Review

Medicinal plants as a fight against murine blood-stage malaria

Mohamed A. Dkhil a,b,*, Saleh Al-Quraishy a, Esam M. Al-Shaebi a, Rewaida Abdel-Gaber a,c, Felwa Abdullah Thagfand d, Mahmood A.A. Qasem a

a Department of Zoology, College of Science, King Saud University, Saudi Arabia
b Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt
c Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
d Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia

A R T I C L E I N F O

Article history:
Received 18 November 2020
Revised 6 December 2020
Accepted 8 December 2020
Available online 19 December 2020

Keywords:
Malaria
Mice
Medicinal plants
Nanoparticles

A B S T R A C T

Objective: Malaria is an infectious parasitic disease affecting most of countries worldwide. Due to anti-malarial drug resistance, researchers are seeking to find another safe efficient source for treatment of malaria. Since many years ago, medicinal plants were widely used for the treatment of several diseases. In general, most application is done first on experimental animals then human. In this article, medicinal plants as antimalarial agents in experimental animals were reviewed from January 2000 until November 2020.

Materials and methods: In this systematic review published articles were reviewed using the electronic databases NCBI, ISI Web of knowledge, ScienceDirect and Saudi digital library to check articles and theses for M.Sc/Ph.D. The name of the medicinal plant with its taxon ID and family, the used Plasmodium species, plant part used and its extract type and the country of harvest were described.

Results and conclusion: The reviewed plants belonged to 83 families. Medicinal plants of families Asteraceae, Meliaceae, Fabaceae and Lamiaceae are the most abundant for use in laboratory animal antimalarial studies. According to region, published articles from 33 different countries were reviewed. Most of malaria published articles are from Africa especially Nigeria and Ethiopia. Leaves were the most common plant part used for the experimental malaria research. In many regions, research using medicinal plants to eliminate parasites and as a defensive tool is popular.

© 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction ... 1724
 1.1. Documented drugs from plant source .. 1724
 1.2. Models of blood-stage malaria .. 1724
 1.3. Activity of plant extracts .. 1724
2. Methodology .. 1734
3. Results and discussion .. 1734
4. Conclusion .. 1734
 Acknowledgments ... 1735
 References ... 1735

* Corresponding author at: Department of Zoology, College of Science, King Saud University, Saudi Arabia.
E-mail address: mdkhil@ksu.edu.sa (M.A. Dkhil).

Peer review under responsibility of King Saud University.

https://doi.org/10.1016/j.sjbs.2020.12.014
1319-562X/© 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Malaria, the most important human parasitic disease, is still a major cause of illness and death worldwide. The infection is transmitted by Plasmodium parasites, of which five species have been reported that infect humans (White 2008). Malarial pathogenesis studies, however, are mainly performed with rodent malaria parasites due to their similarity in genome sequence and pathology to the human parasite (Carlton et al. 2002).

In 90 countries, malaria is endemic; most of these are in Africa. The elimination of malaria is increasing in a growing number of countries (Fig. 1). Globally, the number of malaria-endemic countries in 2000 that recorded less than 10,000 cases of malaria rose from 40 in 2010 to 49 in 2018 (WHO, 2019). Between 2010 and 2018, the incidence rate of malaria decreased globally, from 71 to 57 cases per 1000 population at risk (WHO, 2019). Estimated deaths due to malaria decreased globally from 585,000 to 57 cases per 1000 population at risk (WHO, 2019). For instance, the anti-malarial drugs quinine and artemisinin (Fig. 3), which are actually of major interest (Phillipson and O’Neill, 1987), are part of the traditional Chinese treatment of malaria. Also, Cinchona species are still well known for their antimalarial properties, and the alkaloid quinine (Fig. 3) constituent is still recognized as an effective medication (White, 1985). Moreover, Dichroea febrifuga belonging to family Saxifragaceae is another plant which is used for the production of the antimalarial drug, febrifugine (Fig. 3) (Anonymous, 1975).

In order to protect users of malaria drugs, scientific evaluation of the safety, efficacy and efficiency of medicinal plant preparations is critical. Today, many reports showed that medicinal plants are a possible source of new antimalarial drugs or medicinal products (Moyo et al., 2020).

1.1. Documented drugs from plant source

There is a general agreement in the science community that there is a powerful role of natural products in the exploration of new leads for drug therapy production for human diseases. There is always an urgent and continuing call to look for new antimalarial agents where drug resistance has contributed to the inefficiency of most malaria drugs on the market. Most of those agents used in the treatment of malaria are either extracted from plants or are natural products (Moyo et al., 2020).

In the production of chemotherapeutic antimalarial drugs, medicinal plants play a key role. The use of Artemisia annua (Compositae) and its active compound, artemisinin (Fig. 3), which are actually of major interest (Phillipson and O’Neill, 1987), is part of the traditional Chinese treatment of malaria. Also, Cinchona species are still well known for their antimalarial properties, and the alkaloid quinine (Fig. 3) constituent is still recognized as an effective medication (White, 1985). Moreover, Dichroea febrifuga belonging to family Saxifragaceae is another plant which is used for the production of the antimalarial drug, febrifugine (Fig. 3) (Anonymous, 1975).

In order to protect users of malaria drugs, scientific evaluation of the safety, efficacy and efficiency of medicinal plant preparations is critical. Today, many reports showed that medicinal plants are a possible source of new antimalarial drugs or medicinal products (Moyo et al., 2020).

In order to speed up the production of effective alternative treatments from medicinal plants, sufficient pre-clinical trials supporting their safety and efficacy are needed to provide reliable experimental data that provide a basis for research.

1.2. Models of blood-stage malaria

While there are over 100 Plasmodium species that can infect several vertebrates, it is understood that only five species of plasmodium, P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi can affect humans. While P. berghei, P. chabaudi, P. yoelii, and P. vinckei are four Plasmodium species infecting African rodents that have been widely used in vivo rodent malaria research. This is due to the similarity with the human pathogenic P. falcibarum.

Mouse models of rodent malaria infection are particularly useful for examining the pathological consequences of host-parasite interactions and can assess clinical outcomes of infections such as parasitemia, splenomegaly, immune response and change in histopathological, biochemical and hematological parameters (Good et al., 2015).

1.3. Activity of plant extracts

With the objective of targeting parasite-specific metabolic aspects that are not conveyed by the host, extracts from antimalarial medicinal plants are studied. It is probable that the ingredients of the extract will target the parasite in this direction, while causing minimal host damage.

For instance, the anti-malarial drugs quinine and artemisinin are both of plant origin and are known to be a rich reservoir of bioactive secondary metabolites that contain bioactive antimalarial compounds like alkaloids and terpenoids that are used in tradition medicine against fever, inflammation and malaria (Moyo et al., 2020).

However, there has been a steady decrease in the rate of malaria infection reduction in recent years the World Health Organization (WHO) has revealed that the fight against malaria with the resources and funding available is now at a crossroads, leaving many children and pregnant women at risk of infection (WHO, 2015; Benelli and Mehlhorn, 2016).
Table 1
Selected medicinal antimalarial plants from January 2000 to November 2020.

Parasite name	Plant (Family)	Plant Taxon ID*	Studied plant part	Extract type	Country of harvest	Mouse strain	References
Plasmodium berghei	Leontis ocmymofila (Lamiaceae)	NCBI:txid483802	Leaves	Methanol	Ethiopia	Swiss albino	Teklu et al. (2020)
Plasmodium berghei	Acacia karroo (Fabaceae)	NCBI:txid138024	Leaves	Methanol	India	BALB/c	Sachdeva et al. (2020)
Plasmodium berghei	Balanites roxburghii (Zygophyllaceae)	NCBI:txid2603908	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium berghei	Bassia scoparia (Amaranthaceae)	NCBI:txid83154	Leaves	Methanol	Ethiopia	Swiss albino	Teka et al. (2020)
Plasmodium berghei	Berberis aristata (Berberidaceae)	NCBI:txid659592	Leaves	Methanol	Ethiopia	Swiss albino	Habte et al. (2020b)
Plasmodium berghei	Brassica juncea (Cruciferae)	NCBI:txid3705	Leaves	Methanol	Ethiopia	Swiss albino	Ezenyi et al. (2020)
Plasmodium berghei	Chenopodium album (Amaranthaceae)	NCBI:txid3559	Leaves	Methanol	Cameroon	Swiss albino	Tchatal Tali et al. (2020)
Plasmodium berghei	Chrysanthemum indicum (Asteraceae)	NCBI:txid146995	Leaves	Methanol	Ethiopia	Swiss albino	Habte et al. (2020b)
Plasmodium berghei	Citrus colosynthis (Cucurbitaceae)	NCBI:txid25529	Leaves; Seeds	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium berghei	Citrus maxima (Rutaceae)	NCBI:txid37334	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium berghei	Coriandrum sativum (Apoiaceae)	NCBI:txid4047	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium berghei	Rubus ellipticus (Rosaceae)	NCBI:txid59492	Leaves; Fruits	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium berghei	Rumex obtusifolius (Polygonaceae)	NCBI:txid3619	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium berghei	Salvadoras oleoides (Salvadoraceae)	NCBI:txid1173311	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium berghei	Saraca asoca (Caesalpiniaceae)	NCBI:txid1073321	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium berghei	Syngonium podophyllum (Arauaceae)	NCBI:txid267621	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium berghei	Zanthoxylum acontophyllum (Rutaceae)	NCBI:txid1056460	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium berghei	Capsicum frutescens (Solanaeaceae)	NCBI:txid4073	Fruits	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium berghei	Aloe weholensis (Aloaceae)	NCBI:txid1593116	Leaves	Leaves	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium berghei	Terminalia neotalia (Combretaceae)	NCBI:txid1799636	Leaves; Stem	Aqueous, Ethanol; Dichloromethane; Hexane	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium berghei	Bersama abysinica (Francoaceae)	NCBI:txid113247	Leaves	Methanol	Ethiopia	Swiss albino	Alehegn et al. (2020)
Plasmodium berghei	Olea europaea (Oleaceae)	NCBI:txid4146	Stem	Methanol	Ethiopia	Swiss albino	Kifle et al. (2020)
Plasmodium berghei	Myrica salicifolia (Myricaceae)	NCBI:txid1509	Roots	Methanol	Ethiopia	Swiss albino	Dibessa et al. (2020)
Plasmodium berghei	Aloe pirotae (Aloaceae)	NCBI:txid25641	Latex	Aqueous	Ethiopia	Swiss albino	Habte et al. (2020b)
Plasmodium berghei	Schinus molle (Anacardiaceae)	NCBI:txid43851	Seeds	Aqueous	Ethiopia	Swiss albino	Habte et al. (2020b)
Plasmodium berghei	Daniellia agea (Caesalpinioideae)	NCBI:txid162734	Leaves	Methanol	Nigeria	Swiss albino	Ezenyi et al. (2020)
Plasmodium berghei	Andropogon schirensis (Gramineae)	NCBI:txid205634	Roots	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium bergeri	Icacinica trichanta (Icacinaceae)	NCBI:txid341015	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium berghei	Chasmanthera dependens (Menispermaceae)	NCBI:txid2790913	Roots	Ethanol	Nigeria	Swiss albino	Habte and Assefa (2020a)
Plasmodium bergeri	Celtis durandii (Ulmaceae)	NCBI:txid1340809	Roots	Aqueous	Ethiopia	Swiss albino	Ezenyi et al. (2020)
Plasmodium bergeri	Terminalia briefn (Combretaceae)	NCBI:txid134851	Seeds	Aqueous	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium bergeri	Helianthus annuus (Asteraceae)	NCBI:txid4232	Roots; Flowers; Seeds; Stems	Ethanol	Indonesia	Swiss albino	Biruk et al. (2020)
Plasmodium bergeri	Terminalia alibida (Combretaceae)	NCBI:txid39992	Stem	Methanol	Guinea	C57BL/6	Camara et al. (2019)
Plasmodium bergeri	Combretum molle (Combretaceae)	NCBI:txid507414	Stem	Methanol	Ethiopia	Swiss albino	Mulaw et al. (2019)
Plasmodium bergeri	Cordia africana (Boraginaceae)	NCBI:txid222081	Leaves	Methanol	Ethiopia	Swiss albino	Wondaf细致 and et al. (2019)
Plasmodium bergeri	Fagara zanthoxylodes (Rutaceae)	wfo-0000685053	Leaves	Methanol	Nigeria	Swiss albino	Encri et al. (2019)
Plasmodium bergeri	Paspalum scrobiculatum (Poaceae)	NCBI:txid173849	Spikelets	Ethanol	Ghana	BALB/c	Laryea and Borquaye (2019)
Plasmodium bergeri	Bidens pilosa (Asteraceae)	NCBI:txid42337	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium bergeri	Acidocarpus alternifolius (Malpighiaeae)	NCBI:txid217121	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium bergeri	Clappertonia foetida (Triticeae)	NCBI:txid2708755	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium bergeri	Mitragyna ciliate (Rubiaeaceae)	NCBI:txid170021	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium bergeri	Parinarium congensis (Chrysobalanaceae)	NCBI:txid1868823	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium bergeri	Monanthonaxis cafr (Annonaceae)	NCBI:txid992735	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)
Plasmodium bergeri	Datura stramonium (Solanaeaceae)	NCBI:txid4076	Leaves	Methanol	Ethiopia	Swiss albino	Habte and Assefa (2020a)

(continued on next page)
Parasite name	Plant (Family)	Plant Taxon ID*	Studied plant part	Extract type	Country of harvest	Mouse strain	References	
Plasmodium berghei	Faurea speciose (Proteaceae)	NCBI:txid206258	Leaves	Leaves				
	Syzygium guineense (Myrtaceae)	NCBI:txid134482	Leaves	Leaves				
	Croton penduliflorus (Euphorbiaceae)	NCBI:txid2708777	Leaves					
	Euphorbia abyssinica (Euphorbiaceae)	NCBI:txid316813	Root	Methanol	Ethiopia	Swiss Albino	Muluye et al. (2019)	
	Salvadoras persica (Salvadoraceae)	NCBI:txid4326	Roots	Leaves	Aqueous	Ethiopia	Swiss Albino	Gebrehiwot et al. (2019)
	Balanites rotundifolia (Zygophyllaceae)	NCBI:txid1670835	Leaves					
	Plasmodium berghei	NCBI:txid181237	Stem	Methanol; Dichloromethane	Tanzania	BALB/c	Kweyamba et al. (2019); Dikhil et al. (2019); Al-Shaebi et al. (2018); Al-Shaebi et al. (2017); Dikhil et al. (2015); Habluetzel et al. (2019)	
	Euphorbia abyssinica (Euphorbiaceae)	NCBI:txid316813	Leaves					
	Euphorbia abyssinica (Euphorbiaceae)	NCBI:txid2708777	Leaves					
Plasmodium berghei	NCBI:txid196665	Leaves	Methanol					
	Plasmodium berghei	NCBI:txid198899	Leaves	Ethanol				
	Azadirachta indica (Meliaceae)	NCBI:txid124943	Seeds	Methanol	Burkina Faso	C57BL/6; BALB/c	Haidara et al. (2018)	
	Ziziphus mauritiana (Rhamnaceae)	NCBI:txid157914	Leaves	Ethanol	Abidjan	Swiss Albino	Attemene et al. (2018)	
	Anthocleista djalonensis (Loganiaceae)	NCBI:txid26470	Leaves	Ethanol	Mali	Swiss Albino	Haidara et al. (2018)	
	Trema orientalis (Cannabaceae)	NCBI:txid6112	Fruits	Methanol	Iran	Swiss Albino	Ogunsola et al. (2017)	
	Solanum nigrum (Solanaceae)	NCBI:txid3057	Seeds	Methanol	Nigeria	Swiss Albino	Olanlokun et al. (2017)	
	Teucrium polium (Lamiaceae)	NCBI:txid3992	Leaves	Ethanol	Mali	Swiss Albino	Haidara et al. (2018)	
	Lophira alata (Ochnaceae)	NCBI:txid549775	Leaves	Ethanol	Abidjan	Swiss Albino	Attemene et al. (2018)	
	Lawsonia inermis (Lythraceae)	NCBI:txid141191	Leaves; Seeds; Flowers; Stems	Fraxetin; Ethyl acetate	India	BALB/c	Singh et al. (2017a)	
	Terminalia macroplera (Combretaceae)	NCBI:txid3992	Leaves	Ethanol	Mali	Swiss Albino	Haidara et al. (2018)	
	Pterocarpus santalinus (Bignoniaceae)	NCBI:txid13107	Leaves	Ethanol	Malagasy	Swiss Albino	Haidara et al. (2018)	
	Plasmodium berghei	NCBI:txid13120	Leaves	Ethanol	Abidjan	Swiss Albino	Attemene et al. (2018)	
	Citrus x sinensis (Rutaceae)	NCBI:txid252529	Leaves	Ethanol	Mali	Swiss Albino	Haidara et al. (2018)	
	Salis alba (Salicaceae)	NCBI:txid75704	Leaves	Ethanol	Abidjan	Swiss Albino	Attemene et al. (2018)	
	Achillea millefolium (Compositae)	NCBI:txid1117157	Aerial parts	Ethanol	Abidjan	Swiss Albino	Attemene et al. (2018)	
	Physalis alkekengi (Solanaceae)	NCBI:txid13107	Leaves	Ethanol	Abidjan	Swiss Albino	Attemene et al. (2018)	
	Citrus x sinensis (Rutaceae)	NCBI:txid252529	Leaves	Ethanol	Abidjan	Swiss Albino	Attemene et al. (2018)	
	Salis alba (Salicaceae)	NCBI:txid75704	Leaves	Ethanol	Abidjan	Swiss Albino	Attemene et al. (2018)	
	Verbena officinalis (Lamiaceae)	NCBI:txid13329	Flowers	Ethanol	Abidjan	Swiss Albino	Attemene et al. (2018)	
	Portulaca oleracea (Portulacaceae)	NCBI:txid3633	Leaves	Ethanol	Abidjan	Swiss Albino	Attemene et al. (2018)	
	Lavandula angustifolia (Lamiaceae)	NCBI:txid19329	Flowers	Ethanol	Abidjan	Swiss Albino	Attemene et al. (2018)	
	Plasmodium berghei	Holarrhena floribunda (Apocynaceae)	NCBI:txid2708850	Leaves	Ethanol	Lomé, Togo	NMRI	Hœnkou et al. (2017); Ololoko et al. (2017)
	Ziziphus Mauritiana (Rhamnaceae)	NCBI:txid4577	Peels	Ethanol	Nigeria	Swiss Albino	Swaller et al. (2017)	
	Plasmodium berghei	Phygelius virgatus (Phygeliiaceae)	NCBI:txid283121	Leaves	Ethanol	South Africa, India	Swiss Albino	Singh et al. (2017b)
Parasite name	Plant (Family)	Plant Taxon ID*	Studied plant part	Extract type	Country of harvest	Mouse strain	References	
---------------	---------------	----------------	-------------------	--------------	-------------------	--------------	------------	
Plasmodium berghei	Copaifera reticulata (Fabaceae)	NCBI:txid162716	Whole plant	Oleoresin	Brazil	BALB/c	de Souza et al. (2017)	
Plasmodium berghei	Strychnos mitis (Loganiaceae)	NCBI:txid1040902	Leaves	Methanol; Aqueous Ethanol;	Ethiopia	Swiss albino; Swiss albino	Fentahun et al. (2017); Tshiekeledi Tshibangwu et al. (2017); Chukwuocha et al. (2016)	
Plasmodium berghei	Heinsia crinita (Rubiaceae)	NCBI:txid61937	Stem; Leaves; Fruits	Dichloromethane; Methanol Aqueous	Equateur	Swiss mice		
Plasmodium chabaudi; *P. berghei*	Cymbopogon citratus (Poaceae)	NCBI:txid66014	Whole plant		México	CBA/Ca		
Plasmodium berghei	Punica granatum (Lythraceae)	NCBI:txid62663	Peels	Methanol	Saudi Arabia	Swiss albino	Mubaraki et al. (2016)	
Plasmodium berghei	Heinsia crinita (Rubiaceae)	NCBI:txid61937	Leaves		Equateur	Swiss mice		
Plasmodium berghei	Cymbopogon citratus (Poaceae)	NCBI:txid66014	Whole plant		México	CBA/Ca		
Plasmodium berghei	Holarrhena pubescens (Apocynaceae)	NCBI:txid258132	Roots	Ethyl acetate; Aqueous	Tanzania	Swiss albino	Nondo et al. (2016)	
Plasmodium berghei	Erythrina schliebenii (Fabaceae)	NCBI:txid2590720	Stem					
Plasmodium berghei	Hirtella pubescens (Apocynaceae)	NCBI:txid9381	Roots					
Plasmodium berghei	Phyllanthus ussuriensis (Euphorbiaceae)	NCBI:txid13917	Leaves					
Plasmodium berghei	Caesalpinia bonduc (Caesalpiniaceae)	NCBI:txid13917	Seeds					
Plasmodium berghei	Rhoeas antidyserterica (Simaroubaceae)	NCBI:txid145911	Leaves					
Plasmodium berghei	Ocimum lamifolium (Nepetoideae)	NCBI:txid13917	Seeds					
Plasmodium berghei	Alnus nepalensis (Betulaceae)	NCBI:txid109066	Leaves					
Plasmodium berghei	Gongronema latifolium (Apocynaceae)	NCBI:txid103755	Leaves					
Plasmodium berghei	Alstonia boonei (Apocynaceae)	NCBI:txid103755	Leaves					
Plasmodium berghei	Picralima nitida (Apocynaceae)	NCBI:txid13917	Seeds					
Plasmodium berghei	Landolphia owariensis (Apocynaceae)	NCBI:txid141576	Leaves					
Plasmodium berghei	Cassia alata (Fabaceae)	NCBI:txid53923	Leaves					
Plasmodium berghei	Ocimum suave (Lamiaceae)	NCBI:txid13917	Leaves					
Plasmodium berghei	Plectranthus barbatus (Lamiaceae)	NCBI:txid13917	Leaves					
Plasmodium berghei	Zanthoxylum chalybeum (Rutaceae)	NCBI:txid1671342	Aerial part					
Plasmodium berghei	Ajuga integrifolia (Lamiaceae)	NCBI:txid18959	Aerial part					
Plasmodium berghei	Clerodendrum myricoides (Lamiaceae)	NCBI:txid54240	Leaves					
Plasmodium berghei	Melia azedarach (Meliaceae)	NCBI:txid15864	Twigs					
Plasmodium berghei	Peponium vogelii (Cucurbitaceae)	NCBI:txid1387135	Leaves					
Plasmodium berghei	Preussia schimperi (Verbenaceae)	NCBI:txid14139	Leaves					
Plasmodium berghei	Andropogon leucostachyus (Poaceae)	NCBI:txid15314	Aerial part					
Plasmodium berghei	Croton cajucara (Euphorbiaceae)	NCBI:txid323033	Leaves	Chloroform				
Plasmodium berghei	Xylopia amazonica (Annonaceae)	NCBI:txid225838	Aqueous					
Plasmodium berghei	Scindapsus hederaceus (Araeaceae)	NCBI:txid258317	Ethyl acetate					
Plasmodium berghei	Shorea ovalis (Dipterocarpaceae)	NCBI:txid188518	Stem					
Plasmodium berghei	Zingiber spectabile (Zingiberaceae)	NCBI:txid188518	Ethyl acetate	Malaysia	ICR	Baba et al. (2015)		
Parasite name	Plant (Family)	Plant Taxon ID*	Studied plant part	Extract type	Country of harvest	Mouse strain	References	
---------------	----------------	----------------	-------------------	--------------	-------------------	--------------	------------	
Plasmodium berghei	*Markhamia tomentosa* (Bignoniaceae)	NCBI:txid2708893	Leaves	Aqueous	Nigeria	Swiss albino	Bankole et al. (2016)	
	Polyalthia longifolia (Annonaceae)	NCBI:txid235806	Stem					
	Trichilia heudeloti (Meliaceae)	NCBI:txid43894	Stem					
	Vernonia amygdalina (Asteraceae)	NCBI:txid82755	Leaves	Aqueous; Ethanol	Ethiopia	BALB/c	Abay et al. (2015)	
	Alhagi camelorum (Fabaceae)	NCBI:txid47037	Whole plant	Methanol	Iran	Swiss albino	Esmaeili et al. (2015)	
	Alhagi camelorum (Fabaceae)	NCBI:txid47037	Whole plant	Flowers				
	Bambusa arundinacea (Poaceae)	NCBI:txid4581	Gum					
	Cassia angustifolia (Fabaceae)	NCBI:txid53851	Leaves					
	Carthamus tinctorius (Asteraceae)	NCBI:txid4222	Aerial part					
	Cichorium intybus (Asteraceae)	NCBI:txid13427	Roots					
	Cichorium intybus (Asteraceae)	NCBI:txid13427	Aerial part					
	Convolvulus scammonia (Convolvulaceae)	NCBI:txid1428931	Gum resin					
	Cotoneaster nummularia (Rosaceae)	NCBI:txid1804980	Fruit					
	Cordia myxa (Boraginaceae)	NCBI:txid181185	Fruits					
	Cordia myxa (Boraginaceae)	NCBI:txid181185	Flowering branches					
	Fumaria parviflora (Fumariaceae)	NCBI:txid1464625	Leaves					
	Hedera helix (Araliaceae)	NCBI:txid4052	Aerial part					
	Plantago psyllium (Plantaginaceae)	NCBI:txid26867	Seeds					
	Portulaca oleracea (Portulacaceae)	NCBI:txid46147	Seeds					
	Rosa damascena (Rosaceae)	NCBI:txid3765	Flowers					
	Viola odorata (Violaceae)	NCBI:txid97441	Flowers					
	Viola odorata (Violaceae)	NCBI:txid97441	Whole plant					
	Ziziphus jujuba (Rhamnaceae)	NCBI:txid326968	Fruits					
Plasmodium chabaudi	*Indigofera oblongifolia* (Fabaceae)	NCBI:txid198899	Leaves	Methanol	Saudi Arabia	C57Bl/6	Lubbad et al. (2015)	
	Osyris quadripartite (Santalaceae)	NCBI:txid169279	Leaves	Aqueous, Chloroform, Methanol	Ethiopia	Swiss albino	Girma et al. (2015)	
Plasmodium berghei;	*Ocimum gratissimum* (Lamiaceae)	NCBI:txid204144	Leaves	Ethanol and water	Cameroon	Swiss albino	Tarkang et al. (2014)	
	Citrus sinensis (Rutaceae)	NCBI:txid2711	Leaves					
	Cymbopogon citratus (Poaceae)	NCBI:txid66014	Leaves					
	Carica papaya (Caricaceae)	NCBI:txid3649	Leaves					
	Psidium guajava (Myrtaceae)	NCBI:txid120290	Leaves					
	Mangifera indica (Anacardiaceae)	NCBI:txid29780	Roots; Leaves					
	Echinops kebericho (Asteraceae)	wfo-0000133310	Roots	Ethanol	Ethiopia	Swiss albino	Swiss albino	Toma et al. (2015)
	Maytenus senegalensis (Celastraceae)	NCBI:txid256095	Root	Ethanol	Tanzania	Swiss albino	Swiss albino	Malebo et al. (2015)
Parasite name	Plant (Family)	Plant Taxon ID*	Studied plant part	Extract type	Country of harvest	Mouse strain	References	
---------------	---------------	---------------	-------------------	--------------	-------------------	-------------	------------	
Plasmodium berghei	Citrus limetta (Rutaceae)	NCBI:txid414735	Fruits; Peels	Ethanol	India	Swiss albino	Mohanty et al. (2015)	
Plasmodium berghei	Psidium acutangulum (Myrtaceae)	NCBI:txid2478822	Stems; Leaves; Fruits	Aqueous	France	Swiss albino	Houël et al. (2015)	
Plasmodium berghei	Grewia trichocarpa (Tiliaceae)	NCBI:txid2601743	Roots	Aqueous	Kenya	Swiss albino	Mwangi et al. (2015)	
Plasmodium berghei	Dicrostachys cinerea (Mimosaceae)	NCBI:txid196665	Stem	Ethanol; Ethyl acetate; Ether	Nigeria	Swiss albino	Adegbolagun et al. (2014)	
Plasmodium berghei	Azadirachta indica (Meliaceae)	NCBI:txid58860	Roots	Aqueous	India	Swiss albino	Anagu et al. (2013)	
Plasmodium berghei	Telfaria occidentalis (Cucurbitaceae)	NCBI:txid124943	Roots	Methanol; Ethanol	Rwandan	SPF	Kabiru et al. (2014)	
Plasmodium berghei	Aspidosperma brasiliense (Apocynaceae)	NCBI:txid138044	Roots	Aqueous	Switzerland	NMRI	Julianti et al. (2014)	
Plasmodium berghei	Carica papaya (Caricaeaceae)	NCBI:txid370897	Leaves	Methanol; Ethanol	Nigeria	Swiss albino	Adegbolagun et al. (2014)	
Plasmodium berghei	Telfaria occidentalis (Cucurbitaceae)	NCBI:txid204226	Roots	Methanol	Rwanda	SPF	Muganga et al. (2014)	
Plasmodium berghei	Fuertesia africana (Lamiaceae)	NCBI:txid507438	Methanol	Ethanol; Ethyl acetate	Nigeria	Swiss albino	Adegbolagun et al. (2014)	
Plasmodium berghei	Terminalia mollis (Combretaceae)	NCBI:txid1671342	Leaves	Methanol; Aqueous	Nigeria	Swiss albino	Adegbolagun et al. (2014)	
Plasmodium berghei	Zanthoxylum chalybeum (Rutaceae)	NCBI:txid58860	Roots	Aqueous	Nigeria	Swiss albino	Adegbolagun et al. (2014)	
Plasmodium berghei	Telfaria occidentalis (Cucurbitaceae)	NCBI:txid124943	Roots	Aqueous	Nigeria	Swiss albino	Adegbolagun et al. (2014)	
Plasmodium berghei	Conyza sumatrensis (Asteraceae)	NCBI:txid212787	Leaves	Ethanol	Cameroon	Swiss albino	Boniface et al. (2015)	
Plasmodium berghei	Carica papaya (Caricaeaceae)	NCBI:txid370897	Leaves	Methanol; Ethanol	Switzerland	NMRI	Julianti et al. (2014)	
Plasmodium berghei	Telfaria occidentalis (Cucurbitaceae)	NCBI:txid397732	ND	Chloroform; Ethanol	Turkey	BALB/c	Ozbilgin et al. (2014)	
Plasmodium berghei	Leptigallea angolensis (Asteraceae)	NCBI:txid997725	ND	Chloroform; Ethanol	Brazil	Swiss albino	Simelane et al. (2015)	
Plasmodium berghei	Phylanthus amarus (Phyllanthaceae)	NCBI:txid997703	ND	Chloroform; Ethanol	Nigeria	Swiss albino	Adegbolagun et al. (2014)	
Plasmodium berghei	Centaurea hierapolitana (Asteraceae)	NCBI:txid1436092	ND	Chloroform; Ethanol	Nigeria	Swiss albino	Adegbolagun et al. (2014)	
Plasmodium berghei	Centaurea Lydia (Asteraceae)	NCBI:txid145506	ND	Chloroform; Ethanol	Nigeria	Swiss albino	Adegbolagun et al. (2014)	
Plasmodium berghei	Centaurea polyclada (Asteraceae)	NCBI:txid1530336	ND	Chloroform; Ethanol	Nigeria	Swiss albino	Adegbolagun et al. (2014)	
Plasmodium berghei	Scrophularia floribunda (Scrophulariaceae)	NCBI:txid1357615	ND	Chloroform; Ethanol	Turkey	BALB/c	Adegbolagun et al. (2014)	
Plasmodium berghei	Scrophularia depauperata (Scrophulariaceae)	NCBI:txid1970690	ND	Chloroform; Ethanol	Turkey	BALB/c	Adegbolagun et al. (2014)	
Plasmodium berghei	Scrophularia cryptophila (Scrophulariaceae)	NCBI:txid1970660	ND	Chloroform; Ethanol	Turkey	BALB/c	Adegbolagun et al. (2014)	
Plasmodium berghei	Lavandula stoechas (Labiatae)	NCBI:txid39333	ND	Chloroform; Ethanol	Turkey	BALB/c	Adegbolagun et al. (2014)	
Plasmodium berghei	Rubia davisciana (Rubiaceae)	NCBI:txid25473	ND	Chloroform; Ethanol	Turkey	BALB/c	Adegbolagun et al. (2014)	
Plasmodium berghei	Alkanna tinctoria (Rubiaceae)	NCBI:txid543564	ND	Chloroform; Ethanol	Turkey	BALB/c	Adegbolagun et al. (2014)	
Plasmodium berghei	Markhamia obtusifolia (Sapotaceae)	NCBI:txid1237616	Stem	Ethanol	South Africa	Swiss albino	Simelane et al. (2013)	
Plasmodium berghei	Hypoxis colchicifolia (Hypoxidaceae)	NCBI:txid16123	Bulb	Ethanol	South Africa	Swiss albino	Mwangi et al. (2015)	
Plasmodium berghei	Pluchea lanceolata (Asteraceae)	NCBI:txid1950228	Aerial part	Ethanol	South Africa	Swiss albino	Mwangi et al. (2015)	
Plasmodium berghei	Melissa officinalis (Labiatae)	NCBI:txid139333	Aerial part	Ethanol	South Africa	Swiss albino	Mwangi et al. (2015)	
Plasmodium berghei	Althea officinalis (Malvaceae)	NCBI:txid145745	Flowers	Ethanol	South Africa	Swiss albino	Mwangi et al. (2015)	
Plasmodium berghei	Borago officinalis (Boraginaceae)	NCBI:txid13363	Flowers	Ethanol	South Africa	Swiss albino	Mwangi et al. (2015)	
Plasmodium berghei	Glycerrhiza glabra (Papilionaceae)	NCBI:txid49827	Roots	Ethanol	South Africa	Swiss albino	Mwangi et al. (2015)	
Plasmodium berghei	Anthemis nobilis (Compositae)	NCBI:txid90937	Flowers	Ethanol	South Africa	Swiss albino	Mwangi et al. (2015)	
Plasmodium berghei	Eremostachys lucinata (Lamiaceae)	NCBI:txid694356	Roots	Ethanol	South Africa	Swiss albino	Mwangi et al. (2015)	
Plasmodium berghei	Plantago major (Plantaginaceae)	NCBI:txid29818	Seeds	Ethanol	South Africa	Swiss albino	Mwangi et al. (2015)	
Plasmodium berghei	Myristica communis (Myrtaceae)	NCBI:txid119949	Aerial part	Ethanol	South Africa	Swiss albino	Mwangi et al. (2015)	
Plasmodium berghei	Stoechas lavandulifolia (Labiatae)	NCBI:txid193339	Flowers	Ethanol	South Africa	Swiss albino	Mwangi et al. (2015)	
Plasmodium berghei	Arctium lappa (Labiatae)	NCBI:txid4217	Roots	Ethanol	South Africa	Swiss albino	Mwangi et al. (2015)	

(continued on next page)
Parasite name	Plant (Family)	Plant Taxon ID*	Studied plant part	Extract type	Country of harvest	Mouse strain	References			
Plasmodium berghei	*Bergenia ciliate* (Saxifragaceae)	NCBI:txid23238	leaves	Ethanol	India	Swiss albino	Walter et al. (2013)			
	Azadirachta indica (Meliaceae)	NCBI:txid124943	Root	Aqueous	Kenya	Swiss albino	Nguta and Mbaria (2013)			
	Dichrostachys cinerea (Mimosaceae)	NCBI:txid196665	Root	Root	India	Swiss mice	(2013)			
	Tamarindus indica (Caesalpinaceae)	NCBI:txid58860	Stem	Root	India	Swiss albino	Priyanka et al. (2013)			
	Acacia seyal (Mimosaceae)	NCBI:txid138044	Root	Root	India	Swiss albino	Yal et al. (2013)			
	Grewia triochocarpa (Tiliaceae)	NCBI:txid2601743	Roots	Aqueous	Kenya	Swiss albino	Musila et al. (2013)			
	Holarrhena antidysenterica (Apocynaceae)	NCBI:txid69380	Stem	Aqueous	India	Swiss albino	Agrawal et al. (2013)			
	Nyctanthes arboristis (Oleaceae)	NCBI:txid41398	Leaves	Ethanol;	India	Swiss albino	Lee and Rhee (2013)			
Plasmodium berghei	*Azadirachta indica* (Meliaceae)	NCBI:txid124943	Leaves	Ethanol;	Kenya	Swiss albino	Endale et al. (2013)			
	Rumex crispus (Polygonaceae)	NCBI:txid174649	Whole plant	Ethanol	Korea	C57BL/6	Mesfin et al. (2012)			
	Osteoglossum integrifolia (Lamiaceae)	NCBI:txid483857	Leaves	Methanol	Ethiopia	Swiss albino	Chandel et al. (2012)			
	Adansonia digitata (Malvaceae)	NCBI:txid69109	Whole plant	Methanol;	Kenya	Swiss albino	(2013)			
	Launaea cornuta (Rubiaceae)	NCBI:txid381723	Aerial part	Chloroform	Switzerland	Swiss albino	(2013)			
	Zanthoxylum chalybeum (Rutaceae)	NCBI:txid1671342	Leaves	Ethanol	India	Swiss albino	(2013)			
	Artemisia annua (Asteraceae)	NCBI:txid35608	Leaves	Whole plant	USA	C57BL/6	Elfwal et al. (2012)			
Plasmodium berghei	*Sorindeia juglandifolia* (Anacardiaceae)	NCBI:txid1317886	Fruits	Methanol	Cameroon	Swiss albino	Kamkumo et al. (2012)			
	Acanthus pyreus (Asteraceae)	NCBI:txid182999	Aerial part	Hexan	Benin	NMRI	Ganon et al. (2012)			
	Azadirachta indica (Meliaceae)	NCBI:txid124943	Leaves	Ethanol	Ethiopia	Swiss albino	Mesfin et al. (2012)			
	Xanthium strumarium (Asteraceae)	NCBI:txid118068	Leaves	Ethanol	India	BALB/c	Chandel et al. (2012)			
Plasmodium berghei	*Khaya ivorensis* (Meliaceae)	NCBI:txid486173	Stem	Aqueous	Kenya	BALB/c	Tepongning et al. (2011)			
	Alstonia boonei (Apocynaceae)	NCBI:txid84857	Fruits	Ethanol	Brazil	C57BL/6	Kayano et al. (2011)			
	Caesalpinia pulvissa (Fabaceae)	NCBI:txid191898	Stern	Ethanol	Brazil	C57BL/6	Pinmai et al. (2010)			
Plasmodium berghei	*Terminalia bellerica* (Combretaceae)	NCBI:txid155021	Fruits	Ethanol	Thailand	ICR	(2010)			
	Terminalia chebula (Combretaceae)	NCBI:txid155022	Fruits	Ethanol	Switzerland	Swiss albino	(2011)			
	Phyllanthus emblica (Phyllanthaceae)	NCBI:txid296036	Fruits	Ethanol	India	Swiss albino	Verma et al. (2011)			
	Holarrhena antidysenterica (Apocynaceae)	NCBI:txid69380	ND	Ether;Chloroform; Methanol; Aqueous	Ethiopia	Swiss albino	(2011)			
	Vostra congensis (Violaceae)	NCBI:txid509528	Roots; Stem; Leaves	Methanol	Kenya	BALB/c	Gathirwa et al. (2011)			
Plasmodium berghei	*Crematocarpus palliatus* (Tiliaceae)	NCBI:txid296036	Stem; Leaves	Methanol	Kenya	Swiss albino	(2011)			
	Combretum padoi (Combretaceae)	NCBI:txid507418	Roots; Leaves	Methanol	Kenya	Swiss albino	(2011)			
	Hosulindia opposita (Labiateae)	NCBI:txid204228	Roots; Leaves	Methanol	Kenya	Swiss albino	(2011)			
	Rhus natalensis (Anacardiaceae)	NCBI:txid4012	Roots; Leaves	Methanol	Kenya	Swiss albino	(2011)			
	Combretum iliarii (Combretaceae)	NCBI:txid589534	Roots; Leaves	Methanol	Kenya	Swiss albino	(2011)			
	Lannea schweinfurthii (Anacardiaceae)	NCBI:txid289717	Roots; Leaves	Methanol	Kenya	Swiss albino	(2011)			
	Prema chrysocladia (Verbenaceae)	NCBI:txid41393	Roots; Leaves	Methanol	Kenya	Swiss albino	(2011)			
	Allrophytus perriva (Sapindaceae)	NCBI:txid1972007	Roots; Leaves	Methanol	Kenya	Swiss albino	(2011)			
	Abras precatorius (Leguminosae)	NCBI:txid3816	Roots; Leaves	Methanol	Kenya	Swiss albino	(2011)			
	Agathisanthemum bojeri (Rubiaceae)	NCBI:txid58372	Whole plant	Methanol	Kenya	Swiss albino	(2011)			
	Uvaria acuminata (Annonaceae)	NCBI:txid672960	Roots; Leaves	Methanol	Kenya	Swiss albino	(2011)			
Parasite name	Plant (Family)	Plant Taxon ID*	Studied plant part	Extract type	Country of harvest	Mouse strain	References			
---------------	---------------	----------------	-------------------	--------------	-------------------	-------------	------------			
Plasmodium berghei	Azadirachta indica (Meliaceae)	NCBI:txid124943	Leaves							
	Flueggea virosa (Euphorbiaceae)	NCBI:txid283121	Roots							
	Boerhavia elegans (Nyctaginaceae)	NCBI:txid4107	ND	Ethanol	Iran	BALB/C	Ramazani et al. (2010)			
	Solanum surattense (Solanaceae)	NCBI:txid13230	ND							
	Prosopis juliflora (Fabaceae)									
	Plasmodium berghei									
	Zanthoxylum usambarense (Rutaceae)	NCBI:txid2562172	Stem	Aquoeus	Kenya	BALB/C	Wore et al. (2010)			
	Warburgia ugandensis (Canellaceae)	NCBI:txid549619								
Plasmodium berghei	Anisopappus chinensis (Asteraceae)	NCBI:txid2052862	Whole plant	Aqueous; Methanol; Dichloromethane	Congo	NMRI	Lusakibanza et al. (2010)			
	Entandrophragma pallstrae (Meliaceae)	NCBI:txid122399	ND							
	Aplophia thiermis (Aphloioaceae)	NCBI:txid112806	Leaves	Methanol	France	Swiss albino	Jonville et al. (2008)			
	Buddleja salvi folia (Loganiaceae)	NCBI:txid168503	Leaves; Flowers							
	Eupatorium triplinerve (Asteraceae)	NCBI:txid1090619	Aerial part							
	Geniostoma borbonicum (Loganiaceae)	NCBI:txid1054603	Leaves							
	Justicia gendarussa (Acanthaceae)	NCBI:txid714472	Aerial part							
	Lantana camara (Verbenaceae)	NCBI:txid126435	Leaves; Flowers							
	Nuxia verticillata (Loganiaceae)	NCBI:txid69069	Leaves							
	Psidium argutu (Asteraceae)	NCBI:txid1225821	Leaves							
	Terminalia bentzoe (Combretaceae)	NCBI:txid1908415	Leaves							
Plasmodium berghei	Carpesium ceraum (Asteraceae)	NCBI:txid119171	Whole plant	Ethanol	South Korea	ICR	Kim et al. (2009)			
Plasmodium berghei	Ampelosyphus amanzonicus (Rhamnaceae)	NCBI:txid106660	Roots	Ethanolic	Brazil	CDI	Andrade-Neto et al. (2008)			
Plasmodium berghei	Phyllanthus amarus (Euphorbiaceae)	NCBI:txid293060	Leaves; Stem	Aqueous	Nigeria	Swiss albino	Dapper et al. (2007)			
Plasmodium berghei	Turraea robusta (Meliaceae)	NCBI:txid1899148	Stems, Roots	Aqueous	Kenya	Swiss albino	Gathirwa et al. (2008)			
	Lanrea schweinfurthii (Meliaceae)	NCBI:txid289717								
Plasmodium vinckei	Sclerochara birrea (Anacardiaceae)	NCBI:txid289766	Leaves, stems	Ether; Acetone; Ethanol	Senegal	Swiss albino	Benoit-Vical et al. (2008)			
	Chrozophora senegalensis (Euphorbiaceae)	NCBI:txid316752								
Plasmodium berghei	Phyllanthus niruri (Phyllanthaceae)	NCBI:txid296034	Whole plant	Aqueous	Indonesia	Swiss albino	Mustofa (2007)			
Plasmodium berghei	Flueggea virosa (Euphorbiaceae)	NCBI:txid283121	Leaves, Stems, Roots	Aqueous; Methanol; Chloroform	Kenya	Swiss albino	Muthaura et al. (2007a)			
	Warburgia stahlmannii (Canellaceae)	NCBI:txid155635								
	Harungana madagascariensis (Guttiferae)	NCBI:txid198768								
	Maytenus putterlickioides (Celastraceae)	NCBI:txid123430								
	Maytenus undata (Celastraceae)	NCBI:txid123432								
Plasmodium yoelii	Eurycoma longifolia (Simaroubaceae)	NCBI:txid458531	Root	Methanol	Malaysia	ND	Mohd Ridzuan et al. (2007)			
Plasmodium berghei	Schkuhria pinnata (Asteraceae)	NCBI:txid176579	Whole plant	Aqueous; Methanol	Kenya	Swiss albino	Muthaura et al. (2007b)			
Parasite name	Plant (Family)	Plant Taxon ID*	Studied plant part	Extract type	Country of harvest	Mouse strain	References			
---------------	--------------------------------	-----------------	--------------------	--------------	--------------------	--------------	-----------------------------------			
Fuerstia africana (Lamiaceae)	NCBi:txid204226	Studied plant part	Aqueous	Kenya	ICR	Muregi et al. (2007a)				
Ludwigia erecta (Onagraceae)	NCBi:txid1620136	Root	Leaves; Roots	Roots	Roots	Leaves; Seeds	Methanol	Kenyan	ICR	Muregi et al. (2007b)
Maytenus senegalensis (Celastraceae)	NCBi:txid256095	Leaves; Roots; Stem	Leaves; Roots	Stem	Roots; Leaves; Roots	Whole plant				
Veronica lasiopis (Compositae)	NCBi:txid83961	Leaves	Leaves; Roots	Roots	Roots	Seeds	Aqueous	France	Swiss albino	Bertani et al. (2005)
Maytenus heterophylla (Celastraceae)	NCBi:txid123440	Leaves; Roots; Stem	Leaves; Roots	Stem	Roots	Leaves; Roots	Methanol	Kenya	ICR	Muregi et al. (2007b)
Rhamnus prinoides (Rhamnaceae)	NCBi:txid280022	Roots	Leaves; Roots	Roots	Roots	Leaves; Seeds	Methanol	Kenya	ICR	Muregi et al. (2007b)
Rhamnus staddo (Rhamnaceae)	NCBi:txid280026	Leaves; Roots	Leaves; Roots	Roots	Roots	Roots	Aqueous	France	Swiss albino	Bertani et al. (2005)
M. acuminata (Rutaceae)	NCBi:txid1237617	Leaves; Roots	Leaves; Roots	Roots	Roots	Roots	Aqueous	France	Swiss albino	Bertani et al. (2005)
T. asiatica (Rutaceae)	NCBi:txid1237617	Leaves; Roots	Leaves; Roots	Roots	Roots	Roots	Aqueous	France	Swiss albino	Bertani et al. (2005)
Clerodendrum myricoides (Verbenaceae)	NCBi:txid54240	Leaves; Roots	Leaves; Roots	Stem	Leaves; Roots	Whole plant				

Table 1 (continued)

Parasite name	Plant (Family)	Plant Taxon ID*	Studied plant part	Extract type	Country of harvest	Mouse strain	References
Plasmodium yoelii	NCBi:txid235824	Leaves; Stem	Leaves	Aqueous	France	Swiss albino	Bertani et al. (2005)
Zanthoxylum rhoifolium (Rutaceae)	NCBi:txid549434	Leaves; Roots	Leaves	Aqueous	France	Swiss albino	Bertani et al. (2005)
Tinospora crispata (Menispermaeae)	NCBi:txid285591	Leaves; Roots	Leaves	Aqueous	France	Swiss albino	Bertani et al. (2005)
Quassia amara (Simaroubaceae)	NCBi:txid43725	Leaves; Roots	Leaves	Aqueous	France	Swiss albino	Bertani et al. (2005)
Picrolemma pseudocoffea (Simaroubaceae)	NCBi:txid459142	Leaves; Roots	Leaves	Aqueous	France	Swiss albino	Bertani et al. (2005)
Irlbachia alata (Gentianaceae)	NCBi:txid82716	Leaves; Roots	Leaves	Aqueous	France	Swiss albino	Bertani et al. (2005)
Pseudoxandra cuspidate (Annonaceae)	NCBi:txid68872	Whole plant	Leaves	Methanolic	Nigeria	ND	
Striga hermonthica (Orobanchaceae)	NCBi:txid50164	Whole plant	Leaves	Methanolic	Nigeria	ND	
Bidens pilosa (Asteraceae)	NCBi:txid42337	Roots	Ethanol	Brazil	Swiss albino		
Iris germanica (Iridaceae)	NCBi:txid34205	Rhizome	Ethanol	France	Swiss albino		

M.A. Dkhil, S. Al-Quraishy, E.M. Al-Shaebi et al. Saudi Journal of Biological Sciences 28 (2021) 1723–1738
The drug research requires an urgent need for new and improved anti-malarial therapeutics, preferably with novel mechanisms of action to avoid, control or minimize parasite resistance. A cheaper, simpler, more sustainable alternative to most synthetic drugs and pharmaceuticals is offered by the use of medicinal plants in therapy. In addition, they were hardly seen to have any side effects and are accepted with less adverse consequences (Nasri and Shirzad 2013).

In 2018, a cumulative funding of US$ 663 million was spent globally in fundamental research and product growth for malaria. This was a small improvement (an increase of US$ 18 million, or 2.8 percent) from the previous year (WHO, 2019).

Table 1 (continued)

Parasite name	Plant (Family)	Plant Taxon ID*	Studied plant part	Extract type	Country of harvest	Mouse strain	References
Plasmodium berghei	*Struchium sparganophorum* (Asteraceae)	NCBI:txid2067364	Leaves	Ethanol	Guinea	BALB/c	do Ceu de Madureira et al. (2002)
Vernonia amygdalina (Asteraceae)		NCBI:txid68299	Aerial part				
Ageratum conyzoides (Asteraceae)		NCBI:txid68299	Aerial part				
Cinchona succirubra (Rubiaceae)		NCBI:txid43462	Stem				
Aloe humilis (Liliaceae)		NCBI:txid247124	Leaves				
Tithonia diversifolia (Asteraceae)		NCBI:txid684020	Aerial part				
Cedrela odorata (Melaceae)		NCBI:txid124947	Stem				
Prenna angolensis (Verbenaceae)		NCBI:txid289394	Stem				
Pycnanthus angolensis (Myristicaceae)		NCBI:txid224864	Stem				
Morinda lucida (Rubiaceae)		NCBI:txid339305	Stem				
Morinda lucida (Rubiaceae)		NCBI:txid339305	Leaves				
Cestrum laeavigatum (Solanaceae)		NCBI:txid1237510	Leaves				
Cananga bidentata (Canaceae)		NCBI:txid4627	Roots				
Plasmodium yoelii	*Hydrangea macrophylia* (Hydrangeaceae)	NCBI:txid23110	Leaves	Aqueous	Japan	ICR	Ishih et al. (2001)
Phyllanthus niruri (Phyllanthaceae)		NCBI:txid296034	Whole plants	Ethanol; Dichloromethane; Aqueous	Congo	Swiss albino	Tona et al. (2001)
Morinda morindoides (Rubiaceae)		NCBI:txid659048	Leaves				
Cassia occidentalis (Fabaceae)		NCBI:txid126820	Roots				
Plasmodium berghei	*Hydrangea macrophylia* (Hydrangeaceae)	NCBI:txid23110	Leaves	Aqueous	Japan	ddY	Kamei et al. (2000)
Erythrina senegalensis (Fabaceae)		NCBI:txid157649	Stem	Aqueous	Nigeria	Swiss albino	Saidu et al. (2000)
Plasmodium berghei	*Pothomorphe peltata* (Piperaceae)	wfo-4000031037	Leaves	Hexane; Methanol	Brazil	Swiss albino	de Ferreira-da-Cruz et al. (2000)
Plasmodium berghei	*Pothomorphe umbellata* (Piperaceae)	wfo-4000031037	Leaves				
Plasmodium chabaudi	*Ziphitus spinosa* (Rhamnaceae)	NCBI:txid72171	Leaves	Methanol	Saudi Arabia	Swiss albino	Hafiz et al. (2019)
Ziziphus spinosa (Rhamnaceae)		NCBI:txid72171	Leaves	Methanol	Saudi Arabia	Swiss albino	Mubaraki et al. (2017)
Plasmodium chabaudi	*Punica granatum* (Lythraceae)	NCBI:txid226663	Peels	Methanol	Saudi Arabia	Swiss albino	Hafiz et al. (2016)

*Identification number of the source species, derived from the NCBI Taxonomy database. ND: not determined.

Fig. 3. Documented drugs from plant source.
2. Methodology

This review included all related published scientific articles from January 2000 to November 2020. This article was conducted by searching the electronic databases NCBI, ISI Web of knowledge and ScienceDirect and Saudi digital library to check articles and thesis for M.Sc/Ph.D.

Relevant studies were reviewed through numerous steps. In the first step, target published articles were identified by using general related terms, such as medicinal plants and ‘malaria.’ The second step involved screening the resulting articles by using highly specific keywords, including ‘murine or mice’. The last step of the review focused on selected studies involving the use of medicinal plants against malaria in mice.

We included studies published from January 2000 up to November 2020 on medicinal plants used to treat malaria using mice as animal model. Studies published in the English language were only included.

We excluded papers published before 2000. We excluded in vitro studies, review articles, personal communications and unpublished data.

The reviewers examined each article and independently extracted data on the scientific name, family, local name, and part of the plant used and method of extraction (Tables 1 and Table 2).

Data were entered into Excel datasheet and the frequency distribution of medicinal plants, used Plasmodium species, plant part used, plant Taxon ID, family of the plants, used plant extract and the country were described. The obtained data were presented in tables and Figures.

3. Results and discussion

In this systematic review, medicinal plants from January 2000 to November 2020 have been used for the treatment of murine malaria have been showed. Accordingly, 323 plant species in 170 research articles were identified for treatment of malaria. Only 128 articles were included in this study. The reviewed plants belonged to 83 families. Medicinal plants of the families Asteraceae, Meliaceae Fabaceae and Lamiaceae are the most abundant for use in laboratory animal antimalarial studies with 31, 17, 15 and 12 research papers, respectively (Table 1).

More medicinal plants species with antimalarial activity were from families Asteraceae and Meliaceae due to high prevalence of these families in the studied countries especially in Africa.

Leaves were the most common plant part used for the experimental malaria research due to the availability of several active compounds (Asafo-Agyei et al., 2019).

According to region, published articles from 33 different countries were reviewed. Most of malaria published articles are from Africa especially Nigeria and Ethiopia (Table 1) where the prevalence of the parasite is high in Africa (WHO, 2019) and most of research is directed to solve the problem.

Only 3 review article were found with our search. Memvanga et al. (2015) reported that approximately 120 extracts obtained from Congolese plant species demonstrated strong or fair antiplasmodial activity. A variety of compounds have also been isolated and reported with promising antiplasmodial effects. Many of these compounds were new scaffolds for promising antimalarial drugs to be synthesized. In comparison to mammalian cells, most of these compounds and extracts have high selective activity against Plasmodium parasites. In mice, the efficacy and safety of several plant-based products has been verified and a strong association between in vitro and in vivo antimalarial activity has been observed.

Amoa Onguéné et al. (2013) surveyed the activity of 278 compounds from African flora until the year 2013. In this review, authors reported compounds mainly contained alkaloids and flavonoids with anti-malarial properties. In the review by Adebayo and Krettli (2011), they focused on medicinal plants which are used to treat malaria in Nigeria from 1984 to 2008.

Biosynthetic approaches for nanoparticles would be much more efficient if nanoparticles were created extracellularly utilizing plants or their extracts in a controlled way (Du et al., 2020). Recently, due to its simplicity and eco-friendlyness, plant-mediated biological synthesis of nanoparticles is gaining importance (Du et al., 2020). In general, set of experiments were carried out to evaluate if this analysis would be used to assess the activity of plant crude extracts (Phillipson and O'Neill, 1987).

Murugan et al. (2016) synthesized silver nanoparticles (AgNP) using the Azadirachta indica seed kernel extract as reducing and stabilizing agent. They reported a moderate activity of the nanoparticles against P. berghei in mice (Table 2). Moreover, our group published three articles on the effect of AgNPs synthesized from Indigofera oblongifolia leaf extracts on P. chabaudi induced infection in C57Bl/6 mice. The suppression of parasitemia reached more than 90% (Murshed et al., 2020). Also, the antioxidant and hepatic and spleen protective role of I. oblongifolia extract was investigated in addition to the iron regulatory role of this medicinal plant.

4. Conclusion

In developing countries, malaria is very widespread, particularly in African countries, causing health problems. In many countries, studies using medicinal plants to suppress parasites and as a defensive tool is common and it is advisable to make people aware of the significance of medicinal plants. Moreover, the biochemical
function, protection and efficacious medicinal plants should be further investigated.

Acknowledgments

The authors extend their appreciation to the Deanship for Research & Innovation, “Ministry of Education” in Saudi Arabia for funding this research work through the project number IFKSURP-80”

References

Abay, S.M., Lucantoni, L., Dahiy, N., Dori, G., Dembo, E.G., Esposito, F., Lupidi, G., Ogboi, S., Ouédraogo, R.K., Sinisi, A., Taglialetela-Scafati, O., Yerberga, R.S., Bramucci, M., Quassini, L., Ouédraogo, J.B., Christophides, G., Habibzadeh, A., 2015. Plasmodium transmission blocking activities of Vernonia amygdalina extracts and isolated compounds. Malar. J. 14, 288.

Adedayo, J.O., Kretti, A.U., 2011. Potential antimalarialnals from Nigerian plants: a review. J. Ethnopharmacol. 133 (2), 289–302.

Adegbolagun, O.M., Emikpe, B.O., Woranola, I.O., Ogunremi, Y., 2014. Synergistic effect of aqueous extract of Telfaria occidentalis on the biological activities of artesunate in Plasmodium berghei infected mice. Afr. Health Sci. 14 (1), 111–118.

Adegbolagun, O.M., Emikpe, B.O., Woranola, I.O., Ogunremi, Y., 2013. Antimalarial actions of Lawsonia inermis, Tithonia diversifolia and Chromolaena odorata in combination. J. Ethnopharmacol. 151, 188–194.

Agrawal, A., Shanker, K., Chanda, D., Pal, A., 2013. Nycanthemum arbo-tristis positively affects immunopathology of malaria-infected mice prolonging its survival. Parasitol. Res. 112 (7), 2601–2609.

Alegbehi, A.A., Iyesu, J.S., Biru, E.M., 2020. Antimalarial Activity of Crude Extract and Solvent Fractions of the Leaves of Bersama abyssinica Fresen. (Melianthaceae) against Plasmodium berghei infection in Swiss albino Mice. Evid Based Complement Alternat Med. 2020, 9467359.

Al-Quraishy, S., Murshed, M., Delta, D., Al-Shaebi, E.M., Qasem, M., Mares, M.M., Dkhil, M.A., 2020, Plasmodium chabaudi-infected mice spleen response to synthesized silver nanoparticles from Indigofera oblongifolia extract. Lett. Appl. Microbiol. 71 (5), 542–549.

Al-Shaebi, E.M., Dkhil, M.A., Al-Quraishy, S., 2018. Indigofera oblongifolia regulates the hepatic gene expression profile induced by blood stage malaria. Microb. Pathog. 119, 170–182.

Amin, M.A., Taib, N.T., Mubarak, M.A., Al-Mufai, T.A., Al-Ghamdi, A.O., Lubbad, M.Y., Bayoumy, E.M., Al-Quraishy, S., Dkhil, M.A., 2017. Indigofera oblongifolia leaf extract regulates spleen macrophage response during Plasmodium chabaudi infection. Saudi J Biol Sci. 24 (7), 1663–1666.

Anjoa Iguegné, P., Ntie-Kang, F., Lifongo, L.L., Ndom, J.C., Sippl, W., Mbaze, L.M., Njaine, B., Zalis, M.G., Pires, D.A., Pires, P.R., Bergman, L.W., Vaidya, A.B., Van Lin, L.H., Janse, C.J., Waters, K.P., Smith, H.O., White, O.R., Salzberg, S.L., Venter, C.J., Frazer, C.M., Hoffman, S.L., O'Connor, M.J., Juarez, D.I., 2002. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419 (6906), 512–519.

Avelino, I.P., Lani, C.I., Figueiredo, F.J.B., Kohlhoff, M., Santana, A.E.G., Kretti, A.U., 2018. Agdsporperma pyrifolium, a medicinal plant from the Brazilian caatinga, displays a high antimalarial activity and low cytotoxicity. Malar. J. 17 (1), 436.

Chandel, S., Bagai, U., Vashishat, N., 2012. Antimalarial activity of Xanthium strumarium against Plasmodium berghei-infected BALB/c mice. Parasitol. Res. 110 (3), 1179–1183.

Chukwuocha, U.M., Fernández-Rivera, O., Legorreta-Herrera, M., 2016. Exploring the antimalarial potential of whole Cymbopogon citratus plant therapy. J. Ethnopharmacol. 193, 54–62.

Da, O., Yerberga, R.S., Traoré, O., Diouf, A.D., Preisér, P.R., Bergman, L.W., Vaidya, A.B., Van Lin, L.H., Janse, C.J., Waters, K.P., Smith, H.O., White, O.R., Salzberg, S.L., Venter, C.J., Frazer, C.M., Hoffman, S.L., O'Connor, M.J., Juarez, D.I., 2002. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419 (6906), 512–519.

Dapper, D.V., Azizaga, B.N., Ebong, O.O., 2007. Antimalarial effects of the aqueous extract of Phyllanthus amarus Schumach and Thonat against Plasmodium berghei in Swiss albino mice. Niger J. Pharmacol. Sci. 22 (1–2), 19–25.

De Ferreira-da-Cruz, M., Adami, Y.L., da Espinola-Mendes, E., Figueiredo, M.R., Feldblyum, T.V., Cho, J.K., Quackenbush, J., Sedegah, M., Shoaibi, A., Cummings, F.L., Yates, J.R., Raine, J.D., Harris, M.A., Cunningham, R., 2005. Terminalia albida treatment improves survival in experimental cerebral malaria through reactive oxygen species scavenging and anti-inflammatory properties. Malar. J. 18 (1), 431.

Darling, T., Akguoi, S., Sun, B.B., Kooi, T.W., Perna, T.E., Silva, J.C., Ermolaeva, M.O., Allen, J.E., Selengut, J.D., Kooi, T.W., Peterson, J.D., Pop, M., Kosack, D.S., Shumway, M.F., Bidwell, S.L., Shallom, S.J., Van Aken, E.S., Riedmuller, S.B., Feldblyum, T.V., Cho, J.K., Kooj, T.W., Sehgal, S., Shoabi, A., Cummings, F.L., Floresnek, L., Yates, J.R., Raine, J.D., Shumway, M.F., Bidwell, S.L., Shallom, S.J., Van Aken, E.S., Riedmuller, S.B., Feldblyum, T.V., Cho, J.K., Quackenbush, J., Sedegah, M., Shoaibi, A., Cummings, F.L., Floresnek, L., Yates, J.R., Raine, J.D., Harris, M.A., Cunningham, R., 2005. Terminalia albida treatment improves survival in experimental cerebral malaria through reactive oxygen species scavenging and anti-inflammatory properties. Malar. J. 18 (1), 431.

Dakuyo, Z.P., Sekhoacha, M.P., Matsabisa, M.G., Niikena, J.B., Ouedraogo, J.B., Ouedraogo, G.A., 2016. Evaluation of the antimalarial Activity and Lethality effect of Extract of Uncaria tomentosa (Fabaceae). Pak J. Biol. Sci. 19 (4), 171–178.

Dapper, D.V., Azizaga, B.N., Ebong, O.O., 2007. Antimalarial effects of the aqueous extract of Phyllanthus amarus Schumach and Thonat against Plasmodium berghei in Swiss albino mice. Niger J. Pharmacol. Sci. 22 (1–2), 19–25.

De Ferreira-da-Cruz, M., Adami, Y.L., da Espinola-Mendes, E., Figueiredo, M.R., Daniel-Ribeiro, C.T., 2000. The intraperitoneal Plasmodium berghei-Pasteur infection of Swiss mice is not a system that is able to detect the antimalarial activity in the Pothomorphe plant extracts that are used as antimalarials in Brazilian endemic areas. Exp. Parasitol. 54 (4), 243–247.

De Souza, G.A., da Silva, N.C., de Souza, J., de Oliveira, K.R., da Fonseca, A.L., Baratto, L.C., de Oliveira, E.C., Vareiotti, F.P., Morais, W.P., 2017. In vitro and in vivo antimalarial potential of oleosin from Copalifera reticulata Djuke (Fabaceae) in the Brazilian Amazon rainforest. Malar. J. 16 (1), 111–118.

Dhawan, S., Gunjan, S., Pal, A., Tripathi, R., 2016. Potentiation of antimalarial activity of arteether in combination with Veturin root extract. Indian J. Exp. Biol. 54 (5), 315–322.

Dibesa, T.T., Engidawork, E., Nedi, T., Teklehaimanot, T., 2020. Antimalarial activity of the aqueous extract of the latex of Aloe pioirotae Berger. (Aloaceae) against Plasmodium berghei in mice. J. Ethnopharmacol. 255, 112763.

Dikhl, M.A., Al-Shaebi, E.M., Kretti, A.U., Al-Quraishy, S., Murshed, M., Dkhil, M.A., 2016. Indigofera oblongifolia on the Hepatic Oxidative Status and Expression of Inflammatory and Apoptotic Genes during Blood-Stage Murine Malaria. Oxid Med Cell Longev. 29 (2019), 655–664.

Dikhl, M.A., Lubbad, M.Y., Al-Shaebi, E.M., Delic, D., Al-Quraishy, S., 2019. The antimalarial and spleen protective role of crude Indigofera oblongifolia leaf extract traditionally used in the treatment of malaria in Saudi Arabia. Drug Des Devel Ther. 9, 6235–6246.

Dikhl, M.A., Abdul-Gaber, R., Alojayri, G., Al-Shaebi, E.M., Qasem, M., Murshed, M., Mares, M.M., El-Matbouli, M., Al-Quraishy, S., 2020. Biosynthesized silver
Toma, A., Deyno, S., Fikru, A., Eyado, A., Beale, A., 2015. In vivo antiplasmodial and toxicological effect of crude ethanol extract of Echinops kebericho traditionally used in treatment of malaria in Ethiopia. Malar. J. 14, 196.

Tona, L., Mseia, K., Ngimb, N.P., Chirimwani, B., Okond’aho, Cimanga, K., de Bruyne, T., Apers, S., Hermans, N., Totte, J., Pieters, L., Vletelnck, A.J., 2001. In vivo antimalarial activity of Cassia occidentalis, Morinda morindaoides and Phyllanthus niruri. Ann Trop Med Parasitol. 95(1), 47-57.

Tshisokedi Tshibangu, P., Mutwale Kapepula, P., Kabongo Kapinga, M.J., Tujiwikila Mukuta, A., Kalenda, D.T., Chinda, A.T., Mouithys-Mickalad, A.A., Jansen, O., Cieckiewicz, E., Tits, M., Angenot, L., Frédérich, M., 2017. Antiplasmodial activity of Heinsia crinita (Rubiaceae) and identification of new iridoids. J. Ethnopharmacol. 196, 261–266.

Verma, G., Dua, V.K., Agarwal, D.D., Atul, P.K., 2011. Anti-malarial activity of Holarrhena antidysenterica and Viola canescens, plants traditionally used against malaria in the Garhwal region of north-west Himalaya. Malar. J. 10 (1), 20.

Walter, N.S., Bagai, U., Kalia, S., 2013. Antimalarial activity of Bergenia ciliata (Haw.) Sternb. against Plasmodium berghii. Parasitol Res. 112(9), 3123-3128.

Were, P.S., Kinyanjui, P., Gicheru, M.M., Mwangi, E., Ozwar, H.S., 2010. Prophylactic and curative activities of extracts from Warburgia ugandensis Sprague (Canellaceae) and Zanthoxylum usambarense (Engl.) Kokwaro (Rutaceae) against Plasmodium knowlesi and Plasmodium berghii. J Ethnopharmacol. 130(1), 158-162.

White, N.J., 1985. Clinical pharmacokinetics of antimalarial drugs. Clin. Pharmacokinet. 10, 187–215.

White, N.J., 2008. Plasmodium knowlesi: the fifth human malaria parasite. Clin. Infect. Dis. 46, 172–173.

WHO (Worldmalaria report), 2019. Geneva:World Health Organization.

WHO, 2015. Achieving the Malaria MDG Target: Reversing the Incidence of Malaria 2000–2015. World Health Organization, Geneva, Switzerland.

Further reading
https://www.who.int/publications-detail/world-malaria-report-2019.

Kalani, K., Agarwal, J., Alam, S., Khan, F., Pal, A., Srivastava, S.K., 2013. In silico and in vivo anti-malarial studies of 1β-glycyrrhetinic acid from Glycyrrhiza glabra. PLoS ONE 8, (9) e74761.

Moon, H.I., Sim, J., 2008. Antimalarial activity in mice of resveratrol derivative from Pleuropterus ciliinervis. Ann. Trop. Med. Parasitol. 102 (5), 447–450.

Okpakpo, L.C., Ajaiyeoba, E.O., 2004. In vitro and in vivo antimalarial studies of Striga hermonthica and Tapinanthus sessilifolius extracts. Afr. J. Med. Med. Sci. 33 (1), 73–75.