On strongly almost lacunary statistical A-convergence defined by Musielak-Orlicz function

Ekrem Savas
Istanbul Commerce University, 34840 Istanbul, Turkey
E-mail: ekremsavas@yahoo.com

Stuti Borgohain
Department of Mathematics
Indian Institute of Technology, Bombay
Powai:400076, Mumbai, Maharashtra; INDIA.
E-mail: stutiborgohain@yahoo.com

Abstract: We study some new strongly almost lacunary statistical A-convergent sequence space of order α defined by a Musielak-Orlicz function. We also give some inclusion relations between the newly introduced class of sequences with the spaces of strongly almost lacunary A-convergent sequence of order α. Moreover we have examined some results on Musielak-Orlicz function with respect to these spaces.

Key Words: Almost convergence; Statistical convergence; Lacunary sequence; Musielak-Orlicz function; A-convergence.

AMS Classification No: 40A05; 40A25; 40A30; 40C05.

1 Introduction

The concept of statistical convergence was initially introduced by Fast [2], which is closely related to the concept of natural density or asymptotic density of subsets of the set of natural numbers N. Later on, it was studied as asummability method by Fridy [4], Fridy and Orhan [6], Freedman and Sember [3], Schoenberg [18], Malafosse and Rakočević [10] and many more mathematicians. Moreover, in recent years, generalizations of statistical convergence have appeared in the study of strong integral summability and the structure of ideals of bounded continuous

1The work of the authors was carried under the Post Doctoral Fellow under National Board of Higher Mathematics, DAE, project No. NBHM/PDF.50/2011/64
functions on locally compact spaces. Also, statistical convergence is closely related to the concept of convergence in probability.

By the concept of almost convergence, we have a sequence \(x = (x_k) \in \ell_\infty \) if its Banach limit coincides. The set \(\hat{c} \) denotes set of all almost convergent sequences. Lorentz [8] proved that,

\[
\hat{c} = \{ x \in \ell_\infty : \lim_m t_{mn}(x) \text{ exist uniformly in } n \},
\]

where

\[
t_{mn}(x) = \frac{x_n + x_{n+1} + \ldots + x_{n+m}}{m+1}.
\]

Similarly, the space of strongly almost convergent sequence was defined as, \(\hat{c} = \{ x \in \ell_\infty : \lim_m t_{mn}(\|x - Le\|) \text{ exists uniformly in } n \text{ for some } L \} \), where, \(e = (1, 1, ...) \). (see Maddox [9])

A lacunary sequence is defined as an increasing integer sequence \(\theta = (k_r) \) such that \(k_0 = 0 \) and \(h_r = k_r - k_{r-1} \to \infty \) as \(r \to \infty \).

Note: Throughout this paper, the intervals determined by \(\theta \) will be denoted by \(J_r = (k_{r-1}, k_r] \) and the ratio \(\frac{k_r}{k_{r-1}} \) will be defined by \(\phi_r \).

2 Preliminary concepts

Let \(0 < \alpha \leq 1 \) be given. The sequence \((x_k) \) is said to be statistically convergent of order \(\alpha \) if there is a real number \(L \) such that,

\[
\lim_{n \to \infty} \frac{1}{n^\alpha} \left| \left\{ k \leq n : |x_k - L| \geq \varepsilon \right\} \right| = 0,
\]

for every \(\varepsilon > 0 \). In this case, we write \(S^\alpha - \lim x_k = L \). The set of all statistically convergent sequences of order \(\alpha \) will be denoted by \(S^\alpha \).

For any lacunary sequence \(\theta = (k_r) \), the space \(N_\theta \) defined as, (Freedman et al.[3])
\[N_\theta = \left\{ (x_k) : \lim_{r \to \infty} h_r^{-1} \sum_{k \in I_r} |x_k - L| = 0, \text{ for some } L \right\} . \]

The space \(N_\theta \) is a BK space with the norm,

\[\| (x_k) \|_\theta = \sup_r h_r^{-1} \sum_{k \in I_r} |x_k|. \]

Let \(\theta = (k_r) \) be a lacunary sequence and \(0 < \alpha \leq 1 \) be given. The sequence \(x = (x_k) \in w \) is said to be \(S_\theta^\alpha \)-statistically convergent (or lacunary statistically convergent sequence of order \(\alpha \)) if there is a real number \(L \) such that

\[\lim_{r \to \infty} \frac{1}{h_r^\alpha} |\{ k \in I_r : |x_k - L| \geq \epsilon \}| = 0, \]

where \(I_r = (k_{r-1}, k_r] \) and \(h_r^\alpha \) denotes the \(\alpha \)-th power \((h_r)^\alpha \) of \(h_r \), that is, \(h^\alpha = (h_1^\alpha, h_2^\alpha, ... h_r^\alpha, ...) \). We write \(S_\theta^\alpha - \lim x_k = L \). The set of all \(S_\theta^\alpha \)-statistically convergent sequences will be denoted by \(S_\theta^\alpha \).

By an Orlicz function, we mean a function \(M : [0, \infty) \to [0, \infty) \), which is continuous, non-decreasing and convex with \(M(0) = 0,M(x) > 0 \), for \(x > 0 \) and \(M(x) \to \infty \), as \(x \to \infty \).

The idea of Orlicz function is used to construct the sequence space, (see Lindenstrauss and Tzafriri [7]),

\[\ell_M = \left\{ (x_k) \in w : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) < \infty, \text{ for some } \rho > 0 \right\} . \]

This space \(\ell_M \) with the norm,

\[\| x \| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) \leq 1 \right\} \]

becomes a Banach space which is called an Orlicz sequence space.

Musielak [12] defined the concept of Musielak-Orlicz function as \(\mathcal{M} = (M_k) \). A sequence \(\mathcal{N} = (N_k) \) defined by
\[N_k(v) = \sup \{ |v|u - M_k(u) : u \geq 0 \}, k = 1, 2, .. \]

is called the complementary function of a Musielak-Orlicz function \(\mathcal{M} \). The Musielak-Orlicz sequence space \(t_{\mathcal{M}} \) and its subspace \(h_{\mathcal{M}} \) are defined as follows:

\[t_{\mathcal{M}} = \{ x \in w : I_{\mathcal{M}}(cx) < \infty \text{ for some } c > 0 \}, \]
\[h_{\mathcal{M}} = \{ x \in w : I_{\mathcal{M}}(cx) < \infty, \forall c > 0 \}, \]

where \(I_{\mathcal{M}} \) is a convex modular defined by,

\[I_{\mathcal{M}}(x) = \sum_{k=1}^{\infty} M_k(x_k), x = (x_k) \in t_{\mathcal{M}}. \]

It is considered \(t_{\mathcal{M}} \) equipped with the Luxemburg norm

\[\| x \| = \inf \left\{ k > 0 : I_{\mathcal{M}} \left(\frac{x}{k} \right) \leq 1 \right\} \]

or equipped with the Orlicz norm

\[\| x \|^0 = \inf \left\{ \frac{1}{k} (1 + I_{\mathcal{M}}(kx)) : k > 0 \right\}. \]

A Musielak-Orlicz function \((M_k) \) is said to satisfy \(\Delta_2 \)-condition if there exist constants \(a, K > 0 \) and a sequence \(c = (c_k)_{k=1}^{\infty} \in \ell^1_+ \) (the positive cone of \(\ell^1 \)) such that the inequality

\[M_k(2u) \leq KM_k(u) + c_k \]

holds for all \(k \in N \) and \(u \in R_+ \), whenever \(M_k(u) \leq a \).

If \(A = (a_{nk})_{n,k=1}^{\infty} \) is an infinite matrix, then \(Ax \) is the sequence whose nth term is given by \(A_n(x) = \sum_{k=1}^{\infty} a_{nk}x_k. \)

We consider a sequence \(x = (x_k) \) which is said to be strongly almost lacunary statistical \(A \)-convergent of order \(a \) (or \(S^a_\alpha(A, \mathcal{M}, (s)) \)-statistically convergent) if,

\[\lim_{r \to \infty} \frac{1}{h_r^a} \left| \left\{ k \in I_r : \sum_{k \in I_r} \left(M_k \left(\frac{|f_km(A_k(x) - L)|}{\rho(k)} \right) \right)^{(\alpha_k)} \geq \varepsilon \right\} \right| = 0, \text{ uniformly in } m, \]
where \(I_r = (k_{r-1}, k_r] \) and \(h^\alpha_r \) denotes the \(\alpha \)-th power \((h^\alpha_r) \) of \(h_r \), that is, \(h^\alpha = (h^\alpha_1, h^\alpha_2, \ldots) \) and \(\mathcal{M} = (M_k) \) is a Musielak-Orlicz function.

Also we have introduced the space of strongly almost lacunary \(A \)-convergent sequences with respect to Musielak-Orlicz function \(\mathcal{M} = (M_k) \) as follows:

\[
\hat{N}_\theta^\alpha(A, \mathcal{M}, (s)) = \left\{ (x_k) : \lim_{r \to \infty} \frac{1}{h^\alpha_r} \sum_{k \in I_r} \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho(k)} \right) \right]^{s_k} = 0, \text{ for some } L \text{ and } \rho(k) > 0 \right\}.
\]

We give some inclusion relations between the sets of \(S_\theta^\alpha(A, \mathcal{M}, (s)) \)-statistically convergent sequences and strongly almost lacunary \(A \)-convergent sequence space \(\hat{N}_\theta^\alpha(A, \mathcal{M}, (s)) \). Also some results defined by Musielak-Orlicz function are studied with respect to these sequence spaces.

3 Main Results

Theorem 3.1

Let \(\alpha, \beta \in (0, 1] \) be real numbers such that \(\alpha \leq \beta \), \(\mathcal{M} \) be a Musielak-Orlicz function and \(\theta = (k_r) \) be a lacunary sequence, then \(\hat{N}_\theta^\alpha(A, \mathcal{M}, (s)) \subset S_\theta^\beta \).

Proof: Let \(x \in \hat{N}_\theta^\alpha(A, \mathcal{M}, (s)) \).

For \(\varepsilon > 0 \) given, let us denote \(\Sigma_1 \) as the sum over \(k \in I_r, |t_{km}(A_k(x) - L)| \geq \varepsilon \) and \(\Sigma_2 \) denote the sum over \(k \in I_r, |t_{km}(A_k(x) - L)| < \varepsilon \) respectively.

As \(h^\alpha_r \leq h^\beta_r \) for each \(r \), we may write,

\[
\frac{1}{h^\alpha_r} \sum_{k \in I_r} \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho(k)} \right) \right]^{s_k} = \frac{1}{h^\alpha_r} \left[\Sigma_1 \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho(k)} \right) \right]^{s_k} + \Sigma_2 \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho(k)} \right) \right]^{s_k} \right] \geq \frac{1}{h^\alpha_r} \left[\Sigma_1 \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho(k)} \right) \right]^{s_k} + \Sigma_2 \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho(k)} \right) \right]^{s_k} \right] \geq \frac{1}{h^\alpha_r} \Sigma_1 \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho(k)} \right) \right]^{s_k}
\]
\[\geq \frac{1}{h_r} \sum_{k \in I_r} \min([M_k(\varepsilon_1)]^h, [M_k(\varepsilon_1)]^H), \varepsilon_1 = \frac{\rho}{\rho^3} \]

As \(x \in \widetilde{N}_\alpha^\alpha(A, M, (s)) \), the left hand side of the above inequality tends to zero as \(r \to \infty \). Therefore, the right hand side of the above inequality tends to zero as \(r \to \infty \), hence \(x \in \hat{S}_\beta^\beta \).

Corollary 3.2. Let \(0 < \alpha \leq 1 \), \(M \) be a Musielak-Orlicz function and \(\theta = (k_r) \) be a lacunary sequence, then

\[\hat{N}_\alpha^\alpha(A, M, (s)) \subset \hat{S}_\alpha^\alpha. \]

Theorem 3.3. Let \(M \) be a Musielak-Orlicz function, \(x = (x_k) \) be a bounded sequence and \(\theta = (k_r) \) be a lacunary sequence. If \(\lim_{r \to \infty} \frac{h_r}{h_r^3} = 1 \), then \(x \in \hat{S}_\beta^\beta \Rightarrow x \in \hat{N}_\alpha^\alpha(A, M, (s)). \)

Proof: Suppose that \(x = (x_k) \) be a bounded sequence that is \(x \in \ell_\infty \) and \(\hat{S}_\beta^\beta - \lim x_k = L \).

As \(x \in \ell_\infty \), then there is a constant \(T > 0 \) such that \(|x_k| \leq T \). Given \(\varepsilon > 0 \), we have,

\[\frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho^{(k)}} \right) \right]^{\xi_k} \]

\[\geq \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho^{(k)}} \right) \right]^{\xi_k} + \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho^{(k)}} \right) \right]^{\xi_k} \]

\[\leq \frac{1}{h_r} \sum_{k \in I_r} \max \left\{ [M_k \left(\frac{r}{\rho^{(k)}} \right)]^h, [M_k \left(\frac{r}{\rho^{(k)}} \right)]^H \right\} + \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\frac{r}{\rho^{(k)}} \right) \right]^{\xi_k} \]

\[\leq \max \{ [M_k(K)]^h, (M_k(K)]^H \} + \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\frac{r}{\rho^{(k)}} \right) \right]^{\xi_k} \]

\[\leq K, \frac{r}{\rho^{(k)}} = \varepsilon \]

Hence, \(x \in \widetilde{N}_\alpha^\alpha(A, M, (s)). \)
Theorem 3.4. If \(\lim s_k > 0 \) and \(x = (x_k) \) is strongly \(\hat{N}^\alpha_\theta(A, \mathcal{M}, (s)) \)-summable to \(L \) with respect to the Musielak-Orlicz function \(\mathcal{M} \), then \(\hat{N}^\alpha_\theta(A, \mathcal{M}, (s)) - \lim x_k \) is unique.

Proof: Let \(\lim s_k = s > 0 \). Suppose that \(\hat{N}^\alpha_\theta(A, \mathcal{M}, (s)) - \lim x_k = L \), and \(\hat{N}^\alpha_\theta(A, \mathcal{M}, (s)) - \lim x_k = L_1 \). Then,

\[
\lim_{r \to \infty} \frac{1}{h^r} \sum_{k \in \mathcal{I}} \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho_1^{(k)}} \right) \right]^{s_k} = 0, \text{ for some } \rho_1^{(k)} > 0
\]

and

\[
\lim_{r \to \infty} \frac{1}{h^r} \sum_{k \in \mathcal{I}} \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho_2^{(k)}} \right) \right]^{s_k} = 0, \text{ for some } \rho_2^{(k)} > 0.
\]

Define \(\rho^{(k)} = \max(2\rho_1^{(k)}, 2\rho_2^{(k)}) \). As \(\mathcal{M} \) is nondecreasing and convex, we have,

\[
\frac{1}{h^r} \sum_{k \in \mathcal{I}} \left[M_k \left(\frac{|L - L_1|}{\rho^{(k)}} \right) \right]^{s_k} \leq \frac{D}{h^r} \sum_{k \in \mathcal{I}} \frac{1}{2^{s_k}} \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho_1^{(k)}} \right) \right]^{s_k} + \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho_2^{(k)}} \right) \right]^{s_k} \leq \frac{D}{h^r} \sum_{k \in \mathcal{I}} \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho_1^{(k)}} \right) \right]^{s_k} + D \sum_{k \in \mathcal{I}} \left[M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho_2^{(k)}} \right) \right]^{s_k} \to 0, (r \to \infty),
\]

where \(\sup_{k} s_k = H \) and \(D = \max(1, 2^{H-1}) \). Hence,

\[
\lim_{r \to \infty} \frac{1}{h^r} \sum_{k \in \mathcal{I}} \left[M_k \left(\frac{|L - L_1|}{\rho^{(k)}} \right) \right]^{s_k} = 0.
\]

As \(\lim s_k = s \), we have,

\[
\lim_{k \to \infty} \left[M_k \left(\frac{|L - L_1|}{\rho^{(k)}} \right) \right]^{s_k} = \left[M_k \left(\frac{|L - L_1|}{\rho^{(k)}} \right) \right]^{s}
\]

and so \(L = L_1 \). Thus the limit is unique.

Theorem 3.5. Let \(A = (a_{mk}) \) be an infinite matrix of complex numbers and let \(\mathcal{M} = (M_k) \) be a Musielak-Orlicz function satisfying \(\Delta_2 \)-condition. If \(x \)
is strongly almost lacunary A-convergent sequences with respect to \mathcal{M}, then $\hat{N}_\theta^a(A) = \hat{N}_\theta^a(A, \mathcal{M})$.

Proof: Let $x \in \hat{N}_\theta^a(A)$.

Then, \(\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} |t_{km}(A(x) - L)| = 0 \), uniformly in m.

Let us define two sequences y and z such that,

$$\left(|t_{km}(A_k(y) - L)| \right) = \begin{cases}
|t_{km}(A_k(x) - L)| & \text{if } |t_{km}(A_k(x) - L)| > 1; \\
\theta & \text{if } |t_{km}(A_k(x) - L)| \leq 1.
\end{cases}$$

$$\left(|t_{km}(A_k(z) - L)| \right) = \begin{cases}
\theta & \text{if } |t_{km}(A_k(x) - L)| > 1; \\
|t_{km}(A_k(x) - L)| & \text{if } |t_{km}(A_k(x) - L)| \leq 1.
\end{cases}$$

Hence, \(|t_{km}(A_k(x) - L)| = |t_{km}(A_k(y) - L)| + |t_{km}(A_k(z) - L)| \).

Also, \(|t_{km}(A_k(y) - L)| \leq |t_{km}(A_k(x) - L)| \) and \(|t_{km}(A_k(z) - L)| \leq |t_{km}(A_k(x) - L)| \).

Since, $\hat{N}_\theta^a(A)$ is normal, so we have $y, z \in \hat{N}_\theta^a(A)$.

Let $\sup_k M_k(2) = T$

Then,

$$\frac{1}{h_r} \sum_{k \in I_r} M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho^{(k)}} \right)$$

$$= \frac{1}{h_r} \sum_{k \in I_r} M_k \left(\frac{|t_{km}(A_k(y) - L)| + |t_{km}(A_k(z) - L)|}{\rho^{(k)}} \right)$$

$$\leq \frac{1}{h_r} \sum_{k \in I_r} \left[\frac{1}{2} M_k \left(\frac{2|t_{km}(A_k(y) - L)|}{\rho^{(k)}} \right) + \frac{1}{2} M_k \left(\frac{2|t_{km}(A_k(z) - L)|}{\rho^{(k)}} \right) \right]$$

$$< \frac{1}{2} \frac{1}{h_r} \sum_{k \in I_r} K_1 \left(\frac{|t_{km}(A_k(y) - L)|}{\rho^{(k)}} \right) M_k(2) + \frac{1}{2} \frac{1}{h_r^2} \sum_{k \in I_r} K_2 \left(\frac{|t_{km}(A_k(z) - L)|}{\rho^{(k)}} \right) M_k(2)$$
\[
\leq \frac{1}{2} h_r \sum_{k \in I_r} K_1 \left(\frac{|t_{km}(A_k(y) - L)|}{\rho^{(k)}} \right) \sup M_k(2) + \frac{1}{2} h_r \sum_{k \in I_r} K_2 \left(\frac{|t_{km}(A_k(z) - L)|}{\rho^{(k)}} \right) \sup M_k(2)
\]

\[\to 0 \text{ as } r \to \infty.\]

Hence \(x \in \hat{N}_\theta^a(A, \mathcal{M}). \) This completes the proof.

Theorem 3.6. Let \(A = (a_{mk}) \) be an infinite matrix of complex numbers and let \(\mathcal{M} = (M_k) \) be a Musielak-Orlicz function satisfying \(\Delta_2 \)-condition. If

\[
\liminf_{\nu \to \infty} k \frac{M_k \left(\frac{\nu}{\rho^{(k)}} \right)}{\nu} > 0, \text{ for some } \rho^{(k)} > 0,
\]

then, \(\hat{N}_\theta^a(A) = \hat{N}_\theta^a(A, \mathcal{M}). \)

Proof: If \(\hat{N}_\theta^a(A) = \hat{N}_\theta^a(A, \mathcal{M}) \) for some \(\rho^{(k)} > 0 \), then there exists a number \(\gamma > 0 \) such that

\[
M_k \left(\frac{\nu}{\rho^{(k)}} \right) \geq \gamma \left(\frac{\nu}{\rho^{(k)}} \right), \forall \nu > 0, \text{ and some } \rho^{(k)} > 0.
\]

Let \(x \in \hat{N}_\theta^a(A, \mathcal{M}) \). Then,

\[
\frac{1}{h_r} \sum_{k \in I_r} M_k \left(\frac{|t_{km}(A_k(x) - L)|}{\rho^{(k)}} \right) \geq \frac{1}{h_r} \sum_{k \in I_r} \nu \left(\frac{|t_{km}(A_k(x) - L)|}{\rho^{(k)}} \right) \geq \gamma \frac{1}{h_r} \sum_{k \in I_r} \left(\frac{|t_{km}(A_k(x) - L)|}{\rho^{(k)}} \right)
\]

Hence, \(x \in \hat{N}_\theta^a(A) \). This completes the proof.

Theorem 3.7. Let \(\mathcal{M} = (M_k) \) be a Musielak-Orlicz function where \((M_k) \) is pointwise convergent. Then, \(\hat{N}_\theta^a(A, \mathcal{M}, (s)) \subset \hat{S}_\theta^a(A, \mathcal{M}, (s)) \) if and only if

\[
\lim_k M_k \left(\frac{\nu}{\rho^{(k)}} \right) > 0 \text{ for some } \nu > 0, \rho^{(k)} > 0.
\]

Proof: Let \(\epsilon > 0 \) and \(x \in \hat{N}_\theta^a(A, \mathcal{M}, (s)). \)

Also, if \(\lim_k M_k \left(\frac{\nu}{\rho^{(k)}} \right) > 0 \), then there exists a number \(c > 0 \) such that
\[M_k \left(\frac{\nu}{\rho^{(k)}} \right) \geq c, \text{ for } \nu > \varepsilon. \]

Let us consider, \(I_r^1 = \{ i \in I_r : \left[M_k \left(\frac{|t_{km}(A(x) - L)|}{\rho^{(k)}} \right) \right] \geq \varepsilon \} \).

Then,
\[
\frac{1}{h_r^s} \sum_{k \in I_r} \left[M_k \left(\frac{|t_{km}(A(x) - L)|}{\rho^{(k)}} \right) \right]^{s_k} \geq \frac{1}{h_r^s} \sum_{k \in I_r^1} \left[M_k \left(\frac{|t_{km}(A(x) - L)|}{\rho^{(k)}} \right) \right]^{s_k} \geq c \frac{1}{h_r^s} |t_{km}(A_0(\varepsilon))|
\]

Hence, it follows that \(x \in \hat{S}_\theta^a(A, \mathcal{M}, (s)) \).

Conversely, let us assume that the condition does not hold good. For a number \(\nu > 0 \), let \(\lim_{k} M_k \left(\frac{\nu}{\rho^{(k)}} \right) = 0 \) for some \(\rho > 0 \). Now, we select a lacunary sequence \(\theta = (n_r) \) such that \(M_k \left(\frac{1}{\rho^{(k)}} \right) < 2^{-r} \) for any \(k > n_r \).

Let \(A = I \) and define a sequence \(x \) by putting,
\[
A_k(x) = \begin{cases} \nu & \text{if } n_{r-1} < k \leq \frac{n_r + n_{r-1}}{2}; \\ \theta & \text{if } \frac{n_r + n_{r-1}}{2} < k \leq n_r. \end{cases}
\]

Therefore,
\[
\frac{1}{h_r^s} \sum_{k \in I_r} \left[M_k \left(\frac{|A_k(x)|}{\rho^{(k)}} \right) \right]^{s_k} = \frac{1}{h_r^s} \sum_{n_{r-1} < k \leq \frac{n_r + n_{r-1}}{2}} M_k \left(\frac{\nu}{\rho^{(k)}} \right) < \frac{1}{h_r^s} \frac{1}{2^{r-1}} \left[\frac{n_r + n_{r-1}}{2} - n_{r-1} \right] = \frac{1}{2^r} \rightarrow 0 \text{ as } r \rightarrow \infty.
\]

Thus we have \(x \in \hat{N}_\theta^a(A, \mathcal{M}, (s)) \).
But,
\[
\lim_{r \to \infty} \frac{1}{h_r^n} \left\{ \{ k \in I_r : \sum_{k \in I_r} \left[M_k \left(\frac{|t_{km}(A(x))|}{\rho(k)} \right) \right] \} \right\} = \lim_{r \to \infty} \frac{1}{h_r^n} \left\{ \{ k \in (n_r - n_{r-1}) : \sum_{k \in I_r} \left[M_k \left(\frac{v}{\rho(k)} \right) \right] \} \right\}
\]
\[
= \lim_{r \to \infty} \frac{1}{h_r^n} n_r = \frac{1}{2}.
\]

So, \(x \notin \hat{S}_0(A, \mathcal{M}, (s)) \).

Theorem 3.8. Let \(\mathcal{M} = (M_k) \) be a Musielak-Orlicz function. Then \(\hat{S}_0^\alpha(A, \mathcal{M}, (s)) \subset N_0^\alpha(A, \mathcal{M}, (s)) \) if and only if \(\sup_v \sup_k M_k \left(\frac{v}{\rho(k)} \right) < \infty \).

Proof: Let \(x \in \hat{S}_0^\alpha(A, \mathcal{M}, (s)) \). Suppose \(h(v) = \sup_k M_k \left(\frac{v}{\rho(k)} \right) \) and \(h = \sup_v h(v) \). Let
\[
I_r^2 = \left\{ k \in I_r : M_k \left(\frac{|t_{km}(A(x) - L)|}{\rho(k)} \right) < \varepsilon \right\}.
\]

Now, \(M_k(v) \leq h \) for all \(k, v > 0 \). So,
\[
\frac{1}{h_r^n} \sum_{k \in I_r} \left[M_k \left(\frac{|t_{km}(A(x) - L)|}{\rho(k)} \right) \right] = \frac{1}{h_r^n} \sum_{k \in I_r} \left[M_k \left(\frac{|t_{km}(A(x) - L)|}{\rho(k)} \right) \right] \leq h \frac{1}{h_r^n} |t_{km}(A_0(\varepsilon))| + h(\varepsilon).
\]

Hence, as \(\varepsilon \to 0 \), it follows that \(x \in N_0^\alpha(A, \mathcal{M}, (s)) \).

Conversely, suppose that
\[
\sup_v \sup_k M_k \left(\frac{v}{\rho(k)} \right) = \infty.
\]

Then, we have
\[
0 < v_1 < v_2 < ... < v_{r-1} < v_r < ...
\]
so that $M_n \left(\frac{v_r}{p_k} \right) \geq h_r^\alpha$ for $r \geq 1$. Let $A = I$. We set a sequence $x = (x_k)$ by,

$$A_k(x) = \begin{cases} v_r & \text{if } k = n_r \text{ for some } r = 1, 2, ..; \\ \theta & \text{otherwise.} \end{cases}$$

Then,

$$\lim_{r \to \infty} \frac{1}{h_r^\alpha} \left\{ \left\lfloor \frac{\sum_{k \in I_r} M_k \left(\frac{|t_{km}(A_k(x))|}{\rho(k)} \right)^{s_k}}{\varepsilon} \right\rfloor \right\} = \lim_{r \to \infty} \frac{1}{h_r^\alpha} \sum_{k \in I_r} M_k \left(\frac{|t_{km}(A_k(x))|}{\rho(k)} \right)^{s_k} \geq \lim_{r \to \infty} \frac{1}{h_r^\alpha} \sum_{k \in I_r} M_k \left(\frac{|v_r - L|}{\rho(k)} \right) \geq \lim_{r \to \infty} \frac{1}{h_r^\alpha} = 1$$

Hence, $x \in \hat{S}_0^\alpha(A, \mathcal{M}, (s))$.

But,

$$\lim_{r \to \infty} \frac{1}{h_r^\alpha} \sum_{k \in I_r} M_k \left(\frac{|t_{km}(A_k(x)) - L|}{\rho(k)} \right) = \lim_{r \to \infty} \frac{1}{h_r^\alpha} \left[M_n \left(\frac{|v_r - L|}{\rho(k)} \right) \right] \geq \lim_{r \to \infty} \frac{1}{h_r^\alpha} = 1$$

So, $x \in \hat{N}_0^\alpha(A, \mathcal{M}, (s))$.

References

[1] Esi, A. and Gokhan, A., Lacunary strong almost A-Convergence with respect to a sequence of Orlicz function, *Journal of Computational Analysis and Applications*, 12(4)(2010), 853-865.

[2] Fast, H., Sur la convergence statistique, *Colloq. Math*, 2(1951), 241-244.

[3] Freedman,A. R. and Sember, J. J., Densities and summability,*Pacific J. Math.*,95(1981), 293-305.

[4] Fridy, J. A , On statistical convergence, *Analysis*, 5(1985), 301-313.
[5] Hazarika, B. and Savas, E., Lacunary statistical convergence of double sequences and some inclusion results in n-normed spaces, *Acta Math. Vietnam*, 38 (3) (2013), 471485.

[6] Fridy, J.A. and Orhan, C., Lacunary statistically convergence, *Pacific Journal of Mathematics*, 160(1)(1993), 43-51.

[7] Lindenstrauss, J. and Tzafriri,L., On Orlicz sequence Spaces, *Israel Journal of Mathematics*, 10(1971), 379-390.

[8] Lorentz, G. G., A contribution to the theory of divergent sequences, *Acta Mathematica*, 80(1948), 167-190.

[9] Maddox, I. J., Spaces of strongly summable sequences, *The Quarterly Journal of Mathematics*, 18(1967),345-355.

[10] Malafossa, B. de. and Rakočević, Matrix transformation and statistical convergence, *Linear Algebra Appl.*, 420(2007), 377-387.

[11] Mohiuddine, S. A. and Savas, E., Lacunary statistically convergent double sequences in probabilistic normed spaces. Ann. Univ. Ferrara Sez. VII Sci. Mat. 58 (2012), no. 2, 331339. 40A35 (40B05)

[12] Musielak,J., Orlicz spaces and modular spaces, *Lecture Notes in Mathematics*, Springer, Berlin, Germany, 1034(1983)

[13] Mursaleen, M., Alotaibi, A. and Sharma,S. K. , Some new lacunary strong convergent vector-valued sequence spaces, *Abstract and Applied Analysis*, volume 2014, Article ID 858504, 8 pages.

[14] Osama, H. H. E. and Mursaleen, M., On statistical A-summability, *Mathematical and Computer Modelling*, 49(2009), 672-680.

[15] Patterson, F. and Savas, E., On asymptotically lacunary statistical equivalent sequences. *Thai J. Math.*, 4 (2) (2006), 267272.

[16] Savas, E., Double almost lacunary statistical convergence of order α, *Adv. Difference Equ.* (254)(2013), 10 pp.
[17] Savas, E., and Patterson, R. F., Lacunary statistical convergence of multiple sequences, *Appl. Math. Lett.* 19(6)(2006), 527-534.

[18] Schoenberg, I. J., The Integrability of Certain Functions and Related Summability Methods, *Amer. Math. Monthly*, 66(1959), 361-375.