RESTRICTIONS OF BROWNIAN MOTION

RICHÁRD BALKA AND YUVAL PERES

Abstract. Let \(\{B(t) : 0 \leq t \leq 1\} \) be a linear Brownian motion and let \(\dim \) denote the Hausdorff dimension. Let \(\alpha > \frac{1}{2} \) and \(1 \leq \beta \leq 2 \). We prove that, almost surely, there exists no set \(A \subset [0, 1] \) such that \(\dim A > \frac{1}{2} \) and \(B: A \to \mathbb{R} \) is \(\alpha \)-Hölder continuous. The proof is an application of Kaufman's dimension doubling theorem. As a corollary of the above theorem, we show that, almost surely, there exists no set \(A \subset [0, 1] \) such that \(\dim A > \frac{\beta}{2} \) and \(B: A \to \mathbb{R} \) has finite \(\beta \)-variation. The zero set of \(B \) and a deterministic construction witness that the above theorems give the optimal dimensions.

1. Introduction

This paper was motivated by questions of Kahane and Katznelson [5] about restrictions of Hölder continuous functions. For related restriction theorems for non-random functions see also papers of Máté [2] and Elekes [9].

We examine how large a set can be, on which linear Brownian motion is \(\alpha \)-Hölder continuous for some \(\alpha > \frac{1}{2} \) or has finite \(\beta \)-variation for some \(1 \leq \beta \leq 2 \). The main goal of the paper is to prove the following two theorems.

Theorem 1.1. Let \(\{B(t) : 0 \leq t \leq 1\} \) be a linear Brownian motion and assume that \(\alpha > \frac{1}{2} \). Then, almost surely, there exists no set \(A \subset [0, 1] \) with \(\dim A > \frac{1}{2} \) such that \(B: A \to \mathbb{R} \) is \(\alpha \)-Hölder continuous.

Theorem 1.2. Let \(\{B(t) : 0 \leq t \leq 1\} \) be a linear Brownian motion and assume that \(1 \leq \beta \leq 2 \). Then, almost surely, there exists no set \(A \subset [0, 1] \) with \(\dim A > \frac{\beta}{2} \) such that \(B: A \to \mathbb{R} \) has finite \(\beta \)-variation.

Clearly, the above theorems hold simultaneously for a countable dense set of parameters \(\alpha, \beta \), thus simultaneously for all \(\alpha, \beta \). Let \(Z \) be the zero set of a linear Brownian motion \(B \). Then, almost surely, \(\dim Z = \frac{1}{2} \) and \(B|_Z \) is \(\alpha \)-Hölder continuous for all \(\alpha > \frac{1}{2} \), so Theorem [1.1] gives the optimal dimension. We prove also that Theorem [1.2] is best possible, see Theorem [4.3]

2010 Mathematics Subject Classification. Primary: 28A78, 60J65.

Key words and phrases. Brownian motion, Hausdorff dimension, bounded variation, Hölder continuous, restriction.

The first author was supported by the Hungarian Scientific Research Fund grant no. 104178.
2. Preliminaries

The diameter of a metric space X is denoted by $\text{diam} X$. For all $s \geq 0$ the s-dimensional Hausdorff measure of X is defined as

$$\mathcal{H}^s(X) = \lim_{\delta \to 0^+} \mathcal{H}^s_\delta(X),$$

where

$$\mathcal{H}^s_\delta(X) = \inf \left\{ \sum_{i=1}^\infty (\text{diam} X_i)^s : X \subset \bigcup_{i=1}^\infty X_i, \forall i \text{ diam } X_i \leq \delta \right\}.$$

The Hausdorff dimension of X is defined as

$$\dim X = \inf \{ s \geq 0 : \mathcal{H}^s(X) < \infty \}. $$

Let $A \subset \mathbb{R}$ and $\alpha, \beta > 0$. A function $f : A \to \mathbb{R}$ is called α-Hölder continuous if there exists a constant $c \in (0, \infty)$ such that $|f(x) - f(y)| \leq c|x-y|^\alpha$ for all $x, y \in A$. The β-variation of a function $f : A \to \mathbb{R}$ is defined as

$$\text{Var}^\beta(f) = \sup \left\{ \sum_{i=1}^n |f(x_i) - f(x_{i-1})|^\beta : x_0 < \cdots < x_n, x_i \in A, n \in \mathbb{N}^+ \right\}. $$

Fact 2.1. If $f : A \to \mathbb{R}$ is α-Hölder continuous then $\dim f(A) \leq \frac{1}{\alpha} \dim A$.

3. Hölder Restrictions

The goal of this section is to prove Theorem 1.1. First we need some preparation.

Definition 3.1. A function $g : [0, 1] \to \mathbb{R}^2$ is called dimension doubling if

$$\dim g(A) = 2 \dim A \quad \text{for all } A \subset [0, 1].$$

The following result is Kaufman’s dimension doubling theorem.

Theorem 3.2 (Kaufman, [7]). The two-dimensional Brownian motion is almost surely dimension doubling.

The following theorem follows from [4] Lemma 2 together with the fact that the closed range of the stable subordinator with parameter $\frac{1}{2}$ coincides with the zero set of a linear Brownian motion. For a more direct reference see [6].

Theorem 3.3. Let $A \subset [0, 1]$ be a compact set with $\dim A > \frac{1}{2}$ and let \mathcal{Z} be the zero set of a linear Brownian motion. Then $\dim (A \cap \mathcal{Z}) > 0$ with positive probability.

Lemma 3.4 (Key Lemma). Let $\{W(t) : 0 \leq t \leq 1\}$ be a linear Brownian motion. Assume that $\alpha > \frac{1}{2}$ and $f : [0, 1] \to \mathbb{R}$ is a continuous function such that (f, W) is almost surely dimension doubling. Then there is no set $A \subset [0, 1]$ such that $\dim A > \frac{1}{2}$ and f is α-Hölder continuous on A.

Proof. Assume to the contrary that there is a set $A \subset [0, 1]$ such that $\dim A > \frac{1}{2}$ and f is α-Hölder continuous on A. As f is still α-Hölder continuous on the closure of A, we may assume that A itself is closed. Let \mathcal{Z} be the zero set of W, then Theorem 3.3 implies that $\dim (A \cap \mathcal{Z}) > 0$ with positive probability. Then the α-Hölder continuity of $f|_A$ and Fact 2.1 imply that, with positive probability,

$$\dim (f, W)(A \cap \mathcal{Z}) = \dim (f(A \cap \mathcal{Z}) \times \{0\}) = \dim f(A \cap \mathcal{Z}) \leq \frac{1}{\alpha} \dim (A \cap \mathcal{Z}) < 2 \dim (A \cap \mathcal{Z}),$$

which contradicts the fact that (f, W) is almost surely dimension doubling. \qed
Proof of Theorem 1.1. Let \(\{W(t) : 0 \leq t \leq 1\} \) be a linear Brownian motion which is independent of \(B \). By Kaufman’s dimension doubling theorem \((B, W)\) is dimension doubling with probability one, thus applying Lemma 3.4 for an almost sure path of \(B \) finishes the proof. \(\square \)

4. Restrictions of bounded variation

We need the following lemma, which may be obtained by a slight modification of [11, Lemma 4.1]. For the reader’s convenience we outline the proof.

Lemma 4.1. Let \(\alpha, \beta > 0 \). Assume that \(A \subset [0, 1] \) and the function \(f : A \to \mathbb{R} \) has finite \(\beta \)-variation. Then there are sets \(A_n \subset A \) such that for any \(n \in \mathbb{N}^+ \)

\[
\text{dim} \left(A \setminus \bigcup_{n=1}^{\infty} A_n \right) \leq \alpha \beta.
\]

Proof. For all \(n \in \mathbb{N}^+ \) let

\[
A_n = \{ x \in A : |f(x + t) - f(x)| \leq 2t^\alpha \text{ for all } t \in [0, 1/n] \cap (A - x) \}.
\]

As \(A \) is bounded, \(f|_{A_n} \) is \(\alpha \)-Hölder continuous for all \(n \in \mathbb{N}^+ \). Let

\[
D = \left\{ x \in A : \limsup_{t \to 0^+} |f(x + t) - f(x)|t^{-\alpha} > 1 \right\}.
\]

Clearly \(A \setminus \bigcup_{n=1}^{\infty} A_n \subset D \), so it is enough to prove that \(\text{dim} D \leq \alpha \beta \). Let us fix \(\delta > 0 \) arbitrarily. Then for all \(x \in D \) there is a \(0 < t_x < \delta \) such that

\[
|f(x + t_x) - f(x)| \geq t_x^\beta.
\]

Define \(I_x = [x - t_x, x + t_x] \) for all \(x \in D \). By Besicovitch’s covering theorem (see [10, Thm. 2.7]) there is a number \(p \in \mathbb{N}^+ \) not depending on \(\delta \) and countable sets \(S_i \subset D \) \((i \in \{1, \ldots, p\}) \) such that

\[
D \subset \bigcup_{i=1}^{p} \bigcup_{x \in S_i} I_x \text{ and } I_x \cap I_y = \emptyset \text{ for all } x, y \in S_i, \ x \neq y.
\]

Applying (4.1) and (4.2) implies that for all \(i \in \{1, \ldots, p\} \)

\[
\sum_{x \in S_i} |I_x|^\alpha \beta = 2^\alpha \sum_{x \in S_i} t_x^\beta \leq 2^\alpha \beta \sum_{x \in S_i} |f(x + t_x) - f(x)|^\beta \leq 2^\alpha \beta \text{ Var}^\beta (f).
\]

Equations (4.2) and (4.3) imply that

\[
\mathcal{H}^\alpha \beta (D) \leq \sum_{i=1}^{p} \sum_{x \in S_i} |I_x|^\alpha \beta \leq p2^\alpha \beta \text{ Var}^\beta (f).
\]

As \(\text{Var}^\beta (f) < \infty \) and \(\delta > 0 \) was arbitrary, we obtain that \(\mathcal{H}^\alpha \beta (D) < \infty \). Hence \(\text{dim} D \leq \alpha \beta \), and the proof is complete. \(\square \)

Proof of Theorem 1.2. Assume to the contrary that for some \(\varepsilon > 0 \), with positive probability, there is a set \(A \subset [0, 1] \) such that \(\text{dim} A \geq \beta/2 + 2\varepsilon \) and \(B|_A \) has finite \(\beta \)-variation. Let \(\alpha = 1/2 + \varepsilon/\beta > 1/2 \). Applying Lemma 4.1 we obtain that there are sets \(A_n \subset A \) such that \(f|_{A_n} \) is \(\alpha \)-Hölder continuous for every \(n \in \mathbb{N}^+ \) and

\[
\text{dim} \left(A \setminus \bigcup_{n=1}^{\infty} A_n \right) \leq \alpha \beta = \frac{\beta}{2} + \varepsilon.
\]
As \(\alpha > 1/2 \) and \(f|_{A_n} \) is \(\alpha \)-Hölder continuous, Theorem 1.1 implies that almost surely \(\dim A_n \leq 1/2 \) for all \(n \in \mathbb{N}^+ \), therefore (1.4) and the countable stability of the Hausdorff dimension yield that \(\dim A \leq \beta/2 + \varepsilon \). This is a contradiction, and the proof is complete.

The following two theorems imply that Theorem 1.2 is sharp for all \(\beta \).

Theorem 4.2 (Lévy’s modulus of continuity, [8]). For the linear Brownian motion \(\{B(t) : 0 \leq t \leq 1\} \), almost surely,

\[
\limsup_{h \to 0^+} \sup_{0 \leq t \leq 1-h} \frac{|B(t+h)-B(t)|}{\sqrt{2h \log(1/h)}} = 1.
\]

Theorem 4.3. Let \(1 \leq \beta \leq 2 \) be fixed. Then there is a compact set \(A \subset [0,1] \) such that \(\dim A = \frac{\beta}{2} \) and if \(f : [0,1] \to \mathbb{R} \) is a function such that for all \(x, y \in [0,1] \)

\[
|f(x) - f(y)| \leq c|x-y|^\beta \log \frac{1}{|x-y|}
\]

with some \(c \in (0, \infty) \), then \(f|_A \) has finite \(\beta \)-variation.

Proof. Let \(\beta \in [1,2] \) be fixed, first we construct \(A \). For all \(n \in \mathbb{N} \) let

\[
\gamma_n = 2^{-2n/\beta}(n+1)^{-6}.
\]

As \(\beta \leq 2 \), for all \(n \in \mathbb{N} \) we have

\[
\gamma_{n+1} < \frac{\gamma_n}{2}.
\]

For all \(n \in \mathbb{N} \) and \(\{i_1, \ldots, i_n\} \in \{0,1\}^n \) we define intervals \(I_{i_1 \ldots i_n} \subset [0,1] \) by induction. We use the convention \(\{0,1\}^0 = \{\emptyset\} \) and let \(I_\emptyset = [0,1] \). If the interval \(I_{i_1 \ldots i_n} = [u,v] \) is already defined then let

\[
I_{i_1 \ldots i_n, 0} = [u, u + \gamma_{n+1}] \quad \text{and} \quad I_{i_1 \ldots i_n, 1} = [v - \gamma_{n+1}, v].
\]

By (1.4) and the construction for all \(n \in \mathbb{N} \) and \((i_1, \ldots, i_n), (j_1, \ldots, j_n) \in \{0,1\}^n \)

(i) \(\text{diam } I_{i_1 \ldots i_n} = \gamma_n \),

(ii) \(I_{i_1 \ldots i_n} \cap I_{j_1 \ldots j_n} = \emptyset \) if \((i_1, \ldots, i_n) \neq (j_1, \ldots, j_n) \),

(iii) \(I_{i_1 \ldots i_n, 0} \subset I_{i_1 \ldots i_n} \).

Let us define

\[
A = \bigcap_{n=0}^\infty \bigcup_{(i_1, \ldots, i_n) \in \{0,1\}^n} I_{i_1 \ldots i_n}.
\]

Let \(f : [0,1] \to \mathbb{R} \) be a function satisfying (1.5). Now we prove that \(\text{Var}^\beta(f|_A) < \infty \). Inequality (1.5), \(f \), the definition of \(\gamma_n \) and \(\beta \geq 1 \) imply that for all \(n \in \mathbb{N} \) and \((i_1, \ldots, i_n) \in \{0,1\}^n \) we have

\[
(\text{diam } f(I_{i_1 \ldots i_n}))^\beta \leq (c_\beta n^{1/2} \log \gamma_n)^\beta \leq c_\beta 2^{-n}(n+1)^{-2},
\]

where \(c_\beta \in (0, \infty) \) is a constant depending on \(c \) and \(\beta \) only. For all \(x, y \in A \) let \(n(x,y) \) be the maximal number \(n \) such that \(x, y \in I_{i_1 \ldots i_n} \) for some \((i_1, \ldots, i_n) \in \{0,1\}^n \). If \(\{x_k\}_{k=0}^\infty \) is a monotone sequence in \(A \) and \(n \in \mathbb{N} \) then the number of \(i \in \{1, \ldots, k\} \) such that \(n(x_{i-1}, x_i) = n \) is at most \(2^n \). Therefore (4.7) implies that

\[
\text{Var}^\beta(f|_A) \leq \sum_{n=0}^\infty 2^n (c_\beta 2^{-n}(n+1)^{-2}) = \sum_{n=1}^\infty c_\beta n^{-2} < \infty.
\]
Finally, we prove \(\dim A = \beta/2 \). Then \(\dim A \leq \beta/2 \) is obvious, for the lower bound let \(\mu \) be the Borel measure on \(A \) such that for all \(n \in \mathbb{N} \) and \((i_1, \ldots, i_n) \in \{0, 1\}^n \)
\[
\mu(I_{i_1 \ldots i_n}) = 2^{-n}.
\] (4.8)

Note that by (ii) and (iii) the measure \(\mu \) is well-defined on the algebra generated by the sets \(A \cap I_{i_1 \ldots i_n} \), so it can be uniquely extended to the generated \(\sigma \)-algebra by Carathéodory’s extension theorem [3, Thm. A, p. 54.]. Let us fix \(\varepsilon > 0 \), then clearly there is an \(N \in \mathbb{N} \) such that for all \(n \geq N \) we have
\[
\gamma_n^{\beta/2 - \varepsilon} \geq 2^{-n}.
\] (4.9)

Let \(C \subset A \) be any set with \(\operatorname{diam} C \leq \gamma_N \). We can choose \(n \geq N \) such that
\[
\gamma_{n+1} < \operatorname{diam} C \leq \gamma_n.
\] (4.10)

Property (i) implies that \(C \) can intersect at most two \(n \)th level intervals \(I_{i_1 \ldots i_n} \), therefore (4.8), (4.9), and (4.10) yield that
\[
\mu(C) \leq 2^{-n+1} \leq 4^{\gamma_n^{\beta/2 - \varepsilon}} \leq 4(\operatorname{diam} C)^{\beta/2 - \varepsilon}.
\]

Hence the mass distribution principle [11, Thm. 4.19] implies that \(\dim A \geq \beta/2 - \varepsilon \). As \(\varepsilon > 0 \) was arbitrary, we obtain that \(\dim A \geq \beta/2 \). The proof is complete. \(\square \)

References

[1] T. Antonović, K. Burdzy, Y. Peres, J. Ruscher, Isolated zeros for Brownian motion with variable drift, *Electron. J. Probab.* 16 (2011), no. 65, 1793–1814.
[2] M. Elekes, Hausdorff measures of different dimensions are isomorphic under the Continuum Hypothesis, *Real Anal. Exchange* 30 (2004), no. 2, 605–616.
[3] P. R. Halmos, *Measure theory*, Springer-Verlag, 1974.
[4] J. Hawkes, On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set, *Z. Wahrscheinlichkeit* 19 (1971), 90–102.
[5] J.-P. Kahane, Y. Katznelson, Restrictions of continuous functions, *Israel J. Math.* 174 (2009), 269–284.
[6] R. Kaufman, Measures of Hausdorff-type, and Brownian motion, *Mathematika* 19 (1972), 115–119.
[7] R. Kaufman, Une propriété métrique du mouvement brownien, *C. R. Acad. Sci. Paris* 268 (1969), 727–728.
[8] P. Lévy, *Théorie de l’addition des variables aléatoires*, Gauthier-Villars, Paris, 1937.
[9] A. Márth, Measurable functions are of bounded variation on a set of Hausdorff dimension \(\frac{1}{2} \), *Bull. London Math. Soc.* 45 (2013), 580–594.
[10] P. Mattila, *Geometry of sets and measures in Euclidean spaces*, Cambridge Studies in Advanced Mathematics No. 44, Cambridge University Press, 1995.
[11] P. Mörters, Y. Peres, *Brownian motion*, With an appendix by Oded Schramm and Wendelin Werner, Cambridge University Press, 2010.

Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195-4350, USA and Alfred Rényi Institute of Mathematics, Hungarian Academy of Sciences, PO Box 127, 1364 Budapest, Hungary

E-mail address: balka@math.washington.edu

Microsoft Research, 1 Microsoft Way, Redmond, WA 98052, USA

E-mail address: peres@microsoft.com