The complete chloroplast genome sequence of *Heteropolygonatum ginfushanicum* (Asparagaceae) and phylogenetic analysis

Li Gu, Ting Su, Guang-Ling Luo, and Guo-Xiong Hu

ABSTRACT

Heteropolygonatum ginfushanicum is an endemic epiphytic herb in China. The complete chloroplast (cp) genome of *H. ginfushanicum* is reported in this study. The total length of the cp genome is 155,508 bp with a typical quadripartite structure consisting of a large single copy region (LSC) of 84,552 bp and a small single copy region (SSC) of 18,528 bp, separated by a pair of 26,214 bp inverted repeats (IRs). It encodes a total of 113 unique genes, including 79 protein-coding, 30 tRNA, and four rRNA genes. Phylogenetic analysis indicated that *H. ginfushanicum* is sister to *Heteropolygonatum marmortum* within subfamily Nolinoideae.

The genus *Heteropolygonatum* M. N. Tamura & Ogisu is a member of tribe Polygonateae of subfamily Nolinoideae in Asparagaceae (Tamura et al. 1997; Seberg et al. 2012). Species of *Heteropolygonatum* had been placed in the genus *Polygonatum* Mill. (Chao et al. 2013; Floden 2014a,b). Based on imbricate petals and the basic chromosome number of *x* = 16, Tamura et al. (1997) separated *Heteropolygonatum* from *Polygonatum*. Phylogenetic analyses also support this treatment, showing a sister relationship between the two genera (Xiao et al. 2017; Floden and Schilling 2018). *Heteropolygonatum* includes about 12 species and is mainly distributed in China and adjacent Vietnam (Tamura et al. 2000; Xiao et al. 2017; Floden 2018). Although four cp genomes of the genus have been reported, the plastome of *Heteropolygonatum ginfushanicum* was not involved and genome features of the genus are still unclear (Floden and Schilling 2018). In this study, the complete cp genome of *H. ginfushanicum* was sequenced to provide basic plastome features of *Heteropolygonatum*, which will contribute to systematics and phylogenetic study of the *Heteropolygonatum*.

The sample of *Heteropolygonatum ginfushanicum* was collected from Siping (107°34'48.42"E, 29°9'1.80"N, elevation 1464 m), Yangxi, Daoshen, Zunyi, Guizhou, China. Fresh leaves were put into silica gel to preserve until DNA extraction and the voucher specimens were deposited in the herbarium of the Natural Museum of Guizhou University (Voucher: Hu et al. 654, GACP). Total genomic DNA was extracted according to a modified CTAB method (Doyle and Doyle 1987). Paired-end (PE) reads of 150 bp was conducted on an Illumina HiSeq-2500 platform at BGI-Wuhan. Approximately, 2 GB raw data (Accession number: MW363694) and the circular genome map was generated with online program chloroplot (Zheng et al. 2020). The complete cp genome of *Heteropolygonatum ginfushanicum* is 155,508 bp in length, and has a common quadripartite structure with a large single copy (LSC) of 84,552 bp and a small single copy (SSC) of 18,528 bp separated by a pair of inverted repeats (IRs) of 26,214 bp. The plastome of *H. ginfushanicum* is predicted to contain 113 unique genes, including a set of 79 protein-coding, 30 tRNA and four rRNA genes, of which 20 genes were duplicated in the IR regions. Among them, eight protein-coding genes (atpF, ndhA, ndhB, petB, petD, rpl16, rpoC1, rpl2 and rps16) and five tRNA genes (trnG^GCC^, trnL^GAU^, trnK^UUU^, trnL^UAA^ and trnV^UAC^) contain one intron, and three genes (clpP, rps12 and ycf3) include two introns. The overall GC content is 37.60%, while the corresponding value in the LSC, SSC, and IR regions is 35.61%, 31.40%, and 42.99%, respectively (Figure 1). As reported in...
other angiosperm (Mehmood et al. 2019, 2020a, b; Su et al. 2019, 2021), the IR regions have the highest GC content due to the presence of rRNAs containing high GC content. Analysis of boundaries between the IRs and single copy regions of *H. ginfushanicum* find that the *rps19* gene is 17 bp away from the LSC/IRb junction; The *ndhF* crosses the IRb/SSC boundary with a length of 29 bp in IRb and 2,182 bp in SSC and the *ycf1* gene spans the SSC/IRa boundary with a length of 890 bp in SSC which results in a pseudogene (ψycf1) at the IRa/SSC border (Figure 2).

To explore the phylogenetic position of *Heteropolygonatum ginfushanicum* across the Asparagaceae, complete cp genomes of *H. ginfushanicum* and other 27 species of 7 subfamilies within Asparagaceae were selected to conduct analyses, using *Lycoris aurea* (MN158985) and *Lycoris squamigera* (NC_040164) from Amaryllidaceae as outgroups. Multiple sequence alignment of cp genome sequences were performed using MAFFT7.409 (Katoh and Standley 2013). Maximum likelihood (ML) analyses was conducted using RAxML-HPC2 on XSEDE v.8.2.12 (Stamatakis 2014) as implemented on the CIPRES Science Gateway (http://www.phylo.org/) (Miller et al. 2010) under the GTR GAMMA model. Bootstrap iterations (–#–N) was set to 1000, and other parameters followed default settings.

Molecular phylogenetic analysis based on the cp genome sequences indicated that both *Polygonatum* and *Heteropolygonatum* are monophyletic and form a sister relationship within subfamily Nolinoideae, and *Heteropolygonatum ginfushanicum* is sister to *H. marmoratum* (Figure 3). This finding supports the separation of *Heteropolygonatum* as a distinct genus from *Polygonatum* (Meng et al. 2014; Xiao et al. 2017; Floden and Schilling 2018).
Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Natural Science Foundation of China under Grant [31600164], and Construction Program of Biology First-class Discipline in Guizhou under Grant (GNYL [2017] 009).

Data availability statement

The genome sequence data supporting this study are openly available in GenBank nucleotide database, https://www.ncbi.nlm.nih.gov/nuccore/MW363694, Associated BioProject, https://www.ncbi.nlm.nih.gov/bioproject/PRJNA698082, BioSample accession number at https://www.ncbi.nlm.nih.gov/biosample/ SAMN17705177 and Sequence Read Archive at https://www.ncbi.nlm.nih.gov/sra/ SRR13587437.

References

Amiryousefi A, Hyvonen J, Poczai P. 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics. 34(17):3030–3031.

Chao CT, Tseng YH, Tzeng HY. 2013. Heteropolygonatum altebotatum (Asparagaceae), comb. nova. Ann. Bot. Fen. 50(1–2):91–94.

Doyle J, Doyle J. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull. 19(1):11–15.

Du Z, Qian J, Jiang Y, Duan B. 2020. The complete chloroplast genome of Polygonatum ordoratum (Mill.) Druce and its phylogenetic analysis. Mitochondrial DNA B Resour. 5(2):1601–1602.

Floden AJ. 2014a. New names in Heteropolygonatum (Asparagaceae). Phytotaxa. 188(4):218–226.

Floden AJ. 2014b. A new combination in Polygonatum (Asparagaceae) and the reinstatement of P. mengtense. Ann. Bot. Fenn. 51(1-2): 106–116.

Floden AJ. 2018. Heteropolygonatum hainanense (Asparagaceae), a new species endemic to Hainan (China). Phytotaxa. 369(1):59–62.

Floden A, Schilling EE. 2018. Using phylogenomics to reconstruct phylogenetic relationships within tribe Polygonateae (Asparagaceae), with a special focus on Polygonatum. Mol. Phylogenet. Evol. 129(2018):202–213.

Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21(1):241.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30(4):772–780.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C. 2012. Geneious Basic: an integrated and extensible desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647–1649.

Mehmood F, Abdullah, Shahzadi I, Ahmed I, Waheed MT, Mirza B. 2019. Characterization of Withania somnifera chloroplast genome and its comparison with other selected species of Solanaceae. Genomics. 112(2):1522–1530.

Mehmood F, Abdullah, Ubaid Z, Bao Y, Mirza B. 2020b. Comparative plastomics of Ashwagandha (Withania, Solanaceae) and identification of mutational hotspots for barcoding medicinal plants. Plants. 9(6):752.
Mehmood F, Abdullah, Ubaid Z, Ahmed I, Waheed MT, Poczai P, Mirza B. 2020a. Plastid genomics of Nicotiana (Solanaceae): insights into molecular evolution, positive selection and the origin of the maternal genome of Aztec Tobacco (Nicotiana rustica). PeerJ. 8:e9552.

Meng Y, Nie ZL, Deng T, Wen J, Yang YP. 2014. Phylogenetics and evolution of phyllotaxy in the Solomon’s seal genus Polygonatum (Asparagaceae: Polygonateae). Bot J Linn Soc. 176(4):435–451.

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the gateway computing environments workshop (GCE), New Orleans (LA).

Qu XJ, Moore MJ, Li DZ, Yi TS. 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods. 15(1):50.

Seberg O, Petersen G, Davis JI, Pires JC, Stevenson DW, Chase MW, Pillon Y. 2012. Phylogeny of the Asparagales based on three plastid and two mitochondrial genes. Am J Bot. 99(5):875–889.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.

Su T, Luo GL, Gu L, Liao HM, Hu GX. 2021. The complete plastome sequence of Tanakaea radicans (Saxifragaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour. 6(3):946–947.

Su T, Yang JX, Lin YG, Kang N, Hu GX. 2019. Characterization of the complete chloroplast genome of Sparganium stoloniferum (Poales: Typhaceae) and phylogenetic analysis. Mitochondrial DNA B Resour. 4(1):1402–1403.

Tamura MN, Chen SC, Turland NJ. 2000. A new combination in Heteropolygonatum (Convallariaceae, Polygonateae). Novon. 10(2):156–157.

Tamura MN, Ogisu M, Xu J. 1997. Heteropolygonatum, a new genus of the tribe Polygonateae (Convallariaceae) from west China. Kew Bull. 52(4):949.

Xiao JW, Meng Y, Zhang DG, He WQ, Zhang MH, Luo LY, Nie ZL, Chen G. 2017. Heteropolygonatum wugongshanensis (asparagaceae, polygonateae), a new species from Jiangxi Province of China. Phytotaxa. 328(2):189–197.

Zheng S, Poczai P, Hyvönen J, Tang J, Amiryousefi A. 2020. Chloroplot: an online program for the versatile plotting of organelle genomes. Front Genet. 11:576124.