Assessment of OMT-28, a synthetic analog of omega-3 epoxyeicosanoids, in patients with persistent atrial fibrillation: Rationale and design of the PROMISE-AF phase II study

Sarah Berlin a,1,2, Andreas Goette b,c,*,1,2, Luciana Summo a,2, Janine Lossie a,2, Alexander Gebauer a,2, Naab Al-Saady d,2, Leonardo Calo e,2, Gerald Naccarelli f,2, Wolf-Hagen Schunck g,2, Robert Fischer a,2, A.John Camm h,2,3, Dobromir Dobrev i,2,3,*

a OMEICOS Therapeutics GmbH, Berlin, Germany
b Cardiology and Intensive Care Medicine, St. Vincenz-Hospital, Paderborn, Germany
c Working Group Molecular Electrophysiology, University Hospital Magdeburg, Magdeburg, Germany
d Covance Inc., Maidenhead, United Kingdom
e Division of Cardiology, Policlinico Casilino, 00169 Rome, Italy
f Division of Cardiology, Policlinico Casilino, 00169 Rome, Italy
I Heart and Vascular Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
h Max Delbrueck Center for Molecular Medicine, Berlin, Germany
i St. George’s University of London, London, United Kingdom
j Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany

ABSTRACT

We designed a placebo controlled, double-blind, randomized, dose-finding phase II study on OMT-28 in the maintenance of sinus rhythm after electrical cardioversion (DCC) in patients with persistent atrial fibrillation (PROMISE-AF). OMT-28 is a first-in-class, synthetic analog of 17,18-epoxyeicosatetraenoic acid, a bioactive lipid mediator generated by cytochrome P450 enzymes from the omega-3 fatty acid eicosapentaenoic acid. OMT-28 improves Ca²⁺-handling and mitochondrial function in cardiomyocytes and reduces pro-inflammatory signaling. This unique mode of action may provide a novel approach to target key mechanism contributing to AF pathophysiology. In a recent phase I study, OMT-28 was safe and well tolerated and showed favorable pharmacokinetics. The PROMISE-AF study (NCT03906799) is designed to assess the efficacy (primary objective), safety, and population pharmacokinetics (secondary objectives) of three different doses of OMT-28, administered once daily, versus placebo until the end of the follow-up period. Recruitment started in March 2019 and the study will include a total of 120 patients. The primary efficacy endpoint is the AF burden (% time with any AF), evaluated over a 13-week treatment period after DCC. AF burden is calculated based on continuous ECG monitoring using an insertable cardiac monitor (ICM). The primary efficacy analysis will be conducted on the modified intention-to-treat (mITT) population, whereas the safety analysis will be done on the safety population. Although ICMs have been used in other interventional studies to assess arrhythmia, PROMISE-AF will be the first study to assess antiarrhythmic efficacy and safety of a novel rhythm-stabilizing drug after DCC by using ICMs.

1. Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting worldwide more than 30 million patients [1,2]. AF is associated with an increased risk for stroke, heart failure and dementia, increased morbidity and mortality in affected patients and causes significant health costs [1,2].

AF is a clinical condition which may progress from paroxysmal (duration < 7 days, self-terminating), to persistent
(duration > 7 days, requires medical intervention for termination), and permanent AF (despite treatment no restoration of normal sinus rhythm or not treated) [3]. The pathogenesis is multifactorial and includes risk factors like coronary artery disease, valvular heart disease, hypertension, heart failure, diabetes, sleep apnea, obesity, inflammation, and activation of the autonomic nervous system [4].

Manifestation of electrical (e.g., ion channel dysfunction, conduction slowing) and structural (e.g., interstitial fibrosis, cellular hypertrophy, mitochondrial dysfunction) remodeling are key elements of the substrate that promotes the progression of AF to more persistent forms and contributes to the development of an atrial cardiomyopathy that supports the persistence of AF [5–9].

1.1. Standard of care and unmet medical need for novel therapies

Current AF treatment comprises prevention of thromboembolism and stroke, risk factor management as well as antiarrhythmic therapy by drugs, electrical cardioversion, and catheter ablation [10]. Effective long-term rhythm control improves quality of life and can reduce associated health risk factors. Despite recent advances in interventional ablation therapy [11], antiarrhythmic drugs (AADs) remain the cornerstone treatment option for the majority of AF patients worldwide, although AADs are only moderately effective and possess substantial cardiac and non-cardiac toxicity. Thus, there is an unmet need for novel AADs with improved efficacy and safety profiles [12]. The expected increase in AF prevalence with the aging of the population increases the pressure to develop improved AADs because invasive ablation procedures cannot be applied to this large patient population. In addition, the improvement of AF detection methods, e.g., the use of (insertable) ECG-based assessment of the AF phenotypes, continuous heart rate monitoring and advanced risk management (omitting risk factors like coronary artery disease, valvular heart disease, hypertension, heart failure, diabetes, sleep apnea, obesity, inflammation, and activation of the autonomic nervous system) [4].

OMT-28 shares the cardioprotective and antiarrhythmic properties with its natural counterparts. Omega-3 epoxyeicosanoids and OMT-28 act via a putative G protein-coupled receptor, which elicits PI3K/Akt/eNOS/PKG signaling as well as activation of sirtuin-1 and PPARs in cardiomyocytes. The net effect of this pathway consists in modulation of Ca2+-cycling, reduced electrical excitability, and protection against mitochondrial dysfunction and inflammatory signaling (Fig. 1). This multimodal mode of action differentiates OMT-28 from the classical ion channel-inhibiting AADs and has the potential to simultaneously target several of the key mechanisms contributing to the evolution of the AF-promoting atrial substrate and an arrhythmia-related cardiomyopathy of the ventricles.

1.3. OMT-28 – results of the phase I study

OMT-28 was developed as an orally active compound. In an already completed phase I study in 76 healthy volunteers (NCT03078738), OMT-28 was proven to be safe and well tolerated in single and multiple ascending oral doses up to 60 mg once daily for up to 14 days. OMT-28 had no detectable effect on the normal values of investigated safety laboratory parameters, as well as heart rate and blood pressure. Notably, high-resolution ECGs excluded any exposure-related increase in the QTc interval. The compound reached steady-state within 14 days of once-daily dosing and showed high oral bioavailability and favorable pharmacokinetics with a fast uptake into the plasma (tmax of 1.25–2.0 h, median) and a plasma half-life (t1/2) of 65.8–85.9 h (median), validating its suitability for oral, once daily application.

2. Methods

2.1. PROMISE-AF study design [ClinicalTrials.gov Identifier: NCT03906799]

We designed a placebo-controlled, double-blind, randomized, dose-finding, multicenter phase II study in patients with persistent AF for > 7 days but ≤ 3 months who are suitable for direct current cardioversion (DCC) (Fig. 2). This study evaluates the efficacy, safety, and population pharmacokinetic (popPK) of three different doses of OMT-28 given once daily versus placebo in patients with persistent AF in maintaining sinus rhythm after DCC.

This study will be conducted in compliance with the protocol, the ethical principles as outlined in the Declaration of Helsinki, the International Conference on Harmonization (ICH) consolidated Guideline E6 for Good Clinical Practice (CPMP/ICH/135/95), and applicable regulatory requirement(s).
2.1.1. Study population

This study will enroll patients with documented AF for > 7 days but ≤ 3 months that are eligible for DCC and anticoagulant therapy. Patients with prior or ongoing anticoagulant and/or single antiplatelet therapy are eligible as well as treatment-naive patients. In contrast, patients with dual antiplatelet therapy are excluded because therapy also in combination with anticoagulants (i.e., triple therapy) is known to be associated with an increased risk of bleeding [37–40]. Patients that have undergone surgical or catheter ablation for AF or atrial flutter are not allowed to participate in the study. However, patients with medical history of atrial flutter were not excluded because it is a common finding in AF patients and recruitment was not to be jeopardized. Nonetheless, special attention will be paid to these patients, i.e., information on incidence and duration of atrial flutter will be recorded as exploratory endpoint. Detailed inclusion and exclusion criteria are shown in Supplemental Table 1.

2.1.2. Study medication

OMT-28 will be administered orally in form of microcrystalline cellulose and anhydrous silica containing capsules of three different strengths. OMT-28 will be tested against placebo in patients receiving standard of care therapy, including anticoagulant or rate control therapy (e.g., Ca²⁺-channel blocker, β-blocker). Patients taking antiarrhythmic agents including dronedarone, oral amiodarone, or omega-3 fatty acids will not be included – exclusion criteria 15 and 16. If during the study, the use of above-mentioned agents is deemed necessary by the investigator, the patient must be withdrawn from the study. The first dose of study drug is administered during Visit 3 under the supervision of the investigator. The study drug is labelled according to the ICH-GCP Guideline E6 (European Commission 2/3/2010).

2.1.3. Study objectives & endpoints

The primary objective of the study is to assess the efficacy of three different doses of OMT-28 administered once daily versus placebo in the maintenance of normal sinus rhythm after electrical DCC in patients with persistent AF treated with an appropriate anticoagulant therapy.

The secondary objective of the study is the assessment of (i) the safety of three different doses of OMT-28 administered once daily versus placebo after DCC in patients with persistent AF and (ii) the PK of OMT-28 by means of popPK analysis.

All primary, secondary, and exploratory study endpoints on efficacy (incl. biomarker analysis) and safety are summarized in Table 1.

2.1.3.1. Key measurement – insertable cardiac monitor

All patients will undergo ICM insertion during randomization at Visit 2. The trigger of the ICM from BIOTRONIK, BioMonitor 2-AF, will be programmed to detect the following arrhythmic events: AF, asystole, bradycardia, and high ventricular rate. The confirmation time for an AF episode is set from 6 min (standard settings) to 2 min. Further details on the study-specific programming are listed in Supplemental Table 2. Furthermore, patients will be equipped with

Abbreviations: Akt - protein kinase B (PKB), ATP - adenosine triphosphate, GPCR - G protein-coupled receptors, LTCC - L-type calcium channel, NCX1 - sodium-calcium exchanger type 1, NFκB - nuclear factor kappa-light-chain-enhancer of activated B cells, PI3K - phosphoinositide 3-kinase, PKG - protein kinase G/cGMP-dependent protein kinase, PPARα - peroxisome proliferator-activated receptor alpha, RyR2 - ryanodine receptor channel type 2, SERCA2a - sarcoplasmic/endoplasmic reticulum calcium ATPase type 2a, SIRT1 - sirtuin-1.
the Remote Assistant, a device that can be used by the patient to trigger ICM recording in case of any symptoms.

Data recorded by the ICM will be transferred into the BIOTRONIK Home Monitoring® Service Center and finally into the software inSuite Cardio (Doc Cirrus), the latter allowing transfer of the data to the independent ICM Data Review Committee (ICM-DRC), comprising of qualified cardiologists who are not investigators in the study and not otherwise directly associated with the study sponsor, responsible for the evaluation of recorded episodes. The members of the committee will remain blinded to treatment throughout the evaluation process and the study. Evaluated data will be used in the final efficacy and safety analyses.

2.1.3.2. Pharmacokinetics. A popPK analysis will be performed to gain relevant PK information in patients who are representative of the target population. There will be two study visits – at the beginning of treatment and at steady state (Visit 3, Day 1 and Visit 6, Day 43 ± 3) – with one pre-dose and three post-dose blood sampling procedures (within 15–45 min post-dose, 1–2 h post-dose, 2.5–8 h post-dose). At Visit 4, 5, 7, 8, and 9 there will be one pre-dose sample only.

2.1.3.3. Pharmacodynamics. Blood samples for PD assessment will be taken pre-dose at Visit 3, Day 1 and at steady state at Visit 8, Day 99. PD biomarker analysis includes the analysis of different cytokines, fatty acid profile in erythrocytes, or the endogenous CYP eicosanoid profile. Further PD analysis will be performed on proteins that are biologically related to (i) persistent AF and its progression and (ii) the known mode of action of OMT-28 and are, therefore, likely involved in further pharmacological effects. This includes biomarkers of oxidative stress, inflammation, and remodeling like growth differentiation factor 15 (GDF15), Interleukin-6 (IL-6), transforming growth factor beta-1 (TGF-β1), N-terminal pro-A/B-type natriuretic peptide (NT-proANP/NT-proBNP), tissue inhibitors of metalloproteinases metallopeptidase inhibitor 1 (TIMP-1), matrix metallopeptidase 9 (MMP-9), Galectin-3, glycated hemoglobin (HbA1c), and high-sensitivity troponin I. Measurement of C-reactive protein (CRP), total cholesterol, triglycerides, low density lipoprotein (LDL), high-density lipoprotein (HDL) and very low-density lipoprotein (VLDL) will allow to assess OMT-28-related changes in inflammation and lipid metabolism.

2.1.4. Study visit schedule
2.1.4.1. Overview. Patients will be screened for eligibility during the screening period (within 22 days prior to dosing) (Fig. 2). At latest at randomization (Visit 2), the duration of the current episode of
persistent AF must be shown to be > 7 days but ≤ 3 months, as confirmed by two ECGs (one ECG must be a 12-lead ECG).

Patients will be randomized, stratified by sex in order to avoid gender-related exposure differences, in a 1:1:1:1-ratio to receive once-daily OMT-28 at a dose of 4, 12, or 24 mg or placebo. The following controls will be employed to maintain the double-blind status of the study: (i) placebo capsules will be identical in appearance to the OMT-28 capsules, (ii) investigator(s) and other members of staff involved with the study will remain blinded to the treatment randomization code during the assembly procedure, and (iii) all data will be provided to the Contract Research Organization in a blinded manner. Therefore, an Interactive Web Response System (IWRS) is implemented in the study and study medication bottles will be delivered automatically in a blinded fashion. Whenever necessary, in the opinion of the investigator, the study blind may be broken, and the patient will be withdrawn from the study. Date, time, and reason of the decision will be recorded in the patient’s source data.

At the same visit, Visit 2, patients will receive the ICM device, which will be inserted subcutaneously under local anesthesia according to local treatment guidelines.

Eligible patients with proven persistent AF must have received adequate anticoagulant therapy for at least three weeks prior to first administration of study drug (OMT-28 or placebo) on Visit 3. Patients will receive study drug for at least one week prior to DCC on Visit 4.

In total, each patient will be treated over a period of 99 days once daily with either placebo or one of three doses of OMT-28. The definition for the treatment duration goes back to an extensive literature research, which showed that the timepoint of ~13 weeks is, for most AF post-DCC trials, predictive for the 6 months outcome. A comparable study (incl. placebo-control and post-DCC treatment) from De Ferrari et al. had only a slightly longer treatment duration of 16 weeks [41]. The treatment phase is followed by an observation/follow-up phase of further 28 days (Fig. 2). No long-term follow-up is planned; however the patients are allowed to keep the ICM inserted.

Patients will be monitored for cardiac events throughout the study (Visit 2 to Visit 9) using the ICM. In addition, patients are requested to complete daily a patient diary to report subjectively perceived symptoms.

The study will include a sample size re-estimation analysis, when approximately 50% of the patients have completed the treatment phase (Visit 8).

2.1.4.2. DCC. On Visit 4 (seven days after start of study drug administration), provided that anticoagulation is adequate in the preceding four weeks, patients remaining in AF, as confirmed by 12-lead ECG, will undergo DCC (performed according to the current local institutional practices). Patients will be allowed to receive more than one direct current shock if the first attempt failed to restore sinus rhythm. A 12-lead ECG will be performed 2 h after the DCC. Only patients with a successful cardioversion (i.e., who remain in sinus rhythm for at least 2 h after the DCC) will be included in the mITT population.

All patients (including those who do not remain in sinus rhythm for at least 2 h after the DCC) will continue to receive study drug and continue to be monitored throughout the remainder of the study. Patients who were not successfully cardioverted may be replaced.

2.1.5. Sample size calculation

The study aims to demonstrate that OMT-28 compared to placebo improves at least one of the three efficacy endpoints – AF burden, recurrence rate (ReCr), and time-to-recurrence (TTR) – in the 3-months treatment period (Day 8-Day 99). AF burden is defined as % time with any AF after DCC. According to the set triggers all AF episodes > 2 min duration are considered. ReCr refers to persistent AF (defined as AF burden ≥ 23/24 h over 7 consecutive days) in at least one 7-day period. TTR is defined as the time (days) from the successful cardioversion to first documented recurrence of persistent AF in at least one 7-day period. Therapeutic effects of OMT-28 on ReCr and/or TTR will be reflected in AF burden and no formal sample size estimation has been done for these measures. The
probability of finding an expected predefined effect (statistical power) – reflected in changes of AF burden – is set to 80%. The probability of a false positive finding (significance level) is set to 5%. Statistical tests will be done with a predefined direction of difference, thus one-tailed significance level will be computed. An interim analysis will be performed if 50% of patients completed treatment phase (Visit 8). As such preliminary analysis increases the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodology of splitting the chance for false positive findings, the p-value will be adjusted for multiple testing. The O'Brien Fleming methodol
Duisburg-Essen (Germany); A. Goette, MD, FEHRA, St. Vincentz-Hospital, Paderborn (Germany); G. Naccarelli, MD, FACC, FAHA, FHRS, Pennsylvania State University, Pennsylvania (USA).

- The Members of the Data Monitoring Committee (DMC): U. Nebbe, MD, B. Katgely, MD, and M. Klasser.

- The Members of the Insertable Cardiac Monitor Data Review Committee (ICM-DRC): F. Günther, MD, A. Ohler, MD, and W. Haverkamp, MD, from ExCard GmbH, Berlin (Germany).

We would also like to thank A. Busjahn (HeartTwist GmbH) for his support in sample size planning, S. Roika (Semdatex GmbH) and D. Haverkamp (ExCard GmbH) in data management.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijcha.2020.100573.

References

[1]	S.S. Chugh, R. Havmoeller, K. Narayanan, D. Singh, M. Rienstra, E.J. Benjamin, et al., Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study, Circulation 129 (8) (2014) 837–847.
[2]	R.B. Schnabel, X. Yin, P. Gona, M.C. Larson, A.S. Beiser, D.D. McManus, et al., 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study, Lancet 386 (9989) (2015) 154–162.
[3]	V. Fuster, L.E. Rydén, D.S. Cannon, H.J. Crijns, A.B. Curtis, K.A. Ellenbogen, et al., ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation, Circulation 114 (6) (2006) e257–e354.
[4]	D.H. Lau, S. Nattel, J.M. Kalman, P. Sanders, Modifiable risk factors and atrial fibrillation, Circulation 136 (6) (2017) 583–596.
[5]	J. Andrade, P. Khaire, D. Dobre, S. Nattel, The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms, Circ. Res. 114 (9) (2014) 1453–1468.
[6]	A. Goette, J.M. Kalman, L. Aguinaga, J. Akar, J.A. Cabrera, S.A. Chen, et al., The Members of the Data Monitoring Committee (DMC): U. Nebbe, MD, B. Katgely, MD, and M. Klasser.

https://doi.org/10.1016/j.ijcha.2020.100573.