Dark solitons in dual-core waveguides with dispersive coupling

Yaroslav V. Kartashov1, Vladimir V. Konotop2, and Boris A. Malomed3

1 ICFO-Institut de Ciencies Fotoniques, and Universitat Politècnica de Catalunya, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain and Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, 142190, Russia

2Centro de Física Teórica e Computacional, and Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, Lisboa 1749-016, Portugal

3Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

email: vvkonotop@fc.ul.pt

Abstract:

We report on new types of two-component one-dimensional dark solitons in a model of a dual-core waveguide with normal group-velocity dispersion and Kerr nonlinearity in both cores. The coupling between the waveguides is considered to be dispersive. We found that quiescent dark solitons supported by the zero-frequency background are always gray, being stable with the out-of-phase background, i.e., for opposite signs of the fields in the cores. On the contrary, the background with a nonzero frequency supports quiescent black solitons which may be stable for both out- and in-phase backgrounds, if the dispersive coupling is sufficiently strong. Only dark solitons supported by the out-of-phase background admit an extension to the case of nonzero phase mismatch between the cores.

References:

1. Y. V. Kartashov, V. V. Konotop, and B. A. Malomed Opt. Lett., 40, 41264129 (2015).