A Customisable Pipeline for Continuously Harvesting Socially-Minded Twitter Users

Paolo Missier(*), Alexander Romanovsky(*), Nélio Cacho(+), Flavio Primo(*), Mickael Figueredo(+)

(*) Newcastle University, UK
(+) Federal University of Rio Grande do Norte, Brazil
Motivation

Problem: Zika, Dengue, Chikungunya are dangerous endemic diseases in Brazil

Solution?

- Government has low resources
- Crowdsourcing has "needle in a haystack" problem
Goal: identify target users for recruitment

Activist: a person who demonstrates an inclination to become engaged in social issues, regardless of the specific topic

- “socially-minded”

Can it be…

- Defined with computable metrics?
- Discovered independently from its social focus?

Customisable pipeline for continuous discovery of users of interest in multiple topics in social media
Approach

Goal: find users actively engaged in events

Defined by → **user metrics**
Measurements of relationships and social activities over Twitter

Defined by → **contexts**
Queries that retrieve event-related content
Contexts

\[C_{\text{context}} = (K_{\text{hashtags}}, \Delta t_{\text{date interval}}, s_{\text{location}}) \]

\[P(C) \quad \text{set of posts} \rightarrow \quad p \in P(C) \quad \text{post} \quad u(p) \in P(C) \quad \text{author of post} \]

\[\tilde{P}(C) = P(C') \setminus P(C) \quad \text{complement of } P(C) \]

\[G_C = (V, E) \rightarrow \quad V = \{ u(p) | p \in P(C') \} \quad \text{set of nodes} \]

\[e = \langle u_1_{\text{post author}}, u_2_{\text{mentioned/retweeted author}}, w_{\text{weight}} \rangle \quad \text{edge} \]
1. Harvesting content from context

Contexts

C_1

...

Twitter API

S_1

...

Twitter streams

Context

Date range

Hashtags

Location

Stream

tweet_1 {
author mentions
...
}
2. Network creation

Twitter Streams

Create network

Network Graphs

Relations network
- directed
- weighted
3. Community detection

Network Graphs

\[G_1, \ldots, G_n \]

Partitioned Network Graphs

\[PG_1, \ldots, PG_n \]

Infomap

Communities of users

- inner high information flow
- remove communities <3

Network Graphs connected to Infomap, resulting in Partitioned Network Graphs.
3. Community detection: Infomap

Random Walker path:

Huffman Coding of the nodes

Random Walker path:

Code length: 314 bits
3. Community detection: Infomap

Random Walker path:

111 0000 11 01 101 100 101 01 0
001 0 110 011 00 110 00 111 101
1 10 111 00 01 011 00 111 01 0
011 10 000 111 10 111 10 0010 1
0 011 010 011 10 000 111 0001 0
111 010 100 011 00 111 00 011 0
1 011 00 111 110 111 110 1011 1
11 01 101 01 0001 0 110 111 00
011 110 111 1011 10 111 000 10
000 111 0001 0 111 010 1010 01
0 1011 110 00 10 011

Code length: 243 bits

Dual problem:
detect communities by compressing the description of information flows on networks
4. Profiling

Characterize users with metrics

Context independent
- Follower rank

Context specific
- Indegree centrality

Content based
- Topical Focus
- Topical Strength
- Topical Attachment
4. Profiling

Context independent:

\[
FR(u) = \frac{|\text{followers}(u)|}{|\text{followers}(u)| + |\text{following}(u)|}
\]

Context specific:

\[
IC(u) = \frac{\text{indegree}(u)}{N - 1}
\]
4. Profiling

Content based:

\[
\begin{align*}
TF(u)_{TopicalFocus} &= \frac{P1_{on}(u)}{P1_{off}(u) + 1} \\
TA(u)_{TopicalAttachment} &= \frac{P1_{on}(u) + P2_{on}(u)}{P1_{off}(u) + P2_{off}(u) + 1} \\
TS(u)_{TopicalStrength} &= \frac{P2_{on}(u) \cdot \log(P2_{on}(u) + R3_{on} + 1)}{P2_{off}(u) \cdot \log(P2_{off}(u) + R3_{off} + 1) + 1}
\end{align*}
\]

Where:

- P1: # of original posts by u in C
- P2: # urls found in original posts by u in C
- R3: # of retweets of u's tweets
5. Ranking

\[R1(u) = \frac{1}{\sum_{u \in C} IC(u) + 1} \cdot \sum_{u \in C} TF(u) \]

↑ on topic ↓ community leader

\[R2(u) = |FR(u) - 1| \cdot \left(\sum_{u \in C} TA(U) + \sum_{u \in C} IC(U) \right) \]

↑ on topic ↑ community leader ↓ popularity

\[R3(u) = |FR(u) - 1| \cdot \left(\sum_{u \in C} TA(U) + \frac{1}{\sum_{u \in C} IC(U) + 1} \right) \]

↑ on topic ↓ community leader ↓ popularity
The complete user extraction pipeline

1. Bootstrap context list
2. Context detection
3. Network creation
4. Community detection
5. Profiling
6. Ranking
7. New context detection

Twitter
Query
Context metadata
Tw eets
Network graph
User communities
Profiles
Context metadata
User timelines
Profiles DB
Features
Ranked user list
Evaluation: tweets harvesting

Unsupervised validation method
A posteriori validation of the generated user ranking

no prior ground truth
Evaluation: test contexts

Context name	Period (2018)	Nodes	Edges	Density	Avg degree	Assortativity
16 days of action	11-25 / 12-10	396	349	0.002	1.8	-0.1
Elf day	12-03 / 12-12	365	436	0.003	2.4	-0.2
Dry January	01-01 / 01-31	235	234	0.004	2.0	-0.3
Cervical cancer prevention week	01-21 / 01-27	209	192	0.004	1.8	-0.1
Time to talk day	02-06 / 02-07	268	231	0.003	1.7	-0.2
Eating disorder awareness week	02-25 / 03-02	256	241	0.004	1.9	-0.2
Rare disease day	02-28 / 03-01	294	206	0.002	1.4	-0.2
Ovarian cancer awareness month	03-01 / 03-31	215	202	0.004	1.9	-0.4
Nutrition and hydration week	03-11 / 03-17	273	326	0.004	2.4	-0.3
Brain awareness week	03-11 / 03-17	307	281	0.003	1.8	-0.1
No smoking day	03-13 / 03-14	254	219	0.003	1.7	-0.3
Epilepsy awareness purple day	03-26 / 03-27	306	252	0.003	1.6	-0.2
Experience of care week	04-23 / 04-27	176	196	0.006	2.2	-0.1
Brain injury week	05-01 / 05-31	238	306	0.005	2.6	-0.1
Mental health awareness week	05-14 / 05-20	268	245	0.003	1.8	-0.5
Dementia action week	05-21 / 05-31	300	300	0.003	2.0	-0.0
Mnd awareness month	06-01 / 06-30	141	234	0.012	3.3	-0.3
Wear purple for jia	06-01 / 06-30	165	245	0.009	3.0	-0.5
Carers week	06-11 / 06-17	270	277	0.004	2.1	0.0
National dementia carers	09-09 / 09-10	184	177	0.005	1.9	-0.2
Mens health week	06-11 / 06-17	264	214	0.003	1.6	-0.2
Stress awareness day	11-07 / 11-08	293	209	0.002	1.4	-0.2
National dyslexia week	10-01 / 10-07	229	235	0.004	2.1	-0.2
Ocd awareness week	10-07 / 10-13	202	193	0.005	1.9	-0.6
Jeans for genes day	09-21 / 09-22	246	325	0.005	2.6	-0.2

- **25 contexts**
- **1 day → 1 month**
- **254 nodes**
- **235 edges**
- **2 density**
- **-0.2 assortativity**
Evaluation: repeated users

Repeated users are ranked higher (multiple participations to contexts).

example:

\[\sum_{u \in C} TF(u) \]

Remove inactive users:

- \(FR(u) = 0 \)
- \(\text{min}_\text{max}(|\text{Tweets}(u)|) < 0.005 \)
Evaluation

Username	Name	Follower rank	Participations
alzheimerssoc	Alzheimer’s Society	0.99	4
dementiauk	Dementia UK	0.98	4
mentalhealth	Mental Health Fdn	0.97	3
colesmillerllp	Coles Miller LLP	0.65	3
jeremy_hunt	Jeremy Hunt	1.0	2
nhsengland	NHS England	0.99	2
carersuk	Carers UK	0.95	2
rdash_nhs	RDaSH NHS FT	0.88	2
alzsocseeengland	Alzheimer’s Society - South ...	0.64	2
mndassoc	MND Association	0.64	2

Top 10 repeat users
Evaluation

Number of repeat users for each context
Evaluation: choice of ranking function

Number of ranked users: 3567

R3 effectively finds individuals
Evaluation

#	User	Ranking 1		User	Ranking 2		User	Ranking 3	
		On-topic	Individual		On-topic	Individual		On-topic	Individual
1	homesnutrition	X		johnneustadt	X		johnneustadt	X	
2	ficajones	X	X	jo_millar27	X	X	solutions777	X	X
3	helenvweaver	X	X	hatchbrenner			kingste29344921	X	X
4	spriggsnutri	X		nchawkes	X	X	daisylu1964		
5	critcarelthtr	X		moz0373runner	X	X	zakariamarsli	X	X
6	danielleroisin_	X	X	aimsonhealth	X	X	meowaaaaaa		
7	mynameisandyj	X	X	wordsharkv5		X	vecta67		X
8	fionaliu92	X	X	fullcircle_play			cosfordfamily1	X	X
9	ldppartnership	X		qsprivatehealth	X		hayleycorriganx		X
10	milaestevam1	X		socialissp			jhbrasie		X

Top 10 ranked users for the ranking functions R1, R2 and R3
What are we doing now

Recursive Twitter contexts expansion

Users-hashtags clustering

Context detection automation
Thank you!

A Customisable Pipeline for Continuously Harvesting Socially Minded Twitter Users

Paolo Missier(*), Alexander Romanovsky(*), Nélio Cacho(+), Flavio Primo(*), Mickael Figueredo(+)

Slides, code and full-text paper available @ https://flavioprimo.xyz/blog/a-customisable-pipeline-for-continuously-harvesting-socially-minded-twitter-user/

Email: fla.primo.engineer@outlook.com Twitter: @flavioprimo_91