Progress and perspectives in dielectric energy storage ceramics

Dongxu Lia,b,†, Xiaojun ZENGa,†, Zhipeng Lia, Zong-Yang SHENa,*, Hua HAOb, Wenqin LUOa, Xingcai WANGc, Fusheng SONGa, Zhumei WANGa, Yueming LIa

aEnergy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
bState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
cChengdu Hongke Electronic Technology Co., Ltd., Chengdu 610000, China

Received: February 14, 2021; Revised: April 29, 2021; Accepted: May 17, 2021 © The Author(s) 2021.

Abstract: Dielectric ceramic capacitors, with the advantages of high power density, fast charge-discharge capability, excellent fatigue endurance, and good high temperature stability, have been acknowledged to be promising candidates for solid-state pulse power systems. This review investigates the energy storage performances of linear dielectric, relaxor ferroelectric, and antiferroelectric from the viewpoint of chemical modification, macro/microstructural design, and electrical property optimization. Research progress of ceramic bulks and films for Pb-based and/or Pb-free systems is summarized. Finally, we propose the perspectives on the development of energy storage ceramics for pulse power capacitors in the future.

Keywords: energy storage ceramics; dielectric; relaxor ferroelectric; antiferroelectric; pulse power capacitor

1 Introduction

Electric energy, as secondary energy, plays a dominant role in human daily life, industrial manufacture, and scientific research owing to its cost-effectiveness, versatility, and convenient transportation. Compared with traditional fossil fuels, electrical energy generated from renewable resources can effectively cope with resource depletion and reduce environmental pollution. However, the characteristics of intermittence, fluctuation, and randomness result in a time and space difference between practicality and expected demand, and thereby seriously hinder its large-scale development and application [1]. It is urgent to develop advanced technologies to address the issue of electric energy storage and conversion. Currently, the researches of energy storage technologies are mainly concentrated on dielectric capacitors [2,3], electrochemical capacitors [4], batteries [5], and solid oxide fuel cells [6], whose corresponding characteristics are given in Fig. 1.

Ceramic capacitor, as a passive component, possesses high power density (~GW/kg), fast charge–discharge speed (μs, or even ns), well fatigue endurance (≥ 106 cycles), and high temperature stability, playing an
indispensable role in solid-state power systems [1,7]. Generally, ceramic capacitors with a physical power supply based on dipole orientation, have relatively lower energy density than lithium-ion batteries and solid oxide fuel cells. Therefore, it is critical to improve the energy density of ceramic capacitors for expanding their practical applications.

Polarization behavior of dielectric materials under external electric field can be characterized by P–E loops (hysteresis loops) [8,9], as exhibited in Fig. 2. According to different P–E loop characteristics, dielectric materials can be classified into linear dielectric, ferroelectric, and antiferroelectric, of which ferroelectric includes normal ferroelectric and relaxor ferroelectric. Based on basic principle and reported literature, the polarization of linear dielectric is linearly proportional to the electric field, whereas its relatively low dielectric constant (ε_r) makes it difficult to achieve high energy density. Normal ferroelectric also possesses limited energy density because of its high remanent polarization (P_r). Relaxor ferroelectric and antiferroelectric could achieve both high energy density and efficiency, owing to their relatively high maximum polarization (P_{max}), low remanent polarization (P_r), and moderate breakdown strength (E_b), and thus have been considered to be the most potential candidates for pulse power systems.

Currently, the researches of energy storage ceramics are mainly concentrated on bulk (> 100 μm), thick film (1–100 μm), and thin film (< 1 μm). It should be noted that these three dielectric ceramics categories possess a big difference in actual energy storage capability, and thus one cannot treat them as one object in the same way. Meanwhile, the device application type also has different categories: ceramic bulk, multilayer structure capacitor, flexible electronic, integrated circuit, etc. This review combines the related work of authors, discusses the progress of energy storage performances of linear dielectric, relaxor ferroelectric, and antiferroelectric with emphasis on composition modification, macro/microstructural modulation, and electrical property optimization.

2 Key parameters for evaluating energy storage properties

2.1 Energy storage density

Generally, energy storage density is defined as energy in per unit volume (J/cm^3), which is calculated by [2]:

$$W = \int_0^{D_{\text{max}}} EdD$$ \hspace{1cm} (1)

where W, E, D_{max}, and dD are the total energy density, applied electric field, maximum electric displacement at E, and increment of electric displacement per unit of the electric field, respectively. For ceramic dielectric, D is an unmeasurable microscopic physical quantity, and is usually expressed by polarization as following:

$$D = \varepsilon_0 E + P$$ \hspace{1cm} (2)

Meanwhile, P is dependent on E as follows:

$$P = \varepsilon_0 \chi E$$ \hspace{1cm} (3)

where ε_0 is the vacuum dielectric constant of $8.854 \times 10^{-12} \text{ F/m}$, χ is the dielectric polarization coefficient, so
that Eq. (2) can be expressed as

\[D = \varepsilon_0 (\chi + 1) E = \varepsilon_0 \varepsilon_r (E) E \] (4)

where \(\varepsilon_r (E) \) is the relative dielectric constant at \(E \). Therefore, Eq. (1) after the change is as follows:

\[W = \int_0^{\Phi_{\text{max}}} \varepsilon_0 \varepsilon_r (E) EdE \] (5)

It is obvious that high \(\varepsilon_r \) and high \(E_b \) are important factors for achieving high \(W \) [10]. However, these two factors are hard to obtain simultaneously in a given material due to the trade-off relationship.

It should be noted that \(W \) is a sum of effective energy density (\(W_{\text{rec}} \)) and energy loss (\(W_{\text{loss}} \)) [8,11]. In practice, \(W_{\text{rec}} \) is more important than \(W \) in evaluating the energy storage performances of dielectric materials. As shown in Fig. 2, \(W_{\text{rec}} \) is determined by the area enclosed by the discharge curve of its \(P-E \) loops and the polarization axis. The equation is given as follows:

\[W_{\text{rec}} = \int_{P_r}^{P_{\text{max}}} E dP \] (6)

Obviously, high \(P_{\text{max}} \), low \(P_r \) (i.e., large \(\Delta P = P_{\text{max}} - P_r \)), and high \(E_b \) are essential factors to achieve high \(W_{\text{rec}} \).

2.2 Energy storage efficiency

Energy storage efficiency (\(\eta \)) is another important parameter to evaluate energy storage performances of dielectric materials, which is expressed as

\[\eta = \frac{W_{\text{rec}} \times 100}{W} = \frac{W_{\text{rec}}}{W_{\text{rec}} + W_{\text{loss}}} \times 100 \] (7)

where \(W_{\text{loss}} \) is the energy loss during the discharge process, which equals to the area enclosed by the \(P-E \) loop in number. \(W_{\text{loss}} \) is mainly dissipated as heat, and a higher value means a stronger negative effect on the service life of ceramic capacitors. Therefore, it is vital that \(P-E \) loops gradually go slim to enhance \(\eta \), and then improve its practical application.

According to Eqs. (6) and (7), \(P-E \) loops go slim accompanied with high \(P_{\text{max}} \), low \(P_r \) (i.e., high \(\Delta P = P_{\text{max}} - P_r \)), and high \(E_b \), which become the key issues in optimizing the energy storage characteristics of dielectric materials. There are two strategies: For one, to optimize the polarization behavior and strengthen their relaxor characteristics, which means that \(P-E \) loops go slim; for the other, to improve the breakdown behavior of dielectric ceramics, i.e., enhancing its \(E_b \).

This paper chooses linear dielectric, relaxor ferroelectric, and antiferroelectric as targets, and discusses the influences of chemical modification and macro/microstructural design on polarization behavior and breakdown strength of dielectric materials.

2.3 Rapid charging–discharging characteristics

Generally, energy storage performances of ceramic materials can be reflected by \(P-E \) loops measured by a modified Sawyer–Tower circuit. Meanwhile, the energy storage characteristics of ceramic capacitors, including effective discharging time (\(t_{0.9} \)) and power density (\(P \)), are more accurately reflected by the charging–discharging curve recorded at a specific RLC circuit [12]. The simple equivalent circuit model is exhibited in Fig. 3(a). In the charging process ("1" connected to "3"), the potential difference (\(V \)) between two surfaces of capacitor equals the applied voltage (\(V \)), representing the charging process is finished. And then, the vacuum switches automatically and quickly rotate ("2" connected to "3") to achieve the discharging process. Current flows to the oscilloscope via a load (\(R_0 \)), which is recorded as wave function as a function of time. The discharging density is given by

\[J(t) = \frac{\int_0^t V(t) I(t) dt}{\varphi} = \frac{\pi V_0^2}{2 \rho R_0} \left(1 - e^{-\frac{2t}{\tau}} \right) \] (8)

where \(\varphi \) is the effective volume, \(\tau \) is the relaxation time, and \(V(t) \) and \(I(t) \) are the voltage and current as function of time, respectively. Discharging current (\(I \)) and energy density (\(J \)) versus time (\(t \)) are shown in Fig. 3(b).

It is reported that the value of \(J \) calculated by Eq. (8) is generally smaller than that of \(W_{\text{rec}} \). For the reasons, it may be closely related to two factors. Firstly, the domains cannot switch and orientate promptly due to fast discharge speed, and thus the energy is not completely released [13]. Secondly, the circuit has equivalent series resistance that generates Joule energy [14]. In order to acquire higher value of \(J \) and \(W_{\text{rec}} \), reducing domain size (e.g., polar nanoregions) only from material itself may be an effective method [15].

Power density (\(P \)) is also an important parameter of dielectric ceramic capacitors, which is determined as follows:

\[P = \frac{\pi f \varepsilon_0 \varepsilon_r E_b^2}{2 \tan \delta} \] (9)

where \(f \) is the testing frequency, and the others are the same as those discussed above. It can be seen that high \(\varepsilon_r \), high \(E_b \), and low tan\(\delta \) are the basic requirements of
achieving high P. Meanwhile, P has an obvious dependence on frequency (f), which means high f corresponds to high P. In addition, $t_{0.9}$ is an important factor for influencing the practical application of ceramic capacitors. The smaller the value of $t_{0.9}$, the stronger the pulse current can be generated in a short time. It is worth mentioning that the value of $t_{0.9}$ is dependent on not only the intrinsic properties of the dielectric materials, but also some external factors. For example, Li et al. [15] found that $t_{0.9}$ can be controlled by adjusting the load (R_0) in the circuit.

2.4 Reliability of work

No matter with dielectric material or pulse capacitor, the reliability of work is a crucial factor to influence its application scenes. Generally, reliability of work requires keeping stability of electric properties of material and device under thermal, electric, mechanical, magnetic, etc., external field stimulus.

Temperature stability usually requires that dielectric properties and polarization of material have a gentle fluctuation as a function of temperature. For example, dielectric constant needs to maintain a ±15% variation over a temperature range from −55 to 125 °C (X7R), to 150 °C (X8R), and even to 300 °C, especially in high temperature working environments. Therefore, one should know the Joule heat categories: dielectric loss or leakage current, and to solve corresponding issues. Generally, different electric field conditions such as cycle number, frequency, voltage category, magnitude, etc., all require keeping good energy storage stability. Specially, fatigue endurance is a very important issue to influence capacitor working capability. In 2009, Lou [16] reviewed different fatigue mechanisms in ceramic bulks, films, and single crystalline, which help us better understand fatigue behavior of material. In addition, mechanic and magnetic fields both influence its polarization behavior of material, and its importance may be playing a crucial role in the future multifunctional coupling requirement. Therefore, the evaluation criterion of reliability of working should be a complicated project.

3 Dielectric ceramics for energy storage capacitors

As given in Fig. 2, dielectric materials mainly include three categories, namely linear dielectric, relaxor ferroelectric, and antiferroelectric. Therefore, we here compare and analyze the energy storage properties of some representative dielectric ceramic bulks and films.

3.1 Linear dielectric ceramics

Linear dielectric ceramics usually possess characteristics of low ε_r and $\tan\delta$, as well as moderate E_b. It is thereby hard to obtain high W_{rec} despite under high electric field. In this regard, the researches of linear dielectric ceramics are mainly concentrated on increasing ε_r or improving polarization behavior based on maintaining high E_b.

3.1.1 TiO$_2$ based ceramics

TiO$_2$ is a typical linear dielectric, with characteristics of moderate E_b (> 350 kV/cm), low $\tan\delta$ (< 0.1%), dielectric constant (~110), and wide band gap (~3.2 eV), and thus receives wide use in contemporary electronic ceramic industries and photocatalysis field [17–20]. Generally, TiO$_2$ has three crystal structures including orthorhombic brookite, tetragonal rutile, and anatase. The rutile phase is more stable and easier to be synthesized than others, and hence gains more attention in ceramic bulks and films [21,22].

In 2013, Hu et al. [23] firstly reported that (In, Nb)
co-doped TiO2 ceramics displayed a giant dielectric constant (\(> 10^4\)) as well as low tan\(\delta\) (< 5\%), and possessed good temperature and frequency stabilities over a wide temperature range (80–450 K). The authors claim that this phenomenon should be closely related to defect clusters and localized electrons, and thus propose a “localized defect polarization” mechanism. However, the specified reason of giant dielectric constant appearing in donor/acceptor co-doped TiO2 ceramics still has some controversies. Li et al. [24,25] attempted to explain the phenomenon by using an internal barrier layer capacitance (IBLC) model, similar to CaCu3Ti4O12 (CCTO) ceramics from extrinsic factors influencing dielectric constant. Actually, most of subsequent discussion on the physical origin of different-type donor/acceptor co-doped TiO2 ceramics is basically around above two mechanisms [26–28], even though no significant progress has been achieved in \(W_{\text{rec}}\) for donor/acceptor co-doping TiO2 ceramics because of the expense of a rapid reduction in \(E_b\).

In another way, improving the sintering behavior of TiO2-based ceramics would be effectively enhancing \(E_b\), such as refining grain size [17,29], adding glass phase [30], applying special sintering technology (SPS), and so on. Liu et al. obtained a \(W_{\text{rec}}\) of 1.15 J/cm\(^3\) for alkali-free glass modified TiO2 ceramics at 501.7 kV/cm. Unfortunately, \(W_{\text{rec}}\) of those ceramic bulks after different modification ways is still only at a scale of 1 J/cm\(^3\), which is less than other energy storage dielectric materials. It should be noticed that high quality TiO2 film is a good direction owing to their high \(E_b\). For instance, Chao and Dogan [31] fabricated 0.1-mm thick TiO2 films using tape-casting method, which achieve \(W_{\text{rec}}\) of 14 J/cm\(^2\) at 1400 kV/cm.

3.1.2 SrTiO3 based ceramics

SrTiO3 (ST) is a cubic paraelectric phase with ABO3 type perovskite structure, accompanying to space group of \(Pm\bar{3}m\) and lattice constant of \(a = 3.905\) Å [32,33]. ST ceramics possess moderate \(\varepsilon_r\) of \(-300\), \(E_b\) of \(-100\) kV/cm, and low tan\(\delta\) of \(-10^{-3}\), as well as good temperature-, frequency-independent dielectric properties, bias voltage stability, and thermoelectric energy conversion efficiency [34–36]. Therefore, it is considered to be a potential energy storage and conversion candidate. Compared with TiO2 ceramic (\(-110\)) and polymer linear dielectric (\(< 10\)), ST has an advantage of relatively high \(\varepsilon_r\), and thus is more suitable for pulse capacitor.

Utilizing Ca\(^{2+}\), Ba\(^{2+}\), and Pb\(^{2+}\) ions to replace Sr\(^{2+}\) on the A-site of ST could adjust the Curie temperature (\(T_C\)) to room temperature, and thus dielectric constant could be enhanced [37,38]. Especially, \(\text{Ba}_x\text{Sr}_{1-x}\text{TiO}_3\) (BST) solid solutions combine the characteristics of high \(E_b\) of SrTiO3 and high \(\varepsilon_r\) of BaTiO3, and receive much more attention in recent years [39]. The structure and performance of BST can be adjusted over a wide range to meet the requirements of different applications. As the molar fraction of Ba increases from 0 to 1, phase composition of BST varies from cubic paraelectric (ST) to tetragonal ferroelectric (BT), accompanying by the \(T_C\) increase from near absolute 0 to \(-393\) K. According to theoretical calculation of BST solid solution by Fletcher et al. [40], it is easier to obtain an ideal energy storage property if the \(T_C\) of the ceramic composition is far away the working temperature. Thereby, BST compositions with \(x \leq 0.4\) would be more suitable pulse power capacitor candidates because \(P–E\) loops display linear or weak nonlinear characteristic at room temperature, as shown in Fig. 4. In 2015, Wang et al. [37] investigated energy storage performances of \(\text{Ba}_x\text{Sr}_{1-x}\text{TiO}_3\) (\(x \leq 0.4\)) ceramics, and found that \(\text{Ba}_0.4\text{Sr}_{0.6}\text{TiO}_3\) achieved the highest \(W_{\text{rec}}\), while relatively low and rapidly decreased \(\eta\) becomes a serious problem to hinder its application. By comparison, \(\text{Ba}_{0.3}\text{Sr}_{0.7}\text{TiO}_3\) possessed moderate \(W_{\text{rec}}\), high \(\eta\) (\(\geq 95\%\)), and very low dielectric loss (tan\(\delta\) = 7.6 \times 10^{-4} @ 1 kHz), making it more suitable for the fabrication of solid state compact portable pulse power electronics.

![Fig. 4 Polarization–electric field (\(P–E\)) hysteresis loops of \(\text{Ba}_x\text{Sr}_{1-x}\text{TiO}_3\) (BST, \(x \leq 0.4\)) ceramics. The inset shows the effective energy storage and energy loss during the charge–discharge process. Reproduced with permission from Ref. [37], © Elsevier Ltd and Techna Group S.r.l. 2015.](www.springer.com/journal/40145)
For aliovalent doping in A-site of ST, a similar phenomenon with giant dielectric TiO₂ can be observed, and corresponding mechanisms are widely studied. Chen et al. [41–43] reported (Bi,Sr)TiO₃ ceramics with giant dielectric constant, discussed the related physical mechanisms, and proposed that the first and second ionization of oxygen vacancies as well as corresponding thermal movement were the main reasons. To avoid the problem of Bi-containing oxides volatilizing at high temperature, Shen et al. [34,44–46] used trivalent nonvolatile rare earth ions (Re³⁺ = La, Sm, Gd, Er, Nd, etc.) to replace Sr²⁺, and designed three composition formulas based on three possible charge compensation mechanisms such as equimolar substitution, introducing Sr or Ti vacancy in advance, and successfully fabricated ceramics with perovskite structure. It is experimentally verified the feasibility of introducing ion vacancies in advance for charge compensation, and then the concept of “forced charge compensation mechanism” is summarized and proposed. For instance, Shen et al. [44] synthesized Re₀.02Sr₀.97TiO₃ ceramics by introducing Sr vacancy in advance, displaying a high dielectric constant and good bias voltage stability, as shown in Figs. 5 and 6. Furthermore, multiple mechanisms such as Maxwell–Wagner interface polarization, variable charge of Ti element, defect clusters, etc., are all proposed to illustrate donor and/or acceptor doping ST ceramics.

Microstructure regulation plays an important role in enhancing E_b of ST ceramics. In 2014, Song et al. [47] prepared Ba₀.4Sr₀.6TiO₃ ceramics with various grain sizes (0.5–5.6 µm), and observed that dielectric peak gradually depressed and broadened and E_b gradually increased with decreasing grain size, which should be closely related to the ratio of grain/grain boundary and polar nanoregions (PNRs). Ba₀.4Sr₀.6TiO₃ ceramic bulk with grain size of 0.5 µm achieves a high W_rec = 1.28 J/cm³ measured at the highest E_b of 243 kV/cm. Wu et al. [48] compared microstructure and energy storage properties of spark plasma sintered (SPS) and conventionally sintered (CS) Ba₀.3Sr₀.7TiO₃ ceramics. The SPS sintered ceramics consists of tetragonal and cubic phases with an average grain size of 880 nm, while CS ones are only of the tetragonal phase. The maximum W_rec of SPS samples is 1.13 J/cm³ at E_b = 230 kV/cm, which is approximately twice as much as that of CS samples (0.57 J/cm³). In addition, the addition of suitable glass compositions is also an effective method to enhance E_b and reduce the sintering temperature of ST based ceramics [49,50]. In 2019, Shen et al. [51] used a homemade glass frit to modify BST enhancing the E_b and reducing the high temperature resistivity, which expanded the working temperature range for energy storage ceramic capacitor applications.

“Defect engineering” is an effective tool to enhance W_rec by strengthening relaxor characteristics for ST-based ceramic films. Yang et al. [52] fabricated (Sr₁₋₁.₅Biₓ)Ti₀.₉₉Mn₀.₀₁O₃ (SBTM, x = 0.01, 0.05, 0.1) thin films with a thickness of 217 nm using sol–gel method. As x value increases, relaxor behaviors are gradually strengthened due to a slight rotation of the (TiO₆) octahedra induced by the formation of Bi³⁺–V⁰⁰ defect complex. Under an electric field of 1982 kV/cm,
(Sr0.85Bi0.1)Ti0.99Mn0.01O3 possess a W_{rec} of 24.4 J/cm3 accompanied by the largest ΔP ($P_{\text{max}}-P_r = 34.3$ µC/cm2). Actually, the introduction of other Bi-contained compounds such as Bi$_{0.5}$Na$_{0.5}$TiO$_3$ (BNT) [53], BiFeO$_3$ (BF) [54] has a similar effect to strengthen relaxor characteristics. For example, Pan et al. [54] deposited 5 mol% Mn-doped 0.6SrTiO$_3$–0.4BiFeO$_3$ (0.6ST–0.4BF) thin film on Nb-doped SrTiO$_3$ single crystal substrate using pulsed laser deposition (PLD), and acquired that W_{rec} and η were 51 J/cm3 and 64%, respectively. In addition, the energy storage performances exhibited good temperature stability over (~−40)–140 °C and well fatigue endurance after 2×10^7 cycles. In the related mechanism studies, Hou et al. [55] investigated the influence of interface difference and thickness on the energy storage performances for ST thin films, and observed the existence of ionic diffusion layers and oxygen vacancies using high resolution transmission electron microscope (HR-TEM). Moreover, they observed that E_b and P_{max} (up to 10^2 µC/cm2) along the positive direction were higher than the negative direction. Therefore, a maximum W_{rec} of ST thin films reach 307 J/cm3 for positive direction, which may be related to local electric field and redistribution of oxygen vacancy.

Various meaningful and interesting works have been done in the optimization of macro/micro structures to improve energy storage properties of ST-based ceramic films. It is well known that the amorphous phase usually possesses higher E_b but lower ε_r than their crystalline counterparts. Gao et al. [56] studied energy storage behaviors of amorphous ST thin films with different top electrodes, proposed “self-healing” mechanism based on the anodic oxidation reaction in aluminum electrolytic capacitors. At a relative humidity of 60%, amorphous ST films with Al top electrode achieve the W_{rec} of 15.7 J/cm3 at 3500 kV/cm, which approaches to 8 times of the samples with Au electrode. Since then, Gao et al. [57] inserted insulating Al$_2$O$_3$ as a blocking layer to form heterostructure, and achieved a maximum W_{rec} of 39.49 J/cm3 at $E_b = 7542.3$ kV/cm when interface number equals 4. Recently, Chen et al. [58] used Ca$_{0.2}$Zr$_{0.8}$O$_{1.8}$ (CSZ) as dead layer to enhance E_b of Ba$_{0.3}$Sr$_{0.7}$Zr$_{0.18}$Ti$_{0.82}$O$_3$ (BSZT) thin films. Due to the formation of a high electron injection barrier, Schottky electron emission is suppressed, and thus E_b and W_{rec} are enhanced from 5.4 to 6.3 MV/cm and 64.8 to 89.4 J/cm3, respectively. Energy storage properties of partially Pb-free linear dielectric ceramics are summarized and listed in Table 1.

In summary, for linear dielectric ceramic bulks, giant dielectric constant can be observed in TiO$_2$-based with donor/acceptor co-doping at B-site, and ST-based with donor/acceptor co-doping at B-site or aliovalent doping of at A-site bulks by chemical modification. Related physical mechanisms, some controversies, however, are still existed. Energy storage properties of ceramic bulks are limited at expense of a rapid decrease in E_b. Adding of suitable glass phase, special sintering technology and refining grain size are both able to enhance E_b of ceramic bulks. For ST-based ceramic films, adjusting suitable ratio of amorphous and crystalline or introducing a high insulating layer would be a good way to improve its breakdown behavior.

Table 1 Energy storage properties of Pb-free linear dielectric ceramic bulks and films

Composition	Category	t	W_{rec} (J/cm3)	η (%)	ε_r @ RT	E_b (kV/cm)	Ref.
TiO$_2$ + 15 wt% BBAS	Bulk	—	1.15	—	103	501.7	[30]
TiO$_2$	Thick film	0.1 mm	14	—	108	1400	[31]
Ba$_{0.1}$Sr$_{0.9}$TiO$_3$	Bulk	0.6 mm	0.23	95.7	650	−90	[37]
Ba$_{0.1}$Sr$_{0.9}$TiO$_3$	Bulk	0.3 mm	1.28	—	−1500	243	[47]
Ba$_{0.2}$Sr$_{0.8}$TiO$_3$ (SPS)	Bulk	—	1.13	86.8	—	230	[48]
(Sr$_{0.85}$Bi$_{0.1}$)Ti$_{0.99}$Mn$_{0.01}$O$_3$	Thin film	217 nm	24.4	64.7	550	1380	[52]
0.5 mol% Mn-doped 0.6ST–0.4BF	Thin film	500 nm	51	64	240	3600	[54]
ST	Thin film	610 nm	307	89	−350	6600	[55]
Amorphous ST	Thin film	300 nm	15.7	—	29.1	−3500	[56]
ST/4AO	Thin film	370 nm	39.49	−15	7542.3	[57]	
BSZT	Thin film	610 nm	89.4	65	−160	6300	[58]

BBAS: BaO–B$_2$O$_3$–SiO$_2$; ST: SrTiO$_3$; BF: BiFeO$_3$; AO: Al$_2$O$_3$; BSZT: Ba$_{0.3}$Sr$_{0.7}$Zr$_{0.18}$Ti$_{0.82}$O$_3$.

www.springer.com/journal/40145
3.2 Relaxor ferroelectric ceramics

Ferroelectric is a special dielectric material that possesses spontaneous polarization (P_s) at a certain temperature range and the direction of P_s can be changed with an external electric field. Compared with linear dielectric, ferroelectric displays an obvious nonlinear characteristic since the domain cannot fast respond to electric field stimulation. Generally, polarization behavior of dielectric material can be characterized by $P-E$ loop, and thus ferroelectric can be classified into normal ferroelectric and relaxor ferroelectric [59], as illustrated in Fig. 7. Normal ferroelectric possesses high P_{max} while its high P_t leads to that most of energy is dissipated during the discharge process. By contrast, relaxor ferroelectric exhibits slim $P-E$ loop with high P_{max} and low P_t (i.e., high $\Delta P = P_{\text{max}} - P_t$) meaning that electric energy can be effectively released, and thus obtains better energy storage performances [60]. Note that strengthening the relaxor characteristics and enhancing E_b have become important factors for enhancing W_{rec}. Furthermore, ferroelectric here discussed mainly refers to relaxor ferroelectric.

3.2.1 Pb-based relaxor ferroelectric ceramics

$\text{PbZr}_{1-x}\text{Ti}_x\text{O}_3$ (PZT, $0 \leq x \leq 1$) ceramic located at morphotropic phase boundary (MPB) where Zr:Ti is of 52:48, possesses a high piezoelectric activity (d_{33} up to 300 pC/N) and good temperature stability, and becomes an extremely popular dielectric material [61–63]. In addition, other ceramic compositions such as PZT 65/35, 70/30 also received more attention and no limitation by piezoelectric properties [64,65]. For example, the researches of actuator in PZT ceramics are increasing due to a large electrostrain under low electric field. In 2019, Kumar et al. [66] reported $\text{Pb}_{0.98}\text{La}_{0.011}\text{Zr}_{0.70}\text{Ti}_{0.30}\text{O}_3$ (PLZT 11/70/30) ceramics achieved a W_{rec} only of 0.85 J/cm3 due to low electric field. Generally speaking, current energy density of Pb-based relaxor ferroelectric ceramic bulks is less than 3 J/cm3. In 2017, Zhang et al. [67] investigated energy storage properties of PbZr$_{0.52}$Ti$_{0.48}$O$_3$-based thin films, acquired a high $W_{\text{rec}} = 28.2$ J/cm3 for PbZrO$_3$/PbZr$_{0.52}$Ti$_{0.48}$O$_3$ bilayer thin films at 2410 kV/cm. In addition, they continued to design a sandwich structure of PbZr$_{0.52}$Ti$_{0.48}$O$_3$/Al$_2$O$_3$/PbZr$_{0.52}$Ti$_{0.48}$O$_3$ (PZT/AO/PZT) to enhance E_b [68]. Due to the formation of so-called “built-in electric field” at the interface and the high insulating characteristic of AO, PZT/AO/PZT annealed at 550 °C achieved a W_{rec} of 63.7 J/cm3 at 5.7 MV/cm. It should be mentioned that PZT 52/48 system still possesses relatively high P_t restricting its energy storage properties.

Generally, a small amount of La$^{3+}$ (about 7–10 mol%) replacing Pb$^{2+}$ would effectively strengthen the relaxor characteristics of PZT-based ceramics owing to a disrupted long-range ferroelectric order and diffuse phase transition [71,72]. $\text{(Pb,La)}\text{(Zr,Ti)}\text{O}_3$ (PLZT) based relaxor ferroelectric is therefore considered to be a promising energy storage ceramic capacitor candidate. Adjusting suitable La/Zr/Ti ratio generates an important influence on electric properties because of the complicated phase structure. For example, Hu et al. [73] investigated the effect of different Zr/Ti ratios on the energy storage properties of PLZT thin films at a fixed La content of 8 mol%. As Ti/(Zr+Ti) ratio gradually increases, ε enhances while tan δ shows an opposite trend indicating phase structure gradually transforms from relaxor ferroelectric into normal ferroelectric. At $E_b = 2180$ kV/cm, W_{rec}, η of the PLZT 8/52/48 relaxor ferroelectric thin films are 30 J/cm3 and 78%, respectively. In chemical doping, Liu et al. [74] used Mn as a dopant of $\text{(Pb}_{0.9}\text{La}_{0.09})\text{(Zr}_{0.65}\text{Ti}_{0.35})\text{O}_3$ (PLZT 9/65/35) to enlarge the polarization difference of $P_{\text{max}}-P_t$, measured a W_{rec} of 30.8 J/cm3 for 1 mol% Mn

![Fig. 7 Schematic of hysteresis loop: (a) normal ferroelectric and (b) relaxor ferroelectric.](www.springer.com/journal/40145)
thick films. In addition, the addition of excess Pb is a common chemical compensation method to solve the problems of Pb volatilization during the annealing process, and of suppressing the formation of pyrochlore phase [75].

Reasonable design and selection of heterostructure for Pb-based thin films, is an important step in optimizing energy storage properties. In 2013, Zhang et al. [76] prepared a compositionally gradient (Pb$_{1-x}$La$_x$)(Zr$_{0.65}$Ti$_{0.35}$)O$_3$ (PLZT, $x = 0.08, 0.09, 0.1$) thick films using sol–gel method. Up-graded PLZT films possess a W_{rec} of 12.4 J/cm3 at 800 kV/cm, down-graded one of 8.9 J/cm3, and the lowest single composition one of 7.1 J/cm3. It is accepted that high texture quality and dense structure are both severely influencing breakdown behaviors and energy storage performances [77,78]. Nguyen et al. [77] deposited (Pb$_{0.9}$La$_{0.1}$)(Zr$_{0.52}$Ti$_{0.48}$)O$_3$ (PLZT 10/52/48) thick films using PLD on Si substrate choosing Ca$_2$Nb$_3$O$_{10}$ (CNOns) and Ti$_{0.87}$O$_2$ (TiOns) nanosheets as the template layer. Highly textured (001)-oriented PLZT 10/52/48 films grown on CNOns possess a high W_{rec} of 58.4 J/cm3, which exceeds W_{rec} of 44 J/cm3 for (110)-oriented PLZT 10/52/48 films grown on TiOns. Generally speaking, there are differences in lattice constants and thermal expansion coefficients in hetero-interfaces, which provide good conditions for stress. Figure 8(a) shows P–E loops of PLZT 8/52/48 thick films at different substrates. Ma et al. [69] utilized XRD to analyze residual stress for PLZT 8/52/48 thick films, and considered compressive stress can in a certain extent improve tunability of the polarization, enhance E_b and domain switch ability. In addition, note that Peng et al. [70] recently prepared Mn-doped Pb$_{0.97}$La$_{0.02}$(Zr$_{0.905}$Sn$_{0.015}$Ti$_{0.08}$)O$_3$ (PLZST) relaxor ferroelectric thin films, and innovatively proposed a “low-temperature poling” method to improve E_b, and called it “wake-up” mechanism. Figure 8(b) shows P–E loops of PLZST films before and after “awaken state”, with the inset showing the I–E curve after “awaken state”. Reproduced with permission from Ref. [70], © Elsevier Ltd. 2020.

Composition	Category	t (μm)	W_{rec} (J/cm3)	η (%)	ε_r @ RT	E_b (kV/cm)	Ref.
PLZT 11/70/30	Bulk	1 mm	0.85	92.9	−3500	85	[66]
PZ/PZT 52/48	Thin film	350 nm	28.2	−50	—	2615	[67]
PZT/AO/PZT	Thin film	330 nm	63.7	81.3	−50	5711	[68]
PLZT 8/52/48	Thin film	690 nm	30	78	−1500	2180	[73]
1 mol% MnO$_2$ doped PLZT 9/65/35	Thick film	1.5 μm	30.8	−70	1378	1679	[74]
Up-graded PLZT	Thick film	1.5 μm	12.4	—	2170	800	[76]
PLZT 10/52/48	Thick film	1000 nm	58.4	81.2	—	3400	[77]
Low-temperature-poling PLZST	Thin film	320–350 nm	31.2	60	—	2000	[70]

PZ/PZT 52/48: Pb(Zr$_{0.52}$Ti$_{0.48}$)O$_3$; PZT/AO/PZT: Pb(Zr$_{0.52}$Ti$_{0.48}$)O$_3$/Al$_2$O$_3$/Pb(Zr$_{0.52}$Ti$_{0.48}$)O$_3$; PLZT 8/52/48: Pb$_{0.97}$La$_{0.02}$(Zr$_{0.905}$Sn$_{0.015}$Ti$_{0.08}$)O$_3$; PLZST: Pb$_{0.97}$La$_{0.02}$(Zr$_{0.905}$Sn$_{0.015}$Ti$_{0.08}$)O$_3$.
3.2.2 Lead-free relaxor ferroelectric ceramics

Lead is a toxic metal, and its volatilization problem at high temperature results in serious environmental and human health concerns. Moreover, some legislation in countries and regions also promote researchers to explore a new lead-free ceramic substitute. Currently, lead-free relaxor ferroelectric ceramics mainly focused on Bi0.5Na0.5TiO3 (BNT), BaTiO3 (BT), BiFeO3 (BF), and K0.5Na0.5NbO3 (KNN) systems, which will be discussed in the following sections.

(1) Bi0.5Na0.5TiO3 based ceramics

Bi0.5Na0.5TiO3 (BNT) is a ferroelectric material firstly discovered by Smolenskii et al. [79], which possesses complicated phase structure and good dielectric, piezoelectric, and ferroelectric properties, especially high P_{max} (~40 μC/cm²) [80–83]. And so it becomes a popular research topic on fundamental theories and practical studies for ferroelectric materials [84–86]. However, the characteristics of high P_r (~38 μC/cm²), high E_c (~73 kV/cm), and poor sintering behavior for pure BNT ceramics hinder its energy storage applications.

Bi0.5Na0.5TiO3−xBaTiO3 (x = 6%–7%) binary solid solution near MPB exhibits excellent electrical properties, and is a most promising candidate for replacing Pb-based ceramics [87–89]. Since then, extensive energy storage studies have been done on this system. It is particularly important that strengthening dynamic of polar nanoregions (PNRs) through disturbing long-range ferroelectric ordering or expanding nonergodic–ergodic phase transition range both could optimize polarization behavior to obtain high W_{rec}. In 2011, Gao et al. [90] firstly reported that 0.89Bi0.5Na0.5TiO3−0.06BaTiO3−0.05K0.5Na0.5NbO3 (0.89BNT−0.06BT−0.05KNN) ceramics possessed a W_{rec} of 0.46 J/cm³ at 56 kV/cm. In 2016, Cao et al. [91] used Mn²⁺ to modify 0.7(0.94BNT−0.06BT)–0.3ST ceramics to reduce P_r by forming Mn⁺⁺−V₀ defect complex, which can induce a local electric field influencing domain switch. A W_{rec} of 1.06 J/cm³ for 1.1 mol% Mn is obtained at 95 kV/cm owing to a large $P_{\text{max}}−P_r$ up to 36.8 μC/cm². Actually, similar phenomenon was already reported by Ren et al. [92]. In 2017, Li et al. [93] incorporated NaNbO₃ into 0.8Bi0.5Na0.5TiO3−0.2SrTiO₃ relaxor ferroelectric ceramics, observed that $P−E$ loop gradually goes slim together with vanished current peaks as NN content increases, which was attributed to the nonergodic–ergodic phase transition. 0.5 mol NaNbO₃ modified ceramics exhibit a high W_{rec} of 0.74 J/cm³, accompanied by good high temperature energy storage stability and charging–discharging capability. Indeed, delaying the early saturation of polarization is also an effective method to enhance W_{rec} [94]. In our previous work [37,95], Ba0.3Sr0.7TiO₃, which is suitable for pulse power systems, is selected to improve energy storage performances of BNT-based with an optimized ceramic composition. $P−E$ loop of high ε_r (Ba₀.₃Sr₀.₇)₀.₃₅(Bi₀.₅Na₀.₅)₀.₆₅TiO₃ (B0.35BNT) relaxor ferroelectric ceramics originally presents an obvious clamped behavior, but its P_r is still high, as shown in Figs. 9(a) and 9(b). We therefore choose

![Fig. 9](a) Temperature dependent dielectric constant and loss of BS,BNT ceramics. The inset is T_{m} as a function of x value. (b) $P−E$ hysteresis loops of the BS,BNT ceramics with different x value at room temperature. Reproduced with permission from Ref. [95], © The Author(s) 2020.
NaNbO₃ (NN) antiferroelectric to continue to optimize its polarization behavior [96]. 0.94BSBNT–0.06NN relaxor ferroelectric ceramics achieve a high W_{rec} of 1.25 J/cm^3 at room temperature. Besides, the system exhibits good high temperature stability and fatigue endurance, which may be closely related to the reduction in domain size.

Besides doping modification, multilayer and miniaturization of BNT-based ceramic capacitors are also a significant research direction. In 2018, Li et al. [15] designed a series of $(1-x)$Bi₀.₅Na₀.₅TiO₃–x(Sr₀.₇Bi₀.₂)TiO₃ (NBT–xSBT, $x = 0.3–0.5$) ceramics, and corresponding multilayer ceramic capacitors (MLCC) with a single layer thickness of 20 μm were fabricated. A high W_{rec} of 9.5 J/cm^3, together with η of 92%, is achieved in NBT–0.45SBT MLCC. Furthermore, energy storage properties of MLCC display good temperature stability, fatigue endurance, and charging–discharging capability. Recently, Li et al. [97] attempted to enhance E_r through controlling grain orientation, and investigated energy storage performances of NBT–0.35SBT MLCC under different stress states. By comparison, Yang et al. [98] reported energy storage properties of gradient structure (SrTiO₃ + 0.5 wt% Li₂CO₃)/(0.93Bi₀.₅Na₀.₅TiO₃–0.07Ba₀.₉₄La₀.₀₄Zr₀.₀₂Ti₀.₉₈O₃) (STL/(BNT–BLZT)) ceramics along thickness direction. A high W_{rec} of 2.72 J/cm^3 for STL/(BNT–BLZT) ceramics is obtained at 294 kV/cm. Due to the strict requirements of the harsh working environment such as high temperature (> 200 °C), good insulation and antioxidant, MLCC would encounter many challenges in the future [99,100]. Meanwhile, material system selection, electrode design such as equivalent series resistance (ESR) and loss, cost control of fabrication, and so on, need further consideration.

The volatilization of Bi and Na and variable valence of Ti are easy to generate oxygen vacancy for BNT-based thin films resulting in a large leakage current. Single mental oxides (MnO₂ [101,102], Fe₂O₃ [103], etc.) are used to modify BNT films, which would form different defect complexes to compensate charge balance and suppress oxygen vacancy migration. For example, Mn-doped BNT thick films display a reduced leakage current due to the formation of Mn⁺⁺–V₆⁻ defect complex, which gives rise to a W_{rec} of 30.2 J/cm^3 for $x = 0.01$ composition [102]. In addition, controlling annealing temperature also has a similar effect on reducing leakage current [104]. In addition, Peng et al. [105] deposited La/Zr modified 0.94BNT–0.06BT high epitaxial quality thin films using PLD, and P_{max} can reach to 10² $\mu\text{C/cm}^2$ scale due to the complicated phase composition and great relaxor dispersion. (100) and (111) oriented (Bi₁₂/Na₁/2)₀.₉₁₈La₀.₀₂Ba₀.₀₅Z₂(Ti₀.₉₇Zr₀.₀₃)O₃ (BNLBTZ) thin films achieve maximum W_{rec} of 137 and 154 J/cm³, respectively, far exceeding other Pb-free even Pb-based systems.

Distinguished from single composition of MLCC, macrostructure modification of BNT-based films mainly focuses on gradient composition. It is widely accepted that BNT-based ceramic film is p-type conductivity due to many vacancies generating acceptor states in the band gap, and thus p–n junctions and block layers are applied to inhibit charge transportation. For instance, Guo et al. [106] reported the introduction of Bi₁₀.₅La₀.₇₅TiO₂ (BLT) and Pb(Zr₀.₄Ti₀.₆)O₃ (PZT) dielectric layer on pyroelectric and ferroelectric properties of 0.94BNT–0.06BT ceramic films, and observed leakage current reduce about 3 orders of magnitude. Besides, Chen et al. [106] studied the effect of interface number on energy storage properties of 0.94{(Bi₀.₅Na₀.₅)TiO₃–0.06BaTiO₃/BiFeO₃ (abbreviated as BNBT/nBFO) multilayer film capacitors under a given total thickness, BNBT/2BF thin films exhibit a W_{rec} of 31.96 J/cm^3 and a η of 61% at 2400 kV/cm owing to enhanced insulating characteristic and high polarization. With the rapid development of flexible wearable materials in recent years, related researches on their energy storage performances have gradually increased. Qian et al. [107] prepared a multilayer (Na₀.₅K₀.₅)₆.₅Bi₅.₅TiO₁₅/0.6(Na₀.₅K₀.₅)₆.₅Bi₅.₅TiO₁₅–0.₄8SrTiO₃ (NKBT/NKBT–ST)$_N$ ($N = 2, 3, 6, 8$) films on the F-Mica substrate, with measured W_{rec} of 73.7 J/cm^3 at 3077 kV/cm for $N = 6$. Under different conditions such as (–50)–200 °C, 10⁸ cycle numbers, 10⁴ bending tests, energy storage performances of (NKBT/NKBT–ST)$_6$ ceramic films both maintain good stability. Energy storage performances of BNT-based relaxor ferroelectric materials are summarized and listed in Table 3.

(2) BaTiO₃-based ceramics

BaTiO₃ (BT) with simple perovskite structure possesses moderate Curie temperature (T_C) of 120 °C and corresponding high ϵ_r of 10⁴ [109,110], and becomes a common dielectric material in passive capacitor. BT-based materials also received more attention in memory and memristor for information processing.
storage and transfer. In addition, the structure and physical property research of BT-based materials still attract more attentions [111–113]. However, pure BT ceramic has some problems such as high P, the reduction from Ti$^{4+}$ to Ti$^{3+}$ at high temperature, which restrict it to achieve high W_{rec} [114].

In 2009, Ogihara et al. [115] synthesized a temperature stable 0.7BaTiO$_3$–0.3BiScO$_3$ (0.7BT–0.3BS) relaxor ferroelectric ceramics with a thickness of 0.2 mm, and obtained W_{rec} of 2.3 J/cm3 at 225 kV/cm. When thickness reduces to 15 μm, W_{rec} enhances to 6.1 J/cm3 at 730 kV/cm. By comparison, Wu et al. [116] utilized BiScO$_3$ (BS) as shell material to coat BT, and W_{rec} only of 0.68 J/cm3 was measured at $E_b = 120$ kV/cm for BT@3 mol% BS ceramics. Yuan et al. [117] prepared Bi(Mg$_{1/2}$Zr$_{1/2}$)$_2$O$_3$ (BMZ) modified BT-based relaxor ferroelectric, and achieved a high $W_{\text{rec}} = 2.9$ J/cm3 for 0.85BT–0.15BMZ ceramics higher than pure BT ceramics (0.4 J/cm3), and corresponding P–E loop is illustrated in Fig. 10(a). The authors thought the enhancement of W_{rec} is related to PNRs, as evidenced by piezoelectric force microscope (PFM) and transmission electron microscope (TEM). It should be mentioned that other systems such as BaTiO$_3$–Bi(Mg,Ti)O$_3$ (BT–BMT) also display good energy storage capabilities due to the low tolerance factor of ceramic has some problems such as high P, which gets a good balance, BCZT-based ceramics would be a promising energy storage candidate.

“Core–shell” structure is a common way of modifying BT-based ceramics, especially in enhancing temperature stability for ceramic capacitor applications. In 2014, Su et al. [124] coated BT nanocrystals with 65PbO–20B$_2$O$_3$–15SiO$_2$ and 65Bi$_2$O$_3$–20B$_2$O$_3$–15SiO$_2$ glass phases, reducing sintering temperature to 900 °C. Meanwhile, the authors estimated W_{rec} approaching to 10 J/cm3 by equation for Bi-based glass phase. Similarly, high E_b materials such as SiO$_2$ [125] and SrTiO$_3$ (ST) [126] are both used as shell materials to improve breakdown behavior. For example, Wu et al. [126] fabricated BT@ST relaxor ferroelectric ceramics using the sol-precipitation approach, and EDS analysis illustrated BT@ST ceramics in Fig. 10(b). However, with a W_{rec} only of 0.22 J/cm3 at 47 kV/cm, η approaches to 90%. It should be pointed that high E_b materials usually possess low ε_r, and so W_{rec} of coated BT ceramics cannot be effectively enhanced at the sacrifice of ε_r. Bi-based materials such as BiScO$_3$ as shell material also suffer from the same problem of obtaining high W_{rec}. The reason needs to be further explored due to the complex composition gradient.

Table 3 Energy storage characteristics of BNT-based relaxor ferroelectric ceramic bulks and films

Composition	Category	t (μm)	W_{rec} (J/cm3)	η (%)	E_b (kV/cm)	Ref.		
0.89BNT–0.06BT–0.05KNN	Bulk	0.5	0.46	—	—	2000	56	[90]
1.1 mol% Mn doped 0.7(0.94NBT–0.06BT)–0.3ST	Bulk	—	1.06	—	—	95	[91]	
0.95(0.85BT–0.2ST)–0.05NN	Bulk	—	0.97	55	—	70	[93]	
0.94Bi$^{0.3}$BNT–0.06NN	Bulk	0.3–0.35 mm	1.25	76	—	3800	116	[96]
0.55BNT–0.45ST	Bulk	20 μm @ SL	9.5	92	—	2500	72	[15]
STL/(BNT–BLZT)	Bulk	0.2 mm	2.72	74	—	900	294	[98]
0.01 mol Mn doped BNT	Thick film	1200 nm	30.2	47.7	—	400	2310	[102]
(111)-oriented BNLBTZ	Thin film	350 nm	154	95	—	2000	3500	[105]
0.94BNT–0.06BT/2BF	Thin film	400 nm	31.96	61.61	—	500	2400	[106]
(NKBT/NKBT–ST)_{1–s}	Thin film	260 nm	73.7	68.1	—	600	3072	[107]

BNT: Bi$^{0.5}$Na$^{0.5}$TiO$_3$; BT: BaTiO$_3$; KNN: K$^{0.5}$Na$^{0.5}$NbO$_3$; ST: SrTiO$_3$; NN: NaNbO$_3$; BS: BiScO$_3$; BNT: (Ba$_{0.7}$Sr$_{0.3}$)$_{0.35}$(Bi$_{0.5}$Na$_{0.5}$)$_{0.65}$TiO$_3$; ST: Sr$_{0.7}$Bi$_{0.2}$TiO$_3$; BLZT: (Bi$_{0.91}$La$_{0.02}$)(Ti$_{0.97}$Zr$_{0.03}$)O$_3$; BS: Bi$^{0.5}$Mg$^{0.5}$Zr$_{0.25}$O$_3$ (BMZ); KNN–ST: (Na$_{1–s}$K$_{s}$)$_{0.5}$Bi$_{0.5}$TiO$_3$; STL: SrTiO$_3$+0.5 wt% Li$_2$CO$_3$; BNT–BLZT: (Bi$_{0.93}$Na$_{0.07}$)(Ti$_{0.98}$Zr$_{0.02}$)O$_3$; BNLBTZ: (Bi$_{0.91}$La$_{0.02}$)(Ti$_{0.97}$Zr$_{0.03}$)O$_3$; BF: BiFeO$_3$; NKBT: (Na$_{0.8}$K$_{0.2}$)$_{0.5}$Bi$_{0.5}$TiO$_3$. SL means single layer.
storage performances of BZT-based ceramic systems receive more attention. Instan et al. [130] prepared 400 nm <100>-oriented Ba(Zr_xTi_{1-x})O_3 (x = 0.3, 0.4, 0.5) relaxor ferroelectric thin films using PLD on La_{0.5}Sr_{0.5}MnO_3/MgO substrates. Importantly, W_{rec} of all ceramics can reach a scale of 10^2 around E_b \approx 3 MV/cm, and a maximum W_{rec} of 156 J/cm^3 is obtained at x = 0.3 composition. In 2017, Cheng et al. [127] reported the influence of thickness and substrate categories on domain/phase of Ba(Zr_{0.2}Ti_{0.8})O_3 thin films. With increasing thickness, mismatch stress gradually releases and rhombohedral phase content increases, as well as twined domain structure is formed, as shown in Fig. 10(c). A high W_{rec} of 166 J/cm^3 for Ba(Zr_{0.2}Ti_{0.8})O_3 thin films is achieved at E_b \approx 5.7 MV/cm. In addition, oxygen pressure is found to generate a positive effect on energy storage properties of BT-based thin films [131].

“Interface engineering”, including interface compatibility, periodic number, and space charge, plays a critical role in enhancing E_b and optimizing polarization behavior of BT-based ceramic films. In 2012, Ortega et al. [132] deposited BaTiO_3/Ba_{0.3}Sr_{0.7}TiO_3 superlattice thin films on MgO single substrate using PLD, and acquired a W_{rec} of 12.24 J/cm^3 measured by P–E loop. It should be noted that a theoretical value of W_{rec} = 46 J/cm^3 at E_b reach to 5.8–6 MV/cm. Sun et al. [133] studied energy storage properties of laminated Ba_{0.7}Ca_{0.3}TiO_3/BaZr_{0.2}Ti_{0.8}O_3 (BCT/BZT) thin films with two layers as a period and the number is 2, 4, 8. With increasing period, E_b enhances from 3 to 4.5 MV/cm, and a maximum W_{rec} is 52.4 J/cm^3 for N = 8. Meanwhile, a series of multilayer structures consisting of two materials or a stack of different dielectric layers, have become the most charming model systems since some unique properties can be enhanced. Due to the difference of electric properties in stacked dielectric material, some physical mechanisms such as current leakage mechanism and charge distribution in heterostructure interface, still need to be further investigated [134,135]. Energy storage performances of the BT based relaxor ferroelectric materials are summarized and listed in Table 4.

(3) BiFeO_3-based ceramics

BiFeO_3 (BF) as a multiferroic material with perovskite structure exhibits high T_C (~850 °C), high P_s (~100 μC/cm^2), and large S_{max} (~0.4 %), and gains extensive studies in different cross fields such as piezoelectric, magnetic, and quantum [136–139]. The volatile nature of Bi and multiple valence variation of Fe during sintering cause large dielectric loss and leakage current [140]. Nevertheless, BF relaxor ferroelectric is
Table 4 Energy storage properties of BT-based relaxor ferroelectric ceramic bulks and films

Composition	Category	t	Wrec (J/cm³)	η (%)	εr @ RT	Eb (kV/cm)	Ref.
0.7BT–0.3BS	Bulk	0.2 mm	2.3	—	—900	225	[115]
BT@3BS	Thick film	15 μm	6.1	—	750–800	730	[116]
0.85BT–0.15BMZ	Bulk	—	6.8	81	—1500	120	[117]
BT with BBS glass	Bulk	—	—10	—	—550	—1140	[124]
BT@ST	Bulk	—	0.22	—90	—2000	47	[126]
<100>-oriented Ba(Zr0.3Ti0.7)O3	Thin film	400 nm	156±1	72.8	—3400	3000	[130]
Ba(Zr0.2Ti0.8)O3	Thin film	350 nm	166	—90	—350	5700	[127]
Superlattice BT/BST	Thin film	0.6 μm	6.12	—12.24	—800	1660	[132]
(BCT/BZT)3–4	Thin film	100 nm	52.4	72.3	—175	4700	[133]

BT: BaTiO3; BS: BiScO3; BMZ: Bi(Mg1/2Zr1/2)O3; BBS: 65Bi2O3–20B2O3–15SiO2; ST: SrTiO3; BST: Ba0.3Sr0.7TiO3; BCT: Ba0.7Ca0.3TiO3; BZT: BaZr0.2Ti0.8O3.

still considered as a potential candidate for energy storage capacitors because of high Ps.

BiFeO3-xBaTiO3 (BF–xBT, 0 ≤ x ≤ 0.5) ceramics maintain high Tc, good ferroelectric and piezoelectric properties resulted from complicated phase structure evolution. With increasing x value, BF–xBT ceramics possess a high Pmax near MPB of BT ≈ 0.33 mol [141–143]. Energy storage properties of BF-based ceramics, therefore, basically are around BF–0.33BT system to reduce Pr. For example, Liu et al. [144] added Ba(Zn1/3Ta2/3)O3 (BZT) into BT–0.34BT relaxor ferroelectric ceramics obtaining a Wrec of 2.56 J/cm³ at 160 kV/cm. To enhance breakdown strength of BF-based ceramics, Qi et al. [145] introduced NaNbO3 (NN) combined with 0.1 wt% MnO2 and 2 wt% BaCu(B2O5) (BCB) as sintering aids to modify 0.67BF–0.33BT relaxor ferroelectric ceramics, and corresponding Weibull distribution of Eb is given in Fig. 11(a). At 360 kV/cm, x = 0.1 sample possesses a maximum Wrec of 8.12 J/cm³ accompanied to η of 90%, which is related to the existence of nanodomain and high density. In addition, Wang et al. [146] reported that Wrec of 0.62BF–0.3BT–0.08Nd(Zr0.5Zn0.5)O3 ceramic bulks is 2.45 J/cm³ at 240 kV/cm. When an MLCC device based on this system is made, Wrec is enhanced to 10.5 J/cm³.

Similar to BF–xBT systems, ST modified BF-based energy storage ceramics are mainly concentrated on films due to thickness limitation. In 2013, Correia et al. [147] prepared 0.4BF–0.6ST thin films using PLD, obtained a high Wrec of 18.6 J/cm³ at 972 kV/cm. Recently, Pan et al. [148] reported (0.55–x)BF–xBT–0.45ST (x = 0–0.4) thin films with polymorphic nanodomain structure are grown on Nb-doped SrTiO3 single crystal substrate. Under an electric field of 4.9 MV/cm, x = 0.3 composition achieves a maximum

![Fig. 11](https://example.com/f11.png)

Fig. 11 (a) Weibull distribution and calculated Eb values of (0.67–x)BF–0.33BT–xNN ceramics. Reproduced with permission from Ref. [145], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2019. (b) P–E loops from two film capacitor structures before and after the introduction of an alumina layer at the electrode–0.6BF–0.4ST interface. Reproduced with permission from Ref. [150], © AIP Publishing 2012.
due to MPB located at KNbO3 content of 47.5% [154].

KNN materials concentrate on piezoelectric properties since the 1950s at latest century, the researches of with high of "soft layer" with high polarization and "hard layer" possesses a moderate 420 KNbO3 ferroelectric and NaNbO3 antiferroelectric, and insulating layer enhances energy storage performances of the by sol–gel methods, and achieved a high P–E loops, before and after inserting Al2O3 layer were illustrated in Fig. 11(b). Interface polarization behavior to some degree increases hysteresis loss while Al2O3 insulating layer enhances E_b, and thus W_{rec} enhances from 13 to 17 J/cm3. Since then, a sandwich structure of "soft layer" with high polarization and "hard layer" with high E_b are constructed to prevent "electric tree" growth and achieve high W_{rec} [151]. It is particularly important that strong interface coupling factors should be considered in designing structure and analyzing properties [152]. Energy storage performances of the BF-based relaxor ferroelectric materials are summarized and listed in Table 5.

(4) $K_0.5Na_{0.5}NbO_3$-based ceramics

$K_0.5Na_{0.5}NbO_3$ (KNN) is a binary solid solution of KNbO3 ferroelectric and NaNbO3 antiferroelectric, and possesses a moderate d_{33} around 80 pC/N, high T_c of 420 °C, and complicated phase structure [153,154]. Since the 1950s at latest century, the researches of KNN materials concentrate on piezoelectric properties due to MPB located at KNbO3 content of 47.5% [154]. The ratio of K/Na has a slight variation while mainly concentrated on 0.5/0.5. However, narrow sintering temperature range, easy volatilization characteristic of K, Na at high temperature both hinder its applications.

In 2016, Du et al. studied KNN-based energy storage ceramics, and achieved a high W_{rec} of about 4 J/cm3 for SrTiO3 (ST) [155] and Bi(Mn$_{0.005}$Nb$_{0.995}$)O$_3$ (BMN) [156] modified KNN ceramics. And they further used CuO [157], ZnO [158], etc., as fruit to improve sintering behavior of KNN-based ceramics. It should be noted that modified KNN-based energy storage ceramics with superfine grain size possess not only high E_b but also good transparency. In addition, utilize “phase boundary engineering” of KNN ceramics to enhance electric properties is a useful method. Recently, Yang et al. [159] proposed “morphotropic relaxor boundary (MRB)” in BT modified KNN ceramics to illustrate an obvious enhancement of electrostrain and dielectric permittivity. At the MRB the electrostrain increases by ~3 times and the permittivity increases by ~1.5 times over a wide temperature range of more than 100 K, as compared with off-MRB compositions. In comparison, the studies of KNN-based ceramic films for energy storage are relatively less, which should be related to insolubility of Nb and volatilization of K and Na. In 2017, Won et al. [160] reported 6 mol% BiFeO3-doped ($K_{0.5}Na_{0.5})(Mn_{0.005}Nd_{0.95})O_3$ (KNMN) thick film possessed a slim P–E loop, and achieved a W_{rec} of 20 J/cm3, η of 90.3%. Recently, Huang et al. [161] also used MnO$_2$ to reduce leakage current of 0.95($K_{0.6}Na_{0.4}Li_{0.1})Nb_{0.8}Ta_{0.2})O_3$–0.05CaZrO$_3$–x mol% Mn (KNN–LT–CZ5–x mol% Mn) thin films prepared by sol–gel methods, and achieved a high $W_{rec} = 64.6 J/cm^3$ under an electric field of 3080 kV/cm at $x = 0.5$ composition. Energy storage properties of KNN-based relaxor ferroelectric ceramics and films are summarized and listed in Table 6.

In summary, for relaxor ferroelectric ceramics, the formation of PNRs due to disturbed long-range ferroelectric order or nonergodic–ergodic phase transition can strengthen relaxor characteristics. Reflecting on macroscopic ferroelectric properties, $P–E$ loop goes

Composition	Category	t (mm)	W_{rec} (J/cm3)	η (%)	ϵ_r @ RT	E_b (kV/cm)	Ref.
0.6BF–0.34BT–0.06BZT	Bulk	0.2	2.56	70	—	160	[144]
0.57BF–0.33BT–0.11NN	Bulk	0.15	8.12	90	—	360	[145]
0.62BF–0.3BT–0.08NZZ	Bulk	16 μm @ SL	10.5	87	—	700	[146]
0.4BF–0.6ST	Thin film	400 nm	18.6	>85	—	972	[147]
0.25BF–0.3BT–0.4ST	Thin film	450–500 nm	112	80	—	4900	[148]
Dead layer engineered 0.6BF–0.4ST	Thin film	400 nm	17	—	—	—	[150]

BF: BiFeO3; BT: BaTiO3; BZT: Ba(Zn$_{0.5}$Ta$_{0.5}$)O$_3$; NN: NaNbO3; NZZ: Nd(Zn$_{0.5}$Zr$_{0.5}$)O$_3$; ST: SrTiO3. SL means single layer.
performances. are all important factors to influence energy storage etc., gradient sequence, template or new inert layers such as lattice constant, thermal expansion coefficient, of ceramic films, match degree of physical paraments optimize polarization behavior. In the heterostructure other one, strengthen its relaxor characteristics and of vacancy defect to reduce leakage current; for the other roles: For one, suppress the generation and transportation of vacancy defect to reduce leakage current; for the other one, strengthen its relaxor characteristics and optimize polarization behavior. In the heterostructure of ceramic films, match degree of physical paraments such as lattice constant, thermal expansion coefficient, etc., gradient sequence, template or new inert layers are all important factors to influence energy storage performances.

3.3 Antiferroelectric ceramics

As a special group of ferroelectric material, antiferroelectric has many similarities with ferroelectric whereas still exists obvious differences. In 1951, Kittel [162] originally proposed the concept of antiferroelectric, predicted the existence, and gave some basic characteristics. Generally speaking, antiferroelectric materials possess P_t in a unit cell, but the direction of P_t is antiparallel to that of neighboring unit cell. Antiferroelectric, therefore, does not exhibit polarization in macroscopic characteristics. It is particularly important that antiferroelectric exists a unique feature: double hysteresis loop under an external field. P is linearly proportional to E at a low electric field. When E exceeds the forward switching (AFE-to-FE) field E_{A-F}, antiferroelectric displays an obvious ferroelectric behavior, and P fastly increases and gradually reaches P_{max}. Note that antiferroelectric can undergo a ferroelectric–antiferroelectric phase transition field (E_{F-A}) after removing E. Consequently, P gradually reduces and returns to the initial state (that is, $E = 0$, $P_t = 0$). A similar variation in P can be observed as E continuously increases in an opposite direction.

It is hard to see a double hysteresis loop for most pure antiferroelectric materials at a low electric field, which usually requires special conditions of high temperature and strong electric field to stimulate. Thereby, it is a crucial challenge for antiferroelectric to obtain double $P-E$ loop especially for ceramic bulks. In addition, a typical high squareness $P-E$ loop, and corresponding internal strain induced by antiferroelectric–ferroelectric phase transition both result in low W_{rec} and reduced device life [12]. In this regard, how to stabilize and relax the antiferroelectric phase (corresponding to enhancing E_{A-F}, reducing the difference of $E_{A-F-E_{F-A}}$) and enhance E_h has become a particularly important issue to acquire good energy storage performances.

3.3.1 Pb-based antiferroelectric ceramics

(1) PbZrO$_3$

PbZrO$_3$ (PZ) is the prototype antiferroelectric, and serves as a model system to be thoroughly studied so far. The origin of the phase transition mechanism, however, is not well understood [163]. Despite this, a characteristic double $P-E$ loop with high P_{max} and low P_t makes it suitable for energy storage capacitors. PZ-based energy storage ceramics gain increasing attention since Chen et al. [164] reported W_{rec} of 7.1 J/cm3 for PZ thin films during phase transition, but basically around ceramic films.

It is widely accepted that tolerance factor t of perovskite structure is closely related to phase stability, and the equation is represented as

$$t = \frac{r_A + r_O}{\sqrt{2} (r_B + r_O)} \quad (10)$$

where r_A, r_B, r_O denote ion radius of A, B, and O, respectively. In general, AFE phase can be stabilized for $t < 1$, and reducing t can enhance in some degree the stability of AFE phase. For example, Hao et al. [165] substituted Pb$^{2+}$ (1.20 Å) with smaller Sr$^{2+}$ (1.12 Å) to reduce t, and $P-E$ loop goes slim together with increased E_{A-F} and decreased ΔE. As a consequence, (Pb$_{0.95}$Sr$_{0.05}$)ZrO$_3$ (PSZ5) thin films obtain a W_{rec} of
Choosing smaller ion radius while aliovalent of La$^{3+}$ as donor dopant has a similar effect [166]. In addition, controlling the orientation of PZ thin film also achieves the purpose of stabilizing the antiferroelectric phase. PZ thin film with (100) orientation needs a higher electric field than with (111) one to finish antiferroelectric–ferroelectric phase transition [167].

Tailoring local electric field and stress to enhance W_{rec} is hard but interesting work. As is well known, introducing a new nanoparticle in materials often brings novel properties and improved properties. For example, Sa et al. [169] used α-Fe$_2$O$_3$ nanoparticles to modify PZ thin films, obtained a W_{rec} of 17.4 J/cm3 and P_{max} as high as 78 μC/cm2, attributing to the local field effect. By comparison, Chen et al. [170] fabricated a self-assembled PZ: NiO nano-columnar composite using PLD, and proposed that tensile stress mainly comes from the interface of two phases. At $E_b = \approx 1000$ kV/cm, 5 vol% NiO thin films possess a high P_{max} of ≈ 91 μC/cm2, and W_{rec} of 24.6 J/cm3. Meanwhile, Ge et al. [171,172] also did a series of works on optimizing polarization behavior mainly such as enhancing P_{max}, reducing $\Delta E_{A–F–E}$ using the stress engineering method. To our best knowledge, it is difficult to directly measure and characterize local electric field and stress, and thus corresponding methods need to be developed. Furthermore, the gradient sequence of thin film is significant for enhancing W_{rec}. Ye et al. [168] reported a W_{rec} of 16.3 J/cm3 for down-graded higher than that of 9.7 J/cm3 for up-graded PZ-based thin films, and corresponding $P–E$ loops are shown in Fig. 12.

It should be mentioned that PbHfO$_3$ (PHO) antiferroelectric ceramics have some similarity with PZO, and thus the related studies still concentrate on phase structure [173–175]. Nevertheless, the energy storage properties of PHO-based ceramics have rarely been reported. In 2020, Chao et al. [176] prepared Pb$_{0.98}$La$_{0.02}$(Hf$_{0.58}$Sn$_{0.35}$Ti$_{0.07}$)O$_3$ antiferroelectric ceramics, and achieved a good energy storage performance: W_{rec} and η are of 7.63 J/cm3 and 94% for $x = 0.45$ composition, respectively. Recently, Huang et al. [177] reported pure PHO ceramic films by sol–gel method at 650 °C annealing temperature, and achieved a W_{rec} of 24.9 J/cm3.

(2) (Pb, La)(Zr, Sn, Ti)O$_3$

As discussed in Section 3.2.1, Pb(Zr$_{1–x}$Ti$_x$)O$_3$ (PZT, $x \approx 0.05$) solid solutions located at rich Zr regions of ferroelectric–antiferroelectric (FE–AFE) phase boundary, exhibit rich phase structures and well electrical properties [61,62]. It is worth noting that PZT systems at FE–AFE phase boundary differ from MPB in electric properties. For instance, FE and AFE cannot be transformed into each other under force or electric field, while temperature, stress, or other factors induced by FE–AFE phase transition can occur. Meanwhile, the region of the antiferroelectric phase for PZT 95/5 is relatively narrow, and a slight composition fluctuation would easily cause deviation from FE–AFE phase boundary.

La$^{3+}$ and Sn$^{4+}$ are very popular A/B site dopants in PZT 95/5 ceramics where their functions are similar [178–182]. La$^{3+}$, as a donor dopant, substitutes Pb$^{2+}$ to disturb long-range ordering of domain by vacancy defect, which would strengthen the relaxor characteristic and expand the stabilized region of the antiferroelectric phase. Sn$^{4+}$ as an equal valence dopant of Ti$^{4+}$ functions not only expands the stabilized region of antiferroelectric, but also adjusts Zr/Ti ratio to enable Ti up to 10 mol%. Currently, the related works of stabilizing the Pb-based antiferroelectric phase mainly focus on adjusting suitable Zr/Sn/Ti ratio [183–185]. Liu et al. [186] found that $E_{A–F}$ linearly increased and the squareness of $P–E$ loop slightly improved when Ti content reduces from 0.11 to 0.07 mol at a fixed Zr of 0.58 mol. W_{rec} enhances, thereby, from 0.28 to 2.35 J/cm3 for Pb$_{0.97}$La$_{0.02}$(Zr$_{0.58}$Sn$_{0.35}$Ti$_{0.07}$)O$_3$ antiferroelectric ceramic bulks. In addition, it should be particularly noted that a high W_{rec} is difficult to obtain when $E_{A–F}$ exceeds E_b.

In improving the breakdown behavior of Pb-based antiferroelectric ceramic bulks, Zhang et al. [187–189]
did a series of works using some special sintering technology. For instance, Zhang et al. [188] reported that
\((\text{Pb}_{0.87}\text{Ba}_{0.1}\text{La}_{0.02})(\text{Zr}_{0.68}\text{Sn}_{0.24}\text{Ti}_{0.08})\text{O}_3\) (PBLZST) ceramics using hot-press (HP) possessed a high \(W_{\text{rec}}\) of 3.2 J/cm\(^3\) at \(E_b = 180\) kV/cm due to smaller grain size and well insulation. Considering that special sintering technology requires expensive equipment, this method is not suitable for large-scale production. Some low-cost and convenient solutions are proposed, such as Bian et al. [190] used amorphous SiO\(_2\) to coat \(\text{Pb}_{0.97}\text{La}_{0.02}(\text{Zr}_{0.33}\text{Sn}_{0.55}\text{Ti}_{0.12})\text{O}_3\) (PLZST), and measured a high \(W_{\text{rec}}\) of 2.68 J/cm\(^3\) due to \(E_b\) enhancing from 12.2 to 23.8 kV/mm. It should be noticed that the introduction of non-antiferroelectric phase will reduce the content of the original antiferroelectric phase, even that \(E_{\text{A–F}}\) would disappear.

In a physical method, Wang et al. [191] used a rolling process to enhance the mechanical strength of \((\text{Pb}_{0.98}\text{La}_{0.02})(\text{Zr}_{0.55}\text{Sn}_{0.45})_{0.995}\text{O}_3\) (PLZS) antiferroelectric ceramics. At 400 kV/cm, PLZS ceramics obtain a high \(W_{\text{rec}}\) of 10.4 J/cm\(^3\) and a \(\eta\) of 87%. Similarly, Zhang et al. [192] and Liu et al. [193] both utilized tape-casting method to fabricate antiferroelectric thick film. For example, Liu et al. [193] utilized tape-casting method to fabricate \((\text{Pb}_{0.98-x}\text{La}_{0.02}\text{Sr}_x)(\text{Zr}_{0.9}\text{Sn}_{0.1})_{0.995}\text{O}_3\) (PLSZS) antiferroelectric thick films, and achieved \(W_{\text{rec}}\) and \(\eta\) of 11.18 J/cm\(^3\) and 82.2% for \(x = 0.04\), respectively.

Due to the phase structure complexity of PZT-based ceramics near FE–AFE boundary, it usually displays different polarization behavior especially for ceramic films. Gao et al. [194] reported different oriented \((\text{Pb}_{0.98}\text{La}_{0.02})(\text{Zr}_{0.95}\text{Ti}_{0.05})\text{O}_3\) (PLZT) thin films using PLD, obtained a \(W_{\text{rec}}\) of ~40 J/cm\(^3\) while \(\eta\) only of ~50% for (111) PLZT, which may be related to ferroelectric-like behavior (i.e., high \(P_r\)) under high electric field. Despite this condition, the combination of relaxor ferroelectric and antiferroelectric still receives more attention to enhance \(W_{\text{rec}}\). In addition, note that antiferroelectric behavior can be observed at different formulas such as PLZT at Zr/Ti \(\approx 52:48\) [196] or PLZST at Zr/(Sn+Ti) \(\approx 65:55\) [197]. With the development of micro-electric devices, flexible substrate such as Ti, Si, Ni foils, etc., is required to meet future application scenes. Ma et al. [195,198] did a series of meaningful works in the low-cost integration development of PLZT-based thin films. For instance, \(\text{Pb}_{0.92}\text{La}_{0.08}\text{Zr}_{0.95}\text{Ti}_{0.05}\) (PLZT 8/95/5) antiferroelectric ceramic films possess a high \(W_{\text{rec}}\) of 53 J/cm\(^3\) at mental foil by CSD, and effective work time would maintain 5000 h at room temperature [195]. Energy storage properties of Pb-based antiferroelectric ceramics and films are summarized and listed in Table 7.

3.3.2 Lead-free antiferroelectric ceramics

(1) NaNbO\(_3\)

NaNbO\(_3\) (NN) is a well-documented nonpolar antiferroelectric phase and possesses a complicated crystal structure due to the rotation of oxygen octahedron

Composition	Category	\(t\) (nm)	\(W_{\text{rec}}\) (J/cm\(^3\))	\(\eta\) (%)	\(c_r\) @ RT	\(E_b\) (kV/cm)	Ref.
PZ Thin film	300–600	7.1	—	120–200	[164]		
PSZ5 Thin film	500	14.5	78	—	150	900	[165]
α-Fe\(_2\)O\(_3\) modified PZ Thin film	660	17.4	—	600	[169]		
PZ:NiO Thin film	140–170	24.6	58	—	600	1000	[170]
Up-graded Eu-doped PZ Thin film	400	16.3	67.4	—	300	1000	[168]
PLHS Bulk	0.11 mm	7.63	94	—	280	380	[176]
PHO Thin film	330	24.9	73	—	2957	[177]	
PLZST 2/58/35/7 Bulk	0.5 mm	2.35	86.1	—	450	120	[186]
PBLZST Bulk	0.6 mm	3.2	—	—	180	[188]	
PLZST 2/33/55/12 @5 mol\% SiO\(_2\) Bulk	0.2 mm	2.68	—	—	800	238	[190]
PLZS Bulk	0.11 mm	10.4	87	—	180	400	[191]
PLSZS Thick film	0.1 mm	11.18	82.2	—	200	400	[193]
PLZT 2/95/5 Thin film	300	40	53	—	1000	[194]	
PLZT 8/95/5 Thick film	1 μm	53	—	—	560	3500	[195]

Table 7: Energy storage properties of Pb-based antiferroelectric ceramic bulks and films

Note: PZ: PbZrO\(_3\); PSZ5: (Pb\(_{0.95}\text{Sr}_{0.05})\text{ZrO}_3\); PLHS: Pb\(_{0.98}\text{La}_{0.02}(\text{Hf}_{0.45}\text{Sn}_{0.55})_{0.995}\text{O}_3\); PHO: PbHfO\(_3\); PLZST: Pb\(_{0.98}\text{La}_{0.02}Zr\text{O}_3; PBLZST: (Pb\(_{0.98}\text{La}_{0.02})(\text{Zr}_{0.95}\text{Ti}_{0.05})\text{O}_3; PLZST 2/33/55/12: Pb\(_{0.98}\text{La}_{0.02}(Zr_{0.33}Sn_{0.55}Ti_{0.12})\text{O}_3; PLZST 2/95/5: Pb\(_{0.98}\text{La}_{0.02}Zr_{0.95}Ti_{0.05})\text{O}_3; PLZST 8/95/5: Pb\(_{0.98}Zr_{0.95}Ti_{0.05})O_3.

www.springer.com/journal/40145
and off-centered displacement of Nb$^{5+}$ [199,200]. In addition to temperature-induced transition, antiferroelectric–ferroelectric phase transition can also be induced by mechanical stress [201], grain size [202], and electric field [203]. Note that an electric field-induced antiferroelectric–ferroelectric phase transition is usually irreversible at room temperature because of the small free energy difference between antiferroelectric and ferroelectric.

Generally, reducing tolerance factor t is still a widely accepted method to stabilize antiferroelectric phase of NN ceramics. For instance, Shimizu et al. [204] used CaZrO$_3$ (CZ), with similar electronegativity but smaller tolerance factor t, to modify NN ceramics. As the content of CZ increases, an obvious double P–E loop accompanying to E_{A-F} gradually increases while P_{max} decreases, as shown in Fig. 13. Since then, other compounds such as SrZrO$_3$ (SZ) [205, CaHfO$_3$ (CH) [206], BiScO$_3$ (BS) [207], are both utilized to stabilize antiferroelectric phase, but few reports their energy storage performances. It should be pointed that double P–E loop of NN-based ceramics still has more hysteresis loop at room temperature resulting in low W_{rec}. Moreover, Zhou et al. [208] firstly reported Bi$_2$O$_3$ modified NN energy storage ceramic bulks, obtained a high W_{rec} of 4.03 J/cm3 for Na$_{0.7}$Bi$_{0.1}$NbO$_3$ ceramics at $E_b = 250$ kV/cm attributed to the disrupted random electric field and reduced domain size. Energy storage properties of Na$_{0.7}$Bi$_{0.1}$NbO$_3$ system show good temperature stability (20–100 °C), fatigue endurance (105 cycles), and charge–discharge properties. After that, more Bi-based compounds including Bi(Mg$_{1/3}$Nb$_{2/3}$)O$_3$ (BMN) [209], Bi(Ni$_{1/2}$Sn$_{1/2}$)O$_3$ (BNS) [210], and so on, are used to improve the relaxor characteristics and acquire high W_{rec}. It is particularly important that P–E loop of BiMeO$_3$ modified system becomes slimmer than pure NN ceramic, but characteristic double hysteresis loop fails to be observed.

A double P–E hysteresis loop can be observed in high quality NN single crystal and ceramic film compared with ceramic bulk. However, a few studies reported energy storage properties of NN-based ceramic films, and concentrated on piezoelectric, dielectric tunability. In 2018, Fujii et al. [211] deposited 0.92NaNbO$_3$–0.08SrZrO$_3$ (0.92NN–0.08SZ) antiferroelectric thin films on SrRuO$_3$ buffered ST substrates with different orientations by using PLD. 0.92NN–0.08SZ thin films with (110) oriented substrate exhibit antiferroelectric behavior, while that with (001) oriented substrate is still ferroelectric. Recently, Beppu et al. [212] obtained W_{rec} only of 2.9 J/cm3 for 0.92NN–0.08SZ thin films at $E_b = 400$ kV/cm. In addition, Luo et al. [213] fabricated Mn-doped 0.96NaNbO$_3$–0.04CaZrO$_3$ (0.96NN–0.04CZ) thin films using sol–gel method, and leakage current of 1 mol% Mn reduces the magnitude of 103–104 compared to pure compositions. W_{rec} and η of 1 mol% Mn thin films are19.64 J/cm3 and 64.5%, respectively. Nevertheless, simple composition and no toxic metal elements make it have broad prospects for energy storage research in the future.

(2) AgNbO$_3$

AgNbO$_3$ (AN) has a complicated phase structure and relatively low bandgap (~2.8 eV), and still has difficulty in observing double hysteresis loop at room temperature. Early studies of AN ceramics therefore concentrated on microwave communication and photocatalysis [214,215]. In addition, Ag$_2$O decomposition

Fig. 13 (a) Tolerance factor versus averaged electronegativity difference for (Na$_{1-x}$A$_{2x}$)($\text{Bi}_{1-x}$$\text{Nb}_{x}$)O$_3$ composition, where (A,B) = (Ca,Zr), (Ca,Hf), (Sr,Zr), and (Sr,Hf); (b) P–E loops in the CZNN ceramics at 120 °C. Reproduced with permission from Ref. [204], © Royal Society of Chemistry 2015.
at a high temperature requires the fabrication of AN-based ceramics at the oxygen-rich environment. Similar to NN, AN-based ceramic bulk is a main research direction for energy storage capacitors.

In 2007, Fu et al. [216] successfully fabricated AN ceramics with a double hysteresis loop, and P_{max} can up to 52 μC/cm2 at 220 kV/cm exceeding other dielectric materials at the same electric field. The phenomenon strongly stimulates the studies of AN ceramics on energy storage applications. Tian et al. [217] synthesized pure AN antiferroelectric ceramic bulks, found two polarization structures by TEM and variable temperature P–I–E loops, and attained a high W_{rec} of 2.1 J/cm3. In general, AN ceramics experience a series phase transition [218]:

$$M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow O_1 \rightarrow O_2 \rightarrow T \rightarrow C$$

where M_1, M_2, and M_3 denote orthorhombic phases in rhombic orientation, O_1 and O_2 are the orthorhombic phases in a parallel orientation, while T and C denote the tetragonal and cubic phases, respectively. It is known that the stability of antiferroelectric phase of AN ceramic is closely related to phase transition among M_1, M_2, and M_3. Therefore, reducing phase transition temperature among M_1, M_2, and M_3 to low temperature would enhance W_{rec} of AN-based ceramics [218–221].

Chemical doping is a simple and effective method to enhance E_b due to an inverse relationship between E_b and grain size. Recently, Wang et al. [228] synthesized AN ceramics using hydrothermal process, and obtained a maximum $E_b = 250$ kV/cm among pure AN ceramics so far. However, P_{max} has an obvious decrease compared with other AN ceramics using solid-state method, and thus W_{rec} and η are only of 1.8 J/cm3 and 40%, respectively. It is noteworthy that little attention has been shared on enhancing E_b of AN ceramics by other different methods apart from ion-doping. Energy storage behaviors of NN and AN antiferroelectric ceramic bulks and films are summarized and listed in Table 8.

In summary, for antiferroelectric ceramics, tolerance factor t, electronegative difference, and polarizability are all influencing the stability of antiferroelectric phase. Note that the characteristic double P–E loop of pure antiferroelectric phase is difficult to be observed, which needs to further explore the related reasons. Physical (special sintering technology, rolling process, etc.) and chemical (coating, hydrothermal process, etc.) methods can enhance E_b by improving sintering behavior or mechanical strength.

![Fig. 14](https://example.com/fig14.png)

Fig. 14 (a) P–E loops of AgNbO$_3$ and Ag(Nb$_{0.85}$Ta$_{0.15}$)O$_3$ ceramic; (b) energy storage performances of Ag(Nb$_{1-x}$Ta$_x$)O$_3$ ceramics prior to their breakdown. Reproduced with permission from Ref. [218], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2017.
Table 8 Energy storage properties of NN and AN-based antiferroelectric ceramic bulks and films

Composition	Category	t (μm)	W_{rec} (J/cm³)	η (%)	ε_r @ RT	E_b (kV/cm)	Ref.
Na$_{0.7}$Bi$_{0.1}$NbO$_3$ Bulk	0.2 mm	3.44	85.4	-1700	351	[208]	
0.92NN–0.08SZ Thick film	1 μm	2.9	67	211	400	[212]	
1 mol% Mn-doped 0.96NN–0.04CZ Thin film	300 nm	19.64	64.5	-2200	833.3	[213]	
AN Bulk	0.5 mm	2.1	—	-300	175	[217]	
ANT15 Bulk	200 μm	4.2	69	-200	233	[218]	
AN	150 μm	-1.8	-40	-80	250	[228]	

NN: NaNbO$_3$; SZ: SrZrO$_3$; CZ: CaZrO$_3$; AN: AgNbO$_3$; ANT15: Ag(Nb$_{0.85}$Ta$_{0.15}$)O$_3$.

4 Conclusions and perspectives

From the perspectives of composition modification, structural design, and electrical performance optimization, this paper briefly compares the research progress of energy storage ceramic bulks and films. Currently, W_{rec} of ceramic bulks is generally less than 10 J/cm³, while that of films can reach 102 J/cm³. Except for ceramic composition, W_{rec} is also closely related to other factors such as sample thickness, preparation, and testing methods. Although giant ε_r linear dielectric attracts more attention, it may be not suitable for energy storage capacitors. In contrast, relaxor ferroelectric and antiferroelectric with high P_{max} and low P_r are easier to obtain high W_{rec} than linear dielectric, so they are relatively ideal energy storage dielectric materials. Whether for bulks or films, E_b is a decisive factor for affecting the upper limit of W_{rec}. In addition, the development from material to device still has a large gap, and thus needs to make more efforts to solve this problem. Judging from the existing researches, the authors believe that the following aspects need further exploration and improvement:

1) It is still a long process to select the ideal energy storage ceramics through a single experiment. If relevant predictions and screenings can be combined with theoretical calculations or machine learning methods, work efficiency will be greatly improved.

2) In order to better understand the variation in domain and phase structures as functions of the electric field, thermal, force, magnetic, etc., external fields, in-situ observation technique would be an important direction, which would help us to comprehensively understand the microscopic evolution mechanism of polarization.

3) For materials with crystalline/amorphous phase and multilayer structure, the issues of generation reason and corresponding mechanisms of interface behaviors (such as interface polarization, fatigue, etc.) and stress still need to be deeply investigated.

4) Considering many factors to influence W_{rec} and η, it is important to standardize the test parameters such as sample thickness, area of electrode, testing frequency, and AC/DC conditions, and establish the relevant test standard for performance evaluation of energy storage materials.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51767010).

References

[1] Yang LT, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019, 102: 72–108.

[2] Yao ZH, Song Z, Hao H, et al. Homogeneous/ inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 2017, 29: 1601727.

[3] Li Q, Han K, Gadinski MR, et al. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 2014, 26: 6244–6249.

[4] Wang Y, Song Y, Xia Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem Soc Rev 2016, 45: 5925–5950.

[5] Bruce PG, Freunberger SA, Hardwick LJ, et al. Li–O$_2$ and Li–S batteries with high energy storage. Nat Mater 2012, 11: 19–29.

[6] Shao Z, Haile SM. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 2004, 431: 170–173.

[7] Palmeedi H, Peddigari M, Hwang GT, et al. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater 2018, 28: 1803665.

[8] Hao X. A review on the dielectric materials for high energy-storage application. J Adv Dielect 2013, 3: 1330001.
[9] Yao FZ, Yuan Q, Wang Q, et al. Multiscale structural engineering of dielectric ceramics for energy storage applications: From bulk to thin films. Nanoscale 2020, 12: 17165–17184.

[10] Tong S. Size and temperature effects on dielectric breakdown of ferroelectric films. J Adv Ceram 2021, 10: 181–186.

[11] Zhao P, Wang H, Wu L, et al. High-performance relaxor ferroelectric materials for energy storage applications. Adv Energy Mater 2019, 9: 1803048.

[12] Chen X, Zhang H, Cao F, et al. Charge–discharge properties of lead zirconate stannate titanate ceramics. J Adv Ceram 2014, 11: 1716–1718.

[13] Yao FZ, Yuan Q, Wang Q, et al. Properties of thermally treated TiO2. Energy Mater 2020, 8: 174125.

[14] Huang Y, Li F, Hao H, et al. (Bi0.84Na0.16)TiO3 based lead free ceramics with high energy density and efficiency. J Materiomics 2019, 8: 385–393.

[15] Li J, Li F, Xu Z, et al. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv Mater 2018, 30: 1802155.

[16] Lou XJ. Polarization fatigue in ferroelectric thin films and related materials. J Appl Phys 2009, 105: 024101.

[17] Ye Y, Zhang SC, Dogan F, et al. Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics. In: Proceedings of the 14th IEEE International Pulsed Power Conference, 2003: 719–722.

[18] Dervos CT, Thirios, Novacovich J, et al. Permittivity properties of thermally treated TiO2. Mater Lett 2004, 58: 1502–1507.

[19] Reddy CV, Reddy KR, Shetti NP, et al. Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting—A review. Int J Hydrog Energy 2020, 45: 18331–18347.

[20] Mehta A, Mishra A, Basu S, et al. Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production—A review. J Environ Manag 2019, 250: 109486.

[21] Parker R, Wasilik J. Dielectric constant and dielectric loss of TiO2 (rutile) at low frequencies. Phys Rev 1960, 120: 1631–1637.

[22] Guo D, Ito A, Goto T, et al. Preparation of rutile TiO2 thin films by laser chemical vapor deposition method. J Adv Ceram 2013, 2: 162–166.

[23] Hu W, Liu Y, Withers RL, et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat Mater 2013, 12: 821–826.

[24] Li J, Li F, Li C, et al. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics. Sci Rep 2015, 5: 8295.

[25] Li J, Li F, Zhuang Y, et al. Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics. J Appl Phys 2014, 116: 074105.

[26] Dong W, Hu W, Berlie A, et al. Colossal dielectric behavior of Ga+Nb co-doped rutile TiO2. ACS Appl Mater Interfaces 2015, 7: 25321–25325.

[27] Nachai童 T, Kikdunthod P, Thongbai P, et al. Surface barrier layer effect in (In + Nb) co-doped TiO2 ceramics: An alternative route to design low dielectric loss. J Am Ceram Soc 2017, 100: 1452–1459.

[28] Petzelt J, Nuzhnyy D, Bovtun V, et al. Origin of the colossal permittivity of (Nb + In) co-doped rutile ceramics by wide-range dielectric spectroscopy. Phase Transitions 2018, 91: 932–941.

[29] Chao S, Petrovsky V, Dogan F. Effects of sintering temperature on the microstructure and dielectric properties of titanium dioxide ceramics. J Mater Sci 2010, 45: 6685–6693.

[30] Liu J, Zhang J, Wei M, et al. Dielectric properties of manganese-doped TiO2 with different alkali-free glass contents for energy storage application. J Mater Sci: Mater Electron 2016, 27: 7680–7684.

[31] Chao S, Dogan F. Processing and dielectric properties of TiO2 thick films for high-energy density capacitor applications. Int J Appl Ceram Technol 2011, 8: 1363–1373.

[32] Pai YY, Tylan-Tyler A, Irvin P, et al. Physics of SrTiO3-based heterostructures and nanostructures: A review. Rep Prog Phys 2018, 81: 036503.

[33] Kumar Yadav A, Gautam CR. A review on crystallisation related materials. J Adv Ceram 2021, 10: 105: 385–393.

[34] Hu QG, Shen ZY, Li YM, et al. Enhanced energy storage properties of dysprosium doped strontium titanate ceramics. Ceram Int 2014, 40: 2529–2534.

[35] Kong X, Yang L, Cheng Z, et al. Bi-modified SrTiO3-based ceramics for high-temperature energy storage applications. J Am Ceram Soc 2020, 103: 1722–1731.

[36] Fergus JW. Oxide materials for high temperature thermoelectric energy conversion. J Eur Ceram Soc 2012, 32: 525–540.

[37] Wang Y, Shen ZY, Li YM, et al. Optimization of energy storage density and efficiency in Ba0.8Sr0.2TiO3 (x ≤ 04) paraelectric ceramics. Ceram Int 2015, 41: 8252–8256.

[38] Nishigaki S, Murano K, Ohkoshi A. Dielectric properties of ceramics in the system (Sr0.80Pb0.20Ca0.20)TiO3–Bi2O3·3TiO2 and their applications in a high-voltage capacitor. J Am Ceram Soc 1982, 65: 554–560.

[39] Kong X, Yang L, Cheng Z, et al. (Ba,Sr)TiO3–Bi(Mg,Hf)O3 lead-free ceramic capacitors with high energy density and energy efficiency. ACS Appl Energy Mater 2020, 3: 12254–12262.

[40] Fletcher NH, Hilton AD, Ricketts BW. Optimization of energy storage density in ceramic capacitors. J Phys D: Appl Phys 1996, 29: 253–258.

[41] Ang C, Yu Z, Cross LE. Oxygen-vacancy-related low-frequency dielectric relaxation and electrical
conduction in Bi: SrTiO$_3$. Phys Rev B 2000, 62: 228–236.

[42] Yu Z, Ang C. Dielectric relaxor and ferroelectric relaxor: Bi-doped paraelectric SrTiO$_3$. J Appl Phys 2002, 91: 1487–1494.

[43] Yu Z, Ang C. High capacitance-temperature sensitivity and “giant” dielectric constant in SrTiO$_3$. Appl Phys Lett 2007, 90: 202903.

[44] Shen ZY, Hu QG, Li YM, et al. Structure and dielectric properties of Rs$_{0.05}$Sr$_{0.95}$TiO$_3$ (Re = La, Sm, Gd, Er) ceramics for high-voltage-capacitor applications. J Am Ceram Soc 2013, 96: 2551–2555.

[45] Shen ZY, Li YM, Luo WQ, et al. Structure and dielectric properties of Nd$_{0.13}$Sr$_{0.87}$TiO$_3$ ceramics for energy storage application. J Mater Sci: Mater Electron 2013, 24: 704–710.

[46] Shen ZY, Luo WQ, Li YM, et al. Electrical heterostructure of Nd$_{0.13}$Sr$_{0.87}$TiO$_3$ ceramic for energy storage applications. J Mater Sci: Mater Electron 2013, 24: 667–672.

[47] Song Z, Liu H, Zhang S, et al. Effect of grain size on the energy storage properties of (Ba$_{0.85}$Sr$_{0.15}$)TiO$_3$ paraelectric ceramics. J Eur Ceram Soc 2014, 34: 1209–1217.

[48] Wu YJ, Huang YH, Wang N, et al. Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics. J Eur Ceram Soc 2017, 37: 2099–2104.

[49] Zhang Q, Wang L, Luo J, et al. Improved energy storage density in barium strontium titanate by addition of BaO–SiO$_2$–B$_2$O$_3$ glass. J Am Ceram Soc 2009, 92: 1871–1873.

[50] Kim SH, Koh JH. ZnBO-doped (Ba,Sr)TiO$_3$ ceramics for the low-temperature sintering process. J Eur Ceram Soc 2008, 28: 2969–2973.

[51] Shen ZY, Wang Y, Tang YX, et al. Glass modified Barium strontium titanate ceramics for energy storage capacitor at elevated temperatures. J Materiomics 2015, 9: 641–648.

[52] Yang X, Li W, Qiao Y, et al. High energy-storage density of lead-free (Sr$_{1.5}$Bi$_{0.5}$)$_{1.0}$Ti$_{1.0}$Nb$_{0.25}$O$_{2.0}$ thin films induced by Bi$^{3+}$-Vsr dipolar defects. Phys Chem Chem Phys 2019, 21: 16359–16366.

[53] Zhang Y, Li W, Wang Z, et al. Ultrahigh energy storage and electrocaloric performance achieved in SrTiO$_3$ amorphous thin films via polar cluster engineering. J Mater Chem A 2019, 7: 17797–17805.

[54] Pan H, Zeng Y, Shen Y, et al. BiFeO$_3$–SrTiO$_3$ thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. J Mater Chem A 2017, 5: 5920–5926.

[55] Hou C, Huang W, Zhao W, et al. Ultrahigh energy density in SrTiO$_3$ film capacitors. ACS Appl Mater Interfaces 2017, 9: 20484–20490.

[56] Gao W, Yao M, Yao X. Improvement of energy density in SrTiO$_3$ film capacitor via self-repairing behavior. Ceram Int 2017, 43: 13069–13074.

[57] Gao W, Yao M, Yao X. Achieving ultrahigh breakdown strength and energy storage performance through periodic interface modification in SrTiO$_3$ thin film. ACS Appl Mater Interfaces 2018, 10: 28745–28753.

[58] Chen X, Peng B, Ding M, et al. Giant energy storage density in lead-free dielectric thin films deposited on Si wafers with an artificial dead-layer. Nano Energy 2020, 78: 105390.

[59] Cross L.E. Relaxor ferroelectrics. Ferroelectrics 1987, 76: 241–267.

[60] Pan Z, Wang P, Hou X, et al. Fatigue-free aurivillius phase ferroelectric thin films with ultrahigh energy storage performance. Adv Energy Mater 2020, 10: 2001536.

[61] Shroud TR, Zhang SJ. Lead-free piezoelectric ceramics: Alternatives for PZT? J Electroceramics 2007, 19: 113–126.

[62] Jaffe B, Cook WR, Jaffe H. Piezoelectric Ceramics Academic. Amsterdam: Elsevier, 1971.

[63] Chen Y, Wang S, Zhou H, et al. A systematic analysis of the radial resonance frequency spectra of the PZT-based (Zr/Ti = 52/48) piezoceramic thin disks. J Adv Ceram 2020, 9: 380–392.

[64] Gao J, Liu Y, Wang Y, et al. High temperature-stability of (Pb$_{0.9}$La$_{0.1}$)(Zr$_{0.65}$Ti$_{0.35}$)O$_3$ ceramic for energy-storage applications at finite electric field strength. Scripta Mater 2017, 137: 114–118.

[65] Zhang TF, Tang XG, Liu QX, et al. Energy-storage properties and high-temperature dielectric relaxation behaviors of relaxor ferroelectric Pb(Mg$_{1/3}$Nb$_{2/3}$)$_3$O$_3$–TiO$_2$ ceramics. J Phys D: Appl Phys 2016, 49: 095302.

[66] Kumar A, Kim SH, Peddigari M, et al. High energy storage properties and electrical field stability of energy efficiency of (Pb$_{0.9}$La$_{0.1}$)(Zr$_{0.97}$Ti$_{0.03}$)O$_3$ relaxor ferroelectric ceramics. Electron Mater Lett 2019, 15: 323–330.

[67] Zhang T, Li W, Hou Y, et al. High-energy storage density and excellent temperature stability in antiferroelectric/ferroelectric bilayer thin films. J Am Ceram Soc 2017, 100: 3080–3087.

[68] Zhang T, Li W, Zhao Y, et al. High energy storage performance of opposite double-heterojunction ferroelectricity-insulators. Adv Funct Mater 2018, 28: 1706211.

[69] Ma B, Hu Z, Koritala RE, et al. PLZT film capacitors for power electronics and energy storage applications. J Mater Sci: Mater Electron 2015, 26: 9279–9287.

[70] Peng B, Tang S, Lu L, et al. Low-temperature-poling awakened high dielectric breakdown strength and outstanding improvement of discharge energy density of (Pb$_{0.8}$La$_{0.2}$)(Zr$_{0.65}$Sn$_{0.35}$)O$_3$ relaxor thin film. Nano Energy 2020, 77: 105132.

[71] Dai X, Viehland D. Effects of lanthanum modification on the antiferroelectric-ferroelectric stability of high zirconium-content lead zirconate titanate. J Appl Phys 1994, 76: 3701–3709.

[72] Gupta SM, Li JF, Viehland D. Coexistence of relaxor and normal ferroelectric phases in morphotropic phase
boundary compositions of lanthanum-modified lead zirconate titanate. J Am Ceram Soc 1998, 81: 557–564.

[73] Hu Z, Ma B, Liu S, et al. Relaxor behavior and energy storage performance of ferroelectric PLZT thin films with different Zr/Ti ratios. Ceram Int 2014, 40: 557–562.

[74] Liu Y, Hao X, An S. Significant enhancement of energy-storage performance of (Pb0.9La0.1)(Zr0.65Ti0.35)O3 relaxor ferroelectric thin films by Mn doping. J Appl Phys 2013, 114: 174102.

[75] Peng B, Xie Z, Yue Z, et al. Improvement of the recoverable energy storage density and efficiency by utilizing the linear dielectric response in ferroelectric capacitors. Appl Phys Lett 2014, 105: 052904.

[76] Zhang L, Hao X, Yang J, et al. Large enhancement of energy-storage properties of compositional graded (Pb1−xLax)(Zr0.65Ti0.35)O3 relaxor ferroelectric thick films. Appl Phys Lett 2013, 103: 113902.

[77] Nguyen MD, Houwman EP, Rijnders G. Energy storage performance and electric breakdown field of thin relaxor ferroelectric PLZT films using microstructure and growth orientation control. J Phys Chem C 2018, 122: 15171–15179.

[78] Nguyen MD, Nguyen CTQ, Vu HN, et al. Controlling microstructure and film growth of relaxor-ferroelectric thin films for high break-down strength and energy-storage performance. J Eur Ceram Soc 2018, 38: 95–103.

[79] Smolenksi GA, Isupov VA, Agranovskaya AI, et al. New ferroelectrics of complex composition IV. J Sov Phy Solid State 1961, 2: 2651–2654.

[80] Rao BN, Datta R, Chandrashekaran SS, et al. Local structural disorder and its influence on the average global structure and polar properties in Na0.5Bi0.5TiO3. Phys Rev B 2013, 88: 224103.

[81] Reichmann K, Feteira A, Li M. Bismuth sodium titanate based materials for piezoelectric actuators. Materials 2015, 8: 8467–8495.

[82] Suchaniewicz J, Kluczevska-Chmielarz K, Sitko D, et al. Electrical transport in lead-free Na0.5Bi0.5TiO3 ceramics. J Adv Ceram 2021, 10: 152–165.

[83] Qiao X, Zhang F, Wu D, et al. Superior comprehensive energy storage properties in B1−xNa0.5TiO3-based relaxor ferroelectric ceramics. Chem Eng J 2020, 388: 124158.

[84] Yang F, Pan Z, Ling Z, et al. Realizing high comprehensive energy storage performances of BNT-based ceramics for application in pulse power capacitors. J Eur Ceram Soc 2021, 41: 2548–2558.

[85] Zhang X, Hu D, Pan Z, et al. Enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem Eng J 2021, 406: 126818.

[86] Zhu C, Cai Z, Luo B, et al. High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties. J Mater Chem A 2020, 8: 683–692.

[87] Ma C, Tan X. In situ transmission electron microscopy study on the phase transition in lead-free (1−x)(Bi1−xNa0.5)(Ti0.75O3−xBaTiO3 ceramics. J Am Ceram Soc 2011, 94: 4040–4044.

[88] Jo W, Schaab S, Sapper E, et al. On the phase identity and its thermal evolution of lead free (Bi1−xNa0.5)(Ti0.75O3−x BaTiO3. J Appl Phys 2011, 110: 074106.

[89] Ye H, Yang F, Pan Z, et al. Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications. Acta Mater 2021, 203: 116484.

[90] Gao F, Dong X, Mao C, et al. Energy-storage properties of 0.89Bi1−xNa0.5TiO3−0.06BaTiO3−0.05KxCo3O4 lead-free anti-ferroelectric ceramics. J Am Ceram Soc 2011, 94: 4382–4386.

[91] Cao W, Li W, Feng Y, et al. Defect dipole induced large strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems. Appl Phys Lett 2016, 108: 202902.

[92] Ren X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat Mater 2004, 3: 91–94.

[93] Li F, Zhai J, Shen B, et al. Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3–SrTiO3–NaNbO3 lead-free ferroelectric ceramics. J Appl Phys 2017, 121: 054103.

[94] Yang L, Kong X, Cheng Z, et al. Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J Mater Chem A 2019, 7: 8573–8580.

[95] Li D, Shen ZY, Li ZP, et al. P–E hysteresis loop going slim in Ba0.5Sr0.5TiO3-modified Bi0.5Na0.5TiO3 ceramics for energy storage applications. J Adv Ceram 2020, 9: 183–192.

[96] Li D, Shen Z-Y, Li Z, et al. Optimization of polarization behavior in (1–x)BSBN–xNN ceramics for pulsed power capacitors. J Mater Chem C 2020, 8: 7650–7657.

[97] Li J, Shen Z, Chen X, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat Mater 2020, 19: 999–1005.

[98] Yang H, Liu P, Yan F, et al. A novel lead-free ceramic with layered structure for high energy storage applications. J Alloys Compd 2019, 773: 244–249.

[99] Jia W, Hou Y, Zheng M, et al. Superior temperature-stable dielectrics for MLCCs based on B0.35Na0.65TiO3–NaNbO3 system modified by CaZrO3. J Am Ceram Soc 2018, 101: 3468–3479.

[100] Wang H, Zhao P, Chen L, et al. Energy storage properties of 0.87BaTiO3–0.13Bi(Zr0.85Ta0.15)O3 multi-layer ceramic capacitors with thin dielectric layers. J Adv Ceram 2020, 9: 292–302.

[101] Feng C, Yang CH, Li SX, et al. Reduced leakage current and large polarization of Na0.5Bi1−xTi0.85xMn0.15O3 thick film annealed at low temperature. Ceram Int 2015, 41: 14179–14183.

[102] Wang J, Sun N, Li Y, et al. Effects of Mn doping on dielectric properties and energy-storage performance of Na0.5Bi1−xTiO3 thick films. Ceram Int 2017, 43: 1827–1833.
Multilayer capacitors. J Am Ceram Soc 2013, 96: 2197–2202.

[119] Li MD, Tang XG, Zeng SM, et al. Oxygen-vacancy-related dielectric relaxation behaviours and impedance spectroscopy of Bi(Mg1/2Ti1/2)O3 modified BaTiO3 ferroelectric ceramics. J Materiomics 2018, 4: 194–201.

[120] Hanani Z, Mezziane D, Amjoud M, et al. Phase transitions, energy storage performances and electrocaloric effect of the lead-free Ba0.85Ca0.15Zn0.10Ti0.9O ceramic relaxor. J Mater Sci: Mater Electron 2019, 30: 6430–6438.

[121] Wang XW, Zhang BH, Shi YC, et al. Enhanced energy storage properties in Ba0.85Ca0.15Zr0.1Ti0.9O ceramics with glass additives. J Appl Phys 2020, 127: 074103.

[122] Hanani Z, Merselmi S, Danine A, et al. Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. J Adv Ceram 2020, 9: 210–219.

[123] Patel S, Sharma D, Singh A, et al. Enhanced thermal energy conversion and dynamic hysteresis behavior of Sr-added Ba0.85Ca0.15Ti0.9Zr0.1O ferroelectric ceramics. J Materiomics 2016, 2: 75–86.

[124] Su X, Riggs BC, Tomozawa M, et al. Preparation of BaTiO3-low melting glass core-shell nanoparticles for energy storage capacitor applications. J Mater Chem A 2014, 2: 18087–18096.

[125] Zhang Y, Cao M, Yao Z, et al. Effects of silica coating on the microstructures and energy storage properties of BaTiO3 ceramics. Mater Res Bull 2015, 67: 70–76.

[126] Wu L, Wang X, Gong H, et al. Core-satellite BaTiO3@SrTiO3 assemblies for a local compositionally graded relaxor ferroelectric capacitor with enhanced energy storage density and high energy efficiency. J Mater Chem C 2015, 3: 750–758.

[127] Cheng H, Ouyang J, Zhang YX, et al. Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films. Nat Commun 2017, 8: 1999.

[128] Yu Z, Ang C, Guo RY, et al. Ferroelectric-relaxor behavior of BaTi0.5Zr0.5O3 ceramics. J Appl Phys 2002, 92: 2655–2657.

[129] Hennings D, Schnell A, Simon G. Diffuse ferroelectric phase transitions in Ba(Ti1-xZr_x)O3 ceramics. J Am Ceram Soc 1982, 65: 539–544.

[130] Instan AA, Pavunny SP, Bhattachar MK, et al. Ultrahigh capacitive energy storage in highly oriented Ba(ZrTix)O3 thin films prepared by pulsed laser deposition. Appl Phys Lett 2017, 111: 142903.

[131] Reddy SR, Prasad VVB, Bysahk S, et al. Superior energy storage performance and fatigue resistance in ferroelectric BCZT thin films grown in an oxygen-rich atmosphere. J Mater Chem C 2019, 7: 7073–7082.

[132] Ortega N, Kumar A, Scott JF, et al. Relaxor-ferroelectric superlattices: High energy density capacitors. J Phys: Condens Matter 2012, 24: 445901.

[133] Sun Z, Ma C, Liu M, et al. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv Mater 2017, 29: 1604427.
[134] Zhang W, Gao Y, Kang L, et al. Space-charge dominated epitaxial BaTiO3 heterostructures. Acta Mater 2015, 85: 207–215.

[135] Ru J, Min D, Lanagan M, et al. Enhanced energy storage properties of thermostable sandwich-structured BaTiO3/polyimide nanocomposites with better controlled interfaces. Mater Des 2021, 197: 109270.

[136] Rojac T, Bencan A, Malic B, et al. BiFeO3 ceramics: Processing, electrical, and electromechanical properties. J Am Ceram Soc 2014, 97: 1993–2011.

[137] Yang CH, Qian J, Lv P, et al. Flexible lead-free BFO-based dielectric capacitor with large energy density, superior thermal stability, and reliable bending endurance. J Materiomics 2020, 6: 200–208.

[138] Gao X, Li Y, Chen J, et al. High energy storage performances of Bi0.67Sm0.67Fe0.33Sc0.33O3 lead-free ceramics synthesized by rapid hot press sintering. J Eur Ceram Soc 2019, 39: 2331–2338.

[139] Yin L, Mi W. Progress in BiFeO3-based heterostructures: Materials, properties and applications. Nanoscale 2020, 12: 477–523.

[140] Li Q, Ji S, Wang D, et al. Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors. J Eur Ceram Soc 2021, 41: 387–393.

[141] Lee MH, Kim DJ, Park JS, et al. High-performance lead-free piezocermics with high curie temperatures. Adv Mater 2015, 27: 6976–6982.

[142] Wu J, Fan Z, Xiao D, et al. Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures. Prog Mater Sci 2016, 84: 335–402.

[143] Hang Q, Zhou W, Zhu X, et al. Structural, spectroscopic, and dielectric characterizations of Mn-doped 0.67BiFeO3–0.33BaTiO3 multiferroic ceramics. J Adv Ceram 2013, 2: 252–259.

[144] Liu N, Liang R, Zhou Z, et al. Designing lead-free bismuth ferrite-based ceramics learning from relaxor ferroelectric behavior for simultaneous high energy density and efficiency under low electric field. J Mater Chem C 2018, 6: 10211–10217.

[145] Qi H, Xie A, Tian A, et al. Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3–BaTiO3–NaNbO3 lead-free bulk ferroelectrics. Adv Energy Mater 2020, 10: 1903338.

[146] Wang G, Li J, Zhang X, et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ Sci 2019, 12: 582–588.

[147] Correia TM, McMillen M, Rokosz MK, et al. A lead-free and high-energy density ceramic for energy storage applications. J Am Ceram Soc 2013, 96: 2699–2702.

[148] Pan H, Li F, Liu Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphnic nanodomain design. Science 2019, 365: 578–582.

[149] Kan D, Pálová L, Anbusaithaiah V, et al. Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv Funct Mater 2010, 20: 1108–1115.

[150] McMillen M, Douglas AM, Correia TM, et al. Increasing recoverable energy storage in electroceramic capacitors using “dead-layer” engineering. Appl Phys Lett 2012, 101: 242909.

[151] Hou Y, Han R, Li W, et al. Significantly enhanced energy storage performance in BiFeO3/BaTiO3/BiFeO3 sandwich-structured films through crystallinity regulation. Phys Chem Chem Phys 2018, 20: 21917–21924.

[152] Zhu H, Liu M, Zhang Y, et al. Increasing energy storage capabilities of space-charge dominated ferroelectric thin films using interlayer coupling. Acta Mater 2017, 122: 252–258.

[153] Li JF, Wang K, Zhu FY, et al. (K,Na)NbO3-based lead-free piezocermics: Fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 2013, 96: 3677–3696.

[154] Egerton L, Dillon DM. Piezoelectric and dielectric properties of ceramics in the system potassium–sodium niobate. J Am Ceram Soc 1959, 42: 438–442.

[155] Yang Z, Du H, Qu S, et al. Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics. J Mater Chem A 2016, 4: 13778–13785.

[156] Shao T, Du H, Ma H, et al. Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J Mater Chem A 2017, 5: 554–563.

[157] Qu B, Du H, Yang Z, et al. Large recoverable energy storage density and low sintering temperature in potassium-sodium niobate-based ceramics for multilayer pulsed power capacitors. J Am Ceram Soc 2017, 100: 1517–1526.

[158] Qu B, Du H, Yang Z, et al. Enhanced dielectric breakdown strength and energy storage density in lead-free relaxor ferroelectric ceramics prepared using transition liquid phase sintering. RSC Adv 2016, 6: 34381–34389.

[159] Yang Y, Ji Y, Fang M, et al. Morphotrope relaxor boundary in a relaxor system showing enhancement of electrostrain and dielectric permissivity. Phys Rev Lett 2019, 123: 137601.

[160] Won SS, Kawahara M, Kuhn L, et al. BiFeO3-doped (K0.5,Na0.5)(Mn0.005,Nb0.995)O3 ferroelectric thin film capacitors for high energy density storage applications. Appl Phys Lett 2017, 110: 152901.

[161] Huang Y, Shu L, Zhang SW, et al. Simultaneously achieved high-energy storage density and efficiency in (K,Na)NbO3-based lead-free ferroelectric films. J Am Ceram Soc 2021, 104: 4119–4130.

[162] Kittel C. Theory of antiferroelectric crystals. Phys Rev 1951, 82: 729–732.

[163] Tagantsev A, Vaideeswaran K, Vakhruchev S, et al. The origin of antiferroelectricity in PbZrO3. Nat Commun 2013,
Sharifzadeh Mirshekarloo M, Yao K, Sritharan T. Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films. *J Am Ceram Soc* 2009, **92**: 1133–1135.

Parui J, Krupanidhi SB. Enhancement of charge and energy storage in sol–gel derived pure and La-modified PbZrO3 thin films. *Appl Phys Lett* 2008, **92**: 192901.

Tani T, Li JF, Viehland D, et al. Antiferroelectric-ferroelectric switching and induced strains for sol–gel derived lead zirconate thin layers. *J Appl Phys* 1994, **75**: 3017–3023.

Ye M, Sun Q, Chen X, et al. Electrical and energy storage performance of Eu-doped PbZrO3 thin films with different gradient sequences. *J Am Ceram Soc* 2012, **95**: 1486–1488.

Sa T, Cao Z, Wang Y, et al. Enhancement of charge and energy storage in PbZrO3 thin films by local field engineering. *Appl Phys Lett* 2014, **105**: 043902.

Chen MJ, Ning XK, Wang SF, et al. Significant enhancement of energy storage density and polarization in self-assembled PbZrO3:NiO nano-columnar composite films. *Nanoscale* 2019, **11**: 1914–1920.

Ge J, Remi diens D, Costecalde J, et al. Effect of residual stress on energy storage property in PbZrO3 antiferroelectric thin films with different orientations. *Appl Phys Lett* 2013, **103**: 162903.

Ge J, Remi diens D, Dong X, et al. Enhancement of energy storage in epitaxial PbZrO3 antiferroelectric films using strain engineering. *Appl Phys Lett* 2014, **105**: 112908.

Corker DL, Glazer AM, Kaminsky W, et al. Investigation into the crystal structure of the perovskite lead hafnate, PbHfO3. *Acta Crystallogr Sect B* 1998, **54**: 18–28.

Madigout V, Baudour JL, Bourree F, et al. Crystallographic structure of lead hafnate (PbHfO3) from neutron powder diffraction and electron microscopy. *Philos Mag A* 1999, **79**: 847–858.

Burkovsky RG, Bronwald I, Andronikova D, et al. Triggered incommensurate transition in PbHfO3. *Phys Rev B* 2019, **100**: 014107.

Chao W, Yang T, Li Y. Achieving high energy efficiency and energy density in PbHfO3-based antiferroelectric ceramics. *J Mater Chem C* 2020, **8**: 17016–17024.

Huang XX, Zhang TF, Wang W, et al. Tailoring energy-storage performance in antiferroelectric PbHfO3 thin films. *Mater Des* 2021, **204**: 109666.

Xu B, Moses P, Pai NG, et al. Charge release of lanthanum-doped lead zirconate titanate antiferroelectric thin films. *Appl Phys Lett* 1998, **72**: 593–595.

Sharifzadeh Mirshekarloo M, Yao K, Sritharan T. Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−xSnx)TiO3 antiferroelectric thin films. *Appl Phys Lett* 2010, **97**: 142902.

Zhang AH, Wang W, Li QJ, et al. Internal-strain release and remarkably enhanced energy storage performance in PLZT–SrTiO3 multilayered films. *Appl Phys Lett* 2020, **117**: 252901.

Dan Y, Xu H, Zou K, et al. Energy storage characteristics of (Pb,La)(ZrSn,Ti)O3 antiferroelectric ceramics with high Sn content. *Appl Phys Lett* 2018, **113**: 063902.

Liu P, Fan B, Yang G, et al. High energy density at high temperature in PLZST antiferroelectric ceramics. *J Mater Chem C* 2019, **7**: 4587–4594.

Xu B, Ye Y, Cross L. Dielectric properties and field-induced phase switching of lead zirconate titanate antiferroelectric thick films on silicon substrates. *J Appl Phys* 2000, **87**: 2507–2515.

Markowski K, Park SE, Yoshikawa S, et al. Effect of compositional variations in the lead lanthanum zirconate titanate system on electrical properties. *J Am Ceram Soc* 1996, **79**: 3297–3304.

Zheng Q, Yang T, Wei K, et al. Effect of Sn:Ti variations on electric filed induced AFE–FE phase transition in PLZST antiferroelectric ceramics. *Ceram Int* 2012, **38**: S9–S12.

Liu Z, Bai Y, Chen X, et al. Linear composition-dependent phase transition behavior and energy storage performance of tetragonal PLZST antiferroelectric ceramics. *J Alloys Compd* 2017, **691**: 721–725.

Zhang L, Jiang S, Fan B, et al. Enhanced energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3–(Pb0.90La0.06)(Zr0.68Sn0.24Ti0.08)O3 anti-ferroelectric composite ceramics by Spark Plasma Sintering. *J Alloys Compd* 2015, **622**: 162–165.

Zhang G, Zhu D, Zhang X, et al. High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.98Sn0.05Ti0.05)O3 antiferroelectric ceramics fabricated by the hot-press sintering method. *Adv Funct Mater* 2019, **29**: 1807321.

Zhang L, Jiang S, Fan B, et al. High-energy storage performance in (Pb0.97La0.02)(Zr1−xSnx)TiO3 antiferroelectric ceramics fabricated by the hot-press sintering method. *Adv Funct Mater* 2019, **29**: 1807321.

Zhang G, Liu S, Yu Y, et al. Microstructure and electrical properties of (Pb0.98La0.02)(Zr0.98Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics fabricated by the hot-press sintering method. *J Eur Ceram Soc* 2013, **33**: 113–121.

Bian F, Yan S, Xu C, et al. Enhanced breakdown strength and energy density of antiferroelectric PbLa(Zr,Ti)O3 ceramic by forming core-shell structure. *J Eur Ceram Soc* 2018, **38**: 3170–3176.

Wang H, Liu Y, Yang T, et al. Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. *Adv Funct Mater* 2019, **29**: 1807321.

Zhang Y, Liu P, Kandula KR, et al. Achieving excellent energy storage density of Pb0.97La0.03(Zr0.68Sn0.24Ti0.08)O3 ceramics by the B-site modification. *J Eur Ceram Soc* 2021, **41**: 360–367.

Liu X, Li Y, Hao X. Ultra-high energy-storage density and fast discharge speed of (Pb0.98La0.02)(Zr0.98Sn0.02)TiO3 antiferroelectric ceramics prepared via the tape-casting
method. J Mater Chem A 2019, 7: 11858–11866.

[194] Gao M, Tang X, Leung CM, et al. Phase transition and energy storage behavior of antiferroelectric PLZT thin films epitaxially deposited on SRO buffered STO single crystal substrates. J Am Ceram Soc 2019, 102: 5180–5191.

[195] Ma B, Kwon DK, Narayanan M, et al. Dielectric properties and energy storage capability of antiferroelectric Pb$_{0.95}$La$_{0.05}$Zr$_{0.05}$Ti$_{0.95}$O$_3$ film-on-foil capacitors. J Mater Res 2009, 24: 2993–2996.

[196] Tong S, Ma B, Narayanan M, et al. Lead lanthanum zirconate titanate ceramic thin films for energy storage. ACS Appl Mater Interfaces 2013, 5: 1474–1480.

[197] Lin Z, Chen Y, Liu Z, et al. Large energy storage density, low energy loss and highly stable (Pb$_{0.95}$La$_{0.05}$)(Zr$_{0.66}$Sn$_{0.23}$Ti$_{0.11}$)O$_3$ antiferroelectric thin-film capacitors. J Eur Ceram Soc 2018, 38: 3177–3181.

[198] Ma B, Kwon DK, Narayanan M, et al. Fabrication of antiferroelectric PLZT films on metal foils. Mater Res Bull 2009, 44: 11–14.

[199] Zhang MH, Fukanović M, Egert S, et al. Electric-field-induced antiferroelectric to ferroelectric phase transition in polycrystalline NaNbO$_3$. Acta Mater 2020, 200: 127–135.

[200] Chen J, Feng D. TEM study of phases and domains in NaNbO$_3$ at room temperature. Phys Status Solidi a 1998, 109: 171–185.

[201] Saito T, Adachi H, Wada T, et al. Pulsed-laser deposition of ferroelectric NaNbO$_3$ thin films. Jpn J Appl Phys 2005, 44: 6969–6972.

[202] Koruzo J, Groszewicz P, Breitze H, et al. Grain-size-induced ferroelectricity in NaNbO$_3$. Acta Mater 2017, 126: 77–85.

[203] Shuvaeva VA, Antipin MY, Lindeman RSV, et al. Crystal structure of the electric-field-induced ferroelectric phase of NaNbO$_3$. Ferroelectrics 1993, 141: 307–311.

[204] Shimizu H, Guo H, Reyes-Lillo SE, et al. Lead-free antiferroelectric: xCaZrO$_3$–(1–x)NaNbO$_3$ system (0 ≤ x ≤ 0.10). Dalton Trans 2015, 44: 10763–10772.

[205] Guo H, Shimizu H, Mizuno Y, et al. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1–x)NaNbO$_3$–xSrZrO$_3$ solid solution. J Appl Phys 2015, 117: 214103.

[206] Gao L, Guo H, Zhang S, et al. A perovskite lead-free antiferroelectric xCaHfO$_3$–(1–x) NaNbO$_3$ with induced double hysteresis loops at room temperature. J Appl Phys 2016, 120: 204102.

[207] Gao L, Guo H, Zhang S, et al. Stabilized antiferroelectricity in xBiScO$_3$–(1–x)NaNbO$_3$ lead-free ceramics with established double hysteresis loops. Appl Phys Lett 2018, 112: 092905.

[208] Zhou M, Liang R, Zhou Z, et al. Superior energy storage properties and excellent stability of novel NaNbO$_3$-based lead-free ceramics with A-site vacancy obtained via a Bi$_2$O$_3$ substitution strategy. J Mater Chem A 2018, 6: 17896–17904.

[209] Ye J, Wang G, Zhou M, et al. Excellent comprehensive energy storage properties of novel lead-free NaNbO$_3$-based ceramics for dielectric capacitor applications. J Mater Chem C 2019, 7: 5639–5645.

[210] Dong X, Li X, Chen X, et al. High energy storage density and power density achieved simultaneously in NaNbO$_3$-based lead-free ceramics via antiferroelectricity enhancement. J Materiomics 2021, 7: 629–639.

[211] Fujii I, Shimasaki T, Nobe T, et al. Effects of SrTiO$_3$ substrate orientations on crystal and domain structures and electric properties of NaNbO$_3$–SrZrO$_3$ films. Jpn J Appl Phys 2018, 57: 11UF13.

[212] Beppu K, Shimasaki T, Fujii I, et al. Energy storage properties of antiferroelectric 0.92NaNbO$_3$–0.08SrZrO$_3$ film on (001)SrTiO$_3$ substrate. Phys Lett A 2020, 384: 126690.

[213] Luo B, Dong H, Wang D, et al. Large recoverable energy density with excellent thermal stability in Mn-modified NaNbO$_3$–CaZrO$_3$ lead-free thin films. J Am Ceram Soc 2018, 101: 3460–3467.

[214] Kania A, Kwapolinski J, Ag$_{1–x}$Na$_x$NbO$_3$ (ANN) solid solutions: From disordered antiferroelectric AgNbO$_3$ to normal antiferroelectric NaNbO$_3$. J Phys: Condens Matter 1999, 11: 8933–8946.

[215] Wang D, Kako T, Ye J. New series of solid-solution semiconductors (AgNbO$_3$)$_{1–x}$(SrTiO$_3$)$_x$ with modulated band structure and enhanced visible-light photocatalytic activity. J Phys Chem C 2009, 113: 3785–3792.

[216] Fu D, Endo M, Taniguchi H, et al. AgNbO$_3$: A lead-free material with large polarization and electromechanical response. Appl Phys Lett 2007, 90: 252907.

[217] Tian Y, Jin L, Zhang H, et al. High energy density in silver niobate ceramics. J Mater Chem A 2016, 4: 17279–17287.

[218] Zhao L, Liu Q, Gao J, et al. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv Mater 2017, 29: 1701824.

[219] Luo N, Han K, Cabral MJ, et al. Constructing phase boundary in AgNbO$_3$ antiferroelectrics: Pathway simultaneously achieving high energy density and efficiency. Nat Commun 2020, 11: 4824.

[220] Yan Z, Zhang D, Zhou X, et al. Silver niobate based lead-free ceramics with high energy storage density. J Mater Chem A 2019, 7: 10702–10711.

[221] Luo N, Han K, Zhou F, et al. Aliovalent A-site engineered AgNbO$_3$ lead-free antiferroelectric ceramics toward superior energy storage density. J Mater Chem A 2019, 7: 14118–14128.

[222] Lu Z, Bao W, Wang G, et al. Mechanism of enhanced energy storage density in AgNbO$_3$-based lead-free antiferroelectrics. Nano Energy 2021, 79: 105423.

[223] Zhao L, Gao J, Liu Q, et al. Silver niobate lead-free antiferroelectric ceramics: Enhancing energy storage density by B-site doping. ACS Appl Mater Interfaces 2018, 10: 819–826.
[224] Tian Y, Jin L, Zhang H, et al. Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. *J Mater Chem A* 2017, 5: 17525–17531.

[225] Luo N, Han K, Zhuo F, et al. Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics. *J Mater Chem C* 2019, 7: 4999–5008.

[226] Gao J, Zhang Y, Zhao L, et al. Enhanced antiferroelectric phase stability in La-doped AgNbO₃: Perspectives from the microstructure to energy storage properties. *J Mater Chem A* 2019, 7: 2225–2232.

[227] Han K, Luo N, Mao S, et al. Realizing high low-electric-field energy storage performance in AgNbO₃ ceramics by introducing relaxor behaviour. *J Materiomics* 2019, 5: 597–605.

[228] Wang J, Wan X, Rao Y, et al. Hydrothermal synthesized AgNbO₃ powders: Leading to greatly improved electric breakdown strength in ceramics. *J Eur Ceram Soc* 2020, 40: 5589–5596.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.