Abstract
Xanthine oxidase is a highly versatile enzyme that is widely distributed among different Indigofera linnaei Linn. is a potential folklore medicinal plant (Fabaceae) used for Ayurveda and Siddha systems of medicine. In this study Alkaloids, Carbohydrate Glycoside, Saponin, Flavonoids, tannins and Phytosteroids were identified as the major phytochemical constituents in the methanol, acetone and toluene fractions of Indigofera linnaei Linn. leaf extract. Their structures were elucidated, on the basis of GC-MS data. 2,4,6-Octanerione (9.24%), 4, (methyl cyclopropyl)-1-butene(8.87%), non-ionic acid methyl ester(5.78%), trans-N-methyl-3-oxo-5,6-dimethoxy morphian (9.63%). (IRS, 2SR) 2-Dimethyl (Phenyl) silylpentane-3-ol (7.39%), 2, 2-bis (t-phenyl 3, 4" dimethyl phosphate) (5.84%), 2-cyclopropylenetic acid(6.49%) these different active phytochemicals have been found to possess a wide range of activities. In conclusion Indigofera linnaei Linn. contains biologically active compounds that may serve as candidate for the discovery of new drugs in the treatment of antimicrobial activities.

Keywords: GC-MS, Phytochemicals, Indigofera linnaei Linn., antimicrobial activities
ovate to orbicular, 3-4.5 × 2.5-4 mm, outside hairy; wings 3-4 × 1-1.5 mm, glabrous, margin shortly ciliate; keel 3-4 × ca. 1.5 mm, glabrous, margin shortly ciliate, lateral spur ca. 0.5 mm. Stamens 2.5-4 mm; anthers glabrous.

2. Materials and Methods

2.1 Collection of plant material: The leaves of *Indigofera linnaei* Linn. were collected from the Bharadhidasan university herbarium, Thiruchirappalli, Tamil Nadu, India. They were identified and authenticated by the Bharadhidasan university herbarium, Trichirappalli, Tamil Nadu, India.

2.2 Preparation of powder and extract: Leaves of *Indigofera linnaei* Linn. (500g) was shade dried, powdered and extracted with ethanol for 8 hours using soxhlet apparatus. The extract was then filtered through Whatmann filter paper No.41 along with 2g sodium sulfate to remove the sediments and traces of water in the filtrate. Before filtering, the filter paper along with sodium sulphate is wetted with absolute alcohol. The filtrate is then concentrated by bubbling nitrogen gas into the solution and reduce the volume to 1ml. The extract contains both polar and non-polar phytocomponents.

2.2 GC-MS Analysis: The GC-MS analysis of *Indigofera linnaei* Linn. powder leaves extract with absolute alcohol, was performed using a Clarus 500 Perkin Elmer gas chromatography equipped with a Elite-5 capillary column (5% phenyl 95% dimethyl polysiloxane) (30nm X 0.25mm ID X 0.25µmdf) and mass detector turbomass gold of the company which was operated in EI mode. Helium was the carriers gas at a flow rate of 1ml/min. and the injector was operated at 290ºC and the oven temperature was programmed as follows; 50ºC at 8ºC/min to 200ºC (5min) at 7ºC/min to 290ºC(10min).

2.3 Identification of components: Interpretation on mass spectrum of GC-MS was done using the database of National Institute Standard and Technology (NIST), WILEY8, FAME having more than 62,000 patterns. The mass spectrum of the unknown component was compared with the spectrum of the known components stored in the (NIST), WILEY8, FAME library. The name, molecular weight and structure of the components of the test materials were ascertained.

3. Results and Discussion

3.1 Ultra Violet - Visible Spectroscopy: The plant sample extracts of two solvents (methanol and toluene) has been taken for UV-vis study.

The plant extracts of methanol and toluene is been tested for UV-vis spectrum. The principle of UV-spectral analysis is for separation of functional group and electron transition compound respectively. The functional group of active compounds by UV-visible spectrum by position of peak values ranges from 404.17 to 666.27 in methanol extract and 412.12 to 669.96 in toluene extract.

S. No.	Methanol	Toluene
1.	404.17	412.12
2.	534.04	534.60
3.	607.76	609.31
4.	666.27	669.96

3.2 Fourier Transformed Infrared: Performing the next advanced phytochemical analysis technique of FTIR the presence of various functional groups of different compounds was found.

S. No.	Methanol
1.	3819.71
2.	3937.71
3.	3410.62
4.	2925.22
5.	2362.12
6.	2134.44
The FTIR method is the radiation passed through sample to be separated the functional group of compounds, the FTIR analysis is done in methanolic extract, the peak area ranges from 3819.17 to 621.03.

The FTIR and UV spectrum was used to identify the functional group of the active components based on the peak values in the infrared radiation. The methanol extract of *G. kollimalayanum* was passed through FTIR, the functional groups of the components were separated based on its peak ration and the same was passed into UV spectroscopy for electron transition of compounds.

The FTIR analysis confirmed the presence of the carboxylic acid, and Alkenes-CH₂, CH₃, Aromatic streching which shows major peaks at 1019.87 and 2922.33 etc. (Yuvarajan et al.).

3.3 Gas Chromatography Mass Spectrometry:

The plant sample taken on subjecting to the GC-MS provided the result of different peaks determining the presence of 19 compounds it’s found that most of compounds showed various therapeutic properties revealing its medicinal properties.

The GC-MS analyses of 19 bioactive compounds were identified in the methanolic extracts of *I. linnaei* Linn. they were 2,4,6-Octanerione, 4, (methyl cyclopropyl)-1-butene, non-ionc acid methyl ester, trans-N-methyl-3-oxo-5,6-dimethoxy morphian. (IRS, 2SR) 2-Dimethyl (Phenyl) silylpentane-3-ol, 2,2-bis (t-phenyl 3,4” dimethyl phosphate), 2-cyclopropylenetic acid etc. has the following peak areas.

Table 3: Phytocompounds identified in the *Indigofera linnaei* Linn. whole plant extract (GC-MS study).

S.No.	RT	Name of Compound	M	MW	Peak Area
1.	5.33	2,4,6-Octanetion-E	C₈H₁₂O₃	156	3.99
2.	18.18	4-Methyl Cyclopropyl-1-butene	C₄H₁₄	110	2.62
3.	20.99	Nonanoic acid, methyl ester	C₁₀H₂₀O₂	172	7.86
4.	24.55	Trans-N-Methyl-3-Oxo,5,6-dimethoxy morphian	C₁₀H₁₅O₃	315	4.17
5.	27.08	(1RS, 2SR)-2-methyl (Phenyl) silylpentane-3-ol	C₁₃H₂₂O₅Si	222	3.67
6.	27.51	2,2.bis [t-phenyl-3”-4”-dimethyl phosphate)	C₂₃H₂₃N₄O₂	438	2.88
7.	27.90	2-Cyclopropylacetic acid	C₆H₁₂O₂	100	6.67
8.	28.26	5-a-androst-16-en-3-ol-[t-butyl]dimethylsily] ether	C₂₂H₄₄O₅	388	4.59
9.	28.90	t-Butyl [(4-methylprop)-2,5-dioximidazolidin-4-yl] methyl carbonate	C₁₃H₂₅N₃O₄	285	2.70
10.	32.04	2,2,Dimethyl-3-hydroxy Propyl 2,2-dimethyl butonate	C₁₁H₂₂O₃	202	2.06
11.	32.83	Dichloroquinolin-8-olataluminium (3)	C₄H₆ACl₂NO	241	2.97
12.	33.59	2-[2-bromo-4-(1-methyl ethyl) phenyl]amino-5[6-(3-pyridinyl) hexyl] Pyridine	C₁₂H₉BrN₅	451	2.04
13.	35.24	2-tert-butoxy-3-methyl-5-(trimethylsilyl) Cyclohexa-2,5-diene-1,4-dione	C₁₂H₂₂O₆Si	266	2.19
14.	36.54	Diethyl-2,6-dimethyl-4-(3-Pyridazinyl) 1,4-dihydropyrindine-3,5-carboxylate	C₁₇H₂₁N₃O₄	331	2.33
15.	39.28	N-(tert-Butoxycarbonyl)-2-(4-methoxyphenyl)allylanine	C₁₅H₁₃NO₃	263	2.45
16.	41.88	(5a, 6a)4,5-Epoxy-6-acetoxy-17b hydroxyl-17-cyclopropymethyl-3a- pthalimidomorphinan	C₃₉H₅₀N₄O₆	514	4.00
S.No.	RT	Name of Compound	M	MW	Peak Area
------	-----	--	--------------------	--------	-----------
17.	42.11	7,16-Dichloro-7,16-di(phenyl sulfinyl) diicosane	C_{34}H_{52}Cl_{12}O_{2}S	626	1.81
18.	43.05	(2S, 3S) - 2, 3 - Epoxy-l-hexanol	C_{6}H_{12}O_{2}	116	2.80
19.	44.47	(1R*, 2R*, 6S*)-2-(tert-Butyldimethysiloxy)-6,9,9-trimethyl bicycle [4.2.1] no, nun-8-one	C_{18}H_{34}O_{2}Si	310	7.15

Table 4: Preliminary phytochemical activities of *Indigofera linnaei* Linn

S. No.	Name of Compound	Nature of Compound Group	Activity
1.	2,4,6-Octanetrion-E	Polyketone	Antiinflammatory response, provides functional support against leukemia
2.	4-Methyl Cyclopentyl-1-butene	Alkane	Promotes growth reduction of mutation rate, antitoxicity against compounds.
3.	Nonanoic acid, methyl ester	Ester	The antimethylthia properties
4.	Trans-N-Methyl-3-Oxo-5,6-dimethoxy morphian	Alkene	Antitumour activity.
5.	(1RS, 2SR)-2-methyl (Phenyl) silylpentane-3-ol	Pentane	Cytotoxicity and efficacy of allergenic extracts
6.	2,2, bis [1-phenyl-3"-4"-dimethyl phosphate)	Alkene	Antidiabetic activity.
7.	2-Cyclopropylacetic acid	Propionic acid	Tumour and antiseptic activity on lesion of skin
8.	5-a-androst-16-en-3-ol-[t-butyl]dimethylsily] ether	Ether	Anti-leper against the skin
9.	t-Butyl [(4-methylprop)-2,5-dioximidazolidin-4-yl] methyl carbonate	Propane	Provides control liver damage against antiseptic activities
10.	2,2,Dimethyl-3-hydroxy Propyl 2,2-dimethyl butonate	Butane	Anticancerous activity shows presence of compounds.
11.	Dichloroquinolin-8-olatoaluminium (3)	Ketone	Anti-tumour activity
12.	2-[2-bromo-4-(1-methyl ethyl phenyl]amino-5[6-(3-pyridinyl) hexyl] Pyridine	Aldehyde	Antihyperplasmic activity of growth reduction in intestinal enzymes.
13.	2-tert-butoxy-3-methyl-5-(trimethylsilyl) Cyclohexa-2,5-diene-1,4-dione	Isohexobutane	Antioheoplastic activity
14.	Diethyl-2,6-dimethyl-4-(3-Pyridazinyl) 1,4-dihydropyridine-3,5-carboxylate	Diethylyl butane	Control hypersensitive reaction
15.	N-(tert-Butoxycarbonyl)-2-(4-methoxypheny)allylamine	Allyl amine butane	Phytocompound having liver susceptibility of reactions
16.	Cyclopropane	Antiallergenic reactions.	
3.4 Phytochemical Studies

3.4.1 Preliminary Phytochemical Analysis: Qualitative phytochemical studies of different extracts of leaves of *Indigofera linnaei Linn.* were performed on its alcoholic and water extracts to identify its Alkaloid, Carbohydrate and Glycoside, Saponin, Protein & Amino acid, Phenolic compounds & Flavonoids and Phytosterols by using suitable chemicals and reagents (Table 2). Alkaloid test results of leaf showed slightly positive in all four tested reagents. Qualitative phytochemical studies of Carbohydrate & Glycoside showed a good characteristic colour and precipitate in all five tested reagent. Slight presence of Saponin was confirmed by foam test in leaf in all extracted solvents. Protein and amino acid was found absent in all tests. However in Millon’s test alcoholic extract showed slight presence of protein. Phenolic compounds and Flavonoids were abundantly present in all the extracts. However alkaline test showed the moderate result in comparison to other two tests. Libermann-Burchards test showed slight presence of phytosterol in all the extracts. The above qualitative phytochemical screening showed that the whole plant is a rich source of Glycosides, Phenols & Flavonoids. However, presence of protein and alkaloids is limited in leaves.

S. No.	Name of Compound	Nature of Compound Group	Activity
17.	7,16-Dichloro-7,16-di(phenyl sulfinyl) diocosane	Sulphohydroxydine	Antitumour activity
18.	(2S, 3S) - 2, 3 - Epoxy-1-hexanol	Epoxyhexane	Antiinflammatory response against skin lesions
19.	(1R*, 2R*, 6S*)-2-(tert-Butyldimethylsilox)-6,9,9-trimethyl bicycle [4.2.1] no, nun-8-one	Methyl butane	Anti anaesthetic properties.

Table 5: Qualitative Phytochemical Screening of leaves of *Indigofera linnaei Linn.*

Phytochemical test	Cold Maceration	Sohxalation	
1. Alkaloids			
Mayer’s test	+	-	+
Wagner’s test	+	-	+
Hager’s test	+	+	-
Dragendorff’s test	+	+	+
2. Carbohydrates & Glycosides			
Molish’s test	+++	+++	+++
Fehling’s test	+++	+++	+++
Barfoed’s test	+++	+++	+++
Benedict’s test	+++	+++	+++
Borntrager’s test	+++	+++	+++
3. Saponins			
Foam test	+	+	+
4. Proteins & amino acid			
Millon’s test	-	-	-
Biuret’s test	-	-	-
Ninhydrin test	-	-	-
5. Phenolic compounds & flavonoids			
Ferric chloride test	++	+++	+
Lead acetate test	++	+++	+
Alkaline test	++	++	+
6. Phytosterol			
Libermann-Burchard’s test	+	+	+

- Negative; +, Slight; ++, Moderate; ++++, Frequent;

The phytochemical screening of whole plant extract *Indigofera linnaei Linn.* revealed the presence of alkaloids, flavonoids, Phytosteroids, glycosides, carbohydrates, saponins *etc.*
The phytocompounds which exhibits the properties of antitoxic and antibacterial activity, so the plant extracts are subjected to further studies. The phytochemical analysis of the passiflora incarnate leaf extract shows the presence of tannins, alkaloids, flavonoids and carbohydrates etc. Tannins have been found to form irreversible complexes with proline rich proteins resulting in the inhibition of the cell protein synthesis (Hagerman et al.).

Conclusion:
The several secondary metabolites were present in the plant extracts of solvents methanol, acetone and toluene. The phytocompounds were alkaloids, flavonoids, glycosides, Phytosteroids, carbohydrate, saponins, tannins etc. were found in plant extracts. The UV-visible spectrum which shows the peak area having functional groups in methanol, and toluene solvents. The FTIR analysis which shows distinct peak areas of functional group. This functional groups having N-acetyl, alkene, forming of groups etc. There are 19 compounds is separated through GC-MS analysis. The 19 compounds were listed and their compounds, their nature, biological functions of that particular compounds. This GC-MS analysis which exhibits certain new compounds also but their biological properties were not found. The phytocompounds of the plant Indigofera linnaei Linn. can be detected through the qualitative, UV-Vis spectrum, FTIR-analysis and GC-MS. This detection of compound and its structure and activities will lead to the number of new drugs invention for various incurable diseases.

Acknowledgement
We sincerely thank to S.Mariaarulkulanthai raj St. Joseph’s College, Tiruchirappalli, for doing this valuable work. I warmly thank Mr. Arockiam, for his valuable advice and friendly help. His extensive discussions around my work and interesting explorations in operations have been very helpful for this study.

References:
1. Hill AF. Economic Botany. A textbook of useful plants and plant. 2nd edn. 1952McGarw-Hill Book Company Inc, New York. Products
2. Okwu DE. Flavouring properties of spices on cassava Fufu. Afr. J. Roots Tuber Crops 1999; 3(2): 19-21.
3. Tagboto S, Townson S .Antiparasitic properties of medicinal plants and other naturally occurring products. Adv. Parasitol., 2001; 50: 199-295.
4. Mossi, A.J. Mazutti, Paroul, M., Corazza, N., Dariva, M.L., Cansian, C. & Oliveira, R.L. Chemical variation of tannins and triterpenes in Brazilian populations of Maytenus ilicifolia Mart. Ex Reiss Brazilian Journal of Biology 2009: (2). 69 http://dx.doi.org/10.1590/S1519-69842009000200015
5. Dutta, A.C. Botany for degree students. Oxford University Press, London, 1994; 73.
6. WHO. WHO traditional medicine strategy 2002- 2005. WHO, Geneva, 2002.
7. Perumal, S.R &Ignacimuthu, S. Antibacterial activity of some folklore medicinal plants used by tribes in Western chas of India. J. Ethnopharmacol. 2000, 69: 63-71.
8. Nezhadali A, Nabavi M , Akbarpour M, Chemical composition of ethanol/n-hexane extract of the leaf from Tanacetum polypecephalum subsp. duderanum as a herbal plant in Iran Der Pharmacia Sinica, 2010: 1, 147.
9. Sathyaprabha G , Kumaravel S , Panneerselvam A, Bioactive Compounds Identification of Pleurotus platypus and Pleurotus eous by GC-MS Adv. Appl. Sci. Res., 2011, 2, 51.
10. Nandkarni AK. Materia medica. Edn 2, Vol.1, Tarun Enterprises, 2000, pp. 266.
11. Khandelwal KR. Practical Pharmacognosy. Edn 5, Niraliprakashan, Pune, 2005, pp.149-154.
12. Kokate CK. Practical Pharmacognosy. Edn 4, 2003; VallabhPrakashan, New Delhi, 2003, pp. 122-126.
13. Harborne JB. Phytochemical Methods. Springer (India) Pvt. Ltd., New Delhi, 2005, 17.
14. Wagner H, Bladt S. Drug Analysis. Springer, Newyork, 1996, 3-335.
15. V. Usnale,et.al., Pharmacognostical studies on Ipomeareniformischos. International Journal of Pharmaceutical and Clinical Research, 1(2), 2009, 65-67.
16. Sadasivam S, Manickam A. Biochemical Methods. New Age International (P) Limited, New Delhi, 1997, 10-197.