Phytochemical ingredients and pharmacological potential of *Calendula officinalis* Linn.

Pawan Kumar Verma1, Rajinder Raina1, Sanjay Agarwal2, Harpreet Kour1

1Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, Jammu, 181102, Jammu and Kashmir, India

2Division of Veterinary Gynaecology and Obstetrics, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-J, R S Pura, Jammu, 181102, Jammu and Kashmir, India

ARTICLE INFO

Corresponding author: drpawankv@yahoo.co.in

Article history:
Received: Apr 20, 2018
Accepted: Jun 28, 2018

Keywords: Phytochemicals, Pharmacological activities, *Calendula officinalis*

ABSTRACT

Calendula officinalis Linn. commonly known as marigold has long history of usage by the folklore system. It has a high economic value as herbal medicine and is widely used in cosmetics, perfumes, dyes, pharmaceutical preparations and food products for centuries. The plant has been approved for food use and appear in the food and drug administration (FDA) list of generally recognized as safe (GRAS) substances. The literature available for the comprehensive review study were taken from the different worldwide accepted scientific database, journals, books for botanical description, pharmacological properties and ethnobotanical uses of *C. officinalis* Linn. Natural products containing calendula either as extract or oil are complex mixtures containing hundreds of biologically active constituents such as carotenoids, flavonoids, saponins, steroids, phenolic acids, lipids, amino acids, carbohydrates, etc. These phytoconstituents have wide applicability in food and cosmetic industries besides their therapeutic applications viz. as antioxidant, antimicrobial, anti-inflammatory, anti-ulcer, anti-proliferative, antiparasitic, hypoglycemic, hypolipidemic and wound healing potential in experimental and clinical trials. Being useful therapeutic agents in their own right, an understanding of these traditional medicines has provided new plant derived drug leads to modern medicine for therapeutic application.

Citation: Pharm Biomed Res 2018;4(2): 1-17.

Introduction

Plants have been used for a thousand of years as medicines for treating different diseases and medical complaints by most of the civilizations. The herbal compounds have made their importance felt in the last few decades whose prevalence is continuously increasing in both developing and developed countries because of their natural origin and negligible side effects (1). About 7500 medicinal plants have been scientifically validated for the treatment of various ailments in human and animals. Traditional medicine has also provided new plant derived drug leads to modern medicine (2, 3). According to analysis, up to 60% of all prescriptions in Eastern Europe and 25% in OECD (Organization for Economic Co-operation and Development) countries prove to consist of unmodified or slightly altered higher plant products (4). Resurgence of interest in herbal medicine has largely been outcome of the realization of ill effects which other systems are inflicting on human being. Therefore, efforts are going all over the globe in exploring and documenting the ethnopharmacological data and scientific research on medicinal plants for the safe and effective herbal formulations (5).

Calendula officinalis Linn. belongs to family Asteraceae and has a long history of usage by the folklore system, because of rich ethnomedical values. Calendula flowers are often used in skin care products, wound healing, reducing inflammation, soothing and softening the skin due to its unique cell rejuvenation properties (6). The flowers have also been used as a source of medicinal ingredients, widely used in homeopathic medicine for the treatment of many diseases for centuries (7). *C. officinalis* has high economic value as herbal medicine and has been approved recently for food use in USA and appears in the Food and Drug Administration (FDA) list of generally recognized as safe (GRAS) substances (8). Studies had shown various pharmacological activities viz. nephroprotective, hepatoprotective, hypoglycemic, hypolipidemic, antioxidant potential of *C. officinalis* in experimental and clinical models. Therefore, correlation between phytochemical ingredients associated with pharmacological activities needs to establish to maximize their therapeutic applications in mammals.

Methodology

Literature available for the comprehensive study were taken from different worldwide accepted scientific database Science Direct (http://www.sciencedirect.com), PubMed (http://ncbi.nlm.nih.gov/pubmed), Springerlink (http://www.springer.co.in), Google Scholar (http://www.onlinelibrary.wiley.com) and abstracts, journals account for botanical description, pharmacological properties and ethnobotanical uses of different parts of *C. officinalis* Linn. The present review highlights the botanical description, traditional uses,
phytochemical constituents present in different part of \textit{C. officinalis} Linn, and their pharmacological properties in a comprehensive manner.

Botanical Description

Calendula, a fast growing annual herb is easy to germinate and simple to care. The genus name originated from the Latin calendae which means “first day of the month.” Because the flowers follow the sun, it was linked to the astrological sign of summer, Leo, and to treating the heart and conditions caused by heat (9). In English Calendula was known as “gold” and was associated with Virgen Mary and then with Queen Mary; hence “Mary’s Gold.” Literature suggests that it’s an important ingredient in a variety of ayurvedic and homeopathic medicine systems, still efforts are needed to verify its efficacy through scientific screenings in experimental animal models and clinical trials.

Habitat and Distribution: \textit{C. officinalis} Linn. commonly known as marigold is cultivated widely in temperate regions around the world. It is an erect, annual herb that grows indigenously to central, eastern and southern Europe, cultivated commonly in North America, Balkans, Eastern Europe, Germany and India (10, 11, 12). Because of cutting and flower arrangements, prolific and durable features make calendula favorite among gardeners. In India, the optimum sowing time is in April, flowering begins in June and seeds ripen in early August. Harvesting is done from early to mid August and continues to flower till autumn frosts.

Morphology: Depending on variety and culture, the plant grows 12-30 inch in height. The leaves are bright green and typically about 4 inch long. The lower leaves are oval with rounded tips (spatulate) and upper are lance shaped with pointed tips. The flowers are typically 2-3 inch in diameter and held on thick sturdy stems. Calendulas are single or double flowered and come in a range of colors from cream to light yellow to orange whereas some have dark brown centre and all are beautiful. The taxonomic features and vernacular names of the calendula are provided in table 1. The growing and flowering \textit{C. officinalis} plant is shown in figure 1.

Traditional uses: In traditional system, different parts (areal part, flower, seed, leaf and stem) as well as whole plant of the \textit{C. officinalis} Linn. are used for the treatment of various disorders in human and animals. Calendula flowers are believed to follow the sun and are linked to sun sign Leo and are used in treating many cardiac disorders and some conditions caused by heat (fever) and cancer (14). Preparations containing calendula are also used effectively for the treatment of skin problems and can be used for hemorrhoids, anal fissure, mastitis, sebaceous cysts, impetigo or other inflammatory cutaneous lesions. Oral administrations of extract are indicated in unresolved infection or erosion of the upper digestive tract, particularly where there is evidence of bleeding into the gut during gastritis and duodenal ulcers (14). Calendula teas are used for gargles, as eye washes and to treat conjunctivitis, diaper rashes, hemorrhoids, stomatitis and inflammatory conditions of mucous membranes (15). Dried petals of the flower are used as an alternative of saffron in spice trade. Because of its golden color, calendula leaves are also used in ointments to impart color (16). Dried flowers are also used in sudorific, blood refiner, hypoglycemic and various insect repellent preparations (17). Flowers of the plant have a

Table 1: The taxonomic features and vernacular names used for the \textit{C. officinalis} Linn.
Taxonomic features
Kingdom
Division
Class
Order
Family
Subfamily
Genus
Species
Vernacular names
Language
English
Hindi
Punjabi
Urdu

![Figure 1: Growing and mature plant of Herb Calendula officinalis Linn. Containing flowers.](image)
potential to be used as an astringent despite not being tannin rich (18). Plant have also been used as an anticonvulsant, energizer, antiseptic, diuretic, blood thinner, antiemetic, antituber, antispasmodic, anti-icteric and dewormer (19). In compressed form, it is also used for varicose veins (20), to lower blood cholesterol levels and for curing digestive problems. It is suitable for gum bleeding as it has a vasoconstrictor effect. It is brewed to lower body temperature and perspiration as an effective tranquilizer (21).

Phytochemical ingredients

Whole plant of *C. officinalis* is a rich source of large number of phytochemical ingredients and qualitative and quantitative levels of these ingredients varies in different parts of the plant (22). In addition, amount of these active ingredients also varies with the soil composition, plant maturity and time of harvesting (23, 24, 25). The major active ingredients present in different parts of the plant are enlisted in table 2. The phytochemical ingredients reported are carotenoids, pigments, free and esterified triterpenic alcohols and polyunsaturated fatty acids, such as calendic acid (26, 27, 6), calendulone and oleocalic acid glycosides, α- and β-amyrin, calenduladiol, coflodiol and manifodiol (28, 22). It also contains saponins, flavonoids, carotenoids, mucilage, resin and steroidal compounds (29, 30). Marukami et al., (31) reported the structures of new ionone (Officinosides A and B) and sesquiterpenes (Officinosides C and D) glycosides from the flowers of Egyptian *C. officinalis* (31). Other compounds in the extract include proteins, amino acids, saturated hydrocarbons (32, 6), vitamin C (33) and mineral substances (34). Main flavonoids in calendula are isorhamnetin and quercetin as main glycosides. Flavonol make up to 0.3-1.5% of calendula flowers (32). Flowers contain pharmacologically active flavonol compounds like flavoxanthin, luteoxanthin, lycopene, auroxanthin, lutein, β-carotene, etc (27).

Flavonoids: Maximum qualitative as well as quantitative extraction of flavonoids occurs in ethanolic extract of *C. officinalis* and ranges between 0.21-0.68% depending on part of the plant and area of cultivation. But there is no relationship between the total flavonoid content and the color of ligulate and tubular florets of *C. officinalis* (35). They include isorhamnetin, quercetin, isocleron, isorhamnetin-3-O-β-D-glycoside, naringin, calendoflaside, calendoflavoside, calendoflavobioside, rutin, neopseudorutinoside, rutinoside, quercetin-2-rhamnosil-rutinoside quercetin-3-O-rutinoside, etc (36, 37).

Terpenoids: Terpenoids have been reported from petroleum ether extract of flower and aeral parts of *C. officinalis*. They include sitosterols, stigma sterols (38), 3-monooesters of traxasterol, lupeol (39, 7), diesters of diols (40), erythrodiol, ursadiol (41), faradiol-3-O-palmitate, faradiol-3-O-myristate, faradiol-3-O-laurate (42), aradiol-3-O-palmitate, aradiol-3-O-laurate, amidol-3-O-myristate, calenduladiol-3-0-palmitate, calenduladiol-3-O-myristate (26, 37), oleanane triterpenes glycosides: calendulaglycoside A, B and C (37), glucosides of oleanolic acid (43). Flowers also contain triterpene saponins and triterpene alcohols (44, 45). Cornulic acid acetate was recently isolated from flowers of *C. officinalis* (46).

Carotenoids: The inflorescence of *C. officinalis* has abundant amount of carotenoids that give flowers their yellow orange color and the color shade depends on pigment contents and pigment profile (flavones, anthocyanins and carotenoids). Orange varieties are rich in carotenoids and contain both hydrocarbons and oxygenated derivatives (47). Nineteen carotenoids were identified in extract of petals which provide unique color to the calendula flowers from orange to yellow (27). Moreover, orange color intensity of γ-carotene, calendula is determined by the amount of α-carotene, lycopene and rubixanthin as these pigments are responsible for the orange or even red color of vegetal tissues (47). Its concentrations varies (0.1 to 8.0%) in different part of the plant and highest in petals (7.7%), followed by pollens (1.6%), leaves (0.9%) and stems (0.2%) (48, 49). The carotenoids isolated from the pollen and petals are neoxanthin, violaxanthin, luteoxanthin, auroxanthin, mutatoxanthin, lutein, anthoxanthin, 9Z-neoxanthin, 9Z-violaxanthin, 13/13Z-lutein, lycopene, α-cryptoxanthin, α-carotene, β-cryptoxanthin etc. Similarly carotenoids present in leaves and stems are neoxanthin, 9Z-neoxanthin, violaxanthin, luteoxanthin, 9Z-violaxanthin, 13Z-violaxanthin, antheraxanthin, mutaxanthin epimer 1 and 2, lutein, β-cryptoxanthin, β-carotene, etc (49).

Coumarins: The ethanolic floral extract of *C. officinalis* contains coumarins like scopeolin, umbelliferone and esculetin (50). Coumarin is the parent molecule of warfarin (a clinically useful anticoagulant), which acts as a vitamin K antagonist (51). Coumarins act as phytoalexins as they are produced by plants for defense against various pathogens (52, 53). Coumarins are leached from the roots into the soil to provide defense against various micro-organisms (51).

Quinones: The quinones in calendula include plastoquinone, phyloquinone, α-tocopherol in chloroplast, ubiquinone, phyloquinone and α-tocopherol in mitochondria and phylloquinone in leaves of the plant (54).

Volatile oils: Extractability of volatile compounds from flowers of the calendula depends on the stage of flower collection viz. maximum (0.97%) during full flowering stage and minimum (0.13%) during pre-flowering stage of flower (55). Plant shows a different pattern of distribution at different vegetative stages. Various monoterpenes and sesquiterpenes have been reported in the volatile oils like α-piene, α-thujene, sabine, limonene, 1,8-cimeol, γ-terpenes, trans-β-ocimene, terene-4-ol, geraniol, carvacrol, bornyl acetate, sabinyl acetate, α-cubebe, α-gurjene, aromadendrene, α-yangene, α-humulene, α-cadinol, β-saliene,
Table 2 Phytochemical active ingredients present in different parts of *Calendula officinalis* Linn.

Plant part	Groups	Active ingredients	References
Flower	Terpinoids	Lupeol, Ψ-taraxasteol	(7)
		Erythrodiol	(70)
		Calenduloside	(71)
		Calendulaglycoside A, Calendulaglycoside B	(37)
		Cornulac acid acetate	(46)
	Flavonoids	Isoquercitrin, rutin, calendolavoside	(37)
		Quercetin, Isorhamnetin	(72)
		Isorhamnetin-3-O-β-D glycoside, Narcissin	(25)
	Coumarins	Esculetin, scopoletin, umbelliferone	(50)
	Volatile oils	Cubenol, α-cadinol, oplopanone, methylnoleate	(73)
		Sabinene, limonene, α-pinene, p-cymene, nonanal, carvacrol, geraniol, nerolidol, t-muurolol, palustron	(9)
Leaves	Quinones	Phylloquinone, α-tocopherol, ubiquinone, plastoquinone	(54)
Root	Terpenoids	Calenduloside B	(74)

β-caryophyllene, β-caryophyllene, calarene, merololid, oplopane, t-muurolol. The essential oil is found to be rich in α-cadinene, α-cadinol, t-muurolol, limonene and 1,8-cineol with p-cymene at lower level in the post flowering stages (55).

Amino acids: Total amino acids content is reported to be 4.5% in flowers, 3.5% in stems and 5.0% in leaves of *C. officinalis* (56). The ethanolic floral extract of *C. officinalis* contains more than 15 amino acids in free form like alanine, asparagine, arginine, aspartic acid, histidine, glutamic acid, leucine, lysine, proline, serine, tyrosine, threonine, methionine, valine and phenylalanine (56).

Carbohydrates: The *C. officinalis* inflorescence contain 9.3% moisture, 25.8% acid sugar, 29.3% ash, 31.3% reducing sugars and 84.6% pectic substances and various monosaccharides including glucose, arabinose, rhamnose, xylose, galactose and galacturonic acid (57). The ethanolic extract of the flowers of calendula consists of polysaccharides, PS-I, -II and -III having a (1>3), D-galactam backbone with short side chains at C-6 comprising α-arabian-(1>3)-arabian and α-L-rhamnan-(1>3)-arabian along with monosaccharide (58, 59).

Lipids: Number of lipids has been isolated from the seeds, leaves and flowers of *C. officinalis* with varying intensity.

A total of nineteen fatty acids were identified in calendula seed oils with calendic acid (51.5 - 57.6%) and linoleic acid (28.5 - 31.9%) being the predominant fatty acids followed by oleic acid (4.4 - 6.3%) and palmitic acid (3.9 - 4.6%) (60). Fatty acids of monols, sterol esters, 3-monoesters, 3-monoester diols reported in flowers were lauric, myristic, palmitic, stearic, oleic, linoleic and linolenic acid. Amount of neutral lipids in seeds was reported to be 15.7%, glycolipids 0.9% and phospholipids 0.6%. The fatty acids of marigold seeds contain 59% of an 18:3 conjugated trienic acid and 5% of 9-hydroxy-18:2 acid-dimorphocelic acid (40, 61). One oxygenated fatty acid also reported from seed oil of *C. officinalis* was d-(+)-9-hydroxy-10, 12-octadecadienolic acid (62). Calendula has been reported to accumulate an unusual conjugated C11 fatty acid named calendic acid (octadeca-8:10:12-trienoic acid) in its seed (63). Seeds of plant contain approximately 20% oil, and of this oil, up to 60% is calendic acid (C11H16O2). The calendic acid, a conjugated triene containing fatty acid has been shown to be valuable in mammalian physiology, as well as useful to industrial applications. During the seed maturation period, the concentration of calendic acid has been shown to increase steadily and sharply with a decrease in linoleic and oleic acids (64) due to the
presence of a specific conjugase in calendula seeds which converts linoleic acid into calendic acid (65). Recently, many studies are focused on conjugated fatty acids (CFAs), which are the general term for a set of positional and geometric isomers of polyunsaturated fatty acids with conjugated double bonds (66). Due to rapid oxidation, calendic acid has numerous potential industrial applications such as drying agent in paints, varnishes and plastics. It has been estimated that calendic acid could replace a number of hazardous volatile organic compounds with potential market of 3-5 million kilograms annually in Western Europe alone (67).

Other constituents: Other phytochemical ingredients include the bitter constituent, loliolide (calendin) (68), calendulin and n-paraffin (69), glucosides (70), calenduloside (71), flavonoids (72), volatile dyes (73), triterpene glycosides (74) were found in varying quantity in different parts of the C. officinalis.

Pharmacological Properties

The experimental and clinical trials on calendula extracts have confirmed that it exhibits a wide range of pharmacological properties. These properties may pave a way for future development for the therapeutic management of different disorders in human and animals Pharmacological potential of the C. officinalis is outlined in the figure 2.

Antioxidant potential: Whole plant of calendula possesses potent antioxidant potential. Out of which, calendula flowers are richest source of flavonoids, especially aglycon and glycosides of flavonol (isorhamnetin, quercetin), saponosides, lipids (sterols and carotenoids), organic acids and saccharides (75). Further, extraction of flavonoids and carotenoids from the sample also depends on the type of solvent used for the extraction (76). A residual aqueous extract taken after extraction with 70% methanol extract with ether, chloroform, ethyl acetate and n-butanol showed antioxidant activity by liposomal lipid peroxidation-induced Fe2+ and ascorbic acid (76). The biological activity of compounds were measured in extracts of calendula and the antioxidant activity in-vitro of an extract containing lipophilic and middle polarity compounds possessed better antioxidant activity than water and 50% ethanolic extracts (77). The C. officinalis extract exerted anti-reactive oxygen or nitrogen species (ROS/RNS) activities in a concentration dependant manner, with significant effects being observed even at very low concentration (78). The phytochemical constituents of C. officinalis include flavonoids (lupeol, quercetin, proto-catechuic acid), alkaloids and tri-terpenoids (79). The ethanolic floral extract of calendula have high concentrations of phenolic, flavonoids, β-carotene, lycopene, tannins, chlorophylls contents endowed with high antioxidant potential as compared to aqueous floral extract of C. officinalis (30). The results were further substantiated with determining the high in-vitro antioxidant capacity, free and superoxide/nitric oxide radicals scavenging potential with high reducing capacity in ethanolic floral extract as compared to aqueous floral extract of C. officinalis (30). The median effective concentration (EC50) values for floral extract of C. officinalis varies for different types of radicals viz. free radical scavenging activity (1.30 - 1.20 mg/ml), superoxide anion radical (0.53 – 2.00mg/ml), hydroxy radicals (0.79–10.6mg/ml) and nitro radicals (0.68 – 2.0mg/ml) (floral extract much higher as compared to

![Figure 2](image-url) Cellular mechanism(s) for the pharmacological effects of Calendula officinalis Linn.
ascorbic acid (0.022 mg/ml) (30). Oral administration of alcoholic extract of calendula inhibits superoxide generation in macrophages in female Swiss albino mice by 12.6% and 38.7% at doses of 100 and 250 mg/kg body wt, respectively. Oral administration of C. officinalis to mice for one month significantly increased catalase activity in addition to increased levels of reduced glutathione (GSH) level in blood and liver. Increased activities of glutathione reductase (GR) with decreased activities glutathione peroxidase (GPxs) was found after administration of calendula extract (80). The butanolic fraction of plant extract protects rat liver microsomes from the lipid peroxidation due to significant free radical scavenging and antioxidant activity (81). Phytochemical ingredients present in calendula extract shown high in-vitro potent antioxidant capacity, 1,1-diphenyl 1-2-picrylhydrazyl (DPPH) induced free radical, superoxide, hydroxy and nitric oxide radicals scavenging property along with high reducing power (30). Propylene glycol extracts of the petals and flower heads assayed for antioxidant activity by lipid peroxidation, indicate that the extract of the petals was more potent than the flower head extract, based on analysis of plasma and urine malondialdehyde (MDA) and urine isoprostane invenations (82). Thus, the dietary supplementation of floral extract of C. officinalis may provide protection against degenerative changes associated with free radicals induced cellular damage (aging, cancer, etc) besides improve the food quality by retarding oxidative degeneration of food lipids by acting as a natural antioxidant.

Anti-inflammatory and analgesic effect

The floral extract of C. officinalis showed anti-inflammatory activity in both acute and chronic experimental models. The floral extract produce anti-inflammatory potential in both carrageenin (histamine, kinins, and prostaglandins) and dextran (mast cell degranulation) induce inflammatory models despite both produce inflammation through different mechanisms (83). Similarly, extract also showed protective effect in chronic inflammatory model (formalin induced) in rats (83). The ethyl acetate fraction of the methanol extract of C. officinalis flowers exhibited the most potent inhibition of 12-alpha-tetradecanoyl phorbol-13-acetate (TPA) - induced inflammation (1µg/ear) in mice with an ID₅₀ value of 0.05-0.20mg/ear compared with indomethacin used as reference drug. The results of different studies showed anti-inflammatory activity of C. officinalis extract irrespective of induction of inflammation (83).

The acute inflammation causes release of interferon-γ (IFN-γ), histamine, prostaglandins, etc. into the circulation which mediates host inflammatory response. Treatments with calendula extract lowered the IFN-γ level and reduce expression of cyclooxygenase 2 (COX-2) which may be contributing the anti-inflammatory effect in different inflammatory models (83). Further, calendula extract administrations also declined the production of reactive oxygen/nitrogen species (ROS/RNS) and suppression inflammatory cells such as neutrophils, eosinophils and macrophages which produces cellular damage during the chronic inflammation (83, 84). Flowers of C. officinalis contain high concentration of flavonoids, carotenoids and lycopene which possess potent antioxidant potential at very low concentrations. The chemo-preventive properties of flavonoids like lutein are generally believed to reflect their ability to scavenge endogenous ROS (85). By inhibiting or stimulating various signaling pathways, flavonoids at low concentration could affect cellular functions (86). Carotenoids have been reported to quench ROS whereas lycopene reducing the transcription levels of inflammatory cytokines (88). Hence the combined action of these active ingredients present in the C. officinalis through their free radical scavenging and inhibition of mediators of inflammation especially cytokines, prostaglandins may be exerting the anti-inflammatory activity.

Study showed that anti-inflammatory activity of C. officinalis was mainly due to presence of oleane type triterpene glycoside in the extract (37). The dichloromethane extract of the plant's flower heads inhibited croton oil-induced oedema and further isolation showed that the esters of faradiol-myristic acid, faradiol-palmitic acid and taraxasterol had anti-edematous activity with an oedema inhibition of nearly 50% at a dose of 240 µg/cm. When the doses of these two faradiol esters were doubled, oedema inhibition increased to 65 and 66%, respectively, without any synergism between them (7). A dose of 1200µg/ear of hydroalcoholic extract showed 20% inhibition in croton oil-induced mouse oedema. The activity was attributed due to the presence tri-terpenoids, the three most active compounds are the esters of fradiol-3-myristic acid, faradiol-3-palmitic acid and 4-taraxasterol (88, 89). Also, a cream containing calendula extract has been reported to be effective in dextran and burn edemas as well as in acute lymphoedema in rats. Activity against lymphoedema was primarily attributed to enhanced macrophage proteolytic activity (90).

Similarly, tribal people use calendula herb in the form of decoction and its aqueous extract as an analgesic agent. The analgesic activity was scientifically validated by intra-peritoneal administrations of C. officinalis extract in mice using tail immersion method and results showed that pure extract produces greatest analgesia for longer duration of action with maximum activity after 30 minutes of injection (91, 92). The hydroalcoholic extracts of C. officinalis suppressed the cell-free systems activities of 5-lipoxegenase and cyclooxygenase-2, the key enzymes in formation of pro-inflammatory eicosanoids from arachidonic acid (93). The analgesic effect of C. officinalis was also evaluated in thermal pain threshold model in male rats. The extract significantly increased tail flick latency compared to the control group,
indicating that the extract reduced pain threshold (94). The crude extract exhibited significant antipyretic and analgesic effect at a dose of 300 mg/kg and 40 mg/kg body weight, respectively as compared to standard i.e. acetyl salicylic acid which exhibited 50.5% and 11.3%, respectively. A dose of 20 mg/kg body weight crude extract was found to be equipotent in its analgesic action to 40 mg/kg of acetyl salicylic acid (95). Local application of the extract in the form of poultice or infusion soaked in a cloth also acts as an effective remedy (96). The oil extracted from calendula, applied externally to ear, alleviates pain and discomfort caused by earache (97). It also aids in relieving fever and menstrual cramps (98).

Antiucler effect

In traditional system, areal parts, rhizome and flowers of plant have been used for the treatment of gastrointestinal disorders. The ethanolic extract of calendula has been found to possess antiacid and anti-ulcer activity in rats due to its gastro-protective and anti-secretory potential (99). Administrations of calendula extract stimulate mucus secretion and levels of reduced glutathione, while suppressing the pepsin level, this may be possible mechanism of gastro-protection (99). Experimental studies have proved that rhizome of the *C. officinalis* produces antiucler profile on caffeine arsenic butadiene and pylorus ligated induced ulcer models (100). Yoshikawa et al, also showed that calendula could relieve chronic stomach irritation linked to peptic ulcers and other inflammatory conditions (101). In other study, calendulozide B-trioside, isolated from rhizomes of *C. officinalis*, in doses of 5, 10, 20 and 50 mg/kg exerted an anti-ulcerous action in experimentally induced ulcer models of different genesis displayed a anti-phagocytic and sedative action (58). The influence of *C. officinalis* on heparin-binding epidermal growth factor (HB-EGF) like growth factor gene expression in KATO-III cells under the stimulation of *H. pylori strain N*, using RT-PCR was investigated with and without addition of *C. officinalis*, where addition led to a significant reduction of *H. pylori* induced increase in gene expression of HB-EGF (102). Moreover, in another study conducted on human patients with duodenal ulcers and/or gastrroduodenitis were treated with an herbal combination containing calendula showed improvement of symptoms in 90% population (103). Adults with non-specific colitis treated with herbal tea included calendula, showed improved symptoms in 96% of the patient within two weeks of the therapy (104). Dizaye and Ali (105) studied the hydroalcoholic extract of *C. officinalis* and found to be effective in reduction of gastric acid secretion and preventing development of gastric ulcer in mice induced by aspirin. The gastro-protective effect was comparable to ranitidine and the anti-ulcerogenic activity was supported by histopathology of stomach sections (105). Chandra et al., (99) evaluated the antacid capacity and antiucler activity of *C. officinalis* in experimental rats. Ethanol extract of *C. officinalis* at the dose rate of 100 and 200 mg/kg, orally produced anti-secretory and antacid potential were demonstrated in pyloric ligation induced ulcer model. The gastro-protective effect was carried out by absolute ethanol induced and indomethacin induced ulcer model. *In-vitro* antacid capacity was evaluated by titration method. Gastric wall mucus level was increased in experimentally induced ulcer models and results are comparable to ranitidine. The antiucler activity of calendula extract was due to its anti-secretory and gastro-protective effect on experimental rats (99). Yadav et al., (106) studied the whole plant extract of *C. officinalis* at different concentrations against different standard ulcer models like aspirin-induced, ethanol-induced ulcers, cold resistant ulcers and pyloric ligation ulcers. The analysis of the data clearly indicated that the whole plant of *C. officinalis* have significant antioxidant effect on ulcer pathology. Supplementation of whole plant extract ulcer decreased lipid peroxidation and superoxide dismutase with concomitant increase in catalase activity in cold resistant stress induced ulcer (106). The aqueous and ethanolic floral extracts of *C. officinalis* flowers, when assayed in rabbit jejenum, caused a dose-dependent relaxation of spontaneous and K+ induced contraction; further fractionation of the extract with dichloromethane showed inhibition of spontaneous contractions in a dose range of 0.01-0.03 mg/ml and this is 10 times more potent than the parent crude extract. Study indicated that spasmylic activity was primarily due to blocking effects on calcium channel (107).

Immunostimulant activity

Numbers of studies have shown that polysaccharides (PS) fractions of *C. officinalis* extract exhibits potent immune stimulant activity. Polysaccharides such as PS-I and PS-II showed 40-57% and 20-30% of phagocytosis, respectively, whereas PS-III exhibited the highest phagocytosis rate of 54-100% (58, 59). The extract of *C. officinalis* showed complete inhibitory effect on the proliferation of lymphocytes in the presence of phytohemagglutinin (PHA) and mixed lymphocyte reaction (MLR) (108). The *in-vitro* cytotoxic anti-tumor and immunomodulatory activities and *in-vivo* anti-tumor effect of Laser Activated Calendula Extract (LACE) were evaluated. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation *in-vitro* induces apoptosis in LACE-treated cells. *In-vivo* anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. The results indicated that LACE aqueous extract showed cytotoxic tumor cell activity and lymphocyte activation activities of the extract. Moreover, the LACE extract presented *in-vivo* anti-tumor activity in nude mice against tumor growth of Ando-2 melanoma cells that further confirmed its dual effect (109).

Wound healing activity

For centuries, calendula is used as an important ingredient in the preparations used for anti-
inflammatory and antiseptic actions. In Ayurveda, calendula has been shown to possess scar reducing and emollient property by increasing the collagen content in wound areas (110). Hill et al., conducted a research on scar reducing and massage emollient properties by addition of calendula flowers extract produce good results (111). Different fractions viz. ethanolic, hexane and dichloromethane of C. officinalis were shown healing and angiogenic activities in experimental models. The effect of vascular proliferation was also tested from the study to verify the intensity of expression of vascular endothelial growth factor (VEGF) in cutaneous wounds in rats. The ethanolic extract increase in the number of blood vessels and reduction in wound area compared to control (12). The study concluded that application of calendula extract significantly increases epithelization in chronic venous ulcerations. The therapy offers a non-invasive and gentle treatment for difficult to treat plantar verruca, painful hyperkeratotic lesions and inflamed bursa (112). Ethanolic floral extract of the calendula showed wound healing potential on the thermal induced burns in rats. Among different concentrations, 200 mg/kg body weight showed significant improvement in healing wounds, indicated by an increase in collagen hydroxyproline and glucosamine contents. Moreover, decreased levels of tissue damage markers (alkaline phosphatase, alanine and aspartate aminotransferase), acute phase proteins (hepatoglobin, orosomucoid) and lipid peroxidation may be due to its antioxidant property (113). It not only improves wound healing but also increases blood flow to the damaged area and increasing collagen synthesis (114). Leach, (115) also studied 2% calendula gel and daily application have better wound healing potential due to its antimicrobial and antioxidant properties (115).

Calendula extract heals wound as well as internal and external ulcers due to its anti-inflammatory properties in addition application also improve blood flow to the affected area. The ointment base of calendula in hydrophobic vehicle is more suitable for the therapy because it has good stability, penetrability and ease of application (113, 116, 117). Calendula ointment 10% for ad libitum use has been prescribed for the potential therapy in cases of chelitis exfoliative (118).

Anti-proliferative effect

C. officinalis extracts showed *in-vitro* anti-cancerous activity on various tumor cell lines derived from leukemias, fibrosomas, melanomas, breast, cervix, prostate, pancreas and lung (119). Many active ingredients especially carotenoids isolated from C. officinalis have been effective against *in-vitro* and *in-vivo* tumor cells models (120, 121). Lin et al, have shown that the hot water extract of C. officinalis flowers exhibited anti-hepatoma activity against human liver cancer cell lines viz. HepG2/C3A, SK-HEP-1, HA22T/VGH, Hep3B and PLC/PRF/5 with an inhibitory effect of 25-26% at a dose of 2000µg/ml (122). The ethyl-acetate fraction of the methanolic extract of the flowers of plant has shown to possess potent cytotoxic activity *in-vitro* (37). Administrations of floral extract of C. officinalis to tumor bearing C57BL/6 mice reduce the lung tumor nodules by 74% with 43.3% increase in life span. Elevated levels if hydroxyproline, sialic acid and γ-glutamyl transpeptidase in the metastatic controls were found to reduce in floral extract treated mice. The study revealed anti-metastasis action due to down regulation of pro-inflammatory cytokines and inhibition of the expression of matrix metalloproteinases 2 and 9, lysyl oxidase and prolyl hydroxylase by the ingredients present in the floral extract of C. officinalis (83). Further it was also found that the extract administration inhibit the cyclooxygenase-2 enzyme, which plays regulatory role in inflammation (83). Dietary lutein present in C. officinalis extract has been found to suppress mammary tumor growth, increase tumor latency and enhanced lymphocyte proliferation in mouse models (123). The carotenoids present in calendula flowers like lycopene has been reported to consistently reduce transcript levels of pro-inflammatory cytokines (87). β-carotene, lycopene and lutein were reported to inhibit colonic aberrant crypt foci formation in rats (124). The β-carotenones present in the plant extract have been reported to have anti-metastatic potential against B16F10 melanoma cells (125).

First active component in calendula is calenduloside F6-0-n-butyl ester, active against leukemia (MOLT-4, RPMI 8226), colon cancer (HCC-2998) and melanoma (LOXIMVI, SK-MEL-5, UACC-62) cell lines with GI50 values of 0.77-0.99 µM except for leukemia (CCRF-CEM,G150), renal (AK-1, UO-31) and breast cancer (NCI/ADR-RES) cell lines. The second component is calenduloside G6'-O-methyl ester, which is active against all the cancer cell lines mentioned for the first compound with a GI50 of 20µM except for ovarian cancer (IGROVI) and renal cancer (VO-31) cell lines (37). The plant extract showed potent inhibition of tumor cell proliferation when assayed against a wide variety of human and murine tumor cell lines. The cells got arrested in G2/M phase and as caspase-3-induced apoptosis and aqueous extract showed less potential than the ethanolic extract of C. officinalis (119). When the same extract was assayed against human peripheral blood lymphocyte (PBLs) and human natural killer cells (NKCs), it showed induction of proliferation and activation of B and T lymphocytes, NK cells and CD4+ cells *in-vitro*. In addition, the extract also showed anti-tumor activity *in-vivo* in nude mice. The anticancer activity of calendula extract may be due to quenching of singlet oxygen and radicals by carotenoids content of plant extract, which play important role in cancer etiology (120, 121).

Hepatoprotective effect

Study have shown the protective effect of the plant extract against aflatoxins induced oxidative stress and hepatotoxicity in rats liver and results suggested that
Calendula extracts had anti-genotoxic effects due to higher content of total phenolic compounds (126). Experimental studies suggested that aqueous and ethanolic floral extract of *C. officinalis* have protective effect against CCl₄ induced (83, 127), acetaminophen induced hepatotoxicity (128) and aflatoxin induced hepatotoxicity (129) in wistar rats. Similarly, hydroalcoholic extract of the flowers results in reduced hepato-cytolysis and reduced hepatic biomarkers in-vitro and in-vivo models (130). Verma et al., (128) studied the attenuating potential of floral extract of *C. officinalis* on acetaminophen induced hepatotoxicity in Wistar rats and the treatment with ethanolic extract restored hepatic blood markers, increased the level of total thiols, reduced glutathione, total antioxidant status and antioxidant enzymes (CAT, SOD, GPx, GST) and reduced the levels of malondialdehyde and total oxidant status of blood and hepatocytes. These observations are in corroboration with the histological alterations in hepatic tissue in rats (128). Restoration of cellular antioxidant levels viz. increased levels of reduced glutathione, total thiols and enzymatic components of antioxidant system may be the prime mechanisms of polyphenolic compounds present in the calendula to protect the cells from chemical induced cellular damage (122, 128, 130). Calendula extract succeeded to improve the biochemical parameters, inflammatory cytokines, decreased the oxidative stress, and improved the histological pictures in the liver of rats fed aflatoxin-contaminated diet in a dose-dependent manner. It can be concluded that calendula extract has hepatoprotective potential against aflatoxin induced hepatotoxicity due to its antioxidant properties and radicals scavenging activity (129). The partial hepatoprotective activity of calendula in aflatoxin induced hepatotoxicity may be its modulatory effect on cytochrome P₄₅₀ enzymes which may interfere on aflatoxin active metabolite production responsible for the cellular damage (83).

Neuroprotective effect

Neurological disorders such as schizophrenia, depression dementia, seizure disorders are the major health problem. Phytochemicals from medicinal plants play a vital role in maintaining the brains chemical balance by influencing the function of receptors for the major neurotransmitters. Numbers of herbal medicines used in ayurvedic practices as well Chinese medicines contain multiple compounds and phytochemicals that may have a neuroprotective effect which may prove beneficial in different neurodegenerative disorders (131). Floral extract of *C. officinalis* produces neuroprotective effect on 3-nitropropionic acid (3-NP) induced neurotoxicity in rats (132). Administrations of floral extract for seven days significantly attenuated the behavioural alterations, oxidative damage of neuronal cells and striatal neuronal loss in 3-NP-treated rats (132). Similarly *C. officinalis* extract also shows neuroprotective action on monosodium glutamate (MSG) induced neurotoxicity in experimental animals. Protective effect on supplementation caused a significant alteration in animal behavior; oxidative defense (raised levels of lipid peroxidation, nitrite concentration, depletion of antioxidant levels) and hippocampus neuronal histology in MSG-treated animals (132). The plant extract contains mixtures of organic chemicals viz. fatty acids, steroids, alkaloids, flavonoids, glycosides, saponins, tannins, terpenes, etc. Proponents of herbal medicines describe a plant's therapeutic value as coming from the synergistic effects of the various components of the plants, in contrast to the individual chemicals of conventional medicines isolated by pharmacologists, therefore it is believed that traditional medicines are effective, with few or no side-effects (132, 30). Although the brain accounts for less than 2% of the body weight, it consumes about 20% of the oxygen available through respiration. Therefore, because of its high oxygen demand, the brain is the most susceptible organ to oxidative damage (133). The phytochemicals present in the plants (polyphenols, flavonoids, carotenoids, terpenoids, etc) are potent scavenger of free radicals and thus maintains the antioxidant status to combat oxidative stress induced neurological diseases (134, 138). Dietary supplementation of polyphenolic compounds and flavonoids like quercetin and catechin reduced oxidative stress improve memory and learning by protecting vulnerable neurons, enhancing existing neuronal function or by stimulating neuronal regeneration and protected cultured hippocampal neurons against nitric-oxide-mediated cell death (136).

Reproductive effect

Various studies have been reported the effects of *C. officinalis* extract on the male and female reproductive system in experimental animals. Repeated oral administrations of *C. officinalis* flowers extract caused significant reduction in the weight of testes, epididymis, seminal vesicles and ventral prostate of male rats. Further, sperm motility, sperm density were also reduced significantly, resulting in 80 per cent loss of fertility in experimental animals (137). The weight reduction of the testes and other accessory sex organs might be due to low level of androgens (138, 139). The protein content of the reproductive organs was significantly decreased which may be due to a low level of androgens and decreased level of sialic acid in the testis, epididymis, seminal vesicles and ventral prostate also reflects loss of androgens (131). In another study along with these observation reduction in serum concentration of luteinizing hormone, FSH and testosterone were also observed. It was concluded that aqueous extract *C. officinalis* possess dose related effect on male reproduction and possess contraceptive potential in male rats (141). In a study conducted by Silva et al., (142), to evaluate the effects of administration of a hydroalcoholic extract of *C. officinalis* flowers on the female reproductive function of wistar rats, the result...
concluded that extract had no toxic effect on female reproductive parameters and was also non-toxic in the pre-implantation and organogenesis periods of pregnancy. It induced a decrease of the maternal weight gain when administered during the fetal period (142). Thus, in future, more scientific research on C. officinalis effects on reproductive system helps in identifying the active principles used for contraceptive of the natural origin.

Cardioprotective effect
The supplementation of C. officinalis extracts produces cardioprotective effect against ischemic heart disease. The cardioprotective action may be due to stimulating left ventricular developed pressure and aortic flow as well as by reducing myocardial infarct size and cardiomyocytes apoptosis (143). Cardio-protection appears to be achieved by changing ischemia reperfusion-mediated death signal into a survival signal by modulating antioxidant and anti-inflammatory pathways as evidenced by the activation of Akt and Bcl2 and depression of TNF-α. The results further strengthen the concept of using natural products in degeneration diseases like ischemic heart disease (143). Contrary to this Perez-Carreon et al., tested the effect of aqueous extract on the heart of male Wistar rats and found it to inhibit heart rate contractility by 100% at a dose of 0.3 mg/l may be due to over-stimulating the myocardium activity (144). This may be possible due to spasmonic activity of plant extract in a dose dependent manner (107).

Hypoglycemic and hypolipidemic effect
Experimental studies suggested floral extract of C. officinalis have hypoglycemic and hypolipidemic effect on rats (145, 146). Oral administration of hydroalcoholic extract of C. officinalis to diabetic rats at a dose of 100mg/kg body weight resulted in a significant reduction in blood glucose, urine sugar and serum lipids in alloxan induced diabetic rats. It worked similar to insulin thus confirming its antidiabetic as well as hypolipidemic effect (145). Similarly, repeated administration of Ethanolic floral extract (300mg/kg) have more effective than aqueous extract of C. officinalis in restoring the mean blood glucose, per cent glycosylated hemoglobin, total cholesterol, triglycerides, low density lipoprotein, total thiols, malondialdehyde levels, antioxidant enzymes and renal parameters in streptozotocin induced diabetic rats (146).

Renal effect
Experimental studies suggested that floral extract of C. officinalis have nephroprotective potential against cisplatin induced nephrotoxicity in animals (83, 135). Verma et al., showed that treatment with ethanolic floral extract of C. officinalis protect cisplatin induced nephrotoxicity by restoring antioxidant system of the renal tissue. These observations were supported by restoration of plasma renal biomarkers and histopathological findings in renal tissue (135). The molecular mechanism of nephroprotective action is not well established but supposed to be due to its antioxidant potential and free radicals scavenging potential of carotenoids (lutein, zeaxathin and lycopene) present in the extract.

Antibacterial effect
The aerial part of the calendula is used in various preparations due to antibacterial potential of phytochemical ingredients present in the extract. Iauk et al., studied the methanolic extract and 10% decoction of the flowers of C. officinalis showed marked inhibition against anaerobic and facultative anaerobic periodontal bacteria (Porphyromonas gingivalis, Prevotella spp., Furobacterium nucleatum, Caphcoytophaga gingivalis, Veillonella parvalva, and Actinomyces odontolyticus) (147). Aqueous floral extract of C. officinalis exhibited better antibacterial activity especially against Streptococcus aureus than the petroleum ether, methanolic and ethanolic extracts (148). Flowers, leaves, stems and roots extract of C. officinalis made in n-butanol, ethanol and distilled water were tested for their antimicrobial properties and all the three solvents were effective against pathogenic microbes (149).

In another study using disc diffusion and MIC level, C. officinalis have been susceptible to 100% Streptococcus, Enterococcus, Methacillin resistant Streptococcus aureus (MRSA) and 50% Staphylococcus. The antibacterial activities of free oleanic acid and its glucosides and glucoronides isolated from C. officinalis were investigated. Oleanic acid inhibited bacterial growth and survival influenced cell morphology and enhanced the autolysis of gram positive bacteria suggesting that bacterial envelopes are the target of its activity (150). Moreover, Ghaima et al., studied the antibacterial and anti-biofilm activities of water extract of C. officinalis flowers against some of the entero-pathogenic bacteria was studied and the result showed a good antibacterial activity against all pathogenic isolates of bacteria. The reported activities for C. officinalis flowers extract allow their listing as potential anti-biofilm, antibacterial and antioxidant natural agents (151). Chloroform, ethanol and water leaf extracts of C. officinalis exhibits in-vivo antibacterial activity against gram positive and gram negative bacteria. Experimental studies results suggest that oleanic acid and its glycosides from C. officinalis can be considered as potential therapeutic agents against bacterial infections (150).

Antifungal effect
Floral extract of calenda have also tested against different pathogenic fungal strains isolated from humans and the extract showed significant antifungal properties (151). The in-vitro antifungal activity of floral extract of
C. officinalis showed effective against Aspergillus niger, Rhizopus japonicum, Candida albicans and Rhodotorula glutinis (152). Similarly, steam distillate volatile oils from flower of C. officinalis have potential antifungal activity against various strains of Candida spp. comparable to Nystatin as standard antifungal drug (151). The studies also proven that leaf extract of C. officinalis can also be used as antifungal agent (151, 153).

Anti-viral effect

The dichloromethane-methanolic (1:1) extract of C. officinalis flowers exhibited potent antiviral activity against viral infections. Studies showed anti-HIV activity in an in-vitro MTT/ Tetrazolium based assay. The antiviral activity of chloroform extract of calendula was attributed to inhibition of human immunodeficiency virus-1 reverse transcriptase (HIV1-RT) at a concentration of 1000µg/ml as well as suppression of HIV-mediated fusion at 500µg/ml (154). An 85% RT inhibition was achieved after a 30 min treatment of partially purified enzyme in a cell-free system. These results suggested that organic extract of flowers from C. officinalis possesses anti-HIV properties of therapeutic interest. Chloroform extract of the flowers inhibited the replication of HIV-1 in acutely infected lymphocytic MOLT-4 cells in-vitro (IC₅₀ 0.4 mg/ml) (154). Similarly, in-vitro flower tincture showed antiviral activity by suppressing the replication of influenza APR-8, influenza A₂ and herpes simplex virus (33).

Antiparasitic potential

Studies on methanolic and ethanolic extract of C. officinalis leaves showed significant anthelmintic activity as compared to the standard drug albendazole (155). Similarly, aqueous extract of leaves and flowers of C. officinalis have potent vermicidal activity against Indian earthworm (Phereetima posthuma) (156). Glycosides of oleanic acid inhibited larval stage of parasitic worm Heligmosomoides polygyrus. These results suggest that oleanic acid and its glycosides from C. officinalis can be considered as potential therapeutic agents (150). Alexenizor and Dorn, (157) reported the insecticidal effect of acetone: methanolic (2:1) extract of C. officinalis flowers (157). The extract showed potential insecticidal effect against milk weed bug, a-pinene in C. officinalis showed activity against Listeria monocytogenes (158). Whereas, nerolidol of C. officinalis showed antimalarial activity by inhibiting the parasite to synthesize coenzyme Q in all intra-erythrocytic stages (159). The plants contain saponins and have also shown anthelmintic potential which are in accordance with previous reports which reveals that saponins are known to have anthelmintic activity (160). Further methanolic floral extract of C. officinalis is effective against extracellular (promastigote) and intracellular (amastigote) forms of Leishmania major in controlling cutaneous leishmaniasis (161). Godara et al., reported acaricidal activity of aqueous and ethanolic floral extract of C. officinalis against Rhipicephalus (Boophilus) microplus resistant to pyrethroids (deltamethrin and cypermethrin). The results indicated that the ethanolic extract of C. officinalis had better acaricidal properties against resistant larvae and adult Rhipicephalus (Boophilus) microplus than the aqueous extract (162). The supplementation of saponins of C. officinalis reduces the infectivity of Heligmosomoides polygyrus in mice as indicated by reduced cytokine (IL-6, IFN-γ, TNF-α, IL-17) production on re-infection with H. polygyrus (163). Further research needs to characterize the fraction or ingredient from the extract of C. officinalis for their use dewormer or pest control programmes.

Toxicological effect

Calendula flowers preparations are of moderate acute toxicity. Intravenous and intra-peritoneal median lethal dose (LD₅₀) in mice of aqueous extract is reported to be 300 and 375mg/kg body weight. The hydroalcoholic preparation the LD₅₀ is reported to be 45mg/mouse, subcutaneously and for the rats it was reported to be 5260mg/kg body weight, intravenously (164). Hematological parameters were not altered but the biochemical parameters viz. blood urea nitrogen level and aspartate aminotransferase activity were elevated which may be due to renal and liver overload. No toxic symptoms were observed in the hamster orally given 0.15 g/kg/day for a period of 18 months of a floral extract of C. officinalis (164). Some clinical studies reported dermal application of floral extract produces allergy in some human cases assessed by the patch testing method (165). Moreover, Bone (166); Braun and Cohen (167) also advised to persons who are allergic to Asteraceae family should use calendula preparations with caution. Additionally, some allergic reactions are also recorded in persons who are in close contact with calendula with low immunity (168). Pregnant women are also advised to take care while handling calendula because it is believed to stimulate labor (169). The hydroalcoholic extract of C. officinalis was evaluated for its acute toxicity by the oral route in rats and mice and for subacute effect on hematological, biochemical and morphologic parameters in rats. Acute toxicity did not induce hematological alterations when compared with control group. There was an increase in blood urea nitrogen and ALT levels. Inflammatory sites were found in lung and liver, which were associated with oral gavage and a possible hepatotoxic effect. Overall the extract was non toxic except for some evidenced of renal and liver overload (33). Lagarto et al., studied the acute and subchronic oral toxicities of C. officinalis extract in male and female rats. A single dose of 2000 mg/kg dissolved in distilled water was administered by oral gavage for acute toxicity. Subchronic dose of 50, 250 and 1000 mg/kg/day were administered in drinking water. In acute toxicity, there were no mortality and signs of toxicity. In subchronic study, different blood biochemical parameters viz. aspartate and alanine aminotransferase
were significantly affected in male and females after 90 days. Histopathological examination if tissues showed slight abnormalities in hepatic parenchyma that was consistent with biochemical variations observed this indicate the low hepatic toxicity on chronic exposure of calendula extract (170).

Clinical Studies
C. officinalis flowers are reported to be used in almost 200 cosmetic formulations, over a wide range of products used for treating wounds, ulcers, herpese, scars, skin damage, frost-bite, burn, etc. In herbalism, calendula in suspension or in tincture is used topically for treating acne, reducing inflammation, controlling bleeding, and soothing irritated tissue. Calendula extract heals wounds as well as internal and external ulcers. It is an antiseptic and in addition improves blood flow to the affected area. Different formulations containing calendula (flower, areal part) are used in different conditions of gastric or hepatic disorders. Some of the clinical studies having beneficial potential are evaluated in limited human clinical studies are mentioned in the table 3.

Genotypic development
Calendula genotypes investigated in the VOSFA program showed considerable diversity in flower structure and site stem branching crop height, flowering period and maturity. By applying modern breeding technology, performing crop physiological studies, studying genotype environment interactions and investigating seed cleaning and processing systems capable of meeting the specifications of the oil extraction processes, improved cultivars and production systems will be developed for the main production areas of Europe. Technology to meet the seed cleaning specification of oil extraction production will be developed. In calendula officinalis seed oil content could be improved by reducing the seed hull and increasing kernel mass (177).

Conclusion
Looking at the present scenario, the ethno-botanical and traditional uses of herbal products has gained much popularity as these products are easily available, cheap, have high efficacy and are safe for human and animals use. Calendula has been reported to be used a medicine for centuries. Flowers of the plant possess greater degree of medicinal importance due to presence of high qualitative as well as quantity of phytochemical ingredients. Numbers of formulations are available and are therapeutically used in various dermatological disorders ranging from skin ulcerations to eczema, gastrointestinal, hepatic renal, cardiac and neurological disorders, etc. The phytochemical constituents are commonly used in formulations used for the wound

Table 3 Clinical studies of C. officinalis conducted in human trials for therapeutic applications.

Preparations	Dose	References
Calendula powder	1-2gm in a cup of water orally for the gastrointestinal disorders	[171, 172]
Tincture (1:9 in 20% alcohol)	2-4ml in water three times daily for the gastrointestinal disorders	
Ointment base of C. officinal (2 - 5%)	Used to treat athlete’s foot, ringworm and Candida infection	[113, 117, 118, 173]
Cream with 0.9% of calendula extract	Effective long term protection of the skin against ROS caused damage	[174]
C. officinalis containing cream	Sodium-lauryl-sulfate-induced irritant contact dermatitis	[175]
2% Calendula extract mouthwash or as oral gel	Radiation-induced oropharyngeal mucositis	[176]

Pharm Biomed Res 2018; 4(2): 12
healing potential along with increased blood supply to affected areas which additionally boost the healing process. Apart from this, very little molecular work has been done on C. officinalis. Emphasis needs to be paid on the molecular characterization of the plant as well as using other parts such as roots and analyzing its chemical constituents and properties. The traditional systems have widely proven the significance of C. officinalis up to greater extent. Due to rich phytoconstituents these ingredients have wide applicability in food and cosmetic industries besides medical applications. Being useful therapeutic agents in their own right, an understanding of these traditional medicines has provided new plant derived drug leads to modern medicine.

Acknowledgement
Authors thank the Dean, Faculty of Veterinary Sciences and Animal Husbandry, R S Pura, Jammu for providing necessary facilities.

Funding
This research received no funding from the external sources

Conflict of interest statement
Authors declare there are no conflicts of interest or competing financial interest in the present study.

References
1. Mukherjee PK, Maiti K, Mukherjee K, Houghton PJ. Leads from Indian medicinal plants with hypoglycemic potentials. J Ethnopharmacol 2006;106:1-28.
2. Olszewski M. Separation of quercetin, sexangularetin, kaempferol and isorhamnetin for simultaneous HPLC determination of flavonoid aglycones in inflorescences, leaves and fruits of three Sorbus species. J Pharm Biomed Anal 2008;48:629-35.
3. Gertsch J. Botanical drugs, synergy, and network pharmacology: forth and back to intelligent mixes. Planta Med 2011;77:1086-98.
4. Siddique MA, Jelani SM. Setting priorities for the development of Indian medicinal plants with hypoglycemic potentials. J Pharm Biomed Anal 2014;101:27-37.
5. Game SA, Yadav SS. Holoptelea integrifolia (Roxb.): a review of its ethnobotany, pharmacology, and phytochemistry. Biomed Res Int 2014;2014:401213.
6. Muley BP, Khadadabi SS, Banarse Muley NB. Phytochemical constituents and pharmacological activities of Flavonoids of Calendula officinalis Linn (Asteraceae): A review. Tropical J Pharm Res 2009;8:455-65.
7. Zitterl-eigleier K, Sosa S, Jureitsch J, Schubert-Zsilavecz M, Della Loggia R, Tubaro A, et al. Anti-oxidative activities of the main triterpenoid esters of marigold (Calendula officinalis L.). J Ethnopharmacol 1997;57:139-44.
8. Gazim ZC, Rezende CM, Fraga SR, Svidzinski TI, Cortez DA. Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil. Braz J Microbiol 2008;39:61-3
9. Khalid KA, Teixera da silva J.A, Biology of Calendula officinalis Linn.: Focus on pharmacology, biological activities and agronomic practices. Med Aromat Plant Sci Biotechnol 2012;6:12-27.
10. Kirtikar, Basus. Indian Medicinal Plants, 10. Revised and Enlarged, Edition 3rd. 2000.
11. Basch E, Bent S, Foppa I, Haskmi S, Kroll D, Mele M et al. Marigold (Calendula officinalis L.): an evidence-based systematic review by the Natural Standard Research Collaboration. J Herb Pharmacoother 2006;6:135-59.
12. Parente LM, Andrade MA, Brito LA, Moura MP, Lino-Junior Rde S, Tressensol LF, et al. Angiogenic activity of Calendula officinalis flowers L. in rats. Acta Cienc Bras 2011;26:19-24.
13. Krag K. Plants used as contraceptives by the North American Indians: an ethnobotanical study. Botanical Museum, Cambridge, MA: Harvard University. 1976 pp. 1177.
14. Arora D, Rani A, Sharma A. A review on phytochemistry and ethnomedical aspects of genus Calendula. Pharmacogn Rev 2013;7:179-87.
15. Mozherenkov VP, Shubina LF. Treatment of chronic conjunctivitis with Calendula. Med Sestra 1976;65:33-4.
16. Zaman S. Medicinal plant, QoQnus publication. Tehran, Iran. Country. 2003 pp. 45-90.
17. Chaparzadeh N, D’amicco ML, Khurji-nejad RA, Izzo R, Navarri-zio F. Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiol Biochem 2004;42:695-701.
18. Elias R. Antimutagenic activity of some saponins isolated from Calendula officinalis L., C. arvensis L. and Hedera helix L. aboratorie de Pharmacognosie 1Laboratoire de Microbiologie, Faculty de Pharmacie 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France. 1990.
19. Salehi-Sormaghi MH Medicinal and medical plant, Iran. 2006.
20. Khare CP. Encylopedya of Indian Medicinal Plants. Germany, Springer-Verlag Publisher, 2004 pp. 116-117.
21. Mir heydar. Plant Directionary, Islamic Culture Publication. Editorial. Tahran Iran. 2003.
22. Lu J, Zhou Q, Wang S. Evaluation of chemical enhancement on phytotherapy effect of Cd-contaminated soils with Calendula officinalis L. Int J Phytoremediation 2010;12:503-15.
23. Kasprzyk Z, Pyrek J. Triterpine alcohols of Calendula officinalis L. flowers Phytochemistry 1968;7:1631-39.
24. Kasprzyk Z, Wilkominski B. Structure of a new triterpene triol from Calendula officinalis L. flowers. Phytochem 1973;12:2299-300.
25. Vidal-Ollivier E, Balansard G. Revisised structures of triterpenoid saponins from the flowers of Calendula officinalis. J Nat Prod 1989;52:1156-59.
26. Neukich H, D’ambrosio M, Dalla via J, Guerriero A. Sernainteque quantative determination of eight triterpenoid monoesters from flowers of 10 varieties of Calendula officinalis L. and characterization of a new triterpenoid monoester. Phytochem Anal 2004;15:30-5.
27. Kushimoto S, Maoka T, Sumimoto K, Ohnaya A. Analysis of carotenoid composition in petals of calendula (Calendula officinalis L.), Biosci Biotechnol Biochem 2005;69:2122-8.
28. Masterová I, Grancaiová Z. Phytochemical overview of the components of Calendula officinalis L. and their therapeutic evaluation. Cesk Farm 1992;41:173-6.
29. Anna RB, Maria CB, Sandra G, Mazzi G, Vincieri FF. Stability of the constituents of calendula, milk-thistle and passionflower tinctures by LC-DAD and LC-MS. J Pharmaceut Bioanal Measured 2002;3:613-24.
30. Verma PK, Rainera R, Sultana, M. Phytochemical constituents and antioxidant potential in floral extracts of Calendula officinalis Linn. World J Pharmacembical Res 2014;3:2067-83.
31. Marukani T, Kishi A, Yoshikawa M. Medicinal flowers. IV. Marigold. (2): Structures of new ione and sesquiterpene glycosides from Egyptian Calendula officinalis. Chem Pharm Bull 2001;49:974-8.
32. Vidal-Ollivier E, Elias R, Faure F, Babahamian M, Crespin F, Balansard G, et al. Flavonol glycosides from Calendula officinalis flowers, Planta Med 1989;55:73-4.
33. Silva EJ, Gonçalves ES, Aguilar E, Fenvicio LB, Lyra MA, Coelho MC, et al. Toxicological studies on hydroalcoholic extract of Calendula officinalis L. Phytother Res 2007;21:332-6.
34. Nagub NY, Khalil MY, Sherbeny SE. A Comparative study on the productivity and chemical constituents of various sources and species of calendula plants as affected by two foliar fertilizers. J Applied Sci Res 2005;1:176-89.
35. Raal A, Kirsipuu K. Total flavonoid content in varieties of Calendula officinalis L. originating from different countries and
cultivated in Estonia. Nat Prod Res 2011;25:658-62.
36. Albulescu M, Alexa N, Coojan C. Free sterols, sterol esters, glycosides, acetylated glycosides and water soluble complexes in Calendula officinalis. Phytochem 2004;64:627-31.
37. Ukiya M, Akihisa T, Yaskawka K, Tokuda H, Suzuki T, Kinura Y. Anti-inflammatory, anti-tumor-promoting, and cytotoxic activities of constituents of marigold (Calendula officinalis) flowers. J Nat Prod 2006;69:1692-6.
38. Adler G, Kasprzyk Z. Free sterols, sterol esters, glycosides, acetylated glycosides and water soluble complexes in Calendula officinalis. Phytochem 1975;14:627-31.
39. Wilkomirski B. Pentacyclic triterpene triols from Calendula officinalis flowers. Phytochem 1985;24:3066-7.
40. Wilkomirski B, Kasprzyk Z. Free and ester-bound triterpene alcohols and sterols in Calendula flowers. Phytochem 1979;18:253-55.
41. Słowski J, Dziewanowska K, Kasprzyk E. Ursadiol: a new triterpene diol from Calendula officinalis. Biochim Biophys Acta 1973;12:157-160.
42. Eiterer-Eiglsperger K, Reznicek G, Jurentsich J, Novak J, Zitterl W, Franz C. Morphogenetic variability of faradiol monoesters in marigold Calendula officinalis L. Phytochem Anal 2001;12:199-201.
43. Ruszkowski D, Szakai E, Janiszowska W. Metabolism of [3-3H] oleic acid in Calendula officinalis L. roots. APP 2003;23:315-17.
44. Hansel R, Keller K, Rimpler H, Schneider G. hogers handbuch der pharmazeutischen Praxis (vol 4,5 13 Edn), Springer, Berlin. 1992; 597-597.
45. Issac O. Die Ringelblume, Botanik, pharmazeutischen Praxis (vol 4,5 17 Edn), Springer, Berlin. 1992; 17.
46. Badami RC, Morris LJ. The oxygenated fatty acid of calendula seeds oil. J Am Oil Chem Soc 1965;42:1119-21.
47. Beerentrop H, Rottkämper G. Calendula and Coriandrum - new potential oil crops for industrial use. Fat Sci Tech 1987;89:227-30.
48. Pintea A, Dulf F, Bele C, Andrei S. Fatty acids distribution in the lipid fractions of Calendula officinalis L. seed oil. Chem Listy 2008;102:749-50.
49. Cahoon EB, Dietrich CR, Meyer K, Damade HG, Dyer JM, Kimney AI. Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochem 2006;67:1166-76.
50. Yuan GF, Sun H, Sinclair AJ, Li D. Effects of conjugated linoleic acid and conjugated linoleic acid on lipid metabolism in mice. European J Lipid Sci Tech 2009;111:557-45.
51. Capelle A. New industrial crops for Europe. p. 19-21. In: J. Janick (ed.), Progress in New Crops, Proc. National Symposium on New Crops, New Opportunities. New Technologies. ASHS Press, Alexandria, VA.
52. Willuhn G, Westhaus RG. Loliolide (Calendin) from Calendula officinalis. Planta Med 1987;53:304.
53. Korneo H, Hayashi N. Paraffins of the petals of Calendula officinalis. Phytochem 1971;10:1944.
54. Wojciechowski Z, Jelonekiewicz-Kanador A, Tomaszewski M, Janowski J, Kasprzyk Z. The structure of glycosides of oleic acid isolated from the roots of Calendula officinalis flowers. Phytochem 1971;10:1121-4.
55. Vecherko LP, Svirdov AF, Zinkevich EP, Kogan LM. The structure of calendulose C and D from the roots of Calendula officinalis. Khim Prir Soed 1975;3:366-73.
56. Kurkin VA, Sharaova OV. Flavonoids from Calendula officinalis flowers. Khim Prir Soed 2007:2:179-80.
57. Nicolletta CB, Marongiu PA, Pvetta T, Procedda S. Extraction, separation, and isolation of volatiles and dyes from Calendula officinalis L. and Aloysia triphylla (L'Her) britton by supercritical CO2 J Essent Oil Res 2003;15:272-7.
58. Iatsyno AI, Belova LF, Lipkina GS, Sokolov SI, Trutneva EA. Pharmacology of calendulose B, a new triterpene glycoside from the roots of Calendula officinalis. Farmakol Toksikol 1978:41:556-60.
59. Saleem M, Zaka S. Studies on marigold seed oil and seed meal. Fette seifen anstrichmittel 1968;68:178-80.
60. Popovic M, Kaurinovic B, Mincu-Dukic N, Vojinovic-Miloradov M, Capic V. Combined effects of plant extracts and xenobiotics on liposomal lipid peroxidation. Part 1. Marigold extract-ciprofloxacin/pyralene. Oxid Comrnun 1999:22:487-94.
61. Labsandorzhieva PB. Antioxidant activity of Calendula officinalis L. Chem. Plant Raw Mat 2009:11:123-6.
62. Braga PC, Dal SM, Culici M, Spallino A, Falchi M, Bertelli A, et al. Antioxidant activity of Calendula officinalis extract: inhibitory effects on chem|huminicance of human neutrophil bursts and electron paramagnetic resonance spectroscopy. Pharmaco 2009:83:348-55.
63. Matsyk G, Wojciak-Kosior M, Paduch R. The influence of Calendula officinalis flos extracts on cell cultures, and the chromatographic analysis of extracts. J Pharm Biomed Anal 2005:38:265-92.
64. Preethi KC, Kuttan G, Kuttan R. Antioxidant potential of an extract of Calendula officinalis flowers in vitro and in vivo. Pharm Biol 2006:44:691-97.
65. Cordova CA, Siqueira BR, Neto CA, Yunes RA, Volpato AM, Crechinel Filho V, et al. Protective properties of butanolic extract of the Calendula officinalis L. (marigold) against lipid peroxidation of rat liver microsomes and action as free radical scavenger. Redox Rep 2002:7:95-102.
66. Frankie T, Salobir K, Salobir J. The comparison of in-vivo antinflammatory activity of two propane glycol extracts of Calendula officinalis (Marigold) and vitamin E in young growing pigs. J Anim Physiol Anim Nutr 2008;40:1-7.
67. Preethi KC, Kuttan G, Kuttan R. Anti-inflammatory activity of
flow extract of Calendula officinalis Linn. and its possible mechanism of action. Indian J Exp Biol 2009;47:113-20.
84. Iles KE, Forman HJ. Macrophage signaling and respiratory burst. Immunn Res 2002;59:123.
85. Nishino H, Murakoshi M, Ii T, Takemura M, Kuchide M, Kanazawa M, et al. Carotenoids in cancer chemoprevention. Cancer Motast Rev 2002;21:257-64.
86. Kundu JK, Surj YJ. Breaking the relay in deregulated cellular signal transduction as a rationale for chemoprevention with anti-inflammatory phytochemicals. Mutat Res-Fund Mol M 2005;591:123-46.
87. Hertog A, Silor U, Spitzer V, Seifert N, Denelavas A, Hunziker PB, et al. Lycopene reduced gene expression of steroid targets and inflammatory markers in normal rat prostate. FASEB J 2005;19:272-4.
88. Della LR. Topical anti-inflammatory activity of Calendula officinalis extracts. Planta Med 1990;56:658.
89. Della LR, Tubaro A, Sosa S, Becker H, Saar S, Isaac O. The role of triterpenoids in the topical anti-inflammatory activity of Calendula officinalis flowers. Planta Med 1994;60:516-20.
90. Casley-Smith JR. The effects of Unguentum lyphticum on acute experimental lymphedema and other high-protein edema. Lympholm 1983;16:150-6.
91. Saray ZS, Muqtaq N, Noor F, Arif M, Takween S, Ahmed SP. Analgesic and antimicrobial activity of the leaves extract of Calendula officinalis. Hamdard Med 2000;43:34-7.
92. Sarrel EM, Mandelberg A, Cohen HA. Efficacy of natural products in the management of ear pain associated with acute otitis media. Arch Pediatr Adolesc Med 1998;152:93-6.
93. Farahmandlou N, Shahidi S, Mahmoodi M. Effects of Calendula officinalis on pain threshold in male rats. International Conference on Chemical, Biological and Medical Sciences, Kuala Lumpur (Malaysia) 2012.
94. Ahmad S, Qureshi S, Atiq Rahman, Badar Y, Zakir-ar-rahman, Antipyretic and analgesic activity in crude ethanolic extract of Calendula officinalis Linn February. Pakistan J Sci Ind Res 2000;43:50-4.
95. Iker U, Sulleyman B, Nurettin Y, Yunus D. The investigation and quantitative ethobotanical evaluation of medicinal plants used around Izmir province, Turk J Med Plant Res 2009;3:345-67.
96. David LF, Kenneth GS, Daniel W. Naturopathic ear drops around Izmir province, Turk J Med Plant Res 2009;3:345-67.
97. Chakrurski I, Matev D, from Egyptian oleanane Medicinal flowers. III. Marigold. (1): hypoglycemic, gastric remedies. Phytother Res 2007;21:267-77.
98. Ferreira SRS. Marigold (Calendula officinalis L.) successfully treated exfoliative cheilitis: a case report. Cases J 2009;2:9077.
99. Aframandlou N, Shahidi S, Mahmoodi M. Effects of Calendula officinalis on pain threshold in male rats. International Conference on Chemical, Biological and Medical Sciences, Kuala Lumpur (Malaysia) 2012.
100. Marfa LL, Kamel G. Comparative analysis of medicinal plants used in traditional medicine in Italy and Tunisia. J Ethnobiol Ethnomed 2009;5:1-6.
101. Chandra P, Kishore K, Ghosh AK. Evaluation of antioxidant capacity and antiulcer activity of Calendula officinalis L. in experimental rats. Orient Pharm Exp Med 2015;15:277-85.
102. Borelli F, Izzo AA. The plant kingdom as a source of antioxidants. Phytother Res 2000;14:581-91.
103. Yoshikawa M, Murakami T, Kishi A, Kageura T, Matsuda H. Medicinal flowers. III. Marigold. (1): hypoglycemic, gastric emptying inhibitory, and gastroprotective principles and new oleane-type triterpenoid glycoligosides, calendasaponins A, B, C, and D, from Egyptian Calendula officinalis. Chem Pharm Bull 2001;49:863-70.
104. Hofbauer R, Pasching E, Moser D, Frass M. Heparin-binding epidermal growth factor expression in KATO-III cells after Helicobacter pylori stimulation under the influence of strychnos Nux vomica and Calendula officinalis. Homeopathy. 2010;99:177-82.
105. Chakrurski I, Matev M, Stefanov G, Kolchev A, Angelova I. [Treatment of duodenal ulcers and gastrroduodenitis with a herbal combination of Symphytum officinalis and Calendula officinalis with and without antacids]. Vrtr Boles 1981;20:64-7.
106. Chakrurski I, Matev M, Kolchev A, Angelova I, Stefanov G. Treatment of chronic colitis with an herbal combination of Taraxacum officinale, Hypericum perforatum, Melissa officinalis, Calendula officinalis and Foeniculum vulgare. Vrtr Boles 1981;20:51-4.
107. Dizyae K, Ali R H. Gastroprotective effects of Calendula officinalis Extract HMU, B010. The Third International Conference for Medical Sciences 24- 26 October 2012.
108. Yadav AK, Pushpesh KM, Jain PK, Chandana VR, Tiwari S, Singh V. Investigation of Calendula officinalis whole plant as a gastro-protective and antioxidant in peptic ulcers. Br J Med Health Res 2016;3:67-76.
109. Bashir S, Jianbaz KH, Jabeen Q, Gilani AH. Studies on spasmodenic and spasmylocytic activities of Calendula officinalis flowers. Phytother Res 2006;20:906-10.
110. Amirghofran Z, Azadbakhsh M, Karimi MH, Evaluation of the immunomodulatory effects of five herbal plants. J Ethnopharmacol 2000;72:167-72.
111. Jimenez-Medina E, Garcia-Lora AM, Paco L, Algarra I, Collado A, Garrido F. A new extract of the plant Calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation. BMC Cancer 2006;6:119.
112. Fronza M, Heinzmann B, Hamburger M, Laufer S, Merfort I. Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts. J Ethnopharmacol 2009;126:463-7.
113. Hill WL, Scar reducing and massage emollient. United States Patent Number 7205012 www.uspto.com.
114. Kaviera B. Pharmacological activities of Calendula officinalis. Int J Sci Res 2017;6:43-7.
115. Chandra PK, Kuttan R. Effect of Calendula officinalis flower extract on acute phase proteins, antioxidant defense mechanisms and granuloma formation during thermal burns. J Clin Biochem Nutr 2008;43:58-64.
116. Fonseca YM, Catini CD, Vicentini FT, Nonuza A, Gerlach RF, Fonseca MJ. Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin: evaluation of reduced glutathione levels and matrix metalloproteinase secretion. J Ethnopharmacol 2010;127:596-601.
117. Leach MJ. Calendula officinalis and Wound Healing: A Systematic Review. Wounds 2008;20:236-43.
118. Khalsa KP. Preparing botanical medicines. J Herb Pharmacother 2007;7:267-77.
119. Danielski L, Campos LMAS, Bresciani LFV, Hense H, Yunes RA, Ferreira SRS. Marigold (Calendula officinalis L.) oleoresin: Solubility in SC- CO2, and composition profile. Chem Eng Progress 2007;103:99-106.
120. Rovrom-varenoto LH, Lodi KB, Almeida ID. Topical Calendula officinalis L. successfully treated exfoliative cheilitis: a case report. Cases J 2009;2:9077.
121. Jimenez-medina E, Garcia-Lora A, Paco L, Algarra I, Collado A, Garrido F. A new extract of the plant Calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation. BMC Cancer 2006;6:119.
122. Burton GW, Ingold KU. beta-Carotene: an unusual type of lipid antioxidant. Sci 1984;224:569-73.
123. Krinsky NI. Antioxidant functions of carotenoids. Free Radic Biol Med 1989;7:617-35.
124. Lin LT, Liu LT, Chiang LC, Lin CC. In vitro anti-hepapoma activity of fifteen natural medicines from Canada. Phytother Res 2002;16:440-4.
125. Chew BP, Wong MW, Wong TS. Effects of lutein from marigold extract on immunity and growth of mammary tumors in mice. Anticancer Res 1996;16:3699-374.
126. Nairasawa T, Fukushima Y, Hasebe M, Ito M, Aizawa R, Murakoshi M, et al. Inhibitory effects of natural carotenoids, alpha-carotene, beta-carotene, lycopene and lutein, on colorectal aberrant crypt formation in rats. Cancer Lett 1996;107:137-42.
127. Pradep CR, Kuttan G. Effect of l- carotene on the inhibition of lung metastasis in mice. Phytomedicine 2003;10:159-64.
128. Abdel-aziem SH, Hassan AM, El-denshary ES, Hamzawy MA, Mamnaa FA, Abdel-wahhab MA. Ameliorative effects of thyme and calendula extracts alone or in combination against aflatoxins-induced oxidative stress and genotoxicity in rat liver. Cytotechnol 2014;66:457-70.
129. Rasu MA, Tamas M, Puca C, Roman I, Sabadas M. The hepatoprotective action of ten herbal extracts in CCl4 intoxicated liver. Phytother Res 2005;19:744-9.
Verm PK, Raina R, Singh M, Wazir VS, Kumar P. Attenuating potential of Calendula officinalis on biochemical and antioxidant parameters in hepatotoxic rats. Indian J Physiol Pharmacol 2017;61:398-410.

Hanzawa MA, El-denshury ES, Hassan NS, Mannaa FA, Abdel-wahab RA. Activity of antifungal infection of Calendula officinalis counteracts the oxidative stress and liver damage resulted from Aflatoxin. ISRN Nutr 2013;2013:538427.

Hussein MS, Osama S, El-Tawil, Yassin NE, Khalid AA. The protective effect of Morus Alba and Calendula officinalis plant extracts on carbon tetrachloride-induced hepatotoxicity in isolated rat hepatocytes. Am J Sci 2010;6:762-73.

Kumar GP, Kahanum F. Neuroprotective potential of phytochemicals. Pharmacocong Rev 2012;6:81-90.

Shivasharan BD, Nagakamin P, Thippeswamy BS, Veeraprap VS, Bansal P, Umnikrishnam MK. Protective effect of Calendula officinalis Linn. flowers against 3-nitropropionic acid induced experimental Huntington's disease in rats. Drug Chem Toxicol 2013;36:466-73.

Weiss RF, Fintelmann V. Herbal Medicine. Stuttgart: Thieme; 2000 pp. 3-20.

Viana M, Barbos C, Bonet B, Bonet MV, Castro M, Fraile MV, et al. In vitro effects of a flavonoid-rich extract on LDL oxidation. Atherosclerosis 1996;123:83-91.

Verm PK, Raina R, Sultana M, Singh P, Kumar M. Total antioxidant and antioxidant status of plasma and renal tissue of cisplatin-induced nephrotoxic rats. Protection by floral extracts of Calendula officinalis Linn. Renal Failure 2016;38:142-50.

Larson RA. The antioxidants of higher plants. Phytochemistry 1988;27:969-78.

Kushwaha S, Agarwal M, Murteja A, Chauhan A. Impact of 50% Ethanolic extract of Calendula officinalis (flower) on the reproductive function of male albino rats (Rattus norvegicus). Egyptian J Biol Sci 2007;9:52-46.

Sarkar M, Gangapadhyay P, Basak B, Chakrabartty K, Banerji J, Adhikary P, et al. The reversible antifertility effect of Piper betle Linn. on Swiss albino male mice. Contraception 2000;62:271-4.

Sharma N, Jocber D. Antifertility investigation and toxicological screening of the petroleum ether extract of the leaves of Mentha arvensis L. in male albino mice. J Ethnopharmacol 2001;75:5-12.

Gupta RS, Yadav RK, Dixit VP, Dobh PAP. Antifertility studies of Colebrookia oppositifolia leaf extract in male rats with special reference to testicular cell population dynamics. Fitoerapia 2001;72:236-45.

Sharma P, Sharma A, Agarwal M, Joshi SC. Contraceptive potential of Calendula officinalis aqueous extract in male rats. Int J Pharm Sci Res 2013;2:192-197.

Silva EL, Costa-silva HJ, Evinacio LB, Fraga Mdo C, Coelho MC, Wanderley AG. Reproductive function and antioxidant activity of water and ethanolic leaf extracts in male albino mice. J Ethnopharmacol 2001;75:5-12.

Ray D, Mukherjee S, Falchi M, Bertelli A, Das DK. Alimentation of myocardial ischemic reperfusion injury with Calendula officinalis. Curr Pharm Biotechnol 2010;11:849-54.

Czyz-Jimener G, Licea-Vega JA, Popoca EA, Fazenda SF, Vill Trevisen. Genotoxic and antigenotoxic properties of Calendula officinalis extracts in rat liver culture treated with diethylnitrosamine. Toxicol in vitro 2002;16:253-8.

Chakraborthy GS, Arora R, Maje C. Anti diabetic and anti hyperlipaemic effect of hydroalcoholic extract of Calendula officinalis. Int J Pharm 2011;2:61-5.

Verma PK, Raina R, Sultana M, Singh M. Modulatory effect of Calendula officinalis on altered antioxidant status and renal parameters in diabetic rats. Pharm Biomed Res 2016;2:52-64.

lauk L, Lo Bue AM, Milazzo I, Rapisarda A, Blandino G. Anti bacterial activity of medicinal plant extracts against periodontopathic bacteria. Phytorees 2007;13:59-604.

Roopashree TS, Raman Dangu, Shobha Rani RH, Narendra C. Antimicrobial activity of saponins from Cassia tora (flowers). Memordica polyneural and Calendula officinalis. Int J Appl Res Nat Prod 2008;1:20-28.

Mathur R, Goyal M. Antimicrobial effects of Calendula officinalis against human pathogenic microorganisms. J Herb Med Toxi 2011;5:97-101.

Szakiel A, Ruzowskia D, Gudriakia A, Kurek A, Wolska KJ, Doligalska M, et al. Antibacterial and antiparasitic activity of oleic acid and its glycosides isolated from marigold (Calendula officinalis). Planta Med 2011;74:1709-15.

Gharna K K, Rai Sad P, Saheed SF, Ahmed EF. Antifilobin, antibacterial and antioxidant activities of water extract of Calendula officinalis flowers. JBBPR 2013;4:465-70.

Kasram K, Sakkarar PR, Patil AT. Antifungal activity of Calendula officinalis. Indian J Pharm Sci 2000;62:404-7.

Tubataba AN, Raman M, N Slufi, Tabandeh MR, Oryan A, Nazifi S. Effects of topical application of Calendula officinalis gel on collagen and hyaluronidase content of skin in rats. Comp Clin Pathol 2012;21:253-7.

Kalvatchez Z, Walder R, Garzaro D. Anti-HIV activity of extracts from Calendula officinalis Linn. BioMed Phamacother 1997;51:176-80.

Dorwal D. Antihelmintic activity of methanolic and ethanolic leaf extract of Calendula officinalis. Int J Res Pharm Biomed Sci 2012;3:831-33.

Parwal L, Shrivastava V, Makode KK. Jain UK. Antihelmintic activity of aqueous extracts of some Saponin containing medicinal plants. Der Pharm Lett 2009;2:476-81.

Alexenizor M, Dorn A. Screening of medicinal and ornamental plants for insecticidal and growth regulating activity. J Pestic Sci 2007;80:205-15.

Vieira-Martos M, Gendy AEGS, Sendra E, Fernandez-Lopez J, Ruizik KAA, Omer EA, et al. Chemical composition and antioxidant and anti-listeria activities of essential oils obtained from some Egyptian plant. J Agric Food Chem 2010;58:9063-70.

Boyom FF, Ngouanga V, Zillo PH, Menut C, Bessiere JM, Gut J, et al. Composition and anti-plasmodial activities of essential oils from some Cameroon medicinal plants. Phytochem 2003;64:1269-75.

Jain UK, Parwal L, Shrivastava V, Makode KK. Scholars research library. Der pharmaecia letter 2010;2:476-81.

Nikneh R, Ghaznavi H, Rahbar A, Sadr S, Mehrzadi S. In vitro anti-leishmanial activity of methanolic extracts of Calendula officinalis flowers, Datura stramonium seeds, and Salsvia officinalis leaves. Chin J Nat Med 2014;12:423-7.

Godara R, Katoch R, Yadav A, Ahanger RR, Bhutyal ADS, Verma PK, et al. In vitro acaricidal activity of ethanolic and aqueous floral extracts of Calendula officinalis against pyrethroid resistance Rhicephalus (Boophilus) microplus. Exp App Acar 2015;67:147-157.

Doligalska M, Joźwicka K, Laskowska M, Donskow-Lysoniewska K, Pączkowski C, Janiszewska W. Changes in Heligmosomoides polygyrus glycoprotein pattern by saponins impact the BALB/c mouse immune response. Exp Parasitol 2013;135:524-31.

EAEMP, 1999. European Agency for the Evaluation of Medicinal Products, Regulation No. 2309/93 and renamed by EC Regulation No. 726/2004 to the European Medicines Agency, it had the acronym EMEA.

Reider N, Komorck K, Hansen BM, Fritsch P, Abeer W. The seamy side of natural medicines: contact sensitization to arnica (Arnica montana L.) and marigold (Calendula officinalis L.). Contact Derm 2001;45:269-72.

Bone K. A clinical guide to blending liquid herbs. St. Louis Missouri, Churchill Livingstone. 2003 pp. 120-123.

Braun L, Cohen M. Herbs and natural supplements: an evidence based guide. Sydney, Elsevier. 2005 pp. 98-100.

Ramos A, Edeaire A, Vizoso A, Betancourt J, López M, Décalo M. Genotoxicity of an extract of Calendula officinalis L J Ethnopharmacol 1998;61:49-55.

Smith HJH. Natural remedies for common health condition. 1st Edn, the tree of light publishers. UT 1995.

Lagarto A, Bueno V, Guerra I, Valdés O, Vega Y, Torres L. Acute and subchronic oral toxicities of Calendula officinalis extract in Wistar rats. Exp Toxicol Pathol 2011;63:387-91.

Bisset NG, Calian DSF, Ahmed EF, in Herbal Drugs and Phytopharmaceuticals; A handbook for Practice on a Scientific Basis. Medpharm Scientific Publishers, Stuttgart and CRC Press, Boca Raton, FL, USA, 1994.

Blumenthal M. The complete German Commission E monographs:

Pharm Biomed Res 2018; 4(2): 16
therapeutic guide to herbal medicines. Austin, American Botanical Council, 1998.

173. Pommier P, Gomez F, Sunyach MP, DHombres A, Carrie C, Montbarbon X. Phase III randomized trial of Calendula officinalis compared with trolamine for the prevention of acute dermatitis during irradiation for breast cancer. J Clin Oncol 2004;22:1447-53.

174. Bernatoniene J, Masteikova R, Davalgiene J, Peciura R, Gautyliene R, Bernatoniene R, et al. Topical application of Calendula officinalis (L.): Formulation and evaluation of hydrophilic cream with antioxidant activity. J Med Plant Res 2011;5:868-77.

175. Fuchs SM, Schliemann-willers S, Fischer TW, Elsner P. Protective effects of different marigold (Calendula officinalis L.) and rosemary cream preparations against sodium-lauryl-sulfate-induced irritant contact dermatitis. Skin Pharmacol Physiol 2005;18:195-200.

176. Babaee N, Moslemi D, Khalilpour M, Vejdani F, Moghadamnia Y, Bijani A, et al. Antioxidant capacity of Calendula officinalis flowers extract and prevention of radiation induced oropharyngeal mucositis in patients with head and neck cancers: a randomized controlled clinical study. Daru 2013;21:18.

177. Angelini LG, Moscheni E, Colonna G, Belloni P, Bonari E. Variation in agronomic characteristics and seed oil composition of new oilseed crops in central Italy, Industrial Crops Products 6. 1997;313-23.

178. CARMINA, 2010. Calendula as agronomic raw material for industrial applications (CARMINA), [en ligne], disponible sur: http://www.biomatnet.org /secure/Fair/S636.htm, consulté le 27/07/2010.