In Silico Studies in Antimicrobial Peptides Design and Development

To cite this article: T Rinanda 2019 IOP Conf. Ser.: Earth Environ. Sci. 305 012062

View the article online for updates and enhancements.
In Silico Studies in Antimicrobial Peptides Design and Development

T Rinanda
Department of Microbiology, Faculty of Medicine, Syiah Kuala University, Jalan Tanoh Abe, Darussalam, Banda Aceh, 23115
Email: tristia.rinanda@unsyiah.ac.id

Abstract. Antimicrobial peptides (AMPs) are a group of natural-derived molecules exhibited broad spectrum antimicrobial activity. Currently these molecules have been investigated comprehensively due to their interesting features regarding antimicrobial and immunomodulatory mode of actions which placed them as promising therapeutics agents in this post antibiotics era. Numerous strategies have been implemented in order to develop a novel AMP for biotechnology and therapeutics applications, one of which is in silico study. This approach offers a rapid and cost effective manner in AMPs design and development. In silico studies provide additional and substantial information for in vitro techniques. In this paper, we deliver an overview of the applicable in silico approaches that have been used in designing and developing AMPs.

1. Introduction
Antimicrobial peptides (AMPs) are small and ubiquitous molecules exhibited antimicrobial activity. These molecules are expressed in both eukaryotic and prokaryotic organisms and play role as first line defense or as an addition to existing immune system. Recently AMPs have become popular target of drug development since the rapid ability of AMPs in performing broad spectrum activity, include antibiotic-resistant microbes has been revealed [1,2,3]. There are several AMPs already present in the market and others are still being evaluated in clinical trial [4,5]. However, there are some limitations regarding the commercial development of AMPs, such as high cost production and time consuming (especially in application of recombinant techniques), low efficacy in animal models, high susceptibility to protease degradation and loss of activity in certain physiological conditions [1]. All these shortcomings can be elucidated by applying a cost effective method in AMPs design and modification, namely in silico study [1,6,7].

In silico study is a logical extension of in vitro method where biological and physiological processes are simulated in computer. This approach permit the researcher to perform a virtually unlimited assortment of parameters, which offer more suggestions or predictions of applicable results [8]. There have been increasing reports on in silico study in predicting, designing and modifying AMPs and they compromise promising approaches [9,10]. This paper will discuss further about the application of in silico studies in AMPs design and predictions of their mode of actions.
2. **In silico Studies and Antimicrobial Peptides Design**

The design of peptides (or proteins) refers to re-arranging of amino acids sequences to either generate an exclusively novel peptide or to fit the existing structural template. The design should be conducted in rational manner [10]. Computer-assisted AMP design is very useful for estimating or predicting the desired biological activity from the primary peptide structure [6]. There are five types of prediction methods for AMPs; (1) prediction based on mature peptide sequences only (2) prediction based on precursor sequences only, (3) prediction based on both mature and precursor sequences, (4) prediction based on sequence similarity of the modifying enzymes and (5) prediction based on genomic information [9].

Bioinformatics has provided abundant genomics and proteomics data permitted the use of **silico**-associated molecular tools in identification and screening of novel AMPs [11]. The databases not only provide the AMPs sequences but also render the related information such as structural, complexities, specific target, antimicrobial activity and cytotoxicity, and also link to external related database (National Centre for Bioinformatics, Swiss Prot, etc) and certain prediction tools [12,13,14]. The information can accelerate the peptide design pipeline. These following are some of available and commonly use AMPs databases:

a. **Collection of Anti-Microbial Peptides (CAMP).** The database can be accessed at http://www.camp.bicnirrh.res.in/ and provide collection of 6756 AMPs sequences and also 3D structures of 682 AMPs [15].

b. **Linking AMPs database (LAMP).** To date, this database curated almost 5,547 AMPs sequences of consist of 3,904 natural AMPs and 1,643 synthetic peptides. This database is available at http://biotechlab.fudan.edu.cn/database/lamp/index.php [13].

c. **Database of Antimicrobial Activity and Structure of Peptides (DBAASP).** The database is available at https://dbaasp.org/ and the latest version of this database provide more interesting features, namely as molecular dynamic simulation, which is useful in presenting structural description based on empirical data calculation [16].

d. **Bactibase.** The database is dedicated to information related to AMPs produced by bacteria, namely as Bacteriocin. It contains physicochemical properties of 230 bacteriocin (calculated or predicted). Therefore it is very useful in exploitation of this AMPs in medicine and biotechnology application. The database is available at http://bactibase.hamamamilab.org/main.php [17].

e. **Yet Another Database of Antimicrobial Peptides (YADMP).** The database provides more information regarding the Quantitative Structure-Activity Relationship (QSAR) analysis and prediction of activity on the target bacteria. It can be accessed at http://yadamp.unisa.it/default.aspx [18].

f. **The Antimicrobial Peptide Database (APD).** The latest version of database offers comprehensive information about AMPs from human, animals, bacteria, fungi, plants, archaea and a number of synthetics peptides. There are also 403 unique 3D crystal structures that can be accessed in this database. APD can be accessed at http://aps.unmc.edu/AP/ [19,20].

g. **Antiviral Peptides Database (AVPdb).** The database in the first inclusive database for antiviral peptides (AVPs). There are more than 60 pathogenic viruses targeted by the curated AVPs in this database. The database also affords important information related to targeted viruses, cell line, assays and experimental efficacy data of the AVPs. AVPdb is available at http://crdd.osdd.net/servers/avpdb/index.php [21].

Generating AMPs sequences also can be done by using mathematical algorithm and modelling. Most of AMPs databases are constructed using certain algorithms. Previous study revealed the use of sequence alignment method, Lempel-Ziv (LZ) complexity, and support vector machines- (SVMs-) pairwise algorithm in combination. The integrated algorithm enabled to detect the evolutionary and structural relationship of the peptides and exhibited higher sensitivity performance on AMPs prediction than CAMP method [22].
Another study of computational method discovered the use of decision tree model in AMPs design. In this approach, the known AMPs (parental peptide) were used as a backbone of designed AMPs. Later the amino acids residues of the parental peptides were substituted by other amino acids. The substitution were based on (1) total hydrophobic ratio (%), (2) net charge, (3) distribution of positive charge of hydrophobic residues on the same exterior, (4) Boman Index, and (5) amphiphilic character. The modify sequences were then submitted to predictive tools which was available at APD database to validate the antimicrobial activity. The process were continued by synthesis of peptide analog and analysed further by decision tree modelling which generated using J48 algorithm from Weka. Decision tree modelling placed each AMPs on several partition which classify based on the certain criterion and interpreted further as none (no activity), low (activity occurred on single organism), medium (activity was observed in two kinds of organisms) and high (activity was observed on three or more organisms) [23]. Amino acids substitution was also used in modifying short length AMPs generated from scrambled peptide and QSAR analysis [24].

Computational approach could be applied on categorizing and clustering abundant data of AMP’s physicochemical properties. In this method, Genetic algorithm (GA) and k-means algorithm obtained better clustering results compared to other algorithm. The study also revealed specific region on AMPs with enrichment of physicochemical properties and on the other hand, there were specific region with depleted physicochemical properties [25]. Other previous study used Artificial Neural Network (ANN) to determine the precise correlation between physicochemical properties of AMPs and its antimicrobial activity and defined the fundamental differences between AMPs and non-AMPs molecules based on their physicochemical characteristics [26].

Recent study showed the application of AmPEP, a sequence based prediction of AMPs. This computational method provided an accurate prediction method using random forest algorithm. The prediction was based on the pattern of amino acids distribution along the referred sequences [7].

Peptide mimics or also known as peptidomimetics can be used to overcome limitation of AMPs. A Rational design of peptidomimetics can recover the performance of the active peptide while demonstrating the significant improvement on bioavailability and stability. The construction of peptidomimetics also involve the in silico approach such as QSAR analysis [6,27].

3. Conclusions

In silico approach has offer a robust method in AMPs design and development. To date, the application of bioinformatics, computational method, mathematical modeling are commonly used in the pipeline of AMPs development, for both medicine and biotechnology purposes. In silico studies not only enable to overcome the shortcoming of AMPs but also offer a rapid and cost effective method in developing AMPs.

References
[1] Brogden NK and Brogden KA 2011 Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38 217–25
[2] Maróti GG et al. 2011 Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162 63–74
[3] Rinanda T et al. 2014 Broad spectrum antimicrobial activity of lumbricus. In: The 4th Annual International Conference Syiah Kuala University 113–8
[4] Mahlapuu M et al. 2016 Antimicrobial Peptides: An Emerging Category of Therapeutic Agents Front Cell Infect Microbiol 6 1–12
[5] Lau JL and Dunn MK. 2018 Therapeutic peptides: Historical perspectives, current development trends, and future directions Bioorganic Med Chem 26 2700–7
[6] Mandal SM et al. 2014 Challenges and future prospects of antibiotic therapy: From peptides to phages utilization Front Pharmacol 5 1–12
[7] Bhadra P et al. 2018 AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest 8 1–10
[8] Colquitt RB Colquhoun DA and Thiele RH 2011 In silico modelling of physiologic systems Best Pract Res Clin Anaesthesiol 25 499–510
[9] Zhou P and Huang J 2015 Improved Methods for Classification, Prediction and Design of Antimicrobial Peptides Comput Pept 40 243–66
[10] Roy A et al 2017 In silico methods for design of biological therapeutics Methods 131 33–65
[11] Ke T et al EST-based in silico identification and in vitro test of antimicrobial peptides in Brassica napus BMC Genomics 16 1–10
[12] Thomas S et al 2009 CAMP: A useful resource for research on antimicrobial peptides Nucleic Acids Res 38 774–80
[13] Zhou P and Huang J 2015 Improved Methods for Classification, Prediction and Design of Antimicrobial Peptides Comput Pept 40 243–66
[14] Gogoladze G et al 2014 DBAASP: Database of antimicrobial activity and structure of peptides. FEMS Microbiol Lett 357 63–8
[15] Waghu FH et al 2014 CAMP: Collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res 42 1154–8
[16] Pirtskhalava M et al 2016 DBAASP v.2: An enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides Nucleic Acids Res 44 1104–12.
[17] Hammami R et al 2010 BACTIBASE second release: A database and tool platform for bacteriocin characterization BMC Microbiol 10 22-27
[18] Piotto SP Sessa L Concilio S and Lanneli P 2012 YADAMP: yet another database of antimicrobial peptides Int J Antimicrob Agents 39 346–51.
[19] Wang G Li X Wang Z 2009 APD2: The updated antimicrobial peptide database and its application in peptide design Nucleic Acids Res 37 933–7
[20] Wang G Li X Wang Z 2016 APD3: The antimicrobial peptide database as a tool for research and education Nucleic Acids Res 44 1087–93
[21] Qureshi A Thakur N Tandon H and Kumar M 2014 AVPdb: A database of experimentally validated antiviral peptides targeting medically important viruses Nucleic Acids Res 42 1147–53
[22] Ng XY Rosdi BA and Shahrudin S 2015 Prediction of antimicrobial peptides based on sequence alignment and support vector machine-pairwise algorithm utilizing LZ-complexity. Biomed Res Int 2015 1-13
[23] Lira F Perez PS Baranauskas JA and Nozawa SR 2013 Prediction of antimicrobial activity of synthetic peptides by a decision tree model Appl Environ Microbiol 79 3156–9
[24] Hilpert K et al 2006 Sequence Requirements and an Optimization Strategy for Short Antimicrobial Peptides Chem Biol 13 1101–7.
[25] Khamis AM Essack M Gao X and Bajic VB 2015 Distinct profiling of antimicrobial peptide families Bioinformatics 31 849–56.
[26] Torrent M Andreu D Nogués VM and Boix E 2012 Connecting peptide physicochemical and antimicrobial properties by a rational prediction model PLoS One 6 1–8
[27] Andrea A Molchanova N and Jenssen H 2018 Antibiofilm peptides and peptidomimetics with focus on surface immobilization Biomolecules 8 1-29