Fibre-reinforced concrete is a short-fibre composite material, whose properties are significantly dependent on the orientation of the mixed fibres. As a starting point, the fibres are assumed to be uniformly distributed and have a uniform orientation. However, in reality, they have a non-uniform distribution owing to various factors. Such deviations in the orientation may have a significant effect on the material parameters, both favourable and unfavourable. In this study, the orientation factors determined based on the mixing models reported in the literature are compared with the results of experimental tests performed in the laboratory, and the effects of the formwork and the pouring methods used on the orientation of both steel and synthetic macrofibres are investigated. Based on the results of the study, the orientation of the fibres (both, steel and macro synthetic) significantly depends on the pouring method, which considerably influences the material parameters of fibre-reinforced concrete.

Keywords: fibre reinforced concrete, mixing model, steel fibre, synthetic macro fibre

1. INTRODUCTION

Fibres mixed in concrete, which is a quasibrittle material, can improve several properties such as the fracture energy and ductility, which must be taken into account during the design stage (Gopalaratnam et al., 1991; Balaguru and Shah, 1992). The residual flexural strength of materials is measured using the three-point or four-point bending beam test, such as the EN 14651 (EN 14651, 2007) or ASTM C-1609 test (ASTM C-1609, 2019), respectively. The size and cross-section of the beam used depends on the standard employed. However, the most common cross-sectional dimensions are 150 × 150 mm². The residual flexural strength primarily depends on the number and locations of the fibres on the crack surfaces. However, other factors, such as the fibre content (i.e., number of fibres added), geometry of the fibres, and the homogeneity of the mix also have an effect. The number of fibres intersecting the cross-section is a key parameter. Romualdi and Mandel (1964) and later Naaman (1972) proposed expressions for determining this number while Krenchel (1975) introduced the orientation factor to characterize the fibre orientation. Assuming ideal mixing, the orientation factor should be 0.5 (Stroeven, 1978).

However, several factors can affect the fibre orientation, and the most important one is probably the wall effect. There have been several studies on the determination of the factors that affect the fibre orientation, including the wall effect (Kameswara Rao, 1979; Stroeven 1991, 1999; Soroushian and Lee, 1990; Hoy, 1998; Kooiman, 2000; Dupont and Vandewalle, 2005; Lee, Cho and Vecchio, 2011; Ng, Foster and Htut, 2012). During the vibration and compaction of concrete, the fibre orientation will change (Soroushian and Lee, 1990; Edgington and Hannant, 1972; Stroeven, 1979; Toutanji and Bayasi, 1998; Stahli, Custer, and van Mier, 2008). Zerbino et al. (2012) investigated the orientation of steel fibres in self-compacted concrete elements, such as slabs, walls, and beams, and so did Sarmiento et al. (2012), who compared the results of numerical calculations with those of tests performed on fibre-reinforced concrete (FRC) beams. The wall effect in the case of synthetic macrofibres is different from that for steel fibres because of their higher stiffness; steel fibers rotate when they come into contact with the wall while synthetic ones bend. In contrast, Oh, Kim, and Choi (2007) did not take this effect into account in their model, while Alberti (2017) and Juhász (2018a, 2018b) suggested a method for considering it during modelling.

Because of these effects, the orientation of the fibres will not be uniform. Thus, the number of fibres that intersect the cross-section will also change. In the case of beam tests performed on a relatively small cross-sectional reference area, the residual flexural strength will exhibit a wide distribution, owing to which the values of the designed and actual parameters will be lower than required (Bernard, 2013). This can lead to exaggerated safety assessment results and uneconomical designs. Thus, the number of fibres intersecting the cross-section is an important parameter that must be determined with precision. However, few standards and guidelines exist on how to do so (Juhász, 2019).

The Italian CNR-DT guidelines (2006) consider the orientation in their introduction, drawing attention to the fact that the orientation of the fibres depends primarily on the pouring method used and has a determining effect on...
the properties of the concrete. However, they do not take it into account while evaluating the material parameters. In contrast, the RILEM TC-162 (Vandewalle et al., 2003) guidelines do not consider the orientation at all. On the other hand, the Austrian ÖVBB Richtlinie Faserbeton guidelines (2008) for hybrid materials (FRC with conventional steel bar reinforcement) and slab-type elements (those with \(b > 5h \) and \(bh > 1.0 \text{ m}^2 \), where \(b \) is the width and \(h \) is the height of the elements) suggest that the residual flexural strength increases by a factor of \(\eta = 1.4 \). The reason for this increase is not discussed. However, based on the geometrical parameters, it is likely that this increase is due to the fibre orientation. Section 6.5.7 of the fib Model Code (2013) is devoted to the effects of the fibre orientation. Factor \(K \) is defined as the orientation factor, and its value is 1.0 in general. The code also states that whether the orientation of the fibres is uniform or not must be verified experimentally. If the orientation is favourable, its effects may be taken into consideration; in case of unfavourable orientation, the orientation factor must be applied in the calculation. However, no methods for doing so are suggested.

In this paper, the various analytical mixing models and the corresponding orientation factors reported in the literature are reviewed. The effects of these orientation factors are compared with the results of experimental tests. These tests were performed on FRC beams produced using different pouring techniques and different types of fibres (steel and synthetic macrofibres), and the number of fibres intersecting the cross-section and the corresponding orientation factors are determined. Finally, the effects of the different pouring methods are compared based on the results of numerical calculations and experimental tests.

2. ANALYTICAL MIXING MODELS

The number of fibres that intersect the unit-area cross-section is the basis for most material models that consider the fibres discretely. These model include the variable engagement model (Voo and Foster, 2003), the diverse embedment model (Lee, Cho, and Vecchio, 2011), the simplified diverse embedment model (Lee, Cho, and Vecchio, 2013), and the hybrid diverse embedment model (Chasioti, 2017). The orientation of the fibres is also a relevant parameter for evaluating experimental results. On the one hand, the quality of the mixing can be determined based on the fibre orientation (Dupont and Vandewalle, 2005), while on the other hand, the effect of the nonuniform distribution of the fibres on crack formation in the cross-section can also be considered (Juhász, 2013; Juhász, 2015). Numerous studies have examined the impact of mixing on the experimental results in the case of different types of elements (Zerbino et al., 2012; Sarmiento et al., 2012).

2.1. Method proposed by Romualdi and Mandel (1964)

Fibres parallel or nearly parallel to the tensile stress are effective in controlling cracks. Thus, corrections must be made for the fibres that are not oriented as desired. Romualdi and Mandel (1964) assumed that the ratio of the average of the projected lengths in a given direction to the total length is a suitable correction measure. The projection of a fibre in the \(x \)-direction such that the origin is the midpoint of the fibre and the orientation is defined using polar coordinates \(\alpha \) and \(\gamma \) can be given as follows:

\[
l_{fx} = l_f \cos \alpha \cos \gamma
\]

(1)

where \(l_f \) is the length of the fibre and \(\alpha \) and \(\gamma \) are the polar coordinates, as shown in Fig. 1.

Based on this, if a midpoint and length \(l_f \) as projected on the \(x \)-axis are given, along with a uniform distribution of \(\alpha \) and \(\gamma \), the average length of the fibres will be given by

\[
l_{fx,m,1} = \frac{\int_{0}^{\pi} \int_{0}^{\pi} l_f \cos \alpha \cos \gamma \, d\alpha \, d\gamma}{\left(\frac{\pi}{2} \right)^2} = 0.405 l_f
\]

(2)

Romualdi and Mandel derived the number of fibres intersecting the unit-area cross-section from the average distance of the midpoints of the fibres, as follows:

\[
n = \frac{l_{f,x,m,N}}{V} = 0.405 l_f \frac{N}{V}
\]

(3)

where \(n \) is the number of fibres intersecting the unit-area cross section \([/m^2]\) and \(N \) is the total number of fibres in volume \(V \).

2.2. Method proposed by Naaman (1972)

Naaman (1972) determined the number of fibres intersecting the cross-section based on a probability analysis. Consider a fibre whose midpoint lies on the \(x \)-axis (Fig. 2):

If the midpoint of the fibre is located at a distance smaller than \(0.5 l_f \), then the fibre will intersect the crack plane. The probability of this is the quotient of the surface areas of spherical cap \(S_f \) and half-sphere \(S \) drawn around the midpoint

![Fig. 1: Determining spatial distribution of fibres using polar coordinates \(\alpha \) and \(\gamma \)](image-url)
of the fibre, as shown in Fig. 2.

\[q_{\text{Naaman}} = \frac{S_1}{S} = \frac{0.5l_f - x}{0.5l_f} = 1 - \frac{2x}{l_f} \]

(4)

Considering the unit volume on both sides of the crack plane, the number of fibres intersecting the unit-area cross-section will be similar to that obtained using the expression for a uniform distribution in a sphere (Eq. 3):

\[n = 2 \int_{0}^{\frac{l_f}{2}} \left(1 - \frac{2x}{l_f}\right) \frac{N}{V} dx = \frac{N}{V} \left[1 - \frac{2x}{l_f}\right]_{0}^{\frac{l_f}{2}} = \frac{N}{V} \frac{0.5l_f}{l_f} \]

(5)

2.3. Orientation factor proposed by Krenchel (1975)

Let us assume that, in the ideal state, each fibre is perpendicular to the crack plane. Then, in the current case, each fibre will be aligned along the x-axis. Based on the volume fraction of the fibres, \(V_f \), which is the weight of the fibres in concrete [kg/m³] divided by the bulk density of the fibres [kg/m³], and the cross-sectional area of a single fibre, \(A_f \), the number of fibres intersecting cross-section \(A \) can be determined as:

\[n_i = \frac{V_f}{A_f} A \]

(6)

where \(n_i [-] \) represents the ideal number of fibres in cross-section \(A \).

Given that the orientation of the fibres would not be perpendicular to the crack plane in reality, Krenchel (1975) introduced the orientation factor:

\[\theta_{\text{Krenchel}} = \frac{n_a}{n_i} = n_a \frac{A_f}{V_f A} \]

(7)

where \(n_a \) is the number [pc] of fibres intersecting cross-section \(A \), as determined experimentally by counting the fibres in a cracked surface or sliced section.

Thus, it can be seen that the orientation factor proposed by Krenchel (1975) is similar to the factor for modifying the fibre length used by Romualdi and Mandel (1964) and Naaman (1972), whose value is 0.5 in case the fibre distribution is uniform (Stroeven, 1978).

2.4. Orientation factors suggested by Dupont and Vandewalle and proposed model

Dupont and Vandewalle (2005) used the cross-section dimensions recommended in RILEM TC-162 (Vandewalle et al., 2003) and investigated the influence of the wall effect on the orientation factors herein. They divided the cross-section of a beam into three zones in order to consider the effects of the formwork used: 1: undisturbed zone, 2: disturbed zone—one side of the mould, and 3: disturbed zone–two sides of the mould (corner) (Figure 3a). Steel fibres are rigid and thus would rotate when they come into contact with the formwork. The orientation factors proposed by Dupont and Vandewalle were subsequently modified by Juhász (2018b), who took into account the differences between rigid (steel) and flexible (synthetic) fibres. The different orientation factors are shown in Fig. 3.

\[\theta_1: 0.50 \]
\[\theta_2: 0.60 \]
\[\theta_3: 0.84 \]

[Fig. 3: Cross-section zones and orientation factors proposed by (a) Dupont and Vandewalle for steel fibres and Juhász for (b) steel and (c) synthetic fibres.]
The orientation factor for the entire cross-section can be calculated from the weighted mean:

$$\theta_T = \frac{1}{A} \sum_{i=1}^{n} A_i \theta_i$$ \hspace{1cm} (8)

where θ_T is the orientation factor of the entire cross-section, A_i is the area of cross-section zone i, A is the area of the entire cross-section, and θ_i is the orientation factor of zone i.

In the rest of the study, the orientation factors proposed by Juhász (2018b) for steel and synthetic fibres (see Figures 3(b) and (c)) are used.

3. LABORATORY TESTS

FRC beams with steel and synthetic macrofibres were produced using different pouring techniques. The contents of the two types of fibres were kept the same to allow for a comparison of the numbers of fibres intersecting the beam cross-sections. In the case of a high steel fibre content, the fibres would have a significant effect on each other’s movement; this, in turn, would affect their orientation as well (Juhász, 2018b; Kang et al., 2011; Czoboly, 2016). Thus, their content was limited to ~ 30 kg/m3. The composition of the concrete mix is listed in Table 1, while the fibre types used and their properties are listed in Table 2. The water/cement ratio was kept at 0.5, and the consistency of the concrete was F5.

Table 1: Composition of concrete mix
Component
Aggregate (4–8 mm)
Sand (0–4)
Microsilica
Cement (CEM I 42,5 R)
Water
Superplasticizer (Mapei SR1)

Table 2: Material properties of fibres used
Property
Base material
Tensile strength [MPa]
Elastic modulus [GPa]
Diameter/length [mm]
Anchorage
Fibres/kg
Content [kg/m3]
Content [fibre/m3]

The dimensions of the beams were $150 \times 150 \times 1000$ mm3, and they were produced using two different pouring methods. The first method (P1) was the one recommended in RILEM TC-162 (Vandewalle et al., 2003), while in the case of the second method (P2), the formwork was tilted at an angle of 45° during pouring and then set in the vertical position until the concrete had hardened. In addition, for the two pouring methods, the flow directions of the poured concrete were also different. For P1, it was perpendicular to the longitudinal axis of the beam while for P2, it was parallel to the axis. The two flow directions are denoted by arrows in Fig. 4. The formworks used were made from plastic-covered plywood, and form oil was applied prior to pouring of the concrete. In the case of pouring method P1, the formwork was open on one side along its length, while in the case of P2, the formwork was open at the endplate. After the pouring process, there was no need to subject the formworks to vibrations for compaction.

After the hardening of the concrete, the beams were cut into 50-mm slices, as shown in Fig. 5, and their surfaces were investigated. Fibres could be seen intersecting the cross-sections in the case of all the beams. As stated previously, the cross-sections were divided into different zones (see Fig. 3), and the numbers of intersecting fibres in these zones were determined. The research matrix is shown in Table 3. A typical cross-section of a steel-fibre-reinforced concrete beam is shown in Fig. 6.

Table 3: Research matrix
Fibre type
Steel
Steel
Synthetic macrofibres
Synthetic macrofibres

4. RESULTS

The results of the statistical analysis are listed in Table 4. During the analysis, the mean value of the number of intersecting fibres, its standard deviation, and coefficient of variation (CV) were determined. Then, the sample averages were analysed using Tukey’s biweight M-estimator and the Shapiro-Wilk normality test in order to determine whether the data were normally distributed.

The histograms of the numbers of fibres intersecting the
various cross-section zones as well as for the entire cross-section and the corresponding distributions are shown in Fig. 7. The data for the different pouring methods are shown in the same graphs for ease of comparison. The distribution was narrower in the case of larger surfaces. Thus, the CV was the smallest in the case of the entire cross-section. The distribution

Table 4: Results of statistical analysis

Sample name	Mean value	SD	CV (%)	M-estimator	Normality
P1-ST-Z1	33.526	15.485	46.19	29.264	0.011
P1-ST-Z2	31.894	10.159	31.85	31.526	0.673
P1-ST-Z3	5.907	2.683	45.42	5.484	0.097
P1-ST-TOT	71.328	23.102	32.39	67.756	0.045
P2-ST-Z1	24.842	11.177	44.75	21.052	0.000
P2-ST-Z2	18.618	8.306	44.62	16.763	0.003
P2-ST-Z3	3.407	1.930	56.65	3.281	0.149
P2-ST-TOT	46.868	16.542	35.29	40.515	0.045
P1-SY-Z1	37.157	8.958	24.11	35.859	0.033
P1-SY-Z2	32.671	6.237	19.09	34.310	0.020
P1-SY-Z3	8.000	4.170	52.13	6.875	0.001
P1-SY-TOT	77.828	11.493	14.77	76.661	0.211
P2-SY-Z1	16.657	7.213	43.30	16.035	0.270
P2-SY-Z2	23.921	6.085	25.44	23.613	0.960
P2-SY-Z3	6.263	2.409	38.48	6.059	0.534
P2-SY-TOT	46.842	11.336	24.20	47.194	0.309

Table 5: Comparison of test and analytical results

Pouring method	Zone	Test	Analytical	
		0 mean	θ mean	Difference mean
		0 M-est	θ M-est	Difference M-est

Steel FRC beams

Pouring method	Zone	Test	Analytical			
P1	Z1	0.625	0.545	0.498	-20.27	-8.66
	Z2	0.594	0.587	0.578	-2.73	-1.60
	Z3	0.440	0.409	0.84	+90.78	+105.53
	TOT	0.591	0.561	0.57	-3.50	+1.59
P2	Z1	0.463	0.392	0.498	+7.60	+26.97
	Z2	0.347	0.312	0.578	+66.63	+85.07
	Z3	0.254	0.245	0.84	+230.83	+243.53
	TOT	0.388	0.335	0.57	+46.87	+69.90
Total	Z1	0.544	-	0.498	-8.41	-
	Z2	0.471	-	0.578	+22.83	-
	Z3	0.347	-	0.84	+142.01	-
	TOT	0.489	-	0.57	+16.48	-

Synthetic FRC beams

Pouring method	Zone	Test	Analytical			
P1	Z1	0.693	0.668	0.5	-27.86	-25.16
	Z2	0.648	0.639	0.53	-18.15	-17.09
	Z3	0.674	0.512	0.84	+24.65	+63.95
	TOT	0.671	0.635	0.55	-18.07	-13.36
P2	Z1	0.311	0.299	0.5	+60.92	+67.36
	Z2	0.474	0.440	0.53	+11.79	+20.47
	Z3	0.528	0.452	0.84	+59.22	+86.03
	TOT	0.404	0.391	0.55	+36.12	+40.74
Total	Z1	0.502	-	0.5	-0.38	-
	Z2	0.561	-	0.53	-5.0	-
	Z3	0.601	-	0.84	+39.83	-
	TOT	0.538	-	0.55	+2.29	-
curves that passed the normality test are represented by solid lines while those that did not are represented by dashed lines.

The orientation factors were calculated from the mean values and the results of the M-estimator test. The values of the orientation factors were then compared with the analytical results. The orientation factors for all the beams (those fabricated using both the P1 method and the P2 method) were also determined and compared with the analytical results. These results are listed in Table 5.

Near the end plate of the formwork, the flow direction of the concrete changes, and the wall effect becomes more pronounced. To highlight this, the number of fibres intersecting the cross-section are shown along the longitudinal

Fig. 6: Typical cross-section of steel FRC beam: (a) complete cross-section with various zones marked and (b) higher-magnification image of cross-section.

Fig. 7: Histograms and corresponding distribution curves for numbers of fibres intersecting various cross-section zones and entire cross-section in case of steel and synthetic macrofibres (black columns and bold distribution curve: P1 (horizontal) pouring method and grey columns and thin distribution curves: P2 (inclined) pouring method).
owing to the end plates of the formwork (axis. At the ends of the beams, this effect is not as strong, orientation of the fibres is perpendicular to the longitudinal axis of the beam. Thus, the inclined pouring method (P2), the concrete flow direction is parallel to the longitudinal axis of the beam. Therefore, it can be assumed that the pouring method has a determining effect on the orientation of the incorporated fibres.

The flow of the concrete can explain these differences. In the flowing concrete matrix, the fibers are oriented horizontally (Soroushian and Lee, 1990; Stahli, and van Mier, 2007). In the case of method P1, the mean value (of the number of fibres intersecting the cross-section of the beams formed by method P2 were 34% and 39% lower, respectively, that those in the case of the beams formed using method P1. A similar difference was also observed in the case of the different cross-section zones as well as between the zones and the total cross-section. Therefore, it can be assumed that the pouring method has a determining effect on the orientation of the incorporated fibres.

The flow of the concrete can explain these differences. In the flowing concrete matrix, the fibers are oriented perpendicular to the direction of the flow (Toutanji and Bayasi, 1998; Stahli, and van Mier, 2008; Stahli, and van Mier, 2007). In the case of the horizontal pouring method (P1), the flow direction of the concrete is vertical. Thus, the orientation of the fibres is horizontal. The vibration of these beams may cause the fibres to become even more aligned horizontally (Soroushian and Lee, 1990; Toutanji and Bayasi, 1998; Barragán et al., 2000). In contrast, in the case of the inclined pouring method (P2), the concrete flow direction is parallel to the longitudinal axis of the beam. Thus, the orientation of the fibres is perpendicular to the longitudinal axis. At the ends of the beams, this effect is not as strong, owing to the end plates of the formwork (Fig. 8).

In the case of method P1, the mean value (of the number of intersecting fibres) for the synthetic fibres was 9.1% higher than that for the steel fibres while for method P2, the values were almost similar. The M-estimator values for the synthetic fibres for P1 and P2 were 13.1% and 16.4% higher, respectively, than those for the steel fibres. Moreover, for the same pouring method, in almost all the cases, more synthetic fibres were observed in the cross-section than the steel fibres. This is in contradiction to the results of the proposed analytical model, since according to the model, the total orientation factor is higher in the case of the steel fibres and would result in more steel fibres intersecting the cross-section.

The normality test results suggested that the following data for the synthetic fibres exhibited a normal distribution: method P1 and the entire cross-section and method P2 and all the zones as well as the entire cross-section. In contrast, for the steel fibres, only the data for zone Z3 for both pouring methods and those for zone Z2 and method P1 exhibited a normal distribution. However, the number of samples in the corner zone, that is, Z3, is not as relevant, given the small area of the zone. Thus, if the data for the entire cross-section were not normal, the normality of the data for Z3 was probably incorrect. In summary, the null hypothesis, namely, that the distribution of the data were normal, was accepted only in the case of the synthetic fibres. This conclusion can be confirmed through a visual inspection of the histograms: in case of the steel fibres, the distributions were either asymmetrical or bimodal.

The CV values for the different cross-section zones lay between 31.8% and 56.6% in the case of the steel fibres and between 14.7 and 52.1% in the case of the synthetic fibres. Further, the CV values for the entire cross-section lay between 32.3% and 35.2% in the case of the steel fibres and between 14.7% and 24.2% in the case of the synthetic fibres, meaning that the distributions of the synthetic fibres in the beams were slightly more uniform.

On comparing the results of the proposed analytical model with those of the laboratory tests, the following conclusions could be drawn. The orientation factors obtained using the analytical model closely approximated the M-estimator values for the steel fibres and method P1, while in the case of the synthetic fibres, the closest estimates were the mean values in the case of method P2. The orientation factor of the analytical model for the corner zone (Z3) yielded the worst estimates in all the cases: in the case of the steel fibres, the orientation factors for zone Z3 were the lowest, in contrast to the predictions of the model. On the other hand, in the case of the steel fibres, the analytical model results differed significantly from the test results: the undisturbed zone (Z1) exhibited the highest orientation factor, while the zones with the wall effect (Z2 and Z3) exhibited smaller values. Although, in the case of the steel fibres, there is an upper limit for fibre content. Above this limit, the effect of the fibres on their respective movements should also be taken into account, as this would result in more of the fibres being located in the middle zone than in the edge and corner zones (Juhász, 2018b; Czoboly, 2016). The actual concentration of 33.73 kg/m³ was higher than this limit. With respect to this steel fibre concentration, which is used widely in the industry, the standard cross-section dimensions of 150 × 150 mm² seem to be insufficient for the steel fibres in question.

Based on the results of the statistical analysis and after comparing the test and analytical results, the following conclusions can be drawn. In case of steel fibres, the use
The dosage of these fibres was chosen so that the number of mixed fibres was the same. In this study, the matrix of fibre-reinforced concrete was kept constant, while the pouring method varied. Moreover, the orientation of the fibres can be affected by a number of parameters, which were not included in this study, e.g., fibre length and shape, aggregate type and size, paste saturation, etc. These parameters may have varying degrees of influence on theorientation factors, which can be elucidated in future studies.

According to the results obtained in this study, there is a difference of 34–40% in the orientations, based on the pouring method used. This difference is significant and must be taken into account during the engineering design stage. In the case of the standard beams used for tests, owing to the vibrations that occur during the manufacturing of the test specimens, the fibres are oriented along the longitudinal axis of the beams. As a result, more fibres intersect the cross-section than would be the case for a uniform distribution. In the case of flowable concrete, the fibres are oriented perpendicular to the flow direction. Thus, fewer fibres intersect the cross-section that would be the case if the flow were parallel to the longitudinal axis of the beam. Thus, the error may be magnified in that the material parameters may be overestimated, although in the sections of actual structures, the number of fibres intersecting the cross-section may also be overestimated if
