Technical proposal for the phase-II upgrade of the compact muon solenoid”, CMS Technical proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.

[28] CMS Collaboration, “Identification of heavy-flavor jets with the CMS detector in pp collisions at 13 TeV”, JINST 13 (2018) P05011, doi:10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.

[29] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[30] LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector”, CERN (2016) doi:10.23731/CYRM-2017-002, arXiv:1610.07922.

[31] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, doi:10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.

[32] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the \POWHEG method”, JHEP 11 (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092.

[33] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the \POWHEG BOX”, JHEP 06 (2010) 043, doi:10.1007/JHEP06(2010)043, arXiv:1002.2581.

[34] H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth, “Higgs boson production in association with top quarks in the \POWHEG BOX”, Phys. Rev. D 91 (2015) 094003, doi:10.1103/PhysRevD.91.094003, arXiv:1501.04498.

[35] Y. Gao et al., “Spin determination of single-produced resonances at hadron colliders”, Phys. Rev. D 81 (2010) 075022, doi:10.1103/PhysRevD.81.075022, arXiv:1001.3396.

[36] S. Bolognesi et al., “Spin and parity of a single-produced resonance at the LHC”, Phys. Rev. D 86 (2012) 095031, doi:10.1103/PhysRevD.86.095031, arXiv:1208.4018.

[37] I. Anderson et al., “Constraining anomalous HVV interactions at proton and lepton colliders”, Phys. Rev. D 89 (2014) 035007, doi:10.1103/PhysRevD.89.035007, arXiv:1309.4819.

[38] T. Gleisberg et al., “Event generation with SHERPA 1.1”, JHEP 02 (2009) 007, doi:10.1088/1126-6708/2009/02/007, arXiv:0811.4622.
[39] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024 arXiv:1410.3012

[40] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, *Eur. Phys. J. C* 76 (2016) 155, doi:10.1140/epjc/s10052-016-3988-x arXiv:1512.00815

[41] CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, *Eur. Phys. J. C* 80 (2020) doi:10.1140/epjc/s10052-019-7499-4 arXiv:1903.12179

[42] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8

[43] CMS Collaboration, “The CMS trigger system”, *JINST* 12 (2017), no. 01, P01020, doi:10.1088/1748-0221/12/01/P01020 arXiv:1609.02366

[44] CMS Collaboration, “Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JHEP* 11 (2018) 185, doi:10.1007/JHEP11(2018)185 arXiv:1804.02716

[45] E. Spyromitros-Xioufis, W. Groves, G. Tsoumakas, and I. Vlahavas, “Multi-target regression via input space expansion: treating targets as inputs”, *Mach Learn* 104 (2016) doi:10.1007/s10994-016-5546-z arXiv:1211.6581

[46] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system”, in *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD, p. 785. ACM, New York, NY, USA, 2016. doi:10.1145/2939672.2939785

[47] CMS Collaboration, “Search for direct production of supersymmetric partners of the top quark in the all-jets final state in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JHEP* 10 (2017) 005, doi:10.1007/JHEP10(2017)005 arXiv:1707.03316

[48] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, *Neur. Comp.* 9 (1997) 1735, doi:10.1162/neco.1997.9.8.1735.

[49] M. J. Oreglia, “A study of the reactions $\psi' \rightarrow \gamma\gamma\psi$” PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236.

[50] P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies, “Handling uncertainties in background shapes”, *JINST* 10 (2015) P04015, doi:10.1088/1748-0221/10/04/P04015 arXiv:1408.6865

[51] The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011.

[52] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, *Eur. Phys. J. C* 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0 arXiv:1007.1727 [Erratum: doi:10.1140/epjc/s10052-013-2501-z].

[53] CMS Collaboration, “Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV”, *Eur. Phys. J. C* 75 (2015) 212, doi:10.1140/epjc/s10052-015-3351-7 arXiv:1412.8662
[54] CMS Collaboration, “CMS luminosity measurements for the 2016 data-taking period”, Technical Report CMS-PAS-LUM-17-001, 2017.

[55] CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at $\sqrt{s} = 13$ TeV”, Technical Report CMS-PAS-LUM-17-004, 2018.

[56] CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at $\sqrt{s} = 13$ TeV”, Technical Report CMS-PAS-LUM-18-002, 2019.

[57] A. V. Gritsan et al., “New features in the JHU generator framework”, (2020). arXiv:2002.09888

[58] CMS Collaboration, “Search for associated production of a Higgs boson and a single top quark in proton-proton collisions at $\sqrt{s} = 13$ TeV”, Phys. Rev. D 99 (2019) 092005, doi:10.1103/PhysRevD.99.092005, arXiv:1811.09696

[59] G. J. Feldman and R. D. Cousins, “A unified approach to the classical statistical analysis of small signals”, Phys. Rev. D 57 (1998) 3873, doi:10.1103/PhysRevD.57.3873, arXiv:physics/9711021
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, T. Bergauer, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, R. Frühwirth, M. Jeitler, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad, J. Schieck, R. Schöfbeck, M. Spanring, W. Waltenberger, C.-E. Wulz, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Drugakov, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish, E.A. De Wolf, D. Di Croce, X. Janssen, T. Kello, A. Lelek, M. Pieters, H. Rejeb Sfar, H. Van Haevermaet, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, S.S. Chhibra, J. D’Hondt, J. De Clercq, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, L. Favart, A.K. Kalsi, L. Moureaux, A. Popov, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, I. Khvastunov, M. Niedziela, C. Roskas, K. Skovpen, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, A. Giammanco, V. Lemaitre, J. Prisciandaro, A. Saggio, P. Vischia, J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, G. Correia Silva, H. Cenzual, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, E. Coelho, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, J. Martins, D. Matos Figueiredo, M. Medina Jaime, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, P. Rebello Teles, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil
C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, D.S. Lemos, P.G. Mercadante, S.F. Novaes, Sandra Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
M. Bonchev, A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov
Beihang University, Beijing, China
W. Fang*, X. Gao, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, Z. Hu, Y. Wang

Institute of High Energy Physics, Beijing, China
G.M. Chen, H.S. Chen, M. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, A. Spiezia, J. Tao, E. Yazgan, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Q. Wang

Zhejiang University, Hangzhou, China
R. Pan, M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, C.F. Gonzalez Hernandez, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, J.D. Ruiz Alvarez, C.A. Salazar Gonzalez, N. Vanegas Arbelaez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, D. Majumder, B. Mesic, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, M. Kolosova, S. Konstantinou, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka, D. Tsiakkouri

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgammal

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen
Helsinki Institute of Physics, Helsinki, Finland
E. Brüken, F. García, J. Havukainen, J.K. Heikkilä, V. Karimäki, M.S. Kim, R. Kinnunen,
T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, H. Siikonen, E. Tuominen,
J. Tuomi

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour,
A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leoloup, B. Lenzi, E. Locci,
J. Malcles, J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique
de Paris
S. Ahuja, C. Amendola, F. Beaudette, M. Bonanomi, P. Busson, C. Charlot, B. Diab, G. Falmagne,
R. Granier de Cassagnac, I. Kucher, A. Lobanov, C. Martin Perez, M. Nguyen, C. Ochando,
P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard,
E. Conte, J.-C. Fontaine, D. Gelé, U. Goerlach, C. Grimault, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules,
CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique
Nucleaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon, R. Chierici, D. Contardo,
P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain, I.B. Laktineh,
H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, L. Torterotot,
G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
A. Khvedelidze

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, J. Schulz,
M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Erdmann, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, H. Keller, L. Mastrolorenzo,
M. Merschmeyer, A. Meyer, P. Millet, G. Mocellin, S. Mondal, S. Mukherjee, D. Noll, A. Novak,
T. Pook, A. Pozdnyakov, T. Quast, M. Radziej, Y. Rath, H. Reithler, J. Roemer, A. Schmidt,
S.C. Schuler, A. Sharma, S. Wiedenbeck, S. Zaleski

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, W. Haj Ahmad, O. Hlushchenko, T. Kress, T. Müller, A. Nowack, C. Pistone,
O. Pooth, D. Roy, H. Sert, A. Stahl
Deutsches Elektronen-Synchrotron, Hamburg, Germany
H. Aarup Petersen, M. Aldaya Martin, P. Asmuss, I. Babounikau, K. Beernaert, O. Behnke, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras17, V. Botta, D. Brunner, A. Campbell, A. Cardini, P. Connor, S. Consuegra Rodríguez, C. Contreras-Campana, V. Danilov, A. De Wit, M.M. De Franceschi, C. Diez Pardos, D. Domínguez Damiani, G. Eckerlin, D. Eckstein, T. Eichhorn, A. Elwood, E. Eren, L.I. Estevez Banos, E. Gallo18, A. Geiser, A. Grebenyuk, A. Grohsjean, M. Guthoff, M. Haranko, A. Harb, A. Jafari, N.Z. Jomhari, H. Jung, A. Kasem17, M. Kasemann, H. Kavel, J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, T. Lenz, J. Lidrych, K. Lipka, W. Lohmann19, R. Mankel, I.-A. Melzer-Pellmann, J. Metwally, A.B. Meyer, M. Meyer, M. Missiroli, J. Mnich, A. Mussgiller, V. Myronenko, Y. Otari, D. Pérez Adán, S.K. Pflichs, D. Pitzl, A. Raspereza, A. Saibel, M. Savitskyi, V. Scheurer, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, R.E. Sosa Ricardo, H. Tholen, N. Tonon, O. Turko, A. Vagnerini, M. Van De Klundert, R. Walsh, D. Walter, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev, R. Zlebcik

University of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, L. Benato, A. Benecke, K. De Leo, T. Dreyer, A. Ebrahimi, F. Feindt, A. Fröhlich, C. Garbers, E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, T. Lange, A. Malara, J. Multhaup, C.E.N. Niemeyer, A. Reimers, O. Riegler, P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, B. Vormwald, I. Zoï

Karlsruher Institut fuer Technologie, Karlsruhe, Germany
M. Akbiyik, M. Baselga, S. Baur, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, K. El Morabit, N. Faltermann, M. Giffels, A. Gottmann, F. Hartmann16, C. Heidecker, U. Husemann, M.A. Iqbal, S. Kudella, S. Maier, S. Mitra, M.U. Mozer, D. Müller, Th. Müller, M. Musch, C. Nürnberg, G. Quast, K. Rabbertz, D. Savoiu, D. Schäfer, M. Schneplf, M. Schröder, I. Shvetsov, H.J. Simonis, R. Ulrich, M. Wassmer, M. Weber, C. Wöhrmann, R. Wolf, S. Wozniwski

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, P. Asenov, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, A. Stakia

National and Kapodistrian University of Athens, Athens, Greece
M. Diamantopoulou, G. Karathanasis, P. Kontaxakis, A. Manousakis-katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Theofilatos, K. Vellidis, E. Vourliotis

National Technical University of Athens, Athens, Greece
G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsiplatis, A. Zacharopoulos

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, K. Manitara, N. Manthis, I. Papadopoulos, J. Strologas, F.A. Triantis, D. Tsitsonis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartók20, R. Chudasama, M. Csanad, M.M.A. Gadallah, P. Major, K. Mandal, A. Mehta, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath21, F. Sikler, V. Veszpremi, G. Vesztergombi†
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Eszterhazy KarolyUniversity, Karoly Robert Campus, Gyongyos, Hungary
T. Csorgo, S. Lökös, W.J. Metzger, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, L. Panwar, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati, C. Kar, G. Kole, P. Mal, V.K. Muraleedharan Nair Bindhu, A. Nayak, D.K. Sahoo, N. Sur, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumari, M. Lohan, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj, M. Bharti, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, D. Bhowmik, S. Dutta, S. Ghosh, B. Gomber, M. Maity, K. Mondal, S. Nandan, P. Palit, A. Purohit, P.K. Rout, G. Saha, S. Sarkar, M. Sharan, B. Singh, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, A. Muhammad, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Jha, D.K. Mishra, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, R. Kumar Verma, G.B. Mohanty, U. Sarkar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, N. Sahoo, S. Sawant

Indian Institute of Science Education and Research (IISER), Pune, India
S. Dube, B. Kansal, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Isfahan University of Technology
H. Bakhshiansohi

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinabadi

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald
INFIN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbrescia a, R. Ayl a, A. Calabria a, A. Colaleo a, D. Creanza a, L. Cristella a, N. De Filippis a, M. De Palma a, A. Di Florio a, W. Elmetanawee a, L. Fiore a, A. Gelmi a, G. Iaselli a, M. Ince a, S. Lekzi a, M. Maggi a, M. Manni a, J.A. Merlin a, G. Minciullo a, S. My a, S. Nuzzo a, A. Pompili a, G. Pugliese a, R. Radogna a, A. Ranieri a, G. Selvaggi a, L. Silvestris a, F.M. Simone a, R. Venditti a, P. Verwijlen a

INFIN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendi a, C. Battilana a, D. Bonacorsi a, L. Boronov a, S. Braibant-Giacomelli a, R. Campanini a, P. Capiluppi a, A. Castro a, F.R. Cavallo a, C. Ciocci a, G. Codispoti a, M. Cuffiani a, G.M. Dallavalle a, F. Fabbris a, A. Fanfani a, E. Fontanesi a, P. Giacomelli a, C. Grandi a, L. Guiducci a, F. Iemmi a, S. Lo Meo a, S. Marcellini a, G. Masetti a, F.L. Navarra a, A. Perrotta a, F. Primavera a, A.M. Rossi a, T. Rovelli a, G.P. Siroli a, N. Tosi a

INFIN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbaglia a, A. Cassese a, R. Ceccarelli b, V. Ciulli a, C. Civinini a, R. D'Alessandro a, F. Fiori a, E. Focardi a, G. Latino a, P. Lenzi a, M. Lizzo a, M. Meschini a, S. Paoletti a, R. Seidita a, G. Sguazzoni a, L. Viliani a

INFIN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, D. Piccolo

INFIN Sezione di Genova a, Università di Genova b, Genova, Italy
M. Bozzo a, F. Ferro a, R. Mulargia a, E. Robutti a, S. Tosi a

INFIN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benaglia a, A. Beschin b, F. Brivio b, V. Ciriolo a, F. De Guio a, M.E. Dinardo a, P. Dini a, S. Gennai a, A. Ghezzi a, P. Govoni a, L. Guzzi a, M. Malberti a, S. Meola a, D. Menasce a, F. Monti a, L. Moroni a, M. Paganoni a, D. Pedrini a, S. Ragazzi a, T. Tabarelli de Fatis a, D. Valsecchi a, D. Zuolo a, b

INFIN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempo a, N. Cavallo a, A. De Iorio a, A. Di Crescenzo a, F. Fabozzi a, F. Fienga a, G. Galati a, A.O.M. Iorio a, L. Layer a, L. Lista a, S. Meola a, P. Paolucci a, B. Rossi a, C. Sciacca a, E. Voevodina a, b

INFIN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzi a, N. Bacchetta a, D. Bisello a, A. Boletti a, A. Bragagnolo a, R. Carlin a, P. Checchia a, P. De Castro Manzano a, T. Dorigo a, U. Dosselli a, F. Gasparini a, U. Gasparini a, A. Gozzelino a, S.Y. Hoh a, M. Margoni a, A.T. Meneguzzo a, J. Pazzini a, M. Presilla a, P. Ronchese a, R. Rossin a, F. Simonetto a, A. Tiko a, M. Tosi a, M. Zanetti a, P. Zotto a, A. Zucchetta a, G. Zumerle a

INFIN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
A. Braghieri a, S. Calzaferri a, D. Fiorina a, P. Montagna a, S.P. Ratti a, V. Re a, M. Ressegotti a, C. Riccardi a, P. Salvini a, I. Vai a, P. Vitulo a

INFIN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
M. Biasinia,b, G.M. Bileia, D. Ciangottinia,b, L. Fanoa,b, P. Laricciaa,b, R. Leonarda,b, E. Manonia
G. Mantovania,b, V. Mariania,b, M. Menichellia, A. Rossia,b, A. Santocchiaa,b, D. Spigaa
INFN Sezione di Pisaa, Università di Pisab, Scuola Normale Superiore di Pisac, Pisa, Italy
K. Androsova, P. Azzurria, G. Bagliesia, V. Bertacchia,c, L. Bianchinia, T. Boccalia, R. Castaldia
M.A. Cioccia,b, R. Dell’Orsoa, S. Donatoa, L. Gianninia,c, A. Giassia, M.T. Grippoa
F. Ligabuea,c, E. Mancaa, G. Mandorlia,c, A. Messineoa,b, F. Pallaa, A. Rizzia,b, G. Rolandia,c
S. Roy Chowdhurya,c, A. Scribanoa, P. Spagnoloa, R. Trenchinia, G. Tonellia,b, N. Turinia
A. Venturia, P.G. Verdinia

INFN Sezione di Romaa, Sapienza Università di Romab, Rome, Italy
F. Cavallarid, M. Cipriania,b, D. Del Rea,b, E. Di Marcoa, M. Diemoza, E. Longoa,b, P. Meridiania
G. Orsinia,b, F. Pandolfia, R. Paramattia,b, C. Quarantaa,b, S. Rahatloua,b, C. Rovellia
F. Santanastasioa,b, L. Soffia,b, R. Tramontanoa,b

INFN Sezione di Torinoa, Università di Torinob, Torino, Italy
INF del Piemonte Orientalec, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b
A. Belloraa,b, C. Biinoa, A. Cappatia,b, N. Cartigliaa, S. Comettia, M. Costaa,b, R. Covarellia,b
N. Demariaa, J.R. González Fernándeza, B. Kianiea,b, F. Leggera, C. Mariottia, S. Masellia
E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa, M.M. Obertinoa,b, G. Ortonaa
L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, M. Ruspaa,c, R. Salvaticoa,b
F. Sivieroa,b, V. Solaa, A. Solanoa,b, D. Soldia,b, A. Staianoa, D. Trocinoa,b

INFN Sezione di Triestea, Università di Triesteb, Trieste, Italy
S. Belfortec, V. Candelisea,b, M. Casarsaa, F. Cossuttia, A. Da Rolda,b, G. Della Riccaa,b
F. Vazzolera,b, A. Zanettia

Kyungpook National University, Daegu, Korea
B. Kim, D.H. Kim, G.N. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, S. Sekmen, D.C. Son,
Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon

Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, S. Ha, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, Y. Roh, J. Yoo

Kyung Hee University, Department of Physics
J. Goh

Sejong University, Seoul, Korea
H.S. Kim

Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Lee, K. Lee, S. Lee, K. Nam,
B.H. Oh, M. Oh, S.B. Oh, B.C. Radburn-Smith, H. Seo, U.K. Yang, H.D. Yoo, I. Yoon

University of Seoul, Seoul, Korea
D. Jeon, J.H. Kim, J.S.H. Lee, I.C. Park, I.J. Watson
Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, Y. Jeong, J. Lee, Y. Lee, I. Yu

Riga Technical University, Riga, Latvia
V. Veckalns

Vilnius University, Vilnius, Lithuania
V. Duden, A. Juodagalvys, A. Rinkevicius, G. Tamulaitis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
F. Mohamad Idris, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler, P. Lujan

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, M.I.M. Awan, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, M. Gorski, M. Kazana, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Olszewski, M. Walczak

Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Di Francesco, P. Faccioli, B. Galinhias, M. Gallinaro, J. Hollar, N. Leonato, T. Niknejad, J. Seixas, K. Shchelina, G. Strong, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, V. Alexakhin, P. Bunin, Y. Ershov, A. Golunov, I. Golutvin, N. Gorbounov,
I. Gorbunov, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Voytishin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
L. Chhtchipounov, V. Golovtcov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Soknov, V. Sulimov, L. Uvarov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Deremenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, A. Nikitenko, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
O. Bychkova, R. Chistov, M. Danilov, D. Philippov, S. Polikarpov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, M. Perfilov, V. Savrin, P. Volkov

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, I. Ovtin, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachenov, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitski, A. Sobol, T. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, A. Izuhakov, V. Okhotnikov

Tomsk State University, Tomsk, Russia
V. Borshch, V. Ivanchenko, E. Tcherniaev

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences
P. Adzic, P. Cirkovic, M. Dordovic, P. Milenovic, J. Milosevic, M. Stojanovic

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Alvarez Fernandez, I. Bachiller, M. Barrio Luna, CristinaF. Bedoya, J.A. Brochero Cifuentes, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, Á. Navarro Tobar, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sanchez Navas, M.S. Soares, A. Triossi, C. Willmott
Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, C. Ramón Álvarez, V. Rodríguez Bouza, S. Sanchez Cruz

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, A. García Alonso, G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, F. Ricci-Tam, T. Rodrigo, A. Ruiz-Jimeno, L. Russo, L. Scodellaro, I. Vila, J.M. Vizan García

University of Colombo, Colombo, Sri Lanka
D.U.J. Sonnadara

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
T.K. Aarrestad, D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, J. Baechler, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, P. Bortignon, E. Bossini, E. Brondolin, T. Camporesi, A. Caratelli, G. Cerminara, E. Chapon, G. Cucciati, D. d’Enterria, A. Dabrowski, N. Daci, V. Daponte, A. David, O. Davignon, A. De Roeck, M. Deile, R. Di Maria, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, N. Emriskova, F. Fallavollita, D. Fasanella, S. Fiorendi, G. Franzoni, J. Fulcher, W. Funk, S. Giani, D. Gigi, K. Gill, F. Glege, L. Gouskos, M. Gruchala, M. Guilbaud, D. Gulhan, J. Hegeman, C. Heidegger, Y. Iiyama, V. Innocente, T. James, P. Janot, O. Karacheban, J. Kaspar, J. Kieseler, M. Krammer, N. Kratochwil, C. Lange, P. Lecoq, K. Long, C. Lourenço, L. Malgeri, M. Mannelli, A. Massironi, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, J. Ngadiuba, J. Niedziela, S. Nourbakhsh, S. Orfanelli, L. Orsini, F. Pantaleo, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, M. Rieger, M. Rovere, H. Sakulin, J. Salfeld-Nebgen, S. Scarfi, C. Schäfer, C. Schwick, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Spica, J. Steggemann, S. Summers, V.R. Tavolaro, D. Treille, A. Tsirou, G.P. Van Onsem, A. Vartak, M. Verzetti, K.A. Wozniak, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, P. Berger, A. Calandri, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T. Gadek, T.A. Gómez Espinosa, C. Grab, D. Hits, W. Luscher, R.A. Manzoni, M.T. Meinhard, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pauss, V. Perovic, G. Perrin, L. Perrozzi, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, M. Schönberger, L. Schuitska, M.L. Vesterbacka Olsson, R. Walny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
C. Amsler, C. Botta, D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, B. Kilminster, S. Leontsinis, V.M. Mikuni, I. Neutelings, G. Rauco, P. Robmann, K. Schweiger, Y. Takahashi, S. Wert
National Central University, Chung-Li, Taiwan
C.M. Kuo, W. Lin, A. Roy, T. Sarkar, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas, N. Suwonjandee

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
A. Bat, F. Boran, A. Celik, S. Damarseckin, Z.S. Demiroglu, F. Dolek, C. Dozen, I. Dumanoglu, G. Gokbulut, Y. Guler, E. Gurpinar Guler, I. Hos, C. Isik, E.E. Kangal, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Ozedmir, A.E. Simsek, U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, M. Yalvac

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, Ö. Özçelik, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
S. Cerci, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
E. Bhal, S. Bologna, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-Storey, V.J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, G.S. Chahal, D. Colling, P. Dauncey, G. Davies, M. Della Negra, P. Everaerts, G. Hall, G. Iles, M. Komm, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, V. Milosevic, A. Morton, J. Nash, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, M. Stoye, A. Tapper, K. Uchida, T. Virdee, N. Wardle, S.N. Webb, D. Winterbottom, A.G. Zecchinelli, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid
Baylor University, Waco, USA
A. Brinkerhoff, K. Call, B. Caraway, J. Dittmann, K. Hatakeyama, C. Madrid, B. McMaster, N. Pastika, C. Smith

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, S.V. Gleyzer, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
A. Albert, D. Arcaro, Z. Demiragli, D. Gastler, C. Richardson, J. Rohlf, D. Sperka, D. Spitzbart, I. Suarez, L. Sulak, D. Zou

Brown University, Providence, USA
G. Benelli, B. Burkle, X. Coubes,17 D. Cutts, Y. Duh, M. Hadley, U. Heintz, J.M. Hogan72, K.H.M. Kwok, E. Laird, G. Landsberg, K.T. Lau, J. Lee, M. Narain, S. Sagir73, R. Syarif, E. Usai, W.Y. Wong, D. Yu, W. Zhang

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breeden, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, F. Jensen, W. Ko1, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, M. Shi, D. Taylor, K. Tos, M. Tripathi, Z. Wang, Y. Yao, F. Zhang

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, W.A. Nash, S. Regnard, D. Saltzberg, C. Schnaible, B. Stone, V. Valuev

University of California, Riverside, Riverside, USA
K. Burt, Y. Chen, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, M.I. Paneva, W. Si, S. Wimpenny, Y. Zhang

University of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, M. Derdzinski, J. Duarte, R. Gerosa, D. Gilbert, B. Hashemi, D. Klein, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, S. Padhi, M. Pieri, V. Sharma, M. Tadel, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, C. Campagnari, M. Citron, V. Dutta, J. Incandela, B. Marsh, H. Mei, A. Ovcharova, H. Qu, J. Richman, U. Sarica, D. Stuart, S. Wang

California Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
J. Alison, M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, Y. Cheng, J. Chu, A. Datta, A. Frankenthal, K. Mcdermott, J.R. Patterson, D. Quach, A. Ryd, S.M. Tan, Z. Tao, J. Thom, P. Wittich, M. Zientek
University of Maryland, College Park, USA
E. Adams, A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, N.J. Hadley, S. Jabeen, G.Y. Jeng,
R.G. Kellogg, A.C. Mignerey, S. Nabili, M. Seidel, A. Skuja, S.C. Tonwar, L. Wang, K. Wong

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso,
G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, Y.-J. Lee,
P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus,
D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephens, K. Sumorok, K. Tatar, D. Velicanu,
J. Wang, T.W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
R.M. Chatterjee, A. Evans, S. Guts†, P. Hansen, J. Hiltbrand, Sh. Jain, Y. Kubota, Z. Lesko,
J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, R. Kamalieddin,
I. Kravchenko, J.E. Siado, G.R. Snow†, B. Stieger, W. Tabb

State University of New York at Buffalo, Buffalo, USA
G. Agarwal, C. Harrington, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, A. Parker,
J. Pekkanen, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, G. Madigan, B. Marzocchi,
D.M. Morse, V. Nguyen, T. Orimoto, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang,
A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, G. Fedi, A. Gilbert, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt,
K. Sung, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard,
K. Lannon, W. Li, N. Loukas, N. Marinelli, I. Mcalister, F. Meng, Y. Musienko37, R. Ruchti,
P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf

The Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, W. Ji, A. Lefeld, B.L. Winer,
B.R. Yates

Princeton University, Princeton, USA
G. Dezoort, P. Elmer, J. Hardenbrook, N. Haubrich, S. Higginbotham, A. Kalogeropoulos,
G. Kopp, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen,
C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, B. Mahakud, D.H. Miller,
G. Negro, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, N. Trevisani, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA
A. Baty, U. Behrens, S. Dildick, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, A. Kumar, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, W. Shi, A.G. Stahl Leiton, Z. Tu, A. Zhang

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, H. Kim, S. Luo, S. Malhotra, D. Marley, R. Mueller, D. Overton, L. Perniè, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij

University of Virginia, Charlottesville, USA
L. Ang, M.W. Arenton, P. Barria, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa

University of Wisconsin - Madison, Madison, WI, USA
K. Black, T. Bose, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, I. De Bruyn, L. Dodd, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, D. Pinna, T. Ruggles, A. Savin, V. Sharma, W.H. Smith, D. Teague, S. Trembath-reichert, W. Vetens

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at Université Libre de Bruxelles, Bruxelles, Belgium
3: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
6: Also at UFMS, Nova Andradina, Brazil
7: Also at Universidade Federal de Pelotas, Pelotas, Brazil
8: Also at University of Chinese Academy of Sciences, Beijing, China
9: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC 'Kurchatov Institute', Moscow, Russia
10: Also at Joint Institute for Nuclear Research, Dubna, Russia
11: Also at Suez University, Suez, Egypt
12: Now at British University in Egypt, Cairo, Egypt
13: Also at Purdue University, West Lafayette, USA
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Erzincan Binali Yıldırım University, Erzincan, Turkey
16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
18: Also at University of Hamburg, Hamburg, Germany
19: Also at Brandenburg University of Technology, Cottbus, Germany
20: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen, Hungary
21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
22: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary, Budapest, Hungary
23: Also at IIT Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India
24: Also at Institute of Physics, Bhubaneswar, India
25: Also at G.H.G. Khalsa College, Punjab, India
26: Also at Shoolini University, Solan, India
27: Also at University of Hyderabad, Hyderabad, India
28: Also at University of Visva-Bharati, Santiniketan, India
29: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
30: Now at INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
31: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
32: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
33: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
35: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
37: Also at Institute for Nuclear Research, Moscow, Russia
38: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
40: Also at University of Florida, Gainesville, USA
41: Also at Imperial College, London, United Kingdom
42: Also at P.N. Lebedev Physical Institute, Moscow, Russia
43: Also at California Institute of Technology, Pasadena, USA
44: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
45: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
46: Also at Università degli Studi di Siena, Siena, Italy
47: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy, Pavia, Italy
48: Also at National and Kapodistrian University of Athens, Athens, Greece
49: Also at Universität Zürich, Zurich, Switzerland
50: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
51: Also at Burdur Mehmet Akif Ersoy University, BURDUR, Turkey
52: Also at Şırnak University, Şırnak, Turkey
53: Also at Department of Physics, Tsinghua University, Beijing, China, Beijing, China
54: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
55: Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey
56: Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
57: Also at Mersin University, Mersin, Turkey
58: Also at Piri Reis University, Istanbul, Turkey
59: Also at Ozyegin University, Istanbul, Turkey
60: Also at Bozok Universitesesi Rektörlüğü, Yozgat, Turkey
62: Also at Marmara University, Istanbul, Turkey
63: Also at Milli Savunma University, Istanbul, Turkey
64: Also at Kafkas University, Kars, Turkey
65: Also at Istanbul Bilgi University, Istanbul, Turkey
66: Also at Hacettepe University, Ankara, Turkey
67: Also at Adiyaman University, Adiyaman, Turkey
68: Also at Vrije Universiteit Brussel, Brussel, Belgium
69: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
70: Also at IPPP Durham University, Durham, United Kingdom
71: Also at Monash University, Faculty of Science, Clayton, Australia
72: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
73: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
74: Also at Bingol University, Bingol, Turkey
75: Also at Georgian Technical University, Tbilisi, Georgia
76: Also at Sinop University, Sinop, Turkey
77: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
78: Also at Nanjing Normal University Department of Physics, Nanjing, China
79: Also at Texas A&M University at Qatar, Doha, Qatar
80: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea