Characteristics and effects of physical exercise programs for older cancer survivors: A scoping review

Características y efectos de los programas de ejercicio físico para personas mayores sobrevivientes de cáncer: Una revisión de alcance

*Igor Cigarroa, *Estefanía Díaz, *Constanza Ortiz, **Raquel Otero, ***Irene Cantarero, ****Fanny Petermann-Rocha, *****Solange Parra-Soto, ******Rafael Zapata-Lamana, *******David Toloza-Ramírez

*Universidad Santo Tomás (Chile), **ARIS 1, Centro de Atención Infantil Temprana (España), ***Universidad de Granada (España), ****University of Glasgow (Reino Unido), *****Universidad Diego Portales (Chile), *******Universidad de Concepción (Chile).

Abstract. There is a discrepancy about the characteristics and effects of exercise-based programs in older cancer survivors (OCS). Therefore, this scoping review aimed to identify the characteristics and effects of physical activity programs in OCS health. This scoping review followed the PRISMA guidelines and included randomized clinical trials and clinical trials from MEDLINE by PubMed, Scopus, Scielo, and PEDro, published between 2010 and 2020. Results suggest that physical programs were carried out in health centers (54.2%) and were based on physical exercise (74.4%). The length of the exercise interventions was between 3–6 months (87.5%) was performed 2–3 times per week (73.1%) with a duration between 20–60 minutes (78.2%) and was run by health professionals (94.4%). The health outcomes with the most positive effects were physical activity, depression, and quality of life. In conclusion, physical programs for OCS based on aerobic exercises are safe and could be a therapeutic strategy to improve different health markers in OCS.

Key words: Aging; Cancer Survivors; Exercise Therapy; Scoping review.

Introduction. Cancer diagnosis has experienced considerable growth; however, advances in early detection and treatment have contributed to increased cancer survivors (Miller et al., 2019). Classical treatment includes surgery, radiotherapy, and systemic treatment (e.g., chemotherapy); however, these treatments lead to physical, cognitive, and functional deterioration (NCI, 2020). In this regard, non-pharmacological therapies have gained interest as an alternative approach to cancer survivors. Thus, physical exercise has emerged as an effective strategy to improve quality of life and fitness in cancer survivors (e.g., breast cancer) (Weaver et al., 2012). Evidence suggests beneficial effects of physical exercise in cancer survivors (Falzon, Radel, Cantor, & d’Arripe-Longueville, 2014; García, 2021; Santagnello et al., 2020; Soriano-Maldonado et al., 2019; Schwartz, de Heer, & Bea, 2017); however, few studies focus in older cancer survivors (OCS) (people older than 60 years) (Pergolotti et al., 2019; Rangel, Tomás, & Fernandes, 2018). Therefore, it is necessary to analyze and synthesize the existing information on physical exercise benefits in OCS.

In this line, a cancer survivor is defined as anyone with a history of cancer, from the time of diagnosis through the rest of their life (Denlinger et al., 2014).
is estimated that the population of cancer survivors is expected to increase by more than 22.1 million globally by 2030 (ACS, 2021). Unhealthy lifestyles have been associated with increasing the risk of the disease, such as a bad diet (30%); smoking, corresponds to 87% of lung cancer mortality and physical inactivity (Mourouti, Panagiotakos, Kotteas, & Syrigos, 2017). Bad diet and physical inactivity used to lead to obesity. In 2013 the World Cancer Research Fund (WCRF) estimated that excess body fat causes about 3.6% of all cancers in the world (Byers & Sedjo, 2015). Therefore, eating healthier, performing physical activity, stop smoking, and maintaining a healthy weight can reduce your risk of cancer (Mourouti et al., 2017).

Cancer diagnosis is a long process where a wide variety of physical and psychosocial problems may occur (CancerQuest, 2020). Moreover, medical treatments lead to problems that subsequently interfere with completing treatments as prescribed, functioning independently, and performing activities of daily living (Mustian, Sprod, Janelsins, Peppone, & Mohile, 2012). Physical pain, fatigue, being more dependent, anxiety, depression, and tension in personal relationships greatly impact the quality of life, which is associated with a worse prognosis (Lang-Rollin & Berberich, 2018).

In this context, Global Cancer Observatory (GCO) in 2018 (UIICC, 2018) released a new version of the GLOBOCAN database. In decreasing order, the five cancers with the highest global incidence are lung cancer and breast cancer (11.6% each), colorectal cancer (10.2%), prostate cancer (7.1%) and stomach cancer (5.7%) (UIICC, 2018). On the other hand, the estimated incident in 2018 is 31,772 new cases of cancer in older adults, where the five most common cancers are: prostate cancer, colorectal cancer, stomach cancer, lung cancer, and breast cancer (IARC, 2020a).

Treatments used to increase survival and quality of life are nutrition and physical activity (IARC, 2018). A systematic review and meta-analysis of RCTs studies suggest that physical activity and physical exercise improve quality of life in cancer treatment (Bourke et al., 2009). Physical activity has been recognized as a therapeutic tool to reduce treatment’s side effects, and promote weight control and improve immune system function (Mourouti et al., 2017; Schwartz et al., 2017). In addition, it is positively associated with cardiorespiratory fitness, muscle strength, and endurance, a fact that could be beneficial for OCS as it could help them recover their physical condition and health before treatment. WCRF, American Institute for Cancer Research (AICR) and American Cancer Society (ACS), recommend that cancer survivors be moderately physically active, for at least 30 minutes each day, for five or more days a week; thus, that along with appropriate dietary choices they maintain a healthy weight (Schwedhelm, Boeing, Hoffmann, Aleksandrova, & Schwingshackl, 2016). In 2009, the American College of Sports Medicine (ACSM) developed guidelines for survivors, which recommend to perform at least 150 minutes of moderate aerobic activity or 75 minutes of vigorous aerobic activity per week and two days a week of moderate to high-intensity endurance exercise, flexibility exercises and balance exercises for major muscle groups (Pekmez & Demark-Wahnefried, 2011). Thus, the evidence indicates that endurance training causes an improvement in cancer-related fatigue, cognitive function, quality of life, and muscle strength (Schwartz et al., 2017). In this line, the physical activity programs must be according to the possibilities that the patient must carry out specific training to the patient’s individual needs and physical activity levels (Lang-Rollin & Berberich, 2018).

The benefits of exercise in cancer survival are clear. However, although previous systematic reviews have determined that exercise generates positive effects in people with a diagnosis of cancer (Stout, Baima, Swisher, Winters Stone, & Welsh, 2017) and cancer survivors (Kessels, Husson, & van der Feltz-Cornelis, 2018), up to day no reviews have investigated the effects and characteristics of physical exercise programs in OCS. Therefore, this study aimed to characterize physical exercise programs in OCS. This review will also allow us to know OCS and the types of cancers that benefit the most from physical exercise effects.

Methodology

Research characteristics

A scoping review was conducted in accordance with standards established by the PRISMA statement (Liberati et al., 2009). The manuscript was not registered in PROSPERO. PROSPERO does not currently accept registrations for scoping reviews, literature reviews or mapping reviews. The PRISMA checklist can be found in the supplementary material (Appendix 1). The search was carried out using the following electronic databases MEDLINE by PubMed, Scopus, PEDro, and Scielo. The search covered the period from...
January 2010 to October 2020 (end of the search in databases). The search strategy followed the guidelines of the Peer Review of Electronic Search Strategies (PRESS) (McGowan et al., 2016). The general search syntax was: («exercise therapy» OR «rehabilitation exercise») AND («cancer survivor» OR «neoplasm survivors»), which was adapted to each database. The complete search strategy and filters used for all databases are available in the supplementary material (Appendix 2).

Study eligibility
The articles selected by title and abstract should meet the following criteria: I) Physical exercise is a subcategory of physical activity that improves or maintains one or more physical components (WHO, 2010) in this sense, Physical exercise, physical activity, and recreational activities studies were eligible for inclusion. They can be used as a single or combined program. They must have at least one session per week, and the minimum duration of the program should have been a month. II) population: People older than 50 years from community-dwelling were considered; moreover institutionalized, self-supporting, or hospitalized cancer survivors were considered. III) Health outcomes: studies must study at least one of these outcomes a) physical: level of physical activity, functional capacity and physical condition, b) psychological: anxiety and depression and quality of life and c) cognitive functions: cognitive impairment IV) Type of article: Randomized clinical trials and clinical trials. V) Search limited to English publications in humans, between January 2010 and October 2020.

Exclusion criteria for gender or clinical condition were not applied. Furthermore, other types of articles such as reviews, editorial documents, protocols and/or studies conducted in animals were excluded.

Strategy for the narrative synthesis
A narrative synthesis of the findings was provided from the included studies/summarized in tables and figures. The results were ordered to present the general characteristics of articles, and programs as well as the effects of physical exercise programs on physical health, quality of life, psychological health, and cognitive functions outcomes. Furthermore, the characteristics of the population, variables analyses are presented.

Data extraction
In a first step, duplicated articles were identified and removed from the databases using Mendeley software version 1.19.4. Two reviewers then applied the inclusion/exclusion criteria to all titles and abstracts (C.O and E.D). Articles that fit the inclusion criteria were selected and, when decisions could not be made based on the title and abstract alone, the full-text documents were also retrieved. The articles included in the review were independently verified by the two reviewers (C.O and E.D); however, when there were discrepancies, a third reviewer (I.C) reached a consensus (Figure 1). The authors used and applied a standardized questionnaire to extract the included articles’ data and synthesize the evidence.

Risk of bias assessment tool and Consensus on Exercise Reporting Template (CERT) form
The Cochrane tool «Cochrane Handbook of Systematic Reviews of Interventions» by Higgins & Green (2011) was used to evaluate the risk of bias in the 24 full-text articles included in this systematic literature review. Based on the items proposed by the manual, selection bias, performance bias, detection bias, attrition bias and reporting bias were considered, leaving only the item «other biases» left out of the evaluation. Each article was independently graded by two reviewers (C.O and E.D), and the scores were compared. When there was a disagreement, a consensus was reached with a third evaluator (I.C). The risk of bias of the studies is shown in Appendix 3. In addition, the Consensus on Exercise Reporting Template (CERT) evaluation form was added to determine the proportion of articles that met the CERT20 items (Appendix 4).

Results

Literature search
A flow diagram summary in the article included based on the PRISMA (Liberati et al., 2009) guidelines is shown in Figure 1. A total of 1,344 potential records on physical exercise in OCS were identified. After removing duplicated articles (1,213) and screening titles and abstract (1,105), 108 records were full screened. After applying the eligibility criteria, 24 articles were finally included for the narrative synthesis (Figure 1).

Assessment of risk of bias and level of CERT compliance
Using the Cochrane tool «Cochrane Manual of Systematic Reviews of Interventions of Experimental Studies» (Higgins & Green, 2011), the articles were
classified as low risk of bias in the sequence generation domains (88%), incomplete outcome data (67%), unclear risk in the domains of allocation concealment (46%), and binding of participants and staff (29%), and binding of outcome assessors (63%). On the other hand, in the selective notification of results domain, 46% of the articles reported a high risk of bias (Appendix 3).

Seventeen out of nineteen items complied (score <yes> on the CERT items) in at least 75% of the articles (C1 = 88%, C2 = 75%, C3 = 100%, C4 = 92%, C5 = 100%, C6 = 79%, C7a = 79%, C8 = 88%, C9 = 100%, C10 = 100%, C12 = 92%, C13 = 100%, C14a = 83%, C14b = 92%, C15 = 83%, C16a = 92% and C16b = 75%). The categories of items with the highest level of compliance were the categories of items classified as low risk of bias in the sequence generation domains (88%), incomplete outcome data (67%), unclear risk in the domains of allocation concealment (46%), and binding of participants and staff (29%), and binding of outcome assessors (63%). On the other hand, in the selective notification of results domain, 46% of the articles reported a high risk of bias (Appendix 3).

The characteristics of OCS are presented in Figure 2. Ten types of cancer were detected; the most frequent was breast cancer (13 articles) whilst the least was kidney cancer (1 article). The most common stages were: Stage I, stage II and stage III (15 articles each). In contrast, the least frequent stage was stage 0 (1 article). The most frequent treatment received was health professional (Table 1).

General characteristics of the articles

Table 1 shows the general characteristics of the articles included. The oldest article was published in 2012, while the newest in 2019. The articles were carried out mainly in the United States (n=13). The total OCS at the beginning was 3,379 and at the end was 2,140, presenting an average adherence of 63.3%. The average age of the OCS was 61 years, and 75% of the articles were carried out in OCS between 60 and 70. Of the total articles, 34.6% did not report the number of subjects divided by sex. Of those who registered sex, 66.7% were carried out only in women (with breast cancer, ovarian cancer and endometrial cancer) and 13.3% only in men (prostate cancer only). The main cause of withdrawal from the program was health complications attributed to cancer (resumption of adjuvant therapy and/or presence of treatment side effects). Health centers were the principal place where the OCS were recruited for the programs (62.5%) and where the programs were carried out (54.2%). Unfortunately, 25% of the articles did not specify the professional who performs the program based on PA and PE. In those which did, 94.4% were performed by a health professional (Table 1).

Population characteristics

The characteristics of OCS are presented in Figure 2. Ten types of cancer were detected; the most frequent was breast cancer (13 articles) whilst the least was kidney cancer (1 article). The most common stages were: Stage I, stage II and stage III (15 articles each). In contrast, the least frequent stage was stage 0 (1 article). The most frequent treatment received was health professional (Table 1).

Table 1: General characteristics of the articles included. The oldest article was published in 2012, while the newest in 2019. The articles were carried out mainly in the United States (n=13). The total OCS at the beginning was 3,379 and at the end was 2,140, presenting an average adherence of 63.3%. The average age of the OCS was 61 years, and 75% of the articles were carried out in OCS between 60 and 70. Of the total articles, 34.6% did not report the number of subjects divided by sex. Of those who registered sex, 66.7% were carried out only in women (with breast cancer, ovarian cancer and endometrial cancer) and 13.3% only in men (prostate cancer only). The main cause of withdrawal from the program was health complications attributed to cancer (resumption of adjuvant therapy and/or presence of treatment side effects). Health centers were the principal place where the OCS were recruited for the programs (62.5%) and where the programs were carried out (54.2%). Unfortunately, 25% of the articles did not specify the professional who performs the program based on PA and PE. In those which did, 94.4% were performed by a health professional (Table 1).

Population characteristics

The characteristics of OCS are presented in Figure 2. Ten types of cancer were detected; the most frequent was breast cancer (13 articles) whilst the least was kidney cancer (1 article). The most common stages were: Stage I, stage II and stage III (15 articles each). In contrast, the least frequent stage was stage 0 (1 article). The most frequent treatment received was health professional (Table 1).
chemotherapy (22 articles), followed by radiotherapy (14 articles), surgery (12 articles), and hormonal therapy (6 articles). Within comorbidities, type 2 diabetes mellitus was the most frequent. However, in 22 articles, OCS had no comorbidities (Figure 2).

Main characteristics of the programs

Table 2 presents the characteristics of the programs based on the effects of physical exercise in OCS. 74.4% of the articles performed physical exercise, 17.9% physical activity and 7.7% recreational activity. On average, the programs had an extension of six months, and 87.5% of the articles had an extension between 3–6 months, 2.9 sessions per week with a frequency of 2–3 sessions per week was the average reported in the articles (73.1%). The sessions had an average duration of 49.4 minutes, with a maximum of 20–60 minutes (78.2%). Regarding physical condition addressed during the programs, 44% included aerobic exercise, which varied between 15–30 minutes in 77.7% of the studies. Muscle strength exercises were included in 33.3% of studies, with a duration that varied between 15–30 minutes in 71.4% of the studies. Flexibility exercises were present in 20.5% of studies, with 10 minutes in 100% of the studies. 2.5% included balance and gait exercises lasting 30 minutes in 100% of the studies, 20.5%, 17.9%, and 15.4% did not specify aerobic exercise duration, muscular strength, and flexibility, respectively.

Table 2. Characteristics of physical exercise program in OCS.

Authors, Year	Modality	Length (months)	Frequency	Duration (min)	Type and time (min)	Intensity
Park S. (2013)	EG1	1	3	10	* NE	NE Light
Winters-Stone K. (2012)	CG1	3	8	60	* NE	NE Light
Spahn G. (2013)	EG1	2.2	1	10	* NE	NE Light
Brocki R. (2014)	CG1	2.2	1	60	* 20	
Camps R. (2014)	EG1	2.2	2	NE	* NE	Light
Rogers L. (2015)	EG1	1	3	15-25	* NE	Moderate
Spald L. (2015)	EG1	1	2	75	* NE	Light
Martin E. (2016)	EG1	2	3	60	* 10	25 Light
Devos J. (2016)	EG1	1	1	3	50	* 50 Intense
Hagtrom A. (2016)	EG1	1	3	60	* NE	Light
Zhou Y. (2017)	EG1	1	3	60	* NE	NE Light
Wadleigh R. (2017)	EG1	1	2	90	* 70-90	Moderate
Rogers L. (2017)	EG1	1	2	90	* 70-90	Moderate
Dicks-Courtright C. (2018)	EG1	1	3	3	* 30	Moderate
Brown J. (2018)	EG1	1	3	3	* 30	Moderate
Lee C. (2018)	EG1	24	4	5	* 60	Moderate
Lahav L. (2018)	EG1	24	3	3	10	* NE Moderate
Brown J. (2018)	EG2	1	6	2	* 30	NE Light
Levin G. (2018)	EG1	1	2	60	* 30	Moderate
Iyer (2018)	EG1	3	1	10	* 15	
Zhang Q. (2018)	EG1	3	3	25-30	* NE	NE Moderate
Gray M. (2019)	EG1	12	1	30	10	* NE Moderate
Knier S. (2019)	EG1	12	1	30	10	NE Moderate
Byrne E. (2019)	EG1	12	6	40	* NE	NE Moderate

Table 2. Characteristics of physical exercise program in OCS.

Cancer site	Cancer staging	Treatment received	Characteristics of OCS.
- Breast	0	13 articles	Strength exercises
- Prostate	1	6 articles	B&G = Balance and gait exercises
- Colon	2	4 articles	Flex = Flexibility exercises
- Rectum	3	2 articles	Aer = Aerobic fitness exercises
- Colorectum	2	2 articles	Training zone
- Lung	2	1 articles	EG1: Experimental Group 1
- Bladder	2	1 article	EG2: Experimental Group 2
- Brain	1	1 article	CG1: Control Group 1
- Kidney	1	1 article	CG1 = Control Group 1
- Bladder	1	1 article	EG1 = Experimental Group 1

Figure 2. Characteristics of OCS.
The moderate-intensity was the most frequent (58%), followed by light intensity (29.2%) (Table 2).

Health outcomes analyzed

The health outcomes analyzed are presented in Figure 3. They were grouped and described in four categories: physical health, quality of life, psychological health and cognitive functions. The physical health category was considered only in 70.8% of the articles and was divided into eight outcome variables. The most evaluated was the level of physical activity (7 articles), and the least evaluated was flexibility (1 article). The quality of life category was considered only in 54% of the articles (13 articles). The psychological health category was considered only in 37.5% of the articles and was grouped into two outcome variables. The most evaluated was depression, including nine articles. The category of cognitive functions was considered only in 4.2% of the articles and was grouped into mild cognitive impairment, evaluated in one article (Figure 3).

Effects on physical health, quality of life, psychological health, and cognitive function outcomes

Table 3 presents a narrative that analyzes the effects of physical exercise programs on the health outcomes of OCS. 17 out of 24 articles (71%) reported monomodal programs based on physical exercise used. Seven used a multimodal physical program with nutritional program, cognitive therapy, or psychological therapy. The physical health with more statistically significant improvements was the level of physical activity (7 of 12 articles). Depression was the adverse outcome with the best positive benefits after the programs (7 of 14 articles). In addition, there were statistically significant improvements in the quality of life in 24 of 27 articles. Complementary, when the effects on health outcomes were broken down by type of exercise, it was evidenced that:

- Physical exercise: In physical health, the most positive outcomes were muscle strength (6 out of 10 articles) and balance and gait (5 out of 8 articles). In the quality of life, there were positive effects in 14 of 16 articles. In psychological health, depression showed the most positive effects (3 out of 7 articles).
- Physical activity: In physical health, the outcome with the most positive effects was the level of physical activity (2 of 2 articles). In the quality of life, there were positive effects in 3 of 3 articles. In psychological health, anxiety showed the most positive effects (2 of 2 articles).
- Recreational activity: In physical health, the outcome with the most positive effects was physical activity level (1 of 1 article). In the quality of life, there were positive effects in 3 of 3 articles. In psychological health, anxiety showed the most positive effects (1 of 2 articles).
- PA or PE combined with another program: In physical health, the outcome with the most positive effects was physical activity level (4 out of 5 articles). In the quality of life, there were positive effects in 4 of 5 articles. Anxiety showed the most positive effects (2 of 2 articles) (Table 3).

Discussion

This scoping review aimed to investigate the characteristics and effects of physical exercise in OCS. Results suggest that physical exercise programs must consider the extent, frequency, duration, and intensity in OCS. Likewise, those characteristics can safely improve physical health, quality of life, and psychological health.

We found twenty-four RCTs and Clinical Trials. In this context, the initial sample was 3,379, and the final 2,140, presenting an average adherence of 63.3% to PE programs. 75% of the studies were carried out in OCS.
between 60 and 70 years old, with an average age of 61. 86.8% were women. The main cause of withdrawal from the program was health complications attributed to cancer, as previous studies have shown. It is noteworthy that only 8.3% included older adults (WHO, 2015), and adherence was 63.3%. This contrasts with the latest health surveys that place women as more physically inactive than men (Sallis et al., 2016) and with the fact that the practice of physical activity decreases over the years (WHO, 2015). It is noteworthy that only 8.3% included older adults (BIRF–AIF, 2019), and is the second country in the world in scientific production (FECYT, 2019). Regarding the characteristics of the OCS, the sex that predominated was female (86.8%), and adherence was 63.3%. This contrasts with the latest health surveys that place women as more physically inactive than men (Sallis et al., 2016) and with the fact that the practice of physical activity decreases over the years (WHO, 2015).

Most of the studies were developed in the United States, which could be associated with a high number of older adults (BIRF–AIF, 2019), and is the second country in the world in scientific production (FECYT, 2019). Regarding the characteristics of the OCS, the sex that predominated was female (86.8%), and adherence was 63.3%. This contrasts with the latest health surveys that place women as more physically inactive than men (Sallis et al., 2016) and with the fact that the practice of physical activity decreases over the years (WHO, 2015).

Results on the risk of bias stress that a high percentage of articles included reported risk unclear in quality of life, and neither modality presented positive effects on cognitive function outcomes.
domains allocation concealment (46%), blinding of participants and staff (29%) and blinding of outcome evaluators (63%). Cochrane Manual refers to the lack of blinding in these items could skew the results and affect the trial participants (Higgins & Green, 2011). However, blinding either the control or experimental groups is complicated due to the nature of exercise-based programs. In the selective reporting of results domain, 46% of the articles reported a high risk of bias, which is striking since all the articles in this scoping review present an experimental and randomized methodological design (RCT), which corresponds to the better level of evidence relative to original studies.

Regarding compliance with the CERT, seventeen out of nineteen items complied (rated «yes» on the CERT items) in at least 75% of the articles. The category of items with a lower level of compliance was related to the distribution. Similar results were observed on the level of compliance in another systematic review (Hay-Smith et al., 2019). This could be because the CERT was developed in 2016 to make exercise-based clinical trials transparent and replicable and has not yet been sufficiently absorbed by researchers.

60% of all malignant tumors and 70% of cancer deaths occur in older adults 65 years of age (Nuñez, 2017). As the risk of cancer increases with age, older adults are vulnerable (IARC, 2020b). Breast cancer was the most common cancer reported in the selected articles. On the other hand, this scoping review shows limited evidence about the effects of PE in other cancer types, an aspect that should be considered in future research. The latter is not surprising considering the high incidence of this cancer worldwide (11.6%) (Bray et al., 2018). Combination therapy with drugs in cancer participants (62.5%) is most effective; thus, cancer cells becoming resistant is reduced (Manual MSD, 2020). In agreement with the Encuesta Nacional de Dependencia en Adultos Mayores (ENADEAM, acronym in Spanish) 54.2% of the older adults has comorbidities, 75% of older adults express having at least one chronic disease, such as arterial hypertension (62.1%), one of the most common pathologies in older adults; therefore it becomes a risk factor for the development of other types of pathologies, such as diabetes (21.8%) (Soler, Mellinas, Sánchez, & Jiménez, 2010).

Following the WHO guidelines, PE programs must consider an extension of 3–6 months, with a frequency of 2–3 times per week and per session lasting between 20–60 minutes, and be run by health professionals (WHO, 2020), in line with our results. It is an important aspect because it shows that different studies are implementing these guidelines. According to the types of PE, 74.4% of the articles performed PE, while 17.9% performed PA and 7.7% recreational activity. This suggests that PE and PA predominate over recreational activity, but the last decade has also led to the development of recreational programs that have proven to be just as effective compared to PE and PA programs (Bjerre et al., 2019; Brown et al., 2018a; Brown et al., 2018b; Campo et al., 2014; Devin et al., 2016; Dieli-Conwright et al., 2018; Gray et al., 2019; Hagstrom et al., 2016; Iyer et al., 2018; Kneis et al., 2019; Lahart, Carmichael, Nevill, Kitas, & Metsios, 2018; Lee et al., 2018; Levin, Greenwood, Singh, & Newton, 2018; Martin, Battaglini, Hands, & Naumann, 2016; Rogers et al., 2017; Sprod et al., 2015; Winkels et al., 2017; Zhang Q, Li, Zhang H, Yu, & Cong, 2018; Zhou et al., 2017). For example, Qigong (which is a viable form of PA for OCS because it is performed at a slow pace, without excessive physical exertion), yoga, and soccer mitigate some negative side effects such as cancer-related fatigue, depression, joint pain, and PA has also been shown to be associated with longer survival (Bjerre et al., 2019; Brown et al., 2018a; Brown et al., 2018b; Campo et al., 2014; Devin et al., 2016; Dieli-Conwright et al., 2018; Gray et al., 2019; Hagstrom et al., 2016; Iyer et al., 2018; Kneis et al., 2019; Lahart et al., 2018; Lee et al., 2018; Levin et al., 2018; Martin et al., 2016; Rogers et al., 2017; Winkels et al., 2017; Zhang et al., 2018; Zhou et al., 2017). Regarding the components of programs, 44% mainly considered aerobic exercise and 58.3% of the articles were developed in the moderate workout, this being the first recommendation by the ACSM (Wolin, Schwartz, Matthews, Courneya, & Schmitz, 2012). In addition, only few articles considered the balance and gait components’ training. This is surprising since their alteration increases the risk of falls (Izquierdo et al., 2004). Finally, the flexibility component was considered in only 20.5% of the articles, a variable that is not specifically found within the WHO recommendations (WHO, 2020). This contrasts with the fact that flexibility exercises have been shown to improve aspects of older adults’ physical health and psychological health (Sivaramakrishnan et al., 2019). Currently, multi-component exercise is promoted (WHO, 2020); in this sense, future research should consider this in its proposal.

The scientific community has recognized the potential of exercise to cope with various adverse effects caused by cancer treatment, both for mental health, cognitive
function and physical well-being, and for the deterioration of operation associated with aging (Grimmett et al., 2019) and cancer survivors (Palesh et al., 2018). Programs were based on PE, PA, recreational activity, PA or PE combined with another program. Considering physical health variables in 70.8% of the articles, 54% of the articles considered the effects of these programs on the quality of life variable, 37.5% on psychological health variables and 4.2% on cognitive functions. This scoping review shows scarce evidence on variables such as physiological health and cognitive functions. Therefore, these should be included in PE researches, considering the mental health of OCS. Studies suggest that PE significantly affects mental health, especially in neuroprotection mechanisms during aging (e.g., on cognitive reserve) (Cheng, 2016; Wikee & Martella, 2018).

Muscular strength showed the greatest PE effect both in PA, recreational activity, and combined programs. On the other hand, in cognitive functions, the variable mild cognitive impairment did not present effects. It can be concluded that PE brings both physical and psychological benefits in older adults regardless of the age of the subjects (Hill, Hunter, Batchelor, Cavalheri, & Burton, 2015; Galloza, Castillo, & Micheo, 2017). However, no effects in mild cognitive impairment contrasts with the fact that physical programs are necessary to stop cognitive impairment in older adults and provide a better quality of life (Barnes, Whitmer, & Yaffe, 2007).

PA program shows better effects on physical health, which is related to the activities recommended by the WHO (moderate-intensity aerobic PA or vigorous-intensity aerobic PA) and better effects on quality of life in patients. Comparison with the other programs, which is in agreement with the literature, since the practice of physical activity improves the health and well-being of older adults (Soler et al., 2010). On the other hand, PA or PE program combined with another program (nutrition, cognitive and psychological therapy) shows more significant effects, both in anxiety and depression; in fact, the literature suggests combined program reveals high levels of self-esteem and lower levels of depression and anxiety (Kandola et al., 2018).

Limitations and clinical implications

This study had some limitations. Firstly, most of the included studies were developed in the USA, which does not allow a complete overview concerning PE programs in OCS in the rest of the world. This could be considered a challenge for researchers in the rest of the countries to develop research with PE-based programs in OCS in their respective countries. Secondly, about the risk of bias, the domains of allocation concealment, blinding of participants and staff, and blinding of evaluators reported unclear risk in most articles, which could bias the results when affecting the outcomes of the participants in the programs. Finally, this scoping review did not consider a meta-analysis of the 24 articles selected; moreover, RCTs or Clinical Trials were not included in another language but from English.

The clinical implications of this review provide a broad and updated view of the characteristics and effects of PE programs that are being developed for OCS. The findings will be useful for prescribing future PE programs for OCS, encouraging the development of future studies in this area of knowledge.

Conclusions

In conclusion, PE programs positively affect OCS health outcomes, such as PA, depression, and quality of life, especially in Breast cancer (most frequently reported). Positive effects are shown in physical programs based on aerobic exercise when it is considered the range of months, frequency per week, and duration no more than 60 minutes. The mode of a program based on a recreational activity had higher positive effects on physical health outcomes. The modality of a program based on PA had higher positive effects on quality of life and psychological health outcomes. Physical programs are a safe and effective therapeutic strategy to improve physical health markers, quality of life, and psychological health in OCS.

This scoping review made it possible to describe the effects of PE in OCS and the types of cancers that benefit the most, since before our research project, there was no clarity or consensus about the effects and the mode of programs based on PE that can improve variables such as physical health, quality of life, psychological health, and cognitive functions in OCS. Moreover, this scoping review characterized the PE programs in OCS, as well the most frequently used outcome measures, by summarizing available evidence derived from RCTs and Clinical Trials.

Acknowledgments

ANID-Subdirección de Capital Humano/Doctorado Nacional/2021-21212181 (David Toloza-Ramírez).
References

* references included in the review

American Cancer Society (ACS). (2021). Cancer Treatment & Survivorship Facts & Figures 2019-2021. Recuperado Mayo 15, 2021, de https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/cancer-treatment-and-survivorship-facts-and-figures/cancer-treatment-and-survivorship-facts-and-figures-2019-2021.pdf

Banco Internacional de Reconstrucción y Fomento–Asociación Internacional de Fomento (BIRF–AIF). (2019). World Bank staff estimates based on age/sex distributions of United Nations Population Division’s World Population Prospects: 2019 Revision. Population ages 65 and above (% of total population) - United States, Denmark, Australia, China, United Kingdom. Recuperado Mayo 15, 2021, de https://datos.bancomundial.org/indicador/SP.POP.65UP.TO.ZS?locations=US-DK-AU-CN-GB

Barnes, D. E., Whitmer, R. A., & Yaffe, K. (2007). Physical Activity and Dementia. Exercise and Sport Sciences Reviews, 35(1), 24–29. Recuperado de https://doi.org/10.1097/j.esrs.0b013e31802d6bc2

*Bjerre, E. D., Petersen, T. H., Jørgensen, A. B., Jørgen, A. B., Johansen, C., Krustrup, P., Langdahl, B., Poulsen, M. H., Madsen, S. S., Østergren, P. B., Borre, M., Rørth, M., Brasso, K., & Midtgaard, J. (2019). Community-based football in men with prostate cancer: 1-year follow-up on a pragmatic, multicentre randomised controlled trial. PLos Medicine, 16(10), e1002936. Recuperado de https://doi.org/10.1371/journal.pmed.1002936

*Brocki, B. C., Andreasen, J., Nielsen, L. R., Nekrasas, V., Gorst-Rasmussen, A., & Westerdahl, E. (2014). Short and long-term effects of supervised versus unsupervised exercise training on health-related quality of life and functional outcomes following lung cancer surgery - a randomized controlled trial. Lung Cancer, 83(1), 102–108. Recuperado de https://doi.org/10.1016/j.lungcan.2013.10.015

*Brown, J. C., Damjanov, N., Courneya, K. S., Troxel, A. B., Zemel, B. S., Rickels, M. R., Ky, B., Rhim, A. D., Rustgi, A. K., & Schmitz, K. H. (2018a). A randomized dose-response trial of aerobic exercise and health-related quality of life in colon cancer survivors. Psychooncology, 27(4), 1221–1228. Recuperado de https://doi.org/10.1002/pon.4655

*Brown, J. C., Troxel, A. B., Ky, B., Damjanov, N., Zemel, B. S., Rickels, M. R., Rhim, A. D., Rustgi, A. K., Courneya, K. S., & Schmitz, K. H. (2018b). Dose-response Effects of Aerobic Exercise Among Colon Cancer Survivors: A Randomized Phase II Trial. Clinical Colorectal Cancer, 17(1), 32–40. Recuperado de https://doi.org/10.1016/j.ccc.2017.06.001

Byers, T., & Sedjo, R. L. (2015). Body fatness as a cause of cancer: epidemiologic clues to biologic mechanisms. Endocrine-related Cancer, 22(3), R125–R134. Recuperado de https://doi.org/10.1530/erc-14-0580

*Campo, R. A., Agarwal, N., LaStayo, P. C., O’Connor, K., Pappas, L., Boucher, K. M., Gardner, J., Smith, S., Light, K. C., & Kinney, A. Y. (2014). Levels of fatigue and distress in senior prostate cancer survivors enrolled in a 12-week randomized controlled trial of Qigong. Journal of Cancer Survivorship, 8(1), 60–69. Recuperado de https://doi.org/10.1007/s11764-013-0315-5

CancerQuest. (2020). Emotional and Psychological Effects of Cancer. Recuperado Junio 22, 2020, de https://www.cancerquest.org/es/para-los-pacientes/problemas-psicosociales#footnotet1_up0sfdh

Cigarroa, I., Zapata-Lamana, R., Leiva-Gajardo, G., Vasquez, E., Parrado-Romero, E., Vásquez-Gomez, J., Alvarez, C., Petermann-Rocha, F., & Reyes-Molina, D. (2021). Características de la adherencia y motivos del abandono de las intervenciones basadas en el ejercicio físico en adultos mayores en América Latina: una revisión de alcance (Adherence characteristics and reasons for abandonment of physical exercise-based in Retos, 44, 10–26. Recuperado de https://doi.org/10.47197/retos.v44i0.89359
Cheng, S-T. (2016). Cognitive Reserve and the Prevention of Dementia: the Role of Physical and Cognitive Activities. *Current Psychiatry Reports, 18*(9), 85. Recuperado de https://doi.org/10.1007/s11920-016-0721-2

Denlinger, C. S., Carlson, R. W., Are, M., Baker, K. S., Davis, E., Edge, S. B., Friedman, D. L., Goldman, M., Jones, L., King, A., Kvale, E., Langbaum, T. S., Ligibel, J. A., McCabe, M. S., McVary, K. T., Melisko, M., Montoya, J. G., Mooney, K., Morgan, M. A., … Freedman-Cass, D. (2014) Survivorship: Introduction and Definition. *Journal of the National Comprehensive Cancer Network, 12*(1), 34–45. Recuperado de https://doi.org/10.6004/jnccn.2014.0005

*Devin, J. L., Sax, A. T., Hughes, G. I., Jenkins, D. G., Aitken, J. F., Chambers, S. K., Dunn, J. C., Bolam, K. A., & Skinner, T. L. (2016). The influence of high-intensity compared with moderate-intensity exercise training on cardiorespiratory fitness and body composition in colorectal cancer survivors: a randomised controlled trial. *Journal of Cancer Survivorship, 10*(3), 467–479. Recuperado de https://doi.org/10.1007/s11764-015-0490-7

*Dieli-Conwright, C. M., Courneya, K. S., Demark-Wahnefried, W., Sami, N., Lee, K., Sweeney, F. C., Stewart, C., Buchanan, T. A., Spicer, D., Tripathy, D., Bernstein, L., & Mortimer, J. E. (2018). Aerobic and resistance exercise improves physical fitness, bone health, and quality of life in overweight and obese breast cancer survivors: a randomized controlled trial. *Breast Cancer Research, 20*(1), 124. Recuperado de https://doi.org/10.1186/s13058-018-1051-6

Falzon, C., Radel, R., Cantor, A., & d’Arripe-Longueville, F. (2015). Understanding narrative effects in physical activity promotion: the influence of breast cancer survivor testimony on exercise beliefs, self-efficacy, and intention in breast cancer patients. *Supportive Care in Cancer, 23*(3), 761–768. Recuperado de https://doi.org/10.1007/s00520-014-2422-x

Fundación Española para la Ciencia y la Tecnología (FECYT). (2019). Producción científica. Recuperado de Mayo 15, 2021, de https://icono.fecyt.es/principales-indicadores/produccion-cientifica

Galloza, J., Castillo, B., & Micheo, W. (2017). Benefits of Exercise in the Older Population. *Physical Medicine and Rehabilitation Clinics of North America, 28*(4), 659–669. Recuperado de https://doi.org/10.1016/j.pmr.2017.06.001

García, C. (2021). Descifrando el papel del entrenamiento intervalóico de alta intensidad en el cáncer de mama: revisión sistemática (Deciphering the role of high-intensity interval training in breast cancer: systematic review). *Retos, 44*, 136–145. Recuperado de https://doi.org/10.47197/retos.v44i0.90566

*Gray, M. S., Judd, S. E., Sloane, R., Snyder, D. C., Miller, P. E., & Demark-Wahnefried, W. (2019). Rural–urban differences in health behaviors and outcomes among older, overweight, long-term cancer survivors in the RENEW randomized control trial. *Cancer Causes & Control, 30*(4), 301–309. Recuperado de https://doi.org/10.1007/s10552-019-01141-x

Grimmett, C., Corbett, T., Brunet, J., Shepherd, J., Pinto, B. M., May, C. R., & Foster, C. (2019). Systematic review and meta-analysis of maintenance of physical activity behaviour change in cancer survivors. *International Journal of Behavioral Nutrition and Physical Activity, 16*(1), 37. Recuperado de https://doi.org/10.1186/s12966-019-0787-4

Hagstrom, A. D., Marshall, P. W. M., Lonsdale, C., Cheema, B. S., Singh, M. A. F., & Green, S. (2016). Resistance training improves fatigue and quality of life in previously sedentary breast cancer survivors: a randomised controlled trial. *European Journal of Cancer Care, 25*(5), 784–794. Recuperado de https://doi.org/10.1111/ecc.12422

Hay-Smith, E. J., Englas, K., Dumoulin, C., Ferreira, C. H., Frawley, H., & Weatherall, M. (2019). The Consensus on Exercise Reporting Template (CERT) in a systematic review of exercise-based rehabilitation effectiveness: completeness of reporting, rater agreement, and utility. *European Journal of Physical and Rehabilitation Medicine, 55*(3), 342–352. Recuperado de https://doi.org/10.23736/s1973-9087.19.05791-5

Higgins, J. P. T., & Green, S. (2011). Capítulo 8: Evaluación del riesgo de sesgo en los estudios incluidos. En Higgins, J. P. T. Green, S. (Eds), *Manual Cochrane de revisiones sistemáticas de intervenciones* Versión 5.1.0. (pp. 197–255). Barcelona: Centro Cochrane Iberoamericano.

Hill, K. D., Hunter, S. W., Batchelor, F. A., Cavalheri, V., & Burton, E. (2015). Individualized home-based exercise programs for older people to reduce falls and improve physical performance: A systematic review and meta-analysis. *Maturitas, 82*(1), 72–84. Recuperado de https://doi.org/10.1016/j.maturitas.2015.04.005
Kilari, D., Soto-Perez-de-Celis, E., Mohile, S. G., International Agency for Research on Cancer (IARC). (2020a). Cancer Today (GLOBOCAN 2020). Recuperado Junio 17, 2020, de https://gco.iarc.fr/today/online-analysis-globocan_id=
International Agency for Research on Cancer (IARC). (2020b). Cancer Today. Recuperado Junio 17, 2020, de https://gco.iarc.fr/today/online-analysis-globocan_id=
International Agency for Research on Cancer (IARC). (2018). Diet, Nutrition, Physical Activity and Cancer: A Global Perspective A summary of the Third Expert Report. Recuperado Junio 21, 2020, de http://gco.iarc.fr/today
*Iyer, N. S., Cartmel, B., Friedman, L., Li, E., Zhou, Y., Ercolano, E., Harrigan, M., Gottlieb, L., McCorkle, R., Schwartz, P. E., & Irwin, M. L. (2018). Lymphedema in ovarian cancer survivors: Assessing diagnostic methods and the effects of physical activity. *Cancer*, 124(9), 1929–1937. Recuperado de https://doi.org/10.1002/cncr.31239
Izquierdo, M., Ibañez, J., Häkkinen, K., Kraemer, W. J., Larrión, J. L., & Gorostiaga, E. M. (2004). Once Weekly Combined Resistance and Cardiovascular Training in Healthy Older Men. *Medicine and Science in Sports Exercise*, 36(3):435–443. Recuperado de https://doi.org/10.1249/01.mss.0000117897.55226.9a
Kandola, A., Vancampfort, D., Herring, M., Rebar, A., Hallgren, M., Firth, J., & Stubbs, B. (2018). Moving to Beat Anxiety: Epidemiology and Therapeutic Issues with Physical Activity for Anxiety. *Current Psychiatry Reports*, 20(8), 63. Recuperado de https://doi.org/10.1007/s11920-018-0923-x
Kessels, E., Husson, O., & van der Feltz-Cornelis, C. M. (2018). The effect of exercise on cancer-related fatigue in cancer survivors: a systematic review and meta-analysis. *Neuropsychiatric Disease and Treatment*, 14, 479–494. Recuperado de https://doi.org/10.2147/ndt.s150464
Kiliaris, D., Soto-Perez-de-Celis, E., Mohile, S. G., Alibhai, S. M. H., Presley, C. J., Wildes, T. M., Klepin, H. D., Demark-Wahnefried, W., Jatoi, A., Harrison, R., Won, E., & Mustian, K. M. (2016). Designing exercise clinical trials for older adults with cancer: Recommendations from 2015 Cancer and Aging Research Group NCI U13 Meeting. *Journal of Geriatric Oncology*, 7(4), 293–304. Recuperado de https://doi.org/10.1016/j.jgo.2016.04.007
*Kneis, S., Wehrle, A., Müller, J., Maurer, C., Ihorst, G., Gollhofer, A., & Bertz, H. (2019). It’s never too late - balance and endurance training improves functional performance, quality of life, and alleviates neuropathic symptoms in cancer survivors suffering from chemotherapy-induced peripheral neuropathy: results of a randomized controlled trial. *BMC Cancer*, 19(1), 414. Recuperado de https://doi.org/10.1186/s12885-019-5522-7
*Lahart, I. M., Carmichael, A. R., Nevill, A. M., Kitas, G. D., & Metsios, G. S. (2018). The effects of a home-based physical activity intervention on cardiorespiratory fitness in breast cancer survivors: a randomised controlled trial. *Journal of Sports Sciences*, 36(10), 1077–1086. Recuperado de https://doi.org/10.1080/02640414.2017.1356025
Lang-Rollin, I., & Berberich, G. (2018). Psycho-oncology. *Dialogues in Clinical Neuroscience*, 20(1), 13–22. Recuperado de https://doi.org/10.31887/DCNS.2018.20.1/ilangro
*Lee, C. F., Ho, J. W. C., Fong, D. Y. T., Macfarlane, D. J., Cerin, E., Lee, A. M., Leung, S., Chan, W. Y. Y., Leung, I. P. F., Lam, S. H. S., Chu, N., Taylor, A. J., & Cheng, K. (2018). Dietary and Physical Activity Interventions for Colorectal Cancer Survivors: A Randomized Controlled Trial. *Scientific Reports*, 8(1), 5731. Recuperado de https://doi.org/10.1038/s41598-018-24042-6
*Levin, G. T., Greenwood, K. M., Singh, F., & Newton, R. U. (2018). Modality of exercise influences rate of decrease in depression for cancer survivors with elevated depressive symptomatology. *Supportive Care in Cancer*, 26(5), 1597–1606. Recuperado de https://doi.org/10.1007/s00520-017-3996-x
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ*, 339,b2700. Recuperado de https://doi.org/10.1136/bmj.b2700
*Manual MSD, versión para público general. (2020). Quimioterapia combinada (poliquimioterapia). Recuperado Diciembre 30, 2020, de https://www.msdmansuals.com/es/hogar/cancer/preven-cion-y-tratamiento-del-cancer/quimioterapia-combinada-poliquimioterapia
*Martin, E., Battaglini, C., Hands, B., & Naumann, F.
L. (2016). Higher-intensity exercise helps cancer survivors remain motivated. *Journal of Cancer Survivorship, 10*(3), 524–533. Recuperado de https://doi.org/10.1007/s11764-015-0498-z

McGowan, J., Sampson, M., Salzwedel, D. M., Cogo, E., Foerster, V., & Lefebvre, C. (2016). PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. *Journal of Clinical Epidemiology, 75*, 40–46. Recuperado de https://doi.org/10.1016/j.jclinepi.2016.01.021

Miller, K. D., Nogueira, L., Mariotto, A. B., Rowland, J. H., Yabroff, K. R., Alfano, C. M., Jemal, A., Kramer, J. L., & Siegel, R. L. (2019). Cancer treatment and survivorship statistics, 2019. *CA: A Cancer Journal for Clinicians, 69*(5), 363–385. Recuperado de https://doi.org/10.3322/caac.21565

Mourouti, N., Panagiotakos, D. B., Kotteas, E. A., & Syrigos, K. N. (2017). Optimizing diet and nutrition for cancer survivors: A review. *Maturitas, 105*, 33–36. Recuperado de https://doi.org/10.1016/j.maturitas.2017.05.012

Mustian, K. M., Sprod, L. K., Janelsins, M., Peppone, L. J., & Mohile, S. (2012). Exercise Recommendations for Cancer-Related Fatigue, Cognitive Impairment, Sleep Problems, Depression, Pain, Anxiety, and Physical Dysfunction—A Review. *Oncology and Hematology Review, 8*(2), 81–88. Recuperado de https://doi.org/10.17925/ohr.2012.08.2.81

National Cancer Institute (NCI). (2020). Types of cancer treatment. Recuperado Mayo 21, 2020, de https://www.cancer.gov/about-cancer/treatment/types

Nuñez, D. F. (2017). Envejecimiento y cáncer. *Revista Clínica HSJD, 7*(3), 11–16. Recuperado de https://doi.org/10.15517/rc_usc-hsjd.v7i3.30017

Palesh, O., Scheiber, C., Kesler, S., Mustian, K., Koopman, C., & Schapira, L. (2018). Management of side effects during and post-treatment in breast cancer survivors. *The Breast Journal, 24*(2), 167–175. Recuperado de https://doi.org/10.10111/tbj.12862

*Park, S-W., Kim, T. N., Nam, J-K., Ha, H. K., Shin, D. G., Lee, W., Kim, M-S., & Chung, M. K. (2012). Recovery of overall exercise ability, quality of life, and continence after 12-week combined exercise intervention in elderly patients who underwent radical prostatectomy: a randomized controlled study. *Urology, 80*(2), 299–305. Recuperado de https://doi.org/10.1016/j.urology.2011.12.060

Pekmez, D. W., & Demark-Wahnefried, W. (2011). Updated evidence in support of diet and exercise interventions in cancer survivors. *Acta Oncologica, 50*(2), 167–178. Recuperado de https://doi.org/10.3109/0284186x.2010.529822

Peranovich, A. C. (2016). Enfermedades crónicas y factores de riesgo en adultos mayores de Argentina: años 2001 - 2009. *Saúde Em Debate, 40*(109), 125–135. Recuperado de https://doi.org/10.1590/0103-1104201610910

Pergolotti, M., Deal, A. M., Williams, G. R., Bryant, A. L., McCarthy, L., Nyrop, K. A., Covington, K. R., Reeve, B. B., Basch, E., & Muss, H. B. (2019). Older Adults with Cancer: A Randomized Controlled Trial of Occupational and Physical Therapy. *Journal of the American Geriatrics Society, 67*(5), 953–960. Recuperado de https://doi.org/10.1111/jgs.15930

Rangel, J., Tomás, M. T., & Fernandes, B. (2019). Physical activity and physiotherapy: perception of women breast cancer survivors. *Breast Cancer, 26*(3), 333–338. Recuperado de https://doi.org/10.1007/s12282-018-0928-7

*Rogers, L. Q., Courneya, K. S., Anton, P. M., Hopkins-Price, P., Verhulst, S., Vicari, S. K., Robbins, R. S., Mocharnuk, R., & McAuley, E. (2015). Effects of the BEAT Cancer physical activity behavior change intervention on physical activity, aerobic fitness, and quality of life in breast cancer survivors: a multicenter randomized controlled trial. *Breast Cancer Research and Treatment, 149*(1), 109–119. Recuperado de https://doi.org/10.1007/s10549-014-3216-z

*Rogers, L. Q., Courneya, K. S., Anton, P. M., Verhulst, S., Vicari, S. K., Robbins, R. S., & McAuley, E. (2017). Effects of a multicomponent physical activity behavior change intervention on fatigue, anxiety, and depressive symptomatology in breast cancer survivors: randomized trial. *Psychooncology, 26*(11), 1901–1906. Recuperado de https://doi.org/10.1002/pon.4254

Sallis, J. F., Bull, F., Guthold, R., Heath, G. W., Inoue, S., Kelly, P., Oyeyemi, A. L., Perez, L. G., Richards, J., Hallal, P. C., & Lancet Physical Activity Series 2 Executive Committee. (2016). Progress in physical activity over the Olympic quadrennium. *Lancet, 388*(10051), 1325–1336. Recuperado de https://doi.org/10.1016/S0140-6736(16)30581-5

Santagnello, S. B., Martins, F. M., de Oliveira Junior, G. N., Rodrigues de Sousa, J. F., Nomelini, R. S., Murta, E. F. C., & Orsatti, F. L. (2020). Improvements in muscle strength, power, and size and self-reported fatigue as mediators of the effect
of resistance exercise on physical performance breast cancer survivor women: a randomized controlled trial. *Supportive Care in Cancer*, 28(12), 6075–6084. Recuperado de https://doi.org/10.1007/s00520-020-05429-6

Schwartz, A. L., de Heer, H. D., & Bea, J. W. (2017). Initiating Exercise Interventions to Promote Wellness in Cancer Patients and Survivors. *Oncology*, 31(10), 711–717.

Schwedhelm, C., Boeing, H., Hoffmann, G., Aleksandrova, K., & Schwingshackl, L. (2016). Effect of diet on mortality and cancer recurrence among cancer survivors: a systematic review and meta-analysis of cohort studies. *Nutrition Review*, 74(12), 737–748. Recuperado de https://doi.org/10.1093/nutrit/nuw045

Sivaramakrishnan, D., Fitzsimons, C., Kelly, P., Ludwig, K., Mutrie, N., Saunders, D. H., & Baker, G. (2019). The effects of yoga compared to active and inactive controls on physical function and health related quality of life in older adults- systematic review and meta-analysis of randomised controlled trials. *International Journal of Behavioral Nutrition and Physical Activity*, 16(1), 33. Recuperado de https://doi.org/10.1186/s12966-019-0789-2

Soler, P. A., Mellinas, G. P., Sánchez, E. M., & Jiménez, E. L. (2010). [Comorbidity in the elderly: utility and validity of assessment tools]. *Revista Española De Geriatría y Gerontología*, 45(4), 219–228. Recuperado de https://doi.org/10.1016/j.regg.2009.10.009

Soriano-Maldonado, A., Carrera-Ruiz, Á., Diez-Fernández, D. M., Esteban-Simón, A., Maldonado-Quesada, M., Moreno-Poza, N., García-Martínez, M. D. M., Alcaraz-García, C., Vázquez-Sousa, R., Moreno-Martos, H., Toro-de-Federico, A., Hachem-Salas, N., Artés-Rodríguez, E., Rodríguez-Pérez, M. A. & Casimiro-Andújar, A. J. (2019). Effects of a 12-week resistance and aerobic exercise program on muscular strength and quality of life in breast cancer survivors: Study protocol for the EFICAN randomized controlled trial. *Medicine*, 98(44), e17625. Recuperado de https://doi.org/10.1097/md.0000000000017625

*Spahn, G., Choi, K-E., Kennemann, C., Lüdtke, R., Franken, U., Langhorst, J., Paul, A., & Dobos, G. J. (2013). Can a multimodal mind-body program enhance the treatment effects of physical activity in breast cancer survivors with chronic tumor-associated fatigue? A randomized controlled trial. *Integrative Cancer Therapies*, 12(4), 291–300. Recuperado de https://doi.org/10.1177/1534735413492727

*Sprod, L. K, Fernandez, I. D., Janelins, M. C., Peppone, L. J., Atkins, J. N., Giguerre, J., Block, R., & Mustian, K. M. (2015). Effects of yoga on cancer-related fatigue and global side-effect burden in older cancer survivors. *Journal of Geriatric Oncology*, 6(1), 8–14. Recuperado de https://doi.org/10.1016/j.jgo.2014.09.184

Stout, N. L., Baima, J., Swisher, A. K., Winters Stone, K. M., & Welsh, J. (2017). A Systematic Review of Exercise Systematic Reviews in the Cancer Literature (2005 2017). *PM & R: The Journal of Injury Function and Rehabilitation*, 9(9S2), S347–S384. Recuperado de https://doi.org/10.1016/j.pmrj.2017.07.074

Union for International Cancer Control (UICC). (2018). Global Cancer Data: GLOBOCAN 2018. Recuperado Junio 13, 2020, de https://www.uicc.org/news/new-global-cancer-data-globocan-2018

Weaver, K. E., Forsythe, L. P., Reeve, B. B., Alfano, C. M., Rodriguez, J. L., Sabatino, S. A., Hawkins, N. A., & Rowland, J. H. (2012). Mental and physical health-related quality of life among U.S. cancer survivors: population estimates from the 2010 National Health Interview Survey. *Cancer Epidemiology, Biomarkers & Prevention*, 21(11), 2108–2117. Recuperado de https://doi.org/10.1158/1055-9965.epi-12-0740

Wikee, G., & Martella, D. (2018). [Physical activity and cognitive reserve as protective factors for attentional functioning in older people]. *Revista Médica de Chile*, 146(5), 570–577. Recuperado de https:/. doi.org/10.4067/s0034-98872018000500570

*Winkels, R. M., Sturgeon, K. M., Kallan, M. J., Dean, L. T., Zhang, Z., Evangelisti, M., Brown, J. C., Sarwer, D. B., Troxel, A. B., Denlinger, C., Laudermilk, M., Fornash, A., DeMichele, A., Chodosh, L.A., & Schnitz, K. H. (2017). The women in steady exercise research (WISER) survivor trial: The innovative transdisciplinary design of a randomized controlled trial of exercise and weight-loss interventions among breast cancer survivors with lymphedema. *Contemporary Clinical Trials, 61*, 63–72. Recuperado de https://doi.org/10.1016/j.cct.2017.07.017

*Winters-Stone, K. M., Dobek, J., Bennett, J. A., Nail, L. M., Leo, M. C., & Schwartz, A. (2012). The effect of resistance training on muscle strength and physical function in older, postmenopausal breast cancer survivors: a randomized controlled trial. *Journal of
Cancer Survivorship, 6(2), 189–199. Recuperado de https://doi.org/10.1007/s11764-011-0210-x
Wolin, K. Y., Schwartz, A. L., Matthews, C. E., Counrney, K. S., & Schmitz, K. H. (2012). Implementing the Exercise Guidelines for Cancer Survivors. The Journal of Supportive Oncology, 10(5), 171–177. Recuperado de https://doi.org/10.1016/j.suponc.2012.02.001

World Health Organization (WHO). (2010). Recomendaciones Mundiales sobre Actividad Física para la salud. Recuperado Mayo 17, 2020, de https://apps.who.int/iris/bitstream/handle/10665/44441/9789243599977spa.pdf

World Health Organization (WHO), (2015). World report on ageing and health 2015. Recuperado Diciembre 30, 2020, de https://www.who.int/ageing/events/world-report-2015-launch/en/; 2015

World Health Organization (WHO). (2020). WHO Guidelines on physical activity and sedentary behaviour: at a glance. Recuperado Mayo 15, 2020, de https://www.who.int/publications/i/item/9789240014886

*Zhang, Q., Li, F., Zhang, H., Yu, X., & Cong, Y. (2018). Effects of nurse-led home-based exercise & cognitive behavioral therapy on reducing cancer-related fatigue in patients with ovarian cancer during and after chemotherapy: A randomized controlled trial. International Journal of Nursing Studies, 78, 52–60. Recuperado de https://doi.org/10.1016/j.ijnurstu.2017.08.010

*Zhou, Y., Cartmel, B., Gottlieb, L., Ercolano, E. A., Li, F., Harrigan, M., McCorkle, R., Ligibel, J. A., Gruenigen, V. E. von, Gogoi, R., Schwartz, P. E., Risch, H. A., & Irwin, M. L. (2017). Randomized Trial of Exercise on Quality of Life in Women With Ovarian Cancer: Women’s Activity and Lifestyle Study in Connecticut (WALC). Journal of the National Cancer Institute, 109(12), dxj072. Recuperado de https://doi.org/10.1093/jnci/dxj072
Appendix 2. Supplementary File: Search strings for all databases in the systematic review.

Table 1.
Search strings for Medline (by Pubmed)
1. “Exercise therapy” OR “rehabilitation exercise”
2. “Cancer”
3. #1 AND #2
4. All fields: Articles type: Randomized controlled trial and clinical trials
5. FILTER: Species: Humans
6. FILTER: Language: English
7. FILTER: Age: Middle Aged: 45-64 years, 65+ years, 80 and over: 80+ years
8. FILTER: 2010 to 2020

Table 2.
Search strings for Scopus
1. “Exercise therapy” OR “Rehabilitation exercise”
2. “Cancer” OR “Neoplasm”
3. #1 AND #2
4. FILTER: 2010 to 2020
5. FILTER: Keyword: Cancer survivors

Table 3.
Search strings for Scielo
1. “Ejercicio”
2. “Cáncer”
3. #1 AND #2
4. FILTER: Literature type: Article

Table 4.
Search strings for PEDro
1. “Exercise therapy”
2. “Cancer”
3. #1 AND #2
4. All fields: Method: Clinical Trials
5. FILTER: Therapy: Fitness training
6. FILTER: Subdiscipline: Oncology
7. FILTER: Published since: 2010

Appendix 3. Assessment of the methodological quality of the reviewed studies.

Item category	CERT item description	N. items rated	Percentage
WHAT: materials	C1: Detailed description of exercise equipment (e.g. weights, treadmill, ergometer, etc.)	22/24	88%
WHO: provider	C2: Detailed description of instructor expertise, qualifications, and/or training	18/24	75%
HOW: delivery	C3: Describe whether exercise is performed individually or in a group	24/24	100%
	C4: Describe whether exercises are supervised or unsupervised; how they are delivered	37/38	100%
	C5: Detailed description of how adherence to exercise is measured and reported	24/24	100%
	C6: Detailed description of motivation strategies	19/24	79%
	C7a: Detailed description of decision rules for determining exercise progression	17/24	79%
	C7b: Detailed description of how exercise program was progressed	21/24	92%
	C8: Detailed description of each exercise to enable replication	19/24	79%
	C9: Detailed description of any home program component	9/12	75%
	C10: Describe any non-exercise components, e.g. education, cognitive behavioral therapy, etc.	8/8	100%
	C11: Describe the type and number of adverse events that occur during exercise	10/24	100%
WHERE: location	C12: Describe the setting in which the exercises are performed	20/24	92%
WHEN, HOW, MUCH: dosage	C13: Detailed description of exercise intervention, e.g. reps, sets, sessions	24/24	100%
TAILORING: what, how	C14a: Describe whether the exercises are generic (one size fits all) or tailored	20/24	92%
	C14b: Detailed description of how exercises are tailored to the individual	24/24	100%
	C15: Describe the decision rule for determining the starting level, e.g. beginner, intermediate, advanced, etc.	19/24	83%
HOW WELL: planned, actual	C16a: Describe how adherence or fidelity to the intervention is assessed/measured	18/24	92%
	C16b: Describe the extent to which the intervention was delivered as planned	11/11	100%

Not all articles made this item. So, the total of answered articles is different from 24.

Appendix 4

Item category	CERT item description	N. items rated	Percentage
Selective reporting of results (reporting bias)		37/38	100%
Allocation concealment (selection bias)		64%	100%
Sequence generation (selection bias)		64%	100%
Blinding of outcome assessors (detection bias)		8%	100%
Incomplete outcome data (attrition bias)		10%	100%
Blinding of participants and staff (performance bias)		42%	100%
Low risk		85%	100%
Unclear risk		46%	100%
High risk		46%	100%

Retos, número 44, 2022 (2º trimestre) - 385 -