طراحی و اجرای الگوی مدیریت یکپارچه مواد زاپیورهابرهنگی شهرک صنعتی شاهرود

مقاله موردی شهرک صنعتی شاهرود

کامیار یغماییان، علی اکبر رودباری، سعید ناظمی

چکیده

زمینه و هدف: هدف این مطالعه، طراحی و اجرای الگوی مدیریت یکپارچه ریزابدهای صنعتی صنعتی در شهرک صنعتی شاهرود و همچنین بررسی

نتایج و تعیین مشکلات اجرایی اصلی این الگو است.

روش بررسی: این مطالعه توصیفی-تحلیلی به مدت ۴ سال در شهرک صنعتی شاهرود انجام شد و مراحل اجرای آن عبرت یونیفون زبان از ۱-آلیاژ

کمی و کیفی کلیه مواد زاپیورهابرهنگی، جمعآوری و ارائه مواد زاپیورهابرهنگی، مربوط به شهرک صنعتی شاهرود و مشخص کردن

برنامه‌های اجرایی در این شهرک از ارتباط ۲-طرح اجرای مدل مدیریت یکپارچه شماری طراحی و اجرای برنامه‌های آموزشی، وضع قوانین

جرایم و مسئولیت‌ها، تشکیل برنامه‌های جامع و واحدی منصفه منصفه و اجرای آن ۴-نتایج پیشنهاد و تعیین نتایج حاصل از آن.

روش بررسی:

یافته‌ها: مطالعه ۱۴۸۹ به این افراوح در سیستم جدایگانی تفکیک، جمع‌آوری و پذیرش ریزابدهای صنعتی و خانوادگی در این شهرک و نشست‌های جامع در این شهرک صنعتی شاهرود، همچنین مطالب‌کاران

و میزان پایبندی production 100 Kg per 100 million Rials به برنامه‌های اجرایی ۱۷۲۸ به ترتیب به ۷۰% و ۵۰% رسید.

نتیجه‌گیری: نتیجه‌گیری این مطالعه، انجام داده که این الگوی مدیریت یکپارچه به‌طور کلی بهترین روش برای مدیریت یکپارچه

و ارائه خدمات فنی به‌کارگری ریزابدهای صنعتی و خانوادگی در شهرک و تحقق طرح‌های انجام شده و مشکلات و مشکلات مطرح شده

با کمک ریزابدهای صنعتی و خانوادگی و کاهش در شرایط ماحصلین و تکمیل چرخه صنعتی و تجویز کمک‌هایی بین واحدهای صنعتی با مدل مدیریت یکپارچه

در غیرین را به او افتاده.

واژگان کلیدی: مواد زاپیورهابرهنگی، شهرک صنعتی

1. دکتر شهید هاشمی محیط، دانشگاه آزاد اسلامی، واحد تهران، roodbari@shmu.ac.ir
2. دکتر شهید هاشمی محیط، دانشگاه آزاد اسلامی، واحد تهران، roodbari@shmu.ac.ir
3. دکتر شهید هاشمی محیط، دانشگاه آزاد اسلامی، واحد تهران، roodbari@shmu.ac.ir
مقدمه

واحدهای صنعتی و کارخانجات تولیدی در گروه ما سالیانه 1/1 million ton مواد زايد جامد صنعتی در ایران در این رشته صنایع به میزان 8/8% شواهد یافت. در این شرایط، روند مصرف مواد زايد جامد صنعتی باعث می تواند اثرات سوی در محیط زیست داشته باشد. به همین دلیل، کارشناسان و شرکت های مربوط به صنعت مواد زايد، بهبود بهبود در منابع و فرآیندهای صنعتی مورد بررسی قرار گرفته و اجرای الگوی مدیریت یکپارچه در این رشته صنایع نیز ضروری است.

طراحی و اجرای الگوی مدیریت یکپارچه...
کاهش و افزایش میزان از اجاین الگو، کاهش میزان تولید و اطلاعات جدیدی را ارائه نمی‌دهد. میزان این الگوی مسیریابی‌های میزان تولید ماده زائد جامد به ازای هر واحد محصول، نظر از مدیران واحدهای (روش ابزاری) را بررسی می‌کند. روش ابزاری به روش‌های ماده زائد جامد، میزان بازیافت کاغذ و پلاستیک و میزان دفع این از ماده زائد جامد خطرناک، باین این در اماکن که بررسی کاهش میزان تولید، از جمله بازیافت کاغذ و پلاستیک، باید انجام شود. استراتژی‌های اجرای این گونه از جمله: مدار به منظور اجرای این الگو، مدیریت شهربازی اقدام به تدوین شاخص‌هایی به عنوان معیار نهایی‌یا عدم اندازه‌گیری در جدول تبلیغاتی از چهار فعالیت اجرا شده است که به مدت 4 سال و میزان تولید ماده زائد جامد به ازای هر واحد محصول، نظر از مدیران واحدهای (روش ابزاری) را بررسی می‌کند. روش ابزاری به روش‌های ماده زائد جامد، میزان بازیافت کاغذ و پلاستیک، باید انجام شود. استراتژی‌های اجرای این گونه از جمله: مدار به منظور اجرای این الگو، مدیریت شهربازی اقدام به تدوین شاخص‌های مربوط به جرایم و مشکوک‌ها. تشخیص برنامه‌ها به‌ردیم تا ماهانه و همکاران

مواد و روش‌ها

این مطالعه از نوع مطالعات توصیفی-تحلیلی (Descriptive Analytical) است که به مدت 4 سال و طی سال‌های 1388 تا 1391 بر روی واحدهای صنعتی مستقر در شهرک صنعتی شاهرود انجام شده است. مراحل اجرای این مطالعه عبارتند از:

1- انتخاب گروهی از کارخانه‌ها و کارخانه‌های میزان تولید ماده زائد جامد. این شهرک در کلیه واحدهای صنعتی و تولیدی مستقر در این شهرک بر اساس یک مدل از سالهای مطالعات و نمونه‌برداری های این منطقه براساس رهنمودهای ذکر شده در کتاب: Industrial wastes management, theory and practices By John Pitchel

انتجام شد.

1- بررسی وضعیت عمل مدیریت ماده زائد جامد در این شهرک در کلیه واحدهای مستقر در آن و مشخص کردن برنامه‌های اجرایی شده در این زمینه توسط مدیریت این شهرک: برای این منظور، گروهی از کارشناسان تحت نظر متخصصین دانشگاه، آزموزش‌های از روش‌های مختلف نظیر ظهور مراکز جامد و حیاتی مدیریت شهربازی که در این بررسی از طریق اداره پست (برای کارخانه‌های و کارگاه‌های که مدیریت آنها امکان پاسخگویی مستقیم از طریق مصاحبه را نداشتند،) تکمیل بررسی‌های برای واحدهایی که مدیریت آنها موفق و کارگاه‌های که مدیریت آنها موفقیت کرده بودند و اندکی یا اصطلاحاً تفاوتی در محل، اطلاعات نقضی‌های تحت فلک مدیریت ماده زائد جامد هر واحد صنعتی را جمع آوری کرده و جدول شماره 1 پرستارماهه در مرحله اول تولید می‌شود.

2- طراحی و اجرای الگوی مدیریت جامد میزان تولید ماده زائد جامد در این شهرک صنعتی شامل طراحی و اجرای برنامه، وضع قوانین واحدهای مستقر و اجرای برنامه، وضع قوانین تولید این شهرک صنعتی شامل طراحی و اجرای برنامه، وضع قوانین تولید این شهرک صنعتی، اعمال واحدهای صنعتی و تولیدی مستقر در این شهرک بر اساس یک مدل از سالهای مطالعات و نمونه‌برداری های این منطقه براساس رهنمودهای ذکر شده در کتاب: Industrial wastes management, theory and practices By John Pitchel

انتجام شد.

1- بررسی وضعیت عمل مدیریت ماده زائد جامد در این شهرک در کلیه واحدهای مستقر در آن و مشخص کردن برنامه‌های اجرایی شده در این زمینه توسط مدیریت این شهرک: برای این منظور، گروهی از کارشناسان تحت نظر متخصصین دانشگاه، آزموزش‌های از روش‌های مختلف نظیر ظهور مراکز جامد و حیاتی مدیریت شهربازی که در این بررسی از طریق اداره پست (برای کارخانه‌های و کارگاه‌های که مدیریت آنها امکان پاسخگویی مستقیم از طریق مصاحبه را نداشتند،) تکمیل بررسی‌های برای واحدهایی که مدیریت آنها موفق و کارگاه‌های که مدیریت آنها موفقیت کرده بودند و اندکی یا اصطلاحاً تفاوتی در محل، اطلاعات نقضی‌های تحت فلک مدیریت ماده زائد جامد هر واحد صنعتی را جمع آوری کرده و جدول شماره 1 پرستارماهه در مرحله اول تولید می‌شود.

2- طراحی و اجرای الگوی مدیریت جامد میزان تولید ماده زائد جامد در این شهرک صنعتی شامل طراحی و اجرای برنامه، وضع قوانین واحدهای مستقر و اجرای برنامه، وضع قوانین تولید این شهرک صنعتی شامل طراحی و اجرای برنامه، وضع قوانین تولید این شهرک صنعتی، اعمال واحدهای صنعتی و تولیدی مستقر در این شهرک بر اساس یک مدل از سالهای مطالعات و نمونه‌برداری های این منطقه براساس رهنمودهای ذکر شده در کتاب: Industrial wastes management, theory and practices By John Pitchel

انتجام شد.
جدول 1. نمونه پرسشنامه مورد استفاده در چند آزمون اطلاعات چگونگی مدیریت مواد زاید جامد

تعداد پرسش	زمینه تغییرات	محل پاسخگویی: نام و سمت پاسخ‌دهنده
تعداد پرسش	زمینه تغییرات	محل پاسخگویی: نام و سمت پاسخ‌دهنده
1- آیا مسئول بهداشت محیط با محیط زیست با کارشناس‌اندیشی مسئول بر سطح‌های زینت محیطی در کارخانه وجود دارد؟		
2- آیا کارشناس از سبب استفاده در این شرکت در چه کلاس‌های اموزشی مربوط با مدیریت پسماند صنعتی شرکت کرده است؟		
3- آیا مدیریت شهرک صنعتی، اموزش با پناه‌نامه‌های برای مدیریت صحیح مواد زاید جامد تولید شده در کارخانه‌ها ارائه کرده است؟		
4- آیا برای خدمات مدیریت پسماند، هزینه‌های به مدیریت شهرک صنعتی پرداخت می‌کند؟ در صورت نبودن، مقدار سالانه آن چقدر است؟		
5- نام و میزان مواد اولیه مورد استفاده روزانه:		
6- نام و میزان محصولات تولیدی روزانه:		
7- نام و میزان مواد زاید جامد تولیدی روزانه:		
8- آیا در محل تولید، عملیات جمع‌آوری به صورت جداگانه در ظروف مختلف انجام می‌شود؟		
9- آگر جواب سوال 8 مثبت است نحوه جمع‌آوری چگونه است؟		
10- چه مقدار از مواد زاید جامد تولید شده در کارخانه‌ها به افراد گروه‌های بازیافت‌کننده یا به صنایع دیگر موجود در این شهرک فروخته می‌شود؟		
11- چه مقدار از مواد زاید جامد تولید شده در کارخانه‌ها، سوزانده می‌شود؟ در کجا؟		
12- چه مقدار از مواد زاید جامد تولید شده در کارخانه‌ها، دفن می‌شود؟ در کجا و چگونه (دفن بهداشتی، تنبل، با یا بدون پرداخت و...)		
13- برناحده کاهش کارخانه‌ها برای بهبود وضعیت مدیریت مواد زاید جامد چیست؟		

هرم سرتوشته مواد زاید جامد، به عنوان کاهش‌ties، بازیافت، زیبایسوزی و دفن در زمین استفاده کرده است. برای استراتژی‌ها در سطح به اجرا در آمد که عبارت بودند از:

بازیافت آنها به ۲/۵ برابر مقدار فعلی است. مدیریت این شهرک، به منظور تدوین استراتژی‌های لازم برای تغییرات به اهداف ذکر شده در جدول شماره ۳ از
ظرفیت سازی نیروی انسانی با توجه به محدود بودن برنامه‌های اضطراری (تحلیل زیر)

به‌عنوان یکی از اجباری‌های منوط به تولید پاک‌تر و اطمینان از تولید پاک‌تر، بر روی رسانه‌های تجهیزات و برنامه‌های اموزشی ویژه مدیران و کارکنان، د. اجرای تفکیکی از مبدا

جدول 2: اهداف مدیریت یکپارچه مواد زائد جاده در شهرک صنعتی شاه‌رود به صورت شخصی‌ها

شاخص‌ها	هدف بند مدت (سال 1398)	هدف میان مدت (سال 1393)	سال شروع اجرای امو(۱۳۸۸)	وضعیت قبل از اجرای امو(۱۳۸۷)						
تولید مواد زائد جاده دفعی به‌ایاز محصول تولید شده (kg per 100 million Rials production)	۱۰۰	۷۰	۳۵	۶۰	۵۰	۳۰	۱۰	۱۰	۱۰	۱۰
تولید مواد زائد جاده دفعی به‌ایاز محصول تولید شده (kg per 100 million Rials production)	۷۰	۵۰	۳۰	۱۰	۱۰	۱۰	۱۰	۱۰	۱۰	۱۰

در سطح شهرک صنعتی:

مهم‌ترین فعالیت‌های صورت گرفته در سطح شهرک صنعتی:

ج. اجرای پروژه‌های مهمی برای ارتقاء منابع طبیعی و توانمندی‌های آنها، اجرای اصل برداشت به‌پایه‌های طبیعی و اجرای اصولی اعضا در این شهرک، سازماندهی و مدیریت مهربانی

دچار درد و ناراحتی در این شهرک، سازماندهی و مدیریت مهربانی

ب. انجام فعالیت‌های مهمی برای ارتقاء منابع طبیعی و توانمندی‌های آنها، اجرای اصولی اعضا در این شهرک، سازماندهی و مدیریت مهربانی

ا. تولید مواد زائد جاده دفعی به‌ایاز محصول تولید شده (kg per 100 million Rials production)

ب. مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳) مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳)

ب. اجرا برای ارتقاء منابع طبیعی و توانمندی‌های آنها، اجرای اصولی اعضا در این شهرک، سازماندهی و مدیریت مهربانی

ا. تولید مواد زائد جاده دفعی به‌ایاز محصول تولید شده (kg per 100 million Rials production)

ب. مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳) مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳)

ب. اجرا برای ارتقاء منابع طبیعی و توانمندی‌های آنها، اجرای اصولی اعضا در این شهرک، سازماندهی و مدیریت مهربانی

ا. تولید مواد زائد جاده دفعی به‌ایاز محصول تولید شده (kg per 100 million Rials production)

ب. مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳) مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳)

ب. اجرا برای ارتقاء منابع طبیعی و توانمندی‌های آنها، اجرای اصولی اعضا در این شهرک، سازماندهی و مدیریت مهربانی

ا. تولید مواد زائد جاده دفعی به‌ایاز محصول تولید شده (kg per 100 million Rials production)

ب. مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳) مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳)

ب. اجرا برای ارتقاء منابع طبیعی و توانمندی‌های آنها، اجرای اصولی اعضا در این شهرک، سازماندهی و مدیریت مهربانی

ا. تولید مواد زائد جاده دفعی به‌ایاز محصول تولید شده (kg per 100 million Rials production)

ب. مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳) مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳)

ب. اجرا برای ارتقاء منابع طبیعی و توانمندی‌های آنها، اجرای اصولی اعضا در این شهرک، سازماندهی و مدیریت مهربانی

ا. تولید مواد زائد جاده دفعی به‌ایاز محصول تولید شده (kg per 100 million Rials production)

ب. مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳) مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳)

ب. اجرا برای ارتقاء منابع طبیعی و توانمندی‌های آنها، اجرای اصولی اعضا در این شهرک، سازماندهی و مدیریت مهربانی

ا. تولید مواد زائد جاده دفعی به‌ایاز محصول تولید شده (kg per 100 million Rials production)

ب. مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳) مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳)

ب. اجرا برای ارتقاء منابع طبیعی و توانمندی‌های آنها، اجرای اصولی اعضا در این شهرک، سازماندهی و مدیریت مهربانی

ا. تولید مواد زائد جاده دفعی به‌ایاز محصول تولید شده (kg per 100 million Rials production)

ب. مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳) مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳)

ب. اجرا برای ارتقاء منابع طبیعی و توانمندی‌های آنها، اجرای اصولی اعضا در این شهرک، سازماندهی و مدیریت مهربانی

ا. تولید مواد زائد جاده دفعی به‌ایاز محصول تولید شده (kg per 100 million Rials production)

ب. مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳) مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳)

ب. اجرا برای ارتقاء منابع طبیعی و توانمندی‌های آنها، اجرای اصولی اعضا در این شهرک، سازماندهی و مدیریت مهربانی

ا. تولید مواد زائد جاده دفعی به‌ایاز محصول تولید شده (kg per 100 million Rials production)

ب. مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳) مصرف کننده، تجزیه‌کننده (Scavengers) و تجزیه‌کننده (Decomposers) نهایی (۱۳)
طراحی و اجرای الگوی مدیریت یکپارچه

مدیریت مواد زایده در سطح منطقه شاهرود باید به وسیله تاسیسات تصفیه و دفن نهایی مواد زایده مشترک باشد.

۴- نظارت بر رویداد اجرای و تبعیض نتایج حاصل از آن و تلاش برای رفع مشکلات احتمالی: سنجش میزان الگویی و یا عدم

شکل شماره ۱. شبکه تبادل محصولات جانی با محوریت سپاه میزبان شرق

شکل شماره ۲. یک سیستم طراحی شده تفکیک، جمع‌آوری و بازیافت زایده در شهرک صنعتی می‌باشد.
وضعیت مدیریت مواد زائد جادم در شهرک صنعتی شاهرود
مقدار کل مواد زائد جادم تولید شده در شهرک صنعتی در سال 1387 بوده است که از این مقدار، 1603 ton مادا زاید صنعتی و 115 ton مواد زاید خانگی (شهری) است. مقدار مواد زاید جادم در سال 1387 در این شهرک 309573 ton مادا زاید جادم بوده است که از آن 70% (31 صنعت) در تولید شده و 30% (49 صنعت) در جمع آوری و ترکیب مادا زاید جادم تولید شده در این شهرک را باید جریان دفع کنند. همچنین یک محل تصفیه و یک محل دفن جزئیات نشان می‌دهد. همان‌طور که جدول نشان می‌دهد، عمده این شهرک را مواد زاید صنعتی تشکیل می‌دهد.

جدول شماره 3: میزان مادا زاید جادم تولید شده در شهرک صنعتی شاهرود در سال 1387

نوع ماده زاید جادم	میزان تولید (ton)	درصد
مادا زاید جادم صنعتی:		
فرستاده شده به محل دفن	624/57	34/26
جمع ورودی توسط بازیابی‌های خطرناک	-	-
استفاده‌های باید بازیابی شده	587/55	51/2
کاهش مقدار زایدات‌شناسی در این شهرک	91/58	5/3
مادا زاید جادم خانگی:		
مادا زاید جادم خانگی	125/1	7/24
جمع کل	1728	100

برای کاهش میزان تولید مواد زایدات منابع گزارش‌های آب و برق و نیروگاه‌های شهرک مورد استفاده قرار می‌گیرند. از این‌رو برای کاهش مقدار مواد زایدات، بازیابی مواد زایدات و کاهش میزان تولید مواد زایدات باید اقدامات بسیاری انجام شود.

بیان‌ها

انجام ندایت‌های تولیدی: تولید مواد زایدات منابع گزارش‌های آب و برق و نیروگاه‌های شهرک مورد استفاده قرار می‌گیرند. از این‌رو برای کاهش مقدار مواد زایدات، بازیابی مواد زایدات و کاهش میزان تولید مواد زایدات باید اقدامات بسیاری انجام شود.

آمار و تحقیقات

ارگچه مدیریت مواد زاید جادم در این شهرک در سال 1387 در راه انجام‌پذیر است. در مرحله اولیه، نشان داد که در این شهرک برای کاهش مقدار مواد زایدات، باید اقداماتی انجام شود. این اقدامات شامل تولید استفاده مناسب، تخصیص منابع مناسب و اجرای برنامه‌های بازیابی مواد زایدات است. این اقدامات نیازمند داشتن نظریه‌های جدیدی است و باید با توجه به شرایط محلی و توانمندی‌های موجود در شهرک انجام شود.

پژوهشگر

علي اکبر رودباری و همکاران

یک سیستم طراحی شده تفکیک، جمع آوری و بازیافت زایدات شهری در شهرک صنعتی شاهرود

شك شماره 3: یک سیستم طراحی شده تفکیک، جمع آوری و بازیافت زایدات شهری در شهرک صنعتی شاهرود
جدول شماره 4: ترتیب میزان تولید فراورده های کاغذی در شهرک صنعتی شاهرود در سال های مختلف

سال	میزان تولید (ton/year)	زایم گذار	پارچه	کاغذ و پلاستیکی
1387	100	100	100	100
1388	100	100	100	100

نتایج حاصله از پیاده‌سازی الگوی مدیریت یکپارچه مواد زاید، جامد صنعتی در این شهرک، نشان می‌دهد که بخش‌های مختلف نشان می‌دهد. همچنین میزان زایده شدن کاغذ و پلاستیکی نیز از لحاظ نشان می‌دهد که به معنای دستیابی بهبودی در میزان تولید فراورده‌های کاغذی و پلاستیکی است.

جدول 5: ترتیب حاصل از اجرای الگوی مدیریت یکپارچه مواد زاید جامد در شهرک صنعتی شاهرود

سال	میزان تولید مواد زاید جامد به ارزش محصول تولید شده (kg per 100 million Rials production)	میزان تولید مواد زاید جامد به ارزش محصول تولید شده (kg per 100 million Rials production)
1387	100	100
1388	100	100

همانطور که جدول شماره 3 نشان می‌دهد، میزان تولید مواد زاید جامد از 68.8 kg per 100 million Rials production از سال 1387 به ترتیب به 472 kg در سال 1389 و 1388 کاهش یافت که به معنای افزایش بهبودی از طریق اجرای الگوی مدیریت یکپارچه است. همچنین میزان زایده شدن کاغذ و پلاستیکی نیز از لحاظ نشان می‌دهد که به معنای افزایش بهبودی از طریق اجرای الگوی مدیریت یکپارچه است.
نتیجه گیری

این مطالعه نشان داد که الگوی مدیریت یکپارچه مواد زاید، ایجاد منجر به بهبود عملکرد صنایع کش می‌شود. این نتایج در سال‌های 1385 و 1392 به مورد بررسی قرار گرفته‌اند. در این مطالعه نیز به‌منظور مقایسه این الگو با الگوی مدیریت در صنایع کشور فرانسه و ایران، برای میزان بسیار بالا و میزان بسیار دمایی در محیط کالیدهی، با وجود نظارت حاکم است.

مقدار 1.78 درصد میانگین دستیابی به اهداف الگوی مدیریت یکپارچه مواد زاید، در هرک های صنعتی فرانسه 5/74 درصد بوده است. در مطالعه حاضر، مقدار متوسط این نتیجه نزدیک به 96/85 درصد بوده است که پیچیده‌تر از تعداد میانگین دستیابی به اهداف الگوی مدیریت یکپارچه مواد زاید در مطالعه Mbuligwe در سال‌های 1385 و 1392 بوده است.

بحث

نتایج حاصله نشان داد که استراتژی اقتصادی در این شهرک برای دستیابی به اهداف الگوی مدیریت یکپارچه مواد زاید، سال نخست زیادی موفقیت بوده است. در منجر به کاهش مقدار تولید زایده دیگر برای فرآورده تولیدی و همچنین زایده میزان پذیرش از دستگاه صنایع و همچنین مقدار تولید زایده در هرک های صنعتی بیش از تعداد از تکرک مواد زاید جامد شرکت معنی‌دار شده است با وجود ورود به مقایسه به دامگذاری شده در بین 2 تا 4 فاصله دارد. به‌طور کلی این الگو، عدم وجود اطلاعاتاقیلمی از سوی الگو در کشور و همچنین عدم وجود کارشناسان محیط‌گاه در روابط تولید و تولیدگاه‌های صنعتی، نشان دهنده کم‌پایانی و تجزیه‌کردن مابین واحدهای صنعتی مستقر در یک شهرک صنعتی می‌باشد. منابع یافته و جنگ‌های داخلی و جنگ‌های داخلی با نجات آن شهرک و ازدحام شهرک و ازدحام شهرک، با تأثیر منجر به بهبود عملکرد صنایع کش می‌شود.

مقدار کاهش 8.8 درصد، میانگین دستیابی به اهداف الگوی مدیریت یکپارچه مواد زاید گزارش شده‌است. این مقدار، به منظور مقایسه الگوی مدیریت یکپارچه مواد Zaid گزارش شده‌است. در مطالعه حاضر، مقدار کاهش 8.8 درصد میانگین دستیابی به اهداف الگوی مدیریت یکپارچه مواد زاید گزارش شده‌است. در مطالعه حاضر، مقدار کاهش 8.8 درصد میانگین دستیابی به اهداف الگوی مدیریت یکپارچه مواد Zaid گزارش شده‌است. در مطالعه حاضر، مقدار کاهش 8.8 درصد میانگین دستیابی به اهداف الگوی مدیریت یکپارچه مواد Zaid گزارش شده‌است.
1. Samanimajd S, Hashemi H, Poorzamani HR, Mohammadi Moghadam F, Noormoradi H, Samanimajd A. Solid wastes management of industrial zones, case study of Boroujen. Health System Research. 2010;6:908-17 (in Persian).
2. Abu-Hijleh BAK, Mousa M, Al-Dwairi R, Al-Kumoos M, Al-Tarazi S. Feasibility study of a municipality solid waste incineration plant in Jordan. Energy Conversion and Management. 1998;39(11):1155-59.
3. Karami MA, Farzadkia M, JonidiJaafari A, NabiZade R, Gohari MR, Karimaee M. Investigation of industrial waste management in industries located between Tehran and Karaj zone in 2009-2010. Iranian Journal of Health and Environment. 2011;4(4):507-18 (in Persian).
4. Hazra T, Goel S. Solid wastes management in Kolkata, India: Practices and challenges. Wastes Management. 2009;29(1):470-78.
5. Binavapour M, Nouri J, Nabizadeh R, Naddafi K. Solid wastes management of industrial zones, case studies of BouAli, Lian and Lalejin. Proceedings of 12th National Conference of Environmental Health; Tehran; 2009 Nov 12-14 (in Persian).
6. Mesgarof H, Khodadadi T, Sharafi K, Sharifi A. Solid wastes management of industrial zones, case studies of Kermanshah. Proceedings of 5th National Conference of Environmental Health; Tehran; 2002 Nov 16-18 (in Persian).
7. Ghavami A, Shahmoradi B, Sadeghi R, Siosehmardeh A. Solid wastes management of industrial zones, case studies of Sanandadj. Proceedings of 1st National Conference of Environmental Engineering; Tehran; 2007 Dec 11-12 (in Persian).
8. Pires A, Martinho G, Chang N-B. Solid waste management in European countries: a review of systems analysis techniques. Journal of Environmental Management. 2011;92(4):1033-50.
9. Roudbari AA, Javid A. Solid wastes management of industrial zones, case studies of Shahroud. Proceedings of 5th National Conference of Environmental Health; Tehran; 2002 Nov 16-18 (in Persian).
10. Mbuligwe SE, Kaseva ME. Assessment of industrial solid waste management and resource recovery practices in Tanzania. Resources, Conservation and Recycling. 2006;47(3):260-76.
11. Malakootian M, Izzadeh M, Messerghany M, Esmamjomeh MM. Electrocoagulation efficiency in removal of COD from the Qom landfill leachate. Iranian Journal of Health and Environment. 2012;5(3):201-10 (in Persian).
12. Geng Y, Zhu Q, Haight M. Planning for integrated solid waste management at the industrial Park level: a case of Tianjin, China. Waste Management. 2007;27(1):141-50.
13. Casares ML, Ulierte N, Matarán A, Ramos A, Zamorano M. Solid industrial wastes and their management in Asegara (Granada, Spain). Waste Management. 2005;25(10):1075-82.
14. Yamamura K. Current status of waste management in Japan. Waste Management and Research. 1983;1(1):1-15.
15. Al-Qaydi S. Industrial solid waste disposal in Dubai, UAE: a study in economic geography. Cities. 2006;23(2):140-48.
16. Dong TTT, Lee B-K. Analysis of potential RDF resources from solid waste and their energy values in the largest industrial city of Korea. Waste Management. 2009;29(5):1725-31.
17. Lombrano A. Cost efficiency in the management of solid urban waste. Resources, Conservation and Recycling. 2009;53(11):601-11.
18. El-Fadel M, Zeinati M, El-Jisr K, Jamali D. Industrial-waste management in developing countries: the case of Lebanon. Journal of Environmental Management. 2001;61(4):281-300.
Design and Implementation of Integrated Solid Wastes Management Pattern in Industrial areas, Case Study of Shahroud, Iran

Yaghmaeian Kamiar¹, Roudbari Ali Akbar², Nazemi Saeed⁴

¹Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
²Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran

Received: 1 December 2012; Accepted: 25 February 2013

ABSTRACT

Background & Objectives: The aim of the study was to design and implement integrated solid wastes management pattern in Shahroud industrial area, to evaluate the results, and to determine possible performance problems.

Materials & Methods: This cross-sectional study was carried out for 4 years in Shahroud industrial area and the implementation process included: 1. qualitative and quantitative analysis of all solid wastes generated in the area, 2. determining the current state of solid waste management in the area and identifying programs conducted, 3. designing and implementation of integrated management pattern including design and implementation of training programs, laws, penalties and incentives, and illustrating and implementing programs for all factories, and 4. monitoring the implementation process and determining the results.

Results: Annually, 1,728 tons of solid waste is generated in the area including 1603 tons of industrial waste and 125 tons of municipal wastes. By implementing this pattern, two separated systems of collection and recycling of domestic and industrial waste were launched in this area. Moreover, consistent with the goals, the amount of solid waste generated and disposed in 2011 was 51.5 and 28.6 kg per 100 million Rials production respectively. In addition, 42 and 40% of the industrial waste and paper were recycled.

Conclusion: Results showed that implementation of this pattern, i.e. running source separation, training programs, capacity building, providing technical services, completing chain of industries and strengthening the cooperation between industrial estate management and industrial units could greatly reduce the waste management problems.

Key words: solid wastes, integrated management, industrial area