Abstract—For further improving the capacity and reliability of optical networks, a closed-loop autonomous architecture is preferred. Considering a large number of optical components in an optical network and many digital signal processing modules in each optical transceiver, massive real-time data can be collected. However, for a traditional monitoring structure, collecting, storing and processing a large size of data are challenging tasks. Moreover, strong correlations and similarities between data from different sources and regions are not properly considered, which may limit function extension and accuracy improvement. To address above-mentioned issues, a data-fusion-assisted telemetry layer between the physical layer and control layer is proposed in this paper. The data fusion methodologies are elaborated on three different levels: Source Level, Space Level and Model Level. For each level, various data fusion algorithms are introduced and relevant works are reviewed. In addition, proof-of-concept use cases for each level are provided through simulations, where the benefits of the data-fusion-assisted telemetry layer are shown.

Index Terms—Autonomous optical networks, data fusion, machine learning, optical monitoring, telemetry layer.

I. INTRODUCTION

In the past decade, optical transmission and networking technologies have been rapidly evolving. In particular, the advance of digital signal processing (DSP) based coherent transceiver enables to approach the capacity limit of a classical fiber channel, and it has become relatively difficult to further increase network capacity through innovations in transmission technologies. Such a situation provides a strong incentive to build a more intelligent optical network for further reduction of cost per bit by more efficiently utilizing network resources. In the meantime, the development of coherent technologies and flex-grid reconfigurable optical add-drop multiplexer (ROADM) has driven the deployment of elastic optical networks (EON) [1], which support flexible modulation formats, channel spacing and throughput. Furthermore, software-defined networks (SDN) technologies [2]–[4] provide a centralized architecture to control, optimize and reconfigure physical layer optical networks flexibly.

The ultimate goal is to design a closed-loop autonomous optical network, which maximizes system capacity and minimizes operational expenditure. Typical optical network applications include network planning [5], [6], physical layer optimization [7], [8], resource allocation [9]–[11], failure management [12], [13], and so forth. To support the closed-loop automation design of these applications, real-time data collection through telemetry is required [14]. In long-haul optical communications, a single link consists of many elements such as optical transceiver, optical amplifier and ROADM. Transmitted signals are affected by various impairments including transceiver noise, fiber linear effects, and fiber nonlinear effects. Moreover, since tens of channels share one fiber link in wavelength-division multiplexing (WDM) systems, there exists channel crosstalk through fiber nonlinearities. Therefore, real-time data collection is a complex task in optical networks. Recently, artificial intelligence (AI) technology is regarded as a promising solution to achieve autonomous optical networks, but it significantly enhances the requirement for telemetry capabilities.

Currently, the research on optical telemetry, also known as optical performance monitoring (OPM), is usually focused on single function design. For example, optical signal-to-noise ratio (OSNR) monitoring has been widely investigated based on an optical spectrum analyzer (OSA) or a coherent receiver [15]–[19]. From a network perspective, other issues regarding telemetry have not been fully discussed. First, since there are a large number of monitoring elements in a network and the speed of optical communication is extremely high, massive telemetry data would be generated, leading to a problem in storage space. Second, strong correlations between data sources exist, including different elements across multiple link elements in one channel and between channels. They can be exploited to develop more telemetry functionalities and increase their

0733-8724 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
accuracy. Therefore, the design of telemetry from a network perspective will become an important topic in the context of AI-driven autonomous optical network.

In [20], we review and discuss optical network applications and the required monitoring functionalities. In this paper, a data-fusion-assisted telemetry layer is proposed to address the abovementioned issues and support upper-layer applications. With the aid of this telemetry layer, data from different sources can be processed with various data fusion algorithms [21] before being sent to a SDN controller [22], which alleviates the communication and storage burden. In addition, by defining such a layer, development and implementation of telemetry functionalities based on data fusion processing can be decoupled from other layers, obtaining more flexibilities and higher efficiencies in terms of deployment. In this scheme, massive data generated in various domains and regions forms a flexible repository which breaks the barriers between various equipment and regions to achieve precision improvement and function extension. Among the data fusion algorithms, AI-based methods have recently achieved rapid progress. Based on the AI-assisted data fusion, a large amount of data from multiple heterogenous sources can be aggregated to build an information-integration monitoring system. Many works have investigated how to apply AI-based approaches for better network monitoring and control [12], [23]–[25]. However, the utilization of AI in the aspects of data fusion for optical networks is very limited. Some data-fusion-assisted applications have been mentioned in previous works [26], [27] but not comprehensively investigated. In this work, we thoroughly discuss the use of data fusion and provide several use cases.

The major objective of this paper is to analyze why and how data-fusion-assisted algorithms in the telemetry layer further improve the monitoring accuracy and efficiency. The practical deployment of the telemetry layer needs to consider the optimal realization of various data fusion methodologies and is an open topic for future investigation. In the following sections, we firstly provide an overview of the architecture and functionalities of the proposed telemetry layer. The data fusion methodologies in the telemetry layer are elaborated based on three levels of telemetry perspective: 1) Source Level, 2) Space Level, 3) Model Level. For each level, we describe and analyze the useful algorithms for fusing information from the physical layer and also review many relevant monitoring algorithms. To better demonstrate the function and superiority of the proposed telemetry layer and data fusion techniques, we also provide use cases in each level to show the performance improvement with the aid of data fusion methodologies.

The rest of this paper is organized as follows. In Section II, we elaborate the architecture of the telemetry layer and briefly introduce the data fusion methods on different levels. In Section III to V, algorithms for fusing data on the abovementioned levels in the telemetry layer are introduced. Moreover, for each section, we demonstrate the application data fusion algorithms in some use cases. In the Section VI, conclusions are obtained by summarizing the advantages of applying the data-fusion-assisted telemetry layer in autonomous optical networks.

II. THE ARCHITECTURE OF THE TELEMETRY LAYER AND THE DATA FUSION METHODS ON DIFFERENT LEVELS

As shown in Fig. 1, between the control layer and the physical layer, a data-fusion-assisted telemetry layer is proposed to process and fuse data from multiple heterogenous sources. All the monitoring algorithms are deployed at the telemetry layer. The network configuration information can be transferred from the control layer to the telemetry layer if required by the monitoring algorithms. The induced communication burden is minimal since the data size is small and the updating frequency is low. In the telemetry layer, with the aid of the data fusion techniques, the monitoring accuracy can be improved which will be demonstrated in the following use cases. Moreover, by processing the extracted data properly, more monitoring functions can be developed to support upper-layer applications. The obtained monitoring results will only be transferred to the SDN control layer when needed. Such operations can significantly reduce the storage space in the control layer.

As mentioned earlier, to efficiently extract useful information from raw information data in the physical layer, data fusion algorithms are the core techniques. Different algorithms view data from different perspectives, thus achieving various monitoring goals flexibly. To describe these data fusion algorithms, we categorize them into three levels: 1) Source Level, 2) Space Level, 3) Model Level. The different levels of data fusion methodologies are also depicted in Fig. 1 and elaborated as follows.

Source level: On the source level, information from heterogenous sources is fused. In optical transmission, there are two typical sources to extract information: the optical domain and digital domain. In the optical domain, since signals are transmitted over a long distance, various optical components involve, such as fiber, Erbium-doped fiber amplifiers (EDFA) and wavelength selective switches (WSS). Many impairments are caused by these link elements and related information can be obtained for link monitoring. In the digital domain, many DSP algorithms are utilized in a coherent transceiver to compensate for different transmission impairments, which also provide opportunities to extract impairment-related information for link monitoring. Since the impairments occur during transmission and are subsequently compensated at the receiver, there are strong correlations between the information from the digital domain and the optical domain. Traditional methods usually only consider information from one specific domain. However, by combining information from the two different sources in the telemetry layer, more accurate monitoring is expected to be achieved.

Space Level: On the space level, data from one region or multiple regions can be fused by different methods. For data in one region, in a WDM system, signals from different channels share the same fiber and go through the same equipment. They experience identical or similar impairments so that the strong correlations between each other exist. Therefore, fusing information from relevant channels can provide stronger monitoring capabilities. For multiple regions, data with different uncertainty distributions can be employed to improve the robustness and
generalization ability of the global applications for all network regions.

Model Level: On the model level, models with homogenous or heterogenous forms can be aggregated to combine their advantages and make up for their shortcomings. For heterogeneous models, i.e., analytical models and machine-learning-based (ML) models, they can be ensembled to perform a better estimation since they provide information from diverse perspectives. For homogeneous models, i.e., ML-based models, they can be ensembled to transform many weak learners to become a strong learner.

These three levels of data fusion algorithms can be applied parallelly, hierarchically or individually. By fusing data in the telemetry layer, more monitoring functions can be provided and the monitoring accuracy can be improved. In the following sections, we will elaborate the data fusion methods in the telemetry layer on each level and provide use cases to prove the concept.

III. DATA-FUSION-ASSISTED TELEMETRY ON THE SOURCE LEVEL

A. Monitoring With Data from Heterogenous Sources

In optical networks, fusing information from the optical domain and digital domain can help to improve link monitoring. In the optical domain, a number of parameters reflecting system status can be obtained. For a fiber span, fiber attenuation can be monitored by measuring the power at the both ends of the span. For an amplifier, the average launch power of signals at the output of the amplifier can be measured. If an OSA is available, the power of each channel can be further obtained. For a WSS, the optical spectrum before and after each WSS can be also measured by the OSA. The information that can be obtained in the optical domain are summarized in Table I. With the monitored information, we can gain insights into the system status. For example, in [7], the nonlinear impairments caused by the Kerr effect are estimated by analyzing the optical spectrum. In [28], the gain fluctuations of the EDFA on the optical link are obtained with the help of the optical spectrum. In [12], the cause of the soft failure between filter shift (FS) and filter tightening (FT) is identified by analyzing the optical spectrum.

Besides the optical domain, the deployed coherent receiver can be easily extended to provide monitoring functions. The typical DSP consists of chromatic dispersion compensation (CDC), adaptive equalizer, carrier recovery (CR), nonlinearity compensation (NLC), clock recovery and so on. From each DSP module, different end-to-end information of the link can be monitored, and they are summarized in Table II. With the help of these DSP information, the status of the system can be estimated and optimized. In [29], the tap of the adaptive filter is used to estimate the channel response to perform pre-compensation of the filtering effect of WSS. In [30], the filter tap is used for soft failure detection. In [31], the receiver bit-error-ratio (BER) is monitored, and the nonlinear impairment of fiber is estimated by analyzing the BER histogram. In [32], the amplitude noise correlation, the phase noise correlation and the chromatic dispersion are extracted from the DSP to estimate the nonlinear noise. In [33], the phase noise is extracted from the CR module to estimate the nonlinear noise of the system.

B. Methodologies for Fusing Data on the Source Level

From the description above, both the optical domain and digital domain can provide useful information about the optical
communication system. For long-haul transmissions, major impairments occur in the optical domain and are compensated in the digital domain. Therefore, the information from the two domains can have strong correlations. For many previous researches, only information from one specific domain is employed, which limits the monitoring accuracy to some extent. By fusing data from different domains, a higher accuracy can be achieved and more monitoring functions can be potentially developed.

The data obtained from the physical layer can be classified into three categories [21]. 1) **Complementary**: the obtained data is from different sources but reflects the same problem, which can be aggregated to provide a more complete picture for the monitoring task. For example, the signal spectrum from the CDC and adaptive filter reflects the channel response in a complementary way, which can help to monitor the filtering effect with a higher accuracy. 2) **Redundant**: when two or more input sources provide information about the same target and could thus be fused to increase the confidence. For example, both the optical spectrum obtained from an OSA and the digital spectrum extracted from a coherent receiver reflect the same channel response. Therefore, combining spectrums from the two sources can improve the monitoring of the filtering effect. 3) **Cooperative**: when information is from different sources and acquired by different algorithms, they can be integrated to assemble the knowledge and improve the performance of each individual. For example, in [34], results estimated based on the Gaussian noise (GN) model and monitored information from the physical layer are combined to monitor the self-phase modulation (SPM) more accurately. For different cases, a proper fusion method is needed to combine the knowledge for better link monitoring. The overall framework to fuse data from heterogenous sources is shown in Fig. 2 and specific data fusion methods on the Source Level are elaborated as follows.

Direct-concatenation-based data fusion: The easiest way to fuse data is the direct concatenation [35]. This method treats the knowledge from different sources equally and combine them into a feature vector sequentially. Afterwards, these features are input to a function or a ML model. In [36], authors concatenate the features extracted from optical spectrum and the tap value from the equalizer of a coherent receiver to localize the abnormal WSS in a link. This method is simple to process and is useful when the number of features is not large. However, disadvantages exist [10]. First, overfitting can be easily caused when the dataset is small. Second, the internal nonlinear relationship between features from different sources is ignored, which limits the monitor to extract more complex knowledge such as the shape of the spectrum. Third, it may cause high redundancy since data may have correlations between each other, which can result in a large computational load.

Stage-based data fusion: This method decomposes a problem into different stages, and information from different domains is used accordingly. At different stages, the algorithms used for knowledge extraction may be different, making it possible to deploy the data fusion framework into different layers. The stage using simple algorithms can be integrated into the receiver, and the stage requiring more computation resources can be deployed into the telemetry layer. In this way, the communication burden can be alleviated to some extent. Another advantage is that at different stages, the information obtained from different sources can be analyzed by the most proper algorithm according to their respective characteristics. In [37], a two-stage soft failure identification scheme has been proposed.

Deep-learning-based data fusion: The last one is the deep learning (DL) based data fusion method. With the fast advance of DL technologies, its powerful feature extraction capability makes it a new way for data fusion. With various supervised, unsupervised algorithms, DL can learn multiple levels of representation and abstraction of data. In addition to outputting results directly, deep learning can also learn new feature representations and these middle features are then input to another predictor (typically a shallow artificial neural network). These new feature representations are proved to be more useful than hand-crafted features [38].

C. Use Case for Source Level Data-Fusion-Assisted Telemetry

In this section, we describe a use case using the stage-based data fusion scheme on the Source Level. We extend our previously proposed one-stage structure in [36] to a two-stage
structure which can detect and localize soft failures at the same time.

At the first stage, the monitoring features include the average value, maximum value, minimum value, standard deviation of the equalizer tap, the centroid and the 3-dB bandwidth of the digital spectrum. These features are analyzed by an artificial neural network (ANN) and a coarse localization result is output. Since the first stage gives an approximate location of the soft failure, there is no need to upload every optical spectrum of an optical link after each WSS. Therefore, at the second stage, only optical spectra around the approximate location are needed. Afterwards, the difference between the theoretical optical spectrum and the monitored spectrum is calculated. The theoretical optical spectrum $s(f)$ at the frequency f is calculated as [37]

$$s(f) = \frac{1}{2} \sigma \sqrt{2\pi} \left[\text{erf} \left(\frac{B}{\sqrt{2\sigma}} - f \right) - \text{erf} \left(-\frac{B}{\sqrt{2\sigma}} - f \right) \right]$$

(1)

$$\sigma = \frac{BW_{\text{otf}}}{2\sqrt{2\ln 2}}$$

(2)

$$H(f) = H_{\text{signal}}(f) H_{\text{rrc}}(f) s(f)^n$$

(3)

where B and W_{otf} are the bandwidth of the WSS filter and the steepness of the filter edge, respectively. $H_{\text{signal}}(f)$ represents the Fourier transform of the transmitted signal, $H_{\text{rrc}}(f)$ represents the transfer function of the root-raised-cosine pulse shaping filter, and n represents the number of cascaded WSSs. Then, the difference is input into a convolutional neural network for the accurate soft failure identification and localization.

For the deployment of the algorithm, the first stage is just a shallow neural network and it can be deployed in each receiver. The second stage needs a convolutional neural network, which can be deployed in the central telemetry layer. Afterwards, the failure locations are uploaded to the control layer. The neural networks of each stage are offline-trained and the training dataset is generated by the simulation which is designed specifically according to the characteristics of the optical components. For instance, the fiber and WSS are simulated by the widely validated split-step Fourier method (SSFM) and filtering function, respectively. After deployment, only slight adjustment based on the gradient descent is needed to make the pretrained model more suitable for the specific network equipment. The whole process described above is shown in Fig. 3. To validate the proposed method, we perform simulations and the simulation setup is shown in Fig. 4.

At the transmitter side, the transmitted data is first generated and mapped into 16-QAM symbols. The symbol rate is set to 35 Gbaud. After up-sampling and pulse shaping by a raised-root-cosine (RRC) filter with a roll-off factor of 0.02, the signal is launched into the fiber. The fiber link consists of standard single mode fiber (SSMF) with a fixed span length of 80 km. The total link length is 1200 km, and 7 WSSs are distributed in the link. The fiber nonlinearity is simulated by the SSFM. After each span, an EDFA is used to completely compensate the span loss. The noise figure (NF) of each EDFA is set to 5 dB.

At the receiver side, a CDC module is first applied to the signal in frequency domain. After that, the matched filter is applied followed by an adaptive equalizer based on the principle of the least-mean-square (LMS) criterion. The equalizer tap values are extracted. Finally, the carrier phase recovery (CPR) is applied and then the signal-to-noise ratio (SNR) can be obtained. To simulate the FS, we sweep the center frequency of each WSS from 5 GHz to 15 GHz with a step size of 0.1 GHz. To simulate the FT, we sweep the bandwidth of each WSS from 20 GHz to 25 GHz with a step size of 0.05 GHz. Since the filtering effect in each channel is independent, only one channel is simulated in each case. Finally, we generate in total 1400 examples. 70% of them are for training, and 30% of them are for testing. To optimize the neural network, we use Adam to minimize the cross-entropy loss function [39]. The metric that measures the performance of the algorithm is the localization accuracy, which is defined as the proportion of the correct localization samples among all samples.

At the first stage, we use a 2 hidden-layer ANN. The results are shown in Fig. 5 and Fig. 6. Although the accuracy reaches
93%, some samples are still misclassified, and we find that all the misclassifications are the neighboring ones of the correct one. This is because the end-to-end DSP information cannot provide sufficient information when the soft failure locations are close.

To further improve the accuracy, the second stage collects the optical spectrums around the soft failure location determined by the first stage. The difference between the theoretical optical spectrum and the actual one is analyzed by a convolutional neural network (CNN) and the soft failure cause is identified and localized. The accuracy improves from 93% to 100% compared with the first stage output, which is reasonable according to the previous research in the field of computer vision [12]. Therefore, in the telemetry layer, by the stage-based data fusion method, the optical spectrum and the DSP information are combined to identify and localize the soft failure accurately.

IV. DATA-FUSION-ASSISTED TELEMETRY ON THE SPACE LEVEL

A large number of optical components are employed to support communication requirements between various nodes, building an optical network in each region. Considering the scale of the signal transmission, in different regions on the Space Level, different optical networks exist. In this section, we introduce data fusion methodologies on the Space Level from two perspectives: 1) fusing data from one region; 2) fusing data from multiple regions.

A. Fusing Data from One Region

For an optical network in one region, physical layer impairments tend to have strong correlations and high similarities, which provides a suitable scenario for data fusion. For WDM transmissions in one link, signals share the same optical components, therefore inducing similar or relevant impairments and noises. In the same fiber, signals induce cross phase modulation impairments for each other. For the same EDFAs, the NF spectra are continuous functions and show gain/loss wavelength dependency. For the same WSS, when failures occur, all signals may be influenced. Therefore, utilizing data from signals in one link can provide various relevant and similar information to improve link monitoring.

For signals transmitted in different links in one region, they also have some correlations and similarities. Firstly, many signals in different links may share the same optical multiplex section (OMS) with the same optical equipment in the network. Secondly, in one region, optical components are usually from the same vendors with the same configuration settings. Therefore, even though these signals may not share the same link or equipment, they may experience impairments with similar characteristics.

Considering the strong correlations and similarities of the optical channels in one region, data from each channel can be fused to improve link monitoring. However, the similarity is difficult to assess directly. This is because the configuration parameters of each channel are generated to be a high-dimensional vector. The importance and weight of each parameter are unknown so that it is difficult to choose an appropriate function to measure the similarity. To solve this, using ML-based methods, metric learning [40] can help to learn the relationship of each signal in a supervised manner. The similarities of each signal and configuration setting are learned iteratively so that they can be employed to make estimations when new signals are to be established or aggregated for achieving more accurate monitoring. Moreover, traditional algorithms such as K-Nearest Neighbor (K-NN) or linear regression are also useful tools for extracting the correlations between signals. For example, in [41], when many signals share the same EDFAs, Gaussian process regression is applied to estimate the OSNR in each channel without any prior knowledge. In [42], a method evaluating the similarity of each signal is proposed to build a cognitive optical network. To further explore information from relevant signals, in [43], a graph neural network is designed to consider the interference between each node and each fiber for failure localization.

To optimize estimation performance, active learning can also be utilized to select the most useful information from a large number of signals [44].

B. Fusing Data in Multiple Regions

In different regions, signals also have some similarities since they all utilize optical elements with the same functions, such as fiber, EDFA and WSS. To make full use of this kind of similarity, we can fuse these data and further improve the robustness and generalization ability of the global models for various applications.

As shown in Fig. 7, model assigned to each region cannot perfectly match the practical system at the beginning and thus an adaptation is needed. To improve the performance of the application in the new region, the global model also needs to be improved. In this case, data from multiple regions can be aggregated to adjust the global model. However, a large amount of data is transferred from each region, which can cause a large communication burden if simply sending data to the control plane without any processing for conventional retraining or updating. To solve this, instead of uploading data in all regions, models updated with local data in each region can be applied to conduct data fusion, which decouples fusing process from the direct access to the physical-layer data [45]. This kind of data fusion method is called federated learning [45], which is a decentralized learning framework and useful for ML-based
algorithms. Proposed in [46], the distributed and centralized learning framework has been analyzed to build a learning life cycle. In [47], the centralized and distributed processing are cooperated to build an SDN-based hybrid framework for transmission performance estimation.

C. Use Case for Space Level Data-Fusion-Assisted Telemetry

Here we apply the federated-learning-based data fusion to improve the robustness and generalization ability of the global model for nonlinear noise estimation. Based on neural networks, nonlinear noise can be estimated [48]. These ML-based models are trained offline with a large amount of data generated from simulations or lab experiments and then deployed to practical systems to make fast inference. However, since the parameter uncertainty, such as the input power, caused by inaccurate measurements existing in practical systems, the pre-trained model needs to be customized to be compatible with different regions [49]. In some scenarios, the model cannot be adjusted online due to the lack of data, especially when an optical network is newly established. Therefore, a global model with better robustness is always preferred. In this use case, we discuss and show how data from different regions can be efficiently fused to improve the robustness of the global model assigned to each region.

As shown in Fig. 7, with the aid of the telemetry layer, data extracted from the physical layer can be easily obtained for adaptation. The adaptation in each region can be conducted in the local telemetry layer. Afterwards, these locally adjusted models can be fused to update the global model in the central controller. In this way, the updating procedure in the central controller only needs the adjusted models from various regions instead of sending a large amount of raw information data from the physical layers to the SDN controller. As a result, the robustness and generalization ability of the global model can be further improved.

Simulations are conducted to generate data for offline-training the nonlinear noise estimation model. The simulation system is fixed-grid with a symbol rate of 35 Gbaud and a channel spacing of 50 GHz. The symbol length for each example is 2^{16}. At the transmitter (Tx) side, RRC pulse shaping with a roll-off of 0.02 is applied. EDFAs are employed after each fiber span. The fiber nonlinear transmission is simulated by SSFM. At the receiver (Rx) side, the center channel is filtered out for the signal processing, which includes CDC, matched filtering, down-sampling and phase de-rotation to remove the phase rotation caused by the nonlinearity. Finally, the nonlinear SNR is obtained. We generate 1000 examples in this simulation system. The configurations of links and signals are randomly chosen from Table III. For each example, some of the channels are randomly set to be idle. The fiber types include SSMF, enhanced large effective area fiber (ELEAF), and pure silica core fiber (PSCF).

After generating data from simulations, we build a two-hidden-layer neural network based on Pytorch. The first and second layers both have 32 nodes. The activation function of each layer is LeakyReLU. The parameters of the neural networks are updated following the gradient descent. The input parameters of the neural networks are shown in Table IV. After the offline training procedure, we can obtain a nonlinear noise estimation model and assign it to different regions to aid the network control and optimization.

We assume that the global model has been assigned to four regions with different input power uncertainties. The uncertainty distribution follows a Gaussian distribution, and its mean and standard deviation (STD) for each region are shown in Table V. After assigning the global model to each region, the local adaptation can be conducted for model customization. Each region

![Fig. 7. The structure of the federated-learning-based data fusion framework on the telemetry layer.](image-url)
is assumed to be able to provide 200 examples with different link/signal configurations in our simulations. In the telemetry layer, the real signal-to-nonlinear-noise ratio (nonlinear SNR) of these examples in practical systems can be monitored by the method proposed in [29] and employed for adaptation and re-training. After obtaining the customized models in each region, they are aggregated to update the global model in the control plane and prepare for the new region. In this case, the fusing object transfers from data to model. Here we apply the Fed-SGD method [45], of which the parameters of the neural networks are updated by

\[f(\omega) = \sum_{k=1}^{K} \frac{n_k}{n} F_k(\omega) \]

(4)

where \(f(\omega) \) and \(F_k(\omega) \) denote the parameters of the model after federated updating and the parameters of the model in the \(k \)-th region, respectively. Assuming there are \(K \) regions in total, the \(n_k \) and \(n \) are the number of examples in the \(k \)-th region and all regions, respectively. In our simulations, four customized models from the regions where the global model has been assigned to are applied for updating with the Fed-SGD.

To evaluate the performance of the federated-learning-based data fusion, we apply the updated global model to a new region with 200 examples. To measure the performance of the adjusted model in multiple scenarios, in the new region with 200 examples, we generate 2000 cases of different input power uncertainties in each example which all follow the Gaussian distribution with a mean ranging from 0 dB to 1 dB and an STD from 0 dB to 0.4 dB. The mean and STD in each case are set randomly. Afterwards, the estimated root-mean-square errors (RMSE) of these situations with various uncertainty distributions are calculated and shown in Fig. 8.

As shown in Fig. 8, after the federated updating, the accuracy of the model employed to the new region has improved. The cumulative deviation including 95% cases reduces, which means the global model after federated learning has a better robustness and generalization ability. In this way, when the customization or fine-tuning procedure cannot be applied, the global model after updating can still perform a better estimation with better robustness when being deployed to new actual networks. To better show the robustness improvement, we select five cases of uncertainty distributions specifically to show the performance of the global model before and after the federated updating.

The uncertainty distributions of these five cases are shown in Table VI. The results of the estimation performance are shown in Fig. 9. The results of these five cases show that after updating the global model with the Fed-SGD, the RMSE of the estimation results reduce, which reveals that the robustness and generalization ability of the global model has been improved by fusing information from multiple regions. This is because that in each region, uncertainty distributions may be similar due to similar optical equipment. Based on this, data from each region can help the neural network learn more about the practical system to reach a better robustness.

V. DATA-FUSION-ASSISTED TELEMETRY ON THE MODEL LEVEL

To estimate various impairments in the physical layer, many models have been proposed, which can be divided into two types: 1) analytical model and 2) data-driven model. The former is generally not able to guarantee accuracy for all scenarios, and the latter usually requires a large amount of data to build. In the telemetry layer, models can be aggregated to combine their advantages for a higher accuracy. Next, we introduce two types of model fusion methods on the telemetry layer.

A. Fusing Heterogenous Models

In optical transmission, various analytical models, such as GN model [50] and SSFM [51], can provide rigorous theoretical estimations for link impairment. However, in certain cases the accuracy is limited. Based on analytical models, data-driven models
only need to fit the residuals of the theoretical results rather than the real relationship with a high-dimensional non-convex loss function. As shown in Fig. 10, the results of analytical models can speed up the convergence during training and help algorithms avoid being trapped in sub-optimal hypotheses. We were inspired by the idea of residual learning framework to combine the training-based monitoring framework to improve nonlinear noise monitoring.

B. Fusing Homogeneous Models

The second type of fusion methods is to combine many homogeneous weak learners to build a stronger learner, which is also called model ensembles. This kind of model fusion is often applied when ML-based models are employed. In this way, the accuracy the applied ML-based methods can be further improved. There are four kinds of typical ensemble algorithms: Boosting, Bagging, Blending and Stacking. The brief descriptions of these four methods are shown in Fig. 11 and they are elaborated as follows.

Boosting methods generate learners sequentially and train them iteratively. For each iteration, the weights of the poorly predicted examples are improved successively for the following training. Among many Boosting algorithms, AdaBoost and XGBoost are largely employed in many cases. Moreover, the XGBoost-based method can analyze the importance of the input features, which improves the interpretability of ML models. In [62], the importance output of XGBoost is applied to successfully reveal the most significant causes of failures in optical networks. However, since Boosting-based methods are trained hierarchically, the computational load is very high when the structure of the algorithm is complex.

Unlike Boosting, bootstrap aggregation, Bagging for short, is another ensemble method which can train multiple ML engines parallelly with different sets of data sampled from the training set. Afterwards, estimations of these engines are combined after processing like averaging or voting. Bagging can significantly reduce the variance of the model so that it outperforms Boosting in situations with noisy data. Random Forest is one of the most famous Bagging methods, which also shows a good performance in optical monitoring for failure detection.

To combine heterogeneous ML engines, Blending and Stacking use a meta-learner to generate the output of each learner and fuse estimations accordingly. During training, Blending simply splits data for each training stage while Stacking employs k-folds cross-validation. These two methods can learn the weight and importance of each learner automatically without any manual interference.

C. Use Case for Model Level Data-Fusion-Assisted Telemetry

In this use case, we combine a ML model with an analytical model to improve monitoring accuracy. Taking nonlinear noise monitoring as an example, monitoring the real value of the nonlinear noise is of significant importance for network maintenance and power optimization. As proposed in [48], the neural networks can be combined with the GN model to improve the monitoring accuracy. Compared with analytical models such as the GN and EGN models, neural network-based algorithms can be extended to more situations with various add/drop cases, and they also show a higher tolerance to parameter uncertainties based on the feature extracted from raw information data. As shown in Fig. 12, for each transceiver, DSP blocks can provide information related to the nonlinear impairments. With the aid of the neural networks, the nonlinear noise can be monitored.

However, purely relying on the monitoring results in the receiver cannot provide very high accuracy. Therefore, in the telemetry layer, the output of the GN model is combined with the original monitoring features at the input of neural networks. In this way, we can provide a more accurate estimation of nonlinear noise.

We generate 1000 examples by SSFM, the generating procedure is the same as that in Section IV. The monitoring features are the amplitude noise correlation (ANC) and phase noise correlation (PNC) proposed in [32]. In this simulation, the summation lengths of the ANC and PNC are 3 and 15, respectively. At the receiver side, ANC and PNC are sent to neural networks together with the accumulated chromatic dispersion (CD) and the WDM channel number. We use 750 examples for training and 250 examples for testing. After training the neural network with one 10-node hidden layer in MATLAB, the estimation results are shown in Fig. 13.

The histogram in Fig. 13 shows that when employing the ANC and PNC, about 95% examples can be estimated with an error less than 1 dB. In the telemetry layer, when combining the GN model, the monitoring accuracy improves. About 95% examples can be estimated with an error less than 0.5 dB. Compared with the estimation made by the neural networks in each receiver, the RMSE of the monitoring result improves from 0.43 dB to 0.23 dB. This is because that in the telemetry layer, more
information about the link and signal configurations can be obtained, therefore neural networks can learn more to achieve higher accuracy.

VI. CONCLUDING REMARKS

A telemetry layer has been proposed to support autonomous optical networks with an information-integration monitoring system. On this layer, information extracted from various link components and receiver digital signal processing blocks can be aggregated, which forms a repository to support upper-layer applications. Based on data fusion, the massive data collected from the physical layer is processed before being sent to the control layer, which alleviates the communication burden and storage burden for network control.

With the aid of the machine learning algorithms, various data fusion methods can be employed on different levels. The approaches for fusing data on the Source Level, Space Level and Model Level are investigated with some use cases. On the Source Level, heterogenous data from digital and optical domains are utilized together to perform a higher estimation precision since different sources can provide correlated information from different aspects. On the Space Level, information from shared and/or similar link components are considered in the context of WDM systems and meshed optical networks. On the Model Level, multiple models including theoretical and data-driven models are fused to combine their advantages and make up for their shortcomings. With the three levels of data fusion applied parallelly, hierarchically or individually, stronger monitoring capabilities can be built to support closed-loop autonomous optical networks.

REFERENCES

[1] B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and spectrum allocation in elastic optical networks: A tutorial,” IEEE Commun. Surv. Tut., vol. 17, no. 3, pp. 1776–1800, Jul.—Sep. 2015.

[2] M. Channegowda, R. Nejabati, and D. Simeonidou, “Software-defined optical networks technology and infrastructure: Enabling software-defined optical network operations [Invited],” J. Opt. Commun. Netw., vol. 5, no. 10, pp. A274–A282, Oct. 2013.
[3] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and openflow: From concept to implementation,” IEEE Commun. Surv. Tut., vol. 16, no. 4, pp. 2181–2206, Oct.—Dec. 2014.

[4] Y. Li and M. Chen, “Software-defined network function virtualization: A survey,” IEEE Commun. Surv. Tut., vol. 17, no. 3, pp. 2542–2553, 2015.

[5] K. Christodouloupolous, C. Delezoide, N. Sambo et al., “Toward efficient, reliable, and autonomous optical networks: The ORCHESTRA solution [Invited],” J. Opt. Commun. Netw., vol. 11, no. 9, pp. C10–C24, Sep. 2019.

[6] I. Sartetzakis, K. Christodouloupolous, C. P. Tsekrekos, D. Syrvidis, and E. Varigos, “Estimating no. QoS of unestablished lightpaths,” in Proc. Fiber. Commun. Conf., Anakie, CA, 2016, Paper TuF3.2.

[7] M. Lonardi, P. Ramantantis, P. Jennevé, J. Pesic, A. Ghazisaeidi, and N. Rossi, “Optical nonlinearity monitoring and launched power optimization by artificial neural networks,” in Proc. Eur. Conf. Opt. Commun., Dublin, Ireland, 2019, pp. 1–4.

[8] H. Nakashima, Y. Akiyama, T. Tanimura, Y. Pointurier, F. Cugini, L. Valcarenghi, P. Castoldi, and I. Tomkos, “Lightpath establishment assisted by offline QoT estimation,” in Proc. Fiber. Commun. Conf., San Diego, CA, 2019, Paper W2A.46.

[9] A. Salehioon and Z. Jiang, “Fast BER distribution and neural networks for joint monitoring of linear and nonlinear noise-to-signal ratios,” in Proc. Fiber. Commun. Conf., San Diego, CA, 2020, Paper M2J.3.

[10] A. S. Kashi et al., “Nonlinear signal-to-noise ratio estimation in coherent fiber-optic communication systems using artificial neural networks,” J. Lightw. Technol., vol. 36, no. 23, pp. 5424–5431, Dec. 2018.

[11] L. Xia, J. Zhang, M. Zhu, Y. Song, and K. Qiu, “Joint OSNR monitoring and modulation format identification of soft failures in optical links by exploiting carrier phase recovery,” in Proc. Fiber. Commun. Conf., San Diego, CA, 2020, Paper Th2A.49.

[12] P. N. Ji, “Software defined optical network,” in Proc. Int. Conf. Mach. Learn. Workshops, pp. 1–19, 2017.

[13] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-theoretic metric learning,” in Proc. Int. Conf. Mach. Lean., 2007, pp. 209–216.

[14] F. Meng et al., “Field trial of gaussian process learning for function-agnostic channel performance under uncertainty,” in Proc. Fiber. Commun. Conf., San Diego, CA, 2019, Paper W1K.4.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. 3rd Int. Conf. Learn. Representations, San Diego, CA, USA, May. 2015.

[16] T. De Boer, D. Kroese, S. Mannor, and R. Rubinstein, “A tutorial on the cross-entropy method,” Ann. Oper. Res., vol. 134, pp. 19–67, 2005.

[17] F. N. Khan, Q. Zhuge, H. Lun, M. Fu, L. Yi, and W. Hu, “Pilot-aided self-phase modulation noise monitoring based on artificial neural network,” in Proc. Asia Com. Photon. Conf., 2019, Paper M4A-9.

[18] Y. Zheng, “Methodologies for cross-domain data fusion: An overview,” IEEE Trans. Big Data, vol. 1, no. 1, pp. 16–34, Mar. 2015.

[19] K. Christodouloupolous et al., “ORCHESTRA - Optical performance monitoring enabling flexible networking,” in Proc. 17th Int. Conf. Transparent Opt. Netw., Budapest, 2015, pp. 1–4.

[20] N. Sambo, Y. Pointurier, F. Cugini, L. Valcarenghi, P. Castoldi, and I. Tomkos, “Lightpath establishment assisted by offline QoT estimation,” in transparent optical networks,” J. Opt. Commun. Netw., vol. 2, no. 11, pp. 928–937, Nov. 2010.

[21] A. D’Amico et al., “Using machine learning in an open optical line system controller,” J. Opt. Commun. Netw., vol. 12, no. 6, pp. C1–C11, Jun. 2020.

[22] J. Pan and S. Tibileac, “Real-time ROADM filtering penalty characterization and generalized precompensation for flexible grid networks,” IEEE Photon. J., vol. 9, no. 3, pp. 1–10, Jan. 2017.

[23] S. Varughese, D. Lippiatt, T. Richter, S. Tibileac, and S. E. Ralph, “Identification of soft failures in optical links using low complexity anomaly detection,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, 2019, Paper W2A.46.
[50] P. Poggiolini, “The GN model of non-linear propagation in uncompensated coherent optical systems,” J. Lightw. Technol., vol. 30, no. 24, pp. 3857–3879, Dec. 2012.

[51] O. V. Sinkin, R. Holzloehner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step fourier method in modeling optical-fiber communications systems,” J. Lightw. Technol., vol. 21, no. 1, Jan. 2003, Art. no. 1.

[52] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape of neural nets,” in Proc. Adv. Neural Inf. Proc. Syst., Nov. 2018.

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. 2016 IEEE Conf. Com. Vis. Pattern Recognit., Las Vegas, NV, USA, 2016, pp. 770–778.

[54] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdiscipl. Rev. Data Mining Knowl. Discovery, vol. 8, no. 4, Jul. 2018, Art. no. e1249.

[55] R. E. Schapire, “The boosting approach to machine learning: An overview,” in Nonlinear Estimation Classification, vol. 171, New York, NY, USA: Springer, 2003, pp. 149–171.

[56] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140, Aug. 1996.

[57] M. Jähnig, A. Töscher, and R. Legenstein, “Combining predictions for accurate recommender systems,” in Proc. Int. Conf. Knowl. Discov. Data Min., Washington, DC, USA, 2010, pp. 693–701.

[58] D. H. Wolpert, “Stacked generalization,” Neural Netw, vol. 5, no. 2, pp. 241–259, Jan. 1992.

[59] E. Bauer, “An empirical comparison of voting classification algorithms: Bagging, boosting, and variants,” Mach. Learn., vol. 36, no. 1–2, pp. 105–139, 1999.

[60] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class adaboost,” Statist. Interface, vol. 2, no. 3, pp. 349–360, 2009.

[61] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2016, pp. 785–794.

[62] C. Zhang et al., “Interpretable learning algorithm based on XGBoost for fault prediction in optical network,” in Proc. Opt. Fiber Commun. Conf., San Diego, CA, 2020, Paper Th1F.3.

[63] Z. H. Zhou, J. Wu, and W. Tang, “Ensembling neural networks: Many could be better than all,” Artif. Intell., vol. 137, no. 1–2, pp. 239–263, May 2002.

[64] D. Anguita, L. Ghelardoni, A. Ghio, L. Oneto, and S. Ridella, “The ‘K’ in K-fold cross validation,” in Proc. 20th Eur. Symp. Artif. Neural Netw., Comput. Intell. Mach. Learn., 2012, pp. 441–446.