Physical functioning, frailty and risks of locally-advanced breast cancer among older women

Chandler Colemana, Connie H. Yana, Naomi Y. Kob, Nadia A. Nabulsia, Kent F. Hoskinsc, Brian C.-H. Chiud, Gregory S. Calipb, c, d, *

a University of Illinois Chicago, Department of Pharmacy Systems, Outcomes and Policy, Chicago, IL, USA
b Boston University School of Medicine, Section of Hematology Oncology, Boston, MA, USA
c University of Illinois Chicago, Division of Hematology and Oncology, Chicago, IL, USA
d The University of Chicago, Department of Public Health Sciences, Chicago, IL, USA

\textbf{A B S T R A C T}

\textbf{Objective:} Women with multiple comorbidities have competing health needs that may delay screening for early detection of breast cancer. Our objective was to determine associations between physical functioning and frailty with risk of locally-advanced breast cancer (BC).

\textbf{Methods:} We conducted a retrospective cohort study of women 65 years and older diagnosed with first primary stage I-III BC using the Surveillance, Epidemiology and End Results Medicare Health Outcome Survey Data Resource. Physical health-related quality of life was measured using Veterans RAND 12 Item Health Survey scales within two years before diagnosis; frailty was determined by calculating deficit-accumulation frailty index (DAFI) scores. Multivariable modified Poisson regression models were used to estimate rate ratios (RR) and 95% confidence intervals (CI) for risk of locally-advanced (stage III) versus early-stage (I-II) BC.

\textbf{Results:} Among 2411 women with a median age of 75 years at BC diagnosis, 2189 (91%) were diagnosed with incident stage I-II BC and 222 (9%) were diagnosed at stage III. Compared to women with early-stage disease, women with locally-advanced BC had lower physical component scores (37.8 vs. 41.4) and more classified as pre-frail or frail (55% vs. 50%). In multivariable models, frailty was not associated with increased risk of locally-advanced disease. However, worse physical function subscale scores (lowest vs. upper quartile; RR = 1.56, 95% CI 1.04-2.34) were associated with risk of locally-advanced BC.

\textbf{Conclusions:} Breast cancer screening among non-frail older women should be personalized to include women with limited physical functioning if the benefits of screening and early detection outweigh the potential harms.

1. Introduction

Higher physical activity decreases the risk of postmenopausal breast cancer [1]. In the aging U.S. population, the co-prevalence of frailty [2] and breast cancer diagnoses is expected to rise [3]. Women with multiple comorbidities and impaired physical functioning, the ability to perform activities of daily living, have competing health needs with respect to preventive care, including screening for early detection of breast cancer.

Frailty is a progressive accumulation of age-related biological deficits and physiological system declines which impair homeostatic balance [4]. Frail older adults are at increased risk of adverse health outcomes including falls, institutionalization, cardiovascular events, fractures, disability and mortality [5–7]. The mean prevalence of frailty increases with age, with ~10% of those aged 65 years and older and 25–50% among those over age 85 meeting diagnostic criteria [8]. The deficit-accumulation frailty index (DAFI) is a measure that may be derived retrospectively and identifies a wide range of health deficits [9, 10]. The DAFI has been evaluated among older women with breast cancer in relation to risks of all-cause and breast cancer-specific mortality [11] but evidence on associations between the DAFI and breast cancer stage is limited.

In this study, our objective was to investigate whether frailty was associated with higher risk of locally advanced breast cancer in a population-based cohort of women enrolled in Medicare. We also investigated whether physical functioning, health related quality of life, was associated with higher breast cancer staging. We hypothesized that women with higher levels of frailty have competing health care needs and face physical challenges to obtaining health care services including routine screening which in turn may result in higher rates of locally-advanced stage III breast cancers.

\footnotesize{a Corresponding author. Center for Pharmacoepidemiology and Pharmacoeconomic Research, University of Illinois Chicago, 833 South Wood Street MC 871, Chicago, IL, 60612.
E-mail addresses: ccolem30@uic.edu (C. Coleman), yan33@uic.edu (C.H. Yan), naomi.ko@bmc.org (N.Y. Ko), nnabul2@uic.edu (N.A. Nabulsi), khoski@uic.edu (K.F. Hoskins), bchiu@uchicago.edu (B.C.-H. Chiu), gcalip@uic.edu (G.S. Calip).

https://doi.org/10.1016/j.breast.2022.04.005
Received 21 January 2022; Received in revised form 3 April 2022; Accepted 12 April 2022
Available online 14 April 2022
0960-9776/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).}
2. Methods

We conducted a retrospective cohort study of women 65 years and older diagnosed with first primary stage I-III breast cancer from 1998 to 2013 using the Surveillance, Epidemiology and End Results Medicare Health Outcome Survey Data Resource (SEER-MHOS). Patient characteristics and incident breast cancers were identified through the SEER population based cancer registries which were linked to responses to the longitudinal MHOS surveys [12]. The SEER Program of the National Cancer Institute includes cancer incidence and survival for approximately 35% of the U.S. population [13]. Patient and clinical characteristics obtained from SEER include demographics, incident cancer diagnoses, American Joint Committee on Cancer (AJCC) stage [14], extent of disease, tumor markers, surgery and receipt of radiation for first-course treatment [15]. MHOS surveys contain patient reported outcomes from a randomly selected group of Medicare Advantage managed care plan beneficiaries [12]. Baseline surveys contain self-reported demographics, socioeconomic status, comorbid conditions, functional status, and health related quality of life (HRQOL) measures. Follow up surveys are obtained every two years for all patients that are still Medicare Advantage enrollees, with an average response rate of 60% [16].

A cross-sectional analysis of longitudinal surveys was conducted in a retrospective cohort of women who met the following inclusion criteria: (i) aged 65 years and older; (ii) were diagnosed with a microscopically confirmed first primary stage I-III breast cancer between 1998 and 2013; and (iii) have completed at least one MHOS survey within two years prior to primary breast cancer diagnosis. The following surveys were excluded from the analysis: woman with a primary diagnosis of stage IV breast cancer or those with a missing diagnosis, and all surveys completed after a woman’s diagnosis of breast cancer. Additionally, if multiple surveys were completed prior to diagnosis, the survey nearest the date of diagnosis was selected and all other surveys were excluded. A total of 2411 women met this outlined study inclusion criteria, presented in Fig. 1. This retrospective study of de-identified patients was reviewed and approved by the institutional review board of the University of Illinois Chicago.

2.1. Exposures

Frailty was defined by calculating the deficits accumulation frailty index (DAFI) [17] that was developed for patients responding to the MHOS based on a 25 item score using the Rockwood Accumulation of Deficits approach [18]. The sum of each item, valued from 0 to 1, was totaled across all 25 items and then divided by the sum of all scored valued at 1 with non-missing data. Each DAFI score calculated ranged from 0 to 1, with 0 indicating no frailty and 1 indicating the greatest frailty. Scores were categorized as robust (0 to <0.2), pre-frail (0.2 to <0.35), and frail (0.35–1) following an approach similar to other studies of older cancer patients [11,19].

Health related quality of life characteristics were derived from the Veterans RAND 12-item Health Survey (VR-12). The VR-12 is a valid patient-reported health survey comprised of 12 questions relating to physical and mental health [20]. The 12 items are summed into two scores, Physical Component Summary (PCS) and the Mental Component Summary (MCS). The PCS is a summary measure of four subscales: general health, physical functioning, role-physical, and bodily pain. The MCS is a summary measure of four subscales: role-emotional, vitality, mental health, and social functioning. The physical functioning scale is measured through questions regarding an individual’s ability to perform moderate activities and climb several flights of stairs. The VR-12 replaced the Short Form Health Survey for measuring health-related quality of life starting in 2006 in the SEER-MHOS data resource. Results from SF-36 and VR-12 were bridged using an algorithm to make

Fig. 1. CONSORT diagram illustrating inclusion and exclusion criteria.
scores comparable across all SEER-MHOS cohorts and account for missing data [21].

Data on variables including age (65–74, 75–84, 85+ years), year of diagnosis (1998–2003, 2004–2008, 2009–2013), race (white, Black, other), radiation (yes/no), surgery (breast conserving, mastectomy, no surgery) and estrogen and progesterone receptor status (positive or borderline, negative, unknown) were collected from SEER records; marital status (married, not married), education (less than high school, high school graduate or the Tests of General Educational Development (GED)), college graduate or above), smoking status (current, never) and body mass index (BMI) at diagnosis (<25, 25–29, 30–34, ≥35 kg/m2) were collected from survey responses prior to breast cancer diagnosis. Additionally, information on prevalence of comorbidity conditions including heart conditions, stroke, cardiovascular conditions, diabetes, arthritis, asthma, chronic obstructive pulmonary disease (COPD) and emphysema at time of diagnosis were obtained. Our primary outcome of interest was later-stage breast cancer at diagnosis defined as AJCC stage III (versus stages I or II).

2.2. Statistical analyses

To examine differences in baseline covariates, descriptive statistics were used. For continuous variables, median and interquartile ranges (IQR) were utilized while frequencies display categorical variables. The Mann-Whitney U test was used for continuous variables and chi-square tests for categorical variables. The associations between frailty and physical functioning and the risk of locally-advanced breast cancer were determined using multivariable modified Poisson models with robust standard errors to estimate rate ratios (RR) and 95% confidence intervals (CI) [22]. Crude and multivariable models with adjustment for age at diagnosis, race, marital status, education, number of comorbidity conditions, who completed the survey and survey type were selected a priori. P-values of ≤0.005 were considered statistically significant and to maintain a family wise type 1 error rate of 0.05 when up to 10 comparisons of subscales are made.

3. Results

Among the 2411 women with a first primary breast cancer diagnosis identified from the SEER-MHOS dataset from 1998 to 2013, the median age was 75 (interquartile range 71–80) and 73.3% were white (Table 1). The majority of women were diagnosed with earlier stage breast cancer (stage I-II, 90.8%) compared to late stage breast cancer (stage III, 9.2%). Women diagnosed with early stages I-II breast cancers were similar to women diagnosed with stage III breast cancer with respect to age at diagnosis and race. Compared to women with stage III breast cancer, a higher proportion of women with stages I-II breast cancer had hormone receptor positive breast disease (80% vs. 63.1%, p < 0.001). Compared to women diagnosed with stage III breast cancer, a higher proportion of women with stage I-II breast cancer were married (44% vs. 29%, p < 0.001) and reported good or better health status (73% vs. 65%, p = 0.021). Stage at diagnosis was similar in respect to comorbid conditions and the prevalence of each individual comorbidity. The median time between survey and diagnosis was 11 months (IQR 6–17), which did not differ by stage. The majority of surveys were administered by mail (59.7%) and completed by the patient themselves (61.5%). A slightly higher proportion of women diagnosed at stage III were frail (23.9% vs. 20.8%, p = 0.344) compared to stage I-II.

Descriptive characteristics of women by frailty status is represented in Table 2. On average, women who were younger were more robust (median age 74, IQR 70–79), compared to pre-frail (75, IQR 71–80) and frail (76, IQR 71–81). A higher proportion of robust patients were white (78% vs. 72% vs. 65%) diagnosed at stage I (62% vs. 59% vs. 52%), have a college education or more (46% vs. 36% vs. 26%), are more likely to be married (48% vs. 42% vs. 34%) and report they are in good or above good health (93% vs. 68% vs. 31%) compared to pre-frail and frail. Compared to robust women, a higher proportion of frail women reported depressive symptoms (58% vs. 15%). The median number of comorbid conditions was highest among women who were frail (5, IQR 3–6), compared to those who were pre-frail (3, IQR 2–4) or robust (2, IQR 1–2). Time in months from survey completion to diagnosis did not differ by frailty status (12 vs. 11 vs. 11). There was a higher proportion of frail women who had surveys completed by a person other than themselves, compared to those who were pre-frail or robust (16.1% vs. 7.2% vs. 4.4%).

The health-related quality of life measures derived from the VR-12 are reported in Table 3 by breast cancer stage at diagnosis. Women at early breast cancer stages had on average a higher PCS score (41.4% vs. 37.8%, p = 0.152), RF score (42.5% vs. 40.9%, p = 0.233) compared to those diagnosed at stage III. Stages I-II, and III were similar in regard to MCS (55.3 vs. 55.0, p = 0.586) and the BP score (41.8 vs. 41.8, p = 0.674). All other subscale measures were similar between stages, except for physical functioning (39.3 vs. 38.5), which was statistically different (p < 0.01).

Composite and subscale levels for health-related quality of life are reported in Table 4 by frailty categories. Compared to robust women, women that were frail and pre-frail had lower PCS scores (48.9 vs. 34.8 vs. 25.2, p < 0.001), physical functioning (PF) scores (49 vs. 37.1 vs. 19.6, p < 0.001), role limitations due to physical problems (RP) scores (55.6 vs. 33.4 vs. 26.1, p < 0.001), and bodily pain (BP) scores (49.4 vs. 39.6 vs. 31.3, p < 0.001).

Results from the multivariable Poisson regression models to assess the association between frailty and physical functioning subscales and the risk of locally advanced breast cancer diagnosis are reported in Table 5. In unadjusted analyses, frail health status was associated with 25% higher risk of being diagnosed with locally advanced breast cancer (RR 1.25, 95% CI 0.91–1.71, p = 0.17), and pre-frail status was associated with a 16% higher risk (RR 1.16, 95% CI 0.87–1.56, p = 0.31) compared to robust. After adjustment for age at diagnosis, race, marital status, education, number of comorbidity conditions, who completed the survey, and survey type, the risk estimate associated with frail health status was attenuated (RR 1.16, 95% CI 0.80–1.69, p = 0.45) and not statistically significant. Compared to the highest quartile of PCS, those in the lowest quartile of PCS had a 11% increased risk of locally advanced breast cancer (RR 1.11, 95% CI 0.74–1.65, p = 0.62) that was not statistically significant. In comparison to the highest quartile of physical functioning, there was a 67% increased risk of locally advanced breast cancer (RR 1.67, 95% CI 1.13–2.48, p = 0.01) in quartile 3, a 28% increased risk in quartile 2 (RR 1.28, 95% CI 0.85–1.93, p = 0.24), and a 56% increased risk (RR 1.56, 95% CI 1.04–2.34, p = 0.03) in the lowest quartile 1. Lastly, in the RP highest quartile in comparison to the lowest was not statistically significant (RR 1.32, 95% CI 0.83–2.10, p = 0.24), nor was BP (RR 0.80, 95% CI 0.54–1.17, p = 0.25).

4. Discussion

In this retrospective cohort study of older women diagnosed with stage I-III breast cancer, we evaluated associations between frailty and physical health-related quality of life with risk of locally-advanced breast cancer. Overall, most health related quality of life measures for women diagnosed with locally advanced vs early stage breast cancer were lower but not significantly different, with the exception of the PF subscale. Breast cancer patients classified as frail according to the DAFI had significantly lower health related quality of life measures compared to women that were classified as robust or pre-frail. Poorer physical functioning was associated with an approximately 60% higher rate of diagnosis with locally-advanced breast cancer. This has potential implications for tailored screening recommendations in older females with physical functioning limitations that may still benefit from earlier detection of breast cancer.

Frailty, measured using the DAFI was first identified as a predictor for all-cause and breast cancer-specific mortality among older women in...
Table 1
Descriptive characteristics at breast cancer diagnosis by stage.

Characteristics at breast cancer diagnosis	All Women n = 2411	Stage I-II n = 2189	Stage III n = 222	P^a
Age at diagnosis, Median (interquartile range)	75 (71–80)	75 (70–80)	75.5 (71–81)	0.178
65-74	1165 (48.3%)	1067 (48.7%)	98 (44.1%)	0.230
75-84	1028 (42.6%)	930 (42.5%)	98 (44.1%)	
85+	218 (9.0%)	192 (8.8%)	26 (11.7%)	
Year at diagnosis				
1998-2003	823 (34.1%)	739 (33.8%)	84 (37.8%)	0.348
2004-2008	515 (21.4%)	466 (21.3%)	49 (22.1%)	
2009-2013	1073 (44.5%)	984 (45.0%)	89 (40.1%)	
Race				
White	1776 (73.7%)	1606 (73.4%)	170 (76.6%)	0.183
Black	228 (9.5%)	204 (9.3%)	24 (10.8%)	
Other	407 (16.9%)	379 (17.3%)	28 (12.6%)	
Radiation				
Yes	1117 (46.3%)	1079 (49.3%)	107 (48.2%)	0.055
No	1186 (49.2%)	1019 (46.6%)	98 (44.1%)	
Unknown	108 (4.5%)	91 (4.2%)	17 (7.7%)	
Surgery				
Breast Conserving	1412 (58.6%)	1376 (62.9%)	36 (16.2%)	<0.001
Mastectomy	930 (38.6%)	765 (34.9%)	165 (74.3%)	
No Surgery	69 (2.9%)	48 (2.2%)	21 (9.5%)	
Estrogen/Progestin Receptor				
Positive or Borderline	1911 (79.3%)	1767 (80.7%)	144 (64.9%)	<0.001
Negative	330 (13.7%)	271 (12.4%)	59 (26.6%)	
Missing	170 (7.1%)	151 (6.9%)	19 (8.6%)	
Marital status				
Married	1037 (43.0%)	971 (44.4%)	65 (29.3%)	<0.001
Not Married	1273 (52.8%)	1173 (53.6%)	153 (68.9%)	
Unknown	101 (4.2%)	45 (2.1%)	3 (1.4%)	
Education				
Less than high school	565 (23.4%)	503 (23.0%)	62 (27.9%)	0.218
High school graduate or GED	860 (35.7%)	785 (35.9%)	75 (33.8%)	
College graduate or above	935 (38.8%)	857 (39.2%)	78 (35.1%)	
Missing	51 (2.1%)	44 (2.0%)	7 (3.2%)	
Smoking status				
Current	190 (7.9%)	170 (7.8%)	20 (9.0%)	0.782
Never	1796 (74.5%)	1634 (74.6%)	162 (73.0%)	
Unknown	425 (17.6%)	385 (17.6%)	40 (18.0%)	
Body mass index (kg/m^2)				
<25	449 (18.6%)	411 (18.8%)	38 (17.1%)	0.182
25-29	443 (18.4%)	403 (18.4%)	40 (18.0%)	
30-34	223 (9.2%)	210 (9.6%)	13 (5.9%)	
35+	151 (6.3%)	140 (6.4%)	11 (5.0%)	
Unknown	1145 (47.5%)	1025 (46.8%)	120 (54.1%)	
General Health Status, n (%)				
Good or Above	1748 (72.5%)	1603 (73.2%)	145 (65.3%)	0.021
Fair or Poor	621 (25.8%)	551 (25.2%)	70 (31.5%)	
Depression Symptoms, n (%)				
Yes	684 (28.4%)	616 (28.1%)	68 (30.6%)	0.260
No	1654 (68.6%)	1510 (69.0%)	144 (64.9%)	
DAFI Scores, n (%)				
Robust	1194 (49.5%)	1094 (50.0%)	100 (45.0%)	0.344
Pre-frail	709 (29.4%)	640 (29.2%)	69 (31.1%)	
Frail	508 (21.1%)	455 (20.8%)	53 (23.9%)	
Clinical Characteristics				
Number of comorbid conditions				
Median	2 (1–4)	2 (1–4)	2 (1–4)	0.974
0-2	1236 (51.3%)	1122 (51.3%)	114 (51.4%)	0.632
3 or more	1166 (48.4%)	1058 (48.3%)	108 (48.6%)	
Missing	9 (0.4%)	9 (0.4%)	0 (0.0%)	
Heart Conditions				
At least 1	1768 (73.3%)	1613 (73.7%)	155 (69.8%)	0.224
None	632 (26.2%)	565 (25.8%)	67 (30.2%)	
Missing	11 (0.5%)	11 (0.5%)	0 (0.0%)	
Stroke				
Yes	169 (7.0%)	151 (6.9%)	18 (8.1%)	0.230
No	2198 (91.2%)	2001 (91.4%)	197 (88.7%)	
Missing	44 (1.8%)	37 (1.7%)	7 (3.2%)	
Cardiovascular conditions				
At least 1	1787 (74.1%)	1631 (74.5%)	156 (70.3%)	0.197
None	614 (25.5%)	548 (25.0%)	66 (29.7%)	
Missing	10 (0.4%)	10 (0.5%)	0 (0.0%)	

(continued on next page)
a retrospective cohort study by Mandelblatt et al. [11]. Their analysis showed an increase in all-cause mortality as frailty increases to pre-frail and frail compared to robust, HR 1.7 (95% CI 1.3-2.4) and 2.4 (95% CI 1.5–4.0) respectively. A similar relationship was observed among breast cancer-specific mortality, with HR 1.6 (95% CI 1.0–2.6) for pre-frail vs robust women and increasing to HR 3.1 (95% CI 1.6–5.6) for frail vs robust women. Greater evidence on associations between frailty and breast cancer outcomes is critical given the underrepresentation of older women, particularly those that are frail or with physical limitations, in cancer clinical trials. Utilizing frailty assessments as a tool for making informed clinical decisions, including treatment decisions, for patients with breast cancer are increasing recommended over the use of ‘chronological’ age alone [23]. In turn, the multiple breast cancer treatment modalities that have improved survival, including radiotherapy and multi-agent chemotherapy regimens, have meaningful impacts on physical health, especially in patients with existing frailty. After breast cancer survival, lower levels of physical functioning are then associated with higher morbidity and mortality [24]. There is little evidence on how frailty screenings can be best utilized in the breast cancer treatment pathway.

Increasing frailty in older women with breast cancer is also associated with poorer health related quality of life outcomes, including physical functioning [25]. These measures are important, as both physical function and health related quality of life are predictors of breast cancer survival [26,27]. Furthermore, several studies have shown that a decrease in physical functioning is associated with an increase in all-cause and breast cancer-specific morbidity and mortality [24,27]. As physical activity has been shown to decrease cancer mortality among cancer survivors, interventions to improve physical functioning after breast cancer diagnosis may help improve quality of life measures and overall survival [28].

Beyond physical functioning, the effect of other health related quality of life measures on staging at breast cancer diagnosis were null. These findings could be explained by several factors. Individuals with severe mobility limitations have a decrease utilization of preventive services, reduced access to medical services, and are at greater risk of negative health outcomes [29–33]. Within the Medical Outcomes Study 36-item Short-Form health Survey (SF-36), the physical functioning scale includes ten questions which score a respondent’s limitations performing various physical activities, with a higher reported score representing better physical functioning [34]. While this scale purely reflects mobility limitations, other health related quality of life measures reflect mental conditions, or both physical and mental conditions [35]. It is plausible that the health related quality of life measure of physical functioning effectively captured the limitations of a respondent with extreme mobility issues to obtain preventive services, including screening mammography.

A patient’s frailty level often dictates the use of screening mammography in older women. The benefits of screening mammography are rightfully weighed against the potential burden of further work-up from a positive mammogram in frail adults. In a cohort study of 216 frail older women with a mean age of 81 years, only 4 were ultimately diagnosed with stage 1 cancer or ductal carcinoma in situ [36]. Our study, with a relatively larger sample size, suggests that older women with higher levels of frailty and lower levels of physical functioning are at the highest risk of being diagnosed with stage III breast cancer. We therefore suggest that the risk of locally-advanced breast cancer be weighed among potential benefits and harms when recommending screening for older women with physical functioning limitations.

A major strength of this study was the availability of robust data through the linkage of MHOS and SEER databases. This population-based information with linkage to the MHOS surveys provided a range of comprehensive patient characteristics that enabled the construction
Table 2
Demographic, clinical and survey characteristics among women at breast cancer diagnosis by frailty status.

Characteristics at breast cancer diagnosis	Robust (0 to <0.2) n = 1194	Pre-Frail (0.2 to <0.35) n = 709	Frail (0.35–1) n = 508	P^a
Age at diagnosis				
Median (interquartile range)	74 (70–79)	75 (71–80)	76 (71–81)	<0.001
65-74	626 52.4%	313 44.1%	226 44.5%	
75-84	499 41.8%	318 44.9%	211 41.5%	
85+	69 5.8%	78 11.0%	71 14.0%	
Year at diagnosis				
1998–2003	421 35.3%	235 33.1%	167 32.9%	0.495
2004–2008	260 21.8%	155 21.9%	100 19.7%	
2009–2013	513 43.0%	319 45.0%	241 47.4%	
Race				
White	936 78.4%	508 71.7%	332 65.4%	<0.001
Black	75 6.3%	66 9.3%	87 17.1%	
Other	183 15.3%	135 19.0%	89 17.5%	
Radiation				
Yes	618 51.8%	347 48.9%	221 42.5%	0.015
No	518 43.4%	332 46.8%	267 52.6%	
Unknown	58 4.9%	30 4.2%	20 3.9%	
Breast Cancer Stage				
Stage I	736 61.6%	417 58.8%	26 52.2%	<0.001
Stage II	358 30.0%	223 31.5%	19 37.4%	
Stage III	100 8.4%	69 9.7%	5 10.4%	
Surgery	734 61.5%	410 57.8%	268 52.8%	<0.001
Estrogen/Progester Receptor^b				
Positive or Borderline	963 80.7%	561 79.1%	387 76.2%	0.210
Negative	155 13.0%	92 13.0%	83 16.3%	
Missing	76 6.4%	56 7.9%	38 7.5%	
Marital status				
Married	570 47.7%	294 41.5%	172 33.9%	<0.001
Not Married	603 50.5%	397 56.0%	327 64.4%	
Unknown	21 1.8%	18 2.5%	9 1.8%	
Education				
Less than high school	189 15.8%	197 27.8%	179 35.2%	<0.001
High School graduate or GED	437 36.6%	235 33.1%	188 37.0%	
College graduate or above	550 46.1%	255 36.0%	130 25.6%	
Missing	18 1.5%	22 3.1%	11 2.2%	
Smoking status				
Current	94 7.9%	50 7.1%	46 9.1%	0.471
Never	882 73.9%	530 74.8%	384 75.6%	
Unknown	218 18.3%	129 18.2%	78 15.4%	
Body mass index (kg/m²)				
<25	248 20.8%	130 18.3%	71 14.0%	<0.001
25–29	252 21.1%	112 15.5%	81 15.9%	
30–34	86 7.2%	82 11.6%	55 10.8%	
35+	39 3.3%	54 7.6%	58 11.4%	
Unknown	569 47.7%	333 47.0%	243 47.8%	
General Health Status, n (%)				
Good or Above	1108 92.8%	484 68.3%	156 30.7%	<0.001
Fair or Poor	63 5.3%	218 30.7%	340 66.9%	
Depression Symptoms, n (%)				
Yes	175 14.7%	217 30.6%	292 57.5%	<0.001
No	985 82.5%	468 66.0%	201 39.6%	
Clinical Characteristics				
Number of comorbid conditions				
Median	2 (1–2)	3 (2–4)	5 (3–6)	<0.001
0-2	927 77.6%	249 35.1%	60 11.8%	
3 or more	262 21.9%	456 64.3%	448 88.2%	
Missing	5 0.4%	4 0.6%	0 0.0%	
Heart Conditions				
At least 1	724 60.6%	579 81.7%	465 91.5%	<0.001
None	465 38.9%	125 17.6%	42 8.3%	
Missing	5 0.4%	5 0.7%	1 0.2%	
Stroke	24 2.0%	51 7.2%	94 18.5%	<0.001
No	1158 97.0%	644 90.8%	396 78.0%	
Missing	12 1.0%	14 2.0%	18 3.5%	
Cardiovascular conditions				
At least 1	731 61.2%	585 82.5%	471 92.7%	<0.001
None	458 38.4%	120 16.9%	36 7.1%	
Missing	5 0.4%	4 0.6%	1 0.2%	

(continued on next page)
of a DAFI score retrospectively. In addition, survey responses to health related quality of life measures were recorded prior to any cancer diagnoses, providing this study the ability to assess the potential impact of frailty and quality of life on staging at breast cancer diagnosis. This study also has several limitations including generalizability, lack of information on individual provider screening recommendations and potential healthy user bias. The SEER Program contains cancer incidence data from 35% of the US population, but lacks representation during this study period from other diverse states, including Texas and Florida. There is additional concern that Medicare Advantage enrollees randomly selected to answer surveys within the MHOS database are systematically different from other beneficiaries, including those in Medicare Fee-For-Service [37]. As the patients in this study were majority white, other racial/ethnic groups were underrepresented. Therefore, our findings may not be entirely representative of the experience of younger women with breast cancer, those lacking health coverage and racial/ethnic minority women. Another limitation is that variables associated with differences in breast cancer risk were unmeasured or unmeasured within the SEER-MHOS linked data resource.

Table 2 (continued)

	Robust (0 to <0.2) n = 1194	Pre-Frail (0.2 to <0.35) n = 709	Frail (0.35–1) n = 508	P-value
Diabetes				
Yes	119	172	205	<0.001
No	1062	525	294	0.011
Missing	13	12	9	0.136
Arthritis				
Yes	488	493	437	<0.001
No	687	197	65	0.129
Missing	10	10	1	0.234
Asthma/COPD/Emphysema				
Yes	75	111	143	<0.001
No	1105	581	346	0.617
Missing	14	17	19	0.244
Survey Characteristics				
Months from survey to diagnosis	12 (6-17)	11 (5-17)	11 (6-18)	0.284
MHOS survey administration				
Mail	1031	616	429	0.001
Telephone	163	93	79	0.073
Who completed survey				
Patient	1087	611	382	<0.001
Person other than patient	52	51	82	0.161
Unknown	55	47	44	0.077

Note: Column percentages do not sum to 100% for some variables due to missing data.

1 Number of comorbid conditions was totaled from presence/absence of: angina pectoris/coronary artery disease, congestive heart failure, myocardial infarction, other heart conditions, stroke, emphysema/asthma/COPD, Crohn’s disease/ulcerative colitis/inflammatory bowel disease, arthritis of the hip/knee, arthritis of the hand/wrist, sciatica, diabetes/high blood sugar/sugar in urine, and hypertension. If patient is missing data on at least one comorbidity, then number of comorbid conditions is considered missing.

2 Possible patient reported heart conditions include hypertension, angina or coronary artery disease, congestive heart failure, acute myocardial infarction, other heart conditions.

3 Includes heart conditions and stroke.

4 Statistical test used to compare groups include Chi-square tests.

5 Estrogen/Progestin receptor positive or borderline status was defined as being positive in either estrogen or progestin receptor. Negative was defined as being negative for both estrogen and progestin receptors, and all others were defined as missing.

Table 3

Health-related quality of life (HRQOL) characteristics derived from the Veterans RAND 12-Item Health Survey (VR-12) among women at breast cancer diagnosis by breast cancer stage at diagnosis.

Characteristics, Median (IQR)	Overall n = 2411	Stage I-II n = 2189	Stage III n = 222	P-Valuea		
PCS	41.0	29.8–49.5	30.0–49.5	37.8	29.0–48.7	0.152
MCS	55.2	45.1–60.2	45.2–60.2	55.0	43.1–60.4	0.586
PF	39.3	28.4–50.2	28.4–50.2	38.5	25.9–48.2	0.006
RP	42.2	27.9–55.6	28.9–55.6	40.9	27.5–55.6	0.233
BP	41.8	35.4–53.6	35.4–53.6	41.8	35.4–53.6	0.674
GH	44.7	39.0–55.7	39.0–55.7	44.7	38.2–55.3	0.218
MH	54.9	42.1–59.5	42.1–59.5	54.9	42.1–59.5	0.841
RE	55.7	37.9–56.9	37.9–56.9	55.7	37.9–55.7	0.234
SF	51.7	35.0–57.0	35.0–57.0	46.2	35.0–57.0	0.112
VT	46.9	42.3–58.7	42.7–58.7	46.9	39.9–56.7	0.103

IQR: Interquartile range, SRH: Self-reported health, PCS: Physical component summary score, MCS: Mental component summary score, PF: Physical Functioning, RP: Role limitations due to physical problems, BP: Bodily pain, GH: General health perceptions, MH: General mental health, RE: Role limitations due to emotional problems, SF: Social functioning, VT: Vitality.

a Mann-Whitney U test.
Table 4
Health-related quality of life (HRQOL) characteristics derived from the Veterans RAND 12-Item Health Survey (VR-12) among women at breast cancer diagnosis by DAFI scores.

Characteristics, Median (IQR)	Overall n = 2411	Robust n = 1194	Pre-Frail n = 709	Frail n = 508	P-Value
PCS	41.0	29.8–49.5	48.9	42.8–53.7	
MCS	55.2	45.1–60.2	58.5	53.4–61.0	
PF	39.3	28.4–50.2	49.0	43.7–53.9	<0.001
RP	42.2	27.9–55.6	55.6	48.2–55.8	<0.001
BP	41.8	35.4–53.6	49.4	41.8–58.4	<0.001
GH	44.7	39.0–55.7	54.9	44.7–55.7	<0.001
MH	54.9	42.1–59.5	57.3	52.9–59.9	<0.001
RE	55.7	37.9–56.9	55.7	55.7–56.9	<0.001
SF	51.7	35.0–57.0	57.0	50.7–57.3	<0.001
VT	46.9	42.3–58.7	56.7	46.9–58.7	<0.001

Table 5
Multivariable Poisson regression models to assess the association between frailty and physical functioning subscales and the risk of locally advanced breast cancer diagnosis.

DAFI Categories	RR 95%CI	P-value				
Robust	1.00	1.00				
Pre-frail	1.16	0.87–1.56	0.31	0.83–1.59	0.41	
Frail	1.25	0.91–1.71	0.17	1.16	0.80–1.69	0.45
PCS Quartiles						
1	1.19	0.82–1.73	0.35	1.11	0.74–1.65	0.62
2	1.28	0.89–1.84	0.19	1.22	0.84–1.78	0.29
3	0.91	0.62–1.36	0.66	0.91	0.61–1.36	0.65
4	1.00			1.00		
PF Quartiles						
1	1.67	1.14–2.45	0.01	1.56	1.04–2.34	0.03
2	1.35	0.90–2.02	0.15	1.28	0.85–1.93	0.24
3	1.67	1.13–2.46	0.01	1.67	1.13–2.48	0.01
4	1.00			1.00		
RP Quartiles						
1	1.41	0.91–2.20	0.13	1.32	0.83–2.10	0.24
2	1.24	0.79–1.94	0.35	1.25	0.79–1.97	0.34
3	1.31	0.86–2.01	0.21	1.33	0.86–2.05	0.20
4	1.00			1.00		
BP Quartiles						
1	0.87	0.61–1.25	0.45	0.80	0.54–1.17	0.25
2	0.96	0.69–1.34	0.81	0.94	0.66–1.33	0.71
3	0.74	0.49–1.11	0.15	0.73	0.49–1.11	0.14
4	1.00			1.00		

RR: Rate Ratio; CI: confidence intervals; IQR: Interquartile range; DAFI: deficit-diagnosis. a Adjusted for age at diagnosis, race, marital status, education, number of comorbid conditions, who completed the survey question, and survey disposition.

5. Conclusions
We found that older breast cancer patients with increased frailty report lower measures of quality of life, including physical functioning. Our findings suggest that poor physical functioning may be associated with diagnosis of later-stage, locally-advanced breast cancer. This presents the need for clinicians and providers to carefully consider frailty and physical functioning when individualizing a patient’s need for breast cancer screening.

Author Contributions
Chandler Coleman: Conceptualization; Data Curation; Formal Analysis; Investigation; Methodology; Validation; Visualization; Writing – original draft; Writing – review & editing. Connie H. Yan: Conceptualization; Data Curation; Formal Analysis; Investigation; Methodology; Validation; Visualization; Writing – original draft; Writing – review & editing. Naomi Y. Ko: Conceptualization; Writing – review & editing. Nadia A. Nabulsi: Conceptualization; Data Curation; Formal Analysis; Investigation; Methodology; Validation; Visualization; Writing – original draft; Writing – review & editing. Kent F. Hoskins: Conceptualization; Writing – review & editing. Brian C.-H. Chiu: Conceptualization; Writing – review & editing. Gregory S. Calip: Conceptualization; Data Curation; Formal Analysis; Funding Acquisition; Investigation; Methodology; Project Administration; Resources; Software; Supervision; Validation; Visualization; Writing – original draft; Writing – review & editing.

Funding
Research reported in this publication was supported, in part, by the National Institutes of Health’s National Cancer Institute, Grant Numbers U54CA202995, U54CA202997, and U54CA203000. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Data availability
The authors have full control of all primary data. The data that support the findings of this study are available from the SEER-MHOS data resource. Restrictions apply to the availability of these data, which were used under license of this study.

Ethical approval
The data used in the study were de-identified and compliant with the
The Breast 64 (2022) 19–28

Acknowledgements

This study used data from the Surveillance, Epidemiology, and End Results (SEER) – Medicare Health Outcomes Survey (MHOS) linked data resource. The authors acknowledge the efforts of the National Cancer Institute; the Centers for Medicare and Medicaid Services; MHOS; Information Management Services, Inc; and the SEER Program tumor registries in the creation of the SEER-MHOS database. The National Cancer Institute provided suggested edits and approval of the manuscript before final journal submission.

References

[1] Chan DSM, Abar L, Cariolou M, et al. World Cancer Research Fund International: continuous Update Project—systematic literature review and meta-analysis of observational cohort studies on physical activity, sedentary behavior, and adiposity, and weight change and breast cancer risk. Cancer Causes Control 2019;30:1183–200. https://doi.org/10.1007/s10552-019-01223-w.

[2] Bandeen-Roche K, Seplaki CL, Huang J, Buta B, Kalyani RR, Varadhan R, Xue QL, Lichtman SM, Mitnitski A, Rockwood K. Prevalence and 10-year outcomes of frailty in older adults: a nationally representative population. J Gerontol A Biol Sci Med Sci 2015;70(11):1427–34. https://doi.org/10.1093/gerona/glv131.

[3] Bluethmann SM, Mariotto AB, Rowland JH. Anticipating the “silver tsunami”: mechanistic underpinnings of frailty. Clin Geriatr Med 2011;27(1):17–34. https://doi.org/10.1016/j.cger.2010.08.008.

[4] Song X, Mitnitski A, Rockwood K. Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation. J Am Geriatr Soc 2010;58(4):681–7. https://doi.org/10.1111/j.1532-5415.2010.02764.x.

[5] Rockwood K, Mitnitski A. Frailty defined by deficit accumulation and geriatric medicine defined by frailty. Clin Geriatr Med 2011;27(1):17–26. https://doi.org/10.1016/j.cger.2010.08.008.

[6] Searle SD, Mitnitski A, Goh G. Rockwood K. A standard procedure for creating a frailty index. BMC Geriatr 2008;8:24. https://doi.org/10.1186/1471-2318-8-24.

[7] Mandelblatt JS, Cai L, Luta G, Kimmick G, Clapp J, Isaacs C, Pichet B, Barry W, Winer E, Sugarman S, Hudes C, Most H, Cohen HJ, Hurria A. Frailty and long-term mortality of older breast cancer patients: CALGB 399901 (Alliance). Breast Cancer Res Treat 2017;164(1):107–17. https://doi.org/10.1007/s10539-017-4222-8.

[8] Ambrosi A, Allemani M, Schmid D, et al. Surveillance epidemiology and end results (SEER) Program overview of the SEER Program. http://seer.cancer.gov/about/overview.html. [Accessed 28 March 2019].

[9] Selim A, Rogers W, Quinlan, Gahath J, Kottke-Le, Kats L, A new algorithm to build bridges between two patient-reported health outcome instruments: the MOS SF-36(R) and the VR-12 Health Survey. Qual Life Res 2018;27(8):2195–206. https://doi.org/10.1007/s11136-018-5053-0.

[10] Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol 2004;160(1):65–71. https://doi.org/10.1093/aje/kwh096.

[11] Williams GR, Deal AM, Sanoff HK, Nyrop KA, Guerard EJ, Pergolotti M, Shachar SS, Reeve BB, Bensen JT, Choi SK, Muss HB. Frailty and health-related quality of life in women with breast cancer. Support Care Cancer 2019;27(7):2693–8. https://doi.org/10.1007/s00520-018-4558-6.

[12] De Aguilar SS, Bergmann A, Mattos IE. Quality of life as a predictor of overall survival after breast cancer treatment. Qual Life Res 2014;23(2):627–37. https://doi.org/10.1007/s11136-013-0475-8.

[13] Westhues F, Mehta GA, Zafar P, Maradit K, Liu K, Rieker K, Louie JS, Chisholm D, Weiss S, Martin B, Lear S. Frailty as a prognostic factor in older people with breast cancer: an analysis of SEER-Medicare linked data. J Clin Oncol 2014;32(24):2595–603. https://doi.org/10.1200/JCO.2013.54.8347.

[14] Marinac C, Patterson RE, Villasenor A, Flatt SW, Pierce JP. Mechanisms of association between physical functioning and breast cancer mortality: evidence from the Women’s Healthy Eating and Living Study. Journal of cancer survivorship : research and practice 2014;8(4):402–9. https://doi.org/10.1007/s11764-013-0234-z.

[15] Williams GR, Deal AM, Sanoff HK, Nyrop KA, Guerard EJ, Pergolotti M, Shachar SS, Reeve BB, Bensen JT, Choi SK, Muss HB. Frailty and health-related quality of life in women with breast cancer. Support Care Cancer 2019;27(7):2693–8. https://doi.org/10.1007/s00520-018-4558-6.

[16] De Aguilar SS, Bergmann A, Mattos IE. Quality of life as a predictor of overall survival after breast cancer treatment. Qual Life Res 2014;23(2):627–37. https://doi.org/10.1007/s11136-013-0475-8.

[17] Williams GR, Deal AM, Sanoff HK, Nyrop KA, Guerard EJ, Pergolotti M, Shachar SS, Reeve BB, Bensen JT, Choi SK, Muss HB. Frailty and health-related quality of life in women with breast cancer. Support Care Cancer 2019;27(7):2693–8. https://doi.org/10.1007/s00520-018-4558-6.

[18] De Aguilar SS, Bergmann A, Mattos IE. Quality of life as a predictor of overall survival after breast cancer treatment. Qual Life Res 2014;23(2):627–37. https://doi.org/10.1007/s11136-013-0475-8.

[19] Westhues F, Mehta GA, Zafar P, Maradit K, Liu K, Rieker K, Louie JS, Chisholm D, Weiss S, Martin B, Lear S. Frailty as a prognostic factor in older people with breast cancer: an analysis of SEER-Medicare linked data. J Clin Oncol 2014;32(24):2595–603. https://doi.org/10.1200/JCO.2013.54.8347.

[20] Marinac C, Patterson RE, Villasenor A, Flatt SW, Pierce JP. Mechanisms of association between physical functioning and breast cancer mortality: evidence from the Women’s Healthy Eating and Living Study. Journal of cancer survivorship : research and practice 2014;8(4):402–9. https://doi.org/10.1007/s11764-013-0234-z.

[21] Williams GR, Deal AM, Sanoff HK, Nyrop KA, Guerard EJ, Pergolotti M, Shachar SS, Reeve BB, Bensen JT, Choi SK, Muss HB. Frailty and health-related quality of life in women with breast cancer. Support Care Cancer 2019;27(7):2693–8. https://doi.org/10.1007/s00520-018-4558-6.

[22] De Aguilar SS, Bergmann A, Mattos IE. Quality of life as a predictor of overall survival after breast cancer treatment. Qual Life Res 2014;23(2):627–37. https://doi.org/10.1007/s11136-013-0475-8.

[23] Williams GR, Deal AM, Sanoff HK, Nyrop KA, Guerard EJ, Pergolotti M, Shachar SS, Reeve BB, Bensen JT, Choi SK, Muss HB. Frailty and health-related quality of life in women with breast cancer. Support Care Cancer 2019;27(7):2693–8. https://doi.org/10.1007/s00520-018-4558-6.

[24] De Aguilar SS, Bergmann A, Mattos IE. Quality of life as a predictor of overall survival after breast cancer treatment. Qual Life Res 2014;23(2):627–37. https://doi.org/10.1007/s11136-013-0475-8.

[25] Williams GR, Deal AM, Sanoff HK, Nyrop KA, Guerard EJ, Pergolotti M, Shachar SS, Reeve BB, Bensen JT, Choi SK, Muss HB. Frailty and health-related quality of life in women with breast cancer. Support Care Cancer 2019;27(7):2693–8. https://doi.org/10.1007/s00520-018-4558-6.

[26] De Aguilar SS, Bergmann A, Mattos IE. Quality of life as a predictor of overall survival after breast cancer treatment. Qual Life Res 2014;23(2):627–37. https://doi.org/10.1007/s11136-013-0475-8.

[27] Williams GR, Deal AM, Sanoff HK, Nyrop KA, Guerard EJ, Pergolotti M, Shachar SS, Reeve BB, Bensen JT, Choi SK, Muss HB. Frailty and health-related quality of life in women with breast cancer. Support Care Cancer 2019;27(7):2693–8. https://doi.org/10.1007/s00520-018-4558-6.

[28] De Aguilar SS, Bergmann A, Mattos IE. Quality of life as a predictor of overall survival after breast cancer treatment. Qual Life Res 2014;23(2):627–37. https://doi.org/10.1007/s11136-013-0475-8.
mental health constructs. Med Care 1993;31(3):247–63. https://doi.org/10.1097/00005650-199303000-00006.

[36] Walter LC, Eng C, Covinsky KE. Screening mammography for frail older women: what are the burdens? J Gen Intern Med 2001;16(11):779–84. https://doi.org/10.1111/j.1525-1497.2001.10113.x.

[37] Martino SC, Elliott MN, Haviland AM, Saliba D, Burkhart Q, Kanouse DE. Comparing the health care experiences of Medicare beneficiaries with and without depressive symptoms in Medicare managed care versus fee-for-service. Health Serv Res 2016;51(3):1002–20. https://doi.org/10.1111/1475-6773.12359.