A COMBINATORIAL IDENTITY FOR THE JACOBIAN OF t-SHIFTED INVARIANTS

OKSANA YAKIMOVA

ABSTRACT. Let g be a simple Lie algebra. There are classical formulas for the Jacobians of the generating invariants of the Weyl group of g and of the images under the Harish-Chandra projection of the generators of $ZU(g)$. We present a modification of these formulas related to Takiff Lie algebras.

INTRODUCTION

Let g be a simple complex Lie algebra, $h \subset g$ be a Cartan subalgebra. Fix a triangular decomposition $g = n^- \oplus h \oplus n^+$. Let $\Delta \subset h^*$ be the corresponding root system with $\Delta^+ \subset \Delta$ being the subset of positive roots. Define $\rho = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha$. Let $W = W(g,h)$ be the Weyl group of g. Set $n = \text{rk } g$ and let $d_i - 1$ with $1 \leq i \leq n$ be the exponents of g. For $\alpha \in \Delta^+$, let $\{f_\alpha, h_\alpha, e_\alpha\} \subset g$ be an sl_2-triple with $e_\alpha \in g_\alpha$. Finally choose a basis $\{h_1, \ldots, h_n\}$ of h.

For polynomials $P_1, \ldots, P_n \in S(h) \cong \mathbb{C}[h^*]$, the Jacobian $J(\{P_i\})$ is defined by the property

$$dP_1 \wedge dP_2 \wedge \ldots \wedge dP_n = J(\{P_i\})dh_1 \wedge \ldots \wedge dh_n.$$

If $\hat{P}_1, \ldots, \hat{P}_n \in S(h)^W$ are generating invariants (with $\text{deg } \hat{P}_i = d_i$), then

$$J(\{\hat{P}_i\}) = C \prod_{\alpha \in \Delta^+} h_\alpha \quad \text{with } C \in \mathbb{C}, C \neq 0$$

by a classical argument, which is presented, for example, in [H90, Sec. 3.13].

Let $ZU(g)$ denote the centre of the enveloping algebra $U(g)$. Then $ZU(g)$ has a set $\{P_i \mid 1 \leq i \leq n\}$ of algebraically independent generators such that $P_i \in U_{d_i}(g)$. Let $P_i \in S(h)$ be the image of P_i under the Harish-Chandra projection. Then $\hat{P}_i \in S(h)^W$ for $\hat{P}_i(x) = P_i(x - \rho)$, see e.g. [Di74, Sec. 7.4], and

$$J(\{P_i\}) = C \prod_{\alpha \in \Delta^+} (h_\alpha + \rho(h_\alpha)).$$

For any complex Lie algebra l, let $\varpi : S(l) \to U(l)$ be the canonical symmetrisation map. Let $S(l)^l$ denote the ring of symmetric l-invariants. Since ϖ is an isomorphism of l-modules, it provides an isomorphism of vector spaces $S(l)^l \cong ZU(l)$.

This research is supported by the Heisenberg-Stipendium of the DFG.
Suppose next that \(\mathcal{P}_i = \varpi(H_i) \) is the symmetrisation of \(H_i \) and that \(H_i \in S(\mathfrak{g})^g \) is a homogeneous generator of degree \(d_i \). Let \(T : \mathfrak{g} \to \mathfrak{g}[t] \) be the \(\mathbb{C} \)-linear map sending each \(x \in \mathfrak{g} \) to \(xt \). Then \(T \) extends uniquely to the commutative algebras homomorphism
\[
T : S(\mathfrak{g}) \to S(\mathfrak{g}[t]).
\]
Set \(H_i^{[1]} = T(H_i) \) and \(\mathcal{P}_i^{[1]} = \varpi(H_i^{[1]}) \). Here \(\mathcal{P}_i^{[1]} \in \mathcal{U} (t \mathfrak{g}[t]) \).

The triangular decomposition of \(\mathfrak{g} \) extends to \(\mathfrak{g}[t] \) as \(\mathfrak{g}[t] = \mathfrak{n}^- [t] \oplus \mathfrak{h}[t] \oplus \mathfrak{n}^+[t] \). Let \(P_i^{[1]} \in S(\mathfrak{h}[t]) \) be the image of \(\mathcal{P}_i^{[1]} \) under the Harish-Chandra projection. In order to define the Jacobian \(J(\{P_i^{[1]}\}) \) as an element of \(S(\mathfrak{h}) \), set at first \(\partial_{x_j} (xt^k) = kt^{k-1} \) for every \(x \in \mathfrak{h} \) and every \(k \geq 1 \), \(\partial_{h_i} (h_j t^k) = 0 \) for \(i \neq j \). Then the desired formula reads
\[
J(\{P_i^{[1]}\}) = \det (\partial_{h_j} P_i^{[1]})_{t=1}.
\]

Theorem 1. We have the following identity
\[
J(\{P_i^{[1]}\}) = C \prod_{\alpha \in \Delta^+} (h_\alpha + \rho(h_\alpha) + 1).
\]

Our proof of Theorem 1 interprets the zero set of \(J(\{P_i^{[1]}\}) \) in terms of the Takiff Lie algebra \(\mathfrak{q} = \mathfrak{g}[u]/(u^2) \) and then uses the extremal projector associated with \(\mathfrak{g} \), see Section 2.1 for the definition.

In 1971, Takiff proved that \(S(\mathfrak{q})^g \) is a polynomial ring whose Krull dimension equals \(2 \rk \mathfrak{g} \) [Ta71]. This has started a serious investigation of these Lie algebras and their generalisations, see e.g. [PY] and reference therein. Verma modules and an analogue of the Harish-Chandra homomorphism for \(\mathfrak{q} \) were defined and studied in [G95, W11]. We remark that \(\mathfrak{q} \)-modules appearing in this paper are essentially different.

1. **Several combinatorial formulas**

Keep the notation of the introduction. In particular, \(H_i \in S(\mathfrak{g})^g \) stands for a homogeneous generator of degree \(d_i \), \(\mathcal{P}_i \) is the image of \(\mathcal{P}_i = \varpi(H_i) \) under the Harish-Chandra projection, \(\hat{P}_i \in S(\mathfrak{h})^W \) is the \((-\rho)\)-shift of \(P_i \), i.e., \(\hat{P}_i(x) = P_i(x - \rho) \), and \(P_i^{[1]} \) is the image of \(\varpi(T(H_i)) \) under the Harish-Chandra projection related to \(\mathfrak{g}[t] \). Let also \(P_i^o \) be the highest degree component of \(P_i \). Then \(P_i^o = H_i \mid \mathfrak{h} \). By the Chevalley restriction theorem, the polynomials \(P_i^o \) with \(1 \leq i \leq n \) generate \(S(\mathfrak{h})^W \). The constant \(C \) is fixed by the equality
\[
J(\{P_i^o\}) = C \prod_{\alpha \in \Delta^+} h_\alpha. \quad \text{It is clear that} \quad J(\{P_i^o\}) = J(\{\hat{P}_i\}) .
\]

Lemma 1.1. The highest degree component of \(J(\{P_i^{[1]}\}) \) is equal to \(C \prod_{\alpha \in \Delta^+} h_\alpha \).

Proof. The highest degree component of \(P_i^{[1]} \) is \(T(P_i^o) \in S(\mathfrak{h} t) \). Each monomial of \(P_i^{[1]} \) is of the form \((x_1 t) \ldots (x_d t) \) with \(x_j \in \mathfrak{h} \) for each \(j \). By the construction, \(\partial_{h_j} T(P_i^o)_{t=1} = \partial_{h_j} P_i^o \). The result follows. \(\square \)
In order to prove the next lemma, we need a well-known equality, namely \(\prod_{i=1}^{n} d_i = |W| \).

Lemma 1.2. We have \(J(\{P_i^{[1]}\})(0) = C \prod_{\alpha \in \Delta^+} (\rho(h_\alpha) + 1) \).

Proof. Clearly \(P_i^{[1]} |_{t=1} = P_i \). Since \(H_i \) is a homogeneous polynomial of degree \(d_i \), the linear in \(h \) part of \(P_i^{[1]} \) has degree \(d_i \) in \(t \). It follows that

\[
J(\{P_i^{[1]}\})(0) = (d_1 \ldots d_n) J(\{P_i\})(0) = |W| C \prod_{\alpha \in \Delta^+} \rho(h_\alpha).
\]

According to a formula of Kostant:

\[
\prod_{\alpha \in \Delta^+} \frac{\rho(h_\alpha) + 1}{\rho(h_\alpha)} = |W^\vee| = |W|.
\]

This completes the proof. \(\square \)

Remark 1.3. The Kostant formula (1.1) is a particular case of another combinatorial statement. Let \(W(t) = \sum_{w \in W} t^{l(w)} \) be the Poincaré polynomial of \(W \). Then

\[
W^\vee(t) = \prod_{\alpha \in \Delta^+} t^{(\rho, \alpha^\vee) + 1} - 1 \; t^{(\rho, \alpha^\vee) - 1},
\]

see Equation (34) in [H90, Sec. 3.20]. Since \(\rho(h_\alpha) = (\rho, \alpha^\vee) \), evaluating at \(t = 1 \) one gets exactly Eq. (1.1).

Example 1.4. Take \(g = \mathfrak{sl}_2 \) with the usual basis \(\{e, h, f\} \). Then \(H = H_1 = 4ef + h^2 \), \(H^{[1]} = 4ef + (ht)^2 \), and

\[
P^{[1]} = \pi(H^{[1]}) = 2ef t + 2ft e + (ht)^2 = (ht)^2 + 2ht^2 + 4ft e.
\]

Therefore \(P^{[1]} = P^{[1]}_1 = (ht)^2 + 2ht^2 \). Computing the partial derivative and evaluating at \(t = 1 \), we obtain \(J(\{P^{[1]}\}) = 2h + 4 = 2(h + 2) \). Observe that \(\rho(h) = 1 \).

2. TAKIFF LIE ALGEBRAS AND BRANCHING

Theorem 1 can be interpreted as a statement in representation theory of Takiff Lie algebras

\[
q = g \times g^{ab} \cong g[u]/(u^2).
\]

The first factor, the non-Abelian copy of \(g \), acts on \(g^{ab} = gu \) as a subalgebra of \(\mathfrak{gl}(g) \). Therefore there is the canonical embedding \(q \subset \mathfrak{gl}(g) \times g^{ab} \). Set \(\ell = \dim g + 1 \). In its turn, \(\mathfrak{gl}(g) \times g^{ab} \) can be realised as a subalgebra of \(\mathfrak{gl}(g \oplus \mathbb{C}) \cong \mathfrak{gl}_\ell(\mathbb{C}) \). The Lie algebra \(\mathfrak{gl}_\ell(\mathbb{C}) \) is equipped with the standard triangular decomposition. Let \(b_\ell \subset \mathfrak{gl}_\ell(\mathbb{C}) \) be the corresponding positive Borel. Recall that we have chosen a triangular decomposition
Lemma 2.1. The map \(T \) takes \(\sum d \) with \(\xi_i \in g \) to
\[
\sum_{i=1}^{d} \xi_1 \ldots \xi_{i-1}(\xi_i u)\xi_{i+1} \ldots \xi_d .
\]
Set \(R_i = \varpi(\psi(H_i)) \). The elements \(R_1, \ldots, R_n \in U(q) \) are not necessary central. If we assume that \(d_1 = 2 \), then \(R_1 \in \mathcal{Z}U(q) \). However, since both maps, \(\psi \) and \(\varpi \), are homomorphisms of \(g \)-modules, each \(R_i \) commutes with \(g \). Note that the elements \(R_i \) have degree 1 in \(gu \). They are crucial for further considerations and our next goal is to relate them to \(P_i^{[1]} \in U(tg[t]) \).

The map \(\psi \) is also well-defined for the tensor algebra of \(g \), but not for \(U(g) \), because of the following obstacle
\[
\psi((\xi_1, \xi_2) - (\xi_2, \xi_1)) = (\xi_1 u)\xi_2 + \xi_1(\xi_2 u) - (\xi_2 u)\xi_1 - \xi_2(\xi_1 u) = [\xi_1 u, \xi_2] + [\xi_1, \xi_2 u] = 2[\xi_1, \xi_2]u \neq [\xi_1, \xi_2]u.
\]
The remedy is to pass to the current algebras \(g[t] \) and \(q[t] \). Let \(T: U(tg[t]) \to U(q[t]) \) be a \(C \)-linear map such that
\[
T(\xi^k) = k(\xi u)t^{k-1} \text{ for each } \xi \in g,
\]
\[
T(ab) = T(a)b + aT(b) \text{ for all } a, b \in U(tg[t]), T \text{ is a derivation}.
\]
Of course, one has to check that \(T \) exists.

Lemma 2.1. The map \(T \) is well-defined.

Proof. Take \(\xi, \eta \in g \). Then
\[
T(\xi^k) = k(\xi u)t^{k-1}\eta^m + m\xi^k(\eta u)t^{m-1} - m(\eta u)t^{m-1}\xi^k - k\eta^m(\xi u)t^{k-1} = k[\xi u, \eta]t^{k-1-m} + m[\xi, \eta u]t^{k+m} = (k+m)[\xi, \eta]u)t^{k+m} = T(\xi^k).
\]

Now, having the map \(T \), we can state that \(R_i = T(P_i^{[1]})|_{t=1} \).

A word of caution, in \(U(b^-)(n^+ u) \) and similar expressions, \((n^+ u) \) stands for the subspace \(n^+ u \subset g^{ab} \) and \textbf{not} for an ideal generated by \(n^+ u \). The same applies to \((bu), (gu) \), etc.

Lemma 2.2. Let \(M_\lambda = U(b^-)v_\lambda \) with \(\lambda \in \mathbb{C}^t \) be a Verma module of \(gl(g^{ab} \mathbb{C}) \). Set \(\mu = \lambda|_b \). There exists a non-trivial linear combination \(R = \sum c_i R_i \) such that \(Rv_\lambda \in n^-U(b^-)(n^+ u)v_\lambda \) if and only if \(J(\{ P_i^{[1]} \})(\mu) = 0 \).

Proof. We have
\[
P_i^{[1]} \in P_i^{[1]} + n^-[t]U(g[t])n^+[t].
\]
Accordingly \(R_i = T(P_i^{[1]})|_{t=1} + \mathcal{X} \), where \(\mathcal{X} \) is the image of the second summand of \(P_i^{[1]} \). Let \(X = x_1 \ldots x_r \) be a monomial appearing in \(\mathcal{X} \). If \(x_r \in n^+ \), then \(Xv_\lambda = 0 \). Assume that
Then necessary \(x_r \in \mathbb{n}^+ u \) and \(x_1, \ldots, x_{r-1} \in \mathfrak{g} \). If \(x_i \in \mathbb{n}^+ \) for some \(i \leq (r-1) \), then we replace \(X \) by \(x_1 \ldots x_{i-1} [x_i, x_{i+1} \ldots x_r] \). Note that here \([x_i, x_r] \in \mathbb{n}^+ u \). Applying this procedure as long as possible one replaces \(X \) by an element of \(\mathfrak{u}(b^-)(\mathbb{n}^+ u) \) without altering \(Xv_\lambda \). Since \(X \) is an invariant of \(\mathfrak{h} \), the new element lies in \(\mathbb{n}^- \mathfrak{u}(b^-)(\mathbb{n}^+ u) \). Summing up,

\[(2.1) \quad \mathcal{R}(P_i^{(1)})|_{t=1} = \sum_{j=1}^{n} (\partial_{h_j} P_i^{(1)})|_{t=1} h_j u, \]

where the partial derivatives are understood in the sense of the introduction. Exactly these derivatives have been used in order to define \(J(\{P_i^{(1)}\}) \). Hence \(J(\{P_i^{(1)}\})(\mu) = 0 \) if and only if there is a non-zero vector \(\bar{c} = (c_1, \ldots, c_n) \) such that \(\sum c_i \mathcal{T}(P_i^{(1)})|_{t=1,\mu} = 0 \). This shows that if \(J(\{P_i^{(1)}\})(\mu) = 0 \), then \(\mathcal{R}v_\lambda \in \mathbb{n}^- \mathfrak{u}(b^-)(\mathbb{n}^+ u) v_\lambda \).

Suppose now that \(\mathcal{R}v_\lambda \in \mathbb{n}^- \mathfrak{u}(b^-)(\mathbb{n}^+ u) v_\lambda \subseteq \mathfrak{u}(\mathbb{n}^-)(\mathbb{n}^+ u) v_\lambda \). Then

\[\sum c_i \mathcal{T}(P_i^{(1)})|_{t=1,\mu} v_\lambda \in \mathfrak{u}(\mathbb{n}^-)(\mathbb{n}^+ u) v_\lambda. \]

Since we are working with a Verma module of \(\mathfrak{gl}_\ell(\mathbb{C}) \) and since \(\mathcal{T}(P_i^{(1)})|_{t=1,\mu} \in \mathfrak{h}u \subseteq \mathfrak{n}_\ell^-, \mathbb{n}^+ u \subseteq \mathfrak{n}_\ell^- \), we have

\[\sum c_i \mathcal{T}(P_i^{(1)})|_{t=1,\mu} \in \mathfrak{u}(\mathbb{n}^-)(\mathbb{n}^+ u). \]

At the same time \(\mathfrak{h}u \cap \mathbb{n}^+ u = 0 \). Therefore \(\sum_{i=1}^{n} c_i (\partial_{h_j} P_i^{(1)})|_{t=1,\mu} = 0 \) for each \(j \) and thus \(J(\{P_i^{(1)}\})(\mu) = 0 \). \(\square \)

For \(\gamma \in \mathfrak{h}^* \), let \(M_{\lambda,\gamma} \) be the corresponding weight subspace of \(\mathfrak{u}(q)v_\lambda \subseteq M_\lambda \). Since \(\mathfrak{h}u \subseteq \mathfrak{n}^-_\ell \), either \(M_{\lambda,\gamma} = 0 \) or \(\dim M_{\lambda,\gamma} = \infty \). We have also \((\mathfrak{h}u)v_\lambda \neq 0 \). Because of these facts, the q-modules \(M_\lambda \) and \(\mathfrak{u}(q)v_\lambda \) do not fit in the framework of the highest weight theory developed in [G95, W11]. Nevertheless, they may have some nice features.

Lemma 2.2 relates \(J(\{P_i^{(1)}\}) \) to a property of the branching \(q \downarrow \mathfrak{g} \) in a particular case of the q-module \(\mathfrak{u}(q)v_\lambda \). In order to get a better understanding of this branching problem, we employ a certain projector introduced by Asherova, Smirnov, and Tolstoy in [AST].

2.1. The extremal projector

Recall that \(\{f_\alpha, h_\alpha, e_\alpha\} \subset \mathfrak{g} \) is the \(\mathfrak{sl}_2 \)-triple corresponding to \(\alpha \in \Delta^+ \). Set

\[p_\alpha = 1 + \sum_{k=1}^{\infty} f_\alpha^k e_\alpha^k \frac{(-1)^k}{k!(h_\alpha + \rho(h_\alpha) + 1) \ldots (h_\alpha + \rho(h_\alpha) + k)}. \]

Set \(N = |\Delta^+| \). Choose a numbering of positive roots, \(\alpha_1, \ldots, \alpha_N \). Each \(p_\alpha \), as well as any product of finitely many of them, is a formal series with coefficients in \(\mathbb{C}(\mathfrak{h}^*) \) in monomials

\[f_{\alpha_1}^{r_1} \ldots f_{\alpha_N}^{r_N} e_{\alpha_N}^{k_N} \ldots e_{\alpha_1}^{k_1} \]

such that \((k_1 - r_1)\alpha_1 + \ldots + (k_N - r_N)\alpha_N = 0 \).
A total order on Δ^+ is said to be normal if either $\alpha < \alpha + \beta < \beta$ or $\beta < \alpha + \beta < \alpha$ for each pair of positive roots α, β such that $\alpha + \beta \in \Delta$. There is a bijection between the normal orders and the reduced decompositions of the longest element of W.

Choose a normal order $\alpha_1 < \ldots < \alpha_N$, and define

$$p = p_{\alpha_1} \cdots p_{\alpha_N}$$

accordingly. The element p is called the extremal projector. It is independent of the choice of a normal order. For proofs and more details on this operator see [M07, §9.1]. Most importantly, it has the property that

$$(2.2)\quad e_\alpha p = pf_\alpha = 0$$

for each α.

The nilpotent radical $n_\ell \subset b_\ell$ acts on M_λ locally nilpotently. Recall that $n^+ \subset n_\ell$. Let $v \in M_\lambda$ be an eigenvector of h_i of weight $\gamma \in h^*_i$. First of all, pv is a finite sum of vectors of M_λ with coefficients in $\mathbb{C}(h^*_i)$. Second, if all the appearing denominators are non-zero at γ, then pv is a well-defined vector of M_λ of the same weight γ.

3. PROOF OF THEOREM 1

Let λ, μ, and M_λ be as in Lemma 2.2. Keep in mind that λ and μ are arbitrary elements of \mathbb{C}^ℓ and \mathbb{C}^n. Since each R_i commutes with g, each $R_i v_\lambda$ is a highest weight vector of g.

We use the extremal projector p associated with g. If p can be applied to a highest weight vector v, then $pv = v$. Suppose that p is defined at μ. Then, in view of (2.1) and (2.2),

$$R_i v_\lambda = p R_i v_\lambda = p \mathcal{T}(P_i^{[1]}|_{t=1}) v_\lambda.$$

Assume that $J(\{P_i^{[1]}\})(\mu) = 0$. Then there is a non-trivial linear combination $\mathcal{R} = \sum c_i R_i$ such that

$$\mathcal{R} v_\lambda \in n^- \mathcal{U}(b^-) (n^+ u) v_\lambda,$$

see Lemma 2.2. Here $p\mathcal{R} v_\lambda = 0$ and hence $\mathcal{R} v_\lambda = 0$ as well.

Since we are considering a Verma module of $gl_\ell(\mathbb{C})$, this implies that

$$\mathcal{R} \in \mathcal{U}(gl_\ell(\mathbb{C})) b_\ell \cap \mathcal{U}(q) = \mathcal{U}(q)b.$$

Hence the symbol $gr(\mathcal{R})$ of \mathcal{R} lies in the ideal of $S(q)$ generated by b.

The decomposition $g = n^- \oplus b$ defines a bi-grading on $S(g)$. Let H_i^* be the bi-homogeneous component of H_i having the highest degree w.r.t. n^-. According to [PY12, Sec. 3], $H_i^* \in b S^{d_i-1}(n^-)$ and the polynomials H_1^*, \ldots, H_n^* are algebraically independent. We have

$$\psi(H_i^*) \in (bu) S^{d_i-1}(n^-) \oplus b(n^- u) S^{d_i-2}(n^-).$$

Write this as $\psi(H_i^*) \in H_{i,1} + b(n^- u) S^{d_i-2}(n^-)$. Then the polynomials $H_{i,1}$ with $1 \leq i \leq n$ are still algebraically independent. As can be easily seen, $\psi(H_i) \in H_{i,1} + b S(q)$.

Set \(d = \max_{i, c_i \neq 0} d_i \). Then

\[
\text{gr}(\mathcal{R}) = \sum_{i, d_i = d} c_i \psi(H_i)
\]

and it lies in \((h) \triangleleft S(q)\) if and only if \(\sum_{i, d_i = d} c_i H_{i,1} = 0 \). Since at least one \(c_i \) in this linear combination is non-zero, we get a contradiction. The following is settled: if \(p \) is defined at \(\mu \), then \(J(\{P_i^{[1]}\})(\mu) \neq 0 \).

Now we know that the zero set of \(J(\{P_i^{[1]}\}) \) lies in the union of hyperplanes \(h_\alpha + \rho(h_\alpha) = -k \) with \(k \geq 1 \). At the same time this zero set is an affine subvariety of \(\mathbb{C}^n \) of codimension one. Therefore it is the union of \(N \) hyperplanes and \(J(\{P_i^{[1]}\}) \) is the product of \(N \) linear factors of the form \((h_\alpha + \rho(h_\alpha) + k_\alpha) \). A priori, a root \(\alpha \) may appear in several factors with different constants \(k_\alpha \).

By Lemma 1.1, the highest degree component of \(J(\{P_i^{[1]}\}) \) is equal to \(C \prod_{\alpha \in \Delta^+} h_\alpha \). Therefore each \(\alpha \in \Delta^+ \) must appear in exactly one linear factor of \(J(\{P_i^{[1]}\}) \). Observe that \(\rho(h_\alpha) \geq 1 \) and that \(\rho(h_\alpha) + k_\alpha \geq \rho(h_\alpha) + 1 \). If for some \(\alpha \), we have \(k_\alpha > 1 \), then

\[
|J(\{P_i^{[1]}\})(0)| > |C| \prod_{\alpha \in \Delta^+} (\rho(h_\alpha) + 1).
\]

But this cannot be the case in view of Lemma 1.2.

\[\square \]

4. CONCLUSION

The elements \(\mathcal{R}_i \) are rather natural \(g \)-invariants in \(\mathcal{U}(q) \) of degree one in \(gu \). Note that because \(gu \) is an Abelian ideal of \(q \), where is no ambiguity in defining the degree in \(gu \). The involvement of these elements in the branching rules \(q \downarrow g \) remains unclear. However, combining Lemma 2.2 with Theorem 1, we obtain the following statement.

Corollary 4.1. In the notation of Lemma 2.2, there is a non-trivial linear combination \(\mathcal{R} = \sum c_i \mathcal{R}_i \) such that \(\mathcal{R}v_\lambda \in n^- \mathcal{U}(q)v_\lambda \) if and only if \(\mu(h_\alpha) = -\rho(h_\alpha) - 1 \) for some \(\alpha \in \Delta^+ \). \(\square \)

As the theory of finite-dimensional representations suggests, it is unusual for a highest weight vector of \(g \) to belong to the image of \(n^- \). The proof of Theorem 1 shows that \(\mathcal{R}v_\lambda \neq 0 \) for the linear combination of Corollary 4.1.

Remark 4.2. The subspace \(\mathcal{V}[1] = (\mathcal{U}(g)(gu))^0 \subset \mathcal{U}(q) \) is a \(\mathbb{Z}\mathcal{U}(g) \)-module. From a well-known description of \((g \otimes S(q))^0 \), one can deduce that \(\mathcal{V}[1] \) is freely generated by \(\mathcal{R}_1, \ldots, \mathcal{R}_n \) as a \(\mathbb{Z}\mathcal{U}(g) \)-module. There are other choices of generators in \(\mathcal{V}[1] \) and it is not clear, whether one can get nice formulas for the corresponding Jacobians.
REFERENCES

[AST] R. M. Ashurova, Yu. F. Smirnov, and V. N. Tolstoy, Projection operators for simple Lie groups, *Theor. Math. Phys.* 8 (1971), 813–825 (in Russian).

[Di74] J. Dixmier, Algèbres enveloppantes. Gauthier-Villars (1974).

[G95] F. Geoffria, Homorphisme de Harish-Chandra pour les algèbre de Takiff généralisées, *J. Algebra* 171 (1995), 444–456.

[H90] J. E. Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, 29. Cambridge University Press, Cambridge, 1990.

[M07] A. Molev, Yangians and Classical Lie Algebras. Mathematical Surveys and Monographs, 143, American Mathematical Society, Providence, RI, 2007; Russian edition: MCCME Moscow 2009.

[PY12] D. I. Panyushev and O. S. Yakimova, A remarkable contraction of semisimple Lie algebras, *Ann. Inst. Fourier (Grenoble)*, 62 no. 6 (2012), 2053–2068.

[PY] D. I. Panyushev and O. S. Yakimova, Takiff algebras with polynomial rings of symmetric invariants, http://arxiv.org/abs/1710.03180.

[Ta71] S. J. Takiff, Rings of invariant polynomials for a class of Lie algebras, *Trans. Amer. Math. Soc.* 160 (1971), 249–262.

[W11] B. J. Wilson, Highest-weight theory for truncated current Lie algebras, *J. Algebra*, 336 (2011), 1–27.

(O. Yakimova) Universität zu Köln, Mathematisches Institut, Weyertal 86-90, 50931 Köln, Deutschland

E-mail address: yakimova.oksana@uni-koeln.de