Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- n/a
- Confirmed

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection
- HTAChI TM-1000 (Feature surface observation); Applied Biosystems QuantStudio 3 system (qRT-PCR data); Nikon C2-ER (Subcellular localization); Shim-pack UFLC SHIMADZU CBM30A system, Applied Biosystems 6500 Triple (ABA determination); Tectan Infinite M200 Pro (DNA sequencing and SNP calling); BEAGLE v4.0, EMMAX software (Version enmax et-al binary-20120210), LDBlockShow software ver1.36, CandiHap package of R x64 4.0.1 software, GMap package (Ver8.8) in R x64 4.1.1 software, Sommer package (Version 4.1.7) in R x64 4.0.1 software (GWAS); DnaSP ver5, PopART software ver1.7, vcfTools ver3.0 software, PHML v. 4.5, ArcGIS 10.6 (Evolutionary analysis).

Data analysis
- PicMapping software ver1.0(QTL), BWA software ver07.1.8, Samtools software ver1.12, GATK ver4.2, vcfTools ver3.0 software, Plik ver1.9, fastq software ver07.20.1 (DNA sequencing and SNP calling); BEAGLE ver4.0, EMMAX software (Version enmax et-al binary-20120210), LDBlockShow software ver1.36, CandiHap package of R x64 4.0.1 software, GMap package (Ver8.8) in R x64 4.1.1 software, Sommer package (Version 4.1.7) in R x64 4.0.1 software (GWAS); DnaSP ver5, PopART software ver1.7, vcfTools ver3.0 software, PHML v. 4.5, ArcGIS 10.6 (Evolutionary analysis).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. Github). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The raw sequencing of RILs are available on NCBI BioProject (https://www.ncbi.nlm.nih.gov/bioproject) under the accession number PRJNA513407. The raw sequencing of the GWAS and QTL datasets have been deposited in the Genome Sequence Archive (GSA) under accession number CRA006828. The raw sequencing of transcriptome analysis used in this study have been deposited in GSA database, under accession number CRA006828 (https://bigd.big.ac.cn/gsa/browse/CRA006828). The short-read sequence data of OsGF14h and Sd4 for Gj-weatherly and Xi-weatherly is from GenBank under the bioproject accession number PRJNA606132 (PRJNA606132, and PRJNA295882. The OsGF14h and Sd4 sequences of widely planted Gj-amp and Xi-cultivars from China were downloaded from MBLbase Database (http://www.mblbase.org/line). OsGF14h and Sd4 sequence data of Xi-land and Gj-jtp were downloaded from RiceVarMap v2.0 Database (http://ricevarmap.ncpgr.cn/). Source data are provided with this paper.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- **X** Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nrc-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	No statistical methods were used to predetermine sample size. The GWAS panel in our research has a japonica background, and the approximate sample sizes were chosen to find the key agronomic trait genes according to research in the field (Yano et al., Nat Genet. 2016, 48(8): 927-34).
Data exclusions	No data was excluded from the analyses.
Replication	All experiments were performed with at least three independently replicates to ensure reproducibility across experiments. This information is shown in figure legends.
Randomization	All samples were arranged randomly into experimental groups.
Blinding	For molecular biology experiments, bias could not be introduced since samples were treated identically and collected randomly. Blind was not possible as the author who performed the experiment also analyzed the data. Investigation of agronomic traits, DNA sequencing and SNP calling were conducted without prior knowledge of the result, blind was not applied.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, quantitative experimental, mixed-methods case study).
Research sample	State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For studies involving existing datasets, please describe the dataset and source.
Sampling strategy	Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to predetermine sample size or if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria were used to decide that no further sampling was needed.
Data collection	Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.
Timing	Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort.
Data exclusions	If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.
Non-participation	State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no participants dropped out/declined participation.
Randomization	If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

| Study description | Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, hierarchical), nature and number of experimental units and replicates. |
| Research sample | Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National Park). |
Research sample: Animals: To describe each and use he —. (1:5,000 dilution) for pull-down; anti-FLAG (ABclonal, AE001, 1:5,000 dilution) for CoIP; anti-GST (ABclonal, AE001, 1:5,000 dilution) and anti-His (Proteintech Group, 66605-1-lg, 1:5,000 dilution) for pull-down; anti-FLAG (14793S, Cell Signaling Technology, 1:50 dilution) for ChIP-qPCR.

Sampling strategy: Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Timing and spatial scale: Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which the data are taken.

Data collection: Describe the data collection procedure, including who recorded the data and how.

Data exclusions: If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.

Reproducibility: Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization: Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were controlled. If this is not relevant to your study, explain why.

Blinding: Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why blinding was not relevant to your study.

Field work, collection and transport

Field conditions: Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location: State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export: Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, the date of issue, and any identifying information).

Disturbance: Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

/a	Involved in the study
X	Antibodies
X	Eukaryotic cell lines
X	Paleontology and archaeology
X	Animals and other organisms
X	Human research participants
X	Clinical data
X	Dual use research of concern

Methods

/a	Involved in the study
X	ChIP-seq
X	Flow cytometry
X	RI-based neuroimaging

Antibodies

Antibodies used: Anti-FLAG (MBL, M185/3L, 1:5,000 dilution) and anti-GFP (TransGen, HT801-02, 1:5,000 dilution) for CoIP; anti-GST (ABclonal, AE001, 1:5,000 dilution) and anti-His (Proteintech Group, 66605-1-lg, 1:5,000 dilution) for pull-down; anti-FLAG (14793S, Cell Signaling Technology, 1:50 dilution) for ChIP-qPCR.

Validation: The Anti-FLAG details, http://www.mbl-chinawide.cn/search-details2?id=833&table=RuoAntibody. The Anti-GFP, details, https://www.transgen.com.cn/antibody_tag/390.html. Antibodies are commercially available from the manufacturers. The anti-GST, details, https://abclonal.com.cn/catalog/AE001. The anti-His, details, https://www.ptgcn.com/products/His-Tag-Antibody-66005-1-lg.htm. The anti-FLAG, details, https://www.cellsignal.cn/products/primary-antibodies/dykdddtk-tag-dkw50-rabbit-mab-binds-to-same-epitope-as-sigma-s-anti-flag-m2-antibody/147937_r1647918932292848&sid=14793&flaghead=true.

Eukaryotic cell lines

Policy information about [cell lines](https://www.cellsignal.cn/products/primary-antibodies/dykdddtk-tag-dkw50-rabbit-mab-binds-to-same-epitope-as-sigma-s-anti-flag-m2-antibody/147937_r1647918932292848&sid=14793&flaghead=true).

Cell line source(s)

State the source of each cell line used.
Authentication

Describe the authentication procedures for each cell line used or declare that none of the cell lines used were authenticated.

Mycoplasma contamination

Confirm that all cell lines tested negative for mycoplasma contamination or describe the results of the testing for mycoplasma contamination or declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines

(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology

Specimen provenance

Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, export.

Specimen deposition

Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods

If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance or state that no new dates are provided.

Ethics oversight

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance was required and explain why not.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research.

Laboratory animals

For laboratory animals, report species, strain, sex and age or state that the study did not involve laboratory animals.

Wild animals

Provide details on animals observed in or captured in the field, report species, sex and age where possible. Describe how animals were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples

For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance was required and explain why not.

Human research participants

Policy information about studies involving human research participants.

Population characteristics

Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study design questions and have nothing to add here, write “See above.”

Recruitment

Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how these are likely to impact results.

Ethics oversight

Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies.

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration

Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol

Note where the full trial protocol can be accessed or if not available, explain why.

Data collection

Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes

Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.
Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented in the manuscript, pose a threat to:

No	Yes
☐ Public health	
☐ National security	
☐ Crops and/or livestock	
☐ Ecosystems	
☐ Any other significant area	

Experiments of concern

Does the work involve any of these experiments of concern:

No	Yes
☐ Demonstrate how to render a vaccine ineffective	
☐ Confer resistance to therapeutically useful antibiotics or antiviral agents	
☐ Enhance the virulence of a pathogen or render a nonpathogen virulent	
☐ Increase transmissibility of a pathogen	
☐ Alter the host range of a pathogen	
☐ Enable evasion of diagnostic/detection modalities	
☐ Enable the weaponization of a biological agent or toxin	
☐ Any other potentially harmful combination of experiments and agents	

ChIP-seq

Data deposition

☐ Confirm that both raw and final processed data have been deposited in a public database such as GEO.

☐ Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Methodology

Replicates
Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth
Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and whether they were paired- or single-end.

Antibodies
Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot number.

Peak calling parameters
Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files used.

Data quality
Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software
Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community repository, provide accession details.
Flow Cytometry

Plots

- Confirm that:
 - The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
 - The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a ‘group’ is an analysis of identical markers).
 - All plots are contour plots with outliers or pseudocolor plots.
 - A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument
Identify the instrument used for data collection, specifying make and model number.

Software
Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a community repository, provide accession details.

Cell population abundance
Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples and how it was determined.

Gating strategy
Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

☐ Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type
Indicate task or resting state, event-related or block design.

Design specifications
Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial or block (if trials are blocked) and interval between trials.

Behavioral performance measures
State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across subjects).

Acquisition

Imaging type(s)
Specify: functional, structural, diffusion, perfusion.

Field strength
Specify in Tesla

Sequence & imaging parameters
Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, slice thickness, orientation and TE/TR/flip angle.

Area of acquisition
State whether a whole brain scan was used or define the area of acquisition, describing how the region was determined.

Diffusion MRI
☐ Used ☐ Not used

Preprocessing

Preprocessing software
Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, segmentation, smoothing kernel size, etc.).

Normalization
If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template
Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal
Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and physiological signals (heart rate, respiration).
Volume censoring

Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings

Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested

Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether ANOVA or factorial designs were used.

Specify type of analysis:
- □ Whole brain
- □ ROI-based
- □ Both

Statistic type for inference

(See Eklund et al., 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction

Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a	Involved in the study
	Functional and/or effective connectivity
	Graph analysis
	Multivariate modeling or predictive analysis

Functional and/or effective connectivity

Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, mutual information).

Graph analysis

Report the dependent variable and connectivity measure, specifying weighted graph or binary graph, subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, etc.).

Multivariate modeling and predictive analysis

Specify independent variables, features extraction and dimension reduction, model, training and evaluation metrics.