Native American ancestry significantly contributes to neuromyelitis optica susceptibility in the admixed Mexican population

Sandra Romero-Hidalgo1,3, José Flores-Rivera2,3, Verónica Rivas-Alonso2, Rodrigo Barquera3,4, María Teresa Villarreal-Molina5, Bárbara Antuna-Puente5, Luis Rodrigo Macías-Kauffer6, Marisela Villalobos-Comparán7, Jair Ortiz-Maldonado2, Neng Yu7, Tatiana V. Lebedeva7, Sharon M. Alosco7, Juan Daniel García-Rodríguez1, Carolina González-Torres8, Sandra Rosas-Madrigal1, Graciela Ordoñez9, Jorge Luis Guerrero-Camacho10, Irene Treviño-Frenk11,12, Monica Escamilla-Tilch13, Maricela García-Lechuga13, Victor Hugo Tovar-Méndez13, Hanna Pacheco-Ubaldo3, Victor Acuña-Alonzo3, María-Cátira Bortolini14, Carla Gallo15, Gabriel Bedoya16, Francisco Rothhammer17, Rolando González-José18, Andrés Ruiz-Linares19, Samuel Canizales-Quinteros6, Edmond Yunis20, Julio Granados13 & Teresa Corona2

Neuromyelitis Optica (NMO) is an autoimmune disease with a higher prevalence in non-European populations. Because the Mexican population resulted from the admixture between mainly Native American and European populations, we used genome-wide microarray, HLA high-resolution typing and AQP4 gene sequencing data to analyze genetic ancestry and to seek genetic variants conferring NMO susceptibility in admixed Mexican patients. A total of 164 Mexican NMO patients and 1,208 controls were included. On average, NMO patients had a higher proportion of Native American ancestry compared to controls.
Neuromyelitis optica (NMO) is a chronic autoimmune inflammatory and demyelinating disease of the central nervous system (CNS), which mainly affects the optic nerve and spinal cord. Although NMO was first described in the XIX century, it was considered a clinical variant of multiple sclerosis (MS) for decades. In 2004, the discovery of positive aquaporin-4 antibodies (AQP4-IgG) in serum of the majority of NMO patients led to significant progress in the clinical characterization of the disease, now acknowledged as a distinct entity with different immunological, clinical and epidemiological features.

Although it has been difficult to establish the actual prevalence of NMO, mainly because most reports are not comparable due to differences in study design, methodological approaches, and diagnostic criteria, worldwide NMO prevalence has been estimated between 0.51 and 4.4 cases per 100,000 inhabitants. The prevalence and clinical manifestations of NMO vary among different ethnic groups, and several authors have stated that NMO is more frequent in non-European populations. Interestingly, the relative frequency of NMO (estimated as the ratio of NMO/(MS + NMO) cases) has been found to decrease gradually in South America from North (Venezuela) to South (Argentina). Because ethnicity also changes gradually from North to South in this region, with the proportion of European individuals being lower in Venezuela and higher in Argentina, the authors suggested that ethnic origin influences NMO frequency in Latin America. To date there are no population-based studies of the prevalence of NMO in Mexico, and there is a single study estimating NMO prevalence at 1.3 per 100,000 inhabitants based on the NMO/(MS + NMO) relative frequency at a referral center in Mexico City.

Like many other autoimmune diseases, NMO is a multifactorial disorder that results from complex interactions between genetic and environmental factors. Recent studies have reported associations of NMO with genetic variation in the Human Leukocyte Antigen (HLA) genome region in chromosome 6, particularly with class II alleles, showing ethnical and geographical differences: The DRB1*03:01 allele has been associated with NMO in European, Brazilian, Afro-Caribbean, and Mexican patients; DRB1*16:02 in Southern Han Chinese; Japanese and in Southern Brazilian patients; DQB1*04:02 in a European-ancestry cohort; and DRB1*04:02 in Southern Brazilians. Moreover, candidate gene studies have reported associations with variation in non-HLA genes such as AQP4 and others involved in immune function (PD-1, IL-17, IL-7R, CD6 and CD58). Of the latter, only AQP4 gene variation has been analyzed in various populations by sequencing promoter and/or coding regions of the gene attempting to identify variants involved in the pathogenesis of NMO. However, the association of AQP4 gene variation with NMO remains unclear, with inconsistent findings among populations.

Because the Mexican population of today resulted from a complex and ongoing admixture process involving mainly Native American and European genetic components, we hypothesized that Native American ancestry also contributes to NMO susceptibility in Mexican patients. We thus used genome-wide microarray data, HLA high-resolution typing and AQP4 gene sequencing data to explore genetic ancestry and to seek genetic variants conferring susceptibility to NMO in Mexican patients.

Results

The present study includes 164 patients with Neuromyelitis Optica (NMO) (79% female) and 1,208 controls (61% female).

Population admixture analysis. Reference Native American (NAT) and continental populations were used to generate a multidimensional scaling (MDS) plot. Figure 1. The left panel shows that components 1 and 2 distinguish Africans (AFR) and Europeans (EUR) from NAT individuals. The average genome-wide proportion of Native American ancestry was significantly higher in NMO patients than in controls (68.1% vs 58.6%; \(P = 5 \times 10^{-6} \)). Conversely, the average genome-wide proportion of European ancestry was lower in cases than in controls (28.3% vs 37.3%; \(P = 3 \times 10^{-4} \)), while African ancestry was similar in both groups (3.6% vs 4.1%; \(P = 0.143 \)) (Fig. 1, right panel).

Genome-wide association analysis. The genome-wide association analysis (GWAS) included 119 NMO cases and 1,208 controls. Figure 2 shows the Manhattan and Q-Q plots after adjusting for sex and two principal components. Six signals surpassed the genome-wide significance threshold (\(5 \times 10^{-8} \)), spanning a 173.1 kb region within the major histocompatibility complex (MHC) region. Two SNPs in perfect linkage disequilibrium (LD) \((r^2 = 1) \) showed the most significant associations under an additive model, rs9272219 (\(OR = 2.48, P = 8 \times 10^{-10} \)) and rs9273012 (\(OR = 2.49, P = 8 \times 10^{-10} \)), both within the HLA-DQA1 gene. As described in Table 1, two intergenic (rs1964995 and rs9271588) and two SNPs within the HLA-DRB9 gene (rs9368726 and rs9405108) were also significantly associated with NMO. LD estimations among these 6 SNPs ranged between 0.5 and 1 (0.5 < \(r^2 < 1 \)). In order to assess whether these associations are driven by a single SNP, we conditioned the analysis based on the rs9272219 genotype. No other associations maintained genome-wide significance in the conditioned analysis.
HLA analysis. Detailed HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 allele and haplotype frequencies in study groups are described in Supplementary Tables 1–9. No HLA variant deviated from Hardy–Weinberg equilibrium. Table 2 shows HLA alleles that differed significantly in frequency between NMO patients and controls. The most significantly NMO-associated HLA class II alleles ($P < 0.01$) were HLA-DQB1*03:01 ($P = 0.00008$), -DRB1*08:02 ($P = 0.0011$), -DRB1*14:06 ($P = 0.00368$) and -DQB1*04:02 ($P = 0.00552$), all associated with increased NMO risk, while -DQB1*03:02 ($P = 0.00013$) and -DQB1*02:02 ($P = 0.00899$) were associated with decreased NMO risk. Two-locus HLA haplotypes associated with NMO patients are listed in Table 3. The lead class II haplotype associated with increased NMO risk was HLA-DRB1*16:02-DQB1*03:01 ($P = 0.0014$), followed by HLA-DRB1*08:02-DQB1*04:02 ($P = 0.00177$) and
Table 1. Association statistics for genome-wide significant SNPs. RA, Risk allele. RAF: Risk allele frequency; UTS/ACP data set correspond to data obtained from Estrada et al. 2018[6].

rsID	Position	Gene	RA	RAF NMO (n = 119)	RAF Ctrl (n = 1,208)	Unconditioned OR (95% CI)	P	Conditioned on rs9272219 OR (95% CI)	P	OR (P)
rs9368726	32,438,542	HLA-DRB9	A	0.80	0.61	2.70 (1.92–3.70)	1×10⁻⁴	1.75 (1.09–2.86)	0.022	2.22 8×10⁻⁵
rs9405108	32,438,648	HLA-DRB9	G	0.80	0.61	2.70 (1.92–3.85)	8×10⁻⁴	1.75 (1.08–2.86)	0.023	2.22 8×10⁻⁵
rs1964995	32,449,411	Intergenic	A	0.78	0.56	2.63 (1.92–3.70)	5×10⁻⁴	1.79 (1.09–2.94)	0.023	–
rs7271588	32,590,953	Intergenic	A	0.75	0.53	2.63 (1.92–3.57)	2×10⁻⁴	1.75 (1.05–2.86)	0.032	1.96 1×10⁻⁵
rs9272219	32,602,269	HLA-DQA1	A	0.67	0.42	2.48 (1.86–3.32)	8×10⁻⁴	–	–	–
rs9273012	32,611,641	HLA-DQA1	G	0.67	0.42	2.49 (1.86–3.32)	8×10⁻⁴	–	–	–

Table 2. Comparison of HLA class I and class II allele frequencies in NMO patients and controls. AF, Allele frequency. Only alleles with a frequency ≥ 0.01 in both groups and with significant differences between cases and controls are presented.

HLA Allele	NMO (n = 71)	Controls (n = 97)	P		
	AF n	AF n			
Protective					
		0.0423	6 1	0.0979 19	0.04088
	0.0282	4	0.0876 17	0.01996	
	0.0775	11	0.1598 31	0.01692	
	0.0282	4	0.0979 19	0.00899	
	0.1197	17	0.2387 56	0.00013	
Risk					
	0.0775	11	0.0309 6	0.04818	
	0.0493	7	0.0103 2	0.03275	
	0.2746	39	0.1546 30	0.00552	
	0.0915	13	0.0206 4	0.00368	
	0.1549	22	0.0515 10	0.00140	
	0.2676	38	0.1289 25	0.00110	
	0.3380	48	0.1546 30	0.00008	

Table 3. Comparison of HLA class I and class II haplotype frequencies in NMO patients and controls. HF, Haplotype frequency. Only haplotypes with a frequency ≥ 0.01 in both groups and with significant differences between cases and controls are presented.

HLA Haplotype	NMO (n = 71)	Controls (n = 97)	P	
	HF n	Δ'		
Protective				
B*39:05-C*07:02	0.0423	6	0.0979 19	0.04088
DRB1*07:01-DQB1*03:01	0.0704	10	0.8967 30	0.01300
DRB1*07:01-DQB1*02:02	0.0211	3	0.7428 17	0.00796
Risk				
B*35:14-C*04:01	0.0493	7	0.0103 2	0.03275
B*39:06-C*07:02	0.0704	10	0.8805 30	0.00368
DRB1*14:06-DQB1*03:01	0.0915	13	0.0206 4	0.00140
DRB1*08:02-DQB1*04:02	0.2606	37	0.9637 25	0.00177
DRB1*16:02-DQB1*03:01	0.1549	22	0.0515 10	0.00140

-DRB1*14:06-DQB1*03:01 (P = 0.00368), while -DRB1*07:01-DQB1*02:02 (P = 0.00796) was associated with decreased NMO risk. No extended haplotypes differed significantly between patients and controls.

Table 4 shows HLA class II alleles stratified by rs9272219 alleles (C/A). Interestingly, previously reported risk alleles HLA-DQB1*04:02 and -DRB1*16:02, as well as HLA-DQB1*03:01, -DRB1*08:02 and -DRB1*14:06, all associated with NMO risk in the present study, were in strong linkage disequilibrium (LD) with the rs9272219 “A” risk allele. On the other hand, no NMO risk alleles, and two alleles associated with decreased NMO risk (-DQB1*03:02 and -DRB1*04:07) were in strong LD with the rs9272219 “C” allele.
We then used RFMix to infer the local ancestry (NAT, EUR or AFR) of all alleles described in Table 4, in both cases and controls. Notably, all NMO risk alleles \(\text{HLA-DRB1}^*08:02 \), \(\text{HLA-DRB1}^*16:02 \) and \(\text{HLA-DRB1}^*14:06 \) were inferred to be of Native American ancestry, while risk alleles \(\text{HLA-DQB1}^*04:02 \) and \(\text{HLA-DQB1}^*03:01 \) were predominantly of NAT ancestry both in cases and controls. Regarding protective NMO alleles, \(\text{HLA-DRB1}^*04:07 \) and \(\text{HLA-DQB1}^*03:02 \) alleles were also predominantly of NAT ancestry (Fig. 3).

AQP4 sequencing. After sequencing all AQP4 exons including exon–intron boundaries, we identified 35 SNPs in samples from NMO or MS Mexican patients. No novel variants were found. Thirteen of these variants were found in the 3′UTR region, one in the 5′UTR region, and three were synonymous variants. Although some variants were more frequent in NMO than in MS patients, the differences were not statistically significant. Supplementary Table 10, compares the alternative allele frequency of these 35 SNPs in NMO and MS patients, 1,000 Genomes continental populations and in 12 Native Mexican whole genome sequences.

Discussion

While several studies have stated that the epidemiology of NMO differs from that of MS, being more frequent in non-European populations, reliable comparisons among studies are difficult to establish. Epidemiological data suggest that ethnicity influences NMO prevalence, particularly in Latin America. In Mexico, there is only one non-population based study estimating NMO prevalence in a referral center located in Mexico City. To our knowledge, this is the first study in the Mexican admixed population where a genome-wide analysis revealed a higher proportion of Native American ancestry in NMO cases as compared to controls. This contrasts with the higher European genetic component previously observed in the Mexican patients with MS. The NAT ancestry estimated in our control group recruited in Mexico City (central Mexico) is consistent with previous NAT ancestry estimations in the Mexican Mestizo population (~55%), known to gradually decline from South to North throughout the Mexican territory. Unfortunately, NMO epidemiological studies in Mexico are scarce, and there is no information on the geographical distribution or ethnicity of NMO patients in Mexico.

In our GWAS analysis, six SNPs within the MHC region were associated with NMO with genome-wide significance. Both linkage disequilibrium and the conditional association analyses suggest that this association is driven by a single signal, led by two SNPs in perfect linkage disequilibrium (rs9272219 and rs9273012). There is only

rs9272219	HLA Allele	NMO (n = 31)	Controls (n = 97)		
A		AF n Δ	AF n Δ	P	
C		AF n Δ	AF n Δ	P	
DQB1*04:02	0.0323	2 1	0.0155	3 1	NS
DRB1*04:04	0.0484	3 1	0.0619	12 0.8473	NS
DRB1*04:07	0.0484	3 1	0.1598	31 0.94	0.01528
DQB1*03:02	0.0968	6 1	0.2887	56 1	0.00107
DQB1*03:03	0.0161	1 1	0.0103	2 1	NS
DQB1*05:01	0.0323	2 1	0.0773	13 1	NS
DQB1*06:01	0.0161	1 1	0.0155	3 0.6337	NS
DQB1*06:02	0.0161	1 0.7338	0.0567	11 1	NS
DQB1*06:04	0.0161	1 1	0.0309	6 1	NS
DRB1*01:01	0.0161	1 1	0.0206	4 1	NS
DRB1*01:02	0.0161	1 1	0.0258	5 1	NS
DRB1*07:01	0.0161	1 1	0.0876	17 1	0.04056
DRB1*13:02	0.0161	1 1	0.0361	7 1	NS
DRB1*15:01	0.0161	1 0.7338	0.0567	11 1	NS
DRB1*15:02	0.0161	1 1	0.0206	4 1	NS
DQB1*04:02	0.2742	17 1	0.1392	27 1	0.01415
DRB1*03:01	0.0806	5 1	0.0412	8 1	NS
DRB1*08:02	0.2503	18 1	0.1237	24 1	0.00279
DRB1*14:02	0.0161	1 1	0.0309	6 1	NS
DRB1*16:02	0.1613	10 1	0.0515	10 1	0.00831
DQB1*03:01	0.3065	19 0.911	0.1546	30 1	0.00851
DQB1*02:01	0.0806	5 0	0.0412	8 1	NS
DQB1*03:19	0.0484	3 1	0.0103	2 1	NS
DRB1*11:02	0.0323	2 1	0.0155	3 1	NS
DRB1*11:04	0.0161	1 1	0.0206	4 1	NS
DRB1*14:06	0.0968	6 0.7153	0.0206	4 1	0.01497

Table 4. Comparison of HLA-DRB1 and HLA-DQB1 allele frequencies, stratified by rs9272219 genotype, in NMO patients and controls. AF, allele frequency. Only Alleles with a frequency ≥ 0.01 in both groups are presented.
Figure 3. Local ancestry of HLA alleles. Proportion of HLA alleles described in Table 4 inferred as Native American (NAT), European (EUR) or African (AFR). Local ancestry was estimated using RFMIX using trio-phased populations as reference.
one previous report of a GWAS for NMO in individuals of European ancestry16, where two independent signals in the same MHC region were significantly associated with NMO: rs28383224, which is 18.6 kb downstream and rs1150757, which is 573.1 kb downstream the lead SNP found in the present study (rs9272219). Although rs28383224 and rs1150757 genotypes were not available in our analysis, both NMO GWAS share data on 3 of the 6 SNPs associated with NMO in the Mexican cohort (rs9368726, rs9405108 and rs9271588). These 3 SNPs were also associated with increased NMO risk in the European cohort, although with slightly lower odds ratio values. It is important to point out that we found no SNPs in proximity of rs1150757 associated with NMO in the Mexican population.

Class II HLA alleles (HLA-DRB1*03:01, -DRB1*08:02, -DRB1*16:02, -DRB1*14:06 and -DQB1*04:02) and class II haplotypes (HLA-DRB1*16:02-DQB1*03:01, -DRB1*08:02-DQB1*04:02 and -DRB1*14:06-DQB1*03:01) showed the most significant associations with increased NMO risk in the present Mexican cohort, while HLA-DRB1*03:02 and -DQB1*02:02 alleles were significantly associated with decreased NMO risk. The HLA-DRB1*16:02 allele has also been associated with NMO in Southern Han Chinese and Japanese populations, and more recently in Southern Brazilians21–23. A very recent meta-analysis showed that the HLA-DRB1*16:02 allele was strongly associated with autoimmune diseases predominantly mediated by autoantibodies2. The frequency of this allele varies across the world but it is highest in Native populations of America (~39%), is also frequent in populations from Oceania (~28%) and South–East Asia (~28%), but is relatively low in Europe (~6%) and Africa (~4%)39. Furthermore, haplotype HLA-DRB1*16:02-DQB1*03:01 is very frequent in Native American populations from the Southern state of Oaxaca (Mixe, Mixtec and Zapotec) and Xavantes from Central Brazil, but is very rare in other continental populations39–41. Recently, haplotype HLA-DRB1*16-DQB1*03:01 was also associated with Parry-Romberg syndrome, an autoimmune disease affecting the craniofacial nerve in Mexican patients42.

The HLA-DRB1*03:01 allele has been consistently associated with NMO in European populations, and admixed populations with important contribution of the European gene pool (Brazilian mulatto, Afro–Caribbean and a small Mexican mestizo cohort)13–20. The frequency of HLA-DRB1*03:01 is as high as 20% in European, North African, Western Asian populations, but ranges from only 0 to 2% in Native Mexican populations39. Although in the present study the frequency of this allele was two-fold higher in cases as compared to controls (7.04% vs 4.12%, Supplementary Table 4), the difference did not reach statistical significance probably due to low statistical power derived from the small sample and effect sizes. Inconsistencies are not uncommon in genetic association studies and show the complexity of the genetic ancestry contribution in admixed populations. Interestingly, in the European GWAS, the HLA-DRB1*03:01 allele was imputed and found to be associated with AQP4-IgG-seropositive NMO but not with AQP4-IgG-seronegative NMO, and showed a high correlation with rs1150757 (r² = 0.7) but a poor correlation with rs28383224 (r² = 0.2)16. In the present study, the HLA-DRB1*03:01 allele was not associated with NMO, nor with any SNP in proximity of rs1150757.

HLA alleles previously associated with NMO in populations with European and/or Native American ancestry (HLA-DRB1*03:0113–20, -DRB1*16:0212–23 and -DQB1*04:0213,24) were in strong LD with the rs9272219 "A" risk allele. In contrast, two alleles significantly associated with decreased NMO risk in the present study (HLA-DRB1*04:07 and -DQB1*03:02) were in strong LD with the rs9272219 "C" allele. Whether the latter are in fact NMO protective alleles needs to be confirmed in independent cohorts. Moreover, no previously reported NMO risk alleles were found in individuals with the rs9272219 "C" allele.

Notably, local ancestry analyses revealed that all HLA alleles most associated with NMO risk and protection in the present study were predominantly inferred as of Native American ancestry. This is consistent with our findings of a higher proportion of Native ancestry in NMO cases as compared to controls, and with epidemiological data suggesting that NMO is more prevalent in non-European populations2–11. To our knowledge there is only one previous study analyzing local ancestry of demyelinating diseases, where HLA alleles DRB1*16:02 and DRB1*14:02 were inferred as of Native American ancestry in Hispanics45, also in consistency with our local ancestry findings. As expected, the well-known HLA-DRB1*03:01 NMO risk allele was predominantly inferred as of European ancestry. Altogether, our SNP and HLA analyses suggest that a group of HLA alleles predominantly of Native American ancestry are associated with NMO susceptibility in the admixed Mexican population.

A limited number of studies have analyzed the role of AQP4 variants in the pathogenesis of NMO in USA29, Chinese30–32, Japanese33 and Spanish34 populations, with inconclusive results. We sequenced AQP4 coding regions in Mexican patients with NMO and MS, however no novel or missense variants were identified. Interestingly, four 3'UTR variants (rs7240333, rs14399, rs1058424 and rs3763043) were more frequent in NMO as compared to MS patients, although the differences were not significant. Two of these variants (rs1058424 and rs3763043) showed a weak but significant association with NMO in the Han Chinese population35. The highest frequencies of these four 3'UTR polymorphisms have been found in Native Mexicans (29.2%, 79.2%, 50% and 79.2%, respectively)35.

Some limitations of the study must be pointed out. Firstly, because no medical information was obtained from the control group (CANDELA project participants from Mexico), misclassification bias could potentially affect the statistical power of the study. Controls lacking medical information have been previously used in other GWAS studies, as the effect on statistical power is expected to be modest unless the extent of this bias is substantial44.

In the present study, it is unlikely albeit possible, that a low number of control participants were affected with NMO or could eventually develop NMO in the future. However, because NMO prevalence is very low, this bias is expected to be small. In addition, because of the possibility of spurious associations, the novel HLA associations here identified should be interpreted with caution and be confirmed in further studies including Mexican and other Latin American populations.

To our knowledge, this is the first study to examine the genetic ancestry of NMO patients supporting the notion that Native American ancestry significantly contributes to Neuromyelitis optica susceptibility in the admixed Mexican population. This finding is consistent with differences in the prevalence of NMO in populations of Mexico and Latin America, and contrasts with the epidemiology and genetics of multiple sclerosis36,45.
Methods

Study population. A total of 164 Mexican NMO patients were included. NMO diagnosis was based on Wingerchuk criteria described in 2006 and revised in 201546,47. All NMO participants had DNA samples stored at the National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNN) DNA bank. Only DNA samples meeting quality requirements were used to perform microarray genotyping, high-resolution HLA typing and/or AQP4 sequencing. From the 164 NMO patients, it was possible to perform microarray analysis in 119, high-resolution typing of the HLA region in 71 and AQP4 sequencing in 48 cases. Only 25 cases were available for the three platforms and 31 have microarray and high-resolution HLA typing. Moreover, 1,208 individuals from the Consortium for the Analysis of the Diversity and Evolution of Latin America (CANDELA)48 were included as a control group for the genome-wide association analysis. AQP4 sequencing data were compared in 48 NMO cases and 48 MS Mexican patients. All MS patients were recruited at the INNN and fulfilled the McDonald criteria for MS diagnosis49. A sample of 15 trios from central Native Mexican populations (Nahuas and Totonacs) were included as a Native American (NAT) reference panel for ancestry analyses. All experiments were performed in accordance with the relevant guidelines and regulations.

Informed consent was obtained from all participants, and the study was approved by the Ethics Committee of INNN for NMO and MS patients; Universidad Nacional Autónoma de México for CANDELA controls; and Instituto Nacional de Medicina Genómica (INMEGEN) for NAT trios.

Genotyping. Eighty-three NMO samples were genotyped using the Illumina HumanOmniExpress array (~ 700,000 SNPs) and 36 using Illumina expanded Multi-Ethnic Genome Array (~ 1,700,000 SNPs), at the INMEGEN. Controls had been previously genotyped on HumanOmniExpress array as part of the CANDELA Consortium study48. One of the CANDELA-Mexico controls was also genotyped at INMEGEN for quality control purposes, and microarray data concordance was 99.8%.

High-resolution typing of the HLA region. HLA class I (A, B and C) and class II (DRB1 and DQB1) genes were typed by direct sequencing (sequence-based typing, SBT50) in a total of 71 NMO samples and 97 controls. Genotypes were called using Applied Biosystems analysis software (Foster City, CA, USA) and the IMGT/HLA database alignment tool51. Ambiguities were resolved using previously validated group-specific sequencing primers (GSSP)52.

AQP4 sequencing. AQP4 coding and UTR regions were sequenced on a Illumina MiSeq system. Primers were designed manually to span the regions of interest. Quality control of raw sequences was conducted using FastQC52 and the Trimmomatic algorithm was used to remove adapter sequences and trim short and low-quality end-read sequences. By using Bowtie254 and SAMTools55, we cleaned the sequence reads and then aligned them to the human reference genome (hg19) and variant calling and annotations.

Statistical analysis. Genome-wide screening. Quality control (QC) of the genotype data was carried out in PLINK56. SNPs and individuals were removed from the analysis based on minor allele frequency < 5%, call rate < 95%, deviation from the Hardy–Weinberg equilibrium (HWE) at $P < 1 \times 10^{-5}$ and genotyping efficiency < 90%. Pairwise identity by descent (IBD) estimates were used to identify related individuals. No discordant sex information was found. After quality control, the data set comprised the genotypes of 119 NMO patients and 1,208 controls for 252,805 SNPs.

Ancestry analyses were carried out using ADMIXTURE57 assuming three parental populations: EUR and AFR from the 1,000 Genomes project, and NAT genotypes of unrelated individuals, i.e. only parents of the NAT trios were included. The total number of autosomal SNPs common to the five populations (NMO patients, CANDELA controls, EUR, AFR and NAT) was 197,323. For each individual, the proportion of European, African and Native American ancestry was estimated at the genomic level. The significance of differences between ancestry proportions in NMO patients as compared to controls was determined using a T-test statistic. Local ancestry was determined through a random forest procedure using RFMix with 5 expectation–maximization (EM) iterations and a minimum of 6 reference haplotypes per tree node58. EUR and AFR from 1,000 Genomes project, along with trio phased NAT genotypes were used as reference populations for local ancestry. Haplotype phasing of NAT, NMO and control subjects was performed with Beagle59.

A genome-wide case–control association study was conducted using logistic regression models, adjusting for sex and two principal components, assuming an additive effect using PLINK60.

HLA region analysis. Allele and haplotype frequencies were obtained by direct counting, and haplotype blocks were built based on previous reports. Allele frequencies for HLA-A, -B, -C, -DRB1 and -DQB1 were compared between NMO patients and the control group. Maximum-likelihood haplotype frequencies for two-point, three-point and four-point associations were estimated in each group using an EM algorithm implemented in Arlequin v3.160. Linkage disequilibrium (LD; Δ and Δ') and HWE were also calculated using Arlequin. Class II HLA haplotypes were stratified by SNP rs9272219 and the significance of the differences between NMO patients and CANDELA controls was determined using a Fisher’s exact test.

Data availability
The dataset for the NMO patients generated and/or analyzed during the current study are available from the corresponding authors on reasonable request. Access to the CANDELA dataset used in this manuscript was
References

1. Jarius, S. & Wüldemann, B. The history of neuromyelitis optica. J. Neuroinflamm. 10, 8. https://doi.org/10.1186/s12936-013-0042-x (2013).

2. Trebst, C. et al. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the neuromyelitis optica study group (NEMOS). J. Neurol. 261, 1–16. https://doi.org/10.1007/s00415-013-7169-7 (2014).

3. Lennon, V. A. et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112. https://doi.org/10.1016/S0140-6736(04)17551-X (2004).

4. Lennon, V. A., Kryzer, T. J., Piccio, S. J., Verkman, A. S. & Hinson, S. R. IgG marker of optic–spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med. 202, 473–477. https://doi.org/10.1084/jem.20050304 (2005).

5. Chen, Y. et al. Comprehensive meta-analysis reveals an association of the HLA-DRB1*1602 allele with autoimmune diseases mediated predominantly by autoantibodies. Autoimmun Rev 19, 102532. https://doi.org/10.1016/j.autrev.2020.102532 (2020).

6. Asgari, N. et al. Epidemiology of neuromyelitis optica spectrum disorder. Acta Neurol. Scand. 137, 626–627. https://doi.org/10.1111/anm.12936 (2018).

7. Etemadifar, M., Nasr, Z., Khalili, B., Taherioun, M. & Vosoughi, R. Epidemiology of neuromyelitis optica in the world: a systematic review and meta-analysis. Mult. Scler. Int. 2015, 174720. https://doi.org/10.1155/2015/174720 (2015).

8. Kim, S. H. et al. Racial differences in neuromyelitis optica spectrum disorder. Neurology 91, e2089–e2099. https://doi.org/10.1212/WNL.0000000000005754 (2018).

9. Flanagan, E. P. et al. Epidemiology of aquaporin-4 autoimmunity and neuromyelitis optica spectrum. Ann. Neurol. 79, 775–783. https://doi.org/10.1002/ana.24617 (2016).

10. Alvaranga, M. P., Schmidt, S. & Alvaranga, R. P. Epidemiology of neuromyelitis optica in Latin America. Mult. Scler. J. Exp. Transl. Clin. 3, 2055217317730098. https://doi.org/10.1177/2055217317730098 (2017).

11. Miyamoto, K. et al. Nationwide epidemiological study of neuromyelitis optica in Japan. J. Neurol. Neurosurg. Psychiatry 89, 667–668. https://doi.org/10.1136/jnnp-2017-317521 (2018).

12. Rivera, J. F., Kurtzke, J. F., Booth, V. J. & Corona, V. T. T. Characteristics of Devic’s disease (neuromyelitis optica) in Mexico. J. Neuroimmunol. Neuroinflamm. 310, 1–7. https://doi.org/10.1002/jneuromin.2017.05.018 (2017).

13. Deschamps, R. et al. Different HLA class II (DRB1 and DQB1) alleles determine either susceptibility or resistance to NMO and multiple sclerosis among the French Afro-Caribbean population. Mult. Scler. 17, 24–31. https://doi.org/10.1177/1352458510382810 (2011).

14. Alonso, V. R. et al. Neuromyelitis optica (NMO IgG+) and genetic susceptibility, potential ethnic influences. Cent. Nerv. Syst. Agents Med. Chem. 18, 4–7. https://doi.org/10.2174/187152491666616022911504 (2018).

15. Seghaye, V. et al. HLA-DRB1*03:01 allele is associated with NMO IgG positivity in Brazilian patients with neuromyelitis optica spectrum. J. Neurol. Sci. 314, 23–30. https://doi.org/10.1016/j.jns.2011.11.005 (2012).

16. Zhuang, J. C. et al. Variants of interleukin-7/interleukin-7 receptor alpha are associated with both neuromyelitis optica and multiple sclerosis among chinese han population in Southeastern China. Chin Med. J. (Engl) 128, 3062–3068. https://doi.org/10.4103/0366-6999.160993 (2015).

17. Park, T. J. et al. Associations of CD6, TNFRSF1A and IRF8 polymorphisms with risk of inflammatory demyelinating diseases. Neuropathol Appl. Neurol. Biol. 39, 519–530. https://doi.org/10.1111/j.1365-2990.2012.01304.x (2013).

18. Kim, J. Y., Bae, J. S., Kim, H. J. & Shin, H. D. CDS8 polymorphisms associated with the risk of neuromyelitis optica in a Korean population. BMC Neurol. 14, 57. https://doi.org/10.1186/1471-2377-14-57 (2014).

19. Mattioli, M. et al. Genetic analysis of aquaporin-4 in neuromyelitis optica. Neurology 77, 1149–1155. https://doi.org/10.1212/WNL.0b013e3182f6945b (2011).

20. Maw, W. et al. Preliminary study on the association of AQP4 promoter polymorphism with anti-aquaporin-4 antibody positivity in southern Han Chinese patients with idiopathic demyelinating disorders of central nervous system. J. Neuroimmunol. 255, 75–80. https://doi.org/10.1016/j.jneuroim.2012.10.004 (2013).

21. Wei, Q. et al. Human aquaporin 4 gene polymorphisms in Chinese patients with neuromyelitis optica. J. Neuroimmunol. 274, 192–196. https://doi.org/10.1016/j.jneuroim.2014.07.003 (2014).

22. Wang, Q. S., Xiao, H. Q., Chen, H. X., Liu, Y. P. & Ding, X. D. The single nucleotide polymorphism site of aquaporin-4 gene in patients with neuromyelitis optica. Exp. Ther. Med. 14, 6017–6021. https://doi.org/10.3892/etm.2017.5267 (2017).

23. Ogawara, M. et al. Genetic analysis of the aquaporin-4 gene for anti-AQP4 antibody-positive neuromyelitis optica in a Japanese population. Jpn. J. Ophthalmol. 60, 198–205. https://doi.org/10.1007/s10384-016-0441-5 (2016).

24. García-Miranda, P. et al. Predictive value of serum antibodies and point mutations of AQP4, AQP1 and MOG in A cohort of spanish patients with neuromyelitis optica spectrum disorders. Int. J. Mol. Sci. https://doi.org/10.3390/ijms2025810 (2019).
35. Romero-Hidalgo, S. et al. Demographic history and biologically relevant genetic variation of Native Mexicans inferred from whole-genome sequencing. *Nat. Commun.* **8**, 1005. https://doi.org/10.1038/s41467-017-01194-z (2017).

36. Ordonez, G. et al. Genomewide admixture study in Mexican Mestizos with multiple sclerosis. *Clin. Neurol. Neurosurg.* **130**, 55–60. https://doi.org/10.1016/j.clineuro.2014.11.026 (2015).

37. Silva-Zolezzi, I. et al. Analysis of genomic diversity in Mexican Mestizo populations to develop genomic medicine in Mexico. *Proc. Natl. Acad. Sci. USA* **106**, 8611–8616. https://doi.org/10.1073/pnas.0903045106 (2009).

38. Moreno-Estrada, A. et al. Human genomics. The genetics of Mexico recapitulates Native American substructure and affects biomedical traits. *Science* **344**, 1280–1285. https://doi.org/10.1126/science.1251688 (2014).

39. Gonzalez-Galarza, F. F., Christmas, S., Middleton, D. & Jones, A. R. Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. *Nucleic Acids Res.* **39**, D913–919. https://doi.org/10.1093/nar/gkq1128 (2011).

40. Cerna, M. et al. Differences in HLA class II alleles of isolated South American Indian populations from Brazil and Argentina. *Hum. Immunol.* **37**, 213–220. https://doi.org/10.1016/0198-8859(93)90504-i (1993).

41. Hollenbach, J. A. et al. HLA diversity, differentiation, and haplotype evolution in Mesoamerican Natives. *Hum Immunol.* **62**, 378–390. https://doi.org/10.1016/S0198-8859(01)00212-9 (2001).

42. Palafox, D. et al. Determinación de HLA en pacientes con Síndrome de Parry Romberg atendidos en el Servicio de Cirugía Plástica y Reconstrutiva del Hospital General “Dr. Manuel Gea González”. *Cirugía Plástica Ibero-Latinoamericana* **42**, 6. https://doi.org/10.4321/S0377-78922016000200004 (2016).

43. Chi, C. et al. Admixture mapping reveals evidence of differential multiple sclerosis risk by genetic ancestry. *PLoS Genet.* **15**, e1007808. https://doi.org/10.1371/journal.pgen.1007808 (2019).

44. Consortium, W. T. C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature* **447**, 661–678. https://doi.org/10.1038/nature05911 (2007).

45. Thompson, A. J., Baranzini, S. E., Geurts, J., Hemmer, B. & Ciccarelli, O. Multiple sclerosis. *Lancet* **391**, 1622–1636. https://doi.org/10.1016/S0140-6736(18)30048-1 (2018).

46. Wingerchuk, D. M., Lennon, V. A., Pittock, S. J., Lucchinetti, C. F. & Weinshenker, B. G. Revised diagnostic criteria for neuromyelitis optica. *Neurology* **66**, 1485–1489. https://doi.org/10.1212/01.wnl.0000161394.44259.74 (2006).

47. Wingerchuk, D. M. et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. *Neurology* **85**, 177–189. https://doi.org/10.1212/01.wnl.0000406179.04729.15 (2015).

48. Ruiz-Linares, A. et al. Admixture in Latin America: geographic structure, phenotypic diversity and self-perception of ancestry based on 7,342 individuals. *PLoS Genet.* **10**, e1004572. https://doi.org/10.1371/journal.pgen.1004572 (2014).

49. Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. *Ann. Neurol.* **69**, 292–302. https://doi.org/10.1002/ana.22366 (2011).

50. Lebedeva, T. V. et al. Resolution of HLA class I sequence-based typing ambiguities by group-specific sequencing primers. *Tissue Antigens* **77**, 247–250. https://doi.org/10.1111/tan.12011 (2011).

51. Robinson, J., Waller, M. J., Parham, P., Bodmer, J. G. & Marsh, S. G. IMGT/HLA Database—a sequence database for the human major histocompatibility complex. *Nucleic Acids Res.* **39**, 210–213. https://doi.org/10.1093/nar/gkz210.211 (2020).

52. Andrews, S. FastQC: a quality control tool for high throughput sequence data. <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/> (2010).

53. Bolger, A. M., Lohse, M. & Usadel, B. Trimomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2141–2142. https://doi.org/10.1093/bioinformatics/btu170 (2014).

54. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**, 357–359. https://doi.org/10.1038/nmeth.1923 (2012).

55. Li, H. et al. The sequence alignment/map format and SAMtools. *Bioinformatics* **25**, 2078–2079. https://doi.org/10.1093/bioinformatics/bti401 (2009).

56. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575. https://doi.org/10.1086/519795 (2007).

57. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. *Genome Res.* **19**, 1655–1664. https://doi.org/10.1101/gr.104052.109 (2009).

58. Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. *Am. J. Hum. Genet.* **93**, 278–288. https://doi.org/10.1016/j.ajhg.2013.06.020 (2013).

59. Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. *Am. J. Hum. Genet.* **81**, 1084–1097. https://doi.org/10.1086/521987 (2007).

60. Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. *Evol. Bioinform. Online* **1**, 47–50 (2007).

Acknowledgements

We thank Hugo Villamil-Ramírez, Juan Carlos Guevara and Jorge Morales-Morillón for technical support. This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) (Grant No. SALUD-2013-01-021206 to S.R-H).

Author contributions

S.R-H., J.F-R., B.A-P., J.G. and T.C conceived and designed the study. S.R-H., M.V-C., L.RM–K., R.B., H.P-U., E.Y. and J.G. performed data analysis. J.D.G-R., S.R-M. and C.G-T. participated processed and analyzing AQP4 sequencing. T.C., J.F-R., V.R-A., J.O-M. and I.T-F. were responsible for recruiting NMO patients. J.L.G-C., G.O., M.E-T., M.G-L. and V.H.T-M. were responsible for NMO patients sample handling. N.Y., T.V.L. and S.M.A performed HLA typing. V.A-A., M.C-B., C.G., G.B., F.R., G.R.-J., A.R-L. and S.C-Q. are members of steering committee of CANDELA Consortium and responsible for CANDELA samples and data. S.R-H., M.T.V-M., R.B., E.Y., J.G. and T.C wrote the paper, incorporating input from all authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-69224-3.

Correspondence and requests for materials should be addressed to S.R-H., J.G. or T.C.

Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020