SARS-CoV-2 assays to detect functional antibody responses that block ACE2 recognition in vaccinated animals and infected patients

Susanne N. Walker^1, Neethu Chokkalingam^1, Emma L. Reuschel^1, Mansi Purwar^1, Ziyang Xu^1, Ebony N. Gary^1, Kevin Y. Kim^1, Michaela Helble^1, Katherine Schultheis^2, Jewell Walters^2, Stephanie Ramos^3, Kar Muthumani^1, Trevor R.F. Smith^2, Kate E. Broderick^2, Pablo Tebas^3, Ami Patel^1, David B. Weiner^1 and Daniel W. Kulp^1,4*

^1Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, 19104, USA
^2Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
^3Department of Medicine; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, United States
^4Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States

* Corresponding author, address correspondence to Daniel W. Kulp, dwkulp@wistar.org
^ Authors contributed equally, authorship order was determined by relative responsibilities and contributions
Abstract

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) has caused a global pandemic of COVID-19 resulting in cases of mild to severe respiratory distress and significant mortality. The global outbreak of this novel coronavirus has now infected >20 million people worldwide with >5 million cases in the US (August 11th, 2020). The development of diagnostic and research tools to determine infection and vaccine efficacy are critically needed. We have developed multiple serologic assays using newly designed SARS-CoV-2 reagents for detecting the presence of receptor-binding antibodies in sera. The first assay is SPR-based and can quantitate both antibody binding to the SARS-CoV-2 spike protein and blocking to the Angiotensin-converting enzyme 2 (ACE2) receptor in a single experiment. The second assay is ELISA-based and can measure competition and blocking of the ACE2 receptor to the SARS-CoV-2 spike protein with anti-spike antibodies. The assay is highly versatile, and we demonstrate the broad utility of the assay by measuring antibody functionality of sera from small animals and non-human primates immunized with an experimental SARS-CoV-2 vaccine. In addition, we employ the assay to measure receptor-blocking of sera from SARS-CoV-2 infected patients. The assay is shown to correlate with pseudovirus neutralization titers. This type of rapid, surrogate neutralization diagnostic can be employed widely to help study SARS-CoV-2 infection and for assessing efficacy of vaccines.

Keywords

SARS-CoV-2, COVID-19, ACE2 blocking assay, Serological tests, Functional antibodies, SARS-CoV-2 vaccine, SARS-CoV-2 immunity

Background

The city of Wuhan China became the epicenter for a global pandemic in December of 2019 when the first cases of respiratory illnesses were reported and identified as being caused by a
novel betacoronavirus now referred to as SARS-CoV-2. The novel SARS-CoV-2 virus is closely related to the SARS-CoV-1 virus and has a high human-to-human transmission rate(1). As of August 11th 2020, over 19,913,080 people are reported positive for viral infection of SARS-CoV-2 resulting in 732,185 fatalities worldwide(2). SARS-CoV-2 modes of transmission include shedding of the virions in airborne droplets and close contact. Once infected, people develop flu-like symptoms and severe cases can lead to acute respiratory distress syndrome (ARDS), acute respiratory failure, severe pneumonia, pulmonary edema, multiple organ failure and death. Development of methods and assays to aid in the detection of functional anti-SARS-CoV-2 antibodies are of utmost importance.

Angiotensin-converting enzyme 2 (ACE2) is highly expressed on lung epithelial cells and is the viral receptor for SARS-CoV-1(3). Recently, ACE2 has also been identified as a receptor utilized by SARS-CoV-2(4). A 193 amino acid region on the spike protein of SARS-CoV-1 and SARS-CoV-2 termed the receptor binding domain (RBD) was found to interact with the ACE2 receptor and primarily mediates cell entry(5-10). Cryo-electron microscopy was used to determine a high resolution structure of the prefusion spike protein and help define the ACE2 interaction site(11, 12). In the SARS-CoV-1 outbreak of 2003, it was reported that high titers of protecting IgG were found in the convalescent serum of patients recovering from infection(13). Early studies show treating COVID-19 patients presenting with severe ARDS with convalescent plasma therapy (CPT) may be beneficial(14, 15). In order to determine if a recovered patient could be re-infected or if their plasma may be useful as a treatment to others, assessment of functional antibody response is highly valuable. While tests for SARS-CoV-2 seropositivity are being deployed, they do not necessarily correlate with neutralizing antibody responses(16). As there are limited options for rapid diagnostic of functional antibody responses, fast and simple functional assays may prove to be a critical assessment tool to discriminate between potential CPT donors.
In parallel with CPT, major academic, industry and government entities are pushing for therapeutics and vaccines against SARS-CoV-2. Given this urgent need, there are numerous clinical vaccine trials underway for SARS-CoV-2 in parallel(17, 18). Through pre-clinical testing, vaccine-induced functional antibody responses are being used to discriminate among potential vaccine candidates. In clinical testing, the humoral responses will need to be analyzed for functionality to assess immunogenicity of each vaccine. Therefore, rapid assays for detecting functional IgGs in human serum for SARS-CoV-2 are essential to compare vaccine candidates and to understand induced immunity.

Early into this pandemic, diagnostic tools for detecting viral genetic material were developed and utilized in a real-time reverse transcription PCR assay(19). Serologic assays for detecting anti-SARS-CoV-2 antibodies are now also available(20). However, single antigen ELISA assays can suffer from detection limits and numbers of false positives(21) and may not be associated solely with protective responses. Faster and straightforward approaches which detect specific interactions are needed. Neutralization assays that can detect functional immunity have been developed with replicating virus, but require handling in specialized BSL-3 facilities, severely limiting the number of samples that can be processed. Pseudovirus neutralization assays run in BSL-2 facilities were quickly developed to detect the functional antibody response in sera(22). While this is a critical tool for determining protective antibody titers, it requires several days for a readout and are not standardized between laboratories. The pseudoviruses produced in these assays are not easily manufactured and take time to express, harvest, and titer. One such approach to help augment the methods listed above is an enzyme-linked immunosorbent assay (ELISA) employed in a competitive manner to determine levels of ACE2 receptor blocking antibodies in a sample. In addition, recent advances of portable and field-deployable surface plasmon resonance (SPR) devices(23) and widespread availability of
SPR instruments in research laboratories make SPR an additional platform for measuring ACE2 receptor blocking. Here, we describe a competition ELISA assay and a SPR assay developed to rapidly detect ACE2 receptor blocking antibodies in IgGs and sera of vaccinated mice, guinea pigs, rabbits and non-human primates, as well as, human samples from SARS-CoV-2 patients.

Results

Receptor expression and assay development

To detect SARS-CoV-2 spike protein binding to ACE2, we designed a soluble variant of the membrane-bound human ACE2 receptor (Fig. 1A). The ectodomain of the receptor was fused to a human IgG1 Fc tag (ACE2-IgHu), for purification and secondary antibody recognition. This protein fusion was expressed in mammalian cells to ensure proper glycosylation and purified on a protein A column. To determine that ACE2-IgHu was dimeric and a homogeneous species in solution, we employed size exclusion chromatography tandem multi angle light scattering (SEC-MALS). The SEC trace shows a single peak (Fig. S1A) and the MALS data determined the estimated molecular weight to be 190 kDa for ACE2-IgHu, which is very close to the expected molecular weight of a dimer of ACE2-IgHu at 195 kDa (Fig. S1B). We next sought to confirm the functionality of ACE2-IgHu. Previous studies suggest SARS-CoV-2 binds to ACE2 with an affinity range of 4-34nM (6, 11). We determined that our ACE2-IgHu binds with similar affinity to the receptor binding domain (RBD) of SARS-CoV-2 spike (27.5nM) as assessed by SPR (Fig. 1B). Next, using Enzyme-Linked Immunosorbent Assays (ELISAs) we immobilized full-length SARS-CoV-2 spike protein (containing both the S1 and S2 subunits) and incubated a dilution series of ACE2-IgHu (Fig. 1C). The binding curves confirmed the high affinity interaction of the receptor for the spike protein. We further showed similar binding for two independent batches of ACE2, as well as a sample that was frozen and thawed (Fig. S1C). From the binding curve, we hypothesized that a reasonable concentration of ACE2-IgHu needed to see competitive blocking...
while still binding >90% of immobilized spike protein in the absence of blocking would be around 0.1-1 ug/ml (Fig. 1C, red arrow).

To examine if we could construct a competition assay, we employed ACE2-IgMu (mouse Fc) to act as a competitor to ACE2-IgHu. To match our initial binding ELISA format, the competition ELISA assay similarly captured a His6X-tagged full-length spike protein by first immobilizing an anti-His polyclonal antibody. A dilution series of the competitor (ACE2-IgMu) was pre-mixed with a constant concentration of soluble receptor (ACE2-IgHu). A secondary anti-human antibody conjugated to horseradish peroxidase (HRP) determines the amount of ACE2-IgHu present through a TMB colorimetric readout (Fig. 2A). In order to formally determine the optimal concentration of soluble receptor (ACE2-IgHu), we performed the assay at four concentrations ranging from 0.01ug/ml to 10 ug/ml (Fig. 2B). The ACE2-IgHu concentration of 0.1 ug/ml (red curve in Fig. 2B), was able to show a complete inhibition curve in the presence of ACE2-IgMu.

To further demonstrate functionality of the ACE2-IgHu molecule, we show that ACE2-IgHu could also neutralize SARS-CoV-2 pseudovirus (Fig. 2C).

Animal IgG and serological competition

The proof-of-concept competition ELISA displayed a full blocking curve, so we sought to utilize this assay for animals immunized with SARS-CoV-2 spike protein. The same design for the competition ELISA was used for this assay, replacing the ACE2-IgMu competitor with antibodies induced by vaccination (Fig. 3A). In our previous work, BALB/c mice were immunized with DNA plasmids encoding SARS-CoV-2 spike protein(24). To examine the activity of antibodies in the sera, IgGs from either naïve mice or vaccinated mice 14 days post-immunization were purified using a protein G column. Unlike the ACE2 control which only binds to the receptor binding site (RBS) on the receptor binding domain (RBD) of the spike protein, antibodies from immunized mice can bind to a multitude of epitopes on the spike protein including epitopes on the S1 subunit(whic includes the RBD), S2 subunit or S1-S2 interfaces. While antibodies distal to the
RBS should have less effect on ACE2 binding, we hypothesized that such distal antibodies may inhibit ACE2 binding directly by sterically obscuring the RBS or indirectly by causing allosteric conformational shifts in the spike protein. To test this, we immobilized either the full spike protein (S1+S2) or S1 alone to examine the levels of detectable blocking antibodies. A mixture of ACE2-IgHu at a constant concentration of 0.1 ug/ml and a dilution series from a vaccinated mouse IgG (IgGm1) or naïve mice IgG (naïve IgGm) was incubated on the plate. An anti-human-HRP conjugated antibody was added to determine the ACE2 binding in the presence of IgGm. As Fig. 3B illustrates, there is greater antibody blocking with the full spike protein than with the S1 subunit alone (Fig. S2A).

To show the utility of this assay in samples from larger mammals, we examined receptor blocking of rabbit sera from SARS-CoV-2 immunization studies. We pooled sera from five rabbits two weeks post immunization in 3 groups (low dose of 1mg, high dose of 2mg and naïve) as well as a Day 0 pool from all 15 animals. The IgG from these pools were purified on a protein G column and used as competitors in the competition ELISA assay. To compare the blocking efficacy, the area under the curve (AUC) was calculated for each competition curve. For full, uninhibited ACE2 binding, the AUC will be larger than the AUC for a competitive curve (Fig. 3C). As seen with the mouse IgGs, the pooled vaccinated rabbit IgG displayed statistically significant blocking of ACE2 receptor binding compared to the naïve animal pool and the Day 0 pool (Fig. 3D, Fig S2B). The high dose rabbits reduced ACE2 signal relative to the low dose group, highlighting the utility of the assay to help discriminate between different vaccine regimens. Up to this point we have analyzed purified IgGs collected from sera, however we wanted to validate the use of this assay on serological samples as well. The same rabbit sera pools were used as competitors in the competition ELISA assay in a dilution series to compare blocking between sera and purified IgG. The rabbit sera displayed statistically significant ACE2 receptor blocking as we saw in the purified IgG assay (Fig. 3E, Fig. S2C).
Next, we sought to show that we could assess receptor blocking in a third animal model of guinea pigs which were immunized with a SARS-CoV-2 Spike-based vaccine (24). We compared a pool of sera collected on day 14 post immunization to a Day 0 pool (Fig. 3F). The immune pool showed significantly lower AUC signal indicating ACE2 blocking ability of the immune sera. We then sought to compare how animal sera pools represent blocking ability of the individual animals. The AUC was calculated for each normalized curve and plotted with the immunized guinea pig pool AUC. Four of the six guinea pigs immunized against SARS-CoV-2 spike showed statistically significant ACE2 blocking and, importantly, the pooled sera was comparable to the average AUC from all six sera samples (Fig. 3F, Fig. S2D). The competition ELISA was used to analyze both the IgGs and the sera from the groups, both groups showed statistically significant blocking of the ACE2 receptor in these assays (Fig. S2E, Fig. S2F).

Primate serological competition

With the competition ELISA assay demonstrated to be capable of measuring molecular blocking of the ACE2 receptor in small animals with sera and IgG, we next altered the assay for use with primate samples. In the small animal studies, the anti-human secondary was used to detect soluble receptor ACE2-IgHu. However, this secondary antibody would cross-react with antibodies from primates. To remedy this, an ACE2-mouse Fc fusion (ACE2-IgMu) was utilized in place of the ACE2-IgHu and an anti-mouse Fc secondary antibody HRP conjugate was used for detection of ACE2 binding in the presence of primate antibody inhibitors (Fig. 4A). To confirm the function of the replacement ACE2-IgMu, an initial binding ELISA was performed (Fig. 4B). We predicted a similar concentration was needed for optimal competition on the binding curve (Fig. 4B, red arrow) and confirmed this by running a competition ELISA assay using ACE2-IgHu as the competitor at varying ACE2-IgMu constant concentrations (Fig. 4C, Fig. S3A). NHP sera from five animals immunized with SARS-CoV-2 spike were pooled and...
Day 0 sera from the same group of five animals were pooled as a negative control. The NHP immune sera displayed appreciable ACE2 blocking compared to the naïve sera (Fig 4D, Fig. S3B). Next, we examined if we could detect the presence of receptor blocking antibodies in a human ICU patient with acute infection. We compared nine positive COVID-19 patients with sixteen naïve donor samples taken from three years prior to the pandemic. The sera from the COVID-19 patients was able to bind spike protein and block ACE2 receptor binding with statistical significance, unlike the naïve donors (Fig. 4E, Fig. S4A, Fig. S4B, Fig. S4C). To compare healthy and COVID-19 patient samples in an independent assay, we employed a pseudovirus assay we recently developed(24). Briefly, SARS-CoV-2 pseudotyped viruses were generated by transfecting cells with a pNL4-3.Luc.R-E- plasmid and a SARS-CoV-2 spike plasmid. Pseudotype viruses had a 50-fold relative luminescence units (RLU) compared to cells alone. HEK293T cells stably expressing ACE2 were mixed serum and pseudovirus. The serum dilution at which the RLU is 50% signal of control wells is considered the ID$_{50}$. Sera from the healthy donors could not neutralize the virus, yet sera from COVID-19 patient samples could neutralize the virus (Fig. 4F, Fig S4D, S4E). This finding is consistent with the ACE2 blocking data and we show a correlation between pseudovirus neutralization ID$_{50}$ and AUC for residual ACE2 blocking across all our datasets (Fig. 5). Thus, we have demonstrated that the ACE2 competition assay can be employed to measure receptor inhibition levels of human samples.

**SPR-based assay for ACE2 receptor blocking**

To quantitate blocking of the Spike-ACE2 bimolecular interaction in a second, independent experiment, we developed a sensitive surface plasmon resonance (SPR) assay. SPR is a widely used platform that does not require secondary antibodies and therefore we could use a single assay format for small animals, NHPs and humans. In our assay, a CAP sensor chip is used to capture single stranded DNA coupled to streptavidin. We are then able to capture biotinylated spike protein to the surface of the sensor chip (Fig. 6A). In SPR, changes in
refractive index occurs when molecules interact with the sensor surface or proteins attach to the sensor surface and these changes are reported as resonance units (RUs). Anti-spike samples in a dilution series can be injected. After a short time, ACE2 receptor at a constant concentration can be injected to measure residual receptor binding. The change in RUs after the second injection are a measure of ACE2 blocking.

To demonstrate the feasibility of this assay, we used ACE2-IgHu as both the sample (ACE2_sample) and the receptor (ACE2_receptor). The sensorogram for this experiment shows ACE2_sample injections at various concentrations binding to SARS-CoV-2 RBD between 0 and 125 seconds (Fig. 6B). At 225 seconds we inject ACE2_receptor at 100nM. We observe ACE2_receptor binding to SARS-CoV-2 RBD at the lower ACE2_sample concentrations, but not at the highest ACE2_sample concentration. The binding signals of ACE2_sample and ACE2_receptor intersect close to 100nM, suggesting the assay is working as expected (Fig 6C). A measure of % ACE2 receptor inhibition can be calculated to the dose dependence response of the sample (Fig. 6D). While this experiment was done with samples containing a human Fc, this assay can be employed to measure inhibition of the spike:receptor interaction with any sample regardless of species.

**Discussion**

Diagnostic methods that fast and accurately detect functional immunity in a SARS-CoV-2 patient or vaccinee are of critical importance during the global pandemic. Serological tests are a central component of our SARS-CoV-2 diagnostic toolbox. Serological tests are often configured to measure the presence of antibodies that recognize SARS-CoV-2 proteins. This may not be a sufficient measurement to determine if a donor’s blood should be used to treat seriously ill patients or to determine if the donor could be re-infected. Instead, a measurement of functional antibodies is required. Further, systematic studies of functional antibody responses and persistence in patients presenting asymptomatic, mild and severe cases will be critical to understand humoral responses to SARS-CoV-2. In this study, we developed two new assays
which can aid in understanding the specificity and functionality of antibodies in serum. First, we showed that an ELISA-based assay could be employed to measure receptor blocking antibodies in animals vaccinated with SARS-CoV-2 spike protein. We could measure purified IgG or directly from sera, as pools across groups of animals or individual animals. The assay is robust as exemplified by the ease of adaption to use for five different species. Importantly, the values of ACE2 blocking measured in our assay correlate with pseudovirus neutralization titers, as seen in Figure 5. Second, we developed an SPR assay for detecting inhibition of the ACE2 receptor binding to spike protein.

Our assays focus on blocking receptor interactions as a surrogate for virus neutralization. In this study we examined ACE2, because ACE2 appears to be the major receptor for SARS-CoV-2. The assay could be also be used to study antibodies targeting other coronaviruses with similar receptors such as SARS-CoV-1 or NL63. The Basigin receptor, as known as CD147, has been demonstrated to play a role in SARS-CoV-1 infection(25) and is now hypothesized to function in SARS-CoV-2 invasion of host cells(26). By engineering the ectodomain of CD147 with human and murine Fc tags, these assays could easily be adapted to study antibody inhibition of CD147. In addition, antibodies against other coronaviruses, such as MERS, which utilize the DPP4 receptor could be studied in our assay format using a similar adaptation.

Neutralizing antibodies can target viral surface proteins to inhibit virus function. Recently, an antibody (B38) was discovered that can neutralize SARS-CoV-2 and has been structurally defined to bind to the same site as ACE2(27). In addition, three other antibodies (H4, B5, H2) all showed neutralizing activity, but B5 and H2 did not compete ACE2 completely, suggesting they bind an alternative neutralizing epitope on the RBD. In another recent study, a nAb, C12.1, binds the RBD spike protein, potently neutralizes and protects Syrian hamsters compared to controls in a passive transfer experiment(28). Recently, a human monoclonal antibody isolated
from transgenic mice (47D11) has been shown to neutralize both SARS-CoV-1 and SARS-CoV-2 (29). Probing serological responses for competition and blocking of these protective epitopes could also be easily accomplished through the ELISA and SPR assays reported here.

The Spike-ACE2 interaction is also being considered as an important therapeutic target. Indeed, there have been SARS-CoV-1 Spike-ACE2 inhibitors developed previously (30). To examine the functionality of these small molecules beyond direct binding to the spike protein, assays such as the one developed here are needed. The SPR instrument is often used for drug discovery and the SPR assay could be easily adapted to examine blocking capabilities of candidate drugs. The ELISA assay does not depend on the molecular identity of the competitor, so small molecule or peptide inhibitors could be directly assessed in this assay.

Our study presents a new set of assays for assessing ability of antibody samples to inhibit SARS-CoV-2 Spike interaction with its receptor. A pseudovirus neutralization titer <30 ID\textsubscript{50} for a similar assay has been reported as reasonable cutoff values for SARS-CoV-2 negative human samples (22). In our comparison of our AUC metric with pseudovirus neutralization in Figure 5, we see a similar cutoff of 50 ID\textsubscript{50} and 85 AUC eliminates all immune negative samples in this study. This AUC cutoff can be used to determine positive inhibition of ACE2 receptor.

Discovering functional monoclonal antibodies can be important to understand SARS-CoV-2 humoral responses and serological assays of functional antibodies is just a first step. Indeed, two recent reports observed that only a small portion of monoclonal antibodies sorted from convalescent donors are neutralizing (31, 32). Therefore, it is important to continue to develop and publish assays of varying formats to detect functional antibody responses in SARS-CoV-2 spike exposed people.

**Conclusions**
In a fast-moving global pandemic, we must quickly bring to bear all our immunological knowledge to create new tools. Receptor-blocking assays can detect functional antibodies in serum samples. Functional antibody assays can be employed widely to help study SARS-CoV-2 infection, to help inform on immune status of the population and for assessing efficacy of vaccines.

Methods

DNA design and plasmid synthesis

Protein sequences for human Angiotensin-converting enzyme 2 (huACE2) were obtained from UniProt (Q9BYF1). DNA encoding the IgG1 human Fc sequence was added to the C-terminus of the huACE2 and cloned by Twist Bioscience into a modified mammalian pVax-1 expression plasmid to generate the recombinant plasmid, ACE2-IgHu.

Recombinant protein expression and purification

Expi293F cells were transfected with plasmid expressing ACE2-IgHu using PEI/Opti-MEM. Cell supernatants were harvested 6 days post-transfection by centrifuging (4000xg, 25mins) and filtering (0.2um Nalgene Rapid-flow filter). Supernatants were first purified with affinity chromatography using AKTA pure 25 system and HiTrap MabSelect SuRe protein A column (GE healthcare, Cat# 11-0034-94) for ACE2-IgHu. The eluate fractions from the affinity purification were pooled, concentrated and dialyzed into 1x PBS buffer before being further purified by size exclusion chromatography (SEC) using Superdex 200 10/300 GL column (GE healthcare). Identified SEC eluate fractions were pooled and concentrated to 1mg/mL. The molecular weight and homogeneity of the purified sample were confirmed through size
exclusion chromatography multi-angle light scattering (SEC MALS) by running the sample in PBS over Superose 6 increase column followed by DAWN HELEOS II and Optilab T-rex detectors. The data collected was analyzed using the protein conjugated analysis from ASTRA software (Wyatt technology).

**Biophysical characterization of ACE2-IgHu** SPR experiments were performed using a protein A capture chip on a Biacore 8k. The running buffer was HBS-EP with 1mg/ml BSA. The SARS-CoV-2 RBD was used as an analyte at concentrations of 100nM, 10nM and 1nM. The experiment had an association phase for 120sec and the dissociation phase for 600sec. The data was fit by a 1:1 Langmuir model.

**SARS-CoV2 Spike binding ACE2-IgHu/ ACE2-IgMu ELISA**

96-well half area plates (Corning) were coated at room temperature for 8 hours with 1ug/mL PolyRab anti-His antibody (ThermoFisher, PA1-983B), followed by overnight blocking with blocking buffer containing 1x PBS, 5% skim milk, 1% FBS, and 0.2% Tween-20. The plates were then incubated with 10ug/mL of SARS-CoV-2, S1+S2 ECD (Sino Biological, 40589-V08B1) at room temperature for 1-2 hours, followed by addition of either ACE2-IgHu serially diluted 5-fold (starting concentration, 2ug/mL) or ACE2-IgMu (Sino Biological, 10108-H05H) serially diluted 5-fold (starting concentration, 50ug/mL). Serial dilutions were performed using PBS with 1% FBS and 0.2% Tween and incubated at RT for 1 hour. The plates with ACE2-IgHu were then incubated at room temperature for 1 hour with goat anti-human IgG-Fc fragment cross adsorbed Ab (Bethyl Laboratories, A80-340P) at 1:10,000 dilution. Similarly, the plates with ACE2-IgMu were incubated with goat anti-mouse IgG H+L HRP (Bethyl Laboratories, A90-116P) at 1:20,000 dilution. Next, TMB substrate (ThermoFisher) was added to both plates and then quenched with 1M H2SO4. Absorbance at
450nm and 570nm were recorded with a BioTek plate reader. Four washes were performed between every incubation using PBS with 0.05% Tween.

**Competition ELISA - Control (ACE2-IgMu Vs ACE2-IgHu)**

96-well half area plates (Corning) were coated at room temperature for 8 hours with 1ug/mL PolyRab anti-His antibody (ThermoFisher, PA1-983B), followed by overnight blocking with blocking buffer containing 1x PBS, 5% skim milk, 1% FBS, and 0.2% Tween-20. The plates were then incubated with 10ug/mL of SARS-CoV-2, S1+S2 ECD (Sino Biological, 40589-V08B1) at room temperature for 1-2 hours. ACE2-IgMu (Sino Biological, 10108-H05H) was serially diluted 3-fold (starting concentration, 100ug/mL) with PBS with 1% FBS and 0.2% Tween and pre-mixed with ACE2-IgHu at constant concentrations (ranging from 0.01-10ug/mL). The pre-mixture was then added to the plate and incubated at RT for 1 hour. The plates were further incubated at room temperature for 1 hour with goat anti-human IgG-Fc fragment cross adsorbed Ab (Bethyl Laboratories, A80-340P) at 1:10,000 dilution, followed by addition of TMB substrate (ThermoFisher) and then quenched with 1M H2SO4. Absorbance at 450nm and 570nm were recorded with a BioTek plate reader. Four washes were performed between every incubation using PBS with 0.05% Tween.

**Competition ELISA - Mouse**

IgG was purified from sera taken from mice immunized with SARS-CoV-2 Spike protein (INO-4800) (24) using Nab protein G spin kit (ThermoFisher, 89949). 96-well half area plates (Corning) were coated at room temperature for 8 hours with 1ug/mL PolyRab anti-His antibody
(ThermoFisher, PA1-983B), followed by overnight blocking with blocking buffer containing 1x PBS, 5% skim milk, 1% FBS, and 0.2% Tween-20. The plates were then incubated with 10ug/mL of SARS-CoV-2, S1+S2 ECD (Sino Biological, 40589-V08B1) at room temperature for 1-2 hours. Purified IgG was serially diluted 3-fold (starting concentration, 100ug/mL) with PBS with 1% FBS and 0.2% Tween and pre-mixed with ACE2-IgHu at constant concentration of 0.1ug/mL. The pre-mixture was then added to the plate and incubated at RT for 1 hour. The plates were further incubated at room temperature for 1 hour with goat anti-human IgG-Fc fragment cross adsorbed Ab (Bethyl Laboratories, A80-340P) at 1:10,000 dilution, followed by addition of TMB substrate (ThermoFisher) and then quenched with 1M H₂SO₄. Absorbance at 450nm and 570nm were recorded with a BioTek plate reader. Four washes were performed between every incubation using PBS with 0.05% Tween.

**Competition ELISA- Guinea pig**

Sera from guinea pigs immunized with INO-4800(24) was collected and pooled together prior to immunization (Day 0, n=5) and two weeks post immunization. Sera from naïve guinea pigs (n=5) given a saline control was also pooled. IgG was purified from these sera pools using Nab protein A/G spin kit (Cat# Thermo, 89950). 96-well half area plates (Corning) were coated at room temperature for 8 hours with 1ug/mL PolyRab anti-His antibody (ThermoFisher, PA1-983B), followed by overnight blocking with blocking buffer containing 1x PBS, 5% skim milk, 1% FBS, and 0.2% Tween-20. The plates were then incubated with 10ug/mL of SARS-CoV-2, S1+S2 ECD (Sino Biological, 40589-V08B1) at room temperature for 1-2 hours. Either purified sera or IgG (Day0, Day14 or naïve) was serially diluted 3-fold with PBS with 1% FBS and 0.2% Tween and pre-mixed with ACE2-IgHu at a constant concentration of 0.1ug/mL. The pre-mixture was then added to the plate and incubated at RT for 1 hour. The plates were further incubated at room temperature for 1 hour with goat anti-human IgG-Fc fragment cross adsorbed
Ab (Bethyl Laboratories, A80-340P) at 1:10,000 dilution, followed by addition of TMB substrate (ThermoFisher) and then quenched with 1M H$_2$SO$_4$. Absorbance at 450nm and 570nm were recorded with a BioTek plate reader. Four washes were performed between every incubation using PBS with 0.05% Tween.

**Competition ELISA- Rabbit**

Rabbits were immunized with 1mg or 2mg of INO-4800 at Day 0 and Week 4. Sera from immunized rabbits was collected and pooled together prior to immunization (Day 0, n=5) and 2 weeks post 2nd immunization (wk 6, n=5), (Patel A. et al., in preparation). Sera from naïve rabbits (n=5) given a saline control was also pooled. IgG was purified from these sera pools using Nab protein A/G spin kit (Thermo, 89950). 96-well half area plates (Corning) were coated at room temperature for 8 hours with 1ug/mL PolyRab anti-His antibody (ThermoFisher, PA1-983B), followed by overnight blocking with blocking buffer containing 1x PBS, 5% skim milk, 1% FBS, and 0.2% Tween-20. The plates were then incubated with 10ug/mL of SARS-CoV-2, S1+S2 ECD (Sino Biological, 40589-V08B1) at room temperature for 1-2 hours. Either sera pool or purified IgG (IgGr) from Day0, low dose, high dose or naïve animals was serially diluted 3-fold with PBS with 1% FBS and 0.2% Tween and pre-mixed with ACE2-IgHu at constant concentration of 0.1ug/mL. The pre-mixture was then added to the plate and incubated at RT for 1 hour. The plates were further incubated at room temperature for 1 hour with goat anti-human IgG-Fc fragment cross adsorbed Ab (Bethyl Laboratories, A80-340P) at 1:10,000 dilution, followed by addition of TMB substrates (ThermoFisher) and then quenched with 1M H$_2$SO$_4$. Absorbance at 450nm and 570nm were recorded with a BioTek plate reader. Four washes were performed between every incubation using PBS with 0.05% Tween.
Competition ELISA- Primates

Rhesus macaques were immunized with 1mg of INO-4800 at Day 0 and Week 4. Sera from immunized NHPs was collected and pooled together prior to immunization (Day 0, n=5) and 2 weeks post 2nd immunization (Wk 6, n=5). Sera from SARS-CoV-2 PCR positive patients treated during acute infection at the Hospital of the University of Pennsylvania emergency room was also collected and compared to sera from healthy human donors purchased from BioChemed in December of 2016, well before the SARS-CoV-2 pandemic. 96-well half area plates (Corning) were coated at 4°C overnight with 1ug/mL of SARS-CoV-2, S1+S2 ECD (Sino Biological, 40589-V08B1). Plates were washed 4x with 1x PBS, 0.05% Tween-20 using a plate washer, and then blocked with 1x PBS, 5% skim milk, 0.1% Tween-20 at room temperature for 1 hour. After washing, sera was serially diluted 3-fold in 1x PBS, 5% skim milk, 0.1% Tween-20 and incubated on the plate at room temperature for 1 hour. Plates were washed, then incubated with a constant concentration of 0.4 ug/mL ACE2-IgMu diluted in 1x PBS, 5% skim milk, 0.1% Tween-20 at room temperature for 1 hour. After washing, plates were further incubated at room temperature for 1 hour with goat anti-mouse IgG H+L HRP (Bethyl Laboratories, A90-116P) at 1:20,000 dilution in 1x PBS, 5% skim milk, 0.1% Tween-20. Plates were then washed, followed by addition of TMB substrate (ThermoFisher) and then quenched with 1M H₂SO₄. Absorbance at 450nm and 570nm were recorded with a BioTek plate reader. Four washes were performed between every incubation using PBS with 0.05% Tween.

SPR Assay

Surface Plasmon Resonance experiments were conducted on a Biacore 8K instrument. The running and dilution buffers were HBS-EP, 1 mg/ml BSA, 0.05% Tween. Biotin CAPture reagent was injected over the Series S CAP Sensor chip (Cytiva Life Sciences 28920234) at 2 ul/min for
Followed by capture of SARS-CoV-2 receptor binding domain which was biotinylated using the lightning-link type-A biotinylation kit (Expedeon/Abcam, 370-0005) for 180s at 10ul/min. Next, the sample (ACE2-IgHu) at 8 concentrations of 1500nM to 0.7nM. The association was for 120s second at a flow rate of 30 ul/min and followed by a short dissociation time of 15s. A constant ACE2-IgHu was injected at 100 nM in each flow cell for 120s followed by 60s dissociation at a flow rate of 30ul/min. The difference in response units before injection and after dissociation of the sample application and the constant receptor was calculated for each curve. The regeneration solution was made using 3-parts 8M guanidine hydrochloride and 1-part 1M sodium hydroxide.

Statistics

Statistical analyses were performed using GraphPad Prism 8 software. The data were considered significant if p <0.05. The lines in all graphs represent the mean value and error bars represent the standard deviation. The AUC values were normalized as a percentage of Day 0 AUC. No samples were excluded from the analysis. Samples were not blinded before performing each experiment.

SARS-CoV-2 Pseudovirus assay

The SARS-CoV-2 pseudovirus was produced by co-transfection of HEK293T cells with 1:1 ratio of DNA plasmid encoding SARS-CoV-2 S protein (GenScript) and backbone plasmid pNL4-3.Luc.R-E- (NIH AIDS Reagent) using GeneJammer (Agilent) in 10% FBS/DMEM enriched with 1% Penicillin/Streptomycin (D10 medium). The supernatant containing pseudovirus was harvested 48 hours post-transfection and enriched with FBS to 12% total volume, sterifiltered and stored at -80C. The pseudovirus was tittered using a stable ACE2-293T cell line that had previously been generated(24). For neutralization assay, serially diluted samples were incubated with pseudovirus at room temperature for 90 minutes and added to 10,000 ACE2-
293T cells in 200μL TPCK media (DMEM supplemented with 1%BSA, 25mM HEPES, 1μg/ml of TPCK and 1X Penicillin-Streptomycin) in 96-well tissue culture plates, and incubated at 37°C and 5% CO₂ for 72 hours. The cells were subsequently harvested and lysed with BriteLite reagent (PerkinElmer), and luminescence from the plates were recorded with a BioTek plate reader.

Availability of data and materials
The data are available from the corresponding author upon request.

Abbreviations

References
1. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J. 2020. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 368:489-493.
2. Dong E, Du H, Gardner L. 2020. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 20:533-534.
3. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450-4.
4. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270-273.
5. Xiao X, Chakraborti S, Dimitrov AS, Gramatikoff K, Dimitrov DS. 2003. The SARS-CoV S glycoprotein: expression and functional characterization. Biochem Biophys Res Commun 312:1159-64.

6. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X. 2020. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature doi:10.1038/s41586-020-2180-5.

7. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F. 2020. Structural basis of receptor recognition by SARS-CoV-2. Nature 581:221-224.

8. Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, Zhou Y, Du L. 2020. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol doi:10.1038/s41423-020-0400-4.

9. Wan Y, Shang J, Graham R, Baric RS, Li F. 2020. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol 94.

10. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. 2020. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367:1444-1448.

11. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260-1263.

12. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. 2020. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181:281-292 e6.
13. Zhang JS, Chen JT, Liu YX, Zhang ZS, Gao H, Liu Y, Wang X, Ning Y, Liu YF, Gao Q, Xu JG, Qin C, Dong XP, Yin WD. 2005. A serological survey on neutralizing antibody titer of SARS convalescent sera. J Med Virol 77:147-50.

14. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J, Xiao H, Yang Y, Qu J, Qing L, Chen L, Xu Z, Peng L, Li Y, Zheng H, Chen F, Huang K, Jiang Y, Liu D, Zhang Z, Liu Y, Liu L. 2020. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA doi:10.1001/jama.2020.4783.

15. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C, Yuan M, Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Xu Y, Chen W, Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z, Deng K, Xia Z, Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi Z, Chen S, Chen Z, Zhang X, Yang X. 2020. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A 117:9490-9496.

16. Harvala H, Robb M, Watkins N, Ijaz S, Dicks S, Patel M, Supasa P, Dejnirattisai W, Liu C, Mongkolsapaya J, Brown A, Bailey D, Vipond R, Grayson N, Temperton N, Bolton J, Fyfe A, Gopal R, Simmonds P, Screaton G, Thompson CP, Brooks T, Zambon M, Miflin G, Roberts D. 2020. Convalescent plasma therapy for the treatment of patients with COVID-19: Assessment of methods available for antibody detection and their correlation with neutralising antibody levels. medRxiv doi:10.1101/2020.05.20.20091694:2020.05.20.20091694.

17. Chen WH, Strych U, Hotez PJ, Bottazzi ME. 2020. The SARS-CoV-2 Vaccine Pipeline: an Overview. Curr Trop Med Rep doi:10.1007/s40475-020-00201-6:1-4.
18. Amanat F, Krammer F. 2020. SARS-CoV-2 Vaccines: Status Report. Immunity 52:583-589.

19. Shirato K, Nao N, Katano H, Takayama I, Saito S, Kato F, Katoh H, Sakata M, Nakatsu Y, Mori Y, Kageyama T, Matsuyama S, Takeda M. 2020. Development of Genetic Diagnostic Methods for Novel Coronavirus 2019 (nCoV-2019) in Japan. Jpn J Infect Dis doi:10.7883/yoken.JJID.2020.061.

20. Krammer F, Simon V. 2020. Serology assays to manage COVID-19. Science doi:10.1126/science.abc1227.

21. Lassaunière R, Frische A, Harboe ZB, Nielsen AC, Fomsgaard A, Krogfelt KA, Jørgensen CS. 2020. Evaluation of nine commercial SARS-CoV-2 immunoassays. medRxiv doi:10.1101/2020.04.09.20056325:2020.04.09.20056325.

22. Nie J, Li Q, Wu J, Zhao C, Hao H, Liu H, Zhang L, Nie L, Qin H, Wang M, Lu Q, Li X, Sun Q, Liu J, Fan C, Huang W, Xu M, Wang Y. 2020. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg Microbes Infect 9:680-686.

23. Masson JF. 2020. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst doi:10.1039/d0an00316f.

24. Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, Gary EN, Walker SN, Schultheis K, Purwar M, Xu Z, Walters J, Bhoj Nagarwala P, Yang M, Chokkalingam N, Pezzoli P, Parzych E, Reuschel EL, Doan A, Tursi N, Vasquez M, Choi J, Tello-Ruiz E, Maricic I, Bah MA, Wu Y, Amante D, Park DH, Dia Y, Ali AR, Zaidi FI, Generotti A, Kim KY, Herring TA, Reeder S, Andrade VM, Buttigieg K, Zhao G, Wu JM, Li D, Bao L, Liu J, Deng W, Qin C, Brown AS, Khoshnejad M, Wang N, Chu J, Wrapp D, McLellan JS, et al. 2020. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 11:2601.
25. Chen Z, Mi L, Xu J, Yu J, Wang X, Jiang J, Xing J, Shang P, Qian A, Li Y, Shaw PX, Wang J, Duan S, Ding J, Fan C, Zhang Y, Yu X, Feng Q, Li B, Yao X, Zhang Z, Li L, Xue X, Zhu P. 2005. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J Infect Dis 191:755-60.

26. Wang K, Chen W, Zhou Y-S, Lian J-Q, Zhang Z, Du P, Gong L, Zhang Y, Cui H-Y, Geng J-J, Wang B, Sun X-X, Wang C-F, Yang X, Lin P, Deng Y-Q, Wei D, Yang X-M, Zhu Y-M, Zhang K, Zheng Z-H, Miao J-L, Guo T, Shi Y, Zhang J, Fu L, Wang Q-Y, Bian H, Zhu P, Chen Z-N. 2020. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv doi:10.1101/2020.03.14.988345:2020.03.14.988345.

27. Wu Y, Wang F, Shen C, Peng W, Li D, Zhao C, Li Z, Li S, Bi Y, Yang Y, Xiao H, Fan Z, Tan S, Wu G, Tan W, Lu X, Fan C, Wang Q, Liu Y, Zhang C, Qi J, Gao GF, Gao F, Liu L. 2020. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science doi:10.1126/science.abc2241.

28. Zost SJ, Gilchuk P, Chen R, Case JB, Reidy JX, Trivette A, Nargi RS, Sutton RE, Suryadevara N, Chen EC, Binshtein E, Shrihari S, Ostrowski MA, Chu HY, Didier JE, MacRenaris KW, Jones T, Day S, Myers L, Lee FE-H, Nguyen DC, Sanz I, Martinez DR, Gralinski L, Baric RS, Thackray L, Diamond MS, Carnahan RH, Crowe JE. 2020. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. bioRxiv doi:10.1101/2020.05.12.091462:2020.05.12.091462.

29. Wang C, Li W, Drabek D, Okba NMA, van Haperen R, Osterhaus A, van Kuppeveld FJM, Haagmans BL, Grosveld F, Bosch BJ. 2020. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 11:2251.
30. Huentelman MJ, Zubcevic J, Hernandez Prada JA, Xiao X, Dimitrov DS, Raizada MK, Ostrov DA. 2004. Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension 44:903-6.

31. Zost SJ, Gilchuk P, Chen RE, Case JB, Reidy JX, Trivette A, Nargi RS, Sutton RE, Suryadevara N, Chen EC, Binshtein E, Shrihari S, Ostrowski M, Chu HY, Didier JE, MacRenaris KW, Jones T, Day S, Myers L, Eun-Hyung Lee F, Nguyen DC, Sanz I, Martinez DR, Rothlauf PW, Bloyet LM, Whelan SPJ, Baric RS, Thackray LB, Diamond MS, Carnahan RH, Crowe JE, Jr. 2020. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat Med doi:10.1038/s41591-020-0998-x.

32. Wec AZ, Wrapp D, Herbert AS, Maurer DP, Haslwanter D, Sakharkar M, Jangra RK, Dieterle ME, Lilov A, Huang D, Tse LV, Johnson NV, Hsieh CL, Wang N, Nett JH, Champney E, Burnina I, Brown M, Lin S, Sinclair M, Johnson C, Pudi S, Bortz R, 3rd, Wirkhanski AS, Laudermilch E, Florez C, Fels JM, O’Brien CM, Graham BS, Nemazee D, Burton DR, Baric RS, Voss JE, Chandran K, Dye JM, McLellan JS, Walker LM. 2020. Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science 369:731-736.

Acknowledgements

The authors would like to Matthew Sullivan for providing feedback on the manuscript.

Funding
This work was supported by grant from the Coalition for Epidemic Preparedness Innovations (CEPI).

Contributions

S.W., N.C. and D.W.K.: Developed the receptor-blocking assays. Designed and characterized ACE2-IgHu protein and the SARS-CoV-2 RBD protein. Planned and executed the experiments and analyzed the data. E.L.R. and K.Y.K.: optimized, planned and executed the experiments involving the human samples. E.L.R., E.G., A.P., P.T.: produced reagents. M. P. and Z.X. created and executed the pseudovirus neutralization assay. E.L.R., M. H., K. M., E.G., M.P., Z.X., A.P., D.B.W. aided in developing parts of the receptor-blocking assay. S.W., N.C. and D.W.K. wrote the paper. E.L.R., M. H., K. M., E.G., M.P., Z.X., A.P., D.B.W. helped write the paper.

Declarations

Ethics approval and consent to participate

N/A - This study did not require ethics approval and consent.

Consent for publication

N/A – no identifiable information was included.

Competing interests

T.S. and K.S. are employees of Inovio Pharmaceuticals and as such receive salary and benefits, including ownership of stock and stock options, from the company. D.B.W. has received grant funding, participates in industry collaborations, has received speaking honoraria, and has received fees for consulting, including serving on scientific review committees and
board services. Remuneration received by D.B.W. includes direct payments or stock or stock options, and in the interest of disclosure he notes potential conflicts associated with this work with Inovio and possibly others. In addition, he has a patent DNA vaccine delivery pending to Inovio. All other authors report there are no competing interests.

**Additional information**

**Figure Legends**

**Figure 1. ACE2 receptor expression and affinity.**

a) Overview of soluble ACE2 receptor design (ACE2-IgHu) b) Affinity of SARS CoV-2 receptor binding domain for immobilized ACE2-IgHu assessed by SPR (27nM) curves are concentrations of RBD X, Y, and Z c) Affinity of ACE2-IgHu for immobilized SARS CoV-2 full-length spike protein assessed by ELISA. Optimal concentration of ACE2-IgHu for competition assays (~EC$_{90}$, red arrow) requires high signal without excess receptor present.

**Figure 2. ACE2 receptor competition assay development.**

a) Competition ELISA schematic displaying immobilized anti-His pAb (red) capturing His6X-tagged SARS-CoV-2 spike protein (rainbow). Premixed ACE2-IgHu (green, blue) at a constant concentration with a dilution series of competitors (green, red) is added and anti-human-HRP (green) determines amount of ACE2-IgHu remaining in the presence of competitors through a colorimetric readout. b) Four constant concentrations of ACE2-IgHu were tested with varying concentrations of the ACE2-IgMu competitor to establish an optimal ACE2-IgHu concentration which displays a full blocking curve (red, 0.10ug/ml) from the competitor dilution series while retaining a wide range in signal. c) Pseudovirus neutralization curves for a control antibody (non-SARS-CoV-2) in red and for ACE2-IgHu in blue.
Figure 3. Animal IgG and serological competition. a) IgG and serological competition schematic. Anti-his pAb captures CoV-2 spike protein. Immunized sera or IgG from small animals are used as competitors to block ACE2-IgHu receptor binding when premixed. ACE2-IgHu remaining is determined from an anti-human-HRP colorimetric readout b) IgGs present in a vaccinated BALB/c mouse block ACE2-IgHu binding with greater effect when full-length SARS-CoV-2 S1-S2 spike protein is immobilized versus the S1 subunit by itself c) Area Under the Curve (AUC) schematic displaying the larger area for uninhibited ACE2 binding versus the area from curves showing competition with ACE2 d) AUC of IgGs purified from immunized rabbit sera (IgGr low dose, blue; IgGr high dose, red) vs naïve IgGr or Day 0 IgGr. e) AUC of sera from immunized rabbits (low dose Rabbit sera, blue; high dose Rabbit sera, red) versus naïve Rabbit sera or Day 0 Rabbit sera. f) AUC of sera from immunized guinea pigs at week 2 (dark blue) and individual animals (blue), naïve sera (grey) and pooled Day 0 sera from all animals (black). The pooled immunized curve displayed a comparable AUC to the average AUC from all individual immunized animals.

Figure 4. Primate serological competition. a) Competition ELISA schematic displaying immobilized His6X-tagged CoV-2 spike protein (rainbow). Preblocking of the spike protein with primate sera (blue) at varying concentrations was added followed by ACE2-IgMu (green, blue) at a constant concentration. Anti-mouse-HRP (green) determines amount of ACE2-IgMu remaining in the presence of competitors through a colorimetric readout b) Affinity of ACE2-IgMu for immobilized SARS CoV-2 S1+S2 full-length spike protein assessed by ELISA. Optimal concentration of ACE2-IgMu for competition assays (red arrow, 0.4ug/ml) requires high signal without excess receptor present. c) Optimal ACE2-IgMu concentration which displays a full blocking curve (0.40ug/ml) from the competitor dilution series (ACE2-IgHu) while retaining a wide range in signal d) NHP sera pooled from five vaccinated animals was used as competitors.
in the primate competition assay. The AUC from vaccinated NHP sera (blue) versus Day 0 NHP sera (black). e) Human sera from nine SARS-CoV-2 positive COVID-19 patients was tested in the primate competition assay and compared to sixteen naïve human sera collected pre-pandemic. The AUC of the COVID-19 patient serum (purple) is significantly decreased compared to the pre-pandemic human serum (grey). The median is shown as a solid black line and quartiles shown as dashed black lines. f) Human sera was analyzed by a pseudovirus neutralization assay. The samples and the coloring are the same as in e). Statistics: two-tailed t-test with p-values indicated.

Figure 5. ACE2 receptor blocking correlates with pseudovirus neuralization. A symbol represents each of the individual datapoints where we had a paired AUC blocking and pseudovirus ID50 values. The human samples are in triangles, the mice in circles, individual Guineas pigs in squares, Guineas pig pools in diamonds and rabbit pools in hexagons. SARS-CoV-2 spike experienced samples are shown in color. Naïve samples and healthy donors are shown in grey. Least-squares fit line is shown with p-value and R squared from Prism.

Figure 6. ACE2 receptor competition assay development. a) Overview of SPR experiment depicting SARS-CoV-2 RBD capture by streptavidin-biotin interaction, sera injected as analyte and ACE2 injected as second analyte. b) Sensorgram for ACE2 blocking SPR assay ACE2-IgHu injected as sample (ACE2_sample) as indicated and ACE-IgHu injected as receptor (ACE2_receptor) as indicated. Sample responses were referenced to blank injections. Each curve corresponds to a 3-fold dilution of ACE2_sample starting at 1500nM as indicated on the right and the ACE2_receptor was injected at a constant concentration of 100nM to all curves. c) Response in RUs measured at the end of sample (ACE2_sample) injection (blue) and receptor (ACE2_receptor) injection (red) at each concentration of sample. d) ACE2 inhibition curve derived from RUs at each concentration
Figure 1

A

B

C

SARS-CoV-2

ACE2

Concentration (ug/mL)

OD450

ACE2-IgHu control

Resonance Units

Time (s)

100nM

10nM

1nM

KD 27.5nM

Concentration (ug/mL)
Figure 2
Figure 3

A

B

C

D

E

F

Day 0 ACE2 binding

Average AUC

0.1 1 10 100

0.0

0.2

0.4

0.6

0.8

1.0

IgG concentration (mg/mL)

AUC

(normalized)

**

*** *** ***

**

* p = 0.017

** p = 0.002-0.005

*** p < 0.001
Figure 4

A

B

C

D

E

F

ACE2-IgHu concentration (ug/mL)
OD450nm
0.00001 0.0001 0.001 0.01 0.1 1 ... patient samples
normal healthy donors
-1000
0
1000
2000
3000
Pseudovirus neutralization
ID50
***

ACE2 binding
Day 0

ACE2 inhibition
p < 0.001

Pseudovirus neutralization
p < 0.001

ACE2-rgA (0.48ug/ml)
ACE2-IgHu concentration (ug/mL)
OD450nm
0.00001 0.0001 0.001 0.01 0.1 1...
Figure 6

A

ACE2
Sera
CoV2 RBD
Streptavidin ssDNA
GE CAP chip

B

Sample Binding (ACE2 sample)
Receptor Inhibition (ACE2 receptor)
ACE2 Blocking

C

D

Concentration of ACE2 sample (nM)

% ACE2

log(Conc) nM

Resonance Units (RUs)

Time (s)

0.1 1 10 100 1000 10000

0 20 40 60 80 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

1500nM
500nM
167nM
56nM
19nM

on August 29, 2020 by guest
http://jcm.asm.org/