Disruptions to hippocampal adult neurogenesis in rodent models of fetal alcohol spectrum disorders

Karen E. Boschen and Anna Y. Klintsova

Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA

ABSTRACT
Exposure of the embryo and fetus to alcohol can lead to abnormal physical, neuroanatomical, and behavioral development, collectively known as Fetal Alcohol Spectrum Disorders (FASDs). This mini-review focuses on the negative impact of prenatal alcohol exposure on hippocampal adult neurogenesis, an important process by which the brain adds new neurons throughout the lifespan, and hippocampal dendritic complexity through the discussion of various mammalian models of FASDs. Alcohol-induced aberrations in the outgrowth, phenotype, and stability of dendrites of neurons in the hippocampus and the prefrontal cortex will also be discussed. Timing of alcohol exposure during development (first trimester vs. third trimester-equivalent) can determine whether cell proliferation or long-term cell survival is impaired. Our work demonstrating that third trimester-equivalent exposure has a more significant impact on cell survival and dendritic morphology than rate of cell proliferation. Understanding the impact of prenatal ethanol exposure on adult neurogenesis is important as altered rates of new cell generation or successful integration of adult-born neurons could contribute to many of the hippocampal-associated deficits in memory and cognitive function observed in patients with FASDs. In addition, this commentary discusses evidence in support of aerobic exercise and environmental complexity (“enrichment”) as potential therapeutic strategies for alcohol-related deficits.

ARTICLE HISTORY
Received 19 December 2016
Revised 17 April 2017
Accepted 24 April 2017

KEYWORDS
dendrites; exercise; plasticity; prenatal ethanol; proliferation

Introduction
Adult neurogenesis occurs in 2 specific brain regions across the lifespan: the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus. The cells generated in these 2 regions have distinct fates. Progenitor cells originating in the SVZ migrate via the rostral migratory stream to the olfactory bulb where they mature into interneurons, while the majority of adult-born cells in the SGZ differentiate into dentate gyrus granule cells and migrate into the granule cell layer. There is a growing body of evidence that hippocampal adult neurogenesis is important for memory formation, cognition, and behaviors associated with the hippocampus (reviewed in1). Newly generated granule cells receive excitatory synaptic connections from the entorhinal cortex and are indistinguishable from the preexisting granule cell population within 6–8 weeks since their birth. Adult neurogenesis is separated into stages of cell generation and maturation (as depicted in Fig. 1), including initial cell proliferation (1A), differentiation into either a neuronal or glial fate (1B), migration of the new neurons into the granule cell layer, extension of neurites and initiation of synaptic contacts (1C-D), and long-term survival (dependent on successful synaptic integration). Various specific endogenous proteins can be used to label cells at different stages of maturation (Fig. 1). Stem cells and neural progenitors are commonly labeled for the nuclear proteins nestin, Ki-67, GFAP, or Sox2, though the specific populations labeled with the proteins differ (e.g. Ki-67 labels actively dividing progenitor cells only, not the entire progenitor pool). The number of immature neurons can be measured using the endogenous markers doublecortin (DCX), polysialylated-neural cell adhesion molecule (PSA-NCAM), or NeuroD, which label neuronal progenitors and immature neurons ranging from a few days to 2 weeks old. DCX is a cytoskeletal protein, while PSA-NCAM is expressed in the membrane and NeuroD is restricted to the nucleus. In mice, calretinin is also expressed in immature neurons; however calretinin is not reliably

CONTACT Anna Y. Klintsova klintsov@psych.udel.edu 225 Wolf Hall, Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA.

© 2017 Taylor & Francis
expressed in cell types besides inhibitory interneurons in other animal models, making it a useful marker both more specific and limited. Mature granule cells can be labeled with NeuN or the calcium-binding protein calbindin. Exogenously administered markers such as green fluorescent proteins (delivered as fluorescent reporter genes by retroviral injection) or thymidine analog bromodeoxyuridine (BrdU) can also be used to determine cell age, as these compounds are incorporated into the cell DNA during active division.

Prenatal alcohol exposure and proliferation of adult-born hippocampal granule cells

Various environmental influences can affect the process of adult neurogenesis, including its disruption by stress or drug exposure or enhancement by exercise or exposure to hippocampal-associated learning paradigms.\(^3\)\(^4\)\(^5\)\(^6\) Exposure of the fetus to alcohol during the prenatal period can have a devastating effect on the offspring, including craniofacial dysmorphologies and negative behavioral and cognitive outcomes. The range of deficits caused by prenatal alcohol exposure are collectively known as Fetal Alcohol Spectrum Disorders (FASD) and are estimated to affect up to 5% of live births each year in the United States.\(^7\) Among the cognitive impairments often observed in individuals with FASDs are spatial memory deficits, such as difficulty performing on a virtual water maze,\(^8\) suggesting individuals with prenatal alcohol exposure have some degree of hippocampal damage.

Damage to the hippocampus following in utero alcohol exposure has been borne out through rodent models of FASD. Behavioral performance on tasks relying on intact hippocampal function and adult neurogenesis, such as the Morris Water Maze or contextual fear conditioning, are often impaired in rodents exposed to alcohol either prenatally or during the early postnatal period (modeling the third trimester in human pregnancy). Most relevant to the current review, these models demonstrate that alcohol exposure during initial brain development can reduce the health of neural progenitors in the adult hippocampus and the ability of adult born granule cells to successfully mature and integrate into the hippocampal trisynaptic circuit. While the literature regarding this phenomenon is mixed, factors such as timing of alcohol exposure during development, peak blood alcohol concentration reached, and how adult neurogenesis is measured likely accounts for much of this variability.

Rodent models of FASD can model alcohol exposure during specific developmental events (e.g., gastrulation or neurulation), target specific trimesters of pregnancy, or administer alcohol throughout the duration of gestation. First and second trimester-equivalent exposure is modeled by administering alcohol to pregnant dams through gavage, injection, or vapor. The third trimester-equivalent occurs postnataally in rodents, with a steep increase in brain growth occurring during the first 2 postnatal weeks. Thus, to target developmental processes occurring during the third trimester, alcohol is delivered directly to the pups following birth, either through intragastric intubation, injection, or vapor. Alcohol most profoundly affects developmental processes occurring during

Figure 1. Schematic of the maturation stages of hippocampal adult neurogenesis and associated cellular markers. A) Proliferating cell pool located in the subgranular zone (SGZ) labeled by markers including Ki-67, Sox2, Nestin, and GFAP. B) Postmitotic neuronal progenitors begin to migrate out of the SGZ into the granule cell layer (GCL). These cells express doublecortin (DCX) and have very short neurite extensions. C)–D) Immature neurons continue to express DCX and in the later stages begin to express NeuN. E) After 4–6 weeks, adult-born neurons make functional, excitatory synapses with projections from entorhinal cortex pyramidal cells (highlighted in the red box). Mature granule cells express both NeuN and calcium-binding protein calbindin. By 8 weeks following proliferation, these new neurons are indistinguishable from the older granule cell population.

\(^3\) Bosch, C., & Bosch, K. (2010). Developmental origins of health and disease. *Science*, 330(6005), 894-898.
\(^4\) Klintsova, A., & Bosch, K. (2014). Fetal alcohol spectrum disorders: A paradigm for developmental plasticity and plasticity-induced neuropsychiatric disease. *Cell*, 157(6), 1282-1298.
\(^5\) Klintsova, A. Y., & Bosch, K. E. (2015). The development of adult neurogenesis: Fetal alcohol spectrum disorders as a model. *Brain*, 138(Pt 9), 2288-2304.
\(^6\) Klintsova, A. Y., & Bosch, K. E. (2015). The development of adult neurogenesis: Fetal alcohol spectrum disorders as a model. *Brain*, 138(Pt 9), 2288-2304.
\(^7\) Hämäläinen, M., & Sillanpää, M. (2015). Fetal alcohol spectrum disorders. *The Lancet*, 386(9996), 607-615.
\(^8\) Klintsova, A. Y., & Bosch, K. E. (2015). The development of adult neurogenesis: Fetal alcohol spectrum disorders as a model. *Brain*, 138(Pt 9), 2288-2304.
exposure or subsequent stages that rely on successful completion of events that are disrupted by alcohol exposure. While all stages of adult neurogenesis have been found to be affected in models of FASD, current evidence suggests alcohol exposure that targets early gestational time points has a more consistent and severe impact on hippocampal cell proliferation compared with cell survival. Redila and colleagues9 reported that the size of the progenitor pool and the number of proliferating neurons was reduced following prenatal alcohol exposure (equivalent to the first 2 trimesters) in a rat model of FASD. A single binge exposure on PD7 was shown to disrupt hippocampal cell proliferation in adult mice.10 Recently, prenatal alcohol exposure was found to disrupt olfactory bulb and hilar cell proliferation in infant and juvenile vervet monkeys.11 Alcohol could alter cell proliferation through various pathways. Ieraci and Herrera10 reported increases in caspase-3 co-localization with progenitor cell markers 12 hours following the alcohol exposure, suggesting apoptosis within the neonatal hippocampal progenitor pool as a potential source of disrupted neurogenesis in the adult brain. In addition, studies have suggested elongation of the cell cycle as a contributing factor in decreased cell proliferation12,13 in models of FASDs. Interestingly, adolescent alcohol exposure was found to target the S-phase of the cell cycle in neural progenitors in the rat dentate gyrus, decreasing the time spent in this stage and leading to a small, but significant, increase in cell proliferation.14 Alcohol-induced changes to neurotransmitter and growth factor expression necessary for normal stem cell regulation are also likely contributing factors.

Deficits in neuronal maturation processes and survival have been some of the most consistently reported alcohol-related effects on adult neurogenesis, particularly in postnatal rodent models of FASDs.10,15-18 A commonly used postnatal model of alcohol exposure in which pups are exposure to alcohol from postnatal days (PD) 4–9 in a binge-like alcohol exposure targets the growth spurt of the hippocampus and prefrontal that occurs during the third trimester of pregnancy. This model results in decreased the survival of newly generated cells in the adult rat hippocampus.17 Specifically, rats were administered bromodeoxyuridine (BrdU), a drug that labels actively proliferating cells, every other day from PD30–50. When the number of BrdU+ cells was assessed on PD80, 30 d following the injections, there were significantly fewer BrdU+ cells surviving in the alcohol-exposed group compared with controls. This reduction in surviving cells was replicated in a study where the number of BrdU+ cells was estimated following single injections of a thymidine analog on either PD42 or 80.15,16,19 In all these experiments, no alcohol-induced changes in cell proliferation were observed either through analysis of BrdU+ cell number 2 hours following injection or number of cells labeled with the endogenous protein Ki-67. In another study, a single day binge of alcohol on PD7 was sufficient to significantly decreased the number of adult-born cells that survived in adult mice (PD147) as measured by labeling with DCX and BrdU. Together, this body of work suggests that alcohol exposure during hippocampal development can permanently disrupt neuronal maturation and synaptic integration. More work is needed to determine signaling pathways that could be contributing to these effects.

It is important to note that several studies did not demonstrate an effect of developmental alcohol exposure on adult neurogenesis.17,18,20-23 As mentioned previously, several factors including timing of alcohol exposure, blood alcohol concentration achieved, and methods of analyzing adult neurogenesis could contribute to the different results reported across the literature. Genetic differences between strains that alter susceptibility or resilience to alcohol pathogenesis might also contribute. It is likely that alterations to hippocampal adult neurogenesis coincide with or are caused by dysfunction of other neuroplastic processes or signaling pathways as part of a broad pattern of central nervous system damage caused by developmental alcohol exposure. Thus, the lack of direct impact on adult neurogenesis does not imply a healthy brain or indicate that other neuroplastic processes are not affected. Systematic research is needed to answer these questions and identify molecular pathways that might be involved in alcohol-induced deficits in neurogenic processes.

Immature neurons and dendritic complexity in rodent models of FASD

A limited number of studies have investigated the effect of alcohol exposure on intermediate stages of cell differentiation and maturation. Gil-Mohapel and colleagues18 reported increased basic helix-loop-helix transcription factor NeuroD expression in the adult rat hippocampus following a perinatal exposure model
(all 3 trimester-equivalent). This increase in NeuroD+ cells could indicate delayed or stalled neuronal maturation in this model of FASD, a phenomenon that has been reported in in vitro models. In contrast, previous work from our research group has reported no change in the number of DCX+ cells in the adult rat hippocampus following PD4–9 alcohol exposure. Combined with our findings that demonstrate impaired cell survival in alcohol-exposed rats 30 d following a BrdU injection, it is likely that the reduction in neuronal survival in alcohol-exposed animals takes place soon after the cells have stopped expressing DCX. Ultimately, an inability of the hippocampus to place soon after the cells have stopped expressing DCX. Ultimately, an inability of the hippocampus to produce and integrate the number of new granule cells necessary for new memory formation could contribute to the cognitive deficits in children with FASDs and the behavioral impairments observed in animal models.

Our recent publication explored whether third trimester-equivalent alcohol exposure (PD4–9, 5.25 g/kg/day via intragastric intubation) altered dendritic morphology of immature (DCX+) granule cells in the adult rat dorsal dentate gyrus. We specifically targeted immature neurons which displayed significant neurite outgrowth, as these cells represented the oldest population of DCX+ neurons (Fig. 2A). These cells would soon progress through competitive integration and survival, during which the formation of a sufficient number of functional, excitatory synapses is necessary for the neuron’s continued survival. Our work demonstrated that PD4–9 alcohol exposure significantly decreased dendritic complexity of adult-born immature granule cells when measured on PD72. Using the 3D Sholl analysis, which places concentric spheres extending from the cell soma at set radii, we found that neonatal alcohol exposure was associated with reductions in total dendritic material (length) per radius (Fig. 2B), number of dendritic intersections at each radius (Fig. 2C), and the number of bifurcations per radius (Fig. 2D). Simpler dendritic structure could impair the ability of the cells to make a sufficient number of synaptic connections, hinting at a possible mechanism contributing to the previously reported decreased long-term cell survival reported in alcohol-exposed animals. Interestingly, when the numbers of progenitor cells (Ki-67+; Fig. 2E) and immature (DCX+; Fig. 2F) neurons in the dorsal dentate gyrus were assessed on PD72 using unbiased stereology, there were no significant treatment-related changes found, replicating our previous findings, as well as supporting the hypothesis that this model of alcohol exposure does not alter new cell generation or the initial stages of maturation. Instead, our model of FASD targets the later stages of granule cell maturation.

Previous work from our research group and others consistently report changes to dendritic morphology and spine density in late-developing structures such as the prefrontal cortex and hippocampus in rodent models of FASD. In the dentate gyrus, chronic alcohol exposure in adult rats decreased dendritic length of granule cells. Shorter exposures (1–4 weeks) also decreased dendritic complexity of immature neurons in the adult dentate gyrus. Specifically, the number of dendritic endings and total length was decreased following all alcohol exposure paradigms. Changes to dendritic morphology of mature neurons could be indicative of disrupted hippocampal connectivity and circuit dysfunction.

Administration of alcohol to cultured CA1 pyramidal cells decreased dendritic length and number of dendrites per cell. Spine density of CA1 neurons is not affected by prenatal alcohol in rats housed in isolation; however, alcohol-exposed rats housed in a complex “enriched” environment (which increases spine density in normal animals) display no change in spine density compared with animals housed in standard conditions. These findings suggest that alcohol exposure might produce “loss of function” deficits or latent impairments that only emerge when the system is challenged in some way. This hypothesis is also supported by evidence that exercise robustly increases cell proliferation in the dentate gyrus of normal rats that persists for up to 30 d after access to wheel running ceases. Conversely, while there is no baseline reduction in cell proliferation and exercise initially increases new cell generation in alcohol-exposed rats, this enhancement is no longer present 30 d later as seen in control animals.

Outside of the hippocampus, alcohol-induced changes to dendritic morphology have also been reported in other regions. Perinatal alcohol exposure (combining pre- and postnatal exposure) had limited effect on dendritic structure in the nucleus accumbens, but reduced spine density on Layer II/III pyramidal cell dendrites in the medial prefrontal cortex. PD4–9 alcohol exposure negatively impacts basilar dendritic complexity in Layer II/III pyramidal neurons of the medial prefrontal cortex. Spine morphology on the basilar dendrites shifted to a more mature, less plastic
phenotype, though spine density was unchanged. On the other hand, the apical dendrites are affected in an almost opposite pattern by PD4–9 alcohol exposure: dendritic tree morphology was stable but spine density was significantly decreased in alcohol-exposed animals.33 Similar results were found following PD2–6 exposure via vapor inhalation: Layer II/III basilar dendrites had a simplified structure compared with controls.34 Based on these findings, it is possible that prefrontal cortex communication with subcortical structures, such as thalamic nuclei, is impaired in alcohol-exposed animals. The exact mechanism through which developmental alcohol exposure compromises dendritic complexity in the adult brain is not well understood, but it is thought that these alterations contribute significantly to cognitive deficits in children with FAS. Overall, the abnormalities in dendritic morphology and spine density in alcohol-exposed animals likely contribute significantly to the behavioral deficits observed in rodent models of FASDs.

Figure 2. Third trimester-equivalent alcohol exposure (PD4–9; 5.25 g/kg/day) alters dendritic complexity of DCX+ cells in the PD72 rat dorsal dentate gyrus without affecting the number of Ki-67+ and DCX+ cells. A) Representation of DCX+ immature neurons in the dentate gyrus traced and used for Sholl analysis (40x lens). Alcohol-exposed animals had significantly less dendritic material per radius (B), fewer dendritic intersections (C), and fewer bifurcations per radius (D) compared with controls. Significant differences (p < 0.05) at each radius are indicated as a = AE vs. SC, b = AE vs. SI, and c = SI vs. SC. Number of Ki-67+ progenitor cells (E) and DCX+ immature granule cells (F) did not differ between the neonatal conditions on PD72. AE: alcohol-exposed, SI: sham-intubated, SC: suckle control. All values are means ± SEM. Fig. 2A–D adapted with permission from Boschen et al., 201624 (see Fig. 2, 4–6).

Exercise and environmental complexity benefit the alcohol-exposed brain

Understanding the effects of developmental alcohol exposure on hippocampal adult neurogenesis and overall hippocampal function is necessary in order for the development of effective behavioral and
pharmaceutical therapies. Our research group has investigated the impact of exercise and exposure to a complex environment on the alcohol-exposed rat brain. Our model of exercise uses a cage of 3 rats with 24 hr access to a stainless steel running wheel. The rats can run in the wheel either separately or together, and, in general, run ~3 miles per 24 hr period. The environmental complexity paradigm consists of 9–12 rats housed per cage for 30 d. The cage has 3 floors and an assortment of enrichment items (tunnels, balls, igloos, blocks) which are changed out for novel items every 2 d. We have reported that 12 d of wheel running followed by 30 d of housing in environmental complexity (WREC) brings the rate of survival of adult-born neurons in the postnatally alcohol-exposed rat hippocampus back to control levels.16,35 In addition, WREC returns behavioral performance (that demonstrated deficits in hippocampal-associated tasks) to control levels.36,35 However, Choi and colleagues37 reported that moderate prenatal alcohol exposure prevented mice from showing a robust neurogenic response to housing in EC. Differences in species, alcohol exposure window, or EC paradigm could explain discrepancies in the results between these 2 studies. The “priming” of alcohol-exposed rats with the experience of enhanced activity (running in the wheel) could possibly make them more susceptible to the stimuli in the EC. Our recent study used both WREC and 42 of continuous access to wheel running (WRWR) as behavioral interventions for postnatal alcohol exposure.24 We reported that both WREC and WRWR dramatically enhanced dendritic complexity of immature dentate gyrus neurons in PD4–9 alcohol-exposed adult rats. The beneficial influence of WREC on dendritic morphology could explain how this intervention enhances long-term cell survival.16 Other studies have also demonstrated the positive effect of exercise on hippocampal adult neurogenesis and dendritic complexity.38,39,40,41,42,43,44

Both interventions likely work, to a large extent, through similar mechanisms to alter dendritic morphology and promote cell survival: transient increases in neurotrophic factors, angiogenesis, and hippocampal circuit activation. Our study24 showed that WRWR strongly increased levels of the neurotrophin brain-derived neurotrophic factor (BDNF), a molecule critical for cell maturation and neuroplasticity. Intriguingly, BDNF was not enhanced following WREC in our experiment, despite the powerful positive benefit seen on dendritic complexity. Recent work has suggested that EC promotes immature neuron maturation in the dentate gyrus through the activation of parvalbumin-positive interneurons by mature granule cells.45 Contrary to its action in the adult brain, GABA has an excitatory influence on neural progenitors and immature neurons and is critical for proper neuronal maturation. GABAergic stimulation of immature neurons by this population of interneurons prepares these cells of receive excitatory input from the entorhinal cortex, enhancing their long-term survival potential. Both empirical evidence and the ability to easily translate these interventions for use in humans support the further investigation of exercise and environmental complexity as behavioral therapies for children with FASDs.

Conclusion

FASDs place a heavy physical, emotional, and monetary burden on the affected individual, their immediate families and society as a whole. Uncovering the distinct ways that prenatal alcohol exposure impacts cognition across the lifespan is a key step in developing appropriate therapeutic interventions to help individuals with FASDs live independent and fulfilling lives. The evidence presented in this review suggests alcohol-induced deficits in hippocampal adult neurogenesis and dendritic morphology as possible contributors to memory and cognitive impairments observed in animal models of FASDs. Adult neurogenesis and dendritic outgrowth are dynamic, complex processes that require a precise balance of neurochemical signaling. Alcohol administration during key developmental time points disrupts the ability of newly generated hippocampal cells to successfully mature and form stable, functional connections long after the alcohol exposure has ceased. However, current literature on this topic is mixed, and more research is needed to determine genetic and environmental factors that account for this variability. In addition, further work is needed to extend these results to the clinical population. Once the exact nature of alcohol’s disruptive influence on adult neurogenesis and dendritic structure are understood, specific pharmacological treatments can be developed. Until then, exercise and targeted cognitive therapies represent promising therapeutic avenues to manage the behavioral symptoms of FASDs, in part through their beneficial effect on adult neurogenesis and general hippocampal plasticity.
Acknowledgments

The authors would like to thank those individuals who assisted with the collection of data discussed in this review, specifically Sarah E. McKeown and Dr. Tania L. Roth. In addition, thank you to the undergraduate research assistants responsible for technical assistance.

Funding

Work presented in this review was supported by National Institutes of Health/NIGMS COBRE: The Delaware Center for Neuroscience Research 1P20GM103653 -01A1 to AYK.

ORCID

Anna Y. Klintsova http://orcid.org/0000-0003-0626-8385

References

[1] Cameron HA, Glover LR. Adult Neurogenesis: Beyond Learning and Memory”. Annu Rev Psychol 2015; 66:53-81; PMID:25251485; https://doi.org/10.1146/annurev-psych-010814-015006
[2] Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A, von der Behrens W, Kempermann G. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci 2003; 24 (3):603-613; PMID:14664811; https://doi.org/10.1016/S1044-7431(03)00207-0
[3] Mirescu C, Gould E. Stress and adult neurogenesis. Hippocampus 2006; 16(3):233-8; PMID:16411244; https://doi.org/10.1002/hipo.20155
[4] Eisch AJ, Harburg GC. Opiates, psychostimulants, and adult hippocampal neurogenesis: Insights for addiction and stem cell biology. Hippocampus 2006; 16(3):271-86; PMID:16411230; https://doi.org/10.1002/hipo.20161
[5] Van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 1999; 2(3):266-70; PMID:10195220; https://doi.org/10.1038/6368
[6] Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 1999; 2(3):260-5; PMID:10195219; https://doi.org/10.1038/6365
[7] May PA, Gossage JP, Kalberg WO, Robinson JK, Buckley D, Manning M, Hoyme HE. Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in—school studies. Dev Disabil Res Rev 2009; 15(3):176-92; PMID:19731384; https://doi.org/10.1002/ddr.68
[8] Hamilton DA, Kodituwakk, P, Sutherland RJ, Savage DD. Children with Fetal Alcohol Syndrome are impaired at place learning but not cued-navigation in a virtual Morris water task. Behav Brain Res 2003; 143(1):85-94; PMID:12842299; https://doi.org/10.1016/S0166-4328(03)00028-7
[9] Redila VA, Olson AK, Swann SE, Mohades G, Webber AJ, Weinberg J, Christie BR. Hippocampal cell proliferation is reduced following prenatal ethanol exposure but can be rescued with voluntary exercise. Hippocampus 2006; 16(3):305-11; PMID:16425237; https://doi.org/10.1002/hipo.20164
[10] Ieraci A, Herrera DG. Single alcohol exposure in early life damages hippocampal stem/progenitor cells and reduces adult neurogenesis. Neurobiol Dis 2007; 26 (3):597-605; PMID:17490887; https://doi.org/10.1016/j.nbd.2007.02.011
[11] Burke MW, Inyatkin A, Ptito M, Ervin FR, Palmour RM. Prenatal Alcohol Exposure Affects Progenitor Cell Numbers in Olfactory Bulbs and Dentate Gyrus of Vervet Monkeys. Brain Sci 2016; 6(4):52; https://doi.org/10.3390/brainsci6040052
[12] Borges S, Lewis PD. Effects of ethanol on postnatal cell acquisition in the rat cerebellum. Brain Res 1983; 271 (2):388-91; PMID:6616187; https://doi.org/10.1016/0006-8993(83)90308-6
[13] Miller MW, Nowakowski R. Effect of prenatal exposure to ethanol on the cell cycle kinetics and growth fraction in the proliferative zones of fetal rat cerebral cortex. Alcohol: Clin Exp Res 1991; 15(2):229-32; https://doi.org/10.1111/j.1530-0277.1991.tb01861.x
[14] McClain JA, Hayes DM, Morris SA, Nixon K. Adolescent binge alcohol exposure alters hippocampal progenitor cell proliferation in rats: effects on cell cycle kinetics. J Comp Neurol 2011; 519(13):2697-710; PMID:21484803; https://doi.org/10.1002/cne.22647
[15] Hamilton G, Murawsksi N, Cyr SS, Jablonski S, Schiffino F, Stanton M, Klintsova A. Neonatal alcohol exposure disrupts hippocampal neurogenesis and contextual fear conditioning in adult rats. Brain Res 2011; 1412:88-101; PMID:21816390; https://doi.org/10.1016/j.brainres.2011.07.027
[16] Hamilton GF, Boschen KE, Goodlett CR, Greenough WT, Klintsova AY. Housing in environmental complexity following wheel running augments survival of newly generated hippocampal neurons in a rat model of binge alcohol exposure during the third trimester equivalent. Alcohol: Clin Exp Res 2012; 36(7):1196-204; https://doi.org/10.1111/j.1530-0277.2011.01726.x
[17] Klintsova AY, Helfer JL, Calizo LH, Dong WK, Goodlett CR, Greenough WT. Persistent impairment of hippocampal neurogenesis in young adult rats following early postnatal alcohol exposure. Alcohol: Clin Exp Res 2007; 31(12):2073-82; https://doi.org/10.1111/j.1530-0277.2007.00528.x
[18] Gil-Mohapel J, Boehme F, Patten A, Cox A, Kainer L, Giles E, Brocardo PS, Christie BR. Altered adult hippocampal neuronal maturation in a rat model of fetal alcohol syndrome. Brain research 2011; 1384:29-41; PMID:21303667; https://doi.org/10.1016/j.brainres.2011.01.116
[19] Boschen KE, Hamilton GF, Delorme JE, Klintsova AY. Activity and social behavior in a complex environment in
[20] Singh AK, Gupta S, Jiang Y, Younus M, Ramzan M. In vitro neurogenesis from neural progenitor cells isolated from the hippocampus region of the brain of adult rats exposed to ethanol during early development through their alcohol-drinking mothers. Alcohol Alcoholism 2009; 44(2):185-198; PMID:19136496; https://doi.org/10.1093/alkalc/agn010

[21] Helfer JL, Goodlett CR, Greenough WT, Klintsova AY. The effects of exercise on adolescent hippocampal neurogenesis in a rat model of binge alcohol exposure during the brain growth spurt. Brain Res 2009; 1294:1-11; PMID:19647724; https://doi.org/10.1016/j.brainres.2009.07.090

[22] Boehme F, Gil-Mohapel J, Cox A, Patten A, Giles E, Brocardo PS, Christie BR. Voluntary exercise induces adult hippocampal neurogenesis and BDNF expression in a rodent model of fetal alcohol spectrum disorders. Eur J Neurosci 2011; 33(10):1799-811; PMID:21535455; https://doi.org/10.1111/j.1460-9568.2011.07676.x

[23] Hamilton G, Bucko P, Miller D, DeAngelis R, Krebs C, Rhodes J. Behavioral deficits induced by third-trimester equivalent alcohol exposure in male C57BL/6J mice are not associated with reduced adult hippocampal neurogenesis but are still rescued with voluntary exercise. Behav Brain Res 2016; 314:96-105; PMID:27491590; https://doi.org/10.1016/j.bbr.2016.07.052

[24] Boschken M, McKeown S, Roth T, Klintsova A. Impact of exercise and a complex environment on hippocampal dendritic morphology, Bdnf gene expression, and DNA methylation in male rat pups neonatally exposed to alcohol. Dev Neurobiol 2016 PMID:27597545

[25] Kempermann G. Adult Neurogenesis 2. Oxford University Press; 2011

[26] Carneiro A, Assunção M, De Freitas V, Paula-Barbosa MM, Andrade JP. Red wine, but not Port wine, protects rat hippocampal dentate gyrus against ethanol-induced neuronal damage—relevance of the sugar content. Alcohol Alcohol 2008; 43(4):408-15; PMID:18445757; https://doi.org/10.1093/alkalc/agn024

[27] He J, Nixon K, Shetty AK, Crews FT. Chronic alcohol exposure reduces hippocampal neurogenesis and dendritic growth of newborn neurons. Eur J Neurosci 2005; 21(10):2711-20; PMID:15926919; https://doi.org/10.1111/j.1460-9568.2005.04120.x

[28] Yanni PA, Lindsay TA. Ethanol inhibits development of dendrites and synapses in rat hippocampal pyramidal neuron cultures. Dev Brain Res 2000; 120(2):233-43; PMID:10775775; https://doi.org/10.1016/S0165-3806(00)00015-8

[29] Berman RF, Hannigan JH, Sperry MA, Zajac CS. Prenatal alcohol exposure and the effects of environmental enrichment on hippocampal dendritic spine density. Alcohol 1996; 13(2):209-16; PMID:8814658; https://doi.org/10.1016/0741-8329(95)02049-7

[30] Lawrence RC, Otero NK, Kelly SJ. Selective effects of perinatal ethanol exposure in medial prefrontal cortex and nucleus accumbens. Neurotoxicol Teratol 2012; 34 (1):128-35; PMID:21871563; https://doi.org/10.1016/j.ntt.2011.08.002

[31] Hamilton GF, Criss KJ, Klintsova AY. Voluntary exercise partially reverses neonatal alcohol-induced deficits in mPFC layer II/III dendritic morphology of male adolescent rats. Synapse 2015; 69(8):405-15; PMID:25967699; https://doi.org/10.1002/syn.21827

[32] Hamilton GF, Whitcher LT, Klintsova AY. Postnatal binge-like alcohol exposure decreases dendritic complexity while increasing the density of mature spines in mPFC Layer II/III pyramidal neurons. Synapse 2010; 64(2):127-35; PMID:19771589; https://doi.org/10.1002/syn.20711

[33] Whitcher LT, Klintsova AY. Postnatal binge-like alcohol exposure reduces spine density without affecting dendritic morphology in rat mPFC. Synapse 2008; 62(8):566-73; PMID:18512209; https://doi.org/10.1002/syn.20532

[34] Granato A, Van Pelt J. Effects of early ethanol exposure on dendrite growth of cortical pyramidal neurons: inferences from a computational model. Dev Brain Res 2003; 142(2):223-7; PMID:12711375; https://doi.org/10.1016/S0165-3806(03)00094-4

[35] Hamilton G, Jablonski S, Schiﬀino F, Cyr SS, Stanton M, Klintsova A. Exercise and environment as an intervention for neonatal alcohol effects on hippocampal adult neurogenesis and learning. Neurosci 2014; 265:274-90; PMID:24513389; https://doi.org/10.1016/j.neuroscience.2014.01.061

[36] Schreiber W, St Cyr S, Jablonski S, Hunt P, Klintsova A, Stanton M. Effects of exercise and environmental complexity on deficits in trace and contextual fear conditioning produced by neonatal alcohol exposure in rats. Dev Psychobiol 2013; 55(5):483-95; PMID:22644967; https://doi.org/10.1002/dev.21052

[37] Choi IY, Allan AM, Cunningham LA. Moderate fetal alcohol exposure impairs the neurogenic response to an enriched environment in adult mice. Alcohol: Clin Exp Res 2005; 29(11):2053-62; https://doi.org/10.1111/j.1530-0270.2005.00992.x

[38] van Praag H. Exercise and the brain: something to chew on. Trends Neurosci 2009; 32(5):283-90; PMID:19349082; https://doi.org/10.1016/j.tins.2008.12.007

[39] Vivar C, Peterson BD, van Praag H. Running rewires the neuronal network of adult-born dentate granule cells. Neuroimage 2016; 131:29-41; PMID:26589333; https://doi.org/10.1016/j.neuroimage.2015.11.031

[40] Kronenberg G, Bick-Sander A, Bunk E, Wolf C, Ehninger D, Kempermann G. Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging 2006; 27 (10):1505-13; PMID:16271278; https://doi.org/10.1016/j.neurobiolaging.2005.09.016

[41] Van der Borcht K, Havekes R, Bos T, Egggen BJ, Van der Zee EA. Exercise improves memory acquisition and retrieval in the Y-maze task: relationship with
hippocampal neurogenesis. Behav Neurosci 2007; 121(2):324; PMID:17469921; https://doi.org/10.1037/0735-7044.121.2.324

[42] Eadie BD, Redila VA, Christie BR. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J Comp Neurol 2005; 486(1):39-47; PMID:15834963; https://doi.org/10.1002/cne.20493

[43] Redila V, Christie B. Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience 2006; 137(4):1299-307; PMID:16338077; https://doi.org/10.1016/j.neuroscience.2005.10.050

[44] Stranahan AM, Khalil D, Gould E. Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus 2007; 17(11):1017-22; PMID:17636549; https://doi.org/10.1002/hipo.20348

[45] Alvarez DD, Giacomini D, Yang SM, Trincher MF, Temprana SG, Büttner KA, Beltramone N, Schinder AF. A disynaptic feedback network activated by experience promotes the integration of new granule cells. Science 2016; 354(6311):459-65; PMID:27789840; https://doi.org/10.1126/science.aaf2156