Evaluation of stx1, stx2, hlyA, and eaeA Virulence Genes in *Escherichia coli* O157:H7 Isolated from Meat (Beef and Mutton) in Hamedan, Iran, During 2015-2016

Fatemeh Binandeh1, Mohammadreza Pajohi-Alamoti1,*, Pezhman Mahmoodi2, Azam Ahangari2

1Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
2Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran

*Corresponding Author: Mohammadreza Pajohi-Alamoti, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran. Email: mr.pajohi@basu.ac.ir, pajohi@gmail.com

Published Online May 28, 2020

Keywords: *E. coli* O157:H7, Meat, PCR, Virulence factors

Abstract

Background and Objectives: Consuming raw or undercooked cattle meat is the most common transmission way of infection with *Escherichia coli* O157:H7. The present study aimed to identify virulence genes stx1, stx2, hlyA, and eaeA in *E. coli* isolated from meat samples (beef and mutton) in Hamedan during 2015 and 2016.

Materials and Methods: For this purpose, the swabs were randomly taken from 160 meat samples including 80 beef samples and 80 mutton samples from butcher shops. Isolation and identification of *E. coli* cells were conducted by culturing the swab samples on MacConkey agar and Eosin methylene blue agar media. Then, the identity of the suspected *E. coli* O157:H7 colonies was investigated by a multiplex PCR assay and eventually, the isolates were evaluated for the presence of stx1, stx2, hlyA, and eaeA virulence genes.

Results: The results showed that out of 160 cultured samples on the selective media, 60 samples (37.5%) were contaminated with *E. coli* O157:H7, O157, and H7 strains were identified using PCR, among which only *E. coli* O157:H7 possessed all four virulence factor encoding genes.

Conclusion: The results of this study showed that beef could be a reservoir for *E. coli* O157:H7, and it may be involved in the transmission of this pathogen to humans.

Background

Escherichia coli (*E. coli*) is a part of the normal microflora of the digestive tract of mammals, certain strains of which are associated with gastrointestinal diseases in both humans and warm-blooded animals1. The most important *E. coli* serotype is *E. coli* O157:H7, which has drawn widespread attention due to its toxin-producing capability2. Production of Shiga toxin by some of the *E. coli* strains, known as Shiga-toxin producing *Escherichia coli* (STEC), has been reported in several outbreaks, including mild diarrhea, hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS)3.

The pathogenicity of *E. coli* O157 is related to a variety of virulence factors, including Shiga toxins with two major groups, stx1 and stx24. Intimin (encoded by the eae gene), which is involved in the attachment of *E. coli* to the enterocyte and caused attaching and effacing (A/E) lesions in the intestinal mucosa5, and *Hly*A (plasmid gene EHEC-hlyA), which is an exotoxin that lyces erythrocytes and different cells, promoting iron acquisition for microorganism nutrition6.

Epidemiologic investigations demonstrated that O157 is the primary causative agent for HC and HUS in humans. However, 6 non-O157 O groups (O26, O45, O103, O111, O121, and O145) have been reported in human clinical cases7.

Domestic ruminants, particularly cattle, sheep, and goats, are considered the principal reservoir of STEC strains. Nevertheless, other domestic animals, including pigs, poultry, cats, and dogs, may also act as reservoirs for this microorganism8. *E. coli* O157 outbreaks are related to the consumption of raw or undercooked meat, meat products, unpasteurized dairy products, and vegetables or water contaminated with animal feces9. Additionally, infection with *E. coli* O157 can be acquired through contaminated drinking or swimming water, close contact with infected animals, and person-to-person transmission10.

Since the incidence of gastroenteritis due to STEC is increasing and considering its important hygienic, social, and cultural aspects, there is an increasing demand for improved diagnostic procedures for the detection of...
STEC in fecal samples and, particularly, in foods such as meat and dairy products1,11. Nowadays, polymerase chain reaction (PCR) has become a useful fast, specific, sensitive, and comparatively inexpensive diagnostic tool for the detection of STX encoding genes in different samples containing even a small amount of STEC9.

To our knowledge, this is the first study that aimed to identify virulence genes \textit{stx1}, \textit{stx2}, \textit{hlyA}, and \textit{eaeA} in \textit{E. coli} O157:H7 isolated from red meat (beef and mutton) in Hamedan. Because meat and food products that are contaminated with animal feces are probably the primary sources of the \textit{E. coli} O157: H7 infection, the present study focused on the detection of \textit{E. coli} O157:H7 and its virulence genes in meat samples by PCR assay.

\textbf{Materials and Methods}

\textbf{Sample Collection}

This cross-sectional descriptive study was conducted during 2015 and 2016. The sampling was done according to the simple random sampling method, and based on previous prevalence rates reported, the sample size was calculated to be 160 cases11,14. A total of 160 swab samples (beef \textit{n}=80 and mutton \textit{n}=80) were randomly collected from butcher shops in Hamedan. Sampling was done according to the instruction of the Institute of Standards and Industrial Research of Iran, using swabs moistened with 0.1% peptone water. The samples were immediately transported to the Faculty of Veterinary Medicine at Bu Ali Sina University in ice-cooled containers.

\textbf{Bacterial Isolates}

The swabs collected from red meat samples (beef and mutton) were immediately inoculated on MacConkey agar (Merck, Germany) to evaluate the ability of lactose fermentation. Because the bacterium is able to ferment lactose, lactose-fermenting colonies were presumptively considered as \textit{E. coli}11. Then, these grown reddish-purple colonies were transferred to Eosin Methylene Blue agar (EMB agar; Merck, Germany) for final confirmation and colonies were transferred to Eosin Methylene Blue agar (EMB agar; Merck, Germany) for final confirmation and incubated at 37°C overnight (dark purple colony with a green metallic sheen)15.

\textbf{Multiplex PCR for Detection of \textit{stx1}, \textit{stx2}, \textit{hlyA}, and \textit{eaeA} Genes}

\textbf{DNA Extraction}

To investigate O157 and H7 encoding genes as well as genes responsible for virulence factors including \textit{stx1}, \textit{stx2}, \textit{hlyA}, and \textit{eaeA}, PCR technique was used. First, DNA was extracted from suspected isolates using the boiling method. Briefly, about 5 mL of an overnight TSB culture of each \textit{E. coli} isolate was precipitated and resolved in 200 μL of sterile distilled water and vortexed. After incubating at 100°C in a water bath for 10 minutes, the solution was centrifuged at 10000×g for 2 minutes. Then, supernatants were collected as the source of extracted DNA samples11.

\textbf{Primer Sequences}

PCR was performed using previously described primers, as presented in Table 116.

\textbf{DNA Amplification}

The PCR reactions contained 12.5 μL of a commercial PCR MasterMix (Ampliqon, Denmark), 0.25 μL of each primer with a concentration of 0.5 μM (four primer pairs), and 7 μL of the extracted DNA as the template in a final volume of 25μL. The condition of cycles in a thermocycler (Astec, Germany) was as follows: the samples were subjected to 35 PCR cycles, each cycle including denaturation at 95°C for 1 minute, annealing at 65°C for 2 minutes for the first 10 cycles, decrementing to 60°C by cycle 15, and elongation at 72°C for 1.5 minutes. The final extension was done at 72°C for 2.5 minutes from cycles 25 to 35. After electrophoresis of PCR products on 2% agarose gel and ethidium bromide staining, amplified products were visualized by UV illumination. \textit{E. coli} O157:H7 (ATCC-35150; prepared from the bacteria collection of the Faculty of Veterinary Medicine of Tehran) was used as positive control and a sample without any DNA as a negative control11,16.

\textbf{Statistical Analysis}

The findings were analyzed by Pearson’s chi-square test using SPSS (version 16.1). Differences in the isolation rate were considered statistically significant at \(P < 0.05\).

\textbf{Results}

Out of the 160 collected samples, 60 samples (37.5%) on MacConkey medium were lactose-fermenting isolates. Among them, 15 samples (25%) belonged to beef, and 45 samples (75%) belonged to mutton. Lactose-fermenting colonies on EMB agar strongly fermented lactose and showed a green metallic sheen on this medium. These

\begin{table}[h]
\centering
\caption{The Primer Sequences Used for PCR Reactions16.}
\begin{tabular}{llr}
\hline
Primer & Oligonucleotide sequence (5′-3′) & Size of product (bp) \\
\hline
\textit{stx1F} & AATAATCCCGCCATTCGGTACGTAC & 180 \\
\textit{stx1R} & AGAACGCCCACGGAATTACAT & \\
\textit{stx2F} & GGGACTGTGAAAATTGTTCC & 255 \\
\textit{stx2R} & TGCCGATGATGATGACAT & \\
\textit{eaeA} & GACCGGACACAGCATAAG & 384 \\
\textit{hlyA} & GCCATGCACACCTGTAAG & 534 \\
\textit{H7F} & CGGCTGCTCAGGTTACGAC & 259 \\
\textit{H7R} & CAAGGCCTGTTTGATCGAC & 625 \\
\hline
\end{tabular}
\end{table}
isolates were selected for final confirmation by PCR. In the initial evaluation by the PCR test, out of the 60 positive isolates in culture examination, one isolate (1.67%) had both O157 and H7 encoding genes simultaneously and was characterized as the E. coli O157: H7 strain, while only one isolate (1.67%) had the O157 encoding gene and was considered as E. coli O157: non motile (NM). In addition, one isolate (1.67%) possessed the H7 encoding gene (Figure 1).

A Multiplex PCR assay was used to identify virulence factors (stx1, stx2, hlyA, eaeA). Of the three isolates (O157:H7, O157, H7) only O157: H7 had all four virulence factor encoding genes, and the other two isolates did not form DNA bands for any of the four genes (Figure 2).

Finally, out of the 57 non-O157:H7 strains, 18 isolates (31.5%) had at least one stx1, hlyA, and eaeA genes. None of the non-O157:H7 strains possessed stx2 gene (Table 2).

Table 2. Result of PCR Assay for stx1, hlyA, and eaeA Genes in Non-O157:H7 Isolates

Virulence profile	Number of isolates (%)
stx1	5 (27.8%)
stx1+hlyA	9 (50%)
stx1+eaeA	2 (11.1%)
eaeA	2 (11.1%)
Total	18 (100%)

Discussion

E. coli serotype O157:H7 is a severe threat to public health and impose a considerable economic burden on the food industry\(^7\). Since cattle are the main reservoirs of STEC, beef and beef products are reported to be the most common food vehicles attributed to human disease \(^8\). Many studies determined the prevalence of E. coli O157:H7 in cattle carcasses, which ranged from 0.0% to 27.8% (up to 68% in heifers)\(^9\). Many protocols for isolation of the E. coli O157:H7 from food samples have been proposed. To date, different PCR assays have been described for detecting the main virulence factor genes such as stx1, stx2, hlyA, and eaeA\(^5\). Osek (2003) performed multiplex PCR assay on 202 E. coli isolates from cattle and children at the National Institute for Veterinary Research of Poland and found that 25 STEC isolates (12.4%) were stx positive and 20 STEC isolates had eaeA and hlyA virulence genes\(^6\).

In the present study, a multiplex PCR was used to identify virulence factors (stx1, stx2, hlyA, and eaeA). Out of 160 E. coli isolates tested, 18 non-O157: H7 strains had at least one virulence factor-encoding gene, and only one O157: H7 isolate was identified to have all four virulence factor encoding genes stx1, stx2, hlyA, and eaeA (Table 2). The contamination rate of beef with E. coli O157:H7 was 1.67% (one of the 60 E. coli isolates) in Hamedan. In a similar study, Jamshidi et al reported that only one of 100 ground beef samples was contaminated with E. coli O157:H7 using PCR assay in Mashhad\(^10\). However, as reported by Rahimi et al, the contamination rate of slaughtered cattle in Isfahan was 4.6%, indicating a higher rate compared to the present study\(^2\). Moreover, Shekarfroush et al in Shiraz and Jafaryan-Sedigh et al in Esfahan showed that the contamination rate of mutton with E. coli O157:H7 was 3.92 and 6.8%, respectively\(^5,22\). In another research carried out by Hajian et al, the contamination rate of beef was found to be 2.2%\(^22\), which was higher than that obtained in the present study. The contamination rate of beef reported in the present study in Hamedan (1.67%) was higher than that in Ireland (0.0%) and lower than that in the Netherlands (10.4%), England (13.4%), and the USA (28%)\(^23\). Differences in experiment results may be due to the sampling method (samples of carcass meat, meat products packed in supply centers), size and number of samples, and isolation method performed in the present study\(^23\). The current study is the first report on the contamination of red meat in Hamedan with E. coli O157:H7, suggesting that consuming undercooked meats can contribute to the transmission of this pathogen to humans. Therefore, control, precise monitoring, and observance of hygienic principles during slaughter, transportation, and storage can be effective measures in reducing cross-contamination. In addition,
due to the risks of the presence of this bacterium in food, it is necessary to study the etiologic characteristics of this bacterium in foodstuffs and ways of its transmission to humans. Additionally, it is recommended that more comprehensive studies should be done in other regions of the country10.

Conclusion
This study showed that red meat can be a reservoir for E. coli O157: H7 and it may act as a vehicle for transmission of this pathogen to humans. On the basis of the data presented here, it is necessary for the consumer to be aware of the potential health risks related to the consumption of meats that are not heated or partially heated before consumption.

Authors’ Contributions
FB performed laboratory experiments. MPA presented the original idea, performed laboratory experiments, and wrote the manuscript. PM provided technical support and wrote the paper. AA wrote the paper.

Ethical Approval
Not applicable.

Conflict of Interest Disclosures
Authors declare no conflict of interests.

Financial Support
Bu-Ali Sina University, Hamedan, Iran.

Acknowledgments
The authors are grateful to Bu-Ali Sina University (Hamedan, Iran) for financial support.

References
1. Caprioli A, Morabito S, Brugère H, Oswald E. Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. Vet Res. 2005;36(3):289-311.
2. Sonawane SK, Arya SS, LeBlanc JG, Jha N. Use of nanomaterials in the detection of food contaminants. Eur J Nutr Food Saf. Published online 2014;301-317.
3. Kargar M, Homayoon M. Prevalence of shiga toxins (stx1, stx2), hlyA and hly genes of Shigella dysenteriae coli O157: H7 strains among children with acute gastroenteritis in southern of Iran. Asian Pac J Trop Med. 2015;8(1):24-28.
4. Amani J, Ahmadpour A, Fooladí AA, Nazarian S. Detection of E. coli O157: H7 and Shigella dysenteriae toxins in clinical samples by PCR-ELISA. Brazilian J Infect Dis. 2015;19(3):278-284.
5. Mora A, Blanco JE, Blanco M, et al. Antimicrobial resistance of Shiga toxin (verotoxin)-producing Escherichia coli O157: H7 and non-O157 strains isolated from food contaminants, cattle, sheep and food in Spain. Res Microbiol. 2005;156(7):793-806.
6. Lorenz SC, Son I, Maunoumen-Lasari A, Lin A, Fischer M, Kase JA. Prevalence of hemolysin genes and comparison of ehxA subtype patterns in Shiga toxin-producing Escherichia coli (STECh) and non-STECh strains from clinical, food, and animal sources. Appl Environ Microbiol. 2013;79(20):6301-6311.
7. Wang F, Yang Q, Kase JA, et al. Current trends in detecting non-O157 Shiga toxin-producing Escherichia coli in food. Foodborne Pathog Dis. 2013;10(8):665-677.
8. Blanco M, Blanco JE, Mora A, et al. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from healthy sheep in Spain. J Clin Microbiol. 2003;41(4):1351-1356.
9. Jo M-Y, Kim J-H, Lim J-H, et al. Prevalence and characteristics of Escherichia coli O157 from major food animals in Korea. Int J Food Microbiol. 2004;95(1):41-49.
10. Heuvelink AE, Zwartkruis-Nahuis JTM, Beumer RR, de Boer DE. Occurrence and survival of verocytotoxin-producing Escherichia coli O157 in meats obtained from retail outlets in The Netherlands. J Food Prot. 1999;62(10):1115-1122.
11. Fard RMN, Nezhad GB, Salehi TZ, Parvar NA. Evaluation of ehxA, stx1, and stx2 virulence gene prevalence in cattle Escherichia coli isolates by multiplex PCR. Arch Razi Inst. 2005;60:55-66.
12. Lin A, Nguyen L, Lee T, et al. Rapid O serogroup identification of the ten most clinically relevant STECs by Luminex microbead-based suspension array. J Microbiol Methods. 2011;87(1):105-110.
13. JAMSHIDI ABDE, BASAMI MR, RASOULI M. Isolation of Escherichia coli O157: H7 from ground beef samples collected from beef markets, using conventional culture and polymerase chain reaction in Mashhad, northeastern Iran. Published online 2008.
14. Yousefi E, Ghouchannezhad Noumia B, Yousefi A, Fakour F. Identification of Escherichia coli O157: H7 from Slaughtered Beef in Mashhad Using Biochemical and Molecular Methods. Iran J Med Microbiol. 2019;13(2):137-141.
15. Doregraei F, Alesbouyeh M, Fasaee BN, Charkhkar S, Tajedin E, Zali MR. Isolation of atypical enteropathogenic and shiga toxin encoding Escherichia coli strains from poultry in Tehran, Iran. Gastroenterol Hepatol from bed to bench. 2016;9(1):53.
16. Paton AW, Paton JC. Detection and Characterization of Shiga Toxigenic Escherichia coli by Using Multiplex PCR Assays for stx1, stx2, eaeA, Enterohemorrhagic E. coli hlyA, rfb O111, and rfb O157. J Clin Microbiol. 1999;36(2):598-602.
17. Byrne CM, Erol I, Call JE, et al. Characterization of Escherichia coli O157: H7 from downer and healthy dairy cattle in the upper Midwest region of the United States. Appl Environ Microbiol. 2003;69(8):4683-4688.
18. Bettelheim KA. The non-O157 Shiga-toxigenic (verocytotoxigenic) Escherichia coli: under-rated pathogens. Crit Rev Microbiol. 2007;33(1):67-87.
19. Madden RH, Espie WE, Moran L, McBride J, Scates P. Occurrence of Escherichia coli O157: H7, Listeria monocytogenes, Salmonella and Campylobacter spp. on beef carcases in Northern Ireland. Meat Sci. 2001;58(4):343-346.
20. Osek J. Development of a multiplex PCR approach for the identification of Shiga toxin-producing Escherichia coli strains and their major virulence factor genes. J Appl Microbiol. 2003;95(6):1217-1225.
21. Rahimi E, Montaz H, Hemmatzadeh F. The prevalence of Escherichia coli O157: H7, Listeria monocytogenes and Campylobacter spp. on bovine carcases in Isfahan, Iran. Iran J Vet Res. 2008;9(4):365-370.
22. Jafareyan-Sedigh M, Rahimi E, Doosti A. Isolation of Escherichia coli O157: H7 in sheep meats using cultural and PCR method. J Shahrekord University Med Sci. 2011;13.
23. Shekarforoush S, Tahamtan Y, Pourbakhsh A. Detection and frequency of stx2 gene in Escherichia coli O157 and O157:
H7 strains isolated from sheep carcasses in Shiraz-Iran. Pak J Biol Sci. 2008;11(8):1085-1092.

24. Hajian S, Rahimi E, Mommtaz H. A 3-year study of Escherichia coli O157: H7 in cattle, camel, sheep, goat, chicken and beef minced meat. In: Proceedings of the International Conference on Food Engineering and Biotechnology (IPCBE’11). ; 2011.