Aromas from Quebec. V. Essential oils from the fruits and stems of *Heracleum maximum* Bartram and their unsaturated aliphatic acetates

Alexis St-Gelaisa, Guy Collinb and André Pichetteb

aLaboratoire PhytoChemia inc., Saguenay, QC, Canada; bLaboratoire d’analyse et de séparation des essences végétales (LASEVE), Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada

ABSTRACT

Both the fruits and stems of *Heracleum maximum* Bartram, a common Apiaceae found throughout northern North America, have been traditionally consumed as spice and food by American First Nations and settlers. As both parts of the plant bear a distinctive scent, they have been submitted to volatile constituent extraction and their essential oils were studied by GC–FID and GC–MS. The fruits’ oil was found to be mostly constituted of aliphatic esters, with octyl acetate (65.6%) as main constituent, while the stems yielded a generally terpenic oil, dominated by limonene (45.2%). These results were in line with data for other *Heracleum* species, and constitute the first study of the volatile constituents of *H. maximum*. The observation of several octadecenyl acetates as trace compounds in the stems’ oil allowed for the comprehensive identification of these uncommon and closely related isomers.

Introduction

Heracleum maximum Bartram (formerly *Heracleum lanatum* Michaux), a member of the Apiaceae, is a large herbaceous plant found across North America, and is commonly known as cow parsnip. Its sturdy, hollow stem reaches up to 3 meters, bearing a flattened inflorescence up to 20 cm wide. The fruits are winged and ridged schizocarps. The plant’s leaves bear three maple-shaped leaflets and their petioles are wrapped around the stalk (1–3). The species has had dietary uses: many native American populations consumed large quantities of the young and tender stalks as raw vegetables, hence another common name, Indian celery, used in soups and desserts (2, 4); the fruits have been also used as spices (1); parts of the stem have also served as a salt substitute (1, 4); and the Meskwaki people used the roots as food (1).

Previous studies have also found it to possess antibacterial and antifungal (5, 6), immunostimulant (2) and antidiabetic (7) properties. As many other Apiaceae, cow parsnip is known to produce a wide range of phototoxic furanocoumarins (2, 8–10), some of which are responsible for the antimycobacterial activity along with (3\text{R},8\text{S})-falcarindiol (11). The furanocoumarins are partly removed by peeling the stalks, a process largely applied by the natives to avoid undesirable toxicity (5).

The stem and fruits both possess a distinct scent (1, 2, 4), which likely contributed to their dietary uses. As the volatile compounds of *H. maximum* have not been studied before, specimens from Saguenay (Quebec, Canada) were picked in order to analyze the composition of the essential oil obtained from the stems and the fruits.

Experimental

Plant material

Heracleum maximum Bartram fruits were collected on 15 July 2014, and stems on 17 July 2014, from a dozen individuals in Saguenay (Quebec, Canada; 48°25′17″ N, 71°02′59″ W). Samples were stored at −15°C until extraction. A voucher specimen was deposited at the Louis-Marie Herbarium, Université Laval, Québec (code QFA0614542).

Extraction

Fruits from twelve individuals (123 g) were grossly ground and extracted using a Clevenger apparatus for 3 hours. Frozen stems from the same individuals (1.26 kg) were broken in pieces using a culinary robot and submitted to hydrodiffusion for 3 hours. Essential oil volumes were

\[\text{CONTACT} \quad \text{Alexis St-Gelais a.st-gelais@phytochemia.com} \]

\[\text{The supplementary material for this paper is available online at http://dx.doi.org/10.1080/10412905.2016.1210040.} \]

© 2016 Informa UK Limited, trading as Taylor & Francis Group
measured directly in the collecting burette. The oils were stored at 4°C until GC analysis.

GC-FID and GC-MS analysis

GC-FID analyses were carried out on an Agilent 6890N GC equipped with a split/splittless injector as well as two FID detectors. Columns: DB-5 30 m × 0.25 mm × 0.25 μm film thickness (Agilent Technologies, Santa Clara, CA, USA); SolgelWax (bonded polyethylene glycol) 30 m × 0.25 mm × 0.25 μm film thickness (SGE Analytical Science, Austin, TX, USA). Temperature program: 40°C for 2 minutes, 2°C/min up to 210°C, and 210°C for 13 minutes. Injection temperature: 220°C. Injection volume: 0.1 μL. Inlet pressure: 105.3 kPa. Carrier gas: He, flow rate: 1.4 mL/min. Injection mode: split (235:1). FID (260°C): H₂ flow: 40 mL/min; air flow: 450 mL/min; make up flow (N₂): 45 mL/min. Sampling rate: 0.04 min. Samples were also injected on an Agilent 7890A GC with a split/splittless injector coupled to an Agilent 5975C InertXL EI/CI mass spectrometer. Column: DB-5MS 30 m × 0.25 mm × 0.25 μm film thickness (Agilent Technologies, Santa Clara, CA, USA). Temperature program: same as in GC-FID. Injection temperature: 250°C. Injection volume: 1.0 μL. Inlet pressure: 48.7 kPa. Carrier gas: He, flow rate: 1.0 mL/min. Injection mode: split (50:1). MS interface temp.: 300°C; MS mode: EI; detector voltage: 1.34 kV; mass range: 40–550 u; scan speed: 1458.6 u/s. Data handling was carried out by means of ACD/Spectrus. Compounds were identified from their retention indexes as calculated from even-numbered C₈ to C₃₆ alkane standards and/or from MS databases (NIST08(30), Adams(40), MassFinder 3(41), and custom libraries built from pure compounds). Quantification comes from the FID detector response on the DB-5 column without any correction factor. An estimated experimental relative standard deviation on concentrations obtained by this method is ±1% for compounds representing at least 10% of the oil, ±3% for compounds between 1.0 and 10%, and ±6% for compounds between 0.1% and 1.0%.

Chemicals

Oleyl acetate was bought from TCI chemicals (Portland, OR 97203) 11-cis-vaccenyl acetate from Cayman Chemical (Ann Arbor, MI 48108), and (Z)-4-decenol and 9-decenol from Sigma-Aldrich (St-Louis, MO 63103). A drop of each of the two alcohols was also incubated in 500 μL acetone with 200 μL triethylamine and 100 μL acetic anhydride for 24 hours in order to perform acetylation prior to injection.

Results and discussion

Fruits’ oil

The fruits’ slightly yellow essential oil has an earthy and pungent spicy scent, and was obtained with a yield of 0.41%. Its composition is dominated by the presence of various saturated aliphatic esters (Figure 1). Octyl acetate accounts for almost 66% of the oil (Table 1). This major constituent is common to several members of the *Heracleum* genus. This is the case for *H. crenatifolium* (93%), *H. platytaenium* (85%) (12) and *H. paphlagonicum* (31.5%) (13) collected in Turkey, *H. siamicum* from Thailand (65.3%) (14), *H. spondyllum* ssp. *ternatum* (55–60%) from central Italy (15) and *H. moellendorfii* (63.8%) from China (16). Several other aliphatic esters are commonly found in *Heracleum* fruit oils, and *H. maximum* follows the same trend (Table 2).

A second group of observed compounds consists of unsaturated aliphatic esters, each accounting for 0.1–0.4% of the total FID signal, except for (Z)-3-octenyl acetate, accounting for 3.3%. The identification of (Z)-4-octenyl butyrate was obtained through its retention index values on both columns and its mass spectrum. These unsaturated aliphatic esters were observed in various *Heracleum* species. For example, nine (Z)-4-octenyl esters are present in the fruits of the oil of *H. paphlagonicum* (13) and four in that of *H. spondyllum* ssp. *ternatum* with percentages ranging from <0.1% to 0.6% except for (Z)-4-octenyl acetate (2–5.6%) (12) (Table 2). The percentages of the tentatively identified (Z)-5- and (Z)-6-decenyl acetates range between 0.1% and 0.3% in the *H. spondyllum* ssp. *ternatum* oil (12). As far as (Z)-5-dodecenyl acetate is concerned, this compound was observed in the fruit essential oil of *H. moellendorfii* cultivated in China (16). Finally, isopropyl senecioate (3-methyl-2-butenoate) was identified in *H. paphlagonicum* (13) and very recently in *H. spondyllum* L. ssp. *ternatum* (15).

Although hydrodiffusion of an essential oil is not the best way to appreciate the amounts of furanocoumarins, the presence of three of them (isobergapten, pimpinellin, and imperatorin) in trace amounts is not surprising. Pimpinellin and isobergapten were previously found in *H. lanatum* leaves (8) and *H. maximum* roots (11). Along with other furanocoumarins, they were too extracted with petroleum ether from *H. crenatiolium* (17). Angelicin and bergapten were also observed in the fruit oil of *H. paphlagonicum* (12).

One has to note the presence of very small percentages (<1%) of mono- and sesquiterpenes such as limonene (0.8%), germacrene D (0.3%) and amorpha-4,11-diene (0.3%), with only myrcene reaching a content of 1.6%. Terpinolene (10.8%) is one of the most important
compounds in the fruit oil of *H. antasiaticum* (18). The portrait of the fruit essential oil of *H. maximum* is completed by the presence of the polyyne (Z)-falcarinol (0.6%), as well as of several aliphatic alcohols and aldehydes. Octanol (6.2%) appears in the oils of several *Heracleum* species. Generally, its concentration remains below 4%, as it is the case in *H. sphondyllium* ssp. *ternatum* oil (12, 15).

Stem’s oil

The stems’ pale yellow essential oil has a fresh and zesty lemon scent, and was obtained with a yield of 0.02%. The composition of the oil extracted from stems is more conventional in that mono- and sesquiterpenes are the main constituents (Table 1, Figure 1). Limonene (45.3%) is by far the main compound followed by α-thujene, α-pinene and myrcene (each about 6%). The stem oil of *H. persicum*, collected in Iran before flowering, contains various monoterpenes such as terpinolene (20%), limonene and γ-terpinene (each about 11.5%), along with anethole (47%) (19). The anethole percentage increases to 60% after flowering. This compound has not been detected in *H. maximum*. The sesquiterpenic profile is interesting: along with germacrene D (1.2%), amorpha-4,11-diene (1.1%) and α-himachalene (tentative; 0.6%), isodaucene (0.5%) and traces of daucene are also detected. These uncommon compounds are characteristic of a number of Apiaceae: daucene is encountered, for example, in *Pimpinella affinis* stems (5.0%) (20) or in the aerial parts of *Ferula microcolea* (4.1%) (21), and, among others, in *Ferula glauca* roots (0.3–1.4%) (22), aerial parts of *Lomatium parryi* (0.6%) (23) and *Ferulago campestris* flowers and leaves (0.2–0.4%) (24).

The presence of (Z)-falcarinol – [(Z)-heptadeca-1,9-diene-4,6-diyn-3-ol] – (3.3%) must be noted. This compound too was observed in other members of the Apiaceae family such as *Daucus carota* L. (25) and in low percentage in the aerial parts of the *H. transcaucasicum* oil (0.1%) (26) and in methanol extracts of the leaves and roots of *H. moellendorffii* (27). We have previously identified this compound in *Anthriscus sylvestris* root essential oil (28).

Three unknown compounds have been observed on both columns in the stems’ oil, with Unknown I also being a noticeable constituent among the volatile compounds from the fruits. From its MS spectra, Unknown I is not of terpenic nature. It more likely belongs to the aliphatic esters class. This assumption is further backed by the retention index difference between the polar and
Compound	np1	np2	p3	Fruits	Stems
Tiglic aldehyde	735	737		t	
Prenol	770	765	1298	0.2	
Prenal	779	778		t	
Hexanal	796	797	1053	t	
Isopropyl isobutyrate	796	790	935	t	
Isopropyl butyrate	832	836		t	
(E)-2-Hexenal	838	846	1201	0.1	
(E)-3-Hexenol	843	844	1360	t	
(Z)-2-Hexenol	853	854	1386	t	
Hexanol	855	863	1333	0.1	
2-Methylbutyl acetate	866	875		t	
Isopropyl 2-methylbutyrate	872	880	1031	t	0.1
Isopropyl isovalerate	879	895	1049	t	0.2
(Z)-4-Nonene	881	885	885	t	t
Nonane	884	900	864	t	0.1
Isobutyl isobutyrate	899	908	1064	t	0.2
Heptanal	900	901	1161	t	
Tricyclene	903	921	991	t	
α-Thujene	911	924	1011	0.1	7.7
α-Pinene	917	932	1006	0.3	6.0
Camphene	932	946	1035	0.1	1.4
(E)-2-Heptenal	943*	947		t	
Benzaldehyde	943*	952	1494	t**	
Isopropyl seneclioate	955	969	1215	t	t
Sabine	962	969	1085	0.2	9.5
β-Pinene	965	974	1069	t	2.5
Octen-3-one	974	972		t	
Myrcene	987	988	1138	1.6	5.8
Octanal	990*	998	1267	0.9**	0.1
Isobutyl 2-methylbutyrate	1001	1002	1149	0.3	
Isobutyl isovalerate	1004	1005	1180	0.2	
α-Terpine	1011	1014	1155	0.3	
Isoamyl isobutyrate	1014	1021	1172*	0.1	
Hexyl acetate	1012	1007	1254	0.4	
para-Cymene	1019	1020	1248*	t	0.4
Limonene	1024*	1024	1172*	0.8**	45.2**
+β-Phellandrene	1024*	1025	1182	t**	0.7**
cis-β-Ocimene	1035	1032	1220	t	0.2
trans-β-Ocimene	1045	1044	1234	t	0.4
Isopropyl hexanoate	1048	1049		t	
(Z)-2-2-Octenal	1053*	1056	1400*	t	
Isoamyl butyrate	1056	1052		t	
γ-Terpine	1053*	1054	1222	t**	1.5
(Z)-5-Octenol	1060*	1065	1577	0.2**	
cis-Sabinene hydrate	1060*	1065	1444*	t**	0.1
4-Nonanone	1068	1305	1540	6.2	0.2
Octanol	1070	1063		t	
Isobutyl seneclioate	1076	1329		t	
Terpinolene	1082	1086	1263	0.2	
3-Nonanone	1088	1089	1336	t	
Linalool	1096*	1095	1532	0.1**	
Nonanal	1101*	1100	1373	0.1	+**
2-Methylbutyl 2-methylbutyrate	1101*	1101	1263	0.2**	
Isoamyl isovalerate	1103	1103	1259	t	
2-Methylbutyl isovalerate	1105	1103	1279	0.1	
β-Thujone	1109	1112	1407	t	
Heptyl acetate	1111	1112	1356	t	
cis-Limomene oxide	1130	1132	1413	t	
trans-Limomene oxide	1131	1137	1425	0.1	
Unknown I	1140	1332	0.4	t	
Hexyl isobutyrate	1147	1147	1326	t	
Citronellal	1148	1148	1457	t	
Borneol	1162	1165	1668*	t	
Terpinen-4-ol	1171	1174	1571*	t	0.4
α-Terpineol	1185	1186	1668*	t	
Hexyl butyrate	1190	1191	1400*	1.8	
Estragole	1190	1195	1633*	0.1	
(Z)-4-Decenyl	1192	1193	1516	0.1	t
(Z)-3-Octenyl acetate	1196	1194	1488*	3.3	
(Z)-2-Octenyl acetate	1196	1197		t	
(Z)-7-Decenyl	1199	1199	1521	t	

(Continued)
Table 1. (Continued).

Compound	np1	np2	p3	Fruits	Stems
Decanal	1202*	1201	1479	0.7**	0.1
trans-Piperitol	1206	1207	1717	t	
Octyl acetate	1210	1211	1460	65.6	0.8
(Z)-4-Octenyl acetate	1215	1510		0.1	
Thymol methyl ether	1233	1232	1565	0.1	
Piperitone	1247	1249	1682	0.1	
Geraniol	1258	1249	1821	0.1	
(Z)-4-Decenol	1258	1255		t	
(E)-2-Decenal	1266	1260	1664	0.1	
Decanol	1273	1266	1744	0.1	
Bornyl acetate	1282	1287	1546	0.1	1.4
Heptyl butyrate¹	1291	1289	1633	t	
(Z)-Sabinyl acetate	1291	1289	1633	t	
Nonyl acetate	1312	1311	1561	0.1	
Myrtenyl acetate	1321	1324	1652	0.1	
(S)-Carvyl acetate	1335	1339	1706	0.1	
Benzyl butyrate	1341	1343		t	
α-Terpinyl acetate	1345	1346	1663	0.1	
Octyl isobutyrate	1349	1348	1529	t	t
Citronellyl acetate	1352	1350	1642	t	0.4
cis-Carvyl acetate	1359	1365	1741	t	
Neryl acetate	1361	1359	1702	t	
(Z)-2-Undecenal	1366	1363		t	
α-Copaene	1370	1374	1464	t	0.1
(Z)-4-Octenyl butyrate	1374	1360		0.3	
Daucene	1374	1380	1518	t	
β-Bourbonene	1378	1387	1486	0.2	
Geranyl acetate	1379	1379	1736	0.1	0.5
β-Cubebene	1384*	1387	1510	0.1	0.1**
Benzyl 2-methylbutyrate	1384*	1392*		t	
Decen-1-yl acetate (unknown isomer)	1385			0.3	
(Z)-4-Decen-1-yl acetate	1386*	1389⁶⁰	1680*	0.3	0.1
Hexyl hexanoate	1386*	1382	1593	0.1**	
Octyl butyrate	1386*	1391⁶⁰	1601	7.9	0.1**
Phenylethyl isobutyrate	1388*	1393	1854	0.1**	
(Z)-5-Dodecenal	1389	1389⁶⁰		t	
(Z)-5-Decen-1-yl acetate	1391			0.2	
(E)-4-Decen-1-yl acetate	1395			0.2	
Benzyll isovalerate	1395	1394⁶⁰		t	
(Z)-6-Decen-1-yl acetate	1399	1404⁶⁰		t	
Methyl eugenol	1400	1403	1977	t	
9-Decen-1-yl acetate	1405	1710	0.1		
Decyl acetate	1409	1407	1664	0.2	
β-Caryophyllene	1411*	1417	1557	t	0.1**
2,5-Dimethoxy-para-cymene	1411¹	1424	1837	t^{**}	
Octyl 2-methylbutyrate	1429	1420⁶⁰	1613	t	
Octyl isovalerate	1442	1440⁶⁰	1633	t	
α-Humulene¹	1446*	1452	1626	t^{**}	0.1**
α-Himachalene¹	1451	1449	1616	0.2	0.6
Amorph-4,11-diene	1455*	1449	1622	0.2**	1.1**
Amyl α-pyrone	1455*	1514	2134	0.1**	
trans-β-Farnesene	1455*	1454	1649	0.1**	
γ-Murolene	1472	1478	1626	t	
Germancrene D	1475	1484	1668¹	0.3	1.2
ar-Curcumene	1479	1479	1741¹	t	0.1
Phenylethyl isovalerate¹	1483	1487^[27]	1949¹	0.1	
α-Zingiberene	1493*	1493	1694	0.2	0.3**
Isodiene	1493*	1500	1686	t	0.5**
epi-Cubebol	1493*	1493	1841	t	t^{**}
β-Isobolene	1501	1505	1699	t	0.1
cis-α-Isobolene	1509	1506	1702¹	t	0.1
Geranyl isobutyrate	1510*	1514	1792	t^{**}	
γ-Cadinene	1510*	1513	1717	t^{**}	
Cubebol	1513	1514	1905	t	
β-Sesquiphellandrene	1520¹	1521	1741¹	0.1	0.4**
δ-Cadinene	1520¹	1522	1726	t	t^{**}
trans-γ-Isobolene	1528	1529	1726	t	
Elemicin	1554	1555	2186	t	
Geranyl butyrate	1558	1562	1871	t	
(Z)-4-Octenyl hexanoate	1569	1805¹		t	
Spathulanol	1569	1577	2078	t	
Octyl hexanoate	1581	1565^[28]	1796	2.2	t

(Continued)
The derivatization of alkenes into methylsulfide adducts following the method of Buser et al. (29) confirmed these two assignations and led to the identification of three more compounds from their specific fragments (given in parentheses): (\(Z\))-5-decen-1-yl acetate (\(m/z = 115, 117, 292\)), (\(Z\))-6-decen-1-yl acetate (\(m/z = 103, 129, 292\)) and (\(E\))-4-decen-1-yl acetate, which has the same sulfide ions as its (\(Z\))-counterpart (\(m/z = 101, 131, 292\)). Only the first ester adduct (\(m/z = 101, 103, 292\)) could not be rationalized into a structure, possibly due to rearrangements.

At least five octadecenyl acetates are observed in \(H. maximum\) stem essential oil. An attempt to produce the sulfide adducts proved fruitless given the small amount of oil available and the very small concentrations of these esters in the sample. Although several mass spectra are available from literature, their correct identification is not an easy task. For example, at least two dozens (including non-polar columns, which is consistent with an ester moiety. Unknowns II and II more reasonably belong to the oxygenated sesquiterpenes class. Unknown II’s molecular mass seems to be missing, as the large retention index difference indicates that it probably bears several oxygenated functions, while Unknown III is probably a sesquiterpenic alcohol, given its molecular mass and retention indexes.

Disambiguation of unsaturated esters identification

The MS of the six decen-1-yl acetates encountered in \(H. maximum\) fruits’ essential oil are so similar that any identification of their right structure is not obvious. The RI values available from literature and those measured in the present work also preclude a confident identification. Only (\(Z\))-4-decen-1-yl acetate and 9-decen-1-yl acetate could be formally identified by coinjection of pure compounds.

The derivatization of alkenes into methylsulfide adducts following the method of Buser et al. (29) confirmed these two assignations and lead to the identification of three more compounds from their specific fragments (given in parentheses): (\(Z\))-5-decen-1-yl acetate (\(m/z = 115, 117, 292\)), (\(Z\))-6-decen-1-yl acetate (\(m/z = 103, 129, 292\)) and (\(E\))-4-decen-1-yl acetate, which has the same sulfide ions as its (\(Z\))-counterpart (\(m/z = 101, 131, 292\)). Only the first ester adduct (\(m/z = 101, 103, 292\)) could not be rationalized into a structure, possibly due to rearrangements.

At least five octadecenyl acetates are observed in \(H. maximum\) stem essential oil. An attempt to produce the sulfide adducts proved fruitless given the small amount of oil available and the very small concentrations of these esters in the sample. Although several mass spectra are available from literature, their correct identification is not an easy task. For example, at least two dozens (including

Table 1. (Continued).

Compound	Retention Indexes	% on DB-S		
np\(^1\)	np\(^2\)	p\(^3\)	Fruits	Stems
1587	1805*	t		
1592	1597\[^{[2]}\]	1925	0.1	
1608	1611	1900	t	t
1615	1619	2348	t	t
1617	1622	t	t	
1620	1627	t	t	
1635	1640	2139	t	t
1639	1645	t	t	
1648	1652	2180	t	t
1654*	2576	0.5		
1679	1685	2300*	t	0.1
1685	2242	0.3		
1727	1733	t	t	
1752	1755\[^{[3]}\]	2064	t	t
1756	2699	t	t	
1776	1779\[^{[2]}\]	1993	t	t
1779	1998	t	t	
1812	1811\[^{[4]}\]	t	t	
1843	2114	t	t	
1879	1874	2356	t	0.1
1900	1900	1899	t	t
1962	1959	2864	0.2	t
1993	1995\[^{[3]}\]	2920\[^{[1]}\]	t	t
2007	2022\[^{[3]}\]	t	t	
2007	2003	t	t	
2030	2035	2974	0.6	3.3
2035	2033	t	t	
2059	2062\[^{[3]}\]	2585	t	0.1
2081	2077	2561	0.1	t
2106	t	t	t	
2139	t	t	t	
2179	t	t	t	
2185	2185\[^{[4]}\]	2509	0.1	t
2190	2513	t	t	
2196	2515	t	t	
2202	2523	t	t	
2206	2209	2486	t	t
2289	2300	2486	t	t
2316	t	t	t	
Total identified	97.8	98.4		

Notes: *Compound coelutes with others on this column. **Percentage from SgelWax column, given for compounds coeluting on DB-5. t: Trace (<0.05%).

\(^{[1]}\) Non-polar column: DB-5. Rf from R.P. Adams’ book (40), unless otherwise indicated. \(^{[2]}\) Polar column: SgelWax. Mass spectra of unknown compounds, Ei, 1.34 kV, 300°C, m/z (rel. int.): Unknown I: 141 (26), 97 (33), 87 (100), 84 (90), 68 (16), 56 (17), 55 (32), 43 (27), 41 (29); Unknown II: 202 (70), 187 (8), 161 (15), 147 (100), 146 (24), 145 (29), 133 (15), 131 (22), 117 (21), 115 (19), 91 (25), 77 (14); Unknown III: 222 (3), 204 (15), 189 (7), 161 (14), 148 (9), 137 (100), 121 (30), 119 (79), 109 (43), 95 (34), 93 (42), 84 (70), 83 (34), 69 (56), 67 (27), 55 (46), 41 (63).
Table 2. Content (%) of some major esters among various *Heracleum* species fruits' essential oils.

Compounds	*H. maximum*	*H. crenatfolium*	*H. platytaenium*	*H. sphondylum* ssp. *temnatum*	*H. moellecorffii*	*H. antasisticum*	*H. paphlanicum*	*H. pyrenacum* ssp. *polinianum*	*H. orphnidis*	*H. persicum*	*H. rechingeri*	*H. gorphanicum*	*H. anisactis*	*H. pastinifolium*	*H. rawwianum*	*H. sibiricum*	*H. candleanum*
Hexyl acetate	0.4	t	0.1	1.3	-	t	-	t	0.4	t	0.5	1.9	-	t	0.5	-	-
Hexyl butyrate	1.8	-	0.4	17.0	-	0.2	-	2.2	21.5	22.5-35.4	t	t	17.7	38.4	33.3	5.3	
Hexyl hexanoate	0.1	-	0.1	5.2	-	-	0-3.0	-	3.7	3.3	6.2	0.3	0.2	0.5	-	-	
Octyl acetate	65.6	93.7; 88.4	87.6	31.5	65.3	31.6; 54.9-60.2	63.8	17.4	19.0-27.0	50.5	84.5	20.5	13.8	18.4	48.7	59.5	
Octyl butyrate	7.9	t; 0.2	0.4	3.2	-	37.7; 10.1-13.4	12.2	-	2.1-2.6	0.6	4.1	3.1	2.0	16.8	9.7	4.4	
Octyl hexanoate	2.2	t; 0.7	3.0	10.2	-	0.9; 3.0-4.8	0.8	-	3.5	9.7	1.6	0.1	0.5	2.5	0.5	0.2	
Octyl octanoate	t	-; 0.4	0.7	0.1	-	t	-	-	1.1	0.3	0.8	-	t	-	-	-	
Decyl acetate	0.2	0.7; 0.5	0.3	0.2	-	0.5; 0.5-0.8	0.6	-	1.2	1.0	-	-	-	-	-	-	
Decyl butyrate	t	-	-	-	-	0.3	-	-	1.2	-	-	-	-	-	-	-	
Decyl hexanoate	t	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
(Z)-4-Octenyl acetate	0.1	0.1; 1.0	2.1	5.6	-	3.3	-	-	-	-	-	-	-	-	-	-	
(Z)-4-Octenyl butyrate	0.3	-	t	0.6	-	2.6	-	-	-	-	-	-	-	-	-	-	

Reference: This work (12); (17) (12) (13) (14) (12); (15) (16) (18) (19) (50) (50) (56) (56) (56) (56) (56) (56) (56) (56) (56) (56) (57) (58)
To our knowledge, the RI values on the DB-5 column for the n-C$_{18}$ monoene acetates have not been published altogether, contrarily to their C$_{12}$, C$_{14}$ and C$_{16}$ counterparts (32) (Table 3). The RI values measured for each of the five observed compounds (Figure 2) shed some light. For example, the saturated n-C$_{14}$ and n-C$_{16}$ acetates elute from the DB-5 column before the two last monoene compounds listed in Table 3. On this basis, one can eliminate the presence of the n-C$_{15}$ and n-C$_{16}$ and probably the n-C$_{17}$ isomers. Moreover, the RI values seem to increase as the double bond position x increases beyond 7. Thus, we suggest that the observed n-octadecenyl acetates were those indicated in the last (Z) and (E) isomers) of analogues are included in the NIST database (30). Unfortunately, these MS are very similar, and subtle differences introduced by the analytical methods used make it difficult to ascertain the double bond position of the compounds, x, on the basis of their sole MS spectra. From the intensity of the peak $m/z = 68$, one can eliminate the presence of 2-, 3-, 15- and 16-octadecenyl acetates. The best fits with the NIST database for the most intense peak (RI(DB-5) = 2184) are: $x = 13$, 935; $x = 12$, 926; $x = 9$, 924 and $x = 11$, 920. The observed MS for this peak is almost identical to that of the synthetic cis-vaccenyl acetate [(Z)-11-octadecenyl acetate] reported in literature (31).

Table 3. Retention indexes values of (Z)-monoene acetates on non-polar columns.

Double bond position, x	n-C$_{12}$	n-C$_{14}$	n-C$_{16}$	n-C$_{18}$
saturated	1609	1811	2013	2209
3	1591	1791	1994	2190
4	1589	1787	1987	2190
5	1592	1790	1989	2193
6	1593	1789	1987	2193
7	1598	1792	1988	2200
8	1605	1796	1990	2206
9	1611	1801	1993	2184,5
10	1630	1807	1998	2186
11	1812	2004	2191	2192
12	1831	2011	2192	2193
13		2016	2200	2200
14		2033		2202
15			2212	2212
16				2250**
17				HP-SMS [39]

Notes: *Tentative identification (see discussion). **Obtained by interpolation, ±20 units.

To our knowledge, the RI values on the DB-5 column for the n-C$_{18}$ monoene acetates have not been published altogether, contrarily to their C$_{12}$, C$_{14}$ and C$_{16}$ counterparts (32) (Table 3). The RI values measured for each of the five observed compounds (Figure 2) shed some light. For example, the saturated n-C$_{14}$ and n-C$_{16}$ acetates elute from the DB-5 column before the two last monoene compounds listed in Table 3. On this basis, one can eliminate the presence of the n-C$_{15}$ and n-C$_{16}$ and probably the n-C$_{17}$ isomers. Moreover, the RI values seem to increase as the double bond position x increases beyond 7. Thus, we suggest that the observed n-octadecenyl acetates were those indicated in the last

Figure 2. Close-up of the stems’ essential oil chromatogram obtained with FID on a DB-5 column around the n-octadecenyl acetates timeframe. Identified compounds are (Z)-falcarinol (A), oleyl alcohol (B), octadecanol (C), (E)-falcarinol? (D), (Z)-10-octadecenyl acetate (E), oleyl acetate (F), (Z)-vaccenyl acetate (G), (Z)-12-octadecenyl acetate (H), (Z)-13-octadecenyl acetate (I), octadecyl acetate (J) and tricosane (K).
column of Table 3. The reported RI(DB-5) value for (Z)-vaccenyl acetate is 2192 (31). The definitive identification was obtained by the injection of the pure compound. The identity of oleyl acetate [(Z)-9-octadecenyl acetate] was confirmed in the same way.

Another study gives the relative retention time of the octadecenyl acetates to eicosane on a HP-1 column in isotherm conditions (33). There is a clear effect of the double bond position. As soon as the x value is higher than 8, higher x values result in longer retention times. Simultaneously, the vapor pressure of the compound becomes lower. Of course, this discussion takes into account the (Z) isomers and obliterates the (E) isomers. These cis compounds have similar MS and RI values (32).

These natural n-octadecenyl acetates are not very common. Several of them are observed in animals as pheromones or venoms. In the Plant kingdom, they generally are individually observed. Among the tentatively identified acetates, only the (E)-10 and the 11-isomers are reported in one member of the Brassicaceae (34) and the Asteraceae (35) family, respectively. On the other hand, the (Z)-3, (Z)-6-, (Z)-9 and seventeen isomers are observed in Apiaceae (36), Rubiaceae (37), Caesalpiniaefae (38) and Araliaceae families (39) families.

In conclusion, examination of the chromatograms obtained for the essential oils of the fruits and stems of *Heracleum maximum* leads to the identification of 114 and 126 compounds, respectively. The fruits’ essential oil is rich in aliphatic esters, mainly octyl acetate, in line with previously reported data for other Apiaceae species. As soon as the x value is higher than 8, higher x values result in longer retention times. Simultaneously, the vapor pressure of the compound becomes lower. Of course, this discussion takes into account the (Z) isomers and obliterates the (E) isomers. These cis compounds have similar MS and RI values (32).

Acknowledgments

We would like to thank Prof. K. Hüsnü Can Baser, Anadolu University, Eskisehir, Turkey, who provided us with several mass spectra of unsaturated acetates. We would also like to acknowledge one of the reviewers for his enlightening proposal to use the dimethyldisulfide derivatization to assign some unsaturated esters.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Alexis St-Gelais http://orcid.org/0000-0003-1091-8301
Guy Collin http://orcid.org/0000-0001-5958-2277

References

1. C. Erichsen-Brown, *Medicinal and Other Uses of North American Plants – A Historical Survey with Special Reference to the Eastern Indian Tribes*, Dover Publications Inc, New York, NY (1979).
2. D. Webster, P. Taschereau, T.D.G. Lee and T. Jurgens, *Immunostimulant properties of Heracleum maximum Bartr*. J. Ethnopharmacol., 106(3), 360–363 (2006).
3. Flore Marie-Victorin, *laurentienne*, 3rd ed., Gaétan Morin éditeur, Montréal, QC (2002).
4. H.V. Kuhnlein and N.J. Turner, *Cow-parsnip (Heracleum lanatum Michx.): an indigenous vegetable of native people of northwestern North America*. J. Ethnobiol., 6(2), 309–324 (1986).
5. A.R. McCutcheon, R.W. Stokes, L.M. Thorson, S.M. Ellis, R.E.W. Hancock and G.N.H. Towers, *Anti-mycobacterial screening of British Columbia medicinal plants*. Int. J. Pharmacogn., 35(2), 77–83 (1997).
6. A.R. McCutcheon, S.M. Ellis, R.E.W. Hancock and G.N.H. Towers, *Antifungal screening of medicinal plants of British Columbia native peoples*. J. Ethnopharmacol., 44(3), 157–159 (1994).
7. E.A. Ryan, S. Imes, C. Wallace and S. Jones, *Herbal tea in the treatment of diabetes mellitus*. Clin. Investig. Med., 23(5), 311–317 (2000).
8. W. Steck, *Leaf furanocoumarins of Heracleum lanatum*. Phytochemistry, 9(5), 1145–1146 (1970).
9. A.M. Zobel and S.A. Brown, *Seasonal changes of furanocoumarin concentrations in leaves of Heracleum lanatum*. J. Chem. Ecol., 16(5), 1623–1634 (1990).
10. E.L. Camm, C.-K. Wat and G.H.N. Towers, *An assessment of the roles of furanocoumarins in Heracleum lanatum*. Can. J. Bot., 54(22), 2562–2566 (1976).
11. T. O’Neill, J.A. Johnson, D. Webster and C.A. Gray, *The Canadian medicinal plant Heracleum maximum contains antimycobacterial diones and furanocoumarins*. J. Ethnopharmacol., 147(1), 232–237 (2013).
12. T. Özek, G. Özek, K.H.C. Baser and A. Duran, *Comparison of the essential oils of three endemic Turkish Heracleum species obtained by different isolation techniques*. J. Essent. Oil Res., 17(6), 605–610 (2005).
13. K.H.C. Baser, M. Kürkçüoğlu, N. Adigüzel, Z. Aytaç, D. Joulain and R. Laurent, *Composition of the essential oil of Heracleum paphlagonicum Czczott*. J. Essent. Oil Res., 12(3), 385–386 (2000).
14. T. Kuljanabaghavad, N. Sriubolmas and N. Ruangrungsri, *Chemical composition and antimicrobial activity of the essential oil from Heracleum siamicum*. J. Health Res., 24(2), 55–60 (2010).
15. F. Maggi, L. Quassinti, M. Bramucci, G. Lupidi, D. Petrelli, L.A. Vitali, F. Papa and S. Vittori, *Composition and biological activities of hogweed [Heracleum sphyondylum
L. subsp. ternatum (Velen.) Brummitt] essential oil and its main components octyl acetate and octyl butyrate. Nat. Prod. Res., 28(17), 1534–1563 (2014).
16. W. Li, L. Chen, C. Wu and J. Xin, Analysis of the essential oil from seed of Heracleum moellendorfii Hance cultivated in Northeast China. Asian J. Chem., 25(8), 4701–4702 (2013).
17. F. Tosun, C.A. Kizilay, K. Erol, F.S. Kiliç, M. Kurkçuoğlu and K.H.C. Baser, Anticonvulsant activity of furanocoumarins and the essential oil obtained from the fruits of Heracleum crenatofilum. Food Chem., 107(3), 990–993 (2008).
18. S. Ibadullaeva, Essential oil of Heracleum antasiaticum. Chem. Nat. Compd., 36(2), 218 (2000).
(a) F. Sefidkon, M. Dabiri and N. Mohammad, Analysis of the oil of Heracleum persicum L. (leaves and flowers). J. Essent. Oil Res., 14(4), 295–297 (2002). (b) F. Sefidkon, M. Dabiri and N. Mohammad, Analysis of the oil of Heracleum persicum L. (seeds and stems). J. Essent. Oil Res., 16(4), 296–298 (2004).
19. F. Askari and F. Sefidkon, Essential oil composition of Pimpinella affinis Ledeb. from two localities in Iran. Flavour. Fragr. J., 21(5), 754–756 (2006).
20. M.R. Akhgar, A. Rustaiyan, S. Masoudi and M. Bigdeli, Essential oils of Ferula microcolea (Boiss.) Boiss. and Ferula hirtella Boiss. from Iran. J. Essent. Oil Res., 17(3), 237–238 (2005).
21. F. Maggi, D. Lucarini, B. Tirillini, G. Sagratini, F. Papa and S. Vittori, Chemical analysis of the essential oil of Ferula glauca L. (Apiaceae) growing in Marche (central Italy). Biochem. Syst. Ecol., 37(4), 432–441 (2009).
22. P.S. Beauchamp, E. Chea, J.G. Dimaano, V. Dev, B. Ly, A.E. Miranda and W.H. Whaley, Essential oil composition of six Lomatium species attractive to Indra swallowtail butterfly (Papilio indra): principal component analysis against essential oil composition of Lomatium dissectum var. multifidum. J. Essent. Oil Res., 21(6), 535–542 (2009).
23. F. Maggi, B. Tirillini, F. Papa, G. Sagratini, S. Vittori, A. Cresci, M.M. Coman and C. Cecchini, Chemical composition and antimicrobial activity of the essential oil of Ferulago campestris (Besser) Grecescu growing in central Italy. Flavour Fragr. J., 24(6), 309–315 (2009).
24. E.-M. Pferschen-Wenzig, V. Getzinger, O. Kunert, K. Woelkart, J. Zahril and R. Bauer, Determination of falcarnicol in carrot (Daucus carota L.) genotypes using liquid chromatography/mass spectrometry. Food Chem., 114(3), 1083–1090 (2009).
25. O. Firuzi, M. Asadollahi, M. Gholami and K. Javidnia, Composition and biological activities of essential oils from four Heracleum species. Food Chem., 122(1), 117–122 (2010).
26. Y. Nakano, H. Matsunaga, M. Saita, M. Mori, M. Katano and H. Okabe, Antiproliferative constituents in Umbelliferae Plants II. Screening for polyacetylenes in some Umbelliferae plants, isolation of panacynol and falcarindiol from the root of Heracleum moellendorfii. Biol. Pharm. Bull., 21(3), 257–261 (1998).
27. A. St-Gelais, L. Caron, G. Collin, H. Marceau and A. Pichette, Aromas from Quebec. III. Composition of the essential oil and hydroxylate of the roots of Anthriscus sylvestris (L.) Hoffm. from Saguenay. J. Essent. Oil Res., 27(5), 373–379 (2015).
28. H.-R. Buser, H. Arn, P. Guerin and S. Rauscher, Determination of double bond position in mono-unsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal. Chem., 55, 818–822 (1983).
29. NBS 75 k Data bank and NIST/EPA/NIH Mass Spectral Library, version 2.0f.
30. A.M. Ray, A. Žunić, R.L. Alten, J.S. McElfresh, L.M. Hanks and J.G. Millar, cis-Vaccenyl Acetate, afemale-produced sex pheromone component of Ortholeptura valida, alonhonged beetle in the subfamily Lepturinae. J. Chem. Ecol., 37(2), 173–178 (2011).
31. F. de A. Marques, J.S. McElfresh and J.G. Millar, Kováts retention indexes of monounsaturated C12, C14, and C16 alcohols, acetates and aldehydes commonly found in lepidopteran pheromone blends. J. Braz. Chem. Soc., 11(6), 592–599 (2000).
32. B. Koutek, M. Hoskovec, P. Vrkocova and L. Feltl, Gas chromatographic determination of vapour pressures of pheromone-like compounds IV. Acetates, a reinvestigation. J. Chromatogr. A, 759(1–2), 93–109 (1997).
33. Y.-Y. Yang, X.-G. Wang and J. Zhou, Ultrasounds-assisted extraction and GC-MS analysis of volatile oil from rape flowers. Shipping Kexue (Beijing, China), 34(18), 98–102 (2013).
34. X.-L. Liu, J.-B. Zhou, Y.-D. Tao and Y. Shao, Analysis of chemical composition of volatile oil in Artemisia frigida. Fenxi Shiyanshi, 27(3), 25–29 (2008).
35. L. Ling, L. Lu, W. Zhang, J. Zhao, D. Lu and Z. Lou, GC-MS combined with PCA analysis of essential oil from two varieties of Radix angelicae dahuricae. Yaowu Fenxi Zazhi, 31(1), 112–118 (2011).
36. M. Wörmer and P. Schreier, Über die aromastoff-zusammensetzung von waldmeister (Galium odoratum L. Scop.). Z. Lebensm. Unters. Forsch., 193(4), 317–320 (1991).
37. S. Blake and G. Jones, Extractives from Eperua falcata. The petrol-soluble constituents. J. Chem. Soc., 85, 430–433, (1963).
38. A.M. Abd El-Aty, I.-K. Kim, M.-R. Kim, C. Lee and J.-H. Shim, Determination of volatile organic compounds generated from fresh, white and red Panax ginseng (C. A. Meyer) using a direct sample injection technique. Biomed. Chromatogr., 22(5), 556–562 (2008).
39. R.P. Adams, Identification of Essential Oil Components By Gas Chromatography/Mass Spectrometry, 4th ed., Allured Publ. Corp, Carol Stream, IL (2007).
40. D.H. Hochmuth, MassFinder 3, Hamburg, Germany. www.massfinder.com (2004).
41. B.S. Junkes, R.D.M. Castanho, C. Amboni, R.A. Yunes and V.E.F. Heinzen, Semiempirical topological index: a novel molecular descriptor for quantitative structure-retention relationship studies. Internet Electron. J. Mol. Des., 2(1), 33–49 (2003).
42. J. Pino, E. Sauri-Duch and R. Marbot, Changes in volatile compounds of Habanero chile pepper (Capsicum chinense Jack. cv. Habanero) at two ripening stages. Food Chem., 94(3), 394–398 (2006).
43. M. Qian and G. Reineccius, Potent aroma compounds in parmigiano reggiano cheese studied using a dynamic headspace (purge-trap) method. Flavour Fragr. J., 18, 252–259 (2003).
44. M. Usai, A. Atzei, G. Pintore and I. Casanova, Composition and variability of the essential oil of sardinian Thymus herba-barona Loisel. Flavour Fragr. J., 18, 21–25 (2003).
46. J.-C. Beaulieu, *Within-season volatile and quality differences in stored fresh-cut Cantaloupe cultivars*. J. Agric. Food Chem., 53(22), 8679–8687 (2005).

47. G. Eyres, J.-P. Dufour, G. Hallifax, S. Sotheewaran and P.J. Marriott, *Identification of character-impact odorants in coriander and wild coriander leaves using gas chromatography-olfactometry (GCO) and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS)*. J. Sep. Sci., 28, 1061–1074 (2005).

48. W.A. Asuming, P.S. Beauchamp, J.T. Descalzo, B.C. Dev, V. Dev, S. Frost and C.W. Ma, *Essential oil composition of four Lomatium Raf. Species and their chemotaxonomy*. Biochem. Syst. Ecol., 33(1), 17–26 (2005).

49. M. Lo Presti, D. Sciarrone, M.C. Crupi, R. Costa, S. Ragusa, G. Dugo and L. Mondello, *Evaluation of the volatile and chiral composition in Pistacia lentiscus L. essential oil*. Flavour Fragr. J., 23, 249–257 (2009).

50. L. Ušjak, S. Petrović, D. Milica, M. Soković, T. Stanojković, A. Ćirić and M. Niketić, *Chemical composition and bioactivity of the essential oils of Heracleum pyrenaicum subps. pollinianum and Heracleum orphanidis*. Nat. Prod. Commun., 11(4), 529–534 (2016).

51. R.A. Shellie and P.J. Marriott, *Comprehensive two-dimensional gas chromatography-mass spectrometry analysis of Pelargonium graveolens essential oil using rapid scanning quadrupole mass spectrometry*. Analyst, 128, 879–883 (2003).

52. S. Hamm, J. Bleton, J. Connan and A. Tchapla, *A chemical investigation by headspace SPME and GC-MS of volatile and semi-volatile terpenes in various Olibanum samples*. Phytochemistry, 66(12), 1499–1514 (2005).

53. V. Varlet, C. Knockaert, C. Prost and T. Serot, *Comparison of odor-active volatile compounds of fresh and smoked salmon*. J. Agric. Food Chem., 54(9), 3391–3401 (2006).

54. J.M. Schmidt, J.A. Noletto, B. Vogler and W.N. Setzer, *Abaco bush medicine: chemical composition of the essential oils of four aromatic medicinal plants from Abaco island*. Bahamas. J. Herbs Spices Med. Plants, 12, 43–65 (2006).

55. K.V. Tret’yakov, *Retention Data*. NIST Mass Spectrometry Data Center, NIST Mass Spectrometry Data Center (2008). http://webbook.nist.gov/cgi/cbook.cgi?ID=U352679&Mask=2000 (1 August 2015).

56. T. Radjabian, A. Salimi and N. Rahmani, *Essential-oil composition of the fruits of six Heracleum L. Species from Iran: chemotaxonomic significance*. Chem. Biodiv., 11(12), 1945–1953 (2004).

57. D.L. Miladinović, B.S. Ilić, T.M. Mihajilov-Krstev, D.M. Nikolić, O.G. Cvetković, M.S. Marković and L.C. Miladinović, *Antibacterial activity of the essential oil of Heracleum sibiricum*. Nat. Prod. Commun., 8(9), 1309–1311 (2013).

58. A.J. John, V.P. Karunakaran, V. George and M.G. Sethuraman, *Chemical composition of leaf and fruit oils of Heracleum candolleanum*. J. Essent. Oil Res., 19(4), 358–359 (2007).

59. L.M. Reboucas, A.E.G. Sant-Ana and F.C. Griepink, *Kovats retention indexes of mono- and di-unsaturated C18 alcohols, acetates and aldehydes found in Lepidopteran pheromone blends*. XVI Int. Plant Prot. Congr. Congr. Proceedings. Vol. 2, Glasgow (UK), 590–591 (2007).