Biomarker MicroRNAs for Diagnosis, Prognosis and Treatment of Hepatocellular Carcinoma: A Functional Survey and Comparison

Sijia Shen1,2,*, Yuxin Lin2,*, Xuye Yuan2, Li Shen2,3, Jiajia Chen2, Luonan Chen4, Lei Qin1 & Bairong Shen2

Hepatocellular Carcinoma (HCC) is one of the most common malignant tumors with high incidence and mortality rate. Precision and effective biomarkers are therefore urgently needed for the early diagnosis and prognostic estimation. MicroRNAs (miRNAs) are important regulators which play functions in various cellular processes and biological activities. Accumulating evidence indicated that the abnormal expression of miRNAs are closely associated with HCC initiation and progression. Recently, many biomarker miRNAs for HCC have been identified from blood or tissues samples, however, the universality and specificity on clinicopathological features of them are less investigated. In this review, we comprehensively surveyed and compared the diagnostic, prognostic, and therapeutic roles of HCC biomarker miRNAs in blood and tissues based on the cancer hallmarks, etiological factors as well as ethnic groups, which will be helpful to the understanding of the pathogenesis of biomarker miRNAs in HCC development and further provide accurate clinical decisions for HCC diagnosis and treatment.

Hepatocellular Carcinoma (HCC) is the sixth most common cancer worldwide in terms of number of cases and the second major contributor to cancer mortality in man. The survival rates in the United States and developed countries are only 3% to 5%. There are still no effective biomarkers for the early diagnosis and prognosis of HCC. Currently, only about 30% to 40% patients with HCC can get effective treatment at the right time. It is extremely necessary to discover new biomarkers for precision diagnosis, prognosis and treatment of HCC.

MicroRNAs (miRNAs) are small endogenous non-coding RNAs with 22–24 nucleotides in length. They play important roles in regulating human genes by inhibiting translation or cleavage. Recent studies showed that miRNAs were associated with a variety of important biological processes such as cell proliferation, development, and apoptosis. Accumulating evidence indicated that miRNAs could be latent biomarkers in human cancers, including gastric cancer, lung cancer, prostate cancer, and breast cancer etc. Nowadays, extensive research efforts have demonstrated the biomarker role of miRNAs in HCC. For example, Jiang and his colleagues confirmed that miRNA panel assay (miR-10b, miR-106b and miR-181a) could be potential biomarkers for HCC preliminary screening. He et al. focused on the applications of miRNAs from 13 studies and 21 sets of data and the association between the risk of HCC and miRNAs polymorphisms. Another review summarized the function of circulating miRNAs, and a meta-analysis included 14 studies involving 1,848 cases with HCC and 1187 controls concluded that the miRNA panels can be biomarkers for HCC with AUC = 0.99 (96% sensitivity and 96% specificity). Many comprehensive reviews recommend to pay attentions to the role and function of miRNAs in disease diagnosis, prognosis and therapy. However, the differences in biological features of miRNAs...
between blood and tissues are still unclear, which limits the investigation on understanding clinical implications of miRNAs in different specimen.

In this review, we performed comprehensive functional analyses and comparisons of miRNA biomarkers in blood and tissues. The miRNA biomarkers in “tissues” were mainly extracted from liver tissues, adjacent non-cancerous tissues or human HCC tissues whereas those in “blood” were collected from plasma, serum or whole blood samples. This review aims at comprehensively understanding the pathogenic mechanism and clinical value of HCC biomarker miRNAs, and providing insights into precision diagnosis and treatment of HCC.

Methods

Data collection. We systematically collected HCC biomarker miRNAs from citations in NCBI PubMed by retrieval formula “(liver cancer OR intrahepatic bile duct OR hepatocellular carcinoma OR hepatoblastoma OR cholangiocarcinoma) AND (miRNA* OR microRNA*) AND (biomarker* OR indicator*)”. Here, studies in which miRNAs were exactly defined as markers or biomarkers were mainly considered, and those identified from body fluids such as saliva, urine and sweat were excluded as we only focused on miRNA biomarkers in blood and tissues. Besides, for further comparing the differentiation between HCC and cirrhosis and providing valuable strategies for the early detection of HCC, we also collected diagnostic miRNA biomarkers for liver cirrhosis using retrieval formula “cirrhosis AND diagnos* OR indicator* OR predictor*”. Here, studies in which miRNAs were exactly defined as markers or biomarkers were mainly considered, and those identified from body fluids such as saliva, urine and sweat were excluded as we only focused on miRNA biomarkers in blood and tissues. For computationally predicted miRNA pairs, they should reside in no fewer than two of the three prediction databases. Meanwhile, we unitized miRNA IDs according to the latest nomenclature in miRBase (release 21).

Target genes of miRNA biomarkers. The miRNA targets used in this study were integrated from both experimentally validated, i.e. miR2Disease, TarBase (version 6.0), miRTarBase (version 4.5), miRecords (version 4.0) and computationally predicted, i.e. HOCTAR (version 2.0), ExprTargetDB, and starBase (version 2.0) miRNA-target databases. To reduce false positives, we mainly selected miRNA-miRNA pairs validated by low-throughput experiments, i.e. real-time quantitative PCR, Western blot, etc. For computationally predicted pairs, they should reside in no fewer than two of the three prediction databases. Meanwhile, we unitized miRNA IDs according to the latest nomenclature in miRBase (release 21).

Functional survey of HCC biomarker miRNAs. The functions of HCC biomarker miRNAs are summarized based on the hallmarks of cancers. Since some of the miRNAs are associated with liver injury and few of the miRNAs’ functions are unclear, we therefore grouped their functions into 12 categories as antigrowth signals, resisting cell death, avoiding immune destruction, tissue invasion and metastasis, tumor promotion inflammation, sustained angiogenesis, limitless replicative potential, genome instability and mutation, other clinicopathological features, liver injury, tumor suppressor/onco-miR, and unclear. Moreover, we compared the pathogenesis of HCC biomarker miRNAs based on etiological factors as well as ethnic groups, i.e. the effects of Hepatitis B Virus (HBV), Hepatitis C Virus (HCV) and ethnic variation on HCC development.

Pathway enrichment analyses. For better understanding the association between miRNAs and HCC pathogenesis, we mapped the targets of biomarker miRNAs onto signaling pathways using IPA (Ingenuity Pathway Analysis) program. The top 10 significantly enriched pathways (p-value < 0.01) were selected and further validated the correlation with HCC by PubMed literature exploration.

Results

Overview of the collected HCC biomarker miRNAs. After manually searching and checking in PubMed citations, a total of 50 and 18 diagnostic miRNA biomarkers in blood and tissues, respectively, were extracted from 44 articles (see Tables 1 and 2) and their clinicopathological features of HCC were further compared based on the hallmarks of cancers, etiological factors and ethnic groups, respectively. As for prognostic and therapeutic biomarkers, respectively, 16 and 32 prognostic miRNAs in blood and tissues together with 8 therapeutic markers were collected according to records in 34 articles (see Tables 3, 4 and 5) and their clinicopathological features as well as functions were then explored.

Functional characterization of HCC biomarker miRNAs based on cancer hallmarks. The functional characterization of HCC biomarker miRNAs are summarized from the primary references and classified into 12 categories as shown in Fig. 1. It indicates that the biomarker miRNAs are associated with all aspects of hallmarks of cancers and all the hallmarks lead to the cancer. Therefore, the personalized biomarkers are needed to precision diagnosis, prognosis and treatment of the complex HCC. The functions of the biomarker miRNAs are summarized as follows.

Insensitivity to Antigrowth Signals. Although it is unclear for the units and interconnections between the different kinds of antigrowth and differentiation—including signals and the core cell cycle machinery, an antigrowth signaling must be exist to circumvent developing HCC. MiR-125b-5p and miR-15b-5p were the circulating diagnostic miRNA biomarkers associated with insensitivity to antigrowth signals and all of them were up-regulated and highly expressed in early-stage HCC cases. Liu et al. combined miR-15b-5p and miR-130b-3p as a classifier for HCC detection, yielding a receiver operating characteristic curve area of 0.98 in their validation study, the same was found in tissue samples, miR-15-5p was also reported highly expressed. As for prognostic biomarkers, three miRNAs related to insensitivity to antigrowth signals in the tissue samples were identified, including miR-137, miR-185-5p and miR-26a-5p. All of them were down-regulated in poor prognostic group which had a lower survival rate and shorter time to recurrence.
Resisting Cell Death. Cancer cells evolve various ways to circumvent or restrict apoptosis. The diversity of apoptosis-avoiding machinery and program reflects the multiplicity of apoptosis-including signals that tumor cell populations experienced while their evolution to the malignant state. In tissues, miR-101-3p, miR-224-5p and miR-483-5p were associated with resisting cell death. Among them, miR-101-3p was down-regulated whereas the remaining two were reported to be up-regulated. Resisting cell death was significantly associated with lower expression of miR-101-3p, miR-16-5p, miR-195-5p, miR-203a-3p and miR-221-3p in blood samples. Increased miR-221-3p, miR-224-5p, miR-483-5p and miR-122-3p expression were also detected in blood of HCC patients. These above diagnostic biomarkers as classifiers for HCC detection, yielding a receiver operating characteristic curve area of 0.635 to 0.884 (see Tables 1 and 2).

Table 1. Diagnostic biomarkers in tissues for hepatocellular carcinoma.

Reported ID	Official ID	Sample	Ethnicity	Features	Expression	AUC	PMID	Validated Targets
miR-101	miR-101-3p	30 HC 67 CHB 61 HBV-LC 67 HBV-HCC	China	1.inhibit HCC cell proliferation 2.tumor suppressor 3.promote apoptosis	down	CHB from HC 0.635 HBV-LC from HC 0.884 HBV-HCC from HC 0.788	24971953	Mcl-1, SOX9
miR-126	miR-126-3p	19 HCC 6 HCC	Germany	tumor suppressor	down	NA	25500075	NA
miR-127	miR-127-3p	33 HCC	China	tumor suppressor	down	NA	24854842	NA
miR-130b	miR-130b-3p	97 HCC	China	onco-miR	up	0.914	22403344	RUNX3
miR-139	miR-139-5p	31 CHB 31 HCC	China	1.suppress metastasis and progression of cancer cells 2.tumor suppressor	down	HCC from CH 0.761 (0.770)	24549282	Rho-kinase 2
miR-148a	miR-148a-3p	19 HCC	China	onco-miR	up	NA	22496917	NA
miR-150	miR-150-5p	15 HCC 15 ICC	China	tumor suppressor	up	0.764	25482320	NA
miR-15b	miR-15b-5p	96 HCC	China	preventing replicative stress in response to mitogensignalling	up	0.98	22403344	NA
miR-182	miR-182-5p	HCC	China	proliferation	up	NA	24653623	IGF1R and GSK3B
miR-18b	miR-18b-5p	110 HCC	Japan	1.proliferation 2.loss of cell adhesion ability	up	NA	23496901	TNRC6B
miR-199a	miR-199a-5p	17 CH 23 HCC	Egypt	NA	down	0.856	26302751	Mitogen-activated protein kinase (MAPK)
miR-200a	miR-200a-3p	29 HCC	Germany	suppress cancer cell migration	up	NA	24895326	ZEB1/ZEB2
miR-200b	miR-200b-3p	29 HCC	Germany	suppress cancer cell migration	up	NA	24895326	ZEB1/ZEB2
miR-21	miR-21-5p	50 HC 30 LC 136 HCC	Japan	excessive secretion by primary cancer cells	CH from HC 0.773 HCC from HC 0.953	21749846	NA	
miR-21	miR-21-5p	17 CH 23 HCC	Egypt	1.cell growth 2.migration 3.invasion	up	NA	26302751	phosphatase and tensin homolog (PTEN)
miR-21	miR-21-5p	30 HC 97 HCC	China	1.promote cell proliferation 2.tumor invasion	up	NA	25973032	PDCD4 and PTEN
miR-21	miR-21-5p	74 ICC	China	intrahepatic cholangiocarcinoma proliferation and growth	up	NA	25803229	PTPN14 and PTEN
miR-214	miR-214-3p	9 HC 10 HCC	China	tumor suppressor	down	NA	24789420	EZH2, CTNNB1 and CDH1
miR-224	miR-224-5p	9 HC 10 HCC	China	1.cell proliferation 2.migration 3.invasion 4.anti-apoptosis	up	NA	24789420	CD40
miR-29a-5p	miR-29a-5p	266 HCC	China	1.tissue invasiveness and metastasis r 2.tumor suppressor	up	0.746	23285022	NA
miR-483-5p	miR-483-5p	69 HC 69 HCC	America	anti-apoptotic oncogene	HCC from HC 0.827	24172413	NA	
miR-155-5p and miR-21-5p were up-regulated whereas others were down-regulated45-48. Circulating miR-122-5p and miR-16-5p could be used as putative biomarkers for HCC. Among them, miR-122-5p and miR-16-5p were shown to be up and down-regulated, respectively49,50.

Avoiding Immune Destruction. According to the long-standing theory of immune surveillance proposes, most of solid tumors such as HCC appeared to have somehow controlled to avoid detection by the different kinds of arms of the immune system or could limit the extent of immunological killing, thus they could evade eradication by immune system32. Motawi and his colleagues overviewed that serum miR-146p-5p was up-regulated in HCC and showed the clinical value for HCV-related HCC diagnosis. This circulatory biomarker miRNA was reported to exerted negative effects on anti-tumor immune response42.

Tissue Invasion and Metastasis. Invasion and metastasis, complex and multi-step processes, are elementary factors that affects HCC patients survival rate and their genetic and biochemical mechanisms remain poorly understood31. In tissues, high expression of miR-18b-5p, miR-200a-3p, miR-200b-3p, miR-21-5p, miR-224-5p and miR-29-5p were most frequently to be detected in HCC, and miR-139-5p was down-regulated. Therefore, they were valuable for diagnosis of HCC39,51-57. Several circulating miRNA biomarkers also displayed signally correlation with tissue invasion and metastasis, including highly expressed miR-146a-5p, miR-181b-5p, miR-182-5p, miR-21-5p, miR-215, miR-23-5p, miR-224-5p, miR-296-5p, miR-331-3p and miR-96-5p and low expressed miR-125b-5p, miR-199a-3p, miR-122-5p, miR-139-5p, miR-150-5p, miR-195-5p and miR-19a-3p. The above...
Reported ID	Official ID	Sample	Source	Ethnicity	Features	Expression	AUC	PMID	Validated Targets
miR-199a-3p	miR-199a-3p	156 HC, 78 HCC	serum	China	invasion capability	down	0.883	25618599	phosphorlated-S6 protein
miR-223	miR-223-3p	167 HC, 169 CHB, 141 LC, 457 HCC	blood	China	NA	down	0.864(training set), 0.888(validation set)	22105822	Statsmin1
miR-101	miR-101-3p	30 HC, 79 CHB, 61 HBV-LC, 67 HBV-HCC	serum	China	1.inhibit HCC cell proliferation 2.tumor suppressor 3.promote apoptosis	down1	CHB from HC 0.635 HBV-LC from HC 0.884 HBV-HCC from HC 0.788	24971953	Mcl-1, SOX9
miR-106b	miR-106b-5p	50 HC, 31 CLD, 27 HCC	blood	China	Proliferation	up	HCC from HC 0.89 CLD from HC 0.81 CLD from HC 0.63	25761179	p21/E2F5
miR-122	miR-122-5p	167 HC, 169 CHB, 141 LC, 457 HCC	blood	China	1.tumor size 2.differentiation grade 3.poor prognosis 4.distance metastasis	down1	CHB from HC 0.635 HBV-LC from HC 0.884 HBV-HCC from HC 0.788	22105822	Mcl-1, SOX9
miR-122	miR-122-5p	15 HC, 30 DN, 120 HCC	serum	China	1.induce apoptosis 2.suppress proliferation	up	HCC from HC 0.85 CLD from CLD 0.73 CLD from HC 0.66	25761179	NA
miR-122	miR-122-5p	34 HC, 70 HBV-HCC, 48 CHB	serum	China	liver injury	up	HCC from HC 0.79 CHB from HC 0.93	21296103	NA
miR-122	miR-122-5p	173 HC, 233 LC, 261 HCC	serum	China	1.regulating hepatocyte development and differentiation 2.apoptosis and suppress proliferation	down	0.887(training sets), 0.879(validation sets)	25238238	HepG2 and Hep3B cells
miR-122-5p	miR-122-5p	173 HC, 233 LC, 261 HCC	serum	China	1.induce apoptosis 2.suppress proliferation	up	0.629	26264553	NA
miR-122	miR-122-5p	85 volunteers matched	serum	China	tumor suppressor	down	0.707(0.943)2	23723713	NA
miR-125-5p	miR-125-5p	28 HC, 24 CHB, 22 HBV-LC, 20 HBV-HCC	plasma	Turkey	suppress the cell growth	up	NA	24595450	AKT
miR-130a	miR-130a-3p	42 HC, 125 HCV-CLD, 112 HCV-HCC	blood	Egypt	NA	up	HCV-HCC from HC 0.691	26352740	NA
miR-130b	miR-130b-3p	97 HCC	serum	China	onco-miR	up	0.914	22403344	RUNX3
miR-139	miR-139-5p	31 CHB, 31 HC	plasma	China	1.suppress metastasis and progression of cancer cells 2.tumor suppressor	down	HCC from CH 0.761 (0.770)3	24549282	Rho-kinase 2
miR-143	miR-143-3p	127 HC, 118 CH, 95 HCC	serum	China	differentiation	up	CH from HC 0.617 HCC from CH 0.795	24993656	FND3B
miR-146a	miR-146a-5p	42 HC, 125 HCV-CLD, 112 HCV-HCC	blood	Egypt	1.suppresses HCC invasion 2.exerted negative effects on anti-tumor immune response	up	HCV-HCC from HC 0.787 HCV-HCC from HCV-CLD 0.85	26352740	VEGF
miR-146a	miR-146a-5p	313 HC, 294 HCC	serum	China	onco-miR	NA	NA	24816919	NA
miR-150	miR-150-5p	120 HC, 110 CHB, 120 HCC	serum	China	1.tumor suppressor 2.metastasis 3.BCLC stage 4.advanced TNM stages	down	NA	26215970	NA
miR-150	miR-150-5p	15 HC, 15 ICC	plasma	China	tumor suppressor	up	0.764	25482320	NA
miR-15b	miR-15b-5p	96 HCC	serum	China	preventing replicative stress in response to mitogenicsignalling	up	0.984	22403344	NA
miR-16	miR-16-5p	107 CLD, 105 HCC	serum	America	1.tumor suppressor 2.apoptosis	down	NA	21278583	BCL2, MCL1, CCND1, WNT3A
miR-17-5p	miR-17-5p	28 HC, 26 CHC, 30 HCV-positive cirrhotic 8 HCC	blood	Turkey	NA	up	NA	25391771	NA

Continued
Reported ID	Offical ID	Sample Source	Ethnicity	Features	Expression	AUC	PMID	Validated Targets
miR-181a	miR-181a-5p	50 HC 31 CLD 27 HCC	blood China	tumor suppressor	down	HCC from HC 0.82 HCC from CLD 0.71 CLD from HC 0.64	25761179	NA
miR-182	miR-182-5p	40 HC 95 BLD 103 HCC	serum China	1.metastasis	up	0.911	25903466	TP53INP1
miR-18a	miR-18a-5p	60 HC 30 HBV CH 101 HBV-HCC	serum China	1.liver injury 2.onco-miR	up	NA	22865399	NA
miR-192	miR-192-5p	167 HC 169 CHB 141 LC 457 HCC	blood China	NA	up	0.864(training set) 0.888(validation set)	22105822	NA
miR-192	miR-192-5p	42 HC 125 HCV-CLD 112 HCV-HCC	blood Egypt	liver injury	up	HCV-HCC from HC 0.875 HCV-HCC from HCV-CLD 0.693	26352740	NA
miR-192-5p	miR-192-5p	173 HC 233 LC 261 HCC	serum China	NA	down	0.887(training sets) 0.879(validation sets)	25238238	NA
miR-195	miR-195-5p	42 HC 125 HCV-CLD 112 HCV-HCC	blood Egypt	1.onco-miR 2.evading apoptosis 3.tissue invasion and metastasis	down	HCV-HCC from HC 0.653 HCV-HCC from HCV-CLD 0.784	26352740	FGFR and GHR
miR-196a	miR-196a-5p	313 HC 294 HCC	serum China	onco-miR	NA	NA	24816919	NA
miR-199a-5p	miR-199a-5p	173 HC 233 LC 261 HCC	serum China	tumor suppressor	down	0.887(training sets) 0.879(validation sets)	25238238	NA
miR-19a	miR-19a-3p	42 HC 125 HCV-CLD 112 HCV-HCC	blood Egypt	1.PV thrombosis 2.invasion, satellite nodules and progression 3.recurrence	down	HCV-HCC from HC 0.714 HCV-HCC from HCV-CLD 0.866	26352740	NA
miR-206	miR-206	173 HC 233 LC 261 HCC	serum China	NA	up	0.887(training sets) 0.879(validation sets)	25238238	NA
miR-21	miR-21-5p	89 HC 48 CHB 101 HCC	blood China	liver injury	up	HCC from HC 0.87 CHB from HC 0.91	21229610	NA
miR-21	miR-21-5p	167 HC 169 CHB 141 LC 457 HCC	blood China	tumor suppressor	up	0.864(training set) 0.888(validation set)	22105822	PTEN
miR-21	miR-21-5p	50 HC 30 LC 136 HCC	serum Japan	excessive secretion by primary cancer cells	up	CH from HC 0.773 HCC from HC 0.955	21749846	NA
miR-21	miR-21-5p	30 HC 97 HCC	blood China	1.promote cell proliferation 2.tumor invasion	up	NA	25973032	PDCD4 and PTEN
miR-21	miR-21-5p	74 HCC	serum China	intrahepatic cholangiocarcinoma proliferation and growth	up	NA	25803229	PTPN14 and PTEN
miR-215	miR-215	127 HC 118 CH 95 HCC	serum China	metastasis	up	CH from HC 0.802 HCC from HC 0.816	24993656	NA
miR-221	miR-221-3p	10 HC 30 HCV 30 HCV-LC 30 HCV-HCC	serum Egypt	anti-apoptotic	down	0.655	25429320	NA
miR-223	miR-223-3p	89 HC 48 CHB 101 HCC	blood China	liver injury	up	HCC from HC 0.86 CHB from HC 0.88	21229610	NA
miR-223-3p	miR-223-3p	28 HC 26 CHC 30 HCV-LC 8 HCV-HCC	blood Turkey	NA	down	NA	25391771	NA
miR-223-3p	miR-223-3p	28 HC 24 CHB 22 HBV-LC 20 HBV-HCC	plasma Turkey	NA	down	NA	24595450	NA
miR-24-3p	miR-24-3p	46 HC 31 CLD 84 HCC	serum China	1.vascular invasion	up	HCC from CLD 0.636 (0.834)	25129312	NA
miR-26a	miR-26a-5p	167 HC 169 CHB 141 LC 457 HCC	blood China	lower miR-26a expression experienced worse survival but better response to interferon therapy	down	0.864(training set) 0.888(validation set)	22105822	NA
miR-26a-5p	miR-26a-5p	173 HC 233 LC 261 HCC	serum China	NA	down	0.887(training sets) 0.879(validation sets)	25238238	NA
miR-27a	miR-27a-3p	167 HC 169 CHB 141 LC 457 HCC	blood China	onco-miR	down	0.864(training set) 0.888(validation set)	22105822	NA
miR-296	miR-296-5p	42 HC 125 HCV-CLD 112 HCV-HCC	blood Egypt	1.metastasis 2.tumor angiogenesis	up	HCV-HCC from HC 0.792 HCV-HCC from HCV-CLD 0.645	26352740	NA

Continued
Reported ID	Official ID	Sample Source	Ethnicity	Features	Expression	AUC	PMID	Validated Targets	
miR-302c-3p	miR-302c-3p	28 HC 26 CHC 30 HCV-positive cirrhosis 8 HCC	blood	Turkey	NA	up	NA	25391771(41)	NA
miR-30c-5p	miR-30c-5p	28 HC 26 CHC 30 HCV-positive cirrhosis 8 HCC	blood	Turkey	1.HCV-positive cirrhosis	up	NA	25391771(41)	NA
miR-331-3p	miR-331-3p	40 HC 95 BLD 103 HCC	serum	China	1.proliferation	up	0.89	25903466(41)	PH
miR-34a	miR-34a-5p	42 HC 125 HCV-CLD 112 HCV-CLD	blood	Egypt	child stage and BCLC score	up	HCV-HCC from HC 0.98 HCV-HCC from HCV-CLD 0.67	26352740(42)	NA
miR-375	miR-375	156 HC 78 HCC	serum	China	tumor suppressor	down	0.637	25618599(46)	NA
miR-375	miR-375	210 HC 135 HBV 48 HCV 120 HCC	serum	China	1.interferon-beta therapy	up	0.96	21098710(49)	NA
miR-433-3p	miR-433-3p	173 HC 233 LC 261 HCC	serum	China	NA	up	0.887(training sets) 0.879(validation sets)	25283283(46)	NA
miR-483-5p	miR-483-5p	69 HC 69 HCC	serum	America	anti-apoptotic onco-gene	up	HCC from HC 0.827	24127413(39)	NA
miR-885-5p	miR-885-5p	24 HC 23 CHB 26 LC 17 GC 9 ICC 6 FHN 46 HCC	serum	China	cholesterol reverse transport	up	0.904	20815808(111)	NA
let-7b	let-7b-5p	15 HC 30 DN 120 HCC	serum	China	tumor suppressor	up	0.645	26264553(44)	NA
miR-203	miR-203a-3p	10 HC 30 non-cirrhotic HCV 25 HCV-related cirrhosis 23 HCV-CLD	serum	Egypt	1.tumor-suppressive	down	HCC from non-HCC 0.76	27268654(41)	NA
miR-885-5p	miR-885-5p	192 HCC 96 LC 96 CHC 95 HC	serum	Egypt	1.onco-miR 2.liver injury	up	HCC from HC 0.63 HCC from LC 0.775	27271989(40)	ISRE
miR-122	miR-122-5p	193 HCC 96 LC 96 CHC 95 HC	serum	Egypt	1.tumor suppressor 2.regulate lipid and cholesterol metabolism	up	HCC from HC 0.617 HCC from LC 0.617	27271989(40)	ADAM17
miR-29b	miR-29b-3p	194 HCC 96 LC 96 CHC 95 HC	serum	Egypt	tumor suppressor	down	HCC from HC 0.766	27271989(40)	NA
miR-221	miR-221-3p	195 HCC 96 LC 96 CHC 95 HC	serum	Egypt	1.onco-miR 2.apoptosis	up	HCC from LC 0.702	27271989(40)	CDKN1B/p27 CDKN1C/p57
miR-181b	miR-181b-5p	196 HCC 96 LC 96 CHC 95 HC	serum	Egypt	1.onco-miR 2.migration and invasion	up	HCC from LC 0.679	27271989(40)	TIMP3
miR-22	miR-22-3p	197 HCC 96 LC 96 CHC 95 HC	serum	Egypt	tumor suppressor	down	HCC from CHC 0.586	27271989(40)	HDAC4
miR-199a-3p	miR-199a-3p	198 HCC 96 LC 96 CHC 95 HC	serum	Egypt	tumor suppressor	down	HCC from CHC 0.7	27271989(40)	mTOR
miR-125b	miR-125b-5p	56 HC 63 CHB 59 HBV LC 64 HBV-HCC	plasma	China	1.tumor suppressor 2.migration and invasion 3.cellular proliferation and cell cycle progression	down	HBV-HCC from HC 0.891	27152953(41)	LIN28B
miR-96	miR-96-5p	104 HCC 100 CHB 90 LC 120 HC	serum	China	1.onco-miR 2.migration and invasion	up	HCC from CHB 0.803	26770453(42)	NA
miR-126	miR-126-3p	28 HC 20 LC 59 HCC	plasma	India	NA	up	low AFP HCC from non-HCC 0.765 low AFP HCC from LC 0.643	26756996(43)	APAF1, APC2, VEGFA, IRS1, CDKN2A
miR-224	miR-224-5p	26 HCC 22 LC 23 CHB 22 HC	serum	China	1.migration and invasion 2.suppress apoptosis	up	0.88	26724963(44)	NA

Table 2. Diagnostic biomarkers in blood for hepatocellular carcinoma. Abbreviations and note: HC: healthy controls; CHB: patients with chronic type B hepatitis; CLD: chronic liver disease; HCV-CLD: non-malignant HCV-associated CLD patients; DN: chronic hepatitis B patients with pathologically proven DN; ICC: intraphepatic cholangiocellular carcinoma; LC: liver cirrhosis; HCV: hepatitis C virus HBV: hepatitis B virus; NA: not available; 1: upregulated in the HBV-LC group; 2: combined classifier (AFP and miRNA-122a); 3: combination of plasma miRNA-139 with serum AFP; 4: combined miR-15b and miR-130b; 5: Combined serum alpha-fetoprotein (AFP) and miR-24-3p.
diagnostic biomarkers could be used as classifiers for HCC detection, yielding a receiver operating characteristic curve area of 0.645 to 0.943. In tissues, with regard to up-regulated microRNAs in HCC tissues, high expression of miR-106b-5p, miR-125b-5p, miR-17-5p, miR-183-5p, miR-18b-5p, miR-21-5p, miR-25-3p, miR-331-3p, miR-9-5p and miR-96-5p were significantly correlated with invasion and metastasis. The expression level of miR-1269a in HCC patients without portal vein tumor embolus was reduced. In addition, the low expression of miR-125a-5p, miR-128-3p, miR-137, miR-185-5p, miR-188-5p, miR-26a-5p, miR-503-5p and miR-744-5p were detected in HCC tissues compared with their non-tumor livers and were involved in the multi-step processes. There were six circulating prognostic biomarker miRNAs reported to be associated with tissue invasion and metastasis, including miR-122-5p, miR-17-5p, miR-182-5p, miR-21-5p, miR-24-3p and miR-331-3p, all of them were up-regulated in the group with low survival rate. Meanwhile, the serum miR-150-5p was shown highly expressed in HCC patients after surgical operation and then low expressed after tumor relapsed.

Tumor Promoted Inflammation. Inflammation has been proved to be existed at the earliest stage of tumor processes and to be capable of fostering the progression of incipient neoplasia into advanced tumors. Besides chemicals, particularly reactive oxygen species were positively mutagenic for adjacent cancer cells, accelerating their genetic evolution towards the high malignant carcinoma. In blood, the increased expression of miR-30c-5p could be used as a new classifier for HCV-positive HCC in early-stage. In addition, hepatic necroinflammatory activity was associated with the high expression of miR-122-5p in plasma. The over expression of circulating miR-122-5p was a prognostic biomarker predicting the poor survival rate of patients underwent radio frequency ablation.

Sustained Angiogenesis. Both oxygen and nutrients transported by vasculature are essential for cell survival and function. All cells in tissues obligate to live within 100 μm of a capillary blood vessel. The evidence showed that cells with aberrant proliferative lesions tended to lack angiogenic ability at first, and led to the capability for expansion. The development of angiogenic ability is vital for incipient neoplasia growth. The over expression of circulating miR-296-5p was significantly associated with tumor angiogenesis. In tissues, high expression of miR-26a-5p could suppress tumor angiogenesis in HCC by targeting HGF-cMet signaling, and it was a novel prognostic biomarker for HCC.

Limitless Replicative Potential. There are three factors can lead to an uncoupling of the growth of a cell process from signals in their microenvironment, including insensitivity to antigrowth signals, resistance to apoptosis, and growth signal autonomy. Senescence, just like apoptosis, is as a protective system that could be activated by opposite growth signals or shortened telomeres that drives abnormal cells irreversibly into a G0-like state, and it could prevent further proliferation. The high expression of miR-182-5p, miR-18b-5p, miR-21-5p and miR-224-5p, together with the down-regulated expression of miR-101-3p and miR-139-5p not only played important roles in the regulation of cell proliferation and limitless replicative potential, but also were diagnostic signals for HCC.

Genome Instability and Mutation. Multi-step cancer progression could be described as a series of genic clonal expansions. Acquiring the chance of an enabling mutant gene triggered these clonal expansions. The widespread destabilization of genome is inherent to the vast majority of HCC cells. The high expression of miR-122-5p and low expression of miR-143-3p in blood were prominently correlated with differentiation and genome instability. They could be used as noninvasive circulating biomarkers for diagnosis of HCC. Up-regulated expression of miR-21-5p has been observed to be associated with genome instability and mutation, and it was a novel prognostic biomarker for HCC. Patients with high serum concentrations of miR-1-3p and miR-122-5p showed a long overall survival time and these miRNAs could be used to assess the HCC staging scores.

Liver injury. Biochemical molecules including miRNAs can be released into the circulation system due to the hypoxia and damage of liver cells. Accumulating reports indicated that serum miR-10b-5p, miR-122-5p, miR-18-5p, miR-192-5p, miR-223-3p and miR-885-5p were up expressed in patients with chronic hepatitis or HCC and they could serve as diagnostic biomarkers for liver injury but not specific for HCC.

Tumor suppressor/onco-miR. Genetic suppressor and carcinogenicity interpreted the function of miRNAs from another perspective. In tissues, high expression of miR-150-5p and miR-29a-3p and low expression of miR-101-3p, miR-126-3p, miR-127-3p, miR-139-5p and miR-214-3p played tumor-suppressor roles and could be used as diagnostic biomarkers for HCC. The circulating miR-101-3p, miR-125b-5p, miR-139-5p, miR-150-5p, miR-16-5p, miR-181a-5p, miR-199a-3p, miR-199a-5p, miR-203a-3p, miR-21-5p, miR-22-3p, miR-29b-3p, miR-375, let-7b-5p correlated with tumor suppressor and could be potential biomarkers to differentiate HCC from healthy controls.
miR-125b-5p, miR-130a-3p, miR-146a-5p, miR-214-3p and miR-99a-5p were considered as tumor suppressors in HCC and served as prognostic indicators for HCC\cite{38,99–104}. Serum miR-1-3p, miR-101-3p, miR-122-5p, miR-150-5p, miR-203a-3p and miR-30c-5p were associated with suppressing tumorigenicity and new independent parameters of overall survival in HCC\cite{38,49,60,77,91,105}.

The high expression of miR-130b-3p, miR-148a-3p, miR-181b-5p, miR-221-3p, miR-885-5p and miR-96-5p were functional in tumorigenicity and could be served as early diagnostic biomarkers for different tumor type\cite{34,106}. Meanwhile, miR-10b-5p, miR-130b-3p, miR-146a-5p, miR-18-5p, miR-195-5p, miR-196a-5p and miR-27a-3p were related to carcinogenicity and played vital roles in HCC detection\cite{10,34,42,59,94,107}. There were six miRNAs associated with oncogenicity and could be potential biomarkers for the overall survival of patients with HCC, including miR-1269a, miR-155-5p, miR-182-5p, miR-183-5p, miR-96-5p and miR-128-2\cite{66,72,108,109}.

Figure 2. The Venn diagram of miRNA biomarkers for liver cirrhosis and HCC. Here circles in blue and red, respectively, represent miRNAs for cirrhosis and HCC. The miRNAs in red and green represent the up- and down-regulated expression, respectively. The miRNAs in purple means they showed inverse expression patterns in cirrhosis and HCC samples and those in black means their expressions were inconsistently up- or down-regulated according to different literature reports.

Figure 3. The Venn diagram of miRNA biomarkers for HBV/HCV-related HCC. Here miRNA biomarkers for HBV/HCV-related HCC were extracted from our collected dataset. Circles in blue and red, respectively, represent miRNAs for HBV-related HCC and HCV-related HCC. The miRNAs in orange and dark green represent the diagnostic and prognostic markers, respectively. The miRNAs in brown means they had both diagnostic and prognostic role according to different literature reports.
Reported ID	Official ID	Sample	Ethnicity	Features	Expression	PMID	Validated Targets
miR-101	miR-101-3p	20 HC 25 HBV-HCC	China	1. HBsAg, HBV DNA level and tumor size	up	24260081	NA
miR-101	miR-101-3p	130 HCC	China	tumor suppressor	down	23178713	SOX9
miR-101	miR-101-3p	30 HC 79 CHB 61 HBV-LC 67 HBV-HCC	China	1. inhibit HCC cell proliferation	up	24971953	NA
miR-106b	miR-106b-5p	104 HCC	China	1. tumor size	up	25466449	NA
miR-122	miR-122-5p	60 HCC	China	1. tumor suppressor	down	26252254	PKM2
miR-125b	miR-125b-5p	49 HCC	China	tumor suppressor	down	24811246	Eaf5a2
miR-1269	miR-1269a	95 HCC	China	1. tumor nodes	up	25785048	AGAP1, AGK, BPTE C160r74, DACT1, LIX1, RBMS3, ZNF706 and BMPER
miR-128-3p	miR-128-3p	72 HCC	China	1. suppress proliferation	down	25962360	PIK3R1 PI3K/AKT
miR-130a	miR-130a-3p	102 HCC	China	1. gender, HBsAg status, tumor size, and TNM stage	down	25218269	NA
miR-137	miR-137	136 HCC	China	1. vein invasion	down	24970808	AKT2
miR-146a	miR-146a-5p	85 HCC	China	tumor suppressor	down	24172202	ROCK1
miR-155	miR-155-5p	100 HCC	China	1. metastasis	up	23863669	NA
miR-155	miR-155-5p	216 HCC	China	1. onco-miR	up	22629365	NA
miR-17-5p	miR-17-5p	120 HCC	China	1. onco-miR	up	22583011	p38 MAPK-HSP27
miR-182	miR-182-5p	81 HCC	China	1. motility and invasiveness	up	25813403	FOXO1
miR-183	miR-183-5p	81 HCC	China	1. onco-miR	up	25813403	FOXO1
miR-185	miR-185-5p	41 NTR 54 TR	China	1. suppress the tumor cell growth	down	23648054	NA
miR-188-5p	miR-188-5p	250 HCC	China	1. suppress tumor cell proliferation	down	25998163	FGF5
miR-18b	miR-18b-5p	110 HCC	Japan	1. proliferation	up	23496901	TNRC6B
miR-199a-5p	miR-199a-5p	120 HCC	China	1. Negatively Associated With Malignancies	down	26054020	Hexokinase 2
miR-206	miR-206	147 HCC	China	1. suppresses cell proliferation	down	25513086	NA
miR-21	miR-21-5p	50 HC 36 CH 136 HCC	Japan	1. tumor differentiation	down	21749846	NA
miR-21	miR-21-5p	112 HCC	China	1. tumor differentiation	up	26261620	NA

Continued
Other clinicopathological features. Besides the above ten clinicopathological features and the hallmarks of cancer, biomarker miRNAs were also correlated with other clinicopathological features, such as secretion by primary cancer cells, child stage, cholesterol reverse transport, tumor size and recurrence, etc. Tomimaru et al. found that miR-21-5p was excessively secreted by primary cancer cells and could be a potential diagnostic biomarker for HCC110. Motawi and his colleagues identified that serum miR-34a-5p was correlated with child stage and BCLC score and could be used as an early biomarker for HCC in high-risk group42. The miR-885-5p and miR-122-5p in serum was reported related to cholesterol reverse transport and assessment of liver pathologies111.

In addition, miR-101-3p, miR-106b-5p, miR-130a-3p, miR-16-5p, miR-199a-5p, let-7f-5p and miR-34a-5p were found to have a significant correlation with tumor size in the tissue and serum of HCC patients50,64,102,112–114. The present literature also provided evidence that miR-130a-3p, miR-21-5p, miR-25-3p, miR-17-5p were independent prognostic factors and were associated with the TNM classification which is a universally accepted cancer staging system based on extension and size of the primary tumor (T), the adjacent lymph node (N), and the distant metastasis (M)68,69,78,102. The down-regulated expression of miR-774-5p and let-7f-5p can be considered as noninvasive biomarkers for predicting of the recurrence of HCC76,114.

Comparison of HCC biomarker miRNAs based on etiological factors and ethnic groups. Recently, accumulating evidence indicated that the occurrence and development of HCC are closely associated with etiological factors as well as ethnic groups. The differentiation between HCC and liver cirrhosis, for instance,
Table 4. Prognostic biomarkers in blood for hepatocellular carcinoma. Abbreviations and note: PVTT: portal vein tumor thrombosis; LC: liver cirrhosis; HBV: Hepatitis B Virus; HCV: Hepatitis C Virus; HC: healthy controls; CHB: patients with chronic type B hepatitis; BLD: benign liver diseases; ICC: intrahepatic cholangiocellular carcinoma; CH: chronic hepatitis; NA: not available.

Reported ID	Official ID	Sample	Source	Ethnicity	Features	Expression	PMID	Validated Targets
miR-1	miR-1-3p	54 LC 195 HCC serum	Germany		1. differentiation			
 2. tumor suppressor | up | 238102473 | NA |
| miR-101 | miR-101-3p | 20 HC 25 HBV-HCC serum | China | | 1. HBsAg, HBV DNA level and tumor size | up | 242600813 | NA |
| miR-101 | miR-101-3p | 30 HC 79 CHB 61 HBV-LC 67 HBV-HCC serum | China | | 1. inhibit HCC cell proliferation
 2. tumor suppressor | up | 249719534 | NA |
| miR-122 | miR-122-5p | 122 HCC blood | China | | 1. tumor suppressor
 2. proliferation
 3. differentiation
 4. regulation of cholesterol and lipid metabolisms
 5. stability and propagation of hepatitis C virus and hepatitis B infection | up | 256364487 | NA |
| miR-122 | miR-122-5p | 120 HCC plasma | South Korea | | 1. hepatic necroinflammatory activity
 2. cell death
 3. tumor suppressor | up | 261298789 | NA |
| miR-150 | miR-150-5p | 120 HC 110 CHB 120 HCC serum | China | | 1. tumor suppressor
 2. metastasis
 3. BCLC stage
 4. advanced TNM stages | down | 262159709 | NA |
| miR-16 | miR-16-5p | 60 HC 90 HCC serum | China | | 1. tumor size
 2. liver dysfunction and coagulation defect | down | 2469711914 | NA |
| miR-16 | miR-16-5p | 40 HCV 40 HCC serum | Egypt | | 1. apoptosis
 2. bilirubin | down | 261337254 | NA |
| miR-17-5p | miR-17-5p | 96 HCC blood | China | | 1. metastasis
 2. TNM stage | up | 231080867 | NA |
miR-182	miR-182-5p	40 HC 95 BLD 103 HCC serum	China		metastasis	up	259034666	TP53INP1
miR-199a	miR-199a-5p	40 HCV 40 HCC serum	Egypt	tumor size	down	261337259	NA	
miR-203a	miR-203a-3p	90 HCV 152 HCV-HCC serum	China	tumor suppressor	down	2621045351	NA	
miR-21	miR-21-5p	50 HC 30 CH 136 HCC serum	Japan		intrahepatic cholangiocarcinoma proliferation and growth	up	258032299	PTPN14 and PTEN
miR-21	miR-21-5p	74 ICC serum	China		intrahepatic cholangiocarcinoma proliferation and growth	up	258032299	PTPN14 and PTEN
miR-24-3p	miR-24-3p	46 HC 31 CLD 84 HCC serum	China	vascular invasion	up	251293124	NA	
miR-30c	miR-30c-5p	90 HCV 152 HCV-HCC serum	China	tumor suppressor	down	2621045351	EMT	
miR-331-3p	miR-331-3p	40 HC 95 BLD 103 HCC serum	China	1. proliferation				
 2. metastasis | up | 259034666 | NA |
| miR-335 | miR-335-5p | 125 HC 125 HCV/ HBV 125 HCC serum | China | response to TACE and clinical outcome | down | 263050264 | NA |
| let-7f | let-7f-5p | 60 HC 90 HCC serum | China | 1. tumor size
 2. early recurrence | down | 2469711914 | NA |

is one of the main problems for the early detection of HCC. Moreover, different etiological factors such as HBV (Hepatitis B Virus) and HCV (Hepatitis C Virus) can also contribute to the HCC carcinogenesis. On the other hand, the incidence and mortality of HCC often showed different patterns among different ethnic groups. Hence it is necessary to compare HCC biomarker miRNAs based on etiological factors and ethnic groups.
Biomarker miRNAs for classifying of HCC and liver cirrhosis. After manually searching for citations in PubMed, a total of 13 miRNA biomarkers for liver cirrhosis diagnosis were collected (see Table S1). We then compared them with HCC diagnostic miRNA biomarkers in order to screen key signatures for HCC early detection. As shown in Fig. 2, eight miRNAs, i.e. miR-106b-5p, miR-122-5p, miR-141-3p, miR-181b-5p, miR-18a-5p, miR-19a-3p and miR-21-5p, were shared by cirrhosis and HCC. Interestingly, three of them (miR-106b-5p, miR-18a-5p and miR-21-5p) showed inverse expression patterns in cirrhosis and HCC groups. For example, the expression of miR-106b-5p (miR-106b) was down in cirrhosis samples whereas it turned out to be up-regulated in the blood of HCC patients. In addition, miR-19a-3p (miR-19a) was reported as a useful molecular marker for monitoring the progression of liver fibrosis to cirrhosis and finally, to HCC. Han et al. found that two miRNAs, i.e. miR-224 (miR-224-5p) and miR-214 (miR-214-3p), were significantly up- and down-regulated in HCC tissue samples respectively, which provided novel biomarker signatures for HCC diagnosis and treatment.

It can be concluded that biomarker miRNAs revealed the pathogenesis of cirrhosis and HCC at the post-transcriptional level and could help deeply understand the differentiation between cirrhosis and HCC. From the perspective of precision medicine, HCC miRNA biomarkers, especially those specific to HCC, were indicators for capturing the early diagnostic signatures at the time of HCC initiation.
Reported ID	Official ID	Sample	Source	Ethnicity	Features	Expression	PMID	Validated Targets
miR-335	miR-335-5p	62 HCC	tissue	China	inhibit the proliferation and migration invasion	down	25804796	ROCK1
miR-192	miR-192-5p	59 HC 59 HCC	tissue	South Korea	increase tumor cell migration and invasion	down	25065598	NA
miR-224	miR-224-5p	9 HC 10 HCC	tissue	China	cell proliferation s 2. migration 3. invasion 4. anti-apoptosis	up	24789420	CD40
miR-214	miR-214-3p	9 HC 10 HCC	tissue	China	tumor suppressor	down	24789420	EZH2, CTNNB1 and CDH1
miR-148a	miR-148a-3p	19 HCC	tissue	China	onco-miR	up	22496017	NA
miR-206	miR-206	147 HCC	tissue	China	1. suppress cell proliferation 2. promote apoptosis.	down	25510886	NA
miR-331-3p	miR-331-3p	457 HCC	tissue	China	1. promote proliferation 2. metastasis	up	24825302	Leucine-Rich Repeat Protein Phosphatase
miR-26a	miR-26a-5p	120 HCC	tissue	China	1. cell Cycle 2. angiogenesis	up	24259426	CDK6, cyclin D1
miR-26a	miR-26a-5p	130 HCC	tissue	China	1. suppress the tumor cell growth 2. suppress invasive	down	23389848	interleukin-6-Stat3

Table 5. Therapeutic biomarkers for hepatocellular carcinoma. Abbreviations and note: HC: healthy controls; NA: not available.

Biomarker miRNAs for monitoring the development of HBV/HCV-related HCC. It has been widely acknowledged that the progression of HCC is closely affected by the infection of etiological factors, such as HBV, HCV, etc. On the other hand, miRNAs are reported to play crucial roles in HBV/HCV replication and pathogenesis117–119, i.e. they regulated HBV by directly binding to HBV transcripts or changing HBV gene expression at the transcriptional level118. For better investigating the influence of HBV/HCV on HCC development, miRNA biomarkers for HBV/HCV-related HCC were extracted from our collected dataset. As illustrated in Fig. 3, several miRNAs, i.e. miR-122-5p, miR-126-3p, miR-143-3p, miR-192-5p, etc., were functional in both HBV- and HCV-related HCC evolutionary progression. For example, Tan et al. found that serum miR-122-5p could be used as the diagnostic biomarker for detecting HBV-related HCC. Both the area under the receiver operating characteristic curve (AUC) and logistic regression model convinced the predictive power86. Meanwhile, the miRNA was also turned out to be effective for early detection of HCC on top HCV infection. Using the miRNA panel where miR-122-5p included, HCC patients could be classified from healthy controls and liver cirrhosis patients with high diagnostic accuracy120.

There is still a large number of biomarker miRNAs that could be specifically used for monitoring the development of HBV/HCV-related HCC. Chen et al. analyzed the plasma samples from 242 individuals and uncovered that the expression of miR-125b-5p (miR-125b) was significantly down-regulated in HBV-induced HCC (HBV-HCC) patients compared to healthy controls as well as HBV groups without HCC121. Moreover, the low plasma level of miR-125b-5p also reflected the higher possibility of metastasis. Therefore, the miRNA held promise as a valuable diagnostic biomarker for HBV-HCC and HBV-infected patients with high HCC risks could be early detected by dynamically monitoring the changes of this miRNA. Liu et al. demonstrated that the expression levels of miR-30c-5p (miR-30c) and miR-203a-3p (miR-203a) were crucial indicators for predicting the poor prognosis of HCV-related HCC because the core protein of HCV could down-regulate the expression of miR-30c-5p and miR-203a-3p, resulting in the activation of epithelial-mesenchymal transition in normal hepatocytes as well as HCC tumor cells. As reported before, the activation process may contribute to the carcinogenesis of HCC108.

Understanding the pathogenesis of miRNA biomarkers in HBV/HCV-related HCC provided insights to evaluate the potential effects of HBV/HCV on HCC development, which will be helpful to the early and personalized detection of HCC.

HCC miRNA biomarkers within different ethnic groups. Genomic profiling of HCC tumors showed that HCC patients in different geographic regions tended to have specific recurrent molecular aberrations122. Asians, on the whole, achieved the highest HCC incidence according to the report by Wong et al.123. In terms of prognosis, the overall survival rate was also disparate among different ethnic groups124. Here we reorganized HCC miRNA biomarkers based on the ethnicity of patients described in each citation. As illustrated in Fig. 4a, most of the reported HCC miRNA biomarkers were related to Chinese population, which indirectly indicated the high risk or high incidence of HCC in China. For further exploring the ethnic specificity of HCC miRNA biomarkers, we then partitioned miRNAs into two categories based on the patient race, i.e. Asian-related (Chinese, Japanese, South Korean, Indian and Iranian) and non-Asian-related (Egyptian, American, Turk and German) HCC miRNA biomarkers. As shown in Fig. 4b, the number of Asian-specific HCC miRNA biomarkers is far more than that of non-Asian. We noticed that some miRNAs were reported to be functional in both Asian and non-Asian group.

Scientific Reports | 6:38311 | DOI: 10.1038/srep38311
However, the expression pattern of them was sometimes quite different when they were involved in different pathogenic processes or belonged to different ethnic groups. For example, miR-125b-5p was associated with the biological behavior of HCC and had the diagnostic value of HCC for both Turks and Chinese. As in plasma samples of Chinese patients, it was found to be down-regulated whereas in Turks samples, its expression level was

Figure 5. Top 10 pathways significantly enriched with targets of different biomarker miRNAs from HCC tissue and blood. Sub-figure (a), (b), and (c) represent pathways enriched by targets of diagnostic, prognostic and therapeutic biomarker miRNAs, respectively. The statistical significance level (p-value) was negative 10-based log transformed.

However, the expression pattern of them was sometimes quite different when they were involved in different pathogenic processes or belonged to different ethnic groups. For example, miR-125b-5p was associated with the biological behavior of HCC and had the diagnostic value of HCC for both Turks and Chinese. As in plasma samples of Chinese patients, it was found to be down-regulated whereas in Turks samples, its expression level was
up. For comparison of Egyptian and Chinese, the down-regulation of miR-146a-5p was correlated with HCC carcinogenesis and deterioration in Chinese population, but in samples of Egyptian patients, it was inverse.

This ethnic difference may be caused by the heterogeneous pathogenesis, lifestyles and various factors including diet, environmental exposures, etc. Moreover, the incidence of HBV/HCV infection in different countries is also inconsistent. Therefore, more in-depth researches on ethnically specific miRNA biomarkers is of clinical significance, which would provide personalized strategies for HCC diagnosis and treatment in the era of precision medicine.

Pathway enrichment analysis for targets of HCC miRNA biomarkers. We performed the pathway enrichment analysis for targets of different types of reported miRNA biomarkers using IPA program. Here the targets of miRNA biomarkers originated from seven publicly available miRNA-target databases, including four experimentally validated databases and three computationally predicted databases (see Methods). For the three categories, i.e. the diagnostic, prognostic and therapeutic biomarker miRNAs, the top 10 significantly enriched pathways (p-value < 0.01) were chosen and shown in Fig. 5. The common enriched pathways among them were Molecular Mechanisms of Cancer, Glucocorticoid Receptor Signaling, HGF Signaling, NGF Signaling, p53 Signaling etc. Most of them are well-studied cancer associated pathways. Das et al. reported that the pathway Molecular Mechanisms of Cancer was potentially associated with recurrent HCC secondary to HCV following liver transplantation. Glucocorticoids are involved in controlling many essential biological processes that are related to energy supply and growth control. The Glucocorticoid Receptor often functions as a cofactor of transcription factor STAT5 for growth hormone induced genes and Glucocorticoid Receptor Signaling has been turned out to be important in body growth, steatosis and metabolic liver cancer development. The experimental result in mouse model demonstrated that the metabolic dysfunction and impairment of Glucocorticoid Receptor Signaling could cause steatosis and HCC in mice. Wu et al. revealed that the HGF signaling could be activated by over expression of gene C1GALT1 in HCC via modulation of MET O-glycosylation and dimerization, which offered new insights into O-glycosylation and HCC pathogenesis. Lin et al. indicated that p53 Signaling pathway was significantly dysregulated in HCC and it could reflect the development and progression of HCC. Moreover, a number of genes participated in regulating human HCC by interacting with p53 Signaling pathway. For instance, the key gene RASSF10, which is located on chromosome 11p15.2, could suppress the growth of HCC via activating p53 Signaling pathway. EGR1 is one of the key components in p53 Signaling, the re-expression of gene BCL6B in HCC cells could increase its expression and finally contribute to the activation of p53 Signaling.

Discussion
In this review, we made comprehensive functional survey and comparison of HCC diagnostic, prognostic and therapeutic miRNAs in blood and tissues. The number of diagnostic miRNA biomarkers in blood is approximately twice as much as those in tissues and meanwhile, the number of prognostic miRNA biomarkers in tissues is twice as much as those in blood. The reason for the statistical difference may be that many studies are inclined to investigate the noninvasive diagnostic miRNA biomarkers and researchers tend to use relatively stable hepatogenic biomarkers as prognostic indicators because miRNAs may be released into the blood selectively. Most of the diagnostic, prognostic and therapeutic miRNA biomarkers are associated with one or two clinic pathological features in blood and tissues. A great number of prognostic biomarkers with high expression levels were detected in patients with shorter overall survival. Since the etiological factors as well as ethnic groups are closely associated with HCC carcinogenesis, we analyzed miRNA biomarkers by taking the HBV/HCV infection as well as regional variations into account in order to provide better clues for HCC pathogenic research. We mainly selected miRNAs which were explicitly reported as HCC markers/biomarkers in our current study. Besides, several miRNAs are still common and important during HCC development. For example, miR-142-3p was functional in HCC tumorigenesis and played a key role in regulating human RAC1 gene. The upregulation of miR-142-3p inhibited the expression level of RAC1 mRNA, suppressing the migration and invasion of HCC cells. Interferon regulatory factor-1 (IRF-1) is a tumor-suppressor in HCC and its down-expression would help HCC tumors evade death. Yan et al. found that miR-23a was a negative regulator of IRF-1 in HCC, which highlighted its importance in HCC initiation and progression. Zhang et al. demonstrated that miR-99a could directly regulate AGO2 and control tumor growth in HCC, indicating the potential strategies for HCC treatment.

HCC is a complex disease which is difficult for early diagnosis and treatment. The death rate of HCC remains high due to its poor prognosis. To some extent, miRNAs are effective biomarkers for HCC because of the noninvasive detection, good specificity and sensitivity. More systematic investigations and clinical experiments need to be done for better understanding the role and function of miRNA biomarkers in HCC pathogenesis.

References
1. Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA Cancer J Clin 55, 74–108 (2005).
2. Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J Clin 65, 87–108, doi: 10.3322/caac.21262 (2015).
3. Llovet, J. M. et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 100, 698–711, doi: 10.1093/jnci/djn134 (2008).
4. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).
5. Zhang, W. et al. Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer. J Transl Med 12, 66, doi: 10.1186/1479-5876-12-66 (2014).
6. Yan, W., Qian, L., Chen, J., Chen, W. & Shen, B. Comparison of Prognostic MicroRNA Biomarkers in Blood and Tissues for Gastric Cancer. J Cancer 7, 95–106, doi: 10.7150/jca.13340 (2016).
7. Inamura, K. & Ishikawa, Y. MicroRNA In Lung Cancer: Novel Biomarkers and Potential Tools for Treatment. J Clin Med 5, doi: 10.3390/jcm5030036 (2016).
8. Inamura, K. MicroRNA In Lung Cancer: Novel Biomarkers and Potential Tools for Treatment. J Clin Med 5, doi: 10.3390/jcm5030036 (2016).
8. Khanmi, K., Ignacimuthu, S. & Paulraj, M. G. MicroRNA in prostate cancer. *Clin Chim Acta* **451**, 154–160, doi: 10.1016/j.cca.2015.09.022 (2015).

9. Tan, Z. et al. MicroRNA-1229 overexpression promotes cell proliferation and tumorigenicity and activates Wnt/beta-catenin signaling in breast cancer. *OncoTarget*, doi: 10.18632/oncotarget.8119 (2016).

10. Jiang, L., Cheng, Q., Zhang, B. H. & Zhang, M. Z. Circulating microRNAs as biomarkers in hepatocellular carcinoma screening: a validation set from China. *Medicine* **94**, e603, doi: 10.1097/MD.0000000000000603 (2015).

11. He, S., Zhang, D. C. & Wei, C. MicroRNAs as biomarkers for hepatocellular carcinoma diagnosis and prognosis. *Clinics and research in hepatology and gastroenterology* **39**, 426–434, doi: 10.1016/j.clinre.2015.01.006 (2015).

12. Zhang, Y. C., Xu, Z., Zhang, T. F. & Wang, Y. L. Circulating microRNAs as diagnostic and prognostic tools for hepatocellular carcinoma. *World J Gastroenterol* **21**, 9853–9862, doi: 10.3748/wjg.v21.i34.9853 (2015).

13. Yiu, H. et al. MicroRNAs as a novel class of diagnostic biomarkers in detection of hepatocellular carcinoma: a meta-analysis. *Tumour Biology: the journal of the International Society for Oncodevelopmental Biology and Medicine* **35**, 12317–12326, doi: 10.1007/s13277-014-2544-2 (2014).

14. George, I. & Patel, T. Noncoding RNA as therapeutic targets for hepatocellular carcinoma. *Semin Liver Dis* **35**, 63–74, doi: 10.1055/s-0034-1397350 (2015).

15. Yang, X. et al. Circulating microRNAs (cmiRNAs) as novel potential biomarkers for hepatocellular carcinoma. *PloS one* **9**, 5113–5124, doi: 10.1039/gkn174 (2009).

16. Gori, M., Arciello, M. & Balsano, C. MicroRNAs in nonalcoholic fatty liver disease: novel biomarkers and prognostic tools during the transition from steatosis to hepatocellular carcinoma. *Biomed Res Int* **2014**, 741465, doi: 10.1155/2014/741465 (2014).

17. Jiang, Q. et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. *Nucleic acids research* **37**, D98–104, doi: 10.1093/nar/gkn1248 (2014).

18. Sethupathy, P., Corda, B. & Hatzigeorgiou, A. G. TarBase: A comprehensive database of experimentally supported animal microRNA target interactions. *Molecular medicine reports* **9**, 135–142 (2013).

19. Chen, Z., Wang, T. & Ng, K. H. CiBase: a database curates experimentally validated microRNA-target interactions. *Molecular medicine reports* **7**, 163–169, doi: 10.1093/nar/gkq1107 (2011).

20. Xiao, F. et al. miRecords: an integrated resource for microRNA-target interactions. *Nucleic acids research* **37**, D105–110, doi: 10.1093/nar/gkn851 (2009).

21. Gennarino, V. A. et al. HOCTR database: a unique resource for microRNA target prediction. *Gene* **480**, 51–58, doi: 10.1016/j.gene.2011.03.005 (2011).

22. Kempton, E. et al. Exprtarg: an integrative approach to predicting human microRNA targets. *PloS one* **5**, e13534, doi: 10.1371/journal.pone.0013534 (2010).

23. Li, J. H., Liu, S., Zhou, H., Qu, L. H. & Yang, J. H. starBase v2.0: decoding miRNA-ceRNA, miRNA-tRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. *Nucleic acids research* **42**, D92–97, doi: 10.1093/nar/gkt1248 (2014).

24. Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. *Nucleic acids research* **42**, D68–73, doi: 10.1093/nar/gkt1181 (2014).

25. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. *Cell* **100**, 57–70 (2000).

26. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. *Cell* **144**, 646–674, doi: 10.1016/j.cell.2011.02.013 (2011).

27. Giray, B. G. et al. Profiles of serum microRNAs; miR-125b-2p and miR-223-2p serve as novel biomarkers for HBV-positive hepatocellular carcinoma. *Molecular biology reports* **41**, 4513–4519, doi: 10.1007/s11033-014-3223-2 (2014).

28. Liu, A. M. et al. Circulating miR-15 and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study. *BMJ Open* **2**, e000825, doi: 10.1136/bmjopen-2012-000825 (2012).

29. Liu, L. L. et al. FoxD3-regulated microRNA-137 suppresses tumour growth and metastasis in human hepatocellular carcinoma by targeting AKT2. *OncoTarget* **5**, 5113–5124, doi: 10.18632/oncotarget.2089 (2014).

30. Zhu, Q. et al. Metastasis-related miR-185 is a potential prognostic biomarker for hepatocellular carcinoma in early stage. *Biomed Pharmacother* **67**, 393–398, doi: 10.1016/j.biopha.2013.03.022 (2013).

31. Yang, X. et al. MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting interleukin-6 Stat3 pathway. *Hepatology* **58**, 158–170, doi: 10.1002/hep.26305 (2013).

32. Xie, Y. et al. Expression profiling of serum microRNA-101 in HBV-associated chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. *Cancer Biol Ther* **15**, 1248–1255, doi: 10.4161/cbt.29688 (2014).

33. Hanahan, D. & Weinberg, R. A. Identification of the typical miRNAs and target genes in hepatocellular carcinoma. *Molecular medicine reports* **10**, 229–235, doi: 10.3892/mmr.2014.2194 (2014).

34. Shen, J. et al. Exploration of genome-wide circulating microRNA in hepatocellular carcinoma: MiR-483-5p as a potential biomarker. *Cancer Epidemiol Biomarkers Prev* **22**, 2364–2373, doi: 10.1158/1055-9965.EPI-13-0237 (2014).

35. Qu, K. Z., Zhang, K., Li, H., Afzal, N. H. & Albittar, M. Circulating microRNAs as biomarkers for hepatocellular carcinoma. *J Clin Gastroenterol* **45**, 355–360, doi: 10.1097/MCG.0b013e3181f8ace2 (2011).

36. Motawi, T. K., Shaker, O. G., El-Maraghy, S. A. & Senousy, M. A. Serum MicroRNAs as Potential Biomarkers for Early Diagnosis of Hepatitis C Virus-Related Hepatocellular Carcinoma in Egyptian Patients. *PloS one* **10**, e0137706, doi: 10.1371/journal.pone.0137706 (2015).

37. El-Garem, H. et al. Circulating microRNA, miR-122 and miR-221 signature in Egyptian patients with chronic hepatitis C related hepatocellular carcinoma. *World J Hepatol* **6**, 818–824, doi: 10.4254/wjh.v6.i11.818 (2014).

38. Hung, C. H. et al. Circulating microRNAs as biomarkers for diagnosis of early hepatocellular carcinoma associated with hepatitis B virus. *International journal of cancer* **138**, 714–720, doi: 10.1002/ijc.29082 (2016).

39. Han, Z. B. et al. [Expression and survival prediction of microRNA-155 in hepatocellular carcinoma after liver transplantation]. *Hepatogastroenterology* **61**, 1302–1307 (2014).

40. Wang, W. Y. et al. miR-21 expression predicts prognosis in hepatocellular carcinoma. *Clinics and research in hepatology and gastroenterology* **38**, 715–719, doi: 10.1016/j.clinre.2014.07.001 (2014).
48. Tu, H. et al. MicroRNA-212 inhibits hepatocellular carcinoma cell proliferation and induces apoptosis by targeting FOXA1. *Onco Targets Ther* **8**, 2227–2235, doi: 10.2174/OTST.8.2015.22 (2015).

49. Cho, H. J. et al. High circulating microRNA-122 expression is a poor prognostic marker in patients with hepatitis B virus-related hepatocellular carcinoma who undergo radiofrequency ablation. *Clin Biochem* **48**, 1073–1078, doi: 10.1016/j.clinbiocem.2015.06.019 (2015).

50. El-Abd, N. E., Fawzy, N. A., El-Sheikh, S. M. & Soliman, M. E. Circulating miRNA-122, miRNA-199a, and miRNA-16 as biomarkers for Early Detection of Hepatocellular Carcinoma in Egyptian Patients with Chronic Hepatitis C Virus Infection. *Mol Diagn Ther* **19**, 213–220, doi: 10.1007/s11033-014-0148-1 (2015).

51. Li, T. et al. Downregulation of microRNA-139 is associated with hepatocellular carcinoma risk and short-term survival. *Oncology reports* **31**, 1699–1706, doi: 10.3892/or.2014.3032 (2014).

52. Murakami, Y. et al. The expression level of miR-10b in hepatocellular carcinoma is associated with the grade of malignancy and prognosis. *BMC Cancer* **13**, 99, doi: 10.1186/1471-2407-13-99 (2013).

58. Li, B. K. miR-137 promotes intrahepatic cholangiocarcinoma proliferation and growth in vitro and in vivo by targeting PTEN. *Oncotarget* **6**, 3932–3946, doi: 10.18632/oncotarget.3465 (2015).

72. Gan, T. Q. miR-1269 in hepatocellular carcinoma and its clinical significance. *International journal of clinical and experimental pathology* **8**, 1466–1478 (2015).

53. Amr, K. S. miR-122 high serum level is independently associated with higher overall survival rate in hepatocellular carcinoma patients with hepatitis B virus infection. *Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine* **36**, 4501–4507, doi: 10.1007/s13277-015-3092-0 (2015).

54. Oksuz, Z. miR-182 and miR-331-3p as diagnostic and prognostic markers in patients and an HCC rat model. *International journal of clinical and experimental pathology* **8**, 1466–1478 (2015).

55. Zhou, J. et al. Serum microRNA-121 in diagnosis of hepatocellular carcinoma (HCC): clinical analyses of patients and an HCC rat model. *International journal of clinical and experimental pathology* **8**, 1466–1478 (2015).

56. Wang, X. et al. Significance of serum microRNA-21 in diagnosis of hepatocellular carcinoma (HCC): clinical analyses of patients and an HCC rat model. *International journal of clinical and experimental pathology* **8**, 1466–1478 (2015).
85. Wang, C. et al. MiR-182 is up-regulated and targeting Cebpα in hepatocellular carcinoma. Chin J Cancer Res 26, 17–29, doi: 10.3978/j.issn.1000-9604.2014.01.01 (2014).

86. Tan, Y. et al. A serum microRNA panel as potential biomarkers for hepatocellular carcinoma related with hepatitis B virus. PloS one 9, e91078, doi: 10.1371/journal.pone.0091078 (2014).

87. Yang, H. et al. MicroRNA-424 inhibits AK3/E2F3 axis and tumor growth in hepatocellular carcinoma. Oncotarget 6, 27736–27750, doi: 10.18632/oncotarget.4811 (2015).

88. Berdasco, M. & Esteller, M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19, 698–711, doi: 10.1016/j.devcel.2010.10.005 (2010).

89. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8, 286–298, doi: 10.1038/nrg2205 (2007).

90. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 863–892, doi: 10.1016/j.cell.2007.01.029 (2007).

91. Kobetis, V. et al. Serum microRNA-1 and microRNA-122 are prognostic markers in patients with hepatocellular carcinoma. Euro J Cancer 49, 3442–3449, doi: 10.1016/j.ejca.2013.06.002 (2013).

92. Xu, J. et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog 50, 136–142, doi: 10.1002/mc.20712 (2011).

93. Qi, P. et al. Serum microRNAs as biomarkers for hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection. PloS one 6, e23486, doi: 10.1371/journal.pone.0023486 (2011).

94. Li, L., Guo, Z., Wang, J., Yao, M. & Gao, Q. Serum miR-18a: a potential marker for hepatitis B virus-related hepatocellular carcinoma screening. Dig Dis Sci 57, 2910–2916, doi: 10.1007/s10620-012-2371-y (2012).

95. Peveling-Obерж, I. et al. MicroRNA Profiling of Laser-Microdissected Hepatocellular Carcinoma Reveals an Oncogenic Phenotype of the Tumor Capsule. Transl Oncol 7, 672–680, doi: 10.1016/j.tranon.2014.09.003 (2014).

96. Zhou, J. et al. MicroRNA-127 post-transcriptionally downregulates Sept7 and suppresses cell growth in hepatocellular carcinoma cells. Cell Physiol Biochem 33, 1537–1546, doi: 10.1159/000358717 (2014).

97. Wang, S. et al. Upregulated circulating miR-150 is associated with the risk of intrahepatic cholangiocarcinoma. Oncology reports 33, 819–825, doi: 10.3892/or.2014.3641 (2015).

98. Lao, J. et al. Circulating microRNA-122a as a diagnostic marker for hepatocellular carcinoma. Onco Targets Ther 6, 577–583, doi: 10.2147/OTT.S42153 (2013).

99. Zhang, Y. et al. MicroRNA-101 suppresses SOX9-dependent tumorigenicity and promotes favorable prognosis of human hepatocellular carcinoma. FEBS letters 586, 4362–4370, doi: 10.1006/fsl.2012.10.053 (2012).

100. Xu, Q. et al. MicroRNA-122 affects cell aggressiveness and apoptosis by targeting PKM2 in human hepatocellular carcinoma. Oncology reports 34, 2054–2064, doi: 10.3892/or.2015.4175 (2015).

101. Tsang, F. H. et al. Prognostic marker microRNA-125b inhibits tumorigenic properties of hepatocellular carcinoma cells via suppressing tumorogenic molecule eIF5A2. Dig Dis Sci 59, 2477–2487, doi: 10.1007/s10620-014-3184-5 (2014).

102. Li, B. et al. MicroRNA-130a is down-regulated in hepatocellular carcinoma and associates with poor prognosis. Med Oncol 31, 230, doi: 10.1007/s12032-014-0230-2 (2014).

103. Rong, M., He, R., Dang, Y. & Chen, G. Expression and clinicopathological significance of miR-146a in hepatocellular carcinoma tissues. Upsala journal of medical sciences 119, 19–24, doi: 10.3109/0300734135960790 (2014).

104. Wang, J., Li, J., Wang, X., Zheng, C. & Ma, W. Downregulation of microRNA-214 and overexpression of FGFR-1 contribute to hepatocellular carcinoma metastasis. Biochem Biophys Res Commun 439, 47–53, doi: 10.1016/j.bbrc.2013.08.032 (2013).

105. Liu, D. et al. Downregulation of miRNA-20c and miR-203a is associated with hepatitis C virus core protein-induced epithelial-mesenchymal transition in normal hepatocytes and hepatocellular carcinoma cells. Biochem Biophys Res Commun 464, 1215–1221, doi: 10.1016/j.bbrc.2015.07.107 (2015).

106. Yuan, K. et al. Role of miR-148a in hepatitis B associated hepatocellular carcinoma. Plos one 7, e33531, doi: 10.1371/journal.pone.0033531 (2012).

107. Zhou, B. et al. Association between miR-146a Ca and miR-196a2C T polymorphisms and the risk of hepatocellular carcinoma in a Chinese population. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 35, 7775–7780, doi: 10.1007/s10620-014-3200-2 (2014).

108. Huang, Y. H. et al. Identification of postoperative prognostic microRNA predictors in hepatocellular carcinoma. PloS Jour 7, e37188, doi: 10.1371/journal.pone.0037188 (2012).

109. Zhuang, L., Xu, L., Wang, P. & Meng, Z. Serum miR-128-2 serves as a prognostic marker for patients with hepatocellular carcinoma. PloS one 10, e0117274, doi: 10.1371/journal.pone.0117274 (2015).

110. Tomimasu, Y. et al. Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. Journal of Hepatology 56, 167–175, doi: 10.1002/jh.25604.01.04.026 (2012).

111. Gui, J. et al. Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies. Clin Sci (Lond) 120, 183–193, doi: 10.1042/CS20100297 (2011).

112. Fu, Y. et al. Circulating microRNA-101 as a potential biomarker for hepatitis B virus-related hepatocellular carcinoma. Oncol Lett 6, 1811–1815, doi: 10.3892/ol.2013.1638 (2013).

113. Cui, X. et al. MicroRNA-34a expression is predictive of recurrence after radiofrequency ablation in early hepatocellular carcinoma. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 36, 3887–3893, doi: 10.1007/s13277-014-3031-5 (2015).

114. Ge, W. et al. Expression of serum miR-16, let-7f, and miR-21 in patients with hepatocellular carcinoma and their clinical significances. Clin Lab 60, 427–434 (2014).

115. Chen, Y. J. et al. Circulating microRNAs as a Fingerprint for Liver Cirrhosis. Plos one 8, e66577, doi: 10.1371/journal.pone.0066577 (2013).
123. Wong, R. & Corley, D. A. Racial and ethnic variations in hepatocellular carcinoma incidence within the United States. *The American journal of medicine* **121**, 525–531, doi: 10.1016/j.amjmed.2008.03.005 (2008).

124. Wang, S. et al. Improved survival of patients with hepatocellular carcinoma and disparities by age, race, and socioeconomic status by decade, 1983-2012. *Oncotarget*, doi: 10.18632/oncotarget.10930 (2016).

125. Das, T. et al. Molecular Signatures of Recurrent Hepatocellular Carcinoma Secondary to Hepatitis C Virus following Liver Transplantation. *Journal of transplantation* **2013**, 872897, doi: 10.1155/2013/872897 (2013).

126. Mueller, K. M. et al. Hepatic growth hormone and glucocorticoid receptor signaling in body growth, steatosis and metabolic liver cancer development. *Molecular and cellular endocrinology* **361**, 1–11, doi: 10.1016/j.mce.2012.03.026 (2012).

127. Mueller, K. M. et al. Impairment of hepatic growth hormone and glucocorticoid receptor signaling causes steatosis and hepatocellular carcinoma in mice. *Hepatology* **54**, 1398–1409, doi: 10.1002/hep.24509 (2011).

128. Wu, Y. et al. C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization. *Cancer research* **73**, 5580–5590, doi: 10.1158/0008-5472.CAN-13-0869 (2013).

129. Jin, B. et al. Identifying hub genes and dysregulated pathways in hepatocellular carcinoma. *European review for medical and pharmacological sciences* **19**, 592–601 (2015).

130. Jin, Y. et al. RASSF10 suppresses hepatocellular carcinoma growth by activating P53 signaling and methylation of RASSF10 is a doxorreted resistant marker. *Genes & cancer* **6**, 231–240, doi: 10.18632/gencancer.67 (2015).

131. Li, X. et al. Epigenetic silencing of RCLAR inactivates p53 signaling and causes human hepatocellular carcinoma cell resist to 5-FU. *Onco target* **6**, 11547–11560, doi: 10.18632/oncotarget.3413 (2015).

132. Pigati, L. et al. Selective release of microRNA species from normal and malignant mammary epithelial cells. *PloS one* **5**, e13515, doi: 10.1371/journal.pone.0013515 (2010).

133. Chen, T. S. et al. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. *Nucleic acids research* **38**, 215–224, doi: 10.1093/nar/gkp857 (2010).

134. Wu, L. et al. MicroRNA-142-3p: a new regulator of RAC1, suppresses the migration and invasion of hepatocellular carcinoma cells. *FEBS letters* **585**, 1322–1330, doi: 10.1016/j.febslet.2011.03.067 (2011).

135. Yan, Y., Liang, Z., Du, Q., Yang, M. & Geller, D. A. MicroRNA-23a downregulates the expression of interferon regulatory factor-1 in hepatocellular carcinoma cells. *Oncology reports* **36**, 633–640, doi: 10.3892/or.2016.4864 (2016).

136. Zhang, J. et al. MiR-99a directly regulates AGO2 through translational repression in hepatocellular carcinoma. *Oncogenes* **3**, e97, doi: 10.1038/oncsci.2014.11 (2014).

137. Chen, J., Wang, Y., Shen, B. & Zhang, D. Molecular signature of cancer at gene level or pathway level? Case studies of colorectal cancer and prostate cancer microarray data. *Computational and mathematical methods in medicine* **2013**, 909525, doi: 10.1155/2013/909525 (2013).

138. Wang, Y. et al. Identifying novel prostate cancer associated pathways based on integrative microarray data analysis. *Computational biology and chemistry* **35**, 151–158, doi: 10.1016/j.compbiolchem.2011.04.003 (2011).

139. Chen, J., Sun, M. & Shen, B. Deciphering oncogenic drivers: from single genes to integrated pathways. *Briefings in bioinformatics* **16**, 413–428, doi: 10.1093/bib/bbt039 (2015).

140. Li, M. et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocellular carcinoma. *Cancer research* **70**, 9796–9807, doi: 10.1158/0008-5472.CAN-10-0601 (2010).

141. Khairy, A., Hamza, I., Shaker, O. & Yosry, A. Serum miRNA Panel in Egyptian Patients with Chronic Hepatitis C Related Hepatocellular Carcinoma. *Asian Pacific journal of cancer prevention: APJCP* **17**, 2699–2703 (2016).

142. Chen, Y., Dong, X., Yu, D. & Wang, X. Serum miR-96 is a promising biomarker for hepatocellular carcinoma in patients with chronic hepatitis B virus infection. *International journal of clinical and experimental medicine* **8**, 18462–18468 (2015).

143. Ghosh, A. et al. Hecatic miR-126 is a potential plasma biomarker for detection of hepatitis B virus infected hepatocellular carcinoma. *International journal of cancer* **138**, 2732–2744, doi: 10.1002/ijc.29999 (2016).

144. Lin, L., Lu, B., Yu, J., Liu, W. & Zhou, A. Serum miR-224 as a biomarker for detection of hepatocellular carcinoma at early stage. *Clinics and research in hepatology and gastroenterology* **40**, 397–404, doi: 10.1016/j.cljhep.2015.11.005 (2016).

145. Guo, W. et al. MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer. *Hepatology* **62**, 1132–1144, doi: 10.1002/hep.27929 (2015).

146. Bi, Q. et al. Ectopic expression of MiR-125a inhibits the proliferation and metastasis of hepatocellular carcinoma by targeting MMP11 and VEGF. *PloS one* **7**, e40169, doi: 10.1371/journal.pone.0040169 (2012).

147. Li, D. et al. MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. *The journal of biological chemistry* **286**, 36677–36685, doi: 10.1074/jbc.M111.270561 (2011).

148. Cui, L., Hu, Y., Bao, B. & Zhang, S. Serum miR-335-3p Level is Assoicated with the Treatment Response to Trans-Arterial Chemoembolization and Prognosis in Patients with Hepatocellular Carcinoma. *Cell Physiol Biochem* **37**, 276–283, doi: 10.1159/000430352 (2015).

149. Liu, H., Li, W., Chen, C., Pei, Y. & Long, X. MiR-335 acts as a potential tumor suppressor miRNA via downregulating ROCK1 expression in hepatocellular carcinoma. *Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine* **36**, 6313–6319, doi: 10.1007/s13277-015-3317-2 (2015).

150. Yang, Y. M. et al. Galphai2 gep oncogene deregulation of p53-responsive microRNAs promotes epithelial-mesenchymal transition of hepatocellular carcinoma. *Oncogene* **34**, 2910–2921, doi: 10.1038/onc.2014.218 (2015).

Acknowledgements

The work was supported by National Natural Science Foundation of China (NSFC) (grant Nos 91530320, 31670851, 31470821, 31400712).

Author Contributions

S.S. and Y.L. contributed equally to the work. S.S. and Y.L. collected and analyzed the data; X.Y., L.S. and L.C. performed the computational analyses; S.S., Y.L., J.C. and B.S. wrote the manuscript; B.S. and L.Q. conceived and supervised the work jointly.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Shen, S. et al. Biomarker MicroRNAs for Diagnosis, Prognosis and Treatment of Hepatocellular Carcinoma: A Functional Survey and Comparison. *Sci. Rep.* **6**, 38311; doi: 10.1038/srep38311 (2016).
