Comparative study of homotopy perturbation transformation with homotopy perturbation Elzaki transform method for solving nonlinear fractional PDE

Abstract: We apply homotopy perturbation transformation method (combination of homotopy perturbation method and Laplace transformation) and homotopy perturbation Elzaki transformation method on nonlinear fractional partial differential equation (fpde) to obtain a series solution of the equation. In this case, the fractional derivative is described in Caputo sense. To avow the adequacy and authenticity of the technique, we have applied both the techniques to Fractional Fisher’s equation, time-fractional Fornberg-Whitham equation and time fractional Inviscid Burgers’ equation. Finally, we compare the results obtained from homotopy perturbation transformation technique with homotopy perturbation Elzaki transformation.

Keywords: nonlinear fractional partial differential equation; HPTM; Caputo sense; He’s polynomial; Elzaki transform; HPETM

1 Introduction

Most of the real world problems arising in the field of biology, fluid mechanics, ecology and thermodynamics etc. are modelled as nonlinear partial differential equation (PDE). The fractional calculus is an important tool to refine the description of most of the natural phenomenon. Fractional differential equations have attracted considerable interest of many researcher because of their successive appearance in diverse fields of science and engineering. Many numerical and semi-analytical techniques are used to obtain the solution of linear and nonlinear partial differential equations.

Dr. Ji Huan He in 1999, proposed homotopy perturbation method (HPM) [11, 13] which is coupling of homotopoy method and classical perturbation technique, has been successfully implemented on linear and nonlinear problems like nonlinear wave equation[15, 16], fractional diffusion equation [3], fractional convection–diffusion equation [19], space–time fractional advection–dispersion equation [35], fractional Zakharov–Kuznetsov equations [34], fractional partial differential equations in fluid mechanics [33], fractional Schrödinger equation [32]. The significance of HPM is that it doesn’t require a small parameter in the equation, so it overcome the impediments of classical perturbation technique. The other semi-analytical techniques such as HAM (Homotopy analysis method) [18], Laplace homotopy analysis method [20] Adomian decomposition method [4], HPTM(Homotopy perturbation transformation method) [10, 17, 24, 26, 28] and HPSTM(Homotopy perturbation Sumudu transform method) [23, 27], we can always obtain better result than the numerical one for partial differential equation. In recent years, many researchers have used numerical and analytical technique [1, 29–31] for the solution of fractional partial differential equation. In[9], author suggested a new form of fractional differentiation to model complex physical problems. In this work, we apply HPTM [17, 24, 25] technique (which is combination of homotopy perturbation method and Laplace transformation) and HPETM [5–8, 21] (Homotopy perturbation method with Elzaki transform) to find the solution of Fractional Fisher’s equation, time-fractional Fornberg-Whitham equation and time fractional Inviscid Burgers’ equation and we get a power series solution in the form of a rapidly convergent series and only a few iterations lead to high accurate solutions. In these techniques, there is no need of algorithm like discritizing the problem, no linearization is required for nonlinear problem, only few iterations will lead to the solution which can be easily calculated. There are many sym-
bolic computation software like Maple, Mathematica etc., with which we can easily calculate more terms very easily, hence it reduces the computational cost for solving such complex problem. Finally, we compare the result obtained by these methods.

2 Basic definitions and properties

Definition 2.1. A real function $g(t) \in C_\mu$, $t > 0$, $\mu \in \mathbb{R}$ if $\exists q \in \mathbb{R}; (q > \mu)$, such that $g(t) = t^q k(t)$, where $k(t) \in C[0, \infty)$ and $g(t) \in C^m_\mu$ if $g^{(m)}(t) \in C_\mu$, $m \in \mathbb{N}$.

Definition 2.2. The Caputo fractional derivative of $g(t)$ [2, 22] is defined as

$$
\frac{\partial^\alpha}{\partial t^\alpha} g(t) = \int_0^t \frac{1}{\Gamma(m-\alpha)} \left(t - \eta \right)^{m-\alpha-1} g^{(m)}(\eta)d\eta,
$$

$g \in C^m_{\alpha,1}$, $m - 1 < \alpha \leq m$, $m \in \mathbb{N}$, $\tau > 0$. Here $\frac{\partial^\alpha}{\partial t^\alpha}$ and Γ denotes Caputo derivative operator and the Gamma function respectively.

Definition 2.3. The Elzaki transformation [5, 7] of $g(t)$ is defined as

$$
E[g(t)] = \int_0^\infty g(t)e^{-s\tau}d\tau = F(v), \tau > 0. \tag{2.1}
$$

2.1 Properties

Elzaki transform of the Caputo fractional derivative is

$$
E\left\{ \frac{\partial^\alpha}{\partial t^\alpha} g(t) \right\} = \frac{E\{g(t)\}}{v^\alpha} - \sum_{k=0}^{n-1} v^{k+1-\alpha} g^{(k)}(0), \ n - 1 < \alpha \leq n. \tag{2.2}
$$

Definition 2.4. The Laplace transformation of $f(\tau)$ is defined as

$$
\mathcal{L}\{f(\tau)\} = \int_0^\infty f(\tau)e^{-st}d\tau = F(s), \tau > 0. \tag{2.3}
$$

2.2 Properties

Laplace transform of the Caputo fractional derivative is given by [2]

$$
\mathcal{L}\left\{ \frac{\partial^\alpha}{\partial t^\alpha} f(\tau) \right\} = s^\alpha \mathcal{L}\{f(\tau)\} - \sum_{k=0}^{n-1} s^{\alpha-k-1} f^{(k)}(0), \ n - 1 < \alpha \leq n. \tag{2.4}
$$

Definition 2.5. The Mittag-Leffler function of two parameter a and b is given by [12]

$$
E_{a,b}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(an + b)}, \ a, b > 0 \tag{2.5}
$$

3 Homotopy perturbation method (HPM)

Consider the nonlinear partial differential equation

$$
L(w) + N(w) = f(r), r \in \Omega \tag{3.1}
$$

with boundary condition

$$
B\left(w, \frac{\partial w}{\partial n} \right) = 0, r \in \Gamma \tag{3.2}
$$

where L and N are linear and nonlinear differential operators and $f(r)$ is analytic function. Ji-huan He [13], [14] construct a homotopy of eq. (3.1) as $H : \Omega \times [0, 1] \to \mathbb{R}$ which satisfies

$$
H(v, p) = (1 - p)(L(v) - L(w_0)) + p(L(v) + N(v) - f(r)) = 0 \tag{3.3}
$$

or

$$
H(v, p) = L(v) - L(w_0) + pL(w_0) + p(N(v) - f(r)) \tag{3.4}
$$

where $p \in [0, 1]$ is an embedding parameter and w_0 is an initial approximation which satisfies the boundary conditions. Clearly, from (3.3), we have

$$
H(v, 0) = L(v) - L(w_0) = 0 \tag{3.5}
$$

$$
H(v, 1) = (L(v) + N(v) - f(r)) = 0 \tag{3.6}
$$

The process of changing of p from zero to unity is that v varies from w_0 to $w(x, t)$. The basic assumption for this method is that the solution of (3.1) can be expressed as

$$
v = v_0 + v_1 p + v_2 p^2 + v_3 p^3 + \ldots \tag{3.7}
$$

The solution of (3.1) is given by

$$
w(x, t) = \lim_{p \to 1} (v_0 + v_1 p + v_2 p^2 + v_3 p^3 + \ldots) \tag{3.8}
$$
4 Homotopy perturbation Elzaki transform method (HPETM)

Consider the following general fractional nonlinear partial differential equation
\[
\frac{\partial^\alpha}{\partial t^\alpha}w(x, t) + Lw(x, t) + Nw(x, t) = f(x, t), \quad t > 0, \quad x \in \mathbb{R}, \quad n - 1 < \alpha \leq n,
\]
(4.1)

here, \(\frac{\partial^\alpha}{\partial t^\alpha}\), is the fractional Caputo derivative with respect to \(t\), \(L\) and \(N\) are linear and non-linear differential operators respectively which satisfy Lipschitz condition, \(f(x, t)\) is the source term. Now applying Elzaki transform, we get
\[
E\left\{\frac{\partial^\alpha}{\partial t^\alpha}w + Lw + Nw\right\} = E\{f(x, t)\}.
\]

Using (2.2), we have
\[
E\{w\} = \sum_{k=0}^{n-1} v^{k+2} w^{(k)}(x, 0) + v^\alpha E\left\{f(x, t) - Lw - Nw\right\}.
\]

Applying the inverse Elzaki transform, we have
\[
w = \sum_{k=0}^{n-1} E^\frac{\partial^k}{\partial t^k} w^{(k)}(x, 0) + E^{-1} \left\{v^\alpha E\left\{f(x, t) - Lw - Nw\right\}\right\}.
\]

By applying HPM, we get
\[
0 = (1 - p)\left(w(x, t) - w(x, 0)\right) + p \left(w(x, t) - \sum_{k=0}^{n-1} \frac{t^k}{k!} w^{(k)}(x, 0)\right) - E^{-1} \left\{v^\alpha E\left\{f(x, t) - Lw - Nw\right\}\right\},
\]
(4.2)

Let
\[
w(x, t) = \sum_{n=0}^{\infty} p^n w_n(x, t),
\]
(4.3)

where
\[
H_n(w(x, t)) = \frac{1}{n!} \frac{\partial^n}{\partial p^n} \left(\sum_{i=0}^{\infty} p^i w_i\right)_{(p=0)}, \quad n = 0, 1, 2, 3, \ldots
\]
(4.4)

So, (4.2) becomes
\[
\sum_{n=0}^{\infty} p^n w_n = w(x, 0) + p \left(\sum_{k=0}^{n-1} \frac{t^k}{k!} w^{(k)}(x, 0)\right) + E^{-1} \left\{v^\alpha E\left\{f(x, t) - L w - N w\right\}\right\},
\]
(4.5)

Comparing the coefficients of like powers of \(p\), we have
\[
p^0 : w_0 = w(x, 0);
\]
\[
p^1 : w_1 = \sum_{k=1}^{n-1} \frac{t^k}{k!} w^{(k)}(x, 0) + E^{-1} \left\{v^\alpha \left(E\left\{f(x, t) - L w_0 - N w_0\right\}\right)\right\};
\]
\[
p^2 : w_2 = -E^{-1} \left\{v^\alpha \left(E\left\{L w_1 + H_1\right\}\right)\right\};
\]
\[
p^3 : w_3 = -E^{-1} \left\{v^\alpha \left(E\left\{L w_2 + H_2\right\}\right)\right\},
\]
\[
\vdots
\]

therefore, the HPETM series solution is obtained as \(p \to 1\)
\[
w(x, t) = w_0 + w_1 + w_2 + w_3 + \ldots
\]

5 Convergence analysis

In this section, we emphasis on the condition of convergence of the proposed method for the series solution of eq. (4.1).

Theorem 5.1. Let \(w\) and \(w_n(x, t)\) be defined in Banach space, then the condition that series solution defined by eq. (4.3) converges to the solution of eq. (4.1) if \(\exists \eta \in (0, 1)\) such that \(\|w_{n+1}\| \leq \eta \|w_n\|\). The condition of convergence has been proved in [27, 28].

Theorem 5.2. The maximum absolute truncation error of the series solution eq. (4.3) of eq. (4.1) is given by
\[
|w(x, t) - \sum_{n=0}^{\infty} w_n(x, t)| \leq \frac{\eta^{n+1}}{1 - \eta} ||w_0||
\]

6 Application

Example 6.1. Consider the time fractional nonlinear Fisher’s equation [21]
\[
\frac{\partial^\alpha w}{\partial t^\alpha} = \frac{\partial^2 w}{\partial x^2} + 6w(1 - w), \quad t > 0, \quad x \in \mathbb{R}, \quad 0 < \alpha \leq 1,
\]
(6.1)

with initial condition \(w(x, 0) = \frac{1}{1 + e^{-x^2}}\).

By applying HPETM on (6.1), we have
\[
\sum_{n=0}^{\infty} p^n w_n = \frac{1}{(1 + e^{-x^2})^2} + p E^{-1} \left\{v^\alpha \left(E\left\{\sum_{n=0}^{\infty} (p^n w_n)_{xx}\right\}\right)\right\} + 6 \left\{\sum_{n=0}^{\infty} p^n w_n - 6 \sum_{n=0}^{\infty} p^n H_n(w)\right\},
\]
(6.2)
where $H_n(w)$ represents He’s polynomial. The first few components of He’s polynomial are given by

\[
H_0(w) = w_0; \\
H_1(w) = 2w_0w_1; \\
H_2(w) = w_1^2 + 2w_0w_2, \\
\vdots
\]

Comparing the like powers of p on both sides of (6.2), we have

\[
p^0 : w_0 = \frac{1}{(1 + e^x)^2}, \\
p^1 : w_1 = 10 \frac{e^x t^a}{(1 + e^x)^3 \Gamma(a + 1)}, \\
p^2 : w_2 = 50 \frac{e^x (2e^x - 1) t^{2a}}{(1 + e^x)^4 \Gamma(2a + 1)}, \\
p^3 : w_3 = \left(50 \frac{e^x (-16e^{3x} - 15e^{2x} + 30e^x + 5)}{(1 + e^x)^6} \Gamma(2a + 1) \right) \frac{t^{3a}}{(1 + e^x)^6 \Gamma(3a + 1)} \\
\vdots
\]

Hence the solution is

\[
w(x, t) = \frac{1}{(1 + e^x)^2} + 10 \frac{e^x t^a}{(1 + e^x)^3 \Gamma(a + 1)} \\
+ 50 \frac{e^x (2e^x - 1) t^{2a}}{(1 + e^x)^4 \Gamma(2a + 1)} \\
+ \left(50 \frac{e^x (-16e^{3x} - 15e^{2x} + 30e^x + 5)}{(1 + e^x)^6} \Gamma(2a + 1) \right) \frac{t^{3a}}{(1 + e^x)^6 \Gamma(3a + 1)} + \ldots
\]

(6.3)

The above solution obtained is equivalent to the closed form solution when $a = 1$ i.e $w(x, t) = \frac{1}{(1 + e^x)^2}$ up to fourth order term approximation.

Example 6.2. Consider the time-fractional Fornberg-Whitham equation [26]

\[
\frac{\partial^a}{\partial t^a} w(x, t) = \frac{\partial^3 w}{\partial x^3 \partial t} - \frac{\partial w}{\partial x} + w \frac{\partial^3 w}{\partial x^3} - w \frac{\partial w}{\partial x} + 3 \frac{\partial w}{\partial x} \frac{\partial^2 w}{\partial x^2},
\]

$t > 0, x \in \mathbb{R}, 0 < a \leq 1$, (6.4)

with initial condition $w(x, 0) = e^x$.

By applying HPETM on (6.4), we have

\[
\sum_{n=0}^{\infty} p^n w_n = e^x + p \left\{ E^{-1} \left\{ v^a \left(E \left\{ \sum_{n=0}^{\infty} p^n (w_n)_{xxt} \right\} \right) \right\} \right\} + \sum_{n=0}^{\infty} p^n (-w_n)_x + \left\{ \sum_{n=0}^{\infty} p^n H_n(w) \right\}.
\]

(6.5)

where $H_n(w)$ are He’s polynomial represents nonlinear terms. The first few components of He’s polynomial are given by

\[
H_0(w) = w_0w_{0xx} - w_0w_{0x} + 3w_0w_{0xx}; \\
H_1(w) = w_0w_{1xx} + w_1w_{0xx} - w_0w_{1x} + w_1w_{0x} \\
+ 3w_0w_{1xx} - 3w_1w_{0xx}.
\]

Compared like powers of p on both sides of (6.5), we have

\[
p^0 : w_0 = e^x; \\
p^1 : w_1 = -e^x \frac{t^a}{2 \Gamma(2a + 1)}; \\
p^2 : w_2 = -e^x \frac{t^{2a-1}}{8 \Gamma(2a + 4 \Gamma(2a + 1)}; \\
p^3 : w_3 = e^x \left(-1 \frac{t^{3a-2}}{32 \Gamma(3a - 1)} + \frac{1}{8 \Gamma(3a)} - \frac{1}{8 \Gamma(3a + 1)} \right).
\]

Hence, the solution is

\[
w(x, t) = e^x - e^x \frac{t^a}{2 \Gamma(2a + 1)} - e^x \frac{t^{2a-1}}{8 \Gamma(2a + 4 \Gamma(2a + 1)} + e^x \frac{t^{3a}}{32 \Gamma(3a - 1)} - \frac{1}{8 \Gamma(3a)} - \frac{1}{8 \Gamma(3a + 1)} + \ldots
\]

(6.6)

From the above solution, it is clear that the approximate solution (up to fourth order approximation) obtained from above said technique very closed to the exact solution i.e. $w(x, t) = e^x (\frac{t^a}{4} + \frac{1}{4})$ for $a = 1$.

Example 6.3. Consider the nonlinear nonhomogeneous time fractional Inviscid Burgers’ equation [36]

\[
D^a_t w + ww_x = 1 + x + t, w(x, 0) = x, 0 < a \leq 1
\]

(6.7)

By applying HPETM on eq.(6.7), we have

\[
\sum_{n=0}^{\infty} p^n w_n = x + p \left\{ E^{-1} \left\{ v^a \left(E \left\{ \sum_{n=0}^{\infty} p^n H_n(w) \right\} \right) \right\} \right\}
\]

(6.8)

where

\[
ww_x = \sum_{n=0}^{\infty} p^n H_n(w)
\]

i.e.

\[
\left(\sum_{n=0}^{\infty} p^n w_n \right) \left(\sum_{n=0}^{\infty} p^n w_n \right) x = \sum_{n=0}^{\infty} p^n H_n(w)
\]
Hence the solution of (6.7) is given in (2.5). When given as

\[w \in \text{eq. (6.9) is Mittag-Leffler function defined in (2.5). When } \alpha = 1, \text{ the exact solution of (6.7) is } \]

\[w(x, t) = x + t - E_{\alpha,1}(-t^\alpha) - tE_{\alpha,2}(-t^\alpha) \]

(6.9)

where \(E_{\alpha,2}(-t^\alpha) \) in eq. (6.9) is Mittag-Leffler function defined in (2.5). When \(\alpha = 1 \), the exact solution of (6.7) is \(w(x, t) = x + t \).

7 Homotopy perturbation transformation method (HPTM)

Now we present the solution of (4.1) using Laplace transformation,

\[\mathcal{L}\left\{ \frac{\partial^a}{\partial t^a} w + Lw + Nw \right\} = \mathcal{L}\{f(x, t)\}. \]

Using (2.4), we have

\[\mathcal{L}\{w\} = \frac{1}{s^a} \left(\sum_{k=0}^{n-1} s^{a-k-1} w^{(k)}(x, 0) \right) + \frac{1}{s^a} \mathcal{L}\{f(x, t) - Lw - Nw\}. \]

Operating inverse Laplace transform, we get

\[w(x, t) = s^{-a} \sum_{k=0}^{n-1} \frac{t^k}{k!} w^{(k)}(x, 0) + s^{-a} \mathcal{L}^{-1}\left\{ \frac{1}{s^a} \mathcal{L}\{f(x, t) - Lw - Nw\} \right\}. \]

By applying HPM, we get

\[0 = (1 - p) \left(w(x, t) - w(x, 0) \right) + p \left(w(x, t) - \sum_{k=0}^{n-1} \frac{t^k}{k!} w^{(k)}(x, 0) \right) - \mathcal{L}^{-1}\left\{ \frac{1}{s^a} \mathcal{L}\{f(x, t) - Lw - Nw\} \right\}, \]

(7.1)

Let

\[w(x, t) = \sum_{n=0}^{\infty} p^n w_n(x, t), \]

\[Nw(x, t) = \sum_{n=0}^{\infty} p^n H_n(w(x, t)) \text{ and } w(x, 0) = w_0(x, t) \]

(7.2)

where

\[H_n(w(x, t)) = \frac{1}{n!} \frac{\partial^n}{\partial p^n} \left(\sum_{i=0}^{\infty} p^i w_i \right) \]

(7.3)

Substituting (7.2) and (7.3) in (7.1), we get

\[\sum_{n=0}^{\infty} p^n w_n(x, t) = w_0(x, t) + p \left(\sum_{k=1}^{n-1} \frac{t^k}{k!} w^{(k)}(x, 0) + \mathcal{L}^{-1}\left\{ \frac{1}{s^a} \mathcal{L}\left\{f(x, t) - L \left(\sum_{n=0}^{\infty} p^n w_n(x, t) - \sum_{n=0}^{\infty} p^n H_n(w(x, t)) \right) \right\} \right\} \right) \]

(7.4)
On comparing the coefficients of the like powers of \(p \), we get

\[
p^0 : w_0 = w(x, 0); \\
p^1 : w_1 = \sum_{k=1}^{n-1} \frac{t^k}{k!} w^{(k)}(x, 0) \\
+ \mathcal{L}^{-1} \left\{ \frac{1}{s^\alpha} \mathcal{L} \left\{ f(x, t) - Lw_0 - H_0(w) \right\} \right\}; \\
p^2 : w_2 = -\mathcal{L}^{-1} \left\{ \frac{1}{s^\alpha} \mathcal{L} \left\{ Lw_1 + H_1(w) \right\} \right\}; \\
p^3 : w_3 = -\mathcal{L}^{-1} \left\{ \frac{1}{s^\alpha} \mathcal{L} \left\{ Lw_2 + H_2(w) \right\} \right\}, \\
\vdots
\]

hence, the approximate solution is obtained as \(p \to 1 \)

\[
w(x, t) = w_0 + w_1 + w_2 + \ldots.
\]

8 Application

Example 8.1. Consider the time fractional nonlinear Fisher’s equation[21]

\[
\frac{\partial^\alpha w}{\partial t^\alpha} = \frac{\partial^2 w}{\partial x^2} + 6w(1 - w), \quad t > 0, \quad x \in \mathbb{R}, \quad 0 < \alpha \leq 1, \quad (8.1)
\]

with initial condition \(w(x, 0) = \frac{1}{(1 + e^\alpha)^2} \).

By applying HPTM on (8.1), we have

\[
\sum_{n=0}^{\infty} p^n w_n = \frac{1}{(1 + e^\alpha)^2} + p \left(\mathcal{L}^{-1} \left\{ \frac{1}{s^\alpha} \left(\mathcal{L} \left\{ \sum_{n=0}^{\infty} (p^n w_n)_{xx} \right\}_x \right. \right. \\
+ 6 \left\{ \sum_{n=0}^{\infty} p^n w_n - \sum_{n=0}^{\infty} p^n H_n(w) \right\} \left\} \right) \right) \quad (8.2)
\]

where \(H_n(w) \) are He’s polynomial represents nonlinear terms. The first few components of He’s polynomial are given by

\[
H_0(w) = w_0^2; \\
H_1(w) = 2w_0 w_1; \\
H_2(w) = w_1^2 + 2w_0 w_2, \\
\vdots
\]

Comparing the like powers of \(p \) on both sides of (8.2), we have

\[
p^0 : w_0 = \frac{1}{(1 + e^\alpha)^2}; \\
p^1 : w_1 = 10 \frac{e^{t^\alpha}}{(1 + e^\alpha)^3} \Gamma(\alpha + 1); \\
p^2 : w_2 = 50 \frac{e^{2(t^\alpha - 1)t^{2\alpha}}}{(1 + e^\alpha)^6} \Gamma(2\alpha + 1); \\
p^3 : w_3 = \left(50 \frac{e^x(-16e^{3x} - 15e^{2x} + 30e^x + 5)}{(1 + e^\alpha)^6} \right) \left(\frac{600e^{2x}}{(1 + e^\alpha)^7} \frac{\Gamma(2\alpha + 1)}{\Gamma(3\alpha + 1)} \right) t^{3\alpha} + \ldots \quad (8.3)
\]

Hence, the solution is given as

\[
w(x, t) = \frac{1}{(1 + e^\alpha)^2} + 10 \frac{e^{t^\alpha}}{(1 + e^\alpha)^3} \Gamma(\alpha + 1) \\
+ 50 \frac{e^{2(t^\alpha - 1)t^{2\alpha}}}{(1 + e^\alpha)^6} \Gamma(2\alpha + 1) \\
+ \left(50 \frac{e^x(-16e^{3x} - 15e^{2x} + 30e^x + 5)}{(1 + e^\alpha)^6} \right) \left(\frac{600e^{2x}}{(1 + e^\alpha)^7} \frac{\Gamma(2\alpha + 1)}{\Gamma(3\alpha + 1)} \right) t^{3\alpha} + \ldots \quad (8.3)
\]

![Fig. 1: Surface graph of \(w(x, t) \) of eq. (8.1), when \(\alpha = 0.6 \)](image)

![Fig. 2: Surface graph of \(w(x, t) \) of eq. (8.1), when \(\alpha = 0.8 \)](image)
with initial condition $w(x, 0) = e^{\frac{x^2}{2}}$.

By applying HPTM on (8.4), we have

$$
\sum_{n=0}^{\infty} p^n w_n = e^{\frac{x^2}{2}} + p \left(\mathcal{L}^{-1} \left\{ \frac{1}{\beta} \mathcal{L} \left\{ \sum_{n=0}^{\infty} p^n (w_n)_{xx} \right\} \right\} \right) + p \left(\sum_{n=0}^{\infty} p^n H_n(w) \right)
$$

(8.5)

where $H_n(w)$ are He’s polynomial represents nonlinear terms. The first few components of He’s polynomial are given by

$$
\begin{align*}
H_0(w) &= w_0 w_{0xxx} - w_0 w_{0x} + 3 w_{0x} w_{0xx}; \\
H_1(w) &= w_0 w_{1xxx} + w_1 w_{0xxx} - w_0 w_{1x} - w_1 w_{0x} + 3 w_{0x} w_{1xx} + 3 w_{1x} w_{0xx}; \\
H_2(w) &= w_0 w_{2xxx} + w_1 w_{1xxx} + w_2 w_{0xxx} - w_0 w_{2x} - w_1 w_{1x} - w_2 w_{0x} + 3 w_{2x} w_{0xx} + 3 w_{1x} w_{1xx} + 3 w_{0x} w_{2xx}.
\end{align*}
$$

Comparing the like powers of p on both sides of (8.5), we have

$$
\begin{align*}
p^0 : w_0 &= e^{\frac{x^2}{2}}; \\
p^1 : w_1 &= -e^{\frac{x^2}{2}} \frac{t^a}{2 \Gamma(a + 1)}; \\
p^2 : w_2 &= -e^{\frac{x^2}{2}} \frac{t^{2a-1}}{8 \frac{t^{2a}}{2 \Gamma(2a + 1)}}; \\
p^3 : w_3 &= e^{\frac{x^2}{2}} \left(-\frac{1}{32} \frac{t^{3a-2}}{\Gamma(3a - 1)} + \frac{1}{8} \frac{t^{2a-1}}{\Gamma(3a)} - \frac{1}{8} \frac{t^{3a}}{\Gamma(3a + 1)} \right) + \ldots \ldots
\end{align*}
$$

Hence, the solution is given as

$$
w(x, t) = e^{\frac{x^2}{2}} - e^{\frac{x^2}{2}} \frac{t^a}{2 \Gamma(a + 1)} - e^{\frac{x^2}{2}} \frac{t^{2a-1}}{8 \frac{t^{2a}}{2 \Gamma(2a + 1)}} - e^{\frac{x^2}{2}} \frac{t^{3a-2}}{32 \frac{t^{3a-1}}{2 \Gamma(3a - 1)} - \frac{1}{8} \frac{t^{3a}}{\Gamma(3a + 1)}} + \ldots \ldots
$$

(8.6)

Example 8.2. Consider the time-fractional Fornberg-Whitham equation [26]

$$
\frac{\partial^a}{\partial t^a} w(x, t) = \frac{\partial^3 w}{\partial x^3} - \frac{\partial w}{\partial x} + w \frac{\partial^3 w}{\partial x^3} - w \frac{\partial w}{\partial x} + 3 \frac{\partial w}{\partial x} \frac{\partial^3 w}{\partial x^3},
$$

$$(t > 0, x \in \mathbb{R}, 0 < a < 1),
$$

(8.4)

Example 8.3. Consider the nonlinear nonhomogeneous time fractional Inviscid Burgers’ equation[36]

$$
D^a_t w + w w_x = 1 + x + t, w(x, 0) = x, 0 < a < 1
$$

(8.7)

By applying HPTM on (8.7), we have

$$
\sum_{n=0}^{\infty} p^n w_n = x + p \left(\mathcal{L}^{-1} \left\{ \frac{1}{\beta} \mathcal{L} \left\{ \sum_{n=0}^{\infty} p^n (w_n)_{xx} \right\} \right\} \right) - p \left(\sum_{n=0}^{\infty} p^n H_n(w) \right).
$$

(8.8)
The first few components of He’s polynomial i.e. \(H_n(w) \) are given as

\[
H_0 = w_0 w_{0x}; \\
H_1 = w_0 w_{1x} + w_1 w_{0x}; \\
H_2 = w_0 w_{2x} + w_1 w_{1x} + w_2 w_{0x}, \\
\vdots
\]

On comparing the like powers of \(p \) on both sides of (8.8), we have

\[
p^0 : w_0 = x; \\
p^1 : w_1 = (1 + x) \frac{\mu^a}{\Gamma(1 + a)} + \frac{\mu^{a+1}}{\Gamma(\alpha + 2)} - \mathcal{L}^{-1} \left\{ \frac{1}{s^a} \mathcal{L} \{ H_0 \} \right\} = \frac{\mu^a}{\Gamma(1 + a)} + \frac{\mu^{a+1}}{\Gamma(\alpha + 2)}; \\
p^2 : w_2 = -\mathcal{L}^{-1} \left\{ \frac{1}{s^a} \mathcal{L} \{ H_1 \} \right\} = -\left(\frac{\mu^{2a}}{\Gamma(2a + 1)} + \frac{\mu^{2a+1}}{\Gamma(2a + 2)} \right); \\
p^3 : w_3 = \mathcal{L}^{-1} \left\{ \frac{1}{s^a} \mathcal{L} \{ H_2 \} \right\} = \left(\frac{\mu^{3a}}{\Gamma(3a + 1)} + \frac{\mu^{3a+1}}{\Gamma(3a + 2)} \right), \\
\vdots
\]

Hence the solution of (8.7) is

\[
x + \frac{\mu^a}{\Gamma(1 + a)} + \frac{\mu^{a+1}}{\Gamma(\alpha + 2)} - \left(\frac{\mu^{2a}}{\Gamma(2a + 1)} + \frac{\mu^{2a+1}}{\Gamma(2a + 2)} \right) + \left(\frac{\mu^{3a}}{\Gamma(3a + 1)} + \frac{\mu^{3a+1}}{\Gamma(3a + 2)} \right) + \ldots
\]

or

\[
x + \frac{\mu^a}{\Gamma(1 + a)} - \frac{\mu^{2a}}{\Gamma(2a + 1)} + \frac{\mu^{3a}}{\Gamma(3a + 1)} + \ldots
\]

\[
x + \frac{\mu^{a+1}}{\Gamma(\alpha + 2)} - \frac{\mu^{2a+1}}{\Gamma(2a + 2)} + \frac{\mu^{3a+1}}{\Gamma(3a + 2)} + \ldots
\]
or
\[w(x, t) = x - \sum_{n=1}^{\infty} \frac{(-1)^n t^{n\alpha}}{\Gamma(n\alpha + 1)} - t \sum_{n=1}^{\infty} \frac{(-1)^n t^{n\alpha}}{\Gamma(n\alpha + 2)}. \]

or
\[w(x, t) = x + 1 + t - E_{a,1}(-t^\alpha) - tE_{a,2}(-t^\alpha). \]

Fig. 11: Surface graph of \(w(x, t) \) of eq. (8.7), when \(\alpha = 0.6 \)

Fig. 12: Surface graph of \(w(x, t) \) of eq. (8.7), when \(\alpha = 0.8 \)

Fig. 13: Surface graph of \(w(x, t) \) of eq. (8.7), when \(\alpha = 1 \)

When \(\alpha = 1 \), the exact solution of (8.7) is \(w(x, t) = x + t \).

9 Analysis and conclusion

We Know that
\[\mathcal{L}\{f(t)\} = \int_0^\infty e^{-st}f(t) = \tilde{f}(s) \quad (9.1) \]

Also from (2.1) and (9.1), we have
\[E\{f(t)\} = F(v) = v\tilde{f}\left(\frac{1}{v}\right) \quad (9.2) \]

or
\[\tilde{f}\left(\frac{1}{v}\right) = \frac{1}{v}F(v) \]
\[\Rightarrow \tilde{f}(s) = \frac{1}{v} F(v), \text{ where } v = \frac{1}{s} \]

Hence
\[\mathcal{L}\{t^n\} = \frac{\Gamma(n + 1)}{s^{n+1}}. \quad (9.3) \]
\[\Rightarrow E\{t^n\} = v^{n+2} \Gamma(n + 1), \text{ using(9.2).} \]
Also using (9.2) in (2.4), we have

\begin{equation*}
\frac{\partial^a}{\partial t^a} f(t) = s^a \mathcal{L} \{ f(t) \} - \sum_{k=0}^{n} s^{a-k-1} f^{(k)}(0), \ n - 1 < a \leq n,
\end{equation*}

\begin{equation*}
\Rightarrow \frac{1}{v} E \{ f^a(t) \} = \frac{F(v)}{v^a} - \sum_{k=0}^{n-1} \frac{1}{v} f^{(k)}(0), \ n - 1 < a \leq n,
\end{equation*}

\begin{equation*}
\Rightarrow E \{ f^a(t) \} = \frac{F(v)}{v^a} - \sum_{k=0}^{n-1} v^{k-a-2} f^{(k)}(0), \ n - 1 < a \leq n.
\end{equation*}
hand, Fig. 6-9 and Fig. 11-14 represents the surface graph of (8.4) and (8.7) for various estimations of α and the exact solution for $\alpha = 1$, the approximate solution of $w(x, t)$ converges to exact solution when $\alpha = 1$, but by slightly decreasing the value of α, the value of $w(x, t)$ also decreases which is shown in the Fig. 10 and Fig.15. We have applied both the techniques (i.e HPTM and HPETM) on nonlinear homogeneous and non homogenous fractional PDE and the outcome exhibit the efficiency, simplicity and high rate of accuracy of the suggested methodologies to solve this type of complex equation.

References

[1] Atangana A., Gómez-Aguilar J.F., Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu, Numer. Math. Part. Diff. Equat., 2018, 34(5), 1502-1523.

[2] Caputo M., Elasticità e dissipazione. Zanichelli, 1969.

[3] Das S., Gupta P.K., An approximate analytical solution of the fractional diffusion equation with absorbent term and external force by homotopy perturbation method, Zeitschrift Naturforsch. A, 2010, 65(3), 182-190.

[4] Dhaigude D.B., Birajdar G.A., Nikam V.R., Adomain decomposition method for fractional Benjamin-Bona-Mahony-Burger’s equations, Int. J. Appl. Math. Mech., 2012, 8(12), 42-51.

[5] Elzaki T.M., Application of new transform “Elzaki transform” to partial differential equations, Glob. J. Pure Appl. Math., 2011, 7(1), 65-70.

[6] Elzaki T.M., On the connections between Laplace and Elzaki Transforms, Adv. Theoret. Appl. Math., 2011, 6(1), 1-11.

[7] Elzaki T.M., The new integral transform “Elzaki transform”. Glob. J. Pure Appl. Math., 2011, 7(1), 57-64.

[8] Elzaki T.M., Hilal E.M.A., Arabia J.S., Homotopy perturbation and Elzaki transform for solving nonlinear partial differential equations, Math. Theory Model., 2012, 2(3), 33-42.

[9] Gómez-Aguilar J.F., Atangana A., New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications, Europ. Phys. J. Plus, 2017, 132(1), 13.

[10] Gómez-Aguilar J.F., Yépez-Martínez H., Torres-Jiménez J., Córdova-Fraga T., Escobar-Jiménez R.F., Olivares-Peregrino V.H., Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Differ. Equat., 2017, q068, 2017.

[11] Gupta P.K., Singh M., Homotopy perturbation method for fractional Fornberg-Whitham equation, Comput. Math. Appl., 2011, 61(2), 250-254.

[12] Haubold H.J., Mathai A.M., Saxena R.K., Mittag-Leffler functions and their applications, J. Appl. Math, 2011, 2011, 61(2), 250-254.

[13] He J.H., Homotopy perturbation technique, Comput. Meth. Appl. Mech. Eng., 1999, 178(3), 257-262.

[14] He J.H., Homotopy perturbation method: a new nonlinear analytical Technique, Appl. Math. Comput., 2003, 135(1), 73-79.

[15] He J.H., Application of homotopy perturbation method to nonlinear wave equations, Chaos, Solit. Fract., 2005, 26(3), 695-700.

[16] He J.H., Limit cycle and bifurcation of nonlinear problems, Chaos, Solit. Fract., 2005, 26(3), 827-833.

[17] Khan Y., Wu Q., Homotopy perturbation transform method for nonlinear equations using HeOs polynomials, Comput. Math. Appl., 2011, 61(8), 1963-1967.

[18] Liao S., Comparison between the homotopy analysis method and homotopy perturbation method, Appl. Math. Comput., 2005, 169(2), 1186-1194.

[19] Momani S., Yıldırım A., Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by HeOs homotopy perturbation method, Int. J. Comp. Math., 2010, 87(5), 1057-1065.

[20] Morales-Delgado V.F., Gómez-Aguilar J.F., Yépez-Martínez H., Baleanu D., Escobar-Jiménez R.F., Olivares-Peregrino V.H., Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Differ. Equat., 2016, 2016(1), 164.

[21] Neamaty A., Agheli B., Darzi R., Applications of homotopy perturbation method and Elzaki transform for solving nonlinear
partial differential equations of fractional order, J. Nonlin. Evolut. Equat. Appl., 2016, 2015(6), 91-104.

[22] Podlubny I., Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng, 1999, 198.

[23] Sharma D., Singh P., Chauhan S., Homotopy perturbation Sumudu transform method with He0s polynomial for solutions of some fractional nonlinear partial differential equations, Int. J. Nonlin. Sci., 2016, 21(2), 91-97.

[24] Sharma D., Singh P., Chauhan S., Homotopy perturbation transform method with He0s polynomial for solution of coupled nonlinear partial differential equations, Nonlin. Eng., 2016, 5(2), 17-23.

[25] Sharma D., Singh P., Chauhan S., Solution of fifth-order Korteweg and de Vries equation by homotopy perturbation transform method using He0s polynomial, Nonlin. Eng., 2017, 6(2), 89-93.

[26] Singh J., Kumar D, Kumar S., New treatment of fractional Fornberg-Whitham equation via Laplace transform, Ain Shams Eng. J., 2013, 4(3), 557-562.

[27] Singh P., Sharma D., Convergence and error analysis of series solution of nonlinear partial differential equation, Nonlin. Eng., 2018, 7(4), 303-308.

[28] Singh P., Sharma D., On the problem of convergence of series solution of non-linear fractional partial differential equation, In: AIP Conf. Proc., 2017, 1860, 020027.

[29] Yépez-Martínez H., Gómez-Aguilar J.F., Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and Mittag-Leffler kernel, Math. Model. Nat. Phenom., 2018, 13(1), 13.

[30] Yépez-Martínez H., Gómez-Aguilar J.F., Sosa I.O., Reyes J.M., Torres-Jiménez J., The Feng’s first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Rev. Mex. de Física, 2016, 62(4), 310.

[31] Yépez-Martínez H., Gómez-Aguilar J.F., Atangana A., First integral method for non-linear differential equations with conformable derivative, Math. Model. Nat. Phenom., 2018, 13(1), 14.

[32] Yıldırım A., An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method, Int. J. Nonlin. Sci. Numer. Simul., 2009, 10(4), 445-450.

[33] Yıldırım A., Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method, Int. J. Numer. Meth. Heat Fluid Flow, 2010, 20(2), 186-200.

[34] Yıldırım A., Gülkanat Y., Analytical approach to fractional Zakharov-Kuznetsov equations by He’s homotopy perturbation method, Comm. Theor. Phys., 2010, 53(6), 1005.

[35] Yıldırım A., Koçak H., Homotopy perturbation method for solving the space-time fractional advection-dispersion equation, Adv. Water Res., 2009, 32(12), 1711-1716.

[36] Yousif E.A., Hamed S.H.M., Solution of nonlinear fractional differential equations using the homotopy perturbation Sumudu transform method, Appl. Math. Sci, 2014, 8(44), 2195-2210.