We present a promising route to realize spontaneous magnetic order on the surface of a 3D topological insulator by applying a superlattice potential. The superlattice potential lowers the symmetry of the surface states and creates tunable Van Hove singularities, which, when combined with strong spin-orbit coupling and Coulomb repulsion, give rise to a topological meron lattice spin texture. The periodicity of this designer meron lattice can be tuned by varying the periodicity of the superlattice potential. We employ Ginzburg-Landau theory to classify the different magnetic orders and show that the magnetic transition temperature reaches experimentally accessible values. Our work introduces a new direction to realize exotic quantum order by engineering interacting Dirac electrons in a superlattice potential, with promising applications to spintronics.

I. INTRODUCTION

Three-dimensional topological insulators (TIs) host gapless surface Dirac cones protected by time reversal symmetry [1–11]. In the presence of strong interactions, time-reversal symmetry can be spontaneously broken, gapping the Dirac cone. The result is an exotic magnetically ordered surface exhibiting the quantized anomalous Hall effect [5, 12–18]. However, for all measured TIs, the Coulomb interaction is too weak to induce the magnetically ordered phase [5, 12, 14, 18].

In this manuscript, we show that a superlattice potential enhances correlation effects and provides a new and experimentally accessible route to realize spontaneous magnetic order on the surface of a TI as depicted in Fig. 1(a). The superlattice potential downfolds and strongly renormalizes the low-energy band structure, creating satellite Dirac cones without opening a gap [19] and inducing strong van Hove singularities (VHSs) [20]. We show that the superlattice induced VHSs drive a spin density wave instability that results in an exotic meron lattice taking place at arbitrarily small values of the electron-electron interaction. A meron, as shown in Fig. 1(b), is topologically equivalent to half a skyrmion: magnetic moments in its core point up or down, but magnetic moments along its boundary are in-plane [21]. While topological spin textures such as skyrmions have been observed in non-centrosymmetric magnets [22–25], ultrathin magnetic films [26–28] and multiferroic insulators [29, 30], a meron lattice has only been observed recently [31, 32].

The meron lattice we describe on the surface of the TI is stabilized by the interplay between the superlattice potential and the strong spin-orbit coupling (SOC) on the TI surface that “locks” the spin to the momentum, forcing the magnetic moments to rotate in space about an in-plane axis. It features several novel aspects: (1) it leaves the surface Dirac cone gapless; (2) each unit cell exhibits two merons with opposite topological charge; and (3) the meron lattice periodicity is determined by the applied potential, i.e., it can be chosen by design. These features make it distinct from other magnetic textures induced on [5, 12–18] or proximity-coupled [33–37] to the surface of a TI.

In this work we focus on the experimental setup shown in Fig. 1(a), which depicts a superlattice potential imposed on the surface of a TI by gating a patterned dielectric stacked above the TI surface. This approach was introduced to realize a superlattice potential on graphene with periodicity down to 35 nm and strength ∼ 50 meV [38, 39]. It offers great tunability: the periodicity, strength, and symmetry of the potential can be engineered. A superlattice potential has been studied theoretically to band engineer topological materi-
als [19, 20, 40–49]. Strain has also been employed to modify the dispersion of surface states [50, 51].

II. MODEL OF AN INTERACTING TI SURFACE

We consider interacting electrons on the surface of a TI described by the Hamiltonian $\hat{H} = \hat{H}_0 + \hat{H}_{\text{int}}$. The non-interacting Hamiltonian $\hat{H}_0 = \int d^2r \hat{\Psi}^\dagger(r) \hat{H}_0(r) \hat{\Psi}(r)$ describes a spin-momentum locked Dirac cone subject to a superlattice potential,

$$H_0(r) = v_F (-i \nabla \times \sigma)_z + \sigma_0 w(r),$$

where $\nabla_r = (\partial_x, \partial_y)$, $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ are the Pauli matrices, σ_0 the identity, and $w(r) = 2w \sum_{j=1}^3 \cos(q_j \cdot r)$ is the superlattice potential, with amplitude $2w$ and wave vectors $q_{1,2,3}$ illustrated as red vectors in Fig. 2(a). The wave vectors satisfy $|q_{1,2,3}| = 4\pi/\sqrt{3}L$, where L is the periodicity of the potential. We set the Fermi velocity to $v_F = 2.55eVÅ$, the experimentally measured value in Bi$_2$Te$_3$ [7, 8]. For the moment we neglect higher-order corrections [5] to the Dirac cone dispersion (1). Then Eq. (1) depends only on a single dimensionless parameter $w/(v_F/L)$.

The superlattice potential has a profound effect on the Dirac cone. The dispersion of the first band above charge neutrality [red line in Fig. 2(b)] becomes nearly flat at the K and K' points of the moiré Brillouin zone. Specifically, near K and K', symmetry constrains the Taylor expansion of the dispersion to the form $\epsilon_{\pm}(k) = \alpha k^2 \pm \eta (k^2_1 - 3k^2_2)$, where \pm indicates valley, expressions for the coefficients α and η are given in Appendix A. This yields three VHSs near K and K' that map into each other under C_{3z} and provide the large diverging density of states (DOS) shown in Fig. 2(c). In addition, there is a local maximum (minimum) for $\alpha < 0$ (> 0) at $k = 0$. At a critical value of $w/(v_F/L)$ where $\alpha = 0$, the three nearby VHSs merge to form higher-order VHSs at K and K' with a power-law diverging DOS [52–55], as found in Ref. [20]. Our results do not require fine tuning to the critical value of $w/(v_F/L)$. Instead, we focus on the vicinity of the VHSs that produce a sharp peak in the DOS [highlighted by the horizontal line in Fig. 2(b)].

To describe the magnetic instability with momentum $K' - K$ we consider the electron-electron interaction coupling the hot-spot regions around K and K'. Note that screening by low-energy electrons at momentum transfer $q = K' - K$ are weak because electrons at K and K' occupy orthogonal Bloch states (see Appendix C).

For simplicity we focus on the Hubbard interaction:

$$\hat{H}_{\text{int}} = U \int d^2r \hat{\Psi}^\dagger_{\uparrow}(r) \hat{\Psi}_{\uparrow}(r) \hat{\Psi}^\dagger_{\downarrow}(r) \hat{\Psi}_{\downarrow}(r); \quad U > 0, \quad (2)$$

where $\hat{\Psi}_{\sigma}^\dagger(r)$ is the electron annihilation operator, $\hat{\Psi}_{\sigma}(r) = \sum_{\mathbf{k}, \mathbf{G}} e^{i(k - \mathbf{G})r} \hat{c}_{\mathbf{k}, \mathbf{G}, \sigma}/\sqrt{A}$ with A area of the sample, \mathbf{k} and \mathbf{G} label the Bloch momentum and reciprocal lattice vector of the moiré Brillouin zone, respectively, and $\hat{c}_{\mathbf{k}, \mathbf{G}, \sigma}$ creates an electron at $\mathbf{k} - \mathbf{G}$ with spin σ. Notice that Ref. [20] considered an attractive interaction ($U < 0$) and found that the VHS enhances the superconducting critical temperature.

A. Spin density wave operators

The interaction term \hat{H}_{int} drives an instability towards density wave ordering, modulated by the nesting vectors, δ_j, which connect the K and K' regions where the DOS diverges at the VHS. The nesting vectors are indicated by green vectors in Fig. 2(a),(c) and define a magnetic Brillouin zone [solid cyan line in Fig. 2(a)] three times smaller than the original one. Spin-momentum locking is expected to drive the formation of an exotic spin-density wave (SDW) [41]. To study the SDW, we decompose the order parameters for each modulation δ_j [5] into an in-plane direction parallel to the nesting vector, $v_{1,2,3} = e_j \equiv \delta_j / |\delta_j|$; an in-plane direction perpendicular to the nesting vector, $v_{1,2,3} = -i(\mathbf{z} \times e_j)$; and an out-of plane part, $v_{2,3} = -iz$. Correspondingly, for each wave vector...
introducing the Hubbard-Stratonovich fields and Landau theory. We decouple the local interaction \(T \) operators of the symmetries of the model on the spin density wave potential. Thus, given \(T \) this can be readily understood observing that the time-reversal symmetry \(m \) acts differently on both spin and spatial coordinates. Combinations of these imply invariance under two- and six-fold rotation and \(\delta \) on \(\sigma \), \(\nu \), and \(\partial \). In order to determine the leading spin-density wave instability it is crucial to notice that the Bloch states \(\mu \) and \(\delta \) of the Hamiltonian \((1) \) at the hot spots are singly degenerate and have opposite mirror \(m \) eigenvalues. This can be readily understood observing that the time-reversal symmetry \(T \) sends \(K \rightarrow K^\dagger \) and \(Tm^2 = m \). Thus, given \(|u_K \rangle \) with \(m |u_K \rangle = \epsilon |u_K \rangle \), it follows that \(m |u_K \rangle = m \delta \), \(Tm |u_K \rangle = -\epsilon T |u_K \rangle = -\epsilon |u_K \rangle \). The potential \(u(r) \) breaks particle-hole symmetry. The action of the symmetries of the model on the spin density wave operators \(\hat{S}_{\mu j} \) is illustrated in Table I.

Table I. Symmetries of the SDW operator \(\hat{S}_{\mu j} \)

SDW	\(C_{3z} \)	\(m_z \)	\(T \)	\(m_y \)
\(\hat{S}_{\mu 1} \)	\(\hat{S}_{\mu z} \)	\(\hat{S}_{\mu 1}^\dagger \)	\(-\hat{S}_{\mu 1}^\dagger \) if \(z \), else \(\hat{S}_{\mu 1} \)	
\(\hat{S}_{\mu 2} \)	\(\hat{S}_{\mu 1}^\dagger \)	\(-\hat{S}_{\mu 1} \) if \(z \), else \(\hat{S}_{\mu 1} \)		
\(\hat{S}_{\mu 3} \)	\(\hat{S}_{\mu 1} \)	\(-\hat{S}_{\mu 1}^\dagger \) if \(z \), else \(\hat{S}_{\mu 1} \)		

where for the sake of space we omit the dependences of the fields on the imaginary time \(\tau \) and position \(r \), and we have introduced the fermionic operators \(\hat{\rho}(r) = \sum_{\mu} \hat{\Psi}_\mu^\dagger(r) \hat{\Psi}_\mu(r) \) and \(\hat{S}_{\mu j}(r) = \hat{\Psi}_\mu^\dagger(r) \sigma_j \hat{\Psi}_\mu(r) \). Integrating out the electronic degrees of freedom of Eq. (4) we obtain the effective action for \(n(\tau, r) \) and \(m(r, \tau) \). Then, we take the semiclassical limit of a static order parameter. More specifically, we assume a homogenous electron density \(n \) and a spatially-modulated magnetization \(m(r) = \sum_{j=1}^3 \delta \mu_j \sigma_j e^{-i2\pi \delta_j r} \) where \(\delta \mu_j \) is the Fourier amplitude associated to the modulation \(\delta_j \). Since \(m(r) \) is real, \(\delta \mu_j = m^* \delta_j = m_j \). We expand \(m = \sum_{\mu} s_{\mu j} \nu_{\mu j} \) where \(\nu_{\mu j} \) are the normal modes in Fig. 2(d) and the order parameter \(s_{\mu j} = \langle \hat{S}_{\mu j} \rangle / A \) is the average value of \(\hat{S}_{\mu j} \) with \(A \) area of the sample. As a result we find the free energy:

\[
F = \frac{A}{2} \left(\sum_{\mu j} |s_{\mu j}|^2 - \frac{n^2}{2} \right) + \sum_{m=1}^{\infty} \text{Tr} \left[\frac{(-G_0 X)_{2m}}{m U} \right],
\]

where \(G_0 = (-\partial_\tau - H_0 + \mu)^{-1} \) is the non-interacting single-particle Green’s function and \(X = U^2 / (2 - Un/2) \) describes the interaction between the order parameter and the electrons.

The self-consistency equations are obtained by minimizing the free energy (5) with respect to the variational parameters \(n \) and \(s_{\mu j} \), i.e., \(\delta F/\delta n = 0 \) and \(\delta F/\delta s_{\mu j} = 0 \). The magnetic order is determined by finding the roots of these equations numerically, as detailed in Appendix B. We find that in the range of filling between \(n \approx 0.61 \) and \(n \approx 0.8 \) the minimum of the free energy (5) develops a SDW magnetic ordering. The blue data in Fig. 3(a) shows the magnitude of the total magnetization density, \(|M| = \sqrt{\sum_{\mu j} s_{\mu j}^2} \), as a function of the filling per unit cell of the superlattice.

In real space, the magnetic order \(m(r) \) obtained from the saddle-point solution forms a Néel-type meron lattice [25] with two merons in each unit cell, as shown in Fig. 3(b). The merons are well-defined because the magnetic moment is forced to be in-plane along mirror-invariant lines. Each meron can be characterized by the Pontryagin density \(\Phi(r) = \hat{m}(r) \cdot \partial_\tau \hat{m}(r) \times \partial_\tau \hat{m}(r) / 4\pi \) shown in Fig. 3(c) where \(\hat{m} \) is a unit magnetization vector. We find \(\int_\Omega d^2 r \Phi(r) = \pm 1 \), where \(S \) is the triangular domain illustrated by the orange dashed line in Fig. 3(c). In the center of each unit cell is an intermediate region of destructive interference with vanishing magnetization. The magnetic order spontaneously breaks the translation symmetry of the potential, giving rise to a magnetic unit cell [cyan line in Fig. 3(b)] three times larger than the original one [black solid line in Fig. 3(b)].
at the Hartree-Fock level by replacing H the effect of the magnetization on the electronic spectrum and the electronic band structure in the magnetic phase. We treat with:

$$\delta E \propto U |M|$$

Despite breaking time-reversal symmetry, the resulting electronic spectrum remains gapless because the magnetic order preserves $C_{2z}T$ symmetry. The dispersion is plotted in the right panel of Fig. 3(d) in the magnetic Brillouin zone: the original red band in Fig. 2(b) is decomposed into three different bands given by the red, blue and green lines in Fig. 3(d). The Dirac cones at K_{m} between the red and blue bands and at K'_{m} between the blue and the green ones are protected by $C_{2z}T$. Thus, they give rise to a gapless electronic spectrum whose Fermi surface is shown in the inset of Fig. 3(d).

Although the order parameter $m(r)$ does not open a full gap, it significantly reduces the DOS at the Fermi level (horizontal black dashed line in Fig. 3(d)) by opening a gap between the blue and green bands at Γ_{m} of order $\Delta E \propto U |M|$. The gap splits the peak in the DOS resulting from the VHS into two peaks above and below, as shown in the left panel of Fig. 3(d). The significant decrease in the kinetic energy from splitting the large peak in the DOS makes the magnetic state energetically favorable with respect to the normal one.

In the following we discuss the symmetries of the magnetic phase and we determine the region of stability of the spin density wave order.

IV. PHASE DIAGRAM

The instability of the Dirac cone surface state is determined by expanding the free energy for small values of the order parameter $s_{\mu j}$. As time-reversal symmetry acts on the order parameter by $T: s_{\mu j} \rightarrow -s_{\mu j}^*$ [see Table I], only even powers of $s_{\mu j}$ are allowed in the free energy (5), so that to second order in $s_{\mu j}$ at fixed density n, $F(2) = \sum_{\mu \nu} \sum_{j=1}^{3} s_{\mu j} M_{\mu j}^{\nu\nu} / 2$, where

$$M_{\mu j}^{\nu\nu} = \delta_{\mu\nu} \delta_{jl} - \frac{U}{2} \chi_{\mu j}^{\nu\nu}.$$

and $\chi_{\mu j}^{\nu\nu} \equiv \int_{0}^{\beta} d\tau \langle \tilde{S}_{\mu j}(\tau) \tilde{S}_{\nu \mu}(0) \rangle / A$ is the thermodynamic spin susceptibility with τ imaginary time and β inverse temperature. The matrix $M_{\mu j}^{\nu\nu}$ contains both diagonal terms ($j = l$), which come from momentum-conserving scattering processes, and off-diagonal terms ($j \neq l$) from Umklapp processes with momentum $\boldsymbol{\delta}_{j} - \boldsymbol{\delta}_{l} \in \mathbf{G}$ with \mathbf{G} a reciprocal lattice vector. The matrix $M_{\mu j}^{\nu\nu}$ is constrained by the symmetries of the Hamiltonian as discussed in Appendix C.

An instability exists when one of the eigenvalues of the matrix $M_{\mu j}^{\nu\nu}$ becomes negative, which comprises a generalization of the Stoner criterion [59]. The corresponding eigenvector indicates the magnetic configuration of the instability and is classified by how it transforms under symmetry. Since the saddle-point solution is C_{3z}-symmetric, we consider a C_{3z}-invariant eigenvector of $M_{\mu j}^{\nu\nu}$, which implies the magnetization takes the form $s_{\mu j} = M U_{\mu}/\sqrt{3}$. It follows that

$$F(2) = \frac{|M|^{2}}{2} \left(\begin{array}{c} U_{\|} \\ L_{\|} \\ U_{\perp} \end{array} \right) \left(\begin{array}{ccc} L_{\|} & 0 & L_{\|} \\ 0 & L_{\perp} & 0 \\ L_{\perp} & 0 & L_{zz} \end{array} \right) \left(\begin{array}{c} U_{\|} \\ U_{\perp} \\ U_{zz} \end{array} \right),$$

where the elements $L_{\mu\nu} = \sum_{j} M_{\mu j}^{\nu\nu} / 3$ are shown in Fig. 4(a) as a function of the density at $T = 1.5K$. The perpendicular (U_{\perp}) component of the magnetic order is decoupled from the other components ($U_{\|}$, U_{zz}) because it is even under the mirror m_{ν}, while the parallel and z-components are odd. This property can be readily understood by looking at the last column of Table I, where we show the action of the symmetry m_{ν} on the different components of the spin-density wave order. From Eq. (8), the
surface Dirac cone is unstable when either $\lambda_1 = L_{\perp \perp} < 0$, which corresponds to in-plane order purely in the “spiral-xy” channel and even under m_y, or when one of the eigenvalues $\lambda_{\pm 2} = (L_{||} + L_{zz})/2 \pm \sqrt{(L_{||} - L_{zz})^2/4 + L_{||}^2} < 0$, which corresponds to a generically non-coplanar SDW with “120-xy” and z components, and breaking m_y [see Fig. 2(d)]. In order to characterize the magnetic instability we compute the spin-susceptibility introduced in Eq. (7):

$$
\chi_{\mu \nu}(k) = -\frac{T}{\mathcal{A}} \sum_{k, \epsilon_n} \text{Tr} \left[G_0(k, \epsilon_n) O_{\mu \nu}(k, \epsilon_n) \right],
$$

where $G_0(k, \epsilon_n)$ is the single particle Green’s function

$$
G_0(k, \epsilon_n) = \sum_{n} \frac{|u_{nk}|^2}{\epsilon_n - \xi_{nk}},
$$

where $|u_{nk}|$ are the Bloch states of H_0, for simplicity we have introduced the operator $O_{\mu \nu} = v_{\mu \nu} \sigma$ and V^G is the sewing matrix $V^G_{Q} = -G_{Q}Q^+G$. We find that for a range of filling near 2/3 electron per unit cell the dominant instability occurs in the channel corresponding to $\lambda_{\pm 2}$, as shown by the region where the red solid line in Fig. 3(a) goes negative, and in agreement with our saddle-point solution. This solution, which breaks m_y, is energetically favored over the in-plane spin solution that is even in m_y because it allows a gap to open at the Fermi level in the magnetic BZ, indicated by ΔE in Fig. 3(d). Indeed, the latter solution being odd under m_y allows mixing between the Bloch states $|u_{k\perp}|$ and $|u_{k\parallel}|$ at the hot spot regions which are characterized by opposite mirror m_y eigenvalues as detailed in Appendix C. The resulting magnetic state is a pattern of half-integer topological vortices, with the same winding and opposite polarities corresponding to a meron lattice. The other magnetic state, with eigenvalue $\lambda_{\pm 2}$, also breaks m_y, but is energetically unfavourable because it exhibits a clockwise magnetoization winding inconsistent with the intrinsic SOC of the surface state in Eq. (1). We have also studied the C_{3z}-breaking magnetic orders. Since these orders do not hybridize the states $|u_{k\perp}|$ and $|u_{k\parallel}|$, they do not lead to a magnetic instability. The symmetry of the magnetic orders are further discussed in Appendix C.

The critical temperature and interaction strength occur at precisely the point where one of the eigenvalues of $M^{\mu \nu}_{||}$ changes sign. Fig. 4(b) shows the critical temperature for a range of fillings around the VHS at $U = 30\text{meV}$. The magnetic dome peaks at $T_c \approx 7K$ near an optimal value of $w/(v_F/L) \simeq 1.54$: surprisingly, the peak does not coincide with the higher-order VHS [20] at $w/(v_F/L) \approx 1.36$. Fig. 4(c) shows the evolution of the energy and the number of electrons per superlattice unit cell where the VHS occurs as a function of $w/(v_F/L)$. The maximum critical temperature for the magnetic transition takes place around $n \sim 2/3$ filling, denoted as the horizontal green line in the inset of Fig. 4(c).

![Figure 4: Magnetic instability, critical temperature and interaction.](image)

A. Hexagonal warping

Beyond the linear momentum dependence of the Dirac cone $\lambda = L_{\perp \perp}$ the dispersion develops a hexagonal warping term $H_w(k) = \lambda (k_x^2 - 3k_y^2)\sigma_z$ [5]. Despite being small in $\lambda v_F L^2$ this correction gives rise to a series of interesting effects that are experimentally relevant. The hexagonal warping breaks m_y and $C_{2z}T$ symmetries which gives a finite U_{\perp} component in the magnetization pattern. While the average magnetic moment in the unit cell continues to vanish, $\int d^2r \hat{m}_i = 0$, the explicitly broken m_y symmetry gives rise to a finite out-of-plane toroidal moment $T_z = \int d^2r \left(x m_y - y m_x \right)/2$ which typically manifests in the magnetoelectric susceptibility.
\[\alpha_{xy} = -\alpha_{yx} \ [66, 67]. \]

V. CONCLUSIONS

We have shown that a superlattice potential on the surface of a TI provides a new route to spontaneously breaking time reversal symmetry on the TI surface. The magnetic order realizes a meron lattice exhibiting pairs of merons with opposite topological charge in the unit cell. The periodicity of the meron lattice is determined by the period of the potential; consequently, the meron lattice periodicity is completely tunable. Although the magnetic order breaks time-reversal, it preserves \(C_{2z} T \) and thus does not open a gap on the TI surface.

The meron lattice phase can be measured by imaging the magnetization in real space through Lorentz transmission electron microscopy [26, 68] and nitrogen vacancy magnetometry [69] or in reciprocal space via X-ray diffraction [22, 70–75]. The magnetization can be measured by imaging the magnetization in real space through Lorentz transmission electron microscopy [26, 68] and nitrogen vacancy magnetometry [69] or in reciprocal space via X-ray diffraction [22, 70–75]. The magnetization can also be measured through the magneto-optical Kerr effect [76, 77] and reflective magnetic circular dichroism [78]. In addition, the magneto-electric susceptibility \(\alpha_{xx} \) is observed either by measuring an in-plane magnetization in response to an electric field, or a current resulting from an in-plane magnetic field. The reduced density of states resulting from the magnetic order gives a drastic variation of the electronic compressibility across the transition. Finally, we also expect that the response to a magnetic field [79–85] gives rise to distinctive signatures of the meron state.

This finding has far-reaching consequences, as this unconventional magnetic state will have implications both on the experimental and on the theoretical level. First, the topological spin texture realizes an electromagnetic field on the scale of the superlattice that can be employed by proximity effects to modify band structure and topological properties of electronic systems [33, 35, 37, 86–89]. Second, the broken mirror symmetry that results from hexagonal warping of the Fermi surface implies that the meron lattice might host a magnetoelectric response with potential application to spintronics [88–93]. This effect can be enhanced by strain [94–96] and lattice relaxation [97]. Finally, the interplay between the spin density wave ordering and possible superconducting instabilities [20] is an open problem which is left to future studies.

ACKNOWLEDGMENTS

Acknowledgements. — We have benefited from discussions with Yang-Zhi Chou, M. Michael Denner, Shiang Fang, Jiawei Zang, Andrew J. Millis, Zhentao Wang, Tiancheng Song, and Justin Wilson. We are grateful to Lucy Reading-Ikkanda for creating the figure of the experimental setup and the sketch of the magnetic state. We also acknowledge the support of the Flatiron Institute, a division of the Simons Foundation. This work was partially supported by the Air Force Office of Scientific Research under Grant No. FA9550-20-1-0260 (J.C.) and Grant No. FA9550-20-1-0136 (J.H.P.) and the Alfred P. Sloan Foundation through a Sloan Research Fellowship (J.H.P.). J.H.P. and J.C. acknowledge hospitality of the Aspen Center for Physics, where some of this work was developed and which is supported by National Science Foundation grant PHY1607611.

Appendix A: The \(\mathbf{k} \cdot \mathbf{p} \) expansion around \(\mathbf{K} \) and \(\mathbf{K}' \)

The origin of the high order van Hove singularities (HOVHS) [52–55] can be derived from the lattice symmetries of the Hamiltonian \(H_0(\mathbf{r}) \). We define the small deviation from the \(\mathbf{K} \) point, \(\mathbf{q} = \mathbf{k} - \mathbf{K} \), and the linear combinations \(q_\pm = q_x \pm iq_y \), which transforms under \(C_{3z} \) as \(q_\pm \rightarrow e^{\pm i2\pi/3}q_\pm \). At second order in \(\mathbf{q} \) the only allowed term in the energy dispersion is \(q_+ q_- = q^2 \). The next contributions invariant under \(C_{3z} \) are \(q_x^2 \) and \(q_y^2 \). As a consequence of the mirror \(m_y \) symmetry the cubic term is \((q_x^2 + q_y^2)/2 = q_x^2 - 3q_y^2q_+^2 \). Thus, to cubic order in \(\mathbf{q} \) the dispersion around \(\mathbf{K} \) reads [20]

\[
\epsilon_{\mathbf{K}}(\mathbf{q}) = \epsilon_0 + \alpha q^2 + \eta (q_x^2 - 3q_y^2q_+^2) + \cdots .
\]

Applying time-reversal symmetry we find that the expansion at \(\mathbf{K}' \) reads

\[
\epsilon_{\mathbf{K}'}(\mathbf{q}) \simeq \epsilon_0 + \alpha q^2 - \eta (q_x^2 - 3q_y^2q_+^2) .
\]

The values of the coefficients \(\alpha \) and \(\eta \) are obtained from the \(\mathbf{k} \cdot \mathbf{p} \) perturbation theory at \(\mathbf{K} \). Given \(H_0(\mathbf{K} + \mathbf{q}) - H_0(\mathbf{K}) \) expanding to the third order in the small deviation \(\mathbf{q} = \mathbf{k} - \mathbf{K} \) yields:

\[
\alpha = 2 \sum_{m \neq n} \text{Re} \left[\langle u_n|\sigma_z|u_m\rangle \langle u_m|\sigma_-|u_n\rangle \right] \frac{\epsilon_{n\mathbf{K}} - \epsilon_{m\mathbf{K}}}{\epsilon_{m\mathbf{K}} - \epsilon_{n\mathbf{K}}}, \quad (A1)
\]

and

\[
\eta = \sum_{m,j \neq n} 2 \text{Im} \left[\langle u_n|\sigma_-|u_m\rangle \langle u_m|\sigma_-|u_j\rangle \langle u_j|\sigma_-|u_n\rangle \right] \frac{\epsilon_{n\mathbf{K}} - \epsilon_{m\mathbf{K}}}{(\epsilon_{m\mathbf{K}} - \epsilon_{j\mathbf{K}})(\epsilon_{n\mathbf{K}} - \epsilon_{m\mathbf{K}})} \quad (A2) \]

Figure 5. Parameters \(\alpha \) and \(\eta \) of the \(\mathbf{k} \cdot \mathbf{p} \) expansion of the dispersion relation around \(\mathbf{K} \). The vanishing of \(\alpha \) at \(w/(v_F/L) = 1.36 \) highlighted by the green line implies a HOVHS.
where \(|υ_nK⟩\) and \(ϵ_nK\) are the Bloch state and the eigenvalue, respectively, of \(H_0(r) \) at \(K \), \(n \) is the first positive energy band and \(σ_k = σ_x ± iσ_y \). The evolution of the couplings \(α \) and \(η \) is shown in Fig. 5. The higher-order van Hove singularity occurs when the quadratic term \(α \) in Eq. (A1) vanishes at \(w/(vF/L) ≃ 1.36 \), highlighted by the vertical green line in Fig. 5. The result is a power-law divergence in the density of states \(ρ(ϵ) \sim |ϵ|^{-1/3} \). By looking at the solutions of \(∇qξ(q) = 0 \) (± for \(K \) and \(K' \) respectively), we find that \(q = 0 \) is a maximum for \(α < 0 \), a minimum for \(α > 0 \) and, finally, a higher-order critical point for \(α = 0 \). Away from the origin there are three further solutions at \(κ_{±,j} = ±2αC_{3z}^{-1}(1,0)/3η \), which are saddle points. Approaching the higher-order VHS at \(α \to 0 \), these three saddle points merge at \(q = 0 \), i.e., at \(K \) or \(K' \).

Appendix B: Solution of the saddle-point equations

In this section we detail the mean-field solution of the interacting electrons on the surface of the TI subject to the superlattice potential \(w(r) \). Minimizing \(F(\mathbf{r}) \) with respect to the filling \(n \) and the magnetic configurations \(m(\mathbf{r}) \) we find the saddle-point equations:

\[
\frac{δF}{δn} = 0 \Rightarrow n = \frac{1}{A} Tr \left[\left(G_0^{-1} + X \right)^{-1} \right], \tag{B1}
\]

and

\[
\frac{δF}{δs_{μj}} = 0 \Rightarrow s_{μj} = \frac{2}{UA} Tr \left[\frac{δX}{δs^*_j} \left(G_0^{-1} + X \right)^{-1} \right]. \tag{B2}
\]

In the main text we show the result of the numerical solution of Eqs. (B1) and (B2), which was obtained as follows. Eqs. (B1) and (B2) take a simple form in the basis of the eigenstates \(|ϕ_{nk}⟩ \) of the Hartree-Fock Hamiltonian in Eq. (6) with eigenvalues \(ϵ_{nk} \):

\[
n = \frac{1}{3N} \sum_{nk} f(ξ_{nk}) - n_0, \tag{B3}
\]

where \(ξ_{nk} = ϵ_{nk} - µ^* \) and \(µ^* = µ - U/n/2 \); and

\[
s_{μj} = \frac{1}{3N} \sum_{nk} f(ξ_{nk}) \langle ϕ_{nk}|Ω_{μj}^† V^δ_j|ϕ_{nk}⟩, \tag{B4}
\]

where the filling \(n \) is measured with respect to the charge neutrality point \(n_0 \), \(N \) is the number of points sampling the Brillouin zone, the factor of three takes into account the size difference between the original and the magnetic Brillouin zone. Moreover, the function \(f(ϵ) = 1/(e^{δϵ} + 1) \) is the Fermi-Dirac distribution function, and \(V^G \) is the sewing matrix satisfying \(V^G_{Q,Q'} = δ_{Q,Q'} e^{iG} \), \(V^G |ϕ_{nk}⟩ = |ϕ_{nk+iG}⟩ \). The self-consistent equations is performed by a find-root algorithm.

\[
\begin{array}{|c|c|c|c|}
\hline
 & E & 2C_3 & 3m \\
\hline
\Gamma_1 & 1 & 1 & 1 \\
\Gamma_2 & 1 & 1 & -1 \\
\Gamma_3 & 2 & -1 & 0 \\
\hline
\end{array}
\]

Table II. Character table of \(C_{3v} \). \(E \), \(C_3 \) and \(m \) represent the conjugation classes of the identity, \(C_{3z} \), and \(m_y \), respectively.

Appendix C: Symmetries of the free energy and classification of magnetic orderings

In this Appendix we discuss the symmetries of the second order matrix \(M^μν \) and classify the different magnetic orderings according to their symmetry properties. The second order tensor is constrained by the symmetries in Table I. The three-fold rotation about the z-axis, \(C_{3z} : s_{μj} \to s_{μj+1} \), gives \(M^μν_{j+1} = M^μν_{j+1} \). As a result, \(M^μν \) is expressed in terms of two three-dimensional matrices: \(\Lambda^μν_{jj} = M^μν_{jj} \), \(Ω^μν = M^μν_{jj+1} \) while \(M^μν_{jj+1} = Ω^νμ \) since the free energy \(F_{(2)} \) is real. In addition, the mirror symmetry \(m_x \) [given in Table (I)] implies that \(\Lambda^μν \) is real and symmetric, \(Ω^μν = Ω^νμ \) but with complex elements \(Ω^μν \neq Ω^νμ \). Finally, the remaining \(m_y \) symmetry imposes that the matrix elements \(Ω_{ij} = 0 \) and \(Ω_{i±} \) and \(Ω_{±i} \) are purely imaginary, while the other components of \(Ω^μν \) are real. The latter constraint implies that the \(C_{3z} \) symmetric spiral-xy order decouples from the 120-xy and out-of-plane orderings. As a result by projecting the second order free energy \(F_{(2)} \) on the \(C_{3z} \) symmetric configuration \(s_{μj} = ξ U_μ/√3 \) we find the expression in the main text Eq. (8) where \(L^μν = Λ^μν + 2 Re Ω^μν \).

We now characterize the spectrum of \(M^μν \) and classify the magnetic states with respect to their symmetry behaviour under the point-group symmetries of the model. The magnetic ordering is described by the real order parameter \(m(r) = \sum_{μj} m_μ e^{iδ_μ r} + c.c. \) which is completely determined by the Fourier amplitudes \(m_μ = \sum_j s_{μj} n_{μj} \). The nine magnetic configurations originating from \(s_{μj} \) are decomposed in one one-dimensional representation \(Γ_1 \), two one-dimensional representations \(Γ_2 \) and three two-dimensional representations \(Γ_3 \) given in Table II. The one-dimensional representations \(Γ_1 \) and \(Γ_2 \) are symmetric under \(C_{3z} \) and corresponds to equal superpositions of the modulations \(δ_{1,2,3} \). The parity of \(Γ_1 \) under \(m_y \) is even consistently with the spiral-xy order. On the other hand, \(Γ_2 \) is odd under \(m_y \) like the 120-xy and out-of-plane orderings. Due to the intrinsic spin-orbit coupling in-plane 120-xy and out-of-plane orderings mix to form the meron lattice state. Finally, we have the two-dimensional representation \(Γ_3 \). Here, we find two eigenstates of \(C_{3z} \) characterized by eigenvalues \(ω = e^{±πi/3} \) and \(ω^* \) and \(m_y \) is off-diagonal in this basis. Two dimensional degeneracy implies from this symmetry.

In the normal state the two valleys \(K \) and \(K' \) are equally occupied giving rise to a time-reversal symmet-
degenerate Bloch states, to notice that the two valleys are characterized by non-degenerate Bloch states, $|u_K⟩$ and $|u_{K'}⟩$, [first band above change neutrality] with opposite mirror eigenvalues. The meron lattice state belonging to $Γ_2$ breaks the mirror symmetry m_y of K and K' and couples $|u_K⟩$ and $|u_{K'}⟩$. The resulting Hartree-Fock orbitals at $Γ_m$ of the magnetic moiré Brillouin zone are eigenstates of the mirror symmetry m_x and correspond to a coherent superposition of the two valleys K and K'.

[1] L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98, 106803 (2007).
[2] J. E. Moore and L. Balents, Topological invariants of time-reversal-invariant band structures, Phys. Rev. B 75, 121306 (2007).
[3] R. Roy, Topological phases and the quantum spin hall effect in three dimensions, Phys. Rev. Lett. 106, 195302 (2011).
[4] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Quantum spin hall insulator state in hgte quantum wells, Science 318, 766 (2007), https://www.science.org/doi/pdf/10.1126/science.1148047.
[5] L. Fu, Hexagonal warping effects in the surface states of the topological insulator Bi$_2$Te$_3$, Phys. Rev. Lett. 103, 266801 (2009).
[6] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A topological dirac insulator in a quantum spin hall phase (experimental realization of a 3d topological insulator) (2009), arXiv:0910.2420 [cond-mat.mes-hall].
[7] D. Hsieh, Y. Y. Xia, D. Qian, L. A. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. I. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A tunable topological insulator in the spin helical dirac transport regime, Nature 460, 1101 (2009).
[8] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, Experimental realization of a three-dimensional topological insulator, bi2te3, Science 325, 766 (2009), https://www.science.org/doi/pdf/10.1126/science.1173034.
[9] Y. Xia, D. Qian, D. Hsieh, L. A. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single dirac cone on the surface, Nature Physics 5, 398 (2009).
[10] C. Brüne, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Quantum hall effect from the topological surface states of strained bulk hgte, Phys. Rev. Lett. 106, 126803 (2011).
[11] S. Souma, K. Kosaka, T. Sato, M. Komatsu, A. Takayama, T. Takahashi, M. Kriener, K. Segawa, and Y. Ando, Direct measurement of the out-of-plane spin texture in the dirac-cone surface state of a topological insulator, Phys. Rev. Lett. 106, 216803 (2011).
[12] J.-H. Jiang and S. Wu, Spin susceptibility and helical magnetic order at the edges/surfaces of topological insulators due to fermi surface nesting, Phys. Rev. B 83, 205124 (2011).
[13] Y. Baum and A. Stern, Magnetic instability on the surface of topological insulators, Phys. Rev. B 85, 121105 (2012).
[14] Y. Baum and A. Stern, Density-waves instability and a skyrmion lattice on the surface of strong topological insulators, Physical Review B 86, 10.1103/physrevb.86.155116 (2012).
[15] D. J. J. Marchand and M. Franz, Lattice model for the surface states of a topological insulator with applications to magnetic and exciton instabilities, Phys. Rev. B 86, 155146 (2012).
[16] M. J. Schmidt, Strong correlations at topological insulator surfaces and the breakdown of the bulk-boundary correspondence, Phys. Rev. B 86, 161110 (2012).
[17] M. Sitte, A. Rosch, and L. Fritz, Interaction effects on almost flat surface bands in topological insulators, Phys. Rev. B 88, 205107 (2013).
[18] D. Mendler, P. Kotetes, and G. Schön, Magnetic order on a topological insulator surface with warping and proximity-induced superconductivity, Phys. Rev. B 91, 155405 (2015).
[19] J. Cano, S. Fang, J. H. Pixley, and J. H. Wilson, Moiré superlattice on the surface of a topological insulator, Phys. Rev. B 103, 155157 (2021).
[20] T. Wang, N. F. Q. Yuan, and L. Fu, Moiré surface states and enhanced superconductivity in topological insulators, Phys. Rev. X 11, 021024 (2021).
[21] N. Gao, S. G. Je, M. Y. Im, J. W. Choi, M. Yang, Q. Li, T. Y. Wang, S. Lee, H. S. Han, K. S. Lee, W. Chao, C. Hwang, J. Li, and Z. Q. Qiu, Creation and annihilation of topological meron pairs in in-plane magnetized films, Nature Communications 10, 10.1038/s41467-019-13642-z (2019).
[22] S. Muhlbauer, B. Binz, F. Jonietz, C. Pfeifferer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, Skyrmion lattice in a chiral magnet, Science 323, 915 (2009).
[23] C. Pappas, E. Lelièvre-Berna, P. Falus, P. M. Bentley, E. Moskvin, S. Grigoriev, P. Fouquet, and B. Farago, Chiral paramagnetic skyrmion-like phase in MnSi, Phys. Rev. Lett. 102, 197202 (2009).
[24] A. Neubauer, C. Pfeifferer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, Topological hall effect in the a phase of MnSi, Phys. Rev. Lett. 102, 186602 (2009).
[25] N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature nanotechnology 8, 899 (2013).
[26] S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nat Phys 7, 713 (2011).
[27] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Writing and deleting single magnetic skyrmions, Science 341, 636 (2013), https://www.science.org/doi/pdf/10.1126/science.1240573.
[28] I. Gross, W. Akhtar, A. Hrabec, J. Sampaio, L. J.
X. Yu, M. Mostovoy, Y. Tokunaga, W. Zhang, K. Kimoto, Y. Matsui, Y. Kaneko, N. Nagaoza, and Y. Tokura, Magnetic stripes and skyrmions with helicity reversals, Proceedings of the National Academy of Sciences 109, 8856–8860 (2012).

X. Z. Yu, W. Koshibae, Y. Tokunaga, K. Shibata, Y. Taguchi, N. Nagaoza, and Y. Tokura, Transformation between meron and skyrmion topological spin textures in a chiral magnet, Nature 564, 95 (2018).

S. Gao, H. D. Rosales, F. A. G. Albarracin, V. Tsurkan, G. Kaur, T. Fennell, P. Steffens, M. Boehm, P. Cermák, A. Schneidewind, E. Ressouche, D. C. Cabra, C. Rüegg, and O. Zaharko, Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings, Nature 586, 37 (2020).

S. Divic, H. Ling, T. Perez-Barnea, and A. Paramekanti, Magnetic skyrmion crystal at a topological insulator surface (2021), arXiv:2103.15841 [cond-mat.mes-hall].

K. Nomura and N. Nagaosa, Electric charging of magnetic textures on the surface of a topological insulator, Phys. Rev. B 82, 161401 (2010).

M. Hurst, D. K. Efimkin, J. Zang, and V. Galitski, Charged skyrmions on the surface of a topological insulator, Phys. Rev. B 91, 060401 (2015).

K. L. Tiwari, J. Lavoie, T. Perez-Barnea, and W. A. Coish, Tunable skyrmion-skyrmion binding on the surface of a topological insulator, Phys. Rev. B 100, 125414 (2019).

N. Paul and L. Fu, Topological magnetic textures in magnetic topological insulators, Physical Review Research 3, 10.1103/physrevresearch.3.033173 (2021).

C. Forsythe, X. Zhou, K. Watanabe, T. Taniguchi, A. Paspapathy, P. Moon, M. Koshino, P. Kim, and C. R. Dean, Band structure engineering of 2d materials using patterned dielectric superlattices, Nature Nanotechnology 13, 566–571 (2018).

Y. Li, S. Dietrich, C. Forsythe, T. Taniguchi, K. Watanabe, P. Moon, and C. R. Dean, Anisotropic band flattening in graphene with one-dimensional superlattices, Nature Nanotechnology 16, 525 (2021).

C.-L. Song, Y.-L. Wang, Y.-P. Jiang, Y. Zhang, C.-Z. Chang, L. Wang, K. He, X. Chen, J.-F. Jia, Y. Wang, Z. Fang, X. Dai, X.-C. Xie, X.-L. Qi, S.-C. Zhang, Q.-K. Xue, and X. Ma, Topological insulator Bi_2Se_3 thin films grown on double-layer graphene by molecular beam epitaxy, Applied Physics Letters 97, 143118 (2010), https://doi.org/10.1063/1.3494595.

Y.-Z. Chou, J. Cano, and J. H. Pixley, Band manipulation and spin texture in interacting moiré helical edges, Physical Review B 104, 10.1103/physrevb.104.1201113 (2021).

Z. Liu, H. Wang, and J. Wang, Magnetic moiré surface states and flat chern band in topological insulators (2021), arXiv:2106.01630 [cond-mat.mes-hall].

L.-K. Shi, J. Ma, and J. C. Song, Gate-tunable flat bands in van der waals patterned dielectric superlattices, 2D Materials 7, 015028 (2019).

J. Zhang, C. Triola, and E. Rossi, Proximity effect in graphene–topological-insulator heterostructures, Phys. Rev. Lett. 112, 096802 (2014).

K. Schouteden, Z. Li, T. Chen, F. Song, B. Partoens, C. Van Haesendonck, and K. Park, Moiré superlattices at the topological insulator Bi_2Te_3, Scientific Reports 6, 20278 (2016).

A. Vargas, F. Liu, C. Lane, D. Rubin, I. Bilgin, Z. Hennig, Massa, M. Capua, A. Bansil, and S. Kar, Tunable and laser-reconfigurable 2d heterocrystals obtained by epitaxial stacking of crystalslographically incommensurate Bi_2Se_3 and MoS_2 atomic layers, Science Advances 3, e1601741 (2017), https://www.sciencemag.org/content/3/6/1601741.

Z. Hennig, C. Lane, A. Benabbas, K. Mendez, M. Eggengerger, P. M. Champion, J. T. Robinson, A. Bansil, and S. Kar, Oxygen-induced in situ manipulation of the interlayer coupling and exciton recombination in Bi_2Se_3/ MoS_2 heterostructures, ACS Applied Materials & Interfaces 11, 15913 (2019), https://doi.org/10.1021/acsami.9b02929.

Z. Hennig, C. Lane, I. G. Buda, V. K. Mathur, A. Bansil, and S. Kar, Evidence of a purely electronic two-dimensional lattice at the interface of tmd/Bi_2Se_3 heterostructures, Nanoscale 11, 10.1039/c9nr04412d (2019).

A. Dunbrack and J. Cano, Magic angle conditions for twisted 3d topological insulators (2021), arXiv:2112.11464 [cond-mat.str-el].

E. Tang and L. Fu, Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators, Nature Physics 10, 964 (2014).

Y. Liu, Y. Li, S. Rajput, D. Gilles, L. Lari, P. Galindo, M. Weinert, V. Lazarov, and L. Li, Tuning dirac states by strain in the topological insulator Bi_2Se_3, Nature Physics 10, 294 (2014).

N. F. Q. Yuan and L. Fu, Classification of critical points in energy bands based on topology, scaling, and symmetry, Phys. Rev. B 101, 125120 (2020).

N. F. Q. Yuan, H. Ioseb, and L. Fu, Magic of higher-van hove singularity, Nature Communications 10, 10.1038/s41467-019-13670-9 (2019).

A. Chandrasekaran, A. Shtyk, J. J. Betouras, and C. Chamon, Catastrophe theory classification of fermi surface topological transitions in two dimensions, Phys. Rev. Research 2, 013555 (2020).

D. Guerci, P. Simon, and C. Mora, Higher-order van hove singularity in magic-angle twisted trilayer graphene (2021), arXiv:2106.14911 [cond-mat.mes-hall].

C. Mudry, Lecture Notes on Field Theory in Condensed Matter Physics (WORLD SCIENTIFIC, 2014) https://www.worldscientific.com/doi/pdf/10.1142/8697.

E. Fradkin, Field Theories of Condensed Matter Physics, 2nd ed. (Cambridge University Press, 2013).

A. Altland and B. D. Simon, Condensed Matter Field Theory, 2nd ed. (Cambridge University Press, 2010).

E. C. Stoner, Collective electron ferromagnetism, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 165, 372 (1938), https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1938.0066.

G. Litak, A. Martin, B. Györfy, J. Annett, and K. Wysokiński, Van hove singularity and d-wave pairing
in disordered superconductors, Physica C: Superconductivity 309, 257–262 (1998).

[61] J. H. Wilson, Y. Fu, S. Das Sarma, and J. H. Pixley, Disorder in twisted bilayer graphene, Physical Review Research 2, 10.1103/physrevresearch.2.023325 (2020).

[62] A. Chandrasekaran and J. J. Betouras, Effect of disorder on density of states and conductivity in higher-order van hove singularities in two-dimensional bands, Phys. Rev. B 105, 075144 (2022).

[63] K. Sawada and N. Nagaosa, Optical magnetoelectric effect in multiferroic materials: Evidence for a lorentz force acting on a ray of light, Phys. Rev. Lett. 95, 237402 (2005).

[64] C. Ederer and N. A. Spaldin, Towards a microscopic theory of toroidal moments in bulk periodic crystals, Phys. Rev. B 76, 214404 (2007).

[65] S. Bhowal and N. A. Spaldin, Magnetoelectric classification of skyrmions (2022), arXiv:2201.01667 [cond-mat.mes-hall].

[66] S. Zhong, J. E. Moore, and I. Souza, Gyrotropic magnetic effect and the magnetic moment on the fermi surface, Physical Review Letters 116, 10.1103/physrevlett.116.077201 (2016).

[67] J. Ma and D. A. Pesin, Chiral magnetic effect and natural optical activity in metals with or without weyl points, Phys. Rev. B 92, 235205 (2015).

[68] X. Yu, Y. Onose, N. Kanazawa, J. Park, J. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Real-space observation of a two-dimensional skyrmion crystal, Nature 465, 901 (2010).

[69] Y. Dovzhenko, F. Casola, S. Schlotter, T. X. Zhou, S. Seki, J.-H. Kim, D. S. Inosov, R. Georgii, B. Keimer, M. Hirschberger, T. Nakajima, S. Gao, L. Peng, H. Wilhelm, M. Baenitz, M. Schmidt, U. K. Rößler, A. A. Zvyagin, and T. Herrero, van der waals crystal down to the monolayer limit, Science 360, 1214–1218 (2018).

[70] J. Ye, Y. B. Kim, A. J. Millis, B. I. Shraiman, P. Majumdar, and Z. Tesanović, Berry phase theory of the anomalous hall effect: Application to colossal magnetoresistance manganites, Phys. Rev. Lett. 83, 3737 (1999).

[71] Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y. Tokura, Spin chirality, berry phase, and anomalous hall effect in a frustrated ferromagnet, Science 291, 2573–2576 (2001), https://www.science.org/doi/pdf/10.1126/science.1058161.

[72] P. Bruno, V. K. Dugaev, and M. T illefumier, Topological hall effect and berry phase in magnetic nanostructures, Phys. Rev. Lett. 93, 096806 (2004).

[73] M. Onoda, G. Tataara, and N. Nagaosa, Anomalous hall effect and skyrmion number in real and momentum spaces, Journal of the Physical Society of Japan 73, 2624–2628 (2004).

[74] B. Binz and A. Vishwanath, Chirality induced anomalous-hall effect in helical spin crystals, Physica B: Condensed Matter 403, 1336 (2008).

[75] N. Nagaosa and Y. Tokura, Emergent electromagnetism in solids, Physica Scripta T146, 014020 (2012).

[76] T. Schulz, R. Ritz, A. Bauer, M. Halden, M. Wagner, C. Franz, C. Pfeifferer, K. Everschor, M. Garst, and A. Rosch, Emergent electrodynamics of skyrmions in a chiral magnet, Nature Physics 8, 301 (2012).

[77] K. Shimizu, S. Okumura, Y. Kato, and Y. Motome, Spin moiré engineering of topological magnetism and emergent electromagnetic fields, Physical Review B 103, 10.1103/physrevb.103.184421 (2021).

[78] Y. Guan, O. V. Yazyev, and A. Kruchkov, Unconventional flat chern bands and 2e charges in skyrmionic moiré superlattices (2021), arXiv:2111.10410 [cond-mat.str-el].

[79] H. Wilhelm, M. Baenitz, M. Schmidt, U. K. Rößler, A. A. Leonov, and A. N. Bogdanov, Precursor phenomena at the magnetic ordering of the cubic helimagnet fe3, Phys. Rev. Lett. 107, 127203 (2011).

[80] M. Hirschberger, T. Nakajima, S. Gao, L. Peng, A. Kikkawa, T. Kurumaji, M. Kriener, Y. Yamasaki, A. Kikkawa, T. Kurumaji, M. Kriener, Y. Yamasaki, A. Rosch, J. Schoenes, and H. Eckerlebe, Crystal handedness of a two-dimensional skyrmion crystal in the chiral-lattice insulator cu2xco3x−xsi, Phys. Rev. Lett. 114, 014020 (2015).

[81] J. Wang, J. Zang, J. Cano, and A. J. Millis, Staggered pseudo magnetic field in twisted transition metal dichalcogenides: Physical origin and experimental consequences, arXiv e-prints , arXiv:2110.14570 (2021), arXi v:2110.14570 [cond-mat.mes-hall].

[82] J. Zang, J. Wang, J. Cano, and A. J. Millis, Hartree-fock study of the moiré hubbard model for twisted bilayer transition metal dichalcogenides, Phys. Rev. B 104, 075150 (2021).

[83] A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nature Nanotechnology 8, 152–156 (2013).

[84] A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: advances in physics and potential applications, Nature Reviews Materials 2, 10.1038/natrevmats.2017.31
(2017).

[92] X. Zhang, M. Ezawa, and Y. Zhou, Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions, Scientific Reports 5, 10.1038/srep09400 (2015).

[93] X. Zhang, Y. Zhou, K. Mee Song, T.-E. Park, J. Xia, M. Ezawa, X. Liu, W. Zhao, G. Zhao, and S. Woo, Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications, Journal of Physics: Condensed Matter 32, 143001 (2020).

[94] Z. Bi, N. F. Q. Yuan, and L. Fu, Designing flat bands by strain, Physical Review B 100, 10.1103/physrevb.100.035448 (2019).

[95] L. Balents, General continuum model for twisted bilayer graphene and arbitrary smooth deformations, SciPost Physics 7, 10.21468/scipostphys.7.4.048 (2019).

[96] W.-Y. He, D. Goldhaber-Gordon, and K. T. Law, Giant orbital magnetoelectric effect and current-induced magnetization switching in twisted bilayer graphene, Nature Communications 11, 10.1038/s41467-020-15473-9 (2020).

[97] N. N. T. Nam and M. Koshino, Lattice relaxation and energy band modulation in twisted bilayer graphene, Phys. Rev. B 96, 075311 (2017).