Small molecules of herbal origin for osteoarthritis treatment: in vitro and in vivo evidence

Penghui Zhang1,2†, Kaihu Li1,3†, Amir Kamali1, Reihane Ziadlou1, Paras Ahmad1, Xinluan Wang4, R. Geoff Richards1, Mauro Alini1, Valentina Basoli1, Zhen Li1* and Sibylle Grad1,5*

Abstract

Osteoarthritis (OA) is one of the most common musculoskeletal degenerative diseases and contributes to heavy socioeconomic burden. Current pharmacological and conventional non-pharmacological therapies aim at relieving the symptoms like pain and disability rather than modifying the underlying disease. Surgical treatment and ultimately joint replacement arthroplasty are indicated in advanced stages of OA. Since the underlying mechanisms of OA onset and progression have not been fully elucidated yet, the development of novel therapeutics to prevent, halt, or reverse the disease is laborious. Recently, small molecules of herbal origin have been reported to show potent anti-inflammatory, anti-catabolic, and anabolic effects, implying their potential for treatment of OA. Herein, the molecular mechanisms of these small molecules, their effect on physiological or pathological signaling pathways, the advancement of the extraction methods, and their potential clinical translation based on in vitro and in vivo evidence are comprehensively reviewed.

Keywords: Traditional Chinese medicine, Herbal medicine, Herbal extraction, Therapeutic target, Compound delivery, Inflammation, Anti-inflammatory, Anabolic, Anti-catabolic

Background

Globally, osteoarthritis (OA) is one of the most commonly occurring disorders of articular joints [1–3], which typically affects the knees, spine, hands, hips, and feet [4]. The incidence and prevalence reported in epidemiological studies fluctuate widely, as the data may be based on different diagnostic criteria (clinical, radiographic, or pathological OA), various joint locations, and diverse patient populations [5]. The reported prevalence of OA thus ranges from 12.3 to 21.6% [6, 7]. Women are at a higher risk for developing OA as compared to men [2, 7]. The risk further escalates with age, with OA usually occurring in the fourth or fifth decade of life [8, 9]. Furthermore, OA prevalence varies widely in different regions (e.g., developing or developed countries, rural or urban areas) [10–12].

Joint pain, joint swelling, locomotion restriction, and joint stiffness are the principal symptoms of OA, while other symptoms like crepitus and joint deformation are also encountered. Recurrent and progressive joint pain, being relieved by rest and worsened with joint exercise, is the most problematic symptom. Although the origin of pain in OA is not fully understood, it may arise from mechanoreceptors and nociceptive fibers in the synovium, capsule, subchondral bone, tendons, periosteum, or ligaments [13].

*Correspondence: zhen.li@aofoundation.org; sibylle.grad@hest.ethz.ch; sibylle.grad@aofoundation.org
†Penghui Zhang and Kaihu Li contributed equally to this work.
1 AO Research Institute Davos, Davos, Switzerland
5 Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
Full list of author information is available at the end of the article

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Recent studies report that the disease burden of OA is comparable to that of rheumatoid arthritis [14, 15]. Globally, a 75% rise was observed in OA-related years lived with disabilities (YLDs) from 1990 to 2013, with OA accounting for 2.4% of all YLDs [16]. Hence, OA represents the third fastest increasing condition related to disability, following dementia and diabetes [16, 17]. In the USA (2010), approximately 10% of all ambulatory care visits were to diagnose arthritis and other rheumatic diseases, 58% of which were estimated to be related to symptomatic OA [18]. The economic burden due to OA comprises three parts: indirect costs such as loss of productivity and disability payments; direct costs like hospital resources, conservative treatment, and research; and intangible costs caused by mental illness and reduced life quality.

Pathophysiology and treatment of osteoarthritis

Multiple pathological processes jointly contribute to the development of OA, and various phenotypes are thus formed [19]. The risk factors for OA development include age, trauma, obesity, innate immunity, metabolic diseases, systemic inflammatory conditions, and genetic predisposition [12, 20]. Currently, low-grade inflammation is the primary focus of OA pathophysiology because the reported risk factors may lead to chronic inflammatory conditions [21]. Another pathological process that might lead to OA is the metabolically triggered inflammation [22]. Metabolic disturbance of nutrients and metabolites leads to oxidative stress and chronic inflammation by inducing adipocytes to release adipokines, C-reactive protein (CRP), complement components, cytokines, and other pro-inflammatory mediators, which may result in cartilage and surrounding tissue destruction. Pro-catabolic and pro-inflammatory mediators, along with mechanical and oxidative stressors, deteriorate the performance and life cycle of chondrocytes, induce hypertrophy, and ultimately make them prone to degenerative responses [19].

While autophagy is reported to preserve chondrocytes, and its loss may contribute to OA development [23], apoptosis also takes place amidst OA development and endochondral ossification [24]. Cartilage degradation products, mainly cartilage wear particles [25], may lead to hyperplasia and hypertrophy of synovial fibroblasts/fibrocytes, which can induce the activation of B and T cells to amplify the inflammation [26, 27]. The inflammatory responses also lead to the activation of macrophages, which release several pro-inflammatory mediators, matrix metalloproteinases, bioactive lipids, neuropeptides, and growth factors. A feedback of cartilage breakdown and synovial inflammation is subsequently induced. However, chondrocytes and synovial tissues also release anti-inflammatory mediators, such as IL-4, IL-10, and IL-13 to modulate the inflammatory responses. Besides, the inflamed synovium can induce angiogenesis and osteophyte formation (Fig. 1).

Currently, there is no licensed drug with valid disease-modifying activity against OA. Hence, the management of OA is targeted at improving disability, pain, and life quality with pharmacologic and non-pharmacologic therapies. The most effective and safest treatment for knee/hip OA is physical exercise/activity coupled with self-management approaches [18, 28]. All OA management guidelines [29–31] advocate the promotion of healthy weight and self-management, along with a combination of aerobic and strengthening exercises [32] as core management approaches. Furthermore, systemic or local non-steroidal anti-inflammatory drugs (NSAIDs), intra-articular hyaluronan injection, or intra-articular corticosteroids are frequently administered [28], though with poor long-term outcomes.

Joint replacement is recommended when non-surgical methods cannot control OA symptoms. Nonetheless, joint replacement is not a cure for OA; around 20–30% of knee and hip replacement patients report no or little improvement and are not satisfied with the results of their surgery 1 year post-joint replacement [33, 34]. Worldwide, while scientists continue to work towards a better understanding of the predisposing factors for poor results following knee/hip joint replacement, there remains an urgent need to recognize effective and safe non-surgical modalities to prevent and treat OA.

The use of herbal medicine for analgesic and anti-inflammatory therapy of joint diseases has been practiced for a long time in the form of phytotherapeutic drugs in both the eastern and western worlds. Herbal compounds extracted from traditional Chinese medicine (TCM) plants have been applied for the treatment of multiple diseases, with artemisinin used for the treatment of malaria as the most well-known example (2015 Nobel prize by Youyou Tu). More recently, the chondroprotective and inflammation modulatory effects of herbal extracts or their individual small molecule compounds have been evaluated in preclinical in vitro and in vivo studies [35]. Several herbal compounds with potential disease-modifying activities have been identified. Nevertheless, only few clinical studies have been documented so far. The aim of this literature review is to provide an overview of promising small-molecule compounds with herbal origin and their mechanism of action, as described in preclinical investigations for the prevention or treatment of OA and related pathologies.
Fig. 1 Overview of the healthy and osteoarthritic joint along with the pathophysiology of OA. A Healthy joint is depicted: intact cartilage with no fissures and synovial inflammation signs. Osteoarthritis is characterized by soft tissue swelling, osteophyte formation, meniscus deterioration, and degeneration of cartilage. B Cartilage breakdown products are released from the damaged cartilage tissue into the joint space, which are phagocytosed by the synovial cells and infiltrated macrophages, intensifying synovial inflammation. In the inflamed synovium, pro-inflammatory and catabolic mediators are produced by the activated synovial cells that cause overproduction of the proteolytic enzymes, establishing a positive feedback loop. The activated synovial B cells, T cells, and infiltrating macrophages amplify the inflammatory response. To neutralize this inflammatory response, anti-inflammatory cytokines are produced by the synoviocytes and chondrocytes. Furthermore, the inflamed macrophages contribute to the synovial angiogenesis and osteophyte formation via VEGF and BMPs release, respectively. Panel B is adapted from Sellam et al. [27] with permission, copyright 2010, Springer Nature. (The figure was prepared with Biorender). ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; BMP, bone morphogenetic protein; IL, interleukin; IL-1Ra, IL-1 receptor antagonist; LTB4, leukotriene B4; MMP, matrix metalloproteinase; NO, nitric oxide; OA, osteoarthritis; PGE2, prostaglandin E2; TIMP, tissue inhibitor of metalloproteinase; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor.
Extraction of small molecules from medicinal herbs

The discovery of new natural compounds is of great significance for drug exploitation and development in the treatment of OA. The formulations used in TCM are extremely complex and contain a variety of effective ingredients. To improve drug efficacy, reduce side effects, and explore the pharmacological mechanism, it is important to extract the components and purify them to obtain effective single compounds. In recent years, some new technologies and methods have been developed to extract and isolate the active ingredients of TCM herbs. The application of these technologies not only helps to improve the extraction rate and the purity of active ingredients, but also facilitates the study of structure, pharmacology, and efficacy.

Supercritical fluid extraction is a technology that uses the supercritical fluid as an extractant to isolate and separate the medicinal components in TCM. This method has the advantages of high extraction efficiency, high purification, easy operation, and absence of residual solvent contamination [36, 37]. Supercritical fluid extraction has widely been used in a variety of TCM herbs. Using this method, Huang et al. extracted and separated psoralen and isopsoralen from *Psoralea corylifolia* [38]. Furthermore, ginkgolic acids from the epicarp of *Ginkgo biloba*, tautomeric 7-epimeric spiro oxindole alkaloids from *Uncaria macrophylla*, coumarin from radix *Angelicae dahuricae*, and chrysophanol from *Rheum palmatum* were extracted by supercritical fluid extraction [36, 37, 39, 40].

Ultrasound-assisted extraction is an extraction method with the assistance of ultrasonic energy. It mainly uses the cavitation of ultrasonic waves to accelerate the extraction of active ingredients from plants. In addition, secondary effects of ultrasonic waves, including mechanical vibration, emulsification, diffusion, crushing, and chemical effects, can also accelerate the diffusion-based release of the ingredients to be fully mixed with the solvent, which helps to improve the yield of the effective ingredients. Moreover, the ultrasonic crushing process is a physical process without chemical reaction during the extraction, maintaining the bioactivity of components. Ultrasound-assisted extraction is mainly used for the isolation of plant alkaloids, glycosides, and phenolic compounds [41–51].

The high-speed countercurrent chromatography (HSCCC) technique was developed from countercurrent chromatography and is characterized by high purity, good reproducibility, high separation efficiency, and low solvent usage in the extraction of medicinal herbs [52, 53]. It is particularly suitable for the separation of polar compounds. Fang et al. isolated and purified three ecdysteroids with anti-inflammatory effects from the stems of *Diplolisia glaucescens* by the HSCCC technique [54]. Nine compounds with over 95% purity were obtained by the HSCCC technique from the root of *Adenopora tetraphlla* [53]. HSCCC was reported as a powerful tool to separate the main compounds from the rhizome of *Smilax glabra* and was valuable for the preparative separation of compounds with broad K-values and similar structures [55].

Many other extraction methods were also used to extract the small molecules from medicinal herbs due to the extreme complexity of their chemical compositions. As a conventional technique, solvent extraction faces some limitations such as using too much organic solvents, losing some volatile compounds, the possibility of leaving toxic solvent residues in the extract, and low extraction efficiency [56]. Microwave-assisted extraction which heats the solvent in contact with the sample by means of microwave energy is an alternative way of increasing the efficiency of conventional extraction methods to extract target compounds from various raw materials [57]. Ultimately, if the effective constituent in the herbs is identified, successful biochemical synthesis is also a valid option due to its high efficiency.
Compound (TCM)	Model used	Study design	Delivery and dose	Effects/targets (downregulated ↓, upregulated ↑)	Pathway/mechanism	Reference	
Anemonin	h-chondrocytes	Pretreated for 1 h before 10 ng/mL, IL-1β treatment for 24 h	10 μM IL-1β ↓, IL-6 ↓, IL-8 ↓	MMP-3 ↓, MMP-13 ↓	Aggrecan ↑	Collagen X↓, p-IKKα/β↓, p-p65 ↓	Wang et al. [58]
h-articular cartilage	10 ng/mL, IL-1β with/without Anemonin for 4 days	10 μM MMP-13 positive cells↓, GAG release↓, proteoglycan loss↓	Collagen II↑				
Mouse	DMM-induced OA for 12 weeks	2 mg/kg (i.a) MMP-13 ↓, ADAMTS-5 ↓, damage of articular cartilage structure↓	Aggrecan ↑, proteoglycan ↑	Chondrocyte hypertrophy↓, chondrocyte apoptosis↓; p-p65 ↓			
Resveratrol	Porcine chondrocytes	Pretreated for 24 h before 100 μg/mL AGEs treatment for 24 h	25, 50, 75, 100 μM iNOS↓, COX-2↓, NO↓, PGE2↓	MMP-13 ↓	Collagen II↑	DNA-binding activity of NF-κB↓, kBα level↑ in a dose-dependent manner, p-IKKα/β, p-ERK↓, NF-κB and AP-1 transcriptional activity↓, JNK activity↓ in a dose-dependent manner	Liu et al. [59]
Porcine cartilage	Pretreated for 24 h before 100 μg/mL AGEs treatment for 72 h	50, 100 μM	Proteoglycan release↓, cleavage products of aggrecan↓				
Curcumin	Rat	Mia-induced OA for 2 weeks	200 mg/kg (i.p) Inflammatory cells infiltration↓, IL-6↓, IL-1β↓, and TNF-α↓ in the synovial fluid	Orderly arranged chondrocytes with a smoother articular surface; Mankin score↓	Joint diameter in OA rats↓, paw withdrawal threshold↑, TLR4↓, MyD88↓, p-IκBα↓, NF-κB↓	Zhang et al. [60]	
Compound (TCM)	Model used	Study design	Delivery and dose	Effects/targets (downregulated ↓, upregulated ↑)			
-------------------	-----------------------------	--	-------------------	--			
Amurensin H	Rat chondrocytes	Pretreated for 2 h before 10 ng/mL	2, 4, 8 μM	**Anti-inflammation** NO↓, iNOS↓, PGE2↓, COX-2↓, IL-6↓, IL-17↓, and TNF-α↓ in a dose-dependent manner			
		before 10 ng/mL IL-1β treatment		**Anti-catabolism** MMP-9↓ and MMP-13↓ in a dose-dependent manner			
		for 24 h		**Anabolism** Collagen II↑, GAG↑ in a dose-dependent manner			
				Others Mitochondrial ROS↓ in a dose-dependent manner; TLR4↓, p-Syk↓ and TRAF6↓ in a time-dependent manner; p-p65↓ and nuclear translocation ↓			
Paeonol	Mouse	ACLT-induced OA for 2 weeks	10, 20 mg/kg (i.g)	**Cartilage loss↓, OA course↓**			
				Anti-catabolism MMP-1↓, MMP-3↓, MMP-13↓ in a dose-dependent manner			
				Anabolism p-p65↓, p-IκB↓, p-PI3K↓, p-AKT↓, and NF-κB promoter luciferase activity↓ in a dose-dependent manner			
Nobiletin	Mouse	DMM-induced OA for 8 weeks	30 mg/kg (i.p.)	**OARSI score↓**			
				Anti-catabolism MMP-13↓ and ADAMTS-5↓ in a dose-dependent manner			
				Anabolism Aggrecan↑ and collagen II↑ in a dose-dependent manner			
				OthersProtected the structure of articular cartilage and maintained the proteoglycan; OARSI score↓			
				Pathway/mechanism Subchondral bone thickness↓			
Trans-cinnamaldehyde	SW1353 cell line h-OA chondrocytes	Pretreated for 2 h before 10 ng/mL	2, 5, 10 μg/mL	**Anti-catabolism** MMP-1↓, MMP-3↓, MMP-13↓, ADAMTS-4↓, and ADAMTS-5↓ in a dose-dependent manner			
		before 10 ng/mL IL-1β treatment		**Anabolism** p-p65↓, p-p38↓, p-JNK1/2↓, and NF-κB promoter luciferase activity↓ in a dose-dependent manner			
		for 6 h		**Pathway/mechanism** NF-κB and p38-JNK			
	Rat	MA-induced OA for 4 weeks	50 mg/kg (i.p.)	**Anti-inflammation** NO↓, iNOS↓, PGE2↓, COX-2↓, IL-6↓, IL-17↓, and TNF-α↓ in a dose-dependent manner			
				Anti-catabolism MMP-9↓ and MMP-13↓ in a dose-dependent manner			
				Anabolism Collagen II↑, GAG↑ in a dose-dependent manner			
				Others Mitochondrial ROS↓ in a dose-dependent manner; TLR4↓, p-Syk↓ and TRAF6↓ in a time-dependent manner; p-p65↓ and nuclear translocation ↓			
				Pathway/mechanism Subchondral bone thickness↓			

Reference:
[61] Ma et al.
[62] Lou et al.
[63] Xie et al.
[64] Xia et al.
Compound (TCM)	Model used	Study design	Delivery and dose	Effects/targets (downregulated ↓, upregulated ↑)	Pathway/mechanism	Reference		
				Anti-inflammation Anti-catabolism Anabolism Others				
Ligustrazine	h-OA chondrocytes	Co-treated with 5 ng/mL IL-1β for 24 h	0.5, 1, 2 μM IL-1↓, IL-6↓, TNF-α↓	MMP-13↓ Collagen II↑, aggrecan↑, GAG↑	SOX9/NF-κB	Yu et al. [65]		
	Knee OA patients	5 weeks 25, 50, 100 μg/L (po)	IL-1↓, IL-6↓, and TNF-α↓ in the joint effusions in a dose-dependent manner	SOD1↑, SOD2↑, SOX9↑, ROS production↓, and MDA↓; nuclear p65↓, p-κBα↓, and cytoplasmic p65↑, cell apoptosis↓; SOX9/NF-κB				
Piperine	h-OA chondrocytes	Pretreated for 2 h before 5 ng/mL IL-1β treatment for 24 h	10, 50, 100 μg/mL NO↓, PGE2↓, iNOS↓, and COX-2↓ in a dose-dependent manner	MMP-3↓ and MMP-13↓ in a dose-dependent manner	Nuclear p65↓, p-κBα↓, p-NF-κB↓	NF-xB	Ying et al. [66]	
Crocin	Rabbit chondrocytes	Pretreated for 1 h before 5 ng/mL IL-1β treatment for 24 h	5, 25, 50, 100 μM MMP-1↓, MMP-3↓, MMP-13↓	IκBα↑, NF-xB-dependent transcriptional activity↓	NF-xB	Ding et al. [67]		
	Rabbit	ACLT-induced OA	5, 100 μM (i.a) MMP-1↓, MMP-3↓, MMP-13↓; cartilage degradation↓ Mankin score↓					
Leonurine	Mouse chondrocytes	Pretreated for 2 h before 10 ng/mL IL-1β treatment for 24 h	5, 10, 20 μM NO↓, PGE2↓, IL-6↓, TNF-α↓, COX-2, and iNOS↓ in a dose-dependent manner	MMP-3↓, MMP-13↓, ADAMTS-5↓ Aggrecan↓, collagen ↑	p-p65↓, p-κB↓ in a dose-dependent manner	NF-xB	Yin et al. [68]	
	Mouse	DMM-induced OA for 6 weeks	30 mg/kg (i.p) OARSI score↑	Subchondral bone thickness↓, synovitis↓, fibrous cartilage↓				
Compound (TCM)	Model used	Study design	Delivery and dose	Effects/targets (downregulated ↓, upregulated ↑)	Pathway/mechanism	Reference		
----------------	------------	--------------	-------------------	---	-------------------	-----------		
Isofraxidin	h-OA chondrocytes	Pretreated for 2 h before 10 ng/mL IL-1β treatment for 24 h	1, 10, 50 μM NO↓, PGE2↓, COX-2, and iNOS↓ in a dose-dependent manner	MMP-1↓, MMP-3↓, MMP-13↓, ADAMTS-4↓, ADAMTS-5↓	Aggrecan↑, collagen II↑	p-p65↓, p-κB↓	NF-κB	Lin et al. [69]
Juglanin	h-OA chondrocytes	Pretreated for 2 h before 10 ng/mL IL-1β treatment for 24 h	10, 20, 40 μM NO↓, PGE2↓, COX-2, iNOS↓, IL-6↓ in a dose-dependent manner	MMP-1↓, MMP-3↓, MMP-13↓, ADAMTS-4↓, ADAMTS-5↓	p-p65↓, p-κB↓	NF-κB	Chen et al. [70]	
Scutellarin	Mouse chondrocytes	Pretreated for 24 h before 10 ng/mL IL-1β treatment for 24 h	15, 30, 60 mM COX-2↓, iNOS↓, PGE2↓, IL-6↓, TNF-α↓	MMP13↓, ADAMTS-5↓	Aggrecan↑, collagen II↑ in a dose-dependent manner	Cytoplasmic IκBα↑, nuclear p65↓ in a dose-dependent manner; nuclear Nrf2↑, cytoplasmic HO-1↑	NF-κB and Nrf2/HO-1	Luo et al. [71]
Mouse	DMM-induced OA for 8 weeks	50 mg/kg (i.p)	COX-1↑, COX-2↑, mPGES-1↑, mPEFS-2↓	Smoother cartilage surface; loss of proteoglycan↓, OARSI score↓				
Oxymatrine	h-OA chondrocytes	Treated with 1 μg/mL LPS	0.5, 1, 2 mg/mL IL-4↓, IL-8↓, TNF-α↓	MMP-2↓, MMP-9↓, MMP-13↓	GAG release↓, proteoglycan loss↓	p-p65↓, p-ERK↓, p-JNK↓, p-p38↓	NF-κB and MAPKs	Jiang et al. [72]
	h-OA articular cartilage	Co-treated with 10 μg/mL LPS for 7 or 14 days						
Mouse	ACLT-induced OA for 2 weeks	25, 50 mg/kg (i.p)		MMP-9 and MMP13-positive chondrocytes↓, destruction of cartilage↓		Cell apoptosis↓, p-65-positive chondrocytes↓		
Compound (TCM)	Model used	Study design	Delivery and dose	Effects/targets (downregulated ↓, upregulated ↑)	Pathway/mechanism	Reference		
---------------	------------	--------------	-------------------	---	-------------------	-----------		
Hinokitiol	Rat chondrocytes	Pretreated for 2 h before 5 ng/mL IL-1β treatment for 24 h	10, 20, 40, 80 μM	MMP-1↓, MMP-3↓, and MMP-13↓ in a dose-dependent manner	Collagen II↑	Li et al. [73]		
Tetrandrine	Rabbit chondrocytes	Pretreated for 1 h before 5 ng/mL IL-1β treatment for 24 h	5, 10, 20 μM	MMP-1↓, MMP-3↓, and MMP-13↓ in a dose-dependent manner	TIMP-1↑	Zhou et al. [74]		
Polygalactic acid	Rat chondrocytes	Co-treated with 10 ng/mL IL-1β for 24 h	50, 100 μM	COX-2↓ in a dose-dependent manner	MMP-3↓, MMP-9↓, MMP-13↓ in a dose-dependent manner	Wnt/β-catenin and MAPKs	Xu et al. [75]	
Icariin	Rat	DMM-induced OA for 6 weeks	100 μM (i.a.)	COX-2↓	Mankin score↓	Wnt/β-catenin and MAPK	Zeng et al. [76]	
	Rat	ACLT-induced OA for 6 weeks	20 μM (i.a.)	MMP-13↓	Mankin score↓	Wnt/β-catenin	Zeng et al. [76]	
Compound (TCM)	Model used	Study design	Delivery and dose	Effects/targets (downregulated↓, upregulated↑)	Pathway/mechanism	Reference		
---------------	------------	--------------	-------------------	---	------------------	-----------		
Zingerone	SW1353 cell line	Treated with 2 ng/mL IL-1β	10, 20, 40 μM	TNF-α↓, IL-6↓, and IL-8↓ in a dose-dependent manner; MMP-13↓ in a dose-dependent manner	p-p38↓, p-JNK↓	p38 and JNK/MAPKs	Ruangsuriya et al. [77]	
	Porcine cartilage	Treated with 10 ng/mL IL-1β for 5 days or 30 days	10, 20, 40 μM	MMP-13↓, s-GAG release↓, hyaluronic acid release↓	Uronic acid↑, collagen↑			
Geniposide	Rabbit OA chondrocytes	24 h	80 μg/mL	IL-1β↓, TNF-α↓	p-p38↓	p38/MAPK	Chen et al. [78]	
	Rabbit ACLT-induced OA for 2 weeks	40 mg/kg (i.g.)		MMP-13↓	Notch1↓, JAG1↓	Notch		
Ginsenoside Rb1	SW 1353 cell line	Pretreated for 1 h before 10 ng/mL IL-1β treatment for 24 h	80 μM	MMP-13↓, collagen II↑	Notch1↓, JAG1↓	Notch	Wang et al. [79]	
	Rat ACLT-induced OA for 6 weeks	0.3 mL, 80 mM (i.a.)		MMP-13↓; cartilage lesions↓	Collagen II↑; Mankin score↓	Collagen II↑; aggregcan↑; lubricin↑; Mankin score↓	TGF-β/Smads	Cui et al. [80]
Halofuginone	Mouse and rat	ACLT-induced OA	1 mg/kg (i.p.)	MMP-13↓; ADAMTS5↓, proteoglycan loss↓	Collagen II↑; calcification of articular cartilage↓; aberrant angiogenesis↓ in subchondral bone; subchondral bone remodeling↑; Th17-induced osteoclastic bone resorption↓; p-Smad2↓, p3Smad2/3-positive cells↓			

Table 1 (continued)
Table 1 (continued)

Compound (TCM)	Model used	Study design	Delivery and dose	Effects/targets (downregulated↓, upregulated↑)	Pathway/mechanism	Reference			
				Anti-inflammation	Anti-catabolism	Anabolism	Others		
Celastrol	Rat chondrocytes	Pretreated for 12 h before 10 ng/ml IL-1β treatment for 18 h	1, 2 mg/kg (i.a.)	MMP-13↓, ADAMTS-5↓	SDF-1/CXCR4	Wang et al. [81]			
	Rat	MIA-induced OA for 2 weeks	10, 25, 50 μM	IL-6↓, COX-2↓, PGE2↓, iNOS↓, NO↓	ROS↓ in a dose-dependent manner, Nrf2↑, HO-1↑, SOD-2↑, NOQ-1↑, and GCLC↑; p-ERK1/2↑	ROS/ERK/Nrf2	Khan, et al. [82]		
Wogonin	h-OA chondrocytes	Pretreated for 2 h before 1 ng/mL IL-1β treatment for 24 h	10, 25, 50 μM	MMP-13↓, MMP-3↓, MMP-9↓, and ADAMTS-4↓ in a dose-dependent manner	Collagen II↑, aggrecan↑, Proteoglycan↑	SDF-1↓ and CXCR4↓ in a dose-dependent manner			
	h-OA cartilage	Pretreated for 2 h before 25 ng/mL IL-1β treatment for 72 h	10, 25, 50 μM	s-GAG release↓; proteoglycan loss↓	Collagen II↑ in a dose-dependent manner				
an imbalance of synthesis and degradation of the extracellular matrix (ECM). Hence, the development of drugs that promote the proliferation of chondrocytes and the formation of ECM, resulting in cartilage regeneration, is another research direction. The small-molecule halofuginone [80] isolated from the plant *Dichroa febrifuga* lowered proteoglycan loss and calcification of articular cartilage in rodents subjected to anterior cruciate ligament transection (ACLT) compared with vehicle-treated ACLT controls. Besides, halofuginone reduced the expression of collagen X, MMP-13, and ADAMTS-5, while increasing lubricin, collagen II, and aggrecan. Wogonin [85] derived from the root extract of *Scutellaria baicalensis* exerted chondroprotective effects through suppression of inflammation/oxidative stress (reducing the expression of IL-6, COX-2, PGE2, iNOS, and NO), matrix degradation (lowered the expression of MMP-13, MMP-3, MMP-9, and ADAMTS-4), and stimulation of collagen II and aggrecan expression in OA chondrocytes and cartilage explants. Ligustrazine [65] protected chondrocytes against IL-1β-induced injury presumably by downregulating the expression of IL-1, IL-6, TNF-α, and MMP-13 and by upregulating the expression of collagen II and aggrecan associated with regulation of SOX9 and inactivation of NF-κB. In human osteoarthritic chondrocytes, epimedin C demonstrated significant anabolic effects by increasing the expression of collagenous and non-collagenous matrix proteins, such as cartilage oligomeric matrix protein, and growth factors, including growth differentiation factor 5 and connective tissue growth factor; both vanillic acid and epimedin C also suppressed the MMP activity in the chondrocyte inflammation model [84].

Signaling pathways as therapeutic targets

Generally, with the imbalance between anabolism and catabolism of the articular cartilage, excessive destruction of the ECM results in progressive degeneration. The pathophysiological process of articular cartilage degeneration involves a series of cell signal transduction pathways. Therefore, molecular therapy targeting these signaling pathways is a major research direction (Fig. 2).

NF-κB signaling pathway

NF-κB is a widely expressed transcription factor family existing ubiquitously in eukaryotic cells, which is associated with the pathogenesis of a number of inflammatory diseases and plays a complex role in different cell types and disease states [86]. The NF-κB family consists of the following five members: RelA (p65), RelB, c-Rel, NF-κB1 (p50 and p105), and NF-κB2 (p52 and p100) [87]. It has been demonstrated that the NF-κB signaling pathway plays a significant role in the course of OA [88]. NF-κB is usually present in the cytoplasm in the form of p56/p50/IκB trimer complexes. Both IκBa and IκBb of the inhibitory IκB protein family are the major regulators of NF-κB activity [89, 90]. Once the cell is stimulated by activating agents, such as cytokines, bacteria/viruses, and stress, IκBa is phosphorylated and degraded rapidly, resulting in the release and nuclear translocation of NF-κB followed by the activation of gene transcription [91].

The NF-κB protein family exists in various cells and is highly expressed in the synovial tissue, cartilage, subchondral bone, joint fluid, and surrounding muscle [92]. NF-κB is involved in almost all pathological processes of OA. Many small molecules of herbal origin can interfere with the development of OA by regulating the NF-κB signaling pathway. Haseeb et al. found that a polyphenol-rich pomegranate fruit extract inhibited the increase in the phosphorylation level of NF-κB p65 in IL-1β-induced osteoarthritic chondrocytes [93]. Egb761 extracted from *Ginkgo biloba* reduced p-NF-κB p65 protein level and prevented the activation of the NF-κB pathway in TNF-α induced human chondrocytes [94]. Polyoxypregnane glycoside from *Dregea volubilis* extract inhibited the IL-1β-induced expression of MMPs via the suppression of NF-κB in human chondrocytes [95]. Anemonin showed anti-inflammatory, anti-catabolic, and anabolic effects on IL-1β-induced human chondrocytes in vitro, human cartilage explants ex vivo, and in a destabilization of the medial meniscus (DMM)-induced mouse OA model through the suppression of the IL-1β/NF-κB pathway activation [58]. Similarly, RNA sequencing analysis revealed the interference of vanillic acid with NF-κB signaling in human chondrocytes under inflammatory conditions [84].

Wnt/β-catenin signaling pathway

Elevated expression of Wnt/β-catenin has also been observed in OA [96, 97]. Activation of the Wnt/β-catenin signaling pathway can increase the expression of MMPs and aggrecanases (ADAMTS-4 and ADAMTS-5) [98, 99], leading to the degradation of the ECM, which in turn results in the development of OA [100]. However, inhibition of the β-catenin signaling may also cause defects in postnatal cartilage development or even cartilage destruction [101, 102], suggesting that the Wnt/β-catenin signaling pathway may play a dual role in the pathogenesis of OA. To develop effective small molecules for the treatment of OA, the precise regulation of the Wnt/β-catenin signaling pathway should be considered critically.

Hinokitiol is a natural tropolone-related compound found in the heartwood of *Cupressaceae* plants that has a wide range of biochemical and pharmacological activities, including anti-bacterial [103], anti-tumor [103], and antioxidant capacities [104]. In addition, Li et al. found...
that hinokitiol also reduced MMP expression by inhibiting Wnt/β-catenin signaling in vitro and in vivo [73]. Tetrandrine purified from the root of *Stephania tetrandrino* of the Menispermaceae family was also found to alleviate OA pathways in vitro and in vivo via inhibiting Wnt/β-catenin signaling [74].

MAPK signaling pathways

Three MAPK families have been comprehensively characterized, namely extracellular signal-regulated kinase (ERK), C-Jun N-terminal kinase (JNK/SAPK), and p38 Kinase, which is closely related to the pathogenesis of OA [105]. The anti-inflammatory and anti-catabolic effects of oxymatrine and polygallic acid were mediated via the inhibition of the phosphorylation of ERK, JNK, and p38 related to the MAPK pathways [72, 75]. Zingerone suppressed cartilage degradation by involving the p38 and JNK MAPK signaling pathways [77]. Icariin showed an anti-catabolic effect via inhibiting the phosphorylation of p38 in IL-1β-induced human SW 1353 chondrosarcoma cells and a rat OA model [76].
Other signaling pathways

AMP-activated protein kinase (AMPK), a crucial regulator of energy metabolism, is a heterotrimeric serine/threonine protein kinase comprising a catalytic α-subunit and two regulatory β- and γ-subunits [106, 107]. AMPK is activated by a conserved threonine (THr172) phosphorylation in the α-subunit as a response to decreased cellular AMP/ATP ratio [106, 108]. Activated AMPK is constitutively expressed in normal articular cartilage, while its level is decreased in OA cartilage due to dephosphorylation caused by either biomechanical injury or inflammatory cytokines like IL-1β and TNF-α [107, 109]. Natural small molecules like butein and quercetin have shown chondroprotective effects via activation of AMPK [110, 111].

Once activated by extracellular molecules, phosphatidylinositol 3-kinase (PI3K) generates phospholipids, activates downstream protein kinase B (Akt), and further phosphorylates mammalian target of rapamycin (mTOR). It has been proved that the PI3K/AKT/mTOR signaling pathway is involved in cartilage degeneration by affecting its extracellular matrix homeostasis, promoting chondrocytes’ inflammatory response, and especially by inhibiting chondrocyte autophagy [112]. Active compounds, extracted from plants such as icariin and β-ecdysterone, have been demonstrated to alleviate OA by activating autophagy through the regulating PI3K/AKT/mTOR signaling pathway [113, 114]. The PI3K/AKT/mTOR and AMPK signaling pathways have interactions via the common downstream target mTOR; however, they own opposed effects on nutrient and energy homeostasis and cell growth [115, 116].

Clinical translation and its challenges

Based on recent search results on studies registered with www.clinicaltrials.gov (02.2021, filter keywords: osteoarthritis, drug), only 3 trials (NCT03375814, NCT03715140, NCT02905799) on small molecules from herbal origin entered clinical research, although there have been many TCM formulas or decoction products tested in clinical trials. Resveratrol decreased advanced glycation end product (AGE)-stimulated expression and activity of MMP-13 and prevented AGE-mediated destruction of collagen II through inhibiting IKK-IκBα-NF-κB and JNK/ERK-AP-1 signaling pathways [59]. It is currently in a phase III clinical trial (NCT02905799) for patients with knee OA.

There are several hurdles to overcome in the translation of herbal compounds into clinics. Firstly, the traditional treatment for OA including regular oral, topical, and intra-articular administration confronts the shortfalls of low bioavailability and severe side effects due to the low stability or solubility of small molecules in serum or synovial fluid. Novel delivery systems need to be introduced to deliver the small molecules to the target site and improve their stability under storage conditions and their bioavailability in vivo. Using exosomes with the target specificity as a delivery vehicle, the anti-inflammatory activity of curcumin on inflammatory cells was enhanced with therapeutic, but not toxic, effects [117]. The synergistic effect of promotion of chondrocyte autophagy via exposure to sinomenium encapsulated by chitosan microspheres and photo-crosslinked gelatin methacrylate hydrogel retarded the progression of surgically induced OA [118]. A combination of celecoxib-loaded liposomes and hyaluronate gel via intra-articular injection was more effective than a single drug in pain control and cartilage protection [119].

Secondly, the quality of raw herbs varies and is difficult to standardize, resulting in a great variation in the content of the main ingredients even with regulated extraction procedures. Thirdly, insufficient representative animal models and preclinical experiments make the in vivo evidence deficient. Fourthly, issues related to pesticide and heavy metal residues have been reported [120]. Fifthly, although there are thousands of compounds identified in medicinal herbs, most of them will be disregarded because of unidentified beneficial effects or amount, while few are determined to have definite pharmaceutical effects. Lastly, certain herbs have potentially toxic effects on the liver and kidneys. For instance, berberine and coumarin have potential hepatotoxicity, and β-escin and aristolochic acid may cause nephrotoxicity [121]. Standardized and comprehensive toxicity studies will be necessary to verify the safety of the compounds for clinical application.

Discussion

The management of OA is unsatisfactory for a significant number of patients who neither respond to the existing conservative treatment nor achieve indications of joint replacement surgery. These include older patients (> 55 years of age) with moderate or younger patients with moderate to severe signs and symptoms of joint degeneration [122]. For these cases, small molecules of herbal origin could represent a promising approach to halt, delay, or even reverse the degenerative process. Indeed, there are several advantages of herbal small-molecule compounds [123, 124]. Firstly, many herbal compounds have the advantages of little side effects [124] making them suitable for long-term treatment [125]; nevertheless, the safety profile of each individual drug needs to be carefully evaluated. Secondly, there is evidence that several compounds have multi-target effects [123], including anti-inflammatory, anti-apoptotic, anti-catabolic, antioxidative, anabolic, and proliferative effects (Table 1). It is conceivable that a combination of potent compounds
will have the broadest effect, which may be attractive as an either alternative or complementary treatment to conventional measures [126]. In addition, small molecular compounds of herbal origin have plenty of resources and are generally cost-effective to produce [127].

Nevertheless, despite the positive outcome of preclinical in vitro and in vivo studies, translation towards clinical application is still in its early stage. There are several reasons for this slow-going progress in drug development. In preclinical models, the pathogenesis and progression are standardized and reproducible, while the heterogeneity among patients makes their responses greatly variable. Therefore, it will be important for future clinical studies to classify patients according to their OA stages and phenotypes, which is an emerging field in clinical research [128]. Factors to consider include previous joint trauma, comorbidities like metabolic disorders, clinical manifestations, and eventually the genetic and epigenetic background. Both the limitation of preclinical models and the failure to clinically diagnose OA at the early stage hamper the development of effective therapies.

The delivery of the compounds also needs to be carefully evaluated. Unlike typical biologics, small molecular drugs are in principle suitable for oral application; however, it needs to be evaluated whether the required activity at the joint site can be achieved. On the other hand, the joint space appears to be suitable for intra-articular application [129]. Novel drug delivery systems have been developed to facilitate controlled drug release in intra-articular applications [130]. In the described animal studies, the compounds have primarily been applied intra-articularly, while intraperitoneal and intragastric delivery was also reported (Table 1). This suggests that systemic application may be sufficiently effective for the respective compounds. Topical application in the form of penetrating formulations can also be considered, although it is more challenging to standardize and improve the dosing into the joint. Interestingly, there is evidence from clinical trials for topical comfrey extract [131] as an analgetic treatment in musculoskeletal pain including OA. However, more rigorous, high-quality controlled studies need to be performed to confirm the therapeutic benefit.

Conclusion

In conclusion, small-molecule compounds of herbal origin may have significant potential for the treatment of OA. Advanced techniques are available for efficient isolation and purification of small molecular compounds from herbs. Numerous preclinical studies have elucidated the mechanisms of action and identified the signaling pathways modulated by the individual compounds. For future studies, patient stratification will be essential because of the heterogeneity among people with OA. The therapeutic benefit may be most pronounced if the compounds can be applied at the early stage of OA, when tissue structures are still intact and functional responsive cells are still present in the joint. Controlled clinical trials of high quality will be needed to confirm the beneficial effects demonstrated in the preclinical studies.

Abbreviations

SOD: Superoxide dismutase; MDA: Malondialdehyde; DMM: Destabilization of the medial meniscus; MA: Monoiodoacetate; ACLT: Anterior cruciate ligament transection; SW 1353 cell line: Human SW 1353 chondrosarcoma cells; LPS: Lipopolysaccharides, i.a.: Intra-articular; i.p.: Intraperitoneal; i.g.: Intragastric; AGEs: Advanced glycation end products; AP-1: Activator protein-1; mPGES: Microsomal PGE synthase; h-: Human; OA: Osteoarthritis; MMP: Matrix metalloproteinase; ADAMTS: A disintegrin-like and metalloproteinase with thrombospondin motifs; GAG: Glicosaminoglycan.

Acknowledgements

Not applicable.

Authors’ contributions

PZ, AK, RZ, PA, VB, ZL, and SG performed the concept and design of the article. PZ, KL, XX, RGR, MA, VB, ZL, and SG analyzed and interpreted the data. PZ, KL, AK, PA, VB, ZL, and SG drafted the article. RZ, XX, RGR, MA, ZL, and SG critically reviewed the article. All authors read and approved the final manuscript.

Funding

Open access funding provided by Swiss Federal Institute of Technology Zurich. This work was funded by the AO Foundation and AOSpine International.

Availability of data and materials

All data are included in this article.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. AO Research Institute Davos, Davos, Switzerland. 2. Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China. 3. Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China. 4. Translational Medicine R&D Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. 5. Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.

Received: 14 May 2021 Accepted: 19 April 2022

Published online: 11 May 2022

References

1. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96.
2. Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, et al. The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 Study. Ann Rheum Dis. 2014;73(1):723–30.

3. Glyn-Jones S, Palmer AJ, Agnicola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthritis. Lancet. 2015;386(9991):576–87.

4. Palazzo C, Nguyen C, Lefevre-Colau M-M, Rannou F, Poiraudue S. Risk factors and burden of osteoarthritis. Ann Phys Rehabil Med. 2016;59(3):134–8.

5. Jordan KP, Joad A, Bergknut C, Croft P, Edwards JJ, Peat G, et al. Internatonal comparisons of the consultation prevalence of musculoskeletal conditions using population-based healthcare data from England and Sweden. Ann Rheum Dis. 2014;73(1):212–8.

6. Helmck CG, Felson DT, Lawrence RC, Gabrielli S, Hirsch R, Kwoh CK, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part I. Arthritis Rheum. 2008;58(1):15–25.

7. Palazzo C, Ravaud JP, Papelard A, Ravaud P, Poiraudue S. The burden of musculoskeletal conditions. PLoS One. 2014;9(3):e90633.

8. Birnwhistle R, Morkem R, Peat G, Williamson T, Green ME, Khan S, et al. Prevalence and management of osteoarthritis in primary care: an epidemiologic cohort study from the Canadian Primary Care Sentinel Surveillance Network. CMAJ Open. 2015;3(3):E270.

9. Prieto-Alhambra D, Judge A, Javaid MK, Cooper C, Diez-Perez A, Arden NK. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis. 2014;73(9):1659–64.

10. Chopra A. The COPCORD world of musculoskeletal pain and arthritis. Rheumatology (Oxford). 2013;52(1):1925–28.

11. Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, et al. The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 Study. Ann Rheum Dis. 2014;73(1):723–30.

12. Martel-Pelletier J, Barr AJ, Cuccuriti FM, Conaghan PG, Cooper C, Goldberg MB, et al. Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072.

13. Abhishek A, Doherty M. Diagnosis and clinical presentation of osteoarthritis. Rheumatic Disease Clinics. 2013;39(1):45–66.

14. El-Haddad C, Castrejon I, Gibson KA, Yasie Y, Bergman MJ, Pincus T. MIDHAQ/RAPID3 scores in patients with osteoarthritis are similar to or higher than in patients with rheumatoid arthritis: a cross-sectional study from current routine rheumatology care at four sites. PLoS Med. 2017;13(1):e0003991.

15. Chua JR, Jamal S, Riad M, Castrejon I, Malfaart AM, Bock JA, et al. Disease burden in osteoarthritis is similar to that of rheumatoid arthritis at initial rheumatology visit and significantly greater six months later. Arthritis Rheum. 2019;71(8):1276–84.

16. Vos T, Barber RM, Bell N, Bertozzo-Villa A, Biryukov S, Bolliger I, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 353 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10053):1211–59.

17. Hawk G. Osteoarthritis is a serious disease. Clin Exp Rheumatol. 2019;37(12):53–6.

18. Mobasher A, Bat M. An update on the pathophysiology of osteoarthritis. Ann Phys Rehabil Med. 2016;59(5-6):333–9.

19. Van Spil WE, Kubassova O, Boesen M, Bay-Jensen AC, Mobasher A. Osteoarthritis phenotypes and novel therapeutic targets. Biochem Pharmacol. 2019;165:41–8.

20. Robinson WH, Lepus CM, Wang Q, Ray O, Lin B, Lidstrom TM, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12(10):580–92.

21. Wang X, Hunter D, Xu J, Ding C. Metabolic triggered inflammation in osteoarthritis. Osteoarthr Cartil. 2015;23(1):22–30.

22. Carames B, Taniguchi N, Otsuki S, Blanco-F, Lotz M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 2010;62(3):791–801.

23. Hughes A, Oxford AE, Tawara K, Jorcyk CL, Oxford JT. Endoplasmic reticulum stress and unfolded protein response in cartilage pathophysiology; contributing factors to apoptosis and osteoarthritis. Int J Mol Sci. 2017;18(3):665.

24. Esteel EG, Silverstein AM, Stefani RM, Lee AJ, Murphy LA, Shah RP, et al. Cartilage wear particles induce an inflammatory response similar to cytokines in human fibroblast-like synoviocytes. J Orthop Res. 2019;37(9):1979–87.

25. Mathiesen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther. 2017;19(1):18.

26. Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625–35.

27. Hunter DJ, Biemstra-Zeinsstra S. Osteoarthritis. Lancet. 2019;393(10128):1745–59.

28. McAlindon TE, Bannuru RR, Sullivan M, Arden N, Berenbaum F, Biemstra-Zeinsstra S, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr Cartil. 2014;22(3):365–88.

29. Fernandes L, Hagen KB, Bjfarma JW, Andreassen O, Christensen P, Conaghan PG, et al. EULAR recommendations for the non-pharmacological core management of hip and knee osteoarthritis. Ann Rheum Dis. 2013;72(7):1125–35.

30. Hochberg MC, Altman RD, April KT, Benkahliti M, Guyatt G, McGowan J, et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res. 2012;64(4):465–74.

31. Tanaka R, Ozawa J, Kito N, Moriyama H. Efficacy of strengthening and aerobic exercise on pain relief in people with knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Clin Rehabil. 2012;27(12):1059–71.

32. Jones CA, Beaupre LA, Johnston D, Suarez-Almazor ME. Total joint arthroplasties: current concepts of patient outcomes after surgery. Rheum Dis Clin North Am. 2007;33(3):171–86.

33. Woolhead G, Donovan J, Dieppe P. Patient expectations and total joint arthroplasty. J Rheumatol. 2003;30(7):1656.

34. Ziadlou R, Barbero A, Stoddart MJ, Wirth M, Li Z, Martin I, et al. Regulation of inflammatory response in human osteoarthritic chondrocytes by novel herbal small molecules. Int J Mol Sci. 2019;20(22):5745.

35. Yin X, Yang K, Yang L, Duyan Z, Chen J. Studies on supercritical CO2 fluid extraction for ginkgoic acids in the epicarp of Ginkgo biloba. Zhong Yao Cai. 2003;26(6):428–9.

36. Lo TC, Nian HC, Chiu KH, Wang AY, Wu BZ. Rapid and efficient purification of chrysophanol in Rhamnus Palmatum LINN by supercritical fluid extraction coupled with preparative liquid chromatography in tandem. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;893-894:101–6.

37. Lo TC, Nian HC, Chiu KH, Wang AY, Wu BZ. Rapid and efficient purification of chrysophanol in Rhamnus Palmatum LINN by supercritical fluid extraction coupled with preparative liquid chromatography in tandem. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;893-894:101–6.

38. Huang F, Huang X, Liang W, Ge F, Wu H. Studies on the supercritical CO2 fluid extraction and separation of psoralen, isopsoralen and fatty oils from Psoralea corylifolia. Zhong Yao Cai. 2000;23(5):266–7.

39. Yang W, Zhang Y, Pan H, Yao C, Hou J, Yao S, et al. Supercritical fluid chromatography for separation and preparation of tautomeric 7-epimeric spiro oxindole alkaloids from Uncaria macrophylla. J Pharm Biomed Anal. 2017;134:352–60.

40. Liang XL, Liao ZG, Zhu JY, Zhao GW, Yang M, Yin RL, et al. The absorption behavior and stability of luteolin in potato chips using supercritical fluid extraction: a strategy for enhancing the extraction efficacy of bioactive compounds and their stability in food models. Food Chem. 2019;297:124094.

41. Zhang et al. Arthritis Research & Therapy. (2022) 24:105
45. Patil DM, Akamanchi KG. Ultrasound-assisted rapid fractionation and kinetic modelling of influencing factors: extraction of camptothecin from Notaphydraya mimonimiana plant. Ultrason Sonochem. 2017;37:582–91.

46. Yohannes A, Zhang B, Dong B, Yao S. Ultrasound extraction of tropeae alkaloids from Radix physochelae using as extractant an ionic liquid with similar structure. Molecules. 2019;24(16):2897.

47. Navarro Del Hierro J, Herrera T, Garcia-Risco MR, Fornat T, Reglero G, Martin D. Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: quinoa, lentil, fenugreek, soybean and lupin. Food Res Int. 2018;109:440–7.

48. Espada-Bellido, Ferreiro-Gonzalez M, Carrera C, Palma M, Barroso CG, Barbero GF. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chem. 2017;219:23–32.

49. He B, Zhang LL, Yue XY, Liang J, Jiang J, Gao XL, et al. Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 2016;204:70–6.

50. Nipornram S, Tochampa W, Rattanatraiwong P, Singanusong R. Leichtweis MG, Pereira C, Prieto MA, Barreiro MF, Baraldi IJ, Barros L, Yao S, Li Y, Kong L. Preparative isolation and purification of chemi-

51. Fang L, Li J, Zhou J, Wang X, Guo L. Isolation and purification of three high-speed counter-current chromatography. J Chromatogr A. 2006;1115(1–2):64–71.

52. Guo W, Dong H, Wang D, Yang B, Wang X, Huang L. Separation of seven polyphenols from the rhizome of Smilax glabra by high-speed counter-current chromatography with evaporative light scattering detection. J Chromatogr A. 2007;1139(2):254–62.

53. Feng L, Li J, Zhou J, Wang X, Guo L. Isolation and purification of chemical constituents from the root of Adenophora tetraphlla by high-speed counter-current chromatography. J Chromatogr A. 2014;1373(1):20–28.

54. Azmir, J, Zaidul ISM, Rahman M, Sharif K, Mohamed A, Sahena F, et al. Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng. 2013;117(4):426–36.

55. Rahath Kubra I, Kumar D, Jagan Mohan Rao L. Emerging trends in microwave processing of spices and herbs. Crit Rev Food Sci Nutr. 2016;56(13):2160–73.

56. Wang Z, Huang J, Zhou S, Luo F, Xu W, Wang Q, et al. Anemonin attenuates osteoarthritis progression through the activation of IL-1beta/NF-kappaB pathway. J Cell Mol Med. 2017;21(12):3231–43.

57. Liu FC, Hung LF, Wu WL, Chang DM, Huang CY, Lai JH, et al. Chondroprotective effects and mechanisms of resveratrol in advanced glycation end-products-stimulated chondrocytes. Arthritis Rheum. 2010;62(5):1671–82.

58. Zhang Y, Zeng Y. Curcumin reduces inflammation in knee osteoarthritis rats through blocking TLR4/MyD88/NF-kappaB pathway. Drug Dev Res. 2019;80(3):353–9.

59. Ma P, Yue L, Yang H, Fan Y, Bai J, Li S, et al. Chondroprotective and anti-inflammatory effects of amunerin H by regulating TLR4/MyD88/NF-kappaB signals. J Cell Mol Med. 2020;24(2):1958–68.

60. Lou Y, Wang C, Tang Q, Zheng W, Feng Z, Yu X, et al. Paenol inhibits IL-1beta-induced inflammation via PI3K/Akt/NF-kappaB pathways: in vivo and vitro studies. Inflammation. 2017;40(5):1698–706.

61. Xie L, Xie H, Chen C, Tao Z, Zhang C, Gai L. Inhibiting the PI3K/AKT/NF-kappaB signal pathway with nobiletin for attenuating the development of osteoarthritis: in vitro and in vivo studies. Food Funct. 2019;10(4):2161–75.

62. Xia T, Gao R, Zhou G, Liu J, Li J, Shen J. Trans-cinnamaldehyde inhibits IL-1beta-stimulated inflammation in chondrocytes by suppressing NF-kappaB and p38-JNK pathways and exerts chondroprotective effects in a rat model of osteoarthritis. Biomed Res Int. 2019;2019:4039472.

63. Yu T, Qu J, Wang Y, Jin H. Ligustrazine protects chondrocyte against IL-1beta-induced injury by regulation of SOX9/NF-kappaB signaling pathway. J Cell Biochem. 2018;119(9):7419–30.

64. Xing Y, Chen X, Cheng S, Shen Y, Peng L, Xu HZ. Piperine inhibits IL-1beta-induced expression of inflammatory mediators in human osteoarthrosis chondrocyte. Int Immunopharmacol. 2013;17(2):293–9.

65. Ding Q, Zhong H, Qi Y, Cheng Y, Li W, Yan S, et al. Anti-inflammatory effects of crocin in interleukin-1beta-treated articular chondrocytes and cartilage in a rabbit osteoarthrosis model. Inflamm Res. 2013;62(1):7–15.

66. Yin W, Lei Y. Leonurine inhibits IL-1beta-induced inflammation in murine chondrocytes and ameliorates murine osteoarthritis. Int Immunopharmacol. 2018;65:50–9.

67. Lin J, Li X, Qi W, Yan Y, Chen K, Xue X, et al. Isofraxidin inhibits interleukin-1beta induced inflammatory response in human osteoarthrosis chondrocytes. Int Immunopharmacol. 2016;44:238–45.

68. Chen X, Zhang C, Wang X, Hsu S. Juglalin inhibits IL-1beta-induced inflammation in human chondrocytes. Artif Cells Nanomed Biotechnol. 2019;47(1):3614–20.

69. Luo Z, Hu Z, Bian Y, Su W, Li X, Li S, et al. Scutellariin attenuates the IL-1beta-induced inflammation in mouse chondrocytes and prevents osteoarthritic progression. Front Pharmacol. 2020;11:107.

70. Jiao Y, Sang W, Wang C, Lu H, Zhang T, Wang Z, et al. Oxytartine exerts protective effects on osteoarthrosis via modulating chondrocyte homeostasis and suppressing osteoclastogenesis. J Cell Mol Med. 2018;22(8):3941–54.

71. Li J, Zhou XD, Yang KH, Fan TD, Chen WP, Jiang LF, et al. Hinokitiol reduces matrix metalloproteinase expression by inhibiting Wnt/ beta-catenin signaling in vitro and in vivo. Int Immunopharmacol. 2014;23(1):85–91.

72. Zhou X, Li W, Jiang L, Bao J, Tao L, Li J, et al. Tetrandrine inhibits the Wnt/beta-catenin signalling pathway and alleviates osteoarthritis: an in vitro and in vivo study. Evid Based Complement Alternat Med. 2013;2013:809579.

73. Xu K, Ma C, Xu L, Ran J, Jiang L, He Y, et al. Polypalagacic acid inhibits MMPs expression and osteoarthrosis via Wnt/beta-catenin and MAPK signal pathways suppression. Int Immunopharmacol. 2018;63:246–52.

74. Zeng L, Wang W, Rong XF, Zhong Y, Jia P, Zhou GQ, et al. Chondroprotective effects and multi-target mechanisms of Icarin in IL-1 beta-induced human SW 1353 chondiosarcoma cells and a rat osteoarthrosis model. Int Immunopharmacol. 2014;18(1):75–81.

75. Ruanprasuya J, Budprom P, Viriyakhom N, Kongdang P, Chokchaitaweesuk C, Sirikaw N, et al. Suppression of cartilage degradation by Zingerone involving the p38 and JNK MAPK signaling pathway. Planta Med. 2017;83(3-4):268–76.

76. Chen Y, Shou K, Gong C, Yang H, Yang Y, Bao T. Anti-inflammatory effect of geniposide on osteoarthrosis by suppressing the activation of p38 MAPK signaling pathway. Biomed Res Int. 2018;2018:8384576.

77. Wang W, Zeng L, Wang ZM, Zhang S, Rong XF, Li RH. Ginsenoside Rb1 inhibits matrix metalloproteinase 13 through down-regulating Notch signaling pathway in osteoarthritis. Exp Biol Med (Maywood). 2015;240(12):1614–21.

78. Cui Z, Crane J, Xie H, Jin X, Zhen G, Li C, et al. Halofuginone attenuates osteoarthritis by inhibition of TGF-beta activity and H-type vessel formation in subchondral bone. Ann Rheum Dis. 2016;75(9):1714–21.

79. Wang W, Ha C, Lin T, Wang D, Wang Y, Gong M. Celestrol attenuates pain and cartilage damage via SDF-1/CXCR4 signalling pathway in osteoarthritis rats. J Pharm Pharmacol. 2018;70(1):81–8.

80. Khan NM, Ahmad I, Ansari MY, Haqqi TM. Wogonin, a natural flavonoid, intercalates with genomic DNA and exhibits protective effects in human primary chondrocytes. Int Immunopharmacol. 2015;240(12):1614–21.

81. Wang W, Xi X, Kang Z, Zhang L, Liu Y. Paenol prevents IL-1beta-induced inflammatory response and degradation of type II collagen in human primary chondrocytes. Artif Cells Nanomed Biotechnol. 2019;47(1):2139–45.

82. Ziadloo P, Barbero A, Martin J, Wang X, Qin L, Alini M, Grad S. Anti-Inflammatory and Chondroprotective Effects of Vanillic Acid and Epimedin C in Human Osteoarthritic Chondrocytes. Biomolecules. 2020;10(6):932.
85. Khan NM, Haseeb A, Ansary MJ, Devarapalli P, Haynie S, Haqqi TM, et al. Arthritis Research & Therapy (2022) 24:105
86. Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduc Target Ther. 2017;2:e17023.
87. Vallabhapanu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.
88. Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB. NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets. 2010;11(5):599–613.
89. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002;109(Suppl):S81–96.
90. Silverman N, Maniatis T. NF-kappaB signaling pathways in mammalian cells. Genes Dev. 2002;16(18):2321–42.
91. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-kappaB activity. Annu Rev Immunol. 2000;18:621–63.
92. Tanimoto M, Koshino T, Takagi T, Hayashi T, Saito T. Quantitative analysis of NF-kappaB-expression in cartilage and synovium of rat knee induced by intra-articular injection of synthetic lipid A. Inflamm Res. 2002;51(7):357–62.
93. Haseeb A, Khan NM, Ashruf OS, Haqqi TM. A polyphenol-rich pomegranate fruit extract suppresses NF-kappaB and IL-6 expression by blocking the activation of IKBalpha and NIK in primary human chondrocytes. Phytother Res. 2017;31(5):778–82.
94. Wang X, Zhao X, Tang S. Inhibitory effects of EGb761 on the expression of matrix metalloproteinases (MMPs) and cartilage matrix destruction. Cell Stress Chaperones. 2015;20(5):781–6.
95. Itthiarbha A, Phitak T, Sanyacharernkul S, Pothacharoen P, Pompimon W, Kongtawelert P. Polyoxypregnane glycoside from Dregea volubilis inhibits IL-1beta-induced expression of matrix metalloproteinase-1. J Ethnopharmacol. 2018;209(1):39–45.
96. June RK, Liu-Bryan R, Long F, Griffin TM. Emerging role of metabolic signaling in synovial joint remodeling and osteoarthritis. J Orthop Res. 2016;34(12):2048–58.
97. Zheng L, Zhang Z, Sheng P, Mobasher A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev. 2021;66:101249.
98. Terkeltaub R, Yang B, Lotz M, Liu-Bryan R. Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha. Arthritis Rheum. 2011;63(7):1928–37.
99. Ansari MY, Ahmad N, Haqqi TM. Butein activates autophagy through AMPK/TSC2/ULK1/mTOR pathway to inhibit IL-6 expression in IL-1beta stimulated human chondrocytes. Cell Physiol Biochem. 2018;49(3):932–46.
100. Feng K, Chen Z, Pengcheng L, Zhang S, Wang X. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. J Cell Physiol. 2019;234(10):18192–205.
101. Sun K, Luo J, Guo J, Yao X, Jing X, Guo F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review. Osteoarthr Cartil. 2020;28(4):400–9.
102. Tang Y, Mo Y, Yin D, Zeng J, Yue Z, Xu C. B-cyclooxygenase alleviates osteoarthritis by activating autophagy in chondrocytes through regulating PI3K/AKT/mTOR signal pathway. Am J Transl Res. 2020;12(11):7174–86.
103. Tang Y, Li Y, Yin D, Chen L, Xiong Z, Xu Y. Icarin alleviates osteoarthritis by regulating autophagy of chondrocytes by mediating PI3K/AKT/mTOR signaling. Bioengineered. 2021;12(1):2984–99.
104. Gonzalez A, Hall MN, Lin SC, Hardie DG. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metab. 2020;33(3):472–92.
105. Yi D, Yu H, Li K, Ruan C, Ding C, Tong L, et al. AMPK signaling in energy control, cartilage biology, and osteoarthritis. Front Cell Dev Biol. 2021;9:696602.
106. Sun D, Zhuang X, Xiang L, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–14.
107. Chen P, Xia C, Mei S, Wang J, Shan Z, Lin X, et al. Intra-articular delivery of sinomenium encapsulated by chitosan microspheres and photo-crosslinked GelMA hydrogel ameliorates osteoarthritis by effectively regulating autophagy. Biomaterials. 2016;81:1–13.
108. Dong J, Jiang D, Wang Z, Wu G, Miao L, Huang L. Intra-articular delivery of liposomal celecoxib-hyaluronate combination for the treatment of osteoarthritis in rabbit model. Int J Pharm. 2013;441(1-2):285–90.
109. Effert H, Kaina B. Toxicities by herbal medicines with emphasis to traditional Chinese medicine. Curr Drug Metab. 2011;12(10):989–96.
110. Xu X, Zhu R, Ying J, Zhao M, Wu X, Cao G, et al. Nephrotoxicity of herbal medicine and its prevention. Front Pharmacol. 2020;11:569551.
111. Li H. Advances in anti hepatic fibrotic therapy with traditional Chinese medicine. J Ethnopharmacol. 2020;251:112442.
112. Long Y, Yang Q, Xiang Y, Zhang Y, Wang J, Liu S, et al. Nose to brain drug delivery - a promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol Res. 2020;159:104795.
113. Sharifi-Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W, et al. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol. 2020;11:01021.
114. Steinmeyer J, Bock F, Stove J, Jerosch J, Flatenmacher J. Pharmacological treatment of knee osteoarthritis: special considerations of the New German guideline. Orthop Rev (Pavia). 2018;10(4):7872.
115. Kamali A, Ziadlou R, Lang G, Pankuchke J, Gu S, Li Z, et al. Small molecule-based treatment approaches for intervertebral disc degeneration: current options and future directions. Theranostics. 2021;11(1):27–47.
128. Mobasheri A, Saarakkala S, Finnila M, Karsdal MA, Bay-Jensen AC, van Spil WE. Recent advances in understanding the phenotypes of osteoarthritis. F1000Res 2019, 8:F1000 Faculty Rev-2091.

129. Jones IA, Togashi R, Wilson ML, Heckmann N, Vangsness CT Jr. Intra-articular treatment options for knee osteoarthritis. Nat Rev Rheumatol. 2019;15(2):77–90.

130. Maudens P, Jordan O, Allemann E. Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug Discov Today. 2018;23(10):1761–75.

131. Frost R, MacPherson H, O’Meara S. A critical scoping review of external uses of comfrey (Symphytum spp.). Complement Ther Med. 2013;21(6):724–45.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.