Impaired Gallbladder Motility and Increased Gallbladder Wall Thickness in Patients with Nonalcoholic Fatty Liver Disease

Yasar Colak,1,2* Gulcin Bozbey,3 Tolga Erim,2 Ozge Telci Cakilli,4 Celal Ulasoglu,1 Ebubekir Senates,1 Hasan Huseyin Mutlu,5 Banu Mesci,4 Mehmet Sait Dogan,6 Guralp Tasan,1 Feruze Yilmaz Enc,1 and Ilyas Tuncer1

1Department of Gastroenterology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey; 2Department of Gastroenterology, Cleveland Clinic Florida, Weston, FL, USA; 3Department of Radiology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey; 4Department of Internal Medicine, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey; 5Department of Family of Medicine, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey; and 6Department of Radiology, Erciyes University, School of Medicine, Kayseri, Turkey

Background/Aims
Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease worldwide. Along with the increase in the incidence of NAFLD and associated obesity, an increase in gallbladder disease (GD) has been noted. This has led to the identification of a new disease entity called fatty GD. There is a gap in the literature on the dynamics of gallbladder function in patients with NAFLD.

Methods
An observational case-control study, a total of 50 patients with biopsy proven NAFLD without gallbladder stone/sludge and 38 healthy comparison subjects were enrolled. Fasting, postprandial gallbladder volumes (PGV), gallbladder ejection fraction (GEF), and fasting gallbladder wall thickness (FGWT) were measured by real-time 2-dimensional ultrasonography.

Results
Fasting gallbladder wall thickness, fasting gallbladder volumes and PGV were significantly higher in patients with NAFLD than control subjects ($P < 0.001$, $P = 0.006$, and $P < 0.001$, respectively). Gallbladder ejection fraction was significantly lower in the NAFLD group than the controls ($P = 0.008$). The presence of NAFLD was an independent predictor for GEF, PGV, and FGWT. Also, steatosis grade was an independent predictor for GEF, and GEF was significantly lower in the nonalcoholic steatohepatitis (NASH) subgroup than the controls.

Conclusions
Gallbladder dysfunction and increase in gallbladder wall thickness exists in asymptomatic (without stone/sludge and related symptoms) patients with NAFLD and are useful in identifying fatty GD. Measurement of these variables in NAFLD patients may be useful in identifying those at higher risk for GD.

(J Neurogastroenterol Motil 2016;22:470-476)

Key Words
Gallbladder; Non-alcoholic fatty liver disease; Physiopathology
Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease worldwide. The prevalence of NAFLD is estimated to be between 20% and 30% in Western adults. Abdominal obesity is an important etiological factor in the pathogenesis of NAFLD and recent reports have shown an association between increased gallbladder disease (GD) and cholecystectomy incidence and abdominal obesity. This increase in GD may be linked to increasing frequency of obesity and metabolic syndrome (MetS). Additionally there have been various publications investigating an association between NAFLD and GD showing increased GD prevalence in NAFLD patients. However there is no data available showing a causal relationship on this issue regarding gallbladder motility in patients with NAFLD.

The present study was designed to investigate the relationship between fasting gallbladder volumes, ejection fraction, residual volume, gallbladder thickness, biochemical values, histopathological parameters, and anthropometric measurements in patients with biopsy-proven NAFLD without GD and healthy controls.

Materials and Methods

Study Subjects

In this observational case-control study, a total of 50 patients with NAFLD (30 men and 20 women; mean age, 42.4 ± 9.7 years) without gallbladder stone/sludge and 38 healthy comparison subjects (22 men and 16 women; mean age, 40.1 ± 10.7 years) were enrolled. Patients evaluated in the gastroenterology clinic within the last 1 year with high transaminase levels, and with diagnosis of NAFLD in histopathological evaluation were included into the study. All patients had alanine aminotransferase elevations for at least 6 months; they had no history of hepatotoxic drug use, hormone replacement therapy or herbal products, and no alcohol use of more than 20 g/day. Viral serology, autoimmune markers, iron status, ceruloplasmin, serum and 24-hours urinary copper, alpha-1 antitrypsin levels, thyroid functions, and Kayser-Fleischer rings (with ophthalmological examination) were assessed. In order to exclude malignancy and/or cholestatic diseases, ultrasonographic examinations were performed. The patients having hepatosteatosis on ultrasonography (US) were followed for 6 months. An US-guided liver biopsy was performed on patients with high transaminase levels persisting after 6 months and those found to have NAFLD on histopathologic examination were enrolled in the study. The healthy control group subjects had no illnesses, alcohol use, drug or herbal substance use, and no history of previous liver diseases. They had negative viral hepatitis serology tests and normal liver US. This study was approved by the Istanbul Medeniyet University ethics committee (Approval number: 2015/0067, date: 27.05.2015.)

Clinical and Laboratory Evaluations

A complete physical examination was performed on all subjects. Anthropometric assessment of height and weight were recorded, body mass index (BMI, kg/m²) was calculated, and waist circumference (cm) was measured. Blood pressures were obtained after ten minutes of rest in a quiet room. Venous blood samples were taken in the morning after a 12-hour fast. Complete blood counts and biochemical parameters were assessed using standard methods. The Adult Treatment Panel III for MetS and American Diabetes Association criteria was used for diabetes mellitus diagnosis. Homeostatic model assessment-insulin resistance index [fasting plasma insulin (mU/mL) × fasting plasma glucose (mg/dL)/405.23] were used for determining insulin resistance.

Ultrasonographic Evaluation

All ultrasonographic examinations and US guided percutaneous liver biopsies were performed by the same radiologist. After a 12 hour overnight fast, fasting and postprandial gallbladder volumes were measured sonographically before and 45 minutes after ingestion of a standard liquid test meal (33 g fat, 5 g protein, 59 g carbohydrate, 554 kcal per 100 mL). The thickness of the gallbladder wall, residual volume, and postprandial ejection fractions were calculated in all patients. Fasting and postprandial gallbladder volumes (FGV and PGV) and fasting and postprandial gallbladder wall thicknesses (FGWT and PGWT) were measured by real-time 2-dimensional ultrasonography (SSA-270A; Toshiba, Tokyo, Japan; with a 3.75 mHz curved transducer). Gallbladder dimensions in the longitudinal, transverse and sagittal planes were obtained. The smallest volume obtained after feeding at the 45th minute was determined as the postprandial (or residual) gallbladder volume. Gallbladder volumes (GV) and ejection fractions were determined using the following formulas;

\[GV = \pi/6x(L \times W \times H) \]

\[GEF = (V_0 - V_t)/V_0 \times 100 \]

\[V_s = FGV, V_t = PGV at 45th minute \]

Histological Analysis

All of the biopsies were performed under US guidance. The
liver specimens were deemed sufficient if the length of the tissue was greater than 2 cm and/or showing more than 6 portal areas in histological examination. The liver specimens were stained with hematoxylin-eosin, Masson’s trichrome, and reticulin silver stains. They were scored and evaluated by an experienced hepatopathologist blinded to the clinical status of the patients. Histological evaluation was done according to the NAFLD scoring system recommended by National Institute of Diabetes and Digestive and Kidney Diseases Nonalcoholic Steatohepatitis (NASH) Clinical Research Network. Hepatic steatosis was graded from 1 to 3 according to the steatosis ratio as 5-33%, 33-66%, and >66% representing score 1, 2, and 3, respectively. Lobular inflammation was defined as an overall assessment of all inflammation; no foci as score 0, <2 foci per ×200 field as score 1, 2-4 foci per ×200 field as score 2, and >4 foci per ×200 field as score 3. Ballooning scoring was defined as score 0 if there was no ballooning of hepatocytes, score 1 if there were few, and score 2 if there were numerous ballooning hepatocytes. Fibrosis was staged as follows: stage 0, no liver fibrosis; stage 1, perisinusoidal or periportal fibrosis; stage 2, perisinusoidal and portal/periportal fibrosis; stage 3, bridging fibrosis; and stage 4, cirrhosis. Histologically, the total NASH score was calculated as a sum of steatosis (1-3), lobular inflammation (0-3), and ballooning (0-2). It was graded according to the total NASH score 0-2 as simple steatosis, 3-4 as borderline NASH, 5 or greater were diagnosed as definitive NASH.

Statistical Methods

Data was processed on a personal computer and analyzed using SPSS 16.0 (SPSS Inc, Chicago, IL, USA). Normally distributed continuous variables were presented as mean ± standard deviation; skewed continuous variables were characterized by the medians and interquartile ranges. The student t test was used in the evaluation of the difference between the 2 averages of the independent groups. Differences in the values of fasting gallbladder volumes, ejection fraction, residual volume and gallbladder thickness among the 4 groups were determined by one-way analysis of variance followed by the Bonferroni multiple-comparison post-hoc test. Categorical data were analyzed by using the χ² test. Spearman rank correlation was used to examine the relationship between variables. Multiple linear regression analysis was performed to evaluate the independence of the association between measurements related to gallbladder, clinical, biochemical, and histological parameters of liver injury in NAFLD patients. The covariates for these analyses were BMI, waist circumference, low density lipoprotein cholesterol, triglycerides, alanine aminotransferase, and histological steatosis scores. P-values < 0.05 were considered statistically significant.

Table 1. Clinical, Biochemical, and Radiological Characteristics of the Nonalcoholic Fatty Liver Disease Patients and Healthy Controls

	Healthy controls (n = 38)	NAFLD group (n = 50)	P-value
Gender (males/females)	22/16	30/20	> 0.05
Age (yr)	40.10 ± 10.70	42.40 ± 9.70	> 0.05
BMI (kg/m²)	23.90 ± 5.10	31.10 ± 5.60	< 0.001
Waist circumference (cm)	78.70 ± 13.80	101.80 ± 9.50	< 0.001
Sedimentation (mm/hr)	18.20 ± 10.90	18.80 ± 9.60	> 0.05
C-reactive protein (mg/L)	3.80 ± 2.80	5.60 ± 4.40	0.042
White blood cells (×10⁹/L)	6.11 ± 1.70	7.37 ± 2.50	0.009
HOMA-IR	0.94 ± 0.50	2.70 ± 1.80	< 0.001
Total cholesterol (mmol/L)	4.67 ± 0.90	5.26 ± 1.50	0.043
Triglycerides (mmol/L)	1.06 ± 0.60	2.31 ± 2.00	< 0.001
LDL cholesterol (mmol/L)	2.89 ± 0.80	3.57 ± 1.00	0.002
HDL cholesterol (mmol/L)	1.30 ± 0.30	1.18 ± 0.20	> 0.05
AST (U/L)	20.20 ± 6.10	39.70 ± 21.10	< 0.001
ALT (U/L)	17.30 ± 10.60	58.00 ± 37.00	< 0.001
MetS (%)	0	58	
Fasting gallbladder wall thickness (mm)	1.12 ± 0.38	1.48 ± 0.46	< 0.001
Fasting gallbladder volume (mL)	21.73 ± 11.10	27.86 ± 8.40	0.006
Postprandial gallbladder volume (mL)	10.73 ± 5.70	17.84 ± 8.18	< 0.001
Gallbladder ejection fraction (%)	48.00 ± 19.15	36.80 ± 19.30	0.008

NAFLD, nonalcoholic fatty liver disease; BMI, body mass index; HOMA-IR, homeostatic model assessment-insulin resistance; LDL, low density lipoprotein; HDL, high density lipoprotein; AST, aspartate aminotransferase; ALT, alanine aminotransferase; MetS, metabolic syndrome. Values are expressed as mean ± SE.
Results

The main clinical and laboratory characteristics and gallbladder kinetics of the patients and controls are described in Table 1. The age and gender distribution rates were similar between patients with NAFLD and controls. Ten (20%) patients had simple steatosis, 22 (44%) patients had borderline NASH, and 18 (36%) patients had definitive NASH in the NAFLD group. FGWT, FGV, and PGV were significantly higher in patients with NAFLD than control subjects ($P < 0.001$, $P = 0.006$, and $P < 0.001$, respectively). GEF was significantly lower in the NAFLD group than the controls ($P = 0.008$). There was no significant difference between patients with or without MetS among patients with NAFLD with respect to GEF (36.20 ± 20.30% and 37.00 ± 18.70%, respectively) and FGWT (1.53 ± 0.44 mm and 1.40 ± 0.51 mm, respectively).

Gallbladder kinetics of controls, patients with simple steatosis, and patients with (borderline and definitive) NASH (histological subgroups of NAFLD) are described in Table 2. Post-hoc analyses showed that FGWT (Fig. 1), FGV, and PGV were significantly higher in NASH subgroups of NAFLD than control subjects ($P < 0.001$, $P = 0.017$, and $P < 0.001$, respectively). But there was no significant difference between other subgroups for FGWT. For these subgroups, the GEF measured 48.00 ± 19.00%, 38.40 ± 16.60%, and 36.10 ± 20.20%, respectively ($P = 0.023$). GEF was significantly lower in the NASH subgroup than the controls ($P = 0.023$), but was not significantly different between other subgroups (Fig. 2).

Linear stepwise regression analyzes showed that presence of NAFLD was an independent predictor of GEF, PGV, and FGWT in a multivariate model (Table 3). Also, steatosis grade was an independent predictor for GEF ($P = 0.001$) (Table 3). Also, there were significant correlation between FGV and presence of NAFLD, and BMI. However, only BMI was an independent predictor of FGV (Table 3).

Discussion

This is the first study to assess gallbladder motility of biopsy proven NAFLD patients. Results of our study show significant

Table 2. Gallbladder Kinetics of Controls, Patients with Simple Steatosis, and Patients with (Borderline and Definitive) Nonalcoholic Steatohepatitis

	Healthy controls	Simple steatosis	Nonalcoholic steatohepatitis	P-value
Fasting gallbladder wall thickness (mm)	1.12 ± 0.38	1.31 ± 0.37	1.52 ± 0.48	0.001
Fasting gallbladder volume (mL)	21.73 ± 11.10	27.36 ± 11.10	27.94 ± 8.55	0.019
Postprandial gallbladder volume (mL)	10.73 ± 5.70	16.80 ± 7.60	18.10 ± 8.50	< 0.001
Gallbladder ejection fraction (%)	48.00 ± 19.15	38.40 ± 16.60	36.10 ± 20.20	0.023

Values are expressed as mean ± SE.

Figure 1. Fasting gallbladder wall thickness in healthy controls, patients with simple steatosis, and patients with nonalcoholic steatohepatitis (NASH).

Figure 2. Gallbladder ejection fractions in healthy controls, patients with simple steatosis, and patients with nonalcoholic steatohepatitis (NASH).
Yasar Colak, et al

Journal of Neurogastroenterology and Motility

increase in FGWT, FGV, and PGV, and also reduced GEF in patients with NAFLD compared to control patients. Gallbladder motility is shown to decrease progressively in healthy controls, patients with simple steatosis, and patients with NASH: just as FGWT increases progressively in these same groups respectively. The results support an association between impaired gallbladder motility in patients with NAFLD and GWT.

Increased lipid presence in the gallbladder wall has been shown in patients with acalculous and calculous cholecystitis, and in recent years a link between increased acalculous cholecystitis and fatty GD has been suggested. A possible mechanism explaining gallbladder dysfunction in patients with NAFLD is a theory called fatty GD that is described as increased fat deposition in the gallbladder wall. Obesity related fatty infiltration of the gallbladder leading to both structural and functional damage has been shown in animal studies.

Another possible mechanism of reduced gallbladder motility in patients with NAFLD may be inflammatory damage caused by visceral adipose tissue related cytokines. It has been shown in numerous studies that adipose tissue releases various inflammatory molecules including TNF-alpha, IL-6, and cause end organ damage. These inflammatory changes predispose to GD by impairing the muscle cell function of the gallbladder wall resulting from increased insulin resistance, and by impairing absorptive and secretory functions of the gallbladder. Our results support this theory as FGV was found to be increased in patients with NAFLD, possibly due to the decreased absorptive function of gallbladder. A recent study by Pellegrielli et al has indeed shown that inflammation caused by human adipocytes causes decreased expression of contractile proteins in myotubes.

Functional gallbladder disorder is defined as biliary pain resulting from poor gallbladder motility in the absence of microlithiasis, sludge, or gallstone disease. Otherwise, this disorder is considered a contributing risk factor for gallbladder sludge and stone. Patients with a GEF of less than 40 percent are considered to have poor gallbladder motility, and this result predicts which patients are likely to respond to cholecystectomy. Additionally Sharma et al showed that GEF is higher in microlithiasis patients than in gallstone patients, but lower than healthy volunteers. Our data showed that patients with NAFLD have reduced GEF (36.8%) and this result

| Table 3. Results of the Correlations and Multiple Regression Analyze Between Gallbladder Dynamics and Relevant Parameters |
Correlations and correlation coefficients (r)	Independent predictors
Fasting gallbladder volume (mL)	The presence of NAFLD (r: 0.30)
BMI (r: 0.36)	BMI (beta: 0.29, t: 2.33, P: 0.022)
Postprandial gallbladder volume (mL)	The presence of NAFLD (r: 0.45)
BMI (r: 0.49)	The presence of NAFLD (beta: 0.35, t: 2.4, P: 0.01)
Age (r: 0.26)	BMI (beta: 0.35, t: 2.66, P: 0.01)
Steatosis grade (r: 0.34)	Steatosis grade (beta: 0.34, t: 2.61, P: 0.01)
Fasting gallbladder wall thickness (mm)	The presence of NAFLD (r: 0.39)
BMI (r: 0.35)	The presence of NAFLD (beta: 0.33, t: 2.76, P: 0.03)
Steatosis grade (r: 0.3)	
Presence of DM-2 (r: 0.36)	
Gallbladder ejection fraction (%)	The presence of NAFLD (r: −0.28)
BMI (−0.28)	The presence of NAFLD (beta = −0.28, t = −2.26, P: 0.04)
Age (r: −0.23)	Steatosis grade (beta: −0.45, t: −3.4, P: 0.01)
Steatosis grade (−0.41)	

NAFLD, nonalcoholic fatty liver disease; BMI, body mass index; DM-2, diabetes mellitus type 2.
may explain the increased GD in patients with NAFLD.

There are a few limitations that should be taken into account when interpreting the results, the low number of patients being the first. The study group consisted of only Turkish ethnicity, limiting generalization. Third, the exclusion of NAFLD in the control group was done by normal biochemical and ultrasonographic findings: no liver biopsies were performed on control subjects due to ethical concerns.

In conclusion, we have found increased impairment of gallbladder motility and increased FGWT in asymptomatic patients with biopsy proven NAFLD, compared to healthy controls. These data may explain the increased GD prevalence in NAFLD patients. Further clinical and translational research studies are needed to clarify these associations.

Financial support: None.

Conflicts of interest: None.

Author contributions: Yasar Colak and Gulcin Bozbey performed the research; Yasar Colak and Ebubekir Senates designed the research study; Ebubekir Senates, Hasan Huseyin Mutlu, Banu Mesci, Mehmet Sait Doğan, Guralp Tasan, Feruze Yilmaz Enc, and Ilyas Tuncer contributed essential reagents or tools; Yasar Colak and Ebubekir Senates analyzed the data; and Yasar Colak, Tolga Erizm, Ozge Telci Cakliti, and Celal Ulasoglu wrote the paper.

References

1. Marchesini G, Bugianesi E, Forlani G, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003;37:917-923.
2. Rafiq N, Younossi ZM. Nonalcoholic fatty liver disease: a practical approach to evaluation and management. Clin Liver Dis 2009;13:249-266.
3. Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004;40:1387-1395.
4. Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S. Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology 2004;40:1387-1395.
5. Liew PL, Lee YC, Lin YC, et al. Comparison of artificial neural networks with logistic regression in prediction of gallbladder disease among obese patients. Dig Liver Dis 2007;39:336-342.
6. Seninge UL, Sataloff DM, Lieber CP, DellaCroce JM, Sorouri ES. Gallbladder Disease in the Morbidly Obese Patient. Obes Surg 2007;17:835-842; discussion 842-843.
7. Dodds WJ, Grehl WJ, Darwesh RM, Lawson TL, Kishk SM, Kern MK. Sonographic measurement of gallbladder volume. AJR Am J Roentgenol 1985;145:1009-1011.
8. Tsai CJ, Leitzmann MF, Willett WC, Giovannucci EL. Central adiposity, regional fat distribution, and the risk of cholecystectomy in women. Gut 2006;55:708-714.
9. Koller T, Kollerova J, Havaty T, Huorka M, Payer J. Cholelithiasis and markers of nonalcoholic fatty liver disease in patients with metabolic risk factors. Scand J Gastroenterol 2012;47:197-203.
10. Liew PL, Lee WJ, Wang W, et al. Fatty liver disease: predictors of nonalcoholic steatohepatitis and gallbladder disease in morbid obesity. Obes Surg 2008;18:847-853.
11. Loria P, Lonardo A, Lombardini S, et al. Gallstone disease in non-alcoholic fatty liver: prevalence and associated factors. Gastroenterol Hepatol 2005;20:1176-1184.
12. Ramos-De la Medina A, Remes-Troche JM, Roesch-Dietlen FB, Perez-Morales AG, Martinez S, Cid-Juarez S. Routine liver biopsy to screen for nonalcoholic fatty liver disease (NAFLD) during cholecystectomy for gallstone disease: is it justified? J Gastrointest Surg 2008;12:2097-2102; discussion 2102.
13. Roesch-Dietlen F, Perez-Morales A, Melo-Santisteban G, et al. [Frequency and clinical, biochemical and histological characteristics of nonalcoholic fatty liver disease in patients with gallstone disease.] Cir Cir 2008;76:37-42.[Spanish]
14. Yilmaz Y, Ayyildiz T, Akin H, et al. Gallstone disease does not predict liver histology in nonalcoholic fatty liver disease. Gut Liver 2014;8:313-317.
15. ACE/ADA Task force on inpatient diabetes. American college of endocrinology and american diabetes association consensus statement on inpatient diabetes and glycemic control. Diabetes Care 2006;29:1955-1962.
16. Grundy SM, Brewer HB Jr, Cleeman JI, et al. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/ American Heart Association conference on scientific issues related to definition. Circulation 2004;109:433-438.
17. Dodds WJ, Grehl WJ, Darwesh RM, Lawson TL, Kishk SM, Kern MK. Sonographic measurement of gallbladder volume. AJR Am J Roentgenol 1985;145:1009-1011.
ursodeoxycholic acid alone and ursodeoxycholic acid plus domperidone on radiolucent gallstones and gallbladder contractility in humans. Gastroenterol Res Pract 2012;2012:159438.

25. Xiao ZL, Chen Q, Amaral J, Biancani P, Jensen RT, Behar J. CCK receptor dysfunction in muscle membranes from human gallbladders with cholesterol stones. Am J Physiol 1999;276(6 Pt 1):G1401-G1407.

26. Yu P, Chen Q, Biancani P, Behar J. Membrane cholesterol alters gallbladder muscle contractility in prairie dogs. Am J Physiol 1996;271(1 Pt 1):G56-G61.

27. Mathur A, Walker JJ, Al-Azzawi HH, et al. Ezetimibe ameliorates cholecystosteatosis. Surgery 2007;142:228-233.

28. Alexopoulos N, Katritsis D, Ragaz P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis 2014;233:104-112.

29. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014;15:6184-6223.

30. Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm 2013;2013:139239.

31. McGown C, Birrerding A, Younossi ZM. Adipose tissue as an endocrine organ. Clin Liver Dis 2014;18:41-58.

32. Al-Azzawi HH, Mathur A, Lu D, Swartz-Basile DA, Nakeeb A, Pitt HA. Resistin-like molecule alpha reduces gallbladder optimal tension. J Gastrointest Surg 2007;11:93-100.

33. Pellegrinelli V, Rouault C, Rodriguez-Cuenca S, et al. Human adipocytes induce inflammation and atrophy in muscle cells during obesity. Diabetes 2015;64:3121-3134.

34. Tran KQ, Goldblatt MI, Swartz-Basile DA, Svaete C, Nakeeb A, Pitt HA. Diabetes and hyperlipidemia correlate with gallbladder contractility in leptin-related murine obesity. J Gastrointest Surg 2003;7:857-862; discussion 63.

35. Rege RV. Inflammatory cytokines alter human gallbladder epithelial cell absorption/secretion. J Gastrointest Surg 2000;4:185-192.

36. Bingener J, Richards ML, Schwegler WH, Sirinek KR. Laparoscopic cholecystectomy for biliary dyskinesia: correlation of preoperative cholescintigraphy results with postoperative outcome. Surg Endosc 2004;18:802-806.

37. Sharma BC, Agarwal DK, Dhiman RK, Baijal SS, Choudhuri G, Saraswat VA. Bile lithogenicity and gallbladder emptying in patients with micro lithiasis: effect of bile acid therapy. Gastroenterology 1998;115:124-128.