GLOBAL EXISTENCE AND LONG-TIME BEHAVIOUR OF NONLINEAR EQUATION OF SCHRÖDINGER TYPE

KAMAL N. SOLTANOV

Abstract. In this paper we study a mixed problem for the nonlinear Schrödinger equation globally that have a nonlinear adding, in which the coefficient is a generalized function. Here is proved a global solvability theorem of the considered problem with use of the general solvability theorem of the article [30]. Furthermore here is investigated also the behaviour of the solution of the studied problem.

We consider the following problem for the nonhomogeneous nonlinear Schrödinger equation

\begin{align}
\mathbf{0.1} & \quad i \frac{\partial u}{\partial t} - \Delta u + f(x,u) = h(t,x), \quad (t,x) \in \mathbb{R}^+ \times \Omega \equiv Q, \\
\mathbf{0.2} & \quad u(0,x) = u_0(x), \quad x \in \Omega \subset \mathbb{R}^n, \quad n \geq 1; \quad u \big|_{n_+ \times \partial \Omega} = 0,
\end{align}

where \(h(t,x) \) and \(u_0(x) \) are complex functions, \(f(x,t) \) is a distribution (generalized function) with respect to variable \(x \in \Omega \), \(\Omega \) is a bounded domain with sufficiently smooth boundary \(\partial \Omega \), \(i \equiv \sqrt{-1} \). We investigate this problem in the case, when the function \(f(x,t) \) can be represented as \(f(x,u) = q(x)|u(t,x)|^{p-2}u(t,x) + a(x)|u(t,x)|^{\bar{p}-2}u(t,x) \), i.e. the function \(f \) has the growth with respect to unknown function of the polynomial type, where \(a : \Omega \rightarrow \mathbb{R} \) is some function and \(q : \Omega \rightarrow \mathbb{R} \) is a generalized function, \(p \geq 2, \, \bar{p} \geq 2, \, h \in L_2(Q) \) (i.e. \(h(t,x) \equiv h_1(t,x) + ih_2(t,x) \) and \(h_j \in L_2(Q), \, j = 1, 2 \)).

The nonlinear Schrödinger equation of the type (0.1), and also steady-state case of the equation (0.1) arises in several models of different physical phenomena corresponding to various function \(f \). The equation of such type were studied in many articles under different conditions on the function \(f \) in the dynamic case (see for example [2, 4, 6 - 9, 14, 17, 18, 20, 22, 24, 31, 32, 34] and the references therein) and in the steady-state case (see, for example, [1, 3, 5, 10 - 16, 18, 19, 23 - 26, 28, 32, 33, 35] and references therein). It is known that in this case the equation (0.1) in the steady-state case (i.e. if \(u \) is independent of \(t \)) is an equation of the semiclassical nonlinear Schrödinger type (i.e. NLS) (see, [1, 2, 3, 10, 13] and references therein). Considerable attention has been paid in recent years to the problem (0.1) for small \(\varepsilon > 0 \) as the coefficients of the linear part since the solutions are known as in the semiclassical states, which can be used to describe the transition from quantum to classical mechanics (see, [3, 10 - 14, 23 - 25, 32 - 35] and references therein).

2000 Mathematics Subject Classification. Primary 35J60, 35B33, 35Q55 ; Secondary 33E30, 46F10, 46T20.

Key words and phrases. Nonlinear Schrödinger equation, generalized function coefficient, general existence theorem, solvability theorem, behaviour of solution.

Supported by 110T558-projekt of TUBITAK.
In the above mentioned articles the equation (0.1), and also the steady-state case was considered with various functions \(f(x, u) \) that are mainly Caratheodory functions\(^1\) with some additional properties. Moreover in some of these articles are presumed, that dates of considered problem possess more smoothness and study the behaviour of a solution of the posed problem with use the Fourier mod. Although such cases when \(f(x, u) \) possesses a singularity with respect to the variable \(x \) of certain type were also investigated (as equations Emden-Fowler, Yamabe, NLS etc.), but in all of these articles the coefficient \(q(x) \) is a function in the usual sense (of a Lebesgue space or of a Sobolev space).

In this paper we study problem (0.1)-(0.2) in the case when \(f \) have the above representation and the function \(q \) is a generalized function and the beahviour of the solution. Moreover here for the proof of the existence theorem of the problem is used some different method, which allow us several other possibility. It should be noted that the steady-state case of the problem of such type were studied in [28]. Here we study problem (0.1)-(0.2) globally in the dynamical case, which in [31] is studied for \(t \in (0, T), T < \infty \). Here an existence theorem (section 1) for the problem (0.1) - (0.2) is proved in the model case when \(f(x, u) \) only has the above expression (section 4).

In section 2 we have defined how to understand the equation (0.1) with use of representation of certain generalized functions and properties of some special class of functions (see, for example, [27, 28]). In section 3 we have conducted variants of the general results from [29, 30], on which the proof of the solvability theorem is based and in section 5 is studied the behaviour of the solutions of the considered problem under certain additions conditions.

1. Statement of the Main Solvability Result

Let the operator \(f(x, u) \) have the form

\[
f(x, u) = q(x) |u|^{p-2} u + a(x) |u(t, x)|^{p-2} u(t, x)
\]

in the generalized sense, where \(q \in \mathcal{W}^{-1, p_0}(\Omega) \), \(p_0 \geq 2 \) (it should be noted that either \(p_0 \equiv p_0(p) \) or \(p \equiv p(p_0) \)), \(a : \Omega \rightarrow R \) and \(u : Q \rightarrow \mathbb{C} \) is an element of the space of sufficiently smooth functions that will be determined below (see, Section 2). Consequently the function \(q(x) \) is a generalized function, which has singularity of the order 1.

We will set some necessary denotations. Everywhere later the expression of the type \(u \in L^m\left(R^+; W_0^{1,2}(\Omega)\right) \cap L^2\left(R^+; W_0^{1,2}(\Omega)\right) \equiv L^{(2,m)}\left(R^+; W_0^{1,2}(\Omega)\right) \) for \(u : Q \rightarrow \mathbb{C} \) denote the following

\[
(u_1, u_2) \in \left(L^{m_1}\left(R^+; W_0^{1,2}(\Omega)\right)\right)^2 \equiv \left(L^{m_1}\left(R^+; W_0^{1,2}(\Omega)\right), L^{m_1}\left(R^+; W_0^{1,2}(\Omega)\right)\right)
\]

holds for \(m_1 \in [2, m] \), where \(u(t, x) \equiv u_1(t, x) + iu_2(t, x) \), \(m \geq 2 \) consequently we can set \(u(t, x) \equiv (u_1(t, x), u_2(t, x)) \), i.e. \(u : Q \rightarrow \mathbb{R}^2 \);

Everywhere later \((\cdot, \cdot) \) and \([\cdot, \cdot] \) denote the dual form for the pair \((X, X^*)\) of the Banach space \(X \) and its dual space \(X^* \), for example, in the case when \(X \equiv W_0^{1,2}(\Omega) \)

\(^1\)Let \(f : \Omega \times R^n \rightarrow R \) be a given function, where \(\Omega \) is a nonempty measurable set in \(R^n \) and \(n, m \geq 1 \). Then \(f \) is Caratheodory function if the following hold: \(x \rightarrow f(x, \eta) \) is measurable on \(\Omega \) for all \(\eta \in R^n \), and \(\eta \rightarrow f(x, \eta) \) is continuous on \(R^n \) for almost all \(x \in \Omega \).
and $X \equiv L^m_1 \left(R_+; W_{0}^{1,2} (\Omega) \right)$ we have

$$(X, X^*) \equiv \left(\left(W_{0}^{1,2} (\Omega) \right)^2 , \left(W_{0}^{1,2} (\Omega) \right)^2 \right)$$

and

$$(X, X^*) \equiv \left(\left(L^m_1 \left(R_+; W_{0}^{1,2} (\Omega) \right) \right)^2 , \left(L^m_1 \left(R_+; W^{-1,2} (\Omega) \right) \right)^2 \right),$$

respectively, where $m_1 = \frac{m}{m_2 - 1}$. In the other words we will understand these expressions everywhere later as the following representations

$$\langle g, w \rangle = \int_{\Omega} g(x) \overline{w(x)} \, dx, \quad g_j \in W_{0}^{1,2} (\Omega), \quad w_j \in W^{-1,2} (\Omega), \quad g \equiv g_1 + ig_2;$$

and

$$[g, w] \equiv \int_{0}^{\infty} \int_{\Omega} g(t,x) \overline{w(t,x)} \, dx \, dt, \quad g_j \in L^m_1 \left(R_+; W_{0}^{1,2} (\Omega) \right),$$

$$w_j \in L^m_1 \left(R_+; W^{-1,2} (\Omega) \right)$$

respectively.

Assume the following conditions: (i) let $\bar{p} < \frac{n+2}{n-2}$ if $n \geq 3$, $\bar{p} \in [2, \infty]$ if $n = 1, 2$ and $a \in L^\infty (\Omega)$;

(ii) there exist numbers $k_0 \geq 0$, $p_2 \geq 1$ and $k_1 \leq \min \left\{ 1; \frac{2}{p} \right\}$ such that $1 \leq p_2 < \frac{2n}{n-2}$, if $n \geq 3$, $2 \leq p_2 < \infty$, if $n = 1, 2$ and

$$\langle a(x) |u|^{p-2} u , \overline{u} \rangle \geq -k_0 |u|^{p_2} - k_1 \langle q(x) |u|^{p-2} u , \overline{u} \rangle$$

holds for any $u \in L^{(2,m)} \left(R_+; W_{0}^{1,2} (\Omega) \right)$ and a.e. $t \geq 0$, where $1 > C(2, p_2)^2 \cdot k_0$.

Definition 1. A function

$$u \in L^m \left(R_+; W_{0}^{1,2} (\Omega) \right) \cap L^2 \left(R_+; W_{0}^{1,2} (\Omega) \right) \cap \left\{ u \mid \frac{\partial u}{\partial t} \in L^2 \left(R_+; L^2 (\Omega) \right); \ u(0,x) = u_0 \right\}$$

is called a solution of the problem (0.1) - (0.2) if the following equation is fulfilled

$$(1.3) \quad \int_{0}^{\infty} \int_{\Omega} \left[\frac{\partial u}{\partial t} - \Delta u + f(x,u) \right] \varphi \, dx \, dt = \int_{0}^{\infty} \int_{\Omega} h \varphi \, dx \, dt$$

for any $\varphi \in L^{(2,m)} \left(R_+; W_{0}^{1,2} (\Omega) \right)$.

It should be noted that the sense in which equation (1.3) is to be understood will be explained below (section 2). We have proved the following result for the considered problem.

\[C(2, p_2) \] is the constant of the known inequality of Embedding Theorems for Sobolev spaces

$$\| \nabla u \|_2 \geq C(2, p_2) \| u \|_{p_2}, \quad \forall u \in W_{0}^{1,2} (\Omega).$$
Theorem 1. Let the function \(f \) have the representation (1.1) in the generalized sense, where \(q \in W_{p_0}^{-1}(\Omega) \) is a nonnegative distribution (generalized function\(^3\)),
\[
p_0 = \frac{2n}{2(n-1)-p(n-2)}, \quad 2(n-1)n-2 > p > 2 \text{ if } n \geq 3; \quad p_0, p > 2 \text{ are arbitrary if } n = 2, \quad \text{and } p_0, p \geq 2 \text{ are arbitrary if } n = 1 \text{ (in particular, if } n = 3 \text{ then } 2 < p < 4 \quad \text{and } p_0 = \frac{2-n}{4-p} \text{ and conditions (i), (ii) are fulfilled. Then for any } h \in L^2(Q) \text{ and } u_0 \in W_{1,2}^1(\Omega) \text{ the problem (0.1) - (0.2) is solvable in } L^{2,m}(R_+; W_{0,2}^{1,2}(\Omega)) \cap \{ u \mid \frac{\partial u}{\partial \nu} \in L^2(R_+; L^2(\Omega)) ; u(0, x) = u_0 \}.
\]

For the investigation of the considered problem we used some general solvability theorems, which are conducted in section 3. We begin with explanation of equation (1.3).

2. The Solution Concept and Function Spaces

So we will consider the case when the function \(f(x, u) \) has the form (1.1) where functions \(a, q \) and \(u \) are the same as above. Consequently the function \(q(x) \) is a generalized function, which has singularity of order 1. Therefore we must understand the equation (0.1) in the generalized function space sense, i.e.
\[
\int_{\Omega} \left[\frac{\partial u}{\partial t} - \Delta u + f(x, u) \right] \varphi(x) \, dx = 0
\]
(2.1)
\[
\int_{\Omega} a(x) |u(t, x)|^{\bar{p}-2} u(t, x) \varphi(x) \, dx = \int_{\Omega} h(t, x) \varphi(x) \, dx
\]
for any \(\varphi = \varphi_1 + i\varphi_2, \varphi_j \in D(\Omega), j = 1, 2 \), where \(D(\Omega) \) is \(C_0^\infty(\Omega) \) and \(\text{supp} \varphi_j \subset \Omega \) with corresponding topology. Here the equation (2.1) will be understood in the sense of the space \(L_2(R_+) \).

In the beginning we need to define the expression \(q |u|^{p-2} u \). It is known that (see, for example, [21]) in the case when \(q \in W_{p_0}^{-1}(\Omega) \) we can represent it in the form \(q(x) = \sum_{k=0}^n D_k q_k(x), \quad D_k \equiv \frac{\partial}{\partial x_k}, \quad D_0 \equiv 1, \quad q_k \in L_{p_0}(\Omega), \quad k = 0, 1, n \) in the generalized function space sense. From here it follows that if a solution of the considered problem belongs to the space which contains to \(W_0^{1,p_1}(\Omega) \) for some number \(\bar{p}_1 > 1 \) then we can understand the term \(q |u|^{p-2} u \) in the following sense
\[
\left< q |u|^{p-2} u, \varphi \right> \equiv \int_{\Omega} q(x) |u(t, x)|^{p-2} u(t, x) \varphi(x) \, dx
\]
(2.2)
for any \(\varphi = \varphi_1 + i\varphi_2, \varphi_j \in D(\Omega), j = 1, 2 \) and a.e. \(t > 0 \). Therefore we must find the needed number \(\bar{p}_1 \geq 2 \). Namely we must find the relation between the numbers \(p_0 \) and \(\bar{p}_1 \). So, taking into account that for a function \(u \in L^m(R_+; W_{0,2}^{1,2}(\Omega)) \), i.e.
\[\text{see, Definition 2 of the section 2}\]
ϕ

ϕ

≤

p<n2

(2.5)

I

sufficient to study one of the

p,

ϕ

then the left part of (2.3) is defined. Now, let

p

and consequently in order for

p

by virtue of the generalized function theory.

M

(2.4)

that implies the correctness of the statement

W

α

theorems. J. Nonlinear Analysis : T.M. & APPL. (2006), 65, 2103-2134 and references therein

Thus we determined under what conditions the left part of (2.3) is defined. Hence

I

0 ≤ p − 2 ≤ n(p−2)6p−2(n−2)

p0

then the left part of (2.3) is defined. Now, let

ϕj

W

1,2

(Ω), j = 1, 2. Then it is sufficient to study one of the

I1

and

I2.

Let us consider

I1,

which we obtain,

then we can choose

p ≥ 2 only if

p0

n

p

̃1

(Ω)

we consider the following class of the functions

1

,β

Ω

,α,β

Ω

C

ν,1,β(Ω)

α ≥ 0, β > 1 are certain numbers, W

1,β

(Ω) is a Sobolev space, i.e. we consider a class of the pn-space.4

It is not difficult to see that if

1 ≤ α0 + β0 ≤ α1 + β1, 0 ≤ β0 < β1, α1β0 ≤ α0β1,

1 ≤ β1 then

(2.5)

∫

Ω

|u|α0

n

k=1

|Dk u|β0

dx ≤ c

∫

Ω

|u|α1

n

k=1

|Dk u|β1

dx + c1

4These are a complete metric spaces; about their properties see, for example,

Soltanov K. N., Some nonlinear equations of the nonstable filtration type and embedding theorems. J. Nonlinear Analysis : T.M. & APPL. (2006), 65, 2103-2134 and references therein
holds for any \(u \in C_0^1 (\Omega) \), where constants \(c, c_1 \geq 0 \) are independent from \(u \).

Furthermore if we will introduce the space \(M_{\eta, W_0^{1,\beta}} (\Omega) \equiv S_{\eta, \alpha, \beta} (\Omega) \equiv S_{\eta, \alpha, \beta} (\Omega) \cap \{ u (x) \mid u \mid_{\partial \Omega} = 0 \} \) then we get

Lemma 1. Let \(u \in W_{0}^{1,2} (\Omega) \) and the number \(p \) satisfy the inequation \(2 < p < \frac{2(n-1)}{n-2} \), \(n \geq 3 \). Then the function \(v (x) \equiv u (x) \equiv |u (x)|^p \) belongs to \(W_{0}^{1,\beta} (\Omega) \) for any \(\beta \in [1, p_0'] \), where \(p_0 = \frac{2(n-1)}{2(n-2)-2} \) and \(p_0' = \frac{p_0}{p_0 - 1} = \frac{2(n-1)}{p_0(n-2)+2} \). (It is obvious: \(u \in W_{0}^{1,2} (\Omega) \Rightarrow v \equiv |u|^p \in W_{0}^{1,\beta} (\Omega) \) for any \(\beta \in [1, 2] \) if \(n = 2 \), and for any \(\beta \in [1, 2] \) if \(n = 1 \).

Proof. We have

\[
\int_{\Omega} |u|^{(p-1)\beta} |D_k u|^\beta \, dx \leq k (\varepsilon) \int_{\Omega} |D_k u|^2 \, dx + \varepsilon \int_{\Omega} |u|^{(p-1)\beta} \frac{2-n}{n-2} \, dx
\]

for any \(u \in W_{1,2} (\Omega) \) and \(\beta \in [1, p_0'] \). It is enough to consider the case \(\beta = p_0' = \frac{2(n-1)}{2(n-2)-2} \), because \(\Omega \subset \mathbb{R}^n \) is a bounded domain with sufficiently smooth boundary \(\partial \Omega \). So, from here we get

\[
\int_{\Omega} |u|^{(p-1)\beta} |D_k u|^\beta \, dx \leq c (\varepsilon) \int_{\Omega} |D_k u|^2 \, dx + \varepsilon \int_{\Omega} |u|^{(p-1)\beta} \frac{2-n}{n-2} \, dx + c_0.
\]

Then \((p-1)p_0' = \frac{2(n-1)}{n-2} \) holds under the conditions of the Lemma 1. Consequently, we obtain \(u \in W_{0}^{1,2} (\Omega) \Rightarrow v \equiv |u|^p \in W_{0}^{1,\beta} (\Omega) \) for any \(\beta \in [1, p_0'] \), with choosing \(\varepsilon > 0 \) sufficiently small and with use the Embedding Theorem for Sobolev spaces.

Corollary 1. Let \(u, w \in W_{0}^{1,2} (\Omega) \) and the number \(p \) is such that \(2 < p < \frac{2(n-1)}{n-2} \), \(n \geq 3 \). Then the function \(v (x) \equiv |u (x)|^{p-2} u (x) w (x) \) belongs to \(W_{0}^{1,\beta} (\Omega) \) (i.e. \(v \in W_{0}^{1,\beta} (\Omega) \)) for any \(\beta \in [1, p_0'] \), where \(p_0 = \frac{2(n-1)}{2(n-2)-2} \) and \(p_0' = \frac{p_0}{p_0 - 1} \).

Now we introduce a concept of the nonnegative generalized function

Definition 2. A generalized function \(q (x) \) is called a non-negative distribution (\("q \geq 0" \)) iff \(\langle q, \varphi \rangle \geq 0 \) holds for any non-negative test function \(\varphi \in D (\Omega) \).

3. General Solvability Results

Let \(X, Y \) be reflexive Banach spaces and \(X^*, Y^* \) their dual spaces, moreover \(Y \) is a reflexive Banach space with strictly convex norm together with \(Y^* \) (see, for example, references of [29]). Let \(f : D (f) \subseteq X \rightarrow Y \) be an operator. So we conduct variant of the main result of [29] (the more general cases can be seen in [30]). Consider the following conditions:

(a) \(X, Y \) be Banach spaces such as above and \(f : D (f) \subseteq X \rightarrow Y \) be a continuous mapping, moreover there is the closed ball \(B_{r_0}^X (x_0) \subset X \) of an element \(x_0 \) of \(D (f) \) that belongs to \(D (f) \) (\(B_{r_0}^X (x_0) \subseteq D (f) \)).

Let the following conditions are fulfilled on the closed ball \(B_{r_0}^X (x_0) \subseteq D (f) \):

\[\text{[Here it is enough assume: there is the closed neighborhood } U_\delta (x_0) \subseteq X \text{ of an element } x_0 \text{ of } D (f) \text{ that belongs to } D (f) (U_\delta (x_0) \subseteq D (f)) \text{ and } U_\delta (x_0) \text{ is equivalence to } B_{r_0}^X (x_0) \text{ for some numbers } \delta, r_0 > 0. \text{ Consequently, it is enough account that } U_{r_0} (x_0) \equiv B_{r_0}^X (x_0).]\]
(b) f is a bounded mapping on the ball $B^X_{r_0}(x_0)$, i.e. $\|f(x)\|_Y \leq \mu (\|x\|_X)$ holds for $\forall x \in B^X_{r_0}(x_0)$ where $\mu : R^1_+ \rightarrow R^1_+$ is a continuous function;

(c) there is a mapping $g : D(g) \subseteq X \rightarrow Y^*$, and a continuous function $\nu : R^1_+ \rightarrow R^1$ nondecreasing for $\tau \geq \tau_0$ such that $D(f) \subseteq D(g)$, and for any $S^X_r(x_0) \subset B^X_{r_0}(x_0), 0 < r \leq r_0$, closure of $g (S^X_r(x_0)) \equiv S^Y_{\nu^{-1}(r)}$, $S^X_r(x_0) \subseteq g^{-1}(S^Y_{\nu^{-1}(r)})$

\begin{equation}
(f(x) - f(x_0), g(x)) \geq \nu (\|x - x_0\|_X) \|x - x_0\|_X, \quad \text{a.e. } x \in B^X_{\nu^{-1}(r)} \quad \& \quad \nu(r_0) \geq \delta_0 > 0
\end{equation}

holds, here $\delta_0 > 0, \tau_0 \geq 0$ are constants;

(d) almost each $\bar{x} \in int B^X_{r_0}(x_0)$ possesses a neighborhood $V_{\varepsilon} (\bar{x}), \varepsilon \geq \varepsilon_0 > 0$ such that the inequation

\begin{equation}
\|f(x_2) - f(x_1)\|_Y \geq \Phi (\|x_2 - x_1\|_X, \bar{x}, \varepsilon) + \psi (\|x_1 - x_2\|_Z, \bar{x}, \varepsilon)
\end{equation}

holds for any $x_1, x_2 \in V_{\varepsilon} (\bar{x}) \cap B^X_{r_0}(x_0)$, where $\Phi (\tau, \bar{x}, \varepsilon) \geq 0$ is a continuous function of τ and $\Phi (\tau, \bar{x}, \varepsilon) \equiv 0 \iff \tau = 0$ (in particular, maybe $\bar{x} = 0, \varepsilon = \varepsilon_0 = r_0$ and $V_{\varepsilon} (\bar{x}) = V_{\varepsilon_0} (x_0) = B^X_{r_0}(x_0)$), consequently $\Phi (\tau, \bar{x}, \varepsilon) = \Phi (\tau, x_0, r_0)$ on $B^X_{r_0}(x_0)$, Z is a Banach space and the inclusion $X \subseteq Z$ is compact, and $\psi (\cdot, \bar{x}, \varepsilon) : R^1_+ \rightarrow R^1$ is a continuous function at τ and $\psi (0, \bar{x}, \varepsilon) = 0$;

(d') f possesses the P-property on the ball $B^X_{r_0}(x_0)$, i.e. for any precompact subset $M \subseteq \text{Im } f$ of Y there exists a (general) subsequence $M_0 \subset M$ such that there exists a precompact subset G of $B^X_{r_0}(x_0) \subset X$ that satisfies the inclusions $f^{-1}(M_0) \subseteq G$ and $f(G \cap D(f)) \supseteq M_0$.

Theorem 2. Let the conditions (a), (b), (c) be fulfilled. Then if the image $f (B^X_{r_0}(x_0))$ of the ball $B^X_{r_0}(x_0)$ is closed (or is fulfilled the condition (d) or (d')) then $f (B^X_{r_0}(x_0))$ is a bodily subset (i.e. with nonempty interior) of Y, moreover $f (B^X_{r_0}(x_0))$ contains a bodily subset M that has the form

\[M = \{ y \in Y \mid \langle y, g(x) \rangle \leq \langle f(x), g(x) \rangle, \forall x \in S^X_{r_0}(x_0) \}. \]

Now we lead a solvability theorem for the nonlinear equation in Banach spaces, which is proved using Theorem 2. Let $F_0 : D(F_0) \subseteq X \rightarrow Y$ and $F_1 : D(F_1) \subseteq X \rightarrow Y$ be some nonlinear mappings such that $D(F_0) \cap D(F_1) = G \subseteq X$ and $G \neq \emptyset$.

Consider the following equation

\begin{equation}
F(x) \equiv F_0(x) + F_1(x) = y, \quad y \in Y
\end{equation}

where y is an arbitrary element of Y.

Let $B^X_{r_0}(x_0) \subseteq D(F_0) \cap D(F_1) \subseteq X$ be the closed ball, $r > 0$ be a number. Consider the following conditions:

1) $F_0 : B^X_{r_0}(x_0) \rightarrow Y$ is a bounded continuous operator together with its inverse operator F_0^{-1}, (as $F_0^{-1} : D(F_0^{-1}) \subseteq Y \rightarrow X$);

2) $F_1 : B^X_{r_0}(x_0) \rightarrow Y$ is a nonlinear continuous operator;

3) There are continuous functions $\mu_i : R^1_+ \rightarrow R^1_+, i = 1, 2$ and $\nu : R^1_+ \rightarrow R^1$ such that the inequations

\[||F_0(x) - F_0(x_0)||_Y \leq \mu_1 (\|x - x_0\|_X) \quad \& \quad ||F_1(x) - F_1(x_0)||_Y \leq \mu_2 (\|x - x_0\|_X), \]

\[\langle F(x) - F(x_0), g(x) \rangle \geq c \langle F_0(x) - F_0(x_0), g(x) \rangle \geq \nu (\|x - x_0\|_X) \|x - x_0\|_X \]
hold for any $x \in B^X_ε (x_0)$, moreover $\nu (r) \geq \delta_0$ holds for some number $\delta_0 > 0$, where the mapping $g : B^X_ε (x_0) \subseteq D (g) \subseteq X \rightarrow Y^*$ fulfills the conditions of Theorem 2, $c > 0$ is some number.

4) Almost each $\tilde{x} \in int B^X_ε (x_0)$ possesses a neighborhood $B^X_ε (\tilde{x})$, $\varepsilon \geq \varepsilon_0 > 0$, such that the inequation

$$
\| F (x_1) - F (x_2) \|_Y \geq c_1 \| F_0 (x_1) - F_0 (x_2) \|_Y \geq \kappa_0 (\| x_1 - x_2 \|, \tilde{x}, \varepsilon) - k_1 (\| x_1 - x_2 \|, \tilde{x}, \varepsilon), \quad X \in Z
$$

holds for any $x_1, x_2 \in B^X_ε (\tilde{x})$ and some number $\varepsilon_0 > 0$, where $k_i (\tau, \tilde{x}, \varepsilon) \geq 0$, $i = 0, 1$ are continuous functions of τ for any given \tilde{x}, and such that $k_0 (\tau, \tilde{x}, \varepsilon) = 0 \Longleftrightarrow \tau = 0$, $k_1 (0, \tilde{x}, \varepsilon) = 0$, and $X \in Z$ (i.e. $X \subset Z$ is compact).

Then the following statement is true, which follows from Theorem 2.

Theorem 3. Let the conditions 1, 2, 3 be fulfilled. Then if $F (B^X_ε (x_0))$ is closed (or is fulfilled the condition 4 or (d')), then the equation (3.3) has a solution in the ball $B^X_ε (x_0)$ for any $y \in Y$ satisfying the inequation

$$
\langle y - F (x_0), g (x) \rangle \leq \nu (\| x - x_0 \|_X) \| x - x_0 \|_X, \quad \forall x \in S^X_ε (x_0).
$$

4. **Proof of Existence Theorem of Problem (0.1)-(0.2)**

It should be noted that here we continue the investigation of the problem studied in the article [31] where this problem is studied in the case $Q = Q_T \equiv (0, T) \times \Omega$, where $T < \infty$ is some number. Here we will study the global existence of this problem, i.e. in the case when $Q = R_+ \times \Omega$. So in the beginning we set a space and explain the way of the investigation. As the solutions $u (t, x)$ of the considered problem will seek in the form $u (t, x) \equiv u_1 (t, x) + iv_2 (t, x)$, where $u_j : Q \rightarrow R$, $j = 1, 2$ we can set this function $u (t, x)$ as the vector function, i.e. $u (t, x) \equiv (u_1 (t, x) ; u_2 (t, x))$ and $\overrightarrow{u} : Q \rightarrow R^2$. Consequently if we write $u \in X$ for example $X \equiv L^m (R_+ ; W^{1, 2}_0 (\Omega)) \cap W^{1, 2} (R_+ ; L^2 (\Omega))$, $m \geq \max \{ p, \bar{p} \}$ then this we understand as $u_j \in X$, $j = 1, 2$ or $\overrightarrow{u} \in X \times X$. Now we can define a solution of the problem (0.1)-(0.2) more exactly.

Definition 3. We say that the function $u \in L^m (R_+ ; W^{1, 2}_0 (\Omega)) \cap W^{1, 2} (R_+ ; L^2 (\Omega)) \cap \{ w (t, x) ; w (0, x) = u_0 (x) \} = X$ (as complex function) is a solution of the problem (0.1)-(0.2) if it satisfies the equation

$$
i \left\langle \frac{\partial u}{\partial t}, \overrightarrow{\tau} \right\rangle + \langle \nabla u, \nabla \overrightarrow{\tau} \rangle + \langle q (x) | u |^{p-2} u, \overrightarrow{\tau} \rangle + \langle a (x) | u |^{\bar{p}-2} u, \overrightarrow{\tau} \rangle = \langle h, \overrightarrow{\tau} \rangle
$$

for any $v \in L^{2, m} (R_+ ; W^{1, 2}_0 (\Omega))$ and a.e. $t > 0$.

Let us $f : X \rightarrow Y$ is the operator generated by the problem (0.1)-(0.2), where X is the denoted above space, and

$$
Y \equiv L^2 (R_+ ; W^{-1, 2} (\Omega)) + L^{m'} (R_+ ; W^{-1, 2} (\Omega)) + L^q (Q)
$$

where $\bar{q} = \frac{p}{p-1}$. We will show that for this operator are fulfilled all conditions of the main theorem. We make this by sequence of steps. Clearly that the conditions (a) and (b) fulfilled. Indeed, the explanations conducted in the previous sections shows that $f : X \rightarrow Y$ is the continuous bounded operator. It should be noted
that the calculation of the function μ not is difficult, therefore we not will conduct this computation here (see, below Proposition 4).

Proposition 2. Let all conditions of Theorem 1 are fulfilled, then the operator f satisfies the condition (c) with the operator $\frac{d}{dt} + I$ on the space $W^{1,2}(R_+; W^{1,2}_0(\Omega)) \cap L^m(R_+; W^{1,2}_0(\Omega)) \cap \{v(t,x) \mid v(0,x) = u_0(x)\}$. Moreover takes place the following inequations

$$
\int_0^t \text{Im} \left\langle f(u), \frac{\partial \overline{u}}{\partial s} + \overline{v} \right\rangle ds = \frac{1}{2} \|u(t)\|_2^2 - \frac{1}{2} \|u_0\|_2^2 + \int_0^t \left\|\frac{\partial u}{\partial s}\right\|_{L^2(\Omega)}^2 ds;
$$

$$
\int_0^t \text{Re} \left\langle f(u), \frac{\partial \overline{u}}{\partial s} + \overline{v} \right\rangle ds \geq \eta \|\nabla u(t)\|_2^2 + \eta \int_0^t \|\nabla u(s)\|_2^2 ds +
$$

$$
\delta_1 \int_0^t \left\langle q(x) |u|^{p-2} u, \overline{v} \right\rangle (s) ds + \delta_2 \left\langle q(x) |u|^{\tilde{p}-2} u, \overline{v} \right\rangle (t) -
$$

$$
C \left(\|\nabla u_0\|, \|q\|_{W^{-1,2}}, \|u_0\|_{2^*}, \|a\|_m, p, \overline{p}\),
$$

the constants of these inequations are determined in (4.6)

Proof. Consider the expression $\langle f(u), \frac{\partial \overline{u}}{\partial s} + \overline{v} \rangle$, which we can write as

$$
\left\langle f(u), \frac{\partial \overline{u}}{\partial s} + \overline{v} \right\rangle = \left\langle \frac{\partial u}{\partial t}, \frac{\partial \overline{u}}{\partial s} \right\rangle + \frac{1}{2} \frac{d}{dt} \left\langle \nabla u, \nabla \overline{u} \right\rangle +
$$

$$
\left\langle q(x) |u|^{p-2} u, \frac{\partial \overline{u}}{\partial s} \right\rangle + \left\langle a(x) |u|^{\tilde{p}-2} u, \frac{\partial \overline{u}}{\partial s} \right\rangle,
$$

(4.1)

$$
\left\langle f(u), \overline{v} \right\rangle = \left\langle \frac{\partial u}{\partial t}, \overline{v} \right\rangle + \left\langle \nabla u, \nabla \overline{v} \right\rangle + \left\langle q(x) |u|^{p-2} u, \overline{v} \right\rangle + \left\langle a(x) |u|^{\tilde{p}-2} u, \overline{v} \right\rangle,
$$

(4.2)

for any $u \in W^{1,2}(R_+; W^{1,2}_0(\Omega))$. We begin by (4.2), then we get

$$
\langle f(u), \overline{v} \rangle = \frac{1}{2} \frac{d}{dt} \|u(t)\|_2^2 + \|\nabla u\|_2^2 +
$$

$$
\left\langle q(x) |u|^{p-2} u, \overline{v} \right\rangle + \left\langle a(x) |u|^{\tilde{p}-2} u, \overline{v} \right\rangle.
$$

Consequently, we have

$$
\text{Im} \langle f(u), \overline{v} \rangle = \frac{1}{2} \frac{d}{dt} \|u(t)\|_2^2
$$

and

$$
\text{Re} \langle f(u), \overline{v} \rangle = \|\nabla u\|_2^2 + \left\langle q(x) |u|^{p-2} u, \overline{v} \right\rangle + \left\langle a(x) |u|^{\tilde{p}-2} u, \overline{v} \right\rangle,
$$

as $\text{Im} q(x) = 0$ and $\text{Im} a(x) = 0$. Whence follows that

$$
\int_0^t \text{Im} \langle f(u), \overline{v} \rangle ds = \frac{1}{2} \|u(t)\|_2^2 - \frac{1}{2} \|u_0\|_2^2
$$

and

$$
\text{Re} \langle f(u), \overline{v} \rangle \geq \|\nabla u\|_2^2 + \left\langle q(x) |u|^{p-2} u, \overline{v} \right\rangle + \left\langle a(x) |u|^{\tilde{p}-2} u, \overline{v} \right\rangle \Rightarrow
$$
and

(4.5) \[
\int_0^t \text{Im} \left(f(u), \frac{\partial \pi}{\partial s} + \bar{\pi} \right) ds = \frac{1}{2} \left(\|u(t)\|_2^2 - \|u_0\|_2^2 \right) + \int_0^t \left(\frac{1}{2} \left(\|u(t)\|_2^2 - \|u_0\|_2^2 \right) \right) ds.
\]
Proof. Let us we can estimate as
\[\int_0^t \left(\frac{1}{p} \langle q(x) | u^{p-2} u, \overline{w} \rangle + \langle a(x) | u^{\tilde{p}-2} u, \overline{w} \rangle \right) ds + \left[\frac{1}{p} \langle q(x), |u|^p \rangle + \frac{1}{\tilde{p}} \langle a(x), |u|^\tilde{p} \rangle \right] (t) - \frac{1}{p} \langle q(x), |u_0|^p \rangle - \frac{1}{\tilde{p}} \langle a, |u_0|^\tilde{p} \rangle. \]

For estimate the \(\int_0^t \Re \langle f(u), \frac{\partial \overline{w}}{\partial s} + \overline{w} \rangle ds \) we use (1.2) (i.e. the condition (ii))
\[\langle a(x) | u^{\tilde{p}-2} u, \overline{w} \rangle \geq -k_0 ||u||^2_{p_2} - k_1 \langle q(x), |u|^p \rangle \]
then we obtain
\[\int_0^t \Re \left(f(u), \frac{\partial \overline{w}}{\partial s} + \overline{w} \right) ds \geq \frac{1}{2} ||\nabla u(t)||^2_2 + \int_0^t ||\nabla u(s)||^2_2 ds + \]
\[\delta_1 \int_0^t \left(\langle q(x) | u^{p-2} u, \overline{w} \rangle (s) ds - k_0 \int_0^t ||u||^2_{p_2} (s) ds + \delta_2 \langle q(x) | u^{p-2} u, \overline{w} \rangle (t) - \right. \]
\[\left. - k_0 \langle u ||^2_{p_2} - \frac{1}{2} ||\nabla u_0||^2 - \frac{1}{p} \langle q(x), |u_0|^p \rangle - \frac{1}{\tilde{p}} \langle a, |u_0|^\tilde{p} \rangle \right) + \]
\[\eta ||\nabla u(t)||^2_2 + \eta \int_0^t ||\nabla u(s)||^2_2 ds + \delta_1 \int_0^t \left(\langle q(x) | u^{p-2} u, \overline{w} \rangle (s) ds + \right. \]
\[\left(\langle q(x) | u^{p-2} u, \overline{w} \rangle (t) - C \left(||\nabla u_0||, ||q||_{W^{-1,2}}, ||u_0||_{2^*}, ||a||_m, p, \tilde{p} \right) \right)
\]
for a.e. \(t > 0 \), where \(\delta_1 = 1 - k_1 \geq 0, \delta_2 = p^{-1} - \tilde{p}^{-1} k_1 \geq 0, \eta = 1 - C (2, p_2) k_0 > 0. \)

The expressions (4.5) and (4.6) shows that the condition (c) of the main theorem takes place for the operator \(f : X \rightarrow Y \) generated by posed problem. \(\square \)

2. Now we prove an inequality used in the proof of the fulfllment of the condition (d').

Proposition 3. Let all conditions of Theorem 1 are fulfilled, then the following inequality
\[\|f(u) - f(v)\|_Y \geq \|u - v\|_2 (t) + \|\nabla (u - v)\|_2 - M \max \left\{ \|u\|_{\tilde{p}^{-2}}^{\tilde{p}}, \|v\|_{\tilde{p}^{-2}}^{\tilde{p}} \right\} ||u - v||_p, \]
holds for any \(u, v \in X \cap \{ u \mid u(0, x) = u_0(x) \} \).

Proof. Let us \(u, v \in X \cap \{ u \mid u(0, x) = u_0(x) \} \) and consider \(\|f(u) - f(v)\|_Y \) that we can estimate as
\[\left\| \frac{\partial (u - v)}{\partial t} - \Delta (u - v) + q \left(|u|^{p-2} u - |v|^{p-2} v \right) + a \left(|u|^{\tilde{p}-2} u - |v|^{\tilde{p}-2} v \right) \right\|_Y \geq \]
\[\left\| \frac{\partial (u - v)}{\partial t} - \Delta (u - v) + q \left(|u|^{p-2} u - |v|^{p-2} v \right) \right\|_Y - \]
\[a \left(|u|^{\tilde{p}-2} u - |v|^{\tilde{p}-2} v \right) \right\|_Y. \]
In order that to estimate of the first adding of right side of the inequality (4.7) we act in the following way. In beginning we set
\[
\left\langle i \frac{\partial (u - v)}{\partial t}, (u - v) \right\rangle - \left\langle \Delta (u - v), (u - v) \right\rangle + q \left| u \right|^{p-2} u - |v|^{p-2} v, (u - v) \right\rangle = \frac{i}{2} \frac{d}{dt} \left\langle (u - v), (u - v) \right\rangle + q \left(|u|^{p-2} u - |v|^{p-2} v, (u - v) \right\rangle + \| \nabla (u - v) \|_2^2 + \left\langle (u - v), (u - v) \right\rangle.
\]
(4.8)
and study it.

Here for the last adding takes place the inequality
\[
\left\langle (u - v), (u - v) \right\rangle \leq \left\langle (u - v), (u - v) \right\rangle.
\]
As the expression \(\left\langle (u - v), (u - v) \right\rangle \) has the following estimation
\[
\| (u - v) \|_2^2 + \left\langle (u - v), (u - v) \right\rangle \leq \left\langle (u - v), (u - v) \right\rangle + \left\langle (u - v), (u - v) \right\rangle.
\]
therefore we can consider the right side of (4.8) without of the last adding.

Consequently we get the following estimation for the first adding of the right side of the inequality (4.7)
\[
\left\| \frac{\partial (u - v)}{\partial t} - \Delta (u - v) + q \left(|u|^{p-2} u - |v|^{p-2} v \right) \right\|_Y \geq K \left[\| u - v \|_2 \right] + \| \nabla (u - v) \|_2, \quad K > 0
\]
with taking into account the equation (4.8), the last reasons and the equation
\[
\int_0^t \left\langle \frac{\partial (u - v)}{\partial s}, (u - v) \right\rangle ds = \frac{1}{2} \| u - v \|_2^2 (t),
\]
whereas \(u (0, x) = v (0, x) = u_0 \) by choosing, that we need make by virtue of the condition (d’) of the main theorem.

Now consider the second adding of right side of the inequality (4.7), for which we have
\[
\left\langle a \left(|u|^{p-2} u - |v|^{p-2} v \right), (u - v) \right\rangle = \int_\Omega a \left(|u|^{p-2} u - |v|^{p-2} v \right) (u - v) dx \leq \int_\Omega a \varphi (u, v) \| u - v \|_2 dx, \quad 0 \leq \varphi (u, v) \leq M \left(\max \{ |u|, |v| \} \right)^{p-2}
\]
where \(M > 0 \) be some number and \(\varphi (u, v) \) be a continuous function.

Taking into account the last inequalities in (4.7) we obtain
\[
\| f (u) - f (v) \|_Y \geq \| u - v \|_2 (t) + \| \nabla (u - v) \|_2 - M \max \left\{ \| u \|_p^{p-2}; \| v \|_p^{p-2} \right\} \| u - v \|_p.
\]
(4.9)

\[\square \]

3. Now we will conduct a priori estimations for a solutions of the problem.
Proposition 4. Let all conditions of Theorem 1 are fulfilled, then all solutions belong to bounded subset of the space

\[X \equiv W^{1,2} (R_+; L^2(\Omega)) \cap L^m \left(R_+; W^{1,2}_0 (\Omega) \right) \]

\[\left\{ u \mid |u|^p \in L^\beta \left(R_+; W^{1,\beta}_0 (\Omega) \right) \right\} \cap \{ u \mid u (0, x) = u_0 (x) \}, \]

i.e. there is constants \(K \equiv K \left(\|h\|_2, q, \|u_0\|_{W^{1,2}} ; \|q\|_{W^{-1,2}} ; \|a\|, p, \bar{p} \right) \) such that \(\|u\|_X \leq K \).

Proof. In the beginning we note that from examination of the expression \(\langle f (u), \bar{u} \rangle \) in the proof of Proposition 2 we get the following inequations

\[\frac{1}{2} \|u (t)\|_2^2 - \frac{1}{2} \|u_0\|_2^2 \leq \int_0^t \langle h, u \rangle \, ds \leq \int_0^t \|h (s)\|_2 \|u (s)\|_2 \, ds \]

and

\[\|\nabla u\|_2^2 + \langle q (x) |u|^{p-2} u, \bar{u} \rangle + \langle a (x) |u|^{p-2} u, \bar{u} \rangle \leq \langle h, u \rangle \quad \implies \]

\[\|\nabla u\|_2^2 + (1 - k_1) \langle q (x), |u|^p \rangle - k_0 \|u\|_{p_2}^2 \leq \langle h, u \rangle \quad \implies \]

\[(1 - k_0 C^2 (p_2)) \|\nabla u (t)\|_2^2 \leq \|h (t)\|_2 \|u (t)\|_2, \]

as \(k_1 \leq 1 \) and \(k_0 C^2 (p_2) < 1 \) by virtue of the condition \((ii)\). Then we get that the following estimations are true

\[(1 - k_0 C^2 (p_2)) \|\nabla u (t)\|_2^2 - \epsilon \|u (t)\|_2^2 \leq c (\epsilon) \|h (t)\|_2^2 \]

or

\[\|\nabla u (t)\|_2 \leq \tilde{c} (\epsilon) \|h (t)\|_2, \text{ a.e.} t \geq 0 \]

as far as \(\|u (t)\|_2 \leq C_1 (mes \Omega) \|\nabla u (t)\|_2 \) for \(\forall u (t) \in W^{1,2}_0 (\Omega) \) by the embedding theorems, where \(\tilde{c} (\epsilon) \equiv \tilde{c} (\epsilon, mes \Omega, k_0 C), C_1 (mes \Omega) > 0 \) are constants;

moreover

\[(*) \quad \|u\|_{L^2 (R_+; W^{1,2}_0 (\Omega))} \leq \tilde{c}_1 (\epsilon) \|h\|_{L^2 (R_+; W^{1,2}_0 (\Omega))} + \tilde{c}_2 \|u_0\|_2. \]

Thus we obtain that \(u (t, x) \) belong to the bounded subset of \(L^2 \left(R_+; W^{1,2}_0 (\Omega) \right) \) for given \(h \in L^2 (Q) \).

Using the equations (4.3) and (4.4), and also the estimates (4.5) and (4.6) we get

\[\left| \int_0^t \text{Re} \left< h, \frac{\partial \pi}{\partial s} + \pi \right> \, ds \right| \geq \int_0^t \text{Re} \left< f (u), \frac{\partial \pi}{\partial s} + \pi \right> \, ds \geq \]

\[\eta_2 \|u (t)\|_2^2 + \eta_1 \int_0^t \|\nabla u (s)\|_2^2 \, ds + \delta_1 \int_0^t \langle q (x) |u|^{p-2} u, \bar{u} \rangle (s) \, ds + \]

\[\delta_2 \langle q (x) |u|^{p-2} u, \bar{u} \rangle (t) - C (\|u_0\|_{W^{1,2}} ; \|q\|_{W^{-1,2}} ; \|a\|_m, p, \bar{p}) \]

and

\[\left| \int_0^t \text{Im} \left< h, \frac{\partial \pi}{\partial s} + \pi \right> \, ds \right| \geq \int_0^t \text{Im} \left< f (u), \frac{\partial \pi}{\partial s} + \pi \right> \, ds \equiv \]
(4.11) \[\frac{1}{2} \left\| u(t) \right\|_2^2 - \frac{1}{2} \left\| u_0 \right\|_2^2 + \int_0^t \left\| \frac{\partial u}{\partial s} \right\|_{L^2(\Omega)}^2 \, ds \]

Then from (4.10) we get the estimation
\[\eta_2 \left\| \nabla u(t) \right\|_2^2 + \eta_1 \int_0^t \left\| \nabla u(s) \right\|_2^2 \, ds + \delta_1 \int_0^t \left\langle q(x) |u|^{p-2} u, \bar{\pi} \right\rangle (s) \, ds + \]
\[\delta_2 \left\langle q(x) |u|^{p-2} u, \bar{\pi} \right\rangle (t) - \frac{1}{2} \left\| u(t) \right\|_2^2 - \frac{1}{2} \left\| u_0 \right\|_2^2 + \int_0^t \left\| \frac{\partial u}{\partial s} \right\|_{L^2(\Omega)}^2 \, ds \leq \]
and from (4.11) we obtain
\[\frac{1}{2} \left\| u(t) \right\|_2^2 - \frac{1}{2} \left\| u_0 \right\|_2^2 + \int_0^t \left\| \frac{\partial u}{\partial s} \right\|_{L^2(\Omega)}^2 \, ds \leq \]
then with combine of last two inequalities we get
\[\eta \left\| \nabla u(t) \right\|_2^2 + \eta \int_0^t \left\| \nabla u(s) \right\|_2^2 \, ds + \delta_1 \int_0^t \left\langle q(x) |u|^{p-2} u, \bar{\pi} \right\rangle (s) \, ds + \]
\[\delta_2 \left\langle q(x) |u|^{p-2} u, \bar{\pi} \right\rangle (t) - \frac{1}{2} \left\| u(t) \right\|_2^2 - \frac{1}{2} \left\| u_0 \right\|_2^2 + \int_0^t \left\| \frac{\partial u}{\partial s} \right\|_{L^2(\Omega)}^2 \, ds \leq \]
\[\varepsilon_2 \int_0^t \left\| u(t) \right\|_2^2 \, ds + C(\varepsilon_1, \varepsilon_2) \int_0^t \left\| \nabla h \right\|_2^2 \, ds, \text{ a.e. } t > 0. \]
or
\[\eta \left\| \nabla u(t) \right\|_2^2 + \tilde{\eta} \int_0^t \left\| \nabla u(s) \right\|_2^2 \, ds + \delta_1 \int_0^t \left\langle q(x) |u|^{p-2} u, \bar{\pi} \right\rangle (s) \, ds + \]
\[\delta_2 \left\langle q(x) |u|^{p-2} u, \bar{\pi} \right\rangle (t) + \frac{1}{2} \left\| u(t) \right\|_2^2 + (1 - \varepsilon_1) \int_0^t \left\| \frac{\partial u}{\partial s} \right\|_{L^2(\Omega)}^2 \, ds \leq \]
\[C(\varepsilon_1, \varepsilon_2) \int_0^\infty \left\| \nabla h \right\|_2^2 \, ds + C_1 \left(\left\| u_0 \right\|_{W^{1,2}}, \left\| q \right\|_{W^{-1,2}}, \left\| a \right\|, p, \bar{p} \right). \]
Moreover from here follows
\[\frac{1}{2} \left\| \nabla u(t) \right\|_2^2 - \frac{1}{2} \left\| \nabla u(0) \right\|_2^2 + \int_0^t \left\| \nabla u(s) \right\|_2^2 \, ds + \]
in the other words we obtain the posed conditions satisfies the following inclusion by virtue of the condition (1.2). Consequently we obtain, that any solution of the considered problem under the operator g satisfies the condition (d').

Consequently we get the following inequation

$$\int_0^t \langle q (x) | u^{p-2} u, \bar{u} \rangle (s) \, ds + \int_0^t \langle a (x) | u^{p-2} u, \bar{u} \rangle (s) \, ds + \frac{1}{p} \langle q (x), | u |^p \rangle (t) - \frac{1}{p} \langle q (x), | u (0) |^p \rangle + \frac{1}{p} \langle a, | u |^p \rangle (t) - \frac{1}{p} \langle a, | u (0) |^p \rangle \leq \left(\varepsilon^{-1} + \frac{1}{2} \right) \int_0^t \| h (s) \|^2 ds + \frac{1}{2} \int_0^t \| \partial u \|_{W^{1,2}}^2 ds + C (\| \nabla u_0 \|, \| q \|_{W^{-1,2}}, \| u_0 \|_{L^1}, \| a \|_m, p, \bar{p}) ,$$

in the other words we obtain

$$(4.12) \quad \int_0^t \| \nabla u (s) \|^2 ds \leq \tilde{D} (\varepsilon^{-1}, \ldots) (\tilde{q_1} (\varepsilon))^{-1} \left(1 - e^{-\tilde{q_1} (\varepsilon) t} \right)$$

where $\tilde{D} (\varepsilon^{-1}, \ldots) = \tilde{D} (\varepsilon^{-1}, \| u_0 \|_{W^{1,2}}, \| q \|_{W^{-1,2}}, \| h \|_2, \| a \|_m, p, \bar{p})$.

Consequently we obtain, that any solution of the considered problem under the posed conditions satisfies the following inclusion

$$u \in W^{1,2} (R^+; L^2 (\Omega)) \cap L^\infty \left(R^+; W^{1,2}_0 (\Omega) \right) \cap \left\{ v \ | \ | v |^p \in L^\beta \left(R^+; W^{1,\beta}_0 (\Omega) \right) \right\} \cap \left\{ u \ | \ u (0, x) = u_0 (x) \right\} \equiv X ,$$

in addition the preimage of each bounded neighborhood of zero from $L^2 (Q) \times W^{1,2}_0 (\Omega)$ under operator f is the bounded neighborhood of zero of the space determined by (4.13), where $m \geq 2^*$ and $\beta > 1$ is denoted by Lemma 1. We note that here is used the inclusions given in next remark.

Remark 1. Let Z is a Banach space, then

$$L^2 (R; Z) \cap L^\infty (R; Z) \subset L^m (R; Z), \ 2 \leq m < \infty$$

holds.

From here we get that the condition (c) is fulfilled for the operator f generated by the posed problem and the operator $g (v) \equiv \frac{\partial u}{\partial t} + v$ for any $v \in W^{1,2} \left(R^+; W^{1,2}_0 (\Omega) \right) \cap L^m \left(R^+; W^{1,2}_0 (\Omega) \right)$ that is dense in the requisit space defined in (4.13).

4. Now we can show that the operator f satisfies the condition (d').

Proposition 5. Let all conditions of Theorem 1 are fulfilled, then the operator f satisfies the condition (d').

Proof. More exactly, we will prove that the image \(f(X) \) is the closed subset of \(Y \).

As the conditions (a), (b) and (c) of the main theorem are fulfilled for the operator \(f : X \to Y \) then we get, that \(f(X) \) contains a dense subset of the space \(Y \) by virtue of the first statement of this theorem.

So, let us the sequence \(\{ h_k \}_{k=1}^\infty \subset f(X) \) is the fundamental sequence in \(Y \) that converge to an element \(h_0 \in Y \), since \(f(X) \) contains a dense subset of the space \(Y \) therefore for any \(h_0 \in Y \) there exists a sequence of such type. As the sequence \(\{ h_k \}_{k=1}^\infty \) is a bounded subset of \(Y \), and consequently \(f^{-1} (\{ h_k \}_{k=1}^\infty) \) belong to the bounded subset \(M_0 \) of \(X \) by virtue of the condition (c), which is proved in the step 3. It is known that \(X \) is the reflexive space therefore we can choose a subsequence \(\{ u_{k_j} \}_{j=1}^\infty \subset M_0 \) of \(f^{-1} (\{ h_k \}_{k=1}^\infty) \) such that \(u_{k_j} \in f^{-1} (h_{k_j}) \), \(k_j \not\to \infty \), and \(\{ u_{k_j} \}_{j=1}^\infty \) weakly converge in \(X \), i.e. \(u_{k_j} \rightharpoonup u_0 \in X \). Moreover it is known that \(X \in L^m (R^+_\omega; L^f (\Omega)) \) is compact, where \(1 < f < \frac{2m}{n^2} \) if \(n \geq 3 \) (see, for example, [30] and its references). Then the sequence \(\{ u_{k_j} \}_{j=1}^\infty \) have a subsequence, that strongly converge in the space \(L^m (R^+_\omega; L^f (\Omega)) \), which for simplicity we denote also by \(\{ u_{k_j} \}_{j=1}^\infty \) i.e. we assume that \(\{ u_{k_j} \}_{j=1}^\infty \) is the subsequence of such type.

Thence use previous reasons and the (4.9) from step 2 we get \(u_{k_j} \rightharpoonup u_0 \) in \(L^2 (R^+_\omega; W^{1,2}_0 (\Omega)) \) and in \(L^m (R^+_\omega; L^2 (\Omega)) \). Furthermore if take into account that in this problem first two adding are linear continuous operator then we obtain that \(h_{k_j} = f (u_{k_j}) \rightharpoonup f (u_0) = h_0 \), which show that \(f(X) \) is the closed subset of \(Y \). \(\square \)

Thus we can complete of the proof of Theorem 1. From Propositions 2-5 we get, that the operator \(f : X \to Y \) generated by the posed problem satisfies all conditions of the main theorem (Theorem 2, and also Theorem 3). Then using Theorem 2 we obtain, that the operator \(f \) satisfies the statement of Theorem 2, therefore the statement of Theorem 1 is correct. Consequently, the existence theorem for the problem (0.1)-(0.2) (i.e. Theorem 1) is proved.

5. Behaviour of Solutions of Problem (0.1) - (0.2)

We will study the behaviour of the solution of problem (0.1) - (0.2) in the sense of the space \(W^{1,2}(\Sigma) \cap L^m (R^+_\omega; W^{1,2}_0 (\Omega)) \). Consider the following functional on the space \(W^{1,2}(\Sigma) \cap L^m (R^+_\omega; W^{1,2}_0 (\Omega)) \)

\[
I (v(t)) = \| \nabla v(t) \|^2_{L^2} \equiv \| \nabla v(t) \|^2_2 \equiv \int_\Omega |\nabla v (t, x)|^2 \, dx.
\]

So we have

\[
2^{-1} \frac{d}{dt} I (u(t)) = \left(\frac{\partial}{\partial t} \nabla u, \nabla u \right) = - \left(\frac{\partial}{\partial t} u, \Delta u \right) = \left(\frac{\partial}{\partial t} u, \Delta u \right)
\]

here if to take account \(u(t, x) \) is the solution of the considered problem then we get

\[
- i \left(\frac{\partial u}{\partial t}, \nabla u \right) - \nabla (q \, |u|^{p-2} u) - \nabla (a \, |\tilde{p}' \, u|^{p-2} \tilde{p}') + \frac{\partial u}{\partial t} \nabla h = \frac{\partial u}{\partial t} \nabla h = \frac{\partial u}{\partial t} \nabla h
\]

\[
- i \left(\frac{\partial u}{\partial t}, |u|^2 \right) p^{-1} \frac{d}{dt} q, |u|^p - \tilde{p}^{-1} \frac{d}{dt} a, |\tilde{p}'| + \frac{\partial u}{\partial t} \nabla h
\]
whence we have
\[2^{-1} \frac{d}{dt} I(u(t)) = -\left< \frac{\partial u}{\partial t}, q |u|^{p-2} u \right> - \left< \frac{\partial u}{\partial t}, a |u|^{\tilde{p}-2} u \right> + \text{Re} \left< \frac{\partial u}{\partial t}, \overline{h} \right> \]
and
\[(5.1) \quad - \left\| \frac{\partial u}{\partial t} \right\|_2^2 = - \text{Im} \left< \frac{\partial u}{\partial t}, \overline{h} \right> \Rightarrow \left\| \frac{\partial u}{\partial t} \right\|_2 \leq \| h \|_2 \]
for a.e. \(t > 0 \), as \(I(u(t)) \) is a real function.

Thus we obtain
\[2^{-1} I(u(t)) - 2^{-1} I(u_0) \leq -p^{-1} \int_0^t \frac{d}{ds} \left< q, |u|^p \right> ds - \tilde{p}^{-1} \int_0^t \frac{d}{ds} \left< a, |u|^{\tilde{p}} \right> ds + \]
\[\int_0^t \left| \frac{\partial u}{\partial t}, \overline{h} \right| ds \leq -p^{-1} \left< q, |u|^p \right>(t) + p^{-1} \left< a, |u|^p \right> - \]
\[\tilde{p}^{-1} \left< a, |u|^{\tilde{p}} \right>(t) + \tilde{p}^{-1} \left< a, |u_0|^{\tilde{p}} \right> + \int_0^t \left\| \frac{\partial u}{\partial s} \right\|_2 \| h \|_2 (s) ds \leq \]
\[k_0 \| u(t) \|_{p_2}^2 - \delta \left< q, |u|^p \right>(t) + \int_0^t \| h \|_2^2 (s) ds \]
whence we get using the condition \((1.2') \) (i.e. the inequality \(2^{-1} > C(2, p_2)^2 \cdot k_0 \)) and \((5.1) \)
\[I(u(t)) \equiv \| \nabla u(t) \|_2^2 \leq 2k_0 \| u(t) \|_{p_2}^2 + 2 \int_0^t \| h \|_2^2 (s) ds + I(u_0) \Rightarrow \]
\[(5.2) \quad \left(1 - 2C(2, p_2)^2 k_0 \right) \| \nabla u(t) \|_2^2 \leq 2 \int_0^t \| h \|_2^2 (s) ds + I(u_0) \]
for a.e. \(t \geq 0 \).

Moreover in the previous section we obtained the following equations
\[I_0(u(t)) \equiv \| u \|_2^2 \Rightarrow \frac{1}{2} \frac{d}{dt} I_0(u(t)) = \langle u, \overline{\nabla u} \rangle = \]
\[\langle u_t, \overline{\nabla u} \rangle = \frac{1}{2} \left(-\Delta u + |u|^{p-2} u + a |u|^{\tilde{p}-2} u - h, \overline{\nabla u} \right) = \]
\[= i \| \nabla u(t) \|_2^2 + i \langle q(x), |u|^p \rangle + i \langle a(x), |u|^{\tilde{p}} \rangle - i \langle h, \overline{\nabla u} \rangle \Rightarrow \]
\[\| \nabla u(t) \|_2^2 + \langle q(x), |u|^p \rangle + \langle a(x), |u|^{\tilde{p}} \rangle - \text{Re} \langle h, \overline{\nabla u} \rangle = 0 \]
\& \quad \frac{1}{2} \frac{d}{dt} I_0(u(t)) = -\text{Im} \langle h, \overline{\nabla u} \rangle \]
whence follows
\[(5.3) \quad \| \nabla u(t) \|_2^2 \leq 4 \| h(t) \|_2^2, \quad \text{a.e.} \ t \geq 0. \]

Consequently is proved the following result.
Theorem 4. Let the solution \(u(t,x) \) of the problem (0.1)-(0.2) be a sufficiently smooth function, i.e. \(u \in W^{1,2}(R_+;W^{1,2}_0(\Omega)) \cap L^m(R_+;W^{1,2}_0(\Omega)) \) and all conditions of Theorem 1 are fulfilled. Then if the coefficient \(k_0 \) of the condition (1.2) satisfies the inequality
\[
2^{-1} > C(2,p_2)^2 \cdot k_0
\]
then the following inequalities are true
\[
\|\nabla u(t)\|_2, \|\partial u/\partial t\|_2 \leq b \|h(t)\|_2 \implies \|u(t)\|_2 \leq b_1 \|h(t)\|_2
\]
for a.e. \(t \geq 0 \).

Notation 1. It should be noted that the next inequality follows from (4.12) in the conditions of Theorem 5.1
\[
\|\nabla u(t)\|_2^2 \leq \tilde{D}(\varepsilon^{-1},...) \exp\{ -\tilde{\eta}_1(\varepsilon) t \} + \|\nabla u_0\|_2^2.
\]

References

[1] Alves M, Sepulveda M, Vera O.: Smoothing properties for the higher-order nonlinear Schrödinger equation with constant coefficients. Journal Nonlinear Analysis: TMA, (2009), 71, 3-4.
[2] Ambrosetti A., Badiale M., Cingolani S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. (1997), 140, 285–300.
[3] Ambrosetti A., Malchiodi A., Ruiz D.: Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Anal. Math., (2006), 98, 317–348.
[4] Bartsch T., Pankov A., Wang Z. Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math., (2001) 3, 549–569.
[5] Brezis H., Ponce A. C.: Reduced measures on the boundary. J. Funct. Anal. (2005), 229, 1.
[6] Cazenave Th.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, (2003), xiv+323 pp.
[7] Cingolani S.: Semiclassical stationary states of nonlinear Schrödinger equations with an external magnetic field. J. Differential Equations (2003), 188, 52–79.
[8] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \(R^3 \). Ann. of Math. (2008) (2) 167, no. 3, 767–865.
[9] Colliander J., Grillakis M., Tzirakis N.: Tensor Products and Correlation Estimates with Applications to Nonlinear Schrödinger Equations. Commun. Pure& Appl. Math. (2009) 62, 7, 920–968.
[10] del Pino M., Felmer P.: Semi-classical states of nonlinear Schrödinger equations: a variational reduction method. Math. Ann. (2002) 324, 1–32.
[11] Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. (1986), 69, 397–408.
[12] Gidas B., Ni W.M., Nirenberg L.: Symmetry of positive solutions of nonlinear elliptic equations in \(R^N \). Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., 7a (1981), pp. 369–402, Academic Press, N-Y-London.
[13] Gilbarg D., Trudinger N. S.: Elliptic Partial Differential Equations of Second Order, (Second ed.). SpringerVerlag, (1983), vol. 224, Berlin, New York, xiii+513.
[14] Grebert B., Thomann L.: Resonant dynamics for the quintic nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Non Lineaire (2012) 29, 455-477.
[15] Grossi M.: On the number of single-peak solutions of the nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéaire (2002) 19, 3, 261–280.
[16] Gui C., Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Comm. Partial Differential Equations (1996), 21, 787–820.
[17] Hayashi N., Li Ch., Naumkin P. I.: Modified Wave Operator for a System of Nonlinear Schrödinger Equation in 2d. Commun. Partial Diff. Eq. (2012) 37, 947-968.
[18] Le Bris C., Lions P.-L.: From atoms to crystals: a mathematical journey. Bull. Amer. Math. Soc. (N.S.) (2005), 42, 3, 291–363 (electronic).
[19] Lenells J., Fokas A. S.: On a novel integrable generalization of the nonlinear Schrödinger equation. J. Nonlinearity (2009), 22, 1, 11-27.
[20] Lin F., Zhang P.: Semiclassical Limit of the Gross-Pitaevskii Equation in an Exterior Domain. Arch. Rational Mech. Anal. (2006) 179, 79–107
[21] Lions J.-L., Magenes E. : Nonhomogeneous boundary value problems and applications. v.1, Springer-Verlag, (1972), v. 181, Berlin Heidelberg New York, xvi+357.
[22] Makhankov V.G., Fedyanin V.K.: Non-linear effects in quasi-one-dimensional models of condensed matter theory. Phys. Rep. (1984) 104, 1–86
[23] Noussair E.S., Swanson C.A.: Oscillation theory for semilinear Schrödinger equations and inequalities. Proc. Roy. Soc. Edinburgh Sect. A (1975/76), 75, 67–81.
[24] Oh Y.G.: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class \((V)_{\alpha}\). Commun. Partial Differ. Equ. (1988) 13, 1499–1519
[25] Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. (1992), 43, 270–291.
[26] Rabinowitz P. H.: Stredulinsky Ed , Mixed States for an Allen-Cahn Type Equation. Commun. Pure Appl. Math. (2003), 56, 8, 1078-1134
[27] Soltanov K. N., Akhmedov M.: On Nonlinear Parabolic Equation in Nondivergent Form with Implicit Degeneration and Embedding Theorems. arXiv:1207.7063 (2012), 25 p
[28] Soltanov K. N.: On a Nonlinear Equation with Coefficients which are Generalized Functions. Novi Sad J. Math. (2011) 41, No. 1, 43-52
[29] Soltanov K. N.: On semi-continuous mappings, equations and inclusions in the Banach space. Hacettepe J. Math. Statist. (2008), 37, 1.
[30] Soltanov K. N.: Perturbation of the mapping and solvability theorems in the Banach space. Nonlinear Analysis: T.M.&A. (2010), 72, 1.
[31] Soltanov K. N.: On Nonlinear Equation of Schrödinger type. arXiv:1208.2560v1, (2012), 16 p
[32] Stuart C. A.: Lectures on the Orbital Stability of Standing Waves and Application to the Nonlinear Schrodinger Equation. Milan J. of Math. (2008), 76, 1, 329–399.
[33] Wang X., Zeng B.: On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions. SIAM J. Math. Anal. (1997), 28, 633–655.
[34] Wang J., Xu J. X., Zhang F. B.: Existence and multiplicity of semiclassical solutions for a Schrödinger equation. J. Math. Anal. and Appl. (2009), 357, 2.
[35] Yin H., Zhang P.: Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity. J. Diffi Eq., (2009), 247, 2, 618-647.

DEP. MATH. FAC. SCI. HACETTEPE UNIVERSITY, BEYTEPE, ANKARA, TR-06800, TURKEY ; Tel. +90 312 2977860; Fax: +90 312 2992017
E-mail address: soltanov@hacettepe.edu.tr ; sultan_kamal@hotmail.com
URL: http://www.mat.hacettepe.edu.tr/personel/akademik/ksoltanov/index.html