Studies of gluon TMDs and their evolution using quarkonium-pair production at the LHC

Florent Scarpa1,2, Daniël Boer1, Miguel G. Echevarria1,4, Jean-Philippe Lansberg2, Cristian Pisano5, Marc Schlegel6

1Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
2IPNO, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
3Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, 27100 Pavia, Italy
4Dpto. de Física y Matemáticas, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33, 28805 Alcalá de Henares (Madrid), Spain
5Dipartimento di Fisica, Università di Cagliari, and INFN, Sezione di Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
6Department of Physics, New Mexico State University, Las Cruces, NM 88003, USA

Version of September 13, 2019

Abstract J/ψ- or Υ-pair production at the LHC are promising processes to study the gluon transverse momentum distributions (TMDs) which remain very poorly known. In this article, we improve on previous results by including the TMD evolution in the computation of the observables such as the pair-transverse-momentum spectrum and asymmetries arising from the linear polarization of gluons inside unpolarized protons. We show that the azimuthal asymmetries generated by the gluon polarization are reduced compared to the tree level case but are still of measurable size (in the 5%-10% range). Such asymmetries should be measurable in the available data sets of J/ψ pairs and in the future data sets of the high-luminosity LHC for Υ pairs.

1 Introduction

The three-dimensional structure of the composite hadrons has widely been analyzed through the study of Transverse-Momentum Dependent parton distribution functions (TMDs) in the framework of TMD factorization. The various TMDs can be accessed in hadronic processes with a small transverse momentum (TM), denoted by q_T, of the detected final state [1–3]. TMDs need to be extracted from experimental data for such processes as they are intrinsically nonperturbative objects and therefore cannot be computed using perturbative QCD. So far, the majority of data allowing for the extraction of TMDs have been acquired from SIDIS and Drell-Yan measurements, two experimentally accessible processes and for which TMD factorization was proved to hold [4–6]. However, since such processes are primarily induced by quarks/antiquarks, they mostly provide information about the quark TMDs. Currently our knowledge of gluon TMDs is still very limited, due to the lack of data on processes that could potentially be used for extractions. More specifically, gluons inside unpolarized protons can be described at leading twist using two TMDs [7]. The first one describes unpolarized gluons, while the second one describes linearly polarized gluons. The latter correlates the spin of the gluons with their TM, and thus requires non-zero gluon TM. The presence of polarized gluons inside the unpolarized proton has effects on the cross-sections, such as modifications of the TM-spectrum and azimuthal asymmetries.

Several processes have been proposed to extract gluon TMDs, see e.g. [8–35]. Associated quarkonium production (see [36] for a recent review) has in particular a great potential to probe the gluon TMDs at the LHC, e.g. quarkonium plus photon ($Q + \gamma$) or quarkonium-pair production. They mainly originate from gluon fusion, and can be produced via a color-singlet transition, avoiding then possible TMD-factorization-breaking effects [37–39].

Some quarkonium states, like the J/ψ meson, are easily detected and a large number of events can be recorded. Processes with two particles in the final state offer some interesting advantages compared to those with a single detected particle. Since the TM of the final state needs to be small for the cross-section to be sensitive to TMD effects, one-particle final states are bound to stay close to the beam axis and therefore difficult to detect, as the background level is high and triggering is complicated. However, two particles that are nearly back-to-back can each have large individual transverse momenta that add up to a small one. Indeed, in
general a pair of particles can have a large invariant mass and a small TM. Whereas the hard scale in a one-particle final state is only its mass, and is thus constant, the invariant mass of a two-particle final state can be tuned with their individual momenta. This allows one to study the scale evolution of the TMDs. Finally, a two-particle final state allows one to define the azimuthal angle between these two particles, hence to look for various azimuthal asymmetries. These are in fact associated to specific convolutions of gluon TMDs.

It was thus recently proposed [30] to probe the gluon TMDs using quarkonium-pair production at the LHC, and more specifically $J/\psi + J/\psi$ production. Such a process has already been measured by LHCb, CMS and ATLAS at the LHC, as well as by D0 at the Tevatron [40–44]. The size of some azimuthal asymmetries associated with the linearly polarized gluon distribution are nearly maximum in this process. In [30], the unpolarized-gluon distribution was modelled by a simple Gaussian as a function of the gluon TM.

In order to see the maximal effect of the linearly-polarized gluons on the yields, their distribution was taken to saturate its positivity bound [7]. The size of the resulting maximum asymmetries was found to be very large, especially at large pair invariant mass, $M_{Q\bar{Q}}$. Yet, more realistic estimates of the asymmetries require the inclusion of higher-order corrections in α_s through TMD QCD evolution [21,45–47].

Very recently, a TMD-factorization proof has been established for pseudoscalar η as well as azimuthal asymmetries for J/ψ production [9, 18, 21]. In this context, we build on the previous work [30] by adding TMD evolution effects to the gluon TMDs. Such evolution effects are expected to play a significant role (see e.g. [21]) and should in any case be specifically analyzed. We will proceed like in previous studies for H^0 production [9, 18, 21].

In this article, we first discuss the characteristics of quarkonium-pair production at the LHC within the TMD framework, as well as the associated cross-section and observables sensitive to the gluon TMDs. We then detail the evolution formalism used in our computations and the resulting expressions for the TMD convolutions. Finally, we present our results for the $P_{Q\bar{Q}}$-spectrum and the azimuthal asymmetries for J/ψ-pair production at the LHC as well as azimuthal asymmetries for T-pair production.

2 Q-pair production within TMD factorization

2.1 TMD factorization description of the process

TMD factorization extends collinear factorization by taking into account the intrinsic TM of the partons, usually denoted by k_T. As in collinear factorization, the hard-scattering amplitude, which can be perturbatively computed, is multiplied by parton correlators that can be parametrized in terms of parton distribution functions, but in this case k_T dependent. The parametrization of parton correlators is an extension from that used in collinear factorization, not only because of the k_T dependence of the distribution functions, but also because there are more distributions. The gluon correlator inside an unpolarized proton with momentum P and mass M_P, denoted by $\Phi^{\mu\nu}(x, k_T)$ [7, 49, 50], can be parametrized in terms of two independent TMDs. The first one is the distribution of unpolarized gluons $f_1^g(x, k_T^2)$, the second one is the distribution of linearly polarized gluons $h_1^{+g}(x, k_T^2)$. Here the gluon 4-momentum is written using a Sudakov decomposition: $k = xP + k_T + k^- n$ (where n is any light-like vector ($n^2 = 0$) such that $n \cdot P \neq 0$), where $k_T^2 = -k_T^2$ and the transverse metric is $g_{\mu\nu} = g_{\mu\nu} - (P_{\mu} n_{\nu} + P_{\nu} n_{\mu})/P\cdot n$. For TMD factorization to hold, the hard scale of the process should be much larger than the pair TM, q_T.

The process we are interested in is the fusion of two gluons coming from two colliding unpolarized protons, leading to the production of a pair of vector S-wave quarkonia: $g(k_1) + g(k_2) \rightarrow Q(P_{Q1}) + Q(P_{Q2})$. The cross-section for this reaction involves the contraction of two gluon correla-
tors [30], $\Phi_{g}^{\mu\nu}(x_{1}, k_{1T})$ and $\Phi_{q}^{\alpha\nu}(x_{2}, k_{2T})$, with the squared amplitude $\hat{M}_{\mu\nu}(\hat{M}_{\nu\alpha})^{*}$ of the partonic scattering, integrated over the gluon momenta. The expression of the tree-level partonic amplitude \hat{M} is available in [51], although the earliest computations date back to 1983 [52, 53]. The hadronization process, i.e. the transition from a heavy-quark pair to a quarkonium bound state, is described in our study using the color singlet model (CSM) [54–56] or in this case equivalently non-relativistic QCD (NRQCD) [57] at LO in the velocity v of the heavy quarks in the bound-state rest frame. Fig. 1 represents the complete reaction with a typical Feynman diagram depicting the partonic subprocess.

2.2 Other contributions to quarkonium-pair production

The leading contribution to the hadronization of a $Q\bar{Q}$ pair into a bound state in NRQCD is the Color-Singlet (CS) transition, for which the perturbatively-produced heavy-quark pair has the same quantum numbers as the quarkonium and directly binds without any extra soft interaction. Corrections to this leading contribution involving higher Color-Octet (CO) Fock states are suppressed by powers of v, which is meant to be much smaller than unity for heavy quarkonia.

The CS over CO dominance normally follows from this power suppression in v encoded in the so-called NRQCD long distance matrix elements (LDMEs). More precisely one expects a relative suppression on the order of v^{4} [57–59] (see [36, 60–62] for reviews) per quarkonium. For di-J/ψ production with $v_{c}^{2} \approx 0.25$ and for which both the CO and the CS yields are produced at α_{s}^{2}, the CO/CS yield ratio, which thus scales as v_{c}^{8}, likely lies below the percent level. Explicit computations [63–67] indeed show corrections from the CO states below the percent level except in some corners of the phase space (e.g. large rapidity separation Δy) where some CO contributions can be kinematically enhanced, but these can safely be avoided with appropriate kinematical cuts. More details can be found in [67].

It is important for the applicability of TMD factorization that the CS contributions dominate. Soft gluon interactions between the hadrons and a colored initial or final state of the hard scattering can be encapsulated within the definition of the TMD through the use of Wilson lines. However, if both initial and final states are subject to soft gluon interactions, the resulting color entanglement may break TMD factorization [37–39]. The dominance of the CS contributions should therefore be ensured.

It is also important to take into account α_{s} corrections. In the TMD region, $P_{Q\bar{Q}} \ll M_{Q\bar{Q}}$, these introduce a renormalization scale (μ) dependence in the TMD correlators and a rapidity scale ζ dependence [4–6]. At larger $P_{Q\bar{Q}}$, one has to match onto the collinear factorization expression (see e.g. [68]), which is calculated by taking real-gluon emissions into account [65, 69–71]. At finite $P_{Q\bar{Q}}$, such single real-gluon emissions occur at α_{s}^{2} and the quarkonium pair effectively recoils against this hard gluon, increasing the pair TM. In this paper we will restrict to $P_{Q\bar{Q}} < M_{Q\bar{Q}}/2$ in order to stay away from the matching region.

Thus far, we have focused our discussion on the single parton scattering (SPS) case. However, since we look at a two-particle final state, we should also consider the case where the quarkonia are created in two separate hard scatterings, i.e. double parton scattering (DPS). At LHC energies, the gluon densities are typically high and the likelihood for two hard gluon fusions to take place during the same proton-proton scattering cannot be neglected.

In the case of di-J/ψ, it has been already anticipated in 2011 [72] that DPS contributions may be dominant at large rapidity difference Δy (thus large invariant masses with same individual TM). This was corroborated [65] by the CMS data [41] with an excess above the SPS predictions at large Δy. ATLAS further [44] confirmed the DPS relevance in di-J/ψ production with a dedicated DPS study. One expects1 [44, 65] that DPS contributions lie below 10% for $\Delta y \sim 0$ in the CMS and ATLAS samples (characterized by a $P_{Q\bar{Q}}$ cut away from the threshold $M_{\psi\psi} \simeq 2M_{\psi}$) and that they only matter at large Δy. However, in the LHCb acceptance (where $M_{\psi\psi} \simeq 2M_{\psi}$), DPS contributions cannot a priori be neglected, but can be subtracted [43] if one assumes that, for the DPS sample, the kinematics of both J/ψ' is uncorrelated. This yield a precise (yet, unnormalized) prediction of the kinematical distributions.

Another source of quarkonium pairs is the feed-down from excited states. For J/ψ-pair production, the main feed-down sources are the χ_{c} and ψ'. The feed-down from χ_{c} is expected to be small, as $gg \rightarrow J/\psi + \chi_{c}$ and $gg \rightarrow \psi' + \chi_{c}$

1Theory DPS studies advance [73–76], but not yet as to provide quantitative inputs to predict DPS cross sections as done for SPS. As such, one usually assumes the DPS contributions to be independent. This justifies factorizing the DPS cross section into individual ones with an (inverse) proportionality factor, referred to as an effective cross-section σ_{eff}. Under this assumption, σ_{eff} should be process independent, encoding the magnitude of the parton interaction. σ_{eff} needs to be experimentally extracted as it is a nonperturbative quantity. This is the standard procedure at LHC energies [77–83]. Ideally, a single precise extraction of σ_{eff} should suffice to provide predictions for any DPS cross section under this factorized Ansatz. Yet, the current extraction seems to differ [84] with values ranging from 25 mb down to a few mb, which forces us to restrict to qualitative considerations.
are suppressed [65] at LO by C-parity and the vanishing of the \(\chi_c \) wave function at the origin, and \(gg \rightarrow \chi_c + \chi_c \) is suppressed by the squared \(\chi_c \rightarrow J/\psi \) branching ratio. The production of a \(\psi' \) with a \(J/\psi \) likely contributes 36\% of the \(J/\psi \)-pair samples, owing to the large branching ratio for \(\psi' \rightarrow J/\psi (O(60\%)) \) and symmetry factors. Yet, \(\psi' + J/\psi \) pairs are produced exactly like \(J/\psi + J/\psi \) pairs and thus generate the same TMD observables.

In the case of \(T \)-pair production, the main feed-down is from \(T(2,3S) \). According to [85], less than 30\% of the produced pairs would originate from feed-down at \(\sqrt{s} = 8 \text{ TeV} \). As in the \(J/\psi \) case, C-parity suppresses the \(T + \chi_b \) reaction at leading order, and \(\chi_b + \chi_b \) is suppressed by the squared branching ratio. Regarding the CO contributions, the relative velocity of the quarks inside the \(T \) is smaller than for the \(J/\psi \), meaning the NRQCD expansion used to describe the hadronization has a better convergence. Therefore it is highly unlikely that the CO channels overcome the CS ones in the reachable phase space. The fraction of DPS events is also expected to be less than 5\% at low \(P_{Q\bar{Q}r} \) and central rapidity [36], making it an overall cleaner process.

2.3 The TMD differential cross-section

The general structure of the TMD-based differential cross-section describing quarkonium-pair production from gluon fusion reads [30]:

\[
\frac{d\sigma}{dM_{Q\bar{Q}}dY_{Q\bar{Q}}d^2P_{Q\bar{Q}r}d\Omega} = \sqrt{M_{Q\bar{Q}}^2 - 4M_Q^2} \left(\frac{2\pi}{8}\delta^8 \frac{M_{Q\bar{Q}}}{2} \right) (1)
\]

\[
\left\{ F_1(M_{Q\bar{Q}}, \theta_{CS}) C\left[f_1^2 f_1^1 \right] (x_{1,2}, P_{Q\bar{Q}r}) + F_2(M_{Q\bar{Q}}, \theta_{CS}) C\left[w_2 h_1^g h_1^g \right] (x_{1,2}, P_{Q\bar{Q}r}) + F_3(M_{Q\bar{Q}}, \theta_{CS}) C\left[w_3 f_1^0 f_1^0 \right] (x_{1,2}, P_{Q\bar{Q}r}) + F_4(M_{Q\bar{Q}}, \theta_{CS}) C\left[w_4 h_1^g h_1^g \right] (x_{1,2}, P_{Q\bar{Q}r}) \right\} \cos 2\phi_{CS} + P_{Q\bar{Q}r}
\]

\[
+ F_4(M_{Q\bar{Q}}, \theta_{CS}) C\left[w_4 h_1^g h_1^g \right] (x_{1,2}, P_{Q\bar{Q}r}) \cos 4\phi_{CS},
\]

with \(d\Omega = d\cos \theta_{CS} d\phi_{CS} \), \{ \theta_{CS}, \phi_{CS} \} being the Collins-Soper (CS) angles [86], and \(Y_{Q\bar{Q}} \) is the rapidity of the pair, \(x_{1,2} = M_{Q\bar{Q}}e^{Y_{Q\bar{Q}}/\sqrt{2}}, \) and \(s = (P_1 + P_2)^2 \). Here \(P_{Q\bar{Q}r} \) (\(\equiv q\bar{q} \)) and \(Y_{Q\bar{Q}} \) are defined in the hadron c.m.s. The quarkonia move along (in the opposite direction) \(e = (\sin \theta_{CS} \cos \phi_{CS}, \sin \theta_{CS} \sin \phi_{CS}, \cos \theta_{CS}) \) in the CS frame. The kinematical pre-factor is specific to the mass of the quarkonia and the considered differential cross-sections, while the hard-scattering coefficients \(F_i \) only depend on \(\theta_{CS} \) and the invariant mass of the system, here \(M_{Q\bar{Q}} \). Their expression for quarkonium-pair production can be found at tree level in [30]. When \(P_{Q\bar{Q}r} \gg M_Q \), small values of \(\cos \theta_{CS} \) correspond to small values of \(\Delta y \) in the hadron c.m.s.

The TMD convolutions appearing in Eq. (1) are defined as follows:

\[
C[wfg](x_{1,2}, P_{Q\bar{Q}r}) = \int d^2k_{1T} d^2k_{2T} \delta^4(k_{1T} + k_{2T} - P_{Q\bar{Q}r}) \times w(k_{1T}, k_{2T}) f(x_{1,2}, k_{1T}^2) g(x_{2}, k_{2T}^2),
\]

where \(w(k_{1T}, k_{2T}) \) denotes a TMD weight. The weights in Eq. (1) are common to all gluon-fusion processes originating from unpolarized proton collisions. They can be found in [25]. Our aim in the present study is to study the impact of QCD evolution effects in the above TMD convolutions. Having at our disposal the computation of the hard-scattering coefficients, the measurements of differential yields in principle allow one to extract these TMD convolutions evolved up to the natural scale of the process, on the order of \(M_{Q\bar{Q}} \) here.

In practice, one looks at specific observables sensitive to these convolutions. First we note that when the cross-section is integrated over the azimuthal angle \(\phi_{CS} \), the terms with a \(\cos(2,4\phi_{CS}) \)-dependence drop out from Eq. (1) such that:

\[
\frac{1}{2\pi} \int d\phi_{CS} dM_{Q\bar{Q}}dY_{Q\bar{Q}} d^2P_{Q\bar{Q}r}d\Omega \frac{d\sigma}{d\Omega} = F_1 C\left[f_1^2 f_1^1 \right] + F_2 C\left[w_2 h_1^g h_1^g \right],
\]

(3)

giving direct access to \(C[f_1^2 f_1^1] \) and \(C[w_2 h_1^g h_1^g] \).

Furthermore, one can define, at fixed \(\{ Y, P_{Q\bar{Q}r}, \theta_{CS}, M_{Q\bar{Q}} \} \), \(\cos(n\phi_{CS}) \)-weighted differential cross-sections, integrated over \(\phi_{CS} \) and normalized by their azimuthally-independent component:

\[
\langle \cos(n\phi_{CS}) \rangle = \int d\phi_{CS} \cos(n\phi_{CS}) \frac{d\sigma}{dM_{Q\bar{Q}}dY_{Q\bar{Q}}d^2P_{Q\bar{Q}r}d\Omega} = \int d\phi_{CS} \cos(n\phi_{CS}) \frac{d\sigma}{dM_{Q\bar{Q}}dY_{Q\bar{Q}}d^2P_{Q\bar{Q}r}d\Omega}.
\]

(4)
Such a variable, computed for \(n = 2 \) or \(4 \) in our case, corresponds to (half of) the relative size of the \(\cos(2a\phi_{CS}) \)-modulations present in the TMD cross-section in comparison to its \(\phi_{CS} \)-independent component:

\[
\langle \cos 2\phi_{CS} \rangle = \frac{1}{2} F_1 C \left[w_0 h^\perp_{1} h^\perp_{1} g \right] + F_2 C \left[w_0 h^\perp_{1} h^\perp_{1} g \right],
\]

\[
\langle \cos 4\phi_{CS} \rangle = \frac{1}{2} F_1 C \left[f_0 f_0 \right] + F_2 C \left[f_0 f_0 \right].
\]

When \(\langle \cos(n\phi_{CS}) \rangle \) is computed within a range of \(M_{QQ} \), \(Y_{QQ} \), \(P_{QQ} \) or \(\cos(\phi_{CS}) \), we define it as the ratio of corresponding integrals. Of course, the range in \(P_{QQ} \) should be such that one remains in the TMD region, i.e. \(P_{QQ} \ll M_{QQ} \).

For positive Gaussian \(h^\perp_{1} g \) the \(\langle \cos(2\phi_{CS}) \rangle \) asymmetry will be positive (note that in [30] the \(\langle \cos(2\phi_{CS}) \rangle \) plots miss an overall minus sign).

3 TMD evolution formalism

TMD evolution has been considered in an increasing number of TMD observables. It is usually implemented by Fourier transforming to \(b_T \)-space, with \(b_T \) being the conjugate variable to \(P_{QQ} \). When evolution effects are considered, the TMDs acquire a dependence on two scales: a renormalization scale \(\mu \) and a rapidity scale \(\zeta \) (whose evolution is governed by the Collins-Soper equation). Below we present in a simple way the results needed to perform the TMD evolution. For more details, we refer to e.g. [21, 45–47].

When TMD evolution is incorporated to the gluon TMDs in the tree-level result in Eq. (1), the convolutions take the form

\[
\mathcal{C}[u f g](x_{1,2}, P_{QQ}); \mu) \equiv \\
\int d^2 k_1 \int d^2 k_2 \delta^2(k_{1T} + k_{2T} - P_{QQ}) \\
\times w(k_{1T}, k_{2T}) f(x_1, k_{1T}^\perp, \zeta_1, \mu) g(x_2, k_{2T}^\perp, \zeta_2, \mu),
\]

(6)

where the two rapidity scales should fulfill the constraint \(\zeta_1 \lesssim \zeta_2 = M^2_{QQ} \). While the renormalization scale \(\mu \) in the hard-scattering coefficients \(F_i \) should be set here to \(\mu \sim M^2_{QQ} \) in order to avoid large logarithms, the TMDs should be evaluated at their natural scale \(\mu \sim \sqrt{\xi} \sim \mu_b = b_T / b_T \) (with \(b_T = 2e^{-\gamma_E} \)), in order to minimize both logarithms of \(\mu b_T \) and \(\zeta b_T \), and then evolved up to \(\mu \sim \sqrt{\xi} \sim M_{QQ} \). The solution of the evolution equations results in the introduction of the following Sudakov factor \(S_A \):

\[
\tilde{f}_1^g(x, b_T^2; \zeta, \mu) = e^{-\frac{1}{2} S_A(b_T, \zeta; \mu)} \tilde{f}_1^g(x, b_T^2; \mu_b^2, \mu_b),
\]

\[
\tilde{h}_1^g(x, b_T^2; \zeta, \mu) = e^{-\frac{1}{2} S_A(b_T, \zeta; \mu)} \tilde{h}_1^g(x, b_T^2; \mu_b^2, \mu_b)
\]

(7)

where the Fourier-transformed TMDs are

\[
\tilde{f}_1^g(x, b_T^2; \zeta, \mu) = \int d^2 k_T e^{-ib_T \cdot k_T} f_1^g(x, k_T^2; \zeta, \mu),
\]

\[
\tilde{h}_1^g(x, b_T^2; \zeta, \mu) = \int d^2 k_T \frac{(b_T \cdot k_T)^2 - \frac{1}{2} b_T^2 k_T^2}{b_T^2 M_p^2} \\
\times e^{-ib_T \cdot k_T} h_1^g(x, k_T^2; \zeta, \mu),
\]

(8)

and the perturbative Sudakov factor (applicable for sufficiently small \(b_T \)) is given by

\[
S_A(b_T; \zeta, \mu) = 2D(\mu_b^2) \ln \frac{\zeta}{\mu_b^2} + \frac{1}{2} \int_{\mu_b^2}^{\mu^2} \left[\Gamma(\alpha_s(\mu^2)) \ln \frac{\zeta}{\mu^2} + \gamma(\alpha_s(\mu^2)) \right].
\]

(9)

We consider here the resummation at next-to-leading-logarithmic accuracy, for which the Collins-Soper kernel \(D \) and the non-cusp anomalous dimension \(\gamma \) need to be taken at leading-order, while the cusp anomalous dimension \(\Gamma \) at next-to-leading-order. The perturbative Sudakov factor then takes the form

\[
S_A(b_T; \zeta, \mu) = 2 \frac{C_A}{\pi} \int_{\mu_b^2}^{\mu^2} \frac{d\mu}{\mu} \ln \left(\frac{\zeta}{\mu^2} \right) \\
\times \left[\alpha_s(\mu^2) + \left(\frac{67}{9} - \frac{\pi^2}{3} - \frac{20 T_f n_f}{9} \right) \alpha_s^2(\mu^2) - \frac{11 - 2n_f}{6} \right],
\]

(10)

with \(C_A = 3, T_f = 1/2 \) and \(n_f \) the number of flavors (we will use \(n_f = 4 \) for di-\(J/\psi \) and \(n_f = 5 \) for di-\(\Upsilon \) production). The running of \(\alpha_s \) is implemented at one loop. We note that the Sudakov factor \(S_A \) is spin independent, and thus the same for all (un)polarized TMDs [21, 47].

The perturbative component of the TMDs for small \(b_T \) can be computed at a given order in \(\alpha_s \). At leading order, \(\tilde{f}_1^g \) is given by the integrated PDF:

\[
\tilde{f}_1^g(x, b_T^2; \zeta, \mu) = \tilde{f}_{g/p}(x; \mu) + \mathcal{O}(\alpha_s) + \mathcal{O}(b_T A_{QCD}).
\]

(12)

As said above, \(h_1^g \) describes the correlation between the gluon polarization and its TM (\(k_T \)) inside the unpolarized proton. It requires a helicity flip and therefore an additional gluon exchange. Consequently, its perturbative expansion
starts at $O(\alpha_s)$ [9]:
\[
\tilde{h}_1^{\perp}(x, b_T^2; \zeta, \mu) = -\left(\frac{\alpha_s(\mu)C_F}{\pi}\int_0^{1} \frac{dx}{x} - 1\right)f_{b/p}(\hat{x}; \mu) \\
+ \alpha_s(\mu)C_F \sum_{i=q, \bar{q}} \int_0^{1} \frac{dx}{x} \left(\frac{\hat{x}}{x} - 1\right)f_{i/p}(\hat{x}; \mu) \\
+ O(\alpha_s^2) + O(b_T \Lambda_{\text{QCD}}),
\]
(13)
The above equations in principle allow one to derive a perturbative expression of these TMDs. However, they strictly applicable only in a restricted b_T range, whereas we need an expression for them from small to large b_T in order to perform the corresponding Fourier transform.

For large b_T, one indeed leaves the domain of perturbation theory. On the contrary, when b_T gets too small, μ_b becomes larger than M_{QQ} and the evolution should stop. The above perturbative expression for the Sudakov factor should thus not be used as it is.

One of the common solutions to continue to use the above expressions consists in replacing b_T by a function of b_T which freezes in both these limits such that one is not sensitive to the physics there. For our numerical studies we use the following b_T prescription [87]:
\[
b_T(b_c(b_T)) = \frac{b_c(b_T)}{\sqrt{1 + \left(\frac{b_c(b_T)}{b_{T\text{max}}}\right)^2}}
\]
(14)
where
\[
b_c(b_T) = \sqrt{b_T^2 + \left(\frac{b_0}{M_{QQ}}\right)^2},
\]
(15)
such that $\mu_b = \frac{b_0}{b_{T\text{max}}}$ always lies between $b_0/b_{T\text{max}}$ (reached when $b_T \to \infty$) and M_{QQ} (reached when $b_T \to 0$). This prescription is of course not unique, as it entails e.g. particular assumptions on the transition from the hard to the soft regime. The ambiguity in the choice of this prescription can however be absorbed in the nonperturbative modelling of the TMDs, anyhow needed in the large b_T region, which we discuss next.

Schematically each TMD convolution can be written in b_T-space as
\[
C[w f g] = \int_0^{b_{T\text{max}}^2} \frac{db_T}{2\pi} b_T^2 J_m(b_Tq_T) \tilde{W}(b_T, Q),
\]
(16)
for some integers n and m. Here \tilde{W} is a simple product of Fourier-transformed TMDs. The nonperturbative Sudakov factor S_{NP} is now defined through $\tilde{W}(b_T, Q) = \tilde{W}(b_T^2, Q) e^{-S_{\text{NP}}(b_T, Q)}$, where by construction $\tilde{W}(b_T^2, Q)$ is perturbatively calculable for all b_T values. The value of $b_{T\text{max}}$ in Eq. (14) (roughly) sets the separation between the perturbative and nonperturbative domains. Its optimal value depends on many factors, such as the functional form chosen for b_T^2 and the parametrization of the nonperturbative Sudakov factor S_{NP}. For our numerical studies we take $b_{T\text{max}} = 1.5$ GeV$^{-1}$, inspired by previous fits from Drell-Yan and W, Z production [88–92].

The functional form of S_{NP} has been subject of debate, but is usually chosen to be proportional to b_T^2 for all b_T. By definition $e^{-S_{\text{NP}}(b_T, Q)}$ has to be equal to 1 for $b_T = 0$ and for large b_T it has to vanish, at the very least to ensure convergence of the results. It is usually assumed to be a monotonically decreasing function of b_T and its change from 1 to 0 is assumed to happen within the confinement distance. Lacking experimental constraints, here we will assume a simple Gaussian form (of varying widths). In order to assess the importance of the nonperturbative Sudakov factor for the size of the asymmetries and to perform a first error estimate, we consider several functions. For this purpose, we take a simple formula for the nonperturbative Sudakov factor that encapsulates the expected M_{QQ}-dependence [93] and the assumed b_T-Gaussian behavior:
\[
S_{\text{NP}}(b_c(b_T)) = A \ln \left(\frac{M_{QQ}}{Q_{\text{NP}}}\right) b_c^2(b_T), \quad Q_{\text{NP}} = 1 \text{ GeV}.
\]
(17)

From this nonperturbative Sudakov factors a value $b_{T\text{lim}}$ is defined at which $e^{-S_{\text{NP}}}$ becomes negligible, to be specific, where it becomes $\sim 10^{-3}$. From this we furthermore define a corresponding characteristic radius $r = \frac{1}{b_{T\text{lim}}}$ (considering $b_{T\text{lim}}$ the diameter, since it is conjugate to $P_{QQ} = k_{1T} + k_{2T}$), which delimits the range over which the interactions occur from the center of the proton. To estimate the uncertainty associated with the largely unknown nonperturbative Sudakov factor, we will consider three cases: $b_{T\text{lim}} = 2, 4$ and 8 GeV$^{-1}$. This spans roughly from $b_{T\text{max}} = 1.5$ GeV$^{-1}$ to the charge radius of the proton. The corresponding values of the parameter A and r for $M_{QQ} = 12$ GeV are given in Table 1.

A (GeV2)	$b_{T\text{lim}}$ (GeV$^{-1}$)	r (fm)	M_{QQ} (GeV)
0.64	2	0.2	12
0.16	4	0.4	12
0.04	8	0.8	12

Table 1: Values of the parameter A used in Eq. (17) for $e^{-S_{\text{NP}}}$, along with the corresponding $b_{T\text{lim}}$ and r at $M_{QQ} = 12$ GeV

The value $M_{QQ} = 12$ GeV is considered because the ratio F_3/F_1 peaks there (for J/ψ pair production), but we will
also consider larger values later on. When M_{QQ} increases, the interaction radius r decreases. Fig. 2 depicts $e^{-S_{NN}}$ as a function of b_T for the three values of A previously mentioned and for M_{QQ} ranging from 12 to 30 GeV.

![Fig. 2](image)

The azimuthal asymmetries presented in Eq. (5) depend on a rather complex ratio of TMD convolutions and hard-scattering coefficients. In the case of J/ψ-pair production, these expressions simplify for several reasons. The first one, already mentioned previously, is that because F_2 is small, the denominator can be approximated to $F_1 [f_0 f_0^*]$. Moreover, because of the symmetry of the final state, one finds the coefficients F_3 and F_3' to be equal, simplifying the numerator of $\langle \cos(2\phi_{CS}) \rangle$ to $F_3 \left(\langle w_3 f_0 h_+^* \rangle + \langle w_3 h_+^* f_0^* \rangle \right)$. Finally, one takes the initial-parton-momentum fractions to be equal, i.e. $x_1 = x_2$, these two convolutions become equal as well. Since the P_{QQT}-dependence of the cross-section is contained inside the convolutions, the P_{QQT}-dependence of the asymmetries can be studied via the convolution ratios $\left(\langle w_3 f_0 h_+^* \rangle / \langle f_0 f_0^* \rangle \right)$ and $\left(\langle w_3 h_+^* f_0^* \rangle / \langle f_0 f_0^* \rangle \right)$ for $\langle \cos(2\phi_{CS}) \rangle$ and $\langle \cos(4\phi_{CS}) \rangle$, respectively.

The difference between both convolutions depends on the kind of TMDs they contain, but also the type of Bessel
function generated by the angular integral and the weights. Because \hat{h}_{1}^{-g} is of order α_{s}, it is naturally suppressed in comparison to f_{1}^{g}. Moreover, $\alpha_{s}(\mu_{b})$ is growing with b_{T} (up to its bound $\alpha_{s}/(b_{T_{\text{max}}})$) and \hat{h}_{1}^{-g} is also broader in b_{T} than f_{1}^{g}. The presence of \hat{h}_{1}^{-g} in a given convolution therefore contributes to reduce the magnitude of the integrand, and to its b_{T}-broadening. These effects contribute to strongly suppress $C[f_{1}^{g} f_{1}^{g}] \cdot C[w_{2} h_{1}^{-g} h_{1}^{-g}]$ of order α_{s}^{2} and its integrand is significantly broadened in b_{T}, meaning it falls faster than $C[f_{1}^{g} f_{1}^{g}]$ with increasing $P_{Q_{Q_{T}}}$. Indeed, as a consequence of the b_{T}-broadening, more oscillations of the J_{0} Bessel function occur in the integrand of $C[w_{2} h_{1}^{-g} h_{1}^{-g}]$ than of $C[f_{1}^{g} f_{1}^{g}]$, before being dampened by the Sudakov factors at large b_{T}. Each additional oscillation in the integrand brings the convolution value closer to zero. More oscillations are packed in a given b_{T}-range when $P_{Q_{Q_{T}}}$ increases, widening the gap between the two convolutions, and effectively making the ratio fall with $P_{Q_{Q_{T}}}$. This additional effect renders the $F_{2} C[w_{2} h_{1}^{-g} h_{1}^{-g}]$ term truly negligible in the cross-section for J/ψ-pair production. It also means that in other processes where the hard-scattering coefficient F_{2} may be large, the convolution itself would remain relatively small at scales larger than a few GeV. Besides, its influence on the cross-section will be strongest at the smallest TM.

The situation is different for the azimuthal asymmetries, which involve convolutions in the numerator that contain either the J_{2} or J_{4} Bessel functions. Such functions are 0 at $b_{T}=0$ and then grow in magnitude. The consequence is that the b_{T}-integrals containing such functions benefit from unsmoothed intermediate b_{T} values. At some point, undampened large-b_{T} oscillations will bring the integral value down toward 0 in a similar way as for $C[f_{1}^{g} f_{1}^{g}]$ and $C[w_{2} h_{1}^{-g} h_{1}^{-g}]$. Therefore, the $C[w_{3} f_{1}^{g} h_{1}^{-g}]$ and $C[w_{4} h_{1}^{-g} h_{1}^{-g}]$ convolutions first grow with $P_{Q_{Q_{T}}}$ up to a peak maximum, and then decrease in value like $C[f_{1}^{g} f_{1}^{g}]$ does. Another crucial difference is that the envelopes of J_{2} and J_{4} tend slower toward 0 than the J_{0} one with increasing b_{T}. The consequence is that $C[w_{3} f_{1}^{g} h_{1}^{-g}]$ and $C[w_{4} h_{1}^{-g} h_{1}^{-g}]$ fall slower than $C[f_{1}^{g} f_{1}^{g}]$ with $P_{Q_{Q_{T}}}$. Hence the convolution ratios, and the azimuthal asymmetries, always grow with $P_{Q_{Q_{T}}}$, as can be seen in Fig. 4. In addition, as the large b_{T} values are less suppressed than in $C[f_{1}^{g} f_{1}^{g}]$, the azimuthal asymmetries are also more sensitive to the variations of the nonperturbative Sudakov S_{NP}. The effect is more pronounced for $C[w_{4} h_{1}^{-g} h_{1}^{-g}]$ since it contains \hat{h}_{1}^{-g} twice and a broader Bessel function.

Fig. 4b displays the $\cos(2\theta_{CS})$ asymmetry as a function of $P_{Q_{Q_{T}}}$ in the forward single J/ψ rapidity region (larger $\cos(\theta_{CS})$) while 4c displays the $\cos(4\theta_{CS})$ asymmetry in the central rapidity region (small $\cos(\theta_{CS})$) with $x_{1} \simeq x_{2}$. Such choices maximize the size of the asymmetries as the associated hard-scattering coefficients are larger in these regions, without modifying the shapes of the asym-
Fig. 4 The azimuthal asymmetries for di-J/ψ production as functions of P_{QQ}. The different plots show $2\langle \cos(2\phi_{CS}) \rangle$ (a,b) and $2\langle \cos(4\phi_{CS}) \rangle$ (c,d), at $|\cos(\theta_{CS})| < 0.25$ (a,c) and at $0.25 < |\cos(\theta_{CS})| < 0.5$ (b,d). Results are presented for $M_{\psi\psi} = 12, 21$ and 30 GeV, and for $b_{T_{\text{lim}}} = 2, 4$ and 8 GeV$^{-1}$.

The uncertainty band associated with the width of S_{NP} narrows with increasing M_{QQ} as in Fig. 3; the uncertainty remains larger for $\langle \cos(4\phi_{CS}) \rangle$ as $C[w_4 h_1^+ h_1^- g]$ is more affected by S_{NP}. The curves for $b_{T_{\text{lim}}} = 8$ GeV$^{-1}$ (large dashes) are quite close to the ones using $b_{T_{\text{lim}}} = 4$ GeV$^{-1}$ (solid line). Indeed, when S_{NP} is already significantly wider than S_A, an additional increase in its width will not affect the asymmetries anymore. Both convolutions in the ratios are larger with a wide nonperturbative Sudakov factor, yet this benefits the numerator $\left(C[w_3 f_1^g h_1^+ g] \right)$ or $\left(C[w_4 h_1^+ h_1^- g] \right)$ more than the denominator $\left(C[f_1^g f_1^g] \right)$, and the asymmetries are of a greater size for a wider S_{NP}.

We recall that the size of the asymmetries is also influenced by the ratio of the hard-scattering coefficients which are M_{QQ}-dependent. F_3/F_1 peaks around $M_{QQ} = 12$ GeV which explains why the $\cos(2\phi_{CS})$ asymmetry is largest for $M_{\psi\psi} = 12$ GeV.
near this value. As discussed in [30], the ratio \(F_4/F_1 \) keeps growing with \(M_{Q\bar{Q}} \), approaching 1 at sufficiently large values. Yet the \(\cos(4\phi_{CS}) \) asymmetry gets smaller with larger \(M_{Q\bar{Q}} \). This can be better seen in Fig. 5 which depicts the same asymmetries as functions of \(M_{Q\bar{Q}} \).

One first observes that, at large \(M_{Q\bar{Q}} \), the growth of the asymmetries with \(P_{Q\bar{Q}} \) is slower. Indeed, in such a situation, the Sudakov factors broaden the \(P_{Q\bar{Q}} \)-shapes of the convolutions, hence the ratio varies slower. This slower increase is compensated by the fact that larger values of \(M_{Q\bar{Q}} \) allow for an extended growth of the asymmetry over a greater \(P_{Q\bar{Q}} \)-range of validity for the TMD formalism. Secondly, the convolution ratios at a fixed value of \(P_{Q\bar{Q}} \) also evolve with \(M_{Q\bar{Q}} \). The computable \(M_{Q\bar{Q}} \)-dependence is encoded in the perturbative Sudakov factor \(S_A \), while \(S_{NP} \) is also logarithmically varying with \(M_{Q\bar{Q}} \) [93]. Both \(S_A \) and \(S_{NP} \) get narrower in \(b_T \) with increasing \(M_{Q\bar{Q}} \), leading to a decrease of the value of the convolutions. \(C \left[w_1 f_1 h_1 g \right] \) and \(C \left[w_1 h_1 g f_1 \right] \) are more sensitive to the large \(b_T \)-value dampening and therefore fall faster with \(M_{Q\bar{Q}} \) than \(C \left[f_1 f_1 g \right] \). This results in decreasing convo-
olution ratios, with a steeper fall for \(C \left[w_4 h_1^{−g} h_1^{−g} \right] \). However, the azimuthal asymmetries also depend on the evolution with \(M_{QQ} \) of the hard-scattering coefficients ratios. Since \(F_4/F_1 \) keeps growing while \(F_3/F_1 \) falls after peaking at \(M_{QQ} \simeq 12 \text{ GeV} \), \(\langle \cos(4\phi_{CS}) \rangle \) will actually decrease slower than \(\langle \cos(2\phi_{CS}) \rangle \).

The large variations of the width of \(S_{NP} \) generate moderate uncertainties on the size of the asymmetries. The latter, although consequently smaller than when computed in a bound-saturating model [30], still reach reasonable sizes, up to 5%-10%. We used the same nonperturbative Sudakov factor for all TMD convolutions in these computations, but the \(M_{QQ}\)-independent part is actually expected to be non-universal. We checked that individually changing the width of \(S_{NP} \) within the \(b_T \)-ranges used in this study inside the different types of convolutions, does not bring any significant modification on the observables.

So far, there are still no experimental data allowing for an extraction of the gluon TMDs inside unpolarized protons. We believe that the numerous \(J/\psi \)-pair-production events recorded at the LHC can give us access to information about the nonperturbative components of \(f_2^g \) and \(h_1^{−g} \). The events are selected with kinematics within the validity range of TMD factorization, \(P_{QQ\tau} < M_{QQ}/2 \).

4.2 \(T \)-pair production

It is also of interest to look at \(T \)-pair production. The partonic subprocess is identical to that of di-\(J/\psi \) production. In the non-relativistic limit, where \(M_T = 2m_\mu \), the main difference comes from the mass of the heavy quark. We note that the value of the non-relativistic wave function at the origin (or equivalently the NRQCD LDME for the CS transition) also differs but cancels in the ratios which we consider. The feed-down pattern is also clearly different. However, as announced, we will neglect the resulting (small) feed-down effects.

Owing to this larger mass, such a process probes the evolution at generally higher scales. The coupling constant \(\alpha_s \) is also smaller which increases the precision of the perturbative expansion. Higher scales also mean that the process is less sensitive to the (large \(b_T \)) nonperturbative behavior of the gluon TMDs. Hence, it is also less affected by the uncertainties associated with this unconstrained component.

On the experimental side, \(T \)-pair production is admittedly a rare process. Yet, it starts to be accessible at the LHC. The first analysis by the CMS collaboration at \(\sqrt{s} = 8 \text{ TeV} \) only comprised a 40-event sample [94] but a second one is forthcoming. During the future high luminosity LHC runs, it will definitely be possible to record a sufficient number of events for a TMD analysis of both the \(P_{QQ\tau} \) and azimuthal dependences of the yield. Fig. 6 depicts the azimuthal modulations for \(T \)-pair production as functions of \(P_{QQ\tau} \) up to \(M_{QQ}/2 \), for values of \(M_{QQ} \) of 30, 40 and 50 GeV.

The uncertainty bands associated with the width of \(S_{NP} \) are clearly narrower than in the \(J/\psi \) case. The \(\cos(2\phi_{CS}) \) asymmetry in Fig. 6b reaches 10% at \(M_{QQ} = 40 \text{ GeV} \), which is the value for which the corresponding hard-scattering coefficient ratio \(F_3/F_1 \) peaks for \(T \)-pair production. Moreover, the decrease of the hard-scattering coefficient past the peak is slower, allowing the asymmetry to remain of similar size at \(M_{QQ} = 40 \) and 50 GeV.

5 Conclusions

In this paper we discussed the potential of double \(J/\psi \) and \(T \) production for the study of the gluon TMDs inside unpolarized protons at the LHC. We presented the advantages of quarkonia as probes of these TMDs. We improved on previous results [30] by including TMD evolution effects, rendering the results more realistic and effectively taking into account QCD corrections that describe the evolution with the invariant mass \(M_{QQ} \) of the quarkonium pair. We used a simple \(b_T \)-Gaussian of variable width to parametrize the nonperturbative Sudakov factor \(S_{NP} \) in order to estimate how important its impact is on the predicted yield and asymmetries, as it currently remains unconstrained in the gluon case.

We discussed the broadening of the \(P_{QQ\tau} \)-spectrum due to the evolution in the case of double-\(J/\psi \) production, as well as the uncertainty associated with a variation of the width of \(S_{NP} \) between 2 and 8 GeV\(^{-1} \). As expected, we found that its influence decreases at large \(M_{QQ} \) as the perturbative component of the TMDs becomes dominant. We also computed the \(\langle \cos(2\alpha_{CS}) \rangle \) asymmetries as functions of \(P_{QQ\tau} \) and \(M_{QQ} \). We found a notable suppression of the asymmetries in comparison to [30], caused by the fact that \(h_1^{−g} \) appears at order \(\alpha_s \) in the evolution formalism. We nevertheless found that such asymmetries still reach reasonable sizes for larger \(P_{QQ\tau} \) values and could be observed in the events already collected and to be recorded in the future.

We found that the size of the asymmetries increases with \(P_{QQ\tau} \). Such a behavior is explained by the relative slower fall in \(P_{QQ\tau} \) of the TMD convolutions containing \(h_1^{−g} \).

TMD factorization needs to be matched onto its collinear counterpart when \(P_{QQ\tau} \) approaches \(M_{QQ} \). Since the latter generates no asymmetries at leading twist, a \(Y \)-term be-
Fig. 6 The azimuthal asymmetries for di-Υ production as functions of $P_{Q\bar{Q}T}$. The different plots show $2\langle \cos(2\phi_{CS}) \rangle$ (top) and $2\langle \cos(4\phi_{CS}) \rangle$ (bottom), at $|\cos(\theta_{CS})| < 0.25$ (left) and at $0.25 < |\cos(\theta_{CS})| < 0.5$ (right). Results are presented for $M_{T\gamma} = 30, 40$ and 50 GeV, and for $b_{T\gamma \text{lim}} = 2, 4$ and 8 GeV^{-1}. Results for $M_{T\gamma} = 30$ GeV are not included in (d) as they are below percent level.

comes necessary at some point in order to neutralize the growth of the asymmetries and force them toward zero. We also observed that, in spite of the hard-scattering coefficient ratio F_4/F_1 approaching 1 at large energy, the $\cos(4\phi)$ asymmetry actually falls with $M_{Q\bar{Q}}$. Overall we conclude that J/ψ-pair production is a promising process to measure azimuthal asymmetries related to gluon TMDs as well as the effect of the evolution on the $P_{Q\bar{Q}T}$-spectrum. The energy threshold for this process is relatively low, making it sensitive to the nonperturbative component of the TMDs. The large event sample to be collected by the different collaborations at the LHC should give enough statistics to constrain them. T-pair production presents the interesting opportunity to measure sizeable asymmetries at scales where perturbative contributions dominate, with a reduced necessity to include higher-order corrections. We also presented predictions for the asymmetries as functions of $P_{Q\bar{Q}T}$ for T-pair production. With suf-
References

1. J. P.Ralston and D. E. Soper, “Production of Dimuons from High-Energy Polarized Proton Proton Collisions,” Nucl. Phys. B152 (1979) 109.

2. D. W. Sivers, “Single Spin Production Asymmetries from the Hard Scattering of Point-Like Constituents,” Phys. Rev. D41 (1990) 83.

3. R. D. Tangerman and P. J. Mulders, “Intrinsic transverse momentum and the polarized Drell-Yan process,” Phys. Rev. D51 (1995) 3357–3372, arXiv:hep-ph/9403227 [hep-ph].

4. J. Collins, “Foundations of perturbative QCD,” Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32 (2011) 1–624.

5. M. G. Echevarria, A. Idilbi, and I. Scimemi, “Factorization Theorem For Drell-Yan At Low qT And Transverse Momentum Distributions On-The-Light-Cone,” JHEP 07 (2012) 002, arXiv:1111.4996 [hep-ph].

6. M. G. Echevarria, A. Idilbi, and I. Scimemi, “Soft and Collinear Factorization and Transverse Momentum Dependent Parton Distribution Functions,” Phys. Lett. B726 (2013) 795–801, arXiv:1211.1947 [hep-ph].

7. P. J. Mulders and J. Rodrigues, “Transverse momentum dependence in gluon distribution and fragmentation functions,” Phys. Rev. D63 (2001) 094021, arXiv:hep-ph/0009343 [hep-ph].

8. D. Boer, W. J. den Dunnen, C. Pisano, M. Schlegel, and W. Vogelsang, “Linearly Polarized Gluons and the Higgs Transverse Momentum Distribution,” Phys. Rev. Lett. 108 (2012) 032002, arXiv:1109.1444 [hep-ph].

9. P. Sun, B.-W. Xiao, and F. Yuan, “Gluon Distribution Functions and Higgs Boson Production at Moderate Transverse Momentum,” Phys. Rev. D84 (2011) 094005, arXiv:1109.1354 [hep-ph].

10. J.-W. Qiu, M. Schlegel, and W. Vogelsang, “Probing Gluonic Spin-Orbit Correlations in Photon Pair Production,” Phys. Rev. Lett. 107 (2011) 062001, arXiv:1103.3861 [hep-ph].

11. R. M. Godbole, A. Misra, A. Mukherjee, and V. S. Rawoot, “Sivers Effect and Transverse Single Spin Asymmetry in e + p\rightarrow e + J/\psi + X;” Phys. Rev. D88 (2013) 094013, arXiv:1201.1066 [hep-ph].

12. D. Boer and C. Pisano, “Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER,” Phys. Rev. D86 (2012) 094007, arXiv:1208.3642 [hep-ph].

13. R. M. Godbole, A. Misra, A. Mukherjee, and V. S. Rawoot, “Transverse Single Spin Asymmetry in e + p\rightarrow e + J/\psi + X and Transverse Momentum Dependent Evolution of the Sivers Function,” Phys. Rev. D88 no. 1, (2013) 014029, arXiv:1304.2584 [hep-ph].

14. R. M. Godbole, A. Kaushik, A. Misra, and V. S. Rawoot, “Transverse single spin asymmetry in e + p\rightarrow e + J/\psi + X and Q^2 evolution of Sivers function-II,” Phys. Rev. D91 no. 1, (2015) 014005, arXiv:1405.3560 [hep-ph].

15. G.-P. Zhang, “Probing transverse momentum dependent gluon distribution functions from hadronic quarkonium pair production,” Phys. Rev. D90 no. 9, (2014) 094011, arXiv:1406.5476 [hep-ph].

16. D. Boer and C. Pisano, “Impact of gluon polarization on Higgs boson plus jet production at the LHC,” Phys. Rev. D91 no. 7, (2015) 074024, arXiv:1412.5556 [hep-ph].

17. W. J. den Dunnen, J. P. Lansberg, C. Pisano, and M. Schlegel, “Accessing the Transverse Dynamics and Polarization of Gluons inside the Proton at the LHC,” Phys. Rev. Lett. 112 (2014) 212001, arXiv:1401.7611 [hep-ph].

18. D. Boer and W. J. den Dunnen, “TMD evolution and the Higgs transverse momentum distribution,” Nucl. Phys. B898 (2014) 421–435, arXiv:1404.6753 [hep-ph].

19. G.-P. Zhang, “Transverse momentum dependent gluon fragmentation functions from J/\psi\pi^0 production at e^+e^- colliders,” Eur. Phys. J. C75 no. 10, (2015) 503, arXiv:1504.06699 [hep-ph].

20. A. Mukherjee and S. Rajesh, “Probing Transverse Momentum Dependent Parton Distributions in Charmonium and Bottomonium Production,” Phys. Rev. D93 no. 5, (2016) 054018, arXiv:1511.04319 [hep-ph].

21. M. G. Echevarria, T. Kasemets, P. J. Mulders, and C. Pisano, “QCD evolution of (un)polarized gluon TMDPDFs and the Higgs qT-distribution,” JHEP 07 (2015) 158, arXiv:1502.05354 [hep-ph]. [Erratum: JHEP05,073(2017)].

22. A. Mukherjee and S. Rajesh, “J/\psi production in polarized and unpolarized ep collision and Sivers and cos 2\phi asymmetries,”
23. A. Mukherjee and S. Rajesh, “Linearly polarized gluons in charmonium and bottomonium production in color octet model,” Phys. Rev. D95 no. 3, (2017) 034039, arXiv:1611.05974 [hep-ph].

26. R. M. Godbole, A. Kaushik, A. Misra, V. Rawoot, and B. Sonawane, “Transverse single spin asymmetry in p + p → J/ψ + X,” Phys. Rev. D96 no. 9, (2017) 096025, arXiv:1703.01991 [hep-ph].

27. U. D’Alesio, F. Murgia, C. Pisano, and P. Taels, “Probing the gluon Sivers function in p+p → J/ψ/X and p+P → D χ,” Phys. Rev. D96 no. 3, (2017) 036011, arXiv:1705.04169 [hep-ph].

28. S. Rajesh, R. Kishore, and A. Mukherjee, “Sivers effect in Inelastic J/ψ Photoproduction in e+e- Collision in Color Octet Model,” Phys. Rev. D99 no. 1, (2018) 014007, arXiv:1802.10359 [hep-ph].

29. A. Bacchetta, D. Boer, C. Pisano, and P. Taels, “Gluon TMDs and NRQCD matrix elements in J/ψ production at an EIC,” Phys. Rev. D98 (2018) 1217–222, arXiv:1710.01684 [hep-ph].

30. J.-P. Lansberg, C. Pisano, F. Schlegel, “Associated production of a dilepton and a T (J/ψ) at the LHC as a probe of gluon transverse momentum dependent distributions,” Nucl. Phys. B920 (2017) 192–210, arXiv:1702.00305 [hep-ph].

32. P. Sun, C. P. Yuan, and F. Yuan, “Heavy Quarkonium Production Distributions,” Few Body Syst. 58 no. 2, (2017) 32, arXiv:1611.06089 [hep-ph].

35. J. P. Ma and C. Wang, “Breakdown of QCD Factorization for P-Wave Quarkonium Production at Low Transverse Momentum,” Phys. Lett. B737 (2014) 103–108, arXiv:1405.3373 [hep-ph].

36. J. P. Ma and C. Wang, “QCD factorization for quarkonium production in hadron collisions at low transverse momentum,” Phys. Rev. D93 no. 1, (2016) 014025, arXiv:1509.04421 [hep-ph].

37. J. Collins and J.-W. Qiu, “kT-factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions,” Phys. Rev. D75 (2007) 114014, arXiv:0705.2141 [hep-ph].

38. J. Collins, “2-soft-gluon exchange and factorization breaking,” arXiv:0708.4410 [hep-ph].

39. T. C. Rogers and P. J. Mulders, “No Generalized TMD-Factorization in Hadro-Production of High Transverse Momentum Hadrons,” Phys. Rev. D81 (2010) 094006, arXiv:1001.2977 [hep-ph].

40. D0 Collaboration, V. M. Abazov et al., “Observation and Studies of Double J/ψ Production at the Tevatron,” Phys. Rev. D90 no. 11, (2014) 111101, arXiv:1406.2380 [hep-ex].

41. CMS Collaboration, V. Khachatryan et al., “Measurement of prompt J/ψ pair production in pp collisions at \(\sqrt{s} = 7 \, \text{TeV} \),” JHEP 09 (2014) 094, arXiv:1406.0484 [hep-ex].

42. LHCb Collaboration, R. Aaij et al., “Observation of J/ψ pair production in pp collisions at \(\sqrt{s} = 7 \, \text{TeV} \),” Phys. Lett. B707 (2012) 52–59, arXiv:1109.0963 [hep-ex].

43. LHCb Collaboration, R. Aaij et al., “Measurement of the J/ψ pair production cross-section in pp collisions at \(\sqrt{s} = 13 \, \text{TeV} \),” JHEP 06 (2017) 047, arXiv:1612.07451 [hep-ex]. [Erratum: JHEP10,068(2017)].

44. ATLAS Collaboration, M. Aaboud et al., “Measurement of the prompt J/ψ pair production cross-section in pp collisions at \(\sqrt{s} = 8 \, \text{TeV} \) with the ATLAS detector,” Eur. Phys. J. C77 no. 12, (2017) 76, arXiv:1811.07495 [hep-ph].

45. M. G. Echevarria, A. Idilbi, A. Schaefer, and I. Sciromni, “Model-Independent Evolution of Transverse Momentum Dependent Distribution Functions (TMDs) at NNLL,” Eur. Phys. J. C73 no. 12, (2013) 2636, arXiv:1208.1281 [hep-ph].

46. M. G. Echevarria, A. Idilbi, and I. Sciromni, “Unified treatment of the QCD evolution of all (un-)polarized transverse momentum dependent functions: Collins function as a study case,” Phys. Rev. D90 no. 1, (2014) 014003, arXiv:1402.0069 [hep-ph].

47. M. G. Echevarria, “Proper TMD factorization for quarkonia production: pp → Ψ, as a study case,” arXiv:1907.06494 [hep-ph].

48. S. Meissner, A. Metz, and K. Goeke, “Relations between generalized and transverse momentum dependent parton distributions,” Phys. Rev. D76 (2007) 034002, arXiv:hep-ph/0703176 [HEP-PH].

49. D. Boer, S. Cotogno, T. van Daal, P. J. Mulders, A. Signori, and Y.-J. Zhou, “Gluon and Wilson loop TMDs for hadrons of spin \(\leq 1 \),” JHEP 10 (2016) 013, arXiv:1607.01654 [hep-ph].

50. C.-F. Qiao, L.-P. Sun, and P. Sun, “Testing Charmonium Production Mechanism via Polarized J/ψ Pair Production at the LHC,” J. Phys. G37 (2010) 075019, arXiv:0903.0954 [hep-ph].

51. V. G. Kartvelishvili and S. M. Esakiya, “On hadronic production of pairs J/ψ mesons,” Soviet Journal of Nuclear Physics 38(3) (1983) 430–432.

52. B. Humpert and P. Mery, “Psi psi production at collider energies,” Z. Phys. C20 (1983) 83.

53. C.-H. Chang, “Hadronic Production of J/ψ Associated With a Gluon,” Nucl. Phys. B172 (1980) 425–434.

54. R. Baier and R. Ruckl, “Hadronic Production of J/ψ and Upsilon: Transverse Momentum Distributions,” Phys. Lett. 102B (1981) 364–370.
56. R. Baier and R. Ruckl, “Hadronic Collisions: A Quarkonium Factory,” Z. Phys. C19 (1983) 251.

57. G. T. Bodwin, E. Braaten, and G. P. Lepage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” Phys. Rev. D51 (1995) 1125–1171, arXiv:hep-ph/9407339 [hep-ph]. [Erratum: Phys. Rev.D55,5853 (1997)].

58. P. L. Cho and A. K. Leibovich, “Color octet quarkonia production,” Phys. Rev. D53 (1996) 6203–6217, arXiv:hep-ph/9511315 [hep-ph].

59. P. L. Cho and A. K. Leibovich, “Color octet quarkonia production,” Phys. Rev. D53 (1996) 150–162, arXiv:hep-ph/9505329 [hep-ph].

60. A. Andronic et al., “Heavy-flavour and quarkonium production in the LHC era: from proton–proton to heavy-ion collisions,” Eur. Phys. J. C76 no. 3, (2016) 107, arXiv:1506.03981 [nucl-ex].

61. N. Brambilla et al., “Heavy Quarkonium: Progress, Puzzles, and Opportunities,” Eur. Phys. J. C71 (2011) 1534, arXiv:1010.5827 [hep-ph].

62. J. P. Lansberg, “J/ψ, ψ′ and T production at hadron colliders: A Review,” Int. J. Mod. Phys. A21 (2006) 3857–3916, arXiv:hep-ph/0602091 [hep-ph].

63. P. Ko, C. Yu, and J. Lee, “Inclusive double-quarkonium production at the Large Hadron Collider,” JHEP 01 (2011) 070, arXiv:1007.3095 [hep-ph].

64. Y.-J. Li, G.-Z. Xu, K.-Y. Liu, and Y.-J. Zhang, “Relativistic Correction to J/psi and Upsilon Pair Production,” JHEP 07 (2013) 051, arXiv:1303.1383 [hep-ph].

65. J.-P. Lansberg and H.-S. Shao, “J/ψ-ψ’ pair production at large momenta: Indications for double parton scatterings and large αs contributions,” Phys. Lett. B751 (2015) 479–486, arXiv:1410.8822 [hep-ph].

66. Z.-G. He and B. A. Kniehl, “Complete Nonrelativistic-QCD Prediction for Prompt Double Jpsi Hadroproduction,” Phys. Rev. Lett. 115 no. 2, (2015) 022002, arXiv:1609.02786 [hep-ph].

67. J.-P. Lansberg, H.-S. Shao, N. Yamanaka, and Y.-J. Zhang, “Prompt J/ψ-ψ’ pair production at the LHC: impact of loop-induced contributions of and the colour-octet mechanism,” Phys. Rev. D95 (2017) 064046, arXiv:1609.10049 [hep-ph].

68. M. G. Echevarria, T. Kasemets, J.-P. Lansberg, C. Pisano, and A. Signori, “Matching factorization theorems with an inverse-error weighting,” Phys. Lett. B781 (2018) 161–168, arXiv:1801.01480 [hep-ph].

69. J.-P. Lansberg and H.-S. Shao, “Production of J/ψ + ηc versus J/ψ + χc at the LHC: Importance of Real αs Corrections,” Phys. Rev. Lett. 113 (2014) 122001, arXiv:1308.0474 [hep-ph].

70. L.-P. Sun, H. Han, and K.-T. Chao, “Impact of J/ψ pair production at the LHC and predictions in nonrelativistic QCD,” Phys. Rev. D94 no. 7, (2016) 074033, arXiv:1404.4042 [hep-ph].

71. A. K. Likhoded, A. V. Luchinsky, and S. V. Poslavsky, “Production of J/ψ + γc and J/ψ + J/ψ with real gluon emission at LHC,” Phys. Rev. D94 no. 5, (2016) 054017, arXiv:1606.06767 [hep-ph].

72. C. H. Kom, A. Kulesza, and W. J. Stirling, “Pair Production of J/ψ as a Probe of Double Parton Scattering at LHC,” Phys. Rev. Lett. 107 (2011) 082002, arXiv:1105.4186 [hep-ph].

73. M. Diehl, P. Plassl, and A. Schafer, “Proof of sum rules for double parton distributions in QCD,” Eur. Phys. J. C79 no. 3, (2019) 253, arXiv:1811.00289 [hep-ph].

74. M. G. A. Bugg, M. Diehl, and T. Kasemets, “Transverse momentum in double parton scattering: factorisation, evolution and matching,” JHEP 01 (2018) 044, arXiv:1708.03528 [hep-ph].

75. M. Diehl, J. R. Gaunt, and K. Schonwald, “Double hard scattering without double counting,” JHEP 06 (2017) 083, arXiv:1702.06486 [hep-ph].

76. M. Diehl and J. R. Gaunt, “Double parton scattering theory overview,” Adv. Ser. Direct. High Energy Phys. 29 (2018) 7–28, arXiv:1710.04408 [hep-ph].

77. Axial Field Spectrometer Collaboration, T. Akeson et al., “Double Parton Scattering in pp Collisions at √s = 63–GeV,” Z. Phys. C34 (1987) 163.

78. UA2 Collaboration, J. Alitti et al., “A Study of multi - jet events at the CERN anti-p p collider and a search for double parton scattering,” Phys. Lett. B268 (1991) 145–154.

79. CDF Collaboration, F. Abe et al., “Study of four jet events and evidence for double parton interactions in pp collisions at √s = 1.8 TeV,” Phys. Rev. D47 (1993) 4857–4871.

80. CDF Collaboration, F. Abe et al., “Double parton scattering in pp collisions at √s = 1.8TeV,” Phys. Rev. D56 (1997) 3811–3832.

81. D0 Collaboration, V. M. Abazov et al., “Double parton interactions in +3 jet events in pp − bar collisions √s = 1.96 TeV,” Phys. Rev. D81 (2010) 052012, arXiv:0912.5104 [hep-ex].

82. ATLAS Collaboration, G. Aad et al., “Measurement of hard double-parton interactions in W(→ lν) + 2 jet events at √s = 7 TeV with the ATLAS detector,” New J. Phys. 15 (2013) 033038, arXiv:1301.6872 [hep-ex].

83. CMS Collaboration, S. Chatrchyan et al., “Study of double parton scattering using W + 2-jet events in proton-proton collisions at √s = 7 TeV,” JHEP 03 (2014) 032, arXiv:1312.5729 [hep-ex].

84. J.-P. Lansberg, H.-S. Shao, and N. Yamanaka, “Indication for double parton scatterings in W+ prompt J/ψ production at the LHC,” Phys. Lett. B781 (2018) 485–491, arXiv:1707.04350 [hep-ph].

85. A. V. Berezhnoy, A. K. Likhoded, and A. A. Novoselov, “Y -meson pair production at LHC,” Phys. Rev. D87 no. 5, (2013) 054023, arXiv:1210.5754 [hep-ph].

86. J. C. Collins and D. E. Soper, “Angular Distribution of Diphotons in High-Energy Hadron Collisions,” Phys. Rev. D16 (1977) 2219.

87. J. Collins, L. Gambarg, A. Prokudin, T. C. Rogers, N. Sato, and B. Wang, “Relating Transverse Momentum Dependent and Collinear Factorization Theorems in a Generalized Formalism,” Phys. Rev. D94 no. 3, (2016) 034014, arXiv:1605.00671 [hep-ph].

88. F. Landry, R. Brock, P. M. Nadolsky, and C. P. Yuan, “Tevatron Run-1 Z boson data and Collins-Soper-Sterman resummation formalism,” Phys. Rev. D67 (2003) 073016, arXiv:hep-ph/0212159 [hep-ph].

89. A. V. Konychev and P. M. Nadolsky, “Universality of the Collins-Soper-Sterman nonperturbative function in gauge boson production,” Phys. Lett. B633 (2006) 710–714, arXiv:hep-ph/0506225 [hep-ph].
90. S. M. Aybat and T. C. Rogers, “TMD Parton Distribution and Fragmentation Functions with QCD Evolution,” *Phys. Rev. D83* (2011) 14042, arXiv:1101.5057 [hep-ph].

91. J. Collins and T. Rogers, “Understanding the large-distance behavior of transverse-momentum-dependent parton densities and the Collins-Soper evolution kernel,” *Phys. Rev. D91* no. 7, (2015) 074020, arXiv:1412.3820 [hep-ph].

92. U. D’Alesio, M. G. Echevarria, S. Melis, and I. Scimemi, “Non-perturbative QCD effects in q_T spectra of Drell-Yan and Z-boson production,” *JHEP 11* (2014) 098, arXiv:1407.3311 [hep-ph].

93. J. C. Collins and D. E. Soper, “Back-To-Back Jets: Fourier Transform from B to K-Transverse,” *Nucl. Phys. B197* (1982) 446–476.

94. CMS Collaboration, V. Khachatryan et al., “Observation of $\Upsilon(1S)$ pair production in proton-proton collisions at $\sqrt{s} = 8$ TeV,” *JHEP 05* (2017) 013, arXiv:1610.07095 [hep-ex].

95. A. Accardi et al., “Electron Ion Collider: The Next QCD Frontier,” *Eur. Phys. J. A52* no. 9, (2016) 268, arXiv:1212.1701 [nucl-ex].

96. C. Hadjidakis et al., “A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies,” arXiv:1807.00603 [hep-ex].

97. J.-P. Lansberg and H.-S. Shao, “Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC),” *Nucl. Phys. B900* (2015) 273–294, arXiv:1504.06531 [hep-ph].

98. L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J. P. Lansberg, and H. S. Shao, “Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC),” *Adv. High Energy Phys. 2015* (2015) 986348, arXiv:1504.05145 [hep-ex].

99. J. P. Lansberg, S. J. Brodsky, F. Fleuret, and C. Hadjidakis, “Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams,” *Few Body Syst. 53* (2012) 11–25, arXiv:1204.5793 [hep-ph].

100. S. J. Brodsky, F. Fleuret, C. Hadjidakis, and J. P. Lansberg, “Physics Opportunities of a Fixed-Target Experiment using the LHC Beams,” *Phys. Rept. 522* (2013) 239–255, arXiv:1202.6585 [hep-ph].