A matrix description of weakly bipartitive and bipartitive families

Edward Bankoussou-mabiala, Abderrahim Boussaïri, Abdelhak Chaïchaâ, Brahim Chergui

Abstract

The notions of weakly bipartitive and bipartitive families were introduced by Montgolfier (2003) as a general tool for studying some decomposition of graphs and other combinatorial structures. In this paper, we give a matrix description of these notions.

Keywords: Graph; Modular decomposition; Bipartitive families; matrices.

2000 MSC: 05C20, 15A03

1. Introduction

Modular decomposition has arisen as a technique that applies to many combinatorial structures such as graphs, tournaments, 2-structures, hypergraphs, and matroids, among others. It is based on module. For graphs, this notion goes back to Gallai [9]. More precisely, let $G = (V, E)$ be an undirected simple graph. A module of G is a set $M \subseteq V$ such that for all $x \in V \setminus M$ either $N_G(x) \cap M = \emptyset$ or $M \subseteq N_G(x)$, where $N_G(x)$ is the neighborhood of x, that is, $N_G(x) := \{y \in V : \{x, y\} \in E\}$. For tournaments, the notion of module can be defined in a similar way. Recall that a tournament is a directed graph such that for every distinct vertices x and y, either $x \rightarrow y$ or $y \rightarrow x$ and never both. Let T be a tournament with vertex set V. The
out-neighborhood of a vertex $x \in V$ is the set $N^+_T(x) = \{y \in V : x \rightarrow y\}$ and the in-neighborhood is $N^-_T(x) = \{y \in V : y \leftarrow x\}$. A module of T is a set $M \subseteq V$ such that for all $x \in V \setminus M$ either $N^+_T(x) \cap M = \emptyset$ or $M \subseteq N^-_T(x)$.

The split decomposition of graphs and the bi-join decomposition of graphs and of tournaments can be seen as a generalization of the modular decomposition. These decompositions were introduced respectively by Cunningham [3] and Montgolfier [10]. Let $G = (V, E)$ be an undirected simple graph and let $\{X, Y\}$ be a bipartition of V. We say that $\{X, Y\}$ is a split of G if there exist $X_1 \subseteq X$ and $Y_1 \subseteq Y$ such that for all $x \in X_1$, $N_G(x) \cap Y = Y_1$ and for all $x \in X \setminus X_1$, $N_G(x) \cap Y = \emptyset$. We say that $\{X, Y\}$ is a bi-join of G if there exist $X_1 \subseteq X$ and $Y_1 \subseteq Y$ such that for all $x \in X_1$, $N_G(x) \cap Y = Y_1$ and for all $x \in X \setminus X_1$, $N_G(x) \cap Y = Y \setminus Y_1$. Remark that if X or Y is a module of G then $\{X, Y\}$ is both a split and a bi-join of G. The notion of bi-join can be also defined for tournaments in the following way. Let T be a tournament with vertex set V. A bipartition $\{X, Y\}$ of V is a bi-join of T if there exist $X_1 \subseteq X$ and $Y_1 \subseteq Y$ such that for all $x \in X_1$ (resp. $x \in X \setminus X_1$), $N^+_T(x) \cap Y = Y_1$ and $N^-_T(x) \cap Y = Y \setminus Y_1$ (resp. $N^+_T(x) \cap Y = Y \setminus Y_1$ and $N^-_T(x) \cap Y = Y_1$).

Figure 1 : A split in a graph

Figure 2 : A bi-join in a graph and in a tournament

Bipartitive families are a general tool for studying both split decomposition and bi-join decomposition. They were introduced by Montgolfier [10] as follows. Let V be a nonempty set. Two bipartitions $\{X, Y\}$ and $\{X', Y'\}$ of V overlap if $X \cap Y$, $X \cap Y'$, $X' \cap Y$ and $X' \cap Y'$ are nonempty. A family \mathcal{F} of bipartitions of V is weakly bipartitive if:

Q1) for all $v \in V$, $\{\{v\}, V \setminus \{v\}\}$ is in \mathcal{F}.

Q2) for all \(\{X, Y\} \) and \(\{X', Y'\} \) in \(\mathcal{F} \) such that \(\{X, Y\} \) overlaps \(\{X', Y'\} \), the four bipartitions \(\{X \cap X', Y \cup Y'\}, \{X \cap Y', Y \cup X'\}, \{Y \cap X', X \cup Y'\} \) and \(\{Y \cap Y', X \cup X'\} \) are in \(\mathcal{F} \).

A weakly bipartitive family \(\mathcal{F} \) is bipartitive if it satisfies the following additional condition:

Q3) for all \(\{X, Y\} \) and \(\{X', Y'\} \) which overlap in \(\mathcal{F} \), \(\{X \Delta X', X \Delta Y'\} \) is in \(\mathcal{F} \).

Cunningham \([3]\) proved that the family of splits of a connected graph is bipartitive. The same result was obtained for the family of bi-joins of a graph by Montgolfier \([10]\). For tournaments, the family of bi-joins is only weakly bipartitive.

We will present now another important example of weakly bipartitive family which comes from the works of Hartfiel and Loewy \([5]\) and of Loewy \([8]\). Let \(A = [a_{ij}]_{1 \leq i,j \leq n} \) be a \(n \times n \) matrix with entries in a field \(K \) and let \(X, Y \) be two nonempty subsets of \([n] \) (where \([n] := \{1, \ldots, n\} \)). We denote by \(A[X,Y] \) the submatrix of \(A \) having row indices in \(X \) and column indices in \(Y \). The matrix \(A \) is irreducible if for any proper subset \(X \) of \([n] \), both of matrices \(A[X,[n] \setminus X] \) and \(A[[n] \setminus X,X] \) are nonzero. An HL-bipartition of \(A \) is a partition \(\{X,Y\} \) of \([n] \) such that both of matrices \(A[X,Y] \) and \(A[Y,X] \) have rank at most 1. The concept of HL-bipartitions is equivalent to that of HL-clan \([1]\). In the case when \(A \) is irreducible, the family of its HL-bipartitions is weakly bipartitive (see Lemma 1 of \([8]\)).

Splits and bi-joins can be interpreted in terms of HL-bipartitions. More precisely, we will prove in the next section that the splits (resp. the bi-joins) of an undirected simple graph \(G \) with vertex set \([n] \), are exactly the HL-bipartitions of its adjacency matrix (resp. Seidel adjacency matrix). Likewise, the bi-joins of a tournament \(T \) with vertex set \([n] \) are the HL-bipartitions of its Seidel adjacency matrix.

Throughout this paper, the family of HL-bipartitions of a matrix \(A \) is denoted by \(\mathcal{H}_A \). Our main result is the following theorem.

Theorem 1.1. If \(A \) is a symmetric and irreducible \(n \times n \) matrix over a field \(K \) then \(\mathcal{H}_A \) is bipartitive. Conversely, if \(\mathcal{F} \) is a weakly bipartitive family of \([n] \) then there exists an irreducible matrix \(A \) with entries in \(\{-1,0,1\} \) such that \(\mathcal{F} = \mathcal{H}_A \). In the particular case when \(\mathcal{F} \) is bipartitive, the matrix \(A \) can be chosen symmetric.
2. Splits, bi-joins and HL-bipartitions

Let G be a graph with n vertices $v_1, ..., v_n$. The adjacency matrix of G is the $n \times n$ real symmetric matrix $A(G) = [a_{ij}]_{1 \leq i,j \leq n}$ where $a_{ij} = 1$ if $\{v_i, v_j\}$ is an edge of G and $a_{ij} = 0$ otherwise. The Seidel adjacency matrix of G is the $n \times n$ symmetric matrix $S(G) = [s_{ij}]_{1 \leq i,j \leq n}$ in which $s_{ij} = 0$ if $i = j$ and otherwise is -1 if $\{v_i, v_j\}$ is an edge, $+1$ if it is not. The Seidel matrix was introduced by Van Lint and Seidel [11]. Adjacency matrix and Seidel matrix for a tournament are defined in the same way.

The following Proposition gives a description of splits and bi-joins in terms of HL-bipartitions.

Proposition 2.1. Let G be a graph with vertex set $[n]$ let $\{X, Y\}$ be a bi-partition of $[n]$. Then

i) $\{X, Y\}$ is a split of G if and only if $\{X, Y\}$ is an HL-bipartition of $A(G)$.

ii) $\{X, Y\}$ is a bi-join of G if and only if $\{X, Y\}$ is an HL-bipartition of $S(G)$.

Proof. For positive integers r and s, we denote by $0_{r,s}$ the $r \times s$ zero matrix and by $J_{r,s}$ the $r \times s$ matrix of ones.

i) Let $|X| := p$ and $|Y| := q$. It is easy to see that $\{X, Y\}$ is a split of G if and only if we can reorder rows and columns of $A(G)[X,Y]$ so that the resulting matrix is $0_{p,q}$, $J_{p,q}$ or one of the following matrices:

\[
\begin{pmatrix}
J_{r,s} & 0_{r,q-s} \\
0_{p-r,s} & 0_{p-r,q-s}
\end{pmatrix}
\begin{pmatrix}
J_{r,q} \\
0_{p-r,q}
\end{pmatrix}
\begin{pmatrix}
J_{p,s} & 0_{p,q-s}
\end{pmatrix}
\]

These are the only possible forms (up to permutation of rows and columns) of a $p \times q$ $(0,1)$-matrices having rank at most 1.

ii) The argument is the same as in i). It suffices to check that $\{X, Y\}$ is a bi-join of G if and only if we can reorder rows and columns of $S(G)[X,Y]$ so that the resulting matrix is $J_{p,q}$, $-J_{p,q}$ or one of the following matrices:

\[
\begin{pmatrix}
J_{r,s} & -J_{r,q-s} \\
-J_{p-r,s} & J_{p-r,q-s}
\end{pmatrix}
\begin{pmatrix}
J_{r,q} \\
-J_{p-r,q}
\end{pmatrix}
\begin{pmatrix}
J_{p,s} & -J_{p,q-s}
\end{pmatrix}
\]
The results of Cunningham and Montgolfier mentioned in the introduction can be deduced from the first assertion of our main theorem and the previous proposition.

A similar result of Proposition 2.1 holds for tournaments. More precisely, we have the following.

Proposition 2.2. Let T be a tournament with vertex set $[n]$ and let $\{X, Y\}$ be a bipartition of $[n]$. Then $\{X, Y\}$ is a bi-join of T if and only if $\{X, Y\}$ is an HL-bipartition of $S(T)$.

3. Clans of l_2-structures and their relationship with HL-bipartitions

Let V be a nonempty set and let $\hat{V}^2 := \{(x, y) / x \neq y \in V\}$. Following a labelled 2-structure on V, or a l_2-structure, for short, is a function g from \hat{V}^2 to a set of labels C. With each subset X of V associate the l_2-substructure $g[X]$ of g induced by X defined on X by $g[X](x, y) := g(x, y)$ for any $x \neq y \in X$. A l_2-structure g on a set V is symmetric if $g(x, y) = g(y, x)$ for every $x \neq y \in V$.

Let g be a l_2-structure on $[n]$ whose set of labels is a field K. We associate to g the $n \times n$ matrix $M(g) = [m_{ij}]_{1 \leq i, j \leq n}$ in which $m_{ij} = 0$ if $i = j$ and $m_{ij} = g(v_i, v_j)$ otherwise. Conversely, let $A = [a_{ij}]_{1 \leq i, j \leq n}$ be a matrix with entries in a field K. We associated to A the l_2-structure g_A on $[n]$ and set of labels K such that $g_A(i, j) = a_{ij}$ for $i \neq j \in [n]$.

Given a l_2-structure g on V, a subset X of V is a clan (4, Subsection 3.2) of g if for any $a, b \in X$ and $x \in B \setminus X$, we have $g(a, x) = g(b, x)$ and $g(x, a) = g(x, b)$.

Remark 1.

i) Graphs and tournaments can be seen as special classes l_2-structure. Moreover, the notion of clan generalizes that of module.

ii) let A be a matrix. if I is a proper clan of g_A then $\{I, [n] \setminus I\}$ is an HL-bipartition of A.

The following Proposition appears in another form in [1] (see Lemma 2.2). It describes the HL-bipartitions of a particular type of matrices called normalized matrices. Let $A = [a_{ij}]_{1 \leq i, j \leq n}$ be a matrix and let $v \in [n]$. We say that A is v-normalized if $a_{vj} = a_{jv} = 1$ for every $j \in [n] \setminus \{v\}$.

Proposition 3.1. Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be a v-normalized matrix for some $v \in [n]$ and let $I \subseteq [n] \setminus \{h\}$. Then $\{I, [n] \setminus I\}$ is an HL-bipartition of A if and only if I is a clan of $g_A([n] \setminus \{v\})$.

Proof. In order to prove the necessary condition, let $i, j \in I$ and $k \in ([n] \setminus \{v\}) \setminus I$. Since $\{I, [n] \setminus I\}$ is an HL-bipartition of A, both of matrices $A([n] \setminus I, I)$ and $A(I, [n] \setminus I)$ have rank at most 1. It follows that $\det(A([v, k], \{i, j\})) = \det(A(\{i, j\}, \{v, k\})) = 0$ and so $g(k, i) = a_{ki} = a_{kj} = g(k, j)$ and $g(i, k) = a_{ik} = a_{jk} = g(j, k)$. We conclude that I is clan of $g_A([n] \setminus \{h\})$. Conversely, let I be a clan of $g_A([n] \setminus \{v\})$. Since A is v-normalized, I is a clan of g_A and then, by Remark 1 $\{I, [n] \setminus I\}$ is an HL-bipartition of A. \square

Let V be a nonempty set V and let g be a l^2-structure on V. We denote by $\text{Cl}(g)$ the family of nonempty clans of g. This family satisfies the following well-known properties (see, for example, Subsection 3.3 of [4]).

P1) $V \in \mathcal{P}$, $\emptyset \notin \text{Cl}(g)$ and for all $v \in V$, $\{v\} \in \text{Cl}(g)$;

P2) Given $X, Y \in \text{Cl}(g)$; if X and Y overlap, that is $X \cap Y, X \setminus Y$ and $Y \setminus X$ are all nonempty, then $X \cap Y \in \text{Cl}(g), X \setminus Y \in \text{Cl}(g), Y \setminus X \in \text{Cl}(g)$ and $X \cup Y \in \text{Cl}(g)$.

Moreover, if g is symmetric then $\text{Cl}(g)$ satisfies the additional property:

P3) Given $X, Y \in \text{Cl}(g)$; if X and Y overlap then $X \triangle Y = (X \setminus Y) \cup (Y \setminus X) \in \text{Cl}(g)$.

Let \mathcal{P} be a family of subsets of V. We say that \mathcal{P} is weakly partitive if $\textbf{P1}$ and $\textbf{P2}$ hold. If also $\textbf{P3}$ holds, we say that \mathcal{P} is partitive. Partitive and weakly partitive families were introduced in [2]. They are closely related to partitive families as shown in the following lemma.

Lemma 3.2. Let \mathcal{B} be a family of bipartitions of V and let $v \in V$. We denote by \mathcal{P} the family of subsets X of $V \setminus \{v\}$ such that $\{X, V \setminus X\} \in \mathcal{B}$. Then \mathcal{B} is weakly bipartitive (resp. bipartitive) if and only if \mathcal{P} is weakly partitive (resp. partitive).

The next Theorem of gives relationship between weakly partitive family and clans family.
Theorem 3.3. Let \mathcal{P} be a weakly partitive family on V, then there exists an l_2-structure g on V with labels in a set of size at most 3 such that $\mathcal{P} = \text{Cl}(g)$. Moreover if \mathcal{P} is partitive family on a set V, then g can be chosen symmetric.

The first part of this theorem was proved by Ehrenfeucht, Harju, and Rozenberg (see [4], Theorem 5.7), and later by Ille and Woodrow [6]. As noted by Ille [7], the method given in [6] can also be used to prove the second part.

4. Proof of main theorem

We start with the following result.

Proposition 4.1. Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be an irreducible $n \times n$ matrix with entries in a field \mathbb{K}. Then for every $v \in [n]$ there is a v-normalized matrix \hat{A} with non zero entries in a field $\hat{\mathbb{K}}$ containing \mathbb{K} such that A and \hat{A} have the same HL-bipartitions. Moreover, if A is symmetric then \hat{A} can be chosen symmetric.

For the proof of this proposition, we use the following lemma.

Lemma 4.2. Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be a irreducible matrix. Let x_1, x_2, \ldots, x_n be (independent) indeterminates, $\chi = \text{diag}(x_1, x_2, \ldots, x_n)$. Then we have the following statements:

i) the matrix $A + \chi$ is invertible in $\mathbb{K}(x_1, x_2, \ldots, x_n)$.

ii) all entries of $(A + \chi)^{-1}$ are nonzero.

iii) A, $A + \chi$ and $(A + \chi)^{-1}$ have the same HL-bipartitions.

For assertions i) and ii) of this lemma, see Theorem 1 of [5]. The third assertion is a direct consequence of the following Proposition.

Proposition 4.3. Let T be an invertible matrix over \mathbb{K}, and suppose it has a block form

$$T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$$

where T_{11} is an invertible $k \times k$ matrix. Let $W = T^{-1}$, and partition W conformably with T, so

$$W = \begin{pmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{pmatrix}$$

Then rank(W_{12}) = rank(T_{12}) and rank(W_{21}) = rank(T_{21}).
Proof of Proposition 4.1. We will use the notations of Lemma 4.2. Let
\((A + \chi)^{-1} := [b_{ij}]_{i,j \leq n}, D := [d_{i}]_{1 \leq i \leq n}\) and
\(D' := [d'_{i}]_{1 \leq i \leq n}\) where \(d_{i} = \frac{1}{b_{vi}}, d'_{i} = \frac{1}{b_{vi}}\) for \(i \neq v\) and \(d_{v} = d'_{v} = 1\). Clearly, the matrix \(A := D(A + X)^{-1}D'\)
is \(v\)-normalized and its entries are in \(\hat{\mathbb{K}} = \mathbb{K}(x_{1}, x_{2}, \ldots, x_{n})\). Moreover, if \(A\) is
symmetric then \(A + \chi\) and \((A + \chi)^{-1}\) are also symmetric. It follows that
\(D = D'\) and hence \(\hat{A}\) is symmetric. We conclude by applying iii) of Lemma
4.2 and the following lemma.

Lemma 4.4. Let \(M\) be a \(n \times n\) matrix and let \(D_{1}, D_{2}\) be two \(n \times n\) diagonal
and invertible matrices. Then, the matrices \(M\) and \(D_{1}MD_{2}\) have the same
HL-bipartitions.

Proof. Let \(X, Y\) be two subset of \([n]\). We have the following equalities:
\[
(D_{1}MD_{2})[X,Y] = (D_{1}[X])(M[X,Y])(D_{2}[Y])
\]
\[
(D_{1}MD_{2})[Y,X] = (D_{1}[Y])(M[Y,X])(D_{2}[X])
\]

It follows \((D_{1}MD_{2})[X,Y]\) and \((M[X,Y])\) (resp. \((D_{1}MD_{2})[Y,X]\) and
\((M[Y,X])\) have the same rank because the matrices \(D_{1}[X], D_{2}[X], D_{1}[Y]\) and
\(D_{2}[Y]\) are invertible. Thus, \([X,Y]\) is an HL-bipartition of \(M\) if and
only if it is one for \(D_{1}MD_{2}\).

Proof of Theorem 4.1. The fact that \(\mathcal{H}_{A}\) is weakly bipartite follows from
Lemma 1 of [8]. To complete the proof it suffices to check that \(\mathcal{H}_{A}\)
satisfies the condition Q3. For this, let \(\{X,Y\}, \{X',Y'\} \in \mathcal{H}_{A}\) which
overlap. Then \([n] \setminus (X \cup X') = Y \cap Y' \neq \emptyset\). Let \(i \in [n] \setminus (X \cup X')\). By
Proposition 4.1 there is a symmetric and \(i\)-normalized matrix \(\hat{A}\) such that
\(\mathcal{H}_{A} = \mathcal{H}_{\hat{A}}\). So it suffices to prove that \(\{X \Delta X', X \Delta Y'\} \in \mathcal{H}_{\hat{A}}\). By the choice
of \(i\), we have \(i \notin X\) and \(i \notin X'\) and then by Lemma 3.1 \(X\) and \(X'\) are clans of
g_{\hat{A}}[[n] \setminus \{i\}]\). Moreover, \(X\) and \(X'\) overlap because \(\{X,Y\}, \{X',Y'\} \in \mathcal{H}_{A}\)
overlap. Now, since \(\hat{A}\) is symmetric, \(g_{\hat{A}}[[n] \setminus \{i\}]\) is symmetric and then by
P3, \(X \Delta X'\) is a clan of \(g_{\hat{A}}[[n] \setminus \{i\}]\). By applying again Lemma 3.1 we
deduce that \(\{X \Delta X', X \Delta Y'\} \in \mathcal{H}_{\hat{A}}\).

Conversely, let \(\mathcal{F}\) be a weakly bipartitive family on a set \([n]\). We will
construct an irreducible matrix \(A\) with entries in \([-1,0,1]\) such that \(\mathcal{F} = \mathcal{H}_{A}\). From Lemma
3.2 the family \(\mathcal{P} := \{X \subseteq [n-1] : \{X,[n] \setminus X\} \in \mathcal{F}\}\)
is weakly partitive, then by Theorem 3.3 there exists an \(l^{2}\)-structure \(g\) on
\([n - 1] \) with labels in \(\{-1, 0, 1\} \) such that \(P = Cl(g) \). Consider the following matrix

\[
A = \begin{pmatrix}
M(g) & 1 & \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & 0
\end{pmatrix}
\]

Clearly, this matrix is \(n \)-normalized and then it is irreducible. To prove that \(F = H_A \), let \(\{X, [n] \setminus X\} \) be a bipartition of \([n]\) and assume for example that \(n \notin X \). By Lemma 3.1, \(\{X, [n] \setminus X\} \in H_A \) if and only if \(X \) is a clan of \(g_A[1, \ldots, n - 1] = g \). Then \(\{X, [n] \setminus X\} \in H_A \) if and only if \(X \in P \) or equivalently \(\{X, [n] \setminus X\} \in F \) because \(P = Cl(g) \).

Now if \(F \) is bipartitive, then the family \(P := \{X \subseteq [n - 1] : \{X, [n] \setminus X\} \in F\} \) is partitive. By Theorem 3.3, we can choose \(g \) symmetric, which implies that \(A \) is symmetric.

\[
\square
\]

References

[1] A. Boussaïri, B. Chergui, Skew-symmetric matrices and their principal minors, Linear Algebra and its Applications, 485 (2015), p. 47-57.

[2] M. Chein, M. Habib and M. C. Maurer. Partitive hypergraphs. Discrete Mathematics, vol. 37, p. 35-50, 1981.

[3] W. H. Cunningham. Decomposition of directed graphs. SIAM Journal on Algebraic and Discrete Methods, vol. 3, p 214-228, 1982.

[4] A. Ehrenfeucht, T. Harju and G. Rozenberg, The theory of 2-structures, a framework for decomposition and transformation of graphs, World Scientific, Singapore, 1999.

[5] D.J. Hartfiel, R. Loewy, On Matrices Having equal Corresponding Principal Minors, Linear Algebra and its Applications, 58 (1984) 147-167.

[6] P. Ille, R. Woodrow, Weakly partitive families on infinite sets, Contrib. Discrete Math. 4 (2009), 5480.

[7] P. Ille, Personal communication, Mars 2016.

[8] R. Loewy, Principal Minors and Diagonal Similarity of Matrices, Linear Algebra and its Applications, 78 (1986) 23-63.
[9] F. Maffray, M. Preissmann, A translation of Tibor Gallais paper: Transitiv orientierbare graphen, in: J.L. Ramirez-Alfonsin, B.A. Reed (Eds.), Perfect Graphs, Wiley, New York, 2001, pp. 2566.

[10] F. de Montgolfier, Décomposition modulaire des graphes : théorie, extensions et algorithmes (Ph.D. thesis), Université Montpellier II, 2003.

[11] J.H. van Lint and J.J. Seidel, Equilateral point sets in elliptic geometry. Proc. Koninkl. Ned. Akad. Wetenschap. A 69 (= Indag. Math. 28) (1966), 335-348.