Metabolic Dysfunction-associated Fatty Liver Disease (MAFLD) and Viral Hepatitis

Xiaolin Wang and Qing Xie

Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract

A new definition of metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed in 2020. The change from nonalcoholic fatty liver disease (NAFLD) to MAFLD highlights the metabolic abnormalities that accompany fatty liver. The diagnosis of MAFLD does not require exclusion of secondary causes of liver diseases and alcohol consumption.

Introduction

The term nonalcoholic fatty liver disease (NAFLD) was first coined by Ludwig and colleagues in 1980 to describe fatty liver disease occurring in the absence of significant alcohol intake. Currently, NAFLD is arising as the most common chronic liver disease, due to the global obesity epidemic. The diagnosis of NAFLD does not require exclusion of secondary causes of liver diseases and alcohol consumption. Thus, NAFLD may coexist with other types of liver disease, such as viral hepatitis, a disease that remains the most common cause of liver disease-related death. With the increasing prevalence of MAFLD, patients with coincidental MAFLD and viral hepatitis are frequently encountered in clinical practice. In this review, we mainly summarize the mutual relationship between hepatitis B/C and systematic metabolism dysfunction related to MAFLD. We discuss the impact of MAFLD on progression of viral hepatitis and the therapies. Some unaddressed clinical problems related to concomitant MAFLD and viral hepatitis are also identified.

Citation of this article: Wang X, Xie Q. Metabolic Dysfunction-associated Fatty Liver Disease (MAFLD) and Viral Hepatitis. J Clin Transl Hepatol 2022;10(1):129-133. doi: 10.14218/JCTH.2021.00200.

Keywords: Metabolic dysfunction-associated fatty liver disease; Chronic hepatitis B; Chronic hepatitis C.

Abbreviations: CHB, chronic hepatitis B; CHC, chronic hepatitis C; DAA, direct antiviral agents; HO, drug-drug interaction; FOXO1, forkhead box O1; FXR, Farnesoid X receptor; HBsAg, hepatitis B surface antigen; HCC, hepatocellular carcinoma; HNF4α, hepatocyte nuclear factor 4α; IFN-α, interferon-alpha; Farnesoid X receptor; HBsAg, hepatitis B virus surface antigen; HCC, hepatocellular carcinoma; HNF4α, hepatocyte nuclear factor 4α; IFN-α, interferon-alpha; MBI, metabolic dysfunction-associated fatty liver disease; MAPK, mitogen-activated protein kinase; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic hepatitis; NK, natural killer; PGC1α, peroxisome proliferator activated receptor γ-coactivator 1 alpha; PPARα, peroxisome proliferator activated receptor α; ROS, reactive oxygen species; VLDL, very low density lipoprotein.

Correspondence to: Qing Xie, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Building 36, 197 Ruijin Er Road, Huangpu District, Shanghai 200025, China. ORCID: https://orcid.org/0000-0002-2582-8803. Tel: +86-21-6437-0045 ext 680403, Fax: +86-21-6445-4930, E-mail: xieqingrjh@163.com

Copyright: © 2022 The Author(s). This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0), which permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided: "This article has been published in Journal of Clinical and Translational Hepatology at https://doi.org/10.14218/JCTH.2021.00200 and can also be viewed on the Journal’s website at http://www.jctnet.com".
Wang X. et al: MAFLD and viral hepatitis

Most studies have revealed a negative association between liver steatosis and chronic HBV infection. For example, a retrospective study by Peleg et al. found an inverse association between the severity of liver steatosis and HBV viral load in treatment-naïve chronic hepatitis B (CHB) patients. Some studies suggested that liver steatosis affects the immune response during HBV infection. Mak et al. analyzed the effect of liver steatosis on HBV surface antigen (HBsAg) seroclearance in treatment-naïve CHB patients over a follow-up period of 3 years; on Cox regression analysis, hepatic steatosis was found to be associated with a 3-fold increase in the probability of HBsAg seroclearance in quiescent CHB. Lee et al. explored the factors associated with phase change in patients with CHB in the immune-tolerant phase. Notably, patients who underwent phase change were more likely to have coexisting fatty liver compared to patients who remained in the immune-tolerant phase. Further studies are required to clarify whether fatty liver is an important determinant of the immune response in CHB patients.

A wide body of published clinical data suggests an inverse association between liver steatosis and CHB replication; however, the underlying mechanisms are not clear. Some studies have postulated that fat deposition in HBV-infected hepatocytes may inhibit HBV replication. Here, we propose some potential mechanisms regarding the impact of liver steatosis on HBV infection and replication (Fig. 1). First, fatty liver is associated with impaired function of peroxisome proliferator activated receptor γ-coactivator 1 alpha (PGC1α), which is known to activate several transcription factors, such as Farnesoid X receptor (FXR), forkhead Box O1 (FOXO1), hepatocyte nuclear factor 4 alpha (HNF4α), and peroxisome proliferator activated receptor alpha (PPARα). Liver steatosis also leads to increased hepatocyte apoptosis. Hepatic infiltrating inflammatory cells, such as NK T cells, T cells, and γδ T cells create an altered immune microenvironment that is suboptimal for HBV replication. On the other hand, increased production of various cytokines and chemokines results in progressive inflammation and activation of hepatic stellate cells (HSCs). The release of damage-associated molecular pattern molecules (DAMPs) also accelerates the inflammatory response. In addition, elevated intracellular levels of ROS may enhance HBV replication via the activation of p38. Figure created in BioRender.com. BA, bile acid; IFNγ, interferon-gamma; TNF, tumor necrosis factor; IL, interleukin; TG, triglyceride; TGFβ, transforming growth factor beta; TNF, tumor necrosis factor.

Effects of HBV on systemic metabolism

Growing evidence has suggested that patients with HBV infection are at a decreased risk of developing NAFLD. For example, in the study by Wong et al., HBV infection was associated with a lower prevalence of fatty liver, hypertriglyceridemia, and metabolic syndrome in the general Ch-
nese population in Hong Kong. Similarly, in a large cohort of Korean adults, HBsAg seropositivity was associated with a lower risk of developing NAFLD. Thomopoulos et al.16 studied the prevalence of biopsy-proven liver steatosis in patients with CHB in Greece. Hepatic steatosis was observed in 18% of CHB patients and 73.8% of them presented with grade 1 steatosis. These results suggested an inverse association between HBV infection and MAFLD prevalence.

Interestingly, HBV infection is associated with favorable serum lipid profiles, including lower levels of triglycerides, reduced low-density lipoprotein cholesterol, and higher levels of high-density lipoprotein cholesterol;16 however, there is no conclusive evidence of the association of HBV infection with metabolic syndrome, insulin resistance, and the risk of arteriosclerosis.

The mechanisms underlying the effect of HBV infection on liver steatosis are not well characterized. Some studies have found that HBV-infected patients are associated with increased adiponectin,32,33 which may ameliorate hepatic steatosis.34 Besides, HBV infection may influence cholesterol metabolism by binding of the pre-S1 domain to the cellular receptor sodium-taurocholate cotransporting polypeptide, leading to increased conversion of intracellular cholesterol to bile acids and increased uptake of lipoprotein-associated cholesterol.35 Additional studies are required to better understand the mechanisms involved in glucose and lipid metabolism in HBV-infected patients.

Synergistic effect of MAFLD and CHB on liver disease progression

Liver steatosis itself is a major risk factor for liver- and non-liver-related morbidity and mortality.4 Although liver steatosis is associated with lower HBV viral load15 and increased chances of HBsAg clearance,17 several studies have demonstrated the synergistic role of fatty liver and CHB in promoting liver disease progression.5,15,36 In a study by Peleg et al.,15 liver steatosis was associated with an increased risk of all-cause mortality and cancer development in CHB patients, regardless of HBV viral load. Other studies have shown that coincidental metabolic syndrome, which is one of the key diagnostic criteria for MAFLD, increases the risk of liver fibrosis progression17,19 and liver cirrhosis38 in CHB patients independent of the viral load and alanine aminotransferase level. Obesity also accelerates hepatitis B-related mortality and HCC.5,39 Therefore, patients with CHB should be closely monitored for coexisting fatty liver disease irrespective of viral load and HBV seromarkers, as coexisting fatty liver disease may aggravate liver fibrosis, and increase the risk of cirrhosis and HCC.

The mechanisms underlying the synergistic effect of fatty liver on CHB progression remain unclear. Here, we suggest several potential mechanisms regarding the impact of liver steatosis on CHB progression (Fig. 1). Increased hepatocyte damage in steatosis leads to the release of damage-associated molecular pattern molecules, which may enhance the inflammatory response.40 Increased infiltration of neutrophils, monocytes, and γδ T cells28 and other inflammatory cells in NASH accelerates liver inflammation and fibrosis via production of various cytokines and chemokines.40 In addition, elevated intracellular levels of reactive oxygen species (ROS)41 induced by NASH may facilitate HBV replication. Recently, we have found that neutrophil-derived ROS can activate p38 mitogen-activated protein kinase (MAPK), which then precipitates the progression of NAFLD.42 P38 MAPK is known to promote HBV replication;43,44 thus, neutrophil-derived ROS may also facilitate HBV replication via the activation of p38 MAPK in NAFLD.

There are many unanswered questions regarding the treatment of patients with coincidental MAFLD and CHB. For example, it is not clear whether the absorption and bioavailability of antiviral drugs are affected by hepatic fat accumulation and the commonly associated metabolic abnormalities, such as diabetes and hyperlipidemia. Patients with coincidental MAFLD and CHB may exhibit different responses to antiviral therapies compared to patients with CHB alone. Reports regarding the influence of fatty liver on the antiviral therapies in CHB patients have been inconsistent.45 Since HBV gene expression is closely regulated by nutritional state via the metabolic regulators, further studies are required to explore the effectiveness of lifestyle interventions, such as diet control, physical activity, and weight reduction, in patients with coincidental MAFLD and CHB. Apart from this, treatment of the metabolic abnormalities, such as diabetes, hypertension, and dyslipidemia, should be carefully managed and the impact of these treatments on HBV replication should be cautiously monitored. For example, PPARα has been shown to promote HBV replication;26 thus, PPARα agonists should be cautiously used in patients with coincidental MAFLD and CHB. Besides, antiviral drugs may influence metabolism. For example, tenofovir disoproxil fumarate, which is one of the first-line antiviral treatments for CHB, has been shown to decrease the serum lipid profile in CHB patients.46 Finally, the impact of metabolic treatment on progression of CHB remains to be further studied. Notably, statins, which are commonly administered to patients with hyperlipidemia, have been shown to decrease the risk of decompensation in HBV-related cirrhosis47 and HCC.48,49

Collectively, emerging evidence suggests a negative association between MAFLD and CHB in terms of HBV seromarkers and fatty liver onset; however, MAFLD and CHB synergistically exacerbate liver fibrosis and HCC progression. The mechanisms underlying the interplay between MAFLD and CHB are still poorly understood. Further clinical studies are required to better understand the clinical features and provide more evidence for the management of patients with coincidental MAFLD and CHB.

Hepatitis C and MAFLD

It is well known that chronic HCV infection is associated with liver steatosis, especially in patients infected with HCV genotype 3. The reported prevalence of liver steatosis in patients with HCV infection varies between 40% and 80%; however, this prevalence decreases to approximately 40% when other factors that cause fatty liver, such as alcohol abuse, obesity, and diabetes, have been excluded.50 This suggests that both viral factors and host factors (such as metabolic disorders) contribute to liver steatosis in patients with HCV infection. Therefore, assessment of metabolic risk factors is required for hepatitis C patients, especially in those with concomitant fatty liver.

In the definition of NAFLD, HCV (genotype 3) is considered as a secondary cause of hepatic fat accumulation and is excluded from the criteria of NAFLD. However, in the new definition of MAFLD, patients who have HCV infection and also meet the criteria for the diagnosis of MAFLD are defined as having concomitant MAFLD with HCV infection. Renaming of “NAFLD” to “MAFLD” divided hepatitis C into two categories, i.e. “hepatitis C with MAFLD” and “hepatitis C without MAFLD”. This new classification will help distinguish the causes of liver steatosis and will lead to better management of hepatitis C patients. Notably, patients with concomitant MAFLD and HCV infection and patients with HCV-induced
liver steatosis both present with fatty liver. The differential diagnosis of the causes of fatty liver should mainly rely on the presence of metabolic risk factors, viral load and gen-

type, and the responsiveness to antiviral therapy. The presence of metabolic risk factors, viral load and gen-

type, and the responsiveness to antiviral therapy. The differences with respect to the clinical presentations of con-

comitant MAFLD and HCV infection and viral steatosis are summarized in Table 1.

Relationship between HCV infection and metabolism

Lipids are important for HCV replication and virion assembly, and lipoproteins are required for HCV circulation in the blood. HCV infection alters lipid metabolism in many ways, including by impairing very low density lipoprotein (VLDL) secretion, increasing lipogenesis, and decreasing lipid oxidation. HCV infection is associated with dyslipidemia, through lower levels of total cholesterol and triglycerides, and hypobetalipoproteinaemia. The multifaceted interaction between HCV and lipid metabolism has been previously reviewed.

Although there is a paucity of studies on the impact of MAFLD on HCV replication, several studies have suggested the complex effects of fatty acid metabolism on HCV replication. For example, fatty acids, especially polyunsaturated fatty acids, were shown to inhibit HCV replication. In a study by Yamane et al, lipid peroxidation, which is a feature of NASH, was shown to restrict HCV replication in hepatocytes. On the contrary, Hofmann et al demonstrated that knockdown of fatty acid elongases and desaturases, which are responsible for de novo fatty acid synthesis, can disrupt HCV replication in hepatocytes. These results suggest the existence of a complex network that regulates HCV RNA replication in fatty liver.

Liver steatosis, which is frequently found in patients with chronic hepatitis C, accelerates fibrosis and HCC progression and is associated with poor response to interferon-alpha (IFNα)-based therapy. In patients with genotype 3 infection, the severity of liver steatosis was shown to correlate with the viral load and was ameliorated following successful antiviral treatment. Besides, chronic HCV infection is associated with an increased risk of diabetes and higher levels of insulin resistance. Insulin resistance and elevated body mass index have been reported to impair sustained response to IFNα-based therapy. Although there is no conclusive evidence of the association between HCV and metabolic syndrome, based on these published data, we predict that patients with concomitant MAFLD and hepatitis C are likely to have poor clinical outcomes, including accelerated liver fibrosis progression, and increased risk of HCC and atherosclerosis compared to patients with hepatitis C alone.

Management of hepatitis C and MAFLD

Direct antiviral agents (DAAs), which show improved tolerability and high efficacy for HCV clearance, have now been recommended as the first-line treatment for hepatitis C. In addition to the high efficacy for HCV eradication, DAA treatment also showed a beneficial impact on systemic metabolism. In a study by Sun et al, DAA therapy led to increased triglyceride-to-cholesterol ratio in VLDL, indicating an improvement in HCV-related unfavorable plasma lipid parameters. Besides, successful treatment with DAAs is associated with improved glycemic control and a significant decrease in the risk of cardiovascular disease events. The changes in liver steatosis following DAA treatment have not been well studied.

Apart from DAA therapy, HCV patients with concomitant MAFLD should be appropriately managed with lifestyle changes and specific drugs. Since DAAs present an important potential for drug-drug interactions (DDIs), assessment of DDIs prior to initiation of DAA therapy is important in patients with concomitant MAFLD. For example, statins and antihypertensive agents may potentially interact with DAAs. Thus, due caution should be exercised while selecting a suitable DAA. To date, the effects of diabetes, obesity, and metabolic syndrome on the antiviral efficacy of DAAs have not been carefully evaluated. It will be interesting to compare the efficiency of DAA therapy in hepatitis C patients with or without MAFLD.

Acute viral hepatitis and MAFLD

The association of MAFLD and acute viral hepatitis (such as acute hepatitis A and acute hepatitis E) has not been reported. However, published data from experimental animal models suggest that preexisting liver steatosis may lead to more severe liver damage. Secondary stimuli such as lipopolysaccharide/alcohol can induce more severe liver injury in mice fed with high-fat diet compared with mice fed with chow diet. Besides, metabolic disorders such as diabetes and obesity may also accelerate liver injury. Zhang et al found that diabetes is an independent risk factor for adverse outcomes, especially mortality, in patients with acute HEV infection. It will be interesting to explore the relationship between MAFLD and acute hepatitis in the future.

Conclusions

The global burden of chronic liver disease has increased over the past decade. NAFLD is the most rapidly growing cause of cirrhosis and liver cancer worldwide, while viral hepatitis remains the most common contributor to liver disease-related mortality in China. A new definition of “MAFLD”, which emphasizes the metabolic disorders, will help update the clinical practices for liver diseases. There are a series of pertinent questions in the context of patients with concomitant MAFLD and viral hepatitis (Table 2), with some of them remaining unanswered. Management of patients with concomitant MAFLD and viral hepatitis requires close collaboration between hepatologists and endocrinologists. Further clinical trials are required to determine the optimal treatments for these patients.
Table 2. Potential questions in clinical practice for patients with concomitant MAFLD and chronic hepatitis B/C

Potential questions in clinical practice	HBV	HCV
Does hepatitis B/C promote fatty liver?	No	Yes
Does HBV/HCV infection increase the risk of diabetes?	Unknown	Yes
Does HBV/HCV infection worsen hyperlipidemia?	No	No
Does fatty liver promote liver fibrosis in chronic hepatitis?	Yes	Yes
Does fatty liver promote HCC in chronic hepatitis?	Yes	Yes
Does fatty liver facilitate viral replication?	No	Yes
Does fatty liver reduce the therapeutic effects of antiviral therapy?	Unknown	IFN-a—Yes
Do drugs for diabetes, hypertension, and dyslipidemia interact with antiviral therapies?	Unknown	IFN-a—unknown

DAAs, direct antiviral agents; HBV, hepatitis B virus; HCV, hepatitis C virus; HCC, hepatocellular carcinoma; IFN-a, interferon-alpha; MAFLD, metabolic dysfunction-associated fatty liver disease.

Acknowledgments

The authors acknowledge the valuable suggestions and careful editing by Dr. Bin Gao, Laboratory of Liver Diseases, NIAAA/NIH.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81770578, No. 82070604, No. 81770587) and the Shanghai Municipal Key Clinical Specialty (shsiczdzk01103).

Conflict of interest

The authors have no conflicts of interest related to this publication.

Author contributions

Literature search and writing of the manuscript (XW), and supervision of the entire project and editing of the manuscript (QX).

References

1. Ludwig J, Viggiano TR, McGill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 1980;55(7):434–438.
2. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASPH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018;15(1):11–20. doi:10.1038/nrgastro.2017.109.
3. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016;64(6):1388–1402. doi:10.1016/j.jhep.2015.11.004.
4. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Richers L, Eslam M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018;67(1):328–357. doi:10.1002/heap.24307.
5. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol 2020;73(1):202–209. doi:10.1002/jhep.2020.03.039.
6. Eslam M, Sanyal AJ, George J, International Consensus Panel, MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020;158(7):1999–2014.e1. doi:10.1053/
7. Younossi ZM, Rinele ME, Sanyal AJ, Harrison SA, Brent EM, Goodman Z, et al. From NAFLD to MAFLD: Implications of a Premature Change in Terminology. Hepatology 2021;73(1):1194–1198. doi:10.1002/hep.31420.
8. Wong MCS, Huang JLW, George J, Huang J, Leung C, Eslam M, et al. The changing epidemiology of liver diseases in the Asia-Pacific region. Nat Rev Gastroenterol Hepatol 2019;16(1):57–73. doi:10.1038/s41575-018-0055-0.
9. Bertoletti A, Gehring AJ. The immune response during hepatitis B virus infection. J Gen Virol 2006;87(Pt 6):1439–1449. doi:10.1099/vir.0.81920-0.
10. Ferrari C. HBV and the immune response. Liver Int 2015;35(Suppl 1):121–128. doi:10.1111/liv.12749.
11. Kong X, Sun R, Chen Y, Wei H, Tian Z. gammadelta T cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol 2014;193(4):1645–1653. doi:10.4049/jimmunol.1303432.
12. Wang MM, Wang GS, Shen F, Chen GY, Pan Q, Fan JG. Hepatic steatosis is highly prevalent in hepatitis B patients and negatively associated with virological factors. Dig Dis Sci 2014;59(10):2571–2579. doi:10.1007/s10620-014-3180-9.
13. Wong VW, Wong GL, Chu WC, Chim AM, Ong A, Yeung DK, et al. Hepatitis B virus infection and fatty liver in the general population. J Hepatol 2012;56(3):533–540. doi:10.1016/j.jhep.2011.09.013.
14. Cheng YL, Wang YJ, Kao WY, Chen PH, Huo TI, Huang YH, et al. Inverse association between hepatitis B virus infection and fatty liver disease: a large-scale study in populations seeking for check-up. PLoS One 2013;8(8):e72049. doi:10.1371/journal.pone.0072049.
15. Peleg N, Iosachar A, Sineh Arbib O, Cohen-Naftaly M, Braun M, Lesnoh M, et al. Liver steatosis is a strong predictor of mortality and cancer in chronic hepatitis B regardless of viral load. JHEP Rep 2019;1(1):9–16. doi:10.1002/hepr.136.
16. Joo EJ, Chang Y, Yeom JS, Ryu S. Hepatitis B virus infection and decreased risk of nonalcoholic fatty liver disease: A cohort study. Hepatology 2017;65(3):828–835. doi:10.1002/hep.28917.
17. Mak LY, Hui RW, Fung J, Liu F, Wong DK, Cheung KS, et al. Diverse effects of hepatic steatosis on fibrosis progression and functional cure in virologically quiescent chronic hepatitis B J Hepatol 2020;73(4):800–806. doi:10.1016/j.jhep.2020.05.040.
18. Lee HA, Lee HW, Kim JH, Park SY, Sinn DH, Yu JH, et al. Extremely low risk of hepatocellular carcinoma development in patients with chronic hepatitis B in immune-tolerant phase. Alliment Pharmacol Ther 2020;52(1):196–204. doi:10.1111/apt.15741.
19. Hu D, Wang H, Wang H, Wang Y, Wan X, Yan W, et al. Non-alcoholic hepatic steatosis attenuates hepatitis B virus replication in an HBV-immuno-competent mouse model. Hepatol Int 2018;12(5):438–446. doi:10.1007/s12072-018-9877-7.
20. Aharoni-Simon M, Hann-Obercyger M, Pen S, Madar Z, Tirosh O. Fatty liver is associated with impaired activity of PPARgamma-coactivator 1alpha (PGC1alpha) and mitochondrial biogenesis in mice. J Biol Chem 2011;286(51):44923–44932. doi:10.1074/jbc.M111.261906.
21. Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA. Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC1alpha) regulates triglyceride metabolism by activation of the nuclear receptor PPARalpha. Genes Dev 2004;18(2):157–169. doi:10.1101/gad.1138104.
22. Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, et al. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci U S A 2003;100(7):4012–4017. doi:10.1073/pnas.0730870100.
23. Vega RB, Huss JM, Kelly DP. The coactivator PGC1 cooperates with per-
oxime proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Bioi 2000;20(5):1865–1876. doi:10.1128/MCB.20.5.1865-1876.2000.

[25] Purvis et al. Data Donovan J, Waksley R, Orriente F, et al. Insulin-regulated hepatic glucose homeostasis through FOXO1-PGC-1alpha ipg. Nature 2009;460(7258):550–555. doi:10.1038/nature08138.

[26] Bar-Yishay I, Shaai Y, Shiloh A. Hepatic metabolic signalling pathways and regulation of hepatitis B virus expression. Liver Int 2011;31(3):282–290. doi:10.1111/j.1478-3275.2010.02423.x.

[27] Bhattacharjee J, Kirby M, Softic S, Miles L, Salazar-Gonzalez RM, Shivasukur M, et al. Hepatic Natural Killer T-cell and CD8+ T-cell Signatures in Mice With Nonalcoholic Steatohepatitis. Hepatol Commun 2017;1(4):299–316. doi:10.1002/hep.29403.

[28] Torres-Hernandez A, Wang W, Nikiforov Y, Tejada K, Torres L, Kalabin A, et al. Hepatitis B virus in patients with chronic hepatitis B: a study of associated factors and of relationship with fibrosis. Eur J Gastroenterol Hepatol 2006;18(3):233–237. doi:10.1111/j.1468-1345.2005.02736.x.

[29] Hsu CS, Liu WL, Chao YC, Lin HM, Tseng TC, Wang CC, et al. Adipocytokines and liver fibrosis in patients with chronic hepatitis B virus infection. Hepatol Int 2015;9(3):231–242. doi:10.1111/tai.12166.

[30] Chiang CH, Lee JS, Hung SH, Lee LT, Sheu JS, Huang KC. Serum adiponectin levels are associated with hepatitis B viral load in overweight to obese patients with chronic hepatitis B virus carrier. Obesity (Silver Spring) 2013;21(2):291–296. doi:10.1002/oby.2013037.

[31] Matsuoka Y. Adiponectin: a key player in obesity related disorders. Curr Pharm Des 2010;16(17):1896–1901. doi:10.2174/138161210791208893.

[32] Oehler N, Voitz T, Bhadra OD, Kah J, Allweiss L, Giersch K, et al. gammadelta T Cells Promote Steatohepatitis by Orchestrating Innate and Adaptive Immune Programming. Hepatology 2020;71(2):477–494. doi:10.1002/hep.31052.

[33] Jung MC, Pape GR. Immunology of hepatitis B infection. Lancet Infect Dis 2002;2(1):43–50. doi:10.1016/s1473-3099(01)00172-4.

[34] Feng X, Smolik L, Li J, Alkorta Neutrophil-Driven Nonalcoholic Steatohepatitis Through Multiple Cytokine Pathways. Am J Physiol Gastrointest Liver Physiol 2016;310(6):G708–G720. doi:10.1152/ajpgi.00049.2016.

[35] Wang X, et al. MFLD and viral hepatitis

[36] Patients With Chronic Viral Hepatitis: Results From a Nationwide Swedish Population. Ann Intern Med 2019;171(5):318–327. doi:10.7326/m18-2753.

[37] Bugaris E, Salamone F, Negro F. The interaction of metabolic factors with hepatitis C virus infection: is it matter? J Hepatol 2012;56(Suppl 1):S56–S60. doi:10.1016/S0168-8278(12)60007-5.

[38] Negro F. Facts and fictions of HCV and comorbidities: steatosis, diabetes mellitus, and cardiovascular diseases. J Hepatol 2014;61(1 Suppl):S59–S78. doi:10.1016/j.jhep.2014.08.003.

[39] Negro F. HCV infection: is it a metabolic syndrome: which is the chicken and which is the egg? Gastroenterology 2012;142(6):1288–1292. doi:10.1053/j.gastro.2011.12.063.

[40] Negro F. Abnormalities of lipid metabolism in hepatitis C virus infection. Gut 2010;59(9):1279–1287. doi:10.1136/gut.2009.197232.

[41] Shafer EA, Chung RT. HCV and host lipids: an intimate connection. Semin in Liver Dis 2013;33(4):358–368. doi:10.1055/s-0033-1358524.

[42] Kapadia SB, Chisari FV. Hepatitis C virus RNA replication is regulated by host gene-regulating energy and fatty acids. Proc Natl Acad Sci U S A 2005;102(7):2561–2566. doi:10.1073/pnas.0409834102.

[43] Yamanoe D, McCue DR, Waithier Y, Yi M, Madden VJ, Wetsch C, et al. Complex lipid metabolic remodeling is required for efficient hepatitis C virus replication. Biochim Biophys Acta Mol Cell Biol Lipids 2018;1886(9):1041–1056. doi:10.1016/j.bbalip.2018.06.002.

[44] Martou R, Chazouilleres O, Wendum P, Poupou R, Serfaty L. Impact of steatosis on progression of fibrosis in patients with mild hepatitis C. Hepatology 2007;46(3):824–832. doi:10.1002/hep.21923.

[45] Ghata K, Hamasaki K, Toriyama K, Matsumoto K, Saeki A, Yanagi K, et al. Hepatic steatosis is a novel risk factor for severe liver cirrhosis in chronic hepatitis C patients. Gastroenterology 2003;125(7):1306–1314. doi:10.1053/j.gastro.2003.07.007.

[46] Liu CH, Chen R, Jia Y, Huang H, Yin Y, et al. Effect of treatment with peginterferon or interferon alfa-2b and ribavirin on steatosis in patients infected with hepatitis C virus. Hepatology 2003;38(1):75–85. doi:10.1053/j.hep.2003.05.0267.

[47] Brubia-Rand L, Giostra E, Mentha G, Quadri K, Negro F. Effect of suppression of liver steatosis in hepatitis C virus infection and pattern of response to alfa-interferon. J Hepatol 2001;35(2):307. doi:10.1016/s0168-8013(00)0087-5.

[48] White DL, Ratziu V, El-Serag HB. Hepatitis C infection and risk of diabetes: a systematic review and meta-analysis. J Hepatol 2008;49(5):831–844. doi:10.1016/j.jhep.2008.04.019.

[49] Hui JM, Sud A, Farrell GC, Bandara P, Byth K, Kench JG, et al. Lipophilic Statins and Risk for Hepatocellular Carcinoma and Death in Patients With Chronic Hepatitis C. Cancer. Diabetes Care 2017;40(9):e13938.

[50] Butt AA, Yen P, Shuahib A, Alou-Samra AB, Shafik OS, Freiberg MS. Direct-Acting Antiviral Therapy for HCV Infection Is Associated With a Reduced Risk of Cardiovascular Disease Events. Gastroenterology 2019;156(4):987–989.e988. doi:10.1053/j.gastro.2018.11.022.

[51] Ma X, Hua J, Jou JH, Green PK, Berry K, Lundblad J, Hettinger BD, et al. Hepatitis C virus infection. Aliment Pharmacol Ther 2017;45(5):701–713. doi:10.1111/apt.13938.

[52] Chang FM, Wang YP, Lang HC, Tsai CF, Hou MC, Lee FY, et al. Insulin resistance impairs sustained response to peginterferon plus ribavirin in chronic hepatitis C patients. Gastroenterology 2005;128(3):636–641. doi:10.1053/j.gastro.2004.12.049.

[53] Chang FM, Wang YP, Lang HC, Tsai CF, Hou MC, Lee FY, et al. Insulin resistance impairs sustained response to peginterferon plus ribavirin in chronic hepatitis C patients. Am J Gastroenterol 2005;100(3):664–670. doi:10.1111/j.1572-0241.2005.3207.x.

[54] Chang FM, Wang YP, Lang HC, Tsai CF, Hou MC, Lee FY, et al. Insulin resistance impairs sustained response to peginterferon plus ribavirin in chronic hepatitis C patients. Gastroenterology 2005;128(3):636–641. doi:10.1053/j.gastro.2004.12.049.

[55] Chang FM, Wang YP, Lang HC, Tsai CF, Hou MC, Lee FY, et al. Insulin resistance impairs sustained response to peginterferon plus ribavirin in chronic hepatitis C patients. Gastroenterology 2005;128(3):636–641. doi:10.1053/j.gastro.2004.12.049.

[56] Chang FM, Wang YP, Lang HC, Tsai CF, Hou MC, Lee FY, et al. Insulin resistance impairs sustained response to peginterferon plus ribavirin in chronic hepatitis C patients. Gastroenterology 2005;128(3):636–641. doi:10.1053/j.gastro.2004.12.049.