Evolutionary History of *Rhus chinensis* (Anacardiaceae) From the Temperate and Subtropical Zones of China Based on cpDNA and Nuclear DNA Sequences and Ecological Niche Model

Yukang Liang1, **Yang Zhang**2, **Jun Wen**1,3, **Xu Su**4* and **Zhumei Ren**1*

1 School of Life Science, Shanxi University, Taiyuan, China, 2 Natural History Research Center, Shanghai Natural History Museum, Branch of Shanghai Science and Technology Museum, Shanghai, China, 3 Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States, 4 Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibetan Plateau in Qinghai Province, School of Life Science, Qinghai Normal University, Xining, China

To explore the origin and evolution of local flora and vegetation, we examined the evolutionary history of *Rhus chinensis*, which is widely distributed in China’s temperate and subtropical zones, by sequencing three maternally inherited chloroplast DNAs (cpDNA: \textit{trn}L-\textit{trn}F, \textit{psb}A-\textit{trn}H, and \textit{rbc}L) and the biparentally inherited nuclear DNA (nuDNA: \textit{LEAFY}) from 19 natural populations of *R. chinensis* as well as the ecological niche modeling. In all, 23 chloroplast haplotypes (M1–M23) and 15 nuclear alleles (N1–N15) were detected. The estimation of divergence time showed that the most recent common ancestor dated at 4.2 ± 2.5 million years ago (Mya) from cpDNA, and the initial divergence of genotypes occurred at 4.8 ± 3.6 Mya for the nuDNA. Meanwhile, the multimodality mismatch distribution curves and positive Tajima’s \(D\) values indicated that *R. chinensis* did not experience population expansion after the last glacial maximum. Besides, our study was also consistent with the hypothesis that most refugia in the temperate and subtropical zones of China were in situ during the glaciation.

Keywords: *Rhus chinensis*, evolutionary history, DNA sequences, China’s temperate and subtropical zone, ecological niche modeling

INTRODUCTION

The Quaternary climate oscillations occurred in the past ca. 2.58 million years ago (Mya) have resulted in several glacial and interglacial cycles in the Northern Hemisphere (Shackleton and Opdyke, 1973). These climatic alterations have left imprints in geographical distributions, population structures, and demographic histories of plant and animal species (Abbott et al., 2000; Avise, 2000; Hewitt, 2004, 2011; Qiu et al., 2011, 2013; Wen et al., 2014, 2016), which can be traced by analyses of genetic variations within and between extant populations (Abbott et al., 2000; Johansen and Latta, 2003; Hewitt, 2004). In Europe and North America, the fossil records of plant species and phyllogeographic analyses had indicated common patterns of geographical range shifts.
that plants retreated southwest and to lower elevations during glacial periods and while recolonized rapidly the northern areas and higher elevations during the interglacial and postglacial periods (Nason et al., 2002; Petit et al., 2003; Stewart et al., 2010; Sakaguchi et al., 2011; Segovia et al., 2012; Voss et al., 2012; Tzedakis et al., 2013; de Lafontaine et al., 2014). While in China, especially the Qinghai-Tibet Plateau (QTP) and adjacent regions, considerable research achievements have also been attained on inferring the Quaternary phylogeographic histories of plant species based on the approach of population genetics (e.g., Zhang et al., 2005, 2015; Meng et al., 2007; Chen K.M. et al., 2008; Yang et al., 2008; Wang et al., 2009; Oppenroth et al., 2010; Xu et al., 2010; Qiu et al., 2011; Zou et al., 2012; Wang G.N. et al., 2014; Wen et al., 2014; Liu Y.P. et al., 2015; Wan et al., 2016).

The temperate and subtropical region of China is a model area for studying plant species in response to past climate changes (Chen S.C. et al., 2012; Li X.H. et al., 2012; Qi et al., 2012; Zhao et al., 2013; Fu et al., 2014). Up to date, many phylogeographic studies have been used to elucidate the impacts of the uplifts of the QTP on the climate within the modern-day temperate and subtropical zones, or warm temperate zones in China (e.g., Liu J.Q. et al., 2014; Lu et al., 2016; QTP, Liu D. 2014; Y angtze River, Sun et al., 2013; Wang H. et al., 2015; Qinling Mountains, Liu J.Q. et al., 2014; Lu et al., 2016; QTP, Liu D. et al., 2015 and Liu Y.P. et al., 2015); i.e., 23.5◦N and 98.0◦-124.0◦E. These results showed that the QTP acted as a barrier against glaciation within the warm temperate zones of China and resulted in the arid climate for thousands of years within the Quaternary period, which has been widely accepted nowadays (Wang et al., 2013; Yu et al., 2013; Meng et al., 2014). Thus, the present warm temperate region probably served as a glacial refugia for plant species in the past time, and this hypothesis has been tested and advanced through phylogeographic studies (e.g., Yi et al., 2012; Liu et al., 2012; Qi et al., 2012; Wan et al., 2016). However, it is less well known whether population genetic diversification of plants within the warm temperate zone or within the glacial refugia is due to isolation on a heterogeneous landscape or adaptation and selection along ecological gradients (Su et al., 2015; Zhao et al., 2016). Therefore, more phylogeographic studies of additional plant species within the warm temperate refugial regions are necessary in order to detect their spatial geographic patterns and to assess the underlying causes.

Rhus chinensis belongs to the plant family Anacardiaceae and is a common deciduous tree that is endemic to the warm temperate zone of Asia. It widely occurs at the elevation of 170–2700 m above sea level in Shaanxi, Shanxi, Hebei, Sichuan, Hunnan, and Yunnan of China (Zheng and Min, 1980). Due to its commonality and widespread distribution within the warm temperate zone, *R. chinensis* is thus an ideal study case for phytogeography within this region. In this study, we used three cpDNA regions (*trnL-trnF*, *psbA-trnH*, and *rbcL*) and one nuDNA region (*LEAFY*) to examine (1) the genetic diversity and structure of *R. chinensis* populations in China and (2) how is the demographic history of *R. chinensis* during the Quaternary climate oscillations, and further to explore the origin and evolution of local flora and vegetation.

MATERIALS AND METHODS

Population Sampling

In total, leaf samples of 312 individuals were collected from 19 natural populations of *R. chinensis*, representing its whole geographic distribution within the warm temperate zone of China (see Figure 1 and Table 1). Eight to 20 individuals were collected for each population, and all individuals were at least 15 m apart. We obtained several voucher specimens for each population, which were deposited at the School of Life Sciences, Shanxi University, Taiyuan, Shanxi, China. The information of latitude, longitude, and altitude of each population were recorded using an Etrex GIS (Garmin, Taiwan, China).

The species from Anacardiaceae were used as outgroups. The cpDNA sequences of four species were downloaded from GenBank, *Rhus virens* (EF682861, KF664327, KF664558), *Rhus typhina* (AY640446, HQ427036, HQ590236), *Rhus glabra* (AY640440, KF664325, KX397919), and *Pistacia vera* (EF193139, KF664307, AJ235786). There are no nuclear sequences for the above four species in GenBank, so we used another two species *Mangifera indica* (GU338039) and *P. chinensis* (KC174710) as the outgroups in the nuDNA analysis.

DNA Sequencing

Total genomic DNAs from approximately 20 mg of silica gel-dried leaf materials were extracted using a Plant Genomic DNA kit (Tiangen Biotech, Beijing, China), and three cpDNA fragments (*trnL-trnF*, *psbA-trnH*, and *rbcL*) and one nuclear gene (*LEAFY*) were amplified and sequenced by the following primers: *trnL-trnF* (5′-CGAAATCGGTAAGGCGTAC-3′; 5′-ATTGAACTGGTACACAGG-3′; Taberlet et al., 1991), *psbA-trnH* (5′-GTATTGCAATFAACGTAATGCTC-3′; 5′-GGGCGAGTGTGATTCCAACAATC-3′; Sang et al., 1997), *rbcL* (5′-ATGTCACACACACATGAGAC-3′; 5′-TGAATTCACATCGCAGAGATGCTC-3′; Little and Barrington, 2003), *LEAFY* (5′-TACACGGCGAGGAAGATAGC-3′; 5′-CTAGAAGACGGCCGCTATG-3′; Oh and Potter, 2003). Polymerase chain reaction (PCR) was performed in a volume of 50 µL and each reaction contained 30–50 ng genomic DNA, 25 µL amplification reaction mixture (PCR mix kit, Tiangen Biotech, Beijing, China), and 20 µmol/L primers, and under the following conditions: initial denaturation at 94°C for 3 min, 35 cycles of 30 s at 94°C, 30 s at 54–60°C, 90 s at 72°C, and a final extension step of 7 min at 72°C. All the qualified PCR products were sent to Majorbio Bio-pharm Technology Co., Ltd. (Shanghai) for sequencing.

Data Analysis

We aligned sequences with Clustal_X (Thompson et al., 1997) and coded indels following the method of Simmons and Ochoterena (2000). Indels within mononucleotide repeat regions were deleted for phylogenetic analyses, because the homology of these indels could not be verified (Chen S.C. et al., 2012).
The levels of inter- and intra-population genetic diversity (h: haplotype diversity and π: nucleotide diversity) were calculated for the cpDNA and nuDNA using DnaSP version 5.0 (Rozas et al., 2003). We compared G_{ST} and N_{ST} using the U-statistic, which is approximated by a Gaussian variable by taking into account the covariance between G_{ST} and N_{ST}, and a one-sided test (Pons and Petit, 1996). The former considers only haplotype frequencies while N_{ST} also takes into account differences between haplotypes. When N_{ST} is larger than G_{ST}, phylogeographic structure is obvious, which indicates that closely related haplotypes were found more often in the same area than less closely related haplotypes (Pons and Petit, 1996). We also estimated genetic differentiation among all populations with AMOVA and inferred population growth and expansion according to Tajima’s D using Arlequin version 3.0 (Excoffier et al., 2005), with 1000 random permutations to test for significance of partitions. Genealogical relationships among cpDNA and nuDNA haplotypes were constructed using TCS version 1.21 (Clement et al., 2000).

The phylogenetic relationships among haplotypes and genotypes of cpDNA and nuDNA were reconstructed with Bayesian inference (BI) methods in MrBayes version 3.1.2 (Ronquist and Huelsenbeck, 2003). We applied the best fit
TABLE 2 | The total haplotype and nucleotide diversity of Rhus chinensis.

Population	H	π × 10^{-3}	Haplotype (No.)	H	π × 10^{-3}	Genotype (No.)
P1	0.000	0.000	M1(20)	0.616	1.140	N1(8), N2(1), N3(10), N4(1)
P2	0.719	8.810	M1(5), M2(10), M3(2), M4(3), M8(4), M21(2)	0.686	3.870	N1(2), N3(2), N5(4), N7(1), N15(11)
P3	0.550	5.230	M5(7), M6(4), M7(2)	0.422	2.270	N3(10), N4(7)
P4	0.586	5.370	M2(4), M3(4), M4(7)	0.505	2.570	N1(4), N3(6), N4(5)
P5	0.358	5.620	M1(16), M2(2), M9(2)	0.379	1.410	N3(13), N5(7)
P6	0.591	5.400	M1(8), M10(4), M11(2)	0.485	2.140	N1(4), N3(2), N7(5)
P7	0.571	3.520	M1(5), M10(4), M11(2)	0.314	2.120	N3(4), N10(2)
P8	0.526	2.590	M12(4), M13(4)	0.653	2.180	N3(4), N6(3), N11(8), N12(8)
P9	0.589	5.700	M5(4), M16(4), M17(12)	0.605	2.580	N3(1), N4(7), N6(1), N14(5)
P10	0.400	4.970	M12(3), M13(6), M18(1)	0.389	2.980	N3(8), N9(2), N10(2)
P11	0.636	8.810	M1(5), M10(4), M11(2)	0.321	2.540	N3(1), N4(4), N7(9)
P12	0.533	2.730	M19(9), M20(7)	0.000	0.000	N3(13), N4(2)
P13	0.689	6.320	M1(5), M2(7), M19(8)	0.300	2.150	N3(4), N6(3), N14(11)
P14	0.554	5.690	M1(8), M5(5), M6(6), M23(5)	0.395	1.740	N3(15), N4(5)
P15	0.694	8.220	M1(5), M6(1), M17(6), M18(2)	0.221	0.970	N3(15), N4(2)
P16	0.645	8.700	M1(2), M6(3), M8(2), M21(3), M23(8)	0.774	3.000	N3(4), N6(3), N14(11)
P17	0.442	2.260	M19(6), M20(14)	0.395	1.740	N3(15), N4(5)
P18	0.318	2.510	M1(2), M22(2), M23(5)	0.268	1.400	N3(10), N14(2)
P19	0.689	7.820	M1(4), M2(5), M4(4), M21(2)	0.281	1.830	N3(12), N7(3)
Total	0.758	6.910	0.614	3.050		

π: nucleotide diversity, h: haplotype diversity.

TABLE 3 | Analysis of molecular variance (AMOVA) of Rhus chinensis populations based on nucleotide sequences.

Gene types	Source of variation	d.f.	SS	VC	PV	F_{ST}
Chlorotype	Among regions	4	1425.914	4.95009	30.05	
	Among populations	14	1396.234	5.58051	33.88	
	Within populations	293	1740.808	5.94132	36.07	
Genotype	Total	311	4562.955	16.47192		
Genotype	Among regions	3	321.790	1.02156	29.33	
	Among populations	15	146.323	0.58156	14.59	
	Within populations	293	427.270	1.95386	56.09	
Genotype	Total	311	895.383	3.41857		

Notes: d.f., degrees of freedom; SS, sum of squares; VC, variance components; F_{ST}, correlation within populations relative to total; *P < 0.01.

Ecological Niche Modeling
We compared the current distributions of R. chinensis with its inferred distributions during the last glacial maximum (LGM; ~21,000 years BP) with ecological niche modeling in Maxent version 3.3.3 (Phillips et al., 2006). To perform this modeling, we first obtained the geocoordinates of 73 occurrence data of R. chinensis from the Chinese Virtual Herbarium1 and Global Biodiversity Information Facility2. Subsequently, we constructed the models using 19 bioclimatic variables from

1http://www.cvh.org.cn
2http://data.gbif.org
the WorldClim database3 (Hijmans et al., 2005) representing the present (averaged from 1950) and the LGM according to the Community Climate System Model (CCSM; Collins et al., 2006). We employed 20 replicates based on 80% of the distribution coordinates for training and 20% for testing, and adopted the model with the best AUC values (Phillips et al., 2006). We performed a jackknife test to estimate the percent contributions of bioclimatic variables to the prediction for the distributional models. Meanwhile, we also employed the “10 percentile presence” threshold logistic approach as determined by Maxent in order to distinguish the threshold between suitable and unsuitable habitats for further analyses. We drew Graphics for each predicted SDM using DIVA-GIS 7.5 (Hijmans et al., 2005).

RESULTS

Genetic Diversity and Structure

Aligned cpDNA dataset consisted of 2051 bp with 70 nucleotide substitutions and two indels. We detected 23 different haplotypes (M1–M23) based on combined cpDNA dataset from 19 populations. The LEAFY gene region varied from 412 to 645 bp and had an aligned length of 682 bp, which contained 14 nucleotide substitutions. Our sequences of LEAFY comprised 15 genotypes (N1–N15). Based on cpDNA and nuDNA sequences, the total haplotype diversity of R. chinensis was estimated to be 0.738 and 0.614, and the total nucleotide diversity was inferred to be 6.910 × 10−3 and 3.050 × 10−3, respectively (Table 2). We found the highest levels of haplotype and nucleotide diversity in four populations: P2, P11, P14, and P16 (Table 2). The most widespread haplotypes and genotypes were M1 (in 11 of 19 populations, cpDNA) and N3 (in 18 of 19 populations, nuDNA; Table 2), respectively. Based on cpDNA and nuDNA sequences, M1 and N3 were the primary haplotype and genotype, respectively (Figure 1).

AMOVA analysis indicated that genetic variation in R. chinensis was greater within populations than among them (P < 0.01; Table 3). The mismatch distribution (Figures 1A1,B1) and positive values of Tajima’s D value (1.19, 0.05 < P < 0.10 for cpDNA; 2.37, P < 0.01 for nuDNA) of all populations rejected a sudden expansion model, and positive Tajima’s D may indicate population admixture. Phylogeographic structure is not obvious at the species level for both sets of genetic markers. For the cpDNA data, NST (0.382) was slightly higher than GST (0.375),

3http://www.worldclim.org/
Differences in gametophyte and sporophyte persistence among populations may also be responsible for high levels of gene flow in many other plant species (e.g., Lopez et al., 2007; Song et al., 2013; Johnson et al., 2017). *R. chinensis* may also be responsible for high levels of gene flow among populations. Stated another way, there may be limited barriers to dispersal. In the distributional area of *R. chinensis*, no obvious geographic barriers have been observed. Therefore, *R. chinensis* does not appear to be geographically isolated, allowing ecological niche modeling to be used in the assessment of species status (Li X.H. et al., 2012; Liu L. et al., 2014; Wang W. et al., 2014). Ecological niche models suggested the suitable habitats of *R. chinensis* were continuous in the present time while compressed during the LGM period, demonstrating multiple possible isolated glacial refugia (Figure 3). The response to impact of cold and warm times on the distribution of *R. chinensis* was validated in the simulation of ecological niche modeling, although we only used the simulated environment of current and LGM period (Figure 3). This pattern of range

DISCUSSION

We did not detect a clear phylogeographic structure among the 19 populations of *R. chinensis* sampled in the present study. We found a somewhat lower differentiation among *R. chinensis* populations ($N_{ST} = 0.382$ for cpDNA, $N_{ST} = 0.321$ for nuDNA) compared to sympatric species such as *Platyacarya strobilacea* (Chen S.C. et al., 2012) and *Cotinus coggygria* (Wang W. et al., 2014). Limited phylogeographic structure within a metapopulation may be due to high levels of geneflow and/or of geophysical connectedness (Avise et al., 1987). High levels of gene flow among *R. chinensis* populations may be due to the seed dispersal mechanism, which has been implicated in high levels of gene flow in many other plant species (e.g., Lopez et al., 2007; Song et al., 2013; Johnson et al., 2017).
shifts indicated a likely scenario of repeated glacial compressions followed by interglacial expansions for *R. chinensis* during the Quaternary climatic oscillations. It is interesting that the geographic distribution of the cpDNA haplotypes differs from the nuDNA genotypes (Figure 2). Mismatch distributions between organelar DNA haplotypes and nuclear DNA genotypes have been reported in other groups such as *Sophora davidii* (Fan et al., 2013), *Cycas diannanensis* (Liu J. et al., 2015), and *Osteomeles schwerinae* (Wang Z.W. et al., 2015). Therefore, we thought that the forest birds and mammals were known as seed dispersers for many species in Anacardiaceae (Wang W. et al., 2014), which might have directly impacted the genetic structure with biparental inheritance.

The populations originated from Yunnan occurred at the China–Vietnam border and split from other clades at 4.2 ± 2.5 and 3.8 ± 3.0 Ma according to the cpDNA (clade VI) and nuDNA (clade III), respectively (Figures 2A,B). Early diverging populations in Yunnan have been detected in other genera or species such as *Ceratotropis* (3.62 Ma, Javadi et al., 2011), *Incarvillea sinensis* (4.4 Ma, Chen S. et al., 2012), and *Stuckenia filiformis* (3.93 Ma, Du and Wang, 2016). Within these species, the uplift of the QTP has been implicated as the main mechanisms of driving diversifications, but the estimated divergences were more recent than the last phase of the uplift (7–8 and 13–15 Ma; Harrison et al., 1992; Shi et al., 1998; Spicer et al., 2003). So, we thought that the geographical isolation of Yunnan populations was caused by the isolation of the QTP uplift in late Pliocene. Furthermore, the suitable climate in the temperate and subtropical zone could have subsequently facilitated the Pliocene-Pleistocene diversification of *R. chinensis* into different eco-geographic populations (Javadi et al., 2011).

Previous phylogeographic studies have widely supported hypotheses that climatic changes during the LGM forced plants into refugia within Central China, where they were protected by the QTP from the brunt of the ice age (Tian et al., 2009; Liu et al., 2012). After the glaciers retreated, the plants expanded their ranges rapidly (Hewitt, 2000; Li Z.H. et al., 2012; Qi et al., 2012). Our results showed that the range of *R. chinensis* had increased since the LGM (Figure 3) but did not support a rapid expansion based on the mismatch distribution (Figure 1) and Tajima's D (1.19, 0.05 < P < 0.10 for cpDNA; 2.37, P < 0.01 for nuDNA). Refugia in the warm temperate China may have been dominated by evergreen forest or temperate deciduous forest during the LGM (Liu, 1988). Thus, southern Shaanxi, northern Sichuan, Yunnan, and Jiangxi could have supported *R. chinensis* during the LGM and been its main center of diversity. Just as *P. strobilacea* (Chen S.C. et al., 2012), *Cercidiphyllum* (Qi et al., 2012), and *C. coggynria* (Wang W. et al., 2014), the plants were slightly affected and were able to survive in situ at the period of the glaciation. So, the characterized phylogeographic structure of *R. chinensis* was consistent with the second hypothesis, which was that they survived in situ and occupied multiple localized glacial refugia during the glaciation.

CONCLUSION

We used cpDNA and nuDNA sequences, and ecological niche modeling to investigate the evolutionary history of *R. chinensis* distributed in the warm temperate zone of China. The cpDNA and nuDNA data separately revealed six and five clades corresponding to the geographic regions. The divergence among haplotypes and genotypes of *R. chinensis* occurred at the Pliocene based on cpDNA and nuDNA data. Our ENMs showed enlarged potential distributions in the present compared to LGM, but we did not detect a sudden demographic expansion after the glaciation according to the molecular data. Our results suggest that *R. chinensis* was not affected by glacial cycles seriously and survived in situ and occupied a few main refugia.

AUTHOR CONTRIBUTIONS

ZR conceived and designed the research. YL and YZ collected the samples, performed the experiments, and conducted data analyses. XS and ZR drafted the manuscript. JW polished the manuscript. All authors read and approved the final manuscript.

FUNDING

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 31870366, 3170359, 31800310, and 31600301), the Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai–Tibet Plateau in Qinghai Province (Grant No. 2017-ZJ-Y13), the National High Technology Research and Development “863” Program (Grant No. 2014AA021802), and Shanxi International Science and Technology Cooperation Project (2018).

ACKNOWLEDGMENTS

The authors thank two reviewers for their constructive comments.

REFERENCES

Abbott, R. J., Smith, L. C., Milne, R. I., Crawford, R. M., Wolff, K., and Balfour, J. (2000). Molecular analysis of plant migration and refugia in the Arctic. *Science* 289, 1343–1346. doi: 10.1126/science.289.5483.1343

Avice, J. C. (2000). *Phylogeography: the History and Formation of Species*. Cambridge: Harvard University Press.

Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, E., et al. (1987). Intraspacific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. *Annu. Rev. Ecol. Syst.* 18, 489–522. doi: 10.1146/annurev.es.18.110187.002421

Chen, K. M., Abbott, R. J., Milne, R. I., Tian, X. M., and Liu, J. Q. (2008). Phylogeography of *Pinus tabuliformis* Carr. (Pinaceae), a dominant species of coniferous forest in northern China. *Mol. Ecol.* 17, 4276–4288. doi: 10.1111/j.1365-294X.2008.03911.x
Chen, S., Xing, Y., Tao, S., Zhou, Z., Dölcher, E. D. L., and Solits, D. E. (2012). Phylogeographic analysis reveals significant spatial genetic structure of *Incarvillea sinesis* as a product of mountain building. *BMC Plant Biol.* 12:58. doi: 10.1186/1471-2229-12-58

Chen, S. C., Zhang, L., Zeng, J., Shi, F., Yang, H., Mao, Y. R., et al. (2012). Geographic variation of chloroplast DNA in *Platycarya strobilacea* (Juglandaceae). *J. Syst. Evol.* 50, 374–385. doi: 10.1111/j.1759-6831.2012.00210.x

Chen, Y. L., Li, X. L., Yin, L. Y., and Li, W. (2008). Genetic diversity of the threatened aquatic plant *Ottelia alismoides* in the Yangtze river. *Aquat. Bot.* 88, 10–16. doi: 10.1016/j.aquabot.2007.08.002

Clement, M., Posada, D., and Crandall, K. (2000). TCS: a computer program to estimate gene genealogies. *Mol. Ecol.* 9, 1657–1660. doi: 10.1111/j.1365-294x.2000.t00100.x

Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., et al. (2006). The Community Climate System Model version 3 (CCSM3). *J. Clim.* 19, 2122–2143. doi: 10.1175/JCLI3761.1

de Lafontaine, G., Amasifuen Guerra, C. A., Ducousso, A., Sánchez-Goñi, M. F., de la Riva, A., and Bertasius, G. (2003). Mitochondrial haplotype distribution, seed dispersal and patterns of post glacial expansion of ponderosa pine. *New Phytol.* 159, 450–454. doi: 10.1111/j.1365-294X.2003.mt13089

Du, Z. Y., and Wang, Q. F. (2016). Allopatric divergence of *Stevkenia filiformis* (Potamogetonaceae) on the Qinghai-Tibet Plateau and its comparative phylogeography with *S. pectinata* in China. *Sci. Rep.* 6:20883. doi: 10.1038/srep20883

Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. *Evol. Bioinform.* 1, 47–50. doi: 10.1515/1553-7201.2005.00003

Fan, D. M., Yue, J. P., Nie, Z. L., Li, Z. M., Comes, H. P., and Sun, H. (2013). Phylogeography of *Sophora davidii* (Leguminosaceae) across the 'Tanaka-Kaiyong Line', an important phytogeographic boundary in Southwest China. *Mol. Ecol.* 22, 4270–4288. doi: 10.1111/mec.12388

Fu, Z. Z., Li, Y. H., Zhang, K. M., and Li, Y. (2014). Molecular data and ecological niche modeling reveal population dynamics of widespread shrub *Forgyptia suspensa* (*Oleaceae*) in China’s warm-temperate zone in response to climate during the Pleistocene. *BMC Evol. Biol.* 14:114. doi: 10.1186/1471-2148-14-114

Gao, Q., Peng, S. L., Zhao, P., Zeng, X. P., Cai, X., Yu, M., et al. (2012). Phylogeographic analysis and environmental niche modeling of widespread shrub *Rhododendron simsi* in China reveals multiple glacial refugia during the last glacial maximum. *J. Syst. Evol.* 50, 362–373. doi: 10.1111/j.1759-6831.2012.00299.x

Li, Z. H., Zou, J. B., Mao, K. S., Lin, K., Li, H. P., Liu, J. Q., et al. (2012). Population genetic evidence for complex evolutionary histories of four high altitude juniper species in the Qinghai-Tibetan Plateau. *Evolution* 66, 831–845. doi: 10.1111/j.1558-5646.2011.01466.x

Little, D. P., and Barrington, D. S. (2003). Major evolutionary events in and diversification of the fern genus *Polystichum* (Dryopteridaceae). *Am. J. Bot.* 90, 508–514. doi: 10.3732/ajb.90.3.508

Liu, D., Hou, F., Liu, Q., Zhang, X., Yan, T., and Song, Z. (2015). Strong population structure of *Schizopogon cengzi* and the origin of *S. cengzi* bioxingensis revealed by mtDNA and microsatellite markers. *Genetica* 143, 73–84. doi: 10.1007/s10709-015-9815-8

Liu, J., Zhou, W., and Gong, X. (2015). Species delimitation, genetic diversity and population historical dynamics of *Cyclas diannanensis* (*Cycadaceae*) occurring sympatrically in the Red River region of China. *Front. Plant Sci.* 6:696. doi: 10.3389/fpls.2015.00696

Liu, J. Q., Duan, Y. W., Hao, G., Ge, X. J., and Sun, H. (2014). Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau. *J. Syst. Evol.* 52, 241–249. doi: 10.1111/jse.12094

Liu, J. Q., Sun, Y. S., Ge, X. J., Gao, L. M., and Qiu, Y. X. (2012). Phylogeographic studies of plants in China: advances in the past and directions in the future. *J. Syst. Evol.* 50, 267–275. doi: 10.1111/j.1759-6831.2012.00214.x

Liu, K. B. (1998). *Quaternary history of the temperate forests of China*. Quat. Sci. Rev. 17, 1–20. doi: 10.1016/S0277-3798(98)00889-3

Liu, L., Hao, Z. Z., Liu, Y. Y., Wei, X. X., Cun, Y. Z., and Wang, X. Q. (2014). Phylogeography of *Pinus armandi* and its relatives: heterogeneous contributions of geography and climate changes to the genetic differentiation and diversification of Chinese White Pines. *PLoS One* 9:e85920. doi: 10.1371/journal.pone.0085920

Liu, Y. P., Su, X., He, Y. H., Han, L. M., Huang, Y. Y., and Wang, Z. Z. (2015). Evolutionary history of *Orinus thorbiti* (*Poaceae*), endemic to the western Qinghai-Tibetan Plateau in China. *Biotech. Syst. Ecol.* 59, 159–167. doi: 10.1016/j.bse.2015.01.014

Lopez, S., Rousset, F., Shaw, F. H., Shaw, R. G., and Ronce, O. (2007). Migration load in plants: role of pollen and seed dispersal in heterogeneous landscapes. *J. Evol. Biol.* 21, 294–309. doi: 10.1111/j.1420-9101.2007.01442.x

Lu, Q. X., Zhu, J. N., Dan, Y., and Xu, X. W. (2016). Genetic and geographical structure of boreal plants in their southern range: phylogeography of *Hippuris vulgaris* in China. *BMC Evol. Biol.* 16:34. doi: 10.1186/s12862-016-0603-6

Meng, H. H., Gao, X. Y., Huang, J. F., and Zhang, M. L. (2014). Plant phylogeography in arid Northwest China: perspectives and. *J. Syst. Evol.* 52, 1–16. doi: 10.1111/jse.12088

Meng, L. H., Yang, R., Abbott, R. J., Miehe, G., Hu, T. H., and Liu, J. Q. (2007). Mitochondrial and chloroplast phylogeography of *Picea cassandra* Kom. (Pinaceae) in the Qinghai-Tibetan Plateau and adjacent highlands. *Mol. Ecol.* 16, 4128–4137. doi: 10.1111/j.1365-294X.2007.03459.x

Nason, J. D., Hamrick, J. L., and Fleming, T. H. (2002). High-resolution interploled climate surfaces for global land areas. *Int. J. Climatol.* 25, 1965–1978. doi: 10.1002/joc.1276

Pi, J., Chen, S. C., and Yang, H. (2012). Phylogeographic analysis and environmental niche modeling of widespread shrub *Rhododendron simsi* in China reveals multiple glacial refugia during the last glacial maximum. *J. Syst. Evol.* 50, 362–373. doi: 10.1111/j.1759-6831.2012.00299.x

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. *Ecol. Model.* 190, 231–259. doi: 10.1016/j.ecolmodel.2005.03.026
Pons, O., and Petit, R. J. (1996). Measuring and testing genetic differentiation with ordered versus unordered alleles. *Genetics* 144, 1237–1245.

Porter, M. L., Perez-Losada, M., and Crandall, K. A. (2005). Model-based multi-locus estimation of decapod phylogeny and divergence times. *Mol. Phylgenet. Evol.* 37, 355–369. doi: 10.1016/BF02524290

Posada, D., and Crandall, K. A. (1998). ModelTest: testing the model of DNA substitution. *Bioinformatics* 14, 817–818. doi: 10.1093/bioinformatics/14.9.817

Pyron, R. A. (2011). Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. *Syst. Biol.* 60, 466–481. doi: 10.1093/sysbio/sys047

Qi, X. S., Chen, C., Comes, H. P., Sakaguchi, S., Liu, Y. H., Tanaka, N., et al. (2012). Molecular data and ecological niche modeling reveal a highly dynamic evolutionary history of the East Asian tertiary relict *Cercidiphyllum* (Cercidiphyllaceae). *New Phytol.* 196, 617–630. doi: 10.1111/j.1469-8137.2012.04242.x

Qiu, Y. X., Fu, C. X., and Comes, H. P. (2011). Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. *Mol. Phylgenet. Evol.* 59, 225–244. doi: 10.1016/j.ympev.2011.01.012

Qiu, Y. X., Liu, Y. F., Kang, M., Yi, G. M., and Huang, H. W. (2013). Spatial and temporal population genetic variation and structure of *Nothofagus longibracteata* (Pinaceae), a relic conifer species endemic to subtropical China. *Genet. Mol. Biol.* 36, 598–607. doi: 10.1590/S1415-47572013000400009

Rambaut, A., and Drummond, A. J. (2007). *Tracer*. Available at: http://beast.bio.ed.ac.uk/tracer

Ronquist, F., and Huelsenbeck, J. P. (2003). *MrBayes 3: Bayesian phylogenetic inference under mixed models*. Available at: http://www.mrbayes.net

Simmons, M. P., and Ochoterena, H. (2000). Gaps as characters in sequence-based phylogenetic analyses. *Syst. Biol.* 49, 293–300. doi: 10.1080/106351500750038494

Slatkin, M. (1985). Gene flow and the evolution of natural populations. *Science* 221, 688–695. doi: 10.1126/science.4091927

Taberlet, P., Gielly, L., Pautou, G., and Bouvet, J. (1991). Universal primers for chloroplast DNA. *Plant Mol. Biol.* 17, 1105–1109. doi: 10.1007/BF00307152

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* 30, 2725–2729. doi: 10.1093/molbev/ms3197

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res.* 25, 4876–4882. doi: 10.1093/nar/25.24.4876

Tian, B., Liu, R. R., Wang, L. Y., Qu, Q., Chen, K. M., and Liu, J. Q. (2009). Phylogeographic analyses suggest that deciduous species (*Ostryopsis davidiana* Decne., Betulaceae) survived in northern China during the Last Glacial Maximum. *J. Biogeogr.* 36, 2148–2155. doi: 10.1111/j.1365-2699.2009.02157.x

Tzedakis, P. C., Emerson, B. C., and Hewitt, G. M. (2013). Cryptic or mystic? Global tree refugia in northern Europe. *Trends Ecol. Evol.* 28, 696–704. doi: 10.1016/j.tree.2013.09.001

Voss, N., Eckstein, R. L., and Durka, W. (2012). Range expansion of a selfing polyloid plant despite widespread genetic uniformity. *Ann. Bot.* 110, 585–593. doi: 10.1093/aob/mcs117

Wan, D. S., Feng, J. I., Jiang, D. C., Mao, K. S., Duan, Y. W., Miehe, G., et al. (2016). The Quaternary evolutionary history, potential distribution dynamics, and conservation implications for a *Qinghai-Tibet Plateau endemic herbaeous perennial, Anisosium tanguticum* (Solanaeaceae). *Ecol. Evol.* 6, 1977–1995. doi: 10.1002/ece3.2019

Wang, G. N., He, X. Y., Miehe, G., and Mao, K. S. (2014). Phylogeography of the *Qinghai-Tibet Plateau endemic alpine herb Pomatosace filicula* (Primulaceae). *J. Ecol.* 52, 1–14. doi: 10.1111/jse.12089

Wang, H., Dai, J., Zheng, J., and Ge, Q. (2015). Temperature sensitivity of plant phenology in temperate and subtropical regions of China from 1850 to 2009. *Int. J. Climatol.* 35, 913–922. doi: 10.1002/joc.4026

Wang, L. Y., Abbott, R. J., Zheng, W., Chen, P., Wang, Y. J., and Liu, J. Q. (2009). History and evolution of alpine plants endemic to the *Qinghai-Tibetan Plateau: Aconitum gymmandrum* (Ranunculaceae). *Mol. Ecol.* 18, 709–721. doi: 10.1111/j.1365-294X.2008.04055.x

Wang, Q., Abbott, R. J., Yu, Q. S., Lin, K., and Liu, J. Q. (2013). Pleistocene climate change and the origin of two desert plant species, *Pugioniun corinatum* and *Pugionium dolabratum* (Brassicaceae), in northwest China. *New Phytol.* 199, 277–281. doi: 10.1111/nph.12241

Wang, W., Tian, C. Y., Li, Y. H., and Li, Y. (2014). Molecular data and ecological niche modeling reveal the phylogeographic pattern of *Cotinus coggyria* (Anacardiaceae) in China’s warm-temperate zone. *Plant Biol.* 16, 1114–1120. doi: 10.1111/plb.12157

Wang, W., Tian, C. Y., Li, Y. H., and Li, Y. (2014). Molecular data and ecological niche modeling reveal the phylogeographic pattern of *Cotinus coggyria* (Anacardiaceae) in China’s warm-temperate zone. *Plant Biol.* 16, 1114–1120. doi: 10.1111/plb.12157

Wang, Z. W., Chen, S. T., Nie, Z. L., Zhang, J. W., Zhou, Z., Deng, T., et al. (2015). Climatic factors drive population divergence and demographic: insights based on the phylogeography of a riparian plant species endemic to the Hengduan mountains and adjacent regions. *PLoS One* 10:0145014. doi: 10.1371/journal.pone.0145014

Wen, J., Nie, Z. L., and Ickert-Bond, S. M. (2016). Interglacial discontinuities between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene. *J. Ecol.* 54, 469–490. doi: 10.1111/jse.12222

Wen, J., Zhang, J. Q., Nie, Z. L., Zhong, Y., and Sun, H. (2014). Evolutionary diversifications of plants on the *Qinghai-Tibetan Plateau. Front. Genet.* 5:4. doi: 10.3389/fgene.2014.00004

Xu, T., Abbott, R. J., Milne, R. I., Mao, K., Du, F. K., Wu, G., et al. (2010). Phylogeography and allopatric divergence of cypress species (*Cupressus L.*) on the *Qinghai-Tibetan Plateau and adjacent regions. BMC Evol. Biol.* 10:194. doi: 10.1186/1471-2148-10-194

Yang, F. S., Li, Y. F., Ding, X., and Wang, X. Q. (2008). Extensive population expansion of *Pedicularis longiflora* (Orobanchaceae) on the *Qinghai-Tibetan Plateau and its correlation with the Quaternary climate change. Mol. Ecol.* 17, 5135–5145. doi: 10.1111/j.1365-294X.2008.03926.x

Yang, Z. (2007). *PAML 4: phylogenetic analysis by maximum likelihood*. *Mol. Biol. Evol.* 24, 1586–1591. doi: 10.1093/molbev/msm088

Ye, J. W., Bai, W. N., Bao, L., Wang, T. M., Wang, H. F., and Ge, J. P. (2017). Sharp genetic discontinuity in the aridity-sensitive *Linderob ustiloba*
(Lauraceae): solid evidence supporting the Tertiary floral subdivision in East Asia. J. Biogeogr. 44, 2082–2095. doi: 10.1111/jbi.13020
Yi, T., Miller, A. J., and Wen, J. (2004). Phylogenetic and biogeographic diversification of Rhus (Anacardiaceae) in the Northern Hemisphere. Mol. Phylogenet. Evol. 33, 861–879. doi: 10.1016/j.ympev.2004.07.006
Yu, Q. S., Wang, Q., Wu, G. L., Ma, Y. Z., He, X. Y., Wang, X., et al. (2013). Genetic differentiation and delimitation of Pugionium dolabratum and Pugionium cornutum (Brassicaceae). Plant Syst. Evol. 299, 1355–1365. doi: 10.1007/s00606-013-0800-3
Zhang, J. Q., Meng, S. Y., Wen, J., and Rao, G. Y. (2015). DNA barcoding of Rhodiola (Crassulaceae): a case study on a group of recently diversified medicinal plants from the Qinghai-Tibetan Plateau. PLoS One 10:e0119921. doi: 10.1371/journal.pone.0119921
Zhang, Q., Chiang, T. Y., George, M., Liu, J. Q., and Abbott, R. J. (2005). Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Mol. Ecol. 14, 3513–3524. doi: 10.1111/j.1365-294X.2005.02677.x
Zhao, C., Wang, C. B., Ma, X. G., Liang, Q. L., and He, X. J. (2013). Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum Turcz.) reveals two refuge areas in China with subsequent refugial isolation promoting speciation. Mol. Phylogenet. Evol. 68, 628–643. doi: 10.1016/j.ympev.2013.04.007
Zhao, J. L., Gugger, P. F., Xia, Y. M., and Li, Q. J. (2016). Ecological divergence of two closely related Roscoea species associated with late Quaternary climate change. J. Biogeogr. 43, 1990–2001. doi: 10.1111/jbi.12809
Zheng, M., and Min, T. L. (1980). Flora Reipublicae Popularis Sinicae. Beijing: Science Press.
Zou, J. B., Peng, X. L., Li, L., Liu, J. Q., Miehe, G., and Opgeenoorht, L. (2012). Molecular phylogeography and evolutionary history of Picea likiangensis in the Qinghai-Tibetan Plateau inferred from mitochondrial and chloroplast DNA sequence variation. J. Syst. Evol. 50, 341–350. doi: 10.1111/j.1759-6831.2012.00207.x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Liang, Zhang, Wen, Su and Ren. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.