SUPPLEMENTARY INFORMATION

Prolyl-4-hydroxylase 3 maintains β-cell glucose metabolism during fatty acid excess in mice

Daniela Nasteska1,2,3#, Federica Cuozzo1,2,3#, Katrina Viloria1,2,3, Elspeth M. Johnson4,5, Alpesh Thakker1,2, Rula Bany Bakar6, Rebecca L. Westbrook1,2, Jonathan P. Barlow7, Monica Hoang8, Jamie W. Joseph8, Gareth G. Lavery1,2, Ildem Akerman1,2, James Cantley6,9, Leanne Hodson4,5, Daniel A. Tennant1,2*, David J. Hodson1,2,3*

1 Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.
2 Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
3 Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
4 Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
5 Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
6 Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK.
7 Mitochondrial Profiling Centre, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.
8 School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada.
9 Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, UK.

#These authors contributed equally
*Correspondence should be addressed to: d.tennant@bham.ac.uk or d.hodson@bham.ac.uk

Institute of Metabolism & Systems Research (IMSR), IBR Tower, College of Medical and Dental Sciences, Birmingham B15 2TT, United Kingdom
Supplementary figure 1. ACACB and ACACA gene regulation in human islets. (A) ACACB is expressed in human islets and purified β-cells but levels are lower than ACACA (B) The ACACB promoter is regulated by multiple β-cell transcription factors, with the presence of an antisense-transcribed long non-coding RNA. All data are previously described (1-4), and publicly available via EMBL-EBI and www.isletregulome.com. Data visualization was performed using the open source University of California Santa Cruz (UCSC) Genome Browser (5).
Supplementary figure 2. PHD3 knockout does not induce a hypoxic gene expression
or Ca\(^{2+}\) signaling phenotype. (A) *Egln3* expression is highly upregulated in wild-type islets
following exposure of islets to hypoxic (1% O\(_2\)) conditions for 24 hrs (n = 4-5 replicates; 9-11
animals, unpaired t-test). (B-D) Expression of the HIF1α-target genes *Bnip* (B), *Car9* (C) and
Gls (D), is similar or decreased in βPHD3KO versus βPHD3CON islets exposed to normoxia
(21% O\(_2\)) or hypoxia (1% O\(_2\)) for 24 hrs (n = 4 animals, Kruskal-Wallis test, Dunn’s multiple
comparison test). (E and F) Glucose- (E) and KCl- (F) stimulated Ca\(^{2+}\) fluxes are not
significantly different in βPHD3KO versus βPHD3CON islets exposed to normoxia or
hypoxia (n = 10-27 islets, 2 animals/genotype, two-way ANOVA; Sidak’s multiple
comparison test). (G and H) Mean Ca\(^{2+}\) traces from βPHD3CON and βPHD3KO islets
exposed to (G) normoxia or (H) hypoxia. (I-K) Expression of the HIF1α-target genes *Gls* (I),
Bnip (J) and *Car9* (K) is unchanged or decreased in 4 weeks HFD βPHD3KO islets (n = 3-4
animals/genotype, unpaired t-test). (L-M) Expression of the HIF2α-targets (L) *Ccnd1* and (M)
Dll4 is unchanged or downregulated, respectively, in 8 weeks HFD βPHD3KO islets (n = 3
animals/genotype, unpaired t-test). Bar graphs (scatter plot) and line graphs show mean ±
SEM. *P<0.05, **P<0.01 and NS, non-significant. PHD3, prolyl-hydroxylase 3.
Supplementary Table 1. Primer sequences used for qPCR.

Gene name	Forward sequence (5' – 3')	Reverse sequence (5' - 3')
Ppia	AAGACTGAGTGGTTGGATGG	ATGGTGATCTTCTTGCTGGT
Actb	CGAGTCCGCTCCACCC	CATCCATGGCGAACTGTTGG
Egln3 (Exon 2)	GCTTGCTATCCAGGAATGG	GCGTCCAATTCTTATCAG
Egln3 (Exon 1)	GGCTGGGGATAATCTATGCAAA	GGTTGTCCACATGGCGAACA
Egln1	TAAACGGGCGAAGCGAAG	GGGTTATCAACGTGACGGCA
Egln2	CATCAATGGGCACCA	GATTGTCAACAGCTCAGTAC
BNip3	CTGGGTAGAACTGCACTTCAG	CTGGGTAGAACTGCACTTCAG
Car9	GGAGCTACTTCGTCCAGATTCAAT	CCGGAACTGAGCTCATCAAC
Glis	TCCGCCCCTGGAGATCTTAC	CCAAGCTAGTAAAGACCCCT
Ldha	TTCCAGCAGGTTGGGTTA	CCGGCCACATTGACACCAC
Cpt1a	CTCCGCGCTGAAGCAGTAGAAG	CACCAGTATGAGCTCATTCT
Acaca	TTTCCTGACAAGCAGTAGTCTG	CTGCCGAAACACATCTCTGGGA
Acacb	CCTTTGGCAACAAGCAGGAAGTA	AGTCGTACACATAGTGTTGTC
Pdx1	CCAAAAGCTCAGCGGTTGGA	TGTTTTCTCGGGTTTCCG
Nkx6-1	GGCTGTACCCCATCAAG	GTGGGTCTGTTGGTTTCTTCTT
Mafa	TCCAGCAAGGAGGGAGTCTAC	CTTAGCCGGTTTTCTTCT
Ddit3	CTGGAGCACTGTGATGAGGAT	CAGGGTAAAGATGTAAGGTTAG
Xbp1	AGCAGCAAAGTGCTGGATTG	GAGTTTTCTCCGTAAGAGCTGA
Hspa5	ACTTGGCGACCACCTATTTCCT	GTTGCCCTGATCGTTGGCTA
Ccnd1	GCGTACCCCTGACACCAATTC	CCTCTTTCGACCTTTGTGCTC
Dll4	TTCAGCGCAACCTTTCTCCGA	ACTGCGGCTATTCTTGTC
1. Moran I, Akerman I, van de Bunt M, Xie R, Benazra M, Nammo T, et al. Human beta Cell Transcriptome Analysis Uncovers IncRNAs That Are Tissue-Specific, Dynamically Regulated, and Abnormally Expressed in Type 2 Diabetes. *Cell Metabolism*. 2012;16(4):435-48.

2. Akerman I, Tu Z, Beucher A, Rolando DMY, Sauty-Colace C, Benazra M, et al. Human Pancreatic beta Cell IncRNAs Control Cell-Specific Regulatory Networks. *Cell Metab*. 2017;25(2):400-11.

3. Pasquali L, Gaulton KJ, Rodríguez-Seguí SA, Mularoni L, Miguel-Escalada I, Akerman I, et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. *Nature Genetics*. 2014;46(2):136-43.

4. Akerman I, Maestro MA, De Franco E, Grau V, Flanagan S, Garcia-Hurtado J, et al. Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene. *Cell Rep*. 2021;35(2):108981.

5. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The Human Genome Browser at UCSC. *Genome Research*. 2002;12(6):996-1006.