REVIEW

Elevated troponin in patients with acute stroke – Is it a true heart attack?

George V. Dous a,*, Angela C. Grigos b, Richard Grodman c

a SUNY Downstate, Department of Cardiology, Brooklyn, New York, United States
b Richmond University Medical Center, Department of Medicine, Staten Island, New York, United States
c Richmond University Medical Center, Department of Cardiology, Staten Island, New York, United States

Received 9 July 2016; accepted 19 January 2017
Available online 14 February 2017

KEYWORDS
Stroke; Myocardial infarction; Troponin; Neurogenic heart syndrome

Abstract Although the prognostic value of a positive troponin in an acute stroke patient is still uncertain, it is a commonly encountered clinical situation given that Ischemic Heart Disease (IHD) and cerebrovascular disease (CVD) frequently co-exist in the same patient and share similar risk factors. Our objectives in this review are to (1) identify the biologic relationship between acute cerebrovascular stroke and elevated troponin levels, (2) determine the pathophysiologic differences between positive troponin in the setting of acute stroke versus acute myocardial infarction (AMI), and (3) examine whether positive troponin in the setting of acute stroke has prognostic significance. We also will provide an insight analysis of some of the available studies and will provide guidance for a management approach based on the available data according to the current guidelines.

© 2017 Egyptian Society of Cardiology. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction .. 166
2. Method .. 166
3. Discussion .. 166
4. Pathophysiology of Neurogenic Heart Syndrome (NHS) 166
5. Prognosis ... 166
 5.1. Management .. 169
6. Conclusions .. 170

Abbreviations: ACS, acute coronary syndrome; AMI, acute myocardial infarction; CVD, Cardiovascular Disease; CAST, Chinese Acute Stroke Trial; CT, computed tomography; CAD, Coronary Artery Disease; CK-MB, Creatine Kinase-MB; DAPT, dual antiplatelet therapy; ECG, electrocardiogram; IST, International Stroke Trial; ICH, intracranial hemorrhage; IHD, Ischemic Heart Disease; LV, left ventricular; LDL, low-density lipoprotein; MI, myocardial infarction; NHS, neurogenic heart syndrome; SAH, subarachnoid hemorrhage; TRELAS, The Troponin Elevation in Acute Ischemic Stroke; TIA, Transient Ischemic Attacks; cTnI, Troponin I; cTnT, Troponin T

* Corresponding author.

Peer review under responsibility of Egyptian Society of Cardiology.
1. Introduction

Concurrent stroke and myocardial infarction (MI) are not uncommon, clinical, observational and experimental trials have pointed to the coexistence between neurological and myocardial injury. Interestingly, with the development of highly sensitive cardiac biomarkers, more patients with stroke are being tested for troponin. A strong association seems to exist between both conditions causing both a diagnostic and management dilemma to clinicians.

Several unanswered questions have emerged. What are the mechanisms and the pathophysiology behind an elevated troponin in the setting of acute stroke? How does an elevated troponin affect prognosis and mortality? Should an elevated troponin alter the management approach?

In this review article we will discuss the pathophysiologic mechanism of cardiac muscle regulatory protein troponin T (cTnT) elevation in a stroke patient, its prognostic significance and its effect on patient management decisions.

2. Method

Twenty-six articles were identified in the period between 1997 and 2015 through searches on PubMed, Medline and the Cochrane Library using the following keywords: stroke, cardiac enzymes, cerebrovascular, troponin, myocardial infarction, and neurogenic heart syndrome were searched systematically to obtain relevant literature.

3. Discussion

Several studies have evaluated the incidence of elevated troponin in the acute stroke patient, the incidence varying between 5% and 10% depending on the troponin cut off limit. Data from the RANNTAS trial placebo cohort suggest that angina, MI, and cardiac ischemia complicate 6% of acute strokes. Comparing troponin to Creatine Kinase-MB (CK-MB), troponin T has superior sensitivity and specificity for revealing minor myocardial injury. In a study by Hakan et al., 32 patients with large cerebral hemispheric infarctions and with no history of coronary heart disease were evaluated for elevation of cardiac of troponin T, CK-MB, myoglobin and total CK. The investigators concluded that only troponin T is a more specific biochemical marker of myocardial injury in a stroke patient.

Forty percent of the patients with subarachnoid hemorrhage (SAH) have an elevated cardiac biomarker while 10% have demonstrated left ventricular (LV) systolic dysfunction on echocardiography. When compared to men, women with SAH tend to have more LV systolic dysfunction. In addition, stroke severity, not its location, was associated with higher troponin levels.

TRELAS study compared coronary vessel status in acute ischemic stroke (AIS) patients with elevated cardiac troponin (cTn), to patients presenting with non-ST-elevation acute coronary syndrome (NSTE-ACS). Patients with elevated cTn levels (> 50 ng/L) on presentation or during the following day underwent diagnostic coronary angiography within 72 h. Patients with impaired kidney function (creatinine > 1.20 mg/dl) were excluded, the study concluded that despite similar baseline cTn levels, coronary culprit lesions are significantly less frequent in AIS patients compared to age- and gender-matched patients with NSTE-ACS.

In the small study by Darki et al., statistically significant results found an association of positive troponin level with positive echocardiogram; with the most common results being in the inferior or septal wall motion abnormalities. A lower ejection fraction was strongly associated with cTnI release. In addition Raza et al., reported that the ejection fraction of less than 50% did not predict adverse outcomes, and the likely cause is very different from newly diagnosed cardiomyopathy but that it is possibly due to sympathetic nervous system surge that occurs during an acute stroke.

4. Pathophysiology of Neurogenic Heart Syndrome (NHS)

The phenomenon has been explained as a neurally mediated process due to increase in catecholamine release as a result of hypoperfusion of the posterior hypothalamus causing autonomic nervous system imbalance and increased sympathetic output.

Increased troponin I level is associated with elevation of circulating epinephrine in acute ischemic stroke; therefore, activation of the sympathoadrenal system could be an important contributor to myocardial damage in these patients.

Myofibrillar degeneration (coagulative myocytolysis and contraction band necrosis) is a common microscopic and pathologic picture seen in myocardial necrosis in stroke patients. Whereby cells die in a hyper-contracted state with prominent contraction bands, which happens within minutes and is associated with early calcification and mononuclear infiltration. This is in contrast to myocardial lesions due to coronary heart disease where the cells die in a relaxed state without prominent contraction bands known as coagulation necrosis - a process that can take hours or even days, with late calcification.

Elevated catecholamine levels are often noted in stroke patients, which may account for the cardiac arrhythmias and ECG changes. The toxicity from catecholamines then causes cardiac necrosis. Autonomic imbalance with exaggerated sympathetic activity is evident after a stroke. Hence the exaggerated release of catecholamines, and so acute lesions within the central autonomic system may result in acute derangement in the sympathetic and parasympathetic activity (see Diagram 1).

5. Prognosis

In a 1997 observational study by James et al., of the 181 patients admitted for acute stroke, troponin T concentration was raised (> 0.1 microgram/I) in Thirty patients who died in hospital (12/30 (40%) patients with a raised troponin T
In a prospective study from 2000 to 2002, 279 patients were admitted to the stroke unit; Fure et al. reported that TnT was elevated (>0.04 μg/L) in 26 patients (9.6%). The authors demonstrated that a rise in TnT was significantly associated with a poor short-term outcome.\(^\text{14}\)

In another prospective study of 244 acute stroke patients, Jensen et al., detected elevated levels of TnT (>0.03 μg/L) and creatine kinase-MB (≥10 μg/L) in 25 patients (10%) and 21 patients (9%) of patients, respectively (1,15). Seven patients (3%) had elevations of TnT or creatine kinase-MB along with electrocardiographic changes suggesting acute myocardial infarctions. The study concluded that congestive heart failure and renal failure rather than myocardial infarction are the most likely causes of elevated troponin although one might speculate that the TnT release could be caused by scattered foci of necrosis as a result of heightened catecholamine levels during the stroke.\(^\text{1,15}\) In patients with renal insufficiency such as CKD stage 3–5, Elevations of cTnI not associated with ACS were common and there was an increase in mortality especially with higher concentrations (cTnI > 0.03 μg/L).\(^\text{10}\)

Patients with elevated troponin had a higher mortality within the following 2 years.\(^\text{13}\) Elevated levels of troponin are associated with poorer post-stroke performance and there was no threshold below which elevations of troponin were harmless.\(^\text{1}\)

Etgen et al., found that the size of the cerebral lesion size and the presence of heart failure were the only prognostic factors for mortality, but the result could be confounded, because there is no information about whether the patients with heart failure had concomitant elevated levels of troponins.\(^\text{17}\) cTn levels may be useful in acute stroke patients who may need earlier evaluation of CAD for further secondary prevention.\(^\text{6}\)

In a retrospective study by Raza et al., an analysis of 566 patients admitted for acute stroke showed that 212 of them had troponin I measured and also had no clinical evidence of acute coronary syndrome (ACS), 17/212 (8%) had positive troponin. Patients were divided into positive troponin and normal troponin groups and were followed for 20.1 ± 10.3 months. Patients with positive troponin were found to have a higher risk for nonfatal myocardial infarction, major adverse cardiovascular events, and death from any cause as compared to the normal troponin group. The study concluded that elevated cardiac troponin in patients with acute stroke and no clinical evidence of ACS is a strong predictor of long-term cardiac outcomes.\(^\text{9}\)

In a prospective study by Etgen et al., 174 patients with MRI-confirmed ischemic stroke patients were followed with serial measurement of cardiac enzymes cTnT or cTnI at admission, day 1 and day 2. The highest elevation of troponin was seen on day 2 for cTnI in 8 of 103 (7.8%) and on day 3 for cTnT in 8 of 174 (4.6%). The study recommended that measurement of cTnT or cTnI should not currently be included in the routine diagnostic regimen of the acute stroke patient and it had no impact on patient outcome.\(^\text{17}\)

In a separate prospective study by Abdi et al. of 114 stroke patients in the period between January of 2013 until August of 2013, troponin T was elevated (≥24 ng/l) in 20 (17.6%) of 114 patients, troponin T elevation in acute ischemic stroke patients was associated with higher age, creatinine, electrocardiogram (ECG) changes and severity of stroke, but location of stroke was not a determinant factor, investigators concluded that stroke severity, not its location, was associated with higher troponin levels.\(^\text{7}\)

On the other hand Barber et al., in a prospective study of 222 stroke patients, measured both troponin I (cTnI) and catecholamines. Ischemic damage on brain computed tomography (CT) scan was graded using the Alberta Stroke Program Early CT Score (ASPECTS), researchers found that forty-five patients (20%) had troponin I > 0.2 μg/l. These troponin-positive patients had higher epinephrine levels. The study concluded that raised troponin I is associated with elevation of circulating epinephrine. However, increased troponin is not associated with insular damage and does not independently predict poor outcome in acute ischemic stroke.\(^\text{10}\)
Study	Study design	#	Frequency/incidence	Prognosis/significance	Study conclusion
Jensen et al. 1,20	Prospective study	244	Elevated levels of TnT (> 0.03 µg/L) and creatine kinase-MB (≥10 µg/L) were observed in 25 patients (10%) and 21 patients (9%) of patients, respectively	7 patients (3%) had elevations of TnT or creatine kinase-MB and electrocardiographic changes suggesting acute myocardial infarctions	Heart and renal failure rather than myocardial infarction are the most likely causes of elevated troponin. Patient with elevated troponin has a higher mortality within the following 2 years. No threshold below which elevations of troponins are harmless.
James et al. 4	Observational study 1997	181	Troponin T concentration was raised (> 0.1 microgram/l) in 17% (30%) of patients	Thirty-one patients died in hospital (12/30 (40%) patients with a raised troponin T concentration vs 19/151 (13%) patients with a normal concentration. Patients with positive troponin was found to have a higher risk for nonfatal myocardial infarction 41.2%, major adverse cardiovascular events 41.2%, and death from any cause 41.2% compared to 3.3%, 14.2% and 14.5% respectively in the normal troponin group.	Serum troponin T concentration at hospital admission is a powerful predictor of mortality in patients admitted with an acute ischemic stroke. Elevated cardiac troponin in patients with acute stroke and no evidence of ACS is strong predictor of long-term cardiac outcomes.
Raza et al. 9	Retrospective study 2008–2010	212	17 patients had positive troponins		Raised troponin I is associated with elevation of circulating epinephrine. Increased troponin is not associated with insular damage and does not independently predict poor outcome in acute ischemic stroke.
Barber et al. 11	Prospective study	222	Forty-five patients (20%) had troponin I > 0.2 µg/L. These troponin-positive patients had higher epinephrine	Patient with elevated troponin I and epinephrine were more likely to have electrocardiograms coded as definite or possible acute myocardial infarction	A rise in TnT was significantly associated with a poor short-term outcome (modified Rankin scale > 3).
Fure et al. 18	Prospective study 2000-2002	279	TnT was elevated (> 0.04 µg L⁻¹) in 26 patients (9.6%)	The most frequent ECG changes were: prolonged QTc 36.0%, ST depression 24.5%, atrial fibrillation 19.9% and T wave inversion 17.8%. In logistic regression analyses, ST depression and Q waves were significantly associated with a rise in TnT. The highest proportion of raised parameters was found at day 2 for cTnI in 8 of 103 (7.8%), at day 3 for cTnT in 8 of 174 (4.6%).	Measurement of cTnT or cTnI should not currently be included in the routine diagnostic, and it has no impact on the outcome. Found that the size of the cerebral lesion size and the presence of heart failure were the only prognostic factors for mortality.
Thorleif Etgen et al. 19	Prospective study 2004	174	Elevated cTnT or cTnI concentration without evident myocardial lesion is found only in 4.6% to 7.8% of all acute ischemic strokes	TnI elevations were associated with a higher age, prior ischemic stroke, chronic heart failure, renal insufficiency, stroke severity, and ST segment elevation or depression on admission. The rate of hyperlipidemia decreased with increasing TnI. On statistical analysis, significant association between troponin and brain natriuretic peptide elevation with positive segmental wall motion abnormality on echocardiogram.	Troponin elevation in patients with acute stroke, even when adjusted for several possible confounders, is associated with an almost 2-fold increased risk of 5-year mortality.
Thalin et al. 21	Retrospective cohort study	247	There were 133 patients (54%) with TnI less than 0.03 µg/L (normal), 74 patients (30%) with TnI 0.03-0.11 µg/L (low elevation), and 40 patients (16%) with TnI greater than 0.11 µg/L (high elevation)	TnI elevations were associated with a higher age, prior ischemic stroke, chronic heart failure, renal insufficiency, stroke severity, and ST segment elevation on admission. The rate of hyperlipidemia decreased with increasing TnI. On statistical analysis, significant association between troponin and brain natriuretic peptide elevation with positive segmental wall motion abnormality on echocardiogram.	These study findings represent a new paradigm of interpreting elevated cardiac biomarkers and may help with risk stratification and diagnosis of patients presenting with AIS.
Darki et al. 23	Single center retrospective study	137	Twenty-four of 137 patients (17.5%) had a positive troponin level. Sixteen of 24 (67%) patients with a positive troponin level had a new wall motion abnormality on echocardiogram		
A comparison of several trials demonstrating the significance of elevated troponin in acute stroke can be seen in Table 1.

5.1. Management

Management of acute coronary syndrome in the setting of acute stroke is a challenging task, balancing the risks versus benefits of each of the treatment modalities. Although no Randomized Clinical Trials (RCT) were found in the literature to support the therapeutic consequences by sole increase of elevated troponins especially when the contemporary treatment approach is based on the presumed or confirmed stroke etiology, hence using only the clinician’s judgment can be problematic and decisions should be made based on the expertise of both the cardiologist and neurologist.

Measurements of serial troponins are a key element in detecting acute coronary syndrome (ACS) in association with an acute neurogenic event like acute stroke. Andres B et al., concluded that high sensitive-TNI elevations without dynamic changes (defined as 30% increase or decrease of the critical value within 3 h of measurement) may occur in stroke patients without ACS due to different mechanisms that stress the heart; therefore, the authors recommended that trending troponin levels combined with further cardiology work up is essential for better management.

Although no clear cut level for troponin elevation was defined to signify the extent of myocardial injury, the magnitude of troponin elevation in stroke patients without coronary artery occlusion is often less than that seen with acute MI due to coronary artery occlusion. cTnI has superior sensitivity and specificity to CK-MB in revealing minor myocardial injury.

Based on the International Stroke Trial (IST) and the Chinese Acute Stroke Trial (CAST), the use of aspirin (300 mg and 160 mg respectively) within 48 h of acute stroke onset was associated with a significant reduction in stroke recurrence within 14 days as well as reduction of nonfatal stroke and death.

Still undetermined is the use of dual antiplatelet therapy (DAPT) (aspirin and clopidogrel) in acute stroke patients. The results of two ongoing trials Platelet-Oriented Inhibition in New TIA and Minor Ischemic Stroke (POINT) and Triple Antiplatelets for Reducing Dependency after Ischaemic Stroke (TARDIS) are awaited to confirm whether or not dual antiplatelet will benefit patient with acute stroke.

Scheitz et al., proposed an algorithm recently in Stroke for an approach to acutely versus chronically elevated troponin in acute ischemic stroke. In the patient with acute elevation further evaluation to assess if the MI is type 1 vs 2 is investigated. If here are no coronary causes of the elevation then it is possible to postulate that the patient might have NHS. In patient with chronically elevated troponins, evaluation of severity and treat appropriately.

The immediate use of anticoagulation (unfractionated heparin, low-molecular-weight heparins, heparinoids, oral anticoagulants and thrombin inhibitors) in the setting of acute stroke has been associated with an increased risk of intracranial hemorrhage (ICH) with no short or long-term benefits, the risk increasing with the increase in the cerebral infarction size. On the other hand, such ICH patients with ACS, including non-ST segment myocardial infarction and unstable angina
had decreased risk of AMI; however the use of heparins were similar to placebo in terms of the risk of mortality, revascularization, recurrent angina, and thrombocytopenia.24

In a large meta-analysis of data, statin therapy at stroke onset was associated with improved outcome.25 Statin therapy is a cornerstone in ACS treatment and an intensive lipid-lowering statin regimen was found to provide greater protection against death or major cardiovascular events. Patients may benefit from early and continued lowering of low-density lipoprotein (LDL) cholesterol.26

6. Conclusions

Elevated troponin in the setting of acute stroke is not an uncommon problem and appears to have a different pathological mechanism compared with elevated troponin due to pure acute coronary occlusion. Stroke patients with elevated troponin have a worse prognosis and outcome when compared to those who do not. Managing such patients is often a challenge and requires a collaborative approach by both the cardiologist and the neurologist. Most experts would agree on the use of aspirin and statins, while anticoagulation in this setting could be associated with an increased risk of bleeding. The use of dual antiplatelet therapy has yet to be established. Further research is needed to determine the best therapeutic approach.

Conflicts of interest

Authors report no potential conflicts of interest.

References

1. Jensen JK, Atar D, Mickley H. Mechanism of troponin elevations in patients with acute ischemic stroke. Am J Cardiol 2007;99 (6):867–70.
2. Saver JL, Johnston KC, Homer D, Wityk R, Koroshetz W, Truskowski LL, et al. Infarct volume as a surrogate or auxiliary outcome measure in ischemic stroke clinical trials. RANTTAS Investig – Stroke 1999;30(2):293–8.
3. Ay H, Arsava EM, Sarıbaş O. Creatine kinase-MB elevation after stroke is not cardiac in origin: comparison with troponin T levels. Stroke 2002;33(1):286–9.
4. Homma S, Grame-Clarke C. Editorial comment–myocardial damage in patients with subarachnoid hemorrhage. Stroke 2004;35 (2):552–3.
5. Abdi S, Oveis-gharan S, Sinaei F, Ghorbani A. Elevated troponin T after acute ischemic stroke: association with severity and location of infarction. Iran J Neurol 2015;14(1):35–40.
6. Mochmann HC, Scheitz JF, Petzold GC, Hauesler KG, Audebert U, Lauß U, et al. Coronary angiographic findings in acute stroke patients with elevated cardiac troponin: the Troponin Elevation in Acute Ischemic Stroke (TRELAS) study. Circulation 2016;133(13):1264–71.
7. Darby A, Schneck MJ, Agrawal A, Rupani A, Barron JT. Correlation of elevated troponin and echocardiography in acute ischemic stroke. J Stroke Cerebrovasc Dis 2013;22(7):599–61.
8. Tung P, Kopeinik A, Banki N, Ong K, Ko N, Lawton MT, et al. Predictors of neurogenic injury after subarachnoid hemorrhage. Stroke 2004;35(2):548–51.
9. Raza F, Alkhouli M, Sandhu P, Bhatt R, Bove AA. Elevated cardiac troponin in acute stroke without acute coronary syndrome predicts long-term adverse cardiovascular outcomes. Stroke Res Treat 2014;2014(4):621–50.
10. Barber M, Morton JJ, Macfarlane PW, Barlow N, Roditi G, Stott DJ. Elevated troponin levels are associated with sympathoadrenal activation in acute ischemic stroke. Cerebrovasc Dis 2007;23 (4):260–6.
11. Samsuel MA. The brain-heart connection. Circulation 2007;116 (1):77–84.
12. Scheitz JF, Nolte CH, Lauß U, Endres M. Application and interpretation of high-sensitivity cardiac troponin assays in patients with acute ischemic stroke. Stroke 2015;46(4):1132–40.
13. James P, Ellis CJ, Whitlock RM, McNeil AR, Henley J, Anderson NE. Relation between troponin T concentration and mortality in patients presenting with an acute stroke: observational study. BMJ 2000;320(7248):1502–4.
14. Fure B, Bruun Wylle T, Thommessen B. Electrocardiographic and troponin T changes in acute ischaemic stroke. J Intern Med 2006;259(6):592–7.
15. Jensen JK, Kristensen SR, Bak S, Atar D, Højlund-carlsen PF, Mickley H. Frequency and significance of troponin T elevation in acute ischemic stroke. Am J Cardiol 2007;99(1):108–12.
16. Flores-solis LM, Hernández-dominguez JL. Cardiac troponin I in patients with chronic kidney disease stage 3 to 5 in conditions other than acute coronary syndrome. Clin Lab 2014;60(2):281–90.
17. Egen T, Baum H, Kander S, Kander. Cardiac troponins and N-terminal pro-bmiatrieprotein in acute ischemic stroke do not relate to clinical prognosis. Stroke 2005;36(2):270–5.
18. Anders B, Alonso A, Artemis D, Schäfer A, Ebert A, Kablau M, et al. What does elevated high-sensitive troponin I in stroke patients mean: concomitant acute myocardial infarction or a marker for high-risk patients? Cerebrovasc Dis 2013;36(3):211–7.
19. The International Stroke Trial. (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischemic stroke. Int Stroke Trial Collaborat Group. Lancet 1997;349(9065):1569–81.
20. CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. CAST (Chinese Acute Stroke Trial) Collaborative Group. Lancet. 1997;349(9066):1641–9.
21. Claiborne Johnston S, Donald Easton J, Farrant Mary, Barsan Holly, Battenhouse Holly, Conwit Robin, et al. Platelet-Oriented Inhibition in New TIA and Minor Ischemic Stroke (POINT) Trial: rationale and design. Int J Stroke 2013;8(6):479–83. PMC 2015 April 28. Published in final edited form as: Int J Stroke.
22. Bath Phillip MW, Robson Katie, Woodhouse Lisa J, Sprieg Robert, Dineen Robert, Pocock Stuart, Statistical analysis plan for the ’Triple Antiplatelets for Reducing Dependency after Ischaemic Stroke‘ (TARDIS) trial. Int J Stroke 2015;10(3):449–51.
23. Sandercoc PA, Counsell C, Kamal AK. Anticoagulants for acute ischemic stroke. Cochrane Database Syst Rev 2008(4).CD000024.
24. Andrade-castellanos CA, Colunga-lozano LE, Delgado-figueroa K, Magee K. Heparin versus placebo for non-ST elevation acute coronary syndromes. Cochrane Database Syst Rev 2014;6. CD003462.
25. Ni Chroínín D, Asplund K, Äsberg S, Callaly E, Cuadrado-Godia E, Diez-Tejedor E, et al. Statin therapy and outcome after ischemic stroke: systematic review and meta-analysis of observational studies and randomized trials. Stroke 2013;44(2):448–56.
26. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, et al. Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 Investigators (2004) Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004;350 (15):1495–504.
27. Peddada K, Cruz-flores S, Goldstein LB, et al. Ischemic stroke with troponin elevation: patient characteristics, resource utilization, and in-hospital outcomes. Cerebrovasc Dis 2016;42(3–4):213–23.