Adequacy of measures of informed consent in medical practice: A systematic review

Kerry A. Sherman¹*, Christopher Jon Kilby², Melissa Pehlivan¹, Brittany Smith¹

¹ Centre for Emotional Health, Department of Psychology, Macquarie University, Sydney, Australia, ² The Cairnmillar Institute, Melbourne, Australia

* kerry.sherman@mq.edu.au

Abstract

As a critical component of medical practice, it is alarming that patient informed consent does not always reflect (1) adequate information provision, (2) comprehension of provided information, and (3) a voluntary decision. Consequences of poor informed consent include low patient satisfaction, compromised treatment adherence, and litigation against medical practitioners. To ensure a well-informed, well-comprehended, and voluntary consent process, the objective and replicable measurement of these domains via psychometrically sound self-report measures is critical. This systematic review aimed to evaluate the adequacy of existing measures in terms of the extent to which they assess the three domains of informed consent, are psychometrically sound and acceptable for use by patients. Extensive searching of multiple databases (PsychINFO, PubMed, Sociological Abstracts, CINAHL, AMED) yielded 10,000 potential studies, with 16 relevant scales identified. No existing scale was found to measure all three consent domains, with most only narrowly assessing aspects of any one domain. Information provision was the most frequently assessed domain, followed by comprehension, and then voluntariness. None of the identified scales were found to have adequate evidence for either high quality psychometric properties or patient user acceptability. No existing scale is fit for purpose in comprehensively assessing all domains of informed consent. In the absence of any existing measure meeting the necessary criteria relating to information, comprehension and voluntariness, there is an urgent need for a new measure of medical consent to be developed that is psychometrically sound, spans all three domains and is acceptable to patients and clinicians alike. These findings provide the impetus and justification for the redesign of the informed consent process, with the aim to provide a robust, reliable and replicable process that will in turn improve the quality of the patient experience and care provided.

Introduction

Obtaining patient consent is a necessary and critical process enshrined in medical practice, that is characterised within a model of three domains: (provision of) Information, Comprehension (of information by the patient), and Voluntariness (of the patient’s decision without
The complexity and unfamiliarity of many medical decisions renders decision making challenging for patients with many rarely involved in a shared decision-making process [2, 3]; yet health professionals do not necessarily have a good grasp of the consent process and patient decision-making capacity [4]. Although aspects of consent may be fulfilled by patients completing a consent form [5, 6], research indicates the informed consent process is poorly executed, with widespread reporting of ill-informed patients who agree to procedures for which they have little comprehension [7], suggesting that the provision of consent does not always reflect a well-informed, well-considered, ethical process [5]. With shared decision making the gold standard for medical practice [8–10], it is critical that the medical consent process reflects the patient’s values and goals, and not simply the clinician’s view [11]. There are costly consequences of patients being inadequately informed about medical procedures ranging from low patient satisfaction with care, increased patient regret, poor adherence to treatment plans, both underuse and overuse of the health system [2, 12–17], and patient litigation against medical practitioners [18]. These failures are due in part to the lack of any standardised approach to measuring the consent process [9], and there is a pressing need for standardisation across medical practice contexts [19]. Reviews of the informed consent process for participation in medical research and clinical trials similarly highlight serious shortcomings stemming from lack of standardisation of measures [20–22]. To ensure that truly informed consent is achieved, it is critical that the patient perspective is reflected by assessing the three consent domains using patient-reported measures undertaken in an objective and replicable manner (i.e., using psychometrically-sound measures). Yet, no such systematic investigation has been undertaken to evaluate the quality of current measures available to assess the informed consent process in medical practice, or whether current measures are fit-for-purpose in assessing the three consent domains.

Adequately assessing the extent to which the three domains of consent are being addressed requires clarification of the breadth of these constructs. Providing information, the first critical step in the consent process, entails describing the procedure, anticipated risks/benefits, and available alternatives [3], as well as facilitating the patient to ask questions beyond that which has been provided in the consent documentation [23]. However, there is frequently a mismatch between information given by health professionals and that desired by patients [24, 25].

Other factors that may influence informed consent decision-making include cultural or language barriers, and fear of the healthcare system, that is frequently present in minority populations [e.g., 28, 35, 36]. This relates to the third domain of voluntariness, that stipulates the need for informed consent to be undertaken without any duress or undue influence from medical practitioners. Of note, however, is research highlighting that the level of independence in medical decision making differs from person to person, with some individuals
requiring greater assistance in arriving at a voluntary decision, whereas others require more time to think and consider the decision on their own. Another critical aspect of voluntariness is the assessment of comprehension and information provision independent of the clinician through patient self-reported measures, whose direct questions through clinical interview may introduce bias by influencing responder’s answers, negating the voluntariness of the decision [19].

An objective and replicable approach is needed to measure the extent to which consent processes are meeting the goals of the three domains of Information, Comprehension, and Voluntariness. Prior systematic reviews have not directly addressed this issue, but relatedly, have highlighted a paucity of reliable and valid scales to assess specific aspects involved in medical decision-making more generally (e.g., extent of patient involvement in decision making [9], patient need for information [25], and participation in clinical trials [20]). To that end, a detailed examination of the measures available to assess the consent process in medical practice is warranted. This study aimed to undertake a systematic review to identify and critically evaluate existing evidence-based measures of patient informed medical consent. Specifically, we aimed to evaluate the adequacy of existing measures in terms of the extent to which they assess the three domains of informed consent and whether they are psychometrically sound, reliable and valid measures. This review paper will make recommendations for the potential application or modification of relevant existing measures and identify gaps in currently available measures for assessing medical consent, in order to provide a robust, reliable and replicable process.

Methods

This systematic review was conducted in accordance with the PRISMA guidelines (see S1 Checklist for PRISMA checklist).

Search strategy

Six online journal databases (PsychINFO, PubMed, Sociological Abstracts, CINAHL, AMED) were searched for relevant articles in March 2020 using the following detailed search strategy: (consent* OR withdraw*) OR ((decision* AND (making OR capac* OR conflict* OR regret* OR need* OR support*)) OR competence OR risk* OR coerc* OR "mental capac") OR (underst* OR comprehen* OR benefit* OR harm* OR literacy OR know* OR aware* OR (satisfac* AND (patient OR client)) OR disclos* OR (treat* AND (option* OR alternati*))) OR (autono* OR agen* OR self-determin* OR value* OR choice) OR ("physician-patient relations" OR communication OR dissemination OR "privilege commun"") OR care OR services OR treatment OR privacy) OR (clinical AND trial OR randomi?ed AND control?ed AND trial OR rct) AND (psychomet* OR valida* OR measure* OR scal* OR survey* OR questionnaire* OR (construction AND (test OR scale))). Reference lists of identified articles were hand searched to ensure all potential studies were captured. The review protocol is not published elsewhere.

Inclusion and exclusion criteria

The review inclusion and exclusion criteria are listed in Table 1. Wherever the abstract or title indicated exclusion criteria were met, the study was excluded. Full text articles were reviewed when it was unclear if inclusion criteria were met from the title or abstract alone and discussed amongst the research team; papers that met all the inclusion criteria and which did not meet any of the exclusion criteria were included for review.
The authors reviewed the included studies for evidence of scale validation. Scale psychometric properties were rated using a previously published scoring system [37], see Table 2. A score of “1” was given when the validation sample exceeded 300, and “0.5” for sample sizes >200 and <300 [38]. For every reported adequate psychometric property (e.g., construct validity) [39], studies received a score of “1” or “0.5” (depending on the scoring of each psychometric property) [40]. When authors did not examine a type of validation or the validation failed, it was scored “0”. Scores for each psychometric property were summed to give an overall score (possible range: 0–16). Ratings were undertaken by two of the authors (MP, BS) with any disagreements discussed until agreement was reached in collaboration with the other authors (KAS, CJK).

Results
The results of the literature search are presented in the PRISMA diagram (Fig 1). From 10,663 articles initially identified, 10,370 were unique results (n = 293 removed), and after screening for titles and abstracts, a further 10,304 articles were excluded. Of the 66 remaining articles, 8 met inclusion criteria. Hand-searching of reference lists of these included articles yielded a further 8 papers that met inclusion criteria, resulting in 16 included articles (representing 19 different studies reporting on 16 different scales).

The description and evaluation of reviewed scales is provided in Tables 3 and 4. The total sample size across all 19 studies was 8195 participants (range N = 45 to 2351), with nine scales meeting the criterion of having adequate validation study sample size [41–49]. Scale length ranged from 5 [50, 51] to 36 items [46]. Studies were based in the United States (n = 8), Canada (n = 2), United Kingdom (n = 2), France (n = 2), Germany (n = 1) and Netherlands (n = 1).

Assessing domains of consent
Information provision was assessed by 9 (56%) scales:[41–43, 45, 47, 50–53]. Comprehension of information was also assessed by 7 (44%) scales: [44, 46, 48, 53–56]. Voluntariness was assessed by 5 scales (31%): [41, 45–47, 49]. None of the scales assessed all three domains of consent. Six (37.5%) scales assessed two consent domains: [41, 42, 45–47, 53]. The remaining 10 (62.5%) scales assessed only one domain of consent.
Table 2. Psychometric properties of scales and rules for evaluation.

Psychometric property	Definition	Method of measurement	Psychometric evaluation criteria	Scoring
Sample	Size of the sample used to validate the scale	Sample size (N)	≥200	“0.5” if the sample size was between 200–299 and “1” if the sample was ≥ 300, as this is recommended for scale validation.
Reliability				
Internal consistency	Extent to which all scale items are measuring the same construct	Cronbach’s α	0.70–0.90	“1”: ≥0.7
				“0”: <0.7
	Item total correlation	≥0.40		“1”: ≥0.40
				“0”: <0.40
Test–retest reliability	Degree of consistency in scores by the same people at two times, assume no construct change	Correlation coefficient between scores from two occasions some time apart (maximum 2–4 weeks)	≥0.70	“1”: ≥0.7
				“0”: <0.7
Validity				
Content	Extent to which items in a scale cover the construct adequately	Based on theory, prior scale devt or lit review, quali feedback from experts, and participant feedback	N/A	“1”: for each instance of evidence that the measure is based on theory/literature review, or examined by experts in the field, or examined by patients/participants. (Maximum score of 3)
Criterion	How well the scale relates to the ”true value” or a “gold standard” for measuring the construct	Correlation coefficient between survey and criterion scores	Higher the correlation the more valid the scale. Acceptable values: significant moderate (r > 0.30) to high (r > 0.50) correlations	“0.5” if 0.30 < r < 0.49
				“1” if r > 0.50 of correlations between the scale and the ”gold standard” measure either taken at the same time (Concurrent) or in the future (Predictive)
				(Maximum score of 2)
Validity				
Construct	Extent to which hypothesized relationships with similar (Convergent) or different (Discriminant) constructs are confirmed	Correlation coefficient between survey scores and hypothesized variables	Moderate correlations with similar constructs ≥0.3 (Convergent) and low correlations <0.30 with different constructs (Discriminant)	“1”: evidence of Convergent validity
				“1”: evidence of Discriminant validity (Maximum score of 2)
	Known groups comparisons	“1”: Significant difference in scores between known groups [37]		
	Factor analysis	“1”: Factor analysis (either confirmatory or exploratory) confirms hypothesized structure [37] (Maximum score of 2)		
Responsiveness to change	Sensitivity to change over time	No widely accepted method of measuring responsiveness to change exists [e.g., ANOVA comparing scores over period where change is hypothesized to have occurred; correlation with people’s perceptions of change; 40].	Significant differences in scores over time when the change in consent beliefs are hypothesized to have occurred (e.g., due to information provision/discussion); significant correlation between scale scores’ and respondent’s or other professionals’ perceptions of change.	“1”: Evidence of sensitivity to change over time
	Guyatt Responsiveness Statistic: the ability of the scale to capture clinically meaningful change.	≥0.2: acceptable responsivity		

(Continued)
Table 2. (Continued)

Psychometric property	Definition	Method of measurement	Psychometric evaluation criteria	Scoring
Acceptability	User perception of ease of use	Self-reported patient user ratings of using the scale.	“1”: Information given on patient perspective of scale	

Abbreviations: devt, development; lit review, literature review; quali, qualitative; N/A, Not Applicable.

https://doi.org/10.1371/journal.pone.0251485.t002

Fig 1. PRISMA diagram.

https://doi.org/10.1371/journal.pone.0251485.g001
Table 3. Summary of scale papers included for review.

Scale Name	Construct/s measured	Example item	Higher score interpretation	Subscales related to domains of consent
Combined Outcome Measure for Risk communication and treatment Decision making Effectiveness (COMRADE, 20 items; 41)	Risk communication (Risk communication) Decision-making effectiveness (Confidence in decision)	"The doctor gave me enough information about the treatment choices available." (NR)	✔ (Risk communication) ✔ (Confidence in decision)	
Doctor-patient communication questionnaire [13 items; 50]	Doctor-patient communication: listening, confidence, empathy, decision-making, quality of care, information and reassurance (Communication)	"Did the doctor explain the advantages and disadvantages of the treatment or care strategy?" (1 = no to 4 = yes).	✔ (Communication)	
Generic Medical Interview Satisfaction Scale [G-MISS, 16 items; 42]	Patient experiences and satisfaction with medical consultations (Sense of post-communication relief) (Communication) (Compliance)	"The doctor told me all I wanted to know about my illness" (1 = strongly disagree to 5 = strongly agree).	✔ (Sense of post-communication relief)	
Facilitation of Patient Involvement Scale [9 items; 43]	Patients’ perceptions of physician’s facilitation	"My doctor explains all treatment options to me so that I can make an informed choice" (1 = none of the time to 6 = all of the time).	✔ Patients’ perceptions of physician’s facilitation	
Brief Health Literacy Screen [5 items; 54]	Health Literacy	"How often do you have trouble understanding what your doctor, nurse, or pharmacist (druggist) tells you about your health or about treatments?" (1 = always to 5 = never).	✔ Health literacy	
Perceived Efficacy in Patient-Physician Interactions Questionnaire [PEPPI, 10 items and PEPPI-Short, 5 items; 51]	Patient- perceived self-efficacy: the subjective sense of patients’ confidence when interacting with their physicians.	"How confident are you in your ability to understand what a doctor tells you?" (1 = not at all confident to 5 = very confident).	✔ Perceived efficacy in patient-physician interactions	
Healthcare Relationship Trust Scale [15 items; 52]	Collaborative trust: (a) Knowledge Sharing; (b) Emotional Connection; (c) Professional Connection; (d) Respect; (e) Honesty; and (f) Partnership. (Interpersonal communication) (Respectful communication) (Professional Partnering)	"Discusses options and choice" (0 = none of the time to 4 = all of the time).	✔ Patient trust in healthcare relationships ✔ (Interpersonal connection) (Professional partnering)	

(Continued)
Scale Name	Construct/s measured	Example item	Higher score interpretation	Subscales related to domains of consent
No. items	**(Subscales)**	**Range of scores**	**Higher score interpretation**	**Subscales related to domains of consent**
Subjective Tests of Health Literacy and Numeracy [22 items; 53]	Health Literacy and Numeracy (Functional health literacy)	“Health literacy: Since being diagnosed with diabetes have you extracted information you wanted?”	Higher health literacy and subjective rating of numeracy abilities and preferences.	✔ (Communication health literacy)
✔ (Functional health literacy) (Critical health literacy)				
	(Communicative health literacy) (Critical health literacy) (Perceptions of quantitative ability)			
Decisional Conflict Scale [16 items; 44]	Decisional conflict: uncertainty, informed, values clarity, support, effective decision (Uncertainty) (Effective decision-making) (Factors contributing to uncertainty)	“I feel I have made an informed choice” (1 = Strongly agree to 5 = Strongly disagree).	Higher decisional conflict	✔ (Factors contributing to uncertainty)
DelibeRATE [9 items; 55]	Deliberation process	“I know enough about each option to help me decide” (1 = Strongly disagree to 7 = Strongly agree).	The more ready individuals were to make a decision about which surgery to choose	✔ Deliberation process
The Autonomy Preference Index [API, 23 items 45]	Decision-making (Decision-making preference) Information-seeking (Information-seeking preference)	“You should go along with your doctor’s advice even if you disagree with it.” (1 = Strongly disagree to 5 = Strongly agree).	Strongest preferences in favor of decision making or information seeking	✔ (Information-seeking)
✔ (Decision-making preference)				
University of California, San Diego Brief Assessment of Capacity to Consent [UBACC, 10-items; 56]	(1) Understanding, (2) Appreciation, (3) Reasoning	Is it possible that being in this study will not have any benefit to you? (0 = Incapable to 2 = Capable).	Clear capability to give consent	✔ Understanding Appreciation Reasoning
Decision Evaluation Scales [36-items; 46]	Uncertainty about and satisfaction with the decision, informed choice, effective decision making, responsibility for the decision, perceived riskiness of the choice, and social support regarding the decision (Satisfaction–Uncertainty) (Informed Choice) (Decision Control)	“I feel pressure from others in making this decision” (1 = Strongly disagree to 5 = Strongly agree).	Greater: (1) satisfaction (2) informed choice (3) decisional control	✔ (Informed choice)
✔ (Satisfaction-uncertainty) (Decision-control) |

(Continued)
None of the scales were awarded a full score (i.e., 3) for reliability. Three scales (19%) provided evidence of both internal consistency and temporal stability: [43–45].

None of the scales were awarded a full score (i.e., 10) for evidence supporting their validity. Of those with the greatest evidence for validity, COMRADE [41] scored 6/10 and [47, 51, 54] each scored 5/10.

Only one scale provided information from the patient perspective on acceptability of the scale, specifically regarding comfort in responding to the questions (Brief Health Literacy) [54]. Information about completion rates was provided by 5 (38%) scales: [41, 42, 46, 49, 50].

Total quality assessment scores out of 16 ranged from a low of 3.5 to a high of 8. The COMRADE [41] had the highest overall score (8/16) closely followed by: [43–45, 47, 54] all scoring 7/16. The Decision Evaluation Scale [46] and PEPPi and PEPPi-Short [51] were not far behind, both scoring 6/16. The most frequently met quality criteria were internal consistency reliability (n = 16, 100%), exploratory factor analysis (n = 12, 75%), and adequate validation sample size (n = 9, 56%). Divergent validity (n = 1, 6.25%) and sensitivity analysis (n = 2, 12.5%) were the most poorly met quality criteria, followed by concurrent and content validity, test-retest reliability and confirmatory factor analysis (all n = 3, 18.75%).
Table 4. Evaluation of scale quality.

Scale	Sample	Reliability	Content Validity	Crit Validity	Constr Validity	FA	SA	Acceptability	Qual Score /16 (%)		
COMRADE [41]	n = 715	α = .92	-	T/LR, EF, UF	✓ [29]				80.76% completion		
Score									8 (50)		
Doctor-patient communication questionnaire [50]	n = 156	α = .89	-	T/LR, EF, UF	✓	✓			88% completion		
Score									5.5 (34.38)		
G-MISS [42]	n = 1822	α = .85	-	T/LR, UF	-	-	✓		5.2% of patients		
Score									with missing values		
Facilitation of Patient Involvement Scale [43]	n = 1035	α ≥ .989	r ≥ .85 (6 weeks)	EF	✓	✓	✓				
Score											
Brief Health Literacy Screen [54]	n = 100	α = .79	-	T/LR, UF	✓	✓	✓		No reported discomfort in completion.		
Score											
PEPPPI & PEPPPI (Short) [51]	n = 163	α ≥ .90^a/ α ≥ .82^b	-	EF, UF	-	-	✓	✓	✓	✓	No reported discomfort in completion.
Score											
Healthcare Relationship Trust Scale [52]	n = 99	α ≥ .92	r = .59 (2 to 4 weeks)	EF, UF	-	-	✓	-	✓	-	-
Score											
Subjective Tests of Health Literacy and Numeracy [53]	n = 102	α = .83	-	T/LR	✓^c	✓	✓				
Score											
Decisional Conflict Scale [44]	n₁ = 151^d/ n₂ = 115^e/ n₃ = 283^f/ n₄ = 360^g	α ≥ 0.78	T/LR	✓	✓	-	-	delay vs make decision	-		
Score											
DelibeRATE [55]	n = 54	α ≥ .95	-	T/LR	✓	-	-	-	-	Pre vs post delib scores	
Score											
API [45]	n = 312	α = .82	r ≥ .82 (two weeks)	EF, UF	✓	-	-	-	✓	-	-
Score											
UBACC [56]	n = 157	α ≥ .76	-	T/LR, EF	✓^h	-	-	✓	-	-	-

(Continued)
Discussion

This systematic review identified and evaluated existing approaches to measuring the adequacy of the informed consent process in medical practice. After an extensive literature search of more than 10,000 potential studies, only 16 scales were identified that assess any of the three domains of informed consent. Most of the identified scales have extensive limitations. In terms of the content that is being assessed, no existing scales measure all three consent domains. Several scales measure two of the three domains [41, 42, 45–47, 53]. Moreover, the exact aspect of each domain tapped into by these measures were quite different. Hence, in terms of content being assessed, no one scale is fit for purpose in comprehensively assessing all domains of informed consent, and at best several measures would need to be used in conjunction to assess all domains comprehensively.

Of the three top ranking scales assessing the Information domain, the COMRADE [41] focuses solely on whether risk-related information has been provided for the patient, and the Facilitation of Patient Involvement Scale [43] and the HCEQ [47] capture the extent to which...

Table 4. (Continued)

Scale	Sample	Reliability	Content Validity	Crit Validity	Constr validity	FA	SA	Acceptability	Qual Score /16 (%)	
Decision evaluation scales [46]	n = 343	α ≥ .75	-	EF	-	✓			87% completion.	
Score	1	1	0	2	0.5	0	0	0	0	
HCEQ [47]	n = 873	α = .83	T/LR, EF, UF	-	-	✓	✓	-	6 (37.5)	
Score	1	1	0	1	0	1	0	0	0	
Preparation for Decision Making scale [48]	n = 400	α ≥ .92	T/LR	-	✓ 0	✓			-	
Score	1	1	0	1	0	1	0	0	0	
SDM-Q-9 [49]	n = 2351	α ≥ .90	T/LR	-	-	✓			Response rates <80%.	
Score	1	1	0	1	0	1	0	0	0	
Number of scales meeting specific criterion/16 (%)	9 (56.25%)	16 (100)	3 (18.75)	3 (18.75)	6 (37.5)	12 (75)	3 (18.75)	2 (12.5)	1 (6.25)	4 (25)

Abbreviations: Crit, Criterion; Constr, Construct; FA, Factor Analysis; SA, Sensitivity Analysis; Qual, Quality; IC, Internal consistency; TRR, Test-retest reliability; Con, Concurrent. Pre, Predictive; KG, Known Groups; Conv, Convergent; Div, Divergent; E, Exploratory; C, Confirmatory; T/LR, Theory/Literature review; EF, Expert feedback; UF, User feedback; delib, deliberation.

a Internal consistency for the PEPPI.
b Internal consistency for the PEPPI (Short).
c Spearman Rank coefficient reported.
d Health science students.
e Health employees.
f Cardiac/respiratory patients.
g Breast cancer patients.
h Analysis conducted at item level.

https://doi.org/10.1371/journal.pone.0251485.t004
the patient perceives that the physician has facilitated a shared decision. Of the two latter scales, the Facilitation of Patient Involvement Scale [43] has more extensive evidence for validity (criterion and construct) having demonstrated that it can predict patient satisfaction following medical procedures and demonstrates logical relationships with similar constructs. As such, a combination of components from the COMRADE [41] and the Facilitation of Patient Involvement Scale [43] may be appropriate to comprehensively assess the Information domain.

The three highest scoring scales for the domain of Comprehension [44, 46, 54] have similar levels of evidence for their validity, with one scale [44] additionally providing evidence for stability over time. The Decisional Conflict Scale [44] captures extent of uncertainty around decision making, whereas the Brief Health Literacy Screen [54] assesses self-perceptions of comprehending the information provided by a physician. More directly related to the informed consent process is the informed choice subscale of the Decision Evaluation Scales [46], assessing self-perceptions of being adequately informed about a procedure in order to make a choice. Perhaps due to the inherent difficulty in developing measures that assess context-specific knowledge (e.g., details of a surgical procedure), none of these scales assess accuracy of knowledge. What is missing from any of these higher rated scales is consideration of whether the patient is able to apply the information provided to their own situation, using this to support their decision making [26], and the temporal aspect of the consenting process [2, 27], two factors that are key to comprehension.

For the Voluntariness domain, the COMRADE [41] scored highest with a subscale that assesses patient confidence to make a decision, followed by the API [45] and HCEQ [47] both of which assess the patient’s preferred role or amount of control in the decision-making process. The API [45] has greater evidence for reliability and validity, compared with the HCEQ [47], potentially making it the more useful measure. Although tapping into aspects of patient confidence and patient preferred role in this decision making, an aspect neglected by these higher rated scales is whether the consent (decision) is being made free of undue influence or duress from the medical team, the main caveat of voluntariness [19].

In assessing the quality of the existing scales reflecting aspects of the informed consent process, it is important to consider how the scale may be implemented in clinical practice in terms of: (1) does the scale have high quality psychometric properties to ensure that the variability in scores on the scale truly reflect variability in the underlying construct (e.g., comprehension), rather than measurement error?; (2) does the scale preferably measure more than one domain of informed consent, to minimize patient burden and have the most parsimonious measurement approach?; and, (3) practical considerations regarding user (patient) experience of using the scale, and the administration, scoring and interpretation of the scale. For psychometric quality, the COMRADE [41] scored highest, followed by [43–45, 47, 54], with three of these scales assessing more than one domain [41, 45, 47]. Information is the most frequently assessed domain of these higher quality scales, yet, the COMRADE assesses a very narrow perspective (i.e., whether risk-related information has been provided), neglecting crucial aspects including whether the procedure and available alternatives are adequately described [3] and if the patient was able to ask questions prior to consenting [23]. Hence, as a measure of the Information domain, COMRADE alone is not fit for purpose and needs to be supplemented. In the interests of providing a parsimonious approach to measuring informed consent, the COMRADE does provide a measure of Voluntariness, although this alone is not fit for purpose as it neglects to assess whether consent (the decision) is being made free of undue influence or duress from the medical team [19]. Moreover, since the COMRADE neglects to assess comprehension, other high scoring measures in this domain (e.g., Brief Health Literacy Screen [54]) may need to be invoked.
Importantly, in reviewing the 16 scales assessing aspects of the consent process, only the San Diego Brief Assessment of Capacity to Consent [56] was purposely designed for measuring the consent process, specifically in randomized controlled trial research. However, this scale has yet to be subjected to rigorous validity assessment. All other measures were designed to assess specific aspects of communication or decision making relating to medical procedures but were not purpose built to comprehensively measure any one of the domains of consent, calling into question the adequacy of even a combination of these measures to assess each domain.

The results of this review should be considered with some key limitations in mind. As is the case with any review, the adopted search strategy may not have identified all relevant articles. Yet, our rigorous broad search strategy and extensive manual review of the large volume of initial papers support the notion that the results of this review are representative of the field. Further, the review did not look at the consent process for individuals who cannot give consent for themselves (e.g., issues of soundness of mind or legalities in consent such as in minors). In addition, this review did not consider the impact of culture on medical consent, which may influence the level of voluntariness for example, and thus, culture-specific scales may be needed in certain collectivistic countries to adequately assess medical consent. These were issues beyond the scope of this review and were therefore not included. However, future work in the medical consent field may benefit from a similar review as this one on these more complex situations. Lastly, this review did not include qualitative studies of medical consent scales and hence did not allow for a more in-depth analysis of the patients’ subjective experience with the scales; it is recommended that future research elicit patients’ responses to open-ended questions about their experiences with medical consent scales.

Conclusion

This review has highlighted the complex nature of consent reflected within the three domains of information, comprehension and voluntariness, and the need to ensure that these multiple aspects are reflected in both measurement and practice. Of greatest concern is the absence of any established, standardized, reliable and valid measure of consent addressing these three domains, suggesting serious limitations in the current approaches to the consenting process. In summary, as a starting point, the COMRADE is the most likely contender for assessing certain aspects of informed consent. Yet, it only provides a modest level of coverage of the informed consent domains, and it lacks clear evidence for validity and user acceptability—something inherently lacking in most of the reviewed scales. Clearly, what is needed is not only a psychometrically high-quality measure, but also one that is easy for patients to use and has a high degree of perceived relevance to patients and clinicians alike. Unfortunately, only one of the higher scoring scales reviewed, the Brief Health Literacy Screen, assessed the usability of the scale, yet this scale only covers one of the elements of informed consent (Comprehensiveness). Therefore, there is need for a new measure of medical consent to be developed that has robust psychometric properties, spans all three domains and is acceptable to patients and clinicians alike, that will in turn improve the quality of the patient experience and care provided.

Supporting information

S1 Checklist. PRISMA checklist.

(DOC)
Author Contributions

Conceptualization: Kerry A. Sherman.
Data curation: Kerry A. Sherman.
Formal analysis: Kerry A. Sherman, Christopher Jon Kilby, Melissa Pehlivan, Brittany Smith.
Funding acquisition: Kerry A. Sherman.
Investigation: Kerry A. Sherman, Christopher Jon Kilby.
Methodology: Kerry A. Sherman, Christopher Jon Kilby, Melissa Pehlivan, Brittany Smith.
Project administration: Kerry A. Sherman.
Supervision: Kerry A. Sherman, Christopher Jon Kilby.
Validation: Kerry A. Sherman.
Writing – original draft: Kerry A. Sherman, Christopher Jon Kilby, Melissa Pehlivan, Brittany Smith.
Writing – review & editing: Kerry A. Sherman, Christopher Jon Kilby, Melissa Pehlivan, Brittany Smith.

References

1. Dennehy L, White S. Consent, assent, and the importance of risk stratification. British Journal of Anaesthesia. 2012; 109(1):40–6. https://doi.org/10.1093/bja/aes181 PMID: 22696558
2. Stryker JE, Wray PJ, Emmons KM, Winer E, Demetri G. Understanding the decisions of cancer clinical trial participants to enter research studies: Factors associated with informed consent, patient satisfaction, and decisional regret. Patient Education and Counseling. 2006; 63(1):104–9.
3. Garvelink MM, Boland L, Klein K, Nguyen DV, Menear M, Bekker HL, et al. Decisional conflict scale use over 20 years: The anniversary review. Medical Decision Making. 2019; 39(4):301–14. https://doi.org/10.1177/0272989X19851345 PMID: 31142194
4. Lamont S, Stewart C, Chiarella M. Capacity and consent: Knowledge and practice of legal and healthcare standards. Nursing Ethics. 2019; 26(1):71–83. https://doi.org/10.1177/0969733016687162 PMID: 28093938
5. Tait RA, Voepel-Lewis RT, Gauger RV. Parental recall of anesthesia information: Informing the practice of informed consent. Anesthesia & Analgesia. 2011; 112(4):918–23. https://doi.org/10.1213/ANE.0b013e28202a9346 PMID: 21289976
6. Mulley AG, Trimble C, Elwyn G. Stop the silent misdiagnosis: Patients' preferences matter. British Medical Journal. 2012; 345:e6572. https://doi.org/10.1136/bmj.e6572 PMID: 23137819
7. Hazen RA, Drotar D, Kodish E. The role of the consent document in informed consent for pediatric leukemia trials. Contemporary Clinical Trials. 2007; 28(4):401–8. https://doi.org/10.1016/j.cct.2006.10.011 PMID: 17196888
8. Davidson R, Mills ME. Cancer patients’ satisfaction with communication, information and quality of care in a UK region. European Journal of Cancer Care. 2005; 14(1):83–90. https://doi.org/10.1111/j.1365-2354.2005.00530.x PMID: 15698390
9. Gartner FR, Bomhof-Roordink H, Smith IP, Scholl I, Stiggelbout AM, Pletserse AH. The quality of instruments to assess the process of shared decision making: A systematic review. PLoS ONE. 2018; 13(2):e0191747. https://doi.org/10.1371/journal.pone.0191747 PMID: 29447193
10. Holmes-Rovner M, Kroll J, Schmitt N, Rovner DR, Breer ML, Rothert ML, et al. Patient satisfaction with health care decisions: The satisfaction with decision scale. Medical Decision Making. 1996; 16(1):58–64. https://doi.org/10.1177/0272989X9601600114 PMID: 8717600
11. Gustafson A. Reducing patient uncertainty: Implementation of a shared decision-making process enhances treatment quality and provider communication. Clinical Journal of Oncology Nursing. 2017; 21(1):113. https://doi.org/10.1188/17.CJON.113-115 PMID: 28107332
12. Sheehan J, Sherman KA. Computerised decision aids: A systematic review of their effectiveness in facilitating high-quality decision-making in various health-related contexts. Patient Education and Counseling, 2012; 88(1):69–86. https://doi.org/10.1016/j.pec.2011.11.006 PMID: 22185961
13. Sheehan J, Sherman KA, Lam T, Boyages J. Association of information satisfaction, psychological distress and monitoring coping style with post-decision regret following breast reconstruction. Psycho-Oncology. 2007; 16(4):342–51. https://doi.org/10.1002/pon.1067 PMID: 16874745

14. Tanno K, Bito S. Patient factors affecting decision regret in the medical treatment process of gynecological diseases. Journal of Patient-Reported Outcomes. 2019; 3(1):43. https://doi.org/10.1186/s41687-019-0137-y PMID: 31317289

15. Knapp C, Huang I, Madden V, Vadaparampl S, Quinn G, Shenkman E. An evaluation of two decision-making scales for children with life-limiting illnesses. Palliative Medicine. 2009; 23(6):518–25. https://doi.org/10.1017/s0269216309010489 PMID: 19346274

16. Schuler CL, Dodds C, Hommel KA, Ittenbach RF, Denson LA, Lipstein EA. Shared decision making in IBD: A novel approach to trial consent and timing. Contemporary Clinical Trials Communications. 2019; 16. https://doi.org/10.1016/j.conctc.2019.100447 PMID: 31538130

17. Légaré F, Labrecque M, Cauchon M, Castel J, Turcotte S, Grimshaw J. Training family physicians in shared decision-making to reduce the overuse of antibiotics in acute respiratory infections: A cluster randomized trial. Canadian Medical Association Journal 2012; 184(13):E726–E34. https://doi.org/10.1503/cmaj.120566 PMID: 22847969

18. Gogos AJ, Clark RB, Bismark MM, Gruen RL, Studdert DM. When informed consent goes poorly: a descriptive study of medical negligence claims and patient complaints. Medical Journal of Australia. 2011; 195(6):340–4. https://doi.org/10.5694/mja11.10379 PMID: 21929499

19. Moye J, Karel MJ, Edelstein B, Hicken B, Armesto JC, Gurrera RJ. Assessment of capacity to consent to treatment: Challenges, the “ACCT” approach, future directions. Clinical Gerontologist. 2007; 31(3):37–66. https://doi.org/10.1080/07317110702072140 PMID: 21494573

20. Gillies K, Duthie A, Cotton S, Campbell MK. Patient reported measures of informed consent for clinical trials: A systematic review. PLoS One. 2018; 13(6):e0199775. https://doi.org/10.1371/journal.pone.0199775 PMID: 29949627

21. Hallinan ZP, Forrest A, Uhlenbrack G, Young S, McKinney R. Barriers to change in the informed consent process: A systematic literature review. Ethics & Human Research. 2016; 38(3):1–10. PMID: 27301167

22. Montalvo W, Larson E. Participant comprehension of research for which they volunteer: A systematic review. Journal of Nursing Scholarship. 2014; 46(6):423–31. https://doi.org/10.1111/jnu.12097 PMID: 25130209

23. James JT, Eakins DJ, Scully RR. Informed consent, shared-decision making and a reasonable patient’s wishes based on a cross-sectional, national survey in the USA using a hypothetical scenario. British Medical Journal. 2019; 9(7). https://doi.org/10.1136/bmjopen-2019-028957 PMID: 31366653

24. Char SJL, Hills NK, Lo B, Kirkwood KS. Informed consent for innovative surgery: A survey of patients and surgeons. Surgery. 2013; 153(4):473–80. https://doi.org/10.1016/j.surg.2012.08.068 PMID: 2321878

25. Christalle E, Zill JM, Frerichs W, Harter M, Nestorjuc Y, Dirmaier J, et al. Assessment of patient information needs: A systematic review of measures. PLoS ONE. 2019; 14(1):e0209165. https://doi.org/10.1371/journal.pone.0209165 PMID: 30703103

26. Duron E, Boulay M, Vidal J-S, Bhiri J, Fraisse M-L, Rigaud A, et al. Capacity to consent to biomedical research’s evaluation among older cognitively impaired patients: A study to validate the University of California Brief Assessment of Capacity to Consent questionnaire in French among older cognitively impaired patients. The Journal of Nutrition, Health & Aging. 2013; 17(4):385–9. https://doi.org/10.1007/s12603-013-0036-5 PMID: 23538663

27. Joffe S, Cook E, Cleary P, Clark J, Weeks J. Quality of informed consent in cancer clinical trials: A cross-sectional survey. The Lancet. 2001; 358(9295):1772–7. https://doi.org/10.1016/S0140-6736(01)06805-2 PMID: 11734235

28. Tunzi M. Can the patient decide? Evaluating patient capacity in practice. American Family Physician. 2001; 64(2):299. PMID: 11476275

29. Pérez-Revuelta J, Villagrá-Moreno JM, Moreno-Sánchez L, Pascual-Paño JM, González-Saiz F. Patient perceived participation in decision making on their antipsychotic treatment: Evidence of validity and reliability of the COMRADE scale in a sample of schizophrenia spectrum disorders. Patient Education and Counseling. 2018; 101(8):1477–82. https://doi.org/10.1016/j.pec.2018.03.018 PMID: 29606551

30. Barstow C, Shahan B, Roberts M. Evaluating medical decision-making capacity in practice. American Family Physician. 2018; 98(1):40. PMID: 30215955

31. Moreira NCF, Pachêco-Pereira C, Keenan L, Cummings G, Flores-Mir C. Informed consent comprehension and recollection in adult dental patients: A systematic review. The Journal of the American Dental Association. 2016; 147(8):605–19.e7. https://doi.org/10.1016/j.adaj.2016.03.004 PMID: 27174578
32. Foe G, Larson EL. Reading level and comprehension of research consent forms: An integrative review. Journal of Empirical Research on Human Research Ethics. 2016; 11(1):31–46. https://doi.org/10.1177/1556264616637483 PMID: 27106889

33. Sharma P, Arya A, Singh S. Informed consent for orthopaedic surgery: A prospective audit. Clinical Governance. 2003; 8(3):236–41.

34. Hutson MM, Blaha JD. Patients’ recall of preoperative instruction for informed consent for an operation. The Journal of Bone Joint Surgery. 1991; 73(2):160–2. PMID: 1993710

35. Amery R. Recognising the communication gap in Indigenous health care. Medical Journal of Australia. 2017; 207(1):13–5. https://doi.org/10.5694/mja17.00042 PMID: 28659103

36. Krosin M, Klitzman R, Levin B, Cheng J, Ranney M. Problems in comprehension of informed consent in rural and peri-urban Mali, West Africa. Clinical Trials. 2006; 3(3):306–13. https://doi.org/10.1191/1740774506cn150oa PMID: 16895047

37. Bartula I, Sherman K. Screening for sexual dysfunction in women diagnosed with breast cancer: Systematic review and recommendations. Breast Cancer Res Treat. 2013; 141(2):173–85. https://doi.org/10.1007/s10549-013-2685-9 PMID: 24013702

38. Rouquette A, Falissard B. Sample size requirements for the internal validation of psychiatric scales. International Journal of Methods in Psychiatric Research. 2011; 20(4):235–49. https://doi.org/10.1002/mpr.352 PMID: 22020761

39. Aday LA, Cornelius LJ. Designing and Conducting Health Surveys: A Comprehensive Guide. John Wiley & Sons; 2006.

40. Husted JA, Cook RJ, Farewell VT, Gladman DD. Methods for assessing responsiveness: A critical review and recommendations. Journal of Clinical Epidemiology. 2000; 53(5):459–68. https://doi.org/10.1016/s0895-4356(99)00206-1 PMID: 10812317

41. Edwards A, Elwyn G, Hood K, Robling M, Atwell C, Holmes-Rovner M, et al. The development of COMRADE—a patient-based outcome measure to evaluate the effectiveness of risk communication and treatment decision making in consultations. Patient Education and Counseling. 2003; 50(3):311–22. https://doi.org/10.1016/S0738-3991(03)00055-7 PMID: 12900105

42. Maurice-Szamburski A, Michel P, Loundon A, Auquier P. Validation of the generic medical interview satisfaction scale: The G-MISS questionnaire. Health and Quality of Life Outcomes. 2017; 15(1). https://doi.org/10.1186/s12955-017-0608-x PMID: 28196503

43. Martin LR, Robin Di Matteo M, Lepper HS. Facilitation of patient involvement in care: Development and validation of a scale. Behavioral Medicine. 2001; 27(3):111–20. https://doi.org/10.1080/0896428010959557 PMID: 11985184

44. O’Connor AM. Validation of a decisional conflict scale. Medical Decision Making. 1995; 15(1):25–30. https://doi.org/10.1177/0272989X9501500105 PMID: 7898294

45. Ende J, Kazis L, Ash A, Moskowitz MA. Measuring patients’ desire for autonomy: Decision making and information-seeking preferences among medical patients. Journal of General Internal Medicine. 1989; 4(1):23–30. https://doi.org/10.1007/BF02596485 PMID: 264407

46. Stalmeier PFM, Roosmalen MS, Verhoef LCG, Hoekstra-Weebers JEHM, Oosterwijk JC, Moog U, et al. The decision evaluation scales. Patient Education and Counseling. 2005; 57(3):286–93. https://doi.org/10.1016/j.pec.2004.07.010 PMID: 15893210

47. Gagnon M, Hébert R, Dubé M, Dubois M-F. Development and validation of an instrument measuring individual empowerment in relation to personal health care: The health care empowerment questionnaire (HCEQ). American Journal of Health Promotion. 2006; 20(6):429–35. https://doi.org/10.4278/0890-1171-20.6.429 PMID: 16871823

48. Bennett C, Graham ID, Kristjansson E, Kearing SA, Clay KF, O’Connor AM. Validation of a preparation for decision making scale. Patient Education and Counseling. 2010; 78(1):130–3. https://doi.org/10.1016/j.pec.2009.05.012 PMID: 19560303

49. Kriston L, Scholl I, Hözel L, Simon D, Loh A, Härtel M. The 9-item Shared Decision Making Questionnaire (SDM-Q-9). Development and psychometric properties in a primary care sample. Patient Education and Counseling. 2010; 80(1):94–9. https://doi.org/10.1016/j.pec.2009.09.034 PMID: 19879711

50. Sustersic M, Gauchet A, Kernou A, Gibert C, Foote A, Vermorel C, et al. A scale assessing doctor-patient communication in a context of acute conditions based on a systematic review. PLoS ONE. 2018; 13(2):e0192306. https://doi.org/10.1371/journal.pone.0192306 PMID: 29466407

51. Maly RC, Frank JC, Marshall GN, DiMatteo MR, Reuben DB. Perceived efficacy in patient-physician interactions (PEPPI): Validation of an instrument in older persons. Journal of the American Geriatrics Society. 1998; 46(7):889–94. https://doi.org/10.1111/j.1532-5415.1998.tb02725.x PMID: 9670878
52. Bova C, Fennie KP, Watrous E, Dieckhaus K, Williams AB. The health care relationship (HCR) trust scale: Development and psychometric evaluation. Research in Nursing & Health. 2006; 29(5):477–88. https://doi.org/10.1002/nur.20158 PMID: 16977644
53. Luo H, Patil SP, Wu Q, Bell RA, Cummings DM, Adams AD, et al. Validation of a combined health literacy and numeracy instrument for patients with type 2 diabetes. Patient Education and Counseling. 2018; 101(10):1846–51. https://doi.org/10.1016/j.pec.2018.05.017 PMID: 29805071
54. Sand-Jecklin K, Coyle S. Efficiently assessing patient health literacy: The BHLS instrument. Clinical Nursing Research. 2014; 23(6):581–600. https://doi.org/10.1177/1054773813488417 PMID: 23729022
55. Sivell S, Edwards A, Manstead ASR, Reed MWR, Caldon L, Collins K, et al. Increasing readiness to decide and strengthening behavioral intentions: Evaluating the impact of a web-based patient decision aid for breast cancer treatment options. Patient Education and Counseling. 2012; 88(2):209–17. https://doi.org/10.1016/j.pec.2012.03.012 PMID: 22541508
56. Jeste DV, Palmer BW, Appelbaum PS, Golshani S, Glorioso D, Dunn LB, et al. A new brief instrument for assessing decisional capacity for clinical research. Archives of General Psychiatry. 2007; 64(8):966–74. https://doi.org/10.1001/archpsyc.64.8.966 PMID: 17679641