Global Complexity of an Output Dynamic Competition Model

Jian-guo Dua,b,c,*, Zhao-han Shenga,b, Qiang Meic, Guo-Jian Mac

a. Computational Experiment Center for Social Science, Nanjing University, Nanjing 210093, China
b. School of Management and Engineering, Nanjing University, Nanjing 210093, China
c. School of Business Administration, Jiangsu University, Zhenjiang 212013, China

Abstract. In this paper, we use the critical curves theory to study the global complexity of an output dynamic competition model with adaptive adjustment. Two forms of contact bifurcations are investigated. As some parameters are variable, the global evolution of the output dynamic competition system’s feasible set can be regarded as the variation of players’ living space, which is used to explain the economic significance of every global bifurcation. The global complexity analysis can help players to take some measures and avoid the collapse of the output dynamic competition system.

1. Introduction
Recently, some scholars are interested in Global bifurcations in economic systems [1-4]. When there are several coexistent Nash equilibrium points, the study of the basins is useful in order to select a solution or strategy and to take actions. Also the exact definition of the basin of the attracting set at finite distance can help the decision maker to avoid the explosion of the economic system.

Currently, research on the complex dynamics of output dynamic competition model is mainly about local stability of equilibrium points and the creation of complex attractors through sequences of local bifurcation (see references [5-12]). The study of the global bifurcations that cause qualitative changes of the attractors and structure of their basin has been neglected. In this paper, the global bifurcations of an output dynamic competition model are analyzed by the use of critical curves. We also show how the global dynamics of the model can be analyzed through studying the structure of their basins of attraction.

The remainder of this paper is organized as follows. Section 2 introduces output dynamic competition model and gives the dynamics of the model. In Section 3 we discuss the global bifurcations of the resulting noninvertible map. The final section concludes the paper.

2. Output dynamic competition model

* Corresponding author. Tel.: +8613813977685; fax: +86051188780186.
E-mail address: jgdu2005@163.com; jgdu@nju.edu.cn (J. G. Du)
In this paper, we generalize the duopoly model of Bowley [6] to the case of cost function with nonlinear term. We assume that the production cost function of producer \(i \) (\(i=1,2 \)) has the nonlinear form

\[
C_i(q_i) = c_i + d_i q_i + e_i q_i^2, i = 1,2,
\]

where the positive parameter \(c_i \) is fixed cost of producer \(i \), \(d_i \) and \(e_i \) are constants, \(q_i(t) \) is the output of producer \(i \) in period \(t \).

According to Agiza [6], the output dynamic competition model can be written in the form

\[
q_i(t + 1) = q_i(t) + \alpha_i q_i(t)[a - bQ(t) - (b + 2e_i)q_i(t) - d_i](1-r), i = 1,2,
\]

where \(Q(t) \) is the total supply of the two producers and \(Q(t) = q_1(t) + q_2(t) \), \(a \) and \(b \) are positive constants, and \(a \) is the highest price in the market, \(\alpha_i \) is positive parameter representing the speed of adjustment, \(r \) is the tax rate of business income tax, and \(0 \leq r < 1 \).

The time evolution of the discrete dynamical system (2) is obtained by the iteration of the two-dimensional map

\[
M: \begin{cases}
q'_1 = q_1 + \alpha_1 q_1[a - (2b + 2e_1)q_1 - bq_2 - d_1](1-r), \\
q'_2 = q_2 + \alpha_2 q_2[a - (2b + 2e_2)q_2 - bq_1 - d_2](1-r),
\end{cases}
\]

where ‘′’ denotes the unit-time advancement operator.

The nonlinear map (3) has four equilibria

\[
E_0 = (0,0), \ E_1 = (\frac{a - d_1}{2b + 2e_1}, 0), \ E_2 = (0, \frac{a - d_2}{2b + 2e_2}), \ E^* = (q_1^*, q_2^*),
\]

where \(q_1^* = \frac{(a - d_1)(2b + 2e_2) - b(a - d_2)}{3b^2 + 4be_1 + 4be_2 + 4e_1e_2} \), \(q_2^* = \frac{(a - d_2)(2b + 2e_1) - b(a - d_1)}{3b^2 + 4be_1 + 4be_2 + 4e_1e_2} \).

\(E_0, E_1 \) and \(E_2 \) are called boundary equilibrium and are unstable. \(E^* \) is the unique Nash equilibrium. With given a set of parameters \(a, b, r, c_i, d_i \) and \(e_i \) (\(i=1,2 \)), \(E^* \) is local stable for the adjustment speeds \(\alpha_1 \) and \(\alpha_2 \). As usual in output dynamic model with adaptive adjustment, the Nash equilibrium point \(E^* \) will lose stability as one or both of the adjustment speeds are increased, and more complex attractors are created. These results can be obtained through a standard study of the local stability of the equilibrium points (see [5–12]). However, our attention will be mainly focused on the global properties of the map (3), which will be present in next section.

3. Global analysis of the output dynamical system

3.1 Critical curve

An important feature of map (3) is that the two coordinate axes are invariant lines, since \(M(q_1,0) = (q_1',0) \) and \(M(0,q_2) = (0,q_2') \). The dynamics of (3) along the \(q_1 \)-axis are determined by the one-dimensional map \(q'_1 = M_1(q_1) \), where \(M_1 \) is the restriction of \(M \) to the \(q_1 \)-axis, given by

\[
M_1(q_1) = q_1 + \alpha_1 q_1[a - (2b + 2e_1)q_1 - d_1](1-r).
\]

Similarly, the dynamics of (3) along the \(q_2 \)-axis are governed by the one-dimensional map \(q'_2 = M_2(q_2) \), where \(M_2 \) is the restriction of \(M \) to the \(q_2 \)-axis, given by

\[
M_2(q_2) = q_2 + \alpha_2 q_2[a - (2b + 2e_2)q_2 - d_2](1-r).
\]
Supposed that K is the set of points where the Jacobian determinant of M vanishes, the critical curve of rank-0 LC_{-1} is the subset of K. That is

$$LC_{-1} \subseteq K = \{(q_1, q_2) \in R^2 \mid \det DM = 0\}.$$

LC_{-1} of map (3) is the restriction of K to the positive quadrant R^2_+, which is given by the union of two branches, denoted by $LC^{(a)}_{-1}$ and $LC^{(b)}_{-1}$. The critical curve of rank-1 LC is the rank-1 image of LC_{-1} under M, i.e. $LC = M(LC_{-1})$. LC is also the union of two branches, denoted by $LC^{(a)}$ and $LC^{(b)}$, where $LC^{(a)} = M(LC^{(a)}_{-1})$, $LC^{(b)} = M(LC^{(b)}_{-1})$. LC and LC_{-1} are displayed in Fig.1.

Note that the branches of critical curves $LC^{(b)}_{-1}$ and $LC^{(b)}$ intersect the coordinate axes q_1 and q_2 in the critical points of rank 0 and 1 of the restrictions M_1 and M_2, given by the points of coordinates

$$c^{(i)}_{-1} = \frac{\alpha_i(a - d_i)(1 - r) + 1}{\alpha_i(4b + 4e_i)(1 - r)} \quad \text{and} \quad c^i = M_i(c^{(i)}_{-1}) = \frac{[\alpha_i(a - d_i)(1 - r) + 1]^2}{\alpha_i(8b + 8e_i)(1 - r)}, \quad i = 1, 2;$$

As shown in Fig.1, $LC^{(b)}_{-1}$ separates the region Z_{0b} whose points have no preimages, from the region Z_2, whose points have two distinct rank-1 preimages. $LC^{(a)}_{-1}$ separates the region Z_2 from Z_4, whose points have four distinct preimages. For example, we compute the preimages of the origin, by solving the system (3) with $q_1' = 0$ and $q_2' = 0$, we can obtain: $O^0_{-1} = (0, 0)$; $O^{(1)}_{-1} = \left(\frac{\alpha_1(a - d_1)(1 - r) + 1}{\alpha_1(2b + 2e_1)(1 - r)}, 0\right)$; $O^{(2)}_{-1} = \left(0, \frac{\alpha_2(a - d_2)(1 - r) + 1}{\alpha_2(2b + 2e_2)(1 - r)}\right)$ and $O^{(3)}_{-1}$ located at the intersection of preimages of two lines oc^1 and oc^2. For detailed account of critical curve theory, see Agliari [1], Bischi [2] and their reference.

![Fig.1. (a) Critical Curves of rank-0. (b) Critical curves of rank-1.](image)

3.2 Boundaries of the feasible set

In the following, the feasible set of map (3) is denoted by \mathbb{N}, which is the set of points generating feasible trajectories. A feasible trajectory may converge to the positive steady state E^*, to more complex attractors inside \mathbb{N} or to a one-dimensional invariant set embedded inside a coordinate axis [2]. The last occurrence means that one of the two producers drops out the market. Trajectories starting out of the set \mathbb{N} stand for collapsing evolutions of the output dynamic competition system. In a sense, feasible set can be looked as the ‘living space’ of the players.

Let $\partial \mathbb{N}$ be the boundary of \mathbb{N}. Such a boundary can have a simple shape, or have a very complex structure which can be shown by using numerical simulation.
Using the method similar to that of Bischi [2], we can obtain the boundary of \aleph. In general, $\partial\aleph$ is the union of all the preimages of any rank of the segments ξ_1 and ξ_2:

$$\partial\aleph = \left(\bigcup_{n=0}^{\infty} M^{-n}(\xi_1) \right) \cup \left(\bigcup_{n=0}^{\infty} M^{-n}(\xi_2) \right),$$

(7)

where $\xi_1 = O^{(1)} O^{-1}$ and $\xi_2 = O^{(2)} O^{-1}$. As long as $\alpha_1(a-d_1)(1-r) \leq 3$ and $\alpha_2(a-d_2)(1-r) \leq 3$, the boundary of \aleph has the simple shape shown in Fig.2. In this situation quadrilateral $O^{(1)}O^{(3)}O^{-1}$ constitutes the whole boundary $\partial\aleph$, as is shown in Fig.2. This is due to the fact that ξ_1^{-1} and ξ_2^{-1} are entirely included inside the region Z_0 whose points have no preimages. That is to say, no preimages of higher rank of ξ_1 and ξ_2 exist.

3.3 Global bifurcations

If α_1 or α_2 is increased, so that the bifurcation value $\alpha_1^B = 3/[(a-d_1)(1-r)]$ or $\alpha_2^B = 3/[(a-d_2)(1-r)]$ is crossed, then $\partial\aleph$ is changed from smooth to fractal. This transition between qualitatively different structures of the boundaries of the region \aleph constitutes a global bifurcation. In order to display this bifurcation, we vary the speed of adjustment α_1 and fix the other parameters.

As α_1 is increased, the branch $LC^{(b)}$ of the critical curve that separates Z_0 and Z_2 moves upwards, and at $\alpha_1 = 3/[(a-d_1)(1-r)]$ it has a contact with ξ_2^{-1} (i.e. $O^{(1)}O^{(3)}$) at point $O^{(1)}_1$. After this contact the sides $\partial\aleph$ are transformed from smooth to fractal. In fact, when α_1 crosses $3/[(a-d_1)(1-r)]$, a segment of ξ_2^{-1} enters the region Z_2, so that G_0, a portion of the complement of \aleph, which is bounded by $LC^{(b)}$ and ξ_2^{-1} (see Fig.3), now has two preimages. These two preimages, say G_{-1} and G_{+1}, merge in points of $LC^{(b)}$ and form a ‘gray stalagmite’ issuing from the q_1 axis (denoted by G_{-1} in Fig.3, $G_{+1} = G_{-1} \cup G_{+1}$). Because the points of G_{-1} are mapped into G_0, G_{-1} belongs to the ‘gray set’ of points that generate non-feasible trajectories. This is only the rank-1 preimages of G_0. Preimages of G_0 of higher rank form a sequence of smaller and smaller gray stalagmites issuing from the q_1 axis. Only some of them are visible in Fig.3, but smaller stalagmites become numerically visible by enlargement. All of these stalagmites take on a fractal structure. Since G_{-1} is in the region Z_2, it has two preimages $G_{1,1}$ and $G_{2,1}$, located at opposite sides with respect to $LC^{(b)}$. Because $G_{1,1}$ falls into the region Z_4 (shown in Fig.3), besides the two preimages along the q_1 axis, two more preimages exist issuing from ξ_1^{-1} (i.e. $O^{(2)}O^{(3)}$) and located at opposite sides with respect to $LC^{(e)}$. Those stalagmites located in the region Z_4 will form into smaller stalagmites (some of them may become visible by enlargement) issuing from ξ_1^{-1}. The stalagmites located at ξ_1^{-1} belong to Z_0, hence they do not give rise to new sequences of stalagmites.
Fig. 2. When $a_i(a-d_i)(1-r)=3$, critical curve $LC^{(b)}$ has a contact with $\frac{1}{b_2^2}$ at the point $O_2^{(2)}$. (The parameters are $a=10, \alpha_2=0.1, b=1, d_i=1, d_2=1, e_1=1, e_2=1.1$ and $r=0.3$). Fig. 3. After a contact between $LC^{(b)}$ and $\frac{1}{b_2^2}$, the boundary of the feasible set changes from smooth to fractal (Except that $a_i=3/[(a-d_i)(1-r)]+0.01$, The other parameters take the same values as in Fig. 2).

If we look the stalagmites as the ‘reef’ or ‘trap’ in the advance of enterprises, this bifurcation implies that player must have the sense of crisis in the business world. He should not be satisfied with previous or present comfortable surroundings, and frequently pay attention to the changes of interior condition (such as his adjustment speed) and exterior circumstance (such as market demand and information of his rival). Otherwise, he may step into the ‘trap’ or bump with the ‘reef’.

Fig 4. After a contact between $LC^{(b)}$ and a stalagmite located inside Z_2, the feasible set changes from simply connected to multiply connected (Except that $a_i=0.527$, the other parameters take the same values as in Fig. 3). Fig. 5. The stalagmite G_{-1} crossed $LC^{(0)}$ forms into new islet g_{-1} (Except that $a_i=0.532$, the other parameters take the same values as in Fig. 4).

As α_i is further increased, $LC^{(b)}$ moves upwards, the portion G_0 enlarges. Consequently, all its preimages (i.e. the infinitely many stalagmites) enlarge and become more protruding. When a stalagmite belonging to Z_2 has a contact with $LC^{(a)}$ and enters the region Z_4, the contact occurs out of
the q_1 axis, and causes the creation of a pair of new preimages, merging along $LC^{(a)}_{-1}$, whose union forms into a ‘grey crescent’. If we look the feasible set \mathbb{N} as ‘gulf’ or ‘lake’, ‘grey crescent’ looks like ‘islet’ inside it. This contact causes the occurrence of another local bifurcation which makes the set \mathbb{N} change from simply connected into multiply connected. This can be seen in Fig.4, where the islet h_{-1} is the preimage of the portion h_0, inside Z_4, of a stalagmite that crossed $LC^{(a)}$.

As α_1 is increased, other stalagmites cross $LC^{(a)}$ and, hence, new islets are created. The structure of \mathbb{N} in this situation is shown in Fig.5, where g_0 inside Z_4, the portion of the stalagmite G_{-1} crossed $LC^{(a)}$, forms into new islet g_{-1}.

This contact bifurcation may imply in a sense that with variation of circumstance, some production strategy looked as if it were safe previous may become no longer secure in business world.

4. Conclusion
In this paper we investigated the contact bifurcations of an output dynamic competition model with the method of critical curves. For the model analyzed in this paper the main qualitative changes of the global structure of the feasible set can be obtained by using the theory of critical curves, which allows us to learn more about the dynamical behavior of the output model than just focusing on local dynamics. Defining the non-feasible set can give some help for decision maker to avoid the explosion of the economic system. Global bifurcations occurring at the boundary of feasible set make the structure of basins of attraction become very complex.

We find that after rank-1 critical curve contact the boundary of feasible set, with the increase of the speed of adjustment, boundary of the feasible set changes from smooth to fractal, or the feasible set changes from simply connected to multiply connected. As if many obstacles appear in the advance of enterprises. These changes suggest that in business world producer should be prepared for danger in times of safety, and not puzzled by well situation at present, adjusting his policy according to the changes of circumstance.

Acknowledgement
This work was supported in part by the National Natural Science Foundation of China under grant 70571034, 70773051, 70731002 and 70401013, and by the National Social Science Foundation of China under grant 07CJL028, and by China Postdoctoral Science Foundation under grant 20060400918, and by Jiangsu Planned Projects for Postdoctoral Research Funds under grant 0601020C, and by Jiangsu University Advance Talent Foundation under grant 06JDG025.

References
[1] Agliari A 2001 Nonlinear. Anal. 47 5241
[2] Bischl G I, Gardini L and Kopel M 2000 J. Econ. Dyna. Cont. 24 855
[3] Chian A C L Borotto F A and Rempel E L 2005 Chaos. Soliton. Fract. 24 869
[4] Kar T K and Matsuda H 2007 Nonlinear. Anal. 1 59
[5] Agiza H N, Hegazi A S and Elsadany A A 2002 Math. Comput. Simulat. 58 133
[6] Agiza H N, Hegazi A S and Elsadany A A 2001 Chaos. Soliton. Fract. 12 1705
[7] Agiza H N and Elsadany A A 2004 Appl. Math. Comput. 149 843
[8] Agiza H N and Elsadany A A 2003 Phy. A 320 512
[9] Ahmed E and Agiza H N 1998 Chaos. Soliton. Fract. 9 1513
[10] Ahmed E, Agiza H N and Hassan S Z 2000 Chaos. Soliton. Fract. 11 1025
[11] Hassan S Z 2004 Appl. Math. Comput. 151 275
[12] Yassen M T and Agiza H N 2003 Appl. Math. Comput. 138 387