A positively charged surface patch on the pestivirus NS3 protease module plays an important role in modulating NS3 helicase activity and virus production

Fengwei Zheng1 · Weicheng Yi1 · Weichi Liu2 · Hongchang Zhu1 · Peng Gong2 · Zishu Pan1

Received: 13 May 2020 / Accepted: 8 February 2021 / Published online: 31 March 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021

Abstract
Pestivirus nonstructural protein 3 (NS3) is a multifunctional protein with protease and helicase activities that are essential for virus replication. In this study, we used a combination of biochemical and genetic approaches to investigate the relationship between a positively charged patch on the protease module and NS3 function. The surface patch is composed of four basic residues, R50, K74 and K94 in the NS3 protease domain and H24 in the structurally integrated cofactor NS4APCS. Single-residue or simultaneous four-residue substitutions in the patch to alanine or aspartic acid had little effect on ATPase activity. However, single substitutions of R50, K94 or H24 or a simultaneous four-residue substitution resulted in apparent changes in the helicase activity and RNA-binding ability of NS3. When these mutations were introduced into a classical swine fever virus (CSFV) cDNA clone, a single substitution at K94 or a simultaneous four-residue substitution (Qua_A or Qua_D) impaired the production of infectious virus. Furthermore, the replication efficiency of the CSFV variants was partially correlated with the helicase activity of NS3 in vitro. Our results suggest that the conserved positively charged patch on NS3 plays an important role in modulating the NS3 helicase activity in vitro and CSFV production.

Introduction
Pestiviruses are causative agents of economically important livestock diseases [10, 15, 21, 37]. Members of the genus Pestivirus include classical swine fever virus (CSFV), bovine viral diarrhea virus (BVDV), and border disease virus (BDV). The pestivirus genome consists of a single positive-stranded RNA of approximately 12.3 kb, with one open reading frame (ORF) flanked by a 5′ untranslated region (UTR) and a 3′ UTR. The ORF encodes a polyprotein of approximately 4,000 amino acids [2, 8, 25]. The polyprotein is co- and post-translationally processed by viral and host proteases to produce 12 mature proteins [5, 14, 16, 17], including four structural proteins (C, Ems, E1 and E2) [38, 41] and eight nonstructural proteins (Npro, p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B) [12, 18, 27, 40].

NS3 has serine protease and RNA helicase/nucleotide triphosphatase (NTPase) activity, and both are essential for virus replication [13, 27, 36, 42, 43]. Circumstantial evidence suggests that the protease and helicase/NTPase domains of NS3 are functionally interdependent [26, 29]. NS3 protease activity requires NS4APCS as a structurally integrated cofactor [36, 49]. In the case of hepatitis C virus (HCV), the NS3 protease domain enhances its helicase activity [3, 4]. The HCV NS3 helicase activity is modulated by NS5B, an RNA-dependent RNA polymerase (RdRP), and the protease domain is required for the interaction between NS3 and NS5B [1, 48]. In the case of CSFV, a truncated NS3 protein (NS3Hel) containing only the helicase domain has been shown to exhibit similar NTPase activity and significantly decreased helicase activity when compared to the full-length NS3 (NS3fl) [33, 39, 42, 43], thereby further demonstrating that the protease and helicase domains of NS3
A

5’UTR Npro C E1 E2 P NS2 NS3 NS4A NS4B NS5A NS5B 3’UTR

NS4APCS

Helicase

Protease

R50
K74
K94
H24

CSFV

···LKIRGIQG···VTCKDKKV···QSNKMTDE···GYQALSRRHIPVVTD···

BVDV

···LKVRGIQG···VTAGDKKV···QSNKLTD···GYQALSRRVPMITD···

BDV

···LKIRGIQG···VTAGDKKV···QSNKMTDE···GYQALSRRVPMITD···

NS3 Protease

NS4APCS

B

Pro

H24
K74
K94

Hel

C

Marker WT NS3 hel

130 kD 100 kD 70 kD 55 kD 35 kD

Set 1

Set 2

H24A R50A K74A K94A Quad_A

H24D R50D K74D K94D Quad_D

Springer
are functionally coupled. However, the exact mechanism of this intramolecular regulation needs to be addressed further.

Our previous study revealed an intramolecular protease-helicase interface with a positively charged groove in the pestivirus NS3 structure. Four basic residues (R50, K74 and K94 in NS3 and H24 in NS4APCS) in the protease part of the groove form a positively charged surface patch, which maybe coordinate with the helicase part of the groove to modulate the RNA-binding ability and helicase activity of NS3 [49]. In this study, we further investigated the relationship between this positively charged surface patch and NS3 function. Our data suggest that, in this natural protease-helicase fusion protein, the positively charged surface patch of NS3 plays an important role in modulating NS3 helicase activity and infectious virus production.

Materials and methods

Plasmid construction

To prepare the wild-type (WT) NS3 and its mutated proteins, two sets of NS3 constructs containing a single substitution or simultaneous substitution of the four basic residues (R50, K74 and K94 in the protease domain and H24 in NS4APCS) in the positively charged surface patch to alanine or aspartic acid (Fig. 1A) were generated by using an NS3 expression plasmid (pET28a-NS3S163A/NS4APCS) as a template, using a QuikChange Site-Directed Mutagenesis Kit [49, 50]. The variants generated by mutating the basic residue to alanine (A) or aspartic acid (D) are referred to as set 1 or set 2, respectively. When the four basic residues were simultaneously replaced by alanine or aspartic acid, the variant was correspondingly named Quad_A (Quadruple_A) or Quad_D (Quadruple_D). A helicase-only construct (NS3Hel, residues 204 to 683) and a variant harboring a K232A mutation in NS3 to abolish its ATPase and helicase activities were used as negative controls. We also introduced the mutations of both sets into a full-length CSFV infectious clone [20] as described previously [45] to investigate the effect of the basic residue substitutions on infectious virus production. All variants were confirmed by sequencing.

Protein expression and purification

The expression and purification of NS3S163A/NS4APCS and its variants were performed as described previously [22, 49]. Briefly, E. coli strain BL21-CodonPlus (DE3)-RIL was transformed with the expression plasmid, and the bacteria were then cultured at 37°C in terrific broth (TB) medium containing 50 μg of kanamycin and 25 μg of chloramphenicol per ml. When the optical density at 600 nm (OD600) of the culture reached 0.8, isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a final concentration of 0.5 mM. After an additional incubation at 25 °C for 4 h, the cells were harvested for subsequent experiments.

The harvested cells were resuspended in a lysis buffer (150 mM Na2SO4, 50 mM Tris [pH 8.0], 10 mM imidazole, 0.02% [wt/vol] NaN3, 20% [vol/vol] glycerol) and then lysed using an AH-2010 homogenizer (ATS Engineering Ltd.) at 14,500 lb/in². After centrifugation, the clarified lysate was loaded onto a HisTrap HP column (GE Healthcare), and the target protein was eluted with an elution buffer (300 mM imidazole, 50 mM Tris [pH 8.0], 150 mM Na2SO4, 20% [vol/vol] glycerol, and 0.02% [wt/vol] NaN3). The protein fractions were pooled, concentrated, and passed through an ENrich SEC 650 column (Bio-Rad) equilibrated with 150 mM NaCl, 5 mM Tris 7.5, 10% (vol/vol) glycerol, and 0.02% (wt/vol) NaN3. The concentrated protein was flash frozen in liquid nitrogen and stored as aliquots at – 80 °C. The protein concentration was determined by the Bradford method [6, 35].

ATPase assay

The ATPase activity was measured using a malachite-green-based method as described previously [39, 43, 49]. Briefly, the 90-μl reaction mixture except for the ATP substrate was incubated at 37 °C for 5 min. The reaction was initiated by addition of a 10-μl ATP solution to yield a final reaction mixture containing 10 nM NS3, 50 mM Tris (pH 7.5), 2.5 mM MgCl2, 50 mM NaCl, and 5 to 500 μM ATP. After an additional incubation at 37 °C for 15 min, the malachite green mixture (water, 0.081% [wt/vol] malachite green, and 5.7% [wt/vol] ammonium molybdate in 6 M HCl at a ratio of 3:2:1 [vol:vol:vol]) was added, and the absorbance was immediately measured at 630 nm on a Multiskan MK3 microplate reader (Thermo Fisher Scientific). Initial ATPase catalytic rates were determined based on the slope of the initial absorbance change and the reference standard curve of absorbance versus phosphate concentration determined independently. The observed ATP hydrolysis rates at various
ATP concentrations were fitted to Michaelis-Menten kinetics to yield the ATPase parameters (K_m^{app} and k_{cat}).

Helicase assay

A helicase unwinding pssRNA substrate T40:R20 was prepared by annealing the template strand (T40, 5′-GGGCCA AUCAUCAGAA CAGAUCUAACCU-C3′) and the release strand (R20, 5′-UACUGUAUG CAUGAUUGG-3′) labeled with 3′-6-TAMRASE (6-carboxy-tetramethylrhodamine N-succinimidyl ester) [49]. A typical 20-µl unwinding reaction mixture contained 8 U of RNasin (RiboLock; Thermo Scientific), 50 mM morpholinepropanesulfonic acid (MOPS)-NaOH (pH 7.0), 5 mM ATP, 2.5 mM MgCl$_2$, 1 mM dithiothreitol (DTT), 0.5% Tween 20, 0.1 mg of bovine serum albumin per ml, 10 nM T40:R20 (according to the concentration of the R20), 100 nM unlabeled release strand (compeitive strand), and 25 nM NS3 (protein/pssRNA molar ratio = 2.5:1). The unwinding reaction proceeded at 37 °C for 30 min and was terminated by addition of 2.2 µl of a 10× loading buffer (50 mM Tris [pH 7.5], 50 mM EDTA, 1% [wt/vol] SDS, 50% [vol/vol] glycerol, and 0.1% [wt/vol] xylene cyanol). RNAs in the quenched reaction mixtures were resolved by 12% nondenaturating polyacrylamide gel electrophoresis. The fluorescent signal of 6-TAMRASE-labeled R20 was detected using a Molecular Imager PhorosFX$^\text{TM}$ Plus System (Bio-Rad) with an excitation wavelength of 532 nm and a 605 nm emission filter. The band intensities were quantified using ImageJ (http://imagej.nih.gov/ij), and the percentage of unwound RNA was calculated based on the fluorescence intensity of the released R20. Each unwinding reaction was performed independently four times.

Fluorescence polarization (FP)‑based RNA binding assay

To measure the RNA-binding ability of NS3 and its variants, we designed pssRNA-2 by annealing the template strand (T40, 5′-GGGCCA AUCAUCAGAA CAGAUCUAACCU-C3′) and the release strand (R20, 5′-UACUGUAUG CAUGAUUGG-3′) labeled with 3′-6-TAMRASE (6-carboxy-tetramethylrhodamine N-succinimidyl ester) [49]. A typical 20-µl unwinding reaction mixture contained 8 U of RNasin (RiboLock; Thermo Scientific), 50 mM morpholinepropanesulfonic acid (MOPS)-NaOH (pH 7.0), 5 mM ATP, 2.5 mM MgCl$_2$, 1 mM dithiothreitol (DTT), 0.5% Tween 20, 0.1 mg of bovine serum albumin per ml, 10 nM T40:R20 (according to the concentration of the R20), 100 nM unlabeled release strand (compeitive strand), and 25 nM NS3 (protein/pssRNA molar ratio = 2.5:1). The unwinding reaction proceeded at 37 °C for 30 min and was terminated by addition of 2.2 µl of a 10× loading buffer (50 mM Tris [pH 7.5], 50 mM EDTA, 1% [wt/vol] SDS, 50% [vol/vol] glycerol, and 0.1% [wt/vol] xylene cyanol). RNAs in the quenched reaction mixtures were resolved by 12% nondenaturating polyacrylamide gel electrophoresis. The fluorescent signal of 6-TAMRASE-labeled R20 was detected using a Molecular Imager PhorosFX$^\text{TM}$ Plus System (Bio-Rad) with an excitation wavelength of 532 nm and a 605 nm emission filter. The band intensities were quantified using ImageJ (http://imagej.nih.gov/ij), and the percentage of unwound RNA was calculated based on the fluorescence intensity of the released R20. Each unwinding reaction was performed independently four times.

Virus rescue and titration

The virus was rescued as described previously [20, 45, 46]. Briefly, PK-15 cells were transfected with 2 µg of the WT CSFV cDNA clone or its variants containing two sets of mutations, using Lipofectamine 3000 (Invitrogen). After incubation at 37°C for 72 h, virus production was monitored by indirect immunofluorescence assay (IFA) using an anti-NS3 rabbit polyclonal antibody as the primary antibody [20] and an Alexa Fluor 488-conjugated secondary antibody (goat anti-rabbit IgG, Invitrogen). The culture supernatant was harvested and clarified by centrifugation, and virus titration was performed by IF staining [20] with anti-NS3 antibody in 96-well plates using the Reed-Muench method [32]. Virus titers were expressed as tissue culture infectious doses (50% endpoint, TCID$_{50}$) per milliliter.

RT-qPCR

Viral RNA copy numbers were determined using a reverse transcription quantitative PCR (RT-qPCR) [19, 30]. PK-15 cell monolayers in 24-well plates were infected with the virus at an MOI of 0.001. Total RNA was extracted from the infected cells at 6, 12, and 24 hpi using a TaKaRa MiniBEST Universal RNA Extraction Kit (TaKaRa) and 500 ng of total RNA was reverse transcribed using a ReverTra Ace qPCR RT Kit (TaKaRa), with a specific primer (5′-TAG CCTAAATAGTGCCCTCTG-3′). Then, the cDNA transcribed from 50 ng of total RNA was analyzed by qPCR using a THUNDERBIRD Probe qPCR Mix kit (TaKaRa) with a 5′-FAM-labeled probe (5′-TCAGTGCTACTCCC ATCACGTTGTTGA-3′) and the primers CSFV cDNA clone or its variants containing two sets of mutations, using Lipofectamine 3000 (Invitrogen). After incubation at 37 °C for 30 min, polarization was monitored using a Cytation 3 Cell Imaging Multi-Mode Reader (Bio Tek) by exciting at 485 nm (20 nm bandwidth) and measuring total fluorescence intensity and parallel and perpendicular polarized light at 528 nm (20 nm bandwidth). The G-factor (the instrument calibration factor) was calculated using readings from wells with 10 nM pssRNA-2 alone. The data at different NS3 concentrations ([S]) were fitted to the quadratic equation $f = A x [(K_d + [S] + 10)^2/4 - [S] 	imes 10]$, where the “A” represents the amplitude of the FP value change, 10 is the concentration of pssRNA-2 (10 nM), and K_d is the dissociation constant of the NS3-RNA binding complex.

RT-qPCR

Viral RNA copy numbers were determined using a reverse transcription quantitative PCR (RT-qPCR) [19, 30]. PK-15 cell monolayers in 24-well plates were infected with the virus at an MOI of 0.001. Total RNA was extracted from the infected cells at 6, 12, and 24 hpi using a TaKaRa MiniBEST Universal RNA Extraction Kit (TaKaRa) and 500 ng of total RNA was reverse transcribed using a ReverTra Ace qPCR RT Kit (TaKaRa), with a specific primer (5′-TAG CCTAAATAGTGCCCTCTG-3′). Then, the cDNA transcribed from 50 ng of total RNA was analyzed by qPCR using a THUNDERBIRD Probe qPCR Mix kit (TaKaRa) with a 5′-FAM-labeled probe (5′-TCAGTGCTACTCCC ATCACGTTGTTGA-3′) and the primers CSFV cDNA clone or its variants containing two sets of mutations, using Lipofectamine 3000 (Invitrogen). After incubation at 37 °C for 30 min, polarization was monitored using a Cytation 3 Cell Imaging Multi-Mode Reader (Bio Tek) by exciting at 485 nm (20 nm bandwidth) and measuring total fluorescence intensity and parallel and perpendicular polarized light at 528 nm (20 nm bandwidth). The G-factor (the instrument calibration factor) was calculated using readings from wells with 10 nM pssRNA-2 alone. The data at different NS3 concentrations ([S]) were fitted to the quadratic equation $f = A x [(K_d + [S] + 10)^2/4 - [S] 	imes 10]$, where the “A” represents the amplitude of the FP value change, 10 is the concentration of pssRNA-2 (10 nM), and K_d is the dissociation constant of the NS3-RNA binding complex.
(log_{10} copies/μg) were calculated from three independent experiments.

Statistical analysis

Statistical analysis was performed using Student’s t-test. A p-value less than 0.05 was considered significant.

Results

Expression and purification of NS3 and its mutants

To investigate the effect of amino acid substitutions in the positively charged surface patch of NS3 on enzyme activities, expression plasmids harboring a single substitution or simultaneous substitution of four basic residues (H24, R50, K74 and K94) (Fig. 1) were constructed using the plasmid pET28a-NS3/NS4APCS as a template [49]. These basic amino acids are highly conserved in pestivirus NS3 proteins (Fig. 1A, bottom). The four basic amino acids were simultaneously changed to alanine (A) or aspartic acid (D) in the NS3/NS4APCS surface patch to generate the corresponding mutant, Quad_A or Quad_D. Truncated NS3 (NS3Hel) and the mutant NS3/K232A were used as controls in enzyme assays [18, 42]. The recombinant proteins were expressed in E. coli, purified, and analyzed by SDS-PAGE (Fig. 1C).

The positively charged surface patch modulates the helicase activity of NS3 independently of its ATPase activity in vitro

To assess the effect of basic amino acid substitutions in the NS3/NS4APCS surface patch on the helicase and ATPase activities of NS3, we first measured the ATPase activity of WT NS3 and its mutants in vitro. ATP hydrolysis by NS3 (WT) and its mutants (for simplicity, hereinafter collectively referred to by the mutated amino acid symbol) were determined under steady-state conditions, and the data were fit to the Michaelis-Menten equation (v = V_{max}[S]/K_{M} + [S]) to calculate the apparent K_{M} (K_{M}^{app}) and k_{cat} by non-linear regression using GraphPad Prism software. The data showed that the mutants containing the substitutions at conserved sites in the NS3 basic patch had K_{M}^{app} (ATP) values in the range of 35-56 μM and k_{cat} values in the range of 4.4-5.5 sec^{-1}. For the controls, the K_{M}^{app} (ATP) of WT was 42.2 ± 2.4 μM and k_{cat} was 5.1 ± 0.1 sec^{-1}, and NS3Hel had a K_{M}^{app} (ATP) of 36.6 ± 3.6 μM and k_{cat} of 4.4 ± 0.1 sec^{-1} (Fig. 2A and Table 1). These results indicate that perturbation of the positively charged surface patch of NS3 had no influence on its ATPase activity.

We also measured the RNA helicase activity of NS3 and its mutants at a saturating ATP concentration. A partially single-stranded RNA (pssRNA) T40:R20 was used as a helicase substrate. The percentage of the unwound release strand relative to the total amount of release strand was calculated based on the fluorescent signals from native polyacrylamide gel electrophoresis (PAGE) separating free R20 from the T40:R20 complex. WT NS3 unwound 80% of the R20 under the tested conditions, while NS3Hel unwound only 15% of the substrate (Fig. 2B and Table 1). For the mutant NS3/K232A (NC), an extremely low unwinding activity was observed (Fig. 2B, 6% unwound). In set 1, the R50A, K74A, and K94A mutants unwound 71%, 86%, and 64% of the substrate, respectively. The mutants H24A and Quad_A exhibited a significantly decreased unwinding activity (Fig. 2B, 50% and 54% unwound) compared to WT NS3. In set 2, the mutant K74D unwound 71% of the substrate, and the unwinding activities of the remaining mutants significantly decreased compared to WT NS3 (Fig. 2B; 47-64% unwound). The mutant Quad_D had the lowest helicase activity (Fig. 2B). These observations collectively suggest that the basic residues in the NS3 surface patch modulate the helicase activity in vitro.

The basic residues in the surface patch regulate the RNA-binding ability of NS3 synergistically

To further investigate the mechanism by which the charged patch in the NS3 protease domain regulates RNA unwinding activity, we assessed the RNA-binding ability of NS3 and its mutants. We hypothesized that the 5' region of the substrate release strand resides at the back of NS3 and allows itself to bind the charged patch on the protease domain. We prepared another pssRNA-2 by annealing the T40 template strand and a 5'-FAM-labeled 33-mer release strand (R33). An FP-based RNA binding assay [28, 31] showed that the apparent equilibrium dissociation constant (K_{d}) of NS3 was 30.4 ± 4.3 nM and that the mutant NS3/K232A (NC) exhibited similar RNA-binding ability, with a K_{d} of 39.4 ± 9.9 nM (Fig. 3 and Table 1). The truncated mutant NS3Hel bound very little of the RNA substrate, and the value of K_{d} could not be detected under the tested conditions (Fig. 3 and Table 1). In set 1, the mutant Quad_A exhibited a significantly higher K_{d} value, 84 nM, but the K_{d} values of remaining mutants ranged from 24 to 39 nM, similar to NS3 (Fig. 3 and Table 1). In set 2, the mutant Quad_D had a K_{d} value of 160 nM, and the remaining mutants had K_{d} values in the range of 27-58 nM (Fig. 3 and Table 1). Compared to Quad_A, Quad_D exhibited significantly decreased RNA-binding ability. These results suggest that the four basic residues in the protease domain regulate the helicase activity by synergistically affecting the RNA-binding ability of NS3.
Fig. 2 The ATPase and helicase activities of CSFV NS3 and its mutants. (A) ATPase kinetics curves. ATPase activity was measured using a malachite-green-based method. The initial reaction rates at different ATP concentrations were fitted to a standard Michaelis-Menten curve (mean ± SD; n = 3). Ctr, control. (B) The helicase activity was measured using a T40:R20 pssRNA substrate. Annealed, denatured, boiled T40:R20 (lower, the released R20); Ctr, NC, NS3Hel, WT; set 1, the mutants harboring alanine substitutions; set 2, the mutants harboring aspartic acid substitutions. Measurement of helicase activity was carried out independently four times, and the percentage of mean unwound RNA is shown below the gels.

Table 1 Effects of charged amino acid substitutions on the NS3/4A PCS surface on enzymatic and viral characteristics

Construct	Helicase activity (%)	ATPase activity	K_M (nM)	Viral antigen	Virus titer (log_{10} TCID_{50}/ml)	Viral RNA copies (per µg of total RNA)
		K_M^{app} (µM)	k_{cat} (s⁻¹)			
WT NS3	79.5 ± 9.3	42.2 ± 2.4	5.1 ± 0.1	30.4 ± 4.3	7.4 ± 0.3	2.9 ± 0.5 4.1 ± 0.5 5.9 ± 0.4
NS3Hel	15.1 ± 4.9	36.6 ± 3.6	4.4 ± 0.1	–	–	ND
NC	5.7 ± 0.8	ND	ND	39.4 ± 9.9	–	ND
H24A	50.4 ± 10.2	56.3 ± 3.2	4.8 ± 0.1	23.7 ± 7.9	6.4 ± 0.4	3.1 ± 0.1 4.0 ± 0.1 5.0 ± 0.1
R50A	71.5 ± 6.5	40.5 ± 2.8	4.8 ± 0.1	39.3 ± 8.4	5.7 ± 0.5	2.7 ± 0.5 3.8 ± 0.5 5.1 ± 0.4
K74A	85.6 ± 2.1	38.6 ± 4.1	5.1 ± 0.2	26.8 ± 7.1	7.4 ± 0.4	3.0 ± 0.6 4.2 ± 0.6 5.9 ± 0.6
K94A	63.7 ± 5.0	45.8 ± 4.2	4.8 ± 0.1	38.1 ± 9.7	–	ND
Quad_A	54.3 ± 10.0	35.5 ± 3.3	5.5 ± 0.1	84.3 ± 18.3	–	ND
H24D	64.2 ± 9.6	35.9 ± 4.5	5.3 ± 0.2	49.1 ± 12.4	2.6 ± 0.5	2.6 ± 0.4 3.6 ± 0.4 4.0 ± 0.1
R50D	59.5 ± 9.3	34.6 ± 3.4	5.5 ± 0.1	32.0 ± 9.5	5.9 ± 0.4	2.8 ± 0.2 3.5 ± 0.2 4.4 ± 0.1
K74D	70.9 ± 5.3	42.3 ± 4.1	4.9 ± 0.1	57.8 ± 13.1	4.5 ± 1.1	2.6 ± 0.6 3.0 ± 0.3 4.2 ± 0.3
K94D	58.4 ± 7.3	38.5 ± 4.0	5.0 ± 0.1	27.1 ± 8.8	–	ND
Quad_D	47.2 ± 4.0	41.6 ± 2.8	5.0 ± 0.1	160.0 ± 33.4	–	ND
The positively charged surface patch of NS3 plays an important role in regulating CSFV production

To investigate the role of the positively charged surface patch on NS3 in infectious virus production, we introduced each of the mutations into an infectious full-length cDNA clone of the CSFV Shimen strain, pSPTI/SM [20]. PK-15 cells were transfected with the full-length cDNA construct to rescue infectious CSFV. The infectious rescued virus corresponding to each construct is signified by a lowercase ‘v’ preceding the construct name. The recovery of infectious CSFV was detected by IFA using an anti-NS3 antibody at 72 h post-transfection. The data showed that PK-15 cells transfected with a construct harboring the H24A, R50A, K74A, H24D, R50D, or K74D mutation were positive for viral antigen. No viral antigen was detected in PK-15 cells transfected with an infectious cDNA clone containing the K94A, Quad_A, K94D, or Quad_D mutation (Fig. 4A and Table 1).

Next, we determined the titers of the rescued CSFV mutants. The mutant vK74A had a virus titer similar to that of the wild-type virus vWT. However, the titers of the mutants vH24A, vR50A, vH24D, vR50D, and vK74D were significantly lower (Fig. 4A). Consistent with the viral antigen detection results, no infectious CSFV was rescued when using the K94A, Quad_A, K94D or Quad_D construct (Fig. 4A and Table 1). Viral RNA copy numbers in infected cells were determined using RT-qPCR [19, 30]. The viral RNA copy numbers were significantly lower for the mutants vR50A (6 to 24 hpi), vR50D and vK74D (12 and 24 hpi), and vH24A and vH24D (24 hpi) compared to
vWT. As expected, the levels of genomic RNA were found to be similar for vK74A and vWT (Fig. 4B). The differences in the RNA copy numbers were consistent with those of the virus titers. These results suggest that the positively charged surface patch of CSFV NS3 plays an important role in regulating infectious virus production by modulating viral RNA replication.

Discussion

Although NS3 of the members of the family Flaviviridae is a natural fusion protein with two separable enzymatic modules, the N-terminal protease and C-terminal NTPase/helicase of the protein are functionally coupled. The pestivirus NS3 protease domain catalyzes cleavage of host and viral proteins and is essential for the process of viral RNA replication [36, 49]. The protease domain is required for RNA unwinding by NS3 helicase and greatly enhances the ability of NS3 to bind RNA. Intermolecular electrostatics in HCV NS3 plays an important role in this process [3]. For West Nile virus NS3, this crosstalk between the protease and helicase modules has an autoregulatory function [7]. Perturbation of the CSFV NS3 protease-helicase interface by point mutations impairs the helicase activity in vitro as well as virus production in vivo [49].

It has been widely reported that the NS3 protease domain of members of the family Flaviviridae stimulates the RNA unwinding activity of its helicase [1, 23, 39, 43, 44, 48, 49]. In HCV, NS3Hel has greatly decreased helicase activity and RNA-binding ability compared to NS3fl [3, 11]. The electrostatics and allosteric contribution from the interaction interface between the CSFV NS3 helicase and protease modules play an important role in the enhanced RNA-binding ability of NS3 by the protease domain [49]. Here, we further addressed the effect of residue substitutions in the basic patch on infectious virus production. Interestingly, no direct correlation was observed between NS3 helicase activity and virus production. Unexpectedly, when the residue K94 was mutated to alanine or aspartic acid, no infectious CSFV was rescued although the mutants K94A and K94D still had moderate helicase activity in vitro. Previous studies have demonstrated that HCV NS3 interacts with NS2 and other viral proteins to form a replication complex, which is essential for virus replication and viral particle assembly [24, 34, 47]. Mutations at the interface between the BVDV NS3 protease domain and the NS4A-kink region impairs the NS3/4A-kink interaction, and the mutant is no longer capable of viral RNA replication [9]. We speculated that K94 on NS3 surface patch is essential for replication complex formation, independently of its helicase activity or RNA-binding ability. The precise mechanism of action of the residue K94 on NS3 surface patch needs to be addressed further. Among the remaining mutants with a single amino acid substitution, the virus titer was to a certain extent related to the helicase activity and RNA-binding ability of NS3. The simultaneous four-residue substitutions (Quad_A or Quad_D) resulted in significantly decreased RNA-binding ability and helicase activity of NS3 in vitro. As expected, no infectious virus could be rescued from the full-length cDNA clone harboring the Quad_A or Quad_D mutations. Collectively, our results suggested that the positively charged surface patch on the pestivirus protease module plays an important role in modulating NS3 helicase activity and virus production. These findings contribute to our understanding of the functional regulation of pestivirus NS3 and will be of potential use for the design of novel antiviral strategies.

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2018YFD0500104) and the National Natural Science Foundation of China (31570152 and 31670154).

Declarations

Conflict of interest

The authors declare that they have no competing financial interests.

References

1. Aydin C, Mukherjee S, Hanson AM, Frick DN, Schiffer CA (2013) The interdomain interface in bifunctional enzyme protein 3/4A (NS3/4A) regulates protease and helicase activities. Protein Sci 22:1786–1798
2. Becher P, Orlich M, Thiel HJ (1998) Complete genomic sequence of border disease virus, a pestivirus from sheep. J Virol 72:5165–5173
3. Beran RK, Serebrov V, Pyle AM (2007) The serine protease domain of hepatitis C viral NS3 activates RNA helicase activity by promoting the binding of RNA substrate. J Bio Chem 282:34913–34920
4. Beran RK, Pyle AM (2008) Hepatitis C viral NS3-4A protease activity is enhanced by the NS3 helicase. J Bio Chem 283:29929–29937
5. Bintintan I, Meyers G (2010) A new type of signal peptidase cleavage site identified in an RNA virus polyprotein. J Bio Chem 285:8572–8584
6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
7. Chernov AV, Shiryaev SA, Aleshin AE, Ratnikov BI, Smith JW, Liddington RC, Strongin AY (2008) The two-component NS2B-NS3 protease represses DNA unwinding activity of the West Nile virus NS3 helicase. J Bio Chem 283:17270–17278
8. Colett MS, Larson R, Gold C, Strick D, Anderson DK, Puchchio AF (1988) Molecular cloning and nucleotide sequence of the pestivirus bovine viral diarrhea virus. Virology 165:191–199
9. Dubrav D, Tortorici MA, Rey FA, Tautoz N (2017) A positive-strand RNA virus uses alternative protein–protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis. PLoS Pathog 13:e1006134
10. Edwards S, Fukusho A, Lefevre PC, Lipowski A, Pejsak Z, Roche P, Westergaard J (2000) Classical swine fever: the global situation. Vet Microbiol 73:103–119

11. Frick DN, Ryampa RS, Lam AM, Gu BH (2004) The nonstructural protein 3 protease/helicase requires an intact protease domain to unwind duplex RNA efficiently. J Bio Chem 279:1269–1280

12. Gladue DP, Holinka LG, Largo E, Fernandez Sainz I, Carrillo C, O’Donnell V, Baker-Branstetter R, Lu Z, Ambroggio X, Risatti GR, Nieva JL, Borca MV (2012) Classical swine fever virus p7 protein is a viroporin involved in virulence in swine. J Virol 86:6778–6791

13. Gu B, Liu C, Lin-Goerke J, Maley DR, Gutshall LL, Feltenberger CA, Del Vecchio AM (2000) The RNA helicase and nucleotide triphosphatase activities of the bovine viral diarrhea virus NS3 protein are essential for viral replication. J Virol 74:1794–1800

14. Harada T, Tautz N, Thiel HJ (2000) E2–p7 region of the bovine viral diarrhea virus polypeptide: processing and functional studies. J Virol 74:9498–9506

15. Houe H (1999) Epidemiological features and economical importance of bovine virus diarrhea virus (BVDV) infections. Vet Microbiol 64:89–107

16. Lackner T, Muller A, Pankraz A, Becher P, Thiel HJ, Gorbalenya AE, Tautz N (2004) Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J Virol 78:10765–10775

17. Lamp B, Riedel C, Roman-Sosa G, Heimann M, Jacobi S, Becher B, Riedel C, Wentz E, Tortorici MA, Rumenapf T (2011) Biosynthesis of classical swine fever virus nonstructural proteins. J Virol 85:3607–3620

18. Lamp B, Riedel C, Wentz E, Tortorici MA, Rumenapf T (2013) Autocatalytic cleavage within classical swine fever virus NS3 leads to a functional separation of protease and helicase. J Virol 87:11872–11883

19. Li L, Wu R, Zheng F, Zhao C, Pan Z (2015) The N-terminus of classical swine fever virus (CSFV) nonstructural protein 2 modulates viral genome RNA replication. Virus Res 210:90–99

20. Li L, Pang H, Wu R, Zhang Y, Tan Y, Pan Z (2016) Development of a novel single-step reverse genetics system for the generation of classical swine fever virus. Arch Virol 161:1831–1838

21. Lindenbach BD, Thiel H-J, Rice CM (2007) Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM (ed) Fields virology, 5th edn, vol 1. Lippincott, Williams & Wilkins, Philadelphia, pp 1101–1152

22. Lu G, Gong P (2013) Crystal Structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog 9:e1003549

23. Luo D, Wei N, Duan DN, Paradkar PN, Chong Y, Davidson AD, Kotaka M, Lescar J, Vasudevan SG (2010) Flexibility between the protease and helicase domains of the dengue virus NS3 protein conferred by the linker region and its functional implications. J Bio Chem 285:18817–18827

24. Ma Y, Anantpadma M, Timpe JM, Shunmugam S, Singh SM, Lemon SM, Yi M (2011) Hepatitis C virus NS5 protein serves as a scaffold for virus assembly by interacting with both structural and nonstructural proteins. J Virol 85:86–97

25. Meyers G, Rumenapf T, Thiel HJ (1989) Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology 171:555–567

26. Morgenstern KA, Landro JA, Hsiao K, Lin C, Gu Y, Su MS, Thomson JA (1997) Polynucleotide modulation of the protease, nucleoside triphosphatase, and helicase activities of a hepatitis C virus NS3-NS4A complex isolated from transfected COS cells. J Virol 71:3767–3775

27. Moulin HR, Seuberlich T, Bauhöfer O, Bennett LC, Trautsch JD, Hofmann MA, Ruggli N (2007) Nonstructural proteins NS2-3 and NS4A of classical swine fever virus: essential features for infectious particle formation. Virology 365:376–389

28. Mukherjee S, Hanson AM, Shadrick WR, Ndjomou J, Sweeney NL, Hernandez JJ, Bartczak D, Li K, Frankowski KJ, Heck JA, Arnold LA, Schoenen FJ, Frick DN (2012) Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays. Nucleic acids Res 40:8607–8621

29. Pang PS, Jankowsky E, Planet PJ, Pyle AM (2002) The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J 21:1168–1176

30. Pei J, Zhao M, Ye Z, Hou G, Wang J, Yi L, Dong X, Liu W, Luo Y, Liao M, Chen J (2014) Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy 10:93–110

31. Provazzi PJ, Mukherjee S, Hansson AM, Nogueira ML, Carneiro BM, Frick DN, Rahal P (2015) Analysis of the enzymatic activity of an NS3 helicase genotype 3 variant sequence obtained from a relapse patient. PLoS ONE 10:e0144638

32. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497

33. Sheng C, Xiao M, Geng X, Liu J, Wang Y, Gu F (2007) Characterization of interaction of classical swine fever virus NS3 helicase with 3’ untranslated region. Virus Res 129:43–53

34. Stapleford KA, Lindenbach BD (2011) Hepatitis C virus NS2 coordinates virus particle assembly through physical interactions with the E1–E2 glycoprotein and NS3-NS4A enzyme complexes. J Virol 85:1706–1717

35. Stoscheck CM (1990) Quantitation of protein. Methods Enzymol 182:50–68

36. Tautz N, Kaisers, Thiel HJ (2000) NS3 serine protease of bovine viral diarrhea virus: characterization of active site residues, NS4A cofactor domain, and protease-cofactor interactions. Virology 273:351–363

37. Tautz N, Tews BA, Meyers G (2015) The molecular biology of pestiviruses. Adv Virus Res 93:47–160

38. Thiel HJ, Stark R, Weiland E, Rumenapf T, Meyers G (1991) Holochoria virus: molecular composition of virions from a pestivirus. J Virol 65:4705–4712

39. Tortorici MA, Duquerroy S, Kwo J, Vonrhein C, Perez J, Lamp B, Bricogne G, Rumenapf T, Vachette P, Rey FA (2015) X-ray structure of the pestivirus NS3 helicase and its conformation in solution. J Virol 89:4356–4371

40. Tratschin JD, Moser C, Ruggli N, Hofmann MA (1998) Classical swine fever virus leader protease Npro is not required for viral replication in cell culture. J Virol 72:6781–6784

41. Weiland F, Weiland E, Unger G, Saalmuller A, Thiel HJ (1999) Localization of pestiviral envelope proteins E(rns) and E2 at the cell surface and on isolated particles. J Gen Virol 80(Pt 5):1157–1165

42. Wen G, Chen C, Luo X, Wang Y, Zhang C, Pan Z (2007) Identification and characterization of the NTPase activity of classical swine fever virus (CSFV) nonstructural protein 3 (NS3) expressed in bacteria. Arch Virol 152:1565–1573

43. Wen G, Xue J, Shen Y, Zhang C, Pan Z (2009) Characterization of classical swine fever virus (CSFV) nonstructural protein 3 (NS3) helicase activity and its modulation by CSFV RNA-dependent RNA polymerase. Virus Res 141:63–70

44. Wu J, Bera AK, Kuhn RJ, Smith JL (2005) Structure of the Flavivirus helicase: implications for catalytic activity, protein interactions, and proteolytic processing. J Virol 79:10268–10277

45. Wu R, Li L, Zhao Y, Tu J, Pan Z (2016) Identification of two amino acids within E2 important for the pathogenicity of chimeric classical swine fever virus. Virus Res 211:79–85

46. Yang ZH, Wu R, Li RW, Li L, Xiong ZL, Zhao HZ, Guo DY, Pan ZS (2012) Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections. Virus Res 165:61–70
47. Yi M, Ma Y, Yates J, Lemon SM (2007) Compensatory mutations in E1, p7, NS2, and NS3 enhance yields of cell culture-infectious intergenotypic chimeric hepatitis C virus. J Virol 81:629–638
48. Zhang C, Cai Z, Kim YC, Kumar R, Yuan F, Shi PY, Kao C, Luo G (2005) Stimulation of hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase activity by the NS3 protease domain and by HCV RNA-dependent RNA polymerase. J Virol 79:8687–8697
49. Zheng F, Lu G, Li L, Gong P, Pan Z (2017) Uncoupling of protease trans-cleavage and helicase activities in pestivirus NS3. J Virol 91:e1904-1917
50. Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32:e115

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.