Species-Specific Type II Restriction-Modification System of Xylella fastidiosa Temecula1

Ayumi Matsumoto and Michele M. Igo*

Department of Microbiology, University of California, Davis, One Shields Avenue, Davis, California 95616

Received 16 December 2009/Accepted 19 April 2010

The transformation efficiency of Xylella fastidiosa can be increased by interfering with restriction by the strain-specific type II system encoded by the PD1607 and PD1608 genes. Here, we report results for two strategies: in vitro methylation using M.SssI and isolation of DNA from an Escherichia coli strain expressing the methylase PD1607.

Xylella fastidiosa is a fastidious, xylem-limited, Gram-negative bacterium and the causative agent of Pierce’s disease (PD) of grapevines (1, 12). X. fastidiosa is transmitted from infected plants to susceptible plant species, like grapevines, by xylem-feeding insects. Once inside the grapevine xylem, X. fastidiosa impedes the flow of sap, thereby producing the characteristic symptoms of PD. Studies of the virulence and basic biology of X. fastidiosa have been facilitated by the availability of genetic and molecular tools (6, 8–10, 20, 22, 23). In each case, their successful use has depended on the ability to efficiently introduce DNA into X. fastidiosa.

In most bacteria, efficient acquisition of foreign DNA is limited by the presence of host-encoded restriction-modification (R-M) systems (14, 25). The restriction enzyme (REase) cleaves incoming DNA at specific sequences unless its recognition site has been modified by its cognate methyltransferase (MTase). R-M systems are divided into four categories (types I to IV) based on their mode of action and the distribution of the restriction, modification, and specificity functions within the enzyme subunits. Analysis of the X. fastidiosa Temecula1 genome has uncovered a number of potential R-M systems based on their overall sequence similarities to known systems (25, 28). According to the Restriction Enzyme Database (REBASE) (25), X. fastidiosa Temecula1 is predicted to encode four functional R-M systems, of the following types (with the following locus tags): type I (PD2070-PD2072 and PD2074-PD2076), type II (PD1607-PD1608), and type III (PD0833-PD0835). Restriction by these systems, particularly the type I systems, has been shown to have a major impact on the stable acquisition of foreign DNA by X. fastidiosa (9).

The focus of the manuscript is the type II R-M system encoded by the PD1607 and PD1608 genes (28). This system, which is present only in X. fastidiosa subsp. fastidiosa, does not impact the incidence of infection or the ability of X. fastidiosa to multiply within grapevines (17). The PD1607-PD1608 system is located within the prophage-like region Xpd8 (4) between the hypothetical protein PD1606 and tRNAAsn (Fig. 1). Analysis of their genetic organization suggests that the PD1606 and PD1607 genes are transcribed as a single polycistronic mRNA with the stop codon of the upstream REase overlapping the start codon of the downstream MTase. Based on naming conventions, the REase encoded by the PD1608 gene has been named XfaTORF1607P, and the MTase encoded by the PD1607 gene has been named M.XfaTORF1607P (REBASE) (25). For simplicity, we will refer to them as REase-PD1608 and MTase-PD1607, respectively. REase-PD1608 exhibits 58% amino acid identity to NspV from Nostoc sp. strain PCC7524 (27) and is predicted to recognize the sequence TTCGAA (REBASE) (25). The associated MTase-PD1607 exhibits 45% amino acid identity to M.NspV from Nostoc sp. strain PCC7524 (27). The similarity between the PD1607-PD1608 and NspV systems is further supported by the observation that X. fastidiosa Temecula1 genomic DNA is resistant to digestion with NspV (data not shown). The simplest interpretation for this result is that MTase-PD1607 methylates one of the bases within the sequence TTCGAA, thereby blocking cleavage by NspV.

To determine if X. fastidiosa transformation efficiency is lower for exogenous plasmids containing NspV sites, we conducted a series of experiments by using pBBR1MCS-5, a broad-host-range plasmid that contains a single NspV site and replicates in both E. coli and X. fastidiosa (15, 23). Plasmid DNA isolated from either X. fastidiosa or E. coli was introduced into X. fastidiosa electrocompetent cells as previously

FIG. 1. Chromosomal region surrounding the X. fastidiosa type II R-M system. The orientations and locations of the putative open reading frames (ORFs; arrows) and tRNA* (triangle) are indicated. The PD1608 gene is predicted to encode a subtype P type II REase; the PD1607 gene is predicted to encode a subtype gamma type II MTase (REBASE) (25). The PD1608-PD1607 operon is located within prophage-like region Xpd8 (4) and adjacent to tRNA* (the PD1605 ORF contains a frameshift mutation, which disrupts the putative integrase of Xpd8 (4). PD1606 extends toward and overlaps the 3′ end of PD1607 by 143 bp. The hypothetical protein encoded by the PD1606 gene shows some similarity in its N terminus (4e-10) to proteins belonging to the bacteriophage P4-like integrase subfamily (cd00801 sequence cluster) (19). However, PD1606 does not resemble PD1605 or other X. fastidiosa integrases.
FIG. 2. Transformation efficiency of plasmids into *X. fastidiosa*. Efficiency of transformation was calculated as the number of transformants per microgram of DNA. The amount of DNA was quantified by measuring absorbance at 260 nm by using a NanoDrop spectrophotometer (Thermo Scientific). The means of the results for three independent experiments and their standard errors are indicated. (A) *X. fastidiosa*-isolated pBBR1MCS-5. (B) DH5α-isolated pBBR1MCS-5 alone. (C) DH5α-isolated pBBR1MCS-5 with TRI. (D) DH5α-isolated pAM232 with TRI. (E) DH5α-isolated pBBR1MCS-5 treated with M.SssI according to manufacturer’s instructions before coelectroporation with TRI. (F) EAM1-isolated pBBR1MCS-5 with TRI.

Strains

Strain, plasmid or oligonucleotide	Description	Reference or source
X. fastidiosa Temecula1	*X. fastidiosa* subsp. *fastidiosa*; PD isolate ATCC 700964	8
Escherichia coli		lab collection
DH5α	supE44 ΔlacU169 (φ80 lacZΔM15) recA1 endA1 hsdR17 thi-1 gyrA96 relA1	8
DH5α*pir	DH5α lysogenized with λ pir bacteriophage	Lab collection
EAM1	DH5α derivative; Sp r Str; att*P*K022-; (P_lacO-1-PD1607)	This study
Plasmids		
pAH69	Ap r; CRIM helper plasmid; oriR101 Int*HK022	11
pAH144	Sp r Str; R6K γ ori att*P*K022 plasmid dependent upon pirγ in host	11
pAM217	Ap r; PD1607 in pJET1.2/blunt	This study
pAM218	Ap r; PD1607 from pAM217 in pZE12	This study
pAM224	Sp r Str; P_lacO-1-PD1607 from pAM218 in pAH144	This study
pAM232	Gm r; disrupted NspV site on pBBR1MCS-5 by filling-in with Klenow	15
pBBR1MCS-5	Gm r; pBBR1 replicon; broad-host-range cloning vector	Fermentas
pJET1.2/blunt	Ap r; blunt PCR cloning vector	18
pZE12	Ap r; ColE origin; P_lacO-1 promoter	18

Oligonucleotides

Oligonucleotides	Description	Reference or source
PD1607-Kpn	5′-GGTACCCTGTAAGAAGAAAGAAAGAG-3′ (KpnI site is underlined)	16
PD1607-Xba	5′-TCTAGACTATGCAGCGCAGCCTTTGCGG-3′ (XbaI site is underlined)	16
Another strategy for preventing restriction involves in vivo methylation of DNA by passage through an E. coli strain expressing the appropriate MTase (3, 21). The vectors, intermediate plasmids, strains, and oligonucleotides that we used in this construction are listed in Table 1. To create this strain, the PD1607 gene was amplified by PCR using oligonucleotides PD1607-Kpn and PD1607-Xba and placed downstream of the IPTG (isopropyl-β-D-thiogalactopyranoside)-inducible P1lacO-1 promoter in pZE12 (18). The resulting fusion was integrated into the attHK site in DH5α by using the CRIM system (11), generating EAM1. Following transformation of EAM1 with pBBR1MCS-5, expression of the MTase-PD1607 was induced by growth in LB containing 1 mM IPTG and 10 μg/ml gentamicin. As shown in Fig. 3, EAM1-isolated pBBR1MCS-5 was resistant to cleavage by NspV but not by either SalI or SphI. Furthermore, its transformation efficiency was 10-fold higher than that of the DH5α-isolated plasmid (Fig. 2, column C versus F).

Concluding remarks. Comparative genomics has revealed that X. fastidiosa strains are unusually rich in R-M systems (14, 25, 28) and that some systems, like PD1607-PD1608, are found only in specific X. fastidiosa subspecies. Strain-specific R-M systems, which influence intraspecies genetic exchange, are thought to contribute to the genetic isolation necessary for pathogens to successfully colonize a new host (13, 14). At a practical level, these systems present obstacles for genetic manipulations that require the transformation of X. fastidiosa with DNA from a foreign source. In this paper, we described two different methods for overcoming restriction by REase-PD1608 that involve prior methylation of the DNA. Similar strategies could be developed to overcome the restriction by species-specific REase in other X. fastidiosa subspecies.

We thank Huey Jiin Liu for technical assistance. We also thank Rebecca Parales and Sherry Huston for their critical reading of the manuscript.

Funding for this work was provided by the California Department of Food and Agriculture Pierce's Disease and Glassy-winged Sharp-shooter Research Board and the California Agricultural Experimental Station.

REFERENCES

1. Chatterjee, S., R. P. Almeida, and S. Lindow. 2008. Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Annu. Rev. Phytopathol. 46:243–271.
2. Chen, Q., J. R. Fischer, V. M. Benoit, N. P. Dufour, P. Youderian, and J. M. Leong. 2008. In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56. J. Bacteriol. 190:7885–7891.
3. De Feyter, R., and D. W. Gabriel. 1991. Use of cloned DNA methylase genes to increase the frequency of transfer of foreign genes into Xanthomonas campestris pv. malvacearum. J. Bacteriol. 173:6421–6427.
4. de Mello Varani, A., R. C. Souza, H. I. Nakaya, W. C. de Lima, L. G. Paula de Almeida, E. W. Kitajima, J. Chen, E. Civerolo, A. T. Vasconcelos, and M. A. Van Sluys. 2008. Origins of the Xylella fastidiosa phage-like regions of their impact in genome differentiation. PLoS One 3:e4059–e4573.
5. Donahue, J. P., D. A. Israël, R. M. Peek, M. J. Blaser, and G. G. Miller. 2000. Overcoming the restriction barrier to plasmid transformation of Helicobacter pylori. Mol. Microbiol. 37:1066–1074.
6. Feil, W. S., S. F. Feil, J. C. Detter, A. H. Purcell, and S. E. Lindow. 2003. Site-directed disruption of the fimA and fimF fimbrial genes of Xylella fastidiosa. Phytopathology 93:675–682.
7. Groot, N. 2008. Enhanced transformation efficiency of recalfi trant Bacillus cereus and Bacillus weihenstephanensis isolates upon in vitro methylation of plasmid DNA. Appl. Environ. Microbiol. 74:7817–7820.
8. Guillahbert, M. R., M. L. Hoffman, D. A. Mills, and B. C. Kirkpatrick. 2001. Transposon mutagenesis of Xylella fastidiosa by electroporation of Tn5 synaptic complexes. Mol. Plant Microbe Interact. 14:701–706.
9. Guillahbert, M. R., and B. C. Kirkpatrick. 2003. Transformation of Xylella fastidiosa with broad host range RSF1010 derivative plasmids. Mol. Plant Pathol. 4:279–285.
10. Guillahbert, M. R., V. J. Stewart, and B. C. Kirkpatrick. 2006. Characterization of putative rolling-circle plasmids from the Gram-negative bacterium Xylella fastidiosa and their use as shuttle vectors. Plasmid 55:70–80.
11. Haldimann, A., and B. L. Wanner. 2001. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J. Bacteriol. 183:6384–6393.
12. Hopkins, D. L., and A. H. Purcell. 2002. Xylella fastidiosa: cause of Pierce's disease of grapevine and other emerging diseases. Plant Dis. 86:1056–1066.
13. Jeltsch, A. 2003. Maintenance of species identity and controlling speciation of bacteria: a new function for restriction/modification systems? Gene 317:13–16.
14. Kohayashi, I. 2001. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29:3752–3756.
15. Kovach, M. E., P. H. Elzer, D. S. Hill, G. T. Robertson, M. A. Farris, R. M. Roop, and K. M. Peterson. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance markers. Gene 166:35–39.
16. Kwak, J., H. Jiang, and K. E. Kendrick. 2002. Transformation using in vivo and in vitro methylation in Streptomyces griseus. FEMS Microbiol. Lett. 209:243–248.
17. Lindow, S. E., and W. S. Feil. 2006. Contribution of Xylella fastidiosa genes unique to grape strains to its virulence to grape and utility in specific detection of grape strains by DNA-based methods, p. 169–172. In T. Esser (ed.), Proceedings of Pierce's Disease Research Symposium. California Department of Food and Agriculture, Sacramento, CA.
18. Lutz, R., and H. Bujard. 1997. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25:1203–1210.
19. Marchler-Bauer, A., J. B. Anderson, F. Chitsaz, M. K. Derbyshire, C. DeWeese-Scott, J. H. Fong, L. Y. Geer, R. C. Geer, N. R. Gonzales, M. Gwadz, S. He, D. I. Hurwitz, J. D. Jackson, Z. Ke, C. J. Lanczycki, C. A. Liebert, C. Liu, F. Lu, S. Lu, G. H. Marchler, M. Mullikandov, J. S. Song, A. Tasneem, N. Thakur, R. A. Yamashita, D. Zhang, N. Zhang, and S. H. Bryant. 2009. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res. 37:D205–D210.
20. Matsumoto, A., G. M. Young, and M. M. Igo. 2009. Chromosome-based genetic complementation in Xylella fastidiosa. Appl. Environ. Microbiol. 75:1679–1687.
21. Moser, D. P., D. Zarka, and T. Kallas. 1993. Characterization of a restriction barrier and electrotransformation of the cyanobacterium Nostoc PCC 7121. Arch. Microbiol. 160:229–237.
22. Qin, X., and J. S. Hartung. 2001. Construction of a shuttle vector and transformation of Xylella fastidiosa with plasmid DNA. Curr. Microbiol. 43:158–162.
23. Reddy, J. D., S. L. Reddy, D. L. Hopkins, and D. W. Gabriel. 2007. TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines. Mol. Plant Microbe Interact. 20:403–410.
24. Renbaum, P., D. Abrahamove, A. Fainsod, G. G. Wilson, S. Rottem, and A. Xylella fastidiosa subsp. plant systems. Strain-specific R-M systems, which influence intraspecies genetic exchange, are thought to contribute to the genetic isolation necessary for pathogens to successfully colonize a new host (13, 14). At a practical level, these systems present obstacles for genetic manipulations that require the transformation of X. fastidiosa with DNA from a foreign source. In this paper, we described two different methods for overcoming restriction by REase-PD1608 that involve prior methylation of the DNA. Similar strategies could be developed to overcome the restriction by species-specific R Ease in other X. fastidiosa subspecies.

We thank Huey Jiin Liu for technical assistance. We also thank Rebecca Parales and Sherry Huston for their critical reading of the manuscript.

Funding for this work was provided by the California Department of Food and Agriculture Pierce’s Disease and Glassy-winged Sharp
Razin. 1990. Cloning, characterization, and expression in Escherichia coli of the gene coding for the CpG DNA methylase from Spiroplasma sp. strain MQ1 (M. SssI). Nucleic Acids Res. 18:1145–1152.

25. Roberts, R. J., T. Vincze, J. Posfai, and D. Macelis. 2007. REBASE—enzymes and genes for DNA restriction and modification. Nucleic Acids Res. 35:D269–D270.

26. Sambrook, J., and D. W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

27. Ueno, T., H. Ito, H. Kotani, F. Kimizuka, and K. Nakajima. 1993. Cloning and expression of the NspV restriction-modification genes of Nostoc sp. strain PCC7524. Nucleic Acids Res. 21:3899.

28. Van Sluys, M. A., M. C. de Oliveira, C. B. Monteiro-Vitorello, C. Y. Miyaki, L. R. Furlan, L. E. A. Camargo, A. C. R. da Silva, D. H. Moon, M. A. Takita, E. G. M. Lemos, M. A. Machado, M. I. T. Ferro, F. R. da Silva, M. H. S. Goldman, G. H. Goldman, M. V. F. Lemos, H. El-Dorry, S. M. Tsai, H. Carrer, D. M. Carraro, R. C. de Oliveira, L. R. Nunes, W. J. Siqueira, L. L. Coutinho, E. T. Kimura, E. S. Ferro, R. Harakava, E. E. Karamae, C. L. Marino, E. Giglioti, I. L. Abreu, L. M. C. Alves, A. M. do Amaral, G. S. Baia, S. R. Blanco, M. S. Brito, F. S. Cannavan, A. V. Celestino, A. F. da Cunha, R. C. Fenille, J. A. Ferro, E. F. Formighieri, L. T. Kishi, S. G. Leoni, A. R. Oliveira, V. E. Rosa, F. T. Sassaki, J. A. D. Sena, A. A. de Souza, D. Trufli, F. Tsukumo, G. M. Yanai, L. G. Zaros, E. L. Civerolo, A. J. G. Simpson, N. F. Almeida, J. C. Setubal, and J. P. Kitajima. 2003. Comparative analyses of the complete genome sequences of Pierce’s disease and citrus variegated chlorosis strains of Xylella fastidiosa. J. Bacteriol. 185:1018–1026.

29. Voelker, L. L., and K. Dybvig. 1996. Gene transfer in Mycoplasma arthritidis: transformation, conjugal transfer of Tn916, and evidence for a restriction system recognizing AGCT. J. Bacteriol. 178:6078–6081.