LETTER TO THE EDITOR

Frequent CALR exon 9 alterations in JAK2 V617F-mutated essential thrombocythemia detected by high-resolution melting analysis

Essential thrombocythemia (ET) is a clonal hematopoietic stem cell neoplasm and one of the classic BCL-ABL1-negative chronic myeloproliferative neoplasm (MPN), which also includes polycythemia vera and primary myelofibrosis (PMF). Recently, two seminal studies discovered a high frequency of somatic calreticulin (CALR) mutations in patients with JAK2/MPL-unmutated ET and PMF. The pattern of most CALR mutations in MPN is heterozygous indels in exon 9 causing one-base pair (bp) reading frameshift. CALR mutations have been shown to have important diagnostic and prognostic significance in ET and PMF patients, and will likely be incorporated into the World Health Organization (WHO) diagnostic criteria for MPN. In vitro studies on the molecular pathogenesis of CALR mutations in MPN have shown controversial results in regard to the involvement and/or activation of the JAK/STAT signaling pathway, and the exact pathogenesis of CALR mutations is not yet completely understood at the present time.

Several techniques such as Sanger sequencing and polymerase chain reaction (PCR) followed by fragment analysis have been used to detect CALR mutations. High-resolution melting analysis (HRMA) is a well-established method for the screening of mutations, and we have developed a rapid and sensitive HRMA for the detection of CALR exon 9 mutations. In this study, we sought to screen a cohort of 92 Taiwanese ET patients for CALR exon 9 mutations with HRMA and Sanger sequencing independently, and to determine the clinical and molecular correlates.

Several techniques such as Sanger sequencing and polymerase chain reaction (PCR) followed by fragment analysis have been used to detect CALR mutations. High-resolution melting analysis (HRMA) is a well-established method for the screening of mutations, and we have developed a rapid and sensitive HRMA for the detection of CALR exon 9 mutations. In this study, we sought to screen a cohort of 92 Taiwanese ET patients for CALR exon 9 mutations with HRMA and Sanger sequencing independently, and to determine the clinical and molecular correlates.
After screening the 59 JAK2 V617F-mutated ET patients for CALR alterations by HRMA, 16 (27.1%) samples were found to have distinct melting curves from wild type (Figure 1). In 2 of these 16 samples, one CALR type 3 mutation (p.L367fs*48) and one single-nucleotide polymorphism (rs143880510) were detected using Sanger sequencing. All the other 14 samples were wild type by sequencing. Interestingly, we detected a high frequency of CALR exon 9 alterations in 12 (85.7%) of these 14 patients after TA-cloning (Table 1A). Three patients harbored the classic CALR indel mutations: one each of type 2 p.K385fs*47, p.E370fs*60 and p.E371fs*59. Hence, four (6.8%) ET patients had classic CALR indel and JAK2 V617F co-mutations in this cohort. Five patients (8.5%) including the aforementioned patient (P520) with type 2 CALR mutation harbored four types of 3-bp inframe deletions all resulted in the deletion of a single amino acid of glutamic acid: two p.E381del and one each of p.E371del, p.E378del and p.E396del (Supplementary Figure 1). Another five patients (8.5%) harbored five types of point mutations: one each of p.E374X, p.E380X, p.K391X, p.E372G and p.E380G. The latter p.E380G has been reported as a single-nucleotide polymorphism but might be a low-allele-burden somatic mutation in this patient because it was only detected after TA-cloning and not by Sanger sequencing on patient’s genomic DNA. The remaining two patients were found to have wild-type CALR exon 9 after screening for 100 independent clones, and were counted as CALR wild type. Overall, various CALR exon 9 alterations were detected in 13 (22%) of 59 JAK2 V617F-mutated ET patients.

We then examined the clinical and molecular correlates in 91 ET patients excluding the one MPL-mutated patient (Table 1B). JAK2-mutated ET patients with concomitant CALR alterations were associated with oldest age (P=0.025), higher thrombotic events after diagnosis (P=0.048), higher major arterial thrombotic events after diagnosis (P=0.022) and more patients being in the high-risk group for thrombohemorrhagic complications (P=0.03). Consistent with previous reports, CALR mutations were associated with younger age (P=0.025), higher platelet count (P<0.0001) and lower hemoglobin level (P=0.016). JAK2 V617F mutation was associated with leukocytosis (P=0.046).

After the discovery of CALR mutations, it has been proposed to be mutually exclusive with JAK2 and MPL mutations in MPN. However, CALR and JAK2 V617F co-mutations have been reported in a few MPN cases across different ethnic groups and the frequency is usually below 1%. In contrast to these reports, we detected a higher frequency of 6.8% CALR indel and JAK2 co-mutations in ET patients. Interestingly, three of these CALR mutations were low-allele-burden mutants not detected using Sanger sequencing. Nevertheless, the use of a sensitive HRMA technique has enabled us to detect these low-allele-
Table 1B. Variables All (n = 91) A. JAK2 V617F mutation (n = 46) B. CALR mutation (n = 21) C. JAK2-mutated and CALR alterations (n = 13) D. Triple-negative (n = 11) A vs B vs C vs D, F test, p value

Variables	All (n = 81)	A vs B	A vs C	B vs C	A vs D	B vs D	C vs D		
Male/female gender, (%)	39/52 (43/57)	21/25 (46/54)	9/12 (43/57)	5/8 (39/61)	4/7 (36/64)	NS	NS	NS	NS
Age at diagnosis (years), median (range)	53 (22–89)	54.5 (25–89)	47 (22–76)	60 (26–80)	52 (35–79)	0.025	0.012	NS	0.004
Follow-up (years), median (range)	3.7 (0.02–23.1)	5.4 (0.05–23.1)	3.8 (0.02–6.1)	2.7 (0.02–10.4)	3.1 (0.02–10.3)	0.025	0.022	NS	0.009
History of thrombosis, (%)	19 (20.9)	9 (19.6)	3 (14.3)	5 (38.5)	2 (18.2)	NS	NS	NS	NS
Major thrombosis, (%)	17 (18.7)	8 (17.4)	2 (9.5)	5 (38.5)	2 (18.2)	NS	NS	NS	NS
Thrombosis after diagnosis, (%)	6 (6.6)	1 (2.2)	1 (4.8)	3 (23.1)	1 (9.1)	NS	0.022	0.03	NS
Major arterial thrombosis after diagnosis, (%)	9 (p.E393_E395del and p.E405del)	5 (p.E393_E395del and p.E405del)	2 (p.E393_E395del and p.E405del)	2 (p.E393_E395del and p.E405del)	1 (p.E393_E395del and p.E405del)	NS	NS	NS	NS
History of hemorrhage, (%)	25 (27.5)	13 (28.6)	9 (42.9)	2 (15.4)	1 (9.1)	0.016	0.016	NS	NS
Major hemorrhage, (%)	17 (18.7)	9 (19.6)	6 (28.6)	2 (15.4)	0 NS	NS	NS	NS	NS
Hemoglobin (g dl−1), median (range)	9.2 (4.9–24.2)	11.8 (6.0–24.2)	8.2 (5.3–24.2)	12.8 (9.3–15.2)	11.8 (6.0–24.2)	NS	NS	NS	NS
WBC (×10^3 μl−1), median (range)	936 (335–2834)	942 (335–1496)	1351 (642–2834)	855 (547–1931)	708 (532–1496)	0.001	0.023	NS	0.001
Platelets (×10^9 l−1), median (range)	302 (90–999)	301 (90–999)	243 (60–429)	832 (263–1789)	472 (151–1179)	NS	NS	NS	NS

Abbreviations: n, number; NS, not significant; WBC, white blood cell. aHigh-risk group for thrombohemorrhagic complications: Age ≥ 60 years and/or a previous history of thrombosis.

In conclusion, we have detected a high frequency of both classic and non-classic CALR exon 9 alterations in JAK2-mutated ET patients by HRMA. The presence of CALR alterations in JAK2-mutated ET defines a specific subgroup of patients requiring careful follow-up and management for their increased risk of thrombotic events. Because our study is limited by small patient number, larger study is warranted to confirm our observation.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We are grateful to Drs Kuei-Fang Chou, Po-Nien Liao and Guan-Jhe Cai for their help in patient enrollment and collecting clinical specimens. The present study was supported by grants from the Ministry of Science and Technology of Taiwan to K-HL (grant number: MOST 103-2314-B-002-168), and the intramural grants from the Department of Medical Research of Mackay Memorial Hospital to H-CL and K-HL.

DISCLAIMER

The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

AUTHOR CONTRIBUTIONS

K-HL, CG-SC, Y-YK and W-CC conceived of the study, participated in its design and/or coordination, and edited the manuscript. K-HL, H-CL, CG-SC, Y-YK, H-IC, N-WS, JL, Y-FC, M-CC and R-KH enrolled patients into the study. K-HL and W-TW carried out experiments and data analysis. K-HL and W-TW drafted the manuscript. All authors approved the manuscript.

K-H Lim1,2,4, Y-C Chang2,3, C Gon-Shen Chen2,3,4,5, H-C Lin2,3, W-T Wang2, Y-H Chang3,2, H-I Cheng3, N-W Su2,3, J Lin2, Y-F Chang3,4, M-C Chang2,3, R-K Hsieh3, Y-Y Kuo1 and W-C Chou2,3
REFERENCES

1 Tefferi A, Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol 2011; 29: 573–582.

2 Klampfi T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013; 369: 2379–2390.

3 Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013; 369: 2391–2405.

4 Rotunno G, Mannarelli C, Guglielmelli P, Pacilli A, Pancrazzi A, Pieri L et al. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood 2014; 123: 1552–1555.

5 Shivarov V, Ivanova M, Tiu RV. Mutated calreticulin retains structurally disordered C terminus that cannot bind Ca(2+): some mechanistic and therapeutic implications. Blood Cancer J 2014; 4: e185.

6 Chi J, Nicolaidou KA, Nicolaidou V, Kouras M, Mitsidou A, Pierides C et al. Calreticulin gene exon 9 frameshift mutations in patients with thrombocytosis. Leukemia 2013; 28: 1152–1154.

7 Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 2014; 123: 2220–2228.

8 Lim KH, Lin HC, Chen CG, Wang WT, Chang YC, Chiang YH et al. Rapid and sensitive detection of CALR exon 9 mutations using high-resolution melting analysis. Clin Chim Acta 2015; 440: 133–139.

9 Lin H-C, Chen CG-S, Chang M-C, Wang W-T, Kao CW, Lo A-C et al. JAK2 V617F mutation in adult Taiwanese patients with essential thrombocythemia. More prevalent in old patient and correlated with higher hemoglobin level and higher leukocyte count. Int J Gerontol 2013; 7: 40–44.

10 Lin H-C, Wang S-C, Chen CG-S, Chang M-C, Wang W-T, Su N-W et al. Mutation and lineage analysis of DNMT3A in BCR-ABL1-negative chronic myeloproliferative neoplasms. Int J Gerontol 2013; 7: 186–188.

11 Shirane S, Araki M, Morishita S, Edahiro Y, Takei H, Yoo Y et al. JAK2, CALR, and MPL mutation spectrum in Japanese myeloproliferative neoplasm patients. Haematologica 2014; 100: e46–e48.

12 Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 2014; 28: 1472–1477.

13 Fu R, Xuan M, Zhou Y, Sun T, Bai J, Cao Z et al. Analysis of calreticulin mutations in Chinese patients with essential thrombocythemia: clinical implications in diagnosis, prognosis and treatment. Leukemia 2014; 28: 1912–1914.

14 Lasho TL, Elliott MA, Pardanani A, Tefferi A. CALR mutation studies in chronic neutrophilic leukemia. Am J Hematol 2014; 89: 450.

15 Wang Y, Ho AK, Pan Q, Racke FK, Jones D. In-frame exon 9 CALR deletions co-occur with other alterations in the JAK-STAT pathway in myeloproliferative neoplasms. Blood 2014; 124: 4588.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Supplementary Information accompanies this paper on Blood Cancer Journal website (http://www.nature.com/bcj)