< Supporting Information >

β-Turn Mimetic-based Stabilizers of Protein-Protein Interactions for Study of the Non-canonical Roles of Leucyl-tRNA Synthetase

Chanwoo Kima,\$, Jinjoo Jungb,\$, and Seung Bum Park*a,b

aDepartment of Chemistry and bDepartment of Biophysics and Chemical Biology, Seoul National University, Seoul 151–747, Korea

sbpark@snu.ac.kr

\$These authors contribute equally in this study

S. No.	Content	Page No.
I	General Information	S2
II	Tetra-substituted pyrazinotriazinedione as β-turn mimetic	S5
III	Synthesis and characterization of acid partners	S6
IV	Characterization for representative compounds	S10
V	Principal component analysis (PCA) of pyrazinotriazinedione library	S27
VI	Copies of 1H and 13C NMR spectra	S29
VII	PDA-based LC/MS analysis data for library compounds	S43
VIII	FRET imaging	S93
IX	Experimental procedure for biological assay	S94
I. General Information

1. General information of library construction

NMR spectra were obtained on an Agilent 400-MR DD2 Magnetic Resonance System [400 MHz, Agilent, USA] or Varian/Oxford As-500 [500 MHz, Varian Assoc., Palo Alto, USA]. Chemical shifts values were recorded as parts per million (δ), referenced to tetramethylsilane (TMS) as the internal standard or to the residual solvent peak (CDCl₃, ¹H: 7.26, ¹³C: 77.16, CD₂OD, ¹H: 3.31, ¹³C: 49.00, DMSO-d₆, ¹H: 2.50, ¹³C: 39.52). Multiplicities were indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet); m (multiplet); dd (doublet of doublet); dt (doublet of triplet); td (triplet of doublets); br s (broad singlet) and so on. Coupling constants were reported in hertz (Hz). Low resolution mass spectra were obtained on a Finnigan Surveyor MSQ Plus LC/MS [Thermo] or LCQ LC/MS [Thermo] using the electrospray ionization (ESI) method. High resolution mass spectra were analyzed at the Mass Spectrometry Laboratory of National Instrumentation Center for Environmental Management (NICEM) in Seoul on a LCQ LC/MS [Thermo] using the electrospray ionization (ESI) method. Chiral HPLC were performed on a HP Agilent 1100 with a Chiralpack IA column (IA00CE-OG039, 4.6 mmφ × 250 mmL, 5 μm). All commercially available reagents were used without further purification unless noted otherwise. Commercially available reagents were obtained from Sigma-Aldrich, TCI, Acros, Alfa Aesar or Beadtech. All solvents were purchased from commercial suppliers. Analytical thin-layer chromatography (TLC) was performed using Merck Kieselgel 60 F254 plates, and the components were visualized by observation under UV light (254 and 365 nm) or by treating the plates with ninhydrin followed by thermal visualization. Flash column chromatography was performed on Merck Kieselgel 60 (230–400 mesh).

General Solid-Phase Reaction Procedures.

Amine Substitution. Bromoacetal resins (100 mg, 1.8 mmol/g, 0.18 mmol) were loaded into each syringe with porous filter, and solutions of 3 different R₃-amines (20 equiv. in 2 mL of DMSO) were dispensed into each syringe. The reaction mixture was shaken at 60 °C in a rotating oven [Robbins Scientific] for 12 h. After the completion of the reaction which monitored by positive Chloranil test, the resin were washed extensively with DMF, MeOH and DCM sequentially (three times each) and dried in a high-vacuum desiccator.
Amino Acid Coupling. A reaction cocktail of N-Fmoc-AA-OH (nine different amines were used for each reaction such as Phe, Val, Met, Ile, Tyr, Leu, Arg(Pbf), Cys(Bzl) and 4-Cl-Phe, 4 equiv.), HCTU (4 equiv.), and DIPEA (6 equiv.) in DMF (2 mL per syringe) was added to each porous filter syringe charged with the resins. After the reaction mixture was shaken for 12 h at room temperature. After the completion of the reaction monitored by negative Chloranil test, the resins were washed extensively with DMF, MeOH and DCM sequentially (three times each) and dried in a high-vacuum desiccator.

Fmoc deprotection. Twenty percent piperidine in DMF was added to the resins in the syringe with porous filter, and the reaction mixture was shaken for 10 min at room temperature to unmask the Fmoc-protected primary amine. After the completion of the reaction monitored by positive ninhydrin (Kaiser) test, the resinss were washed extensively with DMF, methanol, DCM and DMF, sequentially.

Acid Coupling. The activated ester for acid coupling was generated in situ by the activation of acid coupling partners (methyl or tolyl, 3 equiv.) with DIC (3 equiv.) and HOBt (3 equiv.) in DMF for 30 min. The resulting reaction cocktail was dispensed into the porous filter syringe charged with resins, and the reaction mixture was shaken for 12 h at room temperature. After the completion of the reaction monitored by negative ninhydrin (Kaiser) test, the resins were washed extensively with DMF, MeOH, and DCM sequentially and dried in a high-vacuum desiccator.

Cleavage and Cyclization. The resins in the porous filter syringe were first dried under high vacuum and then treated with 100% formic acid (3 mL per syringe) for 18 h at room temperature. After resin removal by filtration, the filtrate was condensed in vacuo to yield the desired product as an oil. The products were diluted with 50% water/acetonitrile and freeze-dried: a process that yielded a pale brown powder. The purity of the final products was observed by LC/MS without further purification.
2. General information of bioassay

Reagents and materials
DMSO was purchased from Sigma-Aldrich. Micro BCA™ Protein Assay Kit was purchased from PIERCE and was used for the measurement of protein concentration of cell lysate. Cell culture reagents including fatal bovine serum, culture media, and antibiotic-antimycotic solution were purchased from GIBCO, Invitrogen. The culturing dish or plates were purchased from CORNING. Developing for western blot analysis was performed by Amersham ECL Prime Western Blotting Detection System from GE Healthcare Life Science. TMB, a substrate of HRP conjugated in secondary antibody, was purchased from Invitrogen.

Antibodies, Plasmids and Proteins
Antibodies were obtained from the following sources: antibody to S6K1, phospho-S6K1 (T389), HRP-labeled anti-rabbit secondary antibodies from Abcam; anti-GST from Santa Cruz Biotechnology; antibodies to GAPDH from Cell Signaling Technology.

pAmCyan1-N1 containing LRS and pZsYellow1-N1 containing RagD plasmids for FRET imaging were generously provided by Prof. Sunghoon Kim (Seoul National University).

All proteins including his-tagged LRS, GST-tagged RagD were laboratory stocks. Transfection was performed using calcium precipitation method.

Instruments and programs
For developing of ELISA-based assay, the absorbance of 96-well plate was measured by BioTek Synergy HT Microplate reader.

Chemiluminescent signal was monitored by ChemiDoc™ MP imaging system [Bio-Rad] and quantified by ImageLab 4.0 program.

FRET imaging was carried with DeltaVision Elite imaging system [GE Healthcare] equipped with a sCMOS camera. Objective lenses are supported by Olympus IX-71 [Olympus] inverted microscope equipped with Plan APO 60X/Oil (PLAPON60×O), 1.42 NA, WD 0.15 mm. DeltaVision Elite uses a solid state illumination system, InSightSSI fluorescence illumination module. Four-color standard filter set [GE Healthcare, 52-852113-003] was used to detect fluorescence signals. For live cell continuous monitoring, CO2 supporting chamber along with an objective air heater was set and ultimatefocus hardware autofocus module was incorporated to maintain the sample z-position during timelapse imaging. FRET analysis was analyzed by SoftWorks program and all graphs were figured by GraphPad Prism 5.
II. Tetra-substituted pyrazinotriazinedione library as β-turn mimetic

FIG S1. Alignment of an energy-minimized structure of representative compound 7 with the peptide backbone structure phospholipase A2 at five atom positions of representative compound 7 (pink) versus Ca$_i$, Ca$_{i+1}$, Ca$_{i+2}$, Ca$_{i+3}$, carbons and N$_{(i+2)}$ (green) [V$_{conf}$ interface, Discovery Studio 4.1]
III. Synthesis and characterization of acid partners

1. General procedure for the preparation of tolyl acid partners

To a stirred suspension of p-tolylhydrazine hydrochloride in tetrahydrofuran (THF) under ice-water external bath, triethylamine was carefully added. Isocyanate (0.5 equiv.) was added dropwise to the solution. The resulting mixture was stirred at 0°C and warmed up to room temperature for several hours. After the completion of the reaction monitored by TLC, the solvent was removed under reduced pressure. Ethyl acetate was added and the organic layer was washed with saturated NaCl (aq.) and saturated ammonium chloride (aq.). The organic layer was dried over anhydrous MgSO₄(s) and filtered. The organic solvent was evaporated under vacuum. The resulting mixture was purified through the recrystallization by ethyl acetate and n-hexane to afford a desired solid. Then, the resulting solid, KHCO₃ and tert-butyl bromoacetate were dissolved in DMF and stirred at 80°C for several hours. After completion of the reaction indicated by TLC, the reaction mixture was washed with saturated NaCl (aq.) and ammonium chloride (aq.) and extracted with ethyl acetate. The combined organic layer was condensed was dried over anhydrous MgSO₄ and filtered. The filtrate was condensed under reduced pressure, followed by silica-gel flash column chromatography to afford a desired solid. The resultant was dissolved in 1,4-dioxane and 4N HCl was added slowly. The reaction mixture was stirred at room temperature for several hours. After completion of the reaction indicated by TLC, the solution was concentrated under reduced pressure. The saturated NaHCO₃ (aq.) was added and the aqueous layer was washed with ethyl acetate. Concentrated HCl was added dropwise slowly at 0°C (pH 2–3). The mixture was extracted with ethyl acetate (EA), and the organic layer was dried over anhydrous MgSO₄(s) and evaporated. The residue was purified by recrystallization with ethyl acetate and n-hexane to give the desired product A-1 (30–35% overall yields in three steps).
2. General procedure for the preparation of methyl acid partners

To a stirred suspension of methylhydrazine sulfate in water (200 ml) under ice-water external bath, NaHCO₃ was carefully added. Di-tert-butyl dicarbonate in tetrahydrofuran (200 mL) was added to the solution. The resulting mixture was left to stir and allowed to warm to room temperature for overnight. After completion of the reaction indicated by TLC, the organic layer was extracted with ethyl acetate. The combined solution was dried over anhydrous MgSO₄(s) and filtered, and evaporated in vacuo to afford pale yellow oily compound without further purification. The resultant was dissolved in THF and isocyanate was added dropwise. The resulting mixture was stirred at 0 °C and warmed up to room temperature for several hours. After the completion of the reaction monitored by TLC, the solvent was removed under reduced pressure. The reaction mixture was purified through the recrystallization by ethyl acetate and n-hexane to afford a desired solid. The resulting solid dissolved in 1,4-dioxane and 4N HCl was added slowly. The reaction mixture was stirred at room temperature for several hours. After completion of the reaction indicated by TLC, the solution was concentrated under reduced pressure. The saturated NaHCO₃ (aq.) was added slowly (pH 11–12) under ice-water external bath. The aqueous layer was extracted with ethyl acetate, and it was dried over anhydrous MgSO₄(s) and filtered. The residue was evaporated in vacuo and purified by recrystallization with ethyl acetate and n-hexane to afford a desired solid. Then, the resulting solid, K₂CO₃ and tert-butyl bromoacetate were dissolved in toluene/N,N-dimethylformamide (8:1), and stirred and refluxed for several hours. After completion of the reaction indicated by TLC, the reaction mixture was washed with saturated NaCl (aq.) and ammonium chloride (aq.) and extracted with ethyl acetate. The combined organic layer was condensed was dried over anhydrous MgSO₄ and filtered. The filtrate was condensed under reduced pressure, followed by silica-gel flash column chromatography to afford the desired solid. The resultant was dissolved in 1,4-dioxane and 4N HCl was added slowly. The reaction mixture was stirred at room temperature for several hours. After completion of the reaction indicated by TLC, the solution was concentrated under reduced pressure. The saturated NaHCO₃ (aq.) was added and the aqueous layer was washed with ethyl acetate. Concentrated HCl was added dropwise slowly at 0 °C (pH 2–3). The mixture was extracted with ethyl acetate, and the organic layer was dried over anhydrous MgSO₄(s) and evaporated. The residue was purified by recrystallization with ethyl acetate and n-hexane to give the desired product A-2 (44–51% overall yields in 4 steps).
A-1(a): Yield: 33% (three steps); 1H NMR (500 MHz, DMSO-d_6) δ

13.14 (brs, 1H), 8.04 (brs, 1H), 7.39 (brs, 1H), 7.25 (m, 5H), 7.04 (d, $J = 8.8$ Hz, 2H), 6.64 (d, $J = 8.5$ Hz, 2H), 4.25 (d, $J = 6$ Hz, 2H), 4.14 (brs, 2H), 2.20 (s, 3H); 13C NMR (125 MHz, DMSO-d_6) δ 172.2, 158.5, 146.4, 140.3, 129.4, 128.2, 126.9, 126.6, 112.4, 56.8, 42.6, 29.0; LRMS (ESI+) Calcd for C$_{17}$H$_{20}$N$_3$O$_3$+ [M+H]$^+$: 314.36, found: 314.00.

A-1(b): Yield: 30% (three steps); 1H NMR (400 MHz, DMSO-d_6) δ

13.11 (brs, 1H), 9.27 (brs, 1H), 8.42 (brs, 1H), 7.48 (dd, $J = 8$ Hz, $J = 4.9$ Hz, 2H), 7.08 (m, 4H), 6.69 (d, $J = 8.2$ Hz, 2H), 4.28 (brs, 2H), 2.20 (s, 3H); 13C NMR (100 MHz, DMSO-d_6) δ 172.9, 158.6, 156.2, 155.8 (d, $J_{CF} = 44.8$ Hz), 146.2, 135.9, 129.5, 128.0, 119.96, 119.89 (d, $J_{CF} = 7.5$ Hz), 115.3, 115.1 (d, $J_{CF} = 22.1$ Hz), 112.43, 56.1, 20.0; LRMS (ESI+) Calcd for C$_{18}$H$_{17}$F$_3$N$_3$O$_3$+ [M+H]$^+$: 318.32, found: 317.93.

A-1(c): Yield: 35% (three steps); 1H NMR (500 MHz, DMSO-d_6) δ

13.12 (brs, 1H), 8.01 (brs, 1H), 7.03 (d, $J = 8.3$ Hz, 2H), 6.98 (brs, 1H), 6.62 (d, $J = 8.3$ Hz, 2H), 5.78 (m, 1H), 5.07 (dd, $J = 17.1$ Hz, $J = 1.5$ Hz, 1H), 5.00 (dd, $J = 10.3$ Hz, $J = 1.5$ Hz, 1H), 4.17 (brs, 2H), 3.68 (m, 2H), 2.20 (s, 3H); 13C NMR (125 MHz, DMSO-d_6) δ 172.4, 158.3, 146.3, 136.2, 129.4, 127.7, 114.5, 112.3, 55.9, 41.4, 20.0; LRMS (ESI) m/z calcd for C$_{19}$H$_{18}$N$_3$O$_3$+ [M+H]+: 264.30; Found: 264.08

A-2(a): Yield: 44% (four steps); 1H NMR (400 MHz, CDCl$_3$) δ 11.38 (brs, 1H), 7.92 (s, 1H), 7.32 (m, 5H), 6.46 (t, $J = 6.1$ Hz, 1H), 4.44 (d, $J = 5.9$ Hz, 2H), 3.66 (d, $J = 17.2$ Hz, 1H), 3.43 (d, $J = 16.4$ Hz, 1H), 2.85 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 173.0, 159.7, 138.8, 128.7, 127.4, 57.8, 44.7, 43.6; LRMS (ESI+) Calcd for C$_{19}$H$_{18}$N$_3$O$_3$+ [M+H]$^+$: 238.26, found: 238.03

S8
A-2(b): Yield: 44% (four steps); 1H NMR (500 MHz, DMSO-d$_6$) δ 12.64 (brs, 1H), 8.83 (s, 1H), 7.56 (s, 1H), 7.49 (m, 2H), 7.08 (m, 2H), 3.51 (brs, 2H), 2.61 (s, 3H); 13C NMR (100 MHz, DMSO-d$_6$) δ 171.5, 158.5, 156.2, 155.3, 136.05, 136.02 (d, 3J$_{CF}$ = 2.3 Hz) 120.1, 120.0 (d, 2J$_{CF}$ = 7.6Hz), 115.2, 115.0 (d, 1J$_{CF}$ = 22 Hz), 60.1, 45.9; LRMS (ESI+) Calcd for C$_{10}$H$_{13}$FN$_3$O$_3$+ [M+H]$^+$: 242.22, found: 242.03

A-2(d): Yield: 51% (four steps); 1H NMR (400 MHz, DMSO-d$_6$) δ 12.46 (brs, 1H), 8.60 (brs, 1H), 8.14 (d, J = 8.2 Hz, 2H), 7.43 (m, 6H), 7.30 (t, J = 7.8 Hz, 1H), 7.22 (d, J = 7.4 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 3.33 (brs, 2H), 2.38 (s, 3H); 13C NMR (100 MHz, DMSO-d$_6$) δ 170.5, 154.8, 138.1, 136.0, 129.8, 129.0, 128.7, 127.9, 127.5, 122.3, 119.7, 59.4, 45.4; LRMS (ESI+) Calcd for C$_{16}$H$_{18}$N$_3$O$_3$+ [M+H]$^+$: 300.33, found: 300.21.
IV. Characterization for representative compounds

1. Representative compound 7 (5a{2,9})

Representative Compound 7 (5a{2,9}): 1H NMR (400 MHz, CDCl$_3$) δ 7.35 (m, 3H), 7.26 (m, 2H), 7.16 (m, 4H), 7.09 (d, $J = 8.6$ Hz, 2H), 6.77 (d, $J = 8.6$ Hz, 2H), 6.51 (t, $J = 6.1$ Hz, 1H), 5.99 (dd, $J = 9.4$ Hz, $J = 5.5$ Hz, 1H), 5.24 (fd, $J = 8.6$ Hz, $J = 5.1$ Hz, 1H), 4.62 (dd, $J = 14.9$ Hz, $J = 6.7$ Hz, 1H), 4.36 (dd, $J = 14.9$ Hz, $J = 5.5$ Hz, 1H), 4.1 (d, $J = 17.2$ Hz, 1H), 3.67 (d, $J = 17.2$ Hz, 1H), 3.32 (m, 2H), 3.10 (m, 4H), 2.80 (s, 3H), 1.33 (m, 2H), 1.26 (m, 2H), 0.86 (t, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 165.5, 162.0, 156.5, 144.7, 138.6, 134.8, 133.0, 132.4, 131.0, 130.5, 120.0, 128.7, 127.9, 127.5, 114.7, 60.2, 56.1, 50.0, 48.7, 47.1, 44.6, 36.4, 28.9, 20.6, 20.0, 13.8; HRMS (ESI) m/z calcd for C$_{32}$H$_{27}$ClN$_{5}$O$_{3}$+ [M+H]$^+$: 574.2579; Found: 574.2569.
Crude \(^1\text{H}\) NMR

Chiral HPLC

gCOSY
2. Representative compound 8 (5a{2,2})

Representative Compound 8 (5a{2,2}): ¹H NMR (500 MHz, CDCl₃) δ 7.32 (m, 2H), 7.26 (m, 3H), 7.10 (d, J = 8.3 Hz, 2H), 6.80 (d, J = 8.3 Hz, 2H), 6.52 (t, J = 5.9 Hz, 1H), 6.40 (t, J = 7.3 Hz, 1H), 4.94 (d, J = 5.9 Hz, 1H), 4.49 (m, 2H), 4.25 (d, J = 17.1 Hz, 1H), 4.00 (d, J = 17.1 Hz, 1H), 3.35 (m, 1H), 3.14 (d, J = 8.7 Hz, 2H), 3.01 (ddd, J = 13.7 Hz, J = 8.1 Hz, J = 6.1 Hz, 1H), 2.43 (m, 1H), 2.28 (s, 3H), 1.34 (m, 2H), 1.17 (m, 2H), 1.11 (d, J = 8.6 Hz, 3H), 1.05 (d, J = 6.8 Hz, 3H), 0.85 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 162.6, 156.9, 144.7, 138.3, 132.0, 130.5, 128.9, 127.7, 127.4, 114.2, 60.9, 59.8, 49.9, 48.6, 46.9, 44.7, 32.3, 29.0, 20.5, 20.03, 19.97, 19.4, 13.8; HRMS (ESI) m/z calcd for C₂₈H₃₈N₅O₃+: 492.2969; Found: 492.2961.
3. **Representative compound 9 (5a{1,6})**

Representative Compound 9 (5a{1,6}):\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\)

7.3 (m, 3H), 7.23 (d, \(J = 7.8\) Hz, 3H), 7.06 (d, \(J = 8.6\) Hz, 2H), 6.76 (d, \(J = 8.2\) Hz, 2H), 6.46 (t, \(J = 5.9\) Hz, 1H), 6.30 (dd, \(J = 11.2\) Hz, \(J = 4.1\) Hz, 1H), 6.24 (m, 1H), 6.11 (d, \(J = 3.1\) Hz, 4H), 5.20 (dd, \(J = 9.6\) Hz, \(J = 4.5\) Hz, 1H), 4.48 (m, 2H), 4.38 (m, 2H), 4.23 (d, \(J = 17.2\) Hz, 1H), 3.93 (d, \(J = 17.6\) Hz, 1H), 3.19 (dd, \(J = 11.7\) Hz, \(J = 4.3\) Hz, 1H), 3.09 (t, \(J = 11.2\) Hz, 1H), 2.29 (s, 3H), 1.82 (m, 2H), 1.68 (m, 1H), 1.01 (d, \(J = 6.3\) Hz, 3H), 0.97 (d, \(J = 6.7\) Hz, 3H); \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\)

167.1, 162.1, 156.7, 149.4, 144.7, 142.6, 138.3, 132.1, 130.5, 128.9, 127.8, 127.5, 114.4, 110.4, 109.1, 59.2, 53.8, 49.6, 48.8, 44.7, 42.9, 41.0, 25.16, 23.15, 22.14, 20.6; LRMS (ESI) \(m/z\) calcd for C\(_{30}\)H\(_{36}\)N\(_5\)O\(_4\) [M+H]\(^+\): 530.27; Found: 530.03.

Crude LC-MS data

After short filter

Mass spectrum

[S14](#)
Crude 1H NMR

Chiral HPLC

gCOSY
2D NOE NMR
4. Representative compound 10 (5c{3,1})

Compound 10 (5c{3,1}): 1H NMR (400 MHz, CDCl$_3$) δ 7.24 (m, 8H), 7.01 (d, J = 7.8 Hz, 4H), 6.71 (d, J = 8.6 Hz, 2H), 6.18 (t, J = 6.1 Hz, 1H), 5.84 (m, 2H), 5.35 (dd, J = 7.4 Hz, J = 5.1 Hz, 1H), 5.13 (m, 2H), 4.65 (d, J = 14.5 Hz, 1H), 4.19 (d, J = 14.5 Hz, 1H), 4.11 (d, J = 17.6 Hz, 1H), 3.90 (m, 2H), 3.73 (d, J = 17.2 Hz, 1H), 3.42 (dd, J = 13.7 Hz, J = 5.1 Hz, 1H), 3.30 (dd, J = 13.7 Hz, J = 7.8 Hz, 1H), 2.91 (d, J = 7.4 Hz, 2H), 2.26 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 166.0, 162.2, 156.0, 144.8, 136.3, 135.5, 134.5, 132.5, 130.4, 129.9, 128.8, 128.6, 127.9, 127.3, 116.2, 114.9, 60.4, 56.6, 50.2, 49.5, 48.9, 42.9, 37.0, 20.6; HRMS (ESI) m/z calcd for C$_{31}$H$_{34}$N$_5$O$_3$+ [M+H]$^+$: 524.2656; Found: 524.2656.

Crude LC-MS data

![Crude LC-MS data](image)

Mass spectrum

![Mass spectrum](image)
Crude 1H NMR

Chiral HPLC

gCOSY
5. Representative compound 11 (5c{3,9})

Compound 11 (5c{3,9}): 1H NMR (400 MHz, CDCl$_3$) δ 7.25 (m, 3H), 7.29 (m, 4H), 7.01 (m, 4H), 6.70 (d, $J = 8.6$ Hz, 2H), 6.19 (t, $J = 5.9$ Hz, 1H), 6.06 (dd, $J = 8.6$ Hz, $J = 6.3$ Hz, 1H), 5.64 (m, 1H), 5.36 (dd, $J = 8.6$ Hz, $J = 4.7$ Hz, 1H), 5.14 (m, 2H), 4.61 (d, $J = 14.5$ Hz, 1H), 4.20 (d, $J = 14.9$ Hz, 1H), 4.11 (d, $J = 17.2$ Hz, 1H), 3.90 (m, 2H), 3.72 (d, $J = 17.6$ Hz, 1H), 3.39 (dd, $J = 13.7$ Hz, $J = 4.7$ Hz, 1H), 3.19 (dd, $J = 13.9$ Hz, $J = 8.8$ Hz, 1H), 2.97 (m, 2H), 2.26 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 165.8, 162.1, 156.1, 144.6, 135.4, 134.8, 134.3, 133.0, 132.3, 131.2, 130.4, 128.8, 128.7, 128.0, 127.9, 116.3, 114.5, 60.0, 58.1, 50.2, 49.4, 48.5, 42.9, 36.6, 20.6; LRMS (ESI) m/z calcd for C$_{31}$H$_{33}$ClN$_{5}$O$_{3}$ $+[M+H]^+$: 558.22; Found: 558.20.

Crude LC-MS data

Mass spectrum

Chiral HPLC
gCOSY

Temp. 20.5 C / 20.3 K
Sample #1, Operator: skpark
Relax. delay 1.000 sec
Avg. time 1.330 sec
Width 4085.0 Hz
20 pulses 4085.0 Hz
Single scan
128 scans

OBSERVE #1: 396.15531 MHz
DATA PROCESSING
Sp. nice band 0.470 sec
F1 DATA PROCESSING
F2 0.470 sec
F1 15.5200 a 2044
Total time 3 min 58 sec
6. Representative compound 12 (6b{1,7})

Representative Compound 12 (6b{1,7}): 1H NMR (400 MHz, CDCl$_3$)

δ 8.50 (s, 1H), 7.39 (m, 3H), 6.98 (t, $J = 8.4$ Hz, 2H), 6.30 (m, 5H), 6.05 (dd, $J = 9.8$ Hz, $J = 4.3$ Hz, 1H), 5.13 (t, $J = 6.7$ Hz, 1H), 4.77 (d, $J = 15.3$ Hz, 1H), 4.36 (d, $J = 15.7$ Hz, 1H), 3.89 (d, $J = 17.2$ Hz, 1H), 3.70 (m, 1H), 3.60 (m, 1H), 3.36 (d, $J = 17.2$ Hz, 1H), 3.22 (m, 2H), 2.89 (d, $J = 13.3$ Hz, 4H), 2.53 (s, 3H), 2.46 (s, 3H), 2.06 (s, 4H), 1.86 (dd, $J = 13.9$ Hz, $J = 6.8$ Hz, 2H), 1.64 (m, 2H), 1.44 (s, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 166.6, 163.4, 160.4, 158.7, 158.0, 156.3, 149.1, 143.0, 138.4, 133.67, 133.64 (d, 3J$_{CF} = 3$ Hz), 133.2, 132.3, 124.6, 121.43, 121.35 (d, 2J$_{CF} = 8.3$ Hz), 117.5, 115.81, 115.59 (d, 1J$_{CF} = 22.8$ Hz), 110.7, 109.6, 86.4, 59.1, 55.8, 50.6, 46.0, 43.3, 43.1, 40.7, 29.8, 29.5, 28.7, 25.7, 19.3, 18.0, 14.3, 12.6; HRMS (ESI) m/z calcld for C$_{36}$H$_{46}$F$_8$N$_8$O$_7$S $[M+H]^+$: 753.3189, Found: 753.3148.

Crude LC-MS data

Mass spectrum
Crude 1H NMR

Chiral HPLC

gCOSY
7. Representative compound 13 (6d{3,2})

Representative Compound 13 (6d{3,2}): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.71 (s, 1H), 8.11 (d, \(J = 8.2\) Hz, 1H), 7.35 (m, 11H), 7.15 (t, \(J = 8\) Hz, 2H), 6.11 (dd, \(J = 9.4\) Hz, \(J = 5.1\) Hz, 1H), 5.05 (d, \(J = 7\) Hz, 1H), 4.63 (d, \(J = 14.5\) Hz, 1H), 4.55 (d, \(J = 14.5\) Hz, 1H), 3.49 (m, 2H), 3.43 (m, 1H), 3.00 (d, \(J = 16.8\) Hz, 1H), 2.45 (s, 3H), 2.35 (m, 1H), 1.15 (d, \(J = 6.7\) Hz, 3H), 1.03 (d, \(J = 7\) Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 166.6, 163.0, 153.3, 138.6, 136.0, 134.9, 132.3, 129.9, 129.4, 129.0, 128.9, 128.7, 128.4, 128.04, 128.00, 123.8, 119.8, 59.7, 55.3, 50.5, 50.2, 45.5, 32.2, 20.1, 20.0; LRMS (ESI) \(m/z\) calcd for C\(_{30}\)H\(_{34}\)N\(_5\)O\(_3\) \([M+H]^+\): 512.26, Found: 512.29.
Chiral HPLC

DNA1 D_Sap+254.10 Ret=300.100 (KG/REP.VAL.D)

nAU
0 200 400 600 800 1000
0 5 10 15 20 25 min

gCOSY

Sample 51, Operator: algpork
 Acquisition delay 3.125 sec
 Acquisition time 0.125 sec
 Mode 400.0 Hz
 E3 Width 400.0 Hz
 J coupling
 128 increments
 ORDERED: 30.739355 MHz
 DATA PROCESSING:
 2 point, half 2.576 sec
 1 point, processing
 2 point, 2048 x 2048
 Total time 3 min 15 sec
8. Representative compound 14 (6a{3,5})

Representative Compound 14 (6a{3,5}): 1H NMR (400 MHz, CDCl$_3$) δ 7.33 (m, 6H), 7.23 (m, 4H), 7.00 (d, $J = 8.2$ Hz, 2H), 6.73 (t, $J = 5.9$ Hz, 1H), 6.64 (d, $J = 8.2$ Hz, 2H), 5.49 (dd, $J = 10.6$ Hz, $J = 4.3$ Hz, 1H), 5.36 (t, $J = 5.7$ Hz, 1H), 4.87 (d, $J = 14.5$ Hz, 1H), 4.45 (m, 2H), 4.3 (m, 1H), 3.49 (m, 2H), 3.37 (d, $J = 5.5$ Hz, 2H), 3.31 (dd, $J = 11.7$ Hz, $J = 4.3$ Hz, 1H), 3.16 (d, $J = 16.8$ Hz, 1H), 2.68 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 166.4, 162.7, 156.2, 155.7, 138.7, 135.7, 130.7, 129.0, 128.2, 127.7, 127.0, 115.8, 80.4, 56.9, 55.5, 50.7, 50.6, 45.7, 44.3, 35.9; LRMS (ESI) m/z calcd for C$_{29}$H$_{32}$N$_5$O$_3$+ [M+H]$^+$: 514.24, Found: 514.06.

Crude LC-MS data

Mass spectrum

Crude 1H NMR
Chiral HPLC

![Chiral HPLC graph]

gCOSY

![gCOSY graph]
IV. Principal Component Analysis (PCA) of pyrazinotriazinedione library

PCA was performed against 162 independent molecules using 8 major molecular descriptors [molecular weight, topological PSA, 2D VDW volume, 2D VSA hydrophobic surface, 2D VSA polar surface, 2D VSA Hbond donors, 2D VSA Hbond acceptors, AlogP98 value]. Molecular descriptors were calculated using PreADMET 2.0 software [BMDRC, Seoul, Korea] and PCA was executed using SAS 9.3 software [SAS Institute Inc., Cary, NC, USA]. Three principal components (Prin1, Prin2, and Prin3) represent 99.6% of the total variance in molecular descriptors. Prin1 factor, which explains 95.9% of the total variance, is mainly constituted by molecular weight (MW), 2D van der Waals (VDW) volume and AlogP98 value. Prin2 factor, which explains 3.0% of the total variance, is influenced by topological polar surface area (PSA), 2D van der Waals (VDW) polar surface, 2D van der Waals surface area (VSA) Hbond donors and 2D van der Waals surface area (VSA) Hbond acceptors. Prin3 factor, accounting for 0.6% of the total variance, includes topological polar surface area and 2D VSA hydrophobic. The eigenvalues of the covariance matrix and eigenvectors are presented in Table S1 and S2, respectively.

Table S1. Eigenvalues of the covariance matrix

	Eigenvalue	Difference	Proportion	Cumulative
Prin 1	20356.7478	19711.3138	0.9590	0.9590
Prin 2	645.4338	514.3846	0.0304	0.9894
Prin 3	131.0492	52.9487	0.0062	0.9955

Table S2. Eigenvectors in principal component analysis

	Prin1	Prin2	Prin3
Molecular_weight	0.671133	0.158384	-0.597872
Topological_PSA	0.189649	0.580146	0.494505
2D_VDW_volume	0.565977	-0.131462	0.056570
2D_VSA_hydrophobic	0.403183	-0.581978	0.565279
2D_VSA_polar	0.143184	0.421638	0.237825
Fig S2. (A) 3-D visualization of chemical space of tetra-substituted pyrazinotriazinedione library differentiated by R_1 substituents. (B) 3-D visualization of chemical space differentiated by R_2 substituents (C) 3-D visualization of chemical space differentiated by R_3 substituents (D) 3-D visualization of chemical space differentiated by R_4 substituents [PreADMET, V_{conf} Interface, SAS 9.3, Spotfire Decision site]

Eigenvectors	Prin1	Prin2	Prin3
2D_VSA_Hbond_donor	0.076611	0.251406	0.097630
2D_VSA_Hbond_acceptor	0.065710	0.201759	0.093448
AlogP98_value	0.006236	-0.025961	-0.021187
VI. Copies of 1H and 13C NMR spectra

1. Acid coupling partners
2. Representative compounds
VII. PDA-based LC/MS analysis data for library compounds
VIII. FRET Imaging

FIG S3. FRET Imaging. Captured fluorescent images within HEK293T cells expressing both LRS-CFP and RagD-YFP (first low), LRS-CFP (second low) and RagD-YFP (third low). Images captured with CFP/CFP (first column), YFP/YFP (second column) and CFP/YFP channel filter sets are shown (excitation/emission). Scale bar, 20 μm.
IX. Experimental procedure for biological assay

Cell culture
HEK293T cells were obtained from American Type Culture Collection [ATCC, Manassas, VA, USA]. HEK293T cell lines were cultured in DMEM [GIBCO, Invitrogen] supplemented with heat-inactivated 10% (v/v) fetal bovine serum [GIBCO, Invitrogen] and 1% (v/v) antibiotic-antimycotic solution [GIBCO, Invitrogen]. Cells were maintained in a humidified atmosphere of 5% CO$_2$ incubator at 37 °C, and cultured in 100 mm cell culture dish [CORNING].

ELISA-based assay
His-tag-LRS diluted with carbonate buffer (100 mM, pH 9.6) at the 0.5 ng/μL concentration and distribute the solution to each well of the half-bottom 96 well clear plate [CORNING, #3690]. Incubate overnight at 4 °C (covered) and remove the coating solution and wash three times with PBST. After blocking step (2 h, 5% BSA in PBS), each well was treated with each β-turn mimetic library member and GST-tagged RagD simultaneously for 3 hours. (GST protein was used for negative control.) Diluted GST antibody in PBS was added to each well and incubate at room temperature for 1 h. After washing with PBST, the enzyme-conjugated secondary antibody was treated and incubated at room temperature for 1 h. For developing, TMB was added to each well. Color should develop in positive wells (blue). The reaction was stopped with stopping reagent, H$_3$PO$_4$, and absorbance read later at 450 nm.

Leucine Starvation
For leucine depletion, cells were rinsed with leucine-free DMEM twice, incubated in leucine-free DMEM for 60 min and replaced with and incubated in DMEM.

Western blotting
HEK293T cells were seeded on 6-well plate and incubated in 5% CO$_2$ incubator at 37 °C overnight. HEK293T cells were starved for leucine for 1 h and treated with compounds in leucine-deprived condition. Cells were washed by PBS and harvested. Cell lysates were obtained by 30 min treatment with RIPA cell lysis buffer containing protease inhibitors and phosphatase inhibitors at ice. After the centrifugation of cell lysates at 15,000 rpm and 4 °C for 30 min, the protein concentration in the supernatant was measured by BCA assay. The resulting proteome were analyzed by SDS-PAGE and transferred into PVDF membrane, followed by 2% BSA blocking in TBST over 1 h. The samples were subjected to western blotting to detect the S6K1, phospho-S6K1 (T389) or GAPDH with specific primary antibodies, e.g. anti-S6K1 and anti-phospho-S6K1 (T389) [Abcam], GAPDH [Cell Signaling Technology] antibodies for overnight at 4 °C, followed by washing with TBST for 1 h. The resulting
membrane was exposed into HRP-conjugated secondary antibody for 1 h at room temperature. After washing with TBST, the membrane was developed by ECL prime solution [GE healthcare] and the chemiluminescent signal was measured by ChemiDoc™ MP imaging system.

FRET imaging experiment and analysis

We carried out FRET imaging with DeltaVision Elite imaging system [GE healthcare]. For maintaining live cell condition during experiment, imaging was performed in a CO₂ supporting chamber along with an objective air heater. HEK293T cells were transfected with LRS-CFP (Condition 1), RagD-YFP (Condition 2) and both LRS-CFP and RagD-YFP (Condition 3). Condition 1 & 2 were for calculating crosstalk and condition 3 was for FRET analysis. Images captured with CFP/CFP, YFP/YFP and CFP/YFP filter sets (excitation/emission) and 60× scale. Excitation filter: 438/24 nm and Emission filter 475/24 nm for CFP; Excitation filter: 513/17 nm and Emission filter: 548/22 nm for YFP. In each experiment, images of randomly selected 4 or 5 different cells per individual condition were taken at 10-min intervals over 3.5 h. Ultimate focusing module was operated before imaging during whole imaging process. Compounds were treated in 30 min after live cell imaging. Out of focus light is digitally removed using the SoftWorks deconvolution software. FRET analysis controlled by DeltaVision SoftWorks using the SoftWorks tool “FRET analysis” for excluding false-positive signal such as CFP crosstalk and YFP crosstalk. Using ‘FRET analysis’ tool, extract crosstalk information from condition 2 & 3. (CFP crosstalk was extracted from condition 2 on whole time point images and YFP crosstalk was extracted from condition 3 on whole time point images.) Net FRET images were developed by applying each crosstalk extracted from each time point. Calculate FRET efficiency within region of interest of developed Net FRET images. Finally, FRET efficiency was converted to FRET efficiency ratio by level at 30 min as a standard. The quantified data are the mean measurements from 3 independent experiments.