Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd–Mo catalyst

Haohong Duan, Juncai Dong, Xianrui Gu, Yung-Kang Peng, Wenxing Chen, Titipong Issariyakul, William K. Myers, Meng-Jung Li, Ni Yi, Alexander F.R. Kilpatrick, Yu Wang, Xusheng Zheng, Shufang Ji, Qian Wang, Junting Feng, Dongliang Chen, Yadong Li, Jean-Charles Buffet, Haichao Liu, Shik Chi Edman Tsang & Dermot O'Hare

Bio-oil, produced by the destructive distillation of cheap and renewable lignocellulosic biomass, contains high energy density oligomers in the water-insoluble fraction that can be utilized for diesel and valuable fine chemicals productions. Here, we show an efficient hydrodeoxygenation catalyst that combines highly dispersed palladium and ultrafine molybdenum phosphate nanoparticles on silica. Using phenol as a model substrate this catalyst is 100% effective and 97.5% selective for hydrodeoxygenation to cyclohexane under mild conditions in a batch reaction; this catalyst also demonstrates regeneration ability in long-term continuous flow tests. Detailed investigations into the nature of the catalyst show that it combines hydrogenation activity of Pd and high density of both Brensted and Lewis acid sites; we believe these are key features for efficient catalytic hydrodeoxygenation behavior. Using a wood and bark-derived feedstock, this catalyst performs hydrodeoxygenation of lignin, cellulose, and hemicellulose-derived oligomers into liquid alkanes with high efficiency and yield.
Decreasing petroleum deposits combined with conversely climbing global demand and environmental concern makes it critical to develop fuel and chemical production processes based on renewable resources1. Lignocellulosic biomass, including cellulose, hemicellulose, and lignin, is the most abundantly available and cost-effective carbon reservoir that can be used to produce renewable fuel and high added-value chemicals2. Compared with biomass fractionation, which requires extensive pre-treatment and following hydrolysis, flash pyrolysis is a cheaper process for the production of upgradable bio-oil from lignocellulose, and offers potential for lignin utilization3, 4. However, the bio-oil also contains high oxygen content (up to 60 wt%) and necessitates further catalytic upgrading, preferably via hydrodeoxygenation (HDO), before use in hydrocarbon fuel or chemical production5. The water soluble fraction of bio-oil mainly involves carbohydrates that could be catalytically converted into hydroxymethylfurfural6, 7, levulinic acid8, and monofunctional hydrocarbons9, 10; these platform chemicals can be further converted to hydrocarbons via HDO. By comparison, the water-insoluble bio-oil (WIBO) often contains a large variety of products derived from lignin, cellulose, and hemicellulose in the form of oligomers with molecular weight up to 5000 Da5. The complexity of WIBO composition and the chemical inertness of the oligomers present therefore pose a great challenge for any HDO catalyst.

In recent years, bifunctional metal-acid catalysts have been developed, showing high efficiency in HDO reaction for hydrocarbon fuel production from lignin11–17. Lercher and co-workers have made important contributions on the design of an efficient combination of metal-catalyzed hydrogenation and acid-catalyzed deoxygenation for highly selective HDO of phenols to cyclohexanes11, 15. Both the Dyson and Leitner groups have made impressive progress on the development of high performance catalyst for the HDO of lignin-derived phenols using combinations of metal nanoparticles and acidic ionic liquids8, 17. In spite of the growing number of metal-acid combinations, the successful productions of alkanes using these bifunctional metal-acid catalysts have been mostly used for single-component lignin-derived monomers. The conversion of lignin into alkanes has been realized in a rare case via a two-step process, involving catalytic cleavage of the C–O–C bonds and subsequent hydrogenolysis/hydrogenation8. Very recently, the production of alkanes, with mass yield up to 28.1 wt%, was reported via HDO from raw lignocellulose containing cellulose, hemicellulose, and lignin by using a Pd/NbOPO4 bifunctional catalyst. However, the mass yield of alkyl cyclohexanes converted from lignin was only up to 5.1 wt%19. Efficient HDO requires the design and synthesis of a bifunctional catalyst containing active metal and both Brønsted and Lewis acid sites. Recent reports showed that atomically dispersed metal may demonstrate higher activity and efficiency compared with nanoparticles in heterogeneous reactions20–22. It is also believed increased Bronsted acid sites favor increasing alkane selectivities16, 23, and additional Lewis acid sites may help catalyze the reaction through initial binding of the oxygenated substrates and subsequent cleavage of the C–O linkages19.

Herein, we present a highly dispersed Pd–Mo catalyst that encompasses a combination of highly dispersed Pd and ultrafine Mo phosphate nanoparticles on silica (Pd/m-MoO3–P2O5/SiO2), in which m represents mixed-valent Mo. In batch reaction, this catalyst exhibits high activity (99%) for the catalytic HDO of...
phenol to cyclohexane in very mild conditions (383 K, 1 MPa). Furthermore, it shows good re-usability in continuous flow reaction conditions for 419 h. Characterization studies show that the efficient HDO ability may originate from the cooperative effects between highly dispersed Pd, high Brønsted and Lewis acid sites. By feeding wood and bark-derived WIBO containing large amounts of lignocellulosic oligomers, the catalyst not only completely converts phenolic monomers to cyclohexanes, but also achieves HDO of lignin, cellulose, and hemicellulose-derived oligomers into cyclohexanes, hexane, and pentane in 13.4, 5.1, and 7.4 wt%, respectively, with total mass yield up to 29.6 wt%.

Results

Catalysts synthesis and characterizations. The solid catalyst, Pd/m–MoO₃–P₂O₅/SiO₂, was prepared using a wet-impregnation method (see “Methods” for preparation). Transmission electron microscopy (TEM) image of the Pd/m–MoO₃–P₂O₅/SiO₂ (Supplementary Fig. 1) shows ultrafine, electron-rich m–MoO₃–P₂O₅ nanoparticles supported on an amorphous SiO₂ support. A high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image (Fig. 1a) shows these ultrafine m–MoO₃–P₂O₅ nanoparticles with high coverage and size of 2.8 ± 1.0 nm (inset, Fig. 1a). Inductively coupled plasma mass spectrometry (ICP-AES) analysis showed a Mo:P molar ratio of ca. 1:1 (Supplementary Table 1), which is consistent with Energy Dispersive X-ray spectroscopy (EDXS) data (Supplementary Fig. 2). Aberration-corrected annular bright-field (ABF) scanning transmission electron microscope image (Fig. 1b) and corresponding HAADF-STEM image (Fig. 1c) clearly show that the m–MoO₃–P₂O₅ nanoparticles do not form a crystalline lattice. Together with powder X-ray diffraction (PXRD) data (Supplementary Fig. 3), these results suggest that the m–MoO₃–P₂O₅ nanoparticles are crystallographically disordered. Elemental mapping revealed that Mo and P are well dispersed throughout individual m–MoO₃–P₂O₅ nanoparticles. The structure of the m–MoO₃–P₂O₅ nanoparticles was further investigated with the help of multinuclear solid-state nuclear magnetic resonance (NMR) spectroscopy. The ³¹P solid-state magic angle spinning
X-ray absorption fine structure analysis. In addition to Mo and P elements, ICP-AES (Supplementary Table 1) and EDXS (Supplementary Fig. 2) data also show the presence of Pd in Pd/m–MoO3–P2O5/SiO2. The Pd signal is highly dispersed according to elemental mapping studies (Fig. 1d), and that the absence of Bragg diffraction of Pd from PXRD (Supplementary Fig. 3), these suggest Pd is presented in very small size. Due to the similar atomic number of Pd and Mo, it is difficult to distinguish Pd using the intensity information of the HAADF-STEM image. To understand the coordination environment and chemical states of Pd in Pd/m–MoO3–P2O5/SiO2, X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies were carried out. For clear comparison, Pd/m–MoO3–P2O5/SiO2 is labeled as reduced catalyst, and corresponding H2 treating precursor is labeled as oxidized catalyst. The Mo K-edge XANES spectrum for reduced catalyst shows a notable shoulder peak (denoted as a) in the pre-edge region (Fig. 2a) as MoO3, suggesting the formation of strongly distorted MoO6 octahedra having Mo=O bond, in good agreement with the Raman results. The average valence of the Mo ions in the reduced catalyst is estimated to be ca. 5.5 using the linear relationship between the Mo oxidation state and the energy position of feature b27, indicating the possible existence of mixed-valent Mo+6 oxide states. The Pd K-edge XANES spectrum is found to exhibit two well-defined features including a shoulder peak c and a doublet peak (d and e) at the white line (Fig. 2d); our XANES simulation reveals that the shoulder peak c can be considered to be the fingerprint of Pd2+ in square planar coordination, while the intensity of feature e is higher for Pd ions in distorted octahedral coordination than for the square planar coordination (Fig. 2g), consistent with XANES results in the literature28. Therefore, this implies that the Pd is highly dispersed in the framework of m–MoO3–P2O5/SiO2 via a combination of square planar and distorted octahedral configurations, with an averaged oxidation state between Pd2+ and Pd3+. This is in agreement with recently reported strategy of stabilizing single Pt atoms on a support interface by adopting a proper coordination.22 The presence of m–MoO3–P2O5/SiO2 matrix may offer an ideal interface to stabilize Pd with high dispersion. The structural change of Pd/m–MoO3–P2O5/SiO2 during H2 treatment was also investigated. Interestingly, except for the peak intensity decrease for the Pd–O nearest-neighbor (NN) coordination shells, the two higher shell peaks at distances of 2.5 and 3.5 Å. The Pd K-edge EXAFS Fourier transform of reduced catalyst (Pd/m–MoO3–P2O5/SiO2) display a dramatic intensity increase and a radial shift to lower R direction, as compared to oxidized catalyst (Fig. 2e); similar phenomenon is shown for the Mo K-edge EXAFS results (Fig. 2b). Meanwhile, complementary wavelet transform (WT) EXAFS analysis reveals strong WT maxima at about 7.0 and 9.5 Å−1, which can be, respectively, associated with the Pd–P/Si and Pd–Pd/Mo scatterings (see Supplementary Fig. 6), at a distance of around 2.55 Å surrounding Pd atoms in reduced catalyst, in marked contrast to the WT maxima distribution in oxidized catalyst (Fig. 2f); slight change is observed for the Mo K-edge WT (Fig. 2c). Those results suggest that more oxygen vacancies are produced by H2 reduction in the oxide network of reduced catalyst, which may cause the collapse of the PdO6 octahedra by breaking the bridging oxygen atoms with the neighbor polyhedrons. A least-squares curve-fitting analysis was carried out for the multiple coordination shells of Mo and Pd (Supplementary Figs. 7–10 and Supplementary Tables 2 and 3). The coordination numbers of the Pd–O bonding in the first NN coordination sphere for reduced catalyst (oxidized catalyst) is estimated to be 4.9 (5.6) at a distance of 2.02 (2.03) Å, evidencing the transformation of the Pd–O bonding from a distorted octahedral to a square planer coordination. Simultaneously, the number of Pd/Mo atoms in the second NN coordination sphere of Pd in the reduced catalyst is estimated to be 1.5 at a distance of 2.80 Å, much larger than that of 0.4 in the oxidized catalyst, strongly signaling the presence of Pd–Pd/Mo atoms. By EXAFS analysis it is difficult to distinguish Mo from Pd; the data suggest a probability of both Pd–Mo and Pd–Pd neighbors after reduction, as schematically shown in Fig. 2h using density functional theory (DFT) calculations. The data do allow us to conclude there is an absence of large Pd particles, implying a high dispersion for the Pd atoms (further discussions are shown in Supplementary Note 1 and Supplementary Figs. 11–13). Thus, XAFS data indicate that there are significant oxygen vacancy sites present in close vicinity of Mo and highly dispersed Pd in Pd/m–MoO3–P2O5/SiO2.

Studies of the activity and stability of the catalyst. Phenol HDO in a batch reactor was initially chosen as a model reaction to evaluate the catalytic activity of Pd/m–MoO3–P2O5/SiO2. The total mass of Pd was kept constant in order to benchmark other catalyst systems (Supplementary Table 1). The reaction process using Pd/m–MoO3–P2O5/SiO2 catalyst (Fig. 3a and Supplementary Fig. 14) shows an increase in cyclohexane selectivity and a decrease in cyclohexanol selectivity. In comparison, Pd/SiO2 catalyst only delivered hydrogenated products (cyclohexanone and cyclohexanol) and subsequent dehydration was not observed (Supplementary Fig. 14). These results suggest that in the case of Pd/m–MoO3–P2O5/SiO2 catalyst, phenol is initially hydrogenated to cyclohexanol catalyzed by Pd, which is followed by dehydration of cyclohexanol catalyzed by m–MoO3–P2O5 and further hydrogenation of cyclohexene to yield cyclohexane catalyzed by Pd. Via a comparison of product selectivity at near identical conversion level (Fig. 3b), the Pd/m–MoO3–P2O5/SiO2 catalyst exhibited a much higher cyclohexane selectivity (81%) compared with catalysts without m–MoO3–P2O5, indicating its high dehydration ability is due to the presence of m–MoO3–P2O5. We have compared the performance of Pd/m–MoO3–P2O5/SiO2 for the HDO of phenol to a series of state-of-art bifunctional metal-acid catalysts (Supplementary Table 4). Overall Pd/m–MoO3–P2O5/SiO2 demonstrates higher phenol conversions, with better cyclohexane selectivity at a lower temperature and lower H2 pressure than any of other catalyst systems. The catalyst was reused and showed no obvious deactivation after five cycles (Fig. 3c), showing its stability under batch reaction conditions. In order to investigate stability under more industrially related conditions, Pd/m–MoO3–P2O5/SiO2 was evaluated under continuous flow condition at 433 K, 1 MPa H2 with flow rate of 10 cm3 (STP)min−1, weight hour space velocity (WHSV) = 0.18 h−1. The results show that there is some degree of deactivation (phenol conversion from 84.2 to 77.2%) but stable cyclohexane selectivity (from 68.2 to 68.8%) in the 32-h test (Fig. 3d), exhibiting higher cyclohexanol selectivity and stability than those in recent report under similar conditions (cyclohexane yield decrease from 52 to 28% in 4 h).17 The spent catalyst shows no obvious change (Supplementary Figs. 15, 16). The Mo and Pd K-edge XANES and
EXAFS spectra are also given for the spent catalyst, exhibiting no obvious changes in the local structure around Mo and Pd atoms (Supplementary Fig. 17). The deactivation was mainly due to carbonaceous deposition (Supplementary Fig. 18). To evaluate re-use ability, Pd/m-MoO3–P2O5/SiO2 was evaluated under continuous flow conditions (453 K, 1 MPa H2 with WHSV of 0.085 h−1). As shown in Supplementary Fig. 19, after it was deactivated (phenol conversion from >99 to 69.0%, cyclohexanol selectivity from 98.3 to 90.4%) in 135 h, the spent catalyst was calcined at 673 K for 5 h to remove the carbonaceous deposition and re-used for another two runs. The result shows that the initial performance could be substantially recovered, with phenol conversion of >99% (1st run), 94.5% (2nd run), and 94.0% (3rd run), respectively, and cyclohexanol selectivity of 98.3% (1st run), 98.4% (2nd run), and 96.7% (3rd run), respectively, and a similar deactivation trend was observed. This good re-usability ensures a long-term reaction efficiency (maintaining phenol conversion >60% and cyclohexanol selectivity >90%) in three runs for over 419 h without obvious catalyst leaching (Supplementary Table 1).

Studies of the effects of Bronsted and Lewis acidity on reaction. 31P MAS NMR spectrum were recorded following adsorption of the trimethylphosphine oxide (TMPO) probe molecule, giving information about the acid type (Bronsted vs. Lewis), strength and concentration in the materials. The 31P MAS NMR spectrum (Fig. 4a) of the TMPO-adsorbed on reduced catalyst (Pd/m-MoO3–P2O5/SiO2) exhibits two distinct resonances at 58.0 and 73 ppm, both signals are attributed to the protonation of TMPO by surface Bronsted acid sites with exceptionally high density reaching 0.0138 mmol/m2 (Supplementary Table 5 and Supplementary Fig. 20), which is 2.6-fold higher than a strong acidic zeolite HZSM-5 (Si to Al of 15). The reduced catalyst exhibits another new resonance at 45 ppm, which was not observed in oxidized catalyst and could be attributed to Lewis acid with density of 0.0075 mmol/m2. A series of catalysts with different Bronsted acid sites and Lewis acid sites were prepared by the same procedure as the Pd/m-MoO3–P2O5/SiO2 catalyst by varying the molar ratio of P:Mo (Supplementary Table 5). The existence of the Lewis acid site is observed only on catalysts containing Mo species, thus it is most likely linked to oxygen vacancy associated with Mo centers, which is well consistent with abovementioned XAFS analysis. The formation of oxygen vacancy is observed by temperature programmed reduction (TPR, Supplementary Fig. 21), and could be linked with the reduction of surface oxidation state evidenced by multi-frequency electron paramagnetic resonance (EPR, see Methods, Supplementary Figs. 22–24) and by solid-state magnetic susceptibility measurements (Supplementary Fig. 25).

We believe that the excellent performance of Pd/m-MoO3–P2O5/SiO2 for HDO may be attributed to cooperative effects between highly dispersed Pd, strong Bronsted acid sites, and Lewis acid sites. The highly dispersed Pd allows for higher hydrogenation activity (Fig. 3a) and enhanced metal atom efficiency compared with Pd/SiO2 (Supplementary Fig. 14), by
increasing the number of exposed surface atoms by using very low Pd loading amount of 0.48 wt%. The catalysts with different Bronsted acid sites (Supplementary Table 5) were compared in the dehydration of cyclohexanol (Supplementary Table 6), which is the most important intermediate in the HDO of phenol. Since most of the samples show comparable Bronsted acid strength, respectively, revealed by resonance position of 31P MAS NMR spectrum (except Pd/P$_2$O$_5$/SiO$_2$ (P:Mo = 1:0) which shows weaker Bronsted acid strength), one can look into the correlation between Bronsted acid and dehydration activity. The result shows that only samples containing Bronsted acid sites have activity, suggesting the dehydration is a Bronsted acid-catalyzed process. Specifically, Pd/m–MoO$_3$–P$_2$O$_5$/SiO$_2$ (P:Mo = 1:1, the reduced catalyst shown in the main work) with the most Bronsted acid sites is a more active dehydration catalyst, and also Pd/m–MoO$_3$–P$_2$O$_5$/SiO$_2$ (P:Mo = 2:1) with higher Bronsted acid sites compared with Pd/MoO$_3$/SiO$_2$ (P:Mo = 0:1) has higher dehydration activity (conversion: 25.2 vs. 19.8%), which are consistent with the correlation between the Bronsted acid sites and the dehydration activity$^{16, 23}$. It is also observed that Pd/P$_2$O$_5$/SiO$_2$ has lower dehydration activity compared with Pd/MoO$_3$/SiO$_2$ (12.8 vs. 19.8%), although its Bronsted acid sites is higher. This could be due to its relatively weaker Bronsted acid strength13. The role of Lewis acid site on phenol conversion was further studied by performing diffuse-reflected infrared Fourier transform spectroscopy (DRIFTS) upon exposure of the oxidized and reduced catalyst (Pd/m–MoO$_3$–P$_2$O$_5$/SiO$_2$) to a phenol/He mixture at reaction temperature (383 K). In the measurements, the reduced catalyst was first treated with 5% H$_2$/Ar at 383 K before exposed to phenol/He mixture. The DRIFTS spectra of both reduced catalyst and oxidized catalyst (Fig. 4b) show bands at 1597, 1498, 1475, 1352 and 1267 cm$^{-1}$, which correspond to different vibrational modes of phenoxy species33. Compared with oxidized catalyst, the reduced catalyst shows more pronounced bands at 1684, 2951 and 2874 cm$^{-1}$ (Fig. 4b, Supplementary Fig. 26), which could be assigned to the ν(C=O) and ν(C–H)}
HDO of WIBO. Based on the above understanding, efficiency test using Pd/m–MoO3–P2O5/SiO2 for upgrading a WIBO derived from fast pyrolysis of ground eucalyptus wood chip and bark were carried out. This WIBO sample was a dark red, treacle-like, viscous liquid (Supplementary Fig. 28) with a 47.2 wt% carbon content and a 42.8 wt% oxygen content (Supplementary Table 7). The WIBO contains 13 wt% moisture determined by Karl Fischer method, which mainly derived from the feedstock and also the dehydration reactions during flash pyrolysis treatment. The content of the WIBO was studied using gas chromatograph–mass spectrometry (GC-MS) (Fig. 5a and Supplementary Fig. 29). The results show the WIBO contains a series of oxygenated monomers involving phenolic compounds such as guaiacol, syringol, and furans (4.7 wt% of total WIBO mass). High-performance liquid chromatography (HPLC) of the water extract of the WIBO (Supplementary Fig. 30) showed no sugar-type monomers before it was hydrolyzed. The remaining mass can be attributed to lignin and sugar oligomers that are undetectable in both GC-MS and HPLC. Gel permeation chromatography (GPC) analysis (Supplementary Fig. 31) verified the presence of oligomers in the WIBO with molecular weight up to 1000 Da and weight average molecular weight (Mn) of 401. This Mn value is consistent with those reported for wood pyrolysis oils.36

HDO of this WIBO was carried out in a batch reactor at 453 K and 1 MPa H2 in the presence of Pd/m–MoO3–P2O5/SiO2 catalyst. Total conversion of the oxygenated monomers was achieved after 4 h (Fig. 5b), with the production of 9.4 wt% total mass yield of liquid alkanes involving 0.9 wt% pentane, 1.2 wt% hexane, and 5.6 wt% C6–C9 cycloalkanes (cyclohexane, methylcyclohexane, ethylcyclohexane, and propylcyclohexane; see Table 1 and Supplementary Fig. 32). Overall a 10.2% carbon yield in the form of cyclohexanes was obtained. This is higher than the maximum carbon yield (5.7%) possible from the lignin-derived monomers present in the WIBO. This indicates that some oligomers in the WIBO were converted into cyclohexanes. The production of pentane and hexane suggests that HDO of cellulose and hemicellulose into alkanes is achieved, which is supported by the earlier literature.37 The color of the mixture became lighter after the reaction, serving as another qualitative indicator of the HDO efficiency (inset in Fig. 5a, b). To further increase the mass yield of liquid alkanes, the reaction was carried out at an increased temperature. At 523 K and 1 MPa H2, 29.6 wt% total mass yield and 46.3% total carbon yield of liquid alkanes was achieved after 15 h, the mass yield of cyclohexanes, pentane, and hexane reached 13.4, 7.4 and 5.1 wt%, respectively (see Methods, Table 1, Supplementary Fig. 33). It should be noted that the total carbon yield is comparable to the state-of-art in catalytic performance19, 37, 38. GC analysis (Supplementary Fig. 34) shows the decrease of oligomers. Although reaction mechanisms for HDO of different classes of oxygenates in bio-oil could be different, these results clearly indicate that the catalyst has a high performance for simultaneous HDO of lignin, cellulose, and hemicellulose-derived oligomers into liquid alkanes.

Discussion

We report a highly active HDO catalyst comprising highly dispersed Pd, Bronsted and Lewis acid sites on Pd/m–MoO3–P2O5/SiO2, which shows to be important for the efficient catalytic HDO behavior. Using water-insoluble fraction of wood and bark-derived WIBO, the catalyst showed state-of-art performance for the simultaneous HDO of lignin, cellulose, and hemicellulose-derived oligomers into liquid alkanes with total mass yield of 29.6 wt% under mild condition (523 K, 1 MPa H2). Further work will include mechanistic investigations for HDOs of different classes of oxygenates in bio-oil to fully understand the high efficiency of this catalyst.

Methods

Sample preparation

Pd/m–MoO3–P2O5/SiO2 synthesis (NH4)2MoO4‚2H2O (0.021 mmol), (NH4)2HPO4 (0.130 mmol), citric acid (0.30 mmol) were dissolved in 0.3 mL of HCl aqueous solution containing PdCl2 (1.5 mg). The mixture was stirred for 1 h and then added dropwise to SiO2 (0.12 g). The obtained glue-like sample was dried in an oven at 397 K overnight and calcined at 773 K in a muffle furnace for 5 h at a rising rate of 5 K/min. The calcined sample, named as Pd/MoO3–P2O5/SiO2, was reduced in H2 at 323 K for 3 h with a flowing rate of 75 cm3/min. The calcined sample changed to a greenish-blue color following reduction. This reduced sample was named Pd/m–MoO3–P2O5/SiO2. The synthesis of Pd/m–MoO3–P2O5/SiO2 was similar as for Pd/MoO3–P2O5/SiO2 except with no addition of (NH4)2MoO4‚2H2O. PdCl2 solution into SiO2 under strong stirring. The following operations are the same as the one for Pd/m–MoO3–P2O5/SiO2. The fresh catalyst was protected in N2 and quickly prepared as samples for further characterizations and catalytic tests.

High-resolution TEM

HRTEM images were acquired with JEOL JEM-2100F field-emission TEM with an accelerating voltage of 200 kV.

Aberration-corrected TEM

Aberration-corrected TEM was performed on JEOL 200F TEM operated at 200 keV. The attainable spatial resolution of the microscope is 74 pm with a probe spherical-aberration corrector. Both ABF and HAADF were obtained with the illumination semi-angle of 25 mrad and probe current of 100 pA. The dwell time for imaging was set at 10 ms per pixel to ensure desirable signal to noise ratio. The collection angles for the ABF and HAADF images were fixed at 12–25 and 90–230 mrad, respectively. EDXS was performed to locate elemental distribution of Mo, P, and Pd with an SDD-type EDX detector. The attainable energy-resolution of the EDX detector is 130 eV. A higher beam current of 300 pA was used with a longer dwell time of 0.1 ms per pixel repeated for 200 times. Spatial noise ratio. The collection angles for the ABF and HAADF images were fixed at 12–25 and 90–230 mrad, respectively. EDXS was performed to locate elemental distribution of Mo, P, and Pd with an SDD-type EDX detector. The attainable energy-resolution of the EDX detector is 130 eV. A higher beam current of 300 pA was used with a longer dwell time of 0.1 ms per pixel repeated for 200 times. Spatial noise ratio. The collection angles for the ABF and HAADF images were fixed at 12–25 and 90–230 mrad, respectively. EDXS was performed to locate elemental distribution of Mo, P, and Pd with an SDD-type EDX detector. The attainable energy-resolution of the EDX detector is 130 eV. A higher beam current of 300 pA was used with a longer dwell time of 0.1 ms per pixel repeated for 200 times. Spatial noise ratio. The collection angles for the ABF and HAADF images were fixed at 12–25 and 90–230 mrad, respectively. EDXS was performed to locate elemental distribution of Mo, P, and Pd with an SDD-type EDX detector. The attainable energy-resolution of the EDX detector is 130 eV. A higher beam current of 300 pA was used with a longer dwell time of 0.1 ms per pixel repeated for 200 times. Spatial
drift was corrected with a simultaneous image collector. Mo L-edge, P K-edge and Pd L-edge were used for elemental mapping.

Power X-ray diffraction. PXRD data were obtained on a PANalytical X’Pert Pro diffractometer in reflection mode at 40 kV and 40 mA using Cu Kα radiation.

Raman spectroscopy. Raman spectra were recorded on a Renishaw Raman spectrometer at a laser excitation wavelength of 633 nm.

X-ray absorption data collection and analysis. Mo K-edge and Pd K-edge X-ray absorption spectra were acquired under ambient condition at beamline BL14W1 of Shanghai Synchrotron Radiation Facility (SSRF) using a Si(311) double-crystal monochromator equipped for X-ray absorption and fluorescence detection, respectively. The XAFS data was carried out using the ARTEMIS program with the theoretical scattering data was carried out using the FEFF9.0 code. The details of curve fitting are discussed in Supplementary Fig. 7–10 and Supplementary Tables 2 and 3. The Pd K-edge theoretical XANES calculations were carried out with the FDMNES code in the framework of real-space multiple-scattering scheme using the muffin-tin approximation for the potential. The energy-dependent exchange-correlation potential was calculated in the real Hedin-Lundqvist scheme, and then the spectra are convoluted using a Lorentzian function with an energy-dependent width. Satisfactory convergence for cluster sizes had been achieved.

Density functional theory calculations. The electronic structure calculations were performed using the density functional theory and a plane-wave basis set as implemented in the VASP code. The electron–ion interaction was treated by the projector-augmented wave method with the outmost s, p, and d states as valence orbital. The electron exchange-correlation energy was described by the modified Perdew-Burke-Ernzerhof generalized gradient approximation for solids (PBEsol). The kinetic energy cutoff was set to 350 eV, and the Brillouin zone was sampled in Monkhorst-Pack k point meshes with an interpolation grid spacing of 0.04 Å−1 for the 240 atoms supercell, to achieve the total energy convergence of less than 0.001 eV/atom. Structural relaxation was allowed until the force on each atom was <0.01 eV/Å.

Catalysis testing in batch reactions. Phenol (18.4 mg, 0.195 mmol) was added into a stainless steel Parr autoclave (reactor volume, 50 mL) with decalin (7 mL), together with Pd/m-MoO3-P2O5/SiO2 (10.0 mg) and was stirred for 10 min. The autoclave was then sealed, purged with H2 for three times, and then placed under 1 MPa H2 at room temperature. The reaction was carried out at different temperature for 4 h with a stirring speed of 800 rpm. After reaction, the organic product was collected and analyzed by GC-MS using an internal standard, as presented in Supplementary Fig. 16. For reaction at 453 K, WIBO (86.2 mg), decalin (7 mL), and Pd/m-MoO3-P2O5/SiO2 (170.8 mg) were added into a stainless steel Parr autoclave (reactor volume of 50 mL) and stirred for 10 min. Then, the autoclave was sealed, purged three times with H2, and placed under 1 MPa H2 at room temperature. The reaction was carried out at 453 K for 4 h with a stirring speed of 800 rpm. After reaction, the organic product was collected and analyzed by GC-MS using an internal standard, as presented in Supplementary Fig. 32. For reaction at 523 K, WIBO was used and the other parameters were kept identical. The reaction was carried out at 523 K for 1.5 h. The reaction products were analyzed by GC-MS, as presented in Supplementary Fig. 33.

The mass of lignin-derived phenols and furans in the WIBO and alkane in the product were determined by internal standard. The corresponding response factors were determined by analyzing mixtures of those pure, commercial compounds of phenols, furans and alkanes, and internal standard with given weights. Mass yields of alkane were calculated by mass balance: mass of alkanes/mass of dried WIBO input. Carbon yields were calculated by the equation: mass of carbon in alkane/mass of carbon in the WIBO input.

Gel permeation chromatography. GPC measurements were performed on a Shimadzu LC-20AD instrument using MALLS detector. Two Mixed Bed PSS SDV linear S columns were used in series with tetrahydrofuran (THF) as mobile phase with flowing rate of 1.0 cm3/min at 303 K. The MALLS detector was calibrated using a polystyrene standard. The sample was prepared by dissolving WIBO in THF with 1 wt% concentration and then filtering with 0.2 μm pore size microfilter.

Thermogravimetric analysis (TGA). TGA measurements were performed on a Mettler Toledo TGA/DSC 1 system. 16.76 mg of sample was heated in a corundum crucible between 423 and 973 K at a heating rate of 5 K/min in a flowing 50% O2/N2 mixture.

TMPO-adsorbed sample preparation for 31P MAS NMR spectroscopy. 100 mg of the catalyst was placed in a home-made glass tube, activated at 298 K for 2 h under vacuum (10−3 Pa), mixed with a CH3Cl solution containing 0.1 M TMPO under nitrogen, treated by ultrasound for 1 h (for equilibrium), and then the solvent was evacuated under vacuum. Finally, the sample tube was sealed for storage and transferred to Bruker 4 mm ZrO2 rotor with a Kel-F endcap in a glove box under nitrogen atmosphere before NMR spectroscopy measurement.

31P MAS solid-state NMR spectroscopy experiments. Solid-state MAS NMR spectroscopy experiments were carried out using a Bruker Avance III 400WB spectrometer at room temperature. To remove the effect of proton spins on quantitative 31P spectra (i.e., Fig. 4a), a strong radio frequency field (B) is usually applied at the resonance frequency of the non-observed abundant spins (1H herein), which contribute to the coupling of both spin species. The high power decoupling was thus used for the quantitative 31P analysis. Considering the long relaxation time of 31P nuclei in NMR spectroscopy experiment, 30 s pulse with 1.20 μs width and 15 s delay time. The radiofrequency for decoupling was 59 kHz. The spectral width was 400 ppm, from 200 to 2200 ppm. The number of scanning was 800 and spinning frequency was 10 kHz. The 31P chemical shifts were reported relative to 85% aqueous solution of H3PO4 with NH4H2PO4 as a secondary standard (0.81 ppm). The quantitative analysis of adsorbed TMPO molecules was then calculated according to the calibration line established by running standard samples with various adsorbed TMPO concentrations. Of the samples, for samples without adsorbing TMPO (Supplementary Fig. 4), the 1H–31P cross-polarization was used.
Surface area measurements. Specific surface areas were analyzed by Micro-
etrics Tristar II. The samples were measured for the N₂ adsorption and desorp-
tion at 77 K. Before each measurement, the samples were first in-situ degassed overnight at 110 °C for 12 h.

Electronic paramagnetic resonance. Continuous-wave electron paramagnetic resonance (CW-EPR) was carried out in the Centre for Advanced Electron Spin Resonance (CAESR), on two spectrometers and frequencies. X-band measurements (ca. 9.4 GHz) were performed on a Bruker BioSpin ELEXYS E680 spectrometer with a Bruker EN600-1021H cylindrical TE011-mode resonator. The temperature was con- trolled with an Oxford Instruments ITC-503 cryostat and ESR-900 cryostat. W-band measurements (ca. 94 GHz) were performed on a Bruker BioSpin ELEXYS E680 spectrometer with a Bruker EN600-1021H cylindrical TE011-mode resonator. The temperature was controlled with an Oxford Instruments ITC-503 cryostat and CF-9350 cryostat. For W-band, the microwave frequency was 93.9373 GHz for W-band, microwave power 40 µW, modulation amplitude 10 G, with a sweep of 84 s over 450 mT. For X-band, the microwave frequency was 9.38914 GHz, microwave power 4 mW, modulation amplitude 6 G, with a sweep of 41 s over 80 mT. The field modulation frequency was 100 kHz at both microwave frequencies. Data analysis was performed in Matlab, and EPR simulations employed the EasySpin toolbox.

In temperature-dependent X-band EPR measurements the sample does not undergo microwave power saturation down to 20 K, while measurements present here were acquired at 85 K. Quantitative X-band CW-EPR measurements determined a total spin concentration of 9.1 x 10⁻⁶ spins/mg, and double-
integration of best-fit W-band simulations shows that the Mo⁵⁺ accounts for 80% of EPR-active species. W-band simulations employed a g-strain linewidth model of σ₂ = 0.0054 and σ₁ = 0.0079, which is the same as at X-band. Simulations uncertainties are estimated in g-values as ±0.001 and hyperfine as ±0.5 MHz. Hyperfine values reported as A(²⁷⁷Mo) are those of ²⁷⁷Mo (15.9% natural abundance), while the ⁵²Mo isotope (9.56% natural abundance) is related to ⁵⁷Mo by the ratio of nuclear g-factors (-0.3734(²⁷⁷Mo)-0.3657(⁵²Mo)). For EPR results, at 94 GHz, W-band (Supplementary Fig. 22), a signal consistent with six-coordinate Mo⁵⁺ is resolved from oxygen vacancies at g = 2 and donor defects at g = 1.977 with an axial g-matrix of g∥ = 1.933 and g⊥ = 1.884(²⁷⁷Mo). Natural abundance ⁷⁷Mo(²⁷⁷Mo) hyperfine in X-band (Supplementary Fig. 23); 9.4 GHz, point to at least two species in the precursor, which are similar to two of three components in the H₂-reduced form, but with about one-fourth overall EPR intensity in the precursor. A third component of reduced catalyst arises as an additional g∥ feature at g = 1.90 and an additional component of hyperfine in the high field A(²⁷⁷Mo) feature, as demarcated in Supplementary Fig. 24. W-

Superconducting quantum interference device (SQUID) magnetometry. Magnetic susceptibility measurements of powdered samples of catalyst before and after H₂ reduction were carried out using a Quantum Design MPMS-5 SQUID magnetometer at a field of 0.1 T and different temperatures (2–300 K). Accurately weighed samples (ca. 60 mg) were placed into gelatin capsules and then loaded into nonmagnetic plastic straws before being lowered into the cryostat. No cor-

Temperature programmed reduction. TPR was performed on Micromeritics AutoChem II 2920 using a flow of H₂ in N₂ (10%, 50 mL·min⁻¹) ramping from 309 to 1073 K at a rate of 50 K·min⁻¹.

Diffuse-reflectance infrared Fourier transform spectroscopy. DRIFT spectro-

Data availability. Data that support the findings of this study are available within the article (and its Supplementary Information files) and from the corresponding authors on reasonable request.

Received: 16 December 2016 Accepted: 11 July 2017
Published online: 19 September 2017

References
1. Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006).
2. Corma, A., Iborra, S. & Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007).
3. Czernik, S. & Bridgwater, A. V. Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18, 590–598 (2004).
4. Bridgwater, A. V. Catalysis in thermal biomass conversion. Appl. Catal. A 116, 5–47 (1994).
5. Mohan, D., Pittman, C. U. & Steele, P. H. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20, 848–889 (2006).
6. Roman-Leshkov, Y., Chheda, J. N. & Dumesic, J. A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312, 1933–1937 (2006).
7. Huber, G. W., Chheda, J. N., Barrett, C. J. & Dumesic, J. A. Production of liquid alcohols by aqueous-phase processing of biomass-derived carbohydrates. Science 308, 1446–1450 (2005).
8. Mehl, H. et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: from sucrose to levulinic acid, gamma-valerolactone, 1,4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes. Top. Catal. 48, 49–54 (2008).
9. Kunkes, E. L. et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322, 417–421 (2008).
10. Vispute, T. P., Zhang, H. Y., Sanna, A., Xiao, R. & Huber, G. W. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 330, 1222–1227 (2010).
11. Zhao, C., Kou, Y., Lemonidou, A. A., Li, X. & Lercher, J. A. Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew. Chem. Int. Ed. 48, 3987–3990 (2009).
12. Zhao, C. & Lercher, J. A. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions. Angew. Chem. Int. Ed. 51, 5935–5940 (2012).
13. Yan, N., Yuan, Y., Dykeman, R., Kou, Y. & Dyson, P. F. Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with Bronsted acidic ionic liquids. Angew. Chem. Int. Ed. 49, 5549–5553 (2010).
14. Xia, Q. et al. Pd/NbOPO₄ multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans. Angew. Chem. Int. Ed. 53, 9755–9760 (2014).
15. Zhao, C., He, J. Y., Lemonidou, A. A., Li, X. & Lercher, J. A. Aquo-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. J. Catal. 280, 8–16 (2011).
16. Wang, L. et al. Mesoporous ZSM-5 zeolite-supported Ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules. ACS Catal. 5, 2727–2734 (2015).
17. Liska, K. L., Migowski, P., El Sayed, S. & Leitner, W. Synergistic interaction within bifunctional ruthenium nanoparticle/SILP catalysts for the selective hydrodeoxygenation of phenols. Angew. Chem. Int. Ed. 54, 15750–15755 (2015).
18. Yan, N. et al. Selective degradation of wood lignin over noble-metal catalysts in a two-step process. ChemSusChem 1, 626–629 (2008).
19. Xia, Q. et al. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes. Nat. Commun. 7, 11162 (2016).
20. Liu, P. X. et al. Photocatalytic route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–801 (2016).
21. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt₁/FeOₓ. Nat. Chem. 3, 634–641 (2011).
22. Zhang, B. et al. Stabilizing a platinum₁ single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem. Int. Ed. 55, 8319–8333 (2016).
23. Zhang, W. et al. Hydrodeoxygenation of lignin-derived phenolic monomers and dimers to alkane fuels over bifunctional zeolite-supported metal catalysts. ACS Sustainable Chem. Eng. 2, 683–691 (2014).
24. Santagaeli, S. H. et al. Structural studies of NaPO₃-MoO₃ glasses by solid-state nuclear magnetic resonance and raman spectroscopy. J. Phys. Chem. B 111, 10109–10117 (2007).
25. Koudelka, L. et al. Structural studies of P₉O₁₄-MoO₃ glasses by Raman and NMR spectroscopy. J. Non-Crystal. Solids 3990 (2009).
26. Wang, H. et al. In operando X-ray absorption fine structure studies of polyoxometalate molecular cluster batteries: polyoxometalates as electron sponges. J. Am. Chem. Soc. 134, 4918–4924 (2012).
Acknowledgements

H.D. thanks SCG Chemicals Co., Ltd and SCG Packaging Co., Ltd for funding. J.D. acknowledges support from the National Natural Science Foundation of China (Grant No. 11605225) and the Jilin Xie Foundation of the Institute of High Energy Physics, Chinese Academy of Sciences. Q.W. and J.F. thank State Key Laboratory of Chemical Resource Engineering for funding. W.K.M. is supported by the UK EPSRC 281 (EP/L011972/1, grant to CAESR, the Centre for Advanced Spin Resonance). A.F.R.K. and J.-C.B. thank SCG Chemicals Co., Ltd for funding. A.F.R.K. thanks Wadham College Oxford for a RJP Williams Junior Research Fellowship. We also thank Heifei Light Source and Shanghai Light Source for use of the instruments. We thank Dr Nicholas H. Rees for performing the solid-state NMR spectroscopy; Drs Ashley Shepherd and Robert Jacobs for their help with TPR and BET measurements, Dr Yang He, Jinglu Huang, and Qiu Chen for their comments on TEM results, Drs Yufei Song and Wei Chen for their valuable discussion on sample characterizations.

Author contributions

H.D. conceived the idea, designed and carried out the synthesis, characterizations and catalytic reactions, analyzed the data and wrote the manuscript. J.D. and D.C. performed XAFS data analysis and DFT calculation. X.G. performed DRIFTS measurement. Y.-K.P. prepared the samples for TMPO-adsorbed 31P NMR measurement and analyzed the data. W.C. performed the XAFS measurement and data analysis. T.I. initiated the idea, provided WIBO and discussion. W.K.M. performed the EPR measurement and data analysis. M.L. analyzed the XAFS data. N.Y. performed GPC measurement. A.F.R.K. performed the SQUID measurement and data analysis. Y.W. performed XAFS measurement. X.Z. performed the XAFS measurement and assisted with TEM characterization. Q.W. and J.F. helped with DRIFTS measurement. J.-C.B. assisted in regulating the experiments and discussion. H.C. designed DRIFTS measurement and discussed results. Y.L. provided the resources for TEM characterization and XAFS measurement. S. C.E.T. and D.O.H. supervised the project, helped design the experiments, analyzed the data and wrote the manuscript. All the authors commented on the manuscript and have given approval to the final version of the manuscript.

Additional information

Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00596-3. Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017