Micronodular basal cell carcinoma of the scrotum- a case report and review of the literature

Mohammad Younes
University Hospital of Dermatology and Venereology, Damascus University

Lamia Kouba (lamiakouba@gmail.com)
University Hospital of Dermatology and Venereology, Damascus University
https://orcid.org/0000-0002-8650-2305

Hanaa Almsokar
University Hospital of Dermatology and Venereology, Damascus University

Ayham Badran
University Hospital of Dermatology and Venereology, Damascus University Faculty of Medicine

Research Article

Keywords: Basal cell carcinoma, micronodular, scrotum, case report

Posted Date: September 7th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-854053/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Introduction: Basal cell carcinoma (BCC) is the most common non-melanotic skin cancer. It has variable clinical and histological subtypes that vary in their aggressiveness and liability to recurrence and metastasis. Chronic ultraviolet radiation exposure is considered to be the main risk factor for developing BCC; therefore it typically arises on sun-exposed skin, mainly the head and neck.

Case presentation: We present the case of a 55-year-old male who presented with a lesion on the scrotum for 2 years. The lesion was clinically presumed benign and initially treated with curettage. Microscopic examination revealed an incompletely resected micronodular BCC with sebaceous differentiation. Therefore, a second excisional biopsy was performed to completely excise the incidentally-discovered malignant tumor.

Conclusion: We report the first case of micronodular BCC arising on the scrotum. The goal of our article is to draw clinicians’ attention to the possible involvement of unexposed skin with BCC and we highlight the importance of accurate diagnosis and prompt treatment due the aggressive nature of micronodular BCC.

Introduction

Non-melanotic skin cancer (NMC) is the most common cancer in the world. Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) represent 99% of all NMCs with BCC being the most prevalent. However, accurate data about their prevalence is scarce, mainly because they are not reported separately in national cancer registries and many cases are not fully tracked due to the successful treatment of the tumor via surgery or ablation [1, 2].

BCC usually arises on chronically photoexposed areas in the elderly; it has been rarely reported to occur on unexposed skin such as the trunk or genitalia.

We report the case of a 55-year old man who presented with a tumor-like lesion on the scrotum for two years. The lesion was excised and subsequently determined to be a micronodular BCC of the scrotum. To the best of our knowledge, this is the first reported case of micronodular BCC occurring on the scrotum.

Case Presentation

A 55-year-old Caucasian man presented to the outpatient clinic with a soft lesion on the left side of the scrotum, present for two years.

On inspection, the lesion appeared as a bluish-black nodule with rolled edges and a smooth surface. It measured 7 mm in diameter and was 4 mm raised above the surrounding skin level (Fig. 1).

According to the patient, the nodule wasn’t painful, but due to its location in an intertriginous area that is liable to continuous friction and moisture, the lesion was prone to recurrent irritation leading to oozing, maceration, and foul odor.

The lesion started as a punctate black macule on the left side of the scrotum. The patient made several failed attempts to remove it with a razor blade over the years.

The rest of the physical examination was unremarkable and no lymphadenopathy was present.

Based on the patient’s history, physical examination, and the location of the lesion, the lesion was suspected to be an angiokeratoma. Consequently, the lesion was removed by shave biopsy and sent for microscopic examination.

Microscopic examination revealed small nests of basaloid cells extending from the epidermis and infiltrating the reticular dermis (Fig. 2-a). Peripheral palisading of the nuclei was minimal and retraction artifact was almost absent.

High-power magnification revealed multiple basaloid cells with large hyperchromatic nuclei numerous mitotic figures. Worthy of notice is the presence of heavy pigmentation within the tumour nests and the melanophages in the surrounding stroma.

Furthermore, multiple foci of sebaceous differentiation were noted within the basaloid nests (Fig. 2-b).

These microscopic findings led to establish the diagnosis of a scrotal pigmented micronodular BCC with sebaceous differentiation.

The deep surgical margin was positive for malignant cells; therefore, the patient underwent a subsequent surgical procedure to completely excise the tumor.

On follow-up, four months later, no signs of recurrence were noted.

Discussion

Basal cell carcinoma is the most frequently occurring cancer in humans. It arises from the basal layer of the epidermis and grows slowly over multiple years.

Key risk factors for developing BCCs have been recognized, such as ultraviolet radiation, fair complexion, chronic arsenic exposure, ionizing radiation, personal or family history for BCC and genetic predisposition [3, 4].

In our case, the patient had no personal or family history of BCC and no prior exposure to ionizing radiation or other carcinogens. The location of the carcinoma on the scrotum in our case renders ultraviolet exposure an unlikely culprit.
Basal cell carcinoma has multiple histological subtypes, and they can be classed according to their risk of recurrence to low-risk and high-risk subtypes. The nodular, superficial, fibroepithelial, pigmented, and infundibulocystic BCC are classified as low-risk subtypes, while the infiltrative, micronodular, morpheaform, basosquamous, and BCC with sarcomatoid differentiation are considered as the higher-risk subtypes [5]. However, histological patterns may overlap.

Nodular BCC is the most common variant, characterized clinically by rolled edges, surface telangiectasia, and a central ulcer, giving rise to what is known as the rodent ulcer.

The micronodular variant is an aggressive type of BCC that is liable to recur and hard to eradicate. It occurs most frequently in the head and neck area [6]. Clinically, micronodular BCC typically presents as a poorly defined infiltrated lesion that rarely ulcerates.

Approximately, 80–85% of BCC occur on the head and neck, while 15% develop on the trunk [7]. According to a classic review conducted by Rabbari and Mehergan, less than 0.5% of BCCs were located in the genital area [8].

We searched the Pubmed database using the Medical Subject Headings (MeSH) Terms: “Carcinoma, Basal cell” AND “scrotum”.

Only 14 cases were reported over the past twenty years; the patients' details, tumor morphology, and microscopic classification are summarized in Table 1.

Ref	Year	Authors	Country	Patient Age	Morphology	Pigmentation	Size (cm)	Microscopic type	Metastasis	Months to presentation	Carcinogen exposure
9	2000	Takahashi, et al.	Japan	49	Hyperkeratotic erythematous plaque	No	1	-	No	12	No
10	2000	Vandeweyer, et al.	Belgium	66, 71, 58, 74	Ulcer with pearly border, erythematous plaque	No	0.5, 1.5, 0.9, 1.5	Solid BCC	No	9	History of radiation exposure
11	2002	Chave, et al.	UK	69	Nodule with central ulcer	Side pigmentation	1.5	-	No	3, 6	No
12	2002	Ribuffo, et al.	Italy	75	Ulcer	No	-	-	Perineal skin	60	No
13	2004	Izikson, et al.	USA	77	Ulcerated nodule	Variegated	4	Nodular BCC	No, recurrence +	-	Coal tar, asbestos, machine oil, sulfur, hydraulic fluid, (smoker)
14	2005	Kinoshita, et al.	Japan	80	Ulcerated nodule	No	2.5	-	LN, recurrence	96	No
15	2008	Ouchi, et al.	Japan	54	Pedunculated nodule	Yes	1.7	Polypoid BCC	No	6	No
16	2008	Rao, et al.	India	75	Ulcerated nodule	Yes	4	-	No	24	No
17	2011	Jianwei, et al.	China	74	Ulcer with pearly border	No	2	Nodular BCC	No	612	Benzene
18	2014	Li, et al.	China	61	Eroded plaque, rolled border	No	4	Nodular BCC	No	18	No
19	2016	Delto, et al.	USA	69	Fungating verruciform mass, flat lesion	No	10	-	No	-	NF, (smoker)
20	2016	Hernandez, et al.	Spain	50	Eroded exophytic tumor	No	1	Solid BCC	No	12	Asbestos
21	2018	Padoveze et al.	Brazil	87	Perlaceous tumor with telangiectasias	No	2.5	Nodular BCC	No	6	No
22	2020	Han et al.	China	74	Nodule	No	2	Superficial BCC	No	144	No
23	2021	Current case	Syria	55	Nodule	Yes	0.7	Micronodular BCC	No	24	No

The average age of patients was 67.6 years old (49–87 years) and the most commonly reported clinical morphology was the ulcerated nodule with pearly borders. The average age of the lesion at presentation was 6.5 years (3 months-51 years).
Unlike our case, the reported lesions were infrequently pigmented at presentation (4 cases).

There were no reported cases of micronodular BCCs arising from the scrotal dermis, our article is thus the first reported case of such a rare presentation in the literature.

Conclusion

The presence of BCC in an unusual anatomical location represents a diagnostic challenge for clinicians. Our report adds to the growing body of literature on the unusual sites of basal cell carcinoma. Although the majority of BCCs occur in sun-exposed areas, a diagnosis of BCC should never be excluded merely due to the absence of sun exposure. Clinicians need to be aware of the variable morphologic features of BCC and its possible occurrence in unusual sites, such as the genital area. Prompt diagnosis and proper treatment of BCC is crucial to spare the patient long-term consequences and preserve appropriate quality of life.

Abbreviations

BCC
Basal cell carcinoma

NMC
Non-melanotic skin cancer

SCC
Squamous cell carcinoma

Declarations

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests

The authors declare that they have no competing interests.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors’ contributions

MY analyzed and interpreted the patient’s data and drafted the manuscript. LK performed the literature review drafted the manuscript. HA and AB supervised the project, reviewed the original draft, and provided critical feedback. All authors have read and approved the final version of the manuscript.

Acknowledgements

We would like to express our deep gratitude to our colleagues at the University Hospital of Dermatology and Venereology for providing their valuable expertise and insight.

References

1. -Eisemann N, Waldmann A, Geller AC, et al. Non-melanoma skin cancer incidence and impact of skin cancer screening on incidence. J Invest Dermatol. 2014;134(1): 43–50. https://doi.org/10.1038/jid.2013.304.

2. -Ciążyńska M, Kamińska-Winciorek G, Lange D, et al. The incidence and clinical analysis of non-melanoma skin cancer. Sci Rep. 2021;11:4337. https://doi.org/10.1038/s41598-021-83502-8.

3. -van Dam RM, Huang Z, Rimm EB, et al. Risk factors for basal cell carcinoma of the skin in men: results from the health professionals follow-up study. Am J Epidemiol. 1999 Sep 1;150(5):459 – 68. doi: 10.1093/oxfordjournals.aje.a010034. PMID: 10472945.

4. -Ramachandran S, Fryer AA, Smith A, et al. Cutaneous basal cell carcinomas: distinct host factors are associated with the development of tumors on the trunk and on the head and neck. Cancer. 2001 Jul 15;92(2):354-8. doi: 10.1002/1097-0142(20010715)92:2<354::aid-cncr1330>3.0.co;2-f. PMID: 11466690.
5. Elder DE, Massi D, Scolyer RA, Willemze R. WHO classification of skin tumours 4th ed, Lyon, France. Vol. 11: World Health Organization Classification of Tumours; 2018. pp. 66–71. IARC.
6. Betti R, Menni S, Radaelli G, Bombonato C, Crosti C. Micronodular basal cell carcinoma: A distinct subtype? Relationship with nodular and infiltrative basal cell carcinomas. J Dermatol. 2010;37(7):611–6. https://doi.org/10.1111/j.1346-8138.2009.00772.x
7. Ogleta IC, Fuentes CS, Madison A, et al. Basal cell carcinoma at an unusual location: case report. J Dermat Cosmetol. 2018;2(1):60–1. DOI:10.15406/jdc.2018.02.00040.
8. Rahabari H, Mehregan AH. Basal cell epitheliomas in usual and unusual sites. J Cut Pathol. 1979;6(5):425–31.
9. Takahashi H. Non-ulcerative basal cell carcinoma arising on the genitalia. J Dermatol. 2000 Dec;27(12):798–801. doi: 10.1111/j.1346-8138.2000.tb02285.x. PMID: 11211798.
10. Vandeweyer E, Deraemaeker R. Basal cell carcinoma of the scrotum. J Urol. 2000 Mar;163(3):914. PMID: 10688013.
11. Chave TA, Finch TM. The scrotum: an unusual site for basal cell carcinoma. Clin Exp Dermatol. 2002 Jan;27(1):68. doi: 10.1046/j.0307-6938.2001.00965.x. PMID: 11952677.
12. Ribuffo D, Alfano C, Ferrazzoli PS, Scuderi N. Basal cell carcinoma of the penis and scrotum with cutaneous metastases. Scand J Plast Reconstr Surg Hand Surg. 2002;36(3):180-2. doi: 10.1080/028443102753718087. PMID: 12141208.
13. Izikson L, Vanderpool J, Brodsky G, Milhm MC Jr, Zembowicz A. Combined basal cell carcinoma and Langerhans cell histiocytosis of the scrotum in a patient with occupational exposure to coal tar and dust. Int J Dermatol. 2004 Sep;43(9):678 – 80. doi: 10.1111/j.1365-4632.2004.02178.x. PMID: 15357751.
14. Han S, Zhang Y, Tian R, Guo K. Basal cell carcinoma arising from the scrotum: An understated entity. Urol Case Rep. 2020 Jul 3;33:101332. doi: 10.1016/j.eucr.2020.101332. PMID: 33102034; PMCID: PMC7573964.
Figure 1

A pigmented nodule on the left scrotum measuring 7 mm in diameter.
Figure 2

Microscopic view (hematoxylin and eosin stain) of the lesion showing (a) aggregates of small nests of basaloid cells with absent retraction artifacts. Melanin granules (brown pigment granules) can be easily seen within and outside the basaloid nests (low-power magnification.). (b) High-power microscopic view depicting clusters of basaloid cells with sebaceous duct-like formations; consisting of vacuolated cells with foamy cytoplasm, suggestive of sebaceous cells.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- CAREchecklistEnglish2013.pdf