Efficient L2 Batch Posting Strategy on L1*

Akaki Mamageishvili and Edward W. Felten

Offchain Labs

December 2022

Abstract

We design efficient algorithms for the batch posting of Layer 2 chain calldata on the Layer 1 chain, using tools from operations research. We relate the costs of posting and delaying, by converting them to the same units. The algorithm that keeps the average and maximum queued number of batches tolerable enough improves the posting costs of the trivial algorithm that posts batches immediately when they are created by 8%. On the other hand, the algorithm that only cares moderately about queue length can improve the trivial algorithm posting costs by 29%.

1 Introduction

Posting data batches of layer two (L2) rollup chains on layer one (L1) constitutes most of the costs the former chains incur. We study this problem in this paper. Namely, we try to find an optimal strategy for when to post transaction batches as the L1 price of posting data fluctuates. The tradeoff is clear: we want to avoid delaying the posting of batches, but at the same time, we want to avoid posting when the price is high.

The question is motivated by historical experience with the Ethereum base fee, which fluctuates in a partially predictable way, and occasionally has intervals of very high base fee. A memorable instance involved a base fee of more than 100 times the norm for a period of several hours. At least one L2 protocol (Arbitrum) decided to take manual control of the batch posting policy during that instance.

*We thank Lee Bousfield, Aysajan Eziz, Tim Roughgarden, and Thomas Thiery for valuable feedback.

1 A memorable instance involved a base fee of more than 100 times the norm for a period of several hours. At least one L2 protocol (Arbitrum) decided to take manual control of the batch posting policy during that instance.
part of a batch and that batch posting has finality on L1. Until that time, users
must either wait for finality or trust the L2 system’s sequencer to be honest
and non-faulty. Delayed finality imposes costs on some applications. The third
part is related to specific technical nature of transaction fee computation on L2
rollups. Namely, transaction fee is calculated when transactions are created, not
when they are posted on L1. Therefore, more delay causes less precise estimates
of the L1 cost to attribute to L2 transactions, increasing the risk of unfair or
inefficient pricing of L2 transactions.

We model the problem as a Markov decision process. In each round, we
calculate total costs independently from the past rounds. Each round is charac-
terized by the current queue size and price, which gives a state. The price in the
next round is a random variable, which depends on the current price. Depend-
ing on the strategy in the current random and the random variable indicating
the price in the next round, we move to the next state. To solve the optimization
problem of finding the optimal strategy in each round, we use tools from
dynamic programming, in particular, q-learning. The structure of the solution
allows us to design a practical algorithm, that we test against benchmarks on
the previous year’s Ethereum base fee data.

1.1 Related literature

The problem we study is very similar to the inventory policy (IP) problem, long
studied in economics and operations research literature, see [1] and [5]. In IP
problems, the newly produced items need to be sold for some price, and the
demand price distribution is given. Therefore, the IP optimization problem is
to maximize revenue, by maximizing revenue from trade and minimizing main-
tenance costs, while our problem is to minimize both costs. These two are dual.
The only difference between our optimization problem and IP problems is that
the delay cost in IP problems is linear in the inventory size, as the cost is inter-
preted as the maintenance cost of stored items, whereas we model the cost as
superlinear in the number of delayed items. The optimality of pure stationary
strategies in a wide range of Markov decision processes is shown in [2]. Linear
delay cost of transaction inclusion is discussed in [3]. The convergence of the
dynamic programming algorithm that covers our case as well is discussed in [4].

2 Model

There is a discrete time with infinite horizon. In round \(i \in \mathbb{N} \), one new batch is
created. The number of batches currently queued is denoted by \(Q_i \). \(P_i \) is the
price of posting a batch in the round \(i \).

At each round, the batch poster chooses a number of batches to publish,
denoted by \(N_i \). It is proved in the operations research literature that the optimal
way of doing so is to apply a stationary strategy. Namely, by applying a strategy

\[\text{2The data covers the full period from the introduction of EIP 1559 in August 2021 until }
\text{November 2022.} \]
function \(S \) which must satisfy \(0 \leq S(P_i, Q_i) \leq Q_i \). That is, it is optimal to assume that \(N_i = S(P_i, Q_i) \) is only a function of the posting price in the current round and the queue size. By default, the algorithm posts batches that were created earliest (i.e., in FIFO order). Intuitively, \(S \) should be weakly increasing in \(Q_i \) (if more batches to post, we should not post less) and weakly decreasing in \(P_i \) (if more expensive to post, we should not post more). This intuition can be used to test any (heuristic) solution we obtain.

In round \(i \), the system incurs a cost

\[
C_i = C_{i, \text{posting}} + C_{i, \text{delay}} = P_i N_i + c(Q_i - N_i)^2.
\]

(1)

In this paper, we assume that \(C_{i, \text{posting}} := P_i N_i \) and \(C_{i, \text{delay}} := c(Q_i - N_i)^2 \), where the \(c > 0 \) coefficient represents the relative weight of the two components.

The first term represents the cost of posting batches. Here we assume that the posting price is not affected by how many batches we post in each round. This assumption could be violated in practice if \(N_i \) is very large. The second term represents the cost of delaying the posting of batches that remain in the queue after this round, essentially assuming that the cost of delaying a batch until the next round is linear in how long that batch has already been waiting. The non-linear cost of delay is natural and is well-studied in the economics literature.

To move to the next round, we update:

\[
Q_{i+1} := Q_i - N_i + 1,
\]

representing posting \(N_i \) batches and the arrival of one more batch in the queue, and

\[
P_{i+1} := R(P_i),
\]

where \(R \) is some random function that models the fluctuation of the batch posting price. Here we are making another implicit assumption that the L2 batch posting strategy does not affect the future base fee. This is a reasonable approach especially if the number of batches posted is not very large. Also, batches are created at a regular rate and their sizes are equal. The latter is relevant as the price of posting is measured in gas units, that is, the real cost is multiplied by how large the batches are in gas units.

To begin, we consider the price of the next block to be uniformly distributed at the interval \([P_i \cdot t_1, P_i \cdot t_2]\), where \(t_1 = \left(\frac{7}{8} \right) \) and \(t_2 = \left(\frac{9}{8} \right) \), as the base fee may change by \(\frac{1}{8} \) either direction in every 12 seconds. Note that \(t_1 \cdot t_2 \approx 0.984 \) is smaller than 1, that is, the distribution is slightly skewed to the left. For a more realistic distribution, we need to look at the data. We assume that each batch is generated every minute (60 seconds), and the distribution of \(R(P_i) \) is a result of uniform distribution convoluted 5 times: \(R(R(R(R(R(P_i)))))) \).

Theoretically, this approaches the normal distribution for a large enough number

\footnote{Strictly speaking, the exact functional form of such delay would be \(\sum_{i=1}^{Q_i-1} i = \frac{Q_i(Q_i-1)}{2} \); however, we approximate by ignoring the linear term in \(Q_i \) and we absorb the factor of two into the coefficient \(c \).}
Figure 1: Relative change of the Ethereum base fee per block, over the past year. Each data point represents the ratio of the base fee in block \(i + 1\) to the base fee in block \(i\). The large bar at 1.125 is the case where block \(i + 1\) is completely full so the base fee is increased by the maximum amount.

of convolutions. For data on the Ethereum one-minute base fee changes, see Figure 2. Note that there is a skew to the left direction, and there is an outlier at point 1.8, which is caused by an outlier in the block base fee change data, see Figure 2.

Although we do see a large peak at the max increase in the per-block data, we do not see a similarly large peak at the max increase in the per-minute data. This suggests that the per-minute data is likely more consistent with the hypothesis that per-block changes are independent of each other, and not that there are extended periods of the maximum price increase. Perhaps a large number of completely full blocks is due to different block producers having different lower bounds on the tip they require so that when a block producer with a low tip bound makes a block, that block includes a lot more transactions. That would be consistent with an assumption of independence between the base fee change in consecutive blocks. Analysis of the EIP price scheme is given in [6].

An especially interesting factor is a potential support size of \(R(P_i)\). The right endpoint of the support turns out to be 1.8\(P_i\). The reason is that 1.8 \(\approx (\frac{9}{8})^5\), and it seems to happen often that price increases exponentially\(^4\). In fact, if we look at block data, the maximum increase appears to happen 15\% of the time. The left endpoint is 0.6\(P_i\). The reason is that 0.6 \(\approx (\frac{7}{8})^5\).

\(^4\)Somewhat against the assumption of uniform distribution.
Figure 2: Relative change of the Ethereum base fee per minute, over the past year. Each data point represents the ratio of the base fee at \(i + 1 \) minutes to the base fee at \(i \) minutes. The distribution is similar to the result of composing five steps drawn independently from the distribution in Figure 1.

2.1 Objective functions

Our goal is to minimize the expected value of the total cost. We assume there is an infinite horizon of rounds with discounted costs: we minimize \(\sum_{i=0}^{\infty} C_i \delta^i \), where \(\delta < 1 \) is a discount of future costs.

The second variant is very similar to the inventory policy problem, with the only difference being that the delay cost in inventory policy problems is linear in the delayed number.

As a side note, we optimize the cost with a finite number of rounds \(n \): In this variant, we minimize the total sum of costs \(\sum_{i=1}^{n} C_i \). The solution is described in section 5.

3 Bellman Equation/Q-Learning

We now turn to the main variant with an infinite number of rounds and future cost discounting.

We apply Q-Learning. Using standard notation\(^5\), we calculate the following two matrices: \(Q[s_t, a_t] \) and \(O[s_t] \). \(s_t \) is the current state and \(a_t \) is an action. In our case, \(s_t \) is a pair of \((Q_i, P_i) \), while \(a_t \) is any natural number between 0 and \(Q_i \). The action \(a_t \) corresponds to how many batches to post at round \(t \). \(Q[s_t, a_t] \)

\(^5\)See Bellman equation: https://en.wikipedia.org/wiki/Q-learning.
denotes the total cost, discounting the future cost. $O[s_t]$ denotes the optimal action given the state s_t, that is, the action that minimizes the total cost from this point on. We initialize $O[s_t]$ with Q_i, that is, the initial assumption that the optimal move is to publish all batches at each point. The value update iteration step is the following:

$$Q^{\text{new}}[s_t, a_t] := (1 - \alpha)Q[s_t, a_t] + \alpha(c_t + \delta \cdot E[\min\limits_{a} Q[s_{t+1}, a]])$$

c_t is the cost incurred by taking action a_t, in this (stationary) round. That is, in our setting, this is $c_t := a_t \cdot P_i + c(Q_i - a_t)^2$. α is a learning rate, as in the computation of the new matrix Q, we take the previously computed matrix Q with weight $1 - \alpha$ and new improved values with weight α. After updating all states of the Q matrix, we update all values of the O matrix. Note that O matrix values appear in the calculation of $\min_a Q[s_{t+1}, a]$ which is replaced with $Q[s_{t+1}, O[s_{t+1}]]$.

We arbitrarily initialize $Q[s_t, a_t]$ as $a_t \cdot P_i + c(Q_i - a_t)^2$ and $O[s_t]$ as Q_i, consistent with an initial hypothesis, to be refined by Q-Learning, that the optimal move at each point in time is to publish all batches.

3.1 Implementation

We discretize the continuum price space by taking a bounded interval. That is, we assume that the price of batch posting will not go above some high bound. This is a reasonable assumption in our context. The space complexity of the implementation is $\Theta(PQ^2)$, where P is the number of price points and Q is the maximum number of batches we allow in the queue. To enforce this upper bound on queue length, we impose an infinite cost for exceeding the bound.

The run-time complexity of the system is $\Theta(IPQ^2f(P))$, where I is the number of iterations before convergence, which depends on the convergence rate, which itself depends on the learning rate α and future discount δ. $f(P)$ is an average of support sizes of $R(P_i)$ random variables. In the case of a normal random variable, $f(P) \in \Theta(P)$. When generating a random variable for the close-to-boundary prices, we put weights only up until the upper bound price, as we do not have Q matrix values. This irregularity of implementation creates misleading O values for high prices, as the expectation by the implementation is that the price goes down in the next rounds, while theoretically, we would like to study a general case where there is no upper bound on the price.

Higher δ means that we care about the future costs more. For the implementation, we take $\delta = 0.999$, which is close enough to 1, but not too close, as it slows down the computation considerably.

We take $P = 400$ and $Q = 300$. The ratio of the highest to lowest Ethereum base fee in our data is around 6000. Therefore, to approximate the real price

\[^6 \] Any other initialization works, for example, we can assign 0 to all entries of Q matrix. The only difference is in the convergence. While the rate stays the same, good initialization gives fewer iteration steps.

\[^7 \] It also increases the magnitude of values in the matrix Q, as we weight future costs more.
data with our discrete points, we multiply all prices by $\frac{6000}{100} = 60$. We take the learning rate $\alpha = 0.1$. At this threshold, we observe that the values of the Q matrix for large values of P and Q are stabilized. Generally speaking, lower α improves the precision of the Q matrix calculation, but it increases computation time. Namely, the number of iterations is higher. In our case, we did not observe major qualitative or quantitative differences by choosing different values of α. We assume that the algorithm has converged when the change in every entry in Q is less than $\epsilon = 0.01$, that is when:

$$\max_{s_t, a_t} Q_{\text{new}}[s_t, a_t] - Q[s_t, a_t] < \epsilon.$$

The program takes 72 hours to finish, for approximately 14000 iterations, on the input described above on Intel Core i7-8565U CPU 1.80GHz x 8. The current implementation is without parallelism. Note that Q_{new} matrix calculation depends only on Q, therefore, full parallelization is feasible.

3.2 Observations

Running the Q-learning algorithm and analyzing its output yields a few observations:

1. There is a threshold price, below which all batches are posted. That is, there exists T_P, so that when $P_i < T_P$, $S_i(P_i, Q_i) = Q_i$.

2. Above this threshold price, there exists a threshold on the number of batches that depends on the posting price, so that, below this threshold, no batches are posted. That is, there exists $T_Q(P_i)$, so that, when $Q_i < T_Q(P_i)$, $S_i(P_i, Q_i) = 0$.

3. On the other hand, if $Q_i > T_Q(P_i)$, then $S_i(P_i, Q_i) = Q_i - T_Q(P_i) - 1$. That is, the minimum number of batches is posted, to guarantee that in the next round if the price does not change, the threshold condition on the number of batches will still hold.

We conjecture that for any plausible functional form of the delay term of the cost, and for most smooth and convex/concave random distributions R on price changes, these observations should hold. (Verifying the hypothesis that this is the case for a given delay cost with a (smooth) version of random variable future batch posting price, by solving a dynamic programming problem for a given R, is future work.) The functional form of the function $T_Q(P)$ depends on the delay cost. For the quadratic delay cost, we conjecture that for $P > T_P$, the threshold queue size $T_Q(P)$ is of order $\sqrt{P - T_P}$.

4 Back-testing results

In this section, we compare the performance of the algorithm based on our Q-Learning analysis to three other algorithms’ performances. We calculate how
much each algorithm would spend and how much delay cost each would incur, on
the last year’s time-series data of Ethereum base fees, taken after every minute,
that is, after every fifth block. It is assumed that each batch has the same
unit size, which is a good approximation in practice. If batches are created
with less frequency, we can easily modify the test set and optimize parameters
accordingly.

For each algorithm, we measure a few properties: publishing cost; delay
cost; the average and worst-case delays experienced by batches; and the max-
imum number of batches posted in any one round. The last measure is an
important robustness measure, as posting too many batches at the same time
may affect the future price or even be impossible to perform given the L1 block
space constraints. All performances given in the following subsections are on
the Pareto-efficient curve of the pair of publishing and delay costs. Back-testing
algorithms were optimized for approximately 100 different instances. All algo-

4.1 Current Arbitrum algorithm

The first algorithm is currently deployed by Arbitrum. We denote it by \mathcal{O}. \mathcal{O}
is characterized by 3 parameters, over which we minimize its total cost:

- ap, intuitively an acceptable price measured in GWEIs,
- e, an exponent,
- and ut, an update time in minutes.

Every batch has these three features. If the base fee is lower or equal to ap,
the batch is posted. After ut time passes and the batch is still not posted on
L1, the new acceptable price becomes e times bigger. That is, $ap^{new} := e \cdot ap$.

The performance of the algorithm \mathcal{O} for a few parameter sets is documented
in the following table.

Parameters (e, ap, ut)	Publishing cost	Delay cost	Maximum delay	Avg. delay
$(1.2, 144, 60)$	$2.598e + 07$	$5.99e + 09$	773	39.7986
$(2.96, 120)$	$3.170e + 07$	$6.456e + 07$	193	2.23403
$(2.8, 72, 140)$	$3.271e + 07$	$1.866e + 07$	165	0.949142

Note that publishing cost increases and maximum delay and average delay
decrease by increasing e. Both behaviors are natural as the algorithm posts
more aggressively for higher e. There is no clear upper bound on the delay in
round i as a function of posting price P_i, as it depends on when the exponential
function catches up with the price, i.e., it depends on the history as well.

\footnote{Before the Ethereum Merge on 6 September 2022, the time between blocks was about 12
seconds on average. Since the Merge, the interval between blocks is fixed at 12 seconds.}
The following table shows the performance of the Arbitrum algorithm where the acceptable price does not do a step-function doubling every update time but instead increases in a smooth exponential curve with the same doubling time. That is, the exponent in each round is equal to $e^{\frac{ut}{P}}$.

Parameters (e, a, p, ut)	Publishing cost	Delay cost	Maximum delay	Avg. delay
$(1.2,144,60)$	$2.60294e+07$	$4.73071e+09$	771	33.5433
$(2,96,120)$	$3.19334e+07$	$1.72324e+07$	183	1.08583
$(2.8,72,140)$	$3.31778e+07$	$4.86956e+06$	164	0.429163

Compared to the step algorithm described above, publishing costs are slightly increasing and delay costs are slightly decreasing. But qualitatively, the results are very similar.

4.2 Q-learning algorithm

The second algorithm, Q, is based on Q-Learning. We optimize over two parameters: d and T_p, when minimizing the cost of the Q algorithm. In particular, we test $T_Q(P) = \sqrt{\frac{P - T_p}{d}}$ and $T_P := T_p$.

The performance of the algorithm Q for a few parameter sets is documented in the following table.

Parameters (T_p, d)	Publishing cost	Delay cost	Max. delay	Avg. delay	Max. posted
$(60,2)$	$3.420e+07$	$1.283e+06$	42	1.699	5
$(60,1.6)$	$3.383e+07$	$2.339e+06$	52	2.127	7
$(80,1.2)$	$3.324e+07$	$4.111e+06$	69	2.00	10

Note that both delay cost and maximum delay are increasing in decreasing d, while publishing cost is decreasing. The publishing cost is decreasing and the delay cost is increasing with increasing T_p. As a robust measure for T_p, we can take the value that is 80% percentile of the base fee data distribution. This allows the algorithm to be fully automatic, by updating T_p every month or two weeks, to adjust to the current trend of prices. We do not include a maximum posted number in the performance of the other algorithms as this number is equal to the maximum delay by definition. Unlike the previous algorithm, the algorithm in this section gives an upper bound on the delay in each round i as a function of the price of posting P_i, which is equal to $\frac{T_p - T_p}{d}$ and adds to the robustness of the system. This gives a global upper bound $\frac{T_{\text{max}} - T_p}{d}$ on the maximum delay, where P_{max} is the maximum posting price. Note that the maximum base fee was about 8200 GWEIs and the maximum delays in the table approximately correspond to this upper bound. For example, $\frac{\sqrt{8200}}{1.2} \approx 74 > 69$. In general, the upper bound does not have to be achieved, as the price may increase very quickly and the delay queue size may not catch up.
4.3 Price minimizing algorithm

The third algorithm, D, delays posting until the price drops below a certain threshold T and then posts all batches.

The performance of the algorithm D for a few parameters is documented in the following table.

Parameters	Publishing cost T	Delay cost T	Maximum delay T	Avg. delay T
60	$2.237e+07$	$2.658e+12$	14975	584.191
80	$2.632e+07$	$2.683e+11$	8448	124.4
100	$2.896e+07$	$3.835e+09$	1394	15.66

Notice that a huge value of the maximum delay would violate our assumption that the price of posting in each round is not affected by how many batches we post. We do not include a maximum posted number in the performance of the other algorithms as this number is equal to the maximum delay by definition.

4.4 Trivial algorithm

A trivial algorithm, denoted by T, posts every batch immediately. T has its own merits. First, it keeps the delay costs to 0, which imposes a minimal load on the system. Second, it is simple to interpret and easy to implement.

Testing on the same data as the above algorithms, we find that a trivial algorithm has publishing costs equal to $3.6e+07$. Note that it does not have any parameters and the delay cost is equal to 0. We use this result as a benchmark to measure the performance of other algorithms with respect to the cost of publishing.

4.5 Tips

In the paper so far, we ignored tips that are given to L1 block builders for inclusion in the block in the design and analysis of efficient batch posting strategy. These tips should in principle be counted towards the price of publishing. For example, Arbitrum has a fixed tip, 1 GWEI per gas, which is enough to get included in 95% of the cases. If we count the minimum tips to be included in each block towards the total price of being posted and run the same algorithms as before, we get very similar results as before, namely, in 1% proximity of both, publishing and delay costs. One potential explanation is that when tips are high, base fees are also high, therefore, none of the algorithms post their batches. These observations can be seen as indicators to simplify the decision problem by including the tips directly towards the cost of publishing, instead of choosing them strategically.
5 Dynamic programming with fixed prices

In this section, we discuss the case where there is a fixed number of rounds n, and posting prices in each round are fixed and given in advance. At the end of the last round, we publish all batches that are left unpublished. The use-case of this algorithm, for example, is if there are futures contracts on base fees.

The optimum solution can be found by dynamic programming with runtime $\Theta(n^3)$ as described in the following. In $dp[i][j]$, we store the minimum cost incurred if in the first i rounds we publish exactly j batches. We iterate i through all rounds in the outermost loop, contributing the first multiplicative factor n. In the second loop, we iterate j between 0 and i, contributing another multiplicative factor n. In the third and innermost loop, we iterate take over newly published batches, between 0 and $i + 1 - j$, therefore, contributing the last multiplicative factor n. We update $dp[i + 1][\text{take} + j]$ with the maximum between the following two values:

$$dp[i + 1][\text{take} + j] := \max(dp[i + 1][\text{take} + j], dp[i][j] + \text{cost}),$$ \hspace{1cm} (2)

where cost is calculated as $c(i - j - \text{take} + 1)^2$. We also record take that gives the minimum answer for each i and j, which will allow us to recover the answer, and the number of batches published at each round to minimize global cost. The global cost is located at $dp[n][n]$ and we can reconstruct the answer of how many to publish at each round using a backtracking algorithm.

We generated prices according to different distribution functions and observed that it is almost always optimal to publish zero or all batches.

6 Conclusions

We initiate the study of an efficient batch posting strategy by L2 rollup chains on the L1 chain as a calldata. As an outcome, we obtain efficient algorithms with robustness guarantees. Namely, in each round the new algorithm does not post too many batches and the number of batches kept in the queue is bounded by a function of posting price in each round. Future avenues of research include the optimization problem where current and future prices depend on the number of batches posted in each round. Finding out the optimal constant tip is also left for future research.

References

[1] Kenneth J. Arrow, Theodore Harris, and Jacob Marschak. Optimal inventory policy. *Econometrica*, 19(3):250–272, 1951.

[2] Hugo Gimbert. Pure stationary optimal strategies in markov decision processes. In Wolfgang Thomas and Pascal Weil, editors, *STACS 2007, 24th Annual Symposium on Theoretical Aspects of Computer Science*, Aachen,
[3] Gur Huberman, Jacob D. Leshno, and Ciamac Moallemi. Monopoly without a monopolist: An economic analysis of the bitcoin payment system. The Review of Economic Studies, 88(6):3011–3040, 2021.

[4] Tommi S. Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative dynamic programming algorithms. Neural Comput., 6(6):1185–1201, 1994.

[5] Arthur F. Veinott Jr. The optimal inventory policy for batch ordering. Operations Research, 13:424–432, 1965.

[6] Stefanos Leonardos, Barnabé Monnot, Daniël Reijsbergen, Efstratios Skoulakis, and Georgios Piliouras. Dynamical analysis of the EIP-1559 ethereum fee market. In Foteini Baldimtsi and Tim Roughgarden, editors, AFT ’21: 3rd ACM Conference on Advances in Financial Technologies, Arlington, Virginia, USA, September 26 - 28, 2021, pages 114–126. ACM, 2021.