Realization of deep subwavelength resolution with singular media

Su Xu1,2,3,4, Yuyu Jiang1,2, Hongyi Xu3,4, Junxia Wang1,2, Shisheng Lin1,2, Hongsheng Chen1,2 & Baile Zhang3,4

1The Electromagnetics Academy at Zhejiang University, Zhejiang University, Hangzhou 310027, China, 2State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China, 3Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore, 4Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore.

The record of imaging resolution has kept being refreshed in the past decades and the best resolution of hyperlenses and superlenses so far is about one out of tens in terms of wavelength. In this paper, by adopting a hybrid concept of transformation optics and singular media, we report a broadband meta-lens design methodology with ultra-high resolution. The meta-lens is made of subwavelength metal/air layers, which exhibit singular medium property over a broad band. As a proof of concept, the subwavelength imaging ability is demonstrated over a broad frequency band from 1.5–10 GHz with the resolution varying from 1/117 to 1/17 wavelength experimentally.

The resolution of conventional imaging systems is fundamentally limited to the diffraction limit1 because evanescent waves, which carry subwavelength information, decay exponentially during propagation in free space. Serving as a powerful impetus to semiconductor fabrication, biological studies, material science and medicine development, the unconventional imaging techniques that can break the diffraction limit have attracted considerable interest in recent years. In addition to the near-field scanning optical microscope2,3 and stimulated emission depletion microscope4, perfect lens5 and hyperlens6 perform the function to recover subwavelength details of objects to be imaged. By folding electromagnetic space, a perfect lens can achieve unlimited resolution in theory and has been demonstrated with left-handed metamaterials composed of artificial “atoms” in experiments7–14. A hyperlens is made of anisotropic media with a hyperbolic surface, in which evanescent waves can be converted to propagating ones. The best realized resolution of all fabricated hyperlenses so far is about one out of tens in terms of wavelength15–19. To refresh this record further has practical demand but is widely acknowledged to be challenging.

Different from perfect lens and hyperlens, canalization regimes20–26, which do not involve left-handed materials and amplification of evanescent waves, can realize subwavelength imaging as well. This strategy is based on the eigenmode analysis of photonic crystals. The media for subwavelength imaging are constructed by metallic rod array, whose effective parameters are defined with a nonlocal effective medium model27–31. Several proofs of concept have been experimentally demonstrated in microwave regimes32–35 and exhibit potential applications in near-field microscopy and in medical imaging from microwave frequencies to infrared frequencies36.

Recently, singular media37,38 have shown potential ability in realizing deep subwavelength imaging. Singular media have the property that some components of the permittivity or permeability tensors are infinite or almost zero and therefore have already been taken into consideration of various potential electromagnetic applications, e.g. waveguide39, optical isolation40, metamaterials with ultrahigh refractive index41–43, superlens44 and subwavelength channeling applications45–47.

In this Letter, with the use of transformation optics48–51 and singular media, we report a practical meta-lens design methodology to realize ultra-high resolution in terms of wavelength for transverse magnetic (TM) polarized waves. The alternate metallic and dielectric layers, which form effective permittivity with extremely high anisotropy and can be treated as a kind of singular media, are adopted in our design and fabrication. The meta-lens is demonstrated experimentally over a broad frequency band from 1.5–10 GHz with the resolution varying from 1/117 to 1/17 wavelength.

Results

The scheme of a TM cylindrical meta-lens is shown in Fig. 1(a). Two point sources are located closely at the inner boundary of the lens with subwavelength distance. For a specific material, the dispersion relation of electromag-
Figure 1 | (a) A two-dimensional scheme of an unconventional lens for TM waves. (b) The k surfaces for an isotropic medium (circle in blue) and a singular medium (parallel lines in red). (c) The corresponding virtual space of materials in (b). In isotropic materials, energy flow \(S \) will spread out in all the directions. After squeezing the original virtual space (the regime in blue) in the azimuthal direction, \(S \) can only propagate in the transformed tube-like space (the regime in red) without spreading out. (d) The metamaterial with infinite anisotropy is made of metal-air structure with the period \(p_0 \) and the thickness of metal \(d_{\text{air}} \).

Changes in virtual space between isotropic medium (e.g. air) and suppressed medium with infinite anisotropy are plotted in Fig. 1(c). Therefore, a practical high-resolution meta-lens in terms of wavelength can be realized by a singular medium, but without hyperbolic dispersion relation.

As shown schematically in Fig. 1(d), metamaterial realized by alternate metallic and air layers with subwavelength period \(p_0 \) is a potential choice to achieve extremely high anisotropy. With the effective medium theory, the perpendicular and parallel coefficients of the effective permittivity can be calculated as \(\varepsilon'_e = \varepsilon_{\parallel} = \left(\varepsilon_{\text{metal}} \varepsilon_{\text{air}} \right) \left(F \varepsilon_{\text{metal}} + (1 - F) \varepsilon_{\text{air}} \right) \) and \(\varepsilon'_z = \varepsilon_{\perp} = \varepsilon_{\text{metal}} \varepsilon_{\text{air}} \left(F \varepsilon_{\text{metal}} + (1 - F) \varepsilon_{\text{air}} \right) \), where \(F = d_{\text{metal}} / p_0 \) is the filling factor of the metal, \(\varepsilon_{\text{metal}} \) is the permittivity of metal, and \(\varepsilon_{\text{air}} \) is the permittivity of air. For the case of microwave regime, infinite permittivity of metal \(\varepsilon_{\text{metal}} \) and finite filling factor \(F \) introduces a singular medium property (i.e. \(\varepsilon'_z = \varepsilon_{\parallel} = 1 / (1 - F) \) and \(\varepsilon'_e \to \varepsilon_{\perp} \to \infty \)). For the case of higher frequency or optical regime, the permittivity of metal is not an infinite value due to the dispersion, but the permittivity ratio between the absolute value of metal and air still tends to a large value, especially in the infrared spectrum. Therefore, alternate metal-air layers can exhibit approximately singular medium property in optical regime as they exhibit in microwave regime. In such a medium, the wave can only propagate along the \(\rho \) direction and no energy can be spread out.

As an example, we simulate TM polarized electromagnetic waves with the frequency of 100 THz incident onto the homogeneous medium with high anisotropy \(|\text{Re}(\varepsilon_z / \varepsilon_\parallel)| > 40 \), Fig. 2(a) and the effective medium constructed with gold-air layered structure (the filling factor of gold is 0.1, Fig. 2(b)), respectively. The simulated result is obtained with the use of the commercial software Comsol Multiphysics. The permittivity of gold is given by \(\varepsilon = 1 - \frac{\omega_p^2}{\omega(\omega + i\omega_c)} \) and for bulk gold, the plasma frequency \(\omega_p = 2\pi \times 2.175 \times 10^{15} \text{ s}^{-1} \) and the collision frequency \(\omega_c = 2\pi \times 6.5 \times 10^{14} \text{ s}^{-1} \). The incidence angle is 30 degree. Two media in Fig. 2(a) and 2(b) have the same
permittivities close to the inner semicircle are contact terminals. According to the calculation above, the effective source, which is subwavelength, is connected to the meta-lens with foil, are used as two separated point sources in the experiment. The and height of 200 mm on a horn antenna covered by an aluminum z direction is \(h = 200 \) mm. Two slits, with the width of 0.3 mm and height of 200 mm on a horn antenna covered by an aluminum foil, are used as two separated point sources in the experiment. The distance between two slits is 1.7 mm. In the experiment, a composite source, which is subwavelength, is connected to the meta-lens with contact terminals. According to the calculation above, the effective permittivities close to the inner semicircle are \(\varepsilon_\phi = \varepsilon_\perp = 1.1 \) and \(\varepsilon_\rho = \varepsilon_{|| \rightarrow \infty} \), which match the requirement of meta-lens.

Both simulations and experiments are carried out in microwave regime to verify our idea. For the case of free space (Fig. 4(a)), the field distribution of two point sources with the distance 1.7 mm is identical to the one of a single point source because the distance between two point sources is far less than half of free space wavelength at 1.5 GHz. However, for the case of sources with our meta-lens, the TM waves excited by the same pair of point sources can be efficiently separated (Fig. 4(b)). In the experiment, the distance between the receiver and the center is 0.6 m. The scanning angle \(\phi \) varies from 0 to 180 degree. The experimental results at 1.5 GHz agree well with simulated results (Fig. 4(c)). Moreover, in order to verify the broadband property of our meta-lens design, we measured the field at different frequencies. Fig. 4(d–f) are the experimental results at 10 GHz, from which one can see that the two points can also be efficiently separated in the imaging plane, indicating that our meta-lens can overcome the diffraction limit from 1.5 GHz to 10 GHz with the resolution varying from 1/117 to 1/17 wavelength.

Discussion

There are two limitations relating to the bandwidth and resolution of our design. The first one is the effective medium theory (EMT), which can be used only when the periodicity of the layered structure has to be much smaller than the wavelength of interest (e.g. smaller than 1/5 wavelength). In our design, the periodicity of the layered Al-foam structure is 0.26 mm, which corresponds to 1/5 wavelength of 230 GHz. The other one is the diffraction limit, which means that the distance between the two imaging point at the outer boundary should be larger than 1/2 wavelength. In the design, this distance is 500 mm, which corresponds to 1/2 wavelength of 0.3 GHz. Therefore we estimate that the bandwidth limitation of our design is 0.3-230 GHz.

One may question that the squeezing constant must be a definite number for a real practical sample. As a result, the radial component of permittivity cannot be infinite in experiment. However, even with a definite squeezing number, the effective radial permittivity still tends to infinite, as the permittivity of metal is infinitely large at microwave regime. Hence, a definite squeezing constant would not deteriorate the subwavelength imaging performance in our practical design. For higher frequency, e.g. optical regime, a definite squeezing parameter will deteriorate the imaging performance because it is difficult to find a kind of material whose permittivity tends to infinite, but a medium with highly anisotropic permittivity can be still achieved for subwavelength imaging with the use of layered structure in Fig. 2.

In conclusion, we introduce a meta-lens design methodology with deep subwavelength resolution combining transformation optics and singular media. We implement this concept and demonstrate a practical broadband meta-lens in microwave regime. The meta-lens is made of alternate metallic and air layers, which can be treated as a singular medium. The advantages of this design include ultra-high-resolution (up to \(1/100 \) resolution at 1.5 GHz in the experi-
Figure 4 | The results at 1.5 GHz are enclosed in the top panel (a–c) while the results at 10 GHz are enclosed in the bottom panel (d–f): the simulated field distributions (a, d) for the case without meta-lens and (b, e) for the case with meta-lens, and (c, f) the image intensity normalized by the input intensity. In the experiment, the distance between the receiver and the center is 0.6 m.

1. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikroskop. Anat. 9, 413–418 (1873).
2. Sykke, E. H. A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos Mag. 6, 356–362 (1928).
3. Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S. & Kostelak, R. L. Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 251, 1468–1470 (1991).
4. Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. 102, 13081–13086 (2005).
5. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000).
6. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).
7. Zhang, X. & Liu, Z. W. Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435–441 (2008).
8. Liu, Z. W., Fang, N., Yen, T.-J. & Zhang, X. Rapid growth of evanescent wave with a silver superlens. Appl. Phys. Lett. 83, 5184 (2003).
9. Grbic, A. & Eleftheriades, G. V. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403 (2004).
10. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).
11. Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. & Hillenbrand, R. Near-field microscopy through a SiC superlens. Science 313, 1595 (2006).
12. Durant, S., Liu, Z. W., Steele, J. M. & Zhang, X. Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit. J. Opt. Soc. Am. B 23, 2383–2392 (2006).
13. Liu, Z. W. et al. Far-field optical superlenses. Nano Lett. 7, 403–408 (2007).
14. Liu, Z. W. et al. Experimental studies of far-field superlenses for sub-diffractional optical imaging. Opt. Express 15, 6947–6954 (2007).
15. Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006).
16. Lee, H., Liu, Z. W., Xiong, Y., Sun, C. & Zhang, X. Development of optical hyperlens for imaging below the diffraction limit. Opt. Express 15, 15886–15891 (2007).
17. Nhou, J. et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun. 1, 143 (2010).
18. Smith, E. J., Liu, Z., Mei, Y. F. & Schmidt, O. G. System investigation of a rolled-up metamaterial optical hyperlens structure. Appl. Phys. Lett. 95, 083104 (2009).
Acknowledgments
This work was sponsored by the National Natural Science Foundation of China under Grants Nos. 61322501, 61275183, and 60990322, the National Program for Special Support of Top-Notch Young Professionals, the Foundation for the Author of National Excellent Doctoral Dissertation of PR China under Grant No. 200950, the Program for New Century Excellent Talents (NCET-12-0489) in University, the K. P. Chao’s High Technology Development Foundation, the Fundamental Research Funds for the Central Universities, Nanyang Technological University under Start-Up Grants, Singapore Ministry of Education under Grant No. Tier 1 RG27/12 and Grant No. MOE2011-T3-1-005.

Author contributions
B.Z. conceived the original idea of the study. S.X., H.X. and J.W. performed the analysis and numerical simulations. S.X. and Y.J. carried out the experiment. H.C., S.L. and B.Z. interpreted the results and supervised the project. S.X., B.Z. and H.C. wrote the manuscript. All authors reviewed the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Xu, S. et al. Realization of deep subwavelength resolution with singular media. Sci. Rep. 4, 5212; DOI:10.1038/srep05212 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images in this article are included in the article’s Creative Commons license, unless indicated otherwise in the image credit; if the image is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the image. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/