Jet Quenching Parameter with Hyperscaling Violation

J. Sadeghi a* and S. Heshmatian a†

a Sciences Faculty, Department of Physics, Mazandaran University,
P. O. Box 47415-416, Babolsar, Iran

Institute for Studies in Theoretical Physics and Mathematics (IPM)

May 11, 2014

Abstract

In this paper we study the behavior of jet quenching parameter in the background metric with hyperscaling violation at finite temperature. The background metric is covariant under a generalized Lifshitz scaling symmetry with the dynamical exponent z and hyperscaling exponent θ. We evaluate the jet quenching parameter for certain range of these parameters consistent with the Gubser bound conditions in terms of T, z and θ. We compare our results with those from conformal case and experimental data. Then we add a constant electric field to this background and find its effect on the jet quenching parameter.

1 Introduction

Holography is a powerful tool to map a D dimensional strongly coupled field theory at large N limit to a $D + 1$ dimensional gravitational theory at weak coupling [1-2]. In recent years, the
gauge/gravity duality has been used to study the QCD and hadron physics. The dynamics of moving quark and the motion of a quark-antiquark pair in a strongly coupled plasma have been studied in the context of gauge/gravity duality [3-20]. Also, the computations of QCD parameters demonstrate the efficiency of this duality [16-20].

Generalizations of metrics dual to field theories have been proposed because of the extensive applications of this duality. One of such generalizations is to use metrics dual to field theories which are not scale invariant while they are conformal to Lifshitz spacetimes [39-43]. These backgrounds have a dynamical Lifshitz parameter z and a hyperscaling violation exponent θ. Such metrics have been used to describe condense matter systems and string theory solutions [44-58]. Lorentz symmetry represents a foundation of both general relativity and the standard model, therefore Lorentz invariance violation may leads to new physics.

Due to the quark confinement, as $q\bar{q}$ pair are moving apart, they will hadronized by creating more pairs and come out as the jets. Then some of the jets are suppressed by the medium and lose energy which is so called jet quenching phenomenon. The jet quenching parameter is the probability of the jet quenching and is related to momentum fluctuation $\hat{q} \propto \langle \vec{p}^2 \rangle$ [32-38]. In the dual description, this parameter is related to the coefficient in the exponent of an adjoint Wilson loop [21-31].

In this paper, we use the gauge/gravity duality to study the behavior jet quenching parameter in the background metric with hyperscaling violation at finite temperature with and without a constant B-field. This paper is organized as follows. In section 2, we briefly review the background of ref.[57]. The metric is covariant under a generalized Lifshitz scaling symmetry and has a generic Lorentz violating form. In section 3, we use the holographic description of strongly coupled QFT to illustrate the behavior of the jet quenching parameter at finite temperature. We determine the allowed regions for z and θ and evaluate the jet quenching parameter numerically in terms of the background Hawking temperature and z, θ parameters. In section 4, we added a constant B-field (electric filed) to the background metric and estimate the jet quenching parameter dependence on the Hawking temperature and also the electric field.
2 Review of the background

In this section, we briefly review the background introduced in ref.[57]. The authors have considered a background metric where Lorentz invariance is broken. It was argued that although charge densities induce a trivial (gapped) behavior at low energy/temperature, there are special cases where there are non-trivial IR fixed points (quantum critical points) where the theory is scale invariant and have a generic Lorentz violating form. These metrics, in general, have the following form,

\[ds^2 = u^\theta \left[-\frac{dt^2}{u^{2z}} + \frac{b_0}{u^2} du^2 + dx^i dx^i \right], \]

which is covariant under a generalized Lifshitz scaling symmetry,

\[t \to \lambda^z t, \ u \to \lambda u, \ x^i \to \lambda x^i, \ ds^2 \to \lambda^{-\theta} ds^2. \]

The exponent \(z \) is the Lifshitz parameter and the exponent \(\theta \) is the hyperscaling violation exponent which is responsible for the non-standard scaling of physical quantities and controls the transformation of the metric. The scalar curvature correspond to these geometries is given by the following equation,

\[R = -\frac{3\theta^2 - 4(z + 3)\theta + 2(z^2 + 3z + 6)}{b_0} u^{-\theta}. \]

The geometries are flat for \(\theta = 2 \) and \(z = 0, 1 \). The \((\theta = 0, z = 1)\) geometry is in Riddler coordinates and Ricci flat when \(\theta = 4 \) and \(z = 3 \). These special solutions violate the conditions of ref.[57]. For \(\theta = 0 \), the scalar curvature is constant (pure Lifshitz case, ref.[43]).

Using the following radial redefinition,

\[u = (2 - z) r^{\frac{1}{2-z}}, \]

and rescaling of \(t, x^i \), the following metric is obtained,

\[ds^2 \sim r^{\frac{\theta-2z}{2}} \left[-f(r)dt^2 + \frac{dr^2}{f(r)} + dx^i dx^i \right], \ f(r) = f_0 r^{2\frac{1}{2-z}}. \]

The energy scale is given by the scaling of the \(g_{tt} \) component of the metric. So, at the presence of hyperscaling violations, one can obtain,

\[E \simeq u^{\frac{\theta-2z}{2}} \simeq r^{\frac{\theta-2z}{2z-2}}, \]
For the generalized scaling solutions of eq.(5) the Gubser conditions become,

\[
\frac{2z + 3(2 - \theta)}{2(z - 1) - \theta} > 0 , \quad \frac{z - 1}{2(z - 1) - \theta} > 0 , \quad \frac{2(z - 1) + 3(2 - \theta)}{2(z - 1) - \theta} > 0 ,
\]

and the thermodynamic stability implies that,

\[
\frac{z}{2(z - 1) - \theta} > 0.
\]

Equations (7) and (8) lead to \(z(z - 1) > 0 \). Authors in ref.[57] have also considered several cases for the generalized Lifshitz geometries as,

1a) \(\frac{\theta - 2}{z - 2} > 0 \) and \(\frac{z - 1}{z - 2} > 0 \).

1b) \(\frac{\theta - 2}{z - 2} > 0 \) and \(\frac{z - 1}{z - 2} < 0 \).

2a) \(\frac{\theta - 2}{z - 2} < 0 \) and \(\frac{z - 1}{z - 2} > 0 \).

2b) \(\frac{\theta - 2}{z - 2} < 0 \) and \(\frac{z - 1}{z - 2} < 0 \).

In two first cases, the boundary is at \(r = 0 \) and in two later cases, the boundary is at \(r = \infty \).

For the last case, there are no acceptable geometries surviving the Gubser bounds in eq.(7).

The generalization of metrics in eq.(5) to include finite temperature is,

\[
ds^2 \sim \left(\frac{r}{\ell} \right)^{-\alpha} \left[- f(r)dt^2 + \frac{dr^2}{f(r)} + dx^i dx^i \right],
\]

\[
f(r) = f_0 \left(\frac{r}{\ell} \right)^{2\beta} h , \quad h = 1 - \left(\frac{r}{r_0} \right)^\gamma,
\]

where \(\alpha = \frac{\theta - 2}{z - 2} \), \(\beta = \frac{z - 1}{z - 2} \) and \(\gamma = \frac{z - 3 + 2(2 - \theta)}{2(z - 2)} \).

3 Jet quenching parameter

In this section we analyze the behavior of jet quenching parameter for the background metric of equation (9). In the holographic description, the jet quenching parameter is computed using the Wilson loop joining two light-like lines by the following equation,

\[
\langle W^A(C) \rangle \approx \exp \left(-\frac{1}{4\sqrt{2} \hat{q}L}L^2 \right),
\]
where C is the null-like rectangular Wilson loop formed by a dipole with heavy $q\bar{q}$ with small separation length L and large separation length L^- along the light-cone. Using the relations $\langle W^F(C) \rangle^2 \simeq \langle W^A(C) \rangle$ and $\langle W^F(C) \rangle \simeq e^{-S_I}$, the jet quenching parameter in given by,

$$\hat{q} \equiv 8\sqrt{2} \frac{S_I}{L^- L^2},$$

(11)

where $S_I = S - S_0$. Here S is the Nambu-Goto action of the fundamental string, S_0 is the self energy from the mass of two quarks and S_I is the regularized string worldsheet action.

To evaluate the jet quenching parameter we start with the background black hole solution, equation (9), and use the following light-cone coordinates,

$$x^\pm = \frac{t \pm x^1}{\sqrt{2}},$$

(12)

to rewrite the black hole metric as,

$$ds^2 = b^2(r)[- (1 + f(r)) dx^+ dx^- + \frac{1 - f(r)}{2}[(dx^1)^2 + (dx^-)^2] + (dx^2)^2 + (dx^3)^2 + f^{-1}(r)dr^2],$$

(13)

where $b^2(r) = (r/\ell)^{-a}$. We choose the static gauge $\tau = x^- (0 \leq x^- \leq L^-), \sigma = x^2 (-\frac{L^-}{2} \leq x_2 \leq \frac{L^2}{2})$ and consider the string with endpoints to be located at $\sigma = \pm \frac{L^2}{2}$. In the limit with $L^- \gg L$, the effect of x^- dependence of the worldsheet can be neglected and the string profile is completely specified by $r = r(\sigma)$.

The induced metric of the fundamental string can be calculated as,

$$g_{\alpha\beta} = b^2(r) \begin{pmatrix} - \frac{f(r)-1}{2} & 0 \\ 0 & 1 + \frac{r^2}{f(r)} \end{pmatrix}. $$

(14)

Plugging the above equation into the Nambu-Goto action, we obtain,

$$S = - \frac{1}{2\pi \alpha'} \int d\tau d\sigma \sqrt{-\det g_{\alpha\beta}} = \frac{L^-}{\sqrt{2\pi \alpha'}} \int_0^{L^-} dy b^2(r) \sqrt{(f(r) - 1) \left(1 + \frac{r^2}{f(r)} \right)}. $$

(15)

Since the Lagrangian density does not explicitly depend on y, the corresponding Hamiltonian is conserved and we can write,

$$\frac{\partial \mathcal{L}}{\partial r'} r' - \mathcal{L} = E,$$

(16)
where E is the constant energy of motion and L is the integrand of equation (15). Then we obtain the equation of motion for r as,

$$r' = \sqrt{f(r) \left[\frac{b^4(r)(f(r) - 1)}{2E^2} - 1 \right]}.$$ \hfill (17)

Due to the fact that for the black hole solution we have $f(r) = 0$ at the horizon and as we are interested in the small E case, the factor under square root is always positive near the boundary and negative near the black hole horizon. Therefore, the turning point $r_{\text{min}} (> r_h)$ is determined by the solution of the following equation,

$$f(r_{\text{min}}) - 1 = 0.$$ \hfill (18)

Substituting eq.(17) in the Nambu-Gotto action of eq.(15), the action becomes,

$$S = \frac{L^-}{\sqrt{2\pi\alpha'}} \int_{r_{\text{min}}}^{r_b} dr b^2(r) \sqrt{f(r) - 1} \left[1 - \frac{2E^2}{b^4(r)(f(r) - 1)} \right]^{-\frac{1}{2}},$$ \hfill (19)

where r_b is the location of the boundary and we have use the relation $r' = dr/dy$. In the small E limit, we expand eq.(19) up to the leading order and rewrite the string action as,

$$S \simeq \frac{L^-}{\sqrt{2\pi\alpha'}} \int_{r_{\text{min}}}^{r_b} dr b^2(r) \sqrt{f(r) - 1} \left[1 + \frac{2E^2}{b^4(r)(f(r) - 1)} \right].$$ \hfill (20)

This action is divergent and to eliminate the divergence it should be subtracted by the inertial mass of two free quarks given by,

$$S_0 = \frac{L^-}{\sqrt{2\pi\alpha'}} \int_{r_{\text{min}}}^{r_b} dr b^2(r) \sqrt{f(r) - 1} \frac{f(r)}{f(r)}.$$ \hfill (21)

Here, we have used the gauge $x^- = \tau$ and $r = \sigma$. On the other hand, the distance between two quarks is obtained by integrating of eq.(17) as,

$$\frac{L}{2} = \int_{r_{\text{min}}}^{r_b} dr \frac{\sqrt{2E}}{\sqrt{b^4(r)f(r)(f(r) - 1)}} \left[1 - \frac{2E^2}{b^4(r)(f(r) - 1)} \right]^{-\frac{1}{2}}.$$ \hfill (22)

Again by expanding this equation in terms of E and considering the small L limit, we obtain the following relation,

$$\frac{L}{2E} \simeq \int_{r_{\text{min}}}^{r_b} dr \sqrt{\frac{2}{b^4(r)f(r)(f(r) - 1)}}.$$ \hfill (23)
Also we can expand E up to the leading order of L to reach,

$$E \simeq \frac{L}{\sqrt{2} \int_{r_{min}}^{r_h} \frac{dr}{b^2(r) \sqrt{f(r)(f(r)-1)}}}.$$ \hspace{1cm} (24)

The regularized string worldsheet action is then given by,

$$S_I = S - S_0 = \frac{L - L^2}{8 \sqrt{2} \pi \alpha'} \int_{r_{min}}^{r_h} \frac{1}{b^2(r) \sqrt{f(r)(f(r)-1)}} dr,$$ \hspace{1cm} (25)

where we have used eqs.(23) and (24). Finally, we obtain the following equation for the jet quenching parameter for the scaling metric with hyperscaling violation,

$$\hat{q}_{LV} = \frac{1}{\pi \alpha'} \left(\int_{r_{min}}^{r_h} \frac{dr}{b^2(r) \sqrt{f(r)(f(r)-1)}} \right)^{-1}.$$ \hspace{1cm} (26)

In the conformal limit ($\theta = 0$ and $z = 1$) this equation reduces to,

$$\hat{q}_{\text{conf.}} = \sqrt{2} \lambda \pi \frac{\Gamma[\frac{3}{4}]}{\Gamma[\frac{1}{4}]},$$ \hspace{1cm} (27)

which gives $\hat{q}_{\text{conf.}} = 1.95 GeV^2/fm$ for $T = T_c$ and $\lambda = 5.5$. The Hawking temperature associated to the black hole metric (9) is given by,

$$T = \frac{1}{4\pi} \left| \frac{g'_{00}}{\sqrt{-g_{00} g_{11}}} \right|_{r=r_h} = \frac{f_0}{8\pi l^3} \left(\frac{r_h}{l} \right)^{\frac{3}{2}} \left| \frac{2z-3\theta+6}{z-2} \right|.$$ \hspace{1cm} (28)

In order to evaluate the jet quenching parameter of eq.(26) we should first determine the allowed region for parameters z and θ. In this paper, we consider the space boundary at $r = \infty$, so the parameter α is negative. In this case, to have an acceptable geometry satisfying the Gubser conditions of eq.(7), the parameter β should be positive.

Also, to avoid divergence of the integrand in eq.(26) at $r \rightarrow \infty$ and to have a well-defined behavior for the jet quenching parameter, we choose $\frac{3}{6} \leq \beta < 1$ and $-3 \leq \gamma \leq -2$. These constraints together imply that the allowed geometries have the following z and θ range,

$$-\frac{3}{2} \theta + 7 \leq z \leq -4 \hspace{1cm} \text{for} \hspace{1cm} \frac{22}{3} \leq \theta \leq \frac{34}{3},$$

$$-\frac{3}{2} \theta + 7 \leq z \leq -\frac{3}{4} \theta + \frac{9}{2} \hspace{1cm} \text{for} \hspace{1cm} \theta > \frac{34}{3}. \hspace{1cm} (29)$$

The allowed geometries with above constraints are shown in the (z, θ) plane in fig.1.

To compare our results with those from conformal case and experimental data and study
Figure 1: generalized Lifshitz geometries in the (z, θ) plane with $\alpha < 0$, $\frac{5}{6} \leq \beta < 1$ and $-3 \leq \gamma \leq -2$.

Table 1: Jet quenching parameter \hat{q}_{LV} in the units of GeV^2/fm for different values of temperature. The temperature is given in the units of critical temperature T_c.

T	\hat{q}_{LV}
T_c	3.56
$1.5T_c$	8.01
$2T_c$	14.24
$2.5T_c$	22.25
$3T_c$	32.05

The behavior of the jet quenching parameter \hat{q}_{LV}, we plot it numerically for $z = -8$ and $\theta = 10$ case and $q_{conf.}$ as a function of temperature in Fig.2.

From Fig.2, one can see that at $T_c \simeq 250 MeV$, $\hat{q}_{LV} \simeq 3.56 GeV^2/fm$ which is larger than $q_{conf.}$. As temperature increases, \hat{q}_{LV} decreases and at $T \simeq 460 MeV$ it equals to $q_{conf.}$ and then it gets smaller than $q_{conf.}$.

In Fig.3 we demonstrate $\hat{q}_{LV}/q_{conf.}$ as a function of temperature for $z = -8$ and $\theta = 10$ case. The numerical values of \hat{q}_{LV} for different temperatures are shown in Table.1.

From the numerical values of the jet quenching parameter, it could be realized that in the range of $300 < T < 500$, our results for \hat{q}_{LV} is in consistent with those obtained from RHIC with $\tilde{q} \simeq 5 - 15 GeV^2/fm$ [59-60].
Figure 2: jet quenching parameter as a function of T for the scaling metric with hyperscaling violation (solid line) and the conformal case (dashed line) for $z = -8$ and $\theta = 10$ case.

Figure 3: $\hat{q}_{LV}/\hat{q}_{conf.}$ as a function of temperature for $z = -8$ and $\theta = 10$ case. For $T < T_0$ the ratio is larger than 1 for $T > T_0$, the ratio is less than 1.
Figure 4: \(\hat{q}_{LV} \) as a function of temperature for different values of \(\theta \) and constant value of Lifshitz exponent \(z = -8 \). As \(\theta \) increases, the jet quenching parameter increases.

Now, we assume two different cases to examine the behavior of the jet quenching parameter \(\hat{q}_{LV} \) as a function of \(T \) for different values of parameters \(z \) and \(\theta \).

- To evaluate the jet quenching parameter as a function of temperature for different values of \(\theta \) and fixed Lifshitz exponent \((z = -8) \). This case is shown in Fig.4. From this plot, one can figure out that \(\hat{q}_{LV} \) becomes large as \(\theta \) increases.

- To evaluate the jet quenching parameter as a function of temperature for different values of \(z \) and fixed hyperscaling exponent \((\theta = 10) \). This case is shown in Fig.5. In this case, \(\hat{q}_{LV} \) decreases as \(\theta \) increases.

Then we plot the jet quenching parameter as a function of hyperscaling exponent \(\theta \) for different values of \(T \) and fixed Lifshitz exponent \(z = -8 \) in Fig.6. From this figure, it is clear that \(\hat{q}_{LV} \) is an increasing function of \(\theta \).
Figure 5: \hat{q}_{LV} as a function of temperature for different values of z and fixed hyperscaling exponent $\theta = 10$. As z increases, the jet quenching parameter decreases.

Figure 6: \hat{q}_{LV} as a function of θ for different values of T and fixed $z = -8$. As θ increases, the jet quenching parameter increases.
Figure 7: \hat{q}_{LV} as a function of z for different values of T and fixed $\theta = 10$. As z increases, the jet quenching parameter decreases.

Finally \hat{q}_{LV} as a function of Lifshitz exponent is depicted in Fig.7 for different values of T and fixed hyperscaling violation exponent $\theta = 10$. Unlike the previous case, it is a decreasing function of z.

4 Effect of constant electric field

In the previous section, we evaluated the jet quenching parameter in the scaling background with hyperscaling violation at finite temperature introduced in ref.[57]. Now, we proceed to study the effect of a constant electric field on the jet quenching parameter following the method proposed in ref.[15]. In this set up, the constant B-field is considered to be along the x^1 and x^2 direction. Due to the fact that only the field strength is involved in equations of motion, this ansatz could be a good solution to supergravity and this is the minimal setup for the dual field theory to study the B-field correction. The constant B-field is added to the
line element of eq.(9) by the following two form,

\[B = B_{01}dt \wedge dx_1 + B_{12}dx_1 \wedge dx_2, \]

(30)

where \(B_{01} = \mathcal{E} \) and \(B_{12} = \mathcal{H} \) are constant NS-NS antisymmetric electric and magnetic fields. In this paper we consider \(B_{12} = 0 \) and study the effect of constant electric field on the evolution jet quenching parameter. Similar to the previous section, we use the static gauge \(\tau = x^-, \sigma = x^2 \) and the light-cone coordinates of eq.(12). At the presence of the electric field, the string action is described by,

\[S = \frac{1}{2\pi\alpha'} \int d\tau d\sigma \sqrt{-\text{det}(g + b)_{\alpha\beta}}, \]

(31)

where \(\alpha, \beta = \tau, \sigma \) and \(g_{\alpha\beta} \) is given in eq.(14). In the light-cone coordinates, the induced b-field on the string worldsheet, \(b_{\alpha\beta} = B_{\mu\nu}\partial_\alpha X^\mu \partial_\beta X^\nu \), is obtained as,

\[b_{\alpha\beta} = \begin{pmatrix} \frac{\mathcal{E}}{2} & 0 \\ 0 & 0 \end{pmatrix}. \]

(32)

Putting eqs.(14) and (32) in eq.(31) for the string action leads to,

\[S = \frac{L^-}{\sqrt{2\pi\alpha'}} \int_0^{\frac{L}{2}} dy b^2(r) \sqrt{\left(f(r) - 1 - \frac{\mathcal{E}}{b^2(r)} \right) \left(1 + \frac{r'^2}{f(r)} \right)}. \]

(33)

Also, the equation of motion for \(r \) is founded to be,

\[r'^2 = f(r) \left[\frac{b^4(r)}{2\mathcal{E}^2} \left(f(r) - 1 - \frac{\mathcal{E}}{b^2(r)} \right) - 1 \right]. \]

(34)

Inserting this equation into eq.(33) and taking the \(E \to 0 \) limit, we obtain the following equation for the string action,

\[S = \frac{L^-}{\sqrt{2\pi\alpha'}} \int_{r_{\text{min}}}^{\infty} dr b^2(r) \sqrt{\frac{f(r) - 1 - \frac{\mathcal{E}}{b^2(r)}}{f(r)}} \left[1 + \frac{2\mathcal{E}^2}{b^4(r) \left(f(r) - 1 - \frac{\mathcal{E}}{b^2(r)} \right)} \right], \]

(35)

and the following equation for the self energy of two quarks,

\[S_0 = \frac{L^-}{\sqrt{2\pi\alpha'}} \int_{r_{\text{min}}}^{\infty} dr b^2(r) f^{-1}(r) \sqrt{f(r) - 1 - \frac{\mathcal{E}}{b^2(r)}}. \]

(36)
Also the distance between two end points of string becomes,

\[L = 2\sqrt{2}E \int_{r_{\text{min}}}^{\infty} dr \left[b^4(r) f(r) \left(f(r) - 1 - \frac{E}{b^2(r)} \right) \right]^{-\frac{1}{2}}. \]

(37)

Finally, we obtain the jet quenching parameter as,

\[\hat{q}_{LV} = \frac{1}{\pi \alpha} \left(\int_{r_{\text{min}}}^{\infty} \frac{dr}{b^2(r) \sqrt{f(r)(f(r) - 1 - \frac{E}{b^2(r)})}} \right)^{-1}, \]

(38)

where \(r_{\text{min}} \) is obtained numerically as the solution of the following equation,

\[f(r_{\text{min}}) - 1 - \frac{E}{b^2(r_{\text{min}})} = 0, \]

(39)

Now we proceed to evaluate the jet quenching parameter numerically and study its behavior at the presence of a constant electric field. For this purpose, we consider two different cases with numerical values \(z = -8 \) for Lifshitz exponent and \(\theta = 10 \) for hyperscaling violation exponent.

First, we numerically evaluate the jet quenching parameter as a function of temperature for different values of \(E \). From this plot, one can figure out that \(\hat{q}_{LV} \) becomes large as \(T \) increases. This case is shown in Fig.8.

Second, we numerically evaluate the jet quenching parameter as a function of \(E \) for different values of \(T \) in the units of \(T_c \). From this plot we can see that in constant temperature, \(\hat{q}_{LV} \) increases as \(T \) increases. This case is shown in Fig.9.

5 Results and discussion

Jet quenching of partons produced at RHIC with high transverse momentum is one of the interesting properties of the strongly-coupled plasma. It is possible to determine this quantity using the gauge/gravity duality for gauge theories at finite temperature. In this paper we analyzed the behavior of jet quenching parameter in the background metric which is covariant under a generalized Lifshitz scaling symmetry and has a generic Lorentz violating form at finite temperature.
Figure 8: \hat{q}_{LV} as a function of T for different values of \mathcal{E} ($\mathcal{E}_1 < \mathcal{E}_2 < \mathcal{E}_3$). As T increases, the jet quenching parameter increases.

Figure 9: \hat{q}_{LV} as a function of \mathcal{E} for different values of T in the units of T_c. The jet quenching parameter increases, as \mathcal{E} increases.
In section 3, we used the holographic description to study the jet quenching parameter at finite temperature. For this purpose, we determined the appropriate range for z and θ and evaluate the jet quenching parameter numerically in terms of T, z and θ parameters. We considered the space boundary at $r = \infty$, so the negative α parameter. In this case, to have an acceptable geometry satisfying the Gubser conditions, the parameter β should be positive.

To avoid divergence of the jet quenching integrand at $r \to \infty$ and to have a well-defined behavior for the jet quenching parameter, we chose $\frac{5}{6} \leq \beta < 1$ and $-3 \leq \gamma \leq -2$. We plotted $\hat{q}_{LV} - T$ numerically for $z = -8$ and $\theta = 10$ as a function of temperature in Fig.2, which is qualitatively similar to references [18] and [20]. At $T_c \approx 250\,\text{MeV}$, $\hat{q}_{LV} \approx 3.56\,\text{GeV}^2/\text{fm}$ which is larger than \hat{q}_{conf}. As temperature increases, \hat{q}_{LV} decreases and at $T \approx 460\,\text{MeV}$ it equals to \hat{q}_{conf}, and then it gets smaller than \hat{q}_{conf}. From the numerical values of the jet quenching parameter, we found that in the range of $300 < T < 500$, our results for \hat{q}_{LV} is in consistent with results from RHIC, $\hat{q} \simeq 5 - 15\,\text{GeV}^2/\text{fm}$ [59-60]. We evaluated the jet quenching parameter as a function of temperature for different values of θ and z in Fig.4. From this plot, one can figure out that \hat{q}_{LV} becomes large as θ increases. Then for different values of z and constant value θ we plotted the jet quenching parameter as a function of temperature (Fig.5). In this case, \hat{q}_{LV} decreases as θ increases. Then we plotted the jet quenching parameter as a function of hyperscaling exponent θ for different values of T and fixed Lifshitz exponent z in Fig.6. From this figure, we found that \hat{q}_{LV} is an increasing function of θ. Also \hat{q}_{LV} as a function of z is depicted in Fig.7 for different values of T and constant value of θ. Unlike the previous case, it is a decreasing function of z.

Finally, we added a constant B-field (electric filed) to the background metric and estimate the jet quenching parameter dependence on the Hawking temperature and also the electric field for $z = -8$ and $\theta = 10$. From fig.8, one can figure out that \hat{q}_{LV} becomes large as T increases. Then, from fig.9 we can see that in constant temperature, \hat{q}_{LV} is an increasing function of E.

16
References

[1] J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)]; S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428, 105 (1998).

[2] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, ”Large N field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-th/9905111]; E. Witten, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 253-291.

[3] C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. G. Yaffe, ”Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma,” JHEP 0607 (2006) 013; [ArXiv:hep-th/0605158].

[4] S. S. Gubser, S. S. Pufu, F. D. Rocha and A. Yarom, ”Energy loss in a strongly coupled thermal medium and the gauge-string duality,” [arXiv:0902.4041] [hep-th].

[5] C. P. Herzog ”Energy loss of heavy quarks from asymptotically AdS geometries” JHEP 09 (2006) 032 [arXiv:hep-th/0605191].

[6] S. S. Gubser Drag force in AdS/CFT Phys. Rev. D 74 126005 (2006).

[7] J. F. Vazquez-Poritz 2008 Drag force at finite t Hooft coupling from AdS/CFT arXiv:hep-th/0803.2890.

[8] J. Sadeghi, M. R. Setare, B. Pourhassan 2009 Drag force with different charges in STU background and AdS/CFT J. Phys. G: Nucl. Part. Phys. 36 (2009) 115005 (19pp).

[9] M. Ali-Akbari, U. Gursoy ”Rotating strings and energy loss in non-conformal holography,” JHEP 01 (2012) 105 (arXiv:hep-th/1110.5881).

[10] E. Caceres and A. Guijosa ”Drag force in charged N = 4 SYM plasma” JHEP11 (2006) 077.
[11] K. Bitaghsir Fadafana, H. Soltanpanahi "Energy loss in a strongly coupled anisotropic plasma," JHEP 01 (2012) 085 (arXiv:hep-th/1206.2271v4).

[12] J. Sadeghi, M. R. Setare, B. Pourhassan and S. Hashmatian "Drag force of moving quark in STU background," Eur. Phys. J. C 61 527 (arXiv:0901.0217 [hep-th]).

[13] J. Sadeghi and B. Pourhassan "Drag force of moving quark at the N = 2 supergravity," JHEP 12 (2008) 026 (arXiv:0809.2668 [hep-th]).

[14] M. Chernicoff, J. A. Garcia and A. Guijosa "The energy of a moving quark-antiquark pair in an N = 4 SYM plasma," JHEP 09 (2006) 068.

[15] T. Matsuo, D. Tomino and W. Y. Wen "Drag force in SYM plasma with B field from AdS/CFT," JHEP 10 (2006) 055.

[16] M. Ali-Akbari M and K. B. Fadafan "Rotating mesons in the presence of higher derivative corrections from gauge-string duality," (arXiv:0908.3921v1 [hep-th]).

[17] J. Sadeghi and S. Heshmatian, "Screening Length of Rotating Heavy Meson from AdS/CFT," Int J Theor Phys (2010) 49: 1811-1822 (arXiv:0812.4816v3 [hep-th]); J. Sadeghi, M. R. Pahlavani, R. Morad and S. Heshmatian, "Baryon Binding Energy in the Sakai-Sugimoto Model," Int J Theor Phys (2011). 50 No. 2: 488-496 (arXiv:0910.3542v2 [hep-th]); J. Sadeghi and S. Heshmatian, " Decay widths of large-spin mesons from the non-critical string/gauge duality," Phys. Rev. D 84, 126010 (2011), (arXiv:1105.6273v1 [hep-th]).

[18] Rong-Gen Cai, Shankhadeep Chakrabortty, Song He, Li Li, "Some aspects of QGP phase in a hQCD model," JHEP02 (2013) 068.

[19] U. Gursoy and E. Kiritsis, "Exploring improved holographic theories for QCD: Part I," JHEP 0802 (2008) 032 [arXiv:hep-th/0707.1324]; U. Gursoy, E. Kiritsis and F. Nitti, "Exploring improved holographic theories for QCD: Part II," JHEP 0802 (2008) 019 [arXiv:hep-th/0707.1349].
[20] U. Gursoy, E. Kiritsis, G. Michalogiorgakis and F. Nitti ”Thermal Transport and Drag Force in Improved Holographic QCD,” [ArXiv: 0906.1890v4][hep-ph].

[21] E. Nakano, S. Teraguchi and W.Y. Wen ”Drag force, jet quenching and AdS/QCD,” Phys. Rev. D 75 085016.

[22] K. B. Fadafan ”Medium effect and finite tHooft coupling correction on drag force and jet quenching parameter” (arXiv:0809.1336 [hep-th]).

[23] E. Caceres and A. Guijosa ”On drag forces and jet quenching in strongly coupled plasmas,” JHEP 12 (2006) 068.

[24] H. Liu, K. Rajagopal and U. A. Wiedemann, ”Calculating the jet quenching parameter from AdS/CFT,” Phys. Rev. Lett. 97, 182301 (2006) arXiv:hep-ph/0605178.

[25] A. Buchel, ”On jet quenching parameters in strongly coupled non-conformal gauge theories,” Phys. Rev. D 74, 046006 (2006) hep-th/0605178.

[26] H. Liu, K. Rajagopal and U. A. Wiedemann, ”Wilson loops in heavy ion collisions and their calculation in AdS/CFT,” JHEP 0703 (2007) 066 ([ArXiv:0612168][hep-ph]).

[27] J. F. Vazquez-Poritz, ”Enhancing the jet quenching parameter from marginal deformations,” (arXiv:hep-th/0605296).

[28] F. L. Lin and T. Matsuo ”Jet quenching parameter in medium with chemical potential from AdS/CFT,” Phys. Lett. B 641 45.

[29] S. D. Avramis and K. Sfetsos ”Supergravity and the jet quenching parameter in the presence of R-charge densities,” JHEP 01 (2007) 065.

[30] N. Armesto, J. D. Edelstein and J. Mas ”Jet quenching at finite t Hooft coupling and chemical potential from AdS/CFT,” J. High Energy Phys. JHEP 09 (2006) 039.

[31] K. Bitaghsir Fadafan, B. Pourhassan, J. Sadeghi ”Calculating the jet-quenching parameter in STU background,” Eur. Phys. J. C (2011) 71:1785.
[32] J.D. Bjorken, Energy Loss Of Energetic Partons In Quark - Gluon Plasma: Possible Extinction Of High P(T) Jets In Hadron - Hadron Collisions, FERMILAB-PUB-82-059-THY.

[33] A. Kovner and U. A. Wiedemann, ”Gluon radiation and parton energy loss,” In *Hwa, R.C. (ed.) et al.: Quark gluon plasma* 192-248 [hep-ph/0304151].

[34] S. S. Adler et al. [PHENIX Collaboration], ”Nuclear modification of electron spectra and implications for heavy quark energy loss in Au+Au collisions at s(NN)**(1/2) = 200-GeV,” Phys. Rev. Lett. 96, 032301 (2006) [nucl-ex/0510047].

[35] J. Bielcik [STAR Collaboration], ”Centrality dependence of heavy flavor production from single electron measurement in s(NN)**(1/2) = 200-GeV Au + Au collisions,” Nucl. Phys. A 774, 697 (2006) [nucl-ex/0511005].

[36] R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne and D. Schiff, ”Radiative energy loss and p(T)-broadening of high energy partons in nuclei,” Nucl. Phys. B 484, 265 (1997).

[37] F. D’Eramo, H. Liu and K. Rajagopal, ”Transverse Momentum Broadening and the Jet Quenching Parameter, Redux,” Phys. Rev. D 84, 065015 (2011) [arXiv:1006.1367 [hep-ph]].

[38] A. Adare et al. [PHENIX Collaboration], ”Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at psNN = 200 GeV,” Phys. Rev. Lett. 98 (2007) 172301 [ArXiv:nucl-ex/0611018].

[39] H. Singh, Lifshitz/Schrodinger Dp-branes and dynamical exponents, [arXiv:1202.6533 [hep-th]].

[40] K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, [arXiv:1202.5935 [hep-th]]; K. Balasubramanian and K. Narayan, Lifshitz spacetimes
from AdS null and cosmological solutions, JHEP 1008 (2010) 014, arXiv:1005.3291 [hep-th].

[41] P. Dey and S. Roy, Intersecting D-branes and Lifshitz-like space-time, arXiv:1204.4858 [hep-th]; P. Dey and S. Roy, Lifshitz-like space-time from intersecting branes in string/M theory, arXiv:1203.5381 [hep-th].

[42] T. Azeyanagi, W. Li, and T. Takayanagi, On String Theory Duals of Lifshitz-like Fixed Points, JHEP 0906 (2009) 084, arXiv:0905.0688 [hep-th].

[43] S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78, 106005 (2008). arXiv:0808.1725 [hep-th].

[44] L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85, 035121 (2012). arXiv:1112.0573 [condmat.str-el].

[45] E. Shaghoulian, Holographic Entanglement Entropy and Fermi Surfaces, arXiv:1112.2702 [hep-th].

[46] B. Gouteraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite Density, JHEP 1112, 036 (2011). arXiv:1107.2116 [hep-th].

[47] S. A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, arXiv:1203.4236 [hep-th].

[48] X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, arXiv:1201.1905 [hep-th].

[49] B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP 1201, 089 (2012). arXiv:1110.2320 [hep-th].

[50] B. S. Kim, Schrodinger Holography with and without Hyperscaling Violation, arXiv:1202.6062 [hep-th].
[51] E. Perlmutter, Domain Wall Holography for Finite Temperature Scaling Solutions, JHEP 1102, 013 (2011). [arXiv:1006.2124] [hep-th].

[52] C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 1011, 151 (2010). [arXiv:1005.4690] [hep-th].

[53] E. Perlmutter, ”Hyperscaling violation from supergravity,” JHEP 06 (2012) 165 (arXiv:1205.0242v2 [hep-th]).

[54] J. Gath, J. Hartong, R. Monteiro, N. A. Obers ”Holographic Models for Theories with Hyperscaling Violation,” [arXiv:1212.3263] [hep-th].

[55] M. Taylor, Non-relativistic holography, [arXiv:0812.0530] [hep-th].

[56] M. Alishahiha and H. Yavartanoo, On Holography with Hyperscaling Violation, JHEP 1211 (2012) 034, [arXiv:1208.6197] [hep-th]; M. Alishahiha, E. O Colgain, and H. Yavartanoo, Charged Black Branes with Hyperscaling Violating Factor, [arXiv:1209.3946] [hep-th].

[57] E. Kiritsis, Lorentz violation, Gravity, Dissipation and Holography, JHEP 1301 (2013) 030, [arXiv:1207.2325] [hep-th].

[58] J. Sadeghi, B. Pourhasan, and F. Pourasadollah, Schrodinger black holes with hyperscaling violation, [arXiv:1209.1874] [hep-th].

[59] K. J. Eskola et al., Nucl. Phys. A 747, 511 (2005).

[60] A. Dainese, C. Loizides and G. Paic, Eur. Phys. J. C 38, 461 (2005).