Coupled Two-Way Clustering Analysis of Gene Microarray Data

G. Getz, E. Levine and E. Domany
Department of Physics of Complex Systems, Weizmann Inst. of Science, Rehovot 76100, Israel

February 2, 2008

Abstract

We present a novel coupled two-way clustering approach to gene microarray data analysis. The main idea is to identify subsets of the genes and samples, such that when one of these is used to cluster the other, stable and significant partitions emerge. The search for such subsets is a computationally complex task: we present an algorithm, based on iterative clustering, which performs such a search. This analysis is especially suitable for gene microarray data, where the contributions of a variety of biological mechanisms to the gene expression levels are entangled in a large body of experimental data. The method was applied to two gene microarray data sets, on colon cancer and leukemia. By identifying relevant subsets of the data and focusing on them we were able to discover partitions and correlations that were masked and hidden when the full dataset was used in the analysis. Some of these partitions have clear biological interpretation; others can serve to identify possible directions for future research.

Introduction

In a typical DNA microarray experiment expression levels of thousands of genes are recorded over a few tens of different samples\footnote{By “sample” we refer to any kind of living matter that is being tested, e.g. different tissues, cell populations collected at different times\footnote{e.g.}}\footnote{etc.}. Hence this new technology gave rise to a new computational challenge: to make sense of such massive expression data\footnote{\cite{1, 2, 3}}\footnote{\cite{4, 5, 6, 7}}\footnote{\cite{8, 9}}. The sizes of the datasets and their complexity call for multi-variant clustering techniques\footnote{\cite{10, 11, 12}}\footnote{\cite{13, 14, 15}}, which are essential for extracting correlated patterns and the natural classes present in a set of N data points, or objects, represented as points in the multidimensional space defined by D measured features.

Gene microarray data are fairly special in that it makes good sense to perform clustering analysis in two ways\footnote{\cite{16, 11, 12}}\footnote{\cite{17, 18, 19}}. The first views the n_s samples as the $N = n_s$ objects to be clustered, with the n_g genes’ levels of expression in a particular sample playing the role of the features, representing that sample as a point in a $D = n_g$ dimensional space. The different phases of a cellular process emerge from grouping together samples with similar or related expression profiles. The other, not less natural way, looks for clusters of genes that act correlatively on the different samples. This view considers the $N = n_g$ genes as the objects to be clustered, each represented by its expression profile, as measured over all the samples, as a point in a $D = n_s$ dimensional space.

Whereas in previous work\footnote{\cite{1, 2, 10}}\footnote{\cite{16, 11, 12}} the samples and genes were clustered completely independently, we introduce and perform here a coupled two-way clustering (CTWC) analysis.

Our philosophy is to narrow down both the features that we use and the data points that are clustered. We believe that only a small subset of the genes participate in any cellular process of interest, which takes place only in a subset of the samples; by focusing on small subsets, we lower the noise induced by the other samples and genes. We look for pairs of a relatively small subset F of features (either genes or samples) and of objects O, (samples or genes), such that when the set O is clustered using the features F, stable and significant partitions are obtained. Finding such pairs of subsets is a rather complex mathematical problem; the CTWC method produces such pairs in an iterative clustering process.

CTWC can be performed with any clustering algorithm. We tested it in conjunction with several clustering methods, but present here only results that were obtained using the super-paramagnetic clustering algorithm (SPC)\footnote{\cite{20, 21, 22}}, which is especially suitable for gene microarray data analysis due to its robustness against noise and its “natural” ability to identify stable clusters.

The CTWC clustering scheme was applied to two gene microarray data sets, one from a colon cancer experiment\footnote{\cite{23}} and the other from a leukemia experiment\footnote{\cite{24}}. From both datasets we were able to “mine” new partitions and correlations that have not been obtained in an unsupervised fashion by previously used methods. Some of these new partitions have clear, well understood biological interpretation. We do not report here discoveries of biologically relevant, previously unknown results. The main point of our message is twofold: (a) we were able to identify biologically relevant partitions in an unsupervised way and (b) other, not less natural new partitions were also found.
which may contain new, important information and for which one should seek biological interpretation.

Coupled Two Way Clustering

Motivation and Algorithm

The results of every gene microarray experiment can be summarized as a set of numbers, which we organize in an *expression level matrix* A. A row of this matrix corresponds to a single gene, while each column represents a particular sample. Our normalization is described in detail later.

In a typical experiment simultaneous expression levels of thousands of genes are measured. Gene expression is influenced by the cell type, cell phase, external signals and more [13]. The expression level matrix is therefore the result of all these processes mixed together. Our goal is to separate and identify these processes and to extract as much information as possible about them. The main point is that each biological process on which we wish to focus may involve a relatively small subset of the genes that are present on a microarray; the large majority of the genes constitute a noisy background which may mask the effect of the small subset. The same may happen with respect to samples.

The CTWC procedure which we now describe is designed to identify subsets of genes and samples, such that a single process is the main contributor to the expression of the gene subset over the sample subset. We start with clustering the samples and the genes of the full data set and identify all stable clusters of either samples or genes. We scan these clusters one by one. The expression levels of the genes of each cluster are used as the feature set. We present here a brief selection of the possible ways one can utilize this kind of information. Implementations of the particular uses listed here are described in the Applications section.

Identifying genes that partition the samples according to a known classification. This particular application is supervised. Denote by C a known classification of the samples, say into two classes, c_1 and c_2. CTWC provides an easy way to rank the clusters of genes in V^g by their ability to separate the samples according to C. It should be noted that CTWC not only provides a list of candidate gene clusters one should check, but also a unique method of testing them.

First we evaluate for each cluster of samples v^s in V^s two scores, purity and efficiency, which reflect the extent to which assignment of the samples to v^s corresponds to the classification C. These figures of merit are defined (for c_1, say) as

$$\text{purity}(v^s|c_1) = \frac{|v^s \cap c_1|}{|v^s|}; \quad \text{efficiency}(v^s|c_1) = \frac{|v^s \cap c_1|}{|c_1|}.$$

Once a cluster v^s with high purity and efficiency has been found, we can use the saved pointers to read off the cluster (or clusters) of genes that were used as the feature set to yield v^s in our clustering procedure. Clustering, as opposed to classification, discovers only those partitions of the data which are, in some sense, “natural”. Hence by this method we identify the most natural group of genes that can be used to induce a desired classification.

Needless to say, one can also test a gene cluster v^g that was provided by CTWC using more standard statistics, such as the t-test [4] or the Jensen-Shannon distance [3]. Both compare the expression levels of the genes of v^g on the two groups of samples, c_1, c_2, partitioned according to C. Alternatively, one can also use the genes of v^g to train a classifier to separate the samples according to C [3], and use the success of the classifier to measure whether the expression levels of the genes in v^g do or do not correspond to the classification.

Discovering new partitions. Every cluster v^s of V^s is a subset of all the samples, the members of which have been linked to each other and separated from the other samples on the basis of the expression levels of some co-expressed subset of genes. It is reasonable therefore to argue that the cluster v^s has been formed for some biological or experimental reason.

As a first step to understand the reason for the formation of a robust cluster v^s, one should try to relate it to some previously known classification (for example, in terms of purity and efficiency). Clusters which cannot be
CTWC is a sensitive tool to identify subpartitions. Some of the sample clusters in V^s may have emerged from clustering a subset of the samples, say v_s^0. These clusters reflect a sub-partition of the samples which belong to v_s^0. When trying to cluster the full sample set, this sub-partition may be missed, since other samples, unrelated to v_s^0, are masking it.

CTWC reveals conditional correlations among genes. The CTWC method collects stable gene clusters in V^g. In many cases the same groups of genes may be added to V^g more than once. This is caused by the fact that some genes are co-regulated in all cells, and therefore are clustered together, no matter which subset of the samples is used as the feature set. For example, ribosomal proteins are expected to be clustered together for any set of samples which is not unreasonably small.

Some gene clusters, however, are different; they are co-regulated only in a specific subset of samples. We call this situation conditional correlation. The identity of the sample cluster which reveals the conditionally correlated gene cluster is clearly important to understand the biological process which makes these genes correlated.

Clustering method and similarity measures

Any reasonable choice of clustering method and definition of stable clusters can be used within the framework of CTWC. We describe here the benefits of the particular clustering algorithm and similarity measure we used, which we found to be particularly suitable to handle the special properties of gene microarray data.

SPC provides clear identification of stable clusters in a robust manner.

Super-paramagnetic clustering (SPC) is a hierarchical clustering method recently introduced by Blatt et al.\(^\text{[16]}\). The intuition that led to it is based on an analogy to the physics of inhomogeneous ferromagnets. Full details of the algorithm and the underlying philosophy are given elsewhere\(^\text{[11] [17]}\).

As for many hierarchical clustering algorithms, the input for SPC is a distance or similarity matrix d_{ij} between
the objects \(\mathcal{O} \), calculated according to the feature set \(\mathcal{F} \).

A tunable parameter \(T \) (‘temperature’) controls the resolution of the performed clustering. One starts at \(T = 0 \), with a single cluster that contains all the objects. As \(T \) increases, phase transitions take place, and this cluster breaks into several sub-clusters which reflect the structure of the data. Clusters keep breaking up as \(T \) is further increased, until at high enough values of \(T \) each object forms its own cluster.

Blatt et al showed that the SPC algorithm is robust against variation of its parameters, initialization and against noise in the data. The following advantages of SPC makes it especially suitable for gene microarray data analysis: (i) No prior knowledge of the structure of the data is assumed; (ii) SPC provides information about the different self organizing regimes of the data; (iii) The number of “macroscopic” clusters is an output of the algorithm; and (iv) Hierarchical organization of the data is reflected in the manner clusters merge or split when the control parameter (the ‘temperature’ \(T \)) is varied.

Moreover, the control parameter can be used to provide a natural measure for the stability of any particular cluster by the range of temperatures \(\Delta T \) at which the cluster remains unchanged. A stable cluster is expected to ‘survive’ throughout a large \(\Delta T \), one which constitutes a significant fraction of the range it takes the data to break into single point clusters. Inspection of the gene dendrograms of Fig. 4 reveals stable clusters and stable branches.

Normalization of the gene expression array

The Pearson correlation is commonly used as the similarity measure between genes or samples \([8, 2, 1]\). This measure conforms with the intuitive biological notion of what it means for two genes to be co-expressed; this statistic captures similarity of the “shapes” of two expression profiles, and ignores differences between the magnitudes of the two series of measurements \([8]\). The correlation coefficient is high between two genes that are affected by the same process, even if each has a different gain due to the process, over different background expression levels (caused by other processes). One problem of using the correlation coefficient is that its reliability depends on the absolute expression level of the compared genes; a positive correlation between two highly expressed genes is much more significant than the same value between two poorly expressed genes. This information is ignored in the clustering process.

However, we find that correlations do not always capture similarity between samples. For example, consider two samples taken at different stages of some process, with the expression levels of a family of genes much below average in one sample and much higher in the other. Even if the expression levels of the two samples over these genes are correlated, one would like to assign them into different clusters. Furthermore, the distance between the two samples should be affected by the statistical significance of their expression differences.

We therefore used the following normalization scheme. Denote by \(\mathcal{D} \) the matrix of the raw data. \(\mathcal{D} \) is a \(n_g \times n_s \) matrix, where \(n_g \) is the number of genes and \(n_s \) the number of samples.

We normalize our expression level matrix in two steps. First, divide each column by its mean: \(\mathcal{D}'_{ij} = \mathcal{D}_{ij} / \mathcal{D}_{j} \); \(\mathcal{D}_{j} = \frac{1}{n_g} \sum_{i=1}^{n_g} \mathcal{D}_{ij} \). We then normalize each row, such that its mean vanishes and its norm is one:

\[
\mathcal{A}_{ij} = \frac{\mathcal{D}'_{ij} - \bar{\mathcal{A}}_i}{\|\mathcal{D}'_i\|},
\]

where \(\mathcal{D}'_i = \frac{1}{n_s} \sum_{j=1}^{n_s} \mathcal{D}'_{ij} \) and \(\|\mathcal{D}'_i\|^2 = \sum_{j=1}^{n_s} (\mathcal{D}'_{ij} - \bar{\mathcal{A}}_i)^2 \).

For genes and samples we use the Euclidean distance as the dissimilarity measure. For two genes (rows of \(\mathcal{A} \)) the Euclidean distance is closely related to the Pearson correlation between them.

Applications

In order to show the strength of the CTWC algorithm, we apply it to two gene microarray experiment data sets. Here we report only the results which were obtained by CTWC, and could not be found using a straightforward clustering analysis. We highlight a small subset of the partitions that our method was able to extract from the data; these are the results for which we were able to find satisfactory biological explanation. We do not report here new discoveries of biologically relevant, previously unknown results. Rather, we claim to have discovered a method that is capable to mine such information out of the available data. New, relevant information may be contained in the new partitions which were found, to which we were not yet able to assign biological meaning. These new, uninterpreted results are reviewed briefly below; full lists of the clusters associated with these results, as well as their constituent samples or genes can be found at http://www.weizmann.ac.il/physics/complex/compphys.

Analysis of Leukemia samples

We analyzed data obtained by Golub et al \([3]\) from 72 samples collected from acute leukemia patients at the time of diagnosis. 47 cases were diagnosed as ALL (acute lymphoblastic leukemia) and the other 25 as AML (acute myeloid leukemia). RNA prepared from the bone marrow mononuclear cells was hybridized to high-density oligonucleotide microarrays, produced by Affymetrix, containing 6817 human genes.

After rescaling the data in the manner described by Golub et al., we selected only those genes whose minimal expression over all samples is greater than 20. As a result of this thresholding operation 1753 genes were left. The resulting array was then normalized as described previously, to give the \(1753 \times 72 \) expression level matrix \(\mathcal{A} \) (see Fig. 2).
We found that two iterations of the CTWC algorithm sufficed to converge to 49 stable gene clusters (LG1-49) and 35 stable sample clusters (LS1-35). We highlight here four of our findings, which demonstrate the power of the method to solve problems listed above.

Identifying genes that partition the samples according to a known classification. First we use the known ALL/AML classification of the samples to determine which gene clusters can distinguish between the two classes. We found only a single gene cluster (LG1) which enables stable separation into AML/ALL clusters. This well demonstrates the strength of CTWC, since it turned out that SPC was not able to clearly identify the AML/ALL separation using the full set of genes.

Discovering new partitions. Next, we search the stable sample clusters for unknown partitions of the samples. We focus our attention on sample clusters which were repeatedly found to be stable. One such cluster, denoted LS1, may be of interest; it includes 37 samples and was found to be stable when either a cluster of 27 genes (LG2) or another unrelated cluster of 36 genes (LG3) was used to provide the features. LG3 includes many genes that participate in the glycolysis pathway. Due to lack of additional information about the patients we cannot determine the biological origin of the formation of this sample cluster.

Identifying sub-partitions Using a 28 gene cluster (LG4) as features, we tried to cluster only the samples that were identified as AML patients (leaving out ALL samples). A stable cluster, LS2, of 16 samples was found (see Fig. 3(B)); it contains most of the samples (14/15) that were taken from patients that underwent treatment and whose treatment results were known (either success or failure). For none of the other AML patients was any information about treatment available in the data. Some of the 16 genes of this cluster, LG4, are ribosomal proteins and some others are related to cell growth. Apparently these genes can partition the AML patients according to whether they did or did not undergo treatment.

This result demonstrates a possible diagnostic use of the CTWC approach; one can identify different responses to treatment, and the groups of genes to be used as the appropriate probe.

We repeated the same procedure, but discarding AML and keeping only the ALL samples. We discovered that when any one of 5 different gene clusters (LG4-8) are used to provide the features, the ALL samples break into two stable clusters; LS5, which consists mostly of T-Cell ALL patients and LS4, that contains mostly B-Cell ALL patients (see Fig. 3(A)). When all the genes were used to cluster all samples, no such clear separation into T-ALL vs B-ALL was observed. One of the gene clusters used, LG5, with T/B separating ability, contains 29 genes, many of which are T-cell related. Another gene cluster, LG6, which also gave rise to T/B differentiation contains many HLA histocompatibility genes.

These results demonstrate how CTWC can be used to characterize different types of cancer. Imagine that the nature of the sub-classification of ALL had not been known. On the basis of our results we could predict that there are two distinct sub-classes of ALL; moreover, by the fact that many genes which induce separation into these sub-classes are either T-Cell related or HLA genes, one could suspect that these sub-classes were immunology related.

As a different possible use of our results, note that some of the genes in the T-Cell related gene cluster LG5 have no determined function, and may be candidates for new T-Cell genes. This assumption is supported both by the fact that these genes were found to be correlated with other T-Cell genes, and by the fact that they support the differentiation between T-ALL and B-ALL.

Analysis of Colon cancer data

The data set we consider next contains 40 colon tumor samples and 22 normal colon samples, analyzed with an Affymetrix oligonucleotide array complementary to more than 6500 human genes and ESTs. Following Alon et al., we chose to work only with the 2000 genes of greatest minimal expression over the samples. We normalized the data to get a 2000×62 expression level matrix A.

The CTWC algorithm was applied to this data set. 97 stable gene clusters (CG1-97) and 76 stable sample clusters (CS1-76) were obtained in two iterations.

Identifying genes that partition the samples according to a known classification. Again we search first for gene clusters which differentiate the samples according to the known normal/tumor classification. We found 4 gene clusters (CG1-4) that partition the samples this way. The genes of these clusters can be used if one wishes to construct a classifier for diagnosis purposes (see Fig. 3(A)).

Discovering new partitions. Five clusters of genes (CG2,CG4-CG7) generated very stable clusters of samples. Two of the five (CG2,CG4) differentiated tumor and normal; two other were less interesting since the clusters they generated contained most of the samples. The gene cluster CG5, however, gave rise to a clear partition of the samples into two clusters, of 39 and 23 tissues (see Fig. 3(B)). Checking with the experimentalists, we discovered that this separation coincides almost precisely with a change of the experimental protocol; 22 RNA samples were extracted using a poly-A detector (‘protocol-A’), and the other 40 samples were prepared by extracting total RNA from the cells (‘protocol-B’). Cursory examination did not yield any obvious common features among the 29 genes of the cluster CG5 that gave rise to this separation of the tissues.

Identifying conditionally correlated genes and sub-partitions Finally, we turn to identify conditionally correlated genes by comparing stable gene clusters formed when using different sample sets as features. We found

\[^2\text{A cluster is identified with a certain class if both its purity and efficiency exceeds 3/4.}\]

\[^3\text{U. Alon, K. Gish, D. Mack & A. Levine, Private communication.}\]
that most gene clusters form irrespectively of the samples that are used. We did find, however, 4 special groups of genes (CG8-11) that formed clear and stable clusters when using only the tumor samples as features, but were relatively uncorrelated, i.e. spread across the dendrogram of genes, when clustering was performed based on all the samples or only the normal ones.

One of these 4 clusters, (CG9), breaks up, at a higher resolution, into two sub-clusters, as shown in Fig. 4(B). One of these sub-clusters, (CG12), consists of 51 genes, all of which are related to cell growth (ribosomal proteins and elongation factors). The other sub-cluster, (CG13), contains 17 genes, many of which are related to intestinal epithelial cells (e.g. mucin, cathespin proteases). Interestingly, when clustering the genes on the basis of the either all samples or only the normal ones, both clusters (CG12 and CG13) appear as two uncorrelated distinct clusters, and their positions in the dendrogram are quite far from each other (Fig. 4).

The high correlation between growth genes and epithelial genes, observed in tumor tissue, suggests that it is the epithelial cells that are rapidly growing. In the normal samples there is smaller correlation, indicating that the expression of growth genes is not especially high in the normal epithelial cells. These results are consistent with the epithelial origin of colon tumor.

Two other groups of genes formed clusters only over the tumor cells. One (CG11, of 34 genes) is related to the immune system (HLA genes and immunoglobulin receptors). The second (CG10, of 62 genes) seems to be a concatenation of genes related to epithelial cells (endothelial growth factor and retinoic acid), and of muscle and nerve related genes. We could not find any common function for the genes in the fourth cluster (CG8).

Clustering the genes on the basis of their expression over only the normal samples revealed three gene clusters (CG14-16) which did not form when either the entire set of samples or the tumor tissues were used. Again, we could not find a clear common function for these genes. Each cluster contains genes that apparently take part in some process that takes place in normal cells, but is suppressed in tumor tissues.

Summary and discussion

We proposed a new method for analysis of gene microarray data. The main underlying idea of our method is to zero in on small subsets of the massive expression patterns obtained from thousands of genes for a large number of samples. A cellular process of interest may involve a relatively small subset of the genes in the dataset, and the process
Figure 3: The expression level matrix of the colon experiment is shown on the left. Rows correspond to different genes, ordered by clustering them using all the samples. The two boxes contain expression data of all samples for two gene clusters. (A) Using the genes of the first cluster, clear separation between tumor samples (white) and normal ones (black) is obtained. (B) Another separation of the samples is obtained using the second gene cluster. This separation is consistent with two distinct experimental protocols, denoted by short and long bars. The vertical axis is the “temperature” parameter T and on the horizontal axis the samples are ordered according to the dendrogram.

may take place only in a small number of samples. Hence when the full data set is analyzed, the “signal” of this process may be completely overwhelmed by the “noise” generated by the vast majority of unrelated data.

We are looking for a relatively small group of genes, which can be used as the features used to cluster a subset of the samples. Alternatively, we try to identify a subset of the samples that can be used in a similar way to identify genes with correlated expression levels. Identifying pairs of subsets of genes and samples, which produce significant stable clusters in this way, is a computationally complex task. We demonstrated that the Coupled Two-Way Clustering technique provides an efficient method to produce such subgroups.

The CTWC algorithm provides a broad list of stable gene and sample clusters, together with various connections among them. This information can be used to perform the most important tasks in microarray data analysis, such as identification of cellular processes and the conditions for their activation; establishing connections between gene groups and biological processes; and finding partitions of known classes of samples into sub-groups.

We reemphasize that CTWC is applicable with any reasonable choice of clustering algorithm, as long as it is capable of identifying stable clusters. In this work we reported results obtained using the super-paramagnetic clustering algorithm (SPC), which is especially suitable for gene microarray data analysis due to its robustness against noise which is inherent in such experiments.

The power of the CTWC method was demonstrated on data obtained in two gene microarray experiments. In the first experiment the gene expression profile in bone marrow and peripheral blood cells of 72 leukemia patients was measured using gene microarray technology. Our main results for this data were the following: (i) The connection between T-Cell related genes and the sub-classification of the ALL samples, into T and B-ALL, was revealed in an unsupervised fashion. (ii) We found a stable partition of the AML patients into two groups: those who were treated (with known results), and all others. This partition was revealed by a cluster of cell growth related genes. This observation may serve as a clue for a possible use of the CTWC method in understanding the effects of treatment.

The second experiment used gene microarray technology to probe the gene expression profile of 40 colon tumor samples and 22 normal colon tissues. Using CTWC we find a different, less obvious stable partition of the samples into two clusters. To find this partition, we had to use a subset of the genes. The new partition turned out to reflect two different experimental protocols. We deduce that the genes which gave rise to this partition of the samples are the ones which were sensitive to the change of protocol.

Another result that was obtained in an unsupervised
manner using CTWC, is the connection between epithelial cells and the growth of cancer. When we looked at the expression profiles over only the tumor tissues, a cluster of cell growth genes was found to be highly correlated with epithelial genes. This correlation was absent when the normal tissues were used.

These novel features, discovered in data sets which were previously investigated by conventional clustering analysis, demonstrate the strength of CTWC. We find CTWC to be especially useful for gene microarray data analysis, but it may be a useful tool for investigating other kinds of data as well.

Acknowledgments

We thank N. Barkai for helpful discussions. The help provided by U. Alon in all stages of this work has been invaluable; he discussed with us his results at an early stage, provided us his data files and shared generously his understanding and insights. This research was partially supported by the Germany- Israel Science Foundation (GIF).

References

[1] U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, and A.J. Levine (1999) Proc. Natl Acad. Sci. USA 96, 6745–6750.
[2] M. Eisen, P. Spellman, P. Brown, and D. Botstein, (1998) Proc. Natl Acad. Sci. USA 95, 14863–14868.
[3] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S. Lander (1999) Science 286, 531 – 537.
[4] C.M. Perou et al (1999) Proc. Natl Acad. Sci. USA 96, 9212–9217.
[5] E. Lander (1999) Nature Genetics 21, 3–4.
[6] M. Zhang (1999) Comput. Chem. 23, 233–250.
[7] E.M. Marcotte, M. Pellegrini, M.J. Thompson, T.O. Yeates, and D. Eisenberg (1999) Nature 403, 83–86.
[8] J. Hartigan (1975) Clustering Algorithms. (Wiley, New York).
[9] T. Kohonen (1997) Self-Organizing Maps. (Springer, Berlin).
[10] A.A. Alizadeh et al (2000) Nature 403, 503–511.
[11] E. Domany (1999) Physica A 263, 158.
[12] G. Getz, E. Levine, E. Domany, and M. Zhang (2000) Physica A In print (physics/9911038).
[13] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson (1994) Molecular biology of the cell. (Garland publishing, NY).
[14] P. Wadsworth, and J. Bryan (1960) Introduction to Probability and Random Variables. (McGraw-Hill, New York).
[15] T. Cover and J. Thomas (1991) Elements of Information Theory. (Wiley–Interscience, New York).
[16] M. Blatt, S. Wiseman, and E. Domany (1996) Physical Review Letters 76, 3251–3255.
[17] M. Blatt, S. Wiseman, and E. Domany (1997) Neural Computation 9, 1805–1842.
[18] M. Schena, D. Shalon, R. Heller, A. Chai, P.O. Brown, and R.W. Davis (1996) Proc. Natl Acad. Sci. USA 93, 10614–10619.