GREEN’S FORMULA AND A DIRICHLET-TO-NEUMANN OPERATOR FOR FRACTIONAL-ORDER PSEUDODIFFERENTIAL OPERATORS

GERD GRUBB

Department of Mathematical Sciences, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen, Denmark. E-mail grubb@math.ku.dk

Abstract. The paper treats boundary value problems for the fractional Laplacian \((-\Delta)^a\), \(a > 0\), and more generally for classical pseudodifferential operators (\(\psi\)do’s) \(P\) of order \(2a\) with even symbol, applied to functions on a smooth subset \(\Omega\) of \(\mathbb{R}^n\). There are several meaningful local boundary conditions, such as the Dirichlet and Neumann conditions \(\gamma_k^{a-1} u = \varphi\), \(k = 0, 1\), where \(\gamma_k^{a-1} u = c_k \partial^{k}|u/d^{a-1}|_{\partial\Omega}\), \(d(x) = \text{dist}(x, \partial\Omega)\). We show a new Green’s formula

\[(Pu, v)_{\Omega} - (u, P^* v)_{\Omega} = (s_0 \gamma_1^{a-1} u + B_{\gamma_0^{a-1}} u, \gamma_0^{a-1} v)_{\partial\Omega} - (s_0 \gamma_1^{a-1} u, \gamma_1^{a-1} v)_{\partial\Omega},\]

where \(B\) is a first-order \(\psi\)do on \(\partial\Omega\) depending on the first two terms in the symbol of \(P\).

Moreover, we show in the elliptic case how the Poisson-like solution operator \(K_D\) for the nonhomogeneous Dirichlet problem is constructed from \(P^+\) in the factorization \(P \sim P^- P^+\) obtained in earlier work. The Dirichlet-to-Neumann operator \(S_{DN} = \gamma_1^{a-1} K_D\) is derived from this as a first-order \(\psi\)do on \(\partial\Omega\), with an explicit formula for the symbol. This leads to a characterization of those operators \(P\) for which the Neumann problem is Fredholm solvable.

1. Introduction.

The fractional Laplacian \((-\Delta)^a\) on \(\mathbb{R}^n\), \(0 < a < 1\), and its boundary value problems on subsets \(\Omega \subset \mathbb{R}^n\), have received much attention recently, as a generalization from the ordinary Laplacian \(-\Delta\), with useful applications to probability, finance, differential geometry and mathematical physics. \((-\Delta)^a\) can be described as a pseudodifferential operator (\(\psi\)do) or as a singular integral operator:

\[(-\Delta)^a u = \text{OP}(|\xi|^{2a}) u = \mathcal{F}^{-1}(|\xi|^{2a} \hat{u}(\xi)) = c_{n,a} \text{PV} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|y|^{n+2a}} dy.\]

(1.1)

The discussion we give in this paper works for classical \(\psi\)do’s \(P\) of order \(2a\), for any \(a > 0\), with symbol \(p \sim \sum_{j \in \mathbb{N}_0} p_j(x, \xi)\) being even:

\[p_j(x, -\xi) = (-1)^j p_j(x, \xi),\ 	ext{all } j.\]

(1.2)

E.g. \(P = A(x, D)^a\), where \(A(x, D)\) is a second-order strongly elliptic differential operator.
One of the difficulties with these operators is that they are nonlocal, in contrast to differential operators. This is problematic when one wants to study them on subsets $\Omega \subset \mathbb{R}^n$.

It has been known for many years that one can define a Dirichlet realization P_D by a variational construction: Define the sesquilinear form $p_0(u,v)$ by
\begin{equation}
(1.3) \quad p_0(u,v) = \int_{\Omega} P u \overline{v} \, dx, \quad u,v \in C_0^\infty(\Omega),
\end{equation}
completed to a form on $\dot{H}^a(\Omega) = \{ u \in H^a(\mathbb{R}^n) \mid \text{supp } u \subset \overline{\Omega} \}$. It is coercive when P is strongly elliptic, and then induces an operator P_D in $L_2(\Omega)$ acting like r^+P with domain
\begin{equation}
(1.4) \quad D(P_D) = \{ u \in \dot{H}^a(\Omega) \mid r^+Pu \in L_2(\Omega) \}, \quad r^+Pu = (Pu)|_\Omega;
\end{equation}
a Fredholm operator when Ω is bounded. P_D represents the (fractional restricted) homogeneous Dirichlet problem
\begin{equation}
(1.5) \quad r^+Pu = f \text{ in } \Omega, \quad \text{supp } u \subset \overline{\Omega}.
\end{equation}

Vishik and Eskin treated such operators in the 1960’s (see e.g. [E81]) by pseudodifferential factorization methods; one consequence is that $D(P_D) = \dot{H}^{2a}(\Omega)$ when $a < \frac{1}{2}$, and $D(P_D) \subset \dot{H}^{a + \frac{1}{2} - \varepsilon}(\Omega)$ when $a \geq \frac{1}{2}$.

More recently, real integral operator methods have been applied. There is a technique by Caffarelli and Silvestre [CS07] to view $(-\Delta)^a$ on \mathbb{R}^n as the Dirichlet-to-Neumann operator for a degenerate elliptic differential boundary value problem on $\mathbb{R}^n \times \mathbb{R}_+$, which allows local techniques. For subsets $\Omega \subset \mathbb{R}^n$, methods from potential theory and probability have particularly been used, leading to results in Hölder spaces, under low smoothness assumptions. Also functional analysis methods enter. Let us mention some of the studies through the times: Blumenthal and Getoor [BG59], Landkof [L72], Hoh and Jacob [HJ96], Kulczycki [K97], Chen and Song [CS98], Jakubowski [J02], Silvestre [S07], Caffarelli and Silvestre [CS09], Musina and Nazarov [MN14], Frank and Geisinger [FG16], Ros-Oton and Serra [RS14a, RS14b, RS16], Abatangelo [A15], Felsinger, Kassmann and Voigt [FKV15], Bonforte, Sire and Vazquez [BSV15], Servadei and Valdinoci [SV14], Ros-Oton [R16]; there are many more papers referred to in these works, and numerous applications to nonlinear problems.

To the question of regularity of solutions, Ros-Oton and Serra [RS14a] obtained for (1.5) with $P = (-\Delta)^a$, $0 < a < 1$, that $f \in L_\infty$ implies $u \in \dot{H}^a(\Omega)$ for small α; here $d(x) = \text{dist}(x,\partial\Omega)$. This was improved later to $\alpha < a$, and the result was extended to more general translation-invariant singular integral operators with even kernels [RS16].

In very recent years, ψdo methods have come into the picture again, mainly through works of the author [G14, G15, G16], based on the a-transmission property introduced by Hörmander [H65, H85], combined with methods from the Boutet de Monvel calculus [B71, G90, G96, S01, G09]. This approach allows x-dependent operators. The systematic treatment of ψdo’s primarily takes place in smooth situations.

It was shown in [G15] that the domain space for solutions of (1.5) with $f \in L_p(\Omega)$ ($1 < p < \infty$, Ω bounded smooth), equals $H^{a(2a)}_p(\Omega)$, where $H^{a(s)}_p(\Omega) = \Lambda^{(-a)} e^{+\mathcal{C}_\gamma s - a}(\Omega)$.
GREEN’S FORMULA 3

(definitions are recalled in Section 2). For a nonhomogeneous Dirichlet problem, one must
pass to the larger space $H_p^{(a-1)(s)}(\overline{\Omega})$, where the Dirichlet trace operator
\begin{equation}
\gamma_0^{a-1} u = \Gamma(a) \gamma_0(u / d^{a-1})
\end{equation}
(denoted $\gamma_{a-1,0} u$ in [G14, G15, G16]) makes good sense for $s > a - 1/p'$. We generally
denote $\gamma_j u = (\partial_j^a u)|_{\partial \Omega}$. Also higher-order trace operators are defined there, e.g. the so-called Neumann trace for $s > a + 1/p$,
\begin{equation}
\gamma_1^{a-1} u = \Gamma(1) \gamma_1(u / d^{a-1})
\end{equation}
If $\gamma_0^{a-1} u = 0$ then $u \in H_p^{a(s)}(\overline{\Omega})$ and $\gamma_1^{a-1} u = \gamma_0^{a} u$. Integration-by-parts formulas have up to now been shown involving only first boundary values [RS14b, A15, G16] (Corollary 4.5 below); they lead to a useful Pohozaev formula.

We can now for the first time show a full Green’s formula for $u, v \in H^{(a-1)(s)}(\overline{\Omega})$ (Theorem 4.4 below):
\begin{equation}
\int_{\Omega} (Pu \bar{v} - u \overline{P^* v}) \, dx = \int_{\partial \Omega} (s_0 \gamma_1^{a-1} u \gamma_0^{a-1} \bar{v} - s_0 \gamma_0^{a-1} u \gamma_1^{a-1} \bar{v} + B \gamma_0^{a-1} u \gamma_0^{a-1} \bar{v}) \, d\sigma;
\end{equation}
here $s_0(x)$ is the value of the principal symbol of P on the interior normal $\nu(x)$ at $x \in \partial \Omega$, $s_0(x) = p_0(x, \nu(x))$, and B is a first-order ψdo on $\partial \Omega$ (4.20), determined from the principal and subprincipal symbols of P. To our knowledge, a formula involving both nontrivial Neumann traces and nontrivial Dirichlet traces has not been found before. Ellipticity of P is not assumed.

Next, based on the factorization results of [G16], we establish in the elliptic case a detailed formula for the Poisson-like operator $K_D: \varphi \mapsto u$ solving the Dirichlet problem with nonhomogeneous boundary condition
\begin{equation}
r^+ Pu = 0 \text{ in } \Omega, \quad \gamma_0^{a-1} u = \varphi \text{ on } \partial \Omega,
\end{equation}
in a parametrix sense, showing exactly how it arises from the plus-factor P^+ in $P \sim P^- P^+$ (Theorems 5.2, 5.4).

As an application, we describe the Dirichlet-to-Neumann operator (Theorem 6.1),
\begin{equation}
S_{DN} = \gamma_1^{a-1} K_D;
\end{equation}
it is a first-order ψdo on $\partial \Omega$ with symbol derived from P^+. Its principal symbol is, in local coordinates,
\begin{equation}
s_{DN,0}(x', \xi') = -\lim_{z_n \to 0} \int_{\xi_n \to z_n} \log(s_0^{-1} p_0(x', 0, \xi) |\xi|^{-2a}) - a |\xi'|.
\end{equation}
$(S_{DN}$ has only been described before in the elementary case of $P = (1 - \Delta)^a$ on \mathbb{R}^n_+, in [G14]). This implies a concrete characterization of the operators P for which the Neumann problem has Fredholm solvability (Theorem 6.2), namely those for which S_{DN} is elliptic ($s_{DN,0}$ is nonvanishing for $\xi' \neq 0$). Their parametrices are likewise described.
In view of [G14, G15], the parametrices and the Dirichlet-to-Neumann operator we have described act in both H^s_p-spaces and in more general Besov and Triebel-Lizorkin spaces; in particular in the Hölder-Zygmund spaces C^s_α that are of special interest for nonlinear applications (Corollary 6.4).

Plan of the paper: Section 2 gives preliminaries and notation, and the Appendix accounts for some results from the Boutet de Monvel calculus and [G16] that we use. In Section 3 we show Green’s formula for the case of $P = (1 - \Delta)^{a}$ on \mathbb{R}^n_+, using only Fourier transformation and distribution theory. In Section 4, Green’s formula is shown for general operators P and general smooth domains Ω; this is based on reductions to applications of the Boutet de Monvel calculus and delicate localization techniques. Section 5 gives the construction of K_D, also using such tools. In Section 6, S_{DN} is derived, and applied to the discussion of solvable Neumann problems.

2. Preliminaries.

Multi-index notation is used for differentiation (and polynomials): $\partial = (\partial_1, \ldots, \partial_n)$, and $\partial^\alpha = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}$ for $\alpha \in \mathbb{N}_0^n$, with $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $\alpha! = \alpha_1! \cdots \alpha_n!$. $D = (D_1, \ldots, D_n)$ with $D_j = -i\partial_j$. Here \mathbb{N}_0 denotes the nonnegative integers $\{0, 1, 2, \ldots\}$. The function $\langle \xi \rangle$ stands for $(1 + |\xi|^2)^{\frac{1}{2}}$, and $|\xi|$ denotes a positive C^∞-function equal to $|\xi|$ for $|\xi| \geq 1$ and $\geq \frac{1}{2}$ for all ξ.

Operators are considered acting on functions or distributions on \mathbb{R}^n, and on subsets $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_n \geq 0\}$ (where $(x_1, \ldots, x_{n-1}) = x'$), and bounded C^∞-subsets Ω with boundary $\partial\Omega$, and their complements. Restriction from \mathbb{R}^n to \mathbb{R}^n_+ (or from \mathbb{R}^n to Ω resp. \mathbb{R}^n_+) is denoted r^\pm, extension by zero from \mathbb{R}^n_+ to \mathbb{R}^n (or from Ω resp. \mathbb{R}^n_+ to \mathbb{R}^n) is denoted e^\pm. Restriction from \mathbb{R}^n_+ to $\partial\mathbb{R}^n_+$ resp. $\partial\Omega$ is denoted γ_0. $S(\mathbb{R}^n_+)$ stands for $r^+S(\mathbb{R}^n_+)$, where $S(\mathbb{R}^n_+)$ is Schwartz’ space of rapidly decreasing C^∞-functions (with dual space $S'(\mathbb{R}^n)$), the temperate distributions.

We denote by $d(x)$ a function of the form $d(x) = \text{dist}(x, \partial\Omega)$ for $x \in \Omega$, x near $\partial\Omega$, extended to a smooth positive function on Ω; $d(x) = x_n$ in the case of \mathbb{R}^n_+. Then we define the spaces

$$E_\mu(\Omega) = e^+ \{u(x) = d(x)^\mu v(x) \mid v \in C^\infty(\Omega)\},$$

for Re $\mu > -1$; for other μ, cf. [G15].

A *pseudodifferential operator* (psdo) P on \mathbb{R}^n is defined from a symbol $p(x, \xi)$ on $\mathbb{R}^n \times \mathbb{R}^n$ by

$$Pu = p(x, D)u = \text{OP}(p(x, \xi))u = (2\pi)^{-n} \int e^{ix\cdot\xi} p(x, \xi) \hat{u}(\xi) d\xi = F^{-1}_{x\rightarrow\xi} (p(x, \xi) \hat{u}(\xi));$$

here F is the Fourier transform $(Fu)(\xi) = \hat{u}(\xi) = \int_{\mathbb{R}^n} e^{-ix\cdot\xi} u(x) dx$. We refer to textbooks such as Hörmander [H85], Taylor [T91], Grubb [G09] for the rules of calculus. [G09] moreover gives an account of the Boutet de Monvel calculus of *pseudodifferential boundary problems*, cf. also e.g. [G96, S01].

We take p in the symbol space $S^m_{1,0}(\mathbb{R}^n \times \mathbb{R}^n)$, consisting of C^∞-functions $p(x, \xi)$ such that $\partial^{\beta}_x \partial^{\alpha}_\xi p(x, \xi)$ is $O((|\xi|^{-}\alpha)!)$ for all α, β, for some $m \in \mathbb{R}$ (global estimates); then p and P have order m. A symbol p is said to be *classical* when it moreover has an asymptotic
expansion \(p(x, \xi) \sim \sum_{j \in \mathbb{N}_0} p_j(x, \xi) \) with \(p_j \) homogeneous in \(\xi \) of degree \(m - j \) for \(|\xi| \geq 1 \), all \(j \), and \(p(x, \xi) = \sum_{j<J} p_j(x, \xi) \in S^{m-j}_{1,0} (\mathbb{R}^n \times \mathbb{R}^n) \) for all \(J \in \mathbb{N}_0 \).

Recall in particular the composition rule: When \(PQ = R \), then \(R \) has a symbol \(r(x, \xi) \) with the following asymptotic expansion, called the Leibniz product:

\[
(2.3) \quad r(x, \xi) \sim p(x, \xi) \# q(x, \xi) = \sum_{\alpha \in \mathbb{N}_0^n} \partial_{\xi}^\alpha p(x, \xi) D_x^\alpha q(x, \xi) / \alpha!.
\]

When \(P \) is a \(\psi \)-do on \(\mathbb{R}^n \), \(P_+ = r^+Pe^+ \) denotes its truncation to \(\mathbb{R}^n_+ \), or to \(\Omega \), depending on the context.

Let \(1 < p < \infty \) (with \(1/p' = 1 - 1/p \)), then the \(L_p \)-Sobolev spaces (Bessel-potential spaces) are defined for \(s \in \mathbb{R} \) by

\[
H^s_p(\mathbb{R}^n) = \{ u \in \mathcal{S}'(\mathbb{R}^n) | \mathcal{F}^{-1}((\xi)^s \hat{u}) \in L_p(\mathbb{R}^n) \},
\]

\[
\dot{H}^s_p(\Omega) = \{ u \in H^s_p(\mathbb{R}^n) | \text{supp} \ u \subset \overline{\Omega} \},
\]

\[
\overline{H}^s_p(\Omega) = \{ u \in \mathcal{D}'(\Omega) | u = r^+ U \text{ for some } U \in H^s_p(\mathbb{R}^n) \};
\]

here \(\text{supp} \ u \) denotes the support of \(u \). The definition is also used with \(\Omega = \mathbb{R}^n_+ \). In most current texts, \(\overline{H}^s_p(\Omega) \) is denoted \(H^s_p(\Omega) \) without the overline (that was introduced along with the notation \(\dot{H} \) in [H65, H85]), but we keep it here since it is practical in indications of dualities, and makes the notation more clear in formulas where both types occur. When \(p = 2 \), the mention of \(p \) is left out. We recall that \(\overline{H}^s_p(\Omega) \) and \(\dot{H}^s_p(\Omega) \) are dual spaces with respect to a sesquilinear duality extending the \(L_2(\Omega) \)-scalar product, written e.g.

\[
\langle f, g \rangle_{\overline{H}^s_p(\Omega), \dot{H}^s_p(\Omega)}, \text{ or just } \langle f, g \rangle_{\overline{H}^s_p, \dot{H}^s_p}.
\]

There are many other interesting scales of spaces, the Triebel-Lizorkin spaces \(F^s_{p,q} \) and Besov spaces \(B^s_{p,q} (B^s_\infty = B^s_{\infty,\infty}) \), where the problems can be studied; see details in [G14]. This includes the Hölder-Zygmund spaces \(B^s_{\infty,\infty} \), also denoted \(C^s_\infty \); they are interesting because \(C^s_\infty(\mathbb{R}^n) \) equals the Hölder space \(C^s(\mathbb{R}^n) \) when \(s \in \mathbb{R}_+ \setminus \mathbb{N} \). There are also local versions: \(H^s_{p,\text{loc}}(\Omega) \) consists of the distributions \(u \in \mathcal{D}'(\Omega) \) such that \(\varphi u \in \overline{H}^s_p(\mathbb{R}^n) \) for all \(\varphi \in C_0^\infty(\Omega) \), and \(H^s_{p,\text{comp}}(\Omega) \) consists of the elements of \(H^s_p(\mathbb{R}^n) \) with compact support in \(\Omega \). There are similar definitions where \(H^s_p \) is replaced by \(F^s_{p,q} \) or \(B^s_{p,q} \).

A classical \(\psi \)-do \(P \) of order \(m \in \mathbb{R} \) maps \(H^s_{p,\text{comp}}(\mathbb{R}^n) \) into \(H^{s-m}_{p,\text{loc}}(\mathbb{R}^n) \) for all \(s \in \mathbb{R} \). It is elliptic, when \(p_0(x, \xi) \neq 0 \) for \(|\xi| \geq 1 \); then for any \(u \in \mathcal{E}'(\mathbb{R}^n) \), any open \(\Omega \), \(Pu \in H^{s-m}_{p,\text{loc}}(\Omega) \) implies \(u \in H^s_{p,\text{loc}}(\Omega) \). Analogous results hold in the other scales \(F^s_{p,q} \) and \(B^s_{p,q} \).

Hörmander introduced in [H65, H85] the \(\mu \)-transmission condition at \(\partial \Omega \) for a classical \(\psi \)-do of order \(m, \mu \in \mathbb{C} \): In local coordinates,

\[
(2.4) \quad \partial_x^\beta \partial_{\xi}^\alpha p_j(x, -\nu) = e^{\pi i (m-2\mu-j-|\alpha|)} \partial_x^\beta \partial_{\xi}^\alpha p_j(x, \nu),
\]

for all \(x \in \partial \Omega \), all \(j, \alpha, \beta \), where \(\nu \) denotes the interior normal to \(\partial \Omega \) at \(x \). The Boutet de Monvel calculus treats the case where \(\mu = 0 \), and the operators \(P \) we shall study satisfy it with \(\mu = a > 0 \).
A special role in the theory is played by the order-reducing operators. There is a simple definition of operators \(\Xi_{\pm}^t \) on \(\mathbb{R}^n \), \(t \in \mathbb{R} \),

\[
\Xi_{\pm}^t = \text{Op}(\chi_{\pm}^t), \quad \chi_{\pm}^t = (\langle \xi' \rangle \pm i \xi_n)^t;
\]

they preserve support in \(\mathbb{R}^n_{\pm} \) respectively. The functions \((\langle \xi' \rangle \pm i \xi_n)^t \) do not satisfy all the estimates required for the class \(S^1_{1,0}(\mathbb{R}^n \times \mathbb{R}^n) \), but the operators are useful for many purposes. There is a more refined choice \(\Lambda_{\pm}^t \) \cite{G15}, with symbols \(\chi_{\pm}^t(\xi) \) that do satisfy all the estimates for \(S^1_{1,0}(\mathbb{R}^n \times \mathbb{R}^n) \); here \(\Lambda_{\pm}^t = \chi_{\pm}^t \). The symbols have holomorphic extensions in \(\xi_n \) to the complex halfspaces \(\mathbb{C}_{\mp} = \{ z \in \mathbb{C} \mid \text{Im} \, z \leq 0 \} \), and hence the operators preserve support in \(\mathbb{R}^n_{\pm} \), respectively; operators with that property are called "plus" resp. "minus" operators. There is also a pseudodifferential definition \(\Lambda_{\pm}^{(t)} \) adapted to the situation of a smooth domain \(\Omega \), cf. \cite{G15}.

It is elementary to see by the definition of the spaces \(H^s_p(\mathbb{R}^n) \) in terms of Fourier transformation, that the operators define homeomorphisms for all \(s \):

\[
\Xi_{\pm}^t : H^s_p(\mathbb{R}^n) \xrightarrow{\sim} H^{s-t}_p(\mathbb{R}^n), \quad \Lambda_{\pm}^t : H^s_p(\mathbb{R}^n) \xrightarrow{\sim} H^{s-t}_p(\mathbb{R}^n)
\]

(and so does of course \(\Xi^t = \text{Op}(\langle \xi' \rangle) = \langle D' \rangle \)). The special interest is that the "plus" /"minus" operators also define homeomorphisms related to \(\mathbb{R}^n_{\pm} \) and \(\overline{\Omega} \), for all \(s \in \mathbb{R} \):

\[
\Xi_{\pm}^t : \mathring{H}^s_p(\mathbb{R}^n_{\pm}) \xrightarrow{\sim} \mathring{H}^{s-t}_p(\mathbb{R}^n_{\pm}), \quad r^+ \Xi_{\pm}^t e^+ : \mathring{H}^s_p(\mathbb{R}^n_{\pm}) \xrightarrow{\sim} \mathring{H}^{s-t}_p(\mathbb{R}^n_{\pm})
\]

\[
\Lambda_{\pm}^{(t)} : \mathring{H}^s_p(\Omega) \xrightarrow{\sim} \mathring{H}^{s-t}_p(\Omega), \quad r^+ \Lambda_{\pm}^{(t)} e^+ : \mathring{H}^s_p(\Omega) \xrightarrow{\sim} \mathring{H}^{s-t}_p(\Omega);
\]

here \(r^+ \Xi_{\pm}^t e^+ \) resp. \(r^+ \Lambda_{\pm}^{(t)} e^+ \) are suitably extended to large negative \(s \) (cf. Rem. 1.1 and Th. 1.3 in \cite{G15}). The first line in (2.7) also holds with \(\Xi \) replaced by \(\Lambda \).

One has moreover that the operators \(\Xi_{\pm}^t \) and \(r^+ \Xi_{\pm}^t e^+ \) identify with each other’s adjoints over \(\mathbb{R}^n_{\pm} \), because of the support preserving properties; more precisely,

\[
\Xi_{\pm}^t : \mathring{H}^{s-t}_p(\mathbb{R}^n_{\pm}) \rightarrow \mathring{H}^s_p(\mathbb{R}^n_{\pm}) \quad \text{and} \quad r^+ \Xi_{\pm}^t e^+ : \mathring{H}^{s-t}_p(\mathbb{R}^n_{\pm}) \rightarrow \mathring{H}^s_p(\mathbb{R}^n_{\pm}) \quad \text{are adjoints,}
\]

for all \(s \in \mathbb{R} \). The same holds for the operators \(\Lambda_{\pm}^t, r^+ \Lambda_{\pm}^t e^+ \), and there is a similar statement for \(\Lambda_{\pm}^{(t)} \) and \(r^+ \Lambda_{\pm}^{(t)} e^+ \) relative to the set \(\Omega \).

Now we rapidly recall the features of some special spaces studied in \cite{G15}; a more detailed account of some particular instances is given below in Section 3. They are the \(\mu \)-transmission spaces introduced by Hörmander \cite{H65} (for \(p = 2 \)), cf. \cite{G15}, which are particularly adapted to \(\mu \)-transmission operators \(P \) (we just take real \(\mu > -1 \)):

\[
H^{\mu}_{p}(\mathbb{R}^n_{\pm}) = \Xi_{\pm}^{-\mu} e^+ \mathring{H}^{\mu-s}_{p}(\mathbb{R}^n_{\pm}) = \Lambda_{\pm}^{-\mu} e^+ \mathring{H}^{\mu-s}_{p}(\mathbb{R}^n_{\pm}), \quad s > \mu - 1/p',
\]

\[
H^{\mu}_{p}(\Omega) = \Lambda_{\pm}^{(-\mu)} e^+ \mathring{H}^{\mu-s}_{p}(\Omega), \quad s > \mu - 1/p'.
\]

In fact, \(r^+ P \) (of order \(m \)) maps them into \(\mathring{H}^{s-m}_{p}(\mathbb{R}^n_{\pm}) \) resp. \(\mathring{H}^{s-m}_{p}(\Omega) \) (cf. \cite{G15} Sections 1.3, 2, 4), and they represent, when \(P \) is elliptic, the solution space for the homogeneous
Dirichlet problem (1.5) with \(f \in \mathcal{H}^{2-m}_{\Omega}(\mathbb{R}^n_+) \) resp. \(\mathcal{H}_{\Omega}(\mathbb{R}^n_+) \). Moreover, \(r^+ P \) maps \(\mathcal{E}_\mu(\Omega) \) into \(C^\infty(\bar{\Omega}) \), and \(\mathcal{E}_\mu(\bar{\Omega}) \) is the solution space for the Dirichlet problem with data in \(C^\infty(\bar{\Omega}) \). \(\mathcal{E}_\mu(\bar{\Omega}) \) is dense in \(\mathcal{H}_{\mu(s)}^\infty(\bar{\Omega}) \) for all \(s \), and \(\bigcap_s \mathcal{H}_{\mu(s)}^\infty(\bar{\Omega}) = \mathcal{E}_\mu(\bar{\Omega}) \). (For \(\Omega = \mathbb{R}^n \), \(\mathcal{E}_\mu(\mathbb{R}^n) \cap \mathcal{E}'(\mathbb{R}^n) \) is dense in \(\mathcal{H}_{\mu(s)}^\infty(\mathbb{R}^n) \) for all \(s \).)

The following trace operators \(\gamma_k^\mu \) (denoted \(\gamma_{\mu,k} \) in [G14, G15, G16]), are defined on \(\mathcal{E}_\mu(\bar{\Omega}) \), and on \(\mathcal{H}_{\mu(s)}^\infty(\bar{\Omega}) \) for \(s > \mu + k + 1/p \):

\[
\gamma_k^\mu u = c_k \gamma_k(u/d^\mu), \quad c_k = \Gamma(\mu + 1 + k),
\]

where the \(\gamma_k \) are the standard trace operators \(\gamma_k u = (\partial^k_n u)|_{\partial \Omega} \), \(k = 0, 1, \ldots \). Here when \(M \in \mathbb{N} \) and \(s > \mu + M - 1/p' \), \(\gamma^\mu_M = \{ \gamma_0^\mu, \ldots, \gamma_M^\mu \} \) maps surjectively

\[
\mathcal{E}_M^\mu : \mathcal{H}_{\mu(s)}^\infty(\bar{\Omega}) \rightarrow \prod_{j=0}^{M-1} B_{s-\mu-j-1/p'}(\partial \Omega), \text{ with kernel } \mathcal{H}_{\mu+M-1}(\bar{\Omega}),
\]

cf. [G15] Th. 5.1.

One has that \(\mathcal{H}_{\mu(s)}^\infty(\bar{\Omega}) \supset \mathcal{H}_{s}^\infty(\bar{\Omega}) \), and that the distributions are locally in \(\mathcal{H}_s^\infty(\Omega) \), but at the boundary they in general have a singular behavior (cf. [G15] Th. 5.4):

\[
\mathcal{H}_{\mu(s)}^\infty(\bar{\Omega}) \left\{ \begin{array}{l}
= \mathcal{H}_s^\infty(\bar{\Omega}) \text{ if } s \in [\mu - 1/p', \mu + 1/p], \\
\subset e^{+d^\mu \mathcal{H}_{\mu-s}^\infty(\Omega)} + \mathcal{H}_s^\infty(\bar{\Omega}) \text{ if } s > \mu + 1/p, s - \mu - 1/p \notin \mathbb{N}.
\end{array} \right.
\]

The inclusion in the second line is not an identity, but elements of \(e^{+d^\mu \mathcal{H}_{\mu-s}^\infty(\Omega)} \) enter nontrivially. In local coordinates where \(\Omega \) is replaced by \(\mathbb{R}^n_+ \), there are elements of the form \(e^{+x_n^\mu K_0 \varphi} \), where \(K_0 \) is the standard Poisson operator \(K_0 \varphi = \mathcal{F}_{\xi' \rightarrow x'}^{-1} [r^+ e^{-(\xi')^x x_n \varphi(\xi')}], \) and \(\varphi \) runs through \(B_{s-\mu-1/p}(\mathbb{R}^{n-1}) \). In particular, there are elements lying in \(e^{+d^\mu \mathcal{H}_{\mu-s}^\infty(\Omega)} \), not in \(e^{+d^\mu \mathcal{H}_{\mu-s'}^\infty(\Omega)} \) for any \(s' > s \).

When \(-1 < \mu < 0 \), the factor \(d^\mu \) blows up at the boundary, so functions in these spaces can be viewed as “large”. However, it is worth remarking that they are \(L_p \)-integrable for \(p > -1/\mu, s \geq 0 \). For \(0 \leq s < \mu + 1/p \) this follows since \(\mathcal{H}_{\mu(s)}(\Omega) = \mathcal{H}_{s}^\infty(\bar{\Omega}) \) then, and for larger \(s \), it follows since \(\mathcal{H}_{\mu(s')}(\Omega) \subset \mathcal{H}_{\mu(s)}^\infty(\bar{\Omega}) \) when \(s' > s \).

In the present paper, we use these spaces with \(\mu = a \) and with \(\mu = a - 1 \), mainly with \(p = 2 \). For example, the spaces \(\mathcal{H}_{(a-1)(s)}^\infty(\bar{\Omega}) \) satisfy

\[
\mathcal{H}_{(a-1)(s)}^\infty(\bar{\Omega}) \left\{ \begin{array}{l}
= \mathcal{H}_s^\infty(\bar{\Omega}) \text{ if } s \in [a - \frac{3}{2}, a - \frac{1}{2}], \\
\subset e^{+d^{-1}\mathcal{H}_{a-1}^\infty(\Omega)} + \mathcal{H}_s^\infty(\bar{\Omega}) \text{ if } s > a - \frac{1}{2}, s - a - \frac{1}{2} \notin \mathbb{N}.
\end{array} \right.
\]

The first two traces \(\gamma_{0}^{a-1} u \) (Dirichlet) and \(\gamma_{1}^{a-1} u \) (Neumann) are well-defined when \(s > a - \frac{1}{2} \) resp. \(s > a + \frac{1}{2} \). Here \(u \in \mathcal{H}_{(a-1)(s)}(\bar{\Omega}) \) with \(\gamma_{0}^{a-1} u = 0 \) implies \(u \in \mathcal{H}_{a(s)}^\infty(\bar{\Omega}) \).

Our Green’s formula will be shown for \(p = 2 \), since it is closely connected with \(L_2 \)-scalar products. The calculations of solution operators will be performed with \(p = 2 \), and supplied with remarks on how the results extend to \(\mathcal{H}_{s}^\infty(\Omega) \) and other spaces as in [G14, G15].

Further prerequisites are collected in the Appendix.
3. Green’s formula in the simplest case.

We begin by an elementary explanation of the Dirichlet and Neumann boundary values on \mathbb{R}^n_+. Consider $u, v \in \mathcal{E}_{a-1}(\mathbb{R}_+^n) \cap c^+\mathcal{S}(\mathbb{R}_+^n)$, with $a > 0$. The boundary values $\gamma_k^{a-1} u = u_k$ are defined from the expansion

$$u(x) = u_0(x') I^{a-1}(x_n) + u_1(x') I^a(x_n) + \cdots + u_k(x') I^{a+k}(x_n) + O(x_n^{a+k}),$$

where (as in [G15]) $I^\mu(x_n) = H(x_n)x_n^\mu/\Gamma(\mu + 1)$ when $\text{Re} \mu > -1$, H is the Heaviside function. The Gamma factor serves to normalize I^μ so that $\partial_{x_n} I^\mu = I^{\mu-1}$; this formula is also used to define the distribution for lower $\text{Re} \mu$. The expansion (3.1) follows from a Taylor expansion of $w(x) = u(x)/x_n^{a-1}$ for $x_n \to 0+$:

$$u(x) = x_n^{a-1} w(x', 0) + x_n^a \partial_n w(x', 0) + \cdots + x_n^{a+k-1} \frac{1}{k!} \partial_n^k w(x', 0) + O(x_n^{a+k}).$$

Note in particular that

$$\gamma_0^{a-1} u = u_0 = \Gamma(\frac{a}{2}) \gamma_0 w = \Gamma(\frac{a}{2}) \gamma_0 (u(x)/x_n^{a-1}),$$

$$\gamma_1^{a-1} u = u_1 = \Gamma(a + 1) \gamma_1 w = \Gamma(a + 1) \gamma_1 (u(x)/x_n^{a-1});$$

they will be viewed as the Dirichlet resp. Neumann traces of $u \in \mathcal{E}_{a-1}(\mathbb{R}_+^n)$.

Remark 3.1. When $a = 1$, i.e., $u \in c^+C^\infty(\mathbb{R}_+^n)$, this fits together with the usual convention for Dirichlet and Neumann traces associated with the Laplacian. Note however that for large a, the names are used here for the two lowest nontrivial traces. E.g., if $u \in \mathcal{E}_k(\mathbb{R}_+^n)$ for a large integer k, whereby $u = x_n^k v$ for a $v \in C^\infty(\mathbb{R}_+^n)$, then the first k standard traces of u vanish, and $\{\gamma_0^k u, \gamma_1^k u\} = \{k! \gamma_0 v, (k + 1)! \gamma_1 v\}$. For $2k$-order elliptic differential operators there is another convention for Dirichlet and Neumann values as the trace collections $\{\gamma_0 u, \ldots, \gamma_{k-1} u\}$ resp. $\{\gamma_k u, \ldots, \gamma_{2k-1} u\}$. Also for fractional operators, there are well-posed boundary value problems with sets of traces, as e.g. in [G15] Th. 6.1.

Besides the expansion (3.1) it will be convenient to use an expansion where the partially Fourier transformed terms have a factor $e^{-\sigma x_n}$, $\sigma = \langle \xi' \rangle$:

$$\mathcal{F}_{x'\to\xi'} u = \hat{u}(\xi', x_n) = \hat{\varphi}_0(\xi') I^{a-1}(x_n) e^{-\sigma x_n} + \hat{\varphi}'(\xi', x_n)$$

$$= \hat{\varphi}_0(\xi') I^{a-1}(x_n) e^{-\sigma x_n} + \hat{\varphi}_1(\xi') I^a(x_n) e^{-\sigma x_n} + \hat{\varphi}''(\xi', x_n)$$

$$\sim \sum_{k \geq 0} \hat{\varphi}_k(\xi') I^{a+k-1}(x_n) e^{-\sigma x_n}; \text{ here}$$

$$\mathcal{F}u \sim \sum_{k \geq 0} \hat{\varphi}_k(\xi')(\sigma + i\xi_n)^{-a-k},$$

using the formula

$$\mathcal{F}_{x_n\to\xi_n} [I^{\mu}(x_n) e^{-\sigma x_n}] = (\sigma + i\xi_n)^{-\mu-1}.$$

Correspondingly,

$$u = U_0 + u' = U_0 + U_1 + u'' \sim \sum_{k \geq 0} U_k, \text{ with } U_k = \mathcal{F}_{\xi'\to x'} [\hat{\varphi}_k(\xi') I^{a+k-1}(x_n) e^{-\sigma x_n}].$$
Here we note that \(u' \in \mathcal{E}_a \) and \(u'' \in \mathcal{E}_{a+1} \), with \(U_0 \in \mathcal{E}_{a-1} \), \(U_1 \in \mathcal{E}_a \). So \(\gamma_0^{-1} u' = 0 \) with \(\gamma_0^{-1} u = \gamma_0^{-1} U_0 \), and \(\gamma_0^{-1} u'' = 0 \) with \(\gamma_0^{-1} u' = \gamma_0^{-1} U_1 \). (They are all in \(\mathcal{E}_+^a \).)

The transition between the coefficient sets \(\{u_k\} \) and \(\{\varphi_k\} \) can be found by comparison of the expansion of \(\mathcal{F}_{x'} e^{\xi'x} w = \hat{w}(\xi', x_n) \) with the expansion we get from \(\hat{w}_e(\xi', x_n) = e^{\sigma x_n} \hat{w}(\xi', x_n) = e^{\sigma x_n} \hat{u}(\xi', x_n)/x_n^{-1} \). Let us just do this in detail for the first two coefficients (sufficient for the present paper):

\[
e^{\sigma x_n} \hat{u} = x_n^{-1} \hat{w}_e(\xi', 0) + x_n \partial_n \hat{w}_e(\xi', 0) + O(x_n^{-1})
= e^{\sigma x_n} [x_n^{-1} \hat{w}_0(\xi') + x_n \partial_n \hat{w}_1(\xi') + \sigma \hat{w}_0(\xi')] + O(x_n^{-1}).
\]

We see that \(\varphi_0 = \Gamma(a) \hat{w}_0 = \hat{u}_0 \) and \(\varphi_1 = \Gamma(a + 1)(\hat{w}_1 + \sigma \hat{w}_0) = \hat{u}_1 + a \sigma \hat{u}_0 \), so

\[
(3.7) \quad \varphi_0 = u_0, \quad \varphi_1 = u_1 + a \langle D' \rangle u_0,
\]

where \(\langle D' \rangle = \text{OP}(\langle \xi' \rangle) \). This allows us to relate the functions \(u_0, u_1 \) to boundary values of \(\Xi^a_{a-1} u \), cf. (2.5). In view of (3.4), \(\Xi^a_{a-1} = \text{OP}(\langle \sigma + i \xi_n \rangle^{-1}) \) has the effect

\[
\Xi^a_{a-1} u \sim \mathcal{F}^{-1} \sum_{k \geq 0} \varphi_k(\xi')(\sigma + i \xi_n)^{-1-k}.
\]

Then since \(\gamma_0 I^k = 0 \) for \(k = 1, 2, \ldots \) (recall that the trace \(\gamma_0 \) is taken from \(\mathbb{R}^n_+ \)),

\[
\gamma_0 \Xi^a_{a-1} u = \gamma_0 \mathcal{F}^{-1} (\varphi_0(\xi')(\sigma + i \xi_n)^{-1} + \varphi_1(\xi')(\sigma + i \xi_n)^{-2} + \ldots)
= \gamma_0 \mathcal{F}_{\xi'} (\varphi_0(\xi') I(1-e^{-\sigma x_n}) + \varphi_1(\xi') I(1-e^{-\sigma x_n}) + \ldots)
= \mathcal{F}_{\xi'} (\varphi_0(\xi') = \varphi_0 = u_0,
\gamma_0 \partial_n \Xi^a_{a-1} u = \gamma_0 \partial_n \mathcal{F}_{\xi'}(\varphi_0(\xi') I(1-e^{-\sigma x_n}) + \varphi_1(\xi') I(1-e^{-\sigma x_n}) + \ldots)
= \mathcal{F}_{\xi'} (-\varphi_0(\xi') \sigma + \varphi_1(\xi')) = \langle D' \rangle \varphi_0 + \varphi_1 = u_1 + (a - 1) \langle D' \rangle u_0,
\]

cf. (3.7), showing that

\[
(3.8) \quad u_0 = \gamma_0 \Xi^a_{a-1} u, \quad u_1 = \gamma_0 \partial_n \Xi^a_{a-1} u - (a - 1) \langle D' \rangle u_0.
\]

(\text{It is used that } \mathcal{F}_{\xi'}(\varphi_0(\xi') I(1-e^{-\sigma x_n}) = \varphi_0(x') \delta(x_n) \text{ does not contribute to the boundary value from } \mathbb{R}^n_+ \text{.)} (3.8) \text{ was also shown in [G15] Sect. 5; related calculations occur in [G14], Appendix.}

For \(u' = u - U_0 \) (cf. (3.6)), we note that since \(u' \in \mathcal{E}_a \) with the expansion \(U_1 + u'' \), \(u'' \in \mathcal{E}_{a+1} \),

\[
(3.9) \quad \gamma_0^a u' = \varphi_1 = \gamma_1^{-1} u + a \langle D' \rangle \gamma_0^a u = u_1 + a \langle D' \rangle u_0.
\]

In particular, \(u' \) itself satisfies, since \(\gamma_0^{-1} u' = 0 \) and \(\gamma_1^{-1} u' = \gamma_1^{-1} u \),

\[
(3.10) \quad \gamma_0^a u' = \gamma_1^a u'.
\]

In other words: \textit{When } \(u \in \mathcal{E}_{a-1} \text{ is such that the Dirichlet trace } \gamma_0^a u \text{ of } u \text{ vanishes, then the Neumann trace equals } \gamma_0^a u \).
Let \(v \) be another function in \(\mathcal{E}_{a-1}(\mathbb{R}^n_+)^{\ast} \cap e^{+}S(\mathbb{R}^n_+) \); then we expand it similarly as in (3.6) with coefficients \(\hat{\psi}_k \):

\[
(3.11) \quad v = V_0 + v' = V_1 + v'', \quad \text{with} \quad V_k = \mathcal{F}^{-1}_{\xi' \rightarrow x'}[\hat{\psi}_k(\xi')I^{a-1+k}e^{-\sigma x_n}].
\]

The formula (3.8) allows us to deduce mapping properties of the \(\gamma_k^{a-1} \) in Sobolev spaces. Recall from Section 2 that \(\mathcal{E}_{a-1}(\mathbb{R}^n_+) \cap \mathcal{E}(\mathbb{R}^n) \) is dense in \(H^{(a-1)(s)}(\mathbb{R}^n_+) = \Xi_+^{1-a} e^+ \mathcal{P}^{s-a+1} \mathcal{P}^{-1}(\mathbb{R}^n_+) \). Then since \(\gamma_k: \mathcal{P}^{s-a+1}(\mathbb{R}^n_+) \rightarrow H^{s-a-k+\frac{1}{2}}(\mathbb{R}^{n-1}) \), the Dirichlet and Neumann traces extend by continuity to continuous operators:

\[
\begin{align*}
\gamma_0^{a-1}: & \quad H^{(a-1)(s)}(\mathbb{R}^n_+) \rightarrow H^{s-a-\frac{1}{2}}(\mathbb{R}^{n-1}), \quad s > a - \frac{1}{2}, \\
\gamma_1^{a-1}: & \quad H^{(a-1)(s)}(\mathbb{R}^n_+) \rightarrow H^{s-a-\frac{3}{2}}(\mathbb{R}^{n-1}), \quad s > a + \frac{1}{2}.
\end{align*}
\]

In this context, we note that (since \(\varphi_0 = u_0 \))

\[
U_0 = \mathcal{F}^{-1}_{\xi' \rightarrow x'}[\hat{u}_0(\xi')I^{a-1}(x_n)e^{-\sigma x_n}] = \mathcal{F}^{-1}_{\xi \rightarrow x}[\hat{u}_0(\xi')e^{\sigma i \xi} - a] = \Xi_+^{1-a} \mathcal{F}^{-1}_{\xi \rightarrow x}[\hat{u}_0(\xi')(\sigma + i \xi)^{-a} - a] = \Xi_+^{1-a} e^+ K_0 u_0,
\]

where \(K_0 \) is the well-known Poisson operator \(K_0 \varphi = \mathcal{F}^{-1}_{\xi' \rightarrow x'}[\hat{\varphi}(\xi')r^+ e^{-(\xi')x_n}] \), defining a right-inverse of \(\gamma_0 \); its symbol is \((\sigma + i \xi)^{-1} = \chi^{-1}\). It maps \(H^t(\mathbb{R}^{n-1}) \rightarrow \mathcal{P}^{t+\frac{1}{2}}(\mathbb{R}^n_+) \) for all \(t \in \mathbb{R} \), so

\[
K_0^{a-1} \equiv \Xi_+^{1-a} e^+ K_0: H^{s-a-\frac{1}{2}}(\mathbb{R}^{n-1}) \rightarrow H^{(a-1)(s)}(\mathbb{R}^n_+), \quad s > a - \frac{1}{2},
\]

defining a right-inverse of \(\gamma_0^{a-1} \). (This was also shown in [G15] Cor. 5.3.)

The various identities shown above, and the remark after (3.10), extend to these spaces, for \(s \) suitably chosen.

We shall now give a relatively elementary proof of the desired Green’s formula for \(P = (1 - \Delta)^a \) on \(\mathbb{R}^n_+ \). Since \((1 + |\xi|^2)^a = (|\xi'| - i \xi_n)^a ((|\xi'| + i \xi_n)^a, (1 - \Delta)^a = \Xi_+^a \Xi_+^a \). In view of (3.5):

\[
\begin{align*}
\Xi_+^a U_k & = \mathcal{F}^{-1}_x[(\sigma + i \xi_n)^a \hat{\varphi}(\xi')(\sigma + i \xi_n)^{-a-k}], \\
& \quad \mathcal{F}^{-1}_{\xi' \rightarrow x'}[\hat{\varphi}(\xi')I^{k-1}e^{-\sigma x_n}] \quad \text{for} \quad k \in \mathbb{N}_0, \quad \text{in particular,} \quad \Xi_+^a U_0 = \mathcal{F}^{-1}_x[(\sigma + i \xi_n)^a \hat{\varphi}_0(\xi')(\sigma + i \xi_n)^{-a}] = \varphi_0(x') \otimes \delta(x_n), \\
\Xi_+^a U_1 & = \mathcal{F}^{-1}_x[(\sigma + i \xi_n)^a \hat{\varphi}_1(\xi')(\sigma + i \xi_n)^{-a}] = \mathcal{F}^{-1}_{\xi' \rightarrow x'}[\hat{\varphi}_1(\xi')He^{-\sigma x_n}].
\end{align*}
\]

An application of \(\Xi_+^a \) gives

\[
(1 - \Delta)^a U_0 = \Xi_+^a (\varphi_0(x') \otimes \delta(x_n)), \quad \text{supported in} \quad \mathbb{R}^n_+, \\
(1 - \Delta)^a U_1 = \mathcal{F}^{-1}_x[(\sigma - i \xi_n)^a \hat{\varphi}_1(\xi')(\sigma + i \xi_n)^{-1}].
\]

From the first line we conclude for \(P = (1 - \Delta)^a \):

\[
(3.14) \quad r^+ PU_0 = 0, \quad \text{hence} \quad r^+ Pu = r^+ Pu'.
\]
Now \(\int_{\mathbb{R}^n_+} r^+ Pu \bar{v} \, dx \) will be worked out. We know from [G15] Th. 4.2 that \(r^+ P \) maps
\(H^{(a-1)}(\mathbb{R}^n_+) \) into \(\mathcal{H}^{a-2a}(\mathbb{R}^n_+) \) (and \(\mathcal{E}_{a-1}(\mathbb{R}^n_+) \cap \mathcal{E}'(\mathbb{R}^n) \) into \(\cap_t \mathcal{H}^t(\mathbb{R}^n_+) \)). For large \(s \), \(\mathcal{H}^{a-2a}(\mathbb{R}^n_+) \) is a space of continuous functions, and \(H^{(a-1)}(\mathbb{R}^n_+) \) is as such, supplied with continuous functions multiplied by \(x_n^{a-1} \), so \(r^+ Pu \bar{v} \) is integrable for \(x_n \to 0 \). For smaller \(s \), we need an interpretation as a duality.

Note first (cf. (3.11) and (3.14)) that

\[
(3.15) \quad \int_{\mathbb{R}^n_+} r^+ Pu \bar{v} \, dx = \int_{\mathbb{R}^n_+} r^+ Pu' \bar{v} \, dx = \int_{\mathbb{R}^n_+} r^+ Pu' \bar{v} \, dx + \int_{\mathbb{R}^n_+} r^+ Pu' \bar{V}_0 \, dx.
\]

In the term \(\int_{\mathbb{R}^n_+} r^+ Pu' \bar{v} \, dx \), \(v' \in x_n^{a} \mathcal{H}^{a-2a}(\mathbb{R}^n_+) + \dot{\mathcal{H}}^a(\mathbb{R}^n_+) \) does not give integrability problems. This integral will be left unchanged, to match a similar integral with \(P \) applied to \(u' \). It is the last integral that will be reduced to an integral of boundary values, and which we now study more closely.

From now on, take \(u \) and \(v \) in \(H^{(a-1)}(\mathbb{R}^n_+) = \Xi_1^{1-a} e^+ \mathcal{H}^{a-1}(\mathbb{R}^n_+) \). The following calculations are very similar to those in the proof of [G16], Th. 3.1. Let \(s > a + \frac{1}{2} \), then (for small \(\varepsilon > 0 \))

\[
(3.16) \quad u, v, U_0, V_0 \in H^{(a-1)}(\mathbb{R}^n_+) = \Xi_1^{1-a} e^+ \mathcal{H}^{a-1}(\mathbb{R}^n_+) \subset \Xi_1^{1-a} \dot{\mathcal{H}}^\frac{1}{2} - \varepsilon(\mathbb{R}^n_+),
\]

\(u', v' \in H^{a}(\mathbb{R}^n_+) = \Xi_1^{1-a} e^+ \mathcal{H}^{a-1}(\mathbb{R}^n_+) \subset \Xi_1^{1-a} \dot{\mathcal{H}}^\frac{1}{2} - \varepsilon(\mathbb{R}^n_+), \)

\(r^+ Pu, r^+ Pu', r^+ P v, r^+ P v' \in \mathcal{H}^{a-2a}(\mathbb{R}^n_+) \subset \mathcal{H}^\frac{1}{2} - a + \varepsilon(\mathbb{R}^n_+), \)

\(u_k, v_k \in H^{s-a-k+\frac{1}{2}}(\mathbb{R}^{n-1}) \subset H^{1-k+\varepsilon}(\mathbb{R}^{n-1}), \quad k = 0, 1. \)

We then find that \(I = \int_{\mathbb{R}^n_+} r^+ Pu' \bar{V}_0 \, dx \) can be interpreted in these larger spaces as

\[
(3.17) \quad I \equiv \langle r^+ Pu', V_0 \rangle_{\mathcal{H}^{\frac{1}{2} - a + \varepsilon}(\mathbb{R}^n_+), \dot{\mathcal{H}}^{\frac{1}{2} - \varepsilon}(\mathbb{R}^n_+)}
\]

(sesquilinear duality). Since \(u' \in H^{a}(\mathbb{R}^n_+) \), \(r^+ Pu' = r^+ \Xi_1^{1-a} e^+ \Xi_1^{1-a} u' = r^+ \Xi_1^{1-a} e^+ w \), where \(w = r^+ \Xi_1^{1-a} u' \in \mathcal{H}^{a-2a}(\mathbb{R}^n_+) \); here \(r^+ \Xi_1^{1-a} e^+ \) maps \(\mathcal{H}^t(\mathbb{R}^n_+) \) to \(\mathcal{H}^{a-2a}(\mathbb{R}^n_+) \) for all \(t \in \mathbb{R} \), with adjoint \(\Xi_1^{1-a} : \dot{\mathcal{H}}^a(\mathbb{R}^n_+) \to \dot{\mathcal{H}}^{-a}(\mathbb{R}^n_+) \), cf. (2.7), (2.8). Therefore, by (3.13),

\[
(3.18) \quad I = \langle r^+ \Xi_1^{1-a} e^+ r^+ \Xi_1^{1-a} u', V_0 \rangle_{\mathcal{H}^{\frac{1}{2} - a + \varepsilon}(\mathbb{R}^n_+), \dot{\mathcal{H}}^{\frac{1}{2} - \varepsilon}(\mathbb{R}^n_+)}
\]

\(= \langle w, \Xi_1^{1-a} V_0 \rangle_{\mathcal{H}^{\frac{1}{2} + \varepsilon}(\mathbb{R}^n_+), \dot{\mathcal{H}}^{-\frac{1}{2} - \varepsilon}(\mathbb{R}^n_+)} = \langle w, \psi_0(x') \otimes \delta(x_n) \rangle_{\mathcal{H}^{\frac{1}{2} + \varepsilon}(\mathbb{R}^n_+), \dot{\mathcal{H}}^{-\frac{1}{2} - \varepsilon}(\mathbb{R}^n_+)} \).

Recall moreover from distribution theory (cf. e.g. [G9] p. 307) that the “two-sided” trace operator \(\tilde{\gamma}_0 : v(x) \mapsto \tilde{\gamma}_0 v = v(x', 0) \) has the mapping \(\tilde{\gamma}_0^* : \varphi(x') \mapsto \varphi(x') \otimes \delta(x_n) \) as adjoint, with continuity properties

\(\tilde{\gamma}_0 : H^{\frac{1}{2} + \varepsilon}(\mathbb{R}^n) \to H^\varepsilon(\mathbb{R}^{n-1}), \quad \tilde{\gamma}_0^* : H^{-\varepsilon}(\mathbb{R}^{n-1}) \to H^{-\frac{1}{2} - \varepsilon}(\mathbb{R}^n), \quad \text{for } \varepsilon > 0. \)
Here $\tilde{\gamma}_0\varphi$ is supported in $\{x_n = 0\}$, hence lies in $\dot{H}^{-\frac{1}{2}}-\varepsilon(\mathbb{R}^n_+)$. Since $w \in \overline{H}^{\frac{1}{2}+\varepsilon}(\mathbb{R}^n_+)$, it has an extension $W \in H^{\frac{1}{2}+\varepsilon}(\mathbb{R}^n)$ with $w = r^+W$, and $\gamma_0w = \tilde{\gamma}_0W$. Then

$$I = \langle w, \psi_0(x') \otimes \delta(x_n) \rangle_{\overline{H}^{\frac{1}{2}+\varepsilon}(\mathbb{R}^n_+), H^{-\frac{1}{2}}-\varepsilon(\mathbb{R}^n_+)} = \langle W, \psi_0(x') \otimes \delta(x_n) \rangle_{H^{\frac{1}{2}+\varepsilon}(\mathbb{R}^n), H^{-\frac{1}{2}}-\varepsilon(\mathbb{R}^n)} = \langle W, \tilde{\gamma}_0^*\psi_0 \rangle_{H^{\frac{1}{2}+\varepsilon}(\mathbb{R}^n), H^{-\frac{1}{2}}-\varepsilon(\mathbb{R}^n)} = \langle \tilde{\gamma}_0W, \psi_0 \rangle_{H^s(\mathbb{R}^n), H^{-s}(\mathbb{R}^n)} = \langle \gamma_0w, \psi_0 \rangle_{L^2(\mathbb{R}^n_+)}$$

since $\psi_0 = v_0 \in L^2(\mathbb{R}^n_+)$. Finally, since $u' = U_1 + u''$ with $\gamma_0w = \gamma_0\Xi_+U_1 = \varphi_1 = u_1 + a\langle D' \rangle u_0$ by (3.6), (3.7), (3.13), we conclude:

Lemma 3.2. Let $P = (1 - \Delta)^a$, and let $u, v \in H^{(a-1)s}(\mathbb{R}^n_+)$, $s > a + \frac{1}{2}$, with Dirichlet and Neumann boundary values $\gamma_0^{-1}u = u_0$ and $\gamma_0^{-1}u = u_1$ (and similarly for v), as defined above. Let $V_0 = \mathcal{F}_{x' \rightarrow x}[\tilde{v}_0(\xi')R^{-1}(x_n)e^{-(\xi')x_n}]$. Then $\int_{\mathbb{R}^n_+} r^+Pu\overline{V_0}dx$, understood as the duality (3.17), satisfies

$$\langle r^+Pu, V_0 \rangle_{\overline{H}^{\frac{1}{2}+\varepsilon}(\mathbb{R}^n_+), H^{\frac{1}{2}}-a+\varepsilon(\mathbb{R}^n_+)} = \langle r^+Pu', V_0 \rangle_{H^{\frac{1}{2}}-a+\varepsilon(\mathbb{R}^n_+), \overline{H}^{\frac{1}{2}}-a-\varepsilon(\mathbb{R}^n_+)} = (u_1 + a\langle D' \rangle u_0, v_0)_{L^2(\mathbb{R}^n_+)}.$$

From this we obtain the Green’s formula:

Theorem 3.3. Let $P = (1 - \Delta)^a$, and let $u, v \in H^{(a-1)s}(\mathbb{R}^n_+)$ with $s > a + \frac{1}{2}$. Then

$$\langle r^+Pu, v \rangle_{\overline{H}^{\frac{1}{2}+\varepsilon}(\mathbb{R}^n_+), H^{\frac{1}{2}}-a+\varepsilon(\mathbb{R}^n_+)} - \langle u, r^+Pv \rangle_{H^{\frac{1}{2}}-a+\varepsilon(\mathbb{R}^n_+), \overline{H}^{\frac{1}{2}}-a-\varepsilon(\mathbb{R}^n_+)} = \int_{\mathbb{R}^n_+} \langle \tilde{\gamma}_0^{-1}u_\gamma^{-1}v - \tilde{\gamma}_0^{-1}u\gamma_1^{-1}v \rangle dx'.$$

Here when $s \geq 2a$, the left-hand side can be written as an ordinary integral

$$\int_{\mathbb{R}^n_+} (r^+P\overline{v}dx - u r^+\overline{Pv}) dx.$$

Proof. It follows from (3.15) and Lemma 3.2 together that when $s > a + \frac{1}{2}$,

$$\langle r^+Pu, v \rangle_{\overline{H}^{\frac{1}{2}+\varepsilon}(\mathbb{R}^n_+), H^{\frac{1}{2}}-a+\varepsilon(\mathbb{R}^n_+)} = \langle r^+Pu', v' \rangle_{\overline{H}^{\frac{1}{2}+\varepsilon}(\mathbb{R}^n_+), H^{\frac{1}{2}}-a+\varepsilon(\mathbb{R}^n_+)} + (u_1 + a\langle D' \rangle u_0, v_0)_{L^2(\mathbb{R}^n_+)}.$$

There is a similar formula obtained by interchanging u and v and conjugating:

$$\langle u, r^+Pv \rangle_{H^{\frac{1}{2}}-a+\varepsilon(\mathbb{R}^n_+), \overline{H}^{\frac{1}{2}+\varepsilon}(\mathbb{R}^n_+)} = \langle u', r^+Pv' \rangle_{H^{\frac{1}{2}}-a+\varepsilon(\mathbb{R}^n_+), \overline{H}^{\frac{1}{2}+\varepsilon}(\mathbb{R}^n_+)} + (u_0, v_1 + a\langle D' \rangle v_0)_{L^2(\mathbb{R}^n_+)}.$$

By Th. 4.1 of [G16],

$$\langle r^+Pu', v' \rangle_{\overline{H}^{\frac{1}{2}+\varepsilon}(\mathbb{R}^n_+), H^{\frac{1}{2}}-a-\varepsilon(\mathbb{R}^n_+)} - \langle u', r^+Pv' \rangle_{H^{\frac{1}{2}}-a-\varepsilon(\mathbb{R}^n_+), \overline{H}^{\frac{1}{2}+\varepsilon}(\mathbb{R}^n_+)} = 0.$$
The dualities written there are consistent with the present ones, since \(u', v' \in H^{a(s)}(\mathbb{R}^n_+) = \Xi^{-a}_+e^{+1/2+\varepsilon}(\mathbb{R}^n_+) \subset H^{1-\varepsilon}_+ \) and \(Pu', Pv' \in \overline{H}^{-2a}(\mathbb{R}^n_+) \subset \overline{H}^{2-2a+\varepsilon}(\mathbb{R}^n_+) \).

Formula (3.20) then follows by taking the difference of (3.22) and (3.23), using that \(a(D') \) is selfadjoint.

If \(s \geq 2a \), then \(r^+Pu, r^+Pv \in \overline{H}^{-2a}(\mathbb{R}^n_+) \subset L_2(\mathbb{R}^n_+) \). Moreover, \(u, v \in x_n^{-2a}H^{a+1}(\mathbb{R}^n_+) + \overline{H}^{2a}(\mathbb{R}^n_+) \), cf. (2.12). So \(r^+Pu, r^+Pv \) are functions, and we can write the dualities as in (3.21), keeping the interpretation in mind. \(\Box \)

Remark 3.4. We take the opportunity to mention that the formula (5.14) in [G15] Th. 5.4 is only exact when \(M = 1 \); when \(M > 1 \), there are missing some terms with \(x_j^{2+\mu}K_0\gamma_{j,k} \) \((k < j)\) and \(\psi \)do coefficients, like \(a(D') \) in (3.7) here. The conclusion (5.15) remains valid. A corrected formula will be included in a forthcoming paper [G18].

4. Green’s formula for variable-coefficient operators.

Let \(P = \text{OP}(p(x, \xi)) \) be a classical \(\psi \)do on \(\mathbb{R}^n \) of order \(2a > 0 \) (global estimates), with symbol \(p(x, \xi) \sim \sum_{j \in \mathbb{N}_0} p_j(x, \xi) \). We assume that \(p \) is even, i.e.,

\[
p_j(x, -\xi) = (-1)^jp_j(x, \xi) \text{ for } |\xi| \geq 1, \text{ all } x.
\]

Let \(\Omega \) be a smooth bounded subset of \(\mathbb{R}^n \), or \(\Omega = \mathbb{R}^n_+ \). The evenness implies that \(p \) satisfies (2.4) with \(m = 2a, \mu = a \), so \(p \) (or \(P \)) has the \(a \)-transmission property at \(\Omega \). The adjoint \(P^* \) is likewise even. (Evenness is assumed for simplicity in the formulations; everything goes through when \(\Omega \) is given on beforehand and \(P \) is just assumed to have the \(a \)-transmission property with respect to the particular \(\Omega \).)

Green’s formula for these operators will first be shown in the case \(\Omega = \mathbb{R}^n_+ \), and afterwards generalized to the curved case. The main strategy is to reduce as much as possible to rules from the Boutet de Monvel calculus, where the issues of operators passing to and from the boundary are dealt with in a systematic way (in the 0-transmission case). We refer the reader to e.g. [G09] for a general presentation of the calculus; a few important ingredients are collected in the Appendix here.

Theorem 4.1. Let \(P \) be a classical \(\psi \)do on \(\mathbb{R}^n \) of order \(2a > 0 \) with even symbol. The following Green’s formula holds for \(u, v \in H^{(a-1)(s)}(\mathbb{R}^n_+) \) when \(s > a + \frac{1}{2} \):

\[
\langle r^+Pu, v \rangle_{\overline{H}^{-a+\frac{1}{2}+\varepsilon}(\mathbb{R}^n_+)} - \langle r^+P^*v, u \rangle_{\overline{H}^{-a+\frac{1}{2}+\varepsilon}(\mathbb{R}^n_+)} = (s_0\gamma_1^{-1}u, \gamma_0^{-1}v) - (s_0\gamma_0^{-1}u, \gamma_1^{-1}v) + (B\gamma_0^{-1}u, \gamma_0^{-1}v),
\]

with \(L_2(\mathbb{R}^{n-1}) \)-scalar products in the right-hand side; here \(s_0 = p_0(x', 0, 0, 1) \), and \(B \) is a first-order \(\psi \)do on \(\mathbb{R}^{n-1} \) whose symbol equals the jump at \(z_n = 0 \) in the bounded part of \(\mathcal{F}_{\langle x', 0, 0, 1 \rangle}^{-1}q(x', 0, \xi) \), where \(q \) is the symbol of \(\Xi^{-a}_+P\Xi^{-a}_- \). The right-hand side can also be written

\[
\Gamma(a)\Gamma(a+1)\int_{\mathbb{R}^{n-1}} (s_0\gamma_1(\frac{u}{x_{n-1}})\gamma_0(\frac{\bar{v}}{x_{n-1}}) - s_0\gamma_0(\frac{u}{x_{n-1}})\gamma_1(\frac{\bar{v}}{x_{n-1}}) + aB\gamma_0(\frac{u}{x_{n-1}})\gamma_0(\frac{\bar{v}}{x_{n-1}})) dx'.
\]

When \(s \geq 2a \), the dualities in the left-hand side can be written as integrals over \(\mathbb{R}^n_+ \).
Proof. Define $Q = \Xi^{-a} P \Xi^{-a}$, it is a generalized ψdo of order 0, with a symbol $q(x, \xi)$ that is the sum of $s_0(x) = p_0(x, 0, 1)$ and a function in $S^0(\mathcal{H}_{-1})$ (notation explained in the Appendix). The principal symbol $q_0(x, \xi)$ is the ψdo symbol $p_0(x, \xi)[\xi]^{-2a}$. We also need the (x', y_n)-form $q'(x', y_n, \xi)$ related to q by (A.11). Now we can write P as $P = \Xi^a Q \Xi^{-a}$.

(In the following study, Ξ^a_{\pm} and Λ^a_{\pm} can be used equally well. With the use of Λ^a_{\pm} and the corresponding choice of Q, the calculations stay within true pseudodifferential operators as much as possible. With Ξ^a_{\pm} the formulas are simpler and more direct; here we draw on the fact that Q has symbol in $S^0(\mathcal{H}_{-1})$ plus smooth functions, where the rules for Poisson and trace operators we need are still valid.)

Using the description of γ_0^{a-1} and K_0^{a-1} given in Section 3, we decompose a function $u \in H^{(a-1)(s)}(\mathbb{R}^n_+)$ as

$$u = u' + K_0^{a-1} \gamma_0^{a-1} u; \text{ here } u' \in H^{(a)(s)}(\mathbb{R}^n_+) \text{ since } \gamma_0^{a-1} u' = 0. \tag{4.3}$$

There is a similar decomposition for v, and we denote

$$\gamma_0^{a-1} u = u_0, \quad \gamma_0^{a-1} v = v_0, \text{ both in } H^{s-a+\frac{1}{2}}(\mathbb{R}^{n-1}). \tag{4.4}$$

The idea of the proof is to show that the contributions from the terms $K_0^a u_0$ and $K_0^a v_0$ give expressions that can be reduced to give the right-hand side of (4.1). Here we eliminate the fractional-order factors so that rules from the Boutet de Monvel calculus can be applied.

We assume $s > a + \frac{1}{2}$, so instead of s we can insert $a + \frac{1}{2} + \varepsilon$, and

$$u, v, K_0^{a-1} u_0 \text{ and } K_0^{a-1} v_0 \in H^{(a-1)(a+\frac{1}{2}+\varepsilon)}(\mathbb{R}^n_+) \subset \dot{H}^{a-\frac{1}{2}-\varepsilon}(\mathbb{R}^n_+),$$

$$u_0, v_0 \in H^{1+\varepsilon}(\mathbb{R}^{n-1}), \tag{4.5}$$

$$u', v' \in H^{a(a+\frac{1}{2}+\varepsilon)}(\mathbb{R}^n_+) \subset \dot{H}^{a+\frac{1}{2}-\varepsilon}(\mathbb{R}^n_+),$$

$$r^+ P u, r^+ P^* v \in \overline{H}^{a+\frac{1}{2}+\varepsilon}(\mathbb{R}^n_+).$$

Then $\langle r^+ P u, v \rangle$ can be interpreted as

$$\langle r^+ P u, v \rangle = \langle r^+ P u, v \rangle_{\overline{H}^{a+\frac{1}{2}+\varepsilon}, \dot{H}^{a-\frac{1}{2}-\varepsilon}}. \tag{4.6}$$

This expression is split into four parts by applying (4.3) to u and v:

$$\langle r^+ P u, v \rangle = I_1 + I_2 + I_3 + I_4, \tag{4.7}$$

$$I_1 = \langle r^+ P u', v' \rangle, \quad I_2 = \langle r^+ P K_0^{a-1} u_0, v' \rangle,$$

$$I_3 = \langle r^+ P u', K_0^{a-1} v_0 \rangle, \quad I_4 = \langle r^+ P K_0^{a-1} u_0, K_0^{a-1} v_0 \rangle. \tag{4.8}$$

I_1 will be kept unchanged, to match a similar term with P^* later.

For I_2 we observe (for small ε), using (2.8):

$$I_2 = \langle r^+ P K_0^{a-1} u_0, v' \rangle_{\overline{H}^{a+\frac{1}{2}+\varepsilon}, \dot{H}^{a-\frac{1}{2}-\varepsilon}}$$

$$= \langle r^+ q^{1-a} e^{r^+ Q} \Xi^{-1} e^{P} K_0^a u_0, v' \rangle_{\overline{H}^{a+\frac{1}{2}+\varepsilon}, \dot{H}^{a-\frac{1}{2}-\varepsilon}}$$

$$= \langle r^+ Q \Xi^a_+ e^{P} K_0^a u_0, \Xi^a_+ v' \rangle_{\overline{H}^{a+\frac{1}{2}+\varepsilon}, \dot{H}^{a-\frac{1}{2}-\varepsilon}}$$

$$= \langle r^+ Q \Xi^a_+ e^{P} K_0^a u_0, \Xi^a_+ v' \rangle_{\overline{H}^{a+\frac{1}{2}+\varepsilon}, \dot{H}^{a-\frac{1}{2}-\varepsilon}}.$$
We shall now apply the rules of calculus for \(\psi \) dbo's, as recalled in the Appendix. Let us mention here that the projection (idempotent) \(h^+ \) applied to \(\xi_n \)-dependent symbols can just be thought of as the Fourier transform of the projection \(e^+ r^+ \) in \(L_2(\mathbb{R}) \). It is applied to a more refined space \(\mathcal{H} = \mathcal{F}_{x_n \rightarrow \xi_n}(e^{-S_+} \oplus e^+ S_+ \oplus \mathbb{C}[\delta]) \), where \(S_\pm \) is short for \(r^\pm S(\mathbb{R}) \), and \(\mathbb{C}[\delta] \) is the space of distributions supported in \(\{x_n = 0\} \). Then \(\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^- \) where \(\mathcal{H}^+ = \mathcal{F}_{x_n \rightarrow \xi_n}(e^+ S_+) \) and \(\mathcal{H}^- = \mathcal{F}_{x_n \rightarrow \xi_n}(e^{-S_-}) \oplus \mathbb{C}[\xi_n] \), with \(\mathbb{C}[\xi_n] \) denoting the space of complex polynomials in \(\xi_n \). Now \(h^\pm \) is the projection of \(\mathcal{H} \) onto \(\mathcal{H}^\pm \) along \(\mathcal{H}^\mp \). More details in the Appendix, and a full deduction e.g. in [G09] Sect. 10.2.

Using the symbol \(q' \) of \(Q \) in \((x', y_n) \)-form, we have:

\[
(4.9) \quad r^+ Q \Xi_n^1 e^+ K_0 = \text{OPK}(h^+(q' \# \chi_n^1 \chi_n^{-1})) = \text{OPK}(h^+ q'(x', 0, \xi)),
\]

which leads to

\[
(4.10) \quad I_2 = \langle \text{OPK}(h^+ q') u_0, \Xi_n^a v' \rangle_{\mathcal{H}^+, \mathcal{H}^-}.
\]

If \(Q = I \) we get zero here, but for general \(Q \) there is a nontrivial contribution from \(h^+ q' \). Note that with \(s_0(x) = p_0(x, 0, 1) \),

\[
q(x, \xi) = s_0(x) + h_{-1} q(x, \xi), \quad h^+ q = h^+ h_{-1} q, \quad h^- q = s_0 + h_{-1} q,
\]

with similar rules for \(q'(x', y_n, \xi) \).

Now consider \(I_3 \). Here, using (2.8) and the adjoint \(K_0^* \) of \(K_0 \),

\[
(4.12) \quad I_3 = \langle r^+ P u', K_0^a v_0 \rangle = \langle r^+ \Xi_n^a Q \Xi_n^1 u', \Xi_n^a e^+ K_0 v_0 \rangle_{\mathcal{H}^+, \mathcal{H}^-} = \langle r^+ \Xi_n^1 e^+ r^+ \Xi_n^a Q \Xi_n^1 u', K_0 v_0 \rangle_{\mathcal{H}^+, \mathcal{H}^-}
\]

since \(v_0 \) is in \(L_2(\mathbb{R}^{n-1}) \). It is used that \(\mathcal{H}^+ \) identifies with \(\mathcal{H}^t \) for \(|t| < \frac{1}{2} \) (there the indication \(e^+ \) is understood).

Denote \(\Xi_n^a u' = w \in e^+ \mathcal{H}^t \mathcal{H}^t (\mathbb{R}^n_+) \). Observe that

\[
K_0^* r^+ \Xi_n^1 Q w = \text{OPT}(h^- (\chi_n^{-1} \chi_n^{-1} \# q)) w = \text{OPT}(h^- q'(x', 0, \xi)) w,
\]

by the rules of calculus, so

\[
(4.13) \quad I_3 = \langle \text{OPT}(h^- q) \Xi_n^a u', v_0 \rangle_{L_2(\mathbb{R}^{n-1})} = \langle (s_0 \gamma_0 + \text{OPT}(h_{-1} q)) \Xi_n^a u', v_0 \rangle_{L_2(\mathbb{R}^{n-1})} = \langle s_0 \gamma_0 u', v_0 \rangle_{L_2(\mathbb{R}^{n-1})} + \langle \text{OPT}(h_{-1} q) \Xi_n^a u', v_0 \rangle_{L_2(\mathbb{R}^{n-1})}.
\]

The first term is expected from Theorem 3.3, and there is a nontrivial extra term.
Finally, consider I_4: Here

$$I_4 = \langle r^+ P K_0^{a-1} u_0, K_0^{a-1} v_0 \rangle_{\mathcal{H}^{a+\frac{1}{2}+\epsilon}, \mathcal{H}^{a-\frac{1}{2}-\epsilon}}$$

$$= \langle r^+ \Xi_+ e^+ K_0 u_0, \Xi_+ e^+ K_0 v_0 \rangle_{\mathcal{H}^{a+\frac{1}{2}+\epsilon}, \mathcal{H}^{a-\frac{1}{2}-\epsilon}}$$

$$= \langle r^+ \Xi_+ e^+ r^+ \Xi_+ e^+ K_0 u_0, K_0 v_0 \rangle_{\mathcal{H}^{a+\frac{1}{2}+\epsilon}, \mathcal{H}^{a-\frac{1}{2}-\epsilon}}$$

$$= \langle (K_0^* r^+ \Xi_+ e^+ K_0 u_0, v_0)_{H^r(\mathbb{R}^{n-1})}, H^{-\epsilon}(\mathbb{R}^{n-1}) \rangle$$

$$= (Bu_0, v_0)_{L^2(\mathbb{R}^{n-1})},$$

where $\mathcal{B} = K_0^* r^+ \Xi_1 e^+ r^+ \Xi_+ e^+ K_0$ is a certain ψ-do on \mathbb{R}^{n-1} of order 1. We can reduce this expression by rules of calculus involving the so-called plus-integral, cf. (A.14)ff. and (A.15). As in (4.9), the symbol of the Poisson operator $r^+ \Xi_1 e^+ K_0$ is $h^+ q'(x', 0, \xi)$, which by composition with $r^+ \Xi_1 e^+$ to the left gives a Poisson operator with symbol $h^+ (\chi_1 \# h^+ q')$; hence the symbol $b(x', \xi')$ of \mathcal{B} satisfies by (A.14),

$$b(x', \xi') = \frac{1}{2\pi} \int_0^+ \chi_1^{-1} \# h^+ (\chi_1 \# h^+ q'(x', 0, \xi)) d\xi_n$$

$$= \frac{1}{2\pi} \int_0^+ \chi_1^{-1} \# (h^+ q'(x', 0, \xi) - h^+ (\chi_1 \# h^+ q'(x', 0, \xi))) d\xi_n$$

$$= \frac{1}{2\pi} \int_0^+ (h^+ q'(x', 0, \xi) - \chi_1^{-1} \# h^+ (\chi_1 \# h^+ q'(x', 0, \xi))) d\xi_n$$

$$= \frac{1}{2\pi} \int_0^+ h^+ q'(x', 0, \xi) d\xi_n;$$

it was used here that the plus-integral vanishes on \mathcal{H}^-. (The Leibniz product $\#$ pertains to the x'-dependence.) Now observe that with $\mathcal{F}_{\xi_n \rightarrow z_n}^{-1} \hat{q}'(x', 0, \xi)$ denoted $\hat{q}'(x', 0, \xi', z_n)$,

$$\frac{1}{2\pi} \int_0^+ h^+ q'(x', 0, \xi) d\xi_n = \lim_{z_n \rightarrow 0^+} \hat{q}'(x', 0, \xi', z_n),$$

cf. (A.15). (We use here for each fixed (x', ξ') that since $q'(x', 0, \xi', z_n)$ is the sum of a function $f(x', \xi', \xi_n) \in \mathcal{H}_{-1}$ and the constant $s_0(x', 0)$, $\mathcal{F}_{\xi_n \rightarrow z_n}^{-1} \hat{q}'(x', 0, \xi', \xi_n)$ is the sum of a function $\tilde{f}(x', \xi', z_n) \in e^{-\mathcal{S}(\mathbb{R}^-)} + e^+ \mathcal{S}(\mathbb{R}^+)$ and the distribution $s_0(x', 0) \delta(z_n)$, where the latter does not enter in the limit from the right.) Moreover, in view of the formula (A.11),

$$\hat{q}'(x', 0, \xi', z_n) \sim \sum_{j \in \mathbb{N}_0} \frac{1}{j!} z_n^j \partial_{x_n}^j \hat{q}(x', 0, \xi', z_n),$$

hence

$$\lim_{z_n \rightarrow 0^+} \hat{q}'(x', 0, \xi', z_n) = \lim_{z_n \rightarrow 0^+} \hat{q}(x', 0, \xi', z_n),$$

since the positive powers of z_n vanish at 0. It follows that

$$b(x', \xi') = \lim_{z_n \rightarrow 0^+} \hat{q}(x', 0, \xi', z_n) = \frac{1}{2\pi} \int_0^+ h^+ q(x', 0, \xi) d\xi_n.$$
There is a similar decomposition of \(\langle u, r^+ P^* v \rangle \) in four terms \(I_1, I_2, I_3, I_4 \). We here note that \(Q^* \) has the symbol in \(y \)-form \(\tilde{q}(y, \xi) \), where

\[
(4.17) \quad \tilde{q} = s_0 + h_{-1}q, \quad h^+ \tilde{q} = h^+ (h_{-1}q) = h_{-1}q, \quad h^- \tilde{q} = s_0 + h^-(h_{-1}q) = s_0 + h^+ q.
\]
The symbol of \(Q^* \) in \((y', x_n) \)-form is \(\tilde{q}'(y', x_n, \xi) \), satisfying similar rules.

We here find the formulas

\[
I'_1 = \langle u', r^+ P^* v' \rangle_{\overline{H}^{\alpha - \frac{1}{2} - \epsilon, \Pi^{-a + \frac{1}{2} + \epsilon}},}
I'_2 = \langle \Xi^a_u u', \text{OPK}(h_{-1}q(y', 0, \xi))v_0 \rangle_{\overline{H}^{\alpha - \frac{1}{2} - \epsilon, \Pi^{-a + \frac{1}{2} + \epsilon}},}
I'_3 = \langle u_0, s_0 e_0^a v' \rangle + \langle v_0, \text{OPT}(h^+ q'(y', 0, \xi))\Xi^a_u v' \rangle,
I'_4 = \langle u_0, B'v_0 \rangle_{L^2(\mathbb{R}^{n-1}),}
\]
where the operators derived from \(q \) are in \(y' \)-form. The operator \(B' \) is defined as

\[
B' = K^a_0 r^+ \Xi^1_+ e^+ + r^+ Q^* \Xi^1_+ e^+ K_0;
\]
it has the symbol (reduced as in (4.15))

\[
\tilde{b}'(y', \xi') = \frac{1}{2\pi} \int^+ \chi^{-1}_- h^+ (\chi^1_- h^+ \tilde{q}(y', 0, \xi)) d\xi_n = \lim_{z_n \to 0^+} \mathcal{F}_{\xi_n \to z_n}^{-1} \tilde{q}(y', 0, \xi', z_n).
\]

In view of (4.17), \(h^+ \tilde{q} = h_{-1}q \). We note that \(h^+ q \) and \(h_{-1}q \) can be quite different, so \(B \) and \(B' \) (or its adjoint) are in general different from one another.

The adjoint of \(B' \) is \(B'^* = \text{OP}'(\overline{B'}(x', \xi')) \). It is well-known (and easily checked, cf. e.g. [G09] p. 118) that for a distribution \(\varphi(\xi_n) \), \([\mathcal{F}_{\xi_n \to z_n}^{-1} \varphi(z_n)] = [\mathcal{F}_{\xi_n \to z_n}^{-1} \varphi](-z_n) \). Then

\[
I'_4 = (B'^* u_0, v_0), where B'^* = \text{OP}'(\overline{B'}(x', \xi'))
\]

\[
(4.19) \quad \overline{b'}(x', \xi') = \lim_{z_n \to 0^+} \mathcal{F}_{\xi_n \to z_n}^{-1} \tilde{q}(x', 0, \xi', z_n) = \lim_{z_n \to 0^+} \tilde{q}(x', 0, \xi', z_n).
\]

The full right-hand side in (4.1) is \(I_1 + I_2 + I_3 + I_4 - I'_1 - I'_2 - I'_3 - I'_4 \), that we can now calculate. Here we find:

\[
I_1 - I'_1 = 0,
\]
by [G16] Th. 4.1. Next,

\[
I_2 - I'_2 = \langle \text{OPK}(h^+ q')u_0, \Xi^a_+ v' \rangle_{\overline{H}^{-\frac{1}{2} - \epsilon, H^{\alpha - \frac{1}{2} - \epsilon}}} - \langle \Xi^a_+ u', \text{OPK}(h_{-1}q)v_0 \rangle_{H^{\alpha - \frac{1}{2} - \epsilon, \Pi^{-a + \frac{1}{2} + \epsilon}}},
\]

\[
I_3 - I'_3 = \langle s_0 \gamma^a_0 u', v_0 \rangle + \langle \text{OPT}(h_{-1}q)\Xi^a_+ u', v_0 \rangle - \langle v_0, s_0 e_0^a v' \rangle - \langle u_0, \text{OPT}(h^+ q')\Xi^a_+ v' \rangle
\]

\[
= \langle s_0 (\gamma^a_1 - 1) u + a(D')u_0, v_0 \rangle - \langle s_0 u_0, \gamma_1^a - 1 v + a(D')v_0 \rangle
\]

\[
+ \langle \text{OPT}(h_{-1}q)\Xi^a_+ u', v_0 \rangle - \langle u_0, \text{OPT}(h^+ q')\Xi^a_+ v' \rangle
\]

\[
= \langle s_0 \gamma_1^a - 1 u, v_0 \rangle - \langle s_0 u_0, \gamma_1^a - 1 v \rangle
\]

\[
+ \langle \text{OPT}(h_{-1}q)\Xi^a_+ u', v_0 \rangle - \langle u_0, \text{OPT}(h^+ q')\Xi^a_+ v' \rangle;
\]
we have here used the rules for adjoints of Poisson and trace operators, and the fact that \(\gamma_0 u' = \gamma_1 u + a(D')u_0 \), cf. (3.9). (Operators in \(y' \)-form in the right-hand side give operators in \(x' \)-form when transposed to the left-hand side.) Thus

\[
I_2 + I_3 - I_2' - I_3' = \langle s_0 \gamma_1^{-1} u, \gamma_0^{-1} v \rangle - \langle s_0 \gamma_1^{-1} u, \gamma_1^{-1} v \rangle.
\]

Finally,

\[
I_4 - I_4' = ((B - B')u_0, v_0)_{L_2(\mathbb{R}^{n-1})} = ((B - B')_0 u_0, v_0)_{L_2(\mathbb{R}^{n-1})},
\]

where \(B = B - B' \) satisfies, with \(b(x', \xi') = b(x', \xi') - \overrightarrow{\nabla}(x', \xi') \),

\[
(4.20) \quad B = \text{OP}'(b(x', \xi')) \quad b(x', \xi') = \lim_{z_n \to 0^+} \overline{\delta}(x', \xi', z_n) - \lim_{z_n \to 0^-} \overline{\delta}(x', 0, \xi', z_n),
\]

the jump at \(z_n = 0 \) in the bounded part of \(\overline{\delta}(x', 0, \xi', z_n) \). Altogether, we find:

\[
\langle r^+ Pu, v \rangle - \langle u, r^+ P^* v \rangle = \langle s_0 \gamma_1^{-1} u, \gamma_0^{-1} v \rangle - \langle s_0 \gamma_1^{-1} u, \gamma_1^{-1} v \rangle + (B \gamma_0^{-1} u, \gamma_0^{-1} v),
\]

with \(L_2(\mathbb{R}^{n-1}) \)-dualities in the right-hand side, containing a generally nontrivial \(\psi \)-do \(B \) on \(\mathbb{R}^{n-1} \). The formulation in (4.2) follows by inserting (3.3).

The last assertion is seen as in Theorem 3.3. \(\square \)

Remark 4.2. Theorem 3.3 shows that \(B = 0 \) in the simple case of \(P = (1 - \Delta)^a \). More generally, for operators with principal symbol \(|\xi|^2a \), the principal (first-order) symbol of \(B \) is zero, so \(B \) is of order 0.

Note moreover that if \(\delta(x', 0, \xi') - s_0(x', 0) \) is \(O(\langle \xi_n \rangle^{-2}) \), hence integrable in \(\xi_n \), for all \(\xi' \), then \(\overline{\delta}(x', 0, \xi', z_n) - s_0(x', 0) \delta(z_n) \) is a continuous function of \(z_n \), so \(b(x', \xi') = 0 \) and hence \(B = 0 \). In general, \(\overline{\delta} \) is the sum of a part depending only on the principal and subprincipal terms in \(p \) and a part that is \(O(\langle \xi \rangle^{-2}) \); the latter part does not contribute to \(B \).

To extend the result of Theorem 4.1 to a domain \(\Omega \) with curved boundary, we shall use a suitable cover of \(\overline{\Omega} \) by coordinate charts, and a suitable partition of unity. Such choices were described in [G16], and we recall them in the following remark.

Remark 4.3. \(\overline{\Omega} \) has a finite cover by bounded open sets \(U_0, \ldots, U_I \) with \(C^\infty \)-diffeomorphisms \(\kappa_i : U_i \to V_i \), \(V_i \) bounded open in \(\mathbb{R}^n \), such that \(U_i^+ = U_i \cap \Omega \) is mapped to \(V_i^+ = V_i \cap \mathbb{R}^n_+ \) and \(U_i' = U_i \cap \partial \Omega \) is mapped to \(V_i' = V_i \cap \partial \mathbb{R}^n_+ \); as usual we write \(\partial \mathbb{R}^n_+ = \mathbb{R}^{n-1} \). For any such cover there exists an associated partition of unity, namely a family of functions \(\varrho_i \in C_0^\infty(U_i) \) taking values in \([0, 1]\) such that \(\sum_{i=0, \ldots, I} \varrho_i = 1 \) on a neighborhood of \(\overline{\Omega} \). When \(P \) is a \(\psi \)-do on \(\mathbb{R}^n \), its application to functions supported in \(U_i \) carries over to functions on \(V_i \) as a \(\psi \)-do \(P^{(i)} \) defined by

\[
(4.21) \quad P^{(i)} v = P(v \circ \kappa_i) \circ \kappa_i^{-1}, \quad v \in C_0^\infty(V_i).
\]

We shall use a convenient system of coordinate charts as described in [G16], Remark 4.3: Here \(\partial \Omega \) is covered with coordinate charts \(\kappa_i' : U_i' \to V_i' \subset \mathbb{R}^{n-1}, i = 1, \ldots, I_0 \), and the \(\kappa_i \) will be defined on certain subsets of a tubular neighborhood \(\Sigma_r = \{ x' + tv(x') \mid x' \in \mathbb{R}^{n-1}, 0 < v < r \} \).
∂Ω, |t| < r\}, where \(\nu(x') = (\nu_1(x'), \ldots, \nu_n(x')) \) is the interior normal to \(\partial \Omega \) at \(x' \in \partial \Omega \), and \(r \) is taken so small that the mapping \(x' + tv(x') \mapsto (x', t) \) is a diffeomorphism from \(\Sigma_r \) to \(\partial \Omega \times] - r, r [\). For each \(i, \kappa_i \) is defined as the mapping \(\kappa_i: x' + tv(x') \mapsto (\kappa_i'(x'), t) \) \((x' \in U_i')\). \(\kappa_i \) goes from \(U_i \) to \(V_i \), where

\[
U_i = \{ x' + tv(x') \mid x' \in U_i', |t| < r \}, \quad V_i = V_i' \times] - r, r [.
\]

These charts are supplied with a chart consisting of the identity mapping on an open set \(U_0 \) containing \(\Omega \setminus \Sigma_{r, +} \), with \(U_0 \subset \Omega \), to get a full cover of \(\overline{\Omega} \).

Note that the normal \(\nu(x') \) at \(x' \in \partial \Omega \) is carried over to the normal \((0, 1) \) at \((\kappa_i'(x'), 0) \) when \(x' \in U_i' \). The halfline \(L_{x'} = \{ x' + tv(x') \mid t \geq 0 \} \) is the geodesic into \(\Omega \) orthogonal to \(\partial \Omega \) at \(x' \) (with respect to the Euclidean metric on \(\mathbb{R}^n \)), and there is a positive \(t' \leq r \) such that for \(0 < t < t' \), the distance \(d(x) \) between \(x = x' + tv(x') \) and \(\partial \Omega \) equals \(t \). Then \(t \) plays the role of \(d \) in the definition of expansions and boundary values of \(u \in \mathcal{E}_{a-1}(\overline{\Omega}) \) in [G15] (5.3)ff. (cf. also (3.1) above)

\[
(4.23) \quad u = \frac{1}{\Gamma(a)} t^{a-1} u_0 + \frac{1}{\Gamma(a+1)} t^a u_1 + \frac{1}{\Gamma(a+2)} t^{a+1} u_2 + \ldots \quad \text{for } t > 0, \quad u = 0 \quad \text{for } t < 0,
\]

where the \(u_j \) are constant in \(t \) for \(t < t' \); this serves to define the boundary values \(\gamma_j^{a-1} u = \gamma_0 u_j = (u_j|_{t=0}), j = 0, 1, 2, \ldots \). The definition extends to define the two first boundary values \(\gamma_0^{a-1} u \) and \(\gamma_1^{a-1} u \) when \(u \in H^{(a-1)(s)}(\overline{\Omega}) \) with \(s > a + \frac{1}{2} \) for the first boundary value, \(s > a - \frac{1}{2} \) suffices. By comparison of (4.23) with \(t^{a-1} \) times the Taylor expansion of \(u/t^{a-1} \) in \(t \), we also have:

\[
(4.24) \quad \gamma_0^{a-1} u = \Gamma(a) \gamma_0(u/t^{a-1}), \quad \gamma_1^{a-1} u = \Gamma(a+1) \gamma_1(u/t^{a-1}) = \Gamma(a+1) \gamma_0(\partial_t(u/t^{a-1})),
\]

similarly as in (3.3).

In addition to the above construction of a cover by coordinate charts and an associated partition of unity, it is for some purposes practical to have a partition of unity subordinate to a cover as in [G16] Lemma 4.4. The cover is constructed from the cover we have just described, by an augmentation by extra coordinate charts \(\kappa_i: U_i \to V_i, i = I_0 + 1, \ldots, I_1 \), such that there is a partition of unity \(\varrho_k, k = 1, \ldots, J_0 \), where for any two functions \(\varrho_k, \varrho_l \) there is an \(i = i(k, l) \) in \(\{0, 1, \ldots, I_1\} \) for which \(\text{supp } \varrho_k \cup \text{supp } \varrho_l \subset U_i(k, l) \), see details in [G16]. The maps \(\kappa_i: U_i \to V_i \) still have the property that the normal coordinate \(t \) at the boundary goes over into \(x_n \) (without distortion) for small \(t \).

Theorem 4.4. Let \(P \) is a classical \(\psi \)do on \(\mathbb{R}^n \) of order \(2a > 0 \) with even symbol, and let \(\Omega \) be a smooth bounded subset. The following Green’s formula holds for \(u, v \in H^{(a-1)(s)}(\overline{\Omega}) \) when \(s > a + \frac{1}{2} \):

\[
(4.25) \quad \langle r^+ Pu, v \rangle_{H^{a-\frac{1}{2}-\varepsilon} \Omega} - \langle u, r^+ P^* v \rangle_{H^{a-\frac{1}{2}-\varepsilon} \Omega} = (s_0 \gamma_0^{a-1} u, \gamma_0^{a-1} v) - (s_0 \gamma_0^{a-1} u, \gamma_1^{a-1} v) + (B \gamma_0^{a-1} u, \gamma_0^{a-1} v);
\]

the scalar products in the right-hand side are in \(L_2(\partial \Omega) \), \(s_0(x) = p_0(x, \nu(x)) \) at boundary points \(x \), and \(B \) is a first-order \(\psi \)do on \(\partial \Omega \), depending only on the principal and subprincipal symbols of \(P \).
Here the right-hand side equals, in terms of the normal coordinate t (with $\gamma_1 w = \gamma_0 \partial_t w$):

\begin{equation}
\Gamma(a)\Gamma(a+1) \int_{\partial \Omega} \left(s_0 \gamma_1(\frac{u}{\tilde{a}})\gamma_0(\frac{v}{\tilde{a}}) - s_0\gamma_0(\frac{u}{\tilde{a}})\gamma_1(\frac{v}{\tilde{a}}) - aB\gamma_0(\frac{u}{\tilde{a}})\gamma_0(\frac{v}{\tilde{a}}) \right) d\sigma.
\end{equation}

When $s \geq 2a$, the left-hand side can be written as an integral over Ω.

Proof. For this proof we will use the cover U_i, $i = 0, \ldots, I_1$, and the subordinate partition of unity ϱ_k, $k = 1, \ldots, J_0$, described at the end of Remark 4.3.

The first step is to show that the problem can be localized, i.e., that it suffices to prove the formula for functions supported in one of the coordinate patches z. This is not completely obvious, since the space $H^{(a-1)(s)}(\Omega)$ is of the form $\Lambda_+^{(a-1)}e^{+\mathcal{H}^{s-a+1}}(\Omega)$, where $e^{+\mathcal{H}^{s-a+1}}(\Omega)$ is preserved under multiplication by cutoff functions, but $\Lambda_+^{(a-1)}$ is nonlocal. We proceed as follows:

Choose nonnegative functions $\psi_k, \zeta_k \in C_0^\infty(U_i)$ such that $\zeta_k \varrho_k = \varrho_k$, i.e., ζ_k is 1 on $\text{supp } \varrho_k$, and similarly $\psi_k \zeta_k = \zeta_k$. Let $u \in H^{(a-1)(s)}(\Omega)$. Then $u = \Lambda_+^{(a-1)}z$ for some $z \in e^{+\mathcal{H}^{s-a+1}}(\Omega)$, and we can write

\[
\begin{align*}
 u &= \Lambda_+^{(a-1)} \sum_{k=0}^{I_1} \varrho_k z = \sum_k \zeta_k \Lambda_+^{(a-1)} \varrho_k z + \sum_k (1 - \zeta_k) \Lambda_+^{(a-1)} \varrho_k z \\
 &= \sum_k u_k + r, \quad \text{with } u_k = \zeta_k \Lambda_+^{(a-1)} \varrho_k z, \quad r = \sum_k (1 - \zeta_k) \Lambda_+^{(a-1)} \varrho_k z.
\end{align*}
\]

Since $(1 - \zeta_k) \varrho_k = 0$, $(1 - \zeta_k) \Lambda_+^{(a-1)} \varrho_k$ is a ψdo of order $-\infty$, so it maps z into $C^\infty(\mathbb{R}^n)$; moreover, its symbol in local coordinates is holomorphic for $\text{Im } \xi_n < 0$, so it preserves support in $\overline{\Omega}$. Hence r is in $C^\infty(\overline{\Omega})$, contained in $H^1_p(\overline{\Omega}) \subset H^{(a-1)(s)}(\overline{\Omega})$ for all t. The integral of $P \tilde{f} \tilde{g} - f P^* \tilde{g}$ over Ω is zero when f or $g \in C^\infty(\overline{\Omega})$, so the contributions from r are zero. Henceforth we focus on the sum

\[
 u' = \sum_k u_k,
\]

where u_k is supported in $\text{supp } \zeta_k \subset U_i$ and belongs to $H^{(a-1)(s)}(\Omega)$. A given $v \in H^{(a-1)(s)}(\Omega)$ is similarly decomposed. (A similar localization step should have been included in the proof of [G16] Th. 4.5.)

Now setting

\begin{equation}
P_{kl} = \psi_l P \psi_k, \quad P_{kl}^* = \psi_k P^* \psi_l,
\end{equation}

we can write, since ψ_k is 1 on $\text{supp } u_k$ and $\text{supp } v_k$,

\begin{equation}
\langle r^+ Pu', v' \rangle_{\Omega} - \langle u', r^+ P^* v' \rangle_{\Omega} = \sum_{k,l \leq J_0} \left(\langle (r^+ P_{kl} u_k, v_l)_{U_i \cap \Omega} - \langle u_k, r^+ P_{kl}^* v \rangle_{U_i \cap \Omega} \right).
\end{equation}

Recall the notation $U_i \cap \Omega = U_i^+, V_i \cap \mathbb{R}^n = V_i^+$. For each pair (k, l) we treat the term by use of the coordinate map for U_i, $i = i(k, l)$. Denote by P_{kl} the operator on $V_i \subset \mathbb{R}^n$ that P_{kl} carries over to; its kernel is compactly supported in $V_i \times V_i$. In detail,

\begin{equation}
P_{kl} = \psi_l^{(i)} P^{(i)} \psi_k^{(i)},
\end{equation}
cf. (4.21). The parity property of the symbol, hence the \(a \)-transmission property at any boundary, is preserved under the coordinate transformation.

In the \(i \)’th term, the two sides are compactly supported in \(U_i \). We shall need to carry this over to a (sesquilinear) distribution duality over \(V_i \) using the coordinate change \(\kappa_i \), and therefore recall some general rules:

\[
\langle f, g \rangle_{U_i} = \langle f, J g \rangle_{V_i}, \\
\langle T f, g \rangle_{U_i} = \langle f, T^* g \rangle_{U_i} = \langle f, J T^* g \rangle_{V_i}, \\
\langle T f, g \rangle_{U_i} = \langle T f, J g \rangle_{V_i} = \langle f, (T)^*(J g) \rangle_{V_i} = \langle f, J^{-1}[T]^*(J g) \circ \kappa_i \rangle_{U_i}.
\]

Here the underlined objects are the elements carried over to \(V_i \), and \(J \) is the Jacobian of the mapping \(\kappa_i^{-1} \) (the absolute value of its functional determinant). \(J \) is a smooth positive function; for simplicity of notation we leave out underlines and the marking of \(i \)-dependence there. The star indicates the adjoint with respect to integration over \(U_i \), and the star in parentheses indicates the adjoint with respect to integration over \(V_i \). We see that the two concepts of adjoints are related by

\[
JT^*g = (T)^*(Jg).
\]

We have for the \((k,l) \)’th term:

\[
\langle r^+ P_{kl} u_k, v_l \rangle_{U_i^+} = \langle r^+ P_{kl} u_k, J v_l \rangle_{V_i^+}, \quad \langle u_k, r^+ P_{kl}^* v_l \rangle_{U_i^+} = \langle u_k, r^+ J(P_{kl}^*) v_l \rangle_{V_i^+},
\]

so with \(w_l = J v_l \),

\[
\langle r^+ P_{kl} u_k, v_l \rangle_{U_i^+} - \langle u_k, r^+ P_{kl}^* v_l \rangle_{U_i^+} = \langle r^+ P_{kl} u_k, w_l \rangle_{V_i^+} - \langle u_k, r^+(P_{kl})^*(w_l) \rangle_{V_i^+},
\]

where \((P_{kl})^* \) is the adjoint in the \(V_i^+ \)-setting,

\[
(P_{kl})^{(*)} = J(P_{kl}^*) J^{-1}.
\]

The underlined operators are defined on \(V_i \), where \(\kappa_i(U_i \cap \overline{\Omega}) \subset \mathbb{R}^n_+ \) and the relevant part of the boundary of \(V_i \cap \overline{\mathbb{R}^n_+} \) is a subset of \(\mathbb{R}^{n-1} \) (all objects are supported away from the other parts of the boundary).

We can consider \(P^{(i)} \) as extended to an operator of the same type on all of \(\mathbb{R}^n \) with global estimates (and keep the name \(P^{(i)} \)), so that (4.29) holds with the globally defined operator; this is followed up for the adjoint.

Now we are in a situation to apply Theorem 4.1, which gives

\[
\langle r^+ P_{kl} u_k, w_l \rangle_{V_i^+} - \langle u_k, r^+(P_{kl})^*(w_l) \rangle_{V_i^+} = \langle r^+ P_{kl} u_k, w_l \rangle_{\mathbb{R}^n_+} - \langle u_k, r^+(P_{kl})^*(w_l) \rangle_{\mathbb{R}^n_+} = (s_{kl,0} \gamma_{1} a^{-1} u_k, \gamma_{0} a^{-1} w_l) - (s_{kl,0} \gamma_{0} a^{-1} u_k, \gamma_{1} a^{-1} w_l) + (s_{kl} \gamma_{0} a^{-1} u_k, \gamma_{0} a^{-1} w_l),
\]

the last line consists of \(L_2(\mathbb{R}^{n-1}) \)-scalar products. Here \(s_{kl,0} = \psi_j p_0(x', 0, 0, 1) \psi_k \).
The dualities over V_i^\perp carry over to dualities over U_i^\perp by (4.30). For the scalar products over \mathbb{R}^{n-1} (supported in V'_i), we note that the coordinate transform preserves the definitions of γ_0^{a-1} and γ_1^{a-1} (since t corresponds exactly to x_n for $t < r'$),

$$[\gamma_0^{a-1} w_k] \circ \kappa_i' = \gamma_0^{a-1} u_k, \quad [\gamma_1^{a-1} w_k] \circ \kappa_i' = \gamma_1^{a-1} u_k.$$

Moreover,

$$\gamma_0^{a-1} w_l = \Gamma(a) \gamma_0(J_{U_i/t^{a-1}}) = J_0 \gamma_0^{a-1} w_l,$$

$$\gamma_1^{a-1} w_l = \Gamma(a + 1) \gamma_0(\partial_t (J_{U_i/t^{a-1}})) = J_0 \gamma_1^{a-1} w_l + a J_1 \gamma_0^{a-1} w_l,$$

where $J_0 = \gamma_0(J), \ J_1 = \gamma_0(\partial_t J)$. Here J_0 defines the area element $d\sigma$ in integrations over the boundary:

$$\int_{U_i'} f(x') \, d\sigma = \int_{V_i'} f((\kappa_i')^{-1}(y')) J_0 \, dy',$$

and J_1 gives rise to an extra term along with $\gamma_1^{a-1} v_l$. Then (4.31) carries over to the formula on U_i^\perp:

$$(4.32)\quad \langle r^+ P_{kl} u_k, v_l \rangle_{U_i^\perp} - \langle u_k, r^+ P_{kl}^* v_l \rangle_{U_i^\perp} = (s_{kl,0} \gamma_1^{a-1} u_k, \gamma_1^{a-1} v_l)_{U_i'} - (s_{kl,0} \gamma_0^{a-1} u_k, \gamma_1^{a-1} v_l)_{U_i'}$$

$$+ ((B_{kl} - a s_{kl,0} J_0^{-1} J_1) \gamma_0^{a-1} u_k, \gamma_1^{a-1} v_l)_{U_i'},$$

where $s_{kl,0} = \psi_l p_0(x, \nu(x)) \psi_k$. Here B_{kl} depends only on the principal and subprincipal symbols of P_{kl}, cf. Remark 4.2.

Finally, summing over k and l and using that $\gamma_0^{a-1} u = \gamma_0^{a-1} u' = \sum_k \gamma_0^{a-1} u_k$, we find (4.25) with

$$(4.33)\quad B \gamma_0^{a-1} u = \sum_{k,l} (B_{kl} - a s_{kl,0} J_0^{-1} J_1) \gamma_0^{a-1} u_k.$$

The last statements are seen as in Theorem 3.3.

Corollary 4.5. Let P and Ω be as in Theorem 4.3.

1° If $u \in H^{(a-1)(s)}(\Omega), \ v \in H^{a(s)}(\Omega), \ s > a + \frac{1}{2}$, then

$$(4.34)\quad \langle r^+ Pu, v \rangle_{H^{a-\frac{1}{2}+\epsilon}(\Omega), H^{a+\frac{1}{2}-\epsilon}(\Omega)} - \langle u, r^+ P^* v \rangle_{H^{a-\frac{1}{2}-\epsilon}(\Omega), H^{a+\frac{1}{2}+\epsilon}(\Omega)}$$

$$= -(s_0 \gamma_0^{a-1} u, \gamma_0^a v)_{L^2(\partial \Omega)}$$

$$= -\Gamma(a) \Gamma(a + 1) \int_{\partial \Omega} s_0 \gamma_0(\frac{u}{r^{a-\epsilon}}) \gamma_0(\frac{\nu}{r^{a-\epsilon}}) \, d\sigma.$$

2° It follows that if $u, v \in H^{a(s)}(\Omega), \ s > a + \frac{1}{2}$, then for each $j = 1, \ldots, n$,

$$(4.35)\quad \langle r^+ Pu, \partial_j v \rangle_{H^{a-\frac{1}{2}+\epsilon}(\Omega), H^{a+\frac{1}{2}-\epsilon}(\Omega)} + \langle \partial_j u, r^+ P^* v \rangle_{H^{a-\frac{1}{2}-\epsilon}(\Omega), H^{a+\frac{1}{2}+\epsilon}(\Omega)}$$

$$= (\nu_j s_0 \gamma_0^a u, \gamma_0^a v)_{L^2(\partial \Omega)} + (r^+[P, \partial_j] u, v)_{L^2(\Omega)}$$

$$= \Gamma(a + 1)^2 \int_{\partial \Omega} \nu_j s_0 \gamma_0(\frac{u}{r^{a-\epsilon}}) \gamma_0(\frac{\nu}{r^{a-\epsilon}}) \, d\sigma + (r^+[P, \partial_j] u, v)_{L^2(\Omega)}.$$
The dualities in the left-hand sides can be written as integrals when $s \geq 2a$.

Proof. 1° follows simply by application of Theorem 4.4 with $\gamma^a_0 v = 0$; then $\gamma^a_1 v = \gamma^a_0 v$, as noted earlier.

2° is deduced from this as follows: First we observe that

$$\langle r^+ Pu, \partial_j v \rangle_{\overline{H}^{a-\frac{1}{2}+\epsilon}, H^{a-\frac{1}{2}-\epsilon}} = -\langle \partial_j r^+ Pu, v \rangle_{\overline{H}^{a-\frac{1}{2}+\epsilon}, H^{a+\frac{1}{2}-\epsilon}}$$

by integration by parts, using that $\gamma_0 v = 0$ ($v \in H^{a(a+\frac{1}{2}+\epsilon)}(\Omega) \subset \dot{H}^{a+\frac{1}{2}-\epsilon}(\Omega)$). Next, we introduce the commutator $[P, \partial_j] = P\partial_j - \partial_j P$. Now $\partial_j u \in H^{(a-1)(a)}$, and (4.34) applies:

$$(4.36) \quad \langle r^+ Pu, \partial_j v \rangle_{\overline{H}^{a-\frac{1}{2}+\epsilon}, H^{a-\frac{1}{2}-\epsilon}} + \langle \partial_j u, r^+ P^* v \rangle_{\overline{H}^{a-\frac{1}{2}-\epsilon}, H^{a+\frac{1}{2}+\epsilon}}$$

$$= -\langle r^+ P\partial_j u, v \rangle_{\overline{H}^{a-\frac{1}{2}+\epsilon}, H^{a+\frac{1}{2}-\epsilon}} + \langle \partial_j u, r^+ P^* v \rangle_{\overline{H}^{a-\frac{1}{2}-\epsilon}, H^{a+\frac{1}{2}+\epsilon}} + (r^+[P, \partial_j] u, v)$$

$$= (s_0 \gamma_0^{a-1}(\partial_j u), \gamma_0^a v) + (r^+[P, \partial_j] u, v).$$

Write u near $\partial \Omega$ as $u = t^a w(y' + \nu(y') t)$, where $y' \in \partial \Omega$ and w is constant in t for $0 \leq t < r'$, and use that $\partial_j = \nu_j(y') \partial_t + T$, where T is tangential (acts along $\partial \Omega$) there, to see that

$$\partial_j u = \nu_j(y') \partial_t (t^a w) + T(t^a w) = \nu_j a t^{a-1} w + t^a T w,$$

hence

$$\gamma_0^{a-1}(\partial_j u) = \Gamma(a) \gamma_0(\partial_j u/t^{a-1}) = \Gamma(a) \gamma_0(\nu_j a w + t^a T w)$$

$$= \Gamma(a + 1) \nu_j \gamma_0 w = \Gamma(a + 1) \nu_j \gamma_0(u/t^a) = \nu_j \gamma_0^a u.$$

Insertion in (4.36) leads to (4.35). □

A version of 1° in the corollary was shown by Abatangelo [A15], see (9), in the case $P = (-\Delta)^a$, $0 < a < 1$. Since d^{a-1} blows up for $d \to 0$ in this case, the functions u entering in the formula are called “large solutions” in [A15].

2° was shown by Ros-Oton and Serra for $(-\Delta)^a$, $0 < a < 1$, in [RS14b] (under different smoothness hypotheses), extended to higher-order fractional Laplacians in [RS15], and generalized to larger classes of translation-invariant operators in a joint work with Valdinoci [RSV17]. We extended it to $(x$-dependent) elliptic ψdo’s in [G16]. It implies Pohozaev formulas that are used to show uniqueness results for nonlinear problems.

Note that no assumption on ellipticity of P is made in the theorem and corollary. Actually, it is not surprising that ellipticity is not needed, since the formulas are linear in P: For a given P one can add $c(1 - \Delta)^a$ with a sufficiently large constant c to make the sum P_c strongly elliptic; a result for P_c will then lead to a result for P by subtraction of the formula for $c(1 - \Delta)^a$. However, ellipticity was an important ingredient in earlier proofs of the corollary, that we can now do away with.

The corollary only involves first boundary values, and the boundary contribution is purely local. Theorem 4.4, however, lets the Neumann value enter in a nontrivial way along with a nontrivial Dirichlet value; this seems to be entirely new even for $(-\Delta)^a$.

5. A parametrix of the Dirichlet problem.

Green’s formula shows that the Dirichlet and Neumann trace operators γ_0^{a-1} and γ_1^{a-1} play a fundamental role in the discussion of boundary value problems for P. Much is known about the homogeneous Dirichlet problem (1.5), whereas problems for P with nonzero Dirichlet trace have been less studied. We showed the Fredholm solvability in [G15, G14] for large scales of spaces over a smooth bounded set Ω. The structure of the solution operator will now be further clarified, in a study of the operator K_D solving (1.9).

In addition to the assumptions listed in the beginning of Section 4, we assume that P is elliptic, the principal symbol avoiding a ray. This holds in particular if P is strongly elliptic, i.e.

\begin{equation}
\text{Re} p_0(x, \xi) \geq c|\xi|^{2a} \text{ for } |\xi| \geq 1, \text{ with } c > 0.
\end{equation}

The following mapping was defined in [G15] for $s > a - \frac{1}{2}$,

\begin{equation}
\begin{pmatrix} r^+P \\ \gamma_0^{a-1} \end{pmatrix} : H^{(a-1)(s)}(\overline{\Omega}) \to H^{s-2a}(\Omega) \times H^{s-a+\frac{1}{2}}(\partial\Omega);
\end{equation}

by Th. 6.1 there it is Fredholm when Ω is bounded. Extensions of the mapping property to H^s_p-spaces and other scales of spaces are given in [G14, G15]. To exhibit a bijective case, we show:

Lemma 5.1. Let P be a classical pdo on \mathbb{R}^n of order $2a > 0$, strongly elliptic with even symbol on \mathbb{R}^n, and let Ω be a smooth bounded subset. If P has a positive lower bound on $C_0^\infty(\Omega)$:

\begin{equation}
\text{Re}(Pu, u)_{L^2(\Omega)} \geq c_0\|u\|^2_{L^2(\Omega)} \text{ for } u \in C_0^\infty(\Omega),
\end{equation}

with $c_0 > 0$, then the mapping (5.2) is bijective. The solution operator, denoted $(R_D \ K_D)$, maps as follows:

\begin{equation}
\begin{pmatrix} r^+P \\ \gamma_0^{a-1} \end{pmatrix}^{-1} = (R_D \ K_D) : H^{s-2a}(\Omega) \times H^{s-a+\frac{1}{2}}(\partial\Omega) \to H^{(a-1)(s)}(\overline{\Omega}), \ s > a - \frac{1}{2}.
\end{equation}

Proof. As mentioned in Section 1, the Dirichlet realization P_D defined by the variational construction (the Lax-Milgram lemma) acts like r^+P with domain

\begin{equation}
D(P_D) = \{u \in \dot{H}^a(\overline{\Omega}) \mid r^+Pu \in L^2(\Omega)\}.
\end{equation}

It was found in [G15] that $D(P_D) = H^{a(2a)}(\overline{\Omega})$. The adjoint is the analogous operator for P^*, which also satisfies (5.3). This inequality assures that both P_D and P_D^* are injective, hence P_D is bijective from $H^{a(2a)}(\overline{\Omega})$ to $L^2(\Omega)$. Now $H^{a(2a)}(\overline{\Omega}) = \{u \in H^{(a-1)(2a)}(\overline{\Omega}) \mid \gamma_0^{a-1}u = 0\}$, and

\begin{equation}
\gamma_0^{a-1} : H^{(a-1)(2a)}(\overline{\Omega}) \to H^{a(2a)}(\overline{\Omega}) \to H^{a-\frac{1}{2}}(\partial\Omega)
\end{equation}

(cf. [G15], Th. 5.1), so the bijectiveness in (5.2) for $s = 2a$ follows by supplying the mapping P_D with (5.6). The bijectiveness holds also for other s in view of the invariance of kernels and cokernels ([G14], Th. 5.5). \qed
An example of an operator satisfying the hypotheses of Lemma 5.1 is \((1 - \Delta)^a\), since
\[
((1 - \Delta)^a u, u) = (2\pi)^{-n} \int_{\mathbb{R}^n} (1 + |\xi|^2)^{2a} |\hat{u}(\xi)|^2 \, d\xi \geq \|u\|^2_{L^2(\mathbb{R}^n)} \text{ for all } u \in \mathcal{S}(\mathbb{R}^n).
\]
In view of (3.12)ff. and (3.14), the operator \(K_D\) for \(P = (1 - \Delta)^a\) on \(\mathbb{R}^n_+\) equals \(K_0^{a-1}\).

In [G15] we obtained in Th. 4.4 that
\[
(5.7) \quad R_D = \Lambda_+^{(-a)} e^+ \widetilde{Q}^r + \Lambda_-^{(-a)} e^+: \mathcal{H}^{-2a}(\Omega) \to H^{(a)(s)}(\Omega)
\]
is a parametrix of the Dirichlet problem with zero boundary condition; here \(Q = \Lambda_+^{(-a)} P \Lambda_-^{(-a)}\), \(Q_+ = r^+ Q e^+: \mathcal{H}^t(\Omega) \to \mathcal{H}^t(\Omega)\) (for all \(t > -\frac{1}{2}\)), and \(\widetilde{Q}_+\) is a parametrix of \(Q_+\). Moreover, we showed in Th. 6.5 there how, in the case \(\Omega = \mathbb{R}^n_+\), \(R_D\) could be supplied with a Poisson-like operator
\[
K_D: \mathcal{H}^{s-a+\frac{1}{2}}(\mathbb{R}^{n-1}) \to H^{(a-1)(s)}(\mathbb{R}^n_+)
\]
constructed from \(R_D\), to give a full parametrix. The operator \(K_D\) was shown to be of the form
\[
K_D = \Xi_+^{1-a} e^+ K' = \Lambda_+^{1-a} e^+ K''
\]
with \(K'\) and \(K''\) being Poisson operators of order 0 belonging to the Boutet de Monvel calculus.

In [G16] Th. 2.7, assuming that \(P\) is elliptic avoiding a ray, with even symbol, we worked out an approximate factorization of \(P\) in "minus" and "plus" operators (preserving support in \(\mathbb{R}^n_+\) resp. \(\mathbb{R}^n_+\)) in the case \(\Omega = \mathbb{R}^n_+\),
\[
(5.8) \quad P \sim P^{-} P^+,
\]
and we indicated in Rem. 2.9 there a formula for \(K_D\) based on the factorization, namely essentially
\[
(5.9) \quad K_D \varphi \sim r^+ \widetilde{P}^+(\varphi(x^1) \otimes \delta(x_n)),
\]
where \(\widetilde{P}^+\) is a parametrix of \(P^+\). We shall now go into details with this construction, and thereby also obtain a more informative formula for the full parametrix \((R_D \quad K_D)\).

As accounted for in the Appendix, we have the following product decompositions of \(P\) and its parametrix \(\widetilde{P}\):
\[
P = \Xi_+^a Q \Xi_+^a = \Lambda_+^a Q_1 \Lambda_+^a \sim P^{-} P^+, \quad \text{where}
\]
\[
Q = \Xi_-^a P \Xi_-^a \sim Q_-^+ Q^+, \quad Q_1 = \Lambda_-^a P \Lambda_-^a \sim Q_1^+ Q_1^+,
\]
\[
P^{-} = \Xi_-^a Q_- = \Lambda_-^a Q_1^{-}, \quad P^+ = Q_1^+ \Xi_+^a = Q_1^+ \Lambda_+^a; \quad \text{and}
\]
\[
\widetilde{P} \sim \widetilde{P}^+ \widetilde{P}^-, \quad \widetilde{P}^+ = \Xi_-^a \widetilde{Q}^+ = \Lambda_-^a \widetilde{Q}_1^+ \quad \text{and} \quad \widetilde{P}^- = \widetilde{Q}^- \Xi_-^a = \widetilde{Q}_1^- \Lambda_-^a.
\]
In view of the support-preserving properties, when \(\text{supp } u \subset \mathbb{R}^n_+,\) \(P^+ u \in \dot{H}^{-\frac{1}{2}+\varepsilon}(\mathbb{R}^n_+),\)
\[
(5.11) \quad r^+ P u \sim r^+ P^- P^+ u = r^+ P e^+ r^+ P^+ u,
\]
with similar rules for Q and Q_1.

Let us analyse how K_D should look, by an argumentation that reduces the problem as far as possible to the Boutet de Monvel calculus, in the same spirit as the proof of Th. 4.4 in [G15]. (One advantage of that calculus is that there are good rules for smoothing operators, which can be difficult to obtain in a mixture of fractional-order ψdo’s and the generalized ψdo’s that in some situations only give good tangential results.)

We want to solve:

$$(5.12) \quad r^+ P u = 0, \quad \gamma_0^{a-1} u = \varphi,$$

for a given $\varphi \in H^{s-a+\frac{1}{2}}(\mathbb{R}^{n-1})$ with $s > a - \frac{1}{2}$, searching for u in $H^{(a-1)(s)}(\mathbb{R}^n_+)$. Let $	ilde{u} \in \overline{H}^{s-a+1}(\mathbb{R}^n_+)$ be the function for which

$$(5.13) \quad \tilde{u} = r^+ \xi_{+}^{1-a} u; \text{ then } u = \xi_{+}^{1-a} e^+ \tilde{u} \text{ and } e^+ \tilde{u} = \xi_{+}^{1-a} u,$$

by definition (cf. [G15], Sect. 1). For example when $s = a$, $\varphi \in H^{\frac{1}{2}}(\mathbb{R}^{n-1})$ and $\tilde{u} \in \overline{H}^\prime(\mathbb{R}^n_+)$. By use of (5.10), (5.11), the equations in (5.12) can be written

$$r^+ \xi_{+}^a e^+ r^+ Q \xi_{+}^{1} \xi_{+}^{a-1} u = 0, \quad \gamma_0 \xi_{+}^{a-1} u = \varphi.$$

Using (5.13), this may, since $r^+ \xi_{+}^a e^+$ is bijective, equivalently be written

$$(5.14) \quad r^+ Q \xi_{+}^{1} e^+ \tilde{u} = 0, \quad \gamma_0 \tilde{u} = \varphi,$$

where the boundary value is as always taken from \mathbb{R}^n_+.

Now (5.14) is concerned with integer-order operators, where we have the rules of the Boutet de Monvel calculus, extended to allow the generalized ψdo’s Q^+ and ξ_{+}^1. Here we note that $r^+ Q \xi_{+}^{1} e^+ \tilde{u} \sim r^+ Q^{-} e^+ r^+ Q^+ \xi_{+}^{1} e^+ \tilde{u}$, where $r^+ Q^{-} e^+$ has the parametrix $r^+ \tilde{Q}^{-} e^+$. This allows transforming (5.14) to

$$(5.15) \quad r^+ Q^+ \xi_{+}^{1} e^+ \tilde{u} \sim 0, \quad \gamma_0 \tilde{u} = \varphi,$$

in a parametrix sense. Here, since $Q^+ \xi_{+}^{1}$ has the parametrix $\xi_{+}^{1-1} \tilde{Q}^+$, the problem (5.15) can be expected to have the solution operator

$$(5.16) \quad K_{Q^+} \varphi \equiv r^+ \xi_{+}^{1-1} \tilde{Q}^+(\varphi(x') \otimes \delta(x_n)),$$

in a parametrix sense. This is the Poisson operator with symbol $k_{Q^+} \in S^{-1}(\mathcal{H}^+)$,

$$(5.17) \quad k_{Q^+}(x', \xi) = \chi_{+}^{-1}(\xi) \# \tilde{q}^+/(x', 0, \xi),$$

by the rule (A.13), the prime indicating that we have used the (x', y_n)-form of the symbol of \tilde{Q}^+, cf. (A.11). It is known from the calculus that K_{Q^+} maps

$$(5.18) \quad K_{Q^+} : H^{t-\frac{3}{2}}(\mathbb{R}^{n-1}) \rightarrow \overline{H}'(\mathbb{R}^n_+) \text{ for } t \in \mathbb{R}.$$

In case $Q = I$, K_{Q^+} is the standard Poisson operator $K_0 = \text{OPK}(\chi_{+}^{-1})$ which satisfies $\gamma_0 K_0 = I$.

With this solution operator to (5.15), we go on to define the solution operator for (5.12) by

$$(5.19) \quad K_D = \xi_{+}^{1-a} e^+ K_{Q^+} : H^{s-a+\frac{3}{2}}(\mathbb{R}^{n-1}) \rightarrow \xi_{+}^{1-a} e^+ \overline{H}^{s-a+1}(\mathbb{R}^n_+) = H^{(a-1)(s)}(\mathbb{R}^n_+).$$

It is accounted for how this K_D has the desired parametrix property in the proof of the following theorem.
Theorem 5.2. Let P be a classical globally estimated ψ do on \mathbb{R}^n of order $2a > 0$, elliptic avoiding a ray, with even symbol.

1° Define K_D on $H^{s-a+\frac{1}{2}}(\mathbb{R}^{n-1})$, $s > a - \frac{1}{2}$, by (5.19) with (5.16). It solves the Dirichlet problem

\[(5.20)\quad r^+ Pu = 0 \text{ on } \mathbb{R}^n_+, \quad \gamma_0^{-1} u = \varphi \text{ at } x_n = 0,
\]
in a parametrix sense, namely

\[(5.21)\quad \gamma_0^{-1} K_D = I, \quad r^+ PK_D = S; H^{s-a+\frac{1}{2}}(\mathbb{R}^{n-1}) \to C^\infty(\mathbb{R}^n_+).
\]

2° Define instead K_D by

\[(5.22)\quad K_D = \Lambda_+^{-a} e^+ K_{Q^+}, \text{ where } K_{Q^+} \varphi = r^+ \Lambda_+^{-1} \mathcal{Q}_1^+(\varphi(x') \otimes \delta(x_n)).
\]

Then we again have that K_D solves (5.20) in a parametrix sense, namely (5.21) holds (with a possibly different S).

Proof. 1°. We begin by checking that K_{Q^+} defined in (5.16) solves the problem (5.15). First,

\[r^+ Q^+ \Xi_+^1 e^+ K_{Q^+} \varphi = r^+ Q^+ \Xi_+^1 e^+ r^+ \Xi_+^{-1} \mathcal{Q}^+(\varphi \otimes \delta) = r^+ Q^+ \mathcal{Q}^+(\varphi \otimes \delta) = S_1 \varphi,
\]

where S_1 is a Poisson operator of order $-\infty$, hence maps $H^{s-a+\frac{1}{2}}(\mathbb{R}^{n-1})$ into $C^\infty(\mathbb{R}^n_+)$ (more precisely, into the subset $\bigcap_t \mathcal{P}(\mathbb{R}^n_+)$). This uses that $(I - e^+ r^+) v = 0$ when $v = \Xi_+^{-1} \mathcal{Q}^+(\varphi \otimes \delta)$, since it is an L_2-function supported in \mathbb{R}^n_+; then since $Q^+ \mathcal{Q}^+ = I + \mathcal{R}$, where \mathcal{R} has symbol $r(x', \xi) \in S^{-\infty}(\mathcal{H}^{+})$, S_1 equals OPK(r), a smoothing Poisson operator.

Next, since \mathcal{Q}^+ has a symbol of the form $1 + f^+$, where $f^+ = h^+ q^+ \in S^0(\mathcal{H}^+)$,

\[\gamma_0 K_{Q^+} \varphi = \gamma_0 \Xi_+^{-1} (I + F^+)(\varphi \otimes \delta) = \gamma_0 K_0 \varphi + \gamma_0 \Xi_+^{-1} F^+(\varphi \otimes \delta) = \varphi,
\]

where the term with $\Xi_+^{-1} F^+$ gives zero since the symbol is in \mathcal{H}^+ w.r.t. ξ_n and is $O(\xi_n^{-2})$, so that its integral in ξ_n vanishes. Altogether,

\[(5.23)\quad r^+ Q^+ \Xi_+^1 e^+ K_{Q^+} = S_1, \quad \gamma_0 K_{Q^+} = I.
\]

Now define K_D by (5.19). Then

\[(5.24)\quad r^+ PK_D \varphi = r^+ \Xi_+^a e^+ r^+ Q \Xi_+^a K_{D^+} \varphi = r^+ \Xi_+^a e^+ r^+ (Q^{-} Q^+ + \mathcal{R}_1) \Xi_+^1 e^+ K_{Q^+} \varphi,
\]

where \mathcal{R}_1 has symbol in $S^{-\infty}(\mathcal{H}_{-1})$. Here

\[r^+ Q^{-} Q^+ \Xi_+^1 e^+ K_{Q^+} \varphi = r^+ Q^{-} e^+ r^+ Q^+ \Xi_+^1 e^+ K_{Q^+} \varphi = r^+ Q^{-} e^+ S_2 \varphi = S_2 \varphi,
\]
in view of (5.23), where S_2 maps into $\bigcap_t \mathcal{P}(\mathbb{R}^n_+)$, since $r^+ Q^{-} e^+$ preserves this space (by [G16] Th. 2.4 combined with support-preserving properties). Composition with $r^+ \Xi_+^a e^+$
to the left gives another smoothing operator S_3 in view of the isomorphism properties of $r^+\Xi^ae^+$. The contribution from R_1 in (5.24) equals

$$r^+\Xi^ae^+r^+R_1\Xi_+^1e^+K_Q\varphi = S_4\varphi,$$

where S_4 is smoothing, since $r^+R_1\Xi_+^1e^+K_Q$ is a Poisson operator with symbol in $S^{-\infty}(\mathcal{H}^+)$. Concerning the boundary condition, we note that

$$\gamma_0^{-a}K_D\varphi = \gamma_0\Xi_+^{-a}K_D\varphi = \gamma_0\Xi_+^{-1-a}e^+K_Q\varphi = \gamma_0K_Q\varphi = \varphi,$$

in view of (5.23). Taking $S = S_3 + S_4$, we have obtained 1°.

2°. We know from [G15] that $H^{(a-1)(s)}(\mathbb{R}^n_+)$ can equivalently be defined as $\Lambda_+^{1-a}e^+\mathcal{H}^{s-a+1}(\mathbb{R}^n_+)$. Moreover, by (A.16),

(5.25) \[\gamma_0^{a-1}u = \gamma_0(\Xi_+^{a-1}u) = \gamma_0(\Lambda_+^{a-1}u). \]

The Poisson operator $K_0' = \text{OPK}(\lambda_+^{-1})$ satisfies $\gamma_0K_0' = I$, and $\Lambda_+^{1-a}e^+K_0'$ is a right-inverse of γ_0^{a-1}.

The proof under 1° goes over verbatim to a proof of 2° when the Ξ^4_+-family is replaced by Λ_+^4, Q is replaced by Q_1, and \tilde{u} is replaced by $\tilde{u}' = r^+\Lambda_+^{a-1}u$. □

Corollary 5.3. Together with R_D recalled above, K_D enters in a full parametrix

(5.26) \[(R_D \quad K_D) : \mathcal{H}^{s-2a}(\mathbb{R}^n_+) \times H^{s-a+\frac{1}{2}}(\mathbb{R}^{n-1}) \to H^{(a-1)(s)}(\mathbb{R}^n_+), \quad s > a - \frac{1}{2}, \]

satisfying

(5.27) \[\left(\begin{array}{c} r^+P \\ \gamma_0^{a-1} \end{array} \right) (R_D \quad K_D) = \left(\begin{array}{cc} I & 0 \\ 0 & I \end{array} \right) + \left(\begin{array}{cc} S_1 & S \\ 0 & 0 \end{array} \right), \]

where S_1 maps $\mathcal{H}^{s-2a}(\mathbb{R}^n_+)$ into $C^\infty(\mathbb{R}^n_+)$ and S is as in (5.21).

Proof. From the way in which R_D was defined in [G15], we have that $\gamma_0^{a-1}R_D = 0$ and $r^+PR_D = I + S_1$ where S_1 is a smoothing operator; (5.27) follows by combining this with the above theorem. □

By use of local coordinates (cf. Remark 4.3), the above construction of K_D in the case \mathbb{R}^n_+ can be applied to construct the Poisson-like operator in the general case of a bounded smooth open set Ω.

Theorem 5.4. Let P be a classical pseudo operator of order $2a > 0$, elliptic avoiding a ray, with even symbol, and let Ω be a smooth bounded subset of \mathbb{R}^n. There is a Poisson-like operator $K_D : H^{s-a+\frac{1}{2}}(\partial\Omega) \to H^{(a-1)(s)}(\overline{\Omega})$, $s > a - \frac{1}{2}$ (see details in (5.31)), such that together with R_D constructed in [G15] Th. 4.4,

(5.28) \[(R_D \quad K_D) : \mathcal{H}^{s-2a}(\Omega) \times H^{s-a+\frac{1}{2}}(\partial\Omega) \to H^{(a-1)(s)}(\overline{\Omega}), \quad s > a - \frac{1}{2}, \]
is a parametrix of the nonhomogeneous Dirichlet problem, satisfying

\begin{equation}
\left(\frac{r^+ P}{\gamma_-^{a-1}} \right) (R_D \ K_D) = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} + \begin{pmatrix} S_1 & S \\ 0 & 0 \end{pmatrix},
\end{equation}

where $S_1 : H^{s-2a} (\Omega) \rightarrow C^\infty (\Omega)$ and $S : H^{s-a+\frac{1}{2}} (\partial \Omega) \rightarrow C^\infty (\Omega)$.

Proof. We shall here use the cover U_i, $i = 0, \ldots, I_0$, described in Remark 4.3, with an associated partition of unity $\varrho_0, \ldots, \varrho_{I_0}$ such that each ϱ_i is in $C_0^\infty (U_i)$ taking values in $[0, 1]$, and $\sum_{0 \leq i \leq I_0} \varrho_i (x) = 1$ on a neighborhood of Ω. One can moreover find functions $\zeta_i, \zeta_1, \zeta_2, \ldots \in C_0^\infty (U_i, [0, 1])$ such that $\zeta_0 \varrho_i = \varrho_i$ and $\zeta_i^{k+1} \zeta_i^k = \zeta_i^k$ for all k (in each case, the former function is 1 on the support of the latter).

P considered on functions supported in U_i gives rise to $P^{(i)}$ defined on functions supported in V_i by (4.21). The symbol of the operator $P^{(i)}$ can be assumed to be extended to a ψdo symbol on \mathbb{R}^n, even and of order $2a$, and elliptic avoiding a ray there (we use the same notation for the extension). There are factorizations, as described in (5.10), with notation

\begin{equation}
P^{(i)} = \Lambda_+ \mathcal{Q}_i^{(i)} \Lambda_+^a, \quad \mathcal{Q}_i^{(i)} \sim \mathcal{Q}_i^{(i)} - \mathcal{Q}_i^{(i)+}, \text{ etc.}
\end{equation}

For φ given on $\partial \Omega$, $\varphi = \sum_{0 \leq i \leq I_0} \varrho_i \varphi$, where $\varrho_i \varphi$ carries over to $\varrho_i \varphi$ on V_i. Define

\begin{equation}
K_{Q_i}^{(i)} \psi = r^+ \Lambda_+^{-1} \mathcal{Q}_i^{(i)+} (\psi(x') \otimes \delta (x_n)) \text{ when supp } \psi \subset V_i,
\end{equation}

\begin{equation}
K_{D}^{(i)} \psi = \Lambda_+^{1-a} e^+ K_{Q_i}^{(i)} \psi,
\end{equation}

\begin{equation}
K_D \varphi = \sum_i (\zeta_i^1 K_{D}^{(i)} \varrho_i \varphi) \circ \kappa_i.
\end{equation}

(The contribution from U_0 is 0.) We shall verify that this definition of K_D leads to the desired properties.

For the composition with $r^+ P$ we have:

\begin{align*}
r^+ PK_D \varphi &= \sum_i r^+ P (\zeta_i^1 K_{D}^{(i)} \varrho_i \varphi) \circ \kappa_i \\
&= \sum_i r^+ \zeta_i^2 P (\zeta_i^1 K_{D}^{(i)} \varrho_i \varphi) \circ \kappa_i + S_2 \varphi,
\end{align*}

with a smoothing operator S_2, since $1 - \zeta_i^2$ and ζ_i^1 have disjoint supports so that $(1 - \zeta_i^2) P \zeta_i^1$ is a ψdo of order $-\infty$.

Consider here the i'th term carried over to V_i, omitting (i) from the notation for simplicity:

\begin{align*}
r^+ \zeta_i^2 P \zeta_i^1 K_D \varrho_i \varphi &= r^+ \zeta_i^2 \Lambda_+^a e^+ r^+ Q_i \Lambda_+^a \zeta_i^1 \Lambda_+^{1-a} e^+ K_{Q_i} \varrho_i \varphi \\
&= r^+ \zeta_i^2 \Lambda_+^a e^+ r^+ Q_i \Lambda_+^a \Lambda_+^{1-a} e^+ K_{Q_i} \varrho_i \varphi + r^+ \zeta_i^2 \Lambda_+^a e^+ r^+ Q_i \Lambda_+^a (1 - \zeta_i^1) \Lambda_+^{1-a} e^+ K_{Q_i} \varrho_i \varphi.
\end{align*}
The first term equals

\[(5.32) \quad r^+ \xi^2 a e^+ r^+ Q_1^+ \Lambda_1^+ e^+ K_{Q_1^+} \varphi_i \]

and will be treated further below. The second term equals

\[
r^+ \xi^2 a e^+ r^+ Q_1^+ \Lambda_1^+ (1 - \zeta_j^1) \Lambda_1^+ a e^+ r^+ \Lambda_1^+ 1 \overset{\zeta_j}{\zeta}_0^1 (\varphi_i \varphi \otimes \delta)
\]

\[
= r^+ \xi^2 a e^+ r^+ Q_1^+ \Lambda_1^+ (1 - \zeta_j^1) \Lambda_1^+ a e^+ \Lambda_1^+ 1 \overset{\zeta_j}{\zeta}_0^1 (\varphi_i \varphi \otimes \delta)
\]

\[
= r^+ \xi^2 a e^+ r^+ Q_1^+ \Lambda_1^+ (1 - \zeta_j^1) \Lambda_1^+ a \tilde{Q}_1^+ \overset{\zeta_j}{\zeta}_0^1 (\varphi_i \varphi \otimes \delta),
\]

where \(\Lambda_1^+ (1 - \zeta_j^1) \Lambda_1^+ a\) is a \(\psi\)do of order 0 having the 0-transmission property; we used in the proof that \((I - e^+ r^+) \Lambda_1^+ 1 \overset{\zeta_j}{\zeta}_0^1 (\varphi_i \varphi \otimes \delta) = 0\). In this term,

\[(5.33) \quad \varphi_i \varphi \mapsto r^+ Q_1^+ \Lambda_1^+ (1 - \zeta_j^1) \Lambda_1^+ a \tilde{Q}_1^+ \overset{\zeta_j}{\zeta}_0^1 (\varphi_i \varphi \otimes \delta)
\]

is a Poisson operator of order 0, derived from a generalized \(\psi\)do whose symbol contains the factors \(1 - \zeta_j^1\) and \(\zeta_j^1\) with disjoint supports; hence it must be a Poisson operator of order \(-\infty\). Then it maps into \(\bigcap_i \overline{H^2} (\mathbb{R}^n_+)\), and the composition with \(r^+ \xi^2 a e^+\) maps into \(r^+ C_0^\infty (V_i)\). In conclusion, this term reduces to a smoothing contribution \(S_{i,3} \varphi\).

We now continue with the term in (5.32). Here

\[
r^+ Q_1^+ \Lambda_1^+ e^+ K_{Q_1^+} \varphi_i = r^+ Q_1^+ \Lambda_1^+ e^+ r^+ \Lambda_1^+ e^+ \Lambda_1^+ \tilde{Q}_1^+ \overset{\zeta_j}{\zeta}_0^1 (\varphi_i \varphi \otimes \delta)
\]

\[
= r^+ (Q_1^+ \Lambda_1^+ + \mathcal{R}_1) \Lambda_1^+ e^+ \Lambda_1^+ \tilde{Q}_1^+ \overset{\zeta_j}{\zeta}_0^1 (\varphi_i \varphi \otimes \delta)
\]

\[
= r^+ (Q_1^+ \Lambda_1^+ + \mathcal{R}_1) \tilde{Q}_1^+ \overset{\zeta_j}{\zeta}_0^1 (\varphi_i \varphi \otimes \delta),
\]

where \(\mathcal{R}_1\) has symbol in \(S^{-\infty} (\mathcal{H}_{-1})\). The contribution from \(\mathcal{R}_1\) is seen as above to be smoothing, and

\[
r^+ Q_1^+ \Lambda_1^+ e^+ \Lambda_1^+ \tilde{Q}_1^+ \overset{\zeta_j}{\zeta}_0^1 (\varphi_i \varphi \otimes \delta) = r^+ Q_1^+ (I + \mathcal{R}_2) (\varphi_i \varphi \otimes \delta),
\]

where the contribution from \(\mathcal{R}_2\) is likewise seen to be smoothing. Finally,

\[
r^+ Q_1^+ (\varphi_i \varphi \otimes \delta) = 0,
\]

since \(Q_1^+\) preserves support in \(\mathbb{R}^n_-\). Collecting the contributions, carried back to the coordinate patches \(U_i\), we find that

\[(5.34) \quad r^+ PK_D \varphi = S \varphi,
\]

where \(S\) maps into \(C^\infty (\Omega)\).

We also have to show that \(\gamma_0 a^{-1} K_D = I\). For functions \(u\) on \(\Omega\), \(\gamma_0 a^{-1} u = \Gamma (a) \gamma_0 (d^{1-a} u)\), where \(d(x) = \text{dist}(x, \partial \Omega)\). With our special choice of local coordinates, this carries over from \(U_i \cap \Omega\) to \(V_i \cap \mathbb{R}^n_+\) as \(\Gamma (a) \gamma_0 (x_n^{-1-a} u)\) (the trace at \(x_n = 0\), when \(\text{supp } u \subset U_i\). When \(u\)}
is multiplied by a function ζ, $\gamma_0^{-1}(\zeta u) = \gamma_0(\zeta)\gamma_0^{-1}(u)$, which carries over as $\gamma_0(\bar{\zeta})\gamma_0^{-1}(u)$.

Recall from (5.25) (or (A.16)) that the boundary value $\gamma_0^{-1}(u)$ can also be described as $\gamma_0(\Xi^+_{a-1} u)$ or $\gamma_0(\Lambda^+_{a-1} u)$.

Let φ be given as above. Write $\varphi = \sum_{0 \leq i \leq I_0} \varphi_i \psi$, then

$$\gamma_0^{-1} K_D \varphi = \sum_i \gamma_0^{-1}(\zeta_i K_D^{(i)} \varphi_i) \circ \kappa_i.$$

Let us consider the i'th piece, carried over to V_i:

$$\gamma_0^{-1}(\zeta_i K_D^{(i)} \varphi_i) = \gamma_0(\zeta_i)\gamma_0^{-1}(K_D^{(i)} \varphi_i)$$

$$= \gamma_0(\zeta_i)\gamma_0^{-1}(\Lambda_+^{-a} e^+ r^+ \Lambda_+^{-1} \tilde{Q}_1^{(i)+} (\varphi_i \otimes \delta))$$

$$= \gamma_0(\zeta_i)\gamma_0(r^+ \Lambda_+^{-1} \tilde{Q}_1^{(i)+} (\varphi_i \otimes \delta))$$

$$= \gamma_0(\zeta_i) \varphi_i \varphi = \varphi_i \varphi.$$

In the step leading to the last line, we used that $\tilde{Q}_1^{(i)+}$ has a symbol $1 + f^+$, where $f^+ \in S^0(\mathcal{H}^+)$ and hence does not contribute to the boundary value, so only K_0 remains (as in the proof of Theorem 5.2).

Carrying the formulas back to the U_i and summing over i, we obtain the conclusion

$$\gamma_0^{-1} K_D \varphi = \varphi.$$ (5.35)

The last part of the proof goes in the same way as in Corollary 5.3. □

Remark 5.5. In the above proof, one can replace K_D by the operator defined using the family Ξ^+_{a-1} instead of Λ^+_{a-1} in the local coordinate systems; it then gets the form

$$K_D \varphi = \sum_{i=1}^{I_0} (\zeta_i \Xi_+^{-a} e^+ K_0^{(i)} \varphi_i) \circ \kappa_i,$$

where $K_0^{(i)} \varphi_i = r^+ \Xi_+^{-1} \Xi_+^{-1} \tilde{Q}_1^{(i)+} (\varphi_i \otimes \delta(x_n))$. (5.36)

The calculations go as above, except that in the treatment of the term corresponding to (5.33), $\Xi_+^{a-1}(1 - \zeta_i)\Xi_+^{-a}$ is only a generalizedpdo; but it can be checked to have a symbol of the form of a function plus a term in $S^0(\mathcal{H}^+)$ (only integer powers of Ξ_+^{1} appear in the terms calculated by the Leibniz product formula), and the Poisson operator construction goes through.

There is a certain “uniqueness modulo smoothing operators”:

Corollary 5.6. In the situation of Theorem 5.4, if $L^+_a (r^+ P \gamma_0^{-1})$ has the inverse $(R_D = K_D)$, and $K_{D,1}$ is a Poisson-like operator constructed as in Theorem 5.4 or Remark 5.5, then

$$K_D - K_{D,1} : H^{s-a+\frac{3}{2}}(\partial \Omega) \to \mathcal{E}_a(\Omega).$$ (5.37)
Theorem 6.1. which gives a criterion for ellipticity of the Neumann problem. Finding its symbol in local coordinates. In particular, we determine its principal symbol, \(S_{D} \).

\[
S_{D} = \gamma_{1}^{a-1} K_{D},
\]

finding its symbol in local coordinates. In particular, we determine its principal symbol, which gives a criterion for ellipticity of the Neumann problem.

Theorem 6.1. 1° For \(P \) considered on \(\mathbb{R}^{n}_{+} \) as in Theorem 5.2, with \(K_{D} \) defined by (5.16–19), \(S_{D} \) is the first-order \(\psi \)do \(S_{D} = \text{OP}'(S_{D}(x', \xi')) \) in \(\mathbb{R}^{n-1} \) with symbol (cf. (5.10))

\[
s_{D}(x', \xi') = -s_{Q}+(x', \xi') - a(\xi'),
\]

where

\[
s_{Q}+(x', \xi') = \frac{1}{2\pi} \int_{0}^{+} h^{+} q^{+}(x', 0, \xi) \, d\xi = \lim_{z_{n} \to 0^{+}} F_{z_{n}}^{-1} h^{+} q^{+}(x', 0, \xi).
\]

In particular, if \(P = (1 - \Delta)^{a} \), then \(S_{D} = -a\langle D' \rangle \).

2° For \(P \) considered on \(\Omega \) as in Theorem 5.4, with \(K_{D} \) defined by (5.36), \(S_{D} \) is the first-order \(\psi \)do on \(\partial \Omega \) described by

\[
S_{D}(\varphi) = \sum_{i=1}^{I_{0}} \gamma_{0}(\xi_{i}^{1}) \text{OP}'(-s_{Q}^{(i)}(x', \xi') - a(\xi')) \varphi \circ \kappa_{i},
\]

where \(s_{Q}^{(i)}+(x', \xi') \) is constructed from the symbol of \(Q^{(i)+} \) as in (6.2).

Proof. 1°. Recall from (3.8) that \(\gamma_{1}^{a-1} u = \gamma_{0} \partial_{n} \Xi_{+}^{a-1} u - (a - 1)\langle D' \rangle \gamma_{0}^{a-1} u \). We have immediately for the second term:

\[
-(a - 1)\langle D' \rangle \gamma_{0}^{a-1} K_{D} = -(a - 1)\langle D' \rangle,
\]

by (5.21). For the first term we apply composition rules from the Boutet de Monvel calculus:

\[
\gamma_{0} \partial_{n} \Xi_{+}^{a-1} K_{D} = \gamma_{0} \partial_{n} \Xi_{+}^{a-1} \Xi_{+}^{-a} e^{+} \text{OPK}(\chi_{+}^{-1}(\xi) # \tilde{q}^{+}(x', 0, \xi)) = \gamma_{0} \text{OPK}(i\xi_{n}(\langle \xi' \rangle + i\xi_{n})^{-1} # \tilde{q}^{+}(x', 0, \xi)).
\]

This is the \(\psi \)do with symbol

\[
\frac{1}{2\pi} \int_{\langle \xi' \rangle + i\xi_{n} # \tilde{q}^{+} \, d\xi_{n} - \frac{1}{2\pi} \int_{\langle \xi' \rangle + i\xi_{n} # (1+h^{+} \tilde{q}^{+}) \, d\xi_{n} = -\langle \xi' \rangle + \frac{1}{2\pi} \int h^{+} \tilde{q}^{+} \, d\xi_{n}.
\]
We have here used that \(f^+ d\xi_n = 0, \frac{1}{2\pi} \int^+ \langle (\xi') + i\xi_n \rangle^{-1} d\xi_n = 1, \) and that the plus-integral vanishes on functions in \(H^+ \) that are \(O(\xi_n^{-2}) \), hence on \((\langle \xi' \rangle + i\xi_n)^{-1} h^+ q' \).

The two terms together give the \(\psi \) do with symbol

\[
-\langle \xi' \rangle + \frac{1}{2\pi} \int^+ h^+ \tilde{q}' \ d\xi_n - (a-1)\langle \xi' \rangle = \frac{1}{2\pi} \int^+ h^+ \tilde{q}' \ d\xi_n - a\langle \xi' \rangle.
\]

There is a further reduction of the plus-integral. We know that \(q^+(x,\xi) \) is of the form \(q^+ = 1 + f^+ \), where \(f^+ = h^+ q^+ \) lies in \(S^0(\mathcal{H}^+) \). The parametrix \(\tilde{q}^+ \) of \(q^+ \) has the expansion

\[
\tilde{q}^+ \sim 1 - f^+ + f^+ \# f^+ - \cdots + (-1)^k (f^+)^{\# k} + \cdots,
\]

where \((-1)^k (f^+)^{\# k} \in S^0(\mathcal{H}^+ \cap \mathcal{H}_{-2}) \) for \(k \geq 2 \) (all terms have at least two factors in \(\mathcal{H}^+ \)), so we can assume that \(\tilde{q}^+ \) is of the form

\[
\tilde{q}^+ = 1 - f^+ + r, \quad r \in S^0(\mathcal{H}^+ \cap \mathcal{H}_{-2}).
\]

Then

\[
\int^+ h^+ \tilde{q}^+ \ d\xi_n = \int^+ \tilde{q}^+ \ d\xi_n = \int^+ (1 - f^+ + r) \ d\xi_n = - \int^+ f^+ \ d\xi_n = - \int^+ h^+ q^+ \ d\xi_n.
\]

Now it is actually the \((x', y_n) \)-form of the symbol of \(\tilde{Q}^+ \) that is used instead of the \(x \)-form, cf. (A.11), but this does not change the value, as we shall now show:

The preceding calculations are true also for \(\tilde{q}' \) and \(q' \), so we arrive at having to calculate \(\frac{1}{2\pi} \int^+ h^+ q'^+(x', 0, \xi) \ d\xi_n \). As in the proof details after (4.15), we can use the observation from [G90] Lemma 10.18 that for a function \(\varphi(\xi_n) \in \mathcal{H}^+, \frac{1}{2\pi} \int^+ \varphi(x_n) \ d\xi_n = \lim_{z_n \to 0+} \left[F_{\xi_n \to z_n}^{-1} \varphi \right](z_n) \). Since

\[
\left[F_{\xi_n \to z_n}^{-1} \right] h^+ q'^+(x', 0, \xi))(z_n) \sim \sum_{j \in \mathbb{N}_0} \frac{1}{j!} z_n^j \left[F_{\xi_n \to z_n}^{-1} \right] h^+ \partial_j q^+(x', 0, \xi))(z_n),
\]

the limits for \(z_n \to 0+ \) satisfy

\[
\lim_{z_n \to 0+} \left[F_{\xi_n \to z_n}^{-1} \right] h^+ q'^+(x', 0, \xi))(z_n) = \lim_{z_n \to 0+} \left[F_{\xi_n \to z_n}^{-1} \right] h^+ q^+(x', 0, \xi))(z_n).
\]

Thus \(h^+ q'^+ \) gives the same value as \(h^+ q^+ \) in the plus-integral, and formula (6.2) follows.

When \(P = (1 - \Delta)^a \), then \(Q = I \) with \(h^+ q^+ = 0 \), so only the term \(-a\langle \xi' \rangle \) remains. The formula was shown in this case in [G14], Appendix.

2°. We can assume that the \(\xi^1_n \) are constant in \(x_n \) for small \(x_n \), then

\[
\gamma_1^{a-1} \underline{u} = \Gamma(a+1) \gamma_0(\partial_n(\xi^1_n u / x_n^{a-1})) = \Gamma(a+1) \gamma_0(\xi^1_n) \gamma_0(\partial_n(u / x_n^{a-1})) = \gamma_0(\xi^1_n) \gamma_1^{a-1}(\underline{u}).
\]

Now

\[
\gamma_1^{a-1} K_D \varphi = \sum_i (\gamma_0(\xi^1_n) \gamma_1^{a-1}(\Xi^1_a e^+ K^{(i)}_{\xi_n} \varphi)) \circ \kappa_i,
\]

where each term is calculated as under 1°. This leads to (6.3).
Theorem 6.2. Hypotheses as in Theorem 6.1.

The principal symbol of S_{DN} is

$$s_{DN,0}(x',\xi') = -\frac{1}{2\pi} \int^+ h^+ q_0^+(x', 0, \xi) \, d\xi_n - a|\xi'|,$$

where q_0^+ is the plus-factor in the principal symbol $q_0(x, \xi) = s_0^{-1} p_0(x, \xi)|\xi|^{-2a}$, constructed as in [G16], Th. 2.6, in the local coordinates used in Theorem 6.1. Here

$$\frac{1}{2\pi} \int^+ h^+ q_0^+(x', 0, \xi) \, d\xi_n = \lim_{z_n \to 0^+} \mathcal{F}^{-1}_{\xi_n \to z_n} \log q_0(x', 0, \xi).$$

The Neumann problem defined for $u \in H^{(a-1)(s)}(\Omega)$, $s > a + \frac{1}{2}$,

$$r^+ Pu = f \text{ on } \Omega, \quad \gamma_1 a^{-1} u = \psi,$$

has a parametrix

$$(R_N \quad K_N) : H^{s-2a}(\Omega) \times H^{s-a-\frac{1}{2}}(\partial \Omega) \to H^{(a-1)(s)}(\Omega),$$

if and only $s_{DN}(x', \xi')$ is nonvanishing for $\xi' \neq 0$, i.e., S_{DN} is elliptic. In the affirmative case, a parametrix is

$$(R_N \quad K_N) = \left((I - K_D \tilde{S}_{DN} \gamma_1 a^{-1}) R_D \quad K_D \tilde{S}_{DN} \right),$$

where \tilde{S}_{DN} is a parametrix of S_{DN}. The Neumann problem is then said to be elliptic.

Proof. It is known that the principal symbol of apdo on a manifold (in this case $\partial \Omega$) is an invariant function of the cotangent variables (x', ξ'), so we just need to indicate a way to find it; this goes via the localization (6.3), when we moreover use that $\xi_n \xi_i = \varphi_i$ for each i. Then the formula

$$s_{DN,0}(x', \xi') = -\frac{1}{2\pi} \int^+ h^+ q_0^+(x', 0, \xi) \, d\xi_n - a|\xi'|,$$

follows from Theorem 6.1.

For the description in (6.7), we recall from the proof of Theorem 2.6 in [G16] that $q_0^+ = \exp \psi_+$, where $\psi_+ = h^+ \psi$ with $\psi = \log q_0$. Here q_0^+ has the expansion

$$q_0^+ = 1 + \psi_+ + \sum_{k \geq 2} \frac{1}{k!} \psi_+^k,$$

where the sum over $k \geq 2$ is $O((\xi_n)^{-2})$, so this, as well as the term 1, gives 0 when plus-integrals are calculated, and only ψ_+ remains. Thus

$$\frac{1}{2\pi} \int^+ h^+ q_0^+ \, dx_n = \frac{1}{2\pi} \int^+ \psi_+ \, dx_n = \lim_{z_n \to 0^+} \mathcal{F}^{-1}_{\xi_n \to z_n} \psi_+ = \lim_{z_n \to 0^+} \mathcal{F}^{-1}_{\xi_n \to z_n} \psi_+,$$

since $\psi_- = \psi - \psi_+ = h^- \psi$ has $\mathcal{F}^{-1}_{\xi_n \to z_n} \psi_-$ supported in $\mathbb{R}_-.$

For the second statement, it is easily checked that if S_{DN} is elliptic with a parametrix \tilde{S}_{DN}, then a parametrix for (6.8) can be constructed from the parametrix for the Dirichlet problem by the formula (6.9). (Similar considerations are carried out in [G14], Sect. 4B.) Conversely, if the Neumann problem has a parametrix with the asserted mapping property, then there is a Fredholm mapping from $\varphi_1 = \gamma_1 a^{-1} u$ to $\varphi_0 = \gamma_0 a^{-1} u$ for solutions u to the Neumann resp. Dirichlet problem with the same value of $r^+ Pu$. This gives a parametrix of S_{DN}; hence it is elliptic. \qed
Example 6.3. To illustrate some of the formulas, let us consider a very simple example with an easy factorization. Let $P = (|D'|^2 + D_n^2 + \lambda)^a$ with $\beta > 0$, $\lambda \geq 0$, in the situation $\mathbb{R}^n_+ \subset \mathbb{R}^n$. Then

$$Q = (|D'|^2 + D_n^2 + \lambda)^a (1 - \Delta)^{-a} = \text{OP}(q^{-q^+}), \quad q^\pm = \left(\frac{(\beta|\xi'|^2 + \lambda)^{\frac{a}{2}} \pm i\xi_n}{(\xi')^2} + i\xi_n\right)^a.$$

Here q^+ has the expansion

$$q^+ = \left(\frac{(\beta|\xi'|^2 + \lambda)^{\frac{a}{2}} + i\xi_n}{(\xi')^2} + i\xi_n\right)^a = (1 + a\frac{(\beta|\xi'|^2 + \lambda)^{\frac{a}{2}} - (\xi')^2}{(\xi')^2} + i\xi_n) + O((\xi_n)^{-2}),$$

so

$$-\frac{1}{2\pi} \int_0^+ h^+ q^+ d\xi_n = -a((\beta|\xi'|^2 + \lambda)^{\frac{a}{2}} - (\xi')) \frac{1}{2\pi} \int_0^+ \frac{1}{(\xi') + i\xi_n} d\xi_n$$

$$= -a((\beta|\xi'|^2 + \lambda)^{\frac{a}{2}} + a(\xi').$$

Then

$$(6.10) \quad s_{DN} = -a((\beta|\xi'|^2 + \lambda)^{\frac{a}{2}} + a(\xi') - a(\xi') = -a((\beta|\xi'|^2 + \lambda)^{\frac{a}{2}}.$$}

In this case s_{DN} is elliptic for all choices of $\beta > 0$, $\lambda \geq 0$, and the Neumann problems for these operators are elliptic. If λ is replaced by a nonnegative function $V(x)$, the calculations are valid on the principal symbol level.

In the paper [G15] the continuity properties of $t \left(r^+ P \gamma_0^{-a-1} \right)$ and its parametrix (R_D, K_D) were shown in H^s_p-Sobolev spaces (essentially, see Ths. 4.2, 5.1 and 6.5 there), and in [G14], which was written after [G15], they were extended to large families of Besov and Triebel-Lizorkin spaces, including results for elliptic Neumann problems (see Ths. 3.2, 3.5 and 4.3 there). Only the structure of K_D and K_N in the case of a curved domain was not explained in detail. We now have the full explanation above of how K_D and K_N consist of operators from the Boutet de Monvel calculus composed with operators Ξ^{1-a}_\pm or Λ^{1-a}_\pm in local coordinates, so the mapping properties extend readily from the H^s_p-scales to the H^s_p-scales as in [G15], and to the Besov and Triebel-Lizorkin scales as in [G14] Sect. 3 (based on Johnsen [J96] and its references). We can therefore conclude from [G15, G14] the following formulations of the mapping properties of the parametrices, for smooth bounded domains Ω. (We recall that $H^s_p = F^s_{p,2}$ and $C^s_\ast = B^s_{\infty,\infty}$.)

Corollary 6.4. Let $1 \leq p \leq \infty$ and $0 < q \leq \infty$ (with $p < \infty$ in the F-cases, (6.11), (6.13) and the first line of (6.15) below).

The parametrix of the Dirichlet problem maps as follows, for $s > a - 1/p'$:

$$(R_D, K_D) : F^{a-2a}_{p,q}(\Omega) \times B^{s-a+1/p'}_{p,p}(\partial \Omega) \to F^{(a-1)(s)}_{p,q}(\Omega), \text{ in particular}$$

$$(6.11) \quad (R_D, K_D) : \bar{F}^{a-2a}_{p,q}(\Omega) \times B^{s-a+1/p'}_{p,p}(\partial \Omega) \to H^{a-1}(\Omega).$$
Moreover, for \(s > a - 1/p', \ t > a - 1 \),

\[
(R_D \quad K_D) : B_{p,q}^{s-2a} (\Omega) \times B_{p,q}^{s-a+1/p} (\partial \Omega) \to B_{p,q}^{(a-1)(s)} (\Omega), \text{ in particular } \\
(R_D \quad K_D) : C_{*}^{t-a} (\Omega) \times C_{*}^{t-a+1} (\partial \Omega) \to C_{*}^{(a-1)(t)} (\Omega).
\]

The parametrix of the Neumann problem (when elliptic) maps as follows, for \(s > a+1/p \):

\[
(R_N \quad K_N) : F_{p,q}^{s-2a} (\Omega) \times B_{p,p}^{s-a-1/p} (\partial \Omega) \to F_{p,q}^{(a-1)(s)} (\Omega), \\
(R_N \quad K_N) : H_{p}^{s-2a} (\Omega) \times B_{p,p}^{s-a-1/p} (\partial \Omega) \to H_{p}^{(a-1)(s)} (\Omega).
\]

Moreover, for \(s > a + 1/p, \ t > a \),

\[
(R_N \quad K_N) : B_{p,q}^{s-2a} (\Omega) \times B_{p,q}^{s-a-1/p} (\partial \Omega) \to B_{p,q}^{(a-1)(s)} (\Omega), \\
(R_N \quad K_N) : C_{*}^{t-a} (\Omega) \times C_{*}^{t-a} (\partial \Omega) \to C_{*}^{(a-1)(t)} (\Omega).
\]

Being a \(\psi \)do of order 1, the Dirichlet-to-Neumann operator \(S_{DN} \) maps as follows, for all \(s \in \mathbb{R} \):

\[
S_{DN} : F_{p,q}^{s} (\partial \Omega) \to F_{p,q}^{s-1} (\partial \Omega), \quad S_{DN} : H_{p}^{s} (\partial \Omega) \to H_{p}^{s-1} (\partial \Omega), \quad S_{DN} : B_{p,q}^{s} (\partial \Omega) \to B_{p,q}^{s-1} (\partial \Omega), \quad S_{DN} : C_{*}^{s} (\partial \Omega) \to C_{*}^{s-1} (\partial \Omega).
\]

Remark 6.5. In connection with the Neumann trace operator \(\gamma_{1}^{a-1} \) there are many other meaningful boundary conditions for \(r^+P \), namely conditions of the (Robin-like) form

\[
\gamma_{1}^{a-1} u + L \gamma_{0}^{a-1} u = \psi,
\]

where \(L \) is a first-order \(\psi \)do on \(\partial \Omega \); they are **local** when \(L \) is a differential operator. The problem for \(r^+P \) with condition (6.16) is **elliptic** when \(S_{DN} + L \) is elliptic, i.e., in local coordinates, \(s_{DN,0}(x', \xi') + l_{0}(x', \xi') \neq 0 \) for \(\xi' \neq 0 \). Then the problem is Fredholm solvable in scales of spaces as in Theorem 6.2 and Corollary 6.4.

In particular, when \(P \) is principally like \((-\Delta)^a \) (i.e., \(P - (-\Delta)^a \) is of order \(2a - 1 \)), we have, when \(L \) in local coordinates at the boundary has the principal part \(\sum_{j=1}^{n-1} b_j (x') \partial_j \), that ellipticity holds when \(-a|\xi'| + b(x') \cdot i\xi' \) is nonvanishing for \(\xi' \neq 0 \). This is satisfied when the vector \(b \) is real; for complex \(b \) it holds when \(|\text{Im} b(x')| < a \) for all \(x' \).

Finally, some remarks on nonsmooth situations: Abels [A05a, A05b] has established a nonsmooth version of results from the Boutet de Monvel calculus in \(H_{p}^{s} \) and \(B_{p,q}^{s} \)-spaces for operators with for example Hölder continuous \(x \)-dependence. This is based on earlier works on nonsmooth \(\psi \)do’s, in particular Marschall [M88]. In this generalization, the range of possible \(s \) is limited to specific bounded intervals. Certainly, much of the above can be extended to such operators, when \(\Omega \) is smooth. To allow nonsmoothness of \(\Omega \), one would need to handle nonsmooth coordinate changes, but here the results are scarce—Another strategy would be to use the results known in smooth cases in combination with perturbation arguments (for example, Vishik and Eskin [E81] used such techniques to pass
from constant-coefficient cases to variable coefficients). Much remains to be investigated for such questions.

The results from the smooth studies can serve as a model for what one would want to show in nonsmooth cases. In comparison, many results through the years involving the Laplacian $-\Delta$ are generalizations of old and well-established results in smooth cases, for example based on Green’s formula. The “old, well-established” results have not been available in the case of the fractional Laplacian $(-\Delta)^{a}$; the present strivings with ψdo methods help to fill that gap.

Appendix.

We here collect some notation and results from the Boutet de Monvel calculus (as exposed in [B71, G90, G96, S01, G09]) and from [G16], that are used in the text.

The operators below are defined for the situation $\mathbb{R}^{n} = \mathbb{R}^{n}_{+}$. Besides pseudodifferential operators (ψdo’s) on \mathbb{R}^{n}, cf. (2.2), there are Poisson operators K from \mathbb{R}^{n-1} to \mathbb{R}^{n}, and trace operators T of class 0 from \mathbb{R}^{n}_{+} to \mathbb{R}^{n-1}:

\[
(K\varphi)(x) = \text{OPK}(k(x', \xi))\varphi = (2\pi)^{-n} \int e^{ix\cdot\xi}k(x', \xi)\hat{\varphi}(\xi')d\xi
\]

(A.1)

\[
(Tu)(x') = \text{OPT}(t(x', \xi))u = (2\pi)^{-n} \int e^{ix'\cdot\xi'}t(x', \xi)\hat{u}(\xi')d\xi,
\]

with suitable interpretations of the integrals, and ψdo’s $S = \text{OP}'(s(x', \xi'))$ on \mathbb{R}^{n-1} defined as in (2.2). In general, the trace operators of class 0 are supplied with standard trace operators $\sum_{0 \leq j < r} S_{j}\gamma_{j}$ with ψdo coefficients S_{j}; then they are of class r. (We shall not need singular Green operators in the present paper.) The symbols in (A.1) behave w.r.t. ξ_{n} as elements of the spaces \mathcal{H}^{+} resp. \mathcal{H}^{-1} of functions $f(t)$ that we shall now recall:

For $d \in \mathbb{Z}$, \mathcal{H}_{d} denotes the space of C^{∞}-functions $f(t)$ on \mathbb{R} such that $k(\tau) = \tau^{d}f(\tau^{-1})$ coincides with a C^{∞}-function for $-1 < \tau < 1$ (i.e., the derivatives of f match in a good way for $t \to \pm\infty$). These spaces are Fourier transforms of spaces of distributions on \mathbb{R}:

\[
\mathcal{H}_{-1} = \mathcal{F}(e^{-S_{-}} \oplus e^{+}S_{+}), \quad \mathcal{H}_{d} = \mathcal{H}_{-1} \oplus \mathbb{C}_{d}[t] \text{ for } d \geq 0,
\]

(A.2)

where $S_{\pm} = r^{\pm}S(\mathbb{R}) = S(\mathbb{R}_{\pm})$, and $\mathbb{C}_{d}[t]$ stands for the space of polynomials of degree $\leq d$ in t. We also denote

\[
\mathcal{H} = \bigcup_{d} \mathcal{H}_{d} = \mathcal{H}_{-1} \oplus \mathbb{C}[t], \quad \mathbb{C}[t] = \bigcup_{d} \mathbb{C}_{d}[t].
\]

With a slight asymmetry, one defines

\[
\mathcal{H}^{+} = \mathcal{F}(e^{+}S_{+}), \quad \mathcal{H}^{-} = \mathcal{F}(e^{-}S_{-}) \oplus \mathbb{C}[t], \quad \mathcal{H}_{d}^{\pm} = \mathcal{F}(e^{\pm}S_{\pm}) \oplus \mathbb{C}_{d}[t] \text{ for } d \geq -1, \text{ so }
\]

(A.3)

\[
\mathcal{H} = \mathcal{H}^{+} \oplus \mathcal{H}^{-} = \mathcal{H}^{+} \oplus \mathcal{H}_{-1} \oplus \mathbb{C}[t], \text{ with } \mathcal{H}_{-1} = \mathcal{H}^{+} \oplus \mathcal{H}^{-1};
\]

more generally $\mathcal{H}_{d} = \mathcal{H}^{+} \oplus \mathcal{H}_{d}^{-}$ for $d \geq -1$. The mappings h^{\pm} are defined on \mathcal{H} such that they are complementing projections with ranges \mathcal{H}^{\pm}:

\[
h^{+}\mathcal{H} = \mathcal{H}^{+}, \quad h^{-}\mathcal{H} = \mathcal{H}^{-}, \text{ in particular, } h^{-}\mathcal{H}_{d} = \mathcal{H}_{d}^{-} \text{ for } d \geq -1.
\]
Note that h^+ and h^- are essentially the Fourier transforms of the projections e^{+r^+} and e^{-r^-} for functions on \mathbb{R}; $\mathcal{F}^{-1} h^- \mathcal{F}$ moreover preserves distributions supported in $\{0\}$.

Furthermore, h_{-1} denotes the projection from \mathcal{H} to \mathcal{H}_{-1} that removes the polynomial part. The space \mathcal{H}_{-1} equals the space of conjugates of functions in \mathcal{H}^+. \mathcal{H}^+ can also be denoted \mathcal{H}^+_{-1} when convenient. When $f \in \mathcal{H}_{-1}$, $\overline{h f} = h^+(f)$.

The symbol spaces for Poisson resp. trace operators of class 0 are the spaces $S^m(\mathcal{H}^+)$ resp. $S^m(\mathcal{H}_{-1})$. Here $S^m(\mathcal{H}^+) = S^m_{1,0}(\mathbb{R}^m, \mathbb{R}^{n-1}, \mathcal{H}^+)$ consists of functions $f(X,\xi',\xi_n)$ that are in \mathcal{H}^+ w.r.t. ξ_n and satisfy the estimates

$$\|D_X^\alpha D_{\xi'}^\beta D_{\xi_n}^k h_{-1}(\xi_n^k f(X,\xi',\xi_n))\|_{L^2(\mathbb{R})} \leq C_{\alpha,\beta,k,k'} \langle \xi' \rangle^{m + \frac{1}{2} - k + k' - |\alpha|}, \quad (A.5)$$

for all indices. The symbols considered here moreover have asymptotic expansions in terms f_j that are homogeneous in (ξ',ξ_n) of degree $m - j$ for $|\xi'| \geq 1$, such that $f - \sum_{0 \leq j < J} f_j$ is in $S^{m-J}(\mathcal{H}^+)$ for all J. Definitions with \mathcal{H}^+ replaced by \mathcal{H}_{-1} or $\mathcal{H}-1$ are similar, and one can also define spaces of symbol-kernels with \mathcal{H}^+ replaced by S_+ (arising from inverse Fourier transformation) etc., cf. [G16].

It follows from [G16] Th. 2.6, that when P is a classical ψdo of order $2a$, even (cf. (1.2)), and elliptic avoiding a ray, then the principal symbol $q_0(x,\xi) = p_0(x,\xi) \langle \xi \rangle^{-2a}$ of $Q = \Xi^- a P \Xi^- a$ has a factorization

$$q_0(x,\xi) = q_0^-(x,\xi) q_0^+(x,\xi), \quad (A.6)$$

where $q_0^+ = 1 + f^+$ with $f^+ \in S^0_{1,0}(\mathbb{R}^n, \mathbb{R}^{n-1}, \mathcal{H}^+)$, and $q_0^- = s_0 + f^-$ with $f^- \in S^0_{1,0}(\mathbb{R}^n, \mathbb{R}^{n-1}, \mathcal{H}_{-1})$; we have here included $s_0(x) = p_0(x,0,1)$ as a factor in q_0^-. The functions q_0^\pm are generalized ψdo symbols, like $(|\xi'| + i\xi_n)^d$, and therefore define operators with have slightly weaker mapping properties than ψdo’s (see [G16] Sect. 2), but when Poisson- and trace operators are constructed from such symbols (see further below), they enter in the same way as ψdo symbols with the transmission property, because it is the \mathcal{H}_{-1}-property that is used.

There is also a factorization construction where the Ξ^t_\pm are replaced by the true ψdo families Λ^t_\pm. Here we define

$$Q_1 = \Lambda^- a P \Lambda^- a, \quad q_1(x,\xi) = \lambda^- a \# p(x,\xi) \lambda^- a, \quad (A.7)$$

cf. (2.3). The principal symbol of Q_1 is again q_0, that factorizes as in (A.6). By [G16] Th. 2.7 there is a factorization of the full symbol $q_1(x,\xi)$, leading to a factorization of Q_1, hence of P:

$$q_1 \sim q_1^- \# q_1^+ \quad Q_1 \sim Q_1^- Q_1^+ \quad P \sim \Lambda^- a Q_1^- Q_1^+ \Lambda^a, \quad (A.8)$$

where $Q_1^\pm = \text{OP}(q_1^\pm)$ (also here, s_0 is included as a factor to the left in q_1^\pm).

There is a similar full factorization in terms of $Q = \Xi^- a P \Xi^- a$. Th. 2.7 of [G16] does not apply directly to $\chi^- a \# p(x,\xi) \chi^a_+$ since this already passes outside the true ψdo’s, but the proof can be adapted to it since it is the \mathcal{H}_{-1}-properties that are used. Alternatively,
we can use that \(\Lambda^\mu_\pm = \Xi^\mu_\pm (I + \Psi^\mu_\pm) \), where \(\Psi^\mu_\pm \) have symbols \(\psi^\mu_\pm(\xi) \) in \(S^0(\mathcal{H}^-_1) \), cf. [G15], (1.16)ff. and Lemma 6.6. This gives by insertion in (A.8), taking (A.10) (see e.g. [G09] Th. 7.13). A useful special case is when
\[
\tilde{F}
\]
where \(Q \)

we can use that \(\Lambda \) \(\mu \)

x

form”. The transition from \(\text{OP}(R) \) with symbol (A.12)
\(\gamma \)
\(s \)

simplest expression when \(R \)
proofs of (A.12), (A.13).

\[
(A.12)
\]

γ \(\in \mathbb{N}_0 \)

\[
\sum
\]

\[
(A.10)
\]

Symbols \(p(x, \xi) \) used as in (2.2) are then said to be “in \(x \)-form”, and there is an asymptotic formula for the \(x \)-form symbol producing the same operator as the symbol \(r(x, y, \xi) \) in (A.10) (see e.g. [G09] Th. 7.13). A useful special case is when \(r(x, y, \xi) \) in (A.10) is independent of \(x_n \) and \(y' \) (which can then be left out); then it is said to be “in \((x', y_n) \)-form”. The transition from \(x \)-form to \((x', y_n) \)-form goes as follows: An operator \(R = \text{OP}(r(x, \xi)) \) has a symbol \(r' \) in \((x', y_n) \)-form related to the symbol \(r \) in \(x \)-form by
\[
(A.11)
\]

We now recall explicitly some rules from the Boutet de Monvel calculus that we need, cf. e.g. [G09], (10.22), Ths. 10.24 and 10.25:

Trace operators arise in particular from compositions \(\gamma_0 r^+ R e^+ \), where \(R \) is a \(\psi \)do having the 0-transmission property. When \(R = \text{OP}(r(x, \xi)) \), then \(\gamma_0 r^+ R e^+ \) is the trace operator with symbol \(h^- r(x', 0, \xi) \),
\[
(A.12)
\]

\[
(A.13)
\]

These rules extend to the generalized \(\psi \)do’s with symbols in \(S^m(\mathcal{H}_{-1}) \), \(m \) integer \(\leq 0 \), since it is the property of the symbol being in \(\mathcal{H}_{-1} \) with respect to \(\xi_n \) that is used in the proofs of (A.12), (A.13).

Further composition rules in the calculus are amply described in [G09] Sect. 10.4. Let us just recall that when \(T = \text{OPT}(t(x', \xi)) \) and \(K = \text{OP}(k(x', \xi)) \), then \(S = TK \) is a \(\psi \)do \(S = \text{OP}(s(x', \xi')) \) on \(\mathbb{R}^{n-1} \) with symbol
\[
(A.14)
\]

\[
\frac{1}{2\pi} \int^+_\mathbb{R} t(x', \xi) \# k(x', \xi) \, d\xi_n
\]
(the Leibniz product $\# (2.3)$ is used in the (x', ξ')-variables). Here the plus-integral $\int^+ f(t) \, dt$ stands for a linear extension of, on one hand, the ordinary integral on \mathbb{R} of functions $f \in L_1(\mathbb{R})$ and, on the other hand, the integral over a curve encircling the poles in \mathbb{C}_+ when $f(t)$ extends to a meromorphic function of t in \mathbb{C}_+. The plus-integral vanishes on \mathcal{H}^-. It also vanishes on functions in \mathcal{H}^+ that are $O(t^{-2})$ at infinity, since the integral can then be turned into an integral over a contour in \mathbb{C}_-.

Calculating a plus-integral is essentially the Fourier transform of taking a boundary value from the right: When $u(x_n) \in \mathcal{S}(\mathbb{R}_+)$ and $f(\xi_n) = \mathcal{F}_{x_n \rightarrow \xi_n}(e^+ u)$, then

$$\frac{1}{2\pi} \int^+ f(\xi_n) \, d\xi_n = \gamma_0 u = \lim_{x_n \rightarrow 0^+} u(x_n). \tag{A.15}$$

Also for Poisson and trace operators, one can define them in x'-form, (x', y')-form or y'-form. The adjoints of the Poisson operators $\text{OPK}(k(x', \xi))$ are the trace operators $\text{OPT}(k(y', \xi))$; the latter are exactly the trace operators of class zero, written in y'-form.

We shall need the result that $\gamma_0^{a-1} u$ is described equally well using Ξ^{a-1}_+ or Λ^{a-1}_+. By the remarks before (A.9), $\Lambda^{a-1}_+ = (1 + \Psi^{a-1}_+) \Xi^{a-1}_+$, where Ψ^{-1}_+ has symbol $\psi^{a-1}_+(\xi) \in S^0(\mathcal{H}^+)$. Let $u \in H^{(a-1)(s)}(\mathbb{R}_n^+)$, $s > a - \frac{1}{2}$, then $\tilde{u} = r^+ \Xi^{a-1}_+ u \in \mathcal{H}^{s-a+1}(\mathbb{R}_n^+)$ with $u = \Xi^{1-a}_+ e^+ \tilde{u}$ (by definition). We know from [G15], Sect. 5, and it is reproved in Section 2 above, that $\gamma_0^{a-1} u = \gamma_0 \Xi^{a-1}_+ u$ (as a boundary value from \mathbb{R}_n^+). Then moreover,

$$\gamma_0(\Lambda^{a-1}_+ u) = \gamma_0((I + \Psi^{a-1}_+) \Xi^{a-1}_+ u) = \gamma_0(\Xi^{a-1}_+ u) = \gamma_0^{a-1} u. \tag{A.16}$$

Namely, $\gamma_0(\Psi^{a-1}_+ \Xi^{a-1}_+ u) = \gamma_0(\Psi^{a-1}_+ e^+ \tilde{u})$ is in the ξ_n-variable calculated as a plus-integral of $\psi^{a-1}_+(\xi)$ multiplied by $e^+ \tilde{u}$, where both functions are in \mathcal{H}^+, hence the product is $O((\xi_n)^{-2})$ and in \mathcal{H}^+, whereby the plus-integral gives zero. (This kind of calculation also enters in [G16], around (3.31).)

References

[A15]. N. Abatangelo, Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst. 35 (2015), 5555-5607.

[A05a]. H. Abels, Pseudodifferential boundary value problems with non-smooth coefficients, Comm. Partial Differential Equations 30, no. 10-12 (2005), 1463-1503.

[A05b]. H. Abels, Reduced and generalized Stokes resolvent equations in asymptotically flat layers. II. H^∞-calculus, J. Math. Fluid Mech. 7 (2005), 223-260.

[BG59]. B. M. Blumenthal and R. K. Getoor, The asymptotic distribution of the eigenvalues for a class of Markov operators, Pacific J. Math. 9 (1959), 399-408.

[BBC03]. K. Bogdan, K. Burdzy and Z.-Q. Chen, Censored stable processes, Prob. Theory Related Fields 127 (2003), 89-152.

[BSV15]. M. Bonforte, Y. Sire and J. L. Vazquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst. 35, no. 12 (2015), 5725-5767.

[B71]. L. Boutet de Monvel, Boundary problems for pseudo-differential operators, Acta Math. 126 (1971), 11-51.

[CS07]. L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Pure Appl. Math. 32 (2007), 1245-1260.

[CS09]. L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math. 62 (2009), 597-638.
GREEN'S FORMULA

[CS98]. Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann. 312 (1998), 465–501.

[E81]. G. Eskin, Boundary value problems for elliptic pseudodifferential equations, Amer. Math. Soc., Providence, R.I., 1981.

[FKV15]. M. Felsinger, M. Kassmann and P. Voigt, The Dirichlet problem for nonlocal operators, Math. Z. 279 (2015), 779-809.

[FG16]. R. L. Frank and L. Geisinger, Refined semiclassical asymptotics for fractional powers of the Laplace operator, J. Reine Angew. Math. 712 (2016), 1-37.

[G90]. G. Grubb, Pseudo-differential boundary problems in L_p-spaces, Comm. Part. Diff. Eq. 13 (1990), 289–340.

[G96]. G. Grubb, Functional calculus of pseudodifferential boundary problems. Progress in Math. vol. 65, Second Edition, Birkhäuser, Boston, 1996, first edition issued 1986.

[G09]. G. Grubb, Distributions and operators. Graduate Texts in Mathematics, 252, Springer, New York, 2009.

[G14]. G. Grubb, Local and nonlocal boundary conditions for μ-transmission and fractional elliptic pseudodifferential operators, Analysis and P.D.E. 7 (2014), 1649–1682.

[G15]. G. Grubb, Fractional Laplacians on domains, a development of Hörmander’s theory of μ-transmission pseudodifferential operators, Adv. Math. 268 (2015), 478–528.

[G16]. G. Grubb, Integration by parts and Pohozaev identities for space-dependent fractional-order operators, J. Diff. Eq. 261 (2016), 1835-1879.

[G18]. G. Grubb, Limited regularity of solutions to fractional heat equations (to appear).

[HJ96]. W. Hoh and N. Jacob, On the Dirichlet problem for pseudodifferential operators generating Feller semigroups, J. Functional Anal. 137 (1996), 19–48.

[H65]. L. Hörmander, Ch. II, Boundary problems for “classical” pseudo-differential operators, unpublished lecture notes at Inst. Adv. Studies, Princeton 1965; available at http://www.math.ku.dk/~grubb/LH65.pdf.

[H85]. L. Hörmander, The analysis of linear partial differential operators, III, Springer Verlag, Berlin, New York, 1985.

[J02]. T. Jakubowski, The estimates for the Green function in Lipschitz domains for the symmetric stable processes, Probab. Math. Statist. 22 (2002), 419-441.

[J96]. J. Johnsen, Elliptic boundary problems and the Boutet de Monvel calculus in Besov and Triebel-Lizorkin spaces, Math. Scand. 79 (1996), 25–85.

[K97]. T. Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist. 17 (1997), 339-364.

[L72]. N. S. Landkof, Foundations of modern potential theory. (Translated from the Russian by A. P. Doohovskoy.) Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972.

[M88]. J. Marschall, Pseudodifferential operators with coefficients in Sobolev spaces, Trans. Amer. Math. Soc. 307 (1988), 335-361.

[MN14]. R. Musina and A.I. Nazarov, On fractional Laplacians, Comm. Part. Diff. Eq. 39 (2014), 1780-1790.

[R16]. X. Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat. 60 (2016), 3-26.

[RS14a]. X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian, J. Math. Pures Appl. 101 (2014), 275-302.

[RS14b]. X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Rat. Mech. Anal. 213 (2014), 587–628.

[RS15]. X. Ros-Oton and J. Serra, Local integration by parts and Pohozaev identities for higher order fractional Laplacians, Discrete Contin. Dyn. Syst. 35 no. 5 (2015), 2131-2150.

[RS16]. X. Ros-Oton and J. Serra, Boundary regularity for fully nonlinear integro-differential equations, Duke Math. J. 165 (2016), 2079–2154.

[RSV17]. X. Ros-Oton, J. Serra, and E. Valdinoci, Pohozaev identities for anisotropic integro-differential operators, Comm. Part. Diff. Equ. 42 (2017), 1290–1321.

[S01]. E. Schrohe, A short introduction to Boutet de Monvel’s calculus, Approaches to Singular Analysis, Oper. Theory Adv. Appl. 125, Birkhäuser, Basel, 2001, pp. 85-116.
[SV14]. R. Servadei and E. Valdinoci, *On the spectrum of two different fractional operators*, Proc. Roy. Soc. Edinburgh **144** (2014), 831–855.

[S07]. L. Silvestre, *Regularity of the obstacle problem for a fractional power of the Laplace operator*, Comm. Pure Appl. Math. **60** (2007), 67–112.

[T81]. M. E. Taylor, *Pseudodifferential operators*, Princeton University Press, Princeton, NJ, 1981.