Laminopathies’ Treatments Systematic Review: A Contribution Towards a ‘Treatabolome’

Antonio Atalaia, Rabah Ben Yaou, Karim Wahbi, Annachiara de Sandre-Giovannoli, Corinne Vigouroux, Gisèle Bonne

To cite this version:

Antonio Atalaia, Rabah Ben Yaou, Karim Wahbi, Annachiara de Sandre-Giovannoli, Corinne Vigouroux, et al.. Laminopathies’ Treatments Systematic Review: A Contribution Towards a ‘Treatabolome’. Journal of Neuromuscular Diseases, IOS Press, 2021, pp.1 - 21. 10.3233/jnd-200596 . hal-03171665

HAL Id: hal-03171665
https://hal.sorbonne-universite.fr/hal-03171665

Submitted on 17 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Laminopathies’ Treatments Systematic Review: A Contribution Towards a ‘Treatabolome’

Antonio Atalaiaa,*, Rabah Ben Yaoua,b, Karim Wahbic, Annachiara De Sandre-Giovannolid,e, Corinne Vigourouxf,g and Gisèle Bonna

aSorbonne Université, Inserm, Center of Research in Myology, G.H. Pitié-Salpêtrière, Paris, France
bAP-HP Sorbonne Université, Neuromyology Department, Centre de référance maladies neuromusculaires Nord/Est/Ile-de-France (FILNEMUS network), Institut de Myologie, G.H. Pitié-Salpêtrière, Paris, France
cAPHP, Cochin Hospital, Cardiology Department, FILNEMUS, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile de France, Université de Paris, Paris, France
dAP-HM, Department of Medical Genetics, and CRB-TAC (CRB AP-HM), Children’s Hospital La Timone, Marseille, France
eAix Marseille University, Inserm, Marseille Medical Genetics Marseille, France
fAP-HM Saint-Antoine Hospital, Reference Centre of Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Departments of Molecular Biology and Genetics and of Endocrinology, 75012 Paris, France
gSorbonne Université, Inserm, Saint-Antoine Research Center, Paris, France

Pre-press 5 March 2021

Abstract.

Background: Variants in the \textit{LMNA} gene, encoding lamins A/C, are responsible for a growing number of diseases, all of which complying with the definition of rare diseases. \textit{LMNA}-related disorders have a varied phenotypic expression with more than 15 syndromes described, belonging to five phenotypic groups: Muscular Dystrophies, Neuropathies, Cardiomyopathies, Lipodystrophies and Progeroid Syndromes. Overlapping phenotypes are also reported. Linking gene and variants with phenotypic expression, disease mechanisms, and corresponding treatments is particularly challenging in laminopathies. Treatment recommendations are limited, and very few are variant-based.

Objective: The Treatabolome initiative aims to provide a shareable dataset of existing variant-specific treatment for rare diseases within the Solve-RD EU project. As part of this project, we gathered evidence of specific treatments for laminopathies via a systematic literature review adopting the FAIR (Findable, Accessible, Interoperable, and Reusable) guidelines for scientific data production.

Methods: Treatments for \textit{LMNA}-related conditions were systematically collected from MEDLINE and Embase bibliographic databases and clinical trial registries (Cochrane Central Registry of Controlled Trials, clinicaltrial.gov and EudraCT). Two investigators extracted and analyzed the literature data independently. The included papers were assessed using the Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence.
INTRODUCTION

Variants in the LMNA gene, encoding A-type lamins, are responsible for a growing number of rare monogenic diseases. A unique characteristic of the LMNA pathogenic variants is that they lead to a myriad of phenotypic expressions although they arise from the same gene. A complete explanation for this phenotypic variability still lacks at present despite the ever-growing amount of data from research [1–6]. A-type Lamins (lamins A and C) are intermediate filaments that build a meshwork at the inner face of the nuclear membrane after polymerization. They are also present in the nucleoplasm. They interact with the DNA, histones and chromatin in the nucleus, protecting it from mechanical stress [7] and help in the maintenance of the nuclear shape while providing an anchorage to the endoplasmic reticulum through their interaction with other proteins like SUN1/SUN2 and the outer layers of the nuclear membrane [8].

The disorders that arise from changes to the LMNA gene have a varied phenotypic expression with more than 15 syndromes already described belonging to five phenotypic groups of pathologies, i.e. Muscular Dystrophies, Neuropathies, Cardiomyopathies, Lipodystrophies and Progeroid Syndromes [9]. Phenotypic overlaps are also reported between one or several laminopathic entities. The ubiquitous LMNA expression and the major role of A-type lamins in the functional organization of chromatin and the subsequent regulation of developmental genes probably play important roles in the pathophysiology of the different tissue-specific laminopathies [10]. In addition, the variable phenotypic expression arising from pathological LMNA variants could also result from epigenetic factors, modifier genes, altered expression levels and defective protein processing. Consequently, connecting gene and variants with phenotypic expression, disease mechanisms, and corresponding treatments is challenging in laminopathies. However, this approach could provide useful data to improve the guidelines and recommendations for the clinical management of these diseases, which remain under-recognized.

A recent paper on congenital myasthenia syndromes served as proof of concept of an innovative idea that consists of assembling a knowledge database of gene and variant-specific treatments for a significant entity group while preparing its future integration into electronic decision-support systems. This concept was baptized “Treatabolome” by the authors [11]. Subsequently, a standard methodology has been defined for other disease groups writing systematic literature reviews (SLR) of treatments in their expertise area [12]. The Treatabolome concept is developed within the Solve-RD EU project and addresses the need to identify and improve the visibility of the existing specific treatments for rare diseases. Several teams have collected gene and variant-specific treatments for different rare diseases in Findable, Accessible, Interoperable, and Reusable (FAIR)-compliant datasets [13]. This information will be freely available through the Treatabolome website to complement existing diagnostic tools and support clinical management.

The current paper is an attempt to collect knowledge of specific treatments for laminopathies. However, since pathogenic LMNA variants may trigger varied phenotypical presentations, laminopathies do not display univocal genome-phenome relationships, thus hindering the collection of variant-specific treatments. To adapt to these circumstances, we have decided to flag significant phenome-genome associations that trigger laminopathies’ treatment recommendations.

We first collected 4783 papers through a systematic approach, then selected 78 studies reporting treatments for the diverse forms of laminopathies. From these data, we generated FAIR-compatible datasets to feed the Laminopathies’ Treatabolome knowledge base. The corresponding complete dataset is provided as a Supplementary File S1.
List of Abbreviations

ARVC Arrhythmogenic Right Ventricular Cardiomyopathy
ChEBI Chemical Entities of Biological Interest
https://www.ebi.ac.uk/chebi/
CENTRAL (Cochrane Central Registry of Controlled Trials)
https://www.cochranelibrary.com/central/about-central
CHADS-VASC score The CHADS2 score and its updated version, the CHA2DS2-VASc score, are clinical prediction rules for estimating the risk of stroke in patients with non-rheumatic atrial fibrillation (AF), a common and serious heart arrhythmia associated with thromboembolic stroke
Clinicaltrials.gov ClinicalTrials.gov is a database of privately and publicly funded clinical studies conducted around the world
CMD1A Familial Dilated Cardiomyopathy, type 1A (i.e. related to LMNA)
CRT-D Cardiac Rehabilitation Therapy - Defibrillator
DCM Dilated cardiomyopathy
Embbase
www.embase.com
EDMD2 Emery-Dreifuss Muscular Dystrophy type 2
EudraCT
https://eudract.ema.europa.eu/
EDMD2 Emery-Dreifuss Muscular Dystrophy type 2
EudraCT (European Union Drug Regulating Authorities Clinical Trials Database) is the European database for all interventional clinical trials on medicinal products authorized in the European Union (EEA) and outside the EU/EEA if they are part of a Pediatric Investigation Plan (PIP) from 1 May 2004 onwards
EU European Union
FAIR Findable, Accessible, Interoperable, and Reusable. “The principles emphasize machine-actionability (i.e., the capacity of computational systems to find, access, interoperate, and reuse data with none or minimal human intervention) because humans increasingly rely on computational support to deal with data as a result of the increase in volume, complexity, and creation speed of data” (see http://go-fair.org)
FPLD2 Familial Partial Lipodystrophy type 2, Dunnigan Syndrome
HGSS Hutchinson-Guilford Progeria Syndrome
ICD Implantable Cardioversion Defibrillator
LMNA-CMD LMNA-related congenital muscular dystrophy
MADA Mandibulo Acral Dysplasia with Type A Lipodystrophy
MEDLINE
https://www.nlm.nih.gov/bsd/médline.html
MEDLINE is the U.S. National Library of Medicine® (NLM) premier bibliographic database that contains more than 26 million references to journal articles in life sciences with a concentration on biomedicine. A distinctive feature of MEDLINE is that the records are indexed with NLM Medical Subject Headings (MeSH®)
OEBML
https://www.cebm.ox.ac.uk/resources/levels-of-evidence
PCOS Polycystic Ovary Syndrome
PRISMA
http://www.prisma-statement.org
PRISMA is an evidence-based minimum set of items for reporting in systematic reviews and meta-analyses.
PROSPERO
https://www.crd.york.ac.uk/prospero/
PubMed
https://pubmed.ncbi.nlm.nih.gov/
RD-Connect
Solve-RD
https://www.solve-rd.eu
Treatabolome
Publicly-available database of gene and variant-specific treatments, to be designed within the Solve-RD project

Corrected Proof
METHODS

Published treatments for LMNA-related conditions were collected and appraised following a research question shared by all Treatabolome systematic literature reviews [12]: “What treatments have been described for this condition/gene/variant; on which specific genetic variants have they been tested; and what is the strength of the associated supporting evidence?”. This review follows the recommendations from the Cochrane Collaboration systematic reviews handbook [14] and the Centre for Reviews and Dissemination, namely by adopting the Systematic Review Protocol template of the PROSPERO tool [15]. The reporting of our findings follows the PRISMA reporting guidelines [16].

Search methods

We have searched the Cochrane Central Registry of Controlled Trials, clinicaltrials.gov and EudraCT (https://eudract.ema.europa.eu/eudract-web/login/login.faces) for clinical trials on LMNA-related diseases treatments. Simultaneously, we accessed MEDLINE and Embase through PubMed to extract any publications on the same subject. We did not impose a starting date for data collection that has included all references up to 31/12/2019. The searches were made in English, French, Spanish, Italian and Portuguese. We ran recurrent searches with the same search strategy that consisted of de-duplicating independent searches by each one the following expressions (all fields): “LMNA”, “Lamin A/C”, “A type Lamin”, “Lamin A”, “Lamin C” and “Laminopathy OR Laminopathies”.

The search results were then reviewed by title and abstract, followed by a selective full-text data extraction. Inclusion and exclusion criteria are listed in Table 1. An electronic data capture form was built for this purpose by one of the authors (AA) using Filemaker Pro version 12 Software. This form was inspired by a publicly-available template from the Cochrane Collaboration Project [17] and followed the Methodological Expectations of Cochrane Intervention Reviews - the MECIR Standards [18]. We also complied with the Treatabolome Systematic Reviews’ Methodology paper [12].

RESULTS

The PRISMA flowchart (see Fig. 1) details the publication numbers at each stage of our selection.

Inclusion Criteria	Exclusion Criteria
Papers with any report of clinical use of a treatment for a LMNA gene-related disease, from single case reports to meta-analysis	Papers reporting preclinical treatments for LMNA gene-related diseases

After applying the described search strategy in PubMed, the initial starting number of papers was 11376 and the number went down to 4741 after de-duplication of entries with the following number of references for each search term:

- “LMNA”: 1536 references
- “Lamin A/C”: 2585 (932 duplicates eliminated: 1653)
- “A type Lamin”: 3213 (2145 duplicates eliminated: 1068)
- “Lamin A”: 2891 (2587 duplicates eliminated: 304)
- “Lamin C”: 450 (437 duplicates eliminated: 13)
- “Laminopathy OR Laminopathies”: 701 (534 duplicates eliminated: 167).

We then added 42 papers from additional sources (mainly expert bibliography references, besides ClinicalTrials.gov, EudraCT and Cochrane Library), reaching 4783 references eligible for Title/Abstract screening. At this stage, we excluded 624 references, mainly because they were unrelated to the LMNA gene. We full-text reviewed 4159 papers. We excluded 4081 papers, mainly for not addressing treatment findings or presenting only preclinical therapies in animal models and/or cell-culture experiments (see inclusion and exclusion criteria in Table 1). At the end of the process, 78 articles ended up in the qualitative analysis. These papers include 2 guidelines/consensus papers, 4 meta-analyses, 14 single-arm trials, 15 case series, 13 cohort studies, 21 case reports, 8 expert reviews and 1 expert opinion.

Two investigators extracted and analyzed the literature data independently. The treatments were summarized electronically according to significant phenome-genome associations. A complete list of the reported treatments is provided in Table 2.

The specificity of treatments according to the different LMNA-related diseases is variable. Some therapeutic approaches are specific for a unique phenotypical presentation. Others apply for laminopathic phenotypes that share a common clinical feature, as it happens regarding the risk of cardiac arrhythmia and...
sudden death, present both in cardiomyopathies and in several other phenotypic groups of laminopathies. The Tables 3 to 4, specific of laminopathic phenotypes, are ordered according to the alphabetic order of the treatment or intervention names.

Treatabolome data for LMNA-related muscular phenotypes

The LMNA-related muscular phenotypes comprise a range of muscular dystrophies, i.e., the congenital muscular dystrophy (LMNA-CMD) [19], the Emery-Dreifuss muscular dystrophy (EDMD2) [20] and the Limb-Girdle Muscular Dystrophy type 1B [21]. These LMNA-muscular dystrophies differ in the age at onset of the muscular symptoms, the degree of joint contractures, when present, and, the severity, progression rate and topology of muscle wasting and weakness. But they all share a common feature, i.e. a life-threatening cardiac disease characterized by conduction and/or rhythm defects associated with dilated cardiomyopathy resulting in a high frequency of cardiac sudden death [1]. Of note, the cardiac involvement of LMNA-related muscular phenotypes is highly similar to the isolated LMNA-related cardiomyopathy presentation (CMD1A) [22, 23].

Currently, there are no specific treatments for LMNA related muscle weakness/wasting. Those treatments are common to all muscular dystrophies and neuropathies and, for that reason, are not included in the LMNA Treatabolome dataset. However, a frequent question asked by physicians following these patients pertains the management of joint contractures. Early joint contractures observed in the LMNA-related Emery-Dreifuss disease, which are not necessarily linked to muscle deficit, may benefit from direct

Fig. 1. Laminopathies’ Treatabolome PRISMA Flow Diagram.
Table 2
Summary of reported laminopathy treatments

Treatment or intervention database	Treatment or intervention name	Treatment or intervention ID	Main Phenotype	Pubmed #
ChEBI	Corticosteroid	CHEBI: 50858	LMNA-CMD	26034236
MeSH	Anesthesia (Total Intravenous Anesthesia TIVA)	D000758	EDMD2	22973525
MeSH	Implantable Cardiac Defibrillator (ICD)	D017147	CMD1A	23811080, 17605093, 29173404, 26835025, 23464316, 22019351, 30287275, 12854972, 18926329, 30482687, 15551023, 22281253, 31155932, 26896268, 20627399, 23483212, 26385533, 30586772, 30518714, 15598919, 27993908, 27884249, 17605093, 29173404, 26835025, 23464316, 22019351, 30287275, 12854972, 18926329, 30482687, 15551023, 22281253, 31155932, 26896268, 20627399, 23483212, 26385533, 30586772, 30518714, 15598919, 27993908
MeSH	Transplant (heart)	D019737	CMD1A	31060954, 30287275, 18926329, 30482687
MeSH	Catheter Ablation	D017115	CMD1A	31060954, 29759522, 27506821
MeSH	Cardiac Pacing, Artificial	D002304	CMD1A	26620845
MeSH	CRT-D Cardiac Resynchronization Therapy	D058406	CMD1A	30891417
ChEBI	Anticoagulation	CHEBI: 50249	CMD1A	30191544, 30518714, 23073275
MeSH	rt-PA (alteplase)	D010959	CMD1A	30191544, 30518714, 23073275
MeSH	Percutaneous atrial appendage occlusion	D020517: Q000601	CMD1A	29570041
ChEBI	Insulin	CHEBI: 145810	FPLD2	21168376
ChEBI	Pioglitazone	CHEBI: 8228	FPLD2	18728124
ChEBI	Pioglitazone	CHEBI: 8228	FPLD2	18728124
ChEBI	Metformin	CHEBI: 6801	FPLD2	19249234
ChEBI	Flutamide	CHEBI: 8132	FPLD2	17936664
ChEBI	Pioglitazone	CHEBI: 8228	FPLD2	18728124
ChEBI	Metformin	CHEBI: 6801	FPLD2	19249234
ChEBI	Insulin	CHEBI: 145810	FPLD2	19249234
ChEBI	Fenofibrate	CHEBI: 5001	FPLD2	12766116
ChEBI	Nicotinamide	CHEBI: 17154	FPLD2	16241930, 22274718, 14510863
ChEBI	Rosiglitazone	CHEBI: 50122	FPLD2	29044799
ChEBI	Lisinagliptide	CHEBI: 71193	FPLD2	27779252
MeSH	Roux en Y Gastric Bypass	D015390	FPLD2	17893530, 19418082
MeSH	Noninvasive Ventilation	D063087	FPLD2	19727665, 31135595, 31194872
ChEBI	Leptin (Meteleptin Myalept)	CHEBI: 81571	FPLD2	30296183, 26584826, 25734254, 27710244, 30370478, 31260670, 24926953, 27692500, 30909019, 22075711, 31309902, 30539782, 23439261, 15791619, 22068254, 29644599, 27642538, 30805888, 29267953
MeSH	Surgery, Plastic	D013518	FPLD2	21561824, 21306965
ChEBI	Troglitazone (No market authorization for safety reasons)	CHEBI: 9753	FPLD2	10929166
ChEBI	Lonafarnib	CHEBI: 47097	HGPS	23012407, 29710166
ChEBI	Lonafarnib	CHEBI: 47097	HGPS	27400896
ChEBI	Pravastatin	CHEBI: 63618	HGPS	27400896
ChEBI	Zoledronic acid	CHEBI: 46557	HGPS	27400896
ChEBI	Alendronic acid / bisphosphonates in general	CHEBI: 2567	HGPS	27400896
ChEBI	Growth Hormone (GH)	CHEBI: 37845	HGPS	31199775, 17642424, 9258264

CMD1A: Familial Dilated Cardiomyopathy, type 1A; **EDMD2:** Autosomal Dominant Emery-Dreifuss Muscular Dystrophy 2; **FPLD2:** Familial Partial Lipodystrophy, Dunningan Type; **HGPS:** Hutchinson-Gilford Progeria Syndrome; **LMNA-CMD:** LMNA-related congenital muscular dystrophy. £D020517 code for atrial appendage, Q000601 qualifier for surgery, no qualifier was found for percutaneous procedures.
Ref.	Treatment or intervention ID	ORPHA case code	ORPHA case code	Patients name	Pubmed Ref.	Clinical or Expert review	Type of OCEBM	Number	HGVS cDNA	HGVS protein	Treatment or Clinical Comments
Schuster et al., 2012 [90]	D007058	Total LMNA related muscular syndromes	Schuster	22973525	5	NA	NA	MeSH	Anesthesia (Total Intravenous Anesthesia TIVA)		
Wang et al., 2019 [91]	CHEBI:50924	EDMD2: Autosomal Dominant Emery-Dreifuss Muscular Dystrophy 2	Wang	30518714	5	CHEBI	CHEBI:50858	NA	NA	NA	Prevention of stroke
Moraitis et al., 2015 [31]	CHEBI:501747	LMNA-CMD: LMNA-related Congenital Muscular Dystrophy	Moraitis	26034236	5	CHEBI	CHEBI:50858	NA	NA	NA	Prevention of stroke
Antoniades et al., 2007 [34]	CHEBI:501747	LMNA-CMD: LMNA-related Congenital Muscular Dystrophy	Antoniades	17605093	5	CHEBI	CHEBI:50858	NA	NA	NA	Prevention of stroke

In the case of LMNA-related congenital muscular dystrophy, there is scarce evidence that steroid therapy may bring some motor improvement [31]. Nevertheless, it has been included in our Treatabolome dataset but with a weak evidence-level (see Table 3). We have additional entries whose treatment is related to prevention of sudden cardiac death and that were included in Table 3, as the main phenotype is muscular. The prevention of sudden cardiac death is quite similar whether skeletal muscle is present or not (see Table 4).

Treatabolome data for LMNA-related sudden cardiac death prevention

A major LMNA-associated clinical problem is represented by the phenotypes that induce the risk of sudden cardiac death due to malignant arrhythmia (Table 4). Phenotypically, these arise either as isolated dilated cardiomyopathy or dilated cardiomyopathy associated with skeletal muscular dystrophy [32]. In principle, all laminopathies involving heart muscle bear a risk of cardiac arrhythmia and sudden death as demonstrated in a 2005 meta-analysis [32] and on published case series as well [33–37]. It is also established that mutations leading to haploinsufficiency (nonsense, indel, truncating insertions/deletions and splice site) carry the highest risk of sudden cardiac death [38]. An updated list of these mutations is supplied as Supplementary File S2. Defining the precise risk level has fueled different risk models published in the literature [39–45]. The different papers converge on an agreement that pacing does not prevent sudden cardiac death occurrence and the need for early cardiac defibrillator implantation (with or without resynchronization therapy).
A. Atalaia et al. / Laminopathies’ Treatments Systematic Review

Table 4

Pubmed	Ref.	Clinical diagnosis	ORPHA code	Type of study	OCEBM evidence	Number of LMNA patients	HGVS cDNA	HGVS protein	Treatment or intervention name	Treatment or intervention ID	Clinical effect	Comments	
23073275	van Rijsingen et al., 2013 [50]	CMD1A	300751	Case-control study	3	76	NA	NA	CHEBI	Anticoagulation	CHEBI: 50249	large	NA
30191544	Homma et al., 2018 [92]	CMD1A	300751	Case report	5	1	NA	NA	CHEBI	Anticoagulation	CHEBI: 50249	large	NA
27506821	Kumar et al., 2016 [49]	CMD1A	300751	Cohort study	4	25	NA	NA	MeSH	Catheter Ablation	D017115	moderate	NA
29759522	Roberts et al., 2017 [48]	CMD1A	300751	Case report	5	1	c.979C > G p.Leu327Val	815,818 delins CCAGAC	MeSH	Catheter Ablation	D017115	moderate	NA
31069548	Hasebe et al., 2019 [46]	CMD1A	300751	Cohort study	4	6	IVS3–10A > G	p.?/p.Asp272AlafsX203	MeSH	Catheter Ablation	D017115	moderate	transient effects
26620845	Kato et al., 2016 [36]	CMD1A	300751	Case series	4	2	c.2T > A p.Met1?	MeSH	Cardiac Pacing, Artificial	D002304	small	does not prevent sudden cardiac death	
30891417	Rudbeck-Resdal et al., 2019 [93]	ARVD	293910	Case report	5	1	c.1542G > A	p.Trp141	MeSH	CRT-D Cardiac Resynchronization Therapy	D058406	moderate	NA
12854972	MacLeod et al., 2003 [94]	CMD1A	300751	Case report	5	1	c.909_909delCT	p.Ser303CysfsX27	MeSH	ICD	D017147	large	NA
15598919	Desai et al., 2004 [95]	CMD1A	300751	Meta-analysis	1	1854	NA	NA	MeSH	ICD	D017147	large	NA
15551023	van Berlo et al., 2005 [32]	CMD1A	300751	Meta-analysis	1	299	NA	NA	MeSH	ICD	D017147	large	NA
18926329	Pasotti et al., 2008 [38]	CMD1A	300751	Cohort study	4	94	NA	NA	MeSH	ICD	D017147	large	NA
20627339	Meune et al., 2011 [96]	CMD1A	300751	Cohort study	4	49	NA	NA	MeSH	ICD	D017147	large	NA
26835025	Chartron et al., 2012 [40]	CMD1A	300751	Expert review	5	NA	NA	NA	MeSH	ICD	D017147	large	NA
22019351	Keller et al., 2012 [35]	EDMD2	264	Case report	5	1	c.367_369delAAG	p.Lys123del	MeSH	ICD	D017147	large	NA
22281253	van Rijsingen et al., 2012 [41]	EDMD2	98853	Case series	3	149	NA	NA	MeSH	ICD	D017147	large	NA
23811080	Anselme et al., 2013 [42]	CMD1A	300751	Case series	4	47	c.16C > T	p.Gln6 Tyr	MeSH	ICD	D017147	large	Inappropriate shocks
Study Reference	Study Type	CMD	MeSH 4-digit code	MeSH 11-digit code	Number of Patients	Number of Families	MeSH review	ICD	Risk of inappropriate shocks and complications	Inherited arrhythmia syndromes			
-----------------	------------	-----	-------------------	-------------------	--------------------	-------------------	-------------	-----	--------------------------------	--------------------------------			
23946316	Expert review	300751	NA	NA	5	NA	MeSH ICD	D017147	large	NA			
23483212	Case report	300751	NA	NA	5	1	MeSH ICD	D017147	large	NA			
27884249	Cohort study	300751	NA	NA	4	87	MeSH ICD	D017147	large	NA			
26385533	Meta-analysis	300751	NA	NA	1	462	MeSH ICD	D017147	large	NA			
29173404	Expert review	300751	NA	NA	5	NA	MeSH ICD	D017147	large	NA			
27993908	Meta-analysis	300751	NA	NA	1	1854	MeSH ICD	D017147	large	NA			
28696268	Expert review	300751	NA	NA	5	NA	MeSH ICD	D017147	large	NA			
3058772	Cohort study	300751	NA	NA	1	NA	MeSH ICD	D017147	large	NA			
30287275	Case-control study	300751	NA	NA	4	58	MeSH ICD	D017147	large	NA			

(Continued)
Table 4 (Continued)

Pubmed	Ref.	Clinical diagnosis	Clinical evidence	OCEBM Type	Number of LMNA patients	HGVS cDNA	HGVS protein	Treatment or intervention database	Treatment or intervention name	Treatment or intervention ID	Clinical effect	Comments
30482687	Peters et al., 2019	CMD1A	Expert review	5	NA	NA	NA	NA	MeSH	D017147	large	NA
31155932	Walhs et al., 2019	CMD1A	Cohort study	3	444	NA	NA	NA	MeSH	D017147	large	inappropriate implantation of ICD
29570041	De Roeck et al., 2019	CMD1A	Case report	5	1	c.235C>G	p.Leu85Val	MeSH	percutaneous atrial appendage occlusion	D020517 SU	large	NA
23360689	Chen et al., 2013; Pasotti et al., 2008	CMD1A	Case report	5	1	c.513+1G>A	p.Lys152Lys	MeSH	rt-PA (alteplase)	D010959	large	NA
31060954	Hasebe et al., 2019	CMD1A	Cohort study	4	6	IVS3–10A>G	NA	MeSH	Transplant (heart)	D019737	large	NA
30287275	Kwagreich et al., 2019	CMD1A	Case-control study	3	58	NA	NA	MeSH	Transplant (heart)	D019737	NA	NA
30482687	Peters et al., 2019	CMD1A	Expert review	5	NA	NA	NA	MeSH	Transplant (heart)	D019737	large	NA

ARVD: Familial isolated arrhythmogenic ventricular dysplasia, right dominant form; CMD1A: Familial dilated cardiomyopathy with conduction defect due to LMNA mutation; FPLD2: Familial Partial Lipodystrophy, Dunnigan Type.
to improve patient’s vital prognosis. The treatment does not delay progression to heart failure though, and when arrhythmia occurs under the latter condition, only cardiac transplantation extends survival [46]. Early referral for heart transplant is therefore advised in laminopathies [47].

There is evidence of some efficacy of radiofrequency catheter ablation for ventricular tachyarrhythmias [48, 49], which should delay referral to heart transplantation.

Atrial fibrillation and other atrial arrhythmias are common manifestations of laminopathies. They have been associated with high risk of stroke and other cardioembolic complications, therefore requiring the systematic use of curative anticoagulation, regardless to CHADS-VASC score [45, 50, 51].

Treatabolome data for LMNA-related lipodystrophies

The LMNA-related lipodystrophies central entity is the Familial Partial Lipodystrophy Type 2, also known as Dunnigan type lipodystrophy. It is characterized by loss of subcutaneous adipose tissue from the trunk, buttocks and limbs and accumulation of fat around face, neck, pelvis and axillae coexisting with muscle hypertrophy later accompanied by metabolic perturbations such as hypertriglyceridemia, low HDL cholesterol, hepatic steatosis, insulin-resistant diabetes, and early atherosclerosis. The phenotype is more marked in females, who also frequently develop ovarian hyperandrogenia leading to hirsutism, menstrual disturbances and decreased fertility [52]. A prevalence of the Dunnigan syndrome below 1/100 000 was reported, but is probably underestimated, since partial lipodystrophy is largely underdiagnosed [53, 54]. LMNA-related lipodystrophies are the most common forms of genetic lipodystrophies in Europe. In the great majority of cases they are inherited in an autosomal dominant fashion. The characteristic hotspot results from heterozygous mutations at the 482nd codon of the gene (p.Arg482Trp/Gln or Leu). However, other LMNA pathogenic variants can be found rarely as well, that may lead to typical partial lipodystrophic syndromes or mixed laminopathic phenotypes [55, 56].

These patients have severe cardiovascular risk through atherosclerosis. Female patients may suffer from Polycystic Ovarian Syndrome (PCOS), associated with reduced fertility, hirsutism and menstrual disturbances. Due to the multiple comorbidities associated with LMNA-related lipodystrophic syndromes, patients require multidisciplinary management. The first-line management of diabetes and dyslipidemia mainly follows the general population’s guidelines, with dietary and lifestyle rules being fundamental. No cure is available for lipodystrophy itself (Table 5).

Rare studies report the effects of nonspecific antidiabetic medications such as metformin, thiazolidinediones and glucagon-like peptide-1 (GLP-1) receptor agonists, and insulin in some patients with LMNA-related lipodystrophies. Usually, these are case reports of different combinations with low evidence level. One open-label prospective trial with the thiazolidinedione troglitazone, which is withdrawn from the market since 2000, found that the drug lowered HbA1C levels in FPLD patients [57]. Additional anecdotal evidence exists from case reports [58–61] regarding thiazolidinediones (pioglitazone, rosiglitazone) in different associations with insulin and/or metformin, that improve metabolic markers (leptin levels, HbA1C levels, insulin sensitivity), but could exacerbate faciocervical fat accumulation [58].

To note, all thiazolidinediones were withdrawn from the market in France, so checking locally their availability is advisable. GLP-1 receptor agonists have shown promises as a glucose-lowering therapy in a case report [62].

Lipid-lowering drugs are also used in accordance to guidelines for the general population in LMNA-related lipodystrophies [63].

A case report has shown that thiazolidinediones could improve PCOS in women with FPLD2 [64]. Obstructive Sleep Apnea Syndrome is a known complication of LMNA-related lipodystrophies that should benefit from Non-Invasive Ventilation as treatment [65, 66]. We suspect that more systematic sleep studies in these populations will potentially disclose sleep disturbed breathing as a frequent feature. Dunnigan lipodystrophy syndrome is also a stigmatizing disease and plastic surgery can be useful for some patients (liposuction of lipoatrophic areas and/or reconstructive procedures for lipoatrophic areas). A few case reports have described such surgical treatments [67, 68]. Bariatric surgery [69] has been occasionally used in cases of Dunnigan syndrome associated with obesity.

LMNA-related lipodystrophic syndromes, especially when lipoatrophic features are prominent, are associated with decreased leptin levels which contribute to the metabolic alterations and their associated comorbidities. The hormone replacement therapy’s efficiency using the orphan drug Metreleptin, a recombinant leptin agonist, has not been
Table 5

LMNA-related lipodystrophic syndromes treatment

Pubmed Ref. (year)	Clinical diagnosis ORDO	ORPHA code	Type of study	OCEBM evidence	Number of LMNA patients	HGVS cDNA	HGVS protein	Treatment or intervention name	Treatment or intervention database	Treatment or intervention ID	Clinical effect	Biomarker Comments	Comments
23073275, van Rijssingen et al., 2013	CMD1A	300751	Case-control study	3	76	NA	NA	ChEBI	Anticoagulant	CHEBI: 50249	large	NA	NA
27506821, Kumar et al., 2016	CMD1A	300751	Cohort study	4	25	NA	NA	MeSH	Catheter Ablation	D017115	moderate	NA	NA
12766116, Herbst et al., 2003	FPL2D	2348	Case series	4	13	NA	NA	ChEBI	Fenofibrate	CHEBI: 5001	NA	moderate	NA
17642424, Sadeghi-Nejad et al., 2007	HGPS	740	Case report	5	1	c.1822G>A p.G608S	CHEBI	Growth Hormone	CHEBI: 37845	small	NA	NA	
9258264, Abdenur et al., 1997	HGPS	740	Case series	4	3	NA	NA	ChEBI	Growth Hormone; Nutritional Intervention	CHEBI: 37845	small	NA	does not stop atherosclerosis
15598919, Desai et al., 2004	CMD1A	300751	Meta-analysis	1	###	NA	NA	MeSH	ICD	D017147	large	NA	NA
23483212, Ng & Kaye, 2013	CMD1A	300751	Case report	5	1	NA	NA	MeSH	ICD	D017147	large	NA	NA
27884249, Kumar et al., 2016	CMD1A	300751	Cohort study	4	87	NA	NA	MeSH	ICD	D017147	large	NA	NA
27993908, Gollwala et al., 2017	CMD1A	300751	Meta-analysis	1	###	NA	NA	MeSH	ICD	D017147	large	NA	NA
31155932, Waibi et al., 2019	CMD1A	300751	Cohort study	3	444	NA	NA	MeSH	ICD	D017147	large	NA	inappropriate implantation of ICD
21168376, Cardona-Hernandez et al., 2011	FPL2D	2348	Case series	5	1	c.29C>T p.Trh10Ileu	ChEBI	Insulin	CHEBI: 145810	large	large	NA	
15791619, Javor et al., 2005	FPL2D	2348	Case series	4	2	NA	NA	ChEBI	Leptin (Metreleptin Myalept)	CHEBI: 81571	small	moderate	NA
19727665, Chong et al., 2010	FPL2D	2348	Observational study	3	48	NA	NA	ChEBI	Leptin (Metreleptin Myalept)	CHEBI: 81571	small	small	NA
22068254, Chan et al., 2011	FPL2D	2348	Case series	4	19	NA	NA	ChEBI	Leptin (Metreleptin Myalept)	CHEBI: 81571	small	moderate	NA
23439261, Safar Zadeh et al., 2013	FPL2D	2348	Cohort study	3	27	NA	NA	ChEBI	Leptin (Metreleptin Myalept)	CHEBI: 81571	small	moderate	NA
24926953, Joseph et al., 2014	FPL2D	2348	Cohort study	5	82	NA	NA	ChEBI	Leptin (Metreleptin Myalept)	CHEBI: 81571	small	small	NA
25734254, Diker-Cohen et al., 2015	FPL2D	2348	Cohort study	4	31	c.1444C>T p.Arg482Tyr; c.1445G>A p.Arg482Glu; c.1445G>T p.Arg482Leu	ChEBI	Leptin (Metreleptin Myalept)	CHEBI: 81571	small	small	NA	
Study ID	Last Name, First Name et al., Year [Reference]	Study Design	Cases	Reference(s)	Pathology	Study Design	Treatment	ChEBI ID	Treatment Details				
-----------------------	---	--------------	-------	--------------	-----------	--------------	-----------	-----------	------------------				
27642538	Ajluni et al., 2016 [109]	Cohort study	4	NA	NA	ChEBI	Leptin	CHEBI: 81571	small				
27710244	Brown et al., 2016 [63]	Expert review	5	NA	NA	ChEBI	Leptin	CHEBI: 81571	small				
27207511	Schlogl et al., 2016 [110]	Cohort study	5	9	NA	ChEBI	Leptin	CHEBI: 81571	small				
26584826	Vatier et al., 2016 [72]	Case-control study	4	9	NA	ChEBI	Leptin	CHEBI: 81571	small				
27692500	Vatier et al., 2017 [111]	Cohort study	10	16	NA	ChEBI	Leptin	CHEBI: 81571	moderate				
30370487	Akinci et al., 2018 [69]	Expert opinion	5	NA	NA	ChEBI	Leptin	CHEBI: 81571	small				
29644599	Brown et al., 2018 [112]	Cohort study	4	66	NA	ChEBI	Leptin	CHEBI: 81571	small				
29267953	Hussain et al., 2018 [113]	Cohort study	4	7	c.29C>T	p.T10I	ChEBI	CHEBI: 81571	large				
31620670	Kimzier et al., 2019 [114]	Cohort Study	4	5	NA	ChEBI	Leptin	CHEBI: 81571	small				
30990519	Lee et al., 2019 [115]	Cohort study	4	42	NA	ChEBI	Leptin	CHEBI: 81571	moderate				
31135595	Melvin et al., 2019 [116]	Expert review	5	NA	NA	ChEBI	Leptin	CHEBI: 81571	small				
30805888	Oral et al., 2019 [117]	Cohort study	4	41	NA	ChEBI	Leptin	CHEBI: 81571	large				
30539782	Puschel et al., 2019 [118]	Cohort study	4	10	NA	ChEBI	Leptin	CHEBI: 81571	small				
31194872	Sekizkardes et al., 2019 [75]	Cohort study	4	22	c.1444C>T	p.Arg482Trp	ChEBI	CHEBI: 81571	small				
30296183	Vatier et al., 2019a [76]	Case series	4	1	NA	ChEBI	Leptin	CHEBI: 81571	small				
31300002	Vatier et al., 2019b [119]	Cohort study	4	10	NA	ChEBI	Leptin	CHEBI: 81571	small				
29044799	Banning et al., 2017 [62]	Case report	5	1	c.1445G>A	p.Arg482Gln	ChEBI	CHEBI: 81571	large				
12766116	Herbst et al., 2003 [103]	Case series	4	13	NA	ChEBI	Nicotinamide	CHEBI: 17154	NA				
17893350	Hegele et al., 2007 [65]	Case series	4	2	c.1445G>A	p.Arg482Gln	MeSH	D063087	moderate				

(Continued)
Pubmed	Ref.	Clinical diagnosis	ORDO code	Type of study	Number of LMNA patients	HGVS cDNA	HGVS protein	Treatment or intervention database	Treatment or intervention name	Treatment or intervention ID	Biomarker Effect	Comments		
19418082	Patel et al., 2009 [66]	FPLD2	2348	Case report	5	1	c.1445G > A	p.Arg482Gln	MeSH	Noninvasive Ventilation	D063087	moderate	large	NA
18728124	Gambineri et al., 2008 [64]	FPLD2	2348	Case report	4	2	c.1445G > A	p.Arg482Gln	ChEBI	Pioglitazone 30 mg/d	CHEBI: 8228	moderate	NA	NA
17936664	Moreau et al., 2007 [59]	FPLD2	2348	Case report	5	1	NA	NA	ChEBI	Pioglitazone	CHEBI: 8228	small	large	NA
18728124	Gambineri et al., 2008 [64]	FPLD2	2348	Case report	4	2	c.1445G > A	p.Arg482Gln	ChEBI	Pioglitazone 30 mg/d; Metformin 1700 mg/d; Flutamide 250 mg/d	CHEBI: 6801 CHEBI: 5132	moderate	NA	NA
19249234	Collet-Gaudillat et al., 2009 [60]	FPLD2	2348	Case report	5	1	NA	NA	ChEBI	Pioglitazone Metformin Insulin	CHEBI: 8228 CHEBI: 6801 CHEBI: 45810	small	large	NA
14510863	Owen et al., 2003 [58]	FPLD2	2348	Case report	5	1	c.1444C > T	p.Arg482Trp	ChEBI	Rosiglitazone	CHEBI: 50122	small	NA	NA
16241930	Ludtke et al., 2005 [120]	FPLD2	2348	Case report	5	1	c.1444C > T	p.Arg482Trp	ChEBI	Rosiglitazone	CHEBI: 50122	small	moderate	NA
22274718	Ludtke et al., 2012 [61]	FPLD2	2348	Cohort study	3	5	c.1444C > T	p.Arg482Trp	ChEBI	Rosiglitazone	CHEBI: 50122	small	moderate	NA
27778252	Grundfest-Broniatowski et al., 2017 [121]	FPLD2	2348	Case report	5	1	c.1445G > A	p.Arg482Gln	MeSH	Roux en Y Gastric Bypass	D015390	moderate	NA	NA
23360689	Chen et al., 2013 [51]	CMD1A	300751	Case report	5	1	c.513 + 1G > A	p.Lys171Lys + splice defect ?	MeSH	rt-PA (alteplase)	D010959	large	NA	NA
21561824	Calderoni et al., 2011 [67]	FPLD2	2348	Case report	5	1	NA	NA	MeSH	Surgery, Plastic	D013518	moderate	NA	NA
21306965	Hughes et al., 2011 [68]	FPLD2	2348	Case report	5	1	NA	NA	MeSH	Surgery, Plastic	D013518	moderate	NA	NA
10929166	Arioglu et al., 2000 [57]	FPLD2	2348	Cohort study	3	7	NA	NA	ChEBI	Pioglitazone	CHEBI: 9753	small	small	NA

FPLD2: Familial Partial Lipodystrophy, Dunnigan Type; CMD1A: Familial dilated cardiomyopathy with conduction defect due to LMNA mutation. Biomarkers effects are indicated only in this table V, as some were reported only for these class of phenotypes/symptoms/treatments. Not possible to find how many patients with LMNA-related disease were reported in these meta-analyses.
studied in placebo-controlled studies. Still, several reports suggest that Metreleptin can be useful to improve glucose and lipid homeostasis and decrease hepatic steatosis in lipodystrophic syndromes, at least partly independently from its anorexigenic effects. Leptin-replacement therapy with Metreleptin has been assessed in two single-arm open-label trials [70–75]. They addressed heterogeneous populations with different genome-phenome associations, and Metreleptin seems to have some benefit in low-leptin populations in reducing triglycerides. Raised triglycerides are associated with cardiovascular risk and incidence of acute pancreatitis in these patients. No risk reduction figures of such outcomes are provided, though. A practice guideline reaches similar treatment recommendation for Metreleptin [63] as well as some case series and reports [72, 75, 76]. Although Metreleptin is more efficient in generalized than partial lipodystrophy, it could be useful in Dunnigan lipodystrophy, especially when metabolic alterations are severe and leptin levels very low at baseline [63, 71].

The increased cardiovascular risk in lipodystrophy should also lead to early screening and treatment of atherosclerotic events and rhythm and conduction disturbances. This has been mentioned in case reports, but specific recommendations are needed [56].

Treatabolome data for LMNA-related progeroid syndromes

Although some progeroid syndromes still do not have a specific Orpha code, that is not the case of the archetypal LMNA-related progeroid presentation Hutchinson-Guilford Progeria Syndrome (HGPS) [77, 78]. It is an accelerated ageing developmental disorder that affects children at a young age, markedly reducing their life expectancy. Despite being born in apparent health, affected children fail to thrive before the first year of life and go on to develop the characteristic features that spare the cognitive development and that result in early cardiovascular death from a heart attack or stroke [79, 80]. Treatments described for the condition are summarized in Table 6.

Two clinical trials involving a farnesyl transferase inhibitor, named lonafarnib, have risen great expectations. The initial 2012 trial (ClinicalTrials.gov, NCT02579044) enrolled 26 subjects and was a non-randomized controlled trial [81]. At the conclusion, treated patients had improved weight, vascular stiffness, bone structure and audiological...
state. The treatment seemed to have a beneficial effect on survival but the findings were limited by the observational design [82]. A second trial (Clinical Trials.gov, NCT00879034) involving 37 patients followed, employing a combination of lonafarnib, pravastatin and zoledronic acid in which comparisons with lonafarnib monotherapy treatment revealed additional bone mineral density benefit [83]. There was no added cardiovascular benefit, leaving small hope that such an approach can improve survival. There is an ongoing Phase I/II trial combining lonafarnib and everolimus that estimates enrolling 80 patients and being completed by December 2021 (ClinicalTrials.gov, NCT02579044).

Growth hormone (GH) has been mentioned as a treatment that may favor growth in HGPS patients. An initial 3 cases report of GH and nutritional therapy as well as a more recent case report suggest that it brings mild transient benefits [84, 85]. A mixed case with empty sella has found no improvement in long term outcome [86]. The evidence, therefore, remains weak for recommending this therapy in HGPS.

Finally, a case report of LMNA-related case of Mandibulo Acral Dysplasia (MADA) recommends bisphophonates to prevent the clastic activity with a rationale based on mechanism, so with a low level of evidence supporting the suggestion [87]. This entity is sometimes found in association with lipodystrophy.

DISCUSSION

The current systematic literature review of the Treatabolome pilot study research question (“What treatments have been described for this condition/gene/variant; on which specific genetic variants have they been tested; and what is the strength of the associated supporting evidence?”) did not provide any accessible list of LMNA variant-specific treatments. As an example, LMNA variants reported as “malignant” because of their association with a high risk of sudden cardiac death require the same cardiological management as “unlabelled” variants, as they share the same potential risk. However, we could identify a list of inactivating mutations conferring a major risk of sudden cardiac death (Supplementary File S2). We recommend having in mind that although many papers based the assertion of variant pathogenicity on existing functional studies, a sizeable number have not indicated what scientific validation has been done for some of the previously undescribed variants. Keep in mind that variants reported in our Supplementary File S2 and this paper may have less than complete evidence regarding their pathogenicity.

In LMNA-triggered conditions, the specific treatment indications thus rather relate to significant genome-phenotype pairings. The evidence regarding these pairings are summarised in Tables 3 (LMNA-related muscular phenotypes treatment), 4 (Sudden Cardiac Death Prevention), 5 (LMNA-related lipodystrophy treatment) and 6 (LMNA-related progeroid syndrome treatment). Regarding the corresponding gene and variant information, we have included reported variants from case reports and series and some genetic hotspots for several diseases, bearing in mind there is no variant-specific relationship with the listed treatments.

Our view is that the data assembled in our tables are of relevance for the Treatabolome database. A growing number of non-specialized clinicians gain access to genetic results and the Treatabolome database provides fundamental information for the management of patients. The integration of a treatment-related early warning system in the context of the genetic diagnosis tools has the potential to reduce management delays and to improve standards of care for patients with rare diseases.

Regarding the risk of sudden cardiac death, although superficially solved by a blanket indication of implantation of a defibrillator, the timing and risk assessment for that therapy have yet to achieve a clear consensus. The use of a “risk factors” approach, derived from the study by van Rijssingen et al. [41], has been implemented in the European and North American guidelines from cardiology scientific societies on sudden death prevention. A recent publication [39] has proposed an algorithm that is available as an online calculator (https://lmna-risk-vta.fr/) and could reduce the risk for patients to die suddenly, along with the number of patients having unnecessary device placements. It is also noticeable that although life-saving, implantable cardioversion defibrillators (ICD) have unpleasant side-effects when patients receive inappropriate shocks. A meta-analysis estimates that about a fifth of patients have these complications [88] and analysis continues on the mechanisms that originate this unwanted side effect of treatment. This requires that a risk stratification strategy is clearly laid down, namely for asymptomatic candidates. Overall, the ratio between the benefit and risk of prophylactic ICD placements appear to be extremely favorable in the very arrhythmogenic condition and we recommend using the
online tool developed as described by Wahbi et al. [39] to assess the risk of sudden cardiac death prior to ICD implantation. The risk factors were identified in cardiology tertiary centers’ LMNA patients, some of whom with neuromuscular involvement. The score was derived from a French nationwide cohort including all phenotypes, so one can reasonably conclude that the resulting sudden death risk stratification applies to any LMNA variant carriers. Therefore, we believe that it improves patient selection for implantation of ICD. Still, we recognize a limitation in Wahbi et al. paper’s approach [39] because it has not been specifically addressed whether the clinical presentation (myopathy, neuropathy, lipodystrophy...) influences the risk for cardiac events beyond the genetic and cardiac risk factors, although the authors intend to study this in the future.

Another clear point is that pacing is inadequate for these patients and should be replaced by ICD [33]. Cardiac Rehabilitation Therapy coupled with defibrillator (CRT-D) may support patients awaiting transplant and is a valid treatment option [39, 41, 42] but its wide use is limited by this population’s modest cardiac function response to CRT. There is no specific arrhythmogenic phenotype linked to the LMNA gene or its variants but general cardiological guidance for anticoagulation applies also in these cases.

In LMNA-related lipodystrophies, diet and exercise have to be strongly encouraged for prevention and treatment of metabolic complications. Nonspecific antidiabetic and lipid lowering treatments are largely used, and the numerous comorbidities (liver disease, cardiovascular risk, polycystic ovary syndrome, muscular symptoms, morphological and psychological consequences of the disease) require a multidisciplinary care. There was some success in reducing triglyceride levels and improving insulin resistance and glucose parameters by administering the orphan drug Metreleptin in patients with low leptin levels and severe metabolic alterations.

The literature about Progeroid Syndromes includes two non-randomized non-blinded controlled studies on the use of a farnesyl transferase inhibitor, lonafarnib, either in monotherapy or in association with pravastatin and zoleodronic acid. The results show that weight, vascular stiffness, bone structure and audiological state (and bone density in the association trial) improve, but little or no effect on survival was observed. Reports on the use of Growth Hormone (GH) and nutritional measures unfortunately show only a transient advantage.

CONCLUSION

We have performed a systematic literature review to extract ‘uploadable’ data for Treatabolome dataset and to trigger the discussion on information management of laminopathies treatments. The corresponding dataset will integrate the Treatabolome platform and will be shared with interoperable data platforms like the Genome-Phenome Analysis Platform (https://platform.rd-connect.eu/), allowing its incorporation in this and other clinical support tools. As examples of platforms that may consider looking into how to make interoperability with Treatabolome happen in the future, we have considered OPALE [89] the National French Registry for Laminopathies, UMD-LMNA (available at www.umd.be/LMNA/), LOVD (available at http://www.dmd.nl/lmna_home.html) and CMDIR (available at https://www.cmdir.org). We are confident that others will arise in time, as the treatment component of all rare diseases is a concern of researchers, clinicians and patients alike.

ACKNOWLEDGMENTS

This publication is part of the Solve-RD project (http://solve-rd.eu/). The Solve-RD project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 779257.

The authors of this publication are members of the European Reference Network for Neuromuscular Diseases - Project ID N° 870177.

CONFLICTS OF INTEREST

None to declare.

SUPPLEMENTARY MATERIAL

The supplementary material is available in the electronic version of this article: https://dx.doi.org/10.3233/JND-200596.

REFERENCES

[1] Worman HJ, Bonne G. “Laminopathies”: a wide spectrum of human diseases. Exp Cell Res. 2007;313(10):2121-33.
[2] Bonne G, Quijano-Roy S. Chapter 142 - Emery–Dreifuss muscular dystrophy, laminopathies, and other nuclear envelopathies. In: Dulac O, Lassonde M, Sarnat HB, editors. Handbook of Clinical Neurology. 113: Elsevier; 2013. pp. 1367-76.
A. Atalaia et al. / Laminopathies' Treatments Systematic Review

[3] Workman HJ. Nuclear lamins and laminopathies. J Pathol. 2012;226(2):316-25.

[4] Lattanzi G, Maggi L, Araujo-Vilar D. Laminopathies. Nucleus. 2018;9(1):543-4.

[5] Brull A, Morales Rodriguez B, Bonne G, Muchir A, Bertrand AT. The Pathogenesis and Therapies of Striated Muscle Laminopathies. Front Physiol. 2018;9:1533.

[6] Osmanagic-Myers S, Foisner R. The structural and gene expression hypotheses in laminopathic diseases—so different after all. Mol Biol Cell. 2019;30(15):1786-90.

[7] Ho R, Hegele RA. Complex effects of laminopathy mutations on nuclear structure and function. Clin Genet. 2019;95(2):199-209.

[8] Dittmer TA, Misteli T. The lamin protein family. Genome Biol. 2011;12(5):222.

[9] Camozzi D, Capanni C, Cenni V, Mattioli E, Columbaro M, Squarzoni S, et al. Diverse lamin-dependent mechanisms interact to control chromatin dynamics. Focus on laminopathies. Nucleus. 2014;5(5):427-40.

[10] Briand N, Collas P. Laminopathy-causing lamin A mutations reconfigure lamina-associated domains and local spatial chromatin conformation. Nucleus. 2018;9(1):216-26.

[11] Thompson R, Bonne G, Missier P, Lochmuller H. Targeted therapies for congenital myasthenic syndromes: Systematic review and steps towards a treatabolome. Emerg Top Life Sci. 2019;3(1):19-37.

[12] Atalaia A, Thompson R, Corvo A, Carmody L, Piscia D, Matalonga L, et al. A guide to writing systematic reviews of rare disease treatments to generate FAIR-compliant datasets: Building a Treatabolome. Orphanet J Rare Dis. 2020;15(1):206.

[13] Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018.

[14] Cochrane-Collaboration. Cochrane Handbook for Systematic Reviews of Interventions version 5.1 2011 [10/05/2019]. Available from: https://training.cochrane.org/handbook.

[15] CRD. PROSPERO - international register of systematic reviews 2019 [Available from: https://www.crd.york.ac.uk/PROSPERO/.

[16] Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.

[17] Collaboration. C. Data extraction forms: Cochrane 2020 [Available from: https://dplp.cochrane.org/sites/dplp.cochrane.org/files/public/uploads/CDPLP%20data%20collection%20form%20For%20intervention%20reviews%20for%20RCTs%20on%20non-RCTs.doc.

[18] Cochrane-Methods. Methodological Expectations of Cochrane Intervention Reviews (MECIR) 2019 [Cited 2020 07/05/2020]. Available from: https://methods.cochrane.org/sites/default/files/public/uploads/pleacs_2019.pdf.

[19] Quijano-Roy S, Mbielu B, Bonnemann CG, Jeanet PY, Colomer J, Clarke NF, et al. De novo LMNA mutations cause a new form of congenital muscular dystrophy. Ann Neurol. 2008;64(2):177-86.

[20] Bonne G, Di Barletta MR, Varnous S, Bécanne HM, Hammouda EH, Merlini L, et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet. 1999;21(3):285-8.

[21] Muchir A, Bonne G, van der Kooi AJ, van Meegen M, Baas F, Bolhuis PA, et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrophic ventricular conduction disturbances (LGMD1B). Hum Mol Genet. 2000;9(9):1453-9.

[22] Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med. 1999;341(23):1715-24.

[23] Bonne G, Mercuri E, Muchir A, Urtizberea A, Becane HM, Recan D, et al. Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin A/C gene. Ann Neurol. 2000;48(2):170-80.

[24] Diebo BG, Shah NV, Messina JC, Nazri Q, Post NH, Riew KD, et al. Restoration of Global Sagittal Alignment After Surgical Correction of Cervical Hyperlordosis in a Patient with Emery-Dreifuss Muscular Dystrophy: A Case Report. JBJS Case Connect. 2020;10(1):e0003.

[25] Choudhry DK, Mackenzie WG. Anesthetic issues with a hyperextended cervical spine in a child with Emery-Dreifuss syndrome. Anesthesia and analgesia. 2006;103(6):1611-3.

[26] Fishman FG, Goldstein EM, Peljovich AE. Surgical treatment of upper extremity contractures in Emery-Dreifuss muscular dystrophy. J Pediatr Orthop B. 2017;26(1):32-5.

[27] Poulter GT, Garton HJ, Blakemore LC, Hensinger RN, Graziano GP, Farley FA. Mortality and morbidity associated with correction of severe cervical hyperextension. Spine (Phila Pa 1976). 2009;34(4):378-83.

[28] Aldwinckle RJ, Carr AS. The anesthetic management of a patient with Emery-Dreifuss muscular dystrophy for orthopedic surgery. Canadian journal of anaesthesiologists. Journal canadien d’anesthesie. 2002;49(5):467-70.

[29] Shende D, Agarwal R. Anaesthetic management of a patient with Emery-Dreifuss muscular dystrophy. Anaesthesia and Intensive care. 2002;30(3):372-5.

[30] Funnell A, Morgan J, McFedzean W. Anaesthesia and orphan disease: Management of cardiac and perioperative risks in a patient with Emery-Dreifuss muscular dystrophy. Eur J Anaesthesiol. 2012;29(12):596-8.

[31] Moraitis E, Foley AR, Pilkington CA, Manzur AY, Quinlivan R, Jacques TS, et al. Infantile-onset LMNA-associated Muscular Dystrophy Mimicking Juvenile Idiopathic Inflammatory Myopathy. J Rheumatol. 2015;42(6):1064-6.

[32] van Berlo JH, de Voogt WG, van der Kooi AJ, van Tintelen JP, Bonne G, Yauo RB, et al. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: Do lamin A/C mutations portend a high risk of sudden death? J Mol Med (Berl). 2005;83(1):79-83.

[33] Meune C, Van Berlo JH, Anselme F, Bonne G, Pinto YM, Duboc D. Primary prevention of sudden death in patients with lamin A/C gene mutations. N Engl J Med. 2006;354(2):299-10.

[34] Antoniades L, Efthychiou C, Kyriakides T, Christodoulou K, Katrissis DG. Malignant mutation in the lamin A/C gene causing progressive conduction system disease and early sudden death in a family with mild form of limb-girdle muscular dystrophy. J Interv Card Electrophysiol. 2007;19(1):1-7.

[35] Keller H, Finsterer J, Steger C, Wexberg P, Gatterer E, Khazen C, et al. Novel c.367_369del LMNA mutation
manifesting as severe arrhythmias, dilated cardiomyopathy, and myopathy. Heart Lung. 2012;41(4):382-6.

[36] Kato K, Takashii N, Fujii Y, Umehara A, Nishiuchi S, Makiyama T, et al. LMNA cardiomyopathy detected in Japanese arrhythmogenic right ventricular cardiomyopathy cohort. J Cardiol. 2016;68(4):346-51.

[37] Kwapić M, Lacroix D, Espiard S, Ninni S, Brigadeau F, Kouakam C, et al. Cardiometabolic assessment of lamin A/C gene mutation carriers: A phenotype-genotype correlation. Diabetes Metab. 2018.

[38] Pasotti M, Klersy C, Pilotto A, Marzialino N, Rajeppi C, Serio A, et al. Long-term outcome and risk stratification in dilated cardiomyopathies. J Am Coll Cardiol. 2008;52(15):1250-60.

[39] Wahbi K, Ben Yaou R, Gandjbakhch E, Anselme F, Gossios T, Lakdawala NK, et al. Development and Validation of a New Risk Prediction Score for Life-Threatening Ventricular Tachyarrhythmias in Laminopathies. Circulation. 2019.

[40] Charron P, Arbusi A, Bonne G. What Should the Cardiologist know about Lamin Disease? Arrhythm Electrophysiol Rev. 2012;1(1):22-8.

[41] van Rijsingen IA, Arbusi E, Elliott PM, Mogensen J, Hermans-van Ast JF, van der Kooi AJ, et al. Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a European cohort study. J Am Coll Cardiol. 2012;59(5):493-500.

[42] Anselme F, Moubarak G, Savoure A, Godin B, Borz B, Drouin-Garraud V, et al. Implantable cardioverter-defibrillators in lamin A/C mutation carriers with cardiac conduction disorders. Heart Rhythm. 2013;10(10):1492-8.

[43] Disertori M, Quintarelli S, Mazzola S, Favalli V, Narula N, Arbusi E. The need to modify patient selection to improve the benefits of implantable cardioverter-defibrillator for primary prevention of sudden death in non-ischaemic dilated cardiomyopathy. Europe. 2013;15(12):1693-701.

[44] Halliday BP, Cleland JGF, Goldberg JR, Prasad SK. Personalizing Risk Stratification for Sudden Death in Dilated Cardiomyopathy: The Past, Present, and Future. Circulation. 2017;136(2):215-31.

[45] Kumar S, Baldinger SH, Gandjbakhch E, Maury P, Sellal JM, Androulakis AF, et al. Long-Term Arrhythmic and Nonarrhythmic Outcomes of Lamin A/C Mutation Carriers. J Am Coll Cardiol. 2016;68(21):2299-307.

[46] Hasabe Y, Fukuda K, Nakano M, Kumagai K, Karibe A, Fujishima F, et al. Characteristics of ventricular tachycardia and long-term outcome treatment in patients with dilated cardiomyopathy complicated by lamin A/C gene mutations. J Cardiol. 2019.

[47] Peters S, Kumar S, Elliott P, Kalman JM, Fatkin D. Arrhythmic Genotypes in Familial Dilated Cardiomyopathy: Implications for Genetic Testing and Clinical Management. Heart Lung Circ. 2019;28(1):31-8.

[48] Roberts JD, Gollob MH, Young C, Conness SP, Gray C, Wilton SB, et al. Bundle Branch Re-Entrant Ventricular Tachycardia: Novel Genetic Mechanisms in a Life-Threatening Arrhythmia. JACC Clin Electrophysiol. 2017;3(3):276-88.

[49] Kumar S, Androulakis AF, Sellal JM, Maury P, Gandjbakhch E, Waintraub X, et al. Multicenter Experience With Catheter Ablation for Ventricular Tachycardia in Lamin A/C Cardiomyopathy. Circ Arrhythm Electrophysiol. 2016;9(8).

[50] van Rijsingen IA, Bakker A, Azim D, Hermans-van Ast JF, van der Kooi AJ, van Tintelen JP, et al. Lamin A/C mutation is independently associated with an increased risk of arterial and venous thromboembolic complications. Int J Cardiol. 2013;168(1):472-7.

[51] Chen CH, Tang SC, Su YN, Yang CC, Jeng JS. Cardiembolic stroke related to limb-girdle muscular dystrophy IB. BMC Res Notes. 2013;6:32.

[52] Guenant AC, Briand N, Bidault G, Afonso P, Bereziat V, Vatier C, et al. Nuclear envelope-related lipodystrophies. Semin Cell Dev Biol. 2014;29:148-57.

[53] Doutour A, Roll P, Gaborit B, Courrier S, Alessi MC, Tregouet DA, et al. High prevalence of laminopathies among patients with metabolic syndrome. Hum Mol Genet. 2011;20(19):3779-86.

[54] Gonzaga-Jauregui C, Ge W, Staples J, Van Hout C, Yadav A, Colonic R, et al. Clinical and Molecular Prevalence of Lipodystrophy in an Unselected Large Clinical Care Cohort. Diabetes. 2020;69(2):249-58.

[55] Guillin-Amarelle C, Fernandez-Pombo A, Sanchez-Iglesias S, Aranbo-Vilar D. Lipodystrophic laminopathies: Diagnostic clues. Nucleus. 2018;9(1):249-60.

[56] Mosbah H, Vatier C, Boccara F, Jere I, Lascols O, Vanyghem CM, et al. Looking at New Unexpected Disease Targets in LMNA-Linked Lipodystrophies in the Light of Complex Cardiovascular Phenotypes: Implications for Clinical Practice. Cells. 2020;9(3).

[57] Arioglu E, Duncan-Morin J, Sebring N, Rother KI, Gouliieb N, Lieberman J, et al. Efficacy and safety of troglitazone in the treatment of lipodystrophy syndromes. Ann Intern Med. 2000;133(4):263-74.

[58] Owen KR, Donohoe M, Eillard S, Hattersley AT. Response to treatment with rosiglitazone in familial partial lipodystrophy due to a mutation in the LMNA gene. Diabet Med. 2003;20(10):823-7.

[59] Moreau F, Boullu-Sanchis V, Viguouroux C, Luscescu C, Lascols O, Sapin R, et al. Efficacy of pioglitazone in familial partial lipodystrophy of the Dunnigan type: A case report. Diabetes Metab. 2007;33(5):385-9.

[60] Collet-Gaudillat C, Billon-Bancel A, Beressi JP. Long-term improvement of metabolic control with pioglitazone in a woman with diabetes mellitus related to Dunnigan syndrome: A case report. Diabetes Metab. 2009;35(2):151-4.

[61] Luetchke A, Boschmann M, Colpe C, Engeli S, Adams F, Birkenfeld AL, et al. Thiazolidinedione response in familial lipodystrophy patients with LMNA mutations: A case series. Horm Metab Res. 2012;44(4):306-11.

[62] Banning F, Rottenkolber M, Freibotho R, Seissler J, Lechner A. Insulin secretory defect in familial partial lipodystrophy Type 2 and successful long-term treatment with a glagagon-like peptide 1 receptor agonist. Diabet Med. 2017;34(12):1792-4.

[63] Brown RJ, Araujo-Vilar D, Cheung PT, Dunger D, Garg A, Jack M, et al. The Diagnosis and Management of Lipodystrophy Syndromes: A Multi-Society Practice Guideline. J Clin Endocrinol Metab. 2016;101(12):4500-11.

[64] Gambineri A, Semple RK, Forlani G, Genghini S, Grassi W, Moreau F, et al. Nuclear envelope-related lipodystrophies. J Genet. 2011;20(19):3779-86.

[65] van Rijsingen IA, Bakker A, Azim D, Hermans-van Ast JF, van der Kooi AJ, van Tintelen JP, et al. Lamin A/C mutation is independently associated with an increased risk of arterial and venous thromboembolic complications. Int J Cardiol. 2013;168(1):472-7.
Gordon LB, Shappell H, Massaro J, D’Agostino RB, Sr., Brazier J, Campbell SE, et al. Association of Lonafarnib Treatment vs No Treatment With Mortality Rate in Patients With Hutchinson-Gilford Progeria Syndrome. Jama. 2018;319(16):1687-95.

Gordon LB, Kleinman ME, Massaro J, D’Agostino RB, Sr., Shappell H, Gerhard-Herman M, et al. Clinical Trial of the Protein Farnesyltransferase Inhibitors Lonafarnib, Pravastatin, and Zoledronic Acid in Children With Hutchinson-Gilford Progeria Syndrome. Circulation. 2016;134(2):114-25.

Sadeghi-Nejad A, Demmer L. Growth hormone therapy in progeria. J Pediatr Endocrinol Metab. 2007;20(5):633-7.

Abdenur JE, Brown WT, Friedman S, Smith M, Lifshitz F. Response to nutritional and growth hormone treatment in progeria. Metabolism. 1997;46(6):551-6.

Toni L, Dušátková P, Novotná D, Zemková D, Průhová Š, Lebl J. Short stature in a boy with atypical progeria syndrome due to LMNA c.433G>A [p.(Glu145Lys)]; Apparent growth hormone deficiency but poor response to growth hormone therapy. J Pediatr Endocrinol Metab. 2019;32(7):775-9.

Kosho T, Takahashi J, Momose T, Nakamura A, Saku- rai A, Waïda T, et al. Mandibuloacral dysplasia and a novel LMNA mutation in a woman with severe progressive skeletal changes. Am J Med Genet A. 2007;143A(6):693-7.

Simha V, Subramanyam L, Szczepaniak L, Quittner C, Adams-Huet B, Snell P, et al. Comparison of efficacy and safety of leptin replacement therapy in moderately and severely hypoleptinemic patients with familial partial lipodystrophy of the Dunnigan variety. J Clin Endocrinol Metab. 2012;97(3):785-92.

Park JY, Javor ED, Cochran EK, DePaoli AM, Gordon P. Long-term efficacy of leptin therapy in patients with Dunnigan-type familial partial lipodystrophy. Metabolism. 2007;56(4):508-16.

Brazier J, Campbell SE, et al. Association of Lonafarnib Treatment vs No Treatment With Mortality Rate in Patients With Hutchinson-Gilford Progeria Syndrome. Proc Natl Acad Sci U S A. 2012;109(41):16666-71.

Gordon LB, Shappell H, Massaro J, D’Agostino RB, Sr., Brazier J, Campbell SE, et al. Association of Lonafarnib Treatment vs No Treatment With Mortality Rate in Patients With Hutchinson-Gilford Progeria Syndrome. Jama. 2018;319(16):1687-95.

Gordon LB, Kleinman ME, Massaro J, D’Agostino RB, Sr., Shappell H, Gerhard-Herman M, et al. Clinical Trial of the Protein Farnesyltransferase Inhibitors Lonafarnib, Pravastatin, and Zoledronic Acid in Children With Hutchinson-Gilford Progeria Syndrome. Circulation. 2016;134(2):114-25.

Sadeghi-Nejad A, Demmer L. Growth hormone therapy in progeria. J Pediatr Endocrinol Metab. 2007;20(5):633-7.

Abdenur JE, Brown WT, Friedman S, Smith M, Lifshitz F. Response to nutritional and growth hormone treatment in progeria. Metabolism. 1997;46(6):551-6.

Toni L, Dušátková P, Novotná D, Zemková D, Průhová Š, Lebl J. Short stature in a boy with atypical progeria syndrome due to LMNA c.433G>A [p.(Glu145Lys)]; Apparent growth hormone deficiency but poor response to growth hormone therapy. J Pediatr Endocrinol Metab. 2019;32(7):775-9.

Kosho T, Takahashi J, Momose T, Nakamura A, Saku- rai A, Waïda T, et al. Mandibuloacral dysplasia and a novel LMNA mutation in a woman with severe progressive skeletal changes. Am J Med Genet A. 2007;143A(21):2989-603.

Oldé Nordkamp LR, Postema PG, Knops RE, van Dijk N, Limpens J, Wilda AA, et al. Implantable cardioverter-defibrillator harm in young patients with inherited arrhythmia syndromes: A systematic review and meta-analysis of inappropriate shocks and complications. Heart Rhythm. 2016;13(2):443-54.

Yaou RB, Vigouroux C, Quijano-Roy S, Campanna-Salort E, Cintas P, Cuisset J, et al. OPALe: A patient registry for laminopathies and emerinopathies in France: Neuromuscular Disorders. 2016;26:S138-S.

Schuster F, Wassig C, Schimmer C, Johannsen S, Lazarus M, Aleksic I, et al. In vitro contracture test results and anaesthetic management of a patient with emery-dreifuss muscular dystrophy for cardiac transplantation. Case Rep Anesthesiol. 2012;2012:439046.

Wang Z, Dong Y, Yang J, He Y, Lin X, Wu F, et al. A new laminopathy caused by an Arg133/Leu mutation in lamin A/C and the effects thereof on adipocyte differentiation and the transcriptome. Adipocyte. 2019;8(1):54-52.

De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boecaccio I, et al. Lamin A Truncation in Hutchinson-Gilford Progeria. Science. 2003;300:2055.

Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature. 2003;423(6937):293-8.

Hennekam RC. Hutchinson-Gilford progeria syndrome: Review of the phenotype. Am J Med Genet A. 2006;140(23):2603-24.

Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB, et al. Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med. 2008;358(6):592-604.

Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2012;109(41):16666-71.
