Natural therapeutics for urinary tract infections—a review

Sarita Das

Abstract
Background: The recurrence of the urinary tract infections (UTI), following the antibiotic treatments suggests the pathogen’s resistance to conventional antibiotics. This calls for the exploration of an alternative therapy.

Main body: The anti-uropathogenic and bactericidal activity of many plant extracts was reported by many researchers, which involves only preliminary antibacterial studies using different basic techniques like disk diffusion, agar well diffusion, or minimum inhibitory concentration (MIC) of the crude plant extracts, but reports on the specific action of the phytoconstituents against uropathogens are limited. Vaccinium macrocarpon Aiton (cranberry) is the best-studied home remedy for UTI. Some evidences suggest that proanthocyanins present in cranberry, prevent bacteria from adhering to the walls of the urinary tract, subsequently blocking the further steps of uropathogenesis. Probiotics such as Lactobacillus and Bifidobacterium are beneficial microorganisms that may act by the competitive exclusion principle to defend against infections in the urogenital tracts. Reports on potential vaccine agents and antibodies targeting the different toxins and effector proteins are still obscure except uropathogenic E. coli.

Conclusion: This review highlights some of the medicinal herbs used by aborigines to prevent or treat acute or chronic urinary tract infections, botanicals with established urobactericidal activity, clinical trials undertaken to compare the efficacy of cranberry products in UTI prevention, and other natural therapeutics reported for UTI.

Keywords: Cranberry, Proanthocyanins, PAC, Urinary tract infections, Uropathogenic Escherichia coli, UTI, UPEC

Background
Urinary tract infection (UTI) is a condition when any part of the urinary tract (urethra, bladder, ureter, and kidney) gets infected with bacteria or occasionally with fungus that evades the host defense barrier and colonize the urinary tract. The effect of UTI ranges from a mild self-limiting sickness to acute sepsis, with a mortality rate of 20-40% [1], which increases inexplicably with age. Both the sexes are prone to develop UTI with a female to male ratio of 2:1 in patients older than 70 years as compared to a 50:1 ratio in younger population [2]. It is the second most common infection after respiratory tract infections. Different methods are practiced to treat and prevent chronic and recurrent UTI, i.e., taking antibiotics, bioactive natural foods, using probiotics, and maintaining good personal hygiene, but still, they are yet to be addressed successfully. As UTI is generally caused by bacteria, they are most frequently treated with antibiotics. But, the type of medication and length of treatment depends on type of bacteria, its level of susceptibility, history, symptoms, and immune status of the patient.

It is not known, what percentage of people are now using alternative therapies, but certainly large numbers of women are drinking cranberry juice or using herbal remedies to enhance their immune status or taking probiotics to restore the normal vaginal flora, which usually gets disturbed after an antibiotic therapy. Vaccine development for organisms other than E. coli still remains obscure [3]. Cranberry, mannose, and probiotics are frequently used for recurrent UTI, and berberine and uva ursi are prescribed for acute UTI. Potassium salt supplements reduce dysuria by alkalinizing the urine. Application of estriol cream and supplement of vitamins A and C were
considered to be effective to prevent UTI [4]. Generally, people drink plenty of water to flush out the infectious bacteria. Application of curd water around the urethra can help in getting rid of urinary burning sensation. This present review enlists some ethnobotanicals, which are reported to be beneficial for UTI and other urinary disorders. It covers a list of potential herbs with urobacterial activity, the in vitro/in vivo and clinical trial studies reported to prove the efficacy of cranberry in treating UTI. It also represents the synopsis of relevant natural therapeutics, those are proven to be useful in both prevention and cure of urological disorders.

Methods
Intense review of literature on the prevalence, mechanism of urinary tract infection, risk factors, preventive measures, and natural therapeutics for UTI were carried out using different databases like Google, Pubmed, and ScienceDirect. The keywords like the preventive and therapeutic role of different plants and their products in uropathogenesis, medicinal plants for acute and recurrent UTI, natural remedies, therapeutics for UTI, and anti-uropathogenic activity of medicinal plants, role of cranberry in acute and recurrent UTI were accessed from Medline, Google, Pubmed, and from different books, electronic, and printed journals, available in the library of Berhampur University, Utkal University, Institute of Life Sciences, and Regional Medical Research Center, Bhubaneswar, Odisha. The different keywords like urinary tract infection, uropathogenic bacteria, uropathogenesis, and UPEC are used in Google, Pubmed, and www.asm.org websites. The language chosen was English and both research and review articles were taken into account.

Botanicals used for UTI
Therapeutic botanicals are defined as plants and their products with medicinal value. Indigenous plants are used for various ailments since time immemorial by mankind and probably we had learned this art from animals, since they have the inherent ability to use natural products for their different health ailments. These natural products are rich in diverse bioactive compounds, which form the basis for the development of new pharmaceuticals. There are immense advantages of using therapeutic botanicals like lesser side effects, more patient approval, less costly, and can be renewed naturally [5]. There are many reports that phytochemicals act as multi-drug resistance inhibitors/modulators that augment the effect of commonly used antibiotics [6, 7]. Diuretics like Solidago spp (goldenrod) herb, Levisticum officinale (lovage) root, Petroselinum crispus (parsley) fruit, and Urtica dioica (stinging nettle) increase urine volume in both healthy and people with urinary disorders that help in flushing out the probable threats.

People, who consume antiseptic and anti-adhesive herbs like Arctostaphylos uva-ursi (uva ursi), Juniperus spp (Juniper) leaf, and fruit of Vaccinium macrocarpon (cranberry) excrete antimicrobial compounds, which may directly kill microbes or interfere with their adhesion to epithelial cells, thereby protecting against acute and chronic UTI [8]. The roots of Mahonia aquifolium (Pursh) Nutt. (Oregon grape) (Berberidaceae) and Hydrastis canadensis L. (Goldenseal) (Ranunculaceae) are rich in berberine. Berberine is an important drug against many bacteria and combat infections by preventing the bacteria (E. coli and Proteus species) from adhering to the host cell [9], which suggests their potent role in treating UTI.

Supplement of aqueous extract of corn (Zea mays L.) silk (outer thread-like part) to UTI patients significantly reduced the symptoms by reducing the number of RBCs, pus cells, and crystals in urine without any side effects [10]. It is rich in diverse therapeutic compounds [11]. Plants belonging to family Apiaceae, Fabaceae, Malvaceae followed by Asteraceae and Cucurbitaceae were found to be very effective against UTI [12]. Ethnomedical use of some plants against recurrent and chronic UTI is listed in Table 1.

Botanicals with anti-uropathogenic activity
Few Jordanian plants were reported to have antibiotic resistance-modifying activity against MDR E. coli. Especially, methanol extracts of the plant parts improved the effects of cephalexin, doxycycline, neomycin, chloramphenicol, and nalidixic acid against both the standard and resistant strains of E. coli. Extracts of Anagris foetida L. (Fabaceae) and Lepidium sativum L. (Apiaceae) had differential activity against the standard and resistant strains as it decreased the activity of amoxicillin against the standard strain but increased the activity against resistant strains. Edible plants like Gundelia tournefortii L. (Asteraceae), Eruca sativa Mill. (Brassicaceae), and Origanum syriacum L. (Lamiaceae), augmented clarithromycin activity against the resistant E. coli strain. Perhaps these antibiotics and plant extracts may be prescribed together to treat infections caused by MDR E. coli [24]. There are numerous reports for the anti-uropathogenic and urobactericidal activities of various plants and their products, which are listed in Table 2.

Cranberry: a potent uroprotective agent
For centuries, cranberries have been used as a treatment for urinary tract diseases and its antibacterial activity was reported long back [60]. It contains > 80% water, 10% carbohydrates (glucose and fructose) [61], and other phytoconstituents like anthocyanins, flavonoids, terpenoids, catechins, organic acids (citric acid, malic acid, and quinic acid, etc.) with small amount of ascorbic acid,
Botanical name (family)	Parts used	Disorder/disease	Reference
Adiantum lunulatum Burm. f. (Pteridaceae)	Root	Blood discharge in urine	[13]
Argemone mexicana L. (Papaveraceae)	Root	Urinary trouble	[14]
Clausena excavae Burm. f. (Rutaceae)	Root	Urinary infection	[15]
Cucumis melo L. (Cucurbitaceae)	Epicarp	Kidney stone, urinary tract infection	[14]
Cucumis sativus L. (Cucurbitaceae)	Seed	Urinary tract infection	[16]
Euphorbia thymifolia L. (Euphorbiaceae)	Whole plant	Blood in urine	[17]
Mimosa pudica L.(Mimosaceae)	Root, leaf	Urinary infection, burning micturition	[18, 19]
Asparagus racemosus Willd. (Asparagaceae)	Roots	Urinary troubles	[20]
Acacia farnesiana (L.) Willd. (Fabaceae)	Roots	Burning sensation in the urinary tract, UTI oliguria and polyuria	[22]
Caesalpinia nuga (L.) Aiton (Caesalpiniaceae)	Plant juice, roots, fruit	Urinary tract disorder, oliguria, and polyuria	
Clitoria ternatea L. (Fabaceae)	Leaves	Urinary tract problems	
Elephantopus scaber L. (Asteraceae)	Roots	Difficulties in urination	
Emidesmus indicus (L.) R. Br. (Asclepiadaceae)	Leaves	Urinary tract infections	
Urena lobata L. (Malvaceae)	Roots, leaves, bark, flowers	Urinary trouble, burning sensations in the urinary tract	
Zizyphus oenoplia (L.) Mill. (Rhamnaceae)	Bark, fruit	Difficulties in urination, burning sensation, red urination, polyuria, lower abdominal pain	
Santalum album L. (Santalaceae)	Tender twig	UTI	[23]
Table 2 List of medicinal plants with anti-uropathogenic potential

Plant name (family)	Extract/part used	Name of microorganism	Reference
Ocimum gratissimum L., Salvia officinalis L. (Lamiaceae); Cymbopogon citratus (DC) Stapf (Poaceae)	Essential oil	Klebsiella pneumoniae; K. oxytoca; E. coli; Enterobacter aerogenes; Morganella morganii; P. mirabilis	[25]
Mangifera indica L. (Anacardiaceae)	Water and ethanol extract of seed kernel	Staphylococcus aureus	[26]
Ziziphus officinalis Roscoe (Zinziberaceae); Punica granatum L. (Lythraceae)	Ethanol extract of rhizome and seed, respectively	E. coli	[27]
Ocimum gratissimum L. (Lamiaceae)	Ethanol extract of leaf	E. coli; P. mirabilis; S. aureus; Pseudomonas aeruginosa; Candida albicans	[28]
Carica papaya L. (Caricaceae)	Water, chloroform, ethanol extract of leaves	K. pneumoniae; E. coli; P. mirabilis	[29]
ibicella lutea (Lindl.) Van Eselt. (Martyniaceae)	Plant extract	P. mirabilis	[30]
Allium sativum L. (Liliaceae)	Allicin from clove and leaf	E. coli; S. aureus	[31]
Rhizophora apiculata Blume; R. Mucronata Lam.; Bruguiera cylindrical (L) Blume; Cerops decaenre (Griff.) W.Theob. (Rhizophoraceae); Avicennia marina (Forsk) Vierh. (Acanthaceae)	Ethanol extract of hypocotyl, bark, collar, and flower	E. coli; K. pneumonia; P. aeruginosa; S. aureus; Enterobacter sp.	[32]
Coccinia grandis (L) Voigt (Cucurbitaceae)	Water, acetone, ethanol extract of leaves	Uropathogenic E. coli (UPEC)	[33]
Coleus aromaticus Lour.; Ocimum sanctum L. (Lamiaceae)	Essential oil	E. coli; S. aureus; K. pneumonia; Klebsiella oxytoca; Proteus vulgaris; P. mirabilis; P. aeruginosa	[34]
Clitoria ternatea L. (Fabaceae); Achyranthes aspera. L. (Amaranthaceae)	Leaf extract	E. coli; methicillin resistant S. aureus; S. aureus; P. aeruginosa; K. pneumonia; Citrobacter diversus; Serratia liquefaciens; C. albicans	[35]
Moringa oleifera Lam. (Moringaceae)	Leaf extract	P. mirabilis	[36]
Azadirachta indica L. (Meliaceae); Tinospora cordifolia (Willd.) Miers (Menispermaceae); Euphorbia hirta L. (Euphorbiaceae); Cassia javanica L. (Fabaceae); Phyllanthus niruri (Euphorbiaceae); Asparagus racemosus Willd. (Asparagaceae); Eupatorium triplinervium Willd. (Asteraceae)	Chloroform, methanol, acetone, ethanol extract	P. aeruginosa; Staphylococcus epidermis; Serratia marcescens; Enterobacter; Citrobacter	[37]
Piptochaetium montevidense (Sprang) Parodi (Poaceae); Bulbostylis capillass L. Kunth ex C.B. Clarke (Cyperaceae); Juncus capillus L. (Juncaceae)	Plant extract	E. coli; K. pneumoniae	[38]
Cymbopogon citrates (DC) Stapf (Poaceae); Syzygium aromaticum (L) Merr. & L.M. Perry (Myrtaceae)	Essential oil	C. albicans	[39]
Seagrass (Halodule pinifolia) (Miki) Hartog; Cymodocea rotundata Asch. & Schweinf. (Cymodoceaceae); Gallium odoratum (L) Scop. (Rubiaceae); Urtica dioica L. (Urticaceae); Vaccinium vitis-idaea L. (Ericaceae)	Aqueous methanol (1:4) extract of fresh leaves	E. coli; S. saprophyticus; P. aeruginosa; K. pneumoniae; P. mirabilis; Serratia sp	[40]
Betula pendula Roth. (Betulaceae); Equisetum arvense L. (Equisetaceae); Hemiaria globa L. (Caryophyllaceae); Gallium odoratum (L) Scop. (Rubiaceae); Urtica dioica L. (Urticaceae); Vaccinium vitis-idaea L. (Ericaceae)	Aqueous extract	E. coli	[41]
Camellia sinensis (L) Kunzt. (Theaceae)	Leaf extract	E. coli	[42]
Aerva lanata (L) Juss. ex Schult. (Amaranthaceae); Biophtymum sensitivum (L) DC. (Oxalidaceae); Boerhavia diffusa L. (Nyctaginaceae); Mysistica fragrans Houtt. (Mysisticaeae)	Petroleum ether, chloroform, methanol, water extract of whole plant, and nutmeg nuts	E. coli; S. aureus; S. viridans; P. aeruginosa; K. pneumoniae	[43]
Punica granatum L. (Lythraceae); Stevia rebaudiana (Beroni) Bertoni; Allium sativum L. Armarylidaceae	Alcohol or water extract; basil oil, geranium oil, lemon grass oil, Japanese mint oil	P. mirabilis; P. aeruginosa; Acinetobacter; Serratia; Klebsiella	[44]
Mangifera indica L. (Anacardiaceae)	Methanol extract of flower	UPEC	[45]
Pimenta dioica (L) Merr. (Myrtaceae); Anacardium occidentale L. (Anacardiaceae)	Leaf and bark extract	E. coli; E. faecalis; P. aeruginosa; S. aureus; K. pneumoniae	[46]
Salvia santolinifolia Boiss. (Lamiaceae)	Essential oil	K. pneumoniae; P. mirabilis; P. vulgaris	[47]
benzoic acid, glucuronic acids [62]. Quinic acid was suggested to be responsible for excretion of hippuric acid in urine in large amounts, which is an antibacterial agent and also has the ability to acidify the urine [63, 64]. Moreover, the elucidation of the UTI pathogenesis has opened a new vista to understand the mode of action of cranberry as an anti-adhesive prophylactic and therapeutic agent for UTI [65].

Escherichia coli strains isolated from urine (UPEC) attached three times more efficiently to uroepithelial cells than *E. coli* isolated from other experimental sources like stoll, sputum, or wound. This proves a unique population of *E. coli* strain responsible for UTI [66]. Antiadherence activity against gram-negative bacteria isolated from urine and other medical sources was observed in volunteers administered with cranberry juice cocktail or urine and uroepithelial cells obtained after drinking the cocktail, which proves its efficacy in treating UTI [66]. Consumption of different cranberry products helped young and elderly women in preventing and protecting them against UTI [67].

The anthocyanidin/proanthocyanidin biocompounds present in cranberry are reported often to be potent antiadhesive compounds. Since cranberry inhibits the adhesion of type I and P-fimbriated uropathogens (e.g., uropathogenic *E. coli*) to the uroepithelium, thus, weaken colonization and succeeding infection [68]. Figure 1 depicts the molecular mechanism of antiadhesive property of proanthocyanidins. Due to lack of proper standardization of cranberry products, it becomes extremely complicated to compare products or correlate the results [69]. The in vitro and in vivo studies were summarized in Table 3.

The recurrence of UTI rates was reduced up to 35% in young to middle-aged women, after the use of cranberry-based compounds. But, in groups with complicated UTI (i.e., young and elderly patients, or patients with neurogenic bladder or with chronic indwelling catheters), the potency of cranberry was unclear. However, these compounds cannot be taken for a longer duration as they have some undesirable effects like weight gain, gastrointestinal problems, and harmful interactions with other drugs [69]. Clinical trials were often complicated and results are not satisfactory in patients with complicated UTI, whereas, cranberry uptake significantly prevented acute cystitis in high-risk females [88]. The clinical trials undertaken with cranberry were summarized in Table 4.

Cinnamomum verum J. Presl. (cinnamon): a potent botanical for complicated UTI

Chronic recurrent UTI was resulted in patients with urinary catheters due to biofilm formation by MDR
Trans-cinnamaldehyde (0%, 1%, 1.25%, or 1.5%) was reported to prevent UPEC biofilm formation both on plate culture and indwelling catheters. When trans-cinnamaldehyde was used in catheter lock solution, it inactivated UPEC biofilm formation on catheters. Since the test concentrations had no cytotoxic effects on human bladder epithelial cells, it can be used as a surface coating for catheters or in catheter lock solution to prevent UTI [115]. Trans-cinnamaldehyde significantly reduced uroepithelial cell attachment and invasion by UPEC by inhibiting the expression of major genes associated with its attachment and invasion to host tissue [116]. These findings support the use of cinnamon as a natural remedy for UTI.

Arctostaphylos uva-ursi (L.) Spreng (bearberry)

Arctostaphylos uva-ursi (uva ursi), also known as bearberry or upland cranberry, is a useful herb for bladder infection. Bearberry leaves and preparations made from them have significant antibacterial activity (especially against *E. coli*) and astringent activity due to its arbutin content and diuretic properties. In a double-blind study of 57 women, five of twenty-seven women had a recurrence in the placebo group while none of thirty women had a recurrence in the uva ursi group after 1 year [117]. Schindler et al. reported that the total amount of urinary excretion of arbutin metabolites (hydroquinone) remained same in all the three groups, after the administration of a single oral dose of bearberry leaves extract or film-coated tablets or an aqueous solution in a randomized crossover study (*n* = 16) [118].

Probiotics

Probiotics are helpful in establishing and maintaining normal ecology of the vagina, urethra, and bladder and a proper bladder pH and preventing recurrent UTI, which was supported by various in vivo and in vitro studies. Lactobacilli are present predominantly in the urogenital flora of healthy reproductive-aged women. But, the flora is disturbed following long term antibiotic administration and post menstruation temporarily and in post-menopausal women permanently. Supplement of *Lactobacillus rhamnosus* GR-1 and *Lactobacillus fermentum* RC-14 appears to be most effective in reducing the risk of intestinal and urogenital infections [119]. The antagonistic activity of five probiotic lactobacilli (*L. rhamnosus*, *L. fermentum*, *L. acidophilus*, *L. plantarum*, and *L. paracasei*) and two bifidobacteria (*Bifidobacterium lactis*, *B. longum*) against six target pathogens were estimated using different assays. Pyelonephritic *E. coli* was highly suppressed by *L. rhamnosus* and both bifidobacterial strains [120]. One hundred thirty-nine women (mean age: 30.5 years) with acute UTI were compared with 185 women of similar age with no episodes of UTIs for 5 years. Frequent consumption of fresh juices, especially berry juices, and fermented milk products containing probiotic bacteria decreased the risk of recurrence of UTI in fertile women. So, dietary supplements can be used to prevent UTI [121].

Preincubation of the uroepithelial cells with *Lactobacillus* bacterial cell wall fragments inhibited the adherence and colonization of gram-negative uropathogens either completely or partially, which prevented the onset of UTI in female rats. Since the lipoteichoic acid present in the bacterial cell wall is responsible for the adherence of the *Lactobacillus* cells to uroepithelial cells but its steric hindrance blocked the adherence of uropathogens [122, 123]. Seven strains of lactic acid bacteria (*L. paracasei*, *L. salivarius*, two *Pediococcus pentosaceus* strains, two *L. plantarum* strains, and *L. crispatus*) and their fermented probiotic products exhibited clear zones of
Table 3 In vitro/in vivo activity of cranberries against UTI causing bacteria

Study design	Dose	Microorganism	Result	Reference
In vitro antiadhesion activity of cranberry (PAC)	10-50 µg/ml	UPEC	PAC derived from cranberry and blueberry was effective.	[70]
In vitro antiadhesion activity of cranberry (PAC)	60 µg/ml	UPEC	A-linked PAC were more effective than B-linked.	[71]
Antiadhesion activity of cranberry vs raisins	42.5 g	UPEC	25-50% of reduction in adherence in cranberry gr. None in control or raisin gr.	[72]
In vitro antiadhesion activity of cranberry juice	27% cranberry juice (250 or 750 ml)	E. coli	45% and 62% decrease in bacterial adhesion to human epithelial cell line in bacteria growing in urine of volunteers administered with 250 and 750 ml of cranberry juice, respectively.	[73]
Anti-adhesion activity and prevention of oxidative stress of dried cranberry juice in young women	Dried cranberry juice (400 mg or 1200 mg per day) for 56 days	UPEC	Inhibition of adherence in UPEC with no urine acidity observed in volunteers consuming 1200 mg/day. No effect observed at 400 mg/day.	[74]
Anti-adhesion activity of cranberry PAC against bladder and vaginal epithelial cells	5 to 75 µg/ml of PAC isolated from cranberry powder or extract	E. coli	50 µg/ml of PAC reduced the mean adherence of E. coli I2 to vaginal epithelial cells from 18.6 to 1.8 and bladder epithelial cell from 6.9 to 1.6 bacteria per cell	[75]
In vitro and in vivo antiadhesive activity of urine, after cranberry consumption in volunteers	36 (1 capsule) or 108 mg (3 capsules) of cranberry or placebo per day	E. coli	Better anti-adherence to bladder cell and virulence reduction in E. coli infecting worms when bacteria cultured in urine of volunteer administered with three capsules (108 mg/day) then single capsule (36 mg/day).	[76]
Anti-adhesion activity of cranberry juice	Juice or PAC of 0, 64, 128 and 345.8 mg/ml	E. coli	E. coli grown in the presence of PAC repressed adhesion from 50.2 to 7.9 bacteria/cell by altering its surface properties and the effect was reversible.	[77]
Antimicrobial activity of urine after cranberry consumption in volunteers	275 mg of dry, whole cranberries or 25 mg of concentrated, dry cranberries	E. coli, K. pneumonia and C. albicans	≥ 50% reduction in bacterial number when grown in urine of volunteers after cranberry consumption was found to be 35% (E. coli), 65% (K. pneumoniae), and 45% (C. albicans).	[78]
Bacterial anti-adhesion activity of urine collected from cranberry powder administered volunteers	Cranberry capsule of 0, 18, 36, or 72 mg of PAC equivalents per day	E. coli	Dose-dependent decrease in adhesion to bladder cell and reduction in virulence of UPEC in C. elegans model	[79]
In vitro anti-adhesion assay in T24 cell line and in vivo virulence assay in C. elegans model	PAC (6-120 mg) plus propolis (170-340 mg) powder	E. coli	Synergistic activity of propolis and proanthocyanidins	[80]
In vitro activity of PAC	4–1024 mg/L	C. albicans	Reduction in biofilm formation due to anti-adherence properties and/or iron chelation at a dose of ≥ 16 mg/L PAC.	[81]
In vitro activity of A2-linked PAC	15-100 µg/mL	UPEC, P. mirabilis	Up to 75% reduction of UPEC and P. mirabilis adhesion to HT1376 cell line vs. control. Also drop in motility and urease activity in P. mirabilis.	[82]
In vitro and in vivo activity of PAC	100 µg/mL	P. aeruginosa	Cranberry PACs significantly disrupted the biofilm formation	[83]
In vitro activity of oligosaccharides	0.625-10 mg/mL	E. coli	Reduced biofilm formation by over 50% in pathogenic form and over 60% in nonpathogenic E. coli	[84]
Antiadhesive activity of phenolic compounds and their metabolites derived from cranberry	100–500 µM	UPEC	All the metabolites showed anti-adhesive activity but procyanidin A2, significantly reduced UPEC adherence to uroepithelium at 500 µM (51.3%).	[85]
Ex vivo and in vitro antiadhesive activity of PAC and PAC free extract	Standard cranberry extract with 1.24% PAC for ex vivo and 21% PAC for in vitro study	UPEC	40-50% suppression of UPEC adhesion to human T24 bladder cells. PAC free extract did not influence biofilm and curli formation in UPEC.	[86]
In vivo activity of cranberry juice and its organic acids in mice	Cranberry juice/bioactive compounds taken for 7 days	UPEC	Reduction of bacterial number in the bladder of mice drinking fresh cranberry juice, organic acids or both.	[87]
Experimental design	Dose	N	Result	Reference
---	---	------------------	--	-----------
Randomized, double-blind, placebo-controlled trial	Cranberry juice of 300 ml/day or placebo	153 elderly women	UTI incidence 15% in cranberry group and 28.1% in placebo group (difference is non-significant)	[89]
Randomized, single-blind cross over study	15 ml juice/kg or water placebo	21 patients with neuropathic bladder	9 patients taking cranberry juice and 9 patients taking water showed lowered infection, rest 3 were indifferent.	[90]
Randomized, double-blind, crossover trial	Cranberry capsules of 400 mg	19 female having recurrent UTIs	UTI incidences were 2.4/subject/year in cranberry group and 6.0/subject/year in placebo, 47.4% of withdrawal rate.	[91]
Double-blind placebo controlled with crossover	60 ml/day of cranberry juice or placebo	15 children under intermittent catheterization	Differences between groups are nonsignificant for bacteriuria or UTI.	[92]
Randomized, double-blind, placebo-controlled trial	50 ml of cranberry-lingonberry juice (7.5 g), Lactobacillus GG 100 ml/day or placebo	150 young women with previous UTI	Recurrence rate of UTI reduced in cranberry group, 20% less UTI in cranberry group.	[93]
Randomized, double-blind, placebo-controlled trial	Cranberry juice 250 ml or its tablets	150 women with recurrent UTIs	Incidence of UTI—30% in juice, 39% in tablets group and 72% in placebo	[94]
Randomized, double-blind, placebo-controlled trial	Cranberry capsules of 8 g or placebo	135 patients with complicated UTI (multiple sclerosis generated neurogenic bladder)	34.6% UTI in cranberry group and 32.4% on placebo, no significant difference between the groups and also under intermittent catheterization.	[95]
Randomized, double-blind, placebo-controlled trial	Cranberry capsules of 1 g or placebo	74 patients with neurogenic bladder induced by spinal cord injury	Insignificant differences in bacteriuria, pyuria, or symptomatic UTIs between the groups, 35% withdrawal rate	[96]
Double-blind, placebo controlled with crossover	400 mg of cranberry tablets for 4 weeks or placebo	37 patients with neurogenic bladder due to spinal cord injury	43% of withdrawal rate and no difference were observed between the cranberry and the placebo group.	[97]
Randomized, double-blind, placebo-controlled trial	25% of cranberry juice (150 ml) and placebo	376 in door old patients (> 60 years)	3.7% of UTI incidences in cranberry group of 7.4% with placebo 31% withdrawal rate	[98]
Double-blind, randomized, placebo-controlled trial	1st group—methenamine hippurate (MH), 2nd—cranberry (800 mg), 3rd—cranberry + MH, and 4th—placebo	305 patients with spinal cord injury resulted neurogenic bladder	No differences for symptomatic UTI groups to placebo	[99]
Randomized, double-blind, placebo-controlled trial	Group A—240 mg of 27% cranberry juice 3 times/day or group B—240 mg daily once or group C—placebo	188 pregnant women of 16 weeks gestation	No significant differences in UTI occurrence between the groups. Withdrawal rate of 38.8% (A, 50.7%, B, 39.7%, C, 55.5%)	[100]
Randomized, double-blind, placebo-controlled trial	Cranberry extract tablet for 6 months	47 spinal cord injured patients	0.3 UTI per year in cranberry group vs 1.0 UTI per year in placebo.	[101]
Randomized, double-blind, placebo-controlled trial	cranberry extract (500 mg) or trimethoprim (100 mg)	137 women with recurrent UTIs—age 45 years	25 UTIs in cranberry group and 14 in trimethoprim group	[102]
Randomized controlled trial	Cranberry-lingonberry juice 50 ml/day, Lactobacillus GG 100 ml, 5 days/month or placebo	84 girls with recurrent UTIs	UTIs incidence 18.5% in 1st group, 42.3% in 2nd, and 48.1% in placebo	[103]
Randomized, double-blind, placebo-controlled trial	27% cranberry juice (8 oz.)	319 young women with UTI history	UTI recurrence rates—19.3% for cranberry group and 14.6% for placebo	[104]
Randomized, double-blind, placebo-controlled trial	Cranberry juice	263 children cranberry (n = 129), placebo (n = 134)	0.1% UTI episodes lower in cranberry gr.	[105]
Table 4 Clinical trials of cranberry products for UTI prevention in different populations (Continued)

Experimental design	Dose	N	Result	Reference
Randomized, double-blind, placebo-controlled trial	200 mg of cranberry	370 prostate cancer patients	8.7% UTI in cranberry group, 24.2% in placebo (36% reduction in UTI)	[106]
Randomized, double-blind, placebo-controlled trial	Cranberry juice 4, 8 oz/daily, or placebo	176 patients (120 to cranberry juice and 56 to placebo)	0.29 UTI in cranberry juice group and 0.37 in the placebo group. P-fimbriated UPEC isolation was 43.5% (10 of 23) in cranberry juice group, 80.0% (8 of 10) in placebo group during the study period	[107]
Randomized, double-blind, placebo-controlled trial	3 capsules of PAC daily for 30 days (108 mg, 72 mg, 36 mg)	80 women	Dose-dependent reduction in bacteriuria and pyuria	[108]
Modified observational study	Sweetened dried cranberry (SDC) of one serving daily for 14 days	20 women with recurrent UTIs	Mean UTI rate per six months decreased significantly, no UTI observed in > 50% of the patients up to 6 months of SDC consumption	[109]
Randomized, double-blind, placebo-controlled multicenter trial	Capsules of cranberry and placebo were taken twice daily for 1 year	928 women of high and low risk group	Incidence of UTI reduced in cranberry than placebo group (62.8 vs 84.8 per 100 person-years in UTI high risk group). No difference observed in low UTI risk group	[110]
Randomized, double-blind, placebo-controlled trial	Two cranberry juice capsules twice daily for 6 weeks or placebo	160 women undergoing gynecological surgery involving urinary catheterization (80 + 80)	19% UTI incidence in cranberry group compared to 38% in placebo group	[111, 112]
Randomized, double-blind, placebo-controlled trial	500 mg of whole cranberry fruit powder for 6 months or placebo	Cranberry (n = 89) or a placebo group (n = 93)	UTI occurrence significantly lowered 10.8% vs 25.8% in cranberry and placebo group, respectively	[113]
Randomized, double-blind, placebo-controlled trial	240 ml of cranberry juice per day for 24 weeks or placebo	Cranberry (n = 185) or a placebo (n = 188)	UTI occurrence significantly lowered 21% vs 36% in cranberry and placebo group, respectively	[114]

inhibition against UPEC. This suggests their potential role in adjuvant therapy for prevention and treatment of UTI. The growth of UPEC strains was significantly inhibited after co-culture with lactic acid bacteria and probiotic products in human urine. Oral administration of probiotic products also abrogated the number of viable UPEC in the urine of UPEC-challenged BALB/c mice [124].

Vaccines
Adhesin-based vaccines were very effective in blocking host-pathogen interactions, thereby preventing the establishment of disease [125–127]. In addition to the UPEC adhesins (i.e., pili, fimbriae), adhesins from P. mirabilis, and E. faecalis were also reported as vaccine targets [128]. Vaccination with HlyA (UPEC pore-forming toxin) reduced the rate of renal scarring compared to controls, though it could not prevent UPEC colonization of the kidneys [129]. Several urease inhibitors, i.e., acetohydroxamic acid (AHA), phosphoramidites, benzimidazoles have been used as potent drugs for UTI treatment against urosece producing bacterial species like P. mirabilis and S. saprophyticus [130]. Pilicides (type 1 pilus assembly inhibitor) and mannosides (pili function inhibitor) block UPEC colonization, invasion, and biofilm formation and prevent UTI [131, 132].

Discussions
Antibiotics are frequently used to treat and prevent acute and recurrent UTI, but their repeated use can result in dysbiosis of vaginal and intestinal normal flora, as well as antibiotic resistance due to the high mutation ability and horizontal gene transfer capability of different pathogens. Moreover, different mechanisms are used by uropathogens for survival in the bladder under stresses such as starvation and immune responses. Uropathogens undergo morphological changes, invade uroepithelial cells, and form biofilms to persist and cause recurrent infections. Extracellular DNA, exopolysaccharides, pili, flagella, and other adhesive fibers create a niche for a bacterial community that is secluded from antimicrobial agents, immune responses, and other stresses [133]. Thus, it is high time to seek alternative methods for the prevention and treatment of UTIs.

Diuretic botanicals like Asparagus officinalis L. (asparagus), Betula spp. (birch) Elymus repens (L.) Gould (synonym: Agropyron repens) (couch grass), Solidago virgaurea
L. (goldenrod), and *Equisetum arvense* L. (horsetail) work against UTI by increasing urinary volume and supposedly flushing bacteria out of the urinary tract. Ayurvedic herbs like *Tribulus terrestris* L., *Boerhavia diffusa* L., *Tinospora cordifolia* (Willd.) Miers, and *Santalum album* L. are used since time immemorial for UTI in India. The tribes of Odisha state, India, use the roots of *Adiantum lunulatum* Burm. f, *Argemone mexicana* L., *Clausena excavata* Burm. f, *Mimosa pudica* L., epicarp of *Cucumis melo* L., and seeds of *Cucumis sativus* L. for UTIs. These herbs have proven anti-uropathogenic activities, which were reported enormously by different researchers. However, reports on anti-uropathogenic activity of specific phytoconstituents or their mode of action at the molecular level on uropathogens like enzyme or protein inhibition or degradation, cell membrane, or cell wall disruption or dysfunction of other vital organs of uropathogens are limited. Though the herbal remedies are considered safe to use without any significant side effects yet they are slow in action to be effective in serious acute infections, but they are more effective in preventing recurrence and safeguarding against the post-infectious sequelae.

The safety and efficacy of a product containing two probiotic strains of Lactocabilli plus cranberry extract was reported for impeding recurrent UTIs in premenopausal adult women. After 26 weeks, in a randomized, double-blind, placebo-controlled pilot study, a significantly lower number of women experienced recurrent UTIs (9.1 vs 33.3%), those who were administered with the product as compared to placebo [134]. In another study, the efficacy and safety of standardized cranberry capsules as prophylaxis in children with recurrent UTI was reported, where children on cranberry compared to the control group experienced significantly lower percentage of recurrent UTIs, with no side effects. A declined trend of *E. coli* infections was observed in the cranberry group (83.3% vs. 66.6%), though it was not significant ($p = 0.28$) [135].

Root extract of *Hemidesmus indicus* R. Br. (Indian sarsaparilla) (Asclepiadaceae) and seed extract of *P. grana- tum* (pomegranate) were reported to have urobaetocidal activity against different uropathogens, clinically isolated from patients suffering from urinary tract infections, i.e., *Escherichia coli*, *Enterococcus faecalis*, *Staphylococcus aureus*, and *Klebsiella pneumonia* [59, 136, 137]. Along with the presence of therapeutic antioxidants, i.e., phenolic compounds, tannins, steroids, terpenes, coumarins, and flavonoids, the extracts were found to be rich in natural glycosides, which are supposed to act as molecular decoys to prevent adhesion of pathogenic bacteria to host cell, thereby inhibiting the future pathogenesis. However, further research is required to confirm it. Till date, there are many reports on scientific evaluations and clinical trials of natural therapeutics for UTI, but they have serious limitations in study design and data interpretation. Most of the products mentioned in this review are based on “in vitro” studies; therefore, more clinical trials should be undertaken in order to assess the efficacy of these alternative preventions and therapeutic methods in humans.

Conclusion

Uroprotective role of cranberry was reported by maximum researchers, yet they suffer from serious drawbacks and fail to prove that cranberry use can prevent or treat acute and recurrent UTI. So, further investigation should focus on the molecular action of various phytochemicals present in cranberry and other potential berries against different uropathogens and uropathogenesis. Supplementation of probiotics was also proven to be effective in both acute and recurrent UTI. However, scientific validation with efficient clinical trial reports will strengthen the practice of using these traditional resources, which will help us in preventing these common yet very discomforting ailments.

Abbreviations

MIC: Minimum inhibitory concentration; MDR: Multidrug resistant; PAC: Proanthocyanidine; UTI: Urinary tract infection; UPEC: Uropathogenic *Escherichia coli*

Acknowledgements
The author expresses sincere gratitude to the Head, Department of Botany, Berhampur University for providing necessary facilities and thanks to Professor B. B. Panda for his consistent guidance and helpful suggestions during the preparation of this manuscript.

Studies involving plants must include a statement specifying the local, national or international guidelines and legislation, and the required or appropriate permissions and/or licenses for the study

Not applicable

Author’s contributions

Author SD had collected all the study material, analyzed, and prepared the complete manuscript. The author(s) read and approved the final manuscript.

Funding

Not applicable

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The author declares that there is no competing interest.

Received: 20 July 2020 **Accepted:** 18 August 2020

Published online: 18 September 2020

References

1. Wagenlehner FM, Lichtenstern C, Rolffes C, Mayer K, Uhle F, Weidner W, Weigand MA (2013) Diagnosis and management of urosepsis. Int J Urol 20: 963–970
2. Covelli-Smith A, Almond MK (2007) Management of urinary tract infections in the elderly. Trends in Urology Gynaecol Sex Health 12:31–34

3. Reid G (1999) Potential preventive strategies and therapies in urinary tract infection. World J Urol 17(6):359–363

4. Head KA (2008) Natural approaches to prevention and treatment of infections of the lower urinary tract. Altem Med Rev 13(2):227–244

5. Gur S, Turgut-Balik D, Gur N (2006) Antimicrobial activities and some fatty acids of turmeric, ginger root and linseed used in the treatment of infectious diseases. World J Agricultural Sci 2:439–442

6. Ahmad I, Aqil F (2007) In vitro efficacy of bioactive extracts of 15 medicinal plants against ESBL-producing multidrug-resistant enteric bacteria. Microbiol Res 162:264–279

7. Sibanda T, Okoth AI (2008) In vitro evaluation of the interactions between acetone extracts of Garcinia kola seeds and some antibiotics. Afr J Biotechnol 7:1672–1678

8. Yarnell E (2002) Botanical medicines for the urinary tract. World J Urol 20(5):285–293

9. Amin AH, Subbaliah TV, Abbasi KM (1969) Benzerine sulfate: antimicrobial activity, bioassay, and mode of action. Can J Microbiol 13(9):1067–1076

10. Sahib AS, Mohammed H, Hamdan SJ (2012) Use of aqueous extract of corn silk in the treatment of urinary tract infection. J Intercult Ethnobot 1(2):93–96

11. Wang GQ, Xu T, Bu XM, Liu BY (2012) Anti-inflammation effects of corn silk in a rat model of carrageenin induced pleurisy. Inflammation 35(3):822–827

12. Pattanayak S, Das DC, Sinha NK, Pandia S (2017) Use of medicinal plants for the treatment of urinary tract infections: a study from Paschim Medinipur district, West Bengal, India. Int J Pharm Bio Sci 8(3):250–259

13. Girach RD (1992) Medicinal plants used by Kondh tribe of district Phubani (Orissa) in eastern India. Ethnobot 45:3–6

14. Nayak A, Das NB, Nanda B (1998) Utility of some tribal drugs of Keonjhar (Orissa) – a tribe of Sonabera plateau. Ethnobot 158:264–279

15. Brahmam M, Dhal NK, Saxena HO (1996) Ethnobotanical studies among the Bhunjia tribe of Sonabera plateau. Ethnobiology in Human welfare. Deep publications, New Delhi, pp 162

16. Dash SS, Mishra MK (1999) Plant diversity and sustainable development in a tribal village eco-complex on the eastern ghats of Odisha. J Hum Ecol 10(5):415–419

17. Bhattara S, Chaudhary RP, Taylor RSL, Ghimire SK (2009) Biological activities of some Nepalese medicinal plants using in treating bacterial infections in human beings. Nepal J Sci Tech 83:90–95

18. Prachi CN, Kumar D, Kasana MS (2009) Medicinal plants of Muzaffarnagar district used in treatment of urinary tract and kidney stones. Ind J Trad Med 8(2):191–195

19. Hossan MS, Hafiz A, Agarwala B, Sawar MS, Karim M, Rahman MTU, Jahan R, Rahmatullah M (2010) Traditional use of medicinal plants in Bangladesh to treat urinary tract infections and sexually transmitted diseases. Ethnobot Res Appl 861–74

20. Revathi P, Paramelazhagan T (2010) Traditional knowledge on medicinal plants used by the Irula tribe of Hasanur hills, Erode district, Tamil Nadu, India. Ethnobot Leaflets 2:4

21. Darwish RM, Abujari TA (2010) Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on Escherichia coli. BMC Complement Altern Med 10:1–16

22. Pereira RS, Sinntaa TC, Furlanb MR, Jorgec AOC, Uenod M (2004) Antibacterial activity of some medicinal plants against pathogens causing complicated urinary tract infections. Indian J Pharm Sci 71(2):136–139

23. Nwze EJ, Eze EE (2009) Justification for the use of Ocimum gratissimum L. in herbal medicine and its interaction with disc antibiotics. BMC Complement Altern Med 9:37

24. Yushau M, Onuorah FC, Murta (2009) In-vitro sensitivity pattern of some urinary tract isolates to Carica papaya extracts. Bayero J Pure Appl Sci 2(2):75–78

25. Sosa V, Zunino P (2009) Effect of ibicella futa on uropathogenic Proteus mirabilis growth, virulence, and biofilm formation. J Infect Dev Countries 3(10):762–770

26. Kumar A, Sharma VK (2010) Antibacterial activity of allcin from Allium sativum against antibiotic resistant uropathogens. Int J Infect Dis 8(1)

27. Ravi Kumar S, Ganadesan S, Suganthi P, Ramalakshmi A (2010) Antibacterial potential of chosen mangrove plants against isolated urinary tract infectious bacterial pathogens. Int J Med Microbiol 2(3):94–99

28. Pozzovondran P, Nidhiya N, Murugan S (2011) Antimicrobial activity of Coccinia grandis against biofilm and ESBL producing uropathogenic E. coli. Global J Pharmacol 5(1):23–26

29. Khare RS, Karmakar S, Banerjee S, Nath G, Kundu S, Kundu K (2011) Uropathogen resistant essential oils of Colesus aromaticus and Ocimum sanctum. Int J Pharm Sci 28(8):2168–2172

30. Balasundaram A, Rathin Kumar P, John G, Selvakumar BN (2011) Antimicrobial activity of the leaf extract of two medicinal plants against MRSA (Methicillin resistant Staphylococcus aureus) from human urinary tract pathogens. Res J Microbiol 6(7):625–631

31. Arun T, Rao CHP (2011) Phytochemical screening and antibacterial activity of Moringa oleifera Lam. against Proteus mirabilis from urinary tract infected patients. Int J Pharm Res 3(4):2118–2123

32. Narayanan AS, Raja SS, Ponmurugan K, Kandekar SC, Natarajaseenivasan K, Maran R, Mandel QA (2011) Antibacterial activity of selected medicinal plants against multiple antibiotic resistant uropathogens: a study from Kolli Hills, Tamil Nadu, India. Benefic Microbes 2(3):235–243

33. Vogel NW, Tsachett AP, Dallaglio R, Weidlich L, Ethur EM (2011) Assessment of the antimicrobial effect of three plants used for therapy of community-acquired urinary tract infection in Rio Grande do Sul (Brazil). J Ethnopharmacol 137(3):1334–1336

34. Khan MS, Ahmed I (2012) Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J Ethnopharmacol 140(2):416–423

35. Kannan RR, Anurumgur R, Anantharaman P (2012) Chemical composition and antibacterial activity of Indian seagrasses against urinary tract pathogens. Food Chem 135(4):2470–2473

36. Wojniricz D, Kucherska AZ, Solok-Lytowska A, Kicia M, Tichaczek-Goska D (2012) Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli. Urol Res 40(6):683–697

37. Reygaert W, Jusufi I (2013) Green tea as an effective antimicrobial for urinary tract infections caused by Escherichia coli. Front Microbiol 4:1162

38. Jagadeesan S, Natarajan V, Rajitha E, Vijayan S, Singaram S (2013) Antibacterial activity of selected plant extracts against urinary tract infection causing organisms. J Microbiol Biotech Res 3(3):1–5

39. Rawat S, Ishaq F, Khan A (2013) Antimicrobial effect of drugs, medicinal plant extracts and essential oils against pathogenic bacteria causing urinary tract infection. Global J Biotech Biochem 8(1):15–24

40. Poongothai P, Rajan S (2013) Antibacterial properties of Mangifera indica flower extracts on uropathogenic Escherichia coli. Int J Microbiol App Sci 2(2):104–111

41. Manasa M, Kamber Y, Swamy HCS, Vivek MN, Kumar TNR, Kekuda TRP (2013) Antibacterial efficacy of Pimenta dioica and Antimicrobial activity of Syzygium occidentale plant extracts and essential oils against urinary tract pathogens. Pak J Pharm Sci 26(1):39–41

42. Narayan S, Lenthemberg M, Peterete F, Hensel A (2013) Antisadhesis as a functional concept for protection against uropathogenic Escherichia coli: In vitro studies with traditionally used plants with antisadhesis activity against uropathogenic Escherichia coli. J Ethnopharmacol 1(145):2591–2597

43. Dhanalakshmi N, Selvi S (2013) Antibacterial activity of medicinal plants used against UTI (urinary tract infection) causing pathogens. Int J Res Sci 1(10):01–07

44. Noormandi A, Dabaghzadeh F (2014) Effects of green tea on Escherichia coli as a uropathogen. J Tradit Complement Med 5(1):15–20

45. Kavitha KS, Satish S (2014) Antimicrobial activity of seed extracts of Callistemon lanceolatus DC on uropathogenic bacteria. J Acute Med 4(1):6–12
Das S, Naik P, Panda P (2017) Effect of Hemidesmus indicus on urinary tract pathogens. World J Pharm Sci 1:101–108

Alshami I, Alhafezi AE (2014) Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections: Asian Pac J Trop Biomed 4(10):104–108

Jahan N, Khatoon R, Ahmad S (2015) Evaluation of antibacterial potential of medicinal plant Cassia sophera against organisms causing urinary tract infection. Int J Pure Appl Biosci 3(2):450–455

Tibyangye J, Okech MA, Nyabayo JM, Nakavuma JL (2015) In vitro antimicrobial activity of five traditionally used plants against urinary tract infection pathogens. Asian J Med Health 1(2):1–7

Samanta P, Sinha NK (2016) Antimicrobial activity of five traditionally used medicinal plants against urinary tract infection causing bacteria. Int J Basic Sci 1(2):24–8

Aziz MA, Adnan M, Rahman H, Allah EA, Hashem A, Alqarawi AA (2017) Antimicrobial activities of medicinal plants against multidrug resistant urinary tract pathogens. Pak J Bot 49(3):1185–1192

Das S, Naik P, Panda P (2017) Effect of Hemidesmus indicus R.Br. root extract on urinary tract infection causing bacteria. Int J Herbal Med 5(3):160–168

Bodell PT, Comer R, Kasa EH (1959) Cranberry juice and the antimicrobial action of hippuric acid. J Lab Clin Med 54:881–888

Lenter C (1991) Geigy scientific tables 18th Ed West Caldwell NJ:CBIA-Geigy.

Boruth IF, Kibaba V, Senschuk GV (1972) Antimicrobial properties of cranberry. Vopr Pitan 31:82–88

Kahn HD, Panariello VA, Saeli J, Sampson JR, Schwartz E (1967) Effect of cranberry juice on urine. J Amer Diet Assoc 51:251–254

Hamilton-Miller JMT (1994) Reduction of bacteriuria and pyuria using cranberry juice. JAMA 272:588

Sobota AE (1984) Inhibition of bacterial adherence by cranberry juice: potential use for the treatment of urinary tract infections. J Urol 131(5):1013–1016

Schmidt DR, Sobota AE (1988) An examination of the anti-adherence activity of cranberry juice on urinary and nonurinary bacterial isolates. Microbios 55(224-225):173–181

Shmuelu H, Ofeik I, Weiss EI, Rones Z, Houri-Haddad Y (2012) Cranberry products inhibit adherence of type 1 and type P fimbriated Escherichia coli on uroepithelial-cell surfaces by decreasing adhesion forces and implications for uropathogenic Escherichia coli. Front Microbiol 8:542

Musew H, Perler P, Weiss EI, Rones Z, Houri-Haddad Y (2012) Evaluation of cranberry supplement for reduction of urinary tract infections. J Agric Food Chem 63(40):8804–8817

Linder LH, Esteban-Fernandez A, Sanchez-Patan F, Martin-Alvarez PJ, Moreno-Arribas MV, Bartolome B (2015) Anti-adhesive activity of cranberry phenolic compounds and their microbial-derived metabolites against uropathogenic Escherichia coli in bladder epithelial cell cultures. Int J Mol Sci 16(6):12191–12130

Rafsanjany N, Senker J, Brandt S, Dobrindt U, Hensel A (2015) In vivo consumption of cranberry exerts ex vivo antiadhesive activity against fimH-dominated uropathogenic Escherichia coli: a combined in vivo, ex vivo, and in vitro study of an extract from Vaccinium macrocarpon. J Agric Food Chem 63(40):8804–8818

Kontiokari T, Sundqvist K, Nuutinen M, Pokka T, Koskela M, Uharti M (2001) Randomised trial of cranberry-lingonberry juice and Lactobacillus GG drink for the prevention of urinary tract infections in women. BMJ 323(7320):776–779

Stothers L (2002) A randomized trial to evaluate effectiveness and cost effectiveness of naturopathic cranberry products as prophylaxis against recurrent urinary tract infections. BMC Res Notes 4:522–528

Lavigne JP, Vitrac X, Bernard L, Bruyere F, Sotto A (2011) Propolis can potentiate the anti-adhesion activity of proanthocyanidins on uropathogenic Escherichia coli in the prevention of recurrent urinary tract infections. BMC Res Notes 4:522–528

Rane HS, Bernardo SM, Howell AB, Lee SA (2014) Cranberry-derived proanthocyanidins prevent formation of Candido albicans biofilms in artificial urine through biofilm- and adherence-specific mechanisms. J Antimicrob Chemother 69(2):428–436

Nicolosi D, Tempere G, Genovese C, Fomperi PM (2014) Anti-adhesion activity of A2-type proanthocyanidins (a cranberry major component) on uropathogenic E. coli and P. mirabilis strains. Antibiotics (Basel) 3(2):143–154

Ullery RK, Barsdale SM, Zhou W, van Hoek ML (2014) Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Complement Altern Med 14:499

Sun J, Marais JP, Kho C, LaPonte K, Veigborg RM, Givskov M, Toller-Nielsen E (2014) Cranberry oligosaccharides decrease biofilm formation by uropathogenic Escherichia coli. J Funct Foods 7:235–242

de Llano DG, Esteban-Fernandez A, Sanchez-Patan F, Martin-Alvarez PJ, Moreno-Arribas MV, Bartolome B (2015) Anti-adhesive activity of cranberry phenolic compounds and their microbial-derived metabolites against uropathogenic Escherichia coli in bladder epithelial cell cultures. Int J Mol Sci 16(6):12191–12130

Hernandez M, Smolinski DA, Sotto A, Lavigne JP (2015) A randomized trial to evaluate effectiveness and cost effectiveness of naturopathic cranberry products as prophylaxis against recurrent urinary tract infections in a pediatric population. J Urol 193:909–912

Foda MM, Middelbrook PF, Gatfield CT, Cotvin G, Wells G, Schilling JR (1995) Efficacy of cranberry in prevention of urinary tract infection in a susceptible pediatric population. Can J Urol 21:98–102

Walker EB, Barney DP, Mickelson JN, Walton RJ, Mickelson RA Jr (1997) Cranberry concentrate: UTI prophylaxis. J Fam Pract 45(2):167–168

Schlager TA, Anderson S, Trudell J, Hendley JO (1999) Effect of cranberry juice on bacteria in children with neonrogenic bladder receiving intermittent catheterization. J Pediatr 135(6):698–702

Kontokaki T, Sundqvist K, Nuutinen M, Pokka T, Koskela M, Uharti M (2001) Randomised trial of cranberry-lingonberry juice and Lactobacillus GG drink for the prevention of urinary tract infections in women. BMJ 323(7292):1571

McGuinness SD, Krone R, Metz LM (2002) A double-blind, randomized, placebo-controlled trial of cranberry supplements in multiple sclerosis. J Neurol Sci 193(1–2):10–16

Waites KB, Canupp KC, Armstrong S, DeVol MJ (2004) Effect of cranberry extract on bacteria and pyuria in persons with neurogenic bladder secondary to spinal cord injury. J Spinal Cord Med 27(1):35–40

Linsenmeyer TA, Harrison B, Oakley A, Kirshblum S, Stock JA, Mills SR (2004) Evaluation of cranberry supplement for reduction of urinary tract infections...
in individuals with neurogenic bladders secondary to spinal cord injury. A prospective, double-blinded, placebo-controlled, crossover study. J Spinal Cord Med 27(1):29–34

98. McMurdo ME, Bissett LY, Price RJ, Phillips G, Grombie IK (2005) Does ingestion of cranberry juice reduce symptomatic urinary tract infections in older people in hospital? A double-blind, placebo-controlled trial. Age Ageing 34(3):256–261

99. Lee BB, Hanan MJ, Hunt LM, Simpson JM, Marial O, Rutkowski SB et al (2007) Antagonistic activity of probiotic lactobacilli and bifidobacteria against enteroto and uropathogens. J Appl Microbiol 100(6):1324–1332

100. Wing DA, Rumney PJ, Preslicka CW, Chung JH (2008) Daily cranberry juice in injured patients with neurogenic bladder. Spinal Cord 46(9):622–626

101. Dieter AA (2015) Cranberry capsules (2 taken twice daily for an average 38 older women in hospital? A double-blind, placebo-controlled trial. J Urol 180(4):1367–1372

102. Hess MJ, Hess PE, Sullivan MR, Nee M, Yalla SV (2008) Evaluation of cranberry tablets for the prevention of urinary tract infections in spinal cord injured patients with neurogenic bladder. Spinal Cord 46(9):622–626

103. Ferrara P, Romaniello L, Vitelli Q, Gatto A, Serva M, Cataldì L (2009) Cranberry juice for the prevention of recurrent urinary tract infections: a randomized controlled trial in children. Scand J Urol Nephrol 43(5):369–372

104. Barbosa-Cesnik C, Brown MB, Buxton M, Zhang L, DeBusscher J, Foxman B (2010) Cranberry juice fails to prevent recurrent urinary tract infection: results from a randomized placebo-controlled trial. Clin Infect Dis 52(1):23–30

105. Salo J, Uhar M, Heinimaj M, Nieminen T, Pokka T, Konttikari T (2012) Cranberry juice for the prevention of recurrences of urinary tract infections in children: a randomized placebo-controlled trial. Clin Infect Dis 54(3):340–346

106. Bonetta A, Di Pierro F (2012) Enteric-coated, highly standardized cranberry extract reduces risk of UTIs and urinary symptoms during radiotherapy for prostate cancer. Cancer Manag Res 4:281–286

107. Stapleton AE, Dziura J, Hooton TM, Cox ME, Yarovaya YY, Chen S, Gupta K (2014) Use of translational fusion of the MrpH fimbrial adhesin-binding protein in predicting recurrent urinary tract infection. J Urol 184(1):358–363

108. Koradia P, Kapadia S, Trivedi Y, Chanchu G, Harper A (2019) Probiotic and cranberry supplementation for preventing recurrent uncomplicated urinary tract infections in premenopausal women: a controlled pilot study. Exp Rev Anti-Infect Therapy 17(9):731–736

109. Vostalova J, Vidlar A, Simanek V, Galandakova A, Kostiková M, Berlicki L, Hultgren SJ (2011) Prevention of uropathogenic bacteria from colonization and infection by uropathogenic Escherichia coli in the urinary tract. Vaccine 29(24):3030–3037

110. Caljouw MAA, van den Hout WB, Putter H, Achtenberg WP, Coobs HJM, Gussleijko J (2014) Effectiveness of cranberry capsules to prevent urinary tract infections in vulnerable older persons: a double-blind randomized placebo-controlled trial in long-term care facilities. J Am Geriatr Soc 62(1):103–110

111. Foxman B, Cronenwett AE, Spino C, Berger MB, Morgan DM (2015) Cranberry juice capsules and urinary tract infection after surgery: results of a randomized controlled trial. Am J Obstet Gynecol 213(2):194

112. Dieterr AA (2015) Cranberry capsules (2 taken twice daily for an average 38 days) reduce the risk of postoperative urinary tract infection in women undergoing benign gynaecological surgery involving intraoperative catheterisation. Evid Based Med 20(4):137

113. Vostalova J, Vidlar A, Simanek V, Galandakova A, Kostikova M, Berlicki L, Hultgren SJ (2011) Prevention of uropathogenic bacteria from colonization and infection by uropathogenic Escherichia coli in the urinary tract. Vaccine 29(24):3030–3037

114. O’Hanley P, Lalande G, Jones C (1991) Alpha-hemolysin contributes to the pathogenicity of pillaged digalactoside-binding Escherichia coli in the kidney: efficacy of an α-hemolysin vaccine in preventing renal injury in the BALB/c mouse model of glycogenolysis. Infect Immun 59:1153–1161

115. Kosikowska P, Berlicki L (2011) Urease inhibitors as potential drugs for gastric and urinary tract infections: a patent review. Expert Opin Ther Pat 21:945–957

116. Pinkner JS, Remaut H, Buclens F, Miller E, Aberg V, Pemberton E et al (2006) Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc Natl Acad Sci USA 103:17897–17902

117. Cusumano CK, Pinkner JS, Han Z, Greene SE, Ford BA, Crowley JR, Henderson JP, Janetka JW, Hultgren SJ (2011) Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci Transl Med 3:115–119

118. Schindler G, Patzak U, Brinkhaus B, von Niecieck A, Witting J, Krahmer N, Glock I, Veit M (2002) Urinary excretion and metabolism of arbutin after oral administration of Arctostaphylos uva ursi extract as film-coated tablets and aqueous solution in healthy humans. J Clin Pharmacol 42(8):927–937

119. Reid G, Bruce AW, Fraser N, Heinemann C, Owen J, Henning B (2001) Oral probiotics can resolve urogenital infections. FEMS Immunol Med Microbiol 30:49–52

120. Hutt P, Shchepetova J, Lovukvène K, Kulissas T, Mikelsaar M (2006) Antagonistic activity of probiotic lactobacilli and bifidobacteria against enteroto and uropathogens. J Appl Microbiol 100(6):1324–1332

121. Konttikari T, Latinen J, Iani L, Pokka T, Sundvistik K, Uhar M (2003) Dietary factors protecting women from urinary tract infection. Am J Clin Nutr 77:600–604

122. Chan RCY, Reid G, Irvin RT, Bruce AW, Costerton JW (1985) Competitive exclusion of uropathogens from human uroepithelial cells by Lactobacillus whole cells and cell wall fragments. Infect Immun 47(1):84–89

123. Reid G, Chan RC, Bruce AW, Costerton JW (1985) Prevention of urinary tract infection in rats with an indigenous Lactobacillus casei strain. Infect Immun 49(2):320–324

124. Li Y, Ho CY, Huang CC, Tsai CC (2016) Inhibitory effect of lactic acid bacteria on uropathogenic Escherichia coli-induced urinary tract infections. J Probi Health 4(2):144–150

125. Langemann S, Palazynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J, Barren P, Koenig S, Leath S, Jones CH, Hultgren SJ (1997) Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276:610–611

126. Langemann S, Molby R, Burlein JE, Palazynski SR, Auguste CG, De Fusco AS et al (2000) Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 181:774–778

127. Asadi Karam MR, Oloomi M, Mahdavi M, Habibi M, Bouzari S (2013) Vaccination with recombinant FimH fused with flagellin enhances cellular and humoral immunity against urinary tract infection in mice. Vaccine 31:1210–1216

128. Li X, Erbe JL, Lockatell CV, Johnson DE, Jobling MG, Holmes RK, Mobley HLT (2004) Use of translational fusion of the MprF fimbral adhesin-binding domain with the cholera toxin A2 domain, coexpressed with the cholera toxin B subunit, as an intranasal vaccine to prevent experimental urinary tract infection by Proteus mirabilis. Infect Immun 72:7306–7310

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.