RNA m5C regulator-mediated modification patterns and the cross-talk between tumor microenvironment infiltration in gastric cancer

Qiang Zhang1,2, Xiangfei Sun1, Jianyi Sun1, Jiangshen Lu1, Xiaodong Gao1, Kuntang Shen1*, and Xinyu Qin1

1Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China, 2Department of Gastrointestinal Surgery, the Second People’s Hospital of Lianyungang Affiliated to Kangda College, Nanjing Medical University, Lianyungang, Jiangsu, China

The effect of immunotherapy strategy has been affirmed in the treatment of various tumors. Nevertheless, the latent role of RNA 5-methylcytosine (m5C) modification in gastric cancer (GC) tumor microenvironment (TME) cell infiltration is still unclear. We systematically explore the m5C modification patterns of 2,122 GC patients from GEO and TCGA databases by 16 m5C regulators and related these patterns to TME characteristics. LASSO Cox regression was employed to construct the m5Cscore based on the expression of regulators and DEGs, which was used to evaluate the prognosis. All the GC patients were divided into three m5C clusters with distinct gene expression characteristics and TME patterns. GSVA, ssGSEA, and TME cell infiltration analysis showed that m5C clusters A, B, and C were classified as immune-desert, immune-inflamed, and immune-excluded phenotype, respectively. The m5Cscore system based on the expression of eight genes could effectively predict the prognosis of individual GC patients, with AUC 0.766. Patients with a lower m5Cscore were characterized by the activation of immunity and experienced significantly longer PFS and OS. Our study demonstrated the non-negligible role of m5C modification in the development of TME complexity and inhomogeneity. Assessing the m5C modification pattern for individual GC patients will help recognize the infiltration characterization and guide more effective immunotherapy treatment.

KEYWORDS
5-methylcytosine (m5C), RNA methylation modification, tumor microenvironment, immune, prognosis, m5Cscore
Introduction

As a global disease, gastric cancer (GC) is the fifth most diagnosed malignancy and the third most common cause of cancer-related death, with 784,000 deaths worldwide in 2018 (1). Although the incidence and mortality rates of GC have declined in several countries, regions seriously threatened by GC, such as China and other East Asian countries, still bear severe health and economic burden. In China, 562,000 newly diagnosed GC patients were recorded, accounting for nearly half of the new cases worldwide (2). The 5-year survival rate of GC is 35.9% in China due to the late stage at diagnosis, notably lower than 71.5% in South Korea and 65% in Japan (3, 4). Due to the complexity of the pathogenic mechanism and the lack of specific biomarkers of GC, the effects of treatment strategies such as surgery, chemotherapy, and radiotherapy are not satisfactory.

Recently, immunotherapy, anti-PD-L1 antibody, and anti-PD-1 antibody have increased the overall survival rate of some advanced GC patients who were treated with two or more lines of chemotherapy (23). The efficiency of immunotherapy depends on the status of EB virus infection, microsatellite instability (MSI)/mismatch repair (MMR), and the expression of PD-L1. However, the dominant population of immunotherapy is still challenging to identify because of the heterogeneity of GC. Hence, to better analyze the heterogeneity and immunophenotype of patients with GC, it is essential to improve long-term survival. Consistently, epigenetic and genetic variations of malignant cells are the only factors participating in the tumor progression, which is a complex multistep process. Notwithstanding, numerous studies have proved that the tumor microenvironment (TME), where tumor cells survive and grow, is crucial in tumorigenesis and development. The composition of TME is rather complicated, including not only the tumor part but also the stromal cells, macrophages, bone marrow-derived cells (BMDCs), distant recruited cells, secreted factors, and neovascularization (24). The detailed types of cells and cytokines in the TME are complex, including cancer–associated fibroblasts (CAFs), myeloid cells, lymphocytes, chemokines, cytokines, and growth factors. Among these cells, tumor–associated macrophages (TAMs), tumor–associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), Tie2-expressing monocytes, and dendritic cells together constitute the tumor–associated myeloid cells (TAMCs) (25). The cross-talk between cancer cells and TME components promotes tumor proliferation and angiogenesis, avoids hypoxia, inhibits apoptosis, and mediates immune tolerance. With the gradual deepening of the understanding of the complexity and diversity of TME, increasing data depict its essential role in immune escape and immunotherapy. Moreover, the TME cell infiltration pattern can predict the response to the immune checkpoint blockade (ICB), which is promising in the tumor treatment strategies (26). Accordingly, particular tumor immunophenotypes are supposed to be validated via thoroughly parsing the TME landscape complexity and heterogeneity (27). As GC is characterized by tumor heterogeneity, it is urgent to identify the dominant population of immunotherapy by the landscape TME cell infiltration.

Lately, mC modification is related to the TME-infiltrating immune cells, and the mechanisms are more complicated than expected. In systemic lupus erythematosus (SLE), abnormal mC mRNAs were identified as relevant to critical immune pathways in CD4+ T cells (28). Another study reported that the eraser TET1 is downregulated via NF-xB signaling pathway activation in breast cancer cells (29). Interestingly, Andries and colleagues found that mC-modified mRNA promoted protein expression by the increased ability of the mRNA to elude downstream innate immune signaling and activation of endosomal Toll-like receptor 3 (TLR3) (30). During virus infection, mC RNA methyltransferases, such as NSUN family proteins, were employed to modify viral RNA and change antiviral host responses (31). All these latest findings reveal the fact that mC modification and regulators may have a further effect on the TME, and previous studies focus only on one or two mC regulators due to the limitation of technologies.
In the present study, the genomic and clinical data of 1,983 GC samples were employed to thoroughly estimate the m\(^5\)C modification patterns and the correlation between m\(^5\)C modification and TME features. Three different m\(^5\)C modification patterns and the specific TME cell infiltration peculiarities were identified. Three immunophenotypes, immune-inflamed, immune-excluded, and immune-desert phenotype, were related to the three m\(^5\)C clusters. Subsequently, a scoring system based on the m\(^5\)C modification pattern was established for individual GC patients.

Materials and methods

The detailed materials and methods can be found in the supplementary files (32–37).

Results

Blueprint of genetic variation of m\(^5\)C regulators in GC

In the process of dynamic modification, methyltransferases and demethylases work together to keep the balance of the RNA m\(^5\)C modification with the help of the readers. The ideograph of RNA m\(^5\)C modification is shown in Figure 1A. Firstly, the characteristics of somatic mutations and copy number variations (CNVs) of the 16 m\(^5\)C regulators were summarized in GC. Among all the 433 samples from TCGA, 83 (19.17%) patients experienced mutations of m\(^5\)C regulators. We found that the three demethylases exhibited the highest mutation rates, while the readers (YBX1 and ALYREF) hardly showed any mutations (Figure 1B). Moreover, a significant mutation co-occurrence pattern was identified between NSUN2 and NSUN3 (Figure S1B). For CNV analysis, the most prevalent CNV alternation in the regulators was the amplification in copy number, except for NSUN3, TET2, and NSUN7, which were characterized by a high frequency of CNV deletion (Figure 1C). In Figure 1D, the detailed locations of CNV alteration of each m\(^5\)C regulator are recorded on the chromosomes. Notably, we could thoroughly determine GC patients from normal samples based on the expression of the 16 m\(^5\)C regulators (Figure 1E). To further ascertain the relation between the above genetic alternations and the expression of m\(^5\)C regulators, we explored the expression of regulators in both GC and normal tissues. We found that CNVs might be the main factors leading to the abnormal expression of the m\(^5\)C regulators. Regulators with amplified CNV tended to highly expressed in tumor samples (e.g., DNMT1, ALYREF, and NSUN5), and vice versa (e.g., NSUN7 and NSUN6) (Figures 1C, F). The assessment disclosed the heterogeneity of expression and genetic alteration patterns in m\(^5\)C regulators between GC and normal tissues, hinting that the aberrant expression of m\(^5\)C regulators played an essential role in the tumorigenesis and development of GC.

m\(^5\)C methylation modification patterns mediated by 16 regulators

A meta-cohort including five GEO datasets (GSE57303, GSE84437, GSE34942, GSE62254, and GSE15459) with full OS and other clinical data was used to identify the expression pattern of 16 regulators. The prognostic values of 16 m\(^5\)C regulators were analyzed through a univariate Cox regression model (Figure S1C and Figure 2A). We found that the readers ALYREF and YBX1 were favorable prognosis factors for GC patients. The cross-talk between 16 regulators and prognostic significance for patients was revealed in the m\(^5\)C regulator network (Figures 2A, B). We noticed that a significant correlation was shown in both the same and different functional category regulators. Interestingly, the correlation of expression is consistent in regulators from the same functional category. However, we found that the relationship in writers is much complicated, such as DNMT1, which is remarkably negatively correlated with NSUN6 and NSUN7 (Figure 2B). In addition, the expression of the readers ALYREF and YBX1 was almost significantly correlated with other regulators. According to the expression of 16 m\(^5\)C regulators, we further explored the m\(^5\)C modification patterns via the ConsensusClusterPlus package, and identified three different modification patterns by the unsupervised clustering method, including 308 patients in m\(^5\)C cluster A, 334 patients in m\(^5\)C cluster B, and 417 patients in m\(^5\)C cluster C (Figures S2A–D and Table S3). The heatmap of the 16 m\(^5\)C regulators in 1,059 GC patients is depicted in Figure 2C. The expression of 16 regulators in three m\(^5\)C clusters was remarkably different. LogRank analysis showed that the prognosis of patients in m\(^5\)C cluster B was better than the other two clusters (Figure 2D).

TME cell infiltration characteristics in distinct m\(^5\)C modification patterns

To better understand the biological characteristics among the distinct m\(^5\)C modification clusters, the GSVA enrichment method was conducted. In Figure 2E, m\(^5\)C cluster A is related to the immune suppression process, while m\(^5\)C cluster B is notably enriched in immune full activation pathways, including cytokine–cytokine receptor interaction, natural killer cell-mediated cytotoxicity, antigen processing and presentation, Toll-like receptor signaling pathway, and chemokine signaling pathway. m\(^5\)C cluster C is enriched in carcinogenic and stromal activation pathways, such as ECM receptor interaction, TGF beta signaling pathway, adhesion and gap junction, mTOR, and
MAPK signaling pathways (Figure 2F). Interestingly, TME immune cell infiltration analysis subsequently showed that m^5^C cluster C was rich in resting and naïve immune cells, such as dendritic cells, CD4 memory T cells, mast cells, B cells, and other innate immune cells, by the CIBERSORT method. On the contrary, m^5^C cluster B is characterized by specific immune cell enrichment (Figure 3A, Figure S2E, and Table S4). The correlation of specific m^5^C regulators and immune cell is shown in Figure S2F. To further reveal the TME features, the single-sample GSEA (ssGSEA) analysis of all the 1,059 cases was conducted. In addition to immune cells, more details about immune functions and pathways can be summarized via the ssGSEA method. As shown in Figure 3B, three distinct immune patterns under three m^5^C clusters are identified (Table S5).
Combined with the survival results above, we were surprised to find that mC cluster A belonged to the immune-desert phenotype, characterized by immunological suppression; mC cluster B was classified as immune-inflamed phenotype, which features immune activation and immune cell infiltration; mC cluster C was labeled as immune-excluded phenotype, characterized by stromal activation and innate immune cell infiltration (Figures 2D and 3A, B). These results demonstrated that the interaction among the writers, erasers, and readers might play fundamental roles in distinct mC modification patterns and TME cell infiltration characteristics of individual GC patients.
m5C methylation modification patterns in the ACRG cohort

We focused on the ACRG cohort, a group of 300 GC participants with complete clinicopathological information, to further reveal the biological behaviors and the features of m5C modification patterns. Like the meta-cohort datasets, the ACRG cohort is divided into three distinct m5C modification clusters as well by the unsupervised clustering method (Figures 3A–D and Figures 3C, D). The heatmap based on the expression of 16 m5C regulators shows that m5C cluster A exhibits a high expression of TET2 and NSUN6 and is downregulated in other regulators; m5C cluster B is characterized by the upregulated readers and five writers including NSUN1–4 and DNMT1; m5C cluster C shows high levels of two erasers and four writers (Figure 3C). We found that patients in m5C cluster A were rich in the diffuse
EMT molecular subtypes were divided into m5C cluster A and B. Analysis showed that all the genes, including CTLA-4, PD-1, and PD-L1, are remarkably highly expressed in m5C cluster A. HLA-A, B, C, E, F, and G, are remarkably highly expressed in m5C cluster B. The survival results revealed that patients in m5C cluster B are related to a favorable prognosis, while m5C clusters A and C show a shorter survival time (Figure 3F). Notably, we also found that the relapse-free survival (RFS) of m5C cluster B is better than the other two clusters (Figure 3G). The findings above demonstrate that most GC patients with EMT molecular subtypes were divided into m5C cluster A and related to stromal activation; most patients with MSI instead of the EMT subtype were in m5C cluster B and characterized by immune activation.

Immunomodulatory effect of m5C modification on the TME

Subsequently, four gene clusters belonging to distinct immune processes were used to reveal the role of m5C modification on the immune regulation of the TME. Chemokines and cytokines with different functions were selected from the published literature. The essential members of human leukocyte antigen (HLA), the major histocompatibility complex (MHC) of human beings, present antigen and mediate immune response. CD8A, CXCL9, CXCL10, GZMA, GZMB, IFNG, PRF1, TBX2, and TNF are related to immune activation. CD80, CD86, HAVCR2, CTLA-4, LAG3, IDO1, PD-1, PD-L1, PD-L2, TNFRSF9, and TIGIT are considered to associate with immune checkpoints. ACTA2, CLDN3, COL4A1, SMAD9, TGRB1, TGFBR2, TWIST1, VIM, and ZEB1 are supposed to correlate with immunomodulatory effect of m5C modification on the TME. Chemokines and cytokines with different functions were selected from the published literature. The essential members of human leukocyte antigen (HLA), the major histocompatibility complex (MHC) of human beings, present antigen and mediate immune response. CD8A, CXCL9, CXCL10, GZMA, GZMB, IFNG, PRF1, TBX2, and TNF are related to immune activation. CD80, CD86, HAVCR2, CTLA-4, LAG3, IDO1, PD-1, PD-L1, PD-L2, TNFRSF9, and TIGIT are considered to associate with immune checkpoints. ACTA2, CLDN3, COL4A1, SMAD9, TGRB1, TGFBR2, TWIST1, VIM, and ZEB1 are supposed to correlate with immune checkpoints. ACTA2, CLDN3, COL4A1, SMAD9, TGRB1, TGFBR2, TWIST1, VIM, and ZEB1 are considered to associate with TGF-β and EMT pathways (24, 38). In Figure 4A, HLA-I molecules, including HLA-A, B, C, E, F, and G, are remarkably highly expressed in m5C cluster B, which means stronger antigen presentation and tumor-killing ability. We noted that HLA-II molecules, such as HLA-DPB2, HLA-DQA1, HLA-DQB2, and HLA-DQA1, were upregulated in m5C cluster A. HLA-G is reported to suppress the immune response and leads to long-term immune escape and tolerance (39). Meanwhile, we also found that the expression of genes related to TGF-β and EMT pathways was remarkably upregulated in m5C cluster A, which added the evidence of stromal activation, while m5C cluster B exhibited overexpression of mRNAs related to immune activation (Figures 4B–D). Immune checkpoint analysis showed that all the genes, including CTLA-4, PD-1, and PD-L1, were upregulated in m5C cluster B (Figure 4C). The results above demonstrate that m5C modification patterns are significantly related to TME immune regulation and may play crucial roles in immunotherapy. However, these findings were only based on the 16 m5C modification regulators.

Considering the heterogeneity and complexity of m5C methylation modification, we tried to identify the DEGs under different m5C clusters using the limma package. Finally, 229 m5C phenotype-related DEGs were found and showed a distinct expression pattern under three m5C clusters (Figures 4E, F). The GO and KEGG enrichment analysis of the 229 DEGs showed that (Figures 5E, F) the DEGs were rich in immune-related biological processes and pathways, including CD8+ θβT cell activation, negative regulation of the immune system process, NOD-like receptor signaling pathway, and TNF signaling pathways.

Generation of m5Csore and capability to predict prognosis

We established a scoring system that depended on the expression of DEGs and m5C regulators to quantify the individual m5C modification pattern; we termed this m5Csore. The univariate Cox regression method was employed to determine the DEGs that were significantly related to the survival of GC patients in ACRG (Table S6). Ninety-nine genes were involved in the LASSO Cox regression algorithm to generate the m5Csore signature, and eight genes were selected, including seven DEGs (RBPMS2, TNFRSF11A, NBEA, INHBB, RGN, DFNAS5, and TPD52L1) and one writer (DNMT3A) (Figures 5A, B). The m5Csore of each GC patient and prognostic information is summarized in Table S7. The alluvial diagram shows the attribute changes of individual GC patients (Figure 5C). Log-rank results depict that the OS of patients with a low m5Csore is remarkably better than patients with a high m5Csore under the cutoff value of 9.92 (Figures 5D, E). The area under the curve (AUC) is 0.766, quantified by the pROC package (Figure 5F). Univariate and multivariate analysis demonstrates that age, N stage, M stage, and m5Csore are the independent factors of prognosis (Figures 5G, H). Meanwhile, we found that m5Cscores significantly differed in distinct ACRG molecular subtypes. Patients in the EMT subgroup showed the highest m5Csore compared to the other molecular groups (Figure 6A). Additionally, patients in m5C cluster B showed the lowest m5Csore compared to other clusters (Figure 6B). In Figure 3G–I, GC patients with a high m5Csore show a significantly higher stromal score and a lower tumor purity score. The results added to the evidence that a low m5Csore was significantly related to immune activation and a high m5Csore was correlated with stromal activation. m5Csore could be a better marker to estimate the m5C modification of individual GC patients. Notably, patients with a low m5Csore and who received adjuvant chemotherapy showed significant treatment advantages (Figure 6C). The result also demonstrated that the prediction value of m5Csore was not affected by chemotherapy, and a low m5Csore showed obvious survival advantage, regardless of whether patients received chemotherapy or not (Figure 6C).
Moreover, older patients, intestinal histological subtype, and early GC patients were notably related to a low m5C score, which demonstrated that these GC patients were characterized by the m5C cluster B and immune-inflamed phenotype, with a better prognosis (Figure 6D).

Validation of m5C modification in TCGA and other datasets

Data from the TCGA-STAD cohort and GEO were used for external and internal validation to determine the role of m5C modification and the prognostic value of m5C score. m5C score was employed to evaluate the individual m5C modification of the single patients in the TCGA dataset, among which 267 patients have a low m5C score and 69 patients have a high m5C score. Combined with the prognosis information, we revealed that patients with a low m5C score and chemotherapy experienced the worst prognosis, while patients with a low m5C score and chemotherapy showed a favorable prognosis (Figure 6G). As shown in Figures 6H, I, patients in the
High-m5Cscore group exhibit less extensive tumor mutation burden than patients in the low-m5Cscore group, with alternation rates of 88.41% and 92.88%, respectively. TMB analysis demonstrated that a high m5Cscore was significantly related to lower TMB, and showed a notable negative correlation (Figures 6H, I). Furthermore, the mean TMB of patients with a high or low m5Cscore was 2.31 and 1.26 mutations per MB. The violin plot also demonstrated that the TMB of patients in the high-m5Cscore group was significantly higher than that of patients in the low-m5Cscore group, and the p-value was 0.012 (Figure S3J).

Next, to further validate the stability of the m5Cscore system, the m5Cscore model was applied to other independent GC cohorts to confirm the prognostic value. Figures 7A–C show that GC patients with a low m5Cscore have a better prognosis in GSE57303, GSE84437, and GSE 15459. Moreover, we combined all the five GEO datasets together and found that the m5Cscore model was validated (Figure 7D). The ROC curve was drawn, and all AUCs were over 0.6 (Figure 7E). In addition, GSE26253, a new GEO dataset, was used to evaluate the predictive value of recurrence-free survival. Figure 7F confirms the ability of
m5Cmethylation to predict RFS, which means the underlying potential mechanisms exist between m5C modification and tumor relapse to be elucidated.

Discussion

Growing evidence revealed that aberrant RNA m5C methylation modification played a crucial role in tumorigenesis, progression, and patient prognosis by means of dynamic RNA epigenetic modification. In the current study, we analyzed that m5C regulators in GC explored the correlation between TME and m5C modification, as well as established an m5Cscore system to evaluate the prognosis of GC patients via the data from GEO datasets and the TCGA-STAD cohort. The m5Cscore model was further validated by internal and external datasets. These findings added clues for understanding the m5C modification of individual GC patients.

Sixteen m5Cmethylation regulators were involved in the analysis, including methyltransferases, demethylases, and RNA
binding proteins. Although the exact number of m^5C regulators and detailed mechanisms of m^5C methylation are far from clear, the existing evidence has validated the essential function of m^5C modification on different types of RNA, physiological, and pathological processes (7, 14). Among all the regulators, 13 regulators are significantly aberrantly expressed with 10 genes upregulated and 3 downregulated in GC samples. NSUN7 and DNMT2 are the only low-expression regulators out of the 11 methyltransferases. Sato et al. reported that NSUN7 was upregulated in low-grade glioma with an unknown mechanism (40). However, in GC, we suppose that the low expression of NSUN7 is caused by the loss of CNV frequency. Mei and colleagues found that NSUN2 was overexpressed in GC, which is consistent with our results, and they further validated that NSUN2 promotes GC cell proliferation via repressing p57(Kip2) in an m^5C-dependent manner (41). In correlation analysis, we noticed that the methyltransferases tended to be related to each other, indicating the underlying interaction of mediating the m^5C methylation modification. As for the readers, ALYREF and YBX1 were remarkably overexpressed in GC patients. Research on bladder cancer, breast cancer, HCC, and oral squamous cell carcinoma revealed that ALYREF and YBX1 were upregulated as well (22, 42–44). Intriguingly, high expression of ALYREF and YBX1 are also significantly correlated with the favorable prognosis of GC patients. All three erasers are notably related to the OS of GC patients despite the fact that only TET3 is significantly abnormally expressed in tumor samples. Based on the expression of 16 m^3C methylation regulators, three m^3C modification patterns were distinguished. The three m^3C cluster B belonged to the immune-inflamed phenotype, showing the activation of adaptive immunity; m^3C cluster C was classified as immune-excluded phenotype, characterized by stroma and immunity activation. The GSVA analysis also revealed that m^3C cluster B is enriched in cytokine–cytokine receptor interaction, natural killer cell-mediated cytotoxicity, antigen processing and presentation, Toll-like receptor signaling pathway, and chemokine signaling pathway. These results added to the evidence that the immune-inflamed phenotype, also known as a hot tumor, is characterized by immune cell infiltration and immune-related signal pathway stimulation in TME (45, 46). Additionally, we found that the immune checkpoints in m^3C cluster B were notably overexpressed than the other two m^3C clusters, which indicated that patients in m^3C cluster B might benefit from immunotherapy. In the immune-excluded phenotype, TGF-β and EMT pathways are activated and abate the efficiency of immunotherapy (47). However, we observed the activation of TGF-β and EMT pathways in m^3C cluster A, which was
classified as the immune-desert phenotype. The anomaly may be due to the limited number of TGF-β and EMT pathway-related genes, which requires more data analysis and illustrates the complexity of m^5C methylation modification. In survival analysis, m^5C cluster B showed the most favorable prognosis, which is consistent with the above-mentioned immune-inflamed phenotype.

The m^5Cscore system was established based on the expression of eight genes via the LASSO Cox regression method, namely, DNMT3A, RBPM52, TNFRSF11A, NBEA, INHBB, RGN, DFNA5, and TPD52L1. Among all the genes calculated in the m^5Cscore system, only DNMT3A is an m^5C modification regulator; TNFRSF11A, INHBB, and DFNA5 are involved in TNF-related pathways (48–50); TPD52L1 participates in cell proliferation and calcium signaling; and RBPM52, as an RNA binding protein, is involved in the regulation of cell differentiation and proliferation (51, 52). m^5Cscore is a reliable marker to evaluate the prognosis of GC patients with an AUC of 0.766 in the ACRG training set and 0.898 in the TCGA validation set. m^5Cscore was verified by other GEO datasets as well. Inevitably, m^5Cscore is distinct in different m^5C clusters, in which m^5C cluster B had the lowest m^5Cscore. We noticed that GC patients with the EMT molecular subtype show the highest m^5Cscore, demonstrating poor prognosis. Furthermore, GC patients with a high m^5Cscore tend to have a shorter RFS, indicating that m^5C methylation may play an essential role in tumor recurrence.

Conclusion

In summary, we revealed the potential regulatory mechanisms of m^5C methylation modification on the GC TME. The characteristics of distinct m^5C modification patterns might lead to the complexity and heterogeneity of individual GC TME. A far-reaching understanding of specific m^5C modification patterns in GC will contribute to identifying TME cell infiltration and guiding clinical immunotherapy treatments.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

Ethics statement

The study complied with the principles set forth in the Declaration of Helsinki. Access to the deidentified linked dataset was obtained from the TCGA and GEO databases in accordance with the database policy. For analyses of deidentified data from the TCGA and GEO databases, institutional review board approval and informed consent were not required.

Author contributions

All authors searched the literature, designed the study, interpreted the findings, and revised the manuscript. QZ, JS, XS and KS carried out data management and statistical analysis and drafted the manuscript. JL, XG, KS and XQ helped with cohort identification and data management. QZ, JS, XS and KS performed project administration. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by grants from the National Natural Science Foundation of China (82003184) and the Health Science and Technology Project of Lianyungang (201914).

Acknowledgments

The authors thank all individuals who participated in this study and donated samples.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.905057/full#supplementary-material
References

1. Smyth EC, Nilsson M, Gräbsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet (2020) 396(10251):635–48. doi:10.1016/S0140-6736(20)31888-5

2. Collaborative group GBGS. The global, regional, and national burden of stomach cancer in 195 countries, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet Gastroenterol Hepatol (2020) 5(1):41–52. doi:10.1016/S2468-1253(19)30328-0

3. Matsuoka T, Ajiki W, Marugame T, Ioka A, Tsukuma H, Sobue T, et al. Population-based survival of cancer patients diagnosed between 1993 and 1999 in Japan: a chronological and international comparative study. Japanese J Clin Oncol (2011) 41(1):40–51. doi:10.1093/jco/ory216

4. Hong S, Won YJ, Park TR, Jung KW, Kong HJ, Lee ES, et al. Cancer statistics in Korea: Incidence, mortality, survival, and prevalence in 2017. Cancer Res Treat (2020) 52(2):335–350. doi:10.4143/crt.2020.206

5. Boccaletto P, Machnicka MA, Purta E, Piatkowski B, Baginski B, Wiecek T, et al. MODOMICS: a database of RNA modification pathways. Update 2017. Nucleic Acids Res (2018) 46(D1):D303–D7. doi:10.1093/nar/gkx310

6. Bestor TH. Cloning of a mammalian DNA methyltransferase. Cell Res (2011) 21(8):978. doi:10.1038/s41556-019-0361-y

7. Zhang et al. MODOMICS: a database of RNA modification pathways. Update 2017. Nucleic Acids Res (2018) 46(D1):D303–D7. doi:10.1093/nar/gkx310

8. Xue C, Zhao Y, Li L. Advances in RNA cytosine-5 methylation: detection, cation pathways. 2017 update. Nucleic Acids Res (2016) 44(8):e87. doi:10.1093/nar/gkw1507

9. Xue S, Xu H, Sun BF, Chen YS, Ju WJ, Lai WY, et al. 5-methylcytosine promotes mRNA export – NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Mol Cancer Res (2019) 17(1):9

10. Sharma S, Yang J, Watzinger P, Kotter P, Entian KD. Yeast Nop2 and Rcm1 methyltransferase NSUN2 promotes gastric cancer cell proliferation by an m(5)C-dependent manner. Cancer Res (2017) 77(5):15476286.2017.1318241

11. Xue C, Zhao Y, Sun BF, Zhang Y, Li L. Advances in RNA cytosine-5 methylation: detection, cation pathways. 2017 update. Nucleic Acids Res (2016) 44(8):e87. doi:10.1093/nar/gkw1507

12. Collaborators GBDSC. The global, regional, and national burden of stomach cancer. Lancet (2018) 396(10251):635–637. doi:10.1016/S0140-6736(18)31602-9

13. Matsuda T, Ajiki W, Marugame T, Ioka A, Tsukuma H, Sobue T, et al. Population-based survival of cancer patients diagnosed between 1993 and 1999 in Japan: a chronological and international comparative study. Japanese J Clin Oncol (2011) 41(1):40–51. doi:10.1093/jco/ory216

14. Lee JH, Ahn HJ, Yoon JH, Jeon N, Lee W, Park KH, et al. Identification of a pan-cancer m(6)A regulator-methyltransferase modification pattern and tumor microenvironment infiltration characterization in gastric cancer. Mol Cancer (2020) 19(1):53. doi:10.1186/s12943-020-01155-z

15. Pitt JM, Marabelle A, Egermont A, Soria JC, Kroemer G, Závorka L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol (2016) 27(8):1482–92. doi:10.1093/annonc/mmd168

16. Ali HR, Chlon L, Pasho MD, Markowitz F, Califas C. Patterns of immune infiltration in breast cancer and their clinical implications: A gene Expression-Based retrospective study. PLoS Med (2016) 13(12):e1002194. doi:10.1371/journal.pmed.1002194

17. Binnwieser M, Roberts EW, Kersten K, Chan V, Fearn DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med (2018) 24(5):541–50. doi:10.1038/s41591-018-0014-x

18. Guo G, Wang H, Shi X, Ye L, Yan K, Chen Z, et al. Disease activity-associated alteration of mRNA m(5)C expression and CD4(+) T cells of systemic lupus erythematosus. Front Cell Dev Biol (2020) 8:430. doi:10.3389/fcell.2020.00430

19. Collignon E, Canale A, Ali Wardi C, Bizet M, Calonne E, Dedeuwasder S, et al. Immunity drives TET1 regulation in cancer through NF-kappaB. Sci Adv (2018) 4(6):eaap7309. doi:10.1126/sciadv.aap7309

20. Andrews O, Mc Caffrey S, De Smedt SC, Weiss R, Sanders NN, Kitada T. (1)-methylpsuedouridine incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Control Release (2015) 217:337–44. doi:10.1016/j.jconrel.2015.08.055

21. Wink M, Slipes P, Dziedzic M, Lewinska A. The roles of host 5-methylcytosine mRNA methyltransferases during viral infections. Int J Mol Sci (2020) 21(21): 8176. doi:10.3390/ijms21218176

22. Colapinto A, Silva TC, Olten C, Garafolo L, Cava C, Garolini D, et al. TCGA/holoids: an R/Biocconduct package for integrative analysis of TCGA data. Nucleic Acids Res (2016) 44(e8):e7. doi:10.1093/nar/gkw007

23. Willkorn MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics (2010) 26(12):1572–3. doi:10.1093/bioinformatics/btq170

24. Charoentong P, Finotello F, Angelова M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep (2017) 18:248–62. doi:10.1016/j.celrep.2016.12.019

25. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res (2015) 43(7):e47. doi:10.1093/nar/gkv007

26. Xiang ZL, Wang Y, Ramadge PJ. Screening tests for lasso problems. IEEE Trans Pattern Anal Mach Intell (2017) 39(5):1008–27. doi: 10.1109/ TPAMI.2016.2568185

27. Belehradek I, Ortvay I, Bolygo L, Hollweck R. The chemistries and consequences of DNA and RNA methylation and demethylation. J Control Release (2015) 217:337–44. doi:10.1016/j.jconrel.2015.08.055

28. Zhang et al. 5-methylcytosine expression of y box binding-1 is important for resistance to chemotherapy repressing p57(Kip2) by an m(5)C-dependent manner. Mol Cancer Res (2019) 17(5):337–50. doi:10.1158/2326-0666.MCR-18-0146

29. Bergh AH, Christine J, Brandl CM, Forni L, Johnsen JS, et al. m(6)A regulator-methyltransferase NSUN2 promotes gastric cancer cell proliferation by repressing p57(Kip2) by an m(5)C-dependent manner. Cell Death Dis (2020) 11(4):270. doi:10.1038/s41419-020-2487-x

30. Yamashita T, Higashi M, Momose S, Morozumi M, Tamura JI. Nuclear expression of y box binding-1 is important for resistance to chemotherapy including gemcitabine in TP53-mutated bladder cancer. Int J Oncol (2017) 51(2):179–86. doi:10.3892/ijo.2017.4031

31. Campbell TM, Castro MAA, de Oliveira KG, Ponder BAJ, Meyer KB. eRNA binding by transcription factors NFIB and YBX1 enables FGFR2 signaling
to modulate estrogen responsiveness in breast cancer. Cancer Res (2018) 78(2):410–21. doi: 10.1158/0008-5472.CAN-17-1153

44. Saito Y, Kasamatsu A, Yamamoto A, Shimagi T, Yokoe H, Sakamoto Y, et al. ALY as a potential contributor to metastasis in human oral squamous cell carcinoma. J Cancer Res Clin Oncol (2013) 139(4):585–94. doi: 10.1007/s00432-012-1361-5

45. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature (2017) 541(7637):321–30. doi: 10.1038/nature21349

46. Turley SJ, Cremasco V, Astarita IL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol (2015) 15(11):669–82. doi: 10.1038/nri3902

47. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature (2018) 554(7693):544–8. doi: 10.1038/nature25501

48. Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med (2016) 22(5):539–46. doi: 10.1038/nm.4076

49. Zou G, Ren B, Liu Y, Fu Y, Chen P, Li X, et al. Inhibin b suppresses anoikis resistance and migration through the transforming growth factor-beta signaling pathway in nasopharyngeal carcinoma. Cancer Sci (2018) 109(11):3416–27. doi: 10.1111/cas.13780

50. Hu L, Chen M, Chen X, Zhao C, Fang Z, Wang H, et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis (2020) 11(4):281. doi: 10.1038/s41419-020-2476-2

51. Byrne JA, Nourse CR, Basset P, Gunning P. Identification of homo- and heteromeric interactions between members of the breast carcinoma-associated D52 protein family using the yeast two-hybrid system. Oncogene (1998) 16(7):873–81. doi: 10.1038/sj.onc.1201604

52. Notarnicola C, Rouleau C, Le Guen L, Virsolvy A, Richard S, Faure S, et al. The RNA-binding protein RBPMS2 regulates development of gastrointestinal smooth muscle. Gastroenterology (2012) 143(3):687–97.e9. doi: 10.1053/j.gastro.2012.05.047