‘Regression anytime’ with brute force SVD truncation

Christian Bender
(joint work with Nikolaus Schweizer, Tilburg)

Saarland University

Annecy, June 2022
Outline

1. Introduction
2. Regression anytime
3. The RawBfst algorithm
4. Numerical illustration
The aim of the talk is to convince you that simulation based least-squares regression can work for solving backward SDEs in moderate dimensions, if the number of simulated paths is proportional to the number of basis functions (up to a log-factor).
Typical situation: Dependence on \(\omega \) in the coefficients of a BSDE driven by a Bm \(W \) is via a stochastic differential equation, which can be discretized by an Euler scheme \(X_i \).

Then typical time discretization schemes with step size \(h > 0 \) boil down to alternating between

1. Solving numerically a regression problem with Malliavin weight of the form

\[
m(x) = E[\beta_{i+1}y_{i+1}(X_{i+1})|X_i = x].
\]

where

\[
\beta_{i+1} \in \left\{ 1, \frac{W_{(i+1)h} - W_{ih}}{h} \right\}
\]

2. Applying a nonlinear deterministic function.

In this talk, we focus on the analysis of one regression step.
Two time steps:

\[X_1 := X \quad \text{‘now’} \]

where \(X \) is an \(\mathbb{R}^D \)-valued random variable whose density has a Gaussian tail estimate.

\[X_2 = X_1 + b(X_1)h + \sigma(X_1)\sqrt{h}W \quad \text{‘later’} \]

where \(b, \sigma \) are bounded deterministic functions, \(W \) is a vector of \(D \) independent standard normal random variables independent of \(X_1, h > 0 \).

Regression problem:

\[m(x) = E \left[\frac{W}{\sqrt{h}} y(X_2) \middle| X_1 = x \right], \]

where \(y \) is of class \(C_b^{Q+1} \) for \(Q \geq 3 \).
Setting

- Recall:
 \[m(x) = E \left[\frac{W}{\sqrt{h}} y(x + b(x)h + \sigma(x)\sqrt{hW}) \right] \]

- Integration by parts yields
 \[m(x) = \sigma(x)^\top E[\nabla y(x + b(x)h + \sigma(x)\sqrt{hW})] \]

- Thus, by a Taylor expansion,
 \[m(x) = \sigma(x)^\top \nabla y(x) + O(h) \]
Empirical regression

Regression now:

- D Empirical (simulation-based) regressions of $\frac{W^{(d)}}{\sqrt{h}} y(X_2)$ on basis functions that depend on X_1 (i.e. ‘now’).
- Standard approach in statistical learning, but with simulated data instead of empirical data.
- See e.g. Lemor, Gobet, Warin (2006) in the context of BSDE numerics.

Regression later:

- Empirical regression of $y(X_2)$ on basis functions depending on X_2 (i.e. ‘later’) plus closed-form expressions for the conditional expectations of the weighted basis functions.
- Exploits that one knows (in principle) the distribution of the simulated data.
- See e.g. Glasserman, Yu (2004), B., Steiner (2012), Beutner, Schweizer, Pelsser (2013).
Choose basis functions that depend on \((X_1, X_2)\) (‘anytime’), cp. the stochastic grid bundling method of Oosterlee and co-authors.

Step 1: Simulate \(L\) independent copies \((X_{1,l}, X_{2,l})\) of \((X_1, X_2)\)

Step 2: Choose \(K\) basis functions \(\eta_1(x_1, x_2), \ldots \eta_K(x_1, x_2)\).

We always choose basis functions in product form

\[
\eta_k(x_1, x_2) = \eta_k^{\text{now}}(x_1)\eta_k^{\text{later}}(x_2)
\]

and assume that

\[
x \mapsto E[W\eta_k^{\text{later}}(x + \Sigma W)] =: \tilde{\eta}_k^{\text{later}}(x; \Sigma)
\]

is available in closed form for every \(D \times D\)-matrix \(\Sigma\) (take e.g. polynomials).
Step 3: Perform an empirical regression of $y(X_2)$ on the basis functions, i.e. define

$$
\hat{y}_L^L(x_1, x_2) = \sum_{k=1}^{K} \hat{\alpha}_k \eta_k^{\text{now}}(x_1) \eta_k^{\text{later}}(x_2)
$$

where $\hat{\alpha}$ is a minimizer in \mathbb{R}^K of

$$
\frac{1}{L} \sum_{l=1}^{L} \left(y(X_{2,l}) - \sum_{k=1}^{K} \alpha_k \eta_k^{\text{now}}(X_{1,l}) \eta_k^{\text{later}}(X_{2,l}) \right)^2
$$
Regression anytime

Step 4: Define

\[
\hat{m}^L(x) := E \left[\frac{W}{\sqrt{h}} \hat{y}^L(X_1, X_2) \middle| X_1 = x, (X_1,l, X_2,l)_{l=1,...,L} \right]
\]

\[
= \sum_{k=1}^{K} \hat{\alpha}_k \eta_k^{now}(x) E \left[\frac{W}{\sqrt{h}} \eta_k^{later}(X_2) \middle| X_1 = x \right]
\]

\[
= \sum_{k=1}^{K} \hat{\alpha}_k \eta_k^{now}(x) \frac{1}{\sqrt{h}} \tilde{\eta}_k^{later}(x + b(x)h, \sigma(x)\sqrt{h})
\]

as estimator for the regression function \(m \).
Removing the weight from the error analysis: By Hölder’s inequality:

\[
E[|m(X_1) - \hat{m}^L(X_1)|^2] \\
= E \left[E \left[\frac{\mathcal{W}}{\sqrt{h}} (y(X_2) - \hat{y}^L(X_1, X_2)) \bigg| X_1, (X_{1,l}, X_{2,l})_{l=1,...,L} \right] \right]^2 \\
\leq \frac{D}{h} E[|y(X_2) - \hat{y}^L(X_1, X_2)|^2]
\]
Consider the empirical regression matrix

\[A = (\eta_k^{\text{now}} (X_1,l) \eta_k^{\text{later}} (X_2,l))_{l=1,\ldots,L; k=1,\ldots,K} \]

and recall that

\[\hat{\alpha} = A^\dagger \begin{pmatrix} y(X_2,1) \\ \vdots \\ y(X_2,L) \end{pmatrix} \]

where \(A^\dagger \) denotes the pseudoinverse of \(A \)

Without stabilization the convergence properties of the empirical regression may deteriorate due to rare samples that lead to a very ill-conditioned empirical regression matrix.
Regression anytime – SVD truncation

- Stabilization is usually achieved by truncating the estimator
 \[
 \min \left\{ \max \left\{ -C, \sum_{k=1}^{K} \hat{\alpha}_k \eta_k^{\text{now}}(x_1) \eta_k^{\text{later}}(x_2) \right\}, C \right\}
 \]
 for some sufficiently large constant, say \(C \geq \sup_x |y(x)| \).

- Convergence analysis for truncated least-squares estimators can be found in the textbook by Györfi et al. (2002) in the presence of noise and in Cohen, Davenport, Leviatan (2013) in a noiseless setting with orthonormal basis functions.

- However, closed-form computations of the conditional expectation in our setting require linearity of the estimator in the basis functions, which is destroyed by truncation.
Way-out: Set the estimator to zero, if the smallest singular value $s_{\text{min}}(A)$ of the empirical regression matrix ist too close to zero, cp. the conditioned least-squares estimator of Cohen and Migliorati (2017).

By slight abuse of notation:

$$\hat{y}^L(x_1, x_2) := \sum_{k=1}^{K} \hat{\alpha}_k \eta_k(x_1, x_2)$$

where

$$\hat{\alpha}_k := (A^\top A)^{-1} A^\top \begin{pmatrix} y(X_{2,1}) \\ \vdots \\ y(X_{2,L}) \end{pmatrix} \mathbf{1}_{\{s_{\text{min}}(A) \geq L\tau\}}$$

for some threshold $\tau > 0$.

Christian Bender
‘Regression anytime’ with brute force SVD truncation
- **Statistical error** decays exponentially in the sample size L and depends on a sup-bound of the basis functions

$$\sup_{(x_1, x_2)} \sum_{k=1}^{K} |\eta_k(x_1, x_2)|^2$$

and on the smallest and largest eigenvalues $\lambda_{\min}(R)$ and $\lambda_{\max}(R)$ of

$$R = (E[\eta_k(X_1, X_2)\eta_{\kappa}(X_1, X_2)])_{k, \kappa=1, \ldots, K}$$

- Note

$$\frac{1}{L} s^2_{\min}(A) \to \lambda_{\min}(R)$$

almost surely as $L \to \infty$.

- So the threshold τ must be a strict lower bound of $\lambda_{\min}(R)$.

Christian Bender 'Regression anytime’ with brute force SVD truncation
Recall: We wish to approximate
\[m(x) = E \left[\frac{W}{\sqrt{h}} y(X_2) \bigg| X_1 = x \right] \]
up to order, say, \(O(h) \), where \(X_2 \) is one step of an Euler scheme with step size \(h \) starting at \(X_1 \).

Then, \(\hat{y}^L \) must approximate \(y \) to the order \(O(h^{3/2}) \).

We need to identify an 'anytime'-function basis such that
1. it is generically applicable to the Euler scheme setting (not tailored to the coefficients \(b, \sigma \));
2. closed-form expression of the conditional expectations of the 'later' basis functions is available;
3. the projection error is of order \(O(h^{3/2}) \);
4. the eigenvalues of \(R = R_h \) and the sup-norm of the basis functions can be controlled to match the statistical error.
The RawBfst algorithm – Overview

Algorithm:

- Truncate the domain of X_1 in accordance with the Gaussian tail bound.
- Decompose the truncated domain into cubes $(\Gamma_i)_{i \in I}$ of diameter $\sim h^{3/(2Q+2)}$, $Q \geq 3$.
- Basis functions of the form
 \[\eta(X_1, X_2) = 1_{\Gamma_i}(X_1) \mathcal{P}(X_2) \]
 where \mathcal{P} are Legendre polynomials of degree up to Q, scaled to be orthonormal w.r.t. the uniform distribution on Γ_i.
- Change the sampling distribution of X_1 to a (stratified) uniform distribution on the cubic grid (via importance sampling) and truncate the Gaussian innovations in the sampling scheme for X_2.
- Run ‘Regression anytime’ with SVD truncation based on a sample of size L to compute \hat{y}_L and \hat{m}_L.

Christian Bender

‘Regression anytime’ with brute force SVD truncation
The RawBfst algorithm – Convergence

Theorem

Suppose $y \in C_b^{Q+1}(\mathbb{R}^D)$ for some $Q \geq 3$. Compute \hat{m}_L via RawBfst with

$$L = L_h = \left\lceil 2 c_{1,\text{paths}} \log(h^{-1}) \right\rceil \cdot |I|$$

$$\tau \in \left(0, 1 - \left(\frac{c^*_\text{paths}(Q, D)}{c_{1,\text{paths}}} \right)^{1/2} \right)$$

$$c_{1,\text{paths}} > c^*_\text{paths}(Q, D) := \frac{2}{3} + \frac{8}{3} \sum_{j \in \mathbb{N}_0^D ; |j|_1 \leq Q} \prod_{d=1}^D (2j_d + 1).$$

Then there is a constant $C > 0$ such that for small h

$$E \left[E \left[\frac{W}{\sqrt{h}} y(X_2 \mid X_1) - \hat{m}_L(X_1) \right]^2 \right] \leq C \log(h^{-1})^{D/2} h^2.$$
The RawBfst algorithm – Convergence

Remarks:

- The cost to achieve a root-mean-squared error of the order h is up to a log-factor of the order

\[
|I| \sim h^{-3D/(2Q+2)}
\]

- Ignoring log-factors the convergence behaviour in the number of samples is

\[
L \sim \left(\frac{2(Q+1)}{3D}\right)
\]

- It beats the Monte-Carlo rate of $1/2$ for computing a single expectation, if the smoothness-to-dimension ratio $(Q + 1)/D$ exceeds $3/4$.

- In practice, the algorithm can only be applied in moderate dimensions and for moderate polynomial degrees.
Numerical illustration

- Test example from Gobet et al. (2016):

\[X_t = W_t \quad \text{D-dim. Brownian motion} \]

\[Y_t = Y_1 + \int_t^1 \left(\sum_{d=1}^D Z_s^{(d)} \right) \left(Y_s - \frac{1}{D} - \frac{1}{2} \right) ds - \int_t^1 Z_s dW_s \]

\[Y_1 = \frac{\exp\{1 + \sum_{d=1}^D W_1^{(d)}\}}{1 + \exp\{1 + \sum_{d=1}^D W_1^{(d)}\}} \]

- Closed form solution available: \(Y_0 = 1/2 \).

- We apply the time-discretization scheme by Fahim et al. (2011).
Numerical illustration

- We calibrate the RawBfst algorithm to achieve a convergence rate of $1/2$ in the time step h in accordance with the Euler discretization of Y – applying heuristics for the error propagation over the time steps.
- **Dimension:** 5
- **Total number of cubes:** $\sim h^{-(5/4+1)}$,
- **number of basis functions per cube:** 56 (degree up to 3)
- **Number of samples per cube:** $2 \cdot 4320 \log(0.5 h^{-1})$
- **Comparison:** Calibration of the ‘regression now’-algorithm of Gobet et al. (2016) with the same number of cubes requires $\sim h^{-3}$ samples per cube (but with a lower polynomial degree).
- **Sample:** one D-dimensional uniform or Gaussian random variable.
Table: Mean and standard deviation of the approximation for Y_0 across 20 runs of the algorithm.

h^{-1}	mean	standard deviation
10	0.486427	5.01 \cdot 10^{-4}
20	0.493735	2.52 \cdot 10^{-4}
30	0.497602	1.34 \cdot 10^{-4}
40	0.499836	8.33 \cdot 10^{-5}
50	0.501483	8.01 \cdot 10^{-5}
60	0.501333	8.01 \cdot 10^{-5}
70	0.501016	5.77 \cdot 10^{-5}
Figure: Approximation errors against time step size ($\Delta := h$) in a \log_{10}-\log_{10}-plot.
Figure: Approximation errors against run time in a \log_{10}-\log_{10}-plot. Run times are for a Julia 1.4.2 implementation on a Windows desktop PC with an Intel Core i7-6700 CPU with 3.4GHz.
Some references

Bender, C. and Steiner, J. (2012). Least squares Monte Carlo for BSDEs. In: Carmona, R. et al. (eds.) Numerical Methods in Finance, Springer, Berlin, pp. 257–289.

Beutner, E., Schweizer, J. and Pelsser, A. (2013). Fast convergence of regress-later estimates in least squares Monte Carlo. arXiv.

Bouchard, B. and Touzi, N. (2004). Discrete-time approximation and Monte Carlo simulation of backward stochastic differential equations. Stochastic Process. Appl. 111 175–206.

Cohen, A., Davenport, M. A. and Leviatan, D. (2013). On the stability and accuracy of least squares approximations. Found. Comput. Math. 13 819–834.

Cohen, A. and Migliorati, G. (2017). Optimal weighted least-squares methods. SMAI J. Comput. Math. 3 181–203.

Fahim, A., Touzi, N. and Warin, X. (2011). A probabilistic numerical method for fully nonlinear parabolic PDEs. Ann. Appl. Probab. 21 1322–1364.

Glasserman, P. and Yu, B. (2004). Simulation for American options: Regression now or regression later? In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2002, Springer, Berlin, pp. 213–226.
Some references

- **Gobet, E., López-Salas, J. G., Turkedjiev, P. and Vázquez, C.** (2016). Stratified regression Monte-Carlo scheme for semilinear PDEs and BSDEs with large scale parallelization on GPUs. *SIAM J. Sci. Comput.* 38 C652–C677.

- **Györfi, L., Kohler, M., Krzyzak, A. and Walk, H.** (2002). *A Distribution-Free Theory of Nonparametric Regression*. Springer, New York.

- **Jain, S. and Oosterlee, C. W.** (2015). The stochastic grid bundling method: efficient pricing of Bermudan options and their Greeks. *Appl. Math. Comput.* 269 412–431.

- **Lemor, J.-P., Gobet, E. and Warin, X.** (2006). Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations, *Bernoulli* 12 889–916.

- **Tropp, J. A.** (2012). User-friendly tail bounds for sums of random matrices. *Found. Comput. Math.* 12 389–434.

- **Zhang, J.** (2004). A numerical scheme for BSDEs. *Ann. Appl. Probab.* 14 459–488.
Thank you...

... for your attention!

This talk was based on

BENDER, C. and SCHWEIZER, N. (2021) ‘Regression Anytime’ with Brute-Force SVD Truncation. *Ann. Appl. Probab.*, 31, 1140–1179.
Theorem

Suppose that the basis functions η_k are bounded. Let

$$\lambda_* \leq \lambda_{\min}(R) \leq \lambda_{\max}(R) \leq \lambda^*$$

and $\tau = (1 - \epsilon)\lambda_*$ for some $\epsilon \in (0, 1)$. Then,

$$E \left[|y(X_2) - \hat{y}_L(X_1, X_2)|^2 \right] \leq \left(1 + \frac{\lambda^*}{\lambda_*(1 - \epsilon)}\right) \inf_{\alpha \in \mathbb{R}^K} E \left[|y(X_2) - \alpha^T \eta(X_1, X_2)|^2 \right] + 2K \exp \left\{ \frac{-3\epsilon^2L}{6m\lambda^*/\lambda_*^2 + 2\epsilon(m/\lambda_* + \lambda^*/\lambda_*)} \right\} E[|y(X_2)|^2],$$

Extends related results by Cohen and co-authors beyond the case of orthonormal basis functions.
Remarks:

- For a fixed function basis, the statistical error converges exponentially in the number of samples L.
- The **key step** is to estimate the SVD truncation probability by a matrix Bernstein inequality, see e.g. Tropp (2012).
- The result is not distribution free, but depends on the distribution of (X_1, X_2) via the eigenvalues $\lambda_{\min}(R), \lambda_{\max}(R)$.
- Optimal rates (up to log-factors) for some interpolation problems with random design can be derived from this result.
- The choice of the truncation threshold τ is a trade-off between projection error and statistical error.