Exciton emissions of bilayer WSe₂ tuned by the ferroelectric P (VDF-TrFE) polymer

Sixin Zhu¹², Dan Li³, Jianlu Wang⁴, Qiang Wang⁵, Zhangfeng Jiang⁶, Huihong Lin², Zhirui Gong¹**, Qi Qin¹**, Xingjun Wang¹**

¹ College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People’s Republic of China
² School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, Guangdong, People’s Republic of China
³ State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People’s Republic of China

E-mail: gongzr@szu.edu.cn, qi.qin@szu.edu.cn, xjwang@mail.sitp.ac.cn

Abstract
In this work, we show electrical polarization of ferroelectric P (VDF-TrFE) polymer can be used to engineer the photoluminescence (PL) at bilayer WSe₂. The total PL intensity substantially is suppressed under negative polarization and enhanced in positive polarization with increasing the polarization intensity of P (VDF-TrFE) polymer. And the electron transfer between conduction band energy valleys K and Λ due to built-in electric field can modify the recombination path and change the overall optical radiation efficiency, and analysis of the change is performed by the rate equation based on the charge transfer theory. The calculated intensities well reproduce the experimental results. This work may create an opportunity for hybrid integration of ferroelectric materials and 2D TMDCs as optical switch.

Keywords: WSe₂, P (VDF-TrFE), photoluminescence, charge transfer

Introduction
Thin layered transition dichalcogenides (TMDCs) due to high area-to-volume ratio, atomically thin are considered a promising materials for optoelectronic devices.¹⁰⁻¹¹ TMDCs have unique electrical and optical characteristics, evolving from an indirect band gap to a direct bandgap when the number of layers is reduced to a single layer.¹²⁻¹⁴ Besides fundamental studies including bound excitonic states,¹⁵⁻¹⁷ valley polarization,¹⁸⁻²⁰ the 2D TMDCs have been used in photodetectors,²¹⁻²⁷ nonlinear optical devices and frequency converters,²⁸⁻³⁰ photovoltaic³¹,³² and advanced non-volatile memory³³,³⁴. Due to the ultra-thin nature of TMDCs, few layer TMDCs materials have a significant response to the surrounding environment. Several external tuning approaches such as temperature,³⁵⁻³⁷ strain,³⁸⁻⁴¹ chemical doping,⁴²⁻⁴⁵ have been demonstrated to alter the electronic and optical properties of few layer TMDCs. Moreover, this opens up an opportunity for ferroelectric gate to adjust the properties of few layers of TMDCs.²⁷,⁴⁶,⁴⁷ Ferroelectric materials possess a spontaneous electrical polarization resulting in a strong built-in electric field. The electrical polarization can be control through application of an external voltage. P (VDF-TrFE) polymer is a widely known ferroelectric material for piezoelectric sensors, photodetectors.²⁷ Based on its excellent
transparency from visible to infrared wavelengths, it is feasible to explore the optical response based on hybrid integration of P (VDF-TrFE) and 2D TMDCs. Recently, WenBo et al. reported that polarized lithium niobate can modulate the exciton and trion in monolayer MoSe$_2$ and WSe$_2$.

Moreover, 2D van der Waals-ferroelectric heterostructures present a tantalizing opportunity to complete the integrated functional components on a single chip. Compared with monolayer TMDCs, exploring the integration of multilayer TMDCs thin film and ferroelectric materials has far-reaching significance in photonics due to high electron mobility and larger optical density of state in multilayer TMDCs. However, until now, there is basically no corresponding report on the use of ferroelectric materials to adjust the optical characteristics of multilayer TMDCs.

Herein, we explore the interaction of polarized P (VDF-TrFE) thin film with bilayer WSe$_2$ and observed opposite modulation of the PL intensity. The electrical polarization of P (VDF-TrFE) polymer is adjusted through application of an external gate voltage. The experimental observed PL intensity is substantially suppressed in negative polarization and enhanced in positive polarization with increasing the gate voltage strength. Strain caused by the inverse piezoelectric effect, and thermal effect are not the main factors that cause the PL intensity to change. We suggests that the observed PL changes are due to the transfer of intervally electrons between conduction band energy valleys K and Λ, and readjust the recombination path. The calculated intensities well reproduce the experimental results. We believe that these results may be open a new avenue for optical switch based on the hybrid integration of ferroelectric materials and 2D TMDCs.

Experimental methods

The bilayer WSe$_2$ samples were mechanically exfoliated from bulk WSe$_2$ onto SiO$_2$/Si substrates. The PL signals excited by a 514.5 nm line of an Ar-ion laser were collected by tri-vista Raman spectroscopy equipped with a liquid nitrogen-cooled Si-CCD camera. Relatively low excitation power is used to reduce the effect of thermal effect.

The fabrication process of the entire test structure can be find from the reference. Corresponding electrical characteristics are shown in the supplemental materials. After measuring the back bias, the sample is annealed at 400 °C to eliminate the residual polarization of P (VDF-TrFE), and then the test under forward bias. The ferroelectricity of P (VDF-TrFE) film is stable at room temperature, so we first study the control characteristics of P (VDF-TrFE) thin film at room temperature.

The electronic structures of bilayer WSe$_2$ were calculated through the density functional theory (DFT) code VASP. In our calculation, the exchange correlation potential was dealt with hybrid functionals at both Perdew–Burke–Ernzerhof (PBE) levels, and the cutoff energy was set to 450 eV. A vacuum of 20 Å perpendicular to the surface was used to demonstrate finite layer, and a 15 × 15 k-meshed grid was employed to describe the periodic properties of bilayer WSe$_2$. The convergence criterion was restricted to less than 10$^{-5}$ eV in energy. The atomic positions were fully relaxed until the Hellmann–Feynman forces acting on each atom were less than 0.01 eV Å$^{-1}$.

Results and discussion

Figure 1(a) displays the 3D schematic diagram of the two-terminal device configuration after coating with P (VDF-TrFE). The source and drain electrodes are on the WSe$_2$ flake, and Pd/Au is selected as a contact electrode to improve the contact resistance. The hysteresis loop of 300 nm P(VDF-TrFE) at room temperature is shown in figure 1(b). When the electric field strength
increases to near ±60 V, it tends to be in a polarization saturation state. At this time, the electric field strength further increases, the total polarization strength will still gradually increase as the induced polarization increases. The coercive voltage is approximately 22.5 V and the remnant polarization value is 7 μC/cm². Figure 1(c) show the transfer characteristics of the bilayer WSe₂ transistor at 300K. The PL spectra for bilayer WSe₂ after coating with P (VDF-TrFE) at T=300 K are presented in figure 1(d). A high energy PL peak (A) at 1.58 eV originating from the direct interband transition K→K. Additional a peak (I) emerges from the indirect bandgap emission K→Λ. The measured thickness of bilayer WSe₂ is about 1.5 nm, matching the PL peak of the measurement.

Figure 1. (a) The 3D schematic diagram of the two-terminal device configuration after coating with P (VDF-TrFE). The Pd/Au serves as the drain and source electrodes and Al serves as the top-gate electrode. (b) The P (VDF-TrFE) polarization-voltage curves at T=300 K. (c) Transfer curve of the bilayer WSe₂ transistor at T=300 K. (d) Bilayer WSe₂ PL spectra at room temperature. The blue and green lines indicate the direct (A) and indirect (I) interband transitions, the dashed lines are only added as an eye guide.

The behavior of bilayer WSe2 under a negative vertical electric field is completely different than the positive case, with the total PL enhanced, as illustrated in the PL spectra in figure 2. We have repeated these measurements on more than 4 times to confirm the consistency of the behavior. In addition to the intensity change, the vertical electric field also cause the PL peak to red-shift slightly. Inset in figure 2 show the total integrated PL intensity versus gate voltage. As the field strengthens to a certain threshold value (~ -60 V), the total PL signal increases slowly. This spectral behavior is consistent with the hysteresis loop change trend. By proper control of experimental conditions, the PL enhancement could reach approximately 3 times. The positive vertical electric field condition can be found from the supplementary figure S1.
Figure 2. PL spectra at negative gate voltage with bilayer WSe$_2$. The change of PL intensities with the increase of the applied bias is shown in the inset. The dashed lines are only added as an eye guide.

In order to analyze the intensity change mechanism. As a comparison, we tested the PL spectrum with bilayer WSe$_2$ under different applied electric fields in the case of back gate structure (SiO$_2$ dielectric). As shown in figure S2, Directly applied bias voltage on bilayer WSe$_2$ has no modulation effect on the PL intensity of bilayer WSe$_2$. From the above discussion, it can be concluded that the change in PL intensity is due to the effect of ferroelectric P(VDF-TrFE) crystals.

This may be related to the deformation of P (VDF-TrFE) thin film based on the inverse piezoelectric effect. Reverse bias causes the P (VDF-TrFE) thin film to stretch or shrink, leading to the bilayer WSe$_2$ to deform. To our knowledge, this effect is not obvious in the polymer ferroelectric materials. In addition, the deformation of P (VDF-TrFE) disappears with the removal of the applied gate voltage. In order to evaluate the effect of strain, the PL measurements under different levels of remnant polarization with P (VDF-TrFE) are recorded. The applied negative gate voltage is removed after polarizing P (VDF-TrFE). As can be seen in figure 3, total PL intensity increases as residual polarization increases, and the intensity is basically unchanged after reaching a critical value (7μC/cm2 or above -60 V). This suggests that deformation introduced by inverse piezoelectric effect is not the main factor causing changes in PL intensity. The PL measurements with positive remnant polarization with P (VDF-TrFE) are shown in Figure S2. Furthermore, several mechanisms are used to account for the PL change under an electric field. According to the previous reports, some possible factors for PL variation include thermal effect,35 and intervally charge transfer.57,58 Thermal effects can be ruled out because the opposite PL changes observed at reverse gate voltage cannot be explained by the temperature dependent PL
The applied negative gate voltage is removed after polarizing P (VDF-TrFE) with different gate voltages and the remnant polarization value is 7 μC/cm². The blue lines are only added as an eye guide.

Figure 4. (a) Calculated energy band structure of the bilayer WSe₂. The dashed arrows imply the possible radiation recombination pathways. (b) Electron transfer effect under strong electric field.
We conducted relativistic DFT calculation of the electronic structure of the bilayer WSe₂, as shown in figure 4 (a). According to the DFT calculation, the indirect band emission involves valence band holes at the K point which is nearly degenerate with the band at the Γ point and conduction band electrons at Λ point. The energy difference between the K and Λ point is about 40 meV. Due to large binding energy and small energy difference between the K and Λ point, electron transfer between different energy valleys is possible under the action of electric field, as displayed in figure 4 (b). According to the quasi-Boltzmann distribution law, the number of photocarriers at Λ point dominates. Since the quantum efficiency of the direct transition is much higher than the quantum efficiency of the indirect transition, the increase in the number of electrons in the K energy valley will inevitably lead to an increase in the entire fluorescence intensity, and vice versa. To support this argument, theoretical estimations are given as follows. When an external electric field is applied on the completely unpolarized ferroelectric material, the electronic polarization of the ferroelectric material between the electric dipole moment P and external electric field \(\xi \) is approximately expressed by

\[
P = -P_0 \tanh \left(\frac{\xi}{\xi_0} \right),
\]

where \(P_0 \) is the maximum polarization and \(\xi_0 \) denotes the hardness of the ferroelectric material. It should be noticed here the minus sign is determined by the setup of the apparatus in the experiment.

By solving the rate equation of the exciton populations of the direct and indirect exciton states (see supplementary material for further details), the population of the direct exciton state proportional to the PL peak intensity is given as

\[
n_e(\xi) \approx \beta \exp \left(- \frac{\delta + \Delta}{k_B T} \right) \frac{R(\xi)(1+r)}{R(\xi)r+1},
\]

where \(\delta \) is the energy difference of the conduction band extreme between K point and Λ point, \(\Delta \) is the energy gap of the bilayer WSe₂, \(k_B \) is Boltzmann constant and \(T \) is the temperature.

Here, \(r = \frac{\beta g_e}{g_s} \exp \left(\frac{\delta}{k_B T} \right) \) depends on the ratio between the excitation rates of the indirect exciton \(g_s \) and direct excitons \(g_e \), which is modified by a Boltzmann factor as well as the oscillating strength ratio \(\beta \) between the direct exciton and the indirect exciton. According to the transferred charge effect based on the effective electron temperature, the external field dependent ratio can be expressed as

\[
R(\xi) = \exp(-k \tanh \left[\frac{\xi}{\xi_0} \right])
\]

with the dimensionless parameter
The electric dipole in the bilayer WSe$_2$ p and the dielectric constant of the WSe$_2$ ε.

Figure 5 shows the integrated PL intensity of direct and indirect excitons as a function of the gate voltage. The calculated PL intensities are indicated by the red solid lines; the calculated intensities well reproduce the experimental results. The fitting parameters used here is $k = 1.24$, $\varepsilon_0 = 46.67$ eV, $\delta = 0.11$, $\Delta = 1.53$ eV, and $k_B T \approx 25.9$ meV for the room temperature $T = 300$ K. If the parameters in Eq. (4) are chosen as $p \approx 3 \times 10^8$ C·m and the internal electric field $P_0 / \varepsilon \approx 10^9$ V/m 27, the calculated dimensionless parameter $k \approx 1.19$ which is consistent with the fitting one.

Figure 5. The PL intensity of bilayer WSe$_2$ at different gate voltage. Circle represents PVDF top-gate data, star represents SiO$_2$ back-gate data. Solid lines show the calculated PL intensity curves calculated by solving the rate equations.

In addition, the direct exciton and indirect exciton emission intensity were extracted by Gaussian fitting method, shown. The fitting results show that the peak and FWHM of direct and indirect excitons are basically unchanged with the change of applied voltage (figure S5). As shown in figure 6, the PL intensity ratio of direct and indirect excitons decrease gradually with the applied bias change from negative 150 to positive 150. As the applied negative bias voltage goes up, the Λ valley electrons will transfer to K valley via electric-assisted intervally scattering effect. As a
result, the carrier population at K point is increased and the direct exciton radiative transition is enhanced. This result is consistent with the intervallary carrier transfer model described above.

Conclusion

In summary, we observe that PL intensity in bilayer WSe$_2$ substantially reduced in position gate voltage and increased in negative gate voltage with increasing the electric field strength. The observed PL change is attributed to the transfer of intervally electrons from conduction band extremum K to Λ due to small energy difference (~55 meV) between K and Λ, and readjust the recombination path. These results provide a method for continuous improving the optical performance of optoelectronic devices based on bilayer WSe$_2$, and create an opportunity for hybrid integration of ferroelectric materials and 2D TMDCs as optical switch.

Acknowledgments

The authors are grateful for the financial support provided by the National Natural Science Foundation of China (Grant No. 11874377), Natural Science Foundation of Shanghai (Grant No.18ZR1445700) and the Natural Science Foundation of Guangdong Province (Grant No. 2019A1515011400).

References

(1) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech 7, 699–712 (2012).

(2) Philipp Steinleitner, Philipp Merkl, Philipp Nagler, Joshua Mornhinweg, Christian Schüller, Tobias Korn, Alexey Chernikov, and Rupert Huber. Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe$_2$. Nano Letters 2017, 17 (3), 1455-1460.

(3) Simone Latini, Enrico Ronca, Umberto De Giovannini, Hannes Hübener, Angel Rubio. Cavity Control of Excitons in Two-Dimensional Materials. Nano Letters 2019, 19 (6), 3473-3479.

(4) Albert F. Rigosi, Heather M. Hill, Yilei Li, Alexey Chernikov, and Tony F. Heinz. Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS$_2$/WS$_2$ and MoSe$_2$/WSe$_2$. Nano Letters 2015, 15 (8), 5033-5038.

(5) P. A. D. Gonçalves, Nicolas Stenger, Joel D. Cox, N. Asger Mortensen, Sanshui Xiao. Strong Light–Matter Interactions Enabled by Polaritons in Atomically Thin Materials. Advanced Optical Materials 2020, 8 (5), 1901473.

(6) Arky Yang, Jean-Christophe Blancon, Wei Jiang, Hao Zhang, Joeson Wong, Ellen Yan, Yi-Rung Lin, Jared Crochet, Mercouri G. Kanatzidis, Deep Jariwala, Tony Low, Aditya D. Mohite, Harry A. Atwater. Giant Enhancement of Photoluminescence Emission in WS$_2$-Two-Dimensional Perovskite Heterostructures. Nano Letters 2019, 19 (8), 4852-4860.

(7) M. Paur, A. J. Molina-Mendoza, R. Bratschitsch, K. Watanabe, Taniguchi, T. Mueller. Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors. Nat Commun 10, 1709 (2019).

(8) Koperski, M., Nogajewski, K., Arora, A., Cherkez, V., Mallet, P., Veuillen, J.-Y., Marcus, J., Kossacki, P., Potemski, M. Single photon emitters in exfoliated WSe$_2$ structures. Nat. Nanotechnol. 10, 503–506 (2015).

(9) Wang, J., Verzhbitskiy, I. & Eda, G. Electroluminescent devices based on 2D semiconducting transition metal dichalcogenides. Adv. Mater. 30, 1802687 (2018).
(10) Chaoliang Tan, Xiehong Cao, Xue-Jun Wu, Qiuyan He, Jian Yang, Xiao Zhang, Junze Chen, Wei Zhao, Shikui Han, Gwang-Hyeon Nam, Melinda Sindoro, and Hua Zhang. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews. 2017, 117 (9), 6225-6331.

(11) Han Soi Lee, Kyunghee Choi, Jin Sung Kim, Sanghyuck Yu, Kyeong Rok Ko, and Seongil Im. Coupling Two-Dimensional MoTe2 and InGaZnO Thin-Film Materials for Hybrid PN Junction and CMOS Inverters. ACS Applied Materials & Interfaces 2017, 9 (18).

(12) Zhang, Y., Chang, T., Zhou, B., Cui, Y., Yan, H., Liu, Z., Schmitt, F., Lee, J., Moore, R., Chen, Y., Lin, H., Jeng, H., Mo, S., Hussain, Z., Bansil, A and Shen, Z. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature Nanotech 9, 111–115 (2014).

(13) Debibichi, L., Eriksson, O., and Lebègue, S. Electronic structure of two-dimensional transition metal dichalcogenide bilayers from ab initio theory. Phys. Rev. B 2014 89, 205311.

(14) Ignacio Gutiérrez Lezama, Ashish Arora, Alberto Ubaldini, Céline Barreteau, Enrico Giannini, Marek Potemski, and Alberto F. Morpurgo. Indirect-to-Direct Band Gap Crossover in Few-Layer MoTe2. Nano Letters 2015, 15 (4), 2336-2342.

(15) Simon Ovesen, Samuel Brem, Christopher Linderālv, Mikael Kuisma, Tobias Korn, Paul Erhart, Malte Selig, Ermin Malic. Interlayer exciton dynamics in van der Waals heterostructures. Communications Physics 2019, 2 (1).

(16) Zhengyu He, Wenshuo Xu, Yingqiu Zhou, Xiaochen Wang, Yuewen Sheng, Youmin Rong, Shaoqiang Guo, Junying Zhang, Jason M. Smith, and Jamie H. Warner. Biexciton Formation in Bilayer Tungsten Disulfide. ACS Nano 2016, 10 (2), 2176-2183.

(17) Ozgur Burak Aslan, Minda Deng, Mark L. Brongersma, Tony F. Heinz. Strained bilayer WSe2 with reduced exciton-phonon coupling. Physical Review B 2020, 101 (11).

(18) Jones, A., Yu, H., Ghimire, N., Wu, S., Aivazian, G., Ross, J., Zhao, B., Yan, J., Mandrus, D., Xiao, D., Yao, W and Xu, X. Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotech 8, 634–638 (2013).

(19) Xiao, D., Liu, G-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

(20) Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

(21) Zahabul Islam, Azimkhan Kozakhmetov, Joshua Robinson, Aman Haque. Enhancement of WSe2 FET Performance Using Low-Temperature Annealing. Journal of Electronic Materials 2020, 49 (6), 3770-3779.

(22) Chuanlai Ren, Gaokuo Zhong, Qun Xiao, Congbing Tan, Ming Feng, Xiangli Zhong, Feng An, Jinbin Wang, Mengfei Zi, Mingkai Tang, Yong Tang, Tingting Jia and Jiangyu Li, Highly Robust Flexible Ferroelectric Field Effect Transistors Operable at High Temperature with Low - Power Consumption, Advanced Functional Materials, 30, 1, (2019).

(23) Manouchehr Hosseini and Shoebab Babae Touski, Investigation of Double-Gate Ferroelectric FET Based on Single-Layer MoS2 with Consideration of Contact Resistance, Journal of Electronic Materials, 10.1007/s11664-020-08140-8, (2020).

(24) Haijie Tan, Ye Fan, Yingqiu Zhou, Qu Chen, Wenshuo Xu, and Jamie H. Warner. Ultrathin 2D Photodetectors Utilizing Chemical Vapor Deposition Grown WS2 With Graphene Electrodes. ACS Nano 2016, 10 (8), 7866-7873.

(25) Nicholas J. Pinto, Luis M. Rijos, Meng-Qiang Zhao, William M. Parkin and A.T. Charlie Johnson,
Effect of varying the gate voltage scan rate in a MoS2 /ferroelectric polymer field effect transistor, Ferroelectrics, 550, 1, (1-11), (2019).

(26) Zheng-Dong Luo, Xue Xia, Ming-Min Yang, Neil R. Wilson, Alexei Gruverman and Marin Alexe, Artificial Optoelectronic Synapses Based on Ferroelectric Field-Effect Enabled 2D Transition Metal Dichalcogenide Memristive Transistors, ACS Nano, 07687, (2020).

(27) Wang, X., Wang, P., Wang, J., Hu, W., Zhou, X., Guo, N., Huang, H., Sun, S., Shen, H., Lin, T., Tang, M., Liao, L., Jiang, A., Sun, J., Meng, X., Chen, X., Lu, W and Chu, J. Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics, Advanced Materials, 27, 42, 2015.

(28) K. L. Seyler, J. R. Schaibley, P. Gong, P. Rivera, A. M. Jones, S. Wu, J. Yan, D. G. Mandrus, W. Yao and X. Xu. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nature Nanotech 10, 407–411 (2015).

(29) A. Säynäjoki, L. Karvonen, H. Rostami, A. Autere, S. Mehravar, A. Lombardo, R. A. Norwood, T. Hasan, N. Peyghambarian, H. Lipsanen, K. Kieu, A. C. Ferrari, M. Polini, Z. Sun., Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers. Nat Commun 8, 893 (2017).

(30) F. Langer, M. Hohenleutner, C. P. Schmid, C. Poellmann, P. Nagler, T. Korn, C. Schüller, M. S. Sherwin, U. Huttner, J. T. Steiner, S. W. Koch, M. Kira, R. Huber. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (2016).

(31) Marco M. Furchi, Andreas Pospischil, Florian Libisch, Joachim Burgdörfer, and Thomas Mueller. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction. Nano Letters 2014, 14 (8), 4785-4791.

(32) Abin Varghese, Dipankar Saha, Kartikey Thakar, Vishwas Jindal, Sayantan Ghosh, Nikhil V Medhekar, Sandip Ghosh, Saurabh Lodha. Near-Direct Bandgap WS2/ReS2 Type-II pn Heterojunction for Enhanced Ultrafast Photodetection and High-Performance Photovoltaics. Nano Letters 2020, 20 (3), 1707-1717.

(33) Wenhao Huang, Feng Wang, Lei Yin, Ruiqing Cheng, Zhenxing Wang, Marshet Getaye Sendeku, Junjun Wang, Ningning Li, Yuyu Yao and Jun He, Gate - Coupling - Enabled Robust Hysteresis for Nonvolatile Memory and Programmable Rectifier in Van der Waals Ferroelectric Heterojunctions, Advanced Materials, 32, 14, (2020).

(34) Kim, R., Lee, J., Kim, K., Cho, S., Kim, D and Park, C. Flexible Nonvolatile Transistor Memory with Solution - Processed Transition Metal Dichalcogenides, Small, 13, 20, 2017.

(35) Tongay, S., Zhou, J., Ataca, C., Lo, K., Matthews, T., Li, J., Grossman, J and Wu, J. Thermally driven crossover from indirect to direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576–5580 (2012).

(36) Li, Y., Xu, H., Liu, W., Yang, G., Shi, J., Liu, Z., Liu, X., Wang,X., Tang, Q., Liu, Y. Enhancement of Exciton Emission from Multilayer MoS2 at High Temperatures: Intervalley Transfer versus Interlayer Decoupling, Small, 13, 17, 2017.

(37) Li, Y., Liu, W., Xu, H., Zhang, C., Yang, L., Yue, W and Liu, Y. Abnormal high-temperature luminescence enhancement observed in monolayer MoS2 flakes: thermo-driven transition from negatively charged trions to neutral excitons, J. Mater. Chem. C, 2016,4, 9187-9196.

(38) Martin E. P. Tweedie, Yuewen Sheng, Syed Ghazi Sarwat, Wenshuo Xu, Harish Bhaskaran, Jamie H. Warner. Inhomogeneous Strain Release during Bending of WS2 on Flexible Substrates. ACS Applied Materials & Interfaces 2018, 10 (45), 39177-39186.

(39) Yuanbo Gong, Qiang Zhou, Yan Liu, Xinpeng Fu, Mingguang Yao, Xiaoli Huang, Yanping Huang, Hanxue Gao, Fangfei Li, Tian Cui. Increasing Interlayer Coupling Prevented the Deformation in
Compressed Multilayer WSe2. The Journal of Physical Chemistry C 2018, 122 (18), 10261-10266.

(40) Syed Ghazi Sarwat, Martin Tweedie, Benjamin F. Porter, Yingqiu Zhou, Yuewen Sheng, Jan Mol, Jamie Warner, Harish Bhaskaran. Revealing Strain-Induced Effects in Ultrathin Heterostructures at the Nanoscale. Nano Letters 2018, 18 (4), 2467-2474.

(41) Naiyin Tang, Chen Du, Qianqian Wang, Haoran Xu. Strain engineering in bilayer WSe2 over a large strain range. Microelectronic Engineering 2020, 223, 111202.

(42) Nan, H., Wang, Z., Wang, W., Liang, Z., Lu, Y., Chen, Q., He, D., Tan, P., Miao, F., Wang, X., Wang, J and Ni, Z. Strong Photoluminescence Enhancement of MoS2 through Defect Engineering and Oxygen Bonding. ACS Nano 8, 5738-45

(43) Hossein Ardekani, Robert Younts, Yiling Yu, Linyou Cao, Kenan Gundogdu. Reversible Photoluminescence Tuning by Defect Passivation via Laser Irradiation on Aged Monolayer MoS2. ACS Applied Materials & Interfaces 2019, 11 (41), 38240-38246.

(44) Zuyun He, Ran Zhao, Xiaofei Chen, Huijun Chen, Yunmin Zhu, Huimin Su, Shengxi Huang, Jianming Xue, Junfeng Dai, Shuang Cheng, Meilin Liu, Xinwei Wang, Yan Chen. Defect Engineering in Single-Layer MoS2 Using Heavy Ion Irradiation. ACS Applied Materials & Interfaces 2018, 10 (49), 42524-42533.

(45) Narae Kang, Hari P. Paudel, Michael N. Leuenberger, Laurene Tetard, and Saifil I. Khondaker. Photoluminescence Quenching in Single-Layer MoS2 via Oxygen Plasma Treatment. The Journal of Physical Chemistry C 2014, 118 (36), 21258-21263.

(46) Connie H. Li, Kathleen M. McCreary, and Berend T. Jonker. Spatial Control of Photoluminescence at Room Temperature by Ferroelectric Domains in Monolayer WS2/PZT Hybrid Structures. ACS Omega 2016, 1 (6), 1075-1080.

(47) Ju Han Lee, Bеomjin Jeong, Sung Hwan Cho, Eui Hyuk Kim, Cheolmin Park. Non-Volatile Polymer Electroluminescence Programmable with Ferroelectric Field-Induced Charge Injection Gate. Advanced Functional Materials 2016, 26 (30), 5391-5399.

(48) Bo Wen, Yi Zhu, Didit Yudistira, Andreas Boes, Linglong Zhang, Tanju Yidirim, Boqing Liu, Han Yan, Xueqian Sun, Yu Zhou, Yunzhou Xue, Yupeng Zhang, Lan Fu, Arman Mitchell, Han Zhang, and Yuerui Lu. Ferroelectric-Driven Exciton and Trion Modulation in Monolayer Molybdenum Diselenides. ACS Nano 2019, 13, 5, 5335-5343.

(49) Jie Guan, Hsun-Jen Chuang, Zhixian Zhou, and David Tománek. Optimizing Charge Injection across Transition Metal Dichalcogenide Heterojunctions: Theory and Experiment. ACS Nano 2017, 11 (4), 3904-3910.

(50) Dawei Li, Xi Huang, Zhiyong Xiao, Hanying Chen, Le Zhang, Yifei Hao, Jingfeng Song, Ding-Fu Shao, Evgeny Y. Tsymbal, Yongfeng Lu, Xia Hong. Polar coupling enabled nonlinear optical filtering at MoS2/ferroelectric heterointerfaces. Nature Communications 2020, 11 (1).

(51) Hongzhi Zhou, Yida Zhao, Weijian Tao, Yujie Li, Qiaohui Zhou, Haiming Zhu. Controlling Exciton and Valley Dynamics in Two-Dimensional Heterostructures with Atomically Precise Interlayer Proximity. ACS Nano 2020, 14 (4), 4618-4625.

(52) Yanping Liu, Siyu Zhang, Jun He, Zhiiming M. Wang, Zongwen Liu. Recent Progress in the Fabrication, Properties, and Devices of Heterostructures Based on 2D Materials. Nano-Micro Letters 2019, 11 (1).

(53) Ouri Karni, Elyse Barré, Sze Cheung Lau, Roland Gillen, Eric Yue Ma, Bumho Kim, Kenji Watanabe, Takashi Taniguchi, Janina Maultzsch, Katayun Barmak, Ralph H. Page, Tony F. Heinz.
Infrared Interlayer Exciton Emission in MoS2/WSe2 Heterostructures. Physical Review Letters 2019, 123 (24).

(54) Kyounghwan Kim, Stefano Larentis, Babak Fallahazad, Kayoung Lee, Jiamin Xue, David C. Dillen, Chris M. Corbet, and Emanuel Tutuc. Band Alignment in WSe2–Graphene Heterostructures. ACS Nano 2015, 9 (4) , 4527-4532.

(55) Dan Li, Xudong Wang, Yan Chen, Sixin Zhu, Fan Gong, Guangjian Wu, Caimin Meng, Lan Liu, Lin Wang, Tie Lin, Shuo Sun, Hong Shen, Xingjun Wang, Weida Hu, Jianlu Wang, Jinglan Sun, Xiangjian Meng and Junhao Chu. The ambipolar evolution of a high-performance WSe2 transistor assisted by a ferroelectric polymer. Nanotechnology, 2018, 29, 105202

(56) Sujay B. Desai, Gyungseon Seol, Jeong Seuk Kang, Hui Fang, Corsin Battaglia, Rehan Kapadia, Joel W. Ager, Jing Guo, and Ali Javey. Strain-Induced Indirect to Direct Bandgap Transition in Multilayer WSe2. Nano Lett. 2014, 14, 3, 2740–2748.

(57) Zhengyu He, Yuewen Sheng, Youmin Rong, Gun-Do Lee, Ju Li and Jamie H. Warner. Layer-Dependent Modulation of Tungsten Disulfide Photoluminescence by Lateral Electric Fields. ACS Nano 2015, 9, 3, 2740–2748.

(58) Jiangtan Yuan, Sina Najmaei, Zhuhua Zhang, Jing Zhang, Sidong Lei, Pulickel M. Ajayan, Boris I. Yakobson, and Jun Lou. Photoluminescence Quenching and Charge Transfer in Artificial Heterostructures of Monolayer Transition Metal Dichalcogenides and Few-Layer Black Phosphorus. ACS Nano 2015, 9 (1), 555-563.

(59) Weijie Zhao, Zohreh Ghorannevis, Leiqiang Chu, Minglin Toh, Christian Kloc, Ping-Heng Tan, and Goki Eda. Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. ACS Nano 2013, 7, 1, 791–797.

(60) G. Wang, X. Marie, L. Bouet, M. Vidal, A. Balocchi, T. Amand, D. Lagarde, and B. Urbaszek. Exciton dynamics in WSe2 bilayers. Appl. Phys. Lett. 105, 182105 (2014).

(61) B. K. Ridley. Anatomy of the transferred - electron effect in III - V semiconductors. Journal of Applied Physics 48, 754 (1977).

(62) C. Hilsum ; H.D. Rees. Three-level oscillator: a new form of transferred-electron device. Electronics Letters, 6, 9 , 1970 .