ESCRTs breach the nuclear border

Brant M Webster and C Patrick Lusk*
Yale School of Medicine; New Haven, CT USA

The endosomal sorting complexes required for transport (ESCRT) are best known for their role in sorting ubiquitylated membrane proteins into endosomes. The most ancient component of the ESCRT machinery is ESCRT-III, which is capable of oligomerizing into a helical filament that drives the invagination and scission of membranes aided by the AAA ATPase, Vps4, in several additional subcellular contexts. Our recent study broadens the work of ESCRT-III by identifying its role in a quality control pathway at the nuclear envelope (NE) that ensures the normal biogenesis of nuclear pore complexes (NPCs). Here, we will elaborate on how we envision this mechanism to progress and incorporate ESCRT-III into an emerging model of nuclear pore formation. Moreover, we speculate there are additional roles for ESCRT-III machinery at the NE that broadly function to ensure its integrity and the maintenance of the nuclear compartment.

Introduction

A defining feature of eukaryotic cells is the compartmentalization of cellular processes into organelles. This is thought to have enabled the increased sophistication and complexity of modern eukaryotes, but how this elaborate endomembrane system came into being remains a central question for biologists. The evolution of the nucleus in particular poses a significant challenge, but autogenous as opposed to exogenous (i.e. endosymbiosis) models are favored.1 This is due, in part, to recent discoveries of membrane sculpting proteins that are shared between the nucleus and other elements of the endomembrane system - relationships that support that their evolution was intrinsically interwoven. One of the best examples of this connection was the discovery that the scaffold proteins that build the NPC are structurally similar to vesicle coat complexes like COPI, COPII and clathrin.2,3 This discovery suggested the existence of an ancient “proto” coatamer that features heavily in both outside-in1 and the more recent inside-out4 evolutionary theories. Our work expands on the functional and physical relationships between the nucleus and the rest of the endomembrane system by uncovering a new (but likely old) function for the ESCRT-III membrane-bending module at the NE.5

The ESCRTs – membrane scaffolding and fission machines

The modern eukaryotic ESCRT-III works with the AAA-ATPase, Vps4, and is best understood in its role in sorting ubiquitylated membrane receptors.6 In this pathway, membrane proteins destined for degradation are internalized by endocytosis and delivered to early endosomes. An ordered recruitment of the other ESCRT subunits including ESCRT-0, I and II, contribute to the sorting and concentration of the membrane proteins into invaginations of the endosomal membrane, ultimately capturing them in an intralumenal vesicle. The precise mechanisms at each of these steps remain to be fully understood but it is clear that ESCRT-III and Vps4 are late-acting factors that drive membrane scission in order to complete the formation of the intralumenal vesicle (Fig. 1A).7 Several models of the ESCRT-III/Vps4 mechanism of membrane fission have been proposed (reviewed extensively elsewhere8); a unifying theme in these models is that they rely on ESCRT-III’s
remarkable capacity to polymerize into a spiral that lines the neck of a membrane invagination (Fig. 1A). One compelling analogy for how the Vps4-mediated ESCRT-III disassembly might promote membrane scission is through a mechanism that resembles a purse-string cinching closed an open purse.\(^8\)

While there are many ESCRT-III components, Snf7, Vps2, Vps20 and Vps24 are typically referred to as the “core” subunits in yeast. All of these ESCRT-III components share a helical hairpin structure with a C-terminal tail that folds back to “autoinhibit” their assembly.\(^6\) Binding partners like the ESCRT-II, Vps25, are thought to release this autoinhibition and activate polymerization. Whether ESCRT-III polymerization contributes strictly to a fission mechanism or whether it is also capable of driving membrane invaginations by forming a membrane scaffold remains to be fully appreciated. For example, in vitro studies modeling MVB biogenesis favor that upstream ESCRTs help form the membrane invagination with ESCRT-III being sufficient to drive scission,\(^9,10\) however, it is clear from in vivo studies that the polymerization of ESCRT-III can lead to the formation of a scaffold that pushes membranes away from the cytosol in much the same way that one could imagine NPC assembly progressing\(^11,12\) (Fig. 1B). Perhaps most interestingly, there appears to be plasticity in the diameter of the ESCRT-III filament. Indeed, \(~4\) nm Snf7\(^13\) and \(~5–6\) nm diameter CHMP4B\(^11\) have been observed while an ESCRT-III filament at the midbody has an outer diameter of \(~17\) nm.\(^14\) When Vps4 is inhibited, ESCRT-III filaments can form conical membrane-associated spirals of \(~110\) nm,\(^12\) similar to the upper size limit of plasma membrane holes that can be repaired by ESCRT-III.\(^15\) These data suggest that ESCRT-III might form unique filaments that are context and function-specific. Since ESCRT-III polymers are often formed through the heterodimerization of 2 ESCRT-III subunits, one possibility is that unique membrane scaffolds are formed by different combinations of the many ESCRT-III.\(^12\) A key question will be to understand how binding to nups, which are themselves

![Figure 1. Models of ESCRT-III function. (A) The canonical membrane scission model of ESCRT-III at endosomes/MVBs. The ESCRT-III spiral (green) lines the neck of an intralumenal invagination (zoomed in view on right) of the endosomal membrane. Vps4 contributes to membrane scission and the formation of an intralumenal vesicle by disassembling the ESCRT-III filament into monomers. (B) A model of NPC assembly where ESCRT-III is recruited to an assembly site by binding to Heh2 (yellow) and the inner ring complex (purple). In this model, ESCRT-III contributes to the invagination of the INM, which would generate membrane curvature permissive for recognition and recruitment of the outer ring complex (blue), which would presumably stabilize the neck of the invagination, preventing membrane scission and promoting INM-ONM fusion. Other nups are recruited to make a functional transport channel. (C) The strip/extraction model of NPC assembly surveillance where defective NPC assembly intermediates (red) are stripped from the membrane through the action of the AAA-ATPase, Vps4. (D) The nuclear egress model of NPC assembly surveillance. Here, a defective nup protomer (red) inhibits further assembly. In this context, ESCRT-III promotes membrane invagination and scission to form an intralumenal vesicle that encapsulates the defective intermediate.](image-url)
membrane scaffolds, might influence the properties and function of ESCRT-III.

Adaptors localize ESCRT-III to different subcellular locations

ESCRT-III functions in several subcellular contexts: it has been shown to contribute to membrane abscission during cytokinesis (likely its most ancient role), plasma membrane wound repair,15,16 exosome shedding, exosome biogenesis, centrosome homeostasis, and is a key player in viral egress from the plasma membrane.6 ESCRT-III’s role in multiple subcellular locations raises the question of how it reaches these distinct destinations and suggests the use of site-specific adaptor molecules. Consistent with this idea, while ESCRT-II subunits are thought to recruit ESCRT-III to endosomes, they are not required for other ESCRT-III functions.6 Instead, the ESCRT associated protein ALIX acts as an adaptor (often alongside the ESCRT-I, Tsg101) capable of directing ESCRT-III to different sites by binding to, for example, CEP55 at the midbody, Gag at an HIV bud site, and ALG-2 at a plasma membrane rupture.6 Interestingly, we were unable to implicate the yeast ALIX ortholog, Bro1, or an ESCRT-II component in the recruitment of ESCRT-III to the NE.5

Instead our data support that conserved integral inner nuclear membrane (INM) proteins of the LEM2-Emerin-MAN1 (LEM) family, the paralogs Heh1 and Heh2,17 bind to the ESCRT-III, Snf7.5 Beyond recruitment, the absence of either ESCRT-II or ALIX, both of which are capable of activating ESCRT-III polymerization, suggests the possibility that the Heh proteins could represent a new set of proteins capable of releasing ESCRT-III autoinhibition in order to facilitate ESCRT-III spiral formation; we are in the process of testing this idea.

The interaction between Heh2 and Snf7, and our visualization of this interaction at the NE by bifunctional complementation, supports that Snf7 has a nuclear pool.5 While there are no obvious canonical nuclear localization signals (NLSs) in Snf7, there are basic patches of amino acids that might be capable of binding nuclear transport receptors/karyopherins. Interestingly, the ESCRT-III component CHMP1 was characterized in an early study to function in the nucleus by binding to chromatin and has a predicted bipartite NLS.18 In fact the “CHMP” moniker serves both “CHromatin Modifying Proteins”18 and the more common “CHarged Multivesicular body Protein,” a representative example of the long recognized cross talk between the endocytic pathway and the nucleus, the significance of which remains to be fully appreciated.19 The greater challenge to how ESCRTs access the nucleus is Vps4, which functions as a hexamer of \(245 \text{k}_\text{D}^{20}\) that would be incapable of traversing the NPC diffusion barrier. It is thought, however, that the high local concentration of Vps4 binding sites on ESCRT-III in its polymerized form facilitates hexamer formation21 and that at steady state, Vps4 has a monomer and dimer pool22,23; as a monomer, Vps4 would be capable of diffusing through the NPC. Alternatively, it may piggy-back on components of ESCRT-III. This might be more likely when one considers that a model for Vps4 recruitment to the membrane is to first bind ESCRT-III in the cytoplasm before it is targeted to its site of action.21

ESCRT-III prevents aberrant NPC assembly

Our discovery that ESCRT-III and Vps4 function at the NE was aided by an epistasis network that was founded on a genetic interaction between the nup gene POM152 and VPS4, identified in fission yeast.24 In the absence of ESCRT-III, Vps4, or Heh2, a fraction of newly synthesized nups and NPC assembly factors accumulate into a single plaque on the NE in replicatively-old mother cells.5 Unlike the NPC clustering observed in well described NPC assembly mutants,25–28 where virtually all nups/NPCs are found clustered at the NE, we observed inconsistent stoichiometries of individual nups in this cluster, which varied from cell to cell.5 Most strikingly, the cluster was not inherited by daughter cells, supporting our conclusion that this was a previously undiscovered quality control compartment, which we termed the Storage of Improperly assembled Nuclear pore Complexes, or SINCs. Our data therefore implicated Heh2, ESCRT-III and Vps4 in preventing aberrant NPC assembly. The details of precisely how ESCRT-III functions in NPC assembly remains to be fully elucidated but we proposed a mechanism in which it acts in a surveillance pathway that clears defective NPC assembly intermediates — we will consider how this might occur below and examine a model that also invokes a direct role for ESCRT-III in NPC biogenesis, which we could not definitively rule out in our paper.5

Surveillance of NPC assembly

NPC assembly (at least during interphase) likely begins with the recruitment of membrane-associated nups to the NE, and is followed by a step-wise recruitment of individual nup subcomplexes; a major challenge is the lack of understanding of the structural and biochemical intermediates along this pathway. In addition, at some point in assembly, membrane remodeling at the nascent NPC leads to the fusion of the INM and outer nuclear membrane (ONM) and the formation of a pore, but the molecular mechanism remains ill defined.

We suggest that the local recruitment of hundreds of nups coupled to a membrane fusion event leads to possible scenarios in which an individual NPC biogenesis event proceeds down a path that leads to an aberrant or dead-end product. Possibilities could include a relative change in nup stoichiometry between complexes, or perhaps a misfolded nup protomer that prevents any further assembly - like a “wrench in the gears.” In a surveillance model, Heh2 and/or ESCRT-III would have the capacity to recognize these aberrant assembly intermediates to facilitate their removal. Since Heh2 is capable of binding nups, but is not a stable component of NPC5,29 we think that it is the most likely candidate that might help biochemically distinguish between an NPC assembly intermediate and an NPC. The mechanism by which Heh2 might perform this function is not obvious, but we favor a model in which there is an upstream factor likely in the ubiquitin-proteasome system capable of recognizing and ubiquitylating aberrant NPC assembly intermediates. This makes the prediction that nups bound by Heh2 would be
ubiquitylated—a focus of our current research.

Potential models of aberrant assembly clearance

Our focus on ubiquitin as a potential signal in NPC assembly is supported by the data that a fraction of at least Nup85 is degraded by the proteasome when NPC assembly is perturbed genetically, and stabilized in the absence of Vps4.5 Thus, our data raise the critical question of how ESCRT-III/Vps4 act to remove aberrant NPC assembly intermediates from the NE; we are testing 2 possible models based on our understanding of ESCRT-III/Vps4 function (Fig. 1C and D). Both begin with the recruitment of ESCRT-III/Vps4 to an NPC assembly site by direct interactions with either Heh2 and/or nups. In the first scenario, Vps4 plays a role in stripping ESCRT-III from the membrane in complex with nups (Fig. 1C). We think that this is plausible since there is a growing consensus that Vps4 functions like other AAA ATPases such as p97/Cdc48, NSF, and ClpB, which are thought to remodel proteins by threading them through the central core of the oligomerized AAA ATPase.30 A variant of this scenario includes the ER-Associated Degradation (ERAD) machinery as a contributor to the removal of defective NPC assembly intermediates.31 Consistent with this possibility, invaginations of the INM and intra-NE-lumenal vesicles similar to what we observe in vps4Δ strains have also been seen in yeast strains expressing temperature sensitive alleles of NPL4,32 a co-factor of the Cdc48 complex; these data support a potential convergence of quality control pathways. Interestingly, recent work supports that an arm of ERAD exists at the INM.33,34

The invaginations/intralumenal vesicles observed in strains containing vps4, npl4 and other alleles that impact NPC function, hints at another potential model where NPC assembly intermediates might be cleared through a vesicular intermediate in the NE lumen (Fig. 1D). Such a model is compelling since the formation of an intraluminal vesicle would be topologically identical to the MVB and would employ ESCRT-III’s established mechanism in membrane scission. This mechanism would also be analogous to herpesvirus/Epstein-Barr virus and megarNP nuclear egress;35 genetic and biochemical evidence supports a role for ESCRT-III/Vps4 in Epstein-Barr virus nuclear egress.36 Interestingly, it has been proposed that a nuclear egress mechanism might be an appealing way to clear large toxic nuclear protein aggregates too big to diffuse through the NPC.37 precisely what we expect to accumulate upon NPC misassembly.

Does ESCRT-III directly contribute to NPC biogenesis?

A compelling argument can also be made for ESCRT-III function in the early steps of NPC assembly through the generation of an INM invagination (Fig. 1B). Indeed, there is mounting genetic and phenotypic evidence that supports a model in which pore formation could occur through an inside-out mechanism. For example, several studies suggest the involvement of integral INM proteins in helping to form an early NPC assembly intermediate.29,38 Moreover, NLSs are found on nups important for early assembly events.39-42 Lastly, biochemical intermediates and invaginations of the INM have been observed after the genetic imposition of assembly blocks.43-45 While proteins of the reticulon family27,28 and nups capable of deforming membranes46,47 might generate positive membrane curvature that could help form these invaginations, it has been appropriately argued that the generation of negative curvature might be more effective in promoting the formation of a nuclear pore,48 precisely the kind of curvature that would be compatible with an ESCRT-III mediated mechanism.

That ESCRT-III might be involved with forming INM invaginations during nuclear pore formation is an intriguing possibility and suggests (as might be expected) that surveillance and NPC assembly could be linked. In such a scenario, ESCRT-III polymerization (recruited and activated to an NPC assembly site by Heh2) helps form an INM invagination. The ‘positive’ curvature at the interface of the INM and the invagination (Fig. 1B) would be recognized by the amphipathic helices in the scaffold nups to facilitate building the outer ring complex.49,50 In this “normal” scenario the proper assembly of the NPC scaffold would stabilize the neck of the ESCRT-III-driven invagination, which could prevent membrane scission and might facilitate fusion with the ONM. In contrast, when NPC assembly goes awry, the scaffold is not built correctly and is incapable of stabilizing the invagination. Moreover, fusion with the ONM might be inhibited or delayed leading to persistent ESCRT-III/Vps4 action, which would ultimately drive membrane scission and the formation of a vesicle encapsulating the aborted NPC assembly intermediate in the NE lumen (Fig. 1D). While this model clearly requires extensive experimental evidence to prove, it makes the prediction that lumenal vesicles would be more prevalent under conditions in which INM-ONM fusion is attenuated. One could interpret the lumenal vesicles observed in apg12,51 acc1,52 gle2,52 and nup116Δ3 strains in such a framework. This model would also support that membrane fusion is a commitment step in NPC formation, and might explain why malformed NPCs accumulate in the SINC, instead of being removed and degraded.

Outlook

There is little doubt that the precise mechanism by which ESCRT-III and Vps4 function in NPC biogenesis remains to be fully understood, and we look forward to contributing to this ongoing endeavor in the near future. NPC biogenesis is one of several membrane remodeling events that occurs at the NE, which might be aided by the membrane sculpting capacity of ESCRT-III. The insertion of the yeast centrosome equivalent (the spindle pole body; SPB) into the NE requires similar factors as in NPC biogenesis, suggesting overlap in their underlying mechanisms.54,55 Moreover, in fission yeast, the SPB is extruded after mitosis through a mechanism that remains ill defined. Indeed, defects in either insertion or extrusion mechanisms might underlie the observed over amplification of SPB components in vps4Δ in S. pombe.24 In multicellular eukaryotes, massive membrane remodeling occurs during mitotic NE-disassembly and post-mitotic NE.
reformation; we wonder how ESCRT-III will function in these contexts. Moreover, the capacity of ESCRT-III to repair plasma membrane wounds raises the possibility that it might also be capable of repairing the transient NE-ruptures that have been observed in several cancer cell lines and in cells containing laminopathy mutations, a model consistent with the growing role of ESCRT-III in membrane homeostasis and quality control.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
We apologize to colleagues whose original work could not be cited due to space limitations. Thanks to Jens Jäger for critical reading of the manuscript.

Funding
BW and CPL are supported by the National Institutes for Health R01 GM105672.

References
1. Field MC, Sali A, Rout MP. Evolution: On a bender.–BARs, ESCRTs, COPs, and finally your coat. J Cell Biol 2011; 193: 963–72; PMID:21670211; http://dx.doi.org/10.1083/jcb.201012042
2. Devois D, Dokudovskaya S, Alber F, Williams R, Chait BT, Sali A, Rout MP. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. Plos Biol 2004; 2: e30; PMID:15523559
3. Broshawn SG, Leka NC, Spear ED, Rajashankar KR, Schwartz TU. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science 2008; 322: 1369–73; PMID:18974315; http://dx.doi.org/10.1126/science.1155974
4. King MC, Patrick Lusk C, Blobel G. Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature 2006; 442: 1003–7; PMID:16929305; http://dx.doi.org/10.1038/nature04575
5. Straathof FR, Howard TL, Nyon T, Hollenberg SM. CHMP1 is a novel nuclear matrix protein affecting chromatin structure and cell-cycle progression. J Cell Sci 2001; 114: 2383–93; PMID:11559747
6. Pyrzynska B, Pilecka I, Miaczynska M. Endocytic processes in the inner nuclear membrane. J Cell Biol 2009; 184: 659–75; PMID:19577966; http://dx.doi.org/10.1083/jcb.20090601
7. Monroe N, Han H, Giardi MC, Eckert DM, Karren MA, Whithy FG, Sundquist WI, Hall CP. The oligomeric state of the active Vps4 AAA ATPase. J Mol Biol 2014; 426: 510–25; PMID:24169153; http://dx.doi.org/10.1016/j.jmb.2013.09.043
8. Sheshatova A, Hanano A, Dronser S, Curtis M, Davies BA, Kazmann DJ, Babst M. Assembly of the AAA ATPase Vps39 on ESCRT-III. Mol Biol Cell 2010; 21: 1059–71; PMID:20110351; http://dx.doi.org/10.1091/mbc.E09-07-0572
9. Scott A, Chung HY, Gonziauskas-Swiatek M, Hill GC, Whithy FG, Garzarolli M, Hulson JM, Viswanathan R, Chaffarian S, Halliday LM, et al. Structural and mechanistic studies of VPS4 proteins. J Bioenerg BiOMEM 2005; 27: 3658–69; PMID:16193069; http://dx.doi.org/10.1083/jmb.20050618
10. Babić M, Wendland B, Esterj E, Emr SD. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 1998; 17: 2982–93; PMID:9606181; http://dx.doi.org/10.1093/emboj/17.11.2982
11. Frost A, Elgort MG, Brandman O, Ives C, Collins SR, Miller-Vedam L, Weibezahn J, Hein MY, Poser I, Mann M, et al. Functional repurposing revealed by comparing S. pombe and S. cerevisiae genetic interactions. Cell 2012; 149: 1339–52; PMID:22682253; http://dx.doi.org/10.1016/j.cell.2012.04.028
12. Deyo V, Wu P, Hart RC. A novel nuclear pore protein Nup133p with distinct roles in poly(A)+ RNA transport and nuclear pore distribution. EMBO J 1994; 13: 6602–75; PMID:7813444
13. Anchison JD, Blobel G, Rout MP. Nup210p: a yeast nucleoporin required for NPC distribution and mRNA transport. J Cell Biol 1995; 131: 1659–75; PMID:8557736; http://dx.doi.org/10.1083/jcb.131.6.1659
14. Dawson TK, Lazarus MD, Henzer MW, Wente SR. ER membrane-bending proteins are necessary for de novo nuclear pore formation. J Cell Biol 2009; 184: 659–75; PMID:19273614; http://dx.doi.org/10.1083/jcb.200806174
15. Chadrin A, Hess B, San Roman M, Garti X, Lombard B, Loew K, Rodriguez Y, Palacide B, Doye V, Pom33, a novel transmembrane nucleoporin required for proper nuclear pore complex distribution. J Cell Biol 2010; 189: 795–811; PMID:20498018; http://dx.doi.org/10.1083/jcb.201002243
16. Yewdell WT, Colombi P, Maknevych T, Lu CP. Lumenal interactions in nuclear pore complex assembly and stability. Mol Biol Cell 2011; 22: 1375–88; PMID:21341687; http://dx.doi.org/10.1091/mbc.e10-08-1184
17. Ruggiano A, Foresi O, Carvalho P. Quality control: ER-associated degradation: protein quality control and beyond. J Cell Biol 2014; 204: 869–79; PMID:24637321; http://dx.doi.org/10.1083/jcb.201310242
18. DeHartos AB, Silver PA. Nuclear transport defects and nuclear envelope alterations are associated with mutagenesis of the Saccharomyces cerevisiae NPL4 gene. Mol Cell Biol 1996; 7: 1855–58; PMID:8939094; http://dx.doi.org/10.1099/mcb.7.1.1835
19. Khmelinski A, Blazekaz E, Pantazopoulou M, Fischer B, Omnis DJ, Le Dez G, Brossard A, Gunnarsson A, Barry JD, Meurer M, et al. Protein quality control at the inner nuclear membrane. Nature 2014; 514: 460–64; PMID:25519137; http://dx.doi.org/10.1038/nature14196
20. Speese SD, Ashley J, Johki V, Nunarii J, Barria R, Ly I, Ataman B, Koon A, Chang Y-T, Li Q, et al. Nuclear envelope budding enables larger ribonucleoprotein particle export during synaptic wnt signaling. Cell 2012; 149: 832–46; PMID:22579286; http://dx.doi.org/10.1016/j.cell.2012.03.032
21. Lee CP, Liu P-T, Kung H-N, Su M-T, Chu H-H, Chang Y-H, Chang C-W, Tsai C-H, Liu F-T, Chen M-R. The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for export during synaptic wnt signaling. Cell 2012; 149: 832–46; PMID:22579286; http://dx.doi.org/10.1016/j.cell.2012.03.032
22. Lee CP, Liu P-T, Kung H-N, Su M-T, Chu H-H, Chang Y-H, Chang C-W, Tsai C-H, Liu F-T, Chen M-R. The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein-barr virus. PLoS Pathog 2012; 8: e1002904; PMID:22990426; http://dx.doi.org/10.1371/journal.ppat.1002904
23. Rose A, Schlichter AC. Alternative nuclear transport forcellor protein quality control. Trends Cell Biol 2012; 22: 509–14; PMID:22885133; http://dx.doi.org/10.1016/j.tcb.2012.07.005
24. Talaman JA, Henzer MW. POM121 and Sun1 play a role in early steps of interphase NPC assembly. J Cell Biol 2011; 194: 27–37; PMID:21727197; http://dx.doi.org/10.1083/jcb.201012154
25. Funakoshi T, Clever M, Watanabe A, Imamoto N. Localization of Pom121 to the inner nuclear membrane is required for an early step of interphase nuclear pore

www.tandfonline.com Nucleus
complex assembly. Mol Biol Cell 2011; 22: 1058–60; PMID:21289085; http://dx.doi.org/10.1091/mbc.E10-07-0641

40. Yavuz S, Santarella-Mellwig R, Koch B, Jaedicke A, Martaj JW, Antonin W. NLS-mediated NPC functions of the nucleoporin POM121. FEBS Lett 2010; 584: 3292–8; PMID:20624389; http://dx.doi.org/10.1016/j.febslet.2010.07.008

41. Shaulov I, Gruber R, Cohen I, Harel A. A dominant-negative form of POM121 binds chromatin and disrupts the two separate modes of nuclear pore assembly. J Cell Sci 2011; 124: 3822–34; PMID:22100917; http://dx.doi.org/10.1242/jcs.086660

42. Lusk CP. Karyopherins in nuclear pore biogenesis: a role for Kap121p in the assembly of Nup53p into nuclear pore complexes. J Cell Biol 2002; 159: 267–78; PMID:12403813; http://dx.doi.org/10.1083/jcb.200203079

43. Makio T, Stanton LH, Lin CC, Goldfarb DS, Weis K, Wozniak RW. The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly. Cell 2010; 141: 1030–41; PMID:20550937; http://dx.doi.org/10.1016/j.cell.2010.04.136

44. Fichtman B, Ramos C, Rasala B, Harel A, Forbes DJ. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis. Mol Biol Cell 2010; 21: 4197–21; PMID:20926687; http://dx.doi.org/10.1091/mbc.E10-04-0309

45. Scarcelli JJ, Hodge CA, Cole CN. The yeast integral membrane protein Aps1p12 potentially links membrane dynamics to assembly of nuclear pore complexes. J Cell Biol 2007; 178: 799–812; PMID:17724120; http://dx.doi.org/10.1083/jcb.200702120

46. Vollmer B, Schooley A, Sachdev R, Eisenhardt N, Schneider AM, Sieverding C, Madlung J, Gerken U, Macek B, Antonin W. Dimerization and direct membrane interaction of Nup53 contribute to nuclear pore complex assembly. EMBO J 2012; 31: 4072–84; PMID:22960634; http://dx.doi.org/10.1038/emboj.2012.256

47. Marelli M, Lusk CP, Chan H, Arulkumar JD, Wozniak RW. A link between the synthesis of nucleoporins and the biogenesis of the nuclear envelope. J Cell Biol 2001; 153: 709–24; PMID:11352933; http://dx.doi.org/10.1083/jcb.153.4.709

48. Antonin W. Nuclear envelope: membrane bending for pore formation? Curr Biol 2009; 19: R410–2; PMID:19467209; http://dx.doi.org/10.1016/j.cub.2009.03.053

49. Douacet CM, Talamas JA, Hetzer MW. Cell cycle-dependent differences in nuclear pore complex assembly in metazoa. Cell 2010; 141: 1030–41; PMID:20550937; http://dx.doi.org/10.1016/j.cell.2010.04.036

50. Drin G, Casella J-F, Gautier R, Boehmer T, Schwartz TU, Antony B. A general amphipathic α-helical motif for sensing membrane curvature. Nat Pub Group 2007; 138: 46

51. Schneiter R, Hitomi M, Ivessa AS, Fasch EV, Kohlwein SD, Tartakoff AM. A yeast acetyl coenzyme A carboxylase mutant links very-long-chain fatty acid synthesis to the structure and function of the nuclear membrane-pore complex. Mol Cell Biol 1996; 16: 7161–72; PMID:8943372

52. Murphy R, Watkins JL, Wente SR. GLE2, a Saccharomyces cerevisiae homologue of the Schizosaccharomyces pombe export factor RAE1, is required for nuclear pore complex structure and function. Mol Biol Cell 1996; 7: 1921–37; PMID:8970155; http://dx.doi.org/10.1091/mbc.7.12.1921

53. Wente SR, Blobel G. A temperature-sensitive NUP116 null mutant forms a nuclear envelope seal over the yeast nuclear pore complex thereby blocking nucleocytoplasmic traffic. J Cell Biol 1993; 123: 275–84; PMID:7691829; http://dx.doi.org/10.1083/jcb.123.2.275

54. Chal HJ, Rout MP, Giddings TH, Winery M. Saccharomyces cerevisiae Nde1p is a shared component of nuclear pore complexes and spindle pole bodies. J Cell Biol 1998; 143: 1789–800; PMID:9864555; http://dx.doi.org/10.1083/jcb.143.7.1789

55. Jaapersen SL, Ghosh S. Nuclear envelope insertion of spindle pole bodies and nuclear pore complexes. Nucleus 2012; 3: 226–36; PMID:22572925; http://dx.doi.org/10.4161/nucl.20148

56. Vargas JD, Hatch EM, Anderson DJ, Hetzer MW. Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 2012; 3: 88–100; PMID:22567193; http://dx.doi.org/10.4161/nucl.18954

57. Hatch E, Hetzer M. Breaching the nuclear envelope in development and disease. J Cell Biol 2014; 205: 133–41; PMID:24751555; http://dx.doi.org/10.1083/jcb.201402033

58. De Vos WH, Houben F, Kamps M, Malha A, Verheyen F, Cox J, Manders EMM, Verstraeten VLRM, van Steensel MAM, Marcelis CLM, et al. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum Mol Genet 2011; 20: 4175–86; PMID:21831885; http://dx.doi.org/10.1093/hmg/ddt344