A DIGITAL BINOMIAL THEOREM

HIEU D. NGUYEN

Abstract. We present a triangle of connections between the Sierpinski triangle, the sum-of-digits function, and the Binomial Theorem via a one-parameter family of Sierpinski matrices, which encodes a digital version of the Binomial Theorem.

1. Introduction

It is well known that Sierpinski’s triangle can be obtained from Pascal’s triangle by evaluating its entries, known as binomial coefficients, mod 2:

\[
\begin{array}{cccc}
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
1 & 5 & 10 & 10 & 5 & 1 \\
1 & 6 & 15 & 20 & 15 & 6 & 1 \\
1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 \\
\ldots
\end{array}
\rightarrow
\begin{array}{cccc}
1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\ldots
\end{array}
\]

Pascal’s triangle Sierpinski’s triangle

Pascal’s triangle is, of course, constructed by inserting the binomial coefficient \(\binom{n}{k} \) in the \(k \)-th position of the \(n \)-th row, where the first row and first element in each row correspond to \(n = 0 \) and \(k = 0 \), respectively. Binomial coefficients have a distinguished history and appear in the much-celebrated Binomial Theorem:

Theorem 1 (Binomial Theorem).

\[
(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}, \quad n \in \mathbb{N},
\]

where \(\binom{n}{k} \) are defined in terms of factorials:

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}.
\]

In this article, we demonstrate how the Binomial Theorem in turn arises from a one-parameter generalization of the Sierpinski triangle. The connection between them is given by the sum-of-digits function, \(s(k) \), defined as the sum of the digits in the binary representation of \(k \) (see [11]). For example, \(s(3) = s(1 \cdot 2^1 + 1 \cdot 2^0) = 2 \). Towards this end, we begin with a well-known matrix formulation of Sierpinski’s triangle that demonstrates its fractal nature (see [5], p.246). Define a sequence of matrices \(S_n \) of size \(2^n \times 2^n \) recursively by

\[
S_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}
\]

and

\[
S_{n+1} = S_1 \otimes S_n
\]
for \(n > 1 \). Here, the operation \(\otimes \) denotes the Kronecker product of two matrices. For example, \(S_2 \) and \(S_3 \) can be computed as follows:

\[
S_2 = S_1 \otimes S_1 = \begin{pmatrix} 1 \cdot S_1 & 0 \cdot S_1 \\ 1 \cdot S_1 & 1 \cdot S_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}
\]

\[
S_3 = S_1 \otimes S_2 = \begin{pmatrix} 1 \cdot S_2 & 0 \cdot S_2 \\ 1 \cdot S_2 & 1 \cdot S_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}
\]

Thus, in the limit we obtain Sierpinski’s matrix \(S = \lim_{n \to \infty} S_n \).

Less well-known is a one-parameter generalization of Sierpinski’s triangle in terms of the sum-of-digits function due to Callan [3]. If we define

\[
S_1(x) = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}
\]

and

\[
S_{n+1}(x) = S_1(x) \otimes S_n(x)
\]

for \(n > 1 \), then

\[
S(x) := \lim_{n \to \infty} S_n(x) = \begin{pmatrix} 1 \\ x & 1 \\ x & 0 & 1 \\ x^2 & x & 1 \\ x^2 & 0 & 0 & 0 & 1 \\ x^2 & 0 & 0 & x & 1 \\ x^3 & x^2 & x & x^2 & x & 1 \end{pmatrix}
\]

Observe that \(S_n(1) = S_n \) and \(S(1) = S \). The matrix \(S(x) \) appears in [3] where Callan defines its entries in terms of the sum-of-digits function \(s(k) \). In particular, if we denote \(S(x) = (s_{j,k}) \) and assume the indices \(j, k \) to be non-negative with \((j, l) = (0, 0)\) corresponding to the top left-most entry, then the entries \(s_{j,k} \) are defined by

\[
s_{j,k} = \begin{cases} x^{s(j-k)}, & \text{if } 0 \leq k \leq j \text{ and } (k, j-k) \text{ is carry-free} \\ 0, & \text{otherwise} \end{cases}
\]

where the notion of carry-free is defined as follows: call a pair of non-negative integers \((a, b)\) carry-free if their sum \(a + b \) involves no carries when the addition is performed in binary. For example, the pair \((8, 2)\) is carry-free since \(8 + 2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0\) + \((1 \cdot 2^1) = 10\) involves no carries in binary.

To see why [3] correctly describes [4], we argue by induction. Clearly, \(S_1(x) \) satisfies [3]. Next, assume that \(S_n(x) \) satisfies [3]. It suffices to show that every entry \(s_{j,k} \) of \(S_{n+1}(x) \) satisfies [3]. To prove this, we divide \(S_{n+1}(x) \), whose size is \(2^{n+1} \times 2^{n+1} \), into four sub-matrices \(A, B, C, D \), each of size \(2^n \times 2^n \), based on the recurrence

\[
S_{n+1}(x) = \begin{pmatrix} S_n(x) \\ x S_n(x) \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix},
\]

where \(A = D = S_n(x), \ B = 0, \) and \(C = x S_n(x). \) We now consider four cases depending on which sub-matrix the element \(s_{j,k} \) belongs to.
Case 1: $0 \leq j, k \leq 2^n - 1$. Then $s_{j,k}$ lies in $A = S_n(x)$ and thus satisfies \Box. Clearly holds.

Case 2: $0 \leq j \leq 2^n - 1$, $2^n \leq k \leq 2^{n+1} - 1$. Then $s_{j,k}$ lies in $B = 0$, which implies $s_{j,k} = 0$, and thus satisfies since $k \geq j$.

Case 3: $2^n \leq j, k \leq 2^{n+1} - 1$. Then $s_{j,k}$ lies in $D = S_n(x)$. Let
\[
 j = j_0 2^0 + \ldots + j_n 2^n,
 \quad k = k_0 2^0 + \ldots + k_n 2^n
\]
denote their binary expansions. Observe that $j_n = k_n = 1$. Define $j' = j - 2^n$ and $k' = k - 2^n$ where we delete the digit j_n from j (resp. k_n from k). Then it is clear that $(k, j - k)$ being carry-free is equivalent to $(k', j' - k')$ being carry-free. Moreover, $s(j - k) = s(j' - k')$. We conclude that
\[
 s_{j,k} = s_{j',k'} = x^{s(j' - k')} = x^{s(j - k)}
\]
satisfies \Box.

Case 4: $2^n \leq j \leq 2^{n+1} - 1$, $0 \leq k \leq 2^n - 1$. Then $s_{j,k}$ lies in $C = xS_n(x)$. Define $j' = j - 2^n$ and $k' = k$. Then again $(k, j - k)$ being carry-free is equivalent to $(k', j' - k')$ being carry-free. Also, $s(j - k) = s(2^n + j' - k') = 1 + s(j' - k')$. Hence,
\[
 s_{j,k} = x s_{j',k'} = x^{1+s(j' - k')} = x^{s(j - k)}
\]
satisfies \Box as well. This complete the proof.

Callan also proved in the same paper that $S(x)$ generates a one-parameter group, i.e., it satisfies the following additive property under matrix multiplication:
\[
 S(x)S(y) = S(x + y)
\]
We will see that this property encodes a digital version of the Binomial Theorem. For example, equating the $(3,0)$-entry of $S(x + y)$, i.e. $s_{3,0}$, with the corresponding entry of $S(x)S(y)$ yields the identity
\[
 (x + y)^s(3) = x^s(3)y^s(0) + x^s(2)y^s(1) + x^s(1)y^s(2) + x^s(0)y^s(3),
\]
which simplifies to the Binomial Theorem for $n = 2$:
\[
 (x + y)^2 = x^2 + 2xy + y^2.
\]
The identities corresponding to the $(5,0)$ and $(7,0)$-entries of $S(x + y)$ are
\[
 (x + y)^s(5) = x^s(5)y^s(0) + x^s(4)y^s(1) + x^s(1)y^s(4) + x^s(0)y^s(5)
\]
and
\[
 (x + y)^s(7) = x^s(7)y^s(0) + x^s(6)y^s(1) + x^s(5)y^s(2) + x^s(4)y^s(3)
\]
\[
 + x^s(3)y^s(4) + x^s(2)y^s(5) + x^s(1)y^s(6) + x^s(0)y^s(7),
\]
respectively. Observe that (12) is equivalent to (10) while (13) simplifies to the Binomial Theorem for $n = 3$.

More generally, property (9) can be restated as a digital version of the Binomial Theorem:

Theorem 2 (Digital Binomial Theorem). Let $m \in \mathbb{N}$. Then
\[
 (x + y)^s(m) = \sum_{0 \leq k \leq m \text{ carry-free}} x^s(k)y^s(m-k).
\]

We note that (20) appears implicitly in Callan’s proof of (9). The rest of this article is devoted to proving Theorem 2 independently of (9) and demonstrating that it is equivalent to the Binomial Theorem when $m = 2^n - 1$.

2. Proof of the Digital Binomial Theorem

There are many known proofs of the Binomial Theorem. The standard combinatorial proof relies on enumerating \(n \)-element permutations that contain the symbols \(x \) and \(y \) and then counting those permutations that contain \(k \) copies of \(x \). For example, the expansion

\[
(x + y)^2 = xx + xy + yx + yy
\]

gives all 2-element permutations that contain \(x \) and \(y \). Then the number of permutations that contain \(k \) copies of \(x \) is given by \(\binom{n}{k} \). Thus, (15) corresponds to (2) with \(n = 2 \):

\[
(x + y)^2 = \binom{2}{0} x^2 + \binom{2}{1} xy + \binom{2}{2} y^2.
\]

(16)

To establish that (16) is equivalent to (10), we consider the following digital binomial expansion: given two sets of digits, \(S_0 = \{ x_0, y_0 \} \) and \(S_1 = \{ x_1, y_1 \} \), we can represent all ways of constructing a 2-digit number \(z_0z_1 \), where \(z_0 \in S_0 \) and \(z_1 \in S_1 \), by the expansion

\[
(x_0 + y_0)(x_1 + y_1) = x_0x_1 + x_0y_1 + y_0x_1 + y_0y_1,
\]

which we rewrite as

\[
(x_0 + y_0)(x_1 + y_1) = (x_0^1 + y_0^1)(x_1^1 + y_1^1) + (x_0^1 + y_0^1)(y_0^1 + x_1^1) + (x_0^1 + y_0^1)(y_0^1 + x_1^1),
\]

(18)

If we now assume that \(x_0 = x_1 = x \) and \(y_0 = y_1 = y \), then each term on the right-hand side of (18) has the form

\[
x_0^d_0 x_1^d_1 y_0^{1-d_0} y_1^{1-d_1} = x^s(k) y^{s(3-k)},
\]

where \(k = d_02^0 + d_12^1 \) and \(3 - k = 1 - d_02^0 + (1 - d_1)2^1 \). It follows that (18) reduces to (10). On the other hand, (17) reduces to (15). Thus, we have shown that Theorem 2 for \(m = 3 \) is equivalent to the Binomial Theorem for \(n = 2 \).

To extend the proof to integers of the form \(m = 2^n - 1 \), we consider \(n \) sets of digits, \(S_k = \{ x_k, y_k \} \), where \(k = 0, 1, \ldots, n - 1 \). The expansion

\[
\prod_{k=0}^{n-1} (x_k + y_k) = \sum_{z_k \in S_k} z_0 \ldots z_{n-1} = \sum_{d_k \in \{0, 1\}} x_0^{d_0} \ldots x_{n-1}^{d_{n-1}} y_0^{1-d_0} \ldots y_{n-1}^{1-d_{n-1}}
\]

(19)

represents all ways of constructing an \(n \)-digit number \(z = z_0z_1 \ldots z_{n-1} \) with \(z_k \in S_k \) for \(k = 0, 1, \ldots, n - 1 \). Then substituting \(x_k = x \) and \(y_k = y \) for all such \(k \) into (19) yields

\[
(x + y)^n = \sum_{d_0, \ldots, d_{n-1} \in \{0, 1\}} x^{d_0+\ldots+d_{n-1}} y^{n-(d_0+\ldots+d_{n-1})},
\]

(20)

or equivalently,

\[
(x + y)^s(2^n - 1) = \sum_{k=0}^{2^n-1} x^s(k) y^{s(2^n - 1 - k)},
\]

(21)

where if we define \(k = d_02^0 + \ldots + d_{n-1}2^{n-1} \), then \(s(k) = d_0 + \ldots + d_{n-1} \) and \(s(2^n - 1 - k) = s(2^n - 1) - s(k) = n - (d_0 + \ldots + d_{n-1}) \).

Moreover, \(k \) ranges from 0 to \(2^n - 1 \) since \(d_0, \ldots, d_{n-1} \in \{0, 1\} \). This justifies Theorem 1. On the other hand, given \(k \) between 0 and \(n \), the number of permutations \((d_0, \ldots, d_{n-1}) \) containing \(k \) 1’s is equal to \(\binom{n}{k} \). Thus, (20) reduces to (2). This proves that Theorem 1 is equivalent to the Binomial Theorem.

To complete the proof of Theorem 1 for any non-negative integer \(m \), we first expand \(m \) in binary:

\[
m = m_{n-1}2^{n-1} + \ldots + m_12 + m_0,
\]

where we only record its 1’s digits so that \(m_{n-k} = 1 \) for all \(k = 0, \ldots, n-1 \). Then \(s(m) = m_{n-1} + \ldots + m_1 \) and \(n - s(m) = m_0 + \ldots + m_{n-1} \).

Just as before, we use the expansion (19) to derive (20), but this time we rewrite (20) as

\[
(x + y)^s(m) = \sum_{0 \leq k \leq m \atop (k, m-k) \text{ carry-free}} x^s(k) y^{s(m-k)},
\]

(22)
Moreover, it is clear that \(0 \leq k \leq m \) and since \(m_{i_k} = 1 \) for all \(k = 0, \ldots, n-1 \), we have
\[
m - k = (m_02^{i_0} + \ldots + m_{i_{n-1}}2^{i_{n-1}}) - (d_02^{i_0} + \ldots + d_{n-1}2^{i_{n-1}}))
\]
\[
= (1 - d_0)2^{i_0} + \ldots + (1 - d_{n-1})2^{i_{n-1}}.
\]
It follows that
\[
s(m - k) = (1 - d_0) + \ldots + (1 - d_{n-1})
\]
\[
= n - (d_0 + \ldots + d_{n-1}).
\]
Moreover, it is clear that \(0 \leq k \leq m \) and \((k, m - k)\) is carry-free. Conversely, every non-negative integer \(k \) with \((k, m - k)\) carry-free must have representation in the form \((23)\); otherwise, the sum \(k + (m - k)\) requires a carry in any non-zero digit of \(k \) where the corresponding digit of \(m \) in the same position is zero. Thus, Theorem 1 holds for any non-negative integer \(m \).

To complete our story we explain why Sierpinski’s triangle appears in the reduction of Pascal’s triangle’s mod 2 by relating binomial coefficients with the sum-of-digits function. Define the carry function. In particular, we have (see \[2\])
\[
\text{Binomial Theorem can be restated purely in terms of the additivity of the sum-of-digits function:}
\]
\[
(x + y)^n = \sum_{0 \leq k \leq m} x^k y^{n-k}.
\]

Theorem 3 (Kummer). Let \(p \) be a prime integer. Then the largest power of \(p \) that divides \(\binom{n}{k} \) equals \(c(n, k) \).

Kummer’s theorem now explains the location of 0’s and 1’s in Sierpinski’s triangle, assuming that its entries are defined by
\[
s_{n,k} = \binom{n}{k} \mod 2.
\]
Let \(p = 2 \). If \((k, n - k)\) is carry free, then \(c(n,k) = 0 \) and therefore the largest power of 2 dividing \(\binom{n}{k} \) is \(2^0 = 1 \). In other words, \(\binom{n}{k} \) is odd and hence, \(s_{n,k} = 0 \). On the other hand, if \((k, n - k)\) is not carry-free, then \(c(n,k) \geq 1 \) and so the largest power of 2 dividing \(\binom{n}{k} \) is at least 1. Therefore, \(\binom{n}{k} \) is even and hence, \(s_{j,k} = 0 \). This proves that definition \((24)\) for Sierpinski’s triangle is equivalent to definition \((5)\) in terms of carry-free pairs with \(x = 1 \).

Lastly, it is known that the failure of the sum-of-digits function to be additive is characterized by the carry function. In particular, we have (see \[2\])
\[
s(k) + s(n-k) - s(n) = c(n,k)
\]
It follows that \((k, n - k)\) is carry-free if and only if \(s(k) + s(n - k) = s(n) \). Thus, it is fitting that the Digital Binomial Theorem can be restated purely in terms of the additivity of the sum-of-digits function:
\[
(x + y)^{s(m)} = \sum_{0 \leq k \leq m} x^k y^{s(m-k)}.
\]

References

[1] J.-P. Allouche and J. Shallit, *The Ubiquitous Prouhet-Thue-Morse Sequence*, Sequences and Their applications, Proc. SETA’98 (Ed. C. Ding, T. Helleseth, and H. Niederreiter). New York: Springer-Verlag, pp. 1–16, 1999.

[2] T. Ball, T. Edgar, and D. Juda, *Dominance Orders, Generalized Binomial Coefficients, and Kummer’s Theorem*, Mathematics Magazine 87 (2014), No. 2, 135-143.

[3] D. Callan, *Sierpinski’s Triangle and the Prouhet-Thue-Morse Word*, 2006. arXiv:math/0610932.

[4] Andrew Granville, *Arithmetic properties of binomial coefficients I: Binomial coefficients modulo prime powers*, in Organic mathematics, CMS Conf. Proc. vol. 20, Amer. Math. Soc., 1997, 253-276.

[5] Willi-Hans Steeb, *The Nonlinear Workbook: 5th Edition*, World Scientific Publishing Company, 2011.

Department of Mathematics, Rowan University, Glassboro, NJ 08028.

E-mail address: nguyen@rowan.edu