Seismic vulnerability assessment of bridges using analytical hierarchy process

M C Djemai1*, M Bensaibi2 and K Zellat3

1Civil Eng. Department, University of Blida 01, Blida, Algeria
2Groupe d'infrastructures de Travaux Maritimes, Algiers, Algeria
3Civil Eng. Department, University of Mostaganem, Algeria

*Corresponding Author Email: djmai.medcherif@gmail.com

Abstract. Bridges play an important role in transportation network. After an earthquake, bridges must remain functional. To reach this goal, vulnerability study must be conducted. The aim of this study is to develop a vulnerability index method for bridges. The most important parameters influencing the seismic behaviour of bridges are identified, and a seismic vulnerability assessment model is developed using the analytical hierarchy process (AHP) to quantify the contribution of each parameter. Using the developed model, several bridges are treated and the obtained results show a good adequacy with in situ observations.

1. Introduction

Natural disasters such as earthquakes can cause severe damages to the transportation network, which affect rescue and emergency operations. Therefore, the seismic vulnerability assessment of critical infrastructure in transportation network must be investigated.

In the last decade, different empirical, analytical and hybrid approaches were developed to estimate the seismic vulnerability of bridges and help project managers and decision-makers to intervene in both before and after an earthquake.

The available current procedures in the United States are developed by the Applied Technology Council (ATC) [1], the Federal Highway Administration (FHWA) [2, 3] and The California Department of Transportation (CALTRANS) [4, 5]. We can also mention Nevada and Missouri [6], Washington [7, 8], Illinois [9], New York [10], Tennessee [11], and Oregon [12], procedures for the other states in America.

Further, in Japan, three methods have been used, the approach of "JHPC", "EDMC" [13, 14], and that of KUBO - KATAYAMA [15]. The «OFROU» method is applied in Switzerland [16], "SISMOA" in France, [17, 18], and "MTQ" in Canada (Quebec) [19].

Although various techniques can be developed for decision-making model, the Analytical Hierarchy Process (AHP) method [20] was selected for this study because of the accuracy of the prescribed decision provided, as well as the compatibility and appropriateness of the acquired decision in dealing with the problem. Moreover, it can be used to provide a complete and rational framework for structuring decision-making, representation and evaluation of the elements, and connect them to objectives and evaluating alternatives [21].

In the present study, the seismic vulnerability of bridges is performed using the vulnerability index method. This evaluation procedure is based on the subjective assignation of weighting values
corresponding to different parameters that characterize the seismic behaviour of structures or the influence of these parameters on their environments in order to obtain a global representing value of their vulnerabilities. These parameters are identified from the experience acquired by the analysis of the damages produced by past earthquakes.

This research proposes a model based on Analytical Hierarchy Process (AHP), to determine the weight coefficients of the identified parameters, and evaluate the vulnerability index in order to classify bridges according to their risk degree.

2. Developed approach
The developed process is based on the vulnerability index method, which combines several parameters influencing the seismic behaviour of bridges and allows the assessment of seismic vulnerability index "VI".

2.1. Identification of the parameters
Various parameters are defined from post-seismic observations and seismic experience feedbacks [20, 22-26]. The parameters selected for this model are subdivided into two groups, structural and hazard parameters. The structural parameters serve to distinguish the structural aspects that make systems more or less vulnerable. The aim of hazard parameters is to consider the influence of the seismic area. Selected parameters of the evaluation model are classified into items; each item is divided into a certain number of factors; these factors are also composed of several categories (table 1).

Each parameter, item and factor have a related weight noted as W_i, W_{ij} and W_{ijk}, respectively, which reflects its importance relative to the other parameters and their factors. The aim is to determine the weight coefficients value.

Parameter	Item	Factor	Category	Scores
Girder type	Arch or rigid frame	10		
	Continuous Girder	30		
	Simple Girder	50		
	1 span	20		
Number of spans	2 spans or more	40		
	Straight deck (Not skewed)	10		
Skew	Low	20		
	Medium	30		
	High	40		
	Straight deck (No curvature)	10		
Structural	Curvature	Low	20	
	Medium	30		
	High	40		
	Wide 70cm or wider	10		
Min. Bridge seat width	Narrow less than 70 cm	40		
	No. seat: 0 cm	20		
	With specific device	10		
	Bearing (with clear design concept)	20		
Bearings	Bearing type	Movable bearing	40	
	Others (no. bearing, etc)	20		
Table 2

Parameter	Item	Factor	Category	Scores
Ground and Foundation	Ground type	Stiff/Hard	0	
		Medium	10	
		Soft	40	
		Very soft	50	
		Pile Bent	40	
Foundation type		Others Pile	20	
Max. Height of Abutment / Pier (m)	Expanded		30	
Structural		Less than 5 m	10	
		Between 5 to 10 m	30	
		More than 10 m	50	
		Expanded	40	
Piers and Abutments	Construction Material of Abutment / Pier	Reinforced Concrete	40	
		Masonry	30	
		Others	20	
		No piers for masonry structure	10	
		No piers for other than masonry structure	40	
		Columns piers	20	
		Massive piers	10	
		Backfilled abutment	40	
		Buried abutment	30	
		Abutment Superficially Founded	20	
		MMI < VIII	10	
		VII ≤ MMI < IX	20	
		IX ≤ MMI < X	30	
		X ≤ MMIX < XI	40	
		XI ≤ MMI	50	
Hazard		No liquefaction	10	
		Low 0 < PL ≤ 5	20	
		Medium 5 < PL ≤ 15	30	
		High 15 < PL	50	

2.2. Quantification of the identified parameters

To derive the criterions weighting coefficients, Analytical Hierarchy Process (AHP) method was applied. AHP was developed by Thomas L. Saaty [20] in the 1970s and has been extensively studied and refined since then. It is a robust and flexible multi-criteria decision analysis methodology.

The AHP is a modelling technique which reduces a system to a sequence of pair-wise comparisons of identified components. The AHP has been widely used to quantify intangible factors [27].

Several application models for studying the performance and assessing the seismic vulnerability of infrastructures were developed using the AHP process [28-32].

The model based on the AHP method allowed determining the relative contribution of each parameter. The pair-wise comparisons are entered in a reciprocal comparison matrix for each level of the hierarchy. The obtained weights for each level parameters, items and factors are summarized in table 2.
Table 2. Weighting factors, items and parameters.

Parameter	W*	Item	W*
Structural	0.250	Superstructure	0.512
		Girdertype	0.574
		Number of spans	0.232
		Min. bridge seat width	0.667
		Skew	0.097
		Curvature	0.097
		Bearing type	0.333
		Ground type	0.750
		Foundation type	0.250
		Max. height of Abutment / Pier (m)	0.491
		Construction Materiel of Abutment / Pier	0.268
		Pier type	0.160
		Abutment type	0.081
Hazard	0.750	Ground and Foundation	0.281
		Bearing type	0.333
		Ground type	0.750
		Foundation type	0.250
		Max. height of Abutment / Pier (m)	0.491
		Construction Materiel of Abutment / Pier	0.268
		Pier type	0.160
		Abutment type	0.081
		Seismic intensity	0.800
		Liquefaction potential	0.200

*Weight.

After finding the weigh for each level, a numeric worth score S_{ijkl} from 0 to 50 is assigned to every category. This reflects the one-dimensional value of the performance level of each category. The last column of table 1 shows the score values of all categories.

2.3. Determination of vulnerability index

Based on the interaction of all risk parameters and their factors shown in table 1, the vulnerability index "VI" is defined as a function of them and formulated as given in equation (1) below.

$$VI = \sum_{i=1}^{2} W_i \sum_{j=1}^{2or4} W_{ij} \sum_{k=1}^{2or4} W_{ijk} S_{ijkl}$$

(1)

where:

- W_i: The weighting coefficient of structural or hazard parameters.
- W_{ij}: The weighting coefficient of items.
- W_{ijk}: The weighting coefficient of factors.
- S_{ijkl}: the score of category.

According to the values obtained for the vulnerability index, and after an analysis and comparison of results, three-risk level is proposed to classify bridges. The three risk levels, low, medium and high and their range are summarized in table 3.
Table 3. Risk levels of bridges.

Risk Levels	VI
Low Risk	$0 < VI < 35$
Medium Risk	$35 \leq VI < 50$
High Risk	$VI \geq 50$

3. Case study

3.1. Validation of the proposed approach
To calibrate and investigate the sensitivity of the proposed methodology, to be more confident with its results of evaluation and make it applicable for use, seven different bridges are considered, those bridges samples are as representative bridges.

The considered bridge samples are evaluated by the developed and Kubo Katayama method. This latter is also based on the vulnerability index.

A summary and comparison of the evaluation results obtained by the mentioned evaluation methodologies are presented in table 4. Ratings given in this table are subjective since they represented the same results for both methods. The results obtained are in good agreement.

Table 4. Comparison between the results obtained by Kubo-Katayama and developed methods.

Bridges	Developed Method	Kubo-Katayama Method
Damous Bridge (Tipaza)	High Risk	High Probability of Damage
Mazafran Bridge (Tipaza)	High Risk	High Probability of Damage
Bouyaghsane Bridge (Tipaza)	Medium Risk	Medium Probability of Damage
Fadjana Bridge (Tipaza)	Medium Risk	Medium Probability of Damage
Boukadir Bridge (Tipaza)	Low Risk	Low Probability of Damage
El Harrach Bridge (Algiers)	Medium Risk	Medium Probability of Damage
Sabdou Bridge (Boumerdes)	High Risk	High Probability of Damage

3.2. Applications of the proposed approach
In order to apply the proposed method, a number of bridges located in Tipaza region have been chosen. Tipaza is situated in the north of Algeria, West of Algiers (capital of Algeria). The road network in this area contained ninety two (92) bridges; Fifty seven (57) of them are studied.

The study area illustrated in figure 1 is located in the south of the seismogenic basin of Mitidja, beside several active faults. The seismic movements caused by those faults can be felt with different intensities. The strongest events are the Chenoua (Tipaza) and Zemmouri (Boumerdes) earthquakes. They were occurred on October 29th, 1989 (6.0) and on May 21st, 2003 (M 6.8) respectively.
The seismic risk assessment was performed for three different scenarios; the distribution of expected risk for the three hazard levels is shown in figure 2.

3.3. Discussion of results
Based on the results obtained from the evaluation of the Tipaza bridges by the proposed method, it can be noticed that the most of studied bridges have a medium risk level. No high risk level was observed for the first and second scenarios. Whereas nearly 40% of studied bridges have a high risk for the third scenario (MMI=X).

According to the above results, it can be confirmed that in addition to structural parameters, seismic intensity has a great impact on the seismic vulnerability. The results of this study are in good adequacy with in-situ observations.

4. Conclusions
To evaluate the seismic vulnerability and risk levels of existing bridges, a new developed method is presented in this paper. This approach is used to calculate vulnerability index for bridges and classify them.
The proposed model was carrying out using AHP procedure through identifying and quantifying the major parameters and factors affecting the seismic vulnerability of bridges. This suggested model adopts AHP for its multiple criteria decision analysis step. It should be noted that the proposed methodology covers most of the important seismic bridge characteristics. However, it can be applied in simple and systematic manner without any complications.

References
[1] ATC, Applied Technology Council 1983 Seismic Retrofitting Guidelines for Highway Bridges Report No. ATC 6-2
[2] Buckle I G, Mayes R L and Button M R 1987 Seismic Design and Retrofit Manual for Highway Bridges Report No. FHWA-IP-87-6 (USA: Washington)
[3] Buckle I G 1990 The preliminary screening of bridges for the seismic retrofit Proc. Second Workshop on Bridge Engineering Research in Progress (Reno: University of Nevada)
[4] Maroney B and Gates J 1990 Seismic risk identification and prioritization in the Caltrans seismic retrofit program Proc. 59th Annual Convention Structural Engineering Association of California p 321–41
[5] Gilbert A D 1993 Developments in seismic prioritisation of bridges in California Proc. Ninth Annual US/Japan Workshop on Earthquake and Wind Design of Bridges (Japan: Tsukuba Science City)
[6] Maffei J and Park R 1994 A review of seismic evaluation and retrofit technology for bridges Proc. Annual Technical Conf., New Zealand National Society for Earthquake Engineering (New Zealand)
[7] Babaei K and Hawkins N 1991 Bridge seismic retrofit prioritization proc. the third US conf. on lifeline earthquake engineering p 149 - 55 (California: Los Angeles)
[8] Babaei K and Hawkins N 1993 Bridge seismic retrofit planning program Report No. WA-RD 217.1 (Washington: Washington State Department of Transportation, Olympia)
[9] Cooling T L 1990 Illinois department of transportation, seismic condition studies proc. Seminar Assessing and Managing Earthquake Risk in the Central United States, Co-sponsored by Woodward-Clyde and EQUE Consultants (St. Louis)
[10] Buckle I G 1990 A Prioritization Plan for Seismic Bridge Retrofit: Issues and Recommendations Report to New York State Department of Transportation (New York)
[11] Pezeshki S, Chang T S, Yiak K and Kung H 1993 Seismic vulnerability evaluation of bridges in Memphis and Shelby county, Tennessee Earthquake Spectra 9
[12] Larsson A and Groff R 1995 Prioritization of Oregon bridges for seismic retrofitting National seismic conf. on bridges and highways (California: San Diego)
[13] PIARC 1994 Synthesis report on natural disaster reduction of roads 5th meeting of PIARC/Working group G2 Washington DC 2nd Report
[14] Légeron F 2001 Seismic vulnerability and retrofit of bridges Technical Report SETRA, France
[15] Kubo K and Katayama T 1977 A simple method for evaluating seismic safety of existing bridge structures Proc. 6th WCEE pp 1951-1956 (New Delhi)
[16] Wenk T 2005 Evaluation parasismique des ponts - routes existants, Office fédéral des routes, OFR, Division réseaux routiers (Berne)
[17] Marchand P, Davi D, Schmitt P, Thibault C, Duval A M and Criado D 2006 SISMOA: a simplified method to assess the seismic vulnerability of existing bridges First European conf. on earthquake engineering and seismology (Switzerland: Geneva)
[18] Gueguen P 2013 Seismic vulnerability of structures (Great Britain: ISTE Ltd and John Wiley & Sons, Inc.)
[19] Nollet M J, LeBoeuf D, Khaled A and Mai 2007 Microzonage et vulnérabilité sismique des ponts de la Ville de Québec 14ème Colloque sur la progression de la recherche québécoise sur les ouvrages d’art (Canada: Université Laval)
[20] Saaty T L 1980 *The Analytic Hierarchy Process* (New York: McGraw-Hill)
[21] Saracoglu B O 2013 Selecting industrial investment locations in master plans of countries *European J. of Industrial Engineering* 7(4) 416-441 (Inderscience Enterprises Ltd.)
[22] Gimez S C, Oller S and Barbat A H 2002 Seismic Vulnerability of Bridges Using Simplified Models *Monografía CIMNE IS-47, Spain*
[23] Adafer S and Bensaibi M 2015 Seismic Vulnerability Index for Road Networks *Int. Conf. on Industrial Technology and Management Sciences (ITMS 2015)* (China: Tianjin)
[24] Djemai M C, Bensaibi M and Halfaya F Z 2019 The Effect of Type and Height of Piers on the Seismic Behavior of Reinforced Concrete Bridges *Int. J. of Engineering Research in Africa* 41 79-87
[25] Djemai M C and Bensaibi M 2016 Seismic vulnerability assessment of Tipazabridges *Proc. the 3rd International Conf. on Information and Communication Technologies for Disaster Management (ICT-DM)* (Austria: Vienna)
[26] Bensaibi M and Djemai M C 2011 Estimation de l’indice de vulnérabilité pour les ponts *Algérie Équipement N° 50* (Algérie)
[27] Sharma, V, Al-Hussein, M, Safouhi H and Bouferguene A 2008 Municipal Infrastructure Asset Levels of Service Assessment for Investment Decisions Using Analytic Hierarchy Process *J. of Infrastructure Systems* 14(3)
[28] Allah Bukhsh Z, Stipanovic I, Klanker G, Hoj N, Imam B and Xenidis Y 2017 Multi-criteria decision making: AHP method applied for network bridge prioritization *proc. the Joint COST TU1402 - COST TU1406 - IABSE WC1 Workshop, Zagreb 2nd – 3rd March 2017* pp 3.2-1-3.2-9 (Zagreb)
[29] Penadés-Plà V, García-Segura T, Martí J V and Yepes V 2016 A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design, Sustainability *MDPI Open Access J.* 8(12) 1-21
[30] Yadollahi M, Rosli M and Vafaei M 2012 A Model for Seismic Vulnerability Score Assignment of Road Infrastructure Using Linear Regression Technique *Applied Mechanics and Materials* 147 266-9
[31] Rashidi M and Gibson P 2012 A methodology for bridge condition evaluation *J. of Civil Engineering and Architecture* 6(9) 1149-57
[32] Zayed T, Edward Minchin J R, Andrew J B, Gary R S and Michael C M 2007 Model for the Physical Risk Assessment of Bridges with Unknown Foundation *J. of Performance of Constructed Facilities* 44-52