A HOMOLOGICAL NERVE THEOREM FOR OPEN COVERS

PATRICK GILLESPIE

Abstract. In this note we show that a particular homological nerve theorem, which was originally proved for a finite cover of a simplicial complex by subcomplexes, also holds for an open cover of an arbitrary topological space. The motivation for this is to affirmatively answer a question about the homology groups of Vietoris metric thickenings.

Given a cover \(\mathcal{U} = \{ U_i \}_{i \in I} \) of a topological space \(X \), the nerve of \(\mathcal{U} \), which we denote \(N(\mathcal{U}) \), is a simplicial complex whose vertex set is \(I \) and whose simplices are the finite subsets \(\sigma \subset I \) such that the intersection \(\bigcap_{i \in \sigma} U_i \) is nonempty. There are many nerve theorems, each of which relate a space \(X \) with \(N(\mathcal{U}) \), but vary on the assumptions placed on \(X \) and \(\mathcal{U} \), as well as the conclusions drawn.

One of the earliest examples of a nerve theorem is due to Borsuk [3]. Borsuk proved that if \(X \) is a finite-dimensional compact metric space and \(A \) is a finite cover of \(X \) by closed subsets of \(X \) such that intersection of any subset of \(A \) is an absolute retract, then \(X \) and \(N(A) \) have the same homotopy type.

Another early example of a nerve theorem is contained in the work of Leray in [8] and [9]. His work implies that if \(X \) is a finite simplicial complex and \(A \) is a finite cover of \(X \) by subcomplexes such that the intersection of any subset of \(A \) has trivial cohomology, then \(H^n(X) \cong H^n(N(A)) \) for all \(n \). The analogous nerve theorem for homology can be found in [4] for example, in which K. Brown notes that the theorem is "essentially due to Leray".

A sharper form of this homological nerve theorem is proven and used by R. Meshulam [11], which relaxes the condition that intersections of finite subsets of the cover \(A \) are homologically trivial, but only shows that \(H_j(X) \cong H_j(N(A)) \) for \(j \leq n \) for a particular \(n \).

The purpose of this note is to give a proof of the following theorem, which shows that the homological nerve theorem in [11] holds for the case where \(X \) is an arbitrary topological space and \(\mathcal{U} \) is an open cover of \(X \).

Theorem 1. Let \(\mathcal{U} = \{ U_i \}_{i \in I} \) be an open cover of a topological space \(X \), and let \(N \) be the nerve of this cover. Fix an integer \(k \in \mathbb{N} \). If \(H_j(\bigcap_{i \in \sigma} U_i) = 0 \) for all \(\sigma \in N^{(k)} \) and \(j \in \{ 0, \ldots, k - \dim \sigma \} \), then

1. \(H_j(X) \cong H_j(N) \) for all \(j \in \{ 0, \ldots, k \} \)
2. If \(H_{k+1}(N) \neq 0 \) then \(H_{k+1}(X) \neq 0 \).

In [11], Meshulam assumes that \(X \) is a finite simplicial complex, \(\mathcal{U} \) is a finite cover of \(X \) by subcomplexes, and takes homology to have coefficients in a field. By

Date: October 4, 2022.

Key words and phrases. Vietoris complex, nerve theorem, spectral sequence, metric thickening.
making minor adjustments to Meshulam’s proof, namely by using the homology—
and not cohomology—spectral sequence of a cover, we may drop all of these as-
sumptions, allowing X to be an arbitrary space, \mathcal{U} to be an open cover of X, and
the theorem holds for homology with arbitrary coefficient groups. The motivation
for considering such a generalization is to affirmatively answer a question posed by
Adams, Frick, and Virk [2].

Question. If \mathcal{U} is a uniformly bounded open cover of a separable metric space
X, then do the Vietoris metric thickening $V^m(\mathcal{U})$ and the Vietoris complex $V(\mathcal{U})$
have the same homology groups?

If \mathcal{U} is a cover of a space X, the Vietoris complex $V(\mathcal{U})$ is the simplicial complex
whose vertex set is X and whose simplices are the finite subsets of X contained in
some element of \mathcal{U}. If X is a metric space and \mathcal{U} is the collection of open subsets
of X with diameter less than $r > 0$, then $V(\mathcal{U}) = VR(X;r)$ is the Vietoris-Rips complex. The Vietoris-Rips metric thickening $VR^m(X;r)$ was introduced in [11] and
later generalized by the Vietoris metric thickening $V^m(\mathcal{U})$ [2]. The Vietoris metric thickening $V^m(\mathcal{U})$ has the same underlying set as $V(\mathcal{U})$, but has a metric which
paves it a coarser topology than that of $V(\mathcal{U})$. See [2] for a precise definition. In
general, $V^m(\mathcal{U})$ is not a simplicial complex.

In [2], for any any $n \in \mathbb{N}$, the authors construct an open cover $\tilde{M}_\mathcal{U}$ of $V^m(\mathcal{U})$
that is good up to level n, that is, the intersection of any collection of at most n
sets from $\tilde{M}_\mathcal{U}$ is either empty or contractible. The authors of [2] remarked that
the above question could potentially be answered by using these covers in a Mayer-
Vietoris spectral sequence. The argument we present does just this, as we will
use Theorem 1 which is ultimately an application of the Mayer-Vietoris spectral
sequence.

Answer to question. Write $\mathcal{U} = \{U_i\}_{i \in \mathcal{I}}$ and let $\tilde{M}_\mathcal{U}$ be the open cover of $V^m(\mathcal{U})$
that is good up to level n, whose existence is guaranteed by [2]. Then $H_j(\bigcap_{i \in \sigma} U_i) \cong 0$ for all $\sigma \in N^{(n-1)}$ and $j \in \mathbb{N}$, in which case Theorem 1 then implies that
$H_j(V^m(\mathcal{U})) \cong H_j(N(\tilde{M}_\mathcal{U}))$ for all $j \leq n - 1$. It was shown in [2] that the n-skeleton
of $N(\tilde{M}_\mathcal{U})$ coincides with that of $N(\mathcal{U})$, hence $H_j(N(\tilde{M}_\mathcal{U})) \cong H_j(N(\mathcal{U})) \cong H_j(V(\mathcal{U}))$ for all $j \leq n - 1$, where the second isomorphism follows from Dowker
duality [5]. In total, we have that $H_j(V^m(\mathcal{U})) \cong H_j(V(\mathcal{U}))$ for all $j \leq n - 1$. Since
n was arbitrary, we conclude that $V^m(\mathcal{U})$ and $V(\mathcal{U})$ have isomorphic homology groups. □

Remark 2. The condition that X is separable was used in [2] to allow the authors
to apply a nerve theorem of Nagórkó [12] to conclude that $V^m(\mathcal{U})$ and $V(\mathcal{U})$ have
isomorphic homotopy groups. However, it was not used in our argument. Thus we
have shown that if \mathcal{U} is a uniformly bounded open cover of a metric space X, then
$V^m(\mathcal{U})$ and $V(\mathcal{U})$ have isomorphic homology groups.

1. **MAYER-VIETORIS SPECTRAL SEQUENCE**

We give a brief description of the spectral sequence of a cover, which is sometimes
known as the Mayer-Vietoris spectral sequence. We use $S_n(X)$ to denote the group
of singular n-chains in a space X, and use $C_n(K)$ to denote the group of simplicial
n-chains in a simplicial complex K. For a simplicial complex K, we denote the
n-skeleton of K by $K^{(n)}$ and the set of n-simplices of K by K_n. Fix an open cover
\(\mathcal{U} = \{ U_i \}_{i \in \mathcal{I}} \) of \(X \) and to simplify the notation, let \(N = N(\mathcal{U}) \) be the nerve of \(\mathcal{U} \).

For a simplex \(\sigma \subset \mathcal{I} \) in \(N \), let \(U_\sigma \) denote the intersection \(U_\sigma = \cap_{i \in \sigma} U_i \).

Given the open cover \(\mathcal{U} \) there is an associated double complex \((A, \partial', \partial'') \). A double complex is a collection of modules \(\{ A_{p,q} \}_{p,q \in \mathbb{Z}} \) along with two collections of homomorphisms

\[\partial' : A_{p,q} \to A_{p-1,q} \quad \partial'' : A_{p,q} \to A_{p,q-1} \]

which satisfy \(\partial' \partial' = \partial'' \partial' = 0 \) and \(\partial' \partial'' = \partial'' \partial' \). Note that some authors instead require that \(\partial'' \partial' = -\partial' \partial'' \). To define the double complex associated to \(\mathcal{U} \), set \(A_{p,q} = \bigoplus_{\sigma \in N_p} S_q(U_\sigma) \). The vertical differentials \(\partial'' : A_{p,q} \to A_{p,q-1} \) are induced by the boundary maps \(\partial : S_q(U_\sigma) \to S_{q-1}(U_\sigma) \), and the horizontal differentials \(\partial' : A_{p,q} \to A_{p-1,q} \) are defined as follows.

Fix a total order on the vertices \(\{ v_i \}_{i \in \mathcal{I}} \) of \(N \) so that each simplex of \(N \) has a unique representation \(\sigma = [v_0, \ldots, v_p] \) for which \(v_0 < \cdots < v_p \). Then if \(\sigma = [v_0, \ldots, v_p] \) is a \(p \)-simplex with \(v_0 < \cdots < v_p \), define \(\partial_j \sigma \) to be the \((p-1)\)-simplex \(\partial_j \sigma = [v_0, \ldots, \hat{v}_j, \ldots, v_p] \) in which \(\hat{v}_j \) denotes that the vertex \(v_j \) is omitted. Since \(U_\sigma \subset U_{\partial_j \sigma} \), we have that \(\partial_j \) defines an inclusion

\[S_q(U_\sigma) \to S_q(U_{\partial_j \sigma}) \to \bigoplus_{\tau \in N_{p-1}} S_q(U_\tau) \]

for each \(\sigma \). These inclusions induce maps \(\delta_j : \bigoplus_{\sigma \in N_p} S_q(U_\sigma) \to \bigoplus_{\tau \in N_{p-1}} S_q(U_\tau) \).

We then define \(\partial' : A_{p,q} \to A_{p-1,q} \) by setting \(\partial' = \sum_{i=0}^p (-1)^i \delta_i \). One may check that \(\partial' \partial'' = 0 \) by expanding out

\[\partial' \partial'' = \sum_{k=0}^p \sum_{j=0}^{p-1} (-1)^{k+j} \delta_j \delta_k \]

and using the relation \(\delta_j \delta_k = \delta_{k-1} \delta_j \) if \(j < k \). Note that \(\partial' \partial'' = \partial'' \partial' \).

Given the double complex \(A \), we may form the total complex \(\text{Tot} A \), whose degree \(n \) term is \((\text{Tot} A)_n = \bigoplus_{p+q=n} A_{p,q} \). The differential \(\partial \) of \(\text{Tot} A \) is defined by setting \(\partial(c) = \partial'(c) + (-1)^p \partial''(c) \) for \(c \in A_{p,q} \), for all \(p,q \in \mathbb{N} \).

Figure 1. The double complex \((A, \partial', \partial'') \)
There are two natural filtrations F' and F'' of $\text{Tot} A$ which give rise to the spectral sequences E' and E'' respectively. The first filtration is given by $F'_k(\text{Tot} A)_n = \bigoplus_{p \leq k} A_{p,n-p}$ and the second filtration is $F''_k(\text{Tot} A)_n = \bigoplus_{q \leq k} A_{n-q,q}$. For details on the spectral sequence associated to a filtered chain complex, see [10]. Since A is a first quadrant double complex, the spectral sequences E' and E'' both converge to filtrations of $H_\bullet(\text{Tot} A)$. We will use the second spectral sequence to show that $H_\bullet(\text{Tot} A) \cong H_\bullet(X)$, which we then compare with the first spectral sequence to prove Theorem [11].

Let $E = E''$ be the second spectral sequence of the double complex A. The terms of the E^1 page are obtained by taking the homology of A with respect to ∂'. To describe the E^1 page explicitly, we need the following proposition.

Proposition 3. Let $q \in \mathbb{N}$ and let $A_{\bullet,q}$ denote the chain complex

\[
\cdots \longrightarrow \bigoplus_{\sigma \in N_q} S_q(\sigma) \longrightarrow \bigoplus_{\sigma \in N_1} S_q(\sigma) \longrightarrow \bigoplus_{\sigma \in N_0} S_q(\sigma) \longrightarrow 0.
\]

Then $H_j(A_{\bullet,q}) \cong 0$ for all $j > 0$ and $H_0(A_{\bullet,q}) \cong S^q(X)$.

Here $S^q(X)$ denotes the group of singular q-chains in X whose elements $\sum_{i=0}^m n_i \sigma_i$ satisfy the condition that each singular simplex σ_i has image in an element of \mathcal{W}.

To prove Proposition 3, we provide a straightforward generalization of the proof in [11], pg. 166], which assumes that X is a CW-complex and \mathcal{W} is a cover of X by subcomplexes. A similar proposition, but for cohomology, is proved by Frigerio and Maffei in [11]. A more general version of Proposition 3 is also proved by N. Ivanov [11].

Proof. We prove the proposition by giving an alternative characterization of the groups $\bigoplus_{\sigma \in N_q} S_q(U_\sigma)$. We begin by noting that $\bigoplus_{\sigma \in N_q} S_q(U_\sigma)$ has a basis B consisting of pairs (σ, f) where σ is a p-simplex of N and f is a map $f : \Delta^q \rightarrow U_\sigma$. For any map $f : \Delta^q \rightarrow X$, let N^f be the subcomplex of N consisting of simplices σ such that $\text{im}(f) \subset U_\sigma$. Then there is a bijection between B and the set of pairs (f, σ) where f is an arbitrary map $f : \Delta^q \rightarrow X$ and σ is a p-simplex of N^f. This is to say that for each p, there exists an isomorphism

\[
\bigoplus_{\sigma \in N_p} S_q(\sigma) \cong \bigoplus_{f : \Delta^q \rightarrow X} C_p(N^f).
\]

Moreover, these isomorphisms define an isomorphism of chain complexes

\[
\cdots \longrightarrow \bigoplus_{\sigma \in N_q} S_q(U_\sigma) \longrightarrow \bigoplus_{\sigma \in N_1} S_q(U_\sigma) \longrightarrow \bigoplus_{\sigma \in N_0} S_q(U_\sigma) \longrightarrow 0
\]

\[
\cdots \longrightarrow \bigoplus_{f : \Delta^q \rightarrow X} C_2(N^f) \longrightarrow \bigoplus_{f : \Delta^q \rightarrow X} C_1(N^f) \longrightarrow \bigoplus_{f : \Delta^q \rightarrow X} C_0(N^f) \longrightarrow 0
\]

where the differential in the bottom complex is induced by the boundary maps $C_p(N^f) \rightarrow C_{p-1}(N^f)$ on simplicial p-chains. Observe that for each $f : \Delta^q \rightarrow X$, the complex N^f consists of all finite subsets of the set $\{i \in \mathcal{I} : \text{im}(f) \subset U_i\}$. Hence N^f is either empty or contractible. Hence $H_p(N^f) \cong 0$ for all $p > 0$ and the homology groups of the bottom chain complex (and hence the top as well) are zero at each position except $\bigoplus_{f : \Delta^q \rightarrow X} C_0(N^f)$. Here we note that $H_0(N^f)$ is either 0 or \mathbb{Z}, depending on whether N^f is empty or not, which in turn depends on whether f has image in some element of \mathcal{W}. Thus we can take the set of maps $f : \Delta^q \rightarrow X$
which have image in some element of \(\mathcal{W} \) to be a basis for \(\bigoplus_{f_i} H_0(N_f) \). This implies that \(\bigoplus_{f_i} H_0(N_f) \cong S^\mathcal{W}(X) \), completing the proof. \(\square \)

Using Proposition 3 we see that the \(E^1 \) page of the second spectral sequence is of the form

\[
\begin{array}{cccc}
\vdots & \vdots & \vdots \\
0 & S^\mathcal{W}_2(X) & 0 & 0 & \ldots \\
& \downarrow & \downarrow & \downarrow & \\
0 & S^\mathcal{W}_1(X) & 0 & 0 & \ldots \\
& \downarrow & \downarrow & \downarrow & \\
0 & S^\mathcal{W}_0(X) & 0 & 0 & \ldots \\
& \downarrow & \downarrow & \downarrow & \\
0 & 0 & 0 & 0 & \ldots \\
\end{array}
\]

and where the differentials are induced by \(\partial'' \). Hence the second spectral sequence collapses at the \(E^2 \) page. Let \(H_q^\mathcal{W}(X) \) denote the \(q \)-th homology group of the chain complex \(S^\mathcal{W}_\bullet(X) \), which we note is isomorphic to \(H_q(X) \) since \(\mathcal{W} \) is an open cover. Then we see that \(E^2_{p,q} \cong H_q^\mathcal{W}(X) \cong H_q(X) \) for all \(q \in \mathbb{N} \) and \(E^2_{p,q} \cong 0 \) if \(p > 0 \). Hence the homology of the total complex of \(A \) is isomorphic to the homology of \(X \), i.e. \(H_q(\text{Tot } A) \cong H_\bullet(X) \).

2. Homological nerve theorem

We are now ready to prove Theorem 1. We remind the reader that our proof is simply a modification of the proof in [11], in which we use the homology spectral sequence of the cover \(\mathcal{W} \), rather than the cohomology spectral sequence.

Proof of Theorem 1. Given an open cover \(\mathcal{W} \) of a space \(X \), let \(N \) be the nerve of \(\mathcal{W} \), let \(A \) be the double complex associated to \(\mathcal{W} \), and let \(E = E^1 \) be the first spectral sequence of the double complex \(A \). The terms of the \(E^1 \) page of the first spectral sequence are obtained by taking the homology of \(A \) with respect to \(\partial' \). Hence \(E^1 \) is

\[
\begin{array}{cccc}
\vdots & \vdots & \vdots \\
0 & \bigoplus_{\sigma \in N_0} H_2(U_\sigma) & \bigoplus_{\sigma \in N_1} H_2(U_\sigma) & \bigoplus_{\sigma \in N_2} H_2(U_\sigma) & \ldots \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \bigoplus_{\sigma \in N_0} H_1(U_\sigma) & \bigoplus_{\sigma \in N_1} H_1(U_\sigma) & \bigoplus_{\sigma \in N_2} H_1(U_\sigma) & \ldots \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \bigoplus_{\sigma \in N_0} H_0(U_\sigma) & \bigoplus_{\sigma \in N_1} H_0(U_\sigma) & \bigoplus_{\sigma \in N_2} H_0(U_\sigma) & \ldots \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
0 & 0 & 0 & 0 & \ldots \\
\end{array}
\]

where the differentials are induced by \(\partial' \). For each \(m \in \mathbb{N} \), there exists a surjective map \(g_m : E^1_{m,0} \to C_m(N) \) defined as follows. For each \(\sigma \in N \), let \(P_\sigma \) denote the set of path components of \(U_\sigma \), identify \(H_0(U_\sigma) \) with \(\bigoplus_{\sigma \in P_\sigma} \mathbb{Z} \), and let \(f_\sigma : H_0(U_\sigma) \to \mathbb{Z} \) be the map which sends \((n_\iota)_{\iota \in P_\sigma}\) to the sum \(\sum_{\iota \in P_\sigma} n_\iota \). Then for each \(m \in \mathbb{N} \), let \(g_m : \bigoplus_{\sigma \in N_m} H_0(U_\sigma) \to \bigoplus_{\sigma \in N_m} \mathbb{Z} \) be the map induced by the collection \(\{f_\sigma : \sigma \in \)
N_m\). It is not too difficult to check that the collection \(\{g_m : m \in \mathbb{N}\} \) defines a morphism of chain complexes, \(g : E^1_{k,0} \to C_\ast(N) \).

Under the assumption that \(\widetilde{H}_j(U_\sigma) \cong 0 \) for all \(\sigma \in N^{(k)} \) and \(j \in \{0, \ldots, k - \dim \sigma\} \), we see that for all \(m \leq k \), the \(m \)-th antidiagonal of the \(E^1 \) page contains only one nontrivial term, \(\bigoplus_{\sigma \in N_m} H_0(U_\sigma) \). Moreover, \(g_m : \bigoplus_{\sigma \in N_m} H_0(U_\sigma) \to C_\ast(N) \) is an isomorphism for \(m \leq k \). Then from the commutative diagram

\[
\begin{array}{cccccc}
E^1_{k+2,0} & \rightarrow & E^1_{k+1,0} & \rightarrow & E^1_{k,0} & \rightarrow & E^1_{k-1,0} & \rightarrow & \cdots \\
\downarrow g_{k+2} & & \downarrow g_{k+1} & & \downarrow \cong & & \downarrow \cong & & \\
C_{k+2}(N) & \rightarrow & C_{k+1}(N) & \rightarrow & C_k(N) & \rightarrow & C_{k-1}(N) & \rightarrow & \cdots
\end{array}
\]

we immediately see that \(E^2_{m,0} \cong H_m(N) \) for all \(m \leq k - 1 \). Using the fact that \(g_{k+1} \) is surjective and \(g_k, g_{k-1} \) are isomorphisms, it is also straightforward to see that \(g_k \) induces an isomorphism \(E^2_{k,0} \cong H_k(N) \) and \(g_{k+1} \) induces a surjection \(E^2_{k+1,0} \to H_{k+1}(N) \). Note that for \(m \leq k \), the \(m \)-th antidiagonal of the \(E^2 \) page contains only one nontrivial term, \(E^2_{m,0} \), and that \(E^2_{p,q} \cong E^\infty_{p,q} \) for \(p+q \leq k \). Hence for \(0 \leq m \leq k \), \(H_m(Tot A) \cong H_m(N) \). Consequently, \(H_m(N) \cong H_m(Tot A) \cong H_m(N) \) for all \(m \leq k \). Lastly since there is a surjection \(E^2_{k+1,0} \to H_{k+1}(N) \), if \(H_{k+1}(N) \neq 0 \), then we must also have \(E^\infty_{k+1,0} \neq 0 \). Since the differentials entering and leaving the term \(E^r_{k+1,0} \) are zero homomorphisms for all \(r \geq 2 \), we have \(E^\infty_{k+1,0} \cong E^2_{k+1,0} \), which in turn implies that \(H_{k+1}(X) \cong H_{k+1}(Tot A) \neq 0 \).

Remark 4. The fact that \(\mathcal{U} \) is an open cover is only used for the isomorphism \(H_\ast(\mathcal{U}) \cong H_\ast(X) \) which is used to establish \(H_\ast(\mathcal{U}) \cong H_\ast(Tot A) \). Hence Theorem[1] holds slightly more generally for any space \(X \) and cover \(\mathcal{U} \) such that \(H_\ast(\mathcal{U}) \cong H_\ast(X) \), for example if \(\mathcal{U} \) is a collection of sets whose interiors cover \(X \).

Acknowledgments

The author would like to thank Henry Adams for several helpful conversations.

References

[1] M. Adamszak, H. Adams, and F. Frick, Metric reconstruction via optimal transport, SIAM Journal on Applied Algebra and Geometry, 2 (2018), no. 4, 597–619.
[2] H. Adams, F. Frick, and Ž. Virk, Vietoris thickenings and complexes have isomorphic homotopy groups, To appear in Journal of Applied and Computational Topology.
[3] K. Borsuk, On the embedding of systems of compacta in simplicial complexes, Fundamenta Mathematicae, 55 (1948), no. 1, 217–234.
[4] K. Brown, Cohomology of Groups, Springer-Verlag, New York, 1982.
[5] C. Dowker, Homology groups of relations. Annals of Mathematics, 56 (1952), no. 1, 84–95.
[6] R. Frigerio and A. Maffei, A remark on the Mayer-Vietoris double complex for singular cohomology, Homology, Homotopy, and Applications, 23 (2021), no. 2, 59–68.
[7] N. Ivanov, Leray theorems in bounded cohomology theory, arXiv:2012.08038, 2020.
[8] J. Leray, Sur la forme des espaces topologiques et sur les points fixes des représentations, J. Math. Pures. Appl. 24 (1945), 95–167.
[9] J. Leray, L’anneau spectral et l’anneau filtré d’homologie d’un espace localement compact et d’un application continue, J. Math. Pures. Appl. 29 (1950), no. 9, 1–139.
[10] S. MacLane, Homology, Springer-Verlag, New York, 1963.
[11] R. Meshulam, The clique complex and hypergraph matching, Combinatorica, 21 (2001), 89–94.
[12] A. Nagórkó, Carrier and nerve theorem in the extension theory, Proceedings of the American Mathematical Society, 135 (2007), no. 2, 551–558.
