Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review and Meta-analysis

Global reports of myocarditis following COVID-19 vaccination: A systematic review and meta-analysis

Sirwan Khalid Ahmed a,c,*, Mona Gamal Mohamed b, Rawand Abdulrahman Essa a, Eman Abdelaziz Ahmed Rashad b, Peshraw Khdir Ibrahim c, Awat Alla Khdir a, Zhiar Hussen Wsu a

a Department of Emergency, Rania Pediatric & Maternity Teaching Hospital, Rania, Sulaimani, Kurdistan-region, Iraq
b Department of Adult Nursing, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
c Department of Adult Nursing, University of Raparin, Rania, Sulaimani, Kurdistan-region, Iraq

Article history:
Received 29 March 2022
Received in revised form 30 April 2022
Accepted 17 May 2022

Keywords:
COVID-19
Myocarditis
COVID-19 vaccines
mRNA vaccine
Cardiovascular complications

Abstract

Background and aims: Recent media reports of myocarditis after receiving COVID-19 vaccines, particularly the messenger RNA (mRNA) vaccines, are causing public concern. This review summarizes information from published case series and case reports, emphasizing patient and disease characteristics, investigation, and clinical outcomes, to provide a comprehensive picture of the condition.

Methods: A systematic literature search of PubMed and Google scholar was conducted from inception to April 27, 2022. Individuals who develop myocarditis after receiving the COVID-19 vaccine, regardless of the type of vaccine and dose, were included in the study.

Results: Sixty-two studies, including 218 cases, participated in the current systematic review. The median age was 29.2 years; 92.2% were male and 7.8% were female. 72.4% of patients received the Pfizer-BioNTech (BNT162b2) vaccine, 23.8% of patients received the Moderna COVID-19 Vaccine (mRNA-1273), and the rest of the 3.5% received other types of COVID-19 vaccine. Furthermore, most myocarditis cases (82.1%) occurred after the second vaccine dose, after a median time interval of 3.5 days. The most frequently reported symptoms were chest pain, myalgia/body aches and fever. Troponin levels were consistently elevated in 98.6% of patients. The admission ECG was abnormal in 88.5% of cases, and the left LVEF was lower than 50% in 21.5% of cases. Most patients (92.6%) resolved symptoms and recovered, and only three patients died.

Conclusion: These findings may help public health policy to consider myocarditis in the context of the benefits of COVID-19 vaccination.

© 2022 Diabetes India. Published by Elsevier Ltd. All rights reserved.

1. Introduction

International efforts to drive vaccinations are critical to restoring health and economic and social recovery as the SARS-CoV-2 coronavirus (COVID-19)-caused pandemic continues [1]. The COVID-19 vaccines developed by Pfizer-BioNTech (BNT162b2) and Moderna (mRNA-1273) were granted emergency approval by the Food and Drug Administration (FDA) of the United States in December 2020. Reports of myocarditis after the COVID-19 vaccination, notably after the messenger RNA (mRNA) vaccines, have recently received widespread media attention, causing widespread concern among the general public [1]. Myocarditis is diagnosed in about ten to twenty people per 100,000 in the general population each year, and it is more common in men and younger age groups [2]. Myocarditis following mRNA COVID-19 vaccination was first reported in Israel in April 2021, and then several case reports and case series were reported around the world.

Specifically, this report examines the current literature on myocarditis following COVID-19 vaccination, summarizing available information from previously published case reports and case series, with a strong attention on reporting patient and disease characteristics, as well as investigation and clinical outcome, in order to provide a comprehensive picture of the condition.

* Corresponding author. Department of Emergency, Rania Pediatric & Maternity Teaching Hospital, Rania, Sulaimani, 46012, Kurdistan region-Iraq, Iraq.
E-mail address: sirwan.ahmed1989@gmail.com (S.K. Ahmed).

https://doi.org/10.1016/j.dsx.2022.102513
1871-4021/© 2022 Diabetes India. Published by Elsevier Ltd. All rights reserved.
2. Methods

2.1. Review objectives

The main objective is to clarify the potential occurrence of myocarditis associated with COVID-19 vaccination and elaborate on the demographic and clinical characteristics of COVID-19 vaccinated individuals who develop myocarditis and how many cases have been reported in the literature.

2.2. Protocol and registration

The review is written in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines for the systematic review of available literature [3]. The protocol of the review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) with ID CRD42022308997. The AMSTAR-2 checklist was also used to evaluate this study, and it was found to be of high quality [4]. This review article does not require ethics approval.

2.3. Search strategy

A comprehensive search of major electronic databases (PubMed and Google Scholar) was conducted on April 27, 2022, to locate all publications. The AND operator was used to connect two of the most important concepts in the search terminology (“COVID-19” AND “Myocarditis”). (“Myocarditis” and “COVID-19” OR “SARS-CoV-2” OR “Coronavirus Disease 2019” OR “severe acute respiratory syndrome coronavirus 2” OR “coronavirus infection” OR “2019-nCoV” AND “vaccine, vaccination, OR vaccine” were used in the search. To make sure the search was completed, we checked the references of all relevant papers.

2.4. Eligibility criteria

All case series and case reports on post-COVID-19 vaccine myocarditis in humans were included. Individuals who develop myocarditis after receiving the COVID-19 vaccine, regardless of the type of vaccine and dose. The references of the relevant articles will also be reviewed for additional articles that meet the inclusion criteria. Narrative and systematic reviews, original and unavailable data papers were excluded from this review. Moreover, articles other than English were excluded in this review.

2.5. Data extraction and selection process

PRISMA 2020 was used to guide every step of the data extraction process from the original source. Two independent authors (SKA and RAE) used the Rayyan website to screen abstracts and full-text articles based on inclusion and exclusion criteria [5]. The discrepancies between the two independent authors were resolved by discussion. Microsoft Excel spreadsheets collected the necessary information from the extracted data. Author names, year of publication, age, gender, type of COVID-19 vaccine, dose, days to symptoms onset, symptoms, troponin level, LVEF 50% or LVEF >50%, ECG, length of hospital stay/days, treatment, and outcomes were extracted from each study.

2.6. Critical appraisal

To assess the quality of all included studies, we used the Joanna Briggs Institute’s critical appraisal tool for case series and case reports [6]. Two different authors (SKA and RAE) evaluated each article, each of whom worked independently. Paper evaluation disputes were resolved through discussion. Articles with an average score of 50% or higher were included in the data extraction process. The AMSTAR 2 criteria were used to evaluate the results of our systematic review [4]. The AMSTAR 2 tool assigned a “moderate” rating to the overall quality of our systematic review.

2.7. Data synthesis and analysis

All the articles included in the current systematic review were analyzed, and the data were extracted and pooled. This included (authors’ names, year of publication; gender; type of COVID-19 vaccine, dose, days to symptoms onset, troponin level, LVEF below or above 50%, ECG, length of hospital stay/days; treatment and outcomes). We gathered this data from the results of eligibility studies. COVID-19 vaccine recipients who developed myocarditis were included in the study.

3. Results

3.1. Selection of studies

When we searched the major databases (PubMed and Google Scholar) on April 27, 2022, we discovered 2979 articles relevant to our search criteria. A citation manager tool (Mendeley) was used to organize the references, and 397 articles were automatically removed because they contained duplicate content. Next, the titles, abstracts, and full texts of 2585 articles were checked for accuracy, and 2494 articles were rejected because they did not meet the criteria for inclusion. Besides that, 91 articles were submitted for retrieval, but twenty-seven were rejected because they did not meet our inclusion requirements. The current systematic review was limited to 62 articles in total (Fig. 1). The details of case reports and case series are shown in (Table 1).

3.2. Characteristics of the included studies

Overall, sixty-two studies, including 218 cases each, from the United States, Italy, Israel, Germany, Poland, France, Korea, Brazil, Japan, Mexico, Spain, New Zealand, Portugal, Germany, Iraq, Turkey and Iran participated in this systematic review. The median age was 29.2 years; 92.2% were male and 7.8% were female. 72.4% of patients received the Pfizer-BioNTech (BNT162b2) vaccine, 23.8% of patients received the Moderna COVID-19 Vaccine (mRNA-1273), and the rest of the 3.5% received other types of vaccines (Johnson & Johnson, AstraZeneca, Sinovac, Sputnik V vaccine).

The vast majority of cases are from the United States. All patients were diagnosed with myocarditis or myopericarditis following COVID-19 vaccination, regardless of the type of vaccine and dose.

Furthermore, most myocarditis cases (82.1%, n = 179) occurred after the second vaccine dose, after a median time interval of 3.5 days. The most frequently reported symptoms were chest pain (99.1% n = 216), fever (31.6% n = 69), myalgia/body aches (36.6% n = 80), and also variable reports of viral prodromes such as chills, headaches, and malaise. Troponin levels were consistently elevated in 98.6% (n = 215) of the cases where they were reported, consistent with myocardial injury. The admission electrocardiogram (ECG) was abnormal in 88.5% (n = 193) of cases, and the left ventricular ejection fraction (LVEF) was lower than 50% in 21.5% (n = 47) of cases. The median length of hospital stay was 5.8 days in 182 patients but unknown in 36 patients. The vast majority of patients (92.6%) (n = 202) resolved symptoms and recovered, and only three patients died (Table 2).
4. Discussion

The current systematic review summarized evidence from the original case reports and case series that explored the development of myocarditis after the COVID-19 vaccination. Throughout the selected studies, most of the participants were male, from the USA, and their mean age 29.2 years old. The vaccine-induced myocarditis mechanism is unknown but may be related to the active pathogenic component of the vaccine and specific human proteins, which could lead to immune cross-reactivity resulting in autoimmune disease, which is one cause of myocarditis [7–10]. The occurrence of myocarditis in men may be related to sex hormone variations, as testosterone hormone suppresses anti-inflammatory immune cells while promoting more aggressive T helper cells [7,11].

These findings were matched with Oster et al. (2022) [12], who found the incidence rate of myocarditis among vaccinated male people was similar to that seen in typical cases of myocarditis and there was a strong male predominance for both conditions [13]. Fatima et al. (2022) [7] found most patients who developed myocarditis were males. Moreover, Patone et al. (2022) [14] mentioned that the incidence of myocarditis was among England males younger than 40 years old. Similarly, a systematic review study found that the Incidence of myocarditis following mRNA vaccines is low but probably highest in males aged 12–29 years old [15].

Another important finding in the current systematic review is that most participants received Pfizer-BioNTech (BNT 162b2) followed by the Moderna COVID-19 vaccine (mRNA-1273), and most of the cases who complained of myocarditis received two doses of the vaccine. This indicates that mRNA vaccines are associated with a higher risk of developing myocarditis than viral vector vaccines, including Janssen, Oxford, and Sinovac. Bozkurt et al. (2021) [12], have assumed that autoantibody generation could attack cardiac myocytes in response to the mRNA vaccine, increasing the risk.
Table 1
Characteristics and outcomes of patients with myocarditis related to COVID-19 vaccine.

Author/Year of publication	Country	Age	Gender	Type of COVID-19 vaccine	Dose	Days to symptom onset	Symptoms	Troponin level	LVEF <50% or LVEF >50%	Electrocardiogram (ECG)	Treatment	Length of hospital stay (days)	Outcome	
Abu Mouch et al., 2021 [24]	Israel	6 cases mean age 22 years	All of them were male	BNT162b2	2nd in 5 cases and 1st in one case	Mean 4.5 days	Chest pain/discomfort elevated	Elevated in all cases	LVEF >50% in all cases	Normal in all cases	NSAIDs and colchicine	Mean 5.6 days	Recovered	
Marshall et al., 2021 [25]	USA	7 cases mean age 16.7 years	All of them were male	BNT162b2	2nd	Mean 2.57 days	Chest pain elevated	Elevated in all cases	LVEF >50% in 6 cases and LVEF <50% in one case	Abnormal in all cases	NSAIDs, IVlg, IV methylprednisolone, PO prednisone, famotidine, aspirin	Mean 11.57 days	Recovered	
D'Angelo et al., 2021 [26]	Italy	30 years	Male	BNT162b2	1st	21 days	Dyspnea, constrictive retrosternal pain, nausea, and profuse sweating	Elevated	LVEF >50% in all cases	Normal in all cases	Abnormal	Bisoprolol, aspirin, and prednisolone	7 days	Recovered
Nassar et al., 2021 [27]	USA	70 years	Female	mRNA-1273	1st	2 days	The patient arrived at the emergency department in severe respiratory distress	Elevated	LVEF >50% in all cases	Normal in all cases	Abnormal	Vasopressors and antibiotic therapy	8 days	Died
Kim et al., 2021 [28]	USA	4 cases mean age 38.25 years	3 males and 1 female	mRNA-1273 in 2 cases and BNT162b2 in 2 cases	2nd	Mean 2.75 days	Chest pain elevated	Elevated in all cases	LVEF >50% in 3 cases and LVEF <50% in one case	Normal in all cases	Corticosteroids NSAIDs and colchicine	Mean 2.5 days	Recovered	
Montgomery et al., 2021 [10]	USA	23 cases mean age 25 years	All of there were male	BNT162b2 in 7 cases and 16 cases mRNA-1273	2nd in 20 cases and 1st in 3 cases	Mean 2 days	Chest pain elevated	Elevated in all cases	LVEF >50% in 4 cases and LVEF <50% in 19 cases	Abnormal in 19 cases and normal in 4 cases	All patients received brief supportive care	Mean 7 days	Recovered	
Verma et al., 2021 [29]	USA	2 cases (45, 42) years Mean age 43.5 years	1 male and 1 female	BNT162b2- mRNA-1273	1st in one case and 2nd in another case	Mean 12 days	Chest pain, dyspnea and dizziness, elevated	Elevated in all cases	LVEF >50% in all cases	Normal in all cases	Intravenous diuretics, methylprednisolone, lisinopril, spironolactone, and metoprolol succinate)	7 days	Died	
Rosner et al., 2021 [30]	USA	7 cases Mean age 27.42 years	All of them were male	BNT162b2 in 5 cases, one case mRNA-1273 and one case Ad26.COV2	2nd in 6 cases and 1st in one case	Mean 3.85 days	Chest pain elevated	Elevated in all cases	LVEF >50% in 6 cases and LVEF <50% in one case	Abnormal in 6 cases and normal in one case	β-blocker and anti-inflammatory medication	Mean 2.85 days	Recovered	
Dionne et al., 2021 [31]	USA	15 cases mean age 15 years	14 cases male and one case female	mRNA-1273	2nd in all cases	Mean 3 days	Chest pain, fever, myalgia, headache elevated	Elevated in all cases	Mean LVEF <50% in all cases	Abnormal in all cases	β-blocker therapy.	Mean 2 days	Recovered	
Garci’a et al., 2021 [32]	Mexico	39 years	Male	BNT162b2	2nd	¼ day	Chest pain elevated	Elevated	LVEF >50% in all cases	Normal in all cases	Anti-inflammatory medication	Unknown	Recovered	
Dickey et al., 2021 [33]	USA	6 cases mean age 27 years	All of them were male	BNT162b2 in 5 cases and one case mRNA-1273	2nd	Mean 3.33 days	Chest pain, chills, myalgia, malaise, headache and fever elevated	Elevated in all cases	LVEF >50% in 5 cases and LVEF <50% in 3 cases	Abnormal in 5 cases and normal in one case	Unknown	Unknown	Recovered	
Tano et al., 2021 [34]	USA	8 cases mean age	All of them were male	BNT162b2 in all cases	2nd in 7 cases and	Mean 2.37 days	Chest pain, fatigue, abdominal pain, fever, shortness of breath elevated	Elevated in all cases	LVEF >50% in all cases	Normal in 6 cases and normal in 2 cases	NSAIDs	Mean 2.36 days	Recovered	
Study	Country	Age	Gender	mRNA	Dose	Days	Symptoms	LVEF	Other Treatments	Recovered				
---	---------	-----	--------	------	------	------	---	------	--	-----------				
Larson et al., 2021 [35]	USA and Italy	16.61 years	8 males, mean age 31 years, 8 females, mean age 62 years	mRNA-1273	5 cases	2nd in 7 cases and 1st in 1 case	Mean 2.75 days	Chest pain, myalgia, fever, chills, shortness of breath and cough	Elevated	NSAIDs, colchicine, prednisone	Unknown			
Deb et al., 2021 [36]	USA	2 cases mean age 30.5 years	Male	mRNA-1273	2nd	½ day	Nausea, orthopnea, fever, fatigue	Elevated	NSAIDs	Unknown				
Abbate et al., 2021 [37]	USA	2 cases mean age 30.5 years	Male	mRNA-1273	2nd in one case and 1st in second case	Mean 5.5 days	Fever, cough, chest pain, nausea and vomiting	Unknown	NSAIDs	2 days				
Muthukumar et al., 2021 [38]	USA	52 years	Male	mRNA-1273	2nd	1 day	Chest pain, fever, shaking chills, myalgias, and headache	Elevated	NSAIDs	Unknown				
Isaak et al., 2021 [39]	Germany	15 years	Male	mRNA-1273	2nd	1 day	Chest pain	Elevated	NSAIDs	Unknown				
Cereda et al., 2021 [40]	Italy	20 years	Male	mRNA-1273	2nd	2 days	Chest pain and shortness of breath	Elevated	NSAIDs	Unknown				
Watkins et al., 2021 [41]	USA	3 cases mean age 37.66 years	Male	mRNA-1273	2nd	1 day	Chest pain, fever, shaking chills, myalgias, and headache	Elevated	NSAIDs	Unknown				
Mansour et al., 2021 [42]	USA	2 cases mean age 23 years	Male	mRNA-1273 in all cases	2nd in all cases	1 day	Chest pain, fever, shaking chills, myalgias, and headache	Elevated	NSAIDs	Unknown				
Levin et al., 2021 [43]	Israel	7 cases mean age 20.42 years	Male	mRNA-1273 in all cases	2nd in all cases	Mean 7 days	Chest pain, myalgia, fever and headache	Elevated	NSAIDs	Unknown				
Schauer et al., 2021 [44]	USA	13 cases mean age 15.07 years	Male	mRNA-1273 in all cases	2nd in all cases	Mean 2.76 days	Chest pain, shortness of breath, fever and myalgia	Elevated	NSAIDs	Unknown				
Shumkova et al., 2021 [45]	Poland	23 years	Male	mRNA-1273	2nd	1 day	Chest pain, shortness of breath, fever and myalgia	Elevated	NSAIDs	Unknown				
Minocha et al., 2021 [46]	USA	17 years	Male	mRNA-1273	2nd	2 days	Chest pain, shortness of breath, fever and myalgia	Elevated	NSAIDs	Unknown				
Hasnie et al., 2021 [47]	USA	17 years	Male	mRNA-1273	1st	3 days	Chest pain	Elevated	NSAIDs	Unknown				
Starekova et al., 2021 [48]	USA	25.2 years	Male	mRNA-1273	2nd	3 days	Chest pain, fatigue, nausea, fever, chills and myalgia	Elevated	NSAIDs	Unknown				
Koizumi et al., 2021 [49]	Japan	2 cases mean age 24.5 years	Male	mRNA-1273	2nd	1 day	Chest pain	Elevated	NSAIDs	Unknown				
McLean et al., 2021 [50]	USA	52 years	Male	mRNA-1273	2nd	1 day	Chest pain	Elevated	NSAIDs	Unknown				

(continued on next page)
Table 1 (continued)

Author/Year of publication	Country	Age	Gender	Type of COVID-19 vaccine	Dose	Days to symptom onset	Symptoms	Troponin level	LVEF <50% or LVEF >50%	Electrocardiogram (ECG)	Treatment	Length of hospital stay (days)	Outcome	
Riedel et al., 2021 [52]	Brazil	16 years	Male	Sinovac COVID-19 vaccine	2nd	Unknown	Chest pain and myalgia	Elevated	LVEF <50%	Abnormal	Unknown	Unknown	Recovered	
In-Cheol et al., 2021 [53]	Korea	24 years	Male	BNT162b2	2nd	1 day	Chest pain	Elevated	LVEF >50%	Abnormal	Unknown	5 days	Recovered	
Nguyen et al., 2021 [54]	Germany	20 years	Male	mRNA-1273	1st	1 day	Chest pain, fatigue and myalgia	Elevated	LVEF >50%	Abnormal	Unknown	Unknown	Recovered	
Azadiki et al., 2021 [55]	Iran	70 years	Male	ChAdOx1 nCoV-19	1st	3 days	Chest pain	Elevated	LVEF >50%	Abnormal	magnesium sulfate	7 days	Recovered	
Sokolska et al., 2021 [56]	Poland	21 years	Male	BNT162b2	1st	3 days	Chest pain	Elevated	LVEF >50%	Abnormal	Unknown	Unknown	Recovered	
Patel et al., 2021 [57]	USA	5 cases	Male	BNT162b2 in 4 cases and mRNA-1273 in 1 case	2nd in 4 cases and 1st in 1 case	Mean 2.2 days	Chest pain, dyspnea, nausea, headache and chills	Elevated in all cases	LVEF >50%	Abnormal in all cases	Colchicine, Ibuprofen and aspirin	Mean 1.8 days	Recovered	
Kim et al., 2021 [58]	Korea	29 years	Male	BNT162b2	2nd	1 day	Chest pain	Elevated	LVEF >50%	Normal	corticosteroids and NSAIDs, Aspirin, heparin, beta-blocker and a mineralocorticoid antagonist Unknown	7 days	Recovered	
Ehrlich et al., 2021 [59]	Germany	40 years	Male	BNT162b2	1st	6 days	chest pain and shortness of breath, and fever	Elevated	LVEF <50%	Abnormal	Unknown	2 days	Recovered	
Schmitt et al., 2021 [60]	France	19 years	Male	BNT162b2	2nd	3 days	Chest pain and dyspnea	Elevated	LVEF >50%	Abnormal	Methylprednisolone, lisinopril, and sublingual nitroglycerin and aspirin	6 days	Recovered	
Kadwalwala et al., 2021 USA	USA	38 years	Male	mRNA-1273	1st	2 days	Chest pain, fatigue and fever	Elevated	LVEF <50%	Abnormal	Unknown	6 days	Recovered	
Azir et al., 2021 [62]	USA	17 years	Male	BNT162b2	2nd	1 day	Chest pain	Elevated	LVEF >50%	Abnormal	Unknown	1 day	Recovered	
Gabriel Amir et al., 2022 Israel	Israel	15 cases	Male	BNT162b2 in all cases	2nd in 14 cases and 1st in 1 case	Median 4.7 days	Chest pain and fever	Elevated in all cases	LVEF >50% in 12 cases LVEF <50% in 3 case	Abnormal in 14 cases and normal in 1 case	colchicine, aspirin	Mean 5 days	Recovered	
Ahmed SK 2022 [64]	Iraq	7 cases	Male	BNT162b2 in 5 cases and mRNA-1273 in 2 cases	2nd in all cases	Median 2.14 days	Chest pain, fever, fatigue, SOB	Elevated in all cases	LVEF >50% in 6 cases LVEF <50% in 1 case	Abnormal in all cases	colchicine and NSAIDs	Mean 2.4 days	Recovered	
Mateusz Puchalski et al., 2022 Poland	Poland	5 cases	Male	BNT162b2 in all cases	2nd in all cases	Median 6.4 days	Chest pain, fever, shoulder pain	Elevated in all cases	LVEF >50% in all cases	Abnormal in all cases	ACEI	Mean 12.3 days	Recovered	
Carolyn M. Rosner et al., 2022 USA [65]	USA	7 cases	Male	BNT162b2 in 4 cases and mRNA-1273 in 2 cases and Jat in 1 case	2nd in all cases	Median 3 days	Chest pain, SOB	Elevated in all cases	LVEF >50% in all cases	Abnormal in 6 cases and normal in 1 case	NA	NA	Recovered	
Agata Łaźniak-Pfajfer et al., 2022 Poland	Poland	3 cases	Male	BNT162b2 in all cases	2nd in 1 case and 1st in 2 cases	NA	Chest pain	Elevated in all cases	LVEF >50% in all cases	Abnormal in 1 case and normal in 2 cases	Colchicine, NSAIDs	NA	Recovered	
Study, Year, and Country	No. of Cases	Gender Details	Cause	Major Symptoms	LVEF, Abnormalities	Treatment	Time to Recovery							
-------------------------	-------------	----------------	-------	---------------	-------------------	-----------	-----------------							
Yoshiki Murakami et al., 2022 [67]	2 cases	Mean age: 32.5	All of them were male	BNT162b2 in all cases	Elevated in all cases	LVEF >50% in all cases	Abnormal in 1 case and normal in 1 case	Mean 5.5 days						
Farah Naghashzadeh et al., 2022 [68]	1 case	29 years	Female	rAd26 and rAd5 (Sputnik V vaccine)	Chet pain, Elevated LVEF	Elevated LVEF <50%	Abnormal methylprednisolone, prednisolone, and mycophenolate motile	7 days Recovered						
Chan-Hee Lee et al., 2022 [69]	1 case	22 years	Male	mRNA-1273	Elevated LVEF	Elevated LVEF >50%	Abnormal	5 days Recovered						
Xavier Fosch et al., 2022 [70]	2 cases	24 years	Male	BNT162b2	Elevated LVEF	Elevated LVEF >50%	Abnormal	7 days Recovered						
Daniel A. Gomes et al., 2022 [71]	2 cases	32 years	Male	mRNA-1273	Elevated LVEF	Elevated LVEF >50%	Abnormal	5 days Recovered						
Eduardo Terán Brage et al., 2022 [72]	3 cases	62 years	Female	mRNA-1273	Elevated LVEF	Elevated LVEF >50%	Abnormal	5 days Recovered						
Arman Sharbatdaran et al., 2022 [73]	1 case	29 years	Male	mRNA-1273	Elevated LVEF	Elevated LVEF >50%	Abnormal	5 days Recovered						
Julia Moosmann et al., 2022 [74]	2 cases	Mean age: 13 years	Male	BNT162b2 in all cases	Elevated LVEF	Elevated LVEF >50%	Abnormal in all cases	Median 7.5 days						
Carlotta Sciaccaluga et al., 2022 [75]	2 cases	Mean age: 20.5 years	Female	mRNA-1273	Elevated LVEF	Elevated LVEF >50%	Abnormal in all cases	Median 9 days Recovered						
Arianne Clare C. Agdamag et al., 2022 [76]	3 cases	80 years	Male	BNT162b2	Elevated LVEF	Elevated LVEF >50%	Abnormal	14 days Recovered						
Samuel Nunn et al., 2022 [77]	4 cases	Mean age: 29.5 years	3 cases were male and 1 case was female	mRNA-1273	Elevated LVEF	Elevated LVEF >50%	Abnormal in all cases	Median 3 days						
Kanak Parmar et al., 2022 [78]	4 cases	Mean age: 29 years	3 cases were male and 1 case was female	mRNA-1273 in all cases	Elevated LVEF	Elevated LVEF >50%	Abnormal in 3 cases and normal in 1 case	Median 7.5 days						
Mohammad Dlewati et al., 2022 [79]	3 cases	Mean age: 48 years	Male	BNT162b2	Elevated LVEF	Elevated LVEF >50%	Abnormal Metoprolol succinate, spironolactone, and NSAIDs	2 days Recovered						
Nobuko Kojima et al., 2022 [80]	4 cases	Mean age: 17 years	Male	BNT162b2	Elevated LVEF	Elevated LVEF >50%	Abnormal Metoprolol succinate, ramipril, and atorvastatin	23 days Recovered						
Katie A. Sharff et al., 2022 [81]	3 cases	Mean age: 6 years	4 cases were male and 2 cases were female	BNT162b2	Elevated LVEF	Elevated LVEF >50% in 5 cases and LVEF <50% in 1 case	Abnormal in all cases	Median 1.5 days						
Suresh Babu Chellappandian et al., 2022 [82]	22 years	4 cases	3 cases were male and 1 case was female	mRNA-1273	Elevated LVEF	Elevated LVEF >50% in all cases	Abnormal in 3 cases and normal in 1 case	Median 2 days						
Arthan Shiyovich et al., 2022 [83]	4 cases	Mean age: 31 years	Male	BNT162b2 in all cases	Elevated LVEF	Elevated LVEF >50% in all cases	Abnormal in 3 cases and normal in 1 case	Median 5.7 days						

S.K. Ahmed, M.G. Mohamed, R.A. Essa et al. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 16 (2022) 102513
Oster et al. (2022) [12] concluded that the risk of myocarditis after the mRNA vaccine was increased after the second dose in adolescents and young males. This finding is matched with Patone (2022) [14], who mentioned the risk of myocarditis increased within a week of receiving the first dose of both adenovirus and mRNA vaccines and after the second dose of mRNA vaccine. On the other hand, Simone et al. (2021) [16] concluded no relationship between COVID-19 mRNA vaccination and post vaccination myocarditis.

The findings extend these observations, including the median onset of symptoms after vaccine administration was 3.5 days. The most common symptoms are chest pain, followed by myalgia/body aches and fever. These findings matched with Pillay et al. (2021) [15], who reported in a systematic review that most myocarditis cases had a short symptom onset of 2–4 days after a second dose, and the majority presented with chest pain. These findings matched with Oster et al. (2022) [12], who mentioned myocarditis was diagnosed within days of vaccination.

The diagnosis is often established by heart biopsy in patients with severe myocarditis. In patients with mild myocarditis, the diagnosis is based on compatible clinical findings and confirmed by elevated levels of blood markers or an electrocardiogram (ECG) indicative of cardiac injury, with new abnormalities on echocardiography or cardiac MRI [17].

Cardiac-specific investigations revealed that troponin levels were elevated in almost all cases, consistent with myocardial injury, which is associated with autoimmune processes matched with vaccine protein and the case immune system.

In the same lines as Lee et al. (2022) [1], a systematic review to investigate myocarditis following COVID-19 Vaccination in October 2020—October 2021, mentions that all reported cases have an elevated troponin level in keeping with myocardial injury.

In our study, less than one third of cases had left ventricle ejection fraction (LVEF) was less than 50%. Compared to patients with COVID-19 illness, patients with vaccine associated myocarditis had a higher LVEF.

This finding is consistent with Fronza et al. (2022) [18], who investigated myocardial injury patterns at MRI in COVID-19 Vaccine and discovered that more than half of the cases had more than 50% LVEF. Also, Shiyovich et al. (2022) [19], who analyzed myocarditis following the third (Booster) dose of COVID-19 vaccination, found that the mean left ventricular ejection fraction was 61 ± 7% (range 53–71%). Regional wall motion abnormalities were present in one of the patients only. Global T1 values were increased in one (25%) of the patients, while focal values were increased in 3 (75%) of the patients. Global T2 values were raised in one (25%) of the patients, while focal values were increased in all of the patients (100%). Global ECV was increased in three (75%) of the patients, while focal ECV was increased in all the patients (100%). LGE was present in all the patients.

In our systematic review and meta-analysis study, 88.5% of patients had abnormal changes in the electrocardiogram (ECG) result, regardless of the vaccine type.

Vidula et al. (2021) [20] support our findings by reporting two patients with clinically suspected myocarditis who presented with acute substernal chest pain and/or dyspnea after receiving the second dose of the vaccine and were found to have diffuse ST elevations on electrocardiogram (ECG), elevated cardiac biomarkers and inflammatory markers, and mildly reduced left ventricular (LV) function on echocardiography.

Also, Puchalski et al. [21] reported the findings of a case series regarding COVID-19-Vaccination-Induced Myocarditis in Teenagers. Electrocardiogram (ECG) patterns varied, but characteristic features of acute myocardial injury, including ST segment elevation or depression, and repolarization time abnormalities, were present in all cases.

Management of myocarditis remains mainly supportive and is based on restoring hemodynamic stability and the administration.
of guideline-directed heart failure and arrhythmia treatment. According to our findings, all cases were treated with NSAIDs, beta-blockers, calcium channel blockers, and diuretics. Patients with preserved ventricular function and non-severe features were often treated with colchicine or non-steroidal anti-inflammatory drugs. The median length of hospital stay was 5.28 days in 182 patients, and the vast majority of patients resolved symptoms and recovered, and only 3 patients died.

This finding broadly supports the work of other studies in this area. Woo et al. [22] reported that many patients who received anti-inflammatory agents such as NSAIDs, colchicine, steroids, and intravenous immunoglobulin recovered without further medical treatment, with a hospital stay lasting 3–6 days.

In accordance with the present results, previous studies have demonstrated that almost all of the cases experienced a prompt recovery with no residual cardiac dysfunction. The median length of stay for all myocarditis cases was around 2–3 days, with a range of 2–10 days [23].

5. Conclusion

In conclusion, these findings may help public health policy consider myocarditis in the context of the benefits of COVID-19 vaccination and assess the cardiac condition before the choice of vaccine, which is offered to male adults. In addition, it must be carefully weighed against the very substantial benefit of vaccination. Moreover, further research is required to assess the long-term consequences and other risk factors following immunization, specifically the mRNA vaccines.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author agreement statement

We declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We confirm that all have agreed with the order of authors listed in our manuscript. We understand that the Corresponding Author is the sole contact for the Editorial process. He is responsible for communicating with the other authors about progress, submissions of revisions, and final approval of proofs.

Data availability statement

All relevant data are within the manuscript and its supporting information files.

Authors’ contributions

Conception and design SKA acquisition of data SKA, RAE, MGM, EAA analysis and interpretation of data SKA, MGM, RAE, EEA, drafting of the manuscript SKA, RAE MGM, EAA critical revision of the manuscript for important intellectual content statistical analysis SKA, MGM, RAE, EEA, PKI, AAK, ZHW administrative SKA, technical SKA, PKI, AAK, ZHW, supervision SKA, and all authors approving the final draft.

Provenance and peer review

Not commissioned, externally peer-reviewed.

Declaration of competing interest

There is no conflict to be declared.

Acknowledgments

Not applicable.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dsx.2022.102513.

References

[1] Lee ASY, Iwarree DD, Balakrishnan O, Khoo CY, Ng CT, Luh JIOX, et al. Myocarditis following COVID-19 vaccination: a systematic review (october 2020–october 2021). Heart Lung Circ 2022;S1443–9506. https://doi.org/10.1016/j.hlc.2022.02.002.

[2] Bozkurt B, Kamar I, Hotez PJ. Myocarditis with COVID-19 mRNA vaccines. Circulation 2021;144:471–84.

[3] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 2021;88:105906. https://doi.org/10.1016/j.ijjsu.2021.105906.

[4] Shea BJ, Reeves BC, Wells G, Thuku M, Hanel C, Moran J, et al. Amstar 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017;358.

[5] Ouzzani M, Hammadi H, Fedorowicz Z, Elmagarmid A, Rayyan—a web and mobile app for systematic reviews. Syst Rev 2016;5:1–10.

[6] Moola S, Munn Z, Tufanaru C, Aromatiris E, Sears K, Sletuc R, et al. Chapter 7: systematic reviews of etiology and risk, vol. 5. Joanna Briggs Inst Rev Manual Joanna Briggs Inst; 2017. https://synthesismanual.jbi.global/.

[7] Fatima M, Cheema HA, Khan MHA, Shahid H, Ali MS, Hassan U, et al. Development of myocarditis and pericarditis after COVID-19 vaccination in adult population: a systematic review. Ann Med Surg 2022;103486.

[8] Pollack A, Kontorovich AR, Fuster V, Dec GW. Viral myocarditis—diagnosis, treatment options, and current controversies. Nat Rev Cardiol 2015;12:670–80.

[9] Su JR. Myopericarditis following COVID-19 vaccination: updates from the vaccine adverse event reporting system. VAERS); 2021.

[10] Montgomery J, Ryan M, Engler R, Hoffman D, McClenathan B, Collins L, et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol 2021;6:1202–6.

[11] Fairweather D, Cooper Jr LT, Blauwet LA. Sex and gender differences in myocarditis and dilated cardiomyopathy. Curr Probl Cardiol 2013;38:7.46–12.

[12] Oster ME, Shay DK, Su JR, Gee J, Creech CB, Broder KR, et al. Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. JAMA 2022;327:331–40.

[13] Kytö V, Sipilä J, Rautava P. The effects of gender and age on occurrence of clinically suspected myocarditis in adulthood. Heart 2013;99:1681–4.

[14] Patone M, Mei XW, Handunnetthi L, Dixon S, Zaccardi F, Shankar-Hari M, et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat Med 2021;1:1–3.

[15] Pillay R, Viala E, Lauter G, Wingerth A, Mackie A, Paterson D, et al. Myocarditis and pericarditis following COVID-19 vaccination: rapid systematic review of incidence, risk factors, and clinical course. medRxiv 2021.

[16] Simone A, Herald J, Chen A, Gulati N, Shen AY-J, Lewin B, et al. Acute myocardial injury pattern at MRI in COVID-19 vaccine recipients following the third (booster) dose of COVID-19 vaccination: magnetic resonance imaging study. JAMA Intern Med 2021;181:1668–70.

[17] Heymans S, Cooper LT. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nat Rev Cardiol 2021;1:1–3.

[18] Fronza M, Thavendiranathan P, Chan V, Karur GR, Udell JA, Wald RM, et al. Myocarditis following immunization with mRNA COVID-19 vaccines. Cureus 2021:13.

[19] Shiyovich A, Wirtberg G, Aviv Y, Kornowski R, Hamdan A. A case series of myocarditis following third (booster) dose of COVID-19 vaccination: magnetic resonance imaging study. Front Cardiovasc Med 2022;9.

[20] Vidula MK, Ambrose M, Glassberg H, Chokshi N, Chen T, Ferrari VA, et al. Myocarditis and other cardiovascular complications of the mRNA-based COVID-19 vaccines. Cureus 2021:13.

[21] Puchalski M, Kamińska H, Bartoszek M, Brzewski M, Werner B, COVID-19—Vaccination-Induced myocarditis in teenagers: case series with further follow-up. Int J Environ Res Publ Health 2022;19:3456.

[22] Woo W, Kim AY, Yon DK, Lee SW, Hwang J, Jacob L, et al. Clinical
characteristics and prognostic factors of myocarditis associated with the mRNA-COVID-19 vaccine. J Med Virol 2021.

[22] Ali T, Rehman M, Abidi E, Khedro E, Alansari A, Malik J, et al. Epide-
miology, clinical ramifications, and cellular pathogenesis of COVID-19 mRNA-
vaccination-induced adverse cardiovascular outcomes: a state-of-the-heart
review. Biomed Pharmacother 2022;149:112843.

[23] Mouch SA, Roberts PA, Habibi E, Iuchi A, Shoshan U, Mahamid L, et al. Myocarditis following COVID-19 mRNA vaccination. Vaccine 2021;39:
3790–3.

[24] Marshall M, Ferguson ID, Lewis P, Jaggi P, Gagliardo C, Collins JS, et al. Symptomatic autoimmune myocarditis in 7 adolescents before Pfizer-BioNTech COVID-
19 vaccination. Pediatrics 2021;144:1482–5.

[25] A’Dellio D, Tattali A, Carej ML, Booz C, Ascenti G, Ciceri G, et al. Myocarditis after SARS-CoV-2 vaccination: a vaccine-induced reaction? Can J Cardiol 2021;37:1196–7.

[26] Nassar M, Nso N, Gonzalez C, Lakhdar S, Alshamam M, Elshafey M, et al. COVID-19 vaccine-induced myocarditis: case report with literature review. Diabetes Metabol Syndr 2021;15:102205.

[27] Kim HW, Jenista ER, Wendell DC, Azevedo CF, Campbell MJ, Darty SN, et al. Patients with acute myocarditis following mRNA COVID-19 vaccination. JAMA Cardiol 2021;6:1196–7.

[28] Verma AK, Lavine KJ, Lin C-Y. Myocarditis after covid-19 mRNA vaccination. JAMA Cardiol 2021;6:1196–7.

[29] Koizumi T, Awaya T, Yoshioka K, Kitano S, Hayama H, Amemiya K, et al. Myocarditis after COVID-19 mRNA vaccines. QJM Ann Int Med 2021;114: 741–3.

[30] McLean K, Johnson TJ. Myopericarditis in a previously healthy adolescent male following COVID-19 vaccination: a case report. Acad Emerg Med 2021;28:918–21.

[31] Riedel PG, Sakai VF, Toniaso S de CC, Brum MCB, Fernandes FS, Pereira RM, et al. Myocarditis and heart failure secondary to SARS-CoV-2 reinfection: a case report. J Infect Dis 2021;113:175–7.

[32] In-Chool K, Hyeungsu K, Jeong LH, Youn KJ, Jin-Young K. Cardiac imaging of acute myocarditis following COVID-19 mRNA vaccination. J Korean Med Sci 2021;36:2371–7.

[33] Nguyen TD, Mall G, Westphal JG, Weingartner O, Mobius–Winker S, Schulze PC. Acute myocarditis after COVID-19 vaccination with mRNA-1273 in a patient with former SARS-CoV-2 infection. ESC Heart Fail, 2021.

[34] Andalí N, Farzad M, Long QT interval and syncope after a single dose of COVID-19 vaccination: a case report. Pan Afr Med J 2020;41:1.

[35] Sokolska JM, Kurcz J, Kosmalova W. Every rose has its thorns—acute myocarditis following COVID-19 vaccination. Kardiol Pol 2021;79:1153–4.

[36] Patel VR, Louis DW, Atalay M, Agarwal S, Shah NR. Cardiovascular magnetic resonance findings in young adult patients with acute myocarditis following mRNA COVID-19 vaccination: a case series. J Cardiovasc Magn Reson 2021:23–8.

[37] Kim D, Choi JH, Jung JY, So O, Cho E, Choi H, et al. A case report for myocarditis after BNT162b2 COVID-19 mRNA vaccination in a Korean young male. J Kor Med Sci 2021:36.

[38] El-Fiky F, Kloegel CJ, Nkamjou NA, Hüttiger S, Sood N, Pickloth D, et al. BioNTech–proven lymphocytic myocarditis following first mRNA COVID-19 vaccination in a 40-year-old male: a case report. Clin Res Cardiol 2021;110:1855–9.

[39] Schmitt F, Demoulin R, Poyret J, Capilla E, Rohel F, Pons F, et al. Acute Myocarditis after COVID-19 vaccination: a case report. Rev Med Interne 2021;42:797–800.

[40] Kadwadhala M, Chalda B, Ortelova J, Joyce M. Multimodality imaging and histopathology in a young man presenting with fulminating lymphocytic myocarditis and cardiogenic shock after mRNA-1273 vaccination. BMJ Case Reports CP 2021;14:e246059.

[41] Aziz M, Inman B, Webb J, Tannenbaum L. STEMI mimic: focal myocarditis in an adolescent patient After mRNA COVID-19 vaccine. J Emerg Med 2021;61:e129–32.

[42] Amir G, Rotstein A, Razon Y, Beyersdorf GB, Barak, Corren Y, Godfrey ME, et al. COVID-19 mRNA vaccination and myocarditis in adolescent siblings: does it run in the family? Vaccines 2021;9:100153.

[43] Sharbatdaran A, Chahal Y, Molaei M, Bhavsar D. A rare case of COVID-19 vaccine-induced myopericarditis in a young adult. Radiol Case Reports 2022;17:e202201.

[44] Farhad M, Long QT interval and syncope after a single dose of COVID-19 vaccination: a case report. BMJ Case Reports 2022;11:1–8.

[45] Ahmed SK. Myocarditis after BNT162b2 and mRNA-1273 COVID-19 vaccina-
tion: a report of 7 cases. Ann Med Surg 2021;103:1665.

[46] Mouch SA, Roberts PA, Habibi E, Iuchi A, Shoshan U, Mahamid L, et al. Myocarditis following COVID-19 mRNA vaccination. J Cardiovasc Magn Reson 2021;23:
10.

[47] Nasar M, Nso N, Gonzalez C, Lakhdar S, Alshamam M, Elshafey M, et al. COVID-19 vaccine-induced myocarditis: case report with literature review. Diabetes Metabol Syndr 2021;15:102205.

[48] Koizumi T, Awaya T, Yoshioka K, Kitano S, Hayama H, Amemiya K, et al. Myocarditis after COVID-19 mRNA vaccines. Jpn J Med 2021;114: 741–3.
Dlewati M, Park K, Rawat S, Conte J, Bhadha K. COVID-19 mRNA vaccine-associated myocarditis presenting as STEMI in a 48-year-old male. Case Rep Cardiol 2022:2022.

Kojima N, Tada H, Okada H, Yoshida S, Sakata K, Usui S, et al. Case report: myocarditis associated with COVID-19 mRNA vaccination following myocarditis associated with Campylobacter jejuni. Front Cardiovasc Med 2022:9.

Sharff KA, Dancoes DM, Longueil JL, Lewis PF, Johnson ES. Myopericarditis after COVID-19 booster dose vaccination. Am J Cardiol 2022.

Chellapandian SB, Turkmen S, Salim I, Chinnakaruppan S, Mohammad J. Myocarditis following COVID-19 mRNA (mRNA-1273) vaccination. Clin Case Rep 2022;10:e05741.