Morphometric study for the localization of the mental foramen in relation to the vertical reference plane

VICTOR NIMIGEAN1, OVIDIU ROMULUS GHERGHIŢĂ2, DIANA LORETA PĂUN3, ELENA NICOLETA BORDEA4, ANGELO PELLEGRINI5, SUZANA CARMEN CISMAŞ5, VANDA ROXANA NIMIGEAN6, NATALIA MOTAŞ7

1)Department of Anatomy, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
2)Private Dental Practice, Popeşti-Leordeni, Romania
3)Department of Oral Rehabilitation, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
4)Department of Specific Disciplines, Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
5)Department of Modern Languages, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
6)Department of Endocrinology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
7)Department of Thoracic Surgery, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania

Abstract
Background: The mental foramen (MnF) is the anatomic landmark where the mental neurovascular bundle exists the mandible. Precisely determining the position of the MnF is necessary before all dentoalveolar therapeutic procedures performed in the mandibular premolar area.

Materials and Methods: For the study, we performed two ex vivo direct morphometric determinations on dry human dentate and edentate mandibles, and two in vivo imaging morphometric determinations through cone-beam computed tomography (CBCT) and orthopantomography (OPG) in dentate human patients. The following landmarks were used to locate the MnF: the distance between the MnF and the superior border of the mandible (MnF–SB), the distance between the MnF and the inferior border of the mandible (MnF–IB), and the position of the MnF in relation to the root apices of the posterior teeth. The results obtained from these data were processed statistically using the analysis of variance (ANOVA).

Results: By direct morphometry on dentate mandibles, the MnF was situated closer to the IB and by direct morphometry on completely edentulous mandibles, the MnF was located closer to the SB. In both direct morphometry studies, the MnF transverse diameter was larger than the vertical one, with the MnF having an oval shape. ANOVA for both direct morphometry studies showed that the distances MnF–IB and MnF–SB significantly vary statistically with interactions and depending on age (p<0.00001). The vertical diameter of the MnF significantly varies statistically depending on age, interactions and between studies, and its transverse diameter varies statistically significantly with interactions and depending on age (p=0.00001). According to OPG and CBCT imaging studies, the MnF was located closer to the IB, and the transverse diameter of the MnF was larger than the vertical diameter; such results are similar to the direct morphometry study performed on dry dentate human mandibles. Regarding the position of the MnF in relation to the root apices, it was most frequently located inferior to the root apices in 79.45% of cases, in 19.23% of cases it was located at the root apices level and in 1.31% of cases it was located superior (coronal) to the root apices. ANOVA for both imaging morphometry studies showed that the MnF–IB distance varies statistically significantly with the interactions, the study, the sex of the patients and their age, the MnF–SB distance varies statistically significantly with the interactions, the study and the patients’ age (p<0.05), and the MnF diameters vary statistically significantly with interactions and patient age (p<0.05). Conclusions: The results of this study can help dental practitioners in improving dentoalveolar surgery procedures in the posterior mandible.

Keywords: mental foramen, direct and imaging morphometry, OPG, CBCT, locoregional anesthesia.

Introduction
The mental foramen (MnF) is an important anatomical landmark of the mandible, due to its clinical relevance. It is situated in the premolar area of the mandibular body, and it represents the opening of the mental canal, lateral bifurcation of the mandibular canal (MC). The MnF and the mental canal are the passageways for the mental vessels and nerve [1, 2].

The injection of the anesthetic through the MnF in the mental canal ensures the anesthesia of the mandibular anterior teeth and premolars on the ipsilateral side. Knowledge of the topography of this mandibular anatomical landmark (MnF) is important for regional anesthesia and for dentoalveolar surgery, performed in the posterior mandible.

The topography of the MnF is variable in dentate subjects as compared to edentulous ones, has racial variations, and can be variable bilaterally even in the same individual. These topographic variations may generate the occurrence of complications during various surgical procedures, which is why a prior precise localization of the MnF is required [1–7].

Cone-beam computed tomography (CBCT) and orthopantomography (OPG) are useful imaging tools for identifying the position of the MnF [1–3].

The development and improvement of implant dentistry have led to dentists’ increased interest in the topographic location of the MnF and MC, both in dentate subjects, and in edentulous ones, especially. Accurate identification of
the MnF and MC locations is important for the success of endodontic, periodontal, dentoalveolar and implant surgeries performed on the posterior mandible [1, 4, 8–10].

The current research presents the statistically analyzed results regarding the MnF topography in vertical plane, obtained by direct morphometry on dry dentate and fully edentulous human mandibles, and by OPG and CBCT imaging morphometry on dentate human mandibles, on Romanian population.

Aim

The aim of this study was to establish reliable and clinically detectable landmarks for the localization of MnF in relation to the height line of the body of the mandible in dentate subjects compared to edentulous ones.

Materials and Methods

For this study, we performed direct morphometric assessments of the position of the MnF in the vertical plane on 27 dentate and 22 fully edentulous dry human mandibles. All the specimens we used belonged to Francisc I. Rainer Institute of Anthropology, Bucharest, Romania, and the measurements were performed with a digital caliper (WESTport Corp., USA).

We also performed imaging morphometric investigations on the vertical position of the MnF in dentate patients, whose informed consent had been obtained for using their radiographic data in research. Determinations were performed by OPG (21 patients) with a PLANMECA Pro Max 2D device, and the data thus gathered were analyzed with ROMEXIS 4.6 software, and CBCT (19 patients) via a NewTom VGi Evo 3D imaging device, with the data analyzed on a computer using the NNT software application version 11.

The obtained data were statistically processed using the Stata/MP13 software, by the two-way analysis of variance (ANOVA), with a p-value ≤0.05 being statistically significant. The analyzed landmarks were the distances between the MnF and the superior (alveolar) border of the body of the mandible (MnF–SB distance) and inferior border of the body of the mandible (MnF–IB distance). The MnF diameters were also analyzed (Figures 1–3).

By imaging morphometry, we also determined the vertical position of the MnF in relation to the dental root apices (Figure 4).

Results

The first study: the position of the MnF in the vertical plane by direct morphometry in the dentate samples

The study was performed on 27 specimens of dry dentate human mandibles, of which 18 (66.7%) were from women, and nine (33.3%) were from men. The average age for all subjects was 29.5 years, with the minimum age 20, and the maximum age 39. The results of the measurements on MnF topography in vertical plane obtained by direct morphometry of dry dentate human mandibles are shown in Table 1.

According to the data in Table 1, the MnF is not located in the center of the height line of the body of the mandible,
being closer to its inferior border, an aspect also encountered separately in male and female specimens. The transverse diameter of the MnF is larger than the vertical one, thus conveying an oval shape to the MnF.

The multifactorial ANOVA for the morphological landmarks concerning the MnF topography in vertical plane, bilaterally compared in relation to the age and sex of the subjects, on the 27 dentate dry human mandibles is presented in Table 2.

According to our findings, the analyzed morphological landmarks, the MnF–IB distance, the MnF–SB distance and the vertical diameter of the MnF show statistically significant values for all variables analyzed as a whole (interactions) and in relation to the subjects’ age (p<0.05). The exception was the transverse diameter of the MnF for which the values obtained were not statistically significant (p>0.05). As regards the sex of the subjects and the investigated side (left/right), none of the analyzed morphological landmarks showed statistical significance, the obtained average values being similar.

The second study: the MnF position in the vertical plane in totally edentulous samples, by direct morphometry

The study was performed on 22 completely edentulous dry human mandible specimens, of which 13 (59.09%) were from women, and nine (40.91%) were from men. The average age of all the subjects was 71.4 years, with the minimum age 60, and the maximum age 81.

The measurement results regarding the position of the MnF in the vertical plane from all the specimens, obtained by direct morphometry on fully edentulous human mandibles are shown in Table 3. According to these data, the position of the MnF is closer to the superior border of the mandibular body, a similar aspect found in both male and female specimens. The transverse diameter of the MnF was larger than the vertical one, the MnF being oval in shape for all the analyzed specimens, a result similar to the one obtained for the dentate specimens (Table 3).

The multifactorial ANOVA for the morphological landmarks concerning the MnF topography in vertical plane, bilaterally investigated and compared, in relation to the age and sex of the subjects, on the 22 dry, totally edentulous mandibles is presented in Table 4.

The results show that the analyzed morphological landmarks, the MnF–IB distance and the MnF–SB distance, present statistically significant values for all the variables analyzed as a whole (interactions), and in relation to the age of the subjects. In addition, the MnF–SB distance shows statistically significant values also depending on the sex of the subjects (p<0.05). The values of the MnF diameters have no statistical significance, either for interactions, or for side, or according to the sex and age of the subjects, the values being quite close, (p>0.05), with one exception: the values of the MnF transverse diameter were statistically significant depending on the sex of the subjects (p<0.05).

Comparison of the data obtained in the first two studies

The multifactorial ANOVA for the studied landmarks regarding the MnF topography in vertical plane, investigated in relation to the side, age and sex of the subjects, as compared between the two studies above, dentate versus totally edentulous specimens, is presented in Table 5.

Table 1 – Results of the measurements on the dry dentate human mandibles

Table 2 – The results of multifactorial ANOVA regarding the topography of the MnF on dentate mandibles

Table 3 – Measurement results on completely edentulous dry human mandibles

Table 4 – Results of multifactorial ANOVA regarding the topography of the MnF in completely edentulous mandibles

Table 5 – Results of multifactorial ANOVA regarding the topography of the MnF in totally edentulous mandibles

ANOVA: Analysis of variance; IB: Inferior border of the mandible; MnF: Mental foramen; N: No. of specimens; N2: No. of findings; R2: Coefficient of determination; SB: Superior border of the mandible.
The multifactorial ANOVA shows that the distances MnF–IB and MnF–SB vary statistically significantly with the interactions and according to age (p<0.00001). The vertical diameter of the MnF varies statistically significantly depending on age, interactions and between studies, and the transverse diameter of the MnF varies statistically significantly with interactions and according to age (p<0.00001).

The third study: position of the MnF in the vertical plane in dentate specimens – imaging morphometry by OPG

The study was performed on 21 OPGs from 10 (47.62%) female patients and 11 (52.38%) male patients. The patients’ average age was 41.3 years, the minimum age 20, and the maximum age 81. In addition to the morphological landmarks investigated by direct morphometry, in this study we also analyzed the position of the MnF in relation to the dental root apices (Table 7).

As the results presented in Table 6 reveal, the MnF was located inferior to the root apices in most cases, 90.48%, and in 9.52% of cases it was located at the root apex level. We did not find any MnF located superior (coronal) to the root apices. Morphological landmarks, measured in millimeters, showed similar results for male and female patients, respectively, so the MnF–IB distance was shorter than the MNF–SB distance, indicating that the MnF is located closer to the IB. The transverse diameter of the MnF was slightly larger than the vertical diameter, by 0.5 mm, which makes us say that the MnF shape is almost round. We also found right/left morphological symmetry on the vertical MnF topography in the whole group of patients.

The fourth study: the MnF position in the vertical plane in dentate specimens – imaging morphometry by CBCT

The study was performed on 19 CBCTs from eight (42.2%) females and 11 (57.8%) males. The average age of the patients was 56.3 years, with the minimum age 34, and the maximum age 81. In addition to the morphological landmarks investigated by direct morphometry, in this study we also analyzed the position of the MnF in relation to the dental root apices (Table 7).

In the overall study on the MnF topography analyzed by CBCT imaging morphometry, the results presented in Table 7 show that, in relation to root apices, the MnF was located most frequently inferior in 68.42% of cases, at the root apex level in 28.94% of cases, and superior (coronal) in 2.63% of cases.

Table 4 – The results of multifactorial ANOVA regarding the topography of the MnF on completely edentulous mandibles

Analyzed landmarks	N1	N2	R²	Model/Interactions	Side	Gender	Age
MnF–IB distance	22	44	0.5841	0.0384	0.9244	0.1407	0.00649
MnF–SB distance	22	44	0.8704	<0.00001	0.5457	<0.00001	<0.00001
Vertical diameter of MnF	22	44	0.3628	0.6093	0.1886	0.2867	0.6430
Transverse diameter of MnF	22	44	0.5646	0.0562	0.1793	0.0081	0.0502

ANOVA: Analysis of variance; IB: Inferior border of the mandible; MnF: Mental foramen; N1: No. of specimens; N2: No. of findings; R²: Coefficient of determination; SB: Superior border of the mandible.

Table 5 – Results of the multifactorial ANOVA on the MnF topography in vertical plane, dentate versus fully edentulous specimens

Analyzed landmarks	N1	N2	R²	Model/Interactions	Side	Gender	Age
MnF–IB distance	49	98	0.7239	<0.00001	0.1281	0.2836	0.6526
MnF–SB distance	49	98	0.7260	<0.00001	0.8819	0.2507	0.7185
Vertical diameter of MnF	49	98	0.8159	<0.00001	<0.00001	0.0725	0.7863
Transverse diameter of MnF	49	98	0.6643	<0.00001	0.0526	0.1223	0.5619

ANOVA: Analysis of variance; IB: Inferior border of the mandible; MnF: Mental foramen; N1: No. of specimens; N2: No. of findings; R²: Coefficient of determination; SB: Superior border of the mandible.

Table 6 – The MnF position results obtained by imaging morphometry (OPG) in dentate patients

Imaging morphometry by OPG

Analyzed landmarks	N	Mean	SD	Median	Min.	Max.
Right side	0					
Superior to the root apex	1	3.54	0.99	3.8	2.63	6.3
At the level of the root apex	1	20.37	4.06	20.2	13.1	27
Inferior to the root apex	1	3.07	1.01	2.8	1.8	5.2
MnF–IB distance	21	13.9	2.98	13.7	9.2	21.5
MnF–SB distance	21	20.42	3.95	20.6	13.8	26.3
Vertical diameter of MnF	21	3.11	0.78	3.1	1.7	4.9
Transverse diameter of MnF	21	3.62	0.98	3.9	2.2	6.5

Left side	0					
Superior to the root apex	3	3.11	0.78	3.1	1.7	4.9
At the level of the root apex	18	20.42	3.95	20.6	13.8	26.3
Inferior to the root apex	1	13.98	2.8	13.9	8	18.6
MnF–IB distance	21	3.62	0.98	3.9	2.2	6.5
MnF–SB distance	21	20.42	3.95	20.6	13.8	26.3
Vertical diameter of MnF	21	3.11	0.78	3.1	1.7	4.9
Transverse diameter of MnF	21	3.62	0.98	3.9	2.2	6.5

IB: Inferior border of the mandible; Max.: Maximum; Min.: Minimum; MnF: Mental foramen; N: No. of MnF in relation to the root apex / No. of patients; OPG: Orthopantomography; SB: Superior border of the mandible; SD: Standard deviation.
The analyzed morphological landmarks were measured in millimeters. The MnF–IB distance was shorter than the MnF–SB distance, indicating that the MnF was located closer to the inferior border of the body of the mandible. The transverse diameter of the MnF was slightly larger than the vertical diameter, by 0.37 mm. Comparing the values obtained bilaterally, it can be seen that there is a right/left morphological symmetry because the values are close.

Comparison of the data obtained in the two imaging studies

The multifactorial ANOVA for the morphological landmarks concerning the MnF topography in vertical plane, investigated in relation to the side, age and sex of the subjects, comparatively between the two imaging morphometry studies, is presented in Table 8.

According to the multifactorial ANOVA, the MnF–IB distance varies statistically significantly with the interactions, the study, the sex of the patients and their age, and the MnF–SB distance varies statistically significantly with the interactions, the study, and the age of the patients ($p<0.05$). The MnF diameters vary statistically significantly with interactions and in relation to patients’ age ($p<0.05$).

Discussions

In the accessed references, we did not find any other study in which there would be an analysis of the MnF topography in vertical plane by combined, direct and imaging morphometry.

The results presented in this study on the MnF topography in vertical plane were obtained by direct and imaging morphometry performed on 67 dentate human mandibles and 22 fully edentulous human mandibles, the measurements being expressed in millimeters.

The vertical diameter of the MnF, on all the four studies performed, had an average of 3.43 mm; these dimensions were close left/right, between studies and between sexes, an aspect that shows the morphological symmetry.

The results regarding the position of the MnF in relation to the dental root apices were obtained by imaging morphometry studies based on OPG and CBCT. In most cases, on all imaging studies, the MnF was located below the dental root apices (79.45%), followed by a position at the root apices level (19.23%), and a location above the root apices (1.31%). The values were close left/right and between the sexes, but they were slightly different between the two imaging studies, which brings into question the fact that OPGs could have been oversized.

The MnF–IB distance had an average value of 12.08 mm, globally, on the three morphometric studies performed in dentate subjects. The close values among the three studies, between left and right sides, demonstrate the morphological symmetry. Statistically significant differences according to sex were not found either. Comparing the mean value of the MnF–IB distance in dentate subjects with the distance in completely edentulous ones, for which the mean value was 11.50 mm, we can say that this landmark does not undergo significant dimensional changes after the loss of occlusal support. The fact that the MnF–IB distance had a close average value in both dentate and completely edentulous subjects demonstrates that the position of the MnF in
relation to the IB remains almost identical (±0.6 mm) even after tooth loss. Therefore, we consider that this distance is the most important anatomical landmark for the localization of the MnF in relation to the vertical reference plane in the dentate specimens, but especially in the completely edentulous ones.

Globally, in the morphometric studies performed in dentate subjects, the average value of the MnF–SB distance was 16.18 mm, the values being close left/right, between sexes and between the direct morphometry study and the imaging morphometry study by CBCT. The values obtained in the OPG imaging morphometry study were higher, which suggests that the OPGs could have been oversized. By dimensionally comparing the MnF–SB distance in dentate and completely edentulous specimens, an average value of 5.85 mm was obtained, hence we can say that the position of the MnF is closer to the IB in dentate samples and closer to the SB in fully edentulous ones. The MnF–SB distance shows important changes in dimension after the loss of the occlusal support, being very variable, 0–14.7 mm.

The results obtained in this study show similarities, but also many differences, as compared to other studies on the same issue, as we will show below.

The same groups of patients and the same specimens had been used in other previous studies [11, 12]. Oguz & Bozkir (2002) [13], studying the position of the MnF on Turkish population, on dentate dry mandibles, showed that it was located almost in the center of the mandibular body in relation to the vertical plane, a different result from the one we demonstrated.

A study of dry dentate human mandibles, on Indian population, showed that, in the vertical plane, the MnF was situated 10.18 mm away from the superior margin of the mandible and 12.62 mm away from the inferior margin of the mandible [14], which is also a different result from the one presented in this study.

In their studies, other authors presented results similar to those shown previously on the vertical topography of the MnF, according to which it was situated closer to the superior margin of the mandible [15, 16]; such results contradict the results of our study.

In a study on the MnF topography in vertical plane, on Greek population, on dentate and edentulous mandibles, Charalampakis et al. (2017) [17] showed that, in the edentulous samples, it was situated closer to the superior margin of the mandible, at an average value of 6.4 mm; the MnF was located at an average distance of 12.6 mm from the IB. These results were very close to our results. According to the same authors, on the dentate mandibles, the MnF was located 13.6 mm away from the superior margin of the mandible and 15.2 mm away from the inferior margin of the mandible; such results are different from those obtained by us.

Another study showed that the MnF was located almost in the center of the height line of the body of the mandible. Thus, the MnF was found above the IB at a mean distance of 13.34±1.79 mm on the right side and 12.89±1.56 mm on the left side and below the alveolar border at a mean distance of 13.23±2.69 mm on the right side and 13.47±3.06 mm on the left side [18].

Afkhami et al. (2013) [7] studied the vertical topography of the MnF on Iranian population, through imaging morphometry on OPG, and demonstrated that the MnF was situated closer to the inferior border than to the SB, a result that we obtained as well.

Sing & Srivastav (2010) [19] analyzed the topography of the MnF on dry mandibles on Indian population and found that the mean distance from the MnF to the alveolar margin of the mandible was 17.8 mm and to the lower border it was 15.5 mm (average values of the bilaterally measured distances), thus showing the location of the MnF to be closer to the IB, just as we showed.

Souaga et al. (2004) [20] investigated the topography of the MnF on dry mandibles, on Africans, and determined that the distance between the MnF and the superior margin of the mandible was 16.16 mm in men and 15.66 mm in women, and as compared to the IB, it was of 14.89 mm in men and of 14.21 mm in women; such results are close to those presented in this study.

There were other authors who showed in their studies on the MnF topography in the vertical plane that it was positioned closer to the IB [21, 22], as we also highlighted by the results we hereby presented.

However, there were studies on the topography of the MnF in the vertical plane in which only the distance between the MnF and the IB or the distance to the SB were highlighted: such observations did not enable an assessment of the MnF position relative to the mandibular body height [23–25].

Regarding the MnF topography in relation to the root apices, the results obtained in our study are comparable to those reported by other authors, but they also show differences, as can be seen below.

Parmami et al. (2015) [6] studied MnF topography on the vertical plane on Indian population and showed that the MnF was situated below the root apices in most cases, 72.2%, a result which is very close to the one in our study.

Al-Khateeb et al. (2007), in their study on Jordanians, found that the most frequent location of the MnF in the vertical plane was inferior to the roots of the mandibular premolars [1, 26], a result close to the one presented in this study.

Kabak et al. (2017), by assessment on CBCT images on population in Belarus, showed that, in the vertical plane, in 65% of cases, the MnF was situated inferior to the dental roots, at a distance of 3.2±1.3 mm, in 29.5% of cases it was situated at the level of the line drawn through the dental apices and in 5.6% of cases it was located coronal to the root apices [1, 27]. These results are close to those presented in our CBCT imaging morphometry study.

In his retrospective review, Jasim (2020) [28] showed that the MnF was located below the root apices in most cases, a result similar to what we obtained in our study.

In their study on Brazilian population, Fontenele et al. (2021) [29] found that the MnF was more frequently located below the root apices.

In his study on Tanzanian population, Fabian (2007) [30] illustrated that the MnF was located below the root apices, similar to our findings.

Sheikhi et al. (2015) [31] analyzed the MnF topography through CBCT images on Iranians and showed that vertically, the most common location of the MnF was below the root apices.

Ndiaye et al. (2018) evaluated the MnF topography in
the vertical plane by OPG on Senegalese subjects and demonstrated that it was more frequently situated below the dental apex, followed by the position at the root apex level [1, 5]. This result was similar to the one presented in our study.

Race and population variations seen in the MnF topography may exist due to anatomical variations and craniofacial development, but they may also come from the evaluation methodologies [1].

The presence of the MnF, the MC and the accessory MCs in the posterior mandible requires special attention during all surgical procedures performed at this level [12, 32–34].

Conclusions

Failed outcomes following various therapeutic procedures in dentistry can be the consequences of the variations in the position of the MnF. Therefore, accurately locating the MnF becomes essential for the success of conservative and surgical treatments performed in the mandibular premolar area. The morphometric study of the vertical topography of the MnF on 89 human mandibles is a complex study, which showcases uniqueness and authenticity among all the other studies of this type available in the specialized literature. The MnF–IB distance is the most important vertical reference point of the mandibular foramen for the localization of the mandibular foramen (MF) in dentate and edentulous human subjects. Rom J Morphol Embryol, 2021, 62(2):517–523. PMID: 37024740 PMCID: PMC8589227

Conflict of interests

The authors declare that they have no conflict of interests.

Acknowledgments

The present study is part of Ovidiu Rolmus Gherghiţă’s PhD Thesis in the field of Dental Medicine at Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. Deep appreciation and gratitude to Mrs. Irma Eva Csiki for the statistical processing and interpretation of the data.

References

[1] Gherghiţă OR, Nimigean VR, Cisman SC, Nimigean V. Mental foramen topography in dentate subjects – a retrospective study by review of the literature. Rom J Oral Rehabil, 2019, 11(2): 22–34. https://www.rjor.ro/mental-foramen-topography-in-dentate-subjects-a-retrospective-study-by-review-of-the-literature/

[2] Iwanaa J, Choi PJ. Anatomy and variations of the mental foramen. In: Iwanaa J, Tubbs RS (eds). Anatomical variations in clinical dentistry. Springer, Cham, Switzerland, 2019, 59–71. doi:10.1007/978-3-319-97896-1_8

[3] von An T, Lozanoff S. Mental foramen. In: von An T, Lozanoff S. Clinical oral anatomy: a comprehensive review for dental practitioners and researchers. Springer International Publishing, Cham, Switzerland, 2017, 385–398. doi:10.1007/978-3-319-97896-1_8

[4] Mendonca Amorim M, Bevilacqua Prado F, Bicalho Borini C, Oliveira Bittar T, Volpato MC, Gruppo FC, Ferreira Caria PH. The mental foramen in dentate and edentulous Brazilian’s mandible. Int J Morphol, 2008, 26(4):981–987. https://www.scielo.cl/isci.php?script=sci_arttext&pid=S0717-95022008000400033&tlng=en&rsis=iso&eniso&en

[5] Ndiaye ML, Lecor PA, Diatta M, Diop EHC, Diene MN, Diop MM, Toure B. Radiography study of the anatomic position of the mental foramen in a Senegalese population. Acta Sci Dent Sci, 2018, 2(2):44–46. https://actascientific.com/ASDS.php

[6] Parnami P, Gupta D, Arora V, Bhalla S, Kumar A, Malik R. Assessment of the horizontal and vertical position of mental foramen in Indian population in terms of age and sex in dentate subjects by panoramic radiographs: a retrospective study with review of literature. Open Dent J, 2015, 9:297–302. https://doi.org/10.2174/1874210601509010297 PMID: 26464599 PMCID: PMC4598426

[7] Afkhami F, Harajli A, Boostani HR. Radiographic localization of the mental foramen and mandibular canal. J Dent (Tehran), 2013, 10(5):436–442. PMID: 24910651 PMCID: PMC4025417

[8] Güller AU, Sumer M, Sumer P, Biger I. The evaluation of vertical heights of maxillary and mandibular bones and the location of anatomic landmarks in panoramic radiographs of edentulous patients for implant dentistry. J Oral Rehabil, 2005, 32(10): 741–746. https://doi.org/10.1111/j.1365-2842.2005.01499.x PMID: 16159352

[9] Sirbu VD, Perlra V, Nimigean VR, Bădăţia DG, Şerban A, Nimigean V. Morphological assessment of the mandibular canal trajectory in dentate subjects. Rom J Morphol Embryol, 2017, 58(4):1401–1408. PMID: 29566634

[10] Nimigean V, Sirbu VD, Nimigean VR, Bădăţia DG, Poll A, Moraru SA, Păun DL. Morphological assessment of the mandibular canal trajectory in edentate subjects. Rom J Morphol Embryol, 2018, 59(1):235–242. PMID: 29940633

[11] Gherghiţă OR, Nimigean VR, Căsăt IE, Băran-Poeseina V, Virţan MUR, Nimigean V. Direct and imaging morphometry for the localization of the mandibular foramen (MF) in dentate and edentulous human subjects. Rom J Morphol Embryol, 2020, 61(3):783–791. https://doi.org/10.47162/RJME.61.3.16 PMID: 33817719 PMCID: PMC83112752

[12] Gherghiţă OR, Căsăt IE, Bordaies EN, Pellegrini A, Căsmă SC, Motăş N, Nimigean VR, Nimigean V. Morphometric study for determining the anteroposterior position of the mental foramen in dentate human subjects. Rom J Morphol Embryol, 2021, 62(2):517–523. https://doi.org/10.47162/RJME.62.2.18 PMID: 35024740 PMCID: PMC8556023

[13] Oguz O, Bozkir MG. Evaluation of location of mandibular and mental foramina in young, adult human male, dentulous mandibles. West Indian Med J, 2002, 51(1):14–16. PMID: 12089867

[14] Lekshmy Vijay VG, Avadhani R, Sultana Q. An insight into the anthropometric study of mental foramen of jaw bone with respect to its surgical importance. Int J Anat Res, 2017, 5(3):434–438. https://doi.org/10.16965/ijar.2017.330 https://www.ijmhr.org/IntJAnatRes/IJAR.2017.330

[15] Muñoz-Lorenzo J, Fernández-Alonso A, Smyth-Chamosa E, Sáez-Quintana JA, Varela-Mallou J, Sáez-Cunqueiro MM. Predictive factors of the dimensions and location of mental foramen using cone beam computed tomography. PLoS One, 2017, 12(8):e0179704. https://doi.org/10.1371/journal.pone.0179704 PMID: 28817595 PMCID: PMC5565023

[16] Dos Santos Oliveira R, Rodrigues Coutinho M, Kühl Panzarella F, Charalampakis A, Kourkoumelis G, Psari C, Antoniou V, Piagkou M, Demesticha T, Kotsiomitis E, Troupis T. The position of the mental foramen in dentate and edentulous mandibles: a retrospective study-by-review-of-the-literature. dentate subjects by panoramic radiographs: a retrospective study-by-review-of-the-literature. MOJ Anat Physiol, 2018, 5(1):43–48. https://doi.org/10.15406/mojap.2018.05.00162 https://www.medcraveonline.com/MOJAP/positional-variation-and-localization-of-the-mental-foramen.html

[17] Sing R, Srivastav AK. Study of position, shape, size and incidence of mental foramen and accessory mental foramen in Indian adult human skulls. Int J Morphol, 2010, 28(4):1141–1146. https://www.scielo.cl/isci.php?script=sci_arttext&pid=S0717-95022010000400025&lng=en&rsis=iso&eniso&en

[18] Souaga K, Adou A, Angho Y. Etude topographique et morphologique du foramen mentonnier chez le sujet négro-Africain de Côte d’Ivoire [Topographical and morphological study of the mental foramen in black Africans from the Ivory Coast]. Odontostomatol Trop, 2004, 27(105):17–21. PMID: 15281297
[21] Cabanillas Padilla J, Quea Cahuana E. Morphological and morphometric study of the mental foramen using cone-beam CT in dentate adult patients. Odontoestomatología, 2014, 16(24): 4–12. http://www.scielo.edu.uy/scielo.php?script=sci_arttext &pid=S1688-93392014000200002&lng=en&nrm=iso&tlng=en
[22] Igbigbi PS, Lebona S. The position and dimensions of the mental foramen in adult Malawian mandibles. West Afr J Med, 2005, 24(3):184–189. https://doi.org/10.4314/wajm.v24i3.28195 PMID: 16276691
[23] Gada SK, Nagda SJ. Assessment of position and bilateral symmetry of occurrence of mental foramen in dentate Asian population. J Clin Diagn Res, 2014, 8(2):203–205. https://doi.org/10.7860/JCDR/2014/7257 PMID: 24701535 PMCID: PMC3972564
[24] Shalash M, Khalil AF, Ali AR. Position and dimensions of the mental foramen and presence of the anterior loop in the Egyptian population: a retrospective CBCT study. Bull Natl Res Cent, 2020, 44:110. https://doi.org/10.1186/s42269-020-00364-2
[25] Li X, Jin ZK, Zhao H, Yang K, Duan JM, Wang WJ. The prevalence, length and position of the anterior loop of the inferior alveolar nerve in Chinese, assessed by spiral computed tomography. Surg Radiol Anat, 2013, 35(9):823–830. https://doi.org/10.1007/s00276-013-1104-6 PMID: 23525640
[26] Al-Khateeb T, Al-Hadi Hamasha A, Ababneh KT. Position of the mental foramen in a northern regional Jordanian population. Surg Radiol Anat, 2007, 29(3):231–237. https://doi.org/10.1007/s00276-007-0199-z PMID: 17375258
[27] Kabak SL, Zhuravleva NV, Melnichenko YM, Savrasova NA. Topography of mental foramen in a selected Belarusian population according to cone-beam computed tomography. J Prosthet Dent, 2021, Aug 13, S0022-3913(21)00396-6. https://doi.org/10.1016/j.prosdent.2021.07.004 PMID: 34399992
[28] Jasim HH. Evaluation of mental foramen location – a review article. J Med Care Res Rev, 2020, 3(7):379–385. https://doi.org/10.15520/mcrr.v3i7.107 http://mcrr.info/index.php/mcrr/article/view/107
[29] Fontenele RC, Farias Gomes A, Moreira NR, Costa ED, Oliveira ML, Freitas DQ. Do the location and dimensions of the mental foramen differ among individuals of different facial types and skeletal classes? A CBCT study. J Prosthet Dent, 2021, Aug 13, S0022-3913(21)00396-6. https://doi.org/10.1016/j.prosdent.2021.07.004 PMID: 34399992
[30] Fabian FM. Position, shape and direction of opening of the mental foramen in dry mandibles of Tanzanian adult black males. Ital J Anat Embryol, 2007, 112(3):169–177. PMID: 18078238
[31] Shalash M, Khalil AF, Heikmatian E. Cone-beam computed tomography evaluation of mental foramen variations: a preliminary study. Radiol Res Pract, 2015, 2015:124635. https://doi.org/10.1155/2015/124635 PMID: 26609432 PMCID: PMC4644840
[32] Poll A, Minulescu CA, Nimigean VR, Bădăță D, Bălăceanu RA, Păun DL, Moraru SA, Nimigean V. Experimental model for the study of autogenous mandibular bone grafts integration. Rom Biotechnol Lett, 2018, 23(3):13681–13689. https://www.rombio.eu/vol23nr3/16.pdf https://www.rombio.eu/vol23nr3/cuprins.html
[33] Iliescu VI, Cismăș SC, Truță RI, Gherghiță OR, Nimigean V, Nimigean VR. Bilid mandibular canal – a case report. Rom J Morphol Embryol, 2021, 62(2):1363–1366. https://doi.org/10.47162/RJME.62.2.34 PMID: 35024756 PMCID: PMC8848271
[34] Nimigean V, Pol A, Nimigean VR, Moraru SA, Badăță DG, Păun DL. The routine and specialised staining for the histologic evaluation of autogenous mandibular bone grafts. An experimental study. Rev Chim (Bucharest), 2018, 69(5):1106–1109. https://doi.org/10.37358/RC.18.5.6269 https://revistadechimie.ro/Articles.asp?fID=6269

Corresponding authors
Vanda Roxana Nimigean, Associate Professor, DMD, PhD, Head of Oral Rehabilitation Department, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 17–23 Plevnei Avenue, Sector 1, 010221 Bucharest, Romania; Phone +40721–561 848, e-mail: vandanimigean@yahoo.com
Diana Loreta Păun, Associate Professor, DMD, PhD, Department of Endocrinology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, Sector 1, 020021 Bucharest, Romania; Phone +4021–318 08 62, e-mail: diana.pau@umfcd.ro

Received: March 29, 2022
Accepted: September 3, 2022