On Covering a Graph Optimally with
Induced Subgraphs

Shripad Thite∗

February 1, 2008

Abstract

We consider the problem of covering a graph with a given number of induced subgraphs so that the maximum number of vertices in each subgraph is minimized. We prove NP-completeness of the problem, prove lower bounds, and give approximation algorithms for certain graph classes.

Let $G = (V, E)$ be a graph. The order of G is the number $|V|$ of its vertices. For an arbitrary subset of vertices $V' \subseteq V$, the induced subgraph denoted by $G[V']$ is the subgraph of G with vertex set V' and all edges $e \in E$ such that both endpoints of e belong to V'. In other words, $G[V'] = (V', E')$ where $E' = \{(u, v) \in E : u, v \in V'\}$. The union of two graphs $G_1(V_1, E_1)$ and $G_2(V_2, E_2)$ is the graph $G = (V_1 \cup V_2, E_1 \cup E_2)$. We say that a graph H covers a graph G if and only if G is a subgraph of H.

We consider the following optimization problem: given a graph $G = (V, E)$ and an integer $k \geq 0$, find k induced subgraphs $G[V_1], G[V_2], G[V_3], \ldots, G[V_k]$ whose union covers G such that the maximum order of the induced subgraphs is minimized. Thus, for every edge (u, v) of G we require that there exists an i in the range $1 \leq i \leq k$ such that both $u \in V_i$ and $v \in V_i$; we wish to minimize $\max_{1 \leq i \leq k} |V_i|$. We denote this problem by $\text{COVER}(G, k)$.

Without loss of generality, we can assume that each V_i has the same cardinality, since we can add extra vertices to any subset smaller than the largest without increasing the cost of the solution.

Motivation Suppose we have a parallel computer with k processors, each with its own local memory. The local memory of each processor is bounded, and can store at most M words. We want to distribute n items of data, each occupying a single word in memory, among the processors so that they can execute a certain computation in parallel. An individual step in the computation requires a processor to read a set of operands from its memory, execute

∗Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, the Netherlands; Email: sthite@win.tue.nl
an operation, and write back the result again to its local memory. Performing the operation requires that all operands be present in the local memory of the processor.

We consider the case where the operations performed by the processor are binary, i.e., each operation requires reading exactly two operands. The computation is given as a graph $G = (V, E)$ with n vertices where each vertex represents a data item and every edge of the graph represents a dependency between two data items. A processor can execute the operation corresponding to an edge (u, v) only if the operands corresponding to both u and v are in the local memory of the processor.

We wish to minimize the maximum required size of local memory among all the processors so that every edge can be "solved". This requires an assignment of data items or vertices to each of the k processors. The subset of vertices assigned to processor i is V_i. We require that the induced subgraphs $G[V_i]$ together cover the whole graph G. Minimizing the maximum local memory among the processors is equivalent to minimizing the order of the largest induced subgraph.

Related work Graph covering is a very well-studied problem—the online compendium of NP-optimization problems [CK05], for instance, lists several NP-hard problems on partitioning and covering graphs. Our problem is different from each of the problems in the list and from the many variants of graph covering, either because the constraints are different (for instance, we do not require the covering subgraphs to be connected or to be edge disjoint), or because the objective function is different, or both. To the best knowledge of the author, no results on the particular problem we study in the current abstract have been published yet.

1 Complexity

We show that deciding whether a forest can be covered optimally is NP-complete.

The problem is clearly in NP. We will show that it is NP-hard by a reduction from 3-PARTITION which is defined as follows:

GIVEN: A set A of $3m$ positive integer values a_1, a_2, \ldots, a_{3m} and a positive integer S such that $S/4 < a_i < S/2$ for all i where $1 \leq i \leq 3m$ and such that $\sum_{i=1}^{3m} a_i = mS$.

QUESTION: Can A be divided into m disjoint subsets B_1, B_2, \ldots, B_m such that $\sum_{a_i \in B_j} a_i = S$ for all $1 \leq j \leq m$?

Note that because $S/4 < a_i < S/2$ for all i, any solution that answers the question in the affirmative must have $|B_j| = 3$ for all j.

3-PARTITION is known to be strongly NP-complete [GJ79], i.e., it is NP-hard even when all instances are encoded in unary. We demonstrate a polynomial-time reduction from an arbitrary instance of 3-PARTITION to an instance of COVER(G, k) that preserves “yes” and “no” answers.

The graph G in the instance of COVER(G, k) will be a forest of $3m$ disjoint paths. For each positive value a_i in the given instance of 3-PARTITION, construct a path $P^{(i)}$ with a_i vertices and $a_i - 1$ edges. Set $k = m$.

If the original instance of 3-PARTITION has a solution consisting of B_1, B_2, ..., B_m, then we construct a solution to the new instance of COVER(G, k) in which $G[V_j]$ is the union of the paths $P^{(i)}$ for all i such that $a_i \in B_j$. Since the paths are disjoint, we have $|V_j| = \sum_{a_i \in B_j} a_i = S$ for all j. Hence, we obtain a solution to the instance of COVER(G, k) of cost at most S.

Next, consider a solution to the instance of COVER(G, k) in which $\max_{1 \leq j \leq k} |V_j| \leq S$; hence $\sum_{1 \leq j \leq k} |V_j| \leq k \max_{1 \leq j \leq k} |V_j| = mS$.

The graph G has $\sum_{1 \leq i \leq 3m} a_i = mS$ vertices. Consider the $mS \times k$ boolean incidence matrix that has a 1 entry if and only if the corresponding vertex belongs to the corresponding subset. The number of 1’s in this incidence matrix is the sum of the cardinalities of each subset. Hence, it must be the case that $\sum_{1 \leq i \leq k} |V_j| \geq \sum_{1 \leq i \leq 3m} a_i = mS$. Therefore, we conclude that $\sum_{1 \leq j \leq k} |V_j| = mS$. It follows that $|V_j| = S$ for all j such that $1 \leq j \leq m$.

Since G has mS vertices and $\sum_{1 \leq j \leq k} |V_j| = mS$, each vertex must belong to at most one subset. Hence, each vertex must belong to exactly one subset. Since all the edges are covered, any two adjacent vertices must belong to the same subset. Therefore, for each path $P^{(i)}$, all vertices of $P^{(i)}$ must belong to exactly one V_j. Hence, we obtain a solution to the original instance of 3-PARTITION in which for all i we have $a_i \in B_j$ if and only if $P^{(i)}$ belongs to V_j. This is a valid solution because for all j we have $\sum_{a_i \in B_j} a_i = |V_j| = S$.

We have thus proved the following theorem.

Theorem 1. COVER(G, k) is NP-hard even when G is a disjoint union of paths.

2 Lower bounds

In this section, we prove lower bounds on the size of an optimum solution.

2.1 A lower bound based on connectivity

Clearly, $\max_i |V_i| \geq \lceil n/k \rceil$. Let \mathcal{I} be the intersection graph of the V_i’s. If G is connected, then \mathcal{I} must be connected, so it must have at least $k-1$ edges. Each edge of \mathcal{I} corresponds to some vertex that belongs to more than one subset, so $\sum_{i=1}^{k} |V_i| \geq n + k - 1$. Since the maximum of a set is at least as large as its mean, we have

$$\max_i |V_i| \geq \left\lceil \frac{n + k - 1}{p} \right\rceil = \left\lceil \frac{n}{k} \right\rceil + 1. \quad (1)$$

Suppose G is κ-connected. Let $N(V_i)$ denote the open neighborhood of V_i; i.e. $N(V_i)$ consists of all vertices in the complement of V_i that are adjacent to some vertex in V_i.

Suppose $\max_i \{|V_i|\} < n - \kappa$. We claim that $|N(V_i)| \geq \kappa$. This must be true because otherwise removing the vertices in $N(V_i)$ would disconnect V_i from the rest of the graph (note that $|\overline{V_i}| \geq \kappa$). Likewise, $|N(\overline{V_i})| \geq \kappa$.

3
For each subset V_i, let W_i denote $\bigcup_{j \neq i} V_j$. Note that $V_i \subseteq W_i$.

\[|V_i \cap N(V_i)| \geq \kappa \implies |V_i \cap W_i| \geq \kappa. \]

Hence, at least κ vertices in each subset V_i belong to more than one subset.

Claim 2.

\[\sum_{i=1}^{k} |V_i| \geq n + \frac{\sum_{i=1}^{k} \kappa_i}{2} \]

where κ_i is the number of vertices of V_i that belong to more than one subset.

Proof. The proof is by induction on the number of vertices, n. The base case $n = 0$ is trivial. Remove a vertex v of G. Suppose v belongs to s of the subsets. Therefore, in this smaller graph, from the induction hypothesis, we have

\[\sum_{i=1}^{k} |V_i| \geq n - 1 + \left(\frac{\sum_{i=1}^{k} \kappa_i}{2} \right) - s. \]

Hence, in the original graph,

\[\sum_{i=1}^{k} |V_i| \geq n + \left(\frac{\sum_{i=1}^{k} \kappa_i}{2} \right) - s + s \]

\[\geq n + \frac{\sum_{i=1}^{k} \kappa_i}{2}. \]

\[\square \]

From the previous argument, we have $\sum_{i=1}^{k} \kappa_i \geq k \kappa$. Hence,

\[\max_i |V_i| \geq \min \left\{ n - \kappa, \left\lceil \frac{n}{k} + \frac{\kappa}{2} \right\rceil \right\} \quad (2) \]

which is better than the lower bound of Equation (1) whenever $\kappa > 2$.

2.2 A lower bound for dense graphs

Let $\rho(m)$ be an upper bound on the number of edges in an induced subgraph of G of order m. The function ρ is a measure of the density of G. Any subset of K or fewer vertices will cover at most $\rho(K)$ edges. Since every edge in G must be covered by the k induced subgraphs, we must have

\[\max_{1 \leq i \leq k} \{|V_i|\} \geq \min \{ m : k\rho(m) \geq e(G) \}. \]
Since $\rho(m) \leq \binom{m}{2}$,
\[
\min \{ m : kp(m) \geq e(G) \} \geq \min \{ m : k \binom{m}{2} \geq e(G) \};
\]
hence,
\[
\max_{1 \leq i \leq k} \{|V_i| \} \geq \frac{1}{2} \left(1 + \frac{\sqrt{8e(G) + k}}{\sqrt{k}} \right) > \frac{1}{2} \left(1 + \frac{\sqrt{8e(G)}}{k} \right) > \sqrt{\frac{2e(G)}{k}} \tag{3}
\]
For dense graphs where $e(G) = \Omega(n^2)$, equation (3) gives us a lower bound of $\Omega(n \cdot k^{-1/2})$ which is better than that of equation (2). In particular, the bound of $\Theta(n \cdot k^{-1/2})$ is tight when G is a clique.

2.3 Another lower bound

Suppose V_1, V_2, \ldots, V_k is a feasible solution (not necessarily optimum) to $\text{COVER}(G, k)$; i.e., for every edge $(u, v) \in E$ there exists l such that $(u, v) \subseteq V_l$. Let $S \subseteq V$ be an arbitrary subset of vertices. Let $N(S)$ denote the neighborhood of the set S, i.e., $N(S) = \{ v \in V \setminus S : \exists u \in S, (u, v) \in E \}$.

Let $C(S)$ denote $\{ V_l : V_l \cap S \neq \emptyset, 1 \leq l \leq k \}$. We claim that $S \cup N(S) \subseteq \bigcup_{V_l \in C(S)} V_l$. By definition of $C(S)$, we have $S \subseteq \bigcup_{V_l \in C(S)} V_l$. Let $u \in S$ and $v \in N(S)$ such that $(u, v) \in E$. Any subset V_l that covers the edge (u, v) must contain both u and v and, since V_l contains $u \in S$, it must be the case that $V_l \in C(S)$.

Therefore,
\[
\max_{V_l \in C(S)} |V_l| \geq \frac{|S| + |N(S)|}{|C(S)|}
\]
In particular, we have shown that
\[
\max_{1 \leq i \leq k} |V_i| \geq \max_{S \subseteq V} (|S| + |N(S)|)/k. \tag{4}
\]

The question arises: how good are the lower bounds in this section? The author suspects that they can be strengthened significantly, as evidenced by the following lemma.

Lemma 3. There exists an infinite family of trees such that, for every tree T in the family with n vertices, every optimum cover of T with two induced subgraphs (i.e., $k = 2$) must cost at least $\lfloor n/2 \rfloor + \Omega(\log n)$.

Proof. Construct a family of trees indexed by the integers inductively as follows. Each tree in the family will have a vertex designated as the root. Let T_0 denote a tree with a single vertex which is also the root. For each $h \geq 1$, the tree T_h consists of a new root vertex plus three copies of T_{h-1} such that the root of T_h is adjacent to the three roots of the copies of T_{h-1}. It can be easily verified that T_h is a tree with $(3^h - 1)/2$ vertices.

For each tree T_h in the above family, we apply the lower bound of Equation (4). Let V be the vertex set of T_h. Let $S \subseteq V$ be an arbitrary subset of vertices such that $|S| = |V|/2$. It can be shown that $|N(S)| \geq h - 1$. Hence, the lemma follows by Equation (4). \hfill \Box
3 Approximation algorithms

We turn our attention to specific graph classes and efficient algorithms to approximate the optimum solution.

3.1 Covering a caterpillar exactly

A caterpillar is a tree such that deleting all its leaves causes a single path to remain. Let T be a caterpillar and let V be the set of leaves of T; then, T is a caterpillar if and only if $T \setminus V$ is a single path P.

Theorem 4. A caterpillar can be covered optimally by a greedy algorithm.

Proof. We show that a caterpillar T can be covered optimally with exactly $\lceil n/k \rceil + 1$ vertices in the induced subgraph of maximum order. Order the vertices of T in the following manner.

Let P be the path that remains after deleting all leaves of T. Let u be one of the two endpoints of P. Choose u to be the first vertex in the order, followed by all leaves of T adjacent to u in arbitrary order. Continue by ordering the vertices of $T \setminus u$ so that they follow in the order.

Given the above vertex ordering, choose the prefix of the first $\lceil n/k \rceil + 1$ vertices as the set V_1. Remove the edges of T in the induced subgraph $G[V_1]$ and repeat the procedure on the remaining graph until we have subsets V_1, V_2, \ldots, V_k. The last subset V_k may contain fewer vertices.

Note that no edge is covered by more than one induced subgraph. For each i in the range $1 \leq i \leq k - 1$, the induced subgraph $G[V_i]$ is a subtree of T with exactly $\lceil n/k \rceil + 1$ vertices; hence, $G[V_i]$ contains exactly $\lceil n/k \rceil$ edges. Therefore, $\bigcup_{1 \leq i \leq k-1} G[V_i]$ covers exactly $(k - 1) \lceil n/k \rceil$ edges of T. The remaining $(n-1)-(k-1)\lceil n/k \rceil \leq n/k - 1$ edges are easily seen to be covered by $G[V_k]$ while ensuring that $|V_k| \leq n/k$.

3.2 Covering graphs of bounded degree

Construct a vertex cover C of G as follows: construct a maximal matching and include both endpoints of each edge in the matching. We get a vertex cover whose size is at most twice the minimum possible. Let $|C| = c$.

Let $N[u]$ denote the closed neighborhood of a vertex u. (The closed neighborhood of u consists of u and all vertices adjacent to u. $N(u)$ denotes the open neighborhood of u: $N(u) = N[u] \setminus \{u\}$.) Then $|N[u]| \leq \Delta + 1$, where Δ is the maximum degree of G. Start with c subsets of vertices, each consisting of the closed neighborhood of a vertex in C. Clearly, every edge of G has both endpoints in some subset.

Assume that $c > k$. Repeatedly merge the two smallest subsets, until after $\lceil \log(c/k) \rceil$ steps we have only k subsets. Each step at most doubles the size of the largest subset. Therefore, at the end of this process,

$$\max |V_i| \leq \frac{c}{k} (\Delta + 1).$$
The time taken by this process of merging is \(O(\log(c/k)) = O(\log(n/k)) \).

Since the lower bound is \(\lceil n/k \rceil \), this algorithm gives an approximation ratio of

\[
\frac{(\Delta + 1) c/k}{n/k} = \frac{c}{n} (\Delta + 1) \leq \Delta + 1.
\]

The total running time of the algorithm is easily seen to be linear in the size of the graph.

3.3 Covering \(c \)-inductive graphs

An interesting class of graphs is the class of \(c \)-inductive (also called \(c \)-degenerate) graphs.

Definition 5. A graph \(G \) is \(c \)-inductive if every subgraph of \(G \) has maximum degree at most \(c \).

Equivalently, a graph \(G \) is \(c \)-inductive if it has a vertex \(u \) of degree at most \(c \) such that \(G \setminus u \) is \(c \)-inductive; the empty graph is \(c \)-inductive by definition.

Theorem 6. There exists an algorithm for \(c \)-inductive graphs with approximation ratio \(c+1 \).

Proof. First, partition the \(n \) vertices of \(G \) into \(k \) equitable subsets \(V_1, V_2, \ldots, V_k \), each of cardinality either \(\lfloor n/k \rfloor \) or \(\lceil n/k \rceil \).

Next, compute a \(c \)-inductive ordering of vertices as follows. Let \(v_1 \) be a vertex of degree at most \(c \) in \(G \), let \(v_2 \) be a vertex of degree at most \(c \) in \(G - v_1 \), and so on. In general, \(v_i \) is a vertex of degree at most \(c \) in \(G - \{v_1, v_2, \ldots, v_{i-1}\} \); such a vertex must exist because \(G \) is \(c \)-inductive.

Now, for each subset \(V_i \) for \(i = 1, 2, \ldots, k \), let \(V'_i = \emptyset \) initially. Consider each vertex \(v_j \in V_i \) in the inductive order restricted to vertices in \(V_i \). Include in \(V'_i \) all neighbors \(v_l \) of \(v_j \) with index greater than \(j \) such that \(v_l \in V \setminus (V_i \cup V'_i) \); due to the inductive ordering, there are at most \(c \) neighbors of \(v_j \) with index greater than \(j \). Thus, \(|V'_i| \leq c |V_i| \leq c \lfloor n/k \rfloor \). Finally, the desired subsets of vertices are \(V_i \cup V'_i \) for \(1 \leq i \leq k \).

Suppose \((v_j, v_l) \) is an edge of \(G \) with \(j < l \) in the inductive ordering. If both \(v_j \) and \(v_l \) belong to \(V_i \) for some \(i \), then the edge \((v_j, v_l) \) is certainly covered. Otherwise, let \(v_j \in V_i \) and \(v_l \in V_m \). When \(v_j \) is encountered during the \(i \)th stage \(v_l \) is included in \(V'_i \) if it is not in \(V'_i \) already. Thus, every edge is covered when the algorithm terminates.

We have derived an upper bound of \((c + 1) \lfloor n/k \rfloor \) on the cardinality of \(V_i \cup V'_i \) for every \(i \), which gives the approximation ratio of the algorithm as \(c + 1 \). \(\square \)

As a consequence, the above algorithm achieves in linear time a 2-approximation for forests (and trees), a 6-approximation for planar graphs, and a 3-approximation for outerplanar graphs.
3.4 Heuristic for graph classes with separator theorems

A separator theorem for a class of graphs \(G \) is a theorem of the following form [LT79]:

There exist constants \(\alpha < 1 \) and \(\beta > 0 \) such that if \(G \) is any \(n \)-vertex graph in \(G \), then the vertices of \(G \) can be partitioned into three subsets \(A \), \(B \), and \(C \) such that no edge joins a vertex in \(A \) with a vertex in \(B \), neither \(A \) nor \(B \) contains more than \(\alpha n \) vertices, and \(C \) contains at most \(\beta f(n) \) vertices.

Such a subset \(C \) is said to be an \((\alpha, \beta f(n))\)-separator of \(G \).

A natural recursive algorithm for covering a graph \(G \in G \) with \(k \) induced subgraphs is the following. Find subsets of vertices \(A \), \(B \), and \(C \) as above. Without loss of generality, assume that \(A \) has no more vertices than \(B \). Recursively construct a cover with \(\lfloor k/2 \rfloor \) induced subgraphs of \(G[A \cup C] \) and a cover with \(\lceil k/2 \rceil \) induced subgraphs of \(G[B \cup C] \). The recursion terminates when \(k = 1 \) with the trivial solution. Since \(C \) is a separator, every edge of \(G \) belongs to either \(G[A \cup C] \) or \(G[B \cup C] \); hence, we indeed obtain a cover.

The solution obtained by the above recursive algorithm is close to optimal if \(f(n) = o(n) \), i.e., if every graph in the class \(G \) has a separator of sublinear order.

4 A dual problem

A natural dual problem is to cover a given graph with as few induced subgraphs as possible, each with a fixed maximum number of vertices. Given a graph \(G = (V, E) \) and an integer \(m \), cover \(G \) with the minimum number of induced subgraphs \(G[V_1], G[V_2], \ldots, G[V_p] \), such that \(|V_i| \leq m \) for all \(i \). Here, the problem is to minimize the number of processors, each with a fixed amount of local memory, to cover the given computation graph.

The dual problem is also NP-complete by the same proof as for the primal; see Section 11.

5 Extension to covering hypergraphs

The problem can be generalized to the case of covering a hypergraph. The computation can be modeled by a hypergraph \(H \) with vertex set \([n]\). Each edge of the hypergraph is a set of data items that are operands of any single operation and are therefore required to be stored together in some processor’s memory. The problem is to assign the vertices of \(H \) to \(p \) subsets \(V_1, V_2, \ldots, V_p \) such that \(|V_i| \leq K \) and every edge of \(H \) belongs to at least one of the subgraphs of \(H \) induced by \(V_1, V_2, \ldots, V_p \). In other words, we need to cover \(H \) with \(p \) induced subgraphs \(H[V_1], H[V_2], \ldots, H[V_p] \) such that the order of each subgraph is at most \(K \).

Note that, in general, a single vertex may belong to more than one subset. Unlike in the graph case, a single hyperedge \(e \) can be covered more than once but only if there exists some other hyperedge \(f \) such that \(e \subseteq f \), and \(e \) and \(f \) are covered by different subgraphs. On the other hand, we can assume without loss of generality that no hyperedge is contained in another.
Acknowledgments

The author thanks Shang-Hua Teng for posing the original problem several years ago. Thanks also to Jeff Erickson, Douglas West, Mitch Harris, Sariel Har-Peled, and Alper Üngör for various discussions. Almost all the results mentioned in this abstract were obtained when the author was a Ph.D. student in the Computer Science department at the University of Illinois at Urbana-Champaign.

References

[CK05] Pierluigi Crescenzi and Viggo Kann. A compendium of NP optimization problems. Online at http://www.nada.kth.se/~viggo/problemlist/, July 2005.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., 1979.

[LT79] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied Math, 36(2):177–189, April 1979.