FOURIER TRANSFORMS ON THE BASIC AFFINE SPACE
OF A QUASI-SPLIT GROUP

NADYA GUREVICH AND DAVID KAZHDAN

Abstract. We extend the Gelfand and Graev construction of generalized Fourier transforms on basic affine space from split groups to quasi-split groups over a local non-archimedean field F.

1. Introduction

1.0.1. Notation.
- Let F be a local non-archimedean field with the norm $|·| = |·|_F$, the ring of integers \mathcal{O} and a fixed uniformizer ϖ such that $|\varpi| = q^{-1}$, where q is the cardinality of the residue field.
- We fix a non-trivial additive character ψ throughout the paper. The self-dual Haar measure dx on F with respect to ψ defines the Haar measure $d^\times x = \frac{dx}{|x|}$ on F^\times.
- For a quadratic extension K of F we denote by χ_K the quadratic character of F^\times, associated to K by class field theory. We also denote by χ_0 the trivial character of F^\times.
- For a space Y over F we denote by $\mathcal{S}^\infty(Y)$ (resp. $\mathcal{S}_c(Y)$) the space of locally constant (resp. locally constant of compact support) functions on Y.
- Throughout this paper we use boldface characters for group schemes over F, such as H, and plain text characters for their group of F-points, such as H.
- Let G be a simply-connected quasi-split group defined over F with a maximal F-split torus T' and the maximal torus $T = Z_G(T')$. We fix a Borel subgroup B of G containing T so that $B = T \cdot U$. We write U^{opp} for the unipotent radical of the opposite Borel subgroup.
- The Weyl group $W = N_G(T')/T$ acts on T by conjugation and we write t^w for $w^{-1}tw$ for all $t \in T, w \in W$.
- The quotient $X = U \backslash G$ is called the basic affine space of G. For any $g \in G$ we write $[g]$ for the element Ug in X. The space X admits unique, up to a scalar, G-invariant measure ω_X. The precise choice of ω_X is not important for general G, but will be fixed for groups of rank 1.

1.1. Fourier transforms on the basic affine space of a quasi-split group. We define a unitary representation θ of the group $G \times T$ on $L^2(X, \omega_X)$
by:
\[
\theta(g, t)f([h]) = \delta_B^{1/2}(t)f([t^{-1}hg]),
\]
where \(\delta_B\) is the modular character.

For split groups Gelfand and Graev in [GG73], see also [KL88], [Kaz95], extended the action \(\theta\) of \(G \times T\) to a representation of \(G \times (T \rtimes W)\), so that every element \(w\) of \(W\) acts on \(L^2(X, \omega_X)\) by an operator \(\Phi_w\), called a generalized Fourier transform. Our paper has two goals:

- To extend the construction by Gelfand and Graev to quasi-split groups.
- To show that the Whittaker map intertwines the action of \(W\) on a dense subspace \(S_0(X)\) in \(L^2(X)\) with the natural action of \(W\) on the space of Whittaker vectors. We show (see Theorem 1.2) that this property characterizes uniquely the operators \(\Phi_w\).

1.1.1. Whittaker map. Fix a non-degenerate character \(\Psi\) of \(U^{\text{op}}\). The map
\[
W_\Psi : S_c(X) \to S_c(T), \quad W_\Psi(f)(t) = \int_{U^{\text{op}}} \theta(t)f([u])\Psi^{-1}(u)du,
\]
defines an isomorphism \(S_c(X)_{U^{\text{op}}, \Psi} \simeq S_c(T)\).

We define an action of \(W\) on \(S_c(T)\). For split groups set
\[
w \cdot \varphi(t) = \varphi(t^w).
\]
For quasi-split groups see Definition 5.6.

We define (see 6.1) a \(G \times T\) submodule \(S_0(X)\) that is dense in \(L^2(X)\) and put
\[
S_0(T) = W_\Psi(S_0(X)) \simeq S_0(X)_{U^{\text{op}}, \Psi}.
\]

There is a natural map \(\kappa_\Psi : \text{End}_G(S_0(X)) \to \text{End}_C(S_0(X)_{U^{\text{op}}, \Psi}) = \text{End}_C(S_0(T))\) such that for every \(B \in \text{End}_G(S_0(X))\) the following diagram is commutative.

\[
\begin{array}{ccc}
S_0(X) & \xrightarrow{B} & S_0(X) \\
\downarrow{W_\Psi} & & \downarrow{W_\Psi} \\
S_0(T) & \xrightarrow{\kappa_\Psi(B)} & S_0(T)
\end{array}
\]

We prove in Proposition 6.2 that the map \(\kappa_\Psi\) is injective.

1.1.2. Main Theorem. With this notation we formulate our main result.

Theorem 1.2. There exists unique family of unitary operators \(\Phi_w, w \in W\), on \(L^2(X, \omega_X)\), preserving the space \(S_0(X)\) and satisfying:

\[
\begin{cases}
\Phi_w \circ \theta(g, t^w) = \theta(g, t) \circ \Phi_w \quad \forall w \in W, t \in T, g \in G \\
\Phi_w \circ \Phi_w = \Phi_{w_1w_2} \quad \forall w_1, w_2 \in W \\
\kappa_\Psi(\Phi_w)(\varphi) = w \cdot \varphi \quad \forall w \in W, \varphi \in S_0(T)
\end{cases}
\]

(1.3)
Let us sketch the proof.

(1) First consider a quasi-split, almost simple, simply-connected group G_1 of rank one. The group G_1 is isomorphic to either $\text{Res}_L SL_2$ or $\text{Res}_L SU_3$ for a finite extension L of F. Without loss of generality we can assume that $L = F$. In both cases the Weyl group $W = \{e, s\}$ consists of two elements. We shall define the generalized Fourier operator Φ_s, separately for these two cases.

- In the case $G_1 = SL_2$ the set X can be identified with $V - 0$ for a symplectic two dimensional plane V. In this case $\Phi_s \in \text{Aut}(L^2(X)) = \text{Aut}(L^2(V))$ is defined to be the classical Fourier transform with respect to the symplectic form on V. Theorem 1.2 in this case is proven in Section 3.

- In the case $G_1 = SU_3$, the set X can be identified with the set of non-zero isotropic vectors in a 6 dimensional quadratic space. The treatment of this case is the crux of the paper. In [GK22] we have defined a unitary operator $\Phi \in L^2(X)$ of order 2, commuting with G_1 and anti-commuting with T', and provided an explicit formula for the restriction of Φ to the space $S_c(X)$. We put $\Phi_s = \Phi$ and prove Theorem 1.2 in this case in Section 4.

(2) For a general quasi-split group G and any simple reflection s we, using the results for groups of rank 1, define a unitary involution $\Phi_s \in \text{Aut}(L^2(X))$, satisfying

$$
\begin{cases}
\Phi_s \circ \theta(g, t^s) = \theta(g, t) \circ \Phi_s & \forall t \in T, g \in G \\
\kappa_\varphi(\Phi_s)(\varphi) = s \cdot \varphi & \forall \varphi \in S_0(T)
\end{cases}
$$

(3) For arbitrary $w \in W$ with a presentation $w = s_1 \cdot s_2 \cdot \ldots \cdot s_n$ as a product of simple reflections we define $\Phi_w = \Phi_{s_1} \circ \Phi_{s_2} \ldots \circ \Phi_{s_n}$. Hence the operators Φ_w are unitary and possess the desired equivariance properties. It remains to prove that Φ_w does not depend on the presentation. For every $\varphi \in S_0(T)$ one has $\kappa_\varphi(\Phi_w)(\varphi) = w \cdot \varphi$ and so $\kappa_\varphi(\Phi_w)$ does not depend on the presentation of w. Since κ_φ is injective, the operator Φ_w does not depend on the presentation of w as well. In particular, $\Phi_{w_1} \circ \Phi_{w_2} = \Phi_{w_1 w_2}$ for $w_1, w_2 \in W$ and the operators $\{\Phi_w, w \in W\}$ satisfy 1.3.

Remark 1.4. We expect that a similar strategy can be applied to prove Theorem 1.2 for $F = \mathbb{R}$.

Acknowledgment. The research of the second author is partially supported by the ERC grant No 669655. We thank the referee for careful reading of the paper and pointing several inaccuracies in the first version.
2. ON THE SPACE \(S_0(X) \)

In [BK99] the authors have defined for split groups the spaces

\[
S(X) = \sum_{w \in W} \Phi_w(S_c(X)), \quad S^0(X) = \cap_{w \in W} \Phi_w(S_c(X)).
\]

In particular

\[
S^0(X) \subset S_c(X) \subset S(X) \subset L^2(X, \omega_X)
\]

and the spaces \(S^0(X), S(X) \) are preserved by the family of operators \(\Phi_w, w \in W \).

The space \(S(X) \), called Schwartz space, is potentially important for construction of integral representations of \(L \)-functions.

The description of the Schwartz space \(S(X) \) explicitly is a deep problem. For example for \(G = SL_2 \) one has \(S(X) = S_c(V) \) and for \(G = SU_3 \) the space \(S(X) \) can be identified with the space of smooth vectors in the unitary minimal representation of a group \(SO(8) \) containing \(SU_3 \) inside its Levi subgroup \(GL_1 \times SO(6) \), see [GK22].

The space \(S_0(X) \) in this paper is contained in \(S^0(X) \). Let us highlight its useful properties:

- It is explicitly given as an intersection of kernels of certain partial Mellin transforms.
- The Fourier transforms corresponding to simple reflections preserve this space and can be written as integral operators with explicitly given continuous kernels.
- The family \(\{\Phi_w\} \) is unique for given \(S_0(X) \).

On the other hand this space is not canonical and can easily be replaced by other subspaces in \(S_c(X) \), dense in \(L^2(X, \omega_X) \) and preserved by \(\Phi_w \), for example by \(S^0(X) \).

The space \(S_0(X) \) will be defined separately for the groups of rank one, and, based on this, for general group.

The density of \(S_0(X) \) in \(L^2(X, \omega_X) \) is the consequence of Proposition 2.1 below.

Consider a finite set

\[
\mathbb{B} = \{(L_i, a_i, \chi_i), \quad 1 \leq i \leq k\},
\]

where \(L_i \) is a finite extension of \(F \), \(a_i : L_i^\times \hookrightarrow T \) is an embedding and \(\chi_i \) is a character of \(L_i^\times \). For each \((L_i, a_i, \chi_i) \) consider a partial Mellin transform \(P_i : S_c(X) \to S^\infty(X) \) defined by

\[
P_i(f) = \int_{L_i^\times} \theta(a_i(y)) f \chi_i(y) d^\times y.
\]

Define \(S_{\mathbb{B}}(X) = \cap_{i=1}^k \text{Ker}(P_i) \). It is a \(G \times T \) invariant subspace of \(S_c(X) \).

The following proposition will be repeatedly used in the paper.

Proposition 2.1. The space \(S_{\mathbb{B}}(X) \) is dense in \(L^2(X, \omega_X) \).
proof. Let us prove this first for the case all the characters χ_i are not unitary. Precisely assume that all χ_i satisfy $|\chi_i| = |\cdot|^b_i$ with real $b_i \neq 0$ for all i. Let $b = \min(|b_i|) > 0$.

To show that the space $S_B(X)$ is dense, assume existence of a non-zero function $f \in S_B(X)^+ \subset L^2(X,\omega_X)$. Since $S_c(X)$ is dense in $L^2(X)$ there exists a function $g \in S_c(X)$ such that $\langle f, g \rangle \neq 0$.

Denote by ϖ_i an uniformizer of L_i. For any $n \in \mathbb{N}$ define operators E_n^i, E_n on $S_c(X)$ by $E_n = \Pi_{i=1}^k E_{n_i}$, where

$$E_{n_i}^i = \begin{cases} \text{Id} - \theta(a_i(\varpi_i)^n)\chi_i(\varpi_i^n) & b_i > 0 \\ \text{Id} - \theta(a_i(\varpi_i)^{-n})\chi_i(\varpi_i^{-n}) & b_i < 0 \end{cases}.$$

Clearly, $E_n(g) \in S_B(X)$. Set $g_n = g - E_n(g)$. Note that $|\chi_i(\varpi_i)|$ (resp. $|\chi_i(\varpi_i^{-1})|$) is bounded by q^{-b} for $b_i > 0$ (resp. $b_i < 0$) for any i. Moreover the action $\theta(a_i(\varpi_i))$ is unitary. This implies $\|g_n\| \leq q^{-nb}(2^k - 1)\|g\|$. Hence

$$0 \neq |\langle g, f \rangle| = |\langle g_n, f \rangle| \leq q^{-nb}(2^k - 1)\|f\| \|f\| \to 0$$

as $n \to \infty$, which is a contradiction.

Now let us treat the general set of characters \mathbb{B}. For any compact subset \mathcal{K} in X let $S_{\mathbb{B}}(X;\mathcal{K})$ be the space of functions in $S_{\mathbb{B}}(X)$ supported on \mathcal{K}. Obviously, $S_{\mathbb{B}}(X) = \bigcup_{\mathcal{K}} S_{\mathbb{B}}(X;\mathcal{K})$.

Since the action of T on X is free, for any character χ of T there exists a smooth function h on X, such that

$$h([t^{-1}g]) = \chi(t)h([g]), \quad h([g]) \neq 0, \quad \forall [g] \in X, t \in T.$$

Multiplication on h defines a T-equivariant isomorphism between $S_{\mathbb{B}}(X)$ and $S_{\mathbb{B}'}(X)$, where $\mathbb{B}' = \{\{L_i, a_i, \chi_i \circ a_i\}\}$, which is also homeomorphism between $S_{\mathbb{B}}(X;\mathcal{K})$ and $S_{\mathbb{B}'}(X;\mathcal{K})$ for all compact $\mathcal{K} \subset X$. Hence $S_{\mathbb{B}}(X)$ is dense if and only if $S_{\mathbb{B}}(X)$ is dense in $L^2(X,\omega_X)$. By choosing appropriate χ we can ensure that \mathbb{B}' does not contain unitary characters. We are done.

\[\blacksquare \]

3. $G_1 = SL_2$

Let $(V, \langle \cdot, \cdot \rangle_V)$ be a two dimensional symplectic space with the standard basis e_1, e_2 such that $\langle e_1, e_2 \rangle_V = 1$.

The group G_1 acts on V on the right, preserving the symplectic form. Let $B_1 = T_1 \cdot U_1$ be the Borel group, stabilizing the line F_{e_2}. The space $X = U_1 \setminus G_1$ is identified with $[g] \to e_2g$. The G_1-invariant measure ω_X on X is fixed to be the self-dual measure $|dv|$ on V with respect to the additive character ψ and the symplectic form on V.

The Fourier transform $\Phi \in \text{Aut}(S_c(V))$ is defined by the formula

$$\Phi(f)(w) = \int_V f(v)\psi((w, v)_V)dv.$$

The following properties of Φ are well-known:
Proposition 3.1.

1. \(\Phi \) extends to a unitary involution on \(L^2(V, |dv|) = L^2(X, \omega_X) \).
2. \(\theta(t, g) \circ \Phi = \Phi \circ \theta(t^{-1}, g) \) for all \((t, g) \in T_1 \times G_1 \).

For a function \(f \) on \(X \) the argument will be denoted either as a class \([g]\) or as a vector \((x, y) = xe_1 + ye_2 \in V - 0\).

We define certain typical elements of \(G_1 \):

\[
x(r) = \begin{pmatrix} 1 & 0 \\ r & 1 \end{pmatrix}, \quad t(a) = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}, \quad n_s = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
\]

One has \(\alpha(t(a)) = a^2 \) for the unique positive root \(\alpha \) of \(G_1 \) with respect to \(T_1 \).

3.1. The space \(S_0(X) \). Let \(\mathbb{B} \) be the set of two triples

\[
\mathbb{B} = \{(F^\times, t : F^\times \to T_1, \chi_\pm(y) = |y|^{\pm 1})\}.
\]

We define \(S_0(X) \) to be \(S_\mathbb{B}(X) \), see section 2 for the definition. It is obviously a \(G_1 \times T_1 \) representation and is dense in \(L^2(X, \omega_X) \) by Proposition 2.1.

Proposition 3.2. The operator \(\Phi \) preserves \(S_0(X) \).

Proof. First note, that for any \(f \in S_0(X) \), the function \(\Phi(f) \) belongs to \(S_{\mathbb{B}}(X) \). Indeed, the germ \([\Phi(f)]_0 \) of \(\Phi(f) \) at zero is constant and equals

\[
[\Phi(f)]_0 = \int \int f(v)dv = \int \int \theta(t(x))f(1, y)|x|d^x(x)dy = \int P(\chi_+)(f)(1, y)dy = 0.
\]

For any character \(\chi \) of \(T_1 \) one has

\[
P(\chi)(\Phi(f))(v) = \int T_1 \theta(t)\Phi(f)(v)\chi(t)dt = \int T_1 \Phi(\theta(t^{-1})f)(v)\chi(t)dt.
\]

Since \(f \) is of compact support, the integral defining \(\Phi(f) \) is taken over a compact set in \(X \), and hence the integral over \(T_1 \) can also be replaced by an integral over a compact set. By interchanging the order of integration we see that if \(f \in \text{Ker} P(\chi^{-1}) \) then \(\Phi(f) \in \text{Ker} P(\chi) \).

Hence for \(f \in S_0(X) \) the function \(\Phi(f) \) belongs to \(S_0(X) \). This proves the Lemma.

\[\square \]

3.1.1. The Whittaker map. We fix a character \(\Psi \) on \(U_1^{op} \) by \(\Psi(x(r)) = \psi(r) \).

The Whittaker map \(\mathcal{W}_\Psi : S_{\mathbb{C}}(X) \to S_{\mathbb{C}}(T_1) \) is defined by

\[
\mathcal{W}_\Psi(f)(t) = \int_{U_1^{op}} \theta(t)f([u])\Psi^{-1}(u)du.
\]

The map \(\mathcal{W}_\Psi \) defines an isomorphism \(S_0(X)_{U_1^{op}, \Psi} \cong S_0(T_1) \), where \(S_0(T_1) = \mathcal{W}_\Psi(S_0(X)) \), which induces the map

\[
\kappa_\Psi : \text{End}_{G_1}(S_0(X)) \to \text{End}_{\mathbb{C}}(S_0(X)_{U_1^{op}, \Psi}) = \text{End}_{\mathbb{C}}(S_0(T_1)).
\]
Lemma 3.3. κ_ψ is injective.

Proof. See the proof of 6.2 for a general quasi-split G. \hfill \Box

Definition 3.4. We define an action of W on $S_c(T_1)$ by

$$s \cdot \varphi(t) = \varphi(t^s), \quad \varphi \in S_c(T_1).$$

Proposition 3.5. For any $\varphi \in S_0(T_1)$ one has $\kappa_\psi(\Phi)(\varphi) = s \cdot \varphi$.

Proof. Any function in $S_0(T_1)$ is of the form $W_\Psi(f)$ for $f \in S_0(X)$. It is enough to show that

$$\kappa_\psi(\Phi(f)) = s \cdot f.$$

Indeed, once this is proven one has for $t \in T_1$

$$W_\Psi(\Phi(f))(t) = W_\Psi(\theta(t)\Phi(f))(1) = W_\Psi(\Phi(\theta(t^s)f))(1) = W_\Psi(\theta(t^s)f)(1) = W_\Psi(f)(t^s).$$

There is an injective map with open dense image

$$j : T_1 \times U_1^{op} \rightarrow X, \quad j(t, u) = [t^{-1}u]$$

and the push-forward of the measure $\delta_B(t)dtdu$ on $T_1 \times U_1^{op}$ equals dv.

$$\Phi([g]) = \int \int_{U_1^{op} T_1} f([t^{-1}u])\psi([g, [t^{-1}u]]_V)\delta_B(t)dtdu.$$

Hence

$$W_\Psi(\Phi(f))(1) = \int_{U_1^{op}} \Phi(f)([u])\Psi(u)^{-1}du =$$

$$\int_{U_1^{op}} \int_{U_1^{op} T_1} f([t^{-1}u'])\psi([u, [t^{-1}u']]_V)\Psi(u^{-1})\delta_B(t)du' du =$$

$$\int_{U_1^{op} T_1} \left(\int_{U_1^{op}} f([t^{-1}u'])\Psi(u^{-1})du' \right) \psi([1, [t^{-1}u]]_V)\Psi(u)\delta_B(t)dt du =$$

$$\int_{U_1^{op} T_1} W_\Psi(f)(t)\psi([1, [t^{-1}u]]_V)\Psi(u)\delta_B^{1/2}(t)dt du.$$

Put $t = t(b)$ and $u = x(r)$ and notice that $[1, [t^{-1}u]]_V = -br$. Then

$$W_\Psi(\Phi(f))(1) = \int_F \left(\int_F W_\Psi(f)(t(b))\psi(-br)db \right) \psi(r)dr =$$

$$\int \mathcal{F}_\psi(W_\Psi(f))(-r)\psi(r)dr = W_\Psi(f)(1),$$
where \(\mathcal{W}_\psi(f) \) is considered as a function on \(\mathcal{S}_c(F^\times) \) via \(b \mapsto \mathcal{W}_\psi(f)(t(b)) \) and \(\mathcal{F}_\psi : \mathcal{S}_c(F) \to \mathcal{S}_c(F) \) denotes the one-dimensional Fourier transform with respect to \(\psi \) and the self-dual measure \(dx \) on \(F \).

\[\square \]

Theorem 3.8. There exists a unique unitary operator \(\Phi_s \in \text{Aut}(L^2(X,\omega_X)) \), that preserves the space \(\mathcal{S}_0(X) \) and satisfies

\[
\begin{align*}
\theta(g,t) \circ \Phi_s &= \Phi_s \circ \theta(g,t^*) \quad g \in G_1, t \in T_1 \\
\Phi_s \circ \Phi_s &= \text{Id} \\
\kappa_s(\Phi_s)(\varphi) &= s \cdot \varphi \quad \varphi \in \mathcal{S}_0(T_1)
\end{align*}
\]

(3.9)

Proof. The injectivity of \(\kappa_s \) implies the uniqueness of the operator \(\Phi_s \), hence it is enough to construct such an operator.

We define \(\Phi_s \) to be \(\Phi \). The properties follow from Propositions 3.1, 3.2, 3.5.

\[\square \]

4. \(G_1 = SU_3 \)

4.1. The structure and compatibility of measures.

4.1.1. The field. Let \(K \) be a quadratic field extension over \(F \) with the Galois involution \(x \mapsto \bar{x} \), the norm \(Nm \) and the trace \(Tr \). We write \(| \cdot |_K \) for the absolute value on \(K \), such that \(|x|_K = |Nm(x)|_F \). We fix an element \(\tau \in \mathcal{O}_F \) such that \(\mathcal{O}_K = \mathcal{O}_F + \sqrt{\tau}\mathcal{O}_F \).

The space \(K \) admits a quadratic form \(x \mapsto Nm(x) \) and the associated bilinear form on \(K \) is \((x,y) \mapsto Tr(x\bar{y}) \).

We fix on \(K \) a self dual measure \(dx \) with respect to \(\psi \) and \(Nm \). The Fourier transform on \(K \) is denoted by \(\mathcal{F}_\psi,K \), to distinguish it from the Fourier transform \(\mathcal{F}_\psi \) with respect to \(\psi \) and the self-dual measure on \(F \).

4.1.2. The unitary group. Let \((\mathbb{W}, h) \) be the following Hermitian space

\[\mathbb{W} = K^3, \quad h(v_1,v_2) = x_1\bar{z}_2 + y_1\bar{y}_2 + z_1\bar{x}_2, \quad v_i = (x_i,y_i,z_i). \]

The group \(G_1 = SU(\mathbb{W}, h) \) is the group of automorphisms of \(\mathbb{W} \), acting on the right, preserving the Hermitian form \(h \) and having determinant 1. Its elements are \(3 \times 3 \) matrices over \(K \).

We denote by \(B_1 = T_1 \cdot U_1 \) the Borel subgroup of \(G_1 \), preserving the line \(K(0,0,1) \) in \(\mathbb{W} \). The unipotent radical \(U_1 \) is the stabilizer of the vector \((0,0,1) \). The space \(X = U_1 \backslash G_1 \) is naturally identified with the set \(\mathbb{W}^0 \) of \(h \)-isotropic non-zero vectors in the space \(\mathbb{W} \). We write \(T' \) for the maximal split torus of \(T_1 \).

4.1.3. The measures. The space \(\mathbb{W} \) with \(\dim_F(\mathbb{W}) = 6 \) admits the \(F \)-bilinear form \(\langle v_1,v_2 \rangle = Tr(h(v_1,v_2)) \) and the corresponding quadratic form \(q \) is given by

\[q(v) = \langle v,v \rangle / 2 = Tr(x\bar{z}) + Nm(y), \quad v = (x,y,z). \]
We fix the self-dual measure dw on \mathbb{W} with respect to ψ and q. It gives rise to a measure on the cone \mathbb{W}^0 and hence to a measure on X which we denote by ω_X.

We fix bijections

$$x : K \times \sqrt{\tau}F \to U_1^{op}, \quad t : K^\times \to T_1$$

by

$$x(r, y) = \begin{pmatrix} 1 & 0 & 0 \\ -\bar{r} & 1 & 0 \\ -\text{Nm}(r)/2 & y & 1 \end{pmatrix}, \quad t(a) = \begin{pmatrix} a & 0 & 0 \\ 0 & a^{-1}\bar{a} & 0 \\ 0 & 0 & \bar{a}^{-1} \end{pmatrix} \quad a \in K^\times.$$

We also fix a representative n_s of the Weyl element s by

$$n_s = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

The Haar measures on $K \times \sqrt{\tau}F$ and K^\times define the measures on U_1^{op} and T_1 respectively.

By Bruhat decomposition for G_1, there is an embedding $j : T_1 \times U_1^{op} \to X$ with dense image, defined by $j(t, u) = [t^{-1}u]$.

It is straightforward to check that for any $f \in \mathcal{S}_c(X)$ one has

$$\int_X f(v)\omega_X(v) = \int_K \int_{\sqrt{\tau}F} \int_{K^\times} f([t(b)^{-1}x(r, y)])|\text{Nm}(b)|^2 d^x b dy dr.$$

The root system with respect to the torus T' is

$$R(G_1, T') = \{ \pm \alpha, \pm 2\alpha \}, \quad \alpha(t(a)) = a, \quad \forall a \in F^\times.$$

The operator Φ_s for the group G_1 is defined using the normalized Radon transform on the cone X. Below we recall the definition and the relevant properties. We refer to [GK22] for proofs.

4.2. Mellin transform. Let χ be a character of O^\times, extended to F^\times by setting $\chi(\varpi) = 1$. We write χ_s for the character $\chi \cdot |^s$ of F^\times. The character χ_s is lifted to the character of $T' \simeq F^\times$ via isomorphism $t(x) \mapsto x$.

Define the Mellin transform $P(\chi, s) : \mathcal{S}_c(X) \to \mathcal{S}^\infty(X)$ along T' by

$$P(\chi, s) = \int_{T'} \theta(t)f_{\chi_s}(t)dt.$$

The image $\mathcal{S}(\chi, s)$ consists of functions $f \in \mathcal{S}^\infty(X)$ satisfying $\theta(t)f = \chi_s^{-1}(t)f$.

The Mellin transform can be also computed on functions on $\mathcal{S}^\infty(X)$, not necessarily of compact support, provided the integral converges.

The following statement is obvious and will be used later.

Lemma 4.1. Let $G : \mathcal{S}_c(X) \to \mathcal{S}(\chi, s)$, such that $G \circ \theta(t) = \theta(t^{-1}) \circ G$ for all $t \in T'$. Then KerG contains Ker$P(\chi^{-1}, -s)$.

4.3. The Radon transform. Recall that X can be identified with the space \mathbb{W}^0 of non-zero isotropic vectors in \mathbb{W}. In this section elements in X will be denoted by $u, v, w \ldots$, isotropic vectors in \mathbb{W}.

For any vector $w \in \mathbb{W}^0 = X$ consider an algebraic map

$$p_w : \mathbb{W}^0 \to F, \quad p_w(v) = \langle v, w \rangle.$$

The measure ω_X defined above and the measure dx on F give rise to well-defined measure $\omega_{w,a}$ on the fiber $p_w^{-1}(a) = \{ v \in \mathbb{W}^0, \langle v, w \rangle = a \}$ for any $a \in F$.

For any $a \in F$ we define Radon transform $R(a) : \mathcal{S}_c(X) \to \mathcal{S}^\infty(X)$ by

$$R(a)(f)(w) = \int_{p_w^{-1}(a)} f(v)\omega_{w,a}(v).$$

The function $a \mapsto R(a)(f)(w)$ is continuous, of bounded support. The normalized Radon transform on $\mathcal{S}_c(X)$ is defined by

$$\hat{R}(f)(w) = \int_F R(a)(f)(w)\psi(a)da.$$

In addition set

$$R_1(f)(w) = \int_{F^\times} \theta(t(x))f(w)\chi_{K}(x)d^X x.$$

Below we list the properties of the operators $R(a)$ and \hat{R}, all proven in [GK22], section 3. The quadratic space (V_K, q_K) in loc. cit. is isomorphic to the quadratic space (\mathbb{W}, q) and the results proven in loc.cit. hold in our setting.

For all $f \in \mathcal{S}_c(X)$, $w \in X$ one has

1. $R(xa)(f)(xw) = |x|^{-1}R(a)(f)(w)$ for all $x \in F^\times$. This implies

$$\hat{R}(f)(xw) = \int_F R(a)(f)(w)\psi(ax)da.$$

2. $R(a) \circ \theta(g,t) = \theta(g,t^{-1}) \circ R(a)$ for $g \in G_1, t \in T'$ and the same is true for \hat{R}.

3. There exists a constant $c_{\psi,q}$ such that for $|a|$ small enough one has

$$R(a)(f)(w) = R(0)(f)(w) + c_{\psi,q}\chi_{K}(a)|a|R_1(f)(w).$$

4. The function $x \mapsto \theta(t(x))\hat{R}(f)(w)$ is bounded for $x \in F$.

5. $\hat{R}(f)$ extends to a locally constant function on $\mathbb{W}^0 \cup \{0\}$ whose value at 0 is $\int_X f(v)\omega_X(v)$.

Lemma 4.2. (1) If $f \in \text{Ker} P(\chi_K, z)$ then $\hat{R}(f) \in \text{Ker} P(\chi_K, -z)$ for $Re(z) > 0$.

(2) Let \(f \in \text{Ker} P(\chi_K, -1) \cap \text{Ker} P(\chi_K, 0) \). For \(w \in X \) the function \(a \mapsto \mathcal{R}(a)(f)(w) \) is of compact support on \(F^\times \).

Proof.

(1) The transform \(P(\chi_K, -z)(\hat{\mathcal{R}}(f))(w) \) is well-defined for \(\text{Re}(z) > 0 \) by the property (4). The Lemma 4.1 yields the result.

(2) By properties (1), (2), the map \(\mathcal{R}(0) \) has image in \(S(\chi_0, 1) \) and satisfies the condition of Lemma 4.1. Similarly, the map \(\mathcal{R}(1) \) has image in \(S(\chi_K, 0) \) and satisfies the condition. Hence for \(f \in \text{Ker} P(\chi_K, -1) \cap \text{Ker} P(\chi_K, 0) \) one has \(\mathcal{R}(0)(f) = \mathcal{R}(1)(f) = 0 \). By the property (3), the function \(\mathcal{R}(a)(f)(w) \) vanishes for small \(|a| \) and hence is of compact support on \(F^\times \).

Let us fix terminology for convergence of integrals of locally constant functions, not necessary of compact support, on \(F^\times \). For \(f \in S^\infty(F^\times) \) we say that \(\int_{|x| \leq 1} f(x)d^\times x \) converges absolutely if \(\int_{|x| \leq 1} |f(x)|d^\times x \) converges, it converges if \(\lim_{n \to \infty} \int_{|x| \geq 2^{-n}} f(x)d^\times x \) exists, it stabilizes if the sequence \(\int_{|x| \geq 2^{-n}} f(x)d^\times x \) becomes constant for \(n > N \).

Similarly we say that the integral \(\int_{|x| > 1} f(x)d^\times x \) converges absolutely, (resp. converges or stabilizes) the integral if \(\int_{|x| < 1} f(x^{-1})d^\times x \) converges absolutely, (resp. converges or stabilizes).

Given an integral \(I = \int_{F^\times} f(x)d^\times x \) we say that it stabilizes at zero and converges absolutely at infinity if \(\int_{|x| \leq 1} f(x)d^\times x \) stabilizes and \(\int_{|x| > 1} f(x)d^\times x \) converges absolutely.

For example, for any unitary character \(\chi \) and \(\text{Re}(s) > 0 \) the integral \(\int_{F^\times} \psi(x)|\chi(x)|x^s d^\times x \) stabilizes at infinity and converges absolutely at zero.

4.4. The operators \(\Phi \). We define an operator \(\Phi : S_c(X) \to S^\infty(X) \) by

\[
\Phi(f) = \int_{F^\times} \theta(t(x))\hat{\mathcal{R}}(f)(\psi(x^{-1})\chi_K(x)|x|^{-1}d^\times x.
\]

By properties (4), (5) the integral converges absolutely. By property (2) it satisfies the equivariance property for \(G \times T' \).

In [GK22], using the minimal representation for the group \(O(8) \) we proved

Theorem 4.3. The operator \(\Phi \)

(1) has its image in the space of functions of bounded support on \(X \).

(2) extends to a unitary involution on \(L^2(X, \omega_X) \),

(3) satisfies \(\theta(g, t) \circ \Phi = \Phi \circ \theta(g, t^*) \) for all \(g \in G_1, t \in T' \).
The operator Φ is our candidate for Fourier transform. To prove Theorem 1.2 for G_1 it remains

- to show that Φ enjoys the equivariance property with respect to T_1,
- to define a space $\mathcal{S}_0(X) \subset \mathcal{S}_c(X)$, preserved by Φ and dense in $L^2(X, \omega_X)$ and
- to compute $\kappa_{\psi}(\Phi)$ on the space $\mathcal{S}_0(T_1) = \mathcal{W}_{\psi}(\mathcal{S}_0(X))$.

4.5. The space $\mathcal{S}_0(X)$. Define the space $\mathcal{S}_0(X) = \mathcal{S}_{\mathbb{B}}(X)$, where \mathbb{B} is the following finite set of characters of T:

$\mathbb{B} = \{\chi_K, \chi_s | \pm 1, |\pm 2\}$.

Proposition 4.4. The operator Φ preserves $\mathcal{S}_0(X)$.

Proof. We start by showing that for $f \in \mathcal{S}_0(X)$ one has $\Phi(f) \in \mathcal{S}_c(X)$. Since $\Phi(f)$ has bounded support, it is enough to show that the germ $[\Phi(f)]_0$ at zero vanishes.

The operator Φ can be naturally decomposed as a sum $\Phi = \Phi_1 + \Phi_2$ where

$$\Phi_1(f)(w) = \gamma(\chi_K, \psi) \int_{F^\times} \theta(t(x)) \hat{\mathcal{R}}(f)(w) \chi_K(-x) |x|^{-1} dx,$$

and

$$\Phi_2(f)(w) = \gamma(\chi_K, \psi) \int_{F^\times} \theta(t(x)) \hat{\mathcal{R}}(f)(w) (\psi(x^{-1}) - 1) \chi_K(-x) |x|^{-1} dx.$$

For $f \in \mathcal{S}_0(X)$ one has $\Phi_1(f) = 0$ by Proposition 3.2. Let us show that the germ $[\Phi_2(f)]_0$ is zero for $f \in \mathcal{S}_0(X)$. The function

$$g(x) = \gamma(\chi_K, \psi) (\psi(x^{-1}) - 1) \chi_K(-x) |x|$$

has a bounded support, denote it by \mathcal{B}. For $|w|$ small enough, the function $x \mapsto \hat{\mathcal{R}}(f)(xw)$ is constant for $x \in \mathcal{B}$. Hence for $|w|$ small one has

$$\Phi_2(f)(w) = \hat{\mathcal{R}}(f)(w) \int_{F^\times} g(x) dx.$$

By property (5), $\hat{\mathcal{R}}(f)(w) = \int_X f(v) \omega_X(v)$ for $|w|$ small enough. The map $f \mapsto \int_X f(v) \omega_X(v)$ has its image in $\mathcal{S}(\chi_0, |\cdot|^{-2})$. Hence by Lemma 4.1 if $f \in \operatorname{Ker} P(\chi_0, |\cdot|^{-2})$ then $\hat{\mathcal{R}}(f)(w) = 0$ for small w and so $[\Phi_2(f)]_0 = 0$. Hence $\Phi(f)$ is of compact support.

Since $\Phi \circ \theta(t) = \theta(t^{-1}) \circ \Phi$ for $t \in T'$ the properties $f \in \operatorname{Ker} P(\chi, s)$, and $\Phi(f) \in \mathcal{S}_c(X)$ imply $\Phi(f) \in \operatorname{Ker} P(x^{-1}, -s)$, as in Proposition 3.2. This yields the result. \hfill \Box

Proposition 4.5. For $f \in \mathcal{S}_0(X)$ one has

$$\Phi(f)(w) = \int_X f(v) L(\langle v, w \rangle) \omega_X(v),$$
where for $a \in F^\times$

$$L(a) = \gamma(\chi_K, \psi) \int_{F^\times} \psi(ax + x^{-1})\chi_K(-x)|x|d^\times x.$$

Proof. For $a \in F^\times$, the integral defining L stabilizes both at zero at and infinity. In particular, there exists a compact set K_1 in F^\times such that

$$L(a) = \gamma(\chi_K, \psi) \int_{K_1} \psi(ax + x^{-1})\chi_K(-x)|x|d^\times x.$$

For $f \in S_0(X)$, the function $a \mapsto R(a)(f)(w)$ is of compact support on F^\times by Lemma 4.2, part (2). We can assume that the support is contained in K_1.

By the Fubini theorem

$$\int_X f(v)L(\langle v, w \rangle)\omega_X(v) = \int_F R(a)(f)(w)\mathcal{L}(a)da = \gamma(\chi_K, \psi) \int_{K_1} \int_{K_1} R(a)(f)(w)\psi(ax)\psi(x^{-1})\chi_K(-x)|x|d^\times x da.$$

We can change the order of integration over compact sets. This gives

$$\gamma(\chi_K, \psi) \int_{K_1} \left(\int_{K_1} R(a)(f)(w)\psi(ax)da \right) \psi(x^{-1})\chi_K(-x)|x|d^\times x da = \gamma(\chi_K, \psi) \int_{F^\times} \theta(t(x))\hat{R}(f)(w)\psi(x^{-1})\chi_K(-x)|x|^{-1}d^\times x da = \Phi(f)(w),$$

as required. \qed

Proposition 4.7. One has $\Phi \circ \theta(t^s)(f) = \theta(t) \circ \Phi(f)$ for all $f \in S_0(X)$ and $t \in T_1$.

Proof. This is a straightforward computation and is very similar to the proof of the equivariance property of the classical Fourier transform.

$$\theta(t)\Phi(f)(w) = \delta_B^{1/2}(t) \int_X f(v)L(\langle v, tw \rangle)\omega_X(v).$$

One has $\langle v, tw \rangle = \langle (t^s)^{-1}v, w \rangle$ for all $t \in T_1$. Applying the change of variables $v \mapsto (t^s)^{-1}v$ and taking the measure into account, we get that the integral equals

$$\delta_B^{1/2}(t^s) \int_X f(t_sv)L(\langle v, w \rangle)\omega_X(v) = \Phi(\theta(t^s)f)(w)$$

as required. \qed
4.6. The Whittaker map. It remains to compute $\kappa_\varPsi(\Phi)$.

We fix a character Ψ of U_1^{op} such that $\Psi(x(r,r')) = \psi(\text{Tr}(r))$. The Whittaker map $\mathcal{W}_\Psi : S_c(X) \to S_c(T_1)$ is defined as in introduction.

Proposition 4.8. Let $f \in S_0(X)$.

1. $\mathcal{W}_\Psi(\Phi(f))(1) = \mathcal{W}_\Psi(f)(t(-1))$,
2. $\mathcal{W}_\Psi(\Phi(f))(t) = \mathcal{W}_\Psi(f)(t(-1)t^*)$.

The proof occupies the rest of this subsection. We start with the following technical Lemmas, whose proofs are postponed to the end of this subsection.

Lemma 4.9. For any $x \in F$ and $g \in S_c(K)$ one has
\[
\int \int_{\sqrt{T} F K} g(b)\psi(-x \text{Tr}(b \cdot y)) db dy = |x|^{-1} \int_F g(b) db.
\]

According to Weil, [Wei64] there exists a constant $\gamma(\chi_K, \psi)$, which is a fourth root of unity, satisfying
\[
\int_K \mathcal{F}_{\varPsi,K}(f)(x)\psi(\text{Nm}(x)) dx = \gamma(\chi_K, \psi) \int_K f(x)\psi(-\text{Nm}(x)) dx.
\]

For all $t \in F^\times$ denote by ψ_t the additive character $\psi_t(x) = \psi(tx)$. One has
- $\gamma(\chi_K, \psi_t) = \chi_K(t)\gamma(\chi_K, \psi)$,
- $\gamma(\chi_K, \psi) = 1$ if K is split.

Lemma 4.11. For any $g \in S_c(F)$ one has
\[
\int_{K F^\times} \int_F g(x)\psi\left(-\frac{\text{Nm}(r)}{x}\right) \chi_K(x) d^x x \psi(\text{Tr}(r)) dr = \gamma(\chi_K, \psi) \chi_K(-1) \mathcal{F}_\varPsi(g)(1).
\]

Proof of Proposition 4.8. It is easy to see that the first part implies the second. Indeed, assuming part (1), for any $t \in T_1$ and $f \in S_0(X)$ one has
\[
\mathcal{W}_\Psi(\Phi)(f)(t) = \mathcal{W}_\Psi(\theta(t)\Phi(f))(1) = \mathcal{W}_\Psi(\Phi(\theta(t^*)f))(1) = \\
\mathcal{W}_\Psi(\theta(t^*)f)(t(-1)) = \mathcal{W}_\Psi(f)(t(-1)t^*).
\]

Using Bruhat decomposition for G_1 this equals.
\[
\mathcal{W}_\Psi(\Phi(f))(1) = \int \int \int f([t^{-1}u_1],[u_2]) \mathcal{L}([[t^{-1}u_1],[u_2]]) \Psi(u_2)^{-1} \delta_B(t) du_1 dt du_2 = \\
\int \int \int \psi(t) f([u_2]) \Psi(u_2)^{-1} du_2 \mathcal{L}([[t^{-1}u_1],[1]]) \Psi(u_1) \delta_B^{1/2}(t) dt du_1 = \\
\int \int \mathcal{W}_\Psi(f)(t) \mathcal{L}([[t^{-1}u_1],[1]]) \Psi(u_1) \delta_B^{1/2}(t) dt du_1.
We put\[t = t(b), b \in K^\times, \quad u_1 = x(r, y), r \in K, y \in \sqrt{\tau}F. \]

To ease notation we write \(f \in S_c(F^\times) \) for the function \(b \mapsto W_\psi(f)(t(b)). \)

One has
\[
\langle [t^{-1}(b) x(r, y)], [1] \rangle = - \text{Tr}(b) \text{Nm}(r)/2 - \text{Tr}(b y).
\]

Hence the above equals
\[
\int_K \int_{\sqrt{\tau}F K^\times} \tilde{f}(b) L(- \text{Tr}(b) \frac{\text{Nm}(r)}{2} - \text{Tr}(b \sqrt{\tau} y)) \psi(\text{Tr}(r)) \text{Nm}(b) |d^x b d r t y|.
\]

Writing explicitly the expression for \(L \) from 4.6 and rearranging the change of integrals this equals
\[
(4.13) \quad \gamma(\chi_K, \psi) \chi_K(-1) \cdot \int \int_{F^\times}
\int \int_{\sqrt{\tau}F K^\times} \left(\tilde{f}(b) \psi(- \text{Tr}(b x \text{Nm}(r)/2)) \right) \psi(- \text{Tr}(b xy)) db dy
\chi_K(x) \psi(x^{-1}) |x| d^x x \psi(\text{Tr}(r)) dr.
\]

We apply Lemma 4.9 to the middle line, i.e. for
\[
g(b) = \tilde{f}(b) \psi(- \text{Tr}(b x \text{Nm}(r)/2)).
\]

Notice that for \(b \in F \) one has \(\text{Tr}(b x \text{Nm}(r)/2) = b x \text{Nm}(r) \). Hence the middle line equals
\[
|x|^{-1} \int_F \tilde{f}(b) \psi(- b x \text{Nm}(r)) db
\]

The integral becomes \(\gamma(\chi_K, \psi) \chi_K(-1) \) times
\[
\int_{r \in K} \int_{b \in F} \int_{x \in F^\times} \psi(- b x \text{Nm}(r)) \chi_K(x) \psi(x^{-1}) d^x x db \psi(\text{Tr}(r)) dr
\]

After the change of variables \(b x \mapsto x^{-1} \) this becomes \(\gamma(\chi_K, \psi) \chi_K(-1) \) times
\[
\int_{r \in K} \int_{x \in F^\times} \left(\int_{b \in F} \tilde{f}(b) \chi_K(b) \psi(b x) db \right) \psi(- \frac{\text{Nm}(r)}{x}) \chi_K(x) d^x x \psi(\text{Tr}(r)) dr =
\]
\[
\gamma(\chi_K, \psi) \chi_K(-1) \int_{r \in K} \int_{x \in F^\times} F_\psi(\tilde{f}(\chi_K))(x) \psi(- \frac{\text{Nm}(r)}{x}) \chi_K(x) d^x x \psi(\text{Tr}(r)) dr.
\]
Applying Lemma 4.11 to $g = \tilde{f}\chi_K$ and the properties of $\gamma(\chi_K, \psi)$ we obtain that $W_\psi(\Phi(f))(1)$ equals

$$(\gamma(\chi_K, \psi)\chi_K(-1))^2 F_\psi(F_\psi(\tilde{f}\chi_K))(1) = \tilde{f}(-1) = W_\psi(f)(t(-1)),$$

as required.

It remains to prove Lemmas.

Proof of Lemma 4.9. We fix the isomorphism of vector spaces

$$K \simeq F \oplus F, \quad b_1 + \sqrt{T}b_2 \mapsto (b_1, b_2)$$

which induces the isomorphism $S_c(K) \simeq S_c(F) \otimes S_c(F)$. The self-dual measure on K with respect to (ψ, Nm) is transported under this isomorphism to $|2|^{1/2} db_1 db_2$.

It is enough to prove Lemma for $g = g_1 \otimes g_2$, where $g_1, g_2 \in S_c(F)$, so that $g(b_1 + \sqrt{T}b_2) = g_1(b_1)g_2(b_2)$.

Let us write $y = \sqrt{T}y'$ for $y' \in F$ and $dy = |\tau|^{1/2}dy'$. Then for $b = b_1 + \sqrt{T}b_2$ one has $\text{Tr}(bx\sqrt{T}y') = 2\tau b_2 xy'$.

$$\int_F \int_K g(b)\psi(\text{Tr}(bx\sqrt{T}y))dbdy =$$

$$\int_F g(b_1, b_2)\psi(2\tau b_2 xy)|2\tau| db_1 db_2 dy' = |2\tau| \int_F g_1(b_1)db_1 \int_F F_\psi(g_2)(2\tau xy)dy =$$

$$g_2(0)|x|^{-1} \int_F g_1(b_1)db_1 = |x|^{-1} \int_F g(b)db.$$

Proof of Lemma 4.11. Let $c \in F^\times \setminus \text{Nm}(K^\times)$, so that $F^\times = \text{Nm}(K^\times) \cup c\text{Nm}(K^\times)$. The measures $d^x y$ on K^\times and $d^x x$ on $\text{Nm}(K^\times) \subset F^\times$ define Haar measures on the fibers of $\text{Nm}: K^\times \rightarrow F^\times$. All the fibers are compact and have the same measure C. By the Fubini theorem for any function $h \in L^1(F^\times)$ one has

$$(4.14) \quad \int_{F^\times} h(x)d^x x = C^{-1} \int_{K^\times} h(\text{Nm}(y)) + h(c\text{Nm}(y))d^x y.$$

Applying this integral over F^\times in the LHS of (4.12) we obtain

$$C^{-1} \int_{K^\times} \int_K g(\text{Nm}(y))\psi(-\text{Nm}(r/y)) - g(c\text{Nm}(y))\psi(-c^{-1}\text{Nm}(r/y))d^x x\psi(\text{Tr}(r))dr.$$
After the change of variables $r \mapsto r \bar{y}$ this equals

$$C^{-1} \times \int_K \left(\int_K g(Nm(y)) \psi(Tr(r \bar{y})) \, dy \right) \psi(-Nm(r)) \, dr -$$

$$\int_K \left(\int_K g(c Nm(y)) \psi(Tr(r \bar{y})) \, dy \right) \psi(-c^{-1} N(r)) \, dr =$$

$$\int_K \mathcal{F}_{K, \psi}(g \circ Nm)(r) \psi(-Nm(r)) \, dr - \int_K \mathcal{F}_{K, \psi}(g_c \circ Nm)(r) \int_K \psi(-c^{-1} Nm(r)) \, dr.$$

where $g_c(x) = g(cx)$ for any x. This equals by 4.10

$$C^{-1} \times \int_K \chi_K(-1) \gamma(\chi_K, \psi) \int_K (g \circ Nm) \psi(Nm(r)) \, dr + |c| \int_K (g_c \circ Nm)(r) \psi(c Nm(r)) \, dr.$$

Applying equation 4.14 again this equals

$$\chi_K(-1) \gamma(\chi_K, \psi) \int g(x) \psi(x) \, dx = \gamma(\chi_K, \psi) \chi_K(-1) \mathcal{F}_{\psi}(g)(1).$$

The restriction $W_{\Psi} : \mathcal{S}_0(X) \to \mathcal{S}_c(T)$, whose image we denote by $\mathcal{S}_0(T)$, gives rise to the homomorphism $\kappa_{\Psi} : \text{End}_{\mathbb{C}}(\mathcal{S}_0(X)) \to \text{End}_{\mathbb{C}}(\mathcal{S}_0(T))$.

Lemma 4.15. κ_{Ψ} is injective.

Proof. See the proof of 6.2 for the general case. □

Let us define the action of W on $\mathcal{S}_0(T_1)$.

Definition 4.16. The action of W on $\mathcal{S}_0(T_1)$ is defined by

$$s \cdot \varphi(t) = \varphi(t(-1)t^s)$$

Theorem 4.17. There exists a unique unitary involution $\Phi_s \in \text{Aut}(L^2(X, \omega_X))$ that preserves the space $\mathcal{S}_0(X)$ and satisfies

$$\begin{cases}
\theta(g, t) \circ \Phi_s = \Phi_s \circ \theta(g, t^s) & g \in G_1, t \in T_1 \\
\kappa_{\Psi}(\Phi_s)(\varphi) = s \cdot \varphi & \varphi \in \mathcal{S}_0(T_1)
\end{cases}$$

(4.18)

Proof. The injectivity of κ_{Ψ} implies uniqueness of such operator, and hence it is enough to construct such Φ_s. We put $\Phi_s = \Phi$. The properties follow from Theorem 4.3, Propositions 4.7, 4.4 and 4.8 part (2). □

5. **QUASI-SPLIT GROUPS**

We recall below the structure of reductive quasi-split groups. Our main reference is [BTS81].
5.1. Relative and absolute root systems. Let G be a reductive, connected, simply-connected quasi-split group over F with a maximal split torus T'. We denote by $\text{Lie}(G)$ the Lie algebra of G and by Ad the adjoint action of G on $\text{Lie}(G)$. Let T be the centralizer of T' and N be the normalizer of T', both defined over F.

The root datum of G with respect to T' is a quadruple $(X^*(T'), R, X_*(T'), R^\vee)$, where the set of roots $R \subset X^*(T')$ consists of the weights that appear in the representation $\text{Ad} : T' \to \text{Aut}(\text{Lie}(G))$.

The root system R is not necessarily reduced. For any root $\alpha \in R$, its root ray is defined as $1 \otimes R \cap \mathbb{R}_{\geq 0} \otimes \alpha$, in $\mathbb{R} \otimes X^*(T')$. Each root ray contains one or two elements. We denote by R the set of root rays.

The choice of a Borel subgroup B, containing T and defined over F, determines the decomposition $R = R^+ \cup R^-$ into the set of positive and negative roots and the subset $\Delta \subset R^+$ of simple roots. We call a root ray positive (resp. negative, resp. simple) if it contains a positive (resp. negative, resp. simple) root.

The groups G and T are split over the separable closure F_s of F. There exists a minimal extension $F \subset E \subset F_s$ over which T and hence G splits. Then E/F is Galois. We denote this split E-group by \hat{G}. It has a root datum $(X^*(T), \hat{R}, X_*(T), \hat{R}^\vee)$. Note that all root rays in $X^*(T) \otimes \mathbb{R}_{\geq 0}$ are singletons.

The Borel subgroup \hat{B} containing B of \hat{G}, determines the set \hat{R}^+ of positive roots and the set $\hat{\Delta}$ of simple roots. The Galois group $\Gamma = \text{Gal}(E/F)$ acts on $X^*(T), \hat{R}, \hat{R}^+$ and $\hat{\Delta}$.

There is a bijection $\beta \leftrightarrow \hat{\beta}$ between the set R of roots and the set of Γ orbits of \hat{R}. The restriction of every root in \hat{R} to T' equals to β.

Definition 5.1. Let $\alpha \in \hat{R}$. The field $L_\alpha = E^{\Gamma_\alpha}$ is called the field of definition of α, where $\Gamma_\alpha \in \Gamma$ is the stabilizer of α.

Proposition 5.2.

(1) For any $\gamma \in \Gamma$ and $\alpha \in \hat{R}$ one has $L_{\gamma(\alpha)} = \gamma(L_\alpha)$.

(2) For $\alpha \in \hat{R}$, if $\alpha|_{T'}$ is a divisible root in R, then there exist roots $\alpha_1, \alpha_2 \in \hat{R}$ such that

$$\alpha_1|_{T'} = \alpha_2|_{T'} = \alpha/2|_{T'}, \quad \alpha = \alpha_1 + \alpha_2.$$

In addition $L_{\alpha_1} = L_{\alpha_2}$ is a quadratic extension of L_α.

5.2. The Chevalley-Steinberg pinning. For any $a \in R$ there exists a maximal connected subgroup U_a of G, defined over F, such that the weights that appear in the representation $\text{Ad} : T' \to \text{Aut}(\text{Lie}(U_a))$ belong to a. The group U_a is called the root subgroup corresponding to $a \in R$.

For any simple root ray α in R, let G_α be the group generated by U_a and U_{-a}. Since the group G is simply-connected, the group G_α is a simply connected group of rank 1 over F. We denote by T_a and T'_a the maximal torus and the maximal split torus of G_α respectively. The group G_α in G is G_α considered as a group over E.
The following proposition describes G_a and \tilde{G}_{a}.

Proposition 5.3. Let a be a root ray. There are two possible cases

- $a = \{\alpha\}$. In this case the group G_a is isomorphic over E to a product of copies of the group SL_2, indexed by \tilde{R}_{α}.

 There exists an isomorphism $\phi_a : SL_2(L_{\alpha}) \rightarrow G_a$ such that
 $$\phi_a(x(r)) \in U_{-a}, \quad \phi_a(t^i x(r)) \in U_a, \quad \phi_a(n_s) \in N$$

 For any $w \in\tilde{W}$ we define \tilde{W}_a the element of \tilde{W}.

- $a = \{\alpha, 2\alpha\}$. In this case the group G_a is isomorphic to a product of copies of SL_3 indexed by the set I of subsets $\{\alpha_1, \alpha_2\} \subset \tilde{R}_{\alpha}$, such that $\alpha_1 + \alpha_2 \in \tilde{R}$. The field $L_{\alpha_1} = L_{\alpha_2}$ is a quadratic extension of $L_{\alpha_1 + \alpha_2}$ with a non-trivial automorphism $x \mapsto \bar{x}$. Let SU_3 be the group of automorphisms on the Hermitian space L_3^{1} preserving the form $h(x,y,z) = \text{Tr}(\bar{x}z) + Nm(\bar{y}y)$ and having determinant 1. It is a quasi-split group of rank 1 over $L_{\alpha_1 + \alpha_2}$.

 There exists an isomorphism $\phi_a : SU_3(L_{\alpha_1 + \alpha_2}) \rightarrow G_a$ such that
 $$\phi_a(x(r, r')) \in U_{-a}, \quad \phi_a(t^i x(r, r')) \in U_a, \quad \phi_a(n_s) \in N.$$}

From now on we fix a family of isomorphisms $\phi_a, a \in R$ such that ϕ_a define a Steinberg-Chevalley pinning of the group G. See [BT84], page 78.

5.3. The Weyl group. The Weyl group W is isomorphic to N/T. For any $a \in R$ the image of the element $n_{sa} = \phi_a(n_s)$ in W is denoted by s_a. These elements, called simple reflections, generate W.

The roots in the same W orbit have the same field of definition.

For any $w \in W$ we denote by $l(w)$ the length of a reduced presentation of w as a product of simple reflections.

For any $w \in W$ we define $R(w) = R^+ \cap w^{-1}(R^-)$. Then $l(w) = |R(w)|$.

We denote by w_0 the longest element of W, and by n_0 its representative in N.

**5.4. The action of W on $S_c(T)$.

Definition 5.4. Define for any $w \in W$ the element and

$$t_w = \prod_{a \in R(w)} t_a \in T,$$

where $t_a = \phi_a(t(-1))$ for $a = \{\alpha, 2\alpha\}$ and $t_a = 1$ otherwise.

Lemma 5.5.

$$t_{w_2} \cdot (w_2^{-1} t_{w_1} w_2) = t_{w_1} w_2$$

Proof. The set $R(w_1 w_2)$ can be written as a disjoint union

$$R(w_1 w_2) = \left(R(w_2) \setminus w_2^{-1} R(w_1)\right) \cup \left(w_2^{-1} R(w_1) \setminus R(w_2)\right).$$

Indeed,

$$R(w_2) \setminus w_2^{-1} R(w_1) = \{\alpha > 0, w_2 \alpha < 0, w_1 w_2 \alpha < 0\},$$

$$w_2^{-1} R(w_1) \setminus R(w_2) = \{\alpha > 0, w_2 \alpha > 0, w_1 w_2 \alpha < 0\}.$$
and the union is $R(w_1w_2)$. Besides $R(w) = -wR(w^{-1})$.

Writing by definition

$$t_{w_2} = \prod_{R(w_2) \setminus -w_2^{-1}R(w_1)} t_a \cdot \prod_{R(w_2) \setminus -w_2^{-1}R(w_1)} t_a$$

and

$$t_{w_1} = \prod_{R(w_1) \setminus -w_2R(w_2)} t_a \cdot \prod_{R(w_1) \setminus -w_2R(w_2)} t_a$$

we conclude that $t_{w_2}w_2^{-1}t_{w_1}w_2 = t_{w_1w_2}$. □

Proposition 5.6. The map $W \times \mathcal{S}_c(T) \to \mathcal{S}_c(T)$ defined by

(5.7) \quad $w \cdot \varphi(t) = \varphi(t_w \cdot w^{-1}tw)$

is an action of W on $\mathcal{S}_c(T)$.

Proof. For $w_1, w_2 \in W$ one has

$$w_1 \cdot (w_2 \cdot \varphi)(t) = (w_2 \cdot \varphi)(w_1^{-1}tw_1) = \varphi((w_2 \cdot w_2^{-1}w_1w_2) \cdot (w_1w_2)^{-1}t(w_1w_2)),$$

which by Lemma 5.5 equals $w_1w_2 \cdot \varphi(t)$. □

For groups of rank 1 this action was defined in 3.4 and 4.16

6. Generalized Fourier transforms

In this section we generalize Theorems 3.8 and 4.17 that concern the quasi-split groups of F-rank one to a general quasi-split group G. We keep the notation of Section 5.

For any root ray a of the group G we fix the isomorphisms $\phi_a : G_1 \to G_a$, where G_1 is a quasi-split group of rank 1.

To formulate the main result we introduce the spaces $\mathcal{S}_0(X)$, $\mathcal{S}_0(T)$ and the homomorphism $\kappa_\varphi : \text{End}_C(\mathcal{S}_0(X)) \to \text{End}_C(\mathcal{S}_0(T))$.

6.0.1. The space $\mathcal{S}_0(X)$. We define for each positive root ray a a set of triples \mathbb{B}_a as in section 2 as follows.

1. Assume that $a = \{\alpha\}$ and L_α be the field of definition of α. Then

$$\mathbb{B}_a = \{(L_\alpha, a_i(x) = \phi_a(t(x)), \chi_\pm(x) = \frac{|x|_L^{\pm 1}}{L_\alpha})\}$$

2. Assume that $a = \{\alpha, 2\alpha\}$ and $L_\alpha \supset L_{2\alpha}$ are the fields of definition of α and 2α. The set \mathbb{B}_a consists of the triples (L_i, a_i, χ_i) where

$L_i = L_{2\alpha}, \quad a_i(x) = \phi(a(t(x)), \chi_i \in \{\chi_{L_\alpha}, \chi_{L_\alpha} : \frac{1}{|x|_L^{\pm 1}}, \frac{1}{|x|_L^{\pm 2}}\}.$

Definition 6.1. Define $\mathcal{S}_0(X) = \mathcal{S}_B(X)$, where $B = \cup_a \mathbb{B}_a$ and the union is taken over all positive root rays.

In particular $\mathcal{S}_0(X) = \cap_a \mathcal{S}_{B_a}(X)$. The Weyl group acts naturally on the set \mathbb{B}_a by $w(L_\alpha, \phi_a \circ t, \chi_i) = (L_\alpha, \phi_{w(\alpha)} \circ t, \chi_i)$ where $\alpha \in a$. Note that under this action $w(\mathbb{B}_a) = \mathbb{B}_{wa}$.

For groups of rank one, the definition of the space $\mathcal{S}_0(X)$ coincides with the definition given in 3.14 and 4.5.
6.0.2. Whittaker map and the map κ_Ψ. We define a distinguished non-degenerate character $\Psi : U^\text{op} \to \mathbb{C}$ that is compatible with the fixed family of isomorphisms $\{\phi_a\}$ from section [5].

For a quasi-split group G_1 of F-rank 1 with Borel subgroup $T \cdot U_1$, we define a complex character Ψ_1 of U_1^{op} by

- $\Psi_1(x(r)) = \psi(\text{Tr}_{L/F}(r))$ if $G_1 = \text{Res}_L SL_2$
- $\Psi_1(x(r,s)) = \psi(\text{Tr}_{K/F}(r))$ if $G_1 = \text{Res}_L SU_3$, corresponding to a quadratic field extension K/L.

Let Ψ be the unique character of U^op such that for every simple root ray a the restriction Ψ to U_a equals $\Psi_a^1 = \Psi_1 \circ \phi_a^{-1}$.

For this Ψ the Whittaker map $\mathcal{W}_\Psi : \mathcal{S}_c(X) \to \mathcal{S}_c(T)$, defined as in the introduction,

$$\mathcal{W}_\Psi(f)(t) = \int_{U^\text{op}} \theta(t) f([u]) \Psi^{-1}(u) du$$

gives rise to an isomorphism $\mathcal{S}_0(X)_{U^\text{op}, \Psi} \simeq \mathcal{S}_0(T)$, where $\mathcal{S}_0(T) = \mathcal{W}_\Psi(\mathcal{S}_0(X))$. This isomorphism induces the map

$$\kappa_\Psi : \text{End}_G(\mathcal{S}_0(X)) \to \text{End}_C(\mathcal{S}_0(X)_{U^\text{op}, \Psi}) = \text{End}_C(\mathcal{S}_0(T))$$

Lemma 6.2. The map κ_Ψ is injective.

Proof. Let us show that $\text{Ker} \mathcal{W}_\Psi$ does not contain non-zero G-modules. Indeed, assume that $V \subset \text{Ker} \mathcal{W}_\Psi \subset \mathcal{S}_0(X)$ is a non-zero G-module. For any character χ of T the space of coinvariants $\mathcal{S}_0(X)_{T, \chi^{-1}}$ is naturally isomorphic to the normalized principal series representation $\text{Ind}_B^G(\chi)$. The functor of coinvariants induces a map $V_{T, \chi^{-1}} \to \text{Ind}_B^G(\chi)$. For every character χ in a Zariski-open set one has:

- for some $f \in V$ the Mellin transform $P_\chi(f) = \int_T \theta(t) f \cdot \chi(t) dt \neq 0$,
- the representation $\text{Ind}_B^G(\chi)$ is irreducible.

We pick such χ. Since f does not belong to the kernel of P_χ, so the map $V_{T, \chi^{-1}} \to \text{Ind}_B^G(\chi)$ is non-zero, thus surjective. The functor of coinvariants with respect to (U^op, Ψ) is exact and hence there is a surjection

$$(V_{T, \chi^{-1}})_{U^\text{op}, \Psi} \to \text{Ind}_B^G(\chi)_{U^\text{op}, \Psi}.$$

Since $V \subset \text{Ker} \mathcal{W}_\Psi$, one has $0 = V_{U^\text{op}, \Psi} = (V_{U^\text{op}, \Psi})_{T, \chi^{-1}}$, while $\text{Ind}_B^G(\chi)_{U^\text{op}, \Psi} \neq 0$. This is a contradiction.

Let $\mathcal{B} \in \text{End}_G(\mathcal{S}_0(X))$ such that $\kappa_\Psi(\mathcal{B}) = 0$. Then $\mathcal{W}_\Psi \circ \mathcal{B} = 0$, and $\text{Im}(\mathcal{B})$ is a G-module, contained in $\text{Ker} \mathcal{W}_\Psi$ and hence is zero. So $\mathcal{B} = 0$ and κ_Ψ is injective.

We have defined all the notation, mentioned in Theorem [1,2]. It states:
There exists a unique family of unitary operators $\Phi_w \in \text{Aut}(L^2(X))$, $w \in W$ that preserves the space $S_0(X)$ and satisfies

\[
\begin{align*}
\theta(g, t) \circ \Phi_w &= \Phi_w \circ \theta(g, t^w) \quad g \in G, t \in T \\
\kappa_\Psi(\Phi_w)(\varphi) &= w \cdot \varphi \quad \varphi \in S_0(T) \\
\Phi_{w_1} \circ \Phi_{w_2} &= \Phi_{w_1w_2} \quad w_1, w_2 \in W
\end{align*}
\]

We begin with the construction of the operators Φ_s for simple reflections, based on the results for the groups of rank one.

6.0.3. The definition of Φ_{s_a}. The space $L^2(X)$ is the unitary completion $L^2 \cdot \text{ind}^G_1$ of the space $S_0(X) = \text{ind}^G_1$.

For a simple root ray a of G consider a parabolic subgroup $P_a = M_a \cdot U^a$, with the derived group $P'_a = M'_a U^a$, where $M'_a = G_a$ is a semisimple group of rank 1. We denote by $B_a = T_a \cdot U_a$ the Borel subgroup of G_a and put $X_a = U_a \backslash G_a$.

Consider the isomorphism, implied by the transitivity of induction,

$$
\iota_a : L^2(X) \rightarrow L^2 \cdot \text{ind}^G_1 L^2(X_a).
$$

defined by $\iota_a(f)(g)([m]) = f([mg])$.

The isometry Φ_s on $L^2(X_a)$, defined in sections III and IV gives rise to an isometry on $L^2(X)$ by functoriality of induction. We continue to denote this isometry by Φ_{s_a}.

Definition 6.4. The operator $\Phi_{s_a} \in \text{Aut}_G(L^2(X))$ is defined by

$$
\iota_a(\Phi_{s_a}(f))(g) = \Phi_s(\iota_a(f))(g), \quad f \in L^2(X), g \in G.
$$

Proposition 6.5. For any simple root ray a the operator $\Phi_{s_a} \in \text{Aut}(L^2(X))$ is a unitary involution satisfying $\theta(g, t) \circ \Phi_{s_a} = \Phi_{s_a} \circ \theta(g, t^a)$.

Proof. The only non-trivial statement is the equivariance of T which is enough to prove for $f \in S_0(X)$.

Consider an embedding with dense image

$$
j : T_a \times U_a \hookrightarrow X_a, \quad (t, u) \mapsto t^{-1}n_{s_a}u.
$$

For $f \in S_0(X)$ the Fourier transform is given by

$$
\hat{\Phi}_{s_a}(f)([g]) = \int_{T_a U_a} f(t^{-1}n_{s_a}ug)\mathcal{L}([t^{-1}n_{s_a}u], [1])X_a)\delta_B(t_1)dt_1du.
$$

Here $\mathcal{L} = \psi$ for $a = \{\alpha\}$ and is defined by (4.6) for $a = \{\alpha, 2\alpha\}$.

Assume that $a = \{\alpha\}$. Using (4.7) for $f \in S_c(X)$ one has

$$
\theta(t_1)\Phi_{s_a}(f)([g]) = \delta_B^{1/2}(t_1)\Phi_{s_a}(f)([t_1^{-1}g]) =
$$

$$
= \delta_B^{1/2}(t_1) \int_{T_a U_a} f([t^{-1}n_{s_a}ut_1^{-1}g])\mathcal{L}([1], [t^{-1}n_{s_a}])\delta_B(t)dtdu =
$$

$$
\delta_B^{1/2}(t_1)\delta_{B_a}^{M'_a}(t_1)^{-1} \int_{T_a U_a} f((t_1)^{s_a}s_a^{-1}t^{-1}n_{s_a}ug)\psi([1], [t^{-1}n_{s_a}])\delta_B(t)dtdu =
$$
\[
\Phi_{s_a}(\theta(t_a^s)f)([g]).
\]

We have used the fact that the inner product is \(G_a\) invariant and that
\[
\delta_B^{1/2}(t_1)\delta_{B_a}^{M_a}(t_1)^{-1} = \delta_B^{1/2}(t_1^s).
\]

\[\square\]

Proposition 6.6. For any simple root ray \(a\) the operator \(\Phi_{s_a}\) preserves \(S_0(X)\).

Proof. We have defined for any root ray \(a\) the set of triples \(B_a\) such that \(S_0(X) \subset S_{B_a}(X) \subset S_c(X)\). In fact \(S_{B_a}(X) = \text{ind}_{P_a}^{G} S_0(X_a)\) which is preserved by \(\Phi_{s_a}\) by Definition 6.1 and by Propositions 3.8, 4.17. In particular, \(\Phi_{s_a}(S_0(X)) \subset S_c(X)\).

For \(f \in S_0(X)\) let us show that \(\Phi_{s_a}(f) \in S_0(X)\). For any triple \((\alpha, \phi_a \circ t, \chi) \in B_a\) denote the Mellin transform by \(P(\chi, \alpha)\).

\[P(\chi, s_a(\alpha))\Phi_{s_a}(f) = 0 \text{ by the equivariance property of } \Phi_{s_a}.
\]

\[\square\]

6.0.4. **The operator \(\kappa_{\Psi}(\Phi_{s_a})\).** In this subsection we compute \(\kappa_{\Psi}(\Phi_{s_a})\) for the character \(\Psi\) defined in 6.0.2.

Proposition 6.7. For any \(\varphi \in S_0(T)\) one has

\[\kappa_{\Psi}(\Phi_{s_a})(\varphi) = s_a \cdot \varphi.
\]

Proof. We shall show first the statement for \(t = 1\), i.e.

\[\kappa_{\Psi}(\Phi_{s_a})(\varphi)(1) = \theta(t_a)\varphi(1).
\]

Let \(a\) be a positive root ray.

\[\mathcal{W}_{\Psi}(\Phi_{s_a}(f))(1) = \int_{U^{\text{opp}}} \Phi_{s_a}(f)([u])\Psi^{-1}(u)du.
\]

We use decomposition \(U^{\text{opp}} = U^{-a}U_{-a}\) where \(U^{-a}\) is the product of all root subgroups corresponding to the negative root rays, except \(-a\). One has

\[\mathcal{W}_{\Psi}(\Phi_{s_a}(f))(1) = \int_{U^{-a}} \left(\int_{U_{-a}} \Phi_{s_a}(f)([u_1 u_2])\Psi^{-1}(u_1)du_1 \right) \cdot \Psi^{-1}(u_2)du_2.
\]

The character \(\Psi\) restricted to \(U_{-a}\) equals \(\Psi_1^a\) by the definition of \(\Psi\). The inner integral equals

\[\int_{U_{-a}} \Phi_{s_a}(t_a(f)(u_2))([u_1])\Psi_1^a(u_1^{-1})du_1 = \mathcal{W}_{\Psi_1^a}(\Phi_{s_a}(t_a(f)(u_2)))(1).
\]

By Theorems 3.8 and 4.17 it equals to \(\mathcal{W}_{\Psi_1^a}(\theta(t_a)_{-a}(f)(u_2))(1)\).
Thus \(W_\Psi(\Phi_{s_a}(f))(1) \) equals

\[
\int_{U^{-a}} \left(\int_{U^{-a}} (\theta(t_a)\tau_{a}(f))(u_2)([u_3])^{-1}(u_3)du_3 \right) \cdot \Psi^{-1}(u_2)du_2 = W_\Psi(\theta(t_a)f)(1).
\]

For an arbitrary \(t \in T \) one has

\[
\kappa_\Psi(\Phi_{s_a})(\varphi)(t) = \kappa_\Psi(\theta(t)\Phi_{s_a})(\varphi)(1) = \\
\kappa_\Psi(\Phi_{s_a})(\theta(t^{s_a})\varphi)(1) = \theta(t^{s_a})\varphi(1) = \\
\varphi(t^{s_a}) = s_a \cdot \varphi(t)
\]

as required. \(\square \)

Now we are ready to prove Theorem 1.2.

Proof. The injectivity of \(\kappa_\Psi \) implies the uniqueness of the family \(\Phi_w, w \in W \).

To prove Theorem it is enough to construct the operators \(\Phi_w \). For any \(w \in W \) there is a presentation \(w = s_{a_1} \cdot \ldots \cdot s_{a_n} \) as a product of simple reflections. We define the operator \(\Phi_w \in \text{Aut}(L^2(X)) \)

\[
\Phi_w(f) = \Phi_{s_{a_1}} \circ \ldots \circ \Phi_{s_{a_n}}.
\]

The operator \(\Phi_w \) is unitary, preserves \(S_0(X) \) and satisfies \(\theta(g, t) \circ \Phi_w = \Phi_w \circ \theta(g, t^w) \) for \(g \in G, t \in T \).

Clearly, \(\kappa_\Psi \) is a homomorphism of algebras. In particular,

\[
kappa_\Psi(\Phi_w)(\varphi) = \kappa_\Psi(\Phi_{s_{a_1}}) \circ \ldots \circ \kappa_\Psi(\Phi_{s_{a_n}})(\varphi) = s_{a_1} \cdot \ldots \cdot s_{a_n} \cdot \varphi = w \cdot \varphi,
\]

and hence \(\kappa_\Psi(\Phi_w) \) does not depend on the presentation of \(w \). Since \(\kappa_\Psi \) is injective, the operator \(\Phi_w \) does not depend on the presentation of \(w \). The property \(\Phi_{w_1w_2} = \Phi_{w_1} \circ \Phi_{w_2} \) is obvious from the definition. \(\square \)

References

[BK99] Alexander Braverman and David Kazhdan. On the Schwartz space of the basic affine space. *Selecta Math. (N.S.)*, 5(1):1–28, 1999.

[BT84] F. Bruhat and J. Tits. Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée. *Inst. Hautes Études Sci. Publ. Math.*, (60):197–376, 1984.

[GG73] S. Gelfand and M. Graev. Fourier-Weyl operators on the principal affine space of a Chevalley group. *Institute of Applied Mathematics, Moscow*, (79), 1973.

[GK22] Nadya Gurevich and David Kazhdan. Fourier transform on a cone and the minimal representation of even orthogonal group. 2022.

[Kaz95] David Kazhdan. “Forms” of the principal series for \(GL_n \). In *Functional analysis on the eve of the 21st century, Vol. 1 (New Brunswick, NJ, 1993)*, volume 131 of *Progr. Math.*, pages 153–171, Birkhäuser Boston, Boston, MA, 1995.

[KL88] D Kazhdan and Gérard Laumon. Gluing of perverse sheaves and discrete series representation. *Journal of Geometry and Physics*, 5(1):63–120, 1988.

[Wei64] André Weil. Sur certains groupes d’opérateurs unitaires. *Acta Math.*, 111:143–211, 1964.
School of Mathematics, Ben Gurion University of the Negev, POB 653, Be’er Sheva 84105, Israel

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 9190401, Israel

Email address: ngur@math.bgu.ac.il
Email address: kazhdan@math.huji.ac.il