Does the freeze-all strategy improve the cumulative live birth rate and the time to become pregnant in IVF cycles?

S. Johnson¹ · J. Vandromme² · A. Larbuisson¹ · D. Raick¹ · A. Delvigne¹

Received: 13 December 2020 / Accepted: 19 October 2021 / Published online: 11 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Purpose The freeze-all strategy is widely used for ovarian hyperstimulation syndrome (OHSS) prevention. Indeed, it increases live birth rates among high responders and prevents preterm birth and small for gestational age. Why should not we extend it to all?

Methods A retrospective and monocentric study was conducted between January 2008 and January 2018 comparing the cumulative live birth rates (CLBR) between patients having undergone FAS and a control group using fresh embryo transfer (FET) and having at least one frozen embryo available. Analyses were made for the entire cohort (population 1) and for different subgroups according to confounding factors selected by a logistic regression (population 3), and to the BELRAP (Belgian Register for Assisted Procreation) criteria (population 2).

Results 2216 patients were divided into two groups: Freeze all (FA), 233 patients and control (C), 1983 patients. The CLBR was 50.2% vs 58.1% \(P = 0.021 \) for population 1 and 53.2% vs 63.3% \(P = 0.023 \) for population 2, including 124 cases and 1241 controls. The CLBR stayed in favour of the C group: 70.1% vs 55.9% \(P = 0.03 \) even when confounding variables were excluded (FA and C group, respectively, 109 and 770 patients). The median time to become pregnant was equally in favour of the C group with a median of 5 days against 61 days.

Conclusion CLBR is significantly lower in the FA group compared to the C group with a longer time to become pregnant. Nevertheless, the CLBR in the FA group remains superior to that observed in previous studies.

Keywords Freeze all · Frozen embryo transfer · Fresh embryo transfer · OHSS

Introduction

Freezing all good quality embryos and their transfer in subsequent cycles, named as the freeze-all strategy (FAS), is widely used for ovarian hyperstimulation syndrome (OHSS) prevention. This technique has the advantage of transferring the embryos into a more physiological environment [32]. Indeed, transferring frozen-thawed embryos during subsequent cycles avoids the hyper-oestrogenic climate that results from ovarian stimulation, which has a negative effect upon synchronisation of the embryo and the endometrium [20, 33]. Embryo implantation is a crucial stage in IVF techniques and implantation failure remains difficult to resolve. Endometrial receptivity seems to be implicated in 66% of the cases as only 33% is due to the embryo itself [2]. This is why, in addition to the benefit of the FAS in OHSS prevention, several studies have shown the benefits of FAS on live birth rates among high responders [6, 9, 15, 31]. Moreover, the benefits of frozen embryo transfer (FRET)
compared to fresh embryo transfer (FET) have been demonstrated to prevent preterm birth and small for gestational age [19, 23]. Consequently, why should we limit the FAS to high responders rather than extend it to all? Previous studies were conducted but the results were inconsistent. A meta-analysis in 2018 included 11 studies with over 5000 patients [34]. The live birth rate was in favour of the freeze-all group compared to the group with FET (46% vs 42.7% \(P = 0.04 \)), but the patient subgroups revealed that this was true only for hyper-responders. A prospective randomised trial, included in this meta-analysis, conducted over 2157 patients compared the live birth rate between patients without any ovulatory disorder who had a fresh versus frozen embryo transfer [39]. No difference was found between the two groups. This observation was not confirmed in another large prospective trial of 1650 normo-ovulatory patients [46]. Finally, the only retrospective study which analysed the cumulative live birth rate after the first IVF cycle using the freeze-all strategy found a CLBR of 50.74% but had no control group. With these conflicting results, no conclusions could be made. We, therefore, conducted a new real-life study on FAS in which we focused on the CLBR in our overall IVF population. We compared an FA group in which “non-elective” freezing was applied [5] with a control group which, to be compared, also had frozen embryos available to be transferred following the fresh ones.

Materials and methods

This is a retrospective and monocentric study conducted between January 2008 and January 2018 comparing the CLBR and the time taken to become pregnant in patients having undergone FAS to those using FET and having at least one frozen embryo ready to be transferred.

Ethical approval

The study protocol was approved by the ethics committee of the Saint-Vincent Clinic CHC on the 10th April 2019 no. 100409.

Primary outcomes

The first primary outcome was the cumulative life birth rate. It was defined as the rate of live births for one patient after one OPU until the first live birth (following the embryo transfer (fresh or frozen) or after having used all the frozen embryos of this OPU. A live birth was defined as an infant born alive after 24 weeks of gestation.

The second primary outcome is the time taken to become pregnant defined as the time between the OPU and the transfer that results in the live birth.

Secondary outcomes

Secondary outcomes were: clinical pregnancy rate, miscarriage rate, cumulative live birth rate according to the number of oocytes retrieved, rate of severe OHSS in the FA group.

Clinical pregnancy was defined as an ongoing pregnancy determined by ultrasonographic documentation with at least one foetus with a heartbeat. Miscarriage was defined as a pregnancy loss before 22 weeks of gestation. The number of oocytes retrieved were calculated for one OPU and classified in categories: 1–5, 6–10, 11–15, 16–20, 20–25, ≥ 26.

Population

The data were obtained from the IVF database of ART centre CHC Montlégia. They were extracted by a statistical request in an independent and anonymous file. Women who underwent an IVF cycle between January 2008 and December 2018 were selected. One cycle per women was selected. The study analysed two groups: the “freeze-all” (FA) group and the control (C) group:

In the FA group, all embryos obtained after oocyte retrieval were cryopreserved and transferred in subsequent cycles.

The C group represents women who had a fresh transfer following oocyte retrieval, with at least one frozen embryo during their IVF cycle.

Analyses were made for the entire cohort (population 1) and also for different subgroups according to confounding factors selected by the Logistic Regression (LR) (population 3) and to the BELRAP (Belgian Register for Assisted Procreation) criteria used for our national benchmark (population 2).

Belrap criteria are used to construct the annual benchmark for all Belgian centres considering patients less than 36 years old, undergoing their first IVF trial.

To calculate the CLBR, we limited the gathering of information to January 2018 to concentrate on birth related statistics (9 months + information retrieval). The women who were not pregnant at the time of the study but who had frozen embryos left were excluded for the first end point.

Ovarian stimulation

Women were monitored and managed according to our institutional clinical protocols. Various protocols were applied using between 100 and 300 IU of gonadotropins per day for ovarian stimulation according to the patient’s age, body mass index (BMI), and anti-Mullerian hormone (AMH) rate. Recombinant follicle-stimulating hormone (FSH) (Puregon-MSD, Courbevoie, France; Gonal-F, Merck, Genève, Suisse)
or urinary FSH (Menopur, Ferring pharmaceuticals, Alost, Belgium) was used in a GnRH antagonist protocol, a long agonist protocol or a short agonist protocol. Pituitary down-regulation was obtained with a GnRH antagonist (Cetrotide, Merck) or a GnRH agonist (Buserelin, Suprefact, Sanofi-Avantis, Diegem, Belgium; Gonapeptyl, Ferring). Final Oocyte maturation was triggered when ≥ 3 ovarian follicles of ≥ 17 mm were visible by ultrasound. Final Oocyte maturation was achieved using either a single injection of 0.2 mg of GnRH agonist [18] (Triptorelin, Decapeptyl, Ipsen, Signes, France) or 5000 IU of human Chorionic Gonadotropin (hCG) (Pregnyl, MSD, Brussels, Belgium) according to the OHSS risk factors [13].

Oocyte insemination

Conventional IVF or ICSI were performed according to sperm parameters. In conventional IVF, oocytes were inseminated during the night with a sperm suspension containing 100 to 150 × 10^3 mobile spermatozoid/ml. With the ICSI method, the cumulus was destroyed using an hyaluronidase at the concentration of 40 IU/ml. The sperm injection was executed during metaphase 2, 4 h after OPU. Fertilization was assessed by the presence of two pronuclei (2PN) 16 to 18 h after oocyte insemination.

Embryo culture, cryopreservation, and thawing

Embryos were cultured at 37 °C in incubators with 6% of CO₂ and 5% of O₂. Each day, embryo morphology was evaluated and classified according to Istanbul Criteria [4]. On day 3, we considered whether all embryos should be cultured until day 5 rather than transferring the best at day 3. If on day 3, four or more embryos had a perfect morphological score (score 8-cell, grade 1 or 7-cell, grade 1) the entire cohort was cultured until day 5. The best quality embryo was then chosen for transfer. If two embryos had the same score, the one with the best kinetic development was transferred. Each additional embryo, or embryos selected for freeze all, were frozen. The freezing technique changed in January 2011 from slow freezing to vitrification.

Transfer policy in our IVF centre: Belgian law only allows transfer of a single fresh embryo in women under 36 years old undergoing their first trial. Nevertheless, the transfer of two frozen-thawed embryos is allowed for such patients. The combination of Belgian law and our methods of embryonic culture (vitrification of blastocysts since 2011) has led to unacceptable rates of multiple pregnancies when transferring two frozen-thawed embryos. For this reason, we currently encourage the transfer of a single selected blastocyst in patients under 36 years old [30].

Internal practise to avoid OHSS was to always perform FA when 25 oocytes or more were retrieved. Between 15 and 25 the decision was left up to the gynaecologist who performed the OPU.

FA policy was also applied for:

- Uterine anomalies detected during ovarian stimulation [12, 21, 43] which includes endometrial, myometrial, or tubal anomalies.
- Progesterone levels superior to 1.5 ng/ml on the day of ovulation triggering [3, 20, 44].

Data analysis and statistics

The general characteristics of the patients in both groups were recorded prospectively. The following data were collected: age (in years), BMI, type of infertility (primary or secondary), factors of infertility (idiopathic, mechanical, endocrine, male, ovarian failure) and tobacco intake. We also recorded the number of oocytes retrieved, the number of mature oocytes inseminated, the embryo development stage, the number of embryos transferred and their quality, the number of embryos left after pregnancy was obtained and the total number of transfers performed for one OPU and OHSS.

A power analysis was realised based on the results obtained for the main outcome in each population.

The statistical analysis was realised using SPSS. We used Chi-square, Kruskal–Wallis or Mann–Whitney and Wilcoxon testing. A P value < 0.05 was considered as statistically significant.

Logistic regression (LR) was used to identify confounding variables.

Results

Characteristics of the study population

The entire cohort included 2628 women; 2325 in the C group and 303 in the FA group. The different reasons for performing FA are detailed in Table 1.

Women included in the FA group were mainly selected due to a risk of OHSS (71%). The other reasons FA was performed are as follows: 15.5% of the women had an inadequate endometrium, polyps or liquid in the uterus cavity

Indication to perform freeze all	N=303	N %
OHSS	215	71
Inadequate endometrium	47	15.5
Progestérone > 1.5 ng/ml	7	2.3
Others	34	11.2

and high progesterone levels before ovulation triggering (2.3%). Other lesser reasons were: patient sicknesses (HTA, infectious seroconversion), post-retrieval complications, psycho-sociological problems, failed fresh embryo(s) transfer, hydrosalpinx visualised during ovarian stimulation.

Primary outcomes

Cumulative live birth rate after the first IVF cycle

After excluding women who were not pregnant at the time of the study but who still had frozen embryos left, the eligible cohort included 233 women in the FA group and 1983 patients in the control group (population 1).

A second population selection was done according to the Belrap criteria, meaning women who were undergoing their first IVF cycle and who were under 36 years of age. This second eligible cohort consisted of 124 women in the FA group, and 1241 women in the C group (population 2) (Fig. 1).

A logistic regression analysis was made to exclude the possible confounding variables. Table 2 shows the results of the LR with the following confounding variables: the patient’s age, the rank of the trial, tobacco use, the number of embryos obtained, the total number of transfers and the date of the OPU. A third analysis was made after suppression of the confounding factors found by the LR. This group included 109 patients in the FA group and 770 in the C group (population 3) (Fig. 2).

For population 1, the CLBR is 50.2% for the FA group against 58.1% for the C group \((P = 0.021)\). For population 2, the CLBR is 53.2% for the FA group against 63.6% for the C group \((P = 0.023)\). For population 3, the CLBR is 55.9% for the FA group against 70.1% for the C group \((P = 0.03)\) (Figs. 1 and 2).

The impact of FA upon a population with neither a risk of OHSS, nor of endometrial anomalies, limits its range to the 34 patients admitted for FA for various other reasons, as described previously. Considering the low number of patients \((n = 30\) for population 1), the results, while still favourable to fresh transfer, has to be taken with caution (CLBR FA = 30%, C = 58.1%, \(P = 0.003)\).

Time to become pregnant

The time to become pregnant is significantly shorter in the C group compared to the FA group with a median of 5 days against 61 days (Fig. 3).

Secondary outcomes

The following results for the second end points were based on population 3 (after exclusion of confounding variables). The cumulative clinical pregnancy rate is higher in the C group with 71% against 58% for the FA group. The cumulative miscarriage rate is similar in both groups (12.2% in the FA group and 12.7% in the C group, \(P = 0.5)\).

We calculated the cumulative live birth rate according to the oocyte number as shown in Fig. 4. The CLBR rose from 20 to 83.33% when 21–25 oocytes were retrieved in the FA group. In the C group the CLBR rose from 50.13 to 68.35% when 16–20 oocytes were retrieved.

We observed ten cases of severe OHSS over the total FA population (3.3%). Nine patients were triggered with hCG. The last one was triggered with a GnRH agonist and received 1500 IU of hCG on the OPU day to support luteal phase. The diagnosis of severe OHSS was based on the presence of ascites. Only two patients were admitted at hospital for monitoring and haemoconcentration. The others had an ambulatory monitoring. No thrombosis or severe complications were observed.

Power analysis

A power analysis was realised based on the results obtained for the main outcome in each population.

1. Population 1 (freeze all: 117/233, control: 1152/1983, \(P = 0.021)\)
 Power = 60.8%

2. Population 2 (freeze all: 66/124, control: 789/1241, \(P = 0.023)\)
 Power = 58.7%

3. Population 3 (freeze all: 61/109, control: 540/770, \(P = 0.03)\)
 Power = 80.1%

Discussion

The advantages of the FA strategy need no further corroboration for women at risk of OHSS [1, 9, 10, 11, 36, 37]. However, results remain contradictory when applying the FA strategy to a normo-responsive population [34, 39, 48].

This study has analysed retrospectively a cohort of patients having undergone an FA strategy compared to a control group having benefitted from a fresh transfer with remaining frozen embryos, in a “real-life” study situation, the first end point being the cumulative live birth rate.

Our results show that the CLBR is significantly higher in the control group compared to the FA group (70.1% against 55.9%, \(P = 0.03)\) taking into account the identified confounding factors with a power of 80%, which is sufficient.

These results contradict certain data from the most recent literature on the topic. Indeed, Shi et al. in 2018 carried out a prospective randomised trial including 2157 women without any ovulatory problem. They found no difference in live birth rates between the FA and C groups. (48.7% vs
50.2%). But only the live birth rate after the first transfer was calculated and not the cumulative live birth rate.

Roque et al. in 2018 published a meta-analysis which found a significant increase in the live birth rate in the FA group compared to the women having undergone a fresh embryo transfer in the overall IVF population (46% against 42.7%). But no difference was observed when the cumulative live birth rate was considered among the same population (RR = 1.04; 95% CI 0.97–1.11).

The efficiency of freeze-all strategy calculated by cumulative pregnancy rate (and not birth rate) is underlined by Zhu et al. in his retrospective study of 20,687 patients published in 2018 [51]. His results show a cumulative pregnancy rate of 50.74% but this study does not benefit from control group results. Finally, a multicentric randomised controlled trial showed that frozen single blastocyst transfer resulted in a higher singleton live birth rate than did fresh single blastocyst transfer in ovulatory women [48].

![IVF cycles with OPU between January 2008 and January 2018 with min 1 frozen embryo](image)

Fig. 1 Population 1 and population 2

FA	Control
Patients not pregnant having frozen embryos left n = 70	Patients not pregnant having frozen embryos left n = 342
Freeze all n = 233	Freeze all n = 1983
Other rank n=87	Other rank n=472
≥ 36 yrs n=22	≥ 36 yrs n=270
Freeze all rank 1 n = 146	Freeze all rank 1 n = 124
≤ 36 yrs n = 124	≤ 36 yrs n = 1241
50.2% *	58.1 %*

*Cumulative live birth rate
Even though, some other recent studies corroborate our results [40, 45].

In our study, the performances of the freeze-all strategy can also be underlined with a CLBR of 50.2% for the overall population and 55.9% in population 3 (after exclusion of the confounding variables). Even if these results are lower than the one in the control group, a CLBR of 55.9% is the best rate published for FA in a population of women under 36. Notably, a CLBR of 93.82% was found in a recent study [50] but it concerns a very young sub-group of women with an average age of 28. We must underline that the CLBR in the C group (70.1%) is particularly high, and so significantly better than the FA group. These particularly good results can probably be explained by a selection bias in our control group, which only concerns patients with fresh and frozen embryos for this first IVF trial. Why these are such “good patients” may be explained by superior “receptiveness”, as their oocyte quantity and quality allowed at least one frozen embryo, in addition to the fresh embryo(s) transferred. This relationship between the number of embryos cryopreserved after a fresh transfer and the CLBR was confirmed by a recent work [35].

![IVF cycles with OPU between January 2008 and January 2018 with min 1 frozen embryo](image)

Fig. 2 Population 3
Less efficient vitrification techniques could explain the differences between our and previously published results in favour of FA. This seems unlikely when considering the CLBR in the FA group reflecting good quality thawed embryos. Moreover, the pregnancy rates after frozen-thawed embryo transfer in our study during the same period are 35.4% for clinical pregnancies and 27.6% for ongoing pregnancies (excluding miscarriages and extra-uterine pregnancies). Our vitrification procedure seems, therefore, not in question [28]. Nevertheless, we must underline that one confounding factor is the date of OPU, before or after 2011, which is when our technique of cryopreservation changed from slow freezing to vitrification.

The time taken to obtain a first pregnancy is statistically and clinically significant in favour of the control group. (5 times longer for the FA group). These results attest also to the good performance obtained from the first fresh embryo transfer among a particularly receptive group. We always try to reduce this time to the minimum by transferring the frozen embryos as soon as feasible during the following cycle. The
first thawed embryo transfer can take place at least 1 month after oocyte retrieval. Indeed, a study published in 2018 [7] demonstrated that pregnancy rates did not decrease if the transfer of the frozen-thawed embryo was made the cycle immediately following the OPU. The large difference in the time taken to become pregnant may also be explained by a high proportion of high responders among the FA group, who required more time for inclusion in a new treatment cycle, needing to wait for ovarian and pelvic returns to normality. By comparison, another retrospective study found a median time of 38 days for the FA, there being no control group [25]. This difference is difficult to explain, and highlights the many variables at work, such as the medico-social environment in each country, the accessibility to ART, and internal medical protocols.

To explain the difference in CLBR between groups, the mean number of transferred embryos per transfer was analysed (data not communicated). Belgian law only allows the transfer of a single fresh embryo but does allow the transfer of two frozen-thawed embryos for women under 36 years old undergoing their first try. However, in this group (population 2), the number of transferred embryos was not statistically different between groups (1.26 for FA and 1.23 for control group ($P=0.37$).

We have also analysed the cumulative live birth rates according to the number of oocytes retrieved. In recent years, many studies have attempted to define the relationship between these two IVF data. 40 Contradictory results were observed in three retrospective studies evaluating the live birth rate [8, 41, 42]. Two more recent studies have considered CLBR in relation to the number of oocytes obtained. Drakopoulos et al. analysed 1099 IVF cycles for CLBR using fresh and frozen-thawed embryo transfers. No relationship was found between LBR and the number of oocytes retrieved when considering only fresh embryo transfers. However, the CLBR does increase with the number of oocytes retrieved when both fresh and frozen-thawed embryo transfers are taken into account [14]. Another retrospective study collected data from 15 IVF centres for the same analyses and observed a significant increase in CLBR according to the number of oocytes retrieved in highly receptive patients under 40 [29]. This was confirmed by a retrospective study which concluded that the cumulative live birth rate significantly increased as the number of oocytes retrieved increased, up to 21–30 oocytes [50]. Recently, a prospective observational study concluded that CLBR increases according to the number of blastocytes formed, and so to the number of oocytes retrieved in the FAS [27].

Our own study concludes that for the FA group the cumulative live birth rate improves when up to 25 oocytes are retrieved. No advantage is gained by retrieving more. For the C group the figure is 20 oocytes. Noticeable also, in the freeze-all group, is the very poor performance when less than 6 oocytes are retrieved (20%) indicating a possible subgroup of patients for whom the indication of the freeze all is less advisable.

Equally of note, we retrieved more than 26 oocytes in 9% of the FA group whereas this was true only of 0.8% of patients in the control group.

Fig. 4 CLBR according to the number of oocytes retrieved
Strengths and limitations

The limitations of this study are, first and foremost, that it was carried out retrospectively and over a long period of time. Evolving methods and techniques, such as freezing and transfer methods, affected the results to some degree. Also, the power of this study is under 80% for some patient subgroups even with a large cohort. Another weak point is the heterogeneity of the freeze-all group. Concerning the obstetrical aspects, recent studies show a difference between fresh and frozen-thawed embryo transfers in neonatal and maternal outcomes which was not analysed in this study [16]. A prospective randomised controlled trial is currently in progress and may reveal some answers [24]. Finally, the cost effectiveness per ongoing pregnancy or per live birth was not analysed in this study. Even though, recent observational studies show that the FAS reduces the total cost compared to fresh cycles [32].

On the other hand, we should underline some strengths. This was a “real-life” study and as such, reflected everyday patient realities, during normal daily practices, not made to conform to a particular methodology. In practice, we did not treat a selected group of women as we do in prospective randomised trials. Even if such studies give us precise evidence-based medicine, a “real-life” study is a better guide to our daily work, where heterogeneous groups of patients are treated. This approach does not replace randomised controlled trials but comes as complementary information. The logistic regression allows to take into account the confounding factors and, to some extent, limits the bias of such retrospective studies.

The number of patients allows a comparison with a large control group, having undergone fresh, followed by remaining frozen-thawed embryo transfer.

Also, our results analyse the cumulative live birth rate which allows more complete and interesting analyses than the live birth rate after a single transfer.

As our control group included women with at least one frozen embryo in addition to the fresh one(s) it may be more appropriate to compare the results with a FA cohort rather than comparing it with patients having only a fresh transfer.

Conclusion

Considering the cumulative live birth rate of the FA group and the C group (group of patients with fresh embryo transfer and possible additional frozen-thawed embryo transfer), the results are in favour of fresh embryo transfer, more efficient and faster retrospectively. Nevertheless, the CLBR in the FA group remains excellent and certainly good enough to maintain and support this approach for selected patients [5]. Our results underline the advantages of retrieving large quantities of oocytes, especially for FA patients, and those of blastocyte vitrification, rather than slow freezing of cleaved stage embryos.

We confirm the high efficiency of FAS but underline the necessity to restrict this strategy to selected cases.

References

1. Aflatoonian A, Oskouian H, Ahmadi S, Oskouian L (2010) Can fresh embryo transfers be replaced by cryopreserved-thawed embryo transfers in assisted reproductive cycles? A randomised controlled trial. J Assist Reprod Genet 27:357–363
2. Achache H, Revel A (2006) Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update 12:731–746
3. Asada Y, Tokoro M, Sonohara M et al (2019) Long-term outcomes of freeze-all strategy: a retrospective analysis from a single ART center in Japan. Reprod Med Biol 18(2):173–179
4. Balaban B, Brison D, Calderón G, Catt J, Conaghan J, Cowan L, Ehner T, Gardner D, Hardarson T, Lundin K, Cristina Magli M, Mortimer D, Mortimer S, Munne S, Royere D, Scott L, Smits J, Thornhill A, van Blerkom J, Van den Abbeel E (2011) (Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology). The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod 26(6):1270–1283
5. Blockeel C, Campbell A, Coticchio G, Esler J, Garcia-Velasco J-A, Santulli P, Pinborg A (2019) Should we still perform fresh embryo transfers in ART? Hum Reprod 34(12):2319–2329
6. Bosdou JK, Venetis CA, Tarlatzis BC, Grimbizis GF, Kolibianakis EM (2019) Higher probability of live-birth in high, but not normal, responders after first frozen-embryo transfer in a freeze-only cycle strategy compared to fresh-embryo transfer: a meta-analysis. Human Reprod 34(3):491–505

7. Bourdon M, Santulli P, Maignien C, Pocate-Cheriet K, Alwohaibi A, Marcellin L, Blais S, Chapron C (2018) The interval between oocyte retrieval and frozen-thawed blastocyst transfer does not affect the live birth rate and obstetrical outcomes. PLoS ONE. https://doi.org/10.1371/journal.pone.0206067

8. Cai Q, Wan F, Huang K, Zhang H (2013) Does the number of oocytes retrieved influence pregnancy after fresh embryo transfer? PLoS ONE 8:e55189

9. Chen ZJ, Shi Y, Sun Y, Zhang B, Cao Y, Yang J, Liu J, Wei D, Weng N (2016) Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. New Engl J Med 375:523–533

10. Delvigne A, Rozenberg S (2002) Epidemiology and prevention of ovarian hyperstimulation syndrome (OHSS): a review. Hum Reprod Update 8:559–577

11. Devroey P, Polyzos NP, Blockeel C (2011) An OHSS-Free Clinic combination with a « freeze all » strategy: a prospective multicentric cycle-based data analysis from the Italian National Registry. J Assist Reprod Genet 36:2287–2295

12. Gipsinger G, Dietrich K, Devroey P, Kolibianakis EM (2006) GnRH agonist for triggering final oocyte maturation in the GnRH antagonist ovarian hyperstimulation protocol: a systematic review and meta-analysis. Human Reprod 12:159–168

13. Gipsinger G, Schultz L, Bauer T, Frambah T, Kissier S (2011) Ovarian hyperstimulation syndrome prevention by gonadotrophin-releasing hormone agonist triggering of final oocyte maturation in a gonadotrophin-releasing hormone antagonist protocol in combination with a « freeze all » strategy: a prospective multicentric study. Fertil Steril 95:2029–2033

14. Ishihara O, Araki R, Kuwahara A, Ikakura A, Saito H, Adamson J, Hamilton M, Bhattacharya S (2018) Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Hum Reprod 24(1):35–58

15. Maheshwari A, Bhattacharya S, Bowler U et al (2019) Study protocol: E-freeze—freezing of embryos in assisted conception: a randomised controlled trial evaluating the clinical and cost-effectiveness of a policy of freezing embryos followed by thawed frozen embryo transfer compared with a policy of fresh embryo transfer, in women undergoing in vitro fertilisation. Reprod Health 16(1):81

16. Oguz K, Bulut H, Berkkanoglu M, Donmez L, Coetzee K (2019) Prediction of live birth and cumulative live birth rates in freeze-all-IVF treatment of a general population. J Assist Reprod Genet 36:685–696

17. Papapele A, Pagliardini L, Vanni VS et al (2017) A direct healthcare cost analysis of the cryopreserved versus fresh transfer policy at the blastocyst stage. Reprod Biomed Online 34:19–26

18. Papadopoulos P, Blockeel C, Stoop D, Camus M, de Vos M, Tourneay H, Polyzos N (2016) Conventional oestrogen substitution and single embryo transfer for IVF/ICSI. How many oocytes do we need to maximize cumulative live birth rates after utilization of all fresh and frozen embryos? Hum Reprod. https://doi.org/10.1093/humrep/dev316

19. Evans J, Hannan NJ, Edgell TA, Vollenhoven BJ, Lutjen PJ, Osianlis T, Salamonsen LA, Rombauts LJ (2014) Fresh versus frozen embryo transfer: backing clinical decisions with scientific and clinical evidence. Hum Reprod Update 20:808–821

20. GisnströmEmstad E, Wennerholm UB, Khatibi A, Petzold M, Bergh C (2019) Neonatal and maternal outcome after frozen embryo transfer: increased risks in programmed cycles. Am J Obstet Gynecol 221:126–e1

21. Gipsinger G, Dietrich K, Devroey P, Kolibianakis EM (2006) GnRH agonist for triggering final oocyte maturation in the GnRH antagonist ovarian hyperstimulation protocol: a systematic review and meta-analysis. Human Reprod 12:159–168

22. Ishihata O, Araki R, Kuwahara A, Ikakura A, Saito H, Adamson J, Hamilton M, Bhattacharya S (2018) Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Hum Reprod 24(1):35–58

23. Maheshwari A, Pandey S, Amalraj R, Shetty A, Hamilton M, Bhattacharya S (2018) Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Hum Reprod 24(1):35–58

24. Maheshwari A, Bhattacharya S, Bowler U et al (2019) Study protocol: E-freeze—freezing of embryos in assisted conception: a randomised controlled trial evaluating the clinical and cost-effectiveness of a policy of freezing embryos followed by thawed frozen embryo transfer compared with a policy of fresh embryo transfer, in women undergoing in vitro fertilisation. Reprod Health 16(1):81
37. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S (2011) Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfers in high responders. Fertil Steril 96:516–518
38. Shapiro BS, Daneshmand ST, Bedient CE, Garner FC (2016) Comparison of birth weights in patients randomly assigned to fresh or frozen-thawed embryo transfer. Fertil Steril 106:317–321
39. Shi Y, Sun Y, Hao C, Zhang H, Wei D, Zhang Y, Zhu Y, Deng X, Qi X, Li H, Ma X, Ren H, Wang Y, Zhang D, Wang B, Liu F, Wu Q, Wang Z, Bai H, Li Y, Zhou Y, Sun M, Liu H, Li J, Zhang L, Chen X, Zhang S, Sun X, Legro RS, Chen ZJ (2018) Transfer of fresh versus frozen embryos in ovulatory women. N Engl J Med 378(2):126–136
40. Smith ADAC, Tilling K, Lawlor DA et al (2019) Live birth rates and perinatal outcomes when all embryos are frozen compared with conventional fresh and frozen embryo transfer: a cohort study of 337,148 in vitro fertilisation cycles. BMC Med 17:202
41. Steward RG, Lan L, Shah AA, Yeh JS, Price TM, Goldfarb JM, Muasher SJ (2014) Oocyte number as a predictor for ovarian hyperstimulation syndrome and live birth: an analysis of 256,381 in vitro fertilization cycles. Fertil Steril 101:967–973
42. Sunkara SK, Rittenberg V, Raine-Fenning N, Bhattacharya S, Zamora J, Coomarasamy A (2011) Association between the number of eggs and live birth in IVF treatment: an analysis of 400,135 treatment cycles. Human Reprod 26:1768–1774
43. Tsiami A, Chaimani A, Mavridis D, Siskou M, Assimakopoulos E, Sotiriadis A (2016) Surgical treatment for hydrosalpinx prior to in-vitrofertilization embryo transfer: a network meta-analysis. Ultrasound Obstet Gynecol 48:434–445
44. Vuong LN et al (2019) Live birth rates with a freeze-only strategy versus fresh embryo transfer: secondary analysis of a randomized clinical trial. Reprod Biomed Online 38(3):387–396
45. Wong KM, van Wely M, Verhoeve HR, Kaaik EM, Mol D, van der Veen F, Repping S, Mastenbroek S (2021) Transfer of fresh or frozen embryos: a randomised controlled trial. Hum Reprod 36(4):998–1006
46. Wang A, Santistevan A, Hunter Cohn K, Copperman A, Nulsen J, Miller BT (2017) Freeze only versus fresh embryo transfer in a multicenter matched cohort study: contribution of progesterone and maternal age to success rates. Fertil Steril 108:254–261
47. Wei D, Liu J-Y, Sun Y, Shi Y, Zang B, Liu J-Q (2019) Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre, randomised controlled trial. Lancet 393(10178):1310–1318
48. Youssef MA, Van der Veen F, Al-Inany HG, Griesinger G, Mochtar MH, Aboulfoutouh I, Khattab SM, Van Wely M (2011) Gonadotropin-releasing hormone agonist versus HCG for oocyte triggering in antagonist assisted reproductive technology cycles. Cochrane Database Syst Rev 19:CD008046
49. Youssef M, der Veen V, Van Wely M (2010) GnRHa to trigger final oocyte maturation: a time to reconsider. Hum Reprod 25:559
50. Zhao Z, Shi H, Li J et al (2020) Cumulative live birth rates according to the number of oocytes retrieved following the “freeze-all” strategy. Reprod Biol Endocrinol 18:14
51. Zhu Q, Chen Q, Wang L, Lu X, Lyu Q, Wang Y, Kuang Y (2018) Live birth rates in the first complete IVF cycle among 20,687 women using a freeze-all strategy. Hum Reprod 33:924–929

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.