Cerebrospinal fluid neurogranin/β-site APP-cleaving enzyme 1 predicts cognitive decline in preclinical Alzheimer’s disease

Bjørn-Eivind Kirsebom a,b,*, Kaja Nordengenc,d, Per Selnes c,d, Knut Waterloo a,b, Silje Bøen Torsetnes c, Berglind Gisladóttir c,e, Britta Brix f, Eugeen Vanmechelen g, Geir Bråthen h,i, Erik Hessen c,d, Dag Aarsland k,l, Tormod Fladby c,d

aDepartment of Neurology, University Hospital of North Norway, Tromsø, Norway
bDepartment of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
cDepartment of Neurology, Akershus University Hospital, Lørenskog, Norway
dInstitute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
eMolecular Biology (EpiGen), Institute of Clinical Medicine, University of Oslo, Akershus University Hospital, Lørenskog, Norway
fEuroimmun, Lübeck, Germany

gADx NeuroSciences NV, Gent, Belgium
hDepartment of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
iDepartment of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
jDepartment of Psychology, University of Oslo, Oslo, Norway
kCentre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
lDepartment of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK

Abstract

Introduction: The cerebrospinal fluid neurogranin (Ng)/β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) ratio may reflect synaptic affection resulting from reduced beta-amyloid (Aβ) clearance. We hypothesize that increased Ng/BACE1 ratio predicts the earliest cognitive decline in Alzheimer’s disease.

Methods: We compared Ng/BACE1 levels between cases with subjective cognitive decline (n = 18) and mild cognitive impairment (n = 20) both with amyloid plaques and healthy controls (APOE-ε4+, n = 16; APOE-ε4-, n = 20). We performed regression analyses between cerebrospinal fluid levels, baseline hippocampal and amygdala volumes, and pertinent cognitive measures (memory, attention, Mini Mental State Examination [MMSE]) at baseline and after 2 years.

Results: Ng/BACE1 levels were elevated in both subjective cognitive decline and mild cognitive impairment compared to healthy controls. Higher Ng/BACE1 ratio was associated with lower hippocampal and amygdala volumes; lower baseline memory functions, attention, and MMSE; and significant decline in MMSE and memory function at 2-year follow-up.

Discussion: High Ng/BACE1 ratio predicts cognitive decline also in preclinical cases with amyloid plaques.

Keywords: Alzheimer’s disease; MCI (mild cognitive impairment); SCD (subjective cognitive decline); MRI; Memory; Cognition; Synaptic loss; Cerebrospinal fluid (CSF); CSF neurogranin; CSF BACE1
1. Introduction

In Alzheimer’s disease (AD), amyloid-β precursor protein (AβPP) metabolizes to Aβ-peptide, which precipitates in amyloid plaques [1]. Increased CSF neurogranin is related to synaptic loss, cognitive decline, and reductions in hippocampal volume in mild cognitive impairment (MCI) and dementia due to AD. Moreover, increased CSF neurogranin may distinguish AD from other neurodegenerative diseases [2–5]. Previously, we showed an inverse relationship between CSF neurogranin and the CSF Aβ1–42/Aβ1–40 ratio in MCI and dementia, suggesting that synaptic loss and AβPP metabolism may be linked [6]. Neurogranin is highly expressed in dendritic spines in hippocampal and amygdalar pyramidal cells and is linked to postsynaptic signal transduction [7,8]. The β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is linked to presynaptic AβPP metabolism [9,10]. Aβ-oligomers accumulate at synaptic terminals and may disrupt pyramidal cell N-methyl-D-aspartate (NMDA) receptors and postsynaptic Ca2+ homeostasis [11–13], putatively leading to synapse loss. The APOE-ε4 allele is a major genetic risk factor for AD and may enhance synaptotoxic oligomerization of Aβ-peptides [11,14,15].

As BACE1 is a rate-limiting step in the production of Aβ species [9,10], inhibitors are tested [16]. Clinical and biomarker studies in AD cases have shown contradictory results [17,18]. CSF Aβ1–42, as a marker for amyloid plaques (A), and CSF phosphorylated and CSF total tau, as markers for neurofibrillary tangles (T) and neurodegeneration (N), have been combined to the A/T/N stage marker for AD [19]. BACE1 levels have been shown to correlate with markers of neuronal degradation and neurofibrillary tangles (total and phosphorylated tau) [20], as well as synaptic loss (neurogranin), but not with Aβ [21], suggesting a relationship to neurodegeneration. Associated biomarkers can be explored as ratios, which, in some cases, have shown to offer better diagnostic performance, for example, the CSF Aβ1–42/Aβ1–40 ratio [22]. Recently, we compared several CSF measures as single analytes and ratios to cognitive decline and found that an increased ratio between CSF neurogranin trunc P75 and BACE1 (Ng/BACE1) was the only robust correlate of cognitive decline in MCI cases due to AD [21]. We propose that this ratio could sensitively reflect early synapse affection in AD linked to accumulation of toxic Aβ-oligomers at synaptic terminals.

Thus, we hypothesize that increased Ng/BACE1 ratio may herald development of cognitive deficits at a preclinical stage of AD [23,24]. To test this hypothesis, we included cases early in the AD trajectory (i.e., cases with subjective cognitive decline (SCD) and MCI with amyloid plaques) [19,25] and healthy APOE-ε4+ and APOE-ε4- control groups. We compared levels of Ng/BACE1 between the groups, relate Ng/BACE1 to AD biomarker severity using the A/T/N classification scheme [19], and explore relation-
2.4. Participant selection, study design, and A/T/N classification

For the purposes of the present study, we selected participants from the DDI cohort to construct four groups according to the study design criteria: (1) healthy controls with low risk of AD (n = 20, APOE-ε4-); (2) healthy controls with increased risk of AD (at least one APOE-ε4 allele and first degree relative with dementia, n = 16, APOE-ε4+); (3) SCD (n = 18) with CSF confirmed amyloid pathology; and (4) MCI (n = 20) with CSF confirmed amyloid pathology. In addition, participants were classified according to the A/T/N classification scheme for AD using CSF biomarkers [19]. A+ denotes (CSF amyloid pathology only), A + N+ (CSF amyloid pathology and neurodegenerative marker), and A + N + T+ (CSF amyloid pathology, neurodegenerative marker, and marker of neurofibrillary tangles). The following cutoff values for CSF total tau (t-tau) and phosphorylated tau (p-tau) abnormality were applied according to the laboratory recommendations (modified from the study by Sjøgren et al. [30]); t-tau is >300 pg/mL for age <50 years, >450 pg/mL for age 50–69 years, and >500 pg/mL for age ≥70 years and p-tau ≥80 pg/mL. An optimal cutoff at CSF Aβ1–42 < 708 for amyloid plaque pathology was determined following DDI PET [18F]-flutemetamol uptake studies [31]. Amyloid-positive cases were screened in accordance with the A/T/N classification scheme [19] before inclusion to ensure equal distribution of pathological markers between SCD and MCI groups. For demographics and study cohort characteristics, please see Table 1.

2.5. Neuropsychological battery

The neuropsychological battery included the Mini Mental State Examination (MMSE-NR) [32], verbal learning and memory recall (CERAD word list test) [33], psychomotor speed, and divided attention (trail-making test A and B [TMT A and B]). T-scores for the trail-making tests were calculated using published norms [34]. For the CERAD word list test, we used the normative performance of the DDI cohort control group [26] to calculate T-scores after a recent article that showed published norms not matching the younger and more educated DDI cohort [35]. A total of 42 of 74 baseline cases had available cognitive data at 2-year follow-up.

2.6. Magnetic resonance imaging

Magnetic resonance imaging (MRI) was performed at 7 sites, and 7 scanners were used; a total of 57 MRI scans were available for analysis. For group 1 (12 subjects), MRI was performed on a Philips Achieva 3 Tesla system (Philips Medical Systems, Best, the Netherlands). A 3D T1-weighted turbo field echo sequence (TR/TE/TI/FA = 4.5 ms/2.2 ms/853 ms/8° matrix = 256 × 213, 170 slices, thickness = 1.2 mm, in-plane resolution of 1 mm × 1.2 mm) was obtained. For group 2 (22 subjects), MRI was performed using

Table 1

Between-group comparisons between demographics, cognitive, AD, and A/T/N biomarker characteristics and APOE-ε4+/−-distribution

Variable	Groups	ANOVA contrasts (P)/Dunn’s pairwise comparisons								
		APOE-ε4− controls (n = 20)	APOE-ε4+ controls (n = 16)	Aβ+ SCD (n = 18)	Aβ+ MCI (n = 20)	F/χ2 and ϱ2/ϱ2 (P)	1 vs 2	3 vs 1 and 2	4 vs 1 and 2	3 vs 4
Age mean (SD)	62.8 (9.6)	59.1 (8.5)	66.7 (6.8)	66.8 (7.4)	F = 4.3, ϱ2 = .14 (<.01)	n.s.	<.05	<.01	n.s.	
Female, n (%)	10 (50%)	9 (56%)	8 (44%)	12 (57%)	χ2 = 0.8, ϱ2 = .23 (n.s.)	*	*	*	*	
MMSE mean (SD)	29.4 (0.7)	29.5 (0.7)	29.2 (0.8)	26.9 (2.2)	χ2 = 19.4 (<.0001)	n.s.	n.s.	<.001	<.01	
CERAD learning T-score mean (SD)	47.8 (10.8)	54.1 (10.7)	49.6 (8.2)	36.3 (10.3)	F = 10.1, ϱ2 = .31 (<.0001)	n.s.	n.s.	<.001	<.001	
CERAD recall T-score mean (SD)	45.1 (13.3)	55.0 (6.1)	50.4 (10.0)	35.1 (10.5)	χ2 = 25.2, ϱ2 = .32 (<.0001)	n.s.	n.s.	<.001	<.001	
TMT-A T-score mean (SD)	50.2 (10.5)	49.3 (7.8)	50.3 (6.4)	41.0 (6.7)	F = 6.2, ϱ2 = .22 (<.0001)	n.s.	n.s.	<.001	<.01	
TMT-B T-score mean (SD)	54.2 (7.2)	52.0 (9.5)	48.7 (7.9)	39.5 (9.7)	F = 10.3, ϱ2 = .32 (<.0001)	n.s.	n.s.	<.001	<.05	
CSF Aβ1–42 mean (SD)	1082 (188)	996 (175)	530 (98)	496 (117)	χ2 = 56.2, ϱ2 = .76 (<.0001)	n.s.	<.0001	<.0001	n.s.	
CSF t-tau mean (SD)	302 (99)	293 (97)	487 (249)	543 (284)	χ2 = 15.9, ϱ2 = .18 (<.0001)	n.s.	<.05	<.05	n.s.	
CSF p-tau mean (SD)	50 (12)	52 (14)	74 (33)	82 (44)	χ2 = 12.6, ϱ2 = .14 (<.0001)	n.s.	<.05	<.05	n.s.	
A + T−N− n (%)	9 (50%)	11 (52%)	11 (52%)	11 (52%)						
A + T−N+ n (%)	2 (11%)	2 (10%)	2 (10%)	2 (10%)						
A + T+N− n (%)	7 (39%)	8 (38%)	8 (38%)	8 (38%)						
APOE-ε4 n (%)	0 (0%)	16 (100%)	13 (72%)	15 (74%)						

Abbreviations: n.s., nonsignificant result; Aβ+, CSF confirmed amyloid pathology; APOE-ε4+/−, apolipoprotein E 4 allele positive or negative; SCD, subjective cognitive decline; MCI, mild cognitive impairment; SD, standard deviation; ANOVA, analysis of variance; MMSE, Mini Mental State Examination; TMT, trail-making test; AD, Alzheimer’s disease; CSF, cerebrospinal fluid.

*No contrasts/post hoc tests performed.

No statistical tests applied.
a Philips Ingenia 3 Tesla system (Philips Medical Systems, Best, the Netherlands). A 3D T1-weighted turbo field echo sequence (TR/TE/TI/FA = 4.5 ms/2.2 ms/853 ms/8°, matrix = 256 × 213, 170 slices, thickness = 1.2 mm, in-plane resolution of 1 mm × 1.2 mm) was obtained. For group 3 (3 subjects), MRI was performed using a Siemens Skyra 3 Tesla system (Siemens Medical Solutions, Erlangen, Germany). A 3D T1 magnetization-prepared rapid gradient–echo sequence (TR/TE/TI/FA = 2300 ms/2.98 ms/900 ms/9° matrix = 256 × 256, 176 slices, thickness = 1.0 mm, in-plane resolution of 1.0 mm × 1.0 mm) was obtained. For group 4 (11 subjects), MRI was performed using a Philips Ingenia 1.5 Tesla system (Philips Medical Systems, Best, the Netherlands). A 3D T1-weighted turbo field echo sequence (TR/TE/TI/FA = 7.63 ms/3.49 ms/937 ms/8° matrix = 256 × 256, 180 slices, thickness = 1.0 mm, in-plane resolution of 1.0 mm × 1.0 mm) was obtained. For group 5 (1 subject), MRI was performed using a Siemens Avanto 1.5 Tesla system (Siemens Medical Solutions, Erlangen, Germany). A 3D T1-weighted magnetization-prepared rapid gradient–echo sequence (TR/TE/TI/FA = 1190 ms/3.10 ms/750 ms/15° matrix = 512 × 512, 144 slices, thickness = 1.0 mm, in-plane resolution of 0.50 mm × 0.50 mm) was obtained. For group 6 (7 subjects), MRI was performed using a GE Optima Medical Systems 1.5 Tesla system (GE Healthcare, Chicago, IL). A 3D T1-weighted fast spoiled gradient-echo sequence (TR/TE/TI/FA = 11.26 ms/5.04 ms/500 ms/10° matrix = 256 × 256, 156 slices, thickness = 1.2 mm, in-plane resolution of 1.0 mm × 1.0 mm) was obtained. Finally, 1 MRI scan was performed using a Siemens Avanto 1.5 Tesla system (Siemens Medical Solutions, Erlangen, Germany). A 3D T1-weighted magnetization-prepared rapid gradient–echo sequence (TR/TE/TI/FA = 1700 ms/2.42 ms/1000 ms/15° matrix = 256 × 256, 144 slices, thickness = 1.2 mm, in-plane resolution of 1.0 mm × 1.0 mm) was obtained.

2.7. MRI segmentations and analyses

Volumetric segmentation was performed with the FreeSurfer image analysis suite version 6.0.0 (http://surfer.nmr.mgh.harvard.edu/). This includes segmentation of the subcortical white matter and deep gray matter volumetric structures [36]. For the hippocampus and amygdala, volumes from the left and right hemispheres were added, and relative volumes (per mL of total intracranial volume) were computed.

2.8. Statistical analysis

Normality was assessed through the inspection of QQ-plots, histograms, and the Shapiro-Wilk test of normality. To assess differences in biomarker levels, MRI-derived medial temporal lobe (MTL) volumes, cognitive tests, and demographics between groups, we performed one-way analyses of variance (ANOVAs) with planned comparisons for variables with normal distributions. For MTL volumes, ANOVA analyses were performed on standardized residuals after covariate regression correction for age, gender, and MRI scanner model. We performed Kruskal-Wallis test with Dunn’s nonparametric pairwise post hoc test to assess group differences in variables with non-normal distributions (CSF Aβ1–42, CSF t-tau, CSF t-tau, CERAD recall T-score, and MMSE). Nonparametric pairwise comparisons and ANOVA contrasts were performed in a hierarchical manner. If the high- and low-risk control groups were found equal on the relevant measure, we proceeded to compare SCD and MCI groups to controls (collapsed control group) and finally comparing the SCD with the MCI group. The dichotomous variable “gender” was assessed using a chi-square test. To compare levels of CSF neurogranin, CSF BACE1, and their ratio score to groups derived from the A/T/N groups, one-way ANOVAs with post hoc Bonferroni corrections were performed. Effect sizes are provided for ANOVA (ηp²) and Kruskal-Wallis test (ηp²) [37].

The impact of CSF biomarkers on MMSE scores were assessed using a multiple linear regression model controlling for age, and simple linear regression models were fitted to assess the relationship between biomarkers and age-adjusted T-scores for the different cognitive tests at baseline. Similarly, the relationships between biomarkers and MTL volumes were assessed using several multiple regression analyses controlling for effects of age, gender, and MRI scanner variant. Effect sizes for the overall regression models are provided (R²).

Because CSF Aβ1–42 was used as core selection criteria in the study design, it was omitted as predictor from baseline regression analyses with cognitive and MRI variables. However, we assessed CSF Aβ1–42 as the predictor of cognitive changes at 2-year follow-up, CSF p-tau and t-tau demonstrated collinearity (variance inflation factor > 7). Thus, only CSF total tau was included in our regression models.

To assess the individual change in cognitive scores between baseline and 2-year follow-up, individual follow-up scores were subtracted from baseline scores. The resulting score was used to predict cognitive changes from baseline CSF biomarkers using linear regression models.

All analyses were performed in the Statistical Package for Social Sciences (SPSS) version 24.

2.9. Ethics

The regional medical research ethics committee approved the study. Participants gave their written informed consent before taking part in the study. All further study conduct was in line with the guidelines provided by the Helsinki declaration of 1964, revised 2013 and the Norwegian Health and Research act.

3. Results

3.1. Between-group CSF biomarker comparisons

We found significantly increased levels of CSF Ng/BACE1 in both SCD (t(71) = 2.532, P < .05) and MCI (t(71) = 3.595, P < .001) compared with controls.
No differences were demonstrated between SCD and MCI groups or even between the high- vs. low-risk control groups (Table 2 and Fig. 1). Moreover, no significant between-group differences were found for Ng or for BACE1 when measured separately (Table 2).

3.2. CSF biomarkers in relation to A/T/N groups

Both CSF Ng (F(3,69) = 8.801, \(\eta^2 = .28, P < .0001 \)) and CSF BACE1 (F(3,69) = 7.201, \(\eta^2 = .24, P < .0001 \)), as well as CSF Ng/BACE1 ratio (F(3,69) = 6.656, \(\eta^2 = .22, P < .0001 \)), were significantly different between A/T/N groups.

Levels of CSF Ng/BACE1 were increased in the A+ N+ group (n = 10, M = .2102, standard deviation [SD] = .05) compared with controls (n = 35, M = .1642, SD = .03, P < .01). However, this was not shown for Ng or BACE1 when measured separately. Both CSF BACE1 (n = 13, M = 2884, SD = 958, P < .05) and Ng levels (M = 580, SD = 164, P < .0001), as well as Ng/BACE1 level (M = .2061, SD = .04, P < .01), were elevated in the A+ T+N+ group compared with individuals with normal CSF (Ng: M = 369, SD = 126; Ng/BACE1: M = .1642, SD = .03). In addition, Ng (n = 13, M = 580, SD = 164) was also elevated in the A+ T+N+ group compared with the A+ group (n = 15, M = 323, SD = 129, P < .0001). No significant differences between healthy controls with normal CSF and amyloid-positive (A+) individuals were found for CSF BACE1, Ng, or Ng/BACE1.

3.3. CSF biomarkers, APOE-e4, and MRI-derived medial temporal volumetry

All models include covariates controlling for age, gender, and scanner variant. When analyzing the entire sample (n = 57), higher CSF Ng/BACE1 levels were associated with reduced average hippocampal volume (\(\beta = -.334, P < .01 \), adjusted \(R^2 = 0.410, F(4,53) = 9.225, P < .0001 \)). Similarly, higher CSF Ng/BACE1 was associated with reduced average amygdala volume (\(\beta = -.234, P < .05 \), adjusted \(R^2 = 0.369, F(4,53) = 9.230, P < .0001 \)). When the amyloid-positive subjects (SCD and MCI, n = 31) were analyzed separately, higher CSF Ng/BACE1 was significantly associated with reductions in both hippocampal (\(\beta = -.388, P < .05 \), adjusted \(R^2 = 0.350, F(4,27) = 5.175, P < .01 \)) and amygdala volumes (\(\beta = -.420, P < .01 \), adjusted \(R^2 = 0.502, F(4,27) = 8.814, P < .0001 \)) (Effects are depicted in Fig. 2). No other associations between CSF biomarkers or APOE-e4 carrier status and MTL volumetry were found. Significant regression coefficients are shown in Table 3. No overall significant differences in average hippocampal or amygdala volumes between groups were found. Please see Table 2 for details.

3.4. CSF biomarkers and APOE-e4 in relation to baseline cognitive performance

We found a significant inverse relationship between higher CSF Ng/BACE1 and lower performance in CERAD learning T-score (\(R^2 = .71, F(1,70) = 5.321, \beta = -.266, P < .05 \)); CERAD recall T-score (\(R^2 = .97, F(1,70) = 7.535, \beta = -.312, P < .01 \)); and TMT-A T-score (\(R^2 = .057, F(1,70) = 4.153, \beta = -.238, P < .05 \)) (effect shown in Fig. 3). Moreover, when controlling for age (\(\beta = -.124, P = .31 \)), we found that higher Ng/BACE1 (\(\beta = -.258, P < .05 \)) also was associated with lower scores on the MMSE (adjusted \(R^2 = .078, F(2,70) = 4.044, P < .05 \)).

No relationships between baseline cognitive measures and APOE-e4 carrier status or other CSF biomarkers were demonstrated. Statistically significant relationships were only found when analyzing the entire sample and are summarized in Table 3.
3.5. Baseline CSF biomarkers and APOE-ε4 carrier status predicting change in cognitive performance at 2-year follow-up

Lower baseline CSF Ng/BACE1 levels predicted practice effects (i.e., showing improved performance between baseline and follow-up), whereas increasing levels predicting less improvement and finally a decline between assessments in both CERAD learning T-score (\(R^2 = 0.124, F(1,40) = 5.646, \beta = -0.352, P < .05\)) and MMSE (\(R^2 = 0.97, F(1,42) = 4.426, \beta = -0.312, P < .05\)). A similar result was also obtained for Ng measured separately but only relating to the CERAD learning T-score (\(R^2 = 0.104, F(1,40) = 4.622, \beta = -.322, P < .05\)). Similarly, CSF t-tau significantly predicted cognitive decline in CERAD learning (\(R^2 = 0.170, F(1,40) = 8.217, \beta = -.413, P < .01\)) (effects are illustrated in Fig. 3). No relationships between 2-year cognitive change, APOE-ε4 carrier status, or other baseline CSF biomarkers were found. Significant relationships between baseline biomarkers and follow-up cognitive performance are summarized in Table 3.

4. Discussion

To our knowledge, this is the first study showing that Ng/BACE1 level is increased already at a preclinical stage of AD. Ng/BACE1 levels were equally increased in both
Aβ+ MCI and SCD groups compared with controls, and no difference in Ng/BACE1 levels between APOE-ε4+/- controls were found. Increased Ng/BACE1 level was the only marker related to baseline hippocampal and amygdala volumes in our sample. Concordantly, the Ng/BACE1 level was the only biomarker associated with poorer baseline performance in both baseline CERAD learning and memory recall, as well as attention/psychomotor speed (TMT-A) and global cognitive function (MMSE).

Furthermore, when analyzing available 2-year follow-up cognitive scores, we found that lower baseline Ng/BACE1 levels predicted practice effects in the CERAD learning subtest at follow-up (i.e., showing improved performance) and increasing ratios predicted less
improvement and finally a decline in CERAD word list–
learning ability. This relationship was also shown for
CSF Ng measured separately, supporting previous find-
ings [2,4]. Although a similar result was obtained with
CSF t-tau as the baseline predictor, an inspection of the
scatter plot indicated that the regression model may
have been biased by a few subjects with extreme
baseline CSF total tau values. This result suggests that
the subjects with high baseline measures of neuronal
degradation (CSF t-tau) may be at a more advanced
stage of disease development and therefore show a
steepier cognitive decline. This is in line with findings
linking markers of neuronal degradation to disease
severity [38]. In contrast, Ng/BACE1 levels may represent
synaptic loss that is more closely tied to smaller incre-
ments of cognitive decline along the early Alzheimer’s
trajectory, which may precede markers of significant
neuronal degeneration. This could explain why only the
Ng/BACE1 level was related to baseline learning and
memory function in our sample, possibly due to early syn-
aptic loss in the hippocampus where neurogranin is highly
expressed [7]. Moreover, although a higher Ng/BACE1
level was related to lower MMSE at baseline and decline
at follow-up both in our previous [21] and present studies,
Ng/BACE1 level was predominantly related to CERAD
learning and memory recall. The MMSE contains word
list memory items, and the observed relationship could
be influenced by this shared measure. Interestingly,
TMT-A, a measure of psychomotor speed and attention,
was inversely related to CSF Ng/BACE1 level. This is
in accordance with previous investigations showing that
performance on the TMT-A is related to amyloid load in
SCD cases and mixed samples of MCI and healthy
subjects [39,40].

BACE1 and neurogranin have predominantly presynaptic
[9,10] and postsynaptic roles, and neurogranin, in particular,
is linked to the dendritic spine NMDA Ca2+-Calmodulin
second messenger complex [8]. Although synapse degener-
ation per se is not disease specific, the link between Aβ
oligomerization, NMDA disruption, and spine Ca2+- dysre-
gulation [11,13] may confer an AD specificity to the Ng/
BACE1 ratio marker and point to a postsynaptic Aβ-linked
disease mechanism. This further strengthens the
suggestion that NMDA antagonists may be protective in
AD [41]. In this scenario, enhanced synaptotoxic polymeri-
ization of Aβ-peptides in APOE-ε4 SCD and MCI cases
will have a more rapid synaptic loss due to increased levels of
synaptotoxic Aβ fibrils [11,14,15]. Although APOE-ε4
carrier status did not significantly relate to medial
temporal volumes or cognition in our sample, a large
majority of the Aβ+ SCD and MCI cases (28 of 37) had
at least one APOE-ε4 allele. Moreover, APOE-ε4 carriers
with amyloid plaques had higher CSF Ng/BACE1 levels
than noncarriers with plaques (data not shown). The Ng/
BACE ratio was shown to increase with A/T/N-classified
AD biomarker severity (i.e., moving from normal CSF

Table 3
Regression coefficients between biomarkers, MTL volumes, and cognitive tests at baseline and difference in T-score at 2-year follow-up

Variable	CSF Ng	CSF BACE1	CSF Ng/BACE1	CSF t-tau	CSF Aβ1–42	APOE-ε4 allele positivity
Amygdala	*p	*p				
	β = -3.258	/ /				
	P < .05 / P < .05					
Hippocampus	*p	*p				
	β = -3.312	/ /				
	P < .05 / P < .05					
MMSE	*p	*p				
	β = -3.258	/ /				
	P < .05 / P < .05					
CERAD learning	*p	*p				
	β = -3.258	/ /				
	P < .05 / P < .05					
CERAD recall	*p	*p				
	β = -3.258	/ /				
	P < .05 / P < .05					
TMT-A T-score	*p	*p				
	β = -3.258	/ /				
	P < .05 / P < .05					
TMT-B T-score	*p	*p				
	β = -3.258	/ /				
	P < .05 / P < .05					

Abbreviations: CSF, cerebrospinal fluid; Ng, neurogranin; MTL, medial temporal lobe; BACE1, β-site amyloid precursor protein-cleaving enzyme 1; APOE-ε4, apolipoprotein E 4 allele positive or negative; SCD, subjective cognitive decline; MCI, mild cognitive impairment; CERAD, the Consortium to Establish a Registry for Alzheimer’s Disease word list test; MMSE, Mini Mental State Examination; TMT, trail-making test; MRI, magnetic resonance imaging.

*pNonsignificant result.

Model includes age, gender, and MRI scanner variant as covariate.

Model includes age as covariate.

Not performed at baseline due to study design selection bias.
toward amyloid plaques combined with markers of neurodegeneration and neurofibrillary tangles) [19]. An increase was also observed for both CSF BACE1 [20] and Ng [21] separately, supporting previous findings indicating a link to neurodegeneration. Though APOE-ε4 could enhance Ng/ BACE1-related pathology through its interaction with Aβ [11,14,15], a larger material with more APOE-ε4− and Aβ+ SCD and MCI cases will be needed to establish ε4-allelic effects.

Both the link to cognitive measures and strong associations to volume reductions in pertinent MTL structures lend further support to a putative role of Ng/BACE1 as a biomarker for Alzheimer-related synaptic loss. CSF Ng/BACE1 level was similarly increased in the Aβ+ MCI and SCD groups, thus the SCD cases may harbor an active disease state, including progressive synaptic loss, experienced as a SCD that has yet to reach the threshold for clinical impairment.

Fig. 3. CSF Ng/BACE1 and CSF t-tau in relation to baseline and 2-year follow-up CERAD learning and memory recall tests. CSF Ng/BACE1 and baseline CERAD subtest T-scores (A & B). CERAD Learning T-score change at follow-up CSF Ng/BACE1 (C) and CSF t-tau (D). Open circles = APOE-ε4+ controls. Closed circles = APOE-ε4− controls. Open triangles = MCI with amyloid plaques. Closed triangles = SCD with amyloid plaques. Abbreviations: CERAD, the Consortium to Establish a Registry for Alzheimer’s Disease word list test; CSF, cerebrospinal fluid; Ng, neurogranin; BACE1, β-site amyloid precursor protein-cleaving enzyme 1; APOE-ε4+/−, apolipoprotein E4 allele positive or negative; SCD, subjective cognitive decline; MCI, mild cognitive impairment.
Some limitations of this study need to be addressed. First, care must be taken in interpreting these findings due to a relatively small baseline sample size (n = 74), confined to small subgroups, and the even smaller sample size with available cognitive tests at a relatively short 2-year follow-up interval (n = 42). This may explain why we did not show an expected association between CSF Ng and hippocampal volume in our sample [2,4] or expected between-group differences in MTL atrophy in amyloid-positive subjects [42,43]. Second, although the National Institute on Aging and Alzheimer’s Association (NIA-AA) [28] recommends an MCI cutoff value of between −1 and −1.5 SD below the mean, we opted for a stringent cutoff at ≤−1.5 SD which can impact SCD/MCI group classification. However, cognitive performance in the SCD group was similar to that in the control group in our study, indicating that the SCD group’s cognitive performance was within the normal range. Finally, we did not include Aβ-negative SCD or MCI cases or explore potential differences between homozygote and heterozygote APOE-ε4 carriers to other APOE genotypes; both of which we plan to explore in subsequent articles.

4.1. Conclusions

To our knowledge, this is the first study showing that the Ng/BACE1 ratio is related to memory deficits and reduced MTL volumes in Aβ-positive preclinical cases and that Ng/BACE1 is significantly increased relative to controls in amyloid-positive subjects with SCD. These results warrant further studies investigating the role of Ng/BACE1 in the AD pathogenesis, potentially reflecting synaptic pathology due to an Aβ-linked disease mechanism. Although NMDA antagonists have been suggested to be protective [36], the present findings suggest that such intervention guided by an early Ng/BACE1 increase might be useful.

Acknowledgments

The project was funded by Norwegian Research Council, NASATS (Dementia Disease Initiation), and the JPND (APGeM) and funding from the regional health authorities (Helse Sør-Øst and Helse Nord). This article represents independent research (part) funded by the National Institute for Health Research (NIHR) Biomedical Research Center at South London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are those of the NHS, the NIHR, or the Department of Health. The authors thank Marianne Wettergren (Akershus University hospital, Norway) for essential help with CSF analysis and Erna Utne (Akershus University hospital, Norway) for assistance with data collection and handling.

RESEARCH IN CONTEXT

1. Systematic review: Synapse loss occurs early in Alzheimer’s disease (AD). Increased CSF neurogranin (Ng) is related to synapse loss and β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is involved in presynaptic amyloid-β precursor protein metabolism. Previously, we found that an increased Ng/BACE1 ratio predicted cognitive decline in predementia AD. This ties in with the findings linking reduced beta-amyloid clearance to postsynaptic spine affection in early AD. Here, we investigate CSF Ng/BACE1 level as a preclinical marker of synapse loss in AD.

2. Interpretation: We found higher CSF Ng/BACE1 levels in preclinical and predementia AD related to reduced hippocampal volume and memory function at baseline and cognitive decline at follow-up. These results lend support to Ng/BACE1 as an early marker of synaptic loss in AD, which is sensitive also for preclinical changes.

3. Future directions: A high Ng/BACE1 ratio may point to the AD-related damage of postsynaptic spines. If confirmed, this could indicate specific early intervention measures and show target engagement in intervention studies.

References

[1] Vassar R. BACE1: the beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci 2004;23:105–14.
[2] Tarawneh R, D’Angelo G, Crimmins D, Herries E, Gries T, Fagan AM, et al. Diagnostic and Prognostic Utility of the Synaptic Marker Neurogranin in Alzheimer Disease. JAMA Neurol 2016;73:561–71.
[3] Wellington H, Paterson RW, Portelius E, Tornqvist U, Magdalinou N, Fox NC, et al. Increased CSF neurogranin concentration is specific to Alzheimer disease. Neurology 2016;86:829–35.
[4] Portelius E, Zetterberg H, Skillback T, Tornqvist U, Andreasson U, Trojanowski JQ, et al. Cerebrospinal fluid neurogranin: Relation to cognition and neurodegeneration in Alzheimer’s disease. Brain 2015;138:3373–85.
[5] Kester M, Teunissen CE, Crimmins DL, Herries EM, Ladenson JH, Scheltens P, et al. Neurogranin as a Cerebrospinal Fluid Biomarker for Synaptic Loss in Symptomatic Alzheimer Disease. JAMA Neurol 2015;72:1275–80.
[6] De Vos A, Jacobs D, Struyf H, Fransen E, Andersson K, Portelius E, et al. C-terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma in Alzheimer’s disease. Alzheimers Dement 2015;11:1461–9.
[7] Higo N, Oishi T, Yamashita A, Matsuda K, Hayashi M. Cell type- and region-specific expression of neurogranin mRNA in the cerebral cortex of the macaque monkey. Cereb Cortex 2004;14:1134–43.
Diez-Guerra FJ. Neurogranin, a link between calcium/calmodulin and protein kinase C signaling in synaptic plasticity. IUBMB Life 2010; 62:597–606.

Del Prete D, Lombino F, Liu X, D’Adamo L. APP is cleaved by Bace1 in pre-synaptic vesicles and establishes a pre-synaptic interactor, via its intracellular domain, with molecular complexes that regulate pre-synaptic vesicle functions. PLoS One 2014;9:e108576.

Sun J, Roy S. The physical approximation of APP and BACE-1: A key event in Alzheimer’s disease pathogenesis. Dev Neurobiol 2018; 78:340–7.

Alberdi E, Sanchez-Gomez MV, Cavaliere F, Perez-Samartin A, Zugaza JL, Trullas R, et al. Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 2010;47:264–72.

Zhang Y, Li P, Feng J, Wu M. Dysfunction of NMDA receptors in Alzheimer’s disease. Neurrol Sci 2016;37:1039–47.

Alzheimer’s Association Calcium Hypothesis W. Calcium Hypothesis of Alzheimer’s disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis. Alzheimers Dement 2017;13:178–182.e17.

Sanan DA, Weigslager KH, Russell SJ, Mahley RW, Huang D, Saunders A, et al. Apolipoprotein E associates more efficiently than apoE3 with amyloid-beta and other amyloidogenic proteins. J Lipid Res 2017;58:824–36.

Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimer’s Res Ther 2014;6:89.

Barao S, Moechars D, Lichtenthaler SF, De Strooper B. BACE1 Physiological Functions May Limit Its Use as Therapeutic Target for Alzheimer’s Disease. Trends Neurosci 2016;39:158–69.

Egan MF, Kost J, Tariot PN, Aisen PS, Cummings JL, Vellas B, et al. Randomized Trial of Verubecestat for Mild-to-Moderate Alzheimer’s Disease. N Engl J Med 2018;378:1691–703.

Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haerlein SB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018;14:535–62.

Barao S, Zhou L, Adamczyk K, Vanhoutvin T, van Leuven F, Demedts D, et al. BACE1 levels correlate with phospho-tau levels in human cerebrospinal fluid. Curr Alzheimers Res 2013;10:671–8.

De Vos A, Struyfs H, Jacobs D, Fransen E, Klevansky T, De Roeck E, Barao S, Zhou L, Adamczuk K, Vanhoutvin T, van Leuven F, Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Egan MF, Kost J, Tariot PN, Aisen PS, Cummings JL, Vellas B, et al. Randomized Trial of Verubecestat for Mild-to-Moderate Alzheimer’s Disease. N Engl J Med 2018;378:1691–703.

Herchel BF, Fladby T, Coelio C, Bjørnerud A, Selnes P. [18F]-Flutemetamol Uptake in Cortex and White Matter: Comparison with Cerebrospinal Fluid Biomarkers and [18F]-Fludeoxyglucose. J Alzheimers Dis 2018;62:1595–607.

Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: A practical method for grading the cognitive state of patients with the clinician. J Psychiatr Res 1975;12:189–98.

Fillenbaum GG, van Belle G, Morris JC, Mobs RC, Mirra SS, Davis PC, et al. Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): the first twenty years. Alzheimers Dement 2008; 4:96–109.

Heaton RK. Revised Comprehensive Norms for an Expanded Halstead-Reitan Battery: Demographically Adjusted Neuropsychological Norms for African American and Caucasian Adults : Professional Manual. Lutz, Florida: Psychological Assessment Resources; 2004.

Kirsebom BE, Espenes R, Waterlo K, Hessen E, Johnsen SH, Brathen G, et al. Screening for Alzheimer’s Disease: Cognitive Impairment in Self-Referred and Memory Clinic-Referred Patients. J Alzheimers Dis 2017;60:1621–31.

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haseglove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33:341–55.

Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen 2012;141:2–18.

Sämgard K, Zetterberg H, Blennow K, Hanson O, Minthon L, Londos E. Cerebrospinal fluid total tau as a marker of Alzheimer’s disease intensity. Int J Geriatr Psychiatry 2010;25:403–10.

Duara R, Loewenstein DA, Shen Q, Barker W, Potter E, Varon D, et al. Amyloid positron emission tomography with [18F]-flutemetamol and structural magnetic resonance imaging in the classification of mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement 2013;9:295–301.

Loewenstein DA, Curiel RE, Greig MT, Bauer RM, Rosado M, Bowers D, et al. A Novel Cognitive Stress Test for the Detection of Preclinical Alzheimer Disease: Discriminative Properties and Relation to Amyloid Load. Am J Geriatr Psychiatry 2016;24:804–13.

Wang R, Reddy PH. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J Alzheimers Dis 2017;57:1041–8.

Pini L, Plevani M, Bocchetta M, et al. Brain atrophy in Alzheimer’s Disease and aging. Ageing Res Rev 2016;30:25–48.

Zhou M, Zhang F, Zhao L, Qian J, Dong C. Entorhinal cortex: a good biomarker of mild cognitive impairment and mild Alzheimer’s disease. Rev Neurosci 2016;27:185–95.