Jiaoxiu Ling and Zhan Zhou*

Positive solutions of the discrete Dirichlet problem involving the mean curvature operator

https://doi.org/10.1515/math-2019-0081
Received April 17, 2019; accepted July 31, 2019

Abstract: In this paper, by using critical point theory, we obtain some sufficient conditions on the existence of infinitely many positive solutions of the discrete Dirichlet problem involving the mean curvature operator. We show that the suitable oscillating behavior of the nonlinear term near at the origin and at infinity will lead to the existence of a sequence of pairwise distinct nontrivial positive solutions. We also give two examples to illustrate our main results.

Keywords: discrete Dirichlet problem, mean curvature operator, infinitely many positive solutions, critical point theory

MSC: 39A11

1 Introduction

Denote Z and R the sets of integers and real numbers, respectively. For $a, b \in Z$, define $Z(a) = \{a, a + 1, \cdots\}$, and $Z(a, b) = \{a, a + 1, \cdots, b\}$ when $a \leq b$.

In this paper, we consider the following Dirichlet problem of the second order nonlinear difference equation

\[
\begin{align*}
-\Delta \left(\phi_c(\Delta u_{k-1}) \right) + q_k \phi_c(u_k) &= \lambda f(k, u_k), \\
u_0 &= u_{T+1} = 0,
\end{align*}
\]

where T is a given positive integer, Δ is the forward difference operator defined by $\Delta u_k = u_{k+1} - u_k$, $\Delta^2 u_k = \Delta(\Delta u_k)$, $q_k \geq 0$ for all $k \in Z(1, T)$, ϕ_c is the mean curvature operator defined by $\phi_c(s) = \frac{s^3}{\sqrt{1+s^2}}$ [1], λ is a real positive parameter, and $f(k, \cdot) \in C(\mathbb{R}, \mathbb{R})$ for each $k \in Z(1, T)$.

When $q_k \equiv 0$, problem (1.1) may be regarded as the discrete analog of the following one-dimensional prescribed curvature problem

\[
\begin{align*}
-(\phi_c(u'))' &= \lambda f(t, u), \\
u(0) &= u(1) = 0.
\end{align*}
\]

In 2007, based on the variational methods and a regularization of the action functional associated with the curvature problem, Bonheure etc. in [2] obtained the existence and multiplicity of positive solutions of (1.2) according to the behaviour near at the origin and at infinity of the potential $\int_0^u f(t, s) ds$. In [3], Bonanno, Livrea and Mawhin obtained an explicit interval A of positive parameters, such that, for every $A \in A$, problem

*Corresponding Author: Zhan Zhou: School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

E-mail: zzhou0321@hotmail.com

© 2019 Ling and Zhou, published by De Gruyter. This work is licensed under the Creative Commons Attribution alone 4.0 License.
In [22], the authors extended the results of [21] to the following discrete boundary value problem with

\[
\begin{aligned}
-\triangle^2 u_{k-1} &= \lambda f(k, u_k), & k \in Z(1, T), \\
u_0 &= u_{T+1} = 0.
\end{aligned}
\]

By using critical point theory, the authors obtained the existence of at least two positive solutions for (1.3).

For example, in [21], the authors considered the discrete Dirichlet problem

\[
\begin{aligned}
-\triangle (\phi_p(\triangle u_{k-1})) + q_k \phi_p(u_k) &= \lambda f(k, u_k), & k \in Z(1, T), \\
u_0 &= u_{T+1} = 0.
\end{aligned}
\]

While the existence results of infinitely many solutions of (1.4) were also established in [20]. Very recently, the authors in [23] considered the existence of positive solutions of (1.1) for the special case \(q_k \equiv 0 \) according to the behavior of \(f \) at infinity.

Compared with differential equations, there is less work on the boundary value problems of difference equations involving the mean curvature operator. In this paper, we will consider the existence of infinitely many positive solutions of (1.1) by means of a critical point result in [24], see also [25]. The results show that the suitable oscillating behavior of the nonlinear term \(f \) near at the origin and at infinity will lead to the existence of a sequence of pairwise distinct nontrivial positive solutions for problem (1.1). We refer the reader to monographs [26, 27] for the general background on difference equations.

This paper is organized as follows. In section 2, the variational framework associated with (1.1) is established, and the abstract critical point theorem is recalled. In section 3, our main results are presented. In particular, we establish a strong maximum principle and obtain the existence of infinitely many positive solutions for (1.1) according to the oscillating behavior of \(f \) near at the origin and at infinity, respectively. Finally, in section 4, we present two examples to illustrate our main results.

2 Preliminaries

In this section, we first establish the variational framework associated with (1.1). We consider the \(T \)-dimensional Banach space \(S = \{u : Z(0, T + 1) \to R : u_0 = u_{T+1} = 0\} \) endowed with the norm

\[
\|u\| := \left(\sum_{k=0}^{T} \left(\triangle u_k \right)^2 \right)^{\frac{1}{2}}.
\]

Define

\[
\Phi(u) = \sum_{k=0}^{T} \left(\sqrt{1 + (\triangle u_k)^2} - 1 \right) + \sum_{k=1}^{T} q_k \left(\sqrt{1 + u_k^2} - 1 \right), \quad \Psi(u) = \sum_{k=1}^{T} F(k, u_k),
\]

for every \(u \in S \), where \(F(k, u) = \int_{0}^{u} f(k, \tau) d\tau \) is the primary function of \(f(k, u) \) with \(F(k, 0) = 0 \) for each \(k \in Z(1, T) \). Let

\[
I_{\lambda}(u) = \Phi(u) - \lambda \Psi(u),
\]

for any \(u \in S \). It is clear that \(\Phi \) and \(\Psi \) are two functionals of class \(C^1(S, R) \) whose Gâteaux derivatives at the point \(u \in S \) are given by

\[
\Phi'(u)(v) = \sum_{k=0}^{T} \phi_k(\triangle u_k) \triangle v_k + \sum_{k=1}^{T} q_k \phi_k(u_k) v_k,
\]
and
\[\Psi'(u)(v) = \sum_{k=1}^{T} f(k, u_k)v_k, \]
for all \(u, v \in S \). Since
\[
\sum_{k=0}^{T} \phi_c(\triangle u_k)\triangle v_k = \sum_{k=0}^{T} \phi_c(\triangle u_k)v_{k+1} - \sum_{k=0}^{T} \phi_c(\triangle u_k)v_k
= \sum_{k=1}^{T} \phi_c(\triangle u_{k-1})v_k - \sum_{k=1}^{T} \phi_c(\triangle u_k)v_k
= -\sum_{k=1}^{T} \triangle(\phi_c(\triangle u_{k-1}))v_k,
\]
then,
\[
[\Phi'(u) - \lambda \Psi'(u)](v) = \sum_{k=1}^{T} \left[-\triangle(\phi_c(\triangle u_{k-1})) + q_k \phi_c(u_k) - \lambda f(k, u_k) \right] v_k.
\]
Consequently, the critical points of \(I_\lambda \) in \(S \) are exactly the solutions of the problem (1.1).

Assume that \(X \) is a reflexive real Banach space and \(I_\lambda : X \to R \) is a function which satisfies the following structure hypothesis:

(A) Assuming that \(\Phi, \Psi : X \to R \) are two functions of class \(C^1 \) on \(X \) with \(\Phi \) coercive, i.e. \(\lim_{\|u\| \to +\infty} \Phi(u) = +\infty \).

Let \(I_\lambda(u) := \Phi(u) - \lambda \Psi(u) \) for each \(u \in X \), where \(\lambda \) is a real positive parameter.

If \(\inf_X \Phi < r \), let
\[
\varphi(r) := \inf_{u \in \Phi^{-1}(-\infty, r)} \left(\sup_{v \in \Phi^{-1}(-\infty, r)} \frac{\Psi(v) - \Psi(u)}{r - \Phi(u)} \right),
\]
and
\[
\delta := \liminf_{r \to (\inf \Phi)^+} \varphi(r), \quad \gamma := \liminf_{r \to +\infty} \varphi(r).
\]
Clearly, \(\delta \geq 0 \) and \(\gamma \geq 0 \). When \(\delta = 0 \) (or \(\gamma = 0 \)), in the sequel, we agree to read \(1/2 \) (or \(1/3 \)) as \(+\infty \).

The following lemma comes from Theorem 74 of [24] and will be used to investigate problem (1.1).

Lemma 2.1. Assume that the condition (A) holds. We have

(a) If \(\delta < +\infty \), then, for each \(\ell \in (0, \frac{1}{2}) \), the following alternative holds: either

(a1) there is a global minimum of \(\Phi \) which is a local minimum of \(I_\lambda \), or

(a2) there is a sequence \(\{u_n\} \) of pairwise distinct critical points (local minima) of \(I_\lambda \), with \(\lim_{n \to +\infty} \Phi(u_n) = \inf_X \Phi \), which weakly converges to a global minimum of \(\Phi \).

(b) If \(\gamma < +\infty \), then, for each \(\ell \in (0, \frac{1}{2}) \), the following alternative holds: either

(b1) \(I_\lambda \) possesses a global minimum, or

(b2) there is a sequence \(\{u_n\} \) of critical points (local minima) of \(I_\lambda \) such that \(\lim_{n \to +\infty} \Phi(u_n) = +\infty \).

3 Main results

Put
\[
B := \limsup_{t \to 0^+} \frac{\sum_{k=1}^{T} F(k, t)}{t^2}, \quad D := \limsup_{t \to +\infty} \frac{\sum_{k=1}^{T} F(k, t)}{t}, \quad q^* := \min\{q_k : k \in Z(1, T)\}, \quad Q := \sum_{k=1}^{T} q_k.
\]

First, if considering the oscillating behavior of \(f \) near at the origin, we have
Theorem 3.1. Assume that there exist two real sequences \(\{a_n\}\) and \(\{b_n\}\), with \(b_n > 0\) and \(\lim_{n \to \infty} b_n = 0\), such that
\[
(2 + Q) \left(\sqrt{1 + a_n^2} - 1 \right) < (1 + q_\ast) \left(\sqrt{1 + \min \left\{ \frac{4}{T + 1}, 1 \right\} b_n^2 - 1} \right),
\]
for \(n \in \mathbb{Z}(1)\), and
\[
A := \liminf_{n \to \infty} \frac{\sum_{k=1}^{T} \max F(k, t) - \sum_{k=1}^{T} F(k, a_n)}{(1 + q_\ast) \left(\sqrt{1 + \min \left\{ \frac{4}{T + 1}, 1 \right\} b_n^2 - 1 \right) - (2 + Q) \left(\sqrt{1 + a_n^2} - 1 \right)} < \frac{2B}{2 + Q}.
\]

Then, for each \(\lambda \in \left(\frac{2 + Q}{2B}, \frac{1}{\lambda} \right)\), problem (1.1) admits a sequence of nontrivial solutions which converges to zero.

Proof. To prove Theorem 3.1, we will need to use Lemma 2.1. Firstly, \((A)\) is clearly satisfied. Put
\[
r_n = (1 + q_\ast) \left(\sqrt{1 + \min \left\{ \frac{4}{T + 1}, 1 \right\} b_n^2 - 1} \right).
\]
Fix \(u \in S\) such that \(\Phi(u) = \Phi_1(u) + \Phi_2(u) < r_n\), where
\[
\Phi_1(u) = \sum_{k=0}^{T} \left(\sqrt{1 + (\Delta u_k)^2} - 1 \right), \quad \Phi_2(u) = \sum_{k=1}^{T} q_k \left(\sqrt{1 + u_k^2} - 1 \right).
\]

Put
\[
v_k = \sqrt{1 + (\Delta u_k)^2} - 1
\]
for each \(k \in \mathbb{Z}(0, T)\). Then \(\sum_{k=0}^{T} v_k = \Phi_1(u)\) and
\[
\sum_{k=0}^{T} (\Delta u_k)^2 = \sum_{k=0}^{T} (v_k^2 + 2v_k) \leq \left(\sum_{k=0}^{T} v_k \right)^2 + 2 \sum_{k=0}^{T} v_k = \Phi_1^2(u) + 2\Phi_1(u),
\]
which implies that
\[
\Phi_1(u) \geq \sqrt{\|u\|^2 + 1} - 1.
\]
Noticing that
\[
\|u\|_\infty \leq \frac{\sqrt{T + 1}}{2} \|u\|,
\]
by Lemma 2.2 in [28], where
\[
\|u\|_\infty := \max \{ |u_k| : k \in \mathbb{Z}(1, T) \},
\]
for \(u \in S\). Thus, we have
\[
\Phi_1(u) \geq \sqrt{\frac{4}{T + 1}} \|u\|_\infty^2 + 1 - 1.
\]
It is clear that
\[
\Phi_2(u) \geq q_\ast \left(\sqrt{\|u\|_\infty^2 + 1} - 1 \right).
\]
Therefore
\[
(1 + q_\ast) \left(\sqrt{1 + \min \left\{ \frac{4}{T + 1}, 1 \right\} \|u\|_\infty^2 - 1} \right) \leq \Phi_1(u) + \Phi_2(u) < r_n,
\]
which implies that
\[
\|u\|_\infty^2 < \max \left\{ \frac{T + 1}{4}, 1 \right\} \left[\left(\frac{r_n}{1 + q_\ast} \right)^2 + \frac{2r_n}{1 + q_\ast} \right] = b_n^2.
\]
By the definition of φ, we have
\[
\varphi(r_n) \leq \inf_{u \in \Phi^{*}(-\infty, r_n)} \frac{\sum_{k=1}^{T} \max_{t \in [b_n]} F(k, t) - \sum_{k=1}^{T} F(k, u_k)}{(1 + q_*) \left(\sqrt{1 + \min \left\{ \frac{A}{T-1}, 1 \right\} b_n^2 - 1 \right) - \Phi(u)}.
\]

For each $n \in Z(1)$, let $w_n \in S$ given by $(w_n)_k = a_n$ for each $k \in Z(1, T)$, and $(w_n)_0 = (w_n)_{T+1} = 0$. Then, by using (3.1),
\[
\Phi(w_n) = (2 + Q) \left(\sqrt{1 + a_n^2} - 1 \right) < r_n.
\]

Thus,
\[
\varphi(r_n) \leq \frac{\sum_{k=1}^{T} \max_{t \in [b_n]} F(k, t) - \sum_{k=1}^{T} F(k, (w_n)_k)}{(1 + q_*) \left(\sqrt{1 + \min \left\{ \frac{A}{T-1}, 1 \right\} b_n^2 - 1 \right) - \Phi(w_n)} = \frac{\sum_{k=1}^{T} \max_{t \in [b_n]} F(k, t) - \sum_{k=1}^{T} F(k, a_n)}{(1 + q_*) \left(\sqrt{1 + \min \left\{ \frac{A}{T-1}, 1 \right\} b_n^2 - 1 \right) - \Phi(w_n)}.
\]

Therefore, by (3.2), we know that $\gamma \leq \lim\inf_{n \to +\infty} \varphi(r_n) \leq A < +\infty$.

Clearly, $u \equiv 0$ is a global minimum of Φ. In order to get the conclusion (a), we need to prove that $u \equiv 0$ is not a local minimum of I_λ. To prove this, we consider two cases: $B = +\infty$ and $B < +\infty$. If $B = +\infty$, let $\{c_n\}$ be a sequence of positive numbers, with $\lim_{n \to +\infty} c_n = 0$, such that
\[
\sum_{k=1}^{T} F(k, c_n) \geq \frac{(2 + Q)c_n^2}{\lambda}, \text{ for } n \in Z(1).
\]

Defining a sequence $\{\omega_n\}$ in S by $(\omega_n)_k = c_n$ for each $k \in Z(1, T)$ and $(\omega_n)_0 = (\omega_n)_{T+1} = 0$, we have
\[
I_\lambda(\omega_n) = (2 + Q) \left(\sqrt{1 + c_n^2} - 1 \right) - \lambda \sum_{k=1}^{T} F(k, c_n) \leq \frac{2 + Q}{2} c_n^2 - (2 + Q)c_n^2 = \frac{2 + Q}{2} c_n^2 < 0.
\]

If $B < +\infty$, since $\lambda > \frac{2 + Q}{2B}$, we can choose $\epsilon_0 > 0$ such that
\[
2 + Q - 2\lambda(B - \epsilon_0) < 0.
\]

Then we can find a sequence of positive numbers $\{c_n\}$ satisfying $\lim_{n \to +\infty} c_n = 0$ and
\[
(B - \epsilon_0)c_n^2 \leq \sum_{k=1}^{T} F(k, c_n) \leq (B + \epsilon_0)c_n^2.
\]

Let the sequence $\{\omega_n\}$ in S be the same as the case where $B = +\infty$, we get
\[
I_\lambda(\omega_n) = (2 + Q) \left(\sqrt{1 + c_n^2} - 1 \right) - \lambda \sum_{k=1}^{T} F(k, c_n) \leq \frac{2 + Q - 2\lambda(B - \epsilon_0)}{2} c_n^2 < 0.
\]

Since $I_\lambda(0) = 0$, by combining the above two cases, we see that $u \equiv 0$ is not a local minimum of I_λ and by Lemma 2.1, we conclude Theorem 3.1 holds.

Now, let
\[
A_* = \lim\inf_{t \to 0^+} \frac{2 \max \left\{ \frac{T}{n}, 1 \right\} \sum_{k=1}^{T} \max_{s \in \mathbb{S}^2} F(k, s)}{(1 + q_*)t^2}.
\]
Then there exists a sequence \(\{b_n\} \) of positive numbers with \(\lim_{n \to +\infty} b_n = 0 \) such that

\[
\liminf_{n \to +\infty} \sum_{k=1}^{T} \max_{|t| \leq d_n} F(k, t) (1 + q_s) \left(\sqrt{1 + \min \left\{ \frac{4}{T + 1}, 1 \right\} d_n^2 - 1} \right) = A^*.
\]

Taking \(a_n = 0 \) for all \(n \in Z(1) \), then by Theorem 3.1, we have the following corollary.

Corollary 3.1. Assume that

\[
A^* < \frac{2B}{2 + Q}, \tag{3.4}
\]

then, for each \(\lambda \in \left(\frac{2Q}{2B}, \frac{1}{A^*} \right) \), problem (1.1) admits a sequence of nontrivial solutions which converges to zero.

Now, considering the oscillating behavior of \(f \) at infinity, we have

Theorem 3.2. Assume that there exist two real sequences \(\{c_n\}, \{d_n\} \), and \(\lim_{n \to +\infty} d_n = +\infty \), such that

\[
(2 + Q) \left(\sqrt{1 + c_n^2} - 1 \right) < (1 + q_s) \left(\sqrt{1 + \min \left\{ \frac{4}{T + 1}, 1 \right\} d_n^2 - 1} \right), \tag{3.5}
\]

for \(n \in Z(1) \), and

\[
C := \lim_{n \to +\infty} \inf \frac{\sum_{k=1}^{T} \max_{|t| \leq d_n} F(k, t) - \sum_{k=1}^{T} F(k, c_n)}{(1 + q_s) \left(\sqrt{1 + \min \left\{ \frac{4}{T + 1}, 1 \right\} d_n^2 - 1} \right)} < \frac{D}{2 + Q}. \tag{3.6}
\]

Then, for each \(\lambda \in \left(\frac{2Q}{2D}, \frac{1}{C^*} \right) \), problem (1.1) admits an unbounded sequence of solutions.

The proof of Theorem 3.2 is similar to that of Theorem 3.1, we omit it.

Let

\[
C^* = \liminf_{t \to +\infty} \frac{\sqrt{\max \left\{ \frac{T + 1}{q_s}, 1 \right\} \sum_{k=1}^{T} \max_{|s| \leq T} F(k, s)}}{(1 + q_s) t}.
\]

Then there exists a sequence \(\{d_n\} \) of positive numbers with \(\lim_{n \to +\infty} d_n = +\infty \) such that

\[
\liminf_{n \to +\infty} \frac{\sum_{k=1}^{T} \max_{|t| \leq d_n} F(k, t)}{(1 + q_s) \left(\sqrt{1 + \min \left\{ \frac{4}{T + 1}, 1 \right\} d_n^2 - 1} \right)} = C^*.
\]

Taking \(c_n = 0 \) for each \(n \in Z(1) \), by Theorem 3.2, we have the following corollary.

Corollary 3.2. Assume that

\[
C^* < \frac{D}{2 + Q}, \tag{3.7}
\]

then, for each \(\lambda \in \left(\frac{2Q}{2D}, \frac{1}{C^*} \right) \), problem (1.1) admits an unbounded sequence of solutions.

In order to obtain the positive solutions of (1.1), we need to establish the following strong maximum principle.

Theorem 3.3. Let \(u \in S \) be such that either

\[
u_k > 0 \quad \text{or} \quad - \triangle (\phi_c(\triangle u_{k-1})) + q_k \phi_c(u_k) \geq 0, \tag{3.8}
\]

for all \(k \in Z(1, T) \). Then, either \(u_k > 0 \) for all \(k \in Z(1, T) \) or \(u \equiv 0 \).
Proof. Assume that
\[u_m = \min \{ u_k : k \in N(1, T) \}, \]
for some \(m \in Z(1, T) \).

If \(u_m > 0 \), we see that \(u_k > 0 \) for all \(k \in Z(1, T) \) and we complete the proof.

If \(u_m \leq 0 \), then \(u_m = \min \{ u_k : k \in N(0, T + 1) \} \). Since \(\Delta u_{m-1} = u_m - u_{m-1} \leq 0 \) and \(\Delta u_m = u_{m+1} - u_m \geq 0 \), and \(\phi_c(s) \) is increasing in \(s \) with \(\phi_c(0) = 0 \). We have
\[\phi_c(\Delta u_m) \geq 0 \geq \phi_c(\Delta u_{m-1}). \] (3.9)

On the other hand, by (3.8), we see that \(-\Delta (\phi_c(\Delta u_{m-1})) \geq -q_m \phi_c(u_{m}) \geq 0 \), which implies
\[\phi_c(\Delta u_{m-1}) \leq \phi_c(\Delta u_{m-1}). \] (3.10)

By combining (3.9) with (3.10), we get \(\phi_c(\Delta u_m) = 0 = \phi_c(\Delta u_{m-1}) \). That is \(u_{m+1} = u_{m-1} = u_m \). If \(m + 1 = T + 1 \), we get \(u_m = 0 \). Otherwise, \(m + 1 \in N(1, T) \). In this case, we replace \(m \) by \(m + 1 \) and have \(u_{m+2} = u_{m+1} \).

We get \(u_m = u_{m+1} = u_{m+2} = \cdots = u_{T+1} = 0 \) by continuing this process \(T + 1 - m \) times. Similarly, we have \(u_m = u_{m-1} = u_{m-2} = \cdots = u_0 = 0 \). Thus \(u \equiv 0 \) and we complete the proof.

Now, considering the existence of positive solutions of problem (1.1), we have

Corollary 3.3. Assume that \(f(k, 0) \geq 0 \) for all \(k \in Z(1, T) \), and
\[2 \max \{ \frac{T+1}{2}, 1 \} \sum_{k=1}^{T} \max_{0 \leq \tau \leq s} \int_{0}^{\tau} f(k, \tau) d\tau \]
\[\bar{A} := \liminf_{t \to 0} \frac{\max_{0 \leq \tau \leq s} \int_{0}^{\tau} f(k, \tau) d\tau}{(1 + q^*)t^2} < \frac{2B}{2 + Q}, \] (3.11)

then, for each \(\lambda \in (\frac{2 + Q}{2B}, \frac{1}{\bar{A}}) \), problem (1.1) admits a sequence of positive solutions which converges to zero.

Proof. Let
\[f^*(k, t) = \begin{cases} f(k, t), & \text{if } t > 0, \\ f(k, 0), & \text{if } t \leq 0. \end{cases} \] (3.12)

Since \(f(k, 0) \geq 0 \), we see that
\[\max_{0 \leq \tau \leq s} \int_{0}^{\tau} f^*(k, \tau) d\tau = \max_{0 \leq \tau \leq s} \int_{0}^{\tau} f(k, \tau) d\tau, \]
for all \(t \geq 0 \). According to Corollary 3.1, we see that problem (1.1) with \(f \) replaced by \(f^* \) admits a sequence of nontrivial solutions which converges to zero for each \(\lambda \in (\frac{2 + Q}{2B}, \frac{1}{\bar{A}}) \). And by Theorem 3.3, all these solutions are positive.

Arguing as in Corollary 3.3, we have

Corollary 3.4. Assume that \(f(k, 0) \geq 0 \) for all \(k \in Z(1, T) \), and
\[\bar{C} := \liminf_{t \to +\infty} \frac{\sqrt{\max \{ \frac{T+1}{2}, 1 \} \sum_{k=1}^{T} \max_{0 \leq \tau \leq s} \int_{0}^{\tau} f(k, \tau) d\tau}}{(1 + q^*)t} < \frac{D}{2 + Q}, \] (3.13)

then, for each \(\lambda \in (\frac{2 + Q}{2B}, \frac{1}{\bar{C}}) \), problem (1.1) admits an unbounded sequence of positive solutions.
4 Examples

In this section, we give two examples to illustrate our main results.

Example 4.1 Consider the boundary value problem (1.1) with
\[
f(k, u) = f(u) = \begin{cases} u(2 + 2\varepsilon + 2\cos(\varepsilon \ln |u|) - \varepsilon \sin(\varepsilon \ln |u|)), & u \neq 0, \\ 0, & u = 0, \end{cases}
\]
for each \(k \in Z(1, T). \) Then,
\[
F(k, u) = F(u) = \int_0^u f(\tau)d\tau = u^2(1 + \varepsilon + \cos(\varepsilon \ln u)), \quad \text{for } u > 0.
\]
Since \(f(u) \geq 0 \) for \(u \geq 0, \) we see that \(F(u) \) is increasing in \(u \in [0, +\infty). \) Let
\[
a_n = \exp\left(-\frac{2n\pi}{\varepsilon}\right), \quad \beta_n = \exp\left(-\frac{2n\pi + \pi}{\varepsilon}\right).
\]
Then \(\lim_{n \to +\infty} a_n = 0 = \lim_{n \to +\infty} \beta_n, \) and
\[
\frac{F(a_n)}{a_n^2} = 2 + \varepsilon, \quad \frac{\max_{0 \leq s \leq \beta_n} F(s)}{\beta_n^2} = \frac{F(\beta_n)}{\beta_n^2} = \varepsilon,
\]
which implies that
\[
\lambda \leq \frac{2T \max \left\{ \frac{T+1}{2}, 1 \right\}}{1 + q^*} \varepsilon, \quad B \geq 2 + \varepsilon.
\]
Let \(\varepsilon \) be small enough, such that
\[
2T \max \left\{ \frac{T+1}{2}, 1 \right\} \varepsilon < \frac{2(2 + \varepsilon)}{2 + Q^*}.
\]
Then (3.11) holds. By Corollary 3.3, for each \(\lambda \in \left(\frac{2 \pi \varepsilon}{1 + q^* \min(\frac{T+1}{2}, 1)} \right)-1, \) problem (1.1) admits a sequence of positive solutions which converges to zero.

Example 4.2 Consider the boundary value problem (1.1) with
\[
f(k, u) = f(u) = 1 + \varepsilon + \cos(\varepsilon \ln(|u| + 1)) - \varepsilon \sin(\varepsilon \ln(|u| + 1)),
\]
for each \(k \in Z(1, T). \) Then,
\[
F(k, u) = F(u) = \int_0^u f(\tau)d\tau = (1 + u)(1 + \varepsilon + \cos(\varepsilon \ln(u + 1))) - 2 - \varepsilon,
\]
for \(u \geq 0. \) Since \(f(u) \geq 0 \) for \(u \geq 0, \) we see that \(F(u) \) is increasing in \(u \in [0, +\infty). \) Let
\[
\gamma_n = \exp\left(\frac{2n\pi}{\varepsilon}\right) - 1, \quad \eta_n = \exp\left(\frac{2n\pi + \pi}{\varepsilon}\right) - 1.
\]
Then \(\lim_{n \to +\infty} \gamma_n = +\infty = \lim_{n \to +\infty} \eta_n, \) and
\[
\lim_{n \to +\infty} \frac{F(\gamma_n)}{\gamma_n^2} = 2 + \varepsilon, \quad \lim_{n \to +\infty} \frac{\max_{0 \leq s \leq \eta_n} F(s)}{\eta_n^2} = \frac{\lim_{n \to +\infty} F(\eta_n)}{\eta_n^2} = \varepsilon,
\]
which implies that
\[
\hat{C} \leq \frac{T \max \left\{ \frac{T+1}{2}, 1 \right\}}{1 + q^*} \varepsilon, \quad D \geq 2 + \varepsilon.
\]
Let \(\varepsilon \) be small enough, such that
\[
T \max \left\{ \frac{T+1}{2}, 1 \right\} \varepsilon < \frac{2(2 + \varepsilon)}{2 + Q^*}.
\]
Then (3.13) holds. By Corollary 3.4, for each \(\lambda \in \left(\frac{2 \pi \varepsilon}{1 + q^* \min(\frac{T+1}{2}, 1)} \right)-1, \) problem (1.1) admits an unbounded sequence of positive solutions.
Acknowledgements
The authors would like to thank the referees for their valuable comments and suggestions. This work is supported by the National Natural Science Foundation of China (Grant No. 11571084) and the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT-16R16).

References

[1] Mawhin J., Periodic solutions of second order nonlinear difference systems with ϕ-Laplacian: a variational approach, Nonlinear Anal., 2012, 75, 4672–4687.
[2] Bonheure D., Habets P., Obrecht F., Omari P., Classical and non-classical solutions of a prescribed curvature equation, J. Differential Equations, 2007, 243, 208–237.
[3] Bonanno G., Livrea R., Mawhin J., Existence results for parametric boundary value problems involving the mean curvature operator, Nonlinear Differ. Equ. Appl., 2015, 22, 411–426.
[4] Obrecht F., Omari P., Positive solutions of the Dirichlet problem for the prescribed mean curvature equation, J. Differential Equations, 2010, 249, 1674–1725.
[5] Agarwal R.P., O'Regan D., Wong J.Y.P., Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, 1999.
[6] Henderson J., Thompson H.B., Existence of multiple solutions for second order discrete boundary value problems, Comput. Math. Appl., 2002, 43, 1239–1248.
[7] Bereanu C., Mawhin J., Boundary value problems for second-order nonlinear difference equations with discrete ϕ-Laplacian and singular ϕ, J. Difference Equ. Appl., 2008, 14, 1099–1118.
[8] Guo Z.M., Yu J.S., The existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A, 2003, 46, 506–515.
[9] Zhou Z., Yu J.S., Chen Y.M., Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math., 2011, 54, 83–93.
[10] Zhou Z., Yu J.S., Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta Math. Appl. Sin. Engl. Ser., 2013, 29, 1809–1822.
[11] Shi H.P., Periodic and subharmonic solutions for second-order nonlinear difference equations, J. Appl. Math. Comput., 2015, 48, 157–171.
[12] Zhou Z., Ma D.F., Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 2015, 58, 781–790.
[13] Lin G.H., Zhou Z., Homoclinic solutions of discrete ϕ-Laplacian equations with mixed nonlinearities, Comm. Pure Appl. Anal., 2018, 17, 1723–1747.
[14] Lin G.H., Zhou Z., Yu J.S., Ground state solutions of discrete asymptotically linear Schrödinger equations with bounded and non-periodic potentials, J. Dyn. Diff. Equat., 2019, https://doi.org/10.1007/s10884-019-09763-4.
[15] Tang X.H., Non-Nehari manifold method for periodic discrete superlinear Schrödinger equation, Acta Math. Sin. Engl. Ser., 2016, 32, 463–473.
[16] Zhang Q.Q., Homoclinic orbits for a class of discrete periodic Hamiltonian systems, Proc. Amer. Math. Soc., 2015, 143, 3155–3163.
[17] Zhang Q.Q., Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part, Comm. Pure Appl. Anal., 2017, 14, 1929–1940.
[18] Zhang Q.Q., Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Comm. Pure Appl. Anal., 2019, 18, 425–434.
[19] Zhou Z., Su M.T., Boundary value problems for 2n-order ϕ_c-Laplacian difference equations containing both advance and retardation, Appl. Math. Lett., 2015, 41, 7–11.
[20] Bonanno G., Candito P., Infinitely many solutions for a class of discrete non-linear boundary value problems, Appl. Anal., 2009, 88, 605–616.
[21] Bonanno G., Jebelean P., Serban C., Superlinear discrete problems, Appl. Math. Lett., 2016, 52, 162–168.
[22] D’Agui G., Mawhin J., Sciammetta A., Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian, J. Math. Anal. Appl., 2017, 447, 383–397.
[23] Zhou Z., Ling J.X., Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with ϕ_c-Laplacian, Appl. Math. Lett., 2019, 91, 28–34.
[24] Bonanno G., A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 2012, 75, 2992–3007.
[25] Ricceri B., A general variational principle and some of its applications, J. Comput. Appl. Math., 2000, 133, 401–410.
[26] Agarwal R.P., Difference Equations and Inequalities, Theory, Methods, and Application, Marcel Dekker, Inc., New York-Basel, 2000.
[27] Kelly W.G., Peterson A.C., Difference Equations, An Introduction with Applications, Academic Press, San Diego, New York, Basel, 1991.

[28] Jiang L.Q., Zhou Z., Three solutions to Dirichlet boundary value problems for p-Laplacian difference equations, Adv. Diff. Equ., 2008, 2008, 345916.