SUPPLEMENTARY INFORMATION

TITLE: “Proteogenomic workflow reveals molecular phenotypes related to breast cancer mammographic appearance”

Authors
Tommaso De Marchi¹,¹¹,* , Paul Theodor Pyl¹,⁹,¹¹, Martin Sjöstrom¹,¹⁰, Stina Klasson², Hanna Sartor³, Lena Tran¹, Gyula Pekar⁴, Johan Malmström⁵, Lars Malmström⁶-⁷, Emma Nimèus¹,⁸,*

Author affiliations
1. Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, SE-223 62, Lund, Sweden.
2. Department Plastic and Reconstructive Surgery, Skåne University Hospital, Inga Marie Nilssons gata 47, SE-20502, Malmö, Sweden.
3. Division of Diagnostic Radiology, Department of Translational Medicine, Skåne University Hospital, Entrégatan 7, SE-22185, Lund, Sweden.
4. Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Skåne University Hospital, SE-22185, Lund, Sweden.
5. Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Klinikgatan 32, SE-22184, Lund, Sweden.
6. S3IT, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
7. Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
8. Department of Surgery, Skåne University Hospital, Lund, Sweden.
9. Current affiliation: Department of Laboratory Medicine, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Kansli ILM, BMC, I:12, Sölvegatan 19, SE-221 00 Lund, Sweden.
10. Current address: Department of Radiation Oncology, University of California, San Francisco, 1450 3rd Street, CA 94158, San Francisco, USA.
11. These authors equally contributed to this study.

*Corresponding authors.
Supporting Information – Table of Contents

Supplemental Tables

- Table S1. Clinical characteristics of breast cancer cohorts.
- Table S2. Clinical and histopathological information per sample. (XLSX)
- Table S3. Data Independent Acquisition settings. (XLSX)
- Table S4. Sample Set 1 - Proteomic data (DDA-layer). (XLSX)
- Table S5. Sample Set 1 - Proteomic data (DIA layer). (XLSX)
- Table S6. Sample Set 2 - Proteomic data (DIA layer). (XLSX)
- Table S7. Correlation between RNA and protein (Sample Set 1 correlations; RNA-DDA and RNA-DIA). (XLSX)
- Table S8. Significant genes out of ER status analysis of the RNA-sequencing dataset matching MS data (ER-status DESEQ2 output matched against protein lists). (XLSX)
- Table S9. Significant genes out of spiculation status analysis of the RNA-sequencing dataset matching MS data (Appearance-status DESEQ2 output matched against protein lists). (XLSX)
- Table S10. Correlations between RNA and protein data by ER status (Sample Set 1 correlations within ER positive and ER negative tumors; RNA-DDA and RNA-DIA). (XLSX)
- Table S11. Correlations between RNA and protein data by Appearance (Sample Set 1 correlations within spiculated and non-spiculated tumors; RNA-DDA and RNA-DIA). (XLSX)
Supplemental Figures

- Figure S1. Computational workflow generated to analyze the DIA dataset (schematic overview of DIA computational workflow).

- Figure S2. Scheme of DIA search and overview of separate library search results (DIA-search workflow and summary of identifications).

- Figure S3. Impact of sample preparation method on proteomic identifications (Library peptide/protein identification contribution dependent on sample preparation).

- Figure S4. Sample-level peptide and protein identifications within proteomic layers.

- Figure S5. Evaluation of p-value distribution out of RNA-protein correlation analyses (RNA-protein analyses in Sample Set 1).

- Figure S6. Correlation distribution between RNA and proteomic data in the validation dataset (RNA-protein analyses in Sample Set 2).

- Figure S7. Correlation of RNA-protein correlations between DDA and DIA data layers (Sample-wise RNA-DDA vs RNA-DIA correlations).

- Figure S8. Significant transcript-protein pairs pathway-wise annotation and correlations (Correlation of RNA-proteins across significantly enriched pathways for ER status analysis).

- Figure S9. Analysis of immunohistochemical stainings (Histopathological and immunohistochemical evaluation of tissues out of Sample Set 1).

- Figure S10. Confirmation of integrated findings in the validation dataset (RNA-protein comparison at the level of differential expression and pathway enrichment for ER status and appearance).

- Figure S11. Evaluation of biomarker signatures (RNA-protein correlation across biomarker signatures and FDA drug targets).
Figure S12. RNA-protein correlations based on tumor subgroup (RNA-protein correlation within ER status and appearance tumors).

Figure S13. Pathway representation of transcript-protein pairs displaying discordant correlations between ER positive and negative tumors.

Figure S14. Pathway representation of transcript-protein pairs displaying discordant correlations between tumor appearance groups.

Figure S15. Co-regulation clusters in ER positive and negative tumor samples out of the DDA data layer (Summary of step-wise definition of protein co-regulation groups across ER positive and negative tumors at the DDA level).

Figure S16. Co-regulation clusters in ER positive and negative tumor samples out of the DIA data layer (Summary of step-wise definition of protein co-regulation groups across ER positive and negative tumors at the DIA level).

Figure S17. Protein cluster regulation dependent on Estrogen Receptor status out of the DDA data layer (Evaluation of co-regulation cluster dependency of RNA-protein correlations, DDA data layer).

Figure S18. Difference in correlation coefficients in clusters of regulation dependent on Estrogen Receptor status out of the DIA data layer (Extended view of cluster co-regulation, Fig 6C, DIA data layer).
Supplementary Table

Table S1. Clinical characteristics of breast cancer cohort.

	Breast cancer tissues (Sample Set 1; n = 21)	Breast cancer tissues (Sample Set 2; n = 24)		
	N	%	N	%
Age				
≤ 55 years	8	38.1	14	58.3
> 55 years	11	52.4	10	41.7
Tumor size				
T1 (≤ 2cm)	14	66.7	13	54.2
T2 (2-5cm) + Tx	7	33.3	11	45.8
ER				
Negative	8	38.1	7	29.2
Positive	13	61.9	17	70.8
PgR				
Negative	8	38.1	11	45.8
Positive	13	61.9	11	45.8
Appearance				
Spiculated	7	33.3	4	16.7
Non-spiculated	14	66.7	20	83.3

Patients with missing characteristics are not reported

Abbreviations: ER, Estrogen Receptor; PgR, Progesterone Receptor.
Supplementary Figures

A COMPUTATIONAL WORKFLOW - SPECTRAL LIBRARY GENERATION (Make GTL)

B COMPUTATIONAL WORKFLOW - DIA MS SEARCH (DIArt)

C COMPUTATIONAL WORKFLOW - DIFFERENTIAL TRANSCRIPT USAGE

D COMPUTATIONAL WORKFLOW - SAV QUANTIFICATION

Figure S1. Computational workflow generated to analyze the DIA dataset.
Computational workflows (see Methods for details) were established in this study to generate spectral libraries (A) for DIA data search (B), assess differential transcript usage at the proteomic level (C), and detect and quantify SAVs (D).

Abbreviations: DB: Database; DDA: Data Dependent Acquisition; DIA: Data Independent Acquisition; RT: Retention Time; SAV: Single Aminoacid Variant; SNV: Single Nucleotide Variant; VEP: variant Effect Predictor.
Figure S2. Scheme of DIA search and overview of separate library search results.

Panel A displays a schematic overview of DIA library preparation for all three datasets (i.e. this study (De Marchi), Bouchal and Tyanova; upper panel) and finalization of search results (lower panel). Panel B displays identification overlap for peptides (left) and proteins (right) across the three libraries.

Abbreviations: DIA: Data Independent Acquisition.
Figure S3. Impact of sample preparation method on proteomic identifications.

Samples for DDA MS-based library generation were prepared as ALLPREP protein flowthroughs (FT) and whole tissue lysates (WTL). After MaxQuant search, we compared the number of unique peptides and proteins identified in each subgroup (A) and their overlap (B). Data density for peptides (C) and proteins (D) were then compared and found to be highly similar. At the level of sequence coverage (E) the two subsets were highly comparable, though their combination showed a slightly better performance.
Abbreviations: DDA: Data Dependent Acquisition; FT: Flowthrough; MS: Mass Spectrometry; WTL: Whole Tissue Lysate.
Figure S4. Sample-level peptide and protein identifications within proteomic layers.

Sample-wise DDA and DIA peptide and protein identifications. Panel A and B display results peptide and protein identifications for DDA, respectively. Panel C and D display results peptide and protein identifications for DIA, respectively. Common identifications through the sample set are shown in cyan, while non-consistent ones are displayed in light red.

Abbreviations: DDA: Data Dependent Acquisition; DIA: Data Independent Acquisition.
Following our correlation analyses between matching transcripts and proteins (reported in Fig. 2), we evaluated the distribution of the negative and positive correlation coefficients-related p-values. We noticed that the uncorrected p-values from negative Spearman correlations seemed to follow a background-like distribution (left panels). These p-values became non-significant after Benjamini-Hochberg correction (right panels), thus suggesting that they might not be statistically meaningful or that the effect size might be too small.

Figure S5. Evaluation of p-value distribution out of RNA-protein correlation analyses.

Following our correlation analyses between matching transcripts and proteins (reported in Fig. 2), we evaluated the distribution of the negative and positive correlation coefficients-related p-values. We noticed that the uncorrected p-values from negative Spearman correlations seemed to follow a background-like distribution (left panels). These p-values became non-significant after Benjamini-Hochberg correction (right panels), thus suggesting that they might not be statistically meaningful or that the effect size might be too small.

Abbreviations: DDA: Data Dependent Acquisition; DIA: Data Independent Acquisition.
Figure S6. Correlation distribution between RNA and proteomic data in the validation dataset.

Distribution of Spearman Rho correlations of peptides measured by RNA and DIA MS is shown in panel A. Bottom panels display the distribution of p-values (B) and adjusted p-values (C) of positive (dark-gray) and negative (dark red) correlations.

Abbreviations: DIA: Data Independent Acquisition; MS: Mass Spectrometry.
Figure S7. Correlation of RNA-protein correlations between DDA and DIA data layers.

Figure displays correlation between RNA-DDA and RNA-DIA correlations. Linear regression curve and its 95% confidence interval are represented in blue and gray, respectively.

Abbreviations: DDA: Data Dependent Acquisition; DIA: Data Independent Acquisition.
Figure S8. Significant transcript-protein pairs pathway-wise annotation and correlations.

Figure displays HALLMARK pathway annotation of significant transcripts with a detectable protein (DDA and DIA) out of the differential expression analysis of ER status. Panels A and B show the number of significant transcript-
protein pairs in each pathway out of DDA and DIA data, respectively. Panels C and D display RNA-protein correlation distributions in each pathway (gray: non-significant correlation; black: significant correlation) for DDA and DIA data, respectively.

Abbreviations: DDA: Data Dependent Acquisition; DIA: Data Independent Acquisition.
Figure S9. Analysis of immunohistochemical stainings.

Number of tumor cells, red blood cells, and fibroblasts (i.e. hematoxylin-eosin stainings) were analyzed for 19 out of 21 tissues for both ER status and mammographic appearance groups (panel A and B). Quantitative immunohistochemical scores (KI67: percentage of positive tumor cells) were also evaluated (panel A and B, left). Results for KI67 clinical cutoff (≥ 30% positive cells) are depicted as contingency tables in panel C.
AER status RNA - DIA

Scaled Log2 Ratio - DIA

Scaled Log2 Ratio - DIA

Scaled Log2 Ratio - DIA

B. Appearance RNA - DIA

Scaled Log2 Ratio - DIA

Scaled Log2 Ratio - DIA

Scaled Log2 Ratio - DIA

C. GSEA - ER status

 hallway pathways

D. GSEA - Appearance

Data Layer	Log10(size)
RNA	1.25
DIA	1.50
1.75	
2.00	
2.25	
Figure S10. Confirmation of integrated findings in the validation dataset.

Panels A and B display all transcript-protein pairs scaled Log2Ratios for ER status and appearance, respectively. Significant differential expression at the RNA level is marked by full dots and in bigger size; concordance and discordance between RNA and protein layers are shown in green and purple, respectively. GSEA analyses were performed on RNA and DIA data layers for ER and spiculation statuses using the Hallmark database. Pathways are ranked based on RNA-level enrichment score. Panel C displays overlap of GSEA analyses for ER status, while panel D shows results of analysis of appearance features (i.e. spiculation vs no-spiculation). Significant pathways in each data layer (RNA: green; DIA: blue) are marked in full color, while transparent ones did not pass the False Discovery Rate (FDR < 0.25) cutoff. Positive scores mark enrichment in ER positive and spiculated tumors, respectively, while negative scores define enrichments in ER negative and non-spiculated samples.

Acronyms: DIA: Data Independent Acquisition; ER: Estrogen Receptor; FDR: False Discovery Rate; GSEA: Gene Set Enrichment Analysis.
Figure S11. Evaluation of biomarker signatures.

Figure show correlation between transcript-protein pairs for biomarker signatures (Mammaprint, Oncotype-DX, and the PAM50 classifier) for both the DDA (A) and DIA (B) data layers.

Abbreviations: DDA: Data Dependent Acquisition; DIA: Data Independent Acquisition; ER: Estrogen Receptor; FDA: Food and Drug Administration.
Figure S12. RNA-protein correlations based on tumor subgroup.

Figure displays overall RNA-protein correlations within tumor subgroups (panel A: ER status; panel B: appearance). Left and right panels show comparison with DDA and DIA data, respectively. Proteins marked in dark red represent FDA drug targets.

Abbreviations: DDA: Data Dependent Acquisition; DIA: Data Independent Acquisition; ER: Estrogen Receptor; FDA: Food and Drug Administration.
Figure S13. Pathway representation of transcript-protein pairs displaying discordant correlations between ER positive and negative tumors.

Figure displays the top 20 significant GOBP pathways derived from the Panther over-representation test for transcript-protein pairs between ER positive and negative groups. Top panels display results for the DDA data, while DIA results are shown in the bottom panels (left panels: ER negative; right panels: ER positive).

Abbreviations: DDA: Data Dependent Acquisition; DIA: Data Independent Acquisition; ER: Estrogen Receptor; GOBP: Gene Ontology Biological Process.
Figure S14. Pathway representation of transcript-protein pairs displaying discordant correlations between tumor appearance groups.

Figure displays the top 20 significant GOBP pathways derived from the Panther over-representation test for transcript-protein pairs between spiculated and non-spiculated tumors. Top panels display results for the DDA data, while DIA results are shown in the bottom panels (left panels: spiculated tumors; right panels: non-spiculated tumors).

Abbreviations: DDA: Data Dependent Acquisition; DIA: Data Independent Acquisition; GOBP: Gene Ontology Biological Process.
Figure S15. Co-regulation clusters in ER positive and negative tumor samples out of the DDA data layer.

In order to define the most represented pathways in our DDA MS data, we generated Spearman correlation matrices within the ER positive and ER negative tumor groups (A). The elbow method was used to define the minimum number
of clusters for both sample groups (ER positive: 11 clusters; ER negative: 15 clusters; panel B). Highly similar clusters based on Panther over-representation test-derived GOBP annotation were merged after calculating the distances between them in the ER positive (C) and negative (D) subgroups, and by selecting a new minimum number of protein clusters (E).

Abbreviations: DDA: Data Dependent Acquisition; ER: Estrogen Receptor; GOBP: Gene Ontology Biological Process.
Figure S16. Co-regulation clusters in ER positive and negative tumor samples out of the DIA data layer.
Following our analysis of clusters for DIA data, we generate Spearman correlation matrices within the ER positive and ER negative tumor groups (A) out of the DIA data layer. The elbow method was used to define the minimum number of clusters for both sample groups (ER positive: 13 clusters; ER negative: 13 clusters; panel B). Highly similar clusters based on Panther over-representation test-derived GOBP annotation were merged after calculating the distances between them in the ER positive (C) and negative (D) subgroups, and by selecting a new minimum number of protein clusters (E).

Abbreviations: DIA: Data Independent Acquisition; ER: Estrogen Receptor; GOBP: Gene Ontology Biological Process.
Figure S17. Protein cluster regulation dependent on Estrogen Receptor status out of the DDA data layer.

Co-regulated protein clusters in ER positive (left) and negative (right) tumors (see Fig S14) were extracted from the DDA data, annotated with GOBP terms, condensed, and visualized in Cytoscape (panel A). Edge thickness and length relates to cluster distance (Euclidean), node color relates to the scaled mean intensity of all protein in each cluster, and node size depends on the number of proteins in each cluster.
Panel B shows the correlation to mRNA of each protein per cluster for ER positive and negative tumors. Panel C displays the distributions of the differences between Spearman correlation coefficients between ER positive and negative tumors across clusters of co-regulation (FDA drug targets only).

Abbreviations: DDA: Data Dependent Acquisition ER: Estrogen Receptor; FDA: Food and Drug Administration.
Figure S18. Difference in correlation coefficients in clusters of regulation dependent on Estrogen Receptor status out of the DIA data layer.

Figure displays distributions of the differences between Spearman correlation coefficients between ER positive and negative tumors across clusters of co-regulation (FDA drug targets only).

Acronyms: DIA: Data Independent Acquisition; FDA: Food and Drug Administration.