BayesVarSel: Bayesian Testing, Variable Selection and model averaging in Linear Models using R

Gonzalo Garcia-Donato1 and Anabel Forte2
1 Universidad de Castilla La Mancha; 2 Universidad de Valencia

November 28, 2016

Abstract

This paper introduces the R package \texttt{BayesVarSel} which implements objective Bayesian methodology for hypothesis testing and variable selection in linear models. The package computes posterior probabilities of the competing hypotheses/models and provides a suite of tools, specifically proposed in the literature, to properly summarize the results. Additionally, \texttt{BayesVarSel} is armed with functions to compute several types of model averaging estimations and predictions with weights given by the posterior probabilities. \texttt{BayesVarSel} contains exact algorithms to perform fast computations in problems of small to moderate size and heuristic sampling methods to solve large problems. The software is intended to appeal to a broad spectrum of users, so the interface has been carefully designed to be highly intuitive and is inspired by the well-known \texttt{lm} function. The issue of prior inputs is carefully addressed. In the default usage (fully automatic for the user) \texttt{BayesVarSel} implements the criteria-based priors proposed by Bayarri et al.12, but the advanced user has the possibility of using several other popular priors in the literature. The package is available through the Comprehensive R Archive Network, CRAN. We illustrate the use of \texttt{BayesVarSel} with several data examples.
1 An illustrated overview of BayesVarSel

Testing and variable selection problems are taught in almost any introductory statistical course. In this first section we assume such background to present the essence of the Bayesian approach and the basic usage of BayesVarSel with hardly any mathematical formulas. Our motivating idea in this first section is mainly to present the appeal of the Bayesian answers to a very broad spectrum of applied researchers.

The remaining sections are organized as follows. In Section 2 the problem is presented and the notation needed is introduced jointly with the basics of the Bayesian methodology. Section 3 and Section 4 explain the details concerning the obtention of posterior probabilities in hypothesis testing and variable selection problems, respectively, in BayesVarSel. In Section 5 several tools to describe the posterior distribution are explained and Section 6 is devoted to model averaging techniques. Finally, Section 7 concludes with directions that we plan to follow for the future of the BayesVarSel project.

In the Appendix, formulas for the most delicate ingredient in the underlying problem in BayesVarSel, namely the prior distributions for parameters within each model, are collected.

1.1 Testing

In testing problems, several competing hypotheses, \(H_i \), about a phenomenon of interest are postulated. The role of statistics is to provide summaries about the evidence in favor (or against) the hypotheses once the data, \(y \), have been observed. There are many important statistical problems with roots in testing like model selection (or model choice) and model averaging.

The formal Bayesian response to testing problems is based on the posterior probabilities of the hypotheses that summarize, in a fully understandable way, all the available information. In BayesVarSel an objective point of view (in the sense explained in [Berger, 2006]) is adopted and the reported posterior probabilities only depend on \(y \) and the statistical model assumed. These have hence the great appeal of being fully automatic for users.

For illustrative purposes consider the nutrition problem in [Lee, 1997], p143. There it is tested, based on the following sample of 19 weight gains (expressed in grams) of rats,

\[
R> weight.gains<- c(134, 146, 104, 119, 124, 161, 107, 83, 113, 129, 97, 123, 70, 118, 101, 85, 107, 132, 94)
\]
whether there is a difference between the population means of the group with a high proteinic diet (the first 12) or the control group (the rest):

```r
R> diet<- as.factor(c(rep(1,12),rep(0,7)))
R> rats<- data.frame(weight.gains=weight.gains, diet=diet)
```

This problem (usually known as the two-samples t-test) is normally written as $H_0 : \mu_1 = \mu_2$ versus $H_1 : \mu_1 \neq \mu_2$, where it is assumed that the weight gains are normal with an unknown (but common) standard deviation. The formulas that define each of the models under the postulated hypotheses are in R language

```r
R> M0<- as.formula("weight.gains~1")
R> M1<- as.formula("weight.gains~diet")
```

The function to perform Bayesian tests in BayesVarSel is `Btest` which has an intuitive and simple syntax (see Section 3 for a detailed description). In this example

```r
R> Btest(models=c(H0=M0, H1=M1), data=rats)
```

Bayes factors (expressed in relation to H0)

	H0.to.H0	H1.to.H0
	1.0000000	0.8040127

Posterior probabilities:

	H0	H1
	0.554	0.446

We can conclude that both hypotheses are similarly supported by the data (posterior probabilities close to 0.5) so there is no evidence that the diet has any impact on the average weight.

Another illustrative example concerns the classic dataset savings (Belsley, Kuh, and Welsch, 1980) considered by Faraway (2002), page 29 and distributed under the package faraway. This dataset contains macroeconomic data on 50 different countries during 1960-1970 and the question posed is to elucidate if dpi (per-capita disposable income in U.S), $ddpi$ (percent rate of change in per capita disposable income), population under (over) 15 (pop_{15} (pop_{75}) are all explanatory variables for sr, the aggregate personal saving divided by disposable income which is assumed to follow a normal distribution. This can be written as a testing problem about the regression coefficients associated with the variables with hypotheses

$H_0 : \beta_{dpi} = \beta_{ddpi} = \beta_{pop_{15}} = \beta_{pop_{75}} = 0$
versus the alternative, say H_1, that all predictors are needed. The competing models can be defined as

```r
R> fullmodel<- as.formula("sr~pop15+pop75+dpi+ddpi")
R> nullmodel<- as.formula("sr~1")
```

and the testing problem can be solved with

```r
R> Btest(models=c(H0=nullmodel, H1=fullmodel), data=savings)
```

Bayes factors (expressed in relation to H_0)

	H_0 to H_0	H_1 to H_0
	1.0000	20.9413

Posterior probabilities:

	H_0	H_1
	0.046	0.954

The conclusion is that there is substantial evidence favoring H_1, the hypothesis that all considered predictors explain the response sr.

Of course, more hypotheses can be tested at the same time. For instance, a simplified version of H_1 that does not include $pop15$ is

$$H_2: \beta_{dpi} = \beta_{ddpi} = \beta_{pop75} = 0$$

that can be included in the analysis as

```r
R> reducedmodel<- as.formula("sr~pop75+dpi+ddpi")
R> Btest(models=c(H0=nullmodel, H1=fullmodel, H2=reducedmodel), data=savings)
```

Bayes factors (expressed in relation to H_0)

	H_0 to H_0	H_1 to H_0	H_2 to H_0
	1.0000000	20.9412996	0.6954594

Posterior probabilities:

	H_0	H_1	H_2
	0.044	0.925	0.031

The result clearly evidences H_1 as the best explanation for the experiment among those considered.

This scenario can be extended to check which subset of the four covariates is the most suitable one to explain sr. In general, the problem of selecting the best subset of covariates from a group of potential ones is better known as variable selection.
1.2 Variable selection

Variable selection is a multiple testing problem where each hypothesis proposes a possible subset of \(p \) potential explanatory variables initially considered. Notice that there are \(2^p \) hypotheses, including the simplest one stating that none of the variables should be used.

A variable selection approach to the economic example above with \(p = 4 \) has 16 hypotheses and can be solved using the \texttt{Btest} function. Nevertheless, \texttt{BayesVarSel} has specific facilities to handle the specificities of variable selection problems. A main function for variable selection is \texttt{Bvs}, fully described in Section 4. It has a simple syntax inspired by the well-known \texttt{lm} function. The variable selection problem in this economic example can be solved executing

\begin{verbatim}
R> Bvs(formula="sr~pop15+pop75+dpi+ddpi", data=savings)
\end{verbatim}

The 10 most probable models and their probabilities are:

\begin{verbatim}
1 * * * * 0.297315642
2 * * * 0.243433493
3 * * 0.133832367
4 * 0.090960327
5 * * * 0.077913429
6 * * 0.057674755
7 * * 0.032516780
8 * * * 0.031337639
9 * 0.013854369
10 * * 0.006219812
\end{verbatim}

With a first look at these results, we can see that the most probable model is the model with all covariates (probability 0.30), which is closely followed by the one without \texttt{dpi} with a posterior probability of 0.24.

As we will see later, a variable selection exercise generates a lot of valuable information of which the above printed information is only a very reduced summary. This can be accessed with specific methods that explore the characteristics of objects of the type created by \texttt{Bvs}.

2 Basic formulae

The problems considered in \texttt{BayesVarSel} concern Gaussian linear models. Consider a response variable \(y \), size \(n \), assumed to follow the linear model
(the subindex F refers to full model)

\[M_F : y = X_0 \alpha + X \beta + \epsilon, \quad \epsilon \sim N_n(0, \sigma^2 I_n), \quad (1) \]

where the matrices $X_0 : n \times p_0$, $X : n \times p$ and the regression vector coefficients are of conformable dimensions. Suppose you want to test $H_0 : \beta = 0$ versus $H_F : \beta \neq 0$, that is, to decide whether the regressors in X actually explain the response. This problem is equivalent to the model choice (or model selection) problem with competing models M_F and

\[M_0 : y = X_0 \alpha + \epsilon, \quad \epsilon \sim N_n(0, \sigma^2 I_n), \quad (2) \]

and we will refer to models or hypotheses indistinctly.

Posterior probabilities are based on the Bayes factors (see [Kass and Raftery, 1995]), a measure of evidence provided by BayesVarSel when solving testing problems. The Bayes factor of H_F to H_0 is

\[B_{F0} = \frac{m_F(y)}{m_0(y)} \]

where m_F is the integrated likelihood or prior predictive marginal:

\[m_0(y) = \int M_0(y \mid \alpha, \sigma) \pi_0(\alpha, \sigma) d\alpha d\sigma, \]

and

\[m_F(y) = \int M_F(y \mid \alpha, \beta, \sigma) \pi_F(\alpha, \beta, \sigma) d\beta d\alpha d\sigma. \]

Above, π_0 and π_F are the prior distributions for the parameters within each model. From an objective point of view (the one adopted here), these distributions should be fully automatic. The assignment of such priors (which we call model selection priors) is quite a delicate issue (see [Berger and Pericchi, 2001]) and has inspired many important contributions in the literature. The package BayesVarSel allows using many of the most important proposals, which are fully detailed in the Appendix. The prior implemented by default is the robust prior by [Bayarri et al., 2012] as it can be considered optimal in many senses and is based on a foundational basis.

Posterior probabilities can be obtained as

\[Pr(H_F \mid y) = \frac{B_{F0} Pr(H_F)}{Pr(H_0) + B_{F0} Pr(H_F)}, \quad Pr(H_0 \mid y) = 1 - Pr(H_F \mid y), \]
where $Pr(H_F)$ is the probability, a priori, that hypothesis H_F is true.

Similar formulas can be obtained when more than two hypotheses, say H_1, \ldots, H_N, are tested. In this case

$$Pr(H_i | y) = \frac{B_{i0}(y)Pr(H_i)}{\sum_{j=1}^{N} B_{j0}(y)Pr(H_j)}, \quad i = 1, \ldots, N$$

which is the posterior distribution over the model space (which is the set that contains all competing models). For simplicity, the formula in (3) has been expressed, without any loss of generality, using Bayes factors to the null model but the same results would be obtained by fixing any other model. The default definition for $Pr(H_i)$ in testing problems is to use a constant prior, which assigns the same probability to all models, that is, $Pr(H_i) = 1/N$.

For instance, within the model

$$M_3 : y = \alpha 1_n + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

we cannot test the hypotheses $H_1 : \beta_1 = 0, \beta_2 \neq 0$, $H_2 : \beta_1 \neq 0, \beta_2 = 0$, $H_3 : \beta_1 \neq 0, \beta_2 \neq 0$ since neither M_1 (the model defined by H_1) nor M_2 are nested in the rest. Nevertheless, it is perfectly possible to test the problem with the four hypotheses H_1, H_2, H_3 (as just defined) plus $H_0 : \beta_1 = 0, \beta_2 = 0$, but of course H_0 must be, a priori, a plausible hypothesis. In this last case H_0 would take the role of null model.

Hypotheses do not have to be necessarily of the type $\beta = 0$ and, if testable (see Ravishanker and Dey (2002) for a proper definition) any linear combination of the type $C^T \beta = 0$ can be considered a hypothesis. For instance one can be interested in testing $\beta_1 + \beta_2 = 0$. In Bayarri and García-Donato (2007) it was formally shown that these hypotheses can be, through reparameterizations, reduced to hypotheses like $\beta = 0$. In Section 3 we show examples of how to solve these testing problems in BayesVarSel.

Variable selection is a multiple testing problem but is traditionally presented with convenient specific notation that uses a p dimensional binary vector $\gamma = (\gamma_1, \ldots, \gamma_p)$ to identify the models. Consider the full model in (1), and suppose that X_0 contains fix covariates that are believed to be sure in the true model (by default $X_0 = 1_n$ that would make the intercept present in all the models). Then each $\gamma \in \{0, 1\}^p$ defines a hypothesis H_γ stating which β’s (those with $\gamma_i = 0$) corresponding to each of the columns in X are zero. Then, the model associated with H_γ is

$$M_\gamma : y = X_0 \alpha + X_\gamma \beta_\gamma + \varepsilon, \quad \varepsilon \sim N_n(0, \sigma^2 I_n),$$

(4)
where X_γ is the matrix with the columns in X corresponding to the ones in γ. Notice that X_γ is a $n \times p_\gamma$ matrix where p_γ is the number of 1’s in γ.

Clearly, in this variable selection problem there are 2^p hypotheses or models and the null model is γ_0 corresponding to $\gamma = 0$.

A particularity of variable selection is that it is affected by multiplicity issues. This is because, and specially for moderate to large p, the possibility of a model showing spurious evidence is high (just because many hypotheses are considered simultaneously). As concluded in [Scott and Berger (2006)] multiplicity must be controlled with the prior probabilities $Pr(H_\gamma)$ and the constant prior does not control for multiplicity. Instead, these authors propose using

$$Pr(H_\gamma) = \left((p + 1)\begin{pmatrix} p \\ p_\gamma \end{pmatrix}\right)^{-1}. \tag{5}$$

The assignment above states that models of the same dimension (the dimension of M_γ is $p_\gamma + p_0$) should have the same probability which must be inversely proportional to the number of models of that dimension. In the sequel we refer to this prior as the ScottBerger prior.

Both the ScottBerger prior and the Constant prior for $Pr(H_\gamma)$ are particular cases of the very flexible prior

$$Pr(M_\gamma | \theta) = \theta^{p_\gamma}(1 - \theta)^{p - p_\gamma}, \tag{6}$$

where the hyperparameter $\theta \in (0, 1)$ has the interpretation of the common probability that a given variable is included (independently of all others).

The Constant prior corresponds to $\theta = 1/2$ while the ScottBerger to $\theta \sim \text{Unif}(0, 1)$. [Ley and Steel (2009)] study priors for θ of the type

$$\theta \sim \text{Beta}(\theta | 1, b). \tag{7}$$

They argue that, on many occasions the user has, a priori, some information regarding the number of covariates (among the p initially considered) that are expected to explain the response, say w^*. As they explain, this information can be translated into the analysis assigning in (7) $b = (p - w^*)/w^*$. The resulting prior specification has the property that the expected number of covariates is precisely w^*.

Straightforward algebra shows that assuming (7) into (6) is equivalent to (integrating out θ)

$$Pr(M_\gamma | b) \propto \Gamma(p_\gamma + 1)\Gamma(p - p_\gamma + b). \tag{8}$$
3 Hypothesis testing with BayesVarSel

Tests are solved in \texttt{BayesVarSel} with \texttt{Btest} which, in its default usage, only depends on two arguments: \texttt{models} a named list of \texttt{formula}-type objects defining the models compared and \texttt{data} the \texttt{data.frame} with the data.

The prior probabilities assigned to hypotheses is constant, that is, $Pr(H_i) = 1/N$. This default behavior can be modified specifying \texttt{prior.models = "User"} jointly with the argument \texttt{priorprobs} that must contain a named list (with names as specified in main argument \texttt{models}) with the prior probabilities to be used for each hypotheses.

In the last example of Section 1.1 we can state that the simpler model is twice as likely as the other two as:

\begin{verbatim}
R> Btest(models=c(H0=nullmodel, H1=fullmodel, H2=reducedmodel), data=savings, prior.models="User", priorprobs=c(H0=1/2, H1=1/4, H2=1/4))

Bayes factors (expressed in relation to H0)
 H0.to.H0 H1.to.H0 H2.to.H0
1.0000000 21.4600656 0.7017864

Posterior probabilities:
 H0 H1 H2
0.083 0.888 0.029
\end{verbatim}

Notice that the Bayes factor remains the same, and the change is in posterior probabilities.

\texttt{Btest} tries to identify the simplest model (nested in all the others) using the names of the variables. If such model does not exist, the execution of the function stops with an error message. Nevertheless, there are important situations where the simplest hypothesis is defined through linear restrictions (sometimes known as ‘testing a subspace’) making it very difficult to determine its existence just using the names. We illustrate this situation with an example.

Consider for instance the extension of the savings example in Faraway (2002), page 32 where $H_{eqp} : \beta_{pop15} = \beta_{pop75}$ is tested against the full alternative. This null hypothesis states that the effect on personal savings, sr, of both segments of populations is similar. The model under H_{eqp} can be specified as

\begin{verbatim}
R> equalpopmodel<- as.formula("sr-I(pop15+pop75)+dpi+ddpi")
\end{verbatim}
but the command

\[\text{R} \> \text{Btest(models=c(Heqp=equalpopmodel, H1=fullmodel), data=savings)} \]

produces an error, although it is clear that \(H_{eqp} \) is nested in \(H_1 \). To overcome this error, the user must ask the \text{Btest} to relax the names-based check defining as \text{TRUE} the argument \text{relax.nest}. In our example

\[\text{R} > \text{Btest(models=c(Heqp=equalpopmodel, H1=fullmodel), data=savings, + relax.nest=TRUE)} \]

Bayes factors (expressed in relation to \text{Heqp})

\[
\begin{array}{ll}
\text{Heqp.to.Heqp} & \text{H1.to.Heqp} \\
1.0000000 & 0.3336251 \\
\end{array}
\]

Posterior probabilities:

\[
\begin{array}{ll}
\text{Heqp} & \text{H1} \\
0.75 & 0.25 \\
\end{array}
\]

Now \text{Btest} identifies the simpler model as the one with the largest sum of squared errors and trusts the user on the existence of a simpler model (yet the code produces an error if it detects that the model with the largest sum of squared errors is not of a smaller dimension than all the others in which case it is clear that a null model does not exist).

4 Variable selection with \text{BayesVarSel}

The number of entertained hypotheses in a variable selection problem, \(2^p \), can range from a few to an extremely large number. This makes necessary to program specific tools to solve the multiple testing problem in variable selection problems. \text{BayesVarSel} provides three different functions for variable selection:

- \text{Bvs} performs exhaustive enumeration of hypotheses and hence the size of problems must be small or moderate (say \(p \leq 25 \)),

- \text{PBvs} is a parallelized version of \text{Bvs} making it possible to solve moderate problems (roughly the same size as above) in less time with the help of several cpu's.

- \text{GibbsBvs} simulations from the the posterior distribution over the model space using a Gibbs sampling scheme (intended to be used for large problems, with \(p > 25 \)).
Except for a few arguments that are specific to the algorithm implemented (eg. the number of cores in PBvs or the number of simulations in GibbsBvs) the usage of the three functions is very similar. We describe the common use in the first of the following sub-sections and the function-specific arguments in the second.

These three functions return objects of class Bvs which are a list with relevant information about the posterior distribution. For these objects BayesVarSel provides a number of functions, based on the tradition of model selection methods, to summarize the corresponding posterior distribution (eg. what is the hypothesis most probable a posteriori) and for its posterior usage (eg. to obtain predictions or model averaged estimates). These capabilities are described in Section 5 and Section 6.

For illustrative purposes we use the following datasets:

USCrime data. The US Crime data set was first studied by [Ehrlich (1973)](Ehrlich) and is available from R-package MASS ([Venables and Ripley, 2002](VenablesRipley)). This data set has a total of $n = 47$ observations (corresponding to states in the US) of $p = 15$ potential covariates aimed at explaining the rate of crimes in a particular category per head of population (labelled y in the data).

SDM data. This dataset has a total of $p = 67$ potential drivers for the annual GDP growth per capita between 1960 and 1996 for $n = 88$ countries (response variable labelled y in the data). This data set was initially considered by [Sala-I-Martin et al. (2004)](SalaIMartin) and revisited by [Ley and Steel (2007)](LeySteel).

4.1 Common arguments

The customary arguments in Bvs, PBvs and GibbsBvs are data (a data.frame with the data) and formula, with a definition of the most complex model considered (the full model in [1]). The default execution setting corresponds to a problem where the null model [2] contains just the intercept (ie $X_0 = 1_n$) and prior probabilities for models are defined as in [5].

A different simpler model can be specified with the optional argument fixed.cov, a character vector with the names of the covariates included in the null model. Notice that, by definition, the variables in the null model are part of any of the entertained models including of course the full model. A case sensitive convention here is to use the word “Inter-
cept” to stand for the name of the intercept so the default corresponds to `fixed.cov=c("Intercept")`. A null model that just contains the error (that is, X_0 is the null matrix) is specified as `fixed.cov=NULL`.

Suppose for example that in the UScrime dataset and apart from the constant, theory suggests that the covariate Ed must be used to explain the dependent variable. To consider these conditions we execute the command

```r
R> crime.Edfix<- Bvs(formula="y~.", data=UScrime, fixed.cov=c("Intercept", "Ed"))
```

Most complex model has 16 covariates
From those 2 are fixed and we should select from the remaining 14
M, So, Po1, Po2, LF, M.F, Pop, NW, U1, U2, GDP, Ineq, Prob, Time
The problem has a total of 16384 competing models
Of these, the 10 most probable (a posteriori) are kept
Working on the problem...please wait.

During the execution (which takes about 0.22 seconds in a standard laptop) the function informs which variables take part of the selection process. The number of these defines p which in this problem is $p = 14$ (and the model space has 2^{14} models). In what follows, and unless otherwise stated we do not reproduce this informative output to save space.

The assignment of priors probabilities, $Pr(H_i)$, is regulated with the argument `prior.models` which by default takes the value “ScottBerger” that corresponds to the proposal in [5]. Other options for this argument are “Constant”, which stands for $Pr(H_i) = 1/2^p$, and the more flexible value, “User”, under which the user must specify the prior probabilities with the extra argument `priorprobs`.

The argument `priorprobs` is a $p + 1$ numeric vector, which in its i-th position defines the probability of a model of dimension $p_0 + i - 1$ (these probabilities can be specified except for the normalizing constant).

Suppose that in the UScrime with null model just the intercept, we want to specify the prior in eq [6] with $\theta = 1/4$, this can be done as (notice that here $p = 15$)

```r
R> theta<- 1/4; pgamma<- 0:15
R> crime.thQ<- Bvs(formula="y~.", data=UScrime, prior.models="User", +       priorprobs=theta^pgamma*(1-theta)^(15-pgamma))
```

In variable selection problems it is quite standard to have the situation where the number of covariates is large (say larger than 30) preventing the exhaustive enumeration of all the competing models. The SDM dataset is
an example of this situation with \(p = 67 \). In these contexts, the posterior distribution can be explored using the function \texttt{GibbsBvs}. To illustrate the elicitation of prior probabilities as well, suppose that the number of expected covariates to be present in the true model is \(w^* = 10 \). This situation is considered in [Ley and Steel (2009)](Ley2009) and can be implemented as (see eq.8)

\[
\begin{align*}
\text{R} & \> \text{set.seed(1234)} \\
\text{R} & \> \text{wstar<- 7; b<- (67-wstar)/wstar; pgamma<- 0:67} \\
\text{R} & \> \text{growth.wstar7<- GibbsBvs(formula="y~.", data=SDM, prior.models="User",} \\
\text{ R} & \> \quad + \quad \text{priorprobs=gamma(pgamma+1)*gamma(67-pgamma+b))}
\end{align*}
\]

The above code took 18 seconds to run.

One last common argument to \texttt{Bvs}, \texttt{PBvs} and \texttt{GibbsBvs} is \texttt{time.test}. If it is set to \texttt{TRUE} and the problem is of moderate size (\(p \geq 18 \) in \texttt{Bvs}, \texttt{PBvs} and \(p \geq 21 \) in \texttt{GibbsBvs}), an estimation of computational time is calculated and the user is asked about the possibility of not executing the command.

4.2 Specific arguments

In \texttt{Bvs} The algorithm implemented in \texttt{Bvs} is exact in the sense that the information collected about the posterior distribution takes into account all competing models as these are all computed. Nevertheless, to save computational time and memory it is quite appropriate to keep only a moderate number of the best (most probable a posteriori) models. This number can be specified with the argument \texttt{n.keep} which must be an integer number between 1 (only the most probable model is kept) and \(2^p \) (a full ordering of models is kept). The default value for \texttt{n.keep} is 10.

The argument \texttt{n.keep} is not of great importance to analyze the posterior distribution over the model space. Nevertheless, it has a more relevant effect if model averaging estimates or predictions are to be obtained (see Section 6) since, as \texttt{BayesVarSel} is designed, only the \texttt{n.keep} retained models are used for these tasks.

In \texttt{PBvs} This function conveniently distributes several \texttt{Bvs} among the number of available cores specified in the argument \texttt{n.nodes}. Another argument in \texttt{PBvs} is \texttt{n.keep} explained above.

In \texttt{GibbsBvs} The algorithm in \texttt{GibbsBvs} samples models from the posterior over the model space and this is done using a simple (yet very efficient) Gibbs
sampling scheme introduced in George and McCulloch (1997), later studied in Garcia-Donato and Martinez-Beneito (2013) in the context of large model spaces. The type of default arguments that can be specified in GibbsBvs are the typical in any Monte Carlo Markov Chain scheme (as usual the default values are given in the assignment).

- **init.model=“Full”** The model at which the simulation process starts. Options include ”Null” (the model only with the covariates specified in fixed.cov), ”Full” (the model defined by formula), ”Random” (a randomly selected model) and a vector with p zeros and ones defining a model.

- **n.burnin=50** Length of burn in, i.e. the number of iterations to discard at the start of the simulation process.

- **n.iter=10000** The total number of iterations performed after the burn in process.

- **n.thin=1** Thinning rate that must be a positive integer. Set ‘n.thin’ < 1 to save memory and computation time if ‘n.iter’ is large.

- **seed=runif(1, 0, 16091956)** A seed to initialize the random number generator. (Doesn’t it seem like the upper bound is a date?)

Notice that the number of total iterations is $n.burnin+n.iter$ but the number of models that are used to collect information from the posterior is, approximately, $n.iter/n.thin$.

5 Summaries of the posterior distribution

In this section we describe the tools implemented in BayesVarSel conceived to summarize, in the tradition of the relevant model selection literature, the posterior distribution over the model space. In R this corresponds to describing methods to explore the content of objects of class Bvs.

Printing a Bvs object created with Bvs or PBvs shows the best 10 models with their associated probability (see examples in Section 1.2). If the object was built with GibbsBvs then what is printed is the most probable model among the sampled ones. For instance, if we print the object **growth.wstar7** in Section 4.1 we obtain the following message:
Among the visited models, the model with the largest probability contains:

[1] "DENS65C" "EAST" "GDPCH60L" "IPRICE1" "P60" "TROPICAR"

The model that contains the variables above plus the intercept is a point estimate of the Highest Posterior Probability model (HPM).

The rest of the summaries are very similar independently of the routine used to create it, but recall that if the object was obtained with either \texttt{Bvs} and \texttt{PBvs} (likely because p is small or moderate) the given measures here explained are \textit{exact}. If instead \texttt{GibbsBvs} was used, the reported measures are approximations of the exact ones (that likely cannot be computed due to the huge size of the model space). In \texttt{BayesVarSel} these approximations are based on the frequency of visits as an estimator of the real $Pr(M_\gamma | \mathbf{y})$ since, as studied in Garcia-Donato and Martinez-Beneito (2013), these provide quite accurate results.

The HPM is returned when an object of class \texttt{Bvs} is summarized (via \texttt{summary}) jointly with the inclusion probabilities for each competing variable, $Pr(x_i | \mathbf{y})$. These are the sum of the posterior probabilities of models containing that covariate and provide evidence about the individual importance of each explanatory variable. The model defined by those variables with an inclusion probability greater than 0.5 is called a Median Probability Model (MPM), which is also included in the summary. Barbieri and Berger (2004) show that, under general conditions, if a single model has to be utilized with predictive purposes, the MPM is optimal.

For instance, if we summarize the object \texttt{crime.Edfix} of Section 4.1 we obtain

```
R> summary(crime.Edfix)
Inclusion Probabilities:
          Incl.prob. HPM MPM
M          0.6806    *       
So         0.2386     
Po1        0.8489    *       *
P02         0.3663     
LF         0.2209     
M.F        0.3184     
Pop        0.2652     
```

\footnote{Notice that variable Ed is not on the list as it was assumed to be fixed.}
We clearly see that, marginally, Ineq is very relevant followed by Po1. Less influential but of certain importance are M and Prob.

Graphical summaries and jointness The main graphical support in `BayesVarSel` is contained in the function `plotBvs` which depends on x (an object of class `Bvs`) and the argument `option` which specified the type of plot to be produced:

- **option="joint"** A matrix plot with the joint inclusion probabilities, \(Pr(x_i, x_j \mid y) \) (marginal inclusion probabilities in the diagonal).

- **option="conditional"** A matrix plot with the conditional inclusion probabilities \(Pr(x_i \mid x_j, y) \) (ones in the diagonal).

- **option="not"** A matrix plot with the conditional inclusion probabilities \(Pr(x_i \mid \text{Not } x_j, y) \) (zeroes in the diagonal).

- **option="dimension"** A bar plot representation of the posterior distribution of the dimension of the true model (number of variables, ranging from \(p_0 \) to \(p_0 + p \)).

The first three options above are basic measures describing aspects of the joint effect of two given variables, \(x_i, x_j \) and can be understood as natural extensions of the marginal inclusion probabilities. In Figure 1, we have reproduced the first three plots (from left to right) obtained with the following lines of code:

```R
R> mj<- plotBvs(crime.Edfix, option="joint")
R> mc<- plotBvs(crime.Edfix, option="conditional")
R> mn<- plotBvs(crime.Edfix, option="not")
```

Apart from the plot, these functions return the matrix represented for further study. For the conditionals probabilities (`conditional` and `not`) the variables in the row are the conditioning variables (e.g. in `mc` above, the position
(i, j) is the inclusion probability of variable in j-th column conditional on the variable in i-th row).

Within these matrices, the most interesting results correspond to variations from the marginal inclusion probabilities (represented in the top of the plots as a separate row for reference). Our experience suggests that the most valuable of these is \texttt{option="not"} as it can reveal key details about the relations between variables in relation with the response. For instance, take that plot in Figure 1 (plot on the left of the second row) and observe that, while variable Po2 barely has any effect on savings, it becomes relevant if Po1 is removed. This is the probability \(Pr(Po2 \mid \text{Not Po1, y}) \) with value

\[
R> \text{mn["Not.Po1","Po2"]}
\]

\[
[1] 0.9996444
\]

which, as we observed in the graph, is substantially large compared with \(Pr(Po2 \mid y) = 0.3558 \) (a number printed in the summary above).

Similarly, we observe that Po1 is of even more importance if Po2 is not considered as a possible explanatory variable. All this implies that, in relation with the dependent variable, both variables contain similar information and one can act as proxy for the other.

We can further investigate this idea of a relationship between two covariates with respect to the response using the \textit{jointness} measures proposed by \cite{Ley and Steel(2007)}. These are available using function \texttt{Jointness} that depends on two arguments: \(x \), an object of class \texttt{Bvs} and \texttt{covariates} a character vector indicating which pair of covariates we are interested in. By default \texttt{covariates="All"} printing the matrices with the jointness measurement for every pair of covariates. In particular, three jointness measures relative to two covariates are reported by this function: i) the joint inclusion probability, ii) the ratio between the joint inclusion probability and the probability of including at least one of them and finally, iii) the ratio between the joint inclusion probability and the probability of including one of them alone.

For instance:

\[
R> \text{Jointness(crime.Edfix, covariates=c("Po1","Po2"))}
\]

\[
\text{The joint inclusion probability for Po1 and Po2 is: 0.22}
\]

\[
\text{The ratio between the probability of including both covariates and the probability of including at least one of them is: 0.22}
\]
The probability of including both covariates together is 0.27 times the probability of including one of them alone.

With these results we must conclude that it is unlikely that both variables, $Po1$ and $Po2$, are to be included together in the true model.

Finally, within `plotBvs`, the assignment `option="dimension"` produces a plot that speaks about the complexity of the true model in terms of the number of covariates that it contains. The last plot in Figure 1 is the output.
of

R> plotBvs(crime.EDfix, option="dimension")

From this plot we conclude that the number of covariates is about 7 but with a high variability. The exact values of this posterior distribution are in the component postprobdim of the Bvs object.

6 Model averaged estimations and predictions

In a variable selection problem it is explicitly recognized that there is uncertainty regarding which variables make up the true model. Obviously, this uncertainty should be propagated in the inferential process (as opposed to inferences using just one model) to produce more reliable and accurate estimations and predictions. These type of procedures are normally called model averaging and are performed once the model selection exercise is performed (that is, the posterior probabilities have been already obtained). In BayesVarSel these inferences can be obtained acting over objects of class Bvs.

Suppose that Λ is a quantity of interest and that under model M_γ it has a posterior distribution $\pi^N(\Lambda | y, M_\gamma)$ with respect to certain non-informative prior π^N_γ. Then, we can average over all entertained models using the posterior probabilities in (3) as weights to obtain

$$f(\Lambda | y) = \sum_\gamma \pi^N(\Lambda | y, M_\gamma) Pr(M_\gamma | y).$$

(9)

In BayesVarSel for π^N_γ we use the reference prior developed in [Berger and Bernardo, 1992] and further studied in [Berger et al., 2009]. This is an objective prior with very good theoretical properties and the formulas for the posterior distribution with a fixed model are known ([Bernardo and Smith, 1994]). These priors are different from the model selection priors used to compute the Bayes factors (see Section 2), but as shown in [Consonni and Deldossi, 2016], the posterior distributions approximately coincide and then $f(\Lambda | y)$ basically can be interpreted as the posterior distribution of Λ.

There are two different quantities Λ that are of main interest in variable selection problems. First is a regression parameter β_i and second is a future observation y^* associated with known values of the covariates x^*. In what follows we refer to each of these problems as (model averaged) estimation and prediction to which we devote the next subsections.
6.1 Estimation

Inclusion probabilities $Pr(x_i \mid y)$ can be roughly interpreted as the probability that β_i is different from zero. Nevertheless, it does not say anything about the magnitude of the coefficient β_i nor anything about its sign. Such type of information can be obtained from the distribution in (9) which in the case of $\Lambda \equiv (\alpha, \beta)$ is

$$f(\alpha, \beta \mid y) = \sum_{\gamma} St_{p_i+p_0}((\alpha, \beta_\gamma) \mid (\hat{\alpha}, \hat{\beta}_\gamma), (Z_{\gamma}^T Z_\gamma)^{-1} \frac{SSE_\gamma}{n - p_\gamma - p_0}, n-p_\gamma-p_0) Pr(M_\gamma \mid y),$$

where $\hat{\alpha}, \hat{\beta}_\gamma$ is the maximum likelihood estimator under M_γ (see eq.4), $Z_\gamma = (X_0, X_\gamma)$ and SSE_γ is the sum of squared errors in M_γ. Above St makes reference to the multivariate student distribution:

$$St_k(x \mid \mu, \Sigma, df) \propto (1 + \frac{1}{df}(x - \mu)^t \Sigma^{-1}(x - \mu))^{-(df+k)/2}.$$

In BayesVarSel the whole model averaged distribution in (10) is provided in the form of a random sample through the function `BMAcoeff` which depends on two arguments: x which is a Bvs object and $n.sim$ the number of observations to be simulated (taking the default value of 10000). The returned object is an object of class `bma.coeffs` which is a column-named matrix with $n.sim$ rows (one per each simulation) and $p + p_0$ columns (one per each regression parameter). The way that `BMAcoeff` works depends on whether the object was created with `Bvs` (or `PBvs`) or with `GibbsBvs`. This is further explained below.

If the Bvs object was generated with Bvs or PBvs In this case the models over which the average is performed are the $n.keep$ (previously specified) best models. Hence, if $n.keep$ equals 2^p then all competing models are used while if $n.keep < 2^p$ only a proportion of them are used and posterior probabilities are re-normalized to sum one.

On many occasions where estimations are required, the default value of $n.keep$ (which we recall is 10) is small and should be increased. Ideally 2^p should be used but, as noticed by Raftery et al. (1997) this is normally unfeasible and commonly it is sufficient to average over a reduced set of good models that accumulates a reasonable posterior mass. This set is what Raftery et al. (1997) call the “Occam’s window”. The function `BMAcoeff` informs about the total probability accumulated in the models that are used.
For illustrative purposes let us retake the UScrime dataset and, in particular, the example in Section 1.2 in which, apart from the constant, the variable Ed was assumed as fixed. The total number of models is $2^{14} = 16384$ and we execute again Bvs but now with n.keep=2000

```R
R> crime.Edfix<- Bvs(formula="y~.", data=UScrime, + fixed.cov=c("Intercept", "Ed"), n.keep=2000)
```

(taking 1.9 seconds). The object crime.Edfix contains identical information as the one previously created with the same name, except for the models retained, which in this case are the best 2000. These models accumulate a probability of 0.90, which seems quite reasonable to derive the estimates. We do so executing the second command of the following script (the seed is fixed for the sake of reproducibility).

```R
R> set.seed(1234)
R> bma.crime.Edfix<- BMAcoeff(crime.Edfix)
```

Simulations obtained using the best 2000 models that accumulate 0.9 of the total posterior probability.

The distribution in (10) and hence the simulations obtained can be highly multimodal and providing default summaries of it (like the mean or standard deviation) is potentially misleading. For a first exploration of the model averaged distribution, BayesVarSel comes armed with a plotting function, histBMA, that produces a histogram-like representation borrowing ideas from Scott and Berger (2006) and placing a bar at zero with height proportional to the number of zeros obtained in the simulation.

The function histBMA depends on several arguments:

- x An object of class bma.coeffs.
- covariate A text specifying the name of an explanatory variable whose accompanying coefficient is to be represented. This must be the name of one of the columns in x.
- n.breaks The number of equal length bars for the histogram. Default value is 100.
- text If set to TRUE (default value) the frequency of zeroes is added at the top of the bar at zero.
• **gray.0** A numeric value between 0 and 1 that specifies the darkness, in a gray scale (0 is white and 1 is black) of the bar at zero. Default value is 0.6.

• **gray.no0** A numeric value between 0 and 1 that specifies the darkness, in a gray scale (0 is white and 1 is black) of the bars different from zero. Default value is 0.8.

For illustrative purposes let us examine the distributions of β_{Ineq} (inclusion probability 0.99); β_{Time} (0.24) and β_{Prob} (0.62) using `histBMA`

\begin{verbatim}
R> histBMA(bma.crime.Edfix, covariate = "Ineq", n.breaks=50)
R> histBMA(bma.crime.Edfix, covariate = "Time", n.breaks=50)
R> histBMA(bma.crime.Edfix, covariate = "Prob", n.breaks=50)
\end{verbatim}

The plots obtained are reproduced in Figure 2 where we can see that Ineq has a positive effect. This distribution is unimodal so there is no drawback to summarizing the effect of the response Ineq over savings using, for example, the mean and quantiles, that is:

\begin{verbatim}
R> quantile(bma.crime.Edfix[, "Ineq"], probs=c(0.05, 0.5, 0.95))
5% 50% 95%
4.075685 7.150184 10.326606
\end{verbatim}

This implies an estimated effect of 7.2 with a 90% credible interval [4.1,10.3]. The situation of Time is clear and its estimated effect is basically null (in agreement with a low inclusion probability).

Much more problematic is reporting estimates of the effect of Prob with a highly polarized estimated effect being either very negative (around -4100) or zero (again in agreement with its inconclusive inclusion probability).

Notice that, in this case, the mean (approximately -2500) should not be used as a sensible estimation of the parameter β_{Prob}.

If the Bvs object was generated with GibbsBvs In this case, the average in (10) is performed over the `n.iter` (an argument previously defined) models sampled in the MCMC scheme. Theoretically this corresponds to sampling over the whole distribution (all models are considered) and leads to the approximate method pointed out in Raftery et al. (1997). All previous considerations regarding the difficult nature of the underlying distribution apply here.
Let us consider again the SDM dataset in which analysis we created the object `growth.wstar7` in Section 4. Suppose we are interested in the effect of the variable $P60$ on the response GDP. The summary method informs that this variable has an inclusion probability of 0.77.

```r
R> set.seed(1234)
R> bma.growth.wstar7<- BMAcoeff(growth.wstar7)
Simulations obtained using the 10000 sampled models.
Their frequencies are taken as the true posterior probabilities
R> histBMA(bma.growth.wstar7, covariate = "P60",n.breaks=50)
```

The distribution is bimodal (graph not shown here to save space) with modes at zero and 2.8 approximately. Again, it is difficult to provide simple summaries to describe the model averaged behaviour of $P60$. Nevertheless, it is always possible to answer relevant questions such as: what is the probability that the effect of $P60$ over savings is greater than one?

```r
R> mean(bma.growth.wstar7[,"P60"]>1)
[1] 0.7511
```

6.2 Prediction

Suppose we want to predict a new observation y^* with associated values of covariates $(x^*)^t \in \mathcal{R}^{p_0+p}$ (in what follows the product of two vectors corresponds to the usual scalar product). In this case, the distribution (9) adopts the form

$$
f(y^* \mid y, x^*) = \sum_{\gamma} St(y^* \mid x^*_\gamma (\hat{\alpha}_\gamma, \hat{\beta}_\gamma), \frac{SSE_{\gamma}}{h_{\gamma}}, n - p_{\gamma} - p_0) \Pr(M_{\gamma} \mid y), \quad (11)$$
where
\[h_\gamma = 1 - x_\gamma^* (x_\gamma^*)^t (x_\gamma^* + Z_\gamma^t Z_\gamma)^{-1} (x_\gamma^*)^t. \]

As with estimations, \texttt{BayesVarSel} has implemented the function \texttt{predictBvs} designed to simulate a desired number of observations from \texttt{(11)}. A main difference with model averaged estimations is that, normally, the above predictive distribution is unimodal.

The function \texttt{predictBvs} depends on \texttt{x}, an object of class \texttt{Bvs}, \texttt{newdata}, a \texttt{data.frame} with the values of the covariates (the intercept, if needed, is automatically added) and \texttt{n.sim} the number of observations to be simulated. The considerations described in the previous section for the \texttt{Bvs} object about the type of function originally used apply here.

The function \texttt{predictBvs} returns a matrix with \texttt{n.sim} rows (one per each simulated observation) and with the number of columns the number of cases (rows) in the \texttt{newdata}.

For illustrative purposes, consider the \texttt{Bvs} object named \texttt{growth.wstar7} for the analysis of the SDM dataset. Simulations from the predictive distribution \texttt{(11)} associated with values of the covariates fixed at their means can be obtained with the following code. Here, a histogram is produced (see Figure 3) as a graphical approximation of the underlying distribution.

\begin{verbatim}
R> set.seed(1234)
R> pred.growth.wstar7<- predictBvs(x=growth.wstar7,
+ newdata=data.frame(t(colMeans(SDM))))
R> hist(pred.growth.wstar7[,1], main="SDM",
+ border=gray(0.6), col=gray(0.8), xlab="y")
\end{verbatim}

7 Future work

The first version of \texttt{BayesVarSel} was released on December 2012 with the main idea of making available the \texttt{C} code programmed for the work \cite{Garcia-Donato2013} to solve exactly moderate to large variable selection problems. Since then, six versions have followed with new abilities that make up the complete toolbox that we have described in this paper.

Nevertheless, \texttt{BayesVarSel} is an ongoing project that we plan as solid and contrasted methods become available. The emphasis is placed on the prior distribution that should be used, since this is a particularly relevant aspect of model selection/testing problems.
New functionalities that we expect to incorporate in the future are:

- The case where $n < p + p_0$ and possibly $n << p + p_0$,
- specific methods for handling factors,
- heteroscedastic errors,
- other types of error distributions.

Acknowledgments

This paper was supported in part by the Spanish Ministry of Economy and Competitiveness under grant MTM2016-77501-P (BAiCORRE). The authors would like to thank Jim Berger for his suggestions during the process of building the package and would like to thank Dimitris Fouskakis for a careful reading and suggestions on this manuscript.
References

Maria M. Barbieri and James O. Berger. Optimal predictive model selection. *The Annals of Statistics*, 32(3):870–897, 2004.

M. J. Bayarri and G. García-Donato. Extending conventional priors for testing general hypotheses in linear models. *Biometrika*, 94(1):135–152, 2007.

Maria J. Bayarri, James O. Berger, Anabel Forte, and Gonzalo García-Donato. Criteria for Bayesian model choice with application to variable selection. *Annals of Statistics*, 40:1550–1577, 2012.

James O. Berger. The case for objective bayesian analysis. *Bayesian Analysis*, 1(3):385–402, 2006.

James O. Berger and Jose M. Bernardo. On the development of the reference prior method. In J. M. Bernardo, editor, *Bayesian Statistics 4*, pages 35–60. London: Oxford University Press, 1992.

James O. Berger and Luis R. Pericchi. *Objective Bayesian Methods for Model Selection: Introduction and Comparison*, volume 38 of Lecture Notes–Monograph Series, pages 135–207. Institute of Mathematical Statistics, Beachwood, OH, 2001. doi: 10.1214/lnms/1215540968. URL http://dx.doi.org/10.1214/lnms/1215540968.

James O. Berger, J. M. Bernardo, and Dongchu Sun. The formal definition of reference priors. *The Annals of Statistics*, 37(2):905–938, 2009.

J. M. Bernardo and Adrian F. M. Smith. *Bayesian Theory*. John Wiley and Sons, ltd., 1994.

G. Consonni and L. Deldossi. Objective bayesian model discrimination in follow-up experimental designs. *Test*, 25:397–412, 2016.

I. Ehrlich. Participation in illegitimate activities: a theoretical and empirical investigation. *Journal of Political Economy*, 81(3):521–567, 1973.

Carmen Fernández, Eduardo Ley, and Mark F. Steel. Benchmark priors for Bayesian model averaging. *Journal of Econometrics*, 100:381–427, 2001.
Gonzalo Garcia-Donato and Miguel A. Martinez-Beneito. On Sampling strategies in Bayesian variable selection problems with large model spaces. *Journal of the American Statistical Association*, 108(501):340–352, 2013.

Edward I. George and Robert E. McCulloch. Approaches for Bayesian variable selection. *Statistica Sinica*, 7:339–373, 1997.

Harold Jeffreys. *Theory of Probability*. Oxford University Press, 3rd edition, 1961.

Robert E. Kass and Adrian E. Raftery. Bayes factors. *Journal of the American Statistical Association*, 90(430):773–795, 1995.

Robert E. Kass and Larry Wasserman. A reference Bayesian test for nested hypotheses and its relationship to the schwarz criterion. *Journal of the American Statistical Association*, 90(431):928–934, 1995.

Peter M. Lee. *Bayesian Statistics. An introduction. Second edition*. John Wiley and Sons, ltd., 1997.

Eduardo Ley and Mark F. Steel. On the effect of prior assumptions in Bayesian model averaging with applications to growth regression. *Journal of Applied Econometrics*, 24(4):651–674, 2009.

Eduardo Ley and Mark F.J. Steel. Jointness in Bayesian variable selection with applications to growth regression. *Journal of Macroeconomics*, 29(3):476–493, 2007. ISSN 0164-0704. doi: http://dx.doi.org/10.1016/j.jmacro.2006.12.002. URL http://www.sciencedirect.com/science/article/pii/S0164070407000560. Special Issue on the Empirics of Growth Non-linearities.

Feng Liang, Rui Paulo, German Molina, Merlise A. Clyde, and James O. Berger. Mixtures of g-priors for Bayesian variable selection. *Journal of the American Statistical Association*, 103(481):410–423, 2008.

Adrian E. Raftery, David Madigan, and Jennifer Hoeting. Bayesian model averaging for linear regression models. *Journal of the American Statistical Association*, 92:179–191, 1997.

N. Ravishanker and D. K. Dey. *A first course in linear model theory*. Chapman and Hall/CRC, 2002.
Xavier Sala-I-Martin, Gernot Doppelhofer, and Ronald I. Miller. Determinants of long-term growth: A Bayesian averaging of classical estimates (BACE) approach. *American Economic Review*, 94(4):813–835, 2004. URL https://ideas.repec.org/a/aea/aecrev/v94y2004i4p813-835.html.

James G. Scott and James O. Berger. An exploration of aspects of bayesian multiple testing. *Journal of Statistical Planning and Inference*, 136(7): 2144–2162, 2006.

W. N. Venables and B. D. Ripley. *Modern Applied Statistics with S*. Springer, New York, fourth edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-95457-0.

Arnold Zellner. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In A. Zellner, editor, *Bayesian Inference and Decision techniques: Essays in Honor of Bruno de Finetti*, pages 389–399. Edward Elgar Publishing Limited, 1986.

Arnold Zellner and A. Siow. Posterior odds ratio for selected regression hypotheses. In J. M. Bernardo, M.H. DeGroot, D.V. Lindley, and Adrian F. M. Smith, editors, *Bayesian Statistics 1*, pages 585–603. Valencia: University Press, 1980.

Arnold Zellner and A. Siow. *Basic Issues in Econometrics*. Chicago: University of Chicago Press, 1984.

Appendix: Model selection priors for parameters within models

A key technical component of Bayes factors and hence of posterior probabilities is the prior distribution for the parameters within each model. That is, the prior \(\pi_\gamma(\alpha, \beta_\gamma, \sigma) \) for the specific parameters of the model

\[
M_\gamma : y = X_0\alpha + X_\gamma\beta_\gamma + \varepsilon, \quad \varepsilon \sim N_n(0, \sigma^2 I_n).
\]

(12)

In *BayesVarSel* the prior used is specified in main functions *Btest*, *Bvs*, *PBvs* and *GibbsBvs* with the argument *prior.betas* with default value "Robust" that corresponds to the proposal the same name in (Bayarri et al. (2012)).
In this paper it is argued, based on foundational arguments, that the robust prior is an optimal choice for testing in linear models.

The robust prior for \(M_\gamma \) can be specified hierarchically as

\[
\pi^R_\gamma(\alpha, \beta, \sigma) = \sigma^{-1} N_{p_\gamma}(\beta \mid 0, g \Sigma_\gamma)
\]

(13)

where \(\Sigma_\gamma = \sigma^2 (V_\gamma' V_\gamma)^{-1} \), with

\[
V_\gamma = (I_n - X_0(X_0'X_0)^{-1}X_0')X_\gamma
\]

(14)

and

\[
g \sim p^R_\gamma(g) = \frac{1}{2} \sqrt{\frac{1 + n}{p_\gamma + p_0}} (g + 1)^{-3/2}, \quad g > \frac{1 + n}{p_\gamma + p_0} - 1.
\]

(15)

For the null model the prior assumed is \(\pi_0(\alpha, \sigma) = \sigma^{-1} \).

The idea of using the matrix \(\Sigma_\gamma \) to scale variable selection priors dates back to Zellner and Siow (1980) and is present in other very popular proposals in the literature. As we next describe, these proposals differ about which distribution should be used for the hyperparameter \(g \). Many of these can be implemented in \texttt{BayesVarSel} through the argument \texttt{prior.betas}.

- \texttt{prior.betas="ZellnerSiow"} (Jeffreys (1961); Zellner and Siow (1980, 1984)) corresponds to \(g \sim IGa(1/2, n/2) \) (leading to the very famous proposal of using a Cauchy).

- \texttt{prior.betas="gZellner"} (Zellner (1986); Kass and Wasserman (1995)) corresponds to fixing \(g = n \) (leading to the so called Unit Information Prior).

- \texttt{prior.betas="FLS"} (Fernández et al. (2001)) corresponds to fixing \(g = \max\{n, p^2\} \).

- \texttt{prior.betas="Liangetal"} (Liang et al. (2008)) corresponds to \(g \sim \pi(g) \propto (1 + g/n)^{-3/2} \).

29