Preventing Colitis-Associated Colon Cancer With Antioxidants: A Systematic Review

Thergiory Irrazabal,1,a Bhupesh K. Thakur,2,a Kenneth Croitoru,3 and Alberto Martin2

1Department of Medicine, University of Toronto, Toronto, Ontario, Canada; 2Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and 3Department of Medicine, Division of Gastroenterology, Mount Sinai Hospital, Toronto, Ontario, Canada

SUMMARY

Preclinical studies suggest a role for oxidative molecules in the pathophysiology of colitis-associated cancer. This review analyzes evidence for DNA oxidation as a precipitating event in gastrointestinal cancers and synthesizes an argument for the use of antioxidants as a viable therapeutic treatment to prevent colitis-associated colon cancers.

Inflammatory bowel disease (IBD) patients have an increased risk of developing colitis-associated colon cancer (CAC); however, the basis for inflammation-induced genetic damage requisite for neoplasia is unclear. Several studies have shown that IBD patients have signs of increased oxidative damage, which could be a result of genetic and environmental factors such as an excess in oxidant molecules released during chronic inflammation, mitochondrial dysfunction, a failure in antioxidant capacity, or oxidant promoting diets. It has been suggested that chronic oxidative environment in the intestine leads to the DNA lesions that precipitate colon carcinogenesis in IBD patients. Indeed, several preclinical and clinical studies show that different endogenous and exogenous antioxidant molecules are effective at reducing oxidation in the intestine. However, most clinical studies have focused on the short-term effects of antioxidants in IBD patients but not in CAC. This review article examines the role of oxidative DNA damage as a possible precipitating event in CAC in the context of chronic intestinal inflammation and the potential role of exogenous antioxidants to prevent these cancers. (Cell Mol Gastroenterol Hepatol 2021;11:1177–1197; https://doi.org/10.1016/j.jcmgh.2020.12.013)

Keywords: Colitis; Inflammatory Bowel Disease; Colorectal Cancer; Antioxidants; DNA Damage.

Inflammatory bowel disease (IBD) is a multifactorial chronic inflammatory disorder associated with dysregulation in the interaction between the host’s immune system and the environment within the gastrointestinal tract. Chronic inflammation of the intestinal epithelium is positively associated with cancer development, and although there are several mechanisms by which inflammation could induce epithelial damage, only a few of those point to a direct source of the DNA lesions necessary for cellular transformation and cancer initiation. The oxidant environment created by activated inflammatory cells in the intestinal epithelium has been associated with carcinogenesis.1–4 Although linked to cancer initiation, reactive oxygen species (ROS) also act as signalling molecules that regulate multiple signaling pathways associated with mitogenesis, immune and stress response, and autophagy and are therefore required to maintain homeostasis.5 In this review, we will discuss the evidence that supports the notion that chronic intestinal oxidation is one of the main factors leading to DNA lesions that promote carcinogenesis in IBD patients (Figure 1). This review will also discuss how antioxidants could be used to suppress tumor development within the inflamed intestinal tissue.

What Is the Source of Oxidative Molecules and DNA Lesions in the Intestinal Epithelium?

There are several sources of oxidative molecules in the intestinal epithelium. Classically activated macrophages, infiltrating neutrophils, and intestinal epithelial cells are all equipped with enzymes that produce ROS and reactive nitrogen intermediaries (RNI) in response to the gut microbiota, specific gut pathogens, or other stimuli. ROS and RNI are normally produced to keep microbes in line and maintain homeostasis within the intestine. For example, the nicotinamide adenine dinucleotide phosphate oxidase (NOX) 2, which produces superoxide (O2•−), is expressed in macrophages, dendritic cells, and neutrophils that infiltrate

*Authors share co-first authorship.

Abbreviations used in this paper: AOM, azoxymethane; AT1, angiotensin II type 1; CAC, colitis-associated colon cancer; CAT, catalase; CRC, colorectal cancer; DSS, dextran sodium sulfate; DUOX2, dual oxidase 2; Gpx, glutathione peroxidase; GST, glutathione-S-transferase; GSTT1, glutathione-S-transferase theta 1; HFD, high-fat diet; H2O2, hydrogen peroxidase; IBD, inflammatory bowel disease; MMR, mismatch repair; mtROS, mitochondrial ROS; NAC, N-acetylcysteine; NOX, nicotinamide adenine dinucleotide phosphate oxidase; O2•−, superoxide; PRDX, peroxiredoxin; RNI, reactive nitrogen intermediaries; ROS, reactive oxygen species; SOD, superoxide dismutase; UC, ulcerative colitis; vitC, vitamin C; vitE, vitamin E; 8-oxoG, 8-oxo-7,8-dihydro-2′-deoxyguanosine.

**Most current article

© 2021 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcmgh.2020.12.013
Intestinal epithelial cells express the \(O_2^- \) producing enzyme NOX1 and the hydrogen peroxide (\(H_2O_2 \)) producing enzyme dual oxidase 2 (DUOX2). Usually \(O_2^- \) is further converted into the more stable molecule \(H_2O_2 \) by the enzyme superoxide dismutase (SOD). In phagocytes, \(H_2O_2 \) is further transformed into hypochlorous acid, which has antimicrobial properties. In addition, macrophages, epithelial cells, and neutrophils also express the enzyme inducible nitric oxide synthase, which produces the highly diffusible molecule NO.\(^{6,7}\)

Although ROS is necessary for various cellular functions,\(^{6-12}\) excessive accumulation causes damage to biological molecules. Consequently, tissues are armed with several defense mechanisms including an intricate antioxidant defense system. The antioxidant defense system primarily functions through (1) limiting the excessive production of ROS/RNI, (2) scavenging free radicals, and (3) converting toxic free radicals into less toxic molecules.\(^{13}\) An incompetent or dysregulated antioxidant system is associated with inflammatory diseases. Accordingly, mice deficient in nuclear factor erythroid-2-related factor 2, a master regulator of antioxidant responses in tissue through transcriptional regulation of antioxidant genes, develop colitis and colitis-associated cancer (CAC).\(^{14}\)

During chronic inflammation, ROS and RNI surpass the physiological antioxidant detoxifying capacity of cells, leading to the generation of high amounts of oxidant molecules. \(H_2O_2 \) can react with transition metals via Fenton reaction and produce the highly reactive hydroxyl radical (\(HO^- \)).\(^7\) On the other hand, \(NO \) can react with \(O_2^- \) to generate the highly reactive molecule peroxynitrite (ONOO\(^{-} \)).\(^{15}\) When these oxidant molecules are not neutralized by intracellular antioxidants, these agents induce cell membrane damage and cancer-causing DNA lesions.\(^{7,13,16}\) In addition, inflamed colons in IBD patients and mice with colitis have decreased expression of antioxidant enzymes such as glutathione-S-transferase theta 1 (GSTT1). GSTT1 is not only necessary for the detoxification of oxidative free radicals, but it is also necessary to induce goblet cell differentiation and mucus production in response to triggers such as interleukin 22 and \(H_2O_2 \).\(^{17}\) Because mucus produced by goblet cells is the first barrier that protects intestinal cells from the microbiome, this

Figure 1. Unrepaired oxidative DNA damage can lead to cancer-promoting accumulation of mutations. Several stimuli from both endogenous and environmental sources induce increased production of ROS and RNI that can directly produce mutagenic DNA lesions. Oxidative DNA damage is primarily repaired by MMR repair and base excision repair pathways involving the excision of modified bases followed by repairing of the gaps. Oxidative DNA damage could exceed the repair capacity of these DNA repair pathways, or deficiency in these specific DNA repair pathways can lead to the accumulation of oncogenic mutations, precipitating cellular transformation and ultimately tumor initiation and/or progression.
study suggests that GSTT1 deficiency would disrupt the epithelial barrier, generating a positive loop for oxidative epithelial damage.17

Inflammation, Diets, and Oxidative Environment

Several innate immune cells produce O_2^*, H_2O_2, and NO as a defense mechanism. However, some studies suggest that an increase in oxidative molecules can precede inflammation. For example, an inhibitor of the DNA repair enzyme OGG1 (8-oxoguanine DNA glycosylase 1) has been shown to prevent proinflammatory gene expression and cell recruitment in mouse lungs,18 suggesting that repair of oxidative DNA damage induces inflammation. Other studies showed that mitochondrial ROS (mtROS), generated when electrons leak from Complex I and III during oxidative phosphorylation and react with oxygen to form O_2^*, can act as a signal-transducing molecule that either activates the NLRP3 inflammasome inducing the production of proinflammatory cytokines19,20 or mediates an increased mitogen-activated protein kinase signaling that induces inflammatory cytokine production after TLR4 activation.21 Furthermore, gene transfer of the mitochondrial antioxidant enzyme GSTT1 into the colon of mice confers protection against colitis,17 suggesting that in some cases, an increase in mtROS could precede chronic intestinal inflammation. However, mtROS can have anti-inflammatory properties as well because it can protect the intestine from inflammation by inducing polarization of alternatively activated macrophages and a reduction in the production of proinflammatory cytokines.22 Overall, these data suggest that mtROS must surpass a physiological threshold to lead to activation of inflammatory pathways in the intestine.

Another factor that can induce an oxidative environment that results in intestinal permeability and inflammation are high-fat diets (HFDs).23,24 Non-esterified long chain saturated fatty acids present in HFD can increase expression of Nos2 and endoplasmic reticulum stress in goblet cells, which in turn triggers a reduction in the production of the mucus barrier and creates a positive feedback loop for inflammation.23 In addition, mice fed a HFD had decreased expression of tight junction proteins and MUC2 and increased expression of the enzymes NOX1, NOX4, and NOS2, which produce O_2^*, H_2O_2, and NO, respectively.24 However, none of these molecules or their oxidative effects were directly measured. Although the mechanism by which HFD induces the expression of these ROS-producing enzymes is not clear, it is possible that intestinal permeability associated with deficiencies in tight junctions and/or reduced mucus layer may lead to the penetration of molecules such as lipopolysaccharide through the epithelial layer of the gastrointestinal tract. This in turn can lead to the induction of ROS-producing enzymes in immune cells. Interestingly, flavonoid anthocyanins could revert HFD-induced intestinal permeabilization and endotoxemia in part by modulating NOX expression and preventing the production of NRI.25 This finding supports the idea that HFD-induced oxidative environment can lead to a positive feedback loop for intestinal permeability and intestinal oxidation. Anthocyanins also showed a promising anti-inflammatory potential in a small trial in ulcerative colitis (UC) patients,21,25 and because HFD is a risk factor for IBD,26 it is possible that anthocyanins could counteract the initial ROS-related processes that precede chronic intestinal inflammation.

Overall, it seems that the source of oxidative damage in the intestine could be dependent or independent of inflammatory cells. Mitochondrial dysfunction and certain diets can mediate an increase in the production of O_2^* and NO in the intestinal epithelium,20,21,23–25,27 which in turn can activate inflammatory pathways and may lead to mutations that perpetuate inflammation and/or initiate cancer. However, in the majority of cases, it is likely that inflammation is itself caused by a response to microbial stimuli that causes an oxidative environment that can precipitate cancer.

How Is Oxidative DNA Damage Repaired?

HO^* and ONOO$^-$ directly damage DNA via strand breakage or nucleotide oxidation. Guanine is the nucleotide with the highest oxidation potential,15 and oxidized guanine is commonly used to detect oxidative DNA damage. Elevated levels of oxidized guanine indicate that the oxidized environment has superseded the capacity of the cell to repair oxidative DNA damage. The mismatch repair (MMR) system has an especially important role in the repair of oxidative DNA lesions at different stages of the cell cycle.28–31 C:8-oxoG pairs in DNA are recognized and repaired by the base excision repair and the nucleotide excision repair systems.29,31 In addition, 8-oxoG nucleotides from the dNTP pool are usually removed by MTH1, and failure to do so can lead to incorporation of this oxidized base into the nascent DNA strand during DNA replication (Figure 2D).29–31 The mismatch repair (MMR) system has an especially important role in the repair of 8-oxoG lesions in highly proliferative tissues such as the intestinal epithelium because MMR-deficient human and mouse colonic tissue have exceptionally high levels of this DNA lesion.29

In the next sections, we discuss the role of endogenous and exogenous antioxidants on IBD and how these agents might prevent cellular transformation in inflamed intestinal tissue.

Examining the Roles of Endogenous Antioxidants in IBD and CAC

The endogenous antioxidant defense system comprises both enzymatic antioxidants such as SOD, glutathione peroxidase (GPx), catalase (CAT), peroxiredoxin (PRDX), and thioredoxin as well as nonenzymatic antioxidants such
as glutathione, alpha-lipoic acid, uric acid, melatonin, bilirubin, and ferritin. Multiple studies have found altered expression and/or activities of these antioxidant proteins in IBD and CAC patients, which suggest a role in disease pathology. SOD is a metalloenzyme that catalyzes the reduction of O_2^\cdot to H_2O_2 and O_2, whereas CAT catalyzes the detoxification of H_2O_2 to O_2 and H_2O. Patients with active Crohn’s disease have increased SOD activity, which returned to control levels at remission. However, CAT activity remained permanently inhibited and was independent of disease activity. In a different study, a reduction in CAT or total SOD activity was found to be associated with increased risk of colorectal cancer (CRC) and gastric adenocarcinoma, respectively.

GPx, PRDX, and thioredoxin, the thiol-dependent proteins that catalyze the reduction of H_2O_2, lipid peroxides, and peroxynitrite, are found to be up-regulated in colonic mucosa of IBD and CRC patients compared with healthy subjects. The Gpx isoforms Gpx1 to Gpx4 are expressed in healthy gastrointestinal mucosa; however, their

Figure 2. Mutations caused by 8-oxoG. (A) ROS-mediated oxidation of guanine (G) generates C:8-oxoG base pairs that are normally repaired by OGG1-initiated base excision repair. (B) 8-oxoG has base-pairing properties similar to thymine (T); therefore 8-oxoG in DNA during S-phase of the cell cycle leads to preferential insertion of adenine (A) opposite the 8-oxoG instead of cytosine (C) by replicative DNA polymerases. (C) A:8-oxoG mispairs can be recognized and repaired by MMR. However, if this mismatch is left unrepaired, a second round of replication will lead to C:G→A:T transversion mutation in one daughter cell. (D) Deoxyguanosine triphosphate (dGTP) in the nucleotide pool can be oxidized and incorporated into the nascent DNA strand opposite an A during replication, which can be repaired by MMR. However, A:8-oxo-G mispairs also can be processed through inappropriate MUTYH-initiated base excision repair, leading to the formation of C:8-oxo-G pairs, which could be further repaired by OGG1, generating an A:T→C:G transversion mutation. To avoid this, it is believed that cells avoid MUTYH activity during replication, giving preference to the MMR system. Therefore, lack of MMR activity is particularly an issue for highly proliferative tissues under oxidative environment such as gastrointestinal tract.
dextran sodium sulfate (DSS) treatment. Compartmen-
CAC upon Salmonella develop normally but are susceptible to develop IBD and severity.
response of the host to limit disease progression and role of these endogenous antioxidants in IBD and CAC maintaining intestinal homeostasis. Accordingly, Gpx1 and overlapping complementary role of Gpx1 and Gpx2 in protecting from crypt cell apoptosis. This result suggests an overlapping complementary role of Gpx1 and Gpx2 in maintaining intestinal homeostasis. Accordingly, Gpx1 and Gpx2 double-knockout mice develop spontaneous colitis, dependent on excessive production of ROS by NOX1 and DUOX2.

PRDXs are highly reactive peroxidases that account for the reduction of more than 90% of total cellular peroxides, while also crucial for maintaining physiological levels of cellular peroxides for vital cellular functions. All mammalian PRDXs, PRDX1–6, are overexpressed in the mucosa of active colitis and CRC patients, and their level in mucosa is positively correlated with disease severity and cancer metastasis. Increased expression of PRDXs in diseased mucosa seems to be a host antioxidant defense response because PRDX4+/− mice have higher disease severity and endoplasmic reticulum stress in mice. Studies suggest a dual role of PRDXs in cancer. PRDXs can either inhibit ROS-induced DNA damage and carcinogenesis or potentiate cancer progression through inhibition of ROS-mediated cell death in cancerous tissues. However, their role has not been investigated in CAC.

Researchers have examined nonenzymatic endogenous antioxidants and their roles in IBD and CAC. Some of these antioxidants such as glutathione, bilirubin, and uric acid are produced during normal metabolism, whereas melatonin is a hormone that is secreted from enterochromaffin cells in the intestine. Glutathione, the most important intracellular nonenzymatic antioxidant, is the substrate for glutathione-S-transferase (GST) that catalyzes the step of reduced glutathione conjugation with reactive electrophiles in the reduction of peroxides by glutathione peroxidase. The cellular level of glutathione was found to be reduced in intestinal mucosa of IBD patients, whereas reduced mucosal expression and/or activity of GST was also observed in IBD and CAC patients. Moreover, the serum levels of bilirubin, uric acid, and melatonin are found to be negatively associated with disease severity in IBD patients.

The above findings not only imply the pathophysiological role of these endogenous antioxidants in IBD and CAC development but also suggest that the altered regulation of their expression in a diseased state is a compensatory response of the host to limit disease progression and severity.

Testing Endogenous Antioxidants in IBD and CAC

Because epidemiologic studies have recognized the association of endogenous antioxidants with IBD and CAC pathophysiology, investigators have tested their therapeutic potential in these diseases. However, the short life span of recombinant enzymatic antioxidants in the gastrointestinal tract remains a barrier for therapeutic evaluation in intestinal diseases. Accordingly, attempts have been made to produce either stable proteins using genetic engineering or transgenic probiotic strains. Supplementation of genetically engineered Lactobacillus fermentum expressing recombinant SOD, hyperthermostable SOD from Thermus thermophilus HB27, or SOD mimics having enhanced stability and activity and ameliorated colitis severity in both mouse and human models. In addition, treatment with genetically engineered Lactobacillus casei BL23 or Streptococcus thermophilus CRL807 expressing recombinant CAT or SOD restored endogenous antioxidant pools and reduced disease severity in colitis models.

Remarkably, Ishihara et al. observed a bell-shaped dose-response of SOD in colitis, demonstrating that a protective effect of SOD at lower doses is through reduction in colonic ROS level and ineffectiveness at higher doses is due to accumulation of H2O2. Accordingly, simultaneous administration of CAT restored the protective effect at higher doses of SOD.

Recently, multiple studies demonstrate that boosting colonic H2O2 with probiotics can improve mucosal barrier integrity, increase colonization resistance, and suppress inflammatory responses in the colon, whereas exceeding the physiological levels of H2O2 could be detrimental. Because SOD converts O2− to H2O2 and physiological levels of H2O2 are important for gastrointestinal health, it is likely that H2O2 mediates the protective effect of SOD at lower doses in IBD.

Transgenic overexpression of another enzymatic antioxidant thioredoxin in mice led to reduced levels of tumor necrosis factor-α and interferon-γ upon DSS treatment compared with controls, suggesting an anti-inflammatory action of this enzyme. Accordingly, administration of recombinant human thioredoxin significantly ameliorated DSS-induced colitis and colonic inflammation in interleukin 10 KO mice. Thioredoxin can modulate the DNA binding properties of multiple transcriptional factors to regulate expression of inflammatory mediators. Overall, these studies report that restoring mucosal enzymatic antioxidants could be protective in IBD.

Nonenzymatic antioxidants as a therapeutic intervention in IBD have also been evaluated. Because IBD patients are depleted of glutathione in their gastrointestinal tracts, Aridte et al. found that treating colitis-induced mice with glutathione attenuated acute colitis. In addition, ectopic expression of GSTTT1 1 in DSS-treated mice attenuated colitis severity via interleukin 22–dependent restoration of epithelial cell functions. Similar to glutathione, supplementing another thiol-containing endogenous antioxidant alpha-lipoic acid also reduced colitis and ileitis in animal models. Melatonin is another nonenzymatic compound
recognized to have enteroprotective activity through its antioxidant and anti-inflammatory action.68 Exogenous administration of melatonin in experimental colitis models improved the disease pathology by reducing inflammation and epithelial damage.69–71 Melatonin also reduced the levels of oxidative DNA damage in colonic mucosa of IBD patients72; however, the effects on CAC were not evaluated.

Collectively, these studies suggest the therapeutic potential of endogenous antioxidants in IBD. However, few have evaluated the role of these agents in CAC in both preclinical models and in the clinic.

Exogenous Antioxidants as Therapy in IBD and CAC

The current pathophysiological understanding of chronic inflammatory diseases and their association with endogenous antioxidants has encouraged researchers to develop therapeutics for IBD and CAC by using exogenous antioxidants. Exogenous antioxidants are substances that our body cannot produce and therefore must be provided as supplements from natural or synthetic sources. Synthetic antioxidants include compounds with antioxidant activities, precursors or mimics of endogenous antioxidants, and derivatives of amino acids such as propionyl-L-carnitine. Natural antioxidants consist of vitamins, polyphenolic compounds, polyunsaturated fatty acids, and trace metals. Numerous exogenous antioxidants have been investigated for their therapeutic potential in IBD, CAC, and CRC with promising results in preclinical models. However, most of the clinical trials do not validate the preclinical findings. Antioxidant supplementation was generally found to be ineffective or detrimental for cancer in most of the clinical studies73–75 (Tables 1 and 2), although some of the compounds used as antioxidants in these clinical studies do not have strict ROS-specific effects. Excessive ROS promotes mutagenesis through oxidative DNA damage and can trigger cancer development. However, it also has inhibitory roles on cancer progression through oxidation-induced cytotoxicity in cancer cells. Cytoplasmic ROS levels are significantly higher in cancer cells because of their increased metabolic activity compared with normal cells.76,77 To cope with oxidative damage-induced cytotoxicity, cancer cells depend on various mechanisms including an increase in their antioxidant pool for their survival. Thus, the concept of a negative correlation between antioxidant levels and cancer initiation/progression is now not universally valid,77 and elevating oxidation in tumors by using compounds with pro-oxidant activity is developing as a new chemopreventive therapy in cancer.76 Exogenous antioxidants not only indiscriminately block indispensable physiological redox-mediated cellular functions; these can also prevent cancer cells from oxidation-induced death.77 Indeed, antioxidants such N-acetylcysteine (NAC) or vitamin E (vitE) accelerate tumor progression in mouse models of B-RAF76 and K-RAS–induced lung cancer by inactivating p53.78 NAC or vitE also potentiates disease progression in melanoma patients by promoting metastasis dependent on NADPH-generating folate pathway79 or activation of small guanosine triphosphate RHOA.80 However, studies evaluating antioxidants in cancer initiation, particularly in CAC, are scarce.

Testing Exogenous Antioxidants in IBD

Investigators have examined the protective role of synthetic compounds such as inhibitors of pro-oxidant enzymes and precursor of endogenous antioxidants in IBD. Among several drugs, inhibitors of angiotensin II type 1 (AT1) and hydroxymethylglutaryl coenzyme A reductase are reported to have both antioxidant and anti-inflammatory activities. AT1 increases mitochondrial production of O2⋅− and H2O2 through NADPH oxidase and inflammation through nuclear factor kappa B. Accordingly, the AT1 antagonist telmisartan was protective in DSS-induced colitis.81 Hydroxymethylglutaryl coenzyme A inhibitors such as simvastatin, rosuvastatin, and pravastatin are primarily lipid-lowering drugs, but they ameliorate disease severity in colitis models by reducing inflammation and inducing endogenous antioxidants such as SOD and glutathione.82,83

As discussed earlier, glutathione is depleted in IBD patients. Administration of NAC, a synthetic precursor of glutathione, in colitis models ameliorated colitis severity,84–86 but not all studies are in agreement.87 NAC treatment in UC patients resulted in a significant improvement in clinical features and a reduction in serum proinflammatory cytokines.87 Similarly, restoring colonic SOD level by administering lecithinized SOD, a synthetic SOD mimic, improved colitis severity in preclinical and human studies.87,88 Other synthetic antioxidants such as propionyl-L-carnitine, an ester derivative of L-carnitine, improved disease in mild to moderate UC patients.85,89

Natural exogenous antioxidants have also been examined in IBD. VitE is a lipid-soluble vitamin primarily involved in protecting cell membrane from oxidative damage. Supplementation of vitE in preclinical models of colitis ameliorated colitis severity.80,90 However, results from clinical studies are inconclusive.91 Vitamin C (vitC) is a water-soluble vitamin that acts as a potent antioxidant because of its ability to donate electrons. Low or high doses of vitC reduce inflammation in animal models75,92,93; however, not all studies are in agreement.94 Clinical studies using vitC in IBD patients are also inconsistent.95

Altogether, the use of exogenous antioxidants to treat IBD needs further work because many studies are preliminary especially in clinical trials, and there are many conflicting findings (Table 1).

Testing Exogenous Antioxidants in CAC

Despite some promising albeit conflicting results with exogenous antioxidants in treating IBD, it is possible that many antioxidants have little to no anti-inflammatory activity and thus may not be useful in treating IBD. On the other hand, exogenous antioxidants could be used to protect from CAC by reducing oxidative DNA damage. However, only a few studies have evaluated antioxidants in preclinical models of CAC.

Long-term administration of NAC reduces oxidative damage (nitrotyrosine and 8-oxoG) in colonic mucosa and
Trial characteristic	Population	Subjects	Intervention; duration	Concomitant therapy	Outcome summary	Conclusion	Reference, year
Randomized, placebo-controlled pilot study	UC patients; age: 18–70 y	n = 37	Oral NAC (0.8 g/day); 4 weeks	Mesalamine	Clinical remission rate (MTWSI ≤ 2) 63% in treated vs 50% in placebo; clinical response (MTWSI ≥ 2) 66% in treated vs 44% in placebo; reduced interleukin 8 and MCP-1 level; no adverse effect	NAC as combination therapy with mesalamine resulted in clinical improvement in UC patients	87, 2008
Randomized pilot study	UC patients	n = 42	Intravenous PC-SOD (40 or 80 mg/day); 4 weeks	Immunosuppressants (azathioprine, mercaptopurine) and/or anti-UC agents (mesalazine, salazosulfapyridine)	Decreased Ulcerative Colitis Disease Activity Index (UC-DAI) in both 40 mg and 80 mg groups; no severe side effects with any of the doses	PC-SOD improved UC more rapidly than previously existing drugs	58, 2008
Randomized double-blind placebo-controlled	Mild to moderate UC patients; age: 18–75 y	n = 121	Oral tablets of PLC (ST 261; 1 g or 2 g/day); 4 weeks	Aminosalicylates or thiopurine	Clinical/endoscopic response in 75% of patients with 1 g/day and 69% in patients with 2 g/day; remission rates were 55%, 49%, and 35% in PLC (1 g/day), PLC (2 g/day), and placebo groups, respectively.	PLC could be potent treatment modality for mild to moderate UC patients	89, 2011
Open-label, proof-of-concept pilot study	Mild to moderate IBD patients; age: 16–80 y	N = 14	Oral PLC (ST 261; 2 g/day); 4 weeks	Aminosalicylates, mercaptopurine, or azathioprine	Reduction of Disease Activity Index (DAI) in both UC and CD patients; improvement in Histological Index (HI); no adverse effects	PLC improved endoscopic and histologic activity of mild to moderate UC	88, 2012
Case-control study	IBD patients; age: 15–34 y	n = 219; 111 (UC) + 128 (CD)	VitC from food source, calculated from FFQ collected; 5 y	None	Low risk of UC development with vitC intake	Intake of vitC was negatively associated to UC risk	96, 2005
Randomized double-blind placebo-controlled	CD patients; age: 38.3 ± 2.9 y (treated); 36.5 ± 1.7 y (placebo)	n = 57	Oral vitC (1000 mg) and vitE (800 IU) daily; 4 weeks	None	Reduction in oxidant burden (measured by breath pentane and ethane output, plasma lipid peroxides, and F2-isoprostane; no change in disease activity	Significant reduction in oxidant burden, but disease activity remained stable in vitC-treated group	93, 2003
Trial characteristic	Population	Subjects	Intervention; duration	Concomitant therapy	Outcome summary	Conclusion	Reference, year
----------------------	------------	----------	------------------------	---------------------	----------------	-----------	----------------
Randomized double-blind placebo-controlled	UC patients; age: 20–45 y	n=150	Oral vitA (25,000 IU/day); 2 mo	Mesalamine	Decreased DAI and higher clinical response and mucosal healing in vitA group	VitA had positive clinical and endoscopic effects in UC patients	129, 2018
Open-label study	Mild and moderately active UC patients; age: 21–55 y	n=15	Enema of α-tocopherol (8000 U/day); 12 weeks	Mesalamine	Decreased average DAI, remission in 64% of patients of treated group	α-tocopherol decreased disease severity in patients with active UC	92, 2008
Randomized double-blind placebo-controlled multicentric	Patients with quiescent UC; age: 13–65 y	n=89	Oral curcin (1 g twice a day); 6 mo	Sulfasalazine or mesalamine	Improved Clinical Activity Index (CAI) and endoscopic index (EI), and suppression in morbidity associated with UC in curcin group	Curcin could be a promising and safe medication for maintaining remission in patients with quiescent UC	130, 2006
Randomized double-blind placebo-controlled	Mild to moderate UC patients; age: 18–70 y	n=70	Oral curcin (500 mg capsule 3 times a day); 8 weeks	Salicylates and/or immunomodulators and/or corticosteroids	Significant improvement in Clinical Colitis Activity Index, significantly higher score of quality of life, reduced serum hs-CRP and ESR in curcin group than placebo	Curcin supplementation along with traditional drug was associated with improved clinical outcome in mild to moderate UC patients	131, 2020
Randomized double-blind placebo-controlled	Mild to moderate UC patients; age: 18 y and older	n=56	Oral curcinoids nanomicelles (80 mg 3 times a day); 4 weeks	Mesalamine	Decreased SCCAI score in curcinoid group; reduced frequency of urgent defecation; improved patient’s self-reported well-being	Curcinoids nanomicelles treatment significantly improved clinical activity of UC patients	132, 2018
Randomized double-blind placebo-controlled	Mild to moderate UC patients; age: 18–70 y	n=50	Oral curcin capsules (1000 mg capsule twice a day); 4 weeks	Mesalamine	Clinical remission in 53.8% and endoscopic remission in 38% of curcin group compared with 0% in placebo	Addition of curcin to drug (mesalamine) therapy was superior in inducing clinical and endoscopic remission in UC patients	133, 2015
Trial characteristic	Population	Subjects	Intervention; duration	Concomitant therapy	Outcome summary	Conclusion	Reference, year
---	-----------------------------	----------	------------------------	---------------------	---	--	-----------------
Randomized double-blind placebo-controlled pilot study	Patients with mild to moderate distal UC; age: >18 y	n=45	Enema of NCB-02 (standardized curcumin preparation) ie, equivalent to 140 mg curcumin once daily; 8 weeks	Mesalamine	Significantly better response in NCB-02 compared with placebo in terms of clinical response (92.9% vs 50%), clinical remission (71.4% vs 31.3%), and improvement in endoscopic activity (85.7% vs 50%)	NCB-02 enema improved disease activity in patients with mild to moderate distal UC	134, 2014
Randomized double-blind placebo-controlled multicentric	Mild to moderate Crohn’s disease patients; age: 21-65 y	n=30	Theracurmin (a new curcumin derivative with increased absorption rate; 360 mg/day); 12 weeks	Mesalamine (90% of patients), immunomodulators (33.3% of patients), steroids (3.3% of patients), and anti-TNFα (6.7% of patients)	Reduction in clinical disease activity; 40% clinical remission rate and 15% endoscopic remission rate in the Theracurmin group compared with 0% in placebo; better healing of anal lesion with no adverse effect in Theracurmin-treated group	Theracurmin treatment showed significant clinical and endoscopic efficacy with favorable safety profile in mild to moderate Crohn’s disease	135, 2020
Randomized double-blind placebo-controlled pilot study	Mild to moderate UC patients; age: >18 y	n=56	Oral resveratrol capsule (500 mg pure trans-resveratrol/day); 6 weeks	—	Decreased disease activity, increased quality of life, increased serum SOD and TAC, and decreased serum MDA in resveratrol group	Supplementation of resveratrol reduced oxidative damage and improved quality of life and disease activity of UC patients	136, 2016
Randomized double-blind placebo-controlled pilot study	Mild to moderate UC patients; age: >18 y	n=50	Oral resveratrol capsule (500 mg pure trans-resveratrol/day); 6 weeks	—	Reduction in plasma levels of TNFα and hs-CRP; suppression of NF-κB in peripheral blood mononuclear cells, decrease in clinical colitis activity index score and increase in IBDQ-9 in resveratrol group	Supplementation of resveratrol reduced inflammation and improved quality of life and colitis activity of UC patients	137, 2015

ESR, erythrocyte sedimentation rate; FFQ, food frequency questionnaire; hs-CRP, high sensitivity C-reactive protein; IBDQ-9, inflammatory bowel disease questionnaire-9; MCP-1, monocyte chemoattractant protein-1; MDA, malondialdehyde; MTWSI, Modified Truelove-Witts Severity Index; PC-SOD, lecithinized superoxide dismutase; PLC, propionyl-L-carnitine; SCCAIQ, Simple Clinical Colitis Activity Index Questionnaire; SOD, superoxide dismutase; TAC, total antioxidant capacity.
Trial characteristic	Population	Subjects	Intervention; duration	Outcome summary	Conclusion	Reference, year
Randomized, double-blind, placebo controlled (ATBC study)	Male smokers of southwestern Finland; age: 50–69 y	n=29,133	Oral alpha-tocopherol (50 mg/day) or beta-carotene (20 mg/day) or combination of both; 5–8 y	CRC incidence was modestly lower but not significant in alpha-tocopherol group (RR = 0.78; 95% CI, 0.55–1.09); beta-carotene had no effect on CRC incidence (RR = 1.05; 95% CI, 0.75–1.47)	No response on CRC incidence in older male smokers	138, 2000
Randomized, double-blind, placebo controlled (ATBC study)	Male smokers of southwestern Finland; age: 50–69 y	N=15,538	Oral alpha-tocopherol (50 mg/day) or beta-carotene (20 mg/day) or combination of both; 6.3 y	Alpha-tocopherol increased the risk of adenoma (RR = 1.66; 95% CI, 1.19–2.32); beta-carotene had no effect on adenoma risk (RR = 0.98; 95% CI, 1.71–1.35)	Negative response; alpha-tocopherol increased the risk of adenoma; however, beta-carotene had no effect on adenoma in older male smokers	139, 1999
Randomized, controlled clinical trial	Patients post-removal of at least 1 colonic adenoma	n=864	Oral beta carotene (25 mg/day) or vitC (1 g/day) and vitE (400 mg/day); 4 y	RR for beta carotene was 1.01 (95% CI, 0.85–1.20) and for vitC and E was 1.08 (95% CI, 0.91–1.29)	No response; neither treatment was effective in prevention of any subtype of polyp irrespective of size and location	114, 1994
Prospective interventional study	Patients previously diagnosed with colorectal adenomas; age: 50–76 y	n= 116	Oral antioxidants and calcium tablet once daily that contains beta-carotene (15 mg), vitC (150 mg), vitE (75 mg), selenium (101 μg), and calcium (1.6 g); 3 y	No difference was detected in growth of adenomas between treated and placebo groups; significantly lower number of patients free of new adenomas in placebo group compared with treated group	No response on polyp growth; positive response on protection from developing new adenoma	140, 1998
Randomized, double-blind, placebo-controlled	Patients with history of sporadic colorectal adenoma; age: 30–74 y	n=47	Oral antioxidant micronutrient cocktail delivering vitE (800 mg), beta-carotene (24 mg), vitC (1 g), selenium (200 μg), riboflavin (7.2 mg), niacin (80 mg), zinc (60 mg), and manganese (5 mg) per day; 4 mo	TNF-α decreased by 37% and cystine decreased by 19% in antioxidants treatment group relative to placebo; interleukin 6 and F2-isoprostane levels decreased in antioxidant-treated nonsmokers but increased in smokers	Positive response only in nonsmoker subjects; an antioxidant micronutrient cocktail decreased the level of oxidants and inflammation only in nonsmokers	141, 2010
Trial characteristic	Population	Subjects	Intervention; duration	Outcome summary	Conclusion	Reference, year
----------------------	------------	----------	------------------------	-----------------	------------	----------------
Randomized, controlled study	Patients with colonic polypectomy; mean age: 59.2 y	n=255	Oral vitamins tablet containing vitC (1 g/day), vitA (30,000 IU/day), and vitE (70 mg/day); ~5 y	Percentage of recurrence of adenomas was 5.7% in vitamins group compared with 35.9% in untreated group	Positive response; vitamins treatment lowered recurrence rate of colonic adenomas	142, 1993
Randomized, double-blind trial	Patients post-removal of at least 1 colonic adenoma	n=200	Oral vitC (400 mg/day) and vitE (400 mg/day); 2 y	Difference in incidence of polyp recurrence was small in treated group compared with placebo (RR = 0.86; 95% CI)	Positive response (small effect); small reduction in rate of polyp recurrence with vitamin supplement	143, 1988
Randomized, double-blind, placebo-controlled	Patients with advanced colonic adenocarcinoma	n=100	Oral vitC (10 g/day) as capsule; 2 y	No benefit with high-dose vitC either as disease progression or survival compared with placebo	No response on either overall survival or progression of advanced CRC	144, 1985
Pilot study	Patients with terminal cancer including colon cancer; age: 32–93 y	n=100 vitC treated and 1000 control subjects	VitC; 10 g/day IV for 10 days followed by 10 g/day oral; ~210 days	Survival was about 4.2 times greater in treated group (~210 days) compared with control group (~50 days)	Positive response on overall survival; treatment with vitC increased survival time by about 3 times in terminal cancer patients	145, 1976
Randomized, double-blind, placebo-controlled	Patients with large bowel adenoma/polyposis coli; age: 20–63 y	n=36	Oral vitC (3 g/day); ~2 y	Reduction in both number and area of rectal polyps in vitC group at 9 months of follow-up	Positive response (temporary, only at 9 months of follow-up) on reduction of polyp growth and turnover	112, 1982
Phase 1 open-label, single-center, dose escalation, and speed-expansion study	Metastatic colorectal cancer (mCRC) or gastric cancer (mGC); age: 18–75 y	n=36	VitC infusion in dose escalation (0.2–1.5 g/kg) and in speed expansion study (1.5 g/kg) once daily for 3 days in 14-day cycle in combination with mFOLFOX6 or FOLFIRI; 12 cycles	Maximum tolerated dose of vitC not achieved; recommended phase 2 dose of vitC at 1.5 g/kg/day was established; response rate was 58.3%, and disease control rate was 95.8% in treated group	Positive response as combination therapy; favorable safety profile and potential clinical efficacy were observed with combined treatment of vitC and mFOLFOX6/FOLFIRI	146, 2019
Randomized, placebo-controlled trial, Selenium and vitE Cancer Prevention Trial (SELECT)	SELECT participants who underwent lower endoscopy; age: ≥50 y (African American), ≥55 y (all other men)	N=8094	Oral selenium (200 μg/day) and vitE (400 IU/day); 7–12 y	RR for adenoma occurrence in selenium group was 0.96 (95% CI, 0.90–1.02) and in vitE group was 1.03 (95% CI, 0.96–1.10) compared with placebo	No response on colorectal adenoma occurrence	147, 2017
Trial characteristic	Population	Subjects	Intervention; duration	Outcome summary	Conclusion	Reference, year
----------------------	------------	----------	------------------------	-----------------	------------	----------------
Randomized, placebo-controlled trial	Patients post-removal of at least 1 colorectal adenoma; age: 40–80 y	n=1621	Selenium (200 μg/day) as selenized yeast in combination with celecoxib (400 mg daily); ~33 mo	RR of adenoma in selenium group was 1.03 (95% CI, 0.91–1.16) compared with placebo; adenoma recurrence in patients with baseline advanced adenomas was reduced by 18% with selenium	No response on colorectal adenoma formation but showed only modest benefit on adenoma recurrence	148, 2016
Randomized, placebo-controlled trial	Patients with confirmed recent histories of nonmelanoma skin cancer; age: <80 y	n=1312	Selenium (200 μg/day) as selenized yeast; 7.9 y	Suggestive but nonsignificant decrease in risk associated with selenium on prevalent adenomas (odds ratio = 0.67; 95% CI, 0.43–1.05); significant reduced risk was observed in subjects with lowest baseline selenium and current smokers	Positive response only in subjects with low baseline selenium or smoking habit	149, 2006
Randomized double-blind placebo-controlled trial	Post-polypectomy (colonic) patients; age: 29–83 y	n=411	One tablet daily composed of 200 μg selenium, 30 mg zinc, 2 mg vitA, 180 mg vitC, and 30 mg vitE; 5 y	A 39% reduction in risk of adenoma recurrence with intervention compared with placebo; similar risk reduction was also observed in small tubular and advanced recurrent adenomas	Positive response on adenoma recurrence	150, 2013
Randomized, placebo-controlled, prospective trial	Patients post-surgical resection of colon or rectal adenocarcinoma; age: 50–75 y	n=24	Oral zinc capsules (70 mg/day) in combination with capecitabine or capecitabine with oxaliplatin/5-fluorouracil; 16 weeks	No change in plasma level of vitC, vitE, MDA, or 8-isoprostane but increased SOD activity in zinc-treated group compared with placebo	No response on lipid peroxidation markers but improved SOD activity in zinc-treated group	151, 2016
Randomized, double-blind, placebo-controlled	Patients with familial adenomatous polyposis; age: 18–85 y	n=44	Oral curcumin (3000 mg/day); 12 mo	No significant difference in mean polyp number or size was observed between curcumin and placebo-treated groups	No response on polyp number and size in FAP patients	152, 2018
Randomized, open-labelled, controlled trial	Patients with metastatic colorectal cancer; age: >18 y	n=28	Oral curcumin C3 complex/d (2 g/day) in combination with FOLFOX; ~24 weeks	Daily oral supplementation of curcumin to FOLFOX chemotherapy was safe and tolerable; no significant difference between arms for quality of life or neurotoxicity	No response on quality of life, but curcumin could be safe and tolerable adjunct to FOLFOX chemotherapy in patients with metastatic CRC	153, 2019
Trial characteristic	Population	Subjects	Intervention; duration	Outcome summary	Conclusion	Reference, year
----------------------	------------	----------	------------------------	-----------------	------------	-----------------
Single-center prospective randomized open-labelled	Patients with colonic polypectomy; age: 19–85 y	n=176	Oral GTE as tablet (0.9 g/day) equivalent to 0.6 g/day of catechin or 0.2 g/day of EGCG; 12 mo	Decreased incidence of metachronous adenoma and number of relapsed adenomas in GTE group	Positive response on metachronous colorectal adenomas	154, 2018
Pilot study	Patients with colonic polypectomy; age: 20–80 y	n=136	Oral GTE as tablet (1.5 g/day); 12 mo	Decreased incidence of metachronous adenoma and smaller size of relapsed adenomas in GTE group	Positive response on metachronous colorectal adenoma	155, 2008
Prospective cohort study	Patients with resected colon cancer or polypectomy; age: median age 74 and 77 for treated and control groups, respectively	n=87	Oral flavonoid mixture consists of apigenin (20 mg) and epigallocatechin-gallate (20 mg) daily; 4 y	Recurrence rate for neoplasia was 7% in treated group compared with 47% in control group	Positive response with long-term treatment on recurrence rate of colon neoplasia	156, 2008
Randomized, placebo-controlled trial	Patients with previous adenomatous colonic polyps	n=64	Oral NAC (800 mg/day) as capsule; 12 weeks	Proliferative index of colonic epithelial cells was reduced in NAC group in comparison with placebo group	Positive response on reducing colonic epithelium hyperproliferation; could be a chemopreventive agent in human colon cancer	157, 1999
Randomized and controlled	Patients with gastrointestinal cancer undergoing major abdominal surgery	n=33	NAC (1200 mg/day) through parenteral nutrition starting from 2 days before surgery until fifth post-surgery day; 7 days	Reduced plasma MDA but higher ratio of reduced to oxidized glutathione in NAC group; no change in plasma level of vitA, vitC, or vitE but reduction in urinary nitrate level with NAC treatment	Positive response on reducing oxidant and improving antioxidant parameters in cancer patients undergoing major abdominal surgery	158, 2015

ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study; CI, confidence interval; EGCG, (-)-epigallocatechin gallate; GTE, green tea extract; MDA, malondialdehyde; RR, relative risk.
protects from CAC development. In addition to its role in cellular redox signaling, peroxynitrite, which is a coupling product of nitric oxide and superoxide, can oxidize DNA and produce DNA lesions. Accordingly, L-NIL, an inducible nitric oxide synthase inhibitor, reduced 8-oxoG levels and colonic polyps in multiple mouse models of CAC, despite having no significant effect on mucosal inflammation. In agreement with this study, a derivative of L-NIL (SC-51) reduced inducible nitric oxide synthase and COX-2 activities and lessened the incidence of AOM-induced colonic aberrant crypt foci in rats. These findings suggest that limiting nitrosative DNA damage might curb CAC development. Other synthetic compounds such as GL-V9, a flavonoid derivative with strong antioxidant and anti-inflammatory activities, protect against tumorigenesis in a CAC model through NLRP3 inflammasome degradation. Statins were found to reduce CAC in IBD patients in one study but not in another study.

Among natural antioxidants, vitC reduces oxidative DNA damage by neutralizing mutagenic ROS and RNIs and protects from inflammation-associated tumorigenesis in different animal models of CAC. Paradoxically, a pro-oxidant role for vitC has also been reported at high doses or in presence of transition metals. High doses of vitC induce cytotoxicity in cancer cells, and it was thus evaluated as a therapeutic agent in CRC patients. However, the results are inconsistent (Table 2). Although studies on therapeutic evaluation of curcumin in CAC are limited, some preclinical studies have found a reduction in colonic tumor burden in CAC models. The effects of resveratrol on CAC have been evaluated in one study that reported a reduction in tumor incidence in AOM/DSS model but not in another study.

Although there have been numerous trials investigating the effects of antioxidants on disease pathology in IBD patients with mixed results (Table 1), few have used CAC as an endpoint. In light of the findings in preclinical models, serious consideration should be taken to test the role of antioxidants to prevent CAC in IBD patients.

Concluding Thoughts

Several translational studies have shown that antioxidants are effective at reducing both an overt oxidative environment and oxidative DNA lesions in the intestine and other tissues. For years these studies have supported the belief that antioxidants can protect DNA from oxidative damage that could precipitate cancer. However, clinical studies that have tested this hypothesis have not reached consistent results. One factor that could explain these contradictory results is that antioxidants have been promoted and tested as the panacea for all cancers. Although an excess in oxidative molecules could theoretically induce tumor initiating DNA lesions in any cell, susceptibility to oxidative DNA damage is expected to vary widely in different tissues. Differences in cell proliferation, gene expression, and the cell’s oxidative environment are expected to influence the probability of acquiring oxidative DNA mutations. For example, because oxidative DNA lesions that occur during S-phase of the cell cycle are more likely to result in mutations, highly proliferative tissues such as the intestine are more susceptible to acquire tumor-initiating mutations in oxidative environments. In addition, some tissues such as the intestine are in close contact with microbes and as a result are in a harsh oxidative environment produced by immune cells to keep microbes in check. It is therefore expected that oxidative DNA lesions only promote certain types of cancers. Indeed, an analysis of mutational signatures in more than 40 different cancers found that most of colorectal and stomach adenocarcinomas have a ROS mutational signature, whereas other cancers do not.

The path of genetic mutations that are required for cellular transformation will be different in different tissues and cells. This depends on a number of factors such as the cellular environment and the type of cell being transformed. In the case for CRC and CAC, the cell type that is transformed is similar, but the environments where the cancers arise are different, which might explain the different genetic mutations associated with each of these cancers. For example, whereas mutations that affect the Wnt pathway occur in 85% of sporadic CRCs and are considered to be the first step that leads to CRC initiation, CAC tumors first acquire mutations in p53, followed by KRAS mutations. p53 is a transcription factor that controls the DNA damage response by inducing cell cycle arrest and apoptosis. However, p53 is also involved in other cellular processes such as the antioxidant response, and its down-regulation results in increased DNA oxidation and mutation rates in lymphoma models. Hence, it is tempting to speculate that inactivation of genes that regulate the antioxidant response is more important for the development of CAC than CRC possibly because of the high oxidative environment of the inflamed gut. This notion is supported by findings that antioxidants only reduced tumorigenesis in CAC models but not in a familial model of CRC (ie, MMR-deficient Lynch syndrome). This result could be explained by the fact that most mutations in MMR-deficient cells are due to replication errors and spontaneous cytidine deamination, with only 20% of mutations potentially attributed to oxidative DNA lesions. Hence, most mutations that appear in MMR-deficient cells cannot be prevented with antioxidant treatment. In contrast, antioxidants reduced tumorigenesis by 50% in all CAC models tested, suggesting that a larger fraction of genetic lesions in inflamed colon is a consequence of oxidative DNA damage. This argument might provide an explanation for the conflicting results in clinical trials that tested antioxidants in CRC and suggests that clinical trials using antioxidants should stratify patients according to genetic susceptibility to acquire oxidative DNA lesions.

Importantly, because ROS are required to maintain homeostasis in the intestinal epithelium, antioxidants should be administered with precaution. Molecules such as O2·− and H2O2 have both proliferative and antiproliferative effects and can regulate cell differentiation, intestinal repair, and antimicrobial defense. Therefore, completely shutting off Redox signaling could potentially disrupt homeostasis and cause disease. Indeed, NOX1, NOX2, and DUOX2 deficiencies...
have been associated with a higher risk of developing pediatric and very early onset IBD. Furthermore, patients suffering from chronic granulomatous disease, a rare disorder characterized by deficiency in phagocytic NOX function, have a high risk to develop IBD, suggesting that defective O$_2^\bullet-$ production can lead to IBD and therefore antioxidant doses should be carefully adjusted for these patients.

In conclusion, both in vitro and in vivo studies suggest the potential role of ROS and RNI in the pathophysiology of IBD and CAC. Epidemiologic studies show altered levels and activity of endogenous antioxidants in IBD and CAC patients. However, further studies are required to confirm their association with disease pathophysiology. There are some promising results from preclinical studies that the use of exogenous compounds (natural or synthetic) with antioxidant activity prevents oxidative DNA damage and CAC. However, this treatment strategy needs to be confirmed in the clinic.

References

1. Frick A, Khare V, Paul G, Lang M, Ferk F, Knasmuller S, Beer A, Oberhuber G, Gasche C. Overt increase of oxidative stress and DNA damage in murine and human colitis and colitis-associated neoplasia. Mol Cancer Res 2018;16:634–642.
2. Nair J, Gansauge F, Beger H, Dolara P, Winde G, Bartsch H. Increased etheno-DNA adducts in affected tissues of patients suffering from Crohn’s disease, ulcerative colitis, and chronic pancreatitis. Antioxidants & Redox Signaling 2006;8:1003–1010.
3. Irrazabal T, Thakur BK, Kang M, Malaise Y, Streutker C, Wong EOY, Copeland J, Gryfe R, Guttman DS, Navarre WW, Martin A. Limiting oxidative DNA damage reduces microbe-induced colitis-associated colorectal cancer. Nat Commun 2020;11:1802.
4. Westbrook AM, Wei B, Braun J, Schiestl RH. Intestinal mucosal inflammation leads to systemic genotoxicity in mice. Cancer Res 2009;69:4827–4834.
5. Zhou D, Shao L, Spitz DR. Reactive oxygen species in normal and tumor stem cells. Adv Cancer Res 2014;122:1–67.
6. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cellular & Molecular Immunology 2015;12:5–23.
7. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling 2014;20:1126–1167.
8. Myant KB, Cammareri P, Mcghee EJ, Ridgway RA, Huels DJ, Cordero JB, Schwitalla S, Kalna G, Ogg EL, Athineos D, Timpson P, Vidal M, Murray GI, Greten FR, Anderson KI, Sansom OJ. ROS production and NF-kappaB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell 2013;12:761–773.
9. Coant N, Ben Mkaddem S, Pedruuzzi E, Guichard C, Treton X, Ducroc R, Freund JN, Cazals-Hatem D, Bouhnik Y, Woerther PL, Skurnik D, Grodet A, Fay M, Biard D, Lesuffleur T, Deffert C, Moreau R, Groyer A, Krause KH, Daniel F, Ogier-Denis E. NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon. Mol Cell Biol 2010;30:2636–2650.
10. Knaus UG, Hertzberger R, Pircalabioru GG, Yousefi SP, Branco Dos Santos F. Pathogen control at the intestinal mucosa: H2O2 to the rescue. Gut Microbes 2017;8:67–74.
11. Singh AK, Hertzberger RY, Knaus UG. Hydrogen peroxide production by lactobacilli promotes epithelial restitution during colitis. Redox Biology 2018;16:11–20.
12. Matthews JD, Reed AR, Wu H, Hinrichs BH, Darby TM, Addis C, Robinson BS, Go YM, Jones DP, Jones RM, Neish AS. Proteomic analysis of microbial induced redox-dependent intestinal signaling. Redox Biology 2019;20:526–532.
13. Pisoschi AM, Pop A. The role of antioxidants in the chemotherapy of oxidative stress: a review. Eur J Med Chem 2015;97:55–74.
14. Osburn WO, Karim B, Dolan PM, Liu G, Yamamoto M, Hsu DL, Kessler TW. Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int J Cancer 2007;121:1883–1891.
15. Niles JC, Wishnk JS, Tannenbaum SR. Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of formation. Nitric Oxide 2006;14:109–121.
16. Ō Canii, Nicolas AM, Gupta J, Finkelmeier F, Goncharova O, Pescis M, Neumann T, Horst D, Löwer M, Sahin U, Greten FR. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 2017;32:869–883.e5.
17. Kim JH, Ahn JB, Kim DH, Kim S, Ma HW, Che X, Seo DH, Kim TI, Kim WH, Cheon JH, Kim SW. Glutathione S-transferase theta 1 protects against colitis through goblet cell differentiation via interleukin-22. FASEB J 2020;34:3289–3304.
18. Visnes T, Czares-Korner A, Hao W, Wallner O, Masiyer G, Loseva O, Mortusewicz O, Wita E, Sarno A, Manoilov A, Astorga-Wells J, Jemth AS, Pan L, Sanjiv K, Karsten S, Gokturk C, Grube M, Homan EJ, Hanna BMF, Paulin CB, Pham T, Rasti A, Berglund UW, von Nicolai C, Benitez-Buelga C, Koolmeister T, Ivanic D, Iliev P, Scobie M, Krokan HE, Baranczewski P, Artursson P, Altun M, Jensen AJ, Kalderen C, Ba X, Zubarev RA, Stenmark P, Boldogh I, Helleday T. Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation. Science 2018;362:834–839.
19. Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 2011;208:417–420.
20. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011;469:221–225.
21. Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY, Sack MN, Kastner DL, Siegel RM. Mitochondrial
reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 2011;208:519–533.

22. Formentini L, Santacatterina F, Núñez de Arenas C, Stamatakis K, López-Martínez D, Logan A, Fresno M, Smits R, Murphy MP, Cueza JM. Mitochondrial ROS production protects the intestine from inflammation through functional M2 macrophage polarization. Cell Rep 2017;19:1202–1213.

23. Gulhane M, Murray L, Lourie R, Tong H, Sheng YH, Wang R, Kang A, Schreiber V, Wong KY, Magor G, Denman S, Begun J, Florin TH, Perkins A, Cuiv P, McGuckin MA, Hasnain SZ. High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22. Sci Rep 2016;6:28990.

24. Cremonini E, Daveri E, Mastaloudis A, Adamo AM, Mills D, Kakaneta K, Hester SN, Wood SM, Fraga CG, Oteiza PI. Anthocyanins protect the gastrointestinal tract from high fat diet-induced alterations in redox signaling, barrier integrity and dysbiosis. Redox Biology 2019;26:101269.

25. Biedermann L, Mwinyi J, Scharl M, Frei P, Zeitz J, Kullak-Ublick GA, Vavricka SR, Fried M, Weber A, Humpf HU, Peschke S, Jetter A, Kramer G, Rogler G, Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis: an open pilot study. J Crohns Colitis 2013;7:271–279.

26. Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol 2011;106:563–573.

27. Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR, McGeough MD, Ellisman MH, Seki E, Gustafsson AB, Hoffman HM, Diaz-Meco MT, Moscat J, Karin M. NF-κB restricts inflammation that is reversed by oxidative stress-induced inactivation of damaged mitochondria. Cell 2016;164:896–910.

28. Brown KD, Rath B, Kampschmidt DI, Zhan Q, Mannino JL, Baskaran R. The mismatch repair system is required for S-phase checkpoint activation. Nat Genet 2003;33:80–84.

29. Markkanen E. Not breathing is not an option: how to deal with oxidative DNA damage. DNA Repair 2017;59:82–105.

30. Colussi C, Parliani E, Degani P, Aquilina G, Barnes D, Macpherson P, Karran P, Cresczeni M, Dogliotti E, Bignami M. The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool. Curr Biol 2002;12:912–918.

31. Russo MT, De Luca G, Degani P, Bignami M. Different DNA repair strategies to combat the threat from 8-oxoguanine. Mutat Res 2007;614:69–76.

32. Beltran B, Nos P, Dasi F, Iborra M, Bastida G, Martinez M, O’Connor JE, Saez G, Moret I, Ponce J. Mitochondrial dysfunction, persistent oxidative damage, and catalase inhibition in immune cells of naive and treated Crohn’s disease. Inflamm Bowel Dis 2010;16:76–86.

33. Huang WS, Huang CY, Hsieh MC, Kuo YH, Tung SY, Shen CH, Hsieh YY, Teng CC, Lee KC, Lee KF, Kuo HC. Expression of PRDX6 correlates with migration and invasiveness of colorectal cancer cells. Cell Physiol Biochem 2018;51:2616–2630.

34. Jia JJ, Peng WS, Wang QZ, Chen L, Zeng XS. The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol 2019;84:453–470.

35. Barrett CW, Short SP, Williams CS. Selenoproteins and oxidative stress-induced inflammatory tumorigenesis in the gut. Cell Mol Life Sci 2017;74:607–616.

36. Te Velde AA, Pronk I, de Kort F, Stokkers PC. Glutathione peroxidase 2 and aquaporin 8 as new markers for colonic inflammation in experimental colitis and inflammatory bowel diseases. Eur J Gastroenterol Hepatol 2008;20:555–560.

37. Meplan C, Hughes DJ, Pardini A, Naccarati A, Soucek P, Vodickova L, Hlavata I, Vrana D, Vodicka P, Hesketh JE. Genetic variants in selenoprotein genes increase risk of colorectal cancer. Carcinogenesis 2010;31:1074–1079.

38. Barrett CW, Ning W, Chen X, Smith JJ, Washington MK, Hill KE, Coburn LA, Peek RM, Chaturvedi R, Wilson KT, Burk RF, Williams CS. Tumor suppressor function of the plasma glutathione peroxidase gpx3 in colitis-associated carcinoma. Cancer Res 2013;73:1245–1255.

39. Steven Eseworthy R, Kim BW, Wang Y, Gao Q, Doroshow JH, Leto TL, Chu FF. The Gadd1 locus modifies spontaneous and Salmonella-induced colitis in mice deficient in either Gpx2 or Gpx1 gene. Free Radic Biol Med 2013;65:1273–1283.

40. Florian S, Krehl S, Loewinger M, Kipp A, Banning A, Eseworthy R, Chu FF, Briegelius-Flohe R. Loss of Gpx2 increases apoptosis, mitosis, and Gpx1 expression in the intestine of mice. Free Radic Biol Med 2010;49:1694–1702.

41. Eseworthy RS, Aranda R, Martin MG, Doroshow JH, Binder SW, Chu FF. Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am J Physiol Gastrointest Liver Physiol 2001;281:G848–G855.
mice without affecting apoptosis incidence in the crypt epithelium. Redox Biology 2017;11:144–156.

47. Esworthy RS, Kim BW, Chow J, Shen B, Doroshov JH, Chu FF. Nox1 causes ileocolitis in mice deficient in glutathione peroxidase-1 and -2. Free Radic Biol Med 2014;68:315–325.

48. Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 2015;40:435–445.

49. Lu W, Fu Z, Wang H, Feng J, Wei J, Guo J. Peroxiredoxin 2 is upregulated in colorectal cancer and contributes to colorectal cancer cells’ survival by protecting cells from oxidative stress. Mol Cell Biochem 2014;387:261–270.

50. Nicolussi A, D’Inzeo S, Capalbo C, Giannini G, Coppa A. The role of peroxiredoxins in cancer. Molecular and Clinical Oncology 2017;6:139–153.

51. Takagi T, Homma T, Fujii J, Shirasawa N, Yoriki H, Hotta Y, Higashimura Y, Mizushima K, Hirai Y, Katada K, Uchiyama K, Naito Y, Itoh Y. Elevated ER stress exacerbates dextran sulfate sodium-induced colitis in PRDX4-knockout mice. Free Radic Biol Med 2019;134:153–164.

52. Sido B, Hack V, Hochehnert A, Lipps H, Herfarth C, Droge W. Impairment of intestinal glutathione synthesis in patients with inflammatory bowel disease. Gut 1998;42:485–492.

53. Clapper ML, Szarka CE. Glutathione S-transferases: biomarkers of cancer risk and chemopreventive response. Chem Biol Interact 1998;111–112:377–388.

54. Zhang MH, Wang HG, Shi YT, Zhou JF, Yan W, Ma TH, Wu SN, Yang XZ. Effect of serum total bilirubin, albumin, and uric acid levels in patients with Crohn’s disease. Medicine 2019;98:e15664.

55. Terry PD, Villinger F, Bubenik GA, Sitaraman SV. Melatonin and ulcerative colitis: evidence, biological mechanisms, and future research. Inflamm Bowel Dis 2009;15:134–140.

56. Ishihara T, Tanaka K, Tasaka Y, Namba T, Suzuki J, Ishihara T, Okamoto S, Hibi T, Takenaga M, Igarashi R, Sato K, Mizushima Y, Mizushima T. Therapeutic effect of lecithinized superoxide dismutase against colitis. J Pharmacol Exp Ther 2009;328:152–164.

57. Suzuki Y, Matsumoto T, Okamoto S, Hibi T. A lecithinized superoxide dismutase (PC-SOD) improves ulcerative colitis. Colorectal Dis 2008;10:931–934.

58. Hou CL, Zhang J, Liu XT, Liu H, Zeng XF, Qiao SY. Superoxide dismutase recombinant Lactobacillus fermentum ameliorates intestinal oxidative stress through inhibiting NF-kappaB activation in a trinitrobenzene sulphonic acid-induced colitis mouse model. J Appl Microbiol 2014;116:1621–1631.

59. Sheng Y, Li H, Liu M, Xie B, Wei W, Wu J, Meng F, Wang HY, Chen S. A manganese-superoxide dismutase from Thermus thermophilus HB27 suppresses inflammatory responses and alleviates experimentally induced colitis. Inflamm Bowel Dis 2019;25:1644–1655.

60. LeBlanc JG, del Carmen S, Miyoshi A, Azevedo V, Sesma F, Langella P, Bermudez-Humaran LG, Watterlot L, Perdigon G, de Moreno de LeBlanc A. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn’s disease in mice. Journal of Biotechnology 2011;151:287–293.

61. Del Carmen S, de Moreno de LeBlanc A, Martin R, Chain F, Langella P, Bermudez-Humaran LG, LeBlanc JG. Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities. Appl Environ Microbiol 2014;80:869–877.

62. Tarnaki H, Nakamura H, Nishio A, Nakase H, Ueno S, Uza N, Kido M, Inoue S, Mikami S, Asada M, Kirya K, Kitamura H, Ohashi S, Fukui T, Kawasaki K, Matsuura M, Ishii Y, Okazaki K, Yodoi J, Chiba T. Human thioredoxin-1 ameliorates experimental murine colitis in association with suppressed macrophage inhibitory factor production. Gastroenterology 2006;131:1110–1121.

63. Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K, Yodoi J. Distinct roles of thioredoxin in the cytoplasm and in the nucleus: a two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 1999;274:27891–27897.

64. Ardite E, Sans M, Janes P, Romero FJ, Pique JM, Fernandez-Checa JC. Replenishment of glutathione levels improves mucosal function in experimental acute colitis. Lab Invest 2000;80:735–744.

65. El-Gowelli HM, Saad EI, Abdel-Gailil AG, Ibrahim ER. Co-administration of alpha-lipoic acid and cyclosporine aggravates colon ulceration of acetic acid-induced ulcerative colitis via facilitation of NO/COX-2/miR-210 cascade. Toxicol Appl Pharmacol 2015;298:300–312.

66. Moura FA, de Andrade KQ, de Araujo OR, Nunes-Souza V, Santos JC, Rabelo LA, Goulart MO. Colonic and hepatic modulation by lipoic acid and/or N-acetylcysteine supplementation in mild ulcerative colitis induced by dextran sodium sulfate in rats. Oxidative Medicine and Cellular Longevity 2016;2016:404762.

67. Mirza-Aghazadeh-Attari M, Mohammadzadeh A, Mostavafi S, Mihanfar A, Ghazizadeh S, Sadighparvar S, Gholamzadeh S, Majidinia M, Yousefi B. Melatonin: an important anticancer agent in colorectal cancer. J Cell Physiol 2020;235:804–817.

68. Tahan G, Gramignoli R, Marongiu F, Akgol S, Cetinkaya A, Tahan V, Dorko K. Melatonin expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic-acid-induced colitis in rats. Dig Dis Sci 2011;56:715–720.

69. Irvani S, Esfami P, Dooghaie Moghadam A, Moazzami B, Mehrvar A, Hashemi MR, Mansour-Ghanaei F, Mansour-Ghanaeei A, Majidzadeh AK. The role of melatonin in colorectal cancer. Journal of Gastrointestinal Cancer 2019.

70. Chojnacki C, Wisniewska-Jarosinska M, Kilug G, Majsterek I, Reiter RJ, Chojnacki J. Evaluation of enterochromaffin cells and melatonin secretion exponents in ulcerative colitis. World J Gastroenterol 2013;19:3602–3607.
72. Trivedi PP, Jena GB. Melatonin reduces ulcerative colitis-associated local and systemic damage in mice: investigation on possible mechanisms. Dig Dis Sci 2013; 58:3460–3474.

73. Myung SK, Kim Y, Ju W, Choi HJ, Bae WK. Effects of antioxidant supplements on cancer prevention: meta-analysis of randomized controlled trials. Ann Oncol 2010;21:166–179.

74. Gill JG, Piskounova E, Morrison SJ. Cancer, oxidative stress, and metastasis. Cold Spring Harb Symp Quant Biol 2016;81:163–175.

75. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 2007; 297:842–857.

76. Kohan R, Collin A, Guizzardi S, Tolosa de Talamanon N, Picotto G. Reactive oxygen species in cancer: a paradox between pro- and anti-tumour activities. Cancer Chemother Pharmacol 2020;86:1–13.

77. Zhang Q, Pi J, Woods CG, Andersen ME. A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol Appl Pharmacol 2010;244:84–97.

78. Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO. Antioxidants accelerate lung cancer progression in mice. Science Translational Medicine 2014; 6:221ra15.

79. Piskounova E, Agathoclous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ, Morrison SJ. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 2015;527:186–191.

80. Le Gal K, Ibrahim MX, Wiel C, Sayin VI, Akula MK, Karlsson C, Dalin MG, Akyurek LM, Lindahl P, Nilsson J, Bergo MO. Antioxidants can increase melanoma metastasis in mice. Science Translational Medicine 2015;7:308ra8.

81. Saber S, Basuony M, Eldin AS. Telmisartan ameliorates dextran sodium sulfate-induced colitis in rats by modulating NF-kappaB signalling in the context of PPAR-gamma agonistic activity. Arch Biochem Biophys 2019; 671:185–195.

82. Peppas S, Piovani D, Peyrin-Biroulet L, Danese S, Bonovas S. Statins and inflammation in inflammatory bowel disease: where do we stand? European Journal of Internal Medicine 2020;75:10–21.

83. Maheshwari RA, Balaraman R, Sailor GU, Sen DB. Protective effect of simvastatin and rosuvastatin on trinitrobenzene sulfonic acid-induced colitis in rats. Indian J Pharmacol 2015;47:17–21.

84. Wang Q, Hou Y, Yi D, Wang L, Ding B, Chen X, Long M, Liu Y, Wu G. Protective effects of N-acetylcysteine on acetic acid-induced colitis in a porcine model. BMC Gastroenterology 2013;13:133.

85. Uraz S, Tahan G, Aytekin H, Tahan V. N-acetylcysteine expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic acid-induced colitis in rats. Scand J Clin Lab Invest 2013;73:61–66.

86. Kurutas EB, Cetinkaya A, Bulbuloglu E, Kantarceken B. Effects of antioxidant therapy on leukocyte myeloperoxidase and Cu/Zn-superoxide dismutase and plasma malondialdehyde levels in experimental colitis. Mediators of Inflammation 2005;2005:390–394.

87. Guijarro LG, Mate J, Gisbert JP, Perez-Calle JL, Marin-Jimenez I, Arriaza E, Olleros T, Delgado M, Castillo-De Talamoni N, Prieto-Merino D, Gonzalez Lara V, Pena AS. N-acetyl-L-cysteine combined with mesalamine in the treatment of ulcerative colitis: randomized, placebo-controlled pilot study. World J Gastroenterol 2008;14:2851–2857.

88. Merra G, Gasbarrini G, Laterza L, Pizzoferrato M, Poscia A, Scaldaferrari F, Arena V, Fiore F, Cittadini A, Sgambato A, Franceschi F, Gasbarrini G. Propionyl-L-carnitine hydrochloride for treatment of mild to moderate colonic inflammatory bowel diseases. World J Gastroenterol 2012;18:5065–5071.

89. Mikhailova TL, Sishkova E, Poniewierka E, Zhidkov KP, Bakulin IG, Kupcinskas L, Lesniakowski K, Grinevich VB, Malecka-Panas E, Ardizzone S, D’Arienzo A, Valpiani D, Koch M, Denapieni G, Vago G, Fociani P, Zerbi P, Ceracchi M, Camerin R, Gasbarrini G. Randomised clinical trial: the efficacy and safety of propionyl-L-carnitine therapy in patients with ulcerative colitis receiving stable oral treatment. Aliment Pharmacol Ther 2011;34:1088–1097.

90. Masri OA, Chalhoub JM, Sharara AI. Role of vitamins in gastrointestinal diseases. World J Gastroenterol 2015; 21:5191–5209.

91. Tahan G, Ayteck E, Aytekin H, Gunduz F, Dogusoy G, Aydin S, Tahan V, Uzun H. Vitamin E has a dual effect of anti-inflammatory and antioxidant activities in acetic acid-induced ulcerative colitis in rats. Can J Surg 2011; 54:333–338.

92. Mirbagheri SA, Nezami BG, Assa S, Hajimahmoodi M. Rectal administration of d-alpha tocopherol for active ulcerative colitis: a preliminary report. World J Gastroenterol 2008;14:5990–5995.

93. Aghdassi E, Wendland BE, Steinhart AH, Wolman SL, Jeejeebhoy K, Allard JP. Antioxidant vitamin supplementation in Crohn’s disease decreases oxidative stress. a randomized controlled trial. Am J Gastroenterol 2003;98:348–353.

94. Kondo K, Hiramato K, Yamate Y, Goto K, Sekijima H, Tahan G, Hiranbashi T, Tanaka H, Ooi K. Ameliorative effect of high-dose vitamin C administration on dextran sulfate sodium-induced colitis mouse model. Biol Pharm Bull 2019;42:954–959.

95. Yan H, Wang H, Zhang X, Li X, Yu J. Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice. International Journal of Clinical and Experimental Medicine 2015;8:20245–20253.

96. Sakamoto N, Kono S, Wakai K, Fukuda Y, Satomi M, Shimoyama T, Inaba Y, Miyake Y, Sasaki S, Okamoto K, Kobashi G, Washio M, Yokoyama T, Date C, Tanaka H. Epidemiology Group of the Research Committee on Inflammatory Bowel Disease in Japan. Dietary risk factors for inflammatory bowel disease: a multicenter case-control study in Japan. Inflamm Bowel Dis 2005; 11:154–163.
2021 Can Antioxidants Be Used to Avert Colon Cancer

97. Seril DN, Liao J, Ho KL, Yang CS, Yang GY. Inhibition of chronic ulcerative colitis-associated colorectal adenocarcinoma development in a murine model by N-acetylcysteine. Carcinogenesis 2002;23:993–1001.

98. Amrouche-Mekkioui I, Djerdjouri B. N-acetylcysteine improves redox status, mitochondrial dysfunction, mucin-depleted crypts and epithelial hyperplasia in dextran sulfate sodium-induced oxidative colitis in mice. Eur J Pharmacol 2012;691:209–217.

99. Zhao Y, Guo Q, Zhao K, Zhou Y, Li W, Pan C, Qiang L, El Halabi I, Bejjany R, Nasr R, Mukherji D, Temraz S, Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, McFadden RM, Larmonier CB, Shehab KW, Midura-Marjaneh RM, Rahmani F, Hassanian SM, Rezaei N, Rao CV, Indranie C, Simi B, Manning PT, Connor JR, Amrouche-Mekkioui I, Djerdjouri B. N-acetylcysteine inhibits tumor growth in colitis-associated colorectal cancer. J Cell Physiol 2018;233:6785–6798.

100. Zhao Y, Guo Q, Zhao K, Zhou Y, Li W, Pan C, Qiang L, Li Z, Lu N. Small molecule GL-V9 protects against colitis-associated colorectal cancer by limiting NLRP3 inflammasome through autophagy. Oncomunologio 2017;7:e1375640.

101. Ananthakrishnan AN, Cagan A, Cai T, Gainer VS, Shaw SY, Churchill S, Karlson EW, Murphy SN, Liao KP, Kohane I. Statin use is associated with reduced risk of colorectal cancer in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol 2016;14:973–979.

102. Mak JYW, So J, Tang W, Yip TCF, Leung WK, Li M, Lo FH, Ng KM, Sze SF, Leung CM, Tsang SWC, Shan EHS, Chan KH, Lam BCY, Hui AJ, Chow WH, Chan FKL, Ng SC. Cancer risk and chemoprevention in Chinese inflammatory bowel disease patients: a population-based cohort study. Scand J Gastroenterol 2020;55:279–286.

103. Lutsenko EA, Carcamo JM, Golde DW. Vitamin C prevents DNA mutation induced by oxidative stress. J Biol Chem 2002;277:16895–16899.

104. Kazmierczak-Baranska J, Boguszewska K, Adamus-Grabicka A, Karwowski BT. Two faces of vitamin C: antioxidative and pro-oxidative agent. Nutrients 2020;12.

105. Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, Shacter E, Levine M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci U S A 2005;102:13604–13609.

106. El Halabi I, Beijany R, Nasr R, Mukherji D, Temraz S, Nassar FJ, El Darsa H, Momseddine A. Ascorbic acid in colon cancer: from the basic to the clinical applications. International Journal of Molecular Sciences 2018;19.

107. McFadden RM, Larmonier CB, Shehab KW, Midura-Kiela M, Ramalingam R, Harrison CA, Besselsen DG, Chase JH, Caporaso JG, Jobin C, Ghishan FK, Kiela PR. The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflamm Bowel Dis 2015;21:2483–2494.

108. Marjanreh RM, Rahmani F, Hassanian SM, Rezaei N, Hashemzehi M, Bahrami A, Ariakia F, Fuji H, Sahebkar A, Avan A, Khazaee M. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J Cell Physiol 2018;233:6785–6798.

109. Cui X, Jin Y, Hofseth AB, Penaa E, Habiger J, Chumanevich A, Poudyal D, Nagarkatti M, Nagarkatti PS, Singh UP, Hofseth LJ. Resveratrol suppresses colitis and colon cancer associated with colitis. Cancer Prevention Research 2010;3:549–559.

110. Wang J, Zhang Z, Fang A, Wu K, Chen X, Wang G, Mao F. Resveratrol attenuates inflammatory bowel disease in mice by regulating SUMO1. Biol Pharm Bull 2020;43:450–457.

111. Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet 2004;364:1219–1228.

112. Bussey HJ, DeCosse JJ, Deschner EE, Eyers AA, Lesser ML, Morson BC, Ritchie SM, Thomson JP, Wadsworth J. A randomized trial of ascorbic acid in polyposis coli. Cancer 1982;50:1434–1439.

113. Forman D, Altman D. Vitamins to prevent cancer: supplementary studies. Lancet 2004;364:1193–1194.

114. Greenberg ER, Baron JA, Tosteson TD, Freeman DH Jr, Beck GJ, Bond JH, Colacchio TA, Coller JA, Frankl HD, Haile RW, et al. A clinical trial of antioxidant vitamins to prevent colorectal adenoma: Polyp Prevention Study Group. N Engl J Med 1994;331:141–147.

115. Diakowska D, Lewandowski A, Kopec W, Diakowski W, Chrzanowska T. Oxidative DNA damage and total antioxidant status in serum of patients with esophageal squamous cell carcinoma. Hepatogastroenterology 2007;54:1701–1704.

116. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, Boot A, Covington KR, Gordenin DA, Bergstrom EN, Islam SMA, Lopez-Bigas N, Klimczak LJ, McPherson JR, Morganella S, Sabarinathan R, Wheeler DA, Mustonen V, Group PMSW, Getz G, Rozen SG, Stratton MR, Consortium P. The repertoire of mutational signatures in human cancer. Nature 2020;578:94–101.

117. Diao QX, Zhang JZ, Zhao T, Xue F, Gao F, Ma SM, Wang Y. Vitamin E promotes breast cancer cell proliferation by reducing ROS production and p53 expression. Eur Rev Med Pharmacol Sci 2016;20:2710–2717.

118. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 2009;361:2449–2460.

119. Beaugerie L, Itzkowitch SH. Cancers complicating inflammatory bowel disease. N Engl J Med 2015;372:1441–1452.

120. Chen J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harbor Perspectives in Medicine 2016;6:a026104.

121. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nat Med 2005;11:1306–1313.

122. Lang GI, Parsons L, Gammie AE. Mutation rates, spectra, and genome-wide distribution of spontaneous mutations in mismatch repair deficient yeast. G3 (Bethesda) 2013;3:1453–1465.

123. Denson LA, Jurickova I, Karsn R, Shaw KA, Cutler DJ, Okou DT, Dodd A, Quinn K, Mondal K, Aronow BJ,
Haberman Y, Linn A, Price A, Bezold R, Lake K, Jackson K, Walters TD, Griffiths A, Baldassano RN, Noe JD, Hyams JS, Crandall WW, Kirschner BS, Heyman MB, Snapper S, Guthery SL, Dubinsky MC, Leleiko NS, Otley AR, Xavier RJ, Stevens C, Daly MJ, Zwick ME, Kugathasan S. Clinical and genomic correlates of neutrophil reactive oxygen species production in pediatric patients with Crohn’s disease. Gastroenterology 2018;154:2097–2110.

124. Dhillon SS, Fatouh R, Elkadri A, Xu W, Murchie R, Walters T, Guo C, Mack D, Huynh HQ, Baksh S, Silverberg MS, Griffiths AM, Snapper SB, Brumell JH, Muise AM. Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease. Gastroenterology 2014;147:680–689 e2.

125. Hayes P, Dhillon S, O’Neill K, Thoeni C, Hui KY, Elkadri A, Guo CH, Kovacic L, Aviello G, Alvarez LA, Griffiths AM, Snapper SB, Brant SR, Doroshov JH, Silverberg MS, Peter I, McGovern DP, Cho J, Brumell JH, Uhlig HH, Bourke B, Muise AA, Knaus Ug. Defects in NADPH oxidase genes NOX1 and DUOX2 in very early onset inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 2015;1:489–502.

126. Parlato M, Charbit-Henrion F, Hayes P, Tiberti A, Aloisi M, Cucchiara S, Beuge B, Bras M, Pouillet A, Rakotoby S, Ruemmele F, Knaus Ug, Cerf-Bensussan N. First identification of biallelic inherited DUOX2 inactivating mutations as a cause of very early onset inflammatory bowel disease. Gastroenterology 2017;153:609–611 e3.

127. Huang C, De Ravin SS, Paul AR, Heller T, Ho N, Wu Datta L, Zerbe CS, Marciano BE, Kuhns DB, Kader HA, Holland SM, Malech HL, Brant SR, Consortium NIG. Genetic risk for inflammatory bowel disease is a determinant of Crohn’s disease development in chronic granulomatous disease. Inflamm Bowel Dis 2016;22:2794–2801.

128. Angelini G, De Angelis F, Faraci S, Rea F, Romeo EF, Torroni F, Tambucci R, Claps A, Francalanci P, Chirico M, Di Matteo G, Cancrini C, Palma P, D’Argenio P, Dall’Oglio L, Rossi P, Finocchi A. Inflammatory bowel disease in chronic granulomatous disease: an emerging problem over a twenty years’ experience. Pediatr Allergy Immunol 2017;28:801–809.

129. Masnadi Shirazi K, Nikniaz Z, Masnadi Shirazi A, Rohani M. Vitamin A supplementation decreases disease activity index in patients with ulcerative colitis: a randomized controlled clinical trial. Complement Ther Med 2018;41:215–219.

130. Hanai H, Iida T, Takeuchi K, Watanabe F, Maruyama Y, Andoh A, Tsujikawa T, Fujiyama Y, Mitsuyama K, Sata M, Yamada M, Iwaoka Y, Kanke K, Hiraiishi H, Hirokawa K, Arai H, Yoshii S, Uchijima M, Nagata T, Koide Y. Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol 2006;4:1502–1506.

131. Sadeghi N, Mansoori A, Shayesteh A, Hashemi SJ. The effect of curcumin supplementation on clinical outcomes and inflammatory markers in patients with ulcerative colitis. Phytother Res 2020;34:1123–1133.

132. Masoodi M, Mahdiabadi MA, Mokhtare M, Agah S, Kashani AHF, Rezadoost AM, Sabzikarian M, Talebi A, Sahebkar A. The efficacy of curcuminoids in improvement of ulcerative colitis symptoms and patients’ self-reported well-being: a randomized double-blind controlled trial. J Cell Biochem 2018;119:9552–9559.

133. Lang A, Salomon N, Wu JC, Kopylov U, Lahat A, Har-Noy O, Ching JY, Cheong PK, Avidan B, Damus G, Samsami-Kor M, Daryani NE, Asl PR, Hekmatdoost A. Curcumin in combination with mesalazine induces remission in patients with mild-to-moderate ulcerative colitis in a randomized controlled trial. Clin Gastroenterol Hepatol 2015;13:1444–1449 e1.

134. Singla V, Pratap Mouli V, Garg SK, Rai T, Choudhury BN, Verma P, Deb R, Tiwari V, Rohatgi S, Dhingra R, Kedia S, Sharma PK, Makhaira G, Ahuja V. Induction with NCB-02 (curcumin) enema for mild-to-moderate distal ulcerative colitis: a randomized, placebo-controlled, pilot study. J Crohns Colitis 2018;8:208–214.

135. Sugimoto K, Ikeya K, Bamba S, Andoh A, Yamasaki K, Musuyama K, Nasuno M, Tanaka H, Matsuura A, Kato M, Ishida N, Tamura S, Takano R, Tani S, Osawa S, Nishihira J, Hanai H. Highly bioavailable curcumin derivative ameliorates Crohn’s disease symptoms: a randomized, double-blind, multicenter study. J Crohns Colitis 2020.

136. Samsamikor M, Daryani NE, Asl PR, Hekmatdoost A. Resveratrol supplementation and oxidative/anti-oxidative status in patients with ulcerative colitis: a randomized, double-blind, placebo-controlled pilot study. Arch Med Res 2016;47:304–309.

137. Samsami-Kor M, Daryani NE, Asl PR, Hekmatdoost A. Anti-inflammatory effects of resveratrol in patients with ulcerative colitis: a randomized, double-blind, placebo-controlled pilot study. Arch Med Res 2015;46:280–285.

138. Albanes D, Malila N, Taylor PR, Huttunen JK, Virtamo J, Edwards BK, Rautalahti M, Hartman AM, Barrett MJ, Pietinen P, Hartman TJ, Sipponen P, Lewin K, Teerenhovi L, Hietanen P, Tangrea JA, Virtanen M, Heinonen OP. Effects of supplemental alpha-tocopherol and beta-carotene on colorectal cancer: results from a controlled trial (Finland). Cancer Causes Control 2000;11:197–205.

139. Malila N, Virtamo J, Virtanen M, Albanes D, Tangrea JA, Huttunen JK. The effect of alpha-tocopherol and beta-carotene supplementation on colorectal adenomas in middle-aged male smokers. Cancer Epidemiol Biomarkers Prev 1999;8:489–493.

140. Hofstad B, Almendingen K, Vatn M, Andersen SN, Owen RW, Larsen S, Ovesen M. Growth and recurrence of colorectal polyps: a double-blind 3-year intervention with calcium and antioxidants. Digestion 1998;59:148–156.

141. Hopkins MH, Fedirko V, Jones DP, Terry PD, Bostick RM. Antioxidant micronutrients and biomarkers of oxidative stress and inflammation in colorectal adenoma patients: results from a randomized, controlled
clinical trial. Cancer Epidemiol Biomarkers Prev 2010; 19:850–858.

142. Roncucci L, Di Donato P, Carati L, Ferrari A, Perini M, Bertoni G, Bedogni G, Paris B, Svanoni F, Girola M, et al. Antioxidant vitamins or lactulose for the prevention of the recurrence of colorectal adenomas: Colorectal Cancer Study Group of the University of Modena and the Health Care District 16. Dis Colon Rectum 1993; 36:227–234.

143. McKeown-Eyssen G, Holloway C, Jazmaji V, Bright-See E, Dion P, Bruce WR. A randomized trial of vitamins C and E in the prevention of recurrence of colorectal polyps. Cancer Res 1988;48:4701–4705.

144. Moertel CG, Fleming TR, Creagan ET, Rubin J, O’Connell MJ, Ames MM. High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy: a randomized double-blind comparison. N Engl J Med 1985; 312:137–141.

145. Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci U S A 1976;73:3685–3689.

146. Wang F, He MM, Wang ZX, Li S, Jin Y, Ren C, Shi SM, Bi BT, Chen SZ, Lv ZD, Hu JJ, Wang ZQ, Wang FH, Wang DS, Li YH, Xu RH. Phase I study of high-dose ascorbic acid with mFOLFOX6 or FOLFIRI in patients with metastatic colorectal cancer or gastric cancer. BMC Cancer 2019;19:460.

147. Lance P, Alberts DS, Thompson PA, Fales L, Wang F, San Jose J, Jacobs ET, Goodman PJ, Darke AK, Yee M, Minasian L, Thompson IM, Roe DJ. Colorectal adenomas in participants of the SELECT randomized trial of selenium and vitamin E for prostate cancer prevention. Cancer Prevention Research 2017;10:45–54.

148. Thompson PA, Ashbeck EL, Roe DJ, Fales L, Buckmeier J, Wang F, Bhattacharyya A, Hsu CH, Chow HH, Ahnen DJ, Boland CR, Heigh RI, Fay DE, Hamilton SR, Jacobs ET, Martinez ME, Alberts DS, Lance P. Selenium supplementation for prevention of colorectal adenomas and risk of associated type 2 diabetes. J Nati Cancer Inst 2016;108.

149. Reid ME, Duffield-Lillico AJ, Sunga A, Fakh M, Alberts DS, Marshall JR. Selenium supplementation and colorectal adenomas: an analysis of the nutritional prevention of cancer trial. Int J Cancer 2006; 118:1777–1781.

150. Bonelli L, Puntoni M, Gatteschi B, Massa P, Missale G, Munizzi F, Turbino L, Villanacci V, De Censi A, Bruzzi P. Antioxidant supplement and long-term reduction of recurrent adenomas of the large bowel: a double-blind randomized trial. J Gastroenterol 2013;48:698–705.

151. Ribeiro SM, Braga CB, Peria FM, Domenici FA, Martinez EZ, Feres O, da Rocha JJ, da Cunha SF. Effect of zinc supplementation on antioxidant defenses and oxidative stress markers in patients undergoing chemotherapy for colorectal cancer: a placebo-controlled, prospective randomized trial. Biol Trace Elem Res 2016;169:8–16.

152. Cruz-Correa M, Hyland LM, Marrero JH, Zahurak ML, Murray-Stewart T, Casero RA Jr, Montgomery EA, Iacobuzio-Donahue C, Brosens LA, Offerhaus GJ, Umar A, Rodriguez LM, Giardiello FM. Efficacy and safety of curcumin in treatment of intestinal adenomas in patients with familial adenomatous polyposis. Gastroenterology 2018;155:668–673.

153. Howells LM, Iwuji COO, Irving GRB, Barber S, Walter H, Sidat Z, Griffin-Teall N, Singh R, Foreman N, Patel SR, Morgan B, Steward WP, Gescher A, Thomas AL, Brown K. Curcumin combined with FOLFOX chemotherapy is safe and tolerable in patients with metastatic colorectal cancer in a randomized phase IIa trial. J Nutr 2019;149:1133–1139.

154. Shin CM, Lee DH, Seo AY, Lee HJ, Kim SB, Son WC, Kim YK, Lee SJ, Park SH, Kim N, Park YS, Yoon H. Green tea extracts for the prevention of metachronous colorectal polyps among patients who underwent endoscopic removal of colorectal adenomas: a randomized clinical trial. Clin Nutr 2018; 37:452–458.

155. Shimizu M, Fukutomi Y, Ninomiya M, Nagura K, Kato T, Araki H, Suganuma M, Fujiki H, Moriwaki H. Green tea extracts for the prevention of metachronous colorectal adenomas: a pilot study. Cancer Epidemiol Biomarkers Prev 2008;17:3020–3025.

156. Hoensch H, Groh B, Edler L, Kirch W. Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence. World J Gastroenterol 2008;14:2187–2193.

157. Estensen RD, Levy M, Klopp SJ, Galbraith AR, Mandel JS, Blomquist JA, Wattenberg LW. N-acetylcysteine suppression of the proliferative index in the colon of patients with previous adenomatous colonic polyps. Cancer Lett 1999;147:109–114.

158. Kuyumcu A, Akyol A, Buyuktuncer Z, Ozmen MM, Besler HT. Improved oxidative status in major abdominal surgery patients after N-acetyl cysteine supplementation. Nutrition Journal 2015;14:4.

Received August 10, 2020. Accepted December 30, 2020.

Correspondence
Address correspondence to: Alberto Martin, PhD, Department of Immunology, University of Toronto, Medical Sciences Building 7302, Toronto, Canada M5S1A. e-mail: alberto.martin@utoronto.ca.

Acknowledgments
The authors thank the Martin lab for their helpful comments.

Conflicts of interest
The authors disclose no conflicts.

Funding
Supported by the Canadian Cancer Society (grant 703185) and Canadian Institute of Health Research (grant PJT-173501).