Lost-in-Translation of Metabolic Effects of Inorganic Nitrate in Type 2 Diabetes: Is Ascorbic Acid the Answer?

Zahra Bahadoran 1, Parvin Mirmiran 1, Khosrow Kashfi 2 and Asghar Ghasemi 3,*

1 Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; z bahadoran@endocrine.ac.ir (Z.B.); mirmiran@endocrine.ac.ir (P.M.)
2 Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Kashfi@med.cuny.edu
3 Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran
* Correspondence: Ghasemi@endocrine.ac.ir or Ghasemi.asghar@gmail.com; Tel.: +98-212-243-2500; Fax: +98-212-241-6264

Abstract: Beneficial metabolic effects of inorganic nitrate (NO$^3^-$) and nitrite (NO$^2^-$) in type 2 diabetes mellitus (T2DM) have been documented in animal experiments; however, this is not the case for humans. Although it has remained an open question, the redox environment affecting the conversion of NO$^3^-$ to NO$^2^-$ and then to NO is suggested as a potential reason for this lost-in-translation. Ascorbic acid (AA) has a critical role in the gastric conversion of NO$^2^-$ to NO following ingestion of NO$^3^-$ In contrast to AA-synthesizing species like rats, the lack of ability to synthesize AA and a lower AA body pool and plasma concentrations may partly explain why humans with T2DM do not benefit from NO$^2^-$/NO$^3^-$ supplementation. Rats also have higher AA concentrations in their stomach tissue and gastric juice that can significantly potentiate gastric NO$^3^-$-to-NO conversion. Here, we hypothesized that the lack of beneficial metabolic effects of inorganic NO$^3^-$ in patients with T2DM may be at least in part attributed to species differences in AA metabolism and also abnormal metabolism of AA in patients with T2DM. If this hypothesis is proved to be correct, then patients with T2DM may need supplementation of AA to attain the beneficial metabolic effects of inorganic NO$^3^-$ therapy.

Keywords: nitrate; nitrite; nitric oxide; ascorbic acid; type 2 diabetes

1. Introduction

Inorganic nitrate (NO$^3^-$) and nitrite (NO$^2^-$) are considered storage pools for nitric oxide (NO)-like bioactivity that complement or alternate the NO synthase (NOS)-dependent pathway [1]. The biological importance of the NO$^3^-$-NO$^2^-$-NO pathway is more highlighted where the NOS system is compromised, e.g., in cardiometabolic diseases [2,3].

Type 2 diabetes mellitus (T2DM), a metabolic disorder complicated with disrupted NO metabolism [4,5], has recently been targeted for inorganic NO$^3^-$-NO$^2^-$ therapy. Supplementation of diets rich in inorganic NO$^3^-$-NO$^2^-$ has received increased attention as being effective in improving glucose and insulin homeostasis in animal models of T2DM [6–10]. Favorable effects of NO$^3^-$ therapy on glucose and insulin homeostasis were surprisingly comparable to metformin therapy, a drug that is used as the first-line anti-diabetic agent [11].

In contrast to animal experiments, controversy surrounds the NO$^3^-$-NO$^2^-$ efficacy on metabolic parameters in humans with T2DM. These interventions have failed to show any beneficial effects on glucose and insulin parameters. Although some plausible explanations have been provided, the reason for this lost-in-translation remains an open question. Species-differences in NO$^3^-$-NO$^2^-$ metabolism, due to differences in gut–oral microbiota,
and the redox environment affecting the capacity of NO$_3^-$ to NO$_2^-$ to NO reduction (e.g., oral and stomach pH, reducing agents like ascorbic acid (AA), and NO$_3^-$-NO$_2^-$ reductase enzymes) may explain the failure of the data to translate from animals to humans. Furthermore, some confounding variables such as doses and forms of NO$_3^-$ and NO$_2^-$ supplementation, age of the experimental units [12], background dietary intake of NO$_3^-$-NO$_2^-$, and use of anti-diabetic drugs in humans [11,13] can also influence the magnitude of the metabolic response to NO$_3^-$-NO$_2^-$ therapy in humans with T2DM.

In this review, we discuss whether the differences between laboratory animals (i.e., rats and mice) and humans in the metabolism of AA, as an essential reducing factor for gastric conversion of NO$_2^-$ to NO, are responsible for the lost-in-translation and reduced efficacy of oral NO$_3^-$ in humans with T2DM. Because more than 80% of the studies investigating the potential effects of NO$_3^-$-NO$_2^-$ on animal models of T2DM were conducted on rats, we specifically focused on the differences between humans and rats in metabolizing AA; however, we also considered the available data on mice. If our hypothesis is correct, patients with T2DM may need to be supported by AA supplementation to take advantage of inorganic NO$_3^-$ therapy.

2. A Brief Overview of NO$_3^-$-NO$_2^-$-NO Pathway

There are two major pathways for NO production in humans: (i) the classic l-arginine-NOS pathway, in which NO is produced from l-arginine by three isoforms of NOS, namely, endothelial (eNOS), neural (nNOS), and inducible (iNOS) NOSs, and (ii) NO$_3^-$-NO$_2^-$-NO pathway, in which NO$_3^-$ is reduced to NO$_2^-$ and then to NO [2]. The NO$_3^-$-NO$_2^-$-NO pathway has a compensatory role in maintaining basal levels of NO in the absolute absence of the NOS system (i.e., triple NOS-knockout model), thus keeping the animals alive [14]. There is negative cross-talk between the two pathways in maintaining NO homeostasis [1,15]. Chronic NO$_3^-$ supplementation may reversibly and dose-dependently reduce eNOS activity; on the other hand, responses to exogenous NO$_3^-$-NO$_2^-$ depend upon the basal eNOS activity, and subjects with deficient eNOS activity and vascular NO deficiency may, therefore, have an augmented response to these anions [1,15]. Several dietary factors, including dietary antioxidants, polyphenols, and fatty acids, may affect the NO pathway in humans [16]. Furthermore, dietary antioxidant capacity and vitamin C intake may modify the potential effects of NO$_3^-$-NO$_2^-$ in cardiometabolic diseases [17,18].

Major sources of NO$_3^-$ in humans are endogenously derived from NO oxidation and exogenously derived from the diet. About 50% of steady-state circulating NO metabolites are derived from dietary sources [19]; the acceptable daily intake (ADI) values are 3.7 and 0.06 mg/kg body weight for NO$_3^-$ and NO$_2^-$, respectively [20]. Following ingestion, inorganic NO$_3^-$ passes from the mouth into the stomach and is then absorbed into the blood from the proximal small intestine [21]. In humans, about 50–90% [22–24] (a mean of 75% [25]) of ingested NO$_3^-$ is excreted in the urine, with negligible fecal excretion [26]. NO$_3^-$ recovery from urine was reported to be about 35–65% of the oral doses in rats and rabbits [21,27]. About 25% of ingested NO$_3^-$ is taken up from the plasma [28] by the salivary glands, probably via the sialin transporter [29], concentrated by 10–20 folds, and secreted in the saliva [29,30], a process that is called entero-salivary circulation of NO$_3^-$ [28]. Unlike humans, the active secretion of NO$_3^-$ into the saliva does not occur in rats and mice [31]; however, the entero-systemic cycling of NO$_3^-$ may occur in these species by secreting from the circulation into the other parts of the gastrointestinal system, including the gastric and intestinal secretions via an active transport process [32].

Upon entering the mouth, oral NO$_3^-$-reducing bacteria converts about 20% of the dietary NO$_3^-$ to NO$_2^-$ [28]. This pathway is the most important source of NO$_2^-$ in the human body [33] and provides systemic delivery of substrate for NO generation. Oral NO$_3^-$-reduction results in an average of 85.4 ± 15.9 nmol NO$_2^-$ per min [34]. The oral NO$_3^-$-reducing bacteria are mostly resident at the dorsal surface of the tongue both in humans and rats [34,35]. The critical role of NO$_3^-$-reducing bacteria on the NO$_3^-$-NO$_2^-$-NO pathway and systemic NO availability is highlighted by the data showing that
circulating NO\textsubscript{2} is decreased and NO-mediated biological effects are partially or entirely prevented when the oral microbiome was abolished via antiseptic mouthwash [36–38]. Although the rat tongue microbiome is less diverse than the human, the physiological activity of the oral microbiome is comparable in both species [39]. Salivary NO\textsubscript{2} reaching the stomach is rapidly converted to NO in the presence of acidic gastric juice and AA and diffuses into the circulation [40,41]. Inorganic NO\textsubscript{3} can therefore act as a substrate for further systemic generation of bioactive NO [30]. The efficiency of sequential reduction of inorganic NO\textsubscript{3} into NO\textsubscript{2} and then into NO depends on the capacity of the salivary glands to concentrate NO\textsubscript{3}, oral NO\textsubscript{3}-reducing bacteria, gastric AA concentration and the redox environment, O\textsubscript{2} pressure, pH in the peripheral circulation, and the efficiency of the enzymatic reductase activity (i.e., deoxyhemoglobin, aldehyde dehydrogenase, and xanthine oxidase) [1]; these factors may affect the metabolic response to oral dosing of inorganic NO\textsubscript{3}.

3. Effects of Inorganic NO\textsubscript{3} and NO\textsubscript{2} in Type 2 Diabetes

Impaired NO metabolism, including decreased eNOS-derived NO bioavailability, overproduction of iNOS-derived NO, and impaired NO\textsubscript{3}-NO\textsubscript{2}-NO pathway, are involved in T2DM development [42], hypertension [43], and cardiovascular diseases [44]. Increased NO bioavailability using NO precursors, including L-arginine [45,46], L-citrulline [47], or inorganic NO\textsubscript{3} and NO\textsubscript{2} has been suggested as complementary treatments in T2DM [48–50]. Due to lack of efficacy [51] and safety [52] of long-term L-arginine supplementation and undesirable side effects (i.e., induction of arginase activity [53,54], increased urea levels [55], suppression of eNOS expression and activity, and induction of cellular oxidative stress [56]), inorganic NO\textsubscript{3} and NO\textsubscript{2} have received much attention as NO-boosting supplements.

Inorganic NO\textsubscript{3} and NO\textsubscript{2} improve glucose and insulin homeostasis in animal models of T2DM [6–10]; supplementation with these anions decreases hyperglycemia and improves insulin sensitivity and glucose tolerance [9,10]. NO\textsubscript{3} and NO\textsubscript{2} increase insulin secretion by increasing pancreatic blood flow [57], increasing pancreatic islet insulin content [7], and increased gene expression of proteins involved in exocytosis of insulin in isolated pancreatic islets [58]. NO\textsubscript{3} and NO\textsubscript{2} increase insulin sensitivity by increasing GLUT4 expression and protein levels in epididymal adipose tissue [6], skeletal muscle [7], and its translocation into the cell membrane [9], increasing browning of white adipose tissue [59], decreasing adipocyte size [9], as well as improving inflammation, dyslipidemia, liver steatosis, and oxidative stress [3,7,60]. Table 1 summarizes the effects of NO\textsubscript{3}-NO\textsubscript{2} therapy on glucose and insulin homeostasis, and diabetes-induced cardiometabolic disorders in animal models of T2DM. More details about the favorable metabolic effects of NO\textsubscript{3} and NO\textsubscript{2} can be found in published reviews [2,3,61].

Table 1. The effects of NO\textsubscript{3}– and NO\textsubscript{2}– on glucose and insulin homeostasis, and cardiometabolic disorders in experimental models of type 2 diabetes mellitus and insulin resistance.

Author	Model	Treatment	Outcomes
Jeddi et al., 2021 [62]	High-fat diet + low-dose of STZ (30 mg/kg body weight), male rats	100 mg/L NaNO\textsubscript{3} in drinking water for 6 months	↓ Serum glucose by 13%
↓ Serum insulin by 23%
↑ cGMP level in epididymal adipose tissue by 85%
↑ Adipocyte density by 193% (epididymal adipose tissue)
↓ Adipocyte area by 53% (epididymal adipose tissue)
↑ Expression of browning genes in epididymal adipose tissue (↑ mRNA and protein levels of PPAR-γ, PGC1-α, and UCP-1 to their normal values) |
Table 1. Cont.

Author	Model	Treatment	Outcomes
Tian et al., 2020 [63]	High-fat diet + low dose of STZ (20 mg/kg body weight), male mice	255 mg/L NaNO₃ in drinking water for 8 weeks	↓ Fasting glucose
Prevention of impaired glucose tolerance (measured by IP-GTT), Prevention of insulin resistance (measured by IP-ITT)			
↓ Systolic blood pressure			
↓ Vascular oxidative stress (↓ROS formation)			
↓ NADPH oxidase activity via induction of HO-1 and reduction in p47phox expression			
Improvment of endothelial function (ACh-mediated vascular relaxation)			
Improvement of inflammation and dyslipidemia			
↓ Development of aortic atherosclerosis			
Aggarwal et al., 2020 [64]	Insulin-resistant iNOS−/− male mice	50 mg/L NaNO₂ in drinking water for 5 weeks	Improved glucose tolerance (measured by IP-GTT)
Improved insulin resistance (measured by IP-ITT)			
Partially reversed up-regulated gluconeogenesis (↓ expression of PEPCK, G6P, and PC)			
Restored total Akt (PKB) expression in the liver and adipose tissue			
Restored decreased Akt-1/2/3 phosphorylation (Ser473) in the liver			
Improved insulin signaling in the adipose tissue			
Norouzirad et al., 2019 [65]	High-fat diet + low dose of STZ (30 mg/kg body weight), male rats	100 mg/L NaNO₃ in drinking water for 5 weeks	↓ Fasting glucose
↓ Gluconeogenesis (measured by IP-PTT)			
Improved glucose tolerance			
Restored CAT activity to near normal value			
Restored elevated TOS to near normal value			
Restored decreased TAC levels to near normal value			
↑ Serum SOD, GSH, and GSH-to-GSSG ratio			
Gheibi et al., 2018 [6]	High-fat diet + low dose of STZ (25 mg/g body weight), male rats	100 mg/L NaNO₃ in drinking water for 8 weeks	↓ Serum glucose and insulin, ↔ HbA₁c
↑ Glucose tolerance (measured by IP-GTT)			
↑ Insulin sensitivity (measured by QUICKI)			
↓ Gluconeogenesis (measured by IP-PTT)			
↑ GLUT4 mRNA expression and protein levels in the soleus muscle by 215% and 17%			
↑ GLUT4 mRNA expression and protein levels in the epididymal adipose tissue by 344% and 22%			
↔ GSIS, islet insulin content			
↑ Serum CAT activity, ↓ Serum IL-1β			
↔ Serum TBARS			
↑ Elevated iNOS mRNA expression in the soleus muscle and epididymal adipose tissue			
Gheibi et al., 2017 [7]	High-fat diet + low dose of STZ (30 mg/kg body weight), male rats	50 mg/L NaNO₂ in drinking water for 8 weeks	↑ GSIS (by 34%), ↔ BIS
↑ Protein levels of GLUT4 in the soleus muscle and epididymal adipose tissue by 22% and 26%
Improved glucose tolerance (measured by IP-GTT) and insulin sensitivity (measured by IP-ITT and QUICKI)
↓ Fasting serum glucose and insulin, ↔ HbA₁c
Restored pancreatic insulin content to 73% of controls (68.2 ± 6.4 vs. 117 ± 6.0 pmol/mg protein)
Restored elevated serum levels of TC, TG, and LDL-C ↔ HDL-C |
Table 1. Cont.

Author	Model	Treatment	Outcomes
Ohtake et al., 2015 [9]	KKAy diabetic male mice	50 and 150 mg/L nitrite in drinking water for 10 weeks	↓ Fasting glucose ↓ Insulin resistance (measured by HOMA-IR) Improved glucose tolerance (measured by IP-GTT) ↑ GLUT4 expression on the cell membrane of the skeletal muscle
Khalifi et al., 2015 [8]	STZ (65 mg/kg) + nicotinamide (95 mg/kg), male rats	100 mg/L NaNO₂ in drinking water for 8 weeks	Improved glucose tolerance (measured as IV-GTT) ↓ Serum TC (23.6%), TG (24.2%), and LDL-C (28.8%) ↑ Serum HDL-C (42.4%) Restored TAC and CAT levels to normal values
Jiang et al., 2014 [66]	db/db diabetic male mice	50 mg/L NaNO₂ in drinking water for 4 weeks	↓ Fasting glucose (by 35%) ↓ Plasma insulin ↔ HOMA-IR, QUICKI ↔ Serum lipid parameters ↔ Serum ALT, AST, ALP, GGT ↔ Serum creatinine and uric acid ↔ Urinary creatinine and albumin
Carlstrom et al., 2010 [10]	eNOS-deficient female mice	85 mg/L NaNO₂ in drinking water for 8–10 weeks	↓ HbA1c, Fasting glucose ↓ Pro-insulin to insulin ratio ↑ Glucose tolerance (measured by IP-GTT)

Despite being effective in animal models of T2DM, as it is summarized in Table 2, all acute [67], mid-term [68,69], and long-term [70–72] oral dosing of inorganic NO₃⁻ and NO₂⁻, either as pharmacological forms (i.e., KNO₃, NaNO₃, and NaNO₂) or food-based supplementation (i.e., NO₃⁻-rich beetroot juice or powder) have failed to show beneficial effects on glucose and insulin parameters, including fasting and post-prandial serum glucose and insulin concentrations, insulin resistance indices, and HbA1c levels in patients with T2DM. However, ergogenic [73,74] and beneficial cardiovascular effects of inorganic NO₃⁻ and NO₂⁻, e.g., reducing peripheral and central systolic and diastolic blood pressures [75], have been highlighted in non-diabetic subjects by several clinical studies.

Table 2. Cardiometabolic effects of inorganic NO₃⁻-NO₂⁻ in patients with type 2 diabetes mellitus: findings of clinical trials.

Study	Intervention	Outcomes
Bahadoran et al., 2021 [76]	NO₃⁻-rich beetroot powder (250 mg/day NO₃⁻), for 24 weeks	↔ Fasting glucose, HbA1c, insulin, C-peptide ↔ HOMA-IR, QUICKI ↔ Serum lipid parameters ↔ Serum ALT, AST, ALP, GGT ↔ Serum creatinine and uric acid ↔ Urinary creatinine and albumin
Faconti et al., 2019 [70] and Mills et al. [71]	NO₃⁻-containing beetroot juice (279 mg/day NO₃⁻), for 24 weeks	↔ SBP, DBP ↔ Arterial stiffness ↔ Fasting glucose, HbA1c ↓ Left ventricular end-diastolic and end-systolic volume
Soin et al., 2018 [72]	40 and 80 mg/day sustained-release formulation NaNO₂, for 12 weeks	↔ HbA1c Improvement of neuropathic pain ↔ Serum creatinine and uric acid ↔ Urinary creatinine and albumin
Table 2. Cont.

Study	Intervention	Outcomes
Shepherd et al., 2015 [77]	70 mL/day NO₃⁻-containing beetroot juice (398 mg/day NO₃⁻), for 4 days	↔ SBP, DBP
↔ Oxygen cost of exercise		
↔ Walking performance (6-min walk test)		
Cermak et al., 2015 [67]	An acute dose of NaNO₃ (12.75 mg/kg body weight)	↔ Postprandial glucose and insulin response to 75-g glucose
↑ OGIS index		
↔ HOMA-IR		
Mohler et al., 2014 [78]	40 and 80 mg/day NaNO₂ for 10 weeks	↑ FMD at dose of 80 mg/day
Gilchrist et al., 2014 [68]	250 mL/day beetroot juice (465 mg/d NO₃⁻), for 2 weeks	↔ Fasting glucose, HbA1c
↔ Cognitive function		
Improvement in simple reaction time		
Gilchrist et al., 2013 [69]	250 mL/day beetroot juice (465 mg/d NO₃⁻), for 2 weeks	↔ SBP, DBP
↔ Macro-(FMD) and micro-(ACh-induced vasodilation) vascular function		
↔ Insulin sensitivity (hyperinsulinemic-euglycemic clamp technique)		
Greenway et al., 2012 [79]	An acute dose of 80 mg of NaNO₂ (IR and EC formulation)	↓ SPB and DBP in IR
↔ SPB and DBP in EC |

+, no change; †, increase; ‡, decrease; ACh, acetylcholine; ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase; C-peptide; DBP, diastolic blood pressure; EC, enteric-coated formulation; FMD, flow-mediated dilation; GGT, γ-glutamyl transpeptidase; HbA1C, glycated hemoglobin; HOMA-IR, homeostasis model assessment of insulin resistance; IR, immediate-release formulation; OGIS, oral glucose insulin sensitivity; QUICKI, quantitative insulin sensitivity check index; SBP, systolic blood pressure.

4. A Brief Overview of AA Metabolism: Differences between Animals and Humans

Ascorbic acid (ascorbate) is a potent antioxidant and free-radical scavenger because of its ability for non-enzymatic reduction of oxygen free radicals [80]. Total vitamin C represents a reduced form (AA) and an oxidized form (dehydroascorbic acid, DHA), which circulates at a physiological plasma concentration of <5% of total vitamin C (i.e., AA + DHA). In humans, the mean plasma concentrations of AA range from 60 to 90 µmol/L [81], with levels above 50 µmol/L defined as adequate [82]. Although the upper limit (UL) of the vitamin C intake, based on its gastrointestinal complications such as osmotic diarrhea, has been determined as 2 g/day, some studies have reported no gastrointestinal disturbances following doses of up to 6 g/day [83,84]. Long-term treatment with AA has been reported to be safe with minimal side effects [85].

A meta-analysis of 13 clinical trials in patients with T2DM showed that vitamin C supplementation significantly decreases blood glucose (−0.44 mmol/L) and insulin concentrations (−15.67 pmol/L); however, it had no effect on HbA1C levels (−0.15%) [86]. Another meta-analysis also reported a statistically and clinically significant decrease in systolic blood pressure (−6.27 mm Hg, 95% CI = −9.60, −2.96), and a moderate decrease in HbA1c (−0.54%, 95% CI = −0.90, −0.17) and diastolic blood pressure (−3.77 mm Hg, 95% CI = −6.13, −1.42) following vitamin C supplementation in patients with T2DM [87].

Both plasma and tissue concentrations of AA are tightly controlled [81]. Ascorbic acid in plasma is taken up by the tissues via sodium-dependent vitamin C transporters (SVCT1 and SVCT2) in both rats and humans [88,89]. These transporters reach a V_max at a plasma concentration of about 70 µmol/L, achieved by a daily intake of 200 mg of AA [90]. The DHA is transported via glucose transporters (i.e., GLUT1 [91], GLUT2 [92], GLUT3 [93], and GLUT8 [92]), involved in the AA recycling process, in which the DHA that is produced from extracellular oxidation is transported to cells where it undergoes immediate intracellular reduction to AA [94]. This process is suggested to be responsible for vitamin C economy in the body [95].

Humans and guinea pigs lack the enzyme L-gulono-γ-lactone oxidase (GLO) and thus cannot synthesize AA [96]. However, other mammals including rats, rabbits, and mice
can synthesize AA endogenously [97]. Plasma AA concentrations have been reported to be 60–90 µmol/L in mice [98,99] and 680 µmol/L in rats [100]. Table 3 summarizes the differences between AA metabolism in humans and AA synthesizing species including rats and mice. Taken together, the lack of ability to synthesize AA, lower AA body pool, and lower plasma concentrations may make humans more susceptible to AA-deficiency [101].

Table 3. Kinetic parameters of ascorbic acid (AA) metabolism between AA synthesizing and non-synthesizing species.

Parameter	Human [81-84,90,102-107]	Rat [100,108,109]	Mouse [98,99,110]
Sources of AA	Dietary intake	Glycogen catabolism	Glycogen catabolism
Endogenous production rate (mg/day)	0	6–9	12.5
Exogenous requirement (mg/day)	To prevent scurvy = 60		
	To maintain plasma AA > 50 µmol/L = 100		
	RDA = 75 and 90 for adult women and men		
	To prevent formation of harmful nitrosamines = 200		
	UL = 2000–6000		
Absorption rate of exogenous sources	70–90% (dependent to ingested amounts)	–	–
Body pool (mg/100 g)	2	9–12	12–15
Fractional turnover (% of body pool catabolized daily)	3	24–29	60–90
Urinary excretion	25% of intake (10–87% dependent to ingested amounts)	13–17% of synthesized value (0.33–0.46 mg/100 g/day)	10–17% in male (0.4–0.6 mg/day)
			5–8% in female (0.2–0.3 mg/day)
Plasma concentration (µmol/L)	50 (range 30–90)	680	60–90
Mechanisms of tissue uptake	SVCT1 and SVCT2	SVCT1 and SVCT2	SVCT1 and SVCT2
Gastric secretion of AA (mg/day)	Basal = 0.018–0.040; Carbachol-induced = 0.28 ± 0.17	Active secretion regulated by muscarinic receptor-associated cholinergic stimulation and CCK receptor-associated humoral stimulation	–
Intragastric concentration	20–80 µmol/L	190–340 µmol/L in gastric juice (1260 and 658 µmol/100 g, in the glandular stomach and the forestomach)	–

CCK, cholecystokinin; RDA, recommended daily allowance; SVCT, sodium-dependent vitamin C transporter; UL, upper limit.

5. Gastric NO Generation: Critical Role of AA

5.1. Gastric Generation of NO

NO has been shown to accumulate in the gastric headspace after NO₃⁻ ingestion [111], maximally at the proximal cardia region (gastroesophageal junction and cardia) of the stomach, where salivary NO₂⁻ initially encounters gastric acid [112,113]. In healthy humans, baseline gastric NO₂⁻ levels are very low (overall < 1 µmol/L [40], 7.6 ± 2.7 µmol/L in the
cardia, 0.4 ± 0.3 µmol/L in the proximal cardia, and 0 µmol/L in the distal stomach [114]). In the gastric head-space, the NO concentration is about 16.4 ± 5.8 ppm [40], which we calculated to be 546.7 ± 193.3 µmol/L. Since the generated NO rapidly diffuses into the adjacent epithelium, only a small fraction of the NO\textsubscript{2}− and NO remain at the distal stomach section [114].

Gastric NO concentration is increased from 14.8 ± 3.1 to 89.4 ± 28.6 ppm following 60 min of 2 mmol KNO\textsubscript{3} oral dosing [40]. Upon an oral dose of inorganic NO\textsubscript{3}−, peak gastric NO\textsubscript{3}− occurs at ~20 min, its plasma values peaks at 40 min, and gastric head-space NO concentration peaks at 60 min [40]. Following ingestion of 2 mmol inorganic NO\textsubscript{3}−, mean gastric NO concentration (measured in the distal stomach to the mid esophagus) reaches 14.7 µmol/L (range = 0.8–50 µmol/L) that is 3-fold higher than its basal levels (4.7 µmol/L, range = 1.4–7.8 µmol/L) [112].

5.2. Gastric Secretion of AA

The stomach can secret AA; however, the mechanism and the transporters involved have not yet been identified [95]. Upon its absorption, vitamin C is actively secreted into and concentrated within the gastric juice (mainly in the form of AA) of the healthy acid-secreting stomach [115]. Ascorbic acid is transported into the gastric epithelial cells (Kato III cells and gastric adenocarcinoma (AGS) cell lines) and then accumulated against a concentration gradient, up to greater than 1.6- [116] to 7-folds [117] higher than its plasma levels [118–120]. The mean fasting concentration of gastric vitamin C (AA + DHA) and AA concentrations range between 30–100 and 20–80 µmol/L in healthy humans, respectively [116,119,121–123]. In humans, gastric AA secretion is stimulated following ingestion of inorganic NO\textsubscript{3}−. After ingesting 20 mmol of NO\textsubscript{3}−, salivary NO\textsubscript{2}− levels increased by about 6-fold, from 44 to 262 µmol/L, gastric juice AA reached its nadir of 5.1 µmol/L within 60 min (with a ratio of 0.2 of AA to total vitamin C), and then, gradually returned toward its original levels within the next 60 min [122].

In rats, gastric secretion of AA has been suggested to be physiologically regulated by both muscarinic receptor-associated cholinergic stimulation and by cholecystokinin octapeptide (CCK-8) receptor-associated hormonal stimulation [124,125]. Compared to humans, higher levels of AA in gastric juice were reported in rats (244 ± 64 µmol/L; range: 190–340 µmol/L) [125]. Higher concentrations of AA have also been reported in the rat stomach tissue (1260 and 658 µmol/L in the glandular stomach and the forestomach, respectively) [126]. In contrast to constant [98] or decreased [100] plasma levels of AA during aging, its concentrations in the gastrointestinal tissues tend to increase with age (e.g., 313 ± 172 vs. 155 ± 34 µg/g in the stomach, young vs. old rats) [100].

Taken together, having endogenous synthesis and higher plasma concentrations of AA provide a constant supply of gastric AA, high-accumulated levels of AA in the rat’s stomach, especially in the glandular region. Thus, a higher level of AA in the gastric juice in AA-synthesizing species like rats provides a more efficient environment for gastric NO generation.

5.3. Role of AA in Gastric NO Generation

Ascorbic acid has a critical contribution to gastric NO production and maintaining systemic NO levels (Figure 1). Under the acidic conditions of the stomach, the NO\textsubscript{2}− delivered along with the saliva is rapidly (pKa = 3.2–3.4) converted to nitrous acid (HNO\textsubscript{2}) and then into NO in the presence of AA. In this reaction, AA is oxidized to DHA. Each molecule of AA can reduce two molecules of HNO\textsubscript{2} to NO [127]. The presence of AA within the gastric juice seems to be a critical factor in providing a continuous supply of systemic NO, which is supported by enteral/salivary recirculation of NO\textsubscript{3}−–NO\textsubscript{2}− [122,128]. Ascorbic acid-dependent reduction of NO\textsubscript{2}− to NO needs an acidic gastric environment [41].
At pH 4.5 or above, very little NO is produced, as is the case in the absence of AA, even at low pH values [41].

Figure 1. Enterosalivary circulation of nitrate (NO$_3^-$) and the role of ascorbic acid (AA) in the gastric conversion of nitrite (NO$_2^-$) to nitric oxide (NO) in maintaining systemic NO levels. DHA, dehydroascorbic acid; HNO$_2$, nitrous acid.

To produce 50 µmol/L of gastric NO, in the presence of 200 µmol/L of NO$_2^-$ at a pH of 1.5, about 500 µmol/L of AA is needed [113]. The median AA-to-NO$_2^-$ ratio, a critical determinant of gastric NO production, is reported to be about 1.5, 21, and 28 at the cardia, mid and distal stomach, reaching 0.3, 8, and 40 following NO$_3^-$ ingestion [114]. In rats, gastric NO$_2^-$ to NO conversion with 0.1 mmol/L NaNO$_2$ at a pH of 1.5 was dose-dependently increased by AA. Exogenously increasing the concentration of gastric AA by 2- and 4-fold (from 5 to 10 and 20 mmol/L) efficiently increased gastric NO generation by about 1.7- and 3.5-fold [129].

The importance of AA for gastric NO generation is highlighted by the data that quantifies gastric NO concentrations in a situation of diminished AA within the gastric juice. Treatment of healthy volunteers with omeprazole (a proton-pump inhibitor) at a
A dose of 40 mg/day, reduced fasting gastric AA levels by more than 80% (from 21.6 to 4.0 µmol/L) [122], which may be explained by impaired gastric secretion of AA by the mucosa or its destruction in the high-pH gastric juice [128]. In the presence of normal levels of gastric juice and AA, gastric NO$_2^-$ levels remained undetectable for 120 min after an oral dose of NO$_3^-$ [122], which indicates that salivary NO$_2^-$ reaching the stomach was entirely converted to NO. In contrast, increased both fasting (from 0 to 13 µmol/L) and post-NO$_3^-$-ingestion ($\Delta = 150$ µmol/L) gastric juice NO$_2^-$ levels during omeprazole treatment [122] may imply on the blunted-NO synthesis following profound decreased AA within the gastric juice. This idea is supported by data showing that NO in expelled air from the stomach was reduced by 95% after treatment with omeprazole [111].

A considerably higher concentration of AA reported in the rat's stomach [126] compared to that in humans [122] may greatly potentiate the capacity of gastric NO production in response to NO$_3^-$-NO$_2^-$ dosing. Thus, it seems that AA non-synthesizing species such as humans and guinea pigs do not adequately recapitulate the effects of NO$_3^-$-NO$_2^-$ supplementation observed in AA-synthesizing species. Figure 2 addresses how differences in AA metabolism and gastric AA secretion between humans and rats may affect the conversion of gastric NO$_2^-$ to NO.

![Figure 2](image_url)
Figure 2. Differences between humans and rats in ascorbic acid (AA) metabolism and gastric AA secretion that may affect the efficacy of gastric conversion of nitrite (NO$_2^-$) to nitric oxide (NO). DHA, dehydroascorbic acid.

6. Diabetes and AA Metabolism

Abnormal metabolism of AA and its deficiency is a relatively common situation amongst patients with T2DM [130–132]. The prevalence of deficient, marginal, and inadequate plasma vitamin C concentrations was reported to be 4%, 14%, and 52% in patients with T2DM, compared to 3% marginal and 21% inadequate plasma vitamin C concentrations in non-diabetic subjects [131]. Chronic hyperglycemia is associated with intracellular AA deficiency, and a negative correlation is observed between glycemic control and duration of T2DM and circulatory AA [133,134]. The turnover of AA is reported to be higher in patients with diabetes compared to healthy subjects, which is probably due to increased oxidation of AA to DHA by the mitochondria, and decreased rate of reduction of DHA to AA in the tissues and erythrocytes [135].

Patients with diabetes have lower circulating levels of vitamin C compared to healthy subjects (e.g., 8.4 vs. 33.4 µmol/L [134], 41.2 vs. 57.4 µmol/L [131], 19 vs. 40 µmol/L [132],...
42.1 vs. 89.2 µmol/L [136]). A more prevalence of vitamin C deficiency (i.e., <11.0 µmol/L) has also been reported in diabetics [131,132]. An elevated circulatory DHA (e.g., 11.9 vs. 3.9 µmol/L [134], 31.3 vs. 28.1 µmol/L [136], 10.3 vs. 1.7 µmol/L [135]) and increased plasma DHA-to-AA ratio (0.87 vs. 0.38) have also been observed in patients with diabetes strongly suggesting disturbances in AA metabolism [136].

Of note, gastric disorders such as decreased gastric acid secretion, gastro-oesophageal reflux disease (GERD), and *H. pylori* infection are more prevalent in diabetic patients [137–139]. Therefore, as often is the case, treatment with proton pump inhibitors in these patients may result in decreased gastric AA that is required for converting NO$_2^-$ to NO. The mean concentration of gastric AA decreased by 40% in *H. pylori* infection [120]. Decreased intragastric acidity in diabetes [140] may also affect gastric AA levels; increased gastric pH from <2 to 4 and >6 reduced gastric juice AA concentrations from 16.5 to 4.5 and 0 µmol/L and decreased gastric-to-plasma AA ratio by 25% and 80% [120]. Subjects with chronic superficial and atrophic gastritis have reduced gastric AA levels, 21 and 6 µmol/L vs. 253 µmol/L in healthy adults [117]. Gastric AA secretion is significantly related to gastric atrophy, and patients with chronic gastritis and hypochlorhydria have significantly lower (reduced by 50%) gastric concentrations of AA [115,121,141]. Infected patients with *H. pylori* also have lower gastric concentrations of AA (19.3 µmol/L, IQR = 10.7–44.5 vs. 66.9 µmol/L, IQR = 24.4–94.2) [123]. In patients with gastritis, the AA within gastric juice is mainly in its oxidized, biologically inactive form [121]. The decreased ratio of gastric-to-plasma concentrations of AA in gastritis may indicate an impaired secretion of AA in the gastric juice [121]. Figure 3 shows how T2DM and its related gastric abnormalities may confound the mediatory role of gastric AA on the conversion of NO$_2^-$ to NO.

![Figure 3](image.png)

Figure 3. Effects of type 2 diabetes and its related gastric abnormalities on gastric ascorbic acid (AA) levels and gastric conversion of nitrite (NO$_2^-$) to nitric oxide (NO). DHA, dehydroascorbic acid; GI, gastrointestinal; PPI, proton pump inhibitors.

Considering an impaired AA metabolism in T2DM, it seems quite reasonable to speculate that at some level, the lack of response to supplementation with inorganic NO$_3^-$ - NO$_2^-$ in these patients may be related to a blunted NO$_2^-$-AA interaction and gastric NO production. In addition, considering the critical role of AA in NO$_3^-$-derived gastric NO formation, failure in translation of the beneficial effects of inorganic NO$_3^-$ - NO$_2^-$ into humans may partly be explained by the species-dependent AA-synthesizing capacity and different levels of AA availability in animals (rat and mice) versus humans. In rats,
a large amount of endogenously synthesized AA is available and bioconversion of NO$_2^-$ to NO is expected to be more efficient. Our speculation is supported by data indicating that co-supplementation of inorganic NO$_3^-$ with vitamin C is clinically more effective in enhancing vascular function and decreasing diastolic blood pressure, especially in older adults, which, compared to young adults, are expected to have less gastric AA concentrations [142]. Moreover, less excreted NO$_3^-$ and NO$_2^-$ in the urine following NO$_3^-$ intake, in the presence of higher vitamin C intake [143], may imply that a higher level of vitamin C is required in humans for effective NO synthesis from oral inorganic NO$_3^-$ [143].

7. Conclusions and Perspectives

Taken together, although inorganic NO$_3^-$-NO$_2^-$ ingestion displays profound NO-dependent improvements in vascular function and blood pressure in humans, the concentration of gastric AA and intragastric NO$_2^-$-NO conversion rate in humans may not to be sufficient to elicit NO-dependent anti-diabetic effects as that observed in animals like rats. As non-AA-synthesizing species, humans may be more susceptible to AA-deficiency, a situation that is relatively common among patients with T2DM. Co-supplementation of inorganic NO$_3^-$-NO$_2^-$ with vitamin C can therefore be considered as a suggestion to enhance efficacy of NO$_3^-$ supplementation in humans. However, limited evidence is available to confirm the idea directly, and clinical studies are therefore warranted to assess the efficacy and potential side effects of co-supplementation of inorganic NO$_3^-$-NO$_2^-$ with vitamin C in humans.

Since saturation of gastric epithelial AA transport occurs at 50 µmol/L, oral vitamin C supplements may only be effective in subjects with plasma concentrations less than 50 µmol/L [118]. On the other hand, vitamin C’ RDAs simply are based on preventing scurvy or keeping oxidative balance, and it seems that a new threshold is required for optimal efficacy of gastric conversion of NO$_2^-$ to NO. Species differences of AA metabolism need to be taken into consideration in studies investigating the therapeutic applications of inorganic NO$_3^-$ in animal models of T2DM; experimental studies using non-AA-synthesizing species, e.g., guinea pig is warranted to confirm that AA is responsible for this lost-in-translation of anti-diabetic effects of inorganic NO$_3^-$.

Author Contributions: Idea and conceptualization: A.G. and Z.B. Writing: reviewing and editing: Z.B., A.G., K.K., and P.M. Literature research: Z.B., A.G., K.K., and P.M. Figure conceptualization and design: Z.B. and A.G. All authors have read and agreed to the published version of the manuscript.

Funding: This study has been supported by Shahid Beheshti University of medical Sciences, Tehran, Iran (Grant number: 28129).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: Authors have no conflict of interest.

References
1. Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [CrossRef] [PubMed]
2. Ghasemi, A.; Jeddi, S. Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide Biol. Chem. 2017, 70, 9–24. [CrossRef]
3. Lundberg, J.O.; Carlstrom, M.; Weitzberg, E. Metabolic Effects of Dietary Nitrate in Health and Disease. Cell Metab. 2018, 28, 9–22. [CrossRef]
4. Tessari, P.; Cecchet, D.; Cosma, A.; Vettore, M.; Coracina, A.; Millioni, R.; Iori, E.; Puricelli, L.; Avogaro, A.; Vedovato, M. Nitric Oxide Synthesis Is Reduced in Subjects With Type 2 Diabetes and Nephropathy. Diabetes 2010, 59, 2152–2159. [CrossRef]
5. Natali, A.; Ribeiro, R.; Baldi, S.; Tulipani, A.; Rossi, M.; Venturi, E.; Mari, A.; Macedo, M.P.; Ferrannini, E. Systemic inhibition of nitric oxide synthesis in non-diabetic individuals produces a significant deterioration in glucose tolerance by increasing insulin clearance and inhibiting insulin secretion. Diabetologia 2013, 56, 1183–1191. [CrossRef]
6. Gheibi, S.; Jeddi, S.; Carlström, M.; Gholami, H.; Ghasemi, A. Effects of long-term nitrate supplementation on carbohydrate metabolism, lipid profiles, oxidative stress, and inflammation in male obese type 2 diabetic rats. Nitric Oxide Biol. Chem. 2018, 75, 27–41. [CrossRef]

7. Gheibi, S.; Bakhtiarzadeh, F.; Jeddi, S.; Farrokhfall, K.; Zardooz, H.; Ghasemi, A. Nitrite increases glucose-stimulated insulin secretion and islet insulin content in obese type 2 diabetic male rats. Nitric Oxide Biol. Chem. 2017, 64, 39–51. [CrossRef]

8. Khalifi, S.; Rahimipour, A.; Jeddi, S.; Ghanbari, M.; Kazerooni, F.; Ghasemi, A. Dietary nitrate improves glucose tolerance and lipid profile in an animal model of hyperglycemia. Nitric Oxide Biol. Chem. 2015, 44, 24–30. [CrossRef] [PubMed]

9. Ohtake, K.; Nakano, G.; Ehara, N.; Sonoda, K.; Ito, J.; Uchida, H.; Kobayashi, J. Dietary nitrite supplementation improves insulin resistance in type 2 diabetic KKA(y) mice. Nitric Oxide Biol. Chem. 2015, 44, 31–38. [CrossRef] [PubMed]

10. Carlström, M.; Larsen, F.J.; Nyström, T.; Hezel, M.; Borniquel, S.; Weitzberg, E.; Lundberg, J.O. Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc. Natl. Acad. Sci. USA 2010, 107, 17716–17720. [CrossRef]

11. Cordero-Herrera, I.; Guimarães, D.D.; Moretti, C.; Zhuge, Z.; Han, H.; McCann Haworth, S.; Uribe Gonzalez, A.E.; Andersson, D.C.; Weitzberg, E.; Lundberg, J.O.; et al. Head-to-head comparison of inorganic nitrate and metformin in a mouse model of cardiometabolic disease. Nitric Oxide Biol. Chem. 2020, 97, 48–56. [CrossRef]

12. Sierro, M.; Lara, J.; Jajja, A.; Sutjarjoko, A.; Ashor, A.W.; Brandt, K.; Qadir, O.; Mathers, J.C.; Benjamin, N.; Winyard, P.G.; et al. Ageing modifies the effects of beetroot juice supplementation on 24-hour blood pressure variability: An individual participant meta-analysis. Nitric Oxide Biol. Chem. 2015, 47, 97–105. [CrossRef]

13. Sambe, T.; Mason, R.P.; Dawoud, H.; Bhatt, D.L.; Malinski, T. Metformin treatment decreases nitrosative stress, restores nitric oxide bioavailability and endothelial function beyond glucose control. Biomed. Pharmacother. 2018, 98, 149–156. [CrossRef] [PubMed]

14. Milsom, A.B.; Fernandez, B.O.; Garcia-Saura, M.F.; Rodriguez, J.; Feelisch, M. Contributions of nitric oxide synthases, dietary nitrate/nitrite, and other sources to the formation of NO signaling products. Antioxid Redox Signal 2012, 17, 422–432. [CrossRef]

15. Carlström, M.; Liu, M.; Yang, T.; Zollbrecht, C.; Huang, L.; Feleli, M.; Borniquel, S.; Kishikawa, H.; Hezel, M.; Persson, A.E.G.; et al. Cross-talk Between Nitrate-Nitro-NO and NO Synthase Pathways in Control of Vascular NO Homeostasis. Antioxid Redox Signal 2015, 23, 295–306. [CrossRef]

16. Wong, W.T.; Cooke, J.P. Nutritional Impact on the Nitric Oxide Pathway. In Nitrite and Nitrate in Human Health and Disease; Springer: Berlin/Heidelberg, Germany, 2011; pp. 97–122.

17. Bahadoran, Z.; Mirmiran, P.; Ghasemi, A.; Carlström, M.; Azizi, F.; Hadaegh, F. Vitamin C intake modify the impact of dietary nitrite on the incidence of type 2 diabetes: A 6-year follow-up in Tehran Lipid and Glucose Study. Nitric Oxide Biol. Chem. 2017, 62, 24–31. [CrossRef]

18. Bahadoran, Z.; Carlström, M.; Ghasemi, A.; Mirmiran, P.; Azizi, F.; Hadaegh, F. Total antioxidant capacity of the diet modulates the association between habitual nitrate intake and cardiovascular events: A longitudinal follow-up in Tehran Lipid and Glucose Study. Nutr. Metab. 2018, 15, 19. [CrossRef]

19. Hord, N.G.; Tang, Y.; Bryan, N.S. Food sources of nitrates and nitrites: The physiologic context for potential health benefits. Am. J. Clin. Nutr. 2009, 90, 1–10. [CrossRef] [PubMed]

20. Gangolli, S.D.; Van Den Brandt, P.A.; Feron, V.J.; Janzowsky, C.; Koeman, J.H.; Speijers, G.J.; Spiegelhalder, B.; Walker, R.; Wishnok, J.S. Nitrate, nitrite and N-nitroso compounds. Eur. J. Pharmacol. Environ. Toxicol. Pharmacol. 1994, 292, 1–38. [CrossRef]

21. Schultz, D.S.; Deen, W.M.; Karel, S.F.; Wagner, D.A.; Tannenbaum, S.R. Pharmacokinetics of nitrate in humans: Role of gastrointestinal absorption and metabolism. Carcinogenesis 1985, 6, 847–852. [CrossRef] [PubMed]

22. Wagner, D.A.; Schultz, D.S.; Deen, W.M.; Young, V.R.; Tannenbaum, S.R. Metabolic fate of an oral dose of 15N-labeled nitrate in humans: Effect of diet supplementation with ascorbic acid. Cancer Res. 1983, 43, 1921–1925. [PubMed]

23. Ellen, G.; Schuller, P.L.; Bruijnies, E.; Froeling, P.G.; Baadenuhuisen, H.U. Volatile N-nitrosamines, nitrate and nitrite in urine and saliva of healthy volunteers after administration of large amounts of nitrate. J. IARC Sci. 1982, 41, 365–378.

24. Radomski, J.L.; Palmiri, C.; Hearrn, W.L. Concentrations of nitrate in normal human urine and the effect of nitrate ingestion. Toxicol. Appl. Pharmacol. 1978, 45, 63–68. [CrossRef]

25. Pannala, A.S.; Mani, A.R.; Spencer, J.P.; Skinner, V.; Bruckdorfer, K.R.; Moore, K.P.; Rice-Evans, C.A. The effect of dietary nitrate on salivary, plasma, and urinary nitrate metabolism in humans. Free Radic. Biol. Med. 2003, 34, 576–584. [CrossRef]

26. Saul, R.L.; Kabir, S.H.; Cohen, Z.; Bruce, W.R.; Archer, M.C. Reevaluation of Nitrate and Nitrite Levels in the Human Intestine. Cancer Res. 1981, 41, 2280–2283.

27. Mitchell, H.; Shonle, H.; Grindley, H. The origin of the nitrates in the urine. J. Biol. Chem. 1916, 24, 461–490. [CrossRef]

28. Spiegelhalder, B.; Eisenbrand, G.; Preussmann, R. Influence of dietary nitrate on nitrite content of human saliva: Possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet. Toxicol. 1976, 14, 545–548. [CrossRef]

29. Qin, L.; Liu, X.; Sun, Q.; Fan, Z.; Xia, D.; Ding, G.; Ong, H.L.; Adams, D.; Gahl, W.A.; Zheng, C.; et al. Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc. Natl. Acad. Sci. USA 2012, 109, 13434–13439. [CrossRef] [PubMed]

30. Lundberg, J.O.; Govoni, M. Inorganic nitrate is a possible source for systematic generation of nitric oxide. Free Radic. Biol. Med. 2004, 37, 395–400. [CrossRef] [PubMed]
31. Montenegro, M.F.; Sundqvist, M.L.; Nihlén, C.; Hezel, M.; Carlström, M.; Weitzberg, E.; Lundberg, J.O. Profound differences between humans and rodents in the ability to concentrate salivary nitrate: Implications for translational research. *Redox Biol.* **2016**, *10*, 206–210. [CrossRef]

32. Witter, J.P.; Balish, E. Distribution and metabolism of ingested NO$_3^-$ and NO$_2^-$ in germfree and conventional-flora rats. *Appl. Environ. Microbiol.* **1979**, *38*, 861–869. [CrossRef] [PubMed]

33. Walker, R. The metabolism of dietary nitrites and nitrates. *Biochem. Soc. Trans.* **1996**, *24*, 780–785. [CrossRef] [PubMed]

34. Petersson, J.; Carlström, M.; Schreiber, O.; Phillipson, M.; Christoffersson, G.; Jägare, A.; Roos, S.; Jansson, E.A.; Persson, A.E.; Lundberg, J.O.; et al. Nitrate-reducing bacteria on rat tongues. *Appl. Environ. Microbiol.* **1997**, *63*, 924–930. [CrossRef] [PubMed]

35. Li, H.; Duncan, C.; Townend, J.; Killham, K.; Smith, L.M.; Johnston, P.; Dykhuizen, R.; Kelly, D.; Golden, M.; Benjamin, N.; et al. Nitrate-reducing bacteria on rat tongues. *Appl. Environ. Microbiol.* **1997**, *63*, 924–930. [CrossRef] [PubMed]

36. Kapil, V.; Haydar, S.M.; Pearl, V.; Lundberg, J.O.; Weitzberg, E.; Ahluwalia, A. Physiological role for nitrate-reducing oral bacteria in blood pressure control. *Free Radic. Biol. Med.* **2013**, *55*, 93–100. [CrossRef] [PubMed]

37. Petersson, J.; Carlström, M.; Scheiber, O.; Phillipson, M.; Christoffersson, G.; Jägare, A.; Roos, S.; Jansson, E.A.; Persson, A.E.; Lundberg, J.O.; et al. Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. *Free Radic. Biol. Med.* **2009**, *46*, 1068–1075. [CrossRef]

38. Govoni, M.; Jansson, E.A.; Weitzberg, E.; Lundberg, J.O. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. *Nitric Oxide Biol. Chem.* **2008**, *19*, 333–337. [CrossRef]

39. Hyde, E.R.; Luk, B.; Cron, S.; Kusic, L.; McCue, T.; Bauch, T.; Kaplan, H.; Tribble, G.; Petrozino, J.F.; Bryan, N.S. Characterization of the rat oral microbiome and the effects of dietary nitrate. *Free Radic. Biol. Med.* **2014**, *77*, 249–257. [CrossRef]

40. Mc Knight, G.M.; Smith, L.M.; Drummond, R.S.; Duncan, C.W.; Golden, M.; Benjamin, N. Chemical synthesis of nitric oxide in the stomach from dietary nitrate in humans. *Gut* **1997**, *40*, 211–214. [CrossRef]

41. Ilijima, K.; Fyle, V.; McColl, K.E. Studies of nitric oxide generation from salivary nitrite in human gastric juice. *Scand. J. Gastroenterol.* **2003**, *38*, 246–252. [CrossRef] [PubMed]

42. Bahadoran, Z.; Mirmiran, P.; Ghasemi, A. Role of Nitric Oxide in Insulin Secretion and Glucose Metabolism. *Trends Endocrinol. Metab. TEM* **2020**, *31*, 118–130. [CrossRef] [PubMed]

43. Hu, S.; Han, M.; Rezaei, A.; Li, D.; Wu, G.; Ma, X. L-Arginine Modulates Glucose and Lipid Metabolism in Obesity and Diabetes. *Nitric Oxide Biol. Chem.* **2008**, *19*, 333–337. [CrossRef]

44. Azizi, S.; Mahdavi, R.; Vaghef-Mehrabany, E.; Maleki, V.; Karamzad, N.; Ebrahimi-Mameghani, M. Potential roles of Citrulline and watermelon extract on metabolic and inflammatory variables in diabetes mellitus, current evidence and future directions: A systematic review. *Clin. Exp. Pharmacol. Physiol.* **2020**, *47*, 187–198. [CrossRef]

45. Lundberg, J.O.; Weitzberg, E. NO generation from inorganic nitrate and nitrite: Role in physiology, nutrition and therapeutics. *Arch. Pharmacal Res.* **2009**, *32*, 1119–1126. [CrossRef]

46. Bahadoran, Z.; Ghasemi, A.; Mirmiran, P.; Azizi, F.; Hadaegh, F. Beneficial effects of inorganic nitrate/nitrite in type 2 diabetes and its complications. *Nutr. Metab.* **2012**, *15*, 16. [CrossRef]

47. McNally, B.; Griffin, J.L.; Roberts, L.D. Dietary inorganic nitrate: From villain to hero in metabolic disease? *Mol. Nutr. Food Res.* **2016**, *60*, 67–78. [CrossRef]

48. Walker, H.A.; McGing, E.; Fisher, I.; Böger, R.H.; Bode-Böger, S.M.; Jackson, G.; Ritter, J.M.; Chowienczyk, P.J. Endothelium-dependent vasodilation is independent of the plasma L-arginine/ADMA ratio in men with stable angina: Lack of effect of oral L-arginine on endothelial function, oxidative stress and exercise performance. *J. Am. Coll. Cardiol.* **2001**, *38*, 499–505. [CrossRef]

49. Schulman, S.P.; Becker, L.C.; Kass, D.A.; Champion, H.C.; Terrin, M.L.; Forman, S.; Ernst, K.V.; Kelemen, M.D.; Townsend, S.N.; Capriotti, A.; et al. L-arginine therapy in acute myocardial infarction: The Vascular Interaction With Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. *JAMA* **2006**, *295*, 58–64. [CrossRef] [PubMed]

50. Morris, S.M., Jr. Regulation of enzymes of urea and arginine synthesis. *Annu. Rev. Nutr.* **1992**, *12*, 81–101. [CrossRef]

51. Cynober, L.; Le Boucher, J.; Vasson, M.-P. Arginine metabolism in mammals. *J. Nutr. Biochem.* **1995**, *6*, 402–413. [CrossRef]

52. Adams, M.R.; Forsyth, C.J.; Jessup, W.; Robinson, J.; Celermajer, D.S. Oral L-arginine inhibits platelet aggregation but does not enhance endothelium-dependent dilation in healthy young men. *J. Am. Coll. Cardiol.* **1995**, *26*, 1054–1061. [CrossRef]

53. Mohan, S.; Wu, C.C.; Shin, S.; Fung, H.L. Continuous exposure to L-arginine induces oxidative stress and physiological tolerance in cultured human endothelial cells. *Amino Acids* **2012**, *43*, 1179–1188. [CrossRef]

54. Nyström, T.; Ortsäter, H.; Huang, Z.; Zhang, F.; Larsen, F.I.; Weitzberg, E.; Lundberg, J.O.; Sjöholm, Å. Inorganic nitrite stimulates pancreatic islet blood flow and insulin secretion. *Free Radic. Biol. Med.* **2012**, *53*, 1017–1023. [CrossRef] [PubMed]
59. Roberts, L.D.; Ashmore, T.; Kotwica, A.O.; Murfitt, S.A.; Fernandez, B.O.; Feelisch, M.; Murray, A.J.; Griffin, J.L. Inorganic nitrate promotes the browning of white adipose tissue through the nitrate-nitrite-nitric oxide pathway. *Diabetes* **2015**, *64*, 471–484. [CrossRef]

60. Gheibi, S.; Jeddi, S.; Carlstrom, M.; Kashfi, K.; Ghasemi, A. Hydrogen sulfide potentiates the favorable metabolic effects of inorganic nitrate in type 2 diabetic rats. *Nitric Oxide Biol. Chem.* **2019**. [CrossRef] [PubMed]

61. Kapil, V.; Khambata, R.; Jones, D.; Rathod, K.; Primus, C.; Massimo, G.; Fukuto, J.; Ahluwalia, A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. *Pharmacol. Rev.* **2020**, *72*, 692–766. [CrossRef]

62. Jeddi, S.; Yousefzadeh, N.; Afzali, H.; Ghasemi, A. Long-term nitrate administration increases expression of browning genes in epididymal adipose tissue of male type 2 diabetic rats. *Gene* **2021**, *766*, 145155. [CrossRef]

63. Tian, R.; Peng, R.; Yang, Z.; Peng, Y.-Y.; Lu, N. Supplementation of dietary nitrate attenuated oxidative stress and endothelial dysfunction in diabetic vasculature through inhibition of NADPH oxidase. *Nitric Oxide Biol. Chem.* **2020**, *96*, 54–63. [CrossRef]

64. Aggarwal, H.; Pathak, P.; Singh, P.; Gayen, J.R.; Jagavelu, K.; Dikshit, M. Systemic Insulin Resistance and Metabolic Perturbations in Chow Fed Inducible Nitric Oxide Synthase Knockout Male Mice: Partial Reversal by Nitrite Supplementation. *Antioxidants* **2020**, *9*, 736. [CrossRef]

65. Norouzirad, R.; Gholami, H.; Ghanbani, M.; Hedayati, M.; González-Muniesa, P.; Jeddi, S.; Ghasemi, A. Dietary inorganic nitrate attenuates hyperoxia-induced oxidative stress in obese type 2 diabetic male rats. *Life Sci.* **2019**, *230*, 188–196. [CrossRef] [PubMed]

66. Jiang, H.; Torregrossa, A.C.; Potts, A.; Pierini, D.; Aranke, M.; Garg, H.K.; Bryan, N.S. Dietary nitrite improves insulin signaling through GLUT4 translocation. *Free Radic. Biol. Med.* **2014**, *67*, 51–57. [CrossRef] [PubMed]

67. Cermak, N.M.; Hansen, D.; Kouw, I.W.; van Dijk, J.W.; Blackwell, J.R.; Jones, A.M.; Gibala, M.J.; van Loon, L.J. A single dose of sodium nitrate does not improve oral glucose tolerance in patients with type 2 diabetes mellitus. *Nutr. Res.* **2015**, *35*, 674–680. [CrossRef]

68. Gilchrist, M.; Winyard, P.G.; Fulford, J.; Anning, C.; Shore, A.C.; Benjamin, N. Dietary nitrate supplementation improves reaction time in type 2 diabetes: Development and application of a novel nitrate-depleted beetroot juice placebo. *Nitric Oxide Biol. Chem.* **2014**, *40*, 67–74. [CrossRef] [PubMed]

69. Gilchrist, M.; Winyard, P.G.; Aizawa, K.; Anning, C.; Shore, A.; Benjamin, N. Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes. *Free Radic. Biol. Med.* **2013**, *60*, 89–97. [CrossRef]

70. Facconti, L.; Mills, C.E. Cardiac effects of 6 months’ dietary nitrate and nitronolactone in patients with hypertension and with/without risk of type 2 diabetes, in the factorial design, double-blind, randomized controlled VaSera trial. *Br. J. Clin. Pharmacol.* **2019**, *85*, 169–180. [CrossRef]

71. Mills, C.E.; Govoni, V.; Facconti, L.; Casagrande, M.L.; Morant, S.V.; Crickmore, H.; Iqbal, F.; Maskell, P.; Masani, A.; Nanino, E. A randomised, factorial trial to reduce arterial stiffness independently of blood pressure: Proof of concept? The VaSera trial testing dietary nitrate and nitronolactone. *Br. J. Clin. Pharmacol.* **2020**, *86*, 891–902. [CrossRef]

72. Soin, A.; Bock, G.; Giordano, A.; Patel, C.; Drachman, D. A Randomized, Double-Blind Study of the Effects of a Sustained Release Formulation of Sodium Nitrite (SR-nitrite) on Patients with Diabetic Neuropathy. *Pain Physician* **2018**, *21*, 179–190. [CrossRef] [PubMed]

73. Seneffeld, J.W.; Wiggins, C.C.; Regimbal, R.J.; Dominelli, P.B.; Baker, S.E.; Joyner, M.J. Ergonomic Effect of Nitrate Supplementation: A Systematic Review and Meta-analysis. *Med. Sci. Sports Exerc.* **2020**, *52*, 2250–2261. [CrossRef] [PubMed]

74. Van De Walle, G.P.; Vukovich, M.D. The Effect of Nitrate Supplementation on Exercise Tolerance and Performance: A Systematic Review and Meta-Analysis. *J. Strength Cond. Res.* **2018**, *32*, 1796–1808. [CrossRef]

75. Li, D.; Nishi, S.K.; Jovanovski, E.; Zurbau, A.; Kashfi, K.; Komishon, A.; Mejia, S.B.; Khan, T.A.; Fukuto, J.; Ahluwalia, A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. *Pharmacol. Rev.* **2020**, *72*, 692–766. [CrossRef]

76. Bahadoran, Z.; Norouzirad, R.; Mirimiran, P.; Amin, Z.; Jeddi, S.; Shokri, M.; Azizi, F.; Ghasemi, A. Effect of inorganic nitrate on metabolic parameters in patients with type 2 diabetes: A 24-week randomized double-blind placebo-controlled clinical trial. *Nitric Oxide Biol. Chem.* **2021**, *107*, 58–65. [CrossRef]

77. Shepherd, A.I.; Gilchrist, M.; Winyard, P.G.; Jones, A.M.; Hallmann, E.; Kazimierzczak, R.; Rembialkowska, E.; Benjamin, N.; Shore, A.C.; Wilkerson, D.P. Effects of dietary nitrate supplementation on the oxygen cost of exercise and walking performance in individuals with type 2 diabetes: A randomized, double-blind, placebo-controlled crossover trial. *Free Radic. Biol. Med.* **2015**, *86*, 200–208. [CrossRef]

78. Mohler, E.R.; Hiatt, W.R.; Gornik, H.L.; Kevil, C.G.; Quyyumi, A.; Ayres, W.G.; Annex, B.H. Sodium nitrite in patients with peripheral artery disease and diabetes mellitus: Safety, walking distance and endothelial function. *Vasc. Med.* **2014**, *19*, 9–17. [CrossRef]

79. Greenway, F.L.; Predmore, B.L.; Flanagan, D.R.; Giordano, T.; Qiu, Y.; Brandon, A.; Lefer, D.J.; Patel, R.P.; Kevil, C.G. Single-dose pharmacokinetics of different oral sodium nitrite formulations in diabetes patients. *Diabetes Technol. Ther.* **2012**, *14*, 552–560. [CrossRef]

80. Linster, C.L.; Van Schaftingen, E. Vitamin C. Biosynthesis, recycling and degradation in mammals. *FEBS J.* **2007**, *274*, 1–22. [CrossRef]

81. Levine, M.; Padayatty, S.J.; Espey, M.G. Vitamin C: A concentration-function approach yields pharmacology and therapeutic discoveries. *Adv. Nutr.* **2011**, *2*, 78–88. [CrossRef] [PubMed]
140. Hasler, W.L.; Coleski, R.; Chey, W.D.; Koch, K.L.; McCallum, R.W.; Wo, J.M.; Kuo, B.; Sitrin, M.D.; Katz, L.A.; Hwang, J.; et al. Differences in intragastric pH in diabetic vs. idiopathic gastroparesis: Relation to degree of gastric retention. *Am. J. Physiol. Gastrointest. Liver Physiol.* 2008, 294, G1384–G1391. [CrossRef]

141. Freeman, J.T.; Hafkesbring, R. Comparative studies of ascorbic acid levels in gastric secretion and blood. III. Gastrointestinal diseases. *Gastroenterology* 1957, 32, 878–886. [CrossRef]

142. Ashor, A.W.; Shannon, O.M.; Werner, A.-D.; Scialo, F.; Gilliard, C.N.; Cassel, K.S.; Seal, C.J.; Zheng, D.; Mathers, J.C.; Siervo, M. Effects of inorganic nitrate and vitamin C co-supplementation on blood pressure and vascular function in younger and older healthy adults: A randomised double-blind crossover trial. *Clin. Nutr.* 2020, 39, 708–717. [CrossRef]

143. Bednar, C.; Kies, C. Nitrate and vitamin C from fruits and vegetables: Impact of intake variations on nitrate and nitrite excretions of humans. *Plant Foods Hum. Nutr.* 1994, 45, 71–80. [CrossRef] [PubMed]