Selection at Multiple Checkpoints Focuses VH12 B Cell Differentiation toward a Single B-1 Cell Specificity

By Calin Tatu, Jian Ye, Larry W. Arnold, and Stephen H. Clarke

From the Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599

Summary

Phosphatidyl choline (PtC)-specific B cells segregate to the B-1 subset, where they comprise up to 10% of the B-1 repertoire. About half express VH12 and VK4/5H and are restricted in VHCDR3. We have previously reported that anti-PtC VHCDR3 is enriched among VH12-expressing cells by selective elimination of pre-B cells. We report here a bias for VK4/5H expression among VH12-expressing B cells, even among those that do not bind PtC and are not B-1. This is due in part to an inability of VH12 to associate with many light (L) chains but must also be due to a selective advantage in survival or clonal expansion in the periphery for VK4/5H-expressing cells. Thus, the bias for VK4/5H expression is independent of PtC binding, and, as segregation to B-1 occurs after Ig gene expression, it precedes segregation to the B-1 subset. In 6-1 mice, splenic B-1 cells reside in follicles but segregate to follicles distinct from those that contain B-2 cells. These data indicate that selection at multiple developmental checkpoints ensures the co-expression of an anti-PtC VHCDR3 and L chain in a high frequency of VH12 B cells. This focus toward specificity for PtC facilitates the development of a large anti-PtC B-1 repertoire.

Key words: B-0 cells • B-1 cells • follicles • phosphatidyl choline • heavy and light chain association

The B-1 cells comprise a distinct subset of the B cell repertoire in normal mice. For example, B-1 cells are the predominant B cell type in the peritoneum, are infrequent in the spleen, and are generally absent from lymph nodes and bone marrow, whereas conventional B-2 cells are the predominant B cell type in both spleen and lymph node (1, 2). In addition, whereas most conventional B cells are small, resting, naive B cells, B-1 cells have characteristics of activated cells; they are larger and more granular (2), they express activated signal transducer and activator of transcription 3 (STAT-3) in the peritoneum (3), and in both the spleen and peritoneum they are resistant to tolerance induction by anti-Ig (4). They also express VH and VK repertoires that differ considerably from those of conventional B cells (5). These and other differences suggest that conventional and B-1 cells have different roles in the immune system.

An intriguing feature of B-1 cells is their unusual repertoire. High frequencies of B-1 cells are polyreactive and autoreactive. These include B cells specific for single-stranded DNA, IgG (rheumatoid factor), and phosphatidyl choline (PtC),1 a common membrane phospholipid (6–9), all of which are rare among B-2 cells (8, 10). The B-1 subset also includes B cells specific for bacterial carbohydrate antigens and phosphoryl choline (11, 12), prompting suggestions that B-1 cells are involved in T cell–independent responses to common bacterial antigens.

How B cells of certain specificities segregate to one subset or the other is unknown but is likely to be a function of B-1 and B-2 cell origins. One hypothesis (the lineage hypothesis) to explain B-1 and B-2 cell origins postulates that they derive from stem cells committed to producing only B cells of one subset or the other (13–15). It is based primarily on cell transfer experiments indicating that bone marrow and fetal liver are differentially able to restore the B-1 cell subset in lethally irradiated mice. We and others (16, 17) have proposed the induced differentiation hypothesis that posits a single B cell lineage and that, upon exposure to certain antigens, B-2 cells differentiate to B-1 cells. To reflect the ability of B-2 cells to differentiate to B-1, the former have been referred to as B-0. Thus, B-2 cells of the lineage hypothesis and B-0 cells of the induced differentiation hypothesis are equivalent and in this report are referred to as B-0. This hypothesis was prompted by the observation that anti-IgM and IL-6 can induce splenic conventional B cells to acquire a B-1 cell phenotype in vitro (16). It is supported by our observations using transgenic (Tg) mice that PtC-specific B cells segregate to the B-1

1Abbreviations used in this paper: BCR, B cell receptor; PALS, periarteriolar lymphatic sheaths; PtC, phosphatidyl choline; Tg, transgenic.
subset after Ig gene rearrangement and by the finding that these Tg B cells are B-0 under circumstances in which signals initiated by the B cell receptor (BCR) are blocked (10, 18).

To understand segregation to the B-1 subset, we have followed the differentiation of PtC-specific B cells, a population that accounts for 5–10% of the normal B-1 repertoire (8). They express predominantly one of two V_H/V_K combinations, V_H12/V_K4/5H and V_H11/V_K9, and are restricted in V_H CDR3 (19). Among V_H12 anti-PtC B cells, the CDR3 is made up of 10 amino acids with an invariant glycine in the fourth position and a tyrosine encoded by J_H1 in the fifth position, a motif designated 10/G4. These restrictions indicate that antigen-driven clonal expansion is responsible for the large number of B-1 cells of this specificity in normal mice (8).

The 10/G4 CDR3 is enriched at the pre-B cell stage (20). This occurs by the elimination of most V_H12 pre-BI cells that do not have a 10/G4 CDR3 sequence (non-10/G4) during the transition from pre-BI to pre-BII. As this coincides with the expression of the pre-BCR, we have proposed a positive selection mechanism to account for this differential survival. 10/G4 pre-BCR's bind ligand and transduce a signal to turn off ongoing programmed cell death, whereas non-10/G4 pre-B cells are unable to bind ligand and fail to turn off programmed cell death. Whatever the mechanism, selection at the pre-B cell stage enriches for 10/G4 B cells that will ultimately contribute to the PtC-specific B-1 repertoire.

We demonstrate in this report that splenic V_H12 B cells expressing V_K4/5H are enriched, even among non-PtC-binding V_H12 B cells. This, together with the enrichment for 10/G4 V_H12 rearrangements at the pre-BI cell stage, ensures that a high proportion of V_H12-expressing B cells bind PtC and differentiate to B-1. We suggest that this unprecedented developmental selection has evolved to ensure that a high percentage of V_H12 B cells bind PtC and are present in every individual, underscoring their importance to the survival of the individual.

Materials and Methods

Mice. V_H12 Tg mice (6-1) were previously generated (10) and maintained in our pathogen-free animal facility at the University of North Carolina (UNC) by backcrossing to C.B17 mice. Offspring carrying the transgene were identified by PCR of tail genomic DNA as previously described (10). Mice homozygous for the deletion of the V_8 locus were provided by GenPharm International (21) and bred to 6-1 mice to obtain 6-1/ V_H12 mice.

Sorting and V_K repertoire determination. The V_K L chain repertoire was determined for subsets of PtC-binding and -nonbinding lymphocytes from 6-1 mice. Splenic lymphocytes were stained with anti-220-PE antibodies and liposome-encapsulated carboxyfluorescein, and the B220+ cells that were PtC+ were sorted on a MoFlo high speed sorter (Cytomation, Inc.). Total RNA was extracted from ~10^6 sorted cells using TRIzol (Life Technologies, Inc.) according to the manufacturer's protocol. The RNA was subjected to RT-PCR using 5' RACE (rapid amplification of cDNA ends; version 2.0; Life Technologies, Inc.). For reverse transcription, we used a GSP1 custom primer, GGTTAGAATTTGT, that anneals to the C_K encoding sequence ~80 bases 3' of the J_C junction. For the PCR, we used the 5' RACE anchor primer and a custom GSP2 primer, CAUAUCACUCAGGCACCTCAGTGTTA, that anneals to a region of the C_K sequence 50 bases from the J-C junction. 40 cycles of amplification were performed. The conditions for the PCR were 94°C for 1 min, annealing at 55°C for 1 min, and primer extension at 72°C for 1.5 min. The final extension was at 72°C for 5 min. The amplification product was cloned into the pAMP1 vector using the CloneAmp pAMP1 system (Life Technologies, Inc.) according to the manufacturer's protocol. Plasmid DNA was isolated from randomly picked colonies and sequenced using the Sequenase II kit (Stratagene, Inc.) or the UNC Automated DNA Sequence Facility. The oligonucleotide used to prime sequencing was GGCTCTGACTAGACTGCAAGAGAT. Sequence comparisons and analysis used DNASIS 2.5 software and the BLAST (Basic Local Alignment Search Tool) sequence search facility (GenBank).

For sorting of B cells for adoptive transfer, spleen cells from 6-1 mice were stained for B220 and CD23 and sorted for B220-CD23+ cells. Sorting was done using the MoFlo high speed sorter (Cytomation, Inc.). Approximately 3-5 x 10^6 cells were transferred intravenously to unirradiated C.B17 mice. Spleens were taken after 24 h and after 7 d for sectioning and analysis by immunofluorescence microscopy as described below.

Flow cytometry and Immunofluorescence Microscopy. The antibodies used for flow cytometry and the method for staining were as previously described (10, 18). The cells were analyzed using a FACScan™ (Becton Dickinson) with hardware interface and acquisition and analysis software from Cytomation, Inc. All data represent cells that fall within the lymphocyte gate determined by forward and 90° light scatter. All contour plots are 5% probability.

For immunofluorescence microscopy, spleens were imbedded in TBS compound (Triangle Biomedical Sciences) and flash frozen in liquid nitrogen and 2-methylbutane. Frozen sections were air dried and fixed in acetone for 2 min and subsequently washed with 1x PBS. Blocking was performed for 1 h at room temperature with normal rat and mouse serum. The first step staining was performed for 1 h at room temperature with anti-IgM a (or -IgM b) FITC and anti-CD23-biotin. After incubation, sections were washed two times with 1x PBS and then stained with anti-CD3-PE and streptavidin-Cy5, washed with PBS, and mounted in Fluoromount G (Southern Biotechnology Associates, Inc.). Slides were examined with a Leica TCS-NT confocal laser scanning microscope (Leica Inc.) equipped with argon and helium-neon lasers. Photomultiplier tube voltages and laser powers were set to eliminate the background signal given by the IgG isotype and streptavidin-Cy5-only controls. Images from three different fluorescent channels were recorded simultaneously. Image processing was performed with the Leica TCS-NT proprietary software and Adobe Photoshop (Adobe Systems, Inc.).

H and L Chain Association. Gene transfections were done as described previously (22). In brief, μ expression vectors were transfectioned into L chain-only hybridoma cell lines. These hybridoma lines were J558L (λ), 4A9 (V_KRF), 2-12 (V_K31), 1E5 (V_K8), D35.2 (V_K8), and CH12.2B4 (V_K10) (22). An H chain loss mutant of the anti-Sm hybridoma 1-8C2 (23), provided by M. Borrero (UNC), was used to test association with V_K1A L chains V_K4/5H and V_K21C L chain-only cell lines were not available. Therefore, we cotransfected into P3-X 63Ag8.653 myeloma cells with the 10/G4 or 2-12 expression constructs with L chain expression vectors containing V_K4/5H or V_K21C rear-
Figure 1. The phenotype of PtCneg, PtCint, and PtCbri cells of 6-1 mice. 6-1 splenic B cells were stained for liposome binding, B220, and CD23, CD5, CD43, or IgMα. Shown is the histogram for B220 versus liposomes, and the gates used to identify the three populations of B cells are shown at the top of the figure. In columns A, B, and C is the phenotypic analysis of PtCneg, PtCint, and PtCbri cells, respectively. For each mouse, 7-8 \(\times 10^7 \) spleen cells were stained and 50,000 cells per sample were acquired on the flow cytometer.
rangements as described (22). To test whether a complete Ig molecule was formed, supernatant was subjected to ELISA using microtiter plates coated with polyyclonal goat anti-mouse \(\mu \) (Southern Biotechnology Associates, Inc.) and alkaline phosphatase-labeled polyyclonal goat anti-mouse \(\kappa \) (Southern Biotechnology Associates, Inc.) to develop the reaction. In those cases where Ig secretion was not detected, the production of H and L chains was confirmed by ELISA using cell lysates and the polyyclonal goat anti-mouse \(\mu \)- or polyyclonal goat anti-
mouse \(\kappa \)-coated plates as above. The former were developed with phosphatase-labeled polyyclonal goat anti-mouse \(\mu \) to detect H chain, and the latter were developed with phosphatase-labeled goat anti-mouse \(\kappa \) to detect L chain. OD readings were determined with an automated plate reader (Emax; Molecular Devices).

Results

The Phenotype of the Splenic B Cell Subpopulations in 6-1 Mice. We have previously described the PtC-specific B-1 cells of \(V_{H}12 \) Tg (6-1) mice (10). As a result of antigen-driven clonal expansion, the number of these cells is considerable, comprising 60–90% of the splenic B cell population in adults (10). They can be detected by staining with a liposome probe that contains PtC as a membrane component and that encapsulates carboxyfluorescein (8). These cells stain brightly with liposomes (PtC\(_{bri}\)) and, as described previously (10, 18), are B220\(^{low}\)IgM\(^{high}\)CD23\(^{-}\), and most express CD5 and CD43 (Fig. 1).

Based on the liposome staining, there are at least two other B cell populations in 6-1 mice (Fig. 1), cells that do not stain with liposomes (PtC\(_{neg}\)) and cells that have an intermediate level of liposome staining (PtC\(_{int}\)). The PtC\(_{neg}\) and PtC\(_{int}\) populations are about equal in size and together account for 10–30% of splenic B cells. Most cells of both populations are B-0, i.e., CD23\(^{-}\)CD5\(^{-}\)CD43\(^{-}\)B220\(^{high}\) (Fig. 1). Some cells of both populations are CD23\(^{-}\). This population is likely to include immature B cells but may also include B-1 cells, as the PtC\(_{neg}\) and PtC\(_{int}\) populations appear to include cells that express CD43. Inasmuch as there are essentially no 6-1 splenic B cells that express IgM\(^{\kappa}\) (10), we attribute the differences in liposome binding and segregation to the B-0 or B-1 subsets to differences in the L chain.

L Chain Gene Use by 6-1 Splenic B Cells. The \(V_{\kappa} \) repertoire of 6-1 splenic B cells was determined independently for sorted PtC\(_{neg}\), PtC\(_{int}\), and PtC\(_{bri}\) B cell populations. mRNA was isolated from each population and used in a \(k \)-specific RT-PCR. cDNA clones were generated, and randomly selected clones were sequenced to identify the \(V_{\kappa} \) and \(J_{\kappa} \) gene segments. Sequence analysis indicates remarkable similarities in the \(V_{\kappa} \) repertoire among these populations.

Figure 2. \(V_{\kappa} \) use by PtC\(_{neg}\), PtC\(_{int}\), and PtC\(_{bri}\) cells from 6-1 mice. Approximately 10⁶ splenic B cells were sorted from 6-1 mice as indicated in the histogram (B220 versus liposomes) and mRNA isolated separately from each subset. RT-PCR was performed to amplify the expressed rearranged \(V_{\kappa} \) genes and individual clones sequenced. The percent of clones corresponding to the indicated \(V_{\kappa} \) groups is indicated in the bar graphs at the top, and the total number of sequences is given in parentheses at the top of each graph. (A) \(V_{\kappa} \) use by PtC\(_{neg}\) B cells. (B) The breakdown of \(V_{\kappa}4/5 \) gene use by PtC\(_{neg}\) cells into \(V_{\kappa}4/5H \) and other members of this family shown in A. The total numbers of sequences corresponding to the \(V_{\kappa}4/5 \) and non-\(V_{\kappa}4/5 \) subsets are given in parentheses. (C) \(V_{\kappa} \) use by PtC\(_{int}\) B cells. (D) \(V_{\kappa} \) use by PtC\(_{bri}\) B-1 cells. All \(V_{\kappa} \) identifications are \(V_{\kappa} \) groups except \(V_{\kappa}4/5H \), which denotes a specific \(V_{\kappa}4/5 \) gene.
All but two of the cDNA clones from the PtC_{bri} B-1 cells and three of the clones from the PtC_{int} B-0 cells are of the identical V_{k} gene (designated V_{k}4/5H; reference 24) (Fig. 2, C and D). This is the same V_{k} gene expressed by PtC-specific lymphomas and peritoneal B-1 cell hybridomas (19). In contrast, the V_{k} genes cloned from the PtC_{neg} population are more heterogeneous (Fig. 2 A). 57% of the repertoire consists of non-V_{k}4/5 genes from 12 V_{k} groups. The remaining 43% are V_{k}4/5 genes, and of these, 68% are V_{k}4/5H (Fig. 2 B). Combining the PtC_{neg} and PtC_{int} B-0 populations, we estimate that 66% of B-0 cells use a member of the V_{k}4/5 group and 59% use V_{k}4/5H. Such a bias among B-0 cells is not evident in non-Tg littermate mice, as only two (6%) of the B-0 sequences express a V_{k}4/5 gene, neither of which are V_{k}4/5H (Fig. 3). Thus, V_{k}4/5H dominates both the B-0 (PtC_{neg} and PtC_{int}) and B-1 subsets in 6-1 mice as a consequence of V_{H}12 expression.

These three populations of B cells in 6-1 mice are distinct in J_{k} use. The PtC_{bri} B-1 cells use predominantly J_{k}2 and J_{k}4 (Fig. 4 A), as is true of PtC-specific lymphomas and hybridomas (19). This bias undoubtedly reflects selection for this specificity and expansion in the B-1 subset. PtC_{int} B-0 cells use J_{k}2 almost exclusively. We attribute this to the fact that a tyrosine at the V_{k}–J_{k} junction, which is encoded by J_{k}2, results in PtC_{int} binding. V_{k}4/5H-expressing B-0 cells use J_{k}2, -4, and -5, with J_{k}5 used at almost twice the frequency as J_{k}2 (Fig. 4 A). Notably, almost none of the V_{k}4/5H-expressing B cells from any of these populations use J_{k}1. This contrasts with the predominant use of J_{k}1 and J_{k}2 by non-Tg B-0 cells (Fig. 4 C) and even by non-V_{k}4/5 genes from the PtC_{neg} B-0 cells (Fig. 4 B).

V_{k}4/5H L Chains Segregate According to the V_{k}–J_{k} Junctional Sequence. The V_{k}4/5H L chains of each population have a characteristic CDR3 sequence. Most (67%) of the V_{k}4/5H rearrangements from PtC_{bri} B-1 cells encode a charged amino acid (primarily arginine) at the V_{k}–J_{k} junc-
tion, position 96 (R96) (25), although several have the nonpolar residues leucine and phenylalanine at this position (Fig. 5). PtC-specific hybridoma and lymphoma antibodies have R96 or L96 (19), confirming that anti-PtC B cells use these junctions.

PtC^{int} rearrangements are the most homogeneous in their encoded CDR3. Nearly all (~90%) encode Y96. J_k2 is the only J_k that encodes Y96. That this residue can confer binding to PtC is indicated by the anti-PtC lymphoma CH32 that has Y96 (19). The presence of Y96, along with the lower IgM levels inherent to B-0 cells, offers an explanation for the weak liposome staining by these cells.

The non-V_k4/5H CDR3 sequences of the PtC_{neg} population are quite heterogeneous in length and sequence (data not shown), reflecting the fact that most of the L chain CDR3 is encoded by V_k. The CDR3 regions of V_k4/5H L chains commonly have a nonpolar, noncharged amino acid at position 96 and in some cases are one or two amino acids shorter than the majority of those in the PtC^{int} and PtC^{br1} populations.

Paradoxically, many V_k4/5H junctional sequences from PtC_{neg} cells are identical to sequences from PtC^{br1} cells. Four sequences encode L96 (and are nine amino acids in length), seven encode F96, and four encode R96. The presence of rearrangements compatible with PtC binding in this population are unlikely to be due to a contamination from other populations during the sort for the following reasons: sort contamination could come from two sources, the inability to resolve cells from neighboring populations and machine error, in which an incorrect cell not necessarily from a neighboring population is sorted. In the case of the former, PtC^{int} cells would most likely contaminate PtC^{neg} cells. But this is not the case, as the potential contaminants in the PtC^{neg} population do not encode Y96. In the case of machine error, the most common contaminant would be from the PtC^{br1} population, as it is the largest population. We rule this out as an explanation for two reasons. First, by this scenario, both the PtC^{neg} and PtC^{int} populations should be contaminated with PtC^{br1} cells, but the PtC^{int} population is almost completely lacking in sequences that could derive from the PtC^{br1} population. Second, the potential PtC-specific sequences in the PtC^{neg} population are not representative of the PtC^{br1} population; the former are predominantly L96 and F96, whereas the latter are predominantly R96. Thus, the potential PtC-specific sequences in the PtC^{neg} population are not contaminants. We calculate from these data that ~18% of the PtC_{neg} repertoire, which would amount to 12% of the total B-0 repertoire, could be PtC binding.

The Expressed V_k Repertoire Is Limited by the Inability of the V_H12 H Chain to Pair with Many L Chains.

One possible explanation for the restricted V_k repertoire expressed by V_H12 B cells is that V_H12 is unable to associate with all L chains. To test this possibility, we transfected a 10/G4 V_H12–D–J_H1 expression construct into several L chain–only-expressing cell lines, or cotransfected it with different L chain expression constructs into a nonexpressing cell line, and assayed for secretion of IgM. As shown in Table I, we were unable to detect secreted antibody with all and 5 of the 8₈ chains. In those cases in which secreted

Table 1. V_H12 Antibody Secretion

V_H12	2-12H*
λ₁	-
V_kR_F	-
V_k4/5H	+
V_k31	-
V_k8	-
V_k8	-
V_k1A	+
V_k10	+
V_k21C	+

Allotype-specific ELISAs were performed on tissue culture supernatant. Negative values were less than four times the background OD reading, and in all cases, cytoplasmic μ and L chains were detected at levels similar to those of V_k4/5H transfectants. Positive values were 10–30 times background OD.

*The 2-12 H chain is a J558 H chain cloned from an anti-Sm hybridoma of MRL/lpr origin and expressed as a μ protein (51).
that do not stain for CD23 (Fig. 7 B), indicating that they contain B-1 cells, whereas follicular B cells from control non-Tg mice show non-uniform expression of CD23 (Fig. 7 A). Thus, B-1 cells are seen in splenic sections of 6-1 mice. CD23 B-0 cells can be seen in splenic sections of 6-1 mice, but, surprisingly, they are concentrated to a subset of follicles rather than intermixed with B-1 cells in all follicles (Fig. 7 C).

The ability of B cells to occupy follicles can be affected by the presence of B cells of diverse specificity (26). To determine whether PtC-specific B-1 cells enter follicles in the presence of a majority of heterogeneous B-0 cells, we adoptively transferred sorted B220+CD23− B-1 cells from 6-1 mice to non-Tg littersmates. At 24 h and 7 d after transfer, mice were killed and spleens taken for histological and flow cytometry analyses. At the time mice were killed, essentially all of the recovered transferred cells were PtC B-1 cells (CD23−CD5−CD43+). As shown in Fig. 7, D and E, IgMa B cells are visible in follicles and PALS at both time points. On day 7, numerous IgMa bright cells showing cytoplasmic IgM staining are present in the red pulp (Fig. 7 E). Similar cells are seen in 6-1 mice (Fig. 7, B and C). These cells were not seen at 24 h, suggesting that some B-1 cells have differentiated to plasmablasts by 7 d after transfer and have migrated to the red pulp. Many of these cells are present in clusters of two to five cells (Fig. 7 F), suggesting recent cell division in the red pulp.

Discussion

The role played by the Ig receptor specificity in the induction of the B cell developmental program is a well-established immunological paradigm. Our data show here that the specificity of the cell surface Ig receptor is not only important in the developmental steps taken among conventional B-0 cells but also in the segregation of cells to the B-0 and B-1 subsets.

Segregation to B-1. Our previous analysis of anti-PtC Tg mice supports the idea of an antigen-driven differentiation of cells from B-0 to B-1. This was suggested by the observation that segregation of PtC-specific B cells to the B-1 subset is evident in 6-1 mice and in 6-1/Vk4/5 double-Tg mice in which essentially all developing B cells are PtC specific (10). These data argue that the mechanism of segregation operates after Ig gene rearrangement. The differentiation of B-1 cells was more directly addressed by combining the Vμ12 and Vk4 transgenes with the xid mutation (20). The xid mutation is a loss of function mutation in the gene for Bruton's tyrosine kinase (27-30) that causes a disruption in BCR signaling. Among other deficiencies, xid mice have few B-1 cells (1). Vμ12/Vk4 double-Tg mice with the xid mutation exhibit a significant deficiency in B-1 cell development as expected (20). However, the majority of splenic PtC-specific B cells are B-0, not B-1, revealing the existence of a differentiative pathway from B-0 to B-1 that is dependent on signals initiated by the BCR. We have...
Figure 7. Histological analyses of B-1 cells in 6-1 mice. All photographs are of stains using anti-IgM a–FITC (green) (except A, which uses IgM b–FITC), anti-CD3–PE (red), and anti-CD23–streptavidin–Cy5 (blue) as described in Materials and Methods. (A) Non-Tg littermate follicle and PALS; (B and C) 6-1 follicles and PALS; (D and E) littermate follicles 24 h or 7 d, respectively, after transfer of 7×10^6 6-1 B-1 cells; (F and inset) isolation on IgM a cells in the red pulp 7 d after transfer. Magnification is 200 except for the inset in F, which is at 2,000.
recently demonstrated this differentiative pathway in anti-PtC Tg, non-xid mice by manipulation of PtC-specific cells that are at intermediate differentiative stages in this pathway (Arnold, L.W., S.K. McCray, C. Tatou, and S.H. Clarke, manuscript submitted for publication).

Viewed in this context, we interpret the segregation of 6-1 B cells to be based on their ability to bind PtC. All newly differentiated B cells from the adult bone marrow are B-0. However, those that bind PtC with high affinity (PtC^{bri}) are induced to become B-1, whereas those that bind PtC weakly or not at all (PtC^{int} and PtC^{neg}, respectively) are not signaled sufficiently and remain B-0. Among 6-1 cells that express a 10/G4 V_κ12 H chain and V_κ4/5H L chain, the ability to bind PtC is dependent on the amino acid at the V_κ-J<sub>κ</subx> junction, position 96. These data therefore disprove any notion that V_κ or V_λ gene expression plays a role in segregation and demonstrate that the level of PtC binding determines differentiation to B-1. This is further evidence that segregation to B-1 occurs after Ig gene rearrangement.

An unexpected finding from this analysis was the presence of V_κ4/5H rearrangements in the PtC^{neg} population that are identical to some in the PtC^{bri} B-1 population. Because IgM⁻ cells exist among the PtC^{neg} population, it is plausible that these rearrangements derive from PtC^{bri} cells that have lost surface IgM (Fig. 1) and are therefore sorted with the PtC^{neg} population. IgM⁻ cells are ~20% of the PtC^{neg} population, similar to the 18% estimate made from the sequence analysis. Loss of surface Ig can occur in B cells undergoing cell division. For example, rapidly dividing germinal center centroblasts do not express surface Ig (31). A similar downregulation may occur in dividing B-1 cells or in cells differentiating to B-1. Alternatively, these cells could be plasmablasts that have lost surface IgM, such as the cells seen in the red pulp in 6-1 mice and in normal mice after adoptive transfer of PtC^{bri} B-1 cells (Fig. 7).

Upon differentiation in 6-1 mice, PtC-specific B-1 cells reside in splenic follicles and in fact occupy most splenic follicles, as they are in the majority. However, it is interesting that B-0 and B-1 cells segregate to different follicles. Whether this occurs in non-Tg mice is unknown. B-1 cells are not excluded from entry into a follicle composed mostly of B-0 cells as are other autoantigenic B cells (26), indicating that exclusion from B-0 follicles is not the basis for segregation. Perhaps B-0 cells are excluded from B-1 follicles, or this segregation reflects competition between B-0 and B-1 cells during the time of follicle formation.

Some adoptively transferred B-1 cells have moved into the red pulp by 7 d after transfer and differentiated to plasmablasts. That not all B-1 cells differentiate to plasmablasts in 6-1 mice or in non-Tg mice that have received B-1 cell transfers suggests that migration to the red pulp and differentiation to a plasmablast are regulated independently from differentiation to B-1, although both presumably require antigen. This transition could be a controlling checkpoint for the secretion of natural IgM, as B-1 cells are considered the major source of this antibody (1, 9, 12).

The Bias in V_κ Repertoire Precedes Segregation to B-1 and Is Independent of PtC Binding. Although it was anticipated that V_κ4/5H would dominate the B-1 PtC^{bri} population, the dominance of V_κ4/5H in the B-0 subset was a surprise. As many as 59% of B-0 cells in these mice use V_κ4/5H. Even though some V_κ4/5H-expressing B cells may be PtC-specific B-1 cells that have lost surface Ig, this only decreases the proportion to 51%. Thus, extraordinarily high frequencies of B-0 cells express V_κ4/5H, indicating that the bias in V_κ expression is independent of PtC binding. As the segregation to B-1 occurs after expression of H and L chains (10), this bias must also precede segregation to the B-1 subset.

The inability of V_κ12 to associate with many L chains is no doubt a contributing factor, as it limits V_κ repertoire expressed by V_κ12 B cells. The fact that most L chains are nonpermissive in 6-1 mice (Fig. 6), provides an explanation for why 6-1 mice develop 10% as many B-0 cells as non-Tg littermates (18). The basis for the inability of V_κ12 to associate with most κ and λ chains is unknown. It is well established that V region structures influence L chain association (32–34) and that this involves both framework regions and CDRs (32–36). A second V_κ12 H chain, differing only in CDR 3 from the 10/G4 V_κ12 used here, is sufficiently deficient in ability to associate with L chains (Ye, J., H. Wang, L.W. Arnold, and S.H. Clarke, manuscript in preparation), implicating the V_κ-encoded segment rather than CDR 3 in this inability. As this V_κ is unmutated, this characteristic must be evolutionarily selected, possibly to limit the diversity of V_κ12 B cells.

Although the large number of nonpermissive L chains would account for the small B-0 population in 6-1 mice, it would not by itself account for the dominance of V_κ4/5H in B-0, as there are multiple permissive L chains (Fig. 2 A and Table I). Favor for V_κ4/5H could be achieved by a higher rearrangement frequency for this gene than for others. Although there is evidence that V_κ4/5 genes preferentially rearrange (37), there is no apparent V_κ4/5 bias among B-0 cells from non-Tg littermates. We therefore propose that V_κ12 B cells that express V_κ4/5H are favored over others for survival or clonal expansion. In this context, we have recently observed that the B cells in 6-1/V_κ1A double-Tg mice are predominantly immature, suggesting that not all V_κ12 B cells expressing a permissive L chain have an equal ability to contribute to the long-lived mature repertoire. We are currently testing this hypothesis.

The pattern of J_κ use among B-0 cells in 6-1 mice provides clues to the mechanism behind V_κ4/5H dominance. In normal mice, ~80% of V_κ rearrangements in B-0 cells are to J_κ1 and J_κ2 (38), as seen in our non-Tg control mice (Fig. 4 C). But 6-1 B-0 cells show a different pattern of J_κ use depending on whether or not they express V_κ4/5H. V_κ4/5H rearrangements are skewed to downstream J_κ gene segments and are rare to J_κ1 (Fig. 4 A). In contrast, non-V_κ4/5 rearrangements are significantly less biased to downstream J_κs, and ~35% are to J_κ1 (Fig. 4 B). The absence of rearrangements to J_κ1 in V_κ4/5H-expressing B-0 cells could be due to an inability of this gene to efficiently rearrange to J_κ1. Although we cannot exclude this possibility, we think it unlikely because we identified several rear-
rangements to Jκ1 (Fig. 4), and we know of no precedent for such a molecular defect. An alternative possibility is that Vκ4/5SH-Jκ1 rearrangements cannot associate with Vκ12. Functional amino acids affect association (35), and W96, unique to Jκ1, is not seen among the few Vκ4/5SH-Jκ1 rearrangements identified and is present in only one Vκ4/5 (non-H) rearrangement (Fig. 5). However, rearrangements that delete the first codon of Jκ1 are common and would yield Jκ regions identical to those encoded by Jκ2, as Jκ1 and Jκ2 are identical in amino acid sequence after the first amino acid. In fact, many of the rearrangements with R96 are the result of a rearrangement to Jκ2 that includes the last codon of Vκ4/5SH and deletes the first codon of Jκ2 (19). The identical L chain could be generated by rearrangement to Jκ1. Thus, Jκ1 use should be seen among the PtC b1 B-1 population, if not the PtC neg B-0 population, even if W96 disrupts association with Vκ12. That it is not argues against the idea that Jκ1 rearrangements are not represented because they disrupt association with Vκ12.

The more likely explanation is that Vκ4/5SH expression is the result of secondary rearrangement. The occurrence of secondary rearrangement to delete a primary rearrangement is well established and would result in a bias for the use of downstream Jκ gene segments (39–42). Secondary rearrangement could occur in Vκ12 pre-B cells to replace primary rearrangements that encode nonpermissive L chains. As a majority of L chains appear to be nonpermissive with Vκ12 H chains, secondary rearrangement may occur in a high proportion of these cells. Unless replaced, expression of a nonpermissive L chain will result in cell death, as seen in 6-1/k-/- mice (Fig. 6). A prediction of this hypothesis is that nonpermissive L chains are unable to mediate allelic exclusion. This was argued by others based on analyses of murine plasmacytomas that produce multiple L chains, of which only one was able to pair with the expressed H chain (43, 44), and based on an analysis of κ Tg mice (45). We therefore suggest that Vκ4/5SH rearrangements are predominantly secondary to primary rearrangements that encode nonpermissive L chains. Thus, secondary rearrangement probably contributes to the dominance of Vκ4/5SH by Vκ12 B-0 cells. As secondary rearrangement occurs in the bone marrow before commitment to B-1, the anti-PtC B-1 repertoire must be dependent on secondary Vκ4/5SH rearrangements as well, accounting for the absence of Jκ1 rearrangements from the B-1 repertoire. Why Vκ4/5SH rearrangements are more skewed to downstream Jκs than non-Vκ4/5SH rearrangements, implying that the former are more often secondary rearrangements than the latter, is still unresolved. This may be related to the suspected advantage that Vκ4/5SH-expressing B cells have in entry into the long-lived mature B-0 repertoire and may involve additional Vκ rearrangement in transition to a mature B cell. We are currently testing this possibility.

Selection at Multiple Checkpoints Focuses the Specificity of Vκ12 B Cells to PtC. These data reveal yet another checkpoint in B cell development that imposes a stringent limita-

tion on Vκ12 B cell repertoire diversity. The first occurs at the transition from pre-B1 to pre-B11, where the length and sequence of Vκ12 CDR3 are selected (20). Pre-B cells with 10/G4 rearrangements support pre-B cell differentiation, whereas most non-10/G4 rearrangements cannot, resulting in an enrichment of pre-B cells with 10/G4 rearrangements (20). The data reported here document a checkpoint after L chain gene rearrangement, during the transition to an immature B cell. The Vκ repertoire is limited at this stage due to an inability of most L chains to associate with Vκ12, resulting in a much smaller than normal B-0 subset. Because this cannot account for the dominance of Vκ4/5SH among B-0 cells, we suggest an additional selective mechanism operating at a later stage that favors Vκ12/Vκ4/5SH-expressing cells, possibly during the transition from an immature to a mature B cell. This process generates a pool of B-0 cells from which cells with the PtC b1 phenotype are selected by antigen for entry into the B-1 repertoire and clonal expansion. As 10/G4 Vκ12 H chains and Vκ4/5SH L chains are critical for the PtC b1 phenotype, we suggest that there has been evolutionary pressure to develop a Vκ12 B-0 repertoire enriched in PtC b1 cells. This would promote the production of a large number of PtC-specific B-1 cells. The evolutionary selection for the development of anti-PtC B cells complements an earlier finding by Booker and Haughton (46) that the Vκ12 and Vκ11 (also encoding anti-PtC antibodies) genes are evolutionarily more conserved than other Vκ genes.

In spite of sustained research efforts, the function of B-1 lymphocytes remains elusive. Their characterization in many vertebrate species suggests a strong phylogenetic conservation and a fundamental homeostatic or protective role. A limited repertoire of antigen specificities and the expression of low-affinity Ig receptors could indicate that these cells are a “first line” immune defense against bacterial organisms (47). A recent report by Boes et al. (48) showing that anti-PtC antibodies are protective in acute peritonitis provides direct evidence that anti-PtC antibodies are important in immediate protection against bacterial infections. Perhaps the physiological target of these antibodies is unlikely to change over time and is shared by a large number of organisms, and therefore the development of a response to this antigen could be evolutionarily selected to provide immediate protection before a T cell–dependent high-affinity response can develop. For the same reasons, B-1 cells could also have a role in the “scavenging” of senescent or apoptotic cells resulting from physiological or pathological events; these cells can express self-antigens on their surfaces (e.g., PtC, nuclear antigens, DNA) (49, 50), toward which the B-1 Ig repertoire is oriented. As these autoantigens do not vary their epitopes in time, mechanisms to eliminate them could also be evolutionarily selected. Such a strong survival value could have the 10/G4 Vκ12 H chain gene and its L chain partner, Vκ4/5SH, expressed as a sine qua non component of the B-1 repertoire in mice and other species.
We gratefully acknowledge the Microscopy Facility, the DNA Sequencing Facility, and the Flow Cytometry Facility at the University of North Carolina for their assistance with this work. We are also indebted to Garnett Kelsoe and Biao Zheng for their generous assistance with histological analysis. This work was supported by National Institutes of Health grants AI29576 and AI43587, grant 79017 from the American Cancer Society, and a grant from the Arthritis Foundation.

Address correspondence to Stephen H. Clarke, Dept. of Microbiology and Immunology, CB# 7290, 804 MEB, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. Phone: 919-966-3131; Fax: 919-962-8103; E-mail: shl@med.unc.edu

Submitted: 4 April 1999 Revised: 20 July 1999 Accepted: 22 July 1999

References

1. Hayakawa, K., R.R. Hardy, D.R. Parks, and L.A. Herzenberg. 1983. The "Ly-1 B+" cell subpopulation in normal, immunodeficient, and autoimmune mice. J. Exp. Med. 157: 202–218.
2. Hayakawa, K., R.R. Hardy, and L.A. Herzenberg. 1986. Peritoneal Ly-1 B cells: genetic control, autoantibody production, increased lambda light chain expression. Eur. J. Immunol. 16:450–456.
3. Karras, J.G., Z. Wang, L. Huo, R.G. Howard, D.A. Frank, and T.L. Rothstein. 1997. Signal transducer and activator of transcription-3 (STAT-3) is constitutively activated in normal, self-renewing B-1 cells but only inductively expressed in conventional B lymphocytes. J. Exp. Med. 185:1035–1042.
4. Liou, L.-B., A. Colosia, R.B. Corley, S.H. Clarke, and D.W. Scott. 1995. Differential susceptibility to tolerance induction in vitro of splenic B cells from several transgenic mouse lines role of B-1 cells. J. Immunol. 154:6262–6274.
5. Lalor, P.A., and G. Morahan. 1990. The peritoneal Ly-1 (CD5) B cell repertoire is unique among murine B cell repertoires. Eur. J. Immunol. 20:485–492.
6. Casali, P., S.E. Burastero, M. Nakamura, G. Inghirami, and A.L. Notkins. 1987. Human lymphocytes making rheumatoid factor and antibody to sDNA belong to the Leu-1+ B-cell subset. Science. 236:77–81.
7. Hardy, R.R., K. Hayakawa, M. Shimizu, K. Yamasaki, and T. Kishimoto. 1987. Rheumatoid factor secretion from human Leu-1+ B cells. Science. 236:81–83.
8. Mecolino, T.J., L.W. Arnold, L.A. Hawkins, and G. Haughton. 1988. Normal mouse peritoneum contains a large number of Ly-1+ (CD5) B cells that recognize phosphatidyl choline. Relationship to cells that secrete hemolytic antibody specific for autologous erythrocytes. J. Exp. Med. 168:687–698.
9. Hayakawa, K., R.R. Hardy, M. Honda, L.A. Herzenberg, A.D. Steinberg, and L.A. Herzenberg. 1984. Ly-1 B cells: functionally distinct lymphocytes that secrete IgM autoantibodies. Proc. Natl. Acad. Sci. USA. 81:2494–2498.
10. Arnold, L.W., C.A. Pennell, S.K. Mccray, and S.H. Clarke. 1994. Development of B-1 cells: segregation of phosphatidyl choline-specific B cells to the B-1 population occurs after immunoglobulin gene expression. J. Exp. Med. 179:1585–1595.
11. Massoudi, H., S. Mota-Santos, F. Huetz, A. Coutinho, and P.A. Casevaze. 1990. All T15 Ig-positive antibodies (but not the majority of V\textsubscript{H}T15 antibodies) are produced by peritoneal CD5 B lymphocytes. Int. Immunol. 2:515–520.
12. Forster, I., and K. Rajewsky. 1987. Expansion and functional activity of Ly-1+ B cells upon transfer of peritoneal cells into allogeneic congenic newborn mice. Eur. J. Immunol. 17:521–528.
13. Hayakawa, K., R.R. Hardy, L.A. Herzenberg, and L.A. Herzenberg. 1985. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J. Exp. Med. 161:1554–1568.
14. Hardy, R.R., and K. Hayakawa. 1991. A developmental switch in B lymphopoiesis. Proc. Natl. Acad. Sci. USA. 88: 11550–11554.
15. Kantor, A.B., and L.A. Herzenberg. 1993. Origin of murine B cell lineages. Annu. Rev. Immunol. 11:501–538.
16. Cong, Y.Z., E. Rabin, and H.H. Worts. 1991. Treatment of murine CD5-B cells with anti-Ig, but not LPS, induces surface CD5: two B cell activation pathways. Int. Immunol. 3:467–476.
17. Haughton, G., L.W. Arnold, A.C. Whitmore, and S.H. Clarke. 1993. B1 cells are made, not born. Immunol. Today. 14:84–87.
18. Clarke, S.H., and L.W. Arnold. 1998. B-1 cell development: evidence for an uncommitted immunoglobulin (Ig)M+ B cell precursor in B-1 cell differentiation. J. Exp. Med. 187:1325–1334.
19. Pennell, C.A., T.J. Mecolino, T.A. Grdina, L.W. Arnold, G. Haughton, and S.H. Clarke. 1989. Biased immunoglobulin variable region gene expression by Ly-1 B cells due to clonal selection. Eur. J. Immunol. 19:1289–1295.
20. Ye, J., S.K. Mccray, and S.H. Clarke. 1996. The transition of pre-B1 to pre-BIl1 cells is dependent on the structure of the mu surrogate L chain receptor. EMBO J. 15:1524–1533.
21. Chen, J., M. Trounstein, C. Kurahara, F. Young, C.C. Kuo, Y. Xu, J.F. Lorine, F.W. Alt, and D. Huszar. 1993. B cell development in mice that lack one or both immunoglobulin kappa light chain genes. EMB0 (Eur. Mol. Biol. O rgan.) J. 12: 821–830.
22. Retter, M.W., R.A. Eisenberg, P.L. Cohen, and S.H. Clarke. 1995. Sm and DNA binding by dual reactive B cells requires distinct VH, Vk, and V HCDR3 structures. J. Immunol. 155:2248–2257.
23. Bloom, D.D., J.L. Davignon, M.W. Retter, M.J. Slomon, D.S. Pisetsky, P.L. Cohen, R.A. Eisenberg, and S.H. Clarke. 1993. V region gene analysis of anti-Sm hybridomas from MRL/Mp-lpr/lpr mice. J. Immunol. 150:1591–1610.
24. Ibrahim, S.M., M. Weigert, C. Basu, J. Erikson, and M.Z. Radic. 1995. Light chain contribution to specificity in anti-DNA antibodies. J. Immunol. 155:3223–3233.
25. Kabat, E.A., T.T. Wu, H.M. Perry, K.S. Gottesman, and C. Foeller. 1991. Sequences of Proteins of Immunological Interest. U.S. Department of Health and Human Services, Washington, DC. 151–259.

26. Cyster, J.G., S.B. Harley, and C.C. Goodnow. 1994. Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nat. 371:389–395.

27. Thomas, J.D., P. Sideras, C.I. Smith, I. Vorechovsky, V. Chapman, and W.E. Paul. 1993. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science. 261:355–358.

28. Rawlings, D.J., D.C. Saffran, S. Tsukada, D.A. Largaespada, J. Grimaldi, L. Cohen, R.N. Mohr, J.F. Bazan, M. Howard, and N.G. Copeland. 1993. Mutation of unique region of J segments in the heavy chain complementarity determining region 2.

29. Chen, C., T.T. Wu, H.M. Perry, K.S. Gottesman, and C. Foeller. 1991. Sequences of Proteins of Immunological Interest. U.S. Department of Health and Human Services, Washington, DC. 151–259.

30. Kerner, J.D., M.W. Appleby, R.N. Mohr, S. Chien, D.J. Rawlings, C.R. Maliszewski, O.N. Witte, and R.M. Pernis. 1995. Defective B cell development and function in Btk-deficient mice. Immunity. 3:283–299.

31. Liu, Y.-L., J. Zhang, P.J.L. Lane, E.Y.-T. Chan, and I.C.M. Chapman, and W.E. Paul. 1993. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science. 261:355–358.

32. Grey, H.M., and M. Mannik. 1965. Specificity of recombination between VH and VL regions of human monoclonal immunoglobulins.

33. de-Preval, C., and M. Fougereau. 1976. Specific interaction of H and L chains from human γG-myeloma proteins.

34. Herzenberg, L.A., and L.A. Herzenberg. 1989. Toward a layered immune system. C. 59:953–954.

35. Hamel, P.A., D.E. Isenman, M.H. Klein, and K.J. Dorrington. 1986. The role of the VΛ and VΛ-encoding segments in the preferential reassociation of immunoglobulin subunits. Mol. Immunol. 23:503–510.

36. Chen, C., T.M. Martin, S. Stevens, and M.B. Rittenberg. 1994. Defective secretion of an immunoglobulin caused by mutations in the heavy chain complementarity determining region 2. J. Exp. Med. 172:559–566.

37. Kalled, S.L., and P.H. Broecker. 1990. Preferential rearrangement of Vκ4 gene segments in pre-B cell lines. J. Exp. Med. 172:559–566.

38. Wood, D.L., and C. Coleclough. 1984. Different joining region J segments of the murine κ immunoglobulin light chain locus are used at markedly different frequencies. Proc. Natl. Acad. Sci. USA. 81:4756–4760.

39. Clarke, S.H., and S. McCray. 1991. A shared κ reciprocal fragment and a high frequency of secondary rearrangements among influenza hemagglutinin specific B cell hybridomas. J. Immunol. 146:343–349.

40. Gay, D., T. Sanders, S. Camper, and M. Weigt. 1993. Receptor editing: an approach by autoreactive B cells to escape tolerance. J. Exp. Med. 177:999–1008.

41. Tiegis, S.L., D.M. R ussell, and D. N emazee. 1993. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177:1009–1020.

42. Han, S., S.R. Dillon, B. Zheng, M. Shimoda, M.S. Schlissel, and G. Kelsoe. 1997. V(D)J recombinase activity in a subset of germinal center B lymphocytes. Science. 278:301–305.

43. Kwan, S.-P., E. Mac, J.G. Seidman, P. Leder, and M.A. Scharff. 1981. Two kappa immunoglobulin genes are expressed in the myeloma S107. C. 26:57–66.

44. Bernard, O., N.M. Gough, and J.M. Adams. 1981. Plasma-cytomas with more than immunoglobulin k mRNA: implications for allelic exclusion. Proc. Natl. Acad. Sci. USA. 78:5812–5816.

45. Ritchie, K.A., R.L. Brinster, and U. Storb. 1984. Allelic exclusion and control of endogenous immunoglobulin gene rearrangement in κ transgenic mice. Nature. 312:517–520.

46. Booker, J.K., and G. Haughton. 1994. Mechanisms that limit diversity of autoantibodies. II. Evolutionary conservation of the Ig variable region genes which encode naturally occurring autoantibodies. Int. Immunol. 6:1427–1436.

47. Herzenberg, L.A., and L.A. Herzenberg. 1989. Toward a layered immune system. C. 59:953–954.

48. Boes, M., A.P. Prodeus, T. Schmidt, M.C. Caroll, and J. Chen. 1998. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J. Exp. Med. 188:2381–2386.

49. Casciola-Rosen, L.A., G. Anhalt, and A. Rosen. 1994. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179:1317–1330.

50. Rosen, A., L. Casciola-Rosen, and J. Ahearn. 1995. Novel receptor editing: an approach by autoreactive B cells to escape tolerance. J. Exp. Med. 177:999–1008.

51. Santulli-M arrow, S., M.W. R etter, R. Gee, M.J. M amula, and S.H. Clarke. 1998. Autoreactive B cell regulation: peripheral induction of developmental arrest by lupus-associated autoantigens. Immunity. 8:209–219.