Modulatory of effect of fresh *Amaranthus caudatus* and *Amaranthus hybridus* aqueous leaf extracts on detoxify enzymes and micronuclei formation after exposure to sodium arsenite

Adetutu Adewale¹, Awe Emmanuel Olorunju²

Departments of ¹Biochemistry, and ²Pharmacology and Therapeutic, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

Submitted: 20-01-2013 Revised: 28-02-2013 Published: 24-09-2013

ABSTRACT

Vegetables are the cheapest and most available sources of important proteins, minerals, vitamins, and essential amino protein. These vegetables are commonly used in Africa for the treatment of illness. This study evaluated the protective effects of *Amaranthus caudatus* and *A. hybridus* against sodium arsenite-induced toxicity in rats. The effects of sodium arsenite and/or the plant extracts were assessed using bone marrow micronucleus assay and by measuring the activities of tumour maker enzymes such as gamma glutamyl transferase (GGT) and alkaline phosphatase (ALP) in white albino Wister rats. The study showed that sodium arsenite significantly (*P* < 0.05) induced the formation of micronucleated polychromatophilic erythrocytes and the activities of ALP and GGT when compared with control. The levels of white blood cell, hemoglobin, and lymphocyte count were altered in sodium arsenite fed rats and were reverted back to near normal levels in rats pretreated with the plant extracts. *A. caudatus* and *A. hybridus* showed significant role in protecting the detoxifying enzymes; also, *A. caudatus* has a more protective effect on reducing the micronuclei formation when compared with *A. hybridus*. This study suggests that *A. caudatus* and *A. hybridus* possess anticarcinogenic effect.

Key words: *Amaranthus caudatus, Amaranthus hybridus*, chemoprotective, detoxify enzymes, micronuclei, sodium arsenite

INTRODUCTION

Arsenic is widely distributed and used extensively as components of herbicides, insecticide, rodenticide, food preservatives, and drugs.¹ However, unusual ingestion of arsenic in drinking water has been associated with many cancers and noncancer effects in the affected populations.²,³ An early event in arsenic carcinogenesis is molecular alterations both in humans and animals, which manifests dose-dependent chromosomal breaks and alterations.⁴ The liver has been reported to be a dire target of arsenic in humans. Arsenic exposure is associated with the growth of hepatocellular carcinomas as well as other toxic lesion.⁵ Efforts to avert and treat arsenic toxicity by therapeutic measures had only limited success.⁶ Several reports have associated oxidative stress in arsenic-induced cytotoxicity and genotoxicity.⁷ Consequently, some studies propose the use of antioxidant rich foods and phenolic herbal products for the management of arsenic toxicity.⁸

In rural areas of most developing countries of the world where potable water is barely available, the poor populace is inadvertently exposed to arsenic poisoning especially in the mining areas. Green leafy vegetables are known to contain useful minerals and vitamins that are commonly available and are considered as the corner stones of health care system in alleviating some serious diseases.⁹ In most West African countries, *A. hybridus* and *A. caudatus* leaves are frequently eaten as cooked vegetables. *A. caudatus* and *A. hybridus* are popular vegetables in West Africa and have been reported to possess many antioxidant components.
and other medicinal values.[8] Despite the use of these vegetables for treatment of many diseases, there is little information on their chemoprotective potentials and chemical composition. This work is, therefore, aimed at determining the effects of \textit{A. caudatus} and \textit{A. hybridus} leaf extracts on certain hematological parameters, detoxify enzymes, and formation micronucleated polychromatic erythrocytes in rats bone marrow after exposure to sodium arsenite. In addition, this study investigated some of the essential vitamins and minerals in the vegetables.

MATERIALS AND METHODS

Collection of vegetable samples
The plants (\textit{A. caudatus} and \textit{A. hybridis}) were collected from Agricultural farm Ladoke Akintola University of Technology, Ogbomoso. The authentication was done by Dr. Ogunkunle JA, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso. The voucher number assigned to \textit{A. caudatus} is LHO 233 and \textit{A. hybridus} is LHO 232. The plant materials were washed with water and air dried for 3 weeks in the laboratory at room temperature. The dried vegetables were then pulverized into fine powder for the experiment.

Preparation of aqueous vegetable extract and NaAsO\textsubscript{2} solution
A total of 10 g of the powdered was soaked with 50 mL of distilled water and left overnight. It was then filtered into another clean bottle with Whatman No.1 filter paper and prepared on daily basis for the period of administration. NaAsO\textsubscript{2} (Signal-Aldrich, USA) was dissolved in normal saline to a concentration of 2.5 mg/kg body weight. Freshly prepared solution was used for each experiment. A total of 1 mL of this prepared solution was administered interperitoneally to each rat except the rat grouped negative control.

Experimental protocol, animal sacrifices, and collection of blood
The experimental rats were randomly divided into four treatment groups of five animals each. Group A served as the negative control and were treated with distilled water only for 14 consecutive days. Rats in group B were placed on normal diet for 14 consecutive days. Rats in group C were treated with 1 mL of prepared aqueous solution of \textit{A. caudatus} for 14 consecutive days. Rats in group D were also treated with 1 mL prepared aqueous solution of \textit{A. hybridus} for the same 14 consecutive days. Rats in group B, C, and D were injected interperitoneally with 2.5 mg/kg body weight of sodium arsenite on the 14th day. The rats were sacrificed by cervical dislocation 24 h after last treatments were administered, while the animals were kept fasting for this 24 h. Blood was collected via cardiac puncture into clean plane bottles and use for hematological tests immediately. Serum was also prepared for enzyme assay. Femoral bone marrow from each animal was also harvested and used for micronucleus assay.

Micronucleus, enzyme, and hematological parameter assay
The micronucleus assay was performed according to the method of Heddle and Salmone.[9] The femur of each rat was freed and stripped clean of muscles. Bone marrow smear was made on the slide. The slides were air-dried and fixed in absolute methanol for 5 min and further air dried for a few minutes to remove the methanol. The slides were then stained in 5\% Giemsa stain that was initially dissolved in 0.01 M phosphate buffer pH 6.8, after initial staining with 0.4\% of May-Grunwald. They were thereafter rinsed in distilled water, air-dried, mounted in dopexamine hydrochloride (DPX) (BDH) and covered with cover glass smeared with xylene. The stained and mounted slides were coded and scored using an Olympus XSZ 107 BN microscope for the presence of micronucleated polychromatic erythrocytes (mPCEs). The gamma glutamyl transferase (GGT) and alkaline phosphatase (ALP) activities were assayed in the serum by using GGT assay kit (Randox Laboratories Ltd., UK) using the procedure described by the manufacturer. The blood collected into clean plane bottles was taking to laboratory and use for hematological tests immediately. White blood cells (WBCs), platelet, hemoglobin (Hgb), percentage plateletcrit, and platelet distribution width was measured on Sysmex Hematology analyzer (model K4500).

Determination of vitamins and minerals in vegetables
Vitamin C, beta-carotene, and vitamin E (tocopherols) in the samples were extracted according to the method described by Abdulnabi et al.,[10] with slight modifications. Riboflavin was extracted according to the method described in AOAC International.[11] The extracts were filtered through a 0.45 µm nylon filter disc before HPLC analysis. All samples were carried out in triplicates. The mineral elements comprising sodium, calcium, potassium, magnesium, iron, zinc, copper, manganese, and lead were digested according to the method of Shahidi et al.,[12,13] and Nahapetian and Bassiri (1975) with some modifications. The solutions were analyzed for elemental contents by atomic absorption spectrophotometer.

Statistical analysis
Results were expressed as mean ± standard error of the mean. One-way analysis of variance (ANOVA) was used for data analysis and post-hoc analysis after ANOVA employed the Duncan’s multiple range test. P values less than 0.05 were considered statistically significant.
RESULTS

Activities of liver function enzymes (GGT and ALP) in plasma of test and control rats
Sodium arsenite (NaAsO$_2$) induced toxicity was measured by GGT and ALP assay in both absence and present of A. caudatus and A. hybridus [Table 1]. Administration of NaAsO$_2$ alone significantly increases the activity of GGT and ALP in comparison with the negative control. Pretreatment of rats with aqueous extract of A. caudatus and A. hybridus before NaAsO$_2$ exposure significantly lowers GGT activity to about 1.9 and 1.6 folds, respectively. Moreover, priming of rats with aqueous extract of A. caudatus and A. hybridus before NaAsO$_2$ injection significantly lowered ALP activity to about 1.4 and 1.04 folds, respectively, in comparison with the sodium arsenite-treated group [Table 1].

Protection of of A. caudatus and A. hybridus leaf extracts against sodium arsenite-induced change in some hematological variable in rats
Change in hematological variables, following NaAsO$_2$ exposure, induced a significant increase in WBC, lymphocyte (LYMPH), together with a rise in Hb concentration of group B rats [Table 2]. However, no significant changes were observed in groups C and D in comparison with the negative control group.

mPECs in test and control rat bone marrow cells
Administration of sodium arsenite alone markedly induced micronucleated polychromatic erythrocytes formation in the rats bone marrow cells compared to negative control (treated with distilled water alone). Pretreatment of rats with aqueous extract of A. caudatus significantly decreased the induction on mPCEs by sodium arsenite to about 1.54 fold as compared to positive control. In addition, the administration of rats with A. hybridus also reduced the induction of mPCEs to about 1.1 folds in comparison with the positive control [Figure 1].

Mineral compositions of A. hybridus and A. caudatus
Mineral composition of A. hybridus and A. caudatus are as shown in Table 3. The leaf extract of A. caudatus is richer in sodium, potassium, calcium, and iron in comparison with A. hybridus, while trace minerals like copper, manganese, and zinc are more prominent in A. hybridus than A. caudatus. Major minerals like sodium, calcium, and

Table 1: Activities of liver function enzymes (GGT and ALP) in plasma of test and control rats

Group	Treatment	GGT (U/L)	ALP (U/L)
A	Distilled water alone	0.78±0.005	1.66±0.0300
B	Sodium arsenite alone	3.50±0.025*	23.19±0.0100*
C	Sodium arsenite+A. caudatus	1.82±0.002**	17.14±0.0100**
D	Sodium arsenite+A. hybridus	1.17±0.222**	22.62±1.520**

Values are expressed as mean±standard error of the mean,*Significantly different from rats given distilled water; **Significantly different from rats given sodium arsenite; ALP=Alkali phosphatase; GGT=Gamma glutamyl transferase

Table 2: Hematological parameters in rat serum after treatment with aqueous extracts of A. caudatus and A. hybridus and/or NaAsO$_2$

Groups	Total WBC/µL	LYMPH (%)	GRAN (number)	HGB (g/dL)	PLT (µL)	MPV (fL)	PCT (%)
A (treated with distilled water)	5.3±10²±312	1.9±10²±214	1.7±10²±2001	11.4±1.9	553±10³±655	2.8±0.1	0.154±0.01
B (treated with NaAsO$_2$)	7.1±10²±200	4.9±10²±453	1.7±10²±2366	13.8±2.1*	572±10²±454	3.0±0.3	0.171±0.01
C (treated with NaAsO$_2$+A. caudatus)	4.9±10²±132	2.9±10²±2432	1.6±10²±3100	9.3±2.3**	522±10²±345	2.8±0.2	0.146±0.02
D (treated with NaAsO$_2$+A. hybridus)	7.7±10²±231	5.7±10²±342***	1.5±10²±2211	14.3±2.3**	526±10²±243	2.8±0.1	0.147±0.02

*Significantly different from rats administered distilled water; **Significantly different from rats administered sodium arsenite; GRAN=Granulocytes; HGB=Hemoglobin; LYMP=Lymphocyte; MPV=Mean platelet volume; PCT=Percentage plateletcrit; PCT=Relative volume of thrombocytes; PLT=Platelet; WBC=White blood cell
potassium are also present in *A. hybridus* but with lesser content in *A. caudatus*.

Vitamin composition of *A. hybridus* and *A. caudatus*

Result from this study show that *A. caudatus* is richer in beta carotene, riboflavin, ascorbic acid, and tocopherol compared with *A. hybridus* [Table 4].

DISCUSSION

There is growing evidence that sodium arsenite toxicity can compromise the integrity of the liver in mouse, rat, fish, and goat. Additional evidences have shown that exposure to low-level arsenic exposure in drinking water can result in physiological disturbances and hepatocellular carcinoma in man. On the basis of popular consumption of *A. caudatus* and *A. hybridus*, as sources of essential nutrients and vitamins, their potentials in reducing liver toxicity were evaluated in this study. The plant extracts have no clastogenic and hepatotoxic effects as observed in the micronucleus and enzyme assays. The increase in serum concentration of GGT and ALP in the rats exposed to sodium arsenite in comparison with the negative control is indicative of oxidative stress and cytogenetic damage in animals. The elevation and leakage of the enzymes (GGT and ALP) to the plasma might be due to the increased permeability of the plasma membrane, increased synthesis of the enzymes by the liver, inflammation, and cellular necrosis in the liver. In addition, increased activity of GGT has been associated with hepatoxicity, oxidative stress, and chromosomal aberrations in cells.

Table 3: Mineral composition of *A. hybridus* and *A. caudatus*

Mineral element	Composition in *A. caudatus* (ppm)	Composition in *A. hybridus* (ppm)
Sodium (Na)	636.8±10.2	700.21±40.9
Potassium (K)	3.79±0.4	4.33±0.3
Calcium (Ca)	2.41±0.1	3.90±0.2
Magnesium (Mg)	1.21±0.0	0.93±0.1
Iron (Fe)	1035.20±123.2	149.80±11.2
Zinc (Zn)	38.08±5.2	54.45±56
Lead (Pb)	0.07±0.0	0.02±0.0
Manganese (Mn)	1.44±0.1	74.91±8.2
Copper (Cu)	1.21±0.0	3.93±0.5

Table 4: Vitamins in *A. caudatus*

Vitamins	Amount in standard (µg/mL)	Amount in *A. caudatus* (µg/mL)	Amount in *A. hybridus* (µg/mL)
Vitamin C	198.63±10.4	5298.95±87.0	4487.08±103.8
Riboflavin	84.26±21	102.06±7.9	30.69±2.3
β-carotene	160.87±12.0	1611.59±56.4	106.58±4.5
Tocopherol	60.77±4.2	1375.46±83.2	646.85±9.8

However, pretreatment of rats with aqueous extract of *A. caudatus* or *A. hybridus* prevents hepatic cells against sodium arsenite-induced damage as observed in the significant (*P* < 0.05) reduction in the activities of the ALP and GGT in comparison with the test control rats. The chemoprotective properties of *A. caudatus* and *A. hybridus* might be related to free radical scavenging activities of the crude extract. The vitamins and minerals in the vegetables Table 3 and 4 might have played a pivotal role in stabilizing lipid oxidation and exhibit some inhibitory action over sodium arsenite-induced hepatic damage.

It has been suggested that the baseline frequencies of micronucleated cells are usually within the 0.5-2.5 micronuclei/1,000 cells range. Ten cells with multiple micronuclei are rare in healthy subjects but become more common in individuals exposed to radiation or other genotoxic agents. Therefore, the assessment of micronuclei in cells is a promising tool for the study of epithelial carcinogens. The assay can be used to detect chromosome breakage or mitotic interference, thought to be relevant to carcinogenesis.

In this study, sodium arsenite-treated rats showed an increase in the level of mPCEs in comparison with the negative control rats suggesting an oxidative damage to the DNA. The result of this study confirms the previously reported arsenic induction of micronuclei in animals. Arsenic toxicity is known to be involved in the reaction leading to an enhanced lipid peroxidation; fluidity and membrane potential which ultimately leads to loss of cellular function and clastogenicity. Nevertheless, pretreatment of rats with aqueous extract of *A. caudatus* and *A. hybridus* significantly decreased the frequency of mPCEs. The antigenotoxic properties exhibited by these vegetables might be due to the presence of some phytochemicals, vitamins, and minerals as detected in the selected vegetables in this study [Tables 3 and 4]. Furthermore, previous reports have suggested that consumption of polyphenolic compounds from vegetables can inhibit the processes of mutagenesis and carcinogenesis.

The hematological system is one of the most delicate targets for toxic compounds and a vital index of pathological status in man and animal. In hematological analysis, there were no differences between the plant extracts treated group and negative control group. This indicates that the administration of the extract might not able to produce toxic effects on the hematological system. The hematological variables, following NaAsO$_2$ exposure, induced a significant increase in WBC, LYMPH in this study, and this may be related to arsenic toxicity. However, the plant extract presented some levels of changed on the hematological parameters which indicated various level
protections against sodium arsenite-induced toxicity. In this study, the aqueous crude extracts of *A. caudatus* caused a statistically significant decrease in the levels of WBC and hemoglobin concentration, while significant increase was observed in the percentage of LYMPH and hemoglobin concentration of *A. hybridus*. Hence, this shows that the leaves of this *A. caudatus* may not provide protection against anemia induced by sodium arsenite. For *A. hybridus*, the extract may provide required protection against toxicity induced by sodium arsenite. All other hematological and biochemical analysis values in rat blood samples are considered normal in comparison to the control group. Thus, confirming the administration of *A. hybridus* and *A. caudatus* to the rats prior to sodium arsenite-induced toxicity may reduce the risk of certain hematological diseases.

In this study, *A. hybridus* and *A. caudatus* were found to be rich in certain vitamins and minerals which are known to modulate the toxicity of arsenic and other environmental toxicant. Most of the vital vitamins and minerals known for antioxidant and chemopreventive properties were detected in *A. caudatus* and *A. hybridus* leaf extracts, and their previous medicinal values have been highlighted in previous studies. For instance, beta carotene and tocopherol found in large amount in vegetables, fruits, and medicinal herbs have been reported to prevent sodium arsenite-induced fibrosis in the liver by inhibiting lipid peroxidation, improving antioxidant status, and decreasing the activity of ALP in the serum.[24] Similarly, vitamin C has been shown to reduce arsenic-mediated ovarian and uterine toxicity.[25] Vitamin C acts as a direct scavenger of free radicals and suppresses the formation of carcinogen.[26] β-carotene is an antioxidant and has in this way cancer preventing properties.[27] Tocopherol is also necessary for the formation of red blood cells and maintenance of muscle and other tissue. It also protects polyunsaturated fatty acids that are essential for the body, vitamin E, the lipid soluble chain-breaking antioxidant scavenges free radicals, and prevents lipid peroxidation, thus stabilizing the cell membrane.[28]

Consequently, the detection of some known antioxidants (vitamins) and essential micronutrients in these vegetables suggested that they possess many components that helped in their chemopreventive properties as exhibited in the micronucleus, enzymes, and hematological assays as observed in this study. Generally, green leafy vegetables are consumed either in the cooked form or served as salads. It can be seen that these vegetables possess antioxidant components at varying levels. The estimation of vitamins and minerals components with biological antioxidant role is of great importance and may be the components responsible for chemopreventive purpose. These preliminary results suggest that vitamins, elemental components, and aqueous extractable constituents of *A. hybridus* and *A. caudatus* protect the mutagenic effects of sodium arsenite in the test animals. Previous studies and the results of this study suggest that the chemopreventive activities may be due to the presence of a single mineral and/or vitamin or to their synergistic effect. Hence, future work will be channeled into the isolation of active principle(s) responsible for their chemopreventive potentials.

REFERENCES

1. Tuzen M, Saygi KO, Karaman I, Soylay M. Selective speciation and determination of inorganic arsenic in water, food and biological samples. Food Chem Toxicol 2010;48:41-6.
2. Yang CY, Chang CC, Tsai SS, Chuang HY, Ho CK, Wu TN. Arsenic in drinking water and adverse pregnancy outcome in an arsenic-endemic area in northeastern Taiwan. Environ Res 2003;91:29-34.
3. Chen H, Li S, Liu J, Diwan BA, Barrett JC, Waalkes MP. Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: Implications for arsenic hepatocarcinogenesis. Carcinogenesis 2004;25:1779-86.
4. Vega L, Gonsebatt ME, Ostrosky-Wegman P. Aneugenic effects of sodium arsenite on human lymphocytes in vitro: An individual susceptibility effects and defects. Mutat Res 1995;334:356-78.
5. Yousef MI, El-Demerdash FM, Radwan FM. Sodium arsenite induced biochemical perturbations in rats: Ameliorating effect of curcumin. Food Chem Toxicol 2008;46:3506-11.
6. Wei M, Arnold L, Cano M, Cohen SM. Effects of co-administration of antioxidants and arsenicals on the rat urinary bladder epithelium. Toxicol Sci 2005;83:237-45.
7. Anoush M, Eghbal MA, Fathiazad F, Hamzeiy H, Kouzehkonani NS. The protective effects of garlic extract against acetaminophen induced oxidative stress and glutathione depletion. Pak J Biol Sci 2009;12:765-71.
8. Maiyo ZC, Ngure RM, Matasyoh JC, Chepkorir R. Phytochemical constituents and antimicrobial activity of leaf extract of three Amaranthus plant species. Afr J Biochem 2010;9:3178.
9. Heddle JA, Salmone MF. The micronucleus assay I. In: Stitch HF, San RH, editors. Topics in Environmental Physiology and Medicine: Short Test for Chemical Carcinogens. New York: Springer Verlag; 1981. p. 243-9.
10. Abdunabi AA, Emhemed AH, Hussein GD, Biacs PA. Determination of antioxidant vitamins in tomatoes. Food Chem 1997;60:29-34.
11. AOAC International. Official Methods of Analysis. 15th ed. Arlington.
12. Shahidi F, Chavan UD, Bal AK, Mckenzie DB. Chemical composition of beach pea (*Lathyrus Maritimus* L.) plant parts. Food Chem 1999;64:39-44.
13. Nahapetian A, Bassiri A. Changes in concentrations and interrelationships of phytate, phosphorus, magnesium, calcium, and zinc in wheat during maturation. J Agric Food Chem 1975;32:1179-82.
14. Karmaker R, Banerjee A, Datta S, Chatterjee M. Influence of cadmium intoxication on hepatic lipid peroxidation, glutathione level and glutathione-S-transferase and gamma-glutamyl transpeptidase activities: Correlation with chromosome aberration in bone marrow cells. J Environ Pathol Toxicol Oncol 1999;18:277-87.
15. Sharma A, Sharma MK, Kumar M. Modulatory role of *Emblica officinalis* fruit extract against arsenic induced oxidative stress in Swiss albino mice. Chem Biol Interact 2009;180:20-30.
16. Gaskill CL, Miller LM, Mattoon JS, Hoffmann WE, Burton SA, Gelens HC, et al. Liver histopathology and liver serum alanineaminotransferase and alkaline phosphatase activities in epileptic dogs receiving phenobarbital. Vet Pathol 2005;42:147-60.
17. da Cruz AD, McArthur AG, Silva CC, Curado MP, Glickman BW. Human micronucleus counts are correlated with age, smoking, and cesium-137 dose in Goiania (Brazil) radiological accident. Mutat Res 1994;313:57-68.
18. Tolbert PE, Shy CM, Allen JW. Micronuclei and other anomalies in buccal smears: Methods development. Mutat Res 1992;271:69-77.
19. Fenech M, Morley AA. Cytokinesis-block micronucleus method in human lymphocytes: Effect of in vivo ageing and low dose X-irradiation. Mutat Res 1986;161:193-8.
20. Gebel TW. Genotoxicity of arsenical compounds. Int J Hyg Environ Health 2001;203:249-62.
21. Pompella A, Emdin M, Passino C, Paolicchi A. The significance of serum gamma-glutamyltransferase in cardiovascular diseases. Clin Chem Lab Med 2004;42:1085-91.
22. Rao MV, Tiwari H. Amelioration by melatonin of chromosomal anomalies induced by arsenic and/or fluoride in human blood lymphocyte cultures. Fluoride 2006;39(4):255-60.
23. Mukinda JT, Syce JA. Acute and chronic toxicity of the aqueous extract of Artemisia afra in rodents. J Ethnopharmacol 2007;112:138-44.
24. Mandal AK, Das S, Basu MK, Chakrabarti RN, Das N. Hepatoprotective activity of liposomal flavonoid against arsenite-induced liver fibrosis. J Pharmacol Exp Ther 2007;320:994-1001.
25. Chattopadhyay S, Ghosh S, Debnath J, Ghosh D. Protection of sodium arsenite-induced ovarian toxicity by co-administration of L-ascorbate (vitamin C) in mature wistar strain rat. Arch Environ Contam Toxicol 2001;41:83-9.
26. Bohm F, Settergren M, Pernow J. Vitamin C blocks vascular dysfunction and release of interleukin-6 induced by endothelin in humans in vivo. Atherosclerosis 2007;190:408-15.
27. Brausi M, Rizzi F, Bettuzzi S. Chemoprevention of human prostate cancer by green tea catechins: Two years later. A follow-up update. Eur Urol 2008;54:472-3.

Cite this article as: Adewale A, Olorunju AE. Modulatory effect of fresh Amaranthus caudatus and Amaranthus hybridus aqueous leaf extracts on detoxify enzymes and micronuclei formation after exposure to sodium arsenite. Phcog Res 2013;5:300-5.

Source of Support: Nil, Conflict of Interest: None declared.