The 1/3-2/3 Conjecture for Ordered Sets whose Cover Graph is a Forest

Imed Zaguia

Received: 11 November 2015 / Accepted: 9 August 2018 / Published online: 15 August 2018
© Springer Nature B.V. 2018

Abstract
A balanced pair in an ordered set \(P = (V, \leq) \) is a pair \((x, y)\) of elements of \(V \) such that the proportion of linear extensions of \(P \) that put \(x \) before \(y \) is in the real interval \([1/3, 2/3]\). We define the notion of a good pair and claim any ordered set that has a good pair will satisfy the conjecture and furthermore every ordered set which is not totally ordered and has a forest as its cover graph has a good pair.

Keywords (Partially) ordered set · Linear extension · Balanced pair · Cover graph · Tree · 1/3-2/3 conjecture

1 Introduction

Throughout, \(P = (V, \leq) \) denotes a finite ordered set, that is, a finite set \(V \) and a binary relation \(\leq \) on \(V \) which is reflexive, antisymmetric and transitive. A linear extension of \(P = (V, \leq) \) is a total ordering \(\preceq \) of \(V \) which extends \(\leq \), i.e. such that for every \(x, y \in V \), \(x \preceq y \) whenever \(x \leq y \).

For a pair \((x, y)\) of elements of \(V \) we denote by \(P(x \prec y) \) the proportion of linear extensions of \(P \) that put \(x \) before \(y \). Call a pair \((x, y)\) of elements of \(V \) a balanced pair in \(P = (V, \leq) \) if \(1/3 \leq P(x \prec y) \leq 2/3 \). The 1/3-2/3 Conjecture states that every finite ordered set which is not totally ordered has a balanced pair. If true, the example (a) depicted in Fig. 1 would show that the result is best possible. The 1/3-2/3 Conjecture first appeared in a paper of Kislitsyn [7]. It was also formulated independently by Fredman in about 1975 and again by Linial [8].

The 1/3-2/3 Conjecture is known to be true for ordered sets with a nontrivial automorphism [6], for ordered sets of width two [8], for semiorders [2], for bipartite ordered sets [12], for 5-thin posets [4], and for 6-thin posets [10]. See also [9] for recent results. For a survey on the subject the reader is directed to [3].
Recently, the author proved that the 1/3-2/3 Conjecture is true for ordered sets having no N in their Hasse diagram [13]. Using similar ideas we prove that the 1/3-2/3 Conjecture is true for ordered sets whose cover graph is a forest.

Let $P = (V, \leq)$ be an ordered set. For $x, y \in V$ we say that y is an upper cover of x or that x is a lower cover of y if $x < y$ and there is no element $z \in V$ such that $x < z < y$. Also, we say that x and y are comparable if $x \leq y$ or $y \leq x$ and we set $x \sim y$; otherwise we say that x and y are incomparable and we set $x \nparallel y$. We denote by $inc(P)$ the set of incomparable pairs of P, that is, $inc(P) := \{(x, y) : x \nparallel y\}$. A chain is a totally ordered set. For an element $u \in V$, set $D(u) := \{v \in V : v < u\}$ and $U(u) := \{v \in V : u < v\}$.

The dual of P, denoted by P^*, is the order defined on V as follows: $x \leq y$ in P^* if and only if $y \leq x$ in P.

Definition 1 Let P be an ordered set. A pair (a, b) of elements of V is **good** if the following two conditions hold simultaneously in P or in its dual.

1. $D(a) \subseteq D(b)$ and $U(b) \setminus U(a)$ is a chain (possibly empty); and
2. $P(a < b) \leq \frac{1}{2}$.

We notice at once that if (a, b) is a good pair, then a and b are necessarily incomparable.

The relation between good pairs and balanced pairs is stated in the following theorem.

Theorem 2 A finite ordered set that has a good pair has a balanced pair.

We prove Theorem 2 in Section 2.

A good pair is not necessarily a balanced pair (for an example consider the pair (y, t) in example (c) Fig. 1). The following theorem gives instances of good pairs that are balanced pairs. Before stating our next result we first need a definition. Let $P = (V, \leq)$ be an ordered set. A subset A of V is called **autonomous** (or an interval or a module or a clan) in P if for all $v \not\in A$ and for all $a, a' \in A$

\[v < a \Rightarrow v < a' \] and \[a < v \Rightarrow a' < v \]. \tag{1}
Theorem 3 Let $P = (V, \leq)$ be an ordered set and let $(x, y) \in \text{inc}(P)$. Suppose that one of the following propositions holds for P or for its dual.

(i) There exists $z \in V$ such that $x < z$, $x \sim y \sim z$ and $\{x, y\}$ is autonomous in $P \setminus \{z\}$ (see example (a) Fig. 1).

(ii) There are $z, t \in V$ such that $x < z$, $y < t$, $y \sim z$, $x \not\sim t$ and $\{x, y\}$ is autonomous for $P \setminus \{z, t\}$ (see example (b) Fig. 1).

(iii) There are $z, t \in V$ such that $t < x < z$, y is incomparable to both t and z, and $\{x, y\}$ is autonomous for $P \setminus \{z, t\}$ (see example (c) Fig. 1).

Then (x, y) is balanced in P.

We prove Theorem 3 in Section 3.

A semiorder is an order which does not contain the orders depicted in Figure 1 (b) and 1 (c). Brightwell [2] proved that every semiorder has a pair (x, y) satisfying condition (i) of Theorem 3 and that either the pair (x, y) is balanced, or $P(x \prec z \prec y) > \frac{1}{3}$. Theorem 3 shows that the former always occurs. As a result we obtain this.

Corollary 4 A balanced pair in a semiorder can be found in polynomial time.

The next definition describes a particular instance of a good pair.

Definition 5 Let P be an ordered set. A pair (a, b) of elements of V is very good if the following two conditions hold simultaneously in P or in its dual.

(i) $D(a) = D(b)$; and

(ii) $U(a) \setminus U(b)$ and $U(b) \setminus U(a)$ are chains (possibly empty).

For instance, the pairs (x, y) and (z, y) in example (a) Fig. 1 are very good. So are the pairs (x, y) and (z, t) in example (b) Fig. 1. Also, the pairs (t, y) and (y, z) in example (c) Fig. 1 are very good. Observe that every ordered set of width two has a very good pair. We have already mentioned that a semiorder which is not totally ordered has a very good pair. In [13], the author proved that every N-free ordered set which is not totally ordered has a very good pair. We now present another instance of a class of ordered sets that have a very good pair.

The cover graph of an ordered set $P = (V, \leq)$ is the graph $\text{Cov}(P) = (V, E)$ such that $\{x, y\} \in E$ if and only if x covers y in P.

Theorem 6 Let P be an ordered set not totally ordered whose cover graph is a forest. Then P has a very good pair, and hence has a balanced pair.

Section 4 is devoted to the proof of Theorem 6.

We mention that an algorithm requiring $O(n^2)$ arithmetic operations for computing the number of linear extensions of an ordered set whose cover graph is a tree was given in [1].

2 Proof of Theorem 2

We recall that an incomparable pair (x, y) of elements is critical if $U(y) \subseteq U(x)$ and $D(x) \subseteq D(y)$. The set of critical pairs of P is denoted by $\text{crit}(P)$.
Lemma 7 Suppose \((x, y)\) is a critical pair in \(P\) and consider any linear extension of \(P\) in which \(y < x\). Then the linear order obtained by swapping the positions of \(y\) and \(x\) is also a linear extension of \(P\). Moreover, \(\mathbb{P}(x < y) \geq \frac{1}{2}\).

Proof Let \(L\) be a linear extension that puts \(y\) before \(x\) and let \(z\) be such that \(y < z < x\) in \(L\). Then \(z\) is incomparable with both \(x\) and \(y\) since \((x, y)\) is a critical pair in \(P\). Therefore, the linear order \(L'\) obtained by swapping \(x\) and \(y\), that is \(L'\) puts \(x\) before \(y\), is a linear extension of \(P\). Then \(\mathbb{P}(x < y) \geq \frac{1}{2}\).

We now prove Theorem 2.

Proof We prove the theorem by contradiction. Let \(P = (V, \leq)\) be an ordered set having a good pair \((a, b)\). We assume that \(P\) has no balanced pair and we argue to a contradiction.

Then \(U(b) \setminus U(a) \neq \emptyset\) because otherwise \((a, b)\) is a critical pair and hence \(\mathbb{P}(a < b) \geq \frac{1}{2}\) (Lemma 7). Since \((a, b)\) is a good pair \(\mathbb{P}(a < b) \leq \frac{1}{2}\) and hence \(\mathbb{P}(a < b) = \frac{1}{2}\) and therefore \((a, b)\) is balanced which is impossible by assumption.

Say \([U(b) \setminus U(a)] \cup \{b\}\) is the chain \(b = b_1 < \cdots < b_n\). Then

\[
\mathbb{P}(a < b_1) < \frac{1}{3}.
\]

Define now the following quantities

\[
q_1 = \mathbb{P}(a < b_1),
\]

\[
q_j = \mathbb{P}(b_{j-1} < a < b_j)(2 \leq j \leq n),
\]

\[
q_{n+1} = \mathbb{P}(b_n < a).
\]

Lemma.[13] The real numbers \(q_j (1 \leq j \leq n + 1)\) satisfy:

(i) \(0 \leq q_{n+1} \leq \cdots \leq q_1 < \frac{1}{3}\),

(ii) \(\sum_{j=1}^{n+1} q_j = 1\).

Proof Since \(q_1, \cdots, q_{n+1}\) is a probability distribution, all we have to show is that \(q_{n+1} \leq \cdots \leq q_1\). To show this we exhibit a one-to-one mapping from the event whose probability is \(q_{j+1}\) into the event with probability \(q_j\) \((1 \leq j \leq n)\). Notice that in a linear extension for which \(b_j < a < b_{j+1}\) every element \(z\) between \(b_j\) and \(a\) is incomparable to both \(b_j\) and \(a\). Indeed, such an element \(z\) cannot be comparable to \(b_j\) because otherwise \(b_j < z\) in \(P\) but the only element above \(b_j\) is \(b_{j+1}\) which is above \(a\) in the linear extension. Now \(z\) cannot be comparable to \(a\) as well because otherwise \(z < a\) in \(P\) and hence \(z < b = b_1 < b_j\) (by assumption we have that \(D(a) \subseteq D(b)\)). The mapping from those linear extensions in which \(b_j < a < b_{j+1}\) to those in which \(b_{j-1} < a < b_j\) is obtained by swapping the positions of \(a\) and \(b_j\). This mapping clearly is well-defined and one-to-one. This completes the proof of the lemma.

Theorem 2 can be proved now: let \(r\) be defined by

\[
\sum_{j=1}^{r-1} q_j < \frac{1}{2} < \sum_{j=1}^{r} q_j
\]
Since $\sum_{j=1}^{r-1}q_j = \mathbb{P}(a < b_{r-1}) \leq \frac{1}{3}$, it follows that $\sum_{j=1}^{r-1}q_j < \frac{1}{3}$. Similarly, $\sum_{j=1}^{r}q_j = \mathbb{P}(a < b_r)$ must be $> \frac{2}{3}$. Therefore, $q_r > \frac{1}{3}$, but this contradicts $\frac{1}{3} > q_1 \geq q_r$. \hfill \Box

3 Proof of Theorem 3

Let $P = (V, \leq)$ be an ordered set. Denote by $Ext(P)$ the set of all extensions of P (or refinements of the order defined on P), that is, all orders \leq on V in which $x \leq y$ whenever $x \leq y$ in P. Then $Ext(P)$ is itself ordered: for $Q, R \in Ext(P)$, $Q \subset R$ if R itself is an extension of Q. For every pair $(a, b) \in V \times V$, the transitive closure of $P \cup \{(a, b)\}$, denoted by $P \cup (a, b)$, is $P \cup \{(x, y) : x \leq a \text{ and } b \leq y \text{ in } P\}$. As it is well-known, if $(b, a) \notin P$ then this is an order. It is shown in [5] that if Q and R are elements of $Ext(P)$ then R covers Q in $Ext(P)$ if and only if R is obtained from Q by adding the comparability $a < b$ corresponding to a critical pair (a, b) of Q. In this case $R = Q \cup \{(a, b)\} = Q \cup \{(a, b)\}$. It turns out that the maximal elements of $Ext(P)$ are the linear extensions of P [11].

In order to prove Theorem 3 we will need the following general result.

Theorem 8 Let P be an ordered set and let x, y, z be three distinct elements such that $x < z$ and y is incomparable to both x and z. Suppose that $(y, z) \in crit(P)$ and let $Q = P \cup \{(y, z)\}$. Then:

$$
\mathbb{P}_Q(x < y) < \mathbb{P}_P(x < y) \leq \frac{2\mathbb{P}_Q(x < y)}{1 + \mathbb{P}_Q(x < y)}. \quad (2)
$$

We should mention here that $\frac{2\mathbb{P}_Q(x < y)}{1 + \mathbb{P}_Q(x < y)} \leq 1$ for every x, y and that $\frac{2\mathbb{P}_Q(x < y)}{1 + \mathbb{P}_Q(x < y)} \leq \frac{2}{3}$ if and only if $\mathbb{P}_Q(x < y) \leq \frac{1}{2}$. The second inequality of (2) above is tight as demonstrated by the example (a) depicted in Fig. 1. Moreover, if $(y, z) \notin crit(P)$, then there exist $y' \leq y$ and $z \leq z'$ such that $(y', z') \in crit(P)$. Obviously, y' is incomparable to x and z'.

Proof (Of Theorem 8) Denote by $\mathcal{L}(P)$ the set of linear extensions of P and let $a_1 = |\{L \in \mathcal{L}(P) : x <_L y <_L z\}|$, $a_2 = |\{L \in \mathcal{L}(P) : y <_L x\}|$ and $b = |\{L \in \mathcal{L}(P) : z <_L y\}|$. Then

$$
\mathbb{P}_P(x < y) = \frac{b + a_1}{b + a_1 + a_2} \quad \text{and} \quad \mathbb{P}_Q(x < y) = \frac{a_1}{a_1 + a_2}.
$$

Proving the first inequality of Theorem 8 amounts to proving

$$
\frac{a_1}{a_1 + a_2} < \frac{b + a_1}{b + a_1 + a_2},
$$

which is true. Proving the second inequality amounts to proving that $b \leq a_1$ since

$$
\frac{\mathbb{P}_Q(x < y)}{1 + \mathbb{P}_Q(x < y)} = \frac{a_1}{1 + \frac{a_1}{a_1 + a_2}} = \frac{a_1}{2a_1 + a_2},
$$

and

$$
\frac{b + a_1}{b + a_1 + a_2} \leq \frac{2a_1}{2a_1 + a_2} \iff b \leq a_1.
$$
This last inequality is a consequence of Lemma 7. Indeed, there exists an injection from the set of linear extensions in which \(z < y \) and \(x < y \), obtained by swapping the positions of \(y \) and \(z \) in the linear extension. It follows that \(b \leq a_1 \).

We now proceed to the proof of Theorem 3.

Proof We consider the three cases separately.

(i) Let \(z \in V \) be such that \(x < z, x \sim y \sim z \) and \(\{x, y\} \) is autonomous in \(P \setminus \{z\} \). Firstly, \(z \) is an upper cover of \(x \). To prove this let \(t \) be such that \(x < t < z \). Then \(t > y \) since \(\{x, y\} \) is autonomous for \(P \setminus \{z\} \). But then \(y < z \), contradicting our assumption.

Secondly \((y, z) \in \text{crit}(P) \). To prove this let \(u < y \). Then \(u < x \) since \(\{x, y\} \) is autonomous for \(P \setminus \{z\} \). By transitivity we get \(u < z \). Now let \(z < v \). Again by transitivity we have \(x < v \). Hence, \(y < v \) since \(\{x, y\} \) is autonomous for \(P \setminus \{z\} \).

Consider \(Q := P \setminus \{(y, z)\} \) and notice that \((x, y)\) and \((y, x)\) are critical in \(Q \). It follows that \(P_{Q}(x < y) = \frac{1}{2} \). From Theorem 8 we deduce that \((x, y)\) is balanced in \(P \).

(ii) Let \(z, t \in V \) be such that \(x < z, y < t, y \sim z, x \sim t \) and \(\{x, y\} \) is autonomous for \(P \setminus \{z, t\} \). Similar arguments as in (i) yield that \(z \) is an upper cover of \(x, t \) is an upper cover of \(y \) and \([(y, z), (x, t)] \subseteq \text{crit}(P) \). Consider \(Q := P \setminus \{(y, z)\} \) and observe that \((y, x)\) is critical in \(Q \). Then \(P_{Q}(x < y) < \frac{1}{2} \) (Lemma 7). Moreover, \(\{x, y\} \) is autonomous for \(Q \setminus \{t\} \) which implies that \((x, y)\) is balanced in \(Q \). Hence \(P_{Q}(x < y) \geq \frac{1}{2} \) (this is because \(Q \) satisfies condition \((i)\) of Theorem 3). Apply Theorem 8.

(iii) Let \(z, t \in V \) be such that \(t < x < z, y \) is incomparable to both \(t \) and \(z \) and \(\{x, y\} \) is autonomous for \(P \setminus \{z, t\} \). Similar arguments as in (i) yield that \(z \) is an upper cover of \(x \), \(t \) is a lower cover of \(x \), \([(t, y), (y, z)] \subseteq \text{crit}(P) \). Consider \(Q := P \setminus \{(y, z)\} \) and observe that \((y, x)\) is critical in \(Q \). Therefore \(P_{Q}(x < y) < \frac{1}{2} \). Moreover, \(\{x, y\} \) is autonomous for \(Q \setminus \{t\} \) which implies that \((x, y)\) is balanced in \(Q \). Hence \(P_{Q}(x < y) \geq \frac{1}{2} \). Apply Theorem 8.

\[\square \]

4 Proof of Theorem 6

Before getting to the proof of Theorem 6 we will need few definitions and preliminary results.

A **fence** (of length \(n \)) is any order isomorphic to the order defined on \(\{f_0, \ldots, f_n\}, n \geq 0 \), where the elements with even subscript are minimal, the elements with odd subscript are maximal (or vice versa), and elements \(f_i \) and \(f_j \) are comparable if and only if \(i = j \) or \(|i - j| = 1 \).

A **crown** (of length \(n \)) is any order isomorphic to the order defined on \(\{c_1, \ldots, c_{2n}\}, n \geq 2 \), where the elements with even subscript are minimal, the elements with odd subscript are maximal and elements \(c_i \) and \(c_j \) are comparable if and only if \(i = j \) or \(|i - j| = 1 \) or \(i = 1 \) and \(j = 2n \).

A **diamond** is any order isomorphic to the order defined on \(\{d_1, d_2, d_3, d_4\} \) where \(d_1 < d_2 < d_4 \) and \(d_1 < d_3 < d_4 \) are the only cover relations among these elements.
The ordered set $P = (V, \leq)$ is crown-free, if either P has no subset isomorphic to a crown of length $n \geq 2$ or P has a subset $\{c_1, c_2, c_3, c_4\}$ isomorphic to a crown of length 2 and there is an element $z \in V$ such that $c_2 < z < c_1$ and $c_4 < z < c_3$. We also say that P is diamond-free if there is no subset isomorphic to a diamond.

Lemma 9 Let $P = (V, \leq)$ be an ordered set which is crown-free and diamond-free. If P contains a fence of length n, then P contains a fence of length n whose minimal elements are minimal in P and whose maximal elements are maximal in P.

Proof Let $F := \{f_0, \ldots, f_n\}$, $n \geq 0$, be a fence of length n and let f_i be a minimal element of F. If f_i is not minimal in P, then let $f < f_i$ be a minimal element in P. Since P is crown-free and diamond-free, f is incomparable to all elements of $F \setminus \{f_i\}$ except the upper cover(s) of f_i in F. Hence $(F \setminus \{f_i\}) \cup \{f\}$ is a fence of length n.

Lemma 10 Let $P = (V, \leq)$ be an ordered set which is crown-free and diamond-free, $x \in V$, and let $F := \{x = f_0, f_1, \ldots, f_n\}$, $n \geq 2$, be a fence of maximum length among those fences starting at x and assume that f_n is minimal in F. Then

(i) $U(f_{n-2}) \cap U(f_n)$ has a unique minimal element and this minimal element is less or equal to f_{n-1}.

(ii) If $m_{n-2,n}$ is the unique minimal element of $U(f_{n-2}) \cap U(f_n)$, then every element f such that $f_n \leq f < m_{n-2,n}$ has a unique upper cover and this upper cover is comparable to $m_{n-2,n}$. In particular, every element larger or equal to f is comparable to $m_{n-2,n}$.

Proof (i) Suppose that $U(f_{n-2}) \cap U(f_n)$ has two distinct minimal elements y_1 and y_2. Then $\{f_{n-2}, f_n, y_1, y_2\}$ would be a crown in P. Say $m_{n-2,n}$ is the unique minimal element of $U(f_{n-2}) \cap U(f_n)$. Then $m_{n-2,n} \leq f_{n-1}$ because otherwise $m_{n-2,n} \sim f_{n-1}$ and hence $\{f_{n-2}, f_n, m_{n-2,n}, f_{n-1}\}$ would be a crown in P.

(ii) Let f be such that $f_n \leq f < m_{n-2,n}$ and t be an upper cover of f. We assume that $t \sim m_{n-2,n}$ and we will argue to a contradiction. We will prove that $F' := F \cup \{t\}$ is a fence. Then F' is a fence that starts at x and is of length larger than that of F and this is a contradiction. We start by proving that t is incomparable to both f_{n-2} and f_{n-1}. Indeed, if not, then $\{f_{n-2}, f, t, m_{n-2,n}\}$ would be a crown in P or $\{f, t, m_{n-2,n}, f_{n-1}\}$ would be a diamond in P which is not possible. Now suppose there exists $0 \leq l \leq n - 3$ such that $t \sim f_l$. Then $f_l < t$ (indeed by assumption $f_n < t$ and f_n is incomparable to all elements of $\{x = f_0, f_1, \ldots, f_{n-2}\}$ hence $t \not\sim f_j$). Choose $0 \leq l \leq n - 3$ maximal such that $f_l < t$. If f_l is minimal in F, then the set $\{f_l, \ldots, f_n, t\}$ is a crown in P. Else if f_l is maximal in F, then the set $\{f_l, \ldots, f_n, t\}$ is a crown in P. This is a contradiction. Hence we have proved that t is comparable to $m_{n-2,n}$, that is $t \leq m_{n-2,n}$ (this is because $f < m_{n-2,n}$ and t is an upper cover of f). From our assumption that P is diamond-free we deduce that $\{u : f \leq u \leq m_{n-2,n}\}$ is a chain. It follows then that the set of upper covers of f is a chain and therefore f has a unique upper cover. Finally we prove that if $t' \geq f$, then $t' \sim m_{n-2,n}$. If $m_{n-2,n} \leq t'$, there is nothing to prove. Next we suppose that $m_{n-2,n} \not\sim t'$. Let f' be the largest element verifying $f_n \leq f' < m_{n-2,n}$ and $f' < t'$. It follows from our previous discussion that f' has a unique upper cover and that this upper cover is comparable to $m_{n-2,n}$. Hence, $t' < m_{n-2,n}$ and we are done. This completes the proof of the lemma.\[\square\]
The following corollary gives a characterization of ordered sets whose cover graph is a forest.

Corollary 11 Let $P = (V, \leq)$ be an ordered set. The cover graph of P is a forest if and only if P is crown-free and diamond-free.

Proof Clearly, if the cover graph of P is a forest, then P is crown-free and diamond-free. For the converse assume P is crown-free and diamond-free and let $F = \{f_0, ..., f_n\}$, $n \geq 0$, be a fence of maximum length in P. It follows from Lemma 9 that we can assume that the minimal elements of F are minimal in P and the maximal elements of F are maximal in P. By duality we may assume without loss of generality that f_n is minimal in P. We claim that f_n has a unique upper cover. If $n \leq 1$, then P is a disjoint sum of chains and we are done. Else if $n \geq 2$, then our claim follows from (ii) of Lemma 10 with $f = f_n$. Now consider the ordered set $P \setminus \{f_n\}$. From our assumption that P is crown-free and diamond-free it follows that $P \setminus \{f_n\}$ is also crown-free and diamond-free. An induction argument on the number of elements of P shows that the cover graph of P is a forest. □

Lemma 12 Let $P = (V, \leq)$ be an ordered set which is not a chain and whose cover graph is a tree. Let $f \in V$ be such that $U(f)$ is not a chain and set

$$T_f := \{u \in U(f) : u \text{ has a lower cover } z \text{ such that } z \sim f\}.$$

If $T_f = \emptyset$, then P has a very good pair (a, b) such that a and b are maximal elements of $U(f)$.

Proof From P is diamond-free and $U(f)$ is not a chain we deduce that $U(f)$ has at least two maximal elements (in P) and every element of $U(f)$ has a unique lower cover comparable to f. If $T_f = \emptyset$, then the lower covers of every element $u \in U(f)$ are comparable to f. Hence every element $u \in U(f)$ has a unique lower cover (this is because P is diamond-free). It follows then that any two distinct maximal elements a and b of $U(f)$ verify $D(a) \setminus D(b)$ and $D(b) \setminus D(a)$ are chains and therefore the pair (a, b) is a very good pair and we are done. □

Lemma 13 Let $P = (V, \leq)$ be an ordered set which is not a chain and whose cover graph is a tree and $x \in V$. For $n \geq 2$ let $F := \{x = f_0, f_1, ..., f_n\}$ be a fence of maximum length among those fences starting at x. Furthermore, assume that f_n is minimal in F. If $U(f_n)$ is not a chain, then either P has very good pair in $U(f_n)$ or there exists a fence $F' := (F \setminus \{f_{n-1}, f_n\}) \cup \{f'_{n-1}, f'_n\}$ such that $f_{n-2} < f'_{n-1} > f'_n$, f'_n is minimal in P and $U(f'_n)$ is a chain.

Proof We recall that $U(f_{n-2}) \cap U(f_n)$ has a unique minimal element $m_{n-2,n}$ and $m_{n-2,n} \leq f_{n-1}$ ((i) of Lemma 10).

Claim 1: $\{t : f_n < t \text{ and } t \sim m_{n-2,n}\} = \emptyset$.

Proof of Claim 1: Follows from (ii) of Lemma 10.

Claim 2: $U(m_{n-2,n})$ is a chain if and only if $U(f_n)$ is a chain.

Proof of Claim 2: Obviously, if $U(f_n)$ is a chain, then $U(m_{n-2,n})$ is also a chain. Now suppose that $U(m_{n-2,n})$ is a chain. From Claim 1 we deduce that in order to prove $U(f_n)$ is a chain it is enough to prove that the set $\{x : f_n \leq t \leq m_{n-2,n}\}$ is a chain. This is true since P is diamond-free. This completes the proof of claim 2.
Suppose that $U(f_n)$ is not a chain. It follows from Claim 2 that $U(m_{n-2,n})$ is not a chain. We consider the set $T_{m_{n-2,n}}$. If $T_{m_{n-2,n}} = \emptyset$ we apply Lemma 12 to obtain the required conclusion. Else if $T_{m_{n-2,n}} \neq \emptyset$ then let y be a maximal element of $T_{m_{n-2,n}}$. If $U(y)$ is not a chain then we apply Lemma 12 to T_y to obtain the required conclusion. For the remainder of the proof of the lemma we assume that $U(y)$ is a chain. Let z be a lower cover of y such that $z \sim m_{n-2,n}$. In particular $z \notin \{f_{n-2},f_n\}$.

Claim 3: For all $z' \leq z$, z' is incomparable to all elements of $\{m_{n-2,n}\} \cup D(m_{n-2,n})$.

Proof of Claim 3: Suppose there exists $u \in \{m_{n-2,n}\} \cup D(m_{n-2,n})$ and $u \sim z'$. If $z' < u$, then it follows from our assumption that $z \sim m_{n-2,n}$ that $z \neq z'$ and hence $\{z', m_{n-2,n}, z, y\}$ is a diamond in P. Else if $u < z'$, then it follows from our assumption that $z' \leq z$ and $z \sim m_{n-2,n}$ that $u \neq m_{n-2,n}$ and hence $\{u, m_{n-2,n}, z, y\}$ is a diamond in P. In both cases we obtain a contradiction. This completes the proof of Claim 3.

Claim 4: For all $z' \leq z$, $F' := \{x = f_0, f_1, ..., f_{n-2}, y, z\}$, $n \geq 2$, is a fence of maximum length among those fences starting at x.

Proof of Claim 4: From our assumption that F is fence follows that $F \setminus \{f_{n-1}, f_n\}$ is fence. Hence in order to prove Claim 4 all we have to prove is that y is incomparable to all elements of $F' \setminus \{f_{n-2}, y, z\}$ and z' is incomparable to all elements of $F' \setminus \{y, z\}$. From our assumption that P is crown-free and diamond-free follows easily that y is incomparable to all elements of $F' \setminus \{f_{n-2}, y, z\}$. We now prove that z' is incomparable to all elements of $F' \setminus \{y, z\}$. Suppose there exists $0 \leq l \leq n-2$ such that $z' \sim f_l$. Then $l \neq n-2$ (follows from Claim 3) and $z' < f_l$ (this is because $z' < y$ and y is incomparable to all elements of $\{x = f_0, f_1, ..., f_{n-2}\}$ and hence $f_l \neq z'$). Choose $0 \leq l \leq n-3$ maximal such that $z' < f_l$. If f_l is minimal in F, then the set $\{z', f_{l+1}, ..., f_{n-2}, y\}$ is a crown in P. Else if f_l is maximal in F, then the set $\{z', f_l, ..., f_{n-2}, y\}$ is a crown in P. This is a contradiction. The proof of Claim 4 is now complete.

Claim 5: Let t be such that $m_{n-2,n} \leq t < y$ and let $z' \leq z$. Then $t \sim z'$.

Proof of Claim 5: Suppose not. Then $z' < t$ (this is because $z' \leq z$ and $z \sim m_{n-2,n}$) and hence $z' \neq z$ (this is because z is a lower cover of y and $t < y$). It follows then that $\{z', t, z, y\}$ is a diamond in P which is impossible. This completes the proof of Claim 5.

Claim 6: For every $z' \leq z$, if $t > z'$, then t is comparable to y.

Proof of Claim 6: It follows from Claim 4 that $F' := \{x = f_0, f_1, ..., f_{n-2}, y, z'\}$, $n \geq 2$, is a fence of maximum length among those fences starting at x. It follows from (i) of Lemma 10 applied to F' that the smallest element of $U(z') \cap U(f_{n-2})$ must be less or equal to y. Claims 3 and 5 imply that y is the smallest element of $U(z') \cap U(f_{n-2})$. Applying (ii) of Lemma 10 to F' with $f = z'$ gives the required conclusion. The proof of Claim 6 is now complete.

Let $z' \leq z$ and $t \geq z'$. From Claim 6 we deduce that $t \sim y$. Since P is diamond-free $\{y : z' \leq t \leq y\}$ must be a chain. It follows from our assumption that $U(y)$ is a chain that $U(z')$ is a chain. It follows from Claim 4 that $F' = \{x = f_0, f_1, ..., f_{n-2}, y, z'\} = (F \setminus \{f_{n-1}, f_n\}) \cup \{y, z'\}$ is a fence of maximum length among those fences starting at x. Choosing z' to be minimal in P it becomes now apparent that the fence F' satisfies the required conditions of the lemma and we are done.

Corollary 14 Let $P = (V, \leq)$ be an ordered set which is not a chain and whose cover graph is a tree and let $F := \{f_0, f_1, ..., f_n\}$, $n \geq 2$, be a fence of maximum length in P. If f_0 and f_n are minimal elements in P, then P has a very good pair.
Proof: We notice at once that F is a fence of maximum length among those fences that start at f_0, respectively that start at f_n. Hence, if f_0 or f_n is a minimal element in P, and hence minimal in F, then Lemma 13 applies. Assume that f_0 and f_n are minimal elements in P. If $n = 2$, then it follows from Claim 1 of the proof of Lemma 13 and symmetry that $\{x : f_2 < x \text{ and } x \sim m_{0,2}\} = \emptyset$ where $m_{0,2}$ is the unique minimal element of $U(f_0) \cap U(f_2)$. Hence, $U(f_0) \setminus U(f_2)$ and $U(f_2) \setminus U(f_1)$ are chains proving that (f_0, f_2) is a very good pair and we are done. Now assume $n \geq 4$. If $U(f_0)$ and $U(f_n)$ are chains, then (f_0, f_n) is a very good pair and we are done. Suppose $U(f_n)$ is not a chain. Applying Lemma 13 to the fence F with $x = f_0$ we deduce that either P has a very good pair in $U(f_n)$ or there exists a fence $F' := (F \setminus \{f_{n-1}, f_n\}) \cup \{f_{n-1}', f_n'\}$ (of maximum length) such that f_n' is minimal in P, $f_{n-2} < f_{n-1}' > f_n'$ and $U(f_n')$ is a chain. If $U(f_0)$ is a chain, then the pair (f_0, f_n') is a very good pair and we are done. Else if $U(f_0)$ is not a chain, then applying Lemma 13 to the fence F' with $x = f_n'$ we deduce that either P has a very good pair in $U(f_0)$ or there exists a fence $F'' := (F \setminus \{f_0, f_1\}) \cup \{f_0', f_1'\}$ (of maximum length) such that f_0' is minimal in P, $f_0' < f_1' > f_2$ and $U(f_0')$ is a chain. It follows then that the pair (f_0', f_n') is a very good pair and we are done.

We now proceed to the proof of Theorem 6.

Proof: Let $P = (V, \leq)$ be an ordered set not totally ordered and whose cover graph is a forest. If all connected components of P are chains, then any two distinct minimal elements of P form a very good pair. Otherwise P has a connected component which is not a chain. Clearly, a very good pair in this connected component remains very good in P. Hence, we lose no generality by assuming that P is connected, that is, its cover graph is tree.

Let $F := \{f_0, f_1, ..., f_n\}$, $n \geq 2$, be a fence of maximum length in P. It follows from Lemma 9 that we may assume that all the f_i’s are minimal or maximal in P and by duality we may assume without loss of generality that f_0 is a minimal element in P. It follows from Lemma 13 that we can assume $U(f_0)$ to be a chain. By duality and symmetry it then follows that we can assume that either $D(f_n)$ is a chain if f_n is maximal or $U(f_n)$ is a chain if f_n is minimal. It follows from Corollary 14 that we can assume f_n to be maximal (hence n is odd). We now define

$$\mathcal{F} := \{x : \text{ there exist } 1 \leq i, j \leq n \text{ such that } f_i \leq x \leq f_j\}$$

and

$$D := \{x \in \mathcal{F} : \text{ there exists a fence } F_x \text{ of length at least 2 starting at } x \text{ so that } \mathcal{F} \cap F_x = \{x\}\}.$$

We consider two cases.

Case 1: $D \neq \emptyset$.

Let $x \in D$ and let $F_x = \{x = e_0, e_1, ..., e_k\}$, $k \geq 2$, be a fence of maximum length at least 2 (among those fences starting at x and satisfying $\mathcal{F} \cap F_x = \{x\}$). We notice at once that $f_0 \sim e_k \sim f_n$ (this follows from our assumption that P is crown-free and diamond-free). Assume that e_k is minimal in F_x. Let $m_{k-2,k}$ be the unique minimal element of $U(e_{k-2}) \cap U(e_k)$.

Claim: Let u be such that $e_k < u$. Then u is comparable to $m_{k-2,k}$.

Let u be such that $e_k < u$ and assume for a contradiction that u is incomparable to $m_{k-2,k}$. A similar argument as in the proof of (ii) of Lemma 10 yields that $F'_x = \{x = e_0, e_1, ..., e_k, u\}$ is a fence. Since F_x is a fence of maximum length at least 2 among those fences starting at x and satisfying $\mathcal{F} \cap F_x = \{x\}$ we infer that $u \in \mathcal{F}$. Observe then that P has a crown which is impossible by assumption. This completes the proof of the claim.

Springer
Similar to (ii) of Lemma 10 it follows then that every element f such that $e_k \leq f < m_{k-2,k}$ has a unique upper cover and this upper cover is comparable to $m_{k-2,k}$. In particular, every element larger or equal to f is comparable to $m_{k-2,k}$. Consequently, $U(m_{k-2,k})$ is a chain if and only if $U(e_k)$ is a chain (this is similar to Claims 1 and 2 of Lemma 13). Considering the set $T_{m_{k-2,k}}$ and applying similar arguments as in the proof of Lemma 13 we obtain that if $U(e_k)$ is not a chain, then either P has a very good pair or we can find a new fence $F'_k = \{e_0 = x, \ldots, e'_{k-1}, e'_k\}$ such that e'_k is minimal in P and $U(e'_k)$ is a chain. If the former holds then we are done. Else if the latter holds, then it follows from f_0 is minimal in P and $e_0 \sim f_0$ that $e'_k \sim f_0$. Hence, (f_0, e'_k) is a very good pair.

If e_k is maximal in F_k, then we apply the previous argument to the dual of P and to the dual of the fence F_k that either P has a very good pair or we can find a new fence $F''_k = \{e_0 = x, \ldots, e''_{k-1}, e''_k\}$, $k \geq 2$, such that e''_k is maximal in P and $D(e''_k)$ is a chain. If the former holds then we are done. Else if the latter holds, then it follows from f_n is maximal in P and $e_k \sim f_n$ that $e''_k \sim f_n$. Hence (f_n, e''_k) is a very good pair.

Case 2: $D = \emptyset$.

Claim 1: Let $x \in F$. Then every element of $U(x) \setminus F$ has a unique lower cover and this lower cover is comparable to x. Dually, every element of $D(x) \setminus F$ has a unique upper cover and this upper cover is comparable to x.

Proof of Claim 1: Suppose there exists $y \in U(x) \setminus F$ that has two distinct lower covers y_1 and y_2 and note that $y_1 \sim y_2$. Then y_1 or y_2 is incomparable to x. Indeed, suppose not. If $x \notin \{y_1, y_2\}$, then $\{x, y_1, y_2, y\}$ is a diamond in P which is not possible. Else if, say $x = y_2$, then $x \prec y_2$. Hence $y_1 \in F$ because otherwise $\{x, y, y_1\}$ is a fence of length at least 2 starting at x and verifying $F \cap \{x, y, y_1\} = \{x\}$ contradicting $D = \emptyset$. Let k', k be nonnegative integers such that $f_{k'} \leq y_1 \leq f_k$ and $|k' - k| = 1$. Since $x \in F$ there are nonnegative integers i and j such that $f_i \leq x \leq f_j$ and $|i - j| = 1$. If y_1 is comparable to f_i, that is $k' = i$, then $y_1 \neq f_i$ (this is because y_1 is a lower cover of y and $f_i < x < y$) and since f_i is minimal in P we have $f_i < y_1$. Hence, (f_i, x, y_1, y) is a diamond in P. Else if y_1 is incomparable to f_i, then $\{y_1, f_k, \ldots, f_i, y\}$ is a crown. In both cases we obtain a contradiction since P is diamond-free and crown-free. This proves Claim 1.

Claim 2: If there exists $x \in F$ such that $U(x) \setminus F$ or $D(x) \setminus F$ is not a chain, then P has a very good pair.

Proof of Claim 2: Let $x \in F$ be such that $U(x) \setminus F$ is not a chain. Since P is diamond-free $(U(x) \setminus F)$ has at least two maximal elements. It follows from Claim 1 of Case 2 that every element of $U(x) \setminus F$ has a unique lower cover and that this lower cover is comparable to x. It becomes now apparent that any pair of distinct maximal elements of $U(x) \setminus F$ is a very good pair and we are done.

It follows from Claim 2 that we can assume that for every element $x \in F$ the sets $U(x) \setminus F$ and $D(x) \setminus F$ are chains.

For integers $0 \leq i, j \leq n$ with $|i - j| = 1$ and i even, set

$$D_{i,j} := \{x : f_i < x < f_j\} \text{ and there exists } t \notin F \text{ such that } t \text{ covers } x\}.$$

Claim 3: If $D_{0,1} \neq \emptyset$, then P has a very good pair.

Proof of Claim 3: Assume that $D_{0,1} \neq \emptyset$ and let x be such that $f_0 < x < f_1$ and let $t \notin F$ be a cover of x. From $U(f_0)$ is a chain it follows that $t < x$ and hence t is a lower cover of x. We claim that $t \sim f_0$. Since f_0 is minimal, if t is comparable to f_0 (and $t \neq f_0$ since $t \notin F$), then we must have $f_0 < t < x < f_1$. But then $t \in F$, which is a contradiction. Our claim is then proved. Now let $t' \leq t$ be a minimal element. It follows from Claim 1 of Case 2 that every element of $D(x) \setminus F$ has a unique upper cover and this upper cover is
comparable to x. Hence, $U(t') = \{z : t' < z \leq x\} \cup U(x)$. Since P is diamond-free the set $\{z : t' < z \leq x\}$ is a chain. From our assumption $U(x) \setminus F$ is a chain it follows then that $U(t')$ is a chain. Hence the pair (f_0, t') is a very good pair and we are done.

For the remainder of the proof we assume that $D_{0,1} = \emptyset$.

Claim 4: If $D_{2,1} \neq \emptyset$, then P has a very good pair.

Proof of Claim 4: We recall that $U(f_0) \cap U(f_2)$ has a unique minimal element denoted $m_{0,2}$ and that $f_0 < m_{0,2} \leq f_1$. Let $x \in D_{2,1}$ and notice that since $D_{0,1} = \emptyset$ we have $f_2 < x < m_{0,2}$. Choose x to be maximal in $D_{2,1}$. We argue on whether x is a lower cover of $m_{0,2}$ or not. We first consider the case x is a lower cover of $m_{0,2}$. Let t be a cover of x not in F. Suppose t is a lower cover of x and let $t' \leq t$ be a minimal element in P. We claim that (f_0, t') is a very good pair. Indeed, by assumption $U(f_0)$ is a chain and hence $U(f_0) \setminus U(t')$ is a chain. Moreover, it follows from the maximality of x and Claim 1 of Case 2 that $U(t') \setminus U(f_0)$ is also a chain. Since f_0 and t' are both minimal in P our claim follows. Now suppose that t is an upper cover of x and let $t'' \geq t$ be a maximal element in P. We claim that (f_1, t'') is a very good pair. Indeed, $D(t'') \setminus D(f_1) = \{z : t \leq z < t''\}$ which is a chain (this follows from Claim 1 of Case 2 and our assumption that $D(x) \setminus F$ is a chain). Moreover, $D(f_1) \setminus D(t'') = \{z : f_0 \leq z < f_1\}$ which is also a chain (by assumption $D_{0,1} = \emptyset$). The required conclusion follows since f_1 and t'' are maximal in P. Now we consider the case x is not a lower cover of $m_{2,1}$. From our choice of x it follows that for all u such that $x < u < m_{2,1}$ we have $u \notin D_{2,1}$, that is, every cover of u is in F. From our assumption that $U(f_0)$ is a chain follows that $U(u)$ is a chain. Let u be an upper cover of x such that $x < u < m_{2,1}$. Then $D(u) = D(t) = \{x\} \cup D(x)$. Hence (u, t) is a very good pair and we are done.

For the remainder of the proof we assume that $D_{2,1} = \emptyset$.

Now it becomes apparent that similar arguments as in the proof of Claim 4 lead to P has a very good pair if $D_{2,3} \neq \emptyset$. Hence we may assume that $D_{2,3} = \emptyset$. Let y_1 and y_2 be two distinct lower covers of $m_{0,2}$ such that $f_0 \leq y_1 < m_{0,2}$ and $f_2 \leq y_2 < m_{0,2}$. We claim that (y_1, y_2) is a very good pair if $y_2 \neq f_2$, or (f_0, f_1) is a very good pair if $y_2 = f_2$. Indeed, $D(y_1)$ is a chain since $D_{0,1} = \emptyset$ and $D(y_2)$ is a chain since $D_{2,1} = \emptyset$ and $U(y_1) = U(m_{0,2}) \cup \{m_{0,2}\}$ is a chain since $U(f_0)$ is a chain. Moreover, if $y_2 \neq f_2$, then $U(y_2) = U(m_{0,2}) \cup \{m_{0,2}\}$ which is a chain. Else if $y_2 = f_2$, then f_2 is a lower cover of $m_{0,2}$ and $U(f_2) \setminus U(f_1)$ is a chain since by assumption $D_{2,3} = \emptyset$. This proves our claim and completes the proof of the theorem.

Acknowledgements The author thanks two anonymous referees for their careful reading of the manuscript and for their remarks and suggestions.

References

1. Atkinson, M.D.: On computing the number of linear extensions of a tree. Order 7, 23–25 (1990)
2. Brightwell, G.: Semiorders and the $1/3 - 2/3$ conjecture. Order 5, 369–380 (1989)
3. Brightwell, G.: Balanced pairs in Partial orders. Discret. Math. 201, 25–52 (1999)
4. Brightwell, G., Wright, C.D.: The $1/3 - 2/3$ conjecture for 5-thin posets. SIAM J. Discrete Mathematics 5, 467–474 (1992)
5. Dean, R.A., Keller, G.: Natural partial orders. Canad. J. Math. 20, 535–554 (1968)
6. Ganter, B., Hafner, G., Poguntke, W.: On linear extensions of ordered sets with a symmetry. Special issue: Ordered sets (Oberwolfach, 1985). Discrete Math. 63, 153–156 (1987)
7. Kisliutsyn, S.S.: Finite partially ordered sets and their associated set of permutations. Matematicheskiye Zametki 4, 511–518 (1968)
8. Linial, N.: The information theoretic bound is good for merging. SIAM J. Comput. 13, 795–801 (1984)
9. Olson, E.J., Sagan, B.E.: Order. https://doi.org/10.1007/s11083-017-9450-3 (2018)
10. Peczarski, M.: The gold partition conjecture for 6-thin posets. Order 25, 91–103 (2008)
11. Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fund. Math. 16, 386–389 (1930)
12. Trotter, W.T., Gehrlein, W.G., Fishburn, P.C.: Balance theorems for height-2 posets. Order 9, 43–53 (1992)
13. Zaguia, I.: The $1/3 − 2/3$ Conjecture for N-free ordered sets. Electron. J. Comb. 19, 29 (2012)