Associated-quarkonium production

J.P. Lansberg
IPN Orsay – Paris-Sud U. –CNRS/IN2P3

April 27, 2014 - May 2, 2014 – Warsaw – Polan

thanks to W. den Dunnen, C. Lorcé, C. Pisano, M. Schlegel, H.S. Shao
Part I

Quarkonium hadroproduction: where do we stand?
Reminder: QCD corrections for Υ at the Tevatron
Reminder: QCD corrections for Υ at the Tevatron

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007
P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)
CDF PRL 88 (2002) 161802;PRD 87, 052004 (2013)

$\Upsilon(1S)$ prompt data $\times F_{\text{direct}}$

ψ or Υ

$\alpha_s^3 P^{--8}$

Associated-quarkonium production

May 1, 2014 3 / 27
Reminder: QCD corrections for Υ at the Tevatron

J. Campbell, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 98:252002, 2007
P. Artoisenet, J. Campbell, JPL, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)
CDF PRL 88 (2002) 161802; PRD 87, 052004 (2013)

$$\frac{d\sigma}{dP_T}|_{|y|<0.4} \times \text{Br} \ (\text{pb}/\text{GeV})$$

P_T (GeV)

$\Upsilon (1S)$ prompt data $\times F_{\text{direct}}$

LO
NLO

ψ or Υ

$\alpha_5^S P_T^{-4}$

$\alpha_4^S P_T^{-6}$

Attention: the NNLO \star is not a complete NNLO
Reminder: QCD corrections for Υ at the Tevatron

J. Campbell, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 98:252002, 2007
P. Artoisenet, J. Campbell, JPL, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)
CDF PRL 88 (2002) 161802; PRD 87, 052004 (2013)

$\frac{d\sigma}{dP_T}|_{|y|<0.4} \times Br (pb/GeV)$

$\Upsilon(1S)$ prompt data $\times F_{direct}$

LO
NLO
NNLO

ψ or Υ
$\alpha_3^3 P_T^{-8}$

ψ or Υ
$\alpha_4^4 P_T^{-6}$

ψ or Υ
$\alpha_5^5 P_T^{-4}$

+ double t-channel gluon exchange at α_S^5

Attention: the NNLO* is not a complete NNLO
QCD corrections for Υ at the Tevatron & the LHC

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007
P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)
CDF PRL 88 (2002) 161802;PRD 87, 052004 (2013)

$B^{3S} \times d\sigma^{3S}/dp_T$ [nb/(GeV/c)]

LHCb data (2.0<y<4.5)
direct NNLO* CSM (2.0<y<4.5)
direct NLO CSM (2.0<y<4.5)

$\sqrt{s} = 7$ TeV

+ double t-channel gluon exchange at α_s^5

Attention: the NNLO* is not a complete NNLO
CSM predictions account for the P_T-integrated yield

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

→ The yield vs. \sqrt{s}, y

(Here only LO curves*)

*NLO not stable at large \sqrt{s} (small x) and small P_T
CSM predictions account for the P_T-integrated yield

The yield vs. \sqrt{s}, y

- Unfortunately, very large th. uncertainties: masses, scales (μ_R, μ_F), gluon PDFs at low x and Q^2, ...
- Good agreement with RHIC, Tevatron and LHC data (multiplied by a constant F^{direct})

NLO not stable at large \sqrt{s} (small x) and small P_T
CSM predictions account for the P_T-integrated yield

→ The yield vs. \sqrt{s}, y

- Unfortunately, very large th. uncertainties: masses, scales (μ_R, μ_F), gluon PDFs at low x and Q^2, ...
- Good agreement with RHIC, Tevatron and LHC data

(multiplied by a constant F^{direct})

* NLO not stable at large \sqrt{s} (small x) and small P_T
CSM predictions account for the P_T-integrated yield

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010; JPL, PoS(ICHEP 2010), 206 (2010); NPA 910-911 (2013) 470

→ The yield vs. \sqrt{s}, y

- Unfortunately, very large th. uncertainties: masses, scales (μ_R, μ_F), gluon PDFs at low x and Q^2, …
- Good agreement with RHIC, Tevatron and LHC data (multiplied by a constant F^{direct})

* NLO not stable at large \sqrt{s} (small x) and small P_T
The current situation in one slide ...

...
The current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect]

- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum

- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)

- All approaches have troubles in describing the polarisation, here or there

- New hope in double-parton fragmentation

- Kang, Qiu, Sterman, PRL 108 (2012) 102002
 [Next-to-leading power in P_T; Not to be confused with Double-Parton Scattering]

- All this motivates the study of new observables which can be more discriminant for specific effects
The current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum ; but not perfect]
- CSM was always in the game for the P_T integrated yield
The current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 - [large NLO and NNLO correction to the P_T spectrum; but not perfect]
- CSM was always in the game for the P_T integrated yield
- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
The current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum ; but not perfect]
- CSM was always in the game for the P_T integrated yield
- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)
The current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect]
- CSM was always in the game for the P_T integrated yield
- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)
- All approaches have troubles in describing the polarisation, here or there
Colour-Singlet Model (CSM) back in the game

[large NLO and NNLO correction to the P_T spectrum; but not perfect]

CSM was always in the game for the P_T integrated yield

Colour-Octet Mechanism (COM) helps in describing the P_T spectrum

Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)

All approaches have troubles in describing the polarisation, here or there

New hope in double-parton fragmentation

Kang, Qiu, Sterman, PRL 108 (2012) 102002

[Next-to-leading power in P_T; Not to be confused with Double-Parton Scattering]
The current situation in one slide ...

- Colour-Singlet Model (CSM) back in the game
 [large NLO and NNLO correction to the P_T spectrum; but not perfect]
- CSM was always in the game for the P_T integrated yield
- Colour-Octet Mechanism (COM) helps in describing the P_T spectrum
- Yet, the COM NLO fits differ a lot in their conclusions owing to their assumptions (data set, P_T cut, polarisation fitted or not, etc.)
- All approaches have troubles in describing the polarisation, here or there
- New hope in double-parton fragmentation
 Kang, Qiu, Sterman, PRL 108 (2012) 102002
 [Next-to-leading power in P_T; Not to be confused with Double-Parton Scattering]
- All this motivates the study of new observables which can be more discriminant for specific effects
Part II

Quarkonium + Quarkonium
$J/\psi + J/\psi \& J/\psi + \eta_c$

- LO to $J/\psi + J/\psi$ at α_s^4

LO to $J/\psi + J/\psi$ at α_s^4
\(J/\psi + J/\psi \) & \(J/\psi + \eta_c \)

- LO to \(J/\psi + J/\psi \) at \(\alpha_s^4 \)
- At NLO, \(t \) channel gluon exchange appear (harder \(P_T \) spectrum)
$J/\psi + J/\psi$ & $J/\psi + \eta_c$

- LO to $J/\psi + J/\psi$ at α_s^4
- At NLO, t channel gluon exchange appear (harder P_T spectrum)
- NLO* approximation to evaluate the impact of QCD corrections

JPL, H.S. Shao PRL 111, 122001 (2013)

[nicely confirmed by a full NLO]

L.P. Sun et al. arXiv:1404.4042 [hep-ph]
$J/\psi + J/\psi \ & J/\psi + \eta_c$

- LO to $J/\psi + J/\psi$ at α_S^4
- At NLO, t channel gluon exchange appear (harder P_T spectrum)
- NLO* approximation to evaluate the impact of QCD corrections

$J/\psi + \eta_c$ suppressed by C parity: LO at α_S^5

[nicely confirmed by a full NLO]

L.P. Sun et al. arXiv:1404.4042 [hep-ph]

[First evaluation !]
\(J/\psi + J/\psi \) & \(J/\psi + \eta_c \)

- **LO** to \(J/\psi + J/\psi \) at \(\alpha_S^4 \)
- At NLO, \(t \) channel gluon exchange appear (harder \(P_T \) spectrum)
- NLO\(^*\) approximation to evaluate the impact of QCD corrections

- \(J/\psi + \eta_c \) suppressed by \(C \) parity: LO at \(\alpha_S^5 \)

[First evaluation !]

JPL, H.S. Shao PRL 111, 122001 (2013)

[nicely confirmed by a full NLO]

L.P. Sun *et al.* arXiv:1404.4042 [hep-ph]
$J/\psi + J/\psi$ & $J/\psi + \eta_c$

- **LO** to $J/\psi + J/\psi$ at α_S^4
- At NLO, t channel gluon exchange appears (harder P_T spectrum)
- NLO* approximation to evaluate the impact of QCD corrections

- $J/\psi + \eta_c$ suppressed by C parity: LO at α_S^5

- Different P_T spectrum & different ΔM distribution

JPL, H.S. Shao PRL 111, 122001 (2013)

L.P. Sun *et al.* arXiv:1404.4042 [hep-ph]

Different P_T spectrum & different ΔM distribution
The k_T smearing completely flattens the $\Delta \phi$ distribution

Implication for the DPS “extraction” ?????
$\Upsilon + b$-tagged jet (or $\Upsilon +$ non-prompt J/ψ)

- $\Upsilon + b$: ~ 0.1 pb/GeV at the Tevatron, ~ 1 pb/GeV at the LHC (14 TeV)
- hard (flatter) P_T spectrum w.r.t. the inclusive LO CSM
$\Upsilon + b$-tagged jet (or $\Upsilon +$ non-prompt J/ψ)

- $\Upsilon + b$: ~ 0.1 pb/GeV at the Tevatron, ~ 1 pb/GeV at the LHC (14 TeV)
- hard (flatter) P_T spectrum w.r.t. the inclusive LO CSM
- $\Upsilon + b$: discriminant for CSM vs. COM channels

P. Artoisenet, JPL, F. Maltoni, PLB 653:60, 2007
\(\Upsilon + b\)-tagged jet (or \(\Upsilon+ \) non-prompt \(J/\psi \))

- \(\Upsilon + b \): \(\sim 0.1 \) pb/GeV at the Tevatron, \(\sim 1 \) pb/GeV at the LHC (14 TeV)
- Hard (flatter) \(P_T \) spectrum w.r.t. the inclusive LO CSM
- \(\Upsilon + b \): discriminant for CSM vs. COM channels
- Different topologies/correlation:
 - CSM: 1 \(b \) away, 1 \(b \) near(er)
 - COM: 2 \(b \)'s away (from a recoiling gluon)
Part III

Quarkonium + photon
Q + isolated γ

- At high energy, 2 gluons in the initial states: no quark
At high energy, 2 gluons in the initial states: no quark
The photon needs to be emitted by the heavy-quark loop
At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with $C = +1$ octet $[^1S^0_0 \ & ^3P^0_1]$ instead of $C = -1$ octet $[^3S^1_1]$ for the inclusive case
Q + isolated γ

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with \(C = +1 \) octet \([1^1S_0^8] \& 3^3P_J^8]\) instead of \(C = -1 \) octet \([3^1S_1^8]\) for the inclusive case
- CS rate at NLO \(\simeq\) conservative (high) expectation\(^\dagger\) from CO

\(^\dagger\)In fact, the NLO CO yield can even be negative

R.Li and J.X. Wang, PLB 672,51,2009

\(\dagger\)Possible at LHC: cf. \((c,b)\)−jet + γ studies by D0 up to \(P_{\gamma T} \simeq 150\) GeV:

D0, PRL 102 (2009) 192002.
Q + isolated γ

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with \(C = +1 \) octet \([^1S_0^8] \& ^3P_J^8\) **instead** of \(C = -1 \) octet \([^3S_1^8]\) for the inclusive case
- CS rate at NLO \(\simeq\) conservative (high) expectation\(^\dagger\) from CO
- CO rates may be clearly lower if \(^1S_0^8\) and \(^3P_J^8\) are indeed suppressed \(\text{at NLO}\)

\(^\dagger\)In fact, the NLO CO yield can even be negative

\(R.Li \) and J.X. Wang, PLB 672,51,2009

\(J.P. \) Lansberg (IPNO)

Associated-quarkonium production

May 1, 2014

11 / 27
At high energy, 2 gluons in the initial states: no quark
The photon needs to be emitted by the heavy-quark loop
Consequence: gluon fragmentation associated with $C = +1$ octet $[^1S^0_0 \ & \ ^3P^J_J]$
instead of $C = -1$ octet $[^3S^1_1]$ for the inclusive case
CS rate at NLO \simeq conservative (high) expectation from CO
CO rates may be clearly lower if $^1S^0_0$ and $^3P^J_J$ are indeed suppressed
At NNLO*, CS rate clearly above (high) expectation from CO (at NLO)

† In fact, the NLO CO yield can even be negative

R.Li and J.X. Wang, PLB 672,51,2009

R.Li and J.X. Wang, arXiv:1401.6918

J.P. Lansberg (IPNO)
Associated-quarkonium production
May 1, 2014
\(Q + \text{isolated } \gamma \)

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop

Consequence: gluon fragmentation associated with \(C = +1 \) octet \([1^1S^0_0] \& 3^3P^1_J]\) instead of \(C = -1 \) octet \([3^3S^1_1]\) for the inclusive case

- CS rate at NLO \(\sim \) conservative (high) expectation\(^\dagger\) from CO
- CO rates may be clearly lower if \(1^1S^0_0 \) and \(3^3P^1_J \) are indeed suppressed
- At NNLO\(*\), CS rate clearly above (high) expectation from CO

\(^\dagger\)In fact, the NLO CO yield can even be negative

\(^\ast\)Possible at LHC: cf. \((c, b) - \text{jet} + \gamma \) studies by D0 up to \(P_T \gamma \approx 150 \text{ GeV} \): D0, PRL 102 (2009) 192002.
$Q +$ isolated γ

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with $C = +1$ octet [$^1S^0_0$ & $^3P^0_J$] instead of $C = -1$ octet [$^3S^1_1$] for the inclusive case
- CS rate at NLO \simeq conservative (high) expectation† from CO
- CO rates may be clearly lower if $^1S^0_0$ and $^3P^0_J$ are indeed suppressed
- At NNLO*, CS rate clearly above (high) expectation from CO (at NLO)

\daggerIn fact, the NLO CO yield can even be negative

\starJ.P. Lansberg (IPNO)
Q + isolated γ

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with \(C = +1 \) octet \([1^1S_0^{[8]} \& 3^3P_J^{[8]}]\) instead of \(C = -1 \) octet \([3^3S_1^{[8]}]\) for the inclusive case
- CS rate at NLO is conservative (high) expectation\(^\dagger\) from CO
- CO rates may be clearly lower if \(1^1S_0^{[8]} \) and \(3^3P_J^{[8]} \) are indeed suppressed
- At NNLO*, CS rate clearly above (high) expectation from CO

\[^\dagger\text{R.Li and J.X. Wang, PLB 672,51,2009}\]

\[^*\text{J.P.Lansberg (IPNO)}\]

New info on CS vs CO w.r.t and strong constraints on CO fits\(^\dagger\)

- Possible at LHC: cf. \((c, b) - jet + γ\) studies by D0 up to \(P_T^γ \sim 150\) GeV:

\[^\dagger\text{In fact, the NLO CO yield can even be negative}\]

\[^\dagger\text{R.Li and J.X. Wang, arXiv:1401.6918}\]

\[^\dagger\text{D0, PRL102 (2009) 192002.}\]

\[^\dagger\text{JPL, PLB 679,340,2009.}\]
$Q + \gamma$: **back-to-back** and both isolated

Representative diagrams contributing to the hadroproduction of Q in association with a photon at orders $\alpha_s^2\alpha_s$ (a), $\alpha_s^3\alpha_s$ (b, c), $\alpha_s^4\alpha_s$ (d, e, f).
\(Q + \gamma: \text{back-to-back and both isolated} \)

Representative diagrams contributing to the hadroproduction of a \(Q \) in association with a photon at orders \(\alpha_s^2 \alpha_s \) (a), \(\alpha_s^3 \alpha_s \) (b, c), \(\alpha_s^4 \alpha_s \) (d, e, f).

- **Born (LO):** \(2 \rightarrow 2 \) contributions (a)-(b) fall like \(P_T^{-8} \)
Q + γ: back-to-back and both isolated

![Representative diagrams](image)

- **Born (LO):** $2 \rightarrow 2$ contributions (a)-(b) fall like P_T^{-8}
- **At NNLO:** topologies like (d) dominate at very large P_T
\(Q + \gamma \): back-to-back and both isolated

- Born (LO): 2 → 2 contributions (a)-(b) fall like \(P_T^{-8} \)
- At NNLO: topologies like (d) dominate at very large \(P_T \)
- At NLO: topologies like (c) contribute at mid \(P_T \)
$Q + \gamma$: back-to-back and both isolated

Representative diagrams contributing to the hadroproduction of a Q in association with a photon at orders $\alpha_s^2\alpha$, $\alpha_s^3\alpha$ (b, c), $\alpha_s^4\alpha$ (d, e, f).

- **Born (LO):** $2 \rightarrow 2$ contributions (a)-(b) fall like P_T^{-8}
- **At NNLO:** topologies like (d) dominate at very large P_T
- **At NLO:** topologies like (c) contribute at mid P_T
- **COM contributions similar to (d):**
 Instead of a 'hard' gluon, there would be multiple soft gluons.
\(Q + \gamma: \textbf{back-to-back} \text{ and both isolated} \)

- Born (LO): \(2 \rightarrow 2 \) contributions (a)-(b) fall like \(P_T^{-8} \)
- At NNLO: topologies like (d) dominate at very large \(P_T \)
- At NLO: topologies like (c) contribute at mid \(P_T \)
- COM contributions similar to (d):
 - Instead of a 'hard' gluon, there would be multiple soft gluons.
- (c)-(f): parton [\(\rightarrow \) some hadrons] in the central region;
 - for (d), hadrons near the \(Q \)
\(Q + \gamma: \text{back-to-back and both isolated} \)

Representative diagrams contributing to the hadroproduction of a \(Q \) in association with a photon at orders \(\alpha_s^2 \alpha, \alpha_s^3 \alpha, \alpha_s^4 \alpha \) (a)-(f).

- **Born (LO):** \(2 \rightarrow 2 \) contributions (a)-(b) fall like \(P_T^{-8} \)
- **At NNLO:** topologies like (d) dominate at very large \(P_T \)
- **At NLO:** topologies like (c) contribute at mid \(P_T \)
- **COM contributions similar to (d):**
 - Instead of a 'hard' gluon, there would be multiple soft gluons.
- **(c)-(f):** parton \(\rightarrow \) some hadrons] in the central region;
 - for (d), hadrons near the \(Q \)
- **\(2 \rightarrow 2 \) topologies contribute to** \(\Delta \phi_{Q-\gamma} = \pi \) (back-to-back) ;
 - smearing effect small for \(P_T \gg \langle k_T \rangle \)
Q + γ: back-to-back and both isolated

- **Born (LO):** $2 \rightarrow 2$ contributions (a)-(b) fall like P_T^{-8}
- **At NNLO:** topologies like (d) dominate at very large P_T
- **At NLO:** topologies like (c) contribute at mid P_T
- **COM contributions similar to (d):** Instead of a 'hard' gluon, there would be multiple soft gluons.
- (c)-(f): parton \rightarrow some hadrons] in the central region;
 for (d), hadrons near the Q
- **2 → 2 topologies contribute to** $\Delta \phi_{Q-\gamma} = \pi$ (back-to-back) ;
 smearing effect small for $P_T \gg \langle k_T \rangle$
- (c)-(f) populate $\Delta \phi_{Q-\gamma} < \pi$ [even $\Delta \phi \rightarrow 0$ for (c) and (d) at large P_T]
\(Q + \gamma \): back-to-back and both isolated

- The studies is of an isolated quarkonium back-to-back with an (isolated) photon selects the Born contributions to \(Q + \gamma \)
$Q + \gamma$: back-to-back and both isolated

- The studies is of an *isolated* quarkonium back-to-back with an (isolated) photon selects the Born contributions to $Q + \gamma$
- The “back-to-back” requirement also limits the DPS contributions
 [a priori evenly distributed in $\Delta \phi$]
$Q + \gamma$: back-to-back and both isolated

- The studies is of an **isolated** quarkonium back-to-back with an (isolated) photon selects the **Born contributions to $Q + \gamma$**
- The “back-to-back” requirement also limits the DPS contributions [a priori evenly distributed in $\Delta \phi$]
- **Unique candidate to pin down the gluon TMDs**
 - gluon sensitive process
 - colorless final state (virtue of isolation): TMD factorisation applicable
 - small sensitivity to QCD corrections (most of them in the TMD evolution)
$Q + \gamma$: back-to-back and both isolated

- The studies is of an isolated quarkonium back-to-back with an (isolated) photon selects the Born contributions to $Q + \gamma$
- The “back-to-back” requirement also limits the DPS contributions [a priori evenly distributed in $\Delta \phi$]
- Unique candidate to pin down the gluon TMDs
 - gluon sensitive process
 - colorless final state (virtue of isolation): TMD factorisation applicable
 - small sensitivity to QCD corrections (most of them in the TMD evolution)
- Rates are not too small

Diagram:

- Direct back-to-back Onium + γ at $\sqrt{s} = 14$ TeV

Graphs:

- $d\sigma/dQ/dY/d\cos\theta_{CS} \times \text{Br}(\text{Onium} \rightarrow \mu \mu)$ (fb/GeV)
- $Q_{\Upsilon} + \gamma$ (GeV)
- $Q_{J/\psi} + \gamma$ (GeV)

- Color Singlet
- Color Octet

- Associated-quarkonium production

- J.P. Lansberg (IPNO)
back-to-back $Q + \gamma$ and the gluon TMDs

The q_T-differential cross section involves $f_1^g(x, k_T, \mu_F)$ and $h_1^\perp g(x, k_T, \mu_F)$

$$\frac{d\sigma}{dQ dY d^2q_T d\Omega} = \frac{C_0(Q^2 - M_Q^2)}{s Q^3 D} \left\{ F_1 C \left[f_1^g f_1^g \right] + F_3 \cos(2\phi_{CS}) C \left[w_3 f_1^g h_1^\perp g + x_1 \leftrightarrow x_2 \right] + F_4 \cos(4\phi_{CS}) C \left[w_4 h_1^\perp g h_1^\perp g \right] \right\} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right)$$
back-to-back $Q + \gamma$ and the gluon TMDs

- The q_T-differential cross section involves $f_i^g(x, k_T, \mu_F)$ and $h_1^\perp g(x, k_T, \mu_F)$

\[
\frac{d\sigma}{dQdYd^2q_Td\Omega} = \frac{C_0(Q^2 - M_Q^2)}{sQ^3D}\left\{F_1 C[f_1^g f_1^g] + F_3 \cos(2\phi_{CS}) C[w_3 f_1^g h_1^\perp g + x_1 \leftrightarrow x_2] + F_4 \cos(4\phi_{CS}) C[w_4 h_1^\perp g h_1^\perp g]\right\} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right)
\]

- We define: $S_{qT}^{(n)} = \left(\frac{d\sigma}{dQdYd\cos\theta_{CS}}\right)^{-1}\int d\phi_{CS}\pi \cos(n\phi_{CS}) \frac{d\sigma}{dQdYd^2q_Td\Omega}$
The q_T-differential cross section involves $f_{1}^{g}(x, k_T, \mu_F)$ and $h_{1}^{\perp g}(x, k_T, \mu_F)$.

\[
\frac{d\sigma}{dQ dY d^2q_T d\Omega} = \frac{C_0(Q^2 - M_Q^2)}{s Q^3 D} \left\{ F_1 \left[f_{1}^{g} f_{1}^{g} \right] + F_3 \cos(2\phi_{CS}) C \left[w_3 f_{1}^{g} h_{1}^{\perp g} + x_1 \leftrightarrow x_2 \right] + F_4 \cos(4\phi_{CS}) C \left[w_4 h_{1}^{\perp g} h_{1}^{\perp g} \right] \right\} + \mathcal{O} \left(\frac{q_T^2}{Q^2} \right)
\]

We define: $S_{q_T}^{(n)} = \left(\frac{d\sigma}{dQ dY d\cos \theta_{CS}} \right)^{-1} \int d\phi_{CS} \pi \cos(n\phi_{CS}) \frac{d\sigma}{dQ dY d^2q_T d\Omega}$

$S_{q_T}^{(0)} \leftrightarrow f_{1}^{g}(x, k_T, \mu_F)$: clean extraction is possible!
back-to-back $Q + \gamma$ and the gluon TMDs

The q_T-differential cross section involves $f_1^g(x, k_T, \mu_F)$ and $h_1^\perp g(x, k_T, \mu_F)$

$$\frac{d\sigma}{dQdYd^2q_Td\Omega} = \frac{C_0(Q^2 - M_Q^2)}{s Q^3 D} \left\{ F_1 C[f_1^g f_1^g] + F_3 \cos(2\phi_{CS}) C[w_3 f_1^g h_1^\perp g + x_1 \leftrightarrow x_2] + F_4 \cos(4\phi_{CS}) C[w_4 h_1^\perp g h_1^\perp g] \right\} + O\left(\frac{q_T^2}{Q^2}\right)$$

We define: $S_{q_T}^{(n)} = \left(\frac{d\sigma}{dQdYd\cos \theta_{CS}}\right)^{-1} \int d\phi_{CS} \pi \cos(n\phi_{CS}) \frac{d\sigma}{dQdYd^2q_Td\Omega}$

- $S_{q_T}^{(0)} \leftrightarrow f_1^g(x, k_T, \mu_F)$: clean extraction is possible!
- $S_{q_T}^{(4)} \leftrightarrow h_1^\perp g(x, k_T, \mu_F)$: a nonzero $S_{q_T}^{(4)}$ (or $\int dq_T S_{q_T}^{(4)}$) would indicate a nonzero gluon linear polarisation in unpolarised gluon
back-to-back $Q + \gamma$ and the gluon TMDs

- The q_T-differential cross section involves $f_1^g(x, k_T, \mu_F)$ and $h_1^\perp g(x, k_T, \mu_F)$

$$\frac{d\sigma}{dQd\Omega d^2q_T} = \frac{C_0(Q^2 - M_Q^2)}{s Q^3 D} \left\{ F_1 C[f_1^g f_1^g] + F_3 \cos(2\phi_{CS}) C[w_3 f_1^g h_1^\perp g + x_1 \leftrightarrow x_2] + F_4 \cos(4\phi_{CS}) C[w_4 h_1^\perp g h_1^\perp g] \right\} + O\left(\frac{q_T^2}{Q^2}\right)$$

- We define: $S_{q_T}^{(n)} = \left(\frac{d\sigma}{dQd\Omega d\cos(\theta_{CS})}\right)^{-1} \int d\phi_{CS} \pi \cos(n\phi_{CS}) \frac{d\sigma}{dQd\Omega d^2q_T d\Omega}$

 - $S_{q_T}^{(0)} \leftrightarrow f_1^g(x, k_T, \mu_F)$: clean extraction is possible!
 - $S_{q_T}^{(4)} \leftrightarrow h_1^\perp g(x, k_T, \mu_F)$: a nonzero $S_{q_T}^{(4)}$ (or $\int dq_T S_{q_T}^{(4)}$) would indicate a nonzero gluon linear polarisation in unpolarised gluon
 - $S_{q_T}^{(2)} \leftrightarrow f_1^g$ & $h_1^\perp g$
The q_T-differential cross section involves $f_1^g(x, k_T, \mu_F)$ and $h_1^{\perp g}(x, k_T, \mu_F)$

$$\frac{d\sigma}{dQdYd^2q_Td\Omega} = \frac{C_0(Q^2 - M_Q^2)}{s Q^2 D} \left\{ F_1 C\left[f_1^g f_1^g\right] + F_3 \cos(2\phi_{CS}) C\left[w_3 f_1^g h_1^{\perp g} + x_1 \leftrightarrow x_2\right] + F_4 \cos(4\phi_{CS}) C\left[w_4 h_1^{\perp g} h_1^{\perp g}\right] \right\} + O\left(\frac{q_T^2}{Q^2}\right)$$

We define: $S^{(n)}_{q_T} = \left(\frac{d\sigma}{dQdYd\cos\theta_{CS}}\right)^{-1} \int d\phi_{CS} \pi \cos(n\phi_{CS}) \frac{d\sigma}{dQdYd^2q_Td\Omega}$

- $S_{q_T}^{(0)} \leftrightarrow f_1^g(x, k_T, \mu_F)$: clean extraction is possible!
- $S_{q_T}^{(4)} \leftrightarrow h_1^{\perp g}(x, k_T, \mu_F)$: a nonzero $S_{q_T}^{(4)}$ (or $\int dq_T S_{q_T}^{(4)}$) would indicate a nonzero gluon linear polarisation in unpolarised gluon
- $S_{q_T}^{(2)} \leftrightarrow f_1^g$ & $h_1^{\perp g}$
Part IV

Quarkonium + W/Z boson
Q + W/Z boson

- Υ + W/Z boson

CDF Collaboration, PRL. 90 (2003) 221803

NRQCD predictions (Signal dominated by CO into χb):

σ[p¯p → Υ(1S) + W⁺] × Br(Υ(1S) → µµ) ≃ 0.025 pb

σ[p¯p → Υ(1S) + Z0] × Br(Υ(1S) → µµ) ≃ 0.0075 pb

E. Braaten, J. Lee, and S. Fleming, PRD 60, 91501 (1999)

CSM yield expected to be 300 times smaller (???) ...

With 1 fb⁻¹ at √s = 7 TeV and a larger (E×A)(Υ), one should see events if CO's are at work

J/ψ + Z and J/ψ + W recently computed at NLO in αs

L.Gang et al. PRD 83, 014001, 2011; JHEP 02(2011)071

J/ψ | Υ + Z at NLO in αs + Polarisation

B.Gong et al. JHEP 1303 (2013) 115

J.P. Lansberg (IPNO)
$Q + W/Z$ boson

- $\Upsilon + W/Z$ boson
 - 95% C.L. upper limits obtained with $\mathcal{L} = 83\text{pb}^{-1}$ by CDF
Q + W/Z boson

- **Y + W/Z boson**
 - 95% C.L. upper limits obtained with $\mathcal{L} = 83\text{pb}^{-1}$ by CDF
 \[
 \sigma(p\bar{p} \to \Upsilon(1S) + W^\pm) \times Br(\Upsilon(1S) \to \mu\mu) < 2.3 \text{ pb}
 \]
 \[
 \sigma(p\bar{p} \to \Upsilon(1S) + Z^0) \times Br(\Upsilon(1S) \to \mu\mu) < 2.5 \text{ pb}
 \] (1)
 - NRQCD predictions (Signal dominated by CO into χ_b)
 \[
 \sigma(p\bar{p} \to \Upsilon(1S) + W^\pm) \times Br(\Upsilon(1S) \to \mu\mu) \simeq 0.025 \text{ pb}
 \]
 \[
 \sigma(p\bar{p} \to \Upsilon(1S) + Z^0) \times Br(\Upsilon(1S) \to \mu\mu) \simeq 0.0075 \text{ pb}
 \] (2)

CDF Collaboration, PRL. 90 (2003) 221803

E. Braaten, J. Lee, and S. Fleming, PRD 60, 91501 (1999)
$Q + W/Z$ boson

- $Y + W/Z$ boson
 - 95% C.L. upper limits obtained with $\mathcal{L} = 83\text{pb}^{-1}$ by CDF
 \[\sigma[p\bar{p} \rightarrow Y(1S) + W^\pm] \times Br(Y(1S) \rightarrow \mu\mu) < 2.3 \text{ pb} \]
 \[\sigma[p\bar{p} \rightarrow Y(1S) + Z^0] \times Br(Y(1S) \rightarrow \mu\mu) < 2.5 \text{ pb} \] (1)
 - NRQCD predictions (Signal dominated by CO into χ_b)
 \[\sigma[p\bar{p} \rightarrow Y(1S) + W^\pm] \times Br(Y(1S) \rightarrow \mu\mu) \simeq 0.025 \text{ pb} \]
 \[\sigma[p\bar{p} \rightarrow Y(1S) + Z^0] \times Br(Y(1S) \rightarrow \mu\mu) \simeq 0.0075 \text{ pb} \] (2)

- CSM yield expected to be 300 times smaller (??? ...)

CDF Collaboration, PRL. 90 (2003) 221803

E. Braaten, J. Lee, and S. Fleming, PRD 60, 91501 (1999)
$Q + W/Z$ boson

- **$Y + W/Z$ boson**
 - 95% C.L. upper limits obtained with $\mathcal{L} = 83\text{pb}^{-1}$ by CDF
 \[
 \sigma[p\bar{p} \to Y(1S) + W^{\pm}] \times Br(Y(1S) \to \mu\mu) < 2.3 \text{ pb}
 \]
 \[
 \sigma[p\bar{p} \to Y(1S) + Z^0] \times Br(Y(1S) \to \mu\mu) < 2.5 \text{ pb}
 \]

- **NRQCD predictions (Signal dominated by CO into χ_b)**
 \[
 \sigma[p\bar{p} \to Y(1S) + W^{\pm}] \times Br(Y(1S) \to \mu\mu) \approx 0.025 \text{ pb}
 \]
 \[
 \sigma[p\bar{p} \to Y(1S) + Z^0] \times Br(Y(1S) \to \mu\mu) \approx 0.0075 \text{ pb}
 \]

- CSM yield expected to be 300 times smaller (???) ...
- With 1 fb$^{-1}$ at $\sqrt{s} = 7$ TeV and a larger $(E \times A)(Y)$, one should see events if CO's are at work
$Q + W/Z$ boson

- $Y + W/Z$ boson
 - 95% C.L. upper limits obtained with $\mathcal{L} = 83\text{pb}^{-1}$ by CDF
 \[
 \sigma[p\bar{p} \rightarrow Y(1S) + W^{-}] \times Br(Y(1S) \rightarrow \mu\mu) < 2.3 \text{ pb}
 \]
 \[
 \sigma[p\bar{p} \rightarrow Y(1S) + Z^{0}] \times Br(Y(1S) \rightarrow \mu\mu) < 2.5 \text{ pb}
 \]

 - NRQCD predictions (Signal dominated by CO into χ_b)
 \[
 \sigma[p\bar{p} \rightarrow Y(1S) + W^{-}] \times Br(Y(1S) \rightarrow \mu\mu) \simeq 0.025 \text{ pb}
 \]
 \[
 \sigma[p\bar{p} \rightarrow Y(1S) + Z^{0}] \times Br(Y(1S) \rightarrow \mu\mu) \simeq 0.0075 \text{ pb}
 \]

- CSM yield expected to be 300 times smaller (???)
- With 1 fb$^{-1}$ at $\sqrt{s} = 7$ TeV and a larger $(\mathcal{E} \times \mathcal{A})(Y)$, one should see events if CO’s are at work

- $J/\psi + Z$ and $J/\psi + W$ recently computed at NLO in α_s

- $J/\psi|Y + Z$ at NLO in $\alpha_s + \text{Polarisation}$
Rates similar for $\Upsilon + Z$ and $J/\psi + Z$ [Same for $Q + \gamma$ for $Q \gtrsim 20$ GeV]

Mass effects ($m_c \leftrightarrow m_b$ less relevant because of m_Z)

$|R(0)|^2$ is 10 times larger for Υ than for J/ψ

Branching "only" 2.5 times smaller

Potential probe of gluon TMDs as well
Rates similar for $\Upsilon + Z$ and $J/\psi + Z$ [Same for $Q + \gamma$ for $Q \gtrsim 20$ GeV]

Mass effects ($m_c \leftrightarrow m_b$ less relevant because of m_Z) $|y_{J/\psi}| < 2.4$ is 10 times larger for Υ than for J/ψ

Branching "only" 2.5 times smaller

Potential probe of gluon TMDs as well
Rates similar for $\Upsilon + Z$ and $J/\psi + Z$ [Same for $Q + \gamma$ for $Q \gtrsim 20$ GeV]

- Mass effects ($m_c \leftrightarrow m_b$ less relevant because of m_Z)
- $|R(0)|^2$ is 10 times larger for Υ than for J/ψ
- Branching “only” 2.5 times smaller
Rates similar for $\Upsilon + Z$ and $J/\psi + Z$ [Same for $Q + \gamma$ for $Q \gtrsim 20$ GeV]

Mass effects ($m_c \leftrightarrow m_b$ less relevant because of m_Z)

$|R(0)|^2$ is 10 times larger for Υ than for J/ψ

Branching “only” 2.5 times smaller

Potential probe of gluon TMDs as well
\(\Upsilon + Z: \Upsilon \) polarisation

\[\text{B. Gong, J.P. Lansberg, C. Lorcé, J.X. Wang, JHEP 1303 (2013) 115} \]

\[\sqrt{s} = 14 \text{ TeV} \]

LO: \(\mu_R = \mu_F = m_Z \)

NLO: \(\mu_R = \mu_F = m_Z \)

\(|y_{\Upsilon}| < 2.4 \)

\(P_T^{\Upsilon} > 3 \text{ GeV} \)

CSM predictions seem robust both for the yield and the polarisation.

Unlike the inclusive case, it is not clear why this is the case. Further investigation is needed.
\(Y + Z : Y \) polarisation

- \(Y \) polarisation at LO and NLO are similar

\(P_{T}^{Y} > 3 \text{ GeV} \)

\(|y^{\gamma}| < 2.4 \)

\(\sqrt{s} = 14 \text{ TeV} \)

LO: \(\mu_{R} = \mu_{F} = m_{Z} \)

NLO: \(\mu_{R} = \mu_{F} = m_{Z} \)
$\Upsilon + Z : \Upsilon$ polarisation

- Υ polarisation at LO and NLO are similar
- unlike the inclusive case
- not clear why: need for further investigation

LO: $\mu_R = \mu_F = m_Z$
NLO: $\mu_R = \mu_F = m_Z$

sqrt(s) = 14 TeV
$P_T^\Upsilon > 3$ GeV
$|y^\Upsilon| < 2.4$

B. Gong, J.P. Lansberg, C. Lorcé, J.X. Wang, JHEP 1303 (2013) 115
Y + Z : Y polarisation

- **Y polarisation at LO and NLO are similar**
- unlike the inclusive case
- not clear why: need for further investigation
- CSM predictions seem robust both for the yield and the polarisation
$J/\psi + W$

"'\psi + W offers a clean test of the colour octet contributions'"

V. D. Barger, S. Fleming and R. J. N. Phillips, PLB 371, 111 (1996)
In the CSM, the W boson cannot be emitted by the charm quark loop replacing the gluon in $\psi + g$, the γ in $\psi + \gamma$ or the Z in $\psi + Z$
In the CSM, the W boson cannot be emitted by the charm quark loop replacing the gluon in $\psi + g$, the γ in $\psi + \gamma$ or the Z in $\psi + Z$

One needs a light-quark line to emit the W

In the COM, the light-quark line also radiates a gluon which produces a $^3S_1^{[8]}$ octet $Q\bar{Q}$

'\(\psi + W\) offers a clean test of the colour octet contributions’

V. D. Barger, S. Fleming and R. J. N. Phillips, PLB 371, 111 (1996)
In the CSM, the W boson cannot be emitted by the charm quark loop replacing the gluon in $\psi + g$, the γ in $\psi + \gamma$ or the Z in $\psi + Z$.

One needs a light-quark line to emit the W.

In the COM, the light-quark line also radiates a gluon which produces a $^3S_1^{[8]}$ octet $Q\bar{Q}$.

The corresponding process suppressed in the CSM by α_s^2 (similarly to the gluon fragmentation in the inclusive case).

Usual conclusion:

the CSM contribution is strongly suppressed even at rather low P_T.
direct $J/\psi + W$

J.P. Lansberg, C. Lorcé, PLB 726 (2013) 218

To check this, we have considered two kinds of "LO" CSM process at α_1 (EW) and LO in α_s (α_3^s vs. α_2^s for COM), we have

sg fusion involves gluon PDFs (enhanced w.r.t $q(x)$ at high \sqrt{s}) "LO" contains leading power in $P_T \rightarrow$ no kinematical suppression

At α_3 and α_0, we also have $q\bar{q}$ fusion, $J/\psi W^{\pm}$, $q\bar{q}' \gamma^\ast \rightarrow J/\psi W^{\pm}$: negligible since α_3?
To check this, we have considered two kinds of “LO” CSM process.
To check this, we have considered two kinds of “LO” CSM process:

- At $\alpha_{(EW)}^{-1}$ and LO in α_s (α_s^3 vs. α_s^2 for COM), we have sg fusion.
To check this, we have considered two kinds of “LO” CSM process:

- At $\alpha_{(EW)}^{1}$ and LO in α_s (α_s^3 vs. α_s^2 for COM), we have sg fusion.
- It involves gluon PDFs (enhanced w.r.t $q(x)$ at high \sqrt{s}).

The process involves $s(\bar{s})$, $c(\bar{c})$, and W^\pm interaction, leading to J/ψ production.
To check this, we have considered two kinds of “LO” CSM process:

- At α_{EW}^1 and LO in α_s (α_s^3 vs. α_s^2 for COM), we have sg fusion.
- This involves gluon PDFs (enhanced w.r.t $q(x)$ at high \sqrt{s}).
- “LO” contains leading power in P_T.
- \rightarrow no kinematical suppression.
To check this, we have considered two kinds of “LO” CSM process

At $\alpha^1_{(EW)}$ and LO in α_s (α^3_s vs. α^2_s for COM), we have sg fusion

involves gluon PDFs (enhanced w.r.t $q(x)$ at high \sqrt{s})

“LO” contains leading power in P_T → no kinematical suppression

At α^3 and α^0_s, we also have $q\bar{q}$ fusion
To check this, we have considered two kinds of “LO” CSM process

- At $\alpha_{(EW)}^1$ and LO in α_s (α_s^3 vs. α_s^2 for COM), we have sg fusion
- involves gluon PDFs (enhanced w.r.t $q(x)$ at high \sqrt{s})
- “LO” contains leading power in P_T → no kinematical suppression

At α_s^3 and α_s^0, we also have $q\bar{q}$ fusion

- “LO” contains leading power in P_T → no kinematical suppression
To check this, we have considered two kinds of “LO” CSM process

At $\alpha_{(EW)}^1$ and LO in α_s (α_s^3 vs. α_s^2 for COM), we have sg fusion.

- Involves gluon PDFs (enhanced w.r.t $q(x)$ at high \sqrt{s}).

- “LO” contains leading power in P_T.
 - \rightarrow no kinematical suppression.

At α_s^3 and α_s^0, we also have $q\bar{q}$ fusion.

- “LO” contains leading power in P_T.
 - \rightarrow no kinematical suppression.

- Pure EW process.
To check this, we have considered two kinds of “LO” CSM process

At $\alpha_3^{(EW)}$ and LO in α_s (α_3^3 vs. α_s^2 for COM), we have sg fusion

involves gluon PDFs (enhanced w.r.t $q(x)$ at high \sqrt{s})

“LO” contains leading power in P_T

\rightarrow no kinematical suppression

At α_3^3 and α_s^0, we also have $q\bar{q}$ fusion

“LO” contains leading power in P_T

\rightarrow no kinematical suppression

pure EW process

$q\bar{q}' \rightarrow \gamma^* W \rightarrow J/\psi W$: negligible since α^3 ?
Results

J.P. Lansberg, C. Lorcé, PLB 726 (2013) 218

Associated-quarkonium production

May 1, 2014 21 / 27
Results

- **sg fusion small at Tevatron energies;** *q̅q′* enhanced in *p̅p* collisions
\begin{itemize}
 \item \textit{sg} fusion small at Tevatron energies; \textit{q\bar{q}'} enhanced in \textit{p\bar{p}} collisions
 \item CSM \textit{q\bar{q}'} competes with COM \textit{q\bar{q}'} if $\langle O_{J/\psi}(^{3}S_{1}^{[8]}) \rangle \leq 3 \times 10^{-3}$ GeV3!
\end{itemize}
Results

J.P. Lansberg, C. Lorcé, PLB 726 (2013) 218

- **sg fusion small at Tevatron energies; q̅q’ enhanced in p̅p collisions**
- **CSM q̅q’ competes with COM q̅q’ if \(\langle O_{J/\psi} (3S_1^{[8]}) \rangle \leq 3 \times 10^{-3} \text{ GeV}^3 \)**
- **q̅q’ COM and CSM have the same \(P_T \) dependence**
- sg fusion small at Tevatron energies; $q\bar{q}'$ enhanced in $p\bar{p}$ collisions

- CSM $q\bar{q}'$ competes with COM $q\bar{q}'$ if $\langle \mathcal{O}_{J/\psi} (3S_1^{[8]}) \rangle \leq 3 \times 10^{-3}$ GeV3!

- $q\bar{q}'$ COM and CSM have the same P_T dependence

- sg fusion becomes large at LHC energies
- *sg* fusion small at Tevatron energies; *q̅q′* enhanced in *p̅p* collisions
- CSM *q̅q′* competes with COM *q̅q′* if $\langle O_{J/\psi} (3 S^{[8]}_1) \rangle \leq 3 \times 10^{-3}$ GeV3!
- *q̅q′* COM and CSM have the same P_T dependence
- *sg* fusion becomes large at LHC energies
- *sg* fusion competes with *q̅q′* annihilation in *pp* collisions
- **sg** fusion small at Tevatron energies; **q̅q′** enhanced in **p̅p** collisions
- **CSM** **q̅q′** competes with **COM** **q̅q′** if $\langle O_{J/\psi}(^3S_1^{[8]}) \rangle \leq 3 \times 10^{-3}$ GeV3!
- **q̅q′** **COM** and **CSM** have the same P_T dependence
- **sg** fusion becomes large at LHC energies
- **sg** fusion competes with **q̅q′** annihilation in **pp** collisions
- **CSM** contributions larger than **COM** at the LHC
Results

J.P. Lansberg, C. Lorcé, PLB 726 (2013) 218

- **sg** fusion small at Tevatron energies; **q¯q’** enhanced in **p¯p** collisions
- CSM **q¯q’** competes with COM **q¯q’** if \(\langle O_{J/\psi} (3S_1^{[8]}) \rangle \leq 3 \times 10^{-3} \text{ GeV}^3 \)
- **q¯q’** COM and CSM have the same **P_T** dependence
- **sg** fusion becomes large at LHC energies
- **sg** fusion competes with **q¯q’** annihilation in **pp** collisions
- CSM contributions larger than COM at the LHC
- Unfortunately, **J/\psi + W** not a clean test of colour octets

but measured by ATLAS!
Rapidity distribution – Comparison with ATLAS

J.P. Lansberg, C. Lorcé, PLB 726 (2013) 218

Cross sections are not very large

Comparison with ATLAS

arXiv:1401.2831 [hep-ex]

CSM

\[\sigma = \sigma (\psi(T > 8.5 \text{GeV}), |y_{\psi}| < 2.4) \]

direct: 0.6 ± 0.2 fb

Feed-down from \(\psi(2S) \): 0.15 ± 0.04 fb

Feed-down from \(\chi_c \): 3.7 ± 2.1 fb

Sum: 4.5 ± 2.3 fb

ATLAS data

total prompt: 25 ± 10 fb

DPS subtracted: 15 ± 10 fb [marginal agreement]

no cut on W decay products; for W\(^+\) and W\(^-\)

\(\mu_R = \mu_F = m_W \times (0.75, 2; 1, 1; 2, 0.75) \) and

\(m_c = 1.5/0.1 \text{ GeV for CSM} \)
Cross sections are not very large
Cross sections are not very large

Comparison with ATLAS

Rapidity distribution – Comparison with ATLAS

J.P. Lansberg, C. Lorcé, PLB 726 (2013) 218

Cross sections are not very large

Comparison with ATLAS

arXiv:1401.2831 [hep-ex]
Cross sections are not very large

Comparison with ATLAS

CSM

\[\sigma = \sigma \left(P_T^{\psi} > 8.5 \text{ GeV}, |y^{\psi}| < 2.4 \right) \]
Cross sections are not very large

Comparison with ATLAS

CSM
 - direct: 0.6 ± 0.2 fb
 - Feed-down from $\psi(2S)$: 0.15 ± 0.04 fb

\[\sigma = \sigma(P_T^{\psi} > 8.5\text{GeV}, |y_{\psi}| < 2.4) \]
Cross sections are not very large

Comparison with ATLAS

CSM

- direct: 0.6 ± 0.2 fb
- Feed-down from $\psi(2S)$: 0.15 ± 0.04 fb
- Feed-down from χ_c: 3.7 ± 2.1 fb
- Sum: 4.5 ± 2.3 fb

$\sigma = \sigma(P^\psi_T > 8.5\text{GeV}, |y^\psi| < 2.4)$
Cross sections are not very large
Comparison with ATLAS
CSM
 direct: 0.6 ± 0.2 fb
 Feed-down from $\psi(2S)$: 0.15 ± 0.04 fb
 Feed-down from χ_c: 3.7 ± 2.1 fb
 Sum: 4.5 ± 2.3 fb

ATLAS data

\[\sigma = \sigma (P_T^{\psi} > 8.5\text{GeV}, |y^{\psi}| < 2.4) \]
Rapidity distribution – Comparison with ATLAS

J.P. Lansberg, C. Lorcé, PLB 726 (2013) 218

Cross sections are not very large

Comparison with ATLAS

CSM

- direct: 0.6 ± 0.2 fb
- Feed-down from $\psi(2S)$: 0.15 ± 0.04 fb
- Feed-down from χ_c: 3.7 ± 2.1 fb
- Sum: 4.5 ± 2.3 fb

ATLAS data

- total prompt: 25 ± 10 fb

arXiv:1401.2831 [hep-ex]

$$\sigma = \sigma(P_T^\psi > 8.5\text{GeV}, |y^\psi| < 2.4)$$
Cross sections are not very large

Comparison with ATLAS

CSM

- direct: 0.6 ± 0.2 fb
- Feed-down from $\psi(2S)$: 0.15 ± 0.04 fb
- Feed-down from χ_c: 3.7 ± 2.1 fb
- Sum: 4.5 ± 2.3 fb

ATLAS data

- total prompt: 25 ± 10 fb
- DPS subtracted: 15 ± 10 fb

$\sigma = \sigma(P_T^{\psi} > 8.5\text{GeV}, |y^{\psi}| < 2.4)$
Rapidity distribution – Comparison with ATLAS

Cross sections are not very large

Comparison with ATLAS

CSM

- direct: 0.6 ± 0.2 fb
- Feed-down from $\psi(2S)$: 0.15 ± 0.04 fb
- Feed-down from χ_c: 3.7 ± 2.1 fb
- Sum: 4.5 ± 2.3 fb

ATLAS data

- total prompt: 25 ± 10 fb
- DPS subtracted: 15 ± 10 fb

$\sigma = \sigma (P_T^\psi > 8.5 \text{GeV}, |y_\psi| < 2.4)$
Part V

Quarkonium + hadron
Q + hadron azimuthal correlations

→ J/ψ + hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R), 2009.

PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$).

Need for updates with NLO and NNLO.

$gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet).

$gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi +$ activity between 0 and π.

$gg \rightarrow J/\psi ggg$: peak at $\Delta \phi = \pi +$ near jet?
Q + hadron azimuthal correlations

→ J/ψ + hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R), 2009.

PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO

$gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)

$gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi$ + activity between 0 and π

$gg \rightarrow J/\psi ggg$: peak at $\Delta \phi = \pi$ + activity between 0 and π + near jet?

The aim of STAR was to extract the B feed-down to J/ψ:

more activity near the J/ψ than for prompt production

Could that be used to discriminate octet vs. singlet hadronisation?

J.P. Lansberg (IPNO)

Associated-quarkonium production

May 1, 2014 24/27
$Q +$ hadron azimuthal correlations

$\rightarrow J/\psi +$ hadron azimuthal correlations

PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Talk by M. Cervantes (STAR) at WWND 2011

The aim of STAR was to extract the B feed-down to J/ψ:

- more activity near the J/ψ than for prompt production
- Could that be used to discriminate octet vs. singlet hadronisation?

STAR Collab., Phys.Rev.C80:041902 (R), 2009.
PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)
Need for updates with NLO and NNLO
PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO

- $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO*

- $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
- $gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi +$ activity between 0 and π
PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO

- $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
- $gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi +$ activity between 0 and π
- $gg \rightarrow J/\psi ggg$: peak at $\Delta \phi = \pi +$ activity between 0 and $\pi +$ near jet?
Q + hadron azimuthal correlations

→ **J/ψ + hadron azimuthal correlations**

PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

Need for updates with NLO and NNLO:

- $gg \rightarrow J/\psi g$: peak at $\Delta \phi = \pi$ (activity from the recoiling jet)
- $gg \rightarrow J/\psi gg$: peak at $\Delta \phi = \pi$ + activity between 0 and π
- $gg \rightarrow J/\psi ggg$: peak at $\Delta \phi = \pi$ + activity between 0 and π + near jet?

→ **ϒ + hadron azimuthal correlations**

Talk by M. Cervantes (STAR) at WWND 2011
Q + hadron azimuthal correlations

→ J/ψ + hadron azimuthal correlations

- PYTHIA might not be reliable (Color Singlet at LO: \(gg \rightarrow J/\psi g\))
- Need for updates with NLO and NNLO
 - \(gg \rightarrow J/\psi g\): peak at \(\Delta \phi = \pi\) (activity from the recoiling jet)
 - \(gg \rightarrow J/\psi gg\): peak at \(\Delta \phi = \pi + \) activity between 0 and \(\pi\)
 - \(gg \rightarrow J/\psi ggg\): peak at \(\Delta \phi = \pi + \) activity between 0 and \(\pi\) + near jet?

→ Υ + hadron azimuthal correlations

- The aim of STAR was to extract the \(B\) feed-down to \(J/\psi\): more activity near the \(J/\psi\) than for prompt production
Q + hadron azimuthal correlations

→ **J/ψ + hadron azimuthal correlations**

PYTHIA might not be reliable (Color Singlet at LO: \(gg \rightarrow J/\psi g \))

Need for updates with NLO and NNLO

- \(gg \rightarrow J/\psi g \): peak at \(\Delta \phi = \pi \) (activity from the recoiling jet)
- \(gg \rightarrow J/\psi gg \): peak at \(\Delta \phi = \pi + \) activity between 0 and \(\pi \)
- \(gg \rightarrow J/\psi ggg \): peak at \(\Delta \phi = \pi + \) activity between 0 and \(\pi \) + near jet?

→ **ϒ + hadron azimuthal correlations**

Talk by M. Cervantes (STAR) at WWND 2011

The aim of STAR was to extract the \(B \) feed-down to \(J/\psi \): more activity near the \(J/\psi \) than for prompt production

Could that be used to discriminate octet vs. singlet hadronisation?
Part VI

$J/\psi + \text{charm}$
Double charm: $J/\psi + D$

$\rightarrow J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010
Double charm: $J/\psi + D$

$\rightarrow J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

- peak at $\Delta \phi = \pi$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010
Double charm: $J/\psi + D$

$J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

- peak at $\Delta \phi = \pi$
- Rate significant & y-dependence gives info on $c(x)$

plot for RHIC kinematics

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010
Double charm: $J/\psi + D$

$\rightarrow J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

- peak at $\Delta \phi = \pi$
- Rate significant & y-dependence gives info on $c(x)$

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

plot for RHIC kinematics

$\rightarrow J/\psi + D$ or $J/\psi + \text{lepton}$ at large P_T (say, $P_T > 15$ GeV)
Double charm: $J/\psi + D$

$\rightarrow J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

- peak at $\Delta \phi = \pi$
- Rate significant & y-dependence gives info on $c(x)$

plot for RHIC kinematics

$\rightarrow J/\psi + D$ or $J/\psi + \text{lepton}$ at large P_T (say, $P_T > 15$ GeV)

- Near D or lepton: signal of $c \rightarrow J/\psi + c$ “fragmentation”
Double charm: \(J/\psi + D \)

\(\rightarrow J/\psi + D \) or \(J/\psi + \text{lepton} \) in the yield integrated over \(P_T \)

- Peak at \(\Delta \phi = \pi \)
- Rate significant & \(y \)-dependence gives info on \(c(x) \)

\(\rightarrow J/\psi + D \) or \(J/\psi + \text{lepton} \) at large \(P_T \) (say, \(P_T > 15 \text{ GeV} \))

- Near \(D \) or lepton: signal of \(c \rightarrow J/\psi + c \) “fragmentation”
- No near \(D \) in \(gg \rightarrow gg \rightarrow 3S_1[8] g \rightarrow J/\psi c\bar{c} \) (If any \(c \), both are away)
Double charm: $J/\psi + D$

$J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

- Peak at $\Delta \phi = \pi$
- Rate significant & y-dependence gives info on $c(x)$

$J/\psi + D$ or $J/\psi + \text{lepton}$ at large P_T (say, $P_T > 15$ GeV)

- Near D or lepton: signal of $c \to J/\psi + c$ "fragmentation"
- No near D in $gg \to gg \to {^3S_1}^8 g \to J/\psi c\bar{c}$ (If any c, both are away)

- First measurement by LHCb ($p_T^D \geq 3$ GeV $\Rightarrow p_T^{\text{charm quark}}$ not small)
Double charm: $J/\psi + D$

$J/\psi + D$ or $J/\psi + \text{lepton}$ in the yield integrated over P_T

- peak at $\Delta \phi = \pi$
- Rate significant & y-dependence gives info on $c(x)$

$J/\psi + D$ or $J/\psi + \text{lepton}$ at large P_T (say, $P_T > 15$ GeV)

- Near D or lepton: signal of $c \rightarrow J/\psi + c$ “fragmentation”
- No near D in $gg \rightarrow gg \rightarrow ^3S_1[8] g \rightarrow J/\psi c\bar{c}$ (If any c, both are away)

$J/\psi + D$ or $J/\psi + \text{lepton}$ at large P_T (say, $P_T > 15$ GeV)

- Near D or lepton: signal of $c \rightarrow J/\psi + c$ “fragmentation”
- No near D in $gg \rightarrow gg \rightarrow ^3S_1[8] g \rightarrow J/\psi c\bar{c}$ (If any c, both are away)

First measurement by LHCb ($p_T^D \geq 3$ GeV $\Rightarrow p_T^{\text{charm quark}}$ not small)

At low P_T, we should be careful about the k_T smearing effect on $\Delta \phi$
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:**
 - relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
LO pQCD (CSM) reproduces the yield:
relevant for heavy-ion studies: LO CSM is $gg \to Qg$

LO CSM fails as far as $d\sigma / dP_T$ is concerned
Conclusions and Outlooks

- LO pQCD (CSM) reproduces the yield:
 - relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- LO CSM fails as far as $d\sigma/dP_T$ is concerned
- QCD corrections open leading P_T channel: they are needed!
 - $2 \rightarrow 3, 2 \rightarrow 4$ channels

Drawback: large theoretical uncertainties. . .
Dominant contributions are known only at Born order ($gg \rightarrow J/\psi, gg g$)
(N)NLO corrections alter the polarisation: transverse \rightarrow longitudinal (in HX)
CO fits of x-section disagree in their prediction of polarisation
Need for new observables, need for NLO evaluations at the LHC or elsewhere!
Given the precision of the data at low P_T, one should re-think the opportunity of extracting $g(x)$ with quarkonium and by extension the gluon TMDs (gluon transverse motion) for the first time.
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:**
 relevant for heavy-ion studies: LO CSM is $gg \to Qg$

- **LO CSM fails** as far as $d\sigma/dP_T$ is concerned
- **QCD corrections** open **leading** P_T channel: they are needed!
 $2 \to 3, 2 \to 4$ channels

- **Drawback:** large theoretical uncertainties...
 Dominant contributions are known only at Born order ($gg \to J/\psi gg$)

Conclusions and Outlooks

- LO pQCD (CSM) reproduces the yield: relevant for heavy-ion studies: LO CSM is \(gg \rightarrow Qg \)
- LO CSM fails as far as \(d\sigma/dP_T \) is concerned
- QCD corrections open leading \(P_T \) channel: they are needed! \(2 \rightarrow 3, 2 \rightarrow 4 \) channels
- Drawback: large theoretical uncertainties...
 - Dominant contributions are known only at Born order \((gg \rightarrow J/\psi ggg)\)
- (N)NLO corrections alter the polarisation: transverse \(\rightarrow\) longitudinal (in HX)

J.P. Lansberg (IPNO)
Conclusions and Outlooks

- LO pQCD (CSM) reproduces the yield: relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$
- LO CSM fails as far as $d\sigma/dP_T$ is concerned
- QCD corrections open leading P_T channel: they are needed! $2 \rightarrow 3, 2 \rightarrow 4$ channels
- Drawback: large theoretical uncertainties...
 Dominant contributions are known only at Born order ($gg \rightarrow J/\psi ggg$)
- (N)NLO corrections alter the polarisation: transverse \rightarrow longitudinal (in HX)
- CO fits of xsection disagree in their prediction of polarisation
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:**
 relevant for heavy-ion studies: LO CSM is $gg \rightarrow Qg$

- **LO CSM fails** as far as $d\sigma/dP_T$ is concerned

- QCD corrections open **leading P_T channel:** they are needed!
 $2 \rightarrow 3, 2 \rightarrow 4$ channels

- **Drawback:** large theoretical uncertainties...
 Dominant contributions are known only at Born order ($gg \rightarrow J/\psi gg$)

- (N)NLO corrections alter the polarisation:
 transverse \rightarrow longitudinal (in HX)

- **CO fits of xsection disagree** in their prediction of polarisation

- **Need for new observables,** need for NLO evaluations
 at the LHC or elsewhere!
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:** relevant for heavy-ion studies: LO CSM is $gg \to Qg$
- **LO CSM fails** as far as $d\sigma/dP_T$ is concerned
- QCD corrections open **leading P_T channel**; they are needed!

 $2 \to 3, 2 \to 4$ channels

- **Drawback:** large theoretical uncertainties...
 Dominant contributions are known only at Born order ($gg \to J/\psi ggg$)
- (N)NLO corrections alter the polarisation:

 transverse \to longitudinal (in HX)

- CO fits of xsection disagree in their prediction of polarisation
- Need for **new observables**, need for NLO evaluations

 at the LHC or elsewhere!

- Given the **precision of the data at low P_T**, one should re-think
 the opportunity of **extracting $g(x)$ with quarkonium**
Conclusions and Outlooks

- **LO pQCD (CSM) reproduces the yield:** relevant for heavy-ion studies: LO CSM is \(gg \rightarrow Qg \)
- **LO CSM fails** as far as \(d\sigma / dP_T \) is concerned
- QCD corrections open **leading** \(P_T \) channel: they are needed!
 \[2 \rightarrow 3, \ 2 \rightarrow 4 \text{ channels} \]
- **Drawback:** large theoretical uncertainties...
 Dominant contributions are known only at Born order \((gg \rightarrow J/\psi ggg) \)
- (N)NLO corrections alter the polarisation:
 \[\text{transverse} \rightarrow \text{longitudinal} \text{ (in HX)} \]
- CO fits of xsection disagree in their prediction of polarisation
- Need for **new observables**, need for NLO evaluations at the LHC or elsewhere!
- Given the **precision of the data at low** \(P_T \), one should re-think
 the opportunity of extracting \(g(x) \) with quarkonium
- and by extension the gluon TMDs (gluon transverse motion)
 for the first time
Part VII

Backup
Cross section ratio I

- Despite th. uncertainties, CSM predictions are parameter free!
Cross section ratio I

- Despite th. uncertainties, CSM predictions are parameter free!
- At LO in v^2, one *de facto* predicts direct cross-section ratios.

\[
\frac{\sigma(\text{direct } \Upsilon(3S))}{\sigma(\text{direct } \Upsilon(1S))} = |\psi_{3S}(0)|^2 |\psi_{1S}(0)|^2 \sim 0.34
\]

\[
\frac{\sigma(\text{direct } \Upsilon(2S))}{\sigma(\text{direct } \Upsilon(1S))} = |\psi_{2S}(0)|^2 |\psi_{1S}(0)|^2 \sim 0.45
\]

\[
\text{Br}_{\ell\ell} \simeq 7.4 \text{ nb}
\]

\[
\text{Br}_{\ell\ell} \simeq 1.0 \text{ nb}
\]

CMS, PRD 83, 112004 (2011)

Extrapolated $3S$ direct yield: $0.34 \times 150 \text{ nb} \sim 50 \text{ nb}$

$3S$ direct yield likely not 100% direct. cf. $\chi_{b}(3P)$ observation by ATLAS.

PRL, 108, 152001 (2012)
Despite the uncertainties, CSM predictions are parameter free!

At LO in v^2, one *de facto* predicts direct cross-section ratios

Simple ratios of Schrödinger wave function at the origin:

\[
\frac{\sigma(\text{direct } Y(3S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.34
\]

\[
\frac{\sigma(\text{direct } Y(2S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.45
\]
Despite th. uncertainties, CSM predictions are parameter free!

At LO in v^2, one *de facto* predicts direct cross-section ratios

Simple ratios of Schrödinger wave function at the origin:

$$\frac{\sigma(\text{direct } Y(3S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.34$$
$$\frac{\sigma(\text{direct } Y(2S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.45$$

$$\sigma(Y(1S)(|y| < 2)) Br_{\ell\ell} \sim 7.4 \text{ nb} \quad \text{50%direct} \quad \Rightarrow \quad \sigma(\text{direct } Y(1S)) \sim 150 \text{ nb}$$

CMS, PRD 83, 112004 (2011)
Despite th. uncertainties, CSM predictions are parameter free!

At LO in v^2, one *de facto* predicts direct cross-section ratios.

Simple ratios of Schrödinger wave function at the origin:

$$\frac{\sigma(\text{direct } Y(3S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.34$$

$$\frac{\sigma(\text{direct } Y(2S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.45$$

$$\sigma(Y(1S)(|y| < 2)) Br_{\ell\ell} \sim 7.4 \text{ nb} \quad \text{50% direct} \quad \sigma(\text{direct } Y(1S)) \sim 150 \text{ nb}$$

Extrapolated $3S$ direct yield: $0.34 \times 150 \text{ nb} \sim 50 \text{ nb}$
Despite th. uncertainties, CSM predictions are parameter free!

At LO in v^2, one *de facto* predicts direct cross-section ratios

Simple ratios of Schrödinger wave function at the origin:

\[
\frac{\sigma(\text{direct } Y(3S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.34 \quad \frac{\sigma(\text{direct } Y(2S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.45
\]

\[
\sigma(\text{direct } Y(1S)(|y| < 2)) Br_{\ell\ell} \sim 7.4 \text{ nb} \quad \rightarrow \quad \sigma(\text{direct } Y(1S)) \sim 150 \text{ nb}
\]

Extrapolated 3S direct yield: $0.34 \times 150 \text{ nb} \sim 50 \text{ nb}$

\[
\sigma(\text{direct } Y(3S)(|y| < 2)) Br_{\ell\ell} \sim 1.0 \text{ nb} \quad \rightarrow \quad \sigma(\text{direct } Y(3S)) \sim 45 \text{ nb}
\]
Cross section ratio I

- Despite the uncertainties, CSM predictions are parameter free!
- At LO in v^2, one *de facto* predicts direct cross-section ratios
- Simple ratios of Schrödinger wave function at the origin:

\[
\frac{\sigma(\text{direct } Y(3S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{3S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.34
\]

\[
\frac{\sigma(\text{direct } Y(2S))}{\sigma(\text{direct } Y(1S))} = \frac{|\psi^{2S}(0)|^2}{|\psi^{1S}(0)|^2} \sim 0.45
\]

\[
\sigma(Y(1S)(|y| < 2)) Br_{\ell\ell} \sim 7.4 \text{ nb} \quad \xrightarrow{50\% \text{ direct}} \quad \sigma(\text{direct } Y(1S)) \sim 150 \text{ nb}
\]

CMS, PRD 83, 112004 (2011)

- Extrapolated $3S$ direct yield: $0.34 \times 150 \text{ nb} \sim 50 \text{ nb}$

\[
\sigma(Y(3S)(|y| < 2)) Br_{\ell\ell} \sim 1.0 \text{ nb} \quad \xrightarrow{100\% \text{ direct}} \quad \sigma(\text{direct } Y(3S)) \sim 45 \text{ nb}
\]

CMS, PRD 83, 112004 (2011)

- NEW: the $3S$ yield likely not 100% direct
 cf. $\chi_b(3P)$ observation by ATLAS

PRL, 108, 152001 (2012)
Cross section ratio II

Mass effects at low P_T: not encoded in the v_2 results: $M_\Upsilon(nS)$

NRQCD $= 2m_b$

Feed-down: simple kinematical effect: $P_{daughter} \sim M_{daughter}/M_{mother} P_{mother}$

Harmless if $d\sigma/dP_T \propto P_T^{-n}$ with n fixed, harmful if n changes, esp. true at low P_T where $d\sigma/dP_T$ can be flat
Cross section ratio II

- P_T dependence of cross section ratios:
Cross section ratio II

- **P_T dependence** of cross section ratios:
- Mass effects at low P_T: not incoded in the v^2 results: $M_{NRQCD}^{Y(nS)} = 2m_b$
P_T dependence of cross section ratios:

- Mass effects at low P_T: not incoded in the ν^2 results: $M_{\text{NRQCD}}^{Y(nS)} = 2m_b$
- Feed-down: simple kinematical effect: $P_T^{\text{daughter}} \sim \frac{M_{\text{daughter}}}{M_{\text{mother}}} P_T^{\text{mother}}$
P_T dependence of cross section ratios:

- Mass effects at low P_T: not incoded in the v^2 results: $M_{\text{NRQCD}}^{\Upsilon(nS)} = 2m_b$
- Feed-down: simple kinematical effect: $P_T^{\text{daughter}} \sim \frac{M^{\text{daughter}}}{M^{\text{mother}}} P_T^{\text{mother}}$
- Harmless if $\frac{d\sigma}{dP_T} \propto P_T^{-n}$ with n fixed,
P_T dependence of cross section ratios:

- Mass effects at low P_T: not incoded in the v^2 results: $M_{\Upsilon(nS)}^{\text{NRQCD}} = 2m_b$
- Feed-down: simple kinematical effect: $P_T^{\text{daughter}} \sim \frac{M_{\text{daughter}}}{M_{\text{mother}}} P_T^{\text{mother}}$
- Harmless if $\frac{d\sigma}{dP_T} \propto P_T^{-n}$ with n fixed,
- harmful if n changes, esp. true at low P_T where $\frac{d\sigma}{dP_T}$ can be flat
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \rightarrow \gamma^* W^3 S_{[1]} \rightarrow J/\psi W$ and $q\bar{q}' \rightarrow g^* W^3 S_{[8]} \rightarrow J/\psi W$ are very similar why?
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \rightarrow \gamma^* W \rightarrow J/\psi W$ and $q\bar{q}' \rightarrow g^* W \rightarrow J/\psi W$ are very similar. Why?

Let us simplify and look at

$q\bar{q}' \rightarrow \gamma^* \rightarrow J/\psi$ vs. $q\bar{q}' \rightarrow g^* \rightarrow J/\psi$
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \to \gamma^* W \to J/\psi W$ and $q\bar{q}' \to g^* W \to J/\psi W$ are very similar. Why?

Let us simplify and look at

\[
q\bar{q}' \to \gamma^* \to J/\psi \quad \text{vs.} \quad q\bar{q}' \to g^* \to J/\psi
\]

The cross sections are well-known:

\[
\hat{\sigma}[^1]_{\gamma^*} = \frac{4\pi\alpha^2 e^2 q e Q M^2 Q}{s} \frac{\delta (x_1 x_2 - M_Q^2)}{|R(0)|^2}
\]

\[
\hat{\sigma}[^8]_{g^*} = \frac{4\pi\alpha^2 S}{27} \frac{\langle O_Q(3S[^8]_1) \rangle}{\langle O_Q(3S[^1]_1) \rangle} \alpha^2 S \frac{\langle O_Q(3S[^8]_1) \rangle}{\langle O_Q(3S[^1]_1) \rangle} = \frac{2N_c}{4\pi} (2J + 1) \frac{|R(0)|^2}{4\pi}
\]
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \rightarrow \gamma^* W \rightarrow J/\psi W$ and $q\bar{q}' \rightarrow g^* W \rightarrow J/\psi W$ are very similar why?

Let us simplify and look at $q\bar{q}' \rightarrow \gamma^* \rightarrow J/\psi$ vs. $q\bar{q}' \rightarrow g^* \rightarrow J/\psi$

The cross sections are well-known:

- CSM: $\hat{\sigma}^{[1]}_{\gamma^*} = \frac{(4\pi\alpha)^2 e_q^2 e_Q^2}{M_Q^3 s} \delta (x_1 x_2 - M_Q^2 / s) |R(0)|^2$
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \to \gamma^* W \to J/\psi W$ and $q\bar{q}' \to g^* W \to J/\psi W$ are very similar why?

Let us simplify and look at $q\bar{q}' \to \gamma^* J/\psi$ vs. $q\bar{q}' \to g^* J/\psi$

The cross sections are well-known:

- **CSM:** $\hat{\sigma}^{[1]}_{\gamma^*} = \frac{(4\pi\alpha)^2 e_q^2 e_Q^2}{M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) |R(0)|^2$

- **COM:** $\hat{\sigma}^{[8]}_{g^*} = \frac{(4\pi\alpha S)^2 \pi}{27M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) \langle \mathcal{O}_Q \left(\frac{3 S_1^3}{8} \right) \rangle$

Colour factor: $2 N_c (2J + 1)$
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \rightarrow \gamma^* W \rightarrow J/\psi W$ and $q\bar{q}' \rightarrow g^* W \rightarrow J/\psi W$ are very similar why?

Let us simplify and look at $q\bar{q}' \rightarrow \gamma^* \rightarrow J/\psi$ vs. $q\bar{q}' \rightarrow g^* \rightarrow J/\psi$

The cross sections are well-known:

- **CSM**: $\hat{\sigma}^{[1]}_{\gamma^*} = \frac{(4\pi\alpha)^2 e_q^2 e_Q^2}{M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) |R(0)|^2$

- **COM**: $\hat{\sigma}^{[8]}_{g^*} = \frac{(4\pi\alpha S)^2 2\pi}{27M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) \langle O_Q(3S_1^{[8]}) \rangle$

The ratio gives:

$$\frac{\hat{\sigma}^{[1]}_{\gamma^*}}{\hat{\sigma}^{[8]}_{g^*}} = \frac{6\alpha^2 e_q^2 e_Q^2 \langle O_Q(3S_1^{[1]}) \rangle}{\alpha_S^2 \langle O_Q(3S_1^{[8]}) \rangle}$$

$$\langle O_Q(3S_1^{[1]}) \rangle = 2N_c(2J + 1) \frac{|R(0)|^2}{4\pi}$$
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \to \gamma^* W \to J/\psi W$ and $q\bar{q}' \to g^* W \to J/\psi W$ are very similar

Let us simplify and look at

$$q\bar{q}' \to \gamma^* \to J/\psi \text{ vs. } q\bar{q}' \to g^* \to J/\psi$$

The cross sections are well-known:

- **CSM:**
 $$\hat{\sigma}^{[1]}_{\gamma^*} = \frac{(4\pi\alpha)^2 e_q^2 e_q^2}{M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) \left| R(0) \right|^2$$

- **COM:**
 $$\hat{\sigma}^{[8]}_{g^*} = \frac{(4\pi\alpha_S)^2 2\pi}{27M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) \langle O_Q(3S_1^{[8]}) \rangle$$

The ratio gives:

$$\frac{\hat{\sigma}^{[1]}_{\gamma^*}}{\hat{\sigma}^{[8]}_{g^*}} = \frac{6\alpha^2 e_q^2 e_q^2 \langle O_Q(3S_1^{[1]}) \rangle}{\alpha_S^2 \langle O_Q(3S_1^{[8]}) \rangle}$$

$$\langle O_Q(3S_1^{[1]}) \rangle = 2N_c(2J + 1) \frac{|R(0)|^2}{4\pi}$$

Colour factor: $2N_c$
Discussion: CSM via γ^* vs. COM via g^*

$$\frac{\hat{\sigma}^{[1]}_{\text{via } \gamma^*}}{\hat{\sigma}^{[8]}_{\text{via } g^*}} = \frac{6\alpha^2 e_q^2 e_Q^2 \langle O_Q(3S_1^{[1]}) \rangle}{\alpha_s^2 \langle O_Q(3S_1^{[8]}) \rangle}$$

The ratio depends on the initial quark, q, on α_s at $\mu_R \approx m_Q$ and on the ratio of the non-perturbative coefficients. For J/ψ production in $u\bar{u}$ fusion and for $\langle O_{J/\psi}(3S_1^{[8]}) \rangle = 2/3 \times 10^{-3}$ GeV3, the ratio CSM vs. COM is $2/3$.

For Υ production, it is about the same (smaller but α_s also smaller and $|R(0)|_2$ larger).

If we add the W emission, the charge factor changes and μ_R: $O(m_Q) \rightarrow O(m_W) \rightarrow \ldots$

This explains our results for $J/\psi + W$.

General conclusion: For production processes involving light quarks, the CSM via off-shell photon competes with the COM via off-shell gluon.
The ratio depends on the initial quark, \(q \), on \(\alpha_s \) at \(\mu_R \approx m_Q \) and on the ratio of the non-perturbative coefficients.
Discussion: CSM via γ^* vs. COM via g^*

$$\frac{\hat{\sigma}^{[1]}_{\text{via } \gamma^*}}{\hat{\sigma}^{[8]}_{\text{via } g^*}} = \frac{6\alpha_s^2 e_q^2 e_Q^2 \langle O_Q(3S_1^{[1]}) \rangle}{\alpha_s^2 \langle O_Q(3S_1^{[8]}) \rangle}$$

- The ratio depends on the initial quark, q, on α_s at $\mu_R \simeq m_Q$ and on the ratio of the non-perturbative coefficients.
- For J/ψ production in $u\bar{u}$ fusion and for $\langle O_{J/\psi}(3S_1^{[8]}) \rangle = 2.2 \times 10^{-3}$ GeV3, the ratio CSM vs. COM is $2/3$
The ratio depends on the initial quark, \(q \), on \(\alpha_s \) at \(\mu_R \approx m_Q \) and on the ratio of the non-perturbative coefficients.

For \(J/\psi \) production in \(u\bar{u} \) fusion and for
\[
\langle O_{J/\psi}(3S_1^{[8]}) \rangle = 2.2 \times 10^{-3} \text{ GeV}^3,
\]
the ratio CSM vs. COM is \(\frac{2}{3} \).

For \(\Upsilon \) production, it is about the same
\((e_Q \) smaller but \(\alpha_s \) also smaller and \(|R(0)|^2 \) larger)
Discussion: CSM via γ^* vs. COM via g^*

\[
\frac{\hat{\sigma}^{[1]}_{\text{via } \gamma^*}}{\hat{\sigma}^{[8]}_{\text{via } g^*}} = \frac{6\alpha^2 e_q^2 e_Q^2 \langle O_Q(3S_1^{[1]}) \rangle}{\alpha_s^2 \langle O_Q(3S_1^{[8]}) \rangle}
\]

- The ratio depends on the initial quark, q, on α_s at $\mu_R \approx m_Q$ and on the ratio of the non-perturbative coefficients.
- For J/ψ production in $u\bar{u}$ fusion and for $\langle O_{J/\psi}(3S_1^{[8]}) \rangle = 2.2 \times 10^{-3}$ GeV3, the ratio CSM vs. COM is $2/3$.
- For Υ production, it is about the same (except e_Q smaller but α_s also smaller and $|R(0)|^2$ larger).
- If we add the W emission, the charge factor changes and $\mu_R: O(m_Q) \rightarrow O(m_W)$
 \[
 \rightarrow \text{This explains our results for } J/\psi + W
 \]
Discussion: CSM via γ^* vs. COM via g^*

\[
\frac{\hat{\sigma}_{\text{via } \gamma^*}}{\hat{\sigma}_{\text{via } g^*}} = \frac{6\alpha_s^2 e_q^2 e_Q^2 \langle O_Q(\,^3S_1^{[1]}\,\rangle}{\alpha_s^2 \langle O_Q(\,^3S_1^{[8]}\,\rangle}
\]

- The ratio depends on the initial quark, q, on α_s at $\mu_R \approx m_Q$ and on the ratio of the non-perturbative coefficients.
- For J/ψ production in $u\bar{u}$ fusion and for
 \[\langle O_{J/\psi}(\,^3S_1^{[8]}\,\rangle = 2.2 \times 10^{-3} \text{ GeV}^3, \text{ the ratio CSM vs. COM is } 2/3\]
- For Υ production, it is about the same
 \[(e_Q \text{ smaller but } \alpha_s \text{ also smaller and } |R(0)|^2 \text{ larger})\]
- If we add the W emission, the charge factor changes and
 $\mu_R : O(m_Q) \rightarrow O(m_W)$
 \[\rightarrow \text{ This explains our results for } J/\psi + W\]
- General conclusion:

For production processes involving light quarks, the CSM via off-shell photon competes with the COM via off-shell gluon.