BEAUVILLE STRUCTURES IN p-CENTRAL QUOTIENTS

ŞÜKRAN GÜL

Abstract. We prove a conjecture of Boston that if $p \geq 5$, all p-central quotients of the free group on two generators and of the free product of two cyclic groups of order p are Beauville groups. In the case of the free product, we also determine Beauville structures in p-central quotients when $p = 3$. As a consequence, we give an explicit infinite family of Beauville 3-groups, which is different from the only one that was known up to date.

1. Introduction

A Beauville surface of unmixed type is a compact complex surface isomorphic to $(C_1 \times C_2)/G$, where C_1 and C_2 are algebraic curves of genus at least 2 and G is a finite group acting freely on $C_1 \times C_2$ and faithfully on the factors C_i such that $C_i/G \cong \mathbb{P}_1(C)$ and the covering map $C_i \to C_i/G$ is ramified over three points for $i = 1, 2$. Then the group G is said to be a Beauville group.

It is easy to formulate the condition for a finite group G to be a Beauville group in purely group-theoretical terms. For a couple of elements $x, y \in G$, we define

$$\Sigma(x, y) = \bigcup_{g \in G} \left(\langle x \rangle^g \cup \langle y \rangle^g \cup \langle xy \rangle^g \right),$$

that is, the union of all subgroups of G which are conjugate to $\langle x \rangle$, to $\langle y \rangle$ or to $\langle xy \rangle$. Then G is a Beauville group if and only if the following conditions hold:

(i) G is a 2-generator group.
(ii) There exists a pair of generating sets $\{x_1, y_1\}$ and $\{x_2, y_2\}$ of G such that $\Sigma(x_1, y_1) \cap \Sigma(x_2, y_2) = 1$.

Then $\{x_1, y_1\}$ and $\{x_2, y_2\}$ are said to form a Beauville structure for G.

In 2000, Catanese [6] proved that a finite abelian group is a Beauville group if and only if it is isomorphic to $C_n \times C_n$, where $\gcd(n, 6) = 1$. On the other hand, all finite quasisimple groups other than A_5 and $SL_2(5)$ are Beauville groups [8, 9] (see also [11] and [13]).

If p is a prime, Barker, Boston and Fairbairn [1] have shown that the smallest non-abelian Beauville p-groups for $p = 2$ and $p = 3$ are of order 2^7 and 3^5, respectively. They have also proved that there are non-abelian Beauville p-groups of order p^n for every $p \geq 5$ and every $n \geq 3$. On the other hand, in [2], it has been shown that there are Beauville 2-groups of arbitrarily high order. The existence of infinitely many Beauville 3-groups

Key words and phrases. Beauville groups; free group; free product; p-central quotients.

The author is supported by the Spanish Government, grant MTM2014-53810-C2-2-P, the Basque Government, grants IT753-13 and IT974-16, and TÜBİTAK-BİDEB-2214/A.
has been settled in the affirmative in [17] and [12]; however, these results
do not yield explicit groups. Fernández-Alcober and Güll [10] have recently
given the first explicit infinite family of Beauville 3-groups, by considering
quotients of the Nottingham group over \(F_3\).

In [4], Boston conjectured that if \(p \geq 5\) and \(F\) is either the free group
on two generators or the free product of two cyclic groups of order \(p\), then its
\(p\)-central quotients \(F/\lambda_n(F)\) are Beauville groups. In this paper we prove
Boston’s conjecture. In fact, in the case of the free product, we extend the
result to \(p = 3\).

The main results of this paper are as follows.

Theorem A. Let \(F = \langle x, y \rangle\) be the free group on two generators. Then a
\(p\)-central quotient \(F/\lambda_n(F)\) is a Beauville group if and only if \(p \geq 5\) and
\(n \geq 2\).

Theorem B. Let \(F = \langle x, y | x^p, y^p \rangle\) be the free product of two cyclic groups
of order \(p\). Then a \(p\)-central quotient \(F/\lambda_n(F)\) is a Beauville group if and
only if \(p \geq 5\) and \(n \geq 2\) or \(p = 3\) and \(n \geq 4\).

As a corollary of Theorem B, we give Beauville groups of order \(3^n\) for
every \(n \geq 5\). We will see later in Theorem 3.6 that this infinite family
only coincides at the group of order \(3^5\) with the explicit infinite family of
Beauville 3-groups in [10].

Notation. We use standard notation in group theory. If \(G\) is a group, then
we denote by \(\text{Cl}_G(x)\) the conjugacy class of the element \(x \in G\). Also, if \(p\) is
a prime, then we write \(G^p\) for the subgroup generated by all powers \(g^p\) as
\(g\) runs over \(G\) and \(\Omega_i(G)\) for the subgroup generated by the elements of \(G\)
of order at most \(p^i\). The exponent of \(G\), denoted by \(\text{exp}\, G\), is the maximum
of the orders of all elements of \(G\).

2. The free group on two generators

In this section, we give the proof of Theorem A. We begin by recalling
the definition of \(p\)-central series for the convenience of the reader.

Definition 2.1. For any group \(G\), the normal series
\[G = \lambda_1(G) \geq \lambda_2(G) \geq \cdots \geq \lambda_n(G) \geq \cdots \]
given by \(\lambda_n(G) = [\lambda_{n-1}(G), G]\lambda_{n-1}(G)^p\) for \(n > 1\) is called the \(p\)-central
series of \(G\).

Then a quotient group \(G/\lambda_n(G)\) is said to be a \(p\)-central quotient of \(G\). To
prove the main theorems, we need the following properties of the subgroups
\(\lambda_n(G)\) (see [15], Definition 1.4 and Theorem 1.8, respectively): we have
\begin{equation}
(1) \quad \lambda_n(G) = \gamma_1(G)^p^{n-1} \gamma_2(G)^{p^{n-2}} \cdots \gamma_n(G),
\end{equation}
and any element of \(\lambda_n(G)\) can be written in the form
\begin{equation}
(2) \quad a_1^{p^{n-1}} a_2^{p^{n-2}} \cdots a_n \quad \text{for some} \quad a_i \in \gamma_i(G).
\end{equation}

Also observe that if \(\exp\, G/G' = p\) then \(\lambda_n(G) = \gamma_n(G)\), since for any
\(i, j \geq 1\) we have \(\gamma_i(G)^{p^j} \leq \gamma_{i+j}(G)\).
Lemma 2.2. Let G be a group and $x, y \in G$. For $n \geq 3$, we have

$$(xy)^{p^{n-2}} \equiv x^{p^{n-2}} y^{p^{n-2}} \pmod{\lambda_n(G)}.$$

Proof. By the Hall-Petrescu formula (see [15], Lemma 1.1), we have

$$(xy)^{p^{n-2}} \equiv x^{p^{n-2}} y^{p^{n-2}} \pmod{\gamma_2(G)^{p^{n-2}} \prod_{r=1}^{n-2} \gamma_{pr}^r(G)^{p^{n-2-r}}}.$$

Now the result follows, since by (1), $\gamma_{pr}^r(G)^{p^{n-2-r}} \leq \lambda_{p^{r-n-2-r}}(G) \leq \lambda_n(G).$

Note that if $y \in \lambda_2(G)$ in Lemma 2.2 then

$$(xy)^{p^{n-2}} \equiv x^{p^{n-2}} \pmod{\lambda_n(G)}.$$

Before we proceed to prove Theorem A, we will need to introduce a lemma.

Let $F = \langle x, y \rangle$ be the free group on two generators. Notice that for $n \geq 2$, $\Phi(F/\lambda_n(F))$ coincides with $\lambda_2(F)/\lambda_n(F)$, and thus elements outside $\lambda_2(F)$ are potential generators in $F/\lambda_n(F)$. In order to determine Beauville structures in the quotients $F/\lambda_n(F)$, it is fundamental to control p^{n-2}nd powers of elements outside $\lambda_2(F)$ in these quotients groups.

Lemma 2.3. Let $F = \langle x, y \rangle$ be the free group on two generators. Then $x^{p^{n-2}}$ and $y^{p^{n-2}}$ are linearly independent modulo $\lambda_n(F)$ for $n \geq 2$.

Proof. We argue by way of contradiction. Suppose that $y^{p^{n-2}} \equiv x^{p^{n-2}} \pmod{\lambda_n(F)}.$ It follows from [2] that $x^{-p^{n-2}} y^{p^{n-2}} = a_1^{p^{n-1}} a_2^{p^{n-2}} \ldots a_n$ for some $a_j \in \gamma_j(F)$, and then we have $y^{-ip^{n-2}} x^{p^{n-2}} a_1^{p^{n-1}} \in \gamma_2(F).$ Write $a_1 = x^k y^l z$ for some $z \in \gamma_2(F)$ and some $k, l \in \mathbb{Z}$. Then $x^{p^{n-2}(1+kp)} y^{p^{n-2}(lp-i)} \in \gamma_2(F).$ On the other hand, an element of the free group F belongs to $\gamma_2(F)$ if and only if the exponent sum of both generators is zero. Hence we get $p^{n-2}(1+kp) = 0$, which is a contradiction.

As a consequence of Lemma 2.3, x and y have order p^{n-1} modulo $\lambda_n(F)$. By [3], if we want to know p^{n-2}nd powers of all elements outside $\lambda_2(F)$ in $F/\lambda_n(F)$, it is enough to know the power of each element in the set $\{y, xy^i \mid 0 \leq i \leq p - 1\}$. Also, by Lemma 2.2 we have

$$(xy)^{p^{n-2}} \equiv x^{p^{n-2}} y^{p^{n-2}} \pmod{\lambda_n(F)}$$

for $1 \leq i \leq p - 1$, and since $x^{p^{n-2}}$ and $y^{p^{n-2}}$ are linearly independent modulo $\lambda_n(F)$ by Lemma 2.3, the following lemma is straightforward.

Lemma 2.4. If $G = F/\lambda_n(F)$, the power subgroups $M^{p^{n-2}}$ are all different and of order p in $\lambda_{n-1}(F)/\lambda_n(F)$, as M runs over the $p + 1$ maximal subgroups of G. In particular, all elements in $M < \Phi(G)$ are of order p^{n-1}.

After these preliminaries, we can now prove Theorem A.

Theorem 2.5. A p-central quotient $F/\lambda_n(F)$ is a Beauville group if and only if $p \geq 5$ and $n \geq 2$.
Proof. For simplicity let us call G the quotient group $F/\lambda_n(F)$. We first show that if $p = 2$ or 3, then G is not a Beauville group. By way of contradiction, suppose that $\{u_1, v_1\}$ and $\{u_2, v_2\}$ form a Beauville structure for G. Since G has $p + 1 \leq 4$ maximal subgroups, we may assume that u_1 and u_2 are in the same maximal subgroup. Then by (4), we have $\langle u_1^{p^{n-2}} \rangle = \langle u_2^{p^{n-2}} \rangle$, which is a contradiction.

Thus we assume that $p \geq 5$. First of all, notice that if $n = 2$, $G \cong C_p \times C_p$ is a Beauville group, by Catanese’s criterion. So we will deal with the case $n \geq 3$. Let u and v be the images in G of x and y, respectively. We claim that $\{u, v\}$ and $\{uv^2, uv^4\}$ form a Beauville structure for G. If $A = \{u, v, uv\}$ and $B = \{uv^2, uv^4, uv^2uv^4\}$, we need to show that

$$\langle a^g \rangle \cap \langle b^h \rangle = 1,$$

for all $a \in A$, $b \in B$, and $g, h \in G$. Observe that a^g and b^h lie in different maximal subgroups of G in every case, since u and v are linearly independent modulo $\Phi(G)$ and $p \geq 5$.

Now, all elements $a \in A$ and $b \in B$ are of order p^{n-1}, by Lemma 2.3. If (4) does not hold, then

$$\langle (a^g)^{p^{n-2}} \rangle = \langle (b^h)^{p^{n-2}} \rangle,$$

and again by Lemma 2.3, a^g and b^h lie in the same maximal subgroup of G, which is a contradiction. We thus complete the proof that G is a Beauville group.

□

3. THE FREE PRODUCT OF TWO CYCLIC GROUPS OF ORDER p

Now we focus on the free product $F = \langle x, y \mid x^p, y^p \rangle$ of two cyclic groups of order p. Notice that since F/F' has exponent p, we have $\lambda_n(F) = \gamma_n(F)$ for all $n \geq 1$.

We start with an easy lemma whose proof is left to the reader.

Lemma 3.1. Let $\psi : G_1 \to G_2$ be a group homomorphism, let $x_1, y_1 \in G_1$ and $x_2 = \psi(x_1)$, $y_2 = \psi(y_1)$. If $o(x_1) = o(x_2)$ then the condition $\langle x_2^{\psi(g)} \rangle \cap \langle y_2^{\psi(h)} \rangle = 1$ implies that $\langle x_1^g \rangle \cap \langle y_1^h \rangle = 1$ for $g, h \in G_1$.

To prove the main theorem we also need a result of Easterfield [7] regarding the exponent of $\Omega_i(G)$. More precisely, if G is a p-group, then for every $i, k \geq 1$, the condition $\gamma_{k(p-1)+1}(G) = 1$ implies that

$$\exp \Omega_i(G) \leq p^{i+k-1}.$$

A key ingredient of the proof of Theorem B will be based on p-groups of maximal class with some specific properties. Let $G = \langle s \rangle \times A$ where s is of order p and $A \cong \mathbb{Z}_p^{k-1}$. The action of s on A is via θ, where θ is defined by the companion matrix of the pth cyclotomic polynomial $x^{p-1} + \cdots + x + 1$. Then G is the only infinite pro-p group of maximal class. Since $s^p = 1$ and $\theta^{p-1} + \cdots + \theta + 1$ annihilates A, this implies that for every $a \in A$,

$$(sa)^p = s^pa^{s^p-1+\cdots+s+1} = 1.$$
Thus all elements in $G \setminus A$ are of order p. An alternative construction of G can be given by using the ring of cyclotomic integers (see Example 7.4.14 [16]).

Let P be a finite quotient of G of order p^n for $n \geq 3$. Let us call P_i the abelian maximal subgroup of P_i and $P_i = [P_i, P_i, \ldots, P_i] = \gamma_i(P)$ for $i \geq 2$. Then one can easily check that $\exp P_i = p^\lceil \frac{n-2}{p-1} \rceil$ and every element in $P_i \setminus P_{i+1}$ is of order $p^\lceil \frac{n-2}{p-1} \rceil$.

Now we can begin to determine which p-central quotients of F are Beauville groups. We first assume that $p = 2$. The free product F of two cyclic groups of order 2 is the infinite dihedral group D_∞. Then by Lemma 3.7 in [3], no finite quotient of F is a Beauville group.

We next deal separately with the cases $p \geq 5$ and $p = 3$.

Theorem 3.2. If $p \geq 5$ then the p-central quotient $F/\lambda_n(F)$ is a Beauville group for every $n \geq 2$.

Proof. For simplicity let us call G the quotient group $F/\lambda_n(F)$. Observe that $\Omega_1(G) = G$.

If $n = 2$ then $G \cong C_p \times C_p$ is a Beauville group, by Catanese’s criterion. Thus we assume that $n \geq 3$. Let P be the p-group of maximal class of order p^n which is mentioned above and let $s \in P \setminus P_1$ and $s_1 \in P_1 \setminus P'$.

Since all elements in $P \setminus P_1$ are of order p and $\lambda_n(P) = 1$, the map

$$\psi: G \twoheadrightarrow P$$

$$u \mapsto s^{-1}$$

$$v \mapsto ss_1,$$

where u and v are the images of x and y, is well-defined and an epimorphism.

Set $k = \lceil \frac{n-1}{p-1} \rceil$. Since $\psi(uv) = s_1$, we have $o(uv) \geq o(s_1) = p^k$. On the other hand, $\gamma_k(p-1+1) \leq \gamma_n(G) = 1$. Then by (6), we get $\exp G \leq p^k$, and consequently $o(uv) = p^k$.

We are now ready to show that G is a Beauville group. We claim that $\{u, v\}$ and $\{uv^2, uv^4\}$ form a Beauville structure for G. Let $A = \{u, v, uv\}$ and $B = \{uv^2, uv^4, uv^2uv^4\}$. Assume first that $a = u$ or v, which are elements of order p, and $b \in B$. If $\langle a^p \rangle \cap \langle b^p \rangle \neq 1$ for some $g, h \in G$, then $\langle a^p \rangle \subseteq \langle b^p \rangle$, and hence $\langle a \Phi(G) \rangle = \langle b \Phi(G) \rangle$, which is a contradiction since $p \geq 5$. Next we assume that $a = uv$. Since $p \geq 5$, for every $b \in B$ we have $\psi(b) \in P_1 \setminus P_1$, which is of order p. Thus for all $g, h \in G$ we have $\langle s_1^{\psi(g)} \rangle \cap \langle \psi(b)^{\psi(h)} \rangle = 1$. Since $o(uv) = o(s_1)$, it then follows from Lemma [3.4] that $\langle a^p \rangle \cap \langle b^p \rangle = 1$. This completes the proof. \square

In order to deal with the prime 3, we need the following lemmas.

Lemma 3.3. Let G be a p-group which is not of maximal class such that $d(G) = 2$. Then for every $x \in G$ there exists $t \in \Phi(G) \setminus \{[x, g] \mid g \in G\}$.

Proof. Note that a p-group has maximal class if and only if it has an element with centralizer of order p^2 (see [14] III.14.23)). Thus for every $x \in G$ we have $|C_G(x)| \geq p^3$, and hence

$$|\{[x, g] \mid g \in G\}| = |\text{Cl}_G(x)| = |G : C_G(x)| \leq p^{n-3}.$$
Since $|Φ(G)| = p^{n−2}$ there exists $t ∈ Φ(G)$ such that $t ∉ \{[x, g] \mid g ∈ G\}$. □

Lemma 3.4. [10] Let G be a finite p-group and let $x ∈ G \setminus Φ(G)$ be an element of order p. If $t ∈ Φ(G) \setminus \{[x, g] \mid g ∈ G\}$ then
\[
\left(\bigcup_{g ∈ G} (x)^g \right) \cap \left(\bigcup_{g ∈ G} (xt)^g \right) = 1.
\]

Theorem 3.5. Let $p = 3$. Then the following hold.

(i) The p-central quotient $F/λ_n(F)$ is a Beauville group if and only if $n ≥ 4$.

(ii) The series $\{λ_n(F)\}_{n ≥ 4}$ can be refined to a normal series of F such that two consecutive terms of the series have index p and for every term N of the series F/N is a Beauville group.

Proof. Since the smallest Beauville 3-group is of order 3^5, the quotient $F/λ_n(F)$ can only be a Beauville group if $n ≥ 4$. We first assume that $n = 4$. Now consider the group
\[
H = \langle a, b, c, d, e \mid a^3 = b^3 = c^3 = d^3 = e^3 = 1, [b, a] = c, [c, a] = d, [c, b] = e \rangle,
\]
where we have omitted all commutators between generators which are trivial. This is the smallest Beauville 3-group. Since $λ_4(F) = 1$, $F/λ_4(F)$ maps onto H. On the other hand, it is clear that $|F/λ_4(F)| ≤ 3^5$ and so $F/λ_4(F) \cong H$. Consequently, $F/λ_4(F)$ is a Beauville group. Thus we assume that $n ≥ 5$.

Now let us call G the quotient group $F/λ_n(F)$. Consider the map $ψ: G → P$ defined in the proof of Theorem 3.2. Since $ψ$ is an epimorphism, we have $ψ(λ_n(F)) = λ_{n−1}(P)$. Observe that the subgroup $Ker ψ ∩ λ_{n−1}(G)$ has index 3 in $λ_{n−1}(G)$, since $λ_{n−1}(P)$ is of order 3. Choose a normal subgroup N of F such that $λ_n(F) ≤ N < λ_{n−1}(F)$ and $N/λ_n(F) ≤ Ker ψ$. Then $ψ$ induces an epimorphism over from F/N to P.

We will see that $L = F/N$ is a Beauville group, which simultaneously proves (i) and (ii). Let u and v be the images of x and y in L, respectively. Set $k = \left[\frac{n−1}{3}\right]$. Then $o(uv) = o(xyλ_n(F)) = 3^k$. On the other hand, since $\overline{ψ}(uv) = s_1$, we have $o(uv) ≥ o(s_1) = 3^k$, and consequently we get $o(uv) = 3^k$ in L. Since $F/λ_4(F) ≅ H$ is not of maximal class, L is not of maximal class. Thus, by Lemma 3.3, there exist $z, t ∈ Φ(L)$ such that $z ∉ \{[u, l] \mid l ∈ L\}$ and $t ∉ \{[v, l] \mid l ∈ L\}$. We claim that $\{u, v\}$ and $\{(uz)^{-1}, vt\}$ form a Beauville structure for L. Let $A = \{u, v, uv\}$ and $B = \{(uz)^{-1}, vt, (uz)^{-1}vt\}$.

If $a = u$, which is of order 3, and $b = vt$ or $(uz)^{-1}vt$, then we get $⟨a^g⟩ \cap ⟨b^h⟩ = 1$ for every $g, h ∈ L$, as in the proof of Theorem 3.2. When $a = v$ and $b = (uz)^{-1}$ or $(uz)^{-1}vt$, the same argument applies. If we are in one of the following cases: $a = u$ and $b = (uz)^{-1}$, or $a = v$ and $b = vt$, then the condition $⟨a^g⟩ \cap ⟨b^h⟩ = 1$ follows from Lemma 3.3.

It remains to check the case when $a = uv$ and $b ∈ B$. For every $b ∈ B$, we have $\overline{ψ}(b) ∈ P \setminus P_1$, which has order 3. Since $o(uv) = o(s_1)$, the condition $⟨a^g⟩ \cap ⟨b^h⟩ = 1$ follows from Lemma 3.3, as in the proof of Theorem 3.2. This completes the proof. □

Thus the quotients in Theorem 3.5 constitute an infinite family of Beauville 3-groups of order 3^n for all $n ≥ 5$.

\[\]
In [10], it was given the first explicit infinite family of Beauville 3-groups, by considering quotients of the Nottingham group over F_3. We will show that these two infinite families of Beauville 3-groups only coincide at the group of order 3^5.

Before proceeding we recall the definition of the Nottingham group and some of its properties. The Nottingham group \mathcal{N} over the field F_p, for odd p, is the (topological) group of normalised automorphisms of the ring $F_p[[t]]$ of formal power series. For any positive integer k, the automorphisms $f \in \mathcal{N}$ such that $f(t) = t + \sum_{i \geq k+1} a_i t^i$ form an open normal subgroup \mathcal{N}_k of \mathcal{N} of index p^{k-1}. The lower central series of \mathcal{N} is given by

\[
\gamma_i(\mathcal{N}) = \mathcal{N}_{r(i)}, \quad \text{where} \quad r(i) = i + 1 + \left\lfloor \frac{i - 2}{p - 1} \right\rfloor,
\]

and

\[
\mathcal{N}^p_k = \mathcal{N}_{kp+r}, \quad \text{where} \quad 0 \leq r \leq p - 1 \quad \text{is the residue of} \quad k \quad \text{modulo} \quad p
\]

(see [5], Remark 1 and Theorem 6, respectively).

Also, each non-trivial normal subgroup of \mathcal{N} lies between some $\gamma_i(\mathcal{N})$ and $\gamma_{i+1}(\mathcal{N})$ (see [5], Remark 1 and Proposition 2).

By Theorem 3.10 in [10], if $p = 3$ then a quotient $\mathcal{N}/\mathcal{N}_k$ is a Beauville group if and only if $k \geq 6$ and $k \neq z_m$ for all $m \geq 1$, where $z_m = p^m + p^{m-1} + \cdots + p + 2$. Furthermore, by Theorem 3.11 in [10], for $i \geq 1$ there exists a normal subgroup W between \mathcal{N}_{ip+3} and \mathcal{N}_{ip+1} such that \mathcal{N}/W is a Beauville group. This gives quotients of \mathcal{N} which are Beauville groups of every order 3^n with $n \geq 5$.

Theorem 3.6. Let $N \neq \gamma_4(F)$ be a normal subgroup of F such that F/N is a Beauville group. Then F/N is not isomorphic to any quotient of \mathcal{N} which is a Beauville group. On the other hand, $F/\gamma_4(F)$ is isomorphic to $\mathcal{N}/\gamma_4(\mathcal{N})$.

Proof. Since there is only one Beauville group of order 3^5 [11], $F/\gamma_4(F)$ is necessarily isomorphic to $\mathcal{N}/\gamma_4(\mathcal{N})$. Now suppose that $F/N \cong \mathcal{N}/W$ where $\gamma_4(F) \leq N < \gamma_{n-1}(F)$ for $n \geq 5$ and F/N is a Beauville group. Since F/N is of class $n-1$ and W lies between two consecutive terms of the lower central series, we have $\gamma_i(N) \leq W < \gamma_{i-1}(N)$. Note that if $n = 5$ then $\mathcal{N}_7 = \mathcal{N}_5(N) \leq W < \gamma_4(N) = \mathcal{N}_6$ and so $W = \gamma_5(N)$. If $n > 5$ then $W \leq \mathcal{N}_5(N)$. Consequently the isomorphism $F/N \cong \mathcal{N}/W$ implies that $F/\gamma_5(F)N \cong \mathcal{N}/\gamma_5(\mathcal{N})$. We next show that this is not possible.

Note that by [11], we have $\gamma_2(N) = N_3$ and by [5], $N_3^2 = N_9$. Thus the exponent of $\gamma_2(N/\gamma_5(N))$ is 3. On the other hand, as in the proof of Theorem 3.5, there is an epimorphism from $F/\gamma_5(F)N$ to a p-group of maximal class P of order 3^5 with $\exp P' = 3^2$. Thus $\mathcal{N}/\gamma_5(N)$ cannot be isomorphic to $F/\gamma_5(F)N$.

\[\square\]

Acknowledgments

I would like to thank G. Fernández-Alcober, N. Gavioli and C. M. Scoppola for helpful comments and suggestions. Also, I would like to thank the
Department of Mathematics at the University of the Basque Country for its hospitality while this paper was being written.

REFERENCES

[1] N. Barker, N. Boston, and B. Fairbairn, A note on Beauville p-groups, *Experiment. Math.* 21 (2012), 298–306.
[2] N. Barker, N. Boston, N. Peyerimhoff, and A. Vdovina, An infinite family of 2-groups with mixed Beauville structures, *Int. Math. Res. Notices* 11 (2015), 3598–3618.
[3] I. Bauer, F. Catanese, and F. Grunewald, Beauville surfaces without real structures, I, in Geometric Methods in Algebra and Number Theory, *Progr. Math.* 235, Birkhäuser, Boston, 2005, pp. 1–42.
[4] N. Boston, A survey of Beauville p-groups, in Beauville Surfaces and Groups, editors I. Bauer, S. Garion, A. Vdovina, *Springer Proceedings in Mathematics & Statistics*, Volume 123, Springer, 2015, pp. 35–40.
[5] R. Camina, The Nottingham Group, in New Horizons in Pro-p Groups, editors M. du Sautoy, D. Segal, A. Shalev, *Progress in Mathematics*, Volume 184, Birkhäuser, 2000, pp. 205–221.
[6] F. Catanese, Fibred surfaces, varieties isogenous to a product and related moduli spaces, *Amer. J. Math.* 122 (2000), 1–44.
[7] T.E. Easterfield, The orders of products and commutators in prime power groups, *Proc. Cambridge Phil. Soc.* 36 (1940), 14–26.
[8] B. Fairbairn, K. Magaard, and C. Parker, Generation of finite quasisimple groups with an application to groups acting on Beauville surfaces, *Proc. Lond. Math. Soc.* (3) 107 (2013), 744–798.
[9] B. Fairbairn, K. Magaard, and C. Parker, Corrigendum: Generation of finite quasisimple groups with an application to groups acting on Beauville surfaces, *Proc. Lond. Math. Soc.* (3) 107 (2013), 1220.
[10] G.A. Fernández-Alcober and Ş. Gül, Beauville structures in finite p-groups, preprint, available at [arXiv:1507.02942v2 [math.GR]]
[11] S. Garion, M. Larsen, and A. Lubotzky, Beauville surfaces and finite simple groups, *J. Reine Angew. Math.* 666 (2012), 225–243.
[12] G. González-Diez and A. Jaikin-Zapirain, The absolute Galois group acts faithfully on regular dessins and on Beauville surfaces, *Proc. London Math. Soc.* (3) 111 (2015), 775–796.
[13] R. Guralnick and G. Malle, Simple groups admit Beauville structures, *J. London Math. Soc.* 85 (2012), 649–721.
[14] B. Huppert, *Endliche Gruppen, I*, Springer, 1967.
[15] B. Huppert and N. Blackburn, *Finite Groups II*, Springer-Verlag, Berlin, 1982.
[16] C. R. Leedham-Green and S. McKay, *The Structure of Groups of Prime Power Order*, Oxford University Press, New York, 2002.
[17] J. Stix and A. Vdovina, Series of p-groups with Beauville structure, *Monatsh. Math.* (2015), doi:10.1007/s00605-015-0805-9, [arXiv:1405.3872 [math.GR]].

E-mail address: gsukran@metu.edu.tr