Outcome regression-based estimation of conditional average treatment effect

Lu Li¹ · Niwen Zhou² · Lixing Zhu²,³

Received: 2 December 2020 / Revised: 17 January 2022 / Accepted: 27 January 2022 / Published online: 29 April 2022
© The Institute of Statistical Mathematics, Tokyo 2022

Abstract
The research is about a systematic investigation on the following issues. First, we construct different outcome regression-based estimators for conditional average treatment effect under, respectively, true, parametric, nonparametric and semiparametric dimension reduction structure. Second, according to the corresponding asymptotic variance functions when supposing the models are correctly specified, we answer the following questions: what is the asymptotic efficiency ranking about the four estimators in general? how is the efficiency related to the affiliation of the given covariates in the set of arguments of the regression functions? what do the roles of bandwidth and kernel function selections play for the estimation efficiency; and in which scenarios should the estimator under semiparametric dimension reduction regression structure be used in practice? Meanwhile, the results show that any outcome regression-based estimation should be asymptotically more efficient than any inverse probability weighting-based estimation. Several simulation studies are conducted to examine the finite sample performances of these estimators, and a real dataset is analyzed for illustration.

Keywords Asymptotic variance · Conditional average treatment effect · Regression causal effect · Sufficient dimension reduction

The first two authors are co-first authors. The research was supported by a grant from the University Grants Council of Hong Kong (HKBU12302720) and a grant from the National Natural Science Foundation of China (NSFC12131006).

✉ Lixing Zhu
lzhu@hkbu.edu.hk

¹ School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
² Center for Statistics and Data Science, Beijing Normal University, 18 Jinfeng Rd, Zhuhai 519087, China
³ Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Hong Kong, China
1 Introduction

Causal inference has been widely applied for decades to analyse treatment effect based on observational studies, in which treatments are assigned to observations in a non-random fashion. In this paper, we consider causal inference under the potential outcome framework (Rubin 1974; Rosenbaum and Rubin 1983) where the treatment is binary and the outcome variable in the hypothetical complete data set has two components \((Y_{(1)}, Y_{(0)})\). In which \(Y_{(1)}\) is the potential outcome if the individual receives treatment and \(Y_{(0)}\) is the corresponding potential outcome without treatment. As we can only observe one of \(Y_{(1)}\) and \(Y_{(0)}\), a commonly used method is to impute a reasonable value in the lieu of the missing one such as linear regression imputation Healy and Westmacott (1956), kernel regression imputation Cheng (1994) and ratio imputation Rao (1996).

In this paper, we consider average treatment effect (ATE, see Rosenbaum and Rubin 1983, 1985) conditional on some covariates to explore the heterogeneity of ATE. Let \(X \in \mathbb{R}^p\) be a set of covariates that collects individual’s personal information and \(X_1 \in \mathbb{R}^k\) be a subvector of \(X\), \(1 \leq k < p\). Conditional average treatment effect (CATE, hereafter) is defined as \(E(Y_{(1)} - Y_{(0)})|X_1\). To estimate this function, Abrevaya et al. (2015) proposed estimators that are based on inverse probability weighting (IPW, hereafter) method and concluded that, according to the asymptotic variance functions, the estimator with nonparametrically estimated inverse probability (IPW-N) is asymptotically more efficient than the one with parametrically estimated inverse probability (IPW-P). The relevant conclusion is similar to that in Hahn (1998) and Hirano et al. (2003) for the IPW estimators of ATE. But, IPW-P is proved to be asymptotically equivalent to the oracle estimator with true propensity score (IPW-O). This is very different from the unconditional ATE. Zhou and Zhu (2021) proposed an estimator with semiparametrically estimated propensity score (IPW-S) and gave some more detailed analysis on the asymptotic efficiency on IPW-N and IPW-S.

As well known, for ATE, outcome regression-based estimation is also a popularly used methodology. Thus, methodologically, the research in this aspect is not new. However, for CATE, the problem becomes more complicated as it involves double conditional expectations on the full set \(X\), or subset \(\beta^TX\) of covariates, if the curse of dimensionality is concerned within dimension reduction framework, and the subset \(X_1\) where \(\beta\) is a projection matrix. Three relevant references are Luo et al. (2017), Zhang et al. (2018), Luo et al. (2019) and Ma et al. (2019). To focus on the estimation efficiency issue, we in this paper do not give more details about how to work on dimension reduction and feature selection, while only consider the general setting supposing that a dimension reduction structure already exists. We then consider a systematic investigation on their asymptotic properties to answer the following questions when the model is correctly specified in parametric case.

Q1. When CATE is estimated under nonparametric, semiparametric, parametric and true (oracle) regression structure, what ranking of the asymptotic efficiency can be achieved for these estimators?
Q2. Note that CATE is a function of \(X_1 \) and the set of arguments of the regression function, say \(\tilde{X} \) that is not necessary to be the full \(X \), and thus \(X_1 \) is not necessary to be a strict subset of \(\tilde{X} \). Then could the affiliation of \(X_1 \) to \(\tilde{X} \) affect the asymptotic efficiency of different estimators? This issue is unique for CATE and particularly important under semiparametric dimension reduction framework as the regression function would be a function of \(\tilde{X} = \beta X \) where \(\beta \) is a \(p \times r \) matrix with \(r \ll p \) in high dimensional scenarios.

Q3. As all estimators use nonparametric estimations for the involved conditional expectations, how could the bandwidth and kernel function affect the efficiency? This study is particularly necessary.

Q4. Comparing with the IPW-based estimation, what efficiency ranking should be concluded?

We will have a very brief discussion in Sect. 5 about the misspecified cases, globally or locally, that will be investigated in the near future, but not be touched in this paper.

Note that CATE is

\[
\tau(x_1) = E[(Y_1 - Y_0)|X_1 = x_1] = E(E(Y_1 - Y_0|X)|X_1 = x_1),
\]

where \(E(Y_1 - Y_0|X) \) is the treatment effect heterogeneity. We are interested in, under unconfoundedness assumption, estimating \(\tau(x_1) \) in this paper. To well answer the above four questions, we suggest/propose four outcome regression-based estimators (OR, hereafter) when assuming that \(m_1(X) - m_0(X) = E(Y_1 - Y_0|X) \) is completely known function (written as OR-O), parametric function (written as OR-P) \((m_1(X) = m_1(X, \theta_1) \) and \(m_0(X) = m_0(X, \theta_0)) \), semiparametric function with dimension reduction structure (written as OR-S) \((m_1(X) = m_1(\beta_1^\top X) \) and \(m_0(X) = m_0(\beta_0^\top X)) \), and nonparametric function (written as OR-N). The details will be in Sect. 2. When the corresponding nonparametric functions are estimated by, say, kernel estimation, we derive the asymptotically linear representations and asymptotic normality of these estimators in various scenarios and, according to the asymptotic variance functions and using the estimators with true regression/pro-pensity score as the benchmark, we obtain the following results to give a relatively complete picture for the asymptotic efficiencies of the four estimation methods. The following newly derived results show that the estimated CATEs have rather different asymptotic behaviors from the estimated ATEs. Let \(A \preceq B \) mean that method \(A \) has smaller asymptotic variance function than method \(B \), and \(A \cong B \) stand for the asymptotic equivalence of them when the asymptotic variance functions are equal. The results are summarised as follows.

A1. This is the answer for Q1 and Q4. In general, the ranking for the asymptotic efficiencies of the estimators is, together with the results about the IPW-based estimators respectively in Abrevaya et al. (2015) and Zhou and Zhu (2021):
A2. For Q2, under semiparametric dimension reduction structure, the affiliation of X_1 to X plays an important role. For Q3, when the CATE functions are smooth sufficiently, and the bandwidth and kernel function are delicately selected, the asymptotic properties are also different. The results are summarized in Table 1. Some more results are included in Sect. 2. Also some similar results about OR-N and more detailed comparisons are described in Sect. 2.

A3. In high-dimensional scenarios, we will see that high order kernel functions are in need and bandwidths must be very delicately selected, to have good estimation efficiency that are very sensitive to the selections. Thus, OR-N is not recommendable. Semiparametric structure-based estimation OR-S can be often preferable due to its advantages of greatly alleviating the curse of dimensionality and avoiding model misspecification. Some more detailed studies and comparisons for the asymptotic efficiency are contained in Sect. 2. The numerical studies in Sect. 3 support this observation.

The rest of this article is organized as follows. Section 2 introduces the CATE function and give the estimators respectively under the true, parametric, nonparametric and semiparametric framework. The asymptotic properties of the proposed estimators are systematically investigated in this section. Section 3 presents some simulation studies to examine the performances of the estimators. Section 4 is devoted to the analysis for a real data example. Conclusions and some further research problems are briefly discussed in Sect. 5. Due to the space limitation, all the technical proofs are relegated to the supplementary material.

2 Estimations and their asymptotic properties

Let D be a dummy variable indicating treatment status with $D = 1$ if an individual receives treatment and $D = 0$ otherwise. We only observe D, X and $Y \equiv D \cdot Y(1) + (1 - D) \cdot Y(0)$ in the real situation. The propensity score $p(D = 1|X)$

Scenario	Efficiency rank
S1	$OR - O \cong OR - P \leq OR - S \leq OR - N$
S2	$OR - O \cong OR - P \cong OR - S \leq OR - N$
S3	$OR - O \cong OR - P \cong OR - S \cong OR - N$

S1: $X_1 \not\subseteq \beta_1^1 X \cup \beta_0^1 X$;
S2: $X_1 \not\subseteq \beta_1^0 X \cup \beta_0^0 X$;
S3: CATE function is smooth enough and kernels and bandwidths are chosen delicately.
is denoted by \(p(X) \). Let \(\{X_i, Y_i, D_i\}, i = 1, \ldots, n \) be \(n \) independent copies of \((X, Y, D)\). To estimate \(\tau(x_1) \), we suggest a two-step estimation procedure when both \(g_1 \) and \(g_0 \) are unknown. Four estimators are proposed in this paper when the regression causal effect under true (oracle), parametric, nonparametric, and semiparametric dimension reduction structure (OR-O, OR-P, OR-N, and OR-S) respectively.

To estimate \(\tau(x_1) \), we suggest a two-step estimation procedure when both \(g_1 \) and \(g_0 \) are unknown. Four estimators are proposed in this paper when the regression causal effect under true (oracle), parametric, nonparametric, and semiparametric dimension reduction structure (OR-O, OR-P, OR-N, and OR-S) respectively.

To clearly state the estimation procedures, recall that the function \(m_t(X) \) is defined as
\[
m_t(X) = E(Y(t) | X), \quad t = 0, 1.
\]

Under the unconfoundedness assumption that is the conditional independence as
\[
(Y_{(0)}, Y_{(1)}) \perp D | X,
\]
we then first estimate \(m_1(X) - m_0(X) \) and then its conditional expectation
\[
\tau(x_1) = E(m_1(X) - m_0(X) | X_1).
\]
But in semiparametric dimension reduction structure, this unconfoundedness assumption will have a different formula that will be specified in Sect. 2. However, directly estimating \(\tau(X_1) \) in terms of \(Y_{(1)} - Y_{(0)} \) is not feasible as it is never observed. It is naturally to use \(Y_{(1)} \) and \(Y_{(0)} \) to estimate \(m_1(X) \) and \(m_0(X) \) separately. Afterwards \(\tau(x_1) \) can be estimated by a nonparametric method such as the N-W estimation (Nadaraya 1964; Watson 1964).

As for OR-S and OR-N, we will have to use high order kernel functions, we give the notation here. A function \(K_1: \mathbb{R}^k \rightarrow \mathbb{R} \) is a kernel of order \(s_1 \) that is symmetric around zero and \(s^* \) times continuously differentiable.

\[
\int u_1^{p_1} \cdots u_k^{p_k} K_1(u) du = 0
\]
for all nonnegative integers \(p_1, \cdots, p_k \) such that \(1 \leq \sum_{i=1}^k p_i < s_1 \), and it is nonzero when \(\sum_{i=1}^k p_i = s_1 \). Some regularity conditions are listed below.

\textbf{(C1). (Strong ignorability)}

\begin{enumerate}
 \item \textbf{(Unconfoundedness)} \((Y_{(0)}, Y_{(1)}) \perp D | X \).
 \item \textbf{(Common support)} For some very small \(c > 0 \), the propensity score function \(p(\cdot) \) satisfies that \(c < p(X) < 1 - c \).
\end{enumerate}

\textbf{(C2). (Distribution of } X \text{)} The support \(\mathcal{X} \) of the \(p \)-dimensional covariate \(X \) is a Cartesian product of compact intervals, and the density of \(X, f(x) \), is bounded away from 0 on \(\mathcal{X} \).

\textbf{(C3). (Kernel functions)} \(K_1(u) \) is a kernel of order \(s_1 \) that is symmetric around zero and \(s^* \) times continuously differentiable.

\textbf{(C4). (Distribution of } X_1 \text{)} The density function of \(X_1, f(x_1) \), is bounded away from zero and infinity and \(s_1 \geq 2 \) times continuously differentiable.

Part (a) of condition (C1) is a commonly used condition on the treatment effect, see e.g., Rosenbaum and Rubin (1983); Abrevaya et al. (2015); Luo et al. (2017).
Moreover, part (a) of condition (C1) is a quite strong but standard assumption in the causal inference literature. Part (b) of condition (C1) implies that there exists overlap between the treated and control observations. Conditions (C2) and (C4) are traditional conditions for nonparametric estimation in the literature (Pagan and Ullah 1999; Yin et al. 2010). Specially, condition (C3) is for high order kernel (Abrevaya et al. 2015). It is noted that Gaussian kernel satisfies this assumption when $k = 1$ and $s_1 = 2$. Furthermore, the value s^* relies on the smoothness of the regression function. More specifically, $s^* \geq s_2$ and $s^* \geq s_4$ in nonparametric and semiparametric situation, respectively.

In the following, we study the four estimations in separate subsections and give some further analysis for OR-S and OR-N in another subsection.

2.1 OR-O

This estimator will serve as a benchmark to examine the performance of other estimators developed and investigated later. Assume that $m_1(X) - m_0(X)$ is completely known with no need of estimation. Then OR-O can be written as

$$
\hat{\tau}(x_1) = \frac{1}{nh_1^k} \sum_{i=1}^{n} K_1 \left(\frac{X_i - x_1}{h_1} \right) \{m_1(X_i) - m_0(X_i)\}.
$$

The asymptotically linear representation and asymptotic normality are stated below.

Theorem 1 Suppose that assumptions (C1) through (C4) are satisfied. Then, when regression causal effect is given without estimation, for each point x_1 in the support of X, we have

$$
\sqrt{nh_1^k} \{ \hat{\tau}(x_1) - \tau(x_1) \}
= \frac{1}{\sqrt{nh_1^k f(x_1)}} \sum_{i=1}^{n} \{m_1(X_i) - m_0(X_i) - \tau(x_1)\} K_1 \left(\frac{X_i - x_1}{h_1} \right) + o_p(1),
$$

and then

$$
\sqrt{nh_1^k} \{ \hat{\tau}(x_1) - \tau(x_1) \} \overset{d}{\rightarrow} N \left(0, \frac{||K_1||^2 \sigma^2_o(x_1)}{f(x_1)} \right),
$$

where $||K_1||_2 = \left(\int K_1(u)^2 \, du \right)^{1/2}$, and

$$
\sigma^2_o(x_1) = E[\{m_1(X) - m_0(X) - \tau(x_1)\}^2 | X_1 = x_1].
$$
2.2 OR-P

Suppose that both \(m_1(X) \) and \(m_0(X) \) have parametric structures with unknown parameters \(\alpha_1 \) and \(\alpha_0 \) respectively. That is, \(m_t(X, \alpha_t) \) are parametric functions for \(t = 0, 1 \). Since each response can only be observed in a subpopulation, to get unbiased estimators of parameters \(\alpha_1 \) and \(\alpha_0 \), we use a similar method to that of Wang et al. (2004). Write, for \(i = 1, \ldots, n \),

\[
D_i Y_i = D_i m_1(X_i, \alpha_1) + D_i \epsilon_{1i}, \quad (1 - D_i) Y_i = (1 - D_i)m_0(X_i, \alpha_0) + (1 - D_i)\epsilon_{0i},
\]

where \(\epsilon_{ti}, t = 0, 1 \), are random error terms, and independent of \(X_i, i = 1, \ldots, n \). Use weighted least squares (Matloff 1981) to estimate \(\hat{\alpha}_t \) for \(t = 0, 1 \), and write the estimator of \(\alpha_t \) and \(m_1(X) \) as \(\hat{\alpha}_t \) and \(\hat{m}_1(X) \). OR-P is then defined as:

\[
\hat{\tau}(x_1) = \frac{1}{nh_1^k} \sum_{i=1}^{n} K_1 \left(\frac{x_{1i} - x_1}{h_1} \right) \{ \hat{m}_1(X_i) - \hat{m}_0(X_i) \} \frac{1}{nh_1^k} \sum_{i=1}^{n} K_1 \left(\frac{x_{1i} - x_1}{h_1} \right),
\]

where \(\hat{m}_1(X_i) = m_1(X, \hat{\alpha}_1), \quad \hat{m}_0(X_i) = m_0(X, \hat{\alpha}_0), \quad i = 1, \ldots, n \).

Assume the following additional condition:

(A1). (Bandwidths) \(h_1 \to 0, nh_1^k \to \infty, nh_1^{2s_1+k} \to 0 \).

The following theorem states the asymptotic properties of \(\hat{\tau}(x_1) \).

Theorem 2 Suppose that conditions (C1) through (C4) and (A1) are satisfied for \(s_1 = s^* + 2 \). Then, for each point \(x_1 \) in the support of \(X_1 \), we have

\[
\sqrt{nh_1^k} \{ \hat{\tau}(x_1) - \tau(x_1) \} \to_d N\left(0, \frac{\|K_1\|^2 \sigma_p^2(x_1)}{f(x_1)} \right),
\]

where

\[
\sigma_p^2(x_1) = \sigma_O^2(x_1) = E[(m_1(X) - m_0(X) - \tau(x_1))^2 | X_1 = x_1].
\]

Remark 1 This theorem states the asymptotic equivalence between OR-P and OR-O in the sense that their asymptotic variance functions are identical.
2.3 OR-N

If we do not have prior information on the structures of \(m_1(X) \) and \(m_0(X) \) or we try to avoid model misspecification, a nonparametric estimation is feasible. Similarly, we estimate \(m_1(X) \) and \(m_0(X) \) separately. Therefore, OR-N is written as

\[
\hat{\tau}(x_1) = \frac{1}{nh^k_1} \sum_{i=1}^{n} K_1 \left(\frac{X_i - x_1}{h_1} \right) \left\{ \hat{m}_1(X_i) - \hat{m}_0(X_i) \right\}
\]

where

\[
\hat{m}_1(X_i) = \frac{1}{nh^k_2} \sum_{j=1}^{n} K_2 \left(\frac{X_j - X_i}{h_2} \right) Y_{ij} \mathbb{1}(D_j = 1), \quad \hat{m}_0(X_i) = \frac{1}{nh^k_2} \sum_{j=1}^{n} K_2 \left(\frac{X_j - X_i}{h_2} \right) Y_{0j} \mathbb{1}(D_j = 0).
\]

To study the asymptotic properties of \(\hat{\tau}(x_1) \), we give some more conditions on the kernel function and bandwidths.

(A2). \(K_2(u) \) is a kernel of order \(s_2 \geq p \), symmetric around zero and equal to zero outside \(\prod_{i=1}^{p} [-1, 1] \) with continuous \((s_2 + 1) \) order derivatives.

(A3). \(h_2 \to 0, \frac{\log n}{nh_2^{s_2}} \to 0 \).

(A4). \(h_2^{2s_2} h_1^{-2s_2-k} \to 0, nh_1^k h_2^{2s_2} \to 0 \).

Conditions (A2), (A3) and (A4) are used to affiliate with the high order derivatives of \(m_1 \) and \(m_0 \) to ensure the asymptotic normality. The following theorem states the main theoretical results of OR-N. For convenience, define the following function:

\[
\Psi_1(X, Y, D) := \frac{D(Y - m_1(X))}{p(X)} - \frac{(1 - D)(Y - m_0(X))}{1 - p(X)} + m_1(X) - m_0(X).
\]

Theorem 3 Suppose that conditions (C1) through (C4) and (A1) through (A4) are satisfied for \(s^* \geq s_2 \geq p \). Then, for each point \(x_1 \), we have

\[
\sqrt{nh_1^k} \left(\hat{\tau}(x_1) - \tau(x_1) \right) \to_d N \left(0, \frac{\left[\frac{1}{nh_1^k} \sum_{i=1}^{n} \left(\Psi_1(X_i, Y_i, D_i) - \tau(x_1) \right) K_1 \left(\frac{X_i - x_1}{h_1} \right) \right]^2}{f(x_1)} \right),
\]

where \(\ell \) is the derivative order of \(m_1 \) and \(m_0 \).
where

\[\sigma^2_N(x_1) = E[(\Psi_1(X, Y, D) - \tau(x_1))^2 | X_1 = x_1] \]

\[\leq \sigma^2_P(x_1) + E\left\{ \frac{\text{var}(Y_{(1)}|X)}{p(X)} + \frac{\text{var}(Y_{(0)}|X)}{1-p(X)} \right\} | X_1 = x_1 \]

\[\geq \sigma^2_P(x_1) = \sigma^2_O(x_1), \]

the equality holds if and only if \(\frac{\text{var}(Y_{(1)}|X)}{p(X)} = 0 \) and \(\frac{\text{var}(Y_{(0)}|X)}{1-p(X)} = 0 \), which rarely happen.

Thus, the inequality shows that \(\text{OR} - N \) is asymptotically less efficient than \(\text{OR} - P \) and \(\text{OR} - O \).

2.4 OR-S

An obvious limitation of OR-N is its incapability of handling models with high-dimensional covariates \(X \) in practice. Therefore, how to alleviate the curse of dimensionality is an important issue. To this end, reducing dimensionality is a natural idea.

But we restrict ourselves to the sufficient dimension reduction framework below and use existing methods to estimate the projection directions as the focus of this paper is on asymptotics of the estimations assuming the dimension reduction structure is specified in a semiparametric manner. See the relevant references such as Luo et al. (2017) and Ma et al. (2019) that even considered ultra high-dimensional scenarios under the sufficient dimension reduction framework. A relevant reference is Fan et al. (2020) who proposed nonparametric doubly robust estimators for CATE allowing the number of covariates divergent with the sample size. In terms of machine learning to select significant covariates, the dimension reduction is achieved. Thus, we may also classify their method as a semiparametric approach.

We first give a very brief review on sufficient dimension reduction both Luo et al. (2017) and Ma et al. (2019) discussed. For given \(\beta^T X \) where \(\beta \) is a \(p \times r \) orthonormal matrix with an unknown number \(r \ll p \) of columns, suppose that the regression of a response variable \(W \) is independent of \(X \), which is written as \(E(W|X) \perp \perp X|\beta^T X, \)

where \(\perp \) stands for independence. It is generally known that \(E(W|X) \) is an unspecified function of \(\beta^T X \), which allows full freedom in the regression with \(\beta^T X \) being the sufficiently reduced covariates (from \(p \) to \(r \)). This structure has a dimension reduction structure with unknown parameter \(\beta \) and also is very much flexible with a nonparametric nature. To identify the projection directions \(\beta \), Cook and Li (2002) defined the notion of central mean subspace that is the intersection of all subspaces spanned by any \(\beta \) such that the above conditional independence holds. To be specific, without notational confusion, write \(S_{E(Y_{(1)}|X)} \) and \(S_{E(Y_{(0)}|X)} \) respectively spanned by \(\beta_1 \in \mathbb{R}^{p \times r(t)} \) and \(\beta_0 \in \mathbb{R}^{p \times r(0)} \) where \(r(t) < p \) for \(t = 0, 1 \) as the central mean subspaces such that
\begin{align*}
m_1(X) & \perp X|\beta_1^\top X, \quad m_0(X) \perp X|\beta_0^\top X. \tag{5}
\end{align*}

There are a lot of approaches available in the literature to identify β_1 and β_0, including sliced inverse regression (Li 1991), sliced average variance estimator (Cook and Weisberg 1991), minimum average variance estimation (Xia et al. 2002), directional regression (Li and Wang 2007), the semiparametric methods (Ma and Zhu 2012), and the partial support vector machine (Shin et al. 2017). Then let us introduce how to estimate β_t, $t = 0, 1$, in detail. Suppose we have a kernel matrix M which is derived from a certain sufficient dimension reduction method, for example, $M_{\text{SIR}} = \text{cov}(E(Z|Y))$ for sliced inverse regression, $M_{\text{SAVE}} = E(I_p - \text{cov}(Z|Y))^2$ for sliced average variance estimation, and $M_{\text{DR}} = E[2I_p - E[(X - X')(X - X')^\top | Y, Y']^2$ for directional regression, where $Z = \text{cov}(X)^{-1/2}(X - EX)$ and (X', Y') is an independent copy of (X, Y), then we can use eigenvalue decomposition of M. Finally, the first $r(t)$ eigenvectors η_t of M are standardized efficient dimension reduction directions under some suitable conditions. Note that $\beta_t = \text{cov}(X)^{-1/2}\eta_t$, $t = 0, 1$, then $\hat{\beta}_t = \overline{\text{cov}(X)}^{-1/2}\eta_t$, which is estimated dimension reduction matrices, where $\overline{\text{cov}(X)} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})(X_i - \bar{X})^\top$ and $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$.

Note that under this dimension reduction structure, we have $m_t(X) = E(Y_t|X) = E(Y_t|\beta_t^\top X) = m_t(\beta_t^\top X)$ for $t = 0, 1$. Define a OR-S as
\begin{equation}
\hat{r}(x_i) = \frac{\frac{1}{m_i} \sum_{i=1}^n K_1 \left(\frac{x_{i1} - x_1}{h_1} \right) \{ \hat{m}_1(\beta_1^\top X_i) - \hat{m}_0(\beta_0^\top X_i) \}}{\frac{1}{m_i} \sum_{i=1}^n K_1 \left(\frac{x_{i1} - x_1}{h_1} \right)}, \tag{6}
\end{equation}

where
\begin{align*}
\hat{m}_1(\beta_1^\top X_i) &= \frac{1}{n h_4^{s(1)}} \sum_{j=1}^n K_4 \left(\frac{\tilde{Z}_1 - \tilde{Z}_1^{0}}{h_4} \right) Y_{1j} 1(D_j = 1), \quad \tilde{Z}^1 = \beta_1^\top X, \\
\hat{m}_0(\beta_0^\top X_i) &= \frac{1}{n h_4^{s(0)}} \sum_{j=1}^n K_4 \left(\frac{\tilde{Z}_0 - \tilde{Z}_0^{0}}{h_4} \right) Y_{0j} 1(D_j = 0), \quad \tilde{Z}^0 = \beta_0^\top X.
\end{align*}

In order to derive theoretical results, give the following conditions.

(A5). $K_4(u)$ is a kernel of order s_4, is symmetric around zero, is equal to zero outside $\prod_{i=1}^n [-1, 1]$, and is continuously differentiable. The density function of $\beta_t^\top X, f_t(\beta_t^\top X)$ is s_4 times continuously differentiable for $t = 0, 1$. For $t = 0, 1$, $p(\beta_t^\top X) \in (c^s, 1 - c^s)$ almost surely for some $c^s \in (0, 0.5)$.

(A6). $h_4 \to 0, \frac{\log n}{n h_4^{\max(\min(0, 1) + 1)}} \to 0$.

 Springer
(A7). \(h_4^{2s_t} h_1^{-2s_t-k} \to 0, nh_1^{k} h_4^{2s_t} \to 0. \)

(A8). \(\hat{\beta}_1 - \beta_1 = O_p(s^{-\frac{1}{2}}) \) and \(\hat{\beta}_0 - \beta_0 = O_p(s^{-\frac{1}{2}}) \).

Since the treatment effect heterogeneity under the semiparametric structure is based on \(\beta_t^T X \) for \(t = 0, 1 \), Assumptions (A5) through (A7) play the same role as Assumptions (A2) through (A4). Condition (A8) often holds (Luo et al. 2017).

Define three functions as

\[
\Psi_2(X, Y, D) = \frac{D\{Y - m_1(X)\}}{p(\beta_1^T X)} + m_1(X) - m_0(X),
\]

\[
\Psi_3(X, Y, D) = -\frac{(1 - D)\{Y - m_0(X)\}}{1 - p(\beta_0^T X)} + m_1(X) - m_0(X),
\]

\[
\Psi_4(X, Y, D) = \frac{D\{Y - m_1(X)\}}{p(\beta_1^T X)} - \frac{(1 - D)\{Y - m_0(X)\}}{1 - p(\beta_0^T X)} + m_1(X) - m_0(X).
\]

Next, for ease of explanation of our theoretical results, we introduce some notations. Write \(A \) and \(B \) as two sets of elements. Without confusion, write \(\text{card}(A) \) as the cardinality of the set \(A \).

(F1) \(A \subset B \) stands for \(A \cap B = A \). In other words, elements of \(A \) are all in \(B \) and \(\text{card}(B) \geq \text{card}(A) \).

(F2) \(A \subset^{k-q} B \) stands for \(A \cap B = C \) with \(\text{card}(C) = k - q \), that is, \(k - q \) elements of \(A \) belong to \(B \). When \(k = q \), it means that \(A \) and \(B \) do not share the same elements, i.e. \(A \cap B = \emptyset \), written as \(A \not\subset B \).

The following theorem states some very detailed investigation on the asymptotic efficiency of OR-S.

Theorem 4 Suppose that assumptions (C1) through (C4), (A1) and (A5) through (A8) are satisfied for \(s^* \geq s_q \geq \max\{r(0), r(1)\} \). Then, for each point \(x_i \) in the support of \(X_1 \), noting the definitions of \(\Psi_i \) for \(i = 2, 3, 4 \) in (7),

(1) when \(X_1 \subset^{k-q} \beta_1^T X \) and \(X_1 \subset^{k-q} \beta_0^T X \) with \(s_q(2 - k/q) + k > 0 \) and \(0 < q \leq k \), the asymptotically linear representation of \(\hat{\tau}(x_i) \) is

\[
\sqrt{nh_1^{-k}}\{\hat{\tau}(x_i) - \tau(x_i)\} = \frac{1}{\sqrt{nh_1^{-k}}} \sum_{i=1}^{n} \{m_1(X_i) - m_0(X_i) - \tau(x_i)\}K_1\left(\frac{X_{i1} - x_1}{h_1}\right) + o_p(1),
\]

and the asymptotic distribution of \(\hat{\tau}(x_i) \) is
\[
\sqrt{nh_1^k}(\hat{\tau}(x_1) - \tau(x_1)) \xrightarrow{d} N\left(0, \frac{||K_1||_2^2 \sigma_{S,1}^2(x_1)}{f(x_1)}\right);
\]

(2) when \(X_1 \subset \beta_1^T X\) and \(X_1 \subset \beta_0^T X\) with \(s_2(2 - k/q) + k > 0\) and \(0 < q \leq k\), the asymptotically linear representation of \(\hat{\tau}(x_1)\) is

\[
\sqrt{nh_1^k}(\hat{\tau}(x_1) - \tau(x_1)) = \frac{1}{\sqrt{nh_1^k}} \sum_{i=1}^n \{\Psi_2(X_i, Y_i, D_i) - \tau(x_1)\}K_1\left(\frac{X_{1i} - x_1}{h_1}\right) + o_p(1)
\]

\[
\xrightarrow{d} N\left(0, \frac{||K_1||_2^2 \sigma_{S,1}^2(x_1)}{f(x_1)}\right);
\]

(3) when \(X_1 \subset \beta_1^T X\) and \(X_1 \subset \beta_0^T X\) with \(s_2(2 - k/q) + k > 0\) and \(0 < q \leq k\), the asymptotically linear representation of \(\hat{\tau}(x_1)\) is

\[
\sqrt{nh_1^k}(\hat{\tau}(x_1) - \tau(x_1)) = \frac{1}{\sqrt{nh_1^k}} \sum_{i=1}^n \{\Psi_2(X_i, Y_i, D_i) - \tau(x_1)\}K_1\left(\frac{X_{1i} - x_1}{h_1}\right) + o_p(1)
\]

\[
\xrightarrow{d} N\left(0, \frac{||K_1||_2^2 \sigma_{S,2}^2(x_1)}{f(x_1)}\right);
\]

(4) when \(X_1 \subset \beta_1^T X\) and \(X_1 \subset \beta_0^T X\), the asymptotically linear representation of \(\hat{\tau}(x_1)\)

\[
\sqrt{nh_1^k}(\hat{\tau}(x_1) - \tau(x_1)) = \frac{1}{\sqrt{nh_1^k}} \sum_{i=1}^n \{\Psi_4(X_i, Y_i, D_i) - \tau(x_1)\}K_1\left(\frac{X_{1i} - x_1}{h_1}\right) + o_p(1)
\]

\[
\xrightarrow{d} N\left(0, \frac{||K_1||_2^2 \sigma_{S,3}^2(x_1)}{f(x_1)}\right);
\]

where

\[
\sigma_{S,1}^2(x_1) = \sigma_{S,2}^2(x_1) = E[(m_1(X) - m_0(X) - \tau(x_1))^2]X_1 = x_1],
\]

\[
\sigma_{S,2}^2(x_1) = E[(\Psi_2(X, Y, D) - \tau(x_1))^2]X_1 = x_1],
\]

\[
\sigma_{S,3}^2(x_1) = E[(\Psi_3(X, Y, D) - \tau(x_1))^2]X_1 = x_1],
\]

\[
\sigma_{S,4}^2(x_1) = E[(\Psi_4(X, Y, D) - \tau(x_1))^2]X_1 = x_1].
\]
Remark 2 These results imply that the asymptotic behaviours of OR-S rely on whether \(X_1 \) is a subset of \(\beta_t^1 X \) for \(t = 0, 1 \). If \(X_1 \subseteq \beta_t^1 X \cup \beta_0^1 X \), then the asymptotic variance of OR-S is different from OR-O, OR-P and OR-N. If not in the above cases, then OR-S enjoys the same asymptotic variance as OR-O and OR-P. It is also worthwhile to note that even if \(X_1 \not\subseteq \beta_1^1 X \) and \(X_1 \not\subset \beta_0^1 X \), we can still utilize \(\tilde{\beta}_1 (\beta_1^1 X) \) and \(\tilde{\beta}_0 (\beta_0^1 X) \) to estimate \(\tau(X_1) \), since \(\beta_1^1 X \) and \(\beta_0^1 X \) are sufficient to model \(Y_{(1)} \) and \(Y_{(0)} \), respectively.

Remark 3 Note that \(X_1 \subseteq^{k-q} \beta_t^1 X \) implies that only \(k - q \) elements of \(X_1 \) are also the \(k - q \) linear combinations of \(\beta_t^1 X \) for \(t = 0, 1 \). In this case, write \(\beta_t^1 X = (X_{1(1)}, \ldots, X_{1(k-q)}, (\tilde{\beta}_t^1 X)^\top)^\top \) for \(t = 0, 1 \). Therefore, when \(X_1 \subseteq^{k-q} \beta_t^1 X \) with \(s_d(2 - k/q) + k > 0 \) and \(0 < q \leq k \), we should determine the intersection between \(X_1 \) and \(\beta_t^1 X \), and then estimate \(\beta_t \) through estimating \(\tilde{\beta}_t \) for \(t = 0, 1 \). It could be done by using partial sufficient dimension reduction (e.g. Feng et al. (2013)). As this is not the focus of this paper, we then assume that \(\beta_t \) can be estimated at the rate \(1/\sqrt{n} \) of convergence. Obviously, the assumption \(s_d(2 - k/q) + k > 0 \) is satisfied for \(k = 1 \).

Corollary 1 We have

\[
\begin{align*}
\sigma^2_{S,1}(x_1) &= \sigma^2_p(x_1) = \sigma^2_O(x_1), \\
\sigma^2_{S,2}(x_1) &= \sigma^2_p(x_1) + E \left\{ \frac{\text{var}(Y_{(1)}|X)}{p(\beta_1^1 X)} \bigg| X_1 = x_1 \right\} \geq \sigma^2_p(x_1) = \sigma^2_O(x_1), \\
\sigma^2_{S,3}(x_1) &= \sigma^2_p(x_1) + E \left\{ \frac{\text{var}(Y_{(0)}|X)}{1 - p(\beta_0^1 X)} \bigg| X_1 = x_1 \right\} \geq \sigma^2_p(x_1) = \sigma^2_O(x_1), \\
\sigma^2_{S,4}(x_1) &= \sigma^2_p(x_1) + E \left\{ \frac{\text{var}(Y_{(1)}|X)}{p(\beta_1^1 X)} + \frac{\text{var}(Y_{(0)}|X)}{1 - p(\beta_0^1 X)} \bigg| X_1 = x_1 \right\} \geq \sigma^2_p(x_1) = \sigma^2_O(x_1).
\end{align*}
\]

Assume that \(\text{var}(Y_{(0)}|X) \) is a measurable function with respect to \(\beta_1^1 X \) for \(t = 0, 1 \). Then

\[
E \left\{ \frac{\text{var}(Y_{(1)}|X)}{p(\beta_1^1 X)} \right\} \leq E \left\{ \frac{\text{var}(Y_{(1)}|X)}{p(X)} \right\}, \quad \text{and} \quad E \left\{ \frac{\text{var}(Y_{(0)}|X)}{1 - p(\beta_0^1 X)} \right\} \leq E \left\{ \frac{\text{var}(Y_{(0)}|X)}{1 - p(X)} \right\}.
\]

Then

\[
\begin{align*}
\sigma^2_O(x_1) &= \sigma^2_p(x_1) \leq \sigma^2_{S,2}(x_1) \leq \sigma^2_{S,4}(x_1) \leq \sigma^2_N(x_1), \\
\sigma^2_O(x_1) &= \sigma^2_p(x_1) \leq \sigma^2_{S,3}(x_1) \leq \sigma^2_{S,4}(x_1) \leq \sigma^2_N(x_1).
\end{align*}
\]

(9)

Remark 4 The results in the above corollary are based on some elementary calculations and the application of Theorem 3 of Luo et al. (2017). We then omit the detailed calculations. Based on these facts, OR-S is more efficient than OR-N in all cases, and less efficient than OR-P and OR-O in cases (2) to (4). In particular, OR-S...
shares the same asymptotic distribution as OR-P and OR-O in case (1). Furthermore, OR-S in case (4) is less efficient than cases (2) and (3).

2.5 Further studies on OR-N and OR-S

Inspired by Theorem 4 about the importance of affiliation of X_1 to the set of arguments of the regression functions, we further investigate $OR-S$ and $OR-N$ in more general settings. The results are stated in the following.

Corollary 2 Suppose that conditions (C1) through (C4) and (A1) through (A8) are satisfied. Assume that there is a given \tilde{X} such that $(Y(0), Y(1)) \perp X|\tilde{X}$ with $\tilde{X} \subset X$ and $X_1 \notin \tilde{X}$, then $OR-O \equiv OR-P \equiv OR-N$. If we further assume $X_1 \subset k-q \beta^T_1 X$ and $X_1 \subset k-q \beta^T_0 X$ with $s_q(2 - k/q) + k > 0$ and $0 < q \leq k$, then the four outcome regression-based CATE estimators share the same asymptotic distribution, i.e., $OR-O \equiv OR-P \equiv OR-S \equiv OR-N$.

Here, $\sigma^2_{\bar{N}}(x_1) \equiv E[(m_1(X) - m_0(X) - \tau(x_1))^2|X_1 = x_1] = \sigma^2_p(x_1) = \sigma^2_0(x_1)$.

Remark 5 Much to our surprise, OR-N can be asymptotically more efficient in this special case to share the same asymptotic variance of OR-P. This shows the importance of covariate affiliation to the set of arguments of the regression function. This is a unique property for CATE as for ATE, this does not happen.

Corollary 3 In Theorem 3 and Theorem 4, if commonly used constraints on the bandwidths h_1, h_2 and h_4 are replaced with $\sqrt{nh^2_1 \left(h_2^2 + \log(n)/nh^2_2 \right)} = o(1)$ and $\sqrt{nh^2_1 \left(h_4^2 + \log(n)/nh^2_2 \right) + \log(n)/nh^2_4} = o(1)$ for some order s, OR-N and OR-S have the same asymptotic distribution as OR-P and OR-O.

Remark 6 As mentioned above, if we choose the bandwidth to satisfy the above conditions, OR-N and OR-S will share the same asymptotic efficiencies as OR-P and OR-O. It is obvious that the condition $\sqrt{nh^2_1 \left(h_2^2 + \log(n)/nh^2_2 \right)} = o(1)$ and $\sqrt{nh^2_1 \left(h_4^2 + \log(n)/nh^2_2 \right) + \log(n)/nh^2_4} = o(1)$ are much stronger than the assumptions in Theorem 3 and Theorem 4. However, it is possible to choose such bandwidths if the regression causal effect function is sufficiently smooth such that high order kernel can be used. For details, see Li and Racine (2007) and Zhou and Zhu (2021). Therefore, we obtain that the ranking for the asymptotic efficiencies of four regression-based CATE estimators and four propensity score-based CATE estimators under the condition that $\sqrt{nh^2_1 \left(h_2^2 + \log(n)/nh^2_2 \right)} = o(1)$ and $\sqrt{nh^2_1 \left(h_4^2 + \log(n)/nh^2_2 \right) + \log(n)/nh^2_4} = o(1)$,
regression-based CATE estimators
\[\text{OR-O} = \text{OR-P} = \text{OR-S} = \text{OR-N} \]
\[\leq \text{IPW-N} = \text{IPW-S} = \text{IPW-P} = \text{IPW-O}. \]
\[(10) \]

The equality occurs if and only if
\[
E \left\{ \left[\frac{\text{var}(Y_{i1}|X)}{p(X)} + \frac{\text{var}(Y_{i0}|X)}{1-p(X)} + p(X)(1-p(X)) \left(\frac{m_1(X)}{p(X)} + \frac{m_0(X)}{1-p(X)} \right)^2 \right] \middle| X_i = x_i \right\} = 0.
\]

In other words, regression based estimators are always more efficient than IPW-type estimators in this general setting.

On the other hand, the above investigations are mainly for theoretical studies, and in practice, we may avoid to choose those bandwidths as they are often very difficult to properly select otherwise, the estimators would perform worse.

2.6 Estimation for asymptotic variance

We also very briefly describe the issue of estimating the asymptotic variance functions. In the following, we take OR-P as an example to briefly describe an estimation procedure, while the variance functions of the other CATE estimators can be similarly estimated.

Recall that the asymptotic variance of OR-P in Theorem 2, we then construct its consistent estimator as
\[
\hat{\sigma}^2_p(x_i) = \frac{1}{nh^k} \sum_{i=1}^n \left[\{\hat{m}_1(X_i) - \hat{m}_0(X_i) - \hat{\tau}(x_i)\} K_1 \left(\frac{X_i - x_i}{h_i} \right) \right]^2 \hat{f}(x_i).
\]

Here \(\hat{\tau}(x_i) \) is the corresponding CATE estimator OR-P, \(\hat{f}(x_i) \) is a nonparametric kernel estimation, which can be obtained as \(\hat{f}(x_i) = \frac{1}{nh^k} \sum_{i=1}^n K_1 \left(\frac{X_i - x_i}{h_i} \right) \), \(\hat{m}_1(X) \) and \(\hat{m}_0(X) \) are kernel regressions of \(Y \) on \(X \) in the treated and control subpopulations respectively. As all are related to nonparametric kernel estimations, the consistency can also be expected. Similarly, we can get the estimator of asymptotic variance of OR-N and OR-S.

An alternative is the nonparametric bootstrap approximation (Efron 1979), which is often useful in practice. The procedure can be described by the following steps: given \(X_i = x_i \in \Omega \).

- **Step 1:** Given original random sample \(\{(Y_i, X_i, D_i) : i = 1, \cdots, n\} \), obtain the OR-P \(\hat{\tau}(x_i) \) as described before;
- **Step 2:** Generating the \(b \)-th bootstrapped sample \(\{(Y_{ib}, X_{ib}, D_{ib}) : i = 1, \cdots, n\} \), \(b = 1, \cdots, B \) with replacement from \(\{(Y_i, X_i, D_i) : i = 1, \cdots, n\} \). For each bootstrapped sample, compute \(\hat{\tau}_b(x_i) \);
- **Step 3:** The estimator of the asymptotic variance of \(\hat{\tau}(x_i) \) can be obtained by the empirical variance of \((\hat{\tau}_1(x_i), \cdots, \hat{\tau}_B(x_i)) \):
\[
\hat{\sigma}^2(x_1) = \frac{1}{B-1} \sum_{b=1}^{B} \left[\hat{\tau}_b(x_1) - \hat{\tau}(x_1) \right]^2.
\]

(11)

Similarly, we can get the bootstrap-based asymptotic variance estimator of other CATE estimators by replacing the role of \(\hat{\tau}(x_1)\). Furthermore, it is standard to obtain confidence intervals for the CATE estimator based on normal approximations, that is

\[
\left[\hat{\tau}(x_1) - z_{1-\frac{\alpha}{2}} \sqrt{\hat{\sigma}^2(x_1) nh_1}, \hat{\tau}(x_1) + z_{1-\frac{\alpha}{2}} \sqrt{\hat{\sigma}^2(x_1) nh_1} \right],
\]

where \(z_{1-\frac{\alpha}{2}}\) is the \(\frac{\alpha}{2}\) critical value of the standard normal distribution and \(\alpha\) is a pre-specified confidence level. As this is not the focus of this paper, we then do not give more details about their asymptotic properties.

3 Simulations

To verify our theoretical results, we in this section conduct simulation studies to compare the regression-based OR-O, OR-P, OR-S, OR-N estimators with IPW-based IPW-O, IPW-P, IPW-S, IPW-N estimators (Abrevaya et al. 2015). Set \(p = \text{dim}(X) \in \{2, 4\}\) to avoid the curse of dimensionality under nonparametric estimation. Based on our experience and the theoretical results, when \(p\) is large, OR-N is very hard to implement.

As well known, bandwidth selection plays an important role in the NW estimation. Hence, we first discuss this issue.

3.1 Bandwidth and kernel function selection

Note that OR-O and OR-P only involve one bandwidth \(h_1\) used in the second step of the estimation procedure. We first check how to choose bandwidth sequences and kernel functions satisfying the conditions A1–A7. To this end, consider

\[
\begin{align*}
 h_1 &= a_1 \cdot n^{-\frac{1}{2s_1+1}}, & a_1 > 0, & \delta_1, \\
 h_2 &= a_2 \cdot n^{-\frac{1}{p+s_2+1}}, & a_2 > 0, & \delta_2, \\
 h_4 &= a_3 \cdot n^{-\frac{1}{\max\{r(0), r(1)\}+s_4+1}}, & a_3 > 0, & \delta_3, \\
\end{align*}
\]

(12)

where \(\delta_1, \delta_2\) and \(\delta_3\) can be selected as small as necessary or desired. It is clear that \(h_1, h_2\) and \(h_4\) satisfy conditions A1, A2, A3, A5 and A6. To satisfy condition A4, we set the kernel orders as \(s_2 = p\) for even and odd \(p\) respectively; and \(s_1 = s_2 + 2\). To satisfy condition 7, under semiparametric dimension reduction structure, set \(s_4 = \max\{r(0), r(1)\}\) and \(\max\{r(0), r(1)\} + 1\) respectively for even and odd \(\max\{r(0), r(1)\}\). Based on the above values of \(s_1, s_2\) and \(s_4\), we verify the first parts of conditions A4 and A7. Next, consider the second parts of these two conditions. Note that when \(s_2 \geq p\) and \(s_4 \geq \max\{r(0), r(1)\}\),

\[
-\frac{2s_2}{p+s_2} \leq -1, \quad \frac{2s_2 + k}{2s_2 + 4 + k} < 1, \quad -\frac{2s_4}{\max\{r(0), r(1)\} + s_4} \leq -1, \quad \frac{2s_4 + k}{2s_1 + k} < 1.
\]
Then
\[-\frac{2s_2}{p + s_2} + \frac{2s_2 + k}{2s_2 + 4 + k} < 0, \quad -\frac{2s_4}{\max \{r(0), r(1)\} + s_4} + \frac{2s_4 + k}{2s_4 + k} < 0. \]
Therefore, \(h_2^{2s_2} h_1^{-2s_2 - k} \to 0 \) and \(h_4^{2s_4} h_1^{-2s_4 - k} \to 0 \). Invoking condition A3, \(nh_1^k h_2^{2s_2} = nh_1^{k_1 + k} h_2^{2s_2} h_1^{-2s_1} \to 0 \) when \(h_2^{2s_2} h_1^{-2s_1} \to 0 \). Since \(\delta_1, \delta_2 \) and \(\delta_3 \) can be arbitrarily small, we get, because \(-s_2/(s_2 + p) \leq -1/2 \) and \((s_2 + 2)/(2s_2 + 4 + k) < 1/2 \),
\[-\frac{s_2}{s_2 + p} + \frac{s_2 + 2}{2s_2 + 4 + k} < 0. \]
Thus, condition A4 is satisfied. Similarly, together with condition A6, condition A7 can also be satisfied, which has \(nh_1^k h_4^{2s_4} \to 0 \) by
\[-\frac{s_4}{\max \{r(0), r(1)\} + s_4} + \frac{s_4 + k}{2s_4 + k} < 0. \]

3.2 Model setting

To examine the finite sample performances of the CATE estimators, consider the following three models:

Model 1: \(Y_{(0)} = 0, \quad Y_{(1)} = X_1^2 + X_2 + \epsilon_1, \quad p_1(X) = \frac{\exp(0.2(X_1 + X_2))}{1 + \exp(0.2(X_1 + X_2))}. \)

Model 2: \(Y_{(0)} = 0, \quad Y_{(1)} = X_1 + X_2 + X_3 + X_4 + \epsilon_2, \quad p_2(X) = \frac{\exp(0.2(X_1 + X_2 + X_3 + X_4))}{1 + \exp(0.2(X_1 + X_2 + X_3 + X_4))}. \)

Model 3: \(Y_{(0)} = 0, \quad Y_{(1)} = X_2 + X_3 + \epsilon_3, \quad p_3(X) = \frac{\exp(0.2(X_2 + X_3))}{1 + \exp(0.2(X_2 + X_3))}. \)

Model 1 is a model with the dimensions 2 and 0 of the central mean subspaces for the treatment and control group are 1 and 0 in Models 2 and 3. For Model 1, \(X = (X_1, X_2)^\top \) is generated by
\[X_1 \sim U(-0.5, 0.5), \quad X_2 = 1 + 2X_1 + \zeta, \]
where \(\zeta \sim U(-0.5, 0.5), \quad \epsilon_1 \sim N(0, 0.1^2). \) For Model 2, we generate \(X = (X_1, X_2, X_3, X_4)^\top \) by
\[X_1 \sim U(-0.5, 0.5), \quad X_2 = 1 + X_1^2 + \zeta_1, \]
\[X_3 = (1 + X_1)^2 + \zeta_2, \quad X_4 = (-1 + X_1)^2 + \zeta_3, \]
where \(\zeta_j \stackrel{iid}{\sim} U(-0.5, 0.5), \quad \epsilon_{2j} \sim N(0, 0.1^2), \quad j = 1, 2, 3. \) In Model 3, \(X = (X_1, X_2, X_3)^\top \) are given by
\[X_1 \sim U(-0.5, 0.5), \quad X_2 = X_1 + \theta_1, \quad X_3 = (1 + X_1)^2 + \theta_2, \]
where \(g_j \overset{iid}{\sim} U(-0.5, 0.5), c_3 \sim N(0, 0.1^2), j = 1, 2\).

Although we introduce how to estimate the asymptotic variances in Sect. 2.6, we should note that its estimation procedure is very complex, since we need to estimate many unknown functions. Hence, we utilize a bootstrap-based method to calculate the asymptotic variance. Furthermore, let \(T(x_1) = \sqrt{(nh_1)[\hat{\tau}(x_1) - \tau(x_1)]]\), we use the following indices to evaluate the performances of the involved estimators: Standard deviation (SD), the bootstrap-based estimated standard deviation (ESD), Bias, MSE and 95\% confidence interval coverage probability based on bootstrap-based estimated standard deviation of \(T(x_1)\) (CP). The number of bootstrap time is 200 in this simulation study. The sample size is taken to be respectively \(n = 500\) and \(n = 1000\). Moreover, the replication time is 500.

3.3 Simulation results

We tabulate the results in Tables 2, 3, 4 below and have some observations.

First, to show the estimation consistency, we can see that larger sample size reasonably results in smaller SD and MSE. The dimension of \(X\) also effects the estimation performance. When \(p\) increases to 4 from 2, both SD and MSE obviously increase particularly when \(n = 1000\).

Second, the comparisons show the significant advantage of outcome regression-based estimation over IPW-based estimation. Even though in theory, OR-N is asymptotically equivalent to IPW-N, the difference on the estimation efficiency is still very significant. All results in the tables obviously indicate this: all IPW-based estimators have much larger SD than all regression-based estimators.

Third, as discussed before, the performances of OR-N and OR-S are highly associated with the affiliation of the given covariates to the set of arguments of the outcome regression. This finding can also be confirmed in Tables 3 and 4 In Model 2, \(X_1 \subset C^{k-q} \beta_1^\top X\) and \(X_1 \subset C^{k-q} \beta_0^\top X\) with \(k = 1\) and \(q = 0\), thus in theory, OR-S shares the same asymptotic variance as OR-P and OR-O and is more efficient than OR-N. From Table 3 we can see that the SDs of OR-S are similar to those of OR-P and OR-O, which are smaller than that of OR-N. In Model 3, \(X_1 \not\subset \hat{X} = (X_2, X_3)^\top\). the asymptotic efficiencies are equivalent in theory and its SDs in Table 4 are similar.
Table 2
The distribution of $\sqrt{n}h_1[\hat{f}(x_1) - \tau(x_1)]$ for model 1

Group 1: \{\(a_1 = 0.03, a_4 = 0.08, a_2 = 0.16\)

\(n\)	\(x_1\)	Bias	\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)	OR-O	\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)	OR-P	
500															
		-0.004	-0.012	0.007	0.003	0.013	-0.002	-0.010	0.008	0.004	0.013				
SD	0.201	0.195	0.204	0.208	0.197	0.201	0.194	0.207	0.210	0.203					
ESD	0.209	0.206	0.210	0.211	0.209	0.209	0.207	0.211	0.211	0.209					
MSE	0.041	0.038	0.042	0.043	0.039	0.040	0.038	0.043	0.044	0.041					
CP	0.932	0.932	0.922	0.928	0.946	0.938	0.936	0.926	0.924	0.920					
1000															
		0.002	0.004	-0.001	0.005	-0.003	0.001	0.005	0.001	0.007	-0.003				
SD	0.206	0.202	0.197	0.203	0.202	0.209	0.205	0.198	0.202	0.203					
ESD	0.201	0.202	0.203	0.203	0.202	0.200	0.202	0.203	0.203	0.202					
MSE	0.043	0.041	0.039	0.041	0.041	0.044	0.042	0.039	0.041	0.041					
CP	0.918	0.936	0.948	0.948	0.956	0.914	0.936	0.948	0.952	0.946					

IPW-N

\(n\)	Bias	\(-0.076\)	\(-0.012\)	\(-0.004\)	\(0.006\)	\(0.233\)	\(-0.086\)	\(-0.027\)	\(0.016\)	\(0.049\)	\(0.317\)				
500															
		0.348	0.469	0.612	0.792	0.879	0.336	0.448	0.610	0.782	0.865				
		0.369	0.509	0.688	0.905	1.110	0.368	0.512	0.697	0.915	1.127				
		0.127	0.220	0.374	0.627	0.827	0.120	0.202	0.372	0.614	0.849				
		0.956	0.958	0.976	0.970	0.982	0.962	0.970	0.974	0.982	0.990				

IPW-S
	IPW-N		IPW-S				
	n	Bias	SD	Bias	SD	Bias	SD
	1000	-0.070	0.346	-0.087	0.337	-0.019	0.406
		0.000	0.417	0.000	0.574	0.031	0.876
		-0.027	0.604	-0.019	0.372	0.031	0.759
		0.031	0.759	-0.008	0.510	0.232	0.876
		0.232	0.876	-0.087	0.688	0.031	0.876
				0.000	0.094	0.031	0.876
				0.031	0.305	0.031	0.876
Group1: $\{a_1=0.03, a_4=0.08, a_2=0.16\}$							
		OR-S		**OR-N**			
		-0.4	-0.2	0	0.2	0.4	-0.4
		Bias	SD	ESD	MSE	CP	Bias
	500	-0.050	0.202	0.202	0.043	0.930	-0.003
		0.059	0.195	0.209	0.067	0.930	-0.005
		0.112	0.233	0.235	0.060	0.926	0.013
		0.043	0.242	0.247	0.060	0.932	0.013
							0.012
							0.016
							0.012
							0.016
							0.012
							0.016
							0.012
	1000	-0.041	0.218	0.200	0.049	0.906	-0.001
		0.059	0.215	0.207	0.050	0.940	0.006
		0.085	0.236	0.218	0.063	0.930	0.004
		0.041	0.227	0.227	0.053	0.938	0.004
		-0.119	0.245	0.227	0.074	0.918	0.004
		-0.001	0.212	0.202	0.045	0.908	0.004
		0.006	0.208	0.203	0.043	0.932	0.004
		0.004	0.206	0.203	0.042	0.938	0.004
		0.013	0.209	0.205	0.044	0.936	0.004
		-0.003	0.211	0.205	0.045	0.930	
							0.013
							0.211
							0.205
							0.205
							0.205
							0.205
							0.205
Table 2 (continued)

	IPW-P	IPW-O
$n = 500$		
Bias	-0.041	-0.047
SD	0.348	0.381
ESD	0.377	0.373
MSE	0.123	0.147
CP	0.958	0.938
$n = 1000$		
Bias	-0.034	-0.032
SD	0.359	0.387
ESD	0.379	0.378
MSE	0.130	0.151
CP	0.946	0.940

Group 2: $\{a_1 = 0.05, a_4 = 0.07, a_2 = 0.17\}$

n	x_1	OR-O	OR-P								
		-0.4	-0.2	0	0.2	0.4	-0.4	-0.2	0	0.2	0.4
$n = 500$	Bias	-0.004	0.000	0.006	0.000	-0.013	-0.004	-0.001	0.004	-0.001	-0.014
	SD	0.212	0.212	0.202	0.203	0.211	0.219	0.214	0.205	0.204	0.214
	ESD	0.203	0.202	0.204	0.205	0.205	0.203	0.202	0.204	0.205	0.205
	MSE	0.045	0.045	0.041	0.041	0.045	0.048	0.046	0.042	0.042	0.046
	CP	0.922	0.934	0.930	0.924	0.938	0.910	0.934	0.928	0.928	0.924
Table 2 (continued)

Group 2: \(a_1 = 0.05, a_4 = 0.07, a_2 = 0.17\)

\(n\)	\(x_1\)	OR-O				OR-P					
		−0.4	−0.2	0	0.2	0.4	−0.4	−0.2	0	0.2	0.4
		Bias									
		0.003	−0.005	0.007	0.006	0.000	−0.005	−0.009	0.003	0.003	0.000
		0.191	0.203	0.193	0.195	0.204	0.195	0.207	0.193	0.195	0.208
		0.204	0.204	0.202	0.203	0.203	0.204	0.203	0.202	0.203	0.203
		0.036	0.041	0.037	0.038	0.042	0.038	0.043	0.037	0.038	0.043
		0.962	0.948	0.958	0.942	0.946	0.964	0.940	0.952	0.942	0.944
		IPW-N									
		Bias									
		−0.059	−0.019	0.022	0.003	0.242	−0.081	−0.034	0.025	0.047	0.303
		0.337	0.476	0.629	0.803	0.904	0.321	0.455	0.607	0.802	0.926
		0.372	0.511	0.685	0.896	1.103	0.370	0.512	0.691	0.907	1.116
		0.117	0.227	0.396	0.645	0.876	0.109	0.208	0.369	0.645	0.949
		0.964	0.964	0.960	0.964	0.982	0.958	0.972	0.960	0.962	0.990
		IPW-S									
		Bias									
		−0.099	−0.053	0.024	0.046	0.262	−0.090	−0.060	0.030	0.071	0.264
		0.338	0.455	0.614	0.756	0.880	0.317	0.439	0.589	0.711	0.850
		0.377	0.509	0.683	0.891	1.103	0.380	0.512	0.689	0.898	1.109
		0.124	0.210	0.378	0.573	0.844	0.108	0.196	0.348	0.510	0.793
		0.968	0.966	0.972	0.972	0.988	0.982	0.976	0.974	0.984	0.990
Table 2 (continued)

*Group 2: \(\{a_1 = 0.05, a_4 = 0.07, a_2 = 0.17\} \)

\(n \)	\(x_1 \)	OR-S	OR-N								
		\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)	\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)
---	---	---	---	---	---	---	---	---	---	---	---
\(n = 500 \)	Bias	\(-0.061\)	\(0.077\)	\(0.134\)	\(0.044\)	\(-0.175\)	\(0.004\)	\(0.005\)	\(0.009\)	\(0.002\)	\(-0.007\)
	SD	\(0.220\)	\(0.223\)	\(0.234\)	\(0.240\)	\(0.260\)	\(0.225\)	\(0.221\)	\(0.212\)	\(0.211\)	\(0.221\)
	ESD	\(0.198\)	\(0.206\)	\(0.226\)	\(0.240\)	\(0.239\)	\(0.202\)	\(0.202\)	\(0.205\)	\(0.209\)	\(0.208\)
	MSE	\(0.052\)	\(0.056\)	\(0.073\)	\(0.060\)	\(0.098\)	\(0.051\)	\(0.049\)	\(0.045\)	\(0.045\)	\(0.049\)
	CP	\(0.896\)	\(0.908\)	\(0.934\)	\(0.918\)	\(0.920\)	\(0.902\)	\(0.914\)	\(0.922\)	\(0.924\)	\(0.926\)
\(n = 1000 \)	Bias	\(-0.067\)	\(0.064\)	\(0.135\)	\(0.053\)	\(-0.170\)	\(0.004\)	\(-0.012\)	\(0.013\)	\(0.009\)	\(0.004\)
	SD	\(0.206\)	\(0.226\)	\(0.231\)	\(0.230\)	\(0.276\)	\(0.202\)	\(0.216\)	\(0.202\)	\(0.207\)	\(0.216\)
	ESD	\(0.202\)	\(0.207\)	\(0.220\)	\(0.230\)	\(0.230\)	\(0.203\)	\(0.203\)	\(0.203\)	\(0.206\)	\(0.205\)
	MSE	\(0.047\)	\(0.055\)	\(0.072\)	\(0.056\)	\(0.105\)	\(0.041\)	\(0.047\)	\(0.041\)	\(0.043\)	\(0.046\)
	CP	\(0.932\)	\(0.920\)	\(0.926\)	\(0.942\)	\(0.890\)	\(0.942\)	\(0.922\)	\(0.950\)	\(0.936\)	\(0.938\)

IPW-P	IPW-O													
\(n = 500 \)	Bias	\(-0.026\)	\(0.004\)	\(0.032\)	\(-0.030\)	\(0.078\)	\(0.016\)	\(0.025\)	\(0.061\)	\(0.003\)	\(0.123\)			
	SD	\(0.343\)	\(0.496\)	\(0.672\)	\(0.826\)	\(0.920\)	\(0.367\)	\(0.529\)	\(0.717\)	\(0.891\)	\(1.108\)			
	ESD	\(0.380\)	\(0.515\)	\(0.686\)	\(0.891\)	\(1.084\)	\(0.380\)	\(0.516\)	\(0.687\)	\(0.891\)	\(1.079\)			
	MSE	\(0.119\)	\(0.246\)	\(0.453\)	\(0.683\)	\(0.852\)	\(0.135\)	\(0.280\)	\(0.518\)	\(0.795\)	\(1.243\)			
	CP	\(0.956\)	\(0.958\)	\(0.934\)	\(0.954\)	\(0.968\)	\(0.944\)	\(0.946\)	\(0.932\)	\(0.936\)	\(0.928\)			
Group 3: \(\{ a_1 = 0.03, a_2 = 0.08, a_3 = 0.16 \} \)	IPW-P \(n \)	OR-P \(n \)												
---	---	---												
Bias	SD	ESD	MSE	CP	Bias	SD	ESD	MSE	CP	Bias	SD	ESD	MSE	CP
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
\(n = 1000 \)	0.038	0.019	0.069	0.096	0.022	0.041	0.065	0.094	0.029	0.047	0.065	0.094	0.029	0.047
\(n = 500 \)	0.04	0.011	0.061	0.09	0.022	0.041	0.065	0.094	0.029	0.047	0.065	0.094	0.029	0.047
\(n = 100 \)	0.04	0.011	0.061	0.09	0.022	0.041	0.065	0.094	0.029	0.047	0.065	0.094	0.029	0.047
Table 2 (continued)

| Group 3: \{a_1 = 0.03, a_4 = 0.08, a_2 = 0.16\} |
n = 500	\(x_1\)	OR-S	OR-N
	\(-0.4\)	-0.059	-0.010
	\(-0.2\)	0.061	0.008
	0	0.108	0.000
	0.2	0.034	0.000
	0.4	-0.136	0.000
n = 1000	\(-0.4\)	-0.070	-0.090
	\(-0.2\)	-0.030	-0.043
	0	-0.003	-0.002
	0.2	-0.018	0.050
	0.4	0.279	0.370

n = 1000	Bias	SD	ESD	MSE	CP
500	\(-0.059\)	0.348	0.372	0.124	0.952
	0.061	0.470	0.512	0.223	0.958
	0.108	0.585	0.688	0.342	0.968
	0.034	0.759	0.903	0.575	0.980
	-0.136	0.859	1.111	0.763	0.982
	-0.109	0.338	0.369	0.120	0.950
	0.176	0.464	0.512	0.220	0.962
	0.060	0.575	0.695	0.330	0.80
	0.079	0.747	0.917	0.565	0.982
	0.139	0.875	1.126	0.824	0.990
1000	\(-0.070\)	0.329	0.375	0.113	0.976
	-0.030	0.452	0.512	0.205	0.968
	-0.003	0.599	0.685	0.359	0.976
	-0.018	0.794	0.893	0.631	0.976
	0.279	0.874	1.109	0.842	0.986
	-0.090	0.319	0.372	0.110	0.982
	-0.043	0.428	0.514	0.185	0.976
	-0.002	0.583	0.690	0.340	0.980
	0.050	0.780	0.904	0.612	0.988
	0.370	0.886	1.121	0.921	0.982

n = 500	Bias	SD	ESD	MSE	CP
	\(-0.054\)	0.348	0.372	0.124	0.952
	\(-0.047\)	0.470	0.512	0.223	0.958
	\(-0.004\)	0.585	0.688	0.342	0.968
	0.011	0.759	0.903	0.575	0.980
	0.160	0.859	1.111	0.763	0.982
	-0.076	0.338	0.369	0.120	0.950
	-0.069	0.464	0.512	0.220	0.962
	0.002	0.575	0.695	0.330	0.80
	0.083	0.747	0.917	0.565	0.982
	0.242	0.875	1.126	0.824	0.990

n = 1000	Bias	SD	ESD	MSE	CP
	\(-0.070\)	0.329	0.375	0.113	0.976
	-0.030	0.452	0.512	0.205	0.968
	-0.003	0.599	0.685	0.359	0.976
	-0.018	0.794	0.893	0.631	0.976
	0.279	0.874	1.109	0.842	0.986
	-0.090	0.319	0.372	0.110	0.982
	-0.043	0.428	0.514	0.185	0.976
	-0.002	0.583	0.690	0.340	0.980
	0.050	0.780	0.904	0.612	0.988
	0.370	0.886	1.121	0.921	0.982

Outcome regression-based estimation of CATE
n	x_1	OR-S				OR-N						
			−0.4	−0.2	0	0.2	0.4	−0.4	−0.2	0	0.2	0.4
1000	Bias	−0.049	0.068	0.104	0.034	−0.120	−0.002	0.012	0.013	0.000	0.005	
	SD	0.189	0.210	0.243	0.225	0.256	0.194	0.205	0.217	0.205	0.213	
	ESD	0.200	0.206	0.222	0.230	0.231	0.201	0.203	0.206	0.206	0.207	
	MSE	0.038	0.049	0.070	0.052	0.080	0.038	0.042	0.047	0.042	0.045	
	CP	0.952	0.930	0.910	0.936	0.908	0.944	0.930	0.924	0.934	0.916	
500	Bias	−0.022	−0.029	0.003	−0.006	0.018	−0.016	−0.022	0.009	−0.010	0.013	
	SD	0.357	0.486	0.624	0.790	0.887	0.389	0.521	0.663	0.823	1.079	
	ESD	0.379	0.515	0.691	0.900	1.094	0.377	0.513	0.688	0.895	1.084	
	MSE	0.128	0.237	0.389	0.624	0.786	0.152	0.272	0.439	0.678	1.164	
	CP	0.950	0.952	0.966	0.970	0.986	0.926	0.932	0.948	0.966	0.948	
1000	Bias	−0.035	−0.010	0.008	−0.036	0.115	−0.034	−0.010	0.006	−0.042	0.098	
	SD	0.333	0.472	0.648	0.845	0.931	0.372	0.504	0.677	0.927	1.037	
	ESD	0.380	0.515	0.686	0.891	1.094	0.379	0.513	0.685	0.888	1.088	
	MSE	0.112	0.223	0.420	0.715	0.879	0.139	0.254	0.459	0.860	1.085	
	CP	0.972	0.958	0.962	0.974	0.972	0.950	0.944	0.946	0.932	0.946	
Table 2 (continued)

Group 4: \(\{a_1 = 0.03, a_4 = 0.1, a_2 = 0.15\} \)

\(n \)	\(x_1 \)	\(\text{OR-O} \)	\(\text{OR-P} \)								
		\(-0.4\)	\(-0.2\)	0	0.2	0.4	\(-0.4\)	\(-0.2\)	0	0.2	0.4
\(n = 500 \)	Bias	0.012	0.002	0.006	\(-0.009\)	0.008	0.010	0.003	0.008	\(-0.008\)	0.006
	SD	0.209	0.198	0.211	0.212	0.202	0.213	0.200	0.215	0.213	0.206
	ESD	0.232	0.211	0.208	0.212	0.209	0.233	0.211	0.208	0.212	0.209
	MSE	0.044	0.039	0.044	0.045	0.041	0.046	0.040	0.046	0.046	0.042
	CP	0.926	0.946	0.922	0.932	0.942	0.916	0.946	0.922	0.924	0.942
\(n = 1000 \)	Bias	\(-0.004\)	0.021	0.002	0.016	\(-0.006\)	\(-0.005\)	0.022	0.005	0.018	\(-0.005\)
	SD	0.204	0.203	0.214	0.191	0.206	0.209	0.203	0.214	0.192	0.209
	ESD	0.205	0.203	0.203	0.202	0.204	0.206	0.203	0.203	0.202	0.204
	MSE	0.042	0.042	0.046	0.037	0.043	0.044	0.042	0.046	0.037	0.044
	CP	0.936	0.940	0.922	0.946	0.930	0.944	0.944	0.928	0.946	0.920

IPW-N

\(n = 500 \)	Bias	\(-0.063\)	0.032	\(-0.056\)	\(-0.035\)	0.203	\(-0.091\)	0.006	\(-0.039\)	0.037	0.400
	SD	0.336	0.472	0.596	0.773	0.865	0.327	0.474	0.601	0.779	0.993
	ESD	0.371	0.518	0.692	0.893	1.106	0.367	0.517	0.698	0.906	1.132
	MSE	0.117	0.224	0.358	0.598	0.790	0.115	0.225	0.363	0.609	1.145
	CP	0.956	0.962	0.972	0.982	0.982	0.962	0.964	0.978	0.976	0.978
n = 1000	IPW-N	IPW-S
Bias	−0.051	−0.071
SD	0.336	0.335
ESD	0.377	0.375
MSE	0.115	0.117
CP	0.974	0.964

Group4: \(a_1 = 0.03, a_4 = 0.1, a_2 = 0.15\)

n	\(x_1\)	OR-S	OR-N								
	−0.4	−0.2	0	0.2	0.4						
	−0.4	−0.2	0	0.2	0.4						
n = 500	Bias	−0.040	0.072	0.115	0.027	−0.128	0.010	0.004	0.008	−0.007	0.014
	SD	0.210	0.204	0.242	0.245	0.247	0.215	0.204	0.218	0.223	0.216
	ESD	0.216	0.214	0.231	0.250	0.246	0.235	0.212	0.210	0.215	0.213
	MSE	0.046	0.047	0.072	0.061	0.078	0.046	0.042	0.048	0.050	0.047
	CP	0.920	0.948	0.928	0.928	0.928	0.914	0.936	0.932	0.922	0.920
n = 1000	Bias	−0.051	0.084	0.095	0.054	−0.130	−0.004	0.027	0.005	0.018	−0.003
	SD	0.212	0.224	0.252	0.224	0.254	0.215	0.216	0.223	0.199	0.218
	ESD	0.202	0.206	0.219	0.226	0.230	0.206	0.204	0.206	0.204	0.207
	MSE	0.048	0.057	0.073	0.053	0.082	0.046	0.047	0.050	0.040	0.047
	CP	0.938	0.926	0.890	0.944	0.908	0.932	0.928	0.920	0.946	0.922
Table 2 (continued)

n	Bias	SD	ESD	MSE	CP	IPW-P	IPW-O	n=500		
500	0.032	0.344	0.378	0.119	0.960	-0.035	0.045	-0.053	-0.066	0.085
n=1000	-0.017	0.346	0.383	0.120	0.960	-0.021	-0.035	0.003	-0.001	0.004

Group 5: \(a_1=0.05, a_4=0.07, a_2=0.15\)

n	\(x_1\)	OR-O	OR-P	n=500											
-0.4	-0.2	0	0.2	0.4	-0.4	-0.2	0	0.2	0.4						
n=500	Bias	SD	ESD	MSE	CP	-0.000	-0.002	-0.013	-0.003	0.006	-0.002	0.000	-0.013	-0.004	0.003
0.207	0.199	0.202	0.189	0.205	0.212	0.204	0.204	0.204	0.204	0.191	0.208				
0.202	0.205	0.204	0.204	0.204	0.202	0.205	0.204	0.204	0.205						
0.043	0.040	0.041	0.036	0.042	0.045	0.042	0.042	0.036	0.043						
0.940	0.940	0.940	0.958	0.930	0.936	0.942	0.950	0.958	0.928						
n	x_i	OR-O	OR-P												
-----	-------	------	------												
		-0.4	-0.2	0	0.2	0.4	-0.4	-0.2	0	0.2	0.4				
$n=1000$	Bias	0.000	0.016	-0.002	0.007	-0.014	0.000	0.014	-0.004	0.007	-0.011				
	SD	0.197	0.202	0.197	0.198	0.203	0.200	0.204	0.197	0.200	0.204				
	ESD	0.201	0.200	0.202	0.202	0.201	0.200	0.200	0.202	0.202	0.201				
	MSE	0.039	0.041	0.039	0.039	0.042	0.040	0.042	0.039	0.040	0.042				
	CP	0.950	0.936	0.948	0.942	0.944	0.954	0.932	0.952	0.948	0.948				
$n=500$	Bias	-0.033	-0.032	-0.064	-0.025	0.208	-0.052	-0.051	-0.050	0.024	0.291				
	SD	0.362	0.444	0.597	0.743	0.824	0.344	0.437	0.594	0.742	0.853				
	ESD	0.373	0.511	0.684	0.899	1.111	0.371	0.513	0.693	0.910	1.128				
	MSE	0.132	0.198	0.360	0.553	0.723	0.121	0.194	0.355	0.550	0.812				
	CP	0.946	0.974	0.970	0.980	0.984	0.952	0.978	0.976	0.982	0.988				
$n=1000$	Bias	-0.070	-0.001	0.012	0.011	0.196	-0.083	-0.021	0.027	0.068	0.259				
	SD	0.333	0.465	0.606	0.782	0.838	0.325	0.438	0.590	0.776	0.869				
	ESD	0.372	0.510	0.687	0.897	1.108	0.371	0.511	0.693	0.907	1.117				
	MSE	0.116	0.216	0.368	0.611	0.740	0.113	0.192	0.349	0.608	0.822				
	CP	0.968	0.964	0.962	0.974	0.994	0.970	0.976	0.970	0.974	0.990				
Table 2 (continued)

*Group5: \(\{a_1 = 0.05, a_4 = 0.07, a_2 = 0.15\} \)

\(n \)	\(x_1 \)	\(OR-S \)	\(OR-N \)								
		\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)	\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)
\(n = 500 \)	Bias	\(-0.058\)	0.079	0.108	0.036	\(-0.152\)	0.005	0.003	\(-0.012\)	0.000	0.006
	SD	0.218	0.216	0.236	0.218	0.249	0.222	0.217	0.214	0.199	0.216
	ESD	0.197	0.208	0.225	0.238	0.239	0.202	0.205	0.206	0.208	0.209
	MSE	0.051	0.053	0.067	0.049	0.085	0.049	0.047	0.046	0.039	0.047
	CP	0.926	0.926	0.920	0.956	0.924	0.912	0.922	0.932	0.942	0.934
\(n = 1000 \)	Bias	\(-0.063\)	0.096	0.127	0.049	\(-0.184\)	\(-0.001\)	0.020	0.003	0.011	\(-0.013\)
	SD	0.212	0.226	0.238	0.231	0.265	0.209	0.218	0.207	0.212	0.212
	ESD	0.198	0.204	0.220	0.229	0.229	0.200	0.201	0.204	0.204	0.204
	MSE	0.049	0.060	0.073	0.056	0.104	0.044	0.048	0.043	0.045	0.045
	CP	0.942	0.914	0.908	0.938	0.896	0.942	0.914	0.940	0.930	0.942

	\(IPW-P \)	\(IPW-O \)									
\(n = 500 \)	Bias	\(-0.001\)	\(-0.011\)	\(-0.059\)	\(-0.045\)	0.099	0.006	\(-0.010\)	\(-0.061\)	\(-0.057\)	0.072
	SD	0.365	0.467	0.634	0.798	0.871	0.408	0.492	0.671	0.856	1.090
	ESD	0.381	0.515	0.686	0.896	1.098	0.379	0.512	0.682	0.890	1.085
	MSE	0.133	0.218	0.405	0.638	0.768	0.167	0.242	0.454	0.736	1.192
	CP	0.946	0.956	0.960	0.978	0.984	0.932	0.950	0.948	0.950	0.934
\(n = 1000 \)	Bias	\(-0.035\)	0.019	0.021	\(-0.008\)	0.062	\(-0.035\)	0.016	0.014	\(-0.027\)	0.036
	SD	0.349	0.487	0.655	0.835	0.905	0.382	0.515	0.688	0.886	1.069
	ESD	0.377	0.512	0.689	0.895	1.095	0.376	0.511	0.687	0.891	1.088
	MSE	0.123	0.238	0.430	0.696	0.822	0.147	0.266	0.474	0.786	1.143
	CP	0.958	0.958	0.948	0.968	0.984	0.954	0.946	0.938	0.950	0.944
Table 3 The distribution of $\sqrt{n(b_1[\hat{f}(x_i) - \tau(x_i)])}$ for model 2

Group1: \{a_1 = 0.1, a_4 = 0.1, a_2 = 0.6\}

n	x_i	OR-O	OR-P								
		-0.4	-0.2	0	0.2	0.4	-0.4	-0.2	0	0.2	0.4
500	Bias	0.048	0.015	0.015	0.014	0.109	0.048	0.016	0.018	0.018	0.117
	SD	0.339	0.351	0.327	0.352	0.357	0.342	0.355	0.331	0.353	0.365
	ESD	0.337	0.350	0.347	0.354	0.341	0.337	0.350	0.347	0.354	0.341
	MSE	0.117	0.124	0.107	0.124	0.139	0.119	0.126	0.110	0.125	0.147
	CP	0.942	0.938	0.970	0.944	0.926	0.938	0.936	0.966	0.948	0.920

n	x_i	IPW-N	IPW-S								
	Bias	-0.159	-0.274	-0.203	0.500	1.196	-0.398	-0.410	-0.391	0.109	0.412
	SD	1.474	1.267	1.272	1.406	1.866	1.503	1.385	1.406	1.550	2.003
	ESD	1.751	1.533	1.595	1.712	2.129	1.754	1.536	1.592	1.698	2.099
	MSE	2.198	1.680	1.658	2.226	4.912	2.419	2.087	2.130	2.414	4.183
	CP	0.982	0.980	0.986	0.976	0.974	0.972	0.966	0.966	0.960	0.960

n	x_i	IPW-N	IPW-S								
	Bias	-0.144	-0.431	-0.429	0.509	1.800	-0.417	-0.491	-0.547	0.153	0.884
	SD	1.522	1.402	1.405	1.509	1.878	1.720	1.571	1.580	1.613	2.123
	ESD	1.725	1.542	1.597	1.715	2.086	1.720	1.545	1.598	1.700	2.057
	MSE	2.338	2.150	2.157	2.626	6.767	3.133	2.708	2.794	2.625	5.289
	CP	0.962	0.976	0.968	0.958	0.964	0.954	0.956	0.954	0.958	0.956
Group 1: \(a_1 = 0.1, a_4 = 0.1, a_2 = 0.6 \)											

\(n \times x_1 \)	OR-S	OR-N									
	\(-0.4\)	\(-0.2\)	0	0.2	0.4	\(-0.4\)	\(-0.2\)	0	0.2	0.4	
\(n = 500 \)	Bias	0.052	0.023	0.021	0.018	0.108	0.220	0.075	0.068	0.036	\(-0.101\)
SD	0.340	0.356	0.329	0.353	0.360	0.334	0.348	0.340	0.349	0.399	
ESD	0.337	0.349	0.347	0.354	0.341	0.299	0.307	0.331	0.332	0.349	
MSE	0.118	0.127	0.109	0.125	0.141	0.160	0.127	0.120	0.123	0.169	
CP	0.936	0.936	0.966	0.948	0.924	0.920	0.914	0.938	0.934	0.898	
\(n = 1000 \)	Bias	0.078	0.012	\(-0.004\)	0.000	0.180	0.315	0.077	0.035	0.028	\(-0.079\)
SD	0.342	0.356	0.334	0.339	0.346	0.416	0.335	0.320	0.350	0.350	
ESD	0.338	0.346	0.349	0.349	0.342	0.381	0.305	0.319	0.337	0.324	
MSE	0.123	0.127	0.111	0.115	0.152	0.273	0.118	0.103	0.123	0.128	
CP	0.942	0.944	0.956	0.950	0.928	0.918	0.920	0.942	0.934	0.916	

	IPW-P	IPW-O									
\(n = 500 \)	Bias	\(-0.027\)	0.078	0.051	0.181	\(-0.153\)	\(-0.101\)	0.013	\(-0.008\)	0.115	\(-0.265\)
SD	0.971	1.204	1.261	1.289	1.163	1.685	1.469	1.501	1.624	1.893	
ESD	1.755	1.544	1.596	1.678	2.032	1.728	1.528	1.581	1.661	2.002	
MSE	0.944	1.456	1.593	1.695	1.375	2.849	2.160	2.254	2.651	3.654	
CP	0.998	0.988	0.988	0.978	1.000	0.960	0.958	0.956	0.954	0.954	
\(n = 1000 \)	Bias	\(-0.011\)	0.041	\(-0.072\)	0.190	\(-0.053\)	\(-0.049\)	0.002	\(-0.120\)	0.125	\(-0.179\)
SD	1.076	1.316	1.398	1.337	1.185	1.681	1.604	1.660	1.718	1.973	
ESD	1.717	1.548	1.595	1.679	1.983	1.705	1.540	1.588	1.670	1.966	
MSE	1.158	1.733	1.960	1.825	1.407	2.827	2.572	2.770	2.968	3.923	
CP	0.996	0.984	0.972	0.984	1.000	0.966	0.934	0.944	0.928	0.936	
Table 3 (continued)

Group2: \(a_1 = 0.1, a_2 = 0.12, a_2 = 0.6\)

\(n\)	\(x_1\)	OR-O	OR-P								
		\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)	\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)
\(n=500\)	Bias	0.070	\(-0.004\)	0.006	\(-0.004\)	0.135	0.068	\(-0.003\)	0.007	\(-0.002\)	0.139
	SD	0.341	0.356	0.356	0.338	0.339	0.345	0.361	0.361	0.338	0.346
	ESD	0.339	0.347	0.350	0.350	0.344	0.339	0.348	0.350	0.351	0.344
	MSE	0.121	0.127	0.127	0.114	0.133	0.123	0.130	0.130	0.114	0.139
	CP	0.942	0.946	0.946	0.966	0.956	0.930	0.948	0.946	0.958	0.950
\(n=1000\)	Bias	0.097	\(-0.006\)	0.002	\(-0.016\)	0.156	0.097	\(-0.010\)	\(-0.003\)	\(-0.018\)	0.160
	SD	0.332	0.338	0.356	0.346	0.337	0.337	0.341	0.360	0.351	0.347
	ESD	0.336	0.348	0.350	0.352	0.343	0.336	0.348	0.350	0.352	0.343
	MSE	0.120	0.114	0.127	0.120	0.138	0.123	0.116	0.130	0.124	0.146
	CP	0.944	0.946	0.940	0.954	0.962	0.950	0.948	0.936	0.950	0.952

\(n=500\)	IPW-N	IPW-S									
		\(-0.225\)	\(-0.302\)	\(-0.219\)	\(0.446\)	\(1.230\)	\(-0.416\)	\(-0.329\)	\(-0.265\)	\(0.165\)	\(0.527\)
		1.524	1.310	1.338	1.415	1.756	1.415	1.255	1.292	1.370	1.636
		1.753	1.523	1.590	1.702	2.101	1.750	1.529	1.595	1.695	2.069
		1.540	1.345	1.356	1.483	2.144	1.475	1.298	1.319	1.380	1.719
		0.964	0.974	0.976	0.984	0.976	0.970	0.976	0.984	0.982	0.978
\(n=1000\)	Bias	\(-0.149\)	\(-0.429\)	\(-0.428\)	\(0.577\)	\(1.824\)	\(-0.441\)	\(-0.459\)	\(-0.510\)	\(0.155\)	\(0.810\)
	SD	1.504	1.279	1.294	1.532	1.856	1.579	1.385	1.424	1.619	2.129
	ESD	1.729	1.535	1.596	1.715	2.082	1.720	1.538	1.596	1.700	2.044
	MSE	2.284	1.821	1.857	2.679	6.773	2.688	2.128	2.287	2.645	5.186
	CP	0.976	0.986	0.980	0.974	0.974	0.962	0.964	0.966	0.950	0.944
Table 3 (continued)

Group 2: \((a_1 = 0.1, a_4 = 0.12, a_2 = 0.6) \)

\(n \times x_1 \)	OR-S	OR-N
\(n=500 \)		
Bias	0.073	0.233
SD	0.342	0.356
ESD	0.339	0.335
MSE	0.122	0.181
CP	0.940	0.894
\(n=1000 \)		
Bias	0.099	0.329
SD	0.335	0.325
ESD	0.335	0.299
MSE	0.122	0.214
CP	0.948	0.934

\(n=500 \)		IPW-P
Bias	-0.054	-0.088
SD	1.005	1.680
ESD	1.758	1.737
MSE	1.006	1.682
CP	1.000	0.950
\(n=1000 \)		IPW-O
Bias	0.006	-0.095
SD	1.005	1.728
ESD	1.722	1.706
MSE	1.010	2.997
CP	0.998	0.952
n	x_1	OR-O	OR-P								
		-0.4	-0.2	0	0.2	0.4	-0.4	-0.2	0	0.2	0.4
n=500	Bias	0.064	0.006	0.003	-0.017	0.102	0.064	0.005	0.002	-0.020	0.101
	SD	0.328	0.350	0.359	0.352	0.347	0.329	0.351	0.361	0.354	0.354
	ESD	0.336	0.350	0.347	0.353	0.343	0.336	0.350	0.347	0.354	0.343
	MSE	0.111	0.123	0.129	0.124	0.131	0.112	0.123	0.131	0.126	0.136
	CP	0.950	0.940	0.934	0.944	0.932	0.952	0.940	0.938	0.940	0.932
n=1000	Bias	0.052	0.006	-0.023	-0.023	0.124	0.054	0.006	-0.023	-0.023	0.128
	SD	0.322	0.350	0.330	0.357	0.363	0.332	0.353	0.333	0.363	0.365
	ESD	0.336	0.347	0.349	0.350	0.343	0.336	0.347	0.349	0.350	0.344
	MSE	0.106	0.123	0.109	0.128	0.147	0.113	0.125	0.112	0.132	0.149
	CP	0.950	0.946	0.962	0.932	0.918	0.948	0.948	0.964	0.936	0.928

n	x_1	IPW-N	IPW-S								
		-0.132	-0.256	-0.378	0.429	1.287	-0.312	-0.270	-0.426	0.172	0.641
n=500	Bias	1.518	1.294	1.420	1.493	1.904	1.351	1.251	1.336	1.424	1.736
	SD	1.746	1.533	1.595	1.704	2.105	1.746	1.540	1.598	1.696	2.077
	ESD	2.322	1.741	2.159	2.412	5.281	1.923	1.638	1.966	2.057	3.425
	MSE	0.974	0.970	0.956	0.974	0.968	0.984	0.974	0.964	0.980	0.972
n=1000	Bias	-0.133	-0.472	-0.398	0.642	1.677	-0.307	-0.473	-0.398	0.367	0.874
	SD	1.451	1.299	1.352	1.478	1.841	1.387	1.285	1.335	1.454	1.859
	ESD	1.713	1.529	1.589	1.700	2.073	1.707	1.530	1.590	1.690	2.041
	MSE	2.123	1.911	1.987	2.596	6.200	2.019	1.874	1.940	2.249	4.217
	CP	0.986	0.982	0.972	0.978	0.960	0.986	0.974	0.974	0.970	0.954
Table 3 (continued)

Group 3: \(\{a_1 = 0.1, a_4 = 0.14, a_2 = 0.6\} \)

n	\(x_1 \)	OR-S	OR-N								
		-0.4	-0.2	0	0.2	0.4	-0.4	-0.2	0	0.2	0.4
n=500	Bias	0.070	0.014	0.008	-0.023	0.087	0.260	0.071	0.049	0.004	-0.116
	SD	0.325	0.348	0.360	0.353	0.353	0.463	0.368	0.366	0.347	0.362
	ESD	0.335	0.349	0.347	0.353	0.343	0.451	0.353	0.324	0.331	0.327
	MSE	0.110	0.122	0.130	0.125	0.132	0.283	0.140	0.137	0.120	0.144
	CP	0.956	0.942	0.936	0.938	0.930	0.932	0.924	0.924	0.924	0.910
n=1000	Bias	0.058	0.014	-0.019	-0.025	0.116	0.285	0.075	0.022	-0.004	-0.136
	SD	0.331	0.355	0.331	0.360	0.363	0.318	0.339	0.327	0.359	0.363
	ESD	0.336	0.346	0.348	0.350	0.344	0.298	0.306	0.320	0.332	0.325
	MSE	0.113	0.126	0.110	0.130	0.145	0.182	0.120	0.107	0.129	0.150
	CP	0.948	0.946	0.966	0.934	0.928	0.930	0.922	0.940	0.928	0.910

	IPW-P		IPW-O								
n=500	Bias	-0.020	0.092	-0.123	0.115	-0.077	-0.035	0.078	-0.135	0.101	-0.113
	SD	1.746	1.542	1.595	1.671	2.007	1.725	1.531	1.585	1.687	1.948
	ESD	0.980	1.439	2.004	1.864	1.445	3.034	2.397	2.648	2.857	3.808
	MSE	0.998	0.986	0.956	0.982	1.000	0.936	0.934	0.946	0.940	0.956
n=1000	Bias	-0.018	0.000	-0.038	0.242	-0.219	0.051	0.035	-0.011	0.275	-0.172
	SD	0.938	1.230	1.347	1.321	1.183	1.708	1.496	1.551	1.673	2.022
	ESD	1.704	1.535	1.587	1.663	1.968	1.697	1.532	1.584	1.659	1.958
	MSE	0.880	1.513	1.815	1.805	1.447	2.920	2.238	2.405	2.876	4.116
	CP	1.000	0.990	0.980	0.988	1.000	0.948	0.956	0.950	0.938	0.934
Table 3 (continued)
Group 4: \(\{a_1 = 0.1, a_4 = 0.16, a_2 = 0.6\} \)

\(n\)	\(x_1\)	\(OR-O\)	\(OR-P\)									
		\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)	\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)	
\(n = 500\)	Bias	0.071	\(-0.004\)	\(-0.018\)	0.031	0.105	0.068	\(-0.008\)	\(-0.022\)	0.028	0.105	
	SD	0.331	0.328	0.351	0.352	0.334	0.339	0.331	0.352	0.356	0.337	
	ESD	0.335	0.347	0.351	0.348	0.341	0.335	0.347	0.351	0.348	0.341	
	MSE	0.114	0.107	0.124	0.125	0.123	0.119	0.110	0.125	0.128	0.125	
	CP	0.952	0.952	0.928	0.948	0.954	0.946	0.954	0.932	0.940	0.944	
	\(n = 1000\)	Bias	0.079	\(-0.015\)	\(-0.020\)	0.005	0.179	0.079	\(-0.020\)	\(-0.026\)	0.002	0.176
	SD	0.332	0.350	0.327	0.340	0.340	0.344	0.353	0.327	0.345	0.342	
	ESD	0.337	0.348	0.346	0.349	0.342	0.337	0.348	0.346	0.349	0.342	
	MSE	0.117	0.123	0.107	0.116	0.148	0.125	0.125	0.108	0.119	0.148	
	CP	0.952	0.950	0.956	0.958	0.946	0.946	0.944	0.956	0.944	0.942	
	\(n = 500\)	Bias	\(-0.270\)	\(-0.302\)	\(-0.222\)	0.567	1.289	\(-0.382\)	\(-0.286\)	\(-0.227\)	0.339	0.672
	SD	1.475	1.238	1.284	1.470	1.835	1.292	1.154	1.202	1.379	1.649	
	ESD	1.742	1.528	1.594	1.697	2.097	1.745	1.534	1.597	1.687	2.067	
	MSE	2.250	1.623	1.697	2.483	5.028	1.815	1.414	1.496	2.015	3.171	
	CP	0.978	0.978	0.982	0.980	0.966	0.992	0.988	0.990	0.984	0.982	
	\(n = 1000\)	Bias	\(-0.247\)	\(-0.383\)	\(-0.516\)	0.661	1.863	\(-0.319\)	\(-0.324\)	\(-0.484\)	0.397	1.106
	SD	1.594	1.361	1.358	1.466	1.925	1.376	1.258	1.278	1.385	1.831	
	ESD	1.729	1.528	1.585	1.714	2.079	1.730	1.532	1.586	1.704	2.049	
	MSE	2.603	1.998	2.110	2.587	7.176	1.996	1.687	1.869	2.076	4.574	
	CP	0.972	0.970	0.984	0.976	0.954	0.988	0.974	0.986	0.990	0.966	
n	x_1	OR-S				OR-N						
-----------	-------	------	-------	-------	-------	------	-------	-------	-------	-------		
			-0.4	-0.2	0	0.2	0.4	-0.4	-0.2	0	0.2	0.4
$n=500$	Bias	0.073	0.004	0.015	0.025	0.089	0.235	0.075	0.029	0.043	-0.222	
	SD	0.337	0.332	0.352	0.354	0.334	0.335	0.527	0.336	0.369	2.347	
	ESD	0.334	0.345	0.349	0.347	0.341	0.303	0.518	0.315	0.347	2.643	
	MSE	0.119	0.110	0.124	0.126	0.119	0.167	0.284	0.114	0.138	5.557	
	CP	0.944	0.952	0.932	0.942	0.948	0.914	0.932	0.916	0.916	0.914	
$n=1000$	Bias	0.083	-0.009	-0.019	-0.002	0.161	0.308	0.056	0.058	0.026	-0.098	
	SD	0.339	0.351	0.326	0.345	0.340	0.326	0.334	0.869	0.348	0.344	
	ESD	0.336	0.347	0.346	0.348	0.342	0.303	0.307	0.861	0.335	0.330	
	MSE	0.122	0.123	0.107	0.119	0.141	0.201	0.115	0.758	0.122	0.128	
	CP	0.952	0.946	0.958	0.956	0.944	0.932	0.928	0.946	0.936	0.924	

$n=500$	IPW-P	-0.054	0.088	0.028	0.184	-0.158	-0.144	0.055	0.053	0.261	-0.061
	SD	1.026	1.122	1.272	1.300	1.172	1.712	1.445	1.498	1.629	1.944
	ESD	1.752	1.542	1.595	1.660	1.995	1.724	1.528	1.585	1.653	1.980
	MSE	1.055	1.268	1.619	1.723	1.399	2.952	2.090	2.247	2.722	3.784
	CP	0.998	0.992	0.980	0.992	1.000	0.952	0.950	0.964	0.948	0.934
$n=1000$	IPW-O	0.005	0.121	-0.187	0.213	-0.057	-0.103	0.099	-0.165	0.253	-0.039
	SD	1.056	1.265	1.341	1.319	1.245	1.797	1.614	1.556	1.657	2.098
	ESD	1.729	1.536	1.583	1.678	1.975	1.711	1.528	1.577	1.672	1.962
	MSE	1.116	1.614	1.833	1.786	1.554	3.239	2.614	2.447	2.811	4.405
	CP	0.998	0.984	0.980	0.988	0.998	0.940	0.942	0.952	0.950	0.932
Table 3 (continued)

Group 5: \(a_1 = 0.1, a_4 = 0.18, a_2 = 0.6 \)

\(n \times x_1 \times OR-O \)	\(OR-O \)	\(OR-P \)									
	\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)	\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)	
\(n=500 \)	Bias	0.032	-0.010	-0.013	-0.003	0.111	0.030	-0.012	-0.016	-0.007	0.105
	SD	0.345	0.330	0.344	0.363	0.343	0.352	0.334	0.344	0.369	0.346
	ESD	0.333	0.347	0.350	0.350	0.342	0.333	0.347	0.350	0.349	0.342
	MSE	0.120	0.109	0.119	0.132	0.130	0.125	0.112	0.119	0.136	0.131
	CP	0.934	0.956	0.940	0.934	0.946	0.940	0.954	0.940	0.938	0.938
\(n=1000 \)	Bias	0.068	-0.012	-0.008	0.011	0.157	0.066	-0.013	-0.010	0.009	0.152
	SD	0.328	0.352	0.335	0.352	0.324	0.338	0.353	0.340	0.354	0.330
	ESD	0.335	0.346	0.347	0.351	0.343	0.335	0.346	0.347	0.351	0.343
	MSE	0.112	0.124	0.112	0.124	0.130	0.119	0.125	0.116	0.125	0.132
	CP	0.944	0.948	0.958	0.938	0.960	0.944	0.948	0.948	0.948	0.960

\(n \times x_1 \times OR-O \)	\(OR-O \)	\(OR-O \)									
	\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)	\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)	
\(n=500 \)	Bias	-0.181	-0.300	-0.296	0.335	1.354	-0.304	-0.298	-0.285	0.159	0.837
	SD	1.570	1.178	1.453	1.467	1.907	1.365	1.108	1.330	1.370	1.723
	ESD	1.734	1.529	1.594	1.705	2.102	1.732	1.534	1.599	1.698	2.078
	MSE	2.498	1.478	2.198	2.263	5.470	1.954	1.317	1.851	1.901	3.671
	CP	0.964	0.990	0.962	0.978	0.968	0.978	0.994	0.968	0.988	0.976
\(n=1000 \)	Bias	-0.217	-0.433	-0.384	0.599	1.797	-0.316	-0.402	-0.368	0.377	1.126
	SD	1.542	1.286	1.353	1.414	1.747	1.405	1.201	1.274	1.358	1.670
	ESD	1.712	1.522	1.576	1.708	2.075	1.709	1.524	1.576	1.697	2.047
	MSE	2.426	1.841	1.977	2.358	6.282	2.074	1.603	1.759	1.988	4.055
	CP	0.964	0.988	0.976	0.984	0.966	0.982	0.986	0.980	0.990	0.976
Table 3 (continued)

Group 5: \(a_1 = 0.1, a_4 = 0.16, a_2 = 0.6\)

\(n\)	\(x_1\)	OR-S	OR-N								
		\(-0.4\)	\(-0.2\)	0	0.2	0.4	\(-0.4\)	\(-0.2\)	0	0.2	0.4
\(n=500\) Bias	0.037	-0.001	-0.007	-0.010	0.087	0.201	0.047	0.035	0.009	-0.102	
SD	0.351	0.331	0.344	0.368	0.348	0.354	0.322	0.337	0.385	0.363	
ESD	0.331	0.345	0.348	0.348	0.340	0.303	0.303	0.316	0.336	0.347	
MSE	0.125	0.110	0.118	0.136	0.128	0.166	0.106	0.115	0.148	0.142	
CP	0.936	0.956	0.940	0.938	0.938	0.914	0.928	0.920	0.914	0.916	

\(n=1000\) Bias	0.073	-0.003	-0.004	0.005	0.135	0.303	0.056	0.040	0.026	-0.153
SD	0.336	0.354	0.337	0.353	0.329	0.328	0.338	0.332	0.354	1.124
ESD	0.334	0.345	0.346	0.350	0.342	0.302	0.305	0.317	0.332	1.129
MSE	0.118	0.126	0.114	0.125	0.127	0.200	0.117	0.112	0.126	1.286
CP	0.950	0.946	0.950	0.942	0.966	0.916	0.916	0.938	0.918	0.954

\(n=500\) Bias	-0.024	0.058	-0.039	0.010	-0.045	-0.061	0.053	-0.038	0.031	-0.021
SD	1.050	1.094	1.447	1.306	1.228	1.723	1.386	1.594	1.683	2.053
ESD	1.737	1.540	1.596	1.673	2.005	1.715	1.529	1.586	1.662	1.982
MSE	1.102	1.201	2.095	1.706	1.510	2.973	1.923	2.542	2.834	4.214
CP	0.998	0.994	0.958	0.984	0.998	0.942	0.968	0.950	0.938	0.938

\(n=1000\) Bias	-0.008	0.055	-0.052	0.170	-0.098	-0.045	0.076	-0.006	0.218	-0.075
SD	1.035	1.168	1.336	1.275	1.110	1.714	1.535	1.536	1.582	1.853
ESD	1.709	1.529	1.574	1.672	1.971	1.696	1.524	1.570	1.667	1.961
MSE	1.071	1.367	1.787	1.653	1.242	2.940	2.361	2.359	2.549	3.440
CP	0.996	0.996	0.974	0.986	1.000	0.950	0.946	0.946	0.966	0.958
Table 4 The distribution of $\sqrt{n_{h_1}}(\hat{\tau}(x_i) - \tau(x_i))$ for model 3

Group 1: \(a_3 = 0.1, a_4 = 0.1, a_2 = 0.1\)

\(n\)	\(x_1\)	\(OR-O\)	\(OR-P\)								
		-0.4	-0.2	0	0.2	0.4	-0.4	-0.2	0	0.2	0.4
500	Bias	-0.005	-0.024	0.010	-0.001	-0.009	-0.005	-0.023	0.010	-0.002	-0.013
	SD	0.320	0.334	0.334	0.346	0.336	0.327	0.336	0.335	0.350	0.338
	ESD	0.336	0.334	0.336	0.332	0.337	0.336	0.334	0.335	0.332	0.338
	MSE	0.102	0.112	0.112	0.119	0.113	0.107	0.114	0.112	0.123	0.114
	CP	0.944	0.936	0.926	0.938	0.946	0.944	0.934	0.924	0.932	0.944
1000	Bias	0.013	-0.008	0.018	0.019	-0.016	0.015	-0.009	0.016	0.018	-0.012
	SD	0.331	0.344	0.347	0.319	0.327	0.332	0.345	0.346	0.318	0.330
	ESD	0.328	0.326	0.328	0.329	0.331	0.327	0.326	0.328	0.329	0.331
	MSE	0.109	0.119	0.121	0.102	0.107	0.110	0.119	0.120	0.101	0.109
	CP	0.942	0.922	0.938	0.956	0.946	0.944	0.920	0.934	0.960	0.940

	IPW-N	IPW-S									
500	Bias	0.020	0.024	0.022	-0.064	0.185	0.072	-0.080	-0.091	0.048	0.674
	SD	0.437	0.528	0.675	0.895	0.851	0.432	0.523	0.779	1.168	1.677
	ESD	0.488	0.585	0.861	1.194	1.576	0.458	0.576	0.871	1.231	1.645
	MSE	0.191	0.279	0.456	0.805	0.759	0.192	0.280	0.615	1.366	3.266
	CP	0.966	0.974	0.986	0.990	1.000	0.954	0.968	0.964	0.958	0.932
1000	Bias	-0.027	0.041	0.038	0.022	0.223	0.056	-0.133	-0.144	0.126	0.859
	SD	0.419	0.522	0.696	0.876	0.830	0.419	0.538	0.854	1.337	1.997
	ESD	0.486	0.577	0.853	1.193	1.557	0.459	0.564	0.858	1.228	1.629
	MSE	0.176	0.274	0.485	0.767	0.738	0.179	0.307	0.750	1.805	4.724
	CP	0.964	0.966	0.986	0.992	1.000	0.958	0.958	0.942	0.908	0.878
n	\(x_1\)	OR-S	OR-N								
-------	---------	------	------								
	-0.4	-0.2	0	0.2	0.4	-0.4	-0.2	0	0.2	0.4	
n=500	Bias	-0.001	-0.022	0.009	-0.001	-0.011	0.058	-0.019	0.012	-0.004	-0.042
	SD	0.328	0.338	0.334	0.349	0.336	0.319	0.322	0.331	0.341	0.328
	ESD	0.337	0.336	0.337	0.333	0.340	0.319	0.320	0.325	0.321	0.325
	MSE	0.108	0.115	0.114	0.120	0.115	0.103	0.104	0.110	0.116	0.109
	CP	0.942	0.936	0.930	0.940	0.940	0.928	0.938	0.916	0.928	0.934
n=1000	Bias	0.014	-0.009	0.018	0.017	-0.013	0.077	-0.004	0.018	0.023	-0.045
	SD	0.334	0.347	0.348	0.318	0.334	0.321	0.339	0.339	0.313	0.322
	ESD	0.329	0.327	0.329	0.330	0.333	0.312	0.315	0.319	0.320	0.320
	MSE	0.112	0.120	0.121	0.102	0.112	0.109	0.115	0.115	0.098	0.106
	CP	0.944	0.920	0.936	0.960	0.936	0.930	0.920	0.950	0.936	0.936

n=500	Bias	-0.044	0.009	0.016	-0.040	0.090	-0.037	0.015	0.023	-0.035	0.101
	SD	0.476	0.545	0.757	1.041	0.989	0.503	0.595	0.838	1.175	1.538
	ESD	0.500	0.583	0.857	1.191	1.556	0.496	0.582	0.854	1.185	1.541
	MSE	0.229	0.297	0.573	1.086	0.985	0.255	0.354	0.704	1.381	2.375
	CP	0.960	0.972	0.966	0.974	1.000	0.952	0.950	0.958	0.956	0.952
n=1000	Bias	-0.095	0.031	0.052	0.044	0.078	-0.096	0.024	0.050	0.040	0.061
	SD	0.472	0.542	0.815	1.049	1.054	0.488	0.580	0.877	1.207	1.577
	ESD	0.494	0.576	0.851	1.190	1.540	0.491	0.574	0.849	1.186	1.530
	MSE	0.232	0.295	0.667	1.102	1.114	0.247	0.337	0.772	1.457	2.491
	CP	0.954	0.954	0.946	0.968	0.996	0.936	0.950	0.936	0.942	0.936
Table 4 (continued)

Group 2: \(\{a_1=0.1, a_4=0.12, a_2=0.1\} \)

\(n \)	\(x_1 \)	\(OR-O \)	\(OR-P \)								
		\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)	\(-0.4\)	\(-0.2\)	\(0\)	\(0.2\)	\(0.4\)

\(n = 500 \)

Bias	-0.023	-0.001	-0.002	-0.004	-0.007	-0.027	-0.004	-0.003	-0.002	-0.003
SD	0.329	0.343	0.328	0.313	0.324	0.336	0.342	0.330	0.313	0.328
ESD	0.329	0.338	0.332	0.335	0.340	0.339	0.338	0.332	0.335	0.340
MSE	0.109	0.118	0.107	0.098	0.105	0.114	0.117	0.109	0.098	0.107
CP	0.928	0.928	0.934	0.954	0.950	0.936	0.930	0.930	0.952	0.944

\(n = 1000 \)

Bias	-0.005	-0.009	-0.006	-0.006	-0.010	-0.004	-0.010	-0.007	-0.006	-0.008
SD	0.330	0.307	0.324	0.344	0.330	0.334	0.310	0.328	0.348	0.334
ESD	0.331	0.326	0.329	0.331	0.329	0.331	0.325	0.329	0.331	0.329
MSE	0.109	0.094	0.105	0.118	0.109	0.112	0.096	0.108	0.121	0.112
CP	0.942	0.956	0.946	0.946	0.950	0.932	0.952	0.934	0.946	0.946

\(n = 500 \)	\(IPW-N \)	\(IPW-S \)								
Bias	0.001	-0.012	-0.010	-0.117	0.052	0.065	-0.113	-0.142	-0.035	0.668
SD	0.453	0.523	0.662	0.835	0.856	0.454	0.535	0.803	1.161	1.729
ESD	0.486	0.576	0.855	1.205	1.572	0.459	0.566	0.858	1.241	1.655
MSE	0.205	0.273	0.438	0.711	0.736	0.210	0.299	0.665	1.350	3.436
CP	0.958	0.962	0.980	0.992	1.000	0.938	0.950	0.962	0.954	0.910

\(n = 1000 \)

Bias	-0.009	0.041	-0.040	-0.096	0.122	0.091	-0.091	-0.153	0.107	1.051
SD	0.413	0.485	0.689	0.879	0.825	0.439	0.515	0.808	1.293	1.952
ESD	0.489	0.578	0.851	1.189	1.541	0.460	0.568	0.860	1.228	1.625
MSE	0.170	0.237	0.477	0.781	0.695	0.201	0.273	0.676	1.683	4.915
CP	0.982	0.974	0.972	0.984	1.000	0.948	0.966	0.960	0.928	0.890
Table 4 (continued)

| Group 2: \(\{a_1 = 0.1, a_4 = 0.12, a_2 = 0.1\} \) |
| --- | --- |
| \(n \) | \(x_1 \) | OR-S | OR-N |
| | | \(-0.4\) | \(-0.2\) | 0 | 0.2 | 0.4 | \(-0.4\) | \(-0.2\) | 0 | 0.2 | 0.4 |
| n=500 | Bias | −0.024 | −0.005 | −0.004 | −0.003 | −0.005 | 0.006 | −0.005 | −0.018 | −0.002 | −0.012 |
| | SD | 0.340 | 0.348 | 0.330 | 0.316 | 0.329 | 0.338 | 0.340 | 0.408 | 0.316 | 0.327 |
| | ESD | 0.331 | 0.340 | 0.334 | 0.338 | 0.344 | 0.324 | 0.333 | 0.411 | 0.333 | 0.337 |
| | MSE | 0.116 | 0.121 | 0.109 | 0.100 | 0.108 | 0.115 | 0.115 | 0.167 | 0.100 | 0.107 |
| | CP | 0.932 | 0.928 | 0.934 | 0.958 | 0.942 | 0.926 | 0.930 | 0.936 | 0.950 | 0.940 |
| n=1000 | Bias | −0.005 | −0.009 | −0.007 | −0.004 | −0.009 | 0.025 | −0.008 | −0.008 | −0.006 | −0.018 |
| | SD | 0.336 | 0.311 | 0.331 | 0.349 | 0.336 | 0.329 | 0.309 | 0.327 | 0.345 | 0.331 |
| | ESD | 0.332 | 0.327 | 0.331 | 0.333 | 0.331 | 0.324 | 0.321 | 0.325 | 0.328 | 0.325 |
| | MSE | 0.113 | 0.097 | 0.110 | 0.122 | 0.113 | 0.109 | 0.096 | 0.107 | 0.119 | 0.110 |
| | CP | 0.932 | 0.950 | 0.934 | 0.942 | 0.942 | 0.932 | 0.944 | 0.938 | 0.934 | 0.948 |

	IPW-P	IPW-O									
n=500	Bias	−0.041	0.011	0.045	−0.073	0.136	−0.049	0.017	0.044	−0.071	0.090
	SD	0.510	0.569	0.799	1.009	1.041	0.537	0.605	0.819	1.187	1.496
	ESD	0.495	0.580	0.856	1.203	1.564	0.494	0.578	0.851	1.194	1.545
	MSE	0.262	0.323	0.641	1.024	1.102	0.291	0.366	0.672	1.414	2.247
	CP	0.946	0.940	0.962	0.980	0.996	0.926	0.940	0.964	0.940	0.956
n=1000	Bias	−0.056	0.042	−0.016	−0.045	0.146	−0.040	0.049	−0.015	−0.062	0.156
	SD	0.464	0.541	0.808	1.072	1.073	0.492	0.581	0.864	1.151	1.563
	ESD	0.494	0.578	0.848	1.186	1.531	0.493	0.577	0.847	1.183	1.525
	MSE	0.218	0.295	0.653	1.152	1.173	0.244	0.340	0.746	1.329	2.468
	CP	0.958	0.946	0.956	0.954	0.990	0.948	0.948	0.942	0.950	0.944
Table 4 (continued)

n	x_1	OR-O			OR-P						
			-0.4	-0.2	0	0.2	0.4				
$n=500$	Bias	0.020	-0.001	-0.005	-0.025	-0.022	0.019	-0.001	-0.004	-0.024	-0.022
	SD	0.330	0.331	0.336	0.327	0.311	0.335	0.333	0.340	0.329	0.315
	ESD	0.339	0.336	0.335	0.333	0.335	0.339	0.336	0.335	0.333	0.335
	MSE	0.110	0.109	0.113	0.108	0.097	0.113	0.111	0.115	0.109	0.100
	CP	0.928	0.950	0.934	0.930	0.952	0.930	0.946	0.934	0.942	0.938
$n=1000$	Bias	0.008	-0.022	-0.008	-0.020	0.026	0.011	-0.021	-0.009	-0.020	0.030
	SD	0.310	0.322	0.336	0.331	0.316	0.316	0.325	0.337	0.333	0.321
	ESD	0.330	0.329	0.328	0.333	0.328	0.331	0.329	0.328	0.333	0.329
	MSE	0.096	0.104	0.113	0.110	0.100	0.100	0.106	0.113	0.111	0.104
	CP	0.956	0.936	0.928	0.936	0.946	0.950	0.924	0.926	0.942	0.942

n		IPW-N			IPW-S							
		Bias	0.043	0.032	0.041	0.042	0.559	0.071	-0.026	0.003	0.170	1.068
		SD	0.473	0.546	0.768	1.020	1.024	0.443	0.528	0.722	1.105	1.420
		ESD	0.482	0.584	0.863	1.211	1.602	0.468	0.578	0.873	1.241	1.666
		MSE	0.226	0.300	0.592	1.042	1.361	0.201	0.279	0.521	1.250	3.156
		CP	0.954	0.954	0.964	0.982	0.998	0.954	0.960	0.976	0.974	0.970
$n=1000$	Bias	0.038	0.057	0.044	0.130	0.665	0.067	-0.029	-0.019	0.320	1.331	
		SD	0.457	0.534	0.746	1.021	0.934	0.429	0.529	0.735	1.055	1.541
		ESD	0.479	0.578	0.852	1.206	1.572	0.469	0.571	0.856	1.233	1.627
		MSE	0.210	0.288	0.559	1.059	1.314	0.189	0.281	0.541	1.216	4.147
		CP	0.958	0.960	0.976	0.972	1.000	0.962	0.958	0.972	0.974	0.982
Table 4 (continued)

Group 3: \(a_1 = 0.1, a_4 = 0.14, a_2 = 0.13\)

\(n \)	\(x_1 \)	\(n = 500 \)	\(n = 1000 \)
		OR-S	OR-N
		\(-0.4\) \(-0.2\) 0 0.2 0.4	\(-0.4\) \(-0.2\) 0 0.2 0.4
Bias	0.027	0.001 \(-0.004\) \(-0.028\) \(-0.028\)	0.284 \(-0.008\) \(-0.041\) \(-0.196\)
SD	0.334	0.335 0.339 0.332 0.312	0.287 0.316 0.308 0.290
ESD	0.339	0.336 0.336 0.334 0.336	0.269 0.300 0.300 0.281
MSE	0.112	0.112 0.115 0.111 0.098	0.163 0.100 0.097 0.122
CP	0.938	0.946 0.934 0.936 0.942	0.920 0.924 0.920 0.916
		\(-0.007\) \(-0.019\) 0.023	\(-0.010\) \(-0.033\) \(-0.166\)
SD	0.318	0.327 0.335 0.335 0.322	0.276 0.311 0.316 0.292
ESD	0.330	0.329 0.329 0.334 0.329	0.273 0.298 0.304 0.284
MSE	0.102	0.107 0.112 0.112 0.105	0.165 0.097 0.101 0.113
CP	0.950	0.920 0.928 0.942 0.948	0.936 0.926 0.936 0.926
		\(-0.035\) 0.027 0.002 \(-0.103\) \(0.133\)	\(-0.038\) 0.009 \(-0.015\) \(-0.110\) 0.108
SD	0.495	0.548 0.821 1.102 1.069	0.505 0.856 1.263 1.497
ESD	0.504	0.584 0.856 1.193 1.563	0.497 0.849 1.185 1.545
MSE	0.246	0.301 0.674 1.225 1.160	0.257 0.342 0.732 1.606
CP	0.950	0.960 0.952 0.970 0.998	0.936 0.940 0.940 0.930
		\(-0.065\) 0.040 0.001 \(-0.014\) \(0.135\)	\(-0.068\) 0.028 \(-0.010\) \(-0.012\) \(0.135\)
SD	0.476	0.539 0.806 1.089 1.036	0.502 0.855 1.229 1.488
ESD	0.496	0.577 0.845 1.192 1.534	0.493 0.842 1.187 1.526
MSE	0.231	0.292 0.650 1.187 1.092	0.256 0.730 1.511 2.233
CP	0.958	0.972 0.966 0.964 0.996	0.942 0.950 0.944 0.924

OR regression-based estimation of CATE
Table 4 (continued)

*Group 4: \(\{a_1 = 0.1, a_4 = 0.12, a_2 = 0.13\} \)

\(n \)	\(x_1 \)	OR-O	OR-P								
\(n=500 \)	Bias	-0.006	0.021	-0.015	-0.016	-0.014	-0.006	0.020	-0.017	-0.018	-0.013
	SD	0.337	0.324	0.344	0.319	0.337	0.343	0.326	0.346	0.323	0.338
	ESD	0.331	0.330	0.335	0.330	0.338	0.331	0.329	0.335	0.330	0.339
	MSE	0.114	0.105	0.119	0.102	0.114	0.118	0.107	0.120	0.105	0.115
	CP	0.932	0.948	0.938	0.954	0.942	0.932	0.940	0.932	0.954	0.936
\(n=1000 \)	Bias	-0.009	0.031	0.003	-0.007	-0.007	-0.008	0.031	0.002	-0.007	-0.006
	SD	0.326	0.335	0.328	0.315	0.335	0.331	0.336	0.334	0.318	0.339
	ESD	0.328	0.330	0.330	0.327	0.333	0.328	0.330	0.330	0.328	0.334
	MSE	0.106	0.113	0.108	0.099	0.113	0.110	0.114	0.111	0.101	0.115
	CP	0.954	0.944	0.940	0.950	0.944	0.952	0.950	0.934	0.946	0.946

\(n=200 \)	IPW-N										
Bias	0.048	0.021	0.037	-0.020	0.281	0.086	-0.122	-0.145	-0.057	0.573	
SD	0.446	0.508	0.706	0.910	0.880	0.422	0.510	0.821	1.183	1.816	
ESD	0.486	0.582	0.858	1.205	1.583	0.459	0.568	0.862	1.237	1.647	
MSE	0.201	0.258	0.500	0.829	0.853	0.186	0.275	0.696	1.403	3.626	
CP	0.964	0.974	0.986	0.996	0.996	0.960	0.970	0.954	0.950	0.894	
\(n=1000 \)	IPW-S										
---	---										
Bias	-0.006	0.102	0.068	-0.122	0.445	0.047	-0.044	-0.098	-0.005	1.057	
SD	0.454	0.523	0.690	0.897	0.902	0.441	0.530	0.777	1.233	1.902	
ESD	0.480	0.584	0.851	1.195	1.550	0.457	0.574	0.856	1.227	1.617	
MSE	0.206	0.284	0.480	0.820	1.012	0.197	0.283	0.614	1.519	4.733	
CP	0.962	0.960	0.976	0.984	0.996	0.954	0.962	0.962	0.946	0.890	
n	x_1	OR-S	OR-N								
--------	-------	------	------								
		-0.4	-0.2	0	0.2	0.4	-0.4	-0.2	0	0.2	0.4
$n=500$	Bias	-0.006	0.021	-0.015	-0.016	-0.014	0.118	0.036	-0.013	-0.017	-0.084
	SD	0.337	0.324	0.344	0.319	0.337	0.318	0.310	0.334	0.315	0.325
	ESD	0.331	0.330	0.335	0.330	0.338	0.298	0.305	0.316	0.313	0.314
	MSE	0.114	0.105	0.119	0.102	0.114	0.115	0.097	0.112	0.100	0.113
	CP	0.932	0.948	0.938	0.954	0.942	0.920	0.940	0.934	0.928	0.924
$n=1000$	Bias	-0.009	0.031	0.003	-0.007	-0.007	0.122	0.041	0.005	-0.007	-0.080
	SD	0.326	0.335	0.328	0.315	0.335	0.310	0.323	0.321	0.310	0.329
	ESD	0.328	0.330	0.330	0.327	0.333	0.301	0.310	0.313	0.313	0.313
	MSE	0.106	0.113	0.108	0.099	0.113	0.111	0.106	0.103	0.096	0.115
	CP	0.954	0.944	0.940	0.950	0.944	0.938	0.932	0.936	0.940	0.932

$n=200$	Bias	0.048	0.021	0.037	-0.020	0.281	-0.025	0.002	0.013	-0.055	0.138
	SD	0.446	0.508	0.706	0.910	0.880	0.499	0.554	0.861	1.181	1.557
	ESD	0.486	0.582	0.858	1.205	1.583	0.498	0.578	0.849	1.190	1.549
	MSE	0.201	0.258	0.500	0.829	0.853	0.249	0.306	0.742	1.398	2.445
	CP	0.964	0.974	0.986	0.996	0.996	0.950	0.960	0.942	0.946	0.936
$n=1000$	Bias	-0.006	0.102	0.068	-0.122	0.445	-0.082	0.088	0.055	-0.154	0.252
	SD	0.454	0.523	0.690	0.897	0.902	0.513	0.571	0.842	1.199	1.552
	ESD	0.480	0.584	0.851	1.195	1.550	0.490	0.582	0.845	1.184	1.523
	MSE	0.206	0.284	0.480	0.820	1.012	0.270	0.334	0.712	1.461	2.471
	CP	0.962	0.960	0.976	0.984	0.996	0.934	0.936	0.936	0.934	0.952
Table 4 (continued)

Group 5: \(a_1 = 0.1, a_4 = 0.1, a_2 = 0.15 \)

	\(n = 500 \)	\(n = 1000 \)									
	OR-O	OR-P									
\(x_1 \)		\(-0.4 \)	\(-0.2 \)	\(0 \)	\(0.2 \)	\(0.4 \)	\(-0.4 \)	\(-0.2 \)	\(0 \)	\(0.2 \)	\(0.4 \)
	Bias	\(-0.011\)	\(-0.014\)	\(-0.002\)	\(-0.029\)	\(-0.018\)	\(-0.010\)	\(-0.011\)	\(0.001\)	\(-0.028\)	\(-0.017\)
	SD	0.325	0.330	0.332	0.335	0.322	0.328	0.330	0.337	0.335	0.324
	ESD	0.331	0.330	0.335	0.332	0.330	0.331	0.330	0.336	0.333	0.330
	MSE	0.105	0.109	0.110	0.113	0.104	0.108	0.109	0.113	0.113	0.105
	CP	0.946	0.932	0.946	0.938	0.952	0.954	0.932	0.942	0.940	0.950
IPW-N	Bias	0.009	0.020	\(-0.002\)	0.037	\(-0.029\)	0.005	0.022	\(0.002\)	\(0.040\)	\(-0.032\)
	SD	0.328	0.324	0.318	0.336	0.333	0.333	0.326	0.330	0.336	0.334
	ESD	0.329	0.330	0.328	0.330	0.332	0.329	0.330	0.328	0.330	0.332
	MSE	0.108	0.106	0.101	0.114	0.111	0.111	0.107	0.102	0.115	0.113
	CP	0.940	0.952	0.960	0.936	0.948	0.950	0.952	0.960	0.934	0.930
IPW-S	Bias	0.021	0.020	0.006	0.084	0.530	0.033	\(-0.063\)	\(-0.095\)	0.166	0.830
	SD	0.464	0.505	0.700	0.888	0.958	0.440	0.474	0.731	0.962	1.424
	ESD	0.483	0.582	0.860	1.202	1.581	0.474	0.576	0.865	1.231	1.634
	MSE	0.216	0.255	0.490	0.796	1.199	0.195	0.228	0.543	0.952	2.716
	CP	0.952	0.968	0.984	0.994	0.996	0.972	0.974	0.974	0.986	0.978
	Bias	0.029	0.082	0.065	0.113	0.648	0.048	\(-0.032\)	\(-0.040\)	0.267	1.294
	SD	0.441	0.564	0.731	0.939	0.996	0.414	0.526	0.709	1.041	1.688
	ESD	0.481	0.583	0.854	1.208	1.564	0.469	0.575	0.858	1.235	1.626
	MSE	0.196	0.325	0.539	0.894	1.411	0.174	0.278	0.504	1.155	4.521
	CP	0.972	0.956	0.976	0.980	0.998	0.972	0.954	0.984	0.966	0.958
Table 4 (continued)

| Group 5: \(\{a_1 = 0.1, a_4 = 0.1, a_5 = 0.15 \} \) |
|---|---|---|---|---|---|---|---|---|---|---|
\(n \)	\(x_1 \)	OR-S	OR-N								
---	---	---	---	---	---	---	---	---	---	---	
500	Bias	-0.004	-0.011	0.001	-0.030	-0.020	0.303	0.057	-0.007	-0.045	-0.229
	SD	0.331	0.332	0.335	0.337	0.325	0.290	0.296	0.318	0.319	0.301
	ESD	0.333	0.331	0.336	0.334	0.331	0.264	0.280	0.301	0.300	0.276
	MSE	0.110	0.110	0.112	0.115	0.106	0.176	0.091	0.101	0.104	0.143
	CP	0.954	0.932	0.938	0.938	0.954	0.910	0.914	0.918	0.922	0.928
1000	Bias	0.010	0.021	-0.001	0.039	-0.032	0.345	0.088	-0.001	0.021	-0.249
	SD	0.332	0.329	0.320	0.337	0.336	0.297	0.302	0.304	0.321	0.312
	ESD	0.329	0.331	0.329	0.330	0.332	0.272	0.288	0.298	0.301	0.287
	MSE	0.110	0.109	0.103	0.115	0.114	0.207	0.099	0.092	0.104	0.159
	CP	0.946	0.956	0.956	0.940	0.934	0.926	0.942	0.946	0.924	0.912

IPW-P	IPW-O										
500	Bias	-0.060	0.013	-0.045	-0.073	0.119	-0.071	0.010	-0.029	-0.044	0.192
	SD	0.491	0.506	0.763	0.947	1.010	0.505	0.547	0.822	1.068	1.529
	ESD	0.505	0.582	0.852	1.184	1.545	0.503	0.579	0.847	1.179	1.534
	MSE	0.244	0.256	0.584	0.903	1.034	0.260	0.299	0.676	1.142	2.375
	CP	0.952	0.970	0.956	0.988	0.996	0.946	0.946	0.944	0.968	0.950
1000	Bias	-0.087	0.053	-0.003	-0.064	0.130	-0.079	0.059	0.007	-0.044	0.158
	SD	0.469	0.583	0.792	1.029	1.073	0.483	0.607	0.847	1.173	1.624
	ESD	0.498	0.581	0.845	1.190	1.528	0.496	0.580	0.844	1.188	1.522
	MSE	0.228	0.342	0.627	1.062	1.167	0.240	0.372	0.718	1.377	2.662
	CP	0.970	0.950	0.962	0.972	0.998	0.962	0.938	0.952	0.944	0.932
to, even slightly smaller than, the others. In this case, all outcome regression-based estimations have smaller SDs than all IPW-based estimations.

Last, as we can see from Table 2, 3, 4, the difference between standard deviation and the bootstrap-based estimated standard deviation is very small. Furthermore, with n goes larger, the difference becomes smaller and smaller, even zero in many cases, which implies the bootstrap-based method performs well. Furthermore, the values of 95% confidence interval coverage probability (CP) are closer to the nominal level 0.95 (Table 2, 3, 4), which indicates that the normal approximation works well.

4 Empirical applications

In this section, we apply OR-S, as the dimensionality ($p = 15$) of X is high, to analyse the ACTG 175 data set that can be obtained from the R package specf2trial. This data set was collected from a randomized clinical trial that evaluated treatment effect when either one or two therapies were used for HIV-infected adults; see Hammer et al. (1996); Song and Ma (2008) for more details. As discussed before, our goal is to explore the heterogeneity of this treatment effect across subpopulations. Take age as X_1 to check how the expected pesticide effect changes with age.

A very brief description about the data set is as follows. The outcome here is CD4 T cell count at baseline and the treatment indicator variable D is a binary variable. $D = 0$ means receiving zidovudine only and $D = 1$ means receiving two therapies simultaneously. As documented by a number of authors, we take $Y = \log_{10}(\text{CD4})$ and delete some infinite value after logarithmic transformation, then the number of observations is $n = 2136$. Further, to guarantee the unconfoundedness assumption, X consists of the following 15 covariates: the pidnum (patient’s ID number); age (age in years at baseline); wtkg (weight in kg at baseline); hemo (hemophilia); homo (homosexual activity); drugs (history of intravenous drug use); karnof (Karnofsky score); oprior (non-zidovudine antiretroviral therapy prior to initiation of study treatment); zprior (zidovudine use prior to treatment initiation); preanti (number of days of previously received antiretroviral therapy); race; gender; str2 (antiretroviral history); offtrt (indicator of off-treatment before 96pm5 weeks); days (number of days until the first occurrence of: (i) a decline in CD4 T cell count of at least 50 (ii) an event indicating progression to AIDS, or (iii) death).

We now estimate CATE in the interval between 20 and 57 to avoid the boundary effect when nonparametric estimation method is involved. This range is about from 0.025 quantile to 0.975 quantile of the data. To apply OR-S, we use the sufficient dimension reduction developed by Xia et al. (2002), which is now known to be MAVE to estimate the projection matrices β_1 and β_0, and the associated dimensions. The results are $r(1) = 2$ and $r(0) = 3$. From these, we then have $s_4 = \max\{r(1), r(0)\} + 1 = 4$ and $h_4 = \hat{\sigma}_r n^{-1/7}$ and $h = \hat{\sigma}_1 n^{-1/31}$, where $\hat{\sigma}_r = \sqrt{\text{var}(\beta_0^\top X)}$, $\hat{\beta}_0$ is the estimated projection and $\hat{\sigma}_1 = 2\sqrt{\text{var}(X_1)}$. Similar to the simulation studies, Gaussian kernel is used.
Figure 1 shows, as a function of age, the curve of the estimated CATE and the pointwise 95% confidence band. Furthermore, to show the results more intuitively, we also provide the estimated CATE and the corresponding 95% confidence band with original $Y = \text{CD4}$ in Fig. 2. Note that the curve is much above zero. In other words, receiving two therapies simultaneously has a much better treatment effect than receiving only one (zidovudine). Song and Ma (2008) also obtained this conclusion. But the investigation on the heterogeneity shows that the treatment effect is influenced by age. As shown in Fig. 1, before the age of 30, receiving two therapies leads to the immunity rise. After that, the advantage of this treatment is gradually weakened. Thus, such a treatment seems more useful for patients whose ages are around 30.
5 Conclusion

In this paper, we propose four regression-based estimators of CATE, aimed to capture the heterogeneity of a treatment effect across subpopulations. The systematic investigation shows the important factors that affect the asymptotic behaviours of the estimators: the convergence rates of the outcome regression functions and the affiliation of the given covariates to the set of arguments of the outcome regression functions. Further, any regression-based estimation can be asymptotically more efficient than any propensity score-based estimation, and can at most achieve the asymptotic efficiency of nonparametric regression-based estimation in some cases. These results can give a relatively complete profile of propensity score-based and regression-based estimation for CATE. From the research, semiparametric regression-based estimation (OR-S) is worth of recommendation as it can avoid model misspecification as well as the curse of dimensionality when some dimension reduction and feature selection approaches are combined. see Luo et al. (2017) and Ma et al. (2019). In this paper, we only discuss the cases with correctly specified models. When the model is misspecified globally, further topics are about the asymptotic bias. Here global misspecification means that the assumed model is not convergent to the underlying model. If it is convergent, we call it local misspecification. Thus, we will check at which rate of convergence, the asymptotic bias vanishes and then also study its asymptotic efficiency. Another topic is about double robust estimation as it can greatly avoid model misspecification. As we have known, the uniform confidence band can provide a lot of useful information for us. However, the theoretical work of uniform band needs more theoretical support and more skillful technical requirements, which are left to further research. The research is ongoing.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10463-022-00821-x.

References

Abrevaya, J., Hsu, Y. C., & Lieli, R. P. (2015). Estimating conditional average treatment effects. Journal of Business and Economic Statistics, 33, 485–505.
Cheng, P. E. (1994). Nonparametric estimation of mean functionals with data missing at random. Journal of the American Statistical Association, 89, 81–87.
Cook, R. D., & Li, B. (2002). Dimension reduction for conditional mean in regression. The Annals of Statistics, 30, 455–474.
Cook, R. D., & Weisberg, S. (1991). Sliced inverse regression for dimension reduction: Comment. Journal of the American Statistical Association, 86, 328–332.
Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7, 1–26.
Fan, Q., Hsu, Y. C., Lieli, R. P., & Zhang, Y. (2020). Estimation of conditional average treatment effects with high-dimensional data. Journal of Business and Economic Statistics, 40(1), 313–327.
Feng, Z., Wen, X. M., Yu, Z., & Zhu, L. (2013). On partial sufficient dimension reduction with applications to partially linear multi-index models. Journal of the American Statistical Association, 108, 237–246.
Hahn, J. (1998). On the role of the propensity score in efficient semiparametric estimation of average treatment effects. Econometrica, 66, 315–331.
Hammer, S. M., Katzenstein, D. A., Hughes, M. D., Gundacker, H., Schooley, R. T., Haubrich, R. H., et al. (1996). A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. *New England Journal of Medicine.* *Econometrica,* 335, 1081–1090.

Healy, M., & Westmacott, M. (1956). Missing values in experiments analysed on automatic computers. *Journal of the Royal Statistical Society: Series C (Applied Statistics),* 5, 203–206.

Hirano, K., Imbens, G. W., & Ridder, G. (2003). Efficient estimation of average treatment effects using the estimated propensity score. *Econometrica,* 71, 1161–1189.

Li, B., & Wang, S. (2007). On directional regression for dimension reduction. *Journal of the American Statistical Association,* 102, 997–1008.

Li, K. C. (1991). Sliced inverse regression for dimension reduction. *Journal of the American Statistical Association,* 86, 316–327.

Li, Q., & Racine, J. S. (2007). *Nonparametric econometrics: Theory and practice.* Princeton University Press.

Luo, W., Zhu, Y., & Ghosh, D. (2017). On estimating regression-based causal effects using sufficient dimension reduction. *Biometrika,* 104, 51–65.

Luo, W., Wu, W., & Zhu, Y. (2019). Learning heterogeneity in causal inference using sufficient dimension reduction. Published online.

Ma, S., Zhu, L., Zhang, Z., Tsai, C. L., & Carroll, R. J. (2019). A robust and efficient approach to causal inference based on sparse sufficient dimension reduction. *The Annals of Statistics,* 47, 1505–1535.

Ma, Y., & Zhu, L. (2012). A semiparametric approach to dimension reduction. *Journal of the American Statistical Association,* 107, 168–179.

Matloff, N. S. (1981). Use of regression functions for improved estimation of means. *Biometrika,* 68, 685–689.

Nadaraya, E. A. (1964). On estimating regression. *Theory of Probability and Its Applications,* 9, 141–142.

Pagan, A., & Ullah, A. (1999). *Nonparametric econometrics.* Cambridge University Press.

Rao, J. N. K. (1996). On variance estimation with imputed survey data. *Journal of the American Statistical Association,* 91, 499–506.

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. *Biometrika,* 70, 41–55.

Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. *The American Statistician,* 39, 33–38.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of educational Psychology,* 66, 688.

Shin, S. J., Wu, Y., Zhang, H. H., & Liu, Y. (2017). Principal weighted support vector machines for sufficient dimension reduction in binary classification. *Biometrika,* 104, 67–81.

Song, X., & Ma, S. (2008). Multiple augmentation for interval censored data with measurement error. *Statistics in Medicine,* 27, 3178–3190.

Wang, Q., Linton, O., & Härdle, W. (2004). Semiparametric regression analysis with missing response at random. *Journal of the American Statistical Association,* 99, 334–345.

Watson, G. S. (1964). Smooth regression analysis. *Sankhyā: The Indian Journal of Statistics, Series A,* 26, 359–372.

Yin, J., Geng, Z., Li, R., & Wang, H. (2010). Nonparametric covariance model. *Statistica Sinica,* 20, 469–479.

Xia, Y., Li, W. K., Tong, H., & Zhu, L. X. (2002). An adaptive estimation of dimension reduction space. *Journal of Royal Statistical Society, Series B,* 64, 363–410.

Zhang, Y., Shao, J., Yu, M., & Wang, L. (2018). Impact of sufficient dimension reduction in nonparametric estimation of causal effect. *Statistical Theory and Related Fields,* 2(1), 89–95.

Zhou, N. W., & Zhu, L. X. (2021). On IPW-based estimation of conditional average treatment effects. *Journal of Statistical Planning and Inference,* 215, 1–22.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.