RESEARCH ARTICLE

Fine capsule variation affects bacteriophage susceptibility in Klebsiella pneumoniae ST258

Carola Venturini1,2 | Nouri L. Ben Zakour1,2 | Bethany Bowring1 | Sandra Morales3 | Robert Cole3 | Zsuzsanna Kovach3 | Steven Branston3 | Emma Kettle4 | Nicholas Thomson5,6 | Jonathan R. Iredell1,2,7

1Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research (WIMR), Westmead, NSW, Australia
2School of Medicine, Sydney Medical School, University of Sydney, NSW, Australia
3AmpliPhi Australia Pty Ltd, Brookvale, NSW, Australia
4Westmead Research Hub Electron Microscope Core Facility, The Westmead Institute for Medical Research, Westmead, NSW, Australia
5The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
6The London School of Hygiene and Tropical Medicine, London, UK
7Westmead Hospital, Western Sydney Local Health District (WSLHD), Sydney, NSW, Australia

Abstract
Multidrug resistant (MDR) carbapenemase-producing (CP) Klebsiella pneumoniae, belonging to clonal group CG258, is capable of causing severe disease in humans and is classified as an urgent threat by health agencies worldwide. Bacteriophages are being actively explored as therapeutic alternatives to antibiotics. In an effort to define a robust experimental approach for effective selection of lytic viruses for therapy, we have fully characterized the genomes of 18 K pneumoniae target strains and tested them against novel lytic bacteriophages (n = 65). The genomes of K pneumoniae carrying blaNDM and blaKPC were sequenced and CG258 isolates selected for bacteriophage susceptibility testing. The local K pneumoniae CG258 population was dominated by sequence type ST258 clade 1 (86%) with variations in capsular locus (cps) and prophage content. CG258-specific bacteriophages primarily targeted the capsule, but successful infection is also likely blocked in some by immunity conferred by existing prophages. Five tailed bacteriophages against K pneumoniae ST258 clade 1 were selected for further characterization. Our findings show that effective control of K pneumoniae CG258 with bacteriophage will require mixes of diverse lytic viruses targeting relevant cps variants and allowing for variable prophage

Correspondence
Carola Venturini and Jonathan R. Iredell, Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research (WIMR), Westmead, NSW 2145, Australia.
Email: carola.venturini@sydney.edu.au (C. V.) and jonathan.iredell@sydney.edu.au (J. R. I.)

Funding information
This project was funded by the National Health and Medical Research Council (NHMRC; GPR1107322). The Westmead Scientific Platforms are supported by the Westmead Research Hub, the Cancer Institute New South Wales, the NHMRC and the Ian Potter Foundation

Abbreviations: CG, clonal group; CP, carbapenemase-producing; cps, capsular locus; ESBL, extended-spectrum-β-lactamase producing; EOP, efficiency of plating; ICE, integrative and conjugative element; LB, lysogeny broth; LPS, lipopolysaccharide; MDR, multidrug resistant; MLST, multilocus sequence typing; PFGE, pulse field gel electrophoresis; ROD, region of difference; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis; ST, sequence type; TEM, transmission electron microscopy; WGS, whole genome sequencing.

Carola Venturini and Nouri L. Ben Zakour have contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2020 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology

The FASEB Journal. 2020;34:10801–10817. wileyonlinelibrary.com/journal/fsb2 | 10801
content. These insights will facilitate identification and selection of therapeutic bacteriophage candidates against this serious pathogen.

KEYWORDS
bacteriophages, capsular locus, Klebsiella pneumoniae ST258, multidrug resistance

1 | INTRODUCTION

Klebsiella pneumoniae is an important ubiquitous Gram-negative species capable of causing disease in both humans and animals.\(^1\) The rise in recent decades of K pneumoniae that are multidrug resistant (MDR), including to last-line antibiotics such as carbapenems, has resulted in the classification of this species as an urgent threat by health agencies worldwide and its recognition as an important antimicrobial resistance reservoir.\(^2,3\) Carbapenemase-producing (CP) MDR strains, carrying the \(\text{bla}_{\text{KPC}}\) and \(\text{bla}_{\text{NDM}}\) genes, can be asymptomatic residents of the human gut and a major cause of serious nosocomial infections associated with high morbidity and mortality worldwide.\(^4-7\)

The genetically diverse clonal group CG258, comprising sequence types ST258, ST11, ST512, and a few rarer single locus variants, is largely responsible for the global dissemination of MDR CP-K pneumoniae.\(^6,7\) Population studies looking at the genomes of CG258 have shown that diversification within this CG is linked to a series of large-scale genomic rearrangements and high frequency of recombination, some of which result in switching or variation in the capsule polysaccharide-encoding (\(\text{cps}\)) locus.\(^6,8\) On the basis of this variation, the ST258 group can be subdivided into two separate lineages clade 1 and clade 2. ST258 clade 2 strains have been the main cause of disease outbreaks worldwide,\(^7,9\) while clade 1 uniquely predominated a recent Australian outbreak.\(^9\)

Alternative or adjuvant therapies to antibiotics against MDR pathogens are urgently needed.\(^2\) Naturally occurring lytic bacterial viruses (bacteriophages, phages) were recognized as effective therapeutic agents early in the 20th century, but were little valued by Western medicine after the success of antibiotics.\(^10\) The rise in multidrug resistance, however, has renewed the interest in their potential for both decontamination and eradication of pathogens refractory to antibiotics. Lytic bacteriophages against problematic bacterial species can be readily isolated, but medical applicability is hindered by limited understanding of key issues such as optimal clinical protocols, penetration, and resistance development, as well as disappointing outcomes of phage therapy in humans associated with inconsistent protocols or poor targeting.\(^10-12\)

Bacteriophages capable of lysing K pneumoniae, including MDR strains have been described,\(^13-15\) with complete genomes for more than 80 full double-stranded (ds) DNA bacteriophages available in NCBI databases to date. However, no effective therapeutic product has yet reached the bedside.

We are currently exploring bacteriophage therapy against extended-spectrum-\(\beta\)-lactamase producing (ESBL) Enterobacteriaceae isolated in Australia from humans with the aim of defining a robust experimental protocol for the rapid design of effective targeted phage preparations. Here, we characterize five K pneumoniae ST258-specific lytic bacteriophages (AmPh_EK29, AmPh_EK52, AmPh_EK80, JIPh_Kp122, JIPh_Kp127), isolated from wastewater in Australia, and correlate bacteriophage susceptibility profiles with genomic variation within K pneumoniae ST258 isolates.

2 | MATERIALS AND METHODS

2.1 | Bacterial isolates

In this study, we have fully characterized the bacterial genomes of ESBL K pneumoniae CG258 strains from Australia (n = 18, with n = 16 CP-K pneumoniae) and tested the infectivity of novel bacteriophages (n = 65) selected from our existing libraries or isolated de novo from local environmental sources. All MDR K pneumoniae isolates containing the carbapenem resistance genes commonly associated with CG258, \(\text{bla}_{\text{NDM}}\) or \(\text{bla}_{\text{KPC}}\),\(^16\) in our extensive clinical collection were selected as potential target isolates for this study (Table 1).\(^17\)

2.2 | CP-K pneumoniae phenotypes

2.2.1 | Biofilm production

Biofilm formation by growing bacteria in polypropylene microtiter plates was estimated by crystal violet staining of adherent cells, following the protocol of O’Toole and Kolter\(^18\) with minor modifications. Briefly, overnight bacterial cultures in lysogeny broth (LB; Oxoid, Basingstoke, UK) adjusted to OD\(_{600}\) 0.4 were added (0.1 mL) to microtiter plate (Corning Life Sciences, Corning, NY, USA) wells and grown overnight in a static incubator at 37°C. Wells were carefully washed twice with RO water before addition of 0.1% crystal violet (Sigma-Aldrich, MO, USA) (225 μL) and incubation at room temperature. Plates were gently washed four times with RO water and dried at room temperature for at least 2 hours. For quantitation, 200 μL of ethanol (95%) was added to each well and left for 10-15 minutes. An aliquot (125 μL)
Name (JIE)*	Patient identifier	State	Collection†	Carbapenemase encoding gene‡	Antibiotic resistance phenotypes**	Reference
2487	1 Vic	2012	None	None	AMK AMC AMP ATM CAZ CRO CIP SXT GEN TZPi TIM TOB TMP	(17)
2709	2 Vic	2012 (June 06)	*bla*_{KPC}	AMK AMC AMP ATM FEP CAZ CRO CIP SXT MEM MXF TZP TIM TOB TMP	(16)	
2713	3 Vic	2012	*bla*_{NDM}	AMK AMC AMP ATM FEP CAZ CRO CIP SXT GEN MEMi TZP TIM TOB TMP	(17)	
2733	4 NSW	2012	*bla*_{KPC}	AMK AMC AMP ATM FEP CAZ CRO CIP SXT TZPi TIM TOB TMP	(16)	
2740	2 Vic	2012 (June 21)	None	AMK AMC AMP ATM FEP CAZ CRO CIP SXT TZPi TIM TOB TMP	(16)	
2771	5 NSW	2012	*bla*_{KPC}	AMK AMC AMP ATM CAZ CRO CIP MEM TZP TIM TOB TMPi	(16)	
2783	6 NSW	2010	*bla*_{KPC}	AMK AMC AMP ATM FEP CAZ CRO CIP CST SXT MEM TZP TIM TOB TMP	(16)	
2793	7 WA	2012	*bla*_{KPC}	AMK AMC AMP ATM CAZ CRO CIP SXT MEM TZP TIM TOB TMP	(16)	
3095	8 Vic	2012	*bla*_{KPC}	AMK AMC AMP ATM FEP CAZ CRO CIP GENi MEM TZP TIM TOB TMPi	This work	
4005	9 Vic	2014 (Jan 09)	*bla*_{KPC}	AMK AMC AMP ATM FEP CAZ CRO CIP GENi MEM TZP TIM TOB	This work	
4019	9 Vic	2014 (Jan 31)	*bla*_{KPC}	AMK AMC AMP ATM FEP CAZ CRO CIP SXT MEM TZP TIM TOB TMP	This work	

(Continues)
of the solubilized solution was then transferred to a new flat-bottom microtiter dish and absorbance at 540 nm was measured in a SpectraMax Vmax microplate reader (Biomolecular Devices, San Jose, CA, USA). Experiments were performed in triplicate.

2.2.2 Polysaccharide capsule production

Total capsule production in *K. pneumoniae* CG258 was quantified according to previously described methods. Briefly, overnight bacterial cultures in Mueller-Hinton broth (Oxoid, Basingstoke, UK) were mixed with 1% of Zwittergent 3-14 detergent (Millipore, Billerica, MA, USA) in 100 mM citric acid (pH 2.0) and incubated for 30 minutes at 50°C with occasional mixing. After pelleting the bacteria, 300 µL of supernatant was mixed with absolute ethanol to a final concentration of 80% and left on ice for 30 minutes to allow for capsule precipitation. After centrifugation, the precipitates were allowed to dry, and resuspended DNase-free water (Lonza, Rockland, ME, USA) and kept at 4°C overnight. Capsule quantitation was assayed by measuring uronic acid content on ethanol-precipitated culture supernatants by addition of 1.2 mL of 12.5 mM tetraborate (Sigma-Aldrich, St. Louis, MO, USA) in concentrated sulfuric acid (Sigma-Aldrich, St. Louis, MO, USA), and detection (absorbance at 520 nm) using 0.15% of m-hydroxydiphenyl (Sigma-Aldrich, St. Louis, MO, USA) in 0.5% of NaOH (Amresco, Solon, OH, USA). Sodium hydroxide added to the tetraborate/sulfuric acid solution was used as the baseline for quantification. Capsule quantification was performed in triplicate for each bacterial strain.

TABLE 1 (Continued)

Name (JIE)*	Patient identifier	State	Collection†	Carbapenemase encoding gene‡	Antibiotic resistance phenotypes**	Reference
4020	10 Vic	2014		*bla* KPC	AMK AMC AMP ATM FEP CAZ CRO CIP MEMi TZP TIM TOB	This work
4046	11 Vic	2014		*bla* KPC	AMKi AMC AMP ATM FEP CAZ CRO CIP MEMi TZP TIM TOB	This work
4203	12 Vic	2014		*bla* KPC	AMK AMC AMP ATM FEP CAZ CRO CIP MEMi TZP TIM TOB	This work
4282	13 Vic	2014		*bla* KPC	AMC AMP ATM FEP CAZ CRO CIP MEMi TZP TIM TOB	This work
4455	14 NSW	2015		*bla* KPC	AMK AMC AMP ATM FEP CAZ CRO CIP SXT GEN MEMi TZP TIM TOB	This work
4626	16 NSW	2015		*bla* KPC	AMK AMC AMP ATM FEP CAZ CRO CIP CST SXT GEN MEMi TZP TIM TOB	This work
4660	17 NSW	2015		*bla* KPC	AMKi AMC AMP ATM FEP CAZ CRO CIP CST SXT GEN MEMi TZP TIM TOB	This work

Note: *from JIE_G1046886_Iredell collection; †in brackets, month and day specified for isolates collected from the same patient; ‡determined by diagnostic PCR screening at collection facility (ICPMR, Westmead Hospital, Westmead, NSW, Australia); **determined by BD Phoenix (Becton Dickinson, Wokingham, Berkshire, UK) screening at collection facility. Cutoff values in accordance with the EUCAST system. i, intermediate. For isolate 2793, FEP susceptibility was not determined.
2.2.3 Lipopolysaccharide profiles

Lipopolysaccharide (LPS) profiles of *K. pneumoniae* CG258 strains were obtained using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) subsequent to proteinase K digestion of whole cell lysates. Overnight bacterial cultures were pelleted and washed twice in saline; the final pellet resuspended in 35 µL sterile saline. Pellets were treated with 4X SDS reducing buffer (0.0625 M Tris-HCl, pH 8.8, 10% glycerol, 2% SDS, 5% 2-b-mercaptoethanol, 0.0125% bromophenol blue) at 100°C for 10 minutes. Proteins were digested by addition of 20 mg/mL proteinase K and incubation at 60°C for 1 hour. Samples were run under reducing conditions using Tris-glycine running buffer (mini-PROTEAN system, Bio-Rad Laboratories, Hercules, CA, USA). Silver staining using a reference-based core genome alignment as an input.

2.3 Sequencing and analysis of bacterial genomes

The genomes of selected MDR *K. pneumoniae* isolates were sequenced by Illumina NextSeq (paired-end; 2 x 150 bp). Bacterial DNA extraction was performed using the DNeasy Blood and Tissue DNA isolation kit (Qiagen, Hilden, Germany) to obtain high purity (OD260/280 1.8-2.0; OD260/230 1.8) preparations for sequencing. DNA libraries for whole genome sequencing (WGS) were prepared using the Nextera XT kit and sequencing was performed at the Australian Genome Research Facility (AGRF, Melbourne, Australia). De novo assembly of sequencing reads and simulated reads of NCBI reference genomes were performed as previously described, using our WGS analysis workflow based on publicly available tools, including SPAdes 3.9.0,24 Nullarbor 1.2.0,25 Kleborate 0.2.0,26 to confirm identity (in silico multilocus sequence typing [MLST]), virulence and antibiotic resistance genotypes. A maximum-likelihood recombination-free phylogenetic tree was computed using RAxML 8.2.427 and Gubbins 2.2.0,28 using a reference-based core genome alignment as an input. The publicly available genome sequences of five representative *K. pneumoniae* strains were also added for comparative purposes: AUSMDU00008079, used as mapping reference (CP022691); HS11286 (CP0033200); NJST258-1 (CP0066923); Kb140 (AQROD00000000); and VA360 (ANGI00000000). The pangenome, determined using Roary version 3.11.0,29 was used to classify regions of differences across the strain data set, based on their contiguity and functional categories of the genes encoded. Kleborate 0.2.0,26 was used to type capsule, O antigen (LPS) and siderophores. Plasmid replicon identification and typing was performed using PlasmidFinder and pMLST implemented in BAP.30 Prophage-associated contigs were annotated using PHASTER.31 Further *cps* locus comparative analysis was performed using Easyfig and Geneious v9.1 (https://www.geneious.com). Gap closure between separate contigs in the capsular locus (*cps*) was achieved by PCR amplification and Sanger sequencing of purified linkage amplicons (AGRF, Melbourne, Australia).

2.3.1 *bla*KPC genomic context

To confirm plasmid content and genomic context of the *bla*KPC gene in target ST258 (n = 16) isolates, we performed pulse field gel electrophoresis (PFGE) on S1 nuclease (Promega, Madison, WI, USA) digested DNA, as before, and Southern hybridization with *bla*KPC and *rep* IncFIIK DIG-labeled probes prepared using published primers and the PCR DIG Probe Synthesis Kit (Roche, Mannheim, Germany) following manufacturer’s instructions. Images were obtained on a ChemiDoc MP System (Bio-Rad Laboratories, Richmond, CA, USA).

2.4 De novo isolation of CP-*K. pneumoniae*-specific bacteriophages

Bacteriophages against target *K. pneumoniae* CG258 were isolated from sewage and wastewater samples collected in the Greater Sydney District (Sydney, NSW, Australia). Specimens were clarified by centrifugation and filtration through a 0.22 µm filter. Aliquots of environmental filtrates were then incubated overnight with a single target *K. pneumoniae* isolate (either JIE2709, JIE4282, JIE4455, or ATCC 13883). Bacteriophages were selected from single plaques in double-layer agar assays and purified through three rounds of plating. High-titer stocks were prepared by propagating bacteriophages over several double-layer plates washed in SM buffer (50 mM Tris-HCl, 8 mM MgSO₄, 100 mM NaCl, pH 7.4) and filtered through a 0.22 µm filter. The concentration as plaque forming units per mL (PFU/mL) was determined by spotting 10 µL of 10-fold serial dilutions onto a double-layer of the target bacteria. High-titer (>10⁹ PFU/mL) bacteriophage stocks were stored at 4°C.

2.5 Bacteriophage host range

The identified CG258 *K. pneumoniae* strains were tested against bacteriophages (n = 65) selected from our extensive library or isolated de novo against one of the target isolates. Bacteriophage lytic activity was determined by measuring the efficiency of plating (EOP) for each phage-bacteria combination using the spotting technique as above, and by co-incubation (18 hours) of bacteriophage and target bacteria (multiplicity of infection (MOI) = 100) in liquid microcosmos.
(Mueller Hinton broth) in 96-well plates, with spectrophotometric automated OD₆₀₀ measurement (SpectraMax iD5, Molecular Devices, San Jose, CA, USA) to assess bacterial growth at 10 minutes intervals.³⁷ Klebsiella oxytoca, Enterococcus faecium, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus pseudintermedius were used as cross-species controls. In order to further test bacteriophage specificity, we also blind tested the host ranges of three bacteriophages with unique specificities (AmPh_EK52, AmPh_EK38, and JIPh_Kp122) on a set of CP-K pneumoniae isolates from Europe (n = 48) to determine their predictive diagnostic value linked to K pneumoniae sequence or capsule type. Bacteriophage activity against each strain was scored as: 1. “full activity” for presence of clear plaques at highest dilution; 2. “poor activity” for presence of turbid plaques, or isolated bacterial colonies within clearings, or EOP three or more log₁₀ lower than that of the original host; 3. “partial activity” for evidence of clearing in bacterial lawn, but absence of distinct plaques; 4. “negative” for very faint, difficult to observe, clearing or absence of any visible plaques or clearing zones in the bacterial lawn.

2.6 | Bacteriophage characterization

2.6.1 | Genome sequencing

Bacteriophages (n = 5) that specifically lysed K pneumoniae ST258 clade 1 with different host range profiles were selected for further characterization as potential therapeutic candidates. Bacteriophage DNA was extracted using the Wizard DNA Clean-Up System (Promega, Madison, WI, USA) and used for WGS (Nextera XT Library Preparation kit and Nextera XT v2 Indexes; paired end 150 bp chemistry on the Illumina NextSeq 500 NCS v2.0; Illumina, San Diego, CA, USA). Error rates were calculated using PhiX Sequencing Control v3 for each run. De-multiplexing and FastQC generation was performed with default settings using BaseSpace (Illumina). Bacteriophage genomes were assembled using our in-house genomic pipeline and annotated using RAST-tk.³⁸ The absence of lysogeny modules, virulence, and resistance determinants was determined using our WGS analysis workflow (as for bacterial genomes) and PHASTER.³¹ Genome comparisons with best database (GenBank, NCBI) matches were obtained using Easyfig.³² PFGE of intact viral particles was performed to confirm relative size (Chef Mapper System, Bio-Rad Laboratories, Hercules, CA, USA).

2.6.2 | Imaging of bacteriophages

Bacteriophage preparations were dialyzed against 0.1 M of ammonium acetate in dialysis cassettes with a 10,000 membrane molecular weight cutoff (Pierce Biotechnology, Rockford, IL, USA), negatively stained with 2% of uranyl acetate and visualized using transmission electron microscopy (TEM).³⁷ TEM was conducted at the Westmead Electron Microscopy Facility (Westmead, Australia) on a Philips CM120 BioTWIN transmission electron microscope at 100 kV. Images were recorded with a SIS Morada digital camera using iTEM software (Olympus Soft Imaging Solutions GmbH, Munster, Germany). Bacteriophage morphology and related taxonomic assignment were confirmed following the guidelines set by the International Committee on Taxonomy of Viruses (http://www.ictvonline.org/).³⁹

2.6.3 | Phage stability

Phage stability in SM buffer was determined by measuring the EOP after incubation at different temperatures (21°C for 24 hours, 21°C for 7 days, 37°C for 24 hours, 4°C for >1 month, and 4°C for >1 month with chloroform) and at different pH levels (pH 3, 6, 7, and 8; 4 hours at room temperature). Rate of adsorption and one-step growth curves (latent period and burst size) were calculated according to established protocols.³⁷

2.7 | Data availability and accession numbers

The Illumina sequencing data sets of all K pneumoniae isolates obtained in this work were deposited in SRA (NCBI) database under Bioproject PRJNA529495. The cps locus variants were deposited in the GenBank database (NCBI) under accessions: MN443946 for KL106-D2 (JIE2783), MN443947 for KL106-D3 (JIE4005), and MN443948 for KL106-D4 (JIE4282). The complete annotated genomes of K pneumoniae bacteriophages AmPh_EK29, AmPh_EK52, AmPh_EK80, JIPh_Kp122, and JIPh_Kp127 were also deposited in the GenBank database (NCBI) under accession numbers MN434092, MN434093, MN434094, MN434095, and MN434096, respectively.

3 | RESULTS

3.1 | CP-K pneumoniae population

Of a total 21 clinical ESBL K pneumoniae isolates that carried a carbapenemase gene (by PCR), upon sequencing 18 were found to belong to CG258 (Figure 1; Table S1). This set contained two ST11 representatives, one ST512 (single locus variant of ST258 clade 2), one ST1199 (single SNP variant of ST258 clade 1), and 14 ST258 strains, segregated further into
two distinct lineages, known as clade 1 (n = 13) and clade 2 (n = 2) and distinguished by approximately 40 nonrecombinant core SNPs (Figure 1). Strains belonging to clade 1 dominated this population (86%), reflecting the epidemiology of a recent Australian outbreak. Inspection of the most common \textit{K pneumoniae} virulence-associated mobile genetic element, ICE\textsubscript{Kp}, revealed that all strains belonging to ST11 carried an ICE\textsubscript{Kp3} associated with a yersiniabactin operon \textit{ybt}, while all ST258 and the ST1199 strain carried an ICE\textsubscript{Kp2} associated with a yersiniabactin operon \textit{ybt}, a combination usually only found in clade 1 isolates (clade 2 isolates most commonly being associated with ICE\textsubscript{Kp10} with \textit{ybt}) (Figure 1).

3.2 | CP-\textit{K pneumoniae} CG258 bacteriophage susceptibility

Screening for bacteriophage susceptibility identified at least one bacteriophage with strong activity against each strain of CP-\textit{K pneumoniae} CG258, with potential therapeutic value (Figure 2C). A correlation pattern between specific regions of differences (RODs) and bacteriophage susceptibility was prominent in our data set (Figure 2D). Phage host range profiles largely grouped according to capsular types, KL15-1 (ST11), KL106-D1 (ST258 clade 1), and KL107 (ST258 clade 2 and ST512) each presenting unique patterns of phage susceptibility with few examples of cross-reactivity. Bacteriophage AmPh\textsubscript{EK29} was able to lyse both a subset of clade 1 isolates (KL106-D1 and D2) and JIE2793 (ST512; KL107), while bacteriophages JIPh\textsubscript{Kp122} and JIPh\textsubscript{Kp127} had preferential activity against few specific clade 1 isolates (Figure 2C).

Within the clade 1 set, the capsule-specificity of the bacteriophages tested was further confirmed by the resistance to lysis of the capsular variant isolates JIE2783 and JIE4282 (see below) which were not lysed by the majority of the bacteriophages active against other clade 1 strains. \textit{K pneumoniae} bacteriophages AmPh\textsubscript{EK52} and JIPh\textsubscript{130} were effective in clearing most CP-\textit{K pneumoniae} ST258 clade 1 specifically, except for the ones carrying capsular variants. None of these clade-specific bacteriophages were cross-reactive against other \textit{K pneumoniae} sequence types (eg, ST14, ST25, ST208, ST278, ST938, ST1978) and any of the other control species tested.

3.3 | ESBL \textit{K pneumoniae} CG258 variable accessory genome

A comprehensive analysis of the pangenome using Roary showed that the CG258 accessory genome was composed of 1682 accessory genes, which could be further classified into discrete RODs based on their function and contiguity as follows: 33 capsule-associated genes, 334 phage-related genes, 622 plasmid-related genes, 328 RODs-associated genes, and 365 other genes that could not be assigned unambiguously to the aforementioned categories (RODs were numbered and are summarized in Table S1). Though the presence-absence profile of these RODs mainly reflected the ST of these isolates, a degree of intra-clade variation was also observed among the ST258 clade 1 strains in prophage and plasmid-related regions (Figure 2A,B,D; Table S1).
3.3.1 | Polysaccharide capsule synthesis locus

Bioinformatic analysis of the genomic region between the galF and ugd genes (cps locus) revealed distinct capsular types within the same ST, with KL106 and KL103 found in ST11 strains (JIE2713/JIE2487 and HS11286 reference strain, respectively), and KL106 and KL107 found in ST258 clade 1 and 2, respectively. This locus is a well-known recombination hot-spot in K pneumoniae and further inspection of our clade 1 isolates revealed the presence of three variants of the previously described KL106-D1 arrangement41,42 (Figures 2B, 3A). Variants were due to insertion of ISKpn26 (IS5 family) in two different locations: (i) within the glycosyltransferase-encoding gene wcaJ in two separate positions (KL106-D2 in JIE2783; KL106-D4 in JIE4282); and (ii) within an acyltransferase-encoding gene (KL106-D3 in JIE4005, JIE4019, and JIE4020) in the variable-content segment of the cps locus42 (Figure 3A). All the ISKpn26 insertions interrupt the genes coding sequence, producing characteristic 4 bp direct repeats (Figure 3A). Representative sequences for the three new cps locus variants were deposited in GenBank. Capsule production was significantly different among the CP-K pneumoniae strains (ANOVA, \(P < .001 \)) (Figure 3B). Low capsule content was observed in capsular variants JIE2783 and JIE4282 (ISKpn26-ΔwcaJ variants KL106-D2 and KL106-D4, respectively). In JIE3095, capsule production was significantly higher than in other clade 1 strains (except JIE2740, 4019, 4020, and 4203; Fisher's protected LSD, \(P < .05 \)), although no sequence variation in the JIE3095 cps locus was identified.

In our set of strains, a clear association was observed between bacteriophage susceptibility profiles and cps variants (Figure 2D) with very few of the tested bacteriophages (4/65; ~6%) showing cross-clade specificity. This correlation between capsule type and phage susceptibility held when a clade 1-specific bacteriophage (KL106) (AmPh_EK52), a clade 2-specific bacteriophage (KL107) (AmPh_EK38), and a bacteriophage with inter-clade range (JIPh_Kp122) were blind-tested on a larger panel (\(n = 48 \)) of CP-K pneumoniae isolates from Europe (Table S2).

3.3.2 | Other cell surface structures

In contrast to the variable cps locus structure, gene content and arrangement in the LPS encoding loci of the ST258 clade 1 isolates was conserved. Accordingly, LPS profiles from silver staining showed no significant differences in the O antigens of the short, long, or intermediate chains (Figure S1A).
The lipid A component of JIE4282 differed in size from all other K pneumoniae CG258 (Figure S1A). According to Kleborate results, JIE4282 is missing the \textit{wbbM} gene encoding a glycosyltransferase required for d-galactan I biosynthesis. Of note, JIE2793 (ST512) is also missing one of the hypothetical proteins (\textit{glmA}) in the O antigen operon (O2v2 type). Biofilm production levels also differed (unbalanced ANOVA, \(P < 0.001\)) and were found to be significantly higher in JIE2793, JIE3095, and JIE4282 compared to all others (Fisher's protected LSD, \(P < 0.05\)) (Figure S1B). Variable levels could be attributable to a number of factors, including variations associated with fimbrial genes.

As expected, conserved regions encoding for Type 1 (\textit{fim} operon) and Type 3 (\textit{mrk} operon) fimbriae as well as an identical \textit{ecp} operon were present in all clade 1 strains. Six additional putative chaperon/usher loci associated with fimbrial production (\textit{kpa}, \textit{kpb}, \textit{kpd}, \textit{kpe}, \textit{kpg}) and an additional \textit{ecp}-like region were also identified in all genomes, with the exception of JIE4046 and the KL106-D3 isolates (JIE4005, 4019, and 4020), where the additional \textit{ecp}-like operon is missing (ROD-6, Table S1). The Type 1 fimbrial locus \textit{kpg} (ROD-1, Table S1) linked to biofilm formation was also missing in JIE4046. Fimbriae are critical filamentous cell surface structures that allow the bacteria to adhere to host surfaces and form biofilms, mediating their virulence. The chaperone/usher-dependent pathway is the most abundant secretory pathway in Gram-negative \(\gamma\)-proteobacteria and up to eight usher-type loci have been identified in \textit{K pneumoniae}, most considered part of the accessory genome and likely able to modulate adherence properties. Limited capsule
production (eg, JIE4282) and expression of O-antigen variants (eg, JIE2793) could also affect adhesion necessary for biofilm establishment. In our study, none of these variations in cell surface structures could be directly correlated with bacteriophage susceptibility or host range.

3.3.3 Prophages

The prophage content in the clade 1 isolates also varied, with the subset roughly divided into three subgroups based on prophage profile (Figure 2D; Table S1), and this could impact bacteriophage susceptibility due to variation in the host of superinfection immunity or exclusion properties. For example, the lytic activity of bacteriophage AmPh_EK29 toward ST258 clade 1 isolates is specific to a subset of strains that differ from the rest specifically in their prophage content (ie, JIE3095, and JIE4005, 4019, 4020, and 4203) (Figure 2). In JIE3095, the prophage designated “phage_1” is missing head morphogenesis and tail assembly components. In all other clade 1 representatives in our set this is an intact (presumably inducible) temperate bacteriophage (~36 kb), closely related to bacteriophages P2 or 186 (Myoviridae; ~33.6 kb). The sequence modifications seen in JIE3095 likely inactivate this prophage with possible consequent modification of the phage susceptibility of the host. Another prophage found in clade 1 isolates, phage_4 (similar to members of the Siphoviridae; ~18 kb), is completely absent in JIE2783 and modified in JIE4005, 4019, 4020, and 4203. In the latter set of isolates, the prophage is missing several hypothetical proteins and the tail tape measure protein-encoding gene, which for some bacteriophages has been shown to play a role in superinfection exclusion mechanisms45 (Table S1). An additional intact prophage, phage_5 (~45 kb), was identified in the genome of JIE4005, 4019, and 4020 (Table S1). This prophage is syntenic with lambdoid Siphoviridae bacteriophages and is shared in its full-length only with one other genome in the GenBank database from an Australian K. pneumoniae ST258 [CP0250059].

3.3.4 Plasmids

All K. pneumoniae were MDR, and all ST258 isolates with the exception of JIE2740 carried the blaKPC gene (Table 2; Table S3). The overall plasmid signature for each ST258 clade was unique and remarkably uniform (Table 2; Figure S2). As expected,8,16 the blaKPC allele 2 (blaKPC-2) was exclusively associated with ST258 clade 1, while blaKPC-3 was associated with clade 2 isolates and the closely related ST512 strain (Table 2). These genes were found exclusively on large (>20 kb) plasmids and co-localized by Southern hybridization with the rep gene from IncFIK-type plasmids35 (Table 2; Figure S2). All isolates carried multiple genes conferring extended-spectrum β-lactam resistance other than blaKPC (Table S3). Antibiotic resistance genotypes determined by WGS analysis accounted for all resistance phenotypes determined by standard clinical screening (Table S3).

3.4 Bacteriophage characterization

Among those tested, we identified five unique ds DNA bacteriophages AmPh_EK29, AmPh_EK52, AmPh_EK80, JIPh_Kp122, and JIPh_Kp127 that selectively target CP-K pneumoniae ST258 clade 1 isolates, some of which may have therapeutic potential (Table 3 and 4). WGS of purified viral DNA produced 11,340 to 5,049,732 reads that de novo assembled into one contig in all instances (Table S4). Bacteriophage genomes size varied between 40.7 and 169.3 kb and GC content was lower than 50% (host genome) in all except for AmPh_EK52 (GC% 52.9) (Table 4; Figure 4). No lysogeny or virulence associated genes were identified, indicating suitability for therapeutic use (Figure 4). The high degree of sequence similarity (>95%) to characterized K pneumoniae-specific phage in the NCBI database and TEM imaging showed that the selected bacteriophages belonged to the order Caudovirales (Table 4; Figure 4).

AmPh_EK29 and JIPh_Kp122 (Myoviridae-like), presented a prolate head (approx. 80 by 100 nm) and long tail (100 nm) (Table 4; Figure 4A,D). AmPh_EK52 resembled Podoviridae bacteriophages, having a small thick tail (approx. 20 nm long) and close homology to members of this family including genome size of about 40 kb and absence of tRNAs in its genome (Table 4; Figure 4B). JIPh_Kp127 and AmPh_EK80 were both T5-like Siphoviridae viruses with long thin tails (Table 4; Figure 4C,E). Screening of entries in the NCBI database by BLASTn identified close relatives of these bacteriophages but no identical sequences (Table 4), and in genome comparisons with best matching GenBank entries, the modular structure and order were preserved in all cases, with the main regions of difference found in tail or tail-associated open reading frames (Figure 4).

All five bacteriophages efficiently lysed target bacteria in vitro at high titer (between 107 and 109 PFU/mL) and in combination captured the entire ST258 clade 1 subset (Table 3; Table S5). However, host ranges were unique for each bacteriophage. AmPh_EK80, JIPh_Kp122, and JIPh_Kp127 showed narrower activity toward ST258 strains, with preference toward specific targets. These bacteriophages produced confluent lysis zones on most of the tested isolates when titrated on solid media, indicating the possibility of non-productive lysis, that is, no exponential bacteriophage amplification, “lysis-from-without” or “abortive lysis”.48 All bacteriophages were highly stable in SM buffer maintaining high titer at a range of temperatures (4°C for > 1 month; 21°C
for 1 week; 37°C for 24 hours) and pH levels (pH 3, 6, 7, and 8 for 4 hours). Exposure to chloroform at 4°C decreased the stability of AmPh_EK29 by 2-3 orders of magnitude, but had no effect on the stability of the remaining four bacteriophages. One-step growth curves revealed latent periods of 80-250 minutes and burst sizes between 12 and 500 PFU/cell (Table 3; Figure S3). Growth curves for AmPh_EK80 and JIPh_Kp127 were comparable. Bacteriophage JIPh_Kp122 had the shortest latent time (80 minutes), while AmPh_EK52 had the shortest burst time (30 minutes).

Isolate^	ST258 clade	blaKPC allele	Plasmid replicons†	Plasmid sizes (kb)**
2487	na (ST11)	None	IncFIK IncF-like, ColE-like	nd, nd
2713	na (ST11)	None	IncFIK ColE-like	nd, nd
2709	1	2	IncFIK IncFIB-pKpQil-like, IncX3, ColE-like	none, 242.5; 104.5
2733	1	2	IncFIK IncX3, ColE-like	43, 194
2740	1	None	IncFIK IncX3, ColE-like	41, 194
2771	1	2	IncFIK IncFIB-pKpQil-like, IncX3, ColE-like	41, 104.5
2783	1	2	IncFIK IncFIB-pKpQil-like, IncX3, ColE-like	43, 194; 104.5
3095	1	2	IncFIK IncX3, ColE-like	41, 165
4005	1	2	IncFIK IncX3, ColE-like	43, 160.5
4019	1	2	IncFIK IncF IncX3, ColE-like	43, 160.5, 150
4020	1	2	IncFIK IncX3, ColE-like	43, 160.5
4046	1	2	IncFIK IncX3, ColE-like	41, 160.5
4203	1	2	IncFIK IncX3, ColE-like	41, 194; 104.5
4282	1	2	IncFIK IncFIB-pKpQil-like, IncX3, ColE-like	41, 200; 110
4455	1	2	IncFIK IncFIB-pKpQil-like, IncX3, ColE-like	43, 160.5
2793	na (ST512)	3	IncFIK IncN, ColE-like	58, 208
4626	2	3	IncFIK IncR IncX3, ColE-like	43, 208; 121
4660	2	3	IncFIK IncR IncX3, ColE-like	43, 208; 121

Note: *Data obtained from WGS analysis except where otherwise specified. ^, in bold isolates from same patient; †, based on PlasmidFinder scheme implemented in BAP10; **, approximate sizes determined by S1-PFGE; nd, not determined. In bold, plasmids co-localizing with the blaKPC gene by Southern blot hybridization. Underline, plasmids co-localizing with the IncFIK replicon by Southern blot hybridization.

Table 2 Plasmid content in sequenced K pneumoniae CG258 isolates*
DISCUSSION

The increasing challenges posed by the rise of antibiotic resistance in human pathogens have revitalized interest in the use of bacteriophage for the treatment of bacterial infections. Among MDR pathogens, CP-K pneumoniae is a serious clinical concern, as both gut colonizer and agent of severe sepsis when invading sterile body sites. In this study, ST258 isolates were predominant in the local clinical CP-K pneumoniae population, with overrepresentation of ST258 clade 1 (KL106-D1), reflecting the epidemiology of a recent local outbreak. The incidence of blaKPC in Australia has been rather limited when compared to its dissemination in other countries, but tracking of these pathogens remains paramount due to the consistent association of multidrug resistance with mobilizable genetic elements facilitating its persistence and dissemination.

In the K pneumoniae genome, the cps locus, encoding the capsular polysaccharide outer layer, is a recognized recombination hotspot, responsible for the diversification of clonal lineages, particularly within the CG258 group, and over 100 capsular types have been identified in this species. The capsule is a complex structure of repeating sugar subunits that protects the cell from external threats (including phage attack) and enhances K pneumoniae virulence, being implicated in resistance to host defense mechanisms, immune evasion, adherence, and biofilm formation. In our study, we identified three novel

TABLE 3 Efficiency of plating of selected CP-Klebsiella pneumoniae ST258 clade 1 bacteriophages*

Isolate (JIE)	ST	Clade	AmPh_EK29	AmPh_EK52	AmPh_EK80	JIPh_Kp122	JIPh_Kp127	
2713	ST11	NA	None	None	None	4	**3**	**3**
2487	ST11	1	None	None	None	**3**	**3**	**3**
2709	ST258	1	**2.0 × 10^9** (100)	**8.0 × 10^8** (100)	**4.0 × 10^9** (15)	**3**	**3**	**3**
2733	ST258	1	**8.0 × 10^9** (40)	**6.0 × 10^8** (75)	**4.0 × 10^9** (15)	**3**	**3**	**3**
2740	ST258	1	**4.0 × 10^9** (20)	**2.6 × 10^9** (325)	None	**3**	**3**	**3**
2771	ST258	1	**1.8 × 10^9** (90)	**4.0 × 10^8** (50)	**3**	**3**	**3**	**3**
2783	ST258	1	**2.4 × 10^9** (120)	None	**6.0 × 10^9** (100)	**3**	**3**	**3**
3095	ST258	1	**4.6 × 10^9** (23)	**8.0 × 10^8** (100)	**3**	**3**	**3**	**3**
4005	ST258	1	None	**1.6 × 10^9** (200)	**3**	**3**	**3**	**3**
4019	ST258	1	None	**2.6 × 10^9** (325)	**3**	**3**	**3**	**3**
4020	ST258	1	None	**4.0 × 10^9** (500)	**3**	**3**	**3**	**3**
4046	ST258	1	**1.1 × 10^9** (55)	**8.0 × 10^8** (100)	**3**	**3**	**3**	**3**
4203	ST258	1	None	**1.0 × 10^9** (125)	None	**3**	**3**	**3**
4282	ST258	1	None	**6.0 × 10^9** (100)	**3**	**3**	**3**	**3**
4455	ST258	1	**2.0 × 10^9** (100)	**2.5 × 10^8** (31)	**3**	**3**	**3**	**3**
2793	ST512	NA	**6.0 × 10^9** (30)	None	**4**	**3**	**3**	**3**
4660	ST258	2	None	None	**4**	**3**	**3**	**3**
4626	ST258	2	None	None	**4**	**3**	**3**	**3**

Note: *in brackets percentage EOP when compared to amplification strain. ***, indicates clearing in bacterial lawn without single plaque formation (confluent lysis or abortive lysis). In bold, titer on original amplification host. Scores indicate: 1, high titer lysis; 3 and 4, poor or no lysis.
capsular variants in ST258 clade 1 due to ISKpn26 insertion in the cps locus, responsible for the intra-clade variation in our population which correlated remarkably well with reduced host range for many of the clade 1 infecting bacteriophages.

In two of our variants (KL106-D2, JIE2783; KL106-D4, JIE4282) with significantly reduced capsule production, the IS interrupts the wcaJ gene, encoding an enzyme that is involved in initiating the synthesis of capsular repeat units by catalyzing the transfer of glucose-1-phosphate and galactose-1-phosphate moieties onto undecaprenyl phosphate (an essential lipid for capsule biogenesis). WcaJ seems to be fairly conserved among K. pneumoniae of different capsular types. Variations in the wcaJ coding sequence have been linked to decreased capsule content and mucoidy in MDR K. pneumoniae, leading to altered response to antibiotics and to attack by the host immune system. In this study, we did not observe a significant reduction in capsule production in any of the three strains (JIE4005, 4019 and 4020) with ISKpn26 insertion into the acyltransferase-encoding gene (KL106-D3), though capsule content was slightly lower than in the isolates with unmodified cps locus. This gene is located in a segment of the ST258 clade 1 cps locus with variable gene content, between two essential genes, gnd and ugd, and is not present in all K. pneumoniae. Its product is responsible for acetylation of capsule components, and it was shown that mutations in its coding sequence are linked to both low capsule content and altered antigenicity, warranting further investigation of mutant phenotypes.

Matching of bacteriophage host range with bacterial genomic data allowed for the selection of a number of viruses with unique characteristics that could be further examined in combination for therapeutic applications (high lytic activity, poor resistance development) against K. pneumoniae ST258 clade 1. All the bacteriophages sequenced were highly homologous to previously characterized lytic viruses shown to be effective against specific K. pneumoniae types. However, none of these were reported to target ST258 as our bacteriophages do. Comparative analysis of bacteriophage genomes identified preferential loci of variability, mostly related with tail fibers or tail-associated genes, presumably responsible for phage target specificity. We also showed a clear association between the host range of most of the tested viruses with capsular types and subtypes (ISKpn26 variants).

Matching of bacteriophage host range with bacterial genomic data allowed for the selection of a number of viruses with unique characteristics that could be further examined in combination for therapeutic applications (high lytic activity, poor resistance development) against K. pneumoniae ST258 clade 1. All the bacteriophages sequenced were highly homologous to previously characterized lytic viruses shown to be effective against specific K. pneumoniae types. However, none of these were reported to target ST258 as our bacteriophages do. Comparative analysis of bacteriophage genomes identified preferential loci of variability, mostly related with tail fibers or tail-associated genes, presumably responsible for phage target specificity. We also showed a clear association between the host range of most of the tested viruses with capsular types and subtypes (ISKpn26 variants).

Matching of bacteriophage host range with bacterial genomic data allowed for the selection of a number of viruses with unique characteristics that could be further examined in combination for therapeutic applications (high lytic activity, poor resistance development) against K. pneumoniae ST258 clade 1. All the bacteriophages sequenced were highly homologous to previously characterized lytic viruses shown to be effective against specific K. pneumoniae types. However, none of these were reported to target ST258 as our bacteriophages do. Comparative analysis of bacteriophage genomes identified preferential loci of variability, mostly related with tail fibers or tail-associated genes, presumably responsible for phage target specificity. We also showed a clear association between the host range of most of the tested viruses with capsular types and subtypes (ISKpn26 variants).
exception, lysed a subset of ST258 clade 1 strains (capsular type KL106 but different prophage profile) and the ST512 representative isolate (capsular type KL107), indicative of distinct receptor specificity for this virus. JIPh_Kp122 and
JIPh_Kp127 also showed spectra beyond capsular type, and overall lysed ST258 isolates less efficiently in solid media with plaque phenotypes suggestive of abortive or passive lysis, 48 though lysis kinetics improved in liquid assays. In this regard, further analysis is required to establish the true value of any of these bacteriophages for therapy either as single preparations (targeted therapy) or as mixes (cocktails; preferred for clinical applications). 59 Synergy between phage activity and antibiotics should be determined in all instances, and for cocktail preparation, in particular, synergy among bacteriophage candidates must also be defined as differences in lytic activity (infection kinetics) may affect overall efficacy of phages when in combination. 56

Capsule-targeting bacteriophages often act by production of depolymerases, enzymes that cleave glycosidic bonds disrupting capsule integrity 57, 58 with demonstrated specificity toward certain capsular types, 59, 60 indicating that differential enzymatic degradation may be responsible for the patterns of lytic activity observed in our study. Development of acapsular mutants with reduced virulence in response to depolymerase activity has been reported as a product of the adaptive interplay between Klebsiella and its bacteriophages, 50, 61 and may be an expected trade-off in their evolutionary arms race. The complex dynamic interactions of bacteriophages and their hosts and the coevolution mechanisms at play have complicated direct prediction of phage susceptibility from host genomics, even when dealing with clonal populations. Fine genomic diversity in our ST258 clade 1 strains was not only associated with the capsule, but also with variations in other elements such as prophages and plasmids. Prophage content is likely implicated in resistance to some of the tested bacteriophages (ie, AmPh_EK29) and should also be considered when selecting optimal therapeutic mixes. Other elements (lack of fimbrial locus in JIE4046, different plasmid content (JIE4005, 4019, and 4020), porin variants etc) seemed not to directly impact the susceptibility patterns to most of the tested bacteriophages, but have the potential to affect viral host range and synergy. 61 The tight relationship between K pneumoniae capsule and its bacteriophages, highlighted in this study, must therefore, be carefully considered for future progress in therapeutic applications specifically targeting ST258 isolates. Better bioinformatic tools and larger well characterized microbial collections may allow for the definition of predictive algorithms for a priori selection of optimal therapeutic candidates targeting these pathogens.

ACKNOWLEDGMENTS
The authors would like to acknowledge Alicia Arnott, Nathan Bachmann, Chayanika Biswas, Rajat Dhakal, Elena Martinez, Ranjeeta Menon, Rebecca Rockett, Rosemarie Sadsad, Verlaine Timms, Qinning Wang, and Vitali Sintchenko at the Pathogen Genomics Unit, Centre for Infectious Disease and Microbiology-Public Health, Westmead Hospital, for their assistance with WGS; Dongwei Wang for her assistance with TEM; Sydney Water, Murray McDermott and Graziano (Rowland Village), and Lee Thomas for their help with specimen collection for bacteriophage isolation. TEM was performed at the Westmead Scientific Platforms, which are supported by the Westmead Research Hub, the Cancer Institute of New South Wales, the National Health and Medical Research Council, and the Ian Potter Foundation.

CONFLICT OF INTEREST
None to declare.

AUTHOR CONTRIBUTIONS
C. Venturini planned project, performed experiments and data analyses, wrote the manuscript; N.L. Ben Zakour performed genomic analysis of viral and bacterial sequences, wrote the manuscript; B. Bowring performed bacteriophage isolation, microbiology experiments, and participated in writing the manuscript; S. Branston and Z. Kovach contributed to project planning and data analysis, planned initial phage screening, and provided bacteriophages (AmPh); R. Cole performed PFGE analysis of AmPh bacteriophages and purified their DNA for sequencing; S. Branston and Z. Kovach performed initial phage susceptibility testing; E. Kettle performed and supervised preparation of samples for TEM; N. Thomson participated in project planning and genomic analyses of bacterial isolates; J.R. Iredell planned project and wrote manuscript.

REFERENCES
1. Podschun R, Ullmann U Klebsiella spp as nosocomial pathogens, epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11:589-603.
2. World Health Organization (WHO). Antimicrobial Resistance Global Report on Surveillance, 2014 Summary. Geneva, Switzerland: WHO; 2014.
3. Centers for Disease Control and Prevention (CDC). Vital signs, carbapenem-resistant Enterobacteriaceae. Morb Mortal Wkly Rep. 2013;62:165-170.
4. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9:228-236.
5. Pitout JD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59:5873-5884.
6. Deleo FR, Chen L, Porcella SF, et al. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci USA. 2014;111:4988-4993.
7. Holt KE, Wertheim H, Zadoks RN, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA. 2015;112:E3574-E3581.
8. Wyres KL, Gorrie C, Edwards DJ, et al. Extensive capsule locus variation and large-scale genomic recombination within the Klebsiella pneumoniae Clonal Group 258. Genome Biol Evol. 2015;7:1267-1279.
9. Kwong JC, Lane CR, Romanes F, et al. Translating genomics into practice for real-time surveillance and response to carbapenemase-producing *Enterobacteriaceae*, evidence from a complex multi-institutional KPC outbreak. *PeerJ*. 2018;6:e4210.

10. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. *Bacteriophage*. 2011;1:66-85.

11.Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. *Future Microbiol*. 2013;8:769-783.

12. Ly-Chatain MH. The factors affecting effectiveness of treatment in phage therapy. *Front Microbiol*. 2014;5:51.

13. Kęsik-Szeloch A, Drulis-Kawa Z, Weber-Dąbrowska B, et al. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant *Klebsiella pneumoniae*. *Viril J*. 2013;10:100.

14. Thiry D, Passet V, Danis-Wlodarczyk K, et al. New bacteriophages against emerging lineages ST23 and ST258 of *Klebsiella pneumoniae* and efficacy assessment in *Galleria mellonella* larvae. *Viruses*. 2019;11:411.

15. Ciacci N, D’Andrea MM, Marmo P, et al. Characterization of vB_Kpm_F48, a newly discovered lytic bacteriophage for *Klebsiella pneumoniae* of sequence type 101. *Viruses*. 2018;10:482.

16. Partridge SR, Ginn AN, Wiklendt AM, et al. Emergence of blaKPC carbapenemase genes in Australia. *Int J Antimicrob Agents*. 2015;45:130-136.

17. Shoma S, Kamruzzaman M, Ginn AN, Iredell JR, Partridge SR. Characterization of multidrug-resistant *Klebsiella pneumoniae* from Australia carrying blaNDM-1. *Diagn Microbiol Infect Dis*. 2014;78(1):93-97. https://doi.org/10.1016/j.diagmicrobio.2013.08.001

18. O’Toole GA, Kolter R. Initiation of biofilm formation in *Pseudomonas fluorescens* WCS365 proceeds via multiple, convergent signalling pathways, a genetic analysis. *Mol Microbiol*. 1998;23:449-461.

19. Hsu CR, Liao CH, Lin TL, et al. Identification of a capsular variant and characterization of capsular acetylation in *Klebsiella pneumoniae* PLA-associated type K57. *Sci Rep*. 2016;6:31946.

20. Domenico P, Schwartz S, Cunha BA. Reduction of capsular polysaccharide production in *Klebsiella pneumoniae* by sodium salicylate. *Infect Immun*. 1989;57:3778-3782.

21. Hitchcock PJ, Brown TM. Morphological heterogeneity among *Salmonella* lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. *J Bacteriol*. 1983;154:269-277.

22. Chevallot M, Luche S, Rabilloud T. Silver staining of proteins in polyacrylamide gels. *Nat Protoc*. 2006;1:1852-1858.

23. Fajardo-Lubián A, Ben Zakour NL, Agyekum A, Qi Q, Iredell JR. Host adaptation and convergent evolution increases antibiotic resistance without loss of virulence in a major human pathogen. *PLoS Pathog*. 2019;15:e1007218.

24. Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol*. 2012;19:455-477.

25. Seemann T, Goncalves da Silva A, Bulach DM, et al. https://github.com/seemann/nulldarbor

26. Lam MMC, Wick RR, Wyres KL, Holt KE. Kleborate, comprehensive genotyping of *Klebsiella pneumoniae* genome assemblies. 2018. https://github.com/kathol/Kleborate

27. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics*. 2014;30:1312-1313.

28. Croucher NJ, Page AJ, Connor TR, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. *Nucleic Acids Res*. 2015;43:e15.

29. Page AJ, Cummins CA, Hunt M, et al. Roary: rapid large-scale prokaryote pan genome analysis. *Bioinformatics*. 2015;31:3691-3693.

30. Thomsen MCF, Ahrenfeldt J, Bellid Cisneros JL, et al. A bacterial analysis platform: an integrated system for analysing bacterial whole genome sequencing data for clinical diagnostics and surveillance. *PLoS One*. 2016;11:e0157718.

31. Arndt D, Grant JR, Marcu A, et al. PHASTER, a better, faster version of the PHAST phage search tool. *Nucleic Acids Res*. 2016;44:W16-W21.

32. Sullivan MJ, Petty NK, Beatson SA. EasyFig: a genome comparison visualizer. *Bioinformatics*. 2011;27:1009-1010.

33. Agyekum A, Fajardo-Lubián A, Ansong D, Partridge SR, Agbenyega T, Iredell JR. blaCTX-M-15 carried by IncF-type plasmids is the dominant ESBL gene in *Escherichia coli* and *Klebsiella pneumoniae* at a hospital in Ghana. *Diagn Microbiol Infect Dis*. 2016;84(4):328-333. https://doi.org/10.1016/j.diagmicrobio.2015.12.010

34. Barton BM, Harding GP, Zuccarelli AJA. A general method for detecting and sizing large plasmids. *Anal Biochem*. 1995;225:235-240.

35. Villa L, García-Fernández A, Fortini D, Caratoli A. Replication sequence typing of IncF plasmids carrying virulence and resistance determinants. *Antimicrob Chemother*. 2010;65:2518-2529.

36. Bradford PA, Bratu S, Urban C, et al. Emergence of carbapenem-resistant *Klebsiella* species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamas in *New York City*. *Clin Infect Dis*. 2004;39:55-60.

37. Clokie MRJ, Kropinski A (Eds.). *Methods and Protocols, Volume 1, Isolation, Characterization, and Interactions*. New York, NY: Springer Protocols; 2009.

38. Brettin T, Davis JJ, Disz T, et al. RASTtk, A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. *Sci Rep*. 2015;5:8365.

39. Adriaenssens EM, Edwards R, Nash JHE, et al. Integration of genomic and proteomic analyses in the classification of the *Siphoviridae* family. *Virology*. 2015;477:144-154.

40. Lam MMC, Wick RR, Wyres KL, et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in *Klebsiella pneumoniae* populations. *Microb Genom*. 2018;4:e000196.

41. Wyres KL, Wick RR, Gorrie C, et al. Identification of *Klebsiella* capsule synthesis loci from whole genome data. *Microb Genom*. 2016;2:e000102.

42. Follador R, Heinz E, Wyres KL, et al. The diversity of *Klebsiella pneumoniae* surface polysaccharides. *Microb Genom*. 2016;2:e000073.

43. Kos V, Whitfield CA. Membrane-located glycosyltransferase complex required for biosynthesis of the D-galactian I lipopolysaccharide O antigen in *Klebsiella pneumoniae*. *J Biol Chem*. 2010;285:19668-19687.

44. Alcantar-Curiel MD, Blackburn D, Saldáña Z, et al. Multi-functional analysis of *Klebsiella pneumoniae* fimbrial types in adherence and biofilm formation. *Virulence*. 2013;15:129-138.

45. Fronzes R, Remaut H, Waksman G. Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. *EMBO J*. 2008;27:2271-2280.
46. Khater F, Balestrino D, Charbonnel N, Dufayard JF, Brisse S, Forestier C. In silico analysis of usher encoding genes in *Klebsiella pneumoniae* and characterization of their role in adhesion and colonization. *PLoS One*. 2015;10:e0116215.

47. Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL. Phage and host protein requirements for HK97 genome injection. *Mol Microbiol*. 2015;96:437-447.

48. Abedon ST. Lysis from without. *Bacteriophage*. 2011;1:46-49.

49. Bengoechea JA, Pessoa JS. *Klebsiella pneumoniae* infection biology, living to counteract host defences. *FEMS Microbiol Rev*. 2018;43:123-144.

50. Bell JM, Gottlieb T, Daley DA, Coombs GW. Australian Group on Antimicrobial Resistance (AGAR) Australian Gram-negative Sepsis Outcome Programme (GNSOP) Annual Report 2016. *Comm Dis Intell*. 2016;42:S2209–6051(18)00017–9.

51. Pan YJ, Lin TL, Chen CT, et al. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of *Klebsiella* spp. *Sci Rep*. 2015;5:15573.

52. Ko KS. The contribution of capsule polysaccharide genes to virulence of *Klebsiella pneumoniae*. *Virulence*. 2016;8:485-486.

53. Dorman MJ, Feltwell T, Goulding DA, Parkhill J, Short FL. The capsule regulatory network of *Klebsiella pneumoniae* defined by density-TraDISort. *mBio*. 2018;9:e01863-e11818.

54. Pal S, Verma J, Mallick S, Rastogi SK, Kumar A, Ghosh AS. Absence of the glycosyltransferase WcaJ in *Klebsiella pneumoniae* ATCC13883 affects biofilm formation, increases polymyxin resistance and reduces murine macrophage activation. *Microbiology*. 2019;165(8):891-904. https://doi.org/10.1099/mic.0.000827

55. Pitt ME, Elliott AG, Cao MD, et al. Multifactorial chromosomal variants regulate polymyxin resistance in extensively drug-resistant *Klebsiella pneumoniae*. *Microb Genom*. 2018;4:e000158.

56. Merabishvili M, Pirnay J-P, De Vos D. Guidelines to compose an ideal bacteriophage cocktail. *Methods Mol Biol*. 2018;1693:99-110.

57. Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. *App Microbiol Biotechnol*. 2017;101:3103-3119.

58. Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases, their diversity and biotechnological applications. *App Microbiol Biotechnol*. 2016;100:2141-2151.

59. Hsu CR, Lin TL, Pan YJ, Hsieh PF, Wang JT. Isolation of a bacteriophage specific for a new capsular type of *Klebsiella pneumoniae* and characterization of its polysaccharide depolymerase. *PLoS One*. 2013;8:e70092.

60. Majkowska-Skrobek G, Latka A, Berisio R, et al. Phage-borne depolymerases decrease *Klebsiella pneumoniae* resistance to innate defense mechanisms. *Front Microbiol*. 2018;9:2517.

61. Nobrega FL, Vlot M, de Jonge PA, et al. Targeting mechanisms of tailed bacteriophages. *Nat Rev Microbiol*. 2018;16:760-773.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the Supporting Information section.