Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
GENERAL INTEREST

500P The impact of COVID-19 on the management and outcome of oncology patients: The results of the Middle East and North African (MENA) COVID-19 and Cancer Registry (MCCR)

A.R. Jazieh1, H. Abdel-Razeq2, E.B. Köksoy3, A. Bounedjar4, A. Tafayli5, E. Tashkandi6, W. Jastaniah7, J. Ansari8, M.O. Alorabi9, A. Rabea10, S.S. Bruinooge16, F. Hussain17, H. Tamim17, K. AlKattan17

1 Innovation and Research, Cancer Center, Amman, Jordan; 2 Medical Oncology, Ankara University Medical School, Ankara, Turkey; 3 Internal Medicine, AUBMC - American University of Beirut Medical Center, Beirut, Lebanon; 4 Medicine, King Abdulaziz Medical City - Makka, Makkah, Saudi Arabia; 5 Oncology, King Faisal Specialist Hospital & Research Centre - Jeddah (KFSSHRC-J), Jeddah, Saudi Arabia; 6 Medicine, Tawam Hospital, Al Ain, United Arab Emirates; 7 Clinical Oncology Department, Ain Shams University - Faculty of Medicine, Cairo, Egypt; 8 Oncology, National Cancer Institute - Cairo University, Cairo, Egypt; 9 Oncology, King Abdulaziz Medical City, Riyadh, Saudi Arabia; 10 Oncology, KFSH-D - King Fahad Specialist Hospital - Dammam, Dammam, Saudi Arabia; 11 Oncology Department, National Institute of Oncology, Rabat, Morocco; 12 Oncology, King Abdulaziz Medical Cities (KAMO) - National Guard Hospital, Hofuf, Saudi Arabia; 13 Biostatistics, American Society of Clinical Oncology (ASCO), Alexandria, VA, USA; 14 Research Strategy and Operation, American Society of Clinical Oncology (ASCO), Alexandria, VA, USA; 15 College of Medicine, Alfaisal University, Riyadh, Saudi Arabia

Background: Despite extensive studies of the impact of COVID-19 on patients with cancer, there is a dearth of information from the MENA region. Our study aims to report pertinent MCCR findings on patient management and outcomes.

Methods: MCCR was adapted from ASCO COVID-19 Registry to collect data on patients with cancer and SARS-CoV-2 infection from 12 centers in eight countries including Saudi Arabia, Jordan, Lebanon, Turkey, Egypt, Algeria, United Arab Emirates, and Morocco. The Registry included data on patients and disease characteristics, treatment, and patient outcomes.

Results: Between November 29, 2020 and December 7, 2021, data on 1345 patients were captured. Median age was 57 years (18-98), 56.1% females, and 27.1% were current or ex-smokers. Out of the 1144 patients (85.1%) with solid tumors, delays of planned treatment > 14 days occurred in 81.4% for surgery, 51.7% for radiation therapy and 34.6% for drug therapy. No delays in surgery and radiation therapy occurred after June 1, 2020, and the delays of drug therapy were reduced from 20.8% to 5.2% (P < 0.0001). All-cause mortality at 30 and 90 days were 15.9% and 21.1%, respectively. All-cause mortality rates at 30 and 90 days were reduced after June 1st, 2020, from 17.3% to 3.7%, and from 24.2% to 3.7%, respectively (P < 0.0001). Multivariate analysis showed multiple prognostic factors such as age > 70 years, male gender, lung cancer vs other solid tumors, diagnosis of COVID-19 before June 2020, ever smokers, among others. The Multivariate Logistic Regression analysis results are shown in Table.

Conclusions: Patients with cancer in MENA region experienced similar risks and outcome of COVID-19 reported in other populations. The reduction in mortality rate after June 2020 reflects a better approach to managing these patients resulting in improved outcomes.

Legal entity responsible for the study: A.R. Jazieh.

Funding: Has not received any funding.

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.jannonc.2022.07.628

501P A prognostic model of all-cause mortality at 30 days in patients with cancer and COVID-19

S. Halabi1, B. Luo1, H. Dzimitrowicz2, C. Hwang3, T.M. Wise-Draper3, C. Labaki4, R.R. McKay5, E. Ruiz6, C. Rangel-Escareño7, D. Farmakiotis8, E.A. Griffiths9, C.T. Jani10, M. Accordion11, C. Friese12, E. Wulf-Burchfeld13, M. Pue14, P. Yu15, U. Topaloglu16, S. Mishra17, J. Warner18

1 Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA; 2 Medicine, Duke Cancer Center - Duke University Medical Center, Durham, NC, USA; 3 Internal Medicine/Hematology-Oncology, Henry Ford Cancer Institute-Henry Ford Health, Detroit, MI, USA; 4 Internal Medicine, University of Cincinnati Cancer Centre, Cincinnati, OH, USA; 5 Medicine, Dana Farber Cancer Institute, Boston, MA, USA; 6 Medicine, Moores Cancer Center - UC San Diego Health, La Jolla, CA, USA; 7 Department & Translational Medicine Laboratory, INCAN - Instituto Nacional de Cancerología, Mexico City, Tlapan, D.F., Mexico; 8 Computational and Integrative Biology, National Institute of Genomic Medicine, Mexico City, Mexico; 9 Transplant and Oncology Infectious Diseases, Lspark Cancer Institute - Rhode Island Hospital, Providence, RI, USA; 10 Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; 11 Internal Medicine, Mount Auburn Hospital - Harvard Medical School, Cambridge, MA, USA; 12 Medicine, HICCC - Herbert Irving Comprehensive Cancer Center - Columbia University, New York, NY, USA; 13 Health Management and Policy, Michigan Medicine University of Michigan, Ann Arbor, MI, USA; 14 Oncology and Palliative Medicine, KUMC - University of Kansas Medical Center, Kansas City, KS, USA; 15 Thoracic Surgery, Virtua Health, Marlton, NJ, USA; 16 Medical Oncology, Hartford Health Care Cancer Institute, Hartford, CT, USA; 17 Cancer Biology, Wake Forest University Comprehensive Cancer Center, Winston-Salem, NC, USA; 18 Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; 19 Hematology-Oncology, Vanderbilt Ingram Cancer Center, Nashville, TN, USA

Background: Patients with cancer are at higher risk of dying of COVID-19. Known risk factors for 30-day all-cause mortality (ACM-30) in patients with cancer are older age, sex, smoking status, performance status, obesity, and co-morbidities. We hypothesized that common clinical and laboratory parameters would be predictive of a higher risk of 30-day ACM, and that a machine learning approach (random forest) could produce high accuracy.

Methods: In this multi-institutional COVID-19 and Cancer Consortium (CCCI9) registry study, 12,661 patients enrolled between March 17, 2020 and December 31, 2021 were utilized to develop and validate a model of ACM-30. ACM-30 was defined as death from any cause within 30 days of COVID-19 diagnosis. Pre-specified variables were: age, sex, race, smoking status, ECOG performance status (PS), timing of cancer treatment relative to COVID19 diagnosis, severity of COVID19, type of cancer, and other laboratory measurements. Missing variables were imputed using random forest proximity. Random forest was utilized to model ACM-30. The area under the curve (AUC) was computed as a measure of predictive accuracy with out-of-bag prediction. One hundred bootstrap samples were used to obtain the standard error of the AUC.

Results: The median age at COVID-19 diagnosis was 65 years, 53% were female, 18% were Hispanic, and 16.7% were Black. Over half were never smokers and the median body mass index was 28.2. Random forest with under sampling selected 20 factors prognostic of ACM-30. The AUC was 88.9 (95% CI 88.5-89.2). Highly informative parameters included: COVID-19 severity at presentation, cancer status, age, troponin level, ECOG PS and body mass index.

Conclusions: This prognostic model based on readily available clinical and laboratory values can be used to estimate individual survival probability within 30-days for COVID-19. In addition, this model can be used to select or classify patients with cancer and COVID-19 into risk groups based on validated cut points, for treatment selection, prophylaxis prioritization, and/or enrollment in clinical trials. Future work

Table: 500P Multivariate logistic regression analysis of 30- and 90-days all-cause mortality (N=1,345 patients)

Parameter	OR	95% CI	P-value	OR	95% CI	P-value
Diagnosed after June 1, 2020 vs. before June 1, 2020*	0.251	0.095-0.663	0.005	0.125	0.047-0.328	<0.0001
On chemotherapy at diagnosis yes vs. no*	0.645	0.398-1.045	0.075	0.642	0.411-1.000	0.050
Stable Disease vs. Progressing disease*	0.244	0.132-0.451	<0.0001	0.185	0.108-0.319	<0.0001
Metastatic vs. Locoregional disease*	2.408	1.224-4.748	0.011	3.313	1.783-6.156	<0.0001
Comorbidities vs. no comorbidity*	1.732	1.067-2.813	0.026	1.799	1.150-2.814	0.010
Obesity vs. none*	0.716	0.444-1.155	0.171	0.591	0.381-0.915	0.018

* Reference group.
Association of immunotherapy and immunosuppression with severe COVID-19 disease in patients with cancer

Z. Bakonyi1, P. Grover2, C. Labaki3, J. Awosika3, S. Gulati4, C.H. Hsu4, M.A. Bilen5, D. Shah6, J. Warner7, Y. Shyr8, T. K. Chemouil9, T. Wise-Drapo10

1Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; 2Hematology and Oncology, UCI - University of Cincinnati Cancer Institute, Cincinnati, OH, USA; 3Medical Oncology, University of Cincinnati Cancer Center, Cincinnati, OH, USA; 4Biostatistics, Vanderbilt Ingram Cancer Center, Nashville, TN, USA; 5Department, Winship Cancer Institute of Emory University, Atlanta, GA, USA; 6Medical Oncology, Hartford Healthcare Cancer Institute, Hartford, CT, USA; 7Medical Oncology, Michigan Medicine University of Michigan, Ann Arbor, MI, USA; 8Internal Medicine/Hematology-Oncology, Henry Ford Cancer Institute-Henry Ford Health, Detroit, MI, USA; 9Medical Oncology, Brown University, Providence, RI, USA; 10Medicine, University of California San Diego - UCSD, La Jolla, CA, USA; 11GI Oncology Department & Translational Medicine Laboratory, INCAN - Instituto Nacional de Cancerologica, Mexico City, Tlalpan, D.F., Mexico; 12Division of Hematology - Oncology, Department of Internal Medicine, Mount Auburn Hospital - Harvard Medical School, Cambridge, MA, USA; 13Medical Affairs, Tempus Labs, Chicago, IL, USA; 14Medical Oncology, Mays Cancer Center - UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX, USA; 15Medical Oncology, Vanderbilt Ingram Cancer Center, Nashville, TN, USA; 16Biostatistics Department, Room 11132, Vanderbilt University - Department of Biostatistics, Nashville, TN, USA; 17Hematology Oncology Dept, Vonzt Center for Molecular Studies, Cincinnati, OH, USA

Background: Cytokine storm due to COVID-19 can cause high morbidity and mortality. Patients with cancer treated with immunotherapy (IO) and those with immunosuppression may have higher rates of cytokine storm due to immune dysregulation. We sought to assess the association of IO and immunosuppression with severe COVID-19 outcomes and cytokine storm occurrence among patients with cancer and COVID-19 based on data from the COVID-19 and Cancer Consortium (CCC19).

Methods: A registry-based retrospective cohort study was conducted on patients reported to the CCC19 registry from March 2020 to September 2021. The primary outcome was defined as an ordinal scale of COVID-19 severity. The secondary outcome was the development of a cytokine storm. We used bioinformatics and clinical evidence of severe inflammation, with end-organ dysfunction (Faggerbaum D.C. et al., N Engl J Med., 2020). The association of IO or immunosuppression with the outcomes of interest were evaluated using a multivariable logistic regression balanced for covariate distributions through inverse probability of treatment weighting (IPTW).

Results: A total of 10,214 patients were included, among which 482 (4.7%) received IO, 3,715 (36.4%) received non-IO systemic therapies, and 6,017 (58.9%) were untreated in the 3 months prior to COVID-19 diagnosis. No difference in COVID-19 severity or the development of a cytokine storm was found in the IO group compared to the untreated group (aOR: 0.77; 95%CI:0.45-1.32; and aOR: 1.06; 95%CI:0.42-2.67, respectively). On multivariable regression, patients with untreated COVID-19 associated with worse outcomes both in relation to COVID-19 severity (aOR: 1.89; 95%CI:1.51-2.35) and the presence of a cytokine storm (aOR: 1.75; 95%CI:1.30-2.32).

Conclusions: Administration of IO was not associated with severe outcomes in patients with cancer and COVID-19, whereas pre-existing baseline immunosuppression was independently associated with worse clinical outcomes including cytokine storm.

Legal entity responsible for the study: COVID-19 and Cancer Consortium (CCC19).

Disclosure: Z. Bakonyi: Non-Financial Interests, Institutional, Funding; Bristol Myers Squibb; Financial Interests; Institutional, Research Grant: Genentech; Financial Interests, Personal, Other, Grant Review to Orien Network, Other, Grant Review to Orien Network; Writing Engagements: UpToDate. C. Labaki: Financial Interests, Institutional, Research Grant: Genentech, ASCO; Financial Interests, Personal, Other, Advisory Board, ASCO TAPUR; Non-Financial Interests, Personal, Invited Speaker, Roche; Merck, C. Rangel-Escanoro: Non-Financial Interests, Principal Investigator; I lead a team of young scientists in using and developing tools for complex data analysis in the field of genomic medicine: National Institute of Genomic Medicine; Non-Financial Interests, Other, Teaching courses at undergraduate and graduate level in the field of computational biology, bioinformatics and statistics: Tecnologico de Monterrey, E.A. Griffiths: Financial Interests, Personal, Other, DMC: Sanofi, Awevo Oncology; Non-Financial Interests, Personal, Other, Past President: Society for Clinical Trials; Financial Interests, Institutional, Research Grant: ASCO TAPUR; Financial Interests, Personal, Other, UpToDate, ASCO TAPUR; Financial Interests, Funding: For analysis: EPIC SCIENCEs. C. Hwang: Financial Interests, Personal, Invited Speaker, OnLive; Financial Interests, Personal, Other, Consulting Fees: TEMBUS, Genzyme, EMD Sorono; Financial Interests, Personal, Other, Advisory Board: ASCO TAPUR; Financial Interests, Institutional, Invited Speaker, Clinical Trials: AstraZeneca, Bausch Health; Financial Interests, Personal and Institutional, Leadership Role: Wayne County Medical Society/Foundation Board, Wayne County Medical Society of Southeast Michigan. C. Hsu: Financial Interests, Institutional, Research Grant: Genentech/imCORE. E. Ruiz: Financial Interests, Personal, Advisory Board: Roche, Amgen, BMS, Bayer; Financial Interests, Personal, Invited Speaker: Roche, Merck, C. Rangel-Escanoro; Non-Financial Interests, Principal Investigator; I lead a team of young scientists in using and developing tools for complex data analysis in the field of genomic medicine: National Institute of Genomic Medicine; Non-Financial Interests, Other, Teaching courses at undergraduate and graduate level in the field of computational biology, bioinformatics and statistics: Tecnologico de Monterrey, E.A. Griffiths: Financial Interests, Personal, Other, DMC: Sanofi, Awevo Oncology; Non-Financial Interests, Personal, Other, Past President: Society for Clinical Trials; Financial Interests, Institutional, Research Grant: ASCO TAPUR; Financial Interests, Personal, Other, UpToDate, ASCO TAPUR; Financial Interests, Funding: For analysis: EPIC SCIENCEs.