Cost-Effectiveness Analysis of Atrial Fibrillation Screening for Stroke Prevention in China: A Markov Model

Lihui Zhou
Tianjin Medical University

Ye Cao
Tianjin Medical University

Bei Gao
Tianjin Medical University

Wenli Lu
Tianjin Medical University

Yuan Wang ( gw_928@163.com)
Tianjin Medical University

Research Article

Keywords: atrial fibrillation, screening, ischemic stroke, intracerebral hemorrhage, prevention

DOI: https://doi.org/10.21203/rs.3.rs-110782/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objectives: To evaluate the cost-effectiveness of community-based Atrial fibrillation (AF) screening by 12-lead electrocardiogram (ECG) in Chinese healthcare setting.

Methods: A Markov state transition model was used to simulate the costs and effects on a 55/65/75-year-old cohort under routine care and AF screening by 12-lead ECG. The circle length was 1 year, and people were simulated until 90 years old. The cost-effectiveness analysis was performed using a societal perspective. Transition probability, costs, and utility data were derived from open dataset and published literature. One-way and probabilistic sensitivity analyses were performed to examine the uncertainty of the results.

Results: Annual AF screening in 65/75-year-old cohort was highly cost-effective with the incremental cost-effectiveness ratio (ICER) Chinese Yuan Renminbi (CNY) 64147/49736 per quality-adjusted life year (QALY) gained. Annual AF screening in 65/75-year-old cohort was associated with 535/492 prevented ischemic strokes and 174/163 more intracerebral hemorrhages, and the anticoagulation rate increased from the assumed 10% on routine care to 61.5%. Probabilistic sensitivity analysis indicated that these two strategies have 55% and 78% chances of being cost-effective at a willingness-to-pay (WTP) threshold of 1× gross domestic product per capita of China in 2019, US $10635 QALY.

Conclusion: Annual community-based screening of population aged 65 years and older in China is likely to be cost-effective at conventional willingness-to-pay thresholds to reduce the unnecessary burden of strokes.

Introduction

Atrial fibrillation (AF) is the most common arrhythmia in clinical practice, with prevalence increased sharply with age[1]. The mean age of patients with AF is 64.4 ± 12.1 years old[2]. And the lifetime risk of AF was approximately one in five among Chinese adults[3]. AF is associated with an increased risk of stroke, congestive heart failure, cognitive dysfunction, reduced quality of life and all-cause mortality[4]. AF-related stroke tend to be more severe and would cost a lot more than non-AF-related stroke[5]. However, studies had shown that AF-induced strokes can be highly prevented by taking anticoagulation medications. And evidences had proved that anticoagulation therapy can reduce approximately 64% of ischemic stroke risk and 26% of all-cause mortality risk, with the side effect of increased risk of bleeding[6]. Guidelines on prevention and treatment of cardiogenic stroke has recommended long-term prophylactic anticoagulation therapy for AF patients with CHA2DS2-VASc (congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, stroke, vascular disease, age 65–74 years, sex category; scores range from0 to 9) score ≥ 2 in China and many other countries[7-9].

Some people with AF may experience palpitations, chest pain, dizziness or, in severe cases, loss of consciousness, while 30%-40% of AF patients were without symptoms and therefore lack of awareness and treatment, ischemic stroke was often the first sign of these patients[10]. It has been pointed out previously that screening for AF meets many of the Wilson-Jungner criteria[11, 12]. Several studies had proved that AF screening using both pulse palpation and 12-lead electrocardiogram (ECG), 12-lead ECG only and other types of ECG can detected more new cases as well as be cost-effective[13-17].

In China, atrial fibrillation healthcare centers have been established since 2016. Government has taken more and more emphasis on AF treatment and stroke prevention. However, the anticoagulation rate in AF patients was significantly lower than developed countries, which might cause unnecessary stroke burden[18]. AF screening programs should be launched to identify asymptomatic AF and increase anticoagulation rate. The aim of this study was to perform a cost-effectiveness analysis of community-based AF screening by 12-lead ECG in Chinese healthcare setting.

Methods

Model design

Cost-effectiveness analysis and sensitivity analysis were performed using Markov model, with TreeAge Software (TreeAge Software, Inc., Williamstown, United States of America). The base-case model of this study was a Markov simulation of a hypothetical cohort of 100000 55/65/75-year-old residents underwent annual AF screening by 12-lead ECG compared to routine healthcare. In this study, the model length was 35/25/15 years (1 year circles) for 55/65/75-year-old cohort, respectively, until reaching 90 years old. The half-cycle correction was conducted for quality of life and cost every step in this model.

The base case scenario of this model was as following. A 55/65/75-year-old cohort of 100 000 was assigned to no screen or screen cohort. People at no screening cohort would have a certain group diagnosed with AF when they had symptoms and seek doctor's help or went to hospital for other disease and diagnosed accidentally. People at screening cohort would be diagnosed with AF through screening method, and people who did not participant screening in the screening cohort would have the same chance to be diagnosed AF as people at no screening cohort. Furthermore, biennial and trienniel 12-lead ECG screening in 55/65/75-year-old cohort were simulated to see the effect of screen intervals. The parameters used in these models were listed in table 1.

There were 5 independent health states in this model (Fig 1): no event, AF (with treatment & without treatment), ischemic stroke (IS) (with different severity rank), intracerebral hemorrhage (ICH) (disabled and fatal) and death. In one stage, there would be none or one and only clinical event happens. The clinical states could only progress forward and would not improve. AF, IS and ICH were assumed to be chronic diseases and could persist for a long time.

Some assumptions were made in this model. The anticoagulation therapy was warfarin prescription. Studies had proved that warfarin did a great job in IS risk reduction, minimizing the risk of bleeding with better persistence and can be cost effective than new oral anticoagulants (NOACs) [19, 20]. In this model, AF patients who was on warfarin was assumed to be adherence to it. And the AF patients who rejected anticoagulation therapy at diagnosis would never take the medication. Anticoagulation treatment with warfarin need relative frequently international normalized ratio (INR) monitoring in the first month and then INR monitoring monthly in the following long-term treatment. Patients developed with IS would be simulated to be at different disabled states in the acute phase.
mild (modified Rankin Scale [mRS] score, 0–1), moderate (mRS score, 2–3), severe (mRS score, 4–5) and fatal (mRS score, 6), and would die of other causes and stroke after acute phase. And ICH patients were simulated the same way but without severity ranks.

The benefits in this model were risk reduction of ischemic stroke and all-cause mortality, increasing life years and life quality in patients of AF due to early detection and anticoagulation treatment. The costs in this model were expenses on treatment of AF, IS, ICH and screening. According to the Commission on Macroeconomics and Health of the World Health Organization, if the incremental cost-effectiveness ratio (ICER) was less than Chinese Yuan Renminbi (CNY) 70892 (1 gross domestic product [GDP] per capita of China in 2019, US $10635) per QALY gained, then the screening was considered highly cost-effective, and if the ICER was less then CNY 212676 (3 GDP per capita of China in 2019, US $31905) per QALY gained, then the screening was cost-effective.

Probabilities and rate

The resources of disease morbidity in this model was from the results of Global Burden of Diseases (GBD) 2019 study, including the incidence of AF, IS, ICH, the prevalence and mortality of AF and all-cause mortality in China. The GBD 2019 is the world’s most comprehensive catalog of surveys, vital statistics and other health-related data by the institute for health metrics and evaluation[21, 22]. The age-related IS risk ratio (RR) of AF patients were derived from the Framingham study[23]. The IS incidence of people with and without AF was calculated using attributable risk formula:

\[
I_a = \frac{I \times RR}{f(RR - 1) + 1}
\]

\[
I_o = \frac{I}{f(RR - 1) + 1}
\]

In the equations above, \(I_a\), \(I_o\) and \(I\) were the IS incidence of AF patients, people without AF, and general population, respectively. \(f\) was the AF prevalence of general population. RR was the relative risk of IS in AF patients.

The case-fatality of AF was estimated as quotient of AF mortality divided by AF prevalence. The distribution of stroke severity under different conditions was derived from the studies of Hart et al, Sorensen et al and Gabet et al. The case fatality of stroke after the acute phase were assumed based on a two-year retrospective analysis of Chinese population[24]. The risk reduction of IS and risk increase of ICH due to warfarin anticoagulation therapy were form the RELY study[25], and the all-cause mortality decrease data was obtained from a meta-analysis[20]. The anticoagulation rates and their ranges of no screen and screen cohort were assumed based on published literatures[18, 26].

Utility

The utility values used to calculate the quality-adjusted life year (QALY) were based on the EQ-5D scale. The baseline health state utility values of no event people were from pooled health surveys for England, to avoid overestimating the life qualities of no event population by simply defining the utility as 1[27]. The utility values of AF, IS with different severity status, disabled ICH were derived from the studies of Sullivan et al and Gage et al[28, 29].

Costs

This study was conducted from the societal perspective, and only direct healthcare cost was included, consisting of the expenses on screening program and anticoagulation medication, the economic burden of IS, ICH. The cost of 12-lead ECG screening was calculated as the average outpatient ECG examination fee in China, which was supposed to cover the depreciation charge of electrocardiogram machines and the salary of nurses or general practitioners for reading results. And the screening program management expenses, including questionnaires inquiry, staff training, expert literature, consulting, material design, printing, screening invitation, on site epidemiological research and so on, were from the handbook of stroke screening program of China pressed by government. The anticoagulation treatment fee of warfarin included medication cost and INR test expense[25, 30, 31]. The expenses due to IS and ICH were divided into first year acute hospital treatment and annual long-term stroke rehabilitation and healthcare. The data used in this model was from Chinese published literatures[5, 32].

Discount rate

All costs parameters used in this model were expressed in 2019 CNY with the discount rate of 5%. The values of utility and costs in this model were discounted 5% per year, with the sensitivity analysis range of 3% to 8%.

Uncertainty and sensitivity analysis

To analyze the uncertainty of some important parameters, deterministic 1-way sensitivity analysis was performed with parameters of plausible ranges. A probabilistic sensitivity analysis was also adopted in this model to study the variability of all variables. The proportion and utility variable were assumed to be beta distributions. The ratio risk (RR) variables were assumed to be lognormal distributions. Stroke severity ranks were assumed to be dirichlet distributions. Cost parameters were assumed to be normal distributions. All the variables above were varied simultaneously and 10000 estimates of costs and effects were obtained by sampling from the distributions.

Results

Table 2 shows the results of cost-effectiveness analysis on different age cohort and screening interval scenarios. All strategies in this model could be considered cost-effective at the WTP threshold of 3 times GDP per capita of China in 2019 per QALY gained. Strategies of annual AF screening in 65-year-old
cohort and annual, biennial, triennial AF screening in 75-year-old were highly cost-effective (the ICER were less than 1 GDP per capita of China in 2019 per QALY gained). In 65-year-old cohort, annual AF screening gained 0.061 life year and 0.027 quality-adjusted life year per person attending the screening program, the incremental cost-effectiveness ratio (ICER) for any gained QALY was CNY 64147. Compared to no screen strategy in 65-year-old cohort, annual AF screen would have 3891 more treated AF, prevent 535 ISs and induce 174 more ICHs. Much lower ICER was seen in 75-year-old cohort. In 75-year-old cohort, the ICER for any gained QALY was CNY 49736, CNY 52293 and CNY 53155 for annual, biennial and triennial screening, respectively, while the ICER for any gained life year (LY) was CNY 31922, CNY 35632 and CNY 34183. According to the results, screening strategies with a wider screen interval would achieve less effect than annual screening, means less QALYs and LYs gained per individual, lower anticoagulation rate among AF, less prevented IS cases, and the ICER was higher.

Sensitivity analysis

Fig 2 shows the results of one-way sensitivity analysis (only top 10 most influential factors included) of annual AF screening in 75-year-old cohort. The most influential factor was relative risk reduction of all-cause mortality of AF on anticoagulation. If this value lower than 13%, the corresponding ICER in 75-year-old annual screening cohort would be higher than GDP per capita in China in 2019, however, even if this value was 0.0%, the ICER would still no more than 3 times GDP per capita in China in 2019. Higher first year cost of hospitalization and treatment of ICH, higher AF detection and anticoagulation rate among people under routine care, lower anticoagulation rate among screen-detected AF, lower sensitivity of screen method, and poorer IS risk reduction effect of anticoagulant therapy would affect the ICER of 75-year-old annual screening cohort, but the ICERs were all below 3 times GDP per capita in China in 2019.

The results of probability sensitivity analysis were consistently with the main results. The cost-effectiveness acceptability curves (Fig 3.) showed that at the WTP threshold of GDP per capita in China in 2019 the probabilities of annual AF screening in 55/65/75-year-old cohort being cost-effective were 32%, 55% and 78% respectively. And at the WTP threshold of 3 times GDP per capita in China in 2019 the probabilities of annual AF screening in all cohorts being cost-effective were almost 100%.

Discussion

In this modelling cost-effectiveness analysis, a community-based AF screening program by a 12-lead ECG is cost-effective in different strategies with start-age of 55, 65, and 75 years old. And AF screening is highly cost-effective in annual screening from 65 and 75 years old, and in biennial and triennial screening from 75 years old. AF screening was associated with increasing anticoagulation rate among AF patients, therefore reducing strokes in 55/65/75-year-old cohort. The results proved to be robust in the sensitivity analyses when we varied the estimates for effectiveness of screening, utility scores and costs.

Uncertainty about this study arises from the anticoagulation rate in routine care. Hospital-based study have showed that a low rate of OAC use among AF patients in China, with the rate varying from 21.4% to 36.5%[18]. However, most AF patients have not been diagnosed under routine healthcare[39]. So, a proportion of 10% and sensitivity range up to 30% was assumed to be the rate of AF patients have awareness of the condition and start anticoagulation treatment under routine care. And the results for AF screening is supportive. Another main uncertainty is the effect of anticoagulants. The corresponding parameter in this model was derived from RE-LY (randomized evaluation of long-term anticoagulant therapy) study, a multi-center trial conducted in 951 clinical centers of 44 countries, including China[40]. Therefore, the base-case value is reliable. Further, a wide sensitivity range was used in these parameters, and the results was still unchanged.

Recently, evidence about AF screening strategies in different countries accumulated to prove it a cost-effective method for preventing strokes by increase anticoagulation rate among screen-identified AF patients[13-16, 41]. A cost-effectiveness analysis of community-based annual ECG or pulse palpation AF screening programs compared with no screening for people older than 65 years in Japan also concluded that screening would be cost-effective, with the ICER of annual ECG US$ 7830/QALY for men and US$ 10220/QALY for women[14]. Although, the sensitivity of ECG, uptake of screen, anticoagulants prescription rate in this study all set to 100%, and these parameters were not all tested in sensitivity analysis. A cost-effectiveness analysis study was conducted on a national opportunistic screening program for AF in Ireland, by 12-lead ECG if an irregular pulse detected in patients aged 65 years above who went to general practitioner for consultations. The conclusion was proved AF screening to be cost-effective with the ICER £23,004/QALY[15]. To our best knowledge, our study was the first cost-effectiveness analysis of AF screening in Chinese setting. Our study also used 12-lead ECG as screening method, and the results were consistent with the studies above, and had further proved systematic annual AF screening by 12-lead ECG in China might be a cost-effective way to reduce unnecessary stroke burden induced by untreated AF.

This study had some limitations. First, as other modelling analysis, this study was based on assumptions defined by authors, and the parameters were extracted from published studies, which might affect the validity of the results. Even though the sensitivity analysis supported the main results. Second, due to the principal of Markov transition model, AF patients could not recover to sinus rhythm in the natural history, and other AF-related clinical events were not included, such as systemic embolism, heart failure and so on, to simplify model structure. And the prognosis and progression after stroke would be more complex than this model. Third, the effect of screening rounds might be underestimated because of the assumption that if the one who did not be diagnosed in first screen or developed AF on no screen year, would never be detected by screening. Fourth, the anticoagulants in this study only used warfarin, in real-world data, due to allergy and socioeconomic status, some AF patients might choose other anticoagulation medication, such as novel oral anticoagulants and antiplatelet therapy. However, compared to other anticoagulants, warfarin was considered to be cost-effective in China[30]. Thus, further pilot trial of AF screening is needed to test the true effect and get more reliable data for cost-effectiveness analysis.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Availability of data and materials
Datasets and model are available through the corresponding author upon request.

Competing interests
The authors declare that they have no competing interests

Funding
This work was supported by the National Natural Science Foundation of China (No. 71704131).

Authors’ contributions
Wenli Lu and Yuan Wang conceptualize the study. All authors made substantial contributions to the study implementation. Lihui Zhou analyzed the simulation model for the study and wrote the manuscript. Ye Cao collected the data and Bei Gao reviewed literature for available published data. All authors have read and approved the manuscript.

Corresponding author
Correspondence to Yuan Wang.

Acknowledgements
None.

Grant Support
This work was supported by the National Natural Science Foundation of China (No. 71704131).

Reference
1. Lippi G, Sanchis-Gomar F, Cervellin G: Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int J Stroke 2020:1747493019897870.
2. Jiang C, Lan DH, Du X, Geng YP, Chang SS, Zheng D, Chen JB, Yu RH, Sang CH, Long DY et al: Prevalence of modifiable risk factors and relation to stroke and death in patients with atrial fibrillation: A report from the China atrial fibrillation registry study. J Cardiovasc Electrophysiol 2019, 30(12):2759-2766.
3. Guo Y, Tian Y, Wang H, Si Q, Wang Y, Lip GYH: Prevalence, incidence, and lifetime risk of atrial fibrillation in China: new insights into the global burden of atrial fibrillation. Chest 2015, 147(1):109-119.
4. Stewart S, Hart CL, Hole DJ, McMurray JJ: A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am J Med 2002, 113(5):359-364.
5. Hu S, Zhan L, Liu B, Gao Y, Li Y, Tong R, Wu L, Yu B, Gao S: Economic Burden of Individual Suffering from Atrial Fibrillation-Related Stroke in China. Value Health Reg Issues 2013, 2(1):135-140.
6. Camm AJ, Lip GY, De Caterina R, Savelieva I, Atar D, Hohnloser SH, Hindricks G, Kirchhof P, Guidelines ESC CP: 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation. Developed with the special contribution of the European Heart Rhythm Association. Eur Heart J 2012, 33(21):2719-2747.
7. Yang Yanmin HD, Zhang Shu: Guidelines on prevention and treatment of cardiogenic stroke in China (2019). Chinese Journal of Cardiac Arrhythmias 2019(06):463-484.
8. Camm AJ, Kirchhof P, Lip GY, Schotten U, Savelieva I, Ernst S, Van Gelder IC, Al-Attar N, Hindricks G, Prendergast B et al: Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Europace 2010, 12(10):1360-1420.
9. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hindricks J et al: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace 2016, 18(11):1609-1678.
10. Savelieva I, Camm AJ: Clinical relevance of silent atrial fibrillation: prevalence, prognosis, quality of life, and management. J Interv Card Electrophysiol 2000, 4(2):369-382.
11. Hobbs FD, Fitzmaurice DA, Mant J, Murray E, Jowett S, Bryan S, Raftery J, Davies M, Lip G: A randomised controlled trial and cost-effectiveness study of systematic screening (targeted and total population screening) versus routine practice for the detection of atrial fibrillation in people aged 65 and over. The SAFE study. Health Technol Assess 2005, 9(40):iii-iv, ix-x, 1-74.
12. Wilson JM, Jungner YG: Principles and practice of mass screening for disease. Bol Oficina Sanit Panam 1968, 65(4):281-393.
13. Jacobs MS, Kaasenbrood F, Postma MJ, van Hulst M, Tieleman RG: Cost-effectiveness of screening for atrial fibrillation in primary care with a handheld, single-lead electrocardiogram device in the Netherlands. *European 2018, 20(1):12-18.*

14. Maeda K, Shimbo T, Fukui T: Cost-effectiveness of a community-based screening programme for chronic atrial fibrillation in Japan. *J Med Screen 2004, 11(2):97-102.*

15. Moran PS, Teljeur C, Harrington P, Smith SM, Smyth B, Harbison J, Normand C, Ryan M: Cost-Effectiveness of a National Opportunistic Screening Program for Atrial Fibrillation in Ireland. *Value Health 2016, 19(8):985-995.*

16. Proietti M, Farcomeni A, Goethals P, Scavée C, Vijgen J, Blankoff I, Vandekerckhove Y, Lip GY, Mairesse GH, Belgian Heart Rhythm Week I: Cost-effectiveness and screening performance of ECG handheld machine in a population screening programme: The Belgian Heart Rhythm Week screening programme. *Eur J Prev Cardiol 2019, 26(9):964-972.*

17. Moran PS, Flattery MJ, Teljeur C, Ryan M, Smith SM: Effectiveness of systematic screening for the detection of atrial fibrillation. *Cochrane Database Syst Rev 2013(4):CD009586.*

18. Chang SS, Dong JZ, Ma CS, Du X, Wu JH, Tang RB, Xia SJ, Guo XY, Yu RH, Long DY et al.: Current Status and Time Trends of Oral Anticoagulation Use Among Chinese Patients With Nonvalvular Atrial Fibrillation: The Chinese Atrial Fibrillation Registry Study. *Stroke 2016, 47(7):1803-1810.*

19. Liu C, Du X, Jiang C, He L, Chang SS, Guo XY, Yu RH, Long DY, Bai R, Liu N et al.: Long-Term Persistence with Newly-Initiated Warfarin or Non-VKA Oral Anticoagulant (NOAC) in Patients with Non-Valvular Atrial Fibrillation: Insights from the Prospective China-AF Registry. *Med Sci Monit 2019, 25:2649-2657.*

20. Hart RG, Pearce LA, Aguilar MI: Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. *Ann Intern Med 2007, 146(2):857-867.*

21. Disease GBD, Injury I, Prevalence C: Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet 2018, 392(10159):1789-1858.*

22. Collaborators GBDV: Five insights from the Global Burden of Disease Study 2019. *Lancet 2020, 396(10258):1135-1159.*

23. Wolf PA, Abbott RD, Kannel WB: Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. *Stroke 1991, 22(8):983-988.*

24. He Q, Wu C, Guo W, Wang ZY, Zhao YF, Lu J, Qin YY, Guo YB, Qin YC, Pan CD et al.: Hospital-Based Study of the Frequency and Risk Factors of Stroke Recurrence in Two Years in China. *J Stroke Cerebrovasc Dis 2017, 26(11):2494-2500.*

25. Ya W: An economic evaluation of anticoagulant strategies for stroke prevention in atrial fibrillation in China. *Master degree. Nanjing Medical University; 2014.*

26. Vinereanu D, Al-Khalidi HR, Rao MP, He W, Lopes RD, Bahit CM, Ciobanu AO, Fox KA, Pokorney SD, Xian Y et al.: Regional differences in presentation and antithrombotic treatment of patients with atrial fibrillation: Baseline characteristics from a clustered randomized trial to IMProve treatment with AntiCoagulAnTs in patients with atrial fibrillation (IMPACT-AF). *Am Heart J 2017, 192:38-47.*

27. Ara R, Brazier JE: Using health state utility values from the general population to approximate baselines in decision analytic models when condition-specific data are not available. *Value Health 2011, 14(4):539-545.*

28. Gage BF, Cardinali AB, Owens DK: The effect of stroke and stroke prophylaxis with aspirin or warfarin on quality of life. *Arch Intern Med 1996, 156(18):1829-1836.*

29. Sullivan PW, Arant TW, Ellis SL, Ulrich H: The cost effectiveness of anticoagulation management services for patients with atrial fibrillation and at high risk of stroke in the US. *Pharmacoeconomics 2006, 24(10):1021-1033.*

30. Chen Yongfa HH: Economic evaluation of dabigatran, rivaroxaban and warfarin in preventing stroke in patients with atrial fibrillation. *Chinese Journal of New Drugs 2016, 25(11):1216-1224.*

31. Liu Suifeng JZ, Ouyang Min: A warfarin-dosing algorithm on atrial fibrillation in elderly patients. *Chin J Geriatr 2008(04):262-265.*

32. Shi Songhe LS, Liu Dechen, Xu Yuming, Li Yusheng, Song Bo: Three level network screening of stroke and health economics analysis of early intervention program. *Chinese Journal of Health Statistics 2017, 34(03):459-461+464.*

33. Gabet A, Grimaud O, de Peretti C, Bejet O, Olie V: Determinants of Case Fatality After Hospitalization for Stroke in France 2010 to 2015. *Stroke 2019, 50(2):305-312.*

34. Sorensen SV, Kansal AR, Connolly SI, Pogue J, Lui JS, Bradley-Kennedy C, Plumb JM: Cost-effectiveness of dabigatran etexilate for the prevention of stroke and systemic embolism in atrial fibrillation: a Canadian payer perspective. *Thromb Haemost 2011, 105(5):908-919.*

35. Hylek EM, Go AS, Chang Y, Jensvold NG, Henault LE, Selby JV, Singer DE: Effect of intensity of oral anticoagulation on stroke severity and mortality in atrial fibrillation. *N Engl J Med 2003, 349(11):1019-1026.*

36. Wang MeiLK, Wang Dejiang, Zhao Jizong, Wang Shuo, Zhao Yuanli, Kang shuai.: The current situation and issues on direct disease burden of intracerebral hemorrhage in China. *Chinese Health Economics 2005(07):43-46.*

37. Mant J, Fitzmaurice DA, Hobbs FD, Jowett S, Murray ET, Holder R, Davies M, Lip GY: Accuracy of diagnosing atrial fibrillation on electrocardiogram by primary care practitioners and interpretative diagnostic software: analysis of data from screening for atrial fibrillation in the elderly (SAFE) trial. *BMJ 2007, 335(7616):380.*

38. Mauk H, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, Augustovski F, Briggs AH, Maukopf J, Loder E et al.: Consolidated Health Economic Evaluation Reporting Standards (CHEERS)—explanation and elaboration: a report of the ISPOR Health Economic Evaluation Publication Guidelines Good Reporting Practices Task Force. *Value Health 2013, 16(2):231-250.*

39. The L.: Atrial fibrillation and stroke: unrecognised and undertreated. *Lancet 2016, 388(10046):731.*
40. Ezekowitz MD, Connolly S, Parekh A, Reilly PA, Varrone J, Wang S, Oldgren J, Themeles E, Wallentin L, Yusuf S: Rationale and design of RE-LY: randomized evaluation of long-term anticoagulant therapy, warfarin, compared with dabigatran. Am Heart J 2009, 157(5):805-810, 810 e801-802.

41. Aronsson M, Svennberg E, Rosenqvist M, Engdahl J, Al-Khalili F, Friberg L, Frykman-Kull V, Levin LA: Cost-effectiveness of mass screening for untreated atrial fibrillation using intermittent ECG recording. Europace 2015, 17(7):1023-1029.

Tables
Table 1
Main parameters in the Markov model.

Variables	Base-case scenario (range for sensitivity analysis)	Reference
Clinical parameters		
Atrial fibrillation (AF)		
prevalence at 64/54/74 years (/100 thousands)	1996.33/636.13/4940.69	GBD 2019 (http://ghdx.healthdata.org/gbd-results-tool)
Incidence, by age	Table 1 in Supplemental Materials	
Mortality, by age	Table 1 in Supplemental Materials	
Ischemic stroke (IS) incidence, by age	Table 1 in Supplemental Materials	
Intracerebral hemorrhage (ICH) incidence, by age	Table 1 in Supplemental Materials	
All-cause mortality, by age	Table 1 in Supplemental Materials	
Risk ratio (RR) of ischemic stroke risk among AF patients, by age	50-59 years: 4.0 / 60-69 years: 2.6 / 70-79 years: 3.3 / 80-89 years: 4.5	(23)
Proportion of fatal ICH in acute phase year	46.2% (30.0-50.0)	(33)
Stroke severity distribution by different condition in acute phase year		
Mild (mRS=0/1)		
Moderate (mRS=2/3)		
Severe (mRS=4/5)		
Fatal (mRS=6)		
No AF	49.54% / 19.35% / 8.51% / 22.60%	(25, 33-35)
AF without anticoagulation therapy	40.88% / 19.06% / 8.02% / 32.04%	
AF with warfarin	53.70% / 20.37% / 3.70% / 22.23%	
IS annual fatality after acute phase year	8.71% (5.00-10.00)	(24)
ICH annual fatality after acute phase year	5.31% (2.00-6.00)	(24)
Anticoagulation (Warfarin)		
RR of ischemic stroke risk reduction	0.22 (0.20-0.50)	(25)
RR of intracerebral hemorrhage risk increase	2.78 (1.50-3.50)	(25)
Relative risk reduction of all-cause mortality	0.26 (0.00-0.30)	(20)
Rate of AF detection and anticoagulation treatment under routine care	0.10 (0.05-0.30)	(18, 26)
Rate of anticoagulation treatment for screen-detected AF	0.80 (0.60-1.00)	Assumption
Utility		
Sinus rhythm, by age	Table 1 in Supplemental Materials	(27)
AF	0.81 (0.68-0.91)	(29)
ICH	0.75 (0.68,0.83)	(28)
Sinus rhythm, by age		
Mild	0.75 (0.68-0.83)	
Moderate	0.39 (0.35-0.43)	
Severe	0.11 (0.10-0.12)	
IS		
Cost (CNY)		
Screening management cost	40(30-50)	a
Cost of 12-lead ECG examination	30(20-40)	b
First year cost of warfarin treatment (including INR tests)	982(763-1220)	(25, 30, 31)
Sequent annual year cost of warfarin treatment (including INR tests)	572(427-716)	
First year cost of hospitalization and treatment by condition		
Mild IS	24303 (18227-30379)	(5, 36)
Moderate IS	66046 (49535-82558)	
Severe IS	95318 (71488-119147)	
ICH 32825 (24619-41031)

Sequent annual cost of rehabilitation treatment by condition

Condition	Cost (CNY)	(95% CI)
Mild IS	10522 (7891-13152)	
Moderate IS	21487 (16116-26859)	
Severe IS	40586 (30439-50732)	
ICH	10522 (7891-13152)	

Sensitivity of 12-lead ECG read by general practitioner with aid of interpretative software

Sensitivity	(95% CI)
0.92	(0.67-0.97)

Attendance rate of screening

Rate	(95% CI)
0.80	(0.60-1.00)

Discount rate

Rate	(95% CI)
0.05	(0.03-0.08)

Strategies	Lifetime cost (CNY)	Incremental cost * (CNY)	QALYs * (CNY/QALY)	Incremental ICER (CNY/LY)	Incremental LYs * (CNY/LY)	No. of AF with treatment (/100 thousands)	Anticoagulation rate among AF patients (%)	No. of AF-related IS (/100 thousands)
55-year-old cohort								
No screen	17619	-	12.002	-	-	23.184	-	742
Annual	19496	1877	12.023	0.021	91052	23.255	0.071	26431
Biennial	19237	1618	12.014	0.012	134649	23.225	0.041	39876
Triennial	19150	1531	12.011	0.009	167505	23.214	0.030	50380
65-year-old cohort								
No screen	17784	-	9.176	-	-	15.444	-	755
Annual	19496	1712	9.202	0.027	64147	15.505	0.061	28204
Biennial	19317	1534	9.194	0.019	81954	15.486	0.042	36655
Triennial	19258	1475	9.192	0.016	91842	15.480	0.036	41477
75-year-old cohort								
No screen	11499	-	5.979	-	-	8.845	-	835
Annual	12855	1355	6.007	0.027	49736	8.888	0.042	31922
Biennial	12717	1218	6.003	0.023	52293	8.879	0.034	35632
Triennial	12667	1168	6.001	0.022	53155	8.879	0.034	34183

* Compared with no screening strategies in the corresponding age cohort. QALY, quality-adjusted life-year. LY, life-year. ICER, Incremental cost-effectiveness ratio. AF, atrial fibrillation. IS, ischemic stroke. ICH, intracranial hemorrhage.

the numbers of non AF-related IS were 12288, 10323 and 6477 per 100 000 people in 55 / 65 / 75-year-old cohort respectively.