Usefulness of Housekeeping Genes for the Diagnosis of Helicobacter pylori Infection, Strain Discrimination and Detection of Multiple Infection

Montserrat Palau,* Marcos Kulmann,* María José Ramírez-Lázaro,* Sergio Lario,†,‡ María Elisa Quilez,†,‡ Rafael Campo,†,‡ Núria Piqué,* Xavier Calvet†,‡ and David Miñana-Galbis*

*Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain, †Digestive Diseases Service, Hospital de Sabadell, Institut Universitari Parc Taulí, Departament de Medicina, Universitat Autònoma de Barcelona, Sabadell, Barcelona, Spain, ‡Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain

Keywords
Helicobacter pylori, housekeeping genes, detection, genotyping, multiple infection.

Reprint requests to: Prof. Dr. David Miñana-Galbis, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Catalonia, Spain. E-mail: davidminyana@ub.edu

Abstract

Background: Helicobacter pylori infects human stomachs of over half the world’s population, evades the immune response and establishes a chronic infection. Although most people remains asymptomatic, duodenal and gastric ulcers, MALT lymphoma and progression to gastric cancer could be developed. Several virulence factors such as flagella, lipopolysaccharide, adhesins and especially the vacuolating cytotoxin VacA and the oncoprotein CagA have been described for H. pylori. Despite the extensive published data on H. pylori, more research is needed to determine new virulence markers, the exact mode of transmission or the role of multiple infection.

Materials and Methods: Amplification and sequencing of six housekeeping genes (amiA, cgt, cpn60, cpn70, dnaJ, and luxS) related to H. pylori pathogenesis have been performed in order to evaluate their usefulness for the specific detection of H. pylori, the genetic discrimination at strain level and the detection of multiple infection. A total of 52 H. pylori clones, isolated from 14 gastric biopsies from 11 patients, were analyzed for this purpose.

Results: All genes were specifically amplified for H. pylori and all clones isolated from different patients were discriminated, with gene distances ranged from 0.9 to 7.8%. Although most clones isolated from the same patient showed identical gene sequences, an event of multiple infection was detected in all the genes and microevolution events were showed for amiA and cpn60 genes.

Conclusions: These results suggested that housekeeping genes could be useful for H. pylori detection and to elucidate the mode of transmission and the relevance of the multiple infection.

Helicobacter pylori chronically infects more than half of the world’s population because the host immune response fails to eliminate the infection. In most infected people, the bacterium acts as a commensal organism inducing chronic asymptomatic gastritis that can last for life. In other cases, however, it is responsible for a heavy toll of morbidity and mortality as a consequence of peptic ulcers and gastric cancer. Chronic gastritis may progress to intestinal metaplasia, dysplasia and eventually gastric cancer. This multi-step process is known as the Correa pathway [1]. The clinical outcome of H. pylori infection depends on strain virulence, host response, and environmental factors.

Several virulence factors have been identified in H. pylori: gastric colonization mediated by flagella, urease, outer membrane proteins (OMPs), phospholipids, glycolipids, and other adhesins (babA, hpA, napA, sabA, etc.), toxins such as lipopolysaccharide (LPS) and the vacuolating cytotoxin VacA, a type IV secretion system encoded by the cag pathogenicity island (cagPAI) containing the effector protein CagA, a γ-Glutamyl transpeptidase (GGT) associated with colonization and
cell apoptosis, the duodenal ulcer-promoting gene A (dupA), and others [2–4]. Among virulence factors identified in H. pylori, cagA, and vacA genes are the main virulence markers as shown in an study conducted by [5], in which patients infected with high virulence strains (cagA+, vacA s111m1) had a higher risk of progression to preneoplastic lesions and gastric cancer in comparison with patients infected with low virulence strains.

Strains of H. pylori exhibit considerable genetic diversity following a panmictic (non-cloneal) population structure due to horizontal gene transfer and frequent recombination. In contrast, since H. pylori does not spread epidemically, phylogenetic studies based on multilocus sequence analysis (MLSA) of housekeeping genes are contributing to trace human migrations [6,7]. On the other hand, intrapatient diversity of H. pylori needs to be reevaluated because results about the prevalence of multiple infection are controversial, and it could have implications related to the mode of transmission, antibiotic resistance and virulence of H. pylori [2,8,9]. Moreover, there is a lack of studies regarding H. pylori detection from specimens other than gastric biopsies [10].

Other genes have likewise been related to H. pylori pathogenesis: amiA (N-acetylmuramoyl-L-alanine amidase) and luxS (autoinducer-2 synthase) genes are involved in biofilm formation although the former is also related to bacterial adhesion, cell morphology and immune escape [11]. Others such the cholesterol-α-glucosyltransferase gene (cgt or capJ) glycosilates host cholesterol contributing to pathogenicity and antimicrobial resistance while cpn40 (dnaJ), cpn60 (groEL), and cpn70 (dnaK) genes have been suggested as a risk factor for oncogenesis and are recommended as serological markers of H. pylori infection [3,12,13].

In this study, H. pylori specific PCR amplification and sequencing of amiA, cgt, cpn60, cpn70, dnaJ, and luxS genes have been developed in order to evaluate their usefulness in the detection of H. pylori infection, to genetic discrimination at strain level, to detection of multiple infection and to MLSA.

Materials and Methods

Helicobacter pylori Clones and DNA Extraction

Ten H. pylori strains (APP134, B247, B271, B319, B355, B491, B508S, B508T, CRL122, and SVC135) from the H. pylori collection of the Digestive Diseases Department of the Hospital Taulí (Sabadell, Barcelona, Spain) were included in this study. Outpatients sent to the Endoscopy Unit of the Hospital Taulí for evaluation of dyspeptic symptoms from February 2006 to November 2015 were recruited in this collection. Patients were contacted prior to the endoscopy and were asked to participate. Before the endoscopy, the patients signed informed consent. During endoscopy, antral and corpus biopsies were obtained for histology, rapid urease test (RUT) and molecular studies. Isolation, culture and identification of H. pylori were performed after a positive RUT test. The RUT biopsy was plated on Pylori Agar (bioMérieux, Marcy l’Étoile, France) in microaerophilic conditions in microaerophilic jars (Jar Gassing System; Don Whitley Scientific Limited, Shipley, West Yorkshire, UK). After a maximum of a week, H. pylori isolates were subcultured on Columbia plates (bioMérieux) and identified by colony morphology, Gram-negative staining and a positive result for urease, catalase, and oxidase tests. The strains were frozen in Brucella Broth with 10% glycerol and stored at −80 °C until analysis [14].

The strains were recovered on Columbia agar with 5% sheep blood (bioMérieux) and incubated at 37 °C under microaerophilic conditions. These strains were previously isolated from antral biopsies of different patients, except for B508S and B508T, which were isolated from the same patient, B508S from normal tissue and B508T from gastric adenocarcinoma (Table 1). For this study, these H. pylori strains were not considered as pure cultures because they were originally obtained by picking up most of the growth on Pylori agar (bioMérieux) after seeding of gastric biopsies, and not

Gastric biopsies (n = 14)	Endoscopic/ Histopathological diagnosis	Clones analyzed (n = 52)
APP134	Duodenal ulcer/mild gastritis	APP134-1, -2, -3
B247	Neoplasia/adenocarcinoma	B247-1, -2, -3
B271	Duodenal ulcer/mild gastritis	B271-1, -2, -3
B319	Normal/mild gastritis	B319-1, -2, -3
B355	Duodenal ulcer/mild gastritis	B355-1, -2, -3
B491	Neoplasia/adenocarcinoma	B491-1, -2, -3
B508S	Neoplasia/adenocarcinoma	B508S-1, -2, -3, -4, -5, -6
B508T	Neoplasia/adenocarcinoma	B508T-2A, -2B, -3, -4, -5, -6
B657A	Normal/mild gastritis	B657A-1, -2, -3, -4
B657C	Normal/mild gastritis	B657C-1, -2, -3, -4
B659A	Normal/moderate gastritis	B659A-1, -2, -3, -4
B659C	Normal/moderate gastritis	B659C-1, -2, -3, -4
CRL122	Normal/mild gastritis	CRL122-1, -2, -3
SVC135	Normal/moderate gastritis	SVC135-1, -2, -3

*Gastric biopsies obtained from normal tissue of patients with adenocarcinoma.

Table 1 Samples included in this study
from individual colonies. In order to obtain pure cultures, between three and six isolated colonies were selected from each blood agar culture.

Helicobacter pylori colonies were also isolated from antral and corpus biopsies of two different patients (B657A/B657C and B659A/B659C) (Table 1) seeded onto Pylori agar.

Helicobacter pylori strains ATCC 49503 and ATCC 51932 were also included as controls in the present study.

Subcultures of individual colonies were performed on Columbia blood agar or Brucella agar (BD Diagnostics, Franklin Lakes, NJ, USA) supplemented with 10% fetal bovine serum (FBS; Invitrogen, Waltham, MA, USA).

DNA Extraction, PCR Amplification and Sequencing

DNA of each clone was extracted from 4 ml of cultures in Brucella broth supplemented with 10% FBS following the manufacturers’ instructions (REAL pure genomic DNA extraction kit; Durviz, Paterna, València, Spain).

Primers for *H. pylori* specific PCR amplification and sequencing of the housekeeping genes *amiA*, *cgt*, *cpn60*, *cpn70*, *dnaJ*, and *luxS* (Table 2) were designed from 43 *H. pylori* complete genome sequences (see Table S1). To evaluate the specificity of the PCR assays, the following four strains, belonging to different bacterial species, were included as negative controls: *Campylobacter jejuni* ATCC 33291, *Pseudomonas aeruginosa* 42A2, *Aeromonas molluscorum* 848TT, and *Aeribacillus pallidus* DR03.

PCR amplifications were carried out in a total volume of 50 µL containing 50 mM KCl, 15 mM Tris/HCl, pH 8.0, 2.5 mM MgCl$_2$, 0.2 mM dNTPs (Amersham Biosciences, Little Chalfont, Buckinghamshire, UK), 2.5 U AmpliTaq Gold DNA polymerase (Applied Biosystems, Waltham, MA, USA), 40 pmol of each primer (Sigma, St. Louis, MO, USA), and 250 ng DNA. The reaction mixtures were subjected to the following thermal cycling program in a 2720 Thermal Cycler (Applied Biosystems): denaturation at 95 ºC for 5 minutes, 35 cycles of 95 ºC for 1 minutes, 54–64 ºC (Table 2) for 1 minute and 72 ºC for 1 minute and a final extension step at 72 ºC for 5 minutes.

The amplified products were purified using the MSB® Spin PCRapace kit (Strattec, Birkenfeld, Germany) or the ExoSAP-IT® (Affymetrix, Santa Clara, CA, USA) and sequencing was performed using the ABI PRISM BigDye Terminator v3.1 Cycle Sequencing kit (Applied Biosystems) with the following thermal cycling conditions: 96 ºC for 1 minute and 25 cycles of 96 ºC for 10 seconds, 50 ºC for 5 seconds and 60 ºC for 4 minutes. Nucleotide sequences were determined in an ABI PRISM 3730 DNA analyzer by the Genomics Unit of Scientific and Technological Centers from University of Barcelona (CCiTUB).

Data Analyses

Partial sequences of *amiA*, *cgt*, *cpn60*, *cpn70*, *dnaJ*, and *luxS* genes were aligned independently and phylogenetic trees were constructed by neighbor-joining method and Jukes–Cantor distance estimation model using MEGA 6.0 [15]. Concatenated sequences of all genes obtained by the online sequence toolbox FaBox [16] were also analyzed (Table 3). The topological robustness of the phylogenetic trees was evaluated by a bootstrap analysis through 1000 replicates.

Gene	Length (pb)*	Primer	Sequence 5’→3’	Ta	Amplicon (pb)
amiA	1323	amiA-658	GTTTTTGAGACCGYGGGAGATGC	64 ºC	635
		amiA-1292	TTTATGAAACCGCTTTTTTGTG	60 ºC	615
cgt	1170	cgt-252	GGTCTTGAAGGAGCCTTGGATGA	60 ºC	615
		cgt-866	ATCGCTTGCCTTGTCCCACATT	54 ºC	801
cpn60	1641	Hp156	CGTAGGCCTTGGCTTAARGAG	54 ºC	801
		Hp956	GCTTGGCTAAAGACTCYACTT	54 ºC	801
cpn70	1863	cpn70-982	ATTTCAAGATGTGGTATGT	54 ºC	612
		cpn70-1593	GTTTCTCGCTTCAATCACTT	54 ºC	588
dnaJ	1110	dnaJ-259	TTAGGATTTAGGCTTCCTT	54 ºC	429
		dnaJ-846	TAAAGACCGGACCTTAAATGG	54 ºC	429
luxS	468	luxS-38	TGGTACATCAACAAAGTTGCAAAG	54 ºC	429
		luxS-466	TAACCCCACCTTCAGACCA	54 ºC	429

| Ta, annealing temperature. |
| *Data from the complete genome of *Helicobacter pylori* 26695 (NC_000915).
sequence comparison, all B508T and B508S clones ana-
tance values were obtained from.

distances ranged from 0.9 to 7.8% and the highest dis-
biopsies of different patients were different, whose gene
pared. All gene sequences from clones isolated from
and B657A/B657C. Two different
identical sequences except in the case of B508S/B508T
2.4 to 3.6%, with a mean distance of 3% (Table 3).
calculated from concatenated sequences ranged from
H. pylori
amiA

Table 3 Genetic distance values of individual and concatenated genes

Gene	Sequence (nt)	Distances values		
		Range	Minimuma	Mean ± SE
amiA	576	0–0.052	0.019	0.031 ± 0.004
cgt	558	0–0.044	0.009	0.025 ± 0.004
cpn60	555	0–0.039	0.009	0.023 ± 0.004
cpn70	588	0–0.040	0.015	0.027 ± 0.004
dnaJ	564	0–0.061	0.013	0.032 ± 0.004
luxS	405	0–0.078	0.028	0.046 ± 0.006
Concatenated	3246	0–0.036	0.024	0.030 ± 0.002

aMinimum distances values between sequences from clones isolated from biopsies of different patients.

Results

A total of 52 H. pylori clones were isolated from 14 gas-
tric biopsies from 11 patients (Table 1).

All housekeeping genes (amiA, cgt, cpn60, cpn70,
dnaJ, and luxS) were specifically amplified for the bacte-
rial species H. pylori with the primers designed in this
study, none gene was amplified for the other bacterial
species analyzed. Amplicons and partial gene sequences
were found in

484 © 2016 John Wiley & Sons Ltd, Helicobacter 21: 481–487

Discussion

In this study, specific PCR detection of H. pylori has been
achieved for the housekeeping genes amiA, cgt,
cpn60, cpn70, dnaJ, and luxS. These genes are potential
candidates to detect H. pylori infection in gastric biop-
sies and other specimens (as gastric juice, stool, saliva,
dental plaque, water, and food samples), together with
others, mainly used for gastric biopsies, as ureA, vacA,
16S rRNA, and 23S rRNA genes, previously described
[17,18].

Sequencing of any of these six genes has allowed a
clear differentiation between all clones isolated from dif-
ferent patients (0.9–7.8% divergence). These results sug-
gest that these housekeeping genes could be useful to
elucidate the mode of transmission of H. pylori, an issue
that is still controversial. While oral-oral, gastro-oral, and
fecal-oral transmission are the most probable ways, H. pylori
isolation from stools or the oral cavity is difficult and
different environmental sources of H. pylori (food,
animals, water) could play a role as reservoirs [10].

Two different strains isolated from the antral biopsy
B657A were clearly detected by all genes with high dis-
ance values (1.6–7.3%). One strain was represented by
the identical clones B657A-1, -2 and -3, and the other
strain by the clone B657A-4, which was identical to
clones isolated from B657C (corpus biopsy from the
same patient), except in the case of amiA as mentioned
below. This high divergence observed between both
strains indicates an event of multiple infection in the
antrum of the stomach. Horizontal gene transfer and
genetic recombination by mixed infection is crucial for
the acquisition of the high genetic diversity of H. pylori

Figure 1 Consensus neighbor-joining phylogenetic trees obtained from 18 Helicobacter pylori sequences of genes amiA (A) cpn60 (B) and luxS (C). Bar, distance values as calculated by MEGA 6.0. Bootstrap values (>50%) after 1000 replicates are shown as percentages.
Although some authors have detected mixed infections, different studies have reported very variable prevalence rates and little is known about the role of multiple infections on disease outcome [8,20,21]. Although luxS gene showed the highest distance values, the genes amiA and cpn60 were more useful to discriminate clones isolated from the same biopsy and patient. Two different clones isolated from the sample B508T, gastric biopsy collected from tissue with adenocarcinoma, were only detected by partial sequencing of amiA and cpn60 (one and six nucleotide differences, respectively). One of both clones (B508T-4) was identical to clones isolated from B508S, gastric biopsy from the same patient but collected from normal tissue. On the other hand, two amiA nucleotide differences were observed between B657A-4 and B657C clones. These small differences between clones suggest events of microevolution rather than related to multiple infection. Evidences that H. pylori can establish a chronic infection after infection with a single strain have been described [22,23] and, recently, Linz et al. [24] have revealed that the mutation rate during the acute infection phase is over 10 times faster than during chronic infection.

Concatenation of amiA, cgt, cpn60, cpn70, dnaJ, and luxS partial sequences allowed us to conduct a multilocus sequence analyses (MLSA) approach (Fig. 2), which is useful to elucidate intra- and interspecies phylogenetic relationships [25,26] and, in the case of H. pylori, the phylogeographic differentiation of bacterial populations associated to the migration of human populations [6,27]. Most of these genes have never been used for these purposes except dnaJ and, especially, cpn60, that is useful for microbial phylogeny, detection and identification, ecology, and evolution through the analysis of the 555 bp region known as universal target (UT) analyzed in this study [28,29].

In conclusion, H. pylori specific detection has been developed, all H. pylori clones isolated from different patients have been discriminated, and microevolution and mixed infection have been detected by means of amplification and sequencing of housekeeping genes amiA, cgt, cpn60, cpn70, dnaJ, and luxS for the first time. Further studies based on these housekeeping genes are needed to explore their potential applications for H. pylori detection in different specimens, the mode of transmission of H. pylori, the role associated to virulence or the phylogeographic differentiation of H. pylori populations.

Acknowledgements and Disclosures

We would like to thank A. Flaqué for her contribution to this study. This work has been supported by a project from the Fundació La Marató de TV3 (1007/C/2013), Catalonia.

Competing interests: The authors have declared that no competing interests exist.

Note

The GenBank/EMBL/DDBJ accession numbers for the amiA, cgt, cpn60, cpn70, dnaJ, and luxS gene sequences are KU053341–58, KU053359–76, KU053377–94, KU053395–412, KU053413–30 and KU053431–48, respectively.

References

1 Correa P, Bonthron J. Carcinogenesis of Helicobacter pylori. Gastroenterology 2007;133:659–72.
2 Mobley HLT, Mendz GL, Hazell SL. Helicobacter pylori: Physiology and Genetics. Washington (DC): ASM Press, 2001.
3 Mascellino MT, Margani M, Oliva A. Helicobacter pylori: determinant and markers of virulence. Dis Markers 2009;27:137–56.
4 Backert S, Clyne M. Pathogenesis of Helicobacter pylori infection. Helicobacter 2011;16(Suppl. 1):19–25.
5 González CA, Figueiredo C, Lic CB, Ferreira RM, Pardo ML, Ruiz Liso JM, Alonso P, Sala N, Capella G, Sanz-Anquela JM. Helicobacter pylori cagA and vacA genotypes as predictors of progression of gastric preneoplastic lesions: a long-term follow-up in a high-risk area in Spain. Am J Gastroenterol 2011;106:867–74.
6 Linz B, Balloux F, Moodley Y, et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature 2007;445:913–8.
7 Moodley Y, Linz B, Yamaoka Y, et al. The peopling of the Pacific from a bacterial perspective. Science 2009;323:527–30.
8 Sheu SM, Sheu BS, Lu CC, Yang HB, Wu JJ. Mixed infections of Helicobacter pylori: tissue tropism and histological significance. Clin Microbiol Infect 2009;15:253–9.
9 Talarico S, Gold BD, Fero J, Thompson DT, Guarnier J, Czinn S, Salama NR. Pediatric Helicobacter pylori isolates display distinct gene coding capacities and virulence gene marker profiles. J Clin Microbiol 2009;47:1680–8.
10 Khalilia MM, Sharaf RR, Aziz RK. Helicobacter pylori: a poor man’s gut pathogen? Gut Pathog 2010;2:2.
11 Chaput C, Ecobichon C, Cayet N, Girardin SE, Werts C, Gua- fic from a bacterial perspective. Clin Microbiol Infect 2009;15:253–9.
12 Di Felice V, David S, Cappello F, Farina F, Zummo G. Is Helicobacter pylori a man’s gut pathogen? Gut Pathog 2010;2:2.
13 Chapat C, Ecobichon C, Cayet N, Girardin SE, Werts C, Guadagnini S, Prévost MC, Mengin-Lecreux D, Labigne A, Boneca IG. Role of AmiA in the morphological transition of H. pylori and in immune escape. PLoS Pathog 2006;2:e97.
14 Di Felice V, David S, Cappello F, Farina F, Zummo G. Is chlamydial heat shock protein 60 a risk factor for oncogenesis? Cell Mol Life Sci 2005;62:4–9.
15 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–9.
16 Villesen P, FaBox: an online toolbox for FASTA sequences. Mol Biol Evol 2013;30:7965–8.
17 Ramirez-Lázaro MJ, Lario S, Aransay AM, et al. microRNA profiling in duodenal ulcer disease caused by Helicobacter pylori infection in a Western population. Clin Microbiol Infect 2012;18: E273–82.
18 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–9.
19 Wang YK, Kuo FC, Liu CJ, Wu MC, ShiH HY, Wang SS, Wu JY, Kuo CH, Huang YK, Wu DC. Diagnosis of Helicobacter pylori infection: current options and developments. World J Gastroenterol 2015;21:11221–35.
20 Raymond J, Thiberg JM, Chevalier C, Kalach N, Bergeret M, Labigne A, Dauga C. Genetic and transmission analysis of Helicobacter pylori strains within a family. Emerg Infect Dis 2004;10:1816–21.
21 Ghose C, Pérez-Pérez GI, van Doorn LJ, Domínguez-Bello MG, Blaser MJ. High frequency of gastric colonization with multiple Helicobacter pylori strains in Venezuelan subjects. J Clin Microbiol 2005;43:2635–41.
22 Kennemann L, Didelot X, Aebischer T, et al. Helicobacter pylori genome evolution during human infection. Proc Natl Acad Sci USA 2011;108:5033–8.
23 Toita N, Yokota S, Fujii N, Konno M. Clonality analysis of Helicobacter pylori in patients isolated from several biopsy specimens and gastric juice in a Japanese urban population by random amplified polymorphic DNA fingerprinting. Gastroenterol Res Pract 2013;2013:721306.
24 Linz B, Windsor HM, McGraw JJ, Hansen LM, Gajewski JP, Tomsho LP, Hake CM, Solnick JV, Schuster SC, Marshall BJ. A mutation burst during the acute phase of Helicobacter pylori infection in humans and rhesus macaques. Nat Commun 2014;5:4165.
25 Gevers D, Cohan FM, Lawrence JG, et al. Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 2005;3:733–9.
26 Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kömpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–66.
27 Suzuki R, Shiota S, Yamaoka Y. Molecular epidemiology, population genetics, and pathogenic role of Helicobacter pylori. Infect Genet Evol 2012;12:203–13.
28 Hill JE, Paccagnella A, Law K, Melito PL, Woodward DL, Price L, Leung AH, Ng LK, Hemmingsen SM, Goh SH. Identification of Campylobacter spp. and discrimination from Helicobacter and Arcobacter spp. by direct sequencing of PCR-amplified cpn60 sequences and comparison to cpnDB, a chaperonin reference sequence database. J Med Microbiol 2006;55:393–9.
29 Miñana-Galbis D, Farfán M, Lorén JG, Fusté MC. The reference strain Aeromonas salmonicida CIP 57.50 should be reclassified as Aeromonas salmonicida CIP 57.50. Int J Syst Evol Microbiol 2010;60:715–7.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1 Consensus neighbor-joining phylogenetic trees obtained from 18 H. pylori sequences of genes cgt (A), cpn70 (B), and dnaJ (C). Bar distance values as calculated by MEGA 6.0. Bootstrap values (>50%) after 1000 replicates are shown as percentages.

Table S1 Helicobacter pylori complete genome sequences used to primer design.

Palau et al.

© 2016 John Wiley & Sons Ltd, Helicobacter 21: 481–487