PROBING INTERSTELLAR DUST WITH INFRARED ECHOES FROM THE Cas A SUPERNOVA

Frédéric P. A. Vogt1,2, Marc-André Besel2, Oliver Krause3, and Cornelis P. Dullemond2,3

1 Mount Stromlo Observatory, Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611, Australia; fvogt@mso.anu.edu.au
2 Max-Planck Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
3 Zentrum für Astronomie, University of Heidelberg, Albert Ueberle Str. 2, 69120 Heidelberg, Germany

Received 2011 October 10; accepted 2012 March 7; published 2012 April 25

ABSTRACT

We present the analysis of an Infrared Spectrograph 5–38 μm spectrum and Multiband Imaging Photometer for Spitzer photometric measurements of an infrared echo near the Cassiopeia A (Cas A) supernova (SN) remnant observed with the Spitzer Space Telescope. We have modeled the recorded echo accounting for polycyclic aromatic hydrocarbons (PAHs), quantum-heated carbon and silicate grains, as well as thermal carbon and silicate particles. Using the fact that optical light-echo spectroscopy has established that Cas A originated from a Type IIb SN explosion showing an optical spectrum remarkably similar to the prototypical Type IIb SN 1993J, we use the latter to construct template data input for our simulations. We are then able to reproduce the recorded infrared echo spectrum by combining the emission of dust heated by the UV burst produced at the shock breakout after the core-collapse and dust heated by optical light emitted near the visual maximum of the SN light curve, where the UV burst and optical light curve characteristics are based on SN 1993J. We find a mean density of ~680 H cm⁻³ for the echo region, with a size of a few light years across. We also find evidence of dust processing in the form of a lack of small PAHs with less than ~300 carbon atoms, consistent with a scenario of PAHs destruction by the UV burst via photodissociation at the estimated distance of the echo region from Cas A. Furthermore, our simulations suggest that the weak 11 μm features of our recorded infrared echo spectrum are consistent with a strong dehydrogenated state of the PAHs. This exploratory study highlights the potential of investigating dust processing in the interstellar medium through infrared echoes.

Key words: evolution – infrared: ISM – ISM: clouds – ISM: lines and bands – supernovae: individual (Cas A)

Online-only material: color figures

1. INTRODUCTION

Light echoes refer to light emitted by a bright source, such as a supernova (SN), which is scattered by dust located off the direct line of sight. The additional path length from the SN to the dust cloud and then to the Earth induces the time delay of the echo. Depending on the system considered and the brightness of the source, light echoes can be seen several hundreds of light years away from the source, and subsequently several hundred years after the initial SN outburst observation.

Infrared (IR) echoes differ from optical light echoes in that the SN light is not scattered, but rather absorbed by dust, which will then re-radiate it at IR wavelengths. Bode & Evans (1980) considered this effect as the most plausible explanation for the IR excess seen in SN 1979c, a point which was later confirmed by Dwek (1983). IR echoes spanning over an area of several square degrees on-sky have been discovered around the youngest known galactic core-collapse supernova remnant (SNR) Cassiopeia A (Cas A; Krause et al. 2005). Dwek & Arendt (2008) used their spectra to deduce that these must have been created by a UV flash. The same echoes also enabled Kim et al. (2008) to reconstruct a three-dimensional map of the interstellar medium (ISM) surrounding Cas A, a concept that was previously used with SN 1987A by Xu & Crotts (1999).

The Cas A SNR is believed to be the remains of a stripped-envelope type IIb core collapse from a red supergiant progenitor with an initial mass in the range of 15–25 M☉, which might have lost much of its hydrogen envelope due to a binary interaction (Young et al. 2006; Krause et al. 2008), and is located at R.A.: 23°23′27″.77; decl.: +58°48′49″.4 (J2000; Thorstensen et al. 2001). Studies of the proper motion of ejecta with the Hubble Space Telescope suggest that the explosion occurred in 1681 ± 19 (Fesen et al. 2006). Sir John Flamsteed (1646–1719) might have visually observed the SN on 1680 August 16, but it is not clear whether his mysterious 3 Cassiopeia observation was actually Cas A or not (Ashworth 1980; Hughes 1980).

Along with the infrared echoes, several optical light echoes have been discovered around Cas A (Krause et al. 2005, 2008; Rest et al. 2008). Krause et al. (2008) showed that the spectrum of one of them is strikingly similar to the spectrum of SN 1993J, which enabled the precise spectroscopic classification that Cas A was a Type IIb SN. The knowledge of the exact type of the Cas A SN will play a central role in our analysis.

SN 1993J exploded in M81 in late 1993 March. It has been extremely well monitored across the entire spectrum from its very first moments (Filippenko & Matheson 2003), including in the UV (e.g., Jeffery et al. 1994), the wavelength range at which the irradiation spectrum has critical consequences on interstellar dust. Such an amount of data makes it a target of choice for SN simulations that are able to simulate the observed spectrum already from its early phases (Woosley et al. 1994). SN 1993J experienced an initial, short-lived (few hours) intense UV burst, later followed by a longer (several days), less intense optical component (Blinnikov et al. 1998). Hence, it is a very fortunate situation for our study that Cas A was of the same type and similar to SN 1993J—one of the brightest SNe in the northern sky for the last century, and for which a nearly unparalleled amount of data (including UV) exists.

Infrared echoes can be used to study the structure and composition of the thermally radiating dust, as was suggested
by Dwek (1985) for circumstellar dust shells. Infrared echoes especially allow us to study several dust processing mechanisms, such as photodissociation, dehydrogenation, and ionization, in situ. Due to the fact that more than 320 years have passed since Cas A exploded, the dust giving rise to the infrared echoes observed today is at least 160 lt-yr away from Cas A. These echoes therefore most likely originate from interstellar rather than circumstellar dust. Such an analysis of infrared echoes is similar to what Sugerman (2003) suggested for optical light echoes, but using their infrared counterpart. As the SN light is absorbed and re-radiated at longer wavelengths, the resulting IR spectrum is a complex signature of both the SN light and the dust composition and characteristics. Using optical light echoes to identify the SN type, one can create a template light curve. Feeding this template in a suitable dust modeling program, one can simulate the IR echo spectrum—and use the resulting simulations to understand how ISM dust is behaving when illuminated by the SN light.

One of the main advantages of this method is that IR light echoes potentially give us access to the consequences of pristine interstellar material subject to a strong and short radiation burst. As such, assuming an undisturbed initial ISM, the dust signature detected in the IR light echo will be the consequence of the SN burst only, as no other mechanism, such as dust formation, for example, can be acting on the very short timescale of an SN burst.

In this article, we explore the potential of this approach by analyzing an IR echo spectrum recorded with the Spitzer Space Telescope around Cas A. We describe our observations and the resulting recorded IR echo spectrum in Section 2. We discuss how we simulate a light echo in Section 3, introduce our dust model in Section 4, and present our Cas A SN template burst spectra in Section 5. Our results are detailed in Section 6. In Section 7, we discuss how polycyclic aromatic hydrocarbons (PAHs) destruction (Section 7.2), ionization (Section 7.3), and dehydrogenation (Section 7.4) can improve our fit to the recorded IR echo spectrum. We compare our results with the work of Dwek & Arendt (2008) in Section 8. Finally, we explore the validity of our dust destruction hypothesis in Section 9, and present our conclusions in Section 10.

2. OBSERVATIONS AND DATA REDUCTION

The observations used in this study were obtained with instruments aboard the Spitzer Space Telescope (Werner et al. 2004). After the first discovery of infrared echoes around Cas A by Hines et al. (2004), regular monitoring observations were carried out with the Multiband Imaging Photometer for Spitzer (MIPS; Rieke et al. 2004; PIDs: 233, 20381, 30571; PIs: G. Rieke, O. Krause). A roughly 3 × 3 deg² field was observed every year and regions with especially interesting activity were observed at an interval of about half a year. MIPS observations were reduced using the MIPS Data Analysis Tool (DAT; Gordon et al. 2005), starting at the RAW data product level.

Using those monitoring observations, a particularly bright source was detected at the location R.A.: 23°21′40″; decl.: +59°34′25″. Figure 1 shows its evolution at 24 μm over a time period of three years. It lies at an angular distance of 2857 arcsec away from the optical expansion center of Cas A. Although the source is already visible in the first epoch of observations, it changes its morphology, brightness, and position drastically within just a few months time. In early 2006, it appears that most emission comes from three point-like sources, suggesting that the real echoing structure is still unresolved with Spitzer. The emission diminishes very quickly between 2006 February and October indicating that the SN light beam swept past a probably very well-defined end of the echo region.

On 2006 January 29, a low-resolution spectrum of this bright echoing source was obtained with the Infrared Spectrograph (IRS; Houck et al. 2004) as part of program (PID) 20381 (PI: O. Krause). A 24 μm aerial image of the echoing source is shown in Figure 2, where we have overlaid the IRS red peak-up inset (rectangle) as well as the spectroscopic slits position: 1× long–low (LL) and 3× short–low (SL). The red peak-up functionality of IRS was used to achieve the best possible centering of the slits on this fast moving echo feature. In addition to space-based infrared observations, we also obtained ground based near-infrared (λ = 2.2 μm) Ks-band images for this echo region using Omega 2000 on the Calar Alto (Spain) 3.5 m telescope in 2005 December, which is shown in the bottom of Figure 2 for comparison. These images show the similar overall structure of the region, but reveal very small scale filamentary substructure of the echo region. A full analysis of these observations is to be presented in M. A. Besel et al. (in preparation). It should be noted here that the Ks band as well as the J-band and H-band images (which have similar morphology, and are not shown here) show the scattered light echo, not the IR radiating dust echo.

The S18.7.0 version of the basic calibrated data (BCD) products from the Spitzer Science Center (SSC) pipeline were fed into SMART (Higdon et al. 2004; Lebouteiller et al. 2010) for final reduction. Depending on the module used, total exposure times ranged between 120 s and 300 s. One spectrum was extracted for each of the two brightest point-like sources. They were averaged separately and combined later. A background was estimated based on the non-echo-contaminated parts of either the off-source order or the individual slits (contamination is easily evident on the MIPS 24 μm image for Figure 2).
3. SIMULATING THE INFRARED ECHO

The spectrum and photometric points presented in Figure 3 are the result of the interaction of the Cas A SN burst and a region of the ISM located away from the SN center. In that respect, the data potentially contain information on both the SN explosion and the echoing dust. A simple visual inspection of the spectrum already reveals a very weak 11 μm complex of PAH features as compared to the strength of the 7 μm PAH features, a point that will be discussed further in Section 7.4.

In Figure 4, we present a geometrical sketch of the echo principle. The position of the echo region is located, at any one end of the LL slit). As the SL and LL modules cover slightly different special regions of the echoing source, the resulting spectra were scaled to match each other’s continuum levels. Absolute calibration was verified by comparing the integrated IRS flux and the measured 24 μm photometry.

Figure 3 shows the final combined extracted spectrum of this IR echo. Also plotted are MIPS 24 μm and 70 μm photometric measurements within a 22.2 arcsec aperture (white squares). Note that their error bars are of the order of the symbol size. Black rhombuses at 5.7 μm, 7.9 μm, and 24 μm correspond to the Spitzer synthetic photometric points of the echo spectrum, reconstructed using the Recipe 10 of the Spitzer Data Analysis Cookbook.4 As the IRS slits do not cover the entire echo region, the spectrum and synthetic photometric points were scaled to match the 24 μm MIPS photometry of the entire region.

Figure 4. Light-echo geometry. The observer on Earth and the supernova are located in the foci of an ellipsoid. All points on this ellipsoid describe locations with equal delay time t which corresponds to the time difference between the original SN outburst observation and the current observing epoch. Material situated on any point of the ellipsoid can simultaneously be seen as an echoing source.

Here, we adopt the following strategy to study and extract the underlying information on the echoing dust contained in the measured echo: we implement a dust modeling program (see Section 4) to simulate the IR response of ISM dust when heated by radiation with a certain spectral energy distribution (SED). To obtain the dust thermal emission response, its distribution along the line of sight has to be convolved with the corresponding irradiation spectrum from the SN. We assume that the effective radiation field can be decomposed by (1) the UV dominated SED during the first hours after the shock breakout and (2) the optically dominated SED at the epoch near maximum light (see Section 5). We adopt those two template SEDs to account for the convolution of the input radiation spectrum with the echo region on length scales of at least a few light days.

Figure 3. Final extracted IRS spectrum of the echo region (in red in the online version) and associated Spitzer synthetic photometric measurements (black rhombuses). The white squares correspond to MIPS 24 μm and 70 μm photometric measurements of the same echo region. The spectrum and synthetic photometric points have been scaled to match the 24 μm MIPS photometry of the entire region.

(A color version of this figure is available in the online journal.)
Because the UV-heated and optically heated slabs thickness will only be of a few light days, the excited volume of the echo region visible at one given moment in time is much smaller than the total volume of the echo region. For simplification, because we do not resolve individual ISM structures and because the echo region is small compared to the ellipsoid and its local curvature depicted in Figure 4, let us assume the excited slabs to be parallelepipeds, of which the sections are depicted by the light-gray (B) and dark-gray (C) regions in Figure 5 (in orange and blue in the online version). Their height (perpendicular to the drawing plane) is $L_{\text{sky},\perp}$. Their respective thickness L_{UV} and L_{opt} along the line of sight are:

$$L_{\text{UV}} = (x_0 - x_1)$$

$$L_{\text{opt}} = (x_2 - x_3),$$

where, from Figure 4 and the law of cosines:

$$x_i = ct_i + d - r_i \quad \forall i = 1, 2, 3, 4.$$ (4)

For the echo considered here and presented in Section 2, $x_0 \equiv 3439$ pc. We can now define an upper limit to the visible volume of the echo region, $V_{\text{echo,max}}$, as seen from the Earth at any given time:

$$V_{\text{echo,max}} = L_{\text{sky},\|} \times (L_{\text{UV}} + L_{\text{opt}}) \times L_{\text{sky},\perp},$$

where $L_{\text{sky},\|} \times L_{\text{opt}}$ and $L_{\text{sky},\|} \times L_{\text{UV}}$ are the respective areas of the regions (B) and (C) in Figure 5. The shape of a fictional echo region (dotted surface) depicted in Figure 5 illustrates why $V_{\text{echo,max}}$ is an upper limit on the visible volume of the echo region, as the dust does not, in principle, have to fill completely the areas (B) and (C). We delay the numerical computation of $V_{\text{echo,max}}$ until Section 6.1, after introducing our adopted template UV burst and optical light curve in Section 5.

4. SIMULATING ISM DUST

Simulations provide an efficient tool to study the theoretical behavior of interstellar dust in an attempt to unveil its composition and detailed characteristics. Various models, such as the silicate core-carbonaceous (Desert et al. 1990; Jones et al. 1990; Li & Greenberg 1997), the composite (Mathis & Whiffen 1989; Mathis 1996; Zubko et al. 2004), or the silicate–graphite–PAHs model (Draine & Lee 1984; Siebenmorgen & Krügel 1992; Li & Draine 2001; Draine & Li 2007) have been proposed to reproduce the behavior of ISM dust. To study the recorded IR echo spectrum shown in Figure 3, we have implemented our own modelization program, strongly based on the dust model of Li & Draine (2001). Our dust mix contains PAHs, quantum-heated carbon and silicate grains, as well as thermal graphite and silicate grains. Similar to Li & Draine (2001), the PAHs and quantum-heated carbon grains are mixed and form what is referred to as the quantum-heated carbonaceous dust. The Li & Draine (2001) model is a well-established and observationally tested model for the average dust composition of the general Milky Way ISM. Since the echo region considered in this study is located in the general ISM at a distance of ~ 199 lt-yr from the SN, using this model appears very appropriate.

We simulate particles from ~ 3.5 Å up to ~ 6000 Å, and have a transition from quantum-heated to thermal grains at ~ 250 Å. The dust mix is following the formula of Weingartner & Draine (2001) multiplied by 0.92, as suggested by Draine & Li (2007), from whom we have implemented the updated Drude profiles.
for the PAHs opacities. Our simulation yet differs from the Li & Draine (2001) model in a few aspects. We use enthalpies from Siebenmorgen & Krügel (1992), which are based on a formula by Chase et al. (1985). Our silicate opacities are calculated via the Mie theory using scattering and absorption cross section from Ivezic et al. (1997). Finally, we also use enthalpies of graphite for the silicate grains for simplification.

Quantum-heated grains are subject to stochastic heating by the incoming photons. They do not behave as constant-temperature grains, but experience strong temperature variations, and a careful approach is required to compute their emission. More precisely, their emissivity is obtained by calculating the temperature probability distribution for a certain grain size, and we refer the reader to the work of Draine & Li (2001, 2007) for detailed explanations regarding the computation of the emissivity of small grains. Large thermal grains, on the other hand, will experience much smaller temperature excursions, and can be approximated as being in thermal equilibrium. Under this assumption, their emissivity is obtained by comparing the incoming radiation to the re-radiated energy (Li & Draine 2001):

$$\int_0^\infty C_{\text{abs}}(a, \lambda) F_\lambda(\lambda) d\lambda = \int_0^\infty C_{\text{abs}}(a, \lambda) 4\pi B_\lambda(\bar{T}) d\lambda$$

(6)

with $F_\lambda(\lambda)$ the incoming radiation flux at wavelength λ, \bar{T} the equilibrium mean temperature of the grain, $B_\lambda(\bar{T})$ the Planck function, and $C_{\text{abs}}(a, \lambda)$ the absorption cross section of a grain of radius a at the wavelength λ.

In Figure 6, we present our simulation (full line, in green in the online version) of the ISM dust IR emissivity when heated by the standard interstellar radiation field (ISRF) of Mathis et al. (1983; see Figure 8). This is referred to as the High Galactic Latitude (HGL) simulation in Li & Draine (2001). The contribution of each individual dust components is plotted in dashed (quantum-heated grains) and dotted (thermal grains) lines: (a) quantum-heated carbonaceous dust, (b) quantum-heated silicate dust, (c) thermal graphite grains, and (d) thermal silicates grains. The simulation code returns the emissivity of the dust mix per H nucleon, j_ν, in units of erg s$^{-1}$ sr$^{-1}$ H$^{-1}$ Hz$^{-1}$, and in Figure 6, we plot the spectrum in the form of νj_ν, in units of erg s$^{-1}$ sr$^{-1}$ H$^{-1}$.

We validate our code output against the results of the Li & Draine (2001) code, and the comparison is made in Figure 7. Our HGL simulation (full line, in green in the online version) closely reproduces the one from Li & Draine (2001; dotted line), with the exception of the PAH features that have been updated to reproduce the simulations of Draine & Li (2007). Note that the spectrum of Li & Draine (2001) has been scaled by 0.92 to allow for comparison.

The strategy to simulate the IR echo spectrum presented in Section 2 is to use our code with a template input spectrum, replacing the ISRF of Mathis et al. (1983) by a theoretical SN burst spectrum. In order to validate that our code is stable with a more intense heating radiation field, we simulate ISM dust heated by a radiation field equal to 10^4 times the ISRF, and compare our result with the similar simulation of Li & Draine (2001; see their Figure 13). The comparison is shown in Figure 7 (dashed line, in blue in the online version). It is clear that we reproduce very closely the Li & Draine (2001) simulations for stronger radiation fields, with exception to, once again, the intrinsic differences due to the update of the Drude profiles for the PAHs, which match the simulations of Draine & Li (2007). We conclude that our simulation code is stable to intensity variations of the incoming radiation field.

5. MODELING THE Cas A SN OUTBURST

Simulating the spectrum of an infrared echo requires the knowledge of the exact radiation SED heating the dust. Generally, this is not known with precision, as the SN light swept past Earth many years before a light-echo observation. Fortunately, as we mentioned in Section 1, SN 1993J has been found to be a very good template for Cas A, and has been the subject of many observations and simulations over a large range of wavelengths. Hence, following the characteristics of SN 1993J, we make the following simplification mentioned previously: we consider the Cas A SN explosion to be made of two distinct phases—a UV burst and an optical light phase. Each phase consists of a single SED, which we take to be representative of the actual spectrum variations over the phase duration.

To create the template UV burst spectrum, we use the simulations of Blinnikov et al. (1998). In this model, the UV burst is close from its maximum luminosity during a few hours.
The total UV burst lasts a few days, with its luminosity reaching a minimum after about ~10 days. Energetic UV photons have a strong effect on dust and especially on PAHs, as we will discuss later on. It is therefore critical to have a representative SED that contains those energetic UV photons. The peak of the UV burst is, however, fairly brief, and one has to pay attention to the ISRF curve shown in Figure 3. The UV light curve (dot dashed) is a blackbody with a temperature $T_{\text{UV}} = 1.5 \times 10^5$ K and is shown for comparison, along with the ISRF curve (full line) from Mathis et al. (1983).

(A color version of this figure is available in the online journal.)

The discussion on the absorption on the line of sight toward SN 1993J of Matheson et al. (2000), who adopt in their work a value of $E(B - V) = 0.19$, we assume our optical light curve to have the characteristics of the Richmond et al. (1994) estimates (see their Table 15) adapted for a color excess $E(B - V) \cong 0.20$. Our optical light curve is a blackbody spectrum, with a temperature $T_{\text{opt}} = 9.4 \times 10^3$ K (between the ~7.9×10^3 and ~11.0×10^3 estimates of Richmond et al. 1994), a luminosity of $L_{\text{opt}} = 3.8 \times 10^{42}$ erg s$^{-1}$ (between the ~1.7×10^{42} and ~7.1×10^{42} estimates of Richmond et al. 1994), and a duration of 25 days (see Figure 10 in Richmond et al. 1994). We stress again that we consider this optical light curve as a good educated guess rather than the perfect estimate.

The resulting UV burst and optical light curve fluxes νF_{ν}, shining on the dust in units of erg s$^{-1}$ cm$^{-2}$ are shown in Figure 8. The final UV burst spectrum used in our simulations, of which the shape has been updated based on the work of Blinnikov et al. (1998), is labeled “UV-B” (dashed line), while the blackbody UV burst with $T = 1.5 \times 10^5$ K is labeled “UV” (dot-dashed line) and is plotted for comparison. Using the IDL5 smtau.pro routine, we have taken into account any intrinsic extinction by the echo region itself.

6. RESULTS

6.1. Fitting the Echo Spectrum

With the adopted UV burst and optical light curve characteristics defined in the previous section, we can now get the estimates for the size of the echo region. Specifically, with $t_0 = 325$ day, $t_0 - t_1 = 2.5$ days, $t_1 - t_2 = 10$ days, $t_2 - t_3 = 25$ days, $\alpha = 2857$ arcsec, and $L_{\text{sky},||} = L_{\text{sky},\perp} \cong 1.2$ lt-yr (22" on-sky aperture, see Section 2), we obtain, using Equations (2)–(5)

$$L_{\text{UV}} \cong 1.53 \text{ lt-day}$$
$$L_{\text{opt}} \cong 15.3 \text{ lt-day}$$
$$V_{\text{echo, max}} \cong 6.4 \times 10^{-2} \text{ (lt-yr)}^3$$

$$\cong 5.5 \times 10^{52} \text{ cm}^3.$$

Because we do not resolve the echo region, we make the assumption that F_{echo}, the recorded echo flux, is equal to the sum of the UV-heated slab flux and the optically heated slab flux, F_{UV} and F_{opt}, respectively:

$$F_{\text{echo}} = F_{\text{UV}} + F_{\text{opt}}.$$

Furthermore, F_{UV} and F_{opt} relate to the UV-heated and optically heated dust emissivities $j_{\nu, \text{UV}}$ and $j_{\nu, \text{opt}}$ in the following way:

$$F_{\text{UV}} = j_{\nu, \text{UV}} \times \frac{M_{\text{dust, UV}}}{m_{\text{H}, \text{dust}} \cdot \chi^2},$$
$$F_{\text{opt}} = j_{\nu, \text{opt}} \times \frac{M_{\text{dust, opt}}}{m_{\text{H}, \text{dust}} \cdot \chi^2},$$

5 Interactive Data Language.
6 See, e.g., http://hea-www.harvard.edu/PINTofALE/pro/smtau.pro (accessed on 2011 December 11).
where $M_{\text{dust,UV}}$ and $M_{\text{dust, opt}}$ are the echoing dust mass, in g, heated by the UV burst and the optical light curve, respectively, $m_{\text{H,dust}}$ is the dust mass per H nucleon in g H$^{-1}$, and x is the distance from the Earth to the echo region in cm. We assume $m_{\text{H,dust}} = 1.89 \times 10^{-26}$ g H$^{-1}$ (Li & Draine 2001). From our assumptions in Section 3 (see also Figure 5), we can express $M_{\text{dust,UV}}$ and $M_{\text{dust, opt}}$ as a function of the cloud density ρ_{cloud}, and the volume of the excited slabs (see Equations (2) and (3)):

$$M_{\text{dust,UV}} = \rho_{\text{echo}} \times L_{\text{sky, ||}} \times L_{\text{sky, ⊥}} \times (x_0 - x_1)$$ \hspace{1cm} (11)

$$M_{\text{dust, opt}} = \rho_{\text{echo}} \times L_{\text{sky, ||}} \times L_{\text{sky, ⊥}} \times (x_2 - x_3).$$ \hspace{1cm} (12)

Hence, using Equations (8)–(12), it is possible to express the echo spectrum F_{echo} as a function of the total mass of echoing dust $M_{\text{dust}} = M_{\text{dust,UV}} + M_{\text{dust, opt}}$ in the following way:

$$F_{\text{echo}} = \left[\xi \cdot j_{\nu, \text{UV}} + (1 - \xi) \cdot j_{\nu, \text{opt}} \right] \times \frac{M_{\text{dust}}}{m_{\text{H,dust}} \cdot x^2},$$ \hspace{1cm} (13)

where M_{dust} is in g and $\xi = M_{\text{dust,UV}} / M_{\text{dust}}$ is the ratio of the mass of the UV-slab dust to the total echoing dust mass, which, using Equations (11) and (12), can be written as

$$\xi = \frac{x_0 - x_1}{(x_0 - x_1) + (x_2 - x_3)} = 0.09.$$ \hspace{1cm} (14)

Equations (13) and (14) reflect the fact that the UV-heated and optically heated dust emissivities are mixed with a 9%/91% ratio (similar to the UV versus optical phase duration ratio). For simplification and clarity, we will refer to this ratio as our 9%/91% e-mix (for emissivity mix) in the rest of this article. We emphasize, however, that this is not equal to the luminosity ratio of the UV-heated to optically heated component of the simulated echo spectrum, which we will show in the subsequent sections is of the order of 80%/20% in the 5–38 μm range.

We also note that this 9%/91% ratio is a direct consequence of our assumptions to have a symmetric echo region. Rapid size variations would lead to an alteration of the mixing ratio, and potentially rapid variability of the light echo. With only one echo spectrum, we are not able to address these questions, which will require the monitoring of one given echo region over a relatively short period of time.

Ultimately, in Equation (13), M_{dust} is the only undefined parameter, and we use it as the fitting parameter between the recorded spectrum and our simulated one (i.e., we use it to move the simulated spectrum vertically to match the intensity of the recorded echo spectrum).

6.2. Simulation Results

The resulting simulated spectrum (labeled SIM1), using standard ISM dust (described in Section 4) and a 9%/91% e-mix (described in Section 6.1), is shown in Figure 9 (top panel). Fitting the intensity of the simulated spectrum to that of the recorded one (thick line) using Equation (13) leads to an echoing dust mass of 6.6×10^{29} g, or $3.3 \times 10^{-4} M_\odot$. The dashed and dotted lines correspond to the individual contributions from UV-heated and optically heated dust, respectively. In the 5–38 μm range, the UV component of the simulated echo spectrum accounts for 80.0% of the total luminosity of the simulated echo. Quite interestingly, the optical component influence becomes more important than that of the UV one beyond 50 μm. The presence of an optical component especially appears essential in order to fit the 70 μm photometric measurement. It will therefore be of critical importance to obtain such photometric measurements beyond 50 μm in future studies of infrared echoes if one intends to better characterize the optically heated dust component of such echoes.

Given the total echoing dust volume found in Equation (7), the resulting echo region density is $\rho_{\text{echo}} = 640$ H cm$^{-3}$ or 1.2×10^{-2} g cm$^{-3}$, with a column density of 2.8×10^{13} cm$^{-2}$. Because the volume of echoing dust calculated in Section 6.1 is an upper limit of the actual volume of echoing dust (see Section 3), the value of ρ_{echo} can be considered as a lower limit on the actual echoing dust density.

The bottom panel shows the fit residual (relative to the recorded echo). The general trend of the recorded spectrum is well reproduced above $\sim 15\mu$m, as we match both the recorded echo spectrum as well as the 70 μm photometric point. Yet, there are some discrepancies in the PAHs features, where our simulated spectrum is significantly too strong. We especially fail, at this point, to account for the peculiarly small 11 μm complex. The discrepancies around the PAHs features is

Table 1
The Template UV Burst and Optical Light Curve Characteristics Used in Our Simulations

Burst Type	T_{win} (K)	Luminosity (erg s$^{-1}$)	Absorption	Duration (days)	Total Energy (erg)
Optical	9.4×10^3	3.8×10^{42}	No	25	8.2×10^{50}
UV-B	\cdots	6.4×10^{44}	Yes	2.5	1.4×10^{50}
UV	1.5×10^3	5.9×10^{44}	Yes	\cdots	\cdots

(A color version of this figure is available in the online journal.)

Figure 9. Simulation SIM1. Top: 9%/91% e-mix simulation (thin line) fitted to the recorded IR echo (thick line, in red in the online version) shown in Figure 3, and associated synthetic photometric points (black rhombuses). The white squares correspond to MIPS 24 μm and 70 μm photometric measurements. The white rhombuses represent the Spitzer synthetic photometric measurements for our simulation. The dashed and dotted lines correspond to the individual emission from UV-heated and optically heated dust, respectively. Bottom: fit residuals relative to the recorded echo spectrum.
reflected in the difference between the recorded and simulated photometric points shown in the bottom panel of Figure 9, with a ~250% overestimate of the flux in those regions. In the following section, we modify our assumptions on the echoing dust to improve the fit below 15 μm.

7. DISCUSSION

7.1. On the Influence of the Dust Model

As we base our simulations on the dust model of Li & Draine (2001) and Draine & Li (2007), it is clear that resulting dust masses and densities of the echoing region are a direct consequence of this model. Alternate dust models, such as the ones mention in Section 4, are based on different total abundances (which can vary along different line of sights), dust characteristics, mixtures, and dust-to-gas ratios. Because the aim of this paper is not to compare the goodness of different dust models and their ability to reproduce our recorded echo spectrum, but rather to show the potential of performing such a fit and its subsequent scientific output, we deliberately choose to alter the original dust model of Li & Draine (2001) and Draine & Li (2007) only to explore the potential of such modifications to improve our fit to the recorded echo spectrum, but not in an attempt to solely improve their dust model. Performing a similar analysis to the one presented in this article, but with a different dust model, has a great potential but is outside the scope of this paper.

7.2. The 3–20 μm Features: PAH Depletion

PAHs can be strongly affected by UV radiation, which can cause photoionization, dehydrogenation, or photodissociation (Tielens 2008). If those various processes are not directly implemented in our simulation code, we can nevertheless (approximately) take them into account by varying the amount of various dust components in the code, so as to reproduce their effect on the dust composition. Specifically, we modify the equation responsible for the mix in between PAHs and quantum-heated carbon grains as follows (see Equation (2) in Li & Draine 2001):

$$C_{\text{abs}}^{\text{carb}}(a, \lambda) = \eta(a)\xi_{\text{PAH}}C_{\text{abs}}^{\text{PAH}}(a, \lambda) + (1 - \xi_{\text{PAH}})C_{\text{abs}}^{\text{gra}}(a, \lambda),$$

where $C_{\text{abs}}^{\text{carb}}(a, \lambda)$ is the absorption cross section of the carbonaceous dust, $C_{\text{abs}}^{\text{PAH}}(a, \lambda)$ and $C_{\text{abs}}^{\text{gra}}(a, \lambda)$ are the absorption cross sections of the PAHs and quantum-heated graphite grains, respectively, ξ_{PAH} is the mixing ratio as defined by Li & Draine (2001), and $0 \leq \eta(a) \leq 1$ is a function which parameterizes the PAHs destruction ratio, and that we will define below. It should be emphasized that this is not equivalent to modifying the grain sizes distribution function $(1/\eta)(dn_{\text{carb}}/da)$ defined by Weingartner & Draine (2001) which would then impact the carbonaceous dust as a whole. PAHs are much more likely to be processed by UV radiation than quantum-heated graphite grains (Luo 1992; Hunter et al., 2001), and we do not see any explicit reason to alter the latter category at first. This approach also agrees with the work of Compiègne at al. (2008) who showed that the dust emission in the Horsehead Nebula photodissociation region appears to contain a smaller ratio of PAH versus quantum-heated carbon grains than usual.

In Figure 10, we present the result of the simulation labeled SIM2, with a 9%/91% e-mix, and for which we have taken the dust mix $\eta(a)$ as follows:

$$\eta(a) = \begin{cases} 0 & \text{if } a < 5.5 \text{ Å} \\ 0.5 & \text{if } 5.5 \leq a < 8.6 \text{ Å} \\ 1 & \text{if } a \geq 8.6 \text{ Å}. \end{cases}$$

In other words, with $a = 1.286 \times N_C^{1/3}$ (Li & Draine 2001), we assume that there are no PAHs containing less than ~80 carbon atoms, and a decrease of 50% of the amount of PAHs containing from ~80 to ~300 carbon atoms, with respect to the initial ISM dust mix.

As expected, the lack of small PAHs has an effect at small wavelengths, more precisely below ~15 μm. The subsequent simulated IR spectrum has a trend that better matches the recorded echo spectrum. The 9 μm gap is better reproduced, and the 6.2 μm and 7.6 μm features are less intense than in SIM1. However, this update of the dust mix still cannot explain the small strength of the PAH features in the echo spectrum, a point which we will discuss in Section 7.4. The resulting total mass of echoing dust for this simulation is 7.0 × 10^{20} g, equivalent to a echo region density of $\rho_{\text{echo}} = 679 \text{ H cm}^{-3}$ or $1.3 \times 10^{-22} \text{ g cm}^{-3}$, with a column density of $3.0 \times 10^{19} \text{ cm}^{-2}$. The UV-component contributes 83.2% to the total luminosity of the simulated echo in the 5–38 μm range.

The chosen form of $\eta(a)$ might appear somewhat artificial. It is important to clarify here that in our code the UV burst spectrum and the $\eta(a)$ function are two different parameters treated separately in order to fit the recorded IR echo spectrum. A first justification for this particular $\eta(a)$ function would be to assume that the echoing dust content locally differs from the assumed standard ISM dust distribution described previously, and that this precise echo region should not be considered to be pristine and unaffected by previous interactions prior to being heated by the Cas A SN light. For example, Micelotta et al. (2010a) showed that PAHs with less than 50 carbon atoms can be destroyed if encountering shocks with velocities greater than 100 km s^{-1}. Furthermore, given that the standard ISM dust content is not clearly defined, this justification represents a potential solution.

A second explanation for the $\eta(a)$ function is to assume that the dust content is directly affected by the UV burst
In Section 9, the destruction of dust by the UV burst is not UV-heated and the optically heated dust. As we will discuss of dust destruction.

PAHs in the echo region. Ionized PAHs are known (Bakes et al. 2001a; Hony et al. 2001). Dehydrogenation on the simulated echo spectrum. We are here, quite clearly, pushing our simulations to their limits. In reality, worsens the fit for the 6–8 μm region. It can also be noted than even with a 100% of PAHs being ionized, the 11.3 μm feature remains strong—too strong with respect to the recorded echo spectrum. Hence, if PAHs are in principle likely to be strongly ionized by the passage of the UV burst, the extent to which ionization influence the shape of echo spectrum is not evident, and another mechanism appears to be required to explain the very weak PAH features. In the remaining simulations of this paper, we will assume the original ionization fraction \(\phi_{\text{ion}} = \phi_{\text{LD01}} \) because, from our simulations, the role played by PAHs ionization is not clear at this stage.

7.4. The Weak 11 μm Complex: A Signature of Dehydrogenation

The lack of any reasonably strong features in the 11 μm region in the recorded IR echo spectrum is quite puzzling. These features are usually associated with C–H out-of-plane bending modes (Bakes et al. 2001a; Hony et al. 2001). Dehydrogenation might provide an alternative explanation to ionization for this peculiar 11 μm complex.

Dehydrogenation occurs when a PAH loses some H-atoms, in our case by absorption of a UV photon. Looking closer to the recorded spectrum, one can note, along with a weak 11 μm complex, very little emission around the 5.27 μm and 5.7 μm features (C–H bend/stretch combination mode; see Bakes et al. 2001a; Draine & Li 2007). Those characteristics of the recorded echo spectrum point toward a possible depletion of emission originating from C–H bonds, and suggest a strongly dehydrogenated state of the PAHs. If the intensity of the 11 μm feature suggests a rather high dehydrogenation ratio, the presence of the 8.6 μm C–H in plane bending is an indicator that not all hydrogen atoms have disappeared.

To take dehydrogenation of PAHs into account in our simulations, we define the number of hydrogen atoms in a dehydrogenated PAH \(N_{\text{H}}^* \):

\[
N_{\text{H}}^* = \delta_{\text{hydro}} \times N_{\text{H}}
\]

with \(\delta_{\text{hydro}} \) the dehydrogenation ratio, and \(N_{\text{H}} \) the number of hydrogen atoms in the unaltered PAH molecule containing \(N_C \) carbon atoms.

In Figure 12, we show the simulated spectra SIM4 where the amount of H-atoms per PAH is 40% (top), 20% (center), and 0% of the original value (i.e., \(\delta_{\text{hydro}} = 0.4; 0.2; 0.0 \)). All the other parameters are identical to the simulation SIM2 shown in Figure 10. For the three cases, the resulting total mass of echoing dust is 7.0 × 10^{29} g, equivalent to an echo region density of \(\rho_{\text{Echo}} = 679 \text{ H cm}^{-3} \) or 1.3 × 10^{-23} g cm^{-3}, with a column density of 3.0 × 10^{19} cm^{-2}. Note that we have assumed that the 5.2 μm and 5.7 μm features are functions of the hydrogenation ratio H/C, thus departing on this aspect from Draine & Li (2007). It is not clear why they did not have their intensities as a function of the H/C ratio, but given our recorded IR echo spectrum, we believe this update to be reasonable. The UV-component of the simulated echo spectrum accounts for 83.4%, 83.3%, and 83.3% of the total luminosity of the simulated echo for the 40%, 20%, and 0% hydrogenation simulations. The respective parameters of all our simulations, presented in Figures 9–12, are shown in Table 2.

The 11 μm region is best fitted by the 80% dehydrogenation curve. Our aim in SIM4 was mainly to highlight the effect of dehydrogenation on the simulated echo spectrum. We are here, quite clearly, pushing our simulations to their limits. In reality,

![Figure 11. Same as Figure 10, but for simulation SIM3: 9%/91% e-mix with PAH depletion as described in Equation (16) and 100% of PAHs ionized. (A color version of this figure is available in the online journal.)](image-url)
Our simulation has too strong PAHs features. We do not have a direct explanation for this overestimate; however, it appears quite clear that PAHs are strongly altered in this echo region. Especially, a more careful treatment of PAHs dehydrogenation than the one adopted here would be required to better understand the consequences of a strong and short-lived UV burst, and might potentially be able to explain the peculiar 5–9 μm region.

Finally, we note that based on the classification of Peeters et al. (2002), our recorded echo spectrum falls into the so-called AB′ category, based on its 7.7 μm complex. This is a peculiar category containing only two objects, a non-isolated Herbig Ae Be star and a post-asymptotic giant branch star, among the 57 sources studied, for which the 7.7 μm complex is actually composed of two features at 7.6 μm and 7.8 μm with roughly equal strengths. This association of the unusual light-echo spectrum with the peculiar AB′ class might eventually turn out to be of interest when trying to understand the origin of the 7.8 μm feature (Peeters et al. 2002).

8. COMPARISON WITH PREVIOUS WORK

Using a similar approach to the present work, Dwek & Arendt (2008) presented simulations of several Cas A light echoes in the 10–40 μm range. They especially experimented with three different types of heating spectra: optical light curves, UV bursts, and (the so-called) extreme UV (or EUV) bursts. Because they used several different bursts characteristics, spanning a range of luminosities and temperatures, and managed to successfully reproduce their echo spectra, it is interesting to compare our UV-B burst based on our knowledge of the Cas A SN type to their models. In Figure 13, we plot our UV-B burst against their “UV18” and “EUV18” curves. Both are blackbody spectrum with a temperature $T_{\text{BB18}} = 5 \times 10^4$ K and $T_{\text{BB18}} = 5 \times 10^5$ K. The number 18 refers to the assumed SN-echo column density, 1.5×10^{18} cm$^{-2}$. Note that compared to their Figure 6, both UV18 and EUV18 curves have been scaled to account for the different distance to the light echo (160 lt-yr versus 199 lt-yr), as well as by 0.11 and 0.15, respectively to match the averaged luminosity over all their echo regions for the respective burst model (see Table 3 in Dwek & Arendt 2008).

It is interesting to note that our respective burst intensities agree very well. The total luminosities of $L_{\text{UV18}} = 4.2 \times 10^{44}$ erg s$^{-1}$ and $L_{\text{EUV18}} = 5.7 \times 10^{44}$ erg s$^{-1}$ are slightly lower but nevertheless in good agreement with our UV-B luminosity of $L_{\text{UV-B}} = 6.4 \times 10^{44}$ erg s$^{-1}$. The difference is mostly a consequence of the shape modification of our UV-B burst. The luminosity of our blackbody UV burst prior to the modification is 5.9×10^{44} erg s$^{-1}$, in perfect agreement with the work of Dwek & Arendt (2008).

Because they did not use data below 13 μm, Dwek & Arendt (2008) were not able to find a model fitting the data significantly better than the others, with exception to the optical ones that proved not to be able to reproduce the light-echo shape. Our simulations confirm these conclusions, in that the 10–40 μm
range in a light-echo spectrum is mostly influenced by the UV burst heating the dust. Distinguishing between various UV burst characteristics only becomes possible at smaller wavelengths, below 10 μm, where the behavior of the various PAH features, as well as the global shape of the spectrum contains unique signatures of the intensity and temperature of the UV burst. In that sense, our simulations suggest the UV models of Dwek & Arendt (2008) to be more likely, especially as energetic photons are required to explain the weak 11 μm PAH complex with dehydrogenation. As for the optical light curve, accounting for a mere 17% in the 4–38 μm range in our simulations, its influence really becomes critical above 50 μm, explaining why the number of C-atoms in a PAH of size NC, the PAH absorption cross section as a function of the frequency ν and the number of C-atoms NC. Excited PAHs will de-excite themselves by IR emission in a time τ < 1 s, unless their internal energy is higher than a threshold value E_{lim}. In this case, the PAH molecule will be disrupted and lose one or more atoms. For a PAH with NC carbon atoms, we take the threshold energy input within 1 s for PAH destruction, E_{lim}, to be

$$E_{\text{lim}} = \frac{N_C}{2} \eta \left(\frac{E_T}{\text{eV}} \right).$$

This relation is based on the assumption that

$$E_{\text{lim}} = 3 N_C k T_{\text{dis}} \sim 0.1 N_C E_0.$$

with T_{dis} the minimum temperature for destruction, and $E_0 = 5$ eV the critical (Arrhenius) energy of the atom being ripped off the molecule. Let us subsequently define x the number of dissociated atoms in a PAH of size NC receiving an energy $E_{\text{in}} \geq E_{\text{lim}}$ within 1 s of time, and E_{kin} the kinetic energy of one ripped off atom. Then, similar to Equation (19),

$$E_{\text{in}} - x(E_0 + E_{\text{kin}}) = 3(N_C - x)k T_{\text{dis}}.$$

In words, as a PAH is heated by an incoming energy E_{in} higher than the threshold value E_{lim}, it will lose x atoms until its internal

Table 2: Various Simulations and Associated Parameters

Name	Emissivity Mix	Dust Mix	ϕ_{los}	δ_{hyd}	M_{dust} 1029 (g)	ρ_{echo} (H cm$^{-3}$)	Echo Region Column Density 1019 (H cm$^{-2}$)	UV/Opt. Contribution to the Total Luminosity
SIM1	9% UV + 91% opt.	ISM	ϕ_{L0D0}	0	6.6	640	2.8	80.0%/20.0%
SIM2	9% UV + 91% opt.	ISM	ϕ_{L0D0}	0	7.0	679	3.0	83.2%/16.8%
SIM3	9% UV + 91% opt.	ISM	ϕ_{L0D0}	0	7.0	679	3.0	83.8%/16.2%
SIM4	9% UV + 91% opt.	ISM	ϕ_{L0D0}	0.4/0.2/0.0	7.0	679	3.0	83.4%/16.6%

Notes.

- As defined in Equation (17).
- $\eta(a)$ as defined in Equation (16).

Figure 13. Comparison of our adopted UV burst spectrum (UV-B; full line, in blue in the online version) with the UV18 (dotted line) and EUV18 (dashed line) spectra of Dwek & Arendt (2008; see their Figure 6). The UV18 and EUV18 curves have both been scaled to account for the distance difference of their associated echo (160 lt-yr vs. 199 lt-yr). We have taken their luminosity to be $0.11 \times 10^{12} \, L_\odot$ and $0.15 \times 10^{12} \, L_\odot$, respectively, as mentioned by Dwek & Arendt (2008, see their Table 3).

(A color version of this figure is available in the online journal.)
temperature decreases down to T_{dis}. Rearranging the terms and using Equation (19), it is possible to express x as a function of the incoming energy E_{in} and the PAH size N_C:

$$x = \frac{E_{\text{in}}}{5[\text{eV}]} - \frac{N_C}{10^3}$$ (21)

where E_{in} can be reached by the absorption of one single energetic photon, or several less energetic photons. We here strictly follow the work of Siebenmorgen & Krügel (2010), which we refer the reader to for more details.

At the estimated distance of the echo region, the amount of time required to get hit by a photon (triangle-symbol line in Figure 14), assuming the template UV incoming radiation field described in Section 5, is more than 1 s for PAHs with $N_C \leq 10^5$. Hence, those PAH can only lose atoms if they are hit by one single photon with an energy $h\nu \geq E_{\text{lim}}$.

PAHs with sizes above 10^5 N_C will, on average, get hit by several photons every second; however, taking into account the mean energy of the absorbed photons, the total absorbed energy will not reach the limit value E_{lim} for the radiation field strengths considered in this work. The optical light curve, as considered in this study, does not contain photons energetic enough to be able to destroy PAHs.

For PAHs with $N_C \leq 10^3$, the absorbed destroying energy $\dot{E}_{\text{in}, h\nu \geq E_{\text{lim}}}$ per PAH per second as a function of the PAH size is

$$\dot{E}_{\text{in}, h\nu \geq E_{\text{lim}}}(N_C) = \int_{h\nu = E_{\text{lim}}}^{\infty} F_{\text{burst}}(v) C_{\text{abs}}(v, N_C) d\nu.$$ (22)

This corresponds to a number of destroying photons $N_{\gamma, \text{in}, h\nu \geq E_{\text{lim}}}$ absorbed per PAH per second:

$$N_{\gamma, \text{in}, h\nu \geq E_{\text{lim}}}(N_C) = \int_{h\nu = E_{\text{lim}}}^{\infty} d\nu \frac{F_{\text{burst}}(v) C_{\text{abs}}(v, N_C)}{h\nu}$$ (23)

which finally leads to the mean time $t_{\text{in}, h\nu \geq E_{\text{lim}}}$ necessary to absorb one destroying photon:

$$t_{\text{in}, h\nu \geq E_{\text{lim}}}(N_C) = \frac{1}{N_{\gamma, \text{in}, h\nu \geq E_{\text{lim}}}(N_C)}$$ (24)

and the mean energy of the destroying photons:

$$h\bar{\nu}_{\text{in}, h\nu \geq E_{\text{lim}}}(N_C) = \frac{\dot{E}_{\text{in}, h\nu \geq E_{\text{lim}}}(N_C)}{N_{\gamma, \text{in}, h\nu \geq E_{\text{lim}}}(N_C)}.$$ (25)

In Figure 14, we show the time required by a PAH to absorb one destructive photon, $t_{\text{in}, h\nu \geq E_{\text{lim}}}$, as a function of PAH size N_C (filled-dots line), along with the average time for a PAH to get hit by a photon of any energy (triangle-symbols line). We use our SN burst templates described in Section 5 and assume the distance of 199 lt-yr (see Section 2) from Cas A to the echo region. Under those assumptions, we see that it takes ~ 2.5 days for a PAH with $N_C = 450$ C-atoms to be hit by one destructive photon with the UV burst described in Section 5 shining on the dust particles.

We also plot in Figure 14 a higher-end estimate of the time required for a PAHs of a certain size to be destroyed via photodissociation (empty-dots line), based on the following conservative approach: assuming an initial PAH size N_{C_0}, we find the mean time required to get hit by a destructive photon (Equation (24)), calculate the number x of atoms kicked off (via Equation (21)) given the destructive photon mean energy (from Equation (25)). We then start again with the new, smaller, PAH with $N_{C_1} = N_{C_0} - x$ atoms, and iterate the process until we reach $N_{C_{\text{out}}} \leq 20$, a value below which the PAHs are photolytically unstable (Li & Draine 2001; Le Page et al. 2003).

Summing the time of the various steps of the loop gives us the mean destruction time t_{destruct} for a PAH of size N_{C_0}. This time can be considered as an over estimate, as a PAH, after having lost some atoms, might not turn into a stable PAHs of the new size. The C-atoms will likely be ripped off at a random position, and thus weaken the PAH structure. In that sense, it may be possible that less impacts of destroying photons are required in order to achieve the destruction of the PAH—this, however, is not certain (see Le Page et al. 2003).

As seen in Figure 14, the destruction time increases rapidly with the PAH size, and it already takes ~ 2.5 days in order to destroy PAHs with an initial size of ~ 300 C-atoms. Let us recall here that assuming all PAHs below 80 carbon atoms and 50% of PAHs from 80 to 300 carbon atoms to be destroyed leads to the SIM2 simulation. These very similar values suggest, under the assumptions of this simple PAH destruction model, that the destruction of PAHs by the UV burst appears plausible and logical. It should be noted here that we have neglected any dust processing mechanisms other than photodissociation, such as recombination, hydrogenation, or the coagulation of small molecules on bigger ones (Hunter et al. 2001). We do not expect these to have an impact as important as photodissociation in shaping the echo spectrum, as the reaction timescales are expected to be significantly larger than the duration of the UV burst, typically of the order of a few years for hydrogenation and recombination (in a standard ISM environment; see, for example, Le Page et al. 2001, 2003).

Such a dust destruction scenario also appears of special interest when considering the fact that Krause et al. (2008) have found strong [C IV]9850 carbon emission in their optical spectrum of an echo region around Cas A. The [C IV] lines can be excited via two main mechanisms: radiative recombination and collisional excitation by electrons. Escalante et al. (1991) suggested the first mechanism to explain the [C IV] emission lines from M 42 and NGC 2024, requiring strong radiation (10^3–10^4 times the ISRF) heating gas with a density of 10^5 H cm$^{-3}$; a radiation field intensity not so different from the one considered in this work.
In our dust model, the C/H ratio in PAHs is 16.1 ppm for $N_C < 100$, 26.1 ppm for $N_C < 200$, and 36.1 ppm for $N_C < 500$ (see Table 3 in Draine & Li 2007). Dust destruction in the form of $\eta(a)$ described in Equation (15) will therefore, if affected PAHs are entirely disrupted, increase the ISM gas phase abundance of C-atoms by ~24 ppm. Standard carbon abundances in the gas phase of low to moderate density ISM have been measured to be of the order of 150 ppm (e.g., Cardelli et al. 1996; Sofia et al. 1997), while Dwek et al. (1997) found abundances of the order of 50–100 ppm in the cold neutral medium. Recently, using a different estimation method based on the strong transition of C$^+$ at λ1334, Sofia et al. (2011) suggested that the carbon gas phase abundance might be lower by ~40% than previous values found using methods based on a weak intersystem absorption transition. In any case, our dust destruction scenario could increase the amount of C-atoms in the gas phase by as much as 10%–20%, which could in turn potentially affect the [C\text{\textsc{i}}] line by the same factor. If this suggest that the [C\text{\textsc{i}}] λ9850 Å detected by Krause et al. (2008) is not an unambiguous and direct confirmation of our scenario of PAHs destruction, it cannot be ruled out that destroyed PAHs influence its strength. Clearly, the study of other optical light echoes is required to better understand the origin and the ubiquity (or not) of the [C\text{\textsc{i}}] λ9850 line.

10. CONCLUSION

We have obtained a Spitzer IRS spectrum and MIPS photometric measurements of an IR echo region around the Cas A SN. Using simulations of an ISM dust mix containing both carbon and silicate quantum-heated and thermal grain as well as PAHs, we can, to a large extent, reproduce the recorded IR echo spectrum. Specifically,

1. we find that the infrared echo spectrum can be described as the thermal signature from an UV and an optical component. Those UV and optical component characteristics correspond to the values of the Type Ib SN 1993J which is considered to be representative of the Cas A SN based on its optical spectrum. Their respective contributions in our best fit to the echo total luminosity are ~83% and ~17% (in the 5–38 μm range).

2. the influence of the optically heated dust becomes more important than UV-heated dust above ~50 μm. Especially, the presence of the optical component in our heating spectrum is consistent with the 70 μm photometric measurement of the recorded echo.

3. the spectrum below 15 μm is better reproduced when removing artificially small PAHs with less than 80 carbon atoms, and by removing 50% of PAHs with 80–300 carbon atoms.

4. the especially weak 11 μm complex of PAH features in the recorded echo spectrum can be reproduced when introducing 80% of dehydrogenation for all PAHs in our simulation.

Our best-fit simulation implies a lower limit for the density of this echo region of $\rho_{\text{echo}} = 679$ H cm$^{-3}$. The removal of small PAHs is consistent with a simple and rather conservative theoretical model of PAHs destruction via photodissociation assuming the considered UV burst radiation field. The strong dehydrogenation ratio of PAHs, as compared to the amount of PAHs destruction, is also consistent with this picture, where PAHs tend to lose hydrogen atoms first. In the future, a more careful modeling of PAHs destruction and dehydrogenation as compared to the one adopted here could lead to an even better fit to the recorded IR echo spectrum. The relatively weak 5–9 μm PAH complex, where our simulations differ from the recorded echo spectrum by a factor of ~250%, remains to be explained.

The approach we adopted in this work, in order to study dust processing in the ISM, has a great potential. Our results aim at being tested toward other echo regions around Cas A and other SNR, and this preliminary study shows the wealth of potential outcomes. The unique nature of IR echoes enables the study of otherwise cold and very faint ISM structures being strongly processed over a very short period of time. Such ISM clouds, potentially being initially pristine, undisturbed, and located away from any altering radiation sources, can provide unique insights in the ISM physics. Furthermore, the large amount of echoes provides us with an extensive number of locations and environments to test the simulations and conclusions presented in this article. It is currently rather difficult to obtain near IR spectra of echoing regions, now that the Spitzer Space Telescope has reached the end of its duty cycle. Fortunately, there are some exciting prospects for observations at those wavelengths, such as the James Webb Space Telescope (JWST; Gardner et al. 2006) or the Stratospheric Observatory for Infrared Astronomy (SOFIA; Becklin et al. 2007; Gehrz et al. 2009) which has seen its first light in 2010 May. These telescopes and their instruments will be ideally suited to record infrared spectra of echoing regions, and we expect that infrared echoes will provide many new and unique insights into the ISM dust composition and chemistry, as well as into the SN symmetries and characterization.

We thank the anonymous referee for a constructive review. Most of this work has been carried out during two visits by F.V. at the Max-Planck-Institut für Astronomie in Heidelberg. F.V. thanks Alexandra Bohm for her help dealing with the logistic related to those visits. This research has made use of NASA’s Astrophysics Data System.

REFERENCES

Ashworth, W. B., Jr. 1980, J. Hist. Astron., 11, 1
Bakes, E. L. O., Tieless, A. G. G. M., & Bauschlicher, C. W., Jr. 2001a, ApJ, 556, 501
Bakes, E. L. O., Tieless, A. G. G. M., Bauschlicher, C. W., Jr., Hudgings, D. M., & Allamandola, L. J. 2001b, ApJ, 560, 261
Becklin, E. E., Tieless, A. G. G. M., Gehrz, R. D., & Callis, H. H. S. 2007, Proc. SPIE, 6678, 6678A
Blinnikov, S. I., Eastman, R., Bartunov, O. S., Popolitov, V. A., & Woosley, S. E. 1998, ApJ, 496, 454
Bode, M. F., & Evans, A. 1980, MNRS, 193, 21
Cardelli, J. A., Meyer, D. M., Jura, M., & Savage, B. D. 1996, ApJ, 446, 334
CHASE, M. W., Davies, C. A., Downey, J. R., et al. 1985, J. Phys. Chem. Ref. Data, 14, 1
Clocchiatti, A., Wheeler, J. C., Barker, E. S., et al. 1995, ApJ, 446, 167
Draine, B. T., & Li, A. 2007, ApJ, 657, 810
Dwek, E. 1983, ApJ, 274, 175
Dwek, E. 1985, ApJ, 297, 719
Dwek, E., & Arendt, R. G. 2008, ApJ, 685, 976
Dwek, E., Arendt, R. G., Fixsen, D. J., et al. 1997, ApJ, 475, 565
Escaletse, V., Sternberg, A., & Dalgarno, A. 1991, A&A, 237, 215
Gehrz, R. D., Becklin, E. E., de Pater, I., et al. 2009, Adv. Space Res., 44, 413
Gordon, K. D., Rieke, G. H., Engelbracht, C. W., et al. 2005, PASP, 117, 503
Higdon, S. J. U., Devost, D., Higdon, J. L., et al. 2004, PASP, 116, 975
Hines, D. C., Rieke, G. H., Gordon, K. D., et al. 2004, ApJS, 154, 290

The Astrophysical Journal, 750:155 (14pp), 2012 May 10

Vogt et al.
Hony, S., Van Kerckhoven, C., Peeters, E., et al. 2001, A&A, 370, 1030
Houck, J. R., Roellig, T. L., van Cleve, J., et al. 2004, ApJS, 154, 18
Hughes, D. W. 1980, Nature, 285, 132
Hunter, D. A., Kaufman, M., Hollenbach, D. J., et al. 2001, ApJ, 553, 121
Ivezic, Z., Groenewegen, M. A. T., Men'shchikov, A., & Szczepanek, R. 1997, MNras, 291, 121
Jeffery, D. J., Kirshner, R. P., Challis, P. M., et al. 1994, ApJ, 421, L27
Jones, A. P., Duley, W. W., & Williams, D. A. 1990, QJRAS, 31, 567
Kim, Y., Rieke, G. H., Krause, O., et al. 2008, ApJ, 678, 287
Krause, O., Birkmann, S. M., Usuda, T., et al. 2008, Science, 320, 1195
Krause, O., Rieke, G. H., Birkmann, S. M., et al. 2005, Science, 308, 1604
Le Page, V., Snow, T. P., & Bierbaum, V. M. 2001, ApJS, 132, 233
Le Page, V., Snow, T. P., & Bierbaum, V. M. 2003, ApJ, 584, 316
Lebouteiller, V., Bernard-Salas, J., Sloan, G. C., & Barry, D. J. 2010, PASP, 122, 231
Li, A., & Draine, B. T. 2001, ApJ, 554, 778
Li, A., & Greenberg, J. M. 1997, A&A, 323, 566
Luo, S.-G. 1992, Acta Astron. Sin., 33, 123
Mathesoh, T., Filippenko, A. V., Ho, L. C., Barth, A. J., & Leonard, D. C. 2000, AJ, 120, 1499
Mathis, J. S. 1996, ApJ, 472, 643
Mathis, J. S., Mezger, P. G., & Panagia, N. 1983, A&A, 128, 212
Mathis, J. S., & Whiffen, G. 1989, ApJ, 341, 808
Micelotta, E. R., Jones, A. P., & Tielens, A. G. G. M. 2010a, A&A, 510, A36
Micelotta, E. R., Jones, A. P., & Tielens, A. G. G. M. 2010b, A&A, 510, A37
Morrison, R., & McCammon, D. 1983, ApJ, 270, 119
Peeters, E., Hony, S., Van Kerckhoven, C., et al. 2002, A&A, 390, 1089
Reed, J. E., Hester, J. J., Fabian, A. C., & Winkler, P. F. 1995, ApJ, 440, 706
Rest, A., Welch, D. L., Suntzeff, N. B., et al. 2008, ApJ, 681, L81
Richmond, M. W., Treffers, R. R., Filippenko, A. V., et al. 1994, AJ, 107, 1022
Rieke, G. H., Young, E. T., Engelbracht, C. W., et al. 2004, ApJS, 154, 25
Siebenmorgen, R., & Krügel, E. 1992, A&A, 259, 614
Siebenmorgen, R., & Krügel, E. 2010, A&A, 511, A6
Sofia, U. J., Cardelli, J. A., Gaier, K. P., & Meyer, D. M. 1997, ApJ, 482, L105
Sofia, U. J., Parvathi, V. S., Babu, B. R. S., & Murthy, J. 2011, AJ, 141, 22
Sugerman, B. E. K. 2003, AJ, 126, 1939
Thorstensen, J. R., Fesen, R. A., & van den Bergh, S. 2001, AJ, 122, 297
Tielens, A. G. G. M. 2008, ARA&A, 46, 289
Weingartner, J. C., & Draine, B. T. 2001, ApJ, 548, 296
Werner, M. W., Roellig, T. L., Low, F. J., et al. 2004, ApJS, 154, 1
Woosley, S. E., Eastman, R. G., Weaver, T. A., & Pinto, P. A. 1994, ApJ, 429, 300
Xu, J., & Crotts, A. P. S. 1999, ApJ, 511, 262
Young, P. A., Fryer, C. L., Hungerford, A., et al. 2006, ApJ, 640, 891
Zubko, V., Dwek, E., & Arendt, R. G. 2004, ApJS, 152, 211