Establishment of Helicobacter pylori infection model in Mongolian gerbils

Jie Yan, Yi-Hui Luo, Ya-Fei Mao

Jie Yan, Yi-Hui Luo, Ya-Fei Mao, Department of Medical Microbiology and Parasitology, College of Medical Science, Zhejiang University, Hangzhou 310031, China
Supported by the Excellent Young Teacher Fund of Chinese Education Ministry and the General Research Plan of the Science and Technology Department of Zhejiang Province, No. 001110438
Correspondence to: Jie Yan, Department of Medical Microbiology and Parasitology, College of Medical Science, Zhejiang University, 353 Yan an Road, Hangzhou 310031, Zhejiang Province, China. yanchen@mail.hz.zj.cn
Telephone: +86-571-87217385 Fax: +86-571-87217044
Received: 2003-09-15 Accepted: 2003-11-13

Abstract

AIM: To establish a stable and reliable model of Helicobacter pylori infection model in Mongolian gerbils and to observe pathological changes in gastric mucosa in infected animals.

METHODS: Mongolian gerbils were randomly divided into 18 groups; 6 groups were infected with H pylori clinical strain Y06 (n=6, groups Y), 6 groups were infected with H pylori strain NCTC11637 (n=6, groups N), and 6 uninfected groups as negative controls (n=4, groups C). H pylori suspensions at the concentrations of 2×10^8 and 2×10^9 CFU/mL of strain NCTC11637 and strain Y06 were prepared. The animals in three groups N and in three groups Y were orally challenged once with 0.5 mL of the low concentration of the bacterial suspension. The animals in another three groups N and in another three groups Y were orally challenged with 0.5 mL of the high concentration of the bacterial suspension for 3 times at the intervals of 24 h, respectively. For the negative controls, the animals in six groups C were orally given with the same volume of Brucella broth at the corresponding inoculating time. The animals were killed after 2nd, 4th and 6th week after the last challenge and the gastric mucosal specimens were taken for urease test, bacterial isolation, pathological and immunohistochemical examinations.

RESULTS: Positive isolation rates of H pylori in the animals of groups Y at the 2nd, 4th and 6th week after one challenge were 0%, 16.7% and 66.7%, while in the animals of groups N were 0%, 0% and 16.7%, respectively. Positive isolation rates of H pylori in the animals of groups Y at the 2nd, 4th and 6th week after three challenges were 66.7%, 100% and 100%, while in the animals of groups N were 66.7%, 66.7% and 100%, respectively. In animals with positive isolation of H pylori, the bacterium was found to colonized on the surface of gastric mucosal cells and in the gastric pits, and the gastric mucosal lamina propria was infiltrated with inflammatory cells.

CONCLUSION: By using H pylori suspension at high concentration of 2×10^8 CFU/mL for multiple times, the orally challenged Mongolian gerbils can be used as a stable and reliable H pylori infection model. The 2 strains of H pylori can colonize in gastric mucosa of the infected animals and cause mild inflammation reaction.

Yan J, Luo YH, Mao YF. Establishment of Helicobacter pylori infection model in Mongolian gerbils. World J Gastroenterol 2004; 10(6): 852-855
http://www.wjgnet.com/1007-9327/10/852.asp

INTRODUCTION

Helicobacter pylori, a microaerophilic, spiral and Gram-negative bacillus, is recognized as an important pathogen causing human gastritis and peptic ulcer and a high risk factor for gastric carcinoma[1,2]. In China, chronic gastritis and peptic ulcer are two of the most common digestive diseases, and gastric cancer is one of the malignant tumors with high morbidity[3,4]. An ideal public measure to prevent and control these H pylori infection-associated diseases may be a vaccine that could induce strong humoral and cellular immune responses. However, no commercial H pylori vaccine is available so far, and the development of H pylori vaccine by using genetic engineering techniques is being actively[5-9]. A stable and reliable H pylori infection animal model would be necessary for evaluating vaccine efficacy and helpful for understanding the pathological mechanism of the organism. Therapeutic drugs for H pylori eradication differ from those for many other bacteria such as using metronidazole[10,11]. Therefore, H pylori infection animal models would contribute to screen new drugs against H pylori. In recent published data, Mongolian gerbils have been considered as ideal animals to establish infection model by using internationally collected H pylori strains[12-14]. In this study, we used a clinical H pylori isolate named Y06 to establish a stable and reliable infection model in Mongolian gerbils. The colonization sites of H pylori and pathological changes in gastric mucosa of the animals were also observed.

MATERIALS AND METHODS

H pylori strains
A clinical strain of H pylori named Y06 was isolated from a patient with gastric ulcer. This strain was identified based on their characteristic morphology by Gram staining under microscope, and positive for urease and oxidase activities, further confirmed by slide agglutination test using commercial rabbit antiserum against whole cell of H pylori (DAKO). A reference H pylori strain, NCTC11637, was used as an infection control. The two strains were subcultured in Columbia agar (bioMérieux) containing 80 mL/L sheep blood under microaerobic conditions containing 100 mL/L CO₂, 50 mL/L O₂ and 850 mL/L N₂.

Animals
Eight-week-old specific pathogen-free male Mongolian gerbils with body mass of 75±5 g were provided by Experimental Animal Center, Zhejiang Academy of Medical Sciences. These gerbils were randomly divided into eighteen groups; six groups infected with the clinical strain Y06 (groups Y, n=6 in each group), six groups infected with the reference H pylori strain NCTC11637
Dosages and pathway of inoculation

Bacterial cells grown on the 2 strains on Columbia agar for 3-5 d were collected and diluted to the final concentrations of 2×10^8 CFU/mL and 2×10^9 CFU/mL, respectively, by using Brucella broth (bioMérieux). Each Mongolian gerbil in 3 groups Y and 3 groups N were orally challenged with 0.5 mL of 2×10^8 CFU/mL H pylori suspension, while the animals in another 3 groups Y and 3 groups N were attacked with 0.5 mL of 2×10^9 CFU/mL H pylori suspension through the same pathway. For the negative controls, the animals in 6 groups C were orally given with 0.5 mL of Brucella broth. Each animal in the groups was given with the different concentrations of H pylori suspensions or Brucella broth, respectively, as the described above for 3 times at an interval of 24 h. The animals were deprived of food but offered with water for 12 h before the challenge, and supplied with food and water after 4 h of H pylori inoculation.

Isolation and identification of H pylori

Six animals in group Y, 6 in group N and 4 animals in group C were killed, respectively, at 2, 4 and 6 wk after the last challenge. Two gastric mucosal specimens at the adjacent position were taken from antrum and corpus, respectively. One of the specimens was used for H pylori isolation, and the others were fixed with 40 g/L formaldehyde solution. The colonies on Columbia plates were identified by microscopy after Gram-staining, assays for urease and oxidase activities and slide agglutination test using the commercial H pylori-specific antiserum. The bacterium was defined to be H pylori if it was Gram-negative with arc shape or “seagull-like”, positive for the two enzymes and immune agglutination.

Pathological and immunohistochemical examinations

The gastric mucosal specimens fixed with formaldehyde were pathologically examined after embedding, section and haematoxylin-eosin (HE) staining. H pylori in gastric mucosal specimens were detected by the immunohistochemical method using a commercial rabbit anti-H pylori antibody and goat anti-rabbit HRP-labeled IgG antibody (Jackson Immunoresearch).

RESULTS

Infection of Mongolian gerbils with H pylori strains

The results of H pylori isolation from gastric mucosal specimens of Mongolian gerbils are shown in Table 1.

Group	Detection time (wk)	Infection rate (%) (positive/total cases)	
		1×10^8 CFU (1 challenge)	1×10^9 CFU (3 challenges)
Y	2	0(0/6)	66.7(4/6)
N	2	0(0/6)	66.7(4/6)
C	2	0(0/4)	0(0/4)
Y	4	16.7(1/6)	100(6/6)
N	4	0(0/6)	66.7(4/6)
C	4	0(0/4)	0(0/4)
Y	6	66.7(4/6)	100(6/6)
N	6	16.7(1/6)	100(6/6)
C	6	0(0/4)	0(0/4)

Y, groups infected with strain Y06; N, groups infected with strain NCTC11637; C, negative controls.

DISCUSSION

In previous published data, animals for establishment of H pylori infection models included guinea pigs, rats, nude mice, chimpanzee etc. These animal models have many disadvantages such as low infection rates, instability, immunodeficiency and high costs. In 1997, Lee et al successfully established an animal model infected with a H pylori strain named as SS1 in C57BL/6 and Balb/c mice. This animal model showed a high frequency and stability for H pylori infection. However, strain SS1 is a mutant of H pylori and its virulence is considerably low. Recently, Mongolian gerbils, which has distinct advantages such as high frequency and stability of infection, large colonization of H pylori, longer living suitable for study with long period of time and pathological changes similar to those observed in human with chronic gastritis, have become the predominant animals for preparing H pylori infection models. Therefore, Mongolian gerbils are regarded as an ideal animal for H pylori infection models.
the infection rates at 6 wk after one challenge by *H. pylori* strain Y06 and strain NCTC11637 were only 66.7% and 16.7%, respectively. On contrast, by using three oral challenges at the dosage of 1X10^5 CFU, *H. pylori* colonization rates in the gastric mucosa of Mongolian gerbils were 100% and 66.7% at 2 wk after challenge by *H. pylori* strain Y06 or strain NCTC11637 were both 66.7% and 100%, respectively, which indicates that multiple challenges with a high concentration of *H. pylori* contribute to the increased infection rates.

The infection rates of *H. pylori* strain Y06 and strain NCTC11637 in Mongolian gerbils were 100% and 66.7% at 4 wk for 3 challenges using the low concentration of bacterial suspension, and 16.7% and 0% at 4 wk and 66.7% and 16.7% at 6 wk after one challenge using the high concentration. *H. pylori* strain Y06, a fresh clinical isolate, seems to be more virulent than strain NCTC11637 and more beneficial for establishing *H. pylori* infection model in Mongolian gerbils with a higher infection rate in a shorter period of time.

H. pylori was found on the surface of gastric mucosa and in the gastric pits of Mongolian gerbils when infection was established. The observations that there were erosions of mucosal surface and infiltration of chronic inflammatory cells in the lamina propria of gastric mucosa of *H. pylori* infected Mongolian gerbils indicates that the two tested *H. pylori* strains are able to colonize gastric mucosa of Mongolian gerbils and cause chronic inflammation and gastric erosions.

REFERENCES

1. French RW Jr, Clemens J. Helicobacter in the developing world. M Irenebs Infect 2003; 5: 705-713
2. Sharma P, Vakil N. Review article: Helicobacter pylori and reflux disease. Aliment Pharmacol Ther 2003; 17: 297-305
3. Zhang Z, Yuan Y, Gao H, Dong M, Long Y, Gong YH. Apoptosis, proliferation and p53 gene expression of *H. pylori* associated gastric epithelial lesions. World J Gastroenterol 2001; 7: 779-782
4. Lu XL, Qian KD, Tang XQ, Zhu YL, Du Q. Detection of *H. pylori* DNA in gastric epithelial cells by in situ hybridization. World J Gastroenterol 2002; 2: 305-307
5. Yao YL, Xu B, Song YG, Zhang WD. Overexpression of cyclin E in Mongolian gerbil with Helicobacter pylori-induced gastric precancerous lesions. World J Gastroenterol 2002; 2: 60-63
6. Guo DL, Dong M, Wang L, Sun LP, Yuan Y. Expression of gastric cancer-associated M67 antigen in gastric cancer, precancerous lesions and *H. pylori*-related gastric diseases. World J Gastroenterol 2002; 8: 1009-1013
7. Peng ZS, Liang ZC, Liu MC, Ouyang NT. Studies on gastric epithelial cell proliferation and apoptosis in Hp associated gastric ulcer. Shijie Huan Xiuazha Zazhi 1999; 7: 218-219
8. Hiyama T, Haruma K, Kitada Y, Miyamoto M, Tanaka S, Yoshihara M, Sumii K, Shimamoto F, Kajiyama G. B-cell chronic lymphocytic leukemia in *Helicobacter pylori*-infected chronic atrophic gastritis. Virochows Arch 2003; 483: 232-237
9. Xia HX. Association between Helicobacter pylori and gastric cancer: current knowledge and future research. World J Gastroenterol 1998; 4: 93-96
10. Quan J, Fan XG. Progress in experimental research of Helicobacter pylori infection and gastric carcinoma. Shijie Huan Xiuazha Zazhi 1999; 7: 693-699
11. Liu H, Liu WW, Fang DC. Study of the relationship between apoptosis and proliferation in gastric carcinoma and its precancerous lesion. Shijie Huan Xiuazha Zazhi 1999; 7: 649-651
12. Zhu ZH, Xia ZS, He SG. The effects of ATRA and 5Fu on telomerase activity and cell growth of gastric cancer cells in vitro. Shijie Huan Xiuazha Zazhi 2000; 8: 669-673
13. Tu SP, Zhong J, Tan JH, Jiang XH, Qiao MM, Wu YX, Jiang SH. Induction of apoptosis by arsenic trioxide and hydroxy-camptothecins in gastric cancer cells in vitro. World J Gastroenterol 2000; 6: 532-539
14. Cai L, Yu SZ, Zhang ZF. Helicobacter pylori infection and risk of gastric cancer in Changle County, Fujian Province, China. World J Gastroenterol 2000; 6: 374-376
15. Yao XX, Yin L, Zhang JY, Bai WY, Li YM, Sun ZC. H2 receptor and cellular immunity in gastric cancer and precancerosis. Shijie Huan Xiuazha Zazhi 2003; 9: 508-512
16. Xu AG, Li SG, Liu JH, Gan AH. Function of apoptosis and expression of the proteins Bel-2, p53 and C-Myc in the development of gastric cancer. World J Gastroenterol 2001; 7: 403-405
17. Wang X, Lan M, Shi YQ, Lu J, Zhong YX, Wu HP, Zai HH, Ding J, Wu KC, Pan BR, Jin JP, Fan DM. Differential display of vincristine-resistance-related genes in gastric cancer SGC7901 cell. World J Gastroenterol 2002; 8: 54-59
18. Liu JR, Lu BX, Chen BQ, Han XH, Xue YB, Yang YM, Zheng YM, Liu RH. Effect of cis-9, trans-11-conjugated linoleic acid on cell cycle of gastric adenocarcinoma cell line (SGC-7901). World J Gastroenterol 2002; 8: 224-229
19. Cai L, Yu SZ. A molecular epidemiologic study on gastric cancer in Changle, Fujian Province. Shijie Huan Xiuazha Zazhi 1999; 7: 652-655
20. Gao GL, Yang Y, Yang SF, Ren CW. Relationship between proliferation of vascular endothelial cells and gastric cancer. Shijie Huan Xiuazha Zazhi 2000; 8: 282-284
21. Xue XC, Fang GE, Hua JD. Gastric cancer and apoptosis. Shijie Huan Xiuazha Zazhi 1999; 7: 359-361
22. Niu YL, Qin XY, Liu H, Wang CP. Clinicopathological analysis of patients with gastric cancer in 1200 cases. World J Gastroenterol 2001; 7: 281-284
23. Li XY, Wei PK. Diagnosis of stomach cancer by serum tumor markers. Shijie Huan Xiuazha Zazhi 2003; 9: 568-570
24. Fang DC, Yang SM, Zhou XD, Wang DX, Luo YH. Telomere erosion is independent of microsatellite instability but related to loss of heterozygosity in gastric cancer. World J Gastroenterol 2001; 7: 522-526
25. Morgenstern A, Miehlke S, Stolte M, Nubauer A, Alpen B, Thiede C, Kliann H, Hiermeyer FX, El I, Ehninger G, Bayerdorffer E. Development of early gastric cancer 4 and 5 years after complete remission of Helicobacter pylori associated gastric low-grade marginal zone B-cell lymphoma of MALT type. World J Gastroenterol 2001; 7: 248-253
26. Deng DJ. Progress of gastric cancer etiology: n-nitrosamines in the 1990s. World J Gastroenterol 2000; 6: 613-618
27. Liu ZM, Shou NH, Jiang XH. Expression of lung resistance protein in patients with gastric carcinoma and its clinical significance. World J Gastroenterol 2000; 6: 433-434
28. Guo QX, Wang YP, Liu YG, Ma SW, Ding YG, Li JC. Study on Helicobacter pylori infection and p53, c-erbB-2 gene expression in carcinogenesis of gastric mucosa. Shijie Huan Xiuazha Zazhi 1999; 7: 313-315
29. Cai L, Yu SZ, Ye WM, Yi YN. Fish sauce and gastric cancer: an ecological study in Fujian Province, China. World J Gastroenterol 2000; 6: 671-675
30. Xue FB, Xu YY, Wan Y, Pan BR, Ren J, Fan DM. Association of *H. pylori* infection with gastric carcinoma: a Meta analysis. World J Gastroenterol 2001; 7: 801-804
31. Wang RT, Wang T, Chen K, Wang JY, Zhang JP, Lin SR, Zhu YM, Zhang WM, Cao YX, Zhu CW, Yu H, Cong YJ, Zheng S. Wu BQ, Helicobacter pylori infection and gastric cancer: evidence from a retrospective cohort study and nested case-control study in China. World J Gastroenterol 2002; 8: 1103-1107
32. Hua JS. Effect of Hp: cell proliferation and apoptosis on stomach cancer. Shijie Huan Xiuazha Zazhi 1999; 7: 647-648
33. Liu DH, Zhang XY, Fan DM, Huang YX, Zhang JS, Huang WQ, Zhang YQ, Huang QS, Ma WY, Chai YB, Jin JM. Expression of vascular endothelial growth factor and its role in oncogenesis of human gastric carcinoma. World J Gastroenterol 2001; 7: 500-505
34. Cao WX, Ou JM, Fei XF, Zhu ZG, Yin HR, Yan M, Lin YZ. Methionine-dependence and combination chemotherapy on human gastric cancer cells in vitro. World J Gastroenterol 2002; 8: 230-232
35. Mao YF, Yan J, Li LW, Li SP. Construction of hpaA gene from a clinical isolate of Helicobacter pylori and identification of fusion protein. World J Gastroenterol 2003; 9: 1529-1536
36. Ruggiero P, Peppoloni S, Rappuoli R, Del Giudice G. The quest for a vaccine against Helicobacter pylori: how to move from mouse to man? M microbes Infect 2003; 5: 749-756
37 Garhart CA, Nedrud JG, Heinzel FP, Sigmund NE, Czinn SJ. Vaccine-induced protection against Helicobacter pylori in mice lacking both antibodies and interleukin-4. Infect Immun 2003; 71: 3628-3633

38 Garhart CA, Heinzel FP, Czinn SJ, Nedrud JG. Vaccine-induced reduction of Helicobacter pylori colonization in mice is interleukin-12 dependent but gamma interferon and inducible nitric oxide synthase independent. Infect Immun 2003; 71: 910-921

39 Panthel K, Faller G, Haas R. Colonization of C57BL/6j and BALB/c wild-type and knockout mice with Helicobacter pylori: effect of vaccination and implications for innate and acquired immunity. Infect Immun 2003; 71: 794-800

40 Sheu BS, Huang JJ, Yang HB, Huang AH, Wu JJ. The selection of triple therapy for Helicobacter pylori eradication in chronic renal insufficiency. Aliment Pharmacol Ther 2003; 17: 1283-1290

41 Marais A, Bilardi C, Cantet F, Mendz GL, Megraud F. Characterization of the genes rdxA and fnaA involved in metronidazole resistance in Helicobacter pylori. Res Microbiol 2003; 154: 137-144

42 Ohkusa T, Okayasu I, Miwa H, Ohtaka K, Endo S, Sato N. Helicobacter pylori infection induces duodenitis and superficial duodenal ulcer in Mongolian gerbils. Gut 2003; 52: 797-803

43 Sugiyama T, Hige S, Asaka M. Development of an H pylori-infected animal model and gastric cancer: recent progress and issues. J Gastroenterol 2002; 37(Suppl 13): 6-9

44 Wang J, Court M, Jeremy AH, Aboshkiwa MA, Robinson PA, Crabtree JE. Infection of Mongolian gerbils with Chinese Helicobacter pylori strains. FEMS Immunol Med Microbiol 2003; 36: 207-213

45 Fujiooka T, Murakami K, Kodama M, Kagawa J, Okimoto T, Sato R. Helicobacter pylori and gastric carcinoma—from the viewpoint of animal model. Kado J Med 2002; 51(Suppl 2): 69-73

46 Eaton KA, Kersulyte D, Mefford M, Danon SJ, Krakowka S, Berg DE. Role of Helicobacter pylori cag region genes in colonization and gastritis in two animal models. Infect Immun 2001; 69: 2902-2908

47 Keenan JI, Rijpkema SG, Durrani Z, Roake JA. Differences in immunogenicity and protection in mice and guinea pigs following intranasal immunization with Helicobacter pylori outer membrane antigens. FEMS Immunol Med Microbiol 2003; 36: 199-205

48 Lee A, O’Rourke J, DeUngria MC, Robertson B, Daskalopoulos G, Dixon MF. A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain. Gastroenterology 1997; 112: 1386-1397

49 Chi J, Fu BY, Nakajima, Hatorri , Kushima. Establishment of Mongolian gerbil animal model infected with Hp infection and change of inflammation and proliferation before and after Hp eradication. Shijie Huaren Xiaohua Zazhi 1999; 7: 557-560

Edited by Xia HHX and Xu FM