Avaliação de candidatos a dispositivos de assistência circulatória mecânica

Na insuficiência cardíaca (IC) avançada, os sete perfis clínicos (e seus modificadores) propostos pela INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support) oferecem uma classificação conveniente e de fácil aplicação clínica do status da doença, do risco pré-operatório do implante do dispositivo de assistência circulatória mecânica (DACK) e do tempo em que a intervenção deve ser indicada (Quadro 1).¹

Um dos principais fatores determinantes do sucesso do implante do DACK é a seleção apropriada do paciente. A correta seleção do paciente envolve três fatores principais: (1) identificar pacientes com IC avançada, para o qual o risco do implante do DACK suplanta a mortalidade da doença atual, tornando o procedimento benéfico; (2) garantir que a doença não esteja em estágio tão avançado, situação em que o implante do DACK resulta em morbidade e mortalidade ao paciente devido ao aumento do índice de complicações; (3) assegurar que não existam contraindicações ao implante do DACK.²³

Insuficiência renal (IR) perioperatória, IC direita preexistente, disfunção hepática, uso de ventilação mecânica no período pré-operatório, extremos de peso e reoperação estão consistentemente relacionados a piores desfechos clínicos após implante de DACK.³⁵

Os principais escores preditores de risco de implante de DACK estão descritos no quadro 2.

Ecocardiograma

A avaliação de um paciente candidato ao DACK deve incluir um Estudo Ecocardiográfico Transstorácico (ETT) completo e complementação com Ecocardiograma Transesofágico (ETE).

Os efeitos de um DACK sobre a função do Ventrículo Direito (VD) dependem do balanço entre o benefício causado pela descompressão das câmaras esquerdas (diminuição da pós-carga ao VD) e a maior carga volumétrica que chega ao Atrio Direito (AD; aumento de pré-carga do VD). A descompressão das câmaras esquerdas também gera mudanças na geometria das câmaras direitas, como o deslocamento dos Septos Interais (SIA) e Interventriculares (SIV) para a esquerda, e alterações na estrutura do anel tricúspide, podendo piorar o grau de uma Insuficiência Tricúspide (IT) preexistente, gerando mais sobrecarga para o VD.¹⁰

Considerando que o débito cardíaco do VD determina a pré-carga ao Ventrículo Esquerdo (VE), uma redução significativa da função ventricular direita resulta em diminuição do débito pelo DACK. Estima-se que em torno de 30% dos pacientes que recebem um DACK à esquerda evolui com disfunção ventricular direita limitante. Por esses motivos, uma avaliação criteriosa da função do VD é mandatória antes do implante, sendo que, na presença de disfunção moderada a importante, deve-se estar preparado para o implante de suporte biventricular.¹¹

Na avaliação da função do VD pré-implante de DACK, recomenda-se que sejam aferidas as dimensões do VD, e feita a avaliação semiquantitativa da contratilidade longitudinal e radial do VD, a qual deve ser complementada por índices quantitativos, como a Variação Fracional da Área (VFA; valores < 20% estão relacionados a um risco elevado de disfunção do VD após o implante),¹² Deslocamento Sistólico do Plano do Anel Tricúspide (TAPSE) pelo modo M, velocidade sistólica máxima do anel tricúspide lateral estimado pelo Doppler tecidual (s') e índice de performance do VD.¹¹,¹⁴

Preditores de disfunção de ventrículo direito pré-implante de dispositivo de assistência circulatória mecânica

A disfunção do VD é multifatorial e inclui fatores como aumento da pré-carga, isquemia ventricular e interdependência mecânica da geometria ventricular. Sua ocorrência é um dos problemas mais graves após implante de DACK para VE, ocorrendo em até 30% dos casos e estando relacionada com um aumento de seis vezes da morbidade e da mortalidade (aumento do risco de até 67%¹¹,¹⁵

Os fatores de risco e os principais escores de risco para disfunção de VD pós-implante de DACK estão descritos nos quadros 3 e 4.

O implante de DACK univentricular esquerdo deve ser realizado com cautela em pacientes com dilatação importante do VD, IT moderada a importante, anel da válvula tricúspide > 45 mm e PVC > 15 mmHg. Desse modo, as variáveis hemodinâmicas refletem diretamente o aumento da pré e pós-cargas, e as reduções na contratilidade de VD, enquanto as consequências da disfunção de VD como congestão venosa e hipoperfusão de órgãos são refletidas como alterações significativas das funções hepáticas e renais.¹⁵,²¹
Os parâmetros hemodinâmicos considerados ótimos em relação à função ventricular direita e que diminuiriam o risco de disfunção de VD pós-implantes seriam: PVC ≤ 8 mmHg; PCP ≤ 18 mmHg; PVC/PCP ≤ 0,66; Resistência Vascular Pulmonar (RVP) < 2 unidades wood e trabalho indexado de VD ≥ 400 mL/m².

Quadro 1 – Classificação de Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS)

Perfil	Descrição	Estado hemodinâmico	Tempo para intervenção
1	Choque cardiogênico grave	Hipotensão persistente, apesar do uso de inotrópicos e/ou assistência circulatória mecânica temporária, associada à disfunção orgânica	Horas
2	Decaimento progressivo, apesar do uso de inotrópico	Decaimento da função renal e hepática, estado nutricional e lactatemia, a despeito do uso de agentes inotrópicos em doses otimizadas	Dias
3	Estável às custas de inotrópico	Estabilidade clínica em vigência de terapia inotrópica mas com histórico de falência do desmame	Semanas a meses
4	Internações frequentes	Sinais de retenção hídrica, sintomas ao repouso e passagens frequentes a unidades de emergência	Semanas a meses
5	Em casa, intolerante aos esforços	Limitação marcante para atividades, porém confortável ao repouso, a despeito de retenção hídrica	Urgência variável, dependente do estado nutricional e do grau de disfunção orgânica
6	Limitação aos esforços	Limitação moderada aos esforços e ausência de sinais de hipervolemia	Urgência variável, dependente do estado nutricional e do grau de disfunção orgânica
7	NYHA III	Estabilidade hemodinâmica e ausência da hipervolemia	Sem indicação

NYHA: New York Heart Association.

Quadro 2 – Escores preditores de risco pós-implante de dispositivo de assistência circulatória mecânica

Escore de risco para terapia de destino²	Escore de risco para terapia de ponte/destino (HMII escore)³	Escore de risco pré-operatório⁴	Escore de risco pré-operatório⁵
Risco de óbito hospitalar em 90 dias (fluxo pulsátil)	Risco de óbito em 90 dias (fluxo contínuo)	Risco de óbito após implante (média de 84 dias)	Risco de óbito após implante (média de 100 dias)
Plaquetas < 148.000/μL OR: 7.7	Idade (por 10 anos) OR: 1,32	Dêbito urinário < 30 mL/hora OR: 3,9	Falência respiratória/sepsis OR: 11,2
Albúmina < 3,3 mg/dL OR: 5,7	Albúmina OR: 0,49	PVC > 16 mmHg OR: 3,1	Insuficiência cardíaca direita OR: 3,2
INR > 1,1 OR: 5,4	Creatinina OR: 2,1	Ventilação mecânica OR: 3	Idade > 65 anos OR: 3,01
Uso de vasodilatador OR: 5,2	INR OR: 3,11	Tempo de protrombina > 16 segundos OR: 2,4	Falência ventricular aguda pós-cardiomiocárdenia OR: 1,8
Pressão média da artéria pulmonar < 25 mmHg OR: 4,1	Volume do centro < 15 implantes OR: 2,24	Reoperação OR: 1,8	Infarto agudo do miocárdio OR: 1,7
TGP > 45 U/mL OR: 2,6	Leucócitos > 15.000 OR: 1,1	Temperatura > 101,5 F OR: 0	
Hematócrito < 34% OR: 3,0	Tempeh		
BUN > 51 U/dL OR: 2,9	Uso de Inotrópicos intravenosos OR: 2,9		

HMII: HeartmateII; OR: odds ratio; RR: risco relativo; PVC: pressão venosa central; INR: índice internacional normalizado; TGP: transaminase glutâmico pirúvica; BUN: Blood Urea Nitrogen.

5 Arq Bras Cardiol. 2018; 111(1):4-12
Dispositivos temporários

Seleção de estratégia de dispositivos de assistência circulatória mecânica temporários

Os DACM temporários podem ser utilizados no resgate hemodinâmico e para se obter estabilidade clínica, incluindo a possibilidade de recuperação da função cardíaca, bem como a realização do transplante, definindo, assim, três estratégias que podem ser sobrepostas:

1. **Pontes para decisão**: deve ser considerada em pacientes gravemente enfermos, cuja necessidade de suporte hemodinâmico é imediata, devido ao alto risco de morte por falência cardíaca. Nesse contexto, diferentes cenários podem ocorrer (ausência de recuperação neurologica, disfunção de múltiplos órgãos, estabilização hemodinâmica com necessidade de outros dispositivos, entre outros), não sendo possível estabelecer, no momento do implante, qual a estratégia final de tratamento (por exemplo: pós-parada cardiorrespiratória).

2. **Ponte para recuperação**: situação na qual existe a perspectiva de melhora da função ventricular após insulto agudo, sendo retirado o dispositivo com a melhora da função ventricular, como, por exemplo: disfunção ventricular pós-Infarto Agudo do Miocárdio (IAM), Takotsubo e miocardite.

Quadro 3 – Fatores de risco para disfunção de ventrículo direito (VD) pós-implante de dispositivo de assistência circulatória mecânica

Indicação de implante	Terapia de destino
Sexo	Feminino
Suporte pré-implante	Necessidade de vasopressor e uso de balão intra-aórtico
Disfunções orgânicas	Respiratório: suporte ventilatório invasivo
	Hepático: TGO ≥ 80 UI/L, bilirrubina > 2,0 mg/dL
	Renal: creatinina sérica ≥ 2,3 g/dL
	Necessidade de terapia de substituição renal prévia
	Nutricional: albumina ≤ 3,0 g/dL
	Coagulação: plaquetas < 120.000
Disfunção de VD	Outros: aumento de BNP, PCR, procalcitonina
	Digestivo: diâmetro diástolico do VD > 35 mm, VPA< 30%, átrio direito > 50 mm
Medidas hemodinâmicas	PVC ≥ 15 mmHg ou PVC/PCP ≥ 0,63, trabalho indexed do VD ≤ 300 mmHg mL/m²; pressões de artéria pulmonar baixas, baixo índice cardíaco ou RVP elevada
Outros	Mioardiopatia não isquêmica, reoperação, IT importante, TEP prévio

TGO: transaminase glutâmico oxalacetica; BNP: peptide natriurético cerebral; PCR: proteína C-reativa; FAC: variação fracional de área; PVC: pressão venosa central; PCP: pressão capilar pulmonar; IT: insuficiência tricúspide; TEP: tromboembolismo pulmonar.

Quadro 4 – Principais escores de risco para falência de ventrículo direito (VD) após implante de dispositivo de assistência circulatória mecânica (DACM) para ventrículo esquerdo (VE)

Escore	Variáveis	Predição
University of Michigan, RV Failure Risk Score, Matthews et al.17	Necessidade vasopressor: 4 pontos	Predição de falência de VD
	TGP ≥ 80 UI/L: 2 pontos	• ≥ 5,5 pontos: 7,6
	Bilirrubinas ≥ 2,0 mg/dL: 2,5 pontos	• 4,0-5,0 pontos: 2,8
	Creatinina ≥ 2,3 mg/dL ou hemodiálise: 3 pontos	• ≤ 3,0 pontos: 0,49
Kormos et al.18	Preditores independentes pré-operatórios para disfunção precoce de VD: PVC/PCP > 0,63	Sobreviva 365 dias:
	Suporte ventilatório	• Sem disfunção de VD: 78%
	BUN > 39 mg/dL	• Disfunção de VD precoce: 59% (p < 0,001)
	Índice cardíaco ≤ 2,2 L/min/m²: 18 pontos	
	IRVS ≤ 0,25 mmHg-L/m²: 18 pontos	
	Disfunção de VD importante: 17 pontos	< 30: 96%, assistência esquenta isolada
University of Pennsylvania, RV Failure Risk Score, Fitzpatrick et al.19	Creatinina sérica > 1,9 mg/dL: 17 pontos	≥ 65 pontos: 11%, assistência esquenta isolada
	Cirurgia cardíaca prévia: 16 pontos	
	Pressão arterial sistólica ≤ 96 mmHg: 13 pontos	
	PVC > 15 mmHg: 1 ponto	1-2 pontos: baixo risco de disfunção de VD
	Disfunção VD grave: 1 ponto	2-3 pontos: moderado risco de disfunção de VD
Escore CRITT20	Ventilação mecânica pré-operatória: 1 ponto	4-5 pontos: alto risco de disfunção de VD
	Insuficiência tricúspide importante: 1 ponto	
	Taquicardia (> 100 bpm) = 1 ponto	

TGP: transaminase glutâmico pirúvica; PVC: pressão venosa central; PCP: pressão capilar pulmonar; BUN: Blood Urea Nitrogen; IRVS: índice resistência vascular sistêmica.
3. Ponte para transplante: situação em que os dispositivos podem oferecer suporte hemodinâmico e estabilidade clínica até a realização do transplante cardíaco, no contexto da gravidade progressiva dos pacientes e pela indisponibilidade de realização do transplante em um curto prazo.

Tipos de dispositivos de assistência circulatória mecânica temporários

As principais características dos DACM temporários disponíveis no Brasil estão no quadro 5.24

Indicações e contraindicações

Conceitualmente, os DACM temporários estão indicados preferencialmente em pacientes INTERMACS 1 e 2, mas pacientes em INTERMACS 3, dependentes de altas doses de inotrópicos ou ao alto risco de instabilidade podem ser considerados candidatos.

Dentre as contraindicações aos DACM temporários, devemos considerar situações clínicas que limitem a expectativa de vida, individualizando a decisão e, preferencialmente, envolvendo outros profissionais relacionados à comorbidade (por exemplo: oncologista e o prognóstico de uma neoplasia).

Balão intra-aórtico

O mecanismo de ação do balão intra-aórtico (BIA) é a contrapulsação aórtica, o que aumenta a pressão diastólica na raiz da aorta, propiciando aumento da perfusão coronariana, redução da pós-carga e consequente incremento no débito cardíaco na ordem de 15%.

Embora o uso do BIA ainda encontre espaço na prática clínica, principalmente nos pacientes mais jovens com choque cardiogênico menos intenso, a efetividade do método deve ser avaliada a partir da melhora de parâmetros objetivos de microperfusão tecidual. A não melhora dessas variáveis em curto período de tempo (horas) justifica o escalonamento para outros dispositivos mais invasivos.

Quadro 5 – Dispositivos de assistência circulatória mecânica temporários disponíveis no Brasil

Características	BIA	ECMO	TandemHeart™	Impella 2.5®	Impella CP®	Impella 5.0®	CentriMag®	EXCOR®		
Mecanismo	Pneumático	Centrífugo	Centrífugo	Axial	Centrífugo	Pulsátil				
Via de acesso	Percutâneo	Percutâneo/direto por toracotomia	Percutâneo	Percutâneo Dissecação	Direto por toracotomia	Direto por toracotomia				
Câmera	7-9 F	18-21 F Inflow 15-22 F Outflow	21 F Inflow 15-17 F Outflow	12 F 14 F 21 F	24-34 F	27-48 F Inflow 36-48 F Outflow				
Técnica de inserção	Aorta descendente via artéria femoral		Inserção retrógrada no ventrículo esquerdo via artéria femoral	Inserção retrógrada no ventrículo esquerdo via artéria femoral			ACM-E: Infl ow: ventrículo esquerdo (acesso via átrio esquerdo ou ponta do ventrículo esquerdo)	Até 8-10 L/min		
Suporte hemodinâmico	0,5 L/min	> 4,5 L/min	4 L/min	2,5 L/min 3,7 L/min 5,0 L/min	Até 8 L/min	Até 8 L/min		ACM-D: Infl ow: átrio direito - Outflow: artéria pulmonar	ACM-E: Infl ow: ventrículo esquerdo (ponta do ventrículo esquerdo) - Outflow: artéria pulmonar	ACM-D: Infl ow: átrio direito - Outflow: artéria pulmonar

BIA: balão intra-aórtico; ECMO: oxigenação por membrana extracorpórea; ACM-D: assistência circulatória mecânica direita; ACM-E: assistência circulatória mecânica esquerda.

Recomendações para implante de balão intra-aórtico

Recomendação	Classe	Nível de Evidência
Choque cardiogênico pós-IAM	IIa	B
Complicação mecânica pós-IAM com choque cardiogênico	IIa	C
Angina refratária após tratamento padrão de síndrome coronariana aguda	IIa	C
Choque cardiogênico em miocardiopatia crônica isquêmica ou não isquêmica	IIa	C
Suporte em intervenções de pacientes de alto risco cardíaco	IIb	C

IAM: infarto agudo do miocárdio
Dispositivos circulatórios percutâneos

Definição e benefícios

Os dispositivos circulatórios percutâneos permitem um suporte ativo e não requerem sincronismo com o ciclo cardíaco. Os principais benefícios são manter a perfusão tecidual; aumentar a perfusão coronariana; e reduzir o consumo miocárdico de oxigênio, das pressões de enchimento e o estresse na parede ventricular, promovendo suporte circulatório no choque cardiogênico.25,26

Bombas circulatórias paracorpóreas

Definição, tipos e benefícios

São dispositivos externos implantados cirurgicamente que promovem suporte hemodinâmico em indivíduos com choque cardiogênico refratário com alto risco de mortalidade.

A CentriMag® é uma bomba centrífuga de fluxo contínuo que utiliza levitação magnética para a rotação. Fornece um fluxo de até 10 L/min com baixa tensão de cisalhamento, minimizando a trombogenidade e permitindo níveis moderados de anticoagulação e mínima hemólise durante o suporte.24

A Berlin Heart EXCOR® é uma bomba de fluxo pulsátil e que fornece até 8 L/min, com baterias acopladas a um sistema de transporte, o qual permite a deambulação por até 10 horas.

Outras bombas centrífugas convencionais podem ser utilizadas com o mesmo objetivo.

Recomendações para implante de dispositivos circulatórios percutâneos

Recomendação	Classe	Nível de Evidência
Choque cardíaco pós-IAM	IIa	C
Suporte em intervenções de pacientes de alto risco cardíaco	IIb	C

IAM: infarto agudo do miocárdio

Tipos de dispositivos circulatórios percutâneos

Impella®

Dispositivo composto por uma bomba de fluxo axial contínuo, que aspira sangue do VE para a aorta (trabalha em série com o VE). Permite fluxos de 2,5 L/min (Impella® 2.5), 4 L/min (Impella® CP) ou 5,0 L/min (Impella® 5.0). No Brasil, atualmente, o modelo disponível é o Impella® CP.24,27

TandemHeart™

Sistema composto por cânula transeptal, bomba centrífuga, cânula arterial femoral e console. O dispositivo bombeia sangue do átrio esquerdo por meio de uma cânula inserida via transeptal para o sistema arterial iliofemoral. Tanto o TandemHeart™ como o VE contribuem com o fluxo para a aorta (trabalham em paralelo).24,27

Oxigenação por membrana extracorpórea

Definição, tipos e benefícios

A Oxigenação por Membrana Extracorpórea (ECMO) é um suporte mecânico invasivo temporário idealizado para fornecer suporte cardiopulmonar parcial ou total para pacientes com choque cardíaco e/ou insuficiência respiratória aguda. Pode ser de dois tipos: venoarterial e venovenoso.

É uma tecnologia com instalação rápida, aplicável à maioria dos pacientes, e que rapidamente reverte a falência circulatória e/ou anoxia.

Recomendações para implante de dispositivos circulatórios paracorpóreas

Recomendação	Classe	Nível de Evidência
Ponte para decisão ou recuperação	I	C
Ponte para Transplante	IIa	C

Recomendações para implante de ECMO

Recomendação	Classe	Nível de Evidência
Ponte para decisão ou recuperação	I	C
Ponte para Transplante	IIa	C

Dispositivos de longa permanência

Tipos de dispositivos de assistência circulatória mecânica de longa permanência

Em relação aos DACM de longa permanência, observou-se, nos últimos anos, uma evolução nos modelos dos equipamentos, baseada em avanços tecnológicos importantes.

Os dispositivos sofreram aprimoramentos, principalmente em seus princípios de propulsão e tipo de fluxo, com redução de suas dimensões, tornando-se mais eficientes e com menores índices de complicações (Figura 1).

O quadro 6 descreve os DACM de longa permanência disponíveis no Brasil.

Indicações e contraindicações

Na indicação de DACM de longa duração, alguns fatores são relevantes na tomada de decisão. No caso de ponte para
transplante, a expectativa de tempo de espera em fila deve ser considerada. Em casos de expectativa de espera em fila menor que 30 dias, a indicação de DACM teria baixa relação de custo-benefício. Deve-se também ter em mente que a indicação desses dispositivos em pacientes INTERMACS 2 tem resultados mais desfavoráveis.

Recomendações para DACM de longa permanência como ponte para transplante

Recomendação	Classe	Nível de Evidência
Insuficiência cardíaca sistólica INTERMACS 2 e 3	Classe IIa	C
Insuficiência cardíaca sistólica INTERMACS 4	Classe IIb	C
Insuficiência cardíaca sistólica INTERMACS 1, 5, 6 e 7	Classe III	C

Recomendações para DACM de longa permanência como terapia de destino

Recomendação	Classe	Nível de Evidência
Insuficiência cardíaca sistólica INTERMACS 3	Classe IIa	B
Insuficiência cardíaca sistólica INTERMACS 2	Classe IIa	C
Insuficiência cardíaca sistólica INTERMACS 4	Classe IIb	C
Insuficiência cardíaca sistólica INTERMACS 1, 5, 6 e 7	Classe III	C

Os pacientes candidatos a DACM devem ser avaliados quanto a presença de fatores que possam contraindicar ou influenciar na sobrevida após o implante. As principais contraindicações para implante de DACM de longa permanência estão no quadro 7.

Seleção da estratégia de DACMs de longa permanência

1. **Ponte para decisão:** Pode ser considerada em pacientes com condições clínicas proibitivas ao transplante cardíaco, porém, se modificáveis, permitem que o paciente se torne candidato ao transplante (por exemplo: hipertensão pulmonar e neoplasias com potencial de cura).

2. **Ponte para transplante:** Situação em que o dispositivo pode oferecer suporte hemodinâmico e estabilidade clínica até a realização do transplante cardíaco, no contexto da gravidade progressiva do paciente e da indisponibilidade de realização do transplante em um prazo curto.
3. **Terapia de destino:** Situação em que o dispositivo pode oferecer suporte hemodinâmico e estabilidade clínica em paciente com insuficiência cardíaca refratária, que apresenta contraindicação para o TC, possibilitando maior sobrevida e melhor qualidade de vida, comparado com o tratamento clínico medicamentoso.

Otimização e manejo do ventrículo direito

A falência do VD ainda é um dos principais fatores que impactam na sobrevida dos pacientes após o implante de DACM. Os critérios para esse diagnóstico são: sintomas e sinais de disfunção persistente de VD; PVC > 18 mmHg com índice cardíaco < 2,0 L/min.m² na ausência de arritmias ventriculares ou pneumotórax; necessidade de implantação de DACM à direita ou necessidade de óxido nítrico inalatório ou terapia inotrópica por mais de 1 semana após o implante do dispositivo.

O implante de DACM gera aumento do débito cardíaco e consequente aumento do retorno venoso para o VD. Para contrapor este aumento de pré-carga, a complacência do VD precisa melhorar com a redução de sua pós-carga (redução das pressões de enchimento do VE e da pressão arterial pulmonar). No entanto, se o VE for esvaziado em demasia, o SIV pode se desviar para a esquerda, prejudicando a contratilidade do VD.

Complicações após implante de DACM de longa duração

As principais complicações relacionadas a DACM estão no quadro 8.

Proposta de critérios de priorização para transplante cardíaco em pacientes com dispositivos de assistência circulatória mecânica

Com o aumento do número de implantes de DACM em nosso meio, esse documento propõe uma alteração nos critérios de priorização de pacientes em fila de transplante cardíaco. Esse novo critério está descrito no quadro 9.
Figura 2 – Otimização e manejo do ventrículo direito. MgSO₄: sulfato de magnésio; FC: frequência cardíaca; MP DDD: marca-passo bicameral com estimulação e sensibilidade de átrio e ventrículo direito; ACME: assistência circulatória mecânica esquerda; PVC: pressão venosa central; IC: índice cardíaco; ETT: ecocardiograma transtorácico; ETE: ecocardiograma transesofágico; NO: óxido nítrico inalatório; VE: ventrículo esquerdo; RVS: resistência vascular sistêmica; ACMD: assistência circulatória mecânica direita; PAm: pressão arterial média.

Quadro 8 – Complicações de dispositivos de assistência circulatória mecânica (DACM) de longa duração

Sangramentos	Derrame pericárdico	Insuficiência respiratória
Disfunção de ventrículo direito	Hipertensão	Tromboembolismo arterial não neurológico
Eventos neurológicos	Arritmias	Tromboembolismo venoso
Infecções	Infarto do miocárdio	Desincência de ferda operatória
Mau funcionamento do DACM	Disfunção hepática	Alteração psiquiátrica/comportamental
Hemólise		

Quadro 9 – Proposta de critérios de priorização para transplante cardíaco

Prioridade	Critério
1	Pacientes em choque cardíogenico em uso de DACM paracorpóreos de curta ou média duração (includindo balão intra-aórtico)
2	Choque cardíogenico em uso de inotrópicos ou vasopressores
3	DACM de longa permanência estável não complicada
4	Insuficiência cardíaca avançada ambulatorial

DACM: dispositivos de assistência circulatória mecânica.
Referências

1. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. Third INTERMACS Annual Report: the evolution of destination therapy in the United States. J Heart Lung Transplant. 2011;30(2):115-23.
2. Moskowitz AJ, Rose EA, Celjins AC. The cost of long-term LVAD implantation. Ann Thorac Surg. 2001;71(3 Suppl):S195-8.
3. Rose EA, Celjins AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) Study Group. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435-43.
4. Reedy JE, Swartz MT, Termuhlen DF, Pennington DG, McBride LR, Miller LW, et al. Bridge to heart transplantation: importance of patient selection. J Heart Transplant. 1990;9(5):473-80.
5. Lietz K, Miller LW. Patient selection for left-ventricular assist devices. Curr Opin Cardiol. 2009;24(3):246-51.
6. Lietz K, Long JW, Kluuy AG, Slaughter MS, Silver MA, CA, et al. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation. 2007;116(5):497-505.
7. Cowger J, Sundareswaran K, Rogers JG, Park SJ, Page SJ, Pagani FD, Bhat G, et al. Predicting survival in patients receiving continuous flow left ventricular assist devices: the HeartMate II risk score. J Am Coll Cardiol. 2013;61(3):313-21.
8. Oz MC, Goldstein DJ, Pepino P, Weinberg AD, Thompson SM, Catenese KA, et al. Screening scale predicts patients successfully receiving long-term implantable left ventricular assist devices. Circulation. 1995;92 Suppl II:169-73.
9. Deng MC, Loebe M, El-Barayosey A, Gronda E, Jansen PG, Viganò M, et al. Mechanical circulatory support for advanced heart failure: effect of patient selection on outcome. Circulation. 2001;103(21):231-7.
10. Santamore WP, Gray LA Jr. Left ventricular contributions to right ventricular systolic function during LVAD support. Ann Thorac Surg. 1996;61(1):350-6.
11. Loforte A, Stepanenko A, Potapov EV, Musumeci F, Dranishnikov N, Schweiger M, et al. Temporary right ventricular mechanical support in high-risk left ventricular assist device recipients versus permanent biventricular or total artificial heart support. Artif Organs. 2013;37(6):523-30.
12. Scalia GM, McCarthy PM, Savage RM, Smedira NG, Thomas JD. Clinical utility of echocardiography in the management of implantable ventricular assist devices. J Am Soc Echocardiogr. 2000;13(8):754-63.
13. Lang RM, Badano LP, Mor-Avi V, Aillalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233-70.
14. Rudski LG, Lai WW, Aillalo J, Hua J, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685-713.
15. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al; International Society for Heart and Lung Transplantation. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157-87.
16. Argiriou M, Kolokotron SM, Sakellariadis T, Argiriou O, Charitos C, Zargogulidis P, et al. Right heart failure post left ventricular assist device implantation. J Thorac Dis. 2014 Mar;6 Suppl 1:S52-9.
17. Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51(22):2163-72.
18. Kornos R, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al; HeartMate II Clinical Investigators. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139(5):1316-24.
19. Fitzpatrick JR 3rd, Frederick JR, Hsu VM, Kozin ED, O'Hara ML, Howell E, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27(12):1286-92.
20. Atluri P, Goldstone AB, Fairman AS, MacArthur JW, Shudo Y, Cohen JE, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96(3):857-63.
21. Holman WL, Achariya D, Siric F, Loyaga-Reondon RY. Assessment and management of right ventricular failure in left ventricular assist device patients. Circ. J. 2013;77(3):478-86.
22. Goldstein D, Nergaard-Kundbod S. Mechanical bridge to decision: what are the options for the management of acute refractory cardiogenic shock? Curr Heart Fail Rep. 2011 Feb;8(1):31-8.
23. Kar B, Basra SS, Shah NR, Loyalka P. Percutaneous circulatory support in cardiogenic shock: interventional bridge to recovery. Circulation. 2012;125(14):1809-17.
24. Gilotra NA, Stevens GR. Temporary mechanical circulatory support: a review of the options, indications, and outcomes. Clin Med Insights Cardiol. 2014;8 Suppl 11:75-85.
25. Thiele H, Lauer B, Hambrecht R, Boudriot E, Cohen HA, Schuler G. Reversal of cardiogenic shock by percutaneous left atrial-to-femoral arterial bypass assistance. Circulation. 2001;104(24):2917-22.
26. Raess DH, Weber DM, Impella 2.5. Cardiovasc Transl Res. 2009;2(2):168-72.
27. Rihal CS, Naidu SS, Gertz M, Sato T, Warner Burke J, Kapur NK, et al. Society for Cardiovascular Angiography and Interventions (SCAI); Heart Failure Society of America (HFSA); Society of Thoracic Surgeons (STS); American Heart Association (AHA), and American College of Cardiology (ACC). 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiogenic Care: Endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervention; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d’intervention. J Am Coll Cardiol. 2015;65(19):e7-26.
28. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34(12):1495-504.
29. Patiolla B, Beggui R, Haddad F. Right-ventricular failure following left ventricle assist device implantation. Curr Opin Cardiol. 2013;28(2):223-33.
30. Meineri M, Van Rensburg AE, Vegas A. Right ventricular failure after LVAD implantation: prevention and treatment. Best Pract Res Clin Anaesthesiol. 2012;26(2):217-29.