Research article

Blow-up criteria for the full compressible Navier-Stokes equations involving temperature in Vishik Spaces

Jae-Myoung Kim*

Department of Mathematics Education, Andong National University, Andong, Republic of Korea

* Correspondence: Email: jmkim02@anu.ac.kr; Tel: +820548205540.

Abstract: In this paper, we consider the conditional regularity for the 3D incompressible Navier-Stokes equations in Vishik spaces. These results will be regarded an improvement of the results given by Huang-Li-Xin, (SIAM J. Math. Anal., 2011) and Jiu-Wang-Ye,(J. Evol. Equ., 2021).

Keywords: full compressible Navier-Stokes equations; strong solutions; blow-up criteria

Mathematics Subject Classification: 35B65, 35D30, 76D05

1. Introduction

We study the following system of Newton heat-conducting compressible fluid in three-dimensional space

\[
\begin{aligned}
\rho_t + \nabla \cdot (\rho u) &= 0, \\
\rho u_t + \rho u \cdot \nabla u + \nabla P(\rho, \theta) - \mu \Delta u - (\mu + \lambda) \nabla \text{div} u &= 0, \\
c_v[\rho \theta_t + \rho u \cdot \nabla \theta] + P \text{div} u - \kappa \Delta \theta &= \frac{\mu}{2} |\nabla u + (\nabla u)^t|^2 + \lambda (\text{div} u)^2, \\
(\rho, u, \theta)|_{t=0} &= (\rho_0, u_0, \theta_0).
\end{aligned}
\] (1.1)

Here, ρ, u, θ stand for the flow density, velocity and the absolute temperature, respectively. The scalar function P represents the pressure, the state equation of which is determined by

\[P = R \rho \theta, \quad R > 0, \] (1.2)

and κ is a positive constant and two constants μ and λ are the coefficients of viscosity satisfying the physical restrictions $\mu > 0$, $2\mu + 3\lambda \geq 0$. The initial conditions satisfy

\[\rho(x, t) \to 0, \quad u(x, t) \to 0, \quad \theta(x, t) \to 0, \quad \text{as} \ |x| \to \infty, \quad \text{for} \ t \geq 0. \] (1.3)
Let $\gamma > 0$. For all $(t,x) \in \mathbb{R} \times \mathbb{R}^3$, we consider the following scaled functions:

$$
\rho_\lambda = \rho(\lambda^2 t, \lambda x), \quad u_\lambda = \lambda u(\lambda^2 t, \lambda x), \quad \theta_\lambda = \lambda^2 \theta(\lambda^2 t, \lambda x).
$$

(1.4)

There are huge literatures on the study of the existence of solutions to compressible Navier-Stokes equations, we only give a brief survey for blow-up criteria rather than the existence of solutions. When the initial data contain vacuums, after Xin’s blow-up works [21, 22], the various result for blow up criteria for strong solutions to the system (1.1) is investigated. In present paper, in particular, we focus on the Serrin type criteria (e.g. [6–9]) as

$$
\lim \sup_{T \to T^*} \left(\|\text{div} \, u\|_{L^1(0,T;L^{\infty}(\mathbb{R}^3))} + \|u\|_{L^p(0,T;L^q(\mathbb{R}^3))} \right) = \infty, \quad \frac{2}{p} + \frac{3}{q} = 1, \quad q > 3,
$$

or

$$
\lim \sup_{T \to T^*} \left(\|\rho\|_{L^{\infty}(0,T;L^{q}(\mathbb{R}^3))} + \|u\|_{L^p(0,T;L^q(\mathbb{R}^3))} \right) = \infty, \quad \frac{2}{p} + \frac{3}{q} = 1, \quad q > 3
$$

and it is aimed to expand them into Vishik space motivated by the results of two recent papers Kanamaru [10] and Wu [20] (see also [2–5, 11–16, 18, 19] for other criteria containing Beale-Kato-Majda blow-up mechanism).

We remind the local well-posedness of strong solutions to the equations (1.1) (see [1]).

Theorem 1.1. Let $\lambda < 3\mu$. Suppose $u_0, \theta_0 \in (D^1 \cap D^2)(\mathbb{R}^3)$ and $\rho_0 \in (W^{1,q} \cap H^1 \cap L^1)(\mathbb{R}^3)$ for some $q \in (3, 6)$. If ρ_0 is nonnegative and the initial data satisfy the compatibility condition

$$
-\mu \Delta u_0 - (\mu + \lambda) \nabla \text{div} \, u_0 + \nabla P(\rho_0, \theta_0) = \sqrt{\rho_0} g_1
$$

$$
\Delta \theta_0 + \frac{\mu}{2} |\nabla u_0| + (\nabla u_0)^2 + \lambda (\text{div} \, u_0)^2 = \sqrt{\rho_0} g_2
$$

for vector fields $g_1, g_2 \in L^2(\mathbb{R}^3)$. Then there exist a time $T \in (0, \infty)$ and unique solution to the equations (1.1)–(1.3), satisfying

$$(\rho, u, \theta) \in C([0,T); (L^1 \cap H^1 \cap W^{1,q})(\mathbb{R}^3) \times C([0,T); (D^1 \cap D^2)(\mathbb{R}^3)) \times L^2([0,T); D^{2,q}(\mathbb{R}^3)),$$

$$(\rho_t, u_t, \theta_t) \in C([0,T); (L^2 \cap L^q)(\mathbb{R}^3)) \times L^2([0,T); D^1(\mathbb{R}^3)) \times L^2([0,T); D^1(\mathbb{R}^3)),$$

$$(\rho^{1/2} u_t, \rho^{1/2} \theta_t) \in L^\infty([0,T); L^2(\mathbb{R}^3) \times L^\infty([0,T); L^2(\mathbb{R}^3)).$$

If the maximal existence time T^* is finite, then there holds

$$
\lim \sup_{T \to T^*} \left(\|\rho\|_{L^{\infty}(0,T;L^{\infty}(\mathbb{R}^3))} + \|\theta\|_{L^{\infty}(0,T;L^{p}(\mathbb{R}^3))} \right) = \infty, \quad q > \frac{3}{2},
$$

(1.5)

where $\sigma \in [1, \infty], \theta \in [1, \sigma]$.

Remark 1.1. In the light of the arguments in [7, 8], we observe that (1.5) be replaced by

$$
\lim \sup_{T \to T^*} \left(\|\text{div} \, u\|_{L^1(0,T;L^{\infty}(\mathbb{R}^3))} + \|\theta\|_{L^p(0,T;L^{q}(\mathbb{R}^3))} \right) = \infty.
$$

We note that the condition (1.5) is in scaling invariant norm in the sense of (1.4) for the temperature.
Remark 1.2. Without the restriction $\lambda < 3\mu$, in the case away from vacuum, through the argument in [9] and our proof, we obtain the similar results [9, Theorem 1.3] of what the authors in [9] says in Vishik space.

Next, we consider the full compressible Navier-Stokes equations without temperature.

\[
\begin{align*}
\partial_t \rho + \text{div}(\rho u) &= 0, \\
\partial_t (\rho u) + \text{div}(\rho u \otimes u) - \mu \Delta u - (\mu + \lambda) \nabla (\text{div} u) + \nabla P(\rho) &= 0, \\
(\rho, u)(x, 0) &= (\rho_0, u_0)(x),
\end{align*}
\]

(1.6)

where ρ, u, and P are the density, velocity and pressure respectively. The equation of state is given by

\[P(\rho) = a \rho^\gamma, \quad (a > 0, \gamma > 1). \]

(1.7)

The constants μ and λ are the shear viscosity and the bulk viscosity coefficients respectively. They satisfy the following physical restrictions: $\mu > 0$, $\lambda + 2\mu \geq 0$.

Through a similar scheme in Theorem 1.1, we also obtain the following result for the equations (1.6).

Theorem 1.2. Let (ρ, u) be a strong solution to the Cauchy problem (1.6)–(1.7) with the initial data (ρ_0, u_0) satisfy

\[0 \leq \rho_0 \in (L^1 \cap H^1 \cap W^{1,r})(\mathbb{R}^3), \quad u_0 \in (D^1 \cap D^2)(\mathbb{R}^3), \]

for some $r \in (3, \infty)$ and the compatibility condition:

\[-\mu \Delta u_0 - (\lambda + \mu) \nabla \text{div} u_0 + \nabla P(\rho_0) = \rho_0^{1/2} g \quad \text{for some } g \in L^2(\mathbb{R}^3).\]

If $T^* < \infty$ is the maximal time of existence, then both

\[
\lim_{T \to T^*} \left(\|\text{div} u\|_{L^1(0, T; L^\infty(\mathbb{R}^3))} + \|u\|_{L^p(0, T; V_{\alpha,1}^0(\mathbb{R}^3))}^{2p} \right) = \infty,
\]

and

\[
\lim_{T \to T^*} \left(\|\rho\|_{L^p(0, T; L^\infty(\mathbb{R}^3))} + \|u\|_{L^p(0, T; V_{\alpha,1}^0(\mathbb{R}^3))}^{2p} \right) = \infty, \quad 3 < p \leq \infty,
\]

where $\alpha \in [1, \infty], \theta \in [1, \sigma]$.

2. Notations and some auxiliary lemmas

We follow the notation of [6] and [9]. For $1 \leq p \leq \infty$, $L^p(\mathbb{R}^3)$ represents the usual Lebesgue space. The classical Sobolev space $W^{k,p}(\mathbb{R}^3)$ is equipped with the norm $\|f\|_{W^{k,p}(\mathbb{R}^3)} = \sum_{|\alpha| \leq k} \|D^\alpha f\|_{L^p(\mathbb{R}^3)}$. A function f belongs to the homogeneous Sobolev spaces $D^{k,l}$ if $u \in L^1_{t,x}(\mathbb{R}^3) : \|\nabla^k u\|_{L^l} < \infty$. $C > 0$ is an absolute constant which may be different from line to line unless otherwise stated in this paper. We also now introduce a Banach space $\dot{V}^s_{\mu,\lambda,0}(\mathbb{R}^3)$ which is larger than the homogeneous Besov space; see [10, 17].
Definition 2.1. Let \(s \in \mathbb{R}, p, \sigma \in [1, \infty], \theta \in [1, \sigma] \), the Vishik space \(\dot{V}^s_{p,\sigma,\theta} \) is defined by

\[
\dot{V}^s_{p,\sigma,\theta}(\mathbb{R}^3) := \{ f \in \mathcal{D}'(\mathbb{R}^3) : \|f\|_{\dot{V}^s_{p,\sigma,\theta}} < \infty \},
\]

with the norm

\[
\|f\|_{\dot{V}^s_{p,\sigma,\theta}(\mathbb{R}^3)} := \left\{ \begin{array}{l}
sup_{N=1,2,\ldots} \left(\sum_{k \in \mathbb{N}^3} \|\Delta^k f\|_{L^p}^p \right)^{\frac{1}{p}}, \quad \theta \neq \infty, \\
\|f\|_{B^s_{p,\infty}(\mathbb{R}^3)}, \quad \theta = \infty.
\end{array} \right.
\]

Here \(\mathcal{D}'(\mathbb{R}^3) \) is the dual space of \(\mathcal{D}(\mathbb{R}^3) = \{ f \in \mathcal{S}(\mathbb{R}^3) ; D^s f(0) = 0, \forall \sigma \in \mathbb{N}^3 \} \). As mentioned in [20], we remind that the following continuous embeddings hold:

\[
\dot{B}^s_{p,\sigma}(\mathbb{R}^3) = \dot{V}^s_{p,\sigma,\theta}(\mathbb{R}^3) \subset \dot{V}^s_{p,\sigma,\theta_1}(\mathbb{R}^3) \subset \dot{V}^s_{p,\sigma,\theta_2}(\mathbb{R}^3) \subset \dot{V}^s_{p,\sigma,\theta}(\mathbb{R}^3)
\]

for \(s \in \mathbb{R}, p, \sigma \in [1, \infty] \) and \(\theta_1, \theta_2 \in [1, \sigma] \) with \(\theta_1 \geq \theta_2 \).

In what follows, for simplicity, we write

\[
L^p = L^p(\mathbb{R}^3), \quad H^k = W^{k,2}(\mathbb{R}^3), \quad D^k = D^{k,2}(\mathbb{R}^3), \quad \dot{V}^s_{p,\sigma,\theta} := \dot{V}^s_{p,\sigma,\theta}(\mathbb{R}^3).
\]

3. Proof of Theorem 1.1

We will prove Theorem 1.1 by a contradiction argument. Therefore, we assume that

\[
\|\rho\|_{L^\infty(0,T;L^\infty)} + \|\theta\|_{L^{\infty}(0,T;\dot{V}^0_{p,1}(\mathbb{R}^3))} \leq C, \quad \frac{2}{p} + \frac{3}{q} = 2, \quad q > \frac{3}{2}, \quad (3.1)
\]

Lemma 3.1. Suppose that (3.1) is valid and \(\lambda < 3\mu \), then there holds

\[
\sup_{0 \leq s \leq T} \int_{\mathbb{R}^3} \left[\frac{\mu}{2} |\nabla u|^2 + (\mu + \lambda)(\text{div } u)^2 + \frac{1}{2\mu + \lambda} p^2 - 2P \text{div } u + \frac{C}{2} \rho \theta^2 + \frac{C + 1}{2\mu} |\rho| |u|^4 \right] + \int_0^T [\kappa \int_{\mathbb{R}^3} |\nabla \theta|^2 + \frac{1}{2} |\rho| |u|^2 + |u|^2 |\nabla u|^2] \, dt \leq C.
\]

Proof. From Lemma 2.3 and Lemma 3.1 in [9], we know that

\[
\frac{d}{dt} \int_{\mathbb{R}^3} \left[\frac{\mu}{2} |\nabla u|^2 + (\mu + \lambda)(\text{div } u)^2 + \frac{1}{2\mu + \lambda} p^2 - 2P \text{div } u + \frac{C}{2} \rho \theta^2 \right] + \kappa \int_{\mathbb{R}^3} |\nabla \theta|^2 + \frac{1}{2} \int_{\mathbb{R}^3} |\rho| |u|^2 \leq C \int \rho |\theta|^3 + C \int \rho |u|^2 |\theta|^2 + C \int |u|^2 |\nabla u|^2, \quad (3.2)
\]

and

\[
\frac{d}{dt} \int_{\mathbb{R}^3} \rho |u|^4 + \int_{\mathbb{R}^3 \cap |u| > 0} |u|^2 |\nabla u|^2 \leq C \int \rho |u|^2 |\theta|^2. \quad (3.3)
\]

Multiplying the inequality (3.3) by \((C + 1) \) and adding the result to the inequality (3.2), we have

\[
\frac{d}{dt} \int_{\mathbb{R}^3} \left[\frac{\mu}{2} |\nabla u|^2 + (\mu + \lambda)(\text{div } u)^2 + \frac{1}{2\mu + \lambda} p^2 - 2P \text{div } u + \frac{C}{2} \rho \theta^2 + \frac{C + 1}{2\mu} |\rho| |u|^4 \right]
\]
\[+ \kappa \int |\nabla \theta|^2 + \frac{1}{2} \int \rho|\dot{u}|^2 + \int |u|^2 |\nabla u|^2 \leq C \int \rho|\theta|^3 + C \int \rho|u|^2 |\theta|^2. \] (3.4)

For the second term in the right hand side of (3.4), we note that

\[\int \rho|u|^2 |\theta|^2 = \int \rho^{\frac{1}{2}} |\theta| \rho^{\frac{1}{2}} |u|^2 |\sum_{j \leq -N} \Delta_j \theta| + \int \rho^{\frac{1}{2}} |\theta| \rho^{\frac{1}{2}} |u|^2 |\sum_{j = N}^{j = N} \Delta_j \theta| \] (3.5)

\[+ \int \rho^{\frac{1}{2}} |\theta| \rho^{\frac{1}{2}} |u|^2 |\sum_{j > N} \Delta_j \theta| := I + II + III. \]

Now, let's control each term sequentially by Hölder's inequality, interpolation inequality (for the term II below), Sobolev embedding theorem, Berstein's inequality and Young's inequalities:

(The term (I)):

\[I \leq \| \sum_{j \leq -N} \Delta_j \theta \|_{L^2} \| \rho^{\frac{1}{2}} \theta \|_{L^2} \| \rho^{\frac{1}{2}} |u|^2 \|_{L^2} \leq C \| \sum_{j \leq -N} 2^{j/2} \| \theta \|_{L^2} \| \rho^{\frac{1}{2}} \theta \|_{L^2} \| \rho^{\frac{1}{2}} |u|^2 \|_{L^2} \]

\[\leq C 2^{-3N} (\| \rho^{\frac{1}{2}} \theta \|_{L^2}^2 + \| \rho^{\frac{1}{2}} |u|^2 \|_{L^2}^2). \]

(The term (II)):

\[II \leq \sum_{j = N}^{j = N} \| \Delta_j \theta \|_{L^2} \| \rho^{\frac{1}{2}} \theta \|_{L^2} \| \rho^{\frac{1}{2}} |u|^2 \|_{L^2} \]

\[\leq \sum_{j = N}^{j = N} \| \Delta_j \theta \|_{L^2} \| \rho^{\frac{1}{2}} \theta \|_{L^2} \| \rho^{\frac{1}{2}} |u|^2 \|_{L^2} \| \rho^{\frac{1}{2}} |u|^2 \|_{L^2} \]

\[\leq C N^{-1} \sup_{N = 1, 2, \ldots} \| \Delta_j \theta \|_{L^2} \| \rho^{\frac{1}{2}} \theta \|_{L^2} \| \rho^{\frac{1}{2}} |u|^2 \|_{L^2} \| \rho^{\frac{1}{2}} |u|^2 \|_{L^2} \]

\[\leq C \| \theta \|_{L^3}^{\frac{2}{3}} \rho^{1/2} \| \rho^{1/2} |u|^2 \|_{L^2} + \frac{1}{16} \| \nabla \theta \|_{L^2}^2 + \frac{1}{16} \| \rho^{1/2} |u|^2 \|_{L^2} \]

\[\leq C \| \theta \|_{L^3}^{\frac{2}{3}} (\| \rho^{1/2} \theta \|_{L^2}^2 + \| \rho^{1/2} |u|^2 \|_{L^2}^2) + \frac{1}{16} \| \nabla \theta \|_{L^2}^2 + \frac{1}{16} \| \nabla |u|^2 \|_{L^2}^2. \]

(The term (III)):

\[III \leq \sum_{j \geq N} \| \Delta_j \theta \|_{L^2} \| \rho^{\frac{1}{2}} |u|^2 \|_{L^2} \| \rho^{\frac{1}{2}} \theta \|_{L^2} \leq C \| \rho^{\frac{1}{2}} |u|^2 \|_{L^2} \sum_{j \geq N} 2^{j/2} \| \theta \|_{L^2} \| \rho^{1/2} \theta \|_{L^2} \]

\[\leq C 2^{-N} \| \theta \|_{L^2} \| \nabla |u|^2 \|_{L^2} \| \rho^{1/2} \theta \|_{L^2} \leq 2^{-N} \| \theta \|_{L^2}^2 \| \rho^{1/2} \theta \|_{L^2}^2 + \frac{1}{32} \| \rho^{1/2} \|_{L^2}^2. \]

Summing up the estimates above, we have

\[\int \rho|u|^2 |\theta|^2 \leq C 2^{-3N} \| \theta \|_{L^2}^2 (\| \rho^{1/2} \theta \|_{L^2}^2 + \| \rho^{1/2} |u|^2 \|_{L^2}^2) + C \| \theta \|_{L^3}^{\frac{2}{3}} (\| \rho^{1/2} \theta \|_{L^2}^2 + \| \rho^{1/2} |u|^2 \|_{L^2}^2) \]

\[+ \frac{1}{16} \| \nabla \theta \|_{L^2}^2 + \frac{1}{16} \| \nabla |u|^2 \|_{L^2}^2 + 2^{-N} \| \theta \|_{L^2}^2 \| \rho^{1/2} \theta \|_{L^2}^2. \] (3.7)
By similar above arguments, we get
\[
\int \rho |\theta|^3 = \int \rho^2 |\theta|_{L^2}^2 \leq C 2^{-3N^2} \|\theta\|_{L^2}^2 |\rho|^2_{L^2} + C \|\theta\|_{L^2}^{2\alpha} \|\rho\|_{L^2}^{\beta} + \frac{1}{16} \|\nabla \theta\|_{L^2}^2 + \frac{1}{16} \|\nabla u\|_{L^2}^2 + 2^{-N^2} |\theta|^2_{L^2} |\rho|^2_{L^2}.
\] (3.8)

Substituting (3.7) and (3.8) into (3.4), we obtain
\[
\begin{align*}
\frac{d}{dt} \int \left[\frac{\mu}{2} |\nabla u|^2 + (\mu + \lambda)(\text{div} u)^2 + \frac{1}{2\mu + \lambda} P^2 - 2P \text{div} u + C \frac{1}{2\mu} |\rho|^4 \right] \\
&+ \frac{k}{2} \int |\nabla \theta|^2 + \frac{1}{2} \int \rho |\theta|^2 + \frac{1}{2} \int_{\mathbb{R}^3 \cap \{u > 0\}} |u|^2 |\nabla u|^2 \\
&\leq C 2^{-3N^2} \|\theta\|_{L^2}^2 \left(|\rho|^2_{L^2} + |\rho|^2_{L^2} \right) + C \|\theta\|_{L^2}^{2\alpha} \left(|\rho|^2_{L^2} + |\rho|^2_{L^2} \right) \\
&+ \frac{1}{16} \|\nabla \theta\|_{L^2}^2 + \frac{1}{16} \|\nabla u\|_{L^2}^2 + 2^{-N^2} |\theta|^2_{L^2} |\rho|^2_{L^2} \\
&\leq C \left(C 2^{-3N^2} + 2^{-N^2} |\theta|^2_{L^2} + |\theta|^{2\alpha}_{L^2} \right) \int \left[\frac{\mu}{2} |\nabla u|^2 + (\mu + \lambda)(\text{div} u)^2 + \frac{1}{2\mu + \lambda} P^2 - 2P \text{div} u \\
&+ C \frac{1}{2\mu} |\rho|^4 \right] + \frac{1}{16} \|\nabla \theta\|_{L^2}^2 + \frac{1}{16} \|\nabla u\|_{L^2}^2,
\end{align*}
\] (3.9)

where we used the fact that
\[
\int \left[(\mu + \lambda)(\text{div} u)^2 + \frac{1}{2\mu + \lambda} P^2 - 2P \text{div} u + C \frac{1}{2\mu} |\rho|^4 \right] \geq \int \rho \theta^2,
\]
for a sufficiently large constant $C > 0$. Now, choosing $N > 0$ sufficiently large such that $C 2^{-N^2} \|\theta\|_{L^2}^2 \leq \frac{1}{128}$, the estimate (3.9) becomes
\[
\frac{d}{dt} \int \left[\frac{\mu}{2} |\nabla u|^2 + (\mu + \lambda)(\text{div} u)^2 + \frac{1}{2\mu + \lambda} P^2 - 2P \text{div} u + C \frac{1}{2\mu} |\rho|^4 \right] \\
+ \frac{k}{2} \int |\nabla \theta|^2 + \frac{1}{2} \int \rho |\theta|^2 + \frac{1}{2} \int_{\mathbb{R}^3 \cap \{u > 0\}} |u|^2 |\nabla u|^2 \\
\leq C \int \rho \theta^3 + C \int \rho |u|^2 |\theta|^2 \leq CN \|u\|^{2\alpha}_{L^2} \|\nabla u\|_{L^2}^2.
\] (3.10)

Then, Grönwall’s inequality and (3.10) enables us to obtain the desired results.

\[
\sup_{0 \leq t \leq T} \int_{\mathbb{R}^3} \left[\frac{\mu}{2} |\nabla u|^2 + (\mu + \lambda)(\text{div} u)^2 + \frac{1}{2\mu + \lambda} P^2 - 2P \text{div} u + C \frac{1}{2\mu} |\rho|^4 \right] \\
+ \int_0^T \left[k \int_{\mathbb{R}^3} |\nabla \theta|^2 + \frac{1}{2} \rho |\theta|^2 + |u|^2 |\nabla u|^2 \right] dt \leq C.
\]

\(\square \)

Proof of Theorem 1.1. In the proof in Theorem 1.1 in [9], as long as Lemma 3.2 in [9] is only replaced by Lemma 3.1 in present paper, the proof is completed.

\(\square \)
4. Proof of Theorem 1.2

Let \((\rho, u)\) be a strong solution to the problem (1.6)-(1.7) as described in Theorem 1.2. Then the standard energy estimate yields

\[
\sup_{0 \leq t \leq T} \left(\|\rho^{1/2} u(t)\|_{L^2}^2 + \|\rho\|_{L^1} + \|\rho\|_{L^2}^2 \right) + \int_0^T \|\nabla u\|_{L^2}^2 dt \leq C, \quad 0 \leq T < T^*.
\] (4.1)

We first prove Theorem 1.2 by a contradiction argument. Otherwise, there exists some constant \(M_0 > 0\) such that

\[
\lim_{T \to T^*} \left(\|\rho\|_{L^\infty(0,T;L^\infty)} + \|u\|_{L^2\cap L^p(\mathbb{R}^3)} \right) \leq M_0.
\] (4.2)

The first key estimate on \(\nabla u\) will be given in the following lemma.

Lemma 4.1. Under the condition (4.2), it holds that

\[
\sup_{0 \leq t \leq T} \|\nabla u\|_{L^2}^2 + \int_0^T \int \rho u_t^2 dx dt \leq C, \quad 0 \leq T < T^*.
\] (4.3)

Proof. It follows from the momentum equations in (1.6) that

\[
\triangle G = \text{div}(\rho \dot{u}), \quad \mu \triangle \omega = \nabla \times (\rho \dot{u}),
\]

where \(\dot{v} := v_t + u \cdot \nabla v, \quad G := (2\mu + \lambda)\text{div}u - P(\rho), \quad \omega := \nabla \times u\) are the material derivative of \(f\), the effective viscous flux \(G\) and the vorticity \(\omega\), respectively. In particular, for the effective viscous flux, it is well-known that

\[
\|\nabla G\|_{L^p} \leq \|\rho \dot{u}\|_{L^p}, \quad \forall p \in (1, +\infty),
\]

and

\[
\|\nabla G\|_{L^2} + \|\nabla \omega\|_{L^2} \leq C(\|\rho u\|_{L^2} + \|\rho u \cdot \nabla u\|_{L^2}).
\] (4.4)

Multiplying the momentum equation (1.6) by \(u\) and integrating the resulting equation over \(\mathbb{R}^3\) gives

\[
\frac{1}{2} \frac{d}{dt} \int (\mu |\nabla u|^2 + (\lambda + \mu) (\text{div}u)^2) dx + \int \rho u_t^2 dx = \int P \text{div}u dx - \int \rho u \cdot \nabla u \cdot u dx.
\] (4.5)

From (1.6), we note that

\[
P_t + \text{div}(P u) + (y - 1) P \text{div}u = 0.
\]

For the first term in the right hand side of (4.5), one has

\[
\int P \text{div}u dx \leq \frac{d}{dt} \int P \text{div}u dx + \frac{1}{8} \|\nabla G\|_{L^2}^2 + C \|\nabla u\|_{L^2}^2 + C.
\] (4.6)

Substituting (4.6) into (4.5), we have

\[
\frac{d}{dt} \int \left(\frac{\mu}{2} |\nabla u|^2 + \frac{\lambda + \mu}{2} (\text{div}u)^2 - P \text{div}u \right) dx + \frac{1}{2} \int \rho u_t^2 dx \leq C \|\nabla u\|_{L^2}^2 + \int \rho |u \cdot \nabla u \cdot u| dx + C.
\]
For the second term in the right hand side of (4.5), we have

$$\int |\rho^{1/2} u \cdot \nabla u - \rho^{1/2} u| dx \leq \int |\rho^{1/2} \sum_{j=-N}^{j=N} \Delta_j u \nabla u| dx$$

$$+ \int |\rho^{1/2} \sum_{j=-N}^{j=N} \Delta_j u \nabla u| dx + \int |\rho^{1/2} \sum_{j=-N}^{j=N} \Delta_j u \nabla u| dx : = I + II + III.$$

In a similar way to (3.5), we let control each term sequentially.

(The term (I)):

$$I \leq C 2^{-3N^2} ||u||_{L^2}^2 ||\nabla u||_{L^2}^2 + \frac{1}{32} ||\rho^{1/2} u||_{L^2}^2.$$

(The term (II)):

$$II \leq C N ||u||_{L^2}^{2\alpha} ||\nabla u||_{L^2}^2 + \frac{1}{32} (||\rho^{1/2} u||_{L^2}^2 + ||\nabla^2 u||_{L^2}^2).$$

(The term (III)):

$$III \leq C 2^{-3N^2} ||u||_{L^2}^2 ||\nabla u||_{L^2}^2 + C 2^{-N^2} ||u||_{L^2}^2 ||\nabla^2 u||_{L^2}^3.$$

Summing up the estimates $I-III$, it is bounded by

$$C 2^{-3N^2} ||u||_{L^2}^2 ||\nabla u||_{L^2}^2 + C N ||u||_{L^2}^{2\alpha} ||\nabla u||_{L^2}^2 + C 2^{-N^2} ||u||_{L^2}^2 ||\nabla^2 u||_{L^2}^2 + C N ||u||_{L^2}^{2\alpha} ||\nabla u||_{L^2}^2$$

$$\leq \frac{1}{16} (||\rho^{1/2} u||_{L^2}^2 + ||\nabla^2 u||_{L^2}^2).$$

On the other hand, due to (4.4), we note that

$$||\nabla^2 u||_{L^2}^2 \leq C (||\sqrt{\rho} u||_{L^2}^2 + ||\rho u \cdot \nabla u||_{L^2}^2)$$

$$\leq C ||\sqrt{\rho} u||_{L^2}^2 + C 2^{-3N^2} ||u||_{L^2}^2 ||\nabla u||_{L^2}^2 + C 2^{-N^2} ||u||_{L^2}^2 ||\nabla^2 u||_{L^2}^2 + C N ||u||_{L^2}^{2\alpha} ||\nabla u||_{L^2}^2.$$

Collecting (4.7) and (4.8), we have

$$\frac{d}{dt} \int_\Omega \left(\frac{\mu}{2} ||\nabla u||^2 + \frac{\lambda}{2}(\text{div} u)^2 - P\text{div} u \right) dx + \frac{1}{4} \int \rho u_t^2 dx + \int ||\nabla G||^2 dx$$

$$\leq C ||\sqrt{\rho} u||_{L^2}^2 + C 2^{-3N^2} ||u||_{L^2}^2 ||\nabla u||_{L^2}^2 + C 2^{-N^2} ||u||_{L^2}^2 ||\nabla^2 u||_{L^2}^2 + C N ||u||_{L^2}^{2\alpha} ||\nabla u||_{L^2}^2.$$

Now, choosing $N > 0$ sufficiently large such that $C 2^{-N^2} ||u||_{L^2}^2 \leq \frac{1}{128}$, (indeed, the constant $C > 0$ is also depending on $||\rho^{1/2} u||_{L^2}^2$) the estimate (4.9) becomes

$$\frac{d}{dt} \int_\Omega \left(\frac{\mu}{2} ||\nabla u||^2 + \frac{\lambda}{2}(\text{div} u)^2 - P\text{div} u + \rho ||u||^2 + \rho + \rho^2 \right) dx$$

$$+ \int_\Omega \left(||\nabla G||^2 + ||\nabla u||^2 + \frac{1}{4} \rho ||u||^2 \right) dx \leq C N (||u||_{L^2}^{2\alpha} + 1)(||\nabla u||_{L^2}^2 + 1),$$

which, together with (4.2) and Grönwall’s inequality, gives (4.3). The proof of Lemma 4.1 is completed.

Proof of Theorem 1.2. In the proof in Theorem 1.1 in [6], as long as Lemma 3.1 in [6] is only replaced by Lemma 4.1 in our paper, the proof is completed.

\[\square\]
5. Appendix

For the convenience of the reader, we give the proof for (4.6), given in [6].

\[
\int P \text{div} u dx = \frac{d}{dt} \int P \text{div} u dx - \int P(\text{div} u)^2 dx \\
= \frac{d}{dt} \int P \text{div} u dx + \int \text{div}(Pu) \text{div} u dx + (\gamma - 1) \int P(\text{div} u)^2 dx \\
= \frac{d}{dt} \int P \text{div} u dx - \int (Pu) \cdot \nabla \text{div} u dx + (\gamma - 1) \int P(\text{div} u)^2 dx \\
= \frac{d}{dt} \int P \text{div} u dx - \frac{1}{\mu + \lambda} \int Pu \cdot \nabla G dx - \frac{1}{2(\mu + \lambda)} \int Pu \cdot \nabla G dx \\
+ (\gamma - 1) \int P(\text{div} u)^2 dx \\
\leq \frac{d}{dt} \int P \text{div} u dx + \frac{1}{8} \|\nabla G\|_{L^2}^2 + C \|\nabla u\|_{L^2}^2 + C,
\]

(5.1)

6. Discussion

Our result is focused on the full compressible Navier-Stokes equations. However, it is believed that our results can be expanded in various ways for the coupled equations or system. In this regard, we think of it as a future study and intend to produce more meaningful results.

7. Conclusions

The current paper results are Blow-up criteria for solutions in Vishik Space which is a weaker space to Besov space and Lebesgue space. It seems to be a meaningful result in this regard, and it is new.

Acknowledgments

The authors thank the very knowledgeable referee very much for his/her valuable comments and helpful suggestions. Jae-Myoung Kim was supported by National Research Foundation of Korea Grant funded by the Korean Government (NRF-2020R1C1C1A01006521).

Conflict of interest

The authors declare that there are no conflicts of interest in this paper.

References

1. Y. Cho, H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations., 228 (2006), 377–411. https://doi.org/10.1016/j.jde.2006.05.001
2. L. Du, Y. Wang, Blowup criterion for 3-dimensional compressible Navier-Stokes equations involving velocity divergence, *Commun. Math. Sci.*, **12** (2014), 1427–1435. https://doi.org/10.4310/CMS.2014.v12.n8.a3

3. J. Fan, S. Jiang, Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows, *Ann. Inst. H. Poincaré, Anal. Non Linéaire.*, **27** (2010), 337–350. https://doi.org/10.1016/j.anihpc.2009.09.012

4. S. Gala, M. A. Ragusa, Y. Sawano, H. Tanaka, Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces, *Appl. Anal.*, **93** (2014), 356–368. https://doi.org/10.1080/00036811.2013.772582

5. X. Huang, J. Li, On breakdown of solutions to the full compressible Navier-Stokes equations, *Meth. Appl. Anal.*, **16** (2009), 479–490. https://doi.org/10.4310/MAA.2009.v16.n4.a4

6. X. Huang, J. Li, S. Xin, Serrin-type criterion for the three-dimensional viscous compressible flows, *SIAM J. Math. Anal.*, **43** (2011), 1872–1886. https://doi.org/10.1137/100814639

7. X. Huang, J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows, *Comm. Math. Phys.*, **324** (2013), 147–171. https://doi.org/10.1007/s00220-013-1791-1

8. X. Huang, J. Li, Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system, *Arch. Ration. Mech. Anal.*, **207** (2013), 303–316. https://doi.org/10.1007/s00205-012-0577-5

9. Q. Jiu, Y. Wang, Y. Ye, Refined blow-up criteria for the full compressible Navier-Stokes equations involving temperature, *J. Evol. Equ.*, **21** (2021), 1895–1916.

10. R. Kanamaru, Optimality of logarithmic interpolation inequalities and extension criteria to the Navier-Stokes and Euler equations in *Vishik spaces. J. Evol. Equ.*, (2020), 1–17.

11. J. M. Kim, Regularity for 3D inhomogeneous Naiver-Stokes equations in Vishik spaces, *J. Funct. Spaces*, 2022, Article ID 7061004, 4 pp. https://doi.org/10.1155/2022/7061004

12. Y. Li, J. Xu, S. Zhu, Blow-up criterion for the 3D compressible non-isentropic Navier-Stokes equations without thermal conductivity, *J. Math. Anal. Appl.*, **431** (2015), 822–840.

13. Q. Li, M.L. Zou, A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows, *AIMS Math.*, **7** (2022), 9278–9287. https://doi.org/10.3934/math.2022514

14. Y. Sun, C. Wang, Z. Zhang, A Beale-Kato-Majda blow-up criterion for the 3D compressible Navier-Stokes equations, *J. Math. Pures Appl.*, **95** (2011), 36–47. https://doi.org/10.1016/j.matpur.2010.08.001

15. Y. Sun, C. Wang, Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, *Arch. Ration. Mech. Anal.*, **201** (2011), 727–742.

16. Y. Sun, Z. Zhang, Blow-up criteria of strong solutions and conditional regularity of weak solutions for the compressible Navier-Stokes equations, Handbook of mathematical analysis in mechanics of viscous fluids, 2263–2324, Springer, Cham, 2018.

17. M. Vishik, Incompressible flows of an ideal fluid with unbounded vorticity, *Comm. Math. Phys.*, **213** (2000), 697–731. https://doi.org/10.1007/s00220000255
18. H. Wen, C. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, *Adv. Math.*, **248** (2013), 534–572.

19. H. Wen, C. Zhu, Global solutions to the three-dimensional full compressible Navier-Stokes equations with vacuum at infinity in some classes of large data, *SIAM J. Math. Anal.*, **49** (2017), 162–221. https://doi.org/10.1137/16M1055414

20. F. Wu, Navier-Stokes regularity criteria in Vishik spaces, *Appl. Math. Optim.*, **84** (2021), suppl. 1, S39–S53. https://doi.org/10.1007/s00245-021-09757-9

21. Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, *Comm. Pure Appl. Math.*, **51** (1998), 229–240. https://doi.org/10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C

22. Z. Xin, W. Yan, On blow up of classical solutions to the compressible Navier-Stokes equations. *Comm. Math. Phys.*, **321** (2013), 529–541. https://doi.org/10.1007/s00220-012-1610-0

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)