Likelihood ratio tests for positivity in polynomial regressions

Naohiro Kato† Satoshi Kuriki‡

Abstract

A polynomial that is nonnegative over a given interval is called a positive polynomial. The set of such positive polynomials forms a closed convex cone K. In this paper, we consider the likelihood ratio test for the hypothesis of positivity that the estimand polynomial regression curve is a positive polynomial. By considering hierarchical hypotheses including the hypothesis of positivity, we define nested likelihood ratio tests, and derive their null distributions as mixtures of chi-square distributions by using the volume-of-tubes method. The mixing probabilities are obtained by utilizing the parameterizations for the cone K and its dual provided in the framework of Tchebycheff systems for polynomials of degree at most 4. For polynomials of degree greater than 4, the upper and lower bounds for the null distributions are provided. Moreover, we propose associated simultaneous confidence bounds for polynomial regression curves. Regarding computation, we demonstrate that symmetric cone programming is useful to obtain the test statistics. As an illustrative example, we conduct data analysis on growth curves of two groups. We examine the hypothesis that the growth rate (the derivative of growth curve) of one group is always higher than the other.

Key words: chi-bar square distribution, cone of positive polynomials, moment cone, symmetric cone programming, Tchebycheff system, volume-of-tubes method.

†The Institute of Statistical Mathematics, 10-3 Midoricho, Tachikawa, Tokyo 190-8562, Japan. Email:nkato@ism.ac.jp
‡The Institute of Statistical Mathematics, 10-3 Midoricho, Tachikawa, Tokyo 190-8562, Japan. Email:kuriki@ism.ac.jp
1 Introduction

Consider the polynomial regression model of degree $n \geq 1$:

$$y_h = f(t_h; c) + \varepsilon_h, \quad f(t; c) = c^\top \psi(t) = \sum_{i=0}^{n} c_i t^i, \quad t \in T,$$

$h = 1, \ldots, N$, where $\psi(t) = (1, t, \ldots, t^n)^\top$ and $c = (c_0, c_1, \ldots, c_n)^\top$ are column vectors in \mathbb{R}^{n+1}. The errors ε_h are independently distributed according to the normal distribution $N(0, \sigma^2)$ with mean 0 and variance σ^2. $T \subseteq \mathbb{R}$ is the region of the explanatory variable t where the model (1.1) is defined. Typically, T is a bounded interval in \mathbb{R}. We assume that sufficient statistics of the model (1.1), that is, the ordinary least squares estimator \hat{c} of c, and when σ^2 is unknown, the unbiased variance estimator $\hat{\sigma}^2$ of σ^2, distributed independently of \hat{c}, are available.

In this paper, we deal with the hypothesis of positivity, or of superiority:

$$f(t; c) \geq 0 \quad \text{for all } t \in T. \quad (1.2)$$

To state its statistical meaning, it is natural to consider a two-sample problem. Let $f(t; c_{(j)}) = c_{(j)}^\top \psi(t)$ ($j = 0, 1$) be the polynomial regression curves of two groups. The hypothesis that the polynomial curve of group 1 is always bounded below by, or superior to, group 0 is expressed as $f(t; c_{(1)}) \geq f(t; c_{(0)})$ for all $t \in T$. Taking the difference, we see that (1.2) represents the hypothesis of superiority.

It is also possible to model the difference of two profiles (mean vectors) by a polynomial without modeling the profile of each group (see Section 4.2). This notion of superiority is particularly important in statistical tests for assessing new drugs (Liu, et al. (2009)).

The set of coefficients c satisfying (1.2) forms a closed convex cone:

$$K (= K_n) = \{c \in \mathbb{R}^{n+1} | c^\top \psi(t) \geq 0, \forall t \in T\}. \quad (1.3)$$

This is referred to as the cone of positive polynomials (Barvinok (2002)). We use K_n instead of K when we emphasize that K is defined in \mathbb{R}^{n+1}. K is closed, since $K = \bigcap_{t \in T} \{c | c^\top \psi(t) \geq 0\}$ is the intersection of closed sets. The hypothesis (1.2) is rewritten as $c \in K$. Including this hypothesis, we consider the following hierarchical hypotheses:

$$H_0 : c = 0, \quad H_1 : c \in K, \quad \text{and} \quad H_2 : c \in \mathbb{R}^{n+1} (c \text{ is unrestricted}). \quad (1.4)$$

We then formalize the test for positivity as the likelihood ratio test (LRT) for testing H_1 against H_2. In addition, we define an LRT for testing H_0 against
In the context of the two-sample problem, this is the test for the equality of two regression curves against the hypothesis of superiority. As we see later, it is mathematically convenient to treat the two LRTs at a time.

The theory of LRTs for convex cone hypotheses has been developed under the name of order restricted inference (Robertson, et al. (1988)). A general theorem states that the null distribution of LRT statistics is a finite mixture of chi-square distributions (Shapiro (1988)). When the cone has piecewise smooth boundaries, Takemura and Kuriki (1997, 2002) proved that the weights (mixing probabilities) are expressed in terms of curvature measures on boundaries. These results arise out of a geometric approach referred to as the volume-of-tubes method. Using this method, Kuriki and Takemura (2000) gave the weights associated with the cone of nonnegative definite matrices. However, the weights of few cones are obtained explicitly.

The main result of the present paper is the derivation of the weights associated with the cone of positive polynomials K, that is, the null distribution of the LRT for positivity. By applying the representation (parameterization) theorem for the positive polynomial cone and its dual cone developed in the framework of Tchebycheff systems (Karlin and Studden (1966)), we evaluate the weights of the two highest degrees (w_{n+1}, w_n) and the two lowest degrees (w_0, w_n). In terms of these weights, the null distributions of the LRTs are expressed when the degree n of the polynomial regression is less than or equal to 4. When the degree n is more than 4, upper and lower bounds for the null distributions are provided.

The outline of the paper is as follows. In Section 2 we present the expressions of the LRT statistics in both cases where the variance σ^2 is known and unknown. As in most statistical tests, we can also propose simultaneous confidence bands associated with the LRT for positivity. In Section 3 we first briefly summarize the volume-of-tubes method. In order to apply this method, we need the volumes of the cone K, its dual cone, and their boundaries. Modifying the representation theorems for the positive polynomials in Tchebycheff systems, we obtain explicit formulas for the weights. In Section 4 we discuss computation. To construct our LRT statistics, we need the maximum likelihood estimate (MLE) $f(t; \hat{c}_K)$, say, under the hypothesis of positivity. The coefficient \hat{c}_K is calculated as the orthogonal projection of \hat{c} onto the positive polynomial cone K. We show that this calculation can be conducted by symmetric cone programming, which is extensively studied in the optimization community. We also demonstrate an example of growth curve data analysis.

Throughout the paper, we treat only the polynomial regression. However, a polynomial is just one example of Tchebycheff systems. The approach developed
here is applicable to other systems. Another typical example is trigonometric regression

\[
f(\theta; c) = c_0 + \sum_{i=1}^{n/2} \left\{ c_{2i-1} \sin(i\theta) + c_{2i} \cos(i\theta) \right\}, \quad \theta \in \Theta \subseteq [0, 2\pi),
\]
and we can consider the testing problem for the positivity once more. In this case, by changing a variable \(t = \tan(\theta/2) \), all results in the polynomial regression are translated into the trigonometric regression.

2 Likelihood ratio tests and confidence bands

2.1 Likelihood ratio test statistics

Throughout the paper, we need to deal with a metric linear space and its dual space simultaneously. We write the inner product and the norm as

\[
\langle x, y \rangle_Q = x^\top Q y, \quad \|x\|_Q = \sqrt{\langle x, x \rangle_Q},
\]
where \(Q \) is a positive definite matrix. The orthogonal projection of \(x \) onto the set \(A \) with respect to the distance \(\| \|_Q \) is denoted by

\[
\Pi_Q(x|A) = \arg\min_{y \in A} \|x - y\|_Q.
\]
This is well defined when \(A \) is a closed convex set. The subscript \(Q \) in \(\langle , \rangle_Q, \| \|_Q \), and \(\Pi_Q \) will be omitted when it does not cause any confusion.

In the regression model \((1.1)\) with \(\sigma^2 \) known, the least squares statistic \(\hat{c} \) is sufficient, and we can restrict attention to inference based on \(\hat{c} \). The distribution of \(\hat{c} \) is the \((n + 1)\)-dimensional normal distribution \(N_{n+1}(c, \Sigma) \) with mean vector \(c \) and covariance matrix \(\Sigma \), where \(\Sigma = \sigma^2 \Sigma_0 \) with \(\Sigma_0 = (\sum_{i=1}^{N} \psi(t_i)\psi(t_i)\^\top)^{-1} \), the inverse of the design matrix. When \(\sigma^2 \) is unknown, the sufficient statistic is the pair \((\hat{c}, \hat{\sigma}^2) \), where \(\hat{\sigma}^2 \) is the unbiased estimator of \(\sigma^2 \) calculated from the residuals, and whose distribution is proportional to that of a chi-square random variable with \(\nu = N - n - 1 \) degrees of freedom.

Given the data \(\hat{c} \) distributed as the normal distribution \(N_{n+1}(c, \Sigma) \) with \(\Sigma = \sigma^2 \Sigma_0 \) known, the MLE of \(c \) under the hypothesis of positivity \(H_1 : c \in K \) is the orthogonal projection \(\hat{c}_K \) of \(\hat{c} \) onto the cone \(K \) under the metric \(\langle , \rangle_{\Sigma^{-1}} \). When \(\sigma^2 \) is unknown, the MLE is the orthogonal projection onto \(K \) under the metric \(\langle , \rangle_{\hat{\Sigma}^{-1}} \), \(\hat{\Sigma} = \hat{\sigma}^2 \Sigma_0 \). This MLE is the same as that with \(\Sigma \) known, because the orthogonal projection onto a cone is invariant with respect to the scale change of
metric \(\langle \cdot, \cdot \rangle_Q \mapsto \langle \cdot, \cdot \rangle_{kQ} \) \((k > 0)\). The MLEs of \(c\) under \(H_0\) and \(H_2\) are given as 0 and \(\hat{c}\), respectively. Acknowledging these facts, we obtain the LRT statistics as follows.

Proposition 2.1. When the variance \(\sigma^2\) is known, the LRT statistics for \(H_0\) against \(H_1\), and for \(H_1\) against \(H_2\) are given by

\[
\lambda_{01} = \|\hat{c}_K\|_{\Sigma^{-1}} \quad \text{and} \quad \lambda_{12} = \|\hat{c}\|_{\Sigma^{-1}} - \|\hat{c}_K\|_{\Sigma^{-1}},
\]

(2.1) respectively, where \(\hat{c}_K = \Pi_{\Sigma^{-1}}(\hat{c}|K)\).

When the variance \(\sigma^2\) is unknown and an independent and unbiased estimator \(\hat{\sigma}^2\) with \(\nu\) degrees of freedom is available, the LRT statistics for \(H_0\) against \(H_1\), and for \(H_1\) against \(H_2\) are given by

\[
\beta_{01} = \frac{\|\hat{c}_K\|_{\hat{\Sigma}^{-1}}^2}{\|\hat{c}\|_{\hat{\Sigma}^{-1}}^2 + \nu} \quad \text{and} \quad \beta_{12} = \frac{\|\hat{c}\|_{\hat{\Sigma}^{-1}}^2 - \|\hat{c}_K\|_{\hat{\Sigma}^{-1}}^2}{\|\hat{c}\|_{\hat{\Sigma}^{-1}}^2 - \|\hat{c}_K\|_{\hat{\Sigma}^{-1}}^2 + \nu},
\]

(2.2) respectively, where \(\hat{\Sigma} = \hat{\sigma}^2\Sigma_0\), \(\hat{c}_K = \Pi_{\hat{\Sigma}^{-1}}(\hat{c}|K)\).

The null hypotheses are rejected when the LRT statistics are sufficiently large.

The hypothesis of positivity \(H_1\) is a composite hypothesis. To obtain the critical points for testing such a hypothesis, we need to know the least favorable configuration. The proof of the following proposition is essentially given in Section 2.3 of Robertson, et al. (1988).

Proposition 2.2. In both cases where \(\sigma^2\) is known or unknown, the least favorable configurations of the LRTs for testing \(H_1\) (the hypothesis of positivity) against \(H_2\) (the no-restriction hypothesis) are given by the case where \(H_0\) holds, that is, \(c = 0\).

Proof. In the case where \(\sigma^2\) is known, the acceptance region is of the form

\[
A = \left\{ x \in \mathbb{R}^{n+1} \mid \min_{y \in K} \|x - y\| < d \right\}.
\]

We first prove the monotonicity of the set \(A\):

\[
A - c = \left\{ x - c \mid x \in A \right\} \supseteq A \quad \text{for any} \ c \in K.
\]

This is because, for \(c \in K\),

\[
A - c = \left\{ x - c \mid \min_{y \in K} \|x - y\| < d \right\} = \left\{ x \mid \min_{y \in K} \|x + c - y\| < d \right\} = \left\{ x \mid \min_{y \in K - c} \|x - y\| < d \right\} \supseteq \left\{ x \mid \min_{y \in K} \|x - y\| < d \right\} = A.
\]
The last inclusion follows from \(K \subseteq K - c \), because \(K \) is a convex cone. Therefore, for \(X \sim N_{n+1}(c, \Sigma) \),

\[
P(X \in A \mid c) = P(X + c \in A \mid c = 0) = P(X \in A - c \mid c = 0) \geq P(X \in A \mid c = 0),
\]

and \(\inf_{H_1} P(X \in A \mid c) = P_{H_0}(X \in A) \) follows.

In the case where \(\sigma^2 \) is unknown, the LRT statistic \(\beta_{12} \) in (2.2) is rewritten as

\[
\beta_{12} = \frac{\|\hat{c}\|^2_{\Sigma^{-1}} - \|\hat{c}_K\|^2_{\Sigma^{-1}}}{\|\hat{c}\|^2_{\Sigma^{-1}} - \|\hat{c}_K\|^2_{\Sigma^{-1}} + \nu \hat{\sigma}^2/\sigma^2} = \frac{\lambda_{12}}{\lambda_{12} + \nu \hat{\sigma}^2/\sigma^2},
\]

which is monotone in \(\lambda_{12} \) in (2.1). The monotonicity of the acceptance region can be proved similarly.

2.2 Simultaneous confidence bounds

In regression analysis, simultaneous confidence bounds for the estimated regression curve are often provided to assess the reliability of the estimated regression curve. The construction of confidence bands is still an active research topic because of its practical importance (Liu (2010)). In this subsection, we propose simultaneous confidence bands that are naturally linked to our proposed LRTs.

In general, when we want to construct simultaneous confidence bands for the regression curve \(\{f(t; c) \mid t \in T\} \), we need to bound \(|f(t; c) - f(t; \hat{c})| = |(c - \hat{c})^\top \psi(t)| \) above by a pivotal statistic whose distribution is independent of the true parameters. The most standard tool to obtain the upper bound is the Cauchy-Schwarz inequality. However, in this inequality, strict equality is attained when and only when (the closure of) the set of undirected rays spanned by the explanatory variable vectors \(\{\alpha \psi(t) \mid t \in T, \alpha \in \mathbb{R}\} \) forms the whole space. In our polynomial regression model (1.1), this becomes the whole space \(\mathbb{R}^{n+1} \) only when \(n = 1 \) and \(T = \mathbb{R} \) (Working and Hotelling (1929)). The cases where \(n \geq 2 \) or \(T \) is a proper subset of \(\mathbb{R} \) (\(T \subset \mathbb{R} \)) are not easy problems and have been solved in limited cases (e.g., Uusipaikka (1983), Wynn and Bloomfield (1971)).

In our proposal, we relax the set of estimands from the regression curve itself. Let \(\mu(dt) \) be a nonnegative measure on \(T \subseteq \mathbb{R} \), and write \(\mu[\psi] = \int_T \psi(t) \mu(dt) \). Then, \(\mu[\psi] \in K^* \), where

\[
K^* (= K_n^*) = \left\{ \mu[\psi] \mid \mu(dt) \geq 0 \right\}
\]

is the closure of the conic hull of the trajectory \(\{\psi(t) \mid t \in T\} \). This cone is the dual cone of the positive polynomial cone \(K \) in (1.3), and is referred to as the
moment cone (Barvinok (2002)). We construct confidence bands on the basis of the inequality

\[
\mu[f_\hat{c}] - \mu[f_c] = \int_T (\hat{c} - c)^\top \psi(t) \mu(dt) = \langle \Sigma^{-1}(\hat{c} - c), \mu[\psi] \rangle_{\Sigma} \\
\leq \|\mu[\psi]\|_{\Sigma} \cdot \|\Pi_\Sigma(\Sigma^{-1}(\hat{c} - c)|K^*)\|_{\Sigma}, \tag{2.4}
\]

where \(\mu[f_c] = \int f(t; c) \mu(dt)\). The equality in (2.4) holds for some \(\mu\) if and only if \(\hat{c} - c \notin -K \setminus \{0\}\), where \(K\) is the positive polynomial cone in (1.3).

The statistic \(\|\Pi_\Sigma(\Sigma^{-1}(\hat{c} - c)|K^*)\|_{\Sigma}\) in (2.4) is distributed independently of the true parameter \(c\). Moreover, its square is rewritten as

\[
\|\Sigma^{-1}(\hat{c} - c)\|_\Sigma^2 - \min_{x \in K^*} \|\Sigma^{-1}(\hat{c} - c) - x\|_\Sigma^2 = \|\hat{c} - c\|_{\Sigma}^2 - \min_{y \in \Sigma K} \|\hat{c} - y\|_{\Sigma}^2 \\
= \|\Pi_{\Sigma^{-1}}(\hat{c} - c|\Sigma K^*)\|_{\Sigma}^2 \\
= \|\hat{c} - c\|_{\Sigma}^2 - \|\Pi_{\Sigma^{-1}}(\hat{c} - c|K)\|_{\Sigma}^2,
\]

which has the same distribution as \(\lambda_{12}\) in (2.1) under \(H_0 : c = 0\). Using the upper \(\alpha\) percentile \(\lambda_{12,\alpha}\) of the distribution of \(\lambda_{12}\) under \(H_0\), we obtain the \(1 - \alpha\) simultaneous confidence bands as follows.

Proposition 2.3. The statement below holds with probability \(1 - \alpha\):

\[
\mu[f_c] \in (\mu[f_\hat{c}] - \sqrt{\lambda_{12,\alpha}} \|\mu[\psi]\|_{\Sigma}, \infty) \quad \text{for all nonnegative measures } \mu \text{ on } T.
\]

Considering a particular subclass of nonnegative measures, we obtain various \(1 - \alpha\) simultaneous confidence bands. For example,

\[
f(t, c) \in (f(t, \hat{c}) - \sqrt{\lambda_{12,\alpha}} \|\psi(t)\|_{\Sigma}, \infty) \quad \text{for all } t \in T,
\]

and

\[
\int_{t_0}^t f(t, c) \, dt \in \left(\int_{t_0}^t f(t, \hat{c}) \, dt - \sqrt{\lambda_{12,\alpha}} \int_{t_0}^t \psi(t) \, dt, \infty\right) \quad \text{for all } t \in T
\]

hold with probabilities greater than or equal to \(1 - \alpha\).

When \(\sigma^2\) is unknown but its unbiased estimator \(\hat{\sigma}^2\) with \(\nu = N - n - 1\) degrees of freedom is available, we can obtain the simultaneous confidence bands by replacing \(\|\|_{\Sigma}\) with \(\|\|_{\hat{\Sigma}}\) (\(\hat{\Sigma} = \hat{\sigma}^2 \Sigma_0\)), and \(\lambda_{12,\alpha}\) with \(\chi_{12,\alpha}\), where \(\chi_{12,\alpha}\) is the upper \(\alpha\) quantile of the distribution of \(\lambda_{12}/\sqrt{s}, s \sim \chi_{\nu}^2\).
3 Null distributions of the LRT statistics

3.1 The volume-of-tubes method

In this subsection, we briefly summarize the volume-of-tubes method.

Historically, the distributions of the orthogonal projection of zero-mean Gaussian random vectors have been well studied, since they appear as the null distribution of the test statistic in an order restricted inference. From the general theory, the statistics λ_{01} and λ_{12} in (2.1) under the null hypothesis $H_0 : c = 0$ have the following distribution:

$$P_{H_0}(\lambda_{01} \geq a, \lambda_{12} \geq b) = \sum_{i=0}^{n+1} w_i \bar{G}_i(a) \bar{G}_{n+1-i}(b),$$ \hspace{1cm} (3.1)

where \bar{G}_i is the upper probability of the chi-square distribution with i degrees of freedom. Let $\bar{G}_0(a) = 1$ ($a \leq 0$), 0 ($a > 0$). In addition, the distribution of the LRTs β_{01} and β_{12} in (2.2) under H_0 is expressed as follows:

$$P_{H_0}(\beta_{01} \geq a, \beta_{12} \geq b) = \sum_{i=0}^{n+1} w_i \bar{B}_{i, \frac{n+i+1}{2}}(a) \bar{B}_{n+1-i, \frac{n+i+1}{2}}(b),$$ \hspace{1cm} (3.2)

where $\bar{B}_{k,l}$ is the upper probability of the beta distribution with parameter (k,l). Note that the coefficients w_i appearing in (3.2) are the same as those in (3.1). They are nonnegative and satisfy $\sum_i w_i = 1$. This means that the distributions of $(\lambda_{01}, \lambda_{12})$ and (β_{01}, β_{12}) are finite mixture distributions with the same weights $\{w_i\}$. The marginal distributions of λ_{01}, λ_{12}, β_{01}, β_{12} can be obtained just by letting $a = -\infty$ or $b = -\infty$. The finite mixture distribution of the chi-square distributions in (3.1) is sometimes referred to as the chi-bar-square ($\bar{\chi}^2$) distribution (Robertson, et al. (1988), Shapiro (1988)).

When the cone K_n in (1.4) is polyhedral, that is, a finite intersection of half spaces, the weights $\{w_i\}$ can be understood in terms of the internal and external angles of each face of the cone (Wynn (1975)). Moreover, in the general case where K_n is not polyhedral, Takemura and Kuriki (1997, 2002) proved that the weights $\{w_i\}$ are expressed as integrals of elementary symmetric polynomials of principle curvatures of the boundaries of the cone K_n. These integrals are not easy to handle in general. However, the weights of the two highest degrees and two lowest degrees, w_{n+1}, w_n, w_0 and w_1, have relatively simple expressions as follows:

$$w_{n+1} = \frac{\text{Vol}_n(K_n \cap S^n)}{\Omega_{n+1}}, \quad w_n = \frac{\text{Vol}_{n-1}(\partial K_n \cap S^n)}{2 \Omega_n},$$

$$w_1 = \frac{\text{Vol}_{n-1}^*(K_n^* \cap (S^n)^*)}{2 \Omega_n}, \quad w_0 = \frac{\text{Vol}_n^*(K_n^* \cap (S^n)^*)}{\Omega_{n+1}}.$$ \hspace{1cm} (3.3)
where ∂K_n and ∂K_n^* are the boundaries of K_n and K_n^*.

$$S^n = \{ x \in \mathbb{R}^{n+1} | \|x\|_{\Sigma^{-1}} = 1 \}, \quad (S^n)^* = \{ x \in \mathbb{R}^{n+1} | \|x\|_{\Sigma} = 1 \}$$

are the unit spheres, Vol_d and Vol_d^* are d-dimensional volumes induced by the metrics $\langle , \rangle_{\Sigma^{-1}}$ and $\langle , \rangle_{\Sigma}$, respectively; and

$$\Omega_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}$$

is the volume of the $(d-1)$-dimensional unit sphere in \mathbb{R}^d. The lower dimensional measure is induced by the metric of the ambient space \mathbb{R}^{n+1}. It is also defined as the Hausdorff measure (Federer (1996)).

Moreover, a useful relation is known as a consequence of the Gauss-Bonnet theorem:

$$\sum_{i: \text{odd}} w_i = \sum_{i: \text{even}} w_i = \frac{1}{2}. \quad (3.4)$$

The distribution of β_{01} with $\nu = 0$ is interpreted as the volume formula of a spherical tubular neighborhood as below. Let $M = K \cap S^n$ be the intersection of the cone $K (= K_n)$ in (1.3) and the unit sphere. Define the spherical tube about M with the radius θ:

$$\text{Tube}(M, \theta) = \{ x \in S^n | \min_{y \in M} \text{dist}(x, y) \leq \theta \}, \quad \text{dist}(x, y) = \cos^{-1} \langle x, y \rangle.$$

Then, because

$$\beta_{01} = \frac{\| \Pi(\hat{c}|K) \|^2}{\| \hat{c} \|^2} \geq \cos^2 \theta \iff \frac{\hat{c}}{||\hat{c}||} \in \text{Tube}(M, \theta),$$

and $\hat{c}/||\hat{c}||$ is distributed uniformly on S^n under H_0, we see that

$$\frac{\text{Vol}_n(\text{Tube}(M, \theta))}{\text{Vol}_n(S^n)} = P_{H_0}(\beta_{01} \geq \cos^2 \theta) = \sum_{i=0}^{n+1} w_i B_{\frac{n+1-i}{2}}(\cos^2 \theta).$$

This is the reason why our methodology is called the tube method or the volume-of-tubes method.

The volume-of-tubes method has been developed as a tool for approximating the tail probability of the maximum of a general Gaussian random field (Knowles and Siegmund (1989), Sun (1993), Adler and Taylor (2007)). This is regarded as a generalization of the distribution of the projection length of a Gaussian vector onto a convex cone (Kuriki and Takemura (2001)). This method is also used for the construction of confidence bands (Johnstone and Siegmund (1989), Naiman (1990)). For the comprehensive survey, see Kuriki and Takemura (2009).
3.2 Representations for the cones K_n and K^*_n

In order to evaluate the volumes in (3.3), we need to introduce “local coordinates” of the cones K_n in (1.3), K^*_n in (2.3), and their boundaries ∂K_n and ∂K^*_n. This is actually possible by means of representations in the theory of Tchebycheff systems.

We consider the following three cases separately: (i) $T = [a, b]$ (bounded), (ii) $T = [a, \infty)$, and (iii) $T = (-\infty, \infty)$.

The two propositions below give representations for the moment cone K^*_n and its boundary ∂K^*_n. Let

$$
\psi_n(t) = \begin{cases}
(1, t, \ldots, t^n)^\top & (|t| < \infty), \\
(0, \ldots, 0, (\pm 1)^n)^\top & (t = \pm \infty).
\end{cases}
$$

Let $\mathbb{R}_+ = (0, \infty)$, and

$$
\Delta_m = \Delta_m(T) = \{\tau = (\tau_1, \ldots, \tau_m) \in (\text{int } T)^m \mid \tau_1 < \cdots < \tau_m\}. \quad (3.5)
$$

Let $\Delta_0 = \emptyset$ formally.

Proposition 3.1. The moment cone K^*_n on (i) $T = [a, b]$, (ii) $T = [a, \infty)$, or (iii) $T = (-\infty, \infty)$ (when $n = 2m$ is even) has the following almost everywhere representations. Let $a = -\infty$ when $T = (-\infty, \infty)$, and $b = \infty$ when $T = [a, \infty)$ or $(-\infty, \infty)$.

$$
K^*_n = \phi^{(U)}_{n,n}(\mathbb{R}^{\left\lfloor \frac{n+1}{2} \right\rfloor + 1}_+ \times \Delta_{\left\lfloor \frac{n}{2} \right\rfloor}) = \phi^{(L)}_{n,n}(\mathbb{R}^{\left\lfloor \frac{n}{2} \right\rfloor + 1}_+ \times \Delta_{\left\lfloor \frac{n+1}{2} \right\rfloor}) \quad (3.6)
$$

almost everywhere with respect to the $(n+1)$-dimensional Lebesgue measure, where

$$
\phi^{(U)}_{n,l}(\rho, \tau) = \begin{cases}
\sum_{i=1}^{m} \rho_i \psi_n(\tau_i) + \rho_{m+1} \psi_n(b) & (l = 2m), \\
\rho_1 \psi_n(a) + \sum_{i=1}^{m} \rho_{i+1} \psi_n(\tau_i) + \rho_{m+2} \psi_n(b) & (l = 2m + 1),
\end{cases} \quad (3.7)
$$

and

$$
\phi^{(L)}_{n,l}(\rho, \tau) = \begin{cases}
\rho_1 \psi_n(a) + \sum_{i=1}^{m} \rho_{i+1} \psi_n(\tau_i) & (l = 2m), \\
\sum_{i=1}^{m+1} \rho_i \psi_n(\tau_i) & (l = 2m + 1).
\end{cases} \quad (3.8)
$$

The maps $\phi^{(U)}_{n,n}$ and $\phi^{(L)}_{n,n}$ in (3.6) are diffeomorphic.
Remark 3.1. The representations with (3.7) and (3.8) are called the upper and lower representations, respectively. They are coincident when \(T = (-\infty, \infty) \) and \(n = 2m \) (Definition 3.2 of Karlin and Studden (1966), Section 3 of Chapter II).

Remark 3.2. When \(n = 1 \), \(\phi_{n,n}^{(U)}(\rho, \tau) \) is \(\rho_1 \psi_1(a) + \rho_2 \psi_1(b) \), which does not contain the argument \(\tau \). In (3.6), \(\phi_{n,n}^{(U)}(\mathbb{R}_{+}^{[\frac{n+1}{2}]+1} \times \Delta_{\frac{n}{2}}) = \phi_{1,1}^{(U)}(\mathbb{R}_{+}^{2} \times \emptyset) \) should read as \(\{ \phi_{1,1}^{(U)}(\rho, \tau) \mid \rho \in \mathbb{R}_{+}^{2} \} \). We use this convention in Propositions 3.1–3.4.

Proof. The representations of the right-hand sides of (3.6) for \(T = [a, b], [a, \infty) \), and \((-\infty, \infty)\) are provided in Section 3 of Chapter II, Section 4 of Chapter V, and Section 2 of Chapter VI of Karlin and Studden (1966), respectively. The last case of \(T = (-\infty, \infty) \) is stated in terms of periodic functions. Each of the upper and lower representations is the unique representation when \(\rho_i > 0 \) for all \(i \), and all of \(a, \tau_i \) and \(b \) are distinct.

Although the representations given by Karlin and Studden (1966) include the cases where \(\rho_i = 0 \) for some \(i \), and some of \(a, \tau_i \) and \(b \) take the same value, we can ignore them because the images of the maps \(\phi_{n,n}^{(U)} \) and \(\phi_{n,n}^{(L)} \) in such cases are at most \(n \)-dimensional.

The maps \(\phi_{n,n}^{(U)} \) and \(\phi_{n,n}^{(L)} \) are one-to-one and obviously differentiable, that is, diffeomorphic.

Proposition 3.2. Suppose that \(n \geq 2 \). Let \(\Delta_m \) be defined in (3.5). Let \(\phi_{n,l}^{(U)} \) and \(\phi_{n,l}^{(L)} \) be defined in (3.7) and (3.8). The boundary of the moment cone \(\partial K_n^* \) has the following almost everywhere representation. Let again \(a = \inf T \) and \(b = \sup T \).

(i), (ii) When \(T = [a, b] \) or \([a, \infty)\),

\[
\partial K_n^* = \phi_{n,n-1}^{(L)}\left(\mathbb{R}_{+}^{\left[\frac{n+1}{2}\right]+1} \times \Delta_{\frac{n}{2}}\right)
\sqcup \phi_{n,n-1}^{(U)}\left(\mathbb{R}_{+}^{\left[\frac{n}{2}\right]+1} \times \Delta_{\frac{n-1}{2}}\right),
\]

(3.9)

(iii) when \(T = (\infty, \infty) \) and \(n = 2m \) is even,

\[
\partial K_n^* = \phi_{n,n-1}^{(L)}\left(\mathbb{R}_{+}^{m} \times \Delta_{m}\right)
\]

(3.10)

almost everywhere with respect to the \(n \)-dimensional Hausdorff measure, where \(\sqcup \) means a disjoint union. The maps \(\phi_{n,n-1}^{(U)} \) and \(\phi_{n,n-1}^{(L)} \) in (3.9) and (3.10) are diffeomorphic.

Proof. The general forms of the one-to-one representations for \(T = [a, b], [a, \infty) \), and \((-\infty, \infty)\) are provided in Section 2 of Chapter II, Section 4 of Chapter V,
and Section 5 of Chapter VI of Karlin and Studden (1966), respectively. The last case of \(T = (-\infty, \infty) \) is stated in terms of periodic functions. Picking up the terms whose images are \(n \)-dimensional, we have (3.9) and (3.10). The second component in (3.9) disappears in (3.10) because when \(T = (-\infty, \infty) \) and \(n = 2m \), \(\psi_n(a) = \psi_n(b) = (0, \ldots, 0, 1)^\top \).

The following two propositions give representations for the positive polynomial cone \(K_n \) and its boundary \(\partial K_n \).

Proposition 3.3. The positive polynomial cone \(K_n \) has the following almost everywhere representation:

\[
K_n = \varphi_n \left(\mathbb{R}_+^2 \times \Delta_{n-1} \right)
\]

almost everywhere with respect to the \((n+1)\)-dimensional Lebesgue measure. Here, the function \(\varphi_n(\alpha, \gamma) \in \mathbb{R}^{n+1} \) with \(\alpha = (\alpha_1, \alpha_2) \in \mathbb{R}_+^2 \) and \(\gamma = (\gamma_1, \ldots, \gamma_{n-1}) \in \Delta_{n-1} \) is the coefficient vector of the polynomial \(p_n(t; \alpha, \gamma) = \varphi_n(\alpha, \gamma)^\top \psi_n(t) \) in \(t \) defined below:

(i) When \(T = [a, b] \),

\[
p_n(t; \alpha, \gamma) = \begin{cases}
\alpha_1 \prod_{j=1}^m (t - \gamma_{2j-1})^2 + \alpha_2 (t - a)(b - t) \prod_{j=1}^{m-1} (t - \gamma_{2j})^2 & (n = 2m), \\
\alpha_1 (t - a) \prod_{j=1}^m (t - \gamma_{2j})^2 + \alpha_2 (b - t) \prod_{j=1}^{m-1} (t - \gamma_{2j-1})^2 & (n = 2m + 1),
\end{cases}
\]

(ii) when \(T = [a, \infty) \),

\[
p_n(t; \alpha, \gamma) = \begin{cases}
\alpha_1 \prod_{j=1}^m (t - \gamma_{2j-1})^2 + \alpha_2 (t - a) \prod_{j=1}^{m-1} (t - \gamma_{2j})^2 & (n = 2m), \\
\alpha_1 (t - a) \prod_{j=1}^m (t - \gamma_{2j})^2 + \alpha_2 \prod_{j=1}^m (t - \gamma_{2j-1})^2 & (n = 2m + 1),
\end{cases}
\]

(iii) when \(T = (-\infty, \infty) \) and \(n = 2m \),

\[
p_n(t; \alpha, \gamma) = \alpha_1 \prod_{j=1}^m (t - \gamma_{2j-1})^2 + \alpha_2 \prod_{j=1}^{m-1} (t - \gamma_{2j})^2.
\]

The map \(\varphi_n \) is a diffeomorphism. Here, we use the convention \(\prod_{j=1}^0 = 1 \).

Proof. The representations of the positive polynomials on \(T = [a, b], [a, \infty), \) and \((-\infty, \infty) \) whose orders are exactly \(n \) are provided in Section 10 of Chapter II, Section 9 of Chapter V, and Section 9 of Chapter VI of Karlin and Studden (1966),
respectively. They are unique representations when \(\alpha_1, \alpha_2 > 0 \) and \(a, b, \gamma_i \)'s are distinct.

Because the contributions of the positive polynomials of order \(n \) with \(\alpha_1 = 0 \) or \(\alpha_2 = 0 \) and the positive polynomials of order less than \(n \) are \(n \)-dimensional at most, we do not need to take them into account.

The uniqueness of the representation of \(p_n \) implies that the map \(\varphi_n \) is one-to-one. It is obviously differentiable and hence diffeomorphic. \(\Box \)

Proposition 3.4. Suppose that \(n \geq 2 \). The boundary of the positive polynomial cone \(\partial K_n \) has the almost everywhere representation below. Define the functions \(\varphi_n (\alpha, \gamma, \tilde{\gamma}) \in \mathbb{R}^{n+1} \) with \(n - i \geq 1 \), \(\alpha \in \mathbb{R}^2_+ \), \(\gamma \in \Delta_{n-1-i} \), and \(\tilde{\gamma} \in \text{int} \ T \), by the coefficient vectors of polynomials as

\[
(t - \tilde{\gamma})^i p_{n-i}(t; \alpha, \gamma) = \varphi_n^{(i)}(\alpha, \gamma, \tilde{\gamma})^\top \psi_n(t) \quad (i = 1, 2).
\]

Define the function \(\varphi_2^{(2)}(\alpha_1, \tilde{\gamma}) \in \mathbb{R}^3 \) with \(\alpha_1 \in \mathbb{R}_+ \) and \(\tilde{\gamma} \in \text{int} \ T \) by the coefficient vector of a polynomial as

\[
(t - \tilde{\gamma})^2 \times \alpha_1 = \varphi_2^{(2)}(\alpha_1, \tilde{\gamma})^\top \psi_2(t).
\]

(i) When \(T = [a, b] \),

\[
\partial K_n = \begin{cases}
\varphi_n^{(2)}(\mathbb{R}_+^2 \times \Delta_{n-3} \times T) & (n \geq 3), \\
\varphi_2^{(2)}(\mathbb{R}_+ \times T) & (n = 2) \\
\cup \varphi_n^{(1)}(\mathbb{R}_+^2 \times \Delta_{n-2}, a) \\
\cup \{-\varphi_n^{(1)}(\mathbb{R}_+^2 \times \Delta_{n-2}, b)\}
\end{cases}, \quad (3.11)
\]

(ii) when \(T = [a, \infty) \),

\[
\partial K_n = \begin{cases}
\varphi_n^{(2)}(\mathbb{R}_+^2 \times \Delta_{n-3} \times T) & (n \geq 3), \\
\varphi_2^{(2)}(\mathbb{R}_+ \times T) & (n = 2) \\
\cup \varphi_n^{(1)}(\mathbb{R}_+^2 \times \Delta_{n-2}, a) \\
\cup \varphi_{n-1}(\mathbb{R}_+^2 \times \Delta_{n-2})
\end{cases}, \quad (3.12)
\]

(iii) when \(T = (-\infty, \infty) \) and \(n = 2m \) is even,

\[
\partial K_n = \begin{cases}
\varphi_n^{(2)}(\mathbb{R}_+^2 \times \Delta_{n-3} \times T) & (n \geq 3), \\
\varphi_2^{(2)}(\mathbb{R}_+ \times T) & (n = 2)
\end{cases}, \quad (3.13)
\]
almost everywhere with respect to the n-dimensional Hausdorff measure, where \sqcup means a disjoint union. The maps $\varphi_n, \varphi_n^{(1)}(\cdot, a), \varphi_n^{(1)}(\cdot, b)$, and $\varphi_n^{(2)}$ are diffeomorphisms.

Proof. (i) The case of $T = [a, b]$. The boundary of the positive polynomial cone K_n is proved to consist of the positive polynomials of order n (at most) that have zeros on T. For the almost everywhere representation, we need only polynomials of the highest degree. Hence, we can consider only the following three types: $(t - \gamma)^2p_{n-2}(t; \alpha, \gamma)$ ($\gamma \in \text{int} T$), $(t - a)p_{n-1}(t; \alpha, \gamma)$, and $(b - t)p_{n-1}(t; \alpha, \gamma)$ with $\alpha_1, \alpha_2 > 0$. The above three types have no intersection, and (3.11) follows.

(ii) The case of $T = [a, \infty)$. The boundary of the positive polynomial cone K_n is proved to consist of the positive polynomials of order n (at most) that have zeros on T and the positive polynomials of order $n - 1$ (at most). For the almost everywhere representation, we can consider only the following three types: $(t - \gamma)^2p_{n-2}(t; \alpha, \gamma)$ ($\gamma \in \text{int} T$), $(t - a)p_{n-1}(t; \alpha, \gamma)$, and $p_{n-1}(t; \alpha, \gamma)$ with $\alpha_1, \alpha_2 > 0$. These three types have no intersection, and (3.12) follows.

(iii) The case of $T = (-\infty, \infty)$. The boundary of the positive polynomial cone K_n is proved to consist of the positive polynomials of order n (at most) that have zeros on T and the positive polynomials of order $n - 2$ (at most). For the almost everywhere representation, we can consider only the case $(t - \gamma)^2p_{n-2}(t; \alpha, \gamma)$ ($\gamma \in T$), and (3.13) follows. \hfill \square

3.3 Volume formulas and the weights

The diffeomorphic maps appearing in Propositions 3.1–3.4 are homogeneous functions with respect to their first arguments ρ and α. Therefore, by restricting the length of the first argument, we can construct almost everywhere representations for the intersections with the unit sphere. For example, $\bar{\varphi}_{n,n}^{(U)}(r\rho, \tau) = r\varphi_{n,n}^{(U)}(\rho, \tau)$ for a constant $r > 0$, and we have

$$K_n^* \cap (S^n)^* = \bar{\varphi}_{n,n}^{(U)}\left(S^n_{+}^{[\frac{n+1}{2}]} \times \Delta_{[\frac{n}{2}]}\right) \quad \text{a.e.},$$

where

$$\bar{\varphi}_{n,n}^{(U)}(\rho, \tau) = \varphi_{n,n}^{(U)}(\rho, \tau)/\|\varphi_{n,n}^{(U)}(\rho, \tau)\|_{\Sigma},$$

and

$$S^n_{+} = \left\{ \rho = (\rho_i) \in \mathbb{R}^{n+1} \mid \sum \rho_i^2 = 1, \rho_i > 0 \right\}. \quad (3.14)$$
Define
\[\bar{\varphi}^{(L)}_{n,l}(\rho, \tau) = \varphi^{(L)}_{n,l}(\rho, \tau) / \| \varphi^{(L)}_{n,l}(\rho, \tau) \|_{\Sigma}; \]
\[\varphi_{n}(\alpha, \gamma) = \varphi_{n}(\alpha, \gamma) / \| \varphi_{n}(\alpha, \gamma) \|_{\Sigma^{-1}}, \]
\[\bar{\varphi}^{(i)}_{n}(\alpha, \gamma, \tilde{\gamma}) = \varphi^{(i)}_{n}(\alpha, \gamma, \tilde{\gamma}) / \| \varphi^{(i)}_{n}(\alpha, \gamma, \tilde{\gamma}) \|_{\Sigma^{-1}} \quad (i = 1, 2), \]
\[\bar{\varphi}^{(2)}_{n}(\tilde{\gamma}) = \varphi^{(2)}_{n}(\tilde{\gamma}) / \| \varphi^{(2)}_{n}(\tilde{\gamma}) \|_{\Sigma^{-1}} \]
similarly.

In the proposition below, let \(\theta = (\theta_i) \in \Theta_m \) be the local coordinates of \(S^m \) in (3.14). For example, \(\rho = \rho(\theta) = (\theta_1, \ldots, \theta_m, \sqrt{1 - \sum \theta_i^2}) \), \(\theta \in \Theta_m = \mathbb{R}^m_+ \). Another example is the polar coordinates \(\rho(\theta) = (\rho(\theta), \theta) \in \Theta_m = (0, \pi/2)^m \) with \(\rho_1(\theta) = \cos \theta_1, \rho_i(\theta) = \cos \theta_i \prod_{j=1}^{i-1} \sin \theta_j \) (\(i = 2, \ldots, m \)), and \(\rho_{m+1}(\theta) = \prod_{j=1}^{m} \sin \theta_j \).

Proposition 3.5. Let \(\xi = (\theta, \tau) \) and \(d\xi = \prod d\theta \prod d\tau \) be the Lebesgue measure. (\(\xi \) may consist of either \(\theta \) or \(\tau \) only when the other does not appear in the integrand.) Write \(\rho = \rho(\theta) \) for simplicity.

\[
\text{Vol}^*_n(K_n^* \cap (S^n)^*) = \int_{\Theta_\frac{1}{2}} \det \left\{ \left(\frac{\partial \bar{\varphi}^{(U)}_{n,n}(\rho, \tau)}{\partial \xi} \right)^\top \left\{ \left(\frac{\partial \bar{\varphi}^{(U)}_{n,n}(\rho, \tau)}{\partial \xi} \right) \right\} \right\}^{\frac{1}{2}} d\xi,
\]
and when \(n \geq 2, \)
\[
\text{Vol}^*_{n-1}(\partial K_n^* \cap (S^n)^*)
= \int_{\Theta_\frac{1}{2}} \det \left\{ \left(\frac{\partial \bar{\varphi}^{(L)}_{n,n-1}(\rho, \tau)}{\partial \xi} \right)^\top \left\{ \left(\frac{\partial \bar{\varphi}^{(L)}_{n,n-1}(\rho, \tau)}{\partial \xi} \right) \right\} \right\}^{\frac{1}{2}} d\xi,
\]
\[+ \int_{\Theta_\frac{2}{2}} \det \left\{ \left(\frac{\partial \bar{\varphi}^{(U)}_{n,n-1}(\rho, \tau)}{\partial \xi} \right)^\top \left\{ \left(\frac{\partial \bar{\varphi}^{(U)}_{n,n-1}(\rho, \tau)}{\partial \xi} \right) \right\} \right\}^{\frac{1}{2}} d\xi,
\]
(\(\text{if } T = [a, b] \text{ or } [a, \infty) \)).

The second term in the right-hand side of (3.15) is not needed when \(T = (-\infty, \infty) \).

Proposition 3.6. Let \(\zeta = (\theta, \gamma, \tilde{\gamma}) \) and \(d\zeta = d\theta \prod d\gamma d\tilde{\gamma} \) be the Lebesgue measure. (Some of \(\theta, \gamma, \tilde{\gamma} \) may not be included in \(\zeta \) if they do not appear in the integrand.) Let \(\alpha = (\cos \theta, \sin \theta) \).

\[
\text{Vol}^*_n(K_n \cap S^n) = \int_{(0, \frac{1}{2}) \times \Delta_{n-1}} \det \left\{ \left(\frac{\partial \varphi_{n}(\alpha, \gamma)}{\partial \zeta} \right)^\top \left\{ \left(\frac{\partial \varphi_{n}(\alpha, \gamma)}{\partial \zeta} \right) \right\} \right\}^{\frac{1}{2}} d\zeta,
\]

15
\(\text{Vol}_{n-1}(\partial K_n \cap S^n) = \begin{cases}
\int_{(0,\frac{\pi}{2}) \times \Delta_{n-2} \times T} & \det \left\{ \begin{pmatrix} \frac{\partial \varphi_n^{(2)}(\alpha, \gamma, \bar{\gamma})}{\partial \zeta} \\
\frac{\partial \varphi_n^{(2)}(\alpha, \gamma, \bar{\gamma})}{\partial \bar{\gamma}} \end{pmatrix} \Sigma^{-1} \left(\begin{pmatrix} \varphi_n^{(2)}(\alpha, \gamma, \bar{\gamma}) \end{pmatrix} \right) \right\}^{\frac{1}{2}} d\zeta \quad (n \geq 3), \\
\int_{T} \left\{ \begin{pmatrix} \frac{\partial \varphi_n^{(2)}(\bar{\gamma})}{\partial \bar{\gamma}} \end{pmatrix} \Sigma^{-1} \left(\begin{pmatrix} \varphi_n^{(2)}(\bar{\gamma}) \end{pmatrix} \right) \right\}^{\frac{1}{2}} d\bar{\gamma} \quad (n = 2) \\
+ \int_{(0,\frac{\pi}{2}) \times \Delta_{n-2}} & \det \left\{ \begin{pmatrix} \frac{\partial \varphi_n^{(1)}(\alpha, \gamma, a)}{\partial \zeta} \end{pmatrix} \Sigma^{-1} \left(\begin{pmatrix} \varphi_n^{(1)}(\alpha, \gamma, a) \end{pmatrix} \right) \right\}^{\frac{1}{2}} d\zeta \\
& \text{(if } T = [a, b] \text{ or } [a, \infty)) \\
+ \int_{(0,\frac{\pi}{2}) \times \Delta_{n-2}} & \det \left\{ \begin{pmatrix} \frac{\partial \varphi_n^{(1)}(\alpha, \gamma, b)}{\partial \zeta} \end{pmatrix} \Sigma^{-1} \left(\begin{pmatrix} \varphi_n^{(1)}(\alpha, \gamma, b) \end{pmatrix} \right) \right\}^{\frac{1}{2}} d\zeta \\
& \text{(if } T = [a, b] \text{)} \\
+ \int_{(0,\frac{\pi}{2}) \times \Delta_{n-2}} & \det \left\{ \begin{pmatrix} \frac{\partial \varphi_{n-1}(\alpha, \gamma)}{\partial \zeta} \end{pmatrix} \Sigma^{-1} \left(\begin{pmatrix} \varphi_{n-1}(\alpha, \gamma) \end{pmatrix} \right) \right\}^{\frac{1}{2}} d\zeta \\
& \text{(if } T = [a, \infty)) \end{cases} \tag{3.16} \]

In the right-hand side of (3.16), the second term is not needed for \(T = (-\infty, \infty) \), the third term is not needed for \(T = [a, \infty) \) and \((-\infty, \infty) \), the fourth term is not needed for \(T = [a, b] \) and \((-\infty, \infty) \).

Substituting the volumes obtained in Propositions 3.5 and 3.6 into (3.3), we get \(w_{n+1}, w_n, w_0 \) and \(w_1 \). Combined with the Gauss-Bonnet theorem (3.4), all weights \(\{w_i\} \) for \(n \leq 4 \) are obtained as follows.

\[
(w_0, \ldots, w_{n+1}) = \begin{cases}
(w_0, \frac{1}{2} - w_0) &= (\frac{1}{2} - w_{n+1}, \frac{1}{2}, w_{n+1}) \quad (n = 1), \\
\left(\frac{1}{2} - w_n, w_1, w_n, \frac{1}{2} - w_1 \right) &= (n = 2), \\
(w_0, w_1, \frac{1}{2} - w_0 - w_{n+1}, w_n, w_{n+1}) &= (n = 3), \\
(w_0, w_1, \frac{1}{2} - w_0 - w_n, \frac{1}{2} - w_1 - w_{n+1}, w_n, w_{n+1}) &= (n = 4).
\end{cases}
\]

For \(n > 4 \), some of the weights are undetermined. However, thanks to the Gauss-Bonnet theorem (3.4), and noting that \(\tilde{G}_i(a) \) and \(\tilde{B}_{\frac{i}{2}, \frac{i}{2}, \frac{i}{2}}(a) \) are increasing in \(i \), and that \(\tilde{G}_{n+1-i}(b) \) and \(\tilde{B}_{\frac{n+1-i}{2}, \frac{n+1-i}{2}, \frac{n+1-i}{2}}(b) \) are decreasing in \(i \), we have upper and lower bounds for the marginal distributions of (3.1) and (3.2). For
example, the bounds for λ_{01} and λ_{12} are given by
\[
\sum_{i=0}^{n+1} u_i G_i(a) \leq P_{H_0}(\lambda_{01} \geq \lambda) \leq \sum_{i=0}^{n+1} v_i G_i(a), \\
\sum_{i=0}^{n+1} v_i G_{n+1-i}(a) \leq P_{H_0}(\lambda_{12} \geq \lambda) \leq \sum_{i=0}^{n+1} u_i G_{n+1-i}(a),
\]
where
\[
(u_0, \ldots, u_{n+1}) = \begin{cases}
(w_0, w_1, \frac{1}{2} - w_0 - w_{n+1}, \frac{1}{2} - w_1 - w_n, \underbrace{0, \ldots, 0}_{n-4}, w_n, w_{n+1}) & (n: \text{odd}), \\
(w_0, w_1, \frac{1}{2} - w_0 - w_n, \frac{1}{2} - w_1 - w_{n+1}, \underbrace{0, \ldots, 0}_{n-4}, w_n, w_{n+1}) & (n: \text{even}),
\end{cases}
\]
\[
(v_0, \ldots, v_{n+1}) = \begin{cases}
(w_0, w_1, \underbrace{0, \ldots, 0}_{n-4}, \frac{1}{2} - w_1 - w_n, \frac{1}{2} - w_0 - w_{n+1}, w_n, w_{n+1}) & (n: \text{odd}), \\
(w_0, w_1, \underbrace{0, \ldots, 0}_{n-4}, \frac{1}{2} - w_0 - w_n, \frac{1}{2} - w_1 - w_{n+1}, w_n, w_{n+1}) & (n: \text{even}).
\end{cases}
\]

Moreover, since $\tilde{G}_i(a) = o(\tilde{G}_{n+1}(a))$ as $a \to \infty$ for $i < n+1$, the tail probabilities of λ_{01} and λ_{12} have asymptotic expressions
\[
P_{H_0}(\lambda_{01} \geq \lambda) \sim w_{n+1} \tilde{G}_{n+1}(a), \quad P_{H_0}(\lambda_{12} \geq \lambda) \sim w_0 \tilde{G}_{n+1}(a)
\]
as $a \to \infty$.

4 Computational aspects

4.1 A numerical procedure for MLE

To obtain the LRT statistics λ_{01} and λ_{12} in (2.1), we need to perform the orthogonal projection onto the positive polynomial cone K. For this purpose, the following symmetric cone programming technique is useful. In this subsection, we treat only the case of $T = [a, b]$ with finite a, b. However, the technique explained here is easily extended to the other cases.

The positive polynomial $p_n(t)$ of degree n on the set T is characterized in Proposition 3.3. This is a unique representation. Admitting the redundancy of
the parameters, this polynomial is rewritten as
\[p_n(t) = \begin{cases}
\psi_m(t)^\top Q_1 \psi_m(t) + (t-a)(b-t)\psi_{m-1}(t)^\top Q_2 \psi_{m-1}(t) & (n = 2m), \\
(t-a)\psi_m(t)^\top Q_1 \psi_m(t) + (b-t)\psi_m(t)^\top Q_2 \psi_m(t) & (n = 2m+1),
\end{cases} \]

(4.1)

where \(Q_1 \) and \(Q_2 \) are symmetric positive semi-definite matrices. This polynomial (4.1) is obviously nonnegative on \(T = [a,b] \). Conversely, the polynomial \(p_n(t) \) in Proposition 3.3 can be written as (4.1). This representation is sometimes referred to as the Markov-Lukacs theorem (Nesterov (2000)).

By arranging the terms, the polynomial \(p_n(t) \) in (4.1) can be written as \(p_n(t) = e(Q_1, Q_2)^\top \psi_n(t) \), where \(e(Q_1, Q_2) \) is a \((n+1)\)-dimensional column vector depending on \(Q_1 \) and \(Q_2 \). Using this representation, the orthogonal projection of a given vector \(\hat{c} \) onto the positive polynomial cone \(K \) is formalized as the optimization problem below:

\[
\begin{align*}
\text{maximize} & \quad -d \\
\text{subject to} & \quad d \geq \|\hat{c} - c\|_{\Sigma^{-1}} \quad \text{(quadratic cone restriction)} \\
& \quad c = e(Q_1, Q_2) \quad \text{(linear restriction)} \\
& \quad Q_1, Q_2 \succeq 0 \quad \text{(PSD cone restriction)}
\end{align*}
\]

This is an optimization problem with quadratic cone, linear, and positive semi-definite (PSD) cone restrictions. This can be solved in the framework of symmetric cone programming. Several public software programs are available (e.g., SeDuMi by Sturm (1999)).

Figure 4.1 shows an example of orthogonal projection. Let \(K \) be the positive polynomial cone of order \(n = 3 \) on the set \(T = [a,b] = [0,1] \). Under the metric \(\| \cdot \|_{\Sigma^{-1}} \) with \(\Sigma = ((i + j - 1)^{-1})_{1 \leq i, j \leq 4} \), the orthogonal projection of \(f(t; \hat{c}) = 0.5t - 1.5t^2 + t^3 \) onto \(K \) is given by \(f(t; \hat{c}_K) = 0.0258 + 0.5151t - 1.4891t^2 + 1.0086t^3 \). In Figure 4.1, \(f(t; \hat{c}) \) is depicted as a dashed line (---), and the projection \(f(t; \hat{c}_K) \) is depicted as a solid line (—-).

4.2 Analysis of growth curve data: An example

In this subsection, we analyze growth curve data cited in Potthoff and Roy (1964). The dataset consists of a certain measurement on dental study for 11 girls and 16 boys at ages 8, 10, 12, and 14 years.

In our study, let \(t \) be the age minus 11 for stabilizing numerical calculations. The measurements of the individual \(h \) at the age \(t + 11 \) in the girl and boy groups
are denoted by x_{0ht} and x_{1ht}, respectively. For modeling the difference of the profiles (mean vectors) of two groups, we assume the multivariate normal model:

\[
x_{0ht} = \mu_t + \varepsilon_{0ht}, \quad h = 1, \ldots, n_0 (= 11),
\]
\[
x_{1ht} = \mu_t + f(t; c) + \varepsilon_{1ht}, \quad h = 1, \ldots, n_1 (= 16),
\]
(4.2)

with

\[
f(t; c) = c_0 + c_1 t + c_2 t^2 + c_3 t^3,
\]

where $\varepsilon_{jh} = (\varepsilon_{jht})_{t \in \{−3, −1, 1, 3\}}$ ($j = 0, 1$) are independent Gaussian error vectors with mean zero. For the covariance matrices, we assume the intraclass correlation structure

\[
\Sigma_j = \text{Cov}(\varepsilon_j, \varepsilon_j) = \tau_j \{ (1 - \rho_j)I + \rho_j J \} \quad (j = 0, 1),
\]
(4.3)

where J is the 4×4 matrix with all entries 1, and τ_j and ρ_j are unknown parameters. The model (4.3) is widely used covariance structure in the analysis of growth curves and repeated measurements (Crowder and Hand (1990), Kato, Yamada and Fujikoshi (2010)).

Under the model (4.2) with (4.3), the MLEs are calculated as

\[
\hat{c} = (\hat{c}_0, \hat{c}_1, \hat{c}_2, \hat{c}_3)^	op = (2.053, 0.551, 0.0536, -0.0301)^	op,
\]

and $\hat{\tau}_0 = 4.469, \hat{\rho}_0 = 0.868, \hat{\tau}_1 = 5.147, \hat{\rho}_1 = 0.479$. If Σ_0 and Σ_1 are known, \hat{c} is distributed as the normal distribution with covariance matrix $\Sigma = (F^	op V^{-1} F)^{-1}$, where $V = n_0^{-1} \Sigma_0 + n_1^{-1} \Sigma_1$ and $F = (t^i)_{t \in \{−3, −1, 1, 3\}, 0 \leq i \leq 3}$ is the design matrix. The
We suppose that \(H \) and consider the hierarchical hypotheses in (1.4) that

\[
H \text{ onto } d\,(c \equiv 0), \quad H' : f(t;c) \text{ is a positive polynomial on } T \quad (c \in K_3), \quad \text{and } H' : f(t;c) \text{ is unrestricted } (c \in \mathbb{R}^{3+1}).
\]

Since \(f(t;\hat{c}) \) is already positive on \(T \), the orthogonal projection \(\hat{c}_K \) is \(\hat{c} \) itself, and the LRT statistic for testing \(H_0 \) against \(H_1 \) is \(\lambda_{01} = \|\hat{c}_K\|^2_{\hat{\Sigma}^{-1}} = \|\hat{c}\|^2_{\hat{\Sigma}^{-1}} = 19.293 \). This looks highly significant because the \(p \)-value referring to the chi-square distribution with 4 degrees of freedom is already 0.000688. Actually, by means of Propositions 3.5 and 3.6 the weights for the distribution of \(\lambda_{01} \) are

\[
(w_0, w_1, w_2, w_3, w_4) = (0.0072, 0.0657, 0.2416, 0.4343, 0.2512),
\]

and the \(p \)-value for \(\lambda_{01} \) is obtained as 0.000293. We conclude that the growth curve of the boy group is always beyond that of the girl group.

Then, what about the growth rates of the two groups? Is the growth rate of the boy group always greater than that of the girl group? In order to confirm this hypothesis, let us take the differential of \(f(t;\hat{c}) \):

\[
f'(t;\hat{c}) = \hat{c}_1 + 2\hat{c}_2 t + 3\hat{c}_3 t^2 = f(t;\hat{d}),
\]

where

\[
\hat{d} = L\hat{c} = (0.551, 0.107, -0.0902)^\top, \quad L = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.
\]

We suppose that \(\hat{d} \) is distributed as the normal distribution \(N_3(d, L\hat{\Sigma}L^\top) \), \(d = Lc \). Here again, we consider the hierarchical hypotheses in (1.4) that \(H_0 : f'(t;c) \equiv 0 \quad (d = 0), \quad H_1 : f'(t;c) \text{ is a positive polynomial on } T \quad (d \in K_2), \quad \text{and } H_1 : f'(t;c) \text{ is unrestricted } (d \in \mathbb{R}^{2+1}). \)

Since \(f'(-3;\hat{c}) = -0.582 < 0 < f'(0;\hat{c}) = \hat{c}_1 (= 0.551), \quad f'(t;\hat{c}) \) is not a positive polynomial on \(T = [-3, 3] \). The orthogonal projection of \(\hat{d} \) onto \(K \) under the metric \(\langle \cdot, \cdot \rangle_{(L\hat{\Sigma}L^\top)^{-1}} \) is

\[
\hat{d}_K = (0.348, 0.0776, -0.0128)^\top.
\]

\[
\hat{\Sigma} = \begin{pmatrix} 0.649 & 0 & -0.0173 & 0 \\ 0 & 0.140 & 0 & -0.0157 \\ -0.0173 & 0 & 0.00345 & 0 \\ 0 & -0.0157 & 0 & 0.00192 \end{pmatrix}.
\]

In the following, we treat \(\hat{\Sigma} \) as the true value, and suppose the statistic \(\hat{c} \) to be a Gaussian vector with mean \(c \) and covariance matrix \(\hat{\Sigma} \) as an approximating analysis.

Let us focus on the whole period from ages 8 to 14 years, that is, \(T = [-3, 3] \), and consider the positivity on the set \(T \). The hierarchical hypotheses in (1.4) are

\[
H_0 : f(t;c) \equiv 0 \quad (c = 0), \quad H_1 : f(t;c) \text{ is a positive polynomial on } T \quad (c \in K_3), \quad \text{and } H_2 : f(t;c) \text{ is unrestricted } (c \in \mathbb{R}^{3+1}).
\]

The MLE of \(\Sigma \) is obtained as

\[
\hat{\Sigma} = \begin{pmatrix} 0.649 & 0 & -0.0173 & 0 \\ 0 & 0.140 & 0 & -0.0157 \\ -0.0173 & 0 & 0.00345 & 0 \\ 0 & -0.0157 & 0 & 0.00192 \end{pmatrix}.
\]
The LRT statistics for testing H_0 against H_1, and for testing H_1 against H_2 are obtained as $\lambda_{01} = 9.293$ and $\lambda_{12} = 0.417$, respectively. The weights are computed as
\[(w_0, w_1, w_2, w_3) = (0.3318, 0.4792, 0.168, 0.0208)\].

Using these weights, the p-values for λ_{01} and λ_{12} are calculated as 0.00324 and 0.787, respectively. Thus, the hypothesis that f' is a positive polynomial is accepted, and the hypothesis that $f' \equiv 0$ is rejected at the 1% significance level. We conclude that the growth rate of the boy group is always greater than that of the girl group between the age 8 and 14.

Acknowledgment

The authors thank Takashi Tsuchiya for his helpful comments on symmetric cone programming.

References

Adler, R. J. and Taylor, J. E. (2007). *Random Fields and their Geometry*. Springer, New York.

Barvinok, A. (2002). *A Course in Convexity*. AMS, Providence, Rhode Island.

Crowder, M. J. and Hand, D. J. (1990). *Analysis of Repeated Measures*. Chapman & Hall/CRC, Boca Raton.

Federer, H. (1996). *Geometric Measure Theory*. Springer, Berlin.

Johnstone, I. and Siegmund, D. (1989). On Hotelling’s formula for the volume of tubes and Naiman’s inequality. *Ann. Statist.*, 18 (1), 652–684.

Karlin, S. and Studden, W. (1966). *Tchebycheff Systems: With Applications in Analysis and Statistics*. Interscience Publishers, Wiley, New York.

Kato, N., Yamada, T., and Fujikoshi, Y. (2010). High-dimensional asymptotic expansion of LR statistic for testing intraclass correlation structure and its error bound. *J. Multivariate Anal.*, 101 (1), 101–112.

Knowles, M. and Siegmund, D. (1989). On Hotelling’s approach to testing for a nonlinear parameter in regression. *Internat. Statist. Rev.*, 57 (3), 205–220.
Kuriki, S. and Takemura, A. (2000). Some geometry of the cone of nonnegative definite matrices and weights of associated chi-bar-square distribution. *Ann. Inst. Statist. Math.*, 52 (1), 1–14.

Kuriki, S. and Takemura, A. (2001). Tail probabilities of the maxima of multilinear forms and their applications. *Ann. Statist.*, 29 (2), 328–371.

Kuriki, S. and Takemura, A. (2009). Volume of tubes and the distribution of the maximum of a Gaussian random field. *Selected Papers on Probability and Statistics*, AMS Translations Series 2, 227, No. 2, 25–48.

Liu, W. (2010). Simultaneous Inference in Regression. CRC Press, Boca Laton, Florida.

Liu, W., Bretz, F., Hayter, A.J., and Wynn, H.P. (2009). Assessing non-superiority, non-inferiority or equivalence when comparing two regression models over a restricted covariate region. *Biometrics*, 65 (4), 1279–1287.

Naiman, D. Q. (1990). Volumes of tubular neighborhoods of spherical polyhedra and statistical inference. *Ann. Statist.*, 18 (2), 685–716.

Nesterov, Y. (2000). Squared functional systems and optimization problems. In *High Performance Optimization* (eds. H.Frenk, K.Roos, T.Terlaky and S.Zhang), 405–440, Kluwer, Dordrecht.

Potthoff, R. and Roy, S. (1964). A generalized multivariate analysis of variance model useful especially for growth curve problems. *Biometrika*, 51 (3-4), 313–326.

Robertson, T., Wright, F. T. and Dykstra, R.L. (1988). *Order Restricted Statistical Inference*, Wiley, Chichester.

Shapiro, A. (1988). Towards a unified theory of inequality constrained testing in multivariate analysis. *Internat. Statist. Rev.*, 56 (1), 49–62.

Sturm, J.F. (1999). Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. *Optimization Methods and Software*, 11 (1), 625–653.

Sun, J. (1993). Tail probabilities of the maxima of Gaussian random fields. *Ann. Probab.*, 21 (1), 34–71.

Takemura, A. and Kuriki, S. (1997). Weights of chi-bar-square distribution for smooth or piecewise smooth cone alternatives. *Ann. Statist.*, 25 (6), 2368–2387.
Takemura, A. and Kuriki, S. (2002). On the equivalence of the tube and Euler characteristic methods for the distribution of the maximum of Gaussian fields over piecewise smooth domains. *Ann. Appl. Probab.*, **12** (2), 768–796.

Uusipaikka, E. (1983). Exact confidence bands for linear regression over intervals. *J. Amer. Statist. Assoc.*, **78** (383), 638–644.

Working, H. and Hotelling, H. (1929). Applications of the theory of error to the interpretation of trends. *J. Amer. Statist. Assoc.*, **26** (165, Supplement), 73–85.

Wynn, H. P. (1975). Integrals for one-sided confidence bounds: a general result. *Biometrika*, **62** (2), 393–396.

Wynn, H. P. and Bloomfield, P. (1971). Simultaneous confidence bands in regression analysis (with discussions). *J. Roy. Statist. Soc., Ser. B*, **33** (2), 202–221.