Early Growth of Muskmelon in Mulched Minitunnels Containing a Thermal Water Tube. II. Air, Soil, and Water Tube Temperatures and Vegetative Growth

Fahrurrozi Aziz and Katrine A. Stewart
Department of Plant Science of McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, H9X 3Y9 Canada

Sylvie Jenni
Agriculture and Agri-Food Canada, Horticultural Research and Development Centre, Saint-Jean-sur-Richelieu, 430 Boul. Gouin, St. Jean-sur-Richelieu, Quebec, J3B 3E6 Canada

ABSTRACT. Field experiments were conducted during 1997, 1998, and 1999 to determine effects of 10 combinations of mulched minitunnel and thermal water tube on air, soil, and water-tube temperatures and on vegetative growth of ‘Earligold’ netted muskmelon (Cucumis melo L. Reticulatus Group) within the tunnels. Use of mulched minitunnels significantly increased air, soil and water temperatures during the preanthesis phase in all years compared with control treatments. Inclusion of water tubes and venting the tunnels decreased air temperature fluctuations in the tunnels. During the first 10 to 15 days after transplanting, plants grown in nonperforated tunnels had higher relative growth rates (RGRs), net assimilation rates (NARs), and dry weights (DWs) than those grown under perforated tunnels and control plots. Plants in tunnels containing thermal water tubes generally had higher RGRs, NARs, and DWs than those without tubes. During the later part of the experiment, from 11 to 16 days after transplanting until anthesis, however, there were no consistent effects of mulched minitunnels on RGR, NAR, and plant DW. Tunneld muskmelons had significantly higher RGRs, but generally lower NARs and DWs than those grown without tunnel. Use of mulched minitunnels significantly increased plant DW at anthesis in 1997, but not in 1998 and 1999. Plants grown in the minitunnels containing a thermal water tube generally had higher RGRs, NARs, and DWs than those without water tubes. Ventilating nonperforated tunnels generally increased RGR, NAR, and plant DW. Plants grown in the tunnels reached anthesis 10 days earlier than those without tunnels.

Use of plastic mulch and minitunnel combinations to modify crop microclimate is becoming commonplace for early production of muskmelons (Cucumis melo L. Reticulatus Group) in cool climates. In Quebec, Canada Argall and Stewart (1989) and Jenni et al. (1998) found that high air and soil temperatures in the minitunnel were conducive to increased growth and yield. In other areas, excessively high air temperatures that occurred in nonperforated tunnels decreased final yields (Motsenbocker and Bonanno, 1989). To alleviate this harmful effect, inclusion of thermal water tubes in minitunnels has been recommended to optimize muskmelon growth and development (Jenni et al., 1996 1998). Most studies examining effects of minitunnels on muskmelon growth have focused on flowering and final yields (Farias-Larios et al., 1998; Jenni et al., 1998; Loy and Wells, 1975: Motsenbocker and Bonanno, 1989). However, little work has been undertaken regarding the influence of minitunnels on early vegetative growth and, indeed, this is the period when the tunnels have the most influence as they are removed upon flowering to promote bee pollination (Robinson and Decker-Walters, 1997). Since growth processes of indeterminate species, including muskmelons, during vegetative phase are determinate, biomass production of muskmelons during vegetative growth would be roughly exponential and primarily a function of environmental conditions. According to Geiger and Servaites (1991), dry matter produced during the preanthesis period is crucially important as it provides carbon reserves to counter environmental stresses. Crops that underwent stressful conditions during the vegetative phase of development had lower dry weights (DWs) during the reproductive phase (Chianello and Gulmon, 1991). Clearly, there is a need to better understand the consequences of using minitunnels, during the preanthesis phase, on muskmelon production. Therefore, this study reports the effects of mulched minitunnel and thermal water tube combinations on air, soil and water-tube temperatures and growth and development of muskmelons during the vegetative phase.

Materials and Methods

Field experiments were conducted during the Summers 1997, 1998, and 1999 at the Horticulture Research Centre, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec (lat. 45° 26’ N, long. 73° 56’ W). The experimental site was a Gleyed Eluviated Eutric Brunisol which was fall-ploughed, spring-harrowed, and fertilized with N, P, and K according to local recommendations (Conseil des Production Vegetales du Quebec, 1994) based on soil tests. A green wavelength-selective mulch (Climagro, Plastitech, St-Remi, Quebec) and drip irrigation lines were mechanically installed over the 15-cm-high soil beds 1 week before transplanting.

In 1997, 1998, and 1999, three types of polyethylene tunnels, with and without thermal water tubes, were compared with control
The tunnels used were a) clear perforated (500 holes/m², Plastitech), b) clear nonperforated (Plastitech), and c) infrared-blocking nonperforated (Polyon-Barkai, Polywest, Encinasas, Calif.). Combinations of tunnels and thermal tubes in 1997, 1998, and 1999 were as follows: 1) no tunnel/no thermal tube (OO), 2) no tunnel/a thermal tube (OT), 3) clear perforated polyethylene/no thermal tube (PO), 4) clear perforated polyethylene/thermal tube (PT), 5) clear nonperforated polyethylene/no thermal tube (CO), 6) clear nonperforated polyethylene/thermal tube (CT), 7) infrared-blocking nonperforated polyethylene/thermal tube (IT), 8) infrared-blocking nonperforated polyethylene/thermal tube (IT); and in 1998 and 1999, two treatments were added: 9) clear nonperforated polyethylene/no thermal tube/ventilated (COV) and 10) infrared-blocking nonperforated polyethylene/no thermal tube/ventilated (IOV). The experimental design was a randomized complete block with four blocks. Polyethylene was stretched over 10-gauge wire hoops and soil-secured along the mulched bed to create minitunnels 0.375 m high \(\times \) 0.8 m wide \(\times \) 8 m long. In treatments with thermal tubes, a clear polyethylene tube, 8.0 m long and 0.32 m wide was filled with water and placed along the inside edge of each tunnel, as described by Jenni et al. (1998). In 1997, the tubes were staked on the mulch surface. However, in 1998 and 1999, the tubes were trenched (5 cm deep and 10 cm wide) into the mulched soil bed to simplify tube placement. For the ventilated treatments (COV and IOV), ventilation consisted of cutting 15-cm slits 1 m apart on the leeward (south) side of the tunnel surfaces. The tunnels were ventilated when the ratio of variable to maximum fluorescence (Fv/Fm) dropped below 0.5 for 3 consecutive d, indicative of plants under severe or extreme stress (Bjorkman and Demmig, 1987). Tunnels were ventilated 13 d and 10 d after transplanting in 1998 and 1999, respectively.

‘Earligold’ netted muskmelon were seeded into 7.5-cm² cell packs containing Promix ‘BX’, peat-based growing medium (Premier Horticulture, Riviere de Loup, Quebec, Canada) and placed in a greenhouse with days/night temperatures of 25 to 28/18 to 20 °C and natural daylight. Seedlings were watered until runoff with foliar fertilizer (75 mg·L⁻¹ of a 20N–8.8P–16.6K water soluble fertilizer, Plant Products Inc., Brampton, Ontario, Canada) at 2 weeks of age, and were watered as necessary. Three-week-old seedlings were transplanted on 13, 6, and 5 May 1997, 1998, and 1999, respectively. Row spacing was 0.7 m between plants and 2.0 m between rows. There were 11 plants per plot with the end plants serving as guards. Plants received 300 mL of a starter solution [300 mg·L⁻¹ of a 10N–22P–16.6K water soluble fertilizer (Plant Products Inc.)] immediately after transplanting. Throughout the experiment, drip irrigation was applied for 5 h after 3 to 4 d without precipitation.

At transplanting the shoots (leaves and stems) of 27 plants were harvested and dried at 70°C for 48 h and the DW recorded. Fifteen (1997), 10 (1998), and 12 (1999) d after transplanting, one replicate (nine plants) of the experiment was harvested and shoot DWs were recorded. At anthesis, 90% of the muskmelons had at least one fully open perfect flower, and 18 plants per treatment (six plants per replicate) were harvested. Leaf area was measured with a portable leaf area meter (Delta T Devices, Cambridge, United Kingdom), and relative growth rates (RGRs) and net assimilation rates (NARs) were calculated on shoots (leaf and stem tissue) following methods proposed by Gardner et al. (1985).
The nonperforated tunnels increased air minimum temperatures, although the numerical increases were not always statistically significant, compared with controls. Minimum air temperature in the perforated tunnels without water tubes was lower than all other treatments. Jenni et al. (1991) reported similar results and suggested this was due to radiative cooling that occurred in the tunnel. Inclusion of water films on the inner side of nonperforated tunnels could further reduce loss of thermal radiation from the mulch surface thus increasing temperatures in the tunnel. Similarly, elevated CO₂ levels in the nonperforated tunnels (Aziz, 2000) might warm the tunnel environment by trapping heat.

Inclusion of thermal water tubes in the minitunnels significantly increased the effect of minitunnel type on daily heat collected and released by thermal water tubes from transplanting (DAT) until anthesis of 'Earligold' netted muskmelons in 1997, 1998, and 1999. Letters indicate the type of tunnel with O = none, P = perforated clear polyethylene, C = nonperforated clear polyethylene and I = infrared-blocked polyethylene. Lower case letters denote mean separation among types of tunnels by LSD, P = 0.05.

Results and Discussion

Air Temperatures. Mulched minitunnels alone or in combination with thermal water tubes had significantly higher average and maximum air temperatures than did control treatments immediately after transplanting in all experimental years (Fig. 1). Mulched minitunnels without thermal water tubes have been investigated previously for use with muskmelons (Bonanno and Lamont, 1987; Loy and Wells, 1982; Motsenbocker and Bonanno, 1989). Solar radiation trapped in the tunnels is primarily responsible for increases in air temperatures. Average air temperatures in the nonperforated tunnels were significantly higher than those in the perforated tunnels (Fig. 1). Perforations decreased heating effects by allowing air movement into the tunnel (Savage, 1980), and were comparable to tunnel venting. Tunnel ventilation significantly decreased the maximum, and minimum air temperatures (Fig. 1). Similar results were reported by Champagne and Stewart (1990).

Average air temperatures in the nonperforated infrared-blocked tunnels were significantly higher than those under clear nonperforated tunnels. Radiation in the near infrared spectrum (770 to 1100 nm) was 90% and 87%, for the infrared-blocked and clear nonperforated tunnels, respectively (data not presented). Formation of water films on the inner side of nonperforated tunnels could further reduce loss of thermal radiation from the mulch surface thus increasing temperatures in the tunnel. Similarly, elevated CO₂ levels in the nonperforated tunnels (Aziz, 2000) might warm the tunnel environment by trapping heat.

Soil Temperatures. Soil temperatures were higher, although differences were not always significant, in all nonperforated tunnel
treatments than under perforated tunnels and control treatments (Fig. 3). Plastic mulches have been reported to increase soil temperatures significantly compared with bare soil (Brandenberger and Wiedenfeld, 1997; Zermeno et al., 1998). Placing a minitunnel on the mulch also increased soil temperature, although not always significantly, compared with mulch alone. Motsenbocker and Bonanno (1989) and Farias-Larios et al. (1998) reported similar results. High air temperatures in the tunnel increase soil temperatures, since the heat is transferred through the mulch by conduction (Perry, 1998). Good contact between the plastic mulch and soil surface is necessary for conduction to occur (Ham and Kluitenberg, 1994). According to Tanner (1974), there is a greenhouse effect under the mulch surface that warms the soil.

The presence of thermal water tubes in the tunnel generally decreased, but not significantly, soil temperatures. The thermal water tube may have reduced heat conduction to the plastic mulches since the tube covered approximately 40% of the mulch surface.

Water temperatures and heat collected and released. At the start of the growing season, use of minitunnels significantly increased maximum, and minimum water temperature in all years (Fig. 4). Water tubes in the infrared tunnels had the highest temperatures, followed by clear nonperforated, clear perforated tunnels, and controls. Later in the season, results were more variable reflecting the different seasons. In 1997 and 1998 maximum water temperatures were significantly higher for all the minitunnels compared with the control treatments. However, in 1999, there was no difference in maximum water temperature between the control and perforated tunnel treatments but these were significantly lower than those in the nonperforated tunnels. For all years, minimum temperatures in the infrared-blocked tunnels were significant warmer than the controls.

There were no differences among treatments in the amount of heat collected and released by the thermal water tubes in 1997 (Fig. 2). There was no difference in the heat absorbed by the water tubes at the start of the 1998 growing season. Water tubes in the perforated tunnels released less heat than the other tunnels although the difference was only significant for the infrared-blocked tunnel. Later in the season, water tubes in the infrared-blocked tunnel collected and released significantly more heat than the other treatments. The increased heat collected in these tunnels was due to the higher air temperature in these tunnels (Fig. 1).

Muskmelon growth during the first 10 to 15 d after transplanting. Use of a perforated tunnel increased shoot DW by 2.4 times in 1997 and 1999 and 1.2 times in 1998 compared with the controls 10 to 15 d after transplanting (Table 1). When nonperforated tunnels were used, the shoot DWs increased by 10.0, 3.2, and 5.2 times that of the controls for 1997, 1998, and 1999, respectively (Table 1). High air and soil temperatures in the minitunnels likely contributed to increased DW (Figs. 1 and 2). RGR and NAR of muskmelons grown in nonperforated tunnels were consistently greater than RGR and NAR values of plants grown in perforated tunnels and in control plots during the 0 to 15 d after transplanting (Table 2). Differences in RGR and NAR among the treatments were largest in 1997. RGR and NAR values of muskmelons were generally higher in 1998 and 1999 than in 1997. This might reflect the warmer air temperatures of 1998 and 1999. Elevated air and soil

Fig. 3. Effects of mulched minitunnels on maximum, average, and minimum soil temperatures from transplanting (DAT) until anthesis of ‘Earligold’ netted muskmelons in 1997, 1998, and 1999. The first letter of a treatment indicates the type of tunnel with O = none, P = perforated clear polyethylene, C = nonperforated clear polyethylene, and I = infrared-blocked polyethylene. The second letter indicates the presence (T) or absence of water tubes (O). The third letter (V) indicates the ventilating treatment. Lower case letters denote mean separations for maximum, average, and minimum soil temperatures by Duncan’s multiple range test, P = 0.05.
Muskmelon growth from 11 to 16 d after transplanting to anthesis. Use of mulched minitunnels reduced time to flowering compared with nontunnelled muskmelons by 11 d in 1997 and 1998 and 9 d in 1999 (Table 1). The shortest time to anthesis occurred in the nonperforated tunnels containing a thermal tube which flowered 12, 15, and 11 d earlier than the controls. Jenni et al. (1996, 1998) and Loy and Wells (1975) reported similar results. Reduction in time to flowering was probably due to increases in both air and soil temperatures in the tunnels (Figs. 1 and 2). Although the use of mulched minitunnels reduced time to anthesis, excessively high air temperatures in the tunnels negatively affected growth between 15 d after transplanting and anthesis. Indeed, all of the muskmelons grown in infrared tunnels without thermal water tubes died 17 d and 19 d after transplanting in 1998 and 1999, respectively.

At anthesis, the shoot DW of muskmelons grown in mulched minitunnels was significantly higher than the control plots in 1997 and 1999 but not in 1998 (Table 1). The presence of thermal water tubes had no effect on shoot DW. Muskmelons grown in tunnels had significantly higher RGRs than those grown without tunnels in all years (Table 2). Plants grown in nonperforated tunnels without thermal tubes had lower RGRs than those grown in either perforated tunnels or in nonperforated tunnels with thermal tubes. These values were significant in 1998. The lower RGRs for the nonperforated tunnels without thermal tubes reflect the excessively high air temperatures recorded in this treatment. Farias-Larios et al. (1998) and Jenni et al. (1996) recommended maintaining temperatures below 35 °C and 40 °C, respectively, to optimize muskmelon growth. The higher RGR of the nonperforated tunnels with thermal tubes can be attributed to a combination of high air temperatures and enriched CO₂ levels (Aziz, 2000). Similar results have been reported by Acoc et al. (1990).

There was no significant difference in the NAR among treatments in 1997 and 1998. In 1999, plants grown in nonperforated tunnels had significantly lower NARs than those of all other treatments (Table 2). High air temperatures in these treatments might have reduced leaf growth (Friend et al., 1965) and eventually reduced NARs. The highest NARs were recorded in the control treatments.

Effect of ventilation on muskmelon growth. Ventilating by crosscutting the surface of the tunnels on the leeward (south) side did not significantly increase shoot DW in 1998 but did in 1999 (Table 1). Lack of response of muskmelons to ventilation in 1998 might have reflected their inability to resume growth fully after being exposed to stressful conditions, i.e., high air temperatures, before minitunnel venting. Ventilating, however, significantly increased muskmelon RGR (Table 2) due to decreased maximum air temperatures (Fig. 1).

Conclusions

Use of mulched minitunnels increased air, soil, and water temperatures throughout the experiment. Use of thermal water tubes and ventilating the tunnels decreased air temperature fluctuations in the tunnels. Mulched minitunnels generally increased shoot DW, RGR, and NAR of muskmelons during the first 10 to 15 d after transplanting. At anthesis, however, it did not always increase DW, RGR, and NAR of muskmelons. Including a thermal water tube or ventilating the tunnel generally increased DW, RGR, and NAR of muskmelons. Use of nonperforated tunnels (particularly infrared blocking) with a thermal tube consistently optimized early growth and development of muskmelon during the coldest part of our growing season. The thermal tube is a requirement for nonperforated
mimitunels to avoid temperatures extremes and injury to the plants. Under our growing conditions, venting a nonperforated minitunnel was not a viable alternative to the use of a thermal tube under our growing conditions.

Literature cited

Acck, B., M.C. Acck, and D. Pasternak. 1990. Interactions of CO2 enrichment and temperature on carbohydrate production and accumulation in muskmelon leaves. J. Amer. Soc. Hort. Sci. 115:525–529.

Argall, J.F. and K.A. Stewart. 1989. Technologies for the culture of melon in marginal growing regions. Proc. Natl. Agr. Plastics Congr. 21:127–132.

Aziz, F. 2000. Effects of mulch/minitunnel and thermal water tube combinations on daily carbon dioxide concentration and early growth of muskmelon. PhD diss. McGill Univ., Montreal, Canada.

Björkman, O. and B. Demmig. 1987. Photon yield of oxygen evolution and chlorophyll fluorescence at 77 K among vascular plants of diverse origins. Planta 170:489–504.

Bonanno, A.R. and W.J. Lamont. 1987. The effect of polyethylene mulches, irrigation method, and row covers on soil and air temperatures and yield of muskmelon (Cucumis melo L.). J. Amer. Soc. Hort. Sci. 112:273–278.

Brandenberger, L. and B. Wiedenfeld. 1997. Physical characteristics of mulches and their impact on crop response and profitability in muskmelon production. HortTechnology 7:165–169.

Bunce, J.A. 1984. Effects of humidity on photosynthesis. J. Expt. Bot. 35:1245–1251.

Champagne, L. and K.A. Stewart. 1990. Floral development and fruit set of tomatoes as influenced by minitunnels. Proc. Natl. Agr. Plastics Congr. 22:53–59.

Chariello, N.R. and S.L. Gulmon. 1991. Stress effects on plant reproduction. p. 161–188. In: H.A. Mooney, W.E. Winner, and E.J. Pell (eds.). Response of plants to multiple stresses. Academic Press, Toronto, Canada.

Conseil des Production Vegetales du Quebec. 1994. Grilles de reference en fertilisation. AGDEX 540. Ministere de l’Agriculture des Pecheries et de l’Alimentation. Quebec City, Quebec, Canada.

Farias-Larios, J., M. Orozoz-Santos, and J. Perez. 1998. Effect of plastic mulch, floating row covers and microtunnels on insect populations and yield of muskmelon. Proc. Natl. Agr. Plastics Congr. 27:76–83.

Friend, D.J.C., V.A. Helson, and J.E. Fisher. 1965. Changes in leaf area ratio during growth of marquis wheat, as affected by temperature and light intensity. Can. J. Bot. 43:15–28.

Gardner, F.P., R.B. Pearce, and R.L. Mitchell. 1985. Physiology of crop plants. Iowa State Univ. Press, Ames.

Geiger, D.R. and J.C. Servaites. 1991. Carbon allocation and response to stress, p. 103–127. In: H.A. Mooney, W.E. Winner, and E.J. Pell (eds.). Response of plants to multiple stresses. Academic Press, Toronto Canada.

Grafiadellies, M. 1986. Development of a passive solar system for heating greenhouses. Acta Hort. 191:245–251.

Ham, J.M. and G.J. Klûtenberg. 1994. Modelling of the mulch effect of soil properties and mulch–soil contact resistance on soil heating under plastic mulch culture. Agr. For. Meteorol. 71:403–424.

Jenni, S., J.F. Argall, and K.A. Stewart. 1991. The influence of mulch/tunnel combinations on melon growth and development. Proc. Natl. Agr. Plastics Congr. 23:120–125.

Jenni, S., D.C. Cloutier, G. Bourgeois, and K.A. Stewart. 1996. A heat unit model to predict growth and development of muskmelon to anthesis of perfect flowers. J. Amer. Soc. Hort. Sci. 121:274–280.

Jenni, S., K.A. Stewart, D.C. Cloutier, and G. Bourgeois. 1998. Chilling injury and yield of muskmelon grown with plastic mulches, row covers and thermal-water tubes. HortScience 33:215–221.

Loy, J.B. and O.S. Wells. 1975. Response of hybrid muskmelons to polyethylene row covers and black polyethylene mulch. Sci. Hort 3:223–230.

Loy, J.B. and O.S. Wells. 1982. A comparison of slitted polyethylene and spunbonded polyester for plant row covers. HortScience 17:405–407.

Mavrogianopoulos, G.N., J. Spanakis, and P. Tsikalas. 1999. Effect of
Table 2. Effect of minitunnel and thermal water tube combinations on relative growth rate per plant and net assimilation rate of ‘Earligold’ netted muskmelons in 1997, 1998, and 1999.

Minitunnel and thermal water tube combinations	Growth period in days from transplanting until anthesis (A)	1997	1998	1999								
	0–15^z	16–A	0–15^z	16–A	0–10^y	11–A	0–10^y	11–A	0–12^x	13–A	0–12^x	13–A
No tunnel, no tube	RGR (g d^{–1})^y	NAR (mg cm^{–2}d^{–1})^y	RGR (g d^{–1})	NAR (mg cm^{–2}d^{–1})								
No tunnel, tube	-0.02	0.17	-0.11	2.10	0.05	0.15	0.44	1.45	0.12	0.16	1.42	1.48
Clear perforated tunnel, no tube	0.06	0.24	0.43	1.30	0.08	0.21	0.66	1.73	0.19	0.15	1.98	1.26
Clear perforated tunnel, tube	0.03	0.25	0.17	2.14	0.07	0.25	0.58	1.98	0.21	0.18	2.02	1.44
Clear nonperforated tunnel, no tube	0.13	0.19	0.95	1.77	0.17	0.15	1.56	1.11	0.24	0.08	2.92	0.85
Clear nonperforated tunnel, tube	0.15	0.18	1.09	2.11	0.17	0.28	1.57	2.00	0.27	0.12	2.47	0.79
Infrared-blocked tunnel, no tube	0.13	0.18	0.97	2.26	0.13	NA^w	1.23	NA	0.24	NA	3.01	NA
Infrared-blocked tunnel, tube	0.14	0.20	1.06	1.62	0.12	0.19	1.97	1.48	0.29	0.11	2.97	0.79
Clear nonperforated tunnel, no tube, vented	---	---	---	---	---	---	---	---	---	---	---	---
(1998, 1999)	---	---	---	---	---	---	---	---	---	---	---	---
Infrared-blocked tunnel, no tube, vented	---	---	---	---	---	0.16	---	1.35	---	0.15	---	1.32
(1998, 1999)	---	---	---	---	---	0.18	---	2.25	---	0.16	---	1.54
Analysis of variance	Model	***	---	NS	---	***	NS	NS	---	***	---	***
Treatments	***	---	NS	---	***	NS	NS	---	***	---	***	
Contrasts	Tunnels vs. no tunnels	***	---	NS	---	***	NS	NS	---	***	---	***
Perforated vs. nonperforated	---	***	---	NS	---	**	NS	NS	---	***	---	**
Tubes vs. no tubes	---	NS	---	NS	---	***	NS	NS	---	*	---	NS
Vented vs. non vented	---	---	---	---	---	**	NS	NS	---	NS	---	NS
Vented vs. perforated	---	---	---	---	---	NS	NS	NS	---	***	---	***

^zNo statistical analysis. Values are based on the means of nine plants.

^yData not available as all plants in this treatment died before anthesis.

^x,^y,^zData transformed before analysis of variance using log 10(Y) and square root of (X = 1/2) transformations, respectively.

^{NS},[*],^{**},^{***}Nonsignificant or significant at P = 0.05, 0.01, or 0.001, respectively.

8821-Photo 9/30/01, 11:54 AM

770 J. AMER. SOC. HORT. SCI. 126(6):764–770. 2001.