Title: Impact of population mask wearing on Covid-19 post lockdown

Authors: Babak Javid and Nathalie Q. Balaban

Babak Javid MB BChir PhD (corresponding author)
Tsinghua University School of Medicine
bjavid@gmail.com

Nathalie Q. Balaban PhD (co-corresponding author)
Racah Institute of Physics
The Hebrew University of Jerusalem
nathalie.balaban@mail.huji.ac.il

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
COVID-19, caused by SARS-CoV2 is a rapidly spreading global pandemic. Although precise transmission routes and dynamics are unknown, SARS-CoV2 is thought primarily to spread via contagious respiratory droplets\(^1\). Unlike with SARS-CoV, maximal viral shedding occurs in the early phase of illness\(^1\), and this is supported by models that suggest 40-80% of transmission events occur from pre- and asymptomatic individuals\(^2,3\). One widely-discussed strategy to limit transmission of SARS-CoV2, particularly from presymptomatic individuals, has been population-level wearing of masks. Modelling for pandemic influenza suggests some benefit in reducing total numbers infected with even 50% mask-use\(^4\). COVID-19 has a higher hospitalization and mortality rate than influenza\(^5\), and the impacts on these parameters, and critically, at what point in the pandemic trajectory mask-use might exert maximal benefit are completely unknown.

We derived a simplified SIR model to investigate the effects of near-universal mask-use on COVID-19 assuming 8 or 16% mask efficacy (Supplementary information for relevant parameters and references). We decided to model, in particular, the impact of masks on numbers of critically-ill patients and cumulative mortality, since these are parameters that are likely to have the most severe consequences in the COVID-19 pandemic. Whereas mask use had a relatively minor benefit on critical-care and mortality rates when transmissibility (\(R_{\text{eff}}\)) was high (Fig. 1a), the reduction on deaths was dramatic as the effective \(R\) approached 1 (Fig. 1b), as might be expected after aggressive social-distancing measures such as wide-spread lockdowns\(^5\). One major concern with COVID-19 is its potential to overwhelm healthcare infrastructures, even in resource-rich settings, with one third of hospitalized patients requiring critical-care. We incorporated this into our model, increasing death rates for when critical-care resources have been exhausted (Fig. 1c). Our simple model shows that modest efficacy of masks could avert substantial mortality in this scenario. Importantly, the effects on mortality became hyper-sensitive to mask-wearing as the effective \(R\) approaches 1, i.e. near the tipping point of when the infection trajectory is expected to revert to exponential growth, as would be expected after effective lockdown.
In order to understand the generality of the effect of mask wearing upon home confinement removal, we also analysed the potential effects of mask-wearing for data provided by a more comprehensive and realistic model of the COVID-19 infection, which included modelling of different levels of social-distancing measures on infection and likely deaths⁵. When home-confinement is lifted but other social-distancing measures are in place, such as school closure and case isolation, wearing masks can maintain the benefits of home-confinement, both in terms of deaths (Fig. 1d) and critical-care bed use (Fig. 1e).

Limitations of our study include the relatively straightforward model we employed, as well as assumptions of high compliance with mask-wearing and their potential efficacy, for which definitive evidence in pandemics is lacking⁶. Despite these limitations, our model suggests that mask-wearing might exert maximal benefit as nations plan their ‘post-lockdown’ strategies and suggests that mask-wearing should be included in further more sophisticated models of the current pandemic. Since otherwise similar countries are currently devising different mask-wearing scenarios, the current situation offers an unprecedented opportunity to gather evidence on the real-world utility of population mask-wearing for implementation in this and future pandemics.

Word count: 524 words
References

1. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. *Nature*. 2020.

2. Ferretti L, Wymant C, Kendall M, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. *Science*. 2020:eabb6936.

3. Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). *Science*. 2020:eabb3221.

4. Tracht SM, Del Valle SY, Hyman JM. Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A (H1N1). *PLoS One*. 2010;5(2):e9018.

5. Neil M Ferguson DL, Gemma Nedjati-Gilani, Natsuko Imai, Kylie Ainslie, Marc Baguelin, Sangetta Bhatia, Adhiratha Boonyasiri, Zulma Cucunubá, Gina Cuomo-Dannenburg, Amy Dighe, Ilaria Dorigatti, Han Fu, Katy Gaythorpe, Will Green, Arran Hamlet, Wes Hinsley, Lucy C Okell, Sabine van Elsland, Hayley Thompson, Robert Verity, Erik Volz, Haowei Wang, Yuanrong Wang, Patrick GT Walker, Caroline Walters, Peter Winskill, Charles Whittaker, Christl A Donnelly, Steven Riley, Azra C Ghani. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. 2020; http://hdl.handle.net/10044/1/77482. Accessed 8 April 2020, 2020.

6. Xiao J, Shiu EYC, Gao H, et al. Nonpharmaceutical Measures for Pandemic Influenza in Nonhealthcare Settings-Personal Protective and Environmental Measures. *Emerging infectious diseases*. 2020;26(5).
Figure 1. Mask effectiveness on mortality varies by R_{eff}

(A) Number of critically ill patients (red) and total deaths (black) for an epidemic spreading with R_0 of 2.2 (see Supplementary information for parameters) in a simple SIR model, x-axis represents time in days. The different curves are computed for a reduction of infectivity of 0, 8 and 16%. (B) Same as A, but for an epidemic spreading with R_0 of 1.3. Note that the reduction in infectivity by mask wearing has a larger effect. (C) Same as B but taking into account increase in death when beds are unavailable for critically-ill patients. (D-E) Analysis of the data of Ferguson *et al* (ref 5, Table 4). Assuming a 10% reduction in infectivity, mask wearing may be at least as effective as home confinement at reducing deaths (D) or preventing overwhelming ICU beds (E). The different bars (1-5) are different thresholds (“triggers”) for implementing social measures in the Ferguson *et al* model.