Separation of track– and shower–like energy deposits in ProtoDUNE-SP using a convolutional neural network

The DUNE Collaboration

A. Abed Abud, B. Abi, R. Acciarri, M. A. Acero, M. R. Adames, A. Aduszkiewicz, J. Aguilar, Z. Ahmad, J. Ahmed, B. Aimard, B. Ali-Mohammadzadeh, T. Alioti, R. Alvarez, P. Amedo, J. Anderson, C. Andreopoulos, M. Andreotti, M. Andrews, F. Andrianala, S. Andringa, N. Anfimov, A. Ankowski, M. Antoniassi, M. Antonova, A. Antoshkin, S. Antusch, A. Aranda-Fernandez, L. Arellano, L. O. Arnold, M. A. Arroyave, J. Asaadi, L. Asquith, A. Aurisano, V. Aushev, D. Autiero, V. Ayala Lara, M. Ayala-Torres, F. Azfar, M. Babic, A. Bach, H. Back, J. J. Back, C. Backhouse, I. Bagaturia, L. Bagby, N. Balashov, S. Balasubramanian, P. Baldi, B. Baller, B. Bambah, F. Barao, G. Barenboim, G. Barker, W. Barkhouse, C. Barnes, G. Barr, J. Barranco Monarca, A. Barros, N. Barros, J. L. Barrow, A. Basharina-Freshville, A. Bashyan, V. Basque, C. Batchelor, E. Batista das Chagas, J. Battat, E. Bechetoille, J. Behera, C. Beigbeder, L. Bellantonio, G. Bellettini, V. Bellini, O. Beltramello, N. Benekos, C. Benitez Montiel, F. Bento Neves, J. Berger, A. Bersani, S. Bertolucci, M. Betancourt, A. Betancur Rodriguez,
P. Cova, L. Cremaldi, L. Cremonesi, J. I. Crespo-Anadón, M. Crisler, E. Cristaldo, J. Crnkovic, R. Cross, A. Cudd, C. Cuesta, Y. Cui, D. Cussans, O. Dalager, H. Da Motta, L. Da Silva Pereira, C. David, Q. David, G. S. Davies, S. Davini, J. Dawson, K. De, S. De, P. Debbins, I. De Bonis, M. Decowski, A. De Gouvea, P. C. De Holanda, I. L. De Icaza Astiz, A. Deisting, P. De Jong, A. Delbart, D. Delepine, M. Delgado, A. Dell’Acqua, N. Delmonte, P. De Lurgio, J. R. De Mello Neto, D. M. DeMuth, S. Dennis, C. Densham, G. W. Deptuch, A. De Roeck, V. De Romeri, G. De Souza, R. Devi, R. Dharmapalan, M. Dias, F. Diaz, J. Diaz, S. Di Domizio, L. Di Giulio, P. Ding, L. Di Noto, G. Dirkx, C. Distefano, M. Diwan, Z. Djurcic, D. Doering, S. Dolan, F. Dolek, M. Dolinski, L. Domine, Y. Donon, D. Douglas, D. Douillet, A. Dragone, G. Drake, F. Drielsma, L. Duarte, D. Duchesneau, K. Duffy, P. Dunne, B. Dutta, H. Duyang, O. Dvornikov, D. Dwyer, A. Dyshkant, M. Eads, A. Eazer, A. Ezeribe, K. Fahey, A. Falcone, M. Fanti, C. Farnese, Y. Farzan, D. Fedoseev, J. Felix, Y. Feng, E. Fernandez-Martinez, P. Fernandez Menendez, M. Fernandez Morales, F. Ferraro, L. Fields, P. Filip, F. Filthaut, M. Fiorini, V. Fischer, R. S. Fitzpatrick, W. Flanagan, B. Fleming, R. Flight, S. Fogarty, W. Foreman, J. Fowle, W. Fox, J. Franc, K. Francis, D. Franco, J. Freeman, J. Freeston, J. Fried, A. Friedland, F. Fuentes Robayo, S. Fues, L. K. Furic, K. Furman, A. P. Furmanski, A. Gabrielli, A. Gago, H. Gallagher, A. Gallas,
A. Rappold101162, G. Raselli101162, P. Ratoff123, S. Raul130, R. Razakamiandra5, E. Rea112, J. Rea120, B. Rebe200167, R. Rechenmacher67, M. Reggiani-Guzzo133, J. Reichenbacher183, S. D. Reitzner67, H. Rejeb Sfar36, A. Renshaw81, S. Rescia21, F. Resnati36, A. Reynolds155, M. Ribas191, S. Riboldi98, C. Riccio186, G. Riccobene102, L. C. Rice167, J. Ricol76, A. Rigamonti36, Y. Rigaut60, E. V. Rincón29, H. Ritchie-Yates123, D. Rivera126, A. Robert106, L. Rochester181, M. Roda127, P. Rodrigues155, M. J. Rodriguez Alonso36, E. Rodriguez Bonilla6, J. Rodriguez Rondon183, S. Rosauro-Alcaraz131, M. Rosenberg167, P. Rosier159, B. Roskovec25, M. Rossella101162, M. Rossi36, J. Rout113, P. Roy207, A. Rubbia60, C. Rubbia21, B. Russell125, D. Ruterbories173, A. Rybnikov115, A. Saa-Hernandez106, R. Saakyan200, S. Sacerdoti160, T. Safford138, N. Sahu90, P. Sala98, N. Samios21, O. Samoylov115, M. Sanchez102, V. Sandberg128, D. A. Sanders143, D. Sankey176, S. Santana169, M. Santos-Maldonado169, N. Saouidi139, P. Sapienza102, C. Sarast11, I. Sarcevic63, G. Savage69, V. Savinov109, A. Scaramelli101, A. Scarf130, A. Scarpelli21, T. Schefer129, H. Schellmann140109, S. Schifano122, P. Schlabach94, D. Schmitz38, A. W. Schneider186, K. Scholberg56, A. Schukraft63, E. Segreto31, A. Selyunin115, C. R. Senise Jr.198, J. Sensenig183, A. Serg17, D. Sgalaberna60, M. Shaevitz46, S. Shafaq113, F. Shaker212, M. Shamma21, R. Sharankova197, H. R. Sharma112, R. Sharma21, R. K. Sharma170, T. Shaw67, K. Shchablo108, C. Shepherd-Themistocleous176, A. Sheshukov183, S. Shin183, I. Shoemake208, D. Shoott185, R. Shrock186, H. Siegle56, L. Simard189, J. Sinclair183, G. Sine118, J. Singi159, J. Singi170, L. Singi135, P. Singi191, V. Singi181, R. Sipos160, F. Sippaamil, G. Sirrsφ, A. Sitraka185, K. Siyeo105, K. Skarpaas181, A. Smith180, E. Smith213, P. Smith74, J. Smolik60, M. Smy125, E. Snider64, P. Snapol62, D. Snowden-Ifft151, M. Soares Nunes156, H. Sobe155, M. Soderberg100, S. Sokolov115,
26 University of California Los Angeles, Los Angeles, CA 90095, USA
27 University of California Riverside, Riverside CA 92521, USA
28 University of California Santa Barbara, Santa Barbara, CA 93106, USA
29 California Institute of Technology, Pasadena, CA 91125, USA
30 University of Cambridge, Cambridge CB3 0HE, United Kingdom
31 Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
32 Università di Catania, 2 - 95131 Catania, Italy
33 Universidad Católica del Norte, Antofagasta, Chile
34 CERN, The European Organization for Nuclear Research, 1211 Meyrin, Switzerland
35 Institute of Particle and Nuclear Physics of the Faculty of Mathematics and Physics of the Charles University, 180 00 Prague 8, Czech Republic
36 University of Chicago, Chicago, IL 60637, USA
37 Chung-Ang University, Seoul 06974, South Korea
38 CIEMAT, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid, Spain
39 University of Cincinnati, Cincinnati, OH 45221, USA
40 Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Mexico City, Mexico
41 Universidad de Colima, Colima, Mexico
42 University of Colorado Boulder, Boulder, CO 80309, USA
43 Colorado State University, Fort Collins, CO 80523, USA
44 Columbia University, New York, NY 10027, USA
45 Centro de Tecnología da Informacoe Renato Archer, Amarais - Campinas, SP - CEP 13069-901
46 Central University of South Bihar, Gaya, 824236, India
47 Institute of Physics, Czech Academy of Sciences, 182 00 Prague 8, Czech Republic
48 Czech Technical University, 115 19 Prague 1, Czech Republic
49 Dakota State University, Madison, SD 57042, USA
50 University of Dallas, Irving, TX 75062-4736, USA
51 Laboratoire d'Annecy de Physique des Particules, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAPP-IN2P3, 74000 Annecy, France
52 Daresbury Laboratory, Cheshire WA4 4AD, United Kingdom
53 Drexel University, Philadelphia, PA 19104, USA
54 Duke University, Durham, NC 27708, USA
55 Durham University, Durham DH1 3LE, United Kingdom
56 University of Edinburgh, Edinburgh EH8 9YL, United Kingdom
57 Universidad EIA, Envigado, Antioquia, Colombia
58 ETH Zurich, Zurich, Switzerland
59 Faculdade de Ciências da Universidade de Lisboa - FCUL, 1749-016 Lisboa, Portugal
60 Universidade Federal de Alfenas, Poços de Caldas - MG, 37715-400, Brazil
61 Universidade Federal de Goiás, Goiania, GO 74690-900, Brazil
62 Universidade Federal de São Carlos, Araras - SP, 13604-900, Brazil
63 Universidade Federal do ABC, Santo André - SP, 09210-580, Brazil
64 Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, 21941-901, Brazil
65 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
66 University of Ferrara, Ferrara, Italy
67 University of Florida, Gainesville, FL 32611-8440, USA
68 Fluminense Federal University, 9 Icarai Niterói - RJ, 24220-900, Brazil
69 Università degli Studi di Genova, Genova, Italy
70 Georgian Technical University, Tbilisi, Georgia
71 University of Granada & CAFPE, 18002 Granada, Spain
72 Gran Sasso Science Institute, L’Aquila, Italy
73 Laboratori Nazionali del Gran Sasso, L’Aquila AQ, Italy
74 University Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
75 Universidad de Guanajuato, Guanajuato, C.P. 37000, Mexico
76 Harish-Chandra Research Institute, Jhunsi, Allahabad 211 019, India
77 Harvard University, Cambridge, MA 02138, USA
University of Hawaii, Honolulu, HI 96822, USA
University of Houston, Houston, TX 77204, USA
University of Hyderabad, Gachibowli, Hyderabad - 500 046, India
Idaho State University, Pocatello, ID 83209, USA
Institut de Fisica d’Altes Energies (IFAE)—Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
Instituto de Fisica Corpuscular, CSIC and Universitat de València, 46980 Paterna, València, Spain
Instituto Galego de Fisica de Altas Enerxias, A Coruña, Spain
Illinois Institute of Technology, Chicago, IL 60616, USA
Indiana University, Bloomington, IN 47405, USA
Istituto Nazionale di Fisica Nucleare Sezione di Bologna, 40127 Bologna BO, Italy
Istituto Nazionale di Fisica Nucleare Sezione di Catania, I-95123 Catania, Italy
Istituto Nazionale di Fisica Nucleare Sezione di Ferrara, I-44122 Ferrara, Italy
Istituto Nazionale di Fisica Nucleare Sezione di Genova, 16146 Genova GE, Italy
Istituto Nazionale di Fisica Nucleare Sezione di Lecce, 73100 - Lecce, Italy
Istituto Nazionale di Fisica Nucleare Sezione di Milano Bicocca, 3 - I-20126 Milano, Italy
Istituto Nazionale di Fisica Nucleare Sezione di Milano, 20133 Milano, Italy
Istituto Nazionale di Fisica Nucleare Sezione di Napoli, I-80126 Napoli, Italy
Istituto Nazionale di Fisica Nucleare Sezione di Padova, 35131 Padova, Italy
Istituto Nazionale di Fisica Nucleare Sezione di Pavia, I-27100 Pavia, Italy
Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud, 95123 Catania, Italy
Universidad Nacional de Ingeniería, Lima 25, Perú
Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
University of Insubria, Via Rauasi, 2, 21100 Varese VA, Italy
University of Iowa, Iowa City, IA 52242, USA
Iowa State University, Ames, Iowa 50011, USA
Institut de Physique des 2 Infinis de Lyon, 69622 Villeurbanne, France
Institute for Research in Fundamental Sciences, Tehran, Iran
Instituto Superior Técnico - IST, Universidade de Lisboa, 1049-001 Lisboa, Portugal
Iwate University, Morioka, Iwate 020-8551, Japan
University of Jammu, Jammu-180006, India
Jawaharlal Nehru University, New Delhi 110067, India
Joongbuk National University, Jeonrabuk-do 54896, South Korea
Joint Institute for Nuclear Research, Dzhelepov Laboratory of Nuclear Problems 6 Joliot-Curie, Dubna, Moscow Region, 141980 RU
University of Jyväskyla, FI-40014, Finland
Kansas State University, Manhattan, KS 66506, USA
Kavli Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba 277-8583, Japan
High Energy Accelerator Research Organization (KEK), Ibaraki, 305-0801, Japan
Korea Institute of Science and Technology Information, Daejeon, 34141, South Korea
K L University, Vaddeswaram, Andhra Pradesh 522502, India
National Institute of Technology, Kure College, Hiroshima, 737-8506, Japan
Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
Lancaster University, Lancaster LA1 4YB, United Kingdom
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Laboratório de Instrumentação e Física Experimental de Partículas, 1649-003 Lisboa and 3000-516 Coimbra, Portugal
University of Liverpool, L69 7ZE, Liverpool, United Kingdom
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Louisiana State University, Baton Rouge, LA 70803, USA
University of Lucknow, Uttar Pradesh 226007, India
131 Madrid Autonoma University and IFT UAM/CSIC, 28049 Madrid, Spain
132 Johannes Gutenberg-Universität Mainz, 55122 Mainz, Germany
133 University of Manchester, Manchester M13 9PL, United Kingdom
134 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
135 Max-Planck-Institut, Munich, 80805, Germany
136 University of Medellín, Medellín, 050026 Colombia
137 University of Michigan, Ann Arbor, MI 48109, USA
138 Michigan State University, East Lansing, MI 48824, USA
139 Università del Milano-Bicocca, 20126 Milano, Italy
140 Università degli Studi di Milano, I-20133 Milano, Italy
141 University of Minnesota Duluth, Duluth, MN 55812, USA
142 University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
143 University of Mississippi, University, MS 38677 USA
144 University of Michigan, Ann Arbor, MI 48109, USA
145 H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
146 Nikhef National Institute of Subatomic Physics, 1098 XG Amsterdam, Netherlands
147 University of North Dakota, Grand Forks, ND 58202-8357, USA
148 Northern Illinois University, DeKalb, IL 60115, USA
149 Northwestern University, Evanston, IL 60208, USA
150 University of Notre Dame, Notre Dame, IN 46556, USA
151 Occidental College, Los Angeles, CA 90041
152 Ohio State University, Columbus, OH 43210, USA
153 Oregon State University, Corvallis, OR 97331, USA
154 National Centre for Nuclear Research, A. Soltana 7, 05 400 Otwock, Poland
155 University of Oxford, Oxford, OX1 3RH, United Kingdom
156 Pacific Northwest National Laboratory, Richland, WA 99352, USA
157 Università degli Studi di Padova, I-35131 Padova, Italy
158 Panjab University, Chandigarh, 160014 U.T., India
159 Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
160 Université de Paris, CNRS, Astroparticule et Cosmologie, F-75006, Paris, France
161 Università degli Studi di Parma, I-43121 Parma, Italy
162 Università degli Studi di Pavia, 27033 Pavia PV, Italy
163 University of Pennsylvania, Philadelphia, PA 19104, USA
164 Pennsylvania State University, University Park, PA 16802, USA
165 Physical Research Laboratory, Ahmedabad 380 009, India
166 Università di Pisa, I-56127 Pisa, Italy
167 University of Pittsburgh, Pittsburgh, PA 15260, USA
168 Pontificia Universidad Católica del Perú, Lima, Perú
169 University of Puerto Rico, Mayaguez 00681, Puerto Rico, USA
170 Punjab Agricultural University, Ludhiana 141004, India
171 Queen Mary University of London, London E1 4NS, United Kingdom
172 Radboud University, NL-6525 AJ Nijmegen, Netherlands
173 University of Rochester, Rochester, NY 14627, USA
174 Royal Holloway College London, TW20 0EX, United Kingdom
175 Rutgers University, Piscataway, NJ, 08854, USA
176 STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
177 Università del Salento, 73100 Lecce, Italy
178 San Jose State University, San José, CA 95192-0196, USA
179 Universidad Sergio Arboleda, 11022 Bogotá, Colombia
180 University of Sheffield, Sheffield S3 7RH, United Kingdom
181 SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
182 University of South Carolina, Columbia, SC 29208, USA
183 South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
184 South Dakota State University, Brookings, SD 57007, USA
185 Southern Methodist University, Dallas, TX 75275, USA
186 Stony Brook University, SUNY, Stony Brook, NY 11794, USA
187 Sun Yat-Sen University, Guangzhou, 510275, China
188 Sanford Underground Research Facility, Lead, SD, 57754, USA
189 University of Sussex, Brighton, BN1 9RH, United Kingdom
Abstract

Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between data and simulation.

1 Introduction

The ProtoDUNE single phase detector (ProtoDUNE-SP) [1,2] is a prototype liquid argon time projection chamber (LArTPC) for the Deep Underground Neutrino Experiment (DUNE) far detector [3,4]. ProtoDUNE-SP is known as a single phase detector as it is operated entirely within liquid phase argon. The detector readout mechanism consists of six Anode Plane Assemblies (APAs), each containing three wire readout planes at angles of ±36° and 0° to the vertical, where the readout planes are denoted U, V and W, respectively. The U and V views are the induction views, meaning that charge is induced on the wires by drifting electrons, and the W-view wires collect the drifting electrons. The wires in each readout plane are spaced with approximately 5 mm pitch and are read out at a rate of 2 MHz. A full description of the detector is given in Ref. [2]. ProtoDUNE-SP collected data...
from a positively-charged-particle beam at CERN \cite{5,6} in autumn 2018, including charged pions, charged kaons, protons, muons and positive electrons (positrons) recorded with momenta in the range from 0.3 to 7.0 GeV/c. Additionally, since ProtoDUNE-SP is located on the Earth’s surface, it is subject to a large flux of cosmic ray muons.

The particle interactions can be visualised as three two-dimensional images (one for each readout view) in the wire number and time parameter space. Each pixel in the image represents the measured charge from a reconstructed energy deposition, called a hit, on a given wire at a given time. A major challenge in the automated reconstruction of particle interactions in LArTPCs is identifying whether energy deposits originate from track-like (linear, such as protons, charged kaons, charged pions, and muons) or shower-like (locally dense, such as electrons and photons) structures. An example of a 7 GeV/c charged pion interaction is given in Fig. 1, where the π^+ enters the detector and interacts (just after wire 200 and at time tick 4500) producing a number of track– and shower–like particles. In order to classify the interaction type of the π^+, for example as charge-exchange or inelastic scattering, the particles emitted from the interaction vertex must be identified. In general terms, this classification is important for full event reconstruction and the correct identification of particles such as π^0 mesons from their decay photon showers and short proton tracks, which will be required for the correct classification of neutrino interactions in DUNE.

In this article, we propose and demonstrate the use of a convolutional neural network (CNN) to classify hits as either belonging to track-like or shower-like structures \cite{7}. Furthermore, a Michel electron score is given to each hit to help identify Michel electrons. These hit-level classifications can be used alongside pattern recognition based reconstruction algorithms such as Pandora \cite{8,9} to refine the track or shower classification of reconstructed particles. The performance of the Pandora reconstruction on ProtoDUNE-SP simulated and experimental data
is described in detail in Ref. [10]. Convolutional neural networks have been successfully used in neutrino physics for event classification [11,12,13] and particle identification [14,15]. This algorithm is novel in that it aims to classify the hits based on a small local neighbourhood as opposed to a semantic segmentation approach that uses a much larger image containing a large part (or all) of the detector. The algorithm was designed in this way to minimise the memory usage and computational processing time, allowing it to run quickly on standard computing node CPUs where there is no access to powerful GPUs.

2 The convolutional neural network

Convolutional neural networks extract features from images by applying a series of filters that are learned during the training process [16,17]. The number of filters and the number of convolutional layers varies for each specific use case; they are determined by the class of problem the network is trying to solve, and the computer hardware available for training and evaluating the network. In this case, a GPU was available for the training of the network, but the evaluation is performed on CPUs, as a part of the ProtoDUNE-SP reconstruction chain. As a result, only simple architectures were considered, constrained by the desired evaluation time on the CPUs. For inference tasks within the ProtoDUNE-SP event reconstruction workflow, a C++ interface was added to the LArSoft framework [18]. Recent attempts to introduce GPU acceleration into the workflow mentioned above show promising reductions in processing time [19].

The architecture for this hit-tagging CNN is shown in Fig. 2. A single convolutional layer containing 48 5×5 pixel filters is used to extract feature maps from the image, which are then flattened and passed to two dense layers that use them to classify the images. Two dropout layers are used for regularisation [20]. The output of the network is split into two branches. The first branch returns the scores for track, shower, or empty (TSE) classification, which can be interpreted as probabilities as they are constrained to sum to one by a softmax loss function. The second returns the probability for a Michel electron classification, with a sigmoid loss function. The output of the network is split in this way due to the overlap of the shower and Michel electron classes. The total loss function is a weighted sum of the two branches, with the weights derived from the relative size of the training samples in each branch.

For each reconstructed hit object, the wire number w and peak time t are extracted, and a small image called a patch is created. The 48×48 pixel image is centred on (w, t), and the value of each pixel corresponds to the detected charge on a given wire at a given drift time. The wire dimension of the image corresponds to 48 wires with one wire per pixel. The time data are downsampled by averaging over six time samples, such that the spatial dimensions of the pixels match the 5 mm wire pitch in both directions. Therefore, each image represents around 24 \times 24 cm2 of wire data. Figure 3 shows the hits from one APA in a simulated ProtoDUNE-SP event and the three zoomed regions give example 48×48 pixel patches in the track, shower and Michel categories. Detector effects such as the ones introduced by space charge [1,22] are included in the simulation. The images from the three 1Dropout randomly disables a given fraction of neurons for each training example.
Fig. 2: The CNN architecture. In this case, the CNN processes 256 images in parallel. Each image is a 48×48 pixel patch of the calibrated detector readout. A single convolutional layer, with 48 filters of size 5×5, is used to extract features from the images. These are processed by two dense layers containing 128 and 32 neurons respectively, before being split into two branches which provide the track-shower-empty (TSE) and Michel outputs. The dimensions of the data after each operation are given next to the black arrows.

wire planes are evaluated independently. This paper only reports on results from the collection plane, which has the highest signal-to-noise ratio.
Fig. 3: Examples of CNN input patches from a simulated ProtoDUNE-SP event. The inputs to the CNN are small 48 × 48 pixel images created from patches of the full detector readout. Three examples are shown, each labelled with their appropriate class. The patch of the detector readout from which each patch was generated is emphasised.

2.1 Training details

For the purposes of training a true classification must be attached to each of the patches. In addition to track, shower and Michel electron patches, empty patches are also created where the central pixel contains no energy deposit. Approximately 30 million images were prepared in total using approximately 500 simulated events: ~15 million in the track sample, ~11 million in the shower sample, ~3 million in the empty sample, and ~1 million in the Michel electron sample.

The CNN was trained with TensorFlow [23] through its keras [24] interface, and performance metrics, such as the losses, purity and efficiency, were monitored throughout training using TensorBoard [25]. Before training, the data set was split into training, test, and validation sets in the ratio 80:10:10. The performance metrics were monitored throughout training with the training and validation sets, and again after training with the test set. Figure 4 shows the evolution of the training and validation losses throughout the training. The losses fall sharply within the first epoch, which is not shown in the plots. The validation loss steadily decreases throughout training suggesting that there is no evidence of over-fitting. The relatively large differences between training and validation losses are due to the smaller size of the validation dataset. To further ensure generalisation, an early stopping algorithm was used, which focused on the loss in the TSE branch [26]. The final weights for the network were taken from a checkpoint at the end of the fifth epoch since the validation loss in the TSE branch starts to plateau on the fifth epoch.

\footnote{An epoch is defined as one iteration over the entire training sample.}
Fig. 4: Evolution of the training and validation losses as a function of training epoch. The final weights of the network were taken from a checkpoint at the end of the fifth epoch, shown here as a vertical line. The overall loss, track, shower, and empty loss, and Michel loss are shown in the top left, top right, and bottom left respectively. In calculating the overall loss, the track, shower, and empty loss is weighted by 0.1 to be consistent with the smaller size of the Michel sample.

2.2 Performance

The performance of the hit tagging was evaluated with reconstructed events from ProtoDUNE-SP simulation. A 48×48 pixel image is created around each reconstructed hit, which is then classified by the network and the classification compared with the truth label. Note that by definition this method ensures that no processing is performed on empty images. Figure 5 shows the shower score distributions for true shower hits and all other hits, and a strong separation is seen between the distributions with a score close to one corresponding to a hit that is highly likely to come from a shower. The classification threshold can be set on a case by case basis, for the initial validation of the network on the ProtoDUNE-SP data it was optimised based on the F1 score, which is given by:

$$\frac{1}{F_1} = \frac{1}{2} \left(\frac{1}{\text{purity}} + \frac{1}{\text{efficiency}} \right),$$

where the purity is defined as the fraction of correctly classified shower hits in the sample of all selected shower hits, and the efficiency as the fraction of all true shower hits that were selected as shower hits.

Figure 6 demonstrates the performance of the network in terms of the true positive and false positive rates. In this case, the true positive rate is the fraction of true shower hits that have been correctly classified as shower hits, and the
false positive rate is the fraction of other hits incorrectly classified as shower hits. The receiver operating characteristic (ROC) curve is shown, which shows the true positive rate against the false positive rate as the selection threshold on the shower classifier output is varied. ROC curves are shown for simulation with the space charge effect (SCE) and without. The close agreement between the curves suggests that the CNN results are robust against changes in the SCE model.

Fig. 6: ROC curves for the shower classifier, showing the true positive rate against false the positive rate for varying classification threshold on the shower classifier output. The red (blue) line shows the ROC curve from ProtoDUNE-SP simulation with (without) SCE. The red curve is obscured by the blue due to close agreement.

The score distributions from the Michel electron classifier are shown in Fig. 7 for true Michel electron hits and all other hits. While both distributions are strongly peaked, with Michel electrons close to one and other hits close to zero, due to the significantly smaller sample of Michel electron hits, the network is not able to achieve a good performance in terms of the F1 metric. However, when combined with simple clustering, a high purity sample of Michel electron events can be selected, as will be discussed in Sec. 3.
3 Results from data and simulation

It is important that the CNN is robust against potential differences between data and simulation, and hence the performance has been compared between data and simulation for several particle species. Hits are tagged in the three different readout views and reconstructed particles from Pandora are assigned a score between 0 and 1 that is the average of the shower classifier score from the CNN from all of the 2D hits in the collection view. Each hit is weighted by the hit charge when calculating the average shower score. A score close to one means that it is highly probable that the particle is shower-like, and a low score means the particle is very likely to be track-like.

Data from ProtoDUNE-SP runs 5387 and 5809 taken in the H4-VLE test beam at CERN with 1 GeV/c beam momentum were used for the initial qualitative validation of the CNN performance on ProtoDUNE-SP data. These runs contain cosmic rays and particles from the charged particle beam. Run 5809 was taken with the inclusive beam trigger giving a dataset primarily consisting of beam positrons. Run 5387 was taken with a trigger that vetoed positrons, which resulted in a sample primarily consisting of beam \(\pi^+ \)'s, \(\mu^+ \)'s and protons. Figure 8 shows an example of the CNN shower scores of reconstructed particles in a ProtoDUNE-SP event. As expected, the cosmic-ray muon and pion tracks in the event have low shower scores, while the photon shower from the charged particle beam interaction is given a high score. In addition, delta ray electrons, which are emitted along the muon tracks, are associated with showers and therefore receive a high CNN shower score. The latest ProtoDUNE-SP Monte Carlo (MC) sample was used to compare with data. This is a new MC sample with improved modelling of detector response, which is completely independent of the previous MC sample that was used to train the CNN.

The following sections report the performance of the CNN classification at the hit level and the particle level for cosmic rays and charged particles from the test beam. In order to classify the hits, a threshold of 0.72 was applied to the shower classifier output of the CNN, with hits exceeding the threshold being classified as shower hits. This threshold was selected by choosing the value with the largest F1 score in Fig. 5. For particle-level classification, a different threshold of 0.81 is applied to the average shower score to classify particles, where the threshold was
chosen to maximise the product of the selection efficiencies of all four types of charged beam particles.

3.1 Cosmic-ray muons

A sample of cosmic-ray muons was selected from simulation and data (run 5387). Cosmic-ray muon candidates were selected in data and MC using the following criteria:

- the particle was reconstructed by Pandora as a track
- the track was at least 1 m in length
- the track started and ended at least 50 cm from the front face of the detector (to veto beam particles)
- the track was directed at least \(15^\circ\) away from the vertical (to veto tracks that only deposited energy on a small number of collection plane wires).

All of the hits associated to the selected tracks were labelled as true cosmic-ray muon hits. The hits from any other particles associated with the cosmic-ray muon candidate, such as delta-ray and Michel electrons, were not included to avoid contaminating the hit selection.

Firstly, the hit-level classification was studied. Figure 9 shows the level of agreement between data and simulation. The difference in the score distribution close to one can be attributed to hits from the numerous delta-ray electrons produced.
by high energy muons, such as those shown previously in Fig. 8. The results of the hit-level classification, obtained by measuring the fraction of hits below a threshold of 0.72, are given in Table 1.

Figure 9 shows the particle-level comparison of the average CNN shower score for the cosmic-ray muons in data and simulation. As expected, the distributions are peaked close to zero, and the data distribution is slightly shifted compared to the simulation. However, when applying the threshold of 0.81 to classify the cosmic rays as track-like, the agreement between data and simulation is excellent, as shown in Table 1.

Figure 10 shows the particle-level comparison of the average CNN shower score for cosmic-ray muon hits. The error bars on the data are statistical.

Fig. 9: The CNN shower classifier scores for cosmic-ray muon hits. The error bars on the data are statistical.

Fig. 10: The average CNN shower classifier scores for cosmic-ray muons. The error bars on the data are statistical.
Table 1: The fraction of correctly classified cosmic-ray muon hits and particles using the CNN measured in data and simulation. The errors represent the statistical uncertainties calculated using the Clopper-Pearson method [27].

Stage	Correctly classified (%)	Data	Simulation	Data/MC
Hits	85.6±0.0	87.3±0.0	0.980±0.000	
Particles	99.8±0.1	100.0±0.0	0.998±0.002	

3.2 Charged particle test beam

In the case of particles originating from the charged particle beam in data, the beam instrumentation [1] can be used to provide an effective truth source to which the results from the CNN can be compared in data. For simulation we use the truth information to get the primary beam particle species information. This allows the shower score distributions from the CNN to be compared between data and simulation for different particle species. The reconstructed particles with angles inconsistent with the beam direction and that arrive out-of-time with the beam can be assumed to be cosmic muons. Note that at 1 GeV/c beam momentum, π^+ and μ^+ are indistinguishable using the beam instrumentation information. A 1 GeV/c μ^+ is expected to stop in the middle of the detector around $z = 380$ cm, where the z axis is horizontal. A 1 GeV/c π^+ will most likely interact with the argon nucleus before stopping because of the relatively short interaction length (~ 100 cm). We identify an event as a pion if the reconstructed track end z position is less than 100 cm and as a muon if the end z position is greater than 300 cm for events identified by the beam instrumentation as either pions or muons. We require the number of collection plane hits in the reconstructed shower should be greater than 200 for the positron candidate events in order to remove events with an incompletely reconstructed shower. This cut is not applied to the other three particle species. Table 2 shows the numbers of events after the beam quality and number of hits cuts for beam pions, muons, protons and positrons and the purity of the selected samples based on the truth information in the simulation.

Table 2: Numbers of events after the beam quality and number of hits selection criteria.

	π^+	μ^+	p	e^+
Data	5402	1228	9364	9106
MC	16612	1305	23660	42245
MC purity	84.4%	86.7%	99.8%	97.7%

Figure 11 shows the distribution of shower classifier score for each individual hit in the beam pions, muons, protons, and positrons. The data in all of the beam particle distributions are normalised by the number of triggered beam particles of the given flavour after the beam quality and number of hits cuts. There is a
reasonable agreement between the data and simulation in terms of the shower score distributions for each particle species. To quantify the efficiency to select track-like and shower-like hits, Table 3 lists the fraction of individual hits selected into the appropriate category for each sample in data and simulation for a selection threshold of 0.72. The difference between the selected fraction in each case is an estimate of the systematic uncertainty associated with hit-by-hit selection. The class used for the selection in each sample is also given in Table 3. The fractional difference between data and simulation varies based on the particles species, and falls in the range of 1-2%.

![Diagram](image)

Fig. 11: Shower classifier scores for different particle species in the ProtoDUNE-SP beam. The error bars on the data are statistical.

Figure [12] shows the distribution of the average shower classifier scores over all the hits in the reconstructed pion, proton, and electron particles. This average shower classifier score is what analysers normally use to identify a reconstructed
Table 3: Fraction of hits classified into appropriate class for different samples in ProtoDUNE-SP data and simulation. The statistical uncertainties on the fractions and ratios are negligible.

Hit Source	Class	Data Fraction (%)	MC Fraction (%)	Data / MC
Pion	Track	78.7	80.3	0.98
Muon	Track	92.7	92.0	1.01
Proton	Track	93.0	94.5	0.98
Electron	Shower	93.0	91.4	1.02

particle as a track–like or shower–like particle. The distributions in each category are normalised to unit area. The data and MC distributions are in a reasonable agreement. There is a long tail in the average shower classifier score distribution for both the beam pions and protons. This tail is caused by the spatial distortion introduced by the SCE and is largely suppressed if we make the distributions using an MC sample without simulating SCE. There is a shift in the average shower classifier score for beam positrons between data and MC. There are slightly more hits in data than in MC for reconstructed positron events, making the data hits more shower–like. It can be seen that the score distribution for the beam muons is more strongly peaked towards low scores than for cosmic-ray muons, shown in Fig. 10 because they are significantly lower in energy and hence produce fewer delta rays. Table 4 lists the fraction of reconstructed particles selected into the appropriate category for each sample in data and simulation for a selection threshold of 0.81. The fractional difference between data and simulation is within 1% for all particles species.

Table 4: Fraction of reconstructed particles classified into appropriate class for different samples in ProtoDUNE-SP data and simulation. The errors represent the statistical uncertainties calculated using the Clopper-Pearson method.

Hit Source	Class	Data Fraction (%)	MC Fraction (%)	Data / MC
Pion	Track	91.7±0.4	92.5±0.2	0.991±0.005
Muon	Track	100±0.1	100±0.1	1.000±0.000
Proton	Track	96.9±0.2	97.1±0.1	0.998±0.002
Electron	Shower	98.8±0.1	97.9±0.1	1.010±0.001

3.3 Michel electrons

To validate the performance of the CNN Michel score calculation, we examine the Michel score of hits around the muon and pion track end point. Hits around the muon end points are most likely from the Michel electron which are expected to have a high Michel score. We define a window of 30 wires × 200 ticks (approximately 15 × 16 cm²) centred around the reconstructed track end point projected on the collection plane to select daughter hits. Hits from the secondary particles produced by the pion interaction are expected to have a low Michel score as shown
Fig. 12: Average shower classifier scores for different particle species in the ProtoDUNE-SP beam. The error bars on the data are statistical.

in Fig. 13(a) The Michel hits from the muon decay are expected to have a high Michel score as shown in Fig. 13(b). Hits on the primary beam track or on another track that is longer than 25 cm are excluded to remove the contributions from primary beam particle and cosmic ray muons. Figures 14 and 15 show the hit-level and particle level comparison of the CNN Michel score over daughter hits in the reconstructed pion and muon particles.

The results of the hit-level and event-level classification, obtained using a threshold of 0.19, are given in Tables 5 and 6 respectively. The threshold is chosen to maximise the product of selection efficiencies of pions and muons. We are able to select 73% of the μ^+ events while rejecting 90–92% of the π^+ events using the average Michel score. The fractional difference between data and simulation falls in the range of 1–2%. Efficient identification of Michel electrons provides crucial information on particle identification and kinematic reconstruction. It allows
Fig. 13: CNN Michel score for reconstructed primary beam particles and secondary particles in a reconstructed pion (left) and muon (right) particle. Each coloured pixel shows the peak time and wire number of a hit. The box surrounding the track end point is used to select the daughter hits. The average daughter Michel score is 0.005 for the pion event and 1.000 for the muon event.

Fig. 14: CNN Michel score for the daughter hits in the 30 wires × 200 ticks window centred around the reconstructed track end point of the pion (left) and muon (right) particles.

the separation between μ^+ and μ^- because 70% of the μ^-s are captured while most of the μ^+s decay into Michel electrons. It also allows the identification of stopping π^+ which goes through the decay chain $\pi^+ \rightarrow \mu^+ \rightarrow e^+$. The momentum of those stopping pions can be reconstructed either through track range or using calorimetric information, which can be used to reconstruct the full kinematics of the final state particles.
Fig. 15: Average CNN Michel score over the daughter hits in the 30 wires × 200 ticks window centred around the reconstructed track end point of the pion (left) and muon (right) particles.

Table 5: Fraction of daughter hits classified into appropriate class for different samples in ProtoDUNE-SP data and simulation. The statistical uncertainties on the fractions and ratios are negligible.

Hit Source	Class	Data Fraction (%)	MC Fraction (%)	Data / MC
Pion daughters	Non-Michel–like	87.6	89.2	0.982
Muon daughters	Michel–like	59.8	60.2	0.993

Table 6: Fraction of reconstructed particles classified into appropriate class for different samples in ProtoDUNE-SP data and simulation. The errors represent the statistical uncertainties calculated using the Clopper-Pearson method [27].

Hit Source	Class	Data Fraction (%)	MC Fraction (%)	Data / MC
Pion daughters	Non-Michel–like	90.4±0.4	92.2±0.2	0.980±0.005
Muon daughters	Michel–like	73.2±1.3	72.6±1.3	1.009±0.025−0.026

4 Conclusion

In this paper, we described an effective hit tagging algorithm for track, shower, and Michel electron hit classification based on a convolutional neural network, using a small patch approach. This algorithm is shown to give good agreement in selection efficiencies, of around 1–2%, between data and simulation for cosmic rays and 1 GeV/c test-beam interactions for a hit-by-hit event selection, and within 1% for a particle-by-particle event selection. Additionally, this network also provides a method to select Michel electrons, which helps with the particle identification and kinematic reconstruction. This algorithm is being widely used within ongoing
ProtoDUNE-SP data analyses, including pion cross-section analyses and detector calibrations.

Acknowledgements

The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We gratefully acknowledge the support of the CERN management, and the CERN EP, BE, TE, EN and IT Departments for NP04/ProtoDUNE-SP. This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republic; ERDF, H2020-EU and MSCA, European Union; CNRS/IN2P3 and CEA, France; INFN, Italy; FCT, Portugal; NRF, South Korea; CAM, Fundación “La Caixa”, Junta de Andalucía-FEDER, MICINN, and Xunta de Galicia, Spain; SERI and SNSF, Switzerland; TÜBİTAK, Turkey; The Royal Society and UKRI/STFC, United Kingdom; DOE and NSF, United States of America. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

References

1. B. Abi et al. First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. *JINST*, 15(12):P12004, 2020.
2. A. Abed Abud et al. Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC. *JINST*, 15(08):T08005, 2020.
3. B. Abi et al. Volume I. Introduction to DUNE. *JINST*, 15(08):T08008, 2020.
4. B. Abi et al. Volume IV. the DUNE far detector single-phase technology. *JINST*, 15(08):T08010, aug 2020.
5. N. Charitonidis and I. Efthymiopoulos. Low energy tertiary beam line design for the CERN neutrino platform project. *Phys. Rev. Accel. Beams*, 20:111001, Nov 2017.
6. A. C. Booth, N. Charitonidis, P. Chatzidaki, Y. Karyotakis, E. Nowak, I. Ortega-Ruiz, M. Rosenthal, and P. Sala. Particle production, transport, and identification in the regime of 1–7 GeV/c. *Phys. Rev. Accel. Beams*, 22(6):061003, 2019.
7. A. Reynolds. *Evaluating the low-energy response of the ProtoDUNE-SP detector using Michel electrons*. PhD thesis, University of Oxford, 2020.
8. J. S. Marshall and M. A. Thomson. The Pandora Software Development Kit for Pattern Recognition. *Eur. Phys. J.*, C75(9):439, 2015.
9. R. Acciarri et al. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector. *Eur. Phys. J.*, C78(1):82, 2018.
10. DUNE Collaboration. Pandora for protodune - details to come.
11. A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. D. Messier, E. Niner, G. Pawloski, F. Psillas, A. Sousa, and P. Vahle. A Convolutional Neural Network Neutrino Event Classifier. *JINST*, 11(09):P09001, 2016.
12. R. Acciarri et al. Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber. *JINST*, 12(03):P03011, 2017.
13. B. Abi et al. Neutrino interaction classification with a convolutional neural network in the dune far detector. *Phys. Rev. D*, 102:092003, Nov 2020.
14. C. Adams et al. Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber. *Phys. Rev.*, D99(9):092001, 2019.
15. F. Psihas, E. Niner, M. Groh, R. Murphy, A. Aurisano, A. Himmel, K. Lang, M. D. Messier, A. Radovic, and A. Sousa. Context-enriched identification of particles with a convolutional network for neutrino events. *Phys. Rev. D*, 100:073005, Oct 2019.
16. L. D. Jackel, R. E. Howard, B. Boser, J. S. Denker, D. Henderson, Y. LeCun, and W. Hubbard. Backpropagation Applied to Handwritten Zip Code Recognition, 2008.
17. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, 2015.
18. Eric D. Church. LArSoft: A Software Package for Liquid Argon Time Projection Drift Chambers. arXiv:1311.6774 [physics.ins-det], 2013.
19. Michael Wang, Tingjun Yang, Maria Acosta Flechas, Philip Harris, Benjamin Hawks, Burt Holzman, Kyle Knoepfel, Jeffrey Krupa, Kevin Pedro, and Nhan Tran. Gpu-accelerated machine learning inference as a service for computing in neutrino experiments. *Frontiers in Big Data*, 3:48, 2021.
20. Nitish Srivastava et al. Dropout: a simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research*, 15:1929–1958, 2014.
21. Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. Activation functions: Comparison of trends in practice and research for deep learning. arXiv:1811.03378 [cs.LG], 2018.
22. Sandro Palestini. Space Charge Effects in Noble Liquid Calorimeters and Time Projection Chambers. *Instruments*, 5(1):9, 2021.
23. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In *OSDI*, volume 16, pages 265–283, 2016.
24. François Chollet et al. Keras. https://keras.io 2015.
25. https://www.tensorflow.org/tensorboard.
26. Lutz Prechelt. *Early Stopping — But When?*, pages 53–67. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
27. C. J. Clopper and E. S. Pearson. The use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial. *Biometrika*, 26(4):404–413, 12 1934.