The association of economically important fish with mangroves in Maumere Bay, Indonesia

A Vincentius¹, M N Nessa², J Jompa², A Saru², M Hatta², N Rukminasari²

¹Marine Science and Fisheries Faculty, Nusa Nipa University, Maumere, East Nusa Tenggara, Indonesia
²Marine Science and Fisheries Faculty, Hasanuddin University, Makassar, Indonesia

Email: angelinusvincentiustonda@gmail.com

Abstract. Mangroves are known to play a role in fisheries production, but specifically, however the associations between economically important fish species and mangroves with varied characteristics are not yet widely known. The aim of this study was to analyse the relationship (association) between economically important fish species and mangroves with varied characteristics in Maumere Bay, Indonesia. The research used spatial and non-spatial methods; the research on economically important fish species used an experimental fishing sampling method. Correspondence analysis was applied to answer the question why certain economically important fish species were associated with certain mangrove characteristics. The mangroves at the study locations with characteristically dominant species Bruguiera parviflora, Avicennia alba, Bruguiera gymnorrhiza, Ceriops tagal, with a moderate value of the Shannon diversity index (1< H' ≤3), and moderate value of the Simpson dominance index (0.5< C ≤0.75), associated with the economically important fish species Psammoperca waigiensis, Synanceia verrucosa and Pomadasys maculatus. The locations of mangrove with high mangrove cover (≥ 80%), Avicennia marina as dominant species, large area (100 ha) and high density (≥ 3000 trees / ha), Rhizophora mucronata as dominant species, and high value of Pielou's evenness index (0.6< e ≤1.0) were associated with the economically important fish species Upeneus molluccensis, Lethrinus lentjan, and Lutjanus bitaeniatus. The mangrove locations with medium cover (50% - 75%), moderate values of Simpson dominance index (0.5< C ≤0.75) but high mangrove belt width (≥ 400 m) were associated with the economically important fish species Siganus javus, Stegostoma fasciatum, Mugil cephalus, Carangoides malabaricus and Chanos chanos.

1. Introduction
Mangrove forests are widely recognized as having a role in improving small and medium scale fisheries [1], and mangroves are closely related to fisheries production [2]. Mangroves have a function as spawning grounds, feeding grounds and nursery grounds for many species. They are important for both commercial and subsistence fisheries, including finfish, shellfish and crustacean [1]. Although the benefits to fisheries from mangroves are widely known [3,4], research that measures the actual contribution of mangroves to fisheries is still limited [5]. This deficiency is particularly striking in Indonesia, at the heart of the Indo-Pacific Coral Triangle Biodiversity Hotspot, which is also a centre of mangrove and fish biodiversity [6–8]. The next question is: what is the association between mangroves and certain economically important types of fish? The information that can answer these questions was not available.
Meanwhile, the characteristics of mangrove forests can be described by a number of variables, including mangrove belt width and area, mangrove percentage cover, mangrove density and dominance, and several ecological indices. The questions arise, mangrove forests with various characteristics are associated with what types of economically important fish, and why do these associations occur.

The aims of this study were to analyse the relationship (or association) between economically important fish species and mangroves with varied characteristics, specifically in Maumere Bay, Indonesia. This research is important, considering that Indonesia is the centre of world mangrove diversity [7].

2. Methods
Mangrove data collected for this study consisted of spatial data (mangrove belt width and area, mangrove cover) and non spatial data (mangrove density and dominance). Mangrove belt width and area were analysed using satellite images Landsat ETM 7 and Landsat OLI/TIRS from 2017. For mangrove cover band composite RGB 4–5–3 from Landsat ETM 7 was used, as well as RGB 5–6–4 Landsat 8 false colour composite. Transect line plots (quadrats) were used to collect in situ non spatial mangrove data.

The study was conducted from September 2017 – October 2018. Sampling was conducted at 7 stations, with three substations as sampling replicates in Maumere Bay, Sikka Regency, East Nusa Tenggara Province, Indonesia. The fishing gear used during sampling was a modified trammel net. The association between economically important fish with mangrove was analysed using Correspondence Analysis.

Figure 1. Map of the study area and sampling sites
2.1. Mangrove data collection procedures
Mangrove data collected consisted of spatial data (mangrove belt width and area, mangrove percentage cover) and non spatial data (mangrove density and dominance).

2.1.1. Satellite image data. Mangrove belt width and area were analysed using Landsat ETM 7 and Landsat OLI/TIRS satellite images from 2017. For mangrove coverage was used band composite RGB 4 – 5 – 3 for Landsat ETM 7, and RGB 5 – 6 – 4 for Landsat 8 false colour. Landsat TM data have seven spectral bands, with a spatial resolution of 30 m for bands 1-5 and 7. The Landsat ETM+ data have eight spectral bands with a spatial resolution of 30 m for bands 1-7. Similarly, the Landsat 8 data have nine spectral bands with a spatial resolution of 30 m for bands 1-7 and 9 [9].

These data were interpreted and supervised classification used to divide the mangrove areas into three classes of mangrove coverage: high density, medium density, low density. Interpretation and supervised classification produced a tentative map of mangrove coverage. We then conducted an assessment of the accuracy of mangrove coverage data followed by re-interpretation for several areas to improve accuracy. This ground truthing and re-interpretation process was repeated until the assessed accuracy was at least 75%.

2.1.2. Transect line plot (quadrat transect method). The transect line plot (quadrat transect method) was used to collect in situ/non spatial mangrove data. Transect lines were set perpendicular to the coastline, with the transect length based on the width of the mangrove belt. Three quadrats (10x10 m plots) were placed along each transect line in three mangrove zones. At each station there were three transect lines and nine quadrats.

We collected the following mangrove data from each quadrat following [10]: mangrove tree diameter, species of mangrove and number of trees per species. Mangrove tree diameter was only measured for trees with a trunk diameter over 4 cm or circumference of over 16 cm [11]. Tree trunk diameter at breast height (DBH) was measured using a tape measure at 1.3 metres above the substrate surface [12,13]. Mangrove species were identified using mangrove identification guides [14–16].

Mangrove data were analysed to determine the frequency value of each species (Fi), species density (Di) and species dominancy (Ci). Species frequency (Fi) is the probability that the ith species would be found in any particular quadrat, and was calculated using the formula [12]:

\[
F_i = \frac{p_i}{\Sigma p}
\]

where:
- \(F_i\) = Frequency of the ith species
- \(p_i\) = Number of plots where the ith species was found
- \(\Sigma p\) = Total number of quadrats

Species density (Di) is the number of the ith species per unit area [12], with the formula:

\[
D_i = \frac{n_i}{A}
\]

where:
- \(D_i\) = ith species density (number of the ith species/Ha)
- \(n_i\) = Total number of the ith species
- \(A\) = Total sampling area (hectare).

The dominancy of the ith species (Ci) is the basal area of the ith species in particular area unit (m²/ha) [12]. Species dominancy was calculated according to English et al [12] and Kusmana [13]:

\[
C_i = \frac{\Sigma BA}{A}
\]
BA = \pi R^2 \text{ or } BA = \frac{1}{4} \pi D^2 \text{ or } \pi \frac{(DBH)^2}{4} \quad (4)

where:
- \(C_i \) = Dominancy of ith species (m\(^2\)/Ha)
- BA = Basal Area (calculated for each tree of the ith species)
- A = Total plot area (Ha)
- \(\pi \) = constant \(\approx 3.1416 \)
- R = radius of tree
- D = diameter of tree
- DBH = Diameter at breast height.

2.2. Sampling and data analysis of fish.

Sampling of mangrove-associated fishes (species assemblages) was conducted at 8 stations (7 station of mangrove area, 1 station in a non-mangrove area) with three sampling point at each station. Sampling for collecting fish data was conducted over 8 months (September 2017 to April 2018).

The fishing gear used for collecting fish was a modified trammel net (net with three layers) with a length of 40 m, height of 180 cm, 1.5 inch mesh size for each layer. The middle of layer used nylon monofilament number 80, the outer layer was nylon multifilament type D9. Floats were attached to the top line (50 x Y-3 type units) and weights were attached to the bottom line (100 x 25 gr units). Two 3 kg anchors were used to anchor the bottom end of the net. Buoys (2 x 30 cm diameter floats) were attached to the ends of the upper edge of the net.

The modified trammel net was set in the mangrove areas, close to river estuaries. The nets were set in the late evening (19.00 – 20.00) and left overnight. Hauling took place in the early morning (04.00 – 05.00).

2.3. Data analysis

Mangrove data was analysed using software developed for Monitoring Mangrove Degradation/Health (Dharmawan, 2014). Fish assemblage and mangrove data were analysed using the Analysis of Similarities (ANOSIM) functionality in PRIMER 5 version 5.2.2. The correlation between mangrove and fish variables was determined using Correspondence Analysis.

3. Results and Discussion

3.1. Mangrove diversity at Maumere Bay.

Mangroves in Maumere Bay, Sikka Regency are concentrated in four areas: the western area of Sikka Regency, Kampung Garam and surrounding areas, the eastern area of Sikka Regency, and the small islands of Sikka Regency [17]. The seven study sites were selected to represent these areas. A synopsis of the mangrove diversity data is shown in Table 1.

Number	Stations / substations	Area (Ha)	Belt width (m)	Mangrove cover (%)	Density (trees/Ha)	Dominance (m\(^2\)/Ha)
1. Darat Pantai	133.43	3,220	35.46			
1. Mageroneng	32.53	149.32	83.57	3,183	37.19	
2. Padubima	19.90	115.21	65.04	3,467	36.55	
3. Wairwua	81.00	213.35	77.48	2,800	29.83	
2. Talibura	80.63					
1. North	3.43	89.69	80.55	2,467	30.38	
2. Centre	7.29	140.90	81.28	2,367	31.24	
3. South	7.84	153.53	80.08	2,267	28.97	
The results in terms of mangrove area indicate that human activity has adversely affected mangrove extent. This is supported by [1] who found that mangrove loss has been driven in large part by conversion to other uses, often justified based on incomplete economic arguments and short time horizons. Table 1 shows that the highest of mangrove area was found at Darat Pantai station accounting for 133.43 Ha (total area of three substations). The smallest mangrove area was at Magepanda I/Fata station (18.37 ha) where most mangrove forests had been converted to brackishwater ponds or cleared for residential use.

The widest mangrove belt was found at Kampung Garam II/Wuring (mean 427.6 m), and the narrowest at Magepanda II/Ndete (mean 114.7m). The results indicate that mangrove belt width was influenced by the distance from the coastline to the mainland. Kampung Garam II/Wuring station was located in the bay where access to the location was limited.

The highest percentage of mangrove cover was found at Talibura station (80.63%) and the lowest at Kampung Garam I (59.00%). The results indicate that the percentage of mangrove canopy cover was closely related to mangrove density. At Talibura station, mangrove canopy was quite dense, because there was a village regulation in Talibura that prohibited the cutting of mangrove trees by the community. The local regulation was well implemented and there was increasing public awareness regarding the importance of protecting the mangrove area [18]. Hutchinson [1] mentioned that avoidance of mangrove loss is most effectively achieved through protective regulation(s) and/or the development of strong local or community level ownership.

Mangrove density and dominance indices were calculated based on 8 species of mangrove: (i) *Avicennia alba*, BL., (ii) *Avicennia marina*, (Forsk). Vierh, (iii) *Bruguiera gymnorrhiza*, (L.) Lamk, (iv) *Bruguiera parviflora*, (Roxb.) W.&A. ex Grift. (v) *Ceriops tagal*, (Perr.) C.B. Rob, (vi) *Rhizophora apiculata*, BL., (vii) *Rhizophora mucronata*, Lmk., (viii) *Sonneratia alba*, J.E. Smith. The highest average mangrove density was found at Darat Pantai station (3,220 tree/ha), and the lowest (2,333 tree/ha) at Magepanda I/Fata station. The results confirmed the impact of human activity on mangroves, specifically in terms of density. Forest degradation and loss of habitat connectivity may reduce the protective capacity of mangroves [5]. Darat Pantai station was located quite far from the

Number	Stations / substations	Area (Ha)	Belt width (m)	Mangrove cover (%)	Density (trees/Ha)	Dominance (m²/Ha)
3.	Kampung Garam I					
	1. East	5.17	130.44	55.35	2,433	25.89
	2. Centre	8.50	277.61	59.92	1,633	26.46
	3. West	8.93	385.41	61.72	2,400	24.67
4.	Kampung Garam II/Wuring					
	1. East	19.09	335.87	59.07	2,833	28.06
	2. Centre	12.42	219.33	63.35	2,433	22.34
	3. West	16.18	727.63	73.75	3,600	31.18
5.	Kampung Garam III/Wuring Leko					
	1. North	11.72	427.93	65.61	2,933	30.31
	2. Centre	7.41	381.32	56.87	3,033	32.04
	3. South	6.23	253.74	57.78	2,300	17.48
6.	Magepanda I/Fata	18.37				
	1. East	5.76	208.42	80.89	2,667	32.70
	2. Centre	5.77	197.31	83.49	2,200	30.41
	3. West	6.85	160.56	66.86	2,133	23.92
7.	Magepanda II/Ndete	114.74				
	1. North	11.02	64.47	75.40	2,500	31.96
	2. Centre	43.59	146.19	30.68	2,567	28.94
	3. South	1.17	133.56	94.38	2,167	23.91
city with less pressure from human activities, consequently mangroves were mostly allowed to grow naturally [17].

The highest average mangrove dominancy index was 35.46 m²/ha at Darat Pantai station. Mangrove dominance is determined based on the basal area of mangrove trees [13]. The mangroves at Darat Pantai had large tree trunks with the widest mean diameter.

3.2. Fish Assemblages at Maumere Bay.

During this study, 38 species of fish were caught in the experimental fishing gear. These fishes belonged to 36 genera and 30 families (Table 2).

Table 2. Biodiversity and abundance fish assemblages at the 7 sampling stations in the study area

No	Species	Genus	Family	Darat Pantai	Talibura	Kampung Garam I	Kampung Garam II	Kampung Garam III	Wuring	Kampung Garam III	Wuring Loko	Magepanda I	Magepanda II	Magepanda I	Magepanda II
1	*Upeneus moluccensis*, Bleeker 1855	*Upeneus*	Mullidae	33	19	11	29	26	9	8					
2	*Epinephelus fascioguttatus*, Forsskål 1775	*Epinephelus*	Serranidae	8	8	3	3	2	2	1					
3	*Cromileptes altivelis*, Valenciennes 1828	*Cromileptes*	Serranidae	2	3	0	6	4	0	5					
4	*Lates calcarifer*, Bloch 1790	*Lates*	Latidae	6	1	5	1	1	1	0					
5	*Psammoperca waigiensis*, Cuvier 1828	*Psammoperca*	Latidae	5	0	3	3	3	8	7					
6	*Lutjanus bitaeniatus*, Valenciennes 1830	*Lutjanus*	Lutjanidae	9	3	0	5	2	2	8					
7	*Lutjanus johnii*, Bloch 1792	*Lutjanus*	Lutjanidae	3	6	5	6	9	1	2					
8	*Pristipomoides filamentosus*, Valenciennes 1830	*Pristipomoides*	Lutjanidae	4	7	0	8	3	9	7					
9	*Siganus canaliculatus*, Park 1797	*Siganus*	Siganidae	11	7	16	17	17	12	15					
10	*Siganus fuscus*, Linnaeus 1766	*Siganus*	Siganidae	5	5	21	16	12	4	1					
11	*Taeniura lynna*, Forsskål 1775	*Taeniura*	Dasyatidae	3	3	1	4	1	11	4					
12	*Neotrygon annotata*, Forsskål 1775	*Neotrygon*	Dasyatidae	0	0	0	0	0	2	3					
13	*Stegostoma fasciatum*, Hermann 1783	*Stegostoma*	Stegostomatidae	10	0	19	28	25	0	2					
14	*Achioidees leucorhynchos*, Bleeker 1851	*Achioidees*	Soleidae	38	16	27	28	27	28	9					
15	*Aluterus monoceros*, Linnaeus 1758	*Aluterus*	Monacanthidae	33	12	14	13	21	25	12					
16	*Carangoides malabaricus*, Bloch & Schneider 1801	*Carangoides*	Carangidae	9	11	16	21	17	9	4					
No	Species	Genus	Family	Darai Pantai	Talihura	Kampung Garam I	Kampung Garam II	Waring	Kampung Garam III	Waring Leko	Maganda I/F	Maganda II/F	Nete		
----	---------	-------	--------	--------------	---------	----------------	----------------	--------	----------------	-------------	------------	-------------	------		
18	Nemipterus nematophorus, Bleeker 1854	Nemipterus	Nemipteridae	5	15	2	9	8	5	5					
19	Lethrinus lentjan, Lacepède 1802	Lethrinus	Lethrinidae	13	12	7	9	12	5	14					
20	Earisthmus microceps, Richardson 1845	Earisthmus	Plotosidae	25	20	16	12	17	10	15					
21	Onigocia macrolepis, Bleeker 1854	Onigocia	Platycephalidae	11	4	0	7	4	1	3					
22	Pomadasys maculatus, Bloch 1793	Pomadasys	Haemulidae	20	8	9	9	5	12	9					
23	Scarus frenatus, Lacepède 1802	Scarus	Scaridae	27	10	2	3	0	0	2					
24	Myripristis hexagona, Lacepède 1802	Myripristis	Holocentridae	2	2	4	1	8	3	0					
25	Saurida tumbil, Bloch 1795	Saurida	Synodontidae	0	5	5	1	0	5	0					
26	Priacanthus macracanthus, Cuvier 1829	Priacanthus	Priacanthidae	4	2	19	7	12	4	6					
27	Helotes sexlineatus, Quoy & Gaimard 1825	Helotes	Terapontidae	9	4	5	9	12	4	4					
28	Chanos chanos, Forsskål 1775	Chanos	Chanidae	9	5	13	23	13	4	7					
29	Mugil cephalus, Linnaeus 1758	Mugil	Mugilidae	11	4	20	8	13	0	5					
30	Arothron caeruleopunctatus, Matsuura 1994	Arothron	Tetraodontidae	16	6	16	11	14	9	10					
31	Platax teira, Forsskål 1775	Platax	Epiphippidae	0	0	0	10	4	0	0					
32	Hippocampus denise, Lourie & Randall 2003	Hippocampus	Syngnathidae	2	0	2	2	2	3	0					
33	Syngnathoides biaculeatus, Bloch 1785	Syngnathoides	Syngnathidae	2	0	4	3	3	0	2					
34	Scylla serrata, Forsskål 1775	Scylla	Portunidae	63	28	60	87	78	42	53					
35	Portunus pelagicus, Linnaeus 1758	Portunus	Portunidae	22	18	23	31	20	9	8					
36	Penaeus merguensis, de Man	Penaeus	Penaeidae	4	4	6	0	2	0	6					
37	Panulirus versicolor, Latereille 1804	Panulirus	Palinuridae	0	3	1	2	4	5	6					
38	Octopus vulgaris, Leach 1818	Octopus	Octopodidae	0	1	0	2	1	7	9					
The results indicate a strong correlation between the number of fish species and mangrove condition. Darat Pantai station, which had the highest mangrove area, density and dominance also had the highest number of fish species. The eleven species found at this site were: *Upeneus moluccensis*, *Epinephelus fuscoguttatus*, *Lates calcarifer*, *Lutjanus bitaeniatus*, *Achiroides leucorhynchos*, *Synanceia verrucosa*, *Aluterus monoceros*, *Euristhmus microcephus*, *Pomadasys maculatus*, *Scarus frenatus*, and *Arothron caeruleopunctatus*. This finding is similar to the results of [1] who found that fish productivity will increase with an increase in total area of mangroves.

Interestingly, we found that the area with the highest mangrove cover at Talibura station could be the best habitat for three fish species: *Epinephelus fuscoguttatus*, *Nemipterus nematophorus*, and *Saurida tumbil* (Table 2). The site with the highest belt width of mangrove, Kampung Garam II/Wuring, provided habitat for 8 species: *Cromileptes altivelis*, *Siganus canaliculatus*, *Stegostoma fasciatum*, *Carangoides malabaricus*, *Chanos chanos*, *Platax teira*, *Scylla serrata*, and *Portunus pelagicus*.

3.3. Economically important fish species

Of the 38 fish species found at the 7 mangrove sampling stations, 20 species were economically important fishes. These were: *Upeneus moluccensis* Bleeker 1855 (Figure 2), (2) *Epinephelus fuscoguttatus* Forsskål 1775, (3) *Cromileptes altivelis* Valenciennes 1828, (4) *Lates calcarifer* Bloch 1790, (5) *Psammoperca waigiensis* Cuvier 1828, (6) *Lutjanus bitaeniatus* Valenciennes 1830, (7) *Siganus canaliculatus* Park 1797, (8) *Siganus javus* Linnaeus 1766, (9) *Stegostoma fasciatum* Hermann 1783 (Figure 3), (10) *Synanceia verrucosa* Bloch & Schneider 1801, (11) *Carangoides malabaricus* Bloch & Schneider 1801, (12) *Lethrinus lentjan* Lacepède 1802, (13) *Pomadasys maculatus* Bloch 1793, (14) *Scarus frenatus* Lacepède 1802, (15) *Chanos chanos* Forsskål 1775, (16) *Mugil cephalus* Linnaeus 1758, (17) *Scylla serrata* Forsskål 1775, (18) *Portunus pelagicus* Linnaeus 1758, (19) *Penaeus merguiensis* De Man 1907, and (20) *Panulirus versicolor* Latreille 1804.

![Figure 2. Upeneus moluccensis](image-url)
Figure 3. *Stegostoma fasciatum*

The correspondence analysis (Figure 4) indicated that mangrove locations characterised by dominant mangrove species *Bruguiera parviflora*, *Avicennia alba*, *Bruguiera gymnorrhiza*, *Ceriops tagal*, moderate values of the Shannon diversity index ($1 < H' \leq 3$), and moderate values of the Simpson dominance index ($0.5 < C \leq 0.75$) were associated with the economically important fish species *Psammoperca waigiensis*, *Synanceia verrucosa* and *Pomadasys maculatus*. This association was thought to be influenced by the role of *Bruguiera parviflora* and *Avicennia alba* in reducing current velocity with a dense root system which provided habitat favoured by *Psammoperca waigiensis*, *Pomadasys maculatus*. These two fishes are generally found in coastal waters, seeking crustaceans and small fish as food.

Figure 4. Correspondence analysis output showing correlations between mangrove parameters and the presence of economically important fish species
The mangrove locations with high mangrove cover (≥ 80%), *Avicennia marina* dominancy, large area (> 100 ha) and high density (≥ 3000 trees/ha), *Rhizophora mucronata* dominancy, and high value of Pielou's evenness index (0.6 < E ≤ 1.0) were associated with the economically important fish species *Upeneus mollucensis*, *Lethrinus lentjan*, and *Lutjanus bitaeniatus*. These are fish which can grow to large sizes. They can adapt to faster current velocities, and are known to search for food in mangrove habitat.

The mangrove locations with medium cover (50% - 75%), moderate values of the Simpson dominance index (0.5 < C ≤ 0.75) and high mangrove belt width (≥ 400 m) were associated with the economically important fish species *Siganus javus*, *Stegostoma fasciatum*, *Mugil cephalus*, *Carangoides malabaricus* and *Chanos chanos*. *Siganus javus* and *Stegostoma fasciatum* are not mangrove resident species, being more typically found in seagrass areas. The associations that occurred here were most likely influenced by the physical condition of the mangroves which were not too dense, so that they could provide suitable habitat for these fishes.

4. Conclusion
This study found associations between economically important fish and mangrove characteristics. The fish species present were influenced by the condition of the mangroves and the environmental characteristics. Fish were found in areas where the conditions were likely to guarantee the availability of suitable food and habitat suited to their size, swimming ability and behaviour.

Acknowledgements
We would like to express our appreciation and gratitude to Nurjannah Nurdin from The Research and Development Centre for Coastal Geospatial Planning, Hasanuddin University for providing facilities in the spatial analysis laboratory, and to Sabinus Nabu from Nusa Nipa Foundation of Maumere for funding this research. We also thank Sri Suro Adhawati who helped with manuscript editing and to the technicians and local communities for their wonderful help during the field work.

References
[1] Hutchison J, Spalding M and Ermgassen P 2014 *The Role of mangroves in fisheries enhancement* (United Kingdom)
[2] Saenger P, Gartside D and Funge-Smith S 2013 *A review of mangrove and seagrass ecosystems and their linkage to fisheries and fisheries management* (Thailand: RAP PUBLICATION)
[3] Kathiresan K 2012 *Importance of mangrove ecosystem* (Annamalai University: Centre of Advanced Study in Marine Biology)
[4] Lebata M A J H, Walton M E, Binas J B, Primavera J H and Vay L L 2012 Identifying mangrove areas for fisheries enhancement ; population assessment in a patchy habitat *Aquat. Conserv. Mar. Freshw. Ecosystem*. 13p
[5] Lee S Y, Primavera J H, Dahdouh-Guebas, F McKee K, Bosire J O, Cannicci S, Diele K, Fromard F, Koedam N, Marchand C, Mendelsohn I, Mukherjee N and Record S 2014 Ecological role and services of tropical mangrove ecosystems : a reassessment *Glob. Ecol. Biogeogr.* 23 726 – 743
[6] Allen G R 2008 Conservation hotspots of biodiversity and endemism for Indo-Pacific coral reef fishes *Aquat. Conserv.* 18 541–556
[7] Alongi D M, Murdiyarso D, Fourqurean, J W Kauffman J B, Huitahaean A, Crooks A, Lovelock C E, Howard J, Herr D, Fortes M, Pidgeon E and Wagey J 2016 Indonesia’s blue carbon : a globally significant and vulnerable sink for seagrass and mangrove carbon *Wetl. Ecol. Manag.* 24 3–13
[8] Fernandes L, Green A, Tanzer J, White A, Alino P M, Jompa J, Lokani P, Soemodinoto A, Knight M, Pomeroy B, Possingham H and Pressey B 2012 *Biophysical principles for designing resilient networks of marine protected areas to integrate fisheries, biodiversity and climate change objectives in the Coral Triangle*
[9] Nurdin N, Komatsu T, Agus, Akbar A S M, Djalil A R and Amri K 2015 Multi sensor and multi temporal data from Landsat images to detect damage to coral reefs, small islands in the Spermonde archipelago, Indonesia Ocean Sci. J. 50 317–25
[10] Dharmawan I W I and Pramudji 2014 Panduan Monitoring Status Ekosistem Mangrove ed Pramudji and A Nontji (Jakarta: COREMAP CTI LIPI)
[11] Ashton E C and Macintosh D J 2002 Preliminary assessment of the plant diversity and community ecology of the Sematan mangrove forest, Sarawak, Malaysia For. Ecol. Manage. 166 111–29
[12] English S, Wilkinson C and Baker V 1997 Survey Manual for Tropical Marine Resources (Townsville: Australian Institute of Marine Science)
[13] Kusmana C Metode Survey dan Interpretasi Data Vegetasi (Bogor: Bogor Agricultural University)
[14] Tomlinson P B 1986 The Botany of mangroves (U.K: Cambridge University Press)
[15] Noor Y R, Khazali M and Suryadiputra I N N Panduan Pengenalan Mangrove di Indonesia (Bogor: Wetlands International Indonesia Programme, dan Ditjen PHKA)
[16] Giesen W, Wulffraat W S, Zieren M and Scholten L 2006 Mangrove Guidebook for Southeast Asia (Bangkok: FAO and Wetlands International)
[17] Vincentius A, Nessa M N, Jompa J, Saru A, Nurdin N and Rani C 2018 Influential factors analysis towards mangrove cover and production of demersal fish in Maumere Bay, Indonesia AACL Bioflux 11 810–22
[18] Lestari T A, Satriyo L, Rahadian A and Sualia I 2012 Kajian Tingkat Kerentanan dan Kapasitas Masyarakat dalam rangka Pengurangan Resiko Bencana : Studi Kasus Beberapa Desa di Kabupaten Sikka, Kabupaten Ende dan Kota Serang. (Bogor)