Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K⁺ concentrations

Junnan Xu#, Dan Song*, Qiufang Bai*, Lijun Zhou*, Liping Cai†, Leif Hertz* and Liang Peng*†

*Department of Clinical Pharmacology, China Medical University, Shenyang, P. R. China
†Laboratory of Molecular Biology, Liaoning University of Traditional Chinese Medicine, Shenyang, P. R. China

Cite this article as: Xu J, Song D, Bai Q, Zhou L, Cai L, Hertz L, Peng L (2014) Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K⁺ concentrations. ASN NEURO 6(1):art:e00132.doi:10.1042/AN200130040

ABSTRACT

Stimulated release of ATP from astrocytes has repeatedly been shown. (i) Caciagli et al. (1988) found that electrical stimulation of cultured astrocytes pre-loaded with [³²P]adenosine released approximately equal amounts of nucleosides and nucleotides to the medium in a Ca²⁺ - and K⁺ -dependent manner. (ii) Release of ATP from cultured astrocytes by glutamate, or by NMDA, AMPA or kainate-specific agonists was described by Queiróz et al. (1997). With addition of 100 μM glutamate they found an average ATP release of 0.3–0.4 pmol/min per mg of protein, but higher glutamate concentrations raised this value. (iii) Maienschein et al. (1999) confirmed release of ATP from cultured astrocytes by receptor-mediated mechanisms and suggested vesicular exocytosis as a potential mechanism of the release. These observations are important for astrocytic function, since one mechanism for the propagation of Ca²⁺ waves in astrocytes is by release of ATP (Leybaert and Sanderson, 2012), which subsequently activates purinergic receptors on adjacent cells (Cotrina et al., 2000). (iv) ATP release from cultured astrocytes was again found to be Ca²⁺ -dependent by Bal-Price et al. (2002), who also described that a portion of astrocytic ATP is packaged in secretory granules. (v) Pangsric et al. (2007) showed punctate expression in cultured astrocytes of ATP-containing vesicles, which after glutamate stimulation fused with the plasma membrane in a Ca²⁺ -dependent manner, leading to release of ATP. (vi) Pryazhnikov and Khiroug (2008) showed that exocytosis of ATP from cultured astrocytes was triggered by receptor stimulation or Ca²⁺...
uncaging, but occurred after a delay, with only approximately 4% of the release during the first 30 s. (vii) In intact brain slices the time interval is even longer (Heinrich et al., 2012) suggesting activation of Ca\(^{2+}\)-dependent signaling. (vii) Release of ATP from astrocytes gently isolated from brain slices (Lalo et al., 2006) has been demonstrated (Lalo et al., 2011). For studies of the role of glycogen in ATP release from brain slices or astrocytes obtained from brain slices it is important to remember that glycogen content may become drastically reduced when the animal is killed and only recover in the slices after at least 2 h of incubation (LeBaron, 1955).

Glycogenolysis is Ca\(^{2+}\)-dependent, not only in muscle (Ozawa, 1972, 2011) but also in brain slices (Verwerken et al., 1982) and leukocytes (Herlin et al., 1978). Glycogenolysis is an astrocyte-specific process (Gibbs et al., 2006), which is important for brain function both on account of its requirement for formation of transmitter glutamate (Gibbs et al., 2006) and because Na\(^{+}\),K\(^{-}\)-ATPase-mediated K\(^{+}\) uptake in cultured astrocytes require glycogenolysis-dependent signaling (Xu et al., 2013). An intense K\(^{+}\) uptake triggered by extracellular K\(^{+}\) concentrations above 15 mM, which is mediated by activation of the Na\(^{+}\), K\(^{-}\), Cl\(^{-}\) and water transporter NKCC1, and is secondary to depolarization-mediated opening of L-channels for Ca\(^{2+}\) (Yan et al., 2013) also requires glycogenolysis. We therefore wondered whether K\(^{+}\) stimulated and perhaps also transmitter-stimulated ATP release might require glycogenolysis.

In the present paper this was studied by measuring ATP release from cultured astrocytes by a luciferin/luciferase method in the presence and absence of the glycogenolysis inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB), with and without stimulation. In addition to testing the generally used but pathologically high K\(^{+}\) concentration of 45 mM we also tested whether a smaller effect could be obtained after addition of 10 mM K\(^{+}\), reaching a less pathological extracellular K\(^{+}\) concentration of 15 mM, and whether this effect might be increased by a-aminobutyric acid (GABA) which is depolarizing in astrocytes and causes an increase in [Ca\(^{2+}\)]. (Bekar and Walz, 2002; Meier et al., 2008; Young et al., 2010; Ma et al., 2012; Egawa et al., 2013) GABA was also tested alone, as were the two other transmitter glutamate and adenosine.

MATERIALS AND METHODS

Reagents

Chemicals for preparation of medium and most other chemicals, including DAB, adenosine, glutamate, the glutamate receptor antagonist MPEP [2-methyl-6-(phenylethynyl)-pyridine], GABA and the ecto-ATPase inhibitor ARL67156 were purchased from Sigma. The inhibitor of MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] U0126 was obtained from Calbiochem.

Cell culture

Primary cultures of astrocytes were prepared from the neopallia of the cerebral hemispheres as previously described (Juurlink and Hertz, 1992) with minor modifications (Xu et al., 2013) and planted in 24-well plates in Dulbecco’s Minimum Essential Medium (DMEM) with 7.5 mM glucose (to allow some decline between feedings) and the 5.4 mM K\(^{+}\) traditionally used in our cultures. After the age of 2 weeks, 0.25 mM dibutyryl cAMP (dBcAMP) was included in the medium. Such cultures are highly enriched in astrocytes (>95% purity of glial fibrillary protein- (GFAP-) and glutamine synthetase-expressing astrocytes (Hertz et al., 1985). The addition of dBcAMP at this specific stage of culturing is a crucial component of our culture preparation. It leads to a morphological and functional differentiation, as evidenced by the extension of cell processes, increases in several metabolic activities and expression of voltage sensitive L-channels for calcium (Ca\(^{2+}\)), features which are characteristic of astrocytes in situ (Hertz, 1990; Meier et al., 1991, Yan et al., 2013). Use of astrocyte cultures has recently been authoritatively reviewed (Lange et al., 2012), and in our own cultures drug-induced changes in gene expression and editing have recently been confirmed in freshly isolated cells from mice treated with the same drugs (Li et al., 2012b; Song et al., 2012; Peng et al., 2013). Moreover the development of the glutamate/aspartate exchanger component aralar shows similar developmental patterns in the two preparations, with an increase in the cultured cells after dBcAMP administration (Li et al., 2012a).

Luciferase/luciferin ATP assay

For determination of the extracellular ATP, a luciferin/luciferase assay (ECLIPSE ATP Assay System Bioluminescence Detection Kit, Promega) and a Tecan infinite M200 Microplate Analyzer were used to record relative light units (RLU) as described by Liu et al., (2008). Firefly luciferase catalyzes the oxidation of luciferin in the presence of ATP to produce light. For determination of ATP release the culture medium in 24-well plates was replaced with 180 \(\mu\)l of DMEM without pH indicator and serum but retaining its normal glucose content. To most of the incubation media an inhibitor of ecto-ATPase (ARL67156) was added at the beginning of the incubation. At the same time the glycogenolysis inhibitor (DAB) was added to some cultures. Fifteen minutes later a 60 min-incubation with drugs or excess K\(^{+}\) was begun by gently adding 20 \(\mu\)l of glutamate (1 mM in DMEM, to achieve a final concentration of 100 \(\mu\)M), of adenosine (1 mM in DMEM, to achieve a final concentration of 100 \(\mu\)M), or of KCl (either 450 mM in DMEM to achieve a final K\(^{+}\)
concentration of 50 mM or 100 mM in DMEM to achieve a final K⁺ concentration of 15 mM).

At the end of the 60-min experimental period a 100 μl aliquot of the incubation medium was quickly removed and its temperature reduced to 37 °C for the ATP assay. It was mixed with a 100 μl aliquot of luciferin/luciferase reagent dissolved in dilution buffer provided with the assay kit, and chemiluminescence values (RLU) were recorded. Ionic salt sensitivity of the luciferase reaction was negligible, and it was not sensitive to DAB or other drugs employed in the present study (J. Xu, L. Hertz and L. Peng, unpublished work). However, even in the absence of any known ATP, considerable relative high RLU readings were caused by the medium and/or cultures (ATP is found in many compounds), and this varied slightly between experiments. A correction for RLU that were independent of ATP release was introduced by adjusting the baseline of each figure, assuming that the relatively small ATP release under control conditions remained constant. This procedure ensures that relative changes are measured reasonably accurately. For calculation of absolute ATP levels, sample RLU readings were in some cases compared with RLU values obtained from standard solutions of ATP.

Statistics

The statistical values of the differences between individual groups were analyzed by one-way ANOVA followed by Fisher’s LSD test. The level of significance was set at P < 0.05.

RESULTS

Effects of DAB

Without any tissue the incubation medium caused RLU values between 1200 and 1600 (J. Xu, L. Hertz and L. Peng, unpublished work) for the reasons discussed above. In Figure 1 all values are therefore indicated from a baseline of 1500. Under control conditions, without any ecto-ATPase inhibitor, there is virtually no visible increase in RLU (Figure 1). However, in the presence of the ecto-ATPase inhibitor ARL 67156 there is an increase of ~300 units, suggesting that a normally occurring small ATP release is obscured by ecto-ATPase action. An effect similar to that of ARL 67156 was caused by DAB, which might suggest that ecto-ATPase action requires glycogenolysis. This possibility was not further investigated, except by showing that the effects of ARL 67156 and DAB were not additive. In all remaining results of Figure 1 ARL 67156 was present. They illustrate the effects of 100 μM glutamate, 100 μM adenosine or an elevation of the extracellular K⁺ concentration by 45 mM (to a total of 50 mM). In the absence of DAB either agent increased RLU by up to 1000 RLU units, and this effect was almost completely inhibited by DAB.

A standard curve (not shown) was used to estimate the corresponding amounts of ATP. It showed that 300 RLU units under control conditions corresponds ~0.3 nM and that a further increase of 1000 units under stimulated conditions equals ~5 nM. Since this value was obtained after a 1:1 dilution and the total volume of incubation was 200 μl, the total amount of ATP in the incubation medium must have increased by about 2 pmol. With a protein content of 35 μg per culture the amount of ATP released in response to glutamate during 60 min would thus amount to ~60 pmol or ~1.0 pmol/min per mg of protein. In the following two figures, ARL 67156 was present in all experiments to prevent ecto-ATPase activity. The ATP release shown in Figure 2 in response to glutamate was somewhat smaller than in Figure 1, perhaps reflecting differences in protein content in the cultures. However, it was still at least as high as the release found by Queiroz et al. (1997) in response to 100 μM glutamate. Addition of either the glutamate receptor antagonist MPEP or U0126 completely inhibited the glutamate-evoked increase in extracellular ATP. We have previously shown that MPEP inhibits glutamatergic signaling in astrocytes (Peng et al., 2012), and U0126 is a MEK inhibitor, which prevents phosphorylation of ERK1/2. ERK1/2 phosphorylation must accordingly constitute an important part of the glutamate-stimulated pathway leading to ATP release.

Figure 3 shows that addition of 10 mM K⁺ caused a smaller release of ATP (about 300 RLU or ~0.3 pmol ATP/min per mg of protein) than exposure to higher K⁺ concentrations, and it made little difference whether or not GABA was also present. This release of ATP was abolished by nifedipine.
DISCUSSION

Abrogation of K⁺-stimulated release of ATP by inhibition of glycogenolysis could have been expected, since the L-channel-mediated pathway opened by the addition of 45 mM K⁺ (Cai et al., 2011) is inhibited when glycogenolysis is prevented (Xu et al., 2013). L-channel function is also known to be dependent on energy metabolism (Kostyuk, 1984). Elevation of extracellular K⁺ concentrations cause an increase in glycogenolysis both in intact brain tissue (Hof et al., 1988) and in cell cultures that have been treated with dBCAMP (Subbarao et al., 1995). The present study showed that also K⁺ addition resulting in a more physiologically relevant K⁺ concentration (Ca²⁺) (Yan et al., 2013). GABA alone seemed to cause a very small increase in ATP release, but it was far from being statistically significant.

Glutamate receptor, but this receptor is only functioning in astrocytes during very early development (Sun et al., 2013). MPEP appears also to inhibit the kainate receptor GluK2, present in mature astrocytes in vivo (Li et al., 2012a) and active in culture (Li et al., 2011). GluK2 is equally distributed in freshly isolated neurons and astrocytes (Li et al., 2012a). The signaling pathway for the GluK2 receptor in astrocytes has not been determined, but glutamate increases [Ca²⁺], in the presently used astrocytes (Li et al., 2011). However, in astrocytic transmitter pathways examined so far ERK1/2 phosphorylation is downstream of an increase in [Ca²⁺], and subsequent transactivation of the epidermal growth factor receptor (EGFR) (Peng, 2004; Peng et al., 2010). An inhibitor of ERK1/2 phosphorylation abolished glutamate-induced release of ATP, and we have evidence that inhibition of post-transamination signaling does not interfere with pre-transamination signaling (J. Xu, L. Hertz and L. Peng, unpublished work). Accordingly, it can be concluded that increase in [Ca²⁺], is necessary, but not sufficient, for GluK2-mediated ATP release. Precise identification of the glycogenolysis-dependent step is therefore a major undertaking, beyond the scope of the present study.

Glutamate has been reported not to cause glycogenolysis in cultured astrocytes (Sorg and Magistretti, 1991). Consistent with this observation, 100 μM glutamate (the concentration used in this study) causes relatively little glycogenolysis also in our cultures, although it had a pronounced glycogenic effect at 1 mM (J. Xu, L. Hertz and L. Peng, unpublished work), perhaps due to massive glycogenolysis-requiring extrusion of K⁺ accumulated together with glutamate. In this context it is of interest that...
Queiroz et al. (1997) noted increased release of ATP when the glutamate concentration was raised beyond 100 μM.

Adenosine causes a stimulation of glycogenolysis in cultured astrocytes and brain slices, and at least in the cultured cells the stimulation is dependent upon cAMP signaling (Magistretti et al., 1986; Sorg and Magistretti, 1991), i.e. stimulation of an A2 receptor (van Calker et al., 1979). Both an A2A and an A2B receptor are now known to exist. A2A adenosine receptors mediate their effects predominantly through coupling to adenyl cyclase, but at least in some cells their activation might also induce formation of inositol phosphates, a rise in [Ca2+]i, and activation of protein kinase C (PKC) (Obermanns and Simon, 1995). This is important because cAMP as previously described can not induce glycogenolysis in the absence of an increase in [Ca2+]i (Ozawa, 1972; 2011; Herlin et al., 1978; Ververken et al., 1982). However, Ca2+ can also enter the cell through receptors (Neary et al., 1988).

Such a mechanism might perhaps explain why Kanno and Nisizaki (2012) found the release of glutamate and increase in [Ca2+]i in cultured astrocytes in response to adenosine to require protein kinase A function but not Ca2+ release from either InsP3 or ryanodine receptors. Whether this applies also for the present release of ATP is unknown.

AUTHOR CONTRIBUTION

Leif Hertz designed experiments. Junnan Xu, Dan Song, Qiu-fang Bai, Lijun Zhou and Liping Cai performed experiments. Leif Hertz, Junnan Xu and Liang Peng analyzed data and wrote the manuscript.

FUNDING

This work was supported by the National Natural Science Foundation of China [grant number 31171036 (to L.P.)].

REFERENCES

Bekar BK, Walz W (2002) Intracellular chloride modulates A-type potassium currents in astrocytes. Glia 39:207–216.

Bal-Price A, Moneer Z, Brown GC (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40:312–323.

Caciagli F, Ciccarelli R, Di Iorio P, Balerini P, Tacconelli L (1988) Cultures of glial cells release purines under field electrical stimulation: the possible ionic mechanisms. Pharmacol Res Commun 20:935–947.

Cai L, Du T, Song D, Li B, Hertz L, Peng L (2011) Astrocyte ERK phosphorylation precedes K+-induced swelling but follows hypoxotoxicity-induced swelling. Neuropathology 31:250–264.

Cotrina ML, Lin JH, López-García JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:8385–2343.

Egawa K, Yamada J, Furukawa T, Yanagawa Y, Fukada A (2013) Cl−homeodynamics in gap junction-coupled astrocytic networks on activation of GABAergic synapses. J Physiol 591:3901–3917.

Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54:214–222.

Heinrich A, Andö RD, Törö G, Rózsa B, Sperlich B (2012) K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study. Br J Pharmacol 167:1003–1020.

Herlin T, Petersen CS, Esmann V (1978) The role of calcium and cyclic adenosine 3′,5′-monophosphate in the regulation of glycogen metabolism in phagocytizing human polymorphonuclear leucocytes. Biochim Biophys Acta 542:63–76.

Hertz L (1990) Dibutyryl cyclic AMP treatment of astrocytes freshly isolated from young and adult mouse brain and in maturing cultured astrocytes. Neurochem Int 60:1761–1772.

Kostyuk PG (1984) Membrane control of cationic channels in the neuronal membrane. Neuroscience 13:983–989.

Luo L, Pankratov Y, Kirchhoff F, North RA, Verkhovsky A (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673–2683.

Luo L, Verkhovsky A, Pankratov Y (2011) Ionotropic ATP receptors in neuronal–glial communication. Semin Cell Dev Biol 22:220–228.

Lange SC, Bak LK, Vaagepetersen HS, Noreenberg MD (2012) Primary cultures of astrocytes: Their value in understanding astrocytes in health and disease. Neurochem Res 37:2569–2588.

LeBaron FN (1955) The resynthesis of glycogen by guinea pig cerebral–cortex slices. Biochem J 61:80–85.

Leybaert L, Sanderson MJ (2012) Intercellular Ca2+-waves: mechanisms and function. Physiol Rev 92:1359–1392.

Li B, Zhang S, Zhang H, Hertz L, Peng L (2011) Fluoxetine affects GluK2 editing, glutamate-evoked Ca2+ influx and extracellular signal-regulated kinase phosphorylation in mouse astrocytes. J Psychiatry Neurosci 36:322–338.

Li B, Dong L, Wang B, Cai L, Jiang N, Peng L (2012a) Cell type-specific gene expression and editing responses to chronic fluoxetine treatment in the in vivo mouse brain and their relevance for stress-induced anhedonia. Neuropharmacol 37:2480–2495.

Li B, Hertz L, Peng L (2012b) Atrial mRNA and protein levels in neurons and astrocytes freshly isolated from young and adult mouse brain and in maturing cultured astrocytes. Neurochem Int 61:1325–1332.

Liu H, Sabirov RZ, Okada Y (2008) Oxygen-glucose deprivation induces ATP release via maxi-anion channels in astrocytes. Purinergic Signal 4:147–154.

Ma BF, Xie MJ, Zhou M (2012) Bicarbonate efflux via GABA(A) receptors depolarizes membrane potential and inhibits two-pore domain potassium channels of astrocytes in rat hippocampal slices. Glia 60:1761–1772.

Magistretti PJ, Hofer PR, Martin JL (1986) Adenosine stimulates glycogenolysis in mouse cerebral cortex: a possible coupling mechanism between neuronal activity and energy metabolism. J Neurosci 6:2558–2562.

Maienschein V, Maxem M, Voinkendant W, Zimmermann H (1999) A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26:233–244.

Meier E, Hertz L, Schousboe A (1991) Neurotransmitters as developmental signals. Neurochem Int 19:1–15.

Meier SD, Kaftiz KW, Rose CR (2008) Developmental profile and mechanisms of GABA signaling in hippocampal astrocytes. Glia 56:1127–1137.
Neary JT, van Breemen C, Forster E, Norenberg LO, Norenberg MD (1988) ATP stimulates calcium influx in primary astrocyte cultures. Biochem Biophys Res Commun 157:1410–1416.

Offermanns S, Simon MI (1995) Gaα15 and Gaα16 couple a wide variety of receptors to phospholipase C. J Biol Chem 270:15175–15180.

Ozawa E (1972) Activation of muscular phosphorylase b kinase by a minute amount of Ca ion. J Biochem 71:321–331.

Ozawa E (2011) Regulation of phosphorylase kinase by low concentrations of Ca ions upon muscle contraction: the connection between metabolism and muscle contraction and the connection between muscle physiology and Ca-dependent signal transduction. Proc Jpn Acad Ser B Phys Biol Sci 87:486–508.

Pangrsic T, Potokar M, Stenovec M, Kreft M, Fabbretti E, Nistri A, Pryazhnikov E, Khiroug L, Giniatullin R, Zorec R (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282:28749–28758.

Peng L (2004) Transactivation in astrocytes as a novel mechanism of neuroprotection. In: Non-neuronal Cells of the Nervous System: Function and Dysfunction (Hertz L, ed.), pp. 503–518, Amsterdam, Elsevier.

Peng L, Li B, Du T, Kong EK, Hu X, Zhang S, Shan X, Zhang M (2010) Astrocytic transactivation by α2A-adrenergic and 5-HT serotonergic signaling. Neurochem Int 57:421–431.

Peng L, Guo C, Wang T, Li B, Gu L, Wang Z (2013) Some methodologies for determination of astrocytic gene expression fail to give correct information for some genes. Front Endocrinol, (Lausanne), in press.

Peng L, Li B, Du T, Wang F, Hertz L (2012) Does conventional anti-bipolar and antidepressant drug therapy reduce NMDA-mediated neuronal excitation by downregulating astrocytic GluK2 function? Pharmacol Biochem Behav 100:712–725.

Pryazhnikov E, Khiroug L (2008) Sub-micromolar increase in [Ca2+]i triggers delayed exocytosis of ATP in cultured astrocytes. Glia 56:38–49.

Queiroz G, Gecic-Haerter PJ, Schobert A, Starke K, von Kügelgen I (1997) Release of ATP from cultured rat astrocytes elicited by glutamate receptor activation. Neuroscience 78:1203–1208.

Song D, Li B, Yan E, Man Y, Wolfson M, Chen Y, Peng L (2012) Chronic treatment with anti-bipolar drugs causes intracellular alkalinization in astrocytes, altering their functions. Neurochem Res 37:2524–2540.

Song O, Magistretti PJ (1991) Characterization of the glycojenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res 563:227–233.

Subbarao KV, Stolzenburg JJ, Hertz L (1995) Pharmacological characteristics of potassium-induced, glycojenolysis in astrocytes. Neurosci Lett 196:45–48.

Sun W, McConnell E, Pare JF, Xu Q, Chen M, Peng W, Lovatt D, Han X, Smith Y, Nedergaard M (2013) Glutamate-dependent neuroglyial calcium signaling differs between young and adult brain. Science 339:197–200.

van Calker D, Müller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005.

Ververken D, Van Veldhoven P, Proost C, Carton H, De Wulf H (1982) On the role of calcium ions in the regulation of glycojenolysis in mouse brain cortical slices. J Neurochem 38:1286–1295.

Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycojenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 38:472–485.

Yan E, Li B, Gu L, Hertz L, Peng L (2013) Mechanisms for L-channel-mediated increase in [Ca2+]i, and its reduction by anti-bipolar drugs in cultured astrocytes combined with its mRNA expression in freshly isolated cells support the importance of astrocytic L-channels. Cell Calcium 54:335–342.

Young SZ, Platel JC, Nielsen JV, Jensen NA, Bordey A (2010) GABA_A increases calcium in subventricular zone astrocyte-like cells through L- and T-type voltage-gated calcium channels. Front Cell Neurosci 4:8.

Received 27 September 2013/30 October 2013; accepted 6 December 2013

Published as Immediate Publication 16 December 2013, doi 10.1042/AN20130040