Compound heterozygous deletions presenting as infantile chylomicronemia

Susanna Felsenstein, Geesje Dallinga-Thie, Shankar Kanumakala

ABSTRACT

Introduction: Monogenic disorders affecting the lipid metabolism are rare, but early diagnosis is important to ensure prompt initiation of management.

Case Report: A three-week old neonate presenting with rectal bleeding was found to have blood of an unusual cream-like appearance. Significant lipemia was confirmed, with massive increase in triglyceride and cholesterol levels. Centrifugation confirmed chylomicronemia. Primary chylomicronemia is extremely rare and most commonly caused by a lipoprotein lipase (LPL) gene mutation. The infant was a compound heterozygous for two deletions in the LPL gene: p. Thr45HisfsX3, and the here for the first time described p. Phe189X, both leading to a premature stop codon the absence of a mature protein. Subsequent change to medium chain triglyceride feed resulted in near-normal blood lipid levels.

Conclusion: Novel mutations affecting chylomicron metabolism continue to be identified and may affect patients of ethnic background considered low-risk. This case illustrates that adequate treatment and dietary management is highly effective in symptomatic management, and in preventing serious complications in both infancy and later in life.
Compound heterozygous deletions presenting as infantile chylomicronemia

Susanna Felsenstein, Geesje Dallinga-Thie, Shankar Kanumakala

ABSTRACT

Introduction: Monogenic disorders affecting the lipid metabolism are rare, but early diagnosis is important to ensure prompt initiation of management. Case Report: A three-week old neonate presenting with rectal bleeding was found to have blood of an unusual cream-like appearance. Significant lipemia was confirmed, with massive increase in triglyceride and cholesterol levels. Centrifugation confirmed chylomicronemia. Primary chylomicronemia is extremely rare and most commonly caused by a lipoprotein lipase (LPL) gene mutation. The infant was a compound heterozygous for two deletions in the LPL gene: p. Thr45HisfsX3, and the here for the first time described p. Phe189X, both leading to a premature stop codon the absence of a mature protein. Subsequent change to medium chain triglyceride feed resulted in near-normal blood lipid levels. Conclusion: Novel mutations affecting chylomicron metabolism continue to be identified and may affect patients of ethnic background considered low-risk. This case illustrates that adequate treatment and dietary management is highly effective in symptomatic management, and in preventing serious complications in both infancy and later in life.

Keywords: Child, Chylomicronemia, Hyperlipidemia, Infant, Lipoprotein lipase gene mutation, Neonate, Ultracentrifugation

INTRODUCTION

Infantile presentation with gross hyperlipidemia is rare, and may pose a challenge to the front-line pediatrician in differential diagnosis, therapeutic management and follow-up [1]. The diagnosis will rarely be straightforward, as manifestations are not diagnostic, but can be as diverse and severe as liver failure, pancreatitis, coagulopathy or fat emboli formation including the possibility of infantile stroke or other vascular complications. Herein, we present a case of infantile chylomicronemia illustrating these points as well as reviewing current diagnostic and treatment concepts.

CASE REPORT

Presentation and Diagnostic workup

A three-week-old female infant was referred for evaluation of rectal bleeding for three days. There were
no ante- or perinatal concerns and the baby had been fully breastfed. Apart from passing a small amount of fresh blood with every bowel motion she showed no other clinical signs or symptoms of bleeding tendency. Upon venipuncture, the infant’s blood was noted to be grossly lipemic on inspection (Figure 1).

Coagulation profile was normal, though results were difficult to obtain because of the severe hyperlipidemia. The initial fasting lipid profile showed a triglyceride level of 243.3 mmol/L (normal range: 0.8–1.7 mmol/L). Measurements taken of other blood lipids were not valid due to the degree of hypertriglyceridemia. Hemogram, renal and liver function tests including amylase were within normal range (hemoglobin 10.7 g/dL, white blood cell count 21.2×10⁹/L, platelet 299×10⁹/L, hematocrit 0.3, MCV 98 fl, MCH 35.1 pg, neutrophils 11.2×10⁹/L, lymphocytes 7.7×10⁹/L, monocytes 1.8×10⁹/L, eosinophils 0.5×10⁹/L). Na 142 mmol/L, K 5.0 mmol/L, urea 1.6 mmol/L, creatinine 27 μmol/L, albumin 41 g/L, total protein 62 g/L, ALT 17 IU/L, blood glucose 5.3 mmol/L (normal range: 4.4–6.1 mmol/L), amylase 46 IU/L (normal range: 28–100 IU/L).

Thyroid function tests demonstrated a TSH of 2.39 mU/L (normal range: 0.3–4.2 mU/L), and free thyroxine of 17.5 pmol/L (normal range: 12–22 pmol/L), excluding hypothyroidism.

A blood sample after three days of breastmilk feeds revealed near-normal lipid profile following removal of the chylomicron fraction by ultracentrifugation, establishing presence of chylomicronemia.

A fundoscopy at this point illustrated classical lipemia retinalis (Figure 2A).

Genetic work-up:

Genetic analysis showed compound heterozygosity for two different deletions in LPL, resulting in premature stop codons in Exons 2 and 5. Genetic work-up was also done for both parents. Whilst the father is a heterozygous carrier of the deletion in exon 2 (c.133-143del; p.Thr45HisfsX3), a mutation described previously [1], the mother was heterozygous for a deletion in exon 5 (c.566-567del, p.Phe189X) also resulting in a premature stop codon, which to our knowledge has not been described before.

The patient’s father showed a slightly raised triglyceride level at 2.4 mmol/L (Reference: 0.8–1.7 mmol/L), her mother had marginally elevated cholesterol at 5.7 mmol/L (Reference range: 2.8–5.0 mmol/L). Both parents are thus clinically asymptomatic carriers of one recessive allele with mild derangement of their lipid profile.

Management

Upon diagnosis, milk feeds were stopped and Monogen (Nutricia, Schipohl, Netherlands), an MCT feed containing predominantly medium chain fatty acids, introduced, as avoidance of long chain- and supplementation with medium- and short chain fatty acids results therefore in an improvement of the hypertriglyceridemia phenotype. Figure 3 illustrates the rapid decrease in plasma cholesterol and triglycerides following introduction of exclusive Monogen® feed.

This diagnosis entails a lifelong condition, with complex management challenges throughout life. Through the first year of life the patient maintained near-normal levels of both Cholesterol and triglycerides (TGs) on Monogen® to date. The necessity of avoiding long chain fatty acids was expected to make weaning onto a solid diet and nutrition challenging and is therefore closely supervised by a dietician. Weaning has been successful so far and the patient is on to a largely fat free solid diet, rich in protein and carbohydrates.

As a result of the strict restriction on fat intake, the infant receives 66% of her energy from protein, 26% from carbohydrate intake, and only 8% of her energy from fat, compared to the normally recommended 30% of energy derived from fat intake in this age group (Table 1).

Careful planning of the diet with additional Monogen® feeds ensures the patient’s micronutrient requirements were met in infancy. Supplementation with Walnut oil (0.1 ml/56 kcal energy requirement) will provide the appropriate ratio of essential fatty acids. Close dietary monitoring will be necessary throughout to ensure all her macronutritional and micronutritional needs are met.

Repeat fundoscopy at six months of age showed complete resolution of lipemia retinalis (Figure 2B). The patient’s cholesterol and TG levels have successfully
been maintained at near-normal levels following the introduction of a solid diet, and she continues to thrive and develop normally.

DISCUSSION

Primary chylomicronemia (also known as familial hypertriglyceridemia type I) is a rare autosomal recessively inherited disorder. The estimated prevalence rate of chylomicronemia is reported at around 1 in 1 million [1]. A founder effect results in a slightly higher prevalence in Quebecois Canadians. It is most commonly caused by a mutation in LPL, a key enzyme in TG metabolism.
located on the luminal surface of endothelium [2]. It aids the absorption of free fatty acids in peripheral tissues, catalyzing the hydrolysis of chylomicron-TGs and VLDL-TGs, thus delivering free fatty acids to peripheral tissues either for direct energy delivery or storage. Lack of or malfunction of LPL results in the inability to hydrolyze triglycerides from chylomicron and VLDL particles and leads to a massive rise in plasma levels of chylomicron and VLDL particles and accumulation of TGs in the plasma compartment [2, 3]. In this case, the patient was found to be heterozygous for two LPL mutations resulting in premature stop codons.

LPL requires a cofactor, apolipoprotein CII (APOC2), which resides on TG-rich particles and on HDL. Deficiency in apolipoprotein CII (APOC2) is very rare, but affected patients develop a similar phenotype, as LPL cannot function properly resulting in absence of TG hydrolysis and accumulation of TGs in plasma.

Two more proteins play an essential role in LPL homeostasis: Lipase Maturation Factor 1 (LMF1) and glycosylphosphatidylinositol (GPI)-anchored HDL binding protein 1 (GPIHBP1). Deficiencies in LMF1 and GPIHBP1 result in a similar clinical phenotype as LPL deficiency, with severe chylomicronemia at a young age [3–5].

LMF1 is an intracellular protein involved in the maturation of LPL. In the absence of functional LMF1 no active LPL will be secreted, again leading to severe hypertriglyceridemia similar to LPL deficiency. GPIHBP1 acts as the platform at the endothelial cell surface that provides LPL and TG rich lipoprotein particles to meet and subsequently allow TG hydrolysis [6]. The phenotype of these patients is similar to LPL deficiency. Deficiency of apolipoprotein A5 (APOA5) does not lead to hypertriglyceridemia but requires a secondary, yet unknown factor to fully express the hypertriglyceridemia phenotype.

Severe hypertriglyceridemia also occurs secondary to other conditions including hypothyroidism and diabetes, however, usually not as severe. More importantly, in secondary hyperchylomicronemia the elevation in plasma VLDL remnant particles contributes to the hypertriglyceridemia phenotype.

Patients are often diagnosed when the lactescent, grossly lipemic appearance of their blood raising the suspicion of chylomicronemia. The largest cohort of infants with familial chylomicronemia investigating presenting symptoms in these patients was done in Quebec [7]. 7/16 patients presented with irritability, 5 with anemia and/or splenomegaly, 2 had a rectal bleed and 2 cases were incidentally discovered. Another cohort of patients in South Africa of 29 individuals included adult patients. Here, the majority of patients presented with pancreatitis [8]. Patients who develop hypertriglyceridemia at a later age had less deleterious LPL mutations.

If untreated, the massively increased TGs in the plasma leads to recurrent attacks of acute pancreatitis (the most common cause of early death in this population), hepatosplenomegaly, abdominal pain, eruptive xanthomata, and psychiatric manifestations [9, 10].

The only therapeutic intervention for patients with primary hyperchylomicronemia at present is a drastic reduction of fat in the patient’s diet. For infants, milk feeds are substituted with MCT feeds. The fasting lipid levels in these patients respond usually within days to fat restriction. The mainstay of controlling the plasma concentration of lipids is dietary management, aiming at a daily intake of fat of less than 20 g equivalent to two glasses of whole milk.

Compliance with this diet is difficult to maintain for the patient especially later in childhood and adolescence. In the young age, ensuring normal calorie intake from alternate sources to promote adequate growth is important, as it is to ensure a balanced diet, especially in view of a restricted diet with vitamins, minerals and essential fatty acids. Supplementation with walnut oil is helpful as a source of essential fatty acids, compared to other edible oils. Exogenous factors such as alcohol, oral contraceptives, or retinoids may aggravate hyperlipidemia and should be avoided [9, 10]. Statins and other medications used in hyperlipidemias of other etiologies are not helpful and thus not indicated in patients with primary chylomicronemia.

CONCLUSION

Chylomicronemia is rare, but its inclusion in the differential diagnosis of the unwell infant is important for the general pediatrician, especially because once recognized, the condition can be managed effectively by dietary intervention and potential serious complications can thus be avoided. Attempts to target monogenic chylomicronemia with gene therapy may alter the management approach in the future.

Acknowledgements

We wish to thank Chris Smith, pediatric dietician at the Royal Alexandra Children’s Hospital in Brighton, for critical revision of the manuscript.

Author Contributions

Susanna Felsenstein – Substantial contributions to conception and design, Acquisition of data, Drafting the article, Revising it critically for intellectually important content, Final approval of the version to be published

Geesje Dallinga-Thie – Substantial contributions to analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Shankar Kanumakala – Substantial contributions to analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the
The corresponding author is the guarantor of submission.

Conflict of Interest
Authors declare no conflict of interest.

Copyright
© 2015 Susanna Felsenstein et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES

1. Rahalkar AR, Hegele RA. Monogenic pediatric dyslipidemias: classification, genetics and clinical spectrum. Mol Genet Metab 2008 Mar;93(3):282–94.
2. Merkel M, Eckel RH, Goldberg IJ. Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 2002 Dec;43(12):1997–2006.
3. Beigneux AP, Franssen R, Bensadoun A, et al. Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler Thromb Vasc Biol 2009 Jun;29(6):956–62.
4. Franssen R, Young SG, Peelman F, et al. Chylomicronemia with low postheparin lipoprotein lipase levels in the setting of GPIHBP1 defects. Circ Cardiovasc Genet 2010 Apr;3(2):169–78.
5. Péterfy M, Ben-Zeev O, Mao HZ, et al. Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridaemia. Nat Genet 2007 Dec;39(12):1483–7.
6. Young SG, Davies BS, Fong LG, et al. GPIHBP1: an endothelial cell molecule important for the lipolytic processing of chylomicrons. Curr Opin Lipidol 2007 Aug;18(4):389–96.
7. Feoli-Fonseca JC, Lévy E, Godard M, Lambert M. Familial lipoprotein lipase deficiency in infancy: clinical, biochemical, and molecular study. J Pediatr 1998 Sep;133(3):417–23.
8. Pouwels ED, Blom DJ, Firth JC, Henderson HE, Marais AD. Severe hypertriglyceridaemia as a result of familial chylomicronaemia: the Cape Town experience. S Afr Med J 2008 Feb;98(2):105–8.
9. Brunzell JD. Familial Lipoprotein Lipase Deficiency. In: Pagon RA, Adam MP, Ardinger HH, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2015.
10. Wilson CJ, Priore Oliva C, Maggi F, Catapano AL, Calandra S. Apolipoprotein C-II deficiency presenting as a lipid encephalopathy in infancy. Ann Neurol 2003 Jun;53(6):807–10.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Most Favored Author program
Join this program and publish any number of articles free of charge for one to five years.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.