Supplementary Material for

QSDsan: An Integrated Platform for Quantitative Sustainable Design of Sanitation and Resource Recovery Systems

Yalin Lia,b,†*, Xinyi Zhangc†, Victoria L. Morgana,1, Hannah A.C. Lohmanc, Lewis S. Rowlesa,2, Smiti Mittald, Anna Koglere, Roland D. Cusickc, William A. Tarpehe,f, Jeremy S. Guesta,b,c

a Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, 1101 W. Peabody Drive, Urbana, IL 61801, USA.
b DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801, USA.
c Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, 205 N. Mathews Avenue, Urbana, IL 61801, USA.
d Department of Bioengineering, Stanford University, 129 Shriram Center, 443 Via Ortega, Stanford, California 94305, USA.
e Department of Civil and Environmental Engineering, Stanford University, 311 Y2E2, 473 Via Ortega, Stanford, California 94305, USA.
f Department of Chemical Engineering, Stanford University, 129 Shriram Center, 443 Via Ortega, Stanford, California 94305, USA.

Present addresses:
1 Hazen and Sawyer, 2420 Lakemont Avenue, Suite 325 Orlando, FL 32814, USA.
2 Civil Engineering and Construction, Georgia Southern University, 201 COBA Drive, BLDG 232 Statesboro, GA 30458, USA.

†Co-first authors: Y. Li and X. Zhang contributed equally to this work.

*Corresponding author: yalinli2@illinois.edu, +1 (217) 300-3097

9 pages, 4 tables, 3 figures

S1. Additional Morris Analysis Results of the Bwaise System .. S2
S2. BSM1 Simulation Settings .. S4
 S2a. BSM1 system settings .. S4
 S2b. ASM1 parameters ... S5
 S2c. Initial conditions ... S6
S3. Additional Uncertainty Analysis Results of BSM1 .. S7
S4. Sensitivity Analysis (Monte Carlo Filtering) Results of BSM1 ... S8
S1. Additional Morris Analysis Results of the Bwaise System

Figure S1

Complete figure of the Morris analysis results (refer to Figure 3 in the main text for the full legend). Parameters in red fonts were one of the five parameters with the largest normalized μ^* values for a given metric of the corresponding system, but the normalized μ^* values were smaller than 0.1 and not considered as “key parameters”. Raw data (including full list of the parameters and their μ^* and σ values) can be found in the *bwaise* module (the cached_results_figures folder) of the EXPOsan repository online (https://github.com/QSD-Group/EXPOsan/tree/main/exposan/bwaise).
Figure S2. Alternative figure presenting the Morris analysis results (refer to Figure S1 for the name and unit of the parameters, parameters were listed in the same order as in the legend table in Figure S1). Raw data (including full list of the parameters and their μ^* and σ values) can be found in the *bwaise* module (the cached_results_figures folder) of the EXPOsan repository [online](https://github.com/QSD-Group/EXPOsan/tree/main/exposan/bwaise).
S2. BSM1 Simulation Settings

S2a. BSM1 system settings

Table S1. BSM1 system settings in baseline dynamic simulation and in uncertainty analysis. All uncertainty ranges were obtained from Sin et al.¹

Variable	Description	Unit	Baseline	Uncertainty Analysis	Minimum	Maximum	Distribution
Influent							
Q_{in}	Volumetric flowrate	m³·d⁻¹	18,446	-	-	-	
T_{water}	Water temperature	K	293.15	-	-	-	
DO_{sat}	Saturation DO at field condition	mg-O₂·L⁻¹	8.0	7.2	8.8	Uniform	
S_s	Soluble organic substrate	mg-COD·L⁻¹	69.5	-	-	-	
X_{RH}	Active heterotrophic biomass	mg-COD·L⁻¹	28.17	-	-	-	
X_s	Particulate organic substrate	mg-COD·L⁻¹	202.32	-	-	-	
X_i	Particulate inert organic matter	mg-COD·L⁻¹	51.2	-	-	-	
S_{NH}	Ammonium nitrogen	mg-N·L⁻¹	31.56	-	-	-	
S_l	Soluble inert organic matter	mg-COD·L⁻¹	30	-	-	-	
S_{ND}	Soluble biodegradable organic nitrogen	mg-N·L⁻¹	6.95	-	-	-	
X_{ND}	Particulate biodegradable organic N	mg-N·L⁻¹	10.59	-	-	-	
S_{ALK}	Alkalinity, assumed to be bicarbonate	mmol·L⁻¹	7	-	-	-	
Environment							
T_{air}	Air temperature	K	293.15	-	-	-	
P	Atmospheric pressure	Pa	101,325	-	-	-	
Reactors							
V_a	Anoxic CSTR volume	m³	1,000	900	1,000	Uniform	
V_o	Aerobic CSTR volume	m³	1,333	1,200	1,333	Uniform	
$K_i\alpha_1$	Oxygen mass transfer coefficient at field condition for O1 and O2 reactors	d⁻¹	240	180	360	Uniform	
$K_i\alpha_2$	Oxygen mass transfer coefficient at field condition for O3 reactor	d⁻¹	84	75.6	92.4	Uniform	
H	Clarifier height	m	4	-	-	-	
A	Clarifier surface area	m²	1,500	-	-	-	
Q_{RAS}	RAS flowrate	m³·d⁻¹	$1 \times Q_{in}$	$0.75 \times Q_{in}$	$1 \times Q_{in}$	Uniform	
Q_{WAS}	WAS flowrate	m³·d⁻¹	385	346.5	423.5	Uniform	
Q_{intr}	Internal recirculation flowrate	m³·d⁻¹	$3 \times Q_{in}$	$2.25 \times Q_{in}$	$3.75 \times Q_{in}$	Uniform	
S2b. ASM1 parameters

Table S2. ASM1 parameters in baseline dynamic simulation and in uncertainty analysis. All uncertainty ranges were obtained from Sin et al.\(^1\)

Variable	Description	Unit	Baseline	Uncertainty Analysis	Distribution	
			Minimum	Maximum		
\(Y_H\)	Heterotrophic biomass yield on soluble substrate	g-COD\-(g-COD)\(^{-1}\)	0.67	0.64	0.70	Triangular
\(Y_A\)	Autotrophic biomass yield on ammonium N	g-COD\-(g-N)\(^{-1}\)	0.24	0.23	0.25	Triangular
\(F_{Pobs}\)	Observed fraction of inert particulate generated during biomass decay	unitless	0.21	0.16	0.26	Triangular
\(i_{XB}\)	Active biomass N content	g-N\-(g-COD)\(^{-1}\)	0.08	0.04	0.12	Triangular
\(i_{XP}\)	Cell product and inert particulate N content	g-N\-(g-COD)\(^{-1}\)	0.06	0.057	0.063	Triangular
\(f_{SS,COD}\)	mass-to-COD ratio of particulates	g\-(g-COD)\(^{-1}\)	0.75	0.7	0.95	Triangular
\(\mu_H\)	Heterotrophic maximum specific growth rate	d\(^{-1}\)	4	3	5	Triangular
\(K_S\)	Readily biodegradable substrate half saturation coefficient	g-COD\-m\(^{-3}\)	10	5	15	Triangular
\(K_{OH}\)	Oxygen half saturation coefficient for heterotrophic growth	g-O\(_2\)-m\(^{-3}\)	0.2	0.1	0.3	Triangular
\(K_NO\)	Nitrate half saturation coefficient	g-N\-m\(^{-3}\)	0.5	0.25	0.75	Triangular
\(b_H\)	Heterotrophic biomass decay rate constant	d\(^{-1}\)	0.3	0.285	0.315	Triangular
\(\mu_A\)	Autotrophic maximum specific growth rate	d\(^{-1}\)	0.5	0.475	0.525	Triangular
\(K_{NH}\)	Ammonium (nutrient) half saturation coefficient	g-N\-m\(^{-3}\)	1	0.5	1.5	Triangular
\(K_{OA}\)	Oxygen half saturation coefficient for autotrophic growth	g-O\(_2\)-m\(^{-3}\)	0.4	0.3	0.5	Triangular
\(b_A\)	Autotrophic biomass decay rate constant	d\(^{-1}\)	0.05	0.04	0.06	Triangular
\(\eta_g\)	Reduction factor for anoxic growth of heterotrophs	unitless	0.8	0.6	1.0	Triangular
\(k_a\)	Ammonification rate constant	m\(^3\)-(g-COD)\(^{-1}\)-d\(^{-1}\)	0.05	0.03	0.08	Triangular
\(k_h\)	Hydrolysis rate constant	d\(^{-1}\)	3	2.25	3.75	Triangular
\(K_X\)	Slowly biodegradable substrate half saturation coefficient for hydrolysis	g-COD\-(g-COD)\(^{-1}\)	0.1	0.075	0.125	Triangular
\(\eta_h\)	Reduction factor for anoxic hydrolysis	unitless	0.8	0.6	1.0	Triangular
S2c. Initial conditions

The baseline initial conditions were used in both benchmarking dynamic simulation and the Monte Carlo simulations for uncertainty analysis. In steady-state convergence test, the five CSTRs shared identical initial conditions in each simulation, and the clarifier’s initial soluble concentrations were set to equal its influent’s concentrations at t=0. The clarifier’s initial TSS in each layer, if not specified, were assumed proportional to influent TSS by fixed factors, which can be found in the Clarifier class of QSDsan. Per the assumption of the 1D 10-layer settling model,2,3 the compositions of particulates in clarifier influent are propagated immediately to its effluents.

Table S3. Initial conditions used in dynamic simulations and varied to test convergence of steady states.

Variable	Description	Unit	Baseline CSTRs	Clarifier	Steady-State Convergence Test Minimum	Maximum	Distribution
S_5	Soluble organic substrate	mg-COD L$^{-1}$	5	5	2.5	7.5	Uniform
S_1	Soluble inert organic matter	mg-COD L$^{-1}$	0	0	-	-	-
X_i	Particulate inert organic matter	mg-COD L$^{-1}$	1,000	-	500	1,500	Uniform
X_s	Particulate organic substrate	mg-COD L$^{-1}$	100	-	50	150	Uniform
X_{RH}	Active heterotrophic biomass	mg-COD L$^{-1}$	500	-	250	750	Uniform
X_{RA}	Active autotrophic biomass	mg-COD L$^{-1}$	100	-	50	150	Uniform
X_p	Particulate product from biomass decay	mg-COD L$^{-1}$	100	-	50	150	Uniform
S_O	Dissolved oxygen	mg-O$_2$ L$^{-1}$	2	2	1	3	Uniform
S_{NO}	Nitrate and nitrite nitrogen	mg-N L$^{-1}$	20	20	10	30	Uniform
S_{NH}	Ammonium nitrogen	mg-N L$^{-1}$	2	2	1	3	Uniform
S_{ND}	Soluble biodegradable organic nitrogen	mg-N L$^{-1}$	1	1	0.5	1.5	Uniform
X_{ND}	Particulate biodegradable organic N	mg-N L$^{-1}$	1	-	0.5	1.5	Uniform
S_{ALK}	Alkalinity, assumed to be bicarbonate	mmol L$^{-1}$	7	7	3.5	10.5	Uniform
TSS_1	Total suspended solids in layer 1 (top)	mg L$^{-1}$	-	10	-	-	-
TSS_2	Total suspended solids in layer 2	mg L$^{-1}$	-	20	-	-	-
TSS_3	Total suspended solids in layer 3	mg L$^{-1}$	-	40	-	-	-
TSS_4	Total suspended solids in layer 4	mg L$^{-1}$	-	70	-	-	-
TSS_5	Total suspended solids in layer 5	mg L$^{-1}$	-	200	-	-	-
TSS_6	Total suspended solids in layer 6	mg L$^{-1}$	-	300	-	-	-
TSS_7	Total suspended solids in layer 7	mg L$^{-1}$	-	350	-	-	-
TSS_8	Total suspended solids in layer 8	mg L$^{-1}$	-	350	-	-	-
TSS_9	Total suspended solids in layer 9	mg L$^{-1}$	-	2000	-	-	-
TSS_{10}	Total suspended solids in layer 10 (bottom)	mg L$^{-1}$	-	4000	-	-	-
S3. Additional Uncertainty Analysis Results of BSM1

Figure S3. Kernel density plots of BSM1 system performance metrics at steady state. Black dashed lines indicate the assumed discharge limits of corresponding composite variables. The plots were created with the stats module in QSDsan.
S4. Sensitivity Analysis (Monte Carlo Filtering) Results of BSM1

Table S4. Monte Carlo filtering results generated with simulation data from uncertainty analysis. A *p* value less than 0.05 means the sample distributions of a variable significantly differ between the group with the metric values above the threshold (i.e., discharge limit) and the group below the threshold. The *D* value indicates the “distance” between the variable’s two sample distributions (**p < 0.01; *p < 0.05).**

Variable	Effluent TN	Effluent TKN		
Metric	*D*	*p*	*D*	*p*
ASM1 parameters				
Y_H	0.077	0.568	0.042	0.746
Y_A	0.086	0.422	0.058	0.358
f_Pobs	0.073	0.622	0.102*	0.011
t_XB	0.062	0.806	0.050	0.545
t_XP	0.140*	0.035	0.055	0.420
f_SS,CO	0.056	0.896	0.034	0.924
μ_H	0.113	0.140	0.080	0.081
k_G	0.070	0.683	0.048	0.611
K_OH	0.246***	0.000	0.090*	0.034
K_NO	0.117	0.117	0.083	0.063
b_H	0.126	0.074	0.051	0.517
μ_A	0.173**	0.004	0.145***	0.000
K_NH	0.146*	0.025	0.161***	0.000
K_OA	0.168**	0.006	0.114**	0.003
b_A	0.125	0.080	0.110**	0.005
η_A	0.142*	0.032	0.081	0.073
k_A	0.135*	0.045	0.082	0.070
k_G	0.155*	0.015	0.058	0.358
K_X	0.064	0.778	0.041	0.793
η_H	0.081	0.492	0.057	0.380
Decision variables				
V_A	0.092	0.335	0.054	0.443
V_B	0.251***	0.000	0.229***	0.000
K_1a	0.512***	0.000	0.503***	0.000
K_2a	0.066	0.752	0.085	0.054
Q_RAS	0.108	0.178	0.167***	0.000
Q_MWS	0.130	0.063	0.185***	0.000
Q_WAT	0.068	0.714	0.055	0.437
Contextual parameters				
DO_sat	0.263***	0.000	0.269***	0.000
References

1 G. Sin, K. V. Gernaey, M. B. Neumann, M. C. M. van Loosdrecht and W. Gujer, Uncertainty analysis in WWTP model applications: A critical discussion using an example from design, *Water Research*, 2009, **43**, 2894–2906.

2 J. Alex, L. Benedetti, J. Copp, K. V. Gernaey, U. Jeppsson, I. Nopens, M.-N. Pons, L. Rieger, C. Rosen, J. P. Steyer, P. A. Vanrolleghem and S. Winkler, *Benchmark simulation model no.1 (BSM1). Report by the IWA Taskgroup on benchmarking of control strategies for WWTPs*, 2008.

3 K. V. Gernaey, U. Jeppsson, P. A. Vanrolleghem and J. B. Copp, *Benchmarking of Control Strategies for Wastewater Treatment Plants*, IWA Publishing, 2014.