Quantum valence criticality in a correlated metal

Kentarou Kuga,1,2* Yusuke Matsumoto,1*† Mario Okawa,1 Shintaro Suzuki,1 Takahiro Tomita,1 Keita Sone,1 Yasuyuki Shimura,11 Yoshihiro Sakakibara,1 Daisuke Nishio-Hamane,1 Yoshitomo Karaki,1,3 Yasutaka Takata,2 Masaharu Matsunami,2,4 Ritsuko Eguchi,5 Munetaka Taguchi,2 Ashish Chainani,2,6 Shik Shin,1,2 Kenji Tamasaku,2 Yoshinori Nishino,2,7 Makina Yabashi,2 Tetsuya Ishikawa,2 Satoru Nakatsuji1,8§

INTRODUCTION

The supercritical fluid state near the liquid-gas critical point has been a major subject in condensed matter physics for its technological relevance and for its scientific significance (1, 2). One of the important goals is to bring down the critical temperature and pressure, which are normally much higher than ambient conditions. By contrast, in the electronic versions of these critical points, there are some cases where the temperature scale may be reduced significantly down to near-zero temperatures so that one may observe quantum critical phenomena in the corresponding "supercritical" states. Strange metal behaviors have been seen in correlated electron systems as a result of proximity to a quantum critical end point of a first-order transition such as a metamagnetic transition (3–5). Another candidate for the density instability that may theoretically drive novel quantum criticality (QC) is valence transition (1, 2). For the study of QC, many prototypical materials have been found among heavy-fermion 4f intermetallic compounds, because fine-tuning of characteristic energy scales is possible using high-purity crystals (20, 21).

The supercritical fluid state near the liquid-gas critical point has been a major subject in condensed matter physics for its technological relevance and for its scientific significance (1, 2). One of the important goals is to bring down the critical temperature and pressure, which are normally much higher than ambient conditions. By contrast, in the electronic versions of these critical points, there are some cases where the temperature scale may be reduced significantly down to near-zero temperatures so that one may observe quantum critical phenomena in the corresponding “supercritical” states. Strange metal behaviors have been seen in correlated electron systems as a result of proximity to a quantum critical end point of a first-order transition such as a metamagnetic transition (3–5). Another candidate for the density instability that may theoretically drive novel quantum criticality (QC) is valence transition (1, 2). For the study of QC, many prototypical materials have been found among heavy-fermion 4f intermetallic compounds, because fine-tuning of characteristic energy scales is possible using high-purity crystals (20, 21).

In this class of materials, QC has been regarded to arise from a competition between local moment magnetism and conduction electron screening of the local moments (the Kondo effect), as originally discussed by Doniach (22). Thus, the studies have focused on the systems with an almost integral valence that stabilizes the local moments.

Breaking this pattern, β-YbAlB4 is the first material that exhibits pronounced QC despite its strong mixed valency (23–25). An ultrapure single crystal of the material exhibits singular behavior without tuning, namely, under zero field and ambient pressure, such as a divergent increase of the susceptibility ~T−1/2 and anomalous T3/2 dependence of the resistivity, both of which are extremely sensitive to external field B. T/B scaling of the magnetization observed over four decades of T/B pinpoints the critical field to 0 ± 0.1 mT and reveals an unconventional form of the QC. Moreover, a recent pressure study found that this QC is separated from an antiferromagnetic (AF) phase that appears under pressure and extends up to $P_c \sim 0.4$ GPa, indicating the existence of a strange metal phase (26).

β-YbAlB4 has a locally isostructural polymorph α-YbAlB4 (27). At high temperatures, the two phases share nearly the same physical properties (24, 28). For example, both have mixed valence less than 2.8+ (25) and coherence temperatures of ~200 to 250 K (23, 28). Moreover, despite the mixed valency, both show an Yb ion local moment behavior expected for a Kondo lattice (24, 28). In the ground state, however, they have significant differences in contrast to the QC behavior in β-YbAlB4. α-YbAlB4 forms a heavy FL at low temperatures with a specific heat coefficient of $\gamma \sim 130$ mJ/mol K2. On the other hand, a recent study revealed that several percentages of Fe substitution at the Al site induce Yb antiferromagnetism (29). Here, we show on the basis of our comprehensive study that the antiferromagnetism appears through a first-order phase transition across a very small amount of Fe substitution of xFe = 1.4% in α-YbAl1−xFeB4. We found a sharp valence crossover at the critical concentration xFe accompanied by unconventional QC, which cannot be explained by the standard theory based on spin-density wave (SDW) fluctuations (30, 31) but, instead, can be accounted for by the valence QC.

RESULTS

We first present a phase diagram established on the basis of our magnetothermal and transport measurements with a contour plot of the

1Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan.
2RIKEN SPring-8 Center, Sayo-gun, Hyogo 679-5148, Japan.
3Faculty of Education, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
4Ultraviolet Synchrotron Radiation Facility, Institute for Molecular Science and The Graduate University for Advanced Studies, Okazaki 444-8585, Japan.
5Research Laboratory for Surface Science, Okayama University, Okayama 700-8530, Japan.
6National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.
7Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0021, Japan.
8Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan.
*These authors contributed equally to this work.
†Present address: Max-Planck Institute for Solid State Research, Stuttgart 70569, Germany.
‡Present address: Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan.
§Corresponding author. Email: satoru@issp.u-tokyo.ac.jp

*These authors contributed equally to this work.
†Present address: Max-Planck Institute for Solid State Research, Stuttgart 70569, Germany.
‡Present address: Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan.
§Corresponding author. Email: satoru@issp.u-tokyo.ac.jp

Kuga et al., Sci. Adv. 2018;4:eaao3547 23 February 2018
resistivity exponent \(\alpha \) defined by \(\rho = \rho_0 + A' T^\alpha \) in Fig. 1A. Upon doping, antiferromagnetism due to Yb 4f moments appears rather suddenly at \(x = 1.5\% \) with the Néel temperature \(T_N \) of 1.2 K, whereas it is suppressed below 25 mK at \(x_c = 1.4\% \). The magnetic susceptibility shows history dependence between the zero-field-cooled (ZFC) and field-cooled (FC) sequences below \(T_N \) due to the canting of the magnetic moments with the spontaneous moment along the \(c \) axis (Fig. 2A) (29). This AF ordering also exhibits a clear anomaly in the temperature dependence of the specific heat (Fig. 2B). Note that Fe itself does not carry any magnetic moment, as evident from the small diamagnetism found in the Lu analog, \(\alpha \)-LuAl\(_{1-x}\)Fe\(_{x}\)B\(_4\) (Fig. 2A and fig. S3). Pronounced non-FL (NFL) behavior with \(\alpha \sim 1.6 \) was observed around \(x_c = 1.4\% \) (Fig. 1A). Other properties of the NFL will be discussed later in detail.

Strikingly, a sharp valence crossover was observed at \(x_c \) by hard x-ray photoemission spectroscopy (HAXPES) at 20 K, where the valence exhibits a sudden increase by 0.03 (corresponding to a 3% increase of 4f hole density) (Fig. 1B). Typical Yb 3d\(_{5/2}\) core level spectra for \(x = 1.3\% \) and \(x = 4.2\% \) are shown in Fig. 1C (top), which exhibits a clear separation between the peaks associated with Yb\(^{3+}\) and Yb\(^{5+}\) states. Here, the valence is estimated using the ratio of the areas for these two peaks (see the Supplementary Materials for details). As shown in Fig. 1C (bottom), the difference spectrum obtained by subtracting the \(1.3\% \) spectrum from the 4.2% spectrum shows that the Yb\(^{3+}\) (Yb\(^{5+}\)) component grows (diminishes) by increasing \(x \). Correspondingly, the effective moment \(\mu_{\text{eff}} \) estimated from the low \(T \) susceptibility below 15 K shows a small increase across \(x_c \) (fig. S4). Note that the observed 3% change in 4f hole concentration is sizable and amounts to more than \(-20\%\) of those found at the first-order valence transition (FOVT) in the prototypical systems such as Ce and YbInCu\(_4\) [10 to 15% of 4f electrons/holes (32–34)].

This steep and continuous valence change may arise either from a sharp crossover or from a phase separation due to a weak first-order transition at \(x_c \). In the latter case, volume fractions of the phase-separated regions with distinct unit cell parameters may be expected to develop across \(x_c \), which is unlikely as we discuss here. First of all, our powder x-ray diffraction study at 17 K finds no broadening of x-ray diffraction spectra but, instead, a continuous volume contraction corresponding to the valence change (figs. S5A and S6). Low-temperature transmission electron microscopy detects no symmetry change in the lattice structure across \(x_c \) (figs. S7 and S8). In addition, the unit cell volume is found to be proportional to the valence over the entire range including the critical region if we subtract the lattice part due to chemical doping (fig. S5B). All these observations indicate that there is no phase separation. This should also be the case at temperatures far below 17 K because no signature of a magnetic order induced by phase separation has been detected down to the lowest temperature of our measurements, that is, 25 mK. The associated unit cell volume change was found even at elevated temperatures of 175 and 273 K across \(x_c \) (Fig. 1B). This shows that the energy scale of the valence crossover is much higher than the scale for the antiferromagnetism, indicating the dominant role of the valence fluctuations rather than spin fluctuations on the QC observed at \(x_c \).

If the valence fluctuations drive the QC, then the associated schematic phase diagram should look like the one given in Fig. 1D (8, 14, 35). Namely, the FOVT is suppressed down to zero or even negative temperature in the phase diagram. At finite temperatures, the system is controlled by a "mixed-valent regime" (MV) to a "Kondo regime" through a valence crossover surface by tuning either chemical pressure \(P \) or cell volume (\(-\Delta V > 0 \)). This is due to the fact that the radius is smaller for the magnetic Yb\(^{3+}\) ion than for the nonmagnetic Yb\(^{2+}\). When the system moves into the Kondo regime, a magnetic order may appear as a first-order transition as a function of \(P \). At high temperatures, the magnetic degree of freedom effectively decreases the entropic free energy, thus stabilizing the Kondo regime rather than the MV, which defines the slope of the valence crossover surface.

To further examine the origin of the QC, we discuss the NFL behaviors found at \(x_c \) in detail. Figure 2 represents the magnetic susceptibility \(M/B = \chi \) and the 4f electronic contribution to the specific heat divided by \(T(C_{\text{4f}}/T) \), for samples with different \(x \), respectively. Here, \(C_{\text{4f}} \) is obtained after subtracting the nonmagnetic contribution and nuclear Schottky contribution (see the Supplementary Materials for details). As seen in the figures, both \(\chi \) and \(C_{\text{4f}}/T \) are most divergent at \(x_c = 1.4\% \). The \(T \) dependence of \(C_{\text{4f}}/T \) shows a logarithmic increase on cooling. Note that there is a possible crossover from the logarithmic to a power law behavior with a fractional exponent \(\beta \sim 0.5 \), namely,

Fig. 1. Phase diagram of the emergent electronic phases of \(\alpha \)-YbAlB\(_4\) with Fe doping. (A) Phase diagram of temperature (vertical axis) versus Fe concentration \(x \) (horizontal axis) for \(\alpha \)-YbAl\(_{1-x}\)Fe\(_x\)B\(_4\) with the contour plot map of the power law exponent \(a = \partial \ln(\rho_0(T) - \rho_0(0))/\partial \ln T \) of the \(a \) axis resistivity. \(T_N \) denotes the AF Néel point determined by magnetization (closed circles), specific heat (closed squares), and resistivity (closed triangles). The broken vertical line indicates the critical concentration \(x_c = 1.4\% \) for the valence crossover and the first-order AF transition. (B) Doping dependence of the Yb valence estimated from hard x-ray photoemission spectroscopy (HAXPES) at 20 K (left axis) and doping dependence of the unit cell volume measured by powder x-ray diffraction at 273, 175, and 17 K (right axis). (C) HAXPES spectra of Yb 3d\(_{5/2}\) core level in YbAl\(_{1-x}\)Fe\(_x\)B\(_4\) with \(x = 1.3 \) and 4.2% (top) and the difference of these spectra from \(x = 1.3 \) to 4.2% (bottom). (D) Schematic phase diagram for the valence QC mechanism, which is shown as a function of temperature \(T \), magnetic field \(B \), and the chemical pressure \(P \) for an Yb-based system (8). Valence crossover (blue) and the AF order (green) are both shown. Valence crossover (magenta) and first-order valence transition (FOVT) (red) surface are virtually drawn below 0 K. Valence crossover surface (blue) evolves into a phase boundary due to a virtual FOVT in the negative temperature. The critical line at the border between FOVT and the crossover surface touches 0 K, forming a quantum critical point (QCP), a.u. arbitrary units.
C_{\text{qf}}/T \sim T^{-\beta} \text{ below around 100 mK as diverges from the Maxwell relation and the } T/B \text{ scaling found for the magnetization as shown below. However, the subtraction of the large nuclear contribution makes it hard to determine whether such a crossover exists (see the Supplementary Materials for details). Notably, in either case, our results indicate the divergence of quasi-particle mass at } x_c.

Significantly, the field evolution of M/B in weak fields below 50 mT follows the } T/B \text{ scaling, the same as that found in } \beta \text{-YbAlB}_4 \text{ (24). As shown in Fig. 3A, the systematic field dependence of M/B can be collapsed onto a single scaling function } \phi(T/B) \text{ at } T < 2 \text{ K}; \text{ that is}

\begin{equation}
-\frac{dM}{dT} = B^{\frac{-2}{\alpha}} \phi \left(\frac{T}{B} \right)
\end{equation}

with } \alpha = 3/2. \text{ This indicates that } \chi(T) \text{ diverges at } B \rightarrow 0 \text{ with a } T^{-1/2} \text{ dependence and furthermore that the critical field } B_c \text{ associated with the QC is close to zero. Note that if } B_c \text{ is finite, then the scaling should be with respect to } T(B - B_c) \text{ rather than } T/B. \text{ A systematic change from a zero-field NFL to a field-induced FL behavior at } x_c \text{ was also confirmed by the } T \text{ dependence of the resistivity. The contour plot of the power law exponent } \alpha \text{ indicates an anomalous power law dependence at zero-field (} T \text{ linear at } 5 \text{ K } > T > 1 \text{ K and } T^{1.8} \text{ well below 1 K), which crosses to the FL with } \alpha \sim 2 \text{ in a magnetic field (Fig. 3B, see also fig. S10, A and C).}

A sudden emergence of } T_N > 1.2 \text{ K with only a very small change in Fe concentration from } x_c = 1.4% \text{ to } x = 1.5% \text{ indicates the first-order character of the AF transition, which suggests the subsidiary role of the magnetism and associated spin fluctuations for the QC found at } x_c. \text{ To further demonstrate this, in the following, we compare the zero-field QC at } x_c \text{ with a field-induced AF QC for the samples at } x = 4.2%. \text{ In general, application of the magnetic field stabilizes the Kondo regime with higher valence. As shown schematically in Fig. 1D, the valence crossover surface will move to the smaller } x, \text{ that is, the smaller } P \text{ under magnetic field. Therefore, for the sample well inside the AF phase at zero-field, the field-induced AF QCP will be separated from the valence instability. This allows us to study the QC associated solely with AF using the sample at } x = 4.2%.

DISCUSSION

Theoretically, quantum valence criticality has been studied by various authors (6–9). In particular, the mode-coupling theory predicts the exact behaviors experimentally observed under zero field at } x_c, \text{ that is, } T^{-1/2} \text{ divergence of the magnetic susceptibility (and also } T/B \text{ scaling) and the crossover from } T \text{ linear to } T^{1/2} \text{ dependence of the resistivity as } T \rightarrow 0 \text{ (8, 36). These NFL properties arise from the divergence of the electronic effective mass and the local character of the valence fluctuations (8). In addition, the concomitant magnetic instability at a valence crossover is theoretically expected to result in a first-order magnetic transition, consistent with our experimental observations (35). On the other hand, significant similarity to the QC in pure } \beta \text{-YbAlB}_4 \text{ indicates...}
an alternative possibility, where a topological phase transition of the Fermi surface occurs in a topologically nontrivial vortex metal, showing divergence in χ with $T^{-1/2}$ dependence and T/B scaling (37). A particularly interesting possibility is that a topological vortex metal could provide a natural way for valence fluctuations to become quantum critical as the f level reaches at the Fermi energy. Note that both scenarios require a fine-tuning of the system to the QCP at $T = 0$ to satisfy the T/B scaling. Another interesting possibility would be the appearance of a second-order transition forming a QCP when the FOVT hits the absolute zero from the negative temperature side. Finally, our observation of quantum valence criticality provides a specific example of how quantum fluctuations may affect a supercritical fluid state by suppressing the critical temperature to near-zero temperatures.

MATERIALS AND METHODS

Single crystals of α-YbAl$_{1-x}$Fe$_x$B$_4$ ($x \leq 4.2\%$) were grown by the aluminurn self-flux method (27, 29). The Fe concentration was estimated by inductively coupled plasma spectroscopy with resolution of 0.01%. Powder x-ray diffraction measurements were carried out from room temperature down to 16 K using a commercial x-ray diffraction system (RINT2100, Rigaku) in the angle range between 10$^\circ$ ≤ 2θ ≤ 90$^\circ$. α-YbAl$_{1-x}$Fe$_x$B$_4$ and a silicon standard (standard reference material 640c, National Institute of Standards and Technology) were measured simultaneously to eliminate the measurement error due to the optical configuration of the x-ray system. We analyzed diffraction patterns to determine the crystal structure and lattice constant using the Rietveld analysis program PDFX (Rigaku) and found no impurity phase or structural transition from the pure system. Electron diffraction patterns for $x = 0$ and $x = 4.2\%$ at 300 and 13 K were obtained using a transmission electron microscope (JEM-2010F, JEOL Ltd.) operating at a voltage of 200 kV.

We measured the electrical resistivity, DC magnetization, and specific heat of α-YbAl$_{1-x}$Fe$_x$B$_4$. The electrical resistivity was measured by the standard four-probe method using a variable temperature insert above 2 K and by using a dilution refrigerator above 50 mK. The magnetization M above 2 K was measured using a commercial SQUID magnetometer, Quantum Design Magnetic Property Measurement System in the field ranging from 0.02 to 1 T. At low temperatures, the magnetization below 0.05 T was measured by a magnetometer made using DC-SQUID probes (Tristan Technologies) in conjunction with a 3He-4He dilution refrigerator down to 25 mK. Earth’s magnetic field was eliminated by using a Nb superconducting shield covered with a μ-metal tube. Above 3 T, the magnetization was measured using the Faraday method in a dilution refrigerator down to 80 mK (38). The specific heat was measured by a thermal relaxation technique. The Quantum Design Physical Property Measurement System was used for the measurements above 0.4 K. For measurements at lower temperatures down to 30 mK, a home-made specific heat cell installed in a 3He-4He dilution refrigerator was used.

HXPES experiments were performed at the RIKEN Coherent X-ray Optics Beamline (BL29XU) in the SPring-8 synchrotron facility (39, 40). Photoelectrons excited by a 7.94-keV x-ray were analyzed using a Scienta R4000-10kV hemispherical electron spectrometer. The total energy resolution was set to $\Delta E = 250$ meV. Clean crystal surfaces were obtained by fracturing in situ under the base pressure of $\sim 10^{-8}$ Pa at room temperature. All spectra were acquired at the sample temperature of 20 K. The Fermi level E_F was determined by measuring the Fermi edge of an evaporated Au film electrically contacted to the sample.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/4/2/eaao3547/DC1

Supplementary text

fig. S1. Yb 3$^\text{d}$ and Al 1$^\text{s}$ core level spectrum of α-YbAl$_x$B$_4$.
fig. S2. Yb 3$^\text{d}$ core level fitting for HAXPES data.
fig. S3. Temperature dependence of the magnetic susceptibility obtained under a field of 0.1 T along the c axis for $x = 0, 1.0, 1.4,$ and 1.7% and along the ab plane for $x = 0$ and 4.2%.
fig. S4. Temperature dependence of the inverse magnetic susceptibility obtained under a field of 0.1 T along the c axis for $x = 0, 1.0, 1.4, 1.7,$ and 4.2%.
fig. S5. Fe density dependence of the lattice constant and its relation to the Yb valence change.
fig. S6. Normalized powder x-ray diffraction data at around 400 peak for α-YbAl$_{0.958}$Fe$_{0.042}$B$_4$ ($x = 0.5, 1.3, 1.4, 1.7,$ and 2.2%), where the intensity and the scattering angle 2θ are normalized by those values at the main peak.
fig. S7. Electron diffraction patterns of $x = 0$ for [001] direction at 300 and 14 K (top) and for [010] direction at 300 and 13 K (bottom).

Kuga et al., Sci. Adv. 2018; 4:eaao3547 23 February 2018
Strong valence fluctuations in the vicinity of the quantum critical point of the heavy fermion compound YbAlB$_4$. A critical nodal metal. Phys. Rev. Lett. 109, 176405 (2012).

T. Sakakibara, H. Mitamura, T. Tayama, H. Amitsuka, Faraday force magnetometer for high-sensitivity magnetization measurements at very low temperatures and high fields. Jpn. J. Appl. Phys. 33, 5067 (1994).

T. Ishikawa, K. Tamasaku, M. Yabashi, High-resolution x-ray monochromators. Nucl. Instrum. Methods Phys. Res. Sect. A 547, 42–49 (2005).

Y. Takata, M. Yabashi, K. Tamasaku, Y. Nishino, D. Misu, T. Ishikawa, E. Ikenna, K. Horiba, S. Shin, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, H. Nohira, T. Hattori, S. Södergren, B. Wannberg, K. Kobayashi, Development of hard x-ray photoelectron spectroscopy at BL29XU in Spring-8. Nucl. Instrum. Methods Phys. Res. Sect. A 545, 50–55 (2005).

S. Hübner, Photoelectron Spectroscopy (Springer, ed. 3, 2003).

R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, 1981).

S. Doniach, M. Šunjić, Many-electron singularity in x-ray photoemission and x-ray line spectra from metals. J. Phys. C 3, 285 (1970).

D. A. Shirley, High-resolution x-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709 (1972).

A. Proctor, P. M. A. Sherwood, Data analysis techniques in x-ray photoelectron spectroscopy. Anal. Chem. 54, 13–19 (1982).

M. Klein, A. Nuber, F. Reinert, J. Kroha, O. Stockert, H. v. Löhneysen, Signature of quantum criticality in photoemission spectroscopy. Phys. Rev. Lett. 101, 266404 (2008).

M. Klein, J. Kroha, H. v. Löhneysen, O. Stockert, F. Reinert, Echo of the quantum phase transition of CeCu$_6$–Au, in XPS: Breakdown of Kondo screening. Phys. Rev. B 79, 075111 (2009).

O. M. Dub, Y. B. Kuz’ma, M. I. David, Tb-Fe-B and Lu-Fe ternary systems. Poroshk. Metall. 26, 563–566 (1987).

Y. Q. Jia, Crystal radii and effective ionic radii of the rare earth ions. J. Solid State Chem. 95, 184–187 (1991).

Acknowledgments: We thank E. C. T. O’Farrell, N. Horie, S. Watanabe, and K. Ueda for support and useful discussions. Funding: This work was partially supported by Grants-in-Aid for Scientific Research (18H02209) and Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (no. R2604) from the Japanese Society for the Promotion of Science; by Grants-in-Aids for Scientific Research on Innovative Areas (15H05882, 15H05883, and 26103002) of the Ministry of Education, Culture, Sports, Science, and Technology of Japan; and by the Core Research for Evolutionary Science and Technology (JPMJCR1505), Japan Science and Technology Agency. The use of the facilities of the Materials Design and Characterization Laboratory at the Institute for Solid State Physics, The University of Tokyo, is acknowledged. HAXPES experiments were performed at BL29XU in Spring-8 with the approval of RIKEN (proposal nos. 20090041 and 20100057).

Author contributions: K.K. and Y.M. contributed equally to this project including sample preparation, thermodynamic and transport measurements, and data analysis/interpretation. M.O. conducted HAXPES measurements and contributed to data analysis and interpretation.
Y.T., M.M., R.E., A.C., S. Shin, K.T., Y.N., M.Y., and T.I. contributed to HAXPES measurements. S. Suzuki, K.S., and D.N.-H. contributed to structural analyses. Y.S., T.S., and Y.K. carried out low-temperature magnetization measurements. S.N. conceived the project and planned the research and contributed to crystal growth, characterization, and data interpretation. S.N., Y.M., and K.K. wrote the paper. All authors discussed the results and commented on the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Citation: K. Kuga, Y. Matsumoto, M. Okawa, S. Suzuki, T. Tomita, K. Sone, Y. Shimura, T. Sakakibara, D. Nishio-Hamane, Y. Karaki, Y. Takata, M. Matsunami, R. Eguchi, M. Taguchi, A. Chainani, S. Shin, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, S. Nakatsuji. Quantum valence criticality in a correlated metal. Sci. Adv. 4, eaao3547 (2018).

Submitted 11 July 2017
Accepted 19 January 2018
Published 23 February 2018
10.1126/sciadv.aao3547