Analysis of Rare Variants in the C3 Gene in Patients with Age-Related Macular Degeneration

Maheswara R. Duvvari1,2, Codrut C. Paun1,2, Gabriëlle H. S. Buitendijk3,4, Nicole T. M. Saksens3, Elena B. Volokhina5, Tina Ristau6, Frederike E. Schoenmaker-Koller1, Johannes P. H. van de Ven1, Joannes M. M. Groenewoud2, Lambertus P. W. J. van den Heuvel5, Albert Hofman4,8, Sascha Fauser6, André G. Uitterlinden4,8,9, Caroline C. W. Klaver3,4, Carel B. Hoyng1, Eiko K. de Jong1,2, Anneke I. den Hollander1,2,10

1 Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands, 2 Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands, 3 Department of Ophthalmology, Erasmus Medical Centre, Rotterdam, the Netherlands, 4 Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands, 5 Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands, 6 Department of Vitreoretinal Surgery, Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany, 7 Department for Health and Evidence, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands, 8 Netherlands Consortium for Healthy Aging, Netherlands Genomics Initiative, the Hague, the Netherlands, 9 Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands, 10 Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands

Abstract

Age-related macular degeneration (AMD) is a progressive retinal disorder affecting over 33 million people worldwide. Genome-wide association studies (GWASs) for AMD identified common variants at 19 loci accounting for 15–65% of the heritability and it has been hypothesized that the missing heritability may be attributed to rare variants with large effect sizes. Common variants in the complement component 3 (C3) gene have been associated with AMD and recently a rare C3 variant (Lys155Gln) was identified which exerts a large effect on AMD susceptibility independent of the common variants. To explore whether additional rare variants in the C3 gene are associated with AMD, we sequenced all coding exons in 84 unrelated AMD cases. Subsequently, we genotyped all identified variants in 1474 AMD cases and 2258 controls. Additionally, because of the known genetic overlap between AMD and atypical hemolytic uremic syndrome (aHUS), we genotyped two recurrent aHUS-associated C3 mutations in the entire cohort. Overall, we identified three rare variants (Lys65Gln (P = 0.04), Arg735Trp (OR = 17.4, 95% CI = 2.2–136; P = 0.0003), and Ser1619Arg (OR = 5.2, 95% CI = 1.0–25; P = 0.05)) at the C3 locus that are associated with AMD in our EUGENDA cohort. However, the Arg735Trp and Ser1619Arg variants were not found to be associated with AMD in the Rotterdam Study. The Lys65Gln variant was only identified in patients from Nijmegen, the Netherlands, and thus may represent a region-specific AMD risk variant.

Introduction

Age-related macular degeneration (AMD, MIM 603075) is a retinal disorder that causes progressive visual impairment in individuals aged over 50 years [1]. AMD primarily affects the macula, the central region of the retina, eventually leading to loss of central and sharp vision. It has been estimated that more than 33 million people suffer from vision loss due to AMD worldwide [2]. AMD is a multifactorial disease caused by a combination of genetic and environmental factors. GWASs identified common variants at 19 loci that influence disease susceptibility, accounting for 15–65% of the heritability [3,4].

It has been hypothesized that the remaining genetic fraction influencing the risk for development of AMD, the so-called missing heritability, may be explained by rare, highly penetrant variants [4]. Simulation studies suggested that common variants are insufficient to account for disease burden in densely affected AMD families and that rare penetrant variants would offer a likely explanation [5]. In addition, a meta-analysis of AMD GWASs suggested that each of the 19 loci may harbour several independent variants associated to AMD susceptibility [3]. The rare variant hypothesis is supported by the identification of rare missense mutations in the fibrin-5 (FBLN5) gene and the hemicentin-1 (HMCN1) gene in AMD patients [6,7]. In addition, rare, highly penetrant variants in the genes encoding complement factor H (CFH), complement factor I (CFI), complement component 3 (C3) and complement component 9 (C9) have recently been found to be associated with AMD [8–12].

Genetic studies have identified an important role for the complement cascade in the pathogenesis of AMD [13]. Interestingly, recent studies suggested a genetic overlap between AMD and atypical hemolytic uremic syndrome (aHUS), a life-threaten-
ing renal disease caused by chronic, uncontrolled activation of the complement system. It has been reported that 4–10% of aHUS patients carry mutations in the C3 gene [14]. Moreover, disease-causing mutations previously identified in aHUS patients, such as Arg1210Cys in CFI, Gly119Arg in CFT and Lys155Gln in C3, were found to confer a high risk of developing AMD [8–12]. However, the precise nature of this genetic overlap between two clinically distinct phenotypes remains unknown.

In this study, we explored the role of rare variants in the C3 gene in the pathogenesis of AMD. We performed a two-stage analysis to identify rare variants in the C3 gene. First, sequence analysis was carried out in a discovery set of 84 AMD cases from the EUGENDA cohort, and subsequently the frequencies of these variants were determined in replication sets from EUGENDA and from the Rotterdam Study consisting of 1474 AMD cases and 2258 controls. In addition, two recurrent aHUS-associated C3 mutations were genotyped in the entire AMD case-control cohort [15,16].

Results

To investigate the involvement of rare variants in the C3 gene in AMD, the exons and flanking introns of C3 were sequenced in a discovery cohort of 84 AMD cases (Table 1) from the Nijmegen area, the Netherlands. Sequencing identified three rare variants (MAF<1%; Lys155Gln/rs147959257, Arg735Trp/rs11793540 and Ser1619Arg/rs2230210) and two common variants (MAF≥1%; Arg102Gly/rs2230199 and Pro314Leu/rs1047286) (Table 2). None of the rare variants were found in 192 ethnicity-matched and age-matched controls. The Lys155Gln variant, which has recently been associated with AMD [10–12], was found in five cases, while variants Arg735Trp and Ser1619Arg were found in one case each. Bioinformatic algorithms SIFT and PolyPhen predicted the variants Arg102Gly, Lys155Gln, and Pro314Leu not to be damaging whereas Arg735Trp and Ser1619Arg were predicted to be damaging to the protein function (Table 2).

Next, the frequencies of the rare variants Arg735Trp and Ser1619Arg, as well as the common variants Arg102Gly and Pro314Leu were determined, in replication cohorts from EUGENDA and from the Rotterdam Study, consisting of 1474 AMD cases and 2258 controls of European ancestry (Table 3). In addition, two recurrent aHUS-associated C3 mutations were genotyped in the entire AMD case-control cohort [15,16].

![Table 1. Demographics of studied subjects.](https://www.plosone.org/doi/10.1371/journal.pone.0094165.t001)
Analysis of C3 Gene in Patients with AMD

Table 2. C3 variants identified by sequence analysis of 84 AMD cases.

SNP ID	Sequence variants	Genotypes	Prediction algorithms			
	Nucleotide change	Amino acid change	Mm	mm	SIFT	PolyPhen2
rs2230199	c.304 C>G	Arg102Gly	34	11	Tolerated (0.5)	Tolerated (0)
rs1047286	c.941 C>T	Pro314Leu	30	10	Tolerated (0.1)	Tolerated (0.2)
rs147859257	c.463 A>C	Lys155Gln	5	0	Tolerated (0.2)	Benign (0.1)
rs117793540	c.2203 C>T	Arg735Trp	1	0	Deleterious (0)	Damaging (1)
rs2230210	c.4855 A>C	Ser1619Arg	1	0	Deleterious (0)	Damaging (0.8)

Major and minor allele indicated in capital and lower case respectively. Reference sequence of C3 (NM_000064) gene. SIFT: Sorting Intolerant from Tolerant (Intolerance ≤0.05). PolyPhen2: Polymorphism Phenotyping (score 0→1).
doi:10.1371/journal.pone.0094165.t002

pathogens and immune complexes. All three branches of the complement system, the classical pathway, the mannose-binding lectin pathway and the alternative pathway, converge at C3. At this stage, activation of C3 results in an amplification loop that ultimately forms a cytotytic membrane attack complex which targets pathogens. The system is tightly controlled by molecules like CFH and CFI. If the complement cascade is improperly targets pathogens. The system is tightly controlled by molecules like CFH and CFI. If the complement cascade is improperly regulated, host cells may also be subjected to complement attack, resulting in tissue damage and a spectrum of complement-mediated diseases [17].

The rare variants reported in this study have previously been described for their association with aHUS, a chronic renal disorder caused by uncontrolled activation of the complement system, often leading to renal failure. Functional experiments have been performed in this context to determine the effect of the amino acid substitutions on C3 function. The Lys65Gln variant resides in the macroglobulin (MG1) domain of C3 and was shown to cause decreased binding to CFH [16]. Although not significantly associated in our study, the Arg161Trp variant was shown to cause hyperactive C3 convertase due to increased binding to factor B (CFB), and reduced binding to CFH and membrane cofactor protein (MCP; CD46), resulting in higher complement activity [15,16,18].

Recombinant protein studies have shown that the Arg735Trp variant performs normal in binding and cleavage assays [14]. However, since the Arg735Trp residue is located in the anaphylotoxin (C3a) domain of C3, it is not likely to show an effect in the performed assays that evaluated binding and activation of the C3b fragment. Recent studies in animal models suggest that C3a anaphylotoxin has specific functions in the retina and retinal pigment epithelium, but it remains unknown how an amino acid substitution in C3a may contribute to the development of AMD [19,20].

The Lys65Gln variant associated with AMD in this study has previously been associated with aHUS, further supporting the genetic overlap between AMD and aHUS. To rule out any renal pathology, the medical histories of AMD patients who carried this variant were evaluated, but no signs of aHUS or other renal pathologies were reported in these patients. Thus, although aHUS and AMD may overlap genetically, in this study no clinical overlap was shown, suggesting that compounding (genetic or environmental) factors contribute to a particular clinical phenotype. Such a notion is further supported by a study that showed that some aHUS patients carry multiple mutations in the complement factor genes [21]. In order to understand the shared associations, cross-phenotype studies are warranted to unravel the mechanisms common and unique to aHUS and AMD. This will lead to more rational approaches to diagnosis and therapy by targeting these specific molecular targets.

The identification of rare penetrant AMD-associated variants may have relevance for diagnostic, predictive and therapeutic purposes, although the exact interpretation may remain a challenge. Recent studies have identified several highly penetrant rare variants (Lys155Gln in C3, Gly119Arg in CFI, Pro167Ser in C9 and Arg1210Cys in CFI), to be associated with AMD [8–12]. However, not all associations hold true among different populations. An example of this is the Arg1210Cys variant in CFI which was strongly associated in a North American AMD cohort [8] but not in an Icelandic AMD cohort [11] (Table 5). Genetic drift, founder effects or differences in genetic make-up that could compensate for a rare disruptive variant may underlie this phenomenon. In addition, the possibility that environmental effects could mask or enhance the penetrance of certain alleles between populations may also exist. To date, it remains unclear how these observations impact the predictive value of finding such variants in individuals. In contrast, variants that were proven to be functionally impaired and that are associated with AMD in several populations, such as the Lys155Gln variant in C3, have a much stronger predictive value.

In conclusion, we report a rare variant (Lys65Gln) at the C3 locus in patients with AMD, while an association with two other variants (Arg735Trp and Ser1619Arg) was not confirmed in other cohorts. This study further supports that rare variants contribute to the genetic variance of AMD, which may have implications for predictive testing and personalized medicine in AMD [10].

Materials and Methods

Cases and controls

Cases and controls included in this study were selected from the population-based Rotterdam Study, Rotterdam, The Netherlands and from the European Genetic Database (EUGENDA), a multicenter database comprising participants from the Cologne area, Germany and the Nijmegen area, the Netherlands. All participants of this study underwent extensive retinal imaging which has been described in detail elsewhere [22,23]. In short, AMD staging was performed by grading of stereo fundus photographs according to the standard protocol of the Rotterdam grading center and Cologne Image Reading Center (CIRCL). All subjects were classified on the basis of the eye with the more severe diagnosis. Cases were aged ≥50 years of age and AMD was classified by the presence of at least 15 intermediate (63–124 µm)
Table 3. Genotyping of C3 variants in EUGENDA and Rotterdam samples.

Amino acid change	EUGENDA cohort MAF (%)	Rotterdam Study MAF (%)	p-value (2-sided)	p-value (2-sided)
SNP ID	Controls	Cases	Controls	Cases
Rs2230199 Arg102Gly	20.2	24.4	1.2 (1.1–1.3)	0.001
Rs1047286 Pro314Leu	19.5	23.5	1.2 (1.0–1.4)	0.005
Lys65Gln	0	0.20	ND	0.04
Arg161Trp	0.15	0.15	1.5 (0.09–24)	1.00
Pro314Leu	1.00	1.00	1.00	0.06
Arg161Trp	0.06	0.06	0.35	0.03
Ser1619Arg	0.43	0.38	0.38	0.03

Major and minor allele indicated in capital and lower case respectively. MAF: Minor allele frequency. ND: OR could not be determined. NA: Not applicable.

EUGENDA: a multicenter database comprising participants from Germany and the Netherlands.

Analysis of C3 Gene in Patients with AMD

Sequencing

Sanger sequencing of the C3 (NM_000064) gene was performed in the discovery set, consisting of 94 AMD patients selected from the EUGENDA database. Primers were designed for all 41 coding exons and intron-exon boundaries by Primer3 software (Supplementary Material, Table S1). Polymerase chain reaction (PCR) was performed, and PCR amplicons were sequenced using an automated sequencer (BigDye Terminator, version 3, 3730 DNA analyzer; Applied Biosystems). Sequences were assembled and analysed using ContigExpress (Vector NTI Advance, Version 11.0, Life Technologies). Each newly identified variant was confirmed by a second independent PCR and bidirectional Sanger sequencing. The predicted effects of identified missense variants were examined using Polymorphism Phenotyping (PolyPhen) [24] and Sorting Intolerant from Tolerant (SIFT) [25].

Genotyping in the EUGENDA cohort

Variants (Lys65Gln, Arg102Gly, Arg161Trp, Pro314Leu, and Arg735Trp) were genotyped in the EUGENDA cohort using competitive allele-specific PCR assays (KasPar SNP Genotyping System, KBiosciences). KasPar genotyping was performed according to the manufacturer’s protocol in a volume of 4 μl containing 10 ng of genomic DNA, 2.5 μl of 2× reaction mix, and 0.069 μl of assay. Thermal cycling conditions included a pre-incubation step at 94°C for 15 min, 20 cycles of 94°C for 10 s, 57°C for 5 s, 72°C for 10 s, followed by 23 cycles of 94°C for 10 s, 57°C for 20 s, 72°C for 40 s. Plates were analyzed on a 7900 Fast Real-Time PCR system (Applied Biosystems). The Ser1619Arg variant was genotyped in the EUGENDA cohort by Amplification Refractory Mutation System (ARMS) [26] PCR (Supplementary Material, Table S2). PCR reactions were performed in a volume of 12.5 μl using 20 ng genomic DNA, 1× buffer, 2.5 mM MgCl2, 1 mM deoxynucleotide triphosphates, 0.2 μM of each primer, and 0.5 U Taq DNA polymerase (Invitrogen, Life technologies). Thermal cycle conditions included a pre-incubation step at 95°C for 5 min, 16 cycles of 95°C for 30 s, 69°C for 30 s, 72°C for 45 s, followed by 25 cycles of 95°C for 30 s, 67°C for 30 s, 72°C for 45 s. PCR amplicons were analysed by agarose gel electrophoresis. Each newly identified variant was confirmed by a second independent PCR and bidirectional Sanger sequencing.

Exome sequencing, exome chip analysis and genotyping in the Rotterdam Study

The occurrence of the C3 variants Lys65Gln, Arg161Trp, Arg735Trp, and Ser1619Arg in the Rotterdam Study (RS) was retrieved from exome chip and exome sequencing data. For exome sequencing purposes, genomic DNA of RS participants was
prepared from blood and fragmented into 200–400 bp fragments using Covaris Adaptive Focused Acoustics (AFA) shearing according to the manufacturer’s instructions (Covaris, Inc., Woburn, MA). Illumina TruSeq DNA Library preparation (Illumina, Inc., San Diego, CA) was performed on a Caliper Sciclone NGS workstation (Caliper Life Sciences, Hopkinton, MA), followed by exome capture using the Nimblegen SeqCap EZ V2 kit (Roche Nimblegen, Inc., Madison, WI). This capture targets 44 Mb of exonic regions covering 30,246 coding genes, 329,028 exons and 710 miRNAs. Paired-end 2 × 100 sequencing was performed on Illumina HiSeq2000 sequencer using Illumina TruSeq V3 chemistry. Downstream analyses included demultiplexing (CASAVA software, Illumina), alignment using the burrows-wheeler alignment tool, followed by data processing and filtering with Picard, SAMtools and the Genome Analysis Tool-Kit [27,28]. Finally, variant detection was performed using GATK’s Unified Genotyper. For exome chip analysis, DNA samples of the Rotterdam study were included in the joint calling experiment of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium [29]. In short, DNA from the study participants was processed on the HumanExome BeadChip v1.0 (Illumina, Inc, San Diego, CA) querying 247,870 variable sites using standard protocols at seven genotyping centers. Each center genotyped a common set of 96 HapMap samples to be utilized for quality control and determination of batch effects. Raw datafiles for all samples were transferred to a central location and assembled into a single joint calling (Illumina GenomeStudio v2011.1 software and GenTrain 2.0 clustering algorithm). Call rates >99% were used for both study samples as for HapMap controls to define genotype clusters. Finally 8994 variants were excluded for further analyses. Common variants (Arg102Gly and Pro314Leu) were genotyped in the RS cohort using Taqman assays (Applied Biosystems, Foster city, California, USA).

Statistical analysis
A Fisher’s exact test was performed to assess the association between each variant and AMD, and also to check for Hardy-Weinberg equilibrium. p-values were calculated two-sided, and values of <0.05 were considered as statistically significant. Logistic

Table 4. Conditional analysis of Arg735Trp for SNPs Arg102Gly/rs2230199 and Pro314Leu/rs1047286.

Condition	EUGENDA cohort	Combined cohorts (EUGENDA and Rotterdam)		
	OR (95%CI)	p-value	OR (95%CI)	p-value
Arg102Gly/rs2230199	22.1 (2.8–173)	0.003	6.2 (1.7–22.5)	0.005
Pro314Leu/rs1047286	22.0 (2.8–172)	0.003	6.2 (1.7–22.4)	0.005
Arg102Gly & Pro314Leu	22.1 (2.8–173)	0.003	6.2 (1.7–22.5)	0.005

EUGENDA: a multicenter database comprising participants from the Cologne area, Germany and the Nijmegen area, the Netherlands.
doi:10.1371/journal.pone.0094165.t004

Table 5. Rare variants in AMD studies.

Gene	Variant	Study (Population)	Functional implication	Conclusions
Present study				
C3	Lys65Gln	NL	CFH binding ↓ [16]	Associated with AMD, not present in other populations, proven functionality, reported in aHUS [16]
Arg161Trp	NL	CFH binding ↓, CFB binding ↑ [15,16,18]	Not associated with AMD, proven functionality, reported in aHUS [15,16,18]	
Arg735Trp	NL	Normal binding [14]	Not associated with AMD, normal functionality, reported in aHUS [14]	
Ser1619Arg	NL	NA	Not associated with AMD, not proven functionality, not found in aHUS	
Other studies				
C3	Lys155Gln	ISL, NL, GER, USA [10,11,12]	CFH binding ↓ [18]	Associated with AMD, replicated in several populations, proven functionality, reported in aHUS [18]
CFI	Gly119Arg	NL, USA [9]	CFI activity ↓ [9]	Associated with AMD, replicated in different populations, proven functionality, reported in aHUS [9,30]
C9	Pro167Ser	FRA, USA [10]	NA	Associated with AMD, replicated in different populations [10]
CFH	Arg1210Cys	USA [8]	C3b, heparin and endothelial cells binding ↓ [31]	Associated with AMD, not present in other populations, proven functionality, reported in aHUS [31]

NL: The Netherlands, ISL: Iceland, GER: Germany, USA: United states of America, FRA: France.
NA: Not applicable.
doi:10.1371/journal.pone.0094165.t005
regression analysis was performed to check for genotype interactions, to estimate the odds ratios (OR) with 95% confidence intervals (CI) and to adjust for age. Conditional analysis was performed to identify secondary association signals at the C3 locus by accounting for two known AMD SNPs. Either Arg102Gly/rs2230199 or Pro314Leu/rs1047286 was added independently and combined to the regression model as a covariate to test the effect of the variant of interest. Data were analyzed using SPSS software, version 18.0.

Supporting Information

Table S1 List of C3 gene sequencing primers.

References

1. de Jong PT (2006) Age-related macular degeneration. N Engl J Med 355:1474–1483.
2. The Global Economic Cost of Visual Impairment, The International Council of Ophthalmology website. Available: http://www.icoph.org/resources/146/The-Global-Economic-Cost-of-Visual-Impairment.html. Accessed 2010 Jun 14.
3. Fritsche LG, Chen W, Schu M, Yaspan BL, Yu Y, et al. (2013) Seven new loci associated with age-related macular degeneration. Nat Genet 45: 433–439.
4. Manelko TA, Collins FS, Cox NJ, Goldstein DB, Hindloft LA, et al. (2009) Finding the missing heritability of complex diseases. Nature 461: 717–733.
5. Sobrin L, Maller JB, Neale BM, Reynolds RC, Fagerness JA, et al. (2010) Genetic profile for five common variants associated with age-related macular degeneration in densely affected families: a novel analytic approach. Eur J Hum Genet 18: 496–501.
6. Schultz DW, Klein ML, Humphert AJ, Luzier CW, Persun V, et al. (2003) Characterization of complement C3 dysregulation predisposing to age-related macular degeneration in a large family. Hum Mol Genet 12: 3315–3323.
7. Stone EM, Braun TA, Russell SR, Kuehn MH, Lottery AJ, et al. (2004) Missense variations in the fibulin 5 gene and age-related macular degeneration. N Engl J Med 351: 346–353.
8. Raychaudhuri S, Iartchouk O, Chin K, Tan PL, Tai AK, et al. (2004) A prevalent C3 mutation in aHUS affects complement factor H binding. Pediatr Nephrol 19: 219–225.
9. van de Ven JPH, Nilsson SC, Tan PL, Buitendijk GHS, Ristau T, et al. (2013) A rare penetrant mutation in CFH, C3 and C9 are associated with high risk of age-related macular degeneration. Nat Genet 45: 1232–1236.
10. van de Ven JPH, Nilsson SC, Tan PL, Buitendijk GHS, Ristau T, et al. (2013) A functional variant in the CFI gene confers a high risk of age-related macular degeneration. Nat Genet 45: 813–817.
11. Seddon JM, Yu Y, Miller EC, Reynolds R, Tan PL, et al. (2013) Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration. Nat Genet 45: 1366–1370.
12. Helgason H, Sulem P, Duvvari MR, Luo H, Thorleifsson G, et al. (2013) A rare case of aHUS. JASN 24: 1485–1494.
13. Walport MJ (2001) Complement. First of two parts. N Engl J Med 344: 1058–1066.
14. Fremeaux-Bacchi V, Miller EC, Liszewski MK, Strain L, Blouin J, et al. (2008) Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood 112: 4984–4992.
15. Roumenina LT, Frimat M, Miller EC, Provot F, Dragon-Durey MA, et al. (2012) A prevalent C3 mutation in aHUS patients causes a direct C3 convertase gain of function. Blood 119: 4182–4191.
16. Volokhina E, Westra D, Xue X, Gros P, van de Kar N, et al. (2012) Novel C3 mutation p.Lys65Gln in aHUS affects complement factor H binding. Pediatr Nephrol 27: 1519–1524.
17. Hohler VM (2008) The spectrum of complement alternative pathway-mediated diseases. Immunol Rev 223: 300–316.
18. Miller F (2012) Characterization of complement C3 dysregulation predisposing to two human disease states, Washington university open scholarship website. Available: http://open scholarship.wusl.edu/end/719. Accessed 2012.
19. Ramos de Carvalho JE, Klaassen I, Vogels IM, Schipper-Krom S, Van Noorden CJ, et al. (2013) Complement factor C3a alters protease function in human RPE cells and in an animal model of age-related RPE degeneration. Invest Ophthalmol Vis Sci 54: 6849–6850.
20. Haynes T, Luz-Madrigal A, Reis ES, Echeverri Ruiz NP, Grajaes-Esquiel E, et al. (2013) Complement anaphylatoxin C3a is a potent inducer of embryonic chick retinal regeneration. Nat Commun; doi: 10.1038/ncomms1312.
21. Esparza-Gordillo J, Goicocheza de JE, Buil A, Carreras BL, Lopera-Trascasa M, et al. (2005) Predispicion to atypical hemolytic uremic syndrome involves the concurrence of different susceptibility alleles in the regulators of complement activation gene cluster in 1q32. Hum Mol Genet 14: 703–712.
22. Hofman A, van Duijn CM, Franco OH, Bram MA, Janssen HL, et al. (2011) The Rotterdam Study: 2012 objectives and design update. Eur J Epidemiol 26: 657–660.
23. Smallbodiz D, Klaver CC, Klevering BJ, Boon CJ, Groenewoud JM, et al. (2012) Risk alleles in CFH and ARMS2 are independently associated with systemic complement activation in age-related macular degeneration. Ophthalmology 119: 339–346.
24. Adhulheil IA, Schmidt S, Poshkin L, Ramesny VE, Gerasimova A, et al. (2010) A method and server for predicting damaging missense mutations. Nat Methods 7: 248–249.
25. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding nonsynonymous variants on protein function using the SIFT algorithm. Nat Protoc 4: 1073–1081.
26. Newton CR, Graham A, Heptinsall LE, Powell SJ, Summers C, et al. (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucl Acids Res 17: 2503–2516.
27. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.
28. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297–1303.
29. Grove ML, Yu B, Cochran BJ, Harritmanus B, Bi JG, et al. (2013) Best practices and joint calling of the HumanExome BeadChip the CHARGE Consortium. PLoS One: doi 10.1371/journal.pone.006905.29.
30. Bienaime F, Dragon-Durey MA, Regnier CH, Nilsson SC, Kwan WH, et al. (2013) Mutations in components of complement influence the outcome of Factor I-associated atypical hemolytic uremic syndrome. Kidney Int 77, 339–349.
31. Manuelian T, Hellweg J, Meri S, Caprioli J, Noris M, et al. (2003) Mutations in factor H reduce binding affinity to C3b and heparin and surface attachment to endothelial cells in hemolytic uremic syndrome. J Clin Invest 111, 1181–1190.

Table S2 Genotyping probes: List of Amplification Refractory Mutation System (ARMS) and kaspar primers.

Acknowledgments

We would like to thank Bert Janssen and Bjorn Bakker for excellent technical assistance.

Author Contributions

Conceived and designed the experiments: MRD EKDJ AIDH. Recruited and evaluated the subjects: NTMS TR JPHVDV SF CCWK CBH. Performed the experiments: MRD CCP GHSB FESK AH AGU. Analyzed the data: MRD JMMG EBV LPWJVDH. Wrote the manuscript: MRD GHSB EKDJ AIDH.