Research Article

Analysis of User Personalized Retrieval of Multimedia Digital Archives Dependent on BP Neural Network Algorithm

Zhongke Wang

Chengdu Technological University, Chengdu 611730, Sichuan, China

Correspondence should be addressed to Zhongke Wang; 201812210204034@zcmu.edu.cn

Received 5 August 2021; Accepted 21 October 2021; Published 16 December 2021

1. Introduction

The rapid progress of information technology in recent years has ushered in the digital era, and the digital as well as the electronic files of paper files in the past are gradually being replaced. How to query the demand information of users in the multimedia database quickly and accurately? The important problem at present is how to deal with the problem of supply and demand of archive information, and personalized search of users is a useful solution. Through the application of a personalized search system to cite information about the sameness between users, new methods for the calculation based on the BP neural network can be identified, in which the most important factor is the type of users. However, it requires the involvement of users [1–3]. As the calculation method based on the BP neural network and the collaborative personalized search method have their respective features, these two methods have been adopted in some systems. In this paper, the demands of users are expressed based on the characteristics of domain classification, which has provided a method for the interest model of users and the calculation of similarity. Through the experiments, it is verified that the probability model can better meet the interest and demands of users than the vector space model. This paper mainly focuses on the application in text resources, such as scientific papers, but our calculation method can also be applied to the other fields.

2. Multimedia Digital Archives and Expression of User Interest Model

In order to compare the multimedia digital archives and the interest of users, the multimedia digital archives and user interest models are expressed in a consistent manner. Traditionally, the multimedia digital archives are expressed based on the vector space model. The disadvantage is that in the case of the BP neural network algorithm, it needs to be matched with the multimedia digital archives correctly, and satisfactory results can hardly be obtained. When the probability distribution of multimedia digital archives is
used to represent the multimedia digital archives, it can avoid the necessity for precision matching between the multimedia digital archives, which has improved the search accuracy substantially. In a similar way, the probability distribution in the field of interest to the users can be used to represent the user interest model [4–6].

2.1. Vector Space Model. The features of the application of multimedia digital archives are that it can represent the multimedia digital archives and the way users are interested in a straightforward manner [7–9]. For the files that the users are more interested in, appropriate keywords can be used to express the interest of the users in the multimedia digital archives used. This method requires a training stage. Firstly, the words are used to store multimedia digital documents in the topic words in advance, and a classifier is created for each word accordingly. The new multimedia digital archives are processed by each classifier. The words of significance in this multimedia digital archive will be further provided to the multimedia digital archive.

However, if the topic is defined in advance, it may require a huge amount of work, and the scope of the cover is also limited. A simpler method is to use words extracted from multimedia digital archives to express the interest of users directly [4, 5]. This method is not subject to the limitation of the part-of-speech of the topics defined in advance, where the dimension of the vector is not fixed in general, while a fixed size can also be specified. As this method cannot guarantee that there are multiple cross-words between two vectors, it can hardly ensure the accuracy of the calculation for the similarity of vectors.

2.2. Probability Model. The vector space model cannot distinguish the differences between the interest of users, and it can only indicate the keywords that users are interested in. The corresponding model is established based on the types of domains, and then the multimedia data and topics of interest to users are calculated. Through the probability of the classification model, the multimedia digital texts and user topics are analyzed, which can better indicate the differences in the interest of users and is also easier to complete at the same time [10–13]. The quantity of topic words that users are interested in is greater than the quantity of the types of the classification model. Colleagues with requirements for high efficiency and speed also require high accuracy. The model for the similarity in the area types of users is relatively high, which can represent the interest of users and their differences more accurately.

We apply the Naive Bayes for the model classification training. In this section, the classification model for the multimedia digital archives is explored. The expression of the interest of users is consistent with the expression of the multimedia digital archives. It is assumed that the set of area types is \(C = \{ c_1, c_2, \ldots, c_n \} \), where \(n \) stands for the size of the model, \(c_j \) stands for the \(j \)th area, and the multimedia digital archive \(d \) is represented as a vector of conditional probability \(d = (p(c_1|d), p(c_2|d), \ldots, p(c_n|d)) \). Here, the multimedia digital archive \(d \) has a high posterior probability for class \(c_j \), as follows:

\[
p(c_j|d) = \frac{p(d|c_j)p(c_j)}{p(d)}
\]

In the above equation, \(p(d) \) is expressed as follows:

\[
p(d) = \sum_{j=1}^{n} p(d|c_j)p(c_j).
\]

\(p(c_j) \) is estimated based on the equation as follows:

\[
p(c_j) = \frac{\text{number of documents in } c_j}{\text{total number of documents in the document set}}
\]

It is assumed that all the features of the multimedia digital archive show up independently, and then \(p(d|c_j) \) can be expressed as the product of the conditional probabilities for all the features of the multimedia digital archive as follows:

\[
p(d|c_j) = \prod_{t \in d} p(t|c_j).
\]

It is assumed that \(n(c_j, t) \) is the number of times that feature \(t \) appears in the class \(n(c_j) \), \(n(c_j) \) stands for the sum of the number of times that all the features appear in the class \(c_j \), and \(|V| \) stands for the number of all different features in the multimedia digital archive set. Subsequently, in accordance with Lidstone’s law of continuity (which has overcome the problem of Laplace’s law of continuity that produces greater deviations for a larger number of classifications), for a positive number \(\lambda \) (in general, the value of 0.5 is taken for \(\lambda \); if \(\lambda = 1 \), Lidstone’s law is the same as the Laplace’s law), the estimated value for \(p(t|c_j) \) can be expressed as follows:

\[
p(t|c_j) = \frac{n(c_j, t) + \lambda}{n(c_j) + \lambda |V|}
\]

3. Update of the User Interest Model

After the model for the user interest is established, the user can automatically update the model, and the system can also track the actions of the user and make the corresponding update dynamically [14]. The actions of the user can be addition of bookmarks, downloading of multimedia digital archives, browsing of abstracts, omission of multimedia digital archives, or deletion of bookmarks. These actions represent different interest of the user. Thus, they are of different meanings [15], as shown in Table 1.

As the interest of users is represented by the features of the multimedia digital archives, if a multimedia digital archive is recommended to the user, the characteristics of the user’s interest are selected based on the multimedia digital archive corresponding to the user’s actions, which can adjust the number of times that the features occur in the user’s interest vector or the weight. It is assumed that the operation
of the user \(u \) at present is \(w_{u_t} \), and then the multimedia digital archive corresponding to the operation of the user is \(d_t \). When the learning rate is a small constant, the following equation is used to adjust the number of occurrences and the weights of the features:

\[
kw_t(u) \leftarrow kw_t(u) + \eta w_{u} kw_t(d).
\]

(6)

The probability in the event classification model presented by the interest of users is the conditional probability vector. When the multimedia digital archive is presented to users, the behavior of the users is used to carry out multimedia work at the same time. The probability of each split in the vector is modified accordingly. Firstly, the probability of the \(d \) classification model for the multimedia digital archive is calculated, and then the corresponding equation is used to modify the conditional probability that the users are interested in as follows:

\[
p(c_j | u) \leftarrow \frac{p(c_j | u) + \eta w_{u} p(c_j | d)}{1 + \eta w_{u}}.
\]

(7)

3.1. Personalized Retrieval Based on the BP Neural Network Algorithm. After many media digital archives and the interest of users are presented, the similarity between multimedia digital archives and the interest of users can be used to carry out personalized retrieval of the multimedia digital archives. In this paper, the similarity calculation method for the vector space model and the probability model and the personalized retrieval algorithm for multimedia digital archive users based on the BP neural network algorithm are introduced.

3.2. Method for the Calculation of Similarity. With regard to the vector space model, the conventional method for the calculation of similarity is to calculate the cosine similarity between the vectors. The similarity between the user \(u \) and the multimedia digital archive \(d \) can be defined as follows:

\[
\text{Sim}(u, d) = \frac{u \cdot d}{\|u\| \cdot \|d\|}.
\]

(8)

With regard to the probability model, it is impossible to calculate the cosine similarity of vectors directly. The following propositions are put forward to demonstrate the diversification of user interest.

Proposition 1. It is assumed that the user \(u \) is conditionally independent of the multimedia digital archive \(d \) on the ground that the classification model \(C = \{c_1, c_2, \ldots, c_n\} \) is given, and then the probability that the multimedia digital archive \(d \) is recommended to the user \(u \) which can be expressed as follows:

\[
p(u|d) = p(u) \sum_{j=1}^{n} \frac{p(c_j|u)p(c_j|d)}{p(c_j)}
\]

(9)

Proof. From the total probability equation, the following can be obtained:

\[
p(u, d) = \sum_{j=1}^{n} p(u|d)p(c_j|d)p(c_j).
\]

(10)

It is assumed that user \(u \) exists independently of the multimedia digital archive \(d \) under the condition \(C \). Thus, \(p(u|d, c_j) = p(u|c_j) \) can be obtained. Furthermore, \(p(u|d, c_j) = p(u|c_j)p(d|c_j) \) can be obtained accordingly. Hence, equation (10) can be transformed into the following:

\[
p(u, d) = \sum_{j=1}^{n} p(u|c_j)p(d|c_j)p(c_j).
\]

(11)

In accordance with \(p(u|d) = p(u|d)/p(d) \), equation (11) can be transformed into the following:

\[
p(u|d) = \sum_{j=1}^{n} \frac{p(u|c_j)p(d|c_j)p(c_j)}{p(d)}.
\]

(12)

Based on the result of Proposition 1, the probability of the multimedia database of users can be calculated. The purpose is to convert the similar feature issue of the probability model to the issue of seeking the conditional probability, which has demonstrated the diversification of the user interest. The personalized retrieval process based on BP neural network algorithm is as follows (Algorithm 1):

The system that has the features of recording the search history of users and memorizing the corresponding clicks is adopted to continue to search for the operation behaviors of the users, which is deemed as the data information source of the model. The system automatically completes this coherent operation so that the users do not experience any disturbance. Firstly, the historical search information of the user is saved in the browser, and the interest of the user is learned. Then, through the operation of the user on the search results, the interest of the user in the search information is changed accordingly. The time tags are added to the data of interest. In this way, the points of interest that users are not interested in can be updated [8]. As the document is expressed in natural language, the vector space model is used in this paper to construct the document and implement the comparison of the corresponding documents in the system. The design process of the user interest model is shown in Figure 1.

After the Chinese word segmentation work is completed by using the IKAnalyzer Chinese word segmentation system, the vector space model is established based on the TF-IDF (term frequency-inverse document frequency) algorithm. According to the calculation equation of TF-IDF, the weight \(w_i \) of the keyword \(k_i \) is obtained through the number and frequency of its occurrence in the document as follows:
In the above equation, k_i stands for the frequency of the keywords that appear in all the texts generated, and idf_i stands for the frequency of the reverse-ordered texts in all the texts generated, which are calculated according to the method as follows:

$$idf_i = \log \frac{N}{n}.$$ \hspace{1cm} (15)

In the above equation, N stands for the number of texts generated, and n stands for the number of all texts that contain keyword k_i.

The time factor of keywords is taken into consideration, and time tags are added to each keyword, which is in line with the actual situation of the search behaviors of users. The method for calculating the rights of the keyword k_i can be adjusted as follows:

$$w'_i = w_i \times e^{-t}.$$ \hspace{1cm} (16)

In the above equation, t stands for the difference between the most recent query time and the keyword of the day (in one day) in the analysis. The feature vector of the web page is shown as follows:

$$d = ((k_1, w'_1), (k_2, w'_2), \ldots, (k_i, w'_i)).$$ \hspace{1cm} (17)

In the above equation, d stands for the feature vector of the page, $k_i (i = 1, 2, \ldots, n)$ stands for the i-th keyword of the current page, and w_i stands for the weight of the keyword k_i in the page d.

In the comparison of the data on the model and the document that the users are interested in, the size of θ is inversely proportional to the degree of the users’ interest by calculating the angle θ between the vector $W (w_1, w_2, \ldots, w_n)$ of interest and the feature vector of the document $X (x_1, x_2, \ldots, x_n)$. The smaller the θ is, the higher the correlation between this file and the users’ interest and preference is. The calculation equation is shown as follows:

$$\text{sim}(X, W) = \cos \theta = \frac{\sum_{i=1}^{n} X_i W_i}{\sqrt{(\sum_{i=1}^{n} X_i^2)(\sum_{i=1}^{n} W_i^2)}}.$$ \hspace{1cm} (18)

\[\square\]
4. User Personalized Retrieval Algorithm for Multimedia Digital Archives

In the multimedia digital archives, the implementation of the user personalized retrieval algorithm is completed by three stages: the collection and analysis of the user data, the establishment of a user interest model, and the update of the user interest model. For the purpose of acquiring the user information for multimedia digital archives, it is necessary to obtain the obvious information of the users such as their registered account number, age, education, occupation, unit, keywords of interest, and so on first. The users can modify and reply to the significant information mentioned above to achieve the purpose of improving the corresponding information gradually. However, some users are unwilling to provide their information due to personal privacy consideration or time issues and thus do not submit the accurate registration information. To address this problem, the form of implicit information can be established to extract the information of users. For example, the bookmarks of the keyword searched can be extracted, and the files can be downloaded and saved. Based on the bookmarks maintained by the user and the downloaded and saved document information, it can be determined whether an issue is the one that the user is concerned about for a long time, and its area can be studied accordingly. Thus, the issue mentioned above can be used as an important source of information for the establishment of the model.

As the interest of uses is not fixed, it is necessary to establish an update mechanism in the construction of the model to remove the topics that have been forgotten in time, add new content, calculate the weight of the interests of users, and carry out sorting based on the proportion of their weights. The forgetting value of people refers to the trend of forgetting in the beginning and gradually progressing to the late stage. In the interest model system, the weight of the keyword of interest is multiplied by the update time, the weights of the phrases are consolidated, and the forgotten interest topics are deleted accordingly. The tracking of the effective behaviors of the users is completed, and a new keyword is obtained to recalculate the proportion. If the weight exceeds the threshold, it is added to the user interest model, and the model update is completed. From Proposition 1, it can be demonstrated that, according to the results of the sorting and query based on the recommended ratio, the calculation based on the BP neural network can be used to query the users of the media digital archives. From inequality (9) to \(p(u) \), as \(p(u) \) does not interfere with the results of the recommendation probability, the retrieval calculation of the multimedia digital archive users of this method is explored in detail (Algorithm 1).

Since the algorithm is actually implemented based on another search engine, it is necessary to calculate the probability distribution in the domain classification model for each multimedia digital archive of search results, which can result in a significant effect on the performance of the algorithm. If the search engine has calculated the probability distribution in the domain classification model of each multimedia digital archive in advance, the performance of the algorithm will be tremendously improved to meet the requirements of processing in real time.

5. Experimental Results and Analysis

5.1. Personalized Service Experiment System. The four parts, that is, the browse plug-in, the personal manager, the user model learner, and the information personalized searcher, constitute the experimental system. As shown in Figure 2, it is known that the browser plug-in provides convenient tools for users. After the user logs in to the system with the registration information, the browser plug-in can be used to complete the personalized retrieval of multimedia digital archives without the necessity to log in to the server. In addition, the browser plug-in mainly collects the personal information of users and transmits the information to the server. The personal manager is used to manage the platform on the personal information, and it mainly manages the personal information, hobbies, and bookmarks of users. The purpose of tracking the behaviors of users is to learn their interest. The personalized information retrieval device can complete the personal query of users and make the corresponding recommendations in the multimedia numbers as calculated based on the BP neural network.

The differences from other personalized service systems are as follows. (1) The composition of the system is different. Our system is distributed at the edge of the client and server. (2) The system can also track the actions of customers when they are carrying out the actions without affecting the reading and system performance of the customers.

5.2. Experimental Data Set. The sources of the experimental data set are the INSPEC scientific abstract files. The keywords and types in the scientific papers are all relatively evident, so the results can be obtained directly. The INSPEC mechanism is used to select the computer software profession, and there are 45 types. More than 2000 abstracts of computer software papers are extracted from the INSPEC scientific abstract files, and the practice areas are classified accordingly. The size is 1.9 MB.

In the experimental system, users can modify their interest automatically. The system can also track the actions of users. The multimedia digital archives are downloaded, and the interest of users is dynamically modified, such as browsing abstracts, ignoring multimedia digital archives, and deleting bookmarks. In addition, the papers of interest to users are recommended based on their inquiries.

5.3. Evaluation Criteria for the Experiment. We evaluate the results of the experiments by using the verification rate and the recovery rate that are extensively applied in the field of information retrieval:
Input: domain classification model, user interest model, search keywords, and search engine. Output: user personalized search results of the multimedia digital archives.

(1) The search engine is used to generate a preliminary search result set X based on the search keywords.
(2) Let the number of iterations be $i = 0$.
(3) The iteration operation is set. For the i-th multimedia digital archive in the set X, the equation (1) is used to calculate the probability distribution in the classification model of the field.
(4) The probability that the multimedia digital archive is recommended to the current user is calculated based on the equation (9) and added to the list Y.
(5) If the multimedia digital archive i is the last multimedia digital archive in the set X, proceed to the step (6); otherwise, let $i = i + 1$, and return to the step (3).
(6) The multimedia digital archives are sorted according to the probability in the list Y in descending order, and the results are output.

Algorithm 1: Personalized retrieval algorithm of multimedia digital archives based on the BP neural network algorithm.

$$\text{precision} = \frac{\text{number of related documents retrieved}}{\text{total number of documents searched}}$$

$$\text{recall} = \frac{\text{total number of documents searched}}{\text{number of all relevant documents in the system}}$$

(19)

The recall rate is calculated to be 0.2. The inspection rates of 0.4, 0.6, 0.8, and 1 percent define the average accuracy as the mean value of the inspection rates of the 5 percent points mentioned above. When the recall rate is 0, the accuracy can be provided as appropriate. In general, the recall rate is slightly higher than the inspection rate at 0.2%. The experimental curve is similar to the ROC curve. The larger the area under the curve is, the higher the accuracy of the algorithm is.

5.4. Experimental Analysis. Through analysis, the effect of the vector space model and the user interest model in the probability model on the search calculation method is explored. As shown in Figure 3, the average accuracy of the vector space model is less than the average accuracy of the model probability. Multimedia digital archives share fewer keywords with the user interest. Hence, the average accuracy is presenting a downward trend. However, there is no such situation in the probability model. The similar feature of the regional classification probability is calculated based on the analysis of the multimedia digital archives and the interest of users, so the average search accuracy is relatively high.

6. Conclusions

The situation at present tends to develop towards personalized services. The general retrieval system in the past can no longer meet the retrieval requirements in different environments, various purposes, and different times. In this
paper, a series of research and analysis are carried out with regard to the BP neural computing method. Through the experiments, the interference factors for BP the neural network calculation can be known. The experiments indicate that the accuracy of the calculation has been improved, and the interest and demands of users can be represented correctly, which further improved the accuracy of the user personalized retrieval of multimedia digital archives.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Singh and P. Kumar, “User specific context construction for personalized multimedia retrieval,” Multimedia Tools & Applications, vol. 25, pp. 2096–2102, 2017.
[2] M. Coburn, K. Taxier, and L. Vanduy, “Personalized multimedia content driven by user preferences,” vol. 68, no. 5, pp. 566–588, 2017.
[3] R. Lacson, S. Desai, L. Adam, R. Proctor, and R. Khorasani, “Impact of a health information technology intervention on the follow-up management of pulmonary nodules,” Journal of Digital Imaging, vol. 31, no. 6, pp. 1–7, 2017.
[4] Z. Liu, Y. Xing, J. Lian, D. Lian, Z. Li, and X. Xie, “A novel user representation paradigm for making personalized candidate retrieval,” Computer Science, vol. 24, pp. 1012–1017, 2019.
[5] R. Rockefeller, “Multimedia digital content retrieval, matching, and syncing systems and methods of using the same,” vol. 79, no. 776, pp. 349–353, 2018.
[6] Z. Wu, C. Lu, Y. Zhao, J. Xie, and X. Su, “The protection of user preference privacy in personalized information retrieval: challenges and overviews,” Libri-International Journal of Libraries and Information Services, vol. 59, no. 2, pp. 54–63, 2021.
[7] J. M. Jose, C. Hauff, I. S. Alt Ngovde et al., “Lecture notes in computer science advances in information retrieval,” in Proceedings of the 39th European Conference on IR Research ECI 2017, Aberdeen, UK, April 2017.
[8] S. A. Tabrizi, A. Shakery, H. Zamani, and M. A. Tavallaei, “Person: personalized information retrieval evaluation based on citation networks,” Information Processing & Management, vol. 54, no. 4, pp. 630–656, 2018.
[9] D. George, P. Demestichas, and K. Vera, “Intelligent management functionality for improving transportation efficiency by means of the car pooling concept,” IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 2, pp. 424–436, 2012.
[10] S. Hu, Y. Cai, H.-f. Leung, D. Huang, and Y. Yang, “Integrating user reviews and ratings for enhanced personalized searching,” International Journal of Distance Education Technologies, vol. 15, no. 2, pp. 86–101, 2017.
[11] P. Zhou, J. Kehao, and W. Dapeng, “Differentially-private and trustworthy online social multimedia big data retrieval in edge computing,” IEEE Transactions on Multimedia, vol. 16, no. 99, pp. 1–14, 2019.
[12] W. Zhuo, Z. He, M. Zheng, B. Hu, and R. Wang, “Research on personalized image retrieval technology of video stream big data management model,” Multimedia Tools and Applications, vol. 106, no. 2, pp. 1–18, 2021.
[13] L. Wu, L. Chen, Y. Yang et al., “Personalized multimedia item and key frame recommendation,” Computer Science, vol. 58, no. 4, pp. 1538–1543, 2019.
[14] D. D. Le and H. W. Lauw, “Stochastically robust personalized ranking for lsh recommendation retrieval,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 4, pp. 4594–4601, 2020.
[15] W.-H. Kuo and Y.-H. Lin, “Resource-saving file management scheme for online video provisioning on content delivery networks,” IEEE Transactions on Computers, vol. 65, no. 6, p. 1, 2016.