Growth, Mechanical, Thermal and Spectral Properties of Cr$^{3+}$:MgMoO$_4$ Crystal

Lingyun Li1,2, Yisheng Huang1, Lizhen Zhang1, Zhourbin Lin1, Guofu Wang1

1 State Key Laboratory of Optoelectronics Material Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China, 2 Graduate School of Chinese Academy of Sciences, Beijing, China

Abstract

This paper reports the growth, mechanical, thermal and spectral properties of Cr$^{3+}$:MgMoO$_4$ crystals. The Cr$^{3+}$:MgMoO$_4$ crystals with dimensions up to 30 mm \times 18 mm \times 14 mm were obtained by TSSG method. The absorption cross-sections of $^{4}A_2\rightarrow^{2}T_1$ and $^{4}A_2\rightarrow^{2}T_2$ transitions are 12.94 \times 10$^{-20}$ cm2 at 493 nm and 7.89 \times 10$^{-20}$ cm2 at 705 nm for E//Ng, respectively. The Cr$^{3+}$:MgMoO$_4$ crystal shows broad band emission extending from 750 nm to 1300 nm with peak at about 705 nm. The emission cross-section with FWHM of 188 nm is 119.88 \times 10$^{-20}$ cm2 at 963 nm for E//Ng. The investigated results showed that the Cr$^{3+}$:MgMoO$_4$ crystal may be regarded as a potential tunable laser gain medium.

Introduction

Tunable solid-state lasers have a wide field of applications in medicine, military, ultra short pulse generation and communication [1,2]. Since 1960 many Cr$^{3+}$-doped tunable laser crystals have been investigated, such as BeAl$_2$O$_4$, LiCaAlF$_6$, Be$_3$Al$_2$(SiO$_3$)$_6$, GdSc$_2$Ga$_2$-Garnet and LaSc$_2$(BO$_4$)$_3$ [3-9]. Some of them have been became commercial material, such as Cr:LiSrAlF$_6$. Recently, research is focusing on the tunable solid-state laser crystals in visible and near infrared spectrum region for flash lamping and diode laser pumping. The Cr$^{3+}$-doped molydate crystals have gained interest because they have broad emission bands and larger absorption and emission cross-sections [10-12].

Metal molybdates of the general formula AMoO$_4$ (A = Mg, Cd, Pb, Zn and Ca) have been attracted much attention owing to their important application of optoelectronic devices [13-16]. MgMoO$_4$ is a member of this family, it belongs to monoclinic system with C2/m space group and cell parameters a = 10.273, b = 9.288, c = 7.025, β = 106.96°, z = 8. Recently, the MgMoO$_4$ and Yb$^{3+}$-doped MgMoO$_4$ crystal were reported as a cryogenic phonon-scintillation detector [13]. The spectral properties of the Cr$^{3+}$:MgMoO$_4$ crystal were reported such as crystal field strength and Racah parameters [17]. In this paper we further report the growth, mechanical, thermal and polarized spectral characteristics of the Cr$^{3+}$:MgMoO$_4$ crystal.

Materials and Methods

1. Crystal Growth

Since the MgMoO$_4$ crystal melts congruently at 1320°C, it can generally be grown by the Czochralski method, i. e. pulling directly from melt of the MgMoO$_4$ crystal. However the MgMoO$_4$ crystals with good quality were difficulty obtained because of the strong evaporation of MoO$_3$ component under high temperature [18,19]. Therefore, in order to reduced the growth temperature we selected the top seeded solution growth (TSSG) method to grow the Cr$^{3+}$:MgMoO$_4$ crystals. The Cr$^{3+}$:MgMoO$_4$ crystals were grown by the top seeded solution growth (TSSG) method from a flux of K$_2$Mo$_2$O$_7$. The chemicals used were MgO, K$_2$CO$_3$, Mo$_2$O$_3$ and Cr$_2$O$_3$ with purity of 99.99%. The crystal growth was carried out in a vertical tubular furnace with a nickel-chrome wire as the heating element, as shown in Fig. 1. An AL-708 controller with a Pt-PtRh thermocouple controlled the furnace temperature and the cooling rate [20]. The temperature gradient in the furnace chamber was measured before performing of crystal growth, as shown in Fig. 2. The longitudinal temperature field in the furnace chamber could be divided into three parts: the flat zone ranging from B to C and the gradient zone ranging from A to B and C to D. The crystal growth was performed in the flat temperature zone in the furnace, which is available to grow large size crystal.

In order to select the suitable composition of the solution, the solubility curve of the MgMoO$_4$ in the solution of MgMoO$_4$-K$_2$Mo$_2$O$_7$ was determined by the trial seeding method. The saturation temperatures were determined for various compositions in the range of 60–75 mol% by adjusting the temperature of the solution until a trial seeding showed no change in weight or surface micro topography after 3–4 h immersion. Fig. 3 shows the solubility curve of the MgMoO$_4$ in the solution.

The crystal growth was performed by TSSG method. The procedure is as follows: firstly, the starting materials of 2 at% Cr$^{3+}$-doped MgMoO$_4$ and K$_2$Mo$_2$O$_7$ were weighted according to the ratio of MgMoO$_4$: K$_2$Mo$_2$O$_7$ = 2:3 mol. The weighed materials were mixed and put into the platinum crucible with dimension of 0.50 mm \times 90 mm. The full charged crucible was placed into the furnace and kept at 950°C for 48 h to make the solution melt...
completely and homogeneously. Secondly, a platinum wire was as seed crystal was soaked into the solution, and the temperature was cooled down from 950°C to 835°C at a cooling rate of 2°C/d. Then, the crystals grown on the platinum wire were drawn out of the solution surface and cooled down to room temperature at a cooling rate of 20°C/h. Finally, after obtained small crystals, a seed cut from the as-obtained crystal was used to grow large size crystals. The saturation temperature of the solution was exactly determined to be 865°C by repeated seeding. Then the seed was dipped into the solution at a temperature 20°C above saturation temperature and was kept at this temperature for 20 min to dissolve the surface of the seed. The crystals were grown at a cooling rate of 1°C/d and rotated at a rotating rate of 15 rpm in the range of 865°C–835°C. In comparison with the Czochralski method, the starting growth temperature was reduced from 1320°C to 865°C, which greatly reduced the evaporation of MoO₃ component. When the growth process ended, the crystals were pulled out of the solution and cooled to room temperature at a cooling rate of 20°C/h. The grown crystals with few inclusions were shown in Fig. 4, in which the Cr³⁺:MgMoO₄ crystals were grown along [001], [010] and [110] directions, respectively. The maximum size is up to 30 mm × 18 mm × 14 mm. The morphology of the grown crystals depends on the growing direction. The morphology of the crystal grown along [001] direction appeared a regular hexagonal shape with families of crystal planes {001}, {110} and {111}, as shown in Fig. 4(c and d). A sample with dimensions of 3.93 mm × 3.82 mm × 3.92 mm and free inclusion was cut from the as-grown crystal (Fig. 4(e)). The optical homogeneity of the Cr³⁺:MgMoO₄ crystal was determined to be 3.9 × 10⁻² using Tyman-Green optical interferometer, as shown in Fig. 4(f). This result shows that the grown crystal has good quality.

The concentration of Cr³⁺ ion in the Cr³⁺:MgMoO₄ crystal was determined to be 0.48 at% by inductively coupled plasma atomic emission spectrometry (ICP-AES). Then, the segregation coefficient of Cr³⁺ ion in crystal is defined as following formula:

\[
\eta = \frac{\text{Cr}^{3+}\text{ concentration in the crystal}}{\text{Cr}^{3+}\text{ concentration in the initial charge}}
\]

Thus, the segregation coefficient of Cr³⁺ ion in the Cr³⁺:MgMoO₄ crystal is 0.24. The X-ray powder diffraction pattern of the Cr³⁺:MgMoO₄ was collected by MiniFlex II powder diffractometer with Cu Kα radiation, and the result was consistent with that reported by V.V. Bakakin [21].

2. Mechanical and Thermal Properties

The hardness is an important mechanical property of the crystal materials. The hardness of the Cr³⁺:MgMoO₄ crystal was measured using a Vickers microhardness tester (WILSON-WOLPERT 401MVA) which equipped with a diamond square pyramid indenter attached to an incident-light microscope. Three samples with [100], [010] and [001] directions were cut from the as-grown Cr³⁺:MgMoO₄ crystal and polished for the test. The load applied for indenting was 200 kg and the indentation time

![Figure 1. Schematic diagram of crystal growth apparatuses: (1) seed holder; (2) furnace cover; (3) Nickel-Chromium resistant wire; (4) seed; (5) crucible; (6) melt; (7) Al₂O₃ tube; (8) thermal insulation material; (9) thermocouple; (10) crucible holder. doi:10.1371/journal.pone.0030327.g001](image)

![Figure 2. Longitudinal temperature field in the furnace chamber(FT = temperature in the chamber, PT = programmed temperature). doi:10.1371/journal.pone.0030327.g002](image)
was kept at 10 s for all samples. The value of the Vickers microhardness HV is calculated using the following expression

$$HV = 1.8544P/D^2$$ \hspace{1cm} (1)

where P is the applied load and D is the diagonal length of the indentation.

For a crystal with well-defined cracks, the resistance to fracture indicates the toughness of a material. According to Ref. 20, fracture toughness K_c is dependent on the ratio of c/a, where c is the crack length and a is the half-diagonal length of the square indentation. When $c/a \geq 2.5$, the cracks have the Palmqvist’s configuration, K_c is calculated using the equation

$$K_c = kP/a^{1/2}$$ \hspace{1cm} (2)

where $l = c/a$ is the mean Palmqvist’s crack length, the constant k is 1/7 for the Vickers indenter.

The brittleness index B_i is calculated using the relation

$$B_i = HV/K_c$$ \hspace{1cm} (3)

The calculated results are listed in Table 1.

The thermal expansion of crystal is another important thermal factor for the crystal. Since the $\text{Cr}^{3+:\text{MgMoO}_4}$ crystal with monoclinic system is of anisotropy, three samples with dimensions of 6.0 mm \times 6.0 mm \times 20 mm used for thermal expansion coefficient measurement were cut from the $\text{Cr}^{3+:\text{MgMoO}_4}$ crystal along a-axis, b-axis and c-axis, respectively. The thermal expansion coefficients were measured using a DIL 402PC type thermal expansion dilatometer instrument at a heating rate of 10°C/min and the result in the range of 100–800°C. Fig. 5 shows the linear expansion versus the temperature. The linear thermal expansion of crystal was measured and the results are listed in Table 1.
expansion coefficient is defined as:

$$\xi = \frac{1}{L_0} \frac{\Delta L}{\Delta T}$$ \hspace{1cm} (5)$$

where L_0 is the initial length of the sample at room temperature, ΔL is the change in length when temperature changes ΔT. The thermal expansion coefficient was calculated from the slope of the linear fitting of the linear relation between $\Delta L/L$ and temperature. The thermal expansion coefficients were calculated and listed in Table 2. The results show that the thermal expansion coefficient exhibits strongly direction dependence, the thermal expansion coefficient along b-axis is 3.3 times than that along c-axis.

3. Spectral Properties

Since the MgMoO$_4$ crystal belongs to monoclinic system, there are three refractive indices along the optical indicatrix axis (N_g, N_m, N_p) which do not coincide with the crystallographic axes (a, b, c): N_g and N_m are located in the ac plane, while N_p is parallel to b-axes. The angular relation between the two sets axes of MgMoO$_4$ crystal was determined by a polarizing microscope. Fig. 6 shows the relative orientation of the optical indicatrix axis (N_g, N_m, N_p) relative to the crystallographic axes (a, b, c) of MgMoO$_4$. N_g was located at about 7$^\circ$51’ to $-c$ axis, therefore N_g was located at about 24$^\circ$25’ to a axis.

Based on the results obtained above, a sample of the Cr$^{3+}$:MgMoO$_4$ crystal with dimension of 5.39 mm x4.82 mm x3.92 mm was cut from as-grown crystal and polished for the spectroscopic experiments, as shown in Fig. 4(e). The edges of cuboid were parallel to the optical indicatrix axis N_g, N_m, N_p, respectively. The polarized absorption spectrum was measured using a Perkin-Emer UV-VIS-NIR spectrometer (Lambda-900) in the range of 300–1100 nm at room temperature. The polarized fluorescence spectra were measured using the Edinburgh Analysis Instruments FLS920 spectrophotometer with Xenon lamp as light source. The fluorescence lifetime was measured by Lifespec-ps system of Edinburgh Instruments Ltd. The light source is continuous tunable picosecond pulsed Ti: sapphire (Tsunami, GWU). In experiment of lifetime measurement, the pulse duration of the incident light is 2–100 ps, the time resolution of the MCP-PMT detector is about 50 ps, the resolution of the monochromater is 0.5 nm, and the signal-to-noise ratio of Living spec-ps system is 6000:1. The wavelength of the excited light is 700 nm, and the detection wavelength is 820 nm.

Fig. 7 shows the polarized absorption spectra of the Cr$^{3+}$:MgMoO$_4$ crystal measured at room temperature. The spectrum consists of two broad absorption bands centered at about 492 nm and 703 nm, corresponding to the electronic transition from the 4A_2 ground state to the excited 4T_2 and 4T_1 states. The dip presented at 726 nm on the low energy band is caused by Fano-type antiresonance due to the spin forbidden transition from 4A_2 to 2E and the R-lines were not observed [22,23]. The structure of the absorption band was characteristic of the Cr$^{3+}$ ion in a weak crystal field as well as the absorption spectrum of the Cr$^{3+}$:LiSrAlF$_6$ and Cr$^{3+}$:LaSc(BO$_3$)$_4$ [5,8]. The absorption cross sections σ_a were determined to be 12.9$x10^{-20}$ cm2 at 491 nm and 7.89$x10^{-20}$ at 705 nm for E// N_g, respectively.

Direction	P(kg)	a(μm)	c(μm)	D(μm)	μ(107 MPa)	K(102 GPa m$^{-1/2}$)	β(m$^{-1}$)
[001]	200	19.05	36.53	38.1	255.44	1.21	0.04
[010]	200	17.07	30.95	34.15	317.95	0.19	0.06
[001]	200	18.39	29.56	36.79	273.96	0.19	0.06

Table 1. Results of the mechanical properties of Cr$^{3+}$: MgMoO$_4$ crystal.

Figure 5. Thermal expansion of Cr$^{3+}$: MgMoO$_4$ crystal.
doi:10.1371/journal.pone.0030327.g005

Figure 6. Angular relation between the optical indicatrix axes and the crystallographic axes of MgMoO$_4$ crystal.
doi:10.1371/journal.pone.0030327.g006
Fig. 8 presented the polarized and unpolarized fluorescence spectra measured at room temperature and 10K. It is shown that the main feature of the fluorescence spectra is a broad band extending from 750 nm to 1300 nm, corresponding to the transition from 4T_2 excited level to 4A_2 ground level. Even at 10K it is still a broad emission band. The luminescence spectra of Cr$^{3+}$:MgMoO$_4$ crystals are strongly polarized at room temperature. The broadest emission band was observed with a peak at 963 nm with a full width at half maximum (FWHM) of 188 nm for $E//N_g$. Such broad absorption and emission bands were caused by the structure of the MgMoO$_4$ crystal, except for its broad and emission transitions of the Cr$^{3+}$ ions. It is reason that the structure of the MgMoO$_4$ crystal consists of two types of MgO$_6$ tetrahedra [24], the Cr$^{3+}$ ions occupied the different Mg$^{2+}$ sites in the two
types of MgO₆ tetrahedra when the Cr³⁺ ions were doped into the MgMoO₄ crystal and replaced the Mg²⁺ ions. In other word, the Cr³⁺ ions occupied the two luminous centers, which results in broad absorption and emission bands.

The absorption and fluorescence spectra of the Cr³⁺:MgMoO₄ crystal indicated that the Cr³⁺ ions in the Cr³⁺:MgMoO₄ crystal occupied a weak-field site, in which the ⁴T₂ level is below the ⁴E level. According to Tanabe-Sugano diagram [25], the signification of Cr³⁺ ions occupying strong-field or weak-field sites is immediately apparent from the luminescence spectrum. In the strong-field the luminescence diagram [25], the signification of Cr³⁺ ions occupying strong-field or weak-field sites is immediately apparent from the luminescence spectrum. In the strong-field, luminescence spectrum consists of broadband emission of ⁴T₂→⁵A₂ transition and sharp line emission of ⁴T₂→⁵A₂ transition. The weak-field sites in the Cr³⁺:MgMoO₄ crystal give rise to the Cr³⁺ luminescence in the ⁴T₂→⁵A₂ transition band alone, even at 10K dominant feature of photoluminescence spectrum is still broadband emission, which is available for tunable laser crystal. The fluorescence lifetime τ_f was determined to be 1 µs measured at room temperature. Since the radiation lifetime is mainly derived from the parity-forbidden ⁴T₂→⁵A₂ transition with short lifetime in the weak-field, the Cr³⁺:MgMoO₄ crystal has a very short fluorescence lifetime.

The emission cross-section σₑ was calculated using the formula

\[\sigma_e = \frac{\lambda^2}{4\pi^2\tau_f\Delta\nu} \]

where \(\lambda\) is the wavelength of the emission peak, \(n\) is the refractive index of the Cr³⁺:MgMoO₄ crystal, which was determined by the method of minimum deviation and the value was listed in Table 3, and \(\Delta\nu\) the frequency of FWHM. The \(\tau_f\) is the fluorescence lifetime, which was determined to be 1 µs. Thus, the emission cross-section of ⁴T₂→⁵A₂ transition is 119.88×10⁻²⁰ cm² at 963 nm for E//Nₐ.

Results and Discussion

The Cr³⁺:MgMoO₄ crystals with dimensions up to 30 mm×18 mm×14 mm were obtained by TSSG method. The mechanical and thermal properties and polarized optical characteristic of the Cr³⁺:MgMoO₄ were investigated. The thermal expansion coefficient of the Cr³⁺:MgMoO₄ crystal along c-axis is smaller than that of the other directions. The investigated results of spectral properties of the Cr³⁺:MgMoO₄ crystal showed that its absorption and emission spectra exhibit strong polarized and depend on the optical indicatrix axis \(N_p\), \(N_m\), \(N_n\) at room temperature. The Cr³⁺:MgMoO₄ crystal has large absorption cross-section at about 705 nm, which is available for the diode laser pumping. The Cr³⁺:MgMoO₄ crystal exhibits a broad band emission extending from 750 nm to 1300 nm with peak at about 705 nm. The emission cross-section with FWHM of 188 nm is 119.88×10⁻²⁰ cm² at 963 nm for E//Nₐ. In comparison with other Cr³⁺ doped materials (Table 4), the Cr³⁺:MgMoO₄ crystal has large emission cross-section and FWHM of the fluorescence. The fluorescence lifetime \(\tau_f\) was determined is 1 µs, which is available to apply to short pulse laser. To sum up above the

Table 3. Refractive index value of the wavelength at emission peak.

Wavelength(nm)	919(E//Nₐ)	956(E//Nₘ)	963(E//Nₙ)
Refractive index	1.746	1.787	1.819

doi:10.1371/journal.pone.0030327.t003

Cr³⁺:MgMoO₄ Crystal	E//Nₐ	E//Nₘ	E//Nₙ
Cr: BeAl₂O₄	420	10.0	600
Cr: K₂NaScF₆	430	1.4	630
Cr: GSGG	488	5.1	647.1
Cr: LiCaAlF₄	425.5		625
Cr: LaSc₅(BO₄)₃₄	458	1.32	655
E//x	457	1.18	654
E//y	456	1.72	655
E//z	458	1.32	655
CrKAI(MoO₄)₂			
n-Polarization	480	8.44	669
n-Polarization	481	5.03	668
CrRbAl₂(MoO₄)₂	479	10.15	668
CrCsAl₂(MoO₄)₂	481	5.05	670
Cr: MgMoO₄	489	10.28	703
E//Nₐ	493	12.94	705
E//Nₘ	508	10.71	711

\[\sigma_e = \frac{\lambda^2}{4\pi^2\tau_f\Delta\nu} \]
results, the conclusion was drawn that the Cr$_3^+$:MgMoO$_4$ crystal may be regarded as a potential tunable laser gain medium.

References

1. Kuck S (2001) Laser-related spectroscopy of ion-doped crystals for tunable solid state-lasers. Appl Phys B 72: 515–562.
2. Samulenen TA, Holliger J (2003) LiCaAlF$_6$ and LiSrAlF$_6$: tunable solid state laser host materials. Opt Laser Eng 43: 251–262.
3. Kenyon PT, Andrews L, McCallum B, Lempicki A (1982) Tunable infrared solid-state laser materials based on Cr$^{3+}$ in low ligand fields. IEEE J Quantum Electron QE-18: 1189–1197.
4. Payne SA, Chase LL, Newkirk HW, Smith LI, Krujape WF (1988) LiCaAlF$_6$:Cr$^{3+}$: a promising new solid-state laser material. IEEE J Quantum Electron 24: 2243–2252.
5. Payne SA, Chase LL, Smith LI, Kway WL, Newkirk HW (1989) Laser performance of LiCaAlF$_6$:Cr$^{3+}$. J Appl Phys 66: 1051–1056.
6. Kulikov K, Moore CA (1967) Radiation from the 4T_2 state of Cr$^{3+}$ in ruby and emerald. Phys Rev 160: 307–312.
7. Streur B, Huber G, Laptev VV, Shekhurakov IA, Zharkov EF (1983) Tunable room-temperature cw laser action in Cr$^{3+}$: GeSe$_2$:Ga:Garnet. Appl Phys B 30: 117–120.
8. Long XF, Lin ZB, Hu ZS, Wang GF (2004) Polarized spectral characteristics and energy levels of Cr$^{3+}$:LaSc$_2$:BO$_3$: crystal. Chem Phys Let 392: 192–195.
9. Lai ST, Chai BT, Long M, Morris RC (1986) ScBO$_3$:Cr–A room temperature near-infrared tunable laser. IEEE J Quantum Electron 22: 1931–1933.
10. Wang GJ, Long XF, Zhang LZ, Wang GF, Polovos S, et al. (2000) Spectroscopic characteristic and energy levels of Cr$^{3+}$ in Cr$^{3+}$:KAl(MoO$_4$)$_2$ crystal. J Lumin 129: 1356–1560.
11. Wang GJ, Zhang LZ, Lin ZB, Wang GF (2010) Growth and spectroscopic characteristics of Cr$^{3+}$:CaAl(MoO$_4$)$_2$ crystal. J Alloys Compd 498: 293–296.
12. Wang GJ, Lin ZB, Zhang LZ, Huang YH, Wang GF (2009) Spectroscopic characterization and energy levels of Cr$^{3+}$:Sc$_2$(MoO$_4$)$_3$ crystal. J Lumin 129: 1398–1400.
13. Spaskii DA, Kolobanov VN, Mikhailin VV, Berezovskaya LYu, Ileva LI, et al. (2009) Luminescence peculiarities and optical properties of MgMoO$_4$ and MgMoO$_4$:Yb crystals. Opt Spectro 106: 556–563.
14. Mikhailik VB, Kraus H, Wahl D, Mykhaylyk MS (2005) Studies of electronic excitations in MgMoO$_4$, CaMoO$_4$ and CdMoO$_4$ crystals using VUV synchrotron radiation. phys stat sol (b) 242, No. 2: R17–R19.
15. Preiffer E, Rudolph P (1990) Investigations of the crystal growth of PbMoO$_4$ by the Czochralski method. Crystal Res Technol 25: 3–9.
16. Mikhailik VB, Kraus H, Wahl D, Ehrenberg H, Mykhaylyk MS (2006) Optical and luminescence studies of ZnMoO$_4$ using vacuum ultraviolet synchrotron radiation. Nucl Instrum Methods Phys Res Sect A 562: 513–516.
17. Cavalli E, Belletti A, Brik MG (2008) Optical spectra and energy levels of the Cr$^{3+}$ ions in MWO$_3$ [M=Mg, Zn, Cd] and MgMoO$_4$ crystals. J Phys Chem Solids 69: 29–34.
18. Spaskii DA, Kolobanov VN, Mikhailin VV, Berezovskaya LYu, Ileva LI, et al. (2009) Luminescence peculiarities and optical properties of MgMoO$_4$ and MgMoO$_4$:Yb crystals. Opt Spectro 106: 556–563.
19. Mikhailik VB, Kraus H, Wahl D, Mykhaylyk MS (2005) Studies of electronic excitations in MgMoO$_4$, CaMoO$_4$ and CdMoO$_4$ crystals using VUV synchrotron radiation. phys stat sol (b) 242, No. 2: R17–R19.
20. Wang GF, Luo ZD, Chen JM (1990) Flux growth of Cr$^{3+}$: LiGaW$_2$O$_8$ crystals and phase equilibrium of LiGaW$_2$O$_8$–Li$_2$B$_2$O$_4$. J Crystal Growth 100: 447–449.
21. Bakakin VV, Klevtsova RF, Gaponenko LA (1992) Crystal-structure of magnesium molybdate MgMoO$_4$:An example of the modified closed packing with 2 types of tetrahedra. Kristallografiya 27: 30–42.
22. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124: 1866–1878.
23. Fano U, Cooper JW (1965) Line profiles in far-uv absorption spectra of rare gases. Phys Rev 137: A1364–A1379.
24. Bakakin VV, Klevtsova RF, Gaponenko LA (1982) Crystal structure of magnesium molybdate MgMoO$_4$:an example of modified closest packing with two types of tetrahedra. Kristallografiya 27: 30–42.
25. Sugano S, Tanabe Y, Kamimura H Multiplets of transition metal ions in crystals, Academy Press, New York.
26. Huber G, Kruhler WV, Bludau W, Daniemeyer HG (1975) Anisotropy in the laser performance of NdP$_5$O$_{14}$. J Appl Phys 46: 3580–3584.
27. Wang GJ, Huang YS, Zhang LZ, Lin ZB, Wang GF (2011) Growth and spectral properties of Cr$^{3+}$:LiAl(MoO$_4$)$_2$ crystal. Mat Res Innovat 15: 167–171.
28. Wang GJ, Zhang LZ, Lin ZB, Wang GF (2010) Growth and spectroscopic characteristics of Cr$^{3+}$:CaAl(MoO$_4$)$_2$ crystal. J Alloys Compd 489: 295–296.