Gene Section
Review

EEF1D (eukaryotic translation elongation factor 1 delta)

Luigi Cristiano

Aesthetic and medical biotechnologies research unit, Prestige, Terranuova Bracciolini, Italy.
prestige.infomed@gmail.com; luigicristiano@libero.it

Published in Atlas Database: May 2019
Online updated version: http://AtlasGeneticsOncology.org/Genes/EEF1DID43240ch8q24.html
Printable original version: http://documents.irevues.inist.fr/bitstream/handle/2042/70678/05-2019-EEF1DID43240ch8q24.pdf
DOI: 10.4267/2042/70678

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2020 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

Eukaryotic translation elongation factor 1 delta, alias EEF1D, is a protein-coding gene that plays a role in the elongation step of translation and considering its importance it is found frequently overexpressed in human cancer cells. This review collects the data on DNA/RNA, on the protein encoded and on the diseases where EEF1D is involved.

Keywords

EEF1D; Eukaryotic translation elongation factor 1 delta; Translation; Translation elongation factor; protein synthesis; cancer; oncogene; cancer marker

Identity

Other names: EF-1D, EF1D, FLJ20897, FP1047
HGNC (Hugo): EEF1D
Location: 8q24.3

Figure 1. EEF1D gene and splicing variants/isoforms. The figure shows the locus on chromosome 8 of the EEF1D gene (reworked from https://www.ncbi.nlm.nih.gov/gene; http://grch37.ensembl.org; www.genecards.org)
Name	Variant	RefSeq (1)	Transcript ID	Exons	Type	Lenght (bp)	Isoform	Alias	RefSeq (2)	Lenght (aa)	MW (kDa)	pI
EEF1D-204	Var.3	NM_001130053	ENST00000423316.6	9	protein coding	2356	Isoform 1	-	NP_001123525	647	71.42	6.02
EEF1D-205 (EEF1D-001)	Var.1	NM_032378	ENST00000442189.6	10	protein coding	2473	Isoform 1	-	NP_115754	647	71.42	6.02
EEF1D-201	Var.6	NM_001130057	ENST00000317198.10	8	protein coding	1458	Isoform 2	-	NP_001123529	281	31.12	4.90
EEF1D-203	Var.5	NM_001130055	ENST00000419152.6	9	protein coding	1427	Isoform 2	-	NP_001123527	281	31.12	4.90
EEF1D-225 (EEF1D-006)			ENST00000529272.5	8	protein coding	1311	-	-	-	281	-	-
EEF1D-202 (EEF1D-002)	Var.9	NM_001289950	ENST00000395197.7	8	protein coding	1428	Isoform 2	-	NP_001279679	281	31.12	4.90
EEF1D-207 (EEF1D-053)	Var.2	NM_001960	ENST00000524624.5	8	protein coding	1084	-	-	-	257	-	-
EEF1D-218 (EEF1D-005)	Var.8	NM_001195203	ENST00000526838.5	8	protein coding	1194	Isoform 5	-	NP_001182132	262	29.07	4.91
EEF1D-223 (EEF1D-004)	Var.7	NM_00130056	ENST00000528610.5	7	protein coding	1179	Isoform 4	-	NP_001123528	257	28.56	4.81
EEF1D-223 (EEF1D-004)	Var.10	NM_001317743	ENST00000528610.5	7	protein coding	1176	Isoform 4	-	NP_001304672	257	28.56	4.81
EEF1D-211 (EEF1D-005)	Var.11	NM_001330646	ENST00000521001.5	7	protein coding	1386	Isoform 4	-	NP_001317575	257	28.56	4.81
EEF1D-246 (EEF1D-007)			ENST00000532741.5	8	protein coding	2387	-	-	-	697	-	-
EEF1D-256			ENST00000618139.2	10	protein coding	2238	-	-	-	631	-	-
EEF1D-232 (EEF1D-017)			ENST00000530445.5	5	protein coding	1217	-	-	-	166	-	-
EEF1D-253 (EEF1D-048)			ENST00000534380.5	8	protein coding	1001	-	-	-	261	-	-
EEF1D-256 (EEF1D-040)			ENST00000526710.1	1	protein coding	996	-	-	-	300	-	-
EEF1D-239 (EEF1D-034)			ENST00000531670.5	3	protein coding	926	-	-	-	179	-	-
EEF1D-230 (EEF1D-032)			ENST00000530191.5	5	protein coding	853	-	-	-	204	-	-
EEF1D-247			ENST00000533204.5	7	protein coding	842	-	-	-	204	-	-
Protein ID	Description	Transcript ID	Start	End	Protein Coding	Score	Description					
------------	-------------	---------------	-------	-----	----------------	-------	-------------					
EEF1D-238	Eukaryotic translation elongation factor 1 delta	ENST0000053 1621.5	7	840	protein coding	238	-					
EEF1D-208	Eukaryotic translation elongation factor 1 delta	ENST0000052 4883.1	2	828	protein coding	180	-					
EEF1D-237	Eukaryotic translation elongation factor 1 delta	ENST0000053 1281.1	2	813	protein coding	257	-					
EEF1D-244	Eukaryotic translation elongation factor 1 delta	ENST0000053 2543.1	2	791	protein coding	39	-					
EEF1D-236	Eukaryotic translation elongation factor 1 delta	ENST0000053 1218.5	7	787	protein coding	198	-					
EEF1D-215	Eukaryotic translation elongation factor 1 delta	ENST0000052 6340.5	6	770	protein coding	63	-					
EEF1D-245	Eukaryotic translation elongation factor 1 delta	ENST0000053 2596.5	3	761	protein coding	190	-					
EEF1D-248	Eukaryotic translation elongation factor 1 delta	ENST0000053 3494.5	7	758	protein coding	168	-					
EEF1D-234	Eukaryotic translation elongation factor 1 delta	ENST0000053 0616.5	6	749	protein coding	210	-					
EEF1D-249	Eukaryotic translation elongation factor 1 delta	ENST0000053 3749.5	5	633	protein coding	137	-					
EEF1D-252	Eukaryotic translation elongation factor 1 delta	ENST0000053 4377.5	5	617	protein coding	187	-					
EEF1D-233	Eukaryotic translation elongation factor 1 delta	ENST0000053 0545.5	3	616	protein coding	84	-					
EEF1D-241	Eukaryotic translation elongation factor 1 delta	ENST0000053 1931.1	2	614	protein coding	35	-					
EEF1D-210	Eukaryotic translation elongation factor 1 delta	ENST0000052 5223.1	2	610	protein coding	39	-					
EEF1D-228	Eukaryotic translation elongation factor 1 delta	ENST0000052 9832.5	3	600	protein coding	146	-					
EEF1D-231	Eukaryotic translation elongation factor 1 delta	ENST0000053 0306.5	3	583	protein coding	129	-					
EEF1D-211 (EEF1D-031)	-	-	ENST0000052 5261.5	3	protein coding	559	-	-	81	-	-	
EEF1D-220 (EEF1D-026)	-	-	ENST0000052 8303.5	4	protein coding	558	-	-	21	-	-	
EEF1D-255 (EEF1D-029)	-	-	ENST0000053 4804.5	4	protein coding	555	-	-	68	-	-	
EEF1D-222 (EEF1D-036)	-	-	ENST0000052 8519.1	2	protein coding	553	-	-	157	-	-	
EEF1D-254 (EEF1D-030)	-	-	ENST0000053 4475.5	4	protein coding	538	-	-	31	-	-	
EEF1D-214 (EEF1D-038)	-	-	ENST0000052 6135.5	3	protein coding	535	-	-	53	-	-	
EEF1D-229 (EEF1D-014)	-	-	ENST0000053 0109.5	3	protein coding	533	-	-	156	-	-	
EEF1D-242 (EEF1D-021)	-	-	ENST0000053 1953.5	3	protein coding	506	-	-	49	-	-	
EEF1D-226 (EEF1D-019)	-	-	ENST0000052 9516.5	6	protein coding	473	-	-	139	-	-	
EEF1D-227 (EEF1D-015)	-	-	ENST0000052 9576.5	3	protein coding	424	-	-	119	-	-	
EEF1D-243 (EEF1D-016)	-	-	ENST0000053 2400.1	4	protein coding	419	-	-	99	-	-	
EEF1D-213 (EEF1D-022)	-	-	ENST0000052 6133.1	2	protein coding	367	-	-	36	-	-	
EEF1D-209 (EEF1D-044)	-	-	ENST0000052 4900.1	3	protein coding	343	-	-	62	-	-	
EEF1D-221 (EEF1D-013)	-	-	ENST0000052 8382.1	3	protein coding	308	-	-	36	-	-	
EEF1D-206	-	-	ENST0000052 4397.5	8	nonsense md	957	-	-	-	-	-	
EEF1D-224	-	-	ENST0000052 9007.5	8	nonsense md	861	-	-	-	-	-	
EEF1D-250	-	-	ENST0000053 3833.5	7	nonsense md	831	-	-	-	-	-	
DNA/RNA

Description

EEF1D (Eukaryotic Translation Elongation Factor 1 delta) is a protein-coding gene that starts at 143,579,722 nt and ends at 143,597,675 nt from pter. It has a length of 17,954 bp and the current reference sequence is NC_000008.11.

It is proximal to the NAPRT (nicotinate phosphoribosyl-transferase domain containing 1) gene and TIGD5 (tigger transposable element derived 5) gene. Around the genomic locus of EEF1D there are different promoter or enhancer transcriptional elements.

Two strong of these elements are closer to the sequence of EEF1D gene and are located at +1.6 kb and at -1.2 kb respectively.

Transcription

Several alternative splicing transcript variants for EEF1D were observed and they encode multiple eEF1D isoforms. Their main characteristics are reported in Table 1. The main reference sequence is NM_032378.5 that corresponds to the variant 1 of EEF1D mRNA, alias EEF1D-205 or EEF1D-001, and it is 2,473 bp long. The 5'UTR counts 459 nt, the CDS is extended from 460 to 2,403 nt, while the 3'UTR covers the last 70 nt.

Pseudogene

According to Entrez Gene, the analysis of the human genome revealed the presence of several pseudogenes for EEF1D (Table 2) classified as processed pseudogenes and probably originated by retrotransposition.

If these elements have any regulatory role in the expression of the respective gene as described for others (Hirotsune et al., 2003), is only speculation in the absence of experimental evidence.

Little more characterized are EEF1DP3 and EEF1DP4 pseudogenes respect the others. What is known is that these two pseudogenes are probably involved in human cancers or in other diseases. Especially EEF1DP3 was found in some genomic rearrangements with the formation of hybrid genes among which the most studied is EEF1DP3/FRY (Kim et al., 2015).

Protein

Description

The eukaryotic translation elongation factor 1 delta (alias eEF1D, eEF1delta; eEF1Bdelta;) is a subunit of the macromolecular eukaryotic translation elongation factor-1 complex (alias eEF1, also called eEF1H), a high-molecular-weight form made up of an aggregation of different protein subunits: EEF1A (alias eEF1α), EEF1B2 (alias eEF1B, eEF1β, eEF1B2), EEF1G (alias eEF1γ, heEF1γ, eEF1βγ), EEF1D and valyl t-RNA synthetase (VARS).

eEF1H protein complex plays a central role in peptide elongation during eukaryotic protein biosynthesis, in particular for the delivery of aminoacyl-tRNAs to the ribosome mediated by the hydrolysis of GTP.

In fact, during the translation elongation step, the inactive GDP-bound form of eEF1A (eEF1A-GDP) is converted to its active GTP-bound form (eEF1A-GTP) by eEF1BGD-complex mediated the GTP hydrolysis. Thus eEF1BGD-complex acts as a guanine nucleotide exchange factor (GEF) regenerating eEF1A-GTP for the successive elongation cycle.

The physiological role of eEF1D in the translation context is still not well defined, however eEF1D seems to strictly collaborate with eEF1B in the conversion of eEF1A from its inactive GDP-bound form to its active GTP-bound form and so it covers a role as a guanine nucleotide exchange factor (GEF) for eEF1A (Le Sourd et al., 2006; Browne and Proud, 2002).
EEF1D (eukaryotic translation elongation factor 1 delta)

Cristiano L.

Gene	Gene name	Gene ID	RefSeq	Locus	Location	Start	End	Length (nt)	Main diseases/diagnosis	Reference	
EEF1D P1	EEF1D pseudogene 1	126037	NC_000019.10	Chromosome 19	19p13.1	14070325	14071304	980	Large B-cell lymphoma (?)	-	
									Myeloid leukemia (?)	-	
EEF1D P2	EEF1D pseudogene 2	442429	NC_000009.12	Chromosome 9	9q22.31	92836766	92837741	976	Melanoma (?)	-	
									Prostate carcinoma	Erho et al., 2012	
									Breast carcinoma	Kim et al., 2015	
									Ankylosing spondylitis	Shahba et al., 2018	
									Melanoma (?)	-	
									Non-small cell lung cancer (?)	-	
									Multiple sclerosis (?)	-	
									Large B-cell lymphoma cell lines (SUDHL4, Toledo, OCI-Ly3) (?)	-	
									Lung adenocarcinoma (?)	-	
									Epidermolysis Bullosa Simplex (?)	-	
EEF1D P3	EEF1D pseudogene 3	196549	NC_000013.11	Chromosome 13	13q13.1	31846783	31959584	112802			
EEF1D P4	EEF1D pseudogene 4	442325	NC_000007.14	Chromosome 7	7q11.21	64862951	64864450	1500	Glioma (?)	-	
										Breast carcinoma (?)	-
										Primary myelofibrosis (?)	-
										Osteosarcoma (?)	-
EEF1D P5	EEF1D pseudogene 5	442258	NC_000006.12	Chromosome 6	6q22.33	128580065	128580952	888	Breast carcinoma	Stefansson et al., 2011	
EEF1D P6	EEF1D pseudogene 6	644357	NC_000001.11	Chromosome 1	1p36.32	4175463	4175899	437	-	-	
EEF1D P7	EEF1D pseudogene 7	100422656	NC_000017.11	Chromosome 17	17q23.3	63636601	63637110	510	-	-	
EEF1D P8	EEF1D pseudogene 8	283236	NC_000011.10	Chromosome 11	11q12.3	62169219	62169827	609	-	-	

Table 2 EEF1D pseudogenes (reworked from https://www.ncbi.nlm.nih.gov/gene/1937; https://www.targetvalidation.org; https://www.ncbi.nlm.nih.gov/geoprofiles/) [(?)] uncertain; [-] no reference

There are known four isoforms produced by alternative splicing: the isoform 1 (RefSeq NP_001123525 or NP_115754), also called eEF1DL or eEF1BdeltaL, is the longest isoform that also has been chosen as the canonical sequence and it is formed by 647 residues.

It is found in the eEF1H protein complex and it shows many domains: in the carboxyl half terminal there are an acidic region and an EF-1 guanine nucleotide exchange domain (EF1-GNE domain / GEF) while in the amino half terminal there are a highly-conserved leucine-rich zipper-like region (aa 184-225), a basic region (aa 272-294) and a nuclear localization signal (NLS)(Kaitsuka et al., 2015; Kaitsuka et al., 2011; Sanders et al., 1993). The basic region seems to be involved in DNA binding while the leucine zipper region may be a protein interaction domain.

However, the exact functional role of these regions is unclear (Kaitsuka et al., 2015).
The N-terminal domain of eEF1D interacts with the NT-eEF1G domain of eEF1G (Cao et al., 2014; Mansilla et al., 2002; Janssen et al., 1994) but there are no interactions between eEF1D and eEF1B (Sheu and Traugh, 1997), although different interactional models were proposed (Le Sourd et al., 2006; Jiang et al., 2005; Sheu and Traugh, 1999; Minella et al., 1998).

The long isoform of eEF1D (eEF1DL) interacts with HSF1 and NFE2L2 (NRF2) proteins into the nucleus (Kaitsuka et al., 2011; https://www.genecards.org) and regulates induction of heat-shock-responsive genes, such as HSPA6, CRYAB, DNAJB1 and HO-1, through the association with the heat shock transcription factors and with a direct DNA-binding at heat shock promoter elements (HSE) (Kaitsuka et al., 2015; Kaitsuka et al., 2011; https://www.uniprot.org/uniprot/P29692).

The isoform 2, with 281 amino acids, is smaller and, as the isoform 1, it is a multi-domain protein which consists of three main domains: from the amino to carboxyl half terminal there are an N-terminal leucine zipper domain, a C-terminal acidic region and a C-terminal domain that shows GDP/GTP exchange activity (GEF) (Kaitsuka et al., 2015; Kaitsuka et al., 2011). The roles of the isoform 4 and isoform 5 are still undefined.

All isoforms have many interaction surface points with the eukaryotic translation elongation factor 1 alpha (eEF1A) protein (https://www.ncbi.nlm.nih.gov/protein/NP_001123525) and interact with the valyl -tRNA synthetase (Val-RS) (Le Sourd et al., 2006; Bec et al., 1994).

EEF1D interacts with SIAH1, an E3 ubiquitin protein ligase involved in the regulation of cell cycle, tumorigenesis and also in the initiation of neurodegenerative diseases. Is reported that the overexpression of EEF1D is linked with an increase in SIAH-1 levels due to the inhibition of its autoubiquitination and thus of its degradation (Wu et al., 2011).

In addition, EEF1D is an interaction partner of kinectin that function as the membrane anchor for EEF1D on the endoplasmic reticulum (Ong et al., 2003).

Post-translational modifications. Some post-translational modifications are observed, such as phosphorylation, acetylation and succinylation (https://www.ncbi.nlm.nih.gov). eEF1D can be hyperphosphorylated and the phosphorylations are made by some protein kinases, including casein kinase 2 (Gyenis et al., 2011; Browne and Proud, 2002) and cyclin-dependent kinase 1 (CDK1) (Kawaguchi et al., 2003). In particular, CDK1 phosphorlates EEF1D at Ser-133 (Kawaguchi et al., 2003).

In addition, eEF1D can be found hyperphosphorylated by viral protein kinases after alpha-, beta-, and gammaherpesviruses infections (Kawaguchi et al., 2003).
Expression
eEF1D is expressed widely in human tissues and high levels of protein are reported in bone marrow stromal cells (https://www.geneCards.org). The long form of eEF1D (eEF1DL) is found to be highly expressed in brain and testis (Kaitsuka et al., 2011).

Localisation
eEF1D is located mostly in the cytoplasm but it is also found in the nucleus, especially its long form (Kaitsuka et al., 2011), and also in relation with the endoplasmic reticulum (Sanders et al., 1996).
Function

eEF1D has shown to cover an important role in normal brain functioning and development and some experiments on KO mice lacking the expression of its long isoform (eEF1DL) have done emerging its implication for normal physiology of the brain. In fact, in these KO mice were observed severe seizures in response to loud sounds and also significant brain structure alterations such as a decrease in brain weight, atrophy of the hippocampus and midbrain and a reduction of cortical layer thickness (Kaitsuka et al., 2018).

eEF1D shows canonical functions and multiple non-canonical roles (moonlighting roles) inside the cell. **Canonical function:** eEF1D binds to eEF1B and eEF1G in the eEF1BDG macromolecular complex and contributes to catalyze the exchange of GDP/GTP for eEF1A during the translation elongation cycle.

Non-canonical roles: eEF1D seems to have other functions inside the cell besides its involvement in translation. At least two other non-canonical roles have been detected, i.e. its role as a transcriptional factor and its involvement in the stress response. These roles are closely connected to each other. In fact, it was demonstrated that heat shock induces the splicing-dependent expression change from the short eEF1D isoform (isoform 2) to the eEF1DL long isoform (isoform 1)(Kaitsuka et al., 2015). The silencing of eEF1DL inhibits the stress responses suggesting its role in the modulation of stress response in the cell (Hensen et al., 2013). In fact, EEF1D is a heat shock transcription factor that can bind to the heat shock element (HSE) in the promoter of the HSPA6 and HO-1 genes and activate their transcription (Kaitsuka et al., 2011).

Homology
eEF1D is highly conserved and its homology between the species is reported in Table.3

Organism	Species	Symbol	DNA Identity (%)	PROT Identity (%)
Human	H.sapiens	EEF1D	100	100
Chimpanzee	P.troglodytes	EEF1D	99.6	99.3
Macaco	M.mulatta	EEF1D	95.7	95.7
Wolf	C.lupus	LOC475115	85.2	85.5
Cattle	B.taurus	EEF1D	92.1	88.3
Mouse	M.musculus	Eef1d	85.2	84.3
Rat	R.norvegicus	Eef1d	86.8	84.5
Chicken	G.gallus	EEF1D	57.7	61.6
Xenopus tropical	X.tropicalis	eef1d	67.8	69.7
Zebrafish	D.rerio	eef1db	65.8	66.3
Fruit fly	D.melanogaster	eEF1delta	55.6	57.0

Mutations

Note
A great number of mutations in the genomic sequence and in the amino acid sequence for EEF1D were discovered in cancer cells that are obviously genetically more unstable respect normal ones. The genomic alterations observed include the formation of novel fusion genes. However, there are no sufficient experimental data yet to understand the repercussions on cellular behaviour and so the implications in cancer of these fusion genes.

Figure 5. Circos plot for fusion events involving eEF1D. The picture summarizes all fusion events concerning eEF1D and its fusion partners (from https://fusionhub.persistent.co.in/search_genewise.html).

Implicated in

Top note
EEF1D is a cellular proto-oncogene (Joseph et al., 2002) and it is involved in many and heterogeneous genomic translocations in different kind of tumors with also the creation of numerous fusion gene (Table.4). An increase of its expression level has an oncogenic potential with resulting in cell transformation (Lei et al., 2002) and this was observed in many cancer types (Hassan et al., 2018). In addition, the use of antisense mRNA to block EEF1D translation can revert its oncogenic potential (Lei et al., 2002). These data could suggest its role as a potential diagnostic indicator and prognostic marker in tumors (Joseph et al., 2002).
Name	5' end	3' end	Loc1	Loc2	Description	Type	Disease	Organ	Code	Ref.
ACSF2/EEF1D	ACSF2	EEF1D	17q21.33	8q24.3	t(8;17)(q24;q21)	Translocation	(?)	-	-	
AGO2/EEF1D	AGO2	EEF1D	8q24.3	8q24.3	t(8;8)(q24;q24)	Fusion gene	(?)	-	-	
ASAPI/EEF1D	ASAPI	EEF1D	8q24.21	8q24.3	t(8;8)(q24;q24)	Fusion gene	(?)	-	-	
ASB8/EEF1D	ASB8	EEF1D	12q13.11	8q24.3	t(8;12)(q24;q13)	Translocation	(?)	-	-	
ATXN1/EEF1D	ATXN1	EEF1D	6p22.3	8q24.3	t(6;8)(p22;q24)	Translocation	(?)	-	-	
B2M/EEF1D	B2M	EEF1D	15q21.3	8q24.3	t(8;15)(q24;q21)	Translocation	(?)	-	-	
BOD1L1/EEF1D	BOD1L1	EEF1D	4p15.33	8q24.3	t(4;8)(p15;q24)	Translocation	(?)	-	-	
C19ORF10/EEF1D	C19ORF10	EEF1D	19p13.3	8q24.3	t(8;19)(q24;p13)	Translocation	(?)	-	-	
CAPN15/EEF1D	CAPN15	EEF1D	16p13.3	8q24.3	t(8;16)(q24;p13)	Translocation	(?)	-	-	
CBX7/EEF1D	CBX7	EEF1D	22q13.1	8q24.3	t(8;22)(q24;q13)	Translocation	(?)	-	-	
CHN2/EEF1D	CHN2	EEF1D	7p14.3	8q24.3	t(7;8)(p14;q24)	Translocation	(?)	-	-	
CLPS/EEF1D	CLPS	EEF1D	6p21.31	8q24.3	t(6;8)(p21;q24)	Translocation	(?)	-	-	
CLTB/EEF1D	CLTB	EEF1D	5q35.2	8q24.3	t(5;8)(q35;q24)	Translocation	(?)	-	-	
CMSS1/EEF1D	CMSS1	EEF1D	3q12.1	8q24.3	t(3;8)(q12;q24)	Translocation	(?)	-	-	
COLGALT1/EEF1D	COLGALT1	EEF1D	19p13.11	8q24.3	t(8;19)(q24;p13)	Translocation	(?)	-	-	
CRY1/EEF1D	CRY1	EEF1D	12q23.3	8q24.3	t(8;12)(q24;q23)	Translocation	(?)	-	-	
CTDPI/EEF1D	CTDPI	EEF1D	18q23	8q24.3	t(8;18)(q24;q23)	Translocation	(?)	-	-	
CTTN/EEF1D	CTTN	EEF1D	11q13.3	8q24.3	t(8;11)(q24;q13)	Translocation	(?)	-	-	
DDX23/EEF1D	DDX23	EEF1D	12q13.12	8q24.3	t(8;12)(q24;q13)	Translocation	(?)	-	-	
DDX5/EEF1D	DDX5	EEF1D	17q23.3	8q24.3	t(8;17)(q24;q23)	Translocation	(?)	-	-	
EEF1D/ANKRD19P	EEF1D	ANKRD19P	8q24.3	9q22.31	t(8;9)(q24;q22)	Translocation Adenocarcinoma	Stomach	STD	MCFI0	Babice anu et al.,2016
EEF1D/CALR	EEF1D	CALR	8q24.3	19p13.1	t(8;19)(q24;p13)	Translocation - Cell line	-	-	-	Babice anu et al.,2016
EEF1D/CKB	EEF1D	CKB	8q24.3	14q32.33	t(8;14)(q24;q32)	Translocation	(?)	-	-	
EEF1D/DUSP28	EEF1D	DUSP28	8q24.3	2q37.3	t(2;8)(q37;q24)	Translocation	(?)	-	-	
EEF1D/EEF1DP1	EEF1D	EEF1DP1	8q24.3	19p13.1	t(8;19)(p24;13)	Translocation	(?)	-	-	
EEF1D/EEF1DP5	EEF1D	EEF1DP5	8q24.3	6q22.33	t(6;8)(q22;q24)	Translocation	(?)	-	-	
EEF1D/GSDMB	EEF1D	GSDMB	8q24.3	17q12	t(8;17)(q24;q12)	Translocation	(?)	-	-	
EEF1D/KRT4	EEF1D	KRT4	8q24.3	12q13.13	t(8;12)(q24;q13)	Translocation - Esophagus	-	-	-	Babice anu et al.,2016
EEF1D/KRT5	EEF1D	KRT5	8q24.3	12q13.13	t(8;12)(q24;q13)	Translocation Squamous Cell Carcinoma	Head and Neck	HNSC	Klijn et al.,2015	
EEF1D/KRT6A	EEF1D	KRT6A	8q24.3	12q13.13	t(8;12)(q24;q13)	Translocation Squamous Cell Carcinoma	Head and Neck	HNSC	Klijn et al.,2015	
EEF1D/KRT10	EEF1D	KRT10	8q24.3	17q21.2	t(8;17)(q24;q21)	Translocation - Skin	-	-	-	Babice anu et al.,2016
EEF1D/KRT14	EEF1D	KRT14	8q24.3	17q21.2	t(8;17)(q24;q21)	Translocation Squamous Cell Carcinoma	Uterine cervix	CESC	Alaeri-Mahabadi et al.,2016	
EEF1D	LSP1	LSP1	8q24.3	11p15, 5	t(8;11)(q24;p15)	Translocation (?)	-	-	-	
-------------	-----------	----------	--------	----------	-----------------	------------------	---	---	---	
EEF1D	MAN2C1	MAN2C1	8q24.3	15q24.2	t(8;15)(q24;q24)	Translocation (?)	-	-	-	
EEF1D	NAPRT	NAPRT	8q24.3	8q24.3	Readthrough transcription	Fusion gene	-	-	-	
EEF1D	NFKB1B	NFKB1B	8q24.3	19q13.2	t(8;19)(q24;q13)	Translocation (?)	-	-	-	
EEF1D	PARK2	PARK2	8q24.3	6q26	t(6;8)(q26;q24)	Translocation (?)	-	-	-	
EEF1D	PNLIP	PNLIP	8q24.3	10q25.3	t(8;10)(q24;q25)	Translocation (?)	-	-	-	
EEF1D	PUFS60	PUFS60	8q24.3	8q24.3	t(8;8)(q24;q24)	Fusion gene	-	-	-	
EEF1D	RNF2	RNF2	8q24.3	1q25.3	t(1;8)(q24;q13)	Translocation (?)	-	-	-	
EEF1D	RYR1	RYR1	8q24.3	19q13.2	t(8;19)(q24;q13)	Translocation (?)	-	-	-	
EEF1D	SDC4	SDC4	8q24.3	20q13.12	t(8;20)(q24;q13)	Translocation	-	-	-	
EEF1D	SFTPC	SFTPC	8q24.3	8p21.3	t(8;8)(q24;p21)	Fusion gene	(?)	-	-	
EEF1D	SPIB	SPIB	8q24.3	19q13.33	t(8;19)(q24;q13)	Translocation	-	-	-	
EEF1D	TG	TG	8q24.3	8q24.22	t(8;8)(q24;q24)	Fusion gene	-	-	-	
EEF1D	TSNARE1	TSNARE1	8q24.3	8q24.3	t(8;8)(q24;q24)	Fusion gene	-	-	-	
EEF1D	TSTA3	TSTA3	8q24.3	8q24.3	t(8;8)(q24;q24)	Fusion gene	-	-	-	
EEF1D	UBE2L3	UBE2L3	8q24.3	22q11.2	t(8;22)(q24;q11)	Translocation	(?)	-	-	
EEF1D	ZBTB7A	ZBTB7A	8q24.3	19p13.3	t(8;19)(q24;p13)	Translocation	(?)	-	-	
EEF1D	ZC3H3	ZC3H3	8q24.3	8q24.3	t(8;8)(q24;q24)	Fusion gene	(?)	-	-	
FAM104A/EEF1D	FAM104A	FAM104A	17q25.1	8q24.3	t(8;17)(q24;q25)	Translocation	-	-	-	
FAM222B/EEF1D	FAM222B	FAM222B	17q11.2	8q24.3	t(8;17)(q24;q11)	Translocation	(?)	-	-	
FLCN/EEF1D	FLCN	FLCN	17p11.2	8q24.3	t(8;17)(q24;p11)	Translocation	(?)	-	-	
HDAC5/EEF1D	HDAC5	HDAC5	17q21.3	8q24.3	t(8;17)(q24;q21)	Translocation	-	-	-	
Locus	Gene	Chromosome	Translocation	Cell line	OVTO KO	Reference				
-------	------	------------	---------------	-----------	--------	-----------				
HIF1A/EEF1D	HIF1A	1q23.2	8q24.3	Translocation	(?)	-	-			
HIF3A/EEF1D	HIF3A	1q13.32	8q24.3	Translocation	(?)	-	-			
HRH1/EEF1D	HRH1	3p25.3	8q24.3	Translocation	(?)	-	-			
IGL5/EEF1D	IGL5	22q11.22	8q24.3	Translocation	(?)	-	-			
IL4R/EEF1D	IL4R	16p12.1	8q24.3	Translocation	(?)	-	-			
IRF3/EEF1D	IRF3	19q13.33	8q24.3	Translocation	(?)	-	-			
KRT13/EEF1D	KRT13	17q21.2	8q24.3	Translocation	(?)	-	-			
LGR6/EEF1D	LGR6	1q32.1	8q24.3	Translocation	(?)	-	-			
METRNL/EEF1D	METRNL	17q25.3	8q24.3	Translocation	(?)	-	-			
MGRN1/EEF1D	MGRN1	16p13.3	8q24.3	Translocation	(?)	-	-			
NCAM1/EEF1D	NCAM1	11q23.2	8q24.3	Translocation	(?)	-	-			
NID1/EEF1D	NID1	1q42.3	8q24.3	Translocation	(?)	-	-			
OAZ1/EEF1D	OAZ1	19p13.3	8q24.3	Translocation	(?)	-	-			
OGG1/EEF1D	OGG1	3p25.3	8q24.3	Translocation	(?)	-	-			
OPLAH/EEF1D	OPLAH	8q24.3	8q24.3	Fusion gene	Adenocarcinoma	Stomach	STAD			
PL2G6/EEF1D	PL2G6	22q13.1	8q24.3	Translocation	Adenocarcinoma	Breast	BRCA			
PLINS/EEF1D	PLINS	19p13.3	8q24.3	Translocation	(?)	-	-			
PMF1/EEF1D	PMF1	1q22	8q24.3	Translocation	-	Esophagus	-			
POLI/EEF1D	POLI	18q21.2	8q24.3	Translocation	(?)	-	-			
POU2F1/EEF1D	POU2F1	1q24.2	8q24.3	Translocation	(?)	-	-			
PSMB7/EEF1D	PSMB7	9q33.3	8q24.3	Translocation	(?)	-	-			
PTPA3/EEF1D	PTPA3	8q24.3	8q24.3	Fusion gene	Adenocarcinoma	-	-			
RAB3GAP1/EEF1D	RAB3GAP1	2q21.3	8q24.3	Translocation	(?)	-	-			
RAB40C/EEF1D	RAB40C	16p13.3	8q24.3	Translocation	(?)	-	-			
RCC1/EEF1D	RCC1	1p35.3	8q24.3	Translocation	(?)	-	-			
RILPL2/EEF1D	RILPL2	12q24.31	8q24.3	Translocation	(?)	-	-			
RNF14/EEF1D	RNF14	5q31.3	8q24.3	Translocation	(?)	-	-			
RPL30/EEF1D	RPL30	8q22.2	8q24.3	Fusion gene	Adenocarcinoma	Breast	BRCA			
RPL36AL/EEF1D	RPL36AL	14q21.3	8q24.3	Fusion gene	(?)	-	-			
RPS9/EEF1D	RPS9	19q13.42	8q24.3	Translocation	Burkit lymphoma	Blood	BL			
RSAD1/EEF1D	RSAD1	17q21.33	8q24.3	Translocation	(?)	-	-			
SCYLI/EEF1D	SCYLI	8q24.3	8q24.3	Fusion gene	Serous Cystadenocarcinoma	Ovary	OVSC			

Atlas Genet Cytogenet Oncol Haematol. 2020; 24(3) | 128
Amyotrophic lateral sclerosis (ALS)

EEF1D is a potential candidate gene associated with ALS (Wain et al., 2009) but more studies are needed to clarify its effective contribution.

Bladder cancer

There are no data about EEF1D expression alterations in bladder cancer. However, it was reported the translocation t(1;8)(q22;q24) PMF1/EEF1D (Klijn et al., 2015).

Hybrid/Mutated gene

The t(1;8)(q22;q24) PMF1/EEF1D was detected in bladder transitional-cell carcinoma RT4 cell line (Klijn et al., 2015). This rearrangement is originated by the fusion of "polyamine modulated factor 1" (PMF1) gene at 5’-end with EEF1D gene at 3’-end. There are no data about its chimeric transcript or protein and the role of this genomic alteration is poorly understood.

Brain and central nervous system (CNS) cancers

EEF1D is found to be overexpressed in astrocytoma and in glioblastoma samples and also in low-risk patients. This may associate its expression to favourable survival outcome (Hassan et al., 2018).

SH2B2/EEF1D	SH2B2	EEF1D	7q22.1	8q24.3	t(7;8)(q22;q24)	Translocation	Burkitt lymphoma	Blood	BL
SMYD3/EEF1D	SMYD3	EEF1D	1q44	8q24.3	t(1;8)(q44;q24)	Translocation	(?)	-	-
SORB1/EEF1D	SORB1	EEF1D	10q24.1	8q24.3	t(8;10)(q24;q24)	Translocation	(?)	-	-
SORT1 /EEF1D	SORT1	EEF1D	1p13.3	8q24.3	t(1;8)(p13;q24)	Translocation	(?)	-	-
SPIB/EEF1D	SPIB	EEF1D	19q13.3	8q24.3	t(8;19)(q24;q13)	Translocation	Burkitt lymphoma	Blood	BL
ST3GAL1 /EEF1D	ST3GAL1	EEF1D	8q24.22	8q24.3	t(8;8)(q24;q24)	Fusion gene	(?)	-	-
TATDN1 /EEF1D	TATDN1	EEF1D	8q24.13	8q24.3	t(8;8)(q24;q24)	Fusion gene	Adenocarcinoma	Breast	BRCA
TMEM99 /EEF1D	TMEM99	EEF1D	17q21.2	8q24.3	t(8;17)(q24;q21)	Translocation	(?)	-	-
TMLHE /EEF1D	TMLHE	EEF1D	Xq28	8q24.3	t(X;8)(q28;q24)	Translocation	(?)	-	-
TOP2B /EEF1D	TOP2B	EEF1D	3p24.2	8q24.3	t(3;8)(p24;q24)	Translocation	(?)	-	-
TP53I3 /EEF1D	TP53I3	EEF1D	2p23.3	8q24.3	t(2;8)(p23;q24)	Translocation	(?)	-	-
TP53TG5 /EEF1D	TP53TG5	EEF1D	20q13.12	8q24.3	t(8;20)(q24;q13)	Translocation	(?)	-	-
TTC21B /EEF1D	TTC21B	EEF1D	2q24.3	8q24.3	t(2;8)(q24;q24)	Translocation	(?)	-	-
TTLL3 /EEF1D	TTLL3	EEF1D	3p25.3	8q24.3	t(3;8)(p25;q24)	Translocation	Carcinoma	Esophagus	ESCA
UBA2P2 /EEF1D	UBA2P2	EEF1D	9p13.3	8q24.3	t(8;9)(q24;p13)	Translocation	(?)	-	-
UBE2G1 /EEF1D	UBE2G1	EEF1D	17p13.2	8q24.3	t(8;17)(q24;p13)	Translocation	(?)	-	-
UFM1 /EEF1D	UFM1	EEF1D	13q13.3	8q24.3	t(8;13)(q24;q13)	Translocation	Adenocarcinoma	Colon	COAD
XNR2 /EEF1D	XNR2	EEF1D	20p11.23	8q24.3	t(8;20)(q24;p11)	Translocation	(?)	-	-
ZC3H3 /EEF1D	ZC3H3	EEF1D	8q24.3	8q24.3	t(8;8)(q24;q24)	Fusion gene	-	Bone marrow	Babice et al., 2016
ZG16B /EEF1D	ZG16B	EEF1D	16p13.3	8q24.3	t(8;16)(q24;p13)	Translocation	(?)	-	-
ZNF146 /EEF1D	ZNF146	EEF1D	19q13.12	8q24.3	t(8;19)(q24;q13)	Translocation	(?)	-	-
ZNF232 /EEF1D	ZNF232	EEF1D	17p13.2	8q24.3	t(8;17)(q24;p13)	Translocation	(?)	-	-
ZNF429 /EEF1D	ZNF429	EEF1D	19p12	8q24.3	t(8;19)(q24;p12)	Translocation	(?)	-	-
ZNF608 /EEF1D	ZNF608	EEF1D	5q23.2	8q24.3	t(5;8)(q23;q24)	Translocation	(?)	-	-

Table 4 EEF1D rearrangements: translocations and fusion genes (reworked from ps://www.ncbi.nlm.nih.gov/homologene; http://www.tumorfusions.org; https://cgap.nci.nih.gov/Chromosomes; http://quiver.archerdx.com; http://atlasgeneticsoncology.org//Bands/8q24.html#REFERENCES; https://fusionhub.persistent.co.in/home.html; https://ccsm.ut.edu/FusionGDB/index.html) [(?) unknown; [] no reference]
Breast cancer

EEF1D is involved in breast cancer (Jurca et al., 2016). In fact, was detected an EEF1D gene copy number gain in BT483, EFM19, HCC1143, HCC1395, HCC1569, HCC1806, HCC1937, HCC2157, HCC2218, HDQ1, MDAMB436 and UACC893 breast cancer cell lines and in about 10% of breast invasive carcinoma donor samples (http://www.oasis-genomics.org/). EEF1D was found overexpressed in T-47, MCF-7, MDA-MB-361 and MDA-MB-453 breast cancer cell lines (Joseph et al., 2004). It is also overexpressed in breast cancer samples and this predicted worse relapse-free survival (RFS) in luminal A subtype patients and poor overall survival (OS) and RFS in basal subtype (Hassan et al., 2018).

Some authors have found an EEF1D downregulation in ER+/ER- cancer cell lines and in human breast cancer samples when high levels of bone morphogenetic protein-6 (BMP6) are expressed (Yang et al., 2007). This seems to be linked with the prevention of eEF1D-induced breast cancer metastasis. In fact, EEF1D is a candidate protein marker of human brain metastasis in primary breast tumors (Sanz-Pamplona et al., 2011; van’t Veer et al., 2002). In addition, some fusion genes and genomic translocations were reported (https://fusionhub.persistent.co.in/home.html).

Hybrid/Mutated gene

The translocation t(8;22)(q24;q13) PLA2G6/EEF1D was found in breast carcinoma (BRCA) and consists with the fusion of ‘phospholipase A2 group VI’ (< CC: TXT: PLA2G6 ID: 45836>) gene at 5' end with EEF1D gene at 3' end. In addition, other uncharacterized and rare rearrangements due to the translocation t(8;8)(q24;q24) are reported, i.e. the RPL30 /EEF1D and TATDN1/EEF1D fusion genes (https://fusionhub.persistent.co.in/home.html). In particular, the t(8;8)(q24;q24) RPL30 /EEF1D brings to the formation of a transcript composed by the exons 1 to 3 of RPL30 joined with exons 2 to 7 of EEF1D (http://203.255.191.229:8080/chimerdbv31/chimers eq_link.cdb?gene_pair=RPL30_EEF1D), while the t(8;8)(q24;q24) TATDN1/EEF1D brings to the formation of a transcript composed by the exon 1 of TATDN1 joined with exons 2 to 7 of EEF1D (http://203.255.191.229:8080/chimerdbv31/chimers eq_link.cdb?gene_pair=TATDN1_EEF1D). Despite what has just been said, these genomic alterations are still poorly understood.

Chondrosarcoma

The human chondrosarcoma cells are able to respond to mechanical stimuli, like cellular stretching, with different phosphorylation events. Increase of phosphorylations impacts also on the EEF1D protein. It is unclearly the significance or the effect on the cell of these phosphorylations as also if these changes may affect the level or speed of protein synthesis (Pitti et al., 2008).

Colorectal cancer

It was detected an EEF1D gene copy number gain in LS123 and RKO colorectal cancer cell lines and in about 5% of colon adenocarcinoma donor samples (http://www.oasis-genomics.org/). In addition, EEF1D transcript is found to be significantly overexpressed (Hassan et al., 2018), especially in the right-sided colon cancer (RSCC) respect left-sided colon cancer (LSCC) samples (Shen et al., 2013). It was reported the translocation t(8;13)(q24;q13) UFM1/EEF1D (https://fusionhub.persistent.co.in/home.html).

Hybrid/Mutated gene

The t(8;13)(q24;q13) UFM1/EEF1D was found in colon adenocarcinoma. This rearrangement is originated by the fusion of ‘ubiquitin modifier 1’ (UFM1) gene at 5'end with EEF1D gene at 3' end. There are no data about the respective chimeric transcript or protein and the role of this genomic alteration is unknown.

Gastric cancer

It was detected an EEF1D gene copy number gain in 2313287, LMSU, MKN1, SNU5, SNU216, SNU601 and SNU668 gastric cancer cell lines (http://www.oasis-genomics.org/) but it was found down-expressed in gastric cancer samples (Hassan et al., 2018). Some fusion genes and genomic translocation are reported (Klijn et al., 2015; https://fusionhub.persistent.co.in/home.html).

Hybrid/Mutated gene

The t(8;22)(q24;q11) IGLL5/EEF1D was found in gastric adenocarcinoma samples (Klijn et al., 2015) and consists by the fusion of ‘immunoglobulin lambda-like polypeptide 5' (IGLL5) gene at 5'-end with EEF1D gene at 3' end. In addition, other uncharacterized and rare rearrangements are reported, i.e. OPLAH/EEF1D fusion gene and t(8;9)(q24;q24) EEF1D/ANKRD19P (https://fusionhub.persistent.co.in/home.html). In particular, the t(8;9)(q24;q24) RPL30 /EEF1D brings to the formation of a transcript composed by the exons 1 to 3 of RPL30 joined with exons 2 to 7 of EEF1D (http://203.255.191.229:8080/chimerdbv31/chimers eq_link.cdb?gene_pair=RPL30_EEF1D), while the t(8;9)(q24;q24) TATDN1/EEF1D brings to the formation of a transcript composed by the exon 1 of TATDN1 joined with exons 2 to 7 of EEF1D (http://203.255.191.229:8080/chimerdbv31/chimers eq_link.cdb?gene_pair=TATDN1_EEF1D). Despite what has just been said, these genomic alterations are still poorly understood.
Head and neck squamous cell carcinoma (HNSC)

EEF1D gene was found up-regulated in head and neck squamous cell carcinoma (HNSC) (Hassan et al., 2018; Han et al., 2009). In particular, Flores and colleagues (Flores et al., 2016) detected its overexpression in oral squamous cell carcinoma (OSCC) respect to oral healthy mucosa. It could have a critical role both in cell proliferation and in epithelial-mesenchymal transition (EMT). In fact, EEF1D knockdown shown a decrease in cell cycle rate and proliferation. Some fusion genes and genomic translocation are reported (Klijn et al., 2015).

In addition, EEF1D was found up-regulated in human laryngeal cancer (Peyvandi et al., 2018) and was found an intrachromosomal translocation with the formation of a chimeric fusion gene between EEF1D and NAPRT1 genes in laryngeal cancer (Tao et al., 2018).

Hybrid/Mutated gene

The t(8;12)(q24;q13) EEF1D/KRT5 and the t(8;12)(q24;q13) EEF1D/KRT6A were found in head and neck squamous cell carcinoma (HNSC) samples with the production of chimeric genes originated by the fusion of EEF1D at 5'-end with 'keratin 5' (KRT5) or 'keratin 6A' (KRT6A) genes at 3' end (Klijn et al., 2015). In addition, it was detected in laryngeal cancer the fusion gene 5'-EEF1D - 3' NAPRT (Tao et al., 2018) that is probably originated by readthrough transcription, a known mechanism into the cell (He et al., 2018). In fact, EEF1D and NAPRT1 are two neighboring genes on the same chromosome. The roles of all these genomic alterations are unknown.

Kidney cancer

High EEF1D mRNA levels were found in renal Wilms tumor and in clear cell carcinoma (Hassan et al., 2018). Some authors have detected missense mutations of EEF1D in papillary renal cell carcinoma (PRCC)(Liu et al., 2015). These mutations could contribute to the pathogenic mechanism for PRCC but more studies are necessary.

Liver cancer

EEF1D was found overexpressed in moderately to poorly differentiated (M/P-) primary human hepatocellular carcinoma (HCC) tissues (Hassan et al., 2018; Shuda et al., 2000). In addition, it was found the EEF1D/NAPRT fusion gene (https://fusionhub.persistent.co.in/home.html; https://ccsm.uth.edu/FusionGDB/index.html).

Hybrid/Mutated gene

The EEF1D/NAPRT fusion gene was found in hepatocellular carcinoma (LIHC). This rearrangement is originated by the fusion of EEF1D gene at 5'-end with 'nicotinate phosphoribosyltransferase domain containing 1' (NAPRT) gene at 3' end and it is probably due to readthrough transcription. In fact, EEF1D and NAPRT1 are two neighboring genes on the same chromosome. There are no data about the respective chimeric transcript or protein and the role of this genomic alteration is unknown.

Lung cancer

EEF1D was found to be down-expressed in lung carcinoid tumor and not shows any correlation with survival parameters (Hassan et al., 2018). It was also found down-expressed in adriamycin-resistant variants of DLKP squamous lung cancer cell line (Keenan et al., 2009). On the contrary, other authors found overexpression of EEF1D mRNA in some adenocarcinoma of the lung and squamous lung cell carcinoma tissue samples (Varemieva et al., 2014). In addition, EEF1D was found both on the cytoplasm and in the nucleus of lung adenocarcinoma A549 cell line (Varemieva et al., 2014) and the EEF1D/TSTA3 fusion gene was reported for lung adenocarcinoma (LUAD)(Yoshihara et al 2015).

Hybrid/Mutated gene

The EEF1D/TSTA3 fusion gene was found in lung adenocarcinoma (LUAD) samples (Yoshihara et al. 2015). This rearrangement is originated by t(8;8)(q24;q24) i.e. from the fusion of EEF1D gene at 5'-end with 'tissue specific transplantation antigen P35B' (TSTA3) gene at 3' end. In particular, this rearrangement brings to the formation of a transcript composed by the exon 1 of EEF1D joined with exons 4 to 11 of TSTA3 (http://203.255.191.229/8080/chimeredb31/chimeres_eq_link.cdb?gene_pair=EEF1D_TSTA3). Despite what has just been said, this genomic alteration is still poorly understood.

Lymphoma and other blood cancers

EEF1D is significantly overexpressed in different lymphoma subtypes, i.e. ALK-negative/ALK positive anaplastic large cell lymphomas, Hodgkin's lymphoma, acute adult T-cell leukaemia/lymphoma, Burkitt's lymphoma, follicular lymphoma and diffuse large B-cell lymphoma (Hassan et al., 2018). Some fusion genes and genomic translocation were reported (Klijn et al., 2015; https://fusionhub.persistent.co.in/home.html; https://ccsm.uth.edu/FusionGDB/index.html).

Cytogenetics

The t(8;19)(q24;q13) EEF1D/ SPIB, t(8;17)(q24;21) HDAC5/EEF1D, t(8;19)(q24;q13) RPS9/EEF1D, t(7;8)(q22;q24) SH2B2/EEF1D, t(8;19)(q24;q13) SPIB/EEF1D translocations and EEF1D/NAPRT fusion gene were reported for Burkitt's lymphoma (BL). In addition, the
t(8;22)(q24;q11) IGLL5/EEF1D was observed in multiple myeloma MOLP-8 cell line (Klijn et al., 2015). There are no data about the respective chimeric transcripts or proteins and the role of these genomic alterations is unknown.

Medulloblastoma / Ependymoma

EEF1D is overexpressed in medulloblastoma samples and it is adversely associated with overall and progression-free survival regardless of cytogenetic profile (De Bortoli et al., 2006). In addition, EEF1D was found highly expressed in ependymoma and this is related to poor outcome (de Bont et al., 2008).

Melanoma

EEF1D was found overexpressed in human chemoresistant melanoma cell lines (Sinha et al., 2000) and it was reported the translocation t(8;17)(q24;q25) FAM104A/EEF1D (Klijn et al., 2015).

Hybrid/Mutated gene
The t(3;8)(p25;q24) TTLL3/EEF1D, t(8;17)(q24;q21) KRT13/EEF1D, t(8;12)(q24;q13) EEF1D/KRT4 translocations and ZC3H3/EEF1D fusion gene were reported in oesophageal carcinoma (ESCA).

In particular, the t(3;8)(p25;q24) TTLL3/EEF1D brings to the formation of a transcript composed by the exons 1 to 3 of "tubulin tyrosine ligase like 3" (TTLL3) joined with exons 2 to 7 of EEF1D (http://203.255.191.229:8080/chimerdbv31/chimeres eq_link.cdb?gene_pair=TTLL3_EEF1D), while the t(8;8)(q24;q24) ZC3H3/EEF1D brings to the formation of a transcript composed by the exon 1 of "zinc finger CCCH-type containing 3" (ZC3H3) joined with exons 4 to 7 of EEF1D (http://203.255.191.229:8080/chimerdbv31/chimeres eq_link.cdb?gene_pair=ZC3H3_EEF1D). Despite what has just been said, these genomic alterations are still poorly understood.

Osteosarcoma

EEF1D may play an important role in osteosarcoma tumorigenesis because it is overexpressed in osteosarcoma tissues samples respect to adjacent non-tumor tissues and this enhances the Akt-mTOR and Akt-Bad signalling pathways. In fact, knockdown of EEF1D in MNNG/HOS and U2OS cells (both osteosarcoma cell lines) shows a slight decrease in the phosphorylation of Akt, mTOR and BAD. In addition, the high expression of EEF1D has a positive correlation with recurrences and its expression levels are higher in patients in advanced Enneking stage than in the early stage ones (Cheng et al., 2018). It was reported the translocation t(3;8)(p25;q24) OGG1/EEF1D (Klijn et al., 2015).

Hybrid/Mutated gene
The t(3;8)(p25;q24) OGG1/EEF1D was detected in sarcoma ES2-TO cell line (Klijn et al., 2015). This rearrangement is originated by the fusion of "8-oxoguanine DNA glycosylase" (OGG1) gene at 5'-end with EEF1D gene at 3' end. There are no data about the respective chimeric transcript or protein and so this genomic alteration is still poorly understood.

Ovarian cancer

It was detected an EEF1D gene copy number gain in COV362, KURAMOCHI, OVCAR4, OVCAR8 and SNU119 ovarian cancer cell lines, in about 26% of ovarian serous cystadenocarcinoma donor samples (http://www.oasis-genomics.org/) and also in metastasis and this correlates with poor prognosis (Ogawa et al., 2004). Some fusion genes and genomic translocation are reported (Babiceanu et al., 2016; https://fusionhub.persistent.co.in/home.html; https://ccsm.uth.edu/FusionGDB/index.html).

Hybrid/Mutated gene
The t(3;8)(p25;q24) TTLL3/EEF1D, t(8;17)(q24;q21) KRT13/EEF1D, t(8;12)(q24;q13) EEF1D/KRT4 translocations and ZC3H3/EEF1D fusion gene were reported in oesophageal carcinoma (ESCA). In particular, the t(3;8)(p25;q24) TTLL3/EEF1D brings to the formation of a transcript composed by the exons 1 to 3 of "tubulin tyrosine ligase like 3" (TTLL3) joined with exons 2 to 7 of EEF1D (http://203.255.191.229:8080/chimerdbv31/chimeres eq_link.cdb?gene_pair=TTLL3_EEF1D), while the t(8;8)(q24;q24) ZC3H3/EEF1D brings to the formation of a transcript composed by the exon 1 of "zinc finger CCCH-type containing 3" (ZC3H3) joined with exons 4 to 7 of EEF1D (http://203.255.191.229:8080/chimerdbv31/chimeres eq_link.cdb?gene_pair=ZC3H3_EEF1D). Despite what has just been said, these genomic alterations are still poorly understood.

Neurological and neurodevelopmental disorders

Mutations of EEF1D are involved in neurodevelopmental abnormalities, severe intellectual disability (ID) and microcephaly (McLachlan et al., 2018; Reuter et al., 2017). In particular, some authors identified a pathogenic variant of EEF1DL that could be a candidate for the autosomal recessive ID (ARID) due to its loss of function (Ugur Iseri et al., 2019). In addition, also the interaction between eEF1D and SIAH1 could impact on the initiation of neurodegenerative diseases when eEF1D is overexpressed (Wu et al., 2011).

Ovarian cancer

It was detected an EEF1D gene copy number gain in COV362, KURAMOCHI, OVCAR4, OVCAR8 and SNU119 ovarian cancer cell lines, in about 26% of ovarian serous cystadenocarcinoma donor samples (http://www.oasis-genomics.org/) and also in
ovarian clear cell adenocarcinomas and other ovarian cancer samples (Zhang et al., 2015; Sung et al., 2013). Some fusion genes and genomic translocation are reported (Klijn et al., 2015; https://fusionhub.persistent.co.in/home.html; https://ccsm.uth.edu/FusionGDB/index.html).

Hybrid/Mutated gene

The EEF1D/ PUF60, EEF1D/ TSNARE1 and SCRIB/EEF1D fusion genes originated by t(8;8)(q24;q24) were found in ovarian serous cystadenocarcinoma (OVSC) samples. In addition, the t(8;14)(q24;q23) HIF1A/EEF1D was reported for ovarian clear cell adenocarcinoma OVTOKO cell line (Klijn et al., 2015). This rearrangement is originated by the fusion of "hypoxia inducible factor 1 subunit alpha" (HIF1A) gene at 5'end with EEF1D gene at 3' end. The roles of these genomic alterations are still unknown.

Pancreatic cancer

EEF1D mRNA is found to be down-regulated in pancreatic cancer tissue samples (Hassan et al., 2018).

Parkinson’s disease

Some rare mutated variants of eEF1D are considered potential candidates in Parkinson's disease. These mutated variants differ from the amino acid sequence of EEF1D for some amino acids substitutions, i.e. in position 290 (Gly/Arg), 325 (Ala/Thr), 549 (Ala/Val) and 601 (Pro/Ser) (Schulte et al., 2014).

Prostate cancer

EEF1D mRNA is found to be up-regulated in prostate cancer tissue samples (Hassan et al., 2018). In addition, it was found the translocation t(8;20)(q24;q13) EEF1D/SDC4 (Wu et al., 2012).

Hybrid/Mutated gene

The t(8;20)(q24;q13) EEF1D/SDC4 was found in prostate adenocarcinoma (PRAD). This rearrangement is originated by the fusion of EEF1D gene at 5'-end with "syndecan 4" (SDC4) gene at 3' end. There are no data about the respective chimeric transcript or protein and the role of this genomic alteration in prostate cancer is unknown.

Thyroid cancer

There are no data about EEF1D expression alterations in thyroid cancers. However, it was reported the EEF1D/TG fusion gene (https://fusionhub.persistent.co.in/home.html; https://ccsm.uth.edu/FusionGDB/index.html).

Hybrid/Mutated gene

The EEF1D/TG fusion gene was reported in thyroid Carcinoma (THCA). This rearrangement is originated by the fusion of EEF1D gene at 5'-end with "thyroglobulin" (TG) gene at 3' end due to the translocation t(8;8)(q24;q24). There are no data about its chimeric transcript or protein and the role of this genomic alteration is unknown.

Uterine cancer

It was detected an EEF1D gene copy number gain in about 14% of uterine carcinosarcoma donor samples (http://www.oasis-genomics.org/). It was found the translocation t(8;17)(q24;q21) EEF1D/KRT14 (Alaei-Mahabadi et al., 2016).

Hybrid/Mutated gene

The t(8;17)(q24;q21) EEF1D/KRT14 was found in cervical squamous cell carcinoma (CESC). This rearrangement is originated by the fusion of EEF1D gene at 5'-end with "keratin 14" (KRT14) gene at 3' end. There are no data about the respective chimeric transcript or protein and the role of this genomic alteration is unknown.

To be noted

Role of eEF1D in viral replication and pathogenesis. Have discovered some interactions between some human immunodeficiency virus type 1 (HIV-1) proteins, such as HIV-1 Tat, and eEF1D and its recruitment for the viral mRNAs translation (Milev et al., 2012). In addition, eEF1D can be found hyperphosphorylated by viral protein kinases after alpha-, beta-, and gammaherpesviruses infections. In particular, the viral protein kinases involved in eEF1D phosphorylation include UL13 of herpes simplex virus type 1 (HSV-1), UL97 of human cytomegalovirus and BGLF4 of Epstein-Barr virus (EBV) (Kawaguchi et al., 2003). Apart from that, in general, this brings a reduction of cellular proteins biosynthesis efficiency instead privileging the viral proteins translation process (Milev et al., 2012).

References

Alaei-Mahabadi B, Bhadury J, Karlsson JW, Nilsson JA, Larsson E. Global analysis of somatic structural genomic alterations and their impact on gene expression in diverse human cancers. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13768-13773

Babiceanu M, Qin F, Xie Z, Jia Y, Lopez K, Janus N, Facemire L, Kumar S, Pang Y, Qi Y, Lazar IM, Li H. Recurrent chimeric fusion RNAs in non-cancer tissues and cells. Nucleic Acids Res. 2016 Apr 7;44(6):2859-72

Bec G, Kerjan P, Waller JP. Reconstitution in vitro of the valyl-tRNA synthetase-elongation factor (EF) 1 beta gamma delta complex. Essential roles of the NH2-terminal extension of valyl-tRNA synthetase and of the EF-1 delta subunit in complex formation. J Biol Chem. 1994 Jan 21;269(3):2086-92

Browne GJ, Proud CG. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem. 2002 Nov;269(22):5360-8

Cao Y, Portela M, Janikiewicz J, Doig J, Abbott CM. Characterisation of translation elongation factor eEF1B subunit expression in mammalian cells and tissues and co-
localisation with eEF1A2 PLoS One 2014 Dec 1;9(12):e114177
Cheng DD, Li SJ, Zhu B, Zhou SM, Yang QC. EEF1D overexpression promotes osteosarcoma cell proliferation by facilitating Akt-mTOR and Akt-bad signalling J Exp Clin Cancer Res 2018 Mar 6;37(1):50
De Bortoli M, Castellino RC, Lu XY, Deyo J, Sturla LM, Adesina AM, Perlayk L, Pomery SL, Lau CC, Man TK, Rao PH, Kim JY. Medulloblastoma outcome is adversely associated with overexpression of EEF1D. RPL30, and RPS20 on the long arm of chromosome 8 BMC Cancer 2006 Sep 12;6:223
Erho N, Buerki C, Triche TJ, Davicioni E, Vergara IA. Transcriptome-wide detection of differentially expressed coding and non-coding transcripts and their clinical significance in prostate cancer J Oncol 2012;2012:541353
Flores IL, Kawahara R, Miguel MC, Granato DC, Domingues RR, Macedo CC, Camerili CM, Yokoo S, Rodrigues PC, Monteiro BV, Oliveira CE, Salmon CR, Nociti FH Jr. Lopes MA, Santos-Silva A, Winck FV, Coletta RD, Paes Leme AF. EEF1D modulates proliferation and epithelial-mesenchymal transition in oral squamous cell carcinoma Clin Sci (Lond) 2016 May 1;130(10):785-99
Gyenis L, Duncan JS, Turowec JP, Brether M, Litchfield DW. Unbiased functional proteomics strategy for protein kinase inhibitor validation and identification of bona fide protein kinase substrates: application to identification of EEF1D as a substrate for CK2 J Proteome Res 2011 Nov 4;10(11):4887-901
Han J, Kici M, Chu WS, Kasperbauer JL, Strome SE, Puri NK. Identification of potential therapeutic targets in human head & neck squamous cell carcinoma Head Neck Oncol 2009 Jul 14;1:27
Hassan MK, Kumar D, Naik M, Dixit M. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers PLoS One 2018 Jan 17;13(1):e0191377
He Y, Yuan C, Chen L, Lei M, Zellmer L, Huang H, Liao DJ. Transcriptional-Readthrough RNAs Reflect the Phenomenon of "A Gene Contains Gene(s)" or "Gene(s) within a Gene" in the Human Genome, and Thus Are Not Chimeric RNAs Genes (Basel) 2018 Jun 16;9(1)
Hensen SM, Heldens L, van Genesen ST, Prijn GJ. Lubsen NH. A delayed antioxidant response in heat-stressed cells expressing a non-DNA binding HSF1 mutant Cell Stress Chaperones 2013 Jul;18(4):455-73
Hirotsume S, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S, Yagami K, Wynnshaw-Boris A, Yoshiki A. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene Nature 2003 May 1;423(6935):91-6
Janssen GM, van Damme HT, Krieck J, Amoons R, Möller W. The subunit structure of elongation factor 1 from Artemia Why two alpha-chains in this complex? J Biol Chem 1994 Dec 16;269(50):31410-7
Jiang S, Wolfe CL, Warrington JA, Norcum MT. Three-dimensional reconstruction of the valyl-tRNA synthetase/elongation factor-1H complex and localization of the delta subunit FEBS Lett 2005 Nov 7;579(27):6049-54
Joseph P, Lei YX, Whong WZ, Ong TM. Oncogenic potential of mouse translation elongation factor-1 delta, a novel cadmium-responsive proto-elongation gene J Biol Chem 2002 Feb 22;277(8):6131-6
Joseph P, O’Kernick CM, Othumpangat S, Lei YX, Yuan BZ, Ong TM. Expression profile of eukaryotic translation factors in human cancer tissues and cell lines Mol Carcinog 2004 Jul;40(3):171-9
Jurca G, Addam O, Akas A, Gao S, Özyer T, Demetric D, Ahajj R. Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends BMC Res Notes 2016 Apr 26;9:236
Kaitsuka T, Tomizawa K, Matsuhashita M. Transformation of eEF1B5 into heat-shock response transcription factor by alternative splicing EMBO Rep 2011 Jul 1;12(7):673-81
Kawaguchi Y, Kato K, Tanaka M, Kanamori M, Nishiyama Y, Yamashita Y, Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic translation elongation factor 1delta J Virol 2003 Feb;77(4):2359-68
Keenan J, Murphy L, Henry M, Meleady P, Clynes M. Proteomic analysis of multidrug-resistance mechanisms in adriamycin-resistant variants of DLKP, a squamous lung cancer cell line Proteomics 2009 Mar;9(5):1556-66
Kim J, Kim S, Ko S, In YH, Moon HG, Ahn SK, Kim MK. Lee M, Hwang JH, Ju YS, Kim JI, Noh DY, Kim S, Park JH, Rheo H, Kim S, Han W. Recurrent fusion transcripts detected by whole-transcriptome sequencing of 120 primary breast cancer samples Genes Chromosomes Cancer 2015 Nov;54(11):681-91
Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H, Degenhardt J, Mayba O, Gnad F, Liu J, Pau G, Reeder J, Cao Y, Mukhyala K, Selvaraj SV, Yu M, Zynda GJ, Brauer MJ, TUD, Gentleman RC, Manning G, Yauch RL, Bouron R, Stokoe D, Modrusan Z, Neve RM, de Sauvage FJ, Settleman J, Seshaagiri S, Zhang Z. A comprehensive transcriptional portrait of human cancer cell lines Nat Biotechnol 2015 Mar;33(3):306-12
Le Sourd F, Boublen S, Le Bouffant R, Cormier M, Morales J, Beller R, Mulner-Lorillon O. eEF1B: At the dawn of the 21st century Biochim Biophys Acta 2006 Jan-Feb;1759(1-2):13-31
Lei XY, Chen JK, Wu ZL. Blocking the translation elongation factor-1 delta with its antisense mRNA results in a significant reversal of its oncogenic potential Terratog Carcinog Mutagen 2002;22(5):377-83
Liu K, Ren Y, Pang L, Qi Y, Jia W, Tao L, Hu Z, Zhao J, Zhang H, Li L, Yue H, Han J, Liang W, Hu J, Zou H, Yuan X, Li F. Papillary renal cell carcinoma: a clinicopathological and whole-genome exon sequencing study Int J Clin Exp Pathol 2015 Jul 1;8(7):8311-35
Mansilla F, Friis I, Jadidi M, Nielsen KM, Clark BF, Knudsen H, Kim S, Han W. Recurrent fusion transcripts detected by whole-transcriptome sequencing of 120 primary breast cancer samples Genes Chromosomes Cancer 2015 Nov;54(11):681-91
McLachlan F, Sires AM, Abbott CM. The role of translation elongation factor eEF1 subunits in neurodevelopmental disorders Hum Mutat 2019 Feb;40(2):131-141
Miliev MP, Ravichandran M, Khan MF, Schriemer DC, Mouland AJ. Characterization of stau1 ribonucleoproteins by mass spectrometry and biochemical analyses reveal the presence of diverse host proteins associated with human immunodeficiency virus type 1 Front Microbiol 2012 Oct 25;3:367
Minella O, Mulner-Lorillon O, Bec G, Cormier P, Bellè R. Multiple phosphorylation sites and quaternary organization of guanine-nucleotide exchange complex of elongation factor-1 (EF-1etagamaddelta/ValRS) control the various functions of EF-1alpha Biosci Rep 1998 Jun;18(3):119-27
EEF1D (eukaryotic translation elongation factor 1 delta)

Cristiano L

Ogawa K, Utsunomiya T, Mimori K, Tanaka Y, Tanaka F, Inoue H, Murayama S, Mori M. Clinical significance of elongation factor 1 delta mRNA expression in oesophageal carcinoma Br J Cancer 2004 Jul 19;91(2):282-6

Ong LL, Er CP, Ho A, Aung MT, Yu H. Kinetin anchors the translation elongation factor-1 delta to the endoplasmic reticulum J Biol Chem 2003 Aug 22;278(34):32115-23

Peyvandi H, Peyvandi AA, Safaee A, Zamanian Azodi M, Rezaei-Tavirani M. Introducing Potential Key Proteins and Pathways in Human Laryngeal Cancer: A System Biology Approach Iran J Pharm Res 2018 Winter;17(1):415-425

Piltti J, Häyrinen J, Karjalainen HM, Lammi MJ. Proteomics of chondrocytes with special reference to phosphorylation changes of proteins in stretched human chondrosarcoma cells Biochemistry 2008;45(3-4):323-35

Reuter MS, Tawamie H, Buchert R, et al. Diagnostic Yield and Novel Candidate Genes by Exome Sequencing in 152 Consanguineous Families With Neurodevelopmental Disorders JAMA Psychiatry 2017 Mar;174(3):293-299

Sanders J, Brandsma M, Janssen GM, Dijk J, Möller W. Immunofluorescence studies of human fibroblasts demonstrate the presence of the complex of elongation factor-1 delta and eEF1A in the endoplasmic reticulum J Cell Sci 1996 May;109 (Pt 5):1113-7

Sanders J, Raggiacshi R, Morales J, Möller W. The human leucine zipper-containing guanine-nucleotide exchange protein elongation factor-1 delta Biochim Biophys Acta 1993 Jul 18;1174(1):87-90

Sanz-Pampiona R, Arags R, et al. Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB2- and ErbB2- primary breast tumors Ann J Pathol 2011 Aug;179(2):564-79

Schulte EC, Ellwanger DC, Dihanich S, Manzioni C, Stangl K, Schormair B, Graf E, Eck S, Mollenhauer B, Haubenberger D, Pirker W, Zimpich A, Brücke T, Lichtner P, Peters A, Goseki N, Igari T, Hatsuse K, Aihara T, Horiuchi Y, Sheu GT, Traugh JA. Recombinant subunits of mammalian elongation factor 1 delta inhibits the ubiquitin ligase activity of SIAH-1 Mol Cell Biochem 2011 Nov;357(1-2):87-90

Shahb S, Jafari Shakib R, Jamshidi A, Vojdanian M, Akhtar M, Aslani S, Poursani S, Nikokar I, Mahmoudi M. Association study of copy number variation in BMP8A gene with the risk of ankylosing spondylitis in Iranian population J Hum Genet 2019 May;64(5):421-426

Veremieva M, Khoruzhenko A, Zaicev S, Negrutskii B, El'skaya A. Unbalanced expression of the translation complex eEF1A subunits in human colorectal adenocarcinoma Eur J Clin Invest 2011 Mar;41(3):269-76

Wain LV, Pedrosio I, Landers JE, Breen G, Shaw CE, Leigh PN, Brown RH, Tobin MD, Al-Chalabi A. The role of copy number variation in susceptibility to amyotrophic lateral sclerosis: genome-wide association study and comparison with published loci PLoS One 2009 Dec 4(12):e8175

Wu C, Wyatt AW, McPherson A, Lin D, McConeghy BJ, Mo F, Shukin R, Lapuk AV, Jones SJ, Zhao Y, Marra MA, Gleave ME, Volk SV, Wang Y, Sahinlal SC, Collins CC. Poly-gene fusion transcripts and chromothripsis in prostate cancer Genes Chromosomes Cancer 2012 Dec;51(12):1144-53

Wu H, Shi Y, Lin Y, Gian W, Yu Y, Hoo K. Eukaryotic translation elongation factor 1 delta inhibits the ubiquitin ligase activity of SIAH-1 Mol Cell Biochem 2011 Nov;357(1-2):209-15

Yang S, Du J, Wang Z, Yuan W, Qiao Y, Zhang M, Zhang J, Gao S, Yin J, Sun B, Zhu T. BMP-6 promotes E-cadherin expression through repressing deltaEF1 in breast cancer cells BMC Cancer 2007 Nov 13;7:211

Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H, Verhaak RG. The landscape and therapeutic relevance of cancer-associated transcript fusions Oncogene 2015 Sep 10;34(37):4845-54

Zhang D, Chen P, Zheng CH, Xia J. Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach Oncotarget 2016 Jan 26;7(4):4298-309

de Bont JM, Packer RJ, Michiels EM, den Boer ML, Pieters R. Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective Neuro Oncol 2008 Dec;10(6):1040-60

van 't Veer LJ, Dai H, et al. Gene expression profiling predicts clinical outcome of breast cancer Nature 2002 Jan 31;415(6871):530-6

This article should be referenced as such:

Cristiano L. EEF1D (eukaryotic translation elongation factor 1 delta). Atlas Genet Cytogenet Oncol Haematol. 2020; 24(3):117-135.