RESEARCH ARTICLE

Extract of *Scutellaria baicalensis* induces semaphorin 3A production in human epidermal keratinocytes

Yasuko Yoshioka¹,²☯, Yayoi Kamata²☯, Mitsutoshi Tominaga²☯, Yoshie Umehara², Ikuyo Yoshida¹, Nobuya Matsuoka¹, Kenji Takamori²,³*

¹ Central R&D Laboratory, Kobayashi Pharmaceutical Co. Ltd., Ibaraki, Osaka, Japan, ² Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan, ³ Department of Dermatology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan

☯ These authors contributed equally to this work.

*ktakamo@juntendo.ac.jp

Abstract

In a disease-state-dependent manner, the histamine-resistant itch in dry skin-based skin diseases such as atopic dermatitis (AD) and xerosis is mainly due to hyperinnervation in the epidermis. Semaphorin 3A (Sema3A) is a nerve repulsion factor expressed in keratinocytes and it suppresses nerve fiber elongation in the epidermis. Our previous studies have shown that Sema3A ointment inhibits epidermal hyperinnervation and scratching behavior and improves dermatitis scores in AD model mice. Therefore, we consider Sema3A as a key therapeutic target for improving histamine-resistant itch in AD and xerosis. This study was designed to screen a library of herbal plant extracts to discover compounds with potential to induce Sema3A in normal human epidermal keratinocytes (NHEKs) using a reporter gene assay, so that positive samples were found. Among the positive samples, only the extract of *S. baicalensis* was found to consistently increase Sema3A levels in cultured NHEKs in assays using quantitative real-time PCR and ELISA. In evaluation of reconstituted human epidermis models, the level of Sema3A protein in culture supernatants significantly increased by application of the extract of *S. baicalensis*. In addition, we investigated which components in the extract of *S. baicalensis* contributed to Sema3A induction and found that baicalin and baicalein markedly increased the relative luciferase activity, and that baicalein had higher induction activity than baicalin. Thus, these findings suggest that *S. baicalensis* extract and its compounds, baicalin and baicalein, may be promising candidates for improving histamine-resistant itch via the induction of Sema3A expression in epidermal keratinocytes.

Introduction

Itching is a sensation of discomfort that leads to scratching. Histamine is a well-known pruritogen. Clinically, histamine H₁ receptor antagonists are commonly used to treat pruritus, but
they are often ineffective against pruritic skin diseases, such as atopic dermatitis (AD) and xerosis [1, 2].

Histologically, cutaneous sensory nerve fibers are localized in the vicinity of the boundary between the epidermis and the dermis in normal skin. On the other hand, in the AD or xerosis skin in the disease-state, a large numbers of sensory nerve fibers penetrated and sprouted through the basal cell layer, resulting in epidermal hyperinnervation. The nerve fibers extending just under the stratum corneum with the skin barrier disruption are thought to cause itch hypersensitivity against external stimuli [1–6].

Our previous studies demonstrated that epidermal innervation is regulated by the balance between nerve elongation factors (e.g. nerve growth factor [NGF]) and nerve repulsion factors (e.g. semaphorin 3A [Sema3A]) [4]. NGF produced by keratinocytes is one of the major growth factors that determines skin innervations, with higher local NGF concentrations in the lesional skin of patients with AD or xerosis than in normal skin [1]. Decreased levels of Sema3A expression in the epidermis have been reported in patients with AD [7] and in an experimental model [8], concomitant with an increase in epidermal nerve density. Sema3A has been shown to inhibit NGF-induced sprouting of sensory afferents in the adult mammalian spinal cord [9], and elevated levels of NGF reduced the Sema3A-induced collapse of sensory growth cones [10]. These findings suggest that decreasing Sema3A levels in the epidermis can accelerate epidermal nerve growth in dry-skin-based diseases.

Experimentally, it has been reported that replacement of recombinant Sema3A in the lesional skin of NC/Nga mice normalized epidermal hyperinnervation, resulting in suppression of itch-related scratching behavior and improved dermatitis [11, 12]. This raises the possibility that enhancement of epidermal Sema3A levels may be a promising therapeutic approach for improving pruritus associated with intra-epidermal nerve density. It is generally thought that small molecules (<500 Da) pass through the normal skin barrier [13], whereas larger molecules, such as recombinant Sema3A with a molecular weight of 113.5 kDa, would be less likely to penetrate the stratum corneum barrier. Even if it is absorbed into the epidermis from the cracked stratum corneum of lesional skin, a protein molecule also risks side effects such as contact dermatitis. In addition, recombinant Sema3A is an unstable substance in ointment base [11]. It is likely that there may be many problems in the clinical application of Sema3A direct replacement therapy. Therefore, we considered that topical application of a low-molecular-weight compound with the potential to induce endogenous Sema3A production from human epidermal keratinocytes, rather than Sema3A itself, is a useful approach to improve itch caused by epidermal hyperinnervation.

In this study, we screened a library of herbal plant extracts, which have been confirmed to be safe or use in external preparations, to discover compounds with potential to induce endogenous Sema3A production from normal human epidermal keratinocytes (NHEKs). Here, we describe effect of *Scutellaria baicalensis* extract on Sema3A production in human epidermal keratinocytes.

Materials and methods

Preparation of test samples

The ninety-one herbal plants used for screening in this study are shown in Table 1. Ethanol extracts of the herbal plants were obtained from Maruzen Pharmaceuticals Co., Ltd. (Hiroshima, Japan) and Koei Kogyo Co., Ltd. (Tokyo, Japan). These ethanol extracts were evaporated under reduced pressure and lyophilized as test samples. Lyophilized samples were reconstituted at 100 mg/mL with DMSO, and each test sample was diluted with basal medium at a concentration in the range of 0.02–500 μg/mL and used in each experiment.
Table 1. A list of herbal plants used in screening of Sema3A inducers.

No.	Scientific name	Part	No.	Scientific name	Part
1	Uncaria gambir	Leaf, burgeon	47	Ziziphus jujuba	Fruit
2	Arnica montana	Flower	48	Thymus vulgaris	Aerial part
3	Aloe ferox, Aloe africana	Leaf	49	Syzygium aromaticum	Bud
4	Aloe arborescens	Leaf	50	Citrus unshiu	Pericarp
5	Ginkgo biloba	Leaf	51	Capsicum annuum	Fruit
6	Urtica thunbergiana	Leaf	52	Angelica acutiloba	Root
7	Artemisia capillaris	Flower head	53	Calendula officinalis	Flower
8	Foeniculum vulgare	Fruit	54	Panax ginseng	Root
9	Thea sinensis	Leaf	55	Lonicera japonica	Leaf, stem
10	Rosa multiflora	Fruit	56	Tussilago farfata	Flower, leaf
11	Rabdosia japonica	Aerial part	57	Poria cocos	Sclerotium
12	Scutellaria baicalensis	Root	58	Rhus aculeatus	Rootstock
13	Phellodendron amurense	Bark	59	Carthamus tinctorius	Flower
14	Ficus vesiculosus	Whole alga	60	Mentha piperita	Leaf
15	Glycyrrhiza glabra, Glycyrrhiza uralensis	Root, rootstock	61	Paeonia suffruticosa	Root bark
16	Cinchona succirubra	Bark	62	Humulus lupulus	Female Flower
17	Prunus armeniaca	Seed	63	Aesculus hippocastanum	Seed
18	Mallotus philippinensis	Bark	64	Melissa officinalis	Leaf
19	Sasa veitchii	Leaf	65	Prunus persica	Leaf
20	Matricaria chamomilla	Flower	66	Eucalyptus globulus	Leaf
21	Sophora flavescens	Root	67	Saxifraga stolonifera	Whole plant
22	Citrus paradisi	Fruit	68	Citrus junos	Fruit
23	Cinnamomum cassia	Bark	69	Lavandula angustifolia	Flower
24	Gentiana lutea	Root, rootstock	70	Thea sinensis	Leaf
25	Geranium thunbergii	Aerial part	71	Hydrangea serrata var. thunbergii	Leaf
26	Saccharomyces cerevisiae	Whole	72	Ganoderma lucidum	Fruit body
27	Arctium lappa	Root	73	Rosa canina	Fruit
28	Zanthoxylum piperitum	Pericarp	74	Rosmarinus officinalis	Leaf
29	Rehmannia glutinosa	Root	75	Thymus serpyllum	Aerial part
30	Asiasarum sieboldii	Root, rootstock	76	Hydrangea serrata var. thunbergii	Leaf
31	Salvia officinalis	Leaf	77	Coptis japonica	Rootstock
32	Crataegus cuneata	Fruit	78	Hypericum perforatum	Aerial part
33	Gardenia jasminoides	Fruit	79	Artemisia princeps	Leaf
34	Zanthoxylum piperitum	Pericarp	80	Lonicera japonica	Flower
35	Rehmannia glutinosa	Root	81	Thea sinensis var. assamica	Leaf
36	Perilla frutescens var. Crispa	Leaf	82	Acorus calamus	Rootstock
37	Tilia cordata	Flower	83	Achillea millefolium	Whole plant
38	Paeonia lactiflora	Root	84	Morus alba	Root bark
39	Ho豆瓣ia cordata	Aerial part	85	Luffa cylindrica	Aerial part
40	Sanguisorba officinalis	Root, rootstock	86	Lilium candidum	Bulb
41	Zingiber officinalis	Rootstock	87	Coix lachryma-jobi var. ma-yuen stapf	Seed
42	Betula pendula	Bark	88	Cordiceps sinensis	Whole
43	Pimienta foetida	Nacre	89	Machilus odoratissima	Bark
44	Equisetum arvense	Whole	90	Punicac granatum	Pericarp
45	Cnidium officinale	Rootstock	91	Vitis vinifera	Leaf
46	Swertia japonica	Whole plant			

https://doi.org/10.1371/journal.pone.0250663.t001
Cell culture

NHEKs derived from adult epidermis (Lonza, Basel, Switzerland) were cultured in keratinocyte basal medium (KBM-Gold; Lonza, Basel, Switzerland) supplemented with KGM-Gold SingleQuot (Lonza), containing 0.15 mM calcium, at 37˚C with 5% CO₂. Cells were passaged at 60–70% confluence, and the experiments were performed using sub-confluent cells within four passages.

Transfection and measurement of promoter activity

NHEKs were seeded in 24-well flat bottom plates for 24 hours. The culture medium was replaced with antibiotic-free medium and the cells were co-transfected with 500 ng/well pGL3-Sema3A vector containing the firefly luciferase gene and 50 ng/well pRL3-TK vector containing the Renilla luciferase gene (Promega, Madison, WI, USA) using X-tremeGENE HP DNA Transfection Reagent (Roche Diagnostics GmbH, Mannheim, Germany) in accordance with the manufacturer’s instructions. pGL3-Sema3A vector was produced in accordance with the methods reported by Kamata et al. [14]. At 24 hours after the start of transfection, the medium was replaced with fresh medium containing the test samples shown in Table 1, apigenin, baicalein, baicalin, chrysin, or wogonin (Wako Pure Chemical Industries, Ltd., Osaka, Japan) at various concentrations, and NHEKs were further incubated for 24 or 48 hours at 37˚C. The cells were washed and lysed with passive lysis buffer, and luciferase activities were analyzed using a dual-luciferase reporter assay system with a 2030 ARVO-X4 Multi label Plate Reader (Perkin Elmer, Waltham, MA, USA) in accordance with the manufacturer’s instructions. Relative luciferase activity was expressed as a relative ratio of experimental data to untreated control data after normalization with firefly luminescence/Renilla luminescence ratio for each sample well. Cultured cells were observed using a microscope and checked for morphologically damaged cells by test sample treatment. Data obtained from damaged cells were excluded from the results.

Measurement of Sema3A at mRNA and protein levels in cultured NHEKs

NHEKs were incubated with five plant extracts, Arnica montana (sample No. 2), Artemisia capillaris (No. 7), Malva sylvestris L. (No. 10), Scutellaria baicalensis (No. 13), or Hydrangea serrata var. thunbergii (No. 76), at a final concentration of 50 μg/mL for 3 or 6 hours at 37˚C. The cells were subsequently harvested and transcription levels of the human Sema3A gene were quantified using quantitative real-time PCR. Quantification was performed using an Applied Biosystems Fast Real-Time PCR system (Applied Biosystems) using PrimeScript™ One Step RT-PCR Kit (Takara Bio Inc., Shiga, Japan) and the primers 5’-ACCCAACTATCAATGGGTGCCTTA-3’ (forward) and 5’-AACACTGGATTGTACATGGCTGGA-3’ (reverse). As an internal control, ribosome protein S18 (RPS18) mRNA was amplified using the primers 5’-TTTGCGAGTACTCAACACCATC-3’ (forward) and 5’-GAGCATACTTTCCGCCCCCAC-3’ (reverse). The amounts of mRNA were normalized relative to those of RPS18 and expressed relative to ratios of the untreated controls.

The culture supernatants were collected after 3, 6, or 24 hours and Sema3A protein concentration was measured using an enzyme-linked immunosorbent assay (ELISA) kit for Sema3A (Uscn Life Science, Wuhan, China), in accordance with the manufacturer’s protocol. Cells cultured for 6 or 24 hours were lysed in M-PER mammalian protein extraction reagent and protease inhibitor cocktail (Thermo Scientific, Waltham MA, USA), then Sema3A levels in the cell lysate were measured using a Human Sema3A ELISA kit (Elabscience, Houston, TX, USA).
Cell counting assay
A Cell Counting Kit (CCK)-8 (Dojindo, Kumamoto, Japan) was used to assess the cell toxicity of each compound on NHEKs. Cells were seeded at 1 x 10^4 cells per well in 96-well culture plates. After incubation overnight at 37˚C, an extract of S. baicalensis or A. montana (50 μg/mL) was added to each well, then incubated for 6 or 24 hours at 37˚C. At each time point, CCK-8 solution was added to each well and incubated for 3 hours at 37˚C. Cell viability was estimated by measuring the absorbance at 450 nm using a 2030 ARVO-X4 Multi label Plate Reader (Perkin Elmer).

Reconstructed human epidermis (RHE) models
RHE model (EPISKIN, SA, Lyon, France) is an in vitro reconstructed human epidermis from normal human keratinocytes cultured on an inert polycarbonate filter at the air-liquid interface, in a chemically defined medium, featuring normal ultrastructure and functionality similar to human tissue in vivo [15]. RHE models were cultured in accordance with the manufacturer’s protocol. Briefly, inserts containing the RHE models were shipped at room temperature in a multi-well plate filled with an agarose-nutrient solution in which they were embedded. The inserts were carefully taken out of the multi-well plate, any remaining agarose adhering to the outer sides of the insert was removed, and the inserts were placed in a plate in which each well has been filled with Maintenance Medium (EPISKIN, Lyon, France) overnight at 37˚C, 5% CO2. Next, 100 μL of the extract of A. montana or S. baicalensis (100 or 500 μg/mL) was applied from the stratum corneum side of the reconstructed epidermis samples and cultured for 24 hours. The concentration of Sema3A protein in the culture supernatants was measured by ELISA as described above.

Statistical analyses
Unless otherwise indicated, values were presented as the standard deviation (S.D.) of the mean. Statistical analyses were performed using one-way or two-way ANOVA followed by Dunnett’s multiple comparison tests with GraphPad Prism 8 (GraphPad Software, Inc., CA, USA), with p < 0.05 defined as statistically significant.

Results
Screening of Sema3A inducers from herbal plant extracts using a reporter gene assay
Cultured NHEKs were transfected with luciferase reporter gene constructs containing -1444 bp of the human Sema3A promoter as described previously [14]. Following transfection, cells were treated with various types of herbal plant extracts at a final concentration of 50 μg/mL for 24 hours and the cell lysates were subjected to luciferase assays. The results are shown in Table 2. From 91 different types of herbal plant extracts, 48 extracts exhibited significantly increased relative luciferase activity compared with the untreated controls, with no cell damage morphologically by the addition thereof. The dose–response relationship was examined with the lower concentration range for the top 5 samples (sample Nos. 2, 7, 10, 13, and 76) among the 48 herbal plants extracts showing significantly higher activity compared with the control. The samples of No. 7, 10, and 76 increased activity in a dose-dependent manner (Fig 1). No dose-dependent increases in activity were observed with samples No. 2 and 13, although in sample No. 13, it seemed that its activity probably reached a plateau, because it was the most active at a low concentration of 5 μg/mL.
Table 2. A summary of Sema3A reporter gene activity by herbal plant extracts.

No.	Mean	S.D.	Significant difference	P value	No.	Mean	S.D.	Significant difference	P value
1	1.60	0.07	**	0.0007	47	1.05	0.06	n.s.	0.9994
2	2.21	0.20	***	< 0.0001	48	1.24	0.14	n.s.	0.367
3	1.62	0.18	**	0.000	49	1.43	0.12	*	0.0108
4	1.53	0.07	**	0.004	50	1.02	0.01	n.s.	0.9998
5	1.60	0.06	**	0.001	51	1.62	0.10	***	0.0002
6	1.67	0.13	**	0.000	52	1.08	0.05	n.s.	0.999
7	2.81	0.21	***	< 0.0001	53	1.29	0.27	n.s.	0.1762
8	1.73	0.07	***	< 0.0001	54	1.23	0.09	n.s.	0.3833
9	1.55	0.30	**	0.002	55	1.33	0.03	n.s.	0.0841
10	1.97	0.16	***	< 0.0001	56	1.38	0.30	*	0.0348
11	1.44	0.17	*	0.02	57	1.41	0.13	*	0.019
12	1.39	0.17	n.s.	0.05	58	1.29	0.12	n.s.	0.996
13	1.95	0.09	***	< 0.0001	59	1.49	0.14	n.s.	0.9042
14	1.03	0.06	n.s.	1.00	60	1.38	0.08	n.s.	0.9829
15	1.32	0.06	n.s.	0.20	61	1.40	0.21	n.s.	0.9741
16	1.69	0.16	***	< 0.0001	62	1.55	0.14	n.s.	0.8322
17	1.29	0.23	n.s.	0.31	63	0.67	0.05	n.s.	0.992
18	1.19	0.06	n.s.	0.81	64	No data	No data	-	-
19	No data	No data	-	-	65	1.62	0.10	n.s.	0.7277
20	1.40	0.07	*	0.05	66	1.25	0.13	n.s.	0.9991
21	1.25	0.03	***	< 0.0001	67	1.57	0.18	n.s.	0.7978
22	1.20	0.03	***	< 0.0001	68	1.03	0.15	n.s.	0.9999
23	1.03	0.02	n.s.	0.8836	69	1.13	0.04	n.s.	0.9996
24	1.24	0.05	***	< 0.0001	70	1.36	0.26	n.s.	0.9893
25	1.19	0.04	***	< 0.0001	71	1.31	0.11	**	0.0062
26	1.25	0.05	***	< 0.0001	72	1.35	0.01	***	0.0006
27	1.20	0.02	***	< 0.0001	73	1.16	0.04	n.s.	0.2914
28	1.23	0.01	***	< 0.0001	74	1.38	0.07	***	0.0006
29	1.19	0.02	***	< 0.0001	75	1.42	0.13	***	< 0.0001
30	1.23	0.02	***	< 0.0001	76	2.27	0.17	***	< 0.0001
31	1.34	0.02	***	< 0.0001	77	1.29	0.03	**	0.0062
32	1.27	0.00	***	< 0.0001	78	1.38	0.06	***	0.0006
33	1.28	0.05	***	< 0.0001	79	1.54	0.08	***	< 0.0001
34	1.30	0.01	***	< 0.0001	80	1.33	0.04	***	0.0006
35	0.96	0.26	n.s.	0.9993	81	1.32	0.02	**	0.0062
36	1.17	0.03	n.s.	0.2271	82	1.18	0.09	n.s.	0.2914
37	1.10	0.03	n.s.	0.7929	83	1.38	0.13	***	0.0002
38	1.19	0.03	n.s.	0.1783	84	0.02	0.01	***	< 0.0001
39	1.18	0.03	n.s.	0.2098	85	0.99	0.08	n.s.	0.9997
40	1.26	0.03	*	0.0244	86	0.96	0.07	n.s.	0.9534
41	1.26	0.24	*	0.0197	87	0.99	0.08	n.s.	0.9998
42	1.10	0.01	n.s.	0.82	88	0.87	0.04	n.s.	0.8227
43	1.24	0.01	*	0.0368	89	1.01	0.22	n.s.	> 0.9999
44	1.31	0.01	**	0.0037	90	0.85	0.13	n.s.	0.398
45	1.19	0.01	n.s.	0.1383	91	0.83	0.04	n.s.	0.3129

(Continued)
Effects of the herbal plant extracts Sema3A induction at mRNA and protein levels in NHEKs

We next examined the induction of Sema3A mRNA and protein levels with the five positive plant extracts (sample No. 2, 7, 10, 13, and 76) by quantitative real-time PCR and ELISA, respectively. Expression of Sema3A mRNA in the NHEKs treated with No. 2, 7, and 13 was markedly increased at both 3 and 6 hours compared with untreated controls (Fig 2). In samples No. 10 and 76, they were slightly increased at 3 and 6 hours, respectively.

Sema3A protein levels were measured in the culture supernatants of NHEKs treated with five tested samples using ELISA (Fig 3A). At 3 hours after sample treatment, differences in Sema3A protein levels were hardly noted in the culture supernatants compared with the control group. However, from 6 hours onward, sample treatment led to an overall increase in Sema3A expression, and Sema3A levels were significantly increased with sample No. 13 compared with the controls at 24 hours. In sample No. 2, we noted a tendency to increase, although no statistically significant difference was observed. Increased expression at the protein level was also observed using ELISA with cell lysates of cultured NHEKs with sample No. 13 but not sample No. 2 (Fig 3B). We further tested the effects of samples No. 2 and No. 13 on cell...
viability of cultured NHEKs using a cell counting assay. In the assay, the cell viabilities of NHEKs treated with these compounds was significantly increased at 6 hours compared with untreated controls, whereas samples No. 2 and No. 13 reduced cell viabilities to 89.8% and 78.2% at 24 hours, respectively (Fig 3C).

Effect of the plant extracts on Sema3A protein production in RHE models

The Sema3A-inducing activity of the extracts of *S. baicalensis* and *A. montana* was evaluated using RHE models. These plant extracts at concentrations of 100 or 500 μg/mL were applied to the stratum corneum side of RHE models. They were cultured for 24 hours, and then Sema3A protein levels in the culture supernatant were measured. In the *S. baicalensis*-treated group, the concentration of Sema3A increased in a dose-dependent manner, with significantly higher values noted in the 500 μg/mL *S. baicalensis*-treated group compared with the untreated control (Fig 4). Meanwhile, application of *A. montana* extract did not affect Sema3A concentration in the culture supernatant.

Bioactive components in *S. baicalensis* contributing to Sema3A induction

We examined which components in the extract of *S. baicalensis* contributed to Sema3A induction (Fig 5A). Of the known chemical components in the extract of *S. baicalensis*, we conducted Sema3A reporter gene assays in NHEKs treated with the five major bioactive flavones, baicalin, baicalein, wogonin, chrysin, and apigenin. The experiment was performed with a maximum concentration of 5 μg/mL and a 3-fold dilution series. The molar concentration of each compound is shown in S1 Table. The extract of *S. baicalensis*, baicalin, and baicalein all significantly increased the relative luciferase activity at a concentration of 5 μg/mL, and the increase in activity of these samples was dose dependent. Notably, baicalein markedly
increased its activity at a lower concentration of 0.56 μg/mL compared with the extract of S. baicalensis and baicalin. Such significant alterations were observed with chrysin and apigenin but were not dose dependent. Meanwhile, wogonin significantly decreased the luciferase activity at a concentration of 5 μg/mL.

Discussion

In the present study, we found five positive samples from 91 herbal plant extracts as potent inducers for human Sema3A gene in NHEKs using our Sema3A reporter gene assay. Among these, samples No. 2, 7, and 13 markedly increased the expression levels of Sema3A mRNA in cultured NHEKs at 3 and 6 hours (Fig 2). In addition, the extract of S. baicalensis significantly increased the level of Sema3A protein in the supernatants of NHEKs cultured for 24 hours (Fig 3A) and in cell lysates from NHEKs cultured for 6 and 24 hours (Fig 3B). Meanwhile, no significant increases in the level of Sema3A protein in culture supernatants and cell lysates from NHEKs treated with the extract of A. montana were found in this study. These findings suggested that the extract of S. baicalensis consistently has Sema3A-inducing activity in
cultured NHEKs on both gene and protein expression levels. In addition, our cell counting assay showed that extracts of *S. baicalensis* and *A. montana* significantly increased cell viability at 6 hours, whereas the cell viabilities with *S. baicalensis* and *A. montana* treatments at 24 hours reduced to 89.8% and 78.2%, respectively (Fig 3C), although no morphological findings related to cytotoxicity were observed in microscopic observations up to 24 hours. Thus, these findings raise the possibility that extracts of *S. baicalensis* and *A. montana* are at least partly involved in cell proliferation and/or differentiation rather than cytotoxic events. This idea might also be supported by a previous study that baicalein, one of the components in *S. baicalensis*, induced keratinocyte differentiation [16].

Notably, Sema3A concentration in the culture supernatants was significantly increased in the *S. baicalensis* extract-treated group in RHE model, whereas no increase was observed in the *A. montana* extract-treated group (Fig 4). This model was reconstructed by culturing human epidermal keratinocytes, featuring normal ultrastructure and functionality similar to human tissue in vivo [15]. Each sample was applied to the stratum corneum side of the three-dimensional skin model. It is generally thought that small molecules (<500 Da) pass through the normal skin barrier [13]. The result of RHE models indicated that at least some of the components that contribute to the induction of Sema3A in the extract from *S. baicalensis* can pass through the stratum corneum and act on keratinocytes. From these findings, it was suggested that topical application of the *S. baicalensis* extract can alleviate itch caused by hyperinnervation through induction of endogenous Sema3A in epidermal keratinocytes. In fact, our preliminary study using a pruritic dry skin model mouse also showed that repeated application of *S. baicalensis* extract tended to relieve the itch-related scratching behavior and epidermal hyperinnervation (Yoshioka et al. unpublished observations).

S. baicalensis has long been used as the medicinal plant in Eastern traditional herbal formulations. More than 40 kinds of flavonoids, including baicalin, baicalein, wogonin, chrysin, and apigenin, have been identified from the extract of *S. baicalensis*, which has various pharmacological activities including anti-inflammatory, anti-allergic, anti-oxidant, anti-tumor, anti-bacterial, and neuroprotective actions [17–19]. We investigated which components in the extract...
of *S. baicalensis* contributed to Sema3A induction. Among the major bioactive flavones in *S. baicalensis* subjected to the assay, baicalin, baicalein, and wogonin are components specific to *S. baicalensis* [17, 20, 21], whereas chrysin and apigenin are present in a variety of plants [22, 23]. Our reporter gene assay showed that relative luciferase activities in cultured NHEKs were significantly increased in a dose-dependent manner by the application of an extract of *S. baicalensis*, baicalin and baicalein compared with the control (Fig 5A). Notably, baicalein showed significantly higher activity at a low concentration (0.56 μg/mL) among the major bioactive flavones in *S. baicalensis*, suggesting that it is the most active compound. Baicalein is a glucuronide conjugate (Fig 5B) and is known to be converted to its aglycone, baicalein, by β-glucuronidase derived from bacteria but not that from humans [24]. It has been previously reported that an extract of *S. baicalensis* contains approximately 10% baicalin and 1% baicalein [25–27], so baicalin is a major component of *S. baicalensis* extract. Taken together, these findings suggested that baicalin and its aglycone, baicalein, are the main active components in *S. baicalensis* contributing to Sema3A induction in keratinocytes.

Among the four flavone aglycones tested, baicalein showed significantly higher activity in a dose-dependent manner, but no other aglycones, wogonin, chrysin, and apigenin. Baicalein...
(5,6,7-trihydroxyflavone), chrysin (5,7-dihydroxyflavone), and wogonin (5,7-dihydroxy-8-methoxyflavone) have substituents in different patterns only in ring A (Fig 5B). Thus, the different structure in ring A might affect activity on the Sema3A promoter in epidermal keratinocytes, although the precise mechanisms remain unclear in this study. Recently, we reported that Sema3A mRNA expression in NHEKs is regulated by calcium via the mitogen-activated protein kinase and activator protein (AP)-1 signaling axis [14]. Meanwhile, baicalein has been shown to suppress the transcription activity of AP-1 [28]. Therefore, the extract of S. baicalensis may promote Sema3A production via different signaling pathways.

In conclusion, the results of present study showed that the extract of S. baicalensis and its active compounds, baicalin and baicalein, induced Sema3A production in normal human epidermal keratinocytes. Thus, an S. baicalensis extract or its active compounds may be promising therapeutic candidates for improving histamine-resistant itch caused by epidermal hyperinnervation.

Supporting information
S1 Table. List of concentration units in μg/mL and μM for each compound tested.

(TIF)

Acknowledgments
The authors thank M. Takagi for technical assistance and J. Akaki for helpful comments on the analysis of herbal plants. We also thank H. Nakayama, A. Kamo, H. Matsuda, and K. Ishii for technical advice.

Author Contributions
Formal analysis: Yasuko Yoshioka, Yayoi Kamata.
Funding acquisition: Kenji Takamori.
Investigation: Yasuko Yoshioka, Yayoi Kamata, Yoshie Umehara, Ikuyo Yoshida.
Methodology: Yayoi Kamata, Mitsutoshi Tominaga.
Project administration: Yayoi Kamata, Mitsutoshi Tominaga.
Supervision: Kenji Takamori.
Writing – original draft: Yasuko Yoshioka, Mitsutoshi Tominaga, Nobuya Matsuoka.
Writing – review & editing: Yayoi Kamata, Mitsutoshi Tominaga, Kenji Takamori.

References
1. Ikoma A, Steinhoff M, Ständer S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci. 2006; 7(7):535–47. https://doi.org/10.1038/nrn1950 PMID: 16791143.
2. Paus R, Schmelz M, Bíró T, Steinhoff M. Frontiers in pruritus research: scratching the brain for more effective itch therapy. J Clin Invest. 2006; 116(5):1174–86. https://doi.org/10.1172/JCI28553 PMID: 16670758.
3. Yosipovitch G. Dry skin and impairment of barrier function associated with itch—new insights. Int J Cosmet Sci. 2004; 26(1):1–7. https://doi.org/10.1111/j.0142-5463.2004.00199.x PMID: 16494919.
4. Tominaga M, Takamori K. Itch and nerve fibers with special reference to atopic dermatitis: therapeutic implications. J Dermatol. 2014; 41(3):205–12. https://doi.org/10.1111/1346-8138.12317 PMID: 24628070
5. Tominaga M, Takamori K. Sensitization of Itch Signaling: Itch Sensitization—Nerve Growth Factor, Semaphorins. Itch: Mechanisms and Treatment. Boca Raton (FL): CRC Press/Taylor & Francis; 2014. Chapter 17.

6. Hidaka T, Ogawa E, Kobayashi EH, Suzuki T, Funayama R, Nagashima T, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat Immunol. 2017; 18(1):64–73. https://doi.org/10.1038/ni.3614 PMID: 27869817.

7. Tominaga M, Ogawa H, Takamori K. Decreased production of semaphorin 3A in the lesional skin of atopic dermatitis. Br J Dermatol. 2008; 158(4):842–4. https://doi.org/10.1111/j.1365-2133.2007.08410.x PMID: 18241279.

8. Yamada Y, Ueda Y, Nakamura A, Kanayama S, Tamura R, Hashimoto K, et al. Biphasic increase in scratching behavior induced by topical application of Dermatophagoides farinae extract in NC/Nga mice. Exp Dermatol. 2016; 25(8):611–7. https://doi.org/10.1111/exd.12999 PMID: 26990308.

9. Tominaga M, Ogawa H, Takamori K. Decreased production of semaphorin 3A in the lesional skin of atopic dermatitis. Br J Dermatol. 2008; 158(4):842–4. https://doi.org/10.1111/j.1365-2133.2007.08410.x PMID: 18241279.

10. Doncchev VD, Letourneau PC. Nerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility. J Neurosci. 2002; 22(15):6659–69. https://doi.org/10.1523/ JNEUROSCI.1263-03.2002 PMID: 12151545.

11. Negi O, Tominaga M, Tengara S, Kamo A, Taneda K, Suga Y, et al. Topically applied semaphorin 3A ointment inhibits scratching behavior and improves skin inflammation in NC/Nga mice with atopic dermatitis. J Dermatol Sci. 2012; 66(1):37–43. https://doi.org/10.1016/j.jdermsci.2012.01.007 PMID: 22381253.

12. Yamaguchi J, Nakamura F, Alhara M, Yamashita N, Usui H, Hida T, et al. Semaphorin3A alleviates skin lesions and scratching behavior in NC/Nga mice, an atopic dermatitis model. J Invest Dermatol. 2008; 128(12):2842–4. https://doi.org/10.1038/jid.2008.150 PMID: 18615113.

13. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000; 9(3):165–9. https://doi.org/10.1034/j.1600-0625.2000.009003165.x PMID: 10839713.

14. Kamata Y, Tominaga M, Umehara Y, Honda K, Kamo A, Moniaga CS, et al. Calcium-Inducible MAPK/AP-1 Signaling Drives Semaphorin 3A Expression in Normal Human Epidermal Keratinocytes. J Invest Dermatol. 2020; 140(7):1346–54. https://doi.org/10.1016/j.jid.2020.01.001 PMID: 31945349.

15. Poumay Y, Dupont F, Marcoux S, Leclercq-Smekens M, Herin M, Coquette A. A simple reconstructed human epidermis: preparation of the culture model and utilization in in vitro studies. Arch Dermatol Res. 2004; 296(5):203–11. https://doi.org/10.1007/s00403-004-0507-y PMID: 15349789.

16. Huang KF, Ma KH, Liu PS, Chen BW, Chueh SH. Baicalein increases keratin 1 and 10 expression in HaCaT keratinocytes via TRPV4 receptor activation. Exp Dermatol. 2016; 25(8):623–9. https://doi.org/10.1111/exd.13024 PMID: 27060689.
24. Srinivas NR. Baicalin, an emerging multi-therapeutic agent: pharmacodynamics, pharmacokinetics, and considerations from drug development perspectives. Xenobiotica. 2010; 40(5):357–67. https://doi.org/10.3109/00498251003663724 PMID: 20230189.

25. Islam MN, Chung HJ, Kim DH, Yoo HH. A simple isocratic HPLC method for the simultaneous determination of bioactive components of *Scutellariae radix* extract. Nat Prod Res. 2012; 26(21):1957–62. https://doi.org/10.1080/14786419.2011.631134 PMID: 22304335.

26. Makino T, Hishida A, Goda Y, Mizukami H. Comparison of the major flavonoid content of *S. baicalensis*, *S. lateriflora*, and their commercial products. J Nat Med. 2008; 62(3):294–9. https://doi.org/10.1007/s11418-008-0230-7 PMID: 18404307.

27. Sun C, Wang H, Wang Y, Xiao S. Rapid Isolation and Determination of Flavones in Biological Samples Using Zinc Complexation Coupled with High-Performance Liquid Chromatography. Molecules. 2016; 21(8). https://doi.org/10.3390/molecules21081067 PMID: 27537870.

28. Kim KC, Kang SS, Lee J, Park D, Hyun JW. Baicalein Attenuates Oxidative Stress-Induced Expression of Matrix Metalloproteinase-1 by Regulating the ERK/JNK/AP-1 Pathway in Human Keratinocytes. Biomed Ther (Seoul). 2012; 20(1):57–61. https://doi.org/10.4062/biomolther.2012.20.1.057 PMID: 24116275.