Revival of sun-and-beach tourism through the lens of regulatory and risk dimensions of environmental sustainability

Zhimin Zhou, Shafaqat Mehmood, Ather Azim Khan, Zahid Ahmad, Salman Khan

Environmental sustainability is essential in tourism literature, and sun-and-beach tourism (SBT) is one of the most popular subsections of the tourism field. The appropriate policies and strategies during the COVID-19 pandemic to revive SBT growth through the lens of the regulatory dimension (RED) and risk dimension (RID) of environmental sustainability are gaining timely ground to conduct this research. The current study examined the nexus between SBT, RED, and RID utilizing three novel indexes (i.e., weighted sun-and-beach tourism index, weighted regulatory dimension index, and weighted risk dimension index) by employing the principal component analysis within the framework of six stages of empirical estimation strategy. These three novel indexes combine the most commonly used SBT, RED, and RID indicators. This research tested the CSD and homogeneous, then employed the second generation CIPS-CADF panel unit root test, used an AMG estimator, and employed the panel Toda-Yamamoto (PTY) causality test. The findings revealed that the RED positively influences SBT while the RID mitigates SBT. Results also indicate bidirectional causality between SBT, RID, and RED. In other words, changes in RID and RED have predictive power for the SBT, which further highlights the role of SBT on the RID and RED. Therefore, concerned authorities can focus on environmental sustainability design initiatives and appropriate policy/strategy implications to boost SBT.

1. Introduction

Environmental sustainability is essential in tourism literature (Kulözü-Uzunboy and Sipahi, 2022; Streimikiene et al., 2021; Sarpong et al., 2020; Saint Akadiri et al., 2019a). Tourism is an important sector of the country’s economy, which arranges services and contributes 10.4% to global GDP (WTTC, 2020). Tourism contains the usage of humanity’s natural capital, boosts the country’s revenue, generates thousands of job opportunities, improves the infrastructures, and leads to cultural exchange (Collins, 1999). The tourism sector provides services to individuals and property, containing economic value and influencing the tax base and economy (Strange, 2005).

The tourism-environment nexus is interdependence (Pávaluc et al., 2020). “It (tourism) is a human activity which encompasses human behaviour, use of resources, and interaction with other people, economies and environments” (Holden, 2016). Holden’s definition of tourism is attentive to social or natural features that emphasize conserving the environment to sustain tourism because tourists interact with the environment, and touristic activities also include rides, sports, tours, and sunbathing. Environment considered as the destination’s nature or atmosphere for tourism, which involves water resources (waterfalls, sea, seaside, rivers, etc.), mountains, green environment (safaris, parks, forests, rainforests, plants, etc.), and wilderness (forest species, animals, wildlife, etc). “In environmental studies it has commonly been assumed that there exists a fundamental connection between a society’s management of natural resources and its perception of nature” (Brunn and Kalland, 1995, p.1).

A complex environment-tourism nexus indicates that tourism can positively and negatively affect environmental degradation (Pávaluc et al., 2020). Tourism could negatively affect the environment if the touristic activities increase compared to the environment’s ability to support it; tourism could positively influence if visitors know the fundamental idea of environmental protection and its sustainability (Ivypanda, 2019). The environmental quality is significant for tourism improvement (Sunlu, 2003) and tourist attractions (Mihalic, 2000), and it is crucial to sustaining the quality of enjoiment because fluctuations in
environmental structure lead to the decline or upsurge in tourist desti-
nations’ competitiveness (CEC, 1994).

Budowski (2009) documented three relational aspects of tourism-environmental nexus for continuous tourism improvement and environmental protection: a) environmental protection and touristic ac-
tions can cause a conflict condition if excessive tourism affects the environment and its resultant mechanisms. Excessive tourism can significantly damage the environment so that several prescriptions or limits can be executed; b) the tourism-environment nexus may become evident by coexistence because this nexus may be noticeable positively, represented by a symbiosis, or have a negative influence, causing a conflict situation between the touristic activities and environment; c) the interdependence environment-tourism nexus purposes for both mecha-
nisms to attain specific goals such as financial benefit and preserve nat-
ural resources. The tourism-environment nexus may positively impact society by improving the quality of life (Styles et al., 2013). Visitors show an increasing concentration on ecotourism (Nistorescu, 2007), and ecotourism is considered a societal phenomenon with rising popularity (Hawkings and Lamoureux, 2001).

“Sun-and-beach tourism is one of the most popular segments of tourism markets” (Femenías Rosselló, 2019). The consistently increasing environmental concerns have raised various questions about sustain-
ability in multiple domains (Holzinger et al., 2021; Saint Akadiri et al., 2019b). Tourism is not exempted from this perspective; therefore, it has been noticed that modern researchers are directing their research to investigate sustainable tourism and highlight different sustainability is-
sues and aspects of tourism (Grilli et al., 2021; Streimikiene et al., 2021; Falatoonitoosi et al., 2021; Garg and Pandey 2021; Akadiri et al., 2020; Uzuner et al., 2020). It means the interest in sustainable tourism is growing in the modern era; however, the current advancements and re-
searches in this field are still limited.

In this regard, a recent topic that has become the point of controversy among researchers is the role of sustainability in enhancing tourism growth because some researchers harmonize that competitiveness and growth of tourism are not linked with sustainability while other re-
searchers emphasize the potential role of sustainability in the growth and competitiveness of tourism (Liu et al., 2022; Hallaj et al., 2022; Tleu-
berdinova et al., 2022; Streimikiene et al., 2021; Léon-Gómez et al., 2021; Zhu et al., 2021; Bazargani and Kılıç, 2021). Empirical literature contains different results using different periods, methodologies, data-
sets, and countries. To conserve space, we have not reported the details literature. However, one should consider the previous studies for comprehensive literature review surveys (Silva et al., 2022; Mondal and Samad, 2021; Ahmad et al., 2020; Tang and Abosedra, 2016; Brida et al., 2014, 2016; Pablo-Romero and Molina 2013) as these studies have already conducted literature survey in detail. Therefore, our study seeks to relevantly new theatrical and empirical conclusions in the context of incorporating three novel indexes that combine the most commonly used sun-and-beach tourism (SBT), regulatory dimension (RED), and risk dimension (RID) indicators, which have not attained much scholarly attention yet.

The impacts of the RED and RID of the environmental sustainability on tourism (Pulido-Fernández et al., 2019) and SBT growth could affect tourism destinations’ economic sustainability and competitiveness in the long term (Femenías Rosselló, 2019). Tourists’ attraction to destination and competitive position are negatively affected if the ecological degeneration surpasses a certain threshold. Therefore, ensuring the competitiveness of SBT through a crucial threshold in management and marketing of tourism destinations. It provides stakeholders with more accurate marketing, environmental management, or driving destination competitiveness (Femenías Rosselló 2019; Claver-Cortés et al., 2007). According to Pulido-Fernández et al. (2015) that “all models that have been designed to identify and study the determinants of a destination’s competitiveness consider sustainability to be a key factor”. Sustainability has tremendous importance in tourism literature (Streimikiene et al., 2021; El-Aidie et al., 2021; Font et al., 2021). In addition to these studies, the reports were published by global institutions and international organizations in which a particular emphasis was made on the positive contribution of sustain-
ability towards tourism development in the countries (WTTG 2021; UNWTO 2021; World Economic Forum 2020; Sachs et al., 2021).

Various studies have investigated factors influencing the quality of the environment within the environmental Kuznets Curve (EKC) hy-
thesis (Akadiri et al., 2019, 2021). Environmental quality could be improved if SBT is promoted because within the context of the envi-
ronmental Kuznets Curve (EKC) hypothesis (Grossman and Krueger, 1991), the environmental quality-growth nexus as an inverted-U shaped “implying that environmental degradation first increases with increasing income level, but after a threshold, economic expansion helps to solve environmental problems” (Pata et al., 2021, p. 5). Finally, SBT helps drive economic activity (income level) important to nearby communities, which could affect the environment quality (Pata et al., 2022) threefold effects: scale, composition, and technique effect (Grossman and Krueger, 1991 as precise by Pata et al., 2021). The tourism-environmental nexus literature delivers information that allows policymakers, investors, and stakeholders to make decisions regarding promotion, conservation, and managing destination competitiveness (Claver-Cortés et al., 2007; Femenías Rosselló, 2019), among others.

Despite the commercial significance of the SBT sector and its close link to the climate ad environment, substantial gaps remain in the research field of environmental sustainability. It means the interest in SBT is growing in the modern era; however, the current advancements and researches in this field are still limited. Timely research is needed to check the influence of RED and RID on SBT, which could clarify the contribution of sustainability in the tourism industry to help organiza-
tions and public administrations deal with problems associated with SBT. Hence the research objectives of this study are twofold: (1) Does the RED of environmental sustainability significantly influences SBT? (2) Does the RID of environmental sustainability significantly influences SBT? This research provides help in estimating the destination’s ability to attract sun-and-beach tourists. Hence, to the best of our knowledge, the present study incorporated a relatively popularizing new six stages empirical estimation strategy, which tested the CSD and homogeneous, then employed the second generation CIPS-CADF panel unit root test, used an AMG estimator, and employed panel Toda-Yamamoto (PTY) causality test. This study is also unique and the first attempt that used three novel indexes: weighted sun-and-beach tourism index (WSBTI), weighted regulatory dimension index (WREDI), and weighted risk dimension index (WRIDI). WSBTI, WREDI, and WRIDI are fascinating because these three novel weighted indexes contained combine’ traditionally and most commonly used SBT, RED, and RID indicators by employing the principal component analysis.

2. Data description

Environmental sustainability refers to the rates of “renewable resource harvest, pollution creation, and non-renewable resource depletion” that can be maintained consistently. If these rates are not consistent, they are not sustainable (Peeters and Landré, 2011). En-
vironmental sustainability contains two dimensions (i.e., regularity and risk dimensions). Pulido-Fernández et al. (2019) explained the empirical underpinnings of the division of dimensions of environmental sustain-
ability. To conserve space, we have not reported the details literature. However, one should be considered the study of Pulido-Fernández et al. (2019) for a comprehensive literature review survey about the division of dimensions of environmental sustainability. At the same time, our study seeks a relevantly new empirical conclusion incorporating three novel weighted indexes (i.e., WSBTI, WREDI, and WRIDI), which have not attained much scholarly attention yet.

The dataset in our study comprises traditionally and most commonly used SBT indicators, RED indicators, and RID indicators of three novel weighted indexes as proxies for the SBT, RED, and RID, respectively. The current paper uses annual data from 2005 to 2020 about the
abovementioned indicators—the data collected from the top eleven sun-
and-beach destinations involved in the SBT activities (i.e., Australia, Fiji,
Greece, Philippines, Maldives, Malaysia, Indonesia, Spain, Cuba, United
States, and France). The purposive sampling used in the current study in
which the abovementioned countries sample has been decided according
to the purpose. Data about the most commonly used SBT, RED, and RID
indicators were collected from secondary sources (see Table 1). The
World Bank Development Indicators (WDI) and Travel & Tourism
Competitiveness Index (TTCI) were preferred to collect data for the
current paper.

Traditionally, the measurement of tourism flow in the tourism litera-
ture has been widely dependent on three key variables separately: in-
bound arrivals (IA) (Yıldırım et al., 2021; Yuan et al., 2021; Adedoyin
et al., 2021), international tourism receipts (ITR) (Wei and Ullah 2022;
Yıldırım et al., 2021; Adedoyin et al., 2021), and international tourism
expenditures (ITE) (Gedikli et al., 2022; Maneejuk et al., 2022; Nguyen
et al., 2022). These three variables partially reflect environmental and
economic growth because of their unique characteristics. Such as IA, ITR,
and ITE reflect the total number of tourists, expense side, and income
side, respectively. Secondly, three RID indicators are combined into a
single index and used as a proxy for the RID: electricity production (EP)
(Bekun et al., 2022; Aolola et al., 2021; Khan and Hou 2021), CO2 emis-
sions (CO2) (Siqin et al., 2022; Huang et al., 2021), and terrestrial pro-
ected areas (TPA) (Li et al., 2022; Abedin et al., 2022). Similarly, three
RED indicators are combined into a single index and used as a proxy for
the RED: stringency of environmental regulation (SER) (Lu et al., 2022;
Albulescu et al., 2022), environmental regulation enforcement (ERE)
(Chu and Tran, 2022; Zhou and Zhao, 2022; Zhang et al., 2021), and
quality of the natural Environment (QNE) (Wei and Ullah, 2022; Tripathy
et al., 2022; Yang et al., 2022; Yang and Li 2022).

2.1. Re-scaling the indicators

Table 2 presents the statistical summary of re-scale the indicators to
calculate SBT, RED, and RID. In preparing the nine indicators (see
Figure 1) as a standard process for homogenizing the information,
standardized values were calculated from the average values of SBT in-
dicators, RED indicators, and RID indicators separately for each year to
re-scale the different measures into a similar unit system. Cronbach’s
alpha was employed to check the internal consistency for the SBT
index (Cronbach’s alpha value was 0.853 in 2005 and 0.875 in 2020). The values
of Cronbach’s alpha confirm the creamy consistency of scale in both
cases.

2.2. Novel weighted indexes: WSBTI, WREDI, and WRIDI

Zaman et al. (2016) argued that there are high chances of multicollinear-
ity during regression models in response to the contemporary use of these variables because these variables are highly correlated. In
this context, the use of principal component analysis (PCA) is a relatively
an advantageous method, enabling to analyze of a precise and compre-
hesive picture of the nexus between SBT, RED, and RID by employing
the majority of relevant and accurate information of the SBT indicators,
RED indicators, and RID indicators into single indexes separately:
weighted sun-and-beach tourism index (WSBTI), weighted regulatory
dimension index (WREDI), and weighted risk dimension index (WRIDI).
Table 3 depicts the overall results of PCA for WSBTI, WREDI, and WRIDI
alone with their concerning indicators. Results show the relevance of the
first principal component as the eigenvalues exceed 1. The eigenvalues of
WREDI, WRIDI, and WSBTI are 2.951, 2.864, and 2.763, respectively.
Furthermore, weighted indexes also have a high positive correlation as
the correlation coefficients exceed 0.7.

3. Empirical methodology

We followed a six-step empirical estimation strategy, as shown in
Figure 2. The approaches are selected according to the analysis re-
quirements at each stage.

3.1. Cross-sectional dependence

Firstly, cross-sectional dependence (CSD) means joint shocks and unobservable effects between cross-section units because a shock (posi-
tive or negative) in one country’s economy can influence another coun-
try’s economy. Three different CTS tests can determine this dependence.
Breusch and Pagan (1980) proposed the Lagrange Multiplier (LM) test.

\[
LM = T \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} P_{ij}^2 / (N-1)^2 \quad i \neq j
\]

Pesaran (2004) criticized the Breusch-Pagan LM test because it is
ineffective when N is large and developed CD and CD_{LM} tests to encounter
this issue.

\[
CD_{LM} = \sqrt{ \sum_{i=1}^{N} \sum_{j=i+1}^{N} (T P_{ij}^2 - 1) / N(N-1) } \quad N(0, 1)
\]

\[
CD = \sqrt{ \sum_{i=1}^{N} \sum_{j=i+1}^{N} P_{ij}^2 / N(N-1) } \quad N(0, 1)
\]

Table 1. Variables and sources.

Variables	Symbol	Unit of measurement	Data sources
Sun-and-beach tourism			
Inbound arrivals	IA	number of arrivals	WDI (2020)
International tourism receipts	ITR	Current US$	WDI (2020)
International tourism expenditures	ITE	Current US$	WDI (2020)
Risk dimension			
Electricity production	EP	% of total	WDI (2020)
CO2 emissions	CO2	Metric tons per capita	WDI (2020)
Territorial protected areas	TPA	% of total land area	WDI (2020)
Stringency of environmental regu-			
lation	SER	scale	TTCI (2020)
Environmental regulation en-			
forcement	ERE	scale	TTCI (2020)
Quality of the natural Environment	QNE	Number of World Heritage natural sites	TTCI (2020)

Note: We re-scaled the different measures into a similar unit system (see section 2.1).
Table 2. Statistical summary of re-scaling the indicators to calculate SBT, RED, and RID.

Indicators	2005 Average	2020 Average	Mean Diff.	Mean Diff. 95% CI		
	Mean	Std. Dev.	Mean	Std. Dev.	Min.	Max.
IA	35.362	9.505	44.892	11.983	9.53	3.864
ITR	1881.1	484.917	1790.854	496.731	-90.246	-158.904
ITE	5.981	0.98	9.071	1.723	3.09	0.865
SER	4.871	0.084	4.905	0.089	0.034	0.152
ERE	4.207	0.099	4.832	0.097	0.725	0.252
QNE	4.991	0.087	4.013	0.091	-0.978	-0.301
CO2	6.155	0.744	4.971	0.492	-1.184	-0.601
TPA	14.023	0.965	16.81	0.994	2.787	1.821
EP	5.106	0.396	5.998	0.521	0.892	0.089

Note: A bootstrap method for estimation, as argued by Zaman et al. (2016), there is a high chance of multicollinearity during the regression model in response to the contemporary use of these variables because these variables highly correlated with each other (normality assumption was not met).

Table 3. PCA results: WSBTI, WRIDI, and WREDI.

WI	EV	PE1stPC	FL1stPC	WI EV	PE1stPC	FL1stPC	CWWI	
WSBTI	2.951	0.984		IA	0.573	0.58	0.573	0.956
				ITR	0.573	0.58	0.573	0.956
				ITE	0.956	0.97	0.956	0.982
WRIDI	2.763	0.942		EP	0.592	0.581	0.573	0.879
				CO2	0.581	0.573	0.879	0.782
				TPA	0.592	0.581	0.879	0.782
WREDI	2.864	0.963		SER	0.581	0.592	0.571	0.841
				ERE	0.592	0.571	0.841	0.841
				QNE	0.581	0.592	0.841	0.841
				SER	0.592	0.571	0.841	0.841
				STTD	0.841	0.592	0.571	0.841
				ERE	0.841	0.592	0.571	0.841

Note: This table depicts the overall results of principal component analysis (PCA). WI, AVI, PE1stPC, FL1stPC, and CWWI denote average values of indicators, Eigenvalue, proportion explained by first principal component, factor loading of first principal component, and correlation with weighted index, respectively. WSBTI, WRIDI, and WREDI denote the weighted sun-and-beach tourism index, risk dimension index, and regulatory dimension index. AI, ITR, ITE, EP, CO2, TPA, SER, ERE, and QNE denote inbound arrivals, international tourism receipts, international tourism expenditures, electricity production, CO2 emissions, terrestrial protected areas, the stringency of environmental regulation, environmental regulation enforcement, and quality of the natural environment, respectively.
3.2. Slope homogeneity

Secondly, Pesaran and Yamagata (2008) proposed delta tests (Δ and Δ_{adj}) based on the \tilde{S} statistic developed by Swamy (1970) to deal with panel data that may not be homogeneous (Eqs. (4) and (5)).

$$
\Delta = \sqrt{N} \left(\frac{N^{-1} \tilde{S} - k}{\sqrt{2k}} \right)
$$

(4)

$$
\Delta_{adj} = \sqrt{N} \left(\frac{N^{-1} \tilde{S} - E(\tilde{S})}{\sqrt{\text{var}(\tilde{S})}} \right)
$$

(5)

3.3. Panel unit root tests

Thirdly, we considered CSD in this study by employing Pesaran’s (2007) proposed the second generation augmented cross-sectional IPS panel unit root test (CIPS), which led to improved statistical presentation than the first-generation panel unit root test. CIPS extends the test of Im et al. (2003) IPS for evaluating CSD by considering cross-sectional averages (Eqs. (6) and (7)).

$$
\Delta y_{it} = a_i + g_i t + b_i y_{i,t-1} + e_{it} + \sum_{j=1}^{p} d_j \Delta y_{i,j-1} + \sum_{j=2}^{r} \phi_j \Delta y_{i,t-j} + e_{it}
$$

(6)

$$
\text{CIPS} (N, T) = N^{-1} \sum_{i=1}^{N} \text{CADF}_i
$$

(7)

3.4. Bootstrap LM panel cointegration test

Fourthly, to test the cointegration relationship, we employed the LM panel cointegration test (Eq. (8)) to include CSD proposed by Westerlund and Edgerton (2007).

$$
LM_{it} = \frac{1}{N T} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(\hat{\alpha}_i^2 - S_i^2 \right)
$$

(8)

3.5. Long-run estimator

Fifthly, this study used an augmented mean group (AMG) estimator to check the long-term coefficients of variables, see Eq. (9), which Eberhardt and Teal (2010) suggested.

$$
\Delta y_{it} = a_i + b_i \Delta X_{it} + \phi_i t + \sum_{j=2}^{r} \tau_j D_{ij} + \epsilon_{it}
$$

(9)

3.6. Panel Toda-Yamamoto causality test

Finally, we employed Toda-Yamamoto (PTY) causality test (Toda and Yamamoto, 1995). Emirmahmutoglu and Kose (2011) suggested a new test based on merging the test statistics of the PTY test, as shown in Eq. (10), by following the meta-analysis approach of Fisher (1992).

$$
\text{PTY} = -2 \sum_{i=1}^{N} \text{ln}(p_i) \quad i = 1, 2, 3, ..., N
$$

(10)

Table 4. Results of CSD and homogeneity.

	Breusch-Pagan LM	Pesaran scaled LM	Pesaran CD
lnSBT	215.4739***	14.25178***	4.350608***
lnRED	324.9354***	24.68852***	1.028383
lnRID	388.0202***	30.70343***	11.2113***

(Pesaran and Yamagata, 2008, Journal of Econometrics)

H0: slope coefficients are homogenous

Slope Homogeneity Test Statistics p-value

Δ test 4.323*** 0.000

Δ_{adj} test 5.295*** 0.000

Note: * indicate significance at 1% level.
Then, we employed AMG estimator to assess the long-run coefficients (see Table 7). The findings suggest that a 1 unit increase in RED leads to 0.52% increase in SBT insignificantly, while a 1 unit increase in DIR leads to a 0.75% decrease in SBT. The results imply a direct connection between RED and SBT in the long run. These findings are consistent with the finding of previous research (Wan and Li, 2013; Sirakaya-Turk et al., 2014). The findings also show an inverse relationship between RID and SBT in the long run. These outcomes are also consistent with the previous studies (Peeters and Landré, 2011; Pulido-Fernández et al., 2015).

Finally, we investigate the causal effects among the SBT, RED, and RID using the PTY panel causality test. The findings demonstrated in Table 8 show a bidirectional causality between SBT, RID, and RED. In other words, changes in RID and RED change the impact of SBT, and vice versa. These findings provide practical implications for the environmental and sun-and-beach tourists. The concerned authorities should focus on triggering the importance of RED and RID within pro-environmental campaigns. Countries’ policymakers will be able to make appropriate policies to realize the positive contribution of environmental sustainability to SBT. Besides these contributions, the current study has certain limitations.

5.1. Limitations and future research

Although this study provides fruitful insights and represents a pioneering attempt and preliminary steps to investigate the nexus between SBT, RED, and RID utilizing three novel indexes impact, it does have some shortcomings that open avenues for future work. The findings could...
not be generalized as a theory yet, because our study reflects only the tourism-environment nexus and is limited to only the top eleven sun-and-beach destinations. A larger panel sample and different periods should also be considered to generalize the results of this research in future research. This study presented an aggregate (panel) level picture tourism-environmental nexus within the top eleven sun-and-beach destinations involved in the SBT activities but does not indicate a cross-sectional country-level picture of the tourism-environmental nexus. This blinking area leads toward future research. Future researchers should assess this relationship in other segments of tourism. Furthermore, the current study considered only two dimensions of environmental sustainability while many other dimensions can affect the SBT, so future researchers should go for more dimensions of sustainability. Future research may further expand to the different regional level tourism-environment nexus through a longitudinal study and expand the sample for more reliable results.

Declarations

Author contribution statement

Zhimin Zhou and Shafaqat Mehmood: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Ather A. Khan, Zahid Ahmad and Salman Khan: Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This work was supported by the National Natural Science Foundation of China [grant number: 72172093 and 71832015].

Data availability statement

Data included in article/supp. material/referenced in article.

Declaration of interest’s statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Ahmad, N., Menegaki, A.N., Al-Muharrami, S., 2020. Systematic literature review of tourism growth nexus: an overview of the literature and a content analysis of 100 most influential papers. J. Econ. Surv. 34 (5), 1068–1110.

Abdel, M., Khandaker, M.U., Uddin, M., Karim, M., Almadi, M., Islam, M., et al., 2022. PPE pollution in the terrestrial and aquatic environment of the Chittagong city area associated with the COVID-19 pandemic and concomitant health implications. Environ. Sci. Pollut. Res. 1–13.

Adedoyin, F.F., Alola, U.V., Bekun, F.V., 2021. On the nexus between globalization, tourism, economic growth, and biocapacity: evidence from top tourism destinations. Environ. Sci. Pollut. Res. 1–11.

Akadiri, S.S., Lasisi, T.T., Uzuner, G., Akadiri, A.C., 2019. Examining the impact of globalization in the environmental Kuznets curve hypothesis: the case of tourist destination states. Environ. Sci. Pollut. Res. 26 (12), 12605–12615.

Akadiri, S.S., Lasisi, T.T., Uzuner, G., Akadiri, A.C., 2020. Examining the causal impacts of tourism, globalization, economic growth and carbon emissions in tourism island territories: bootstrap panel Granger causality analysis.Curr. Issues Tourism23(4),470–484.

Akadiri, S.S., Uzuner, G., Akadiri, A.C., Lasisi, T.T., 2021. Environmental Kuznets curve hypothesis in the case of tourism island states: the moderating role of globalization. Int. J. Finance Econ. 26 (2), 2866–2885.

Albulescu, C.T., Boața-Barabas, M.E., Diaconescu, A., 2022. The asymmetric effect of environmental policy stringency on CO2 emissions in OECD countries. Environ. Sci. Pollut. Res. 1–17.

Alola, A.A., Lasisi, T.T., Eluwole, K.K., Alola, U.V., 2021. Pollutant emission effect of tourism, real income, energy utilization, and urbanization in OECD countries: a panel quantile approach. Econ. Rev. Econ. Stud. 47 (1), 239–253.

Bazargani, R.H.Z., Kılıç, H., 2021. Tourism competitiveness and tourism sector performance: empirical insights from new data. J. Hosp. Tour Manag. 46, 50–52.

Belon, F.V., Gyamfi, B.A., Bamidele, R.O., Udemba, E.N., 2022. Tourism-induced emission in sub-saharan Africa: a panel study for oil-producing and non-oil-producing countries. Environ. Sci. Pollut. Res. 1–17.

Bresch, T.S., Pagan, A.R., 1980. The Lagrange multiplier test and its applications to model specification in econometrics. Rev. Econ. Stud. 47 (1), 239–253.

Brida, J.G., Cortes-Jimenez, I., Pulina, M., 2014. Has the tourism-led growth hypothesis been violated? A literature review. Curr. Issues Tourism 1 (1), 1–37.

Brida, J.G., Lanzillotta, B., Pinzolito, F., 2016. Dynamic relationship between tourism and economic growth in MERCOSUR countries: a nonlinear approach based on asymptotic time series models. Econ. Bull. 36 (2), 879–894.

Bruno, O., Kalland, A., 1995. Images of nature: an introduction. In: Asian Perceptions of Nature: A Critical Approach, pp. 173–188.

Budowski, G., 2009. Tourism and environmental conservation: coexistence, or symbiosis? Found. Environ. Conserv., Switzerland III (1), 27.

Chu, L.K., Tran, T.H., 2022. The nexus between environmental regulation and ecological footprint in OECD countries: empirical evidence using panel quantile regression. Environ. Sci. Pollut. Res. 1–24.

Claver-Cortes, R., Moliner, J.M., 2007. Competitiveness in mass tourism. Ann. Tourism Res. 34 (3), 727–745.

Collins, A., 1999. Tourism development and natural capital. Ann. Tourism Res. 26 (1), 98–109.

Commission of the European Communities, 1994. Europe 2000:: Cooperation for European Territorial Development, vol. 93. Office for Official Publications of the European Communities.

Eberhardt, M., Teal, F., 2010. Productivity Analysis in Global Manufacturing Production, Economics Series Working Papers, vol. 515. University of Oxford, Department of Economics.

El-Aidie, S., Alshehri, H.A.S.M., Khalifa, G.S., 2021. Tourism sustainability and competitiveness: a strategic platform. City Univ. E.U. Acad. Res. (CleJUEAR) 3 (2), 1–19.

Emirhanmutuglo, F., Kose, N., 2011. Testing for Granger causality in heterogeneous mixed panels. Econ. Modell. 28 (3), 870–876.

Faiz, M., Shahbaz, M., Ghani, Z., 2015. Does tourism development affect economic growth in MERCOSUR countries? A nonlinear approach based on asymptotic time series models. Econ. Bull. 35 (4), 918–924.

Farkas, A., Farkas, K., 2013. Tourism and sustainability: rethinking the tourism–environment link. Tourism Manag. 38, 110–111.

Feminis Rosselli, L.B., 2019. The Role of beach Attributes in Sun-And-beach Destination Choice: an Application to Spanish Domestic Tourism. Master’s Thesis. Universitat de les Illes Balears. UIBrepositori.https://dspace.uib.es/xmlui/handle/11201/154676.

Fisher, R.A., 1992. Statistical methods for research workers. In: Breakthroughs in Statistics. Springer, New York, NY, pp. 56–70.

Font, X., Torres-Delgado, A., Cebula, G., Palomo Martinez, J., Kantenbacher, J., Miller, G., 2021. The impact of sustainable tourism indicators on destination competitiveness: the European Tourism Indicator System. J. Sustain. Tourism 1–24.

Garg, P., Pandey, A., 2021. Towards sustainable tourism: an empirical investigation. Foresight 23 (2), 188–200.

Gedikli, A., Ergogan, S., Çevik, E.I., Çevik, E., Castanho, R.A., Couto, G., 2022. Dynamic relationship between international tourism, tourism growth and environmental impact in the OECD countries: evidence from panel VAR model. Econ. Res.-Ekonomska Istraživanja 1–17.

Grilli, G., Tylianakis, E., Luissetti, T., Ferrari, S., Turner, R.K., 2021. Prospective tourism preferences for sustainable tourism development in Small Island Developing States. Tourism Manag. 82, 104178.

Grossman, G.M., Krueger, A.B., 1991. Environmental Impacts of a North American Free Trade Agreement.

Halaji, Z., Bijani, M., Abbas, E., Valizadeh, N., Mohammadi, M., 2022. Tourism development during the pandemic of coronavirus (COVID-19): evidence from Iran. Front. Public Health 10.

Hawkin, D.E., Lamoreaux, L., 2001. The encyclopaedia of ecotourism. In: Weaver, D.B. (Ed.), Global Growth and Magnitude of Ecotourism, School of Tourism and Hotel Management, Griffith University, Australia, pp. 63–73.

Holden, A., 2016. Environment and Tourism. Routledge.

Holzinger, A., Weippl, E., Tjoa, A.M., Kiesberg, P., 2021. August. Digital transformation for sustainable development goals (SDGs)-A security, safety and privacy perspective on AI. In: International Cross-Domain Conference for Machine Learning and Knowledge Extraction. Springer, Cham, pp. 1–20.

Huang, C., Wang, J.W., Wang, C.M., Cheng, J.H., Dai, J., 2021. Does tourism industry agglomeration reduce carbon emissions? Environ. Sci. Pollut. Res. 28 (23), 20278–20293.

Im, K.S., Pesaran, M.H., Shin, Y., 2003. Testing for unit roots in heterogeneous panels. J. Econom. 115 (1), 53–74.

IvyPanda, 2019. Tourism - Environment Relationships. https://ivypanda.com/essays tourism-environment-relationships/

Khan, I., Hou, F., 2021. The dynamic links among energy consumption, tourism growth, and the ecological footprint: the role of environmental quality in 38 IEA countries. Environ. Sci. Pollut. Res. 28 (5), 5049–5052.

Kuloz, Uzunboy, N., Sipahi, S., 2022. Sustainability motivation factors and their impacts: the case of Palandokken Winter Tourism Center, Erzurum. Environ. Sci. Pollut. Res. 1–15.

León-Gómez, A., Ruiz-Palomo, D., Fernández-Gámez, M.A., García-Reviilla, M.R., 2021. Sustainable tourism development and economic growth: bibliometric review and analysis. Sustainability 13 (4), 2270.
Li, J., Liu, S., Hong, T., You, W., Hu, X., 2022. Does leakage exist in China’s typical protected area? Evidence from 13 national nature reserves. Environ. Sci. Policy. Res. 29 (5), 6822–6836.

Liu, H., Hasan, M., Cui, D., Yan, J., Sun, G., 2022. Evaluation of tourism competitiveness and mechanisms of spatial differentiation in Xinjiang, China. PLoS One 17 (2), e0263229.

Lu, L., Fan, X., Ullah, S., Younas, M.Z., 2022. Re-evaluating the dynamic role of shadow economy and environmental policy stringency in the energy-growth nexus in China. Environ. Sci. Policy. Res. 29, 17406–17416.

Manerjuk, P., Yamaka, W., Srichakut, W., 2022. Tourism development and economic growth in southeast Asian countries under the presence of structural break: panel kink with GME estimator. Mathematics 10 (5), 723.

Mihalic, T., 2000. Environmental management of a tourist destination: a factor of tourism competitiveness. Tourism Manag. 21 (1), 65–78.

Mondal, S., Samaddar, K., 2021. Responsible tourism towards sustainable development: literature review and research agenda. Asia Pac. Bus. Rev. 27 (2), 229–266.

Nguyen, C.P., Schirnus, C.S., Dinh Su, T., 2022. The determinants of outbound tourism: a revisit of socioeconomic and environmental conditions. Tour. Anal.

Nistoreanu, P., 2007. The indestructible relationship between tourism and sustainable development. Rev. Turism (4), 59–63.

Pablo-Romero, M.D.P., Molina, J.A., 2013. Tourism and economic growth: a review of empirical literature. Tourism Manag. Perspect. 8, 28–41.

Pata, U.K., Åydin, M., Hossain, I., 2021. Are natural resources abundance and human development a solution for environmental pressure? Evidence from top ten countries with the largest ecological footprint. Resour. Pol. 70, 101923.

Pata, U.K., Vilanc, V., Hussain, B., Naqvi, S.A.A., 2022. Analyzing the role of income inequality and political stability in environmental degradation: evidence from South Asia. Gondwana Res. 107, 15–29.

Piváčar, C., Anichiti, A., Níth, V., Butnaru, G.L., 2020. Analysing the relationship between tourism development and sustainability by looking at the impact on the environment. A study on the European Union countries. CES Work. Pap. 12 (1), 1–19.

Peeters, P., Landrø, M., 2011. The emerging global tourism geography—an environmental sustainability perspective. Sustainability 4 (1), 42–71.

Pesaran, M.H., 2004. General Diagnostic Tests for Cross Section Dependence in Panels. In: Pata, U.K., Aydin, M., Haouas, I., 2021. Are natural resources abundance and human development a solution for environmental pressure? Evidence from G20 countries. Environ. Sci. Policy. Res. 1–22.

United Nation World Tourism Organization, 2021. Big Data for Better Tourism Policy, Management, and Sustainable Recovery from COVID-19. Retrieved August 13, 2021.

Uzuner, G., Akaldı, S.S., Lasti, T.T., 2020. The asymmetric relationship between globalization, tourism, CO2 emissions, and economic growth in Turkey: implications for environmental policy making. Environ. Sci. Policy. Res. 27 (26), 32742–32753.

Wan, Y.K.P., Li, X., 2013. Sustainability of tourism development in Macao, China. Int. J. Tourism Res. 15 (1), 52–65.

Wei, L., Ullah, S., 2022. International tourism, digital infrastructure, and CO2 emissions: fresh evidence from panel quantile regression approach. Environ. Sci. Policy. Res. 1–8.

Westerlund, J., Edgerton, D.L., 2007. A panel bootstrap cointegration test. Econ. Lett. 97 (3), 185–190.

World Bank, 2020. World Development Indicators. Washington, United States. https://data.worldbank.org/indicator/world-development-indicators.

World Economic Forum (WEF), 2020. The Travel & Tourism Competitiveness Index 2019 (TTCI). Geneva.

World Travel and Tourism Council, 2020. Economic Impact Analysis. Country Reports. World Travel and Tourism Council, London, UK. https://wttc.org/Research/Econom ic-Impact/economic-research/economic-impact-analysis/country-reports.

World Travel and Tourism Council. 2019. Towards Destination Stewardship: Achieving Destination Stewardship through Scenarios & A Governance Diagnostics Framework. Retrieved August 13, 2021 from. https://wttc.org/Portals/0/Documents/Reports/2021/Destination-Stewardship-Framework.pdf?ver=2021-07-22-091804-637.

Yang, W., Li, D., 2022. Spatio-temporal evolution of ecological environment quality in China from a concept of strong sustainability. Environ. Sci. Policy. Res. 1–15.

Yang, X., Li, N., Ahmad, M., Hu, H., 2022. Natural resources, population aging, and environmental quality: analyzing the role of green technologies. Environ. Sci. Policy. Res. 1–15.

Yildirim, S., Yildirim, D.C., Aydin, K., Erdogan, F., 2021. Regime-dependent effect of tourism on carbon emissions in the Mediterranean countries. Environ. Sci. Policy. Res. 28 (39), 54766–54780.

Yuan, H., Nie, X.K., Xu, X.Y., 2021. Relationship between tourism number and air quality by carbon footprint measurement: a case study of Jiuzhaigou Scenic Area. Environ. Sci. Policy. Res. 28 (16), 20904–20902.

Zaman, K., Shabbir, M., Loganganth, N., Raza, S.A., 2016. Tourism development, energy consumption and Environmental Kuznets Curve: trivariate analysis in the panel of developed and developing countries. Tourism Manag. 54, 275–283.

Zhang, K., Xu, D., Li, S., Wu, T., Cheng, J., 2021. Strategic interactions in environmental regulation enforcement: evidence from Chinese cities. Environ. Sci. Policy. Res. 28 (2), 1992–2006.

Zhou, X., Zhao, X., 2022. Does diversified environmental regulation make FDI cleaner and more beneficial to China’s green growth? Environ. Sci. Policy. Res. 29 (3), 3487–3497.

Zhu, L., Zhao, L., Li, S., 2021. Is sustainable development reasonable for tourism destinations? An empirical study of the relationship between environmental competitiveness and tourism growth. Sustain. Dev. 29 (1), 66–78.

Streimikiene, D., Svangzdziene, B., Jasinskas, E., Simonavicius, A., 2021. Sustainable tourism development and competitiveness: the systematic literature review. Sustain. Dev. 29 (1), 259–271.

Styles, D., Schonberger, H., Galvez Martos, J.L., 2013. Best Environmental Management Practice in the Tourism Sector. Publications Office of the European Union.

Sunlu, U., 2003. Environmental impacts of tourism. In: Camarda, D., Grassini, L. (Eds.), Local Resources and Global Trades: Environments and Agriculture in the Mediterranean Region. CIHRAI, Bari, pp. 263–270. Options Méditerranéennes: Serie A. Séminaires Méditerranéens; n. 57, retrieved from. https://om.cimean.org/om/p df/5a7f04001977.pdf.

Svanery, P.A., 1970. Efficient inference in a random coefficient regression model. Econometrica. J. Econometrics. Soc. 311–323.

Tang, C.F., Aboseera, S., 2016. Tourism and growth in Lebanon: new evidence from bootstrap simulation and nulling causality approaches. Empir. Econ. 50 (2), 679–696.

Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. J. Econ. 66 (1-2), 225–250.

Tuleyberdinova, A., Salavatova, D., Pratt, S., 2022. Assessing tourism destination competitiveness: the case of Kazakhstan. J. Policy Res. Tour. Leis. Events 1–19.

Tripathy, P., Khatua, M., Behera, P., Satpathy, L.D., Jena, P.K., Mishra, B.R., 2022. Dynamic link between bilateral FDI, the quality of environment and institutions: evidence from G20 countries. Environ. Sci. Policy. Res. 1–22.