Hepatocellular carcinoma: From clinical practice to evidence-based treatment protocols

Danijel Galun, Dragan Basaric, Marinko Zuvela, Predrag Bulajic, Aleksandar Bogdanovic, Nemanja Bidzic, Miroslav Milicevic

Abstract

Hepatocellular carcinoma (HCC) is one of the major malignant diseases in many healthcare systems. The growing number of new cases diagnosed each year is nearly equal to the number of deaths from this cancer. Worldwide, HCC is a leading cause of cancer-related deaths, as it is the fifth most common cancer and the third most important cause of cancer-related death in men. Among various risk factors, the two are prevailing: viral hepatitis, namely chronic hepatitis C virus is a well-established risk factor contributing to the rising incidence of HCC. The epidemic of obesity and the metabolic syndrome, not only in the United States but also in Asia, tend to become the leading cause of the long-term rise in the HCC incidence. Today, the diagnosis of HCC is established within the national surveillance programs in developed countries while the diagnosis of symptomatic, advanced stage disease still remains the characteristic of underdeveloped countries. Although many different staging systems have been developed and evaluated the Barcelona Clinic Liver Cancer staging system has emerged as the most useful to guide HCC treatment. Treatment allocation should be decided by a multidisciplinary board involving hepatologists, pathologists, radiologists, liver surgeons and oncologists guided by personalized -based medicine. This approach is important not only to balance between different oncologic treatments strategies but also due to the complexity of the disease (chronic liver disease and the cancer) and due to the large number of potentially efficient therapies. Careful patient selection and a tailored treatment modality for every patient, either potentially curative (surgical treatment and tumor ablation) or palliative (transarterial therapy, radioembolization, and medical treatment, i.e., sorafenib) is mandatory to achieve the best treatment outcome.
Key words: Hepatocellular carcinoma; Evidence-based; Management; Clinical practice; Treatment allocation

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In response to the hepatocellular carcinoma (HCC) burden marked differences between countries are reflected in providing disparate quality of healthcare considering screening and surveillance programs; available treatment modalities and drugs; reimbursement of specific treatment options by the state-funded health insurance. Since the number of new HCC cases being diagnosed each year is nearly equal to the number of deaths from this cancer it is clear that the international scientific community and healthcare systems worldwide have no efficient answer to this problem. International consensus on the use of any given staging model is lacking. High-quality trials with better patients’ stratification are mandatory. This review article reflects the perspective of liver surgeons working in a developing country.

Galun D, Basaric D, Zuvela M, Bulajic P, Bogdanovic A, Bidzic N, Milicevic M. Hepatocellular carcinoma: From clinical practice to evidence-based treatment protocols. World J Hepatol 2015; 7(20): 2274-2291 Available from: URL: http://www.wjgnet.com/1948-5182/full/v7/i20/2274.htm DOI: http://dx.doi.org/10.4254/wjh.v7.i20.2274

INTRODUCTION

According to Bailar et al[1] cancer mortality rates have not been significantly reduced in industrialized countries except for testicular cancer, leukemia and lymphoma in spite of an evident progress in developing innovative approaches for cancer treatment. Hepatocellular carcinoma (HCC) is a frustrating example for general disappointment with the results of cancer treatment having in mind that the growing number of new cases being diagnosed each year is nearly equal to the number of deaths from this disease[2-4].

Hepatocellular cancer is characterized by high and increasing incidence, late diagnosis when curative intent treatments are not feasible, low resectability rate, high recurrence after a curative intent surgery, poor response to medical treatments, and finally grave prognosis. These characteristics define HCC as one of the major malignant diseases in many healthcare systems worldwide. Today, HCC is one of the leading causes of cancer-related deaths, as it is the fifth most common cancer and the third most important cause of cancer related deaths in men[2-4].

A growing incidence of HCC was found in North America increasing annually by 5.4% between 2002 and 2006 being one of only four malignancies demonstrating a growing number of new cases[5,51]. Hispanics and blacks are found to have the greatest increase in incidence in the United States[6]. The overall 5-year survival less than 12% and 3-fold increase in incidence of HCC from 1975-2007 in both sexes made HCC the fastest rising cause of cancer related death in United States[7].

More than 748000 new cases are diagnosed each year, accounting for 9.2% of all new cancer cases worldwide (7.9% in men; 3.7% in women)[8-10]. Moreover, the number of new cases of HCC increases continuously[11]. Furthermore, HCC is a major burden for healthcare systems in underdeveloped countries with 84% of the world HCC population having the highest annual fatality ratio of any human tumor (0.96)[8,9,11]. Underdeveloped regions may even have a 100-fold greater incidence of HCC compared to developed countries. This is one of the greatest differences recorded among cancers[10].

Sub-Saharan Africa and Eastern Asia are regions with the greatest incidence of HCC demonstrating incidence rates of over 20 per 100000 individuals[7]. This figure is most probably even larger when considering that many HCC cases remain under-diagnosed or under-reported[11]. In these regions the most common cause for HCC is HBV transmission at birth and the diagnosis is established about one decade earlier compared to the developed countries characterized by HCV acquired later in life as a dominant cause for HCC[7].

Mediterranean countries have intermediate incidence rates of 10-20 per 100000 individuals, while North and South America have a relatively low incidence despite of the reported increase in the number of HCC cases (< 5 per 100000 individuals)[7].

In developed countries, HCC dominantly occurs in patients over 60 years old while in underdeveloped regions the HCC diagnosis is already established in many patients in their 30 s[9-11]. In all regions, there is a predominance of the male over the female gender (3/4:1) in the Asia-Pacific region, sub-Saharan Africa and medium-risk countries, compared to 2:1 in regions with a low incidence of HCC[9-11].

The majority of HCC cases occur in cirrhotic livers[10,12,13]; therefore the competing mortality risks from the tumor and the cirrhosis should be considered when deciding for a specific treatment modality.

In the majority of countries worldwide the diagnosis is established late when only limited treatment options are available resulting in poor treatment outcome. Only in Japan the strict adherence to the national surveillance program led to improved treatment results. This is mainly because approximately 20% of HCC cases are diagnosed in an early stage when curative treatment modalities can be applied[14,15].

In response to the HCC burden marked differences between countries worldwide are reflected in providing disparate quality of healthcare considering screening and surveillance programs; available treatment modalities and drugs; reimbursement of specific treatment options...
by the state-funded health insurance.

RISK FACTORS AND ETIOLOGIC PATHOGENESIS

Viral hepatitis, namely chronic hepatitis C virus (HCV) is a well established risk factor contributing to the rising incidence of HCC. The epidemic of obesity and the metabolic syndrome, not only in the United States but also in Asia, tend to become the leading cause of the long-term rise in HCC incidence.

HCV is an important global risk factor for HCC, especially in developed countries, compiling more than 170 million people being chronically infected worldwide. The dominant prevalence is among injecting drug users (60%-90%); hemophiliacs (50%-70%); hemodialysis patients (15%-60%); and patients who received blood transfusions before 1991 (5%-10%). About 25% of patients having chronic HCV infection will develop cirrhosis and significant proportion will progress to HCC with a time interval of about 20 years or longer.

HCV-related carcinogenesis is mediated by inducing hepatic inflammation and later fibrosis; and finally by promoting malignant transformation of infected cells. Approximately 55% of all worldwide HCC cases are associated with chronic hepatitis B virus (HBV) infection.

Among 400 million people chronically infected with HBV, about 25% will develop HCC. Chronic HBV infection distribution is nearly parallel to HCC high-risk regions and it is implicated in the development of 85% of HCC cases among ethnic Chinese and the Black African population. While in the developed countries, HCC is rare before the age of 40 irrespective of the HBV status, in underdeveloped countries, there is a distinct shift toward a younger age. A study from China on Han Chinese population characterized by high prevalence of HBV infection demonstrated that polymorphism of GRP78 gene (genotypes AA and AG of rs430397) is associated with the development and prognosis of HCC.

HBV-induced carcinogenesis is essentially an inflammatory process resulting from the reaction of the host’s immune response to the presence of the virus. Integration of HBV DNA into host DNA is considered a critical step in HBV related HCC. This leads to series of changes like cell cycle progression, inactivation of negative growth regulators, inhibition of the expression of p53 tumor suppressor gene and other tumor suppressor genes.

Recently, a striking increase in the incidence of obesity was recorded parallel to the increase in the incidence of HCC in several developed countries. The increase in the number of HCC related cancer deaths in the United States has been documented while at the same time it is estimated that 25% of the population meet the diagnostic criteria for the metabolic syndrome. In the great majority of the obese patients, the obesity is attributed to the metabolic syndrome. A recent meta-analysis demonstrated that the relative risk for HCC is 1.17 (95%CI: 1.02-1.34) in those who were overweight [body mass index (BMI) 25-30 kg/m²] and 1.89 (95%CI: 1.51-2.36) in those who were obese (BMI > 30 kg/m²). The incidence of the metabolic syndrome continues to increase in developed countries whereas the highest incidence is believed to occur in the United Kingdom (34% of the adult population). While obesity is present in up to 100% of patients with non-alcoholic fatty liver disease (NAFLD), the risk of liver steatosis is much higher in obese than in non-obese patients. Finally, patients with liver steatosis are at high risk for developing cirrhosis and HCC. Although NAFLD is currently the most common liver disease in developed countries, the incidence of HCC associated with NAFLD is lower than HCC associated with non-alcoholic steatohepatitis (NASH) (4%-27%). Today, the risk of HCC developing in NASH-cirrhotic patients challenges the risk of HCC developing in HCV-cirrhotic patients.

The pathogenesis linking obesity, NAFLD, NASH and HCC is still a subject of research. The relationship between obesity and HCC are thought to be mediated by factors associated to metabolic syndrome, NAFLD and NASH. There is growing evidence that links obesity to chronic liver inflammation. Moreover it is found that an excessive accumulation of fatty acids and glucose lead to increased expression of tumor necrosis factor-α, nuclear factor-kappa B, EGF heading to hepatic inflammation.

One other finding is that adipose tissue induces expression of leptin, a hormone that regulates body mass. In animal models it was shown that leptin promotes angiogenesis and mediate the progression of NASH to HCC. Leptin is found to upregulate JAK/STAT, AKT and ERK, i.e., signal transduction pathways involved in cancer progression in HCC cells.

Moreover, leptin levels are increased in patients with NASH, what may explain an increased vascular invasiveness in HCC patients with metabolic syndrome.

Afatoxins is another risk factor for HCC. These toxins are metabolites of the widely distributed fungi Aspergillus flavus and Aspergillus parasiticus and their toxic, teratogenic, mutagenic and carcinogenic properties pose a serious risk to humans. Approximately 4.5 to 5.5 billion people worldwide are at risk of exposure dominantly in Sub-Saharan Africa, Eastern Asia, and parts of South America. Contamination occurs either in tropical and subtropical climates or in conditions where food drying and storage facilities are suboptimal. Afatoxins are responsible for between 4.6% and 28.2% of all HCC cases worldwide. The AFB1 toxin is metabolized in the liver by p450 enzymes forming AFB1-8,9-exo-epoxide, which further react with the p53 tumor suppressor gene. Mutation at codon 249 of the p53 tumor suppressor gene accounts for 90% of p53 mutations in AFBl-related HCC. There is a direct correlation between the degree of exposure to AFBl and the incidence of HCC.
The study from Yu et al.\cite{47} found a synergistic effect of AFB1 and HBV in causing HCC since population with HBV who lived in the region of high exposure to AFB1 were associated to a mortality rate ten times higher than that of population with HBV living in the region of low exposure to the toxin.

Alcohol abuse, lasting more than 10 years, increases the chance for HCC development approximately five fold\cite{48}. It is most common in the Americas (32% of HCC cases in the United States)\cite{49} and Western Europe (45% of the cases in Italy)\cite{50} and the incidence is increasing in Asia\cite{7,6}. In principle, patients who develop the tumor have alcohol-induced cirrhosis\cite{50}.

Other less frequent risk factors include iron overload\cite{51}, hereditary hemochromatosis\cite{52}, tobacco smoking\cite{53,54} and membranous obstruction of inferior vena cava\cite{55}.

DIAGNOSIS

Today, the diagnosis of HCC is established within the national surveillance programs in developed countries while the diagnosis of symptomatic, advanced stage, disease still remains the characteristic of underdeveloped countries. According to the American Association for the Study of Liver Diseases (AASLD) screening for HCC is recommended according to existing guidelines in all cirrhotic patients using ultrasound every six months\cite{56}. Screening for chronic HBV carriers is recommended as well\cite{57}.

When a nodule is detected in a cirrhotic liver, a contrast-enhanced diagnostic procedure is strongly recommended. It is important to search for the typical signs of HCC (arterial phase enhancement and portal venous phase washout)\cite{58}. The updated guidelines of AASLD consider that a non-invasive diagnosis of HCC can be established if a lesion > 10 mm has a typical vascular enhancement pattern in 4-phase multi-detector row CT (MDCT) or dynamic contrast enhanced magnetic resonance imaging (DCE-MRI)\cite{59}. These guidelines were also accepted by the European societies\cite{60}.

Although MDCT is currently the most common imaging modality for detecting HCC, it is suboptimal for nodule characterization. DCE-MRI, with liver-specific contrast agents, has emerged as the preferred diagnostic modality for the investigation of HCC as it facilitates liver cancer characterization\cite{59-61}. A recent meta-analysis\cite{62} estimated the accuracy of MRI with liver-specific contrast agents compared to MDCT for the detection and characterization of HCC and demonstrated the superiority of MRI for the detection of HCC lesions < 20 mm.

For nodules smaller than 1 cm, a repeated ultrasound examination in three months intervals is recommended\cite{56}. A biopsy is required only if imaging is inconclusive for lesions smaller than 2 cm, or it is atypical for lesions larger than 2 cm when the AFP level is not elevated\cite{56}. However, biopsy carries an approximately 2% risk of tumor seeding\cite{63} and the false-negative rate can be greater than 10% for small lesions\cite{64}. The AASLD guideline has been prospectively validated for focal lesions 0.5 to 2.0 cm in size using MRI and contrast-enhanced ultrasound, and demonstrated a low sensitivity (33%) but a very high specificity (100%) for the diagnosis of HCC\cite{65}.

STAGING

Since 1984 nine different staging systems have been developed and evaluated. The Barcelona-Clinic Liver Cancer (BCLC) staging system has emerged as the most useful to guide treatment decisions (Figure 1). BCLC is based on the analysis of independent studies in different clinical settings. It includes prognostic variables related to tumor status, liver functional status, and health performance status, together with treatment-dependent variables obtained from cohort studies and randomized clinical trials. The system links tumor stage with the treatment strategy allowing an estimation of life expectancy associated to specific HCC management\cite{60}.

BCLC demonstrated the best independent predictive power in many trials\cite{67-71} when the entire patient population was included [not limited to patient population treated by surgery, radiofrequency ablation (RFA) or transarterial chemoembolization (TACE) only]. The BCLC staging system was externally validated\cite{67,68,71,72} and has practically become an universal staging and treatment system. Moreover it was endorsed by European Association for the study of the liver (EASL) and AASLD as standard for patients with HCC\cite{65,66}.

However, other trials have demonstrated conflicting results thus favoring other staging systems\cite{72,77}. Graf et al.\cite{78} have shown many limitations for the BCLC staging system (Table 1). Furthermore, as indicated by Maida et al.\cite{79} the BCLC staging system was not derived from a cohort of HCC patients by a multivariate analysis, and therefore it is not a prognostic model able to predict the mortality of HCC patients. Moreover, the intermediate stage (BCLC B) includes an extremely heterogeneous population in terms of both liver function and tumor characteristics and the main limitation of the BCLC is represented by its rigidity when it is acting as a treatment algorithm\cite{79}.

Importantly, treatment allocation should be decided by a multidisciplinary board based on individualized rather than on a guideline-based approach\cite{80}. Although BCLC is the most comprehensive staging system, as it integrates tumor status, liver function and the performance status neither BCLC nor any other of the staging systems has been universally accepted, as pointed out by the AASLD guidelines\cite{56}, meaning that international consensus on the use of any given model is lacking.

TREATMENT

Treatment allocation should be decided by a multidisciplinary board involving hepatologists, pathologists,
radiologists, liver surgeons and oncologists guided by personalized-based medicine by. This approach is important not only to balance between different oncologic treatments strategies but also due to the complexity of the disease (combination chronic liver disease and the cancer) and due to the large number of potentially efficient therapies. When considering different treatment options the following is important: (1) there is a marked difference in available treatment modalities from one country to another; (2) historic studies are lacking, i.e., the results of potentially curative treatment modalities have never been compared to no treatment - today such studies are unethical; (3) the level of evidence for certain treatment modalities is limited to cohort studies and only a few randomized controlled trials; and (4) large, robust studies comparing results of different treatment modalities offered to patients in early stage disease are lacking as well.

Surgical treatment
Surgical treatment of HCC is established as a potentially curative treatment modality and includes liver transplantation, liver resection for HCC in cirrhotic livers and liver resection for HCC in non-cirrhotic livers.

Liver transplantation
Liver transplantation (LT) is the best treatment option as it removes both the tumor and the diseased liver.

Table 1 Limitations of the barcelona-clinic liver cancer staging system

No	BCLC classification system
1	Does not consider nodule location, which is essential for defining respectability
2	Does not respect etiology of cirrhosis
3	Is based on variables measured at diagnosis, which might change over time
4	Does not consider the possibility of liver transplantation for patients with Child C cirrhosis with hccs within the Milan criteria
5	Does not reflect contraindications of TACE
6	Recommends liver resection to single nodules only in absence of portal hypertension in very early (BCLC 0) and early stage (BCLC A), however probably portal hypertension might not affect survival in resected patients
7	Recommends liver resection in very early (BCLC 0) and early stage (BCLC A), however in selected patients hepatic resection is associated with good survival even in more advanced BCLC stages
8	Does not consider treatment sequences or combination therapies
9	Includes a very heterogeneous population in the intermediate stage (BCLC B) in respect to tumor burden and liver function
10	Does not consider other therapies than sorafenib in selected patients with advanced stage C with performance status 1
11	Is not favorable as classification system in non-cirrhotic patients

BCLC: Barcelona-clinic liver cancer; TACE: Transarterial chemoembolization.
parenchyma[81,82]. This is primarily important for patients with a Child-Pugh (CP) score C as it is the treatment of liver failure. The patient’s age (typically younger than 70 years), co-morbidities (e.g., cardiopulmonary disease, smoking, diabetes or renal disease), nutritional state (e.g., poor nutrition or morbidly obese), and social factors (e.g., adequate support, compliance, abstinence from alcohol and completion of an appropriate rehabilitation program) are all factors determining the patients’ eligibility for LT[81].

The most appropriate candidates for LT are patients that fit into the Milan criteria (a single tumor < 5 cm or up to 3 tumors of < 3 cm) achieving a 5-year survival rate of 70%-80%. In these patients the recurrence rates are approximately 10%[83,84].

The Milan criteria can be expanded to include more patients primarily by liberalizing the restrictions on tumor size. Yao et al[85] demonstrated that using the University of California San Francisco criteria (single nodule < 6.5 cm or ≤ 3 nodules each ≤ 4.5 cm, with total combined tumor diameter ≤ 8 cm), a 75% 5-year survival rate is achievable. Kaido et al[86] reported that using the Kyoto criteria (a combination of tumor number ≤ 10, maximal diameter of each tumor ≤ 5 cm, and serum des-γ-carboxy prothrombin levels ≤ 400 mAU/mL), the 5-year survival rate after living donor LT is 82%.

Mazzaferro et al[87] have proposed the “Metro ticket price” concept – the further one goes in expanding the criteria for LT, the more one “pays”, i.e., the more you deviate from the Milan criteria, the survival rate decreases and recurrence rate increases.

Due to the limited number of donors and the scarcity of sufficient available data, current guidelines do not recommend LT for HCC patients outside the Milan criteria[85,88]. Patients with a compromised liver function (CP - B or C) should be listed for LT while allocation of this treatment modality to CP class A patients instead of surgical resection is still an area of debate. The Barcelona Clinic has analyzed their results for surgical resection and LT in an intent-to-treat manner, although the patients were never compared directly in a randomized trial[89]. The five-year survival rates for resection and LT were nearly identical if patients for resection were carefully selected (CP class A, normal bilirubin levels and no portal hypertension).

Waiting time for LT is a serious obstacle in many national transplant programs worldwide. When the waiting list for LT is longer than 12 mo the drop-out rates can reach 25% of HCC patients listed for LT[90,91]. Clearly, if patients with more advanced tumors are included as a result of expanded listing criteria the dropout rate will be higher and this will lead to poor survival figures. In that regard the potential benefit of TACE, TARE, RFA and others, applied in the neoadjuvant setting include “bridging” or “down-staging” strategies to increase the number of HCC patients qualifying for LT[92].

Furthermore another important concept of LT is salvage LT that saves the donor pool and can effectively be performed for patients with recurrence or liver function deterioration following resection for HCC. This does not increase the perioperative mortality and has similar long-term survival compared to primary LT[93].

Liver transplantation can also be offered to patients with non-resectable HCC in normal livers providing 5-year survival rates of 59%-74%. In contrast to LT for HCC in cirrhosis the tumor size is not a predictor of post-transplant survival[94].

Finally, many controversies related to LT were confronted during an international consensus conference held in 2010, in Switzerland that resulted in 37 statements and recommendations[95]. These recommendations reflect the current state of scientific evidence regarding the LT and reflect differences in clinical practice of LT between continents, countries and institutions. In each controversial topic the strength of recommendation was conditioned by the level of evidence that was in the majority of instances 2 or less reflecting the quality of evidence that is currently available. Among the 37 recommendations only 17 are strong (presented in Table 2) while the others are weak or their strength could not be established due to insufficient data[95].

The highest level of evidence and the strength of recommendation is related to the assessment of candidates for LT and in defining criteria for listing candidates with HCC in cirrhotic livers for deceased donor LT. In regard to HCC patients in non-cirrhotic liver LT this procedure may be considered as salvage transplantation for patients with intrahepatic recurrence following liver resection and no evidence of lymph node or macrovascular invasion[95].

The role of down-staging was evaluated in perspective of different loco-regional treatment options that are presented in the literature (TACE, TARE, RFA). Although the largest experience is linked to TACE and RFA, based on existing evidence, no recommendation can be made for selecting a specific loco-regional therapy for down-staging[95].

Living donor LT is an important alternative to deceased donor liver transplantation in the present circumstances of increasing number of HCC patients listed for LT. It is conducted in a limited number of centers worldwide. Although it facilitates access to LT, recent meta analysis demonstrated that living donor LT is associated with a higher rate of surgical complications following transplantation[90].

In that sense an important recommendation is derived from the consensus conference, i.e., that living donor LT must be restricted to centers of excellence in liver surgery and liver transplantation to minimize donor risk and maximize recipient outcome[95].

Liver resection
During the past decade a tremendous improvement in the understanding of liver anatomy, advances in technology, anesthesiology and postoperative intensive care and the application of intraoperative ultrasono-
Assessment of candidates with HCC for liver transplantation
When considering treatment options for patients with HCC, the BCLC staging system is the preferred staging system to assess the prognosis of patients with HCC.

The TNM system including pathological examination of the explanted liver, should be used for determining prognosis after transplantation with the addition of assessment of microvascular invasion.

Either dynamic CT or dynamic MRI with the presence of arterial enhancement followed by washout on portal venous or delayed imaging is the best non-invasive test to make a diagnosis in cirrhotic patients suspected of having HCC and for preoperative staging.

Extrapancreatic staging should include CT of the chest, and CT or MRI of the abdomen and pelvis.

For patients with lesions smaller or equal to 10 mm, non-invasive imaging does not allow an accurate diagnosis and should not be used to make a decision for or against transplantation.

Criteria for listing candidates with HCC in cirrhotic livers for deceased donor LT
Preoperative assessment of the size of the largest tumor or total diameter of tumors should be the main consideration in selecting patients with HCC for liver transplantation.

The Milan criteria are currently the benchmark for the selection of HCC patients for liver transplantation, and the basis for comparison with other suggested criteria.

Biomarkers other than α-fetoprotein cannot yet be used for clinical decision making regarding liver transplantation for HCC.

Indication for liver transplantation in HCC should not rely on microvascular invasion because it cannot be reliably detected prior to transplantation.

Role of down-staging
Liver transplantation after successful down-staging should achieve a 5-yr survival comparable to that of HCC patients who meet the criteria for liver transplantation without requiring down-staging.

Criteria for successful down-staging should include tumour size and number of viable tumours.

Managing patients of the waiting list
Periodic waiting-list monitoring should be performed by imaging (dynamic CT, dynamic MRI, or contrast-enhanced US) and α-fetoprotein measurements.

Patients found to have progressed beyond criteria acceptable for listing for liver transplantation should be placed on hold and considered for down-staging.

Patients with progressive disease in whom locoregional intervention is not considered appropriate, or is ineffective, should be removed from the waiting list.

Role of living donor LT
Living donor LT must be restricted to centers of excellence in liver surgery and liver transplantation to minimize donor risk and maximize recipient outcome.

In patients following living donor LT for HCC outside the accepted regional criteria for deceased donor LT, re-transplantation for graft failure using a deceased donor organ is not recommended.

Post-transplant management
Liver re-transplantation is not appropriate treatment for recurrent HCC.

BCLC: Barcelona-clinic liver cancer; TACE: Transarterial chemoembolization; HCC: Hepatocellular carcinoma; LT: Liver transplantation; CT: Computed tomography; MRI: Magnetic resonance imaging.

Graphy have established surgical resection as a widely accepted first-line curative treatment option for HCC patients. Surgical resection for HCC is a safe and reliable procedure and, unlike LT, it is available in many countries and institutions. Presently, when considering liver resection, the main focus has shifted from the tumor towards the functional capacity of the remnant liver.

Liver resection for HCC is considered in two different settings. One is liver resection for HCC in non-cirrhotic, “normal” livers and the other is liver resection in cirrhotic livers, when special attention is attributed to the functional capacity of the remnant liver. Considering the improvement in the technical feasibility of complex liver resection there are practically no more non-resectable tumors, but considering the functional capacity of the remnant liver only a relatively small percentage of HCC patients with cirrhotic livers can be offered curative-intent liver resection.

Patients with HCC in non-cirrhotic livers are rare in the western world; only 5%-15% of HCC patients have a normal, non-cirrhotic parenchyma. They are diagnosed late with large-size tumors sometimes with major vascular invasion. Liver resection is the only curative treatment in these patients and up to 70%-80% of functional liver parenchyma can be removed.

The 5-year disease free survival of non-cirrhotic HCC patients managed by liver resection is around 50% depending on resection status, UICC stage, vascular invasion, tumor size > 10 cm and tumor grading. About 50% of these patients will have recurrence within 2 years after curative resection. Repeated liver resection is the treatment of choice for patients with intrahepatic recurrence having a similar prognostic outcome as the primary resection.

According to the BCLC staging system, surgical resection for HCC in cirrhosis is reserved for patients in the BCLC 0 stage (single tumor < 2 cm, Child A, ECOG 0 without portal hypertension and normal bilirubin level) and it is feasible in selected patients in the BCLC A stage. However, clinical practice worldwide (not only in Japan) is not limited to the frame recommended by the BCLC staging. Moreover, it is expanded even to selected patients belonging to BCLC intermediate stage B group. This has to be considered within a context that in many developing countries screening and surveillance programs are lacking, therefore the majority of patients...
are diagnosed in an advanced stage of the disease when surgical resection is still feasible\cite{103,104}. Strict adherence to the BCLC staging system would direct the majority of patients to palliative treatment only.

Despite of recent advances in surgical techniques and perioperative care, liver resection is challenged by the poor functional reserve of the cirrhotic liver, the impaired regeneration capacity, elevated portal venous pressure, and other co-morbidities of the HCC patients\cite{105,106}. Although reserved for high-volume centers, liver resection is justified even for patients with large and multinodular HCC\cite{107-109}.

A study from Ishizawa et al\cite{110} has demonstrated that neither multiple tumors nor portal hypertension are surgical contraindications for HCC. Two other studies have verified that liver resection is feasible even in Child B patients and in selected patients a major liver resection is feasible as well\cite{111,112}. According to Ho et al\cite{113} liver resection is associated with better overall survival comparing to TACE (37.9 mo vs 17.3 mo) even for patients with multinodular HCC. In patients with large tumors, TACE is associated with low response rate and a modest 3 years survival rate\cite{108,109}.

Several studies confirmed that blood loss has a negative impact on the perioperative morbidity, mortality and long-term outcome\cite{114,115} therefore a control of bleeding is mandatory when performing liver resection. Vascular occlusion techniques\cite{116} are effective in reducing blood loss, but it was found that they compromise hepatic functional reserve in conditions of a preexistent liver disease\cite{117,118}. Fu et al\cite{119} found an earlier recovery of the postoperative liver function after hemihepatic vascular inflow occlusion compared with the Pringle maneuver, however it is technically more demanding and potentially associated with more bleeding in cirrhotic livers.

Prediction of the future, functional remnant liver volume (FLR) is crucial for postoperative morbidity and mortality. A remnant volume of at least 40% should remain following resection of cirrhotic livers in order to preserve adequate liver function\cite{120}. Three dimensional measurements of liver volumes based on MDCT or magnetic resonance imaging (MRI) and more important post-processing software are important for predicting the FLR after liver resection.

Portal vein embolization (PVE) has an important role as an effective tool in inducing hypertrophy of the non-embolized hepatic segments. An increase of the FLR volume of 20%-46% can be achieved after 2-8 wk\cite{121,122}. When the FLR volume is insufficient PVE is considered an important therapeutic step before extended resection. Recently, one other approach has been described for increasing the FLR volume in a two-stage procedure for patients undergoing extended liver resection. *In situ* liver transection combined with portal vein ligation emerged as a procedure associated with rapid growth of the FLR\cite{123,124} and was tested in the settings of HCC in cirrhotic livers\cite{125} even in conditions of major vascular invasion\cite{126}. The median FLR volume increase was 18.7% within one week after the first step and 38.6% after the second step\cite{125}. More studies are needed before the real merits of ALPPS can be evaluated.

The use of metabolic tests, namely the indocyanine green test is another tool to assess the liver functional capacity in order to avoid postoperative liver failure\cite{127}. As indicated in two surveys\cite{120,128} it is widely used in Asia and the indocyanine green retention rate at 15 min (ICGR-15) is integrated into the decision tree for deciding the safe limit of heptectomy\cite{127}. In the western world the ICGR-15 test is used in a limited number of centers and in selective cases only\cite{129}. In HCC patients with cirrhotic livers characterized by normal bilirubin level and absence of ascites the ICGR-15 is the main determinant for performing a liver resection\cite{127}.

The anatomic liver resection should be associated with improved outcome as HCC tumors have a tendency for local portal vein invasion with possible extension toward the main portal vein. However conflicting results are present in the literature. Two studies\cite{129,130} demonstrated that anatomic resection is an independent predictor of improved recurrence-free survival and it significantly improves the disease-free survival rates. Anatomic resection is recommended in the EASL guidelines as the preferred approach if sufficient remnant liver volume can be preserved\cite{50}. The use of dye widely practiced in Japan may aid delineation of tumor bearing segments and facilitate complete anatomical resection\cite{132,131}.

Laparoscopic liver resection for HCC in cirrhotic livers is an established and safe procedure performed in many centers worldwide\cite{128}. There are no randomized controlled trials that has compared laparoscopic vs open liver resection in HCC patients. Four meta-analyses\cite{133-136} of nonrandomized studies found that laparoscopic resection was associated with significantly less blood loss, lower transfusion requirements, lower overall morbidity, and shorter length of hospital stay without a significant difference in length of operation, surgical margin status, or tumor recurrence rates.

Ablative procedures

Tumor ablation can be achieved by chemical (ethanol, acetic acid) or thermal (radiofrequency ablation-RFA, microwave ablation (MWA)) ablation and it is the treatment of choice in patients with single, small tumors who are not candidates for surgery. According to the BCLC staging and treatment algorithm these patients are classified as BCLC A patients\cite{58}. BCLC 0 patients may also be managed by this treatment modality, although the algorithm primarily allocates resection to this group of patients\cite{58}. When procedure limitations are strictly respected (tumor size, tumor location, duration of the treatment, maintaining the required temperature in the tumor zone, etc.) tumor ablation is a curative treatment option for the management of carefully selected HCC patients.

Historically, tumor ablation started as chemical
Ablation using percutaneous ethanol injection (PEI) for the management of nodular-type HCC. There is considerable experience with PEI since it is an established technique. PEI induces coagulation necrosis of the tumor as a result of cellular dehydration, protein denaturation, and chemical occlusion of small tumor vessels. Several studies confirm that tumors < 2 cm can be successfully treated by PEI achieving equivalent results to thermal ablation techniques. For larger tumors PEI is inferior to thermal ablation and therefore should not be performed. However, PEI should not be neglected and can be used in underdeveloped regions as a very useful treatment modality.

Thermal ablation has now largely replaced PEI, initially with RFA and recently with MWA. Although it is an interventional procedure performed percutaneously by interventional radiologists or jointly by an interventional radiologist and liver surgeon, a multidisciplinary approach which provides important advantages, as described by Poon et al. Thermal ablation can also be done via an open or laparoscopic surgical approach.

The main advantage of thermal ablation is related to its low major morbidity (2.2%-3.1%) and mortality (0.1%-0.5%) rates. Major complications include intraperitoneal hemorrhage, hepatic abscess, bile duct injury, and liver decompensation. Tumor seeding along the needle track has been reported as a rare (0.5%) late complication of RFA.

The most important observations resulted from explants studies following LT and demonstrated complete tumor necrosis in explanted liver specimens in 83% of tumors > 3 cm and in 88% of tumors in non-perivascular locations. Clearly the efficacy of RFA is reduced with increasing tumor size and the presence of large vessels. RFA should be applied for tumors less than 3 cm in size, bearing in mind that success is related to the total volume of the tumor tissue that has to be ablated.

Lencioni et al. have demonstrated 61% 5-year survival in patients with Child A cirrhosis and solitary HCC, compared with 51% in patients with Child A cirrhosis and multiple tumors and 31% in patients with Child B cirrhosis. Livraghi et al. has reported complete tumor response in 97% of tumors < 2 cm, with 5-year survival in patients with preserved hepatic function of 68%, challenging resection as the first-line approach in such cases.

Hasegawa et al. concluded that resection was associated with a higher overall survival and lower recurrence rate than RFA or PEI in the treatment of HCC < 3 cm.

A challenging question is whether emerging alternative, MWA, will replace RFA. Compared to RFA, MWA is less-sensitive to the heat sink effect of nearby blood vessels and produces a larger zone of necrosis.

In a non-randomized study published in 2013 that investigated the therapeutic efficacy of percutaneous RFA and MWA for HCC < 5 cm no significant differences were found between the two procedures in the percentage of complete ablation local tumor progression, distant recurrence and overall survival. Clearly, more studies are needed to compare the two ablation techniques.

Transarterial therapy

According to the BCLC staging and treatment algorithm TACE is indicated for patients classified as BCLC B stage, that is an intermediate stage composed of a very heterogeneous patient population. A Cochrane review clearly confirmed the survival benefit of this treatment modality. However, TACE is not standardized in regard to: (1) the procedure technique; (2) the choice of embolic agent; (3) the choice of applied medications; and (4) the schedule (on demand or at fixed intervals). In clinical practice TACE is performed by injection of chemotherapy with or without lipiodol, followed by the injection of embolic particles. This procedure is considered as conventional TACE. Innovative step forward was the development of drug-eluting beads (DC Bead) used to increase tumor drug delivery. However, the PRECISION V study designed to compare the two TACE procedures failed to demonstrate a clear superiority of DC Bead-TACE (one-sided P = 0.11). The difference between the two TACE procedures was found in the complete response, objective response, and disease control favoring DC Bead group (27% vs 22%, 52% vs 44%, and 63% vs 52%, respectively).

Complications of TACE include non-target embolization, the post embolization syndrome (fever, abdominal pain, ileus), liver failure, cholecystitis and acute portal vein thrombosis. The procedure-related mortality is less than 5% which defines TACE as a safe procedure. Main portal vein thrombosis, poor liver function, and extrahepatic spread have been shown to be predictors of poor outcome and are considered contraindications for chemoembolization.

Several aspects of TACE treatment require special consideration. In clinical practice an attempt should be made to achieve the supraselective approach (STACE) using micro-catheters in order to deliver chemotherapy as close as possible to the tumor site. Unfortunately this aspect was not much elaborated in clinical trials. Only one trial on 60 patients who were candidates for LT, found STACE to be associated with complete tumor necrosis in a larger proportion of patients (30.8% vs 6.9%, P = 0.02) compared to selective TACE group. Still, a 5-year disease-free survival was similar in both groups (76.8% vs 74.8%)

In conclusion, there is no clear relationship between the therapy-induced complete necrosis and long-term survival.

The combination of TACE and RFA is another challenging treatment option practiced in many centers worldwide. Recent meta-analyses showed that the combination of RFA and TACE was associated with a significantly higher overall survival rates (OR 1 year = 2.39, 95%CI: 1.35-4.21, P = 0.003; OR 3 years = 1.85, 95%CI: 1.26-2.71, P = 0.002), and recurrence-free survival rate (OR 1 year = 2.00, 95%CI: 1.26-3.18, P
MEDICAL TREATMENT

After years of disappointment with the results of numerous trials testing the efficacy of different drugs in the medical management of HCC, two milestone studies have established sorafenib as a treatment of choice for BCLC C patients according to the EASL-EORTC guidelines.

Sorafenib is a molecular inhibitor of several tyrosine protein kinases (VEGFR and PDGFR); Raf kinases (C-Raf than B-Raf) and intracellular ser/threonine kinases (C-Raf, wild-type B-Raf and mutant B-Raf). Sorafenib treatment induces autophagy, which suppresses tumor growth.

Although sorafenib was introduced as well-tolerated drug a subanalysis of the two leading studies and other studies have shown that the tolerability of sorafenib was suboptimal; it was down-dosed in more than 50% and interrupted in 45% of patients due to severe adverse events or compromised liver function.

Therefore the most important side effects are gastrointestinal (diarrhea 43%, increased lipase 41%, increased amylase 30%, nausea 23%, anorexia 16%, vomiting 16%, and constipation 15%), dermatologic (rash/desquamation 40%, hand-foot skin reaction 30%, alopecia 27%, pruritus 19%, and dry skin 11%), cardiovascular (hypertension 17%, angioedema, and congestive heart failure), hematologic (anemia and thrombocytopenia) and nervous system side effects (neuropathy 13% and headache 10%).

One of the two milestone studies (SHARP/phase III) conducted in the western world have shown that sorafenib prolonged median survival from 7.9 mo (placebo group) to 10.7 mo (sorafenib group) (HR = 0.69; 95%CI: 0.55-0.87; P = 0.00058). Sorafenib also improved the time to progression (from 2.8 mo to 5.5 mo). Another milestone study conducted in Asia confirmed the outcomes of the SHARP trial, i.e., a phase Asia-Pacific trial have shown a median overall survival of 6.5 mo (treatment group) comparing to 4.2 mo (placebo group) (HR = 0.68; 95%CI: 0.50-0.93; P = 0.014).

Another important study was a phase IV, GIDEON trial, conducted with the aim to evaluate the safety of sorafenib treatment in HCC patients in real-life conditions. In 2011 the second interim analysis showed a median survival of 10.3 mo for Child A patients and 4.8 mo for Child B patients. The amount of adverse events was comparable to the two milestone studies.

The use of sorafenib in adjuvant settings was addressed in the STORM trial. In mid 2014 major pharmaceutical companies Bayer and Onyx announced that the STORM trial did not meet its primary endpoint. During the ASCO annual meeting in 2014 Bruix et al. reported that both primary and secondary endpoints were not met. The trial enrolled the largest cohort of patients with HCC treated in this setting. Overall, 1114 patients were equitably randomized to either sorafenib or placebo. The study did not meet its primary and secondary endpoints since no differences were observed regarding recurrence-free survival (33.4 mo...
CONCLUSION AND FUTURE DIRECTIONS
HCC is a difficult to treat and extremely complex malignant disease. Epidemiological data confirms an increasing number of new cases each year and this rise will persist due to the burden linked to HCV and obesity. Since the number of new HCC cases being diagnosed each year is nearly equal to the number of deaths from this cancer it is clear that the international scientific community and healthcare systems worldwide have no efficient answer to HCC. There are marked differences between countries in providing disparate quality of healthcare considering screening and surveillance programs; available treatment modalities and drugs; reimbursement of specific treatment options by the state-funded health insurance. In many countries worldwide liver transplantation is not a therapeutic option. In countries with national LT program the donor pool is a wide liver transplantation is not a therapeutic option. In many countries worldwide liver transplantation is not a therapeutic option.

In the management of HCC patients, several recommendations are important: (1) to establish a national surveillance program in as many countries as possible; (2) to further improve treatment modalities for patients on the waiting list for LT; (3) to improve the safety of liver resection and to reduce the recurrence rates following resection; (4) to investigate further and to upgrade results of the TACE treatment modality; (5) to continue research on novel molecular therapies; and (6) to continue research on novel molecular markers for better patient selection for various treatment modalities.

REFERENCES
1 Bailar JC, Gornik HL. Cancer undefeated. N Engl J Med 1997; 336: 1569-1574 [PMID: 9164814 DOI: 10.1056/NEJM19970529362206]
2 Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2002; 55: 74-108 [PMID: 15761078 DOI: 10.3322/cejc.55.2.74]
3 National Cancer Institute. Cancer Trends Progress Report - 2009/2010 Update. [Accessed 2015 Mar]. Available from: URL: http://cancerprogressreport.cancer.gov/
4 Mortality Database. WHO Statistical Information System. Geneva: World Health Organization, 2008. Available from: URL: http://www.who.int/whosis
5 Alfekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol 2009; 27: 1485-1491 [PMID: 19224838 DOI: 10.1200/JCO.2008.20.7753]
6 El-Serag HB, Lauer M, Eschbach K, Davila J, Goodwin J. Epidemiology of hepatocellular carcinoma in Hispanics in the United States. Arch Intern Med 2007; 167: 1983-1989 [PMID: 17923599 DOI: 10.1001/archinte.167.18.1983]
7 Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol 2013; 47 Suppl: S2-S6 [PMID: 23632345 DOI: 10.1097/MCG.0b013e3182872729]
8 Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2893-2917 [PMID: 21351269 DOI: 10.1002/ijc.25516]
9 Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69-90 [PMID: 21296855 DOI: 10.3322/caac.20107]
10 GLOBOCAN 2012: Estimated Cancer Incidence, Mortality And Prevalence Worldwide In 2012. Lyon: International Agency for Research on Cancer (IARC). [Accessed 2012]. Available from: URL: http://www-dep.iarc.fr
11 Kew MC. Hepatocellular carcinoma: epidemiology and risk factors. J Hepatocellular Carcinoma 2014; 1: 115-125 [DOI: 10.2147/JHC.S44381]
12 El-Serag HB. Epidemiology of hepatocellular carcinoma in USA. Hepatol Res 2007; 37 Suppl 2: S88-S94 [PMID: 17877502 DOI: 10.1111/j.1872-034X.2007.00168.x]
13 Bruis J, Sherman M. Management of hepatocellular carcinoma. Hepatology 2005; 42: 1208-1236 [PMID: 16250051 DOI: 10.1002/hep.20933]
14 Osaki Y, Nishikawa H. Treatment for hepatocellular carcinoma in Japan over the last three decades: Our experience and published work review. Hepatol Res 2015; 45: 59-74 [PMID: 24965914 DOI: 10.1111/hepr.12378]
15 van Meer S, de Man RA, Siersma PD, van Erpecum KJ. Surveillance for hepatocellular carcinoma in chronic liver disease: evidence and controversies. World J Gastroenterol 2013; 19: 6744-6756 [PMID: 24187450 DOI: 10.3748/wjg.v19.i40.6744]
Galun D et al. Management of HCC

J. Comparison of MRI with liver-specific contrast agents and multidetector row CT for the detection of hepatocellular carcinoma: a meta-analysis of 15 direct comparative studies. Gut 2013; 62: 1520-1521 [PMID: 23929966 DOI: 10.1136/gutjnl-2013-305231]

61 Floriani I, D’Onofrio M, Ruli E, Chen MH, Li R, Musico L. Performance of imaging modalities in the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Ultraschall Med 2013; 34: 454-462 [PMID: 23228800 DOI: 10.1055/s-0032-1330358]

62 Chen L, Zhang L, Bao J, Zhang J, Li C, Xia Y, Huang X, Wang J. Comparison of MRI with liver-specific contrast agents and multidetector row CT for the detection of hepatocellular carcinoma: a meta-analysis of 15 direct comparative studies. Gut 2013; 62: 1520-1521 [PMID: 23929966 DOI: 10.1136/gutjnl-2013-305231]
Cancer of the Liver Italian Program system an adequate weighting for survival of hepatocellular carcinoma? Evaluation of intrascore prognostic value among 36 subgroups. *Liver Int* 2009; 29: 74-81 [PMID: 18331238 DOI: 10.1111/j.1478-3231.2008.01702.x]

76 Huo T, Lim HC, Hsia CY, Wu JC, Lee PC, Chi CW, Lee SD. The model for end-stage liver disease based cancer staging systems are better prognostic models for hepatocellular carcinoma: a prospective sequential survey. *Am J Gastroenterol* 2007; 102: 1920-1930 [PMID: 17573792 DOI: 10.1111/j.1572-0241.2007.0170.x]

77 Chung H, Kudo M, Takahashi S, Hagiwara S, Sakaguchi Y, Inoue T, Minami Y, Ueshima K, Fukunaga T, Matsunaga T. Comparison of three current staging systems for hepatocellular carcinoma: Japan integrated staging score, new Barcelona Clinic Liver Cancer staging classification, and Tokyo score. *J Gastroenterol Hepatol* 2008; 23: 445-452 [PMID: 17683486 DOI: 10.1111/j.1440-1746.2007.00507.x]

78 Graf D, Vallingbäger D, Knoefel WT, Kröpil P, Antoch G, Sagir A, Häussinger D. Multimodal treatment of hepatocellular carcinoma. *Eur J Intern Med* 2014; 25: 430-437 [PMID: 24666568 DOI: 10.1016/j.ejim.2014.03.001]

79 Maida M, Orlando E, Cammà C, Cabibbo G. Staging systems of hepatocellular carcinoma: a review of literature. *World J Gastroenterol* 2014; 20: 4141-4150 [PMID: 24764652 DOI: 10.3748/wjg.v20.i15.4141]

80 Goldberger JJ, Buxton AE. Personalized medicine vs guideline-based medicine. *JAMA* 2013; 309: 2559-2560 [PMID: 23712449 DOI: 10.1001/jama.2013.6629]

81 Llovet JM. Updated treatment approach to hepatocellular carcinoma. *J Gastroenterol Hepatol* 2005; 20: 225-235 [PMID: 15830281 DOI: 10.1111/j.1440-1746.2005.03719.x]

82 El-Serag HB. Hepatocellular carcinoma. *N Engl J Med* 2011; 365: 1118-1127 [PMID: 21909124 DOI: 10.1056/NEJMra1010683]

83 Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Mithoefer A, Ruthazer R, Nguyen K, Schore A, Harper A, Edwards E. Optimizing staging for hepatocellular carcinoma before liver transplantation: A retrospective analysis of the UNOS/OPTN database. *Liver Transpl* 2006; 12: 1504-1511 [PMID: 16952174 DOI: 10.1002/lt.20847]

84 Fujiki M, Aucejo F, Choi M, Kim R. Neo-adjuvant therapy for unresectable hepatocellular carcinoma in patients without cirrhosis. *World J Gastroenterol* 2013; 18: 2415-2422 [PMID: 22654435 DOI: 10.3748/wjg.v18.i10.2415]

85 Margenthaler H, Adam R, Ericson BG, Kalincikis P, Mülhbacher F, Höckerstedt K, Klemmnapa J, Friman S, Broelsch CE, Manton G, Fernandez-Selce C, van Hoek B, Fangmann J, Pirenne J, Miuesan P, Könnigstrainer A, Mirza DF, Lerat J, Detty O, Le Treut YP, Mazzaferro V, Löhe F, Berenger M, Clavien PA, Rogiers X, Belghiti J, Kóbó L, Durna P, Wolf P, Schareck W, Pisarski P, Foss A, Filippini F, Krawczewski M, Wolf M, Langrehr JM, Rolles K, Janieson N, Hop WC, Porter RJ. Liver transplantation for unresectable hepatocellular carcinoma in normal livers. *J Hepatol* 2012; 57: 297-305 [PMID: 22521348 DOI: 10.1016/j.jhep.2012.03.022]

86 Clavien PA, Lesurtel M, Bossuyt PM, Gores GJ, Langer B, Perrier A. Recommendations for liver transplantation for hepatocellular carcinoma: an international consensus conference report. *Lancet Oncol* 2012; 13: e11-e22 [PMID: 22047762 DOI: 10.1016/S1470-2247(12)70144-5]

87 Wan P, Yu X, Xiao Q. Operative outcomes of adult living donor liver transplantation and deceased donor liver transplantation: a systematic review and meta-analysis. *Liver Transpl* 2014; 20: 425-436 [PMID: 24478109 DOI: 10.1002/lt.22386]

88 Bralet MP, Régimbeau JM, Pineau P, Dubois S, Loas G, Degos F, Valla D, Belghiti J,Degott C, Terris B. Hepatocellular carcinoma occurring in nonfibrotic liver: epidemiologic and histopathologic analysis of 80 French cases. *Hepatology* 2000; 32: 200-204 [PMID: 10515724 DOI: 10.1053/jhep.2000.9033]

89 Lubrano J, Huet E, Tivilidis B, Francois A, Goria O, Riachi G, Scotté M. Long-term outcome of liver resection for hepatocellular carcinoma in noncirrhotic nonfibrotic liver with no viral hepatitis or alcohol abuse. *World J Surg* 2008; 32: 104-109 [PMID: 18026787 DOI: 10.1007/s00268-007-9291-0]

90 Lang H, Sotiropoulos GC, Brokaliak EL, Schmitz KJ, Bertona C, Meyer G, Frilling A, Paul A, Malago M, Broelsch CE. Survival and recurrence rates after resection for hepatocellular carcinoma in noncirrhotic livers. *J Am Coll Surg* 2007; 205: 27-36 [PMID: 17617329 DOI: 10.1016/j.jacs.2007.03.002]

91 Snoot RL, Nagorney DM, Chandan VS, Que FG, Schleck CD, Harmsen WS, Kendrick KL. Resection of hepatocellular carcinoma in patients without cirrhosis. *Br J Surg* 2011; 98: 697-703 [PMID: 21280030 DOI: 10.1002/bjs.7401]

92 Faber W, Sharafi S, Stockmann M, Denecke T, Sinn B, Puhl G, Bahra M, Malinowski MB, Neuhaus P, Seehofer D. Long-term results of liver resection for hepatocellular carcinoma in noncirrhotic livers. *Surgery* 2013; 153: 510-517 [PMID: 23122930 DOI: 10.1016/j.slgs.2012.09.015]

93 Cauchi F, Fuchs D, Belghiti J. HCC: current surgical treatment concepts. *Langenbecks Arch Surg* 2012; 397: 681-695 [PMID: 22290218 DOI: 10.1007/s00423-012-0911-2]

94 Ferenczi P, Fried M, Labrecque D, Bruix J, Sherman M, Omata M, Heathcote J, Piratsivuth T, Kew M, Otegbayo JA, Zheng SS, Sarin S, Hamid SS, Modawi SB, Fleig W, Fedal S, Thomson A, Khan A, Malfertheiner P, Lau G, Carillo FJ, Krabshuis J, Le Mair A. Hepatocellular carcinoma (HCC): a global perspective. *J Clin Gastroenterol* 2010; 44: 239-245 [PMID: 20216082 DOI: 10.1097/"

WJH | www.wjgnet.com 2287

September 18, 2015 | Volume 7 | Issue 20 |
infow onlum, and main portal vein infou in partial hepatectomy. Am J Surg 2011; 201: 62-69 [PMID: 20409520 DOI: 10.1016/j.amjsurg.2009.09.029]

Breitensein S, Apestegui C, Petrowsky H, Clavien PA. “State of the art” in liver resection and liver donor liver transplantation: A worldwide survey of 100 liver centers. World J Surg 2009; 33: 797-803 [PMID: 19172348 DOI: 10.1007/s00268-008-9878-0]

Hemming AW, Reed AI, Haword RJ, Fujita S, Hochswald SN, Cardi G, Hawkins IF, Vauhtey JO. Preoperative portal vein embolization for extended hepatectomy. Ann Surg 2003; 237: 686-691; discussion 691-693 [PMID: 12724635 DOI: 10.1097/01.sl.a.0000065265.16728.C9]

Nagino M, Kamiya J, Nishio H, Ebata T, Arai T, Nimura Y. Two hundred forty consecutive portal vein embolizations before extended hepatectomy for biliary cancer: surgical outcome and long-term follow-up. Ann Surg 2006; 243: 364-372 [PMID: 16495702 DOI: 10.1097/01.sla.0000201482.11876.14]

Knoefel WT, Gabor I, Rehders A, Alexander A, Krausch M, Schulte am Esch J, Fürst G, Topp SA. In situ liver transaction with portal vein ligation for rapid growth of the future liver remnant in two-stage liver resection. Br J Surg 2013; 100: 388-394 [PMID: 23124776 DOI: 10.1002/bjs.8955]

Schnitzbauer AA, Lang SA, Goessmann H, Nadalin S, Baumgart J, Farkas SA, Feichter-Fujii S, Lorf T, Gorelayc A, Hörbelt R, Kroeuner A, Loss M, Rümmele P, Scherer MN, Padberg W, Königsrainer A, Lang H, Obed A, Schlitt JJ. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg 2012; 255: 405-414 [PMID: 22330038 DOI: 10.1097/SLA.0b013e318284565f]

Vennarecci G, Laurenzi A, Levi Sandri GB, Busi Rizzi E, Cristofaro M, Montabulo M, Piselli P, Andreoli A, D’Offizi G, Ettorre GM. The ALPPS procedure for hepatocellular carcinoma. Eur J Oncol 2014; 40: 982-988 [PMID: 24767805 DOI: 10.1016/j.ejso.2014.04.002]

Vennarecci G, Laurenzi A, Santoro R, Colasanti M, Lepiane P, Ettorre GM. The ALPPS procedure: a surgical option for hepatocellular carcinoma with major vascular invasion. World J Surg 2014; 38: 1498-1503 [PMID: 24146197 DOI: 10.1007/s00268-013-2296-y]

Imamura H, Sano K, Sugawara Y, Kokudo N, Makuuchi M. Assessment of hepatic reserve for indication of hepatic resection: decision tree incorporating indocyanine green test. J Hepatobiliary Pancreat Surg 2005; 12: 16-22 [PMID: 15754094 DOI: 10.1007/s00534-004-0965-9]

Mise Y, Sakamoto Y, Ishizawa T, Kaneko J, Aoki T, Hasegawa K, Sugawara Y, Kokudo N. A worldwide survey of the current daily practice in liver surgery. Liver Cancer 2013; 2: 55-66 [PMID: 24159597 DOI: 10.1009/00346225]

Arii S, Tanaka S, Mitsunori Y, Nakamuta K, Aoda N, Noguchi N, Irie T. Surgical strategies for hepatocellular carcinoma with special reference to anatomical hepatic resection and intraoperative contrast-enhanced ultrasonography. Oncology 2010; 78 Suppl 1: 125-130 [PMID: 20615694 DOI: 10.1159/000315240]

Regimbeau JM, Kiammanee R, Farges O, Dondero F, Sauvanet A, Belghiti J. Extent of liver resection influences the outcome in patients with cirrhosis and small hepatocellular carcinoma. Surgery 2002; 131: 311-317 [PMID: 11894036 DOI: 10.1067/msy.2002.121892]

Shinoj M, Yise Y, Satou S, Sugawara Y, Kokudo N. The intersegmental plane of the liver is not always flat–tricks for anatomical liver resection. Ann Surg 2010; 251: 917-922 [PMID: 20395853 DOI: 10.1097/SLA.0b013e3181d773ae]

Ahn KS, Kang KJ, Park TJ, Kim YH, Lim TJ, Kwon JH. Benefit of systematic segmentectomy of the hepatocellular carcinoma: revisiting the dye injection method for various portal vein branchs. Ann Surg 2013; 258: 1014-1021 [PMID: 23478518 DOI: 10.1097/SLA.0b013e3182821ed3]

Zhou YM, Shao WY, Zhao YF, Xu DH, Li B. Meta-analysis of laparoscopic versus open resection for hepatocellular carcinoma. Dig Dis Sci 2011; 56: 1937-1943 [PMID: 21259071 DOI: 10.1007/s10620-011-1900-z]
Livraghi T, Meloni F, Di Stasi M, Rolle E, Solbiati L, Tinelli C, Rossi S. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? *Hepatology* 2008; 47: 82-89 [PMID: 18008357 DOI: 10.1002/hep.21933]

Hasegawa K, Nakudo N, Miska R, Nakamura I, Kida T, Kudo M, Kikui Y, Sakamoto M, Nakashima O, Matsui O, Matsuyama Y. Comparison of resection and ablation for hepatocellular carcinoma: a cohort study based on a Japanese nationwide survey. *J Hepatol* 2013; 58: 724-729 [PMID: 23178708 DOI: 10.1016/j.jhep.2012.11.009]

Yu NC, Raman SS, Limanond P, Lassman C, Murray P, Crocetti L, Frings H, Laubenberger J, Zuber I, Blum HE, Lencioni RA. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. *Radiology* 2005; 234: 954-960 [PMID: 15681691 DOI: 10.1148/radiol.234304153]

Livraghi T, Meloni F, Di Stasi M, Rolle E, Solbiati L, Tinelli C, Rossi S. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? *Hepatology* 2008; 47: 82-89 [PMID: 18008357 DOI: 10.1002/hep.21933]

Hasegawa K, Nakudo N, Miska R, Nakamura I, Kida T, Kudo M, Kikui Y, Sakamoto M, Nakashima O, Matsui O, Matsuyama Y. Comparison of resection and ablation for hepatocellular carcinoma: a cohort study based on a Japanese nationwide survey. *J Hepatol* 2013; 58: 724-729 [PMID: 23178708 DOI: 10.1016/j.jhep.2012.11.009]

Yu NC, Raman SS, Limanond P, Lassman C, Murray P, Crocetti L, Frings H, Laubenberger J, Zuber I, Blum HE, Lencioni RA. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. *Radiology* 2005; 234: 954-960 [PMID: 15681691 DOI: 10.1148/radiol.234304153]

Livraghi T, Meloni F, Di Stasi M, Rolle E, Solbiati L, Tinelli C, Rossi S. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? *Hepatology* 2008; 47: 82-89 [PMID: 18008357 DOI: 10.1002/hep.21933]

Hasegawa K, Nakudo N, Miska R, Nakamura I, Kida T, Kudo M, Kikui Y, Sakamoto M, Nakashima O, Matsui O, Matsuyama Y. Comparison of resection and ablation for hepatocellular carcinoma: a cohort study based on a Japanese nationwide survey. *J Hepatol* 2013; 58: 724-729 [PMID: 23178708 DOI: 10.1016/j.jhep.2012.11.009]

Yu NC, Raman SS, Limanond P, Lassman C, Murray P, Crocetti L, Frings H, Laubenberger J, Zuber I, Blum HE, Lencioni RA. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. *Radiology* 2005; 234: 954-960 [PMID: 15681691 DOI: 10.1148/radiol.234304153]

Livraghi T, Meloni F, Di Stasi M, Rolle E, Solbiati L, Tinelli C, Rossi S. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? *Hepatology* 2008; 47: 82-89 [PMID: 18008357 DOI: 10.1002/hep.21933]

Hasegawa K, Nakudo N, Miska R, Nakamura I, Kida T, Kudo M, Kikui Y, Sakamoto M, Nakashima O, Matsui O, Matsuyama Y. Comparison of resection and ablation for hepatocellular carcinoma: a cohort study based on a Japanese nationwide survey. *J Hepatol* 2013; 58: 724-729 [PMID: 23178708 DOI: 10.1016/j.jhep.2012.11.009]

Yu NC, Raman SS, Limanond P, Lassman C, Murray P, Crocetti L, Frings H, Laubenberger J, Zuber I, Blum HE, Lencioni RA. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. *Radiology* 2005; 234: 954-960 [PMID: 15681691 DOI: 10.1148/radiol.234304153]
Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. *Hepatology* 2011; 54: 868-878 [PMID: 21618574 DOI: 10.1002/hep.24451]

163. Cappelli R, Golfini R. Yttrium-90 radioembolization using yttrium-90 microspheres in the treatment of hepatocellular carcinoma: a review on clinical utility and developments. *J Hepatocellular Carcinoma* 2014; 1: 163-182

164. Sangro B, Bilbao JI, Boan J, Martínez-Cuesta A, Benito A, Rodríguez J, Panizo A, Gil B, Inarraíraegui M, Herrero I, Quiroga J, Prieto J. Radioembolization using 90Y-resin microspheres for patients with advanced hepatocellular carcinoma. *Int J Radiat Oncol Biol Phys* 2006; 66: 792-800 [PMID: 16904840 DOI: 10.1016/j.ijrobp.2006.05.065]

165. Bilbao JI, de Martino A, de Luis E, Díaz-Dorronsoro L, Alonso-Burgos A, Martínez de la Cuesta A, Sangro B, García de Jalón JA. Biocompatibility, inflammatory response, and recanalization characteristics of nonradioactive resin microspheres: histological findings. *Cardiovasc Intervent Radiol* 2009; 32: 727-736 [PMID: 19449060 DOI: 10.1007/s00270-009-9529-9]

166. Kulik LM, Carr BI, Mulcahy MF, Lewandowski RJ, Atassi B, Ryu RK, Sato KT, Benson A, Nemек AA, Gates VL, Abecassis M, Omary RA, Salem R. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. *Hepatology* 2008; 47: 71-81 [PMID: 18027884 DOI: 10.1002/hep.21980]

167. Hilgard P, Hamarni M, Fouly AE, Scherag A, Müller S, Ertel J, Heusner T, Cianni R, Gasparini D, Kudo M, Ye SL, Bronowicki JP, Chen XP, Dagher A, Adnane L, Newell P, Villanueva A, Llovet JM, Wilhelm SM, Jakobs TF, Lastoria S. Comparison of the survival and tolerability of radioembolization in elderly vs. younger patients with unresectable hepatocellular carcinoma. *J Hepatol* 2013; 59: 753-761 [PMID: 23707371 DOI: 10.1016/j.jhep.2013.05.025]

168. Ettore GM, Santoro R, Puoti C, Sciuto R, Carpanese L, Antonini M, Antonucci G, Maini CL, Miglioresi L, Vennarecci G. Short-term follow-up of radioembolization with yttrium-90 microspheres before liver transplantation: new perspectives in advanced hepatocellular carcinoma. *Transplantation* 2010; 90: 930-931 [PMID: 20962610 DOI: 10.1097/TP.0b013e3181f004]
Investigation of therapeutic decisions in hepatocellular carcinoma and of its treatment with sorafenib: a non-interventional study. *Int J Clin Pract* 2012; 66: 675-683 [PMID: 22698419 DOI: 10.1111/j.1742-1241.2012.02940.x]

189 Bruix J, Takayama T, Mazzaferro V, Chau GY, Yang J, Kudo M, Cai J, Poon RTP, Han KH, Tak WY, Lee HC, Song T, Roayaie S, Bolondi L, Lee KS, Makuuchi M, Souza F, Berre MAL, Meinhardt G, Llovet JM. STORM: A phase III randomized, double-blind, placebo-controlled trial of adjuvant sorafenib after resection or ablation to prevent recurrence of hepatocellular carcinoma (HCC). *J Clin Oncol* 2014; 32: 5s

190 Tabrizian P, Roayaie S, Schwartz ME. Current management of hepatocellular carcinoma. *World J Gastroenterol* 2014; 20: 10223-10237 [PMID: 25132740 DOI: 10.3748/wjg.v20.i30.10223]

P- Reviewer: Baran B, Lai S, Zhu X
S- Editor: Tian YL
L- Editor: A
E- Editor: Liu SQ
