Formation of a Gravitationally Bound Object after Binary Neutron Star Merging and GRB phenomena

G.V. Lipunova¹ and V.M. Lipunov²

¹ Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, Moscow, 119899 Russia
email galja@sai.msu.su
² Sternberg Astronomical Institute, Moscow State University and Milano University
email lipunov@sai.msu.su

Received / Accepted

Abstract. The stages that follow the merging of two neutron stars are discussed. It is shown that if a rapidly rotating gravitationally bound object is formed after the merging (a spinar or a massive neutron star), then the characteristic time of its evolution is determined by a fundamental value

$$t_{\text{spin}} = \frac{\kappa m_p^2 c^2 h^{1/2}}{m_c^2 c^2 G^{1/2}} \approx 7 \cdot 10^5 \text{s} \cdot \kappa,$$

where the dimensionless value κ depends on the exact equation of state of nuclear matter. The hypothesis is discussed as to whether the residual optical emission of the gamma-ray bursts is pulsar-like and its evolution driven by magnetodipole energy losses. It is shown that binary neutron star mergings can be accompanied by two gravitational wave burst separated either by the time of spinar’s collapse t_{spin} or neutron star cooling time (~ 10 s), depending on the masses of neutron stars.

Key words: Stars: neutron — Gamma rays: bursts

1. Introduction

The detection of optical and X-ray emission after the gamma ray bursts GRB 970228, GRB 970508 (Groot et al. 1997a; Groot et al. 1997b; Metzger et al. 1997b; Costa et al. 1997b; Sahu et al. 1997; Bond 1997; Galama et al. 1997; Djorgovski et al. 1997a; Metzger et al. 1997c; Schaefer et al. 1997; Djorgovski et al. 1997b; Djorgovski et al. 1997c; Groot et al. 1997; Donahue et al., 1997) may be interpreted in terms of the formation of a transient rapidly rotating gravitationally bound object — a heavy neutron star (NS) or spinar — an object with the equilibrium maintained either by the fast rotation (“cool” spinar, CSP) or by both rotation and pressure (“hot” spinar, HSP).

Let us assume that two neutron stars with masses M_1 and M_2 are merging. The following state of the aftermerging object is determined by the ratio of the resulting total mass and the Oppenheimer–Volkoff limit. Two different scenarios may be envisaged as follows:

$$M_1 + M_2 \geq M_{\text{OV}} \quad (A)$$
$$M_1 + M_2 < M_{\text{OV}} \quad (B)$$

Here and below we interpret the Oppenheimer–Volkoff limit not as the standard value derived for the cold equation of state of baryonic matter for a non–rotating neutron star, but as a modified one. In the general case the Oppenheimer–Volkoff limit is a function of the angular spin velocity of the object, its entropy, and the specific equation of state: $M_{\text{OV}} = M_{\text{OV}}(\omega, S, \text{EqSt})$.

Each neutron star can have a mass lying between the limits:

$$M_{\text{min}} < M_1, M_2 < M_{\text{OV}}$$

The value of $M_{\text{min}} \sim 0.2 M_\odot$ was derived by Landau (1938). In a standard modern scenario, it is commonly suggested that $M_{\text{min}} \sim 1.2 M_\odot$. Thus we can expect the different evolutionary tracks depending on the specific masses of NS.

2. Mergingology

2.1. Case (A)

In this case, we can expect that after the merging a black hole results from a direct collapse during the time $\sim 10^{-5}$ s and that the most energy is emitted in the gravitational wave burst. This scenario is discussed more frequently in
the literature, and GRB phenomenon can be related with the relativistic particle ejection in the form of a Fireball (Rees & Meszaros, 1992) or a beam of protons (Shaviv & Dar, 1996). In addition, a certain fraction of radiated energy can be related with the pulsar mechanism (Lipunov & Panchenko 1996; Lipunova 1997). No gravitationally bound object can be formed in this case outside the horizon. We can present these stages by the following way:

\[NS + NS \rightarrow BH + GWB + GRB + \nu B \]

\((GWB - \text{gravitational waves burst}; \nu B - \text{neutrino burst}) \)

Finally, there is a case of a high Oppenheimer-Volkoff limit for the cool non-rotating object.

\[M_1 + M_2 < M_{OV} \quad \text{always!} \]

This variant leads to the formation of a very powerful pulsar (maybe without pulsation) with the maximum spin rotation.

\[NS + NS \rightarrow PSR \]

The characteristic time \(t_{\text{spin}} \) of its evolution is governed by the momentum loss rate.

3. The rate of the angular momentum losses

In both cases of a cool spinar (Lipunova 1997) and of a fast-rotating NS, the specific time of their evolution is determined by the rate of magnetodipole energy loss

\[\frac{dI}{dt} = \frac{-2 \mu^2 \omega^3}{3 c^3}, \]

and

\[t_{\text{spin}} = \frac{\omega}{2 \omega} = \frac{2}{5} \frac{M c^3}{B_0^2 R_0^4 \omega^2}. \]

We assume:

- the inertia moment \(I = \frac{2}{5} M R^2 \),
- the mass \(M = M_1 + M_2 \),
- the magneto–dipole moment \(\mu = B_0 R_0^2 / 2 \).

The angular spin velocity of the post-merging object must be close to the limit:

\[\omega = (GM/R_0^3)^{1/2}. \]

Then we obtain:

\[t_{\text{spin}} \approx \frac{6}{5} \frac{c^3}{B_0^2 G R} \approx 2 \cdot 10^5 \left(\frac{B}{B_{cr}} \right)^{-2} \left(\frac{R}{10^6 \text{cm}} \right)^{-1} \text{s}. \]

Thus, this duration is determined mainly by the magnetic field. If we assume that a gravitationally bound object magnetic field is equal to the critical value close to the Schwinger limit:

\[\hbar B_{cr} = m_e c^2, \quad B_{cr} \approx 4.3 \cdot 10^{13} \text{ G}. \]

Expressing the radius and the mass of the NS in terms of fundamental constants we obtain the fundamental value for the lifetime of such an object:

\[T = \frac{m_p^2 c^2 \hbar^{1/2}}{m_e c^3 G^{1/2}} \approx 7.6 \cdot 10^5 \text{s}. \]

Taking into account the real mass of NSs and specific equation of state, this time can be modified as

\[t_{\text{spin}} = T \cdot \kappa, \]
where κ depends on the exact equation of state of nuclear matter. This duration accords with the specific fundamental value of luminosity.

4. GRB light curve

Here we present the alternative model to the now frequently discussed model of GRB — the radiation of a Fireball (see Meszaros & Rees 1997). We admit that the models of fast–rotating pulsar or spinar with extremely high magnetic fields do not wholly substitute the model of Fireball (especially, concerning the gamma burst itself) but accompany the process of radiation and, possibly, at later stages of GRB afterglow, dominate in a GRB spectrum. Note, that these mechanisms can supply the emission in a wide range of wavelengths, as radiopulsar studies confirm.

We suggest that part of the observed optical and X-ray afterglow of a GRB can relate to the pulsar mechanism. As an emission from Fireball decreases to the undetectable level, the pulsar mechanism can become the main contribution to the afterglow.

We can construct the luminosity evolution for a cool spinar collapse (Lipunova, 1997) and for a pulsar spin down.

Supposing that the optical emission is produced by the pulsar mechanism acting with the critical magnetic field, one can derive:

$$L \approx 2 \cdot 10^{45} \text{erg/s} \left(\frac{B}{B_{cr}}\right)^2 R_6^6 P_{1.5}^{-4} K(t, \nu) \times$$

where $R_6 = (R/10^6 \text{cm})$, $P_{1.5} = (P/1.5 \text{ms})$, $M_3 = (M/3M_\odot)$. The coefficient $K(t, \nu)$ is the ratio of optical radiation to the total energy loss by a pulsar. Of course, it is hard to expect the ratio of optical radiation to the total rotational energy loss to be constant, as evidenced by radiopulsar studies. As it is, the real power of time dependence can vary from -2.

Fig. 1 shows the characteristic times of luminosity decreasing to be in a rather good correlation with the observed ones (see Groot et al. 1997a; Groot et al. 1997b; Metzger et al. 1997b Costa et al. 1997b; Sahu et al. 1997; Bond 1997; Galama et al. 1997; Djorgovski et al. 1997a; Metzger et al. 1997c; Schaefer et al. 1997; Djorgovski et al. 1997b; Djorgovski et al. 1997c; Groot et al. 1997; Donahue et al., 1997). The model of a neutron star spin down is calculated for the initial angular velocity $\nu_{max} = 660 \text{ Hz}$, which corresponds to the minimum spin period observed in millisecond pulsars.

The lack of optical counterparts to other GRBs may be explained by another relation between the total mass of the system before merging and the Oppenheimer-Volkoff limit and, as a result, by another scenario of neutron star coalescence.

The authors acknowledge Dr K.A.Postnov and All-Moscow Seminar of Astrophysics (OSA, http://xray.sai.msu.su/sciwork/eseminars.html) for valuable discussions.
The work is supported by Cariplo Foundation for Scientific Research and by Russian Fund for Basic Research through Grant No 95-02-06053.

References

Bond H.E., 1997, IAUC 6654
Costa E., Feroci M., Frontera F. et al., 1997a, IAUC 6572
Costa E., Feroci M., Piro L. et al., 1997b, IAUC 6576
Galama T.J., Groot P.J., 1997, IAUC 6655
Groot P.J., Galama T.J., van Paradijs J. et al., 1997a, IAUC 6584
Groot P.J., Galama T.J., van Paradijs J. et al., 1997b, IAUC 6588
Groot P.J., Galama T.J., van Paradijs J. et al., 1997c, IAUC 6660
Dar A. & Shaviv N., 1996, astro-ph/9607160
Djorgovski S.G., Metzger M.R., Odewahn R.R. et al., 1997a, IAUC 6655
Djorgovski S.G., Odewahn R.R., Gal R.R. et al., 1997b, IAUC 6658
Djorgovski S.G., Metzger M.R., Kulkarni S.R. et al., 1997c, IAUC 6660
Donahue M., Sahu K.C., Livio M. et al., 1997, IAUC 6666
Friedman J & Ipser R., 1987, ApJ 314, 594
Lipunova G.V., 1997, Astronomy Letters, 23, 104
Lipunov V.M. and Panchenko I.E., 1996, Astronomy and Astrophysics 312, 937
Lipunov V.M., Postnov K.A., Prokhorov M.E., Panchenko I.E., Jorgensen H., 1995, ApJ 454, 593
Lipunov V.M., Postnov K.A., Prokhorov M.E.,1997, astro-ph/9703181
Mallozzi E. et al., 1996, ApJ 471, 636
Meszaros P. & Rees M., 1997, ApJ 476, 232
Metzger M.R., Kulkarni S.R., Djorgovski S.G. et al.,1997a, IAUC 6582
Metzger M.R., Kulkarni S.R., Djorgovski S.G. et al., 1997b, IAUC 6588
Metzger M.R., Djorgovski S.G., Steidel C.C. et al.,1997c, IAUC 6655
Piro L., Costa E., Feroci M. et al., 1996, IAUC 6467
Rees M. & Meszaros P., 1992, MNRAS 258, 41
Sahu K., Livio M., Petro L., Macchetto F.D., 1997, IAUC 6606
Schaefer B., Schaefer M., 1997, IAUC 6658
Shapiro S. & Teukolsky S., 1983, Black Holes, White Dwarfs and Neutron Stars, A Wiley-Interscience Publication, New-York

This article was processed by the author using Springer-Verlag \textsc{\LaTeX} A&A style file \textit{L-\LaTeX} version 3.