Factors Affecting Zoo Visitors’ Conservation Beliefs and Knowledge of Large Carnivores in 2009 and a Dozen Years Later

Vesna Oražem 1, Aleksandra Majič Skrbinšek 1, Andrej Šorgo 2 and Iztok Tomažič 1,*

1 Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, 1001 Ljubljana, Slovenia; vesna.orazem7@gmail.com (V.O.); almajic@gmail.com (A.M.S.)
2 Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia; andrej.sorgo@um.si
* Correspondence: iztok.tomazic@bf.uni-lj.si

Abstract: Teaching in a formal learning environment mainly focuses on gaining knowledge, and scarcely on the development of pro-environmental attitudes. Knowledge can also be gained in informal learning institutions, such as zoos, and their potential use in general public education should not be neglected. This paper explores factors influencing the conservation beliefs of zoo visitors about brown bears, grey wolves, and Eurasian lynx. The study undertaken in Zoo Ljubljana (Slovenia) consisted of surveys performed in 2009 (n = 613) and in 2021 (n = 257). The levels of knowledge and education influenced both supporting and opposing beliefs about the three large carnivore species. The gender factor was less uniform: both supporting and opposing beliefs about lynx were demonstrated, but only opposing beliefs about brown bear and wolf. The study indicates that knowledge has the most significant influence on conservation beliefs, thus highlighting the importance of educational and communication activities in management and conservation actions regarding large carnivore species. The varied gender influence suggests that species-specific educational activities should be encouraged.

Keywords: large carnivores; conservation beliefs; knowledge; zoo visitors

1. Introduction

Three legally protected species of large carnivores—brown bear (Ursus arctos L.), grey wolf (Canis lupus L.) and Eurasian lynx (Lynx lynx L.)—are broadly present in Slovenia [1–3]. The presence of these species leads to potential and even real human–wildlife conflicts. So, there are natural and human factors by which the species are endangered. The need to find ways and solutions for their conservation has been recognized as a priority [4] (p. 1). There are three approaches to be introduced into large carnivore wildlife management: the cognitive approach (education), the technological approach (fences, deterrent devices, hunting) and the structural approach (legislation) [5]. The cognitive approach is the only way to change human attitudes as predictors of potential or actual behavior toward wildlife conservation. Education is a lifelong process that is not confined to a formal educational system: many formal and informal institutions also contribute. Education is one of the most important factors for the formation of pro-environmental attitudes [6]. In conservation biology, it is recognized as an important part of the field [7]. Schools and informal learning environments such as zoos or natural history museums are crucial to informing the general public about the conservation of species and ecosystems [8].

The conservation and management of animals requires a basis of public policies, research, and scientific values [9]: wildlife management efforts that do not include public opinions are destined to be unsuccessful [10]. Frequently, management measures for large carnivores are poorly understood, and therefore unaccepted by the public, especially if the animals are recognized as a potential hazard to humans and domestic animals [11]. Individuals may formulate judgments about the acceptability of carnivore populations...
based on willingness to accept a hazard. Perception of hazard is largely a function of the perceived risks and perceived benefits associated with that hazard [11]. The subjective experience of an individual’s fear is primarily linked to the perceived danger or harm that the animal represents and the perceived uncontrollability of the person’s own response when encountering the animal [12,13].

Public attitudes and acceptance of animals, in particular carnivores, can strongly influence their conservation [14]: attitudes often change if animals are perceived to behave “problematically” [15]. Several articles investigating attitudes and knowledge in the general public in relation to large carnivores have been published [14,16–19] in the past decade. Perceptions of large carnivore species are based on species phylogeny in relation to humans, animal characteristics (such as aesthetic value), the perception of their intelligence, size, morphology, type of locomotion, potential dangerousness and damage to property, and even on cultural or historical background [20,21]. One of the findings was that large carnivores generate fear in humans mainly because of possible physical injuries [22].

Various factors may affect attitudes toward animals, among which are gender [23], culture, and even possession of pets [24,25]. Gender may be the most important factor, with females usually reporting greater fear than males [15,22]. This can be explained by the lesser physical ability of females to avoid attacks by predators [23]. On the other hand, such gender-based differences in attitude can also arise from religious beliefs [26]. Beside the mentioned factors, direct experience with animals was determined as a predictor of strength of positive attitude [10,27]—it was found that, generally, direct contact changes people’s attitudes in a positive direction [28]. For example, males and females differ in positive attitudes toward different species. Males are known to like wild indigenous species (e.g., squirrel (*Sciurus* sp.), deer (*Cervus elaphus*), fox (*Vulpes vulpes*)) and exotic animals (e.g., dolphin (*Cetacea*), tiger (*Panthera tigris*), lion (*Panthera leo*)), while females like pets (e.g., cat (*Felis catus*), dog (*Canis lupus familiaris*), horse (*Equus ferus caballus*)) [29]. Preferences toward species are influenced by evolution, genetics, and psychosocial and cultural factors [30].

Because large carnivores are relatively rare, attitudes are not formed from first-hand experience, but are usually a result of secondary and selected information, if not prejudices and stereotypes [31]. To plan and execute the most effective measures for large carnivore conservation, knowledge of public opinion toward these animals is needed. Public opinion can be influenced by the general public’s attitudes toward flagship (charismatic and popular) animal species and the experiences with them, and by the general acceptance of animals [15]. According to a previous study [9], knowledge of a species involves ecological and factual knowledge, or conservation awareness. For effective conservation and management actions, besides general public opinion, knowledge of species ecology and biology, as well as of socioeconomic and other factors, needs to be considered.

Before now, attitudes toward large carnivores have been analyzed among different groups, i.e., the general public [14,18,32–36], rural and urban residents [19,37], hunters [16,38], farmers and foresters [16], and students [16,31,39–43]. Recently, research has also arisen in a zoo setting [44–47]. However, more attention is usually paid to other (more charismatic) species, such as elephants [48], dolphins [49], gorillas and chimpanzees [50,51], reptiles and amphibians [52], and penguins [53,54].

Zoos, nature centers, museums and other similar institutions provide various educational programs classified as informal education. Since education is one of the main missions of modern zoos [55], they should not be regarded only as entertainment parks, research institutions, or ex situ keepers of rare species, but as educational institutions as well. Conservation goals in zoos are usually included in leisure activities, educational programs, and animal protection and research [56,57]. When comparing zoo education to formal education, the former promotes the education of the general public regardless of personal status and age, and fosters conservation awareness as part of lifelong education [55]. Formal education, on the other hand, is oriented mainly towards the younger population. Zoos are believed to have a positive impact on attitude development [58]. Visitors of zoos express more humanistic attitudes toward animal species than individuals who do not visit
zoos [6]. A more humanistic attitude refers to the formation of an emotional bond between humans and animals, although the connection between experiences of animals in a zoo and the attitudes that favor conservation is not as simple as it seems [45]. For example, viewing an animal in a zoo does not necessarily equate to pro-conservation action [59]. When people see animals at the zoo, different feelings and cognitions arise. Thus, it is important to find out whether these feelings and cognitions are linked with animal conservation [45].

Worldwide, around 700 million people visit zoos annually [60], providing an ample basis for conservation education [61]. People of different backgrounds, ages, education levels, and other characteristics can be invited into surveys to try to assess their pro-environmental knowledge, attitudes and actions [62]. However, not all people visit zoos primarily to learn [63]: recreation may be the main goal, even if they think education is important [64]. Nevertheless, education in zoos is intended to inform visitors about ecological concepts and animal–habitat relationships [65], so as to raise environmental awareness [66]. Support for the conservation of animal species and wildlife increases with exposure to experts providing well-structured information about, along with experiences of, wildlife [67].

Each year, more than 250,000 people visit the largest zoo in Slovenia, Ljubljana Zoo [62]. Besides regular self-guided visits by the public, a number of activities and events are offered, for example, guided tours, zoo adventures (hands-on activities), petting zoos, zookeeper-for-a-day activities, camping at the zoo, photo safaris and birthday parties. Furthermore, the zoo organizes guided tours and activities for schools and other educational institutions. Each year, more than 10% of visitors, ranging from kindergarten children to university students, are enrolled in guided activities, as part of organized out-of-school activities [62]. At the time of the study, the zoo housed around 120 species of vertebrates, among them the three large carnivore species brown bear, grey wolf and Eurasian lynx. At every animal enclosure, information boards present biological and conservation-related information about the species [62]. Since Ljubljana Zoo is rather small, it is anticipated that visitors will stop by the enclosures with large carnivore species [68].

This paper explores how different factors influence the attitudes of zoo visitors toward brown bear, grey wolf, and Eurasian lynx, and their acceptance thereof. The results of the study will be used in the preparation of more effective educational efforts at Ljubljana Zoo concerning large carnivore conservation. Hopefully, the study will also be informative for a broader audience, especially in the field of large carnivore management and conservation.

The Purpose of the Study

The present study used a questionnaire modified from previous research [19] to analyze the supporting and opposing beliefs of zoo visitors regarding the three large carnivore species (brown bear, grey wolf and Eurasian lynx). The authors of previous research analyzed the differences in conservation beliefs related to large carnivores between rural and urban residents. They found small differences between the two groups in arguments supporting conservation. On the other hand, the analysis of arguments that oppose the conservation of large carnivores showed greater differences between the two groups. Differences in opinions opposing conservation were also found in relation to different species of large carnivores (brown bear, wolverine, grey wolf and Eurasian lynx). In general, low levels of support for direct use values (e.g., ecotourism and hunting) were found.

Additionally, we used multiple choice questions to assess visitors’ knowledge about large carnivores. Via the modification and supplementation of arguments, the present study sought to find out:

- whether participants’ opposing or supporting beliefs differ for individual large carnivore species;
- whether age, gender, education level, yearly number of zoo visits, place of residence, knowledge and beliefs before and after the visit, and the year of study affect the opposing/supporting beliefs of zoo visitors in relation to a selection of carnivore species;
• whether this varies between species;
• whether there are correlations between visitors’ opposing/supporting beliefs and their knowledge.

2. Materials and Methods

2.1. Study Design and Participant Information

The present study investigates differences in zoo visitors’ knowledge and conservation beliefs about large carnivores. It was performed as a repeated cross-sectional study [69]. Data were collected during four consecutive weekends in April and May 2009. The interviews were conducted near the entrance to the zoo. To assess the differences in knowledge and beliefs, participants were invited either when entering or exiting the zoo. Daily alternations between interviewing outgoing and incoming visitors were performed to homogenize the study sample. A total of 640 zoo visitors participated in the first part of the study. From this sample, 17 surveys were excluded as incomplete. In addition, 10 surveys were excluded as participants were not residents of Slovenia. The final size of the sample included in the statistical analysis was 613. The second run was performed twelve years later, in June 2021. Due to COVID-19 restrictions, the survey could only be performed during one weekend. The second sample consisted of 257 participants. Altogether, 870 respondents were included in the present study (Table 1).

Table 1. Sample structure by independent variables (gender, education level, frequency of visits and delivery of the questionnaire).

Variable	N	N (%)
Gender		
male	341	39.2
female	526	60.5
not specified	3	0.3
Education level		
primary school	59	6.8
high school	377	43.3
university	430	49.4
missing	4	0.5
Frequency of visits		
every two months	161	18.5
twice a year	190	21.8
once per year	452	52.8
less than once per year	265	30.5
missing	9	1.0
Questionnaire delivery—visit		
before the visit	303	34.8
after the visit	567	65.2
Questionnaire delivery—year		
2009	613	70.5
2021	257	29.5

Note: N = 870.

2.2. Questionnaire

The questionnaire consisted of three parts (Appendix A). The first part included questions about the respondent’s socio-demographics: age, gender, education level, and the yearly number of zoo visits. The second part of the questionnaire consisted of seven multiple choice questions about large carnivores. Two general questions were about the protection of large carnivores ("All large carnivores are protected by law—Yes/No/Not sure") and compensations for damages inflicted by animals ("Damages that are caused by large
carnivores are covered by the state—Yes/No/Not sure”). Two questions asked participants about the lynx: “Lynx live in (a) pairs, (b) solitary, (c) groups, (d) not sure” and “Lynx became extinct in the near past but was reintroduced—Yes/No/Not sure”. One question was about bears: “Bears eat mainly (a) food of animal origin, (b) food of plant origin, (c) equal amounts of food that is of plant and animal origin, (d) not sure”. Two questions were about wolves: “How much does an adult wolf male weight? (a) 10–20 kg, (b) 21–40 kg, (c) 41–60 kg, (d) more than 60 kg, (e) not sure”, and “How big are wolf packs in Slovenia? (a) 1–10, (b) 11–20, (d) more than 30 individuals, (e) not sure”. Only one option was correct and was graded as one point for every question.

For statistical analysis, we used summed scores. The “not sure” option was introduced for each question to minimize participants’ guessing. The third part of the questionnaire was constructed after a previous study [19], wherein the authors used statements linked with supporting and opposing conservation beliefs for four large carnivore species found in Sweden. The respondents in their study were asked to only state whether the arguments were valid or not, and not to state the strength of the arguments. The 12 statements used in this study were based on a 5-point Likert-type scale (1—strongly disagree, to 5—strongly agree). Consequently, data analysis was also different. All respondents were asked to report their supporting and opposing conservation beliefs in relation to all three large carnivore species.

The attitudinal items consisted of positive (e.g., “As a society, we have a shared responsibility to protect these animals.”) and negative statements (e.g., “These animals could have a serious negative impact on the livestock breeding.”). Negative wording was used to reduce response bias (e.g., “There is no need for conservation in Slovenia because there are populations in other countries.”). However, some authors have argued that second source variances can influence the unidimensionality of the test: they stress the importance of well-structured wording given the different linguistic skills of the respondents, e.g., [70]. The questionnaire consisted of unambiguous, concise sentences, which several experts had previously checked. These attitudinal items are comparable to those in other questionnaires used in similar surveys [31,42,43].

2.3. Data Analysis
First, a panel of experts from the zoo and the university reviewed the content of the questionnaire. Data analysis was undertaken using SPSS 25.0 software (SPSS, IBM, Germany, Ehningen). For each species, the participant belief ratings were first subjected to principal component analysis (PCA) with Direct Oblimin rotation (Table 2). According to Oblimin rotation, The Kaiser–Meyer–Olkin (KMO) measures of sampling adequacy (KMObear = 0.84, KMOWolf = 0.85 and KMOlynx = 0.84) and the Bartlett’s values for sphericity (bear: $\chi^2 = 1866.8, df = 66, p < 0.001$; wolf: $\chi^2 = 1934.6, df = 66, p < 0.001$; lynx: $\chi^2 = 1929.7, df = 66, p < 0.001$) suggest that the analysis was appropriate for these data sets [71]. An eigenvalue above 1.0 and loadings of at least 0.40 were used for a final solution. In order to test the reliability of the extracted PCs, Cronbach’s α coefficients were calculated; the values were all above 0.7, showing that the internal consistency of the components is reliable [71].

The results of the analysis are presented in Table 2. Eleven out of twelve statements were categorized in a similar way for every animal species, with seven of them opposing conservation (PC 1) and four supporting conservation (PC 2). The item “It is hard to predict the effects of their extermination.” did not load to any of the principal components, and was therefore eliminated from further analysis. The two components explained 42.3% of the total variance for bears, 42.7% for wolves, and 42.8% for lynx.

For each extracted principal component, means and standard deviations were calculated (see Table 2), on which a series of GLM univariate and multivariate tests were applied. The effects of the independent variables of individual species on the ratings of supporting and opposing beliefs were assessed with univariate tests. Multivariate tests were conducted to find the effects of independent variables on supporting and opposing beliefs jointly for all three species. Gender, education level, frequency of visits and survey delivery by year
and pre/post-visit were treated as fixed factors, while age and knowledge were treated as covariates in the multi- and univariate statistics. Partial eta-squared was used as a measure of effect size, where 0.01 was considered small, 0.04 moderate, and 0.1 large [72].

Table 2. Factor analyses of attitude statements for individual large carnivore species.

ITEM	Principal Component 1 (PC 1)	Principal Component 2 (PC 2)				
	Lynx	Wolf	Bear	Lynx	Wolf	Bear
These animals compete with hunters over game such as deer and roe deer. (R)	0.662	0.646	0.672			
These animals may have serious negative impact on deer and roe deer numbers. (R)	0.633	0.630	0.617			
They may have serious negative impact on livestock farming. (R)	0.677	0.634	0.647			
Costs of compensation, research and monitoring are too high. (R)	0.658	0.666	0.641			
There is a high risk of human injuries. (R)	0.578	0.540	0.584			
We may use these animals as a valuable game species. (R)	0.589	0.598	0.548			
There is no need for conservation in Slovenia because there are populations in other countries. (R)	0.511	0.501	0.470			
We need to preserve these animals for future generations.		0.762	0.783	0.759		
We should share the responsibility for conserving these animals.		0.663	0.688	0.674		
I want them to exist in Slovenia, even though I may never see any of them in the wild.		0.690	0.699	0.705		
These animals can have positive impact on balance of organisms.		0.700	0.722	0.699		
Cronbach alpha	0.748	0.734	0.736	0.726	0.749	0.733
Explained variance	3.51	3.50	3.46	1.63	1.63	1.62
M	3.68	3.56	3.55	4.43	4.41	4.41
SD	0.776	0.768	0.751	0.627	0.642	0.640

It is hard to predict the effects of extermination (did not fit in any principal component).

Note: (R)—reversed items.

For variables that produced a statistically significant effect on participants’ belief ratings, as assessed through GLMs, descriptive (means and standard deviations) and inferential (Mann–Whitney and Kruskal–Wallis test) statistics were applied. Bonferroni-corrected post-hoc Mann–Whitney tests were used to determine differences, following the Kruskal–Wallis test.

For knowledge, the total score was used to calculate the partial correlations with beliefs. Partial correlations for gender, education level, frequency of visits and survey delivery (comparison between years and pre–post-visit) were extracted.

3. Results

The first part presents the results of multivariate and univariate tests. In the second part, the following correlations are given: (a) supporting beliefs between individual species, (b) opposing beliefs between individual species, (c) between supporting and opposing beliefs for individual species, (d) between supporting beliefs and knowledge for each species, and (e) between opposing beliefs and knowledge for each species. The third part of the results shows participant ratings according to the individual independent variable that produced the highest effects in the multivariate and univariate statistics.
3.1. The Results of Multivariate Statistics

In Table 3, the results of multivariate statistical analysis of supporting beliefs for all three species are presented. The main factors affecting beliefs are knowledge and gender, whereby the size of the effects is measured by partial eta-squared. It shows that knowledge has a moderate effect, while gender has a small effect on participants’ beliefs.

Table 3. General Linear Model (GLM) analysis of the effects of independent variables on supporting beliefs (PC 2) for all three large carnivore species.

Effect	Wilks’ Λ	F	Hypothesis df	Error df	p	Partial η²
Knowledge	0.945	14.931	3	769.0	<0.001	0.055
Gender	0.977	6.084	3	769.0	<0.001	0.023
Education level	0.987	1.621	6	1538.0	0.137	0.006
Age	0.993	1.679	3	769.0	0.170	0.007
Survey delivery—visit	0.997	0.892	3	769.0	0.445	0.003
Survey delivery—year	0.998	0.410	3	769.0	0.746	0.002
Freq. of visits	0.984	1.406	9	1871.7	0.180	0.005

On the other hand, the results of multivariate test on opposing beliefs for all three species (Table 4) show the significant influence of knowledge, gender and education level. Again, knowledge has a moderate, but the strongest, effect on participants’ beliefs.

Table 4. General Linear Model (GLM) analysis of the effects of independent variables on opposing beliefs (PC 1) for all three large carnivore species.

Effect	Wilks’ Λ	F	Hypothesis df	Error df	p	Partial η²
Knowledge	0.941	15.931	3	769.0	<0.001	0.059
Gender	0.985	3.965	3	769.0	0.008	0.015
Education level	0.969	4.011	6	1538.0	0.001	0.015
Freq. of visits	0.988	1.059	9	1871.7	0.390	0.004
Survey delivery—visit	0.995	1.186	3	769.0	0.314	0.005
Survey delivery—year	0.998	0.421	3	769.0	0.738	0.002
Age	0.996	1.010	3	769.0	0.388	0.004

3.2. The Results of Univariate Statistics

When we analyzed the data for individual species, we found that, for all three species, supporting beliefs (PC 2) are influenced by knowledge and education level (Table 5). Respondents’ ratings were influenced by gender only for lynx, but strongly enough to produce significant effects in the multivariate statistics (Table 3). Still, the highest effect on supporting beliefs can be attributed to the knowledge of participants, which was evaluated as moderate.

Table 5. GLM univariate analysis of the effects of independent variables on supporting beliefs (PC 2) for individual species.

Source	Type III Sum of Squares	df	Mean Square	F	p	Partial η²
BEAR						
Knowledge	13.630	1	13.630	36.512	<0.001	0.045
Education level	3.343	2	1.672	4.478	0.012	0.011
Gender	0.414	1	0.414	1.108	0.293	0.001
Survey delivery—visit	0.086	1	0.086	0.229	0.632	0.000
Survey delivery—year	0.111	1	0.111	0.297	0.586	0.000
Age	0.108	1	0.108	0.289	0.591	0.000
Freq. of visits	0.592	3	0.197	0.528	0.663	0.002
Opposing beliefs (PC 1) are, in the same way as supporting beliefs, influenced by knowledge, education level (Table 6) and also gender. The highest effect on opposing beliefs can be attributed to the knowledge of participants, similarly to supporting beliefs (Table 5).

Table 5. Cont.

Source	Type III Sum of Squares	df	Mean Square	F	p	Partial η^2
WOLF						
Knowledge	13.728	1	13.728	36.735	<0.001	0.045
Education level	3.372	2	1.686	4.511	0.011	0.012
Gender	0.663	1	0.663	1.773	0.183	0.002
Age	0.515	1	0.515	1.378	0.241	0.002
Survey delivery—visit	0.169	1	0.169	0.452	0.502	0.001
Survey delivery—year	0.097	1	0.097	0.259	0.611	0.000
Freq. of visits	0.515	3	0.172	0.459	0.711	0.002
LYNX						
Knowledge	15.422	1	15.422	44.361	<0.001	0.054
Gender	2.373	1	2.373	6.826	0.009	0.009
Education level	3.297	2	1.649	4.743	0.009	0.012
Age	0.603	1	0.603	1.733	0.188	0.002
Freq. of visits	0.900	3	0.300	0.863	0.460	0.003
Survey delivery—visit	0.419	1	0.419	1.206	0.272	0.002
Survey delivery—year	0.008	1	0.008	0.023	0.881	0.000

Table 6. GLM univariate analysis of the effects of independent variables on opposing beliefs (PC 1) for individual species.

Source	Type III Sum of Squares	df	Mean Square	F	p	Partial η^2
BEAR						
Knowledge	17.392	1	17.392	35.454	<0.001	0.044
Education level	5.644	2	2.822	5.753	0.003	0.015
Gender	3.997	1	3.997	8.148	0.004	0.010
Freq. of visits	1.860	3	0.620	1.264	0.286	0.005
Survey delivery—visit	1.310	1	1.310	2.671	0.103	0.003
Survey delivery—year	0.357	1	0.357	0.728	0.394	0.001
Age	0.040	1	0.040	0.082	0.775	0.000
WOLF						
Knowledge	16.292	1	16.292	31.977	<0.001	0.040
Education level	5.949	2	2.974	5.838	0.003	0.015
Gender	2.734	1	2.734	5.367	0.021	0.007
Survey delivery—visit	1.634	1	1.634	3.206	0.074	0.004
Survey delivery—year	0.555	1	0.555	1.090	0.297	0.001
Age	0.296	1	0.296	0.581	0.446	0.001
Freq. of visits	1.267	3	0.422	0.829	0.478	0.003
LYNX						
Knowledge	22.042	1	22.042	44.167	<0.001	0.054
Education level	8.838	2	4.419	8.855	<0.001	0.022
Gender	3.998	1	3.998	8.011	0.005	0.010
Freq. of visits	2.271	3	0.757	1.517	0.209	0.006
Survey delivery—visit	1.039	1	1.039	2.081	0.130	0.003
Survey delivery—year	0.487	1	0.487	0.977	0.323	0.001
Age	0.055	1	0.055	0.110	0.740	0.000
3.3. Correlations between Beliefs and Knowledge

When controlled for the effect of gender, education level, reported number of visits to the zoo and survey delivery, strong correlations emerged between supporting ratings and between opposing ratings for all species (Table 7). Low and negative correlations were found between supporting and opposing dimensions for each species: the respondents agreed with supporting statements when they agreed less with opposing statements. Still lower correlations were found between knowledge scores and supporting/opposing belief ratings for individual species.

Table 7. Partial correlations between visitors’ beliefs and knowledge.

Partial Correlations	Correlation Value
Wolf vs. lynx supporting beliefs	0.936
Wolf vs. bear supporting beliefs	0.943
Lynx vs. bear supporting beliefs	0.904
Wolf vs. lynx opposing beliefs	0.932
Wolf vs. bear opposing beliefs	0.948
Lynx vs. bear opposing beliefs	0.904
Lynx supporting vs. opposing beliefs	−0.340
Wolf supporting vs. opposing beliefs	−0.345
Bear supporting vs. opposing beliefs	−0.353
Lynx supporting beliefs vs. knowledge	0.237
Wolf supporting beliefs vs. knowledge	0.217
Bear supporting beliefs vs. knowledge	0.211
Lynx opposing beliefs vs. knowledge	−0.231
Wolf opposing beliefs vs. knowledge	−0.202
Bear opposing beliefs vs. knowledge	−0.202

Note—all p < 0.001; control variables: gender, education level, freq. of visits and survey delivery; supporting belief (PC 2); opposing belief (PC 1).

3.4. Differences in Participants’ Belief Ratings and Knowledge Scores According to Independent Variables

In general, the mean scores of supportive statements were high: for all three species, they were between 4.41 and 4.43 on the 5-point scale. The mean scores for opposing belief ranged between 3.54 and 3.68 on the same scale. Independent variables that did not show significant effects in the multivariate and univariate statistics were excluded from this section. Only gender and education level effects are described (Tables 8 and 9).

Table 8. Effect of gender on ratings of belief statements and knowledge score.

Belief/Knowledge	Female	Male	Mann–Whitney U			
	M	SD	M	SD	Z	p
Lynx—sup	4.39	0.64	4.48	0.60	−2.037	0.042
Wolf—sup	4.39	0.64	4.44	0.65	−1.406	0.160
Bear—sup	4.40	0.63	4.43	0.66	−0.990	0.322
Lynx—opp	3.59	0.78	3.82	0.75	−4.424	<0.001
Wolf—opp	3.49	0.77	3.67	0.75	−3.650	<0.001
Bear—opp	3.47	0.75	3.65	0.74	−3.646	<0.001
Knowledge	3.46	1.54	4.08	1.43	−5.873	<0.001

Note: M = mean; SD = standard deviation; sup = supporting belief (PC 2); opp = opposing belief (PC 1); lower values in PC 1 indicate more opposing belief.
Table 9. Effect of education level on ratings of belief statements and knowledge score.

Belief/Knowledge	Primary School or Less	High School	University or More	Kruskal–Wallis χ²	df	p	Post-hoc Bonferroni-Corrected p-Values		
Lynx—sup	4.11 0.64	4.38 0.66	4.52 0.55	26.627	2	<0.001	0.001	<0.001	0.019
Wolf—sup	4.09 0.56	4.36 0.69	4.50 0.57	30.584	2	<0.001	<0.001	<0.001	0.018
Bear—sup	4.10 0.59	4.37 0.69	4.50 0.56	28.333	2	<0.001	0.001	<0.001	0.023
Lynx—opp	3.20 0.85	3.57 0.79	3.84 0.71	43.958	2	<0.001	0.006	<0.001	<0.001
Wolf—opp	3.09 0.80	3.46 0.77	3.71 0.73	41.289	2	<0.001	0.005	<0.001	<0.001
Bear—opp	3.12 0.82	3.45 0.75	3.68 0.71	38.764	2	<0.001	0.011	<0.001	<0.001
Knowledge	3.02 1.56	3.66 1.49	3.83 1.52	12.185	2	0.002	0.026	0.002	0.396

Note—M = mean; SD = standard deviation; sup = supporting belief (PC 2); opp = opposing belief (PC 1); Bonferroni-corrected post-hoc Mann–Whitney tests’ p-values: P/H—primary school or less vs. high school, P/U—primary school or less vs. university or more, and H/U—high school vs. university or more; lower values in PC 1 indicate more opposing belief.

3.4.1. Effect of Gender on Belief Statements and Knowledge Score

We found statistically significant differences in participants’ ratings of opposing beliefs for all species (Table 8: females agreed less than males with statements that oppose large carnivore conservation than males). As for supporting beliefs, males supported lynx conservation more than females. Yet the difference, although statistically significant, was small. Male participants also scored higher in knowledge than females.

3.4.2. Effect of Education Level on Belief Statements and Knowledge Score

Participants who are formally educated to a higher level display greater support for and less opposition to conservation of large carnivores (Kruskal–Wallis: all p < 0.001) (Table 9). On the other hand, we found smaller, but still statistically significant, differences in participants’ knowledge according to education level (Kruskal–Wallis: p = 0.002). Post-hoc comparisons revealed the significant differences between primary school- vs. high school-level educated participants and primary school- vs. university-level educated participants. High school- and university-level educated participants did not significantly differ in knowledge.

4. Discussion

Our results show that the greatest impact on supporting and opposing beliefs related to all three large carnivore species can be attributed to knowledge and education level. Gender is also recognized to play a role in participants’ ratings. All other independent variables produced no significant effects on participants’ ratings.

4.1. The Effect of Knowledge on Conservation Beliefs

Knowledge has been identified as an important factor in the process of the formation of attitudes toward conservation action [9], although some authors have argued that the attitudes are probably predisposed [73]. Knowledge has been recognized as one of the most important factors among children, with attitudes just developing [74]. Beside theoretical knowledge, direct experiences with animals are, or can be, an effective precursor in forming positive attitudes towards animals [27]. In the case of large carnivores, direct experiences of animals in nature are rare. Therefore, seeing species in a zoo setting can also be effective in forming positive attitudes [24]. Among all factors taken into account in the present study, knowledge had the greatest impact on both supporting and opposing conservation beliefs regarding large carnivores. Knowledge induced the formation of conservation-supporting beliefs for all three large carnivore species, but, even more importantly, it reduced the formation of conservation-opposing beliefs. People with less knowledge about the species expressed opposing beliefs more often than more knowledgeable people. The results suggest that teaching biological facts about large carnivores can improve overall public
support for large carnivore conservation, most likely through demystifying the species and also through reducing fear.

Leisure time activities, such as zoo visits involving connection with animals, correlate with more knowledge of those animal species [75]. Human perceptions of animals depend not only on the amount of knowledge (factual knowledge), but also on its type (e.g., factual, conceptual or procedural) [76]. Therefore, it has been concluded that human perception correlates with the type of knowledge transfer (e.g., egocentric or anthropocentric) [77]. While attitudes are formed at a very young age, education plays an important role in the perception of animals and nature in general persisting into adulthood [78].

4.2. The Effect of Gender on Conservation Beliefs and Knowledge

The influence of gender was found to be less uniform. Gender had an impact on belief ratings, but this was smaller than the impact of knowledge. Namely, it was found that gender had more influence on the opposing than supporting beliefs; it affected respondents’ ratings of supporting and opposing beliefs related to lynx, and also opposing beliefs related to bears and wolves. Females displayed more opposition to all three large carnivore species’ conservation than males. The results are in line with previous research that also reported gender differences in attitudes, where females expressed greater fear of large carnivores than males [13,23]. Consequently, gender was proposed as one of the most predictive factors in attitude formation [15]. The reason for the small but statistically significant difference in supportive beliefs between males and females in relation to lynx should be further explored.

Furthermore, males in the present study achieved higher knowledge scores than females, and reported less conservation-opposing beliefs. Other studies also showed that more knowledge about the species was not necessarily related to more positive attitudes in females [39]. Attitudes towards animals and knowledge about them are closely related to the amount of fear one experiences—they depend on individuals’ perceptions of potential dangerousness [24,41,74]. Consequently, environmental knowledge was set as an important factor to be controlled [28].

The present study’s results suggest that gender-specific educational strategies should also be considered.

4.3. The Effect of Education Level on Conservation Beliefs and Knowledge

Education level influenced supporting and opposing beliefs related to all three species. In other studies [41,75], it was found that a higher education level correlated with more positive attitudes towards animals. In the present study, the results show that a higher education level induced the formation of less opposing beliefs, representing the main concern of conservation actions.

Although the respondents’ degree of knowledge was significantly affected by education level, there was no difference between high school- and university-level participants. Significant differences in knowledge were found in comparison with the primary school educated group. In other research [41], a correlation between respondents’ knowledge and type of education institution was found. If, as shown in the present study, knowledge does not necessarily correlate with education level, then education in formal institutions does not address the topic sufficiently. As already proposed for primary school teachers, higher-level educators should engage students in activities that promote close contact with living organisms [29]. Again, this emphasizes the great educational potential of zoos as an informal learning environment, supplementing the instructions carried out in formal learning institutions. As promoters of species conservation, zoos have a great opportunity, and also responsibility, to provide quality information and experiences for the visitors. As already pointed out, the mission of zoos is not just to provide information, but they must aim to form positive attitudes toward nature among the visitors as well [47], using large carnivores as ambassador species of biodiversity conservation [79].
5. Conclusions

This study indicates that knowledge is an important factor that significantly shapes the attitudes of visitors towards all three large carnivore species.

The authors of the baseline study proposed separate designs of conservation and management plans for different species of large carnivores, following the differences in participants’ ratings of individual species [19]. However, in contrast to our study, theirs was conducted on the general public. Because in our case, the differences in participants’ conservation belief ratings between individual species were almost non-existent, we can conclude that zoo conservation education needs to focus more on females and visitors of lower education levels than on individual species.

Visiting a zoo without engaging in any guided educational activities does not change attitudes and beliefs regarding large carnivores. At our zoo, casual visitors can learn about the biology of large carnivores, mainly from information tables. Information about human–animal conflicts and their management is usually gained only through guided tours or workshops.

In the present study, only casual visitors participated. In order to obtain data on the efficiency of pedagogical activities, participants from guided tours and workshops should be included in future research. Since previous studies also stressed the effectiveness of educational activities in zoos [52] and other out-of-school settings [43], the evaluation of such educational activities regarding large carnivores is encouraged.

By determining the factors influencing an individual’s knowledge about large carnivores and beliefs about their conservation, the results of this study contribute to existing knowledge, as they serve as a theoretical basis for planning educational activities in conservation biology.

Author Contributions: Conceptualization, V.O. and I.T.; methodology, V.O., A.M.S. and I.T.; software, I.T.; validation, I.T., A.M.S. and A.Š.; formal analysis, V.O., A.M.S. and I.T.; investigation, V.O., A.M.S. and I.T.; resources, I.T.; data curation, V.O., A.M.S. and I.T.; writing—original draft preparation, V.O. and I.T.; writing—review and editing, all authors.; visualization, I.T.; supervision, I.T. and A.Š. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the Slovenian legislation—Personal Data Protection Act (Official Gazette of the Republic of Slovenia), No. 94/07—official consolidated text and 177/20 (citing http://www.pisrs.si/Pis.web/pregledPredpisa?id=ZAKO3906&d-49683-s=1&d-49683-p=1&d-49683-o=2, accessed on 30 November 2021) and guidelines of the Ethics committee of the University of Ljubljana (citing https://www.ff.uni-lj.si/fakulteta/komisija-za-etiko, accessed on 30 November 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: The authors thank all the students for their help in conducting the survey and the Ljubljana Zoo, which made the research possible. They also thank Slovenian Research Agency (ARRS) for enabling open access publication of the manuscript through project N1-0105.

Conflicts of Interest: The authors declare no conflict of interest.
Appendix A

QUESTIONNAIRE ON ATTITUDE TO AND KNOWLEDGE OF THE LARGE CARNIVORE ISSUES

Dear visitors of the Ljubljana Zoo. We ask you to take part in an anonymous survey, which assess the attitudes towards and knowledge of the issues regarding large carnivores. Your cooperation will help to improve pedagogical work and will influence the development and improvement of our nature conservation activities.

I. For the purposes of statistical data analysis, please fill in the sections below.

1. Gender: [] Female [] Male
2. Age: _______ years.
3. Place of residence: ___________________________
4. Education level:
 a. Uncompleted primary and secondary school
 b. Completed primary and secondary school
 c. Completed upper secondary school
 d. Higher education
5. How many times you visit the zoo?
 a) every two months b) twice a year c) once a year d) less than once per year
6. Do you have a pet?
 a. Dog [] b. Cat [] c. I am not a pet owner []

II. Please answer the questions that test your knowledge of large carnivores living in Slovenia. Circle only one answer that you think is correct, or the answer that best describes your opinion.

1) All large carnivore species (brown bear, grey wolf and Eurasian lynx) are protected in Slovenia due to their endangerment.
 a. Yes.
 b. No.
 c. Not sure.

2) Compensation for damage caused by large carnivores to farmers is paid by the state.
 a. Yes.
 b. No.
 c. Not sure.

3) How do Eurasian lynx live?
 a. In couple.
 b. Solitary.
 c. In social group.
 d. Not sure.

4) The Eurasian lynx became extinct in Slovenia in the past, but then it was reintroduced.
 a. Yes.
 b. No.
 c. Not sure.

5) Brown bears in Slovenia diet mainly consists of:
 a. food of animal origin (game, carrion ...),
 b. food of plant origin (plants and their fruits),
 c. food of animal and plant origin in approximately equal quantities,
 d. not sure.

Questionnaire design: mag. Aleksandra Majič Skrbišek and doc. dr. Iztok Tomazič
6) The weight of an average adult male grey wolf in Slovenia is:
 a. 1-20 kilos,
 b. 21-40 kilos,
 c. 41-60 kilos,
 d. more than 60 kilos,
 e. Not sure.

7) Of how many members consists an average wolf pack in Slovenia?
 a. 1-10 wolves.
 b. 11-20 wolves.
 c. 21-30 wolves.
 d. More than 30 wolves.
 e. Not sure.

III. The table below lists the claims that relate to your support for the protection of a particular large carnivore species. Please rate your agreement with each statement FOR EACH ANIMAL SEPARATELY on a scale of 1 to 5.

N	STATEMENT	LYNX	WOLF	BEAR
	We should share the responsibility for conserving these animals.	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5
2	There is a high risk of human injuries.	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5
3	There is no need for conservation in Slovenia because there are populations in other countries.	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5
4	I want these animals to be present in Slovenia, even though I may never see them in the wild.	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5
5	We may use these animals as a valuable game species.	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5
6	Costs of compensation, research and monitoring are too high.	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5
7	They may have serious negative impact on livestock farming.	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5
8	These animals can have positive impact on balance of organisms.	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5
9	We need to preserve these animals for future generations.	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5
10	These animals compete with hunters over game such as deer and roe deer.	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5
11	It is hard to predict the effects of extermination.	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5
12	These animals may have serious negative impact on deer and roe deer numbers.	1 2 3 4 5	1 2 3 4 5	1 2 3 4 5

Thank you for cooperation!

*** Protection of potential personal data: all obtained personal data will be used exclusively for one-time communication and statistical data processing. The survey authors undertake to protect any personal data collected in the survey following the Personal Data Protection Act and not pass it on to third parties.

Questionnaire design: mag. Aleksandra Mjukić Skrinški and dr. Istok Tomažič

References
1. Jerina, K.; Ordiz, A. Reconstruction of brown bear population dynamics in Slovenia in the period 1998–2019: A new approach combining genetics and long-term mortality data. *Acta Silvae et Ligni 2021*, 124, 29–41. [CrossRef]
2. Bartol, M.; Boljte, B.; Cerne, R.; Črtalič, J.; Hanc, Ž.; Jelenčič, M.; Kljun, F.; Konec, M.; Kos, I.; Kuralt, Ž.; et al. *Spremljanje Varstvenega Stanja Volkov v Sloveniji v Letih 2017/2020 Končno Poročilo–Poročilo za Sezono 2019/2020*; Ministrstvo za Okolje in Prostor: Ljubljana, Slovenija, 2020; p. 76.
3. Krofel, M.; Fležar, U.; Hočevar, L.; Sindičič, M.; Gomeričić, T.; Konec, M.; Černe, R. *Surveillance of the Reinforcement Process of the Dinaric–SE Alpine Lynx Population in the Lynx-Monitoring Year 2019–2020*: Technical Report; University of Ljubljana: Ljubljana, Slovenia, 2021; 45p. Available online: www.lifelynx.eu (accessed on 3 October 2021).

4. Redpath, S.M.; Linnell, J.D.C.; Festa-Bianchet, M.; Boitani, L.; Bunnefeld, N.; Dickman, A.; Gutiérrez, R.J.; Irvine, R.J.; Johansson, M.; Majic, A.; et al. Don’t forget to look down–collaborative approaches to predator conservation. *Biol. Rev.* 2017, 92, 2157–2163. [CrossRef]

5. Heberlein, T.A. *Navigating Environmental Attitudes*; Oxford University Press: Oxford, UK, 2002.

6. Thomas, S. Editorial: Future Perspectives in Conservation Education. *Int. Zoo Yearb.* 2016, 50, 9–15. [CrossRef]

7. Kellert, S.R. Public attitudes toward bears and their conservation. *Int. Conf. Bear Res. Manag.* 1994, 9, 43–50. [CrossRef]

8. Spur, N.; Pokorny, B.; Soro, A. Attitudes toward and acceptability of management strategies for a population of hooded crows (Corvus cornix) in Slovenia. *Anthrozoös* 2016, 29, 669–682. [CrossRef]

9. Bruskotter, J.T.; Wilson, R.S. Determining where the wild things will be: Using psychological theory to find tolerance for large carnivores. *Conserv. Lett.* 2014, 7, 158–165. [CrossRef]

10. Johansson, M.; Karlsson, L. Subjective experience of fear and the cognitive interpretation of large carnivores. *Hum. Dimens. Wildl.* 2011, 16, 15–29. [CrossRef]

11. Reskaft, E.; Bjerke, T.; Kaltenborn, B.P.; Linnell, J.D.C.; Andersen, R. Patterns of self-reported fear towards large carnivores among the Norwegian public. *Evol. Hum. Behav.* 2003, 24, 184–198. [CrossRef]

12. Majić, A.; Marino Taussig de Bodonia, A.; Huber, D.; Bunnefeld, N. Dynamics of public attitudes toward bears and the role of bear hunting in Croatia. *Biol. Conserv.* 2011, 144, 3018–3027. [CrossRef]

13. Kaltenborn, B.P.; Bjerke, T.; Nyahongo, J.W.; Williams, D.R. Animal preferences and acceptability of wildlife management actions around Serengeti National Park, Tanzania. *Biodivers. Conserv.* 2006, 15, 4633–4649. [CrossRef]

14. Bath, A.; Olszanska, A.; Okarma, H. From a human dimensions perspective, the unknown large carnivore: Public attitudes toward Eurasian lynx in Poland. *Hum. Dimens. Wildl.* 2008, 13, 31–46. [CrossRef]

15. Dresel, S.; Sandström, C.; Ericsson, G. A meta-analysis of studies on attitudes toward bears and wolves across Europe 1976–2012. *Conserv. Biol.* 2015, 29, 565–574. [CrossRef] [PubMed]

16. Kaczensky, P.; Blažič, M.; Gossow, H. Public attitudes towards brown bears (Ursus arctos) in Slovenia. *Biol. Conserv.* 2004, 118, 661–674. [CrossRef]

17. Karlsson, J.; Sjöström, M. Direct use values and passive use values: Implications for conservation of large carnivores. *Biodivers. Conserv.* 2008, 17, 883–891. [CrossRef]

18. Kellert, S.R. Public perceptions of predators, particularly the wolf and coyote. *Biol. Conserv.* 1985, 31, 167–189. [CrossRef]

19. Burghardt, G.M.; Herzog, H.A., Jr. Beyond conspecifics: Is Brer Rabbit our brother? *BioScience* 1980, 30, 763–768. [CrossRef]

20. Arrindell, W.A.; Eisemann, M.; Richter, J.; Tian, P.S.; Oei, T.P.S.; Caballo, V.E.; Van Der Ende, J.; Sanavio, E.; Bag et al. Cultural Clinical Psychology Group. Phobic anxiety in 11 nations: Part I: Dimensional constancy of the five-factor model. *Behav. Res. Ther.* 2003, 41, 461–479. [CrossRef]

21. Kellert, S.R. Attitudes, knowledge, and behaviors toward wildlife as affected by gender. *Wildl. Soc. Bull.* 1987, 15, 363–371.

22. Prokop, P.; Özel, M.; Ușač, M. Cross-Cultural Comparison of Student Attitudes toward Snakes. *Soc. Anim.* 2009, 17, 224–240. [CrossRef]

23. Prokop, P.; Tunnicliffe, S.D. Effects of having pets at home on children’s attitudes toward popular and unpopular Animals. *Anthrozoös* 2010, 23, 21–35. [CrossRef]

24. Weldon, A.V.; Campera, M.; Zhang, X.; Ni, Q.; Zhu, W.W.; Nijman, V.; Nekaris, K.A.I. Perceptions of animal welfare and exotic pet ownership in China. *Anim. Welf.* 2007, 50, 169–178. [CrossRef]

25. Tomazić, I. Reported experiences enhance favourable attitudes toward toads. *Eurasia J. Math. Sci. Technol. Educ.* 2011, 7, 253–262. [CrossRef]

26. Tomazić, I. The influence of direct experience on students’ attitudes to, and knowledge about amphibians. *Acta Biol. Slov.* 2008, 51, 39–49.

27. Lindemann-Matthes, P. ‘Loveable’ mammals and ‘lifeless’ plants: How children’s interest in common local organisms can be enhanced through observation of nature. *Int. J. Sci. Educ.* 2005, 27, 655–677. [CrossRef]

28. Hogberg, J.; Treves, A.; Shaw, B.; Naughton, L. *Public Attitudes towards Wolves in Wisconsin (Survey Report)*; Carnivore Coexistence Lab: Madison, WI, USA, 2013.
34. Majič Skrbišček, A.; Skrbišček, T.; Knauser, F.; Reljić, S.; Molinari-Jobin, A.; Calderola, S.; Marinko, U.; Bragalanti, N. Project Visibility and Public Acceptance of Bears and Bear Management; Final Report of the Action D3, Project LIFE DINALP BEAR; University of Ljubljana: Ljubljana, Slovenia, 2019; p. 71. Available online: www.dinalpbear.eu (accessed on 3 October 2021).

35. Majič Skrbišček, A.; Mavec, M.; Skrbišček, T.; Molinari Jobin, A.; Selanec, I.; Budimir, Z. Assessment of Public Attitudes toward Lynx and Lynx Conservation in Slovenia, Croatia and Italy; Final report of the Action, A.7; University of Ljubljana, Biotechnical Faculty: Ljubljana, Slovenia, 2020; p. 30. Available online: www.lifelynx.eu (accessed on 3 October 2021).

36. Mavec, M.; Majič Skrbišček, A. Pedrovo Poročilo o Rezultatih Raziskave Odnosa Siriščanih do Volka in Upravljanja z Njim. Poročilo Anketnine Raziskave Izvedene v Sklopu Projekta »Spremljanje Varstvenega Stanja Volkov v Sloveniji v Leti 2017/2020«, Oddelek za Biologijo, Biotehniška Fakulteta, Univerza v Ljubljani, Ljubljana, Slovenia, 2020; p. 63.

37. Trajče, A.; Ivanov, G.; Keči, E.; Majič, A.; Melovski, D.; Mersini, K.; Mustafa, S.; Skrbišček, T.; Stojanov, A.; Todorovska, A.; et al. All carnivores are not equal in the rural people’s view. Should we develop conservation plans for functional guilds or individual species in the face of conflicts? Glob. Ecol. Conserv. 2019, 19, e00677. [CrossRef]

38. Zeiler, H.; Zedrosser, A.; Bath, A. Attitudes of Austrian hunters and Vienna residents toward bear and lynx in Austria. Ursus 1999, 11, 193–200.

39. Ambarlı, H. Rural and urban students’ perceptions of and attitudes toward brown bears in Turkey. Anthrozoös 2016, 29, 489–502. [CrossRef]

40. Randler, C.; Wagner, A.; Rögele, A.; Hummel, E.; Tomazic, I. Attitudes toward and knowledge about wolves in SW German secondary school pupils from within and outside an area occupied by wolves (Canis lupus). Animals 2020, 10, 607. [CrossRef]

41. Schlegel, J.; Ruf, R. Attitudes towards potential animal flagship species in nature conservation: A survey among students of different educational institutions. J. Nat. Conserv. 2010, 18, 278–290. [CrossRef]

42. Oražem, V.; Tomazic, I. The vocational upper secondary schools’ knowledge and their attitudes toward wolves. J. Balt. Sci. Educ. 2018, 17, 918–934. [CrossRef]

43. Oražem, V.; Tomazic, I.; Kos, I.; Nagode, D.; Randler, C. Wolves’ Conservation through educational workshops: Which method works best? Sustainability 2019, 11, 1124. [CrossRef]

44. Consorte-McCrea, A.G.; Rubin, R. Attitudes of visitors and professionals toward the conservation of the maned wolf in southeast Brasil. Canid News 2009, 12, 1–22.

45. Marseille, M.M.; Elands, B.H.M.; van den Brink, M.L. Experiencing Polar Bears in the Zoo: Feelings and Cognitions in Relation to a Visitor’s Conservation Attitude. Hum. Dimens. Wildl. 2012, 17, 29–43. [CrossRef]

46. Reading, R.P.; Miller, B.J. Attitudes and attitude change among zoo visitors. In Zoos in the 21st Century, Catalysts for Conservation? Zimmerman, A., Hatchwell, M., Dickie, L., West, C., Eds.; Cambridge University Press: Cambridge, UK; Zoological Society of London: Cambridge, UK, 2007; pp. 63–91.

47. Khalil, K.; Cote, E.; Weber, M.; O’Morchoe, C. Embedded evaluation tools effectively measure empathy for animals in children in informal learning settings. Ecopsychology 2020, 12, 309–319. [CrossRef]

48. Gurusamy, V.; Tribe, A.; Toukhssati, S.; Phillips, C.J.C. Public Attitudes in India and Australia toward elephants in zoos. Anthrozoös 2015, 28, 87–100. [CrossRef]

49. Miller, L.J.; Zeigler-Hill, V.; Mellen, J.; Koeppe, J.; Greer, T.; Kuczaj, S. Dolphin shows and interaction programs: Benefits for conservation education? Zoo Biol. 2013, 32, 45–53. [CrossRef] [PubMed]

50. Lucas, K.E.; Ross, S.R. Zoo visitor knowledge and attitudes toward gorillas and chimpanzees. J. Environ. Educ. 2005, 36, 33–48. [CrossRef]

51. Craig, L.E.; Vick, S.L. Engaging zoo visitors at chimpanzee (Pan troglodytes) exhibits promotes positive attitudes toward chimpanzees and conservation. Anthrozoös 2021, 34, 1–15. [CrossRef]

52. Wünschmann, S.; Wüst-Ackermann, P.; Randler, C.; Vollmer, C.; Itzek-Greulich, H. Learning achievement and motivation in an out-of-school setting—visiting amphibians and reptiles in a zoo is more effective than a lesson at school. Res. Sci. Educ. 2017, 47, 497–518. [CrossRef]

53. Ciew, S.J.; Hemsworth, P.H.; Melfi, V.; Sherwen, S.L.; Burns, A.; Coleman, G.J. Visitor attitudes toward little penguins (Eudyptula minor) at two Australian zoos. Front. Psychol. 2021, 12, 626185. [CrossRef]

54. Collins, C.; SMcKeown, C.; MSweeney, L.; Flannery, K.; Kennedy, D.; O’Riordan, R. Children’s conversations reveal in-depth learning at the Zoo. Anthrozoös 2021, 34, 17–32. [CrossRef]

55. EAZA Conservation Education Standards. Available online: https://www.eaza.net. (accessed on 11 October 2021).

56. Conde, D.A.; Flesness, N.; Colchero, F.; Jones, O.R.; Scheuerlein, A. An emerging role of zoos to conserve biodiversity. Science 2011, 331, 1390–1391. [CrossRef] [PubMed]

57. Hatchwell, M.; Rübel, A. The Masala rainforest: A model partnership in support of in situ conservation in Madagascar. In Zoos in the 21st Century, Catalysts for Conservation? Zimmerman, A., Hatchwell, M., Dickie, L., West, C., Eds.; Cambridge University Press, Zoological Society of London: Cambridge, UK; Cambridge, USA, 2010; pp. 205–219.

58. Routman, E.; Ogden, J.; Wisten, K. Visitors, conservation learning, and the design of zoo and aquarium experiences. In Wild Mammals in Captivity: Principles & Techniques for Zoo Management, 2nd ed.; Kleiman, D.G., Thompson, K.V., Baer, C.K., Eds.; The University of Chicago Press: Chicago, IL, USA; 2010; pp. 137–150.

59. Gwynne, J.A. Inspiration for conservation: Moving audiences to care. In Zoos in the 21st Century, Catalysts for Conservation? Zimmerman, A., Hatchwell, M., Dickie, L., West, C., Eds.; Cambridge University Press, Zoological Society of London: Cambridge, UK, 2007; pp. 51–62.
60. Gusset, M.; Dick, G. The global reach of zoos and aquariums in visitor numbers and conservation expenditures. *Zoo Biol.* 2011, 30, 566–569. [CrossRef] [PubMed]
61. Tribe, A.; Booth, R. Assessing the role of zoos in wildlife conservation. *Hum. Dimens. Wildl.* 2003, 8, 65–74. [CrossRef]
62. Furlan Vukoja, I. History of Educational Programs and Developing Guidelines for the Future Development of Pedagogical Work at the Ljubljana Zoo. Master’s Thesis, Univerza v Ljubljani Biotehniška Fakulteta, Ljubljana, Slovenija, 2016.
63. Packer, J.; Ballantyne, R. The role of zoos and aquariums in education for a sustainable future. *New Dir. Adult Contin. Educ.* 2010, 127, 25–34. [CrossRef]
64. Morgan, J.M.; Hodgkinson, M. The motivation and social orientation of visitors attending a contemporary zoological park. *Environ. Behav.* 1999, 31, 227–239. [CrossRef]
65. Woolliard, S.P. The development of zoo education. *Int. Zoo News* 1998, 45, 422–426.
66. Roggenbuck, J.; Loomis, R.; Dagastino, J. The learning benefits of leisure. *J. Leis. Res.* 1990, 22, 112–124. [CrossRef]
67. Moscardo, G.; Woods, B.; Greenwood, T. *Status Assessment of Wildlife Tourism in Australia Series: Understanding Visitor Perspectives on Wildlife Tourism*; Wildlife Tourism Research Report No. 2; CRC for Sustainable Tourism: Gold Coast, QLD, Australia, 2001.
68. Albert, C.; Luque, G.M.; Courchamp, F. The twenty most charismatic species. *PLoS ONE* 2018, 13, e0199149. [CrossRef]
69. Cohen, L.; Manion, L.; Morrison, K. *Research Methods in Education*, 8th ed.; Routledge: London, UK, 2005.
70. Eagles, P.F.J.; Muffitt, S. An analysis of children’s attitudes toward animals. *J. Environ. Educ.* 1990, 21, 41–44. [CrossRef]
71. Consorte-McCrea, A.; Fernandez, A.; Bainbridge, A.; Moss, A.; Prévot, A.-C.; Clayton, S.; Glikman, J.A.; Johansson, M.; López-Bao, J.V.; Bath, A.; et al. Large carnivores and zoos as catalysts for engaging the public in the protection of biodiversity. *Nat. Conserv.* 2019, 37, 133–150. [CrossRef]