Molecular mutagenesis of ppGpp: turning a RelA activator into an inhibitor

Jelena Beljantseva1,*, Pavel Kudrin1,*, Steffi Jimmy2,3, Marcel Ehn4, Radek Pohl4, Vallo Varik1,2,3, Yuzuru Tozawa5, Victoria Shingler2, Tanel Tenson1, Dominik Rejman4 & Vasili Hauryliuk1,2,3

The alarmone nucleotide (p)ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance and virulence, making (p)ppGpp-mediated signaling a promising target for development of antibacterials. Although ppGpp itself is an activator of the ribosome-associated ppGpp synthetase RelA, several ppGpp mimics have been developed as RelA inhibitors. However promising, the currently available ppGpp mimics are relatively inefficient, with IC50 in the sub-mM range. In an attempt to identify a potent and specific inhibitor of RelA capable of abrogating (p)ppGpp production in live bacterial cells, we have tested a targeted nucleotide library using a biochemical test system comprised of purified Escherichia coli components. While none of the compounds fulfilled this aim, the screen has yielded several potentially useful molecular tools for biochemical and structural work.

Bacteria employ an array of systems to sense their environment and respond to various stimuli. One of such systems is mediated via changes in the intracellular levels of alarmone nucleotides guanosine tetraphosphate (ppGpp) and pentaphosphate (pppGpp), collectively referred to as (p)ppGpp1,2. The nucleotides are synthesized by RelA/SpoT Homologue (RSH) enzymes3 via an in-line nucleophilic attack of the 3′-OH group of GDP (or GTP) on the β-phosphate of ATP4 (Fig. 1a). (p)ppGpp is a pleotropic intracellular effector targeting numerous unrelated molecular targets. It regulates transcription via direct interaction with two allosteric sites of Escherichia coli RNApol5–7; suppresses translation via binding to the GTP-binding pocket of ribosome-associated GTPases8–10, DNA replication via binding to the active site of DNA-dependent RNA polymerase primase DnaG11,12, and nucleotide biosynthesis via direct competition with nucleotide substrates of several enzymes involved in synthesis of GTP13 and ATP14. In addition, (p)ppGpp activates its own production via interaction with ribosome-dependent E. coli RSH RelA15.

An acute increase in (p)ppGpp concentration – referred to as ‘the stringent response’ – orchestrates a survival program leading to increased virulence and antibiotic tolerance16. In E. coli, the stringent response induced by amino acid limitation is mediated by ribosome-associated RSH RelA which is strongly activated by the presence of deacylated tRNA in the ribosomal A-site17. Due to the central role of the (p)ppGpp in regulation of bacterial virulence16 and recently proposed connection to formation of antibiotic-tolerant persister cells18, (p) ppGpp-mediated signaling constitutes a promising target for development of novel antibacterials.

To date two approaches have been employed for the development of chemical tools to inhibit cellular (p) ppGpp production. First, synthetic cationic peptide 1018 and its derivatives were suggested to bind to (p)ppGpp directly and mark the nucleotide for degradation19,20. The 1018 peptide has a very pleotropic effect on cell physiology: in addition to targeting bacterial biofilm formation, it regulates innate immunity via modulation of macrophage differentiation and suppresses inflammation by attenuating pro-inflammatory cytokine production.

1University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia. 2Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden. 3Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden. 4Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic. 5Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama 338-8570, Japan. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to D.R. (email: rejman@uochb.cas.cz) or V.H. (email: vasili.hauryliuk@umu.se)
Follow up studies have shown that, however promising as an antibacterial, 1018 is not a specific inhibitor of the stringent response. The second approach has targeted RSH enzymes directly using ppGpp-based synthetic inhibitors. Redesigning the ppGpp scaffold for inhibition of intracellular RSH enzymes poses several problems. First, the molecule has to be more ‘drug-like’, i.e. less charged, more hydrophobic, and, preferably, simpler and smaller. Even though known antibiotics do not follow Lipinski’s ‘rule of five’ – they are larger, have more H-acceptor and H-donor groups and less hydrophobic (especially in the case of compounds targeting Gram-negative bacteria) than drugs in general – ppGpp is still a clear outlier when it comes to hydrophobicity: it has a calculated distribution-coefficient at pH 7.4, $\text{clogD}_{7.4} = -13.87$, which is more than ten clogD units lower than that of antibacterials on average. Second, in order to survive in the intracellular milieu, the molecule should be made considerably more resistant to chemical and enzymatic degradation. Third, conformational flexibility of the pyrophosphate moieties of ppGpp is critical for its interaction with target proteins imparting additional structural constraints on design of derivatives.

The ‘Wexselblatt’s bisphosphonate’ – or (10) – was the first step towards achieving these goals. It is considerably more chemically stable than ppGpp due to replacement of the oxygen atoms connecting the phosphate groups with methylene bridges (Fig. 1b). However, the compound is relatively inefficient, requiring 1 mM concentration for 50% inhibition of $E. coli$ RelA in the test tube, and is extremely hydrophilic (predicted theoretical $\text{clogD}_{7.4} = -3.18 \pm 0.85$ using ACD/Labs package), rendering it inactive against live bacteria. The second-generation inhibitor Relacin is a more dramatic modification of the ppGpp scaffold: the pyrophosphate groups are replaced by diglycine moieties and the guanine base has a 2-N-isobutyryl (iBu) protecting group attached to the exocyclic amino group at C-2 position (Fig. 1c). The resultant compound is significantly less hydrophilic than ppGpp (theoretical $\text{clogD}_{7.4} = -7.95 \pm 1.03$), and at mM-range concentrations has a biological effect on Gram-positive bacterium $Bacillus subtilis$.

However promising, the ppGpp-analogues developed to date are still far from entering the drug development pipeline due to their low potency, requiring concentrations of $\approx 1 \text{mM}$ to achieve significant inhibition of RSH enzymes. Therefore, we have undertaken a targeted screen for more potent nucleotide-based RSH inhibitors using our biochemical in vitro system comprised of purified $E. coli$ components.
Results

For the initial characterization of compounds, we followed the inhibition of [3H] GDP conversion to [3H] ppGpp catalyzed by *E. coli* RelA in a simplified system in which RelA’s activity was induced by vacant 70S ribosomes and 100 μM of ppGpp15. Unlabeled ppGpp was added to reaction mixtures in order to linearize the kinetics of [3H] ppGpp synthesis due to an activating effect on the RelA enzyme15. We used a targeted library of 69 nucleotides belonging to several structural classes: ‘true’ ppGpp analogues; Relacin and its derivatives; pyrrolidine, azetidine, piperidine and acyclic phosphonates. Chemical structures of tested compounds and titrations in the RelA:70S:ppGpp system are presented in Supplementary Table 1.

A targeted screen for nucleotide-based RelA inhibitors.

This class of compounds is unlikely to yield RSH inhibitors active against live bacteria since the exceedingly hydrophilic ppGpp scaffold is likely to compromise the pharmacokinetic properties. Nevertheless, a potent and specific ppGpp-based RSH inhibitor that acts in the test tube is useful, since it could i) serve as molecular tool for biochemical and structural studies and ii) be used to generate Structure-Activity Relationship (SAR) data instructive for development of inhibitors based on other molecular scaffolds. As a reference, we characterized ppGpp itself (Fig. 2a). In agreement with our earlier observations15, up to 100 μM of ppGpp activates RelA’s enzymatic activity, while at higher concentrations ppGpp acts as a weak inhibitor of RelA with an IC50 of 0.72 ± 0.44 mM.

As a first step, we tested several modifications of the phosphate moieties of the scaffold. While several variants of non-hydrolysable ppGpp mimics relying on the modifications of the pyrophosphate moieties have been reported26, these compounds are relatively inefficient. The most potent representative, 2′-deoxyguanosine-3′-5′-di(methylene bisphosphonate) or (10), has an IC50 of ≈ 1 mM26 (Fig. 1b). In an attempt to improve the...
efficiency, we synthesized a set of derivatives in which the pyrophosphate moieties of ppGpp were replaced with phosphonomethoxy (PCH$_2$O-), phosphonooxacyl (PCH$_2$CO-), phosphonopropionyl (PCH$_2$CH$_2$CO-), phosphonomethylaminocarbonyl (PCH$_2$NHCO-), and phosphonomethoxycarbonyl (PCH$_2$OPO-), and phosphonomethoxycarbonyl (PCH$_2$OPO-) groups (Supplementary Table 1). The most efficient inhibitor from this set is DR-4250 (IC$_{50}$ = 54 ± 3 μM) (Fig. 2b). This compound differs from ppGpp by the presence of methylene bridges (-CH$_2$-) adjoining the 3′-phosphorus atom and pyrophosphate bridging oxygen atom (PCOP). While structurally very similar to (10) in which methylene bridges replace the bridging oxygen atom, DR-4250 is an order of magnitude more potent inhibitor of RelA. A 2′′′-deoxy derivative DR-6241A has reduced activity (IC$_{50}$ = 0.47 ± 0.18 mM) and further removal of 3′-pyrophosphate moiety yields even less potent DR-6222 (IC$_{50}$ = 0.73 ± 0.06 mM) (Supplementary Table 1). In order to reduce the net charge of DR-4250 we removed both phosphate groups generating bis (phosphonomethyl) derivative DR-6331. With an IC$_{50}$ of 76 ± 6 μM the compound is, surprisingly, nearly as active as its potent analogues DR-4250 (Fig. 2b). From the medicinal chemistry point of view the structure of DR-6331 is promising for further derivatization because of first, chemical and enzymatic stability due to absence of pyrophosphate or phosphate ester functions and, second, possibility of conversion to a prodrug form with masked negative charges. Similarly to DR-4250, removal of the 2′′ OH group of DR-6331 yields a significantly less active 2′′′-deoxyguanosine derivative DR-5799C with IC$_{50}$ of 515 ± 392 μM (Fig. 2b), underscoring the functional importance of 2′′ hydroxyl group. We have synthesized and tested five additional bis (phosphonoacyl) analogues; however, none of these compounds are active against RelA (Supplementary Table 1).

We next tested several ppGpp analogues containing a modified nucleotide base. The molecular mechanism by which ppGpp activates RelAs synthetic activity is unclear. To test the specificity of the effect, we synthesized an adenine derivative of ppGpp, ppApp. The 6-thioguanosine derivative of ppGpp, 6-thio-ppGpp, is a UV-inducible zero-length crosslinking reagent that was successfully used to map the two ppGpp binding sites of E. coli RNAPs, suggesting that a similar approach could potentially be used to map the ppGpp binding site of RelA. Surprisingly, unlike ppGpp, neither ppApp nor 6-thio-ppGpp activate RelA’s synthetic activity (Supplementary Figure 1). On the contrary, both compounds are potent inhibitors with IC$_{50}$ of 24.5 ± 3.5 μM and 21.3 ± 2.1 μM, respectively (Fig. 2c). The only nucleotide-based RSH inhibitor that showed activity against bacterial cultures, Relacin, has N2-isobutyryl-guanine (GBu) modification of the nucleotide base. This modification is a common protective group used in nucleotide chemistry. The original publication did not explain the rationale behind using this modification. Is it important for the SAR of the inhibitor? Is it merely a result of the omission of the deprotection stage due to technical difficulties? Therefore, we synthesized and tested several GBu-modified compounds and found that replacement of the G base in DR-4250 with GBu slightly decreases its activity (IC$_{50}$ = 101 ± 8 μM) (Fig. 2b).

Finally, we attempted to apply the structural alterations listed above to Relacin. As an initial step we tested Relacin itself. In good agreement with earlier estimates, the compound is relatively inefficient with IC$_{50}$ of 0.84 ± 0.2 mM (Fig. 1c). Next, we tested the effect of the removal of the iBu protection group from guanine residue of Relacin. This resulted in a near-complete inactivation of the compound (Fig. 2d), demonstrating that iBu is crucial for Relacin’s activity against RelA. When we replaced the GBu in the Relacin scaffold with 6-thio-G, the resulting molecule DR-5732 had virtually no activity (Fig. 2d).

Guanosine phosphonates. The sugar-phosphate moiety of true ppGpp-based RSH inhibitors poses a significant hurdle for medicinal chemistry because it is large, complex, and highly charged. Therefore we attempted to develop a simpler and less charged nucleotide phosphonate structural backbone as a platform for future derivatization. This class of compounds has generated efficient inhibitors of various classes of evolutionary unrelated enzymes such as viral DNA polymerases and malarial hypoxanthine-guanine-xanthine phosphoribosyltransferase.

We assembled and tested a targeted library of structurally diverse guanine nucleoside phosphonates (see Supplementary Table 1). In this compound series – piperidine, pyrrolidine, prolinol, azetidine and acyclic phosphonates – the size of the heterocyclic amine ring is progressively smaller, decreasing from a six-membered ring to a linear molecule. Out of the 12 piperidine phosphonates, the most potent inhibitor is DR-M014 with an IC$_{50}$ of 121 ± 20 μM (Fig. 3a). Replacement of the phosphonocarbonyl group for phosphonoacctyl resulted in a less efficient compound DR-M011 (IC$_{50}$ = 234 ± 67 μM). Out of 21 pyrrolidine phosphonates tested, the most potent inhibitor is DR-4250 with an IC$_{50}$ of 200 ± 22 μM, which is almost twice less efficient than the most potent piperidine phosphonate, DR-M014 (Fig. 3b). An enantiomeric pyrrolidin phosphate DR-5267B (R), which differs from DR-4250 (an 3-C,S isomer) by the configuration of the 3-C carbon atom of the pyrrolidine ring, is significantly less active (IC$_{50}$ = 652 ± 194 μM vs IC$_{50}$ = 200 ± 22 μM), pointing towards the specificity of inhibition. As was the case for DR-M014, the phosphonocarbonyl group is important for the activity of DR-4250: a mono-isopropylester modification results in a near-inactive compound DR-4518 (IC$_{50}$ = 1.71 ± 0.66 mM) (Fig. 3b). Modification of the pyrrolidine ring by the addition of hydroxymethyl group at C-2 to afford 2-pyrrolidinemethanol (prolinol) resulted in inactivation of the compound (Supplementary Table 1). An acyclic scaffold is highly advantageous from the synthetic chemistry viewpoint due to the absence of stereoisomeric centers, thus eliminating the need for stereospecific synthesis. Out of three tested acyclic phosphonates, the most active representative – DR-5164 – inhibits RelA in our biochemical system with an IC$_{50}$ of 245 ± 39 μM (Fig. 3c). Replacement of the phosphonocarbonyl group in DR-5163 by phosphonoacetyl results in a dramatically less active compound DR-5164 (IC$_{50}$ = 1.4 ± 0.12 mM) (Fig. 3c).

The presence of a phosphonomethylcarbonyl moiety is a recurring feature of the active phosphate inhibitors tested so far. Hydrolysis of the amide bond would result in the formation of phosphonofumaric acid. This compound, marketed as Foscarnet, is a well-characterized inhibitor of viral DNA polymerase by acting as a substrate analog mimicking the pyrophosphate moiety of NTP. Because both the substrates and products of RSH enzymes contain pyrophosphate, it is likely that the same mechanism is at play in the case of active phosphonates such as
We tested the effect of phosphonoformic acid in our system, and by itself, it has virtually no inhibitory activity at concentrations up to 1 mM (Fig. 3d).

There are several examples of direct cross-talk between bacterial nucleotide-based signaling systems, connecting ppGpp and c-di-AMP\(^40\), and cyclic GMP and cyclic di-GMP\(^41\) regulatory networks. Therefore, we tested a set of common signaling nucleotides and nucleotide cofactors: c-di-AMP, c-di-GMP, c-di-GAMP, NADH, NADPH. None of the compounds showed any inhibitory effect on E. coli RelA in concentration up to 1 mM (Supplementary Table 1).

Characterization of the promising RSH inhibitors. For the analysis of the mechanism of action, we selected the 'true' ppGpp analogue DR-4250, the most potent piperidine phosphonate DR-M014, and the most extensively characterized RSH inhibitor to date, Relacin\(^25,31\).

Inhibition of RelA activated by programmed 'starved' ribosomal complexes. Screening was performed in a cost-efficient way using RelA activated by the presence of vacant 70S ribosomes and 100 \(\mu\)M ppGpp. However, to become fully active, RelA requires the presence of 'starved' ribosomal complexes containing deacylated A-site tRNA\(^\text{Met}\). We therefore prepared 'starved' complexes using model mRNA coding for fMetPhe (MF) dipeptide and purified deacylated tRNAs tRNA\(^\text{Met}\) and tRNA\(^\text{Phe}\) to test the efficiency of DR-4250 and DR-M014 in this more physiologically relevant system (Fig. 4a,b). DR-4250 and DR-M014 display similar efficiency in both systems (IC\(_{50}\) DR-4250, 70S = 54 ± 3 \(\mu\)M vs. IC\(_{50}\) DR-M014, 70S = 41 ± 7 \(\mu\)M; IC\(_{50}\) DR-4250, 70S (MF:tPhe) = 121 ± 20 vs. IC\(_{50}\) DR-M014, 70S (MF:tPhe) = 155 ± 14 \(\mu\)M), suggesting a possibility for the compounds to be efficient in live cells.

The ppGpp-analogues reported earlier promote RelA association with 70S ribosome\(^25,26\) and are, therefore, promising tools for generating stable 70S:RelA complexes for structural investigations. We tested DR-4250 and DR-M014 using a modified version of a spin down assay of Agirrezabala and colleagues\(^43\), using initiation complexes (IC) programmed with MetPhe mRNA, (MF), in the presence and absence of deacylated A-site tRNA\(^\text{Met}\),

Figure 3. Inhibition of E. coli RelA by guanosine phosphonates. The reaction mixture contained 30 \(\mu\)M RelA, 0.5 \(\mu\)M 70S, 100 \(\mu\)M ppGpp, 0.3 \(\mu\)M [\(^3\)H]GDP and 1 mM ATP. RelA enzymatic activity (turnover, ppGpp synthesized per RelA per minute) is normalized to that in the absence of an inhibitor. Error bars represent standard deviations of linear regression estimates, each experiment was performed at least three times. (a) RelA inhibition by piperidine phosphonate DR-M014 containing phosphonocarbonyl group and DR-M011 containing phosphonoacetyl. (b) Inversion of the stereocenter in the C-3 position of the pyrrolidine ring of pyrrolidine phosphonate DR-4520 (yielding DR-5267B) or mono-isopropylester modification of the phosphonocarbonyl group (yielding DR-4518) decreases its activity. (c) Substitution of phosphonocarbonyl group in acyclic phosphonates DR-5163 by phosphonoacetyl yielding in DR-5164 results in a significant loss of activity against RelA. (d) Phosphonoformate or Foscarnet\(^39\) does not inhibit RelA despite the presence of a phosphonocarbonyl moiety.
and in the presence and absence of inhibitor (Fig. 4c). In a good agreement with earlier results, the presence of A-site deacylated tRNA strongly promotes RelA binding to the ribosome43, resulting in a stoichiometry of RelA to ribosomal protein S1 close to unity. Addition of 500 μM DR-4250 has virtually no effect on RelA binding, while DR-M014 significantly promotes RelA binding to the IC in the absence of tRNAPhe.

DR-M014 and DR-5163 are inefficient inhibitors of Enterococcus faecalis SAS RelQ. In E. coli, ppGpp is synthesized by the multi-domain RSHs RelA and SpoT, however, numerous single-domain RSHs – Small Alarmone Synthetases (SAS) – are widely distributed across bacterial taxa 3. We found earlier that E. faecalis SAS RelQ (RelQ Ef) is virtually insensitive to Relacin31. Therefore we tested the effects of DR-4250, DR-M014 and DR-5163 on RelQ Ef activity (Supplementary Figure 2). While DR-M014 and DR-5163 were almost inactive at concentrations up to 1 mM, DR-4250 did inhibit RelQ Ef (IC50 RelQ Ef = 235 ± 19 μM), though significantly less efficient than E. coli RelA.

Off-target effects: inhibition of E. coli EF-G GTPase and RNA Polymerase. Since (p)ppGpp targets numerous enzymes, it is likely that a compound based on this scaffold would be a promiscuous binder as well. This promiscuity can be viewed as an advantage (e.g. because it would be harder for a bacteria to gain resistance by simultaneously altering several binding sites) or as a disadvantage (e.g. lack of strict specificity would render the inhibitor less useful as a molecular tool). Therefore, it is instrumental to test the off-target effects of the potential inhibitors.

Initially, we tested the effect of the most promising compounds on GTPase activity of EF-G stimulated by 70S ribosomes. We detected no inhibitory effect of Relacin (up to 5 mM), DR-4250, DR-M014, DR-5191B and DR-5163 (all up to 1 mM) or ppApp (up to 100 μM) (Supplementary Figure 3). Next, we tested their effects on RNAP. In E. coli, effects of ppGpp on RNAP are augmented by the transcription initiation factor DksA 44. This small protein binds to the secondary channel of RNAP – a tunnel via which NTPs are delivered to enzyme’s active center 47. The interaction affects transcriptional initiation via stimulation of an isomerization step in the pathway leading to open complex formation in a promoter-specific manner 44 and increases the fidelity of transcription elongation 48. We used multiple round in vitro transcription driven from the rrnB P1, a well-characterized ppGpp/DksA inhibited promoter, as described earlier 49. The assays were performed in the presence and absence of 2 μM DksA and/or 100 μM ppGpp (Fig. 5a). When added at concentrations up to 5 mM, Relacin had a mild inhibitory effect, regardless of the presence and absence of DksA and ppGpp. Both DR-4250...
and DR-M014 had a very different effect on RNAP (Fig. 5b,c). In the absence of DksA, irrespective of the presence or absence of ppGpp – both components were more potent inhibitors of RNAP then of RelA – and addition of DksA had a pronounced protective effect (compare Figs 4a,b and 5b,c). The intrinsically ppGpp-insensitive promoter rna144 displayed the same behavior (Supplementary Figure 4).

Discussion

In this project we have screened a targeted nucleotide library – a total of 69 compounds – aiming to identify a potent and specific inhibitor of RSH enzymes capable of abrogation of (p)ppGpp production in bacterial culture. While none of the compounds fulfilled this aim, the screen has yielded several potentially useful molecular tools for biochemical and structural work, as well as highlighted the role of the transcription factor DksA in RNAP fidelity. DksA binds to the secondary channel via which nucleotides enter the catalytic center of the RNAP46 and counteracts the misincorporation events48. The higher fidelity of RNAP:DksA – and, therefore, better discrimination against nucleotide compounds that can not serve as substrates – is likely to be responsible for the protective effect of DksA against DR-4250 and DR-M014 (Supplementary Figure 5). A lack of cellular uptake is a likely explanation.

Recent structures of *E. coli* RelA complexed with ‘starved’ ribosomal complexes are instrumental to our understanding of the protein’s mechanism on the molecular level42,52. These cryo-electron microscopy (cryo-EM) reconstructions are, however, incomplete: the highly mobile N-terminal catalytic domain is unresolved and that part of the structural model was based on earlier crystal structure of truncated Rel enzyme from *Streptococcus dysgalactiae* subsp. *equisimilis*.54. The incompleteness of the cryo-EM structure compromises its predictive power for structure-based design of selective RelA inhibitors. ppGpp-analogues were shown to promote RelA association with the 70S ribosome52; we see similar effects for DR-M014 and DR-4250 (Fig. 5). Therefore, this kind of compounds could assist the generation of better-resolved cryo-EM structures by both stabilizing RelA structure and promoting its binding to starved ribosomal complexes. However, one should be cautious when interpreting the structural data generated using ppGpp mimics. As we show, when interacting with *E. coli* RelA, photoreactive ppGpp analogue 6-thio-ppGpp behaves radically differently from ppGpp: the base modification converts ppGpp into a potent inhibitor of RelA (Fig. 2c). 6-thio-ppGpp is an exceedingly useful molecular tool that allows for biochemical and structural work, as well as highlighted the role of the transcription factor DksA in RNAP activity (rrnB P1)1.0

Relacn, mM	DR-4250 (µM)	DR-M014 (µM)
0	0	0
0.025	0.0	0
0.05	0.0	0
0.15	0.0	0
0.4	0.0	0
0.6	0.0	0

Figure 5. Inhibition of multiple round in vitro transcription reaction by Relacn (a), DR-4250 (b) and DR-M014 (c). Effect of inhibitors on rrnB P1 (–66 to +50) promoter transcription by RNAP. Graphs depicting inhibitor (0, 0.025, 0.05, 0.15, 0.4 and 0.6 mM) titrations performed at 30°C in T-buffer with 0.5 nM template (σ70-rrnB P1 promoter (pRLG6214)) and 5 nM σ70-RNAP, in presence or absence of 100µM ppGpp and/or 2µM DksA. Error bars represent standard deviations of linear regression estimates, each experiment was performed at least three times.
nucleotide is naturally produced by a divergent SAS RSH³⁵ from Streptomyces morookaensis³⁶. Since ppApp does not have a pronounced inhibitory effect on either transcription or translation in E. coli reconstituted systems³⁷, it has a potential as a starting point for the development of a specific RSH inhibitor.

Methods

Detailed description of experimental procedures can be found in *Supplementary Text*. Biochemical assays utilize *in vitro* translation³⁸ and stringent response³⁹ systems from E. coli purified components. Experiments were performed in HEPES-Polymin⁴⁰ buffer with either 5 (for enzymatically assembled initiation complexes) or 15 mM (for vacant 70S, as well as non-enzymatically assembled programmed ribosomes) Mg²⁺. Expression and purification of E. faecalis RelQ was performed as per Gaca (2015) and colleagues⁴¹. GTase and ppGpp synthesis were followed using TLC separation and radiolabeling of 3H-labelled nucleotides⁴². Multiple round *in vitro* transcription assays were performed as per Bernardo *et al.*⁴³ with minor modifications. Inhibition efficiency (IC₅₀) was calculated using 4-parameter logistic model (Hill equation) as per Sebaugh⁴⁰.

References

1. Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T. & Gerdes, K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. *Nat Rev Microbiol* 13, 298–309 (2015).
2. Liu, K., Bittner, A. N. & Wang, J. D. Diversity in (p)ppGpp metabolism and effectors. *Curr Opin Microbiol* 24, 72–79 (2015).
3. Atkinson, G. C., Tenson, T. & Hauryliuk, V. The RelA/Spot homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. *PLoS One* 6, e23479 (2011).
4. Hogg, T., Mechold, U., Malke, H., Cashel, M. & Hilgenfeld, R. Conformational antagonism between opposing active sites in a bifunctional RelA/Spot homolog modules (pppGpp metabolism during the stringent response. *Cell* 117, 57–68 (2004).
5. Toulokhonov, I. I., Shulgina, I. & Hernandez, V. J. Binding of the transcription effector ppGpp to *Escherichia coli* RNA polymerase is allosteric, modular, and occurs near the N terminus of the beta'-subunit. *J Biol Chem* 276, 1239–5 (2001).
6. Ross, W., Vrentas, C. E., Sanchez-Vazquez, P., Gaal, T. & Gourse, R. L. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. *Mol Cell* 50, 420–9 (2013).
7. Mechold, U., Potrykus, K., Murphy, H., Murakami, K. S. & Cashel, M. Differential regulation by ppGpp versus pppGpp in *Escherichia coli*. *Nucleic Acids Res* 41, 6175–89 (2013).
8. Bugliano, J., Shen, V., Hakimian, P. & Lima, C. D. Structural and biochemical analysis of the Ogg GTp binding protein. *Structure* 10, 1581–92 (2002).
9. Mitkevich, V. A. et al. Thermodynamic characterization of ppGpp binding to EF-G or IF2 and of initiator tRNA binding to free IF2 in the presence of GDP, GTP, or ppGpp. *J Mol Biol* 402, 838–46 (2010).
10. Milon, P. et al. The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. *Proc Natl Acad Sci USA* 103, 13962–7 (2006).
11. Rymer, R. U. et al. Binding mechanism of metalNTP substrates and stringent-response alarmones to bacterial DnaG-type primases. *Structure* 20, 1478–89 (2012).
12. Maciag, M., Kochanowska, M., Lyzen, R., Wegrzyn, G. & Szalewska-Palasz, A. ppGpp inhibits the activity of *Escherichia coli* DnaG primase. *Plasmid* 65, 61–7 (2010).
13. Liu, K. et al. Molecular mechanism and evolution of guanylate kinase regulation by (p)pppGpp. *Mol Cell* 57, 735–49 (2015).
14. Gallant, J., Irr, J. & Cashel, M. The mechanism of amino acid control of guanylate and adenylate biosynthesis. *J Biol Chem* 246, 5812–6 (1971).
15. Shp, V. et al. Positive allosteric feedback regulation of the stringent response enzyme RelA by its product. *EMBO Rep* 13, 835–9 (2012).
16. Dalebroux, Z. D., Svensson, S. L., Gaynor, E. C. & Swanson, M. S. ppGpp conjugates bacterial virulence. *Microbiol Mol Biol Rev* 74, 171–99 (2010).
17. Haseltine, W. A. & Block, R. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. *Proc Natl Acad Sci USA* 70, 1564–8 (1973).
18. Maisonneuve, E., Castro-Camargo, M. & Gerdes, K. (p)pppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. *Cell* 154, 1140–50 (2013).
19. de la Fuente-Nunez, C., C. et al. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. *Chem Biol* 22, 196–205 (2015).
20. de la Fuente-Nunez, C., Reffuveille, F., Haney, E. F., Straus, S. K. & Hancock, R. E. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. *PLoS Pathog* 10, e1004152 (2014).
21. Mansour, S. C., de la Fuente-Nunez, C. & Hancock, R. E. Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. *J Pept Sci* 21, 323–9 (2015).
22. Andersen, L., Tenson, T. & Hauryliuk, V. Cationic bactericidal peptide 1018 does not specitcally target the stringent response alarmone (p)pppGpp. *Sci Rep* 6, 36549 (2016).
23. Andersen, L. et al. Auxotrophy-based High Throughput Screening assay for the identification of *Bacillus subtilis* stringent response inhibitors. *Sci Rep* 6, 35824 (2016).
24. Wexselblatt, E., Kaspy, I., Glaser, G., Katzhendler, J. & Yavin, E. Design, synthesis and structure-activity relationship of novel Relacin analogs as inhibitors of Rel proteins. *Eur J Med Chem* 70, 497–503 (2014).
25. Wexselblatt, E. et al. Relacin, a novel antibacterial agent targeting the Stringent Response. *PLoS Pathog* 8, e1002925 (2012).
26. Wexselblatt, E. et al. ppGpp analogues inhibit synthetase activity of Rel proteins from Gram-negative and Gram-positive bacteria. *Bioorg Med Chem* 18, 4485–97 (2010).
27. O'Shea, R. & Moser, H. E. Physicochemical properties of antibacterial compounds: implications for drug discovery. *J Med Chem* 51, 2871–8 (2008).
28. Steichen, W. & Bange, G. The magic dance of the alarmones (p)pppGpp. *Mol Microbiol* 101, 531–44 (2016).
29. Ross, W. et al. ppGpp Binding to a Site at the RNA-PKS Interface Accounts for Its Dramatic Effects on Transcription Initiation during the Stringent Response. *Mol Cell* 62, 811–2 (2016).
30. Iyer, R. P. Nucleobase protection of deoxyribo- and ribonucleosides. *Curr Protein Nucleic Acid Chem* Chapter 2, Unit 2.1, 1–17 (2001).
31. Gaca, A. O. et al. From (p)pppGpp to (pp)pGpp: Characterization of Regulatory Effects of ppGpp Synthesized by the Small Alarmone Synthetase of *Enterococcus faecalis*. *J Bacteriol* 197, 2908–19 (2015).
32. De Clercq, E. The clinical potential of the acyclic (and cyclic) nucleoside phosphonates: the magic of the phosphonate bond. *Biochem Pharmacol* 82, 99–109 (2011).
33. Kroug, D. T. et al. Inhibition of hypoxanthine-guanine phosphoribosyltransferase by acyclic nucleoside phosphonates: a new class of antimalarial therapeutics. *J Med Chem* 52, 4391–9 (2009).
34. Kovackova, S., Dracinsky, M. & Rejman, D. The synthesis of piperidine nucleoside analogs-a comparison of several methods to access the introduction of nucleobases. *Tetrahedron* 67, 1485–1500 (2011).
Molecular mutagenesis of ppGpp: turning a RelA activator into an inhibitor.

How to cite this article: Beljantseva, J. et al. Molecular mutagenesis of ppGpp: turning a RelA activator into an inhibitor. Sci. Rep. 7, 41839; doi: 10.1038/srep41839 (2017).

Acknowledgements
We are grateful to Liis Andresen for setting up the B. subtilis growth assays. This work was supported by the funds from European Regional Development Fund through the Centre of Excellence in Molecular Cell Engineering (VH and TT), Estonian Research Council grants (PUT37 to VH, IUT2–22 to TT); Umeå University, Swedish Research council (2013–4680 to VH and 2011–4791 to VS), Ragnar Söderberg and Kempe foundations (VH); Czech Science Foundation grant number 15-11711S (DR). Collaboration between VH, YT and DR labs was supported by grant 202100-2874 from the Swedish foundation for international cooperation in research and higher education (STINT).

Author Contributions
V.H. and D.R. conceived the study. V.H. coordinated the study, and drafted the manuscript with input from D.R., P.K., J.B., S.S. and T.T., V.H., J.B., VS. and P.K. designed experiments and analyzed the data. D.R. and M.E. performed organic synthesis. R.P. characterized intermediates and final compounds by means of NMR techniques, and D.R. and M.E. performed analytical and preparative HPLC. J.B., P.K. and S.J. performed biochemical experiments. V.V. performed bacterial growth assays. T.T., Y.T. and V.S. provided materials. All authors have read and approved the manuscript as submitted.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

35. Rejman, D., Pohl, R. & Dracinsky, M. The Synthesis and Conformation of Dihydroxyperipendul Derivatives of Nucleobases as Novel Iminosugar Nucleoside Analogs. European Journal of Organic Chemistry. 11, 2172–2187 (2011).
36. Pohl, R. et al. Synthesis, conformational studies, and biological properties of phosphonomethoxyethyl derivatives of nucleobases with a locked conformation via a pyrrolidine ring. Org Biomol Chem 13, 4693–705 (2015).
37. Rejman, D. et al. N-Phosphonocarboxylpyrrolidine Derivatives of Guanine: A New Class of Bio-Substrate Inhibitors of Human Purine Nucleoside Phosphorylase. Journal of Medicinal Chemistry 55, 1612–1621 (2012).
38. Slavetinska, L. P., Rejman, D. & Pohl, R. Pyrrolidine nucleoside analogs with a tunable conformation. Beilstein Journal of Organic Chemistry 10, 1967–1980 (2014).
39. Crumplacker, C. S. Mechanism of action of fosfocarnet against viral polymerases. Am J Med 92, 35–75 (1992).
40. Corrigan, R. M., Bowman, L., Willis, A. R., Kaever, V. & Grundling, A. Cross-talk between two-nucleotide-signaling pathways in Staphylococcus aureus. J Biol Chem 290, 5826–39 (2015).
41. An, S. Q. et al. A cyclic GMP-dependent signalling pathway regulates bacterial phytopathogenesis. EMBO J 32, 2430–8 (2013).
42. Arenz, S. et al. The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis. Nucleic Acids Res 44, 6471–81 (2016).
43. Agirrezabala, X. et al. The ribosome triggers the stringent response by RelA via a highly distorted tRNA. EMBO Rep 14, 811–6 (2013).
44. Paul, B. J. et al. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118, 311–22 (2004).
45. Haugen, S. P., Ross, W. & Gourse, R. L. Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat Rev Microbiol 6, 507–19 (2008).
46. Parshin, S. et al. DksA regulates RNA polymerase in Escherichia coli through a network of interactions in the secondary channel that includes Sequence Insertion 1. Proc Natl Acad Sci USA 112, E6862–71 (2015).
47. Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3A resolution. Cell 98, 811–24 (1999).
48. Roghanian, M., Zenkin, N. & Yuzenkova, Y. Bacterial global regulators DksA/ppGpp increase fidelity of transcription. Nucleic Acids Res 43, 1529–36 (2015).
49. Bernardo, L. M., Johansson, L. U., Solera, D., Skarfstad, E. & Shingles, V. The guanosine tetraphosphate (ppGpp) alarmone, DksA and promoter affinity for RNA polymerase in regulation of sigma-dependent transcription. Mol Microbiol 60, 749–64 (2006).
50. Lambert, P. A. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J Appl Microbiol 92, 465–545 (2002).
51. Kriel, A. et al. GTP dyregulation in Bacillus subtilis cells lacking (p)pGpp results in phenotypic amino acid auxotrophy and failure to adapt to nutrient downshift and regulate biosynthesis genes. J Bacteriol 196, 189–201 (2014).
52. Srivatsan, A. et al. High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet 4, e1000139 (2008).
53. Nanamiya, H. et al. Identification and functional analysis of novel (p)pGpp synthetase genes in Bacillus subtilis. Mol Microbiol 67, 291–304 (2008).
54. Cutting, S. M. & Horn, P. B. V. In Molecular biological methods for Bacillus (eds Hardwood, C. R. & Cutting, S. M.) (Cutting, New York, 1990).
55. Brown, A., Fernandez, I. S., Gordiyenko, Y. & Ramakrishnan, V. Ribosome-dependent activation of stringent control. Nature 534, 277–80 (2016).
56. Oki, T., Yoshimoto, A., Sato, S. & Takamatsu, A. Purine nucleotide pyrophosphotransferase from Streptomyces morookaensis, capable of synthesizing ppApp and pppGpp. Biochem Biophys Acta 410, 262–72 (1975).
57. Mukai, J. & Koguchi, S. Effects of purine and pyrimidine nucleoside 5′-diphosphates on the Escherichia coli cell-free transcription and translation reaction. FEBS Lett 141, 225–31 (1982).
58. Antoun, A., Pavlov, M. Y., Tenson, T. & Ehrenberg, M. M. Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering. Biol Proced Online 6, 35–54 (2004).
59. Mechold, U., Murphy, H., Brown, L. & Cashel, M. Intramolecular regulation of the opposing (p)pGpp catalytic activities of Rel(Soe), the Rel/Spo enzyme from Streptococcus equisimilis. J Bacteriol 184, 2878–88 (2002).
60. Seabaugh, J. L. Guidelines for accurate EC50/IC50 estimation. Pharm Stat 10, 128–34 (2011).
