INTRODUCTION

Germinoma is the most common type of intracranial germ cell tumors (GCTs) [1]. The peak incidence is in children and adolescents (age<20), more common in males than females [1,2]. Asian countries specifically Japan were reported to have the highest rate of incidence [1]. The presentation is associated to tumor’s size and location. endocrine changes, visual disturbances and increased intracranial pressure are the most common clinical features [3]. Pineal gland and suprasellar region are the most frequent sites of central nervous system (CNS) involvement. Intracranial masses caused by Langerhans cell histiocytosis (LCH) mimics features of CNS GCTs. LCH frequently involve spine and is the most common cause of vertebra plana in children. A 15-year-old boy presented with progressing symptoms of polydipsia, polyuria, general headache, nausea and severe back pain. Brain MRI showed brain tumor with simultaneous involvement of suprasellar region and pineal gland. An excisional biopsy of suprasellar mass was done. The pathologic assessment confirmed the diagnosis of germinoma. Patient’s treatment continued accordingly. A spine MRI, done due to persistent backache, showed a vertebra plana. We reevaluated the primary diagnosis suspecting LCH. Germinoma of CNS was confirmed and a biopsy of vertebral lesion resulted in hemangioma. Thus we report a case of CNS germinoma with co-occurrence of vertebra plana. We emphasized the importance of histopathologic diagnosis of pineal/suprasellar masses and primary investigation of other CNS regions including spine for possible metastasis or comorbidities.

CASE REPORT

History & physical examination

A 15-year-old boy with a 2-year history of progressing polydipsia, polyuria and long standing neurologic symptoms; general headache with nausea and severe back pain, was admitted to outpatient department of Ghaem Hospital for further evaluations. The back pain was severe and vague mostly placed at thoracic region, causing movement restriction with no radi-...
Germinoma Cooccurrence with Vertebra Plana

Ation to limbs. He denied any disturbances in visual perception, history of seizure or syncope. Neurologic and general examination yielded no further findings.

As the patient was under 18 years old we obtained the written informed consent from patient’s parent.

Paraclinic

Complete blood count and metabolic tests were unremarkable. Endocrine tests showed decreased insulin-like growth factor 1 (71.79 ng/mL), AM cortisol (0.23 mcg/dL), and adrenocorticotropic hormone (3.92 pg/mL).

Imaging

A brain MRI revealed two complex solid-cystic masses, a 17 mm mass located in pineal region and a 15 mm mass in suprasellar region involving the floor of 3rd ventricle. They were irregular, lobulated with solid parts which were enhanced with injection of contrast. A moderate hydrocephalus in 3rd and lateral ventricles were seen. GCT was suggested (Fig. 1, 2).

Management

An excisional biopsy of suprasellar mass by subfrontal transtemporal approach was done, pathologic assessment showed atypical cells with large round hyperchromatic nuclei, large nucleoli and clear cytoplasm forming nests surrounded by thin fibrous septa with lymphocytic infiltration consistent with germinoma. Thirty sessions of radiotherapy (RT) with dose of 50 Gy at primary site of tumor was administered. Patient also received medical therapy due to pituitary gland dysfunction.

In follow ups the patient complained of persistent back pain. In accordance a thoracic MRI was done; a complete collapse of T5 vertebral body (vertebra plana) with preservation of disk space, moderate spinal cord compression and no associated soft tissue mass was evident (Fig. 3). His RT was stopped and reevaluation of the diagnosis was undertaken with LCH as an important differential diagnosis. Skeletal survey and chest CT scan revealed no lesion. The re-examination of suprasellar biopsy specimens approved primary diagnosis of germinoma.

To investigate the origin of vertebra plana (either isolated LCH or metastatic lesion) a biopsy was done. Pathologic assessment showed capillary proliferation of vessels between trabeculae of bone, immunohistochemistry test was positive for CD31 and negative for CD1a and SALL4 which were consistent with diagnosis of hemangioma and both LCH and metastasis from GCT were excluded. Thus the diagnosis was considered bifocal CNS germinoma with co-occurrence of vertebra plana.

DISCUSSION

GCTs are classified into undifferentiated and differentiated GCTs based on histopathology [9]. Geographical and racial factors had been associated with incidence of CNS GCTs, with higher incidence in Asian countries like Japan, yet findings from recent large studies are inconsistent with prior reports [10]. The peak incidence of germinoma is in the second decade of life and it is more prevalent in males [11].

Extragonadal GCTs are found at midline structures, this include CNS GCTs as well. The most common places are near third ventricle, at pineal gland and suprasellar region [11]. Simultaneous occurrence of germinoma at pineal gland and suprasellar region is reported to comprise 8% of CNS germinoma cases [1]. The clinical manifestation of disease is connected to the age at presentation, size and location of tumor. Suprasellar masses tend to affect anterior and posterior pituitary func-

Fig. 1. Sagittal T1-weighted (A) and T2-weighted (B) images show two complex solid-cystic masses, a 17 mm mass located in pineal region and a 15 mm mass in suprasellar region.
protein (AFP) in suspected GCT of suprasellar/pineal region is indicative of secreting NGGCT and as Cuccia and Alderete [4] and Robertson [11] have discussed no further tissue biopsy for histopathologic confirmation is required. Yet in absence of evidence of secreting NGGCT it is necessary to obtain a biopsy because differential diagnosis of a lesion at pineal/suprasellar include variety of neoplasms. In comparison to traditional craniotomy, advances in neuroendoscopy resulted in less aggressive procedure, indirect visualization of the tumor and endoscopic third ventriculostomy in case of significant hydrocephalus [12]. We think in our case, using neuroendoscopy would have been more advantageous with regard to reaching more definitive diagnosis and symptoms relief.

A rare differential diagnosis of pineal/suprasellar mass is LCH. A proliferative disease that may affect different body or-

![Fig. 2. Sagital (A), axial (B and D), and coronal (C) post contrast T1-weighted images show enhancement in solid parts in both masses.](image-url)
Germinoma Cooccurrence with Vertebra Plana

... which as explained in previous section reapproved the primary diagnosis of germinoma for suprasellar mass. Also the biopsy of vertebral lesion showed vertebral hemangioma and not LCH.

Vertebral hemangiomas are the most common benign neoplasms of spinal axis. They are mostly asymptomatic and incidentally found. The diagnosis is usually based on typical radiologic findings, e.g., ‘jail bar’ in plain radiograph, ‘salt and pepper’ in CT and increased intensity on both T1 and T2 of MRI (in contrast to decreased intensity on T1 for metastatic lesions) [16,17]. In the case presented here complete collapse of the body (vertebra plana) necessitated the performing of core biopsy to distinguish between metastatic lesion, LCH and other causes of vertebral plana. The management of hemangioma majorly depends on current and expected complications of the lesion (e.g., compression fractures that may result in cord compression). Non-surgical methods such as embolization, vertebroplasty or sclerotherapy and surgical resection should be selected based on each patient’s condition [18].

Although there has been reports of gonadal GCTs metastasis to bones [19], to the best of authors’ knowledge, there is no report of GCT metastasis causing vertebra plana or a co-occurrence of them. Thus we think we are reporting the first case of co-occurrence of CNS GCT and vertebral plana.

In conclusion, we should emphasize the importance of histopathologic diagnosis of pineal/suprasellar masses and pri...

---

Fig. 3. Sagittal T2-weighted (A) and T1-weighted (B) images shows complete collapse of T5 vertebral body (vertebra plana) with preservation of disk space. Moderate spinal cord compression is seen.
mary investigation of other CNS regions including spine for possible metastasis or comorbidities.

Conflicts of Interest

The authors have no financial conflicts of interest.

Acknowledgments

Mashhad University of Medical Sciences Research Council supported this work.

REFERENCES

1. Jennings MT, Gelman R, Hochberg F. Intracranial germ-cell tumors: natural history and pathogenesis. J Neurosurg 1985;63:155-67.
2. Cuccia V, Galarza M. Pure pineal germinomas: analysis of gender incidence. Acta Neurochir (Wien) 2006;148:865-71; discussion 871.
3. Echevarría ME, Fangusaro J, Goldman S. Pediatric central nervous system germ cell tumors: a review. Oncologist 2008;13:690-9.
4. Cuccia V, Alderete D. Suprasellar/pineal bifocal germ cell tumors. Childs Nerv Syst 2010;26:1043-9.
5. Freda PU, Post KD. Differential diagnosis of sellar masses. Endocrinol Metab Clin North Am 1999;28:81-117.
6. Smirniotopoulos JG, Rushing EJ, Men A. Pineal region masses: diferential diagnosis. Radiographics 1992;12:577-96.
7. Yoon JY, Park BK, Yoo H, et al. A case of langerhans cell histiocytosis manifested as a suprasellar mass. Brain Tumor Res Treat 2016;4:26-9.
8. Chaudhary V, Bano S, Aggarwal R, et al. Neuroimaging of Langerhans cell histiocytosis: a radiological review. Jpn J Radiol 2013;31:786-96.
9. Packer RJ, Cohen BH, Cooney K. Intracranial germ cell tumors. Oncologist 2000;5:312-20.
10. McCarthy BJ, Shibui S, Kayama T, et al. Primary CNS germ cell tumors in Japan and the United States: an analysis of 4 tumor registries. Neuro Oncol 2012;14:1194-200.
11. Robertson PL. CNS germ cell tumors: a clinical review and future directions. Future Neurology 2016;11:47-62.
12. Morgenstern PF, Souweidane MM. Pineal region tumors: simultaneous endoscopic third ventriculostomy and tumor biopsy. World Neurosurg 2013;79(2 Suppl):S18.e9-13.
13. Bowzyk Al-Naeeb A, Murray M, Horan G, et al. Current management of intracranial germ cell tumours. Clin Oncol (R Coll Radiol) 2018;30:204-14.
14. Shibamoto Y, Takemoto S. Central nervous system germinoma. In: Mahajan A, Paulino A, editors. Radiation oncology for pediatric CNS tumors. Cham, Switzerland: Springer;2018. p.263-74.
15. Huang WD, Yang XH, Wu ZP, et al. Langerhans cell histiocytosis of spine: a comparative study of clinical, imaging features, and diagnosis in children, adolescents, and adults. Spine J 2013;13:1108-17.
16. Quinn SF. Vertebral Hemangioma. MRI Web Clinic 2006 (at http://radsource.us/vertebral-hemangioma/).
17. Grossman R, Yousem D. Nondegenerative diseases of the spine. Neuroradiology. 3d ed. Philadelphia: Mosby;2003. p.827-8.
18. Fox MW, Onofrio BM. The natural history and management of symptomatic and asymptomatic vertebral hemangiomas. J Neurosurg 1993;78:36-45.
19. Johnson DE, Appelt G, Samuels ML, Luna M. Metastases from testicular carcinoma. Study of 78 autopsied cases. Urology 1976;8:234-9.