A GCD problem and a Hessenberg determinant

M. Hariprasad

Department of Computational and Data Sciences
Indian Institute of Science, Bangalore-560012, India
e-mail: mhariprasadkansur@gmail.com

Received: 31 December 2016 Accepted: 7 May 2018

Abstract: In this article we give a proof that, when two integers \(a\) and \(b\) are coprime \((a, b) = 1\) i.e. greatest common divisor (GCD) of \(a\) and \(b\) is 1), then GCD of \(a + b\) and \(\frac{a^p + b^p}{a + b}\) is either 1 or \(p\) for a prime number \(p\). We prove this by linking the problem to a certain type of Hessenberg determinants.

Keywords: Greatest common divisor, Binomial coefficients, Hessenberg determinants.

2010 Mathematics Subject Classification: 11A05, 15B36, 11C20.

1 Introduction

For integers \(a\) and \(b\) let \((a, b)\) denote the greatest common divisor (GCD). The book [1] has an exercise: If \((a, b) = 1\) then prove that \((a + b, a^2 - ab + b^2)\) is either 1 or 3. Here we prove a generalized version of this problem by linking it to linear algebra. We prove that if \((a, b) = 1\), then \((a + b, \frac{a^p + b^p}{a + b})\) is either 1 or factors of \(p\) when \(p\) is an odd number. When \(p\) is a prime number, then \((a + b, \frac{a^p + b^p}{a + b})\) is either 1 or \(p\).

2 Results

Lemma 2.1. If \((a, b) = 1\), and some \(d > 1\) is such that \(d|(a + b)\) then \(d \nmid a\) and \(d \nmid b\).

Proof. Suppose \(d|a\) then \(d|(a + b - a)\), which is \(d|(b)\). But \((a, b) = 1\) and \(d > 1\). By contradiction \(d\) will not divide \(a\). Similarly for \(b\).
Lemma 2.2. For an odd integer p,

$$\sum_{n=1}^{(p-1)/2} (-1)^{n-1}(p-2n)\binom{p}{n} = p.$$

Proof. For a real $x > 0$, consider $(x - \frac{1}{x})^p$. By expanding this with binomial theorem we get

$$\left(x - \frac{1}{x}\right)^p = \sum_{n=0}^{p} (-1)^n\binom{p}{n}x^{p-n}\left(\frac{1}{x}\right)^n, \tag{1}$$

$$\left(x - \frac{1}{x}\right)^p = \sum_{n=0}^{p} (-1)^n\binom{p}{n}x^{p-2n}. \tag{2}$$

Differentiating equation 1 with respect to x,

$$p\left(x - \frac{1}{x}\right)^{p-1}\left(1 + \frac{1}{x^2}\right) = \sum_{n=0}^{p} (-1)^n\binom{p}{n}(p-2n)x^{p-2n-1}. \tag{3}$$

Substitute $x = 1$ in equation 3, we get

$$0 = 2\left(\sum_{n=0}^{(p-1)/2} (-1)^n\binom{p}{n}(p-2n)\right), \tag{4}$$

$$p = \sum_{n=1}^{(p-1)/2} (-1)^{n-1}\binom{p}{n}(p-2n). \tag{5}$$

Consider the lower Hessenberg matrices,

$$H_n = \begin{bmatrix}
\binom{2n+1}{1} & 1 & 0 & 0 & \cdots & 0 \\
\binom{2n+1}{2} & \binom{2n-1}{1} & 1 & 0 & \cdots & 0 \\
\binom{2n+1}{3} & \binom{2n-1}{2} & \binom{2n-3}{1} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
\binom{2n+1}{n-1} & \binom{2n-1}{n-2} & \binom{2n-3}{n-3} & \cdots & 5 & 1 \\
\binom{2n+1}{n-1} & \binom{2n-1}{n-2} & \binom{2n-3}{n-3} & \cdots & 10 & 3
\end{bmatrix}.$$

With $H_0 = 1$ and $H_1 = \begin{bmatrix} 3 \end{bmatrix}$ and $H_2 = \begin{bmatrix} 5 & 1 \\ 10 & 3 \end{bmatrix}$, etc.

Lemma 2.3. Determinant of the matrix H_n is $2n + 1$.

Proof. We can see $\det(H_1) = 3$ and $\det(H_2) = 5$. Now by using principle of strong induction and expanding the determinant along the first row of H_n we get the identity in Lemma 2.2 which proves Lemma 2.3. \hfill \Box

Theorem 2.4. If $(a, b) = 1$ then for an odd number $p = 2n + 1$, $(a + b, \frac{ap+bp}{a+b}) = d$, where d is a divisor of p.

29
Proof. Suppose \(d|(a + b) \) and \(d|a^p + b^p \), then we know that \(d \) divides any linear combination of \((a + b)^k \) and \(a^p + b^p \). We prove that this linear combination can give \(p(ab)^{p-1} \). Then from Lemma 2.1 we deduce \(d|p \). Let us suppose \(a^p + b^p \) can be expressed in terms of \((a + b)^k \) for \(k = 1, 3, 5, \ldots p \). So

\[
a^p + b^p = \sum_{k=0}^{(p-1)/2} C_k(a + b)^{2k+1} a^{p-1-k} b^{p-1-k}
\]

(6)

The equation 6 represents the linear combination of different powers of \((a + b) \). If we write this equation into the matrix form by considering as the first row as coefficient of \(a^p \), second row as coefficients of \(a^{p-1} b \), similarly \(k^{th} \) row as coefficients of \(a^{p-k} b^k \) and row \((p + 1)\) having coefficients for \(b^p \). We get the system,

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
2n+1 & 1 & 0 & 0 & \cdots & 0 & 0 \\
2n+1 & 2 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
2n+1 & 1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & 0 & 0 & \cdots & 0 & 0
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
\vdots \\
c_{(p-1)/2}
\end{bmatrix}
= \begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

(7)

Now because of the symmetry in binomial coefficients we can consider only the upper part of the matrix,

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
2n+1 & 1 & 0 & 0 & \cdots & 0 & 0 \\
2n+1 & 2 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
2n+1 & 1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & 0 & 0 & \cdots & 0 & 0
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
\vdots \\
c_{(p-1)/2}
\end{bmatrix}
= \begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

(8)

The equation (8) can be written as

\[
L x = b
\]

(9)

We need to find the \(c_{(p-1)/2} \) which is the \(((p + 1)/2, 1) \) element in the matrix \(L^{-1} \). Note that determinant of \(L \) is 1.

30
And \((-1)^{(p-1)/2} \det(H_{(p-1)/2})\) is the corresponding \(((p + 1)/2, 1)\) entry of \(L^{-1}\). This is the determinant obtained by removing the first row and last column of the matrix \(L\). From Lemma 2.3 it is nothing but \(\pm p\).

Then from equation (6) we get

\[
p(ab)^{(p-1)/2} = \pm \left(\frac{a^p + b^p}{a + b} - \sum_{k=0}^{(p-1)/2-1} C_k(a + b)^{2k} \right),
\]

(10)

\(d\) divides RHS of equation (10), so it divides LHS, which proves the theorem.

\[\square\]

References

[1] Apostol, T. M. (2013) Introduction to Analytic Number Theory, Springer Science & Business Media.