Measurement of the branching fraction and CP asymmetry for $B \rightarrow D^0 \pi$ decays

T. Bloomfield, 52 M. E. Sevior, 52 I. Adachi, 19, 15 H. Aihara, 88 S. Al Said, 82, 37 D. M. Asner, 3 V. Aulchenko, 4, 66 T. Aushev, 21 R. Ayad, 82 V. Babu, 8 S. Bahinipati, 24 P. Behera, 26 J. Bennett, 53 M. Bessner, 18 T. Bilka, 5 J. Biswal, 34 A. Bobrov, 4, 66 G. Bonvicini, 93 A. Bozek, 63 M. Bračko, 50, 34 T. E. Browder, 18 M. Campajola, 31, 58 L. Cao, 2 D. Červenkov, 5 M.-C. Chang, 15 V. Chekelian, 51 A. Chen, 60 B. G. Cheon, 17 K. Chilikin, 44 H. E. Cho, 17 K. Cho, 39 S.-J. Cho, 95 S.-K. Choi, 16 Y. Choi, 80 S. Choudhury, 25 D. Cinabro, 93 S. Cunliffe, 8 S. Das, 49 N. Dash, 26 G. De Nardo, 31, 58 R. Dhamija, 25 F. Di Capua, 31, 58 Z. Doležal, 5 T. V. Dong, 12 S. Dubey, 18 S. Eidelman, 4, 66, 44 D. Epifanov, 4, 66 T. Ferber, 8 D. Ferlevic, 52 B. G. Fulsom, 68 R. Garg, 69 V. Gaut, 26 A. Garms, 4, 66 A. Giri, 25 P. Goldenzweig, 35 C. Hadjivasiliou, 68 S. Halder, 83 O. Hartbrich, 18 K. Hayasaka, 65 H. Hayashii, 59 M. T. Hedges, 18 M. Hernandez Villanueva, 53 W.-S. Hou, 62 C.-L. Hsu, 31, 57 T. Iijima, 56 G. Inguglia, 29 A. Ishikawa, 19, 15 R. Itoh, 19, 15 M. Iwasaki, 67 Y. Iwasaki, 19 W. W. Jacobs, 27 E.-J. Jang, 16 S. Jia, 12 Y. Jin, 48 C. W. Joo, 36 K. K. Joo, 6 A. B. Kaliyar, 83 K. H. Kang, 42 G. Karyan, 8 T. Kawasaki, 38 C. H. Kim, 17 D. Y. Kim, 79 H. J. Kim, 42 S. H. Kim, 76 Y.-K. Kim, 95 T. D. Kimmel, 92 P. Kodyš, 5 T. Konno, 38 A. Korobov, 4, 66 S. Korpar, 50, 34 E. Kovalenko, 4, 65 P. Křížan, 46, 34 R. Kroeger, 53 P. Krokovný, 4, 66 M. Kumar, 49 R. Kumar, 72 K. Kuma, 93 Y.-J. Kwon, 95 K. Lalwani, 49 J. S. Lange, 13 I. S. Lee, 17 S. C. Lee, 42 C. H. Li, 45 J. Li, 42 Y. B. Li, 70 L. Li Giot, 51 J. Libby, 26 K. Lieret, 47 D. Liventsev, 93, 19 T. Luo, 12 C. MacQueen, 52 M. Masuda, 87, 73 T. Matsuda, 54 D. Matvienko, 4, 66, 44 M. Merola, 31, 58 F. Metzner, 35 K. Miyabayashi, 59 R. Mizuk, 44, 21 G. B. Mohanty, 83 S. Mohanty, 83, 91 H. K. Moon, 40 R. Mussa, 32 M. Nakao, 19, 15 Z. Nakankaniec, 63 A. Natochii, 18 L. Nayak, 25 M. Nayak, 80 M. Niyyama, 41 N. K. Nisar, 3 S. Nishida, 19, 15 H. Ono, 64, 65 Y. Onuki, 88 P. Oskin, 44 P. Pakhlov, 44, 55 G. Pakhlova, 21, 44 S. Pardi, 31 H. Park, 42 S.-H. Park, 19 S. Paul, 84, 51 T. K. Pedlar, 48 R. Pestotnik, 34 L. E. Piilonen, 92 T. Podobnik, 46, 34 V. Popov, 21 E. Prencipe, 22 M. T. Prim, 2 M. Ritter, 47 A. Rostomyan, 8 N. Rout, 26 M. Rozanska, 63 G. Russo, 58 D. Sahoo, 83 Y. Sakai, 19, 15 S. Sandilya, 25 A. Sangal, 7 L. Santelj, 46, 34 T. Sanuki, 86 V. Savinov, 71 G. Schnell, 1, 23 J. Schueler, 18 C. Schwanda, 29 A. J. Schwartz, 7 Y. Seino, 65 K. Senyo, 94 M. Shapkin, 30 C. Sharma, 49 C. P. Shen, 12 J.-G. Shiu, 62 B. Shwartz, 4, 66 F. Simon, 51 A. Sokolov, 30 E. Solovieva, 44 M. Starić, 34 Z. S. Stottler, 92 J. F. Strube, 68 M. Sumihama, 14 K. Sumisawa, 19, 15 T. Sumiyoshi, 90 W. Sutcliffe, 2 M. Takizawa, 77, 20, 74 K. Tanida, 33 Y. Tao, 10 F. Tenchini, 8 K. Trabelsi, 43 M. Uchida, 89 K. Uno, 65 S. Uno, 19, 15 Y. Usov, 4, 66 S. E. Vahsen, 18 R. Van Tonder, 2 G. Varner, 18 K. E. Varvell, 81 A. Vossen, 9 E. Waheed, 19 C. H. Wang, 61 E. Wang, 71 M.-Z. Wang, 62 P. Wang, 28 M. Watanabe, 65 S. Watanuki, 43 O. Werbycka, 63 J. Wiechczynski, 63 E. Won, 40 X. Xu, 78 B. D. Yabsley, 81 W. Yan, 75 S. B. Yang, 40 H. Ye, 8 J. H. Yin, 40 C. Z. Yuan, 28 Z. P. Zhang, 75 V. Zhilich, 4, 66 V. Zhukova, 44 and V. Zhulano, 4, 66

(The Belle Collaboration)

1 Department of Physics, University of the Basque Country UPV/EHU, 48080 Bilbao
2 University of Bonn, 53115 Bonn
3 Brookhaven National Laboratory, Upton, New York 11973
4 Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
5 Faculty of Mathematics and Physics, Charles University, 121 16 Prague
6 Chonnam National University, Gwangju 61186
7 University of Cincinnati, Cincinnati, Ohio 45221
8 Deutsches Elektronen-Synchrotron, 22607 Hamburg
9 Duke University, Durham, North Carolina 27708
10 University of Florida, Gainesville, Florida 32611
11 Department of Physics, Fu Jen Catholic University, Taipei 24205
12 Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
13 Justus-Liebig-Universität Gießen, 35392 Gießen
14 Gifu University, Gifu 501-1193
15 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193

arXiv:2111.12337v2 [hep-ex] 12 Mar 2022
Belle Preprint 2021-17
KEK Preprint 2021-15
16 Gyeongsang National University, Jinju 52828
17 Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763
18 University of Hawaii, Honolulu, Hawaii 96822
19 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
20 J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
21 Higher School of Economics (HSE), Moscow 101000
22 Forschungszentrum Jülich, 52425 Jülich
23 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
24 Indian Institute of Technology Bhubaneswar, Satya Nagar 751007
25 Indian Institute of Technology Hyderabad, Telangana 502285
26 Indian Institute of Technology Madras, Chennai 600036
27 Indiana University, Bloomington, Indiana 47408
28 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
29 Institute of High Energy Physics, Vienna 1050
30 Institute for High Energy Physics, Protvino 142281
31 INFN - Sezione di Napoli, 80126 Napoli
32 INFN - Sezione di Torino, 10125 Torino
33 J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
34 J. Stefan Institute, 1000 Ljubljana
35 Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
36 Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583
37 Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589
38 Kitasato University, Sagamihara 252-0373
39 Korea Institute of Science and Technology Information, Daejeon 34141
40 Korea University, Seoul 02841
41 Kyungpook National University, Daegu 41566
43 University of antwerp, CNRS/IN2P3, iJCLab, 91105 Orsay
44 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
45 Liaoning Normal University, Dalian 116029
46 Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
47 Ludwig Maximilians University, 80539 Munich
48 Luther College, Decorah, Iowa 52101
49 Malaviya National Institute of Technology Jaipur, Jaipur 302017
50 Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
51 Max-Planck-Institut für Physik, 80805 München
52 School of Physics, University of Melbourne, Victoria 3010
53 University of Mississippi, University, Mississippi 38677
54 University of Miyazaki, Miyazaki 889-2192
55 Moscow Physical Engineering Institute, Moscow 115409
56 Graduate School of Science, Nagoya University, Nagoya 464-8602
57 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
58 Università di Napoli Federico II, 80126 Napoli
59 Nara Women's University, Nara 630-8506
60 National Central University, Chung-li 32054
61 National United University, Miaoli 36003
62 Department of Physics, National Taiwan University, Taipei 10617
63 H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
64 Nippon Dental University, Niigata 951-8580
65 Niigata University, Niigata 950-2181
66 Novosibirsk State University, Novosibirsk 630090
67 Osaka City University, Osaka 558-8585
68 Pacific Northwest National Laboratory, Richland, Washington 99352
69 Panjab University, Chandigarh 160014
70 Peking University, Beijing 100871
71 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
72 Punjab Agricultural University, Ludhiana 141004
73 Research Center for Nuclear Physics, Osaka University, Osaka 567-0047
74 Meson Science Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198
75 Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026
76 Seoul National University, Seoul 08826
77 Showa Pharmaceutical University, Tokyo 194-8543
78 Soochow University, Suzhou 215006
We measure the branching fractions and CP asymmetries for the decays $B^0 \to D^{0\pi^0}$ and $B^+ \to D^0\pi^+$, using a data sample of 772×10^6 $B\bar{B}$ pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. The branching fractions obtained and direct CP asymmetries are $\mathcal{B}(B^0 \to D^{0\pi^0}) = (2.70 \pm 0.06 \text{ (stat.)} \pm 0.10 \text{ (syst.)}) \times 10^{-4}$, $\mathcal{B}(B^+ \to D^0\pi^+) = (4.53 \pm 0.02 \text{ (stat.)} \pm 0.15 \text{ (syst.)}) \times 10^{-4}$, $A_{CP}(B^0 \to D^{0\pi^0}) = [+0.42 \pm 2.05 \text{ (stat.)} \pm 1.22 \text{ (syst.)}]\%$, and $A_{CP}(B^+ \to D^0\pi^+) = [+0.19 \pm 0.36 \text{ (stat.)} \pm 0.57 \text{ (syst.)}]\%$. The measurements of B are the most precise to date and are in good agreement with previous results, as is the measurement of $A_{CP}(B^+ \to D^0\pi^+)$. The measurement of A_{CP} for $B^0 \to D^{0\pi^0}$ is the first for this mode, and the value is consistent with Standard Model expectations.

PACS numbers: 13.25.Hw, 12.15.Hh

I. INTRODUCTION

The branching fraction (B) of the color-suppressed decay $B^0 \to D^{0\pi^0}$ is measured to be about a factor of four higher than theory predictions made using the “naive” factorization model, where final-state interactions (FSIs) are neglected. This has led to a number of new theoretical descriptions of the process that include FSI’s and also treat isospin-related amplitudes of color-suppressed and color-allowed decays. The $B^0 \to D^{0\pi^0}$ process has been shown to have large nonfactorizable components, so precise measurements of its properties are valuable in comparing different theoretical models used to describe it. Many of these models predict a substantial strong phase in the final state. A non-vanishing strong phase difference between two amplitudes is necessary to give rise to direct CP violation. The direct CP-violation parameter, A_{CP}, for the $B \to D^0\pi$ decay is defined as:

$$A_{CP} = \frac{\Gamma(B \to D^0\pi) - \Gamma(B \to D^{0\pi^0})}{\Gamma(B \to D^0\pi) + \Gamma(B \to D^{0\pi^0})},$$

where Γ is the partial decay width for the corresponding decay.

In the Standard Model (SM), $B^0 \to D^{0\pi^0}$ transitions proceed mainly via the tree-level diagram of Fig.1(a). An exchange diagram (Fig.1(b)) with the same CKM factors is also present, but, due to OZI suppression, is expected to have a much smaller amplitude. As such, direct CP violation in this mode is expected to be small, even in the presence of a strong phase difference from FSI. Measurements of notable CP violation in this decay would be of significant interest and could hint at contributions from Beyond-the-Standard-Model (BSM) physics diagrams. Recently the BaBar and Belle collaborations performed time-dependent CP-violation analyses of the related modes $B^0 \to D^{(*)}\pi h^0$, where $h \in \pi^0, \eta, \omega$ and $D^{(*)}$ refers to D or D^* in a CP eigenstate. They measure the CP-violation parameters $C(\to -A_{CP})$, S_{CP} and ϕ^*_{CP}, and obtain $C(B^0 \to D^{(*)}\pi h^0) = (-2 \pm 8) \times 10^{-2}$. This value is consistent with the expectation of small A_{CP} for $B^0 \to D^{0\pi^0}$. However, this result does not exclude larger values up to 0.1, which would be much larger than SM predictions.

A high precision measurement of B and A_{CP} for $B^0 \to D^{0\pi^0}$ has further utility in addition to comparison to theoretical predictions, as it is a common control mode for use in rare charmless B decays with a π^0. The precise measurement of properties of a control mode is important to provide validation and refinement of analysis techniques.

In this paper, we present new measurements of $B^0 \to D^{0\pi^0}$ using the full data sample of $(772 \pm 10.6) \times 10^6 BB$ pairs (711 fb$^{-1}$) collected with the Belle detector at the KEKB asymmetric-energy e^+e^- (3.5 GeV) on (8.0 GeV) collider operating near the $\Upsilon(4S)$ resonance. We also present corresponding measurements of $B^- \to D^{0\pi^+}$ decays, which proceed via a simple spectator diagram with no color suppression.
II. BELLE DETECTOR

The Belle detector [19] is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter (ECL) consisting of CsI(Tl) crystals. All these detector components are located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside of the coil is instrumented with resistive plate chambers to detect K_d^0 mesons and to identify muons. Two inner detector configurations were used: a 2.0 cm beam-pipe and a 3-layer SVD (SVD1) were used for the first sample of 152 × 10^6 $B \bar{B}$ pairs, while a 1.5 cm beam-pipe, a 4-layer SVD (SVD2), and small cells in the inner layers of the CDC were used to record the remaining 620 × 10^6 $B \bar{B}$ pairs [20].

We reconstruct $B^0 \rightarrow D^0 \pi^0$ candidates from the subsequent decays of the D^0 and the π^0 mesons. We employ two reconstruction modes: $B^0 \rightarrow D^0 \rightarrow (K^+ \pi^-) \pi^0 (B_{2b})$ and $B^0 \rightarrow D^0 \rightarrow (K^+ \pi^- \pi^0) \pi^0 (B_{3b})$. The π^0 mesons are reconstructed from their decay to two photons.

The flavor of the neutral B-meson (B^0 or \bar{B}^0) is determined by the charge of the reconstructed kaon (K^+ or K^-). This method of flavor tagging is not perfect, as the wrong-sign doubly Cabibbo-suppressed decays (DCS) $B^0 \rightarrow D^0 \pi^0$ (Fig. 1) will result in wrongly tagged flavor. The same effect occurs with charm DCS decays $D^0 \rightarrow K^+ \pi^-$ and $D^0 \rightarrow K^+ \pi^- \pi^0$, and charm mixing, although the charm mixing effect is negligibly smaller. These effects can be calculated using the ratio of wrong-sign (Cabibbo-suppressed) to right-sign (Cabibbo-favored) decay rates:

$$R = \frac{B_{WS}}{B_{RS}},$$

where $R(B^0 \rightarrow D^0 \pi^0)$ has not been measured and thus is approximated with $R(B^\ell \rightarrow D^+ \pi^-) = (2.92 \pm 0.38 \pm 0.31) \times 10^{-5}$ [21], while $R(D^0 \rightarrow K^+ \pi^-) = (3.79 \pm 0.18) \times 10^{-3}$ and $R(D^0 \rightarrow K^+ \pi^- \pi^0) = (2.12 \pm 0.07) \times 10^{-3}$ are taken from the PDG [22]. These effects lead to the true value of B being (0.314 ± 0.008)% lower than the measured value, and the true \mathcal{A}_{CP} being (3.05 ± 0.08) × 10^{-5} higher than the measured value. In the case of \bar{B} this is corrected for; however, for \mathcal{A}_{CP} the correction is significantly smaller than our uncertainty and it is neglected.

Photon candidates are mainly taken from clusters in the ECL but additionally are reconstructed from e^+e^- pairs resulting from photon conversion in the inner detector. Photons from π^0 decay must have an energy greater than 50 (100) MeV in the barrel (endcap) region of the ECL. The invariant mass of the two-photon combination must lie in the range 104 MeV $< M_{\gamma\gamma} < 165$ MeV/c^2, corresponding to ±3σ around the nominal π^0 mass [22]. We subsequently perform a mass-constrained fit with the requirement $\chi^2 < 50$.

Charged tracks originating from a B decay are required to have a distance-of-closest-approach with respect to the interaction point of less than 4.0 cm along the z-axis (the direction opposite the positron beam), and of less than 0.3 cm in the plane transverse to the z-axis. Charged kaons and pions are identified using information from the CDC, ACC, and TOF detectors. This information is combined to form a $K-\pi$ likelihood ratio $R_{K/\pi} = L_K/(L_K + L_{\pi})$, where $L_K (L_{\pi})$ is the likelihood of the track being a kaon (pion). Track candidates with $R_{K/\pi} > 0.6 (0.4)$ are classified as kaons (pions). The typical kaon (pion) identification efficiency is 83% (88%), with a pion (kaon) misidentification probability of 7% (11%).

Two kinematic variables are used to distinguish signal from background: the beam-energy-constrained mass, $M_{bc} \equiv \sqrt{E_{beam}^2 - |p_B|^2 c^2} / c^2$, and the energy difference $\Delta E \equiv E_B - E_{beam}$. Here, p_B and E_B are the momentum and energy, respectively, of the B-meson candidate evaluated in the center-of-mass (CM) frame, and E_{beam} is the beam energy in the CM frame.

Due to energy leakage in the ECL, the reconstructed π^0 energy is typically lower than its true value. To compensate for this, we rescale the reconstructed π^0 momentum to give $E_{\pi^0} \equiv E_{beam} - E_D$, specifically:

$$\bar{p}_{\pi,corr} = p_{\pi} \times \frac{\sqrt{(E_{beam} - E_{D\pi})^2 - M_{\pi^0}^2 c^4}}{|p_{\pi}| c}.$$ \(3\)

Using this we calculate a new B-meson momentum, $\bar{p}_{B,corr}$, then calculate a corrected M_{bc} (from now on simply referred to as M_{bc}).
\[M_{bc} = \sqrt{E_{\text{beam}}^2 - |\vec{p}_{B,\text{corr}}|^2} c^2. \]

(4)

Rescaling \(M_{bc} \) in this way improves the mass resolution and removes some correlations between \(M_{bc} \) and \(\Delta E \). This procedure is only applied to the \(\pi^0 \) that is the direct daughter of the \(B^0 \).

All candidates satisfying \(M_{bc} > 5.25 \text{ GeV}/c^2 \) and \(-0.2 \text{ GeV} < \Delta E < 0.2 \text{ GeV} \) are retained for further analysis. We find that 16% (47%) of events have more than one \(B^0 \) candidate in the \(B_{2b} \) (\(B_{3b} \)) reconstruction modes. In these cases, we select one of the reconstructed \(B^0 \) mesons based on the mass difference \(\Delta m(X) = m_{\text{PDG}}(X) - M(X) \), where \(m_{\text{PDG}}(X) \) is the mass reported by the Particle Data Group (PDG) \[22\] for particle \(X \), and \(M(X) \) is the reconstructed mass. The best candidate is selected as the \(B^0 \) or \(B^+ \) that minimizes \(\Delta m(D^0) \). If there are multiple candidates with the same minimal \(\Delta m(D^0) \), the one that minimizes \(\Delta m(\pi^0) \) is selected. Monte Carlo simulation (MC) studies show that this procedure selects the correct \(B^0 \) in 96% (86%) of cases for the \(B_{2b} \) (\(B_{3b} \)) candidates.

III. BELLE DETECTOR AND SIGNAL SELECTION

Backgrounds to our signal are studied using MC simulation. These simulations use EvtGen \[23\] and PYTHIA \[24\] to generate the physics interactions at the quark level, and employ GEANT3 \[25\] to simulate the detector response.

The largest background arises from \(e^+e^- \rightarrow q\bar{q} \) (\(q \in \{u,d,s,c\} \)) continuum events. A neural network \[24\] is used to distinguish the spherical \(BB \) signal from the jet-like continuum background. It combines the following five observables based on the event topology: a Fisher discriminant formed from 17 modified Fox-Wolfram moments \[21\]: the cosine of the angle between the \(B \)-meson candidate direction and the beam axis; the cosine of the angle between the thrust axis \[28\] of the \(B \)-meson candidate and that of the rest of the event (all of these quantities being calculated in the CM frame); the separation along the \(z \)-axis between the vertex of the \(B \)-meson candidate and that of the remaining tracks in the event; and the tagging quality variable from a \(B \)-meson flavor-tagging algorithm \[29\]. The training and optimization of the neural network are performed with signal and continuum MC samples. These are divided into five training samples and one verification sample. The output of the neural net \(C_{\text{NN}} \) has a range of \((-1,1)\), with 1 being the most signal-like and -1 being the most background-like.

In order to maximally use \(C_{\text{NN}} \) information, we impose only a loose requirement on \(C_{\text{NN}} \) and use \(C_{\text{NN}} \) as a variable in the fit. We require \(C_{\text{NN}} > -0.05 \) for both the \(B_{2b} \) and \(B_{3b} \) modes. This results in 86% background reduction and 87% signal efficiency. To facilitate modelling \(C_{\text{NN}} \) analytically with Gaussian functions, we transform it to an alternative variable \(C'_{\text{NN}} \) via the formula

\[C'_{\text{NN}} = \log \left(\frac{C_{\text{NN}} - C_{\text{min}}}{C_{\text{max}} - C_{\text{NN}}} \right), \]

(5)

where \(C_{\text{min}} \) is the minimum value of \(-0.05\), and \(C_{\text{max}} \) is the maximum value of \(C_{\text{NN}} \) obtained from the signal MC sample used to verify the training.

There is a significant background arising from \(b \rightarrow c \) transitions, which we refer to as “generic \(B^0 \)” decays. The main components of the generic \(B \) background are incorrectly assigned tracks, combinatorial backgrounds, \(B^0 \rightarrow D^0\rho^0 \), and \(B^0 \rightarrow D^{0*}\pi^0 \) with either \(D^{0*} \rightarrow D^0\gamma \) or \(D^{0*} \rightarrow D^0\pi^0 \). These are investigated with MC simulations of \(BB \) decays. To reduce this background, signal candidates are selected within \(\pm 3 \) standard deviations of the mean values for \(M_{bc}, \Delta E \), and the reconstructed \(\pi^0 \) and \(D^0 \) mass distributions. Low final-state momentum events are excluded with selection criteria on the lab-frame momentum of the final-state particles: \(P(K^+), P(\pi^\pm), P(\pi^{0*}_0), \) and \(P(\pi^0_{3b}) \). These requirements are listed in Table I.

Variable	Selected Range
\(M_{bc} \)	\(5.253 - 5.288 \text{ GeV}/c^2 \)
\(\Delta E \)	\(-0.2 \) - \(0.2 \text{ GeV} \)
\(M(D^0) \)	\(1.841 - 1.882 \text{ GeV}/c^2 \)
\(M(\pi^0_0) \)	\(104.1 - 163.1 \text{ MeV}/c^2 \)
\(M(\pi^0_{3b}) \)	\(105.8 - 164.4 \text{ MeV}/c^2 \)
\(M(\pi^0_{1b}) \)	\(107.9 - 162.3 \text{ MeV}/c^2 \)
\(P(K^+) \)	\(0.3 - 35 \text{ GeV}/c \)
\(P(\pi^+) \)	\(0.3 - 35 \text{ GeV}/c \)
\(P(\pi^{0*}_0) \)	\(1.5 - 35 \text{ GeV}/c \)
\(P(\pi^0_{3b}) \)	\(0.2 - 35 \text{ GeV}/c \)

There is also a very small background component from \(b \rightarrow u \) and \(b \rightarrow s \) transitions that consists mainly of combinatorial background, with some non-resonant \(B \) decays to the same final states \((K^+\pi^-\pi^0), K^+\pi^-\pi^0\pi^0, K^+\pi^-\pi^+\pi^-\pi^0\) and \(K^+\pi^-\pi^+\pi^-\pi^0\) \). These are studied using a large MC sample corresponding to 50 times the number of \(BB \) events recorded by Belle. We refer to these background events as “rare.” The yield of these rare events is fixed when fitting for the signal yield based on the most recent branching fractions from the PDG \[22\].

After all selections have been made for \(B^0 \rightarrow D^0\pi^0 \), the reconstruction efficiencies are \((27.53 \pm 0.04)\% \) for the \(B_{2b} \) mode and \((9.43 \pm 0.02)\% \) for the \(B_{3b} \) mode. Including intermediate branching fractions, the overall efficiencies are \((1.09 \pm 0.01)\% \) and \((1.36 \pm 0.01)\% \), respectively.

For \(B^+ \rightarrow D^0\pi^+ \), the reconstruction efficiency after all selections is calculated to be \((33.08 \pm 0.04)\% \) for the \(B_{2b} \)
mode ((1.31 ± 0.05)% including intermediate branching fractions) and (9.05 ± 0.02)% for the B_{3b} mode ((1.30 ± 0.05)% including intermediate branching fractions).

IV. FITTING STRATEGY

The signal yield and A_{CP} are extracted via an unbinned extended maximum-likelihood fit to the variables M_{bc}, ΔE, and C'_{NN}. There are four categories of events fitted: $B^0 \rightarrow D^0 \pi^0$ or $B^+ \rightarrow D^0 \pi^+$ signal events (s), continuum events (c), generic $B\bar{B}$ events (b), and rare B-decay backgrounds (r). These events are described by probability density functions (PDFs) denoted as P_s, P_c, P_b, and P_r, respectively. Separate PDFs are constructed for the B_{2b} and B_{3b} reconstruction modes, which are fitted as two separate data sets. The data are further divided into events tagged as B^0 and B^+, defined as having flavor $q = +1$ and $q = -1$, respectively, based on the charge of the kaon.

The physics parameters are determined via a simultaneous fit to the four data sets. The total likelihood is given by

$$
\mathcal{L} = \frac{e^{-\sum_j N_j}}{\prod_q N_{q,d}} \times \prod_{q,d} \left[\prod_{j=1}^{N_{q,d}} \left(\sum_j f_{j,d}^{q,NN} P_{q,d}^{j} \left(M_{bc}, \Delta E, C'_{NN}, q \right) \right) \right].
$$

where $N_{q,d}$ is the number of events with flavor tag q for the data set d ($d \in B_{2b}, B_{3b}$), and N_j is the number of events in the jth category ($j \in s, c, b, r$) contributing to the total yield. The fraction of events in the data set d for category j is $f_{j,d}$, with $f_{j,d} = 1 - f_{j,0}$. The PDF $P_{q,d}^{j}$ corresponds to the jth category in the d data set for flavor q, measured at M_{bc}, ΔE, and C'_{NN} for the ith event.

The PDF for each component is given by:

$$
P_{q,d}^{j}(M_{bc}, \Delta E, C'_{NN}, q) = \left(1 - q \times A_{CP}^{j} \right) \times P_{d}^{j}(M_{bc}, \Delta E, C'_{NN}),
$$

where A_{CP}^{j} is the CP asymmetry expected in each reconstruction mode B_{2b} (B_{3b}). In Eq. (6), the fraction $f_{j,d}$ is determined via MC studies of the B_{2b} and B_{3b} modes and is fixed in the fit to data, and $A_{CP}^{j}(j \in c, b, r)$ is fixed based on studies of detector bias using sideband data (see Section V).

The 20 free parameters in the fit are: the number of signal events N_s, signal asymmetry A_{CP}^{s}, the number of continuum events (N_c) and generic B-decay events (N_b), fractions of backgrounds expected in each reconstruction mode $f_{j,d}^{q}$ ($j \in c, b, r$), shape parameters of the continuum M_{bc} and ΔE PDFs, and the mean and width of the B_{2b} signal M_{bc} and ΔE PDFs. The number of rare background events (N') is fixed to that expected from MC studies. The effects of these assumptions are included in the systematic uncertainties.

The PDFs used for the M_{bc} and ΔE distributions for the various event types are as follows.

- Signal: for the B_{2b} mode, the M_{bc} PDF is a Crystal Ball function [31], while the ΔE PDF is the sum of a Crystal Ball function and a Gaussian with the same mean. The Gaussian component is small and included to handle the tails of the distribution. For the B_{3b} mode, there is a strong correlation between M_{bc} and ΔE, and no analytic 2D PDF could be found to fit the data satisfactorily. Instead a 2D kernel density estimation (KEST) PDF [31] is used.

- Generic B-decay background: similarly to B_{3b} signal, there exist complex correlations between M_{bc} and ΔE, so a 2D KEST PDF obtained from MC simulations in both modes.

- Continuum background: M_{bc} is fitted as an ARGUS function [32], and ΔE as a 3rd-order Chebychev polynomial, in both modes.

- Rare B-decay background: as with generic B and B_{3b} signal, the M_{bc} and ΔE distributions for rare B-decay background are modelled with a 2D KEST PDF in both modes. This PDF is determined using MC simulations corresponding to 50 times the luminosity of the Belle data set.

To fit C'_{NN}, three summed Gaussians are used for all components except continuum background, which employed two summed Gaussians. The PDFs for all event types are summarized in Table II.

TABLE II. Functional forms for PDFs employed by the different event categories for fits.

Category	M_{bc}	ΔE	C'_{NN}
Signal B_{2b}	Crystal Ball	Crystal Ball	3 Gaussians + Gaussian
Signal B_{3b}	2D KEST PDF	3 Gaussians	
Generic B	2D KEST PDF	3 Gaussians	
Continuum	ARGUS	3rd Order	2 Gaussians
RARE B	2D KEST PDF	3 Gaussians	

The fitting procedure and accuracy of the various PDF models are extensively investigated using MC `pseudexperiments’. In these studies, the signal and rare B-background events are selected from large samples of simulated events. Events for $e^+ e^- \rightarrow q\bar{q}$ and generic B-decay are generated from their respective PDF shapes. For $B^0 \rightarrow D^0 \pi^0$, we observe a small bias of (+0.6 ± 0.3)% in signal yield, and (+0.04 ± 0.05)% in A_{CP}. We correct for this bias in our final measurements and include
a corresponding systematic uncertainty for it. No significant bias is observed for $B^+ \to \bar{D}^0 \pi^+$, i.e., only
\((+0.06 \pm 0.16\%\) in signal yield and
\((-0.02 \pm 0.02\%\) in A_{CP}.

V. $B^+ \to \bar{D}^0 \pi^+$

We first select and fit a sample of $B^+ \to \bar{D}^0 \pi^+$ decays. This sample is not color-suppressed and thus has much larger statistics and lower background than the sample of $B^0 \to \bar{D}^0 \pi^0$ decays. As well as ensuring the fitted B and A_{CP} are consistent with existing measurements, this mode is used to obtain calibration factors for the fixed shape parameters of the PDFs used to fit $B^0 \to \bar{D}^0 \pi^0$ decays to account for any differences between MC and data. In addition, this mode provides a data-driven estimation of the systematic uncertainty associated with the A_{CP} correction for a detection asymmetry (discussed below).

To account for potential differences in the distribution of fitting variables between MC and data, additional parameters (calibration factors) are included in the fit to enable small adjustments in the fitted PDF shapes. These calibration factors are applied as mean shifts and width factors to the C_{NN} Gaussians.

To account for small differences between MC and data in the width of the ΔE distribution, the 2D KEST PDF for M_{bc} and ΔE in B_{mc} is modified slightly. This is done by modifying each ΔE data point in the MC data set with a random shift based on a Gaussian distribution with a mean of 0 GeV and a width of 7 MeV (chosen after testing with a range of widths) and generating a new KEST PDF from this modified data sample.

Fits to the $B^+ \to \bar{D}^0 \pi^+$ sample are performed to determine the signal yield, $A_{\text{CP,raw}}$, the continuum background yield, the generic B-decay background yield, and the calibration factors. The rare B-decay background yield is fixed to the value expected from MC simulations. From the fit we obtain $N_{\text{sig}} = 84537 \pm 306$ and $A_{\text{CP,raw}} = (1.97 \pm 0.36\%)$
\%. The uncertainties listed are statistical. $A_{\text{CP,raw}}$ is the output of the fit without a correction to account for sources of bias. Figure 2 shows the fits to data in M_{bc}, ΔE and C_{NN}.

To account for possible bias in A_{CP}, we perform an analysis over a “sideband” region of data, defined as $0.1 \text{GeV} < \Delta E < 0.4 \text{GeV}$ and $5.255 \text{GeV}/c^2 < M_{bc} < 5.27 \text{GeV}/c^2$. This region consists almost entirely of continuum events and has an expected A_{CP} of zero. Counting the number of events in this region we find $A_{\text{CP,sideband}} = (1.78 \pm 0.38\%)$. We subtract this value from $A_{\text{CP,raw}}$ to correct for the detection asymmetry bias.

The branching fraction is calculated as:

\[B = \frac{N_{\text{sig}}}{N_{B^+}} \times \text{mean} \left(\frac{f_{2b}}{\epsilon_{2b}} \frac{f_{3b}}{\epsilon_{3b}} \right), \]

where N_{B^+} is the number of charged B-mesons in the data set, based on the PDG average value of $B(T(4S) \to B^+ B^-) = (51.4 \pm 0.6\%)$ [22]; f_{d} is the fraction of signal events in data set $d = 2b$ or $3b$ ($f_{2b} = 0.51$, $f_{3b} = 0.49$); and ϵ_d is the product of the reconstruction efficiency, the \bar{D}^0 branching fraction $B_{\bar{D}^0}$, and small corrections for particle identification (PID), and charged track and π^0 reconstruction efficiencies (see Section VII), for mode d. The $\pi^0 \to \gamma \gamma$ branching fraction is accounted for in the MC simulation. The resulting values for ϵ_{2b} and ϵ_{3b} are $(1.19 \pm 0.03) \times 10^{-2}$ and $(1.16 \pm 0.05) \times 10^{-2}$, respectively. The mean is calculated as a generalized weighted mean [33][34], taking into account correlated and uncorrelated uncertainties in a covariance matrix. This approach is used because the difference in systematic uncertainties between the two \bar{D}^0 decay modes leads to the need to weight them in order to calculate the final branching fraction and uncertainty correctly. Finally, the correction due to DCS decays discussed in Section III is made.

The results for B and A_{CP} for $B^+ \to \bar{D}^0 \pi^+$ are:

\[B = (4.53 \pm 0.02 \pm 0.15) \times 10^{-3}, \]
\[A_{\text{CP}} = (0.19 \pm 0.36 \pm 0.57\%). \]

The uncertainties quoted are statistical and systematic, respectively. The systematic uncertainties associated with the measurement of B and A_{CP} are explained in detail in Section VII and the contributions of each of these are listed in Table V and VI respectively. These results are in agreement with the PDG values [22] of $B = (4.68 \pm 0.13) \times 10^{-3}$ and $A_{\text{CP}} = (-0.7 \pm 0.7\%)$. As a cross-check, we determined B and A_{CP} for each of the B_{2b} and B_{3d} modes separately, and for just the SVD1 data set. All are in agreement within statistical uncertainties. The fitted yield for each respective category is listed in Table III.

Category	B_{2b} mode ($\times 10^3$)	B_{3d} mode ($\times 10^3$)
Signal	4.27 \pm 0.02	4.18 \pm 0.02
Continuum	0.70 \pm 0.01	1.78 \pm 0.3
Generic B	3.58 \pm 0.03	3.87 \pm 0.03
Rare	0.03 (fixed)	0.05 (fixed)

VI. $B^0 \to \bar{D}^0 \pi^0$

After applying the calibration factors determined from studies of the $B^+ \to \bar{D}^0 \pi^+$ mode to the PDFs, we fit the signal $B^0 \to \bar{D}^0 \pi^0$ PDFs to data and find 4448 ± 97 signal events and $A_{\text{CP,raw}} = (1.48 \pm 2.05\%)$. The uncertainties quoted are statistical. As was the case for $B^+ \to \bar{D}^0 \pi^+$, $A_{\text{CP,raw}}$ is the value returned from the fit without a correction for sources of bias. Figure 3 shows the signal-
enhanced projections of the fits. Figure 4 shows signal-enhanced projections of M_{bc} separated into B^0 and \bar{B}^0 decays.

Using Eq. 5, the PDG value $\mathcal{B}(\Upsilon(4S) \rightarrow \bar{B}^0 B^0) = (48.6 \pm 0.6\%)$ [22], the fraction of signal events in data set d, $f_{2b} = 0.45$, $f_{3b} = 0.55$, and the efficiencies $\epsilon_{2b} = (1.00 \pm 0.03) \times 10^{-2}$ and $\epsilon_{3b} = (1.21 \pm 0.07) \times 10^{-2}$, we determine the branching fraction to be:

$$\mathcal{B}(B^0 \rightarrow \bar{B}^0 \pi^0) = (2.70 \pm 0.06 \pm 0.10) \times 10^{-4}, \quad (11)$$

where the quoted uncertainties are statistical and systematic, respectively. The fitted yield for each respective category is listed in Table IV.

The A_{CP} correction for the $B^0 \rightarrow \bar{D}^0 \pi^0$ decay is measured in the same way as for the $B^+ \rightarrow \bar{D}^0 \pi^+$ mode. A sideband region of data is defined as $0.1 \text{GeV} < \Delta E < 0.4 \text{GeV}$ and $5.255 \text{GeV}/c^2 < M_{bc} < 5.27 \text{GeV}/c^2$. Events in this region consist almost entirely of continuum with an expected A_{CP} of zero. In this region we find $A_{CP}\text{sideband} = (1.02 \pm 0.64)\%$, and we subtract this value and the fit bias (0.04%) from $A_{CP}\text{raw}$ to correct for detector bias.

The direct CP-violation parameter is thus measured to be:

$$A_{CP}(B^0 \rightarrow \bar{D}^0 \pi^0) = (0.42 \pm 2.05 \pm 1.22)\% \quad (12)$$

The uncertainties quoted are statistical and systematic, respectively.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties associated with the measurement of \mathcal{B} and A_{CP} are as follows:

TABLE IV. Fitted number of signal and backgrounds events for the two reconstruction modes (B_{2b} and B_{3b}) of $B^0 \rightarrow \bar{D}^0 \pi^0$. Uncertainties are statistical only.

Category	B_{2b} mode ($\times 10^3$)	B_{3b} mode ($\times 10^3$)
Signal	2.01 ± 0.04	2.44 ± 0.05
Continuum	4.26 ± 0.06	16.47 ± 0.22
Generic B	4.76 ± 0.10	8.39 ± 0.18
Rare	0.15 (fixed)	0.47 (fixed)
FIG. 3. Projections of the $B^0 \rightarrow \bar{D}^{0}\pi^0$ fit results into the signal region ($5.275 < M_{bc} < 5.285$ GeV, $-0.12 < \Delta E < 0.07$ GeV, $-1 < C_{NN} < 6$) for M_{bc} (left), ΔE (middle) and C_{NN} (right) split into the B_{2b} mode (top) and B_{2b} background PDF, the blue short-dashed curve shows the signal PDF, red dotted curve shows the BB background PDF, green dash-dotted curve shows the continuum background PDF, pink long-dashed curve shows the (almost negligible) rare background PDF, black line is the fit result. Also shown underneath each graph is the residual pulls between the data points and fitted PDF.

- Number of $B\bar{B}$ pairs: the uncertainty associated with the measured number of $B\bar{B}$ pairs in the full data set collected at Belle is 1.37% [35].

- $B(\Upsilon(4S) \rightarrow B^0\bar{B}^0)$; uncertainty from the branching fraction $B(\Upsilon(4S) \rightarrow B^0\bar{B}^0) = (48.6 \pm 0.6\%)$ [22].

- DCS mode correction: the uncertainty due to the correction for doubly Cabibbo-suppressed decays is 0.01% for both $B^0 \rightarrow \bar{D}^{0}\pi^0$ and $B^+ \rightarrow \bar{D}^0\pi^+$ (see Section [11]).

- Charged track efficiency: the uncertainty associated with a possible difference in efficiency between MC and data for charged-track reconstruction is found to be 0.35% per track using partially reconstructed $D^{*+} \rightarrow \bar{D}^0(\rightarrow \pi^+\pi^-\pi^0)\pi^+$ events [35].

- π^0 detection efficiency: the ratio of data to MC efficiency for π^0 reconstruction is based on a study of $\tau^- \rightarrow \pi^-\pi^0\nu_\tau$ decays [50]. This ratio is (96 ± 2)% per π^0.

- MC statistics in efficiency calculation: uncertainty associated with the reconstruction efficiency is based on the binomial statistics of the MC data set used. This is 0.094% for $B^0 \rightarrow \bar{D}^0(K^+\pi^-)\pi^0$, 0.18% for $B^0 \rightarrow \bar{D}^0(K^+\pi^-\pi^0)\pi^0$, 0.075% for $B^+ \rightarrow \bar{D}^0(K^+\pi^-)\pi^+$, and 0.19% for $B^+ \rightarrow \bar{D}^0(K^+\pi^-\pi^0)\pi^+$.

- \bar{D}^0 subdecay branching fraction and A_{CP}: from the PDG average [22].

- PID efficiency: systematic error associated with a small difference in PID efficiency between MC and data. This is based on an inclusive $D^{*+} \rightarrow \bar{D}^0(K^-\pi^+)\pi^+$ study [35]. The uncertainty is calculated as 1.3% for $B^0 \rightarrow \bar{D}^0(K^+\pi^-)\pi^0$, 1.3% for $B^0 \rightarrow \bar{D}^0(K^+\pi^-\pi^0)\pi^0$, 2.2% for $B^+ \rightarrow \bar{D}^0(K^+\pi^-)\pi^+$, and 2.2% for $B^+ \rightarrow \bar{D}^0(K^+\pi^-\pi^0)\pi^+$.

- Signal decay mode yield ratio f_d: the ratio between the D^0 decay modes in signal, f_d, is fixed based on the expected yields from MC. To account for the uncertainty, we perform two fits, varying
FIG. 4. Projections of the $B^0 \rightarrow \bar{D}^0 (K^+ \pi^-)\pi^0$ fit results for M_{bc} into the signal region ($-0.12 < \Delta E < 0.07$ GeV, $-1 < C'_{NN} < 6$) for $B^0 \rightarrow \bar{D}^0 (K^+ \pi^-)\pi^0$ (top left), $B^0 \rightarrow \bar{D}^0 (K^- \pi^+)\pi^0$ (top right), $B^0 \rightarrow \bar{D}^0 (K^+ \pi^-)\pi^0$ (bottom left), $B^0 \rightarrow \bar{D}^0 (K^- \pi^+)\pi^0$ (bottom right). The blue short-dashed curve shows the signal PDF, red dotted curve shows the BB background PDF, green dash-dotted curve shows the continuum background PDF, pink long-dashed curve shows the (almost negligible) rare background PDF, black line is the fit result. Also shown underneath each graph is the residual pulls between the data points and fitted PDF.

the fixed value by $\pm 1\sigma$ (based on MC statistics of the simulation). This variation gives changes of $[-0.38, +0.31]\%$ and $[-0.08, +0.19]\%$ in B for $B^0 \rightarrow D^0 \pi^0$ and $B^+ \rightarrow D^0 \pi^+$ respectively. The uncertainty in A_{CP} is $[-0.02, +0.03]$ for $B^0 \rightarrow D^0 \pi^0$ and < 0.01 for $B^+ \rightarrow D^0 \pi^+$.

C'_{NN} calibration factors: we fit with and without the calibration factors applied to the PDFs. The difference between the yields and A_{CP} of these fits is quoted as the uncertainty. The uncertainty in B is 0.34% and 0.06% for $B^0 \rightarrow D^0 \pi^0$ and $B^+ \rightarrow D^0 \pi^+$, respectively. For A_{CP} it is 0.06 and < 0.01, respectively.

- Modification of the B_{3d} $M_{bc} \times \Delta E$ KEST PDF: the uncertainty from the ΔE modification to the $D^0 \rightarrow K^+ \pi^- \pi^0$ $M_{bc} \times \Delta E$ KEST PDF is evaluated by comparing the fit results obtained using the corrected and uncorrected PDF. The difference in the
fitted yields of 0.63% for $B^0 \to \bar{D}^0 \pi^0$ and 0.24% for $B^+ \to \bar{D}^0 \pi^+$ is quoted as the uncertainty. For A_{CP} this is 0.06 and < 0.01, respectively.

- 2D KEST PDFs: $B\bar{B}$, rare, and B_{3b} signal $M_{bc} \times \Delta E$ PDFs all use a fixed 2D KEST PDF. To estimate the uncertainty from this, an ensemble test is performed running 1000 fits over the data, with each fit using a different Gaussian-fluctuated KEST PDF based on bin statistics. The uncertainty is quoted as the RMS of the resulting yield and A_{CP} distributions. This contributes 0.35% and 0.05% to the uncertainty in B for $B^0 \to \bar{D}^0 \pi^0$ and $B^+ \to \bar{D}^0 \pi^+$, respectively. For A_{CP} the contribution is 0.15 and < 0.01, respectively.

- Fixed rare B-decay background yield: the uncertainty due to the rare B yield is the quadratic sum of the statistical uncertainty based on the size of the MC dataset and the uncertainty in the branching fractions used to generate the MC. For modes with three body final states ($K^+ \pi^- \pi^0$ and $K^+ \pi^- \pi^0$), this latter component is taken from the uncertainty in the PDG branching fractions $B(B^0 \to K^+ \pi^- \pi^0) = (37.8 \pm 3.2) \times 10^{-6}$ and $B(B^+ \to K^+ \pi^- \pi^0) = (51.0 \pm 2.9) \times 10^{-6}$. For $\bar{D}^0 \to K^+ \pi^- \pi^0$ modes, this latter component is taken as the difference between the PDG values for the decays with experimentally measured branching fractions and the branching fractions used in the MC generator (or the uncertainty on the PDG value if that is larger). To estimate the effect on signal yield, the data is refit, varying the rare yield by $\pm \sigma$. The uncertainty in B is 0.47% for $B^0 \to \bar{D}^0 \pi^0$ and 0.03% for $B^+ \to \bar{D}^0 \pi^+$.

- Fit bias: the uncertainty in the fit bias obtained from the signal MC ensemble tests is quoted as an uncertainty. For B this is 0.30% and 0.16% for $B^0 \to \bar{D}^0 \pi^0$ and $B^+ \to \bar{D}^0 \pi^+$, respectively, and for A_{CP} it is 0.05 and 0.02, respectively.

- A_{CP} detector bias correction: uncertainty on the correction made to A_{CP} is the statistical uncertainty on the A_{CP} measurement, summed in quadrature with the deviation of the A_{CP} of the $B^+ \to \bar{D}^0 \pi^0$ mode from the expected value of $A_{CP} = 0$. This is 0.66 for $B^0 \to \bar{D}^0 \pi^0$ and 0.42 for $B^+ \to \bar{D}^0 \pi^+$.

- Fixed background A_{CP}: uncertainties from background A_{CP} being fixed in fits are estimated by varying them by $\pm \sigma$ (based on sideband data) and comparing the A_{CP} in the resultant fits. This is found to be 0.49 for $B^0 \to \bar{D}^0 \pi^0$ and 0.03 for $B^+ \to \bar{D}^0 \pi^+$. This is correlated with the A_{CP} detector bias correction uncertainty.

In order to accurately calculate the uncertainty in B, the \bar{D}^0 decay-mode-dependent factors are combined in a generalized weighted mean as shown in Eq. 8. The absolute uncertainties for charged track efficiency, π^0 detection efficiency, reconstruction efficiency, PID efficiency, and \bar{D}^0 branching fraction are combined into a covariance matrix, Σ, that accounts for their correlations between the two-body and three-body modes. For $B^0 \to \bar{D}^0 \pi^0$, $\Sigma = \begin{bmatrix} 1.47 & 2.30 \\ 2.40 & 6.76 \end{bmatrix}$, and for $B^+ \to \bar{D}^0 \pi^+$ $\Sigma = \begin{bmatrix} 1.17 & 1.05 \\ 1.05 & 4.03 \end{bmatrix}$. The combined value, which we call “mean efficiency”, is calculated as $\bar{\epsilon} = \sigma^2 (J^T \Sigma^{-1} J)^{-1}$, with variance $\sigma^2 = (J^T \Sigma^{-1} J)^{-1}$ (where $J = [1, 1]^T$). The relative uncertainty on this is found to be 2.43% for $B^0 \to \bar{D}^0 \pi^0$, and 2.54% for $B^+ \to \bar{D}^0 \pi^+$.

TABLE V. Systematic uncertainties for B measurements.

Systematic	$B^0 \to D^+ \pi^n$	$B^+ \to D^0 \pi^+$
No. BB	1.37%	1.37%
$B(\bar{T}(4S) \to B^+ B^0)$	1.23%	1.17%
DCS mode correction	0.01%	0.01%
Mean efficiency	2.43%	2.54%
Fixed f_d^2	+0.31%	+0.19%
Cal. Factors (C_{NN})	0.34%	0.06%
ΔE KEST modification	0.63%	0.24%
KEST PDFs	0.35%	0.05%
Fixed Rare Yields	0.47%	0.03%
Fit bias	0.30%	0.16%
Bkg. A_{CP}	0.01%	0.05%
Total	3.65%	3.32%

TABLE VI. Systematic uncertainties for A_{CP} measurements.

Systematic for A_{CP}	$B^0 \to D^0 \pi^+$	$B^+ \to D^0 \pi^+$
D^0 Decay A_{CP}	0.35	0.35
Fixed f_d	+0.03	< 0.01
Cal. Factors (C_{NN})	0.06	< 0.01
ΔE KEST modification	0.06	< 0.01
KEST PDFs	0.15	< 0.01
Fixed Rare Yields	< 0.01	< 0.01
Fit bias	0.05	0.02
Detector bias (signal)*	0.66	0.42
Detector bias (background)*	0.49	0.03
Total	1.22	0.57

The values of all contributions to the branching fractions are listed in Table V. The quadratic sum of these terms is quoted as the total systematic uncertainty for B. The values of all contributions to the A_{CP} measurements are listed in Table VI. The quadratic sum of these terms
is quoted as the total systematic uncertainty for A_{CP}.

VIII. CONCLUSIONS

Our measurements of

$$B(B^0 \to \bar{D}^0 \pi^0) = [2.70 \pm 0.06 \pm 0.10] \times 10^{-4}, \quad (13)$$

$$B(B^+ \to \bar{D}^0 \pi^+) = (4.53 \pm 0.02 \pm 0.15) \times 10^{-3} \quad (14)$$

are the most precise to date. They agree with our previous measurements [1] [2] within uncertainties, and supersede those results. They are also in agreement with PDG values [22]. Our result

$$A_{CP}(B^0 \to \bar{D}^0 \pi^0) = (0.42 \pm 2.05 \pm 1.22)\% \quad (15)$$

is the first reported for this mode. Our result

$$A_{CP}(B^+ \to \bar{D}^0 \pi^+) = (0.19 \pm 0.36 \pm 0.57)\% \quad (16)$$

is the most precisely measured and agrees with our previous result [35], which it supersedes.

IX. ACKNOWLEDGMENTS

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including grants DP180102629, DP170102389, DP170102204, DP150103061, FT130100303; Austrian Federal Ministry of Education, Science and Research (FWF) and FWF Austrian Science Fund No. P 31361-N36; the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Science and Technology Committee (STCSM) under Grant No. 19ZR1403000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; Horizon 2020 ERC Advanced Grant No. 884719 and ERC Starting Grant No. 947006 “InterLeptons” (European Union); the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Atomic Energy (Project Identification No. RTI 4002) and the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grant Nos. 2016R1A1A1B01010135, 2016R1A1A1B02012900, 2018R1A2B3003643, 2018R1A6A1A06024970, 2019K1A3A7A09003840, 2019R1F1A3A0105893S, 2021R1F1A3A0105893S, 2021R1F1A1060423, 2021R1F1A10604008; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experiment Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement 14.W03.31.0026, and the HSE University Basic Research Program, Moscow; University of Tabuk research grants S-1440-0321, S-0256-1438, and S-0280-1439 (Saudi Arabia); the Slovenian Research Agency Grant Nos. J1-9124 and P1-0135; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.

[1] Throughout this Letter, the inclusion of the charge-conjugate decay modes is implied unless stated otherwise.
[2] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 88, 052002 (2002).
[3] T. Coan et al. (CLEO Collaboration), Phys. Rev. Lett. 88, 062001 (2002).
[4] S. Blyth et al. (Belle Collaboration), Phys. Rev. D 74, 092002 (2006).
[5] M. Beneke, G. Buchalla, M. Neubert, and C. Sachrajda, Nucl. Phys. B 591, 313 (2000).
[6] M. Neubert and B. Stech, Advanced Series on Directions in High Energy Physics 15, 294–344 (1998).
[7] M. Neubert and A. Petrov, Phys. Lett. B 519, 50 (2001).
[8] C.-K. Chua, W.-S. Hou, and K.-C. Yang, Phys. Rev. D 65, 096007 (2002).
[9] C.-K. Chua and W.-S. Hou, Phys. Rev. D 72, 036002 (2005).
[10] J. Rosner, Phys. Rev. D 60, 074029 (1999).
[11] M. Beneke, G. Buchalla, M. Neubert, and C. Sachrajda, Nucl. Phys. B 591, 313 (2000).
[12] C.-W. Chiung and J. Rosner, Phys. Rev. D 67, 074013 (2003).
[13] C.-K. Chua and W.-S. Hou, Phys. Rev. D 77, 116001 (2008).
Another naming convention, $\beta (= \phi_1)$, $\alpha (= \phi_2)$ and $\gamma (= \phi_3)$ is also used in the literature.

[27] The Fox-Wolfram moments were introduced by G. C. Fox and S. Wolfram in Phys. Rev. Lett. 41, 1581 (1978). The modified Fox-Wolfram moments used in this paper are described in S. H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).

[28] S. Brandt, C. Peyrou, R. Sosnowski, and A. Wroblewski, Phys. Lett. B 12, 57 (1964).

[29] H. Kakuno et al., Nucl. Instrum. Methods Phys. Res., Sect. A 533, 516 (2004).

[30] T. Skwarnicki, DESY F31-86-02, (1986) (PhD dissertation).

[31] K. Cranmer, Computer Physics Communications 136, 198 (2001).

[32] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).

[33] J. Rice, Mathematical Statistics and Data Analysis, Duxbury advanced series (Thompson/Brooks/Cole, 2007).

[34] M. G. Cox, C. Eis, G. Mana, and F. Pennecchi, Metrologia 43, S268 (2006).

[35] A. J. Bevan et al., The European Physical Journal C 74, 3026 (2014).

[36] S. Ryu et al. (Belle Collaboration), Phys. Rev. D 89, 072009 (2014).

[37] Y. Kato et al. (Belle Collaboration), Phys. Rev. D 97, 012005 (2018).

[38] K. Abe et al. (Belle Collaboration), Phys. Rev. D 73, 051106 (2006).