Ontogeny of sex differences in the energetics and kinematics of terrestrial locomotion in leghorn chickens (Gallus gallus domesticus)

K. A. Rose, K. T. Bates, R. L. Nudds & J. R. Codd

Sex differences in locomotor performance may precede the onset of sexual maturity and/or arise concomitantly with secondary sex characteristics. Here, we present the first study to quantify the terrestrial locomotor morphology, energetics and kinematics in a species, either side of sexual maturation. In domestic leghorn chickens (Gallus gallus domesticus) sexual maturation brings about permanent female gravidity and increased male hind limb muscle mass. We found that the sexes of a juvenile cohort of leghorns shared similar maximum sustainable speeds, while in a sexually mature cohort maximum sustainable speeds were greater by 67% (males) and 34% (females). Furthermore, relative to that in juveniles of the same sex, the absolute duration of leg swing was longer in mature males and shorter in mature females. Consequently, the proportion of a stride that each limb was in contact with the ground (duty factor) was higher in sexually mature females compared to males. Modulation of the duty factor with the development of secondary sex characteristics may act to minimize mechanical work in males; and minimise mechanical power and/or peak force in females. A greater incremental response of mass-specific metabolic power to speed in males compared to females was common to both age cohorts and, therefore, likely results from physiological sexual dimorphisms that precede sexual maturation.

Artificial selection in the domestic chicken (Gallus gallus domesticus) has led to derived morphology, physiology and behaviour distinct from that of its red jungle fowl ancestor. Unintended pathological consequences often result from artificial selection in farm animals. For example, in the broiler chicken, selection for increased muscle growth rates has led to a compromise in the effectiveness of the respiratory apparatus, abnormalities of the musculoskeletal system, and the negative ontogenetic allometry of the heart and lungs associated with a number of pathologies. The influence of this type of selection in broilers upon locomotor mechanics and morphology, across ontogeny, and also in comparison to less derived/wild-type strains is well studied. In layer chickens, however, selected for increased reproductive output (size and frequency of eggs laid), potential changes in locomotor mechanics and morphology associated with the developmental process have not yet been investigated.

The energy budgets of animals are limited and, consequently, trade-offs in resource allocation exist at different life stages. In young animals, a bias in energy is allocated towards somatic tissue growth. An inherent trade-off exists, however, between growth rate and the maturation of tissues required for locomotion. Linked to this compromise, avian species exhibit distinct differences in ontogenetic strategy. Precocial birds (usually cursorial), for example, prioritise effective locomotion over growth from hatch and will grow 3–4 times slower than altricial birds (often principally flyers) that do not begin locomotion until after the whole body growth period. Other bird groups, with two or more principle modes of locomotion, such as the mallard (Anas platyrhynchos), which flies, walks and swims, exhibit differential ontogenetic strategies between the hind- and forelimbs, depending on which mode they use principally in early life. The precocial strategy is thought to have arisen due to the strong evolutionary pressure posed by high predation rates on vulnerable juveniles, which are handicapped due to small body size, rapidly growing tissues and naivete about their environment. Sexual maturation usually occurs later in the ontogenetic trajectory, at which point, energy no longer required for growth can be invested in reproduction.

Faculty of Life Sciences, University of Manchester, Manchester, M139PT, UK. Correspondence and requests for materials should be addressed to J.R.C. (email: jonathan.codd@manchester.ac.uk)
Domestic white leghorn (layer) chickens are precocial; however, their energy allocation differs from that of wild precocial birds due to food not being a limiting resource. The ability of the digestive and transport systems of the bird becomes the limiting factor in terms of energy intake and allocation to tissues. These environmental conditions combined with artificial selection have allowed for a shift in energy allocation in the sexes. In females, the emphasis is on reproduction, bringing forward the onset of egg-laying, which is continuous throughout the lives of hens, rather than occurring only in breeding seasons. Male birds on the other hand, invest substantial energy in skeletal muscle tissue allocation, possessing greater muscle, bone, heart and blood masses compared to females, which outweigh males in digestive components, skin and fat as well as the reproductive system. These birds, therefore, exhibit distinct sexual dimorphisms in skeletal muscle and reproductive tissue allocation. The sexes, however, share similar initial post-hatch growth trajectories in body mass (Mbody). At the onset of sexual maturity (roughly 4–5 months old), the differentiation of secondary sexual characteristics is mediated by a rise in gonadal hormones and male skeletal muscle growth rates increase relative to females. Female growth also terminates before that of males, leading to strong male-biased sexual size dimorphism.

Sexually mature leghorns exhibit sex differences in energy metabolism during locomotion, whereby the incremental increase in mass-specific metabolic power (\(P_{\text{mm}} \frac{W}{kg} \)) with speed (\(U\)) is steeper in males than in females. It is therefore more metabolically costly for males to move at faster speeds compared to females. Comparison of the energy metabolism of these birds at dynamically similar speeds did not account for the sex difference. The dimorphism in energy metabolism was, therefore, hypothesised to be the result of additional sexual dimorphisms in morphology and/or physiology. Furthermore, males were able to sustain maximum speeds (\(U_{\text{max}}\)) approximately 25% greater than those of females. It is unclear whether these differences are associated with female or male specialisations or constraints, or a combination of these. It is also unclear whether these sex differences in locomotion are already manifested in the juvenile form or develop at the onset of sexual maturity. Furthermore, it is unclear whether the onset of continuous gravidity impedes upon the locomotor abilities of hens.

The aim of this study was to investigate the effects of the ontogenetic differences in male and female morphology on the energetics and kinematics of locomotion in white leghorns. To achieve this, two age cohorts were selected for comparison: one prior to the onset of sexual maturity (juvenile [14–16 week-old] males and females: J♂ and J♀) and another that was sexually mature (≥20-week-old: M♂ and M♀). Sexual differentiation at maturity is a gradual process and may have already initiated in the younger cohort; however we were able to confirm that the mature cohort displayed male crowing and secondary sexual characteristics (large red combs and wattles) and female egg laying, whilst the juvenile cohort did not. We also quantified the accompanying sex-specific morphologic and reproductive volumes and dimensions. The hypothesis tested was that none of the locomotor differences would be present in the juvenile cohort i.e., the sexual dimorphism in locomotor performance would develop concomitantly with the secondary sex characteristics in these birds.

Results

Body mass. \(M_b\) (Table 1) was significantly greater in the sexually mature, compared to the juvenile cohort (Table 2). A significant age × sex interaction in \(M_b\) was identified due to similar masses in the sexes of the juvenile cohort (1.05-fold greater in \(J_b\) than in \(J_g\)) and another that was sexually mature (≥20-week-old: \(M_b\) in \(M_b\) and \(M_g\)). Sexual differentiation at maturity is a gradual process and may have already initiated in the younger cohort; however we were able to confirm that the mature cohort displayed male crowing and secondary sexual characteristics (large red combs and wattles) and female egg laying, whilst the juvenile cohort did not. We also quantified the accompanying sex-specific musculoskeletal and reproductive volumes and dimensions. The hypothesis tested was that none of the locomotor differences would be present in the juvenile cohort i.e., the sexual dimorphism in locomotor performance would develop concomitantly with the secondary sex characteristics in these birds.

Limb bone lengths. All absolute hind limb skeletal bone lengths (Table 1) were significantly longer in males compared to females (Table 2). A significant age × sex interaction was present in the sum of the three hind limb bone lengths (\(\Sigma L_{\text{legs}}\)) due to a greater sex difference in the mature compared to the juvenile cohort. This was linked to a lack of difference in \(\Sigma L_{\text{legs}}\) between \(J_b\) and \(M_b\); but significantly longer \(\Sigma L_{\text{legs}}\) in \(M_g\) compared to \(J_g\) (Table 2).

Reproductive mass. Reproductive mass in \(M_g\) was on average 162.62 ± 25.20 (s.d) g, which comprised 11.49 ± 1.26 (s.d)% of \(M_b\).

Muscle measurements. In each of thirteen measured pelvic limb muscles (see Table 3 for abbreviations) a significant age × sex interaction was present in absolute mass (Fig. 1A, Table 2), which did not differ significantly between the sexes of the juvenile cohort, but was greater in \(M_g\) than in \(M_b\) (Table 2). Each muscle was also of similar absolute mass in \(J_g\) and \(M_g\), with the exception of the FCLP, which was greater in \(M_g\) than in \(J_g\). Furthermore, each absolute muscle mass was greater in \(M_b\) than in \(J_b\). A significant age × sex interaction was also present in the relative mass (%\(M_b\)) of each pelvic limb muscles (Fig. 1B, Table 2). In the mature cohort, the relative mass of each muscle was greater in \(M_g\) than in \(M_b\). In the juvenile cohort, however, the majority of muscles were similar in relative mass between the sexes, with the exceptions

cohort	sex	N	Mbody (kg)	\(L_{\text{fem}}\) (mm)	\(L_{\text{tb}}\) (mm)	\(L_{\text{tarso}}\) (mm)	\(\Sigma L_{\text{legs}}\) (mm)
juvenile Female	7	1.05 ± 0.03	71.06 ± 2.03	110.01 ± 2.30	76.76 ± 1.37	257.82 ± 5.08	
juvenile Male	5	1.10 ± 0.10	77.95 ± 2.13	120.02 ± 4.57	86.80 ± 2.46	284.78 ± 8.64	
mature Female	7	1.43 ± 0.02	71.76 ± 1.59	108.86 ± 1.22	76.57 ± 0.87	258.10 ± 2.44	
mature Male	5	1.92 ± 0.04	85.92 ± 1.74	129.29 ± 2.19	93.15 ± 2.36	308.37 ± 6.06	

Table 1. Mean (± s.e.m) morphological measurements. \(L_{\text{fem}}\), femur length; \(L_{\text{tb}}\), tibiotarsus length; \(L_{\text{tarso}}\), tarsometatarsus length; \(\Sigma L_{\text{legs}}\), sum of the hind limb bone lengths. Results of the two-way ANOVAs conducted to test for age and sex affects are in Table 2.
of the IC, FL, GL, FCLP and FMT, in which it was greater in J♀ than in J♂ (the opposite sexual dimorphism to the mature cohort). Since the females of the two age cohorts did not differ significantly in the absolute masses of their individual muscles, the lower %M₄ of the muscles in M₄ relative to M₄ was due to the greater the M₄ of the M₄ relative to M₃ (attributed to increased mass in the body outside of the pelvic limb) and linked to gravidity.

Table 2. Results of the two-way ANOVAs performed to determine whether age and sex affect the morphological measurements. The adjusted R² values are reported from the final models.

Measurement	Final model
M₄	age (F₁,₄₁ = 46.53, P < 0.001), sex (F₁,₄₁ = 24.48, P < 0.001), age × sex (F₁,₄₁ = 33.83, P < 0.001) R² = 0.84
I₄₃	age (F₁,₄₁ = 3.46, P = 0.077), sex (F₁,₄₁ = 26.78, P < 0.001) R² = 0.55
I₃	age (F₁,₄₁ = 1.35, P = 0.259), sex (F₁,₄₁ = 29.69, P < 0.001) R² = 0.56
I₀₃	age (F₁,₄₁ = 2.00, P = 0.172), sex (F₁,₄₁ = 53.54, P < 0.001) R² = 0.70
S_I₄₃	age (F₁,₄₁ = 3.36, P = 0.002), sex (F₁,₄₁ = 48.85, P = 0.048) R² = 0.70
log(M₄)	age (F₁,₄₁ = 22.56, P < 0.001), sex (F₁,₄₁ = 22.45, P < 0.001), age × sex (F₁,₄₁ = 22.87, P < 0.001) R² = 0.79
M₄	age (F₁,₄₁ = 37.64, P < 0.001), sex (F₁,₄₁ = 26.57, P < 0.001), age × sex (F₁,₄₁ = 36.63, P < 0.001) R² = 0.84
M₀₄₃	age (F₁,₄₁ = 17.23, P < 0.001), sex (F₁,₄₁ = 28.54, P < 0.001), age × sex (F₁,₄₁ = 18.35, P < 0.001) R² = 0.78
M₄₃	age (F₁,₄₁ = 28.88, P < 0.001), sex (F₁,₄₁ = 12.85, P = 0.003), age × sex (F₁,₄₁ = 15.14, P < 0.001) R² = 0.74
M₀₄₃	age (F₁,₄₁ = 31.84, P < 0.001), sex (F₁,₄₁ = 42.15, P < 0.001), age × sex (F₁,₄₁ = 25.08, P < 0.001) R² = 0.85
M₄₃	age (F₁,₄₁ = 19.19, P < 0.001), sex (F₁,₄₁ = 26.21, P < 0.001), age × sex (F₁,₄₁ = 17.15, P < 0.001) R² = 0.78
M₀₄₃	age (F₁,₄₁ = 24.33, P < 0.001), sex (F₁,₄₁ = 41.55, P < 0.001), age × sex (F₁,₄₁ = 23.40, P < 0.001) R² = 0.83
M₄	age (F₁,₄₁ = 46.40, P < 0.001), sex (F₁,₄₁ = 43.80, P < 0.001), age × sex (F₁,₄₁ = 47.14, P < 0.001) R² = 0.89
log(M₄₃)	age (F₁,₄₁ = 20.49, P < 0.001), sex (F₁,₄₁ = 24.62, P < 0.001), age × sex (F₁,₄₁ = 14.84, P < 0.001) R² = 0.77
M₄	age (F₁,₄₁ = 21.71 P < 0.001), sex (F₁,₄₁ = 25.88, P < 0.001), age × sex (F₁,₄₁ = 31.50, P < 0.001) R² = 0.81
M₄₃	age (F₁,₄₁ = 7.60, P = 0.015), sex (F₁,₄₁ = 16.84, P < 0.001), age × sex (F₁,₄₁ = 10.73, P = 0.005) R² = 0.65
M₀₄₃	age (F₁,₄₁ = 5.96, P = 0.027), sex (F₁,₄₁ = 3.40, P = 0.085), age × sex (F₁,₄₁ = 7.06, P = 0.018) R² = 0.44
M₀₄₃	age (F₁,₄₁ = 32.23, P < 0.001), sex (F₁,₄₁ = 41.18, P < 0.001), age × sex (F₁,₄₁ = 33.75, P < 0.001) R² = 0.86
M₄₃	age (F₁,₄₁ = 1.98, P = 0.180), sex (F₁,₄₁ = 8.79, P = 0.010), age × sex (F₁,₄₁ = 20.70, P < 0.001) R² = 0.62
M₄₃	age (F₁,₄₁ = 9.77, P = 0.007), sex (F₁,₄₁ = 8.04, P = 0.013), age × sex (F₁,₄₁ = 25.31, P < 0.001) R² = 0.70
M₄₃	age (F₁,₄₁ = 1.08, P = 0.315), sex (F₁,₄₁ = 18.52, P < 0.001), age × sex (F₁,₄₁ = 14.46, P < 0.001) R² = 0.64
M₀₄₃	age (F₁,₄₁ = 14.39, P = 0.002), sex (F₁,₄₁ = 3.67, P = 0.074), age × sex (F₁,₄₁ = 18.48, P < 0.001) R² = 0.66
M₀₄₃	age (F₁,₄₁ = 0.03, P = 0.871), sex (F₁,₄₁ = 5.61, P = 0.032), age × sex (F₁,₄₁ = 5.21, P = 0.038) R² = 0.31
M₄₃	age (F₁,₄₁ = 0.13, P = 0.721), sex (F₁,₄₁ = 6.81, P = 0.020), age × sex (F₁,₄₁ = 10.16, P = 0.006) R² = 0.44
M₀₄₃	age (F₁,₄₁ = 1.58, P = 0.228), sex (F₁,₄₁ = 19.57, P < 0.001), age × sex (F₁,₄₁ = 10.87, P = 0.005) R² = 0.62
M₄₃	age (F₁,₄₁ = 5.33, P = 0.036), sex (F₁,₄₁ = 5.84, P = 0.029), age × sex (F₁,₄₁ = 25.44, P < 0.001) R² = 0.66
log(M₀₄₃)	age (F₁,₄₁ = 0.77, P = 0.395), sex (F₁,₄₁ = 12.40, P = 0.003), age × sex (F₁,₄₁ = 12.71, P = 0.003) R² = 0.56
M₄₃	age (F₁,₄₁ = 2.26, P = 0.154), sex (F₁,₄₁ = 15.48, P = 0.001), age × sex (F₁,₄₁ = 57.44, P < 0.001) R² = 0.80
M₀₄₃	age (F₁,₄₁ = 0.00, P = 0.970), sex (F₁,₄₁ = 8.76, P = 0.010), age × sex (F₁,₄₁ = 6.51, P = 0.022) R² = 0.41
M₄₃	age (F₁,₄₁ = 7.96, P = 0.014), sex (F₁,₄₁ = 6.62, P = 0.022), age × sex (F₁,₄₁ = 6.88, P = 0.020) R² = 0.54
M₀₄₃	age (F₁,₄₁ = 0.79, P = 0.388), sex (F₁,₄₁ = 10.57 P = 0.006), age × sex (F₁,₄₁ = 21.88, P < 0.001) R² = 0.64
Table 3. Pelvic limb muscles and their abbreviations and position on the limb.

Muscle	Abbreviation	Part of the limb
M. iliotibialis cranialis	IC	Proximal
M. iliotibialis lateralis (pre and post acetabularis)	IL	Proximal
M. iliotibialis	ILFB	Proximal
M. flexor cruris lateralis pars pelvica	FCLP	Proximal
M. flexor cruris medialis	FCM	Proximal
M. iliofemoralis	ITC	Proximal
M. femorotibialis lateralis	FL	Distal
M. puboischiofemoralis pars lateralis	PIFL	Proximal
M. puboischiofemoralis pars medialis	PIFM	Proximal
M. gastrocnemius pars lateralis	GL	Distal
M. gastrocnemius medialis	GM	Distal
M. iliobifurcalis	ILFB	Proximal
M. iliotibialis cranialis caput tibiale and femorale	TCT/F	Distal

Therefore, \(M_M \) had greater relative muscle masses than \(J_M \) associated with the increase in absolute muscle mass that occurs with male sexual maturation. In opposition, \(J_M \) had lower relative muscle masses than \(J_M \) associated with the lack of change in muscle mass but increase in reproductive mass that occurs with female sexual maturation.

Maximum sustainable speed. Juvenile leghorns of both sexes reached a \(U_{\text{max}} \) of 0.83 m s\(^{-1}\). In comparision, the \(U_{\text{max}} \) of \(M_M \) (1.39 m s\(^{-1}\)) exceeded that of \(M_J \) (1.11 m s\(^{-1}\)) by 25%. Mature leghorns of each sex achieved greater \(U_{\text{max}} \) than the juveniles: the \(U_{\text{max}} \) of \(M_J \) exceeded that of \(J_J \) by 67% and the \(U_{\text{max}} \) of \(M_J \) exceeded that of \(J_J \) by 34%.

Standing metabolic rates. Mass-specific \(P_{\text{net}} \) during quiet standing was similar in the males and females within each cohort but was greater in the juvenile compared to sexually mature cohort by \(-2 \text{ W kg}^{-1}\) (Table 4).

Metabolic rates during locomotion. The incremental increase in gross mass-specific \(P_{\text{net}} \) (Fig. 2A) with \(U \) was greater in males compared to females in both cohorts (Table 4) and also greater in the mature compared to the juvenile cohort (Table 4). Following the subtracting of standing-\(P_{\text{net}} \) from gross locomotor \(P_{\text{net}} \) to calculate net-\(P_{\text{net}} \) (Fig. 2B), the same statistical differences were true. Therefore, faster speeds were more metabolically expensive for males than for females, and more expensive for mature, than for juvenile birds.

\(\text{CoT}_{\text{tot}} \) (Fig. 2C) decreased curvilinearly as a function of \(U \) in all four groups. The rate of decrease in \(\text{CoT}_{\text{tot}} \) with \(U \), however, was greater in the juvenile than in the mature cohort (Table 4). The rate of decrease was also greater in females than in males. \(\text{CoT}_{\text{tot}} \) (Fig. 2D) also decreased curvilinearly with \(U \) in all but \(M_M \) in which it was invariant with speed.

Kinematics. Each kinematic parameter responded (increased or decreased) to increases in \(U \) at a similar rate in all of the four bird groups, unless otherwise stated below.

Duty factor (DF, the relative contribution of the stance phase to the stride period) decreased linearly with \(U \). A significant age \(\times \) sex interaction was present in DF (Fig. 3A) due to DF being greater in males than in females (<1%) in the juvenile cohort but greater in females than in males in the mature cohort (by 2%) (Table 4).

Stance duration (\(t_{\text{stance}} \)) decreased curvilinearly with \(U \) at a similar rate in all bird groups (Fig. 3B, Table 4). \(t_{\text{stance}} \), was greater in males than in females by 0.03 s in the juveniles and by 0.04 s in the mature birds; however, no significant variety \(\times \) sex interaction in \(t_{\text{stance}} \) was identified (Table 4). Much smaller, but significant differences were also observed between the age cohorts, with \(t_{\text{stance}} \) being slightly greater in the juvenile compared to the mature group.

Swing duration (\(t_{\text{swing}} \)) also decreased curvilinearly with \(U \) and at the same rate in all birds groups; however, \(t_{\text{swing}} \) (the intercept) was greater in males compared to females at any given \(U \) by 0.02 s in the juveniles, and by 0.04 s in the mature birds (Fig. 3C, Table 4). A significant age \(\times \) sex interaction was identified in \(t_{\text{swing}} \) as the sex difference was greater in the mature compared to the juvenile cohort. The intercept was lower in \(M_M \) relative to \(J_J \) and higher in \(M_J \) relative to \(J_J \). Therefore, the sexes of the mature cohort deviate in \(t_{\text{swing}} \) from their corresponding sexes in the juvenile cohort in different ways.

Stride frequency (\(f_{\text{stride}} \)) increased with \(U \) and the trend was best described by a power function (Fig. 3D, Table 4). Sex significantly influenced \(f_{\text{stride}} \) (Table 4), which was 0.22 Hz and 0.23 Hz faster in females than in males across all \(U \) in the juvenile and mature cohorts respectively. Again, smaller but significant differences in \(f_{\text{stride}} \) were associated with age, which were greater in the mature compared to the juvenile cohort (by 0.06 in females and 0.05 in males).

Stride length (\(l_{\text{stride}} \)) increased with \(U \) and the trend was also best described by a power function (Fig. 3E, Table 4). Strides were 0.07 m longer in males compared to females, and 0.02 m longer in the juvenile compared to the mature cohort across all \(U \).
Discussion
Here we report the first comparison of the locomotor energetics, kinematics and morphology of a species just prior to and just after the onset of sexual maturity. In comparison to a cohort of juvenile white leghorn chickens, whose sexes were similar in body form, a sexually mature cohort showed strong male-biased sexual size dimorphism, greater limb length and relative muscle mass in males and greater reproductive mass in females. Despite the large ontogenetic differences in hind limb skeletal muscle mass in males and reproductive mass in females (assumed negligible in males), no age × sex interactions in locomotor energetics were identified. The lower incremental metabolic cost of locomotion in females relative to males, common to both juvenile and sexually mature leghorns must, therefore be due to sexual dimorphisms in physiology than precede the onset of sexual maturity. An age × sex interaction was identified in only U_{max} and two kinematics parameters (t_{swing} and DF).

The sex differences in maximum performance can be linked to the measured sex differences in morphology. Maximum running speed scales with positive allometry against M_b^{31}; therefore the greater U_{max} in mature, relative to juvenile, birds and in mature males relative to females, is expected simply because of greater body size. However, the lack of sex difference in U_{max} in the juveniles (which were also dimorphic in leg length, but to a lesser degree) suggests a more important role of muscle in determining U_{max} than leg length. Muscle physiological cross sectional area (largely influenced by muscle mass) is directly proportional to the maximum force and power that a muscle can produce32. The greater volumes of the hind limb skeletal muscles in M♂ relative to the other three chicken groups, therefore, likely contributed to their greater U_{max} (which would require greater peak muscle forces).

U_{max} is not only dependent upon the maximum f_{stride} and l_{stride} that the birds can achieve, but also the ability of the birds to sustain the speed aerobically (~5min of locomotion is required for respirometry measurements). A lower U_{max} in juveniles is consistent with previous findings from ontogenetic comparisons, whereby stamina is usually lower in juvenile forms24. The greater U_{max} in M♂ may be indicative of a greater aerobic capacity. In a study on red jungle fowl, maximum rate of oxygen consumption $(\dot{V}_{\text{O}_2,\text{max}})$ in mature males exceeded that of mature females, but no sex difference was identified in chicks33. Therefore, it seems likely that with the onset of sexual maturity there are physiological changes in males, which increase their capacity for aerobic respiration in the muscles. There are a number of levels at which this physiological difference could manifest. For example, in the red jungle fowl, $\dot{V}_{\text{O}_2,\text{max}}$ correlated with cecum, heart, pectoralis and hind limb skeletal muscle masses as well as pectoralis citrate synthase activity, indicative of system wide (peripheral and central organ) specialisation (symmorphosis)34.

Although there is evidence amongst vertebrate species for reductions in locomotor performance with pregnancy/gravidity$^{35-40}$, U_{max} was actually greater in M♀ than in J♀. This is despite the two age cohorts of female sharing similar absolute limb lengths and muscle mass, whilst only M♀ were gravid and were also 1.36-fold heavier than J♀. Age differences in U_{max} in female leghorns are, therefore, likely explained by differences in aerobic capacity that are not linked to muscle quantity. Interestingly, in the red jungle fowl, $\dot{V}_{\text{O}_2,\text{max}}$ did not correlate with the mass or enzyme capacities of skeletal muscles (peripheral organs) but was correlated with haematocrit and the mass of the large intestine (a central organ)34.

The sex differences in most of the kinematic parameters were common to both cohorts. This is likely due to the fact that the juvenile cohort also exhibited some sexual size dimorphism in hind limb skeletal length. t_{stance} and l_{stance} were greater, and f_{stride} lower, in larger males relative to smaller females, as would be expected when
measured secondary sex characteristics. The distribution and placement of additional mass on the body have
differed from what would be expected based on interspecific comparison. The sex difference in DF in
energetics and kinematics.

Table 4. Results of the final linear model outputs performed to investigate age and sex related differences
in energetics and kinematics. The adjusted R^2 values are reported from the final models.

c| Parameter | Final model | Coefficients |
|------------|-------------|--------------|
| Standing (W kg$^{-1}$) | $\log P_{\text{net}} = 53.25 + 0.16 \times \text{age} - 9.19 \times \text{sex}$ | $R^2 = 0.33$ |

$\log P_{\text{net}}$ (W kg$^{-1}$) $\log \text{Net-M} = 50.93 + 0.57 \times \text{age} - 8.63 \times \text{sex}$, $R^2 = 0.35$

$log \text{CoT}_{\text{net}}$ (1 kg$^{-1}$ m$^{-1}$) $\log \text{CoT}_{\text{net}} = 462.05 + 0.57 \times \text{age} - 10.60 \times \text{sex}$, $R^2 = 0.30$

$log \text{CoT}_{\text{net}}$ (1 kg$^{-1}$ m$^{-1}$) $\log \text{CoT}_{\text{net}} = 25.39 + 0.57 \times \text{age} - 8.28 \times \text{sex}$, $R^2 = 0.82$

DF $\log \text{DF} = 138.38 + 0.02 \times \text{age} - 0.15 \times \text{sex}$, $R^2 = 0.24$

$log \text{str} (s)$ $\log \text{str} = 1322.38 + 0.87 \times \text{sex}$, $R^2 = 0.93$

$log \text{sw} (s)$ $\log \text{sw} = 98.18 + 0.35 \times \text{sex}$, $R^2 = 0.59$

$log \text{fstride}$ (Hz) $\log \text{fstride} = 1252.22 + 0.23 \times \text{sex}$, $R^2 = 0.93$

$log \text{fstride}$ (m) $\log \text{fstride} = 849.43 + 0.60 \times \text{sex}$, $R^2 = 0.93$

Comparing a larger animal with a smaller one (based on interspecific comparison). The sex difference in DF in
the mature cohort (greater in females than in males) differed from what would be expected based on interspe-
cific differences associated with size but can be attributed to mechano-physiological constraints imposed by the
measured secondary sex characteristics. The distribution and placement of additional mass on the body have
important consequences for locomotion. For example, in manipulative studies in which masses were added to the distal limbs of birds, a corresponding increase in t_{swing} has been reported (e.g. a 5% M_4 load to the distal limb caused a ~16% increase in t_{swing} in the barnacle goose43). The greater muscle mass on the hind limbs (proximal and distal) and increase in leg length of M_4 relative to that of I_4, may increase limb inertia, which might be expected to increase t_{swing}. Muscle mechanical work requirements are lower, the shorter the duration of the stance43–45. It is also possible that males decrease their duty factors at sexual maturity in order to minimize muscle mechanical work demands, which would be expected to increase with the rise in muscle and bone mass.

In opposition to the ontogenetic differences in t_{swing} found in males, t_{swing} was faster in M_3 than in I_2. The two groups shared a similar quantity of muscle mass but M_3 possessed greater reproductive mass and overall body mass to support than I_2. Therefore, if all kinematic parameters were identical between M_3 and I_2, peak external forces and muscle mechanical work and power might each be expected to be greater in M_3 compared to I_2. One potential reason for a faster t_{swing} in gravid mature females might be to increase the relative contribution of t_{stance} to the stride period (DF was greater in M_3 than all other bird groups), which would allow more time for generating sufficient muscle force to support the increase in M_3. A greater DF for a given U would decrease peak external forces, which may be important in hens, due to a reduction in bone strength associated with the utilisation of medullary bone calcium in egg-shell formation46–47. Furthermore, a greater DF decreases muscle mechanical power requirements48. The ontogenetic differences in t_{swing} in female leghorns may, therefore, also represent a power minimizing mechanism. Loads added to the backs of birds, which increase the amount of body weight that the stance muscles must support, are not always associated with changes in kinematics parameters42,48. In a study by Marsh et al.49, however, guineafowl (Numida meleagris) increased their DF when carrying back loads. The location of the added load to the females during gravidity, however, has not yet been mimicked in any load carrying studies in birds. Pregnant humans50 and wallabies carrying young in the pouch51 are, like the leghorns here, known to increase DF with pregnancy.

Conclusion

Contrary to our hypothesis that sex differences in locomotor energy metabolism would be associated with sexual maturation in white leghorns; lower incremental metabolic costs of locomotion in females relative to males, were also found in juveniles. Sexual maturation in white leghorns is associated with large increases in hind limb skeletal muscle mass in males and reproductive tissue mass in females. Differences in the location of the additional tissues on the body following sexual maturity differentially impact upon the duration of the swing phase of the limb of the sexes. We suggest that the birds modulate the swing, and hence duty factor, in order to minimize muscle mechanical work (males) and mechanical power and/or peak force (females). A role of secondary sex characteristics in influencing maximum performance in males was indicated by maximum sustainable speeds 67% greater in the mature compared to the juvenile cohort. Furthermore, no evidence was found in females for a constraint of gravidity on maximum sustainable speed. Unlike broiler chickens, which experience locomotor difficulties as they develop the muscle mass for which they were artificially selected, leghorns show a greater capacity for sustained locomotion with the onset of egg-laying.

Methods

Animals. Metabolic measurements from M_4 and M_5 (≥20-week-old) were taken from Rose et al.30. Juvenile (14–16 weeks-old) white leghorns (J_4; $N = 5$; $M_4 = 1.10 \pm 0.10 \text{ kg, mean } \pm \text{ s.e.m}$) and J_5 ($N = 7$; $M_5 = 1.05 \pm 0.03 \text{ kg, mean } \pm \text{ s.e.m}$) were obtained from the same local suppliers and housed under the same conditions in the University of Manchester’s animal unit with the same feeding regimes as the birds in Rose et al.30. None of the J_4 were crowing or exhibiting aggressive behaviour and J_5 were not gravid when examined post mortem (whilst the opposite was true for the mature cohort30), confirming that the birds had not reached sexual maturity. Experimental procedures were carried out under ethical approval from the University of Manchester Ethics Committee and in accordance with the Animals (Scientific Procedures) Act 1986, covered by a UK Home Office project licence (40/3549) held by Dr Codd.

Respirometry. Metabolic rates were measured from the birds at rest (standing) and during locomotion on a motorised treadmill (Tanturi T60, Turku, Finland). An open-flow respirometry set up (described in Rose et al.30,32) was used to measure rates of O_2 consumption (V_{O_2}, ml min$^{-1}$) and CO_2 production (V_{CO_2}, ml min$^{-1}$). The chamber (97.5 × 53.5 × 48.0 cm) within which the birds exercised and the main flow rate (250 L min$^{-1}$) directed through it were identical to those for the sexually mature leghorns in Rose et al.30. Juvenile respiratory exchange ratios (RERs: V_{CO_2}/V_{O_2}) were similar to those reported for the mature cohort in Rose et al.30. Thermal equivalents53 of the RERs and body mass were used to convert V_{O_2} into mass-specific P_{O_2} (W kg$^{-1}$). Metabolic rates during quiet standing were subtracted from locomotor metabolic rates to determine the net metabolic cost of locomotion surplus to maintenance and postural costs. The cost of transport (CoTsub, J kg$^{-1}$ m$^{-1}$) was calculated as P_{O_2}/U.

The juveniles were exercised at speed intervals, up to the maximum that they could sustain: 0.28, 0.42, 0.56, 0.70, 0.94, 1.05 ml min$^{-1}$, which would allow more time for generating sufficient muscle force to support the increase in M_3. A greater DF for a given U would decrease peak external forces, which may be important in hens, due to a reduction in bone strength associated with the utilisation of medullary bone calcium in egg-shell formation46–47. Furthermore, a greater DF decreases muscle mechanical power requirements48. The ontogenetic differences in t_{swing} in female leghorns may, therefore, also represent a power minimizing mechanism. Loads added to the backs of birds, which increase the amount of body weight that the stance muscles must support, are not always associated with changes in kinematics parameters42,48. In a study by Marsh et al.49, however, guineafowl (Numida meleagris) increased their DF when carrying back loads. The location of the added load to the females during gravidity, however, has not yet been mimicked in any load carrying studies in birds. Pregnant humans50 and wallabies carrying young in the pouch51 are, like the leghorns here, known to increase DF with pregnancy.

Kinematics. Kinematics parameters were obtained using the exact protocol used in Rose et al.30,32. All trials were filmed with a high-speed (100 frames s$^{-1}$) video camera (HDR-XR520VE, Sony, Japan) from the side. The tip of digit 3 on the foot closest to the camera was tracked over ~10 strides using Tracker software (v. 4.05, Open Source Physics). Temporal data were used to calculate $f_{\text{stride}}, l_{\text{stride}} (U/f_{\text{stride}}), t_{\text{swing}}, t_{\text{stance}}$ and DF. Hip heights were not measured.
Morphological measurements. Juvenile carcasses were scanned using computed tomography (CT) at the Small Animal Teaching Hospital at the University of Liverpool. Three-dimensional reconstruction of full skeletons was carried out by image segmentation and meshing in 3D Slicer (www.slicer.org). MeshLab (www.meshlab.sourceforge.net) was subsequently used to measure lengths of the femur, tibiotarsus and tarsometatarsus from the

Figure 2. Mean mass-specific energetics parameters versus treadmill speed (U). (A) Metabolic power (P_{met}). (B) Net- metabolic power (Net $- P_{\text{met}}$). (C) Total cost of transport. (D) Net cost of transport. Data points are means (± s.e.m).
3D skeletal models. Five frozen carcasses from each of the bird groups, excluding J♂ (N = 4), were defrosted for 24 hours prior to dissection. Thirteen major skeletal muscles (Table 3) were identified based on a description by Paxton et al.9 and dissected from the right pelvic limb and weighed using electronic scales (± 0.01 g).

Statistical analyses. Only data from the range of speeds utilised by all birds (i.e. up to the \(U_{\text{max}} \) of the juvenile birds, 0.83 m s\(^{-1} \)) were included in statistical analyses. All data from the mature birds are presented in the graphs, however, to show their capacities for \(U_{\text{max}} \) and associated kinematics.

All statistical analyses were performed using the car package version 2.0–12\(^{24} \) on R 2.14.0 GUI 1.42 Leopard build 64-bit\(^{25} \). Shapiro–wilk tests were performed on the standardised residuals of the models to ensure that the data approximated a normal distribution. Where the data did not conform to a normal distribution, data were
log transformed. Data were also log transformed if it improved the Akaike’s information criterion of the models. Age-cohort and sex were included as fixed factors in all models. Two-way analyses of variance (ANOVA) were used to test for differences in morphological measurements. Linear models were conducted to test for differences in the relationships between energetic or kinematic variables and $U, U´$ was included as a covariate in the models. All potential interaction terms were considered in all primary models before a step-wise backward deletion of non-significant interaction terms was conducted. The final model outputs are reported. Best-fit lines were obtained using the effect sizes from the coefficients tables output by the statistical models and were back-transformed where data had been log-transformed.

References

1. Fumihito, A. et al. One Subspecies of the Red Junglefowl (Gallus-Gallus Gallus) Suffices as the Matriarchic Ancestor of All Domestic Breeds. Proc Natl Acad Sci USA 91, 12505–12509, doi: 10.1073/pnas.91.26.12505 (1994).
2. Rawu, W. M., Kanis, E., Noordhuizen-Stassen, E. N. & Grommers, F. J. Undesirable side effects of selection for high production efficiency in farm animals: a review. Livest Prod Sci 56, 15–33 (1998).
3. Tickle, P. G., Paxton, H., Rankin, J. W., Hutchison, J. R. & Codd, J. R. Anatomical and biomechanical traits of broiler chickens across ontogeny. Part I. Anatomy of the musculoskeletal respiratory apparatus and changes in organ size. PeerJ 2, doi: 10.7717/peerj.432 (2014).
4. Knowles, T. G. et al. Leg disorders in broiler chickens: prevalence, risk factors and modern prevention. Plos One 3, e1545, doi: 10.1371/journal.pone.0001545 (2008).
5. Paxton, H., Daley, M. A., Corr, S. A. & Hutchison, J. R. The gait dynamics of the modern broiler chicken: a cautionary tale of selective breeding. The Journal of experimental biology 216, 3237–3248, doi: 10.1242/jeb.080309 (2013).
6. Reiter, K. & Bessei, W. Gait analysis in laying hens and broilers with and without leg disorders. Equine Vet. J. Suppl. 23, 110–112 (1997).
7. Corr, S. A., McConquodale, C. C., McGovern, R. E., Gentle, M. J. & Bennett, D. Evaluation of ground reaction forces produced by chickens walking on a force plate. Am. J. Vet. Res. 64, 76–82 (2003).
8. Caplen, G. et al. Kinematic Analysis Quantifies Gait Abnormalities Associated with Lameness in Broiler Chickens and Identifies Evolutionary Gait Differences. Plos One 7, doi:10.1371/journal.pone.0040800 (2012).
9. Paxton, H., Anthony, N. B., Corr, S. A. & Hutchison, J. R. The effects of selective breeding on the architectural properties of the pelvic limb in broiler chickens: a comparative study across modern and ancestral populations. J Anat 217, 153–166, doi: 10.1111/j.1469-7580.2010.01251.x (2010).
10. Talaty, P. N., Katanabf, M. N. & Hester, P. Y. Bone mineralization in male commercial broilers and its relationship to gait score. Poultry Sci 89, 342–348, doi:10.3382/ps.2009-03832 (2010).
11. Paxton, H., Tickle, P. G., Rankin, J. W., Codd, J. R. & Hutchison, J. R. Anatomical and biomechanical traits of broiler chickens across ontogeny: Part II. Body segment inertial properties and muscle architecture of the pelvic limb. PeerJ 2, doi: 10.7717/peerj.473 (2014).
12. Weiner, J. Physiological Limits to Sustainable Energy Budgets in Birds and Mammals - Ecological Implications. Trends Ecol Evol 7, 384–388 (1992).
13. Stearns, S. C. Trade-Offs in Life-History Evolution. Funct Ecol 3, 259–268 (1989).
14. Ricklefs, R. E. Patterns of Growth in Birds. 5. Comparative-Study of Development in the Starling, Common Tern, and Japanese Quail. Auk 96, 10–30 (1979).
15. Ricklefs, R. E. Adaptation, Constraint, and Compromise in Avian Postnatal-Development. Biol. Rev. Camb. Philos. Soc. 54, 269–290 (1979).
16. Caplen, G. et al. QTL analysis of a red junglefowl x white leghorn intercross reveals trade-off in resource allocation between behavior and production traits. Behav Genet 32, 423–433 (2002).
17. Mitchell, H. H., Card, L. E. & Hamilton, T. S. A technical study of the growth of White Leghorn chickens. Illinois agricultural experiment station bulletin 367, 81–139 (1931).
18. Rose, K. A., Nudds, R. L., Butler, P. J. & Codd, J. R. Sex differences in gait utilization and energy metabolism during terrestrial locomotion in two varieties of chicken (Gallus gallus domesticus) selected for different body size. Biol Open 4, 1306–1315, doi: 10.1242/bio.013094 (2015).
19. Rose, K. A., Nudds, R. L., Butler, P. J. & Codd, J. R. Sex differences in gait utilization and energy metabolism during terrestrial locomotion in two varieties of chicken (Gallus gallus domesticus) selected for different body size. Biol Open, doi:10.1242/bio.013094 (2015).
20. Garlicd, T. The relationship between maximal running speed and body-mass in terrestrial mammals. J Zool 199, 157–170 (1983).
21. Lieber, R. L. & Friden, J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23, 1647–1666 (2000).
22. Chappell, M. A., Zuk, M. & Johnsen, T. S. Repeatability of aerobic performance in Red Junglefowl: Effects of ontogeny and nematode infection. Funct Ecol 10, 578–583 (1996).
23. Hammond, K. A., Chappell, M. A., Cardullo, R. A., Lin, R. S. & Johnsen, T. S. The mechanistic basis of aerobic performance variation in red junglefowl. J Exp Biol 203, 2053–2064 (2000).
24. Brischoux, F., Bonnet, X. & Shine, R. Conflicts between feeding and reproduction in amphibious snakes (sea kraits, Laticauda spp.). Austral. Ecol. 36, 46–52 (2011).
How to cite this article: Rose, K. A. et al. Ontogeny of sex differences in the energetics and kinematics of terrestrial locomotion in leghorn chickens (Gallus gallus domesticus). Sci. Rep. 6, 24292; doi: 10.1038/srep24292 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/