Supplementary material

Methods

Network topological analysis

‘Strength’, which reflected, on average, the sum of all neighboring link weights of individual nodes. Strength of a node \(i \) can be computed as the sum of the connectivity weights of the edges attached to each node \(i \) [1, 2],

\[
s_i = \sum_{j \in N, i \neq j} w_{ij}
\]

[\text{S1}]

Where \(k \) is a proportion, it varies between zero and one, where \(k=0 \) indicates that no connections are present, \(k=1 \) indicates that the network is fully connected, and \(0<k<1 \) represents the fraction of all possible connections that are present in the network.

Global brain network segregation was assessed via the calculation of clustering coefficient. ‘Clustering coefficient’, a measure of the propensity of the network, formed clusters that was computed as the average fraction of triangles out of all connected triples [3]. The clustering coefficient of a node \(0<C_i<1 \) is a ratio that defines the proportion of possible connections that actually exist between the nearest neighbors of a node, reflecting the large-scale network segregation [3, 4]

\[
C_i = \sum_{l \in G} \frac{\sum_{h \in G} (w_{il}w_{ih}w_{jh})^{1/3}}{k_i(k_i-1)/2}
\]

[\text{S2}]

Where \(k_i \) is the degree of node \(i \), and the \(w_{ij} \) is the weight between node \(i \), and node \(j \) in the network. The mean clustering coefficient of network \(C \) is the average over each node’s clustering coefficient, reflecting the level of local connectedness of a node.

\[
C = \frac{1}{N} C_i
\]

[\text{S3}]

Brain network integration was assessed using characteristic path length. Characteristic path length represented the average of shortest paths between brain regions in the network. The increase in average path length represented loss of network integration. The characteristic path length (\(L_p \)) is the mean minimal travel distance between nodes in the network, reflecting the large-scale integration[4, 5]

\[
L_p = \frac{1}{N(N-1)} \sum_{i \neq j} \min\{L_{i,j}\}
\]

[\text{S4}]
Where \(\min\{L_{i,j}\} \) is the shortest path length between the \(i \)th node and the \(j \)th node.

‘Nodal efficiency’ reflected the extent of fault tolerant and the robustness of the network after deletion of individual nodes. The local efficiency reflects how much the network is fault tolerant and show how efficient the communication is among the first neighbors of the node when it is removed [5], which is computed as follows:

\[
E_i = \frac{1}{(N-1)} \sum_{G(i)} \frac{1}{\min\{L_{i,j}\}}
\]

[S5]

\[
E = \frac{1}{N} \sum_{i \neq j} E_i
\]

[S6]

Where \(E_i \) is the local efficiency of node \(i \); Where \(G_i \) denotes the subgraph composed of the nearest neighbors of node \(i \).

Rich club coefficient

For all individual structural networks the weighted-rich club coefficient \(\emptyset^w(k) \) was computed as follows [6].

1. All non-zero connections of the examined FABIRC -weighted network were ranked in respect to their weight, resulting in a vector \(W^{ranked} \).

2. Within the connectivity matrix \(M \), for each value of degree \(k \), the sub-graph of nodes with a degree larger than \(k \) was selected (with \(k \) defined as the number of each node’s binary connections).

3. The number of links \(E_{>k} \) present between the members of the subset was determined and the sum of their collective weight \(W_{>k} \) was computed.

4. The maximal level of connectivity between the top number \(E_{>k} \) of connections in the network was determined, again computed as the sum of the weights.

5. The weighted rich club parameter \(\emptyset^w(k) \) was computed as the ratio between \(W_{>k} \) and this sum of the strongest number of links \(E_{>k} \) in the total network. Formally, \(\emptyset^w(k) \) is given by [7].

\[
\emptyset^w(k) = \frac{W_{>k}}{\sum_{i=1}^{E_{>k}} W_{i \ \text{ranked}}}
\]

[S7]
\(\psi^w(k) \) is typically normalized relative to a set of comparable random networks, to determine the extent to which empirically observed connection density between rich club nodes exceeds that predicted by the random null model, driven by node degree alone. Comparison of \(\psi^w(k) \) to \(\psi_{\text{random}}(k) \) obtained from a population of random networks, resulted in a normalized rich club coefficient \(\psi_{\text{norm}} \). Formally, A normalized coefficient \(\psi_{\text{norm}} \) greater than 1 over a range of \(k \) suggests the existence of rich club organization in a network[8]. To this end, for each network, a population of \(m=1,000 \) random networks[9] were computed by shuffling the links in \(M \), preserving the weights of the connections as well as the (binary) degree sequence and thus all node degrees (including the hubs) in the network[9]. This algorithm does not preserve the weight distribution of the nodes[10]. For each random network the rich club coefficient \(\psi_{\text{random}} \) was computed over all levels of \(k \) and \(\psi_{\text{random}}^w(k) \) was computed as the average rich club coefficient over the 1,000 random networks. Note that the normalized rich club coefficient is invariant for an overall connectivity of the network, enabling the possibility of comparing \(\psi^w(k) \) between groups.

Results

Individual rich club selection

Group differences (ANCOVA; age and gender covariates) were observed in rich club connectivity strength (\(F(3,220)= 16.323, P<0.001, \eta^2= 0.182 \)). Significant reductions were in rich club connectivity strength in aMCI versus NC \((P<0.001) \), d-AD versus NC \((P<0.001) \), aMCI versus SCD \((P<0.001) \), d-AD versus SCD \((P<0.001, \text{Figure S1A})\).

Group differences in feeder connectivity strength \((F(3,220)= 37.259, P<0.001, \text{partial } \eta^2= 0.506) \). Feeder connectivity strength significantly decreased in SCD versus NC \((P<0.001) \), aMCI versus NC \((P<0.001) \), and d-AD versus aMCI \((P<0.001) \), no significant difference in SCD versus aMCI (\text{Figure S1B}).

Similar group differences were in local connectivity strength \((F(3,220)= 83.919, P<0.001, \text{partial } \eta^2= 0.534) \). Local connectivity strength significantly decreased in SCD versus NC \((P<0.001) \), d-AD versus SCD \((P=0.045) \), and d-AD versus aMCI \((P<0.001) \), no significant difference in SCD versus aMCI \((P>0.05, \text{Figure S1C}) \).

Effects of fiber length

Across all the groups of subjects, rich club connections showed the longest fibers (rich club | feeder | local, mean/std 83.175/7.86682 | 70.697/4.62046 | 62.674/4.39247; \text{Figure S2A}) than feeder \((P<0.001) \) and local connections \((P<0.001) \), supporting previous findings that rich club connections mostly spanned long distances and constituted a high-cost feature of brain architecture [11]. Feeder connections were
significantly longer than local connections \((P < 0.001)\). Across all the groups of subjects, the set of rich club connections \((\text{mean/std 0.427/0.02531})\) displayed a significantly higher level of FABIRC as compared to feeder \((\text{mean/std 0.398/0.02159})\) and local connections \((\text{mean/std 0.387/0.02285})\) \((P < 0.001 | P < 0.001)\), suggesting a higher level of microstructural organization of rich club connections in the brain network \((\text{Figure S2B})\). Furthermore, feeder connections also showed a higher level of FABIRC than local connections \((P < 0.001)\).

To examine whether the observed relatively stable rich club was not just an effect of the relatively stable longer distances in SCD, an additional analysis was performed \([11-13]\). FABIRC measurements was corrected for influences of physical length by regressing out average fiber length across each category of connections.

The results still revealed group differences \((\text{ANCOVA; age, gender, and average fiber length across each category of connections as covariates})\) in rich club connectivity strength \((F(3,220) = 13.326, \ P < 0.001, \ \eta^2 = 0.154)\). Significantly lower FABIRC of rich club connectivity strength was in aMCI \((P < 0.001)\) and d-AD \((P < 0.001)\) compared to NC. In addition, significant lower FABIRC rich club connectivity strength in aMCI \((P = 0.001)\) and d-AD \((P = 0.003)\) compared to SCD was observed, and no significant group differences was observed neither between SCD with NC nor between aMCI with d-AD \((\text{Figure S3A})\).

Group differences in feeder connectivity strength \((F(3,220) = 34.143, \ P < 0.001, \ \text{partial } \eta^2 = 0.318)\). Feeder connectivity strength significantly decreased in SCD versus NC \((P = 0.005)\), aMCI versus SCD \((P = 0.001)\), d-AD versus SCD \((P < 0.001)\), and no significant difference in d-AD versus aMCI \((\text{Figure S3B})\).

Similar group differences in local connectivity strength \((F(3,220) = 53.406, \ P < 0.001, \ \text{partial } \eta^2 = 0.421)\). Local connectivity strength significantly decreased in SCD versus NC \((P < 0.001)\), aMCI versus SCD \((P < 0.001)\), d-AD versus SCD \((P < 0.001)\), and no significant difference in d-AD versus aMCI \((\text{Figure S3C})\).

Age-matched replication dataset

Rich club disturbances with disease progression

The rich club coefficient \((\emptyset)\) was significantly lower in all patient groups relative to controls, but especially at low-degree k-levels: \(k=3-7\) in SCD patients, \(k=4-13\) in aMCI patients, and \(k=2-16\) in d-AD patients (Bonferroni-corrected, Table S15-16).

Normalized rich club coefficients \((\emptyset_{\text{norm}})\) were significantly higher in all patient groups relative to controls, but especially at low-degree k-levels: \(k=7-13\) in SCD patients, \(k=5-12\) in aMCI patients, and \(k=4-13,16\) in d-AD patients (Bonferroni-
Significant group differences (ANOVA) were observed in rich club connectivity strength \((F(3, 220)=10.848, P<0.001, \eta^2=0.153)\), feeder connectivity strength \((F(3, 220)=55.035, P<0.001, \eta^2=0.478)\), and local connectivity strength \((F(3, 220)=96.976, P<0.001, \eta^2=0.618; \text{Table S19})\). Post hoc comparisons revealed decreased local and feeder connectivity strength in the SCD group versus NC \((P<0.001)\), and the d-AD group versus the aMCI group \((P<0.001)\). There was no significant difference between aMCI group and the SCD group. Significant rich club connectivity strength reductions were seen in the d-AD patients versus NC: \((P<0.001)\). There were no other significant differences between groups \((P>0.05; \text{Table S20})\).

Network topological metrics

Group differences (ANOVA) were observed for the strength metric \((F(3, 220)=88.561, P<0.001, \eta^2=0.596, \text{Table S21})\). Post hoc comparisons revealed decreased strength in the SCD group versus NC \((P<0.001)\), and the d-AD group versus the aMCI group \((P<0.001)\). There was no significant difference between aMCI group and the SCD group (Table S22).

Group differences (ANOVA) were observed for the clustering coefficient \((F(3, 220)=11.586, P<0.001, \eta^2=0.116)\). Significant reductions were seen in the d-AD patients versus NC: \((P<0.001)\). There were no other significant differences between groups \((P>0.05)\). In addition, there were significant group differences in normalized clustering coefficient \((F(3, 220)=34.436, P<0.001, \eta^2=0.365)\). Post hoc comparisons revealed decreased normalized clustering coefficient in the SCD group versus NC \((P<0.001)\), and the d-AD group versus the aMCI group \((P<0.001)\). There was no significant difference between aMCI group and the SCD group (Table S21-22).

There were significant group differences in characteristic path length \((F(3, 220)=39.791, P<0.001, \eta^2=0.399)\). Post hoc comparisons revealed decreased characteristic path length in the SCD group versus NC \((P<0.001)\), and the d-AD group versus the aMCI group \((P<0.001)\). There was no significant difference between aMCI group and the SCD group. Group differences were also observed for the normalized characteristic path length \((F(3, 220)=4.365, P=0.003, \eta^2=0.068)\). There was no significant difference between groups (Table S21-22).

Behavioral correlation analysis

In NC patients, the normalized rich club coefficient was significantly negative correlated with AVLT-D performance, after Bonferroni corrections \((k=3)\). In addition, in d-AD patients, normalized rich club coefficient showed a significantly negative
association with AVLT-D (k=2) and AVLT-R (k=6). These relationships were not observed in SCD and aMCI patients (Table S23). For rich club coefficient, in SCD patients, this metric was significantly positive correlated with AVLT-D performance, after Bonferroni corrections (k=5). aMCI group showed a similar positive relationship between rich club coefficient and AVLT-D (k=12-16), AVLT-I (k=3), and MoCA (k=3). In addition, in d-AD patients, rich club coefficient showed a significantly positive association with AVLT-I (k=2), MMSE (k=2,8) and MoCA (k=2). These relationships were not observed in NC (Table S24).

In SCD patients, the AVLT-D performance was significantly positively correlated with feeder connectivity strength after Bonferroni corrections: those people who showed poorer memory performance tended to suffer from a greater disruption of feeder connections involving peripheral regions (r=0.426). Similar results were also found in aMCI patients (r=0.486). This relationship seen in SCD and aMCI patients was not displayed by NC or d-AD patients (Table S25).

After Bonferroni corrections, in SCD patients, the AVLT-D performance was significantly negatively correlated with strength (r= 0.398). Similar association was also between AVLT-d and characteristic path length (r= -0.390). In aMCI patients, the AVLT-D performance was significantly negatively correlated with normalized clustering coefficient (r= -0.423). Similar association was also between AVLT-R and clustering coefficient (r= 0.361). These relationships were not displayed by NC and d-AD patients (Table S26).

After Bonferroni corrections, network topological metrics was significantly correlated with rich club/feeder/local connectivity strength (Table S27). Previous studies have extensively used these network topological metrics in AD studies to reveal the differences between AD patients and normal subjects. Our results showed that there is a significant correlation between white matter lesion load and network results, indicating that rich club organization analysis is reliable.
References

1. Bullmore ET, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009; 10: 186-98.

2. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage. 2010; 52: 1059-69.

3. Onnela JP, Saramaki J, Kertesz J, Kaski K. Intensity and coherence of motifs in weighted complex networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2005; 71(2): 065103.

4. Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature. 1998; 393: 440-2.

5. Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001; 5; 87(19): 198701.

6. van den Heuvel MP, Sporns O, Collin G, Scheewe T, Mandl RCW, Cahn W, et al. Abnormal Rich Club Organization and Functional Brain Dynamics in Schizophrenia. JAMA Psychiatry. 2013; 70: 783-92.

7. Opsahl T, Colizza V, Panzarasa P, Ramasco JJ. Prominence and control: the weighted rich-club effect. Phys Rev Lett. 2008; 101: 168702.

8. Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chetelat G, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimers Dement. 2014; 10: 844-52.

9. Lu J, Li D, Li F, Zhou A, Wang F, Zuo X, et al. Montreal cognitive assessment in detecting cognitive impairment in Chinese elderly individuals: a population-based study. J Geriatr Psychiatry Neurol. 2011; 24: 184-90.

10. Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science. 2002; 296: 910-3.

11. van den Heuvel MP, Kahn RS, Goni J, Sporns O. High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci U S A. 2012; 109: 11372-7.

12. Collin G, Sporns O, Mandl RCW, van den Heuvel MP. Structural and Functional Aspects Relating to Cost and Benefit of Rich Club Organization in the Human Cerebral Cortex. Cereb Cortex. 2014; 24: 2258-67.
13. Tuladhar AM, Lawrence A, Norris DG, Barrick TR, Markus HS, de Leeuw FE. Disruption of Rich Club Organisation in Cerebral Small Vessel Disease. Hum Brain Mapp. 2017; 38: 1751-66.
Tables

Table S1. Post hoc testing on age and education from ANOVA.

Demographics	(I) Group	(J) Group	Mean Difference (I-J)	SE	P	95% Confidence Interval for Difference
			Lower Bound			Upper Bound
Age						
	NC	SCD	-2.059	1.728	0.235	-5.465 - 1.347
	NC	aMCI	-3.996	1.618	0.014	-7.185 - 0.807
	NC	d-AD	-7.654	1.671	<0.001	-10.948 - 4.359
	SCDC	NC	2.059	1.728	0.235	-1.347 - 5.465
	SCDC	aMCI	-1.937	1.740	0.014	-5.367 - 1.493
	SCDC	d-AD	-5.594	1.790	0.002	-9.123 - 2.066
	aMCI	SCDC	3.996	1.618	0.014	0.807 - 7.185
	aMCI	d-AD	1.937	1.740	0.267	-1.493 - 5.367
	d-AD	SCDC	5.594	1.790	0.031	-6.977 - 2.066
	d-AD	aMCI	3.657	1.684	0.026	0.338 - 6.977
	NC	SCD	7.654	1.671	<0.001	4.359 - 10.948
	NC	aMCI	1.202	0.911	0.188	-0.593 - 2.996
	NC	d-AD	2.103	0.941	0.026	0.248 - 3.957
	SCDC	NC	0.751	0.973	0.441	-1.166 - 2.667
	SCDC	aMCI	1.952	0.980	0.048	0.022 - 3.883
	SCDC	d-AD	2.853	1.008	0.005	0.867 - 4.839
	aMCI	SCDC	-1.202	0.911	0.188	-2.996 - 0.593
	aMCI	d-AD	-1.952	0.980	0.048	-3.883 - 0.022
	d-AD	SCDC	0.901	0.948	0.343	-0.967 - 2.769
	d-AD	aMCI	-2.103	0.941	0.026	-3.957 - 0.248
	d-AD	NC	-2.853	1.008	0.005	-4.839 - 0.867
	d-AD	aMCI	-0.901	0.948	0.343	-2.769 - 0.967

Education

Demographics	(I) Group	(J) Group	Mean Difference (I-J)	SE	P	95% Confidence Interval for Difference
			Lower Bound			Upper Bound
Age						
	NC	SCD	-0.751	0.973	0.441	-2.667 - 1.166
	NC	aMCI	1.202	0.911	0.188	-0.593 - 2.996
	NC	d-AD	2.103	0.941	0.026	0.248 - 3.957
	SCDC	NC	0.751	0.973	0.441	-1.166 - 2.667
	SCDC	aMCI	1.952	0.980	0.048	0.022 - 3.883
	SCDC	d-AD	2.853	1.008	0.005	0.867 - 4.839
	aMCI	SCDC	-1.202	0.911	0.188	-2.996 - 0.593
	aMCI	d-AD	-1.952	0.980	0.048	-3.883 - 0.022
	d-AD	SCDC	0.901	0.948	0.343	-0.967 - 2.769
	d-AD	aMCI	-2.103	0.941	0.026	-3.957 - 0.248
	d-AD	NC	-2.853	1.008	0.005	-4.839 - 0.867
	d-AD	aMCI	-0.901	0.948	0.343	-2.769 - 0.967
Table S2. Post hoc testing on cognitive variables from ANCOVA with age, gender and education as covariates.

COV: Age & Gender & Education	(I) Group	(J) Group	Mean Difference (I-J)	SE	P	95% Confidence Interval for Difference		
						Lower Bound	Upper Bound	
AVLT-Immediate Recall Scores								
NC	SCD	0.738	0.344	0.033	0.060	1.416		
	aMCI	2.687	0.325	<0.001	2.046	3.328		
	d-AD	5.126	0.352	<0.001	4.432	5.819		
SCD	NC	-0.738	0.344	0.033	-1.416	-0.060		
	aMCI	1.949	0.340	<0.001	1.279	2.620		
	d-AD	4.388	0.363	<0.001	3.671	5.104		
aMCI	NC	-2.687	0.325	<0.001	-3.328	-2.046		
	SCD	-1.949	0.340	<0.001	-2.620	-1.279		
	d-AD	2.438	0.331	<0.001	1.786	3.090		
d-AD	NC	-5.126	0.352	<0.001	-5.819	-4.432		
	SCD	-4.388	0.363	<0.001	-5.104	-3.671		
	aMCI	-2.438	0.331	<0.001	-3.090	-1.786		
AVLT-Delayed Recall Scores								
NC	SCD	1.285	0.527	0.016	0.246	2.324		
	aMCI	5.589	0.498	<0.001	4.606	6.571		
	d-AD	8.208	0.539	<0.001	7.144	9.271		
SCD	NC	-1.285	0.527	0.016	-2.324	-0.246		
	aMCI	4.303	0.521	<0.001	3.276	5.331		
	d-AD	6.923	0.557	<0.001	5.824	8.021		
aMCI	NC	-5.589	0.498	<0.001	-6.571	-4.606		
	SCD	-4.303	0.521	<0.001	-5.331	-3.276		
	d-AD	2.619	0.507	<0.001	1.620	3.619		
d-AD	NC	-8.208	0.539	<0.001	-9.271	-7.144		
	SCD	-6.923	0.557	<0.001	-8.021	-5.824		
	aMCI	-2.619	0.507	<0.001	-3.619	-1.620		
AVLT-Recognition Scores								
NC	SCD	0.738	0.630	0.243	-0.504	1.980		
	aMCI	3.785	0.596	<0.001	2.611	4.960		
	d-AD	7.622	0.645	<0.001	6.351	8.894		
SCD	NC	-0.738	0.630	0.243	-1.980	0.504		
	aMCI	3.047	0.623	<0.001	1.819	4.276		
	d-AD	6.884	0.666	<0.001	5.571	8.198		
aMCI	NC	-3.785	0.596	<0.001	-4.960	-2.611		
	SCD	-3.047	0.623	<0.001	-4.276	-1.819		
	d-AD	3.837	0.606	<0.001	2.642	5.032		
d-AD	NC	-7.622	0.645	<0.001	-8.894	-6.351		
	SCD	-6.884	0.666	<0.001	-8.198	-5.571		
	aMCI	-3.837	0.606	<0.001	-5.032	-2.642		
MMSE	NC	0.238	0.758	0.754	-1.257	1.733		
	aMCI	2.751	0.717	<0.001	1.337	4.166		
	d-AD	10.110	0.776	<0.001	8.579	11.640		
	NC	aMCI	SCi	d-AD	NC	aMCI	SCi	d-AD
-------	--------	--------	-------	--------	--------	--------	-------	--------
SCD	-0.238	2.513	0.750	0.754	-1.733	1.034	3.992	
aMCI	-2.751	-2.513	0.750	0.754	<0.001	-3.992	-1.034	
d-AD	9.872	7.358	0.802	<0.001	8.291	5.920	8.797	
aMCI	NC	-2.751	0.717	0.001	-4.166	-1.337		
SCD	-2.513	0.750	0.001	-3.992	-1.034			
d-AD	7.358	0.730	<0.001	5.920	8.797			
d-AD	NC	-10.110	0.776	<0.001	-11.640	-8.579		
SCD	-9.872	0.802	<0.001	-11.453	-8.291			
aMCI	-7.358	0.730	<0.001	-8.797	-5.920			
MoCA	NC	1.422	0.698	0.043	0.046	2.798		
aMCI	5.981	0.660	<0.001	4.679	7.282			
d-AD	12.466	0.714	<0.001	11.057	13.874			
SCD	NC	-1.422	0.698	0.043	-2.798	-0.046		
aMCI	4.558	0.690	<0.001	3.197	5.919			
d-AD	11.043	0.738	<0.001	9.588	12.499			
aMCI	NC	-5.981	0.660	<0.001	-7.282	-4.679		
SCD	-4.558	0.690	<0.001	-5.919	-3.197			
d-AD	6.485	0.671	<0.001	5.161	7.809			
d-AD	NC	-12.466	0.714	<0.001	-13.874	-11.057		
SCD	-11.043	0.738	<0.001	-12.499	-9.588			
aMCI	-6.485	0.671	<0.001	-7.809	-5.161			
k (degree)	NC (Mean, SD)	SCD (Mean, SD)	aMCI (Mean, SD)	d-AD (Mean, SD)	F	p<	ES^b	Post hocs^c
------------	---------------	----------------	-----------------	----------------	----	-----	--------	----------------
1	0.999 (0.000)	0.999 (0.001)	0.999 (0.001)	0.999 (0.001)	6.048	<0.001	0.077	NC>d-AD
2	0.998 (0.001)	0.997 (0.002)	0.997 (0.002)	0.996 (0.003)	14.656	<0.001	0.168	NC, SCD, aMCI>d-AD
3	0.996 (0.003)	0.993 (0.004)	0.993 (0.004)	0.989 (0.005)	26.453	<0.001	0.267	NC>SCD, aMCI>d-AD
4	0.992 (0.004)	0.986 (0.006)	0.984 (0.006)	0.978 (0.007)	45.085	<0.001	0.383	NC>SCD, aMCI>d-AD
5	0.985 (0.006)	0.975 (0.008)	0.973 (0.008)	0.963 (0.010)	66.922	<0.001	0.479	NC>SCD, aMCI>d-AD
6	0.974 (0.008)	0.962 (0.011)	0.959 (0.009)	0.945 (0.013)	68.930	<0.001	0.487	NC>SCD, aMCI>d-AD
7	0.964 (0.009)	0.948 (0.012)	0.943 (0.012)	0.925 (0.017)	67.637	<0.001	0.482	NC>SCD, aMCI>d-AD
8	0.945 (0.011)	0.933 (0.014)	0.925 (0.013)	0.906 (0.022)	53.441	<0.001	0.424	NC>SCD, aMCI>d-AD
9	0.929 (0.011)	0.918 (0.015)	0.909 (0.017)	0.886 (0.027)	45.661	<0.001	0.386	NC>aMCI>d-AD; SCD>d-AD
10	0.914 (0.012)	0.902 (0.015)	0.893 (0.019)	0.868 (0.028)	47.527	<0.001	0.395	NC>aMCI>d-AD; SCD>d-AD
11	0.898 (0.014)	0.886 (0.018)	0.877 (0.022)	0.849 (0.034)	38.875	<0.001	0.349	NC>aMCI>d-AD; SCD>d-AD
12	0.886 (0.016)	0.870 (0.025)	0.859 (0.025)	0.827 (0.043)	32.090	<0.001	0.306	NC>aMCI>d-AD; SCD>d-AD
13	0.867 (0.020)	0.851 (0.033)	0.841 (0.031)	0.810 (0.048)	22.093	<0.001	0.233	NC>aMCI>d-AD; SCD>d-AD
14	0.854 (0.024)	0.835 (0.039)	0.820 (0.040)	0.785 (0.065)	19.727	<0.001	0.214	NC>aMCI>d-AD; SCD>d-AD
15	0.838 (0.025)	0.817 (0.045)	0.803 (0.043)	0.766 (0.068)	18.648	<0.001	0.204	NC>aMCI>d-AD; SCD>d-AD
16	0.823 (0.029)	0.801 (0.054)	0.787 (0.046)	0.756 (0.062)	13.803	<0.001	0.160	NC, SCD>d-AD

^aValues from ANCOVA with age and gender as covariates.

^bEffect size; partial η² for rich club coefficient.

^cLeast significant difference; post hoc testing on rich club coefficient based on means adjusted for age, gender.

aMCI: amnestic mild cognitive impairment; d-AD: dementia of Alzheimer’s disease; NC: normal control; SCD: subjective cognitive decline.
Table S4. Post hoc testing on rich club coefficient from ANCOVA with age and gender as covariates (Bonferroni-corrected for groups).

k (degree)	(I) Group	(J) Group	Mean Difference (I-J)	SE	P	95% Confidence Interval for Difference		
	NC	aMCI	0.000 0.000	1.000	0.000 0.001 0.000 0.001			
1	NC	aMCI	-0.001 0.000	1.000	<0.001	-0.001 0.000 0.001 0.000		
	SCD	aMCI	0.000 0.000	1.000	0.000 0.000 0.000 0.000			
	NC	d-AD	0.000 0.000	0.024	0.000 0.000 0.000 0.000			
	aMCI	SCD	0.000 0.000	1.000	0.000 0.000 0.000 0.000			
	d-AD	NC	-0.001 0.000	<0.001	-0.001 0.000 0.001 0.000			
		NC	-0.001 0.000	0.017	0.000 0.000 0.000 0.000			
		aMCI	0.000 0.000	0.016	<0.001 0.000 0.000 0.000			
2		SCD	0.000 0.000	0.042	0.000 0.000 0.000 0.000			
	NC	d-AD	0.002 0.000	0.006	0.000 0.000 0.001 0.000			
	aMCI	SCD	0.000 0.000	1.000	-0.001 0.000 0.000 0.000			
	d-AD	NC	-0.001 0.000	0.017	-0.002 0.000 0.000 0.000			
		NC	-0.003 0.000	<0.001	-0.004 0.000 0.001 0.000			
		aMCI	0.000 0.000	0.002	-0.003 0.000 0.000 0.000			
		d-AD	0.001 0.000	0.001	0.000 0.000 0.000 0.000			
3		SCD	0.003 0.001	0.002	0.001 0.000 0.000 0.000			
	NC	d-AD	0.000 0.000	0.002	-0.005 0.000 0.000 0.000			
	aMCI	SCD	0.000 0.000	1.000	-0.002 0.000 0.000 0.000			
	d-AD	NC	-0.004 0.001	<0.001	0.002 0.000 0.000 0.000			
		NC	-0.003 0.001	0.001	-0.005 0.000 0.000 0.000			
		aMCI	0.000 0.000	1.000	-0.002 0.000 0.000 0.000			
		d-AD	0.004 0.001	<0.001	0.002 0.000 0.000 0.000			
4		SCD	0.006 0.001	<0.001	0.003 0.000 0.000 0.000			
	NC	d-AD	-0.004 0.001	<0.001	-0.009 0.000 0.000 0.000			
	aMCI	SCD	-0.004 0.001	<0.001	-0.006 0.000 0.000 0.000			
	d-AD	NC	0.013 0.001	<0.001	0.010 0.000 0.000 0.000			
	NC	aMCI	d-AD	NC	aMCI	d-AD		
-----	-------	-------	-------	-------	-------	-------		
SCD	-0.06	0.01	<0.001	-0.09	-0.03	0.01		
	0.001	0.001	1.000	-0.02	0.04			
	0.004	0.010						
aMCI	-0.07	0.01	<0.001	-0.10	-0.04	0.02		
	0.006	0.001						
			<0.001					
d-AD	-0.13	0.01	<0.001	-0.16	-0.01	<0.001		
	0.007	0.001						
			<0.001					
NC	SCD	0.09	<0.001	0.05	0.013	0.01		
	0.011	0.001	<0.001	0.08	0.015			
	0.021	0.001	<0.001	0.17	0.025			
SCD	NC	-0.09	<0.001	-0.13	-0.05	0.006		
	0.002	0.001						
			<0.001					
aMCI	-0.01	0.002	<0.001	-0.15	-0.08	0.002		
	0.011	0.002						
			<0.001					
d-AD	d-AD	NC	<0.001	-0.25	-0.17	0.006		
	0.021	0.001						
			<0.001					
SCD	NC	-0.12	<0.001	-0.17	-0.07	0.008		
	0.003	0.002	0.720					
	0.016	0.002	0.000					
			<0.001					
aMCI	NC	-0.15	<0.001	-0.20	-0.10	0.023		
	0.003	0.002	0.720					
	0.013	0.002						
			<0.001					
d-AD	d-AD	NC	<0.001	-0.33	-0.23	0.008		
	0.028	0.002						
			<0.001					
SCD	NC	-0.13	<0.001	-0.19	-0.06	0.011		
	0.005	0.002	0.352					
	0.022	0.003						
			<0.001					
aMCI	NC	-0.17	<0.001	-0.23	-0.11	0.011		
	0.005	0.002	0.352					
	0.017	0.002						
			<0.001					
d-AD	d-AD	NC	<0.001	-0.41	-0.28	0.011		
	0.034	0.002						
			<0.001					
SCD	NC	-0.17	<0.001	-0.29	-0.15	0.024		
	0.017	0.002						
			<0.001					
aMCI	d-AD	NC	<0.001	-0.24	-0.11	0.011		
	0.019	0.003	<0.001	0.011	0.026			
	d-AD	NC	aMCI	SCD	d-AD	NC	aMCI	SCD
----------	-------	-------	-------	----------	---------	-------	-------	--------
	0.037	-0.011	0.008	0.026	<0.001	0.019	-0.037	<0.001
d-AD	0.037	-0.011	0.008	0.026	<0.001	0.019	-0.037	<0.001
NC								
aMCI								
SCDS								
d-AD	0.037							
SCDS								
aMCI								
SCDS								
NC								
aMCI								
SCDS								
d-AD	0.037							
SCDS								
aMCI								
SCDS								
NC								
aMCI								
SCDS								
d-AD	0.037							
SCDS								
aMCI								
SCDS								
NC								
aMCI								
SCDS								
d-AD	0.037							
SCDS								
aMCI								
SCDS								
NC								
aMCI								
SCDS								
d-AD	0.037							
SCDS								
aMCI								
SCDS								
	NC	aMCI	0.023	0.005	<0.001	0.008	0.037	
-----	------	------	-------	-------	--------	-------	-------	
	d-AD	0.053	0.006	<0.001	0.038	0.068		
SCD	NC	-0.013	0.006	0.145	-0.028	0.002		
	aMCI	0.010	0.006	0.506	-0.005	0.025		
	d-AD	0.041	0.006	<0.001	0.025	0.056		
	NC	-0.023	0.005	<0.001	-0.037	-0.008		
aMCI	SCD	-0.010	0.006	0.506	-0.025	0.005		
	d-AD	0.031	0.005	<0.001	0.016	0.045		
d-AD	NC	-0.053	0.006	<0.001	-0.068	-0.038		
	SCD	-0.041	0.006	<0.001	-0.056	-0.025		
	aMCI	-0.031	0.005	<0.001	-0.045	-0.016		
	NC	0.015	0.007	0.162	-0.003	0.032		
aMCI	SCD	0.023	0.006	<0.001	0.006	0.040		
	d-AD	0.052	0.007	<0.001	0.035	0.070		
	NC	-0.015	0.007	0.162	-0.032	0.003		
SCD	NC	-0.053	0.007	1.000	-0.009	0.026		
	aMCI	0.008	0.007	1.000	-0.009	0.026		
	d-AD	0.038	0.007	<0.001	0.019	0.056		
	NC	-0.023	0.006	<0.001	-0.040	-0.006		
aMCI	SCD	-0.008	0.007	1.000	-0.026	0.009		
	d-AD	0.029	0.006	<0.001	0.012	0.046		
d-AD	NC	-0.052	0.007	<0.001	-0.070	-0.035		
	SCD	-0.038	0.007	<0.001	-0.056	-0.019		
	aMCI	-0.029	0.006	<0.001	-0.046	-0.012		
	NC	0.018	0.009	0.240	-0.005	0.040		
aMCI	SCD	0.031	0.008	<0.001	0.009	0.052		
	d-AD	0.064	0.008	<0.001	0.041	0.086		
	NC	-0.018	0.009	0.240	-0.040	0.005		
SCD	NC	-0.031	0.008	0.001	-0.052	-0.009		
	aMCI	0.013	0.009	0.749	-0.010	0.036		
	d-AD	0.046	0.009	<0.001	0.022	0.070		
	NC	-0.064	0.008	<0.001	-0.086	-0.041		
aMCI	SCD	-0.046	0.009	<0.001	-0.070	-0.022		
	d-AD	-0.033	0.008	<0.001	-0.055	-0.011		
	NC	0.019	0.009	0.234	-0.005	0.043		
aMCI	SCD	0.031	0.009	<0.001	0.008	0.054		
	d-AD	0.066	0.009	<0.001	0.042	0.090		
	NC	-0.019	0.009	0.234	-0.043	0.005		
SCD	NC	-0.031	0.009	0.002	-0.054	-0.008		
	aMCI	0.013	0.009	1.000	-0.012	0.037		
	d-AD	0.047	0.009	<0.001	0.022	0.073		
	NC	-0.066	0.009	<0.001	-0.090	-0.042		
aMCI	SCD	-0.047	0.009	<0.001	-0.073	-0.022		
	d-AD	-0.035	0.009	<0.001	-0.058	-0.011		
	NC	SCD	0.020	0.009	0.207	-0.005	0.044	
--------	------	------	-------	-------	-------	--------	-------	
aMCI	0.031	0.009	0.003	0.007	0.054			
d-AD	0.059	0.009	<0.001	0.034	0.083			
SCD	NC	-0.020	0.009	0.207	-0.044	0.005		
aMCI	0.011	0.009	1.000	-0.014	0.036			
d-AD	0.039	0.010	0.001	0.013	0.065			
aMCI	NC	-0.031	0.009	0.003	-0.054	-0.007		
SCD	-0.011	0.009	1.000	-0.036	0.014			
d-AD	0.028	0.009	0.015	0.004	0.052			
d-AD	NC	-0.059	0.009	<0.001	-0.083	-0.034		
SCD	-0.039	0.010	0.001	-0.065	-0.013			
aMCI	-0.028	0.009	0.015	-0.052	-0.004			
Table S5. Normalized rich club coefficient.

k (degree)	NC Mean	NC SD	SCD Mean	SCD SD	aMCI Mean	aMCI SD	d-AD Mean	d-AD SD	F	p^a	Es^b	Post hocs^c
1	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000	0.843	0.472	0.013	-
2	1.001	0.001	1.001	0.001	1.001	0.001	1.001	0.001	3.464	0.017	0.051	-
3	1.001	0.001	1.002	0.002	1.002	0.001	1.003	0.002	6.095	<0.001	0.086	NC<d-AD
4	1.002	0.002	1.003	0.003	1.004	0.003	1.006	0.004	14.162	<0.001	0.180	NC, SCD<d-AD
5	1.003	0.002	1.005	0.004	1.007	0.003	1.009	0.005	20.561	<0.001	0.241	NC<aMCI, d-AD; SCD<d-AD
6	1.004	0.003	1.007	0.005	1.010	0.005	1.015	0.008	33.989	<0.001	0.345	NC<aMCI<d-AD; SCD<d-AD
7	1.006	0.004	1.010	0.007	1.015	0.006	1.021	0.011	32.910	<0.001	0.337	NC<aMCI, d-AD; SCD<d-AD
8	1.008	0.004	1.016	0.007	1.021	0.008	1.027	0.013	37.332	<0.001	0.366	NC<aMCI; NC<SCD<d-AD
9	1.011	0.006	1.022	0.009	1.025	0.011	1.032	0.015	32.025	<0.001	0.331	NC<aMCI; NC<SCD<d-AD
10	1.015	0.007	1.027	0.010	1.031	0.013	1.037	0.016	28.020	<0.001	0.302	NC<aMCI; NC<SCD<d-AD
11	1.018	0.008	1.032	0.013	1.034	0.015	1.040	0.019	20.707	<0.001	0.243	NC<SCD, aMCI, d-AD
12	1.022	0.011	1.036	0.016	1.039	0.020	1.042	0.027	9.440	<0.001	0.127	NC<aMCI, d-AD
13	1.024	0.011	1.041	0.023	1.041	0.024	1.047	0.035	7.343	<0.001	0.102	NC<d-AD
14	1.028	0.014	1.046	0.027	1.041	0.029	1.011	0.201	1.001	0.394	0.015	-
15	1.030	0.015	1.051	0.033	1.050	0.029	1.191	1.925	0.199	0.897	0.003	-
16	1.034	0.021	1.035	0.172	0.994	0.259	0.818	0.460	5.046	0.002	0.072	-

^a Values from ANCOVA with age and gender as covariates.

^b Effect size; partial \(\eta^2 \) for normalized rich club coefficient.

^c Least significant difference; post hoc testing on normalized rich club coefficient based on means adjusted for age, gender.

aMCI: amnestic mild cognitive impairment; d-AD: dementia of Alzheimer’s disease; NC: normal control; SCD: subjective cognitive decline.
Table S6. Post hoc testing on normalized rich club coefficient from ANCOVA with age and gender as covariates (Bonferroni-corrected for groups).

k (degree)	(I) Group	(J) Group	Mean Difference (I-J)	SE	P	95% Confidence Interval for Difference	Lower Bound	Upper Bound
	NC	SCD	0.000	0.000	1.000	0.000	0.000	
1	NC	aMCI	0.000	0.000	1.000	0.000	0.000	
	NC	d-AD	0.000	0.000	1.000	0.000	0.000	
	SCD	NC	0.000	0.000	1.000	0.000	0.000	
	SCD	aMCI	0.000	0.000	0.767	0.000	0.000	
	SCD	d-AD	0.000	0.000	1.000	0.000	0.000	
	aMCI	NC	0.000	0.000	1.000	0.000	0.000	
	aMCI	SCD	0.000	0.000	0.767	0.000	0.000	
	aMCI	d-AD	0.000	0.000	1.000	0.000	0.000	
	d-AD	NC	0.000	0.000	1.000	0.000	0.000	
	d-AD	SCD	0.000	0.000	1.000	0.000	0.000	
	d-AD	aMCI	0.000	0.000	1.000	0.000	0.000	
2	NC	SCD	0.000	0.000	0.420	-0.001	0.000	
	NC	aMCI	0.000	0.000	0.543	-0.001	0.000	
	NC	d-AD	-0.001	0.000	**0.010**	-0.001	0.000	
	SCD	NC	0.000	0.000	0.420	0.000	0.001	
	SCD	aMCI	0.000	0.000	1.000	0.000	0.001	
	SCD	d-AD	0.000	0.000	1.000	-0.001	0.000	
	aMCI	NC	0.000	0.000	0.543	0.000	0.001	
	aMCI	SCD	0.000	0.000	1.000	-0.001	0.000	
	aMCI	d-AD	0.000	0.000	0.833	-0.001	0.000	
	d-AD	NC	0.001	0.000	**0.010**	0.000	0.001	
	d-AD	SCD	0.000	0.000	1.000	0.000	0.001	
	d-AD	aMCI	0.000	0.000	0.833	0.000	0.001	
3	NC	SCD	-0.001	0.000	0.094	-0.002	0.000	
	NC	aMCI	-0.001	0.000	0.474	-0.002	0.000	
	NC	d-AD	-0.001	0.000	**<0.001**	-0.002	-0.001	
	SCD	NC	0.001	0.000	0.094	0.000	0.002	
	SCD	aMCI	0.000	0.000	1.000	-0.001	0.001	
	SCD	d-AD	-0.001	0.000	0.760	-0.002	0.000	
	aMCI	NC	0.001	0.000	0.474	0.000	0.002	
	aMCI	SCD	0.000	0.000	1.000	-0.001	0.001	
	aMCI	d-AD	-0.001	0.000	0.999	-0.002	0.000	
	d-AD	NC	0.001	0.000	**<0.001**	0.001	0.002	
	d-AD	SCD	0.001	0.000	0.760	0.000	0.002	
	d-AD	aMCI	0.001	0.000	0.999	0.000	0.002	
4	NC	SCD	-0.001	0.001	0.259	-0.003	0.000	
	NC	aMCI	-0.002	0.001	**0.007**	-0.003	0.000	
	NC	d-AD	-0.004	0.001	**<0.001**	-0.005	-0.002	
	SCD	aMCI	d-AD					
---------	-------	-------	-------					
NC	0.001	0.001	0.259					
aMCI	-0.001	0.001	1.000					
d-AD	-0.002	0.001	0.001					

	SCD	aMCI	d-AD
NC	0.002	0.001	0.007
aMCI	0.001	0.001	1.000
d-AD	-0.002	0.001	0.013

	SCD	aMCI	d-AD
NC	0.004	0.001	<0.001
aMCI	0.002	0.001	0.013
d-AD	0.002	0.001	0.001

	SCD	aMCI	d-AD
NC	-0.002	0.001	0.096
aMCI	-0.003	0.001	0.277
d-AD	-0.006	0.001	<0.001

	SCD	aMCI	d-AD
NC	0.002	0.001	0.096
aMCI	-0.002	0.001	0.277
d-AD	-0.004	0.001	<0.001

	SCD	aMCI	d-AD
NC	0.003	0.001	<0.001
aMCI	0.002	0.001	0.023
d-AD	0.002	0.001	<0.001

	SCD	aMCI	d-AD
NC	-0.003	0.001	0.062
aMCI	-0.006	0.001	<0.001
d-AD	-0.010	0.001	<0.001

	SCD	aMCI	d-AD
NC	0.003	0.001	0.062
aMCI	-0.003	0.001	0.051
d-AD	-0.007	0.001	<0.001

	SCD	aMCI	d-AD
NC	0.006	0.001	<0.001
aMCI	0.004	0.001	<0.001
d-AD	0.002	0.001	<0.001

	SCD	aMCI	d-AD
NC	-0.004	0.001	0.022
aMCI	-0.009	0.001	<0.001
d-AD	-0.014	0.001	<0.001

	SCD	aMCI	d-AD
NC	0.004	0.001	0.022
aMCI	-0.004	0.002	0.024
d-AD	-0.009	0.002	<0.001

	SCD	aMCI	d-AD
NC	0.009	0.001	<0.001
aMCI	0.004	0.002	0.024
d-AD	-0.005	0.001	<0.001

	SCD	aMCI	d-AD
NC	0.014	0.001	<0.001
aMCI	0.009	0.002	<0.001
d-AD	0.005	0.001	<0.001

	SCD	aMCI	d-AD		
NC	-0.007	0.002	<0.001		
aMCI	-0.012	0.002	<0.001		
	d-AD	NC	aMCI	SCDD	AD
-----	------	----------	---------	--------	--------
d-AD	-0.018	0.002	<0.001	-0.022	-0.013
NC	0.007	0.002	<0.001	0.002	0.012
aMCI	-0.005	0.002	0.075	-0.010	0.000
SCDD	-0.011	0.002	<0.001	-0.015	-0.006
d-AD	-0.006	0.002	0.006	-0.010	-0.001
SCDD	0.005	0.002	0.075	0.000	0.010
aMCI	0.006	0.002	0.006	0.001	0.010
d-AD	0.018	0.002	<0.001	0.013	0.022
NC	0.011	0.002	<0.001	0.006	0.015
aMCI	-0.014	0.002	<0.001	-0.020	-0.009
d-AD	-0.020	0.002	<0.001	-0.026	-0.015
SCDD	NC	aMCI	d-AD		
aMCI	0.014	0.002	<0.001	0.009	0.020
SCDD	0.003	0.002	0.837	-0.003	0.010
aMCI	-0.006	0.002	0.031	-0.012	0.000
d-AD	0.020	0.002	<0.001	0.015	0.026
NC	0.009	0.002	<0.001	0.003	0.016
aMCI	0.006	0.002	0.031	0.000	0.010
SCDD	NC	aMCI	d-AD		
aMCI	0.016	0.002	<0.001	0.009	0.022
SCDD	0.004	0.003	0.786	-0.003	0.011
aMCI	-0.005	0.003	0.022	-0.012	0.001
d-AD	0.021	0.002	<0.001	0.015	0.028
NC	0.009	0.003	0.002	0.002	0.016
aMCI	0.005	0.002	0.160	-0.001	0.012
SCDD	NC	aMCI	d-AD		
aMCI	0.014	0.003	<0.001	0.006	0.021
SCDD	-0.003	0.003	1.000	-0.011	0.005
aMCI	-0.007	0.003	0.096	-0.015	0.001
d-AD	0.016	0.003	<0.001	0.009	0.024
NC	0.003	0.003	1.000	-0.005	0.011
aMCI	-0.005	0.003	0.591	-0.012	0.003
SCDD	NC	aMCI	d-AD		
aMCI	0.021	0.003	<0.001	0.013	0.028
SCDD	0.007	0.003	0.096	-0.001	0.015
aMCI	0.005	0.003	0.591	-0.003	0.012
d-AD	SCDD				

| SCDD| 0.014 | 0.004 | 0.005 | -0.024 | -0.003 |

SCDD	0.005	0.003	0.096	-0.001	0.015
d-AD	0.005	0.003	0.591	-0.003	0.012
SCDD	NC	aMCI	d-AD		
aMCI	0.003	0.003	0.006	0.006	0.024
SCDD	-0.007	0.003	0.096	-0.015	0.001
aMCI	0.016	0.003	<0.001	0.009	0.024
d-AD	0.003	0.003	1.000	-0.005	0.011
SCDD	NC	aMCI	d-AD		
aMCI	0.021	0.003	<0.001	0.013	0.028
SCDD	0.007	0.003	0.096	-0.001	0.015
aMCI	0.005	0.003	0.591	-0.003	0.012
d-AD	SCDD				

| SCDD| 0.014 | 0.004 | 0.005 | -0.024 | -0.003 |

| SCDD| 0.005 | 0.003 | 0.096 | -0.001 | 0.015 |

SCDD	NC	aMCI	d-AD		
aMCI	0.016	0.003	<0.001	0.009	0.024
SCDD	-0.007	0.003	0.096	-0.015	0.001
aMCI	0.003	0.003	1.000	-0.005	0.011
d-AD	0.005	0.003	0.591	-0.012	0.003
SCDD	NC	aMCI	d-AD		
aMCI	0.021	0.003	<0.001	0.013	0.028
SCDD	0.007	0.003	0.096	-0.001	0.015
aMCI	0.005	0.003	0.591	-0.003	0.012
d-AD	SCDD				

| SCDD| 0.014 | 0.004 | 0.005 | -0.024 | -0.003 |

| SCDD| 0.005 | 0.003 | 0.096 | -0.001 | 0.015 |
	aMCI	NC	d-AD	d-AD						
12	-0.016	0.004	<0.001	-0.027	-0.006					
SCD	-0.018	0.004	<0.001	-0.029	-0.008					
NC	0.144	0.004	0.005	0.030	0.024					
aMCI	-0.003	0.004	1.000	-0.014	0.008					
d-AD	-0.005	0.004	1.000	-0.016	0.006					
NC	0.016	0.004	<0.001	0.006	0.027					
aMCI	0.003	0.004	1.000	-0.008	0.014					
d-AD	-0.002	0.004	1.000	-0.012	0.008					
NC	0.018	0.004	<0.001	0.008	0.029					
SCD	0.005	0.004	1.000	-0.006	0.016					
aMCI	0.002	0.004	1.000	-0.008	0.012					
13	NC	0.017	0.005	0.006	0.004	0.031				
SCD	0.001	0.005	1.000	-0.014	0.015					
NC	-0.004	0.005	1.000	-0.018	0.010					
NC	0.017	0.005	<0.001	0.008	0.034					
NC	-0.001	0.005	<0.001	-0.010	0.018					
SCD	-0.004	0.005	1.000	-0.018	0.009					
NC	0.021	0.005	<0.001	0.008	0.034					
NC	0.004	0.005	1.000	-0.010	0.018					
14	SCD	-0.020	0.022	1.000	-0.079	0.040				
NC	-0.017	0.021	1.000	-0.074	0.040					
SCD	0.013	0.021	1.000	-0.044	0.071					
NC	0.020	0.022	1.000	-0.040	0.079					
d-AD	0.033	0.023	0.895	-0.028	0.094					
NC	0.017	0.021	1.000	-0.040	0.074					
SCD	-0.003	0.023	1.000	-0.064	0.059					
NC	0.031	0.021	0.934	-0.027	0.088					
d-AD	0.013	0.021	1.000	-0.071	0.044					
15	SCD	0.007	0.210	1.000	-0.553	0.566				
NC	0.036	0.201	1.000	-0.500	0.572					
d-AD	-0.109	0.200	1.000	-0.643	0.425					
NC	0.007	0.210	1.000	-0.566	0.553					
SCD	0.029	0.216	1.000	-0.546	0.605					
NC	-0.116	0.214	1.000	-0.687	0.455					
NC	-0.036	0.201	1.000	-0.572	0.500					
d-AD	-0.145	0.201	1.000	-0.680	0.390					
d-AD	0.109	0.200	1.000	-0.425	0.643					
aMCI	0.116	0.214	1.000	-0.455	0.687					
aMCI	0.145	0.201	1.000	-0.390	0.680					
	NC	SCD	aMCI	d-AD	SCD	aMCI	d-AD	SCD	aMCI	d-AD
-------	------	------	------	------	------	------	------	------	------	------
NC		0.011	0.059	1.000	-0.167	0.146				
aMCI		0.020	0.056	1.000	-0.131	0.170				
d-AD	0.183	0.056	0.008	0.034	0.333					
SCD	NC	0.011	0.059	1.000	-0.146	0.167				
aMCI	0.030	0.060	0.009	0.034	0.354					
d-AD	0.194	0.060	0.009	0.034	0.354					
aMCI	NC	-0.020	0.056	1.000	-0.170	0.131				
SCD	-0.030	0.060	1.000	-0.192	0.131					
d-AD	0.164	0.056	0.024	0.014	0.313					
d-AD	NC	-0.183	0.056	0.008	-0.333	-0.034				
SCD	-0.194	0.060	0.009	-0.354	-0.034					
aMCI	-0.164	0.056	0.024	-0.313	-0.014					
Table S7. Post hoc testing on rich club, feeder, local connectivity strength from ANCOVA with age and gender as covariates (Bonferroni-corrected for groups).

ANCOVA COV: Age & Gender	(I) Group	(J) Group	Mean Difference (I-J)	SE	P	95% Confidence Interval for Differenceb	Lower Bound	Upper Bound
Rich Club Connectivity Strength	NC	SCD	0.660	0.375	0.481	-0.339 - 1.659		
	aMCI	AD	1.570	0.355	<0.001	0.628 - 2.521		
	AD	SCD	2.215	0.373	<0.001	1.221 - 3.209		
	aMCI	AD	0.914	0.377	0.097	-0.091 - 1.919		
	AD	NC	1.555	0.392	0.001	0.511 - 2.600		
Feeder Connectivity Strength	aMCI	NC	-1.574	0.355	<0.001	-2.521 - 0.628		
	SCD	aMCI	-0.914	0.377	0.097	-1.919 - 0.091		
	AD	AD	0.641	0.366	0.487	-0.333 - 1.614		
	AD	SCG	-0.641	0.366	0.487	-1.614 - 0.333		
	aMCI	d-AD	2.215	0.373	<0.001	-3.209 - 1.221		
	SCG	d-AD	1.555	0.392	0.001	-2.600 - 0.511		
	aMCI	d-AD	0.641	0.366	0.487	-1.614 - 0.333		
Local Connectivity Strength	SCG	NC	9.500	1.415	<0.001	5.733 - 13.267		
	aMCI	aMCI	12.889	1.340	<0.001	9.320 - 16.457		
	AD	AD	19.608	1.408	<0.001	15.859 - 23.357		
	AD	SCG	10.108	1.479	<0.001	6.169 - 14.046		
	aMCI	d-AD	-2.215	0.373	<0.001	-3.209 - 1.221		
	SCG	d-AD	-1.555	0.392	0.001	-2.600 - 0.511		
	aMCI	d-AD	0.641	0.366	0.487	-1.614 - 0.333		
Table S8. Post hoc testing on network topological metrics from ANCOVA with age and gender as covariates (Bonferroni-corrected for groups).

Network Topological Metrics	(I) Group	(J) Group	Mean Difference (I-J)	SE	P	95% Confidence Interval for Difference	
						Lower Bound	Upper Bound
Strength	NC	SCD	0.704	0.079	<0.001	0.494	0.915
		aMCI	0.935	0.075	<0.001	0.736	1.134
		d-AD	1.377	0.079	<0.001	1.168	1.586
	SCD	NC	-0.704	0.079	<0.001	-0.915	-0.494
		aMCI	0.230	0.079	0.024	0.019	0.442
		d-AD	0.673	0.082	<0.001	0.453	0.892
	aMCI	SCD	-0.230	0.079	<0.001	-0.442	-0.019
		d-AD	0.442	0.077	<0.001	0.238	0.647
	d-AD	NC	-1.377	0.079	<0.001	-1.586	-1.168
		SCD	-0.673	0.082	<0.001	-0.892	-0.453
		aMCI	-0.442	0.077	<0.001	-0.647	-0.238
Clustering Coefficient	NC	SCD	-0.015	0.004	0.003	0.004	0.026
		aMCI	0.019	0.004	<0.001	0.008	0.029
		d-AD	0.026	0.004	<0.001	0.015	0.037
	SCD	NC	-0.015	0.004	0.003	-0.026	-0.004
		aMCI	0.003	0.004	1.000	-0.008	0.015
		d-AD	0.011	0.004	0.101	-0.001	0.022
	aMCI	SCD	-0.003	0.004	1.000	-0.015	0.008
		d-AD	0.007	0.004	0.486	-0.004	0.018
	d-AD	NC	-0.026	0.004	<0.001	-0.037	-0.015
		SCD	-0.011	0.004	0.101	-0.022	0.001
		aMCI	-0.007	0.004	0.486	-0.018	0.004
	NC	SCD	-0.158	0.031	<0.001	-0.240	-0.076
		aMCI	-0.145	0.029	<0.001	-0.223	-0.068
		d-AD	-0.340	0.031	<0.001	-0.422	-0.259
Normalized Clustering Coefficient	NC	SCD	0.158	0.031	<0.001	0.076	0.240
		aMCI	0.013	0.031	1.000	-0.070	0.095
		d-AD	-0.182	0.032	<0.001	-0.268	-0.097
	aMCI	SCD	0.145	0.029	<0.001	0.068	0.223
		d-AD	-0.195	0.030	<0.001	-0.275	-0.115
Characteristic Path Length	NC	SCD	-0.348	0.065	<0.001	-0.521	-0.176
		aMCI	-0.468	0.061	<0.001	-0.631	-0.305
		d-AD	-0.760	0.064	<0.001	-0.931	-0.588
	NC	0.348	0.065	<0.001	0.176	0.521	
----------	--------	--------	--------	----------	--------	--------	
SCD	aMCI	-0.119	0.065	0.408	-0.293	0.054	
	d-AD	-0.411	0.068	<0.001	-0.591	-0.231	
aMCI	NC	0.468	0.061	<0.001	0.305	0.631	
	SCD	0.119	0.065	0.408	-0.054	0.293	
	d-AD	-0.292	0.063	<0.001	-0.460	-0.124	
d-AD	NC	0.760	0.064	<0.001	0.588	0.931	
	SCD	0.411	0.068	<0.001	0.231	0.591	
	aMCI	0.292	0.063	<0.001	0.124	0.460	
NC	SCD	-0.005	0.002	0.135	-0.011	0.001	
	aMCI	0.000	0.002	1.000	-0.006	0.005	
	d-AD	-0.007	0.002	0.015	-0.013	-0.001	
	0.005	0.002	0.135	-0.001	0.011		
	0.005	0.002	0.212	-0.001	0.011		
	-0.002	0.002	1.000	-0.008	0.004		
	-0.005	0.002	0.212	-0.011	0.001		
	-0.006	0.002	0.021	-0.012	-0.001		
aMCI	NC	0.000	0.002	1.000	-0.005	0.006	
	SCD	-0.005	0.002	0.212	-0.011	0.001	
	d-AD	-0.006	0.002	0.021	-0.012	-0.001	
d-AD	NC	0.007	0.002	0.015	0.001	0.013	
	SCD	0.002	0.002	1.000	-0.004	0.008	
	aMCI	0.006	0.002	0.021	0.001	0.012	
Table S9. Whole-brain structural connectivity of nodes with the highest number of aberrant connections in patient groups compared with NC. Nodes with the highest number of aberrant connections in each patient groups (range = 11 to 27 aberrant connections), based on two-sample t-test (NC versus each patient groups) with FDR corrected to the P values to correct for multiple comparisons across all edges. Significance was set at \(P<0.05 \). The bold nodes represent the rich club nodes in all groups.

Region	MNI	Number of Connections				
	x	y	z	SCD vs. NC	aMCI vs. NC	d-AD vs. NC
CAU.L	-11.46	11	9.24	15	15	22
CAU.R	14.84	12.07	9.42	12	14	20
ORBmid.L	-30.65	50.43	-9.62	11	9	7
PCUN.L	-7.24	-56.07	48.01	19	27	
SFGdor.R	21.9	31.12	-43.82	17	17	
MOG.L	-32.39	-80.73	16.11	16	18	
PCUN.R	9.98	-56.05	43.77	15	26	
THA.L	-10.85	-17.56	7.98	15	20	
SPG.R	26.11	-59.18	62.06	15	17	
HIP.L	-25.03	-20.74	-10.13	15	16	
HIP.R	29.23	-19.78	-10.33	15	13	
SPG.L	-23.45	-59.56	58.96	14	22	
DCG.L	-5.48	-14.92	41.57	14	17	
ORBsup.L	-16.56	47.32	-13.31	14	15	
OLF.L	-8.06	15.05	-11.46	13	13	
CALL	-7.14	-78.67	6.44	13	13	
ACG.R	8.46	37.01	15.84	13	12	
PUT.R	27.78	4.91	2.46	12	17	
ACG.L	-4.04	35.4	13.95	12	15	
PUT.L	-23.91	3.86	2.4	12	15	
SOG.L	-16.54	-84.26	28.17	12	14	
ORBmid.R	33.18	52.59	-10.73	12	12	
CUN.L	-5.93	-80.13	27.22	12		
PHG.R	25.38	-15.15	-20.47	11	17	
IFGtriang.R	50.33	30.16	14.17	11	16	
INS.L	-35.13	6.65	3.44	11	14	
PCG.L	-4.85	-42.92	24.67	11	14	
SMA.R	8.62	0.17	61.85	11	13	
TPOsup.R	48.25	14.75	-16.86	11	13	
LING.R	16.29	-66.93	-3.87	11	12	
THA.R	13	-17.55	8.09	11	14	
IFGtriang.L	-45.58	29.91	13.99	17		
MFG.R	37.59	33.06	34.04	14		
DCG.R	8.02	-8.83	39.79	14		
----------------	--------	--------	-------	---		
ORBinf.R	-41.22	32.23	-11.91	13		
SMA.L	-5.32	4.85	61.38	13		
SFGmed.R	9.1	50.84	30.22	13		
INS.R	39.02	6.25	2.08	13		
CUN.R	13.51	-79.36	28.23	13		
ITG.L	-49.77	-28.05	-23.17	13		
ITG.R	53.69	-31.07	-22.32	13		
MFG.L	-33.43	32.73	35.46	12		
ORBinf.L	-35.98	30.71	-12.11	12		
SFGmed.L	-4.8	49.17	30.89	12		
LING.L	-14.62	-67.56	-4.63	12		
SOG.R	24.29	-80.85	30.59	12		
SFGdor.L	-18.45	34.81	42.2	11		
PoCG.R	41.43	-25.49	52.55	11		
PCL.L	-7.63	-25.36	70.07	11		
Table S10. Post hoc testing on nodal efficiency from ANCOVA with age and gender as covariates (Bonferroni-corrected for groups).

COV: Age & Gender	(I) Group	(J) Group	Mean Difference (I-J)	SE	P	95% Confidence Interval for Difference
						Lower Bound
						Upper Bound
CAU.L Efficiency	NC	SCD	0.021	0.006	0.005	0.005 - 0.037
	NC	aMCI	0.016	0.006	0.031	0.001 - 0.032
	NC	AD	0.021	0.006	0.004	0.005 - 0.038
	SCD	aMCI	-0.021	0.006	0.005	-0.037 - 0.005
	SCD	AD	0.000	0.006	1.000	-0.017 - 0.017
	aMCI	NC	-0.016	0.006	0.031	-0.032 - 0.001
	aMCI	SCD	0.005	0.006	1.000	-0.012 - 0.021
	aMCI	AD	0.005	0.006	1.000	-0.011 - 0.021
	d-AD	SCD	-0.021	0.006	0.004	-0.038 - 0.005
	d-AD	aMCI	0.014	0.006	0.071	-0.011 - 0.029
	d-AD	AD	0.023	0.006	<0.001	0.008 - 0.038
CAU.R Efficiency	NC	SCD	-0.014	0.006	0.071	-0.029 - 0.001
	NC	aMCI	0.014	0.005	0.044	0.000 - 0.028
	NC	AD	0.023	0.006	<0.001	-0.006 - 0.023
	SCD	aMCI	0.000	0.006	1.000	-0.015 - 0.015
	SCD	AD	0.009	0.006	0.788	-0.007 - 0.024
	aMCI	NC	-0.014	0.005	0.044	-0.028 - 0.000
	aMCI	SCD	0.000	0.006	1.000	-0.015 - 0.015
	aMCI	AD	0.009	0.005	0.662	-0.006 - 0.023
	d-AD	NC	-0.023	0.006	<0.001	-0.038 - 0.008
	d-AD	SCD	-0.009	0.006	0.788	-0.024 - 0.007
	d-AD	aMCI	-0.009	0.005	0.662	-0.023 - 0.006
ORBmid.L Efficiency	NC	SCD	0.092	0.020	<0.001	0.040 - 0.145
	NC	aMCI	0.095	0.019	<0.001	0.045 - 0.145
	NC	AD	0.097	0.020	<0.001	0.045 - 0.149
	SCD	aMCI	0.003	0.020	1.000	-0.050 - 0.055
	SCD	AD	0.005	0.021	1.000	-0.050 - 0.059
	aMCI	NC	-0.095	0.019	<0.001	-0.145 - 0.045
	aMCI	SCD	-0.003	0.020	1.000	-0.055 - 0.050
	aMCI	AD	-0.002	0.019	1.000	-0.049 - 0.053
	d-AD	NC	-0.097	0.020	<0.001	-0.149 - 0.045
	d-AD	SCD	-0.005	0.021	1.000	-0.059 - 0.050
	d-AD	aMCI	-0.002	0.019	1.000	-0.053 - 0.049
Table S11. Partial Pearson’s correlations between rich club, feeder and local connectivity strength and clinical performance. Partial Pearson’s correlations controlled for age, gender, and education were used to assess how rich club, feeder and local connectivity related to clinical performance in each group. The bold numbers represent significant correlations at $P<0.05$ without Bonferroni corrections. The star-labeled numbers represent significant correlations at $P<0.05$ after Bonferroni corrections for the number of cognitive test variables (AVLT-immediate recall, AVLT-delayed recall, AVLT-recognition, MMSE and MoCA).

COV: Age & Gender & Education	Rich Club Connectivity Strength	Feeder Connectivity Strength	Local Connectivity Strength	
	AVLT-Immediate Recall Scores	r 0.119	0.192	0.001
		p 0.202	0.089	0.496
	AVLT-Delayed Recall Scores	r -0.150	0.099	-0.012
NC DF=49		p 0.146	0.245	0.467
	AVLT-Recognition Scores	r -0.153	0.209	0.112
		p 0.141	0.070	0.218
	MMSE	r 0.085	0.157	0.120
		p 0.278	0.135	0.201
	MoCA	r -0.095	0.231	0.181
		p 0.253	0.051	0.102
SCD DF=39	AVLT-Immediate Recall Scores	r 0.047	0.234	0.087
		p 0.386	0.070	0.294
	AVLT-Delayed Recall Scores	r 0.223	0.362	0.214
		p 0.080	0.010*	0.090
	AVLT-Recognition Scores	r -0.027	0.162	-0.068
		p 0.433	0.156	0.336
	MMSE	r -0.018	0.064	-0.039
		p 0.456	0.346	0.405
	MoCA	r 0.152	0.061	0.006
		p 0.171	0.353	0.486
aMCI DF=53	AVLT-Immediate Recall Scores	r 0.118	0.226	0.019
		p 0.195	0.049	0.446
	AVLT-Delayed Recall Scores	r 0.231	0.442	0.149
		p 0.045	<0.001*	0.138
	AVLT-Recognition Scores	r 0.164	0.227	0.007
		p 0.116	0.048	0.480
	MMSE	r 0.177	0.110	0.023
		p 0.098	0.213	0.433
	MoCA	r 0.241	0.294	0.086
		p 0.038	0.015	0.266
d-AD DF=43	AVLT-Immediate Recall Scores	r 0.021	0.038	0.071
		p 0.446	0.403	0.321
	AVLT-Delayed Recall Scores	r 0.033	0.030	0.074
		p 0.415	0.422	0.315
	r 0.207	0.205	0.197	
Test	p	r	p	
--------------	------	------	------	
AVLT-Recognition Scores	0.086	0.089	0.097	
MMSE	0.340	0.040	0.034	
MoCA	0.472	0.088	0.161	
Table S12. Partial Pearson’s correlations between nodal efficiency and clinical performance. Partial Pearson’s correlations controlled for age, gender and education were used to assess how the nodal efficiency of the CAU.L and ORBmid.L related to clinical performance in each group. The bold numbers represent significant correlations at $P<0.05$ without Bonferroni corrections. The star-labeled numbers represent significant correlations at $P<0.05$ after Bonferroni corrections for the number of cognitive test variables (AVLT-immediate recall, AVLT-delayed recall, AVLT-recognition, MMSE and MoCA).

COV: Gender & Age & Education	CAU.L Efficiency	ORBmid.L Efficiency	
	r	p	
AVLT-Immediate Recall Scores	-0.178	0.208	
p	0.105	0.071	
r	-0.126	0.098	
AVLT-Delayed Recall Scores	p 0.190	0.247	
r	-0.035	0.111	
AVLT-Recognition Scores	p 0.402	0.218	
MMSE	r 0.484	0.091	
MoCA	r 0.054	-0.113	
p	0.354	0.216	
	r -0.021	-0.023	
p	0.447	0.443	
r	0.210	-0.042	
AVLT-Immediate Recall Scores	p 0.093	0.396	
r	0.021	0.141	
AVLT-Delayed Recall Scores	p 0.449	0.189	
MMSE	r 0.138	0.097	
MoCA	r -0.125	-0.014	
p	0.219	0.466	
	r -0.193	0.098	
p	0.079	0.239	
r	-0.078	0.119	
AVLT-Immediate Recall Scores	p 0.286	0.193	
r	-0.054	0.163	
AVLT-Delayed Recall Scores	p 0.348	0.117	
r	-0.244	0.268	
MMSE	p **0.036**	**0.024**	
MoCA	r 0.013	0.290	
p	0.463	**0.016**	
	r 0.253	-0.045	
p	**0.047**	0.383	
r	0.339	0.317	
AVLT-Immediate Recall Scores	p **0.011**	**0.017**	
r	0.385	0.167	
Test	r	p	
--------------	------	-----	-------
AVLT-Recognition Scores	0.290	0.004*	0.136
MMSE	0.235	0.026	0.437
MoCA	0.235	0.060	0.497
Table S13. Demographic, clinical and cognitive test variables for age-matched dataset.

Demographics and Neuropsychological Tests	NC	SCD	aMCI	d-AD	F	p^a	E_b
Age (years)	59	42	47	35	1.442	0.232	0.024
	(7.60)	(7.54)	(7.81)	(8.09)			
Education (years)	10.76	11.21	10.77	8.94	1.802	0.148	0.029
	(4.80)	(4.61)	(4.30)	(4.55)			
Gender (F/M)	38/21	25/17	25/22	23/13	1.612	0.657	-
AVLT-Immediate Recall Scores	8.98	8.28	6.54	3.56	67.452	<0.001	0.555
	(1.90)	(1.82)	(1.55)	(1.85)			
AVLT-Delayed Recall Scores	9.77	8.74	4.44	1.29	83.524	<0.001	0.607
	(3.04)	(2.76)	(2.78)	(1.81)			
AVLT-Recognition Scores	11.69	11.07	8.42	3.61	55.252	<0.001	0.506
	(2.62)	(2.46)	(3.51)	(3.16)			
MMSE	27.75	27.92	25.47	16.97	62.692	<0.001	0.537
	(2.26)	(1.78)	(3.45)	(7.12)			
MoCA	25.76	25.00	20.64	13.13	96.615	<0.001	0.641
	(3.37)	(2.94)	(3.78)	(5.57)			

^a Values for age and education derived from ANOVA; gender from chi-square test; all clinical/cognitive variables from ANCOVA with education as covariates.

^b Effect size; η² for demographic and clinical variables and partial η² for cognitive variables.

^c Least significant difference; post hoc testing on cognitive variables based on means adjusted for education.

aMCI: amnestic mild cognitive impairment; AVLT: auditory verbal learning test; d-AD: dementia of Alzheimer’s disease; MMSE: mini-mental state examination; MoCA: Montreal cognitive assessment; NC: normal control; SCD: subjective cognitive decline.
Table S14. Post hoc testing on cognitive variables from ANCOVA with education as covariates for age-matched dataset.

COV: Education (I) Group	(J) Group	Mean Difference (I-J)	SE	P	95% Confidence Interval for Difference		
					Lower Bound	Upper Bound	
AVLT-Immediate Recall Scores	SCU	NC	0.783	0.372	**0.037**	0.048	1.518
	SCU	aMCI	2.480	0.357	<0.001	1.775	3.184
	SCU	d-AD	5.366	0.398	<0.001	4.580	6.152
	SCD	NC	-0.783	0.372	**0.037**	-1.518	-0.048
	SCD	aMCI	1.697	0.383	<0.001	0.940	2.454
	SCD	d-AD	4.583	0.424	<0.001	3.745	5.421
	aMCI	SCU	-2.480	0.357	<0.001	-3.184	-1.775
	aMCI	SCD	-1.697	0.383	<0.001	-2.454	-0.940
	aMCI	d-AD	2.886	0.410	<0.001	2.077	3.696
	SCD	SCU	1.181	0.559	**0.036**	0.078	2.285
	SCD	aMCI	5.398	0.536	<0.001	4.340	6.456
	SCD	d-AD	8.376	0.597	<0.001	7.196	9.555
	aMCI	SCU	4.217	0.576	<0.001	3.080	5.354
	aMCI	SCD	7.195	0.637	<0.001	5.936	8.453
	aMCI	d-AD	2.978	0.616	<0.001	1.762	4.194
	SCU	SCU	0.743	0.536	<0.001	-6.456	-4.340
	SCU	aMCI	4.217	0.576	<0.001	-5.354	-3.080
	SCU	d-AD	2.978	0.616	<0.001	1.762	4.194
	aMCI	SCU	3.330	0.593	<0.001	2.159	4.501
	aMCI	SCD	7.995	0.661	<0.001	6.689	9.300
	aMCI	d-AD	4.664	0.682	<0.001	3.318	6.010
	SCD	SCU	-0.743	0.618	0.231	-0.478	1.965
	SCD	aMCI	2.587	0.637	<0.001	1.329	3.845
	SCD	d-AD	7.251	0.705	<0.001	5.859	8.644
	aMCI	SCU	-3.330	0.593	<0.001	-4.501	-2.159
	aMCI	SCD	-2.587	0.637	<0.001	-3.845	-1.329
	aMCI	d-AD	4.664	0.682	<0.001	3.318	6.010
	SCU	SCU	-7.995	0.661	<0.001	-9.300	-6.689
	SCU	aMCI	-7.251	0.705	<0.001	-8.644	-5.859
	SCU	d-AD	-4.664	0.682	<0.001	-6.010	-3.318
	aMCI	SCU	0.081	0.786	0.918	-1.470	1.633
	aMCI	SCD	2.403	0.753	**0.002**	0.916	3.890
	aMCI	d-AD	10.614	0.840	<0.001	8.955	12.272
	NC	aMCI	d-AD	MoCA			
------------	--------	--------	--------	--------			
SCD	-0.081	2.322	10.532	-1.189			
aMCI	2.322	-2.403	8.211	5.322			
d-AD	10.532	-10.614	-8.211	12.362			
aMCI	-2.403	5.322	-8.211	-5.322			
d-AD	8.211	-10.614	-8.211	12.362			
NC							
aMCI	5.322	4.133	11.173	-5.322			
d-AD	12.362	11.173	11.173	12.362			
MoCA							
SCD	1.189	4.133	11.173	-5.322			
aMCI	5.322	4.133	11.173	-5.322			
d-AD	12.362	11.173	11.173	12.362			
aMCI	-5.322	-4.133	7.040	-7.040			
d-AD	-12.362	-11.173	-7.040	-7.040			

Note: The above values represent statistical significance levels (p-values) for each comparison, with values in bold indicating significance at p < 0.001.
Table S15. Rich club coefficient for age-matched dataset.

k (degree)	NC Mean	NC SD	SCD Mean	SCD SD	aMCI Mean	aMCI SD	d-AD Mean	d-AD SD	F	p^a	Es^b
1	0.999	0.000	0.999	0.001	0.999	0.001	0.999	0.001	2.867	0.038	0.046
2	0.998	0.001	0.997	0.002	0.997	0.002	0.996	0.003	10.853	<0.001	0.153
3	0.996	0.003	0.993	0.004	0.994	0.003	0.989	0.005	27.048	<0.001	0.311
4	0.992	0.004	0.985	0.006	0.985	0.006	0.979	0.006	48.027	<0.001	0.445
5	0.985	0.006	0.975	0.008	0.974	0.008	0.963	0.009	64.814	<0.001	0.519
6	0.974	0.008	0.962	0.011	0.959	0.009	0.946	0.013	59.969	<0.001	0.500
7	0.961	0.009	0.949	0.012	0.944	0.012	0.925	0.018	58.885	<0.001	0.495
8	0.945	0.011	0.934	0.014	0.927	0.013	0.907	0.022	47.588	<0.001	0.442
9	0.929	0.011	0.918	0.015	0.911	0.017	0.888	0.026	41.479	<0.001	0.409
10	0.913	0.013	0.903	0.016	0.895	0.018	0.868	0.027	47.160	<0.001	0.440
11	0.898	0.014	0.886	0.019	0.879	0.022	0.851	0.031	37.201	<0.001	0.383
12	0.884	0.017	0.870	0.027	0.860	0.027	0.829	0.036	33.605	<0.001	0.359
13	0.867	0.020	0.851	0.035	0.842	0.032	0.812	0.038	24.729	<0.001	0.292
14	0.854	0.024	0.835	0.041	0.824	0.041	0.789	0.055	20.525	<0.001	0.255
15	0.838	0.026	0.818	0.047	0.809	0.041	0.772	0.058	18.634	<0.001	0.237
16	0.823	0.030	0.802	0.056	0.795	0.044	0.764	0.052	13.127	<0.001	0.180

^a Values from ANOVA.

^b Effect size; η^2 for rich club coefficient.
Table S16. Post hoc testing on rich club coefficient from ANOVA for age-matched dataset (Bonferroni-corrected for groups).

k (degree)	(I) Group	(J) Group	Mean Difference (I-J)	SE	P	95% Confidence Interval for Difference								
						Lower Bound								
						Upper Bound								
1	NC	SCD	0.000	0.000	0.387	0.000								
		aMCI	0.000	0.000	0.329	0.000								
		d-AD	0.000	0.000	0.042	0.000								
	SCD	NC	0.000	0.000	0.387	-0.001								
		aMCI	0.000	0.000	1.000	0.000								
		d-AD	0.000	0.000	1.000	0.000								
	aMCI	NC	0.000	0.000	0.329	-0.001								
		SCD	0.000	0.000	1.000	0.000								
		d-AD	0.000	0.000	1.000	0.000								
	d-AD	NC	0.000	0.000	0.042	-0.001								
		SCD	0.000	0.000	1.000	0.000								
		aMCI	0.000	0.000	1.000	0.000								
2	NC	SCD	0.001	0.000	0.007	0.000								
		aMCI	0.001	0.000	0.068	0.000								
		d-AD	0.002	0.000	<0.001*	0.001								
	SCD	NC	-0.001	0.000	0.007	-0.002								
		aMCI	0.000	0.000	1.000	-0.001								
		d-AD	0.001	0.000	0.142	0.000								
	aMCI	NC	-0.001	0.000	0.068	-0.002								
		SCD	0.000	0.000	-0.001	0.001								
		d-AD	0.001	0.000	0.015	0.000								
	d-AD	NC	-0.002	0.000	<0.001*	-0.003								
		SCD	-0.001	0.000	0.142	-0.002								
		aMCI	-0.001	0.000	0.015	-0.003								
	NC	SCD	0.003	0.001	<0.001*	0.001								
		aMCI	0.003	0.001	0.003	0.001								
		d-AD	0.007	0.001	<0.001*	0.005								
	SCD	NC	-0.003	0.001	<0.001*	-0.005								
		aMCI	-0.001	0.001	1.000	-0.003								
		d-AD	0.004	0.001	<0.001*	0.001								
	aMCI	NC	-0.003	0.001	0.003	-0.004								
		SCD	0.001	0.001	-0.001	0.003								
		d-AD	0.004	0.001	<0.001*	0.002								
	d-AD	NC	-0.007	0.001	<0.001*	-0.009								
		SCD	-0.004	0.001	<0.001*	-0.006								
		aMCI	-0.004	0.001	<0.001*	-0.006								
	NC	SCD	0.007	0.001	<0.001*	0.004								
		aMCI	0.007	0.001	<0.001*	0.004								
		d-AD	0.013	0.001	<0.001*	0.010								
	NC	aMCI	d-AD											
-----	----------	----------	----------											
SCD	-0.007	0.000	0.007											
	0.001	0.001	0.001											
	<0.001*	1.000	<0.001*											
	-0.010	-0.003	0.003											
	-0.004	0.003	0.010											
aMCI	NC	-0.007	0.000											
	0.001	0.001												
	<0.001*	1.000												
	-0.010	-0.003												
	-0.004	0.003												
	0.000	0.003												
	<0.001*	0.003												
	-0.010	-0.003												
	-0.004	0.003												
d-AD	NC	-0.013	0.006											
	0.001	0.001												
	<0.001*	1.000												
	-0.016	-0.006												
	-0.010	-0.003												
	-0.009	-0.003												
	0.000	0.002												
	0.002													
	<0.001*													
	-0.018	0.018												
	0.026													
NC	SCD	0.010	0.011											
	0.002	0.002												
	<0.001*	0.007												
	0.015													
	0.018													
	0.026													
SCD	NC	-0.011	0.002											
	0.001	0.001												
	<0.001*	1.000												
	-0.015	-0.006												
	-0.017	-0.008												
	-0.015	-0.006												
aMCI	SCD	-0.002	0.002											
	0.001	0.001												
	<0.001*	1.000												
	-0.026	-0.018												
	-0.022	-0.018												
	-0.026	0.023												
	-0.022	0.034												
d-AD	NC	-0.022	0.002											
	0.001	0.001												
	<0.001*	1.000												
	-0.026	-0.018												
	-0.022	-0.018												
	-0.022	0.034												
NC	SCD	0.012	0.015											
	0.002	0.002												
	<0.001*	0.010												
	0.020													
	0.034													
SCD	NC	-0.012	0.003											
	0.002	0.002												
	<0.001*	0.766												
	-0.017	-0.006												
	-0.010	0.023												
	-0.002	0.009												
aMCI	SCD	-0.003	0.003											
	0.002	0.002												
	<0.001*	0.766												
	-0.009	-0.009												
	-0.009	0.002												
d-AD	NC	-0.015	0.002											
	0.001	0.001												
	<0.001*	0.010												
	0.010													
	0.019													
aMCI	SCD	-0.003	0.003											
	0.002	0.002												
	<0.001*	0.766												
	-0.009	-0.009												
	-0.009	0.002												
d-AD	NC	-0.028	0.002											
	0.002	0.002												
	<0.001*	0.010												
	-0.034	-0.022												
	-0.034	0.019												
NC	SCD	0.012	0.017											
	0.003	0.003												
	<0.001*	0.005												
	0.019													
	0.019													
aMCI	SCD	0.005	0.003											
	0.003	0.003												
	<0.001*	0.374												
	-0.002	0.012												
	-0.002	0.012												
	-0.002	0.012												
d-AD	NC	-0.017	0.003											
	0.002	0.002												
	<0.001*	0.010												
	-0.019	-0.005												
	-0.019	0.005												
aMCI	SCD	-0.005	0.003											
	0.003	0.003												
	<0.001*	0.374												
	-0.012	0.002												
	-0.012	0.002												
	-0.012	0.002												
d-AD	NC	-0.035	0.003											
	0.003	0.003												
	<0.001*	0.010												
	-0.043	-0.028												
	-0.043	0.019												
8	NC	0.011	0.018											
	0.003	0.003												
	<0.001*	0.004												
	0.002	0.019												
	0.019													
	0.026													
	0.026	0.026												
	d-AD	0.037	0.003	<0.001*	0.029	0.046								
-------	-------	-------	-------	---------	-------	-------								
SCD	NC	-0.011	0.003	0.004	-0.019	-0.002								
	aMCI	0.007	0.003	0.165	-0.001	0.016								
	d-AD	0.027	0.003	<0.001*	0.018	0.036								
aMCI	NC	-0.018	0.003	<0.001*	-0.026	-0.010								
	SCD	-0.007	0.003	0.165	-0.016	0.001								
	d-AD	0.020	0.003	<0.001*	0.011	0.029								
d-AD	NC	-0.037	0.003	<0.001*	-0.046	-0.029								
	SCD	-0.027	0.003	<0.001*	-0.036	-0.018								
	aMCI	-0.020	0.003	<0.001*	-0.029	-0.011								
NC	SCD	0.011	0.004	0.018	0.001	0.020								
	aMCI	0.017	0.003	<0.001*	0.008	0.026								
	d-AD	0.040	0.004	<0.001*	0.031	0.050								
SCD	NC	-0.011	0.004	0.018	-0.020	-0.001								
	aMCI	0.007	0.004	0.429	-0.003	0.017								
	d-AD	0.030	0.004	<0.001*	0.019	0.040								
aMCI	NC	-0.017	0.003	<0.001*	-0.026	-0.008								
	SCD	-0.007	0.004	0.429	-0.017	0.003								
	d-AD	0.023	0.004	<0.001*	0.013	0.033								
d-AD	NC	-0.040	0.004	<0.001*	-0.050	-0.031								
	SCD	-0.030	0.004	<0.001*	-0.040	-0.019								
	aMCI	-0.023	0.004	<0.001*	-0.033	-0.013								
NC	SCD	0.011	0.004	0.026	0.001	0.020								
	aMCI	0.018	0.004	<0.001*	0.009	0.028								
	d-AD	0.045	0.004	<0.001*	0.035	0.055								
SCD	NC	-0.011	0.004	0.026	-0.020	-0.001								
	aMCI	0.007	0.004	0.326	-0.003	0.018								
	d-AD	0.034	0.004	<0.001*	0.023	0.045								
aMCI	NC	-0.018	0.004	<0.001*	-0.028	-0.009								
	SCD	-0.007	0.004	0.326	-0.018	0.003								
	d-AD	0.027	0.004	<0.001*	0.016	0.038								
d-AD	NC	-0.045	0.004	<0.001*	-0.055	-0.035								
	SCD	-0.034	0.004	<0.001*	-0.045	-0.023								
	aMCI	-0.027	0.004	<0.001*	-0.038	-0.016								
NC	SCD	0.012	0.004	0.032	0.001	0.024								
	aMCI	0.019	0.004	<0.001*	0.008	0.030								
	d-AD	0.048	0.005	<0.001*	0.035	0.060								
SCD	NC	-0.012	0.004	0.032	-0.024	-0.001								
	aMCI	0.007	0.005	0.828	-0.005	0.019								
	d-AD	0.035	0.005	<0.001*	0.022	0.048								
aMCI	NC	-0.019	0.004	<0.001*	-0.030	-0.008								
	SCD	-0.007	0.005	0.828	-0.019	0.005								
	d-AD	0.029	0.005	<0.001*	0.016	0.041								
d-AD	NC	-0.048	0.005	<0.001*	-0.060	-0.035								
	SCD	-0.035	0.005	<0.001*	-0.048	-0.022								
	aMCI	-0.029	0.005	<0.001*	-0.041	-0.016								
SCD	0.014	0.005	0.069	-0.001	0.028									
	NC	aMCI	d-AD	SCD	aMCI	d-AD								
---	----------	----------	----------	-----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------
12	NC	0.023	0.005	**<0.001***	0.010	0.037								
	d-AD	0.055	0.006	**<0.001***	0.040	0.070								
	SCD				aMCI	0.010	0.006	0.507	-0.005	0.025				
					d-AD	0.041	0.006	**<0.001***	0.025	0.057				
	aMCI	-0.023	0.005	**<0.001***	-0.037	-0.010								
	SCD	-0.010	0.006	0.507	-0.025	0.005								
	d-AD	0.032	0.006	**<0.001***	0.016	0.047								
	NC													
	d-AD													
13	NC				aMCI	0.009	0.007	1.000	-0.009	0.026				
	d-AD													
	SCD				aMCI	0.009	0.007	**<0.001***	0.021	0.058				
					d-AD	0.039	0.007	**<0.001***	0.012	0.049				
	aMCI	-0.025	0.006	**<0.001***	-0.041	-0.009								
	SCD	-0.009	0.007	1.000	-0.026	0.009								
	d-AD	0.030	0.007	**<0.001***	0.012	0.049								
	d-AD													
14	NC													
	d-AD													
	SCD				aMCI	0.011	0.008	1.000	-0.012	0.034				
					d-AD	0.046	0.009	**<0.001***	0.022	0.070				
	aMCI	-0.030	0.008	0.001	-0.051	-0.009								
	SCD	-0.011	0.008	1.000	-0.034	0.012								
	d-AD	0.035	0.009	**0.001***	0.012	0.059								
	d-AD													
15	NC													
	d-AD													
	SCD				aMCI	0.010	0.009	1.000	-0.014	0.034				
					d-AD	0.047	0.010	**<0.001***	0.021	0.073				
	aMCI	-0.029	0.008	0.003	-0.052	-0.007								
	SCD	-0.010	0.009	1.000	-0.034	0.014								
	d-AD	0.037	0.009	**0.001***	0.012	0.062								
	d-AD													
41	NC	-0.067	0.009	**<0.001***	-0.090	-0.043								
	d-AD	-0.047	0.010	**<0.001***	-0.073	-0.021								
	aMCI	-0.037	0.009	**0.001***	-0.062	-0.012								
	SCD	aMCI	d-AD	NC	aMCI	d-AD								
-------	-------	-------	--------	-------	-------	--------								
d-AD	0.059	0.010	<0.001*	0.034	0.010	0.065								
aMCI	NC	-0.022	0.009	0.113	-0.046	0.003								
	aMCI	0.007	0.010	1.000	-0.018	0.033								
	d-AD	0.038	0.010	0.002	0.010	0.065								
aMCI	NC	-0.029	0.009	0.008	-0.052	-0.005								
	SCD	-0.007	0.010	1.000	-0.033	0.018								
	d-AD	0.031	0.010	0.015	0.004	0.057								
d-AD	NC	-0.059	0.010	<0.001*	-0.085	-0.034								
	SCD	-0.038	0.010	0.002	-0.065	-0.010								
	aMCI	-0.031	0.010	0.015	-0.057	-0.004								
Table S17. Normalized rich club coefficient for age-matched dataset.

k (degree)	NC Mean	NC SD	SCD Mean	SCD SD	aMCI Mean	aMCI SD	d-AD Mean	d-AD SD	F	p	Es
1	1.000	0.000	1.000	0.000	1.000	0.000	1.000	0.000	1.497	0.217	0.024
2	1.001	0.001	1.001	0.001	1.001	0.001	1.001	0.001	3.774	0.012	0.059
3	1.001	0.001	1.002	0.002	1.002	0.002	1.003	0.002	5.062	0.002	0.078
4	1.002	0.002	1.003	0.003	1.004	0.003	1.005	0.004	13.030	<0.001	0.178
5	1.003	0.002	1.004	0.004	1.006	0.003	1.009	0.005	24.371	<0.001	0.289
6	1.004	0.003	1.007	0.005	1.009	0.005	1.014	0.007	36.300	<0.001	0.377
7	1.006	0.004	1.010	0.007	1.014	0.006	1.019	0.011	33.950	<0.001	0.361
8	1.008	0.004	1.015	0.008	1.019	0.008	1.027	0.013	39.639	<0.001	0.398
9	1.011	0.006	1.022	0.009	1.023	0.010	1.032	0.015	35.980	<0.001	0.375
10	1.015	0.008	1.027	0.010	1.029	0.011	1.037	0.016	31.503	<0.001	0.344
11	1.018	0.009	1.032	0.013	1.032	0.011	1.040	0.017	28.453	<0.001	0.322
12	1.022	0.011	1.036	0.016	1.034	0.014	1.043	0.020	15.944	<0.001	0.210
13	1.024	0.012	1.041	0.023	1.036	0.017	1.048	0.023	14.381	<0.001	0.193
14	1.028	0.015	1.044	0.025	1.039	0.023	1.017	0.178	0.916	0.434	0.015
15	1.030	0.016	1.050	0.033	1.051	0.028	0.935	0.338	5.128	0.002	0.079
16	1.033	0.021	1.036	0.168	1.038	0.159	0.835	0.454	7.350	<0.001	0.109

\(^a\) Values from ANOVA.

\(^b\) Effect size; \(\eta^2\) for normalized rich club coefficient.
Table S18. Post hoc testing on normalized rich club coefficient from ANOVA for age-matched dataset (Bonferroni-corrected for groups).

k (degree)	(I) Group	(J) Group	Mean Difference (I-J)	SE	P	95% Confidence Interval for Difference
	SCD	NC	0.000	0.000	1.000	0.000 - 0.000
	aMCI	NC	0.000	0.000	1.000	0.000 - 0.000
	d-AD	NC	0.000	0.000	1.000	0.000 - 0.000
1	SCD	NC	0.000	0.000	1.000	0.000 - 0.000
	aMCI	NC	0.000	0.000	1.000	0.000 - 0.000
	d-AD	NC	0.000	0.000	1.000	0.000 - 0.000
	SCD	aMCI	0.000	0.000	0.498	0.000 - 0.000
	d-AD	aMCI	0.000	0.000	0.384	0.000 - 0.000
	NC	NC	0.000	0.000	1.000	0.000 - 0.000
	SCF	NC	0.000	0.000	1.000	0.000 - 0.000
	aMCI	SCF	0.000	0.000	0.312	0.000 - 0.000
	d-AD	SCF	0.000	0.000	0.049	0.000 - 0.000
	SCD	aMCI	0.000	0.000	1.000	0.000 - 0.000
	d-AD	aMCI	0.000	0.000	0.384	0.000 - 0.000
2	SCD	NC	0.000	0.000	0.049	-0.001 - 0.000
	aMCI	NC	0.000	0.000	0.312	-0.001 - 0.000
	d-AD	NC	-0.001	0.000	0.024	-0.001 - 0.000
	SCD	aMCI	0.000	0.000	1.000	0.000 - 0.000
	d-AD	aMCI	0.000	0.000	0.384	0.000 - 0.000
	NC	NC	0.000	0.000	1.000	0.000 - 0.000
	SCF	NC	0.000	0.000	1.000	0.000 - 0.000
	aMCI	SCF	0.000	0.000	0.312	0.000 - 0.000
	d-AD	SCF	0.000	0.000	0.049	0.000 - 0.000
	SCD	aMCI	0.000	0.000	1.000	0.000 - 0.000
	d-AD	aMCI	0.000	0.000	0.384	0.000 - 0.000
3	SCD	NC	-0.001	0.000	0.079	-0.002 - 0.000
	aMCI	NC	-0.001	0.000	0.191	-0.002 - 0.000
	d-AD	NC	-0.001	0.000	0.002	-0.002 - 0.000
	SCD	aMCI	0.000	0.000	1.000	-0.001 - 0.001
	d-AD	aMCI	0.000	0.000	0.620	-0.002 - 0.000
	NC	NC	0.001	0.000	0.079	0.000 - 0.002
	SCF	NC	0.001	0.000	0.191	0.000 - 0.002
	aMCI	SCF	0.000	0.000	1.000	-0.001 - 0.001
	d-AD	SCF	-0.001	0.000	0.620	-0.002 - 0.000
	SCD	aMCI	0.000	0.000	1.000	-0.001 - 0.002
	d-AD	aMCI	0.000	0.000	0.620	0.000 - 0.002
4	SCD	NC	-0.001	0.000	0.178	-0.003 - 0.000
	aMCI	NC	-0.002	0.000	0.003	-0.003 - 0.000
	d-AD	NC	-0.004	0.000	<0.001*	-0.005 - 0.002
	NC	0.001	0.001	0.178	0.000	0.003
----	----------	-------	-------	-------	-------	-------
aMCI	-0.001	0.001		1.000	-0.002	0.001
d-AD	-0.002	0.001		0.001	-0.004	-0.001
aMCI	0.002	0.001		0.003	0.000	0.003
SCD	0.001	0.001		1.000	-0.001	0.002
d-AD	-0.002	0.001		0.042	-0.003	0.000
aMCI	0.002	0.001	0.001	0.001	0.004	
d-AD	0.004	0.001	<0.001*	0.002	0.005	
NC	0.002	0.001		0.129	-0.003	0.000
aMCI	-0.004	0.001	<0.001*	-0.005		-0.002
d-AD	-0.006	0.001	<0.001*	-0.008		-0.004
SCD	0.002	0.001		0.003	0.000	0.003
aMCI	-0.002	0.001		0.053	-0.004	0.000
d-AD	-0.004	0.001	<0.001*	-0.006		-0.002
aMCI	0.002	0.001		0.015	0.000	0.004
d-AD	0.004	0.001	<0.001*	0.004	0.008	
NC	0.002	0.001		0.009	-0.006	-0.001
aMCI	-0.006	0.001	<0.001*	-0.008		-0.003
d-AD	-0.010	0.001	<0.001*	-0.013		-0.008
SCD	0.003	0.001		0.009	0.001	0.006
aMCI	-0.003	0.001		0.075	-0.005	0.000
d-AD	-0.007	0.001	<0.001*	-0.010		-0.004
aMCI	0.003	0.001		0.075	0.000	0.005
d-AD	0.006	0.001	<0.001*	-0.007		-0.002
NC	0.010	0.001		0.008	0.008	0.013
aMCI	-0.005	0.001		0.05	-0.008	-0.001
d-AD	-0.008	0.001	<0.001*	-0.012		-0.005
SCD	0.007	0.001		0.004	0.004	0.010
aMCI	0.005	0.001	<0.001*	0.002	0.007	
d-AD	0.014	0.001	<0.001*	0.008	0.013	
NC	0.009	0.001		0.005	0.001	0.008
aMCI	-0.004	0.001		0.055	-0.008	0.000
d-AD	-0.009	0.002	<0.001*	-0.013		-0.005
aMCI	0.008	0.001	<0.001*	0.005	0.012	
SCD	0.004	0.001		0.055	0.000	0.008
d-AD	-0.005	0.002		0.002	-0.009	-0.001
aMCI	0.005	0.002		0.002	0.001	0.009

8 NC | 0.007 | 0.001 | <0.001* | -0.012 | | -0.003 |
| aMCI | -0.011 | 0.002 | <0.001* | -0.015 | | -0.007 |
d-AD	-0.018	0.002	<0.001*									
SCD	NC	0.007	0.003									
	aMCI	0.004	0.213									
	d-AD	-0.011	<0.001*									
aMCI	NC	0.011	0.007									
	SCD	0.004	0.213									
	d-AD	-0.008	<0.001*									
d-AD	NC	0.018	0.014									
	SCD	0.011	0.006									
	aMCI	0.008	<0.001*									
NC	SCD	-0.011	-0.016									
	aMCI	-0.012	<0.001*									
	d-AD	-0.021	<0.001*									
aMCI	NC	0.012	0.007									
	SCD	0.001	1.000									
	d-AD	-0.009	<0.001*									
d-AD	NC	0.021	0.016									
	SCD	0.010	0.004									
	aMCI	0.009	<0.001*									
NC	SCD	-0.012	-0.018									
	aMCI	-0.014	<0.001*									
	d-AD	-0.022	<0.001*									
SCD	NC	0.012	0.006									
	aMCI	-0.002	1.000									
	d-AD	-0.010	<0.001*									
d-AD	NC	0.022	0.016									
	SCD	0.010	0.003									
	aMCI	0.008	<0.001*									
NC	SCD	-0.014	-0.020									
	aMCI	-0.014	<0.001*									
	d-AD	-0.023	<0.001*									
SCD	NC	0.014	0.007									
	aMCI	0.000	1.000									
	d-AD	-0.009	<0.001*									
d-AD	NC	0.023	0.016									
	SCD	0.009	0.010									
	aMCI	0.009	0.007									
SCD	NC	-0.014	<0.001*									
	NC	aMCI	d-AD	SCD	aMCI	d-AD	NC	aMCI	d-AD	SCD	aMCI	d-AD
----	------	--------	------	------	--------	------	-----	--------	------	------	--------	------
12		-0.012	0.003		<0.001*		-0.021	0.003	<0.001*		-0.029	-0.012
	NC	0.014	0.003		<0.001*	0.006	0.022					
	aMCI	0.002	0.003		1.000	-0.007	0.010					
	d-AD	-0.007	0.003		0.257	-0.016	0.002					
13		-0.012	0.003		<0.001*	0.004	0.020					
	NC	0.012	0.003		<0.001*	0.004	0.022					
	aMCI	-0.002	0.003		1.000	-0.010	0.007					
	d-AD	0.009	0.003		0.066	-0.018	0.000					
	NC	0.012	0.004		<0.001*	0.012	0.029					
	aMCI	-0.024	0.004		<0.001*	-0.034	-0.013					
	SCD	0.017	0.004		<0.001*	0.007	0.027					
	aMCI	0.005	0.004		1.000	-0.006	0.015					
	d-AD	-0.007	0.004		0.607	-0.018	0.004					
	NC	0.012	0.004		0.005	0.003	0.022					
	aMCI	-0.005	0.004		1.000	-0.015	0.006					
	d-AD	-0.012	0.004		0.030	-0.022	-0.001					
	NC	0.024	0.004		<0.001*	0.013	0.034					
	aMCI	0.007	0.004		0.607	-0.004	0.018					
	d-AD	0.012	0.004		0.030	0.001	0.022					
	NC	-0.017	0.016		1.000	-0.060	0.027					
	aMCI	-0.012	0.016		1.000	-0.054	0.030					
	d-AD	0.010	0.017		1.000	-0.035	0.056					
	NC	0.017	0.016		1.000	-0.027	0.060					
	aMCI	0.005	0.017		1.000	-0.041	0.051					
	d-AD	0.027	0.018		0.856	-0.022	0.076					
	NC	-0.012	0.016		1.000	-0.030	0.054					
	aMCI	-0.005	0.017		1.000	-0.051	0.041					
	d-AD	0.022	0.018		1.000	-0.026	0.070					
	NC	-0.010	0.017		1.000	-0.056	0.035					
	aMCI	-0.027	0.018		0.856	-0.076	0.022					
	d-AD	-0.022	0.018		1.000	-0.070	0.026					
	NC	-0.020	0.030		1.000	-0.101	0.061					
	aMCI	-0.021	0.029		1.000	-0.099	0.058					
	d-AD	0.095	0.032		0.019	0.010	0.180					
	NC	0.020	0.030		1.000	-0.061	0.101					
	aMCI	-0.001	0.032		1.000	-0.086	0.085					
	d-AD	0.115	0.034		0.006	0.024	0.206					
	NC	0.021	0.029		1.000	-0.058	0.099					
	aMCI	0.001	0.032		1.000	-0.085	0.086					
	d-AD	0.116	0.033		0.004	0.027	0.205					
	NC	-0.095	0.032		0.019	-0.180	-0.010					
	aMCI	-0.115	0.034		0.006	-0.206	-0.024					
	d-AD	-0.116	0.033		0.004	-0.205	-0.027					
	SCD	aMCI	d-AD	SCD	aMCI	d-AD	aMCI	d-AD				
-----	--------	--------	--------	--------	--------	--------	--------	--------				
NC	-0.003	0.046	1.000	-0.127	0.121							
aMCI	-0.004	0.045	1.000	-0.124	0.116							
d-AD	0.199	0.049	<0.001*	0.069	0.328							
SCD	NC	0.003	0.046	1.000	-0.121	0.127						
aMCI	-0.001	0.049	1.000	-0.132	0.129							
d-AD	0.202	0.052	0.001	0.062	0.341							
aMCI	NC	0.004	0.045	1.000	-0.116	0.124						
SCD	0.001	0.049	1.000	-0.129	0.132							
d-AD	0.203	0.051	0.001	0.067	0.339							
d-AD	NC	-0.199	0.049	<0.001*	-0.328	-0.069						
SCD	-0.202	0.052	0.001	-0.341	-0.062							
aMCI	-0.203	0.051	0.001	-0.339	-0.067							
Table S19. Rich club, feeder and local connectivity strength for age-matched dataset.

ANOVA	F	p \(^a\)	Es \(^b\)
Rich Club Connectivity Strength	10.848	<0.001	0.153
Feeder Connectivity Strength	55.035	<0.001	0.478
Local Connectivity Strength	96.976	<0.001	0.618

\(^a\) Values from ANOVA.

\(^b\) Effect size; \(\eta^2\) for rich club, feeder and local connectivity strength.
Table S20. Post hoc testing on rich club, feeder and local connectivity strength from ANOVA for age-matched dataset (Bonferroni-corrected for groups).

ANOVA	(I) Group	(J) Group	Mean Difference (I-J)	SE	P	95% Confidence Interval for Difference	
						Lower Bound	Upper Bound
Rich Club Connectivity Strength	NC	SCD	0.777	0.393	0.296	-0.271	1.825
	aMCI	SCD	1.506	0.380	**0.001**	0.491	2.521
	d-AD	SCD	2.180	0.412	<0.001*	1.082	3.278
	NC	aMCI	-0.777	0.393	0.296	-1.825	0.271
	d-AD	aMCI	0.729	0.413	0.476	-0.373	1.831
	NC	aMCI	1.403	0.442	**0.011**	0.224	2.582
	d-AD	aMCI	-1.506	0.380	**0.001**	-2.521	-0.491
	NC	d-AD	-0.729	0.413	0.476	-1.831	0.373
	d-AD	d-AD	0.674	0.431	0.719	-0.476	1.823
FCN	NC	SCD	10.164	1.569	<0.001*	5.978	14.350
	aMCI	SCD	12.632	1.520	<0.001*	8.578	16.686
	d-AD	SCD	20.263	1.644	<0.001*	15.877	24.648
	NC	aMCI	-10.164	1.569	<0.001*	-14.350	-5.978
	d-AD	aMCI	2.468	1.650	0.819	-1.935	6.871
	NC	d-AD	-2.468	1.650	0.819	-6.871	1.935
	d-AD	d-AD	7.631	1.721	<0.001*	3.038	12.223
Feeder Connectivity Strength	NC	SCD	22.202	2.461	<0.001*	15.637	28.767
	aMCI	SCD	27.368	2.383	<0.001*	21.010	33.726
	d-AD	SCD	41.655	2.578	<0.001*	34.777	48.532
	NC	aMCI	-22.202	2.461	<0.001*	-28.767	-15.637
	d-AD	aMCI	5.165	2.588	0.285	-1.739	12.070
	NC	d-AD	-5.165	2.588	0.285	-12.070	1.739
	d-AD	d-AD	14.287	2.700	<0.001*	7.085	21.489
Local Connectivity Strength	NC	SCD	-27.368	2.383	<0.001*	-33.726	-21.010
	aMCI	SCD	-5.165	2.588	0.285	-12.070	1.739
	d-AD	SCD	14.287	2.700	<0.001*	7.085	21.489
	NC	d-AD	-41.655	2.578	<0.001*	-48.532	-34.777
	d-AD	d-AD	-19.452	2.769	<0.001*	-26.838	-12.067
	aMCI	d-AD	-14.287	2.700	<0.001*	-21.489	-7.085
Table S21. Network topological metrics for age-matched dataset.

ANOVA	F	p^a	Es^b
Strength	88.561	<0.001	0.596
Clustering Coefficient	11.586	<0.001	0.162
Normalized Clustering Coefficient	34.436	<0.001	0.365
Characteristic Path Length	39.791	<0.001	0.399
Normalized Characteristic Path Length	4.365	0.005	0.068

^a Values from ANOVA.

^b Effect size; η² for network topological metrics.
Table S22. Post hoc testing on network topological metrics from ANOVA for age-matched dataset (Bonferroni-corrected for groups).

ANOVA	(I) Group	(J) Group	Mean Difference (I-J)	SE	P	95% Confidence Interval for Difference	
						Lower Bound	Upper Bound
Strength	NC	SCD	0.737	0.088	<0.001*	0.503	0.970
		aMCI	0.922	0.085	<0.001*	0.696	1.149
		d-AD	1.424	0.092	<0.001*	1.179	1.669
	SCD	NC	-0.737	0.088	<0.001*	-0.970	-0.503
		aMCI	0.186	0.092	0.272	-0.060	0.432
		d-AD	0.688	0.099	<0.001*	0.425	0.951
	aMCI	NC	-0.922	0.085	<0.001*	-1.149	-0.696
		SCD	-0.186	0.092	0.272	-0.432	0.060
		d-AD	0.502	0.096	<0.001*	0.245	0.759
	d-AD	NC	-1.424	0.092	<0.001*	-1.669	-1.179
		SCD	-0.688	0.099	<0.001*	-0.951	-0.425
		aMCI	-0.502	0.096	<0.001*	-0.759	-0.245
Coefficient	NC	SCD	0.015	0.005	0.014	0.002	0.027
		aMCI	0.016	0.005	0.005	0.003	0.028
		d-AD	0.028	0.005	<0.001*	0.015	0.042
Normalized	SCD	NC	-0.015	0.005	0.014	-0.027	-0.002
Clustering		aMCI	0.001	0.005	1.000	-0.012	0.014
		d-AD	0.014	0.005	0.057	0.000	0.028
Coefficient	aMCI	NC	-0.016	0.005	0.005	-0.028	-0.003
		SCD	-0.001	0.005	1.000	-0.014	0.012
		d-AD	0.013	0.005	0.086	-0.001	0.027
d-AD	NC	d-AD	-0.028	0.005	<0.001*	-0.042	-0.015
	SCD	-0.014	0.005	0.057	-0.028	0.000	
	aMCI	-0.013	0.005	0.086	-0.027	0.001	
NC	SCD	0.181	0.033	<0.001*	-0.270	-0.092	
	aMCI	-0.148	0.032	<0.001*	-0.234	-0.062	
	d-AD	-0.352	0.035	<0.001*	-0.446	-0.259	
d-AD	NC	SCD	0.181	0.033	<0.001*	0.092	0.270
	aMCI	0.033	0.035	1.000	-0.061	0.127	
	d-AD	-0.171	0.038	<0.001*	-0.272	-0.071	
aMCI	SCD	0.148	0.032	<0.001*	0.062	0.234	
	aMCI	-0.033	0.035	1.000	-0.127	0.061	
	d-AD	-0.204	0.037	<0.001*	-0.302	-0.106	
Characteristic	NC	SCD	-0.380	0.072	<0.001*	-0.572	-0.187
Path Length		aMCI	-0.465	0.070	<0.001*	-0.652	-0.279
	d-AD	-0.803	0.076	<0.001*	-1.005	-0.601	
	NC	SCD	aMCI	d-AD			
-------	--------	--------	--------	--------			
SCD	0.380	0.072	<0.001*	0.187	0.572		
aMCI	-0.085	0.076	1.000	-0.288	0.117		
d-AD	-0.423	0.081	<0.001*	-0.640	-0.207		
aMCI	0.465	0.070	<0.001*	0.279	0.652		
SCD	0.085	0.076	1.000	-0.117	0.288		
d-AD	-0.338	0.079	<0.001*	-0.549	-0.127		
d-AD	0.803	0.076	<0.001*	0.601	1.005		
SCD	0.423	0.081	<0.001*	0.207	0.640		
aMCI	0.338	0.079	<0.001*	0.127	0.549		
NC	SCD	-0.007	0.003	0.042	-0.014	0.000	
aMCI	-0.001	0.002	1.000	-0.008	0.005		
d-AD	-0.008	0.003	0.024	-0.015	-0.001		
d-AD	NC	0.007	0.003	0.042	0.000	0.014	
SCD	0.005	0.003	0.238	-0.002	0.013		
aMCI	-0.001	0.003	1.000	-0.008	0.007		
d-AD	-0.006	0.003	0.143	-0.014	0.001		
SCD	NC	0.008	0.003	0.024	0.001	0.015	
aMCI	0.001	0.003	1.000	-0.007	0.008		
d-AD	0.006	0.003	0.143	-0.001	0.014		
Table S23. Partial Pearson’s correlations between normalized rich club coefficients and clinical performance for age-matched dataset. Partial Pearson’s correlations controlled for education were used to assess how normalized rich club coefficients related to clinical performance in each group. The bold numbers represent significant correlations at \(P<0.05 \). The star-labeled numbers represent significant correlations at \(P<0.05 \) after Bonferroni corrections for the number of cognitive test variables (AVLT-immediate recall, AVLT-delayed recall, AVLT-recognition, MMSE and MoCa).

COV: Education	k	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
AVLT-Immediate																
Delayed																
AVLT-Delayed																
Recognition																
MMSE																
MoCA																
AVLT-Immediate																
Delayed																
AVLT-Delayed																
Recognition																
MMSE																
MoCA																

Note: Significant correlations at \(P<0.05 \).
	MMSE	MoCA													
r	-0.043	0.086	-0.114	-0.095	-0.214	-0.247	-0.258	-0.079	-0.149	-0.241	-0.240	-0.409	-0.055	-0.041	0.024
p	0.411	0.325	0.274	0.309	0.128	0.094	0.084	0.339	0.216	0.100	0.101	0.012	0.387	0.415	0.450
r	-0.116	0.041	-0.064	-0.073	-0.187	-0.219	-0.224	-0.060	-0.128	-0.245	-0.234	-0.337	-0.071	-0.033	-0.012
p	0.271	0.415	0.368	0.351	0.161	0.122	0.117	0.376	0.250	0.096	0.106	0.034	0.356	0.431	0.475
Table S24. Partial Pearson’s correlations between rich club coefficients and clinical performance for age-matched dataset. Partial Pearson’s correlations controlled for education were used to assess how rich club coefficients related to clinical performance in each group. The bold numbers represent significant correlations at \(P<0.05\). The star-labeled numbers represent significant correlations at \(P<0.005\) after Bonferroni corrections for the number of cognitive test variables (AVLT-immediate recall, AVLT-delayed recall, AVLT-recognition, MMSE and MoCA).

COV: Education	k	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	AVLT-Immediate Recall Scores	r 0.131 0.126 0.120 -0.088 0.086 -0.055 -0.005 0.040 -0.046 -0.031 0.054 0.066 0.047 0.104 0.170														
	AVLT-Delayed Recall Scores	r 0.179 0.189 0.201 0.269 0.274 0.352 0.487 0.391 0.374 0.415 0.354 0.323 0.373 0.234 0.117														
	AVLT-Recognition Scores	r 0.246 0.053 0.027 -0.031 -0.057 -0.147 -0.086 0.058 -0.037 0.059 0.065 0.054 0.028 0.089 0.128														
	MMSE Scores	p 0.041 0.356 0.427 0.414 0.345 0.151 0.275 0.343 0.398 0.341 0.325 0.353 0.422 0.267 0.185														
	MoCA Scores	r 0.301 0.095 0.051 0.014 0.022 -0.061 0.018 0.222 0.197 0.173 0.123 0.069 0.045 0.132 0.112														
	SCD MMSE Scores	p 0.016 0.254 0.361 0.462 0.438 0.334 0.449 0.059 0.083 0.112 0.195 0.316 0.376 0.178 0.217														
	SCD MoCA Scores	r 0.078 0.074 0.145 0.179 0.121 0.029 0.017 0.093 0.183 0.117 0.047 0.176 0.194 0.218 0.140														

\[\text{AVLT-Immediate Recall} \]
\[\text{AVLT-Delayed Recall} \]
\[\text{AVLT-Recognition} \]
\[\text{MMSE} \]
\[\text{MoCA} \]
\[\text{SCD} \]
\[\text{MMSE} \]
\[\text{MoCA} \]
\[\text{AVLT-Immediate Recall} \]
\[\text{AVLT-Delayed Recall} \]
\[\text{AVLT-Recognition} \]
\[\text{MMSE} \]
\[\text{MoCA} \]
\[\text{SCD} \]
\[\text{MMSE} \]
\[\text{MoCA} \]
\[\text{AVLT-Immediate Recall} \]
\[\text{AVLT-Delayed Recall} \]
\[\text{AVLT-Recognition} \]
\[\text{MMSE} \]
\[\text{MoCA} \]
\[\text{SCD} \]
\[\text{MMSE} \]
\[\text{MoCA} \]
\[\text{AVLT-Immediate Recall} \]
\[\text{AVLT-Delayed Recall} \]
\[\text{AVLT-Recognition} \]
\[\text{MMSE} \]
\[\text{MoCA} \]
	r	0.583	0.204	0.172	0.253	0.203	0.216	0.426	0.397	0.301	0.149	0.106	0.033	0.111	0.126	
	p	<0.001	0.140	0.182	0.089	0.141	0.125	0.009	0.015							
MMSE																
	r	0.616	0.176	0.161	0.154	0.096	0.147	0.360	0.380	0.226	0.043	0.053	-0.031	-0.078	-0.035	0.025
	p	<0.001	0.175	0.198	0.209	0.306	0.219	0.025	0.019	0.115	0.412	0.391	0.436	0.340	0.427	0.447
Table S25. Partial Pearson’s correlations between rich club, feeder and local connectivity strength and clinical performance for age-matched dataset. Partial Pearson’s correlations controlled for education were used to assess how rich club, feeder and local connectivity strength related to clinical performance in each group. The bold numbers represent significant correlations at $P<0.05$. The star-labeled numbers represent significant correlations at $P<0.05$ after Bonferroni corrections for the number of cognitive test variables (AVLT-immediate recall, AVLT-delayed recall, AVLT-recognition, MMSE and MoCA).

COV: Education	Rich Club Connectivty Strength	Feeder Connectivity Strength	Local Connectivity Strength	
NC (DF=49)				
AVLT-Immediate Recall Scores	r 0.105	0.194	-0.040	
p 0.232	0.086	0.391		
AVLT-Delayed Recall Scores	r -0.148	0.120	-0.045	
p 0.150	0.201	0.377		
AVLT-Recognition Scores	r -0.171	0.217	0.067	
p 0.115	0.063	0.321		
MMSE	p 0.060	0.168	0.103	
MoCA	p -0.078	0.231	0.234	
SCD (DF=36)				
AVLT-Immediate Recall Scores	r 0.074	0.237	0.086	
p 0.329	0.076	0.304		
AVLT-Delayed Recall Scores	r 0.278	0.426	0.323	
p 0.046	0.003*	0.024		
AVLT-Recognition Scores	r -0.079	0.128	-0.054	
p 0.318	0.222	0.374		
MMSE	r 0.038	0.216	0.100	
MoCA	r 0.411	0.097	0.276	
aMCI (DF=42)				
AVLT-Immediate Recall Scores	r 0.065	0.255	0.096	
p 0.338	0.048	0.268		
AVLT-Delayed Recall Scores	r 0.262	0.486	0.166	
p 0.043	<0.001*	0.140		
AVLT-Recognition Scores	r 0.155	0.233	0.000	
p 0.158	0.064	0.500		
MMSE	r 0.145	0.189	0.122	
MoCA	r 0.173	0.110	0.216	
d-AD (DF=28)				
AVLT-Immediate Recall Scores	r 0.105	0.032	0.073	
p 0.290	0.434	0.350		
AVLT-Delayed Recall Scores	r 0.061	0.033	0.140	
p 0.375	0.432	0.230		
	r			
-------------	---------	-------	-------	
AVLT-Recognition Scores	0.062	0.328	0.332	
	p	0.372	**0.038**	**0.037**
MMSE	r	-0.001	0.215	0.265
	p	0.498	0.127	0.079
MoCA	r	-0.060	0.130	0.154
	p	0.376	0.247	0.209
Table S26. Partial Pearson’s correlations between network topological metrics and clinical performance for age-matched dataset. Partial Pearson’s correlations controlled for education were used to assess how network topological metrics related to clinical performance in each group. The bold numbers represent significant correlations at $P<0.05$ without Bonferroni corrections. The star-labeled numbers represent significant correlations at $P<0.05$ after Bonferroni corrections for the number of cognitive test variables (AVLT-immediate recall, AVLT-delayed recall, AVLT-recognition, MMSE and MoCA).

COV: Education	Strength	Clustering Coefficient	Normalized Clustering Coefficient	Characteristic Path Length	Normalized Characteristic Path Length	
AVLT-Immediate	r 0.061	-0.031	-0.157	-0.059	0.024	
Recall Scores	p 0.335	0.413	0.135	0.342	0.433	
AVLT-Delayed	r 0.001	0.120	-0.046	0.022	0.124	
Recall Scores	p 0.498	0.200	0.375	0.439	0.192	
AVLT-Recogntion	r 0.114	0.071	-0.181	-0.085	0.072	
NC						
SCD						
AVLT-Immediate	r 0.160	0.058	-0.291	-0.136	-0.059	
Recall Scores	p 0.169	0.364	0.038	0.208	0.363	
AVLT-Delayed	r 0.398	0.138	-0.339	-0.390	-0.215	
Recall Scores	p 0.006*	0.205	0.019	0.007*	0.098	
AVLT-Recogntion	r 0.016	0.105	-0.122	0.045	0.139	
SCD						
AVLT-Immediate	r 0.170	0.051	-0.239	-0.092	-0.084	
Recall Scores	p 0.135	0.372	0.059	0.276	0.294	
AVLT-Delayed	r 0.328	0.207	-0.423	-0.264	-0.160	
Recall Scores	p 0.015	0.089	0.002*	0.042*	0.150	
AVLT-Recogntion	r 0.111	0.361	-0.178	-0.054	-0.137	
aMCI						
AVLT-Immediate	r 0.170	0.051	-0.239	-0.092	-0.084	
Recall Scores	p 0.135	0.372	0.059	0.276	0.294	
AVLT-Delayed	r 0.328	0.207	-0.423	-0.264	-0.160	
Recall Scores	p 0.015	0.089	0.002*	0.042*	0.150	
AVLT-Recogntion	r 0.111	0.361	-0.178	-0.054	-0.137	
d-AD						
AVLT-Immediate	r 0.066	-0.143	-0.287	0.004	-0.196	
Recall Scores	p 0.365	0.225	0.062	0.492	0.150	
AVLT-Delayed	r 0.102	-0.003	-0.024	-0.040	-0.151	
Recall Scores	p 0.296	0.493	0.450	0.416	0.213	
	r	0.329	0.071	-0.140	-0.302	-0.064
----------------	----	-------	-------	--------	--------	--------
p	0.038	0.354	0.230	0.052	0.368	
AVLT-Recognition Scores						
r	0.240	0.144	-0.114	-0.165	-0.062	
p	0.100	0.225	0.274	0.192	0.373	
MMSE						
r	0.136	-0.068	-0.118	-0.097	-0.111	
p	0.237	0.360	0.267	0.305	0.280	
MoCA						
Table S27. Partial Pearson’s correlations between network topological metrics and rich club/feeder/local connectivity strength. Partial Pearson’s correlations controlled for age and gender were used to assess how network topological metrics related to rich club/feeder/local connectivity strength. The bold numbers represent significant correlations at $P<0.05$. The star-labeled numbers represent significant correlations at $P<0.05$ after Bonferroni corrections for the number of variables (=15).

	Rich Club Connectivity Strength	Feeder Connectivity Strength	Local Connectivity Strength
COV: Age & Gender			
Strength	r 0.579	$p <0.001^*$	0.945
			$p <0.001^*$
			0.977
Clustering Coefficient	r 0.282	$p <0.001^*$	0.564
			$p <0.001^*$
			0.524
Characteristic Path Length	r -0.552	$p <0.001^*$	-0.884
			$p <0.001^*$
			-0.894
Normalized Clustering Coefficient	r -0.568	$p <0.001^*$	-0.721
			$p <0.001^*$
			-0.608
Normalized Characteristic Path Length	r -0.408	$p <0.001^*$	-0.341
			$p <0.001^*$
			-0.242
			$p 0.002^*$
Figures

Figure S1. Group differences in rich club networks properties based on individual rich club selection. Bar graphs display the mean (standard error) age and gender-corrected values for (A) rich club, (B) feeder and (C) local connectivity strength (N=183). *P<0.05, **P<0.01, ***P<0.001.

Figure S2. (A) Length of rich club, feeder, and local connections across all the groups of subjects (N=183). Connection length estimated from the fiber length in mm between pairs of connected nodes for each network. (B) FABIRC of rich club, feeder, and local connections across all the groups of subjects (N=183).
Figure S3. Group differences in rich club networks properties by regressing out average fiber length. Bar graphs display the mean (standard error) age and gender-corrected values for (A) rich club, (B) feeder and (C) local connectivity strength (N=183). *P*<0.05, **P**<0.01, ***P***<0.001.
Figure S4. Nodes with the highest number of aberrant connections in (A) SCD, (B) aMCI, and (D) d-AD compared with NC. Nodes with the highest number of aberrant connections in each patient groups (range = 11 to 27 aberrant connections), based on two-sample t-test (NC versus each patient groups) with FDR corrected to the P values to correct for multiple comparisons across all edges. Significance was set at $P<0.05$. The red nodes represent the affected nodes in each group.