High-affinity Cyclic Peptide Matriptase Inhibitors*

Pedro Quimbar 1, Uru Malik 2, Christian P. Sommerhoff 3, Quentin Kaas 5, Lai Y. Chan 6, Yen-Hua Huang 5, Maresa Grundhuber 4, Kerry Dunse 6, David J. Craik 2,2, Marilyn A. Anderson 1, and Norelle L. Daly 1

From the 1La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria 3086, Australia, the 2Institute for Molecular Bioscience, The University of Queensland, Queensland 4072, Australia, the 3Institute of Laboratory Medicine, University Hospital Ludwig-Maximilians-University Munich, D-80336 Munich, Germany, and the 5Centre for Biodiscovery and Molecular Development of Therapeutics, School of Pharmacy and Molecular Sciences, James Cook University, Cairns, Queensland 4878, Australia

Received for publication, February 6, 2013, and in revised form, March 21, 2013
Published, JBC Papers in Press, April 2, 2013, DOI 10.1074/jbc.M113.460030

Background: Sunflower trypsin inhibitor-I (SFTI-1) and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II) are potent protease inhibitors comprising a cyclic backbone.

Results: Elucidation of structure-activity relationships for SFTI-1 and MCoTI-II was used to design inhibitors with enhanced inhibitory activity.

Conclusion: An analog of MCoTI-II is one of the most potent inhibitors of matriptase.

Significance: These results provide a solid basis for the design of selective peptide inhibitors of matriptase with therapeutic potential.

The type II transmembrane serine protease matriptase is a key activator of multiple signaling pathways associated with cell proliferation and modification of the extracellular matrix. Deregulated matriptase activity correlates with a number of diseases, including cancer and hence highly selective matriptase inhibitors may have therapeutic potential. The plant-derived cyclic peptide, sunflower trypsin inhibitor-I (SFTI-1), is a promising drug scaffold with potent matriptase inhibitory activity. In the current study we have analyzed the structure-activity relationships of SFTI-1 and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a structurally divergent trypsin inhibitor from Momordica cochinchinensis that also contains a cyclic backbone. We show that MCoTI-II is a significantly more potent matriptase inhibitor than SFTI-1 and that all alanine mutants of both peptides, generated using positional scanning mutagenesis, have decreased trypsin affinity, whereas several mutations either maintain or result in enhanced matriptase inhibitory activity. These intriguing results were used to design one of the most potent matriptase inhibitors known to date with a 290 pm equilibrium dissociation constant, and provide the first indication on how to modulate affinity for matriptase over trypsin in cyclic peptides. This information might be useful for the design of more selective and therapeutically relevant inhibitors of matriptase.

Serine proteases are one of the largest known families of proteases (1), and are involved in a range of cellular processes such as apoptosis, inflammation, blood coagulation, and extracellular matrix remodeling (2). Several mechanisms are involved in controlling the activity of serine proteases, including synthesis as inactive zymogens and production of specific protease inhibitors. The deregulation of these endogenous controls has dramatic consequences, and can lead to autoimmune and metabolic diseases and to an increased susceptibility to infections and cancer (3).

Matriptase is a type II transmembrane serine protease that is expressed strongly in the human epithelia (4). The expression of this protease, both at the RNA and protein level increases significantly during the progression of prostate cancer (5). The oncogenic potential of matriptase has been demonstrated in transgenic mice where overexpression of matriptase caused spontaneous squamous cell carcinoma. However, overexpression together with a matriptase inhibitor counteracted the oncogenic effects (6), indicating that inhibition of matriptase has significant potential as a therapeutic strategy. Administration of inhibitors in a pancreatic tumor model in mice led to the inhibition of matriptase in vivo for at least 24 h (7), and in a prostate tumor mouse model inhibitors reduced primary tumor growth by 40% as well as reducing the prevalence of metastases (8). Genetic reduction of matriptase in mice resulted in reduced tumor growth, invasiveness, and migration in vitro (9) and correlated with in vivo studies where matriptase-deficient PC3 and DU-145 cells exhibited reduced growth and development compared with control cells when explanted into nude mice (10). Overall, these studies highlight the potential of using matriptase inhibitors as a treatment approach to halt growth and spread of cancer cells.

A major challenge in the design of protease inhibitors is selectivity (11). Broad range inhibitors have caused detrimental effects in clinical trials as a result of interference with signaling pathways and processes that were not foreseen (12). Therefore, when designing inhibitors for pharmaceutical purposes, it is essential that they are selective for the desired target, whereas also having high affinity. Several studies have focused on small molecules for the design of matriptase inhibitors, and have

* This work was supported in part by a Queensland Government Smart State Fellowship (to N. L. D.), which was co-funded by Hexima Limited, and Project SO 249/1-1, priority program 1394 “Mast cells-promoters of health and modulator of diseases,” of the Deutsche Forschungsgemeinschaft (to C. P. S.).

† This article contains supplemental Figs. S1–S3.

1 Supported by an Australian Postgraduate Award.
2 National Health and Medical Research Council Professorial Research Fellow.
3 Australian Research Council Future Fellow. To whom correspondence should be addressed: James Cook University, Smithfield QLD 4870, Australia. Tel.: 61-7-4042-1815; E-mail: norelle.daly@jcu.edu.au.
Development of Cyclic Peptide Matriptase Inhibitors

resulted in potent inhibitors with selectivity over other serine proteases such as thrombin (8). However, limited information is available regarding selectivity relative to other closely related serine proteases, particularly the prototypic trypsin.

The active sites of matriptase and trypsin are very similar in structure and both enzymes belong to the S1 family and subfamily A according to the MEROPS database (13). However, there are some important differences, as shown in Fig. 1, which could potentially be exploited for the design of novel inhibitors. The active site of all serine proteases is surrounded by eight loops (I) that will be referred to as I to VIII in this article. Loop II of matriptase has 10 more residues than that of trypsin, resulting in an additional bulge that constitutes the most obvious topological difference between the two protease active sites (Fig. 1). Loops I, III, and V also display different sequences resulting in slightly different conformations. In contrast, loops IV, VI, and VIII, which cluster at one end of the active site, have similar conformations in matriptase and trypsin. The active site of matriptase is much more negatively charged than that of trypsin, mostly because of two additional aspartate residues in loop IV and three aspartate residues in the extended loop II. The negative charges borne by matriptase loop II are partly compensated by two positively charged arginine residues located at the tip of the loop.

Naturally occurring peptidic inhibitors are a promising starting point for the design of novel matriptase inhibitors as they can provide a relatively large surface area to enhance the potential of designing selective analogs. The use of naturally occurring amino acids also leaves open the possibility of using plants as “factories” for producing the modified inhibitors via a low cost route (14). Sunflower trypsin inhibitor-1 (SFTI-1) is a 14-residue sunflower peptide that is a potent inhibitor of both trypsin and matriptase, with an inhibition constant against matriptase of 0.92 nM (15). However, SFTI-1 is also active against other serine proteases within the trypsin clan, which limits its therapeutic application. Despite this limitation, the size, versatility, and stability of the SFTI-1 backbone makes it an appealing scaffold for the design of drugs (16). Swedberg et al. (17), for example, enhanced both the affinity and specificity of the SFTI-1 backbone against kallikrein 4 (KLK4) through modifications of the inhibitor. They used positional scanning of a synthetic combinatorial library to study protease specificity and generated a mutant of SFTI-1 with an inhibition constant of 3.59 nM against KLK4 compared with no inhibition by native SFTI-1 (17). Although this mutant was not tested in vivo it retained high inhibitory potential against KLK4 after days of incubation in serum, highlighting the advantages of the SFTI-1 scaffold in the design of drugs.

Several other researchers have also explored the structure-activity relationships of SFTI-1 and shown the importance of particular residues for a range of proteases. The introduction of naturally and non-naturally occurring residues has been explored, as have the roles of the disulfide bonds in activity (18–22). Enhancements in activity and selectivity have been obtained, highlighting the potential of this cyclic scaffold. However, further study is required to determine whether significant selectivity between trypsin and matriptase is achievable.

The stability and versatility of cyclic peptides is not limited to SFTI-1. Other cyclic peptides, such as members of the cyclotide family, have functions as diverse as insecticidal activity (23), HIV inhibition (24), and hemolytic activity (25). Their extraordinary stability to pH, heat, and biological fluids also makes

4 The abbreviations used are: SFTI-1, sunflower trypsin inhibitor-1; COSY, correlation spectroscopy; MCoTI-II, Momordica cochinchinensis trypsin inhibitor II; MD, molecular dynamics; NOESY, nuclear Overhauser effect spectroscopy; RP-HPLC, reverse phase high performance liquid chromatography; TOCSY, total correlation spectroscopy; PDB, Protein data bank; Boc, t-Butyloxycarbonyl.
them ideal scaffolds for pharmaceutical design (14, 17). In the current study we have discovered that a member of the trypsin inhibitory subfamily of cyclotides, Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II) (26), a 34-residue cyclic peptide, is also a potent inhibitor of matriptase. Furthermore, we have used alanine scanning and point mutations to design inhibitors, based on SFTI-1 and MCoTI-II, which have enhanced potency and modified selectivity against matriptase. The sequences and structures of SFTI-1 and MCoTI-II are given in Fig. 2 and highlight the sequence and structural diversity of these cyclic peptidic trypsin inhibitors.

EXPERIMENTAL PROCEDURES

Peptide Synthesis and Purification

Peptides were synthesized on a 0.5-mmol scale using manual solid-phase peptide synthesis with Boc chemistry. A phenylacetylbenzylidene-Gly-Boc resin was used with an S-tritylmercaptopropionic acid linker to facilitate cyclization, as described previously (27, 28). Crude peptides were purified using a series of Phenomenex C18 columns on RP-HPLC. Gradients of 1% of 0–80% solvent B (90% acetonitrile in 0.045% TFA in H2O) and solvent A (aqueous 0.05% TFA in H2O) were employed and the eluant was monitored at 215 and 280 nm. The purity of the peptides was examined by analytical RP-HPLC on a Phenomenex Jupiter 5 μm C18 300 Å 150 × 2.0-mm column and masses were determined by electrospray mass spectrometry. Grafted and native SFTI-1 peptides were folded in solution at 0.1 mg/ml using a range of buffer conditions. Synthetic native SFTI-1 peptide was cyclized and oxidized in a two-step process. Cyclization was achieved in the presence of 0.1 M tris(2-carboxyethyl)phosphine incubated for 24 h and the cyclic product then purified by RP-HPLC. The cyclic reduced peptide was oxidized in 0.1 M ammonium bicarbonate (pH 8.0). By contrast, cyclization and oxidation of MCoTI-II grafted peptides was done in a single step reaction with 0.1 M ammonium bicarbonate (pH 8.5) for 12 h. SFTI-1 grafted peptides were oxidized in 0.1 M ammonium bicarbonate (pH 8.5).

NMR Analysis

Peptides were dissolved in 90% H2O, 10% D2O (v/v) (1 mM). D2O (99.9%) was obtained from Cambridge Isotope Laboratories, Woburn, MA, for 1H NMR measurements. Spectra were recorded at 290–298 K on Bruker Avance 500 and 600 MHz spectrometers. Two-dimensional spectra included TOCSY, NOESY, and COSY. NOESY mixing times of 200–300 ms were used. Spectra were analyzed using SPARKY (29). The sequential assignment procedure pioneered by Wüthrich (30) was used to sequence specifically assign the amino acids, using TOCSY and NOESY spectra.

Development of Cyclic Peptide Matriptase Inhibitors

The three-dimensional structures of the complexes between SFTI-1 and trypsin (PDB identifier 1sfi), between SFTI and the protease domain of matriptase (PDB identifier 3p8f), and between MCoTI-II and trypsin5 were determined experimentially using x-ray crystallography independently by different research groups (16, 34). The three-dimensional structure of MCoTI-II in complex with the protease domain of matriptase

5 N. L. Daly, L. Thorstholm, K. P. Greenwood, G. K. King, K. J. Rosengren, B. Heras, J. L. Martin, and D. J. Craik, unpublished data.

Enzyme Kinetics

Titration—The concentrations of active inhibitors were determined by titration against burst-titrated bovine trypsin assuming a one to one interaction between the enzyme and the inhibitor. Reactions were conducted in 96-well plates using buffer (50 mM Tris- HCl, 150 mM NaCl, 0.01% Triton X-100, 0.01% sodium azide, pH 7.6) and serial dilutions of each inhibitor with trypsin (25 nM). After preincubation at 37 °C the fluorogenic substrate Benzoyl-L-arginine-4-methylcoumaryl-7-amide (75 μM) was added. Hydrolysis of the substrate was then measured over 10 min with λem and λex of 360 and 465 nm, respectively, on a HTS 7000 Bio assay reader (PerkinElmer Life Sciences). The concentrations of inhibitors with a large Ki,app could not be determined by titration.

K_i Determination—Inhibition constants of the inhibitors against matriptase and trypsin were calculated by preincubating the recombinant human matriptase catalytic domain (2 pm, R&D systems, Inc.) and bovine trypsin (10 pm), respectively, with serial dilutions of the inhibitors in buffer (50 mM Tris-HCl, 150 mM NaCl, 0.01% Triton X-100, 0.01% sodium azide, pH 8.0). After preincubation of 60 min the substrate Boc-QAR-AMC (5 μM) or tos-GPR-AMC (5 μM), respectively, was added to the reaction mixture and hydrolysis was quantified as described above. Additional experiments were performed with preincubation times between 60 and 180 min to verify that each inhibitor was in equilibrium with the protease. The inhibition curves generated were fitted to Morrison’s equation (31), to obtain the inhibition constant for each of the tested peptides. The results presented are mean ± S.E. of ≥4 independent experiments.

Three-dimensional Structure Calculations

Preliminary three-dimensional structures were calculated using automated nuclear Overhauser effect assignment within CYANA (32). A final set of 100 structures was calculated and the 20 lowest energy structures were selected for further analysis. Structures were analyzed using MolProbity, and MolMol (33) and PyMol (The PyMOL Molecular Graphics System, version 1.5.0.4, Schrödinger, LLC) were used to display the structural ensembles and surfaces of the peptides, respectively.

Molecular Modeling

The three-dimensional structures of the complexes between SFTI-1 and trypsin (PDB identifier 1sfi), between SFTI and the protease domain of matriptase (PDB identifier 3p8f), and between MCoTI-II and trypsin are determined experimentially using x-ray crystallography independently by different research groups (16, 34). The three-dimensional structure of MCoTI-II in complex with the protease domain of matriptase
Development of Cyclic Peptide Matriptase Inhibitors

was built in this study by homology using Modeler9v11 (35). The three previously mentioned x-ray structures were used as structural templates to generate 100 models of the matriptase-MCoTI-II complex. The model with the lowest DOPE score (36) was selected and was then refined using molecular dynamic (MD) simulations. MD simulations were performed using the program PMEMD from the AMBER 12 package with the ff12SB force field (37). The protease domain of the matriptase-MCoTI-II complex (274 residues) was solvated in a truncated octahedral periodic box with ~4900 TIP3P water molecules. Three sodium ions were added to neutralize the system. The system was then equilibrated using a similar strategy to Cerutti et al. (38). A steepest descent minimization of 2000 steps was first carried out with the solute restrained to its positions and then a further 2000 steps of steepest descent minimization was performed with the solvent restrained to its position. MD simulations were then performed with the solute atoms restrained to their position by a harmonic potential whose spring constant was progressively decreased from 16 to 1 kcal/mol Å² over 150 ps in the NVT ensemble, before it was progressively decreased from 1 to 0 over 300 ps of standard NPT simulations (300 K, 1 atm). An MD simulation of 300 ps with a 1-fs time step was performed followed by a production run of 20 ns with a 2-fs time step. All bonds involving hydrogen atoms were constrained with the SHAKE algorithm (39). Long-range electrostatic interactions were simulated with the particle-mesh Ewald method (40). Similarly prepared 20-ns MD simulations starting from the crystallographic structures of SFTI-1/matriptase (3p8f), SFTI-1/trypsin (1sfi), and MCoTI-II/trypsin were also performed. These simulations gave information on the dynamics of the interactions at the interface. All simulations were performed in triplicates using different random seeds.

The three-dimensional structures of complexes involving mutants of SFTI-1 and MCoTI-II were modeled using the mutation procedure implemented in Modeler9v11. Each homology model was subjected to 4000 steps of minimization using PMEMD. The dynamics of complexes involving a selection of mutants, including [I10R]SFTI-1, [I10D]SFTI-1, [I10K]SFTI-1, [I10R]MCoTI-II, [I7A]MCoTI-II, [V3R]MCoTI-II, [I7A]MCoTI-II, and [V3R + I7A]MCoTI-II, were studied using 5-ns MD.

RESULTS

Synthesis and Characterization of Peptides—Variants of SFTI-1 and MCoTI-II were synthesized to identify residues that are essential for inhibition of matriptase or trypsin. The mutants were synthesized using Boc chemistry and thiester-mediated backbone cyclization and included alanine substitutions as well as several other single or double amino acid changes. In general, the SFTI-1 mutants were cyclized and oxidized in separate steps as cyclization occurs more efficiently in the presence of a reducing agent. By contrast, the MCoTI-II analogs could be cyclized and oxidized in a single step. It is possible that the presence of three disulfide bonds in MCoTI-II compared with one in SFTI-1 facilitates the cyclization process via a thia-zip mechanism (41). All peptides were purified by RP-HPLC and analyzed by mass spectrometry. The structures of the peptides were analyzed using NMR chemical shift analysis (Fig. 3A) to confirm the native fold was present, as shown for [R2A]SFTI-1 and [I10R]-SFTI-1 in Fig. 3B. The similarity in 1H chemical shifts with the native peptides indicates that the overall fold was maintained despite the mutations.

Enzyme Kinetics—Inhibition constants for the SFTI-1 and MCoTI-II mutants against matriptase and trypsin are given in Table 1, and graphically presented in Fig. 4. Several mutations had selective influences on the inhibitory activity as outlined below for the SFTI-1 and MCoTI-II mutants.

SFTI-1 Mutants—The trypsin inhibitory activity for the SFTI-1 alanine mutants was consistent with our previous results (27). Several of the alanine mutants displayed decreased potency compared with the native peptide for both trypsin and matriptase. For example, the alanine mutants was consistent with our previous results (27). Several of the alanine mutants displayed decreased potency compared with the native peptide for both trypsin and matriptase. For example, the alanine substitutions at positions 2, 4, 5, 6, and 14 led to a 7.5–50-fold increase in the Ki against matriptase. Although the R2A mutant had significant loss of inhibition against matriptase, it was still a potent inhibitor of trypsin (Ki, 160 pM compared with 1.7 pM for the native molecule). Substitution of the active site residue, Lys-5, abolished inhibitory activity for both enzymes. Additional substitutions were tested to assess the charge requirements at positions 2 and 5. Substitution of Arg-2 with Lys had no effect on trypsin inhib-
Table 1: Equilibrium dissociation constant K_i for the inhibition of trypsin and matriptase by SFTI-1, MCoTI-II, and mutants (mean ± S.E., n ≥ 4)

Inhibitor name	Trypsin K_i	Matriptase K_i
SFTI-1 native	0.0017 ± 0.00026	200 ± 22
SFTI-1 alanine mutants		
G1A	0.0048 ± 0.00032	190 ± 26
R2A	0.16 ± 0.016	~10,000
T4A	0.16 ± 0.016	1,500 ± 170
K5A	>1000	>10,000
S6A	0.15 ± 0.018	1600 ± 390
I7A	0.89 ± 0.21	84 ± 15
P8A	0.035 ± 0.0044	27 ± 1.4
P9A	0.0017 ± 0.0001	370 ± 58
I10A	0.0853 ± 0.016	73 ± 11
F12A	0.21 ± 0.031	320 ± 35
P13A	0.0037 ± 0.0003	240 ± 37
D14A	0.01 ± 0.0014	1,500 ± 150

SFTI-1 additional mutants

Inhibitor name	Trypsin K_i	Matriptase K_i
R2K	0.002 ± 0.00003	1,200 ± 160
K5R	0.0027 ± 0.00078	310 ± 52
T7R	0.01 ± 0.0095	4,500 ± 500
I10D	0.051 ± 0.006	~10,000
I10G	0.081 ± 0.011	3,700 ± 490
I10R	0.0038 ± 0.00062	6.4 ± 1.3
I10K	0.0057 ± 0.0015	40 ± 5.8
I7A + I10R	1.2 ± 0.25	51 ± 49
MCoTI-II native	0.0023 ± 0.0007	2.8 ± 0.51

MCoTI-II alanine mutants

Inhibitor name	Trypsin K_i	Matriptase K_i
G2O3A	0.38 ± 0.043	180 ± 17
V3O3A	0.15 ± 0.028	2.3 ± 0.12
P05A	0.056 ± 0.0076	39 ± 5.4
K06A	>1,000	>10,000
I07A	1.2 ± 0.22	9.8 ± 1.9
L08A	0.13 ± 0.011	12 ± 1.9
K09A	0.0026 ± 0.00084	76 ± 14
K10A	0.051 ± 0.0095	4.1 ± 1
N26A	0.008 ± 0.0027	12 ± 0.41
Y28A	0.15 ± 0.021	11 ± 1.3
G30A	0.0032 ± 0.00036	3.7 ± 0.033
S31A	0.069 ± 0.0079	98 ± 10

MCoTI-II additional mutants

Inhibitor name	Trypsin K_i	Matriptase K_i
V3R3	0.01 ± 0.0025	0.29 ± 0.054
K6R	0.13 ± 0.0055	39 ± 4.4
T7R	5.2 ± 0.62	110 ± 8.5
V3R + I7A	2.8 ± 0.23	3.5 ± 0.32

Development of Cyclic Peptide Matriptase Inhibitors

MCoTI-II Mutants—Analysis of the matriptase inhibitory activity of MCoTI-II revealed it is a more potent inhibitor ($K_i = 2.8$ nM) than SFTI-1 ($K_i = 200$ nM) (Table 1). In contrast, both inhibitors had similar K_i values against trypsin, consistent with previous studies (27, 42). Alanine mutants in the active site loop of MCoTI-II (loop 1) were synthesized to determine the role each residue plays in enzyme inhibitory activity. Additional alanine substitutions were generated for residues in loops 5 and 6 that were predicted to be in close proximity to the enzyme based on modeling studies using the crystal structure of MCoTI-II in complex with trypsin. Sites from loops 5 and 6 that were mutated included residues 2, 3, 26, 28, 30, and 31 (Table 1).

In general, most of the alanine substitutions led to decreased inhibitory activity, but the influence of the substitutions varied for trypsin and matriptase. As expected, substitution of the trypsin active site residue (Lys-6) with an alanine abolished inhibitory activity for both trypsin and matriptase. Preference for lysine in this position was confirmed with the K6R substitution, which decreased the inhibitory activity against both trypsin and matriptase relative to the native peptide. Interestingly, the mutation of Val-3 in MCoTI-II to an alanine maintained potency against matriptase and decreased potency against trypsin. Based on the selective influence of this mutation at the P4 position of MCoTI-II and the importance of Arg-2 in the P4 position in SFTI-1 for potency against matriptase, a MCoTI-II-V3R mutant was synthesized. Analysis of the kinetics of this mutant indicated that it did improve inhibitory activity against matriptase and resulted in one of the most potent matriptase inhibitors known, with a K_i of 290 pm.

The mutation I7A of MCoTI-II significantly decreased the trypsin inhibitory potency but had a lesser impact on matriptase potency. A combination of the I7A mutation with the V3R mutation resulted in a peptide with a 2-fold decrease in matriptase inhibitory activity relative to the native peptide but a >1000-fold decrease in trypsin inhibitory activity.

Hybrids between SFTI-1 and MCoTI-II—Although MCoTI-II is a more potent matriptase inhibitor than SFTI-1, SFTI-1 is smaller, which is potentially advantageous for pharmaceutical purposes as it is cheaper to synthesize and easier to modify. A series of grafted peptides was thus generated to investigate the relative importance of the SFTI-1 and MCoTI-II scaffolds and the respective binding loops for the inhibitory activity. Two grafted peptides were generated for the SFTI-1 loop in the MCoTI-II scaffold to investigate the role of the binding loop and loop 5 in interacting with the enzymes. The latter peptide also included the substitution of Lys-6 into alanine to prevent interference of MCoTI-II native loop in our studies. These peptides, MCoTI-II-S1 and MCoTI-II-S5, displayed poor inhibition of both enzymes. The peptide SFMC, which had the MCoTI-II binding loop grafted onto the SFTI-1 scaffold, was as efficient as native SFTI-1 in inhibition of both trypsin and matriptase, as shown in Table 2. However, the SFMC mutant was not as active as native MCoTI-II against matriptase and the additional peptide/enzyme interactions that occur with the larger MCoTI-II scaffold may be important for enhanced enzyme inhibitory activity.
Structure Determination Using Nuclear Magnetic Resonance Spectroscopy—NMR structures were determined for selected SFTI-1 variants to enhance the understanding of the structure-activity relationships and for use in molecular modeling of inhibitor/enzyme complexes. [I10R]SFTI-1 was chosen because it is the most potent SFTI-1 mutant against matriptase, and R2A was chosen because it was one of the least active analogs against matriptase, aside from the K5A mutant. Structures were determined using torsion angle dynamics in the program CYANA and the 20 lowest energy structures chosen to represent the fold. Energetic and geometric statistics are given in Table 3. The structures were analyzed using PROMOTIF and revealed that the major element of the secondary structure in both R2A and I10R is a β-hairpin with the strands involving residues 2–4 and 10–12. Comparison of the structures with the native peptide confirmed the overall fold was maintained and therefore the observed effects of the mutations on the inhibition constants are likely to arise from interactions between the side chains of the substituted amino acids and the proteases (Fig. 3B). However, several hydrogen bonds were missing from
the mutant structures compared with the native peptide, suggesting that the overall fold had been destabilized, which might also influence the inhibitory activity.

Molecular Modeling—The three-dimensional structures of complexes involving matriptase or trypsin were used to propose explanations for the activity of SFTI-1 and MCoTI-II variants. The structures of complexes between SFTI-1 and trypsin, SFTI-1 and matriptase, and MCoTI-II and trypsin have been determined experimentally by x-ray crystallography (16, 34) and were used here to model the structure of the matriptase-MCoTI-II complex by homology with refinement using 20-ns MD simulations (Fig. 5A). The three other complexes involving wild-type SFTI-1 or MCoTI-II were also simulated for 20 ns by MD (Fig. 5A), and these simulations were used to compare the dynamics of the molecular interactions at the interface. All simulations quickly converged, as indicated by the stabilization of the Cα atoms root mean square deviations from the initial homology model (matriptase-MCoTI-II complex) or from the crystal structures (supplemental Fig. S1). Structural models of the complexes between the peptide variants and the proteases were modeled by comparison based on the wild-type models and refined by 5-ns MD. These simulations allow local conformational change to occur and also provide information on the structural dynamics of the complexes.

Position 10 of SFTI-1 faces loop II of the proteases (Fig. 5A), which is 10 residues longer in matriptase than trypsin. Several SFTI-1 variants at position 10 were prepared and investigated for their ability to discriminate between the two proteases. The I10A substitution caused small shifts of the positions of SFTI-1 side chains Arg-2, Phe-12, and Asp-14 in both protease complexes, decreasing the distance by ~2 Å between the positively charged guanidinium group from Arg-2 of SFTI-1 and the negatively charged carboxylic group of matriptase Asp-705 compared with wild-type SFTI-1 (Fig. 6 and supplemental Fig. S2). As a result the electrostatic interactions were improved and at the same time the buried surface area remained globally similar (Table 4). The introduction of a negatively charged residue at position 10 of SFTI-1 (I10D) dramatically decreased the potency for matriptase, and in the corresponding model the substituted aspartate at position 10 had moved away from loops II and IV of matriptase relative to the position of isoleucine 10 in wild-type SFTI-1 (Fig. 6). This probably arose from charge repulsions between Asp-10 of SFTI-1 and Asp-660, Asp-661, and Asp-705. Indeed the distance between the Ca of matriptase Asp-705 and position 10 in SFTI-1 wild-type and the I10D mutant had increased slightly by ~1 Å (Fig. 6 and supplemental Fig. S2). Furthermore the buried surface area in the mutant had decreased on average by ~50 Å² (Table 4). By contrast, the substitution of Ile-10 by the positively charged residues, arginine or lysine, resulted in a more potent inhibitor of matriptase than wild-type SFTI-1, possibly because of positive electrostatic interactions with loop II (Fig. 6). The two variants I10R/SFTI-1 and I10K/SFTI-1 exhibited a small decrease in activity for trypsin. The models suggest that I10R/SFTI-1 is a better inhibitor of matriptase than I10K/SFTI-1 because an arginine residue at position 10 can establish a salt bridge with matriptase Asp-705, whereas the smaller side chain of lysine does not allow for the formation of this interaction (Fig. 6 and supplemental Fig. S2). During most of the 5-ns simulation of the I10R/SFTI-1-matriptase complex, the guanidinium group of Arg-10 established at least one hydrogen bond with the carboxylic group of Asp-705 (distance oxygen to nitrogen of ~3 Å), whereas over the 5-ns simulation of I10K/SFTI-1/matriptase, Lys-10 did not form a hydrogen bond with Asp-705 (supplemental Fig. S2).

Position 7 of SFTI-1 contacts loops I and V (Fig. 5A), which has little sequence conservation between matriptase and trypsin, and this position is therefore potentially important in determining the selectivity for matriptase. According to the modeling, the mutation I7A did not change the orientation of SFTI-1 in the trypsin binding site (Fig. 6), but resulted in the largest decrease in buried surface area (~50 Å²) observed among all the SFTI-1 variants in complex with trypsin (Table 4). The variant I7A/SFTI-1 was also a more potent inhibitor of matriptase than the wild-type. Unexpectedly the double mutant I7A + I10R/SFTI-1 was not a more potent inhibitor of matriptase than I10R/SFTI-1. The corresponding model suggested that this doubly mutated peptide had a different binding mode to I10R/SFTI-1, and, in this new binding mode, Arg-10 cannot form a salt bridge with Asp-705 (Fig. 6). By contrast, the effect of the double mutation for inhibition of trypsin was cumulative, in line with the models of I7A/SFTI-1, I10R/SFTI-1, and I7A + I10R/SFTI-1 in complex with trypsin that displayed similar binding modes (Fig. 6). I7A + I10R/SFTI-1 was the worst inhibitor for trypsin among all SFTI-1 variants tested in this study, and the most selective for matriptase among SFTI-1 variants.

Substitution of Arg-2 of SFTI-1 with an alanine resulted in a loss of potency for both proteases. Arg-2 is involved in charge interactions with Asp-14 (SFTI-1), and also potentially establishes cation-π interactions with several aromatic side chains, including Phe-12 from SFTI-1 and a tryptophan from the pro-

Table 3

Structural statistics for SFTI-1 mutant structures	110R	R2A
Experimental restraints		
Interproton distances	95	88
Intraresidue	28	28
Sequential	33	36
Medium range, i ↔ j	9	3
Long range, i ↔ j ≥ 5	25	21
Dihedral bond	2	2
Dihedral bond (φ, ψ, γ) restraints	6	8
Root mean square deviation from mean coordinate		
Backbone atoms (residues 1–14)	0.19 ± 0.11	0.20 ± 0.09
All heavy atoms (residues 1–14)	1.05 ± 0.19	0.70 ± 0.09
Stereochemical quality		
Residues in most favored Ramachandran region (%)	87.5	85.8
Ramachandran outliers (%)	12.5	14.2
Overall MolProbity scorea	1.76 ± 0.32	2.15 ± 0.47

a Determined using MolProbity.
Matriptase has two phenylalanines, i.e. Phe-706 and Phe-708 with proximity to Arg-2 and these residues might also participate in cation-π interactions with the Arg-2 side chain (Fig. 7).

MCoTI-II globally displayed more flexibility than SFTI-1 during the MD simulations, and the tip of loop 6 (positions 32, 33, 34, and 1) was the most flexible region of MCoTI-II in the complexes with matriptase and trypsin (supplemental Fig. S3). By contrast, the inhibitory loop (around Lys-5) was the most stable region of the peptide and the conformation of this inhibitory loop was nearly identical between MCoTI-II and SFTI-1 in complex with the two proteases (Fig. 5B). As a consequence, the Cα at position 3 of MCoTI-II and position 2 of SFTI-1 occupies the same region in the active sites, and because Arg-2 of SFTI-1 was shown to be important for the binding affinity, the mutant [V3R]MCoTI-II was predicted to have improved activity. Indeed, the V3R substitution resulted in the best matriptase inhibitor among MCoTI-II variants. For binding to matriptase, the V3R substitution resulted in a large increase of buried surface area (~180 Å² on average in Table 4) and, similarly to the comments made for the analysis of the mutant [I7A]SFTI-1, Arg-3 can potentially establish positive electrostatic interactions with Asp-709 in matriptase (Fig. 7).

Every modification to the inhibition loops of MCoTI-II, i.e. the alanine substitutions in positions 5–8, resulted in a drop of activity for both proteases, which could be explained by the tight fit of the inhibition loop in both active sites (Fig. 5B). Interestingly, the I7A substitution caused a decrease of activity that was much more dramatic for trypsin than matriptase, and this substitution resulted in an important loss of ~150 Å² of buried surface area in the models with trypsin. The double mutant [V3R + I7A]MCoTI-II was as specific for matriptase as for trypsin, with each substitution independently contributing to the loss of activity for trypsin. The models showed that the substitutions at positions 3 and 7 should have an independent impact because these residues are distant from each other and did not cause obvious changes of binding mode. This result contrasts with the change in binding mode predicted for the [I7A + I10R]SFTI-1 double mutant.

DISCUSSION

Naturally occurring peptides with cyclic backbones have significant promise in drug design (14, 17, 43), and in this study we have highlighted the potential of the frameworks of cyclic trypsin inhibitors from seeds. In particular, we have discovered that MCoTI-II is a potent inhibitor of matriptase and also generated substantial structure-activity data regarding MCoTI-II and SFTI-1 that has provided insights on how to modulate affinity toward matriptase over the prototypic trypsin.

Alanine scanning of SFTI-1 against trypsin and matriptase highlighted enzyme-specific requirements for high affinity inhibition (Table 1, Fig. 3). In SFTI-1, Arg-2 is indispensable for inhibition of matriptase, whereas for trypsin there is loss of inhibition yet the R2A mutant remains a potent inhibitor with a nanomolar affinity. The importance of this arginine residue was previously highlighted by Long et al. (15) who suggested that it is involved in a cation-π interaction with Phe-706 and Phe-708 of matriptase (15). In addition, it has been
reported that Arg-2 is critical for matriptase inhibitory activity, with mutation to a phenylalanine derivative resulting in a 900-fold decrease in potency (20). We further characterized the role of this residue by substituting it with a lysine to determine whether the charge is the requirement at this position. However, this substitution resulted in a significant loss of inhibitory activity against matriptase suggesting that Arg-2 is an absolute requirement. These results are consistent with the substrate specificity of matriptase, as arginine is preferred at the P4 position (44), i.e. the position Arg-2 occupies when bound to the enzyme (Fig. 5).

Mutations in substrate sites P2, P1, and P1' of SFTI-1 had a major impact on inhibitory activity. As expected, mutation of Lys-5 (P1) had the most significant effect, consistent with a previous study (20). Substitution of the adjacent residues (Thr-4 and Ser-6) also caused a significant loss of affinity against both enzymes. In general, the mutations had more detrimental effects on inhibitory activity against trypsin compared with matriptase, indicating that SFTI-1 has a highly optimized framework in respect to the trypsin inhibitory activity, reflecting its biological function in plants as a deterrent of insect and animal predators. Although substitution of Ser-6 with an alanine has significant effects on trypsin and matriptase activity it produces an SFTI-1 variant with potent inhibitory activity against chymotrypsin (45).

In contrast to the decreased activity observed for the majority of the SFTI-1 alanine mutants against trypsin, the I7A, P8A, and I10A substitutions resulted in enhanced inhibitory activity against matriptase. In addition, F12A had significantly less activity against trypsin but maintained similar activity to wild-type SFTI-1 against matriptase. Additional mutations at positions 7 and 10 were explored, and one, the variant I10R, was
matriptase, Arg-10 establishes a salt bridge with Asp-705 of trypsin complex as the side chain of Arg-10 is exposed to the enzymes illustrated why this substitution was ineffective in the generated for the inhibitor [I10R]SFTI-1 in complex with both identified to have 30-fold enhanced inhibitory activity against trypsin.

FIGURE 7. Comparison of complexes involving matriptase by focusing around position 2 of SFTI-1 (A), position 3 of MCoTI-II (B), and position 3 of MCoTI-II V3R (C). These three positions occupy equivalent coordinates in the matriptase active site. SFTI-1, MCoTI-II, and [V3R]MCoTI-II are shown in cyan, and matriptase is in green. Positions discussed in the text are highlighted. The represented structures are the final conformations from molecular dynamics simulations.

identified to have 30-fold enhanced inhibitory activity against matriptase compared with the wild-type peptide. The models generated for the inhibitor [I10R]SFTI-1 in complex with both enzymes illustrated why this substitution was ineffective in the trypsin complex as the side chain of Arg-10 is exposed to the solvent and does not interact with the enzyme. However, in matriptase, Arg-10 establishes a salt bridge with Asp-705 of matriptase (3.1 Å) when bound to the enzyme. The additional electrostatic interaction between these residues is likely to be responsible for stabilizing the complex, which is reflected in enhanced inhibition.

Combining the I7A and I10R mutants for SFTI-1 resulted in a peptide with significantly decreased trypsin activity (700-fold) and enhanced matriptase activity (4-fold) relative to the wild-type peptide. This selective enhancement of matriptase activity argues well for the design of more selective inhibitors using this framework. In particular, further exploration of mutants at positions 8 and 12 might provide useful information for subsequent design studies.

Initial studies using molecular modeling provided significant insight into the binding of SFTI-1 to matriptase and predicted a role for Arg-2, Lys-5, Ile-10, and Phe-12 in binding (15). The importance of Arg-2 and Lys-5 has been confirmed experimentally (20) and is consistent with the current study. The importance of Ile-10 and Phe-12 has also been explored, and both residues influence activity. For example, replacement of Ile-10 with a glutamine enhanced the selectivity for matriptase versus thrombin but decreased the potency against matriptase (20). Ile-10 was also highlighted in an analysis of the crystal structure of SFTI-1 bound to matriptase, and it was suggested that this residue would be a useful site for mutational analysis to improve binding (34). However, it was suggested that the replacement of Ile-10 with a basic residue, arginine or lysine, would not be beneficial because increasing the flexibility may result in a loss of entropy upon binding. Our results confirm that this site is indeed useful for modulating the inhibitory activity against matriptase and that the increase in potency of the I10R and I10K variants indicates that the introduction of more flexible residues does not impact negatively on activity. Very recently an acyclic SFTI-1 analog has been synthesized with an I10R substitution in addition to truncation and introduction of a His residue. This peptide also has enhanced matriptase affinity as well as improved selectivity against trypsin (46).

Consistent with the SFTI-1 alanine mutants, several of the alanine mutants of MCoTI-II had more significant losses of activity against trypsin relative to matriptase. Lys-9 and Lys-10 displayed enzyme-specific dependences with mutation of Lys-9 influencing affinity toward matriptase more than for trypsin. By contrast, mutation of Lys-10 influenced inhibition of trypsin more than that of matriptase. Val-3 was the only MCoTI-II mutant to maintain activity against matriptase, and mutation of this residue to an arginine resulted in one of the most potent inhibitors of matriptase (20) and is consistent with the current study. The importance of Arg-2 and Lys-5 has been confirmed experimentally (20) and is consistent with the current study. The importance of Arg-2 and Lys-5 has been confirmed experimentally (20) and is consistent with the current study.

Analysis of the hybrid peptides of SFTI-1 and MCoTI-II indicates that the SFTI-1 framework is more amenable to substitution with an I10R substitution in addition to truncation and introduction of a His residue.
Development of Cyclic Peptide Matriptase Inhibitors

Acknowledgments—We thank Phillip Walsh and Philip Sunderland for assistance with peptide synthesis and Sabine Streicher for kinetic measurements.

REFERENCES

1. Page, M. I., and Di Cera, E. (2008) Serine peptidases. Classification, structure and function. Cell Mol. Life Sci. 65, 1220–1236
2. Heutink, K. M., ten Berge, I. J., Hack, C. E., Hamann, J., and Rowshani, A. T. (2010) Serine proteases of the human immune system in health and disease. Mol. Immunol. 47, 1943–1955
3. Conlan, B. F., and Anderson, M. A. (2011) Circular micro-proteins and mechanisms of cyclization. Curr. Pharm. Des. 17, 4318–4328
4. Oberst, M. D., Singh, B., Ozdemirli, M., Dickson, R. B., and Roller, P. P. (2001) Synthesis and evaluation of the sunflower derived trypsin inhibitor as a potent inhibitor of the type II transmembrane serine protease, matriptase. Bioorg. Med. Chem. Lett. 11, 2515–2519
5. Long, Y. Q., Lee, S. L., Lin, C. Y., Enyedy, I. J., Wang, S., Li, P., Dickson, R. B., and Roller, P. P. (2001) Evaluation and synthesis of the sunflower derived trypsin inhibitor as a potent inhibitor of the type II transmembrane serine protease, matriptase. Bioorg. Med. Chem. Lett. 11, 2515–2519
6. Luckett, S., Garcia, R. S., Barker, J. J., Konarev, A. V., Shewry, P. R., Clarke, A. R., and Brady, L. R. (1999) High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. J. Mol. Biol. 290, 525–533
7. Swedberg, J. E., Nigon, L. V., Reid, J. C., de Veer, S. J., Walpole, C. M., Stephens, C. R., Walsh, T. P., Takayama, T. K., Hooper, J. D., Clements, J. A., Buckle, A. M., and Harris, J. M. (2009) Substance-guided design of a potent and selective kallikrein-related peptide inhibitor for kallikrein 4. Chem. Biol. 16, 633–643
8. Legowska, A., Bulak, E., Jaśkiewicz, A., Małych, I., Siarcak, M., Wysocka, M., Lesner, A., and Rolka, K. (2010) Analogues of trypsin inhibitor SFTI-1 with disulfide bridge substituted by various length of carbonyl bridges. Protein Pept. Lett. 17, 1223–1227
9. Legowska, A., Dębowski, D., Lukatiss, R., Wysocka, M., Czaplewski, C., Lesner, A., and Rolka, K. (2010) Implication of the disulfide bridge in trypsin inhibitor SFTI-1 in its interaction with serine proteinases. Bioorg. Med. Chem. 18, 8188–8193
10. Li, P., Jiang, S., Lee, S.-L., Lin, C. Y., Johnson, M. D., Dickson, R. B., Michejda, C. J., and Roller, P. P. (2007) Design and synthesis of novel and potent inhibitors of the type II transmembrane serine protease, matriptase, based upon the sunflower trypsin inhibitor-1. J. Med. Chem. 50, 5976–5983
11. Guo, X., Shi, J., Tang, Z., Cui, D., and Zhang, Y. (2006) Synthesis and biological activity of seleno sunflower trypsin inhibitor analog. Chem. Biol. Drug Des. 68, 341–344
12. Avrutina, O., Fittler, H., Glotzbach, B., Kolmar, H., and Emting, M. (2012) Between two worlds. A comparative study on in vitro and in silico inhibition of trypsin and matriptase by redox-stable SFTI-1 variants at near physiological pH. Org. Biomol. Chem. 10, 7753–7762
13. Barbeta, B. L., Marshall, A. T., Jellinek, A. D., Craik, D. J., and Anderson, M. A. (2008) Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proc. Natl. Acad. Sci. U.S.A. 105, 1221–1225
14. Gustafson, K. R., McKeever, T. C., and Bokesch, H. R. (2004) Anti-HIV cyclotides. Curr. Protein Pept. Sci. 5, 331–340
15. Daly, N. L., Love, S., Alesvog, P. F., and Craik, D. J. (1999) Chemical synthesis and folding pathways of large cyclic polypeptides. Studies of the cytokine knot polypeptide kalata B1. Biochemistry 38, 10606–10614
16. Hernandez, J. F., Gagnon, J., Chiche, L., Nguyen, T. M., Andrieu, J. P., Heitz, A., Trinh Hong, T., Pham, T. T., and Le Nguyen, D. (2000) Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39, 5722–5730
17. Daly, N. L., Chen, Y.-K., Foley, F. M., Bansal, P. S., Bharath, R., Clark, R. J., Sommerhoff, C. P., and Craik, D. J. (2006) The absolute structural requirement for a proline in the P3’-position of Bowman-Birk protease inhibitors is surmounted in the minimized SFTI-1 scaffold. J. Biol. Chem. 281, 23668–23675
Development of Cyclic Peptide Matriptase Inhibitors

28. Chan, L. Y., Gunasekera, S., Henriques, S. T., Worth, N. F., Le, S. J., Clark, R. J., Campbell, J. H., Craik, D. J., and Daly, N. L. (2011) Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood 118, 40.790–40.797

29. Goddard, T. D., and Kneller, D. G. (YEAR) SPARKY. University of California, San Francisco

30. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley-Interscience, New York

31. Morrison, J. F. (1969) Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochim. Biophys. Acta 185, 269–286

32. Güntert, P. (2009) Automated structure determination from NMR spectra. Eur. Biophys. J. 38, 129–143

33. Koradi, R., Billeter, M., and Wüthrich, K. (1996) MOLMOL. A program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 29–32

34. Yuan, C., Chen, L., Meehan, E. J., Daly, N., Craik, D. J., Huang, M., and Ngo, J. C. (2011) Structure of catalytic domain of Matriptase in complex with Sunflower trypsin inhibitor-1. BMC Struct. Biol. 11, 30

35. Sali, A., and Blundell, T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815

36. Shen, M. Y., and Sali, A. (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–2524

37. Case, D. A., Cheatham, T. E., 3rd, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., and Woods, R. J. (2005) The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688

38. Cerutti, D. S., Le Trong, I., Stenkamp, R. E., and Lybrand, T. P. (2009) Dynamics of the streptavidin-biotin complex in solution and its crystal lattice. Distinct behavior revealed by molecular simulations. J. Phys. Chem. B 113, 6971–6985

39. Ryckaert, J. P., Cicotti, G., and Berendsen, H. J. (1977) Numerical integration of the cartesian equations of motion of a system with constraints. Molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341

40. Darden, T., York, D., and Pedersen, L. (1993) Particle mesh Ewald. An N log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092

41. Tam, J. P., and Lu, Y.-A. (1998) A biomimetic strategy in the synthesis and fragmentation of cyclic protein. Protein Sci. 7, 1583–1592

42. Avrutina, O., Schmoldt, H. U., Gabrijelcic-Geiger, D., Le Nguyen, D., Sommerhoff, C. P., Diederichsen, U., and Kolmar, H. (2005) Trypsin inhibition by macroyclic and open-chain variants of the squash inhibitor MCoTI-II. Biol. Chem. 386, 1301–1306

43. Wong, C. T., Rowlands, D. K., Wong, C. H., Lo, T. W., Nguyen, G. K., Li, H. Y., and Tam, J. P. (2012) Orally active peptidic bradykinin B1 receptor antagonists engineered from a cyclotide scaffold for inflammatory pain treatment. Angew. Chem. Int. Ed. Engl. 51, 5620–5624

44. Takeuchi, T., Harris, J. L., Huang, W., Yan, K. W., Coughlin, S. R., and Craik, C. S. (2000) Cellular localization of membrane-type serine protease I and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J. Biol. Chem. 275, 26333–26342

45. Rafal, L., Anna, L., Magdalena, W., Dawid, D., Adam, L., and Krzysztof, R. (2011) Analogues of trypsin inhibitor SFTI-1 modified in the conserved P(1)’ position by synthetic or non-proteinogenic amino acids retain their inhibitory activity. J. Pept. Sci. 17, 281–287

46. Fittler, H., Avrutina, O., Glotzbach, B., Empting, M., and Kolmar, H. (2013) Combinatorial tuning of peptidic drug candidates. High-affinity matriptase inhibitors through incremental structure-guided optimization. Org. Biomol. Chem. 11, 1848–1857

47. Mylne, J. S., Colgrave, M. L., Daly, N. L., Chanson, A. H., Elliott, A. G., McCallum, E. J., Jones, A., and Craik, D. J. (2011) Albumins and their processing machinery are hijacked for cyclic peptides in sunflower. Nat. Chem. Biol. 7, 257–259

48. Clark, R. J., Jensen, J., Nevin, S. T., Callaghan, B. P., Adams, D. J., and Craik, D. J. (2010) The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew. Chem. Int. Ed. Engl. 49, 6545–6548

49. Baker, N. A., Sept, D., Joseph, S., Holst, M. J., and McCammon, J. A. (2001) Electrostatics of nanosystems. Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 98, 10037–10041

50. Wishart, D. S., Bigam, C. G., Holm, A., Hodges, R. S., and Sykes, B. D. (1995) 1H, 13C, and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J. Biomol. NMR 5, 67–81