Analysis of the statistical behavior of genetic cluster-exact approximation

Alexander K. Hartmann

hartmann@theorie.physik.uni-goettingen.de

Institut für theoretische Physik, Bunsenstr. 9
37073 Göttingen, Germany

Tel. +49-551-399570, Fax. +49-551-399631
(March 24, 2002)

I. INTRODUCTION

The finite-dimensional Edwards-Anderson spin glass (EA) is a model for disordered systems which has attracted much attention over the last decades. The opinion on its nature, especially for three dimensional systems, is still controversial. Beside trying to address the problem with the help of analytic calculations and simulations at finite temperature, it is possible to investigate the behavior of the model by means of ground-state calculations. Since obtaining spin-glass ground states is computationally hard, the study is restricted to relatively small systems. Recently a new algorithm, the cluster-exact approximation (CEA) was presented, which allows in connection with a special genetic algorithm the calculation of true ground states for moderate system sizes, in three dimensions up to size 14^3. By applying this method it is possible to study the ground-state landscape of systems exhibiting a $T = 0$ degeneracy. For a thermodynamical correct correction it is necessary that each ground state contributes to the results with the same weight, since all ground states have exactly the same energy. Recently it was shown, that the genetic CEA causes a bias on the quantities describing the $T = 0$ landscape. The aim of this paper is to analyze the algorithm with respect to its ground-state statistics. The reasons for the deviation from the correct behavior are given and an extension of the method is outlined, which guarantees thermodynamical correct results.

In this work, three-dimensional Edwards-Anderson (EA) $\pm J$ spin glasses are investigated. They consist of N spins $\sigma_i = \pm 1$, described by the Hamiltonian

$$H = -\sum_{(i,j)} J_{ij} \sigma_i \sigma_j$$

The sum runs over all pairs of nearest neighbors. The spins are placed on a three-dimensional ($d=3$) cubic lattice of linear size L with periodic boundary conditions in all directions. Systems with quenched disorder of the interactions (bonds) are considered. Their possible values are $J_{ij} = \pm 1$ with equal probability. To reduce the fluctuations, a constraint is imposed, so that $\sum_{(i,j)} J_{ij} = 0$.

The article is organized as follows: next a description of the algorithms is presented. Then it is shown for small systems, that the method does not result in a thermodynamical correct distribution of the ground states. In section four, the algorithm and its different variants are analyzed with respect to the ground-state statistics. In the last section a summary is given and an extension of the method is outlined, which should guarantee thermodynamical correct results.

II. ALGORITHMS

The algorithm for the calculation bases on a special genetic algorithm and on cluster-exact approximation (CEA). CEA is an optimization method designed specially for spin glasses. Its basic idea is to transform the spin glass in a way that graph-theoretical methods can be applied, which work only for systems exhibiting no bond-frustrations. Now a short sketch of these algorithms is given, because later the influence of different variants on the results is discussed.

Genetic algorithms are biologically motivated. An optimal solution is found by treating many instances of the problem in parallel, keeping only better instances and replacing bad ones by new ones (survival of the fittest). The genetic algorithm starts with an initial population of M_i randomly initialized spin configurations (= individuals), which are linearly arranged using an array. The last one is also neighbor of the first one. Then $n_o \times M_i$ times two neighbors from the population are taken (called parents) and two new configurations called offspring are
created. For that purpose the triadic crossover is used which turned out to be very efficient for spin glasses: a mask is used which is a third randomly chosen (usually distant) member of the population with a fraction of 0.1 of its spins reversed. In a first step the offspring are created as copies of the parents. Then those spins are selected, where the orientations of the first parent and the mask agree \[16\]. The values of these spins are swapped between the two offspring. Then a mutation with a rate of \(p_m\) is applied to each offspring, i.e. a randomly chosen fraction \(p_m\) of the spins is reversed.

Next for both offspring the energy is reduced by applying CEA: The method constructs iteratively and randomly a non-frustrated cluster of spins. During the construction of the cluster a local gauge-transformation of the spin variables is applied so that all interactions between cluster spins become ferromagnetic. Fig. \[1\] shows an example of how the construction of the cluster works for a small spin-glass system. To increase the performance, spins adjacent to many unsatisfied bonds are more likely to be added to the cluster. This may introduce a bias on the resulting distribution of the ground states. Later this scheme (“BIAS”) is compared to a variant (“SAME”), where all spins may contribute to the cluster with the same probability.

For 3d \(\pm J\) spin glasses each cluster contains typically 55 percent of all spins. The non-cluster spins remain fixed during the following calculation, they act like local magnetic fields on the cluster spins. Consequently, the ground state of the gauge-transformed cluster is not trivial, although all interactions inside the cluster are ferromagnetic. Since the cluster exhibits no bond-frustration, an energetic minimum state for its spins can be calculated in polynomial time by using graph-theoretical methods \[17,19\]; an equivalent network is constructed \[21\], the maximum flow is calculated \[22\] and the spins of the cluster are set to orientations leading to a minimum in energy. Please note, that the ground state of the cluster is degenerate itself, i.e. the spin orientations can be chosen in different ways leading all to the same energy. It is possible to calculate within one single run a special graph, which represents all ground states of the cluster \[24\], and select one ground state randomly. This procedure is called “BROAD” here. On the other hand, one can always choose a certain ground state of the cluster directly\[1\]. Usually this variant, which is called “QUICK” here, is applied, because it avoids the construction of the special graph. But this again introduces a certain bias on the resulting distribution of the ground states. Later the influence of the different methods of choosing ground states is discussed.

This CEA minimization step is performed \(n_{\text{min}}\) times for each offspring. Afterwards each offspring is compared with one of its parents. The offspring/parent pairs are chosen in the way that the sum of the phenotypic differences between them is minimal. The phenotypic difference is defined here as the number of spins where the two configurations differ. Each parent is replaced if its energy is not lower (i.e. not better) than the corresponding offspring. After this whole step is conducted \(n_o \times M_i\) times, the population is halved: From each pair of neighbors the configuration which has the higher energy is eliminated. If more than 4 individuals remain the process is continued otherwise it is stopped and the best individual is taken as result of the calculation.

The following representation summarizes the algorithm.

```
algorithm genetic CEA\(\{J_{ij}\}, M_i, n_o, p_m, n_{\text{min}}\)
begin
    create \(M_i\) configurations randomly
    while \((M_i > 4)\) do
        begin
            for \(i = 1 \) to \(n_o \times M_i\) do
                begin
                    select two neighbors
                    create two offspring using triadic crossover
                    do mutations with rate \(p_m\)
                    for both offspring do
                        begin
                            for \(j = 1 \) to \(n_{\text{min}}\) do
                                begin
                                    construct unfrustrated cluster of spins
                                    construct equivalent network
                                    calculate maximum flow
                                    construct minimum cut
                                    set new orientations of cluster spins
                                end
                            if offspring is not worse than related parent
                                then
                                    replace parent with offspring
                            end
                        end
                    end
                    half population; \(M_i = M_i/2\)
                end
            end
        end
    return one configuration with lowest energy
end
```

The whole algorithm is performed \(n_R\) times and all configurations which exhibit the lowest energy are stored, resulting in \(n_G\) statistically independent ground-state configurations (replicas). A priori nothing about the distribution of ground states raised by the algorithm is known. Thus, it may be possible that for one given realization of the disorder some ground states are more likely to be returned by the procedure than others. Consequently, any quantities which are calculated by averaging over many independent ground states, like the distribution of overlaps, may depend on a bias introduced by the

\[1\] This ground state has the maximum possible magnetization of the gauge-transformed spins among all cluster ground states.
algorithm. For a thermodynamical correct evaluation all ground states have to contribute with the same weight, since they all have exactly the same energy.

For the preceding work, the distribution of the ground states determined by the algorithm was taken. The method was utilized to examine the ground state landscape of two-dimensional\(^{23}\) and three-dimensional\(^{24,25}\) \(\pm J\) spin glasses by calculating a small number of ground states per realization. Some of these results depend on the statistics of the ground states, as it will be shown in the next section for the \(d = 3\) case.

On the other hand, the main findings of the following investigations are not affected by the bias introduced by genetic CEA: the existence of a spin-glass phase for nonzero temperature was confirmed for the three-dimensional spin glass\(^{12}\). The method was applied also to the \(\pm J\) random-bond model to investigate its \(T = 0\) ferromagnetic to spin-glass transition\(^{26}\). Finally, for small sizes up to \(L = 8\) all ground-state valleys were obtained by calculating a huge number of ground states per realization and applying a new method called ballistic search\(^{27}\).

III. NUMERICAL EVIDENCE

In this section results describing the ground-state landscape of small three-dimensional \(\pm J\) spin glasses are evaluated. It is shown that the data emerging from the use of raw genetic CEA and from a thermodynamically correct evaluation. It is shown that the data emerging from the use of raw genetic CEA and from a thermodynamically correct evaluation are substantially different. The method was applied also to the \(\pm J\) random-bond model to investigate its \(T = 0\) ferromagnetic to spin-glass transition\(^{26}\). Finally, for small sizes up to \(L = 8\) all ground-state valleys were obtained by calculating a huge number of ground states per realization and applying a new method called ballistic search\(^{27}\).

To analyze the ground-state landscape, the distribution of overlaps is evaluated. For a fixed realization \(J = \{J_{ij}\}\) of the exchange interactions and two replicas \(\{\sigma_i^\alpha\}, \{\sigma_i^\beta\}\), the overlap\(^{2}\) is defined as

\[q^{\alpha\beta} \equiv \frac{1}{N} \sum_i \sigma_i^\alpha \sigma_i^\beta \]

(2)

The ground state of a given realization is characterized by the probability density \(P_J(q)\). Averaging over the realizations \(J\), denoted by \(\langle \cdot \rangle_J\), results in (\(Z\) = number of realizations)

\[P(q) \equiv \langle P_J(q) \rangle_J = \frac{1}{Z} \sum_J P_J(q) \]

(3)

Because no external field is present the densities are symmetric: \(P_J(q) = P_J(-q)\) and \(P(q) = P(-q)\). So only \(P(|q|)\) is relevant.

The result of \(P(|q|)\) for \(L = 5\) is shown in Fig. 2. For the true thermodynamic result small overlaps occur less frequent than for the data obtained by the application of pure genetic CEA. Large overlap values occur more often. This deviation has an influence on the way the spin glass behavior is interpreted. The main controversy about finite-dimensional spin glasses mentioned at the beginning is about the question whether for the infinite system \(P(|q|)\) shows a long tail down to \(q = 0\) or not\(^{26,27}\).

To investigate the finite size behavior of \(P(|q|)\) the fraction \(X_{0.5}\) of the distribution below \(q_0 = 0.5\) is integrated:

\[X_{q_0} \equiv \int_0^{q_0} P(|q|) dq \]

(4)

The development of \(X_{0.5}\) as a function of system size \(L\) is shown in Fig. 3. The datapoints for the larger sizes \(L \geq 6\), obtained using pure genetic CEA, are taken from former calculations\(^ {12}\). These values are more or less independent of the system size, while the correct thermodynamic behavior shows a systematic decrease. Whether for \(L \to \infty\) the long tail of \(P(|q|)\) persists cannot be concluded from the data, because the systems are too small. Nevertheless, the true \(T = 0\) behavior differs significantly from the former results.

IV. ANALYSIS OF GENETIC CEA

To understand, why genetic CEA fails in producing the thermodynamical correct results, in this section the
statistics of the ground states, which is determined by the algorithm, is analyzed directly.

For the case where all ground states were calculated using a huge number of runs, the frequencies each ground state occurred were recorded. In Fig. 1 the result for one sample realization of $N = 5^3$ is shown. The system has 56 different ground states. For each state the number of times it was returned by the algorithm in 10^5 runs is displayed. Obviously the large deviations from state to state cannot be explained by the presence of statistical fluctuations. Thus, genetic CEA samples different ground states from the same realization with different weights.

To make this statement more precise, the following analysis was performed: Two ground states are called neighbors, if they differ only by the orientation of one spin. All ground states which are accessible from each other through this neighbor-relation are defined to be in the same ground-state valley. That means, two ground states belong to the same valley, if it is possible to move from one state to the other by flipping only free spins, i.e., without changing the energy. For all realizations the valleys were determined using a method presented in [27], which allows to treat systems efficiently exhibiting a huge number of ground states. Then the frequencies h_V for each valley V were computed as the sum of all frequencies of the states belonging to V. In Fig. 3 the result is shown for a sample $N = 5^3$ realization, which has 15 different ground state valleys. Large valleys are returned by the algorithm more frequently, but h_V seems to grow slower than linearly. A strict linear behavior should hold for an algorithm which guarantees the correct $T = 0$ behavior.

For averaging h_V has to be normalized, because the absolute values of the frequency differ strongly from realization to realization, even if the size $|V|$ of a valley, i.e., the number of ground states belonging to it, is the same. For each realization, the normalized frequency h^*_V is measured relatively to the average frequency h_1 of all valleys of size 1: $h^*_V \equiv h_V / h_1$

If a realization does not exhibit a valley consisting only of one ground state, the frequency h^*_V of the smallest valley V_s is taken. It is assumed, that the normalized frequency exhibits a $h^*_V = |V|^\alpha$ dependence, which is justified by the results shown later. Consequently, for the case the size $|V|_s$ of the smallest valley is larger than one, $h_1 \equiv h_{V_s} / |V_s|_s^\alpha$ is chosen. The value of α is determined self-consistently.

The result for $L = 3$ of h^*_V as a function of the valley-size $|V|$ is presented in Fig. 3. A value of $\alpha = 0.854(3)$ was determined. Please note, that the fluctuations for larger valleys are higher, because quite often only one valley was available for a given valley-size. The algebraic form is clearly visible, proving that genetic CEA overestimates systematically the importance of small ground-state valleys.

For $L = 4$ a value of $\alpha = 0.705(3)$ was obtained, while the $L = 5$ case resulted in $\alpha = 0.642(5)$. Consequently, with increasing system size, the algorithm fails more and more to sample configurations from different ground-state valleys according to the size of the valleys. This explains, why the difference of $X_{0.5}(L)$ between the correct result and the values obtained in [13] increases with growing system size.

Similar results were obtained for two-dimensional systems. For $L = 5$ a self-consistent value of $\alpha = 0.650(1)$ was found, while the treatment of $L = 7$ systems resulted in $\alpha = 0.659(2)$. Here only a slight finite-size dependence occurs. This may explain the fact, that the width of the distribution of overlaps, even calculated only by the application of pure genetic CEA, seems to scale to zero [24].

In the second section of this paper two variants of the algorithm were presented, which may be able to calculate ground states more equally distributed. To investigate this issue, similar ground-state calculations were conducted for $L = 4$ and again h^*_V was calculated. For the case, were SAME was used instead of BIAS, a value $\alpha = 0.801(2)$ was determined self-consistently. Using BROAD instead of QUICK resulted in $\alpha = 0.749(3)$. Finally, by applying SAME and BROAD together, $\alpha = 0.843(3)$ was obtained. Consequently, applying different variants of the method decreases the tendency of overestimating small valleys, but the correct thermodynamic behavior is not obtained as well. Even worse, BROAD and SAME are considerably slower than the combination of QUICK and BIAS.

So far it was shown, that genetic CEA fails in sampling ground states from different valleys according the size of the valleys. Now we turn to the question, whether at least states belonging to the same valley are calculated with the correct thermodynamic distribution. By investigating the frequencies of different ground states belonging to the same valley it was found again, that these configurations are not equally distributed. But it is possible to study this issue in a more physical way. For that purpose ground states of 100 $L = 10$ realizations were calculated. Then the valley structure was analyzed. The average distribution of overlaps was evaluated, but only contributions of pairs of states belonging to the same valley were considered. For comparison, for the same realizations a long $T = 0$ Monte-Carlo (MC) simulation was performed, i.e., randomly spins were selected and flipped if they were free. The ground states were used as starting configurations. Since a MC simulation ensures the correct thermodynamic distribution of the states, all ground states of a valley appear with the same frequency, if the simulation is only long enough. A length of 40 Monte-Carlo steps per spin were found to be sufficient for $L = 10$. The result for the distribution of overlaps $P_{\text{valley}}(|q|)$ restricted to the valleys is displayed in Fig. 4. Significant differences between the datapoints from the pure genetic CEA and the correct $T = 0$ behavior are visible. Consequently, the algorithm does not sample configurations belonging to the same ground-state valley...
with the same weight as well.

V. CONCLUSION

In this work the genetic cluster-exact approximation method is analyzed. The algorithm can be used to calculate many independent true ground states of EA spin glasses. The results from the raw application of the method and from calculations of all ground states for small system sizes were compared. By evaluating the distribution of overlaps is was shown, that genetic CEA imposes some bias on the ground-state statistics. Consequently, the results from the application of the raw method do not represent the true $T=0$ thermodynamics.

To elucidate the behavior of the algorithm the statistics of the ground states were evaluated directly. It was shown, that different ground states have dissimilar probabilities of occurrence. To understand this effect better, the ground-state valleys were determined. The genetic CEA method finds configurations from small ground-state valleys relative to the size of the valley more often than configurations from large valleys. Additionally, within a valley the states are not sampled with the same weight as well. It was shown that two variants of the algorithm, which decrease its efficiency, weaken the effect, but it still persists.

Summarizing, two effects are responsible for the biased ground-state sampling of genetic CEA: small valleys are sampled too frequently and the distribution within the valleys is not flat.

For small system sizes it is possible to calculate all ground states, so one can obtain the true thermodynamic average directly. But already for $L=5$ there are realizations exhibiting more than 10^5 different ground states. Since the ground-state degeneracy grows exponentially with system size [2] larger systems cannot be treated in this way. The following receipt should overcome these problems and should allow to obtain the true thermodynamic $T=0$ behavior for larger systems:

- Calculate several ground states of a realization using genetic CEA.
- Identify the ground states which belong to the same valleys.
- Estimate the size of each valley. This can be done using a variant of ballistic search [27], which works by flipping free spins sequentially, each spin at most once. The number of spins flipped is a quite accurate measure for the size of a valley.
- Sample from each valley a number of ground states, which is proportional to the size of the valley. This guarantees, that each valley contributes with its proper weight. Each state is obtained by performing a $T=0$ MC simulation of sufficient length, starting with true ground-state configurations. Since MC simulations achieve a thermodynamical correct distribution, it is guaranteed that the states within each valley are equally distributed.

Please note, that it is not necessary to calculate all ground states to obtain the true thermodynamic behavior, because it is possible to estimate the size of a valley by analyzing only some sample ground states belonging to it. Furthermore, it is even only necessary to have configurations from the largest valleys available, since they dominate the ground-state behavior. This condition is fulfilled by genetic CEA, because large valleys are sampled more often than small valleys, even if small valleys appear too often relatively.

From the results presented here it is not possible to deduce the correct $T=0$ behavior of the infinite system, because the system sizes are too small. Using the scheme outlined above, it is possible to treat system sizes up to $L=14$ [28].

VI. ACKNOWLEDGEMENTS

The author thanks K. Battacharya and A.W. Sandvik for interesting discussions. The work was supported by the Graduiertenkolleg “Modellierung und Wissenschaftliches Rechnen in Mathematik und Naturwissenschaften” at the Interdisziplinäres Zentrum für Wissenschaftliches Rechnen in Heidelberg and the Paderborn Center for Parallel Computing by the allocation of computer time. The author announces financial support from the DFG (Deutsche Forschungsgemeinschaft).

[1] For reviews on spin glasses see: K. Binder and A.P. Young, Rev. Mod. Phys. 58, 801 (1986); M. Mezard, G. Parisi, M.A. Virasoro, Spin glass theory and beyond, World Scientific, Singapur 1987; K.H. Fisher and J.A. Hertz, Spin Glasses, Cambridge University Press, 1991
[2] G. Parisi, Phys. Rev. Lett. 43, 1754 (1979); J. Phys. A 13, 1101 (1980); 13, 1887 (1980); 13, L115 (1980); Phys. Rev. Lett. 50, 1946 (1983)
[3] W.L. McMillan, J. Phys. C 17, 3179 (1984)
[4] A.J. Bray and M.A. Moore, J. Phys. C 17, L463 (1984); J. Phys. C 18, L699 (1985)
[5] D.S. Fisher and D.A. Huse, Phys. Rev. Lett. 56, 1601 (1986); Phys. Rev. B 38, 386 (1988)
[6] A. Bovier and J. Fröhlich, J. Stat. Phys. 44, 347 (1986)
[7] C.M. Newman and D.L. Stein, Phys. Rev. Lett. 76, 515 (1996); Phys. Rev. E 55, 5194 (1997)
[8] H. Rieger, in: Advances in Computer Simulation, ed. J. Kertész and I. Kondor, Lecture Notes in Physics 501, Springer, Heidelberg, 1998
FIG. 1. Example of the cluster-exact approximation method. A part of a spin glass is shown. The circles represent lattice sites/spins. Straight lines represent ferromagnetic bonds and jagged lines antiferromagnetic interactions. The top part shows the initial situation. The construction starts with the spin at the center. The bottom part displays the final stage. The spins which belong to the cluster carry a plus or minus sign which indicates how each spin is transformed, so that only ferromagnetic interactions remain inside the cluster. All other spins cannot be added to the cluster because it is not possible to multiply them by ±1 to turn all adjacent bonds ferromagnetic. Please note that many other combinations of spins can be used to build a cluster without frustration.

FIG. 2. Average distribution of overlaps $P(|q|)$ for $L = 5$. The dashed line shows the old result obtained by computing about 40 independent ground states per realization using genetic CEA. The solid line shows the same quantity for the case, where all existing ground states were used for the evaluation, i.e. where the correct $T = 0$ thermodynamic behavior is ensured.
FIG. 3. Average fraction $X_{0.5}$ of the distribution of overlaps for $|q| < 0.5$ as a function of system size L. The upper points (circles) were obtained by calculating about 40 independent ground states per realization using genetic CEA. The lower points (triangles) show the result ($L = 3, 4, 5$) for the case, where all existing ground states were used for the evaluation, i.e. where the correct $T = 0$ thermodynamic behavior is ensured.

FIG. 4. Number of times each ground state is calculated in 10^5 runs of genetic CEA for a sample realization of $N = 5^3$. The realization exhibits 56 ground states, which have significant different probabilities of being calculated.

FIG. 5. Number of times a ground state belonging to a specific valley is calculated in 10^5 runs of genetic CEA. The result is shown as a function of the valley size $|V|$ and for one $L = 5$ sample realization.

FIG. 6. Normalized number of times a specific valley V is found by genetic CEA for $L = 3$. The frequency is normalized so that $h^*_V = 1$ (see text). The probability that a cluster is found increases with the size of the cluster, but slower than linearly. The line shows a fit $h^*_V = |V|^\alpha$ with $\alpha = 0.854(3)$.

FIG. 7. Distribution $P_{valley}(|q|)$ of overlaps for $L = 10$ restricted to pairs of ground states belonging to the same valley. The full line shows the result for the case, where the statistics of the ground state is determined by the genetic CEA algorithm. The data represented by the dashed line was obtained using states which are equally distributed within each valley, which was guaranteed by performing a $T = 0$ MC simulation.