Secondary Metabolites Produced during *Aspergillus fumigatus* and *Pseudomonas aeruginosa* Biofilm Formation

Rafael Wesley Bastos,a,∗ Daniel Akiyama,b Thaila Fernanda dos Reis,a Ana Cristina Colabardini,a Rafael Sanchez Luperini,a Patrícia Alves de Castro,a Regina Lúcia Baldini,d Taícia Fill,b Gustavo H. Goldmana

aFaculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
bInstituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
dDepartamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil

ABSTRACT In cystic fibrosis (CF), mucus plaques are formed in the patient’s lungs, creating a hypoxic condition and a propitious environment for colonization and persistence of many microorganisms. There is clinical evidence showing that *Aspergillus fumigatus* can cocolonize CF patients with *Pseudomonas aeruginosa*, which has been associated with lung function decline. *P. aeruginosa* produces several compounds with inhibitory and antibiofilm effects against *A. fumigatus* in vitro; however, little is known about the fungal compounds produced in counterattack. Here, we annotated fungal and bacterial secondary metabolites (SM) produced in mixed biofilms under normoxia and hypoxia conditions. We detected nine SM produced by *P. aeruginosa*. Phenazines and different analogs of pyoverdin were the main compounds produced by *P. aeruginosa*, and their secretion levels were increased by the fungal presence. The roles of the two operons responsible for phenazine production (*phzA1* and *phzA2*) were also investigated, and mutants lacking one of those operons were able to produce partial sets of phenazines. We detected a total of 20 SM secreted by *A. fumigatus* either in monoculture or in coculture with *P. aeruginosa*. All these compounds were secreted during biofilm formation in either normoxia or hypoxia. However, only eight compounds (demethoxyfumitremorgin C, fumitremorgin, ferrichrome, ferricrocin, triacyltufusigen, gliotoxin, gliotoxin E, and pyripyropene A) were detected during biofilm formation by the coculture of *A. fumigatus* and *P. aeruginosa* under normoxia and hypoxia conditions. Overall, we showed how diverse SM secretion is during *A. fumigatus* and *P. aeruginosa* mixed culture and how this can affect biofilm formation in normoxia and hypoxia.

IMPORTANCE The interaction between *Pseudomonas aeruginosa* and *Aspergillus fumigatus* has been well characterized in vitro. In this scenario, the bacterium exerts a strong inhibitory effect against the fungus. However, little is known about the metabolites produced by the fungus to counterattack the bacteria. Our work aimed to annotate secondary metabolites (SM) secreted during coculture between *P. aeruginosa* and *A. fumigatus* during biofilm formation in both normoxia and hypoxia. The bacterium produces several different types of phenazines and pyoverdins in response to presence of the fungus. In contrast, we were able to annotate 29 metabolites produced during *A. fumigatus* biofilm formation, but only 8 compounds were detected during biofilm formation by the coculture of *A. fumigatus* and *P. aeruginosa* upon either normoxia or hypoxia. In conclusion, we detected many SM secreted during *A. fumigatus* and *P. aeruginosa* biofilm formation. This analysis provides several opportunities to understand the interactions between these two species.

KEYWORDS Aspergillus fumigatus, Pseudomonas aeruginosa, biofilm formation, gliotoxin, hypoxia and normoxia, secondary metabolites
Pseudomonas aeruginosa is a Gram-negative bacterium that grows aerobically and under anaerobic conditions in certain specific circumstances. The species is ubiquitous in nature and has been found inhabiting soil and water and also colonizing humans, where it sometimes acts as an opportunistic pathogen (1). In immunosuppressed, burned, and hospitalized patients, P. aeruginosa is responsible for a broad spectrum of serious diseases ranging from acute to chronic infections, such as bloodstream infections in intensive care units, surgical site infections, hospital-acquired pneumonia, respiratory and urinary tract infections, and burn and chronic dermal wound infections (1, 2). P. aeruginosa also chronically infects the lungs of people with underlying pulmonary diseases, such as cystic fibrosis (CF).

CF is a genetic disorder caused by mutations in the CF transmembrane conductance regulator gene that result in defective chloride secretion, altered airway surface liquid, ciliary dyskinesis, and impaired mucociliary clearance (3). Such changes lead to motionless mucus plaques, which create a hypoxic condition and a propitious environment for colonization and persistence of many microorganisms, notably P. aeruginosa (1, 4). By performing an in vivo characterization of CF airways, Worlitzsch and colleagues (4) demonstrated that P. aeruginosa forms biofilm-like macrocolonies in the intraluminal site, which is markedly hypoxic due to mucus accumulation. In response to hypoxia, P. aeruginosa increases alginate exopolysaccharide production, and that may help the bacteria grow as a biofilm and persist in that environment.

In addition to P. aeruginosa and other bacteria, CF lungs can be colonized by fungi, with Aspergillus fumigatus the main isolated mold. There is a particular interest in this opportunistic pathogen, as A. fumigatus presence in respiratory CF samples has been associated with poorer prognosis and pulmonary function decline (5). A. fumigatus is a ubiquitous filamentous fungus encountered in soil, water, air, decomposing organic matter, and plant-based materials (6, 7), and it probably evolved in contact with water and soil bacteria such as P. aeruginosa. A. fumigatus can cause a range of illnesses that vary from chronic or hypersensitization (allergic reactions) disorders to invasive and life-threatening diseases (8). In CF patients, A. fumigatus may colonize the bronchi, which is frequently accompanied by hypersensitization (1, 9, 10), allergic bronchopulmonary aspergillosis (11), and bronchitis (12).

There is clinical evidence that A. fumigatus and P. aeruginosa cocolonize CF patients, and this is associated with lung function decline. Some reports estimate that 60% of patients with chronic P. aeruginosa infection also carry A. fumigatus (13–16). Studies investigating how A. fumigatus and P. aeruginosa affect each other in vivo and the outcome of this interaction for the host are limited; however, several studies have analyzed this interaction in vitro. Overall, P. aeruginosa has a strong inhibitory effect against A. fumigatus in vitro (including inhibition of biofilm formation and conidiation), due to bacteria-produced compounds (1, 17). The surfactant dirhamnolipids inhibit fungal growth by blocking β-1,3-glucan synthase (18), a key enzyme for fungal cell wall production; the quorum-sensing homoserine lactones act to suppress hyphal growth (19); the siderophore pyoverdine causes fungal iron starvation (17, 20, 21); and pyochelin and phenazines kill A. fumigatus by inducing oxidative and nitrosative stresses as well as iron starvation (17, 22).

Phenazines are nitrogen-containing colored aromatic molecules which constitute a large group of secondary metabolites (SM) produced by bacteria with broad physiological functions, including acting as antibiotics (2) and antifungals (22–25), involvement in biofilm formation (26), and regulation of gene expression (27). Several phenazines are produced by P. aeruginosa (Fig. 1), such as pyocyanin (PYO), phenazine-1-carboxamide (PCN), phenazine-1-carboxylic acid (PCA), 1-hydroxyphenazine (1-HP), and 5-methyl-phenazine-1-carboxylic acid (5-Me-PCA). Biosynthesis of PCA from chorismic acid requires enzymes coded by two sets of homologous genes (phzABCDEFG) located in two nearly identical redundant operons (phz1 and phz2) that have different promoters and flanking regions (28). Another three genes, phzM, phzS, and phzH, code for enzymes that convert PCA to PYO and PCN and are located next to either phz1 or phz2 operons (28).

Although P. aeruginosa compounds with inhibitory and antibiofilm effects against A. fumigatus have been revealed, little is known about the compounds produced by the fungus during the interaction. Furthermore, most of the studies about P. aeruginosa SM during
interactions were done by using mutants lacking important genes for biosynthesis of such compounds and/or by measuring the effect of adding purified compounds or bacteria-filtered supernatant to the coculture or a monoculture. There is a lack of studies identifying fungal and bacterial SM produced throughout coculturing and mixed biofilms and their roles in the fungus-bacterium interaction, especially regarding fungal metabolites.

Here, we show the SM produced by \textit{P. aeruginosa} and \textit{A. fumigatus} in single or mixed biofilms during normoxia and hypoxia conditions. We detected 10 SMs produced by \textit{P. aeruginosa}. Phenazines and different analogs of pyoverdin were the main compounds produced by \textit{P. aeruginosa}, and their secretion levels were increased by the fungal presence. The contributions of the two operons that regulate phenazine production (\textit{phzA1} and \textit{phzA2}) are still controversial and were also investigated. The results showed that \textit{\Delta phzA1} and \textit{\Delta phzA2} mutants can produce a subset of phenazines when in hypoxia and in the presence of the fungus. In contrast, we were able to detect 20 SM produced by \textit{A. fumigatus}, but only 8 of them (demethoxyfumitremorgin C, fumitremorgin C, ferrichrome, ferricrocin, triacetylfusigen, gliotoxin, gliotoxin E, and pyripyropene A) were produced in the presence of \textit{P. aeruginosa}.

\section*{RESULTS}

\textit{A. fumigatus} and \textit{P. aeruginosa} biofilm formation in normoxia and hypoxia. We established a protocol for \textit{P. aeruginosa} and \textit{A. fumigatus} biofilm formation under normoxia and hypoxia by using 10^5 CFU/mL from exponential-phase \textit{P. aeruginosa} cultures and 10^5 \textit{A. fumigatus} conidia/mL (Fig. 1). \textit{P. aeruginosa} wild type and \textit{\Delta phzA1} (A1) and \textit{\Delta phzA2} (A2) mutant strains were comparable in biofilm formation. Mixed biofilms of \textit{A. fumigatus-P. aeruginosa}, \textit{A. fumigatus-P. aeruginosa \Delta phzA1} (AFA1), and AFA2 had more biomass than bacteria-only biofilms, in either normoxia or hypoxia (Fig. 2A and B). However, \textit{A. fumigatus} biofilms without bacteria produced more biomass than mixed biofilms, indicating an antagonistic role of \textit{P. aeruginosa} toward \textit{A. fumigatus} biofilm formation.

These results were refined by estimating the \textit{P. aeruginosa} and \textit{A. fumigatus} DNA copy number by quantitative PCR (qPCR) using \textit{P. aeruginosa ecfX} (encoding an extracytoplasmic function sigma factor unique to \textit{P. aeruginosa}, also annotated as \textit{hxuI}) and \textit{gyrB} (encoding a DNA gyrase) and \textit{A. fumigatus} 18S DNA (29–31). Corroborating the biofilm biomass results, \textit{A. fumigatus} DNA copy number decreased in the presence of any \textit{P. aeruginosa} strain under all conditions (Fig. 2C and D). Under normoxia conditions, we observed that \textit{P. aeruginosa} wild type and A1 DNA copy number increased in the presence of \textit{A. fumigatus}, but this was
not true for A2, which showed the same DNA copy number with or without *A. fumigatus* (Fig. 2C). In contrast, under hypoxia conditions, only AfA1 showed a higher *P. aeruginosa* DNA copy number than A1 alone (Fig. 2D); interestingly, increased *A. fumigatus* DNA copy number was observed in AfA1 and AfA2 cultures compared to the *A. fumigatus* -*P. aeruginosa* wild type (Fig. 2D). This suggests that *P. aeruginosa phz* mutant strains have a lower ability to inhibit *A. fumigatus* biofilm than the *P. aeruginosa* wild-type strain.

These results strongly indicate that we have established a robust *A. fumigatus*-*P. aeruginosa* biofilm formation protocol under normoxia and hypoxia conditions.

Secondary metabolites produced by *P. aeruginosa* during biofilm formation. Next, we used high-performance liquid chromatography (HPLC)–high-resolution tandem mass spectrometry (HRMS²) to identify SM in the *A. fumigatus* and *P. aeruginosa* biofilm supernatants. We were able to annotate a total of 29 SM, 9 from *P. aeruginosa* and 20 from *A. fumigatus*, in the supernatants produced under either condition (Fig. 3; see also our supplementary data available via figshare, including Table S1 and Fig. S1 to S8, at https://doi.org/10.6084/m9.figshare.19620702). PhZA1-G1 and PhZA2-G2 pathways use chorismic acid as the precursor for transformation into PCA (Fig. 1). PCA is converted into phenazine-1-carboxamide, 1-hydroxyphenazine, and 5-methylphenazine-1-carboxylic acid betaine by PhzH, PhzS, and PhzM, respectively (Fig. 1). Subsequently, 5-methylphenazine-1-carboxylic acid betaine is converted into pyocyanin by PhzS (Fig. 1). As expected, methylphenazine-1-carboxylic acid betaine and pyocyanin were not detected in the ΔphzA1 mutant (A1 biofilm) under normoxia conditions (Fig. 3 and Fig. 4C and E). All these compounds, except for methylphenazine-1-carboxylic acid betaine, were induced in the mixed *A. fumigatus*-*P. aeruginosa* biofilm under normoxia conditions, as shown in Fig. 2D.

![FIG 2 Biofilm formation by *P. aeruginosa* and *A. fumigatus*. (A and B) *P. aeruginosa* and *A. fumigatus* grown for 5 days at 37°C in normoxia and hypoxia conditions.](image-url)
normoxia and hypoxia conditions, compared to a *P. aeruginosa*-only biofilm (Fig. 3 and Fig. 4A to E). Interestingly, the production of phenazines in A1 and A2 biofilms varied compared to those in the wild-type *P. aeruginosa* biofilm: whereas A1 presented low phenazine production under all conditions, A2 had higher phenazine production than wild-type *P. aeruginosa* or A1.

When phenazine production by *AfA1* mixed biofilms was analyzed, there was an increase for all compounds under both normoxia and hypoxia conditions, compared to the A1-only biofilm; however, *AfA2* biofilms only increased phenazine production under hypoxia, compared to A2-only biofilms, except for PYO. Phenazine-1-carboxamide production was comparable in the *P. aeruginosa* wild-type and A1 strains under hypoxia conditions (Fig. 3 and Fig. 4A to E). Phenazine production in *AfA1* was much lower than that of *A. fumigatus-P. aeruginosa* wild type under either condition (Fig. 3 and Fig. 4A to E). As expected, phenazine production was significantly higher during biofilm formation in hypoxia than normoxia (Fig. 3 and Fig. 4A to F), as PYO can be used as an alternative electron acceptor in anaerobiosis (32).

The siderophores pyoverdine C, D, and E and rhamnolipids Rha-C₁₂-C₁₀ and Rha-Rha-C₁₂-C₁₀ are produced in comparable amounts during biofilm formation by *A. fumigatus-P. aeruginosa* wild type, A1, and A2 under normoxia and hypoxia conditions (Fig. 3 and Fig. 5). The ΔphzA1 and ΔphzA2 mutations affected pyoverdine D and E levels during biofilm formation in hypoxia (Fig. 3 and Fig. 5B and C). All these compounds were produced in larger amounts in mixed biofilms (*A. fumigatus-P. aeruginosa* wild type, *AfA1*, and *AfA2*) in both normoxia and hypoxia, except for pyoverdine E under normoxia (Fig. 3 and Fig. 5A to E).

These results indicated that interaction with *A. fumigatus* in mixed biofilms stimulates the production of phenazines by the *P. aeruginosa* wild-type strain and that mutation in *phzA1* or *phzA2* modulates negatively or positively phenazine production, respectively. Pyoverdine and rhamnolipid production are not significantly different among *P. aeruginosa* wild type, A1, and
A2, but increased production was detected in all mixed biofilms (A. fumigatus-P. aeruginosa wild type, AfA1, and AfA2).

A. fumigatus biofilm formation induces the production of metabolites in the superpathway of fumitremorgin biosynthesis. The tremorgenic mycotoxins in the group fumitremorgins are prenylated indole alkaloids produced by *A. fumigatus* (33). Fumitremorgin C is produced through a series of steps in the superpathway of fumitremorgin biosynthesis (http://vm-trypanocyc.toulouse.inra.fr/META/NEW-IMAGE?type=PATHWAY&object=PWY-7525&orgids=LEISH) (Fig. 6A). Several metabolites in this pathway are produced during biofilm formation under normoxia and hypoxia conditions, such as brevianamide F, demethoxyfumitremorgin C, tryprostatin A, fumitremorgin C, tryprostatin B, and cyclotryprostatin (Fig. 3 and Fig. 6B to G). Although with lower production than those produced by *A. fumigatus*, the *A. fumigatus-P. aeruginosa* biofilm showed production of brevianamide F (in hypoxia), demethoxyfumitremorgin C (in normoxia and hypoxia), and fumitremorgin C (in normoxia and hypoxia); there were no differences between *A. fumigatus-P. aeruginosa* wild type, AfA1, and AfA2 (Fig. 3 and Fig. 6B, E, and F). These results indicated that *A. fumigatus* is able to produce several metabolites in the superpathway of fumitremorgin biosynthesis during biofilm formation and in the presence of *P. aeruginosa*.

*There is increased production of *A. fumigatus* metabolites important for iron metabolism during biofilm formation.* We annotated several metabolites relevant for iron assimilation, such as ferrichrome, ferricrocin, and triacetylfusigen, produced during *A. fumigatus* biofilm formation under normoxia and hypoxia conditions (Fig. 3 and Fig. 7A to C). Methyl ferrichrome was produced by *A. fumigatus* in biofilms only under normoxia (Fig. 3 and Fig. 7D), while
coprogen B and fusarinine B were produced only under hypoxia conditions (Fig. 3 and Fig. 7E and F). Ferrichrome, ferricrocin, and triacetylfusigen were produced during biofilm formation by the mixed fungus-bacteria culture under both normoxia and hypoxia conditions, although at levels 10- to 1,000-fold lower than in *A. fumigatus*-only biofilms (Fig. 3 and Fig. 7A, B, and C). *P. aeruginosa* wild type and the mutant strains (A1 and A2) behaved in similar patterns regarding the production of those compounds, with a few exceptions: AfA1 biofilms did not produce ferrichrome in hypoxia or triacetylfusigen in normoxia.

Taken together, these results strongly indicate that *A. fumigatus* can still produce several metabolites important for iron chelation during biofilm formation in both normoxia and hypoxia conditions, notably, ferrichrome, ferricrocin, and triacetylfusigen. Nevertheless, the results also showed that *P. aeruginosa* strongly affects the overall production of all iron chelators detected in this approach, suggesting that competition for this micronutrient is a key point in the *A. fumigatus*-*P. aeruginosa* interaction in biofilms.

Gliotoxin, pyripyropene A, and fumiquinazoline F and G are produced by *A. fumigatus* during biofilm formation. Gliotoxin (GT) and GT-modified forms, such as bis(methylthio) GT, GT E, and GT G, are produced during *A. fumigatus* biofilm formation under normoxia and hypoxia conditions (Fig. 3 and Fig. 8A to D). GT production was induced 2- to 3-fold induced in the *A. fumigatus*-*P. aeruginosa* wild type, AfA1, and AfA2 cultures during biofilm formation under normoxia conditions (Fig. 3 and Fig. 8A). Curiously, under hypoxia conditions, GT levels were lower than the *A. fumigatus*-only culture in the mixed biofilms, and the lack of phzA2 function suppressed GT production completely (Fig. 3 and Fig. 8B). Pyripyropene A was produced in comparable levels in all conditions, both in *A. fumigatus*-only and mixed biofilms (Fig. 3 and Fig. 8E), indicating that the presence of *P. aeruginosa* did not influence its production. A different pattern was seen for the production of fumiquinazoline F or G in mixed biofilms, as production was completely inhibited by the bacteria in normoxia but only partially during hypoxia (Fig. 3 and Fig. 8F).
Taken together, these results emphasize the importance of GT, pyripyropene A, and fumiquinazoline F and G during *A. fumigatus* - *P. aeruginosa* biofilm formation and suggest that *A. fumigatus* uses GT as a defense against *P. aeruginosa*. Biofilm formation in the presence of *A. fumigatus* mutants impaired in SM production.

As a preliminary step to investigate if *A. fumigatus* SM are important for the establishment of *A. fumigatus* - *P. aeruginosa* biofilm formation under normoxia and hypoxia conditions, we tested several mutants impaired in the production of (i) gliotoxin (*ΔgliT; gliT encodes an oxidoreductase*), (ii) pseurotin (*ΔpsoF; psoF encodes a putative enzyme with dual function as a methyltransferase and monooxygenase*), (iii) fumiquinazoline (*ΔfmqA; fmqA encodes a nonribosomal peptide synthetase*), and (iv) fumagillin and pseurotin (*ΔfapR; fapR encodes a transcription factor*) (Fig. 9). All these mutants, except for *ΔfmqA*, had radial growth on RPMI medium comparable to that of the wild-type strain in both normoxia and hypoxia conditions (Fig. 9A).

qPCR analysis showed that *A. fumigatus Δpsf* and *ΔfmqA* had increased biofilm formation during normoxia in the absence and presence of *P. aeruginosa* (Fig. 9B). However, *ΔgliT* had decreased biofilm formation during normoxia only in the presence of *P. aeruginosa* (Fig. 9B). There were fewer *P. aeruginosa* cells in the biofilm dual interaction between *A. fumigatus Δpsf* or *ΔfapR* and *P. aeruginosa* during normoxia conditions (Fig. 9C), while there were no statistically significant differences in the number of *P. aeruginosa* cells in the presence of other *A. fumigatus* mutants (Fig. 9C). No differences were observed between the *A. fumigatus* 18S wild type and mutants or with *P. aeruginosa ecfX with A. fumigatus* wild type and mutants during biofilm formation under hypoxia conditions (Fig. 9D and E).

These results suggest that gliotoxin is important for *A. fumigatus-P. aeruginosa* biofilm formation during normoxia conditions. Curiously, the lack of pseurotin production decreased *P. aeruginosa* biofilm formation during normoxia conditions, while the secondary metabolite mutants did not affect *A. fumigatus-P. aeruginosa* biofilm formation during hypoxia conditions.
DISCUSSION

The clinical and scientific interests in coinfection with *A. fumigatus* and *P. aeruginosa* are due to its association with a decline in the lung function in cystic fibrosis patients, which has been shown in many reports (1). Inside the host, both pathogens have to face a hostile environment triggering general and specific responses and adapting to specific conditions and nutrient availability. Furthermore, they may interact with each other, which can boost their growth or lead to the production of antagonistic molecules. Among such molecules, some SM have been described as affecting fungal and bacterial growth and their metabolism. However, to the best of our knowledge, an overview of SM production by both microorganisms in cocultivation is missing. It is important that we have not worked with *A. fumigatus* and *P. aeruginosa* clinical isolates that chronically colonize patient lungs. *A. fumigatus* CEA17 is a derivative of CEA10, a clinically derived strain isolated from a patient with invasive aspergillosis (34–36).
A. aeruginosa PA14, a highly virulent isolate that represents the most common clonal group worldwide, was isolated from a burn wound and not from a patient lung (37). However, we decided to work with these two clinical isolates because they have several technological resources, for instance, deletion and disruption libraries of their whole genomes, that will favor further investigation of the biological basis of their interaction. It is possible that clinical isolates of both species that are colonizing the lungs of CF patients have different SM profiles from what is described here, and this remains to be investigated. Another important observation is that the reduced production of an A. fumigatus SM does not reflect the direct inhibition of its biosynthesis by P. aeruginosa. This could be due to the effect of A. fumigatus growth inhibition by P. aeruginosa, since less fungal biomass in the mixed biofilms likely produces less metabolites.

Here, we showed that P. aeruginosa has antagonistic effects against A. fumigatus in mixed biofilms, both in normoxic and hypoxic conditions, which is in agreement with reports showing antagonistic action for bacteria isolated from clinical pulmonary samples in a normal oxygen atmosphere (23, 38) and another report that showed that P. aeruginosa inhibitory effects were effective independently of the local oxygen pressure (39). P. aeruginosa is a nonfermentative bacterium that grows anaerobically when nitrate is available, which may also be a key factor for cultivation in hypoxic conditions (39). In our work, we decided to use RPMI 1640 buffered with HEPES (pH 7.0) because it is a medium that has been used to induce biofilm formation and mimics the human plasma constitution. RPMI 1640 has calcium nitrate [Ca(NO3)2; 0.42 mM], which could support P. aeruginosa growth in hypoxia. P. aeruginosa can also survive in oxygen-limited conditions using pyocyanin as an electron acceptor to regenerate NAD+ (40). We performed species-specific qPCR to distinguish between A. fumigatus and P. aeruginosa in cocultured biofilms and found that A. fumigatus growth was inhibited by the presence of P. aeruginosa wild type and ΔphzA1 and ΔphzA2 mutants independently of the oxygen pressure. However, P. aeruginosa wild type and ΔphzA1 showed increased growth when cocultured with A. fumigatus in normoxia. This result disagrees with the work performed by others (41) that showed a mutually antagonistic relationship between P. aeruginosa and A. fumigatus, but it confirms the data of Margalit and colleagues (42), who demonstrated that the A. fumigatus secretome could stimulate the growth of P. aeruginosa. Specifically, A. fumigatus can produce an amino acid-rich environment in which P. aeruginosa can proliferate better in cocultures (42). The increased P. aeruginosa proliferation was not observed under hypoxic conditions. We hypothesize that this occurred because the fungus does not grow well in hypoxia and possibly did not create this amino acid-rich environment that is able to boost P. aeruginosa growth. Moreover, the P. aeruginosa growth rate

FIG 8 Gliotoxin, pyripyropene A, and fumiquinazoline F and G are produced during A. fumigatus biofilm formation. Areas of the chromatograms of gliotoxin (A), bisdethiobis(methylthio)-gliotoxin (B), gliotoxin E (C), gliotoxin G (D), pyripyropene A (E), fumiquinazoline F and G (F), pseurotin A (G), and pseurotin E (H) are shown. The results are the averages of three repetitions ± standard deviations. *** P < 0.001; **** P < 0.0001.
in hypoxia is lower than in aerobic conditions, even in the presence of nitrate and arginine, which can also be used as terminal electron acceptors (43).

The antifungal effect of *P. aeruginosa*-produced compounds on *A. fumigatus* has been extensively studied, and several molecules can interfere with fungal morphology, physiology, and growth. In our work, we annotated many phenazines, such as PYO, PCN, PCA, and 1-HP, that are produced by the bacterium in single and mixed cultures, both in hypoxia and normoxia. The antagonistic actions of phenazines are attributed to their redox potential, since reduced phenazines are oxidized in the fungal cell by oxygen and NADPH through a NapA-dependent oxidative stress response, generating reactive oxygen species (ROS) (17, 22). All phenazines at high concentrations induce ROS and reactive nitrogen species (RNS) production by *A. fumigatus* mitochondria, which are released into the cytoplasm and lead to fungal death (44). 1-HP is the most active phenazine against *A. fumigatus* and, in addition to ROS and RNS production, its high inhibitory activity is due to a specific iron chelation property (45).

FIG 9 Gliotoxin is important for *A. fumigatus*-*P. aeruginosa* biofilm formation. (A) The wild-type and mutant strains were grown for 5 days at 37°C in normoxia and hypoxia conditions. *****, *P < 0.0001. (B and C) qPCR for *A. fumigatus* 18S DNA (B) and *P. aeruginosa* ecfX (C) biofilm formation under normoxia conditions. (D and E) qPCR for *A. fumigatus* 18S DNA (D) and *P. aeruginosa* ecfX (E) biofilm formation under hypoxia conditions.
important operon for PCA production (47). Recent analysis suggested a dominant role of phzA2, resulting in a 10-fold-higher expression of phzA2 compared to phzA1, and phzA2 operon as the main responsible for PCA production (49), but there are marked differences in quorum-sensing regulated traits depending on the particular \(P. \) \(\text{aeruginosa} \) strain and specific growth conditions. Surprisingly, in contrast, our results showed that PC production is higher with the \(\Delta \text{phzA2} \) strain both in monoculture or \(A. \) \(\text{fumigatus} \) coculture than in the \(\Delta \text{phzA1} \) mutant.

Another \(P. \) \(\text{aeruginosa} \)-produced compound that is induced upon iron starvation is pyoverdine (17), and some authors have shown that this is the main mediator of antifungal activity on \(A. \) \(\text{fumigatus} \) biofilms (17, 20). Also, there have been some reports describing that pyoverdine is produced in lower levels under iron-limiting conditions (20) or under hypoxia (39). However, our results showed that \(P. \) \(\text{aeruginosa} \) is able to produce pyoverdine in RPMI medium, which is a poor-iron medium, and in a low-oxygen atmosphere. Except for pyoverdine D, there is little influence of the \(\Delta \text{phzA1} \) and \(\Delta \text{phzA2} \) null mutations on the production of pyoverdine C, D, or E, as expected, since the regulation of phenazines and pyoverdine are independent.

Under our conditions, the rhamnolipids \(\text{Rha-C}_{10}-\text{C}_{10} \) and \(\text{Rha-Rha-C}_{10}-\text{C}_{10} \) were also detected in all \(P. \) \(\text{aeruginosa} \) strain supernatants, and growth in coculture with \(A. \) \(\text{fumigatus} \) increased their concentration (Fig. 4D and E). Rhamnolipids are surfactants released by \(P. \) \(\text{aeruginosa} \) that have several roles, such as allowing swarming motility and solubilizing hydrophobic compounds that can be used as carbon and energy sources. In host-pathogen interactions, rhamnolipids are considered virulence factors, as they may help to lyse host cell membranes, interfere with signaling pathways, and solubilize the lung surfactant. They are also toxic to other bacteria, fungi, and other microorganisms, conferring a competitive advantage in colonizing multiple environments (50). In mixed \(A. \) \(\text{fumigatus-P. \text{aeruginosa}} \) biofilms, the induction of rhamnolipid production might be one of the factors that interferes with \(A. \) \(\text{fumigatus} \) growth, but the specific role of rhamnolipids in these interactions could not be addressed in this work.

Recently, quantitative proteomic analysis showed that \(A. \) \(\text{fumigatus} \) exposed to \(P. \) \(\text{aeruginosa} \) culture filtrate had increased expression of proteins involved in SM biosynthesis, such as gliotoxin, fumagillin, and pseudotin A (51). To shed light on how \(A. \) \(\text{fumigatus} \) responds to all these compounds produced by \(P. \) \(\text{aeruginosa} \), we also annotated and performed relative quantification of fungal SM. We detected 20 SM secreted by \(A. \) \(\text{fumigatus} \) either in monoculture or in coculture with \(P. \) \(\text{aeruginosa} \). All these compounds were secreted during fungal biofilm formation either in normoxia or hypoxia. However, we were only able to detect and annotate eight compounds (demethoxyfumitremorgin C, fumitremorgin, ferrichrome, ferricrocin, triacylflusigen, gliotoxin, gliotoxin E, and pyripyropene A) produced during biofilm formation by the coculture of \(A. \) \(\text{fumigatus} \) and \(P. \) \(\text{aeruginosa} \) upon either normoxia or hypoxia conditions. Interestingly, brevianamide F and fumiquinazoline F and G were produced only upon hypoxia conditions, while methyl ferrichrome was produced only upon normoxia conditions. These results indicate that these SM are important for the interaction between \(A. \) \(\text{fumigatus} \) and \(P. \) \(\text{aeruginosa} \), and the production of some of them is regulated by the oxygen condition. Of note, gliotoxin was the only SM produced in higher levels in mixed biofilms compared to \(A. \) \(\text{fumigatus} \)-only biofilms, suggesting that the fungus specifically overproduces this compound in response to the bacterial antagonist. Gliotoxin has been the most well-studied and characterized SM from \(A. \) \(\text{fumigatus} \), and it is also important for the interaction with \(P. \) \(\text{aeruginosa} \) and for biofilm formation (52, 53). Reece and colleagues (41) showed that gliotoxin has an antibacterial activity and antibiofilm effect against several bacteria, including \(P. \) \(\text{aeruginosa} \). Our results emphasize the importance of gliotoxin during the interaction between \(A. \) \(\text{fumigatus} \) and \(P. \) \(\text{aeruginosa} \), because it is the only compound produced by \(A. \) \(\text{fumigatus} \) in significantly higher amounts in mixed biofilms than by \(A. \) \(\text{fumigatus} \)-only biofilms, despite the lower fungal DNA copy number in the presence of bacteria (Fig. 7A). It would be interesting to investigate the molecular mechanisms involved in such overexpression of GT induced by \(P. \) \(\text{aeruginosa} \). There was little influence of phzA1 and phzA2 mutations on the gliotoxin production in normoxia compared to wild type \(P. \) \(\text{aeruginosa} \). However, lack of phzA2 function upon hypoxia dramatically decreased gliotoxin production, which might correlate with higher levels.
of phenazines, except for PYO, under this condition (Fig. 3). Furthermore, we showed that an A. fumigatus ΔgliT mutant, impaired in gliotoxin production, had less growth in the presence of P. aeruginosa in normoxia conditions, emphasizing its importance for controlling bacterial growth. Further work is needed to investigate if gliotoxin indeed has a direct role in the A. fumigatus-P. aeruginosa interaction and to unravel its effects in bacterial physiology in mixed biofilms.

P. aeruginosa produces iron chelators that may cause an iron starvation environment for the fungus that results in its anti-Aspergillus effect. However, the fungus counterattacks the iron deficiency by also producing siderophores (21). Siderophores are ferric iron chelators, structurally separated into different classes named hydroxamates, catecholates, carboxylates, phenolates, and mixed class. Hydroxamates are subdivided into rhodotorulic acid-, ferrioxamine-, fusaricine-, coprogen-, and ferrichrome-type siderophores and are the ones that are produced by A. fumigatus (54). In our assay, fusaricine B, coprogen B, and ferrichrome were detected in monoculture and cocultures. The RPMI medium was an iron-deficient medium, similar to human plasma, and that is probably the reason why A. fumigatus produced many siderophores in monoculture. However, only ferrichrome, ferricrocin, and triacetylfusigen were produced by A. fumigatus in the presence of P. aeruginosa during biofilm formation in both normoxia and hypoxia. Ferrichrome and ferricrocin were produced in comparable amounts in the presence of both P. aeruginosa wild-type and mutant strains upon normoxia or hypoxia. However, triacetylfusigen was produced in larger amounts in the presence of the P. aeruginosa wild type than the mutant strains. In hypoxia conditions, fusaricine B was produced only in the presence of the P. aeruginosa ΔphzA2 mutant, again indicating an interaction between the phz operons and A. fumigatus SM production. Previously, the importance of A. fumigatus siderophores for the iron competition with P. aeruginosa has been reported, and the participation of several genetic determinants (hapX, sidA, sidF, sidG, and mirB) involved in iron starvation adaptation in response to P. aeruginosa 1-HP has been demonstrated (17, 44, 45, 55). However, to the best of our knowledge this is the first time A. fumigatus siderophores have been directly identified during A. fumigatus-P. aeruginosa coculture biofilm formation.

A. fumigatus also produced pyripyropene in monoculture or dual cultures. Pyripyropene A was originally identified as a potent inhibitor of acyl-CoA cholesterol acyltransferase (56–58), a mammalian intracellular enzyme located in the endoplasmic reticulum that forms cholesterol esters from cholesterol (59). Pyripyropene A also shows insecticidal activity against agricultural insect pests (58, 60). It is not known if there is any correlation between these activities and aspergillosis or in the competition with bacteria, and its identification in A. fumigatus-P. aeruginosa dual cultures is a completely novel observation. In our mixed biofilm settings, the bacterial target remains to be uncovered.

Other SM secreted by the fungus during the coculture interaction belong to the superpathway of fumitremorgin; these SM are prenylated indole alkaloid compounds produced by A. fumigatus and Penicillium spp. that can act as mycotoxins (61). All the compounds identified in the fumitremorgin superpathway are produced during A. fumigatus biofilm formation. However, only demethoxyfumitremorgin C and fumitremorgin are produced during the interaction with P. aeruginosa wild-type and mutant strains. Curiously, brevianamide F is produced only upon hypoxia in the presence of P. aeruginosa wild type but not mutant strains, which suggests that phzA1 and phzA2 functions are important for brevianamide F production. Demethoxyfumitremorgin C has been shown to inhibit the cell viability and induce apoptosis of PC3 human advanced prostate cancer cells (62). Fumitremorgin C has been described as an inhibitor of a multidrug resistance protein that mediates resistance to chemotherapeutics in breast cancer treatment, inhibiting the growth of several phytopathogenic fungi, showing lethality to brine shrimp, and displaying antifeedant activity toward armyworm (63–65). We also observed fumiquinazolines, which normally accumulate in A. fumigatus conidia (66) and are secreted during both monoculture and dual cultures of A. fumigatus and P. aeruginosa in hypoxia. It has been reported that fumiquinazoline F from Penicillium coryophilum has antibacterial activity against Staphylococcus aureus and
Micrococcus luteus (67). It remains to be investigated if all these compounds can affect *P. aeruginosa* physiology and growth and their mechanisms of action, if any.

In conclusion, we have annotated several SM secreted during *A. fumigatus* and *P. aeruginosa* biofilm formation, and this has provided several opportunities to understand the interaction between these two species. Further work will concentrate on the investigation of the roles of selected compounds in both fungal and bacterial competitors, and future data may be used for the development of novel drugs for the management of chronic infections that affect cystic fibrosis patients or other immunocompromised individuals.

MATERIALS AND METHODS

P. aeruginosa and *A. fumigatus* strains and growth conditions. The following species and strains were used in this work: *P. aeruginosa* UCBPP-PA14 (wild type [68]), ΔphzA1 PA14 phzA1::Mr7 [69]), and ΔphzA2 PA14 (PA14 with an in-frame deletion in phzA2; a gift from E. Déziel), and *A. fumigatus* CEA17, ΔgliT, Δpsf, Δmpq, and ΔtphR. *P. aeruginosa* was grown from frozen stocks ([LB] medium plus 20% glycerol) in solid LB for 24 h at 37°C. A single colony was transferred to 30 mL of LB and cultured overnight at 37°C, 200 rpm. The culture was centrifuged at 4,000 × g, for 5 min, and the pellet was washed with 10 mL of phosphate-buffered saline (PBS). After centrifugation, the pellet was resuspended in 1 mL of extraction buffer and the inoculum was adjusted, using a spectrophotometer, to an optical density at 600 nm (O.D.600) of 0.07 to 0.075. This inoculum was grown in 30 mL of LB at 37°C, 200 rpm, for 5 h, and the centrifugation and PBS washing processes were repeated. The final pellet was resuspended in RPMI-HEPES, and the inoculum was adjusted to an OD of 0.07 to 0.075 (approximately 5 × 10^5 to 8 × 10^6 CFU/mL).

A. fumigatus strains were grown from frozen stocks, and conidia suspensions were obtained by harvesting grown mycelia on minimal medium plates as described by Ries and colleagues [70].

Dual biofilm formation between *P. aeruginosa* and *A. fumigatus. To measure the interaction between *P. aeruginosa* and *A. fumigatus* and to determine the SM produced by them in single or cocultures, 1 × 10^6 CFU/mL of *P. aeruginosa* were inoculated with or without 1 × 10^6 conidia/mL of *A. fumigatus* in 15 mL of RPMI-HEPES medium into polystyrene Petri dishes (60 × 15 mm) under hypoxic (1% O2, 5% CO2) or normoxic (approximately 20% O2 and 0.04% CO2) conditions, at 37°C. After 5 days, the supernatant was collected, the plate was washed with 10 mL of ultrapure water to collect the cells, and both were transferred to a 50-mL tube. This mixture was centrifuged at 4,000 × g for 15 min at 4°C to obtain the pellet, which was used for qPCR assays, and the supernatant (20 mL), which was filtered through a 0.22-µm filter, was frozen and lyophilized for SM extraction.

On the bottom of the small Petri dishes used in this experiment, biofilm formation was measured by the crystal violet (CV) method. The biofilm was dried at 37°C for 30 min and then stained with 5 mL of 0.05% (wt/vol) CV for 10 min. The plates were washed with 50 mL of PBS, and the CV was solubilized with 3 mL of 95% ethanol. Samples of 100 µL were transferred to 96-well plates, and the absorbance at 595 nm was determined, as a measure for biofilm formation.

Dual quantification of species-specific biofilm growth by qPCR. For DNA extraction, pellets obtained from cultures for evaluating the *P. aeruginosa*-A. fumigatus interaction were frozen and lyophilized before being triturated by adding 2-mm glass beads and 0.1-mm zirconia-silica beads and vortexing for 5 min. To the resulting powder, 1 mL of extraction buffer was added, and the tubes were vortexed for 5 min. The tubes were incubated in a water bath at 70°C for 45 min; every 10 min, the tubes were removed from the water bath and vortexed for 5 min. One milliliter of phenol-chloroform (1:1) was added to the mixture, and the tubes were vortexed for 5 min. The content was transferred to 2-mL tubes and centrifuged at 14,000 × g for 15 min at room temperature. The supernatants were collected and transferred to 1.5-mL tubes, and 600 µL of isopropanol (Merck) was added. Samples were incubated at 4°C for 1 h before being centrifuged at 14,000 × g for 15 min at 4°C. The supernatant was discarded, the pellet was washed with 200 µL of 70% ethanol, and air dried for 15 min at room temperature, after which the pellet was resuspended in deionized water and treated with RNase (Promega).

P. aeruginosa DNA was specifically quantified by qPCR with primers for ecfX (efcX-F, 5′-CGCATGCTATCACGCGGT-3′, and ecfX-R, 5′-GAATCCTGCAGTTCGTCG-3′) and gyrB (gyrB-F, 5′-CCTGACCCATTGGCCACA-3′, and gyrB-R, 5′-CGCCAGCCAGATTCGGACCACA-3′) [29, 30]. *A. fumigatus* was quantified by amplification of 18S rDNA (18S Fw, 5′-GAGCTCAGGTCCCTATTATAC-3′, and 18S Rv, 5′-CTCGACGGGTTGGATGATG-3′). The 10 μL qPCR mixture was composed of 5 μL SYBR green PCR master mix (Applied Biosystems, Foster City, CA, USA), 2.5 pmol of each primer, and 100 ng DNA. Cycling was performed on the ABI 7500 fast real-time PCR system with an initial hold at 95°C for 15 min, followed by 45 cycles at 95°C for 15 s and 60°C for 1 min, with a cycle threshold of 35. Negative controls without DNA were included in each qPCR run.

SM extraction and UHPLC-HRMS2 analysis. SM were extracted from 50 mg freeze-dried sample of the entire supernatant of each sample by resuspension in 1 mL of HPLC-grade methanol (MeOH), followed by 1 h of sonication in an ultrasonic bath. For sample preparation, 500 µL of each obtained extract was filtered (0.22-µm filter), transferred to vials, and diluted with HPLC-grade MeOH to a total volume of 1 mL.

UHPLC-HRMS2 positive-mode analysis was performed in a Thermo Scientific QExactive hybrid Quadrupole-Orbitrap mass spectrometer coupled to a Dionex UltiMate 3000 RSLCnano UHPLC system. For the stationary phase, a Thermo Scientific column, Accucore C18, 2.6 µm (2.1 mm by 100 mm) was used. The mobile phase was 0.1% formic acid (A) and acetonitrile plus 0.1% formic acid (B). Eluent profiles (A/B percentages) were 95/5 up to 2/98 within 10 min, maintaining 2/98 for 5 min, down to 95/5 within 1.2 min, and maintaining
for 8.8 min. Total run time was 20 min for each run, and flow rate was 0.3 mL min⁻¹. The injection volume was 5 μL. M5 spectra were acquired with m/z ranges from 100 to 1,500, with 70,000 for mass resolution. Ionization parameters were a sheath gas flow rate of 45 L h⁻¹, auxiliary gas flow rate of 10 L h⁻¹, sweep gas flow rate of 2 L h⁻¹, spray voltage of 3.5 kV, capillary temperature of 250°C, S-lens RF level of 50, and auxiliary gas heater temperature of 400°C. MS² spectra were acquired in data-dependent acquisition mode. Normalized collision energy was applied stepwise (20, 30, and 40) V, and the 5 most intense precursors per cycle were measured with 17,500 resolution.

UHPLC-HRMS² data processing and FB MN. Raw UHPLC-HRMS² data were converted into mzXML format files using MSConvert (71), with 32-bit binary encoding precision, zlib compression, and peak peaking. Feature detection was performed in MZmine² (v.2.53) (72). For MS’S spectra mass detection, an intensity threshold of 1E5 was used, and for MS² an intensity threshold of 1E3 was used. For MS² chromatogram building (73), a 5-ppm mass accuracy and a minimum peak intensity of 3E5 was set. Extracted ion chromatograms (XICs) were deconvoluted using the baseline cut-off algorithm at an intensity of 1E5, minimum peak height of 3E5, and a peak duration range from 0.05 to 2 min. After chromatographic deconvolution, XICs were matched to MS² spectra within m/z 0.02 and 0.2-min retention time windows. Isotope peaks were grouped within 5-ppm mass tolerance, 0.1-min retention time tolerance, and a maximum charge of 2. Detected peaks in different samples were aligned with a 5-ppm tolerance, 75% weight for m/z determinations, and 25% for retention time. MS² features without MS² features assigned were filtered out of the resulting matrix as well as features that did not contain isotope peaks and that did not occur in at least three samples. Finally, the feature table was exported as a .csv file, and corresponding MS² spectra were exported as .mzg files. Features observed in blank samples were filtered.

A molecular network was created with the feature-based network analysis (FB MN) workflow (74) on GNPS (https://gnps.ucsd.edu) (75). The data were filtered by removing all MS² fragment ions within 17 Da of the precursor m/z. MS² spectra were window filtered by choosing only the top 6 fragment ions in the ±50-Da window throughout the spectrum. The precursor ion mass tolerance was set to 0.02 Da, and the MS² fragment ion mass tolerance was set to 0.02 Da. A molecular network was then created in which edges were filtered to have a cosine score above 0.65 and more than 4 matched peaks. Furthermore, edges between two nodes were kept in the network if and only if each of the nodes appeared in each other’s respective top 10 most similar nodes. Finally, the maximum size of a molecular family was set to 100, and the lowest-scoring edges were removed from molecular families until the molecular family size was below this threshold. The spectra in the network were then searched against GNPS spectral libraries (75, 76). The library spectra were filtered in the same manner as the input data. All matches kept between network spectra and library spectra were required to have a score above 0.65 and at least 4 matched peaks. Dereplicator Plus was used to annotate MS/MS spectra (77). The molecular networks were visualized using Cytoscape software (78). Resulting networks were displayed and analyzed with Cytoscape (v.3.8.2).

Metabolite annotation. For SM dereplication, metabolites were annotated based on the GNPS MS² database via the FB MN and Dereplicator Plus workflows available on the GNPS platform. Other metabolites were manually searched against natural products databases such as the Dictionary of Natural Products, and the acquired MS² spectra were compared to spectra deposited either on the GNPS database or previously published in the literature. The compounds gliotoxin, gliotoxin E, pseurotin E, and spinocin were annotated based on their exact masses.

Data availability. The molecular networking job can be publicly accessed at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=415264520a41492a9b43b47e62302bed for hypoxia conditions and at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e59e11f171cf4e5eb406090a987801 for normoxia.

ACKNOWLEDGMENTS

We thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) 2017/19821-5 (R.W.B.), 2017/07536-4 (A.C.C.), 2016/12948-7 (P.A.C.), 2021/07038-0 (D.A.), 2021/11062-3 (R.L.B.), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) 301058/2019-9 and 404735/2018-5 (G.H.G.), both from Brazil, and also a National Institutes of Health National Institute of Allergy and Infectious Diseases grant (R01AI153356) from the United States. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 (R.S.L.). We also thank the two anonymous reviewers for their comments and suggestions.

REFERENCES

1. Beswick E, Amich J, Gago S. 2020. Factoring in the complexity of the cystic fibrosis lung to understand Aspergillus fumigatus and Pseudomonas aeruginosa interactions. Pathogens 9:639. https://doi.org/10.3390/pathogens9080639.

2. Vilaplana L, Marco MP. 2020. Phenazines as potential biomarkers of Pseudomonas aeruginosa infections: synthesis regulation, pathogenesis and analytical methods for their detection. Anal Bioanal Chem 412:5897–5912. https://doi.org/10.1007/s00216-020-02696-4.

3. Haq UJ, Gardner A, Brodlie M. 2016. A multifunctional bisppecific antibody against Pseudomonas aeruginosa as a potential therapeutic strategy. Ann Transl Med 4:12. https://doi.org/10.3978/j.issn.2305-5839.2015.10.10.

4. Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P, Bellon G, Berger J, Weiss T, Botzenhart K, Yankaskas JR, Randell S, Boucher RC, Döring G. 2002. Effects of reduced mucus oxygen concentration in airway
Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325. https://doi.org/10.1172/JCI3870

5. Olivares E, Badel-Berchoux S, Provot C, Prévost G, Bernardi T, Jehl F. 2019. Clinical impact of antibiotics for the treatment of Pseudomonas aeruginosa biofilm infections. Front Microbiol 10:2894. https://doi.org/10.3389/fmicb.2019.02894

6. Bastos RW, Rossato L, Goldman GH, Santos DA. 2021. Fungicide effects on human fungal pathogens: cross-resistance to medical drugs and beyond. PLoS Pathog 17:e1009773. https://doi.org/10.1371/journal.ppat.1009773

25. Sassi G, Nazik H, Chatterjee P, Stevens DA. 2021. Under nonlimiting iron conditions pyocyanin is a major antifungal molecule, and differences between prototypic Pseudomonas aeruginosa strains. Med Mycol 59:453–464. https://doi.org/10.1080/13693786.2021.1907703

28. Lau GW, Hassett DJ, Ran H, Kong F. 2004. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10:399–606. https://doi.org/10.1016/j.molmed.2004.10.002

30. Lavenir R, Jocktane D, Laurent F, Nazaret S, Cournoyer B. 2007. Improved PCR with multiple targets to identify Pseudomonas aeruginosa and other non-fermenting gram-negative bacilli from patients with cystic fibrosis. J Clin Microbiol 41:4312–4317. https://doi.org/10.1128/JCM.41.4312-4317.2003

35. Price-Whelan A, Dietrich LE, Newman DK. 2007. Pyocyanin alters redox homeostasis in Pseudomonas aeruginosa. J Microbiol Methods 70:20–29. https://doi.org/10.1016/j.mimet.2007.03.008

39. Anand R, Clemons KV, Stevens DA. 2017. Effect of anaerobiasis or hypoxia on Aspergillus fumigatus filamentous fungi in 201 adult patients with cystic fibrosis in France. Med Mycol 48:532–536. https://doi.org/10.1093/mmy/myx077

40. Price-Whelan A, Dietrich LE, Newman DK. 2007. Pyocyanin alters redox homeostasis in Pseudomonas aeruginosa. J Microbiol Methods 70:20–29. https://doi.org/10.1016/j.mimet.2007.03.008

42. Margalit A, Carolan JC, Sheehan D, Kavanagh K. 2020. The role of pyocyanin in Pseudomonas aeruginosa biofilm development. FEMS Microbiol Lett 106:39–44. https://doi.org/10.1111/j.1574-6968.2009.00757.x

45. Briard B, Bomme P, Lechner BE, Mislin GLA, Lair V, Prévost M-C, Latgé J-P, et al. 2005. Azole- and hotspots of antifungal resistance. PLoS Pathog 17:e1009711. https://doi.org/10.1371/journal.ppat.1009711

48. Monod M, Paris S, Sarfati J, Jaton-Ogay K, Ave P, Latge JP. 1993. Virulence factors of Pseudomonas aeruginosa. Adv Microb Physiol 31:1–34. https://doi.org/10.1016/0065-2660(93)90022-J

49. Sullam PM, Sullam PT. 1998. Pseudomonas aeruginosa in the environment: identifying key reservoirs and hotspots of antifungal resistance. Front Microbiol 10:2894. https://doi.org/10.3389/fmicb.2018.01205

54. Nishanth Kumar S, Nisha GV, Sudraesan A, Venugopal PV, Sree Kumar KM, Lankalapalli RS, Dilleep Kumar BS. 2014. Synergistic activity of phenazines isolated from Pseudomonas aeruginosa in combination with azoles against Candida species. Med Mycol 52:482–490. https://doi.org/10.1080/13693786.2014.901671

55. Ramos AN, Peral MC, Valdecas JC. 2010. Differences between Pseudomonas aeruginosa in a clinical sample and in a colony isolated from it: comparison of virulence factors and susceptibility of biofilm to inhibitors. Comp Immunol Microbiol Infect Dis 33:267–275. https://doi.org/10.1016/j.cimid.2010.01.004

56. Dus X, Li Y, Zhou Q, Xu Y. 2015. Regulation of gene expression in Pseudomonas aeruginosa M18 by phenazine-1-carboxylic acid. Appl Microbiol Biotechnol 99:813–825. https://doi.org/10.1007/s00253-014-6101-0

58. Wu Y, Chen X, Li Z, Chen Y. 2020. A novel approach for the detection of pyocyanin in P. aeruginosa using a real-time PCR assay. J Microbiol Biotechnol 30:1056–1064. https://doi.org/10.4014/jmb.1912.12.01

60. Qin X, Emerson J, Stapp J, Stapp L, Abe P, Burns JL. 2003. Use of realtime PCR with multiple targets to identify Pseudomonas aeruginosa and other non-fermenting gram-negative bacilli from patients with cystic fibrosis. J Clin Microbiol 41:4312–4317. https://doi.org/10.1128/JCM.41.4312-4317.2003

61. Anuj SN, Whiley DM, Kidd TJ, Bell SC, Wainwright CE, Nissen MD, Sloots TP. 2009. Identification of Pseudomonas aeruginosa by a duplex real-time polymerase chain reaction assay targeting the ecfA and the gyrB genes. Diagn Microbiol Infect Dis 63:127–131. https://doi.org/10.1016/j.diagmicrobio.2008.09.018

66. Briard B, Mislin GLA, Latgé JP. 2003. Prevalence of Aspergillus fumigatus and other filamentous fungi in the sputum of adult patients with cystic fibrosis. Chest 133:711–717. https://doi.org/10.1378/chest.03-1900

70. Bastos RW, Rossato L, Goldman GH, Santos DA. 2021. Fungicide effects on human fungal pathogens: cross-resistance to medical drugs and beyond. PLoS Pathog 17:e1009773. https://doi.org/10.1371/journal.ppat.1009773
63. Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM. 2000. Fumiga-
62. Kim YS, Kim SK, Park SJ. 2017. Apoptotic effect of demethoxyfumitremor-
60. Goto K, Horikoshi R, Nakamura S, Mitomi M, Oyama K, Hirose T, Sunazuka
59. Spector AA, Mathur SN, Kaduce TL. 1979. Role of acylcoenzyme A: choles-
56. Omura S, Tomoda H, Kim YK, Nishida H. 1993. Pyripyropenes, highly potent
55. Nazik H, Sass G, Ansari SR, Ertekin R, Haas H, Déziel E, Stevens DA. 2020.
53. Dolan SK, O'Keeffe G, Jones GW, Doyle S. 2015. Resistance is not futile:
52. Bruns S, Seidler M, Albrecht D, Salvenmoser S, Remme N, Hertweck C, Brakhage
51. Margalit A, Sheehan D, Carolan JC, Kavanagh K. 2022. Exposure to the
49. Schmitz S, Rosenbaum MA. 2020. Controlling the production of
48. Cui Q, Lv H, Qi Z, Jiang B, Xiao B, Liu L, Ge Y, Hu X. 2016. Cross-regulation
47. Recinos DA, Sekedat MD, Hernandez A, Cohen TS, Sakhtah H, Prince AS,
46. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
45. Bozca AA, Akgun C, Kilinc G, Aydin S, Yilmaz F, Yildirim BM, Duman H, Kris-
44. González-Lobato L, Real R, Prieto JG, Alvarez AI, Merino G. 2010. Differen-
43. Ripoll MJ, Bachman K, Mills JJ, Zhang Y, Herling DW, Sobrón J, Pena AR,
42. Margalit A, Sheehan D, Carolan JC, Kavanagh K. 2022. Exposure to the
41. Zhang Y, Iwasak, M, Moriya, T, Fujishima, H, Endo, H, Nakamura, A, Irie, S,
40. Murphy BT, Gerwick L, Liaw C-C, Yang Y-L, Humpf H-U, Maansson M, Keyzers RA,
39. Miura T, Taguchi R, Saito K, Nishioka T. 2010. MassBank: a public repository for sharing
38. Myers OD, Sumner SJ, Li S, Burke R, Amodei D, Ruderman DL, Neumann S,
37. Hori H, Arita M, Kanaya S, Nihji Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S,
36. Kato H, Horikoshi R, Nakamura S, Mitomi M, Oyama K, Hirose T, Sunazuka T,
35. Goto K, Horikoshi R, Nakamura S, Mitomi M, Oyama K, Hirose T, Sunazuka T,
34. Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki
33. Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai M,
32. Nasahara H, Iida K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki
31. Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai M,
30. Taguchi R, Saito K, Nishioka T. 2010. MassBank: a public repository for sharing
29. Myers OD, Sumner SJ, Li S, Burke R, Amodei D, Ruderman DL, Neumann S,
28. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S,
27. Price-Whelan A, Dietrich LE. 2012. Redundant phenazine operons in
26. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
25. Bozca AA, Akgun C, Kilinc G, Aydin S, Yilmaz F, Yildirim BM, Duman H, Kris-
24. Margalit A, Sheehan D, Carolan JC, Kavanagh K. 2022. Exposure to the
23. Ripoll MJ, Bachman K, Mills JJ, Zhang Y, Herling DW, Sobrón J, Pena AR,
22. Margalit A, Sheehan D, Carolan JC, Kavanagh K. 2022. Exposure to the
21. F requin B, Baker TA, Bruani M-Y, Paulse C, Creasy D, Flashner L, Kani K, Morozovska C, Seymour J, Amin N, Korsching S, Delloso P, Fukumori T, Fujishima H,
20. Margalit A, Sheehan D, Carolan JC, Kavanagh K. 2022. Exposure to the
19. Taguchi R, Saito K, Nishioka T. 2010. MassBank: a public repository for sharing
18. Myers OD, Sumner SJ, Li S, Burke R, Amodei D, Ruderman DL, Neumann S,
17. Price-Whelan A, Dietrich LE. 2012. Redundant phenazine operons in
16. F requin B, Baker TA, Bruani M-Y, Paulse C, Creasy D, Flashner L, Kani K, Morozovska C, Seymour J, Amin N, Korsching S, Delloso P, Fukumori T, Fujishima H,
15. F requin B, Baker TA, Bruani M-Y, Paulse C, Creasy D, Flashner L, Kani K, Morozovska C, Seymour J, Amin N, Korsching S, Delloso P, Fukumori T, Fujishima H,
14. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
13. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
12. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
11. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
10. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
9. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
8. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
7. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
6. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
5. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
4. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
3. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
2. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
1. Sultan M, Arya R, Kim KK. 2021. Roles of two-component systems in
