Stents Farmacológicos de Primeira Versus Segunda Geração na Síndrome Coronariana Aguda (Registro Katowice-Zabrze)

First-Versus Second-Generation Drug-Eluting Stents in Acute Coronary Syndromes (Katowice-Zabrze Registry)

Damian Kawecki¹, Beata Morawiec¹, Janusz Dola¹, Wojciech Wanka², Grzegorz Smolka³, Aleksandra Pluta³, Kamil Marcinkiewicz², Andrzej Ochała³, Ewa Nowalany-Koziełska¹, Wojciech Wojakowski²
²nd Department of Cardiology – Zabrze Medical University of Silesia, Katowice – Polônia; ³rd Division of Cardiology – Katowice-Ochojec – Medical University of Silesia, Katowice – Polônia

Resumo
Fundamento: Os dados sobre o desempenho dos diferentes tipos de stents farmacológicos (SF) no cenário agudo e da vida real são escassos.
Objetivo: Comparar a segurança e a eficácia dos SF de primeira e de segunda geração em pacientes com síndrome coronariana aguda (SCA).
Métodos: Este registro arrolou pacientes consecutivos com diagnóstico de SCA e tratados com intervenção coronariana percutânea e implantação de SF de primeira ou segunda geração em seguimento de 1 ano. O desfecho primário ‘eficácia’ foi definido como eventos cardíacos adversos maiores (ECAM), um composto de morte por todas as causas, infarto do miocárdio não fatal, revascularização de vaso-alvo e acidente vascular encefálico. O desfecho primário ‘segurança’ foi trombose de stent (TS) definitiva em 1 ano.
Resultados: Do total de 1.916 pacientes arrolados, 1.328 foram diagnosticados com SCA. Desses, 426 foram tratados com SF de primeira geração e 902, com SF de segunda geração. Não houve diferença significativa na incidência de ECAM entre os dois tipos de SF em 1 ano. A taxa de TS aguda e subaguda foi maior com SF de primeira geração do que com os de segunda geração (1,6% vs. 0,1%, p < 0,001; e 1,2% vs. 0,2%, p = 0,025, respectivamente), mas não houve diferença para TS tardia (0,7% vs. 0,2%, respectivamente, p = 0,18) nem para sangramento gastrointestinal (2,1% vs.1,1%, p = 0,21). Na regressão de Cox, o SF de primeira geração foi preditor independente para TS cumulativa [HR 3,29 (1,30-8,31); p = 0,01].
Conclusões: No registro de SCA, a taxa de ECAM em 1 ano foi comparável nos grupos tratados com SF de primeira e de segunda geração. O uso de SF de primeira geração associou-se a maiores taxas de TS aguda e subaguda, sendo um preditor independente para TS cumulativa. (Arq Bras Cardiol. 2016; 106(5):373-381)
Palavras-chave: Síndrome Coronariana Aguda; Stents Farmacológicos; Trombose; Intervenção Coronária Percutânea.

Abstract
Background: There are sparse data on the performance of different types of drug-eluting stents (DES) in acute and real-life setting.
Objective: The aim of the study was to compare the safety and efficacy of first- versus second-generation DES in patients with acute coronary syndromes (ACS).
Methods: This all-comer registry enrolled consecutive patients diagnosed with ACS and treated with percutaneous coronary intervention with the implantation of first- or second-generation DES in one-year follow-up. The primary efficacy endpoint was defined as major adverse cardiac and cerebrovascular event (MACCE), a composite of all-cause death, nonfatal myocardial infarction, target-vessel revascularization and stroke. The primary safety outcome was definite stent thrombosis (ST) at one year.
Results: From the total of 1916 patients enrolled into the registry, 1328 patients were diagnosed with ACS. Of them, 426 were treated with first- and 902 with second-generation DES. There was no significant difference in the incidence of MACCE between two types of DES at one year. The rate of acute and subacute ST was higher in first- vs. second-generation DES (1.6% vs. 0.1%, p < 0.001, and 1.2% vs. 0.2%, p = 0.025, respectively), but there was no difference regarding late ST (0.7% vs. 0.2%, respectively, p = 0.18) and gastrointestinal bleeding (2.1% vs. 1.1%, p = 0.21). In Cox regression, first-generation DES was an independent predictor for cumulative ST (HR 3.29 [1.30-8.31], p = 0.01).
Conclusions: In an all-comer registry of ACS, the one-year rate of MACCE was comparable in groups treated with first- and second-generation DES. The use of first-generation DES was associated with higher rates of acute and subacute ST and was an independent predictor of cumulative ST. (Arq Bras Cardiol. 2016; 106(5):373-381)
Keywords: Acute Coronary Syndrome; Drug-Eluting Stents; Thrombosis; Percutaneous Coronary Intervention.
Introdução

Os stents farmacológicos (SF) foram introduzidos com sucesso na prática clínica para intervenções coronarianas percutâneas (ICP) em resposta à alta taxa de re-estenose associada com os stents convencionais (SC).1,2 Análises de estudos randomizados com SF liberadores de paclitaxel e sirolimo mostraram taxas similares de mortalidade e de infarto do miocárdio (IM), mas menos repetição de revascularização em comparação aos SC.3 Plataformas mais antigas de SF, com estrutura relativamente grossa e polímeros duráveis, associaram-se, no entanto, a trombose de stent (TS) tardia e muito tardia.4,5

Atualmente há evidência de que plataformas mais novas de stents com estruturas mais finas, polímeros mais biocompatíveis e os fármacos “limo” fornecem melhor eficácia em termos de menor trombogênico, assim como segurança clínica (TS), em estudos pré-clínicos.6,7 Tais stents são considerados SF de segunda geração.

Tanto estudos randomizados quanto grandes registros mostraram consistentemente melhores segurança e eficácia em subgrupos de pacientes, incluindo aqueles com síndrome coronariana aguda (SCA) e doença arterial coronariana (DAC) estável.8 A despeito de sua baixa frequência, a TS, no entanto, permanece a principal preocupação associada à implantação de SF, em especial em pacientes com alto risco de sangramento, baixa adesão à medicação e SC, devido à alta mortalidade dessa complicação.9

No início, o uso do SF na SCA foi “off-label”, mas as diretrizes atuais indicam que o SF deve ser preferido em lugar do SC também na SCA, incluindo o infarto agudo do miocárdio com supradesnível do segmento ST (IAMSSST), com base em ensaios randomizados.10-12 Na maioria dos estudos que compara a primeira e a segunda geração de SF, os pacientes com SCA constituem apenas uma fração das populações estudadas.13,14-16 Recentemente, alguns estudos comparando as duas gerações de SF em quadros agudos foram publicados.17,18 No entanto, tais dados são escassos e aguardam avaliação adicional.

Este estudo, portanto, visou a comparar a segurança e a eficácia da primeira vs. a segunda geração de SF em uma população com SCA em seguimento de 1 ano.

Métodos

Delineamento do estudo

O registro Katowice-Zabrze envolveu pacientes consecutivos tratados com ICP e implantação de SF. O arrolamento foi conduzido em dois centros terciários de cardiologia de grande volume, num total de 5.500 ICP/ano (Upper Silesian Medical Center, em Katowice, e 2º Departamento de Cardiologia, em Zabrze), de 1 de janeiro de 2009 a 31 de dezembro de 2010. Este registro ainda em andamento teve por objetivo comparar a primeira e a segunda geração de SF em uma população irrestrita de pacientes. Para a população do registro, o critério de inclusão foi o diagnóstico de SCA tratada com ICP e implantação de SF de primeira ou segunda geração. A SCA foi definida de acordo com as diretrizes atuais como angina instável (AI), infarto agudo do miocárdio sem supradesnível do segmento ST (IAMSSST) ou IAMCSST.19-21 Na angiografia coronariana, registram-se as características angiográficas básicas: localização da lesão, gravidade da estenose, tipo de lesão segundo AHA/ACC, trombo, calcificações. Avaliou-se o SYNTAX escore de todos os pacientes, exceto após cirurgia de revascularização do miocárdio (CRM). Os stents foram escolhidos pelo operador entre SF de primeira-geração com polímero durável ou SF de segunda geração. Se mais de um stent foi implantado em um paciente, o SF implantado na lesão culpada ou na estenose mais grave foi considerado o procedimento-índice. A terapia antiagregante plaquetária dupla (ácido acetilsalicílico e inibidor de receptor de ADP do subtipo P2Y12) foi prescrita por até 12 meses após o procedimento em cada paciente. Dados basais clínicos, angiográficos e procedurais foram retrospectivamente coletados dos prontuários médicos.

Implantação de stent coronariano

Os stents para implantação foram escolhidos entre SF de primeira e de segunda geração, a saber: SF de primeira geração com base de polímero durável (SF liberador de paclitaxel (SFP) (Taxus, Boston Scientific Corporation, Maple Grove, MN, EUA) ou SF liberador de sirolimo (SFS) (Cypher, Cordis, EUA)); SF de segunda geração (SF liberador de everolimo (SFE) (Promus, Boston Scientific Corporation; Xience, Xience Prime, Abbott Vascular, Santa Clara, CA, EUA), SF liberador de zotarolimo (SFG) (Endeavor, Resolute, Medtronic, Minneapolis, MN, EUA) e SF liberador de biolimo (SFB) (Biolimus A9, Biosensors International, Suíça)].

Regime antiagregante plaquetário e antitrombótico

Todos os pacientes foram tratados de acordo com as diretrizes para SCA, tendo recebido uma dose de ataque de ácido acetilsalicílico e inibidor de receptor de ADP antes, durante ou logo depois da ICP, e um bolus de heparina não fracionada antes da ICP. O inibidor do receptor glipocóutina IIb/IIia foi administrado de acordo com a decisão do operador. Após o procedimento, os pacientes receberam prescrição de ácido acetilsalicílico, 75 mg ao dia, por toda a vida, e clopidogrel, 75 mg ao dia, por até 12 meses, modificado nos pacientes que necessitaram de anticoagulação por outros motivos.

Seguimento

Os pacientes foram acompanhados por 1 ano. Toda a informação foi obtida dos prontuários médicos nos centros de arrolamento. Quando a informação não estava disponível, tentou-se contato telefônico. Quando não houve sucesso, a informação sobre os desfechos clínicos foi obtida no Sistema Nacional de Atenção à Saúde.

O desfecho primário ‘eficácia’ foi um composto de eventos cardíacos adversos maiores (ECAM), que incluíram morte por todas as causas, IM não fatal, revascularização do vaso-alvo (RVA) e acidente vascular encefálico.

Os desfechos secundários foram componentes individuais do desfecho primário: morte por todas as causas, IM, RVA, acidente vascular encefálico e CRM. A segurança do SF foi definida como TS definitiva (aguda, subaguda, tardia.
e cumulativa) e taxa de sangramento gastrointestinal em 1 ano. Para o IM, adotou-se a definição universal. A RVA e a TS definitiva (aguda, subaguda e tardia) foram definidas de acordo com as definições dos desfechos para ensaios clínicos. O sangramento gastrointestinal foi considerado desfecho se atendesse aos critérios de sangramento do tipo 3 ou tipo 5, de acordo com as definições propostas.

Todos os pacientes assinaram o termo de consentimento livre e esclarecido. O protocolo do estudo estava em conformidade com a Declaração de Helsinki de 1975, tendo sido aprovado pelo Comitê de Ética em Pesquisa da Medical University of Silesia (No. KNW/0022/KB/59/11).

Análise estatística

A normalidade da distribuição das variáveis foi checada com o teste de Shapiro-Wilk. As variáveis contínuas foram apresentadas como média ± desvio padrão ou mediana (percentis 25 e 75), sendo comparadas com o teste t de Student ou teste de Mann-Whitney. As variáveis categóricas foram apresentadas como porcentagens, sendo comparadas usando-se o teste do qui-quadrado. As curvas de sobrevida de Kaplan-Meier foram construídas para descrever a incidência dos desfechos ao longo do tempo. A influência nos desfechos dos parâmetros significativamente diferentes entre os grupos foi avaliada com análise univariada de Cox. Usou-se o modelo de regressão multivariada de Cox para identificar os fatores de risco para os desfechos ‘segurança’ e ‘eficácia’, tendo sido incluídas todas as variáveis estatisticamente significativas na análise univariada. Todos os testes foram bicaudais, adotando-se como significativo o valor de p < 0,05. A análise foi realizada com os programas Estadística, versão 10PL (StatSoft Inc., Tulsa, OK, EUA), e GraphPad Prism, versão 6.00 (GraphPad, La Jolla, California, EUA).

Resultados

Um total de 8.284 ICP foi realizado durante o período analisado. Foram excluídos do estudo, 6.368 pacientes (6,177 que receberam SC e 191 que foram submetidos a angioplastia com balão). Dos 1.916 pacientes restantes submetidos à ICP com implantação de SF, 588 tinham DAC estável, sendo excluídos da análise. Os 1.328 pacientes restantes receberam o diagnóstico de SCA (incluindo 131 IAMCSTT, 285 IAMSSST e 912 AI) e participaram deste estudo. Desses 1.328 pacientes, 426 foram tratados com SF de primeira geração (391 SFP, 35 SFS) e 902 com SF de segunda geração (180 SFB, 483 SFE, 329 SFZ). A Tabela 1 apresenta a distribuição do diagnóstico final nos dois grupos.

Os dois grupos apresentavam perfis basais similares (Tabela 1) e taxas comparáveis de fatores de risco cardiovascular. Os pacientes que receberam SF de segunda geração apresentaram maior incidência de infarto agudo do miocárdio prévio do que aqueles que receberam SF de primeira geração (49% vs. 42%, p = 0,02). A história de intervenções coronarianas não diferiu significativamente entre os grupos.

A Tabela 2 apresenta as características angiográficas e procedurais. Não houve diferença quanto ao vaso tratado entre os grupos. Observou-se SYNTAX escore mais alto nos pacientes com SF de primeira geração do que nos de segunda geração (medianas, 17 vs. 13 pontos, p < 0,001). Trombos e calcificações foram mais comuns nos pacientes com SF de primeira geração (p < 0,001 e p < 0,05, respectivamente).

A Figura 1 apresenta a distribuição temporal da implantação dos dois tipos de SF durante o período estudado. Os SF de primeira geração foram implantados mais frequentemente após pré-dilatação e com pressão de insuflação média mais baixa do que os de segunda geração (p = 0,002 e p < 0,001, respectivamente). Os procedimentos não diferiram quanto ao comprimento e ao diâmetro do stent, nem quanto ao número total de stents por lesão. O desfecho anatômico do procedimento foi igual, sendo fluxo TIMI 3 alcançado em 98% dos casos nos dois grupos (p = 0,48). Quanto ao tratamento antitrombótico e antiagregante plaquetário, inibidores do receptor gp IIb/IIIa foram administrados em 7% e 6% dos casos de SF de primeira e de segunda geração, respectivamente (p = 0,62). A dose de ácido acetilsalicílico foi prescrita para 99% e 98% dos pacientes dos grupos com SF de primeira e de segunda geração, respectivamente (p = 0,23). Os dois grupos receberam anticoagulação oral com igual frequência (6%; p = 0,8). Em 3 pacientes do grupo de SF de primeira geração (0,7%) e 1 paciente do grupo de SF de segunda geração (0,1%), o ácido acetilsalicílico foi descontinuado após 3-6 meses (p = 0,19).

Desfechos

Não houve diferença significativa na incidência dos desfechos predominantes e secundários ‘eficácia’ na análise univariada de Cox, apenas a história de infarto agudo do miocárdio foi um preditor estatisticamente significativo de ECAM (HR 1,39; IC: 1,04-1,84; p = 0,03) (Tabela 5). Após ajuste na análise multivariada, apenas a história de infarto agudo do miocárdio foi um preditor estatisticamente significativo de ECAM (HR 1,39; IC: 1,04-1,84; p = 0,03) (Tabela 5).

Quanto ao perfil de segurança, a taxa de TS aguda e subaguda foi significativamente mais alta nos SF de primeira geração do que os SF de segunda geração (1,6% vs. 0,1%, p < 0,001 e 1,2% vs. 0,2%, p = 0,025, respectivamente) (Figura 3). Não houve diferença significativa entre os SF de primeira e de segunda geração quanto à ocorrência de TS tardia (0,7% vs. 0,2%, respectivamente, p = 0,18) e nem quanto ao sangramento gastrointestinal (2,1% vs. 1,1%, respectivamente, p = 0,21). O modelo de regressão de Cox para a incidência de TS cumulativa revelou que, entre outros parâmetros, o SF de primeira geração foi um preditor independente na análise univariada (HR 4,61; IC: 1,04-1,84; p = 0,03) (Tabela 5).

Discussão

O estudo katowice-Zabrze mostrou que, em pacientes com SCA tratados com ICP, o uso de SF de segunda geração pode estar associado com melhor perfil de segurança e taxa mais baixa de TS aguda e subaguda em 1 ano. Entretanto, o SF de...
Características	SF de primeira geração (n = 426)	SF de segunda geração (n = 902)	Valor de p
Sexo masculino	255 (60)	590 (65)	0,05
Idade (anos)	64 ± 9,4	63,2 ± 10,4	0,17
IMC (kg/m²)	29,3 ± 4,9	28,8 ± 4,7	0,26
Obesidade	103 (24)	198 (22)	0,37
Insuficiência renal	75 (18)	171 (19)	0,56
Fração de ejeção (%)	50 (42,55)	54 (45,60)	0,03
Diabetes mellitus	171 (40)	331 (37)	0,23
Hipertensão	360 (85)	790 (88)	0,12
Dislipidemia	278 (65)	575 (64)	0,59
Fumantes	99 (23)	212 (24)	0,92
História familiar de DAC	133 (31)	317 (35)	0,16
IAM prévio	179 (42)	439 (49)	0,02
ICP prévia	220 (52)	478 (53)	0,65
CRM prévia	90 (21)	225 (25)	0,13
Aterosclerose carotidea	19 (4)	57 (6)	0,17
DAP	51 (12)	105 (12)	0,86

Diagnóstico inicial

	SF de primeira geração (n = 426)	SF de segunda geração (n = 902)	Valor de p
Angina instável	265 (62)	647 (71)	< 0,001
IAMSSST	109 (26)	176 (20)	0,01
IAMCSST	52 (12)	79 (9)	0,05

Tabela 1 – Características clínicas

Comentários

A segunda geração não melhorou a taxa global de ECAM em comparação ao SF de primeira geração.

Observações similares para a população com SCA foram publicadas, sugerindo que, para o tratamento de IAMCSST, todos os SF (primeira e segunda geração) mostram resultados semelhantes, a despeito das taxas mais elevadas de perda tardia de lúmen, re-estenose e trombose dos SF de primeira geração. Parece que a ICP na SCA tem eficiência similar, a despeito do tipo do fármaco de revestimento do stent. É importante notar que as taxas de ECAM na nossa população foram mais altas do que as relatadas em diferentes estudos. Isso pode ser explicado pelas diferenças no perfil da população com mais ou menos critérios de restrição no arrolamento (exclusão da implantação de SF devido a TS ou pacientes em choque cardioágênico, com insuficiência renal ou com desfecho subótimo do procedimento-índice). Uma taxa mais baixa de desfecho global para pacientes com SCA e menor incidência de ECAM para SF de primeira geração do que a do nosso estudo foi relatada em uma análise que agrupou 4 ensaios randomizados. A razão para isso poderia ser o perfil diferente da população com mais fatores de risco (diabetes mellitus, hipertensão arterial, infarto agudo do miocárdio prévio e ICP prévia) e lesões mais complexas (artéria coronária descendente anterior esquerda e tronco de coronária esquerda como procedimento-índice, lesão mais extensa, maior diâmetro da estenose) do que na nossa coorte. Finalmente, as altas taxas dos desfechos no nosso estudo poderiam ser explicadas comparando-o com um estudo com critérios de inclusão mais consistentes, o SORT OUT-III. O SORT OUT foi um estudo randomizado com uma grande parte de pacientes não randomizados, que, portanto, não foram analisados. Um melhor perfil de risco do que o apresentado aqui implicou em baixas taxas de desfecho na população estudada. Nosso estudo é uma análise, em uma população com SCA, de uso irrestrito e independente de SF; seus desfechos, portanto, poderiam refletir a prática clínica real e ser diretamente aplicados nos cuidados aos pacientes.
Tabela 2 – Características angiográficas e procedurais

Características	SF de primeira geração (n = 426)	SF de segunda geração (n = 902)	Valor de p
Vaso culpado			
TC	40 (9)	59 (7)	0,07
DAE	216 (51)	442 (49)	0,56
Cx	69 (16)	158 (18)	0,55
CD	78 (18)	186 (21)	0,32
ES	21 (5)	49 (5)	0,7
EA	2 (0,5)	8 (1)	0,41
SYNTAX escore	17 (10;28)	13 (7;22)	< 0,001
Trombo	30 (7)	26 (3)	0,001
Lesão ostial	74 (16)	128 (15)	0,25
Re-estenose	72 (17)	144 (16)	0,67
Calcificações	56 (13)	36 (4)	< 0,001
Gravidade da estenose (%)	86,8	87,4	0,78
Número de SF por lesão	1 (1:1)	1 (1:1)	0,15
Comprimento do SF por lesão (mm)	22 (15;29)	22,5 (15;28)	0,57
Diâmetro do stent (mm)	3,03 ± 0,48	3,07 ± 0,47	0,55
Pré-dilatação	222 (53)	368 (44)	0,002
Pressão máxima de insuflação (atm)	16 ± 4	17 ± 4	< 0,001
Fluxo TIMI 3	419 (98)	881 (98)	0,48
Inibidores GPIIb/IIIa	28 (7)	53 (6)	0,62

Dados apresentados como n (%) ou média ± DP. SF: stent farmacológico; TC: tronco de coronária esquerda; DAE: artéria coronária descendente anterior esquerda; Cx: artéria coronária circunflexa; CD: artéria coronária direita; ES: enxerto de safena; EA: enxerto arterial; TIMI: thrombosis in myocardial infarction.

![Figura 1 – Distribuição temporal do número de SF de primeira e de segunda geração implantados durante o período estudado. DES: drug-eluting stent.](image-url)
Tabela 3 – Desfechos clínicos em 1 ano

Características	Primeira geração SF (n = 426)	Segunda geração SF (n = 902)	Valor de p
TS			
TS aguda	7 (1,6)	1 (0,1)	< 0,001
TS subaguda	5 (1,2)	2 (0,2)	0,025
TS tardia	3 (0,7)	2 (0,2)	0,18
TS cumulativa	15 (3,5)	5 (0,6)	< 0,001
Desfecho primário			
ECAM	80 (19)	135 (15)	0,078
Desfecho secundário			
Morte	19 (4,5)	39 (4,3)	0,91
IAM	31 (7,2)	43 (4,8)	0,06
RVA	51 (12)	90 (10)	0,27
Acidente vascular encefálico	6 (1,4)	5 (0,6)	0,11
CRM	12 (2,8)	12 (1,3)	0,06
Sangramento gastrointestinal	9 (2,1)	10 (1,1)	0,15

Dados apresentados como n (%). SF: stent farmacológico; TS: trombose de stent; ECAM: eventos cardíacos adversos maiores; IAM: infarto agudo do miocárdio; RVA: revascularização de vaso-alvo; CRM: cirurgia de revascularização do miocárdio.

Figura 2 – Incidência de ECAM em 1 ano. ECAM: eventos cardíacos adversos maiores; SCA: síndrome coronariana aguda; SF: stents farmacológicos.

O registro sueco SCAAR, com mais de 94.000 pacientes, mostrou que os SF de segunda geração apresentam 62% menos risco de TS do que os SC, e 43% menos do que os SF de primeira geração, achados consistentes com os nossos. Na grande população do SCAAR, houve uma redução de mortalidade com o uso de SF de segunda geração. As observações foram confirmadas pela meta-análise de Palmerini et al., mostrando, em uma análise que agrupou 49 estudos clínicos randomizados com 50.844 pacientes, uma consistente redução de TS com SF da nova geração em comparação com os SF de primeira geração e os SC.

No que concerne à segurança do SF, a TS é a forma mais grave e frequentemente fatal de comprometimento do vaso-alvo. No entanto, a porcentagem de RVA de origem trombótica aqui relatada é baixa. Os resultados apresentados confirmam a ocorrência significativamente maior de complicação tromboembólica no seguimento de curto prazo após a implantação de SF de primeira geração. Tais fatos não surpreendem, considerando-se a maioria dos dados já publicada. Taxas mais altas de TS aguda e subaguda foram observadas a despeito da inexistência de diferença nas características angiográficas pós-procedurais e na administração de terapia antiagregante plaquetária dupla padronizada intra-hospitalar. As maiores taxas de TS com os SF de primeira do que com os de segunda geração poderiam ser explicadas pela significativamente maior carga de DAC.
Tabela 4 – Modelo univariado de riscos proporcionais de Cox para incidência de eventos cardíacos adversos maiores (ECAM) e de trombose de stent (TS)

Características	Valor de p	HR	HR IC	Valor de p	HR	HR IC
		ECAM		TS cumulativa		
SF de primeira geração	0,07	1,29	0,98-1,7	< 0,001	4,61	1,88-11,31
Sexo masculino	0,38	1,13	0,86-1,5	0,36	1,53	0,6-3,91
IAM prévio	0,005	1,46	1,12-1,94	0,34	0,66	0,27-1,56
FEVE	0,04	0,99	0,98-0,999	0,04	0,97	0,94-0,998
SYNTAX escore	0,02	1,02	1,0-1,03	< 0,001	1,06	1,03-1,09
Trombo	0,99	1,0	0,53-1,89	< 0,001	6,99	2,57-18,97
Calcificações	0,79	1,08	0,61-1,94	0,22	2,13	0,63-7,24
Pré-dilatação	0,009	1,44	1,09-1,91	0,03	2,83	1,1-7,28
Pressão de insuflação máxima	0,52	0,98	0,94-1,03	0,02	0,83	0,72-0,97

SF: stent farmacológico; IAM: infarto agudo do miocárdio; FEVE: fração de ejeção ventricular esquerda; IC: intervalo de confiança.

Tabela 5 – Modelo multivariado de riscos proporcionais de Cox para incidência de eventos cardíacos adversos maiores (ECAM)

Características	Valor de p	HR	HR IC
		ECAM	
IAM prévio	0,03	1,38	1,04-1,84
FEVE	0,65	0,98	0,98-1,01
SYNTAX escore	0,38	1,01	0,99-1,02
Pré-dilatação	0,05	1,34	1,0-1,79

SF: stent farmacológico; IAM: infarto agudo do miocárdio; FEVE: fração de ejeção ventricular esquerda; IC: intervalo de confiança.

Figura 3 – Taxas de trombose de stent (TS). TS: trombose de stent; SF: stents farmacológicos.
neste grupo, como indicado pelo SYNTAX escore, apesar de os pacientes nos dois grupos terem sido classificados como de baixo risco (mediana do escore < 22).

É importante notar que apenas as taxas de TS aguda e subaguda diferiram significativamente entre os SF de primeira e de segunda geração, sendo a taxa de TS cumulativa influenciada pelos eventos de TS precoces. Tais diferenças podem ser atribuídas aos diferentes designs dos stents, em especial o comprometimento da endotelização da estrutura nos SF de primeira geração relacionado à maior espessura da estrutura e ao menor revestimento com polímero biocompatível (derivado de poliolefina no Taxus e copolímero PEVA+PBMA no Cypher), causando resposta inflamatória em torno da estrutura, defeito estrutural no polímero após liberação do stent, e ainda ao paclitaxel, que pode retardar a recuperação endotelial. A nova geração do SFE mostrou-se menos suscetível a resposta inflamatória e trombose.39 A otimização do procedimento com adequação do tamanho e da liberação do stent é igualmente importante, em especial em pacientes com SCA e alta carga trombotica.30

Tais diferenças não se refletiram no seguimento clínico, que mostrou taxas similares de ECAM nos dois grupos. De acordo com publicações na área,31,32 a maior preocupação da implantação de SF é a TS muito tardia. A falta de acompanhamento angiográfico rotineiro e a restrição do período de observação a 1 ano no presente estudo limitaram as possibilidades para uma compreensão mais profunda do significado clínico das duas principais complicações no stent, TS e re-estenose, e suas interações ao longo do tempo. Sabe-se que a TS no SC deve-se inteiramente à re-estenose.33 A origem trombótica da RVA no SF deriva de vários fatores,34 tal como as características da lesão específicas para SCA.

Limitações

Este foi um estudo retrospectivo e observacional, tendo, portanto, limitações óbvias. A falta de alocação aleatória para a implantação de SF de primeira ou de segunda geração resultou em uma desproporção no tipo de SCA em cada grupo, e, a despeito das taxas iguais de IAMCSST, considerado o mais forte fator para TS, deve ter afetado os resultados. O desfecho ‘segurança’ foi definido como TS definitiva. Isso pode ter subestimado a real incidência de TS no seguimento. Entretanto, de acordo com Cutlip et al.,22 a qualidade dos dados, que foram obtidos através do seguimento deste registro retrospectivo, tinha que ser considerada. Quando ocorreu infarto agudo do miocárdio no seguimento, não foi possível checar a existência de isquemia aguda documentada no território do stent implantado. Nós casos em que a angiografia coronariana era acessível, aquela foi realizada e, quando aplicável, classificada como TS definitiva. Por fim, uma das condições mais favoráveis ao desenvolvimento de TS é a incompleta aposição da estrutura. Como a técnica de imagem intracoronariana não foi usada rotineiramente após a implantação do stent, refletindo a natureza retrospectiva do estudo, não há precisa indicação das causas de insucesso relacionadas ao operador ou ao stent.

Conclusões

Neste registro de pacientes com SCA, a taxa de ECAM em 12 meses foi comparável nos grupos tratados com SF de primeira e de segunda geração. O uso de SF de primeira geração, como preditor independente de TS cumulativa, associou-se com taxas mais altas de TS aguda e subaguda, mas taxas similares de TS tardia e de sangramento gastrointestinal, quando comparado ao uso de SF de segunda geração.

Contribuição dos autores

Concepção e desenho da pesquisa: Kawecki D, Ochala A, Wojakowski W. Obtenção de dados: Morawiec B, Dola J, Wanha W, Smolka G, Pluta A, Marcinkiewicz K; Análise e interpretação dos dados: Kawecki D, Morawiec B, Dola J, Wanha W, Smolka G, Pluta A, Marcinkiewicz K, Ochala A; Análise estatística: Kawecki D, Morawiec B, Wanha W, Pluta A, Marcinkiewicz K; Redação do manuscrito: Kawecki D, Morawiec B, Ochala A, Nowalany-Kozielska E, Wojakowski W; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Kawecki D, Smolka G, Ochala A, Nowalany-Kozielska E, Wojakowski W.

Potencial conflito de interesse

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica

Não há vinculação deste estudo a programas de pós-graduação.

Errata

Considerar correto e utilizar para citação o nome do autor Wojciech Wanha para o artigo “Stents Farmacológicos de Primeira Versus Segunda Geração na Síndrome Coronariana Aguda (Registro Katowice-Zabrze)”.

Referências

1. Stone GW, Moses JW, Ellis SG, Schofer J, Dawkins KD, Morice MC, et al. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N Engl J Med. 2007;356(10):998-1008.

2. Morice MC, Serruys PW, Sousa JF, Fajadet J, Ban Hayashi E, Perin M, et al; RAVEL Study Group. Randomized Study with the Sirolimus-Coated Bx Velocity Balloon-Expandable Stent in the Treatment of Patients with de Novo Native Coronary Artery Lesions. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002;346(23):1773-80.

3. Kirtane AJ, Gupta A, Jeyragar S, Moses JW, Leon MB, Applegate R, et al. Safety and efficacy of drug-eluting and bare-metal stents: comprehensive meta-analysis of randomized trials and observational studies. Circulation. 2009;119(25):3198-206.
4. Kandszari DE, Mauri L, Popma JJ, Turco MA, Gurbel PA, Fitzgerald PL, et al. Late-term clinical outcomes with zotarolimus- and sirolimus-eluting stents. 5-year follow-up of the ENDEAVOR III (A Randomized Controlled Trial of the Medtronic Endeavor Drug [ABT-578] Eluting Coronary Stent System Versus the Cypher Sirolimus-Eluting Coronary Stent System in De-Novo Native Coronary Artery Lesions). JACC Cardiovasc Interv. 2011;4(5):543-50.

5. Kirtane AJ, Leon MB, Ball MW, Bajwa HS, Sketch MW Jr, Coleman PS, et al; ENDEAVOR IV Investigators. The “final” 5-year follow-up from the ENDEAVOR IV trial comparing a zotarolimus-eluting stent with a paclitaxel-eluting stent. JACC Cardiovasc Interv. 2013;6(4):325-33.

6. Kolandaivelu K, Swaminathan R, Kolachalama VB, Nguyen-Ehrenreich KL, Giddings VL, et al. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation. 2011;123(13):1400-9.

7. Planer D, Smits PC, Kereiakes DJ, Kedhi E, Fahy M, Xu K, et al. Comparison of everolimus- and paclitaxel-eluting stents in patients with acute and stable coronary syndromes: pooled results from the SPIRIT (A Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent) System and COMPARE (A Trial of Everolimus-Eluting Stents and Paclixel-Eluting Stents for Coronary Revascularization in Daily Practice) Trials. J Am Coll Cardiol Cardiovasc Interv. 2011;4(10):1104-15.

8. Sano M, Lagerqvist B, Fröb M, Nilsson J, Ollecrenna G, Omerovic E, et al. Lower risk of stent thrombosis and restenosis with unrestricted use of ‘new-generation’ drug-eluting stents: a report from the nationwide Swedish Coronary Angiography and Angioplasty Registry (SCAAR). Eur Heart J. 2012;33(5):606-13.

9. Mauri L, Hsieh WH, Massaro JM, Ho KK, D’Agostino R, Cutlip DE. Comparison of the efficacy and safety of zotarolimus-, a new paradigm for safety. Catheter Cardiovasc Interv. 2014;84(6):955-62.

10. Lee CW, Park DW, Lee SW, Lee CW, et al.; ZEST-AMI Investigators. Comparison of the efficacy and safety of zotarolimus-, sirolimus-, and paclitaxel-eluting stents in patients with ST-elevation myocardial infarction. Am J Cardiol. 2009;104(10):1370-6.