INITIAL SPEED OF KNOTS IN THE PLASMA TAIL OF C/2013 R1(LOVEJOY)

MASAFUMI YAGI1, JIN KODA2, REIKO FURUSHO1,3, TSUYOSHI TERAII,1,4, HIDEAKI FUJWARA4, AND JUN-ICHI WATANABE1
1 National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588, Japan; YAGI.Masafumi@nao.ac.jp
2 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA
3 Tsuru University, 3-8-1, Tahara, Tsuru, Yamanashi, 402-0054, Japan
4 Subaru Telescope, 650 North A‘ohoku Place, Hilo, HI 96720, USA

Received 2014 November 10; accepted 2015 January 8; published 2015 February 9

ABSTRACT

We report short-time variations in the plasma tail of C/2013 R1(Lovejoy). A series of short (2–3 minutes) exposure images with the 8.2 m Subaru telescope shows faint details of filaments and their motions over a 24 minute observing duration. We identified rapid movements of two knots in the plasma tail near the nucleus (∼3 × 105 km). Their speeds are 20 and 25 km s\(^{-1}\) along the tail and 3.8 and 2.2 km s\(^{-1}\) across it, respectively. These measurements set a constraint on an acceleration model of plasma tail and knots as they set the initial speed just after their formation. We also found a rapid narrowing of the tail. After correcting the motion along the tail, the narrowing speed is estimated to be ∼8 km s\(^{-1}\). These rapid motions suggest the need for high time-resolution studies of comet plasma tails with a large telescope.

Key words: comets: individual (C/2013 R1) – solar wind

1. INTRODUCTION

Plasma tails of comets and their time variations potentially provide crucial information on solar winds and magnetic fields in the solar system (e.g., Niedner 1982; Mendis 2006; Downs et al. 2013). Short-time variations in plasma tails, however, are not yet fully understood. Indeed, most previous studies observed tails and structures at far distances (>10⁶ km from the nucleus) with a time resolution of the order of an hour.

Regarding the speed of movement along the tail, Niedner (1981) studied 72 disconnection events (DEs) of various comet tails and found <100 km s\(^{-1}\) at <10⁷ km from the nucleus. Their initial speeds before DEs are around 44 km s\(^{-1}\) and the typical acceleration is 21 cm s\(^{-2}\). Saito et al. (1987) analyzed a knot in the plasma tail of comet 1P/Halley and derived its average velocity of 58 km s\(^{-1}\) at 4–9 × 10⁵ km from the nucleus. Kinoshita et al. (1996) observed C/1996 B2 (Hyakutake) and measured the speed of a knot of 99 km s\(^{-1}\) at 5.6 × 10⁵ km from the nucleus. Brandt et al. (2002) investigated DE of C/1995 O1 (Hale-Bopp) and obtained the speed of ∼500 km s\(^{-1}\) at ∼7 × 10⁵ km from the nucleus. Buffington (2008) analyzed several knots in comets C/2001 Q4(NEAT) and C/2002 T7(LINEAR) using the Solar Mass Ejection Imager. They found the speed to be 50–100 km s\(^{-1}\) around 10⁶ km from the nucleus.

These previous studies did not catch the moment immediately after the formation of knots or the detachment of knots from the tail. The initial speed at these critical times was only an extrapolation from later observations relatively far away. In this paper, we report detections of knots in the plasma tail 3 × 10⁵ km away from the nucleus of C/2013 R1(Lovejoy) and a direct measurement of their initial motions. We adopt the AB magnitude system throughout the paper.

2. DATA

The comet was observed on 2013 December 4 (UT) using the Subaru Prime Focus Camera (Suprime-Cam; Miyazaki et al. 2002) mounted on the Subaru Telescope at Mauna Kea (observatory code 568⁵). The camera consists of a 5 × 2 array of 2k × 4k CCDs. The pixel scale is 0.202 arcsec pixel\(^{-1}\). The field of view is about 35 × 28 arcmin. We used two broadband filters: W-C-IC (I-band: center = 7970 Å, FWHM = 1400 Å) and W-J-V (V-band: center = 5470 Å, FWHM = 970 Å) filters. Both bands trace the plasma tail. I-band includes predominantly H₂O⁺ line emissions, while V-band includes CO⁺ and H₂O⁺ line emissions.

The observation log is given in Table 1. The total observing time of 24 minutes was spent after main science targets of the observing run were set. The start time of the exposures have an uncertainty of about 1 s. The position angle and the pointing offset were adopted to catch the comet nucleus at the bottom-left corner and to have the tail run diagonally across the field-of-view so that the maximum extent of the tail is framed in each exposure.

The Subaru telescope’s non-sidereal tracking mode (Iye et al. 2004) was used so that the comet was always observed at the same position on the CCD array. For the observing run, the comet’s coordinates were calculated using the NASA/JPL HORIZONS system⁶ with the orbit element of JPL#22. We used an ephemeris of 1 minute step. Unfortunately, the values of JPL#22 were not recorded. In the following, we instead used newer orbital elements (JPL#55). The values are given in Table 2. The positions calculated from JPL#22 and JPL#55 have an offset by 0.34 arcsec in R.A. and −1.88 arcsec in decl. but show no drift during the observation. The offset of the absolute celestial coordinate does not affect in this study, since our analysis is on relative position of structures inside of the comet. At the time of the observations, the observercentric (568) and heliocentric distance to the comet were 0.5523–0.5526 and 0.8812–0.8811 AU, respectively. In the sky projection, the conversion from the angular to the physical scales was 400.6–400.8 km arcsec\(^{-1}\). Considering the phase angle (Sun-target-observer angle) of 83°5 at the time of the observations, we adopt the physical scale along the tail of 403.3 km arcsec\(^{-1}\) in the following discussion. The heliocentric

⁵ http://www.minorplanetcenter.net/iau/lists/ObsCodesF.html
⁶ http://ssd.jpl.nasa.gov/horizons.cgi
The ecliptic coordinate of the comet nucleus was \((\lambda, \beta) = (87.5, 30.7)\). The comet was located before the perihelion passage, and its heliocentric velocity was \(-12.6 \text{ km s}^{-1}\).

The seeing size is estimated from short (2 s) exposures and was 1.0 and 1.1 arcsec in \(I\) and \(V\) bands, respectively. The movement of the comet in the celestial coordinate was about \((d\text{RA} \times \cos(D)/dt, \, d(D)/dt) = (283-284, \, -115)\) arcsec hr\(^{-1}\) during the observations. Due to the non-sidereal tracking, stars move in an exposure, but this motion does not affect the measurement of the seeing size significantly since the shift is only about 0.17 arcsec in a 2 s exposure.

The data was reduced in a standard manner; the steps include overscan subtraction, crosstalk correction (Yagi 2012), flat fielding using twilight flat, and distortion correction. The relative flux and relative position among the CCDs are calibrated using other dithered datasets taken in the same night. The mosaicked image of \(V\) (Table 1) is shown as Figure 1 as an example.

The flux was calibrated against stars in the field using the Eighth Data Release of the Sloan Digital Sky Survey (SDSS DR8; Aihara et al. 2011) catalog in the same way as in Yagi et al. (2013). We first used SExtractor (Bertin & Arnouts 1996) for object detection in the Suprime-Cam images and astrometric calibration was performed to the center of the elongated stars against the Guide Star Catalog 2.3.3 (Lasker et al. 2008). Then, we measured aperture fluxes at each position of SDSS star whose \(r\)-band magnitude is \(16 < r < 20\). The aperture radius was 40, 50, and 60 pixels, and we used

\[
F = F(40) - \left(F(60) - F(50) \right) \times \frac{40^2}{60^2 - 50^2}
\]

as the background-corrected aperture flux of an elongated star, where \(F(r)\) is the aperture flux of \(r\) radius. Photometric zero point was estimated from the instrument flux \(F\) and the catalog magnitude converted to the Suprime-Cam AB system. The color conversion coefficients from SDSS to Suprime-Cam magnitudes are given in Table 3. The \(K\)-correct (Blanton & Roweis 2007) \(v4\) offset for SDSS\(^7\) is applied; \(m_{AB} - m_{SDSS} = 0.012, 0.010\) and 0.028 for \(g, r\) and \(i\), respectively. The number of stars used for calibration was \(\sim 290\) in \(V\) and \(\sim 410\) in \(I\). The measured photometric zero-point of chip 2 (reference chip) was 27.36(\(I\)) and 27.15(\(V\)).

Table 1

Tag	Filter	UT(Start)	Exptime(s)
I1	I	2013 Dec 4 15:22:41	120.0
I2	I	2013 Dec 4 15:25:10	2.0
I3	I	2013 Dec 4 15:25:51	120.0
I4	I	2013 Dec 4 15:28:29	120.0
V1	V	2013 Dec 4 15:39:57	120.0
V2	V	2013 Dec 4 15:42:33	2.0
V3	V	2013 Dec 4 15:43:14	120.0
V4	V	2013 Dec 4 15:45:43	30.0
V5	V	2013 Dec 4 15:46:43	10.0

Table 2

Parameter	Value
Epoch	2456653.5 (JD)
\(q\)	0.8118255522209098
\(e\)	0.9984254232918264
\(i\)	64.0409480407445 (deg)
\(w\)	67.16643021837888 (deg)
Node	70.7111790785319 (deg)
\(T_p\)	2456649.2331241518 (JD)

Figure 1. Example of the data (V1; see Table 1). The bright part is shown as black. Suprime-Cam consists of 10 CCDs, and the gaps between chips are shown in white. The field of view is 35 \(\times\) 28 arcmin.
A Bm a gp e r1A D Us −1, and the peak-to-peak variation among exposures were smaller than 0.02 mag in each band. These zero points are comparable to the ones derived typically under photometric conditions, and thus we regard the data as having been obtained under photometric conditions.

3. RESULT

3.1. Image Processing

To investigate the fine structures in the plasma tail, additional image processing was applied. First, we rotate the image counterclockwise by 50° so that the plasma tail aligns to the y-axis, and the region around the plasma tail within full width of 1000 pixels (3.4 arcmin) was extracted. The position

SDSS-Suprime	SDSS color	Range	c_0	c_1	c_2	c_3	c_4	c_5
$g - V$	$g - r$	$-0.6 < g - r < 0.8$	0.039	0.574	-0.086	0.257	0.188	-0.406
$i - I$	$r - i$	$-0.4 < r - i < 0.5$	-0.018	0.255	0.037	0.092	-0.196	...

Table 3: The Coefficients of Color Conversion

Figure 2. Unsharp masked (highpass50) and 5 × 5 pixel binned images. The gaps between CCDs are seen in gray. Long exposures, I_1, I_3, I_4, V_1, V_3, and V_4 are displayed from the left to the right. The Sun and the nucleus are toward the top. The distance from the nucleus is shown as horizontal lines at 3×10^5 km and 6×10^5 km. Two knots are indicated by arrows.

AB mag per 1 ADU s$^{-1}$, and the peak-to-peak variation among exposures were smaller than 0.02 mag in each band. These zero points are comparable to the ones derived typically under photometric conditions, and thus we regard the data as having been obtained under photometric conditions.

7 http://howdy.physics.nyu.edu/index.php/Kcorrect

3. RESULT

3.1. Image Processing
angle of the image to the north is the same among the nine images (160°:0). In the coordinate, the Sun lay in the direction of \((x, y) = (-0.014, +1.000)\). The nuclei position was measured in short exposures (I2 and V2). The relative positional consistency among the images depends on the accuracy of the non-sidereal tracking mode of the Subaru telescope. As we used the ephemeris of a 1 minute step, enough accuracy is guaranteed.

We then applied an unsharp masking technique to each image; we convolved the extracted images with various sizes of Gaussian filter \((\sigma = 10, 20, 30, 50, 75\) pixels) and subtracted the smoothed image from the original ones. The details are presented in Appendix A. This processing removes larger structures and enhances fine structures. To differentiate the processing with different kernel sizes, we refer to each as highpass \(\sigma\), e.g., highpass10 when processed with the Gaussian with \(\sigma = 10\) pixels. Bright stars in the background contaminate small features associated physically with the cometary tail (e.g., knots), and hence, we iteratively masked them. Finally, we binned the image by \(5 \times 5\) pixels \((1.01\) arcsec square). Figure 2 shows six longer-exposure images after the processing. These images show the gaps between CCD chips as gray bands. Brightening/darkening around chip edges are artifacts. These do not affect the following analyses.

3.2. Moving Knots

We can visually see two knots moved downstream around the distance of \(\sim 3 \times 10^3\) km from the nucleus (indicated by arrows in Figure 2). The closeup images are shown as Figure 3. One of the knots first appears to be connected to the global filamentary structures running along the tail. It later becomes detached from the structures. The positions of the knots are measured by running SExtractor (Bertin & Alnouts 1996) on the \(5 \times 5\) binned unsharp masked images. We measured in highpass30, highpass50, highpass70, and highpass90 images. As examined in Appendix B, an unsharp masking with a smaller kernel may introduce larger positional errors. Meanwhile, the knot may not be detected after an unsharp masking with a large kernel because it is buried in global features. We therefore adopted the position from the largest kernel in which the peak of the knot is detected. The root mean squares (rms) of the position was \(\sim 6 \times 10^2\) km.

Distances from the nucleus (along the tail; \(y\)-axis) and offsets from the tail axis (perpendicular to the tail; \(x\)-axis) are plotted as a function of time in Figure 4. These plots provide the mean speeds of the knots of 20 and 25 km s\(^{-1}\) along the tail and 3.8 and 2.2 km s\(^{-1}\) across the tail, respectively. The motion should make the shape of the knots elongated in a 2 minute exposure by \(6 \sim 10\) arcsec along the tail and 1.3 or 0.7 arcsec across the tail. Since the size of the knots is at least 10–15 arcsec in diameter, elongation by the motion had little effect on the size estimation.

These knot motions show tilts from the central axis of the tail by about 0.1–0.2 radians \((6''\sim 11'')\). We note that the direction to the Sun is 0.014 radians \((0:8)\) from the axis, and therefore, the knot motions are not in a perfect alignment to the direction to the Sun.

The distances to the knots from the nucleus change almost linearly with time in Figure 4. The effect of acceleration is therefore small in the short duration of our observations (24 minutes). The clear detection of the spatial motions, however, indicates the potential for direct measurements of the acceleration in future. If we can take the accelerations of previous measurements of other comets by Niedner (1981) \((21\) cm s\(^{-2}\)), the expected change in the speed is only \(0.3\) km s\(^{-1}\) in 24 minutes. If we adopt \(17\) cm s\(^{-2}\), which is calculated from Figure 3 of Saito et al. (1987) as \(2.4\) km s\(^{-1}\) increment is seen in 4 hr, the expected change in the speed during our observation is even smaller \((0.2\) km s\(^{-1}\)). Therefore, a sequence of few hours observations of a knot would permit us to measure the acceleration.

3.3. Change of Tail Width in the I band

We found that the width of the plasma tail also rapidly changed. In the analysis, the original images before the unsharp masking were used. In Figures 5 and 6 show spatial surface brightness profiles across the tail and their time variation. Since we have measured the motions of the knots (presumably the motion of the tail), we can track the variation in the tail width at a comoving position as the tail would flow at the speed of \(\sim 22\) km s\(^{-1}\). In a sequence of images (I1, I3, and I4), we measured a profile at the distance of \(6 \times 10^5\) km in I1. We then tracked the location of the material initially at this distance, but at later times using the flow speed, and
plotted the profiles of (presumably) the same material in \(I_3 \) and \(I_4 \). The tail width is determined at the surface brightness of 21.3 AB mag arcsec\(^{-2}\) in \(I \)-band. It narrowed from 2.4 \(\times 10^4 \) to 2.0 \(\times 10^4 \), and then to 1.8 \(\times 10^4 \) km for \(I_1 \), \(I_3 \), and \(I_4 \), respectively.

From this measurement, the speed of the narrowing motion across the tail is \(\sim 8 \) km s\(^{-1}\) at each edge. The center of the light distribution, meanwhile, did not show any notable change (Figure 6). This narrowing speed is larger than those of the knots in the same direction perpendicular to the tail (3.8 and 2.2 km s\(^{-1}\); Section 3.2). This apparent difference could be attributed to a projection of the motion of the knots in the sky.

If we assume every fine structure (filamentary structure) in the tail is moving at \(\sim 8 \) km s\(^{-1}\) perpendicular to the tail, the amount of spatial shift would be about 2.5 arcsec within the 120 s exposures. On the other hand, the fine structures appear to be a typical 5–10 arcsec width in short exposures (\(I_2 \), \(V_2 \)). Therefore, the blur due to the motions during a single 120 s exposure should not affect the positional measurements of the structures much.

4. DISCUSSION AND SUMMARY

The initial speeds of two moving knots (\(\sim 22 \) km s\(^{-1}\)) are significantly slower than the ones measured by Niedner (1981) (44 km s\(^{-1}\); rms of 10.9 km s\(^{-1}\)). This speed is also smaller than that measured in comet Halley by Saito et al. (1987) (58 km s\(^{-1}\)), who suggested that the velocity was constant at 4–9 \(\times 10^3 \) km from the nucleus.

Though it is not clear what the dominant factor of the initial speed of knots is, we can compare several parameters of the comets. As the data used by Niedner (1981) include information from various comets, we compare parameters with the single case of the comet Halley by Saito et al. (1987). At the observation by Saito et al. (1987), the heliocentric distance to comet Halley was 1.016 AU, the heliocentric ecliptic coordinate was \((\lambda, \beta) = (30.1, 8.8)\), and the heliocentric velocity was \(-26.5 \) km s\(^{-1}\). Compared with C/2013 R1 (Lovejoy) in this study, a part of the difference in the initial speed may be explained by the difference in the heliocentric velocity of the nucleus, \(-12.6 \) km s\(^{-1}\) versus \(-26.5 \) km s\(^{-1}\), if we assume that the initial speed of the knots might be comparable in heliocentric frame. It, however, does not fully explain \(\sim 40 \) km s\(^{-1}\) difference. Another difference is heliocentric...
ecliptic latitude, 30.7 versus 8.8, which may result in the difference in the speed of the solar wind at the comet position. Yet another point is that we have compared the speeds of our relatively faint and small knots with more prominent knots/kinks and DEs in the previous studies.

The relevance of this comparison might be debated in light of future studies. In addition, we analyzed only one comet tail observed in a relatively short duration. A more systematic investigation is obviously needed as to the distribution of the initial speed of the tail as a function of the heliocentric velocity, the heliocentric distance, and the ecliptic position of the comet.

In summary, we found two knots that were just formed at 3×10^5 km from the nucleus of C/2013 R1 (Lovejoy). Their initial speed was smaller than the ones measured in previous studies, and a physical interpretation requires a more statistically significant sample at various heliocentric positions. We also found a rapid variation in the tail width in 7 minutes, which implies a rapid change in ambient solar winds and magnetic field. These results strongly suggest that the variations in comet plasma tails, especially in their fine structures, require high time resolution observations with a large aperture telescope such as Subaru.

This work is based on observations obtained with the Subaru Telescope. We acknowledge David Thilker, Alexandre Y. K. Bouquin, Fumiaki Nakata, and Yutaka Komiyama for their help. We thank Miriam Forman for suggestive comments. We also thank the anonymous referee for useful comments. This work has made use of SDSS DR8 database, HORIZONS ephemerides service in NASA/JPL, and the computer systems at Astronomical Data Analysis Center of NAOJ. J.K. is supported by the NSF through grant AST-1211680 and by NASA through grants NNX09AF40G, NNX14AF74G, a Herschel Space Observatory grant, and a Hubble Space Telescope grant.

APPENDIX A

UNSHARP MASKING PROCEDURE

In this study, we first reduced the data following a general data reduction process using nekosoft (Yagi et al. 2002). Figure 7(a) shows a zoom-up of the area around the two knots in the reduced image of I_3. The data consist of background objects (most of them are stars), and cosmic rays as well as the comet tails and their faint substructures. We remove these background objects and cosmic rays in the following way. The non-sidereal tracking generate a characteristic trail of background objects. The direction and length of the trails are determined by the ephemeris that we adopted for the observations with the tracking. To enhance the trails of the background objects for an effective mask generation, we took the difference between two smoothed images, both of which were smoothed with a two-dimensional Gaussian kernel with an elongation perpendicular to the trails, but one with a smaller kernel with the σ of 1.5 × 1.0 pixels and the other with a larger kernel with 5.0 × 2.0 pixels. This procedure generates a very recognizable pattern around objects that moved according to the adopted ephemeris. Figure 7(b) shows the pattern, and Figure 7(c) shows a first mask generated from this image. The background objects are fixed at celestial positions. We therefore shifted the first masks from subsequent exposures and took an “AND” to make a final mask for all the exposures. The lengths of the trails depend on exposure times, but the mask size would be comparable among the exposures if the exposure time were the same. We made one mask for I-band using (I, I_3, J_4) and two masks for V-band using (V_1, V_3) and (V_1, V_3, V_4)—the first V-band mask was applied for V_1 and V_3, and the second for V_4, since the shorter exposure image has a smaller trail of background objects. An example of masked images is Figure 7(d). In Figure 7(d), cosmic rays and bad pixels remain unmasked. We then masked pixels whose value is larger than a threshold (Figure 7(e)). We applied the unshaped masking technique to the images processed above. A result of the unshaped masking with $\sigma = 50$ pixels (high-pass50) is shown in Figure 7(f), which is a part of Figure 2.

APPENDIX B

TESTS OF DETECTION AND MEASUREMENT WITH ARTIFICIAL IMAGES

To test the reliability of detections of extended structures, we employ tests with images of a fake object. We adopt a circular Gaussian profile with a variety of widths, i.e., $\sigma = 10$, 20, 30, 40, 50, and 70 pixels, corresponding to the FWHM of 4.7, 9.5, 14, 19, 24, and 33 arcsec, respectively. We set the peak of the Gaussian to be 70 counts, which is comparable to that of the two knots of interest discussed in Section 3.2. Noise is also added in the artificial images using the double precision SIMD-oriented Fast Mersenne Twister (dSFMT) software.\(^8\)

B.1. Effect of Noise

We first examined the effect of relatively large noise, with signal-to-noise ratio (S/N) = 1 at the peak of the Gaussian profile. In this case, a 5 × 5 binning improves the S/N to 5 at the peak. We ran SExtractor (Bertin & Arnouts 1996) for object detection using the 5 × 5 binned image.

Results are shown in Table 4. The second and third columns show measurements of input models before adding the noise (noise-free). The rest of the columns are for measurements of detected objects using the images with the noise added (noise-added). We generated 1000 random realizations of noise pattern across the images. In some realizations, the Gaussian profile was incorrectly detected as blended objects and was split into multiple objects. In those cases, we summed up the fluxes to calculate a total flux and measured the position of the object using a flux-weighted mean. The FWHM size was not measured in case of the false multiple-object detection. Measured parameters in the two cases, i.e., detections of single and multiple objects are separately shown in Table 4. To estimate errors in FWHM and total flux, we used the median absolute deviation (MAD) and converted the MAD to rms as $r = 1.48 \times$ MAD. This is known as a robust estimator of the rms and is valid for the normal distribution.

This test shows that the noise does not largely affect the position measurement in case of single detection; only rms ~ 0.23–0.24 pixels in 5 × 5 binned image (\sim0.2 arcsec). In case of multiple detections the rms of flux-weighted mean position error is up to 0.80 pixels (\sim0.8 arcsec). The 0.8 pixel error corresponds to ~ 300 km in this study, which is negligible (see Figure 4). The errors in FWHM and total flux measurements are not negligible. In case of multiple-object detection, the FWHM is about 30–50% larger than the measurements of noise-free models, which is significantly larger than the rms of noise.

\(^8\) http://math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/
Figure 7. Example of unsharp masking and star-masking process. Cutouts of I_3 around the knots are shown. The bright part is shown as black. (a) Image after mosaicking, (b) enhancement of star trails, (c) mask pattern made from (b). Mask is shown as white. (d) "AND" mask of I_1, I_3, and I_4. Cosmic rays and cometary structures are removed. (e) Cosmic-rays mask added, (f) unsharp masked (e), using $\sigma = 50$ pixels Gaussian.

Table 4
Measurement of Artificial Objects

σ (pixel)	No Noise-added	Noise-added								
	FWHM	Total Count	Single Detection	Multiple Detection						
	Det.	No Det.	Shift rms	FWHM	Total Count	Det.	No Det.	Shift rms	FWHM	Total Count
10	4.7	1800	4	0	0.23	7 ± 1	1700 ± 200	0.26	2000 ± 200	
20	9.4	7000	95	0	0.23	13 ± 1	6500 ± 300	0.38	9500 ± 1000	
30	14	15800	148	0	0.23	20 ± 1	14300 ± 500	0.47	21300 ± 1900	
40	19	28100	135	0	0.24	26 ± 1	25100 ± 800	0.57	37600 ± 3000	
50	24	43900	123	0	0.24	32 ± 1	38800 ± 1000	0.71	57000 ± 5500	
70	33	85900	78	0	0.24	44 ± 1	74700 ± 1700	0.80	105500 ± 15200	

Table 5
Measurement of Unsharp-masked (Highpass30) Artificial Objects

σ (pixel)	No Detection	Multiple Detection						
	Shift rms	FWHM	Total Count	Det.	No Det.	Shift rms	FWHM	Total Count
10	0.24	7 ± 1	1200 ± 100	0.24	7 ± 1	1200 ± 100	0.40	1200
20	0.30	12 ± 1	2600 ± 200	0.30	12 ± 1	2600 ± 200	0.44	3400 ± 400
30	0.50	11 ± 2	3100 ± 300	0.50	11 ± 2	3100 ± 300	0.52	4600 ± 600
40	1.01	8 ± 2	2700 ± 600	1.01	8 ± 2	2700 ± 600	0.85	4200 ± 700
50	1.62	7 ± 2	2100 ± 600	1.62	7 ± 2	2100 ± 600	1.16	3500 ± 600
70	3.94	8 ± 3	7000 ± 300	3.94	8 ± 3	7000 ± 300	2.90	1500

Table 6
Measurement of Unsharp-masked (Highpass50) Artificial Objects

σ (pixel)	No Detection	Multiple Detection						
	Shift rms	FWHM	Total Count	Det.	No Det.	Shift rms	FWHM	Total Count
10	0.23	7 ± 1	1400 ± 100	0.23	7 ± 1	1400 ± 100
20	0.24	13 ± 1	4300 ± 200	0.24	13 ± 1	4300 ± 200	0.37	5700 ± 500
30	0.28	18 ± 2	6900 ± 400	0.28	18 ± 2	6900 ± 400	0.52	9700 ± 1300
40	0.36	18 ± 3	8400 ± 500	0.36	18 ± 3	8400 ± 500	0.45	13300 ± 1900
50	0.48	15 ± 4	9100 ± 900	0.48	15 ± 4	9100 ± 900	0.56	14900 ± 2800
70	1.98	8 ± 2	4100 ± 1500	1.98	8 ± 2	4100 ± 1500	1.38	7700 ± 2200
the measurements. The total flux is smaller by 0.06–0.15 mag in case of single detection, while it is larger by 0.11–0.33 mag in case of multiple detection. These differences are significant except for the $\sigma = 10$ model.

The relatively large errors in FWHM and flux measurements may be due to a possible overestimation of the background. We do not investigate the cause of the errors further as the quantitative error estimate given above is enough for this study.

B.2. Effect of Unsharp Masking

We also test errors due to the unsharp masking technique using the noise-added images. Measurements were made with the 5 × 5 binned image after application of the unsharp masking (highpass30, highpass50, and highpass70). We adopted the same 1000 noise realizations as in the previous section.

Results are shown in Tables 5–7. If the filter size σ is larger than or comparable to a σ of Gaussian profile of the fake object, the unsharp-masking technique does not cause large errors in measurements of position and FWHM. The rms of the positional shift is <0.5 pixels in case of single detection, and <0.7 pixels in case of multiple detections. The error, i.e., <0.7 pixels (<300 km), is negligible in this study. The errors in FWHM measurements are comparable before and after the unsharp masking, except for the case of highpass50 with $\sigma = 40$. On the other hand, if filter size σ is smaller than that of Gaussian of the fake object, the deviation becomes larger and the fraction of no-detection increases.

As expected, the total fluxes measured after the unsharp masking are significantly smaller than those before the masking. The difference is up to 1 mag in the case of single detections and up to 2.4 mag in the case of multiple detections. The large error in flux, however, does not affect the analysis of this paper, since our conclusion is based primarily on positional shifts and corresponding velocities of the clumps. If we adequately select the filter size σ with respect to the sizes of the object, the unsharp masking technique works good for positional measurement.

REFERENCES

Aihara, H., Allende, P., An, D., et al. 2011, ApJS, 193, 29
Bertin, E., & Alnouts, S. 1996, A&A, 117, 393
Blanton, M. R., & Roweis, S. 2007, AJ, 133, 734
Brandt, J. C., Snow, M., Yi, Y., et al. 2002, EM&P, 90, 15
Buffington, A., Bisi, M. M., Clover, J. M., et al. 2008, ApJ, 677, 798
Downs, C., Linker, J. A., Mikić, Z., et al. 2013, Sci, 340, 1196
Iye, M., Karoji, H., Ando, H., et al. 2004, PASJ, 56, 381
Kinoshita, D., Fukushima, H., Watanabe, J.-I., & Yamamoto, N. 1996, PASJ, 48, L83
Lasker, B. M., Lattanzi, M. G., McLean, B. J., et al. 2008, AJ, 136, 735
Miyazaki, S., Komiyama, Y., Sekiguchi, M., et al. 2002, PASJ, 54, 833
Mendis, D. A. 2006, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, Geophysical Monograph, Vol. 167 ed. B. T. Tsurutani et al. (Washington, DC: American Geophysical Union), 31
Niedner, M. B., Jr 1981, ApJS, 46, 141
Niedner, M. B., Jr. 1982, ApJS, 48, 1
Saito, T., Yumoto, K., Hirao, K., et al. 1987, A&A, 187, 209
Yagi, M. 2012, PASP, 124, 1347
Yagi, M., Kashikawa, N., Sekiguchi, M., et al. 2002, AJ, 123, 66
Yagi, M., Suzuki, N., Yamanoi, H., et al. 2013, PASJ, 65, 22

σ (pixel)	Multiple	No Detection	Single Detection	Multiple Detection	
	Shift rms (pixel)	FWHM (pixel)	Total Count	Shift rms (pixel)	Total Count
10	0.23	7 ± 1	1600 ± 100	…	…
20	0.24	13 ± 1	5200 ± 300	0.38	7200 ± 600
30	0.25	19 ± 2	9600 ± 400	0.42	13400 ± 1900
40	0.28	25 ± 2	13500 ± 600	0.55	20300 ± 3500
50	0.33	27 ± 2	16300 ± 100	0.66*	26700 ± 5100
70	0.47	22 ± 4	18400 ± 1800	0.70	31900 ± 6600

* One outlier is removed.

The Astronomical Journal, 149:97 (8pp), 2015 March
YAGI ET AL.