A remark on Fano 4-folds having (3,1)-type extremal contractions

Toru Tsukioka

February 2, 2008

Abstract

Let X be the blow-up of a smooth projective 4-fold Y along a smooth curve C and let E be the exceptional divisor. Assume that X is a Fano manifold and has an elementary extremal contraction $\varphi : X \to Z$ of (3,1)-type (i.e. the exceptional locus of φ is a divisor and its image is a curve) such that E is φ-ample. We show that if the exceptional divisor of φ is smooth, then Y is isomorphic to \mathbb{P}^4 and C is an elliptic curve of degree 4 in \mathbb{P}^4.

1 Introduction

As an application of the extremal contraction theory, S. Mori and S. Mukai classified smooth Fano 3-folds with Picard number greater than or equal to 2 ([MM]). We observe that many of examples in the Mori-Mukai’s list are obtained by blowing up other smooth projective 3-folds. In fact, 78 types among 88 types of smooth Fano 3-folds with $\rho \geq 2$ have E_1-type or E_2-type extremal contractions. In [BCW] the authors classified smooth Fano varieties (defined over \mathbb{C}) obtained by blowing-up a smooth point, in any dimension. A next step is to consider the following problem:

Problem. Let Y be a smooth projective variety. Let $\pi : X \to Y$ be the blow-up along a smooth curve C. Classify pairs (Y, C) such that X is Fano.

Remark that for the toric case, the classification is done in any dimension by [S].

By the Cone and Contraction Theorem, we can take an extremal contraction $\varphi : X \to Z$ to normal projective variety such that the exceptional divisor E of π is φ-ample (see Lemma [1] below). It is easy to show that any fiber of φ is at most of dimension 2. The author studied the case where φ is a del Pezzo surface fibration and gave a complete classification ([12]). In higher dimensions, it seems difficult to classify the case where φ is birational. However, in dimension 4, there are several results on the birational extremal contractions, which may be applied to solve our problem.
In this paper, we investigate the case where φ is of $(3, 1)$-type contraction. Recall that in general, an extremal contraction $\varphi : X \to Z$ is said to be (a, b)-type, if $\dim(\text{Exc}(\varphi)) = a$ and $\dim(\varphi(\text{Exc}(\varphi))) = b$. So, a $(3, 1)$-type contraction for a 4-fold is a birational contraction which contracts a divisor F to a curve B. The extremal contractions of $(3, 1)$-type for smooth 4-folds are completely classified by [TK]. In particular, it is shown that the exceptional divisor F is normal and B is smooth. Moreover, $\varphi |_F : F \to B$ is either a \mathbb{P}^2-bundle or a Q_2-bundle (see [TK] Main Theorem).

In section 2, we first give an example. Let $C \subset \mathbb{P}^4$ be a smooth complete intersection of one hyperplane and two hyperquadrics. Then, we see that $X = \text{Bl}_C(\mathbb{P}^4)$ has a $(3,1)$-type extremal contraction to a complete intersection of two hyperquadrics (singular along a line) in \mathbb{P}^6. The section 3 is devoted to show that this is the only example if we assume that $\text{Exc}(\varphi)$ is smooth. More precisely, we prove the following:

Theorem 1. Let $\pi : X \to Y$ be the blow-up of a smooth projective 4-fold Y defined over \mathbb{C}, along a smooth curve C. Assume that X is a Fano manifold and has an elementary extremal contraction $\varphi : X \to Z$ of $(3,1)$-type such that the exceptional divisor E of π is φ-ample. Let F be the exceptional divisor of φ. If F is smooth, then Y is isomorphic to \mathbb{P}^4 and C is a smooth complete intersection of a hyperplane and two hyperquadrics.

We will use the following lemma, which is essentially the same as in [BCW] (Lemme 2.1). For reader’s convenience, we include here the statement with its proof.

Lemma 1. Let X be a Fano manifold and let E be a non-zero effective divisor on X. Then there exists an extremal ray $\mathbb{R}^+[f] \subset \overline{\text{NE}}(X)$ such that $E \cdot f > 0$.

Proof. Since X is projective, we can take a curve Γ on X such that $E \cdot \Gamma > 0$. By the Cone Theorem, there exist positive real numbers a_i, and extremal rational curves f_i such that $\Gamma \equiv \sum a_i f_i$ (finite sum). Hence

$$0 < E \cdot \Gamma = \sum a_i (E \cdot f_i).$$

This implies that one of extremal rational curves satisfies $E \cdot f_i > 0$.

Throughout this paper, we shall assume that the base field is the complex numbers. For a Cartier divisor D and a 1-cycle α on a variety X, we denote the intersection number by $D \cdot \alpha$, but we also write $(D \cdot \alpha)_X$ when we need to clarify the variety in which the intersection number is taken.

1Remark that our F and B correspond to E and C in [TK].
2 An example

We give an example of a smooth Fano 4-fold X obtained by blowing up along a curve such that X has another $(3,1)$-type extremal contraction.

Example Let $C \subset \mathbb{P}^4$ be a smooth complete intersection of a hyperplane and two hyperquadrics, $\pi : X \to \mathbb{P}^4$ the blow-up along C, and E the exceptional divisor. Let F be the strict transform of the hyperplane containing C. Remark that $F \simeq \text{Bl}_C(\mathbb{P}^3)$ is a Q_2-bundle over \mathbb{P}^1. Let e be a line in a fiber of the \mathbb{P}^2-bundle $\pi|_E : E \to C$, and let f be the strict transform of a line in \mathbb{P}^4 intersecting C at two points. Then we have

$$\mathcal{NE}(X) = \mathbb{R}^+ [e] + \mathbb{R}^+ [f].$$

The extremal contraction associated to the ray $\mathbb{R}^+ [e]$ is of course the blow-up $\pi : X \to \mathbb{P}^4$. Let $L := \pi^* \mathcal{O}_{\mathbb{P}^4}(1)$. The linear system $|2L - E|$ is base-point-free and defines the extremal contraction $\varphi : X \to Z$ of the ray $\mathbb{R}^+ [f]$. Indeed, we have $(2L - E) \cdot f = 0$. Note that $B := \varphi(F)$ is isomorphic to \mathbb{P}^1 and $\varphi|_F : F \to B$ is a Q_2-bundle. Thus, φ is a $(3,1)$-type extremal contraction whose exceptional divisor is F. More precisely, the image Z is a complete intersection of two hyperquadrics in \mathbb{P}^6, singular along $B \simeq \mathbb{P}^1$. To see this, we calculate $h^0(X, \mathcal{O}_X(2L - E))$ and $(2L - E)^4$.

Consider the exact sequence:

$$0 \to \mathcal{O}_X(2L - E) \to \mathcal{O}_X(2L) \to \mathcal{O}_E(2L) \to 0.$$

Remark that $A := -K_X + (2L - E) = (5L - 2E) + (2L - E) = 7L - 3E$ is ample by Kleiman’s criterion, because $A \cdot e = 3 > 0$ and $A \cdot f = 1 > 0$. Therefore, by the Kodaira vanishing, $H^1(X, \mathcal{O}_X(2L - E)) = 0$. On the other hand, we get $h^0(X, \mathcal{O}_X(2L)) = h^0(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(2)) = 15$. Since $\mathcal{O}_E(2L) \simeq (\pi|_E)^* \mathcal{O}_C(2)$, we have $h^0(E, \mathcal{O}_E(2L)) = h^0(C, \mathcal{O}_C(2)) = \deg(\mathcal{O}_C(2)) = 8$ (recall that $\pi|_E$ is a \mathbb{P}^2-bundle and $g(C) = 1$). Hence,

$$h^0(X, \mathcal{O}_X(2L - E)) = h^0(X, \mathcal{O}_X(2L)) - h^0(E, \mathcal{O}_E(2L)) = 7$$

and $|2L - E|$ defines a morphism $\varphi : X \to \mathbb{P}^6$. Now we determine the image of X. Note that we have $L^2 \cdot E \equiv 0$, $L \cdot E^3 = \deg C = 4$, and $E^4 = \deg N_{C/\mathbb{P}^4} = 20$. Thus,

$$(2L - E)^4 = (2L)^4 - 8L \cdot E^3 + E^4 = 4.$$

Consider the exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^6}(2) \otimes I_Z \to \mathcal{O}_{\mathbb{P}^6}(2) \to \mathcal{O}_Z(2) \to 0.$$

Since $h^0(Z, \mathcal{O}_Z(2)) = h^0(X, \mathcal{O}_X(4L - 2E)) = 26$, we obtain

$$h^0(\mathbb{P}^6, \mathcal{O}_{\mathbb{P}^6}(2) \otimes I_Z) \geq h^0(\mathbb{P}^6, \mathcal{O}_{\mathbb{P}^6}(2)) - h^0(Z, \mathcal{O}_Z(2)) = 28 - 26 = 2.$$

It follows that there exist two linearly independent hyperquadrics in \mathbb{P}^6 containing Z. Since $\deg Z = (2H - E)^4 = 4$, Z is a complete intersection of two hyperquadrics.
3 Proof of Theorem \[1\]

Denote by \(e \) a line in a fiber of the \(\mathbb{P}^2 \)-bundle \(\pi|_E : E \to C \). The key to prove Theorem \[1\] is the following:

Lemma 2. We have \(F \cdot e = 1 \).

Proof. We denote by \((e) \) the corresponding point in \(\text{Hilb}(X) \). Let \(T \) be the reduced part of the irreducible component of \(\text{Hilb}(X) \) containing \((e) \). Note that \(T \) is a \(\mathbb{P}^2 \)-bundle over \(C \) whose fiber \(T_c \ (c \in C) \) parametrizes lines in \(E_c := \pi^{-1}(c) \cong \mathbb{P}^2 \). In particular, \(T \) is smooth and of dimension 3.

Step 1. For all \((e) \in T \) such that \(e \notin F \), we have \(#(F \cap e) = 1. \) Assume the contrary, i.e. there exists \((e_0) \in T \) such that \(e_0 \notin F \) and \(#(F \cap e_0) \geq 2 \).

Remark that \(\varphi(e_0) \neq B \). Let \(x_i \ (i = 1, 2) \) be two distinct points in \(F \cap e_0 \) and let \(b_i := \varphi(x_i) \). Consider the incidence graph:

\[
\begin{array}{ccc}
 V & \xrightarrow{p} & X \\
 q \downarrow & & \\
 T & &
\end{array}
\]

We define \(V_i := p^{-1}(E \cap \varphi^{-1}(b_i)) \) and \(T_i := q(V_i) \) for \(i = 1, 2 \). Note that \(\dim V_i = \dim (E \cap \varphi^{-1}(b_i)) + 1 \) because \(p \) is a \(\mathbb{P}^1 \)-bundle. We observe that \(q|_{V_i} \) is a finite map. Indeed, if not, there exists \(t \in T_i \) such that \(q^{-1}(t) \subset V_i \). Then \(e_t := p(q^{-1}(t)) \) is contracted by \(\varphi \). This contradicts to our assumption that \(E \) is \(\varphi \)-ample. It follows that \(\dim T_i = \dim V_i = 2 \ (i = 1, 2) \). Note also that \((e_0) \in T_1 \cap T_2 \). Now, we have

\[
\dim(T_1 \cap T_2) \geq \dim T_1 + \dim T_2 - \dim T = 2 + 2 - 3 = 1.
\]

So, we can take an irreducible curve \(A \subset T_1 \cap T_2 \) passing through \((e_0) \). Then \(q^{-1}(A) \) is a ruled surface having two exceptional curves \(V_i \cap S \ (i = 1, 2) \), a contradiction.

Step 2. Consider \(M := (F \cap E)_{\text{red}} \). By Step 1, we see that for each \(c \in C \), \(e_c := (F \cap E_c)_{\text{red}} \) is a line in \(E_c \cong \mathbb{P}^2 \). So, \(\pi|_M : M \to C \) is a \(\mathbb{P}^1 \)-bundle. In particular \(M \) is irreducible. We can write \(E|_F = mM \) with \(m \in \mathbb{Z}^+ \). We have

\[
(mM \cdot e_c)_F = (E|_F \cdot e_c)_F = (E \cdot e_c)_X = -1
\]

By assumption, \(F \) is smooth. So, \(M \subset F \) is a Cartier divisor and \((M \cdot e_c)_F \) is integer. It follows that \(m = 1 \), i.e. the intersection \(F \cap E \) is transversal.

We conclude that \(F \cdot e = #(F \cap e) = 1. \)

Proof of Theorem \[1\] By the proof of Lemma \[2\], \(\pi|_M : M \to C \) is a \(\mathbb{P}^1 \)-bundle and \((M \cdot e_c)_F = -1 \). So, \(\pi|_F : F \to F' := \pi(F) \) is the blow-up along

\[2\] We mean by \(#(F \cap e) \) the number of points on \(F \cap e \) without multiplicity.
C, and F' is smooth. On the other hand, by [Tk], $\varphi|_F : F \to B$ is either a \mathbb{P}^2-bundle or a Q_2-bundle. Therefore F is a Fano 3-fold with $\rho(F) = 2$. By assumption, F is smooth. So, by the Mori-Mukai’s list, the pair (F', C) is one of the following:

1. $F' \simeq \mathbb{P}^3$ and C is a line;
2. F' is a hyperquadric $Q_3 \subset \mathbb{P}^4$ and $C = H \cap H'$ with $H, H' \in |\mathcal{O}_{Q_3}(1)|$;
3. $F' \simeq \mathbb{P}^3$ and $C = Q \cap Q'$ with $Q, Q' \in |\mathcal{O}_{\mathbb{P}^3}(2)|$.

In the case (3), C is an elliptic curve. So, Y is a Fano manifold by [W] (Proposition 3.5). In the cases (1) and (2), we have $N_{C/F'} \simeq \mathcal{O}_C(\mathbb{P}^2)$. Since there exists an inclusion of normal bundles $N_{C/F'} \subset N_{C/Y}$, $N_{C/Y}$ cannot be isomorphic to $\mathcal{O}_{\mathbb{P}^1}(-1)^{\oplus 2}$. So, Y is a Fano manifold again by [W].

Now, by Lemma 1, we can take an extremal ray \mathbb{R}^+_m such that $F' \cdot m > 0$. Then, by Proposition 1 below, we have $\rho(Y) = 1$. In particular F' is ample.

Let f be a minimal rational curve of the extremal contraction φ. We obtain the following table of intersection numbers (due to [Tk] and [MM]):

case	$F \cdot f$	$E \cdot f$
(1)	-1 or -2	1
(2)	-1	1
(3)	-1	2

Let $f' := \pi_* f$. Note that $F' \cdot f' = (\pi^* F') \cdot f = (F + E) \cdot f$. In the cases (1) and (2), we have $F' \cdot f' \leq 0$, a contradiction because F' is ample. So, only the case (3) (in which we have $F' \cdot f' = 1$) is possible, and $(Y, F') \simeq (\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(1))$. Consequently, C is the complete intersection $F' \cap Q \cap Q'$ with $F' \in |\mathcal{O}_{\mathbb{P}^4}(1)|$ and $Q, Q' \in |\mathcal{O}_{\mathbb{P}^4}(2)|$.

It remains to prove the following:

Proposition 1. Let Y be a smooth projective variety of dimension $n \geq 4$ and D a prime divisor on Y with $\rho(D) = 1$. Assume that there exists an extremal contraction $\mu : Y \to V$ of ray \mathbb{R}^+_m with $D \cdot m > 0$, m being a minimal rational curve of the ray. If there exists a smooth curve $C \subset D$ such that the blow-up $X := \text{Bl}_C(Y)$ is a Fano manifold, then we have $\rho(Y) = 1$. Moreover, if D is isomorphic to \mathbb{P}^{n-1}, then we have $(Y, D) \simeq (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1))$.

Proof. We shall consider two cases:

1. there exists $v_0 \in V$ such that $\dim(\mu^{-1}(v_0) \cap D) \geq 1$;
2. $\dim(\mu^{-1}(v) \cap D) = 0$ for all $v \in V$.

5
In the case (1), there exists a curve $B \subset \mu^{-1}(v_0) \cap D$. So, we can write $B \equiv bm$ with $b \in \mathbb{R}^+$. Since $\rho(D) = 1$, any curve in D is numerically equivalent to a multiple of m. Hence, $\mu(D)$ is a point. We also have $D \cdot B > 0$. Now, by Proposition 4 of [12], we conclude that $\rho(Y) = 1$.

We show that the case (2) is impossible. In this case, any fiber of μ is at most of dimension 1. So, by [A] (see also [W] Theorem 1.2), μ is either, a \mathbb{P}^1-bundle, a conic bundle, or a blow-up along a smooth subvariety of codimension 2 in a smooth projective variety. If μ is a \mathbb{P}^1-bundle, take a fiber m passing through a point on C. Let \tilde{m} be the strict transform by the blow-up $\pi : X \to Y$ of the exceptional divisor E, we have $E \cdot \tilde{m} \geq 1$, so that

$$K_X \cdot \tilde{m} = K_Y \cdot m + (n - 2)E \cdot \tilde{m} \geq -2 + (n - 2) = n - 4 \geq 0,$$

which is absurd because X is a Fano manifold.

If μ is a conic bundle, the extremal rational curve m is a component of a singular fiber of μ. Let Δ be the discriminant locus and let $\tilde{\Delta} := \mu^{-1}(\Delta)$. The assumption $D \cdot m > 0$ implies $\tilde{\Delta} \cap D \neq \emptyset$. Since $\rho(D) = 1$, the non-zero effective Cartier divisor $\tilde{\Delta}_|D$ is ample. Therefore,

$$(\tilde{\Delta} \cdot C)_Y = (\tilde{\Delta}_|D \cdot C)_D > 0,$$

so that $\tilde{\Delta} \cap C \neq \emptyset$. Now, we can take a singular fiber $\mu^{-1}(v_0)$ ($v_0 \in \Delta$) meeting C. Let $m_0 \subset \mu^{-1}(v_0)$ be a component such that $m_0 \cap C \neq \emptyset$. Then, we have a contradiction as in the case of \mathbb{P}^1-bundle. The case of a blow-up along a centre of codimension 2, can be ruled out by using a same argument for the exceptional divisor of μ in place of $\tilde{\Delta}$.

Consequently, only the case (1) is possible, so that we have $\rho(Y) = 1$. If $D \simeq \mathbb{P}^{n-1}$, by [BCW](Lemme 4) we conclude that $(Y, D) \simeq (\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1))$.

Our assumption that $F = \text{Exc}(\varphi)$ is smooth, is used in the proof of Lemma 2 (only for Step.2) and in the proof of Theorem 1 in order to apply to F the Mori-Mukai’s classification of smooth Fano 3-folds. So, it is natural to ask whether Theorem 1 remains true without the smoothness of F. Concerning to this question, it is worth seeing the following:

Example (A degenerate case of the example in Section 2). We consider the union of two smooth conics $C = C_1 \cup C_2 \subset Y := \mathbb{P}^4$ obtained as complete intersection of a hyperplane and two hyperquadrics. We assume that C_1 and C_2 meet at two distinct points. Let $\pi : X \to \mathbb{P}^4$ be the blow-up along the ideal $I_{C_1 \cup C_2}$ and E the exceptional divisor. Let F be the strict transform of the hyperplane containing $C = C_1 \cup C_2$. Then F is a Q_2-bundle over \mathbb{P}^1 having exactly two ordinary double points. Remark that F is isomorphic to the blow-up of \mathbb{P}^3 along the ideal $I_{C_1 \cup C_2}$. Moreover, F can be realized as divisor in $\mathbb{P}^1 \times \mathbb{P}^3$ by the equation $sX_2X_3 + t(X_0^2 + X_1^2 + X_2^2 + X_3^2) = 0$, where $(s : t)$ (resp. $(X_0 : X_1 : X_2 : X_3)$) is the homogeneous coordinates of
The fiber over \((1:0)\) is two planes \(P_i\) \((i = 1, 2)\) and the two ordinary double points lie on the line \(P_1 \cap P_2\).

As in Section 2, we see that the linear system \(|\pi^*\mathcal{O}_{\mathbb{P}^4}(2) - E|\) defines a \((3,1)\)-type contraction \(\varphi : X \to Z\) to complete intersection of two hyperquadrics in \(\mathbb{P}^6\), and its exceptional divisor is \(F\). This gives an example of \((Y, C)\) such that \(F = \text{Exc}(\varphi)\) is singular. However \(X\) is also singular along two rational curves over the two intersection points of \(C_1 \cap C_2\).

4 Related results

Let \(X\) be a Fano manifold and let \(\iota_X\) be its pseudo-index, i.e. the minimum of the anti-canonical degrees \((-K_X \cdot C)\) for rational curves \(C\) on \(X\). In [BCDD], the authors discuss the inequality (“generalized Mukai conjecture”):

\[
\rho(X)(\iota_X - 1) \leq \dim X
\]

and prove it in dimension 4. The essential part is to show that if \(\iota_X = 2\), then \(\rho(X) \leq 4\). Concerning to this, we have the following:

Proposition 2. Let \(\pi : X \to Y\) be the blow-up of a smooth projective variety \(Y\) of dimension \(n \geq 4\) along a smooth curve \(C\) and let \(E\) be the exceptional divisor. Assume that \(X\) is a Fano manifold and there is another blow-up \(\varphi : X \to Z\) (different from \(\pi\)) along a smooth curve \(B\). Let \(F\) be the exceptional divisor of \(\varphi\). Then, we have \(E \cap F = \emptyset\).

Proof. Assume \(E \cap F \neq \emptyset\). Take \(a \in C\) and \(b \in B\) such that \(E_a \cap F_b \neq \emptyset\). Then we obtain \(\dim(E_a \cap F_b) \geq \dim E_a + \dim F_b - \dim X = n - 4\). So, if \(n \geq 5\), there is a curve contained in \(E_a \cap F_b\) and then contracted by both \(\pi\) and \(\varphi\). This is absurd because we assume \(\pi \neq \varphi\). Therefore, we have \(n = 4\). By (the proof of) Theorem 1, \(\varphi|_F : F \to B\) cannot be a \(\mathbb{P}^2\)-bundle. So, the case \(E \cap F \neq \emptyset\) is impossible. \(\blacksquare\)

We are now able to give a simple proof of a result in [BCDD].

Theorem 2 (see [BCDD] Théorème 3.9). Let \(X\) be a Fano manifold of dimension \(\geq 4\) whose birational contractions are all blow-ups along smooth curves in smooth projective varieties. Assume that \(X\) has at least one birational contraction. Then, we have \(\rho(X) \leq 3\).

Proof. Let \(E\) be an exceptional divisor on \(X\). By Lemma 1, we can take an extremal ray \(\mathbb{R}^+ [f] \subset \text{NE}(X)\) such that \(E \cdot f > 0\). Then, by assumption and by Proposition 2 above, the associated contraction \(\mu := \text{cont}_{\mathbb{R}^+ [f]} : X \to Z\) is of fiber type. So, there is a surjection \(\mu|_E : E \to Z\). Hence, we have \(\rho(Z) \leq \rho(E) = 2\). Consequently, \(\rho(X) = \rho(Z) + 1 \leq 3\). \(\blacksquare\)
References

[A] T. Ando, On extremal rays of the higher-dimensional varieties. Invent. Math. 81, (1985) 347–357.

[BCDD] L. Bonavero, C. Casagrande, O. Debarre and S. Druel, Sur une conjecture de Mukai. Comment. Math. Helv. 78, (2003) 601–626.

[BCW] L. Bonavero, F. Campana and J. Wiśniewski, Variétés complexes dont l’éclatée en un point est de Fano. C. R. Math. Acad. Sci. Paris 334, (2002) 463–468.

[MM] S. Mori and S. Mukai, Classification of Fano 3-folds with $B_2 \geq 2$. Manuscripta Math. 36, (1981/82) 147–162.
 Erratum: Manuscripta Math. 110, (2003) 407.

[S] H. Sato, Toric Fano varieties with divisorial contractions to curves. Math. Nachr. 261/262, (2003) 163–170.

[Tk] H. Takagi, Classification of extremal contractions from smooth fourfolds of (3,1)-type. Proc. Amer. Math. Soc. 127, (1999) 315–321.

[T1] T. Tsukioka, Del Pezzo surface fibrations obtained by blow-up of a smooth curve in a projective manifold. C. R. Acad. Sci. Paris 340, (2005) 581–586.

[T2] T. Tsukioka, Classification of Fano manifolds containing a negative divisor isomorphic to projective space. Geometriae Dedicata 123, (2006) 179–186.

[W] J. Wiśniewski, On contractions of extremal rays of Fano manifolds. J. Reine Angew. Math. 417, (1991) 141–157.

Department of Mathematics
Tokyo Institute of Technology
2-12-1 Oh-okayama, Meguro-ku,
Tokyo 152-8551, JAPAN

email: tsukiokatoru@yahoo.co.jp