Metastatic inflammatory breast cancer: survival outcomes and prognostic factors in the national, multicentric, and real-life French cohort (ESME)

D. Dano, A. Lardy-Cleaud, A. Monneur, N. Quenel-Tueux, C. Levy, M.-A. Mouret-Reynier, B. Coudert, A. Mailliez, J.-M. Ferrero, S. Guiu, et al.

To cite this version:
D. Dano, A. Lardy-Cleaud, A. Monneur, N. Quenel-Tueux, C. Levy, et al.. Metastatic inflammatory breast cancer: survival outcomes and prognostic factors in the national, multicentric, and real-life French cohort (ESME). ESMO Open, 2021, 6 (4), pp.100220. 10.1016/j.esmoop.2021.100220. hal-03426433

HAL Id: hal-03426433
https://hal.science/hal-03426433
Submitted on 2 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Metastatic inflammatory breast cancer: survival outcomes and prognostic factors in the national, multicentric and real-life French cohort (ESME)

Running title: Metastatic inflammatory breast cancer outcomes

Authors: Domitille Dano1*; Audrey Lardy-Cleaud2+; Audrey Monneur1+; Nathalie Quenel-Tueux3; Christelle Levy4; Marie-Ange Mouret-Reynier5; Bruno Coudert6; Audrey Mailliez7; Jean-Marc Ferrero8; Séverine Guiu9; Mario Campone10; Thibault de La Motte Rouge11; Thierry Petit12; Barbara Pistilli13; Florence Dalenc14; Gaëtane Simon15; Florence Lerebours16; Sylvie Chabaud2; François Bertucci1,17; Anthony Gonçalves1,17

Affiliations:

1. Department of Medical Oncology, Institut Paoli-Calmettes, 232, Bd de Ste-Marguerite, 13009 Marseille, France
2. Biometrics Unit, Centre Léon Bérard, 28, Promenade Léa et Napoléon Bullukian, 69008 Lyon, France
3. Department of Medical Oncology, Institut Bergonié, 229, Cours de l’Argonne, 33000 Bordeaux, France
4. Department of Medical Oncology, Centre François Baclesse, 3, Av. du Général Harris, 14000 Caen, France
5. Department of Medical Oncology, Centre Jean Perrin, 58, rue Montalembert, 63011 Clermont-Ferrand, France
6. Department of Medical Oncology, Centre Georges François Leclerc, 1, rue Pr Marion, 21079 Dijon, France
7. Department of Medical Oncology, Centre Oscar Lambret 3, rue Frédéric Combemale, 59000 Lille, France
8. Department of Medical Oncology, Centre Antoine Lacassagne, 33, Avenue de valambrose, 06189 Nice, France
9. Department of Medical Oncology, Institut du Cancer de Montpellier, 208, rue des Apothicaires, 34298 Montpellier, France
10. Department of Medical Oncology, Institut de Cancérologie de l’Ouest, Bd Jacques Monod, 44805 Nantes St-Herblain Cedex, France
11. Medical Oncology Department, Centre Eugène Marquis, Av. de la Bataille Flandres-Dunkerque, 35000 Rennes, France
12. Department of Medical Oncology, Centre Paul Strauss, 3, rue de la porte de l’hôpital, 67065 Strasbourg, France
13. Department of Cancer Medicine, Gustave Roussy, 114, rue Edouard Vaillant, 94800 Villejuif, France
14. Department of Medical Oncology, Institut Claudius Regaud - IUCT Oncopole, 1, Av. Irène-Joliot-Curie, 31059 Toulouse, France
15. Data Office, Unicancer, 101, rue de Tolbiac, 75654 Paris, France

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license https://creativecommons.org/licenses/by-nc/4.0/
16. Department of Medical Oncology, Institut Curie, 26, rue d’Ulm, 75005 Paris & Saint-Cloud, France
17. Aix-Marseille University, CNRS U7258, INSERM U1068, Institut Paoli-Calmettes, CRCM, Marseille, France

* Both authors equally contributed

*Corresponding author: Prof. Anthony Gonçalves, Department of Medical Oncology, Institut Paoli-Calmettes, 232, Bd de Ste-Marguerite, 13232 Marseille Cedex 09, France. Email: goncalvesa@ipc.unicancer.fr; Phone number: +33 4 91 22 35 37; Fax: + 33 4 91 22 36 70

Abstract words count: 277

Manuscript words count: 3565
ABSTRACT

Background: Primary inflammatory breast cancer (IBC) is a rare and aggressive entity whose prognosis has been improved by multimodal therapy. However, 5-year overall survival (OS) remains poor. Given its low incidence, the prognosis of IBC at metastatic stage is poorly described.

Methods: This study aimed to compare OS calculated from the diagnosis of metastatic disease between IBC patients and non-IBC patients in the ESME database (N=16,702 patients). Secondary objectives included progression-free survival (PFS) after first-line metastatic treatment, identification of prognostic factors for OS and PFS, and evolution of survival during the study period.

Results: From 2008 to 2014, 7,465 patients with metastatic breast cancer and known clinical status of their primary tumor (T) were identified (582 IBC and 6,883 non-IBC). Compared with metastatic non-IBC, metastatic IBC was associated with less hormone receptor-positive (44% vs 65.6%), more HER2-positive (30% vs 18.6%), more triple-negative (25.9% vs 15.8%) cases, more frequent de novo M1 stage (53.3% vs 27.7%; p<0.001), and shorter median disease-free interval (2.02 years vs. 4.9 years; p<0.001). With a median follow-up of 50.2 months, median OS was 28.4 [95%CI 24.1-33.8] versus 37.2 months [95%CI 36.1-38.5] in metastatic IBC and non-IBC cases, respectively (p<0.0001, log-rank test). By multivariate analysis, OS was significantly shorter in the metastatic IBC group compared with the metastatic non-IBC group (HR 1.27 [95%CI 1.1-1.4], p=0.0001). Survival of metastatic IBC patients improved over the study period: median OS was 24 months [95%CI 20-31.9], 29 months [95%CI 21.7-39.9] and 36 months [95%CI 27.9-NE] if diagnosis of metastatic disease was done until 2010, between 2011 and 2012, and from 2013, respectively (p=0.003).

Conclusions: IBC is independently associated with adverse outcome when compared with non-IBC in the metastatic setting.

Key words: metastatic breast cancer, inflammatory breast cancer, real-life study, prognostic factors, multimodal therapy
HIGHLIGHTS OF THE MANUSCRIPT

- Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer with poor prognosis.
- OS were compared between IBC and non-IBC patients in national French cohort of metastatic breast cancer (ESME)
- IBC was correlated with more pejorative histologic characteristics: more HER2+, more triple negative and less HR positive.
- Outcomes (OS and PFS) were significantly and independently worse in IBC than non-IBC metastatic breast cancer.
INTRODUCTION

Primary inflammatory breast cancer (IBC) is a rare (5% of all cases) and aggressive form of breast cancer. IBC is classified as T4d in the American Joint Committee on Cancer (AJCC) Cancer Staging, eighth edition\textsuperscript{1,2}, and diagnosis is based on inflammatory clinical signs arising quickly and pathological confirmation of an invasive carcinoma. Survival of IBC patients was greatly improved by the introduction of a multimodal therapeutic strategy including neoadjuvant chemotherapy. However, the 5-year survival of non-metastatic stages still remains close to 50-60%\textsuperscript{2}.

Such a poor prognosis of IBC is due in a large part to its strong metastatic potential. Thus, patients with IBC are three times as likely as those with non-inflammatory breast cancer (non-IBC) to present with metastasis on diagnosis\textsuperscript{3,4,5,6,7}. In addition, several retrospective studies comparing non-metastatic IBC and locally advanced non-IBC have suggested a significantly worse outcome\textsuperscript{8,9,10}. Yet, in the neoadjuvant setting, our recent results suggest that IBC is not less sensitive to chemotherapy than non-IBC\textsuperscript{11}.

Among stage IV disease, whether the outcome of IBC patients is worse than that of non-IBC is still under debate. An analysis of the Surveillance Epidemiology and End Results (SEER) registry found a reduced breast cancer-specific survival in stage IV IBC (n=1,085) compared to stage IV non-IBC (n=13,280), but the limited number of available clinical data prevented specific multivariate analysis\textsuperscript{12}. A recent monocentric study from the MD Anderson Cancer Center involving 1,504 patients with stage IV disease, including 206 IBC and 1,298 non-IBC, was reported. With a median follow-up period of 4.7 years, patients with IBC had a shorter median overall survival than those with non-IBC, and IBC status was an independent poor-prognosis factor\textsuperscript{13}. Yet, this study did not examine outcomes of metastatic IBC patients with
metachronous disease. In addition, patients were enrolled over a large period of time (from 1987 to 2012), which may favor heterogeneity of diagnostic and therapeutic procedures. Thus, data remains limited comparing specific features and outcome of IBC at the metastatic stage.

The Epidemiological Strategy and Medical Economics (ESME) program is an academic initiative led by Unicancer, the French network of cancer centers, to centralize real-life data on metastatic breast cancer (MBC)\textsuperscript{14}. Such a large clinically-annotated cohort may be of interest in a rare disease such as IBC. The main objective of the present study was to describe the overall survival (OS) of metastatic IBC patients comparatively to metastatic non-IBC patients. Secondary objectives included description of the population in terms of clinical, pathological and therapeutic features, the progression-free survival (PFS) after first-line metastatic treatment, specific prognostic factors, and evolution of survival outcome with time.

**MATERIALS AND METHODS**

**Study design and data source**

We conducted a non-interventional, retrospective, comparative study based on the ESME-MBC database that is managed by R&D Unicancer. This database gathers individual data from all patients, male or female, ≥18 years, with MBC whose first metastatic disease was treated (either completely or partially) in one of the 18 French Cancer Centers participating in the ESME program. The resulting cohort represents a nation-wide, population-based registry. As previously described\textsuperscript{14}, these centralized data do not contain any personal data on patients. In compliance with the authorization delivered by the French Data Protection
agency to R&D Unicancer (Registration ID 1704113 and authorization N°DE-2013.-117, NCT03275311), only aggregated statistical reports were provided. Moreover, in compliance with the applicable European regulations, a complementary authorization was obtained on 14-Oct-2019 regarding the ESME research Data Warehouse. Accordingly, no informed consent signature was required. The present study was approved by an independent ethics committee (Comité de Protection des Personnes Sud-Est II-2015-79). In this study, data collection and follow-up were conducted until the cut-off date of 15, January 2016.

Raw data were generated at the Unicancer large-scale facility. Derived data supporting the findings of this study are available from the corresponding author upon request.

**Study population**

Eligible patients were diagnosed for metastatic disease between 01 January 2008 and 31 December 2014 and had their initial AJCC T stage available in the database. According to AJCC TNM classification, patients were considered as IBC (T4d) or non-IBC (T0, Tis, Tis (DCIS), Tis (CLIS), Tis (Paget), T1, T1 mic, T1a, T1b, T1c, T2, T3, T4, T4a, T4b, T4c). Diagnosis of IBC was based on clinical signs (redness, edema, “peau d’orange”) arising quickly and involving more than one-third of the breast, with or without an underlying palpable tumor with pathological confirmation of an invasive carcinoma. The metastatic disease was defined as de novo (M1) when the metastasis was diagnosed synchronously or ≤6 months after diagnosis of primary tumor, and recurrent (M0) when the metastasis was diagnosed >6 months after the diagnosis of primary tumor. MBC treatment strategy could include surgery, radiotherapy, chemotherapy, targeted therapy, and endocrine therapy. Breast cancer was hormone receptor-positive (HR+) if estrogen receptor or progesterone receptor expression
was $\geq 10\%$ (immunohistochemistry). HER2 immunohistochemical (IHC) score 3+ or IHC score 2+ with a positive fluorescence *in situ* hybridization or chromogenic *in situ* hybridization classified the tumors as HER2+. Four subtypes were defined according to HR and HER2 statutes: HER2+/HR-, HER2+/HR+, HER2-/HR+, and HR-/HER2- (triple-negative, TNBC). HR and HER2 status were evaluated on primary tissue when possible or on metastatic tissue when primary tissue was not available. Menopausal status was approximated according to age, with 52 years as a cut-off (pre-menopausal <52 and post-menopausal $\geq 52$).

**Statistical analysis**

Descriptive statistics were used to summarize patients’ initial characteristics at diagnosis of metastatic disease. They were compared between groups using Chi-2’s or Fisher’s exact test for categorical data, and Student T-test or non-parametric Wilcoxon’s test for continuous data; a p-value $<0.05$ was considered statistically significant. The OS was defined as time (months) between diagnosis of metastatic disease and date of death (any cause) or censored to date of latest news. The PFS was defined as time between the starting date of first-line metastatic treatment and date of first disease progression or death, or censored to date of latest news or data cut-off (15-Jan-2016). Disease progression was defined as the appearance of a new metastatic site, progression of existing metastasis, or local or loco-regional recurrence of the primary tumor. Survival curves for OS and PFS with associated log-rank tests were generated using the Kaplan Meier method. The reverse Kaplan-Meier method was used to estimate the median follow-up duration, beginning at the date of diagnosis of metastatic disease. Cox proportional hazards model were used to adjust on prognostic factors the comparison of OS and PFS between IBC and non-IBC. We also used Cox proportional hazards model to identify prognostic factors for OS and PFS in IBC patients.
Pre-specified potential prognostic factors for survival investigated in univariate Cox proportional hazards model were: age at MBC diagnosis (<52 vs ≥52 years-old), molecular subtypes (HER2+/HR+, HER2+/HR-, HR+/HER2-, TNBC), disease-free interval (synchronous, metachronous ≤24 months or >24 months from primary tumor), number of metastatic sites ([0-3] vs >3), type of metastatic sites (non-visceral metastasis: bone, skin, metastatic lymph nodes; brain visceral metastasis: brain and meninges; non-brain visceral metastasis: liver, lung, other organ), circumstances of diagnosis (systematic exam or symptoms), recurrence (no recurrence, local recurrence, loco-regional recurrence), first-line metastatic treatment (endocrine therapy, chemotherapy ± endocrine therapy), and previous adjuvant treatment for M0 disease (none, endocrine therapy, chemotherapy or both). Variables significant at a 10% level were included in a backward selection procedure to keep factors significant at a 5% level in the final multivariate model. Hazard Ratios (HR) are presented with 95% confidence interval (CI). A logistic regression model was performed to identify the risk factors for the presence of brain metastasis. Odds ratio (OR) are presented with 95% confidence interval (CI). We used SAS software (version 9.4) for all statistical analyses.

RESULTS

Patients’ characteristics and treatments

Among the 16,702 patients identified in the ESME MBC database from Jan 2008 to Dec 2014, 7,465 had diagnosis of MBC and known clinical status of their primary tumor (T), including 582 IBC (T4d) and 6,883 non-IBC (Figure 1).

Patients’ characteristics at initial diagnosis of breast cancer are shown in Table 1. Almost all IBC and non-IBC patients were female. At diagnosis of primary tumor, the median age was
not different between IBC and non-IBC patients. Lobular pathological type was less frequent (6.9% vs. 14.1%, p<0.001). Regarding the molecular subtypes of primary tumor and compared to non-IBC, metastatic IBC was significantly associated with less HR+/HER2-tumors (44% vs 65.6%), more HER2+ (30% vs 18.6%), and more TNBC (25.9% vs 15.8%); (p<0.001). Of note, HR-/HER2+ tumors were more frequent in IBC (18% vs 7%), while HR+/HER2+ had a similar incidence between IBC and non-IBC patients. Regarding treatments of primary tumor in patients with initial M0 stage (272 IBC and 4,978 non-IBC), IBC patients received more (neo)adjuvant chemotherapy with or without endocrine therapy (95.2% vs 75.3%) and less endocrine therapy alone (3.3% vs 17.2%) than non-IBC patients (p<0.001).

Patients’ characteristics at diagnosis of metastasis are shown in Table 2. Median age was significantly younger (56 vs 60 years, p<0.001) and more patients were considered as pre-menopausal (37.5% vs 29.1%, p<0.001) in IBC group. Moreover, we observed more frequent de novo (M1 stage at diagnosis) metastatic disease (53.3% vs 27.7%; p<0.001), and shorter median disease-free interval (2.02 years vs 4.9 years; p<0.001) in IBC patients. The median number of metastatic sites was similar between both groups. Lung (25.5% vs. 17.7%, p<0.001) and bone (58.1% vs. 46.9%, p<0.001) metastases were more frequent in non-IBC, whereas lymph node (35.6% vs. 26.8%, p<0.001), brain (11.2% vs 7.3%, p<0.001), and skin metastases (16.3% vs.9.8%, p<0.001) were more frequent in IBC. The distribution of metastatic involvement was significantly different in M0 patients between the two groups: brain metastases (19.9% vs. 8.8%) and non-visceral metastases (43% vs. 39.5%) were more frequent, and non-brain visceral metastases were less frequent (37.1% vs. 51.7%) in IBC than in non-IBC patients (p<0.001). On the opposite, this distribution of metastatic sites was similar between IBC and non-IBC for M1 patients (p=0.7). Of note, the higher frequency of HR-HER2+ and TN subtypes in IBC vs. non-IBC was observed in both M0 and M1 groups.
There were more HR-HER2+ and less TN in M1 than in M0 patients and it was slightly more pronounced in IBC than in non-IBC (Supplementary Table 1A). Thus, the different distribution of metastatic sites between IBC and non-IBC observed in M0 group only was unlikely to be essentially explained by a different repartition in subtypes. To examine whether IBC was independently associated with brain metastases, we performed a logistic regression analysis including the initial stage (M0 or M1), subtypes and IBC status. We found that IBC patients have a higher risk of brain metastases even after adjustment on all these factors (OR=1.7 CI95% [1.23-2.21]; p=0.0008) (Supplementary Table 1B)

Consistently with more de novo metastatic disease (M1 stage), the diagnosis of metastases was more frequently based on systematic imaging work-up (63.3% vs 52.9%) than on symptoms in IBC than in non-IBC. Regarding the first-line systemic treatment for metastatic disease, IBC patients were treated more frequently with chemotherapy ± endocrine therapy than non-IBC patients (86.4% vs. 66.8%) and less frequently with endocrine therapy ± targeted therapy (13.6% vs 33.2%). Supplementary Table 2 displays the systemic treatments received for metastatic disease, in whole population. Regarding anti-HER2 drugs received during systemic treatment for metastatic disease, most of HER2+ patients received trastuzumab at least once during the course of the metastatic disease: percentage of patients who received trastuzumab (16.2% for non-IBC and 29.9% for IBC) correspond approximately to HER2+ population (18.6% for non-IBC and 30% for IBC). A minority of patients received anti-HER2 treatment of second generation in both IBC and non-IBC groups.

Overall survival and progression-free survival under first-line treatment in all patients
With a median follow-up of 50.2 months [95%CI 0-104] in the whole population, 4,307 deaths were reported, and the median OS was 36.4 months [95%CI 35.5-37.9]. With a similar follow-up between both groups, the median OS was 28.4 ([95%CI 24.1-33.8]) vs. 37.2 months ([95%CI 36.1-38.5]) in IBC and non-IBC cases, respectively (p<0.0001) (Figure 2A). The 4-year OS was 31% [95%CI 27-36] in IBC and 41% [95%CI 39-42] in non-IBC. In univariate analysis for OS in the whole population, the Hazard Ratio (HR) for death was 1.26 [95%CI 1.13-1.41] in IBC patients versus non-IBC patients (Supplementary Table 3). In a multivariate Cox model including all other variables associated with OS by univariate analysis (Figure 2B), IBC remained independently associated with shorter OS (Figure 2B, HR=1.27 [95%CI 1.12-1.43], p=0.0001).

Among the whole population, 7,163 patients received first-line treatment (68.3% by chemotherapy and/or endocrine therapy and/or target therapy; 31.7% by endocrine therapy and/or target therapy). During the follow-up, 6,232 disease progressions or deaths were reported. The median PFS was 7.2 months [95%CI 6.6-8.3] vs 9.5 months [95%CI 9.1-9.8] in IBC and non-IBC cases, respectively (p=0.01; Supplementary Figure 1A). In univariate analysis for PFS, the Hazard Ratio (HR) for disease progression or death was 1.12 [95%CI 1.02-1.23] in IBC patients versus non-IBC patients (Supplementary Table 4). In a multivariate Cox model (Supplementary Figure 1B), IBC remained associated with shorter PFS (HR=1.15 [95%CI 1.04-1.27], p=0.007), suggesting independent unfavorable prognostic value.

Specific prognostic factors for survival in IBC patients
We did prognostic analyses for OS and first-line PFS specifically in the group of IBC patients (Supplementary Table 5). Four factors were independently associated with OS in multivariate analysis: disease-free interval, nature and number of metastatic sites, and IHC subtypes (Table 3). IBC patients with no synchronous metastatic disease (<2 years vs de novo: HR=3.0 [95%CI 2.3-4.0]; ≥2 years vs de novo: HR=1.5 [95%CI 1.15-1.98]; p<0.0001), with brain metastases and non-brain visceral metastases (HR=2.64 [95%CI 1.84-3.79], and HR=2.15 [95%CI 1.68-2.74] respectively; p<0.0001), with more than 3 metastases sites (HR=1.52 [95%CI 1.04-2.23], p=0.03), and with HER2-negative subtypes, including triple negative (RH+/HER2-: HR=1.51 [1.01-2.25]; HR-/HER2-: HR=3.10 [95%CI 2.05-4.70]; RH-/HER2+: HR=0.98 [0.62-1.53]; p<0.0001) were associated with shorter OS. Regarding the PFS under first-line treatment, the same prognostic factors were identified (Supplementary Table 5).

**Evolution of survival over time in IBC patients**

During the study period (2008-2014), OS and PFS improved over time in IBC patients. Median OS was 24 months [95%CI 20-31.9], 29 months [95%CI 21.7-39.9], and 36 months [95%CI 27.9-NE], when the diagnosis of metastatic disease was done until 2010, between 2011 and 2012, and from 2013, respectively (p=0.003) (Supplementary Figure 2A). The same time effect was observed for PFS with median values equal to 6.5 months [95%CI 5.1-7.3], 8.3 months [95%CI 6.4-10.3], and 8.3 months [95%CI 6.6-10.9], for each period respectively (p=0.03; Supplementary Figure 3). However, a separate analysis by subtype revealed that a significant improvement in OS and PFS over time (p=0.0007 and p=0.01, respectively) was solely demonstrated in HER2+ IBC patients (Supplementary Figure 2B), but not in HER2-/HR+ (Supplementary Figure 2C) or TNBC (Supplementary Figure 2D) cases.
DISCUSSION

The present study sheds light on important clinical features of IBC treated in the metastatic setting. First, as already described at the non-metastatic stage, metastatic IBC patients were younger and lobular histology was uncommon. Second, the distribution of IBC subtypes was also consistent with that observed in non-metastatic disease: IBC tumors commonly lacked HR expression and had \( \text{HER2} \) amplification \(^3,15\) and as expected, we observed more TNBC and \( \text{HER2}^+ \) subtypes in IBC (25.9% and 30%, respectively) than in non-IBC (15.8% and 18.6%, respectively) patients. Importantly, only \( \text{HER2}^+/\text{HR}^- \) were overrepresented in metastatic IBC, while \( \text{HER2}^+/\text{HR}^+ \) had a similar prevalence in both IBC and non-IBC patients. This observation confirms a specific and subtle interplay between HR and \( \text{HER2} \) in IBC. Third, consistent with the higher metastatic ability of IBC, more IBC than non-IBC patients had \textit{de novo} metastatic disease and, for metachronous disease, the disease-free interval was shorter in IBC patients. Lung and bone metastases were less frequent, while skin and lymph node locations were more frequent in IBC patients, in concordance with the known tropisms of IBC. Of note, while the distribution of metastatic sites was similar in \textit{de novo} metastatic disease for IBC and non-IBC patients, it was not the case in recurrent disease in which brain metastases were more common and non-brain visceral metastases were less frequent in IBC patients. This may be related to differences in systemic treatments administered at the initial stage, as indicated by the larger prevalence of (neo)adjuvant chemotherapy in IBC patients from this subgroup, consistent with the recent demonstration that previous treatments may dramatically alter genomic makeup and the resulting clinical features and outcomes\(^16\).
A main result of our study was the independent poor-prognosis value of IBC phenotype, on both PFS after first-line treatment and OS. A previous study, enrolling de novo metastatic patients (stage IV) only and conducted at a single center in a large and relatively earlier period of time (1990-2008), also revealed that IBC phenotype independently conferred a poor prognosis in the metastatic setting\textsuperscript{13}. Thus, to our knowledge, the present series is the largest reported to date examining the prognostic impact of IBC phenotype, focusing on a modern era (2008-2014), and the first one including patients with both de novo and metachronous disease, the latter representing nearly half of IBC patients with metastatic disease in our series. The reasons behind the poorer outcome in IBC patients even when considered at a metastatic stage are unclear. Yet, this observation supports the hypothesis of an intrinsic distinct biology of the disease associated with higher metastatic propensity than non-IBC, lethality, and therapeutic resistance.

Another important data generated by our study was the specific identification of prognostic factors within the population of metastatic IBC patients. Whereas disease-free interval, visceral involvement and the number of metastatic sites were identified as independently associated with survival, as already described in non-IBC patients, a provocative result was that HER2+ subtypes displayed the best outcomes, without significant differences between HR-/HER2+ and HR+/HER2+. Conversely, triple-negative, but also luminal HR+/HER2- subtypes, were associated with poor OS. A similar result was found for PFS, except that HR+/HER2- and HR-/HER2+ had similar PFS as HR+/HER2+ subtypes. While the worst outcome of triple-negative subtype was also pointed out in a recent IBC-specific Dutch study examining the prognostic impact of molecular subtypes in metastatic IBC patients\textsuperscript{17}, a better outcome for HER2+ compared to HR+/HER2- subtypes was not observed. However, in the
latter study only *de novo* metastatic IBC was considered and 25 to 31% of HER2+ patients did not receive anti-HER2 treatment, while almost all patients with HER2+ IBC from our series received at least trastuzumab. A recent analysis from the overall ESME database also reported the same HER2+ subtype-associated survival advantage, suggesting that in IBC as in non-IBC patients, anti-HER2 treatments had a major impact on the natural history of the disease\textsuperscript{18}.

We also found a significant increase in OS and PFS over time in metastatic IBC patients. However, it was almost exclusively restricted to the HER2+ subtypes. Yet, due to the considered period, only a marginal part of this population received first-line pertuzumab-trastuzumab combination and second-line trastuzumab-emtansine, both being associated with major survival gains, rendering plausible an even more striking progress in the more recent period. By contrast, there was no significant improvement with time for the HER2-subtypes. Thus, as in metastatic non-IBC, therapeutic innovations are eagerly awaited in the non-HER2+ subtypes of IBC\textsuperscript{19}. Of note, in the absence of IBC-specific data, it remains uncertain how the recent integration of CDK4/6 inhibitors to the therapeutic management of HR+/HER2- metastatic IBC will impact outcomes\textsuperscript{20–23}. Similarly, other therapeutics with potential for improving OS in triple-negative subtypes, such as immune checkpoint inhibitors, have not been specifically examined in metastatic IBC\textsuperscript{24}.

As noted earlier, patients with recurrent disease had a particularly poor prognosis, which makes it critical to improve results in the “early” IBC setting. This may rely upon the large use of pertuzumab in the neoadjuvant setting for HER2+ IBC, as well as the post-neoadjuvant trastuzumab emtansine-based rescue in patients with residual disease, both being associated with significant reduction in disease relapse\textsuperscript{25,26,27}. Similarly, the incorporation of
pembrolizumab immune checkpoint inhibitor in the neoadjuvant setting for triple-negative subtypes may improve outcome for IBC patients as recently demonstrated in the general population of triple-negative breast cancer. The ongoing PELICAN study conducted in France specifically addresses this issue in a randomized phase II clinical trial enrolling HER2-negative non-metastatic IBC receiving neoadjuvant chemotherapy (NCT03515798).

A limitation of our work was that more than half of the initial population in ESME database was excluded because of unknown clinical T status. However, we have compared patient characteristics between those with known and with unknown T stage and found that these populations were largely comparable (data not shown). In addition, the ultimate number of IBC patients (n=582) in this study remains highly significant in such a rare disease. Indeed, to our knowledge, this study is the largest one comparing outcomes in metastatic IBC and non-IBC patients. This large cohort includes patients mostly treated in a real-life setting, avoiding over-selection of patients enrolled in clinical trials. Additional strengths of our study rely on the multicentric design, involving 18 academic centers across France, the relatively recent period of study (2008-2014) compared to other studies, the quality of data collected by expert centers, and the use of a consensual clinical definition of inflammatory breast cancer.

CONCLUSION

In this large national and multicentric study, IBC was an independent factor associated with adverse outcome in the metastatic setting. Real-life databases are powerful tools to investigate clinical outcomes of rare diseases such as IBC. Further translational and clinical researches, ideally specifically dedicated to IBC, are mandatory to improve our understanding of disease and the prognosis in this so-devastating disease.
ACKNOWLEDGMENTS and FUNDING STATEMENT

We thank the 18 French Comprehensive Cancer Centers for providing the data and each ESME local coordinator for managing the project at the local level. Moreover, we thank the ESME Scientific Group and Strategic Committee for their ongoing support. The ESME-MBC database receives financial support from an industrial consortium (Roche, Pfizer, AstraZeneca, MSD, Eisai and Daiichi Sankyo). Data collection, analysis and publication are managed entirely by UNICANCER independently of the industrial consortium.

COMPETING INTEREST

Domitille Dano, Audrey Lardy-Cleaud, Audrey Monneur, Nathalie Quenel-Tueux, Christelle Levy, Bruno Coudert, Audrey Mailliez, Jean-Marc Ferrero, Sèverine Guiu, Florence Dalenc, Gaëtane Simon, Florence Lerebours, Thierry Petit, Marie-Ange Mouret-Reynier, Sylvie Chabaud, François Bertucci declare no competing interest.

Mario Campone declares:
- Advisory Board: Astra ZENECA, Novartis, Abbvie, Sanofi, Pfizer, Sandoz, ACCORD.Lilly GT1 group
- Consultant: Pierre Fabre Oncology; Sanofi; Novartis; Servier, Sanofi.
- Speaker bureau : Novartis
- Travel: Pfizer, Novartis, Roche, Astra Zeneca

Barbara Pistilli declares:
- Consulting/Advisor: Puma Biotechnology, Novartis, Myriad Genetics, Pierre Fabre
- Personal fees: Novartis, AstraZeneca, MSD Oncology, Pfizer
- Research fundings: Daiichi, Puma Biotechnology, Novartis, Merus, Pfizer, AstraZeneca

Anthony Gonçalves reports non-financial support from Astra Zeneca, Roche, Pfizer and Novartis

Thibault de La Motte Rouge reports grants, personal fees and non-financial support from Pfizer, grants and non-financial support from Novartis, personal fees and non-financial
support from AstraZeneca, personal fees and non-financial support from Roche Genentech, grants and non-financial support from MSD, personal fees and non-financial support from TESARO-GSK, personal fees from CLOVIS ONCOLOGY, personal fees from MYLAN, outside the submitted work.

AUTHORS CONTRIBUTIONS

Domitille Dano: interpretation of data, drafting the paper
Audrey Lardy-Cleaud: acquisition, analysis and interpretation of data; drafting the paper
Audrey Monneur: interpretation of data, drafting the paper
Nathalie Quenel-Tueux: substantive revision of the paper
Christelle Levy: substantive revision of the paper
Marie-Ange Mouret-Reynier: substantive revision of the paper
Bruno Coudert: substantive revision of the paper
Audrey Mailliez: substantive revision of the paper Jean-Marc Ferrero: substantive revision of the paper Sèverine Guiu: substantive revision of the paper Mario Campone: substantive revision of the paper Thibault de La Motte Rouge: substantive revision of the paper Thierry Petit: substantive revision of the paper Barbara Pistilli: substantive revision of the paper Florence Dalenc: substantive revision of the paper Gaëtane Simon: substantive revision of the paper Florence Lerebours: substantive revision of the paper Sylvie Chabaud: substantive revision of the paper François Bertucci: design of the work, acquisition, analysis and interpretation of data, drafting the work, substantive revision of the paper Anthony Gonçalves: design of the work, acquisition, analysis and interpretation of data, drafting the work, substantive revision of the paper
All authors have approved the submitted version and have agreed both to be personally accountable for the author’s own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature.
REFERENCES

1. Giuliano, A. E. et al. Breast Cancer-Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA. Cancer J. Clin. 67, 290–303 (2017).

2. Dawood, S. et al. International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 22, 515–523 (2011).

3. Robertson, F. M. et al. Inflammatory breast cancer: the disease, the biology, the treatment. CA. Cancer J. Clin. 60, 351–375 (2010).

4. Wingo, P. A., Jamison, P. M., Young, J. L. & Gargiullo, P. Population-based statistics for women diagnosed with inflammatory breast cancer (United States). Cancer Causes Control CCC 15, 321–328 (2004).

5. Curcio, L. D. et al. Beyond palliative mastectomy in inflammatory breast cancer--a reassessment of margin status. Ann. Surg. Oncol. 6, 249–254 (1999).

6. O’Shaughnessy, J. Extending survival with chemotherapy in metastatic breast cancer. The Oncologist 10 Suppl 3, 20–29 (2005).

7. Miller, K. D. & Sledge, G. W. The role of chemotherapy for metastatic breast cancer. Hematol. Oncol. Clin. North Am. 13, 415–434 (1999).

8. Cristofanilli, M. et al. Inflammatory breast cancer (IBC) and patterns of recurrence: understanding the biology of a unique disease. Cancer 110, 1436–1444 (2007).

9. Dawood, S. et al. Identifying factors that impact survival among women with inflammatory breast cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 23, 870–875 (2012).

10. Low, J. A. et al. Long-term follow-up for locally advanced and inflammatory breast cancer patients treated with multimodality therapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 22, 4067–4074 (2004).

11. Monneur, A. et al. Similar response profile to neoadjuvant chemotherapy, but different survival, in inflammatory versus locally advanced breast cancers. Oncotarget 8, 66019–66032 (2017).

12. Schlichting, J. A., Soliman, A. S., Schairer, C., Schottenfeld, D. & Merajver, S. D. Inflammatory and non-inflammatory breast cancer survival by socioeconomic position in the Surveillance, Epidemiology, and End Results database, 1990-2008. Breast Cancer Res. Treat. 134, 1257–1268 (2012).

13. Fouad, T. M. et al. Overall survival differences between patients with inflammatory and noninflammatory breast cancer presenting with distant metastasis at diagnosis. Breast
14. Pérol, D. et al. The ongoing French metastatic breast cancer (MBC) cohort: the example-based methodology of the Epidemiological Strategy and Medical Economics (ESME). *BMJ Open* 9, e023568 (2019).

15. Van Laere, S. J. et al. Identification of cell-of-origin breast tumor subtypes in inflammatory breast cancer by gene expression profiling. *Breast Cancer Res. Treat.* 95, 243–255 (2006).

16. Hu, Z., Li, Z., Ma, Z. & Curtis, C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. *Nat. Genet.* (2020) doi:10.1038/s41588-020-0628-z.

17. van Uden, D. J. P. et al. Metastatic behavior and overall survival according to breast cancer subtypes in stage IV inflammatory breast cancer. *Breast Cancer Res. BCR* 21, (2019).

18. Deluche, E. et al. Contemporary outcomes of metastatic breast cancer among 22,000 women from the multicentre ESME cohort 2008-2016. *Eur. J. Cancer Oxf. Engl.* 1990 129, 60–70 (2020).

19. Gobbini, E. et al. Time trends of overall survival among metastatic breast cancer patients in the real-life ESME cohort. *Eur. J. Cancer Oxf. Engl.* 1990 96, 17–24 (2018).

20. Verma, S. et al. Palbociclib in Combination With Fulvestrant in Women With Hormone Receptor-Positive/HER2-Negative Advanced Metastatic Breast Cancer: Detailed Safety Analysis From a Multicenter, Randomized, Placebo-Controlled, Phase III Study (PALOMA-3). *The Oncologist* 21, 1165–1175 (2016).

21. Hortobagyi, G. N. et al. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. *N. Engl. J. Med.* 375, 1738–1748 (2016).

22. Goetz, M. P. et al. MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer. *J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol.* 35, 3638–3646 (2017).

23. Petrelli, F. et al. Comparative efficacy of palbociclib, ribociclib and abemaciclib for ER+ metastatic breast cancer: an adjusted indirect analysis of randomized controlled trials. *Breast Cancer Res. Treat.* 174, 597–604 (2019).

24. Schmid, P. et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. *N. Engl. J. Med.* 379, 2108–2121 (2018).

25. Gianni, L. et al. 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 randomised trial. *Lancet Oncol.* 17, 791–800 (2016).
26. von Minckwitz, G. et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. *N. Engl. J. Med.* **377**, 122–131 (2017).

27. von Minckwitz, G. et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. *N. Engl. J. Med.* **380**, 617–628 (2019).

28. Schmid, P., Chui, S. Y. & Emens, L. A. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. Reply. *N. Engl. J. Med.* **380**, 987–988 (2019).
**TABLES AND FIGURES LEGENDS**

**Table 1: Patients and tumor characteristics at initial diagnosis of breast cancer in the whole population**
M0: no metastasis at diagnosis and until 6 months after diagnosis. M1: de novo metastatic disease. HR: hormonal receptors.

*Menopausal status determined by sex and age (cut-off of 52 years)

**Subtype phenotypes determined on primary tumor or, if not available, on metastatic tissue

**Table 2: Patients and tumor characteristics at metastasis diagnosis in the whole population**

*Subtype phenotypes determined on metastatic tissue or, if not available, on primary tissue

**Table 3: Multivariate Cox analyzes for OS and PFS in IBC**

**Figure 1: Flow chart**

**Figure 2: Overall Survival (OS) by IBC status (A) and multivariate Cox analyses for OS (B) in the whole population**
ESME-MBC cohort between 01 Jan 2008 and 31 Dec 2014
n= 16702

Missing data for initial T-stage
n = 9237

Patients with initial T-stage available
n= 7465

IBC (T4d)
n= 582

Non-IBC
T0, Tis, T1, T2, T3, T4a, T4b ou T4c
n= 6883
Figure 2: Overall Survival (OS) by IBC status (A) and multivariate Cox analyses for OS (B) in the whole population

### A

![Survival Probability Graph](image)

| Survival Probability | Status | IBC | Non IBC |
|----------------------|--------|-----|---------|
| 1.0                  |        |     |         |
| 0.8                  |        |     |         |
| 0.6                  |        |     |         |
| 0.4                  |        |     |         |
| 0.2                  |        |     |         |
| 0.0                  |        |     |         |

### B

| Hazard Ratio [CI95%] | P Value |
|----------------------|---------|
| **IBC/Non IBC**      |         |
| IBC Vs Non IBC       | 1.27 [1.12-1.43] | 0.0001 |
| **Adjuvant systemic treatment** |         |
| CT Vs Nothing        | 1.35 [1.15-1.58] | <.0001 |
| CT and ET Vs Nothing | 1.49 [1.28-1.74] | <.0001 |
| ET Vs Nothing        | 1.36 [1.14-1.62] | <.0001 |
| **Age at metastatic diagnostic** |         |
| >=52 years Vs < 52 years | 1.34 [1.25-1.45] | <.0001 |
| **Discovery mode of metastases** |         |
| Symptoms Vs Systematic examination | 1.23 [1.15-1.32] | <.0001 |
| **Disease-free interval** |         |
| >2 years Vs De Novo  | 0.89 [0.77-1.04] | <.0001 |
| [0-2] years Vs De Novo | 1.87 [1.59-2.20] | <.0001 |
| **First-line treatment** |         |
| CT +/- ET Vs ET      | 1.22 [1.12-1.33] | <.0001 |
| **IHC subtype**      |         |
| HR- HER2- Vs HR+ HER2+ | 1.33 [1.18-1.49] | <.0001 |
| HR- HER2- Vs HR+ HER2+ | 1.19 [1.00-1.42] | <.0001 |
| HR- HER2- Vs HR+ HER2+ | 2.88 [2.48-3.35] | <.0001 |
| **Local/locoregional relapse** |         |
| Local relapse Vs No relapse | 0.96 [0.77-1.19] | 0.0026 |
| Locoregional relapse Vs No relapse | 1.23 [1.09-1.39] | <.0001 |
| **Number of metastatic sites** |         |
| >3 Vs 0-3            | 1.53 [1.36-1.72] | <.0001 |
| **Type of metastases** |         |
| Brain visceral Vs Non visceral | 2.13 [1.87-2.43] | <.0001 |
| Non brain visceral Vs Non visceral | 1.56 [1.44-1.68] | <.0001 |
Table 1
Patients and tumor characteristics at initial diagnosis of breast cancer in the whole population
M0: no metastasis at diagnosis and until 6 months after diagnosis. M1: de novo metastatic disease. HR: hormonal receptors.
*Menopausal status determined by sex and age (cut-off of 52 years)
**Subtype phenotypes determined on primary tumor or, if not available, on metastatic tissue

|                          | Non IBC N=6883 | IBC N=582 | All N=7465 | p-value |
|--------------------------|----------------|-----------|------------|---------|
| **Sex**                  |                |           |            |         |
| Male                     | 67 (1.0%)      | 3 (0.5%)  | 70 (0.9%)  | 0.3     |
| Female                   | 6816 (99.0%)   | 579 (99.5%) | 7395 (99.1%) |         |
| **Age at initial diagnosis (year)** |            |           |            |         |
| Median (min; max)        | 54 (22; 96)    | 55.0 (22; 91) | 54.0 (22; 96) | 0.5     |
| **Menopausal status at initial diagnosis*** |          |           |            |         |
| No                       | 715 (23.5%)    | 82 (29.3%) | 797 (24.0%) |         |
| Yes                      | 2276 (74.8%)   | 196 (70.0%) | 2472 (74.4%) |         |
| NA (Men)                 | 51 (1.7%)      | 2 (0.7%)  | 53 (1.6%)  |         |
| Missing data             | 3841           | 302       | 4143       |         |
| **Histologic type**      |                |           |            | < 0.001 |
| Ductal                   | 4760 (82.5%)   | 439 (89.6%) | 5199 (83.1%) |         |
| Lobular                  | 814 (14.1%)    | 34 (6.9%)  | 848 (13.5%) |         |
| Mixed                    | 82 (1.4%)      | 3 (0.6%)  | 85 (1.4%)  |         |
| Other                    | 113 (2.0%)     | 14 (2.9%)  | 127 (2.0%) |         |
| Missing data             | 1114           | 92        | 1206       |         |
| **Subtypes***            |                |           |            | < 0.001 |
| HR+ HER2+                | 736 (11.6%)    | 63 (11.2%) | 799 (11.6%) |         |
| HR+ HER2-                | 4153 (65.6%)   | 248 (44.0%) | 4401 (63.9%) |         |
| HR- HER2+                | 442 (7.0%)     | 106 (18.8%) | 548 (8.0%) |         |
| HR- HER2-                | 998 (15.8%)    | 146 (25.9%) | 1144 (16.6%) |         |
| Missing data             | 554            | 19        | 573        |         |
| **Adjuvant treatment, only for M0** |            |           |            |         |
| Adjuvant systemic treatment |            |           |            | < 0.001 |
| Chemotherapy             | 1244 (25.1%)   | 135 (50.2%) | 1379 (26.4%) |         |
| Chemotherapy + Endocrine Therapy | 2493 (50.2%) | 121 (45.0%) | 2614 (50.0%) |         |
| Endocrine Therapy        | 854 (17.2%)    | 9 (3.3%)  | 863 (16.5%) |         |
| Nothing                  | 372 (7.5%)     | 4 (1.5%)  | 376 (7.2%) |         |
| Missing data             | 15             | 3         | 18         |         |
| **Adjuvant radiotherapy** |                |           |            | 0.4     |
| No                       | 492 (9.9%)     | 31 (11.4%) | 523 (10.0%) |         |
| Yes                      | 4483 (90.1%)   | 241 (88.6%) | 4724 (90.0%) |         |
**Table 2**
Patients and tumor characteristics at metastasis diagnosis in the whole population
*Menopausal status determined by sex and age (cut-off of 52 years)*

|                          | Non IBC | IBC  | All  | p-value |
|--------------------------|---------|------|------|---------|
| **Age at metastasis diagnosis (year)** |         |      |      |         |
| Median (min; max)        | 60.0    | 56.0 | 60.0 | < 0.001 |
| **Menopausal status at metastasis diagnosis*** |         |      |      |         |
| No                       | 2004    | 218  | 2222 | < 0.001 |
| Yes                      | 4812    | 361  | 5173 |         |
| NA (Men)                 | 67      | 3    | 70   |         |
| **Metastatic status at diagnosis** |         |      |      |         |
| M0                       | 4978    | 272  | 5250 | < 0.001 |
| De Novo (M1)             | 1905    | 310  | 2215 |         |
| **Metastatic sites**     |         |      |      |         |
| Visceral disease         | 4018    | 326  | 4344 |         |
| Bone                     | 4001    | 273  | 4274 | < 0.001 |
| Brain                    | 499     | 65   | 564  | < 0.001 |
| Lung                     | 1754    | 103  | 1857 | < 0.001 |
| Lymph node               | 1843    | 207  | 2050 | < 0.001 |
| Pleura                   | 739     | 55   | 794  |         |
| Skin                     | 677     | 95   | 772  | < 0.001 |
| Liver                    | 1898    | 159  | 2057 |         |
| **Visceral involvement for M0** |         |      |      |         |
| N                        | 4978    | 272  | 5250 |         |
| Brain visceral metastasis| 440     | 54   | 494  |         |
| Non-brain visceral metastasis | 2574  | 101  | 2675 | < 0.001 |
| Non-visceral metastasis  | 1964    | 117  | 2081 |         |
| **Visceral involvement for M1** |         |      |      |         |
| N                        | 1905    | 310  | 2215 |         |
| Brain visceral metastasis| 59      | 11   | 70   |         |
| Non-brain visceral metastasis | 945  | 160  | 1105 | 0.7     |
| Non-visceral metastasis  | 901     | 139  | 1040 |         |
| **Number of metastatic sites** |         |      |      |         |
| Median (min; max)        | 1.0     | 1.0  | 1.0  | 0.4     |
| Delay between initial diagnosis and metastases onset (year) only for M0 |   |   |   |   |
|-------------------------------------------------|---|---|---|---|
| N                                               | 4978 | 272 | 5250 |   |
| Median (min; max)                                | 4.90 (0.50; 47.94) | 2.02 (0.50; 31.41) | 4.68 (0.50; 47.94) | < 0.001 |

**Diagnosis of metastatic relapse**

|                                 | Systematic examination | Symptom | Missing data |
|---------------------------------|------------------------|---------|--------------|
| Diagnosis of metastatic relapse | 3446 (52.9%)           | 356 (63.3%) | 3072 (47.1%) |
|                                 | 3802 (53.7%)           | 206 (36.7%) | 385          |
|                                 | < 0.001                | < 0.001  |              |

| Local or locoregional relapse    |   |   |   |   |
|---------------------------------|---|---|---|---|
| None                            | 6183 (89.9%) | 537 (92.3%) | 6720 (90.1%) | 0.1 |
| Local relapse                   | 176 (2.6%)    | 8 (1.4%)   | 184 (2.5%)   | 0.1 |
| Loco-regional relapse           | 516 (7.5%)    | 37 (6.4%)  | 553 (7.4%)   | 0.1 |
| Missing data                    | 8            | 0          | 8            | 0   |

**First-line treatment**

| First-line treatment            |   |   |   |   |
|---------------------------------|---|---|---|---|
| Chemotherapy ± Endocrine Therapy ± Target Therapy | 4413 (66.8%) | 477 (86.4%) | 4890 (68.3%) | < 0.001 |
| Endocrine Therapy ± Target Therapy | 2198 (33.2%) | 75 (13.6%) | 2273 (31.7%) | < 0.001 |
## Table 3
Multivariate Cox analyzes for OS and PFS in IBC

| Variable                        | OS                  | PFS                  |
|---------------------------------|---------------------|----------------------|
| **Disease-free interval**       |                     |                      |
| De Novo                         |                     |                      |
| 6 months - 2 years              | 3.00 (2.27 - 3.96)  | 2.51 (1.97 - 3.21)  |
| > 2 years                       | 1.51 (1.15 - 1.98)  | 1.34 (1.06 - 1.70)  |
| **Visceral involvement**        |                     |                      |
| Non-visceral metastasis         |                     |                      |
| Brain visceral metastasis       | 2.64 (1.84 - 3.79)  | 1.69 (1.20 - 2.39)  |
| Non-brain visceral metastasis   | 2.15 (1.68 - 2.74)  | 1.60 (1.31 - 1.96)  |
| **Number of metastatic sites**  |                     |                      |
| 0-3                             |                     |                      |
| > 3                             | 1.52 (1.04 - 2.23)  | 1.47 (1.04 - 2.06)  |
| **IHC subtype**                 |                     |                      |
| HR+ HER2+                       |                     |                      |
| HR+ HER2-                       | 1.51 (1.01 - 2.25)  | 1.05 (0.76 - 1.44)  |
| HR- HER2+                       | 0.98 (0.62 - 1.53)  | 0.85 (0.59 - 1.23)  |
| HR- HER2-                       | 3.10 (2.05 - 4.70)  | 1.62 (1.14 - 2.30)  |