Automated Evaluation for Student Argumentative Writing: A Survey

Xinyu Wang
Riiid Labs
xinyuwang699@gmail.com

Yohan Lee
Riiid Labs
yohan.lee@riiid.co

Juneyoung Park
Riiid AI Research
juneyoung.park@riiid.co

Abstract
This paper surveys and organizes research works in an under-studied area, which we call automated evaluation for student argumentative writing. Unlike traditional automated writing evaluation that focuses on holistic essay scoring, this field is more specific: it focuses on evaluating argumentative essays and offers specific feedback, including argumentation structures, argument strength trait score, etc. The focused and detailed evaluation is useful for helping students acquire important argumentation skill. In this paper we organize existing works around tasks, data and methods. We further experiment with BERT on representative datasets, aiming to provide up-to-date baselines for this field.

1 Introduction
Automated writing evaluation uses computer programs to give evaluative feedback to a piece of written work, which is often used in educational settings (Parra et al., 2019). Most of the work on automated writing evaluation focus on automated essay scoring (AES), which evaluates an essay’s quality by assigning scores (Shermis and Burstein, 2013). It is a long-standing research problem, with the first system proposed in 1966 by Page (1966). Since then this area has been active and attracts a lot of research efforts.

A large portion of AES systems are developed for holistic scoring (Ke and Ng, 2019), which outputs a single score to represent essay quality. This kind of system is useful for summative assessment and can greatly reduce manual grading efforts. However, holistic scoring is not sufficient for providing instructional feedback to student learning because a low holistic score does not provide enough information to the students about how to improve. To address this issue, many research works tried to build trait-specific scoring systems. These systems concern scoring particular quality dimensions of an essay, such as grammar (Burstein et al., 2004), word choice (Mathias and Bhattacharyya, 2020), coherence (Somasundaran et al., 2014), etc. Holistic scoring systems, along with trait specific scoring systems, have already been deployed to commercial settings successfully (Burstein et al. 2004, Rudner et al. 2006).

However, most of the systems do not distinguish between essay types (e.g. argumentative or narrative essay). It makes sense when the system is trying to evaluate type-agnostic dimensions such as word choice of an essay, but the use of such systems is limited when an user wants to know more about the in-depth traits specific to an essay type, e.g. whether claims and counterclaims are developed fairly in an argumentative essay. The evaluation of type specific traits is important because these traits reflect important type-specific skills — for example, whether claims and counterclaims are developed thoroughly is indicative of critical thinking skills, which can be hard to gauge through narrative essay writing.

In this paper we attempt to organize the research works regarding automated evaluation specifically for student argumentative writing, which requires the students to evaluate controversial claims, collect and judge evidence and establish a position. The contributions of this paper are as follows. First, we categorized and organized current research body regarding tasks and datasets (section 2) and methods (section 3). Additionally, we experimented with BERT (Devlin et al., 2019) models and provided up-to-date baselines to the community (section 4). Finally, we suggested directions (section 5) based on missing elements in current research body which we hope to be filled in the future.

2 Tasks and Datasets
In this section, we introduce the tasks commonly studied in automated writing evaluation for argumentative writing, together with their benchmark datasets.
Some people argue for and others against and there is still no agreement whether cloning technology should be permitted. However, as far as I’m concerned, cloning is an important technology for humankind since it would be very useful for developing novel cures.

First, cloning will be beneficial for many people who are in need of organ transplants since cloned organs will match perfectly to the blood group and tissue of patients. In addition, it shortens the healing process. Usually, it is very rare to find an appropriate organ donor and by using cloning in order to raise required organs the waiting time can be shortened tremendously.

For For
Support Support
Support Support Support

Figure 1: An illustration of annotation scheme for S&G2014 and S&G2017a. This figure is adapted from Stab and Gurevych (2017a)

Type	Example Tasks
AM	Argument Component Identification
	Argument Component Classification
	Argument Relation Identification
	Relation Labelling
CD	Opposing Argument Detection
	Valid Critique Detection
	Thesis Detection
QA	Sufficiency Recognition
	Argument Strength Scoring

Table 1: Example sub-tasks under the three main problems: argument mining (AM), component detection (CD) and quality assessment (QA)

2.1 Argument Mining

Argument mining (AM) aims to identify and parse the argumentation structure of a piece of text. (Lawrence and Reed, 2020) For argumentative essays, argumentation structures may have variations but can typically be represented as trees, as illustrated in Figure 1. The root of the tree is a major claim, which expresses the author’s main point on the topic. Children of the major claims are claims, which are controversial statements that either argue for or against their parents. Claims could have children nodes, called premises (e.g. Premise1 and Premise3 on Figure 1), which support or attack the corresponding claims. Further, a premise (e.g. Premise3) can also be supported or attacked by other premises (e.g. Premise4 and Premise5), enriching the logical flow of the essay.

In order to generate an argumentation structure from text, argument mining models typically decompose the process into four sub-tasks: (1) argument component identification (ACI), which aims to identify the span of argument components (e.g. text with squared brackets on Figure 1); (2) argument component classification (ACC), which classifies argument components into corresponding types (e.g. where a span is a Claim or Premise); 3) argument relation identification (ARI), which aims at linking related argument components on the argument structure; 4) relation labelling (RL), which focuses on identifying relation type (e.g. for and support) between linked components.

Datasets Stab and Gurevych, 2014a (S&G2014) and Stab and Gurevych, 2017a (S&G2017a) annotated the most widely adopted datasets regarding this direction. S&G2014 annotated 90 persuasive essays from essayforum, a site providing feedback for students who wish to improve their writing. S&G2017a adopted similar annotation scheme and annotated additional 402 essays.

Besides, Putra et al. (2021a) annotated 434 essays written by English to Speakers of Other Languages (ESOL) college learners as quasi-trees. They annotated each sentence as either argumentative component (ACs) or non-argumentative component (non-AC). Annotators then identified relations between ACs. Different from S&G2014, their relation labels include directed labels (support, attack or detailing) as well as an undirected label (restatement). They also reordered the sentences to make the essays better-structured. Wambsganss et al. (2020) annotated 1000 student peer-reviews
written in German, indicating whether a text span is claim or premise or not, and the relations between these argumentative components.

Alhindi and Ghosh (2021) annotated on a token level using BIO tagging schema and this dataset can be used for ACI and ACC. Specifically, each token belongs to one of the five classes: the begin token of a claim; a continuous token of a claim; the begin token of a premise; a continuous token of a premise; non-argumentative token.

2.2 Component Detection

Besides parsing the complex argumentative structures of essays as in argument mining, a large portion of work in automated writing evaluation also considers the simpler task of detecting whether an essay or a text span in an essay contains a specific component. For example, Stab and Gurevych (2016) assigned binary labels to essays depending on whether an essay has discussed the opposing arguments to author’s own standpoint. Falakmasir et al. (2014) labelled essays as whether or not containing a thesis and conclusion statement. (Beigman Klebanov et al., 2017) annotated essays written by college students for criticizing a piece of argument, deciding if each sentence contains a good critique or not. (Ghosh et al., 2020) annotated on whether a sentence contains a valid critique as well, but the essays they used are written by middle school students.

Finally, we remark that component detection is different from the task of argument component classification (ACC) discussed previously in Section 2.1. Specifically, component detection does not require the text span to match the component of interest. For example, Falakmasir et al. (2014) cares about whether an essay contains a thesis and conclusion statement. In their case, the length of text span is much longer than the component of interest.

2.3 Quality Assessment

Quality assessment concerns evaluating the quality of an argument. There are many sub-tasks under this category due to the diversity of argumentation quality theories.

Persing and Ng (2015) annotated 1000 essays over 10 prompts from International Corpus of Learner English (ICLE) dataset (Granger et al., 2009) on argument strength. They defined argument strength as how well an essay makes an argument for its thesis and convinces its readers. Horbach et al. (2017) collected 2020 German essays written by prospective university students. Their annotators evaluated the text regarding 41 aspects including quality of argumentation. In addition, Stab and Gurevych (2017b) (S&G2017b) adopted Relevance-Acceptability-Sufficiency criteria (Johnson and Blair, 2006) and asked annotators to decide whether a piece of argument is sufficiently supported or not.

Besides, Carlile et al. (2018) annotated detailed persuasiveness and attributes values based on argument trees from S&G2014 and S&G2017a. They defined an argument as a node in the argument tree along with all its children. For each argument, they assigned an overall persuasive score, common attribute values and type specific attribute values. For example, for arguments using a major claim as the root node, annotations include persuasive score, eloquence, specificity, evidence (common attributes) and persuasive strategies (type-specific attribute).

3 Methods

All the methods to our knowledge are learning based and they can be divided into supervised learning and unsupervised learning. Most of the work use supervised learning, which can be further divided into feature-based approaches and neural approaches. Next, we introduce these approaches in more details.

Table 2: Comparison of several popular public datasets

Data	No. of Essays	Label Structure	Task Type
Stab and Gurevych 2014a	90	Tree	Argument mining
Stab and Gurevych 2017a	402	Tree	Argument mining
Stab and Gurevych 2016	402	Binary value	Component Detection
Carlile et al. 2018	102	Values on top of tree nodes	Quality Assessment
Stab and Gurevych 2017b	402	Binary value	Quality Assessment
Persing and Ng 2015	1000	Score	Quality Assessment
3.1 Feature-based method

For feature-based approaches, off-the-shelf algorithms are typically used for model training on hand-crafted input features. For example, support vector machine (SVM), logistic regression and random forest are typically used for tasks that can be framed as classification (Stab and Gurevych, 2014b, 2017b, Persing and Ng, 2016, Beigman Klebanov et al., 2017, Wan et al., 2021). Linear regression and support vector machine regression are often used for task that can be framed as regression (Persing and Ng, 2015, Wachsmuth et al., 2016, Persing and Ng, 2015).

Next, we introduce more details of common features used in these methods.

Lexical features aim to capture word-level information and common lexical features include n-gram and frequent words. They have been shown effective (Stab and Gurevych, 2014b, Beigman Klebanov et al., 2017, Stab and Gurevych, 2017b). However, they do not perform as well when used in a cross-prompt setting (Beigman Klebanov et al., 2017) where prompts of testing essays are not seen during training. This is intuitive as the actual wording of essays of different prompts would differ significantly.

Syntactic features usually rely on parse trees. Common syntactic features include number of sub-clauses in a parse tree, Boolean indicator of production rules, part-of-speech tags, etc. Additionally, basic information such as tense of verbs, presence of modal verbs can also serve as syntactic features. (Stab and Gurevych, 2017a) showed that syntactic features are useful for identifying the beginning of an argument component and (Stab and Gurevych, 2017b) suggested that syntactic features are effective for recognizing insufficiently supported arguments.

Structural features generally describe the position and frequency of a piece of text. For example, they include position of a token, punctuation and an argument component. They also include statistics such as number of tokens in an argument component. (Stab and Gurevych, 2017a) reported effectiveness for these features on both ACI and ACC tasks.

Embedding features are based on word vectors that represent words in a continuous space and are supposed to capture more information than simple n-grams. Stab and Gurevych (2017a) summed the word2vec (Mikolov et al., 2013) vectors for each token to represent a component. Putra et al. (2021b) used BERT (Devlin et al., 2019) to extract token embeddings in their work.

Discourse features captures how sentences or clauses are connected together. One kind of discourse features depend on discourse markers directly. The markers, such as "therefore", suggest the relationship between current text span and its adjacent text span. Another kind of discourse features use the output of discourse parsers. For example, Beigman Klebanov et al. (2017) parsed sentences into corresponding discourse roles, and then used these discourse roles as features. Stab and Gurevych (2017a) reported usefulness of discourse features on classifying argument components, indicating a correlation between general discourse relation and argument component type. Beigman Klebanov et al. (2017) found that discourse features remain useful in cross-prompt settings, which is valuable as it’s not always possible to collect a lot of data for a single prompt.

3.2 Neural method

As for neural approaches, neural architectures such as long short-term memory (LSTM) networks and convolutional neural networks (CNN) are commonly adopted (Eger et al., 2017, Alhindi and Ghosh, 2021, Putra et al., 2021b, Mim et al., 2019a, Xue and Lynch, 2020, Stab and Gurevych, 2017b). Besides, Transformer (Vaswani et al., 2017) based architectures such as BERT (Devlin et al., 2019) are adopted recently (Ye and Teufel, 2021, Putra et al., 2021b, Ghosh et al., 2020, Alhindi and Ghosh, 2021 Wang et al., 2020). We will describe more details of that later on.

Use of pretrained models The use of pretrained language models has been popular among natural language processing community. This is because state-of-the-art models are pretrained on massive text corpus, allowing information learned from a huge amount of text to be used for downstream tasks.

There are two ways to use pretrained models. First, it can be used as feature extractor. For example, Putra et al. (2021b) has used BERT, a bidirectional Transformer based architecture, to extract input embeddings, and then pass the contextualized embeddings to downstream networks. Second, the pretrained language models can be further fine-tuned for the task of interest. Ye and Teufel
(2021), Wang et al. (2020), Alhindi and Ghosh (2021) and Ghosh et al. (2020) used this approach. In addition, other than fine-tuning on the task data directly, Alhindi and Ghosh (2021) and Ghosh et al. (2020) experimented with continued pre-training with a large unlabelled domain relevant corpus first, and then fine-tuning with task data.

3.3 Address multiple sub-tasks

As mentioned, argument mining mostly concerns four sub-tasks and they are often addressed together. The naive way to solve them simultaneously is to model each sub-task separately in a pipeline fashion. This introduces at least two issues: first, it does not enforce any constraints between different tasks; second, the errors made early on in the pipeline could propagate.

One way to address these is to use integer linear programming (ILP) (Roth and Yih, 2004) for joint inference. Stab and Gurevych (2017a) and Persing and Ng (2016) adopted this approach and Persing and Ng (2016) further proposed an ILP objective that directly optimizes F score.

Another way to address these issues is to build a joint model that can model all these tasks at the same time. Eger et al. (2017) proposed two different frameworks for joint modelling the full argument mining task and has been influential. Figure 2 showed an illustration of these two formulations. They first framed the task as sequence tagging. For example, they used S&G2017a data for experiments and in this case, each token’s label space would include 1) whether this token is a begin or continue of an argument component or it is non-argumentative; 2) the type of the component to which the token belongs; 3) distance between the corresponding component and the component it relates to; 4) the relation type between the two related components. This way they can use off-the-shelf taggers to solve all four sub-tasks at once. They also framed the task as dependency parsing. When framed as dependency parsing, the text is represented as directed trees where each token has a labelled head so that argument component relation information can be encoded. They further labelled these edges with tokens’ component types and relation types so that argument trees can be converted to quasi-dependency trees. Finally, they adapted a joint neural model designed for entity detection and relation extraction (Miwa and Bansal, 2016). In this case, they modelled argument components as entities and argument relations as semantic relations.

3.4 Unsupervised learning

Aside from the supervised learning work described above, Persing and Ng (2020) proposed an unsupervised method for argument mining. The key for their work is to use heuristics for bootstrapping a small set of labels and then train the model in a self-training fashion.

4 Experiments

The use of Transformer-based models has been dominating in other natural language processing tasks but is still in its infant stage in this field. Therefore, we experiment with vanilla BERT models on three representative datasets, hoping to facilitate research to that end. The three datasets cover argumentation structure parsing and argument quality assessment. Specifically, we used S&G2017a dataset, which is the benchmark for parsing essay argumentation structure. Besides, we used S&G2017b dataset, which assess argument quality from a logic aspect (Wachsmuth et al., 2017) by annotating whether a piece of argument is sufficiently supported. We also used P&N2015 dataset which assess argument quality from a rhetoric aspect (Wachsmuth et al., 2017) by assigning an overall argument strength score to each essay. Statistics
Table 3: Data statistics for the whole S&G2017a dataset.

	All	Per Essay
Token	147,271	366.3
Sentence	7,116	17.7
Paragraph	1,833	4.6
Essay	402	1

Table 4: Data statistics for S&G2017b dataset. It includes the size of the corpus and class distributions.

	All	Per Argument
Token	97,370	94.6
Sentence	4,593	4.5
Argument	1,029	1

	Number	Percentage
Sufficient	681	66.2%
Insufficient	348	33.8%

4.1 Implementation details

S&G2017a For S&G2017a dataset, we followed Eger et al. (2017) and used 286 essays for training, 36 essays for validation and 80 essays for testing on paragraph level. For model building, we used Huggingface (Wolf et al., 2020) library’s cased base BERT model. We added one shared dropout layer and three linear heads for predicting labels mentioned in 3.3. The loss is computed by summing up the cross entropy loss on each head. Note that BERT’s tokenizer can tokenize each word into multiple sub-tokens but we want to predict only one set of tags for each word. To address this, we only use the first sub-token for training. For model training, we used AdamW optimizer (Loshchilov and Hutter, 2017), learning rate 3e-5 and Cosine Annealing Warm Restart scheduler (Loshchilov and Hutter, 2016) implemented by PyTorch Lightning library (Falcon et al., 2019). We also monitored validation loss for early stopping. We only tuned dropout rate and patience used for early stopping minimally and we set patience to 5 and dropout rate to 0.5.

S&G2017b For S&G2017b dataset, we used 823 arguments for training, 103 arguments for validation and 103 arguments for testing. We used the same BERT model and added a dropout layer and a linear layer. We used binary cross entropy loss as objective function. For model hyperparameters, we set patience to 5, dropout rate to 0.3 and kept everything else the same as S&G2017a.

P&N2015 For P&N2015 dataset, we used 800 essays for training, 100 essays for validation and 100 essays for testing. Additionally, we ran cross-prompt experiments by randomly selecting 247 essays from prompt 1 for training, 31 essays for validation, and rest of prompt 1 essays as well as essays from other prompts for testing. We also used one dropout layer and one linear layer on top of the base BERT model. For objective function, we used mean square loss. Besides, we set patience to 5 and dropout rate to 0.1 and kept everything else the same as S&G2017a.

4.2 Metrics and comparison methods

S&G2017a Similar to most work, we followed Persing and Ng (2016) for evaluation. They defined F1 score as $F1 = \frac{2TP}{2TP + FP + FN}$, where TP stands for true positive, FP stands for false positive and FN stands for false negative. They also define ‘level α matching’ (Eger et al., 2017): for α% level match, the predicted component span and ground truth share at least α% of their tokens. For comparison methods, we chose the LSMT-ER model from Eger et al. (2017), which is a common baseline. In addition, we compared with the BiPAM model from Ye and Teufel (2021), which is a BERT-enhanced biaffine dependency parser (Dozat and Manning, 2018).

S&G2017b We used macro F1 and accuracy scores for evaluation, following Stab and Gurevych (2017b). As for comparison methods, we chose the best performing CNN model in their work and human upper bound.

P&N2015 We used mean absolute error (MAE) and mean square error (MSE) for evaluation. We compared the baseline with a model developed by Wachsmuth et al. (2016), which is the best performing model to our knowledge.
	C-F1	R-F1
	100% 50%	100% 50%
LSTM-ER	70.8 77.2	45.5 50.1
BiPAM	72.9 N/A	45.9 N/A
BERT+linear	69.3 76.7	43.7 47.6

Table 7: Performance of LSTM-ER, BiPAM and vanilla BERT on S&G2017a dataset. The models are all trained on paragraph level and we report both 100% level match and 50% level match results. C-F1 stands for argument component F1 and R-F1 stands for argument relation F1. Best scores are in bold.

	Accuracy	Macro F1
Human	0.911±.022	0.887±.026
CNN	0.843±.025	0.827±.027
BERT+linear	0.882±.018	0.869±.012

Table 8: Performance of CNN, vanilla BERT and human upper bound on S&G2017b. Best scores are in bold.

4.3 Results and discussion

S&G2017a The experiment results for this argument mining task are shown in Table 7. The vanilla BERT did not outperform state-of-the-art methods but are close. The BiPAM model, which is a BERT-enhanced dependency parser, performs the best. These demonstrate the power of Transformer-based models for the argument mining task. Additionally, LSTM-ER has 1) designed separate module for handling components and relations; 2) encoded explicit syntax information through syntactic parser. BiPAM has carefully designed the argument relation representation so that it can benefit from state-of-the-art dependency parsers. These considerations can be used for further unlocking the potential of Transformer-based models.

S&G2017b The experiment results for sufficiency recognition are shown in Table 8. We can see that the vanilla BERT model outperforms the previous best performing CNN model by a large margin. This is expected as the BERT model has been pretrained on a huge amount of text. It is surprising that the vanilla BERT model already achieved near-human performance. Therefore, we foresee that Transformer-based model can equal or even surpass human upper bound on sufficiency recognition in the near future.

P&N2015 The experiment results for argument strength scoring are shown in Table 9. On this dataset, the vanilla BERT model did not outperform previous methods. There are two possible reasons for explaining it. First, the average token in an single essay exceed the maximum length(512) supported by vanilla BERT model. This results in part of the essay being truncated. From the data statistics, we can know that at least 25% of the essay is being truncated, resulting in large information loss. Second, both Persing and Ng (2015) and Wachsmuth et al. (2016) encoded argument structure information explicitly by crafting a list of argument structure related features. Mim et al. (2019b) incorporated paragraph’s argument function information by pretraining on large-scale essays with shuffled paragraphs. At the same time, BERT model was not pretrained on relevant task and might fail at capturing the overall argument structure of an essay.

	MAE	MSE
Persing2015	0.392	0.244
Wachsmuth2016	0.378	0.226
Mim2019	N/A	0.231
BERT+linear	0.394	0.250

Table 9: Performance of best models from Persing and Ng (2015), Wachsmuth et al. (2016) and Mim et al. (2019b), and vanilla BERT on P&N2015.

To further gauge the generalization ability of Transformer-based models, we ran the vanilla BERT in a cross-prompt setting and the results are shown in 10. Being able to generalize across prompt is valuable in practice because it is expensive to collect data for each new prompt. Recall that the model is trained and validated on essays of prompt 1. From 3, we can see that the MSE and MAE remains similar across prompts except for prompt 3 and prompt 5. We took a look at these two prompts and found that they are much more abstract and provide less concrete context than the other prompts. ¹ We hypothesize it to be the performance drop on prompt 3 and prompt 5 and thus believe that BERT can generalize reasonably well.

Overall, the vanilla BERT models perform comparably to previous methods across datasets. We believe this can be a good baseline model for future research in the community.

¹Due to licensing of the ICLE dataset, we cannot provide the detailed information here.
Test Prompt	1	2	3	4	5	6	7	8	9	10
MAE	0.421	0.399	0.485	0.443	0.471	0.389	0.371	0.369	0.398	0.439
MSE	0.237	0.268	0.349	0.286	0.403	0.225	0.217	0.246	0.251	0.283

Table 10: Results of cross-prompt experiments on P&N2015 dataset

5 Conclusion and Future Directions

In this paper we have organize existing works around tasks, data and methods regarding automated evaluation for student argumentative writing. We provided a baseline to the community by experimenting with BERT models on benchmark datasets. Now the question would be: what is important for the future? Towards this end, we identified several directions we deem interesting.

First of all, there is a lack of emphasis on language diversity in current datasets. This concerns two aspect: language of the essays and language backgrounds of the authors. For language of the essays, most datasets are annotated essays written in English. Horbach et al. (2017) and Wambsganss et al. (2020) annotated essays written in German and these two datasets are the only ones not written in English to our knowledge. Intuitively speaking, characteristics such as overall argumentation structure would vary across essays written in different languages. Besides, annotators for essays written in different languages may have different criteria when assessing the rhetoric quality of an essay. As for authors’ language backgrounds, current datasets either do not take into account authors’ language levels or use essays written by proficient writers (e.g. college-level writing). Putra et al. (2021a) and Alhindi and Ghosh (2021) are the only accessible datasets that target authors whose interested language skills are not proficient yet, to our knowledge. Specifically, Putra et al. (2021a) annotated essays written by English learners from various Asian countries. They discarded already well-written essays and only reserved the ones with intermediate quality. Alhindi and Ghosh (2021) annotated argumentative essays by middle school students and found these essays less structured and thus more challenging. We believe collecting more diverse datasets would be valuable because it will not only expand the impact of argumentative writing support systems, but also pose more challenging research problems.

Second, adoption of Transformer-based models is still in the infant stage despite some recent works have used Transformer-based architectures. As described in 4, we have built the simplest form of BERT models and demonstrated that they have comparable performance to previous state-of-the-art methods. In addition, Ghosh et al. (2020) and Alhindi and Ghosh (2021) showed that performance of BERT can be greatly improved by continued pre-training on unlabelled essay datasets or architectural design that takes account of data characteristics. Therefore, we believe there is still huge potential for Transformer-based models.

Third, there is no research regarding generalization in this field. We are aware of relevant research works in the AES area (Jin et al. 2018, Cao et al. 2020, Ridley et al. 2021) but not for systems that care about argument-related attributes. Not being able to generalize across prompts remains a major bottleneck in AES (Woods et al., 2017) and we believe this can also be a main obstacle for deploying automated evaluation systems specifically for argumentative essays. This is because it is costly to collect data for every prompt. At the same time, learners usually need to practice writing over a large amount of prompts and get feedback before seeing significant improvement. This echoes our promotion for Transformer-based models as we have shown in 4.3 a vanilla BERT model can generalize well across prompts within one dataset. Besides, Transformer-based models

2Although P&N2015 dataset annotated English learner’s texts, most of the authors’ native languages belong to Indo-European languages and have received at least 6 or more years’ English education
have shown to be effective on unseen domains in other NLP tasks (Houlsby et al. 2019, Han and Eisenstein 2019). Overall, we believe it is critical to build generalizeable systems and hope to see more research addressing this issue in the future.

References

Tariq Alhindi and Debanjan Ghosh. 2021. “sharks are not the threat humans are”: Argument component segmentation in school student essays. In Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications, pages 210–222, Online. Association for Computational Linguistics.

Beata Beigman Klebanov, Binod Gyawali, and Yi Song. 2017. Detecting good arguments in a non-topic-specific way: An oxymoron? In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 244–249, Vancouver, Canada. Association for Computational Linguistics.

Jill Burstein, Martin Chodorow, and Claudia Leacock. 2004. Automated essay evaluation: The criterion online writing service. *Ai magazine*, 25(3):27–27.

Yue Cao, Hanqi Jin, Xiaojun Wan, and Zhiwei Yu. 2020. Domain-adaptive neural automated essay scoring. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1011–1020.

Winston Carlile, Nishant Gurrapadi, Zixuan Ke, and Vincent Ng. 2018. Give me more feedback: Annotating argument persuasiveness and related attributes in student essays. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 621–631, Melbourne, Australia. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2018. Simpler but more accurate semantic dependency parsing. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 484–490, Melbourne, Australia. Association for Computational Linguistics.

Steffen Eger, Johannes Daxenberger, and Iryna Gurevych. 2017. Neural end-to-end learning for computational argumentation mining. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017), volume Volume 1: Long Papers, pages (11–22). Association for Computational Linguistics.

Mohammad Falakmasir, Kevin Ashley, Christian Schunn, and Diane Litman. 2014. Identifying thesis and conclusion statements in student essays to scaffold peer review.

William Falcon et al. 2019. Pytorch lightning. *GitHub*. Note: https://github.com/PyTorchLightning/pytorch-lightning, 3.

Debanjan Ghosh, Beata Beigman Klebanov, and Yi Song. 2020. An exploratory study of argumentative writing by young students: A transformer-based approach. In Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 145–150, Seattle, WA, USA → Online. Association for Computational Linguistics.

Sylviane Granger, Estelle Dagneaux, Fanny Meunier, Magali Paquot, et al. 2009. International corpus of learner English. Presses universitaires de Louvain Louvain-la-Neuve.

Xiaochuang Han and Jacob Eisenstein. 2019. Unsupervised domain adaptation of contextualized embeddings for sequence labeling. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4238–4248.

Andrea Horbach, Dirk Scholten-Akoun, Yaning Ding, and Torsten Zesch. 2017. Fine-grained essay scoring of a complex writing task for native speakers. In Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 357–366.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for nlp. In International Conference on Machine Learning, pages 2790–2799. PMLR.

Cancan Jin, Ben He, Kai Hui, and Le Sun. 2018. Tdnn: a two-stage deep neural network for prompt-independent automated essay scoring. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1088–1097.

Ralph Henry Johnson and J Anthony Blair. 2006. Logical self-defense. Idea.

Zixuan Ke and Vincent Ng. 2019. Automated essay scoring: A survey of the state of the art. In IJCAI, volume 19, pages 6300–6308.

John Lawrence and Chris Reed. 2020. Argument mining: A survey. *Computational Linguistics*, 45(4):765–818.
Isaac Persing and Frank Hutter. 2016. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101.

Sandeep Mathias and Pushpak Bhattacharyya. 2020. Can neural networks automatically score essay traits? In Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 85–91, Seattle, WA, USA → Online. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111–3119.

Farjana Sultana Mim, Naoya Inoue, Paul Reisert, Hiroki Ouchi, and Kentaro Inui. 2019a. Unsupervised learning of discourse-aware text representation for essay scoring. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 378–385, Florence, Italy. Association for Computational Linguistics.

Farjana Sultana Mim, Naoya Inoue, Paul Reisert, Hiroki Ouchi, and Kentaro Inui. 2019b. Unsupervised learning of discourse-aware text representation for essay scoring. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 378–385, Florence, Italy. Association for Computational Linguistics.

Makoto Miwa and Mohit Bansal. 2016. End-to-end relation extraction using LSTMs on sequences and tree structures. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1105–1116, Berlin, Germany. Association for Computational Linguistics.

Ellis B Page. 1966. The imminence of grading essays by computer. The Phi Delta Kappan, 47(5):238–243.

G Parra et al. 2019. Automated writing evaluation tools in the improvement of the writing skill. International Journal of Instruction, 12(2):209–226.

Isaac Persing and Vincent Ng. 2015. Modeling argument strength in student essays. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 543–552, Beijing, China. Association for Computational Linguistics.

Isaac Persing and Vincent Ng. 2016. End-to-end argumentation mining in student essays. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1384–1394, San Diego, California. Association for Computational Linguistics.

Isaac Persing and Vincent Ng. 2020. Unsupervised argumentation mining in student essays. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 6795–6803, Marseille, France. European Language Resources Association.

Jan Wira Gotama Putra, Simone Teufel, and Takenobu Tokunaga. 2021a. Annotating argumentative structure in english-as-a-foreign-language learner essays. Natural Language Engineering, pages 1–27.

Jan Wira Gotama Putra, Simone Teufel, and Takenobu Tokunaga. 2021b. Parsing argumentative structure in English-as-foreign-language essays. In Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications, pages 97–109, Online. Association for Computational Linguistics.

Robert Ridley, Liang He, Xin-yu Dai, Shujian Huang, and Jiajun Chen. 2021. Automated cross-prompt scoring of essay traits. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 13745–13753.

Dan Roth and Wen-tau Yih. 2004. A linear programming formulation for global inference in natural language tasks. Technical report, ILLINOIS UNIV AT URBANA-CHAMPAIGN DEPT OF COMPUTER SCIENCE.

Lawrence M Rudner, Veronica Garcia, and Catherine Welch. 2006. An evaluation of intellimetric™ essay scoring system. The Journal of Technology, Learning and Assessment, 4(4).

Mark D Shermis and Jill Burstein. 2013. Handbook of automated essay evaluation: Current applications and new directions. Routledge.

Swapna Somasundaran, Jill Burstein, and Martin Chodorow. 2014. Lexical chaining for measuring discourse coherence quality in test-taker essays. In Proceedings of COLING 2014, the 25th International conference on computational linguistics: Technical papers, pages 950–961.

Christian Stab and Iryna Gurevych. 2014a. Annotating argument components and relations in persuasive essays. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pages 1501–1510, Dublin, Ireland. Dublin City University and Association for Computational Linguistics.

Christian Stab and Iryna Gurevych. 2014b. Identifying argumentative discourse structures in persuasive essays. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 46–56, Doha, Qatar. Association for Computational Linguistics.
Christian Stab and Iryna Gurevych. 2016. Recognizing the absence of opposing arguments in persuasive essays. In Proceedings of the Third Workshop on Argument Mining (ArgMining2016), pages 113–118, Berlin, Germany. Association for Computational Linguistics.

Christian Stab and Iryna Gurevych. 2017a. Parsing argumentation structures in persuasive essays. Computational Linguistics, 43(3):619–659.

Christian Stab and Iryna Gurevych. 2017b. Recognizing insufficiently supported arguments in argumentative essays. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 980–990, Valencia, Spain. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems, pages 5998–6008.

Henning Wachsmuth, Khalid Al-Khatib, and Benno Stein. 2016. Using argument mining to assess the argumentation quality of essays. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 1680–1691, Osaka, Japan. The COLING 2016 Organizing Committee.

Henning Wachsmuth, Nona Naderi, Yufang Hou, Yonatan Bilu, Vinodkumar Prabhatkaran, Tim Alberdingk Thijm, Graeme Hirst, and Benno Stein. 2017. Computational argumentation quality assessment in natural language. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 176–187, Valencia, Spain. Association for Computational Linguistics.

Thiemo Wambgsanss, Christina Niklaus, Matthias Söllner, Siegfried Handschuh, and Jan Marco Leimeister. 2020. A corpus for argumentative writing support in german. arXiv preprint arXiv:2010.13674.

Qian Wan, Crossley Scott, Banawan Michelle, Balyan Renu, Tian Yu, McNamara Danielle, and Allen Laura. 2021. Automated claim identification using nlp features in student argumentative essays. Educational Data Mining.

Hao Wang, Zhen Huang, Yong Dou, and Yu Hong. 2020. Argumentation mining on essays at multi scales. In Proceedings of the 28th International Conference on Computational Linguistics, pages 5480–5493, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online. Association for Computational Linguistics.

Bronwyn Woods, David Adamson, Shayne Miel, and Elijah Mayfield. 2017. Formative essay feedback using predictive scoring models. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pages 2071–2080.

Linting Xue and Collin F. Lynch. 2020. Incorporating task-specific features into deep models to classify argument components. Educational Data Mining.

Yuxiao Ye and Simone Teufel. 2021. End-to-end argument mining as biaffine dependency parsing. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 669–678, Online. Association for Computational Linguistics.