Safety and Efficacy of Levamisole in Loiasis: A Randomized, Placebo-controlled, Double-blind Clinical Trial

Jérémy T. Campillo,1,2 Paul Bikita,3 Marlhand Hemilembolo,4 Frédéric Louya,4 François Missamou,2 Sébastien D. S. Pion,1 Michel Boussinesq,1,a Cédric B. Chesnais1,a

1UMI 233 TransVIHMI, Université de Montpellier, Institut de Recherche pour le Développement (IRD), INSERM Unité 1175, Montpellier, France; and 2Programme National de Lutte contre l’Onchocercose, Direction de l’Épidémiologie et de la Lutte contre la Maladie, Ministère de la Santé et de la Population, Brazzaville, Republic of the Congo

Background. Individuals with high microfilarial densities (MFDs) of Loa loa are at risk of developing serious adverse events (SAEs) after ivermectin treatment. Pretreatment with drugs progressively reducing Loa MFDs below the risk threshold might help prevent these SAEs. We assessed the safety and efficacy of levamisole for this purpose.

Methods. A double-blind, randomized, placebo-controlled, MFD-ascending trial was conducted in the Republic of the Congo. Participants were treated in 3 cohorts defined by pretreatment MFD and levamisole dose (cohort 1: 1.0 mg and 1.5 mg/kg; cohorts 2 and 3: 2.5 mg/kg). Safety outcomes were occurrence of SAE and adverse event frequency during the first week. The efficacy outcomes were MFD reduction from baseline and proportions of individuals with at least 40% and 80% MFD reduction at day 2 (D2), D7, and D30.

Results. The 2 lowest doses (1.0 mg/kg and 1.5 mg/kg) caused no SAEs but were ineffective. Compared with placebo, 2.5 mg/kg levamisole caused more mild adverse events (10/85 vs. 3/85, P = .018), a higher median reduction from baseline to D2 (-12.9% vs. +15.5%, P < .001), D7 (-4.9% vs. +18.7%, P < .001), and D30 (-0.5% vs. +13.5%, P = .036) and a higher percentage of participants with >40% MFD reduction at D2 (17.5% vs. 1.2%, P < .001), D7 (11.8% vs. 6.3%, P = .269), and D30 (18.5% vs. 9.6%, P = .107).

Conclusions. A single 2.5 mg/kg levamisole dose induces a promising transient reduction in Loa loa MFDs and should encourage testing different regimens.

Clinical Trials Registration. NCT04049630.

Keywords. loiasis; clinical trial; levamisole; filariosis; Africa.

Loiasis is a parasitic infection caused by the filarid nematode Loa loa. About 140 million people live in central African regions, where this disease is endemic [1]. Currently considered as benign by the World Health Organization (WHO), loiasis is a major obstacle to the elimination of onchocerciasis, another filarial disease. Since the 1990s, onchocerciasis control is based on mass treatment with ivermectin (IVM) of all meso- and hyperendemic communities. This has led to the elimination of onchocerciasis in Latin American countries [2, 3] and a dramatic decrease in transmission in some African foci [4–6], but not in central Africa. The reason for this is that individuals with high densities of Loa microfilariae (mfs) in the blood can develop a potentially fatal encephalopathy after IVM treatment [7]. These serious adverse events (SAEs) probably result from the IVM-induced rapid paralysis of large numbers of Loa mfs, which leads to their passive drainage in the circulation and their embolization in brain capillaries. The current WHO goals are to “eliminate the transmission of onchocerciasis in 10 countries; to cease mass drug administration (MDA) with IVM in at least 1 focus in 34 countries; and to obviate the need for MDA in at least 25%, 50%, 75% and 100% of the population in at least 16, 14, 12, and 10 countries, respectively” by 2030 [8]. However, this objective is jeopardized by the fact that some areas are coendemic for loiasis and onchocerciasis.

Alternative treatment strategies have been developed to safely combat onchocerciasis in areas where loiasis is coendemic [9]. One solution to prevent post-IVM Loa-related SAEs would be to first treat the population with a drug to progressively reduce the Loa microfilarial densities (MFDs) below the threshold (30 000 mfs/mL), above which there is a risk of neurological SAEs. Various drugs and regimens have already been tested for their suitability in this application such as albendazole [10–13], antimalarials [14], or low doses of IVM [15, 16], but none of these trials was successful: the effect was either too strong or too weak or showed unsuitably large interindividual variation.

Received 9 September 2021; editorial decision 7 October 2021; published online 15 October 2021.

© The Author(s) 2021. Published by Oxford University Press for the Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Furthermore, individual treatment of subjects with high Loa MFDs remains a challenge because the therapeutic options (apheresis or 3-week daily treatment with albendazole, followed by IVM and/or diethylcarbamazine) are limited, complicated to apply, and their efficacy is moderate. Levamisole (LEV) is a long-established drug included in the WHO's List of Essential Medicines [17] and widely used in some countries, at a dose of 150 mg or 2.5 mg/kg, for its activity against soil-transmitted helminths (Ascaris, hookworms) [18]. LEV had been tested in the early 1980s against Onchocerca volvulus, Wuchereria bancrofti, and Brugia malayi. LEV showed moderate short-lasting activity in most trials [19–27] but has never been tested against Loa. A synthesis of previous trials on the other filarial species is provided in Supplemental Material 1.

We report results of the first trial conducted to evaluate the safety and efficacy of single-dose LEV in subjects infected with Loa carried out in the Republic of the Congo.

METHODS

Study Design
This adaptive double-blind, randomized, placebo-controlled trial included 3 independent cohorts with ascending Loa MFDs. Recruitment to the next cohort started if no SAEs occurred in the previous cohort.

To assess the safety of LEV, cohort 1 was composed of participants with low MFDs (1–1999 mfs/mL) in whom low doses of LEV were tested. Participants were allocated to 1 of 3 arms: LEV 1 mg/kg (LEV-1.0), LEV 1.5 mg/kg (LEV-1.5), or placebo. After confirmation that these doses of LEV were well tolerated in patients with low MFDs, an independent Data Safety Monitoring Board reviewed the safety and efficacy results to determine whether the dose could be increased for the next cohorts. Following the Data Safety Monitoring Board recommendations, 2 cohorts, each comprising 2 parallel arms (single dose of LEV at 2.5 mg/kg [LEV-2.5] or matched placebo) were launched: cohort 2 included subjects with MFDs between 1 and 14,999 mfs/mL, and cohort 3 included all microfilaremic subjects without upper limit of MFDs.

To assess efficacy, Loa MFDs were measured 5 days before treatment (D-5), and at day 2 (D2), day 7 (D7), and day 30 (D30) posttreatment. At D-5, all participants underwent a medical examination and a questionnaire to check for inclusion and exclusion criteria (see the following section). At D2 and D7, each participant underwent a medical examination and screening for any adverse events (AEs). A medical team visited the villages of all participants every day from D0 to D7 to manage AEs. All subjects received a participant card with emergency contact information.

Study Area and Selection of Participants
Participants were recruited in 21 villages located within 40 km of Sibiti (3°41′00″S, 13°21′48″E), the capital town of the Congolese administrative department of Lékoumou, a forested area where loiasis is endemic.

Participants were identified in 2 steps. In November 2019, residents were invited to participate in a survey to screen the population for loiasis. Because of the coronavirus disease 2019 pandemic, the launch of the trial testing had to be postponed to mid-January 2021. At that date, those subjects who were found microfilaremic in 2019, were aged 18–65 years, and weighed 50–85 kg for women or 45–85 kg for men, were invited to be reexamined to assess their eligibility to participate in the trial.

Volunteers underwent a medical evaluation and those with past or current history of neurological or neuropsychiatric disorders, or physical symptoms suggesting systemic disorders, were excluded from recruitment. People treated with clozapine, phenothiazines, sulfasalazine, carbamazepine, antithyroid drugs, ticlopidine, cinetidine, warfarin, or gold salts were also excluded because of a possible drug interaction with LEV. Women who reported being pregnant for less than 3 months, people with acute infection requiring treatment within the 10 days preceding the trial, and people who had received IVM, albendazole, or LEV during the previous 6 months were also excluded.

The clinical trial was conducted from January to April 2021.

Randomization, Blinding, and Drug Preparation
For the first cohort, a 1:1 randomization of 3 arms with blocks size of 6 was performed. For the second and third cohorts, a 1:1 randomization of 2 arms with blocks size of 4 was used. All randomizations were done by an independent statistician and stratified by sex and median age.

Sealed envelopes were prepared, containing either the number of LEV 10 mg, LEV 50 mg and matching placebo tablets required by the participant's weight and targeted dose, or 5 placebo tablets. Supplemental Material 2 provides tablet composition. Tablets were swallowed under the supervision of a single physician. All tablets were purchased from ACE Pharmaceuticals BV (Zeewolde, The Netherlands).

Laboratory Procedures
The Loa MFDs were assessed by examining 2 50-μL calibrated blood smears (CBS1 and CBS2) at D-5, D2, D7, and D30. All CBSs were prepared with blood taken between 10:00 AM and 3:00 PM to account for the diurnal periodicity of Loa mfs in peripheral blood [28]. In addition, CBSs for a given participant were prepared at the same time of the day on D-5, D2, D7, and D30. Because it is known that temperature can influence Loa MFDs [29], the ambient and subjects' body temperatures at the time of sampling were recorded using electronic thermometers. Blood was collected by finger-prick and spread on 2 labelled slides. The slides were dried at ambient temperature, dehemoglobinized and stained with Giemsa within 4 hours. Each slide was read independently by 2 experienced biologists who were blinded to treatment. All Loa mfs were counted using a microscope at 100×

20 • CID 2022:75 (1 July) • Campillo et al
magnification. Slides with an MFD difference exceeding 10% between the 2 readings were reread blind to the first result. The arithmetic means of the MFDs measured at the 4 readings (CBS1 by readers 1 and 2, CBS2 by readers 1 and 2) were used for the analyses, the results being expressed in mfs/mL.

Objectives and Outcome Measures

The primary objective of the trial was to evaluate the safety of single-dose LEV in individuals with Loa Loa microfilaremia. The primary outcome measures were (1) the occurrence of an SAE and (2) the frequency of AEs during the first week posttreatment. Eighty participants provide a probability of 0.99, 0.98, 0.55, and 0.08 to detect at least 1 AE with a true frequency of 10%, 5%, 1%, and 0.1%, respectively. Classification of AEs are described in Supplemental Material 3.

The secondary objective was to assess the effect of LEV on Loa MFDs measured by: (1) the MFD reduction rates at D2, D7, and D30; and (2) the proportions of subjects with MFD reduction rates ≥40% and/or ≥80% at D2, D7, and D30. Reduction rates were calculated as follows: ((MFD at D-5) − (MFD at DX))/(MFD at D-5) with X = 2, 7, or 30.

Sample Size Calculation

Because no case of SAE has ever been reported after LEV treatment in central Africa, sample size calculations were performed using theoretical efficacy levels based on results of its effect on other filariasis. We made the hypothesis that <10% participants treated with placebo but ≥40% participants treated by LEV would have an MFD reduction rate exceeding 40% at D7. A sample size of 36 individuals per arm warrants an 80% power to detect a between-treatment difference at a 5% significance level. Assuming that 10% of enrolled subjects would be lost to follow-up at D7, a minimum of 40 participants had to be included in each arm.

Statistical Analysis

For the safety analyses, the numbers and proportions of participants with AEs were tabulated by AE severity score and arms. For the efficacy analyses, the arithmetic and median means of individual MFD reduction rates were calculated and compared between arms at D2, D7, and D30 using Kruskal-Wallis test (KW test) and analysis of variance. The proportions of participants with MFD reduction exceeding 40% and 80% were compared between arms with Fisher exact tests at D2, D7, and D30.

Cohorts 2 and 3 were pooled to increase statistical power because no significant baseline differences between arms were found in each of these cohorts.

All statistical analyses were performed using Stata 15 (StatCorps LP, College Station, Texas, USA).

Trial Registration and Ethic Statement

This study was approved by the Committee on Ethics in Health Sciences Research (no. 226/MRSIT/IRSSA/CERRSSA) and an Administrative Authorization (no. 469/MSP/CAB/UCPP-19).

Figure 1. Flowchart of the clinical trial. Abbreviations: LEV, levamisole; MFD, microfilarial density.
was released by the Ministry of Health and Population of the Republic of the Congo. This study was conducted in accordance with the rules of Good Clinical Practices. All participants signed an informed consent form before initiation of any study-related procedure. This trial is registered as number NCT04049630 in https://clinicaltrials.gov/.

Table 1. Baseline (Pretreatment) Characteristics of Trial Participants

Sex	Placebo	Levamisole 1 mg/kg	Levamisole 1.5 mg/kg	Levamisole 2.5 mg/kg	Placebo	Levamisole 2.5 mg/kg	Placebo	Levamisole 2.5 mg/kg
Female	9 10	10 10	15 16	7 7	22 23	7 7	22 23	
Male	18 17	17 17	39 37	24 25	63 62	24 25	63 62	

Microfilaria, mf/mL	Arithmetic mean ± SD	Minimum; maximum	Geometric mean (95% CI)	Median [IQR]
Placebo	636 ± 575	15; 1995	350 (204–600)	722 ± 12.6
Levamisole 1 mg/kg	641 ± 536	69.8 ± 13	412 (265–642)	75.8 ± 13.0
Levamisole 1.5 mg/kg	641 ± 549	71 ± 9	359 (210–614)	69.8 ± 10.2
Levamisole 2.5 mg/kg	5082 ± 3826	10; 14015	2916 (1938–4388)	78.6 ± 12.3
Placebo	5104 ± 3843	5; 13850	2832 (1816–4416)	76.5 ± 13.7
Levamisole 2.5 mg/kg	23 356 ± 19 714	11 450	16 370 (9035–14 120)	76.4 ± 12.8
Placebo	27 917 ± 38 266	5; 69 085	18 146 (9600–30 000)	76.6 ± 12.5
Levamisole 2.5 mg/kg	9817 ± 11 742	10 60 920	4957 (2483–7055)	11 468 ± 14 799

| Mansonella perstans prevalence, N; % | 2; 7.4 | 3; 11.1 | 3; 11.1 | 7; 13.0 | 9; 17.0 | 5; 16.1 | 4; 12.5 | 12; 14.4 | 13; 15.3 |

Table 2. Mean Microfilaria, Mean, and Median Relative Difference in Microfilaria Between DX (X = 2, 7 or 30) and D-5, by Arm (Cohort 1)

	LEV 1.5 mg/kg	LEV 1 mg/kg	Placebo
MFD	Median Relative Difference	Median Relative Difference	Median Relative Difference
Arithmetic Mean	+0.7% ± 40.7%	+17.1% ± 72.7%	+3.1% ± 40.9%
Day 2	5875 mf/mL	792.4 mf/mL	600.3 mf/mL
	+3.1% ± 40.9%	+8.2% ± 96.6%	+2.5% ± 34.3%
	+13.4% ± 70.3%	+35.4% ± 96.2%	+35.9% ± 34.3%
	–13.4% ± 70.3%	–35.4% ± 96.2%	–35.9% ± 34.3%
Day 7	679.8 mf/mL	869.8 mf/mL	524.4 mf/mL
	+33.5% ± 116.5%	+27.9% ± 60.0%	+4.6% ± 117.0%
	+13.4% ± 35.2%	+19.7% ± 20.9%	–20.0% ± 22.3%
	+3.8% ± 18.6%	+2.2% ± 35.8%	–23.3% ± 13.8%
Day 30	648.6 mf/mL	704.4 mf/mL	536.0 mf/mL
	+15.8% ± 58.4%	+23.0% ± 80.3%	–5.3% ± 93.7%

Abbreviations: CI, confidence interval; bpm, beats per minute; IQR, interquartile range; SD, standard deviation.

aData on Mansonella perstans are available in Supplemental Material 4.

Abbreviations: D, day; LEV, levamisole; MFD, microfilarial density.

*Kruskal-Wallis test.

*Analysis of variance.
RESULTS

Screening of Eligible Participants

A total of 2052 individuals screened in 2019 met the age and weight eligibility criteria; 389 of them (18.9%, 264 males and 125 females) had Loa mfs in their blood. Among these 389 subjects, 344 were still microfilaremic in 2021 (88.4%).

Baseline Characteristics

After checking for inclusion and exclusion criteria, 81 participants were randomly assigned to cohort 1 (1–1999 mfs/mL), 111 to cohort 2 (1–14999 mfs/mL), and 63 to cohort 3 (positive MFDs with no upper limit) (Figure 1). Considering all cohorts together, 112 subjects had a Loa MFD of 1–1999 mfs/mL, 106 an MFD of 200–14999 mfs/mL, and 33 an MFD ≥15000 mfs/mL.

The baseline characteristics of participants are shown in Table 1. Within each cohort, there was no difference between arms regarding age distribution, sex ratio, or mean and median Loa MFDs.

Results of Low Doses of LEV (1 and 1.5 mg/kg) in Subjects With Low Loa MFDs (Cohort 1)

The first cohort included participants with MFDs <2000 mfs/mL. No SAEs related to treatment occurred. Thirteen patients reported 15 AEs (4 in the LEV-1.0 arm, 4 in the LEV-1.5 arm, and 5 in the placebo arm). Among the AEs reported in the LEV-1.0 arm, 2 were mild (1 epigastralgia and 1 edema) and 2 were moderate (2 cases of generalized pruritus) and required symptomatic treatment (antihistamines and corticosteroids). Among the AEs reported in the LEV-1.5 arm, 2 were not related to treatment (1 murder and 1 malaria attack) and 2 were mild (2 cases of localized pruritus). Among the AEs reported in the placebo arm, 1 was related to malaria attack, 2 were mild (2 cases of dizziness), and 2 were moderate (1 generalized pruritus and 1 epigastralgia) and required symptomatic treatment (antihistamines and proton pump inhibitor, respectively). The proportions of AEs did not differ between the 3 arms (Fisher exact test, $P = 1.000$).

Neither the mean and median MFDs (Table 2) nor the proportion of participants with a 40% or 80% MFD reduction (Table 3) were significantly different between the 3 arms at D2, D7, and D30 (Table 2).

Safety of Treatment With of LEV at 2.5 mg/kg (Cohorts 2 and 3)

In cohorts 2 and 3, no SAEs occurred. A total of 17 AEs were reported. Among them, 4 were not related to the trial (2 malaria attacks, 1 posttraumatic edema, and 1 scalp furuncle). Of the 13 AEs reported, 3 occurred in the placebo arm and 10 in the LEV arm (Fisher exact test, $P = .018$). All AEs reported were mild and transient. Table 4 summarizes the AEs possibly related to LEV in the 2

Day 2, N	4 (15.4%)	22 (84.6%)	4 (17.4%)	19 (82.6%)	5 (19.2%)	21 (80.8%)	1.000	0 (0%)	26 (100%)	0	23 (100%)	3 (11.5%)	23 (88.5%)	.103
Day 7, N	5 (19.2%)	21 (80.8%)	2 (8.7%)	21 (91.3%)	9 (33.3%)	18 (66.7%)	0.108	0 (0%)	26 (100%)	1 (4.4%)	25 (95.6%)	3 (11.1%)	24 (88.9%)	.204
Day 30, N	4 (15.4%)	22 (84.6%)	8 (33.3%)	16 (66.7%)	12 (48.0%)	13 (52.0%)	0.047	0 (0%)	26 (100%)	1 (4.2%)	23 (95.8%)	4 (16.0%)	21 (84.0%)	.058

Table 4. Reported Adverse Events in Cohorts 2 and 3

Treatment	Adverse Event	Gradation	Baseline MFD (mf/mL)	Days Posttreatment	Absolute and Relative Difference in MFD From Baseline to Day 2
Placebo	Dizziness	Mild	2305	1	−1595 mf/mL (−69.2%)
Placebo	Pruritus	Mild	5990	2	−210 mf/mL (−3.5%)
Placebo	Conjunctivitis	Mild	36 990	0	+1738 mf/mL (+4.7%)
LEV 2.5 mg/kg	Conjunctivitis	Mild	4920	2	−763 mf/mL (−15.5%)
LEV 2.5 mg/kg	Blepharitis	Mild	4920	3	−763 mf/mL (−15.5%)
LEV 2.5 mg/kg	Pruritus	Mild	5085	0	−180 mf/mL (−3.0%)
LEV 2.5 mg/kg	Dizziness	Mild	6160	0	−1337 mf/mL (−21.7%)
LEV 2.5 mg/kg	Vomiting	Mild	7330	0	−3665 mf/mL (−50.0%)
LEV 2.5 mg/kg	Dizziness	Mild	24 420	0	+11 843 mf/mL (+48.5%)
LEV 2.5 mg/kg	Dizziness	Mild	30 000	0	−4170 mf/mL (−13.9%)
LEV 2.5 mg/kg	Dizziness	Mild	32 090	0	−8664 mf/mL (+270%)
LEV 2.5 mg/kg	Epigastralgia	Mild	30 950	0	−9130 mf/mL (−29.5%)
LEV 2.5 mg/kg	Vomiting	Mild	60 920	0	−15 473 mf/mL (−25.4%)

Abbreviations: LEV, levamisole; MFD, microfilarial density.
Table 5. Mean Microfilaremia, Mean and Median Relative Difference in Microfilaremia Between DX (X = 2, 7, or 30) and D-5, and Percentage of Individuals with ± 10% Variation in MFD, by arm (Cohort 2 and 3) and Initial MFD Stratum

Initial MFD Stratum	LEV 2.5 mg/kg	Placebo							
	Mean MFD	Mean Relative Difference	Median Relative Difference	Individuals With ± 10% Variation (n, %)	Mean MFD	Mean Relative Difference	Median Relative Difference	Individuals With ± 10% Variation (n, %)	
Day 2									
All participants	8509 mf/mL	+6.1% ± 106.6%	-12.9% [-32.4%; +19.7%]	65 (81.2%)	12 443 mf/mL	+33.0% ± 82.3%	±-108.6%	12443 mf/mL +33.0% ± 82.3%	67 (82.7%)
1–2499 mf/mL	+40.7% ± 212.8%	-6.1% [-34.6%; +26.0%]	16 (84.2%)		12 443 mf/mL	+33.0% ± 82.3%	±-108.6%	12443 mf/mL +33.0% ± 82.3%	67 (82.7%)
2500–6999 mf/mL	+6.7% ± 46.8%	-4.8% [-27.4%; +46.7%]	15 (86.2%)		12 443 mf/mL	+33.0% ± 82.3%	±-108.6%	12443 mf/mL +33.0% ± 82.3%	67 (82.7%)
7000–11 999 mf/mL	-3.7% ± 30.5%	-3.6% [-23.0%; +17.7%]	16 (76.2%)		12 443 mf/mL	+33.0% ± 82.3%	±-108.6%	12443 mf/mL +33.0% ± 82.3%	67 (82.7%)
≥12 000 mf/mL	-19.5% ± 30.3%	-25.2% [-40.5%; -13.9%]	18 (100%)		12 443 mf/mL	+33.0% ± 82.3%	±-108.6%	12443 mf/mL +33.0% ± 82.3%	67 (82.7%)
Day 7	8847 mf/mL	+13.9% ± 122.3%	-4.9% [-31.1%; +22.5%]	57 (75.0%)	12 879 mf/mL	+29.2% ± 76.6%	±-122.3%	12 879 mf/mL +29.2% ± 76.6%	65 (81.2%)
1–2499 mf/mL	+471% ± 234.3%	131% [-31.1%; +278.7%]	16 (84.2%)		12 879 mf/mL	+29.2% ± 76.6%	±-122.3%	12 879 mf/mL +29.2% ± 76.6%	65 (81.2%)
2500–6999 mf/mL	+12.3% ± 56.8%	-0.5% [-24.6%; +63.3%]	17 (77.3%)		12 879 mf/mL	+29.2% ± 76.6%	±-122.3%	12 879 mf/mL +29.2% ± 76.6%	65 (81.2%)
7000–11 999 mf/mL	+7.3% ± 36.0%	+4.1% [-19.7%; +38.7%]	13 (72.2%)		12 879 mf/mL	+29.2% ± 76.6%	±-122.3%	12 879 mf/mL +29.2% ± 76.6%	65 (81.2%)
≥12 000 mf/mL	-14.1% ± 23.1%	-10.9% [-36.0%; -4.6%]	11 (64.7%)		12 879 mf/mL	+29.2% ± 76.6%	±-122.3%	12 879 mf/mL +29.2% ± 76.6%	65 (81.2%)
Day 30	10 241 mf/mL	+55.6% ± 399.2%	-0.5% [-26.6%; +24.8%]	62 (76.5%)	13 364 mf/mL	+29.9% ± 86.6%	±-399.2%	13 364 mf/mL +29.9% ± 86.6%	60 (74.1%)
1–2499 mf/mL	+231.0% ± 805.1%	+31.9% [-33.9%; +81.5%]	14 (73.7%)		13 364 mf/mL	+29.9% ± 86.6%	±-399.2%	13 364 mf/mL +29.9% ± 86.6%	60 (74.1%)
2500–6999 mf/mL	-4.0% ± 35.5%	-72% [-29.5%; +15.9%]	17 (77.3%)		13 364 mf/mL	+29.9% ± 86.6%	±-399.2%	13 364 mf/mL +29.9% ± 86.6%	60 (74.1%)
7000–11 999 mf/mL	+11.4% ± 25.7%	+10.1% [-5.6%; +24.6%]	16 (76.2%)		13 364 mf/mL	+29.9% ± 86.6%	±-399.2%	13 364 mf/mL +29.9% ± 86.6%	60 (74.1%)
≥12 000 mf/mL	-1.8% ± 31.0%	-9.0% [-26.9%; +16.0%]	15 (76.9%)		13 364 mf/mL	+29.9% ± 86.6%	±-399.2%	13 364 mf/mL +29.9% ± 86.6%	60 (74.1%)

Initial MFD is stratified according to interquartile range.
Abbreviations: D, day; MFD, microfilarial density.

*a*Analysis of variance.

*b*Kruskal-Wallis test.
cohorts. In the LEV-2.5 arm, the mean initial MFDs were 19,645 (range, 4,920–60,920) mfs/mL and 9,877 (range, 10–49,605) mfs/mL in participants who reported an AE and in those who did not, respectively. This difference was significant (KW test, $P = .020$).

Effect of LEV 2.5 mg/kg on Loa MFDs (Cohorts 2 and 3)

Median MFDs were significantly lower in the LEV arm than in the placebo arm at D2, D7, and D30 (KW test, $P = .001$, .001 and .036, respectively). This effect was particularly clear in individuals with high baseline MFDs (Table 5). As shown in Figure 2, the arithmetic mean, the geometric mean, and the median of the MFDs' increase over time in the placebo arm, whereas they decrease at D2 and then increase again at D7 and D30 in the LEV arm. The high interindividual variability in response to treatment, which can be seen in Figure 3, is confirmed by the high standard errors in Table 5, notably among those with low initial MFDs. The proportion of participants with an 80% reduction in MFDs did not differ significantly between arms at D2, D7, and D30. The proportion of participants with a 40% reduction was significantly higher in the LEV arm compared with the placebo arm at D2 ($P < .001$), but not at D7 ($P = .269$) nor D30 ($P = .107$) (Table 6).

A logistic regression analysis of the proportion of patients who decreased their MFDs by at least 40% between D-5 and DX and a linear regression analysis of the absolute difference in MFD between D-5 and D2, both adjusted on temperatures and sampling time differences are available in Supplemental Materials 5 and 6, respectively. Relative differences between D-5 and D2 according to initial MFDs are provided in Supplemental Materials 7.

DISCUSSION

This trial is the first to assess the safety and efficacy of LEV in Loa-infected subjects. No SAEs occurred after a single dose
The dose recommended to treat soil-transmitted helminthiases (2.5 mg/kg) induced a significant mean decrease in Loa MFD 2 days posttreatment, with 17.5%, 11.8%, and 18.5% of the population in the LEV-2.5 arm showing a ≥40% decrease in their MFDs at D2, D7, and D30, respectively. In the LEV-2.5 arm, only 1 participant with low baseline MFDs (25 mfs/mL) showed an 80% decrease in MFDs at D2 and D7, which may be reassuring because a large and rapid effect would raise the question of the occurrence of SAEs similar to those induced after IVM administration in individuals with high Loa MFDs.

Maximum mean reduction in Loa MFDs seems to occur about 2 days after LEV intake. It is followed by a slight mean increase in MFDs between D2 and D7 and a more marked mean increase between D7 and D30. This suggests that the mfs are not definitely eliminated and similar results have been reported from trials evaluating LEV on W bancrofti [27]. LEV might have a “microfilarifugal” action rather than a microfilaricidal one (ie, it may stimulate migration of microfilariae to deep organs where they could be sequestered and/or eliminated by the immune system) [31]. A second mechanism would be that mfs circulating at the time of treatment are eliminated but are replaced very rapidly by those newly released by adult worms. Mfs might also regain their muscular activity after a phase of temporary paralysis because of several mechanisms [32]. That AEs are more frequent in high baseline MFDs is consistent with the hypothesis of massive destruction of mfs. However, levamisole modes of action are multiple and complex [33] and its effects on mfs need to be clarified.

Changes in MFDs over the follow-up period varied significantly between individuals even in the placebo arm. This variability has already been described in other trials [10, 13]. This variation may be due to (1) detection error from variations in the reading of the microscopists in low MFD cases or (2) heterogeneity in physiological factors driving MFD variations between subjects. However, we collected 2 slides for each participant and each slide was read by 2 different technicians, thus reducing the risk of reading errors. More than 90% of the posttreatment CBSs were prepared within 30 minutes of time of the initial sample, ensuring that the results were not significantly impacted by the periodicity of Loa. Finally, small differences in temperatures on the sampling days did not significantly impact the results, as shown by the results of the regressions.

The results of this trial are promising because they suggest a possible effect of LEV on Loa MFD at a dose that is well-tolerated. However, other trials using higher doses or repeated doses for several days are needed to identify the most effective administration scheme both as an alternative individual treatment for subjects with high Loa MFD and as a pretreatment before ivermectin administration. In view of the MFD variability found over just 30 days of follow-up, it will be necessary to define specific efficacy criteria for future trials, considering the natural MFD variability and focusing only on individuals with high Loa MFDs, the final objective being to achieve a significant reduction in MFDs for all the patients. Should an efficient
regimen be identified, the results would enable to determine the optimal time interval between pretreatment with LEV and safe IVM administration, considering both the pharmacokinetic-pharmacodynamic relationships and logistical constraints (the interval should not exceed a couple of weeks).

Supplementary Data

Supplementary materials are available at *Clinical Infectious Diseases* online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyrighted and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Notes

Author Contributions. C. B. C., M. B., and S. D. S. participated in the conception and design of the study; C. B. C., F. M., and F. L. conducted the screening survey in 2019; C. B. C., T. C., M. B., and J. T. C. carried out the clinical trial in 2021; F. L. supervised the field laboratory and read the slides; C. B. C. and J. T. C. participated in the acquisition of data; J. T. C. performed the statistical analyses and wrote the first version of the manuscript; C. B. C., M. B., S. D. S., and J. T. C. participated in the interpretation of data and reviewed the article. All authors approved the final version for publication.

Acknowledgments. The authors acknowledge the surveyed population for screening in 2019 and the participants in this clinical trial included in 2021. They also acknowledge all the local personnel in Sibiti: Stanislas Madzou and Gildorc Ouamba (nurses); Paul Bikita (head of the laboratory of the Sibiti District Hospital, who read the calibrated blood smears); Dr. Jacques Bitolo (physician); Pauline Kombi, Syntha Ntsoumou, Christiane Abana, Albertine Pika, and Odette Sandji (field technicians); Paul Goyi, Vincent Moussounda, Rolf Oniangue, and Anicet Madoulou (drivers). We would also like to thank the late Césélin Ibouang, a field technician who died in 2019 during the screening phase. Last, the authors are very grateful to Dr. Marcel Ollion and Mr. Pandzou, as well as the local authorities. They would also like to thank Gwenvaël Leguicher for his role in the randomization process, Mauricette Stella for her role in the investigation process, and Jessie Abbate for proofreading and correcting the English of the article.

Disclaimer. The funder has no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Financial support. This work was supported by the French National Research Agency (ANR) (grant number 18-CE17-0008).

Potential conflicts of interest. The authors: No reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

References

1. Zouré HG, Wani S, Noma M, et al. The geographic distribution of *Loa loa* in Africa: results of large-scale implementation of the Rapid Assessment Procedure for Loaia (RAPLOA). PLoS Negl Trop Dis 2011; 5:e1210.
2. WHO. Progress toward eliminating onchocerciasis in the WHO Region of the Americas: verification of elimination of transmission in Mexico. Wkly Epidemiol Rec 2015; 90:577–81.
3. Sauerwey M, Rakers JI, Richards FO. Progress toward elimination of onchocerciasis in the Americas. Int Health 2018; 10:741–8.
4. Diawara I, Traoré MO, Badij A, et al. Feasibility of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: first evidence from studies in Mali and Senegal. PLoS Negl Trop Dis 2009; 3:e497.
5. Traore MO, Sarr MD, Badij A, et al. Proof-of-principle of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: final results of a study in Mali and Senegal. PLoS Negl Trop Dis 2012; 6:e1825.
6. Tekle AH, Zouré HG, Noma M, et al. Progress toward onchocerciasis elimination in the participating countries of the African Programme for Onchocerciasis Control: epidemiological evaluation results. Infect Dis Poverty 2016; 5:66.
7. Gordon J, Gordon-Wendel N, Demanga-Ngague, Kamgno J, Chipaux JP. Boussinesq M. Serious reactions after mass treatment of onchocerciasis with ivermectin in an area endemic for *Loa loa* infection. Lancet 1997; 350:18–22.
8. Basañez MG, Walker M, Hamley IJD, et al. The World Health Organization 2030 goals for onchocerciasis: insights and perspectives from mathematical modelling. Gates Open Res 2019; 3:1–16.
9. Boussinesq M, Fobi G, Kuesel AC. Alternative treatment strategies to accelerate the elimination of onchocerciasis. Int Health 2018; 10:40–8.
10. Klion AD, Massoughdji A, Horton J, et al. Albendazole in human loiasis: results of a double-blind, placebo-controlled trial. J Infect Dis 1993; 168:202–6.
11. Kamgno J, Boussinesq M. Effect of a single dose (600 mg) of albendazole on *Loa loa* microfilaraemia. Parasite 2002; 9:59–63.
12. Tsague-Dongno L, Kamgno J, Pion SD, Moyou-Somo S, Boussinesq M. Effects of a 3-day regimen of albendazole (800 mg daily) on *Loa loa* microfilaraemia. Ann Trop Med Parasitol 2002; 96:707–15.
13. Kamgno J, Ngoup-d’Djomo P, Gounoue R, Teijoumek J, Kuesel AC. Effect of two or six doses 800 mg of albendazole every two months on *Loa loa* microfilaraemia: a double blind, randomized, placebo-controlled trial. PLoS Negl Trop Dis 2016; 10:e0004492.
14. Kamgno J, Djomo PN, Pion SD, Thylefors B, Boussinesq M. A controlled trial to assess the effect of quinine, chloroquine, amodiaquine, and artesunate on *Loa loa* microfilaraemia. Am J Trop Med Hyg 2010; 82:379–85.
15. Kamgno J, Gordon J, Boussinesq M. Analysis of the prevention of post-ivermectin *Loa loa* encephalopathy by administration of initial low dose. Med Trop (Mars) 2000; 60:275–7.
16. Kamgno J, Pion SD, Teijoumek MC, Twum-Danso NA, Thylefors B, Boussinesq M. Randomized, controlled, double-blind trial with ivermectin on *Loa loa* microfilaraemia: efficacy of a low dose (approximately 25 microg/kg) versus current standard dose (150 microg/kg). Trans R Soc Trop Med Hyg 2007; 101:777–85.
17. World Health Organization. World Health Organization model list of essential medicines: 21st list. Geneva, 2019:1–65.
18. Moser W, Schindler C, Keiser J. Efficacy of recommended drugs against soil transmitted helminths: systematic review and network meta-analysis. BMJ 2017; 358:j4307.
19. Miller MJ. Use of levamisole in parasitic infections. Drugs 1980; 20:122–30.
20. O’Holohan DR, Zaman V. Treatment of Brugia malayi infection with levamisole. J Trop Med Hyg 1974; 77:113–5.
21. Zaman V, Lal M. Letter: treatment of Wuchereria bancrofti with levamisole. Trans R Soc Trop Med Hyg 1973; 67:610.
22. Rivas-Alcalí AR, Greene BM, Taylor HR, et al. Chemotherapy of onchocerciasis: a controlled comparison of mebendazole, levamisole, and diethylcarbamazine. Lancet 1981; 2:485–90.
23. Narasimhan MV, Roychowdhury SP, Das M, Rao CK. Levamisole and mebendazole in the treatment of bancroftian infection. Southeast Asian J Trop Med Public Health 1978; 9:571–5.
24. Merlin M, Carme B, Kauferf H, Largier J. Activity of levamisole against Solakia in lymphatic filariasis caused by *Wuchereria bancrofti* (variety pacifica). Bull Soc Pathol Exot 1976; 69:265–77.
25. McMahon JE. Preliminary screening of antifilarial activity of levamisole and amodiaquine on Wuchereria bancrofti. Ann Trop Med Parasitol 1979; 73:465–72.
26. Awadzi K, Schulz-Key H, Howells RE, Haddock DR, Gilles HM. The chemotherapy of onchocerciasis VIII Levamisole and its combination with the benzimidazoles. Ann Trop Med Parasitol 1982; 76:549–73.
27. Moreau J, Radianelina R, Barbier P. Activity of levamisole in Bancroftian filariasis. Médecine Trop 1975; 35:451–5.
28. Kamgno J, Pion SD, Mackenzie CD, Thylefors B, Boussinesq M. *Loa loa* microfilarial periodicity in ivermectin-treated patients: comparison between those developing and those free of serious adverse events. Am J Trop Med Hyg 2009; 81:1056–61.
29. Hawking E, Moore P, Gammage K, Worms MJ. Periodicity of microfilariae. XII. The effect of fever in host body temperature on the cycle of *Loa loa*, *Monopigilia setaria*, Dirofilaria immitis and other filariae. Trans R Soc Trop Med Hyg 1967; 61:674–83.
30. ACE Pharmaceuticals. ELMISOL patient information leaflet [Internet]. 2018. Available at: https://www.ace-pharm.nl/wp-content/uploads/2018/12/Patient-Information-Leafl-et-Elmisol-180705.pdf.
31. Mak JW, Zaman V. Drug trials with levamisole hydrochloride and diethylcarbamazine citrate in Bancroftian and Malayian filariasis. Trans R Soc Trop Med Hyg 1980; 74:285–90.
32. Chandy ML, Soman C, Kumar SP, Kuppur S, Jose R. Understanding molecular mechanisms in multivariant actions of levamisole as an anti-helminthic, anti-inflammatory, antioxidant, anti-neoplastic and immunomodulatory drug. J Oral Maxillofac Surg Med Pathol 2016; 28:354–7.
33. Campbell JT, Eiden C, Boussinesq M, Pion SDS, Faillie J, Chensais CB. Adverse reactions with levamisole vary according to its indications and misuse: a systematic pharmacovigilance study. Br J Clin Pharmacol 2021; 1–13.