UNIVERSAL AUTOHOMEOMORPHISMS OF \mathbb{N}^*

KLAAS PIETER HART AND JAN VAN MILL

To the memory of Cor Baayen, who taught us many things

Abstract. We study the existence of universal autohomeomorphisms of \mathbb{N}^*. We prove that CH implies there is such an autohomeomorphism and show that there are none in any model where all autohomeomorphisms of \mathbb{N}^* are trivial.

Introduction

This paper is concerned with universal autohomeomorphisms on \mathbb{N}^*, the Čech-Stone remainder of \mathbb{N}.

In very general terms we say that an autohomeomorphism h on a space X is universal for a class of pairs (Y, g), where Y is a space and g is an autohomeomorphism of Y, if for every such pair there is an embedding $e : Y \to X$ such that $f \circ e = e \circ g$, that is, h extends the copy of g on $e[Y]$.

In [1, Section 3.4] one finds a general way of finding universal autohomeomorphisms. If X is homeomorphic X^ω then the shift mapping $\sigma : X^\mathbb{Z} \to X^\mathbb{Z}$ defines a universal autohomeomorphism for the class of all pairs (Y, g), where Y is a subspace of X. One embeds Y into $X^\mathbb{Z}$ by mapping each $y \in Y$ to the sequence $\langle g^n(y) : n \in \mathbb{Z} \rangle$.

Thus, the Hilbert cube carries an autohomeomorphism that is universal for all autohomeomorphisms of separable metrizable spaces and the Cantor set carries one for all autohomeomorphisms of zero-dimensional separable metrizable spaces. Likewise the Tychonoff cube $[0, 1]^{\kappa}$ carries an autohomeomorphism that is universal for all autohomeomorphisms of completely regular spaces of weight at most κ, and the Cantor cube 2^{κ} has a universal autohomeomorphism for all zero-dimensional such spaces.

Our goal is to have an autohomeomorphism h on \mathbb{N}^* that is universal for all autohomeomorphisms of all closed subspaces of \mathbb{N}^*. The first result of this paper is that there is no trivial universal autohomeomorphism of \mathbb{N}^*, and hence no universal autohomeomorphism at all in any model where all autohomeomorphisms of \mathbb{N}^* are trivial. On the other hand, the Continuum Hypothesis implies that there is a universal autohomeomorphism of \mathbb{N}^*. The proof of this will have to be different from the results mentioned above because \mathbb{N}^* is definitely not homeomorphic to its power $(\mathbb{N}^*)^\omega$; it will use group actions and a homeomorphism extension theorem.

We should mention the dual notion of universality where one requires the existence of a surjection $s : X \to Y$ such that $g \circ s = s \circ h$. For the space \mathbb{N}^* this was investigated thoroughly in [2] for general group actions.

Date: Sunday 05-09-2021 at 18:49:50 (cest).

2020 Mathematics Subject Classification. Primary: 54D40; Secondary: 03E50 54A35.

Key words and phrases. autohomeomorphism, \mathbb{N}^*, universality.
1. Some preliminaries

Our notation is standard. For background information on \mathbb{N}^* we refer to [5].

We denote by Aut the automhomeomorphism group of \mathbb{N}^*. We call a member h of Aut trivial if there are cofinite subsets A and B of \mathbb{N} and a bijection $b : A \to B$ such that h is the restriction of βb to \mathbb{N}^*.

In both sections we shall use the G_δ-topology on a given space (X, τ); this is the topology τ_{δ} on X generated by the family of all G_δ-subsets in the given space. It is well-known that $w(X, \tau_{\delta}) \leq w(X, \tau)^{\aleph_0}$; we shall need this estimate in Section 3.

2. What if all autohomeomorphisms are trivial?

To begin we observe that fixed-point sets of trivial autohomeomorphism of \mathbb{N}^* are clopen. Therefore, to show that no trivial autohomeomorphism is universal it would suffice to construct a compact space that can be embedded into \mathbb{N}^* and that has an autohomeomorphism whose fixed-point set is not clopen.

The example. We let L be the ordinal $\omega_1 + 1$ endowed with its G_δ-topology. Thus all points other than ω_1 are isolated and the neighbourhoods of ω_1 are exactly the co-countable sets that contain it. Then L is a P-space of weight \aleph_1 and hence, by the methods in [4, Section 2], its Čech-Stone compactification βL can be embedded into \mathbb{N}^*.

We define $f : L \to L$ such that ω_1 is the only fixed point of βf. We put

\[
 f(\omega_1) = \omega_1,
 \]

\[
 f(2 \cdot \alpha) = 2 \cdot \alpha + 1, \quad \text{and}
\]

\[
 f(2 \cdot \alpha + 1) = 2 \cdot \alpha.
\]

This defines a continuous involution on L.

If $p \in \beta L \setminus L$ then $p \in \text{cl} \alpha$ for some $\alpha < \omega_1$ and then either $E = \{2 \cdot \beta : \beta < \alpha\}$ or $O = \{2 \cdot \beta + 1 : \beta < \alpha\}$ belongs to the ultrafilter p. But $f[E] \cap E = \emptyset = f[O] \cap O$, hence $\beta f(p) \neq p$.

Since ω_1 is not an isolated point of βL, no matter how this space is embedded into \mathbb{N}^* there is no trivial autohomeomorphism of \mathbb{N}^* that would extend βf.

3. The Continuum Hypothesis

Under the Continuum Hypothesis the space \mathbb{N}^* is generally very well-behaved and one would expect it to have a universal autohomeomorphism as well. We shall prove that this is indeed the case. We need some well-known facts about closed subspaces of \mathbb{N}^*.

First we have Theorem 1.4.4 from [5] which characterizes the closed subspaces of \mathbb{N}^* under CH: they are the compact zero-dimensional F-spaces of weight \mathfrak{c}, and, in addition: every closed subset of \mathbb{N}^* can be re-embedded as a nowhere dense closed P-set.

Second we have the homeomorphism extension theorem from [3]: CH implies that every homeomorphism between nowhere dense closed P-sets of \mathbb{N}^* can be extended to an autohomeomorphism of \mathbb{N}^*.

Step 1. We consider the natural action of \(\text{Aut} \) on \(\mathbb{N}^* \), that is the map \(\sigma : \text{Aut} \times \mathbb{N}^* \to \mathbb{N}^* \) given by \(\sigma(f, p) = f(p) \). This action is continuous when \(\text{Aut} \) carries the compact-open topology \(\tau \) and hence also when \(\text{Aut} \) carries the \(G_\delta \)-modification \(\tau_\delta \) of \(\tau \). For the rest of the construction we consider the topology \(\tau_\delta \).

Using this action we define an autohomeomorphism \(h : \text{Aut} \times \mathbb{N}^* \to \text{Aut} \times \mathbb{N}^* \) by \(h(f, p) = (f, f(p)) \). The map \(h \) is continuous because its two coordinates are and it is a homeomorphism because its inverse \((f, f^{-1}(p)) \) is continuous as well.

Now if \(X \) is a closed subset of \(\mathbb{N}^* \) and \(g : X \to X \) is an autohomeomorphism then we can re-embed \(X \) as a nowhere dense closed \(P \)-set and we can then find an \(f \in \text{Aut} \) such that \(f \upharpoonright X = g \). We transfer this embedded copy of \(X \) to \(\{f\} \times \mathbb{N}^* \) in \(\text{Aut} \times \mathbb{N}^* \); for this copy of \(X \) we then have \(h \upharpoonright X = g \). It follows that \(h \) satisfies the universality condition.

Step 2. We embed \(\text{Aut} \times \mathbb{N}^* \) into \(\mathbb{N}^* \) in such a way that there is an autohomeomorphism \(H \) of \(\mathbb{N}^* \) such that \(H \upharpoonright (\text{Aut} \times \mathbb{N}^*) = h \). Then \(H \) is the desired universal autohomeomorphism of \(\mathbb{N}^* \).

To this end we list a few properties of this product.

Weight. The weight of the product is equal to \(c \), as both factors have weight \(c \). For \(\mathbb{N}^* \) this is clear and for \(\text{Aut} \) this follows because the topology \(\tau \) has weight \(c \) and one obtains a base for \(\tau_\delta \) by taking the intersections of all countable subfamilies of a base for \(\tau \).

Zero-dimensional and \(F \). The product is a zero-dimensional \(F \)-space as the product of the \(P \)-space \(\text{Aut} \) and the compact zero-dimensional \(F \)-space \(\mathbb{N}^* \), see [6, Theorem 6.1].

Strongly zero-dimensional. The product \(\text{Aut} \times \mathbb{N}^* \) is not compact, but we shall construct a compactification of it that is also a zero-dimensional \(F \)-space of weight \(c \).

For this we need to prove that \(\text{Aut} \times \mathbb{N}^* \) is actually strongly zero-dimensional. We prove more: the product is ultraparacompact, meaning that every open cover has a pairwise disjoint open refinement.

Let \(\mathcal{U} \) be an open cover of the product consisting of basic clopen rectangles.

For each \(f \in \text{Aut} \) there is a finite subfamily \(\mathcal{U}_f \) of \(\mathcal{U} \) that covers \(\{f\} \times \mathbb{N}^* \), say \(\mathcal{U}_f = \{C_i \times D_i : i < k_f\} \). Let \(C_f = \bigcap_{i < k_f} C_i \) and \(D_{f,i} = D_i \setminus \bigcup_{j < i} D_j \) for \(i < k_f \). Then \(C_f = \{C_f \times D_{f,i} : i < k_f\} \) is a disjoint family of clopen rectangles that covers \(\{f\} \times \mathbb{N}^* \) and refines \(\mathcal{U} \).

Because \(\text{Aut} \) has weight \(c \), and we assume \(\text{CH} \), there is a sequence \(\{f_{\alpha} : \alpha \in \omega_1\} \) in \(\text{Aut} \) such that \(\{C_{f_{\alpha}} : \alpha \in \omega_1\} \) covers \(\text{Aut} \). Next we let \(V_{\alpha} = C_{f_{\alpha}} \setminus \bigcup_{\beta < \alpha} C_{f_{\beta}} \) for all \(\alpha \). Because \(\text{Aut} \) is a \(P \)-space the family \(\{V_{\alpha} : \alpha \in \omega_1\} \) is a disjoint open cover of \(\text{Aut} \).

The family \(\{V_{\alpha} \times D_{f_{\alpha}, i} : i < k_{f_{\alpha}}, \alpha \in \omega_1\} \) then is a disjoint open refinement of \(\mathcal{U} \).

A compactification. To complete Step 2 we construct a compactification of \(\text{Aut} \times \mathbb{N}^* \) that is a zero-dimensional \(F \)-space of weight \(c \) and that has an autohomeomorphism that extends \(h \). The Čech-Stone compactification would be the obvious candidate, were it not for the fact that its weight is equal to \(2^c \). More precisely, using some continuous onto function from \((\text{Aut}, \tau) \) onto [0,1] one obtains a clopen partition of \((\text{Aut}, \tau_\delta) \) of cardinality \(c \). This shows that \(\beta(\text{Aut} \times \mathbb{N}^*) \) admits a continuous surjection onto the space \(\beta\mathbb{C} \) (where \(\mathbb{C} \) carries the discrete topology).
To create the desired compactification we build, either by transfinite recursion or by an application of the Löwenheim-Skolem theorem, a subalgebra \(B \) of the algebra of clopen subsets of \(\text{Aut} \times \mathbb{N}^* \) that is closed under \(h \) and \(h^{-1} \), of cardinality \(c \), and that has the property that for every pair of countable subsets \(A \) and \(B \) of \(B \) such that \(a \cap b = \emptyset \) whenever \(a \in A \) and \(b \in B \) there is a \(c \in B \) such that \(a \subseteq c \) and \(c \cap b = \emptyset \) for all \(a \in A \) and \(b \in B \). The latter condition can be fulfilled because \(\text{Aut} \times \mathbb{N}^* \) is an \(F \)-space — \(\bigcup A \) and \(\bigcup B \) have disjoint closures — and strongly zero-dimensional — the closures can be separated using a clopen set.

The Stone space \(\text{St}(B) \) of \(B \) is then a compactification of \(\text{Aut} \times \mathbb{N}^* \) that is a compact zero-dimensional \(F \)-space of weight \(c \), with an autohomeomorphism \(\tilde{h} \) that extends \(h \). We embed \(\text{St}(B) \) into \(\mathbb{N}^* \) as a nowhere dense \(P \)-set and extend \(\tilde{h} \) to an autohomeomorphism \(H \) of \(\mathbb{N}^* \).

References

[1] P. C. Baayen, *Universal morphisms*, Mathematical Centre Tracts, vol. 9, Mathematisch Centrum, Amsterdam, 1964. MR0172826

[2] Will Brian, *Universal flows and automorphisms of \(\mathcal{P}(\omega)/\text{fin} \)*, Israel J. Math. 233 (2019), no. 1, 453–500, DOI 10.1007/s11856-019-1913-3. MR4013982

[3] Eric K. van Douwen and Jan van Mill, *The homeomorphism extension theorem for \(\beta \omega \setminus \omega \)*, Papers on general topology and applications (Madison, WI, 1991), Ann. New York Acad. Sci., vol. 704, New York Acad. Sci., New York, 1993, pp. 345–350, DOI 10.1111/j.1749-6632.1993.tb52537.x. MR1277871

[4] Alan Dow and Jan van Mill, *An extremally disconnected Dowker space*, Proc. Amer. Math. Soc. 86 (1982), no. 4, 669–672, DOI 10.2307/2043007. MR674103

[5] Jan van Mill, *An introduction to \(\beta \omega \)*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 503–567. MR776630

[6] Stelios Negrepontis, *On the product of \(F \)-spaces*, Trans. Amer. Math. Soc. 136 (1969), 339–346, DOI 10.2307/1994718. MR234407