Finite Metabelian Group Algebras
Shalini Gupta
Department of Mathematics, Punjabi University, Patiala, India
email:gupta_math@yahoo.com

Keywords: semisimple group algebra, primitive central idempotents, Wedderburn decomposition, metabelian groups.

Abstract. Given a finite metabelian group G, whose central quotient is abelian (not cyclic) group of order \(p^2 \), \(p \) odd prime, the objective of this paper is to obtain a complete algebraic structure of semisimple group algebra \(\mathbb{F}_q[G] \) in terms of primitive central idempotents, Wedderburn decomposition and the automorphism group.

1. Introduction

Let \(F \) be a field and \(G \) be a finite group such that the group algebra \(F[G] \) is semisimple. A fundamental problem in the theory of group algebras is to understand the complete algebraic structure of semisimple group algebra \(F[G] \). In the recent years, a lot of work has been done to solve this problem [1,2,5,7,8,9]. Bakshi et.al [3] have solved this problem for semisimple finite group algebra of certain groups whose central quotient is Klein’s four-group. In the present paper, a complete algebraic structure of semisimple group algebra \(\mathbb{F}_q[G] \) for some finite groups \(G \), whose central quotient \(G/Z(G) \), is the direct product of two cyclic groups of order \(p \), \(p \) odd prime, is obtained. It is known [6] that finitely generated groups \(G \), whose central quotient is isomorphic to \(\mathbb{Z}_p \times \mathbb{Z}_p \) break into nine classes. The complete algebraic structure of \(\mathbb{F}_q[G] \), for group \(G \) in the two of the nine classes, is obtained in the present paper.

2. Notation

Let \(G \) be a finite group of order coprime to \(q \) and \(\text{Irr}(G) \) denotes the set of all irreducible characters of \(G \) over \(\mathbb{F}_q \), the algebraic closure of \(\mathbb{F}_q \). Let \(H \lhd K \leq G \) such that \(K/H \) is cyclic of order \(n \) and \(T = N_G(H) \cap N_G(K) \), where \(N_G(H) \) denotes the normalizer of \(H \) in \(G \). Let \(C(K/H) \) denotes the set of \(q \)-cyclotomic sets of \(\text{Irr}(K/H) \) containing the generators of \(\text{Irr}(K/H) \). Suppose that \(T \) acts on \(C(K/H) \) by conjugation, then it is easy to see that stabilizer of any \(C \in C(K/H) \) remains the same. Let \(E_C(K/H) \) denotes the stabilizer of any \(C \in C(K/H) \) and let \(\mathcal{R}(K/H) \) denotes the set of distinct orbits of \(C(K/H) \) under the action of \(T \) on \(C(K/H) \). Observe that

\[
|\mathcal{R}(K/H)| = \frac{\phi(n)|E_C(K/H)|}{|T|\text{ord}_n(q)},
\]

where \(\text{ord}_n(q) \) denotes the order of \(q \) modulo \(n \).
For $C \in C(K/H), \chi \in C$ and ζ_n a primitive nth root of unity in \overline{F}_q, set

$$e_C(K/H) = |K|^{-1} \sum_{g \in C} (tr_{F_q(\zeta_n)/F_q}(\chi(g)))g^{-1},$$

and $e_C(G, K, H)$ as the sum of distinct G-conjugates of $e_C(K/H)$.

3. Metabelian group algebras

The notation used in [4] will be followed: For a normal subgroup N of G, let A_N/N be an abelian normal subgroup of G/N of maximal order. Let D_N be the set of subgroups D/N of A_N/N such that A_N/D is cyclic and $T_{G/N}$ be the set of representatives of D_N under the equivalence relation of conjugacy of subgroups of G/N. Define

$$S_{G/N} := \{(D/N, A_N/N) \mid D/N \in T_{G/N}, D/N \text{ core-free in } G/N\}.$$

Let

$$S := \{(N, D/N, A_N/N) \mid N \triangleleft G, S_{G/N} \neq \emptyset, (D/N, A_N/N) \in S_{G/N}\}.$$

We are now ready to recall the theorem describing the complete algebraic structure of semisimple finite metabelian group algebras:

Theorem 1 [3]: Let G be a finite metabelian group of order coprime to q. Then,

(i) A complete set of primitive central idempotents of semisimple group algebra $\mathbb{F}_q[G]$ is given by the set $\{e_C(G, A_N, D) \mid (N, D/N, A_N/N) \in S, C \in \mathfrak{R}(A_N/D)\}$;

(ii) the simple component corresponding to primitive central idempotent $e_C(G, A_N, D)$ is

$$F_q[G]e_C(G, A_N, D) \cong M_{\mathfrak{R}(A_N/D)}(F_q),$$

where $M_n(R)$ denotes the ring of $n \times n$ matrices over the ring R and

$$o(A_N, D) = \frac{\text{ord}_{(A_N, D)}(q)}{[E_G(A_N, D) : A_N]}.$$

Moreover the number of such simple components is $|\mathfrak{R}(A_N, D)|$.

4. Groups whose central quotient is abelian (not cyclic) group of order p^2

Conelissen and Milies [6] have classified indecomposable finitely generated groups G, such that $G/Z(G) \cong C_p \times C_p$, into nine classes. In all of these classes, $G = \langle a, b, Z(G) \rangle$ with some more relations as described in following table:
Group G	$Z(G)$	Relations
\mathfrak{G}_1	$\langle c \rangle$	$a^p, b^p, c^{p^n}b^{-1}a^{-1}bac^{-1(p^{m-1})}$, $m \geq 1$
\mathfrak{G}_2	$\langle c \rangle$	$a^p c^{-1}, b^p c^{-1}, c^{p^n}, b^{-1}a^{-1}bac^{-1(p^{m-1})}$, $m \geq 1$
\mathfrak{G}_3	$\langle c_1 \rangle \times \langle c_2 \rangle$	$a^p, b^p c_2^{-1}, c_1^{p^n}, c_2^{p^n}, b^{-1}a^{-1}bac_1^{-1(p^{m-1})}$, $m_1, m_2 \geq 1$
\mathfrak{G}_4	$\langle c_1 \rangle \times \langle c_2 \rangle$	$a^p c_1^{-1}, b^p c_2^{-1}, c_1^{p^n}, c_2^{p^n}, b^{-1}a^{-1}bac_1^{-1(p^{m-1})}$, $m_1, m_2 \geq 1$
\mathfrak{G}_5	$\langle c_1 \rangle \times \langle u_i \rangle$	$a^p, b^p u_i^{-1}, c_1^{p^n}, b^{-1}a^{-1}bac_1^{-1(p^{m-1})}$, $m_i \geq 1$
\mathfrak{G}_6	$\langle c_1 \rangle \times \langle u_i \rangle$	$a^p c_1^{-1}, b^p u_i^{-1}, c_1^{p^n}, b^{-1}a^{-1}bac_1^{-1(p^{m-1})}$, $m_i \geq 1$
\mathfrak{G}_7	$\langle c_1 \rangle \times \langle c_2 \rangle \times \langle c_3 \rangle$	$a^p c_2^{-1}, b^p c_3^{-1}, c_1^{p^n}, c_2^{p^n}, c_3^{p^n}, b^{-1}a^{-1}bac_1^{-1(p^{m-1})}$, $m_1, m_2, m_3 \geq 1$
\mathfrak{G}_8	$\langle c_1 \rangle \times \langle c_2 \rangle \times \langle u_i \rangle$	$a^p c_2^{-1}, b^p u_i^{-1}, c_1^{p^n}, c_2^{p^n}, b^{-1}a^{-1}bac_1^{-1(p^{m-1})}$, $m_1, m_2 \geq 1$
\mathfrak{G}_9	$\langle c_1 \rangle \times \langle u_i \rangle \times \langle u_2 \rangle$	$a^p u_i^{-1}, b^p u_2^{-1}, c_1^{p^n}, b^{-1}a^{-1}bac_1^{-1(p^{m-1})}$, $m_i \geq 1$

$o(u_i), i = 1, 2$ is infinite.

It can be see easily that G is finite metabelian group only in five classes. Out of these five classes, we will give a complete algebraic structure of $\mathbb{F}_q[G]$, for $G = \mathfrak{G}_3$ and \mathfrak{G}_2 only. The rest of the cases can be dealt similarly. Throughout this section \mathbb{F}_q is a finite field with q elements and $\gcd(p, q) = 1$. Let $ord_p(q)$, the order of q modulo p, be f and $e = \frac{p-1}{f}$. Write $q^l = 1 + p^d c$, where p does not divide c. Then for $l \geq 1$,

$$ord_{p^l}(q) = \begin{cases} f, & l \leq d, \\ fp^{l-d}, & l \geq d+1. \end{cases}$$

4.1. Structure of $\mathbb{F}_q[\mathfrak{G}_1]$

Let G be a group of type \mathfrak{G}_1. Thus G has following representation:

$$G = \langle a, b, c \mid a^p = b^p = c^{p^m} = 1, b^{-1}a^{-1}ba = c^{p^{m-1}} , c \text{ central in } G \rangle (1)$$
where \(p \) is prime and \(m \geq 1 \). For \(p = 2 \), the complete algebraic structure of \(\mathbb{F}_q[G] \) can be read from [3]. Suppose \(p \) is an odd prime. For \(m \geq 2 \), define

\[
K_0 := \langle 1 \rangle, \quad K_1 := \langle c, a \rangle, \quad K_2^{(i)} := \langle c, a^i b \rangle, \quad K_3^{(i)} := \langle a, b, c^p \rangle, \quad 0 \leq i \leq p - 1,
\]

\[
K_4^{(i,j)} := \langle a, c^p b^j \rangle, \quad K_5^{(i,j)} := \langle b, c^p a^j \rangle, \quad K_6^{(i,j,k)} := \langle c^p a^j, c^p b^k \rangle,
\]

\[
0 \leq i \leq m - 2, \quad 1 \leq j, k \leq p - 1.
\]

Theorem 2. A complete set of primitive central idempotents of semisimple group algebra \(\mathbb{F}_q[G] \), \(G \) of type \(\mathfrak{G}_1 \), is given as follows:

Primitive central idempotents of \(\mathbb{F}_q[G] \) for \(m = 1 \):

\[
e_c(G, G, G), \quad C \in \mathfrak{R}(G/G);
\]

\[
e_c(G, G, \langle c, a^i b \rangle), \quad C \in \mathfrak{R}(G/\langle c, a^i b \rangle), \quad 0 \leq i \leq p - 1;
\]

\[
e_c(G, G, \langle a, c \rangle), \quad C \in \mathfrak{R}(G/\langle a, c \rangle);
\]

\[
e_c(G, \langle a, c \rangle, \langle a \rangle), \quad C \in \mathfrak{R}(\langle a, c \rangle/\langle a \rangle).
\]

Primitive central idempotents of \(\mathbb{F}_q[G] \) for \(m \geq 2 \):

\[
e_c(G, K_1, \langle a \rangle), \quad C \in \mathfrak{R}(K_1/\langle a \rangle);
\]

\[
e_c(G, G, K_1), \quad C \in \mathfrak{R}(G/K_1);
\]

\[
e_c(G, G, K_2^{(i)}), \quad C \in \mathfrak{R}(G/K_2^{(i)}) \quad 0 \leq i \leq p - 1;
\]

\[
e_c(G, G, K_3^{(i)}), \quad C \in \mathfrak{R}(G/K_3^{(i)}) \quad 0 \leq i \leq p - 1;
\]

\[
e_c(G, G, K_4^{(i,j)}), \quad C \in \mathfrak{R}(G/K_4^{(i,j)}) \quad 0 \leq i \leq m - 2, \quad 1 \leq j \leq p - 1;
\]

\[
e_c(G, G, K_5^{(i,j)}), \quad C \in \mathfrak{R}(G/K_5^{(i,j)}) \quad 0 \leq i \leq m - 2, \quad 1 \leq j \leq p - 1;
\]

\[
e_c(G, G, K_6^{(i,j,k)}), \quad C \in \mathfrak{R}(G/K_6^{(i,j,k)}) \quad 0 \leq i \leq m - 2, \quad 1 \leq j, k \leq p - 1.
\]

To prove this Theorem, we first need to find the normal subgroups of \(G \).

Lemma 1. Let \(G \) be a group as defined in (1) and \(\mathcal{N} \) be the set of distinct normal subgroups of \(G \). Then

(i) For \(m = 1 \), \(\mathcal{N} = \{(1), (c), (c, a), (c, a, b)(c, a^i b), 0 \leq i \leq p - 1 \}

and \(S = \{(1), \langle a \rangle, \langle c, a \rangle\} \cup \{(1, \langle a, c \rangle), \langle c, a, b \rangle, \langle c, a^i b \rangle, \langle a, b, c \rangle, \langle a, c, b \rangle | 0 \leq i \leq p - 1\};

(ii) For \(m \geq 2 \), \(\mathcal{N} = \{(c^p)^i, (c^p, a), (c^p, b), (c^p, a, b) | 0 \leq i \leq m - 1 \} \cup \{(c^p, a^j b^k), (c^p, a^j, c^p b^k) | 0 \leq i \leq m - 2, 1 \leq j, k \leq p - 1\}

and \(S = \{(K_0, \langle a \rangle), (K_1)\} \cup \{(K_0, G/K_1), (K_2^{(i)}), (K_3^{(i)}, G/K_3^{(i)}), (K_4^{(i,j)}, G/K_4^{(i,j)}), (K_5^{(i,j)}, G/K_5^{(i,j)}), (K_6^{(i,j,k)}, G/K_6^{(i,j,k)}) | 0 \leq i \leq m - 1, 1 \leq j \leq p - 1, 0 \leq i \leq m - 2, 1 \leq j \leq p - 1\}.\)
Proof. It can be seen easily that in (i) and (ii), the subgroups listed are distinct and normal in \(G \). Also if \(N \triangleleft G \), then it can be shown easily, as in \([3], \text{Lemma 4}\), that \(N \) is one of the subgroups listed in the statement of Lemma.

Observe that in both (i) and (ii), for \(N = \langle l \rangle, A_N / N = \langle c, a \rangle \). Hence \(S_{G/N} = \{\langle (l), G/N \rangle, \phi, G \} \), if \(G/N \) is cyclic, otherwise.

Thus to complete the proof, we need to find only those \(N \in \mathcal{N} \) for which \(G/N \) is cyclic. In (i), the subgroups \(\langle c, a \rangle, \langle c, a, b \rangle, \langle c, a'b \rangle, 0 \leq i \leq p - 1 \) have cyclic quotient with \(G \), whereas in (ii), the following normal subgroups have cyclic quotient with \(G \):

\[
K_i, K_2^{(i)}, K_3^{(i)}, 0 \leq i \leq p - 1, \\
K_4^{(i,j)}, K_5^{(i,j)}, K_6^{(i,j,k)}, 0 \leq i \leq m - 2, 1 \leq j, k \leq p - 1.
\]

Thus the proof of the lemma is complete.

Proof of Theorem 2. The list of primitive central idempotents of group algebra \(F_q[G] \) can now be easily obtained with the help of Theorem 1 and Lemma 1.

Theorem 3. The Wedderburn decomposition and the automorphism group of semisimple group algebra \(F_q[G] \), \(G \) of type \(\mathfrak{S}_1 \), are given as follows:

Wedderburn decomposition

\[
F_q[G] \cong \begin{cases}
F_q \oplus F_q^{((p+1)e)} \oplus M_p \left(F_q^{(e)}\right), & m = 1, \\
F_q \oplus F_q^{(m+1)} \oplus M_p \left(F_q^{(m-1)e}\right), & 2 \leq m \leq d, \\
F_q \oplus F_q^{(d+2-1)} \oplus \sum_{i=d+1}^{m-1} F_{q^{p^{d+2-1}}} \oplus M_p \left(F_{q^{p^{d+1}}}\right), & m \geq d + 1.
\end{cases}
\]

Automorphism group

\[
Aut(F_q[G]) \cong \begin{cases}
\left(\mathbb{Z}_f^{(p+1)e} \rtimes S_{(p+1)e}\right) \oplus \left(SL_p(F_q) \rtimes \mathbb{Z}_f^{(e)}\right) \rtimes S_e), m = 1, \\
\left(\mathbb{Z}_f^{(m+1)} \rtimes S_{(m+1)}\right) \oplus \\
\left(SL_p(F_q) \rtimes \mathbb{Z}_f^{(m-1)e}\right) \rtimes S_{p^{m-1}e} \right), 2 \leq m \leq d, \\
\left(\mathbb{Z}_f^{(d+2-1)} \rtimes S_{p^{d+2-1}}\right) \oplus \sum_{i=d+1}^{m-1} \left(S_{F_{p^{d+1}}^{p^{d+1}e}} \rtimes S_{p^{d+1}e}\right) \right), m \geq d + 1.
\end{cases}
\]

where \(\mathbb{Z}_m \) denotes the cyclic group of order \(n \), \(S_n \) denotes the symmetric group of degree \(n \) and for a group \(H \), \(H^{(n)} \) a direct sum of \(n \) copies of \(H \).
Proof of Theorem 3. In order to find the Wedderburn decomposition of $\mathbb{F}_q[G]$, we need to find the simple component corresponding to each primitive central idempotent. More precisely, for each $(N, D/N, A_N/N) \in S, C \in \mathcal{R}(A_N/D)$, we need to calculate $o(A_N, D)$ and $|\mathcal{R}(A_N/D)|$, as given by the following tables:

Case I : $m = 1$

| $(N, D/N, A_N/N)$ | $E_G(A_N/D)$ | $o(A_N, D)$ | $|\mathcal{R}(A_N/D)|$ |
|--------------------|--------------|--------------|------------------------|
| $((1), (a), \langle a, c \rangle)$ | $\langle a, c \rangle$ | f | e |
| $((c, a), (1), G/\langle c, a \rangle)$ | G | f | e |
| $((G), (1), (1))$ | G | 1 | 1 |
| $((c, a'b), (1), G/\langle c, a'b \rangle)$ $0 \leq i \leq p - 1$ | G | f | e |

Case II : $m \geq 2$

| $(N, D/N, A_N/N)$ | $E_G(A_N/D)$ | $o(A_N, D)$ | $|\mathcal{R}(A_N/D)|$ |
|--------------------|--------------|--------------|------------------------|
| $(K_0, (a), K_1)$ | K_1 | $\begin{cases} f, & m \leq d, \\ fp^{m-d}, & m \geq d + 1. \end{cases}$ | $\begin{cases} p^{m-1}e, & m \leq d, \\ p^{d-1}e, & m \geq d + 1. \end{cases}$ |
| $(K_1, K_0, G/K_1)$ | G | f | e |
| $(K_2^{(i)}, K_0, G/K_2^{(i)})$ $0 \leq i \leq p - 1$ | G | $\begin{cases} 1, & i = 0 \\ f, & 1 \leq i \leq d \\ fp^{i-d}, & i \geq d + 1 \end{cases}$ | $\begin{cases} 1, & i = 0, \\ p^{i-1}e, & 1 \leq i \leq d, \\ p^{d-1}e, & i \geq d + 1. \end{cases}$ |
| $(K_3^{(i)}, K_0, G/K_3^{(i)})$ $0 \leq i \leq p - 1$ | G | $\begin{cases} 1, & i = 0 \\ f, & 1 \leq i \leq d \\ fp^{i-d}, & i \geq d \end{cases}$ | $\begin{cases} 1, & i = 0, \\ p^{i-1}e, & 1 \leq i \leq d, \\ p^{d-1}e, & i \geq d. \end{cases}$ |
| $(K_4^{(i,j)}, K_0, G/K_4^{(i,j)})$ $0 \leq i \leq m - 2, 1 \leq j \leq p - 1$ | G | $\begin{cases} f, & i \leq d - 1 \\ fp^{j-d+1}, & i \geq d \end{cases}$ | $\begin{cases} p^{i-1}e, & i \leq d - 1, \\ p^{d-1}e, & i \geq d. \end{cases}$ |
| $(K_5^{(i,j)}, K_0, G/K_5^{(i,j)})$ $0 \leq i \leq m - 2, 1 \leq j \leq p - 1$ | G | $\begin{cases} f, & i \leq d - 1 \\ fp^{j-d+1}, & i \geq d \end{cases}$ | $\begin{cases} p^{i-1}e, & i \leq d - 1, \\ p^{d-1}e, & i \geq d. \end{cases}$ |
| $(K_6^{(i,j,k)}, K_0, G/K_6^{(i,j,k)})$ $0 \leq i \leq m - 2, 1 \leq j, k \leq p - 1$ | G | $\begin{cases} f, & i \leq d - 1 \\ fp^{j-d+1}, & i \geq d \end{cases}$ | $\begin{cases} p^{i-1}e, & i \leq d - 1, \\ p^{d-1}e, & i \geq d. \end{cases}$ |

Now, the required Wedderburn decomposition and automorphism group can be easily read from these two tables and [3, Theorem 3].
4.2. Structure of $\mathbb{F}_q[\mathfrak{G}_2]$

Observe that if group G is of type \mathfrak{G}_2, then it has the following presentation:

$$G = \langle a, b \mid a^{p^{m+1}} = 1, b^p = a^{p^2}, b^{-1}a^{-1}ba = a^{p^{m+1}}, a^p \text{ central in } G \rangle,$$

where p is a prime and $m \geq 1$. For $p = 2$, the complete algebraic structure of $\mathbb{F}_q[G]$ can be read from [3]. Suppose p is an odd prime. For $m \geq 1$, set:

$$L_0 := \langle 1 \rangle, L_1 := \langle a \rangle, L_2 := \langle a^p \rangle, 1 \leq i \leq m, L_3 := \langle a, b \rangle,$$

$$L_4 := \langle a^p, ab \rangle, 0 \leq i \leq p-1,$$

$$L_5 := \langle a^p, a^{b^{i-1}}b \rangle, 2 \leq i \leq m, 1 \leq j \leq p.$$

The following Theorems give a complete algebraic structure of semisimple group algebra $\mathbb{F}_q[G]$:

Theorem 4. A complete set of primitive central idempotents of semisimple group algebra $\mathbb{F}_q[G]$, G of type \mathfrak{G}_2, is given as follows:

Primitive central idempotents of $\mathbb{F}_q[G]$

$$e_C(G, G, G), C \in \mathcal{R}(G/G);$$

$$e_C(G, G, L_1), C \in \mathcal{R}(G/L_1);$$

$$e_C(G, G, L_2), C \in \mathcal{R}(G/L_2);$$

$$e_C(G, L_1, L_0), C \in \mathcal{R}(L_1/L_0);$$

$$e_C(G, G, L_4^{(i)}), C \in \mathcal{R}(G/L_4^{(i)}), 0 \leq i \leq p-1;$$

$$e_C(G, G, L_5^{(i,j)}), C \in \mathcal{R}(G/L_5^{(i,j)}), 2 \leq i \leq m, 1 \leq j \leq p.$$

Proof of Theorem 4. In view of Theorem 1, to find a complete list of primitive central idempotents of $\mathbb{F}_q[G]$ we first need to list all normal subgroups of G. It can be see easily that the set \mathcal{N} of distinct normal subgroups of G is equal to

$$\{L_0, L_1, L_2^{(i)}, 1 \leq i \leq m, L_3, L_4^{(i)}, 0 \leq i \leq p-1, L_5^{(i,j)}, 2 \leq i \leq m, 1 \leq j \leq p\}.$$

For $N = L_0$, $A_N / N = L_1$. Hence $S_{G/N} = \{\langle L_0, L_1 \rangle\}$. Moreover, for non-identity $N \in \mathcal{N}, S_{G/N}$ is non-empty if and only if G/N is cyclic. The following $N \in \mathcal{N}$ have cyclic quotient with G:

$$L_1, L_3, L_4^{(i)}, 0 \leq i \leq p-1, L_5^{(i,j)}, 2 \leq i \leq m, 1 \leq j \leq p.$$

Thus (i) follows from Theorem 1.

Theorem 5. The Wedderburn decomposition and the automorphism group of semisimple group algebra $\mathbb{F}_q[G]$, G of type \mathfrak{G}_2, are as follows:

Wedderburn decomposition

$$\mathbb{F}_q[G] \cong \begin{cases}
\bigoplus \mathbb{F}_q \bigoplus \mathbb{F}_q \left(\frac{p^{m+1}}{f} \right) \bigoplus M_p \left(\mathbb{F}_q \right)^{\left(\frac{p^{m+1}-1}{f} \right)}, & m \leq d - 1, \\
\bigoplus \mathbb{F}_q \bigoplus \mathbb{F}_q \left(\frac{p^{d+1}}{f} \right) \bigoplus \sum_{i=d+1}^{m} \mathbb{F}_q \left(\frac{p^{d-1}}{f} \right) \bigoplus M_p \left(\mathbb{F}_q \right)^{\left(\frac{p^{d-1}-1}{f} \right)}, & m \geq d.
\end{cases}$$
Proof of Theorem 5. We will first find \(E_G(L_1/L_0) \). Observe that \(|L_1/L_0| = p^{m+1} \) and \(L_1 \subseteq E_G(L_1/L_0) \subseteq G \). Let \(m \leq d - 1 \). In this case, \(b \in E_G(L_1/L_0) \), if and only if \(\zeta^{p^{m+1}} = \zeta^{p^d} \) for some \(i, 1 \leq i \leq f \), where \(\zeta \) is a primitive \(p^{m+1} \) th root of unity. This implies that \(p^{m+1} = q^i (\text{mod } p^{m+1}) \), i.e., \(p = \frac{f}{\gcd(i, f)} \), which gives that \(p \) divides \(p - 1 \), a contradiction. Hence in this case \(E_G(L_1/L_0) = L_1 \). For \(m \geq d \), \(E_G(L_1/L_0) = G \). Thus we have the following:

| \((N, D)/N, A_N/N\) | \(E_G(A_N/D)\) | \(o(A_N, D)\) | \(|\mathfrak{M}(A_N/D)|\) |
|---------------------|-----------------|-----------------|-----------------|
| \((G, L_0, L_0)\) | \(G\) | 1 | 1 |
| \((L_1, L_0, G/L_1)\)| \(G\) | \(f\) | \(e\) |
| \((L_4^{(i)}, L_0, G/L_4^{(i)})\), \(0 \leq i \leq p - 1\) | \(G\) | \(f\) | \(e\) |
| \((L_5^{(i,j)}, L_0, G/L_5^{(i,j)})\), \(2 \leq i \leq m, 1 \leq j \leq p\) | \(G\) | \(\begin{cases} f, & i \leq d, \\ fp^{i-d}, & i > d + 1. \end{cases}\) | \(\begin{cases} p^{i-1}e, & i \leq d, \\ p^{d-1}e, & i > d + 1. \end{cases}\) |
| \((L_0, L_0, L_1)\) | \(\begin{cases} L_1, & m \leq d - 1, \\ G, & m \geq d. \end{cases}\) | \(\begin{cases} f, & m \leq d - 1, \\ fp^{m-d}, & m \geq d. \end{cases}\) | \(\begin{cases} p^{m-1}e, & m \leq d - 1, \\ p^{d-1}e, & m \geq d. \end{cases}\) |

The Wedderburn decomposition and automorphism group of \(\mathbb{F}_q[G] \) can now be easily read with the help of this table and [3, Theorem 3].

Acknowledgment

The author is grateful to the referees for their valuable suggestions which have helped to write the paper in the present form.
References

[1] G.K. Bakshi, S. Gupta, I.B.S. Passi, Semisimple metacyclic group algebras, Proc. Indian Acad.Sci.(Math Sci.). 121(4) (2011) 379-396.

[2] G.K. Bakshi, S. Gupta, I.B.S. Passi, The structure of finite Semisimple metacyclic group algebras, J. Ramanujan Math Soc. 28(2) (2013) 141-158.

[3] G.K. Bakshi, S. Gupta, I.B.S. Passi, The algebraic structure of Finite metabelian group algebras, Comm. Algebra. 43(6) (2015) 2240-2257.

[4] G.K. Bakshi, R.S. Kullkarni, I.B.S. Passi, The rational group algebra of a finite group, J. Alg. Appl. 12(3) (2013).

[5] O. Broche, Á. del Río, Wedderburn decomposition of finite group Algebras, Finite Fields Appl. 13(1) (2007) 71-79.

[6] M.G. Cornelissen, P.C. Milies, Finitely generated groups G such that $G/\mathrm{Z}(G) \cong C_p \times C_p$, Comm. Algebra. 42(1) (2014) 378-388.

[7] E. Jespers, G. Leal, A. Paques, Central idempotents in the rational group algebra of a finite nilpotent group, J. Algebra Appl. 2(1) (2003) 57-62.

[8] A. Olivieri, Á. del Río, J.J. Simón, The group of automorphisms of the rational group algebra of a finite metacyclic group, Comm. Algebra. 34(10) (2006) 3543-3567.

[9] A. Olivieri, Á. del Río, J.J. Simón, On monomial characters and Central idempotents of rational group algebras, Comm. Algebra. 32(4) (2004) 1531-1550.