Comparison of Denoising Algorithms for Demosaicing Low Lighting Images using CFA 2.0

Chiman Kwan and Jude Larkin

Applied Research, LLC, Rockville, Maryland, USA

Abstract

In modern digital cameras, the Bayer color filter array (CFA) has been widely used. It is also widely known as CFA 1.0. However, Bayer pattern is inferior to the red-green-blue-white (RGBW) pattern, which is also known as CFA 2.0, in low-lighting conditions in which Poisson noise is present. It is well known that demosaicing algorithms cannot effectively deal with Poisson noise and additional denoising is needed in order to improve the image quality. In this paper, we propose to evaluate various conventional and deep learning based denoising algorithms for CFA 2.0 in low lighting conditions. We will also investigate the impact of the location of demosaicing, which refers to whether the denoising is done before or after a critical step of demosaicing. Extensive experiments show that some denoising algorithms can indeed improve the image quality in low lighting conditions. We also noticed that the location of denoising plays an important role in the overall demosaicing performance.

Keywords

Bayer pattern, RGBW pattern, CFA 1.0, CFA 2.0, color filter array, demosaicing, denoising, pansharpening, deep learning

1. Introduction

Bayer pattern [1] was invented in the early 1980’s and is still a very popular color filter array (CFA) for digital cameras. The Bayer pattern as shown in Figure 1(a) is also known as CFA 1.0 in the literature. Even for planetary explorations, NASA has adopted the Bayer pattern in the Mastcam imagers onboard the Mars rover Curiosity [2]-[5].

Aiming to improve the Bayer pattern in low lighting conditions, Kodak researchers [6,7] invented a red-green-blue-white (RGBW) CFA pattern, which is also known as CFA 2.0, as shown in Figure 1(b).

Figure 1. Two CFA patterns. (a) CFA 1.0; (b) CFA 2.0.
Figure 1(b). Half of the pixels in CFA 2.0 are white and the remaining pixels share the R, G, and B colors. Due to the presence of white pixels, the camera sensitivity is increased and hence the performance of CFA 2.0 in low lighting conditions should be better than CFA 1.0. Extensive experiments in [8] showed that CFA 2.0 is in indeed better than CFA 1.0 in low lighting conditions, where Poisson noise is dominant. Figure 2 shows a clean color image and two noisy images with different levels of Poisson noise. It can be seen that the noise can seriously affect the visual quality of the images. In low lighting conditions, demosaicing methods alone are not sufficient in suppressing the noise. Although there are some joint demosaicing and denoising algorithms such as [9] in the literature, those algorithms are tailored to only Gaussian noise. In an earlier paper [8], we developed new demosaicing algorithms for CFA 2.0. In the process, we also investigated the impact of denoising on the overall image quality. However, the denoising investigation in [8] was limited to only one method, the block matching in 3D (BM3D), even though the performance BM3D is reasonable.

![Fig 2](image-url)

Figure 2. Comparison of clean and noisy images with different levels of Poisson noise.

To the best of our knowledge, joint denoising and demosaicing for CFA 2.0 is underdeveloped in the literature. In this paper, we will thoroughly investigate different algorithms in dealing with Poisson noise. We focus on CFA 2.0 because it was concluded in our earlier papers [8][10]-[12] that CFA 2.0 has better performance in low lighting conditions. Since only one denoising algorithm was used in [8], we would like to investigate how much performance we can further improve if we adopt other conventional and new denoising algorithms. In particular, we applied six conventional and one deep learning algorithms for suppressing Poisson noise. Two signal-to-noise (SNR) levels (10 dB and 20 dB) of Poisson noise were introduced into clean Kodak images. Moreover, three denoising configurations were also investigated. This is because, in our earlier paper [8], we observed that the location of denoising can have very different overall performance in the final demosaiced images.

Our contributions are as follows. First, we thoroughly compared seven denoising algorithms for low lighting images. Some filters can improve the image quality quite significantly. Second, three denoising configurations were studied. One configuration works better than others. Third, we are the first team to carry out denoising and demosaicing studies for CFA 2.0.

The rest of this paper is organized as follows. Section 2 summarizes the methods, data, and performance metrics. In Section 3, we present the denoising results for two noisy conditions. Finally, we conclude the paper with a few remarks and future directions.

2. METHODS, DATA, AND PERFORMANCE METRICS

2.1. Architecture

Figure 3 shows the architecture of the proposed joint denoising and demosaicing system. Given an RGBW or CFA 2.0 image, we apply the Linear Directional Interpolation and Nonlocal
Adaptive Thresholding (LDI-NAT) [13] algorithm to demosaic a reduced resolution CFA 1.0 image. Parallel to this activity, the same LDI-NAT is applied to panchromatic image with 50% pixels missing to generate a full resolution illuminance image. We use the term panchromatic or illuminance interchangeably to represent the intensity image in this paper. After the above two steps, a denoising procedure is performed on both the panchromatic image and the reduced resolution color image. The denoised image is then going through a pansharpening process to generate the demosaiced image. Finally, another post-filtering is performed. It should be noted that denoising can also be done simultaneously before and after pansharpening and we call this option the hybrid denoising scheme.

Based on the above brief description, we can have three denoising configurations:

- **Pre-denoising:** This means that denoising is done before pansharpening starts. As shown in Figure 3, there are two places for pre-denoising: one for reduced resolution color image and one for the full resolution illuminance or panchromatic band.

- **Post-Denoising:** Here, denoising is done after the demosaiced image is obtained.

- **Hybrid Denoising:** This configuration basically includes both pre-denoising and post-denoising.

![Figure 3. Architecture of joint denoising and demosaicing system for CFA 2.0.](image)

2.2. Denoising Methods

Although there are many denoising methods in the literature, in this paper, we evaluated the following algorithms:

- **Block Matching in 3 D (BM3D) [14]:** This is a well-known denoising algorithm in the literature. The basic idea is to introduce exact unbiased inverses of the Anscombe and Generalized Anscombe transformations to deal with low-count (low photons) images. There are versions for Gaussian and Poisson noises. We used the version for Poisson and the codes can be found in [14].

- **Wavelet [15]:** The wavelet denoising consists of several steps. First, the input image is decomposed into several scales using discrete wavelet transform (DWT). Second,
thresholding is performed to the wavelet coefficients. Third, the denoising image is reconstructed from the thresholded DWT coefficients. We used the code in Matlab.

- **Diffusion:** According to [16], is a technique aiming at reducing image noise without removing significant parts of the image content. We used the Matlab codes [17], which does not specify whether the filter is suitable for Gaussian or other types of noise.

- **Median Filter [18]:** There are three variants of varying filter sizes (3x3, 5x5, 7x7). The reason for using median filters is because we observe that the noisy images have some resemblance to salt and pepper noise, which can be seen in those noisy images in Figure 2.

- **FFDNet [19]:** This is a deep learning based filtering algorithm. The first layer is a reversible downsampling operator which reshapes a noisy image into four downsampled sub-images. The second step involves the use of CNN for denoising. It has performed well on real images.

2.3. Demosaicing Methods

For CFA 2.0, there are not that many algorithms. In this paper, we adopted Linear Directional Interpolation and Nonlocal Adaptive Thresholding (LDI-NAT), which can be used for both demosaicing as well as interpolation [13]. It has good performance in our earlier studies [8]. We also used LDI-NAT in another earlier paper of ours [10]. As shown in Figure 3, LDI-NAT is used in two places: demosaicing the reduced resolution Bayer pattern and interpolating the panchromatic band.

In the paper [20] written by us, we proposed a pansharpening approach to demosaicing CFA 2.0. The missing pixels in the panchromatic band are interpolated. At the same time, the reduced resolution CFA is demosaiced. We then apply pansharpening to generate the full resolution color image. There are many pansharpening algorithms that can be used. Principal Component Analysis (PCA) [21], Smoothing Filter-based Intensity Modulation (SFIM) [22], Modulation Transfer Function Generalized Laplacian Pyramid (GLP) [23], MTF-GLP with High Pass Modulation (HPM) [24], Gram Schmidt (GS) [25], GS Adaptive (GSA) [26], Guided Filter PCA (GFFCA) [27], PRACS [28] and hybrid color mapping (HCM) [29]-[33] have been used in our experiments. The list is a representative, if not exhaustive, set of competitive pansharpening algorithms. Details of the above algorithms can be found in the corresponding papers and we omit the details in order to make our paper concise.

2.4. Low Lighting Images

We downloaded a benchmark data set (Kodak) from a website (http://r0k.us/graphics/kodak/) and selected 12 images, which are shown in Figure 4. It should be noted that this dataset is well-known and has been used by many authors in the demosaicing community such as [34]-[38]. These clean images will be used as reference images for objective performance metrics generation. Moreover, they will be used for generating noisy images that emulate low lighting conditions.
The process of how we introduced Poisson noise is adapted from code written by Erez Posner (https://github.com/erezposner/Shot-Noise-Generator). Details can be found in our recent paper [10]. We include the Poisson noisy 10 dB and 20 dB images in Figure 5 and Figure 6, respectively.
Figure 5. Twelve noisy images at 10 dB from the Kodak dataset.
2.5. Metrics

We used the following four performance metrics to evaluate the various denoising algorithms:

- Peak Signal-to-Noise Ratio (PSNR) [39] Separate PSNRs in dBs are computed for each band. A combined PSNR is the average of the PSNRs of the individual bands. Higher PSNR values imply higher image quality.
- Human Visual System (HVS) metric Details of HVS metric in dB can be found in [40]. Higher values imply better results.
• HVSm (HVS with masking) [41] Similar to HVS, HVS incorporates the visual masking effects in computing the metrics. Higher values imply better results.
• CIELAB

We also used CIELAB [42] for assessing demosaicing and denoising performance in our experiments. Smaller values mean good results.

It should be noted that the HVS and HVSm have better correlation with human perceptions than the other three metrics [43][44].

3. EXPERIMENTAL RESULTS

In our experiments, we have used the default settings in all the denoising and pansharpening algorithms.

3.1. 10 dB Noisy Images

We first present the demosaicing results without denoising in Table 1. This will form as the baseline for comparing with those denoising results later. We observe that the averaged metrics in PSNR of all methods are all around 10 dB, meaning that demosaicing alone cannot enhance the image quality.

Table 1. Demosaicing results without denoising for 10 dB Poisson noisy images.

Image	Baseline PSNR	Standard PSNR	HC PSNR	SFI PSNR	PC PSNR	GFP PSNR	GL PSNR	HP PSNR	GS PSNR	PSRA PSNR	LSL PSNR	Best Score				
Img 1	9.767	9.730	9.73	9.72	9.72	9.65	9.76	9.72	9.72	9.65	9.76	9.76				
Cielab	32.99	34.03	33.7	34.0	34.0	33.3	30.9	33.8	33.7	33.3	33.1	35.9				
HV S	4.162	4.151	4.15	4.14	4.15	4.07	4.17	4.14	4.14	4.08	4.16	3.89				
HV Sm	4.184	4.178	4.18	4.17	4.18	4.09	4.18	4.17	4.17	4.10	4.18	3.91				
Img 2	10.28	10.29	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.3	10.3				
Cielab	23.24	23.55	23.5	23.6	23.6	23.2	22.0	23.5	23.4	23.2	23.4	22.0				
HV S	5.584	5.598	5.59	5.59	5.60	5.51	5.58	5.59	5.60	5.51	5.59	5.60				
HV Sm	5.631	5.644	5.64	5.64	5.65	5.56	5.63	5.64	5.65	5.56	5.64	5.65				
Img 3	10.11	10.06	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.1	10.0				
Cielab	33.36	35.03	34.3	34.9	34.0	33.4	30.0	34.2	34.0	33.4	33.6	33.7				
HV S	4.885	4.870	4.87	4.86	4.88	4.80	4.90	4.87	4.87	4.80	4.88	4.76				
HV Sm	4.922	4.915	4.92	4.90	4.92	4.84	4.94	4.91	4.91	4.94	4.92	4.90				
Img 4	10.02	10.13	10.1	10.1	10.1	10.0	10.1	10.1	10.1	10.0	10.1	10.0				
Cielab	23.49	24.04	24.0	23.9	23.7	23.4	21.9	24.1	23.7	23.4	23.7	21.9				
HV S	5.401	5.476	5.47	5.47	5.50	5.35	5.34	5.49	5.51	5.35	5.46	5.30				
Img 5	11.90	0.15	0.40	0.70	0.40	0.80	0.40	0.80	0.15	0.15	0.40	0.70	0.40	0.15	0.80	0.40
-------	-------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------
Ciel ab	24.32	24.67	24.6	24.6	24.5	24.4	24.1	24.6	24.5	24.4	24.5	24.8	23.1	0.19	0.01	
HV	5.955	5.946	5.94	5.95	5.85	5.94	5.95	5.86	5.95	5.95	5.96	5.96	5.96	5.96	5.96	
Sm	5.989	5.988	5.98	5.99	5.89	5.98	5.99	5.90	5.99	5.99	5.99	5.99	5.99	5.99	5.99	
Img 6	10.14	10.09	10.1	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Ciel ab	43.31	48.49	43.8	46.8	45.6	42.4	35.4	43.7	45.7	42.4	43.7	39.5	35.4	0.11	0.11	
HV	5.739	5.719	5.79	5.70	5.74	5.68	5.81	5.78	5.73	5.68	5.74	5.78	5.81	5.81	5.81	
Sm	5.802	5.790	5.86	5.77	5.82	5.74	5.86	5.85	5.81	5.74	5.81	5.84	5.86	5.84	5.86	
Img 7	10.02	9.976	9.98	9.96	9.98	9.89	10.0	9.98	9.98	9.89	9.89	9.90	9.99	9.99	10.0	
Ciel ab	32.93	34.44	33.9	34.2	33.5	33.2	29.2	33.8	33.5	33.2	33.3	32.1	29.2	0.06	0.06	
HV	5.666	5.649	5.65	5.64	5.65	5.55	5.72	5.64	5.65	5.55	5.66	5.69	5.72	5.72	5.72	
Sm	5.698	5.690	5.70	5.68	5.70	5.59	5.75	5.69	5.69	5.59	5.70	5.72	5.75	5.75	5.75	
Img 8	9.966	9.987	9.99	9.98	9.99	9.90	10.0	9.99	9.99	9.99	9.99	10.0	9.96	10.0	10.0	
Ciel ab	28.77	29.59	29.3	29.5	29.1	28.8	26.5	29.3	29.1	28.8	29.0	29.2	26.5	19.9	0.11	
HV	5.000	5.009	5.01	5.00	5.02	4.91	5.00	5.01	5.02	4.91	5.01	4.87	5.02	5.02	5.02	
Sm	5.051	5.064	5.06	5.06	5.07	4.96	5.05	5.06	5.07	4.96	5.06	4.92	5.07	4.92	5.07	
Img 9	10.09	10.09	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Ciel ab	16.98	17.07	17.0	17.1	17.4	16.8	16.4	17.1	17.4	16.8	17.0	18.1	16.4	17.0	18.4	
HV	5.578	5.581	5.58	5.58	5.58	5.54	5.58	5.58	5.58	5.54	5.58	5.58	5.58	5.58	5.58	
Sm	5.605	5.608	5.60	5.60	5.61	5.56	5.60	5.61	5.56	5.61	5.56	5.56	5.35	5.61	5.61	
Img 10	10.29	10.29	10.2	10.2	10.3	10.2	10.2	10.3	10.2	10.2	10.3	10.2	10.3	10.3	10.3	
Ciel ab	26.00	26.43	26.3	26.4	26.2	25.9	24.6	26.4	26.2	26.0	26.1	26.3	26.4	26.3	26.4	
HV	6.301	6.313	6.31	6.31	6.33	6.25	6.28	6.31	6.33	6.24	6.31	6.32	6.33	6.32	6.33	
Sm	6.362	6.374	6.37	6.37	6.39	6.31	6.34	6.37	6.39	6.30	6.37	6.38	6.39	6.38	6.39	
Img 11	10.44	10.41	10.4	10.4	10.4	10.3	10.4	10.4	10.4	10.3	10.4	10.4	10.4	10.4	10.4	
Ciel ab	28.61	29.43	29.2	29.4	29.0	28.7	26.5	29.2	29.0	28.7	28.8	29.5	26.5	28.8	26.5	
HV	5.251	5.242	5.24	5.23	5.25	5.17	5.26	5.24	5.24	5.17	5.25	5.03	5.26	5.03	5.26	
Sm	5.285	5.283	5.28	5.27	5.29	5.21	5.29	5.28	5.29	5.21	5.28	5.06	5.29	5.06	5.29	
For the results obtained from different denoising filters, instead of showing big tables like Table 1 above, we extracted the best performing results from those big tables and create summarized tables. Table 2 summarizes the best BM3D filtering results for three denoising configurations. It can be seen that the combination of GFPCA and post-denoising has the best performance. The PSNR value has been improved from 10 dB to 17.9 dB.

Table 3 summarizes the best wavelet denoising results for three denoising configurations. We can see that hybrid denoising has slight edge over the other configurations. The PSNR value has been improved from 10 dB to 17 dB. Table 4 summarizes the best diffusion denoising results for the three denoising configurations. It can be seen that the results are worse than other denoising algorithms. Table 5 to Table 7 summarize the median filtering results. We can observe that the 7x7 option achieved the best among the three median filters. Actually, the best performing method is the hybrid denoising using 7x7 median filter with GFPCA and the PSNR value has reached 22 dB from 10 dB. This is quite remarkable. Table 8 summarizes the FFDNET results. The performance is better than BM3D, wavelet, and diffusion, but worse than those median filters.

We also include some denoised images for the pre-denoising case in Figure 7. The post-denoising and hybrid denoising results can be found in Fig. A1 and Fig. A2 of the Appendix. It can be seen that the median filter with 7x7 size has the closest intensity to the ground truth. BM3D, wavelet, and FFDNET all have smooth results, but somehow their images look darker than the ground truth.

Table 2. Best performing BM3D denoising results for 10 dB noisy images. Bold numbers indicate the best in each row.

Img	PSNR (dB)	CIELAB	HVS (dB)	HVSm (dB)
12	10.14	10.13	10.1	10.1
	2	4	37	26
	62	40	39	47
	62	40	39	47
	62	40	39	47
	62	40	39	47

Table 3. Best performing wavelet denoising results for 10 dB noisy images. Bold numbers indicate the best in each row.

Metrics	Hybrid Denoising/ Best Algorithm	Post-Denoising / Best Algorithm	Pre-Denoising / Best Algorithm
PSNR (dB)	17.565/GFPCA	17.901/GFPCA	15.768/GFPCA
CIELAB	10.414/GFPCA	10.209/GFPCA	12.975/GFPCA
HVS (dB)	12.847/GFPCA	13.228/GFPCA	11.058/GFPCA
HVSm (dB)	13.038/GFPCA	13.436/GFPCA	11.203/GFPCA
Table 3. Best performing wavelet denoising results for 10 dB noisy images. Bold numbers indicate the best in each row.

Metrics	Hybrid Denoising / Best Algorithm	Post-Denoising / Best Algorithm	Pre-Denoising / Best Algorithm
PSNR (dB)	17.012/Baseline	15.331/Standard	16.612/GFPCA
CIELAB	11.997/GFPCA	12.860/GFPCA	11.887/GFPCA
HVS (dB)	11.955/Baseline	10.511/GFPCA	11.599/GFPCA
HVSm (dB)	12.177/Baseline	10.641/GFPCA	11.775/GFPCA

Table 4: Best performing diffusion filter denoising results for 10 dB noisy images. Bold numbers indicate the best in each row.

Metrics	Hybrid Denoising / Best Algorithm	Post-Denoising / Best Algorithm	Pre-Denoising / Best Algorithm
PSNR (dB)	16.393/Baseline	15.353/Standard	14.822/GFPCA
CIELAB	13.374/GFPCA	13.353/GFPCA	14.490/GFPCA
HVS (dB)	11.318/Baseline	10.466/Standard	9.851/GFPCA
HVSm (dB)	11.524/Baseline	10.652/Standard	9.969/GFPCA

Table 5: Best performing median filter (3x3) denoising results for 10 dB noisy images. Bold numbers indicate the best in each row.

Metrics	Hybrid Denoising / Best Algorithm	Post-Denoising / Best Algorithm	Pre-Denoising / Best Algorithm
PSNR (dB)	19.362/GFPCA	19.467/GFPCA	18.841/GFPCA
CIELAB	8.905/GFPCA	8.475/GFPCA	9.438/GFPCA
HVS (dB)	14.444/GFPCA	14.804/GFPCA	13.963/GFPCA
HVSm (dB)	14.777/GFPCA	15.138/GFPCA	14.288/GFPCA

Table 6: Best performing median filter (5x5) denoising results for 10 dB noisy images. Bold numbers indicate the best in each row.

Metrics	Hybrid Denoising / Best Algorithm	Post-Denoising / Best Algorithm	Pre-Denoising / Best Algorithm
PSNR (dB)	21.647/GFPCA	21.218/GFPCA	21.405/GFPCA
CIELAB	7.312/GFPCA	7.376/GFPCA	7.550/GFPCA
HVS (dB)	16.791/GFPCA	16.531/GFPCA	16.632/GFPCA
HVSm (dB)	17.399/GFPCA	17.069/GFPCA	17.266/GFPCA

Table 7: Best performing median filter (7x7) denoising results for 10 dB noisy images. Bold numbers indicate the best in each row.

Metrics	Hybrid Denoising / Best Algorithm	Post-Denoising / Best Algorithm	Pre-Denoising / Best Algorithm
PSNR (dB)	22.102/GFPCA	21.552/GFPCA	21.927/GFPCA
CIELAB	7.035/GFPCA	7.140/GFPCA	7.257/GFPCA
HVS (dB)	17.194/GFPCA	16.708/GFPCA	17.073/GFPCA
HVSm (dB)	17.857/GFPCA	17.295/GFPCA	17.757/GFPCA
Table 8. Best performing FFDNET denoising results for 10 dB noisy images. Bold numbers indicate the best in each row.

Metrics	Hybrid Denoising / Best Algorithm	Post-Denoising / Best Algorithm	Pre-Denoising / Best Algorithm
PSNR (dB)	17.761/GFPCA	18.131/GFPCA	17.020/HPM
CIELAB	10.686/GFPCA	9.896/GFPCA	11.655/GFPCA
HVS (dB)	13.123/GFPCA	13.572/GFPCA	12.309/HPM
HVSm (dB)	13.342/GFPCA	13.797/GFPCA	12.506/HPM

Figure 7. Demosaicing results using various pre-denoising approaches for 10 dB noisy images. For each image, a/b means the “a” is the denoising method and “b” is the pansharpening method.
We first present the demosaicing results without denoising in Table 9. This will help the comparison among those demosaicing results later. We observe that the averaged metrics in PSNR of all methods are all less than 20 dB, meaning that denoising alone cannot enhance the image quality.

Image	Results	Standard	GSA	PRACS	LCS-CD	Best Score	
Ingo1	PSNR	19.977	20.037	20.058	20.051	19.935	
	Calib	19.721	19.767	19.771	19.741	19.777	
	HVSm	19.429	20.549	19.601	18.634	19.470	
	Ingo2	PSNR	18.515	18.977	18.997	18.904	18.791
	Calib	15.701	16.019	16.065	15.760	15.713	
	HVSm	14.108	14.365	14.377	14.506	14.461	
Ingo3	PSNR	20.181	20.501	20.502	20.271	20.160	
	Calib	7.956	7.904	7.848	8.013	7.797	
	HVSm	15.101	15.217	15.177	15.221	15.081	
	Ingo4	PSNR	19.011	19.443	19.430	19.420	19.903
	Calib	8.009	7.417	7.440	7.429	7.284	
	HVSm	14.118	14.942	14.957	15.050	14.468	
	Ingo5	PSNR	20.048	20.211	20.209	20.196	20.200
	Calib	6.604	6.565	6.546	6.593	6.571	
	HVSm	15.873	16.000	15.997	15.970	15.966	
	Ingo6	PSNR	20.041	20.433	20.402	20.423	20.237
	Calib	8.710	8.604	8.620	8.756	8.645	
	HVSm	15.852	15.065	15.080	15.105	15.073	
	Ingo7	PSNR	19.090	20.154	20.141	20.138	20.082
	Calib	7.741	7.601	7.640	7.781	7.637	
	HVSm	15.702	15.874	15.879	15.986	15.731	
	Ingo8	PSNR	19.518	20.122	20.120	20.060	20.103
	Calib	5.998	5.987	5.997	6.006	5.991	
	HVSm	15.114	15.473	15.463	15.440	15.311	
	Ingo9	PSNR	19.518	20.122	20.120	20.060	20.103
	Calib	7.622	7.473	7.419	7.580	7.666	
	HVSm	14.990	15.205	15.210	15.191	15.165	
	Ingo10	PSNR	15.181	15.473	15.463	15.440	15.311
	Calib	7.507	7.421	7.415	7.477	7.468	
	HVSm	15.378	16.043	16.024	16.075	16.110	
	Ingo11	PSNR	19.518	20.122	20.120	20.060	20.103
	Calib	8.286	8.227	8.187	8.254	8.092	
	HVSm	11.504	11.503	11.502	11.520	11.486	
	Ingo12	PSNR	19.580	20.242	20.241	20.215	20.187
	Calib	7.799	7.710	7.703	7.815	7.705	
	HVSm	15.785	16.187	16.187	16.187	16.187	
	Ingo13	PSNR	19.495	20.056	20.054	20.045	20.018
	Calib	7.571	7.473	7.407	7.458	7.467	
	HVSm	15.389	15.536	15.556	15.657	15.671	
	Ingo14	PSNR	19.510	20.091	20.092	20.093	20.094
	Calib	7.512	7.416	7.405	7.463	7.464	
	HVSm	15.704	15.844	15.844	15.844	15.844	
	Aver.	PSNR	19.250	19.554	19.535	19.611	19.461
	Calib	7.773	7.666	7.640	7.737	7.745	
	HVSm	14.814	15.047	15.047	15.047	15.047	

Table 9. Demosaicing results without denoising for 20 dB Poisson noisy images.
Table 10 summarizes the best BM3D filtering results for three denoising configurations. It can be seen that pre-denoising has the best performance. The PSNR value has been improved from 20 dB to 27.128 dB. Table 11 summarizes the best wavelet denoising results for three denoising configurations. We can see that hybrid denoising has slight edge over the other configurations. The PSNR value has been improved from 20 dB to 27 dB. Table 12 summarizes the best diffusion denoising results for the three denoising configurations. It can be seen that the results are worse than other denoising algorithms. Table 13 to Table 15 summarize the median filtering results. We can observe that the 3x3 option achieved the best among the three median filters. However, the median filter results are worse than BM3D and wavelet approaches. Table 16 summarizes the FFDNET results. The performance is better than BM3D, wavelet, and diffusion, but worse than those median filters.

We include some denoised images for the pre-denoising case in Figure 8. The post-denoising and hybrid denoising results can be found in Fig. A3 and Fig. A4 of the Appendix. It can be seen that the BM3D and medial filters have close resemblance to the ground truth. The wavelet and diffusion filter look dark as compared to the ground truth. Finally, FFDNET has over smoothed results.

Table 10. Best performing BM3D denoising results for 20 dB noisy images. Bold numbers indicate the best in each row.

Metrics	Hybrid Denoising / Best Algorithm	Post-Denoising / Best Algorithm	Pre-Denoising / Best Algorithm
PSNR (dB)	27.122 / Standard	24.963 / GFPCA	27.128 / GSA
CIELAB	3.845 / GPCA	4.326 / GFPCA	3.680 / GFPCA
HVS (dB)	**23.002** / Standard	20.623 / GFPCA	23.071 / SFIM
HVSm (dB)	23.895 / Standard	21.394 / GFPCA	**23.992** / SFIM

Table 11. Best performing wavelet denoising results for 20 dB noisy images. Bold numbers indicate the best in each row.

Metrics	Hybrid Denoising / Best Algorithm	Post-Denoising / Best Algorithm	Pre-Denoising / Best Algorithm
PSNR (dB)	**26.830** / Standard	23.364 / GFPCA	**26.830** / Standard
CIELAB	4.793 / GFPCA	4.936 / GFPCA	**4.722** / GFPCA
HVS (dB)	**22.581** / GSA	18.783 / GFPCA	**22.559** / SFIM
HVSm (dB)	**23.477** / SFIM	21.394 / GFPCA	**23.469** / SFIM

Table 12. Best performing diffusion filter denoising results for 20 dB noisy images. Bold numbers indicate the best in each row.

Metrics	Hybrid Denoising / Best Algorithm	Post-Denoising / Best Algorithm	Pre-Denoising / Best Algorithm
PSNR (dB)	**25.519** / GSA	23.178 / GFPCA	**25.367** / Standard
CIELAB	5.415 / GFPCA	**5.016** / GFPCA	5.242 / GFPCA
HVS (dB)	**20.887** / GSA	18.614 / GFPCA	**20.702** / GSA
HVSm (dB)	**21.511** / GSA	19.047 / GFPCA	**21.298** / GSA
Table 13. Best performing median filter (3x3) denoising results for 20 dB noisy images. Bold numbers indicate the best in each row.

Metrics	Hybrid Denoising/Best Algorithm	Post-Denoising/Best Algorithm	Pre-Denoising/Best Algorithm
PSNR (dB)	26.654/Standard	25.282/GFPCA	26.661/GSA
CIELAB	3.644/GFPCA	3.929/GFPCA	3.580/GFPCA
HVSm (dB)	23.094/HCM	21.221/GFPCA	23.169/Standard
HVSm (dB)	24.419/Standard	22.219/GFPCA	24.505/SFIM

Table 14. Best performing median filter (5x5) denoising results for 20 dB noisy images. Bold numbers indicate the best in each row.

Metrics	Hybrid Denoising/Best Algorithm	Post-Denoising/Best Algorithm	Pre-Denoising/Best Algorithm
PSNR (dB)	24.962/Standard	24.889/GFPCA	25.001/GLP
CIELAB	3.994/GFPCA	3.886/GFPCA	3.907/GFPCA
HVSm (dB)	21.247/Standard	20.735/GFPCA	21.377/SFIM
HVSm (dB)	22.493/Standard	21.889/GFPCA	22.648/SFIM

Table 15. Best performing median filter (7x7) denoising results for 20 dB noisy images. Bold numbers indicate the best in each row.

Metrics	Hybrid Denoising/Best Algorithm	Post-Denoising/Best Algorithm	Pre-Denoising/Best Algorithm
PSNR (dB)	23.710/Standard	24.346/Baseline	23.768/GLP
CIELAB	4.453/GFPCA	4.057/GFPCA	4.344/GFPCA
HVSm (dB)	19.445/Standard	19.963/Baseline	19.550/GLP
HVSm (dB)	20.438/Standard	21.027/Baseline	20.558/GLP

Table 16. Best performing FFDNET denoising results for 20 dB noisy images. Bold numbers indicate the best in each row.

Metrics	Hybrid Denoising/Best Algorithm	Post-Denoising/Best Algorithm	Pre-Denoising/Best Algorithm
PSNR (dB)	26.674/Standard	24.686/GFPCA	26.676/GSA
CIELAB	3.916/GFPCA	4.533/GFPCA	3.914/GSA
HVSm (dB)	22.854/Standard	20.444/GFPCA	22.960/SFIM
HVSm (dB)	23.994/Standard	21.161/GFPCA	24.124/SFIM
Figure 8. Demosaicing results using various pre-denoising approaches for 20 dB noisy images. For each image, a/b means the “a” is the denoising method and “b” is the pansharpening method.

3.3. Discussions

3.3.1. 10 dB case

From the results in Sections 3.1 and 3.2, we have following observations:

- All filters improved over the no filtering case.
- Median filter with 7x7 has the best performance in all four metrics. It has improved the PSNR by more than 10 dBs.
• Median filter with 5x5 is the second best.
• The worst filter is the diffusion filter.
• Pre-filtering is better than post-filtering in wavelet, and median filters with 5x5 and 7x7 sizes. However, other filters have opposite behavior.
• FFDNET did not yield better performance than conventional filters.
• Hybrid did not yield additional gains over either pre-filtering or post-filtering.

Figure 9. Comparison of different denoising methods for the 10 dB noisy images.
3.3.2. 20 dB case

For the 20 dB case, we have following observations:

- All filters improved over the no filtering case.
- BM3D filter has the best performance in all four metrics. It has improved the PSNR by more than 7 dBs.
- Wavelet, median filter with 3x3, and FFDNET have close performance.
- The worst filter is the median filter with 7x7. It appears that small filter size should be used for less noisy images.
- Pre-filtering is better than post-filtering in all cases except the median filter with 7x7 size.
- Hybrid did not yield any gains over either pre-filtering or post-filtering.

Figure 10. Comparison of different denoising methods for the 20 dB noisy images
4. CONCLUSIONS

Low light images have serious Poisson noise that affects the visual quality of images. In this paper, we present a thorough investigation of the various combination of denoising and demosaicing algorithms for low light images. Two noise levels (10 dB and 20 dB) were investigated using six conventional and one deep learning denoising algorithms. It was observed that, in serious low lighting conditions (10 dB), a conventional median filter can yield better performance than more advanced algorithms whereas in mild lighting conditions (20 dB), some modern algorithms such as BM3D and FFDNet start to have better results. One potential future direction is to look for some better deep learning based algorithms that can specifically deal with Poisson noise.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was partially supported by NASA Jet Propulsion Laboratory under contract # 80NSSC17C0035. The views, opinions and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of NASA or the U.S. Government.

REFERENCES

[1] B. E. Bayer, Color imaging array. US Patent 3,971,065, July 20, 1976.
[2] J. F. Bell III, et al., “The Mars Science Laboratory Curiosity Rover Mast Camera (Mastcam) Instruments: Pre-Flight and In-Flight Calibration, Validation, and Data Archiving,” AGU Journal Earth and Space Science, 2017.
[3] M. Dao, C. Kwan, B. Ayhan, and J. F. Bell III, “Enhancing Mastcam Images for Mars Rover Mission,” 14th International Symposium on Neural Networks, pp. 197-206, 2017.
[4] C. Kwan, B. Budavari, M. Dao, B. Ayhan, J. F. Bell III, “Pansharpening of Mastcam images,” IEEE International Geoscience and Remote Sensing Symposium, pp. 5117-5120, 2017.
[5] B. Ayhan, M. Dao, C. Kwan, H. Chen, J. F. Bell III, and R. Kidd, “A Novel Utilization of Image Registration Techniques to Process Mastcam Images in Mars Rover with Applications to Image Fusion, Pixel Clustering, and Anomaly Detection,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(10), pp. 4553-4564, 2017.
[6] J. Hamilton and J. Compton, Processing color and panchromatic pixels. U.S. Patent 20070024879A1, 2007.
[7] T. Kijima, H. Nakamura, J. T. Compton, J. F. Hamilton, and T. E. DeWeese, Image sensor with improved light sensitivity. U.S. Patent 0 268 533, Nov., 2007.
[8] C. Kwan and J. Larkin, “Demosaicing of Bayer and CFA 2.0 Patterns for Low Lighting Images,” Electronics, 8, 1444, 2019.
[9] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand, “Deep joint demosaicking and denoising,” ACM Trans. Graph, 35, 2016.
[10] C. Kwan, J. Larkin, and B. Ayhan, “Demosaicing of CFA 3.0 with Application to Low Lighting Images,” Sensors, 20 (12), 3423, June 22, 2020.
[11] C. Kwan, J. Larkin, and B. Budavari, “Demosaicing of Real Low Lighting Images Using CFA 3.0,” Signal & Image Processing: An International Journal (SIPIJ), vol. 11, no. 4, August 2020.
[12] C. Kwan and J. Larkin, “Demosaicing Mastcam Images Using A New Color Filter Array,” Signal & Image Processing: An International Journal, 11 (3), 2020.
[13] L. Zhang, X. Wu, A. Buades, and X. Li, “Color demosaicking by local directional interpolation and nonlocal adaptive thresholding,” J. Electron. Imaging, 20, 2011.
[14] BM3D denoising: http://www.cs.tut.fi/~foi/invansc/, accessed September 22, 2020.
[41] N. Ponomarenko, F. Silvestri, K. Egiazarian, M. Carli, J. Astola, and V. Lukin, “On between-coefficient contrast masking of DCT basis functions,” In Proceedings of the Third International Workshop on Video Processing and Quality Metrics for Consumer Electronics VPQM-07, Scottsdale, AZ, USA, 25–26 January 2007.

[42] X. Zhang and B. A. Wandell, “A spatial extension of cielab for digital color image reproduction,” SID Journal, 1997.

[43] C. Kwan, J. Larkin, B. Budavari, B. Chou, E. Shang, and T. D. Tran, “A comparison of compression codecs for maritime and sonar images in bandwidth constrained applications,” Computers, 8 (2), 32, April 28, 2019.

[44] C. Kwan, J. Larkin, B. Budavari, E. Shang, and T. Tran, “Perceptually Lossless Compression with Error Concealment for Periscope and Sonar Videos,” Signal & Image Processing: An International Journal (SIPIJ), 10 (4), April 30, 2019.

Appendix

Fig. A1. Demosaicing results using various post-denoising approaches for 10 dB noisy images. For each image, a/b means the “a” is the denoising method and “b” is the pansharpening method.
Fig. A2. Demosaicing results using various hybrid-denoising approaches for 10 dB noisy images. For each image, a/b means the “a” is the denoising method and “b” is the pansharpening method.
Fig. A3. Demosaicking results using various post-denoising approaches for 20 dB noisy images. For each image, a/b means the “a” is the denoising method and “b” is the pansharpening method.
Fig. A4. Demosaicing results using various hybrid-denoising approaches for 20 dB noisy images. For each image, a/b means the “a” is the denoising method and “b” is the pansharpening method.

AUTHORS

Chiman Kwan received his Ph.D. degree in electrical engineering from the University of Texas at Arlington in 1993. He has one book, four book chapters, 15 patents, 65 invention disclosures, 375 technical papers in journals and conferences, and 550 technical reports. Over the past 25 years, he has been the PI/Program Manager of over 120 diverse projects with total funding exceeding 36 million dollars. He is also the founder and Chief Technology Officer of Signal Processing, Inc. and Applied Research LLC. He received numerous awards from IEEE, NASA, and some other agencies.

Jude Larkin received his B.S. in Computer Science from Franciscan University of Steubenville in 2015. He is a software engineer at ARLLC. He has been involved in diverse projects, including mission planning for UAVs, image fusion, image demosaicing, and remote sensing.