Optimal and actual rates of Stereotactic Ablative Body Radiotherapy (SABR) utilisation for primary lung cancer in Australia

Wsam Ghandour a,b,*, Lois Holloway a,b,*, Vikneswary Batumalai a,c,g,h, Phillip Chlap a,b,c, Matthew Field a,b,c, Susannah Jacob a,b,g

a South Western Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
b Liverpool and Macarthur Cancer Therapy Centres, Sydney, New South Wales, Australia
c Ingham Institute of Applied Medical Research, Sydney, New South Wales, Australia
d Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
e Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
f Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison
g Collaboration for Cancer Outcomes Research and Evaluation (CCCORE), Sydney, Australia
h GenesisCare, Sydney, New South Wales, Australia

Background and purpose: Radiotherapy utilisation rates considerably vary across different countries and service providers, highlighting the need to establish reliable benchmarks against which utilisation rates can be assessed. Here, optimal utilisation rates of Stereotactic Ablative Body Radiotherapy (SABR) for lung cancer are estimated and compared against actual utilisation rates to identify potential shortfalls in service provision.

Materials and Methods: An evidence-based optimal utilisation model was constructed after reviewing practice guidelines and identifying indications for lung SABR based on the best available evidence. The proportions of patients likely to develop each indication were obtained, whenever possible, from Australian population-based studies. Sensitivity analysis was performed to account for variations in epidemiological data. Practice pattern studies were reviewed to obtain actual utilisation rates.

Results: A total of 6% of all lung cancer patients were estimated to optimally require SABR at least once during the course of their illness (95% CI: 4–6%). Optimal utilisation rates were estimated to be 32% for stage I and 10% for stage II NSCLC. Actual utilisation rates for stage I NSCLC varied between 6 and 20%. For patients with inoperable stage I, 27–74% received SABR compared to the estimated optimal rate of 82%.

Conclusion: The estimated optimal SABR utilisation rates for lung cancer can serve as useful benchmarks to highlight gaps in service delivery and help plan for more adequate and efficient provision of care. The model can be easily modified to determine optimal utilisation rates in other populations or updated to reflect any changes in practice guidelines or epidemiological data.

Keywords: Lung SABR, Optimal utilisation, Practice patterns, Utilisation gaps

Introduction

Stereotactic Ablative Body Radiotherapy (SABR) plays an important role in lung cancer treatment as the standard of care for patients with inoperable, early-stage NSCLC [1,2]. Approximately a third of NSCLC patients are diagnosed with potentially curable stage I-II tumours [3,4]. While resection is the standard of care for such patients, >25% do not undergo surgery due to poor performance status, associated comorbidities, or patients’ refusal [5,6]. Since its introduction, SABR has significantly increased curative radiotherapy utilisation and reduced the number of patients left untreated due to its convenience and tolerability by those unable to undergo surgery or conventional radiotherapy [7–9].

Practice pattern studies have revealed wide variations in radiotherapy utilisation across different populations as well as service providers [10–15], highlighting the need for establishing valid benchmarks of optimal utilisation rates that reflect actual demands within the population. Evidence-based models have previously been used to determine optimal utilisation rates for different radiotherapy and chemotherapy treatments [3,16,17].

Here, we apply the same approach to determine the optimal
utilisation rates for lung SABR within the Australian population. Optimal rate is defined as the proportion of lung cancer patients who are likely to develop clinical attributes indicating the use of SABR, at least once during the course of their illness, based on the best available evidence. To identify potential shortfalls in service delivery, these rates will also be compared against actual utilisation rates of lung SABR within our local centre as well as rates reported by practice pattern studies from Australia and other developed nations.

Materials and Methods

Evidenced-based optimal utilisation model

Following the evidence-based approach, this study identified lung SABR indications based on best available evidence and most recent practice guidelines issued by national and international organisations and radiation oncology working groups (Appendix I).

Evidence supporting the use of SABR for each indication were ranked based on the Australian National Health and Medical Research Council (NHMRC) hierarchical levels of evidence [18]. To show the level of agreement among guidelines, a recommendation strength was assigned to each indication; “Strong” represents confidence that most informed people would make the same recommendation, while “Conditional” means the balance between risks and benefits is less certain and a substantial number may not make the same recommendation [19].

Subsequently, an optimal utilisation model (in the form of a decision tree) was constructed by combining all identified clinical indications for lung SABR, with each branch in the tree representing a specific attribute such as stage, operability or nodal involvement. The terminal of each branch indicates whether SABR is recommended for that scenario (Appendix II). The model was independently reviewed by two expert clinicians to provide validation before commencing further analysis.

Epidemiological data

The proportions of lung cancer patients with different indications for SABR were obtained from population-based studies and cancer registries. When available, Australian based studies (national or state-wide) were prioritised to improve model generalisability to our population of interest. In cases where population-based data was not available, comprehensive multi-centre databases or practice pattern studies were used instead. The quality of epidemiological data was ranked based on a previously described ranking/hierarchy system [3,18] (Table 1). If variations among different sources were >10%, a sensitivity analysis was performed to model their effects.

To our knowledge, there are currently no population-based studies reporting on the distribution of peripheral, central and ultra-central tumours. To estimate this, we relied on a local dataset of 234 stage I-II NSCLC patients treated at our local centre between 2002 and 2019. A previously described [20] in-house tool for automatically segmenting the proximal bronchial tree (PBT) and measuring the minimum distance to the tumour was used to assess tumour centrality for patients in this dataset. Based on RTOG-0813 definitions, tumours >2 cm away from the PBT were classified as peripheral, those within 2 cm from PBT or where the planning target volume (PTV) overlaps the PBT, heart, oesophagus, trachea, or great vessels were classified as central, while tumours directly abutting the PBT were classified as ultra-central. The term ultra-central is relatively more recent and therefore is not uniformly applied throughout the literature.

All identified clinical indications for lung SABR, along with the proportions of patients likely to develop them, were combined to generate the optimal utilisation model. TreeAge Pro™ Software (Williamstown, MA) was used to facilitate model construction and calculating optimal rates of utilisation.

Comparison to actual utilisation rates

Practice-pattern studies reporting on lung SABR utilisation were reviewed to obtain actual rates of lung SABR utilisation within Australia and other developed nations. Additionally, we investigated lung SABR utilisation at Liverpool and Macarthur Cancer Therapy Centres for patients with stage I-II NSCLC treated between 1995 and 2019. Liverpool and Macarthur Cancer Therapy Centres provide tertiary level oncology care within a local health district located in metropolitan South Western Sydney, which has population of 1,051,964 people (14.5% of the population of New South Wales (NSW), Australia) [21]. SABR treatments were defined as a total dose of >40 Gy delivered over 3 fractions and/or with a fraction dose of >8 Gy; conventional treatments were defined as a total dose of >40 Gy with a fraction dose of 1.5–3 Gy given over 10 + fractions, while palliative treatments were defined as a total dose of >8 Gy with a fraction dose of >3 Gy. Based on local protocols, all stage I-III NSCLC patients receiving definitive radiotherapy should have

Table 1

Population	Guidelines	Recommendation strength	Evidence	Level of evidence	Proportion of all lung cancer
NSCLC, stage I, good PS, inoperable, peripherally located tumour.	NCCN [11], BCCA [39], ASTRO/ASCO [2], ESTRO/ACROP [40], ACCP [41], NICE [42], UK Consortium [43], ESMO [44], EviQ [45], Cancer Council Australia [46], DEGRO [47], CARO [48], London Cancer [49].	Strong	CHISEL [50]	II	3.9%
NSCLC, stage I, good PS, inoperable, centrally located tumour.	ASTRO/ASCO [2], UK consortium [43], DEGRO [47], CARO [48], London Cancer [49].	Conditional: use >3 fractions.	RTOG-0813 [51], Yu-2019 [52]	III	1.0%
NSCLC, stage II, good PS, inoperable, node-<5cm, peripherally located tumour.	ATRO/ASCO [2], NCCN [11], NICE [42], UK consortium [43], EviQ [45], DEGRO [47], CARO [48], London Cancer [49].	Strong	Xia-2006 [53], Yan-2019 [37],	III	0.6%
NSCLC, stage II, good PS, inoperable, node-<5cm, centrally located tumour.	ASTRO/ASCO [2], UK consortium [43], DEGRO [47], CARO [48], London Cancer [49].	Conditional: use>3 fractions	Xia-2006 [53], Yan-2019 [37],	III	0.2%

The total proportion of lung cancer patients for whom Stereotactic Ablative Body Radiotherapy (SABR) is recommended 5.7%.
histological proof, when possible, otherwise contemporary PET scans should be performed within 4 weeks (for stage II-III) or 6 weeks (for stage I). Where histological proof cannot be obtained, a lung multidisciplinary team needs to be satisfied that with the clinical diagnosis based on contemporary CT and PET imaging and underlying patient risk factors.

Results

Optimal utilisation rates

The model estimated the optimal utilisation rates of lung SABR to be 7% of all NSCLC patients and 24% of stage I-II NSCLC patients. The optimal utilisation rate varied from 32% for stage I to 10% for stage II. Fig. 1 depicts the decision tree in its entirety with all SABR indications along with the calculated SABR optimal utilisation rates by stage, ECOG status, nodal status, operability, etc. (represented in green). The numbers below each branch represent the proportions of patients with the corresponding attribute. Table 1 summarises all the evidence and clinical guidelines supporting the use of SABR for each indication.

Epidemiological data

Table 2 lists the epidemiological data used in the model, with the proportions of patients likely to develop each lung SABR indication along with the sources and quality of data obtained. Table 3 provides a summary of all epidemiological studies in the model, along with their population, sample size and year of publication.

The distributions of lung cancer types (i.e. small cell versus non-small cell), as well as different stages, were based on data from the New South Wales (NSW) cancer registries of all lung cancer patients [4,22]. For the proportions of patients with acceptable performance status (PS) (EGOG of 0–3 for SABR), multiple sources were identified [23–26]. In the NSW cancer registry, 94% of stage I-II NSCLC patients have acceptable PS at diagnosis [23]. Two studies based on South Western Sydney cancer registry reported 95–93% of stage I-II NSCLC patients to have acceptable PS [24,25], while a large UK study reported this at 90% [26].

Assessing patients’ operability is a complex issue that involves considerations of both tumour resectability and patients’ ability to tolerate the procedure. Currently, most centres rely on multi-disciplinary teams (MDT) meetings to assess patients on an individual level. Therefore, the proportion of operable patients used in the model is based on the resection rates observed in clinical practice. For stage I, resection rates ranged between 59% in Australia [27] to 52–70% in other countries [28–31]. In stage II, resection rates were at 34% in the US [29], 47% in the UK [28] and 49% in The Netherlands [31]. In the absence of Australian data for this cohort, the model used the data from the UK study [28] as it included the largest dataset of 161,231 patients diagnosed between 2012 and 2016.

The ratio of node-positive versus node-negative disease in stage II was based on a recent, population-based (NCDB) study including 10,081 stage IIB (AJCC 8th edition) NSCLC patients [32]. The study also provided estimates of the ratio of tumours larger and smaller than 5 cm, which were also included in the model. Finally, based on our local dataset, 65% of stage I NSCLC patients had peripheral tumours, compared to 17% and 18% who had central and ultra-central tumours, respectively. For stage II, 45% were peripheral, 17% central and 38% ultra-central tumours (Appendix III).

Sensitivity analysis

A total of four variables showed significant uncertainty in the overall estimated optimal utilisation. Appendix IV shows tornado plots indicating the extent of uncertainty caused by each variable. The largest variability was related to the proportion of patients with operable versus non-operable disease (Appendix IV).
inoperable tumours, resulting in varying the optimal rate from 3.8% to 6.8%. There was also variability in the proportion of patients with acceptable PS, which varied the optimal rate between 5.5 and 5.9%. To assess the impact of all uncertainties in the model, a multivariate sensitivity analysis was performed using Monte Carlo simulation analysis with 10,000 simulations that gave a 95% confidence interval of 4% to 6%.

Actual vs optimal SABR utilisation

Considerable variability was observed in actual utilisation rates of lung SABR for early-stage NSCLC (Table 4). SABR is most commonly used for inoperable stage I NSCLC, ranging between 55 and 74% in The Netherlands [7,33], 27% in the U.S [14]. In Australia, 57% of patients with inoperable stage I NSCLC receive radical radiotherapy (14% of whom had SABR) [11]. A recent systematic review of population-based studies estimated utilisation of curative-intent RT to range from 8% to 6% for stage I-II NSCLC [12]. Cohorts that included both operable and inoperable stage I patients reported lower rates of SABR utilisation at approximately 6–13% [34–36]. SABR is used less commonly for stage II NSCLC, with most studies reporting only 0.8–2.0% of patients receiving SABR. [37,38].

Within our local dataset of 430 stage I-II patients treated between 1995 and 2019, a total of 14.6% received SABR, 58% received conventional RT while 27.4% received palliative RT (Appendix V). Most patients receiving SABR were IA lesions (89%) while 6% and 5% were IB and IIB lesions, respectively. Comparing the calculated optimal rates against actual reported rates of lung SABR utilisation has identified marked shortfalls in service provision (Table 5). In stage I NSCLC, for example, the optimal SABR utilisation rate was 32% compared to 6–20% observed in practice pattern studies.

Time-trend analyses revealed rapid increases in lung SABR utilisation since its introduction in the early 2000s [7,11,14,30,32,36]. In Australia, the introduction of SABR has increased curative radiotherapy utilisation from 51% to 64% in patients with inoperable stage I-II NSCLC [11]. In the U.S, SABR utilisation for stage I NSCLC increased from 3% to 44% between 2003 and 2011, while the proportion of those receiving conventional RT dropped from 42% to 21% [14]. In The Netherlands, radiotherapy use for stage I NSCLC (mostly SABR) increased from 51% to 52% between 2008 and 2018, while resection rates decreased from 58% to 40% [33]. Similar trends were observed within our dataset of 430 NSCLC patients treated at our local centre, with SABR utilisation increasing by 12% for stage I patients treated between 2014 and 2019 compared to those treated between 2000 and 2005 (Appendix VI). When considering only those patients treated in 2005 onwards, i.e. after wider uptake of SABR and likely higher rates of pathological/imaging staging, the rate of SABR utilisation was observed at 16% compared to 58% and 26% for conventional and palliative radiotherapy, respectively.

Discussion

This study is the first to estimate demand for SABR in lung cancer and reports the first evidence-based estimations of optimal utilisation rates of lung SABR within the Australian population. Based on the best available evidence, 24% of stage I-II NSCLC were estimated to require SABR at least once during the course of their illness. SABR remains a less established treatment compared to other modalities, which is evident by the scarcity of high-level evidence as well as variations among practice guidelines. Currently, the strongest available evidence recommends SABR for inoperable, stage I peripherally located NSCLC lesions where it showed superior outcomes compared to conventional radiotherapy in a randomised phase III trial (CHISEL) [50]. Centrally located tumours remain a controversial issue with some guidelines precluding the use of SABR, while others recommend using more protracted dose schedules based on data from RTOG-0813 [51]. Similarly, there is a lack of consensus regarding tumours > 5 cm, most RTOG trials have excluded such lesions, though large retrospective studies have not reported significantly increased toxicity [56,57]. ASTRO/ASCO guidelines allow SABR use for such tumours provided that maximum dose constraints are respected [2], while Australian guidelines do not recommend its use in such cases [45].

Other approaches of calculating optimal utilisation, such as criterion-based benchmarking, have the advantage of not relying on epidemiological data which may not always be accurate or available. In this approach, optimal utilisation rates are assumed to be achieved in well-resourced centres, which are then used as the benchmark against which utilisation rates at other centres are assessed [58]. While this approach has the advantage of relying on empirical “real-world” data, it does assume the presence of optimal utilisation and therefore, may only be applicable to well-resourced and publicly funded healthcare systems and difficult to reproduce in other jurisdictions. Also, unlike criterion-based benchmarking, evidence-based models rely solely on the proportion of patients recommended to receive lung SABR (based on guidelines’ recommendations) and the proportion of the population likely to develop such indications (based on population data). As such, evidence-based optimal utilisation rates are independent of variations in actual utilisation rates observed across different geographical areas and the

Table 2	Outline of studies used to determine the proportion of patients with each indication affecting lung SABR use.			
Population	**Attribute**	**Proportion of patients**	**Quality of Data**	**Reference**
All lung cancer	SCLC	0.13	β	Walters-2013 [22]
NSCLC	Stage I	0.18	β	NSWCCR*
NSCLC, Stage I	Good PS	0.94	β	Vinod-2008 [23]
NSCLC, Stage I, Good PS	Inoperable	0.41	β	Tracey-2014 [27]
NSCLC, Stage I, Good PS, Peripheral	0.65	ζ	This study	
NSCLC, Stage I, Good PS, Inoperable	Central	0.17	ζ	This study
NSCLC	Stage II	0.10	β	NSWCCR*
NSCLC, Stage II	Good PS	0.94	β	Vinod-2008 [23]
NSCLC, Stage II, Good PS, Inoperable	0.53	γ	Welch-2020	
NSCLC, Stage II, Good PS, Peripheral, Node (-)	0.44	γ	Jacobsi-2019 [32]	
NSCLC, Stage II, Good PS, Peripheral, Node (-), T ≤ 5 cm	0.73	γ	Jacobsi-2019 [32]	
NSCLC, Stage II, Good PS, Peripheral, Node (-), T > 5 cm	0.45	ζ	This study	
NSCLC, Stage I, Good PS, Peripheral, Node (-), T ≤ 5 cm	Central	0.17	ζ	This study
NSCLC	Stage III-IV	0.72	β	NSWCCR*

Abbreviations: SCLC Small Cell Lung Cancer, NSCLC Non-small Cell Lung Cancer, PS Performance Status, Quality of epidemiological data; α - Australian National Epidemiological data; β - Australian State Cancer Registry; γ - epidemiological databases from other large international groups; δ - results from reports of a random sample from a population; ε - comprehensive multi-institutional database; ζ - comprehensive single-institutional database; θ - multi-institutional reports on selected groups; λ - multi-institutional clinical trials; μ - expert opinion [3].

*Data (unpublished) was based on New South Wales Central Cancer Registry (NSWCCR) of all patients diagnosed with lung cancer in NSW in 2011 (Gabriel G, personal communication, Feb 8, 2021).
Table 3
Summary of all epidemiological studies included in model development and sensitivity analysis.

Study	Country	Population	Diagnosis year	Staging	N	Data used in model	Quality
Walters – 2013 [22]	AU-NSW	Lung cancer	2004–2007	Not defined	12,233	NSCLC: 87%	β
NSWCCR*	AU-NSW	Lung cancer	2011	Not defined	2240	NSCLC stage: I: 18% II: 10%	β
Vinod-2008 [23]	AU-NSW	Lung cancer	2001–2002	Pathologic (91%), PET (17%)	1812	ECOG (4 +): 6%	β
Boxer-2011 [24]	AU-SWS	Lung cancer	2005–2008	Pathologic (92%)	988	ECOG (4 +): 7%	δ
Duggan-2011 [25]	AU-SWS	Lung cancer	2006–2008	Not defined	815	ECOG (4 +): 5%	δ
Moller-2018 [26]	UK	Lung cancer	2011	Not defined	2240	NSCLC stage: I: 18% II: 10%	β
Tracey-2014 [27]	AU-NSW	Lung cancer	2001–2008	Pathologic (83%)	176,225	ECOG (4 +):10.4% Operable: 59%	γ
Wouters-2010 [31]	NT	NSCLC	2001–2006	Pathologic (for operable)	43,544	Operable: Stage I: 70% Stage II: 49%	γ
Danesh-2020 [30]	CA-Ontario	NSCLC, Stage I	2007–2015	Pathologic (for operable)	11,910	Operable: Stage I: 62.8% Stage II: 50%	γ
Li-2008 [5]	NT-Amsterdam	NSLC	1998–2003	Pathologic (for operable)	5846	Operable: Stage I: 62.8% Stage II: 50%	γ
Kravchenko-2015 [29]	US (SEER)	NSCLC, age 65+	1992–2007	Not defined	95,167	Operable: Stage I: 58% Stage II: 48%	γ
Welch-2020 [28]	UK	NSCLC	2012–2016	Not defined	161,231	Operable: Stage I: 58% Stage II: 48%	γ
Jacobs-2019 [32]	US (NCDB)	NSCLC, Inoperable, IIB	2004–2015	Pathologic (14.1%)	10,081	Node (+): 56% T > 5 cm: 27%	γ

Abbreviations: SCLC, Small cell Lung Cancer; NSCLC, Non-small Cell Lung Carcinoma; ECOG, Eastern Cooperative Oncology Group. The calculated optimal rates are highlighted in green.

Table 4
Actual Utilisation rates of lung SABR in stage I and/or II NSCLC based on practice pattern studies.

Author	Registry	Population	N (%of I-II)	Diagnosis Year	Staging	SABR utilisation rate (%)
Palma-2010	NT	NSCLC, stage I (75 +)	875	1999–2007	Pathologic (76%)	2004: 23%* 2007: 55%* Blacks: 5.5% Whites: 6.1% 2003–2005: 3% 2009–2011: 4% 12%
Corso-2015	US (NCDB)	NSCLC, stage I	113,312	2003–2011	Not defined	11%
Koshy-2015	US (NCDB)	NSCLC, stage I, Inoperable	39,822	2003–2011	Pathologic	27%
Valle-2015	US (Multi-centre)	NSCLC, stage I	1506	2007–2011	Pathologic	18.6%
Dalwadi-2017	US (SEER)	NSCLC, stage I (60 +)	62,213	2004–2012	Pathologic (for operable)	18.0%
Nguyen-2018	AU (Multi-centre)	NSCLC, stage I-II inoperable	312	2008–2014	Pathologic (84%)	14%
Haque-2018	US (SEER)	NSCLC, stage IA (T1)	32,249	2004–2012	Not defined	19.6%
Jacobs-2019	US (NCDB)	NSCLC, stage IIB inoperable	10,081	2004–2015	Pathologic (14.1%), PET (Not defined)	22.5% (of T2N0)
Brada-2019	England	NSCLC, stage I-III	25,659 (53%)	2012–2013	Not defined	6%
Phillips-2019	UK	NSCLC, stage I	12,348	2015–2016	Pathologic (46%)	13%
Yan 2019	US (NCDB)	NSCLC, stage II	56,543	2004–2013	Not defined	0.8%
Moore-2020	CA	NSCLC, stage II	535	2005–2012	Not defined	2% of all patients. 8% of inoperable patients. 74% of inoperable stage I 22% of inoperable stage II
Evers-2021	NT	NSCLC, stage I-III	61,621 (56%)	2008–2018	Pathologic (72% of stage I, 87% of stage II, 90% of stage III)	16%

Abbreviations: NT Netherlands, US United States, AU Australia, UK United Kingdom, CA Canada, NSCD National Cancer Database, SEER Surveillance, Epidemiology, and End Results Program, NSCLC Non-small Cell Lung Cancer.

*SABR rate among those receiving radiotherapy.\2|Utilisation rate not specific to SABR.
higher at high-volume, academic centres (68%) compared to rural or community centres (25%) (p < 0.0001) [14]. Patients discussed at MDT meeting were significantly more likely to receive curative treatment compared to those who were not [59]. Clinicians’ biases, referral practices and attitudes towards radiotherapy have also been shown to influence utilisation rates [60–62]. Moreover, patients’ travel distance to the nearest centre strongly predicted the rates of undergoing SABR, as did the ability to reduce the amount of healthy tissue receiving high-dose irradiation. Additionally, SABR utilisation was significantly higher at high-volume, academic centres (68%) compared to rural or community centres (25%) (p < 0.0001) [14]. Patients discussed at MDT meeting were significantly more likely to receive curative treatment compared to those who were not [59]. Clinicians’ biases, referral practices and attitudes towards radiotherapy have also been shown to influence utilisation rates [60–62]. Moreover, patients’ travel distance to the nearest centre strongly predicted the rates of undergoing SABR, as did the ability to reduce the amount of healthy tissue receiving high-dose irradiation. Additionally, SABR utilisation was significantly higher at high-volume, academic centres (68%) compared to rural or community centres (25%) (p < 0.0001) [14]. Patients discussed at MDT meeting were significantly more likely to receive curative treatment compared to those who were not [59].
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors kindly thank Dr. Miriam Boxer & Dr. Monique Heinke (Genesis Care, Sydney, Australia) for their help in reviewing the optimal utilisation model developed in this study. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ctro.2022.03.001.

References

[1] Ettinger DS, et al. Non-Small Cell Lung Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2017;15:504–35.
[2] Schneider BJ, et al. Stereotactic Body Radiotherapy for Early-Stage Non-Small-Cell Lung Cancer: American Society of Clinical Oncology Endorsement of the American Society for Radiation Oncology Evidence-Based Guideline. J Clin Oncol 2017;36:710–9.
[3] Delaney G, Barton M, Jacob S, Jalaludin B. A model for decision making for the use of radiotherapy in lung cancer. Lancet Oncol 2003;4:20–8.
[4] Vinod SK, et al. Underutilization of radiotherapy for lung cancer in New South Wales. Australia Cancer 2010;11:686–94.
[5] Li WWL, et al. The influence of provider characteristics on resection rates and survival in patients with localized non-small cell lung cancer. Lung Cancer 2008; 60:451–51.
[6] Wouters MW, et al. The influence of provider characteristics on resection rates and survival in patients with localized non-small cell lung cancer. Lung Cancer 2008; 60:451–51.
[7] Palma D, et al. Impact of Introducing Stereotactic Radiotherapy for Elderly Patients With Stage I Non-Small-Cell Lung Cancer: A Population-Based Time-Trend Analysis. J Clin Oncol 2010;28:5153–9.
[8] Koshy M, Malik R, Mahmood U, Husain Z, Sher DJ. Stereotactic body radiotherapy and treatment at a high volume facility is associated with improved survival in patients with inoperable stage I non-small cell lung cancer. Radiol Oncol 2015; 11:418–54.
[9] Haakse CJA, et al. Early-stage lung cancer in elderly patients: A population-based study of changes in treatment patterns and survival in the Netherlands. Ann Oncol 2012;23:2743–7.
[10] Aoda M, Ball C, Mitchell S, Forbes H, Ashley S. Improving outcomes in non-small cell lung cancer: population analysis of radical radiotherapy. Radiol Oncol 2019;12:204–10.
[11] Nguyen AD, et al. Radiotherapy patterns of care for stage I and II non-small cell lung cancer in Sydney, Australia. J Med Imaging Radiat Oncol 2019;62:151–41.
[12] Liu W, et al. What is the optimal radiotherapy utilization rate for lung cancer? a systematic review. Transl Lung Cancer Res 2019;8:S163–71.
[13] Vinod SK. International Patterns of Radiotherapy Practice for Non-Small Cell Lung Cancer. Semin Radiat Oncol 2015;25:143–50.
[14] Koshy M, et al. Disparities in Treatment of Patients with Inoperable Stage I Non-Small-Cell Lung Cancer: A Population-Based Analysis. J Thorac Oncol 2015; 10:264–71.
[15] Liewes Y, Borras JM, Grau C. Provision and use of radiotherapy in Europe. Mol Oncol 2020;14:1461–9.
[16] Shahj, Hanna TP, Vinod SK, Delaney GP, Barton MB. A Population-based Model of Local Control and Survival Benefit of Radiotherapy for Lung Cancer. Clin Oncol 2016;28:627–38.
[17] Jacob SA, Ng WL, Do V. Estimation of an Optimal Chemotherapy Utilization Rate for Cancer: Setting an Evidence-based Benchmark for Quality Cancer Care. Clin Oncol 2015;27:37–82.
[18] NISHMC, N. H. and M. R. C. Guide to the development, implementation and evaluation of clinical practice guidelines. Appendix B, (1998).
[19] Andrews J, et al. GRADE guidelines: 14. Going from evidence to recommendations: the significance and presentation of recommendations. J Clin Epidemiol 2013;66:662–25.
[20] Ghandourh W, et al. Assessing tumor centrality in lung stereotactic ablative body radiotherapy (SABR): the effects of variations in bronchial tree delineation and potential for automated methods. Med Dosim 2021;46:94–101.
[21] Li WWL, et al. The influence of provider characteristics on resection rates and survival in patients with localized non-small cell lung cancer. J Thorac Oncol 2015;10:50S–9.
[22] Walters, S. et al. Lung cancer survival and stage at diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK: a population-based study. 2004–2007. Thorax 68, 551 L – 564 (2013).
United States After the Incorporation of Stereotactic Ablative Radiation Therapy: A Population-based Analysis. Am J Clin Oncol 2018;41.

[56] Shultz DB, Diehn M, Loo BW. To SABR or Not to SABR? Indications and Contraindications for Stereotactic Ablative Radiotherapy in the Treatment of Early-Stage, Oligometastatic, or Oligoproggressive Non-Small Cell Lung Cancer. Semin Radiat Oncol 2015;25:78–86.

[57] Verma V, et al. Multi-Institutional Experience of Stereotactic Ablative Radiation Therapy for Stage I Small Cell Lung Cancer. Int J Radiat Oncol 2017;97:362–71.

[58] Barton MB, Gabriel GS, Delaney GP. Testing criterion-based benchmarking for the appropriate use of radiotherapy. Radiother Oncol 2018;128:406–10.

[59] Boxer MM, Duggan R, Descallar J, Vinod SK. Do patients discussed at a lung cancer multidisciplinary team meeting receive guideline-recommended treatment? Asia Pac J Clin Oncol 2016;12:52–60.

[60] Dalmia S, et al. Shared decision-making in early stage non-small cell lung cancer: A systematic review. Ann Thorac Surg 2021. https://doi.org/10.1016/j.athoracsur.2021.01.046.

[61] Wallis CJD, et al. The effect of selection and referral biases for the treatment of localized prostate cancer with surgery or radiation. Br J Cancer 2018;118:1399–405.

[62] Sundaresan P, King MT, Stockler MR, Costa DSJ, Milross CG. Barriers to radiotherapy utilisation in New South Wales Australia: Health professionals’ perceptions of impacting factors. J Med Imaging Radiat Oncol 2015;59:535–41.

[63] Gabriel G, Barton M, Delaney GP. The effect of travel distance on radiotherapy utilization in NSW and ACT. Radiother Oncol 2015;117:386–9.

[64] Liévnes Y, et al. How public health services pay for radiotherapy in Europe: an ESTRO-HERO analysis of reimbursement. Lancet Oncol 2020;21:e42–54.

[65] Lin Y, Mak KS. Racial and socioeconomic disparities in the use of stereotactic body radiotherapy for treating non-small cell lung cancer: a narrative review. J Thorac Dis 2021;13:5764–71.

[66] Batumalai V, et al. Impact of radiotherapy underutilisation measured by survival shortfall, years of potential life lost and disability-adjusted life years lost in New South Wales. Australia Radiat Oncol 2018;129:191–5.

[67] Barton MB, Delaney GP. A decade of investment in radiotherapy in New South Wales. J Med Imaging Radiat Oncol 2011;55:433–41.

[68] Liévnes Y, Grau C. Health Economics in Radiation Oncology: Introducing the ESTRO HERO project. Radiother Oncol 2012;103:109–12.

[69] Adl LM, et al. Utilization of Radiation Therapy in Norway After the Implementation of The National Cancer Plan—A National. Population-Based Study Int J Radiat Oncol 2014;90:707–14.

[70] Borras JM, Liévnes Y, Grau C. The need for radiotherapy in Europe in 2020: Not only data but also a cancer plan. Acta Oncol 2015;54:1268–74.

[71] Thind K, et al. Increasing demand on human capital and resource utilization in radiotherapy: The past decade. Int J Radiat Oncol 2021. https://doi.org/10.1016/j.jrobp.2021.09.020.

[72] Borras JM, et al. The impact of cancer incidence and stage on optimal utilization of radiotherapy: Methodology of a population based analysis by the ESTRO-HERO project. Radiother Oncol 2015;116:45–50.

[73] Liévnes Y, Borras J-M, Grau C. Aggarwal A. Value-based radiotherapy: A new chapter of the ESTRO-HERO project. Radiother Oncol 2021;160:236–9.

[74] Borras JM, et al. Innovation, value and reimbursement in radiation and complex surgical oncology: Time to rethink. Eur J Surg Oncol 2021. https://doi.org/10.1016/j.ejso.2021.08.018.

[75] Chang, J. Y. et al. Stereotactic ablative radiotherapy for operable stage I non-small-cell lung cancer (revised STARS): long-term results of a single-arm , prospective trial with prespecified comparison to surgery. 22, (2021).

[76] Barton MB, et al. Patterns of Retreatment by Radiotherapy. Clin Oncol (R Coll Radiol) 2014;26:611–8.

[77] Kovalchuk RO, et al. Stereotactic Body Radiation Therapy for Salvage Treatment of Recurrent Non-Small Cell Lung Cancer. Pract Radiat Oncol 2020;10:e475–84.

[78] Ricco A, et al. Repeat Thoracic Stereotactic Body Radiation Therapy (SBRT) for Nonsmall Cell Lung Cancer: Long-Term Outcomes, Toxicity, and Dosimetric Considerations. Adv Radiat Oncol 2020;5:984–93.

[79] Horne ZD, Dobopolski MJ, Clump DA, Burton SA, Heron DE. Thoracic reirradiation with SBRT for residual/recurrent and new primary NSCLC within or immediately adjacent to a prior high-dose radiation field. Pract Radiat Oncol 2018;8:e117–23.

[80] Kennedy WR, et al. Repeat stereotactic body radiation therapy (SBRT) for salvage of isolated local recurrence after definitive lung SBRT. Radiother Oncol 2020;142:230–5.

[81] Ogawa Y, et al. Repeat stereotactic body radiotherapy (SBRT) for local recurrence of non-small cell lung cancer and lung metastasis after first SBRT. Radiat Oncol 2018;13:136.