ON GRÖBNER BASES AND COHEN-MACaulay PROPERTY OF CLOSED PATH POLYOMINOES

CARMelo Cisto, FRANcisco NAVarra, AND RosAnna UTANO

Dedicated to the memory of Gaetana Restuccia

Abstract. In this paper we introduce some monomial orders for the class of closed path polyominoes and we prove that the set of the generators of the polyomino ideal attached to a closed path forms the reduced Gröbner basis with respect to these monomial orders. It is known that the polyomino ideal attached to a closed path containing an L-configuration or a ladder of at least three steps, equivalently having no zig-zag walks, is prime. As a consequence, we obtain that the coordinate ring of a closed path having no zig-zag walks is a normal Cohen-Macaulay domain.

1. Introduction

Let $X = (x_{ij})$ be an $m \times n$ matrix of indeterminates. An interesting topic in Commutative Algebra is the studying the ideal of the $t$-minors of $X$ for any integer $1 \leq t \leq \min\{m, n\}$. Many mathematicians investigated the main algebraic properties of such ideals, called determinantal ideals. See for example [4], [5], [6], [13] about the ideals generated by all $t$-minors of a one or two sided ladder, [14], [20], [23] about the ideals of adjacent 2-minors, [15] about the ideals generated by an arbitrary set of 2-minors in a $2 \times n$ matrix, or also [11] about the ideals generated by 2-minors associated to a graph. For further references see [3].

In 1953 S.W. Golomb coined the term polyomino to indicate a finite collection of unitary squares joined edge by edge ([12]). These polygons have been studied in Combinatorial Mathematics, in particular in some tiling problems of the plane. In 2012 they have been linked to Commutative Algebra by A.A. Qureshi ([24]): if $P$ is a polyomino, $K$ is a field and $S$ is the polynomial ring over $K$ in the variables $x_a$ with $a \in V(P)$, set of the vertices of $P$, then we can associate to $P$ the ideal generated by all inner 2-minors of $P$. This ideal is called the polyomino ideal of $P$ and it is denoted by $I_P$. Many mathematicians have taken an interest in classifying all polyominoes, for which the quotient ring $K[P] = S/I_P$ is a normal Cohen-Macaulay domain. The primality of $I_P$ is studied in several papers, see [7], [8], [17], [18], [19], [21], [22], [25], [27], [28]. Moreover in [17] and [25] the authors prove that if $P$ is a simple polyomino then $K[P]$ is a normal Cohen-Macaulay domain. In other papers some new classes of non-simple polyominoes are examined. In [19] and [27], the authors show that the polyominoes obtained by removing a convex polyomino from a rectangle are prime, generalizing the same result for the rectangular polyominoes minus an internal rectangle proved in [27]. In [21] the authors introduce a particular sequence of inner intervals of $P$, called a zig-zag walk, and they prove that $P$ does not contain zig-zag walks if $I_P$ is prime. It seems that the non-existence of zig-zag walks in a polyomino could characterize its primality [Conjecture 4.6, [21]]. In [17] the authors support this conjecture introducing a new class of polyominoes, called closed paths, and showing that having no zig-zag walks is a necessary and sufficient condition for their primality. An analogous result is proved in [8] for the weakly closed path polyominoes. In [22] the authors study the reduced Gröbner basis of polyomino ideals and introduce some conditions in order to the generators of $I_P$ form the reduced Gröbner basis with

2020 Mathematics Subject Classification. 05B50, 05E40, 13C05, 13G05, 13C14.

Key words and phrases. Polyominoes, Gröbner bases, normal Cohen-Macaulay domain.
Let \( S \) be a non-empty collection of cells in \( \mathbb{Z}^2 \). The set of the vertices and the edges of \( S \) are respectively \( V(S) = \bigcup_{C \in S} V(C) \) and \( E(S) = \bigcup_{C \in S} E(C) \). If \( C \) and \( D \) are two distinct cells of \( S \), then a walk from \( C \) to \( D \) in \( S \) is a sequence \( C : C = C_1, \ldots, C_m = D \) of cells of \( \mathbb{Z}^2 \) such that \( C_i \cap C_{i+1} \) is an edge of \( C_i \) and \( C_{i+1} \) for \( i = 1, \ldots, m - 1 \). In addition, if \( C_i \neq C_j \) for all \( i \neq j \), then \( C \) is called a path from \( C \) to \( D \). We say that \( C \) and \( D \) are connected in \( S \) if there exists a path of cells in \( S \) from \( C \) to \( D \). A polyomino \( \mathcal{P} \) is a non-empty, finite collection of cells in \( \mathbb{Z}^2 \) where any two cells of \( \mathcal{P} \) are connected in \( \mathcal{P} \). For instance, see Figure 1.

![Figure 1. A polyomino.](image)

We say that a polyomino \( \mathcal{P} \) is simple if for any two cells \( C \) and \( D \) not in \( \mathcal{P} \) there exists a path of cells not in \( \mathcal{P} \) from \( C \) to \( D \). A finite collection of cells \( \mathcal{H} \) not in \( \mathcal{P} \) is a hole of \( \mathcal{P} \) if any two cells of \( \mathcal{H} \) are connected in \( \mathcal{H} \) and \( \mathcal{H} \) is maximal with respect to set inclusion. For example, the polyomino in Figure 1 is not simple with an hole. Obviously, each hole of \( \mathcal{P} \) is a simple polyomino and \( \mathcal{P} \) is simple if and only if it has no hole.

2. Polyominoes, closed paths and polyomino ideals

Let \((i,j),(k,l)\) \(\in\mathbb{Z}^2\). We say that \((i,j) \leq (k,l)\) if \(i \leq k\) and \(j \leq l\). Consider \(a = (i,j)\) and \(b = (k,l)\) in \(\mathbb{Z}^2\) with \(a \leq b\). The set \(\{a, b\} = \{(m, n) \in \mathbb{Z}^2 : i \leq m \leq k, j \leq n \leq l\}\) is called an interval of \(\mathbb{Z}^2\). In addition, if \(i < k\) and \(j < l\) then \(\{a, b\}\) is a proper interval. In such a case we say \(a, b\) the diagonal corners of \(\{a, b\}\) and \(c = (i, l), d = (k, j)\) the anti-diagonal corners of \(\{a, b\}\). If \(j = l\) (or \(i = k\)) then \(a\) and \(b\) are in horizontal (or vertical) position. We denote by \(\{a, b\}\) the set \(\{(m, n) \in \mathbb{Z}^2 : i < m < k, j < n < l\}\). A proper interval \(C = [a, b]\) with \(b = a + (1, 1)\) is called a cell of \(\mathbb{Z}^2\); moreover, the elements \(a, b, c\) and \(d\) are called respectively the lower left, upper right, upper left and lower right corner of \(C\). The sets \(\{a, c\}, \{c, b\}, \{b, d\}\) and \(\{a, d\}\) are the edges of \(C\). We put \(V(C) = \{a, b, c, d\}\) and \(E(C) = \{\{a, c\}, \{c, b\}, \{b, d\}, \{a, d\}\}\).

Let \(S\) be a non-empty collection of cells in \(\mathbb{Z}^2\). The set of the vertices and the edges of \(S\) are respectively \(V(S) = \bigcup_{C \in S} V(C)\) and \(E(S) = \bigcup_{C \in S} E(C)\). If \(C\) and \(D\) are two distinct cells of \(S\), then a walk from \(C\) to \(D\) in \(S\) is a sequence \(C : C = C_1, \ldots, C_m = D\) of cells of \(\mathbb{Z}^2\) such that \(C_i \cap C_{i+1}\) is an edge of \(C_i\) and \(C_{i+1}\) for \(i = 1, \ldots, m - 1\). In addition, if \(C_i \neq C_j\) for all \(i \neq j\), then \(C\) is called a path from \(C\) to \(D\). We say that \(C\) and \(D\) are connected in \(S\) if there exists a path of cells in \(S\) from \(C\) to \(D\). A polyomino \(\mathcal{P}\) is a non-empty, finite collection of cells in \(\mathbb{Z}^2\) where any two cells of \(\mathcal{P}\) are connected in \(\mathcal{P}\). For instance, see Figure 1.

![Figure 1. A polyomino.](image)

We say that a polyomino \(\mathcal{P}\) is simple if for any two cells \(C\) and \(D\) not in \(\mathcal{P}\) there exists a path of cells not in \(\mathcal{P}\) from \(C\) to \(D\). A finite collection of cells \(\mathcal{H}\) not in \(\mathcal{P}\) is a hole of \(\mathcal{P}\) if any two cells of \(\mathcal{H}\) are connected in \(\mathcal{H}\) and \(\mathcal{H}\) is maximal with respect to set inclusion. For example, the polyomino in Figure 1 is not simple with an hole. Obviously, each hole of \(\mathcal{P}\) is a simple polyomino and \(\mathcal{P}\) is simple if and only if it has no hole.
Consider two cells \( A \) and \( B \) of \( \mathbb{Z}^2 \) with \( a = (i, j) \) and \( b = (k, l) \) as the lower left corners of \( A \) and \( B \) and \( a \leq b \). A \textit{cell interval} \( [A, B] \) is the set of the cells of \( \mathbb{Z}^2 \) with lower left corner \((r, s)\) such that \( i \leq r \leq k \) and \( j \leq s \leq l \). If \((i, j)\) and \((k, l)\) are in horizontal (or vertical) position, we say that the cells \( A \) and \( B \) are in \textit{horizontal} (or \textit{vertical}) position.

Let \( \mathcal{P} \) be a polyomino. Consider two cells \( A \) and \( B \) of \( \mathcal{P} \) in vertical or horizontal position. The cell interval \([A, B]\), containing \( n > 1 \) cells, is called a \textit{block of} \( \mathcal{P} \) \textit{of rank} \( n \) if all cells of \([A, B]\) belong to \( \mathcal{P} \). The cells \( A \) and \( B \) are called \textit{extremal} cells of \([A, B]\). Moreover, a block \( \mathcal{B} \) of \( \mathcal{P} \) is \textit{maximal} if there does not exist any block of \( \mathcal{P} \) which contains properly \( \mathcal{B} \). It is clear that an interval of \( \mathbb{Z}^2 \) identifies a cell interval of \( \mathbb{Z}^2 \) and vice versa, hence we can associated to an interval \( I \) of \( \mathbb{Z}^2 \) the corresponding cell interval denoted by \( \mathcal{P}_I \). A proper interval \([a, b]\) is called an \textit{inner interval} of \( \mathcal{P} \) if all cells of \( \mathcal{P}_{[a,b]} \) belong to \( \mathcal{P} \). An interval \([a, b]\) with \( a = (i, j) \), \( b = (k, l) \) and \( i < k \) is called a \textit{horizontal edge interval} of \( \mathcal{P} \) if the sets \( \{(\ell, j), (\ell + 1, j)\} \) are edges of cells of \( \mathcal{P} \) for all \( \ell = i, \ldots, k - 1 \). In addition, if \( \{(i - 1, j), (i, j)\} \) and \( \{(k, j), (k + 1, j)\} \) do not belong to \( E(\mathcal{P}) \), then \([a, b]\) is called a \textit{maximal} horizontal edge interval of \( \mathcal{P} \). We define similarly a \textit{vertical edge interval} and a \textit{maximal} vertical edge interval.

Following [21], we recall the definition of a \textit{zig-zag walk} of \( \mathcal{P} \). A zig-zag walk of \( \mathcal{P} \) is a sequence \( W : I_1, \ldots, I_\ell \) of distinct inner intervals of \( \mathcal{P} \) where, for all \( i = 1, \ldots, \ell \), the interval \( I_i \) has either diagonal corners \( v_i, z_i \) and anti-diagonal corners \( u_i, v_{i+1} \) or anti-diagonal corners \( v_i, z_i \) and diagonal corners \( u_i, v_{i+1} \), such that:

1. \( I_1 \cap I_\ell = \{v_1 = v_{\ell+1}\} \) and \( I_i \cap I_{i+1} = \{v_{i+1}\} \), for all \( i = 1, \ldots, \ell - 1 \);
2. \( v_i \) and \( v_{i+1} \) are on the same edge interval of \( \mathcal{P} \), for all \( i = 1, \ldots, \ell \);
3. for all \( i, j \in \{1, \ldots, \ell\} \) with \( i \neq j \), there exists no inner interval \( J \) of \( \mathcal{P} \) such that \( z_i, z_j \) belong to \( V(J) \).

In according to [7], we recall the definition of a \textit{closed path polyomino}, and the configuration of cells characterizing its primality. We say that a polyomino \( \mathcal{P} \) is a \textit{closed path} if it is a sequence of cells \( A_1, \ldots, A_n, A_{n+1}, n > 5 \), such that:

1. \( A_1 = A_{n+1} \);
2. \( A_i \cap A_{i+1} \) is a common edge, for all \( i = 1, \ldots, n \);
3. \( A_i \neq A_j \), for all \( i \neq j \) and \( i, j \in \{1, \ldots, n\} \);
4. For all \( i \in \{1, \ldots, n\} \) and for all \( j \notin \{i - 2, i - 1, i, i + 1, i + 2\} \) then \( V(A_i) \cap V(A_j) = \emptyset \), where \( A_{-1} = A_{n-1}, A_0 = A_n, A_{n+1} = A_1 \) and \( A_{n+2} = A_2 \).

![Figure 2. An example of a closed path.](image)

A path of five cells \( C_1, C_2, C_3, C_4, C_5 \) of \( \mathcal{P} \) is called an \textit{L-configuration} if the two sequences \( C_1, C_2, C_3 \) and \( C_3, C_4, C_5 \) go in two orthogonal directions. A set \( \mathcal{B} = \{B_i\}_{i=1, \ldots, n} \) of maximal horizontal (or vertical) blocks of rank at least two, with \( V(B_i) \cap V(B_{i+1}) = \{a_i, b_i\} \) and \( a_i \neq b_i \) for all \( i = 1, \ldots, n - 1 \), is called a \textit{ladder of} \( n \) \textit{steps} if \( [a_i, b_i] \) is not on the same edge interval of \([a_{i+1}, b_{i+1}]\) for all \( i = 1, \ldots, n - 2 \). For instance, in Figure 3 there is a closed path having an L-configuration and a ladder of three steps. We recall that a closed path has no zig-zag walks if and only if it contains an L-configuration or a ladder of at least three steps (see [2]).
Let \( P \) be a polyomino. We set \( S = K[x_v | v \in V(P)] \), where \( K \) is a field. If \([a, b]\) is an inner interval of \( P \), with \( a, b \) and \( c, d \) respectively diagonal and anti-diagonal corners, then the binomial \( x_a x_b - x_c x_d \) is called an inner 2-minor of \( P \). We define \( I_P \) as the ideal in \( S \) generated by all the inner 2-minors of \( P \) and we call it the polyomino ideal of \( P \). We set also \( K[P] = S/I_P \), which is the coordinate ring of \( P \). Eventually, we recall that if \( P \) is a closed path then having no zig-zag walks, equivalently \( P \) contains an L-configuration or a ladder of at least three steps, is a necessary and sufficient condition in order to \( K[P] \) is a domain by \([7], \text{Theorem 6.2}\).

3. Preliminary results

Let \( P \) be a non-empty collection of cells with \( V(P) = \{a_1, \ldots, a_n\} \). We define a \( P \)-order to be a total order on the set \( V(P) \). Observe that the monomial orderings defined in \([22] \) and \([24] \) are induced by specific \( P \)-orders, in particular we recall the monomial order \( <^1 \) introduced in \([24] \), which will be useful for this paper: we say the \( a <^1 b \) if and only if, for \( a = (i, j) \) and \( b = (k, l) \), \( i < k \), or \( i = k \) and \( j < l \).

If \( <^P \) is a \( P \)-order, we denote by \( <^P_{\text{lex}} \) the lexicographic order induced by \( <^P \) on \( S = K[x_v | v \in V(P)] \), that is the lexicographic order induced by the total order on the variables defined in the following way: \( x_{a_i} <^P_{\text{lex}} x_{a_j} \) if and only if \( a_i <^P a_j \) for \( i, j \in \{1, \ldots, n\} \). If \( f \in S \), we denote by \( \text{in}(f) \) the leading term of \( f \) with respect to \( <^P_{\text{lex}} \).

Let \( f, g \in I_P \), we denote by \( S(f, g) \) the \( S \)-polynomial of \( f, g \) with respect to \( <^P_{\text{lex}} \). Let \( G \) be the set of all inner 2-minors of \( P \) (that is the set of generators of \( I_P \)). We want to study some conditions on \( <^P \) in order to \( S(f, g) \) reduces to 0 modulo \( G \).

First of all observe that if \([a, b]\) and \([\alpha, \beta]\) are two inner intervals and \([a, b] \cap [\alpha, \beta] \) does not contain any corner of \([a, b]\) and \([\alpha, \beta]\), then \( \gcd(\text{in}(f_{a, b}), \text{in}(f_{a, \beta})) = 1 \) so \( S(f_{a, b}, f_{a, \beta}) \) reduces to 0. So it suffices to study the remaining cases.

In the remainder of this section the inner intervals \([a, b]\) and \([\alpha, \beta]\) have respectively \( c, d \) and \( \gamma, \delta \) as anti-diagonal corners, as in figure 4.

\begin{figure}[h]
\centering
\includegraphics[width=0.3\textwidth]{figure4.png}
\caption{Figure 4}
\end{figure}
In the following lemmas we examine all possible cases in which \(|\{a, b, c, d\} \cap \{\alpha, \beta, \gamma, \delta\}| = 2\).

**Lemma 3.1.** Let \(P\) be a collection of cells and \([a, b]\) and \([\alpha, \beta]\) be two inner intervals such that \(|\{a, b, c, d\} \cap \{\alpha, \beta, \gamma, \delta\}| = 2\). Then \(S(f_{a,b}, f_{\alpha,\beta})\) reduces to 0 modulo \(G\) with respect to \(p_{\text{lex}}\) for any \(P\)-order.

**Proof.** We may assume that \(\alpha = d\) and \(\gamma = b\), because the other cases can be discussed similarly. If \(\gcd(\text{in}(f_{a,b}), \text{in}(f_{\alpha,\beta})) = 1\), then there is nothing to prove, so we have to distinguish the following cases.

- **First case:** \(\text{in}(f_{a,b}) = x_a x_b\) and \(\text{in}(f_{\alpha,\beta}) = -x_b x_\delta\). In such a case \(S(f_{a,b}, f_{\alpha,\beta}) = -x_\delta x_d x_c + x_a x_\beta x_d = x_d(x_a x_\beta - x_c x_\delta)\). Observe that \(f_{\alpha,\beta} \in I_P\). If \(\text{in}(S(f_{a,b}, f_{\alpha,\beta})) = x_a x_\beta x_d\) then \(\text{in}(f_{\alpha,\beta}) = x_a x_\beta\), so \(S(f_{a,b}, f_{\alpha,\beta})\) reduces to 0. If \(\text{in}(S(f_{a,b}, f_{\alpha,\beta})) = -x_\delta x_d x_c\) then \(\text{in}(f_{\alpha,\beta}) = -x_c x_\delta\), so \(S(f_{a,b}, f_{\alpha,\beta})\) reduces to 0 also in this case.

- **Second case:** \(\text{in}(f_{a,b}) = -x_d x_c\) and \(\text{in}(f_{\alpha,\beta}) = x_\beta x_d\). In such a case \(S(f_{a,b}, f_{\alpha,\beta}) = -x_\beta x_a x_b + x_c x_b x_\delta = -x_b(x_a x_\beta - x_c x_\delta)\). As in the first case, if \(\text{in}(S(f_{a,b}, f_{\alpha,\beta})) = -x_\beta x_a x_b\) then \(\text{in}(f_{\alpha,\beta}) = x_a x_\beta\), so \(S(f_{a,b}, f_{\alpha,\beta})\) reduces to 0. If \(\text{in}(S(f_{a,b}, f_{\alpha,\beta})) = +x_c x_b x_\delta\) then \(\text{in}(f_{\alpha,\beta}) = -x_c x_\delta\), so \(S(f_{a,b}, f_{\alpha,\beta})\) reduces to 0 also in this case.

**Lemma 3.2.** Let \(P\) be a collection of cells and \([a, b]\) and \([\alpha, \beta]\) be two inner intervals with \(\beta = b\) and \(\gamma \in ]c, b[\) (see Figure 5(A)). Let \(h\) be the vertex such that \([h, b]\) is the inner interval having \(d, \gamma\) as anti-diagonal corner and \(r\) be the vertex such that \([r, h]\) is the interval having \(a, \alpha\) as anti-diagonal corner. Let \(p\) be a \(P\)-order on \(V(P)\) and suppose that \(\gcd(\text{in}(f_{a,b}), \text{in}(f_{\alpha,\beta})) \neq 1\). Then \(S(f_{a,b}, f_{\alpha,\beta})\) reduces to 0 modulo \(G\) with respect to \(p_{\text{lex}}\) if and only if one of the following conditions occurs:

1. \(x_a x_\gamma x_\delta < p_{\text{lex}} x_a x_c x_d\) and in addition \(h, \delta < p \alpha\) or \(h, \delta < p d\);
2. \(x_a x_\gamma x_\delta < p_{\text{lex}} x_a x_c x_d\), \(\{r, h, a, \alpha\}\) is the set of vertices of an inner interval of \(P\) and in addition \(r, \gamma < p \alpha\) or \(r, \gamma < p c\);
3. \(x_a x_c x_d < p_{\text{lex}} x_a x_\gamma x_\delta\) and in addition \(h, c < p a\) or \(h, c < p \gamma\);
4. \(x_a x_c x_d < p_{\text{lex}} x_a x_\gamma x_\delta\), \(\{r, h, a, \alpha\}\) is the set of vertices of an inner interval of \(P\) and in addition \(r, d < p a\) or \(r, d < p \delta\).

The same characterization holds for \(S(f_{\gamma,d}, f_{\gamma,\delta})\), \(S(f_{b,a}, f_{b,\alpha})\) and \(S(f_{d,c}, f_{d,\gamma})\) considering all the rotations of the described configuration (see respectively Figure 5(B), Figure 5(C) and Figure 5(D)).

**Proof.** Observe that \(\gcd(\text{in}(f_{a,b}), \text{in}(f_{\alpha,\beta})) \neq 1\) if and only if \(\text{in}(f_{a,b}) = x_a x_b\) and \(\text{in}(f_{\alpha,\beta}) = x_\alpha x_\beta\).

Since \(S(f_{a,b}, f_{\alpha,\beta}) = -x_a x_c x_d + x_a x_\gamma x_\delta\), we have two possibilities:
1) \( (S(f_{a,b}, f_{a,\beta})) = -x_a x_c x_d \), in particular \( x_a x_{\gamma} x_d <_P x_c x_d \). Observe that, since \( x_c x_d \) is not the leading term of \( f_{a,b} \), in such a case the only possibilities for the reduction of \( S(f_{a,b}, f_{a,\beta}) \) is through a first division by \( f_{a,d} \) if \( \in(f_{a,d}) = x_a x_d \) or by \( f_{r,\gamma} \) if \( \in(f_{r,\gamma}) = -x_a x_c \). The first case is possible if and only if \( (h, \delta < P \alpha) \lor (h, \delta < P d) \), and in such case indeed, after a little computation, \( S(f_{a,b}, f_{a,\beta}) \) reduces by \( f_{a,d} \) to \( x_\delta (x_a x_r - x_c x_h) = x_\delta f_{a,\gamma} \) and this one reduces to 0. For this case we obtain the condition (1) of this lemma. The second case is possible if and only if the condition (2) is satisfied, that is if \([r, h] \) is an inner interval of \( P \) and \( (r, \gamma < P \alpha) \lor (r, \gamma < P c) \). In such a case in fact \( S(f_{a,b}, f_{a,\beta}) \) reduces through \( f_{r, \gamma} \) to \( x_\gamma (x_a x_\delta - x_r x_d) = x_\gamma f_{a,\delta} \) and this one reduces to 0.

2) \( (S(f_{a,b}, f_{a,\beta})) = x_a x_\gamma x_\delta \), in particular \( x_a x_c x_d <_P x_a x_\gamma x_\delta \). We can argue as in the first part of this proof observing that, since \( x_a x_\delta \) is not the leading term of \( f_{a,\beta} \), in such a case the only possibilities for the reduction of \( S(f_{a,b}, f_{a,\beta}) \) is through \( f_{a,\gamma} \) if \( \in(f_{a,\gamma}) = x_a x_\gamma \) or by \( f_{r,d} \) if \( \in(f_{r,d}) = -x_a x_\delta \). The first case is possible if and only if \( (h, \gamma < P a) \lor (h, \gamma < P \gamma) \) , that is the condition (3) holds, while the second is possible if and only if \([r, h] \) is an inner interval of \( P \) and \( (r, d < P a) \lor (r, d < P \delta) \), that is the condition (4) is satisfied. In both cases \( S(f_{a,b}, f_{a,\beta}) \) reduces to 0.

The last statement of this lemma is verified since the only effects of the rotation of a configuration are the different notations for the same intervals (for instance \([a, b] \) becomes \([c, d] \), \([b, a] \) or \([d, c] \)) or the change of the sign of the binomials in the generators of \( I_P \).

The following four lemmas can be proved by the same arguments of Lemma 3.2, so we omit their proofs.

**Lemma 3.3.** Let \( P \) be a collection of cells and \([a, b] \) and \([\alpha, \beta] \) be two inner intervals with \( \gamma = b \) and \( \alpha \in \{d, b\} \) (see Figure 6(A)). Let \( h \) be the vertex such that \([h, b] \) is the inner interval having \( c, \alpha \) as anti-diagonal corner and \( r \) be the vertex such that \( r, \alpha \) are the anti-diagonal corners of the interval \([d, \delta] \). Let \( <_P \) be a \( P \)-order on \( V(P) \) and suppose that \( \text{gcd}(\in(f_{a,b}), \in(f_{a,\beta})) \neq 1 \). Then \( S(f_{a,b}, f_{a,\beta}) \) reduces to 0 modulo \( G \) with respect to \( <_P \) if and only if one of the following conditions occurs:

1. \( x_a x_\alpha x_\beta <_P x_\delta x_c x_d \) and in addition \( h, \beta <_P c \) or \( h, \beta <_P \delta \);
2. \( x_a x_\alpha x_\beta <_P x_\delta x_c x_d \), \( \{d, \delta, \alpha, r\} \) is the set of vertices of an inner interval of \( P \) and in addition \( r, \alpha <_P \delta \) or \( r, \alpha <_P d \);
3. \( x_\delta x_c x_d <_P x_a x_\alpha x_\beta \) and in addition \( h, d <_P a \) or \( h, d <_P \alpha \);
4. \( x_\delta x_c x_d <_P x_a x_\alpha x_\beta \), \( \{d, \delta, \alpha, r\} \) is the set of vertices of an inner interval of \( P \) and in addition \( r, c <_P a \) or \( r, c <_P \beta \).

The same characterization holds for \( S(f_{c,d}, f_{\gamma, \delta}) \), \( S(f_{b,a}, f_{\beta, \alpha}) \) and \( S(f_{d,c}, f_{\delta, \gamma}) \) considering all the rotations of the described configuration (see respectively Figure 6(B), Figure 6(C) and Figure 6(D)).
Lemma 3.4. Let $\mathcal{P}$ be a collection of cells and $[a, b]$ and $[\alpha, \beta]$ be two inner intervals with $\alpha = c$ and $b \in]a, \delta[$ (see Figure 7(A)). Let $h$ be the vertex such that $h, \delta$ are the diagonal corners of the inner interval $[b, \beta]$ and $r$ be the vertex such that $r, b$ are the anti-diagonal corners of the interval $[d, \delta]$. Let $<^p$ be a $P$-order on $V(\mathcal{P})$ and suppose that $\gcd(\text{in}(a, b), \text{in}(a, \beta)) \neq 1$. Then $S(f, a, b, \beta)$ reduces to 0 modulo $G$ with respect to $<^p_{\text{lex}}$ if and only if one of the following conditions occurs:

1. $x_d x_\delta x_\gamma <^p_{\text{lex}} x_\beta x_\alpha x_b$ and in addiction $h, \delta <^p b$ or $h, \delta <^p \beta$;
2. $x_d x_\delta x_\gamma <^p_{\text{lex}} x_\beta x_\alpha x_b$, $\{d, \delta, b, r\}$ is the set of vertices of an inner interval of $\mathcal{P}$ and in addiction $r, \gamma <^p \alpha$ or $r, \gamma <^p \beta$;
3. $x_\beta x_\alpha x_b <^p_{\text{lex}} x_\delta x_\gamma x_\alpha$ and in addiction $h, a <^p d$ or $h, a <^p \gamma$;
4. $x_\beta x_\alpha x_b <^p_{\text{lex}} x_\delta x_\gamma x_\alpha$, $\{d, \delta, b, r\}$ is the set of vertices of an inner interval of $\mathcal{P}$ and in addiction $b, \gamma <^p d$ or $r, b <^p \delta$.

The same characterization holds for $S(f, c, d, f, \gamma, \delta)$, $S(f, b, a, f, \beta, \alpha)$ and $S(f, d, c, f, \delta, \gamma)$ considering all the rotations of the described configuration (see respectively Figure 7(B), Figure 7(C) and Figure 7(D)).

Lemma 3.5. Let $\mathcal{P}$ be a collection of cells and $[a, b]$ and $[\alpha, \beta]$ be two inner intervals with $\gamma = c$ and $\delta \in ]a, b[$ (see Figure 8(A)). Let $[h, r]$ be the inner interval having $d, \delta$ as anti-diagonal corners. Let $<^p$ be a $P$-order on $V(\mathcal{P})$ and suppose that $\gcd(\text{in}(a, b), \text{in}(a, \beta)) \neq 1$. Then $S(f, a, b, \alpha, \beta)$ reduces to 0 modulo $G$ with respect to $<^p_{\text{lex}}$ if and only if one of the following conditions occurs:

1. $x_d x_\alpha x_\beta <^p_{\text{lex}} x_d x_\alpha x_b$ and in addiction $h, \alpha <^p a$ or $h, \alpha <^p \delta$;
2. $x_d x_\alpha x_\beta <^p_{\text{lex}} x_d x_\alpha x_b$ and in addiction $r, \beta <^p \delta$ or $r, \beta <^p b$;
3. $x_\delta x_\alpha x_b <^p_{\text{lex}} x_\delta x_\alpha x_\beta$ and in addiction $r, a <^p \alpha$ or $r, a <^p d$;
4. $x_\delta x_\alpha x_b <^p_{\text{lex}} x_\delta x_\alpha x_\beta$ and in addition $h, b <^p d$ or $h, b <^p \beta$.

The same characterization holds for $S(f, c, d, f, \gamma, \delta)$, $S(f, b, a, f, \beta, \alpha)$ and $S(f, d, c, f, \delta, \gamma)$ considering all the rotations of the described configuration (see respectively Figure 8(B), Figure 8(C) and Figure 8(D)).

Lemma 3.6. Let $\mathcal{P}$ be a collection of cells and $[a, b]$ and $[\alpha, \beta]$ be two inner intervals with $\alpha = b$ and $\beta \notin ]a, b[$ (see Figure 9(A)). Let $h, r$ be the anti-diagonal corners, different to $b$, respectively of the intervals $[d, \delta]$ and $[c, \gamma]$. Let $<^p$ be a $P$-order on $V(\mathcal{P})$ and suppose that $\gcd(\text{in}(a, b), \text{in}(a, \beta)) \neq 1$. Then $S(f, a, b, \alpha, \beta)$ reduces to 0 modulo $G$ with respect to $<^p_{\text{lex}}$ if and only if one of the following conditions occurs:

1. $x_a x_\gamma x_\delta <^p_{\text{lex}} x_\beta x_\gamma x_c$, $\{d, \delta, b, h\}$ is the set of vertices of an inner interval of $\mathcal{P}$ and in addiction $h, \gamma <^p \beta$ or $h, \gamma <^p d$;
Figure 8

(2) $x_αx_γx_δ <^P x_βx_δx_ε$, $\{c,γ,b,r\}$ is the set of vertices of an inner interval of $P$ and in addition $r, δ <^P β$ or $r, δ <^P c$;

(3) $x_βx_δx_ε <^P x_αx_γx_δ$, $\{c,γ,b,r\}$ is the set of vertices of an inner interval of $P$ and in addition $r, d <^P a$ or $r, d <^P γ$;

(4) $x_βx_δx_ε <^P x_αx_γx_δ$, $\{d,δ,b,h\}$ is the set of vertices of an inner interval of $P$ and in addition $c, h <^P a$ or $c, h <^P δ$.

The same characterization holds for $S(f_αd, f_γδ)$, $S(f_βa, f_δa)$ and $S(f_δc, f_δγ)$ considering all the rotations of the described configuration (see respectively Figure 9(B), Figure 9(C) and Figure 9(D)).

Figure 9

4. Gröbner basis of the polyomino ideal of a closed path.

Let $P$ be a polyomino. In this section we examine four special configurations of cells of a polyomino, that permit us when $P$ is a closed path to provide some particular subsets $Y \subset V(P)$ for which we can define the following $P$-order.

Definition 4.1. Let $Y \subset V(P)$. We define the $P$-order $<^Y$ in the following way:

$$a <^Y b \iff \begin{cases} a \notin Y \text{ and } b \in Y \\ a, b \notin Y \text{ and } a <^1 b \\ a, b \in Y \text{ and } a <^1 b \end{cases}$$

for $a, b \in V(P)$.

We call an $W$-pentomino with middle cell $A$ a collection of cells of $P$ consisting of an horizontal block $B_1 = [A_1, B_1]$ of rank two, a vertical block $B_2 = [A_2, B_2]$ of rank two and a cell $A$ not
belonging to $B_1 \cup B_2$, such that $V(B_1) \cap V(B_2) = \{w\}$ and where $w$ is the lower right corner of $A$. Moreover, if $W$ is a W-pentomino with middle cell $A$, we denote with $x_W$ the left upper corner of $A$, with $y_W$ the lower right corner of $B_1$ and with $z_W$ the lower right corner of $A_2$. See Figure 10.

![Figure 10. W-pentomino](image)

We call an **LD-horizontal (vertical) skew tetromino** a collection of cells of $P$ consisting of two horizontal (vertical) blocks of rank two $B_1 = [A_1, B_1]$ and $B_2 = [A_2, B_2]$ such that $V(B_1) \cap V(A_2) = \{w_1, w_2\}$ and $w_1, w_2$ are right and left upper (lower and upper right) corners of $B_1$. Moreover, if $C$ is an LD-horizontal (vertical) skew tetromino, we denote with $x_C, y_C$ the left and right upper corners of $A_2$ (the upper and lower left corners of $B_1$), and with $a_C, b_C$ the left and right lower corners of $B_1$ (the upper and lower right corners of $A_2$). See Figure 11.

![Figure 11. LD-horizontal skew tetromino (A) and LD-vertical skew tetromino (B)](image)

We call an **LD-horizontal (vertical) skew hexomino** a collection of cells of $P$ consisting of two horizontal (vertical) blocks of rank three $B_1 = [A_1, B_1]$ and $B_2 = [A_2, B_2]$ such that $V(B_1) \cap V(A_2) = \{w_1, w_2\}$ and $w_1, w_2$ are respectively the right and left upper (lower and upper right) corners of $B_1$. Moreover, if $D$ is an LD-horizontal (vertical) skew tetromino, we denote by $x_D, y_D$ the left and right upper corners of $A_2$ (the upper and lower left corners of $B_1$), and by $a_D, b_D$ the left and right lower corners of $B_1$ (the upper and lower right corners of $A_2$). See Figure 12.

![Figure 12](image)

We call an **RW-heptomino with middle cell $A$** a collection of cells of $P$ consisting of an horizontal block $B_1 = [A_1, B_1]$ of rank three, a vertical block $B_2 = [A_2, B_2]$ of rank three and a cell $A$ not belonging to $B_1 \cup B_2$, such that $V(B_1) \cap V(B_2) = \{w\}$ and where $w$ is the upper left corner of $A$. Moreover, if $T$ is an RW-pentomino with middle cell $A$, we denote by $x_T$ the right lower corner of $A$, with $y_T$ the left upper corner of $B_2$ and by $z_T$ the left upper corner of $A_1$. See Figure 13.

![Figure 13](image)

**Theorem 4.2.** Let $P$ be a closed path polyomino not containing any W-pentomino. Let $R$ be the set of all LD-horizontal and vertical skew tetromino contained in $P$ and let $Y = \bigcup_{C \in R} \{x_C, y_C\}$. Then $G$ is the reduced Gröbner basis of $I_P$ with respect to the monomial order $<_{\text{lex}}$. 
Proof. Let \( f = x_p x_q - x_r x_s \) and \( g = x_u x_v - x_w x_z \) be the two binomials attached respectively to the inner intervals \([p, q]\) and \([u, v]\) of \( \mathcal{P} \). We prove that \( S(f, g) \) reduces to 0 modulo \( \mathcal{G} \) with respect to \( \leq_{\text{lex}} \), examining all possible cases on \( \{p, q, r, s\} \cap \{u, v, w, z\} \).

The case \( \{p, q, r, s\} \cap \{u, v, w, z\} = \emptyset \) is trivial. If \( |\{p, q, r, s\} \cap \{u, v, w, z\}| = 2 \), then the claim follows from Lemma 3.1. Assume that \( |\{p, q, r, s\} \cap \{u, v, w, z\}| = 1 \) and that \( \{p, q\} \) is not contained in \([u, v]\) or vice versa. Suppose that \( q = v \). For the structure of \( \mathcal{P} \) we may assume that \( s \in \{z, v\} \) and \( w \in \{r, q\} \), so there exists \( k \in \{1, \ldots, n\} \) such that \( A_k = \{p, q\} \cap \{u, v\} \). Let \( A_{k-1} \) be the cell of \( \mathcal{P}_{[p, q]} \) adjacent to \( A_k \). If \( A_{k-2} \) is at North of \( A_{k-1} \) then we have the conclusion from (1) of Lemma 3.2. If \( A_{k-2} \) is at West of \( A_{k-1} \) then the claim follows either by being \( \gcd(\text{in}(f), \text{in}(g)) = 1 \) or by applying (1) of Lemma 3.3 if \( \gcd(\text{in}(f), \text{in}(g)) \neq 1 \). The cases \( r = w, p = u \) and \( s = z \) can be proved similarly to the previous ones. Suppose that \( q = w \). We may assume that \( u \in \{s, q\} \), because the arguments are similar when \( s \in \{u, w\} \). Let \( A_k \) be the cell of \( \mathcal{P} \) having \( r, u \) as anti-diagonal corners and we denote by \( A_{k-1} \) and \( A_{k+1} \) respectively the cells of \( \mathcal{P}_{[p, q]} \) and \( \mathcal{P}_{[u, v]} \) adjacent to \( A_k \). If \( \{A_{k-2}, A_{k-1}, A_k, A_{k+1}\} \) is an LD-vertical skew tetromino or \( \{A_{k-2}, A_{k-1}, A_k, A_{k+1}, A_{k+2}\} \) is an \( L \)-configuration then \( \gcd(\text{in}(f), \text{in}(g)) = 1 \). If \( \{A_{k-1}, A_k, A_{k+1}, A_{k+2}\} \) is an LD-horizontal skew tetromino, then \( \gcd(\text{in}(f), \text{in}(g)) = x_w \) and applying (1) of Lemma 3.3 we have the desired conclusion. Similar arguments hold in the cases \( s = u, v = r \) and \( z = p \). Suppose \( q = u \) and let \( A_k \) and \( A_{k+2} \) be the cells of \( \mathcal{P} \) having respectively \( q \) as upper right and lower left corner. If \( \{A_{k-1}, A_k, A_{k+1}, A_{k+2}\} \) or \( \{A_k, A_{k+1}, A_{k+2}, A_{k+3}\} \) is an LD-vertical skew tetromino, then \( \gcd(\text{in}(f), \text{in}(g)) = 1 \). If \( \{A_{k-1}, A_k, A_{k+1}, A_{k+2}, A_{k+3}\} \) is an \( L \)-configuration, the claim follows either by \( \gcd(\text{in}(f), \text{in}(g)) = 1 \) or by applying Lemma 3.3 if \( \gcd(\text{in}(f), \text{in}(g)) \neq 1 \). If \( \{A_{k-1}, A_k, A_{k+1}, A_{k+2}, A_{k+3}\} \) is not an \( L \)-configuration and does not contain an LD-vertical skew tetromino, then the only two possibilities

\[ \begin{align*}
A_1 & \quad B_1 \\
A_2 & \quad B_2
\end{align*} \]

**Figure 12.** LD-horizontal skew hexomino (A) and LD-vertical skew hexomino (B)

\[ \begin{align*}
B_2 & \quad A_1 \\
A_2 & \quad B_1
\end{align*} \]

**Figure 13.** RW-heptomino
are that either \( \{A_{k-1}, A_k, A_{k+1}, A_{k+2}\} \) or \( \{A_k, A_{k+1}, A_{k+2}, A_{k+3}\} \) is an LD-horizontal skew tetro-
mino. In both cases \( \gcd(\text{in}(f), \text{in}(g)) = 1 \), in particular in the first case the claim follows since \( \mathcal{P} \)
has not any \( W \)-pentomino, so \( A_{k+3} \) is at East of \( A_{k+2} \). The other cases \( s = w, z = r \) or \( v = p \) can
be proved by similar arguments. Finally, it is easy to see that in such cases \( \mathcal{G} \) is also the reduced
Gröbner basis of \( I_\mathcal{P} \).

In Figure 14(A) is shown an example of polyomino satisfying Theorem 4.2.

**Remark 4.3.** In [22] the authors introduced the class of \textit{thin} polyominoes, that consists of all
polyominoes not containing the configuration whose shape is a square made up of four cells. Such
class can be viewed as a generalization of closed paths. We observe that the conclusion of the
previous theorem does not hold in general for thin polyominoes, using the same monomial order.
In fact, we can consider the thin polyomino in Figure 14(B) and it is not difficult to show that the
S-polynomial associated to the marked intervals does not reduce to 0.

![Figure 14](image-url)

**Figure 14.** The highlighted points belong to \( Y \)

**Remark 4.4.** By the same arguments, the statement of Theorem 4.2 holds also for \( Y = \bigcup_{c} \{a_c, b_c\} \).

**Theorem 4.5.** Let \( \mathcal{P} \) be a closed path polyomino not containing any RW-heptomino. Let \( \mathcal{R}_1 \) be
the set of all LD-horizontal and vertical skew hexominoes contained in \( \mathcal{P} \) and let \( \mathcal{R}_2 \) be the set of
all \( W \)-pentominoes contained in \( \mathcal{P} \). Let \( Y = (\bigcup_{D} \{a_D, b_D\}) \cup (\bigcup_{W} \{x_W, y_W\}) \). Then \( \mathcal{G} \) is the
reduced Gröbner basis of \( I_\mathcal{P} \) with respect to the monomial order \( \prec_{\text{lex}} \).

**Proof.** Let \( f = x_p x_q - x_r x_s \) and \( g = x_u x_v - x_w x_z \) be the two binomials attached respectively to the
inner intervals \([p, q]\) and \([u, v]\) of \( \mathcal{P} \). We discuss the case \(|\{p, q, r, s\} \cap \{u, v, w, z\}| = 1\), where \([p, q]\)
is not contained in \([u, v]\) or vice versa. The cases \( q = v, r = w, p = u \) and \( s = z \), as well as \( q = w, s = u, v = r \) and \( z = p \), can be proved as in Theorem 4.2. Suppose \( q = u \) and let \( A_k \) and \( A_{k+2} \) be the
cells of \( \mathcal{P} \) having respectively \( q \) as upper right and lower left corner. If \( \{A_{k-1}, A_k, A_{k+1}, A_{k+2}, A_{k+3}\} \) is an \( L \)-configuration the claim follows either if \( \gcd(\text{in}(f), \text{in}(g)) = 1 \) or by applying Lemma 3.6 if
\( \gcd(\text{in}(f), \text{in}(g)) \neq 1 \). If \( \{A_{k-2}, A_{k-1}, A_k, A_{k+1}, A_{k+2}, A_{k+3}\} \) or \( \{A_{k-1}, A_k, A_{k+1}, A_{k+2}, A_{k+3}, A_{k+4}\} \) is an LD-horizontal or vertical skew hexomino, then \( \gcd(\text{in}(f), \text{in}(g)) = 1 \). Since there does not exist any RW-heptomino, the last possibilities consist in being \( A_{k-1}, A_k, A_{k+1} \) or \( A_{k+2} \) the middle cell of a \( W \)-pentomino. In all these cases we have the desired conclusion either if \( \gcd(\text{in}(f), \text{in}(g)) = 1 \) or by applying Lemma 3.6 if \( \gcd(\text{in}(f), \text{in}(g)) \neq 1 \). The cases \( s = w, z = r \) or \( v = p \) can be proved by similar arguments.

**Remark 4.6.** With the same arguments, the statement of Theorem 4.5 holds also considering
\( Y = (\bigcup_{D} \{a_D, b_D\}) \cup (\bigcup_{W} \{x_W, z_W\}) \).
Given a closed path polyomino $\mathcal{P}$ containing both W-pentominoes and RW-heptominoes, our aim is to find a $\mathcal{P}$-order $<^Y$, for a suitable set $Y \subset V(\mathcal{P})$, such that $\mathcal{G}$ is the Gröbner basis of $I_\mathcal{P}$ with respect to the monomial order $<^Y_{\text{lex}}$. We are going to define the set $Y$ by combining the previous construction and the highlighted points in Figures 10, 12, 13, and proceeding iteratively from the structure of the polyomino and the arrangement of the cells. In order to simplify notations and writings, we summarize in the table in Figure 15 the arrangements with highlighted points already introduced in the previous definitions that are useful to define the new set $Y$. We build up the set $Y$ using the algorithm explained below, for which it is also important to consider the configurations described in Figure 16 and Figure 17.

**Algorithm 4.7.** Let $\mathcal{P}$ be a closed path polyomino, whose sequence of cells is $A_1, A_2, \ldots, A_n, A_{n+1}$ (with $A_1 = A_{n+1}$) and containing both W-pentominoes and RW-heptominoes. Let $i, j \in \{1, 2, \ldots, n, n+1\}$ with $i < j$. We define $Y_{i,j} \subset V(\mathcal{P})$ be the set provided by the algorithmic scheme described below:

1. Start with $Y_{i,j} = \emptyset$.
2. Define $Q = \{q \in \{i, \ldots, j\} \mid A_q$ is the middle cell of a RW-heptomino$\}$.
3. If $Q \neq \emptyset$ define $q_1 = \min Q$, otherwise define $q_1 = j$.
4. FOR $k \in \{i, \ldots, q_1\}$ DO:
   (a) IF $A_k$ is the middle cell of a W-pentomino THEN $Y_{i,j} = Y_{i,j} \cup \{x_W, z_W\}$ with reference to II-A of Figure 15.
   (b) IF $A_k, A_{k+1}, \ldots, A_{k+6}$ is a sequence of cells of an LD-horizontal skew hexomino THEN $Y_{i,j} = Y_{i,j} \cup \{a_D, b_D\}$ with reference to III-A of Figure 15.
   (c) IF $A_k, A_{k+1}, \ldots, A_{k+6}$ is a sequence of cells of an LD-vertical skew hexomino THEN $Y_{i,j} = Y_{i,j} \cup \{a_D, b_D\}$ with reference to IV-A of Figure 15.
5. Define $R = \{r \in \{q_1 + 1, \ldots, j\} \mid A_r$ is the middle cell of a W-pentomino$\}$.
6. If $R \neq \emptyset$ define $r_1 = \min R$, otherwise define $r_1 = j$.
7. Define $Q = q_1$ and $R = r_1$.
8. Consider the RW-heptomino with middle cell $A_Q$ and let $M = \max\{m \in \{i, \ldots, Q\} \mid A_m \cap Y_{i,j} \neq \emptyset\}$. 

![Figure 15](image-url)
(9) FOR \( k \in \{Q, \ldots, R\} \) DO:

(a) IF \( A_k \) is the middle cell of an RW-heptomino THEN

- IF \( A_M \) and \( A_Q \) do not occur as in the configurations of Figure 16
  THEN \( Y_{i,j} = Y_{i,j} \cup \{x_T, y_T\} \) with reference to I-B of Figure 15
  ELSE \( Y_{i,j} = Y_{i,j} \cup \{x_T, z_T\} \) with reference to II-B of Figure 15.

(b) IF \( A_k, A_{k+1}, \ldots, A_{k+6} \) is a sequence of cells of an LD-horizontal skew hexomino THEN

- \( Y_{i,j} = Y_{i,j} \cup \{x_D, y_D\} \) with reference to III-B of Figure 15.

(c) IF \( A_k, A_{k+1}, \ldots, A_{k+6} \) is a sequence of cells of an LD-vertical skew hexomino THEN

- \( Y_{i,j} = Y_{i,j} \cup \{x_D, y_D\} \) with reference to IV-B of Figure 15.

(d) IF \( R = j \) THEN RETURN \( Y_{i,j} \).

(10) Define \( Q = \{q \in \{r_1 + 1, \ldots, j\} \mid A_q \) is the middle cell of a RW-heptomino\}.

(11) If \( Q \neq \emptyset \) define \( q_2 = \min Q \), otherwise define \( q_2 = j \).

(12) Define \( R = r_1 \) and \( Q = q_2 \).

(13) Consider the W-pentomino with middle cell \( A_R \) and let \( M = \max\{m \in \{i, \ldots, R\} \mid A_m \cap Y_{i,j} \neq \emptyset\} \).

(14) FOR \( k \in \{R, \ldots, Q\} \) DO:

(a) IF \( A_k \) is the middle cell of a W-pentomino THEN

- IF \( A_M \) and \( A_Q \) do not occur as in the configurations of Figure 17
  THEN \( Y_{i,j} = Y_{i,j} \cup \{x_W, y_W\} \) with reference to I-A of Figure 15
  ELSE \( Y_{i,j} = Y_{i,j} \cup \{x_W, z_W\} \) with reference to II-A of Figure 15.

(b) IF \( A_k, A_{k+1}, \ldots, A_{k+6} \) is a sequence of cells of an LD-horizontal skew hexomino THEN

- \( Y_{i,j} = Y_{i,j} \cup \{a_D, b_D\} \) with reference to III-A of Figure 15.
(c) IF $A_k, A_{k+1}, \ldots, A_{k+6}$ is a sequence of cells of an LD-vertical skew hexomino THEN $Y_{i,j} = Y_{i,j} \cup \{a_D, b_D\}$ with reference to IV-A of Figure 15.
(d) IF $Q = j$ THEN RETURN $Y_{i,j}$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{conflicting_configs.png}
\caption{Conflicting configurations with I-A}
\end{figure}

(15) \( \ell = 2 \).
(16) WHILE \( \ell > 1 \) DO
\begin{enumerate}
\item Define \( \mathcal{R} = \{ r \in \{ q_\ell + 1, \ldots, j \} \mid A_r \text{ is the middle cell of a W-pentomino} \} \).
\item If \( \mathcal{R} \neq \emptyset \) define \( r_\ell = \min \mathcal{R} \), otherwise define \( r_\ell = j \).
\item Define \( Q = q_\ell \) and \( R = r_\ell \).
\item Define \( M = \max \{ m \in \{ i, \ldots, Q \} \mid A_m \cap Y_{i,j} \neq \emptyset \} \).
\item Execute the instructions in (9).
\item Define \( Q = \{ q \in \{ r_\ell + 1, \ldots, j \} \mid A_q \text{ is the middle cell of a RW-heptomino} \} \).
\item If \( Q \neq \emptyset \) define \( q_{\ell+1} = \min Q \), otherwise define \( q_{\ell+1} = j \).
\item Define \( R = r_\ell \) and \( Q = q_{\ell+1} \).
\item Define \( M = \max \{ m \in \{ i, \ldots, R \} \mid A_m \cap Y_{i,j} \neq \emptyset \} \).
\item Execute the instructions in in (14).
\item \( \ell = \ell + 1 \).
\end{enumerate}
(17) END

Observe that, since $r_\ell < r_{\ell+1}$ and $q_\ell < q_{\ell+1}$ for all $\ell \in \mathbb{N}$ then there exists $\ell_\ell$ such that $r_{\ell_\ell} = j$ or $q_{\ell_\ell} = j$, so the procedure stops and the set $Y_{i,j}$ is returned.

\textbf{Definition 4.8.} Let $\mathcal{P}$ be a closed path polyomino containing both W-pentominoes and RW-heptominoes. Consider a W-pentomino $\mathcal{W}$ of $\mathcal{P}$ and suppose that $\mathcal{W}$ contains the cells $A_1$, $A_2$, $A_3$, $A_4$ and $A_5$, labelled bottom up as in Figure 18. We put $L = Y_{2,n+1}$. In Figure 19 we make in evidence, for instance, the points belonging to $L$. 

---

**Figure 17.** Conflicting configurations with I-A

**Figure 18.** W-pentomino

**Figure 19.** RW-heptomino
Theorem 4.9. Let $\mathcal{P}$ be a closed path. Suppose that $\mathcal{P}$ contains a $W$-pentomino and an $RW$-heptomino and let $L$ be the set given in Definition 4.8. Then $\mathcal{G}$ is the reduced Gröbner basis of $I_\mathcal{P}$ with respect to $<_{\text{lex}}^L$.

Proof. Let $f$ and $g$ be the two binomials attached respectively to the inner intervals $[p, q]$ and $[u, v]$ of $\mathcal{P}$. It suffices to show that $S(f, g)$ reduces to 0 modulo $\mathcal{G}$ in every case. Observe that the desired claim follows from Definitions 4.7 and 4.8, arguing as in Theorem 4.5. In fact, we always have that either $\gcd(\text{in}(f), \text{in}(g)) = 1$ or, if $\gcd(\text{in}(f), \text{in}(g)) \neq 1$, it is sufficient to apply the lemmas of Section 3. □

Theorem 4.10. Let $\mathcal{P}$ be a closed path polyomino having an $L$-configuration or a ladder of at least three steps, or equivalently having no zig-zag walks. Then $K[\mathcal{P}]$ is a normal Cohen-Macaulay domain.

Proof. From Theorem 4.9 we obtain that there exists a monomial order $\prec$ such that $\mathcal{G}$ is the Gröbner basis of $I_\mathcal{P}$ with respect to $\prec$, in particular $I_\mathcal{P}$ admits a squarefree initial ideal with respect to some monomial order. Since $\mathcal{P}$ has an $L$-configuration or a ladder of three steps, from [7] we have that $I_\mathcal{P}$ is a toric ideal. By [16, Corollary 4.26] we obtain that $K[\mathcal{P}]$ is normal and by [2, Theorem 6.3.5] we obtain that $K[\mathcal{P}]$ is Cohen-Macaulay. □
Remark 4.11. In [18] the authors proved that if \( \mathcal{P} \) is a balanced polyomino, equivalently \( \mathcal{P} \) is simple, then the universal Gröbner basis is squarefree. In general this fact does not hold for a non-simple polyomino. Consider the closed path \( \mathcal{P} \) in Figure 20. Let \( \{V_1, V_2, V_3, V_4\} \) and

\[
\{H_1, H_2, H_3, H_4\}
\]

be respectively the sets of the maximal vertical and horizontal edge intervals of \( \mathcal{P} \) such that \( r = (i, j) \in V_i \cap H_j \), and let \( \{v_1, v_2, v_3, v_4\} \) and \( \{h_1, h_2, h_3, h_4\} \) be the associated sets of the variables. Let \( w \) be another variable different from \( v_i \) and \( h_j \). We recall from [7] that \( I_\mathcal{P} = J_\mathcal{P} \), where \( J_\mathcal{P} \) is the kernel of \( \phi \), defined as

\[
\phi : K[x_{ij} : (i, j) \in V(\mathcal{P})] \longrightarrow K[\{v_i, h_j, w : i, j \in \{1, 2, 3, 4\}\}]
\]

\[
\phi(x_{ij}) = v_i h_j w^k
\]

where \( k = 0 \) if \( (i, j) \notin A \), and \( k = 1 \), if \( (i, j) \in A \).

Consider the binomial \( f = x_{11}x_{23}x_{32}x_{34}x_{41} - x_{14}x_{22}x_{31}x_{43} \) attached to the vertices in red and yellow. Observe that \( f \in I_\mathcal{P} \) because \( \phi(x_{11}x_{23}x_{32}x_{34}x_{41}) = \phi(x_{14}x_{22}x_{31}x_{43}) \). We show that \( f \) is primitive, that is there does not exist any binomial \( g = g^+ - g^- \) in \( I_\mathcal{P} \) with \( g \neq f \) such that \( g^+|x_{11}x_{23}x_{32}x_{34}x_{41} \) and \( g^-|x_{14}x_{22}x_{31}x_{43} \). Suppose by contradiction that there exists such a binomial. Observe that \( 2 < \deg(g) < 5 \), since \( f \neq g \) and all binomials of degree two satisfying the primitive conditions are not inner 2-minors. It is sufficient to prove that \( x_{11} \) (resp. \( x_{22} \)) cannot divide \( g^+ \) (resp. \( g^- \)). If that happens, then \( w \) divides \( \phi(g^+) \), which is equal to \( \phi(g^-) \), so \( x_{22} \) divides \( g^- \). Since \( g \in I_\mathcal{P} = J_\mathcal{P} \), in particular \( \phi(g^+) = \phi(g^-) \), we obtain that \( g^+ = x_{11}x_{23}x_{32}x_{34}x_{41} \) and \( g^- = x_{14}x_{22}x_{31}x_{43} \) from easy calculations. Hence \( f = g \), a contradiction. In conclusion we have that \( f \) is a primitive binomial of \( I_\mathcal{P} \). Since for a toric ideal the universal Gröbner basis coincides with the Graver basis (see [29]), the primitive binomials of \( I_\mathcal{P} \) form the universal Gröbner basis \( \mathcal{G} \) of \( I_\mathcal{P} \). Since \( f \) is a primitive binomial of \( I_\mathcal{P} \), it follows that \( \mathcal{G} \) is not squarefree. Anyway \( I_\mathcal{P} \) is a radical ideal which admits a squarefree initial ideal with a different monomial ordering, for instance with respect to \( ^\leq 1_{\text{lex}} \), since the set of generator of \( I_\mathcal{P} \) is the reduced Gröbner basis by [24, Theorem 4.1].

We conclude providing some questions which follow immediately from the results of this paper.

- We ask if the initial ideal of \( I_\mathcal{P} \), attached to a (weakly) closed path, with respect to the monomial orders \( ^\leq 1_{\text{lex}} \) and \( ^\leq 2_{\text{lex}} \) defined in [24] is squarefree.
- With reference to [8], we ask if also for all weakly closed path polyominoes there exist some monomial orders such that the set of the generators of the ideal is the reduced Gröbner basis.

Acknowledgements. We wish to thank Ayesha Asloob Qureshi for comments on an earlier version of this paper.
References

[1] C. Andrei, Algebraic Properties of the Coordinate Ring of a Convex Polyomino, The Electronic Journal of Combinatorics, v. 28, 1, 2021.
[2] W. Bruns, J. Herzog, Cohen–Macaulay Rings, Cambridge University Press, London, Cambridge, New York, 1993.
[3] W. Bruns, U. Vetter, Determinantal rings, Lecture Note in Mathematics 1327, 1988.
[4] A. Conca, Ladder Determinantal Rings, J. Pure Appl. Algebra, 98 119–134, 1995.
[5] A. Conca, Gorenstein ladder determinantal rings, J. London Math. Soc., 54, 453–474, 1996.
[6] A. Conca, J. Herzog, Ladder Determinantal Rings Have Rational Singularities, Adv. Math. 132, 120–147, 1997.
[7] C. Cisto, F. Navarra, Primality of closed path polyominoes, Journal of Algebra and its Applications, in press, 2021.
[8] C. Cisto, F. Navarra, R. Utano, Primality of weakly closed path polyominoes, arXiv:2106.02155
[9] V. Ene, J. Herzog, T. Hibi, Linearly related polyominoes, Journal of Algebraic Combinatorics, volume 41, 4, 2015.
[10] V. Ene, J. Herzog, A. A. Qureshi, F. Romeo, Regularity and Gorenstein property of the L-convex Polyominoes, The Electronic Journal of Combinatorics, v. 28, 1, 2021.
[11] V. Ene, A.A. Qureshi, Ideals generated by diagonal 2-minors, Communications in Algebra 41 (8), 2013.
[12] S. W. Golomb, Polyominoes, puzzles, patterns, problems, and packagings, Second edition, Princeton University press, 1994.
[13] E. Gorla, Mixed ladder determinantal varieties from two-sided ladders, J. Pure and Appl. Alg., 211:2: 433-444, 2007.
[14] J. Herzog, T. Hibi, Ideals generated by adjacent 2-minors, J. Commut. Algebra 4, 525–549, 2012.
[15] J. Herzog, T. Hibi, F. Hreinsdóttir, T. Kahle, J. Rauh, Binomial edge ideals and conditional independence statements, Adv. Appl. Math. 45, 317–333, 2010.
[16] J. Herzog, T. Hibi, H. Ohsugi, Binomial Ideals, Graduate Texts in Mathematics, v. 279, Springer, 2018.
[17] J. Herzog, S. S. Madani, The coordinate ring of a simple polyomino, Illinois J. Math., Vol. 58, 981–995, 2014.
[18] J. Herzog, A. A. Qureshi, A. Shikama, Gröbner basis of balanced polyominoes, Math. Nachr., Vol 288, no. 7, 775–783, 2015.
[19] T. Hibi, A. A. Qureshi, Nonsimple polyominoes and prime ideals, Illinois J. Math., Vol. 59, 391–398, 2015.
[20] S. Hosten, S. Sullivant, Ideals of adjacent minors, J. Algebra 277 , 615–642, 2004.
[21] C. Mascia, G. Rinaldo, F. Romeo, Primality of multiply connected polyominoes, Illinois J. Math., Vol. 64(3), 291–304, 2020.
[22] C. Mascia, G. Rinaldo, F. Romeo, Primality of polyomino ideals by quadratic Gröbner basis, arXiv:2005.08758 accepted in Mathematische Nachrichten.
[23] H. Ohsugi, T. Hibi, Special simplices and Gorenstein toric rings. J. Combinatorial Theory Series A 113, 2006.
[24] A.A. Qureshi, Ideals generated by 2-minors, collections of cells and stack polyominoes, J. Algebra 357, 279–303, 2012.
[25] A. A. Qureshi, T. Shibuta, A. Shikama, Simple polyominoes are prime, J. Commut. Algebra, 9, no. 3, 413–422, 2017.
[26] G. Rinaldo, and F. Romeo, Hilbert Series of simple thin polyominoes, arXiv:2006.08512 accepted in Journal of Algebraic Combinatorics.
[27] A. Shikama, Toric representation of algebras defined by certain nonsimple polyominoes, J. Commut. Algebra, Vol. 10, 265–274, 2018.
[28] A. Shikama, Toric rings of nonsimple polyominoes, International Journal of Algebra, volume 9, 2015.
[29] B. Sturmfels, R.R. Thomas, Variation of cost functions in integer programming, Math. Program. 77, 357–387, 1997.
