Prion diseases are rare neurodegenerative conditions causing highly variable clinical syndromes, which often include prominent neuropsychiatric symptoms. We have recently carried out a clinical study of behavioural and psychiatric symptoms in a large prospective cohort of patients with prion disease in the United Kingdom, allowing us to operationalise specific behavioural/psychiatric phenotypes as traits in human prion disease. Here, we report exploratory genome-wide association analysis on 170 of these patients and 5200 UK controls, looking for single-nucleotide polymorphisms (SNPs) associated with three behavioural/psychiatric phenotypes in the context of prion disease. We also specifically examined a selection of candidate SNPs that have shown genome-wide association with psychiatric conditions in previously published studies, and the codon 129 polymorphism of the prion protein gene, which is known to modify various aspects of the phenotype of prion disease. No SNPs reached genome-wide significance, and there was no evidence of altered burden of known psychiatric risk alleles in relevant prion cases. SNPs showing suggestive evidence of association ($p < 10^{-5}$) included several lying near genes previously implicated in association studies of other psychiatric and neurodegenerative diseases. These include ANK3, SORL1 and a region of chromosome 6p containing several genes implicated in schizophrenia and bipolar disorder. We would encourage others to acquire phenotype data in independent cohorts of patients with prion disease as well as other neurodegenerative and neuropsychiatric conditions, to allow meta-analysis that may shed clearer light on the biological basis of these complex disease manifestations, and the diseases themselves.

Translational Psychiatry (2015) 5, e552; doi:10.1038/tp.2015.42; published online 21 April 2015

INTRODUCTION

The human prion diseases are a group of rare neurodegenerative conditions that occur in sporadic, inherited and acquired forms. Their clinical manifestations are highly variable both within and between these different aetiological types, and often include prominent neuropsychiatric symptomatology.\(^2\)\(^,\)\(^3\) The causes of this clinical heterogeneity are incompletely understood. Some modifiers of the clinical phenotype are well established, such as the polymorphic genotype at codon 129 of the prion protein gene (PRNP), but known factors only account for a small minority of the total variability seen.\(^4\)\(^,\)\(^5\)

Clinical study of these diseases is challenging because of their rarity and their typically rapid progression, which makes detailed prospective follow-up difficult to achieve. Psychiatric symptoms are particularly difficult to study as patients often have substantial cognitive impairment with limited expressive language function by the time the diagnosis is made, so they are unable to describe their internal experiences to allow their symptoms to be characterized. Further, psychiatric manifestations are often intense but transient.\(^7\)

We recently undertook a large clinical study of behavioural disturbance and psychiatric symptoms (BPS) in human prion disease in the context of the National Prion Monitoring Cohort (‘the Cohort’), an ongoing prospective natural history study that has aimed to recruit all patients with all types of prion disease in the United Kingdom since October 2008. This used clinical data from more than 300 patients enrolled in the Cohort and/or the preceding PRION-1 clinical trial to characterize in as much detail as possible the range of BPS seen in prion disease, as well as their prevalence, natural history and observed response to symptomatic treatments. The clinical aspects of this work have now been published.\(^7\) Full methodological details of the PRION-1 trial and the Cohort study have been published previously.\(^8\)\(^,\)\(^9\)

A large number of patients included in these clinical studies were included in a genome-wide association study (GWAS) of susceptibility to prion disease,\(^10\) and therefore have single-nucleotide polymorphism (SNP) genotype data publicly available. This GWAS found that several SNPs at the PRNP locus itself were very strongly associated with all types of prion disease, with this association being driven by linkage disequilibrium with the polymorphism at codon 129 (which was itself one of the genotyped SNPs). No other SNPs reached genome-wide significance, and no SNPs that had previously been found to show genome-wide association with other neurodegenerative diseases showed any association with prion disease.

The detailed clinical data regarding the presence or absence of BPS established for our recent clinical study allows us to operationalise specific behavioural/psychiatric phenotypes as traits in human prion disease, and thereby presents the opportunity to carry out a GWAS looking for genetic modifiers of these traits. A similar approach has previously been taken in other neurodegenerative diseases that may cause psychiatric symptoms, such as Alzheimer’s disease,\(^11\) and this approach has
the potential to provide valuable clues to the molecular pathways that may underlie these complex disease manifestations.

MATERIALS AND METHODS

All patients were referred to the NHS National Prion Clinic, and were enrolled in the PRION-1 trial and/or the National Prion Monitoring Cohort. Uptake of enrolment in these clinical research studies is extremely high (>95% in the Cohort), so they provide a highly representative sample of patients seen in this clinical setting. Patients were diagnosed with probable sporadic Creutzfeldt-Jakob disease (CJD) according to World Health Organisation criteria with the addition of brain MRI as a supportive investigation as recommended by the MRI-CJD consortium. Variant CJD was diagnosed using established criteria. Patients were diagnosed with inherited prion disease if PRNP genotyping showed the presence of a pathogenic mutation in the presence of a consistent clinical syndrome. All patients included in this study underwent diagnostic genotyping to confirm or rule out the presence of a pathogenic PRNP mutation. Patients were diagnosed with iatrogenic CJD using sporadic CJD criteria in the presence of a history of relevant exposure (for example, to implicated HCG26). Clinical data from PRION-1 and the Cohort

PRION-1 was an open-label, patient preference trial of quinacrine for all types of prion disease course whenever possible, with clinical data recorded by a neurologist at each assessment. For the analysis below, three particular sets of data were used to identify patients with BPS:

First symptoms: at enrolment, all patients and/or carers were asked to recall the first symptom that had been noticed or reported when the illness began. If more than one symptom was felt to have appeared together these were all included. It was specifically recorded whether behavioural and psychiatric symptoms were among these first symptoms for all patients.

Symptoms at time of assessment: the presence(152,901),(392,927) of disease progression, and incubation time in acquired prion disease) and modify other aspects of the phenotype of prion disease (for example, rate of disease progression, and incubation time in acquired prion disease) and also to confer susceptibility to prion disease (as shown in the GWAS for prion disease mentioned above). There was no evidence of population structure in the United Kingdom and no corrections were made.

RESULTS

Table 2 shows details of the SNPs with the most significant associations in each analysis. No SNPs reached the standard threshold for GWASs ($P \leq 5 \times 10^{-8}$). All data are publicly available. The single most significant association was in the prion+ vs controls analysis for psychiatric symptoms at onset, for a SNP (rs10509125) lying within the ANK3 gene (OR = 2.49). These SNPs span the 5′ of the PRNP locus itself, it would not be expected that association with prion disease itself would lead to spurious strong associations in the prion+ vs controls analysis, and if this was the case then the same SNP would not be expected to show any association in the prion+ vs prion − analysis.

We also planned to specifically examine a small selection of candidate SNPs in a hypothesis-driven manner, in light of the limited statistical power that could be achieved in the genome-wide analysis, given the relatively small number of cases. We reviewed previously published GWASs in psychiatric conditions characterised by psychosis and/or mood disorder (schizophrenia, bipolar affective disorder and major depressive disorder) to identify a list of candidate SNPs that have shown association with these conditions at genome-level significance, on the basis that these might also show association with the behavioural/psychiatric phenotypes in prion disease. These SNPs are listed in Table 1. We also included the coding 129 polymorphism of PRNP (SNP rs1799990), as this is known to modify other aspects of the phenotype of prion disease (for example, rate of disease progression, and incubation time in acquired prion disease) and to confer susceptibility to prion disease (as shown in the GWAS for prion disease mentioned above). There was no evidence of population structure in the United Kingdom and no corrections were made.
Table 1. Summary of association results from our analysis for candidate single-nucleotide polymorphisms identified from previously published genome-wide association studies of psychiatric conditions (schizophrenia, bipolar affective disorder and major depressive disorder) and prion disease

SNP	Chr	BP	MAF	Closest gene (ref seq)	Identified in GWAS for...	Reference	GWAS P-value	OR	95% CI																		
rs6932590	6	27336910	0.27	PRSS16	Schizophrenia	Stefansson et al.	0.42	0.82	0.54–1.24	0.90	0.96	0.57–1.61	0.26	0.79	0.53–1.61	0.70	0.89	0.53–1.47	0.73	0.93	0.66–1.30	0.44	1.23	0.74–2.03			
rs3131296	6	32280971	0.15	NODC4	Schizophrenia	Stefansson et al.	0.01	0.43	0.22–0.85	0.44	0.71	0.31–1.60	0.01	0.49	0.27–0.89	0.71	0.85	0.40–1.83	2.09E–03	0.44	0.25–0.77	1.00	0.97	0.49–2.05	0.64	1.23	0.74–2.05
rs9960767	18	51306000	0.05	TCF4	Schizophrenia	Stefansson et al.	0.69	0.75	0.31–1.95	0.46	0.59	0.21–1.68	1.00	0.91	0.42–1.95	0.64	0.74	0.29–1.94	1.00	0.97	0.49–1.03	0.81	0.81	0.32–2.05			
rs12807809	11	124111495	0.17	NRGIV	Schizophrenia	Stefansson et al.	0.23	1.3	0.84–2.00	0.67	1.17	0.67–2.03	0.01	1.66	1.14–2.42	0.02	1.95	1.13–3.37	1.00	0.97	0.65–1.45	1.07	0.68	0.40–1.17			
rs1938526	10	61970389	0.06	ANK3	Schizophrenia	Stefansson et al.	0.10	0.56	0.28–1.11	0.44	0.71	0.31–1.60	0.16	0.65	0.36–1.17	0.71	0.85	0.40–1.83	0.64	0.87	0.54–1.41	0.25	1.64	0.76–3.56			
rs6913660	6	27199404	0.19	HIST1H2BI	Schizophrenia	Stefansson et al.	0.21	0.7	0.43–1.16	0.19	0.66	0.36–1.21	0.68	0.9	0.59–1.38	0.89	0.96	0.55–1.67	0.77	0.92	0.63–1.36	1.00	1.01	0.58–1.75			
rs1938526	10	61970389	0.06	ANK3	Schizophrenia	Stefansson et al.	0.10	0.56	0.28–1.11	0.44	0.71	0.31–1.60	0.16	0.65	0.36–1.17	0.71	0.85	0.40–1.83	0.64	0.87	0.54–1.41	0.25	1.64	0.76–3.56			
rs1938526	10	61970389	0.06	ANK3	Schizophrenia	Stefansson et al.	0.10	0.56	0.28–1.11	0.44	0.71	0.31–1.60	0.16	0.65	0.36–1.17	0.71	0.85	0.40–1.83	0.64	0.87	0.54–1.41	0.25	1.64	0.76–3.56			
rs1064395	19	19222735	0.16	NCAH	BPAD	Cichon et al.	0.32	1.26	0.82–1.97	0.46	1.25	0.70–2.22	0.31	1.25	0.82–1.89	0.47	1.26	0.72–2.22	0.18	1.31	0.90–1.90	0.20	1.48	0.83–2.63			
rs2251219	3	52559827	0.39	PB1M	BPAD+MDD	McMahon et al.	0.20	1.26	0.88–1.79	0.30	1.29	0.82–2.01	0.31	1.2	0.86–1.66	0.44	1.22	0.79–1.88	0.10	1.29	0.95–1.04	0.10	1.46	0.95–2.26			
rs1938526	10	61970389	0.06	ANK3	Schizophrenia	Stefansson et al.	0.04	1.44	1.01–2.05	0.05	1.58	1.01–2.46	0.18	1.26	0.91–1.74	0.27	1.3	0.85–2.01	0.08	1.32	0.98–1.73	0.06	1.51	0.98–2.33			
rs4238010	12	39805785	0.13	CCN2D	MDD	Muglia et al.	0.19	1.37	0.86–2.18	0.88	1.05	0.58–1.87	1.00	0.96	0.59–1.55	0.08	0.58	0.32–1.05	0.50	1.16	0.77–1.76	0.39	0.76	0.43–1.33			

SNP implicated in GWAS for psychotic conditions

GWAS of behavioural and psychiatric features in prion disease (PRNP codon 129)

Abbreviations: BP, base pair position - NCBI Build 36 (hg18); BPAD, bipolar affective disorder; BPS, behavioural disturbance or psychiatric symptoms; Chr, chromosome; CI, confidence interval; GWAS, genome-wide association study; MAF, minor allele frequency; MDD, major depressive disorder; OR, odds ratio for minor allele; prion+, prion disease cases with the phenotype; prion–, prion disease cases without the phenotype; SNP, single-nucleotide polymorphism. As SNP rs1799990 (PRNP codon 129) is known to be strongly associated with prion disease, it is not meaningful to include results for prion+ vs controls analysis (as expected these showed strong association).
Table 2. The most strongly associated single-nucleotide polymorphisms in each of the genome-wide association analyses: prion+ vs controls and prion+ vs prion− for each of three psychiatric/behavioural phenotypes

Phenotype	SNP	Chr	BP	MAF	Closest gene (ref seq)	Distance (kb)	Prion+ vs controls	Prion+ vs Prion−				
							GWAS P-value	OR	95% CI	GWAS P-value	OR	95% CI
Psychotic features	rs1055569	6	31548061	0.291	HCG26	Intragenic	2.66E-06	2.36	1.66-3.35	1.08E-04	2.49	1.57-3.94
	rs4413654	6	31549328	0.219	HCG26	1.164	3.69E-06	2.43	1.70-3.48	1.02E-04	2.63	1.62-4.27
	rs2516440	6	31548476	0.294	HCG26	0.312	4.48E-06	2.33	1.64-3.31	1.08E-04	2.49	1.57-3.94
	rs4077732	11	11493063	0.265	HCG26	Intragenic	2.96E-03	0.53	0.34-0.81	1.65E-06	0.3	0.18-0.50
	rs7231996	18	69417499	0.131	LOC100505817	249.395	6.56E-05	2.59	1.69-3.96	3.14E-06	5.56	2.59-11.95
Mood disorder	rs7789850	7	140947080	0.026	AGK	Intragenic	2.16E-06	4.6	2.70-7.83	2.46E-04	7.64	2.18-26.73
	rs12789145	11	94047384	0.084	PIWIL4	5.314	3.58E-06	0	NA	7.75E-06	0	NA
	rs6867820	5	121802424	0.224	SNCAIP	54.71	0.01	1.81	1.18-2.78	9.74E-05	2.61	1.61-4.24
	rs1219407	11	121249388	0.073	SORL1	215.633	8.75E-05	2.6	1.68-4.02	3.94E-06	7.6	2.83-20.39
	rs761998	20	14275752	0.352	FLRT3	Intragenic	0.02	0.64	0.44-0.92	6.69E-06	0.33	0.22-0.55
BPS at onset	rs10509125	10	61596672	0.402	ANK3	Intragenic	1.43E-06	2.09	1.55-2.82	3.50E-05	2.52	1.63-3.91
	rs561437	13	10973428	0.499	COL4A1	Intragenic	4.77E-06	0.49	0.35-0.67	1.15E-04	0.42	0.27-0.65
	rs1751968	14	47671186	0.205	LOC100506433	337.219	5.83E-06	2.12	1.55-2.90	1.60E-03	2.23	1.36-3.65
	rs4738305	9	106909655	0.165	SLC44A1	137.095	5.89E-03	1.66	1.17-2.34	6.35E-06	4.51	2.24-9.08
	rs9472202	6	44129264	0.208	CD6orf223	47.592	3.78E-05	1.98	1.45-2.71	8.41E-06	3.32	1.92-5.73
	rs7040444	9	15049821	0.213	LOC389705	40.099	2.93E-03	0.52	0.33-0.81	1.17E-05	0.3	0.17-0.52

Abbreviations: BP, base pair position - NCBI Build 36 (hg18); BPS, behavioural disturbance or psychiatric symptoms; Chr, chromosome; CI, confidence interval; GWAS, genome-wide association study; MAF, minor allele frequency; OR, odds ratio for minor allele; prion+, prion disease cases with the phenotype; prion−, prion disease cases without the phenotype; SNP, single-nucleotide polymorphism. Bold text highlights the results from the analysis in which each SNP was amongst the 3 most significant associations.
and genome-wide association studies to look for evidence of We have performed exploratory candidate SNP, risk allele burden DISCUSSION

+ vs controls (six tests, all major depressive disorder 19 and in prion disease). 10 The SNP implicated by the prion disease GWAS is PRNP codon 129. As this SNP is known to be strongly associated with prion disease, it is not meaningful to include results for the prion+ vs controls analysis (as expected these showed strong association). None of the candidate SNPs identified from GWAS in psychiatric conditions showed evidence of association with the behavioural/psychiatric phenotypes in prion disease in our analysis, in light of the number of tests being performed. In addition, we performed an analysis of the burden of risk alleles for psychiatric conditions (9 GWAS loci shown in Table 1 P < 5x10−8) by the score method using PLINK. We weighted allele contributions based on the logarithm of OR in the discovery study. There were no statistically significant differences between mean scores for prion+ vs prion+ or prion + vs controls (six tests, all P > 0.1).

DISCUSSION

We have performed exploratory candidate SNP, risk allele burden and genome-wide association studies to look for evidence of genetic loci associated with three behavioural/psychiatric phenotypes in the context of prion disease. As the number of patients included is small, these studies are only powered to detect very strongly associated SNPs, and the lack of any reaching genome-wide significance certainly does not rule out the possibility of major genetic modifiers of these phenotypes. Patients with all prion disease types were considered together in this analysis, so it is possible that aetiology-specific associations may have been missed or underestimated. The main aims of the study were to establish feasibility of this approach and to test for a broad role of a limited number of definite genetic risk factors discovered in primary psychiatric disease.

Hypotheses are proposed here for follow-up in other cohorts of prion disease or related neurodegenerative diseases.11 Reviewing the most strongly associated SNPs from our study we identified several loci that may be of interest, as they have previously been implicated in genetic studies of psychiatric or other neurodegenerative disorders.

The strongest evidence of association was for a SNP lying within the ANK3 gene, in the analysis of psychiatric features at onset. There is strong evidence for association of other SNPs within ANK3 with bipolar disorder from a large collaborative GWAS,16 although the genotyped SNPs reported in that study showed no evidence of association in our analysis (see Table 1). Ankyrin 3 is thought to participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and initial axon segments.20

The SNPs on chromosome 6 that we found to be trending towards association with psychotic features in prion disease lie within a chromosomal region (6p21.3–22.1) that has been implicated in genetic studies of susceptibility to both schizophrenia and bipolar disorder, without a single locus emerging as the dominant source of association.15,21 It is possible that this apparent inconsistency is related to the unusual patterns of recombination around the major histocompatibility complex, which also lies in this region.22 Four of the top five candidate genes for schizophrenia risk listed on SzGene.org lie within this region (www.szgene.org). Although we must be conservative in our conclusions because of the small patient numbers and the failure of any SNPs to reach genome-wide significance, this suggestion of an overlap with the genetics of ‘primary’ psychiatric disorders is intriguing.

Large GWASs using both SNPs and copy number variants have previously identified genetic loci with an effect across multiple psychiatric and neurodevelopmental conditions, with the overlap between risk loci for schizophrenia and bipolar disorder being particularly well established.23–27 This has been interpreted as evidence that there are genetic risk factors for psychosis that are not disease specific.28 It is conceivable that a genetic factor conferring susceptibility to schizophrenia or bipolar disorder might also increase the likelihood of an individual developing psychotic features in the context of neurodegenerative disease. Our results although negative, provide an intriguing hint that this may be the case in prion disease, and we wish to encourage further investigation of this hypothesis.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

We thank patients, their families and carers, UK neurologists and other referring physicians, co-workers at the NHS National Prion Clinic, and our colleagues at the National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Edinburgh.

This work was funded by the Medical Research Council (UK) and the Department of Health (England) and undertaken at UCLH/UCL who received a proportion of funding from the Department of Health’s NIHR Biomedical Research Centre’s funding scheme.

REFERENCES

1 Collinge J. Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 2001; 24: 519–550.
2 Wall CA, Rummans TA, Alkamit AJ, Krainh LE, Pankratz VS. Psychiatric manifestations of Creutzfeldt-Jakob disease: a 25-year analysis. J Neuropsychiatry Clin Neurosci 2005; 17: 489–495.
3 Zeidler M, Johnstone EC, Bamber RWK, Dickson CI, Fisher CJ, Francis AF et al. New variant Creutzfeldt-Jakob disease: psychiatric features. Lancet 1997; 350: 908–910.
4 Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windi O et al. Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 1999; 46: 224–233.
5 Wadsworth JD, Hill AF, Beck JA, Collinge J. Molecular and clinical classification of human prion disease. Br Med Bull 2003; 66: 241–254.
6 Pocchiar M, Puopolo M, Croes EA, Budka H, Gelpi E, Collins S et al. Predictors of survival in sporadic Creutzfeldt-Jakob disease and other human transmissible spongiform encephalopathies. Brain 2004; 127: 2348–2359.
7 Thompson A, Mackay A, Rudge P, Lukic A, Porter MC, Lowe J et al. Behavioral and psychiatric symptoms in prion disease. Am J Psychiatry 2014; 171: 265–274.
8 Collinge J, Gorham M, Hudson F, Kennedy A, Keogh G, Pal S et al. Safety and efficacy of quinacrine in human prion disease (PRION-1 study): a patient-preference trial. Lancet Neurol 2009; 9: 334–344.
9 Thompson AG, Lowe J, Fox Z, Lukic A, Porter MC, Ford L et al. The Medical Research Council Prion Disease Rating Scale: A new outcome measure for prion disease therapeutic trials developed and validated using systematic observational studies. Brain 2013; 136: 1116–1127.
10 Mead S, Uphill J, Beck J, Poulter M, Campbell T, Lowe J et al. Genome-wide association study in multiple human prion diseases suggests genetic risk factors additional to PRNP. Hum Mol Genet 2011; 21: 1897–1906.
11 Hollingsworth P, Sweet RS, Sims R, Harold D, Russo G, Abraham R et al. Genome-wide association study of Alzheimer’s disease with psychotic symptoms. Mol Psychiatry 2011; 17: 1316–1327.
12 Zerr I, Kallenberg K, Summers DM, Romero C, Taratuto A, Heinemann U et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain 2009; 132: 2659–2668.
13 Heath CA, Cooper SA, Murray K, Lowman A, Henry C, Macleod MA et al. Validation of diagnostic criteria for variant Creutzfeldt-Jakob disease. Ann Neurol 2010; 67: 761–770.
14 Mead S, Ranopa M, Gopalakrishnan GS, Thompson AGB, Rudge P, Wroe S et al. PRION-1 scales analysis supports use of functional outcome measures in prion disease. Neurology 2011; 77: 1674–1683.

Translational Psychiatry (2015), 1 – 6
15 Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–U99.
16 Ferreira MAR, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056–1058.
17 Cichon S, Muhleisen TW, Degenhardt FA, Mattheisen M, Miro X, Strohmaier J et al. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet 2011; 88: 372–381.
18 McManus FJ, Akula N, Schulze TG, Muglia P, Tozzi F, Detera-Wadleigh SD et al. Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1. Nat Genet 2010; 42: 128–U52.
19 Muglia P, Tozzi F, Galwey NW, Francks C, Uimpmanyu R, Kong XQ et al. Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Mol Psychiatry 2010; 15: 589–601.
20 Bennett V, Healy J. Organizing the diseases fluid membrane bilayer: diseases linked to spectrin and ankyrin. Trends Mol Med 2008; 14: 28–36.
21 Williams HJ, Craddock N, Russo G, Hamshere ML, Moskvina V, Dwyer S et al. Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Hum Mol Gen 2011; 20: 387–391.
22 Stenzel A, Lu T, Koch WA, Hampe J, Guenther SM, De la Vega FM et al. Patterns of linkage disequilibrium in the MHC region on human chromosome 6p. Hum Genet 2004; 114: 377–385.
23 Smoller JW, Craddock N, Kendler K, Lee PH, Neale BM, Nurnberger JI et al. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013; 381: 1371–1379.
24 Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.
25 Steinberg S, de Jong S, Mattheisen M, Costas J, Demontis D, Jamain S et al. Common variant at 16p11.2 conferring risk of psychosis. Mol Psychiatry 2014; 19: 108–114.
26 Lee SH, Ripke S, Neale BM, Farzaneh SV, Purcell SM, Perlis RH et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013; 45: 984–985.
27 Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK. The DISC locus in psychiatric illness. Mol Psychiatry 2008; 13: 36–64.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/