OH defects in coesite and stishovite during ultrahigh-pressure metamorphism of continental crust

C. Frigo · R. Stalder · T. Ludwig

Received: 7 February 2018 / Accepted: 7 July 2018 / Published online: 26 July 2018
© The Author(s) 2018

Abstract
The high-pressure silica polymorphs coesite and stishovite were synthesized under water-saturated conditions from a natural granitic composition doped with Li and B. Experiments were performed in a Multi-Anvil apparatus between 4 and 9.1 GPa and 900 and 950 °C, based on the conditions of a subducting continental crust as realistic for the ultrahigh-pressure metamorphic units Dora Maira and Kochetav massifs. Run products consisted of coesite/stishovite + kyanite ± phengite ± omphacite, and quench material. The synthesized silica polymorphs were successively analyzed by infrared spectroscopy, electron microprobe, and Secondary-Ion Mass Spectrometry (SIMS). No hydrous defects were observed in coesite synthesized at 4 GPa and 900 °C, whereas coesite grown at higher pressures revealed a triplet of infrared absorptions bands at 3575, 3523, and 3459 cm⁻¹, two minor bands at 3535 and 3502 cm⁻¹, and a small band at 3300 cm⁻¹ that was only visible at 7.7 GPa. The total amount of Al was charge-balanced by H and the other monovalent cations. However, the band triplet could not be associated with AlOH defects, while the band doublet was inferred to BOH defects and the small band probably corresponded to interstitial H. Stishovite displayed one dominant band at 3116 cm⁻¹ with a shoulder at 3170 cm⁻¹, and a minor band at 2665 cm⁻¹, probably all associated with AlOH defects. BOH defects were not observed in stishovite, and LiOH defects were neither observed in coesite nor stishovite, probably because of preferentially partition of Li in other phases such as omphacite. The total amount of defect protons increased with pressure and with metal impurity concentrations. The general increase in OH defects in silica polymorphs with increasing pressure (this study) contrasted the negative pressure trend of OH in quartz observed previously from the same starting material, and revealed an incorporation minimum of OH in silica polymorphs around the quartz/coesite phase transition.

Keywords Coesite · Stishovite · OH defects · IR spectroscopy · Phengite

Introduction
Silica (SiO₂) is the most important component in the Earth’s crust and silica polymorphs are common mineralogical phases occurring in a wide range of geological environments. Quartz is the second most abundant phase in the Earth’s crust (12 modal % according to Ronov and Yaroshevsky 1969) and is an important constituent of many igneous, sedimentary, and metamorphic rocks. During continental collision, small continental fragments of the continental crust may experience subduction to great depths, leading the transformation of quartz into high-pressure silica polymorphs coesite and stishovite under ultrahigh-pressure (UHP) metamorphic conditions. In nature, this was first discovered inside a quartzite from the Dora Maira massif in the Western Alps, where natural coesite was detected as inclusions in garnet (Chopin 1984). Similar to quartz, coesite and stishovite may incorporate water as hydroxyl defects, and thus may serve as water carrier to the Earth’s mantle. The previous studies based on infrared (IR) spectroscopic investigations on hydroxyl defects in both synthetic coesite and stishovite suggested that protons can be accommodated as hydroxyl defects, (4H)Si, AlOH and BOH defects, and interstitial defects. Hydroxyl defects are inferred from the substitution of one Si⁴⁺ with four H⁺, whereas AlOH and BOH defects derive from the coupled substitutions that involve Si⁴⁺, trivalent cations (Al³⁺ and
B$^{3+}$), and H$^+$. The main hydrous feature observed in IR spectra recorded from coesite, three bands at 3573, 3523–3520, and 3459 cm$^{-1}$ (Mosenfelder 2000; Koch-Müller et al. 2001), were interpreted as (4H)$_8$ defects. Additional hydrous defects in coesite are displayed by two bands at 3535 and 3500 cm$^{-1}$ (Koch-Müller et al. 2003; Deon et al. 2009) that were assigned to BOH defects, and two smaller bands at 3300 and 3210 cm$^{-1}$ (Koch-Müller et al. 2001) that were initially assigned to AlOH defects, although no correlation between the concentrations of Al and H from these bands could be established (Koch-Müller et al. 2003). Stishovite with minor amounts of metal impurities displayed mainly three bands in the IR spectrum at 3311, 3240–3238, and 3111 cm$^{-1}$ (Pawley et al. 1993; Bromiley et al. 2006; Litasov et al. 2007), while only a large broad band at 3111 cm$^{-1}$ with a shoulder at 3160–3180 cm$^{-1}$ was detected in stishovite with high concentrations of Al (Pawley et al. 1993; Chung and Kagi 2002; Bromiley et al. 2006; Litasov et al. 2007). In both cases, the band at 3111 cm$^{-1}$ with shoulder band at 3160–3180 cm$^{-1}$ was interpreted either as AlOH defects (Pawley et al. 1993; Chung and Kagi 2002) or as interstitial H influenced indirectly by interstitial Al as a result of the next-nearest-neighbour (NNN) effect (Bromiley et al. 2006), whereas the bands at 3311 and 3240–3238 cm$^{-1}$ were assigned to interstitial H that occur only with very low concentrations of Al (Bromiley et al. 2006). Nevertheless, stishovite tends to incorporate increasing amounts of protons with increasing pressures and temperatures, and proton incorporation in stishovite shows a strong correlation to Al contents (Pawley et al. 1993; Bromiley et al. 2006; Litasov et al. 2007). Beside the wealth of information on OH defects in coesite and stishovite and their IR-absorption band assignment, hitherto only one study used natural material (Chung and Kagi 2002), and no experiments that follow a realistic geotherm of a subducting slab have been performed yet. Therefore, the aim of the present work is to investigate the formation of OH defects in coesite and stishovite from a natural granitic material under experimental conditions that reflect a realistic geotherm of a subducting continental crust fragment. The experimental condition chosen here is based on natural examples such as the Dora Maira (Chopin 2003) and the Kokchetav (Zhang et al. 1997) massifs. Finally, the results from the present study are compared to the defect inventory of quartz synthesized previously from the same starting material (Frigo et al. 2016), to evaluate the potential of silica polymorphs as carrier for light elements (H, B, and Li) to the Earth’s interior.

Experimental and analytical methods

Starting material

Coesite and stishovite were synthesized in a chemical system that consisted of natural granite (68.90 wt% SiO$_2$, 14.87 wt% Al$_2$O$_3$, 6.35 wt% K$_2$O, 3.05 wt% Na$_2$O, 2.51 wt% Fe$_2$O$_3$, 1.56 wt% CaO, 0.50 MgO, 0.27 wt% TiO$_2$, 0.08 wt% MnO, and 0.04 wt% P$_2$O$_5$), synthetic quartz (Alfa Aesar 99.995%), and natural schorl tourmaline. All the components were separately crushed into powder and mixed in two steps: first, by preparing a mixture of natural granite and synthetic quartz in the proportion of 1:1, and second, by adding 5 wt% of powdered tourmaline to the mixture. 7–20 mg of starting material was then loaded together with 0.3–1.2 mg water into a platinum capsule (Table 1), yielding water content of 1.5–6.0 wt% in the starting mixture. The capsule was then welded shut and weighted before and after being placed in the oven for observing a possible water loss.

High-pressure experiments

Experiments were performed at 900–1100 °C and 4 to 9.1 GPa in a 1000-ton Walker-type Multi-Anvil (MA) press at the Institute of Mineralogy and Petrography of Innsbruck. Two MA assemblages have been used to cover the whole-pressure range, both of which consisted of a MgO + 5% Cr$_2$O$_3$ octahedron combined with a graphite furnace and eight tungsten carbide cubes with truncated edges. Experiments at lower pressures were performed with a 25/15 (octahedron edge length/truncation edge length) assembly, whereas an 18/11 assembly was employed for experiments at higher pressures. Natural and sintered gaskets

Run #	OEL/TEL Capsule (mm)	P (GPa)	final T (°C)	t (h)	Run products
E47	25/15 Pt 3.0	4	900	24	coe + ph + omp + ky + quench
E48	25/15 Pt 3.0	5	900	64	coe + ph + omnip + quench
E51	25/15 Pt 3.0	6	950	36	coe + ph + omnip + quench
E52	25/15 Pt 3.0	7	950	36	coe + ph + omnip + quench
E65	18/11 Pt 2.0	7.7	950	70	coe + omnip + quench
E63	18/11 Pt 2.0	8.4	950	72	coe + st + omnip + quench
E62	18/11 Pt 2.0	9.1	950	64	st + ky + quench

coe: coesite, st: stishovite, ph: phengite, omp: omphacite, ky: kyanite
were employed to support the 25/15 and 18/11 assemblies, respectively. Both assemblies were pressure calibrated at high temperatures by reproducing the quartz–coesite (Bose and Ganguly 1995), the CaGeO$_3$ garnet–perovskite structure (Ono et al. 2011), and the coesite–stishovite (Akaogi et al. 1995)-phase transitions. Temperatures were controlled using Pt$_{100}$–Pt$_{90}$Rh$_{10}$ thermocouples for the 25/15 assembly, and W$_{97}$Re$_3$–W$_{75}$Re$_{25}$ thermocouples were used for the 18/11 assemblies. The junction of the thermocouples was placed 1 mm below the center of the assembly and was separated by a MgO disk from the platinum capsule. Pressures and temperatures were monitored electronically over the whole duration of the experimental runs. All successful runs were pressurized and heated simultaneously to the highest PT conditions, since the initial runs suffered from leaking capsules whenever the temperature was not raised before the final pressure was reached. Moreover, some experiments (E63, E62, and E65) were pressurized and heated in two steps, to grow coesite from quartz first, and second to transform coesite into stishovite. Temperature was raised up to 1100 °C, maintained for 5 h, and then decreased to 900 or 950 °C with rate of 4°C/hour, aiming to improve the growth of the silica polymorph phases. The final temperature was hold for 24–72 h and then quenched by shutting off the power supply. Finally, each experiment was decompressed overnight. Detailed information of the experimental conditions is reported in Table 1.

After each experiment, the capsule was recovered from the high-pressure assembly, weighed, pierced, dried, and weighed again to check for fluid loss. Run products were finally extracted from the capsule and then examined under a petrographic microscope.

Run products

High-pressure silica polymorphs usually formed euhedral crystals. Coesite always consisted of pseudo-hexagonal crystals (Fig. 1a), exhibiting either lath or tabular shapes. Furthermore, coesite crystals showed a very low interference color under orthoscopic illumination and a biaxial nature under conoscopic illumination. In contrast, stishovite displayed elongated needles (Fig. 1b) with comparably high interference colors and uniaxial nature, characteristic to tetragonal crystals. In the run at 8.4 GPa, both coesite and stishovite were detected (Fig. 2), meaning that the experiment was performed close to the phase transitions of coesite to stishovite. The existence of coesite and stishovite was furthermore checked and confirmed by Raman spectroscopy.

After the characterization of the run products, several samples were selected and prepared for the following purposes: (1) characterization and quantification of the OH defects via IR spectroscopy, (2) analysis of major trace elements by electron microprobe, and (3) analysis of light elements such as Li and B by Laser Ablation—Inductively Coupled Plasma—Mass Spectrometry (LA–ICP–MS). LA–ICP–MS analyses were performed at the Institute of Mineralogy, University of Münster, using a 193 nm excimer laser (Analyte G2, Photon Machines) connected to a ThermoFisher Element 2 single collector mass spectrometer. However, because of the high purity of the silica polymorphs and their transparency, the energy of the laser beam was not transmitted to the sample samples and ablation was not successful. Therefore, concentrations of Li and B were further detected by Secondary-Ion Mass Spectrometry (SIMS) at the Institute of Earth Sciences, University of Heidelberg.

To perform polarized IR measurements, the largest synthesized crystals of both coesite and stishovite were handpicked, embedded in a thermoplastic resin, and aligned parallel to their main refractive indices using a petrographic microscope with conoscopic illumination. The oriented crystal wafers were then manually polished on both sides and the resin was removed by dissolution in acetone. Thicknesses of the prepared wafers were measured with a mechanical

![Fig. 1](image1.png)
Fig. 1 Pseudo-hexagonal coesite synthesized at 4 GPa (a) and elongated stishovite synthesized at 9.1 GPa (b)

![Fig. 2](image2.png)
Fig. 2 BSE image of the run products from the experiment E63, consisting of euhedral stishovite, coesite, omphacite, and quenched material (porous-dendritic material around the crystals)
Mitutoyo micrometer with an accuracy of $\pm 2 \, \mu m$. The identification of the refractive indices n_α, n_β, and n_γ in coesite was accomplished in two steps: (1) by conoscopic illumination to verify that a symmetric section through the indicatrix was prepared, and (2) in orthoscopic illumination using a compensator (550 nm) to identify the relative value of both refractive indices. Therefore, three sections were inspected (Table 2): the section perpendicular to the acute bisectrix (which is very close to the (001) plane and exhibits the refractive indices n_α–n_β), the section perpendicular to the obtuse bisectrix (which is identical to the (010) plane and exhibits the refractive indices n_β–n_γ), and the section parallel to the optical axes plane (which is in the [h0l] zone and exhibits the refractive indices n_α–n_γ). In all cases, conoscopic illumination shows a centered image through the indicatrix, where two isogyres meet (and divide) in the center of the view field. In the section perpendicular to the acute bisectrix, the angular range of isogyre appearance was much larger than in the other two sections. However, due to the small birefringence and the small size of the crystals, the quality of the conoscopic figures was not clear enough to distinguish between the two last mentioned sections. Nonetheless, it was possible to recognize whether one of the bisectrices was centered in the view field of the conoscopic image. The small birefringence ($\Delta_{\text{max}} = 0.005$) gave mostly rise to interference grey colours, and never exceeded red I. Based on the observation on the crystal section perpendicular to the acute bisectrix (which could unequivocally be defined and where n_α and n_β are exhibited), spectra parallel to these direction were recorded and used as reference for further measurements. Finally, lattice overtones of all IR spectra (Fig. 3) were related to their respective direction and cross-checked for all samples (for lattice overtones, see next section).

In case of stishovite grown at 9.1 GPa, small elongated crystals were individually selected, placed parallel to their

Table 2 Polarized IR measurements of coesite, stishovite, and omphacite

Sample #	P (GPa)	Thickness (µm)	A_i (mm$^{-1}$)	A_i (mm$^{-1}$)	A_i (mm$^{-1}$)	H_2O (wt ppm)	H_2O (wt ppm)	H_2O (wt ppm)
Coesite			`n_α`	`n_\beta`	`n_\gamma`	`n_\alpha`	`n_\beta`	`n_\gamma`
E47coe1	4	–	57	–	–	–	–	–
E47coe2	4	–	55	–	–	–	–	–
E48coe3	5	96	56	–	–	72	21	<10
E52coe1	7	119	48	–	119	115	33	34
E52coe2	7	78	65	–	115	223	64	64
E65coe1	7.7	110	99	–	–	201	58	58
E65coe2	7.7	–	68	78	–	–	–	–
Stishovite			`n_α`	`n_\beta`	`n_\gamma`	`n_\alpha`	`n_\beta`	`n_\gamma`
E63st2	8.4	160	–	3489	298			
E63st3	8.4	140	–	4350	371			
E63st4	8.4	155	–	5986	511			
E63st5	8.4	158	–	4593	392			
E63st6	8.4	68	–	3515	300			
E62st2	9.1	45	–	4712	402			
E62st3	9.1	35	–	2861	244			
E62st8	9.1	40	–	3306	282			
E62st9	9.1	49	–	1280	109			
E62st10	9.1	43	–	3386	289			
E62st13	9.1	49	–	2521	215			
E62st17	9.1	46	–	2791	238			
Omphacite			`n_α`	`n_\beta`	`n_\gamma`	`n_\alpha`	`n_\beta`	`n_\gamma`
E63omp1	8.4	125	96	230	149			

A_i integral total absorbance
T et al. (09) calibration from Thomas et al. (2009)
L&R (97) calibration from Libowitzky and Rossman (1997)
c-axis, and analyzed parallel to their main refractive indices without further preparation, since their thickness was too small for any kind of preparation. In this case, their thickness was calculated from the interference colors.

Additional phases such as phengite, omphacite, kyanite, and skeletal quench material were also observed in the run products. Except for one crystal of omphacite from the experimental run E63, these phases were too small to get properly prepared for polarized IR spectroscopy as individual and oriented crystal sections.

FTIR spectroscopy

Polarized measurements were performed parallel to the main refractive indices of each sample on the same spot by rotating the polarizer by 90°. Practically, for coesite, measurements for \(n_\alpha \) and \(n_\gamma \) were performed on the (h0l) plane, measurements for \(n_\beta \) and \(n_\gamma \) on the (010) plane, and one exceptional measurement was performed parallel to \(n_\alpha \) and \(n_\beta \) on the (001) plane (Table 2, sample E65coe2). Measurements for \(n_\omega \) and \(n_e \) of stishovite were performed on a plane from the zone (hki0). In this publication are also reported for the first time the overtones of the lattice vibrations of oriented coesite and stishovite crystals (Fig. 3). These features can be also used in the future for verifying the correct orientation of the samples. To characterize the pleochroism of the OH defects in coesite, additional polarized measurements were executed on a coesite synthesized at 7 GPa by turning the polarizer in 22.5° steps.

Electron microprobe

Textures from run products were inspected under a JEOL JXA-8100 electron microprobe (Fig. 2), and major and minor element chemistry of coesite, stishovite, and coexisting phases were determined using 15 kV acceleration voltage. Concerning the beam current, different analytical conditions were used depending on the measured material: (1) 50 nA beam current on coesite and stishovite for a better counting statistics of the Al-K\(\alpha \) line, and (2) 5 nA beam current on phengite and omphacite. A defocused beam of 10 μm diameter was used in both types of analyses. As standards, the following minerals were used: Si: quartz, Al: corundum, K: orthoclase, Na: jadeite, P: apatite, Fe: almandine, Mg: periclase, Ca: diopside, Ti: rutile, and Mn: rhodonite.

Secondary-ion mass spectrometry

Li, B, and Al concentrations of coesite, stishovite, and omphacite were measured using CAMECA ims3f ion microprobe at the Institute of Earth Sciences, University of Heidelberg. O\(^{-}\) primary ions with a net energy of 14.5 keV and a beam current of ~ 10nA were focused to a spot diameter of ~ 15 μm on the sample. Positive secondary ions were accelerated to 4.5 keV and the energy acceptance of the double-focussing mass spectrometer was set to 75 ± 20 eV (energy filtering). The mass resolving power M/DM was ~ 1000 (10%) and the secondary ions were detected by an electron multiplier in counting mode. Because of the small sample sizes and to reduce the influence of B surface contamination (Marschall and Ludwig 2004), the area analyzed was limited to a diameter of ~ 6 μm using a 400 μm field aperture and a nominal imaged field of 25 μm. Li, B, and Al concentrations in the unknown samples were calculated using the ion yield relative to Si (RIY) which was determined using
the NIST SRM610 glass (concentrations were taken from Pearce et al. 1997). The energy filtering method was used to reduce the matrix effect (Ottolini et al. 1993).

IR lattice vibration overtones

The lattice vibration overtones of oriented quartz, coesite, and stishovite are shown in Fig. 3. Lattice vibration overtones of oriented coesite are very similar along the three main refractive indices. However, similar to quartz (Stalder et al. 2017), there are subtle, but significant, differences in the absorption band around 1948 cm\(^{-1}\) and in the region 1600–1800 cm\(^{-1}\). Lattice vibration bands of stishovite are observed towards lower wavenumbers than quartz and coesite. Perpendicular to the c-axis (parallel to \(n_\omega\)), lattice overtones are dominated by one absorption band at 1346 cm\(^{-1}\), while parallel to the c-axis (parallel to \(n_\varepsilon\)), a doublet at 1346 and 1389 cm\(^{-1}\) is revealed.

IR band assignment and determination of water content as OH defects

Coesite No absorption bands are observed in coesite synthesized at 4 GPa, whereas faint bands are observed at 5 GPa and more intense bands are observed in coesite grown from 5 to 7.7 GPa (Fig. 4a–c), confirming the trend of former studies (Mosenfelder 2000; Koch-Müller et al. 2001). Conversely, the polarized spectra of this study exhibit different anisotropies than observed by Koch-Müller et al. (2001). Three specific absorption features are revealed: (1) one triplet at 3575, 3523 and 3459 cm\(^{-1}\), (2) a doublet at 3535 (visible only parallel to \(n_\alpha\)) and 3502 cm\(^{-1}\), and (3) one band at 3300 cm\(^{-1}\) that was visible only along \(n_\beta\) (Fig. 4b). The IR spectra from the run samples E48, E52, and E65 were successively deconvoluted using the software PeakFit, to separate the triplet band (3575, 3523, and 3459 cm\(^{-1}\)) from the two minor bands 3535 and 3502 cm\(^{-1}\). Polar diagrams of OH-absorption bands of coesite synthesized at 7 GPa parallel to (h0l) and (010) reveal a strong pleochroism (Fig. 5a, b). In section ||(h0l), maximum and minimum absorbances are parallel to the main refractive indices \(n_\alpha\) and \(n_\gamma\), in accord to the prerequisite that, in a monoclinic crystal, one refractive index—in this case \(n_\alpha\)—is strictly coupled to the crystallographic b-axis. In section ||(010), the band at 3535 cm\(^{-1}\) is almost parallel to \(n_\gamma\), whereas the bands at 3459 and 3523 cm\(^{-1}\) exhibit maximum absorptions between \(n_\beta\) and \(n_\gamma\). In contrast to Koch-Müller et al. (2001), the band at 3575 cm\(^{-1}\) (not shown in Fig. 5) exhibited no clear maximum and minimum absorptions. All absorption
bands gradually tend to get stronger with pressures, except the band at 3502 cm⁻¹ that shows its maximum absorbance at 7 GPa.

Stishovite All polarized IR spectra display one dominant and asymmetrical absorption band at 3116 cm⁻¹, one band at 3170 cm⁻¹ that emerged as a shoulder on the strongest absorption peak, and a less intense band at 2665 cm⁻¹ (Fig. 6). These absorption bands are strongly polarized parallel to the nω refractive index (perpendicular to the c axis). Two additional smaller bands at 3529 and 3595 cm⁻¹ are observed at 9.1 GPa. However, since these bands were observed only in few crystals, whose spectra exhibited broad isotropic bands from fluid inclusions, they were probably caused by inclusions and, therefore, not further considered.

Water contents were calculated using the Lambert–Beer equation in combination with the integrated extinction coefficients of coesite and stishovite from mineral-specific calibration of Thomas et al. (2009). Results deviate from values which would be obtained if other calibrations (Paterson 1982; Pawley et al. 1993; Libowitzky and Rossman 1997) would be used (Fig. 7). For determining the water concentration in omphacite, the calibration of Libowitzky and Rossman (1997) was used.

Concentrations of <10 wt ppm H₂O are estimated for coesite synthesized at 4 GPa, while 21–58 wt ppm H₂O are determined from 5 to 7.7 GPa. Water concentrations in stishovite are higher at 8.4 GPa (376 wt ppm H₂O) than at 9.1 GPa (246 wt ppm H₂O, Table 2).

Polarized IR spectra on one crystal of omphacite synthesized at 8.4 GPa revealed 149 wt ppm water. Therefore, at 8.4 GPa, water tends to partition preferentially into stishovite (D_H^st/omp ~ 2.5).

Electron microprobe and SIMS results

Chemical compositions of major and trace elements coesite, stishovite, omphacite, and phengite are reported in Table 3. Aluminum is the most abundant trace element in both high-pressure silica polymorphs and concentrations tend to rise with pressure. At conditions where both high-pressure silica polymorphs are in equilibrium (i.e. at 8.4 GPa), aluminum is preferentially incorporated in stishovite, which also comprises the highest Al concentration in this study (1.15 wt% Al₂O₃). The maximum concentration of Al in coesite is of 0.22 wt% Al₂O₃ (corresponding to 1165 wt ppm Al or 2601 Al/10⁶Si), which is more than one order of magnitude higher than reported in some previous studies (Mosenfelder 2000; Koch-Müller et al. 2001, 2003). Al in stishovite is slightly lower than observed in the previous studies (1.64 wt% Al₂O₃ in Pawley et al. 1993, and 1.32 wt% Al₂O₃ in; Chung and Kagi 2002), but much lower than in stishovite synthesized at higher pressure and temperature conditions (7.62 wt% Al₂O₃ at 20–25 GPa and 1200–1400 °C in Litasov et al. 2007). In addition to aluminum, coesite also accommodates trace amounts of Na and
K, reaching concentrations of 0.13 wt% K₂O and 0.04 wt% Na₂O. Conversely, the incorporation of Li is rather limited in coesite and stishovite, attaining a maximum of 19.8 ppb Li in coesite (Table 3). Lithium is preferentially incorporated in other phases such as omphacite, which comprised up to 207 wt ppm Li at 8.4 GPa. Boron, sufficiently incorporated in coesite to be observed as BOH defects (Koch-Müller et al. 2003; Deon et al. 2009), reaches concentrations up to 17 wt ppm in coesite, while concentrations in stishovite are below 1 wt ppm B.

Discussion

Mechanism of trace elements incorporation

Compared to former studies, the present work reports the highest concentrations of trace elements in coesite, probably due to the employment of natural granitic powder as starting material. Similarly to quartz, trace elements may be incorporated by coupled substitutions of Si⁴⁺ by one trivalent (M³⁺) and one monovalent (M⁺) cation (Müller and Koch-Müller 2009; Frigo et al. 2016). In fact, concentrations of M³⁺ (i.e. Al and B) in coesite display a linear correlation with M⁺ (H, Na, and K) in the ratio of 1:1 (Fig. 8a) and thus suggest that, in coesite synthesized in this study, both types of cations are charge-balanced and that the coupled substitution Si⁴⁺ = M³⁺ + M⁺ is fulfilled. By contrast, concentrations of M³⁺ and M⁺ of stishovite plot on the right side of the 1:1 slope, suggesting that Al³⁺ is partly charge-balanced by H⁺, and partly charge-balanced by other mechanisms, such as the formation of oxygen vacancies (Hirose et al. 2005; Bromiley et al. 2006), e.g.

$$2\text{Si}_{\text{Si}}^3 + \text{O}_{\text{O}}^+ + (\text{Al}_2\text{O}_3) = 2\text{Al}_{\text{Si}}' + \text{V}_{\text{O}} + 2(\text{SiO}_2).$$

where V_{O} represents an oxygen vacancy, Al_{Si} an Al³⁺ on the tetrahedral site, and Si_{Si}' (and O_{O}') Si⁴⁺ (and O²⁻) in the undisturbed stishovite lattice (according to the Kröger–Vink notation, Kröger and Vink 1956). The 1:1 correlation between the cations M³⁺ and M⁺ in coesite synthesized in this study (Fig. 8a) may suggest that the dominant hydrous feature in coesite (i.e., the triplet at 3575, 3523, and 3459 cm⁻¹) is related to the Al contents. The correlation Al/H_{triplet} in coesite is not obvious (Fig. 8b). However, all the averages of the single data point are plotted below the 1:1 slope, which not excludes the hypothesis that Al and H bond together to form AlOH defects in coesite. Al concentrations in coesite and stishovite are in all cases about two orders of magnitude higher than H concentrations (Fig. 9), as already observed for quartz synthesized from the same starting material (Frigo et al. 2016).

Correlation between Al- and OH-absorption bands of coesite

Based on the results of the present study, the dominant hydrous feature in coesite is the triplet at 3575, 3523, and 3459 cm⁻¹. The band assignment of this absorption feature was interpreted as hydrogarnet defects (Mosenfelder 2000;
Table 3 Trace element concentrations in coesite, stishovite, phengite, and omphacite from EPMA and SIMS analyses

No.	n	EPMA						SIMS							
		Coesite						Stishovite							
		Na₂O (wt%)	MgO (wt%)	Al₂O₃ (wt%)	SiO₂ (wt%)	P₂O₅ (wt%)	K₂O (wt%)	CaO (wt%)	TiO₂ (wt%)	MnO (wt%)	FeO (wt%)	tot (wt%)	Al₂O₃ (wt%)	Li (ppb)	B (ppm)
E47	18	0.03 ± 0.02	b.d.l.	0.03 ± 0.02	100.0 ± 0.3	b.d.l.	0.02 ± 0.01	b.d.l.	b.d.l.	b.d.l.	100.1 ± 0.3				
E48	12	0.04 ± 0.02	b.d.l.	0.13 ± 0.09	99.6 ± 0.5	b.d.l.	0.04 ± 0.03	b.d.l.	b.d.l.	b.d.l.	99.7 ± 0.5				
E51	10	0.03 ± 0.02	b.d.l.	0.22 ± 0.15	99.4 ± 0.5	b.d.l.	0.13 ± 0.04	b.d.l.	b.d.l.	b.d.l.	99.1 ± 0.4				
E52	14	0.11 ± 0.06	b.d.l.	0.80 ± 0.09	99.8 ± 0.2	b.d.l.	0.03 ± 0.01	b.d.l.	b.d.l.	b.d.l.	100.7 ± 0.2				
E65	55	12.5 ± 0.4	1.8 ± 0.4	22.4 ± 0.7	58.5 ± 0.4	b.d.l.	2.8 ± 0.4	b.d.l.	b.d.l.	98.4 ± 0.5					
E63	27	12.7 ± 0.2	1.7 ± 0.2	22.7 ± 0.6	58.1 ± 0.8	b.d.l.	2.6 ± 0.3	b.d.l.	0.15 ± 0.03	b.d.l.	98.0 ± 1.1				

Errors correspond to the standard deviation
b.d.l. below the detection limit, n.a. not analyzed
Indeed, in Koch-Müller et al. (2001), both Al and H concentrations were simultaneously determined by SIMS and a correlation was not observed, e.g., one coesite crystal was poor in Al (23.9 Al/10^6 Si) and rich in H (254 H/10^6 Si). As there was no correlation between Al and H and there was no other charge balancing cation, the triplet band was assigned as hydrogarnet substitution. Based on our results, at the first sight, the band triplet mentioned above looks similar to the AlOH triplet in quartz (3431, 3379, and 3313 cm⁻¹) shifted by 144 cm⁻¹ to higher wavenumbers. However, such linear shift towards higher wavenumbers is not explainable. First, quartz and coesite have totally different structures, and thus, a linear band shift is not expected. Second, in a more dense structure, we would expect shorter O···O distances and thus a shift towards lower vibrational frequencies. Nonetheless, the concentrations of H and the other monovalent cations appear to be essential to charge balance the equivalent amount of Al in coesite (Fig. 7a).

The band at 3300 cm⁻¹ was first reported from Mosenfelder (2000), and appears only at pressures above 7 GPa, in good agreement with the present study. This band, which appears at lower frequencies with respect to the other bands, may correspond to the vibration of an interstitial hydrogen defect, since the vibrational frequencies within sites with a greater number of coordination tend to be shifted to lower values. This band probably corresponds in good approximation to the frequencies of the interstitial hydrogen observed in stishovite at 3336 cm⁻¹ (Bolfan-Casanova et al. 2000; Bromiley et al. 2006).

![Fig. 8](image.png) a Coupled substitutions of H⁺, Na⁺, K⁺, Al³⁺, and B³⁺ in coesite and stishovite. Small symbols represent single data points, while average data points at each pressure are represented by large symbols. H⁺ contents are calculated from IR analyses, B³⁺ from SIMS analyses, and the remaining elements from electron microprobe analyses. Error bars on large symbols correspond to the standard deviation of the data points. b Correlation between Al/H triplet (triangles) in coesite and Al/H_total (circles) in stishovite. Error bars correspond to the standard deviation of the data points.

![Fig. 9](image.png) H contents (open circles) and Al contents (black circles) in α- and β-quartz (results from Frigo et al. 2016), in coesite and stishovite at different pressures are shown in log units. Note that hydrogen contents were calculated by dividing the water concentrations by 9. Dashed lines are linear regressions for Al and H. Error bars correspond to the standard deviation. Because of the small standard deviation of H, error bars are within the size of the symbol.
Phengite as geobarometer and host of light elements in the mantle

In this work, it was observed that phengite enriched in Si at higher pressures (Table 3). Phengite is a mineral of the solid solution series muscovite(ms)-celadonite(cel), KAl₂(AlSi₃O₁₀)(OH)₂ – K(Mg,Fe²⁺)(Fe³⁺,Al)Si₄O₁₀(OH)₂. Phengite tends to get richer in the celadonite end-member (i.e., richer in Si) at higher pressures (Velde 1965), and the correlation between the Si concentrations in phengite depending on pressure and temperature conditions has been widely used as a geobarometer (Massonne and Schreyer 1987). Unfortunately, this specific geobarometer has only been calibrated to pressures ≤ 3 GPa, and thus could not be used for the results of the present work. Though, Si concentrations in phengite from the present study correspond within error to the data set of Domanik and Holloway (1996), who synthesized phengite at similar PT conditions (Fig. 10). Temperature also affects the incorporation of Si, leading to smaller Si content for higher temperatures. The good approximation between the results of this study and Domanik and Holloway (1996) (Fig. 10) suggests that equilibrium took place in our experiments. In nature, phengite is a common and abundant mineral phase in the UHP rocks that is stable within a wide pressure range. Given a suitable composition of the protolith and realistic geothermal conditions, phengite can be stable between 3 and 12 GPa (Schmidt et al. 2004), corresponding to depths of 100 to 350 km. Phengite is, therefore, a very important carrier for light elements such as H, Na, and K from the Earth’s crust to the Upper Mantle.

Water partitioning

As discussed above, the water content in all silica poly morphs (from quartz to stishovite) parallels the trend of Al incorporation (Fig. 9), resulting in a minimum of water around the quartz/coesite transition, while both coesite and stishovite exhibit increasing water concentrations with higher pressures. H incorporation, therefore, is mostly controlled by the Al incorporation in the crystalline silica poly morphs. In contrast, granitic melts tend to incorporate higher water concentrations at higher pressures (Johannes and Holtz 1996), until a singular point (the so called second critical endpoint) is reached, where the chemistry of aqueous fluids and hydrous melts converge. This point is located at ~ 3–3.5 GPa and ~ 750 °C for some realistic granitic and metapelitic bulk compositions (Hermann et al. 2006), so runs in the coesite and stishovite field probably all were conducted at supercritical pressure. At (and above) the critical pressure, increasing temperatures will enhance the silicate/water ratios in the supercritical fluid, until a silicate/water ratio close to that of hydrous melts is reached. Given the relative high temperatures, the water/silicate ratios in supercritical fluids of the runs reported here were rather constant (within a factor of less than 2) between 4 and 9 GPa. Therefore, water partitioning (D_{water \text{crystal/melt}}) between the quartz and hydrous melt (or supercritical fluid) decreases from 10⁻³ at 0.5 GPa to less than 10⁻⁴ at 3 GPa, where it reaches its minimum, and increases with increasing pressure to 10⁻³ in the stishovite stability field. Therefore, silica polymorphs alone cannot serve as water carrier to great depths, because they loose all water at the quartz/coesite transition. Nevertheless, during progressive downward migration of a subducting slab, when phengite (the major solid water carrier in this study) decomposes, coesite and stishovite develop to major water carrier in the solid portion of the slab.

Petrological and geodynamical applications

To summarize, the results of the present study depict some aspects of the evolution of a continental crust during subduction at “hot” conditions (i.e., at T = 900–1000 °C). There are several mineralogical phases that contribute to the water transport to great depth, namely the hydrous phase phengite and the nominally anhydrous minerals (NAMs) coesite/stishovite, omphacite, and kyanite (the latter one which in this study was not large enough to be analyzed by FTIR spectroscopy). Phengite is the primary water carrier to mantle depths amongst all occurring mineral phases in the present study. Here, it is stable up to 7.7 GPa, but is known to
be stable up to 11–12 GPa in cold slabs if the temperature does not exceed 650 °C (Schmidt et al. 2004). As phengite decomposes, water is released and may liberate sufficient amounts of water to produce fluids that migrate to shallower and (in case of the reversed isotherms in subduction regimes) hotter regions. The addition of a free aqueous fluid at hot temperatures may, in turn, trigger partial melting (or in case of supercritical behaviour: enhanced dissolution) of the subducting rocks. Contemporaneously, water may partly be incorporated as hydrous defects in NAMs. At 4 GPa and 900 °C, coesite incorporate extremely low amounts of hydrogen, since water is preferentially partitioned into the hydrous melt. Higher pressures promote the incorporation of hydrous features in coesite either via coupled substitution Si4+ = M3+ (Al3+ and B3+) + H+ or other mechanisms as discussed above. Finally, around 8 GPa, coesite transforms to stishovite, which also incorporates water through the coupled substitution, but in higher concentrations than coesite. At 4 GPa and 900 °C, coesite incorporates extremely low amounts of hydrogen, since water is preferentially partitioned into the hydrous melt. Higher pressures promote the incorporation of hydrous features in coesite either via coupled substitution Si4+ = M3+ (Al3+ and B3+) + H+ or other mechanisms as discussed above. Finally, around 8 GPa, coesite transforms to stishovite, which also incorporates water through the coupled substitution, but in higher concentrations than coesite and omphacite (D_{H}^{sl/comp} \sim 2.5). In contrast, coesite and stishovite are poor in light elements such as Li, which seems to be preferentially partitioned in other mineral phases such as omphacite.

The eclogitization and possible partial melting of the slab lead to the densification (Austreheim 1994; Massonne et al. 2007) and change in rheology (Hermann et al. 2013) of the subducting rock, which are both crucial features for the fate of the subducting rock. Slabs denser than the surrounding mantle are destined to sink to greater depths, while ductile rocks might be preferentially exhumed (Hermann et al. 2013), where inclusions of coesite into stiff minerals (e.g., garnet) are preserved from the back reaction to quartz (Gillet et al. 1984). Indeed, during the past decades, natural coesite was repeatedly found in continental orogens (Chopin 1984; Liou et al. 2004), however, mostly depleted in water (Rossman and Smyth 1990; Mosenfelder 2000; Mosenfelder et al. 2005), probably because OH-rich crystals transform much faster back to quartz (Lathe et al. 2005). By now, natural hydrous coesite have been found only as mineral inclusions in diamonds from Venezuela (Koch-Müller et al. 2003).

Acknowledgements Open access funding provided by University of Innsbruck and Medical University of Innsbruck. Hannes Witting is thanked for manufacturing the high-pressure assemblies and Martina Tribus for the calibration of the electron microprobe. Jasper Berndt and Beate Schmitte (University of Münster) are thanked for test analyses by LA–ICP–MS. Beate Schmitte (University of Münster) are thanked for test analyses by LA–ICP–MS. Beate Schmitte (University of Münster) are thanked for test analyses by LA–ICP–MS.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Akaogi M, Yusa H, Shiraishi K, Suzuki T (1995) Thermodynamic properties of α-quartz, coesite, and stishovite and equilibrium phase relations at high pressures and high temperatures. J Geophys Res 100:22337–22347

Austreheim H (1994) Eclogitization of the deep crust in continent collision zones. Comptes rendus de l’académie des sciences. Serie II 319:761–774

Bolfan-Casanova N, Keppler H, Rubie DC (2000) Water partitioning between nominally anhydrous minerals in the MgO-SiO₂-H₂O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle. Earth Planet Sci Lett 182:209–221

Bose K, Ganguly J (1995) Quartz-coesite transition revisited: Reversed experimental determination at 500–1200 °C and retrieved thermochemical properties. Am Mineral 80:231–238

Bromiley GD, Bromiley FA, Bromiley DW (2006) On the mechanisms for H and Al incorporation in stishovite. Phys Chem Miner 33:613–621

Chopin C (1984) Coesite and pure pyrope in high-grade blueschist of the Western Alps: a first record and some consequences. Contrib Mineral Petrol 86:107–118

Chopin C (2003) Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth Planet Sci Lett 212:1–14

Chung JI, Kagi H (2002) High concentration of water in stishovite in the MORB system. Geophys Res Lett 29:2020

Deon F, Koch-Müller M, Hövelmann J, Rheede D, Thomas SM (2009) Coupled boron and hydrogen incorporation in coesite. Eur J Mineral 21:9–16

Domanik K, Holloway JR (1996) The stability and composition of phenitic muscovite and associated phases from 5.5 to 11 GPa: Implications for deeply subducted sediments. Geochim Cosmochim Acta 60:4133–4150

Fric W, Stalder R, Hauzenberger CA (2016) OH defects in quartz in granitic systems doped with spodumene, tourmaline and/or apatite: experimental investigations at 5–20 kbar. Phys Chem Miner 43:717–729

Gillet P, Ingrin J, Chopin C (1984) Coesite in subducted continental crust: P–T history deduced from an elastic model. Earth Planet Sci Lett 70:426–436

Hermann J, Spandler CJ, Hack A, Korsakov AV (2006) Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos 92:399–417

Hermann J, Zheng YF, Rubatto D (2013) Deep fluids in subducted continental crust: P–T history deduced from an elastic model. Earth Planet Sci Lett 212:1–14

Hirose K, Takafuji N, Sata N, Ohishi Y (2005) Phase transition and implications for deeply subducted sediments. Geochim Cosmochim Acta 60:4133–4150

Hoptelt J, Tribus for the calibration of the electron microprobe. Jasper Berndt and Beate Schmitte (University of Münster) are thanked for test analyses by LA–ICP–MS.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Libowitzky E (1999) Correlation of O–H stretching Frequencies and O–H···O Hydrogen Bond Lengths in Minerals. Monatshefte für Chemie 130:1057–1059
Libowitzky E, Rossman GR (1997) An IR absorption calibration for water in minerals. Am Mineral 82:1111–1115
Liou JG, Tsujimori T, Zhang RY, Katayama I, Maruyama S (2004) Global UHP metamorphism and continental subduction/collision: The Himalayan model. Int Geol Rev 46:1–27
Litavský KD, Kagi H, Shatskyi A, Ohtani E, Lakshitanov DL, Bass JD, Ito E (2007) High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle. Earth Planet Sci Lett 262:620–634
Marschall HR, Ludwig T (2004) The low-boron contest: minimising surface contamination and analysing boron concentrations at the ng/g-level by secondary ion mass spectrometry. Mineral Petrol 81:265–278
Massonne HJ, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib Mineral Petrol 96:212–224
Massonne HJ, Willner AP, Gerya T (2007) Densities of metapelitic rocks at high to ultrahigh pressure conditions: what are the geodynamic consequences? Earth Planet Sci Lett 256:12–27
Mosenfelder JL (2000) Pressure dependence of hydroxyl solubility in coesite. Phys Chem Mineral 27:610–617
Mosenfelder JL, Schertl HP, Smyth JR, Liou JG (2005) Factors in the preservation of coesite: The importance of fluid infiltration. Am Mineral 90:779–789
Müller A, Koch-Müller M (2009) Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Mineral Mag 73:569–583
Ono S, Kikugawa T, Higo Y (2011) In situ observation of a garnet/perovskite transition in CaGeO3. Phys Chem Miner 38:735–740
Ottolini L, Bottazzi P, Vannucci R (1993) Quantification of Lithium, Beryllium and Boron in silicates by secondary ion mass spectrometry using conventional energy filtering. Anal Chem 65:1960–1968
Paterson MS (1962) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Mineral 105:20–29
Pawley AR, McMillan PF, Holloway JR (1993) Hydrogen in stishovite, with implications for mantle water content. Science 261:1024–1026
Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144
Ronov AB, Yaroshevsky AA (1969) Chemical composition of the earth’s crust. In: Hart PJ (ed) The earth’s crust and upper mantle. American Geophysical Union, Washington, pp 37–57
Rossman GR, Smyth JR (1990) Hydroxyl contents of accessory minerals in mantle eclogites and related rocks. Am Mineral 75:775–780
Schmidt MW, Vielzeuf D, Auzanneau E (2004) Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett 228:65–84
Stalder R, Potrafa A, Billström K, Skogby H, Meinhold G, Gögele C, Berberich T (2017) OH defects in quartz as monitor for igneous, metamorphic, and sedimentary processes. Am Mineral 102:1832–1842
Thomas SM, Koch-Müller M, Reichart P, Rheede D, Thomas R, Wirth R (2009) IR calibrations for water determination in olivine, r-GeO2 and SiO2 polymorphs. Phys Chem Miner 36:489–509
Velde B (1965) Phengite micas: synthesis, stability, and natural occurrence. Am J Sci 263:886–913
Zhang RY, Liou JG, Ernst WG, Coleman RG, Sobolev NV, Shatsky VS (1997) Metamorphic evolution of diamond-bearing and associated rocks from the Kokchetav Massif, northern Kazakhstan. J Metamorph Geol 15:479–496