Density dependence of the pairing interaction and pairing correlation in unstable nuclei

S. A. Changizī and C. Qi

Department of Physics, Royal Institute of Technology (KTH), SE-10691 Stockholm, Sweden

(Dated: August 11, 2015)

This work aims at a global assessment of the effect of the density dependence of the zero-range pairing interaction. Systematic Skyrme-Hartree-Fock-Bogoliubov calculations with the volume, surface and mixed pairing forces are carried out to study the pairing gaps in even-even nuclei over the whole nuclear chart. Calculations are also done in coordinate representation for unstable semi-magic even-even nuclei. The calculated pairing gaps are compared with empirical values from four different odd-even staggering formulae. Calculations with the three pairing interactions are comparable for most nuclei close to β-stability line. However, the surface interaction calculations predict neutron pairing gaps in neutron-rich nuclei that are significantly stronger than those given by the mixed and volume pairing. On the other hand, calculations with volume and mixed pairing forces show noticeable reduction of neutron pairing gaps in nuclei far from the stability.

PACS numbers: 21.10.Dr, 21.30.Fe, 21.60.Jz, 24.10.Cn

I. INTRODUCTION

The odd-even staggering (OES) of nuclear binding energy implies that the masses of odd nuclei are larger than the two adjacent even nuclei and pairing correlation has been associated with this effect [1, 2]. Pairing is a kind of emergent phenomenon underlying many aspects of the dynamics of atomic nuclei and is the most crucial correlation beyond the nuclear mean field. Of particular interest nowadays is the study of pairing correlation properties in dripline nuclei where the pairing gap energy becomes comparable to the nucleon separation energy and the continuum effect may manifest itself. It turns out that the Hartree-Fock-bogoliubov (HFB) approach with effective zero-range pairing forces is a reliable and computational convenient way to study the nuclear pairing correlations in both of both stable and unstable nuclei (see, e.g., Refs. [3, 4] and references therein).

One question thus arises is how the density dependence of the zero range pairing interaction affects the pairing correlation. A systematic comparison between empirical OES from available experimental binding energies and BCS and HFB calculations with three different density dependent pairing forces has been done in Ref. [5]. No significant difference was seen and it is suggested that there is a slight preference for the surface-peaked pairing [6]. Such finding is consistent with the HFB calculations for the isotopic chain $^{100-132}\text{Sn}$ [6] and fission trajectories in superheavy nuclei [7]. A mixed pairing force is used in the systematic study of Ref. [8]. On the other hand, in Ref. [9] it is shown that below the critical temperature where the pairing gap vanishes, the pairing gap is indeed sensitive to the surface or volume localization of the pairing force. Apparent differences were also noticed in the HFB calculations with the different density dependent pairing forces of neutron-rich Sn isotopes beyond $N = 82$ in Refs. [10, 12] and Ref. [13]. The effect of the density dependence of the pairing interaction on pairing vibrations in $^{124,136}\text{Sn}$ was analyzied with the HFB+QRPA approach in Ref. [14]. The density dependence of the pairing may also influence the pair transfer properties of neutron Sn and light semi-magic neutron-rich nuclei [15-17].

This paper will examine systematically the effects of the density dependence of the pairing interaction on neutron-rich nuclei calculations within the HFB approach. The so-called volume, surface and mixed pairing force will be used. We will confront theoretical results with available experimental data and extend our calculations to the neutron drip line. We will show that, for neutron-rich nuclei, calculations with the surface pairing predict pairing gaps that are systematically stronger than those given by the mixed and volume pairing. We will also investigate the neutron pairing correlation near the drip line from the view point of the di-neutron correlation. This work is partially motivated by a recent calculations presented in Ref. [18] where HFB calculations with surface-peaked zero-range and finite-range pairing forces suggest that pairing can persist even in nuclei beyond the dripline.

The paper is organized as follows: In Sec. II we briefly discuss the HFB approach and the empirical OES from experimental binding energies. It is followed by the description of two-particle wave function. The HFB calculations with different pairing interactions are compared in Sec. III. A summary is given in Sec. IV.

II. THE HFB APPROACH AND THE PAIRING GAP

The HFB framework has been extensively discussed in the literature [3, 19-22] and will only be briefly mentioned here for simplicity. In the standard HFB formalism, the Hamiltonian is reduced into two potentials,
namely the mean field in the particle-hole channel and the pairing field in the particle-particle channel. It gives rise to the HFB equation

\[
\begin{pmatrix}
(H - \lambda) & \Delta \\
-\Delta^* & -(H - \lambda)^*
\end{pmatrix}
\begin{pmatrix}
U_k \\
V_k
\end{pmatrix}
= E_k
\begin{pmatrix}
U_k \\
V_k
\end{pmatrix},
\]

(1)

where \(U_k\) and \(V_k\) are the two components of single-quasiparticle wave functions. In particle-hole channel we use the SLy4 Skyrme functional \[23\]. In particle-particle channel we have the zero-range \(\delta\) pairing force given as

\[
V_{\text{pair}}(r, r') = V_0 \left(1 - \frac{\rho(r)}{\rho_0}\right) \delta(r - r'),
\]

(2)

where \(V_0\) is the pairing strength, \(\rho(r)\) is the isoscalar local density and \(\rho_0\) is the saturation density fixed at \(0.16\,\text{fm}^{-3}\). \(\eta\) takes the value \(1\) and \(1/2\) for surface, volume and mixed pairing, respectively. The pairing parameters are fitted to give a mean neutron gap of \(1.31\,\text{MeV}\) in \(^{120}\text{Sn}\). The energy cutoff is \(60\,\text{MeV}\) and the radius of the box is equal to \(30\,\text{fm}\).

In the present work we consider the HFB equation in spherical system in coordinate space with the Dirichlet boundary condition. The solutions are obtained with the HFB solver HFBRAD \[24\]. For comparison we also consider axially deformed solution of the Skyrmion HFB equations in a harmonic oscillator basis using the HFBTHO code \[25\].

We consider two different theoretical gaps: \(\Delta_{\text{LCS}}\) canonical gap \[26\], which is the diagonal element of pairing-field matrix for the Lowest Canonical State (LCS), and the average gap \(\Delta_{\text{mean}}\) that is the average values of the pairing fields \[24\]. These two theoretical pairing gaps were also compared with empirical pairing gaps recently in Ref. \[18\].

II.1. Odd-Even mass difference

The closest experimental data that we can compare our theoretical pairing gap with are the systematic variation of the nuclear binding energy depending on the evenness and oddness of number of proton \(Z\) and neutron \(N\). The OES effect has been extensively discussed in the literatures \[5, 22, 27, 30\]. The simplest form for OES is the three-point formula \[2, 27\], which has been extensively used for the empirical studies of the gap parameter \(\Delta\). For systems with even \(N\) and fixed \(Z\) the expression for the neutron pairing gap can be written as

\[
\Delta_C^{(3)}(N) = \frac{1}{2}[S_n(N, Z) - S_n(N - 1, Z)]
= \frac{1}{2}[B(N, Z) + B(N - 2, Z) - 2B(N - 1, Z)]
\]

(3)

where \(B\) is the (positive) binding energy which are extracted from Refs. \[31, 32\] and \(S_n\) is the one-neutron separation energy. We will compare our results mainly with this three-point formula which actually corresponds to the conventional three-point formula for the case of odd nuclei as \[33, 34\],

\[
\Delta^{(3)}(N) = -\frac{1}{2}[B(N - 1, Z) + B(N + 1, Z) - 2B(N, Z)].
\]

(4)

There are other formulae such as the conventional three-point \[2, 27\], four-point \[2, 27\] and five-point \[33, 36\] formulae for calculating the pairing gap as

\[
\Delta^{(4)}(N) = \frac{1}{4}[-B(N + 1, Z) + 3B(N, Z) - 3B(N - 1, Z) + B(N - 2, Z)]
\]

(5)

and

\[
\Delta^{(5)}(N) = \frac{1}{8}[B(N + 2, Z) - 4B(N + 1, Z) + 6B(N, Z) - 4B(N - 1, Z) + B(N - 2, Z)].
\]

(6)

The direct comparison between the theoretical pairing gap and empirical OES is convenient from a computational point of view since only one single calculation is required and one avoids the complicated calculation of the odd nuclei. However, it should be mentioned that, even though they are quantitatively quite close to each other in most cases, the theoretical gap is a model-dependent quantity and can not be compared with the empirical OES in a strict sense.

II.2. Two-particle wave function

In order to analyze the clustering feature of two neutrons at the nuclear surface, we consider the spin-singlet component of two-particle wave function. The spatial structure of the two-particle wave function can be written as (see, e.g., Ref. \[37\]),

\[
\Psi^{(2)}(r_1, r_2, \theta_{12}) = \frac{1}{4\pi} \sum_{pq} \sqrt{\frac{2j_p + 1}{2j_q + 1}} \delta_{l_p l_q} \delta_{j_p j_q} X_{pq} \phi_p(r_1) \phi_p(r_2) P_l_p(\cos \theta_{12}),
\]

(7)

where \(\phi\) is the single-particle wave function and \(P_l_p\) is the Legendre polynomial. The two neutrons are at the distance \(r_1\) and \(r_2\) from the core, and \(\theta_{12}\) is the angle between them. \(X_{pq}\) is the expansion coefficient, which corresponds to the product \(u_{tp} u_{tq}\) within the HFB approach.

In this work, we obtain \(\Psi^{(2)}\) as a function of \(\theta_{12}\) and radius \(r_1 = r_2 = R\).

III. RESULTS

III.1. Comparison between different OES formulae

We begin our investigation by comparing the different OES formulae. In Fig. \[\text{IV}\] we have plotted the results...
obtained from different OES formulae, namely 559 measured \(\Delta^{(3)} \), 570 measured \(\Delta^{(3)}_{C} \), 541 measured \(\Delta^{(4)} \) and 516 measured \(\Delta^{(5)} \) in even-even nuclei. For \(\Delta^{(3)} \), almost all nuclei with \(N < 50 \) have pairing gap larger than 1.7 MeV. This is an indication of the large mean-field contribution in this region as mentioned in Ref. [27]. The shell effect for conventional OES-formula \(\Delta^{(3)} \), \(\Delta^{(4)} \) and \(\Delta^{(5)} \) at neutron shell closure is also apparent in Fig. 1.

Fig. 2 shows the neutron \(\Delta^{(3)}_{C} \) for even-even and even-odd nuclei. They show clearly the reduction of OES for even-odd number of nuclei by one rather constant magnitude of \(\delta_{np} \) due to the extra binding in the intermediate odd-odd nuclei as a result of np correlation. In Tab. I the residual np interaction energy \(\delta_{np} \) are obtained by reduction of pairings gaps of even-odd (even nuclei minus one) from even-even nuclei as

\[
\delta_{np} = \Delta^{(3)}_{C}(N, Z) - \Delta^{(3)}_{C}(N, Z - 1) = \frac{1}{2} [S_p(N, Z) + S_p(N - 2, Z)] - S_p(N - 1, Z).
\]

(8)

The case for odd-even nuclei can be defined in a similar way. The obvious trend as one may expect is that \(\delta_{np} \) derived from proton gaps and neutron gaps are roughly the same and there is no visible dependence on shell closure.

We also evaluated the uncertainty of the extracted pairing gap in relation with the error in the experimental binding energy \(\sigma_B(N, Z) \) by applying the error propagation as

\[
\sigma^2_\Delta = \sum_{N,Z} \left(\frac{\partial \Delta}{\partial B(N, Z)} \right)^2 \sigma_B(N,Z)^2,
\]

(9)

where the sum runs over all nuclei involved in calculating the pairing gap \(\Delta \). The errors are quite small in most cases studied in this paper and remain invisible in the scales of our figures shown below.

III.2. Systematic HFbTHO calculations for even-even nuclei

In order to explore the effects of the different pairing interactions on the pairing gap, we have firstly performed

table I. Mean values (in MeV) of the residual proton-neutron interaction \(\delta_{np} \) as extracted from the difference between neutron and proton pairing gaps \(\Delta^{(3)}_{C} \) for even-even and those of the neighboring odd-A nuclei.

	Mean value (in MeV)
neutron	0.30 ± 0.26
proton	0.31 ± 0.23

FIG. 1. (Color online) Neutron pairing gaps calculated for \(\Delta^{(3)} \) (a, top left), \(\Delta^{(3)}_{C} \) (b, top right), \(\Delta^{(4)} \) (c, bottom left) and \(\Delta^{(5)} \) (d, bottom right) for all known even-even nuclei.

FIG. 2. (Color online) Neutron pairing gap \(\Delta^{(3)}_{C} \) for even(odd) number of proton and even(even) number of neutron red circles (black squares). Green diamonds are proton-neutron interactions. Solid(dash) lines are the mean values(±σ). Gaps data with error more than 100 keV are excluded.
a global calculation using the HFBTHO code with the three different zero-range pairing interactions. A similar work was done in Ref. [5] but only known nuclei were calculated. Our investigation is restricted to even-even nuclei for simplicity. All calculations are done in the usual harmonic oscillator basis by taking into account 25 major shells.

Figs. 3 and 4 show the Fermi level \(\lambda_n \), two neutron separation energy \(S_{2n} \), mean neutron pairing gap \(\Delta_n \) and the quadrupole deformation \(\beta_2 \) for mixed, volume and surface interactions, respectively. Only nuclei with Fermi level \(\lambda_n > -3 \) MeV and two neutron separation energy \(S_{2n} < 3 \) MeV are included in the figures for a better comparison of nuclei around the neutron drip line.

The major difference between these interactions is for nuclei close to drip line. It is found that calculations with the surface interaction predict a more smooth neutron dripline than the other interactions, as can be seen from Fig. 6. This is related to the fact that the pairing correlation in dripline nuclei predicted by calculations with the surface interaction is strong and overcomes the shell effect in many cases. Furthermore, by getting close to neutron drip line, mixed and volume interactions predict lower pairing gaps than those from the surface interaction.

Deformations calculated with the volume interaction are similar to those with the HFB approach with the Gogny force [38]. Surface-interaction shows a different pattern for deformation for nuclei with \(126 < N < 184 \) and \(N < 50 \).

In Fig. 7 we compare the two theoretical gaps, \(\Delta_{LCS} \) and \(\Delta_{mean} \), in semi-magic He, O, Ca, Ni, Sn and Pb isotopes calculated with the three different pairing forces. This may be compared to Figs. 2-3 in Ref. [18]. It can be seen from the figure that the pairing gaps calculated from the surface pairing are systematically larger than those from the other two pairing forces in the light He and O isotopes. Calculations with the surface interaction are also much more sensitive to the number of shells considered than those of the mixed and volume pairing calculations. This is also related to the fact that the pairing matrix elements predicted by the surface pairing are much larger than those of the mixed and volume pairing for weakly bound and unbound levels.

As can be seen from Figs. 7 & 8 both calculations in the HO and coordinate spaces with the surface interaction predict large neutron pairing gaps for nuclei on the neutron-rich side. A noticeable difference between the two calculation is that, in the latter case, the calculated \(\Delta_{LCS} \) vanish for Ca, Ni, Sn and Pb isotopes beyond the dripline whereas the mean gaps persist in some cases. This has also been noticed in Ref. [18]. The theoretical \(\Delta_{LCS} \) and \(\Delta_{mean} \) values are quite close to each other in most cases in both calculations with the mixed and volume pairing forces. They drop to zero when one goes beyond neutron dripline for all semi-magic nuclei studied here except Ni isotopes.

III.4. Di-neutron correlation in neutron-rich Ni isotopes

Nuclei around the neutron-rich isotope \(^{78}\)Ni, which may become accessible experimentally soon, are of particular interest in relation to the search for the loosely bound \(2s_{1/2} \) orbital and neutron halo that may thus form. The \(2s_{1/2} \) neutron orbital near threshold show a behavior that is quite different from other orbitals with larger orbital angular momentum: They lose energy in a way that is much slower than other orbitals when the potential becomes shallower (see, e.g., Refs. [32, 40] and references therein). As an example, in Fig. 8 we plot the evolution of the single-particle energies in the neutron-rich \(N = 52 \) isotones. As can be seen from the figure, as one removes protons and the mean field gets shallower, the \(1d_{5/2} \) and \(0g_{9/2} \) neutron orbitals lose their energies much faster than that of \(2s_{1/2} \). One may expect that...
FIG. 3. (Color online) HFBTHO calculations with the mixed pairing interaction for the Fermi level λ_n (b, top right panel), two neutron separation energy $S_{2n} = B(Z, N - 2) - B(Z - N)$ (a, top left panel), mean neutron pairing gap Δ_n (c, bottom left panel) and the deformation β (d, bottom right panel).

FIG. 4. (Color online) HFBTHO calculations with the volume pairing interaction for the Fermi level λ_n (b, top right panel), two neutron separation energy $S_{2n} = B(Z, N - 2) - B(Z - N)$ (a, top left panel), mean neutron pairing gap Δ_n (c, bottom left panel) and the deformation β (d, bottom right panel).

FIG. 5. (Color online) HFBTHO calculations with the surface pairing interaction for the Fermi level λ_n (b, top right panel), two neutron separation energy S_{2n} (a, top left panel), mean neutron pairing gap Δ_n (c, bottom left panel) and the deformation β (d, bottom right panel).
FIG. 6. (Color online) The neutron driplines as defined by $\lambda = 0$ (a, left) and $S_{2n} = 0$ (b, right) given by the HFBTHO calculations with different pairing interactions.

FIG. 7. (Color online) HFBTHO calculations with mixed pairing (green circles), volume pairing (blue diamonds) and surface pairing (black squares) for the neutron pairing gaps in semi-magic nuclei. The values of Δ_{LCS} (open markers) are connected by dashed lines while the average gaps Δ_{mean} (filled markers) are linked by solid lines. The red triangles correspond to the empirical pairing gaps $\Delta_C^{(N)}$.

FIG. 8. (Color online) HFBTHO calculations with mixed pairing (green circles), volume pairing (blue diamonds) and surface pairing (black squares) for the neutron pairing gaps in semi-magic nuclei. The values of Δ_{LCS} (open markers) are connected by dashed lines while the average gaps Δ_{mean} (filled markers) are linked by solid lines. The red triangles correspond to the empirical pairing gaps $\Delta_C^{(N)}$.
FIG. 9. (Color online) SHF calculations with the Sly4 force on the evolution of the single-particle energies in the neutron-rich $N = 52$ isotones. With no pairing considered, the spurious $s_{1/2}$ states with positive energies have no physical meaning and are shown only to illustrate the tendency.

FIG. 10. (Color online) Two-particle wave function $\Psi^{(2)}$ for 82Ni. Calculations with the volume, mixed and surface interactions are shown at the top, middle and bottom row, respectively.

a loosely bound $s_{1/2}$ may be found in this region below the $d_{5/2}$ and $g_{7/2}$ orbitals. The situation may be further perturbed by considering the pairing effect.

To further analyze the effect of the pairing, as a typical example, in Fig. 11 we show the square of two-neutron wave function $|\Psi^{2\nu}(r,r,\theta)|^2$ for the nucleus 82Ni calculated with the HFBRAD code with different paring interactions. In the figure $|\Psi^{2\nu}(r,r,\theta)|^2$ are calculated in a mesh defined by r and θ but then projected on a two-dimensional plane for a clearer vision. In this way one can make sure that the peaks shown corresponds to the real ones. Those peaks appear around $r = 5.2$ fm in all three cases. As can be seen from the figure, the di-neutron correlation predicted by the surface pairing interaction calculation is much stronger than those from the mixed and volume pairing interactions. This is related to that fact that calculations with the surface pairing give much larger pairing gaps than the other calculations. As a result, one needs a significantly larger model space to get convergence in that calculation and big differences are seen between calculations with maximal spin values $j = 15/2$ and $25/2$. The wave functions derived from surface pairing calculations are also significantly more mixed. In Table III we give the calculated chemical potentials λ_n, pairing gaps, and the occupancies of the $2s_{1/2}$ neutron orbital in neutron-rich $^{82-88}$Ni isotopes with the three different pairing forces. Calculations with the surface pairing predict a significant mixture between the $s_{1/2}$ orbital and neighboring ones. The surface pairing calculation also predicts a deeper chemical potential and larger pairing gaps than the other two calculations. Moreover, as can be seen from Table III calculations with the surface pairing are much more sensitive to the strength of the pairing than those of the other two pairing interactions.

IV. SUMMARY

In this work we present a systematic study on the neutron pairing gaps predicted by HFB calculations with the Skyrme force and zero-range pairing forces with different density dependence. We first compared the experimental pairing gaps from four different OES formulae. Then we applied the HFB approach to study the pairing correlations in even-even nuclei including the neutron-rich semi-magic even-even nuclei. We tested the different volume, mixed and surface pairing interactions with the SLy4 parameterization of the Skyrme interaction in the particle-hole channel.

It is found that different treatments of pairing force can affect the calculated Δ_{LCS} and Δ_{mean} significantly in neutron-rich nuclei in the vicinity of drip line. Whereas the effect is much less visible in calculations for known nuclei. Moreover, our calculations show that the pairing gaps given by the surface-peaked pairing interaction are systematically larger than those of the volume and mixed pairing forces. Beyond the neutron dripline, there is a clear difference between mean gap and lowest canonical gap in calculations in coordinate representation with the surface-pairing interaction. This is not seen in calculations with other pairing forces. Moreover, the di-neutron correlations in unstable nuclei and the position of the two-neutron dripline can be quite different depending on the density dependence of the pairing force.
TABLE II. Calculations with different pairing forces on the chemical potential λ_n, pairing gaps, and the occupancy of the $2s_{1/2}$ neutron orbital in neutron-rich $^{82-88}\text{Ni}$ isotopes.

isotopes	^{82}Ni	^{84}Ni	^{86}Ni	^{88}Ni									
Interaction	λ_n	Δ_{mean}, Δ_{LCS}	v^2										
$j_{\text{max}} = 15/2$													
Volume	-1.68 0.59 0.50 2%	-1.21 0.00 0.00 0%	-0.57 0.00 0.00 100%	-0.15 0.43 0.23 99%									
Mixed	-1.66 0.63 0.58 3%	-1.22 0.00 0.00 0%	-0.58 0.00 0.00 100%	-0.17 0.59 0.35 97%									
Surface	-1.66 0.96 1.28 11%	-1.25 1.01 1.36 25%	-0.82 1.12 1.16 52%	-0.45 1.25 1.27 72%									
$j_{\text{max}} = 25/2$													
Volume	-1.67 0.62 0.53 2%	-1.21 0.00 0.00 0%	-0.57 0.00 0.00 100%	-0.16 0.48 0.25 98%									
Mixed	-1.64 0.72 0.66 4%	-1.22 0.27 0.25 4%	-0.60 0.35 0.22 92%	-0.20 0.75 0.46 94%									
Surface	-1.93 1.46 2.12 15%	-1.50 1.61 2.29 27%	-1.10 1.74 2.48 41%	-0.74 1.87 2.28 54%									

TABLE III. Same as Table II but for calculations with the strengths of pairing interaction enhanced by 5%.

isotopes	^{82}Ni	^{84}Ni	^{86}Ni	^{88}Ni									
Interaction	λ_n	Δ_{mean}, Δ_{LCS}	v^2										
$j_{\text{max}} = 15/2$ 5%													
Volume	-1.66 0.69 0.58 3%	-1.21 0.00 0.00 0%	-0.57 0.00 0.00 100%	-0.16 0.55 0.28 97%									
Mixed	-1.63 0.76 0.69 4%	-1.21 0.32 0.28 5%	-0.60 0.36 0.22 92%	-0.20 0.78 0.46 94%									
Surface	-1.73 1.21 1.76 13%	-1.31 1.31 1.74 26%	-0.90 1.42 1.89 47%	-0.53 1.54 1.59 65%									
$j_{\text{max}} = 25/2$ 5%													
Volume	-1.65 0.74 0.62 3%	-1.21 0.00 0.00 0%	-0.57 0.00 0.00 100%	-0.16 0.62 0.32 98%									
Mixed	-1.62 0.86 0.81 5%	-1.19 0.67 0.61 14%	-0.64 0.74 0.48 76%	-0.26 1.0 0.62 90%									
Surface	-2.12 1.84 2.66 17%	-1.67 1.99 2.84 27%	-1.27 2.13 3.03 38%	-0.91 2.25 3.21 49%									

ACKNOWLEDGEMENT

This work was supported by the Swedish Research Council (VR) under grant Nos. 621-2012-3805, and 621-2013-4323. The calculations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at NSC in Linköping.

[1] A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110, 936 (1958).
[2] A. Bohr and B. R. Mottelson, *Nuclear structure*, Vol. 1 (World Scientific, 1998).
[3] J. Dobaczewski and W. Nazarewicz, *Arxiv*, 1206.2600 (2012).
[4] E. Zhang, M. Matsuo, and J. Meng, Phys. Rev. C, 90, 034313 (2014).
[5] G. F. Bertsch, C. A. Bertulani, W. Nazarewicz, N. Schunck, and M. V. Stoitsov, Phys. Rev. C, 79, 034306 (2009).
[6] N. Sandulescu, P. Schuck, and X. Viñas, Phys. Rev. C, 71, 054303 (2005).
[7] A. Staszczak, J. Dobaczewski, and W. Nazarewicz, Int. J. of Mod. Phys. E, 16, 310 (2007).
[8] J. Eiler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A. M. Perhac, and M. Stoitsov, Nature, 486, 509 (2012).
[9] E. Khan, N. V. Giai, and N. Sandulescu, Nuclear Physics A, 789, 94 (2007).
[10] J. Dobaczewski, W. Nazarewicz, and P.-G. Reinhard, Nucl. Phys. A, 693, 361 (2001).
[11] J. Dobaczewski, W. Nazarewicz, and M. Stoitsov, The European Physical Journal A - Hadrons and Nuclei, 15, 21 (2002).
[12] J. Dobaczewski and W. Nazarewicz, Progress of Theoretical Physics Supplement, 146, 70 (2002).
[13] T. Duguet, K. Bemmarec, and P. Bonche, arXiv:nucl-th/0508054 (2005).
[14] E. Khan, M. Grasso, and J. Margueron, Phys. Rev. C, 80, 044328 (2009).
[15] F. Sammarruca, W. Bar redo, and P. Krastev, Phys. Rev. J. of Mod. Phys. E, 71, 064306 (2005).
[16] H. Shimoyama and M. Matsuo, Phys. Rev. C, 84, 044317 (2011).
[17] M. Matsuo and Y. Serizawa, Phys. Rev. C, 82, 024318 (2010).
[18] A. Pastore, J. Margueron, P. Schuck, and X. Viñas, Phys. Rev. C, 88, 034314 (2013).
[19] P. Ring and P. Schuck, The nuclear many-body problem (Springer, 2004).
[20] J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys. A, 422, 103 (1984).
[21] J. Dobaczewski, W. Nazarewicz, T. R. Werner, J. F. Berger, C. R. Chinn, and J. Dechargé, Phys. Rev. C, 53, 2809 (1996).
[22] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev Mod Phys., 75, 121 (2003).
[23] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A, 635, 231 (1998).
[24] K. Bennaceur and J. Dobaczewski, Computer Physics Communications, 186, 96 (2005).
[25] M. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Computer Physics Communications, 184, 1592 (2013).
[26] T. Lesinski, T. Duguet, K. Bennaceur, and J. Meyer, E. Phys. J. A, 40, 121 (2009).
[27] W. Satula, J. Dobaczewski, and W. Nazarewicz, Phys. Rev. Lett., 81, 3599 (1998).
[28] J. Dobaczewski, P. Magierski, W. Nazarewicz, W. Satula, and Z. Szymański, Phys. Rev. C, 63, 024308 (2001).
[29] T. Duguet, P. Bonche, P.-H. Heenen, and J. Meyer, Phys. Rev. C, 65, 014311 (2001).
[30] C. A. Bertulani, H. F. Lu, and H. Sagawa, Phys. Rev. C, 80, 027303 (2009).
[31] G. Audi and et al, Chinese Phys. C, 36, 1157 (2012).
[32] F. Wienholtz and et al., Nature, 498, 346 (2013).
[33] C. Qi, Phys. Lett. B, 717, 436 (2012).
[34] A. Mukherjee, Y. Alhassid, and G. F. Bertsch, Phys. Rev. C, 83, 014319 (2011).
[35] D. Madland and J. Nix, Nucl. Phys. A, 476, 1 (1988).
[36] P. Moller and J. Nix, Nucl. Phys. A, 536, 20 (1992).
[37] C. Qi, R. J. Liotta, and R. Wyss, Journal of Physics: Conference Series, 381, 012131 (2012).
[38] J. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Pérut, N. Pillet, and G. Bertsch, Phys. Rev. C, 81.
[39] C. R. Hoffman, B. P. Kay, and J. P. Schiffer, Phys. Rev. C, 89, 061305 (2014).
[40] Z. Xu and C. Qi, Phys. Lett. B, 724, 4 (2013).