Crystal structure of a dicationic PdII dimer containing a 2-[(diisopropylphosphanyl)methyl]-quinoline-8-thiolate pincer ligand

Arnaud Clerc,a Nathalie Saffon-Merceron,b Julien Monot,a Blanca Martin Vacaa and Didier Bourissoua,*

aLaboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR-CNRS 5069, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 09, France, and bUniversité de Toulouse III Paul Sabatier, Institut de Chimie de Toulouse, ICT, UAR 2599, 118, route de Narbonne, F-31062 Toulouse, France. *Correspondence e-mail: dbouriss@chimie.ups-tlse.fr

A dicationic PdII dimer, bis[2-[(diisopropylphosphanyl)methyl]quinoline-8-thiolato]palladium(II) bis(hexafluoridoantimonate) dichloromethane monosolvate, \([\text{Pd}_2(\text{C}_{32}\text{H}_{42}\text{N}_2\text{P}_2\text{S}_2))(\text{SbF}_6)_2\cdot\text{CH}_2\text{Cl}_2]\), containing a 2-[(diisopropylphosphanyl)methyl]quinoline-8-thiolate pincer ligand, was isolated and its crystal structure determined. The title compound crystallizes in the orthorhombic space group \(Pbca\). A dimeric structure is formed by bridging coordination of the S atoms. The geometry of the butterfly-shaped Pd\textsubscript{2}S\textsubscript{2} core is bent, with a hinge angle of 108.0 (1)° and a short Pd···Pd distance of 2.8425 (7) Å. These values are the lowest measured compared to ten dicationic dimers with a Pd\textsubscript{2}S\textsubscript{2} core featuring sulfur atoms embedded in a chelating ligand. One of the two hexafluoridoantimonate anions is disordered over two sets of positions with site-occupancy factors of 0.711 (5) and 0.289 (5). The crystal structure is stabilized by many C—H···F and C—H···π interactions, forming a supramolecular network.

1. Chemical context
The stereoelectronic properties of transition-metal complexes can be finely modulated thanks to the ligands introduced on the metal coordination sphere, and this plays a fundamental role in organometallic chemistry. Over the past two decades, impressive developments have been achieved with pincer complexes, which nicely illustrate how the properties and reactivity of a complex can be adjusted through ligand modifications (Morales-Morales, 2018). In pincer complexes, the central \(M—X\) bond is enforced by the coordination of two peripheral donor groups (\(D\)), and the chelating rigid nature of the monoanionic \(DXD\) pincer ligand bestows a unique balance between stability and reactivity. This has led to spectacular catalytic developments, including with pincer complexes based on Pd, a transition metal that occupies a central place in organometallic catalysis. As far as Pd is concerned, the main topology of the used monoanionic pincer ligands consists of an aryl central moiety featuring two coordinating side arms, as illustrated in Fig. 1 (model I). These complexes have been successfully applied to C—C or C—X bond-forming catalytic transformations. The impact of the side groups (coordinating atom and linker) on the catalytic performances has been explored (Selander et al., 2011). We have developed new models of Pd pincer complexes varying the aromatic central ring, introducing indenyl and indolyl moieties (model II in Fig. 1). The nature of the central ring was found to significantly
impact the catalytic activity of the Pd complexes in the allylation of amines (Lisena et al., 2013).

Seeking to further modify the structure of the Pd pincer complexes so that the catalytic activity can be modulated, we now aim to incorporate an extended π-system as the central moiety (so that rigidity is increased). We have thus designed and prepared a pincer PNS Pd complex based on a 8-thiolate-quinoline featuring a methylenephosphine side arm (model III in Fig. 1). We report herein that when cationizing the corresponding chloro palladium pincer complex \(\text{I} \) with AgSbF\(_6\), a dimeric dicationic species \(\text{II} \) crystallized with a tight S-bridging assembly of the two quinoline-based PNS Pd pincer fragments. The structural features are discussed. It is worth noting that we have previously reported S-bridged homo and heteropolymetallic species derived from Pd pincer complexes of type \(\text{II} \) (Nebra et al., 2011, 2012).

2. Structural commentary

X-ray diffraction of the yellow crystals obtained from \(2\text{(SbF}_6\text{)}_2 \) revealed a dimeric structure, composed of two cationic PNSPd fragments, that crystallizes in the orthorhombic system and \(Pbcn \) space group (Figs. 2 and 3; selected bond lengths and bond angles are given in Table 1). The dicationic nature of the structure is confirmed by the presence of two SbF\(_6^-\) units per dimer. The two PNSPd fragments are connected to each other by two bridging S atoms. The S donor atom of each PNSPd fragment completes the coordination sphere of the other, forming a Pd\(_2\)S\(_2\) diamond core.

For each PNSPd fragment, besides the two bridging S atoms, the Pd atom is coordinated by one N atom and one P atom, completing a tetracoordinate sphere that deviates

![Figure 1](image1.png)

Schematic representation of Pd pincer complexes \(\text{I} \text{- III} \)

![Figure 2](image2.png)

The molecular structure of the title compound with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

![Figure 3](image3.png)

Detail of the molecular structure of \(2^{2+} \), showing the main atom-numbering scheme and displacement ellipsoids at the 50% probability level. H atoms and \('i'Pr groups have been omitted for clarity.

Table 1

Selected geometric parameters (Å, °)
Pd1—N1 2.027 (5) Pd2—S1 2.3184 (16)
Pd1—P1 2.2455 (18) Pd2—S2 2.3602 (17)
Pd1—S1 2.3349 (16) P1—C1 1.825 (6)
Pd1—S2 2.3657 (17) P2—C17 1.836 (6)
Pd1—Pd2 2.8425 (7) S1—C4 1.784 (7)
Pd2—N2 2.027 (5) S2—C25 1.774 (7)
Pd2—P2 2.2417 (18) N1—Pd1—P1 83.86 (15)
N1—Pd1—S2 168.93 (15) P2—Pd2—S1 106.34 (6)
N1—Pd1—S1 86.49 (15) P2—Pd2—S2 170.20 (6)
N1—Pd1—Pd2 117.54 (14) S2—Pd1—S1 74.71 (5)
N1—Pd1—S1 51.89 (15) P1—Pd1—Pd2 129.40 (5)
Pd1—Pd2 53.28 (4) S2—Pd1—S1 114.86 (14)
N1—Pd1—Pd2 136.83 (5) S2—Pd1—Pd2 53.40 (4)
N1—Pd1—S2 51.83 (4) Pd2—S1—Pd1 74.88 (5)
Pd2—S2—Pd1 53.84 (4) Pd1—S2—Pd2 74.88 (5)

Acta Cryst. (2022). E78, 18–22 Clerc et al. • \[\text{Pd}_2(\text{C}_{19}\text{H}_{27}\text{N}_2\text{P}_2\text{S}_2)^{2+}\text{(SbF}_6\text{)}_2\cdot\text{CH}_2\text{Cl}_2\]
slightly from square-planar geometry (deviation estimated by the \(/C_28\) index, with values of 0.15 and 0.16 for Pd1 and Pd2, respectively) (Yang et al., 2007). The Pd—N and the Pd—P bond lengths are almost identical for the two fragments \([\text{Pd1—N1} = 2.027 (5), \text{Pd2—N2} = 2.027 (5) \text{Å} \text{ and } \text{Pd1—P1} = 2.2455 (18), \text{Pd2—P2} = 2.2417 (18) \text{Å}]\), and the values are in the range of those observed for quinoline/phosphine chelate Pd complexes (Mori et al., 2021; Scharf et al., 2014 for example). The coordination environment around each Pd atom and the quinoline moiety is approximately planar [dihedral angles of 13.1 (1)° for Pd1 and 2.3 (1)° for Pd2, as estimated by the dihedral angle between the mean planes of the two fragments].

As for the Pd\(_2\)S\(_2\) core, the two Pd—S bond lengths for each Pd atom are slightly different and, interestingly, the bonds between the Pd atoms and the bridging S atom of the other fragment are shorter [2.3149 (16) and 2.3184 (16) for Pd1—S2 and Pd2—S1, respectively] than the bonds between the Pd atoms and the chelating S atom of the pincer ligand [2.3657 (17) and 2.3602 (17) for Pd1—S1 and Pd2—S2, respectively]. This is most likely due to the rigidity of the 8-thio-quinoline moiety (the C3—C4—S1 and C26—C27—S2 angles deviate from 120° by less than 2°). The two S atoms are noticeably pyramidalized (\(/C_6\) S = 287 and 290° for S1 and S2, respectively). The hinge angle of the core unit (involving the two [S,Pd,S] planes) has a value of 108.0 (1)°, which is in fact the lowest value reported for such kind of dicaticion species with a Pd\(_2\)S\(_2\) core (see the Database survey section). This results in a rather short Pd1—Pd2 distance of 2.8425 (7) Å, which is significantly shorter than the sum of van der Waals radii (4.10 Å; Batsanov et al., 2001) and exceeds the sum of the covalent radii (2.78 Å; Cordero et al., 2008) by only 2%.

3. Supramolecular features

The crystal packing of the title compound, illustrated in Fig. 4, involves weak intramolecular C—H···Cg contacts, and intermolecular C—H···F contacts between the cations and anions, which link the components in a three-dimensional network (Table 2, Figs. 5 and 6). No classical hydrogen-bonding interactions were found.

Each dicationic unit is surrounded by eight SbF\(_6^-\) anions, engaged in weak C—H···F contacts with C···F distances in the range 3.128 (9)—3.172 (13) Å (associated with H···F distances in the range 2.27—2.54 Å) (Fig. 5). As for the SbF\(_6^-\) anions, two different situations can be observed. One of the anions (containing Sb1) displays weak C—H···F contacts with
C—H bonds from five different dicaticonic units, while the other one (containing Sb2), interacts weakly with C—H bonds from three dicaticonic units and from a CH2Cl2 solvent molecule. Finally, an intramolecular C—H⋯C short contact is observed between one of the CH3 of the Pr groups of one PNSPd pincer fragment (Pd2) and the benzo ring of the quinoline moiety of the other fragment [C16⋯Cg1 = 3.701 (8) Å, associated with a H16A⋯Cg1 distance of 2.93 Å] (Fig. 6). It should be noted that a significantly longer distance (H28B⋯Cg2 of 3.2 Å) is observed for the other part of the unit (CH3 group of the Pd2 fragment with the benzo ring of the other), indicating a non-symmetrical organization of the dimer.

4. Database survey

To the best of our knowledge, structures of quinoline-based PNSPd dicaticonic dimers as described herein have not been reported previously. A structure survey was carried out in the Cambridge Structural Database (CSD version 5.42, update of November 2020; Groom et al., 2016). It revealed 28 hits for dicaticonic dimers with a Pd2S2 core, of which ten can be compared with the title compound as they feature the sulfur atoms embedded in a chelating ligand [refcodes CUYLIT (Kouno et al., 2015), NORGEG (Albinati et al., 1997), NOXVAZ (Chen et al., 2015), POTMUG (Kersting, 1998), QOCCUG (Su et al., 2000), SELGUL (Leung et al., 1998), TEGWUY (Cabeza et al., 2006), TIXLOE (Mane et al., 2019), XAHBUI (Nayan Sharma et al., 2015), XULYUZ (Azizpoor Fard et al., 2015)]. Hinge angles in the range 115.3–156.6° were measured for these compounds, all values higher than that measured for the title compound [108.0 (1)°].

5. Synthesis and crystallization

A solution of PNS-Pd-Cl 1 (Scharf et al., 2014) (1.0 equiv., 0.1 M) was added dropwise over 5 min to a suspension of AgSbF6 (1.0 equiv.) in CH2Cl2 (0.1 M) at 195 K. After the addition, the reaction mixture was allowed to quickly warm up to room temperature and was stirred for 2 h. The reaction was then filtered via canula, and the solvent was removed in vacuo to yield the corresponding dicaticonic complex as a reddish powder (95%). X-ray quality crystals were grown by slow diffusion at 273 K of pentane into a concentrated solution of 2 in CH2Cl2. 1H NMR (300 MHz, CD2Cl2): δ = 8.60 (d, J = 8.5 Hz, 2H), 8.23 (dd, J = 7.5, 1.2 Hz, 2H), 8.13 (dd, J = 8.5, 1.2 Hz, 2H), 7.87–7.75 (m, 4H), 4.16 (dd, J = 18.9, 9.7 Hz, 2H), 3.86 (dd, J = 18.9, 11.2 Hz, 2H), 2.47 (m, 2H), 1.79 (dd, J = 20.1, 7.1 Hz, 6H), 1.49 (dd, J = 17.4, 6.9 Hz, 6H), 1.28 (m, 2H), 0.82 (dd, J = 16.1, 6.9 Hz, 6H), 0.08 (dd, J = 19.7, 7.1 Hz, 6H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. One of the two hexafluoroantimonate anions is disordered over two positions, for which occupancies were refined, converging to 0.711 (5) and 0.289 (5). SAME, DELU and SIMU restraints were applied (Sheldrick, 2015b). All H atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98 Å (CH3), 0.99 Å (CH2) or 1.0 Å (CH), with Uiso(H) = 1.2Ueq(CH, CH2) or 1.5Ueq(CH3).

Table 2

Cg1 is the centroid of the C21–C26 ring.	D—H⋯A	D—H	H⋯A	D—A	D—H⋯A
C1—H1A⋯F3	0.99	2.34	3.305 (9)	166	
C7—H7⋯F1u	0.95	2.37	3.229 (8)	151	
C11—H11⋯F2nu	1.00	2.27	3.128 (9)	143	
C17—H17A⋯F11u	0.99	2.41	3.279 (10)	147	
C22—H22⋯F8w	0.95	2.33	3.190 (11)	150	
C23—H23⋯F1u	0.95	2.53	3.396 (9)	152	
C27—H27⋯F12a	1.00	2.43	3.322 (10)	148	
C31—H31C⋯F3w	0.98	2.50	3.399 (9)	152	
C33—H33A⋯F10l	0.99	2.54	3.172 (13)	122	
C16—H16A⋯Cg1	0.98	2.93	3.701 (8)	136	

Symmetry codes: (i) x, y, z + 1/2; (ii) x, −y+2, −z+1; (iii) x+1, −y+2, −z+1; (iv) x, y, z + 1; (v) x−1/2, −y+1, z + 1/2; (vi) x+1, −y+2, z + 1/2.

Table 3

Experimental details.	Crystal data	Chemical formula	M	Crystal system, space group	Temperature (K)	V (Å³)	Z	µ (mm⁻¹)	Crystal size (mm)
	[Pd2(C3H4N2P2S2)](SbF6)2	CH2Cl2	1349.86	Orthorhombic, Pbca	23.5167 (19), 16.1492 (14), 24.0414 (18)	30261	8	2.30	0.10 × 0.08 × 0.04

Data collection

Diffractometer: Bruker Kappa APEXII CCD Quazar

Absorption correction: Multi-scan (SADABS; Bruker, 2014)

Tmax, Tmax = 0.677, 0.728

No. of measured, independent and observed	H > 2σ(I)	reflections	Rint	(sin θ/λ)max (Å⁻¹)	R	S

Refinement

R[F² > 2σ(F²)], wR(F²), S | 0.046, 0.113, 1.01 | 9812 | 577 | 213 | H-atom parameters constrained | Δρmax, Δρmin (e Å⁻³) | 1.50, −1.07 |

Computer programs: APEX2 (Bruker, 2014) and SHELXT (Sheldrick, 2015a), SHELXL2016/3 (Sheldrick, 2015b), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2020), PLATON (Spek, 2020) and publICIF (Westrip, 2010).

Funding information

Funding for this research was provided by: ANR AAPG2020 CE07 MLC Photophos project.
References

Albinati, A., Herrmann, J. & Pregosin, P. S. (1997). *Inorg. Chim. Acta*, **264**, 33–42.

Azizpoor Fard, M., Willans, M. J., Khalili Najafabadi, B., Levchenko, T. I. & Corrigan, J. (2015). *Dalton Trans.* **44**, 8267–8277.

Batsanov, S. S. (2001). *Inorg. Mater.* **37**, 871–885.

Bruker (2014). *APEX2, SAINT and SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.

Cabeza, J. A., del Rı´ o, I., Sa´ nchez-Vega, M. G. & Sua´ rez, M. (2006). *Organometallics*, **25**, 1831–1834.

Chen, C., Xia, Q., Qiu, H. & Chen, W. (2015). *J. Organomet. Chem.* **775**, 103–108.

Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). *Dalton Trans.* pp. 2832–2838.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* **B72**, 171–179.

Kersting, B. (1998). *Eur. J. Inorg. Chem.* pp. 1071–1077.

Kouno, M., Miyashita, Y., Yoshinari, N. & Konno, T. (2015). *Chem. Lett.* **44**, 1512–1514.

Leung, P. H., Siah, S. Y., White, J. P. & Williams, J. (1998). *J. Chem. Soc. Dalton Trans.* pp. 893–900.

Lisena, J., Monot, J., Mallet-Ladeira, S., Martin-Vaca, B. & Bourissou, D. (2013). *Organometallics*, **32**, 4301–4305.

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Picock, E., Platings, M.; Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). *J. Appl. Cryst.* **53**, 226–235.

Mane, P. A., Dey, S., Pathak, A. K., Kumar, M. & Bhuvanes, N. (2019). *Inorg. Chem.* **58**, 2965–2978.

Morales-Morales, D. (2018). Editor. *Pincer compounds: Chemistry and Applications*. Oxford: Elsevier.

Mori, M., Namioka, A. & Suzuki, T. (2021). *Acta Cryst.* **E77**, 52–57.

Nayan Sharma, K., Joshi, H., Prakash, O., Sharma, A. K., Bhaskar, R. & Singh, A. K. (2015). *Eur. J. Inorg. Chem.* pp. 4829–4838.

Nebra, N., Ladeira, S., Maron, L., Martin–Vaca, B. & Bourissou, D. (2012). *Chem. Eur. J.* **18**, 8474–8481.

Nebra, N., Saffon, N., Maron, L., Martin-Vaca, B. & Bourissou, D. (2011). *Inorg. Chem.* **50**, 6378–6383.

Scharf, A., Goldberg, I. & Vigalok, A. (2014). *Inorg. Chem.* **53**, 12–14.

Selander, N. & Szabó, K. J. (2011). *Chem. Rev.* **111**, 2048–2076.

Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122.

Sheldrick, G. M. (2015a). *Acta Cryst.* **A71**, 3–8.

Sheldrick, G. M. (2015b). *Acta Cryst.* **C71**, 3–8.

Spek, A. L. (2020). *Acta Cryst.* **E76**, 1–11.

Su, W., Cao, R., Hong, M., Wu, D. & Lu, J. (2000). *J. Chem. Soc. Dalton Trans.* pp. 1527–1532.

Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.

Yang, L., Powell, D. R. & Houser, R. P. (2007). *Dalton Trans.* pp. 955–964.
Crystal structure of a dicationic Pd^{II} dimer containing a 2-[(diisopropylphosphanyl)methyl]quinoline-8-thiolate pincer ligand

Arnaud Clerc, Nathalie Saffon-Merceron, Julien Monot, Blanca Martin Vaca and Didier Bourissou

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Bis(2-[(diisopropylphosphanyl)methyl]quinoline-8-thiolato)palladium(II) bis(hexafluoroantimonate) dichloromethane monosolvate

Crystal data

\[\text{[Pd}_2\text{C}_{32}\text{H}_{42}\text{N}_2\text{P}_2\text{S}_2]\text{SbF}_6\cdot\text{CH}_2\text{Cl}_2\]

\[M_r = 1349.96\]

Orthorhombic, Pbc\(a\)

\[a = 23.5167\ (19) \text{ Å}\]

\[b = 16.1492\ (14) \text{ Å}\]

\[c = 24.0414\ (18) \text{ Å}\]

\[V = 9130.3\ (13) \text{ Å}^3\]

\[Z = 8\]

\[F(000) = 5232\]

Data collection

Bruker Kappa APEXII CCD Quazar diffractometer

Radiation source: Incoatec microfocus sealed tube

Phi and \(\omega\) scans

Absorption correction: multi-scan (SADABS; Bruker, 2014)

\[T_{\text{min}} = 0.677, T_{\text{max}} = 0.728\]

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\[R[F^2 > 2\sigma(F^2)] = 0.046\]

\[wR(F^2) = 0.113\]

\[S = 1.01\]

9812 reflections

577 parameters

213 restraints

Primary atom site location: dual

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

\[D_{\text{c}} = 1.964 \text{ Mg m}^{-3}\]

Mo \(K\alpha\) radiation, \(\lambda = 0.71073\ \text{Å}\)

Cell parameters from 9991 reflections

\[\theta = 3.0–22.0^\circ\]

\[\mu = 2.30\ \text{mm}^{-1}\]

\[T = 193 \text{ K}\]

Plate, yellow

0.10 \times 0.08 \times 0.04 \text{ mm}

152552 measured reflections

9812 independent reflections

6263 reflections with \(I > 2\sigma(I)\)

\[R_{\text{int}} = 0.122\]

\[\theta_{\text{max}} = 26.9^\circ, \theta_{\text{min}} = 1.9^\circ\]

\[h = -29\rightarrow29\]

\[k = -20\rightarrow20\]

\[l = -30\rightarrow30\]
\[w = \frac{1}{\sigma^2(F_o^2) + (0.0384P)^2 + 45.7164P} \]

where \(P = (F_o^2 + 2F_c^2)/3 \)
\[(\Delta/\sigma)_{\max} = 0.002 \]
\[\Delta \rho_{\max} = 1.50 \text{ e } \AA^{-3} \]
\[\Delta \rho_{\min} = -1.07 \text{ e } \AA^{-3} \]

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U_{iso}/U_{eq}	Occ. (<1)
Pd1	0.57179 (2)	0.75620 (3)	0.64839 (2)	0.02433 (12)	
Pd2	0.45502 (2)	0.74339 (3)	0.67769 (2)	0.02348 (12)	
P	0.61946 (7)	0.69467 (10)	0.57882 (7)	0.0291 (4)	
P2	0.37442 (7)	0.81155 (10)	0.65817 (7)	0.0268 (4)	
S1	0.51907 (7)	0.84184 (10)	0.70934 (6)	0.0284 (4)	
S2	0.52977 (7)	0.65162 (10)	0.69984 (7)	0.0304 (4)	
N1	0.5978 (2)	0.8622 (3)	0.6110 (2)	0.0248 (11)	
N2	0.4144 (2)	0.6430 (3)	0.6462 (2)	0.0243 (11)	
C1	0.6648 (3)	0.7812 (4)	0.5584 (3)	0.0311 (15)	
H1A	0.701799	0.776732	0.577766	0.037*	
H1B	0.671982	0.778550	0.517885	0.037*	
C2	0.6380 (3)	0.8623 (4)	0.5723 (3)	0.0270 (14)	
C3	0.5708 (3)	0.9343 (4)	0.6262 (3)	0.0285 (14)	
C4	0.5282 (3)	0.9334 (4)	0.6688 (2)	0.0274 (14)	
C5	0.5009 (3)	1.0053 (4)	0.6821 (3)	0.0355 (16)	
H5	0.472562	1.005157	0.710333	0.043*	
C6	0.5141 (3)	1.0796 (4)	0.6546 (3)	0.046 (2)	
H6	0.493775	1.128646	0.663638	0.056*	
C7	0.5560 (3)	1.0825 (4)	0.6149 (3)	0.0418 (18)	
H7	0.565065	1.133373	0.597251	0.050*	
C8	0.5854 (3)	1.0096 (4)	0.6005 (3)	0.0328 (16)	
C9	0.6293 (3)	1.0089 (4)	0.5603 (3)	0.0352 (16)	
H9	0.640761	1.058936	0.542901	0.042*	
C10	0.6549 (3)	0.9363 (4)	0.5467 (3)	0.0360 (16)	
H10	0.684390	0.935601	0.519667	0.043*	
C11	0.6661 (3)	0.6081 (4)	0.5938 (3)	0.0432 (19)	
H11	0.641178	0.558737	0.599777	0.052*	
C12	0.6989 (4)	0.6226 (5)	0.6488 (3)	0.059 (2)	
H12A	0.722728	0.574233	0.656806	0.089*	
H12B	0.671824	0.630923	0.679202	0.089*	
H12C	0.723057	0.671770	0.645046	0.089*	
C13	0.7053 (4)	0.5874 (5)	0.5455 (4)	0.067 (3)	
H13A	0.731357	0.633794	0.538993	0.101*	
H13B	0.682578	0.577628	0.511957	0.101*	
H13C	0.727221	0.537571	0.554384	0.101*	
C14	0.5769 (3)	0.6701 (4)	0.5169 (3)	0.0381 (17)	
supporting information

H14 0.603766 0.662319 0.485083 0.046*
C15 0.5379 (3) 0.7421 (5) 0.5027 (3) 0.055 (2)
H15A 0.515430 0.728286 0.469620 0.082*
H15B 0.560770 0.791607 0.495211 0.082*
H15C 0.512291 0.752911 0.534025 0.082*
C16 0.5430 (4) 0.5895 (5) 0.5238 (3) 0.055 (2)
H16A 0.515351 0.596008 0.553935 0.083*
H16B 0.569058 0.544039 0.532664 0.083*
H16C 0.522942 0.577044 0.489023 0.083*
C17 0.3362 (3) 0.7327 (4) 0.6178 (3) 0.0331 (16)
H17A 0.295987 0.731432 0.629853 0.040*
H17B 0.336994 0.748252 0.577947 0.040*
C18 0.3612 (3) 0.6488 (4) 0.6244 (3) 0.0311 (15)
C19 0.3333 (3) 0.5775 (4) 0.6056 (3) 0.0341 (16)
H19 0.295630 0.581288 0.591709 0.041*
C20 0.3598 (3) 0.5032 (4) 0.6072 (3) 0.0351 (17)
H20 0.340085 0.455065 0.595184 0.042*
C21 0.4163 (3) 0.4960 (4) 0.6265 (3) 0.0308 (15)
C22 0.4467 (3) 0.4207 (4) 0.6265 (3) 0.0385 (18)
H22 0.428883 0.371171 0.614199 0.046*
C23 0.5014 (4) 0.4194 (4) 0.6440 (3) 0.0446 (19)
H23 0.522041 0.368879 0.643264 0.053*
C24 0.5279 (3) 0.4912 (4) 0.6632 (3) 0.0383 (17)
H24 0.566472 0.488814 0.675010 0.046*
C25 0.4995 (3) 0.5650 (4) 0.6654 (2) 0.0283 (15)
C26 0.4427 (3) 0.5686 (4) 0.6464 (2) 0.0257 (14)
C27 0.3749 (3) 0.9063 (4) 0.6176 (3) 0.0360 (16)
H27 0.388653 0.951774 0.642469 0.043*
C28 0.4167 (3) 0.8992 (5) 0.5693 (3) 0.0457 (19)
H28A 0.402839 0.857879 0.542684 0.069*
H28B 0.454011 0.882220 0.583404 0.069*
H28C 0.420108 0.952991 0.550674 0.069*
C29 0.3144 (3) 0.9306 (5) 0.5971 (4) 0.058 (2)
H29A 0.315917 0.984838 0.578951 0.086*
H29B 0.288394 0.933056 0.628914 0.086*
H29C 0.300799 0.889035 0.570524 0.086*
C30 0.3325 (3) 0.8286 (4) 0.7209 (3) 0.0330 (16)
H30 0.293211 0.845049 0.709329 0.040*
C31 0.3281 (3) 0.7487 (5) 0.7547 (3) 0.0458 (19)
H31A 0.366266 0.730653 0.765698 0.069*
H31B 0.310159 0.705558 0.732012 0.069*
H31C 0.305098 0.758646 0.788001 0.069*
C32 0.3579 (3) 0.8998 (5) 0.7557 (3) 0.051 (2)
H32A 0.337543 0.903830 0.791199 0.077*
H32B 0.354032 0.951989 0.735303 0.077*
H32C 0.398210 0.888704 0.762806 0.077*
Sb1 0.34706 (2) 0.68208 (3) 0.44208 (2) 0.03304 (12)
F1 0.4044 (2) 0.7271 (3) 0.3981 (2) 0.0681 (14)
Atomic displacement parameters (Å²)

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
Pd1	0.0225 (2)	0.0220 (2)	0.0285 (2)	−0.0019 (2)	−0.0001 (2)	0.0012 (2)
Pd2	0.0227 (2)	0.0216 (2)	0.0262 (2)	−0.0024 (2)	0.0003 (2)	−0.0004 (2)
P1	0.0255 (9)	0.0231 (9)	0.0385 (9)	−0.0015 (7)	0.0033 (8)	−0.0045 (7)
P2	0.0244 (9)	0.0243 (8)	0.0318 (9)	−0.0001 (7)	0.0001 (7)	−0.0035 (7)
S1	0.0293 (9)	0.0279 (9)	0.0279 (8)	−0.0046 (7)	0.0004 (7)	−0.0035 (7)
S2	0.0302 (9)	0.0280 (9)	0.0329 (8)	−0.0021 (7)	−0.0019 (7)	0.0081 (7)
N1	0.024 (3)	0.021 (3)	0.029 (3)	0.000 (2)	−0.001 (2)	0.000 (2)
N2	0.021 (3)	0.024 (3)	0.028 (3)	−0.001 (2)	0.001 (2)	−0.001 (2)
C1	0.027 (4)	0.029 (3)	0.038 (4)	0.000 (3)	0.006 (3)	0.000 (3)
C2	0.019 (3)	0.028 (3)	0.034 (3)	−0.005 (3)	0.002 (3)	0.000 (3)
C3	0.023 (3)	0.029 (4)	0.034 (3)	−0.007 (3)	−0.007 (3)	0.001 (3)
C4	0.025 (4)	0.026 (3)	0.031 (3)	−0.002 (3)	−0.003 (3)	−0.005 (3)
C5	0.032 (4)	0.028 (4)	0.047 (4)	−0.005 (3)	0.002 (3)	−0.010 (3)
C6	0.047 (5)	0.022 (4)	0.070 (5)	0.007 (3)	−0.005 (4)	−0.010 (4)
C7	0.041 (5)	0.022 (4)	0.062 (5)	0.002 (3)	0.000 (4)	0.009 (3)
C8	0.031 (4)	0.027 (4)	0.041 (4)	−0.002 (3)	−0.005 (3)	−0.004 (3)
C9	0.036 (4)	0.030 (4)	0.039 (4)	−0.012 (3)	−0.004 (3)	0.011 (3)
C10	0.037 (4)	0.034 (4)	0.037 (4)	−0.010 (3)	0.007 (3)	0.005 (3)
C11	0.035 (4)	0.024 (4)	0.071 (5)	0.007 (3)	0.012 (4)	0.001 (3)
C12	0.047 (5)	0.054 (5)	0.077 (6)	0.018 (4)	−0.015 (5)	0.015 (5)
C13	0.045 (5)	0.054 (5)	0.103 (7)	0.015 (4)	0.021 (5)	−0.009 (5)
Geometric parameters (Å, °)

Pd1—N1	2.027	C17—H17A	0.9900	
Pd1—P1	2.2455	C17—H17B	0.9900	
Pd1—S2	2.3149	C18—C19	1.401 (9)	

Acta Cryst. (2022), E78, 18-22 sup-5
Bond	Distance (Å)	Bond	Distance (Å)
Pd1—S1	2.3657 (17)	C19—C20	1.352 (9)
Pd1—Pd2	2.8425 (7)	C19—H19	0.9500
Pd2—N2	2.027 (5)	C20—C21	1.411 (9)
Pd2—P2	2.2417 (18)	C20—H20	0.9500
Pd2—S1	2.3184 (16)	C21—C26	1.410 (9)
Pd2—S2	2.3602 (17)	C21—C22	1.411 (9)
P1—C11	1.812 (7)	C22—C23	1.355 (10)
P1—C1	1.825 (6)	C22—H22	0.9500
P1—C14	1.836 (7)	C23—C24	1.395 (10)
P2—C27	1.814 (7)	C23—H23	0.9500
P2—C30	1.822 (6)	C24—C25	1.366 (9)
P2—C17	1.836 (6)	C24—H24	0.9500
S1—C4	1.784 (6)	C25—C26	1.414 (9)
S2—C25	1.774 (7)	C27—C28	1.528 (10)
N1—C2	1.327 (7)	C27—C29	1.556 (10)
N1—C3	1.376 (8)	C27—H27	1.0000
N2—C18	1.360 (8)	C28—H28A	0.9800
N2—C26	1.373 (7)	C28—H28B	0.9800
C1—C2	1.491 (9)	C28—H28C	0.9800
C1—H1A	0.9900	C29—H29A	0.9800
C1—H1B	0.9900	C29—H29B	0.9800
C2—C10	1.401 (9)	C29—H29C	0.9800
C3—C8	1.407 (9)	C30—C31	1.528 (9)
C3—C4	1.433 (9)	C30—C32	1.543 (9)
C4—C5	1.366 (9)	C30—H30	1.0000
C5—C6	1.405 (10)	C31—H31A	0.9800
C5—H5	0.9500	C31—H31B	0.9800
C6—C7	1.371 (10)	C31—H31C	0.9800
C6—H6	0.9500	C32—H32A	0.9800
C7—C8	1.409 (9)	C32—H32B	0.9800
C7—H7	0.9500	C32—H32C	0.9800
C8—C9	1.413 (9)	Sb1—F3	1.830 (5)
C9—C10	1.359 (9)	Sb1—F2	1.832 (5)
C9—H9	0.9500	Sb1—F6	1.845 (5)
C10—H10	0.9500	Sb1—F5	1.852 (5)
C11—C13	1.520 (10)	Sb1—F4	1.856 (4)
C11—C12	1.549 (11)	Sb1—F1	1.861 (4)
C11—H11	1.0000	Sb2—F11	1.721 (13)
C12—H12A	0.9800	Sb2—F7	1.783 (8)
C12—H12B	0.9800	Sb2—F7′	1.784 (13)
C12—H12C	0.9800	Sb2—F8	1.796 (8)
C13—H13A	0.9800	Sb2—F12	1.800 (13)
C13—H13B	0.9800	Sb2—F11	1.849 (7)
C13—H13C	0.9800	Sb2—F12	1.862 (6)
C14—C15	1.522 (10)	Sb2—F9	1.874 (6)
C14—C16	1.535 (10)	Sb2—F8′	1.879 (14)
C14—H14	1.0000	Sb2—F10	1.888 (8)
C15—H15A	0.9800	Sb2—F10′	1.907 (13)
Bond	Length (Å)	Angle (°)	
----------------------	------------	-----------	
C15—H15B	0.9800		
C15—H15C	0.9800		
C16—H16A	0.9800		
C16—H16B	0.9800		
C16—H16C	0.9800		
C17—C18	1.486 (9)		
C11—P1—C1		106.9 (3)	
C11—P1—C14		108.9 (3)	
C1—P1—Pd1		119.7 (3)	
C14—P1—Pd1		98.8 (2)	
C14—P1—C1		105.4 (3)	
C1—P1—Pd1		119.7 (3)	
C11—P1—C14		106.9 (3)	
C11—P1—C14		108.9 (3)	
C1—P1—Pd1		119.7 (3)	
C14—P1—Pd1		98.8 (2)	
C27—P2—C30		108.7 (3)	
C27—P2—C17		107.7 (3)	
C30—P2—C17		106.1 (3)	
C27—P2—Pd2		121.4 (2)	
C30—P2—Pd2		111.0 (2)	
C17—P2—Pd2		100.6 (2)	
C4—S1—Pd2		117.9 (2)	
C4—S1—Pd1		94.8 (2)	
C25—S2—Pd1		119.8 (2)	
C25—S2—Pd2		95.2 (2)	
Pd1—S2—Pd2		74.88 (5)	
C2—N1—C3		120.8 (5)	
C2—N1—Pd1		121.8 (4)	
C3—N1—Pd1		117.3 (4)	
Bond	Angle (°)	Bond	Angle (°)
--------------	-----------	--------------	-----------
C18—N2—C26	120.4 (5)	C27—C29—H29A	109.5
C18—N2—Pd2	121.4 (4)	C27—C29—H29B	109.5
C26—N2—Pd2	118.1 (4)	H29A—C29—H29B	109.5
C2—C1—P1	111.5 (4)	C27—C29—H29C	109.5
C2—C1—H1A	109.3	H29A—C29—H29C	109.5
P1—C1—H1A	109.3	C2—C1—H1B	109.3
C2—C1—H1B	109.3	C27—C29—H29A	109.5
H1A—C1—H1B	108.0	C27—C29—P2	110.6 (5)
N1—C2—C10	120.9 (6)	C32—C30—H30	108.1
N1—C2—C1	117.1 (5)	C32—C30—H30	108.1
C10—C2—C1	122.0 (6)	P2—C30—H30	108.1
N1—C3—C8	120.2 (6)	C30—C31—H31A	109.5
N1—C3—C4	120.2 (6)	C30—C31—H31B	109.5
C8—C3—C4	119.6 (6)	H31A—C31—H31B	109.5
C5—C4—C3	119.2 (6)	C32—C31—H31A	109.5
C5—C4—S1	121.4 (5)	C32—C31—H31C	109.5
C3—C4—S1	118.9 (5)	H31B—C31—H31C	109.5
C4—C5—C6	120.8 (7)	C30—C32—H32A	109.5
C4—C5—H5	119.6	C30—C32—H32B	109.5
C6—C5—H5	119.6	H32A—C32—H32B	109.5
C7—C6—C5	121.0 (7)	C30—C32—H32C	109.5
C7—C6—H6	119.5	H32B—C32—H32C	109.5
C5—C6—H6	119.5	F3—Sb1—F2	91.0 (4)
C6—C7—C8	119.7 (7)	F3—Sb1—F6	177.3 (3)
C6—C7—H7	120.1	F2—Sb1—F6	91.4 (4)
C8—C7—H7	120.1	F3—Sb1—F5	89.5 (3)
C3—C8—C7	119.6 (6)	F2—Sb1—F5	179.2 (3)
C3—C8—C9	118.1 (6)	F6—Sb1—F5	88.1 (3)
C7—C8—C9	122.3 (6)	F3—Sb1—F4	89.0 (2)
C10—C9—C8	119.8 (6)	F2—Sb1—F4	92.3 (2)
C10—C9—H9	120.1	F6—Sb1—F4	89.5 (2)
C8—C9—H9	120.1	F3—Sb1—F4	88.3 (3)
C9—C10—C2	120.2 (6)	F5—Sb1—F4	90.9 (2)
C9—C10—H10	119.9	F3—Sb1—F1	88.5 (2)
C2—C10—H10	119.9	F2—Sb1—F1	90.5 (3)
C13—C11—C12	112.5 (7)	F5—Sb1—F1	90.8 (2)
C13—C11—P1	112.6 (6)	F4—Sb1—F1	179.2 (2)
C12—C11—P1	110.8 (5)	F11′—Sb2—F7′	98.4 (10)
C13—C11—H11	106.8	F7—Sb2—F8	93.9 (6)
C12—C11—H11	106.8	F11′—Sb2—F12′	85.3 (10)
P1—C11—H11	106.8	C11—C12—H12A	109.5
C11—C12—H12A	109.5	C11—C12—H12B	95.1 (9)
C11—C12—H12B	95.1	C7—Sb2—F11	87.1 (5)
H12A—C12—H12B	109.5	F8—Sb2—F11	179.0 (5)
C11—C12—H12C	109.5	F7—Sb2—F12	93.6 (4)
H12A—C12—H12C	93.7	F8—Sb2—F12	93.7 (4)
H12B—C12—H12C	109.5	F11—Sb2—F12	85.9 (3)
Bond	Bond	Bond	Value (°)
------	------	------	----------
C11—C13—H13A	109.5	F7—Sb2—F9	91.0 (4)
C11—C13—H13B	109.5	F8—Sb2—F9	87.7 (4)
H13A—C13—H13B	109.5	F11—Sb2—F9	92.5 (4)
C11—C13—H13C	109.5	F12—Sb2—F9	175.0 (4)
H13A—C13—H13C	109.5	F11′—Sb2—F8′	105.2 (10)
H13B—C13—H13C	109.5	F7—Sb2—F8′	89.5 (8)
C15—C14—C16	111.0 (6)	F12—Sb2—F8′	167.8 (10)
C15—C14—P1	110.2 (5)	F7—Sb2—F10	175.7 (5)
C16—C14—P1	112.3 (5)	F8—Sb2—F10	89.5 (5)
C15—C14—H14	107.7	F11—Sb2—F10	89.5 (5)
C16—C14—H14	107.7	F12—Sb2—F10	88.8 (4)
P1—C14—H14	107.7	F9—Sb2—F10	86.4 (4)
C14—C15—H15A	109.5	F11′—Sb2—F10′	94.0 (10)
C14—C15—H15B	109.5	F7′—Sb2—F10′	166.5 (11)
H15A—C15—H15B	109.5	F12′—Sb2—F10′	91.3 (10)
C14—C15—H15C	109.5	F8′—Sb2—F10′	82.0 (8)
H15A—C15—H15C	109.5	F11′—Sb2—F9′	171.8 (10)
H15B—C15—H15C	109.5	F7′—Sb2—F9′	89.5 (9)
C14—C16—H16A	109.5	F12′—Sb2—F9′	96.4 (9)
C14—C16—H16B	109.5	F8′—Sb2—F9′	72.3 (9)
H16A—C16—H16B	109.5	F10′—Sb2—F9′	78.0 (9)
C14—C16—H16C	109.5	C12—C33—C11	112.8 (5)
H16A—C16—H16C	109.5	C12—C33—H33A	109.0
H16B—C16—H16C	109.5	C11—C33—H33A	109.0
C18—C17—P2	112.4 (4)	C12—C33—H33B	109.0
C18—C17—H17A	109.1	C11—C33—H33B	109.0
P2—C17—H17A	109.1	H33A—C33—H33B	107.8
C18—C17—H17B	109.1		

Bond	Bond	Bond	Value (°)
C11—P1—C1—C2	−151.4 (5)	C27—P2—C17—C18	143.6 (5)
C14—P1—C1—C2	92.8 (5)	C30—P2—C17—C18	−100.2 (5)
Pd1—P1—C1—C2	−26.6 (5)	Pd2—P2—C17—C18	15.5 (5)
C3—N1—C1—C2	1.4 (9)	C26—N2—C18—C19	4.7 (9)
Pd1—N1—C1—C2	179.4 (5)	Pd2—N2—C18—C19	−176.8 (5)
C3—N1—C1—C2	−179.9 (5)	C26—N2—C18—C17	−171.1 (5)
Pd1—N1—C2—C1	−1.8 (8)	Pd2—N2—C18—C17	7.4 (8)
P1—C1—C2—N1	21.0 (7)	P2—C17—C18—N2	−15.9 (8)
P1—C1—C2—C10	−160.3 (5)	P2—C17—C18—C19	168.4 (5)
C2—N1—C3—C8	0.3 (9)	N2—C18—C19—C20	−2.4 (10)
Pd1—N1—C3—C8	−177.8 (5)	C17—C18—C19—C20	173.2 (6)
C2—N1—C3—C4	−178.9 (6)	C18—C19—C20—C21	−1.5 (10)
Pd1—N1—C3—C4	3.0 (7)	C19—C20—C21—C26	3.0 (9)
N1—C3—C4—C5	−178.2 (6)	C19—C20—C21—C22	−176.8 (7)
C8—C3—C4—C5	2.6 (9)	C26—C21—C22—C23	−1.9 (10)
N1—C3—C4—S1	10.2 (8)	C20—C21—C22—C23	177.9 (6)
C8—C3—C4—S1	−169.0 (5)	C21—C22—C23—C24	1.3 (10)
Pd2—S1—C4—C5	98.5 (5)	C22—C23—C24—C25	0.6 (11)
Pd1—S1—C4—C5	173.7 (5)	C23—C24—C25—C26	−1.8 (10)
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C21–C26 ring.

D—H···A	D—H	H···A	D···A	D—H···A
C1—H1A···F3i	0.99	2.34	3.305 (9)	166
C7—H7···F1ii	0.95	2.37	3.229 (8)	151
C11—H11···F2iii	1.00	2.27	3.128 (9)	143
C17—H17A···F11iv	0.99	2.41	3.279 (10)	147
C22—H22···F8v	0.95	2.33	3.190 (11)	150
C23—H23···F11iii	0.95	2.53	3.396 (9)	152
C27—H27···F12ii	1.00	2.43	3.322 (10)	148
C31—H31C···F3iv	0.98	2.50	3.399 (9)	152
C33—H33d···F10	0.99	2.54	3.172 (13)	122
C16—H16A···Cg1	0.98	2.93	3.701 (8)	136

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, −y+3/2, z+1/2; (v) −x+1/2, −y+1, z+1/2; (vi) −x+1/2, −y+2, z+1/2.
Selected geometric parameters (Å, °)

Bond/Angle	Value
Pd1-N1	2.027 (5)
Pd1-P1	2.2455 (18)
Pd1-S2	2.3149 (16)
Pd1-S1	2.3657 (17)
P1-C1	1.825 (6)
S1-C4	1.784 (6)
Pd1-Pd2	2.8425 (7)
Pd2-N2	2.027 (5)
Pd2-P2	2.2417 (18)
Pd2-S1	2.3184 (16)
Pd2-S2	2.3602 (17)
P2-C17	1.836 (6)
S2-C25	1.774 (7)
N1-Pd1-P1	83.86 (15)
N1-Pd1-S2	168.93 (15)
P1-Pd1-S2	106.75 (6)
N1-Pd1-S1	86.49 (15)
P1-Pd1-S1	169.03 (6)
S2-Pd1-S1	82.64 (6)
N1-Pd1-Pd2	117.54 (14)
P1-Pd1-Pd2	129.40 (5)
S2-Pd1-Pd2	53.28 (4)
S1-Pd1-Pd2	51.89 (4)
Pd2-S1-Pd1	74.71 (5)
Pd1-S2-Pd2	74.88 (5)