Synthesis of peroxyapatite by hydrothermal processing
Karlis Agris Gross1,a,*, Anastasija Jersova2,b, Arturs Viksna2,c

1Institute of Biomaterials and Biomechanics, Riga Technical University, Latvia
2Faculty of Chemistry, University of Latvia, Latvia
akgross@rtu.lv, banastasija-jershova@inbox.lv, cartvik@lanet.lv

* corresponding author

Keywords: peroxyapatite, hydrogen peroxide, hydrothermal processing, antibacterial.

Abstract. Peroxide ions in apatite provides an additional resource for imparting an antibacterial capability in apatite. A hydrothermal process has been developed for including peroxide ions into the apatite lattice. Three oxygen generating compounds (hydrogen peroxide, ammonium persulphate and peracetic acid) were investigated for generating peroxyapatite. Hydrogen peroxide provides the highest peroxide containing apatite. Both the oxygen generation and crystallization of apatite represented the two critical factors for producing peroxyapatite. Unlike with high temperature processing, the cooling rate did not influence the retained peroxide content. This new process provides a building block for investigating antibacterial properties of peroxyapatite produced by a low temperature process.

Introduction
The incidence of infection can have devastating effects for the longevity of implants; implants should be designed to minimize these undesirable events. Hydrogen peroxide is commonly used on skin abrasions and is very effective, but high concentrations for internal use may damage cells involved in bone remodelling. Low peroxyl concentration and slow release provides a new avenue for imparting additional antibacterial activity. This work will investigate a new process for producing peroxyapatite using a hydrothermal process.

The body is already equipped to use oxidative species for defence and has compensating effects to ensure that these species stay within allowable limits. Phagocytes use peroxyl ions to combat bacteria \cite{1}, and osteoclasts use reactive species to assist resorption \cite{2}. Enzymes keep oxidative species at allowable levels \cite{3}. Peroxyl is thus a chemical species familiar by the body, and could be included in biomaterials.

Inclusion of peroxy ions inside the structure of biomaterials is possible only with a select few biomaterials. Apatites offer the replacement of hydroxyl ions within the column with oxygenated species; the less densely occupied hydroxyl column not only provides the possibility of substitution, but also accepts larger linear molecules or charged oxygen species neutralized by smaller cations \cite{4}. Rey studied oxygenated apatites and suggested the possibility to replace OH- ions with neutral molecules such as oxygen O\textsubscript{2} and hydrogen peroxide H\textsubscript{2}O\textsubscript{2} or a variety of charged oxygen species like the superoxide ion O-2, the peroxide ion O2-2 or polyoxide species O3-2 and O4-2 \cite{5}. Despite this flexibility of substitution, the maximum concentration is restricted to two charged species within each apatite unit cell. There are no studies in the literature to suggest whether this concentration is sufficient for combating bacteria.

Three approaches have been reported for including peroxide in apatite. These include synthesis by 1) precipitation of apatite in aqueous solutions containing H\textsubscript{2}O\textsubscript{2} \cite{6,7}, 2) hydrolysis of beta tricalcium phosphate in H\textsubscript{2}O\textsubscript{2}, 3) heating apatites at high temperatures followed by exposure to oxygen \cite{8,9}. Hydrolysis of beta tricalcium phosphate has achieved a 40\% replacement of hydroxyl ions. The highest replacement, between 68\% and 80\%, occurs by heating in oxygen at 900 °C or
higher. The hydrothermal approach has not been investigated and may offer an alternative to the above mentioned approaches.

The objective of this work is to examine whether peroxypatite can be produced in a hydrothermal process with the use of three oxygen generating compounds.

Materials and Methods

Synthesis of reactants. An amorphous phase was synthesized by mixing a strontium nitrate solution into an ammonium hydrogen phosphate and an ammonium carbonate containing solution. The suspension was mixed for 10 minutes, filtered, rinsed with deionized water, filtered and then treated with ethanol before oven drying. Sr apatites accommodate higher concentrations of oxygen, and so were chosen instead of calcium apatites [7].

Hydrothermal processing. Powder was placed in a hydrothermal bomb and heated for different time periods. The amorphous calcium phosphate was accompanied by three oxygen generating species: H$_2$O$_2$, (NH$_4$)$_2$SO$_4$, CH$_3$COOOH. The temperature for 30% hydrogen peroxide, ammonium sulphate and peracetic acid was 150 °C, 120 °C and 80 °C, respectively. The bomb was placed in a preheated oven and after heating cooled under running water.

Characterization and analysis. Powder was analyzed with X-ray diffraction to confirm the apatite phase after hydrothermal treatment. X-ray diffraction patterns were obtained on a Bruker D8 ADVANCE diffractometer, recorded from 5° to 60° using Cu Kα radiation (λ = 1.54180Å generated at 40 mA and 40 kV) at a 0.2° step size.

Diffuse reflectance spectra in the UV to visible range were obtained with a PerkinElmer Lambda 950 spectrometer from 190 nm to 1100 nm with a resolution of 0.05 nm.

A classical redox titration aided peroxide quantification in apatite. Permanganometric titration involved an oxalic acid potassium permanganate KMnO$_4$ solution (0.005 M) in acidic media. A change in colour of permanganate ions indicated the end point of titration. In the reaction: MnO$_4^-$ + 8 H$^+$ + 5 e$^-$ → Mn$^{2+}$ + 4 H$_2$O the standard potential is E° = +1.51 V. During titration, the peroxide analyte is reduced: H$_2$O$_2$ → O$_2$ + 2H$^+$ + 2e$^-$

The apatite powder was dissolved in concentrated perchloric acid and then diluted with deionized water before dropwise addition of the 0.005 M KMnO$_4$ solution. The titration endpoint was reached when the purple color of the permanganate ion was stabilized.

Results and Discussions

Different oxygen generation compounds were considered for hydrothermal treatment. The simplest was H$_2$O$_2$, that upon heating produces water and oxygen gas; with greater decomposition at higher temperatures. Ammonium persulphate required a lower temperature to generate oxygen, but forms both oxygen and sulfur trioxide when dissolved in water. As a solid, it decomposed at 160 °C to form pyrosulphate and a 3.5% yield of oxygen [10]. Peracetic acid requires the lowest temperature and produces acetic acid and oxygen with a 10% yield. The highest concentration of oxygen was produced by hydrogen peroxide, at a yield of 47%.

Crystallization to apatite increased with processing temperature, Fig 1. At 80 °C when treated with peracetic acid, nanosized calcium phosphate crystals formed, as seen by a broad peak corresponding to the position for the most intense apatite peak. At 120 °C, the powder was more crystalline. At 150 °C, a higher crystallinity apatite formed. This highlighted the importance of temperature in adjusting the crystallinity. Only temperatures above 120 °C were suitable for the 3 hour synthesis period.
Generation of peroxyapatite depended on a) the temperature of oxygen generation and b) a sufficiently high temperature for crystallization. Heating with peracetic acid at 80 °C was sufficient to produce oxygen, but insufficient for crystallization to apatite. For ammonium persulphate, less oxygen was produced but greater crystallization was noted. Processing at 150 °C with H₂O₂ - the cleanest oxygen generator - produced the highest crystallinity.

Peroxide inclusion in the apatite lattice introduces a change in colour that could be followed by UV-Vis spectroscopy [11]. Yellowing of apatite corresponded to a peak in the UV-Vis spectra at 270 nm, Fig 1. Hydrogen peroxide treated powder led to a clear peak, indicating successful generation of oxygen and inclusion in the apatite structure. About 12% peroxide was included in apatite from the ammonium persulphate treatment. A colour change was not seen by the naked eye or registered by UV-Vis spectroscopy for peracetic acid treated powder. Titration with permanganate ions confirmed peroxide and provided a correlation with the 270 nm UV-Vis peak; equating to a 23% peroxide inclusion in apatite from the use of 30% H₂O₂.

![Figure 1. The X-ray diffraction pattern and UV-Vis spectra of calcium phosphate powder after treatment with peracetic acid CH₃COOOH, ammonium persulphate (NH₄)₂SO₄ and hydrogen peroxide H₂O₂, showing the best formation of peroxyapatite with H₂O₂.](image1)

High temperature treatment above 1200 °C has shown peroxide ion instability, requiring rapid cooling to retain peroxyapatite, and so the effect of cooling rate was investigated in hydrothermally treated powder. The hydrothermal bomb was removed from the furnace and cooled under running cold water, or left to cool without any cooling medium. UV-Vis spectroscopy did not show any change with the cooling rate for the H₂O₂ treated powder, Fig 2. Peroxide remains stable regardless of the cooling conditions in hydrothermal processing, unlike in high temperature processed peroxyapatite.

![Figure 2. The UV-Vis spectra of peroxyapatite processed under rapid cooling and slow cooling conditions shows that cooling rate has no effect on the retained peroxide content.](image2)
The amount of available oxygen only slightly influenced the amount of peroxide incorporated in apatite. Greater quantities of powder resulted in lower amounts of incorporated peroxide, as seen by the less intense peaks in the UV-Vis spectra, Fig 3. UV-Vis peak heights of 1.3, 1.4 and 1.5 corresponded to 22%, 23% and 24% peroxide incorporation. Additional means need to be addressed to further increase the concentration of peroxide ions.

![Figure 3. The peroxide content in per oxyapatite made with H$_2$O$_2$, as per the yellow colour intensity detected in the 270 nm UV-Vis peak.]

Hydrothermal synthesis shows another technique means for producing peroxyapatite. Processing at 150 ºC was at a significantly lower temperature than the high temperature process, above 1000 ºC [11]. This new process is simpler, faster and does not require rapid cooling conditions, like in high temperature processing. More concentrated hydrogen peroxide solutions are expected to incorporate more peroxide in the apatite lattice. Present work is addressing the use of 50% H$_2$O$_2$ as an alternative to 30% H$_2$O$_2$ solutions.

Further work will address supplementary approaches for further increasing peroxide inclusion from hydrogen peroxide, and determine the flexibility of the processing conditions for producing peroxyapatite.

Summary

Hydrothermal treatment has been applied for the first time to investigate the generation of peroxyapatite. Three oxygen generating compounds (peracetic acid, ammonium persulphate and hydrogen peroxide) were used in synthesis, but only ammonium persulphate and hydrogen peroxide produced peroxyapatite. The processing conditions need to optimize oxygen generation and crystallization to apatite to generate peroxyapatite. Hydrothermal processing is fast, cheap and simpler than the high temperature process for forming peroxyapatite.

Acknowledgements

This project follows the theme of alternative processing methods in the Refined Step project PIRSES-2013-612691. AJ completed this work as part of her Masters work at the Uni. of Latvia.

References

[1] Fang FC. Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nature Rev Microbiol 2004;2:820-32.
[2] Towhidul ASMT, Huang CLH, Blake DR, Zaidi M. A hypothesis for the local control of osteoclast function by Ca2+, nitric oxide and free radicals. Bioscience Rep 1992;12:369-80.
[3] Ogata T, Mori M. Histochemical study of oxidative enzymes in vertebrate muscles. J Histochem Cytochem 1964;12:171.
[4] Kazin PE, Zykin MA, Zubavichus YV, Magdysyuk OV, Dinnebier RE, Jansen M. Identification of the chromophore in the apatite pigment [Sr$_{10}$(PO$_4$)$_6$(Cu$_x$OH$_{1-x-y}$)$_2$]: Linear OCuO featuring a resonance Raman effect, an extreme magnetic anisotropy, and slow spin relaxation. Chem-Eur J 2014;20:165-78.
[5] Rey CR. Étude des Relations Entre Apatites et Composés Moléculaires Oxygénés: INP Toulouse; 1984.
[6] Meguro K, Ikeya M. Stabilization of radicals by doping from aqueous solutions into crystals of hydroxyapatite. Jpn J Appl Phys 1992;31:1353-7.
[7] Rey C, Trombe JC, Montel G. Some features of the incorporation of oxygen in different oxidation states in the apatites lattice - III. Synthesis and properties of some oxygenated apatites. J Inorg Nucl Chem 1978;40:27-30.
[8] Zhao H, Li X, Wang J, Qu S, Weng J, Zhang X. Characterization of peroxide ions in hydroxyapatite lattice. J Biomed Mater Res 2000;52:157-63.
[9] Kanai H, Lintuluoto M, Matsumura Y, Moffat JB. ESR study of the active oxygen species on hydroxyapatite activated by heat treatment. J Mol Catal A:-Chem 2006;252:181-5.
[10] Vorsina IA, Mikkailov YI. Kinetics of thermal decomposition of ammonium persulphate. Russ Chem Bull 1996;45:539-42.
[11] Kazin PE, Zykin MA, Dinnebier RE, Magdysyuk OV, Tretyakov YD, Jansen M. An unprecendented process of peroxide ion formation and its localization in the crystal structure of strontium peroxy-hydroxyapatite Sr$_{10}$(PO$_4$)$_6$(O$_2$)$_x$(OH)$_{2-2x}$. Zeit Anorg Allg Chem 2012;638:909-19.