Mechanistic cross-talk between DNA/RNA polymerase enzyme kinetics and nucleotide substrate availability in cells: Implications for polymerase inhibitor discovery

Si’Ana A. Coggins, Bijan Mahboubi, Raymond F. Schinazi, and Baek Kim

From the Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA and the Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA

Enzyme kinetic analysis reveals a dynamic relationship between enzymes and their substrates. Overall enzyme activity can be controlled by both protein expression and various cellular regulatory systems. Interestingly, the availability and concentrations of intracellular substrates can constantly change, depending on conditions and cell types. Here, we review previously reported enzyme kinetic parameters of cellular and viral DNA and RNA polymerases with respect to cellular levels of their nucleotide substrates. This broad perspective exposes a remarkable co-evolution scenario of DNA polymerase enzyme kinetics with dNTP levels that can vastly change, depending on cell proliferation profiles. Similarly, RNA polymerases display much higher K_{m} values than DNA polymerases, possibly due to millimolar range rNTP concentrations found in cells (compared with micromolar range dNTP levels). Polymerases are commonly targeted by nucleotide analog inhibitors for the treatments of various human diseases, such as cancers and viral pathogens. Because these inhibitors compete against natural cellular nucleotides, the efficacy of each inhibitor can be affected by varying cellular nucleotide levels in their target cells. Overall, both kinetic discrepancy between DNA and RNA polymerases and cellular concentration discrepancy between dNTPs and rNTPs present pharmacological and mechanistic considerations for therapeutic discovery.

Both RNA and DNA polymerases have been well-studied with respect to their structural and mechanistic properties. Generally, polymerization consists of an initial DNA or RNA template–binding step, an elongation step in which the polymerase binds and incorporates incoming dNTP or rNTP substrates, and a termination step. RNA polymerases, which can be classified through their primer-dependent or primer-independent (de novo) initiations, differ from DNA polymerases, which are all primer-dependent (1–3). The variety of initiation mechanisms for viral RNA polymerases include cap-snatching, template-primed, protein-primed, de novo, or a combination of these (4, 5).

Structural analysis and enzyme kinetic assays have provided insight into the differential mechanisms involved in the substrate specificity and binding efficiency of various viral and cellular polymerases (6–9). Kinetic parameters can be used to compare the enzymatic activities of different polymerases and are determined in steady state (observes product formation in the presence of equimolar enzyme and enzyme-substrate complexes) or pre-steady state (observes the formation and consumption of enzyme-substrate intermediates) conditions, respectively (10). Here, we discuss the significance of DNA and RNA polymerase enzyme kinetics in the scope of the availability of nucleotide substrates, which can vary significantly in cells. Also, because nucleoside/nucleotide analogs, which are extensively used as anti-cancer and anti-viral pathogen agents, compete against cellular natural nucleotides, we discuss the interplay between cellular nucleotide availability and the efficacy of these analogs.

Variations in cellular dNTP availability

During the cell cycle, cellular dNTP pools are carefully regulated by enzymes that either degrade or synthesize dNTP molecules in preparation for various cell cycle checkpoints. In S phase, expression of dNTP biosynthesis machinery, such as ribonucleotide reductase and thymidine kinase, is up-regulated, enabling the completion of DNA replication and dNTP consumption prior to mitotic division (11–14). Whereas sterile α motif (SAM) domain and histidine-aspartate domain (HD)-containing protein 1 (SAMHD1) is constitutively expressed throughout the cell cycle (15, 16), dNTP degradation by the enzyme peaks during G1 to aid in G1/S transition (17). Although essential for other cellular processes (18, 19), dNTPs are commonly thought of as the building blocks of DNA. dNTP molecules are incorporated into nascent DNA, primarily during DNA replication in S phase; thus, physiological concentrations of cellular dNTPs dictate the replicative capacity of any given cell. As such, nucleotide concentrations in tumor cells (7.2–32 μM) and transformed cell lines (3.3–79 μM) with uncontrolled cell cycles are nearly 5-fold greater than those found in normal resting cells (1.5–5.4 μM) yet similar to those found in actively dividing cells (5.2–37 μM) (Table 1) (20, 44).

Condition	dNTP Concentration (μM)
Normal resting	1.5–5.4 μM
Actively dividing	5.2–37 μM
Tumor	7.2–32 μM

Indeed, constitutively elevated cellular dNTP pools are considered a biomarker of transformed tumorigenic cells and result from a large proportion of the cell population undergoing S phase DNA replication and peak dNTP synthesis (45–47).

Terminally differentiated/nondividing cells like macrophages do not undergo mitotic division and thus have no necessity to
support chromosomal DNA synthesis. Indeed, human primary monocyte–derived macrophages display 125–250-fold lower (20–40 nM) dNTP concentrations than activated human CD4+ T cells (2–5 µM) (Table 1) (21). The extremely low dNTP pools found in nondividing macrophages result from both a lack of dNTP biosynthesis and abundant expression of active dNTPase SAMHD1 (48, 49). In addition, it is important to note that cellular dNTP pools are not comprised of equimolar concentrations of the five different nucleotides. Rather, when excluding blood-forming cells, human cells contain on average 2.4, 17, 4.5, 2.7, and 0.7 µM concentrations of dATP, dTTP, dCTP, dGTP, and dUTP, respectively (Table 1). Availability of the correct dNTP substrate is crucial during the DNA replication process to avoid misincorporations and mismatch extension events that result in genomic mutagenesis if not properly repaired (50).

Extensive studies have been conducted to accurately determine the cellular dNTP concentrations of various cell types. As a result, there are currently multiple methods used to measure and report intracellular dNTP concentrations with the most common being liquid chromatography tandem MS (LC–MS/MS) methods and DNA polymerase–based enzymatic assays (51). With the numerous dNTP quantification tools, each comes with a unique challenge. For example, whereas LC–MS/MS accurately determines dNTP levels, this assay requires separation of mono-, di-, and triphosphate molecules via LC prior to quantification by MS/MS, making this a labor-intensive and expensive method of dNTP measurement (52, 53). Conversely, pitfalls in enzyme-based quantification methods result from the fact that DNA polymerases vary in their substrate specificity and sensitivity, often incorporating the wrong dNTP substrate or lacking polymerization activity in low-dNTP environments (54). Current polymerase-based dNTP measurement tools overcome this issue by utilizing HIV-1 reverse transcriptase in quantification assays, exploiting the viral polymerase for its unique ability to polymerize in low dNTP concentrations unlike the Klenow polymerase, which was previously used in similar assays (21). HIV-1 reverse transcriptase will be discussed in further detail later in this review, which compiles dNTP measurement collected using a variety of the aforementioned quantification methods. Interestingly, the mitochondrial membrane serves as an effective barrier that creates differential dNTP concentrations in mitochondrial and cytoplasmic cellular compartments, resulting in two distinct dNTP pools that can be independently quantified (44). This review will not discuss mitochondrial dNTP pools or DNA polymerase γ kinetics; rather, it will explore viral and nuclear DNA polymerase kinetics with regard to intracellular (nuclear and cytoplasmic) dNTP availability. Whereas concentrations for metabolites in fluids are often reported in molarity (e.g. µM), physiological dNTP concentrations are often reported in pmol/10^6 cells for cultured cells or nmol/g wet weight for tissues and require a measurement of intracellular volume for conversion to molarity (20). Further documentation of this cell-dependent variable in a variety of cultured and primary cells would be invaluable in the determination of applicable dNTP concentration data, providing a clearer understanding of intracellular conditions for pharmacological applications and kinetics studies that seek to define the substrate or ligand affinity of an enzyme in relation to the physiological concentrations of those molecules. More specifically, thorough and accurate documentation of intracellular dNTP concentrations could provide context for the enzyme kinetic parameters that have been reported for numerous cellular and viral DNA polymerases that function in a variety of diverse cellular and tissue environments.

DNA polymerase kinetics: Cellular and viral DNA polymerases

DNA polymerases synthesize DNA through replication of genomic materials in the form of DNA or RNA templates (55,
This process consumes cellular dNTPs; thus, the rate of DNA synthesis is kinetically dependent upon intracellular dNTP availability that can vary, depending on cell type. Therefore, it is a reasonable assumption that DNA polymerases have been kinetically optimized through evolution to properly support cellular DNA synthesis. In other words, exposure to cell-specific substrate conditions can drive DNA polymerase evolution and kinetics. Steady-state kinetic parameter K_m represents the substrate concentration needed for the enzyme to operate at half the V_{max} and is commonly used to compare the operation capabilities of enzymes that catalyze the same chemical reactions at given substrate concentrations. Here, we reviewed the published K_m values of many cellular and viral polymerases.

Human replicative DNA polymerases (pol) α, δ, and ε are responsible for accurately and efficiently replicating the majority of genomic DNA in dividing cells (57). Whereas the K_m values of dNTP incorporation by pol α have been reported to be in the range of 0.16–4.00 μM (Table 1), pol ε synthesizes DNA with a K_m of 2.5–9.6 μM (30, 31). Similarly, replicative DNA polymerase δ displays K_m values ranging from 1.2 to 6.6 μM (28); however, this is reduced to 0.067 μM in the presence of proliferating cell nuclear antigen, an essential processivity factor that recruits pol δ to the replication site and increases polymerase binding to the DNA template (29, 58, 59). Interestingly, the larger K_m values associated with incorporation of dTTP by these replicative polymerases agree with the large relative concentrations of dTTP within the intracellular dNTP pools of a normal dividing cell (Table 1). However, replicative DNA polymerases are not the only polymerases with K_m values coinciding with dNTP availability within dividing cells. DNA polymerase β is known to be involved in base excision repair, or gap-filling DNA synthesis, and has been reported to have a K_m value as low as 1.7 μM and as high as 31 μM, depending on the template sequence and dNTP substrate (22–24, 32, 36, 60). In 2001, Vande Berg et al. (61) found that the K_m associated with gap-filling DNA synthesis using a gapped template (0.18 ± 0.02 μM) was 12-fold lower than when utilizing a nongapped substrate (2.36 ± 0.75 μM). DNA pol γ and δ display relatively lower K_m values through two differential means that are independent of intracellular dNTP concentration—interaction with an accessory protein or preferential binding to a template substrate, respectively. Overall, K_m values of cellular replicative DNA polymerase are close to dNTP concentrations found in dividing cells, supporting a possibility of the kinetic adaptation of these host replicative DNA polymerases to optimally support host chromosomal DNA replication at the dNTP concentrations found in dividing cells.

Many viruses replicate their viral DNA genomes within target host cells by using the dNTPs available within the infected cells. Herpes simplex virus 1 (HSV-1) is able to infect a variety of cell types ranging from epithelial cells to neurons. HSV-1 polymerase incorporates individual dNTPs with K_m values ranging from 0.15 to 7.6 μM (Table 1) or 1.1 ± 0.07 μM for all dNTPs (62). Importantly, rather than replicating in normal dNTP conditions, HSV-1 encodes a viral ribonucleotide reductase protein that increases intracellular dNTP concentrations during viral replication. It is possible that the possession of its own dNTP biosynthesis capability enables this virus to replicate even in nondividing cells with poor dNTP availability, such as neurons. Like HSV-1, Epstein–Barr Virus (EBV) encodes its own dNTP biosynthesis machinery that provides dNTPs for its viral DNA genome replication regardless of cellular dNTP biosynthesis and proliferation conditions. Increased dNTP substrate availability in EBV infections coincides with a large K_m value (6.2–13 μM) (Table 1). With no virus-driven dNTP biosynthesis abilities, vaccinia virus from the Poxviridae family and human cytomegalovirus from the Herpesviridae family display similar K_m values ranging from 0.90 to 3.80 (63, 64) and from 0.67 to 3.77 μM (25, 65–68), respectively, depending on the identity of the incorporated dNTP molecule.

Hepatitis B virus (HBV) utilizes a virally encoded reverse transcriptase (RT) that synthesizes DNA from both DNA and RNA templates to replicate the viral genome during the replication cycle. Liver-tropic HBV primarily targets human hepatocytes during viral infection and harbors an RT that polymerizes dNTP incorporation with relatively low K_m values (0.04–0.40 μM) (Table 1). Variations in reported HBV RT K_m values arise from different methods of quantifying DNA polymerase activity (37–39).

Retroviruses also employ their own RTs for RNA- and DNA-dependent DNA polymerization of the viral genome. Whereas lentiviruses, including HIV-1, replicate in both dividing and nondividing cells (69–71), other nonlentiviral retroviruses, such as murine leukemia virus (MuLV) and avian myeloblastosis virus (AMV), execute productive infection exclusively in dividing cells (72–74). Indeed, whereas MuLV and AMV RTs synthesize DNA efficiently at the dNTP concentrations found in dividing cells, these RTs failed to synthesize DNA at the low-dNTP concentrations found in nondividing macrophages (21). In contrast, HIV-1 replicates within human CD4+ T cells and macrophages; thus, the cell tropism of HIV-1 is comprised of two cell types with vastly different intracellular dNTP environments. Indeed, the SAMHD1-mediated low dNTP concentrations (nanomolar range) present in macrophages can kinetically block HIV-1 proviral DNA synthesis (20, 21, 48). However, it was reported that HIV-1 RT is able to synthesize DNA even within the restrictive dNTP pools of the macrophage, an environment that completely inhibits the DNA synthesis activity of MuLV and AMV RTs. Pre-steady-state kinetic analysis demonstrated that the failure of MuLV RT to synthesize DNA within low dNTP concentrations is due to its low dNTP-binding affinity (75). Conversely, the successful DNA synthesis activity of HIV-1 RT at restrictive dNTP concentrations mechanistically results from its higher dNTP-binding affinity (75), which enables HIV-1 to complete viral reverse transcription in nondividing macrophages. Overall, these RTs may have evolved to display differential DNA polymerase kinetics to optimally support viral DNA synthesis in their target cells, ultimately contributing to their differential cell tropisms (dividing versus nondividing cells).

Interestingly, HIV-2 and some simian immunodeficiency virus strains target host dNTPase SAMHD1 for proteasomal degradation using virally encoded Vpr or Vpx proteins. Virus-induced SAMHD1 degradation increases intracellular dNTP pools in macrophages and enables the completion of reverse transcription in this restrictive cell type. Whereas HIV-1
cannot counteract host SAMHD1, numerous studies have identified that HIV-1 RT incorporates dNTPs into nascent DNA with a K_m of 0.01–0.30 μM in single-nucleotide incorporation experiments while possessing an overall K_m of 0.0063 μM when all nucleotides are present (41). As an RNA- and DNA-dependent polymerase, HIV-1 RT has been found to polymerize from an RNA template with greater efficiency than when using a DNA template (76, 77). Therefore, the high binding affinity and nanomolar range K_m value of HIV-1 RT enables slow but complete reverse transcription in the SAMHD1-mediated dNTP-depleted conditions of the nondividing macrophage. Interestingly, lentiviruses that do not possess the ability to counteract SAMHD1 have been found to harbor RTs that are more catalytically efficient and able to more quickly incorporate incoming dNTP molecules than RTs originating from lentiviruses that can counteract SAMHD1 and increase intracellular dNTP pools during viral infection (78–80). These findings imply not only that HIV-1 RT was evolutionarily honed to circumvent SAMHD1 restriction in target host macrophage cells harboring low dNTP concentrations, but also that SAMHD1 may have influenced RT kinetics among lentiviruses, depending on their anti-SAMHD1 capability that modulates intracellular dNTP levels in nondividing target cell types.

Efficacy of anti-HIV-1 nucleotide/nucleoside reverse transcriptase inhibitors (NRTIs)

NRTIs are a class of reverse transcriptase inhibitors that mimic the molecular structure of natural nucleotides and inhibit viral reverse transcription through a variety of mechanisms, namely chain termination or translocation inhibition. The nucleotide-like structure of NRTIs (in their triphosphate forms) supports binding within the RT active site and subsequent incorporation into the nascent DNA strand during reverse transcription. In 1987, thymidine analog 3’-azido-3’-deoxynthymidine 5’-triphosphate (AZT-TP) was the first anti-HIV drug to be approved by the Food and Drug Administration. The 3’-azide group enables the drug to function as a chain terminator once incorporated into viral DNA by RT. Incorporated with K_m values of 0.13–0.19 and 2.9–35.2 μM when using RNA and DNA templates, respectively, AZT-TP was found to be a comparable substrate to dTTP during polymerization from an RNA template (Table 1) (76, 77, 81). Extensive studies of the chain-terminating drug revealed that AZT-TP selectively inhibits retroviral HIV-1 and simian immunodeficiency virus RTs (82, 83) and does not appear to be a substrate of cellular DNA polymerase, such as pols α, δ, and β (60, 84, 85). In biochemical inhibitor studies, the IC$_{50}$ of a drug indicates the drug concentration needed to reduce enzyme biochemical activity by half. Studies conducted using HIV-1 RT from various HIV-1 strains reported IC$_{50}$ values for AZT-TP in the range of 0.02–0.10 μM (Table 1). With an IC$_{50}$ of 0.014 μM in HIV-1 RT systems, EFdA-TP shows no activity against cellular polymerases α and β while slightly inhibiting mitochondrial DNA polymerase γ with an IC$_{50}$ of 10 μM—a concentration over 700-fold greater than that of HIV-1 RT (91, 94).

Comparison of the selective inhibition of HIV-1 RT by AZT-TP and EFdA-TP with the toxicity of zalcitabine and didanosine against cellular DNA polymerase β reveals the complicated nature of anti-retroviral drug design. Subsequent to meticulous chemical design strategies, selective targeting of viral polymerases requires careful consideration of the varying K_m values associated with incorporation of the drug by cellular and viral polymerases, the competition of NRTI molecules with endogenous cellular dNTP substrates, and the potential excision or metabolic pathways that might aid or hinder drug efficacy. Indeed, the efficacy of these NRTIs is significantly improved in nondividing macrophages compared with activated CD4$^+$ T cells due to the SAMHD1-mediated depletion of the natural dNTP substrate that all NRTI-TP compete against in this nondividing target cell type (20, 99, 100). Whereas additional factors, such as substrate binding affinity and the rate of substrate incorporation, also influence the efficacy of an NRTI, the drug must always outcompete the cell-dependent availability of natural dNTP substrates.

Cellular NTP concentrations and enzyme kinetics of cellular and viral RNA polymerases

Whereas cellular dNTPs are used solely for DNA synthesis, cellular rNTPs show highly versatile utilities in cells. First, rNTPs are substrates of cellular RNA polymerases for...
transcription. Second, rNTPs, especially ATP and GTP, play key regulatory roles in a wide variety of cell signaling pathways. Third, ATP is an energy unit that controls numerous biological, chemical, and dynamic processes in living cells (101, 102). Intracellular rNTP concentrations are close to millimolar ranges (Table 2), which are 100–1,000 times higher than dNTP concentrations regardless of cell cycle stage (20, 107). This cellular abundance of rNTPs accommodates diverse and high cellular demands.

Unlike DNA polymerases, cellular DNA-dependent RNA polymerases initiate RNA synthesis from their promoter sequences in a primer-independent manner during transcription. This distinct method of polymerization initiation often causes methodological difficulties in polymerase enzyme kinetic analyses due to the presence of a threshold rather than a biological curve for nucleotide incorporation. However, bacterial, cellular, and phage RNA polymerases have been extensively investigated for their enzyme kinetics. Most bacterial and phage RNA polymerases, such as E. coli and T7 phage RNA polymerases, respectively, display high micromolar ranges of K_m values (300–900 μM) analogous to reported rNTP concentrations for initiation (108–111). Interestingly, these relatively high K_m values correlate with elevated intracellular rNTP concentrations within E. coli (0.5–3.5 mM) (102, 112, 113).

Analysis of mammalian cellular DNA-dependent RNA polymerase enzyme kinetics is scarcely reported, potentially due to the structural complexity of eukaryotic RNA polymerases that require diverse, differential, and numerous regulatory co-factors for initiation and elongation during RNA synthesis. However, multiple RNA-dependent RNA polymerases (RdRPs) of viruses that infect human cells have been investigated for their elongation steady-state enzyme kinetics using simple primer-dependent RNA polymerase activity assays. This is because these viral RdRPs can enzymatically initiate RNA synthesis without regulatory factors (114, 115). Table 2 summarizes the K_m values of these viral RdRPs. Overall, it appears that viral RdRPs display higher K_m values, compared with cellular DNA polymerases, which may be related to the highly abundant rNTP concentrations present within the cell.

Importantly, many viral RdRPs have been extensively investigated as antiviral targets, and numerous nucleotide/nucleoside analogues have been tested for their antiviral activity that block viral RNA synthesis (116). As discussed earlier with dNTPs, the efficacy of ribonucleotide/nucleoside inhibitors can be affected by the concentrations of cellular rNTPs that these analogues compete against during viral RNA genome synthesis catalyzed by viral RdRPs. It is logical to consider that the development of effective viral RdRP ribonucleotide/nucleoside inhibitors could be more challenging compared with that of deoxynucleotide/nucleoside inhibitors against DNA polymerases simply because intracellular rNTP concentrations are much higher than dNTP concentrations. Furthermore, due to other utilities of rNTPs in cells, ribonucleotide/nucleoside analogues can generate more nonspecific cellular toxicity. To overcome the intrinsically high competition with natural rNTP substrates and preserve the highly diverse utilities of rNTPs within the cell, ribonucleotide/nucleoside analogues targeting viral RdRP should display much higher specificity against viral RdRPs without unwanted interruption of natural rNTP cellular functions. Interestingly, some viruses have adapted stages during RNA synthesis that require unusually high concentrations of rNTPs to proceed.

Flaviviridae RdRP kinetics

The initiation of RNA synthesis, which represents the rate-limiting step, serves as a barrier for de novo synthesis in flaviviruses and is heavily reliant on rNTP concentrations. GTP, the second nucleotide to be incorporated during RNA synthesis, is required to be unusually high for de novo synthesis to occur, a common characteristic seen across the Flaviviridae family. Both hepatitis C virus (HCV) and dengue virus (DENV) are the best-studied disease-causing flaviviruses. HCV NS5B protein is a well-studied RdRP that utilizes two rNTP-binding pockets inside the catalytic site, one that recognizes the initiating rNTP and the second for the complementary rNTP that corresponds to the second template nucleotide (6, 117). Untranslated positive-strand HCV RNA genomes can serve as templates for further RNA replication or be assembled into virions (118). De novo synthesis is the process in which NS5B initiates primer-independent RNA synthesis and is initiated by the incorporation
of a single GTP molecule—an event characterized by a K_m value of 40 μM (119). Following transcription initiation, elongation proceeds with K_m values ranging from 0.24 to 2.34 μM, depending on the identity of the incorporated rNTP (Table 2). The 40-fold divergence in the K_m values associated with GTP incorporation during transcription initiation and elongation represents the stark difference in concentration requirements for these two phases of RNA synthesis. It is important to note that the reported K_m values calculated in vitro do not indicate the concentration required for in vivo environments because several factors have been demonstrated to affect NS5B substrate affinity for GTP (e.g., divalent cation concentrations) (114). Initiation of RNA synthesis proved to require higher GTP concentrations (>100 μM) regardless of the starting template nucleotide, suggesting that GTP plays a role as a structural regulator for NS5B. Additionally, the authors noted that at high concentrations, the other rNTPs were able to initiate de novo synthesis only in the absence of GTP (119–121). This suggests that only in nonphysiological conditions can the other rNTPs participate as the initiation nucleotide. The elongation K_m values represent the polymerization step that is not hindered by rNTP concentrations due to the relatively abundant rNTP levels that are sufficient for preventing enzymatic delays.

DENV is a single-stranded positive-sense RNA virus. DENV NS5 is a nonstructural protein with RdRP and methyltransferase activity performed via separate protein domains that are connected by a linker. De novo initiation for minus strand RNA synthesis is mediated by secondary viral RNA structures that guide the NS5 complex to the 3’ end of the genome (122). Once positioned at the 3’ end of the viral RNA, NS5 is then able to position the initiating nucleotide (ATP) into the priming site, followed by a GTP molecule, which yields the pppAG primer (123, 124). The involvement of GTP and ATP in the formation of the initiation primer suggests that there will be two K_m values for each nucleotide: one for transcription initiation and another for transcript elongation. The K_m values associated with incorporation of GTP and ATP during elongation are 0.37 and 2.25 μM, respectively (Table 2). Unlike HCV NS5B, DENV NS5 incorporates the initiating ATP molecule with a K_m of 5.43 ± 2.50 μM, a concentration only 2-fold higher than what is required during elongation (104). The K_m for GTP during de novo initiation has not been calculated because GTP is reportedly required to be present in concentrations much greater than 100 μM to produce transcription product (104, 125).

In studies investigating both HCV and DENV RdRPs, low-affinity GTP-specific binding sites have been identified and characterized as possible points of stabilization for a polymerase conformational change that supports efficient transcription initiation (123, 126). Analysis of the Flaviviridae RdRPs during RNA synthesis revealed that these enzymes undergo a closed-to-open conformational change during the transition from initiation to elongation (104, 127). In the “closed” state, the enzyme is only able to accommodate a single-stranded RNA template and the incoming nucleotide in the catalytic core (127, 128). This tight conformation found in primer-independent RdRPs restricts the flexibility of producing a second RNA strand, requiring a transition to an “open” state for transcript elongation (129, 130). Because the closed-to-open transition of the viral RdRPs is an essential step for viral replication, targeting the GTP-specific binding pocket with inhibitors has been identified as a possible drug mechanism (131). The low affinity of the binding pocket to GTP suggests the possible utilization of competitive inhibitors against that site to prevent the conformational change between “open” and “closed” states (132). A unique feature of primer-independent RdRPs is the presence of a biphasic profile as a result of the K_m gap between the incorporation of the initiation nucleotide and elongation rNTPs. The absence of a selective pressure for these viral RdRPs lies in the relatively high concentrations of cellular rNTPs. While the substrate affinity in RdRPs during elongation is severalfold lower than what is observed in DNA polymerases, the preference for rNTPs remains thousands of times separated from dNTPs (133, 134). Preference for rNTPs is further enhanced intracellularly due to the high rNTP/dNTP ratio (105, 135, 136).

Influenza virus RdRP kinetics

Influenza A virus (IAV) contains a single-stranded, fragmented RNA genome of negative-sense polarity. The IAV RdRP is a heterotrimeric complex that hijacks host RNAs as a primer for mRNA viral transcription, whereas synthesis of genomic RNA is primer-independent and relies solely on de novo initiation (137). The molecular switch that controls the IAV RdRP to synthesize transcripts or genomic RNA is still not clear; however, studies suggest that viral protein levels might play a key role. De novo transcription initiation is proposed to be heavily influenced by high rNTP concentrations and favors the production of genomic RNA (119, 138, 139). Similar to HCV, de novo initiation of IAV replication requires the incorporation of an initiating nucleotide, often GTP or ATP, with a concentration above 100 μM. During conditions of lower ATP, GTP, and CTP concentrations, the reaction has been shown to favor transcription via primer extension with a K_m between 10 and 30 μM (Table 2) (140, 141). This suggests that the abundance of the initiating nucleotide might dictate the molecular switch between genomic RNA and viral mRNA transcript synthesis.

Efficacy of viral RdRP inhibitors

In steady-state kinetic drug studies, the ratios of V_{max}/K_m for a single nucleotide over that of the associated drug analog is defined as drug selectivity. Antiviral drugs against RNA viruses are most effective when viral RdRP selectivity for the drug is high and the host RNA polymerase selectivity for the drug is low. Remdesivir is an adenosine nucleotide analog prodrug that interferes with RdRP activity through a delayed chain termination mechanism. Remdesivir has demonstrated broad-spectrum antiviral activity and thus has been tested against a variety of RNA viruses. Recently, the Götte group (106) determined that Ebola virus (EBOV) RdRP incorporates ATP with a K_m value of 1.5 μM. Under the same conditions, the K_m value describing incorporation of remdesivir-triphosphate (TP) was calculated to be ~6 μM, with only slight discrimination against the natural ATP substrate (142).

In a study aimed at comparing the activity of several adenosine analogues against Middle East respiratory syndrome...
coronavirus (MERS-CoV), remdesivir-TP stood out not only because it was the most efficiently incorporated drug within the compound panel ($K_m = 0.0063 \mu M$), but also because it was more efficiently incorporated than a natural ATP substrate ($K_m = 0.017 \mu M$) (143). In contrast, ATP analogues ara-ATP and 2’-C-methyl-ATP (2’-CM-ATP) were found to be incorporated with far less selectivity (>150-fold) than a natural ATP substrate (143). Whereas the data demonstrating the preference for remdesivir-TP over natural ATP are promising, the rNTP concentrations used to calculate the kinetic values (0.02–0.25 \mu M) were 10,000-fold lower than physiological conditions (2,102 \mu M) (Table 2) (20). Additionally, although the incorporation of the delayed terminating drug remdesivir-TP is successful, there is still opportunity to overcome the arrest. The mechanism of delayed termination halts the RdRP after the third nucleotide following remdesivir-TP incorporation, and the percentage of RdRP that overcomes this arrest is partially related to rNTP concentrations. Because the rate of incorporation of remdesivir-TP drops considerably as we approach physiological concentrations, we can infer that there is marginal antiviral efficacy at physiological/cellular conditions. Additionally, the biochemical assessment of remdesivir-TP potency lacks many of the variables present during in vivo settings. Studies have shown inconsistency in remdesivir-TP potency related to the cell types used in experiments (144). Several features noted during analysis suggested that differing outcomes could possibly be a result of cellular drug metabolism or uptake (145).

Similarly, severe acute respiratory syndrome coronavirus (SARS-CoV) and the novel coronavirus, SARS-CoV-2, RdRPs both demonstrated sensitivity to remdesivir-TP at the same capacity as the MERS-CoV RdRP, incorporating the drug with K_m values of 0.0012–0.0023 \mu M (106). In all three cases, remdesivir-TP caused delayed chain termination 3 bases downstream of the drug incorporation site. Whereas the selectivity of SARS-CoV-2 RdRPs for remdesivir-TP was favorable, at physiological rNTP concentrations, there could be a reduction of the inhibitory effect. Experiments that gradually increased the concentration of the rNTP following the remdesivir-TP incorporation site resulted in a significant reduction of terminated products. Furthermore, the maximum rNTP concentration used to determine the surmountable drug effects during this study was 10 \mu M, still 100-fold less than the average physiological rNTP concentration. Even under conditions with substantially lower rNTP concentrations, there was an almost complete loss of termination (106).

Conclusions and perspectives

Comparison of intracellular dNTP and rNTP concentrations with the enzyme kinetics of cellular and viral polymerases reveals a dynamic relationship between enzyme kinetics and physiological substrate availability. Construction and expansion of a database containing intracellular nucleotide/nucleoside conditions in a variety of human and animal cell types would be beneficial to provide context for enzyme kinetics studies and aid in the discovery and development of competitive enzyme inhibitors. Utilizing the wealth of highly sensitive dNTP/rNTP measurement methods developed over time, creation of this resource, although requiring accurate measurement of cell volumes to yield units (cellular concentration) applicable to enzymology and pharmacology studies, would provide insight into the diverse and dynamic intracellular conditions present during animal studies and drug trials. As summarized in Fig. 1, cellular replicative DNA polymerases harbor K_m values close to the dNTP concentrations observed in dividing cells, making it possible that these K_m values might have been evolutionarily adapted for the optimal execution of DNA synthesis in dividing cells. However, lentiviral HIV-1 RT (Fig. 1) employs its uniquely low K_m values to complete proviral DNA synthesis and support viral replication in nondividing cells, such as macrophages, that are characterized by very poor dNTP availability. The highly abundant cellular rNTPs found across cell types enable RNA polymerases to efficiently initiate transcription and synthesize RNAs even with their demand for the high rNTP concentrations during the initiation of RNA synthesis (Fig. 1).

Whereas this review mainly focuses on the steady-state kinetic K_m values of polymerases, it is important to note that the catalytic rate (k_{cat}) of polymerases can interplay with their K_m values to achieve overall optimal DNA and RNA synthesis in cells. In addition, when comparing intracellular dNTP/rNTP concentrations with polymerase kinetic parameters, it is important to note that variation in reported K_m values can arise through discrepancies in (i) template features (DNA versus RNA, sequence, length, and structure), (ii) reaction conditions (buffer components, pH, presence of all dNTPs versus one dNTP), (iii) polymerase origins (viral strains, purification methods), and (iv) modes of the polymerizations (initiation versus elongation). Similarly, when considering nucleotide/nucleoside inhibitor efficacy, IC$_{50}$ data can vary, depending on viral polymerase subtypes and physiological Mg$^{2+}$ concentrations (98, 146). In addition to the steady-state kinetic analyses, numerous
structural and mechanistic investigations (i.e. pre-steady-state kinetic studies) of polymerases elucidated highly orchestrated and dynamic molecular actions of enzymatic DNA and RNA synthesis. Overall, despite variations in data resulting from experimental disparities, cellular and viral polymerases appear to have been evolutionarily optimized to efficiently perform DNA and RNA synthesis within the cellular dNTP and rNTP concentrations naturally available during polymerization (Fig. 2). With this, it is plausible that the cellular dNTP concentrations, which significantly vary, depending on metabolic balance between dNTP biosynthesis and degradation (Fig. 2), may have driven the enzyme kinetic variations among DNA polymerases. Finally, this evolutionary cross-talk between polymerase enzyme kinetics and cellular nucleotide substrate availability is an important concept platform for the discovery of polymerase inhibitors.

Funding and additional information—This work was supported by National Institutes of Health Grant AI1136581 (to B.K.), AI150451 (to B.K.), and MH116695 (to R.F.S.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations—The abbreviations used are: pol, polymerase; EBV, Epstein-Barr virus; HBV, hepatitis B virus; RT, reverse transcriptase; MuLV, murine leukemia virus; AMV, avian myeloblastosis virus; NRTI, nucleotide/nucleoside reverse transcriptase inhibitor; AZT-TP, 3’-azido-3’-deoxythymidine 5’-triphosphate; ddCTP, dideoxyctosine; ddTTP, didanosine; TFV-DP, tenofovir; EFdA-TP, 4’-ethynyl-2-fluoro-2’-deoxyadenosine triphosphate; RdRP, RNA-dependent RNA polymerase; HCV, hepatitis C virus; IAV, influenza A virus; TP, triphosphate; DENV, dengue virus; MERS, Middle East respiratory syndrome; SARS, severe acute respiratory syndrome; CoV, coronavirus; 2’C-ATP, 2’C-methyl-ATP.

References

1. Kao, C. C., Singh, P., and Ecker, D. J. (2001) *De novo* initiation of viral RNA-dependent RNA synthesis. *Virology* **287**, 251–260 CrossRef Medline
2. van Dijk, A. A., Makeyev, E. V., and Bamford, D. H. (2004) Initiation of viral RNA-dependent RNA polymerization. *J. Gen. Virol.* **85**, 1077–1093 CrossRef Medline
3. Joyce, C. M., and Benkovic, S. J. (2004) DNA polynucleotide fidelity: kinetics, structure, and checkpoints. *Biochemistry* **43**, 14317–14324 CrossRef Medline
4. Paul, A. V., van Boom, J. H., Filipov, D., and Wimmer, E. (1998) Protein-primed RNA synthesis by purified poxvirus RNA polymerase. *Nature* **393**, 280–284 CrossRef Medline
5. Blumenthal, T. (1980) QB replicase template specificity: different templates require different GTP concentrations for initiation. *Proc. Natl. Acad. Sci. U. S. A.* **77**, 2601–2605 CrossRef Medline
6. Lesburg, C. A., Cable, M. B., Ferrari, E., Hong, Z., Mannarino, A. F., and Weber, P. C. (1999) Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. *Nat. Struct. Biol.* **6**, 937–943 CrossRef Medline
7. Li, Y., Mitaxov, V., and Waksman, G. (1999) Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation. *Proc. Natl. Acad. Sci. U. S. A.* **96**, 9491–9496 CrossRef Medline
8. Patra, A., Zhang, Q., Lei, L., Su, Y., Egli, M., and Guengerich, F. P. (2015) Structural and kinetic analysis of nucleoside triphosphate incorporation opposite an abasic site by human translesion DNA polymerase η. *J. Biol. Chem.* **290**, 8028–8038 CrossRef Medline
9. O’Flaherty, D. K., and Guengerich, F. P. (2014) Structural and kinetic analysis of DNA polymerase single-nucleotide incorporation products. *Curr. Proteo. Nucleic Acid Chem.* **59**, 7.21.1–7.21.13 CrossRef Medline
10. Joyce, C. M. (2010) Techniques used to study the DNA polymerase reaction pathway. *Biochim. Biophys. Acta* **1804**, 1032–1040 CrossRef Medline
11. Engstrom, Y., Eriksson, S., Jiledevik, I., Skog, S., Thelander, L., and Tribukait, B. (1985) Cell cycle-dependent expression of mammalian ribonucleotide reductase: differential regulation of the two subunits. *J. Biol. Chem.* **260**, 9114–9116
12. Coppock, D. L., and Pardee, A. B. (1987) Control of thymidine kinase mRNA during the cell cycle. *Mol. Cell Biol.* **7**, 2925–2932 CrossRef Medline
13. Reichard, P. (1985) Ribonucleotide reductase and deoxyribonucleotide pools. *Basic Life Sci.* **31**, 33–45 CrossRef Medline
14. Reichard, P. (1988) Interactions between deoxyribonucleotide and DNA synthesis. *Annu. Rev. Biochem.* **57**, 349–374 CrossRef Medline
15. Franzolin, E., Pontarini, G., Rampazzo, C., Miazzi, C., Ferraro, P., Palombo, E., Reichard, P., and Bianchi, V. (2013) The deoxyribonucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 14272–14277 CrossRef Medline
16. Schott, K., Fuchs, N. V., Derua, R., Mahboubi, B., Schnellbächer, E., Seifried, J., Tondera, C., Schmitz, H., Shepard, C., Brandariz-Nuñez, A., Diaz-Griffero, F., Reuter, A., Kim, B., Janssens, V., and König, R. (2018) Dephosphorylation of the HIV-1 restriction factor SAMHD1 is mediated by PP2A-B55α holoenzyme during mitotic exit. *Nat. Commun.* **9**, 2227 CrossRef Medline
17. Lee, E. J., Seo, J. H., Park, J. H., Vo, T. T. L., An, S., Bae, S. J., Le, H., Lee, H. S., Wee, H. J., Lee, D., Chung, Y. H., Kim, J. A., Jang, M. K., Ryu, S. H., Yu, E., et al. (2017) SAMHD1 acetylation enhances its deoxyribonucleotide triphosphohydrolase activity and promotes cancer cell proliferation. *Oncotarget* **8**, 68517–68529 CrossRef Medline
18. Fairman, J. W., Wijerathna, S. R., Ahmad, M. F., Xu, H., Nakano, R., Jha, S., Prendergast, J., Weilin, R. M., Fodlin, S., Roos, A., Nordlund, P., Li, Z., Walz, T., and Deulwis, C. G. (2011) Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. *Nat. Struct. Mol. Biol.* **18**, 316–322 CrossRef Medline
JBC REVIEWS: Polymerase kinetics and nucleotide substrate availability

19. Zhu, C. F., Wei, W., Peng, X., Dong, Y. H., Gong, Y., and Yu, X. F. (2015) The mechanism of substrate-controlled allosteric regulation of SAMHD1 activated by GTP. *Acta Crystallogr. D Biol. Crystallogr.* 71, 516–524 CrossRef Medline

20. Traut, T. W. (1994) Physiological concentrations of purines and pyrimidines. *Mol. Cell Biochem.* 140, 1–22 CrossRef Medline

21. Diamond, T. L., Roshal, M., Jamburuthugoda, V. K., Reynolds, H. M., Merriam, A. R., Lee, K. Y., Balakrishnan, M., Bambara, R. A., Planelles, V., Dewhurst, S., and Kim, B. (2004) Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. *J. Biol. Chem.* 279, 51545–51553 CrossRef Medline

22. Reardon, J. E. (1989) Herpes simplex virus type 1 and human DNA polymerase interactions with 2’-deoxyguanosine 5’-triphosphate analogues: kinetics of incorporation into DNA and induction of inhibition. *J. Biol. Chem.* 264, 19039–19044 Medline

23. Copeland, W. C., Chen, M. S., and Wang, T. S. (1992) Human DNA polymerases α and β are able to incorporate anti-HIV deoxynucleotides into DNA. *J. Biol. Chem.* 267, 21459–21464 Medline

24. Starnes, M. C., and Cheng, Y. C. (1987) Cellular mechanism of 2’,3’-dideoxyxycytidine, a compound active against human immunodeficiency virus in vitro. *J. Biol. Chem.* 262, 988–991 Medline

25. Daikoku, T., Yamamoto, N., Saito, S., Kitagawa, M., Shimada, N., and Nishiya, Y. (1991) Mechanism of inhibition of human cytomegalovirus replication by oxetanocin G. *Biochem. Biophys. Res. Commun.* 176, 805–812 CrossRef Medline

26. Kamiya, H., and Kasai, H. (1995) Formation of 2’-hydroxydeoxyadenosine triphosphate, an oxidatively damaged nucleotide, and its incorporation by DNA polymerases: steady-state kinetics of the incorporation. *J. Biol. Chem.* 270, 19446–19450 CrossRef Medline

27. Fisher, P. A., Wang, T. S., and Korn, D. (1979) Enzymological characterization of DNA polymerase α: basic catalytic properties processivity, and gap utilization of the homogeneous enzyme from human KB cells. *J. Biol. Chem.* 254, 6128–6137 Medline

28. Dieckman, L. M., Johnson, R. E., Prakash, S., and Washington, M. T. (2010) Pre-steady state kinetic studies of the fidelity of nucleotide incorporation by yeast DNA polymerase delta. *Biochemistry* 49, 734–7350 CrossRef Medline

29. Einolf, H. J., and Guengerich, F. P. (2000) Kinetic analysis of nucleotide incorporation by mammalian DNA polymerase β. *J. Biol. Chem.* 275, 16316–16322 CrossRef Medline

30. Cheng, C. H., and Kuchta, R. D. (1993) DNA polymerase epsilon: aphidicolin inhibition and the relationship between polymerase and exoneucleases activity. *Biochemistry* 32, 8568–8574 CrossRef Medline

31. Syvaoja, J., and Linn, S. (1989) Characterization of a large form of DNA polymerase α from HeLa cells that is insensitive to proliferating cell nuclear antigen. *J. Biol. Chem.* 264, 2489–2497 Medline

32. Allaudeen, H. S., Kozarich, J. W., Bertino, J. R., and De Clercq, E. (1981) Inhibition of purified human and herpes simplex virus-induced DNA polymerases by 9-(2-hydroxyethoxymethyl)guanine triphosphate: steady-state and pre-steady-state kinetics. *Biochemistry* 20, 5154–5162 CrossRef Medline

33. Mathews, C. K. (2010) Pre-steady state kinetic studies of the fidelity of nucleotide incorporation by mammalian DNA polymerase ε. *J. Biol. Chem.* 285, 30535–30539 CrossRef Medline

34. Reardon, J. E. (1989) Herpes simplex virus type 1 and human DNA polymerase interactions with 2’-deoxyguanosine 5’-triphosphate analogues: kinetics of incorporation into DNA and induction of inhibition. *J. Biol. Chem.* 264, 19039–19044 Medline

35. Zhu, C. F., Wei, W., Peng, X., Dong, Y. H., Gong, Y., and Yu, X. F. (2003) Fidelity of hepatitis B virus polymerase. *Eur. J. Biochem.* 270, 2929–2936 CrossRef Medline

36. Oh, S. H., Park, Y. H., and Woo, K. (1989) Inactivation of human hepatitis B virus DNA polymerase by pyridoxal 5’-phosphate. *J. Med. Virol.* 28, 42–46 CrossRef Medline

37. Alluaudeen, H. S. (1985) Distinctive properties of DNA polymerases β and γ of herpes simplex virus type 1 and human DNA polymerase by phosphorylated 5’-methyldeoxycytidines and of other nucleoside analogs. *Antimicrob. Agents Chemother.* 35, 1254–1257 CrossRef Medline

38. Gandhi, V. V., and Samuels, D. C. (2011) A review comparing deoxyribonucleoside triphosphates in Chinese hamster ovary cells. *J. Biol. Chem.* 249, 6434–6438 Medline

39. Jackson, R. C., Lui, M. S., Boritck, T. J., Morris, H. P., and Weber, G. (1980) Purine and pyrimidine nucleotide patterns of normal, differentiating, and regenerating liver and of hepatomas in rats. *Cancer Res.* 40, 1286–1291 Medline

40. Reardon, J. E. (1989) Herpes simplex virus type 1 and human DNA polymerase interactions with 2’-deoxyguanosine 5’-triphosphate analogues: kinetics of incorporation into DNA and induction of inhibition. *J. Biol. Chem.* 264, 19039–19044 Medline

41. Nishiyama, Y. (1991) Mechanism of inhibition of human cytomegalovirus replication by oxetanocin G. *Biochem. Biophys. Res. Commun.* 176, 805–812 CrossRef Medline

42. Bensimon, A., Zamir, G., Shewach, D. S., and Kerem, B. (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. *Cell* 145, 435–446 CrossRef Medline

43. Huang, C. Y., Yagüe-Capilla, M., González-Pacanowska, D., and Chang, Z. F. (2020) Quantitation of deoxyribonucleoside triphosphates by click reactions. *Sci. Rep.* 10, 611 CrossRef Medline

44. Kuskovsky, R., Buj, R., Xu, P., Hofbauer, S., Doan, M. T., Jiang, H., Bostwick, A., Mesaros, C., Aird, K. M., and Snyder, N. W. (2019) Simultaneous isocele dilution quantification and metabolic tracing of deoxyribonucleotides by liquid chromatography high resolution mass spectrometry. *Anal. Biochem.* 568, 65–72 CrossRef Medline

45. Zhang, W., Tan, S., Paintsil, E., Dutschman, G. E., Gullen, E. A., Chu, E., and Cheng, Y. C. (2011) Analysis of deoxyribonucleotide pools in human cancer cell lines using a liquid chromatography coupled with tandem mass spectrometry technique. *Biochem. Pharmacol.* 82, 411–417 CrossRef Medline

46. Ferraro, P., Franzolin, E., Pontarini, G., Reichard, P., and Bianchi, V. (2010) Quantitation of cellular deoxyribonucleoside triphosphates. *Nucleic Acids Res.* 38, e85 CrossRef Medline

47. Loeb, L. A., and Monnat, R. J. Jr. (2008) DNA polymerases and human disease. *Nat. Rev. Genet.* 9, 594–604 CrossRef Medline
JBC REVIEWS: Polymerase kinetics and nucleotide substrate availability

56. Gallo, R. C. (1972) Analytical review: RNA-dependent DNA polymerase in viruses and cells: views on the current state. Blood 39, 117–137 CrossRef
57. Lujan, S. A., Williams, J. S., and Kunkel, T. A. (2016) DNA polymerases divide the labor of genome replication. Trends Cell Biol. 26, 640–654 CrossRef Medline
58. Tan, C. K., Castillo, C., So, A. G., and Downey, K. M. (1986) An auxiliary protein for DNA polymerase-δ from fetal calf thymus. J. Biol. Chem. 261, 12310–12316
59. Mondol, T., Stodola, J. L., Galletto, R., and Burgers, P. M. (2019) PCNA accelerates the nucleotide incorporation rate by DNA polymerase δ. Nucleic Acids Res. 47, 1977–1986 CrossRef Medline
60. Cherrington, J. M., Allen, S. J., McKee, B. H., and Chen, M. S. (1994) Kineton complementation: Acceleration of genome replication by 1-D-arabinofuranosyl-5-fluorouracil. J. Biol. Chem. 269, 1064–1069 CrossRef
61. Vande Berg, B. J., Beard, W. A., and Wilson, S. H. (2001) DNA structure and aspartate 276 influence nucleotide binding to human DNA polymerase β: implication for the identity of the rate-limiting conformational change. J. Biol. Chem. 276, 3408–3416 CrossRef Medline
62. Cherrington, J. M., Allen, S. J., McKee, B. H., and Chen, M. S. (1994) Kineton complementation: Acceleration of genome replication by 1-D-arabinofuranosyl-5-fluorouracil. J. Biol. Chem. 269, 1064–1069 CrossRef
63. Magee, W. C., Hostetler, K. Y., and Evans, D. H. (2005) Mechanism of inhibition of HSV-1 DNA polymerase induced by salmon herpesvirus, Oncorhynchus masou virus. J. Gen. Virol. 67, 405–408 CrossRef
64. Suzuki, S., Misra, H. K., Wiebe, L. L., Knaus, E. E., and Tyrrell, D. L. (1987) A proposed mechanism for the selective inhibition of human cytomegalovirus replication by 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-fluorouracil. Mol. Pharmacol. 31, 301–306
65. Suzuki, S., Saneyoshi, M., Nakayama, C., Nishiyama, Y., and Yoshida, S. (1985) Mechanism of selective inhibition of human cytomegalovirus replication by 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-fluorouracil. Antimicrob. Agents Chemother. 28, 326–330 CrossRef Medline
66. Velpandi, A., Nagashurnugam, T., Murthy, S., Cartas, M., Monken, C., and Srinivasan, A. (1991) Generation of hybrid human immunodeficiency virus using the cotransfection method and analysis of cellular tropism. J. Virol. 65, 4847–4852 CrossRef Medline
67. Senyo, E. M., Albert, J., and Asjo, B. (1989) Replicative capacity, cytotoxic effect and cell tropism of HIV. AIDS 3, 55–512 CrossRef Medline
68. Connor, R. I., Sheridan, K. E., Ceradini, D., Choe, S., and Landau, N. R. (1997) Change in coreceptor use correlates with disease progression in HIV-1–infected individuals. J. Exp. Med. 185, 621–628 CrossRef Medline
69. Rissner, R., Horowitz, I. M., and McCubrey, J. (1983) Endogenous mouse leukemia viruses. Annu. Rev. Genet. 17, 85–121 CrossRef Medline
70. Gallo, R. C., Poiesz, B. J., and Russett, F. W. (1981) Regulation of human T-cell proliferation: T-cell growth factor and isolation of a new class of type-C retroviruses from human T-cells. Haematol. Blood Transfus. 26, 502–514 CrossRef Medline
71. Weiss, R. A. (1987) Retroviruses and human disease. J. Clin. Pathol. 40, 1064–1069 CrossRef Medline
72. Skasko, M., Weiss, K. K., Reynolds, H. M., Jamburuthugoda, V., Lee, K., and Kim, B. (2005) Mechanistic differences in RNA–dependent DNA polymerization and fidelity between murine leukemia virus and HIV-1 reverse transcriptases. J. Biol. Chem. 280, 12190–12200 CrossRef Medline
73. Parker, W. B., White, E. L., Shaddix, S. C., Ross, L. J., Buckheit, R. W., Germany, J. M., Secrist, J. A., Vincen, R. and, and Shannon, W. M. (1991) Mechanism of inhibition of human immunodeficiency virus type 1 reverse transcriptase and human DNA polymerases α, β, and γ by the 5′-triphosphates of carbovir, 3′-azido-3′-deoxycytidine, 2′,3′-dideoxyguanosine and 3′-deoxythymidine: a novel RNA template for the evaluation of antiretroviral drugs. J. Biol. Chem. 266, 1754–1762 Medline
74. Reardon, J. E., and Miller, W. H. (1990) Human immunodeficiency virus reverse transcriptase: substrate and inhibitor kinetics with thymidine 5′-triphosphate and 3′-azido-3′-deoxythymidine 5′-triphosphate. J. Biol. Chem. 265, 20302–20307 Medline
75. Lenzi, G. M., Domaol, R. A., Kim, D. H., Schinazi, R. F., and Kim, B. (2015) Mechanistic and kinetic differences between reverse transcriptases of Vpx coding and non-coding lentiviruses. J. Biol. Chem. 290, 30078–30086 CrossRef Medline
76. Weiss, R. A. (1987) Retroviruses and human disease. J. Biol. Chem. 266, 1754–1762 Medline
cletide, primer, and template parameters. *J. Virol.* 77, 8831–8842 CrossRef Medline
90. Tchesnokov, E. P., Raesimakian, P., Nguere, M., Marchant, D., and Götte, M. (2018) Recombinant RNA-dependent RNA polymerase complex of Ebola virus. *Sci. Rep.* 8, 3970 CrossRef Medline
91. Gordon, C. I., Tchesnokov, E. P., Woolner, E., Perry, J. K., Feng, J. Y., Porter, D. P., and Götte, M. (2020) Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. *J. Biol. Chem.* 295, 6785–6797 CrossRef Medline
92. Strüder, S. (1983) Determination of ribonucleoside triphosphate pools in influenza A virus-infected MDCK cells. *Arch. Virol.* 77, 223–229 CrossRef Medline
93. Haugen, S. P., Ross, W., and Gourse, R. L. (2008) Advances in bacterial promoter recognition and its control by factors that do not bind DNA. *Nat. Rev. Microbiol.* 6, 507–519 CrossRef Medline
94. Browning, D. F., and Busby, S. J. (2004) The regulation of bacterial transcription initiation. *Nat. Rev. Microbiol.* 2, 57–65 CrossRef Medline
95. Saecker, R. M., Record, M. T. Jr., and Debasheth, P. L. (2011) Mechanism of bacterial transcription initiation: RNA polymerase–promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. *J. Mol. Biol.* 412, 754–771 CrossRef Medline
96. Osumi-Davis, P. A., Sreerama, N., Volklin, D. B., Maddra, C. R., Woody, R. W., and Woody, A. Y. (1994) Bacteriophage T7 RNA polymerase and its active-site mutants: kinetic, spectroscopic and calorimetric characterization. *J. Mol. Biol.* 237, 5–19 CrossRef Medline
97. Bochner, B. R., and Ames, B. N. (1982) Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. *J. Biol. Chem.* 257, 9759–9769 Medline
98. Gardner, L. P., Mookhtiar, K. A., and Coleman, J. E. (1997) Initiation, elongation, and processivity of carboxyl-terminal mutants of T7 RNA polymerase. *Biochemistry* 36, 2908–2918 CrossRef Medline
99. Ranjit-Kumar, C. T., Guttshall, L., Kim, M. J., Sarisky, R. T., and Kao, C. C. (2002) Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases. *J. Virol.* 76, 12526–12536 CrossRef Medline
100. Ackermann, M., and Padmanabhan, R. (2001) De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. *J. Biol. Chem.* 276, 39926–39937 CrossRef Medline
101. Jácome, R., Becerra, A., Ponce de León, S., and Lazcano, A. (2015) Structural analysis of monomeric RNA-dependent polymerases: evolutionary and therapeutic implications. *PLoS ONE* 10, e0139001 CrossRef Medline
102. Ferrari, E., Wright-Minogue, J., Fang, J. W., Baroudy, B. M., Lau, J. Y., and Hong, Z. (1999) Characterization of soluble hepatitis C virus RNA-dependent RNA polymerase expressed in *Escherichia coli*. *J. Virol.* 73, 1649–1654 CrossRef Medline
103. Bartenschlager, R., Ahlborn-Laake, L., Yasargil, K., Mous, J., and Jacobsen, H. (1995) Substrate determinants for cleavage in cis and in trans by the hepatitis C virus NS3 protease. *J. Virol.* 69, 198–205 CrossRef Medline
104. Luo, G., Hamatake, R. K., Mathis, D. M., Racela, J., Rigat, K. L., Lemm, J., and Colombo, R. J. (2000) De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus. *J. Virol.* 74, 851–863 CrossRef Medline
105. Kao, C. C., Del Vecchio, A. M., and Zhong, W. (1999) De novo initiation of RNA synthesis by a recombinant flaviviral RNA-dependent RNA polymerase. *Virology* 253, 1–7 CrossRef Medline
106. Ranjit-Kumar, C. T., Sarisky, R. T., Guttshall, L., Thomson, M., and Kao, C. C. (2004) De novo initiation pocket mutations have multiple effects on hepatitis C virus RNA-dependent RNA polymerase activities. *J. Virol.* 78, 12207–12217 CrossRef Medline
107. Filomatori, C. V., Lodeiro, M. F., Alvarez, D. E., Sansa, M. M., Pietrantsa, L., and Garmarik, A. V. (2006) A 5' RNA element promotes dengue virus RNA synthesis on a circular genome. *Genes Dev.* 20, 2238–2249 CrossRef Medline
108. Selisko, B., Potisison, S., Agred, R., Priet, S., Varlet, I., Thillier, Y., Sallmand, C., Debart, F., Vasseur, J. J., and Canard, B. (2012) Molecular basis
for nucleotide conservation at the ends of the dengue virus genome. *PLoS Pathog* **8**, e1002912 CrossRef Medline

124. Butcher, S. J., Grimes, J. M., Makeyev, E. V., Bamford, D. H., and Stuart, D. I. (2001) A mechanism for initiating RNA-dependent RNA polymerization. *Nature* **410**, 235–240 CrossRef Medline

125. Egloff, M. P., Decroly, E., Malet, H., Selisko, B., Benarroch, D., Ferron, F., and Canard, B. (2007) Structural and functional analysis of methylation and 5’-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. *J. Mol. Biol.* **372**, 723–736 CrossRef Medline

126. Bressanelli, S., Tomei, L., Rey, F. A., and De Francesco, R. (2002) Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. *J. Virol.* **76**, 3482–3492 CrossRef Medline

127. Yap, T. L., Xu, T., Chen, Y. L., Malet, H., Egloff, M. P., Canard, B., Vasudevan, S. G., and Lescar, J. (2007) Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. *J. Virol.* **81**, 4753–4765 CrossRef Medline

128. Lohmann, V. (2013) Hepatitis C virus RNA replication. *Curr. Top. Microbiol. Immunol.* **369**, 167–198 CrossRef Medline

129. Mosley, R. T., Edwards, T. E., Murakami, E., Lam, A. M., Grice, R. L., Du, J., Soffia, M. I., Furman, P. A., and Otto, M. J. (2012) Structure of hepatitis C virus polymerase in complex with primer-template RNA. *J. Virol.* **86**, 6503–6511 CrossRef Medline

130. Harrus, D., Ahmed-El-Sayed, N., Simister, P. C., Miller, S., Tricomenet, M., Hagedorn, C. H., Mahias, K., Rey, F. A., Astier-Gin, T., and Bressanelli, S. (2010) Further insights into the roles of GTP and the C terminus of the hepatitis C virus polymerase in the initiation of RNA synthesis. *J. Biol. Chem.* **285**, 32906–32918 CrossRef Medline

131. Lim, S. P., Noble, C. G., Seh, C. C., Soh, T. S., El Sahili, A., Chan, G. K., Lescar, J., Arora, R., Benson, T., Nilar, S., Manjunatha, U., Wan, K. F., Dong, H., Xie, X., Shi, P. Y., et al. (2016) Potent allosteric Dengue virus NS5 polymerase inhibitors: mechanism of action and resistance profiling. *PLoS Pathog.* **12**, e1005737 CrossRef Medline

132. Sesmero, E., and Thorpe, J. F. (2015) Using the hepatitis C virus RNA-dependent RNA polymerase as a model to understand viral polymerase structure, function and dynamics. *Virology* **7**, 3974–3994 CrossRef Medline

133. Bressanelli, S., Tomei, L., Roussel, A., Incitti, I., Vitale, R. L., Mathieu, M., De Francesco, R., and Rey, F. A. (1999) Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. *Proc. Natl. Acad. Sci. U. S. A.* **96**, 13034–13039 CrossRef Medline

134. Gao, G., Orlova, M., Georgiadis, M. M., Hendrickson, W. A., and Goff, S. P. (1997) Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection. *Proc. Natl. Acad. Sci. U. S. A.* **94**, 407–411 CrossRef Medline

135. Selisko, B., Papageorgiou, N., Ferron, F., and Canard, B. (2018) Structural and functional basis of the fidelity of nucleotide selection by flavivirus RNA-dependent RNA polymerases. *Viruses* **10**, 59 CrossRef Medline

136. Campagnola, G., McDonald, S., Beaucourt, S., Vignuzzi, M., and Peersen, O. B. (2015) Structure-function relationships underlying the replication fidelity of viral RNA-dependent RNA polymerases. *J. Virol.* **89**, 275–286 CrossRef Medline

137. Vreede, F. T., Jung, T. E., and Brownlee, G. G. (2004) Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. *J. Virol.* **78**, 9568–9572 CrossRef Medline

138. Kao, C. C., and Sun, J. H. (1996) Initiation of minus-strand RNA synthesis by the brome mosaicvirus RNA-dependent RNA polymerase: use of oligoribonucleotide primers. *J. Virol.* **70**, 6826–6830 CrossRef Medline

139. Testa, D., and Banerjee, A. K. (1979) Initiation of RNA synthesis *in vitro* by vesicular stomatitis virus: role of ATP. *J. Biol. Chem.* **254**, 2053–2058 CrossRef Medline

140. Vreede, F. T., Gifford, H., and Brownlee, G. G. (2008) Role of initiating nucleoside triphosphate concentrations in the regulation of influenza virus replication and transcription. *J. Virol.* **82**, 6902–6910 CrossRef Medline

141. Zhang, S., Weng, L., Geng, L., Wang, J., Zhou, J., Deubel, V., Buchy, P., and Toyoda, T. (2010) Biochemical and kinetic analysis of the influenza virus RNA polymerase purified from insect cells. *Biochem. Biophys. Res. Commun.* **391**, 570–574 CrossRef Medline

142. Tchesnokov, E. P., Feng, J. Y., Porter, D. P., and Götte, M. (2019) Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. *Viruses* **11**, 326 CrossRef Medline

143. Gordon, C. J., Tchesnokov, E. P., Feng, J. Y., Porter, D. P., and Götte, M. (2020) The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. *J. Biol. Chem.* **295**, 4773–4779 CrossRef Medline

144. Agostini, M. L., Andres, E. L., Sims, A. C., Graham, R. L., Sheahan, T. P., Lu, X., Smith, E. C., Case, J. B., Feng, J. Y., Jordan, R., Ray, A. S., Cihlar, T., Siegel, D., Mackman, R. L., Clarke, M. O., et al. (2018) Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. *mBio* **9**, e00211-18 CrossRef Medline

145. Mumtaz, N., Jimmerson, L. C., Bushman, L. R., Kiser, J. J., Aron, G., Reusken, C., Koopmans, M. P. G., and van Kampen, J. A. (2017) Cell-line dependent antiviral activity of sofosbuvir against Zika virus. *Antiviral Res.* **146**, 161–163 CrossRef Medline

146. Achuthan, V., Singh, K., and DeStefano, J. J. (2017) Physiological Mg2+ conditions significantly alter the inhibition of HIV-1 and HIV-2 reverse transcriptases by nucleoside and non-nucleoside inhibitors *in vitro*. *Biochemistry* **56**, 33–46 CrossRef Medline