DriveFuzz: Discovering Autonomous Driving Bugs through Driving Quality-Guided Fuzzing

Seulbae Kim¹ Major Liu² Junghwan Rhee³
Yuseok Jeon⁴ Yonghwi Kwon⁵ Chung Hwan Kim²

¹ Georgia Institute of Technology, ² University of Texas at Dallas, ³ University of Central Oklahoma, ⁴ UNIST, ⁵ University of Virginia
Can we trust autonomous driving systems?

- Expectation vs Reality

Actual bug we detected!
Can we trust autonomous driving systems?

• Fatal autopilot accidents continue
Finding bugs via manual testing

Source: “Will Tesla Autopilot hit a dog, human, or traffic cone?”
 – Youtube Lowlifemike

Source: “Will a Tesla KILL a cat?”
 – Youtube Carwow
Finding bugs via automated testing

- Feedback-driven fuzzing for traditional software

![Diagram showing the process of finding bugs via automated testing]

- Input
- Target system
- Code coverage

Coverage feedback

bug: segmentation fault
Finding bugs via automated testing

- Feedback-driven fuzzing for autonomous driving systems?
Layers and workflow of Autonomous Driving System (ADS)
Considerations in designing test inputs

The test input should not be a snapshot

The test input should be able to stress all layers
Our input space: Driving scenarios

- Representing temporal and spatial domains of real world
- Consists of
 - 3D map
 - Mission (initial and goal positions)
 - Actors (vehicles or pedestrians)
 - Puddles (e.g., black ice)
 - Weather conditions
Mutation of driving scenarios

- Map and mission selection
 - stress ADS with diverse environments
- Actor generation & mutation
 - render diverse interactive situations
- Puddle generation & mutation
 - stress planning & actuation layers with frictional diversity
- Weather mutation
 - affect sensing and perception
Confining mutation to feasible scenarios

• Ensuring physically valid mutation
 • Spatial constraint
 • Initial positions of all actors and objects are spread away (e.g., 5 m)
 • Preventing unrealistic jams (e.g., vehicles overlapping)
 • Temporal constraint
 • Maximum speed of actor vehicles and pedestrians are conservatively set
 • Preventing reckless behaviors (e.g., a person running into a vehicle too quickly)

• Both constraints are configurable
Feedback-driven fuzzing for ADS

Input scenario

ADS

feedback

?
Defining bugs

• What happens to a buggy ADS?

Classic software bugs
Safety-critical vehicular misbehaviors

Collision

Infraction

Immobility
Feedback-driven fuzzing for ADS
A need for a new feedback mechanism

General software programs

- Diverse, linear code paths
- More code paths \approx more bugs found

Autonomous driving system

- Distributed system
- Behavior is driven by state changes in a loop, not code paths
A need for a new feedback mechanism

General software programs
- Diverse, linear code paths
- More code paths ≃ more bugs found

Autonomous driving system
- Distributed system
- Behavior is driven by state changes in a loop, not code paths

Need proper metrics to quantify the quality of input driving scenarios
Solution: Driving quality feedback

- Intuition
 - Quality of driving \approx likelihood of misbehaviors

 Hard acceleration, braking, and turns

 - Metric auto insurance companies use

 Oversteer and understeer

 - #1 cause of motorsport accidents

 Minimum distance to other actors

 - Near-missed collisions
DriveFuzz overview

Input scenario

Mutation engine (Section 4.2)
- Mission mutator
- Weather mutator
- Actor mutator
- Puddle* mutator

Mutated scenario

Test executor (Section 4.3)
- Test bridge
- Driving simulator
- Autonomous driving system (ADS)

Driving quality feedback engine (Section 4.5)
Quantifying driving quality via vehicle states
1) Hard acceleration/braking
2) Hard turn
3) Over/understeer
4) Minimum distance

Vehicle states (position, velocity, acceleration, ...)

Misbehavior detector (Section 4.4)
- Driving test oracles
 - Collision
 - Infraction
 - Immobility

Seed pool

*Puddle is invisible (It is visible in the illustrations for presentation)

Bug report
DriveFuzz in action

• Seed scenario
 • Map
 • Initial position
 • Destination
DriveFuzz in action

• Round 1

Mutation #1

Score: 100

Mutation #2

No misbehavior detected
Score: 100

Mutation #3

Check driving quality scores
Score: 100

Mutation #4

Select
Score: 88
DriveFuzz in action

• Round 2

Mutation #4-1

Mutation #4-2

Misbehavior detected (collision)

Mutation #4-3

Save states and report

Round 2
Evaluation

• Targeted two autonomous driving systems
 • Autoware
 • A full-fledged ADS with active development status
 • Internationally adopted by well-known auto manufactures (e.g., BMW)
 • Qualified to run driverless vehicles on public roads in Japan (2017~)
 • Behavior Agent
 • A rudimentary ADS developed by CARLA
 • Implements path planning and feedback-based PID control
 • Complies with traffic laws and avoids collisions
Detected 33 new bugs throughout ADS layers

Bug #	Layer	Component	Description	Impact	Strategy	Root cause	ACK
01	Sensing	Fusion	LiDAR & camera fusion misses small objects on road	C	all	Logic err	
02	Perception	Detection	Perceives the road ahead as an obstacle at a steep downhill	I	all	Logic err	✓
03	Perception	Detection	Fails to semantically tag detected traffic lights and cannot take corresponding actions	C, V	all	Logic err	✓
04	Perception	Detection	Fails to semantically tag detected stop signs and cannot take corresponding actions	C, V	all	Logic err	
05	Perception	Detection	Fails to semantically tag detected speed signs and cannot take corresponding actions	V	all	Logic err	
06	Perception	Localization	Faulty localization of the base frame while turning	C, L	all	Logic err	✓
07	Perception	Localization	Localization error when moving underneath bridges and intersections	C, L	all	Logic err	✓
08	Planning	Global planner	Generates infeasible path if the given goal is unreachable	C, L	all	Logic err	✓
09	Planning	Global planner	Generates infeasible path if the goal’s orientation is not aligned with lane direction	C, I, L	all	Logic err	✓
10	Planning	Global planner	Global path starts too far from the vehicle’s current location	C, I, L	all	Logic err	✓
11	Planning	Local planner	Target speed keeps increasing at certain roads, overriding the speed configuration	S, C	all	Logic err	✓
12	Planning	Local planner	Fails to avoid forward collision with a moving object	C	all	Logic err	
13	Planning	Local planner	Fails to avoid lateral collision (ADS perceives the approaching actor before collision)	C	ent	Not impl	
14	Planning	Local planner	Fails to avoid rear-end collision (ADS perceives the approaching actor before collision)	C	ent	Not impl	
15	Planning	Local planner	While turning, ego-vehicle hits an immobile actor partially blocking the intersection	C	ent	Logic err	
16	Actuation	Pure pursuit	Ego-vehicle keeps moving after reaching the destination	C, L	all	Logic err	✓
17	Actuation	Pure pursuit	Fails to handle sharp right turns, driving over curbs	C, L	all	Fauly conf	
18	Perception	Detection	Indefinitely stops if an actor vehicle is stopped on a sidewalk	I	ent	Logic err	
19	Perception	Detection	Flawed obstacle detection logic; lateral movement of an object is ignored	C	con	Logic err	
20	Planning	Global planner	Generates inappropriate trajectory when initial position is given within an intersection	C, L, V	all	Logic err	
21	Planning	Local planner	Improper lane changing, cutting off and hitting an actor vehicle	C	man	Logic err	
22	Planning	Local planner	Vehicle indefinitely stops at stop signs as planner treats stop signs as red lights and waits for green	I	all	Logic err	
23	Planning	Local planner	Vehicle does not preemptively slow down when the speed limit is reduced	S	all	Logic err	
24	Planning	Local planner	Always stops too far (~ 10 m) from the goal due to improper checking of waypoint queue	F	all	Logic err	
25	Planning	Local planner	Collision prevention does not work at intersections (only checks if actors are on the same lane)	C	all	Logic err	
26	Planning	Local planner	Fails to avoid lateral collision (ADS perceives the approaching actor before collision)	C	man	Not impl	
27	Planning	Local planner	Fails to avoid rear-end collision (ADS perceives the approaching actor before collision)	C	man	Not impl	
28	Planning	Local planner	No dynamic replanning; the vehicle does infeasible maneuvers to go back to missed waypoints	C, L	ins	Not impl	
29	Actuation	Controller	Keeps over-accelerating to achieve the target speed while slipping, creating jolt back on dry surface	C, L	ins	Not impl	
30	Actuation	Controller	Motion controller parameters (PID) are poorly tuned, making the vehicle overshoot at turns	C, L	all	Fauly conf	
31	Simulator		Simulation does not properly apply control commands	C, L, V	all	Logic err	✓
32	Simulator		Vector map contains a dead end blocked by objects as a valid lane	C, L, V	all	Data err	
33	Simulator		Occasionally inconsistent simulation result	C, L, V	all	Logic err	✓

[Impact] C: Collision / F: Fails to complete a mission / I: Vehicle becomes Immobile / L: Lane invasion / S: Speeding / V: Miscellaneous traffic Violation
[Strategy] all: all strategies / man: Adversarial maneuver-based / con: congestion-based / ent: entropy-based / ins: instability-based
The impact of driving quality feedback

- Fuzzing with and without driving quality feedback
 - Approximately 2x bugs detected with the feedback
An interesting bug

Multi-layer faults

- Sensing & Perception
 - Fails to perceive the puddle

- Planning
 - Fails to consider the slipping state
 - Keeps commanding speed-up

- Actuation
 - Missing Electronic Stability Control (ESC)
 - Keeps increasing the throttle amount
DriveFuzz summary

- DriveFuzz: End-to-end fuzzing framework for ADS
- Mutate driving scenarios
 - Mission, actors, puddles, weather
- Look for safety-critical misbehaviors
 - Collision, infraction, and immobility
- Leverage semantic feedback using driving quality metrics
- Found 30 bugs in two industry grade ADS
 - Readily exploitable by controlling nearby actors or objects
- Additional materials
 - Website & code: https://drivefuzz.autoinsight.dev/
Q & A