Mitochondrial phylogenomics of Acanthocephala: nucleotide alignments produce long-branch attraction artefacts

Jin-Wei Gao1, Xi-Ping Yuan1, Hao Wu1, Chuan-Yu Xiang2, Min Xie1, Rui Song1*, Zhong-Yuan Chen3, Yuan-An Wu1 and Dong-Sheng Ou1

Abstract

Background: Classification of the Acanthocephala, a clade of obligate endoparasites, remains unresolved because of insufficiently strong resolution of morphological characters and scarcity of molecular data with a sufficient resolution. Mitochondrial genomes may be a suitable candidate, but they are available for a small number of species and their suitability for the task has not been tested thoroughly.

Methods: Herein, we sequenced the first mitogenome for the large family Rhadinorhynchidae: Micracanthorhynchina dakusuiensis. These are also the first molecular data generated for this entire genus. We conducted a series of phylogenetic analyses using concatenated nucleotides (NUC) and amino acids (AAs) of all 12 protein-coding genes, three different algorithms, and the entire available acanthocephalan mitogenomic dataset.

Results: We found evidence for strong compositional heterogeneity in the dataset, and Micracanthorhynchina dakusuiensis exhibited a disproportionately long branch in all analyses. This caused a long-branch attraction artefact (LBA) of M. dakusuiensis resolved at the base of the Echinorhynchida clade when the NUC dataset was used in combination with standard phylogenetic algorithms, maximum likelihood (ML) and Bayesian inference (BI). Both the use of the AA dataset (BI-AAs and ML-AAs) and the CAT-GTR model designed for suppression of LBA (CAT-GTR-AAs and CAT-GTR-NUC) at least partially attenuated this LBA artefact. The results support Illiosentidae as the basal radiation of Echinorhynchida and Rhadinorhynchidae forming a clade with Echinorhynchidae and Pomporhynchidae. The questions of the monophyly of Rhadinorhynchidae and its sister lineage remain unresolved. The order Echinorhynchida was paraphyletic in all of our analyses.

Conclusions: Future studies should take care to attenuate compositional heterogeneity-driven LBA artefacts when applying mitogenomic data to resolve the phylogeny of Acanthocephala.

Keywords: Micracanthorhynchina dakusuiensis, Phylogeny, Phylogenetic analysis, Taxonomy, Mitochondrial genome, Rhadinorhynchidae, Echinorhynchida, Compositional heterogeneity
orders, such as the Echinorhynchida, remains question -

Previous studies found some limited evidence that dif -
molecular data with sufficient resolution for the identifi -
is, therefore, necessary to integrate morphological and
evolutionary history is further hampered by the fact that
fossils are very rare for soft-bodied parasitic animals. It
is, therefore, necessary to integrate morphological and
molecular data with sufficient resolution for the identifi-
cation and phylogenetic studies of parasites [12]. Molec-
ular data remain unavailable for many acanthocephalan
lineages, and available data are mostly limited to single
genes or gene fragments. Such small molecular mark-
ers generally have an insufficient resolution for resolving
deep evolutionary splits, such as those of syndermatans,
whose evolutionary history probably dates back hun-
dreds of millions of years [3]. As a result of this scarcity
of molecular data and limited resolution of molecular data,
the taxonomy and phylogeny of Acanthocephala remain
very poorly resolved despite multiple previous attempts
to decipher their evolutionary history [5, 13, 14]. Even the
higher level phylogeny remains incompletely resolved.
For example, some of the classes appear paraphyletic in
some studies based on morphological characters and the
18S gene [4, 5, 15]. Furthermore, the monophyly of some
orders, such as the Echinorhynchida, remains question-
able, and the positions and monophyly of many families
remain unresolved [1, 3, 5, 16, 17]. Among the multiple
unresolved family-level relationships, several studies
indicated that the large family Rhadinorhynchidae Lühe,
1912, may be paraphyletic or polyphyletic, so its status
remains uncertain [11, 15, 18].

Due to their numerous comparative advantages, most
notably unilinear inheritance and absence of recombi-
nation, mitochondrial genomes were initially thought
to be the ideal molecular marker for studying the evolu-
tionary history of life on earth [19]. Although multiple
subsequent studies have shown that issues such as long-
branch attraction (LBA) and base composition biases
may hamper different types of mitogenomic evolution-
ary analyses, especially those aimed at deep evolution-
ary splits [20–23], once these limitations are accounted
for, mitogenomes remain an invaluable marker for phy-
logenetic, taxonomic and evolutionary studies [21, 24].
Previous studies found some limited evidence that dif-
ferent mitochondrial phylogenomics approaches gen-
ernally produce stable acanthocephalan topologies, but
this was largely inferred on the basis of a single dataset,
either nucleotide or amino acid sequences of 12 concat-
enated genes, and two standard phylogenetic inference
methods, maximum likelihood and Bayesian inference [5,
16, 25]. As there is evidence that nucleotide and amino
acid datasets can produce different topologies [22, 26],
both datasets should be tested and topology stability
between them assessed. However, none of the previous
studies had tested the topological stability thoroughly.
Furthermore, mitogenomic sequences of acanthocep-
halans appear to exhibit high evolutionary rates [13], and
compositional heterogeneity was previously identified for
the overall syndermatan mitogenomic dataset [3, 13]. As
both factors can affect phylogenetic reconstruction [27,
28], it is necessary to thoroughly assess their presence
and impacts in this dataset. However, the above studies
[3, 13] included a very small number of acanthocephalan
mitogenomes, so it remains unknown whether the acan-
thocephalan dataset also exhibits compositional hetero-
geneity. Finally, previous studies have not attempted to
use phylogenetic inference algorithms designed to attenu-
ate compositional heterogeneity-driven long branch
artefacts, such as CAT-GTR [28], which sometimes
produces topologies different from the standard phylo-
genetic inference methods [22, 26]. Therefore, the suit-
ability of mitogenomic data for inferring the evolutionary
history of Acanthocephala needs to be tested systemati-
cally before they are applied to this task.

The applicability of mitogenomic data is further ham-
pered by the absence or poor representation of many
acanthocephalan lineages in terms of publicly available
sequenced annotated mitogenomes. There are currently
no mitogenomes available for the entire large family,
and molecular data remain completely unavailable for
the genus Micracanthorhynchina (Rhadinorhynchidae).
This scarcity of molecular data hampers both evolu-
tionary studies and the identification of acanthocephal-
an parasites. To address this dearth of data and explore
the stability of acanthocephalan topology inferred using
mitochondrial phylogenomics, we sequenced the com-
plete mitogenome of Micracanthorhynchina dakusuiensis
(Harada, 1938) Ward, 1951, and used it to conduct thor-
ough phylogenetic analyses of the entire available acan-
thocephalan mitogenomic dataset.

Methods
The parasite was collected on 7 September 2018 from
the intestinal tract of the host, yellow catfish Tachysurus
(syn. Peltobagrus) fulvidraco (Richardson, 1846) (Bagri-
dae) sampled from the South Dongting Lake, Yuanjiang
county, Hunan province, China (28°50′N, 112°23′E). The
mitogenome was sequenced following the methodology
described before [26]. Briefly, DNA was isolated from the
complete specimen using the AidLab DNA extraction kit (AidLab Biotechnologies, Beijing, China). Primers (Additional file 1: Table S1) used to amplify and sequence the entire mitogenome were designed to match conserved regions of mitochondrial genes of orthologues and to produce overlapping amplicons (≈100 bp). PCR reaction mixture of 50 µl comprised: 5 U µl−1 TaKaRa LA Taq polymerase (TaKaRa, Japan), 10 × LA Taq Buffer II, 2.5 µM dNTP mixture, 0.2–1.0 µM of each primer, and 60 ng of DNA template. After the initial denaturation at 98 °C for 2 min, 40 PCR cycles comprised 98 °C for 10 s, 50 °C for 15 s, and 68 °C for 1 min kb−1. When the product was not specific enough, PCR conditions were optimized by increasing the annealing temperature and decreasing the number of cycles. PCR products were sequenced using the same set of primers and the Sanger method. Electropherograms were visually inspected, and their identity was confirmed using BLAST. The mitogenome was assembled manually using DNASTAR v. 7.1 [29]. By confirming that overlaps were identical, we made sure that the mitogenome is complete, circular, and no numts were incorporated into the sequence. The mitogenome was roughly annotated using MITOS [30], and the annotation was then manually fine tuned. tRNAs were additionally identified using ARWEN [31]. PhyloSuite [32] was used to parse and extract the annotation and generate the file for submission to GenBank.

For the mitogenomic dataset, we downloaded all available Acanthocephala mitogenomes (9 April 2022) and used one per species. Nine mitogenomes were unannotated so they were removed. This left 23 sequences in the dataset. We added the sister clade Rotifera [15] as the outgroup. As many, but not all, Rotifera possess fragmented mitogenomes, we selected species that have complete mitogenomes (i.e. all genes on a single chromosome): *Rotaria rotatoria* (Bdelloidea: Rotifera: Syn-dermata) [33] and *Philodina citrina* [5]. PhyloSuite was used to retrieve all mitogenomes, standardise annotation, retrieve taxonomic info from the NCBI, extract mitogenomic data, and generate comparative tables. *Leptorhynchoides thecatus* (NC_006892) [34] was attributed to Rhadinorhynchidae in the GenBank, but we manually reassigned it to Illiosentidae following [35], and *Acanthosentis cheni* (KX108947) [36] was renamed to *Acanthogyrus cheni* (*Acanthogyrus* (*Acanthosentis*) cheni Amin 2005) [1]. For the NCR extraction, the threshold was set to 100 bp. For the phylogenetic analyses, nucleotide sequences of all 12 PCGs were aligned in the codon mode using the accurate G-ins-i strategy in MAFFT [37] and alignments were then refined using MACSE [38]. Aligned genes were concatenated using PhyloSuite, and the optimal evolutionary model and partitioning scheme were inferred using ModelFinder [39] (Additional file 1: Text S1). Phylogenetic analysis was conducted using three different tools: (i) IQ-TREE [40] with 20,000 ultrafast bootstraps [41]; (ii) MrBayes (RRID: SCR_012067) [42] with default parameters: number of runs = 2; number of chains = 4; burnin = 25%; it was allowed to run until the standard deviation of split frequencies plateaued at values < 0.01 (a very good indication of convergence according to MrBayes manual) (Additional file 1: Text S2); ModelFinder output was used to set the data partitioning and select evolutionary models for both of the above analyses; (iii) PhyloBayes-MPI 1.7a [28], with the CAT-GTR model and default parameters (burnin = 500, invariable sites automatically removed from the alignment, two MCMC chains). The conditions considered to indicate a good run were: maxdiff < 0.1 and minimum effective size > 300.

For the three single-gene datasets (*cox1*, *18S*, *28S*) we downloaded all available Acanthocephala homologues, pruned all sequences that were too short or misaligned, and left only one or two sequences per species, apart from the Rhadinorhynchidae, for which we left all sequences that could be aligned. The final datasets comprised 96 *18S* sequences (11 Rhadinorhynchidae), 174 *28S* sequences (12 Rhadinorhynchidae), and 157 *cox1* sequences (12 Rhadinorhynchidae). Phylogenetic analyses were conducted using IQ-TREE as described above, except for the fact that sequences were aligned only using MAFFT and not in the codon mode. iTOL [40] was used to visualise the phylogeny and architecture using files generated by PhyloSuite.

Results

Identity and morphology

Acanthocephalan parasites were collected from the intestinal tract of the host yellow catfish (*Peleobagrus fulvidraco*) and identified as *Micracanthorhynchina dakusuiensis* on the basis of their morphology [43]. The full taxonomic identity is therefore *Palaeacanthocephala* (Class): *Echinorhynchida* (Order): *Rhadinorhynchidae* (Family): *Gorgorhynchina* (Subfamily). The sampled parasites were small (2.6–6.0 mm), with a fusiform trunk (Fig. 1). Anteriorly, the trunk ends with multiple small
spines arranged in 8–9 rows all around the trunk, with the last 6–7 rows present only ventrally. The proboscis is large and cylindrical, with 12 circular rows of 9–10 hooks each. The lemniscus is a bit longer than the receptacle of the proboscis. The specimen pictured herein was male, with two oval tandemly arranged testes visible in the middle of the body. There are six clavate cement glands, and the copulatory bursa is reversible.

Due to the absence of molecular data for the entire genus, it was impossible to precisely identify the species molecularly. The barcode (cox1) analysis produced a disproportionately long branch of *M. dakusuiensis* and resolved it at the base of the order Echinorhynchida (Fig. 2A). The family Rhadinorhynchidae was deeply paraphyletic. The two nuclear single-gene markers (18S and 28S) identified it with some confidence as a Rhadinorhynchidae species; i.e. it clustered with some of the included Rhadinorhynchidae species (Fig. 2B, C). In both analyses, a fraction of Rhadinorhynchidae comprising *M. dakusuiensis* formed a clade with a fraction of Transverseidae and Cavisomatidae species. However, these and many other families were paraphyletic in both analyses.

Comparative mitogenomic architecture
The mitogenome of *M. dakusuiensis* had a circular structure with all 36 genes encoded on the same strand. *Atp8* was not identified. At 16,309 bp, the size of the mitogenome was relatively large within the acanthocephalan dataset, which ranged in size from 13,393 to 15,884 bp (Additional file 2: Dataset S1). There were two large non-coding regions (NCR), 1470 bp and 2123 bp, while other NCRs were all <40 bp in size (Additional file 1: Table S2). Start codons of protein-coding genes (PCGs) were standard: the most common was GTG (8 genes), followed by TTG (2 genes) and ATG (2). Stop codons were also standard: TAG (6 genes), TAA (3 genes), and the abbreviated T– (3 genes). Many genes were remarkably divergent within the dataset, with very few conserved segments, multiple non-alignable segments, and a wide range of gene sizes. *nad4L* was so highly divergent within the dataset that there were only eight sites conserved among all species included. The genes of *M. dakusuiensis* did not exhibit extreme size values, apart from *nad4*: due to several deletions, it spanned only 1197 bases, which made it the smallest among the orthologues included in the dataset. This is not sufficient to suspect an annotation artefact, as the second smallest orthologue was only 10 bp larger, and the size range among the remaining orthologues was very wide (1207 to 1308 bases) (Additional file 2: Dataset S2). In terms of gene order, the newly sequenced *M. dakusuiensis* exhibited a large number of tRNA rearrangements in comparison to all available acanthocephalan mitogenomes, but the variability was limited to tRNA genes and large NCRs (Fig. 3).

Regarding the base composition, the A+T content range was wide in the dataset (54.5–71.4%), with *M. dakusuiensis* in the lower end of the range (56.8%). The GC skew (on the entire coding strand) was 0.43, which is slightly below the average for the Acanthocephala (0.39–0.68 in the currently available dataset), whereas the AT skew was −0.25, which was an average value in the dataset (−0.17 to −0.35) (Additional file 2: Dataset S1).

Phylogeny
All included NUC sequences failed the compositional homogeneity Chi-square test implemented in IQ-TREE. In the AA dataset, only *Plagiorhynchus transversus* passed the test (*P = 7.32%). These results indicate the existence of a very strong compositional heterogeneity in both datasets. BI and ML (IQ-TREE) analyses produced identical NUC topologies and very similar AAs topologies, but there were major differences between the NUC and AAs datasets (Figs. 4, 5, 6, 7). Differences in topologies were almost exclusively caused by the varying position of the newly sequenced *M. dakusuiensis*. Both NUC dataset analyses (BI and ML) produced a topology where *M. dakusuiensis* was at the base (used in the sense: sister group to all other lineages) of Palaeacanthocephala (Figs. 4, 5). In the BI topology, most support values, including the support for this node, were 1.0. In the ML topology, several node support values were low, which included only 51% for the *M. dakusuiensis* node. This topology rendered Echinorhynchida and Rhadinorhynchidae paraphyletic (*Centrorhynchus* aside, all other taxa were monophyletic). The AAs dataset (both BI and ML analyses) produced topologies where Illiosentidae were at the base of Palaeacanthocephala (Figs. 6, 7). In the ML analysis, *M. dakusuiensis* formed a clade with Echinorhynchidae and Pomporhynchidae: [Echinorhynchidae + *M. dakusuiensis* + Pomporhynchidae]). In the BI topology, *M. dakusuiensis* formed a clade with Pomporhynchidae, whereas Echinorhynchidae (*Echinorhynchus truttae*) was a sister lineage to the Polymorphida clade. In both analyses, Echinorhynchida and Rhadinorhynchidae were again paraphyletic taxa. In the BI analysis, all support values were 1.0. In the ML topology, several node support values were again low, including only 48% for the *M. dakusuiensis* branch. Both CAT-GTR analyses (NUC and AAs) produced topologies more closely resembling the AAs than the NUC topologies of the other two algorithms (Figs. 8, 9). Both analyses produced maxdiff values that indicate a good run (AAs = 0.065; NUC = 0.061), and the minimum effective size values remained between...
50 and 300, which indicated an acceptable run. The CAT-GTR-AAs topology was identical to the ML-AAs topology. The CAT-GTR-NUC topology was also very similar to the ML-AAs topology, but the topology of the variable clade was changed: \(M.\ daku suiensis + (Echinorhynchidae + Pomporhynchidae)) . Both topologies exhibited 1.0 support values for almost all nodes. The topology of the remaining two classes.

Fig. 2 Single gene-based identification of \(M.\ daku suiensis\): A \text{cox1}, B \text{28S}, C \text{18S}. Only the relevant fragments of phylograms (containing the query sequence) are shown.
was stable, with the Archiacanthocephala as the sister group to the remaining acanthocephalans in all topologies. To assess whether the inclusion of distantly-related taxa affected the topology, we conducted ML analyses of only the Palaeacanthocephala dataset, with one representative of Eoacanthocephala and Archiacanthocephala each as outgroups. The topologies were identical to the corresponding complete acanthocephalan NUC-ML AAs-ML topologies (Additional file 1: Figs S1 and S2).

Discussion

The mitogenome of *M. dakusuiensis* exhibited the standard acanthocephalan architecture, including the features of missing *atp8* and all 36 genes encoded on the same strand [2, 44, 45]. The average mitogenome size is relatively small in the Syndermata [44], so at 16,309 bp, *M. dakusuiensis* possessed the largest mitogenome in the dataset. Somewhat surprisingly, it exhibited only two NCRs larger than 100 bp, whereas several species with smaller mitogenomes exhibited three to five such NCRs.
However, both NCRs of *M. dakusuiensis* were > 1 Kbp, which is exceptional within the dataset. We inspected the base composition in the dataset, as there is strong evidence that base composition biases can affect phylogenetic and other evolutionary analyses [22, 23, 27]. The newly sequenced *M. dakusuiensis* exhibited a relatively low A+T content within the dataset, but none of the base composition parameters was an outlier within the dataset. Although skews were apparently inverted in *E. truttae* (NC_019805) (AT = 0.29, GC = −0.44), this was an artefact caused by the authors submitting the minus strand to the GenBank, as reflected in all genes being apparently encoded on the minus strand (Fig. 3). While *M. dakusuiensis* was not exceptional in this aspect, the entire dataset exhibited a significant compositional heterogeneity, which is a recognised problem for phylogenetic reconstruction [27].

We conducted multiple phylogenetic analyses using several different datasets and algorithms. Rhadinorhynchidae was paraphyletic in all single-gene marker analyses, which is in agreement with previous reports that Rhadinorhynchidae may be paraphyletic or
polyphyletic [15, 18]. However, we cannot treat this result as reliable because all three markers produced deeply unorthodox phylogenies with numerous paraphyletic taxa, which is indicative of an insufficient resolution of small molecular markers for inferring the evolutionary history of such an old clade. This is indirectly supported by the fact that mitogenomes (12 PCGs) produced much more stable and orthodox topologies. As this is the first sequenced mitogenome for Rhadinorhynchidae, mitogenomic data cannot provide any evidence concerning the monophyly of Rhadinorhynchidae. However, all analyses based on mitogenomic data, including the barcode (cox1) analysis, indicated that *M. dakusuiensis* possesses an exceptionally long branch. Disproportionately fast mitogenomic evolution has been associated with parasitism [46, 47] and low locomotory capacity [48] previously, but the entire clade Acanthocephala is parasitic and exhibits low locomotory capacity, so this does not explain the disproportionately long branch of *M. dakusuiensis*. We can only speculate that this species, or possibly a wider lineage, may have undergone a severe population bottleneck in its evolutionary history, causing elevated evolutionary rates [49]. Regardless, we can infer with relative confidence [28] that this caused LBA artefacts in
all NUC-based analyses. As a result, in the *cox1* dataset, it did not cluster with other sequences from the same family. Aside from the exceptionally fast mitogenomic evolution in this lineage, we should also not discount the possibility of a mitochondrial introgression event in its evolutionary history, nor the possibility that Rhadinorhynchidae is paraphyletic. Future mitogenomic studies should therefore seek agreement from nuclear genome data to precisely narrow down the underlying cause for this phenomenon.

Mitochondrial phylogenomic analyses revealed that there was notable variability between the NUC and AAs datasets and congruence between the two standard phylogenetic algorithms (ML and BI). Remarkably, both datasets (AAs and NUC) produced topologies closely resembling the AA dataset (ML and BI) when we applied the algorithm designed to account for compositional heterogeneity, CAT-GTR. As *M. dakusuiensis* had an exceptionally long branch in all analyses, this is strongly indicative of the NUC-BI and NUC-ML analyses producing LBA artefacts. The CAT-GTR algorithm can to an extent suppress LBA artefacts, especially in combination with slower-evolving amino acid sequences [22, 26, 28, 50]. On this basis, and the fact that ML-AAs and CAT-GTR-AAs analyses produced congruent topologies, we propose that CAT-GTR topology is the most reliable. The previous result produced by the *18S + 28S* dataset [51]. Due to the poor representation of acanthocephalan lineages, our analyses also cannot resolve the question of the sister lineage to Rhadinorhynchidae. Some previous studies (*18S* and *28S*-based) suggested that Transvenidae is the sister family [52], but another *18S*-based study indicated that Rhadinorhynchidae are deeply paraphyletic and that the sister group relationship with Transvenidae is limited to one of the three Rhadinorhynchidae lineages [18]. As mitogenomes remain unavailable for Transvenidae, and this is the first mitogenome for Rhadinorhynchidae, we cannot assess this hypothesis. On the basis of lineages available in our analyses, Rhadinorhynchidae, or the segment of Rhadinorhynchidae comprising the genus *Micracanthorhynchina* if the family is paraphyletic, most likely forms a clade with Echinorhynchidae and Pomporrhynchidae. A similar clade (comprising *Rhadinorhynchus lintoni* and *Rhadinorhynchus pristis*) was observed in the above-mentioned *18S* analysis [18]. As the topology is supported by both nuclear and mitogenomic data, this presents solid evidence in support of this scenario.

Classes were all monophyletic, and their relationships were Archiacanthocephala + (Eoacanthocephala + Palaeacanthocephala), which corresponds to multiple previous studies [5, 17, 25, 51]. All topologies support the synonymization of Eoacanthocephala and Polya- canthocephala [6], but it should be noted that this synonymization should be further confirmed using suitable nuclear data because mitonuclear discordance has been observed in numerous lineages [22, 53]. The clustering of *Centrorhynchus aluconis* with *Sphaerirostris* species has been observed before [17]. These authors argued that
Indeed, the paraphyly can be resolved by merging *Sphaerirostris* and *Centrorhynchus*, but it should be noted that it can also be resolved by renaming *C. aluconis* to *Sphaerirostris aluconis*, thus not challenging the status of any of these genera. Before any taxonomic revision can be made, this needs to be confirmed by nuclear data as well. The order Echinorhynchida was paraphyletic in all of our analyses. The paraphyly of Echinorhynchida was previously observed by several other mitogenome-based studies [6, 16, 17, 54] and a nuclear data-based study (18S and 28S) [52]. In this light, our results suggest that these were probably not LBA artefacts. Based on the topology accepted as the most likely in our study, to resolve the paraphyly, it would be necessary to either merge Echinorhynchida and Polymorphida into a single order or place Illiosentidae into a separate order. Before any changes can be proposed, this needs to be supported by studies with all relevant lineages represented as well as by independent nuclear data-based analyses. Regarding other orders, Gyracanthocephala was also paraphyletic due to the Neoechinorhynchida resolved as a derived clade within the Gyracanthocephala. The paraphyly of this order was also observed before [16, 17, 54], but the specific topology was affected by the algorithm and dataset in our study, so future studies should take this instability into consideration.

Conclusions

In this study, we sequenced the first mitogenome for the large family Rhadinorhynchidae, *M. dakusuiensis*, thereby also generating the first molecular data for this genus. Mitochondrial phylogenomic analyses revealed that there was notable variability between the NUC and AAs datasets and notable congruence between the two standard phylogenetic algorithms (ML and BI). The newly sequenced species exhibited a disproportionately long branch in all analyses, which caused an LBA (*M. dakusuiensis* at the base of the Echinorhynchida clade) when the NUC dataset was used in combination with standard phylogenetic algorithms. The use of the AA dataset and CAT-GTR model designed for suppression of LBA successfully attenuated the major LBA artefact, but some minor topological instability remained. Our analyses thus support Illiosentidae as the basal radiation of Echinorhynchida, whereas Rhadinorhynchidae, or the segment of Rhadinorhynchidae comprising the genus *Micracanthorhynchina* if the family is paraphyletic, most likely forms a clade with Echinorhynchidae and Pomporhynchidae. Due to the scarcity of data for Rhadinorhynchidae and other closely related lineages, such as the Transvenidae, it is impossible to resolve the question of monophyly of Rhadinorhynchidae and identify the sister lineage to this family. There is strong evidence for paraphyly of the order Echinorhynchida, but this needs to be supported by high-resolution nuclear data as well. Mitochondrial genomes are a promising marker for studying the phylogeny of Acanthocephala, but only in combination with methodological approaches that attenuate the compositional heterogeneity-driven LBA artefacts and putative removal of rogue lineages. Future studies should not rely solely on nucleotide sequences and standard phylogenetic methods when applying mitogenomic data to resolve the phylogeny of Acanthocephala.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13071-022-05488-0.

Acknowledgements

The authors thank Dr Dong Zhang for providing valuable methodological advice.

Author contributions

JWG participated in the study conception and design, sample collection, molecular lab work, mitogenome assembly and annotation, data analysis, data visualization, and manuscript preparation. XPY participated in the data analysis, sample collection, and investigation. HW participated in the sample collection, molecular lab work, and data analysis. RS participated in the study conception and design, sample collection, and data analysis. ZYC participated in the study conception and design, sample collection, data analysis, writing-review & editing, and funding acquisition. ZYC participated in the study conception, project administration, data visualization, and funding acquisition. YAW participated in the project administration, funding acquisition, and writing-review & editing. DSO participated in the data analysis, supervision, and writing-review & editing. All authors have approved the submitted version and agreed to be personally accountable for their own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature. All authors read and approved the final manuscript.

Funding

This work was funded by the Earmarked Fund for National Natural Science Foundation of China (32173020), Natural Science Foundation of Changsha (kq2014170); and Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases (grant no. 2021KJ03).

Abbreviations

AAs: Amino acid sequences of 12 concatenated PCGs; BI: Bayesian inference; Kbp: Kilo base pair; LBA: Long-branch attraction; ML: Maximum-likelihood; NCR: Non-coding region; NUC: Nucleotide sequences of 12 concatenated PCGs; PCG: Protein-coding gene.

Figure S1

The NUC—ML phylogeny of Palaeacanthocephala.

Figure S2

The AAs—ML phylogeny of Palaeacanthocephala.
7. Hua CJ, Zhang D, Zou H, Li M, Jakovlić I, Wu SG, et al. Morphology is not a
6. Gazi M, Kim J, García-Varela M, Park C, Littlewood DTJ, Park J-K. Mitog-
5. Mauer K, Hellmann SL, Groth M, Fröbius AC, Zischler H, Hankeln T, et al.
4. Amin OM. Classification of the Acanthocephala. Folia Parasitol.
3. Mauer K, Hellmann SL, Groth M, Frobius AC, Zischler H, Hankeln T, et al.
The genome, transcriptome, and proteome of the fish parasite pomphor-
yrhynchus laevis (Acanthocephala). PLoS ONE. 2020;15:e0232973. https://
doi.org/10.1371/journal.pone.0232973.
2. Sielaff M, Schmidt H, Struck TH, Rosenkranz D, Mark Welch DB, Hankeln T, et al. Phylogeny of syndermata (syn Rotifera): mitochondrial gene order verifies epizoic Seisonidea as sister to endoparasitic Acanthocephala within monophyletic hemichordata. Mol Phylogenet Evol. 2016;96:79–92.
1. Monks S. Phylogeny of the Acanthocephala based on morphological characters. Syst Parasitol. 2001;48:81–115. https://doi.org/10.1023/A:100640020743.
6. Weber M, Wey-Fabrizius AR, Podsiadlowski L, Witek A, Schill RO, Sugár L, et al. Phylogenetic analyses of endoparasitic Acanthocephala based on mitochondrial genomes suggest secondary loss of sensory organs. Mol Phylogenet Evol. 2013;66:182–9.
5. Foster PG. Modeling compositional heterogeneity. Syst Biol. 2004;53:485–95. https://doi.org/10.1080/10635150490146031.
4. Poulin R. Determinants of host-specificity in parasites of freshwater fishes. Int J Parasitol. 1992;22:753–8.
3. Hildebrand J, Adamyckz M, Laskowski Z, Zaleśny G. Host-dependent morphology of Isthmiophora melis (Schrank, 1788) Luhe, 1909 (Acanthocephala: Rhadinorhynchidae) from Scatophagus argus (Linnaeus). Acta Parasitol. 2020;65:610–9. https://doi.org/10.2478/actapara-2019-0024.
2. Rubinoff D, Holland BS, Savolainen V. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Systematic Biol. 2005;54:952–61.
1. Verweyen L, Klimpel S, Palm HW. Molecular phylogeny of the Acanthocephala: Rhabdorhynchidae from scatophagid argus (Linn.) (scatophagidae) in Vietnam. Acta Parasit. 2020;65:610–9. https://doi.org/10.2478/s11686-020-00191-5.
0. Amin OM, Heckmann R, Singh HS. The molecular phylogeny of pararhabdorhynchus magna aha, amin, nego, heckmann, 2018 (Acanthocephala: Rhabdorhynchidae) from scatophagus argus (Linn.) (scatophagidae) in Vietnam. Acta Parasit. 2020;65:610–9. https://doi.org/10.2478/s11686-020-00191-5.
33. Min G-S, Park J-K. Eurotatorian paraphyly: revisiting phylogenetic relationships based on the complete mitochondrial genome sequence of rotaria rotatoria (Bdelloidea: Rotifera: Synndermeta). BMC Genomics. 2009;10:533. https://doi.org/10.1186/1471-2164-10-533.

34. Steinerauer ML, Nickel BB, Broughton R, Ortí G. First sequenced mitochondrial genome from the phylum Acanthocephala (Leptorhynchoidea thecatus) and its phylogenetic position within metazoan. J Mol Evol. 2005;60:706–15. https://doi.org/10.1007/s00239-004-0159-8.

35. García-Varela M, González-Oliver A. The systematic position of leptorhynchoideans (Kostylev, 1924) and pseudoleptorhynchoideans (Salgado-Maldonado, 1976), inferred from nuclear and mitochondrial DNA gene sequences. Am Soc Parasitol. 2008;94:959–62. https://doi.org/10.1645/GE-1420.1.full.

36. Song R, Zhang D, Deng S, Ding D, Liao F, Liu L. The complete mitochondrial genome of Acanthosentis cheni (Acanthocephala: Quadrigyridae). Mitochondrial DNA Part B. 2016;1:797–8. https://doi.org/10.1080/23802396.2016.1197076.

37. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

38. Ranwez V, Harispe S, Deluc F, Douzery EJ. MACSE: multiple alignment of coding sequences accounting for frameshifts and stop codons. PLoS ONE. 2011;6:e22594. https://doi.org/10.1371/journal.pone.0022594.

39. Talyaanamoorthy S, Minh BQ, Wong TF, Von Haeseler A, Jermain LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.

40. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new Models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4. https://doi.org/10.1093/molbev/msaa015.

41. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–95.

42. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.

43. Wang P-Q. 棘头虫志. Fujian science and Technology Press 1991.

44. Wey-Fabrizius AR, Podsiadlowski L, Herlyn H, Hankeln T. Platyzoan mitochondrial genomes. Mol Phylogenet Evol. 2013;69:365–75.

45. Gissi C, Ianneli F, Pesole G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity. 2008;101:301–20.

46. Hassanin A, Léger J. Evidence for multiple reversals of asymmetrical relationships in animal phylogeny. Proc Royal Soc B: Biol Sci. 2018;285:20181524. https://doi.org/10.1098/rspb.2018.1524.

47. Toews DPL, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol. 2012;21:3907–30. https://doi.org/10.1111/j.1365-294X.2012.05664.x.

48. Jakovlić I, Zou H, Chen J-H, Lei H-P, Wang G-T, Liu J, et al. Slow crabs—fast, convenient online submission • thorough peer review by experienced researchers in your field • rapid publication on acceptance • support for research data, including large and complex data types • gold Open Access which fosters wider collaboration and increased citations • maximum visibility for your research: over 100M website views per year

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions