17β-Hydroxysteroid dehydrogenases involved in local oestrogen synthesis have prognostic significance in breast cancer

C Gunnarsson*,1, E Hellqvist,1 O Stål1 and the Southeast Sweden Breast Cancer Group2

*Department of Biomedicine and Surgery, Division of Oncology, Faculty of Health Sciences, Linköping, Sweden

The 17β-hydroxysteroid dehydrogenase (17HSD) enzymes are involved in the local regulation of sex steroids. The 17HSD type 1 enzyme catalyses the interconversion of the weak oestrone (E1) to the more potent oestradiol (E2), whereas 17HSD type 2 catalyses the oxidation of E2 to E1. The aim of this study was to correlate the expression of these enzymes in the tumour with the recurrence-free survival of tamoxifen-treated breast cancer patients. We used real-time reverse transcriptase PCR to investigate the mRNA expression of 17HSD types 1 and 2 in tumour samples from 230 postmenopausal patients. For the patients with oestrogen receptor (ER)-positive breast cancer, we found a statistically significant positive correlation between recurrence-free survival and expression of 17HSD type 2 (P = 0.026). We examined the ratio of 17HSD types 2 and 1, and ER-positive patients with low ratios showed a significantly higher rate of recurrence than those with higher ratios (P = 0.0047). ER positive patients with high expression levels of 17HSD type 1 had a significantly higher risk for late relapse (P = 0.0051). The expression of 17HSD types 1 and 2 in breast cancer differs from the expression of these enzymes in normal mammary gland, and this study indicates that the expression has prognostic significance in breast cancer.

Keywords: 17β-hydroxysteroid dehydrogenase; breast cancer; oestradiol; real-time PCR; tamoxifen

Oestrogens play an important role in the development of hormone-dependent breast cancer. In premenopausal women, the majority of oestrogen is produced in the ovaries. In postmenopausal women, local oestrogens in breast carcinoma tissue originate through two main pathways, one involving aromatase, which converts androgens to oestrogens, and the other utilising steroid sulphatase, which converts oestrone sulphate into oestrone. 17β-Hydroxysteroid dehydrogenase (17HSD) activity is finally needed for the oestradiol/oestrone regulation.

The 17HSD type 1 enzyme uses NADPH as a cofactor and catalyses the interconversion of the weak oestrone, oestrone (E1), to the biologically more potent oestradiol (E2). 17β-Hydroxysteroid dehydrogenase type 2 uses NAD+ as a cofactor and catalyses the oxidation of testosterone and oestradiol to form androstenedione and oestrone, respectively (Miettinen et al, 1996; Vihko et al, 2001). Previous studies have reported the presence of multiple 17HSD isoenzymes in humans, including type 3 and 4 (Speirs et al, 1998, 1999; Peltokeeto et al, 1999), although types 1 and 2 seem to be the principal enzymes involved in reductive and oxidative activity in breast cancer, respectively (Miettinen et al, 1999). Moreover, previous studies have suggested that oestradiol can be produced in the same organ where it exerts its biological response. This is in agreement with the fact that breast cancer tissue possesses all the enzymes necessary for the bioformation of oestradiol (Yue et al, 1998; Purohit et al, 2002).

A few immunohistochemical studies of 17HSD type 1 in human breast cancer have been reported, suggesting that 17HSD type 1 may play an important role in the in situ regulation of oestradiol production in hormone-dependent breast carcinomas (Poutanen et al, 1992; Sasano et al, 1996; Suzuki et al, 2000). In a previous study, we found that the expression of both 17HSD types 1 and 2 differ in the tumours of patients with and without late relapse in the disease (Gunnarsson et al, 2001).

Oestrogen receptor (ER)-positive breast cancer is usually treated with tamoxifen, and long-term adjuvant tamoxifen is beneficial compared with treatment of shorter duration (Swedish Breast Cancer Cooperative Group, 1996). We hypothesised that the expression levels of 17HSD types 1 and 2, by affecting intratumoural oestradiol levels, might influence the response to endocrine treatment of breast cancer. The purpose of this study was to analyse the prognostic significance of 17HSD types 1 and 2 expression in a series of postmenopausal patients treated with adjuvant tamoxifen.

MATERIAL AND METHODS

We analysed frozen tissue from excised primary breast tumours of 230 women treated in the health-care region of southeast Sweden between 1985 and 1991. The patients were participants in a
randomised multicentric trial where 2 and 5 years of adjuvant postoperative tamoxifen treatment was compared for postmeno-
pausal patients less than 75 years of age (Swedish Breast Cancer
Cooperative group). The daily dose of tamoxifen was 40 mg. All
patients had primary breast cancer, stage II (UICC), without
distant metastasis at the time of diagnosis. The median period of
follow-up was 13.9 years. Primary surgery consisted of either
modified radical mastectomy or breast-conserving surgery com-
bined with axillary lymph node dissection. Radiotherapy (50 Gy) to
the breast was offered to all patients treated with breast-conserving
surgery. Lymph node-positive patients were treated with radiation
directed to the breast/chest wall and regional lymph nodes. After
surgery, the tumour samples were stored in a freezer (−70 °C) until
RNA extraction was performed. Oestrogen receptor and proges-
terone receptor (PgR) content was measured in clinical routine
practice with isoelectric focusing before 1988 and thereafter with
enzyme immunounassays (EIA) (Abbott Laboratories, Chicago, IL,
USA). Samples with concentrations ≥0.1 fmol μg⁻¹ DNA (or
≥0.3 fmol μg⁻¹ DNA with EIA) were classified as positive. The
present material is a subset of the patients in the region who
participated in the trial, and includes the patients for whom frozen
tumour samples were available after hormone receptor analysis.
The characteristics of the tumours were similar to those in the
complete series as regards a positive lymph node status (71 vs
76%). The study was approved by the regional ethics
committee at Linköping University.

RNA extraction
Frozen breast tumour tissue (30 mg) was homogenised in a
microdisembrator (B Braun, Melsungen, Germany), and total
RNA was extracted with the SV total RNA isolation system
(Promega, Madison, WI, USA). The purified RNA was stored at
−70 °C, and the RNA content was determined by spectrophoto-
metry. We also examined the expression of 17HSD types 1 and 2
in normal mammary gland. Total RNA from a pool of human breast
tissue samples from 3 women (age 46–54 years) was purchased
from ADH diagnostics (Life Technologies, Inc.).

cDNA synthesis
Total RNA (500 ng) was reverse-transcribed in a final volume of
20 μl using Gibko BRL kit (Life Technologies, Inc., Stockholm,
Sweden) with the following concentrations: 1 × PCR buffer, 5 mM
MgCl₂, 0.5 μM deoxynucleotide triphosphates, 2.5 μM random
hexamers, 10 mM DTT, and 0.5 μl of Superscript reverse tran-
scriptase (Life Technologies, Inc.) The thermal conditions used
were as follows: 20 °C for 10 min, 42 °C for 50 min, 99 °C for 5 min,
and after that 5 °C. The samples were stored at 4 °C as the real-time
PCR analysis was performed during the same day.

Primers and probes
We used the computer software Primer Express (PE Applied
Biosystems, Foster City, CA, USA) to design primers and probes
that recognised human 17β-HSD types 1 and 2 cDNA sequences.
We conducted Blast searches (GenBank) to confirm the specificity
of nucleotide sequences chosen for the primers and probes and the
absence of DNA polymorphism. To avoid detection of contam-
inating genomic DNA, the probe was placed in the junction
between two exons. The primer and probe sequences were:
17HSD type 1: forward primer: 5'-TAT GAG AGA GTC TGG CGG TT-3',
reverse primer: 5'-TGC ACT GGG CCG CAC T-3', probe: 5'-CGA
GAG TCA AGT GGA CCC CAA-3'; 17HSD type 2: forward
primer: 5'-TCA CCT GTG GAT CAG AAG GCA GT-3', reverse
primer: 5'-TTG CAC AAA GCA TGG CCA-3', probe: 5'-CCC GCA
ATC ACC ACC TGT CAC CA-3'. Both primers and probes were
purchased from PE Applied Biosystems, as were the primers and
probes for β-actin, which was used as endogenous control gene.

Real-time PCR
The reactions were performed in the ABI Prism 7700 Sequence
Detection System (PE Applied Biosystems). The design of the
TaqMan probes, combined with the 5'-3' nuclelease activity of
AmpliTaq Gold DNA polymerase (PE Applied Biosystems), allows
the direct detection of the PCR product by the release of a
fluorescent reporter during the PCR. PCR conditions
cDNA (3 μl) was added to the reaction mixture, which had a total
volume of 25 μl. With the TaqMan PCR core reagent kit (PE
Applied Biosystems) the concentrations used were as follows:
1 × TaqMan buffer A, 5.0 mM MgCl₂, 0.1 mM deoxynucleotide
triphosphates, 0.1 μM each of forward and reversed primers, 0.1 μM
probe, and 0.025 units μl⁻¹ AmpliTaq Gold DNA polymerase.
The thermal conditions used were 95 °C for 10 min, 95 °C for 15 s
and 60 °C for 1 min. Steps two and three were repeated for 40 cycles.
When we used the synthesised cDNA for each tumour, the 17β-
HSD types 1 and 2 and β-actin specific sequences were amplified
independently in separate reaction wells in triplicate. On the same
plate, we included samples for standard curves for the target genes.

Standard curve method
A relative kinetic method was applied, using a standard curve,
which was constructed with four-fold serial dilutions of cDNA
from normal breast tissue. Standard curves were produced for the
two target genes after each run. The target messages in unknown
samples were quantified, using the standard curves, to determine
a relative measure of the starting amount. The measures were
normalised, which means that the level of 1 represents the
expression level in normal mammary tissue.

Statistical analysis
The relationships between grouped variables were analysed with
the χ² test. Survival curves were produced according to the life-
table method described by Kaplan and Meier. Differences in
recurrence-free survival were estimated with the log-rank test.
Multivariate analysis of recurrence and mortality rates was
performed with Cox proportional hazard regression. All the
procedures are comprised in the statistical package STATISTICA
6.0 (StatSoft Scandinavia AB, Sweden). The criterion for statistical
significance was P < 0.05.

RESULTS
The 17HSD type 1 enzyme was detected in all of the 230 tumours
analysed with a mean value of 2.3. The tenth and the ninetieth
percentile for 17β-HSD type 1 were 0.1 and 8.2, respectively. To
discriminate between low/intermediate and high expression of
17HSD type 1, the material was divided into two groups according
to the mean level; lower (<2.3), and higher (>2.3). 17β-
Hydroxysteroid dehydrogenase type 2 mRNA was detected in
69% of the tumours. The tenth and ninetieth percentile for 17HSD
type 2 were 0.0 and 0.92, respectively. The mean expression level
for 17HSD type 2 was 0.28. To categorise the patients into two
groups the mean value was used as cutoff. Since 17HSD types 1 and
2 cooperate to regulate the levels of E2 and E1, we also
determined the ratio between these enzymes in each tumour. The
majority showed low ratios as compared to normal. Using the upper
tertile as cutoff level, we divided the material into groups with higher
(>0.2) or lower (<0.2) ratios. The expression of 17HSD types 1
and 2 were not significantly associated with other tumour characteristics, such as lymph node status, tumour size, ER status or PgR status (Table 1).

Table 1 17β-Hydroxysteroid dehydrogenase (17HSD) types 1 and 2 expression and the 17HSD2/17HSD1 ratio in relation to tumour characteristics and tamoxifen treatment

	17HSD1	17HSD2	HSD2/HSD1
< 2.3	> 2.3	> 2.3	> 2.3
n = 171	n = 59	n = 175	n = 154
0.28	> 0.28	> 0.28	> 0.2
n = 29	n = 28	n = 32	n = 16
0.2	< 0.2	< 0.2	< 0.2
n = 76	n = 52	n = 65	n = 29

Lymphnode status/tumour size (mm)
N−, > 20 | 48 (75) | 16 (25) | 47 (73) | 17 (27) | 39 (61) | 25 (39) |
N+, ≤ 20 | 50 (72) | 19 (28) | 55 (80) | 14 (20) | 53 (77) | 16 (23) |
N+, < 20 | 68 (77) | 20 (23) | 66 (75) | 22 (25) | 54 (61) | 34 (39) |

ER status
ER− | 36 (71) | 15 (29) | 42 (82) | 9 (18) | 36 (71) | 15 (29) |
ER+ | 135 (75) | 44 (25) | 133 (74) | 46 (26) | 118 (66) | 61 (34) |

PgR status
PR− | 67 (73) | 25 (27) | 73 (79) | 19 (21) | 65 (71) | 27 (29) |
PR+ | 104 (75) | 34 (25) | 102 (74) | 36 (26) | 89 (64) | 49 (36) |

Tamoxifen
TAM 2 years | 74 (64) | 41 (36) | 81 (70) | 34 (30) | 76 (66) | 39 (34) |
TAM 5 years | 97 (84) | 18 (16) | 94 (82) | 21 (18) | 78 (68) | 37 (32) |

Prognostic value of 17HSD
Oestrogen receptor-positive patients whose tumour had a high ratio (17HSD2/17HSD1 > 0.2) showed a significantly better prognosis than patients with low ratios (P = 0.0047), whereas no association was found among ER negative patients (P = 0.34) (Figure 1). This stayed true in multivariate analysis, with regard to recurrence-free survival as well as breast cancer-specific survival (Table 2). A similar result was found for 17HSD type 2 alone. Among ER-positive patients, those with low expression of type 2 had a significantly higher recurrence rate compared with patients who expressed normal levels (P = 0.0047) (Figure 2). This difference could not be seen among ER-negative patients (P = 0.62). The prognostic significance of type 2 held true in multivariate analysis (P = 0.042). There was no significant association between 17HSD type 1 and recurrence-free survival if the entire follow-up period was considered (Figure 3A). However, for ER positive patients still recurrence-free after 5 years, high levels of 17HSD type 1 was associated with a significantly higher rate of late relapse in the disease (P = 0.0051) (Figure 3B).

Expression of 17HSD and benefit of 5 vs 2 years tamoxifen treatment
Oestrogen receptor-positive patients with low 17HSD2/17HSD1 ratios tended to have the advantage of 5 instead of 2 years tamoxifen treatment (5 vs 2 years recurrence rate ratio, RR = 0.56, 95% CI, 0.29 – 1.06, P = 0.072). This difference could not be seen among patients with high ratios (RR = 0.92 (0.28 – 3.0), P = 0.90). The same pattern was observed for 17HSD type 2 alone, that is, ER-positive patients with low expression benefited from prolonged...
treatment, whereas those showing higher type 2 levels appeared to have similar recurrence-free survival with 2 and 5 years of treatment (5 vs 2 years, RR = 0.60 (95% CI, 0.35–1.04) and RR = 1.01 (0.28–3.6), respectively). Oestrogen receptor-positive patients with lower levels of 17HSD type 1 showed a 40% reduced risk of recurrence with prolonged treatment (RR = 0.60 (0.33–1.09)), whereas a benefit from prolonged treatment was not evident for those with increased type 1 (RR = 1.33 (0.52–3.4)). However, the difference between the groups was not statistically significant.

DISCUSSION

For ER positive patients in this study, the 17HSD2/17HSD1 ratio had a prognostic significance. A higher 17HSD2/17HSD1 ratio gives an increased oxidative activity (E2 → E1), and in the present study, this was associated with a good prognosis. In contrast, a low ratio leads to increased reductive activity (E1 → E2). Irrespective of E1 production, as a result of aromatase or steroid sulphatase activity, 17HSD types 1 and 2 are responsible for the balance of E1 and E2. It has previously been shown that in normal breast tissue the oxidative pathway (E2 → E1) dominates, whereas in malignant breast tumours the reductive pathway (E1 → E2) is dominant (Speirs et al., 1998). These results suggest that intratumoral regulation of oestradiol levels is of importance.

Other enzymes involved in oestrogen synthesis may have prognostic significance, and Utsumi and colleagues (1999) suggested steroid sulphatase as a useful marker for identification of high-risk breast cancer patients. Miyoshi et al. (2001) observed that intratumoral E2 levels are not significantly different between premenopausal and postmenopausal patients and the authors suggested that upregulation of 17HSD type 1 is important in the maintenance of high intratumoral E2 levels especially in postmenopausal patients. In a more recent study, Miyoshi et al. (2003) demonstrated that the intratumoral sulphatase mRNA levels, but not the aromatase and 17β-HSD1 mRNA levels, have prognostic
value in ER-positive breast cancer patients. In the same study, patients with high levels of 17HSD type 1 tended to have a worse prognosis than those with low levels.

The gene encoding 17HSD type 1 is located at 17q12–21, a region that often is rearranged in breast cancer (Plummer et al., 1997, Kauraniemi et al., 2001). In a recent study, we found amplification of the gene encoding 17HSD type 1 in 14.5% of the breast tumours (Gunnarsson et al., 2003).

In the present study, we found that a high expression of 17HSD type 1 predicted late recurrence among ER-positive patients and apparently decreased benefit from prolonged tamoxifen treatment. This could indicate that tamoxifen does not completely block the action of E2 in some patients due to high levels of E2. Acquired tamoxifen resistance is believed to arise due to increased phosphorylation of the ER by growth factor signalling or due to increased expression of coactivators (Nicholson et al., 2004, Schiff et al., 2004). This means that tamoxifen acts as an agonist after long duration of treatment in some patients, and the question is how the resistant tumour cells will respond to high E2 levels after the completion of tamoxifen treatment. It has previously been shown that tamoxifen treatment for longer periods than 5 years is not preferable (Fisher et al., 2001). A recent study pointed out aromatase inhibitor as significantly more efficient than placebo among postmenopausal women after 5 years tamoxifen treatment (Goss et al., 2003). Some ER-positive patients with metastatic disease who have failed on tamoxifen treatment still show response to aromatase inhibitors (Dowsett, 1997). In particular, for patients with high intratumoral E2 levels the switch to aromatase inhibitor after some period of tamoxifen treatment could be favourable.

Suzuki et al. (2000) observed that 17HSD type 1 was immunolocalised in carcinoma cells in a majority of invasive ductal carcinomas, while 17HSD type 2 was not detected in any of the cases. The authors suggested that type 1 is the enzyme of interest in breast cancer. In a previous case/control study, we found that a low or undetectable level of type 2 as well as a high expression of type 1 was associated with a worse prognosis in ER-positive breast cancer patients (Goss et al., 2003). We found that 17HSD type 2 was expressed in the normal mammary gland, whereas the expression levels were low or undetectable in a majority of ER positive breast neoplasms. We also found a favourable prognosis among patients with ER-positive tumours that expressed higher mRNA levels of the enzyme. As the loss of 17HSD type 2 activity results in an increased reductive action of E2, this might be an important mechanism in the pathogenesis of ER-positive breast cancer. Previous studies have shown most interest in 17HSD type 1. This study indicates that 17HSD type 2 and the 17HSD2/17HSD1 ratio may be even more important, which motivates further investigations.

ACKNOWLEDGEMENTS

This work was supported by grants from the Swedish Cancer Society

REFERENCES

Cleton-Jansen AM, Callen DF, Seshadri R, Godstrup S, Mccallum B, Crawford J, Powell JA, Settasatian C, van Beerdonk H, Moerland EW, Smit VT, Harris WH, Millis R, Morgan NV, Barnes D, Mathew CG, Cornelisse CJ (2001) Loss of heterozygosity mapping at chromosome arm 16q in 712 breast tumours reveals factors that influence delineation of candidate regions. Cancer Res 61: 1171 – 1177

Dowsett M (1997) Future uses for aromatase inhibitors in breast cancer. J Steroid Biochem Mol Biol 61: 261 – 266

Elp J0, Harkonen P, Kylonen AP, Lukkarinen O, Poutanen M, Vihko R, Vihko P (1997) Loss of heterozygosity at 16q24.1 – q24.2 is significantly associated with metastatic and aggressive behavior of prostate cancer. Cancer Res 57: 3356 – 3359

English M, Stewart PM, Hewison M (2001) Estrogen metabolism and malignancy: analysis of the expression and function of 17β-hydroxysteroid dehydrogenases in colonic cancer. Mol Cell Endocrinol 171: 53 – 60

Fisher B, Dignam J, Bryant J, Wolmark N (2001) Five versus more than five years of tamoxifen for lymph node-negative breast cancer: updated findings from the nation surgical adjuvant breast and bowel project B-14 randomized trial. J Natl Cancer Inst 93: 684 – 690

Goss PE, Ingle JN, Martino S, Roberts NJ, Muss HB, Piccart JG, Castiglione M, Tu D, Shepherd LE, Rritchard KI, Livington RB, Davidson NE, Norton L, Perez EA, Abrams JS, Therasse P, Palmer MJ, Pater JL (2003) A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med 349: 1793 – 1802

Gunnarsson C, Ahnstrom M, Kirschner K, Olsson B, Nordenskjold B, Rutqvist LE, Skoog L, Stal O (2003) Amplification of HSD17B1 and ERBB2 in primary breast cancer. Oncogene 22: 34 – 40

Gunnarsson C, Olsson B, Stal O, Members of the Southeast Sweden Breast Cancer Group (2001) Abnormal expression of 17β-hydroxysteroid dehydrogenases in breast cancer predicts late recurrence. Cancer Res 61: 8448 – 8451

Kauraniemi P, Barlund M, Monni O, Kallioniemia A (2001) New amplified and highly expressed genes discovered in the ERBB2 amplon in breast cancer by cDNA microarrays. Cancer Res 61: 8235 – 8240

Koh E, Noda T, Kanaya J, Namiki M (2002) Differential expression of 17β-hydroxysteroid dehydrogenase isozyme genes in prostate cancer and noncancer tissue. Prostate 53: 154 – 159

Miettinen MM, Mustonen MV, Poutanen MH, Isomaa VV, Vihko RK (1996) Human 17β-hydroxysteroid dehydrogenase type 1 and type 2 isoenzymes have opposite activities in cultured cells and characteristic cell and tissue-specific expression. J Biochem 314: 839 – 845

Miettinen M, Mustonen M, Poutanen M, Isomaa V, Wickman M, Soderqvist G, Vihko R, Vihko P (1999) 17β-hydroxysteroid dehydrogenases in normal human mammary epithelial cells and breast tissue. Breast Cancer Res Treat 57: 175 – 182

© 2005 Cancer Research UK
Miyoshi Y, Ando A, Hasegawa S, Ishitobi M, Taguchi T, Tamaki Y, Noguchi S. (2003) High expression of steroid sulfatase mRNA predicts poor prognosis in patients with estrogen receptor-positive breast cancer. Clin Cancer Res 9: 2288 – 2293

Miyoshi Y, Ando A, Shiba E, Taguchi T, Tamaki Y, Noguchi S (2001) Involvement of up-regulation of 17β-hydroxysteroid dehydrogenase type 1 in maintenance of intratumoral high estradiol levels in postmenopausal breast cancers. Int J Cancer 94: 685 – 689

Nicholson RI, Hutcheson IR, Knowlden JM, Jones HE, Harper ME, Jordan N, Hiscox SE, Barrow D, Gee JM (2004) Nonendocrine pathways and endocrine resistance: Observations with antiestrogens and signal transduction inhibitors in combination. Clin Cancer Res 10: 346 – 354

Oduwole OO, Makinen MJ, Isomaa VV, Pulkka A, Jernvall P, Karttunen TJ, Viikko PT (2003) 17β-hydroxysteroid dehydrogenase type 2 independent prognostic significance and evidence of estrogen protection in female patients with colon cancer. J Steroid Biochem Mol Biol 87: 133 – 140

Peltoketo H, Luu-The V, Sinard J, Adamski J (1999) 17beta-hydroxysteroid dehydrogenase (HSD)/17-ketosteroid reductase (KSR) family; nomenclature and main characteristics of the 17HSD/KSR enzymes. J Mol Endocrinol 23: 1 – 11

Plummer SJ, Paris MJ, Myles J, Tubbs R, Crowe J, Casey G (1997) Four regions of allelic imbalance on 17q12-qter associated with high-grade breast tumours. Genes Chromosomes Cancer 20: 354 – 362

Poutanen M, Isomaa V, Lehto VP, Viikko (1992) Immunological analysis of 17β-hydroxysteroid dehydrogenase in benign and malignant human breast tissue. Int J Cancer 50: 386 – 390

Purohit A, Newman SP, Reed MJ (2002) The role of cytokines in regulating estrogen synthesis: implications for the etiology of breast cancer. Breast Cancer Res 4: 65 – 69

Sasano H, Frost AR, Saitho R, Harada N, Poutanen M, Viikko R, Bulun SE, Silverberg SG, Nagura H (1996) Aromatase and 17β-hydroxysteroid dehydrogenase type 1 in human breast carcinoma. J Clin Endocrinol Metab 11: 4042 – 4046

Schiff R, Massarweh SA, Shou J, Bharwani L, Mohsin SK, Osborne CK (2004) Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res 10: 331 – 336

Speirs V, Green AR, Atkin S (1998) Activity and gene expression of 17β-hydroxysteroid dehydrogenase type 1 in primary cultures of epithelial and stromal cells derived from normal and tumourous human breast tissue: the role of IL-8. J Steroid Biochem Mol Biol 67: 267 – 274

Speirs V, Walton DS, Hall MC, Atkin SL (1999) In vivo and in vitro expression of steroid-converting enzymes in human breast tumours: associations with interleukin-6. Br J Cancer 81: 690 – 695

Suzuki T, Moriya T, Ariga N, Kaneko C, Kanazawa M, Sasano H (2000) 17β-Hydroxysteroid dehydrogenase type 1 and type 2 in human breast carcinoma: a correlation to clinicopathological parameters. Br J Cancer 82: 518 – 523

Swedish Breast Cancer Cooperative Group (1996) Randomized trial of two versus five years of adjuvant tamoxifen for postmenopausal early stage breast cancer. J Natl Cancer Inst 88: 1543 – 1549

Utsumi T, Yoshimura N, Takeuchi S, Ando J, Maruta M, Maeda K, Harada N (1999) Steroid sulfatase expression is an independent predictor of recurrence in human breast cancer. Cancer Res 59: 377 – 381

Viikko P, Isomaa V, Ghosh D (2001) Structure and function of 17β-hydroxysteroid dehydrogenase type 1 and 2. Mol Cell Endocrinol 171: 71 – 76

Yue W, Wang JP, Hamilton CJ, Demers LM, Santen RJ (1998) In situ aromatization enhances breast tumor estradiol levels and cellular proliferation. Cancer Res 58: 927 – 932