X-Ray Flares of Gamma-Ray Bursts: Quakes of Solid Quark Stars? *

Renxin Xu¹ and Enwei Liang²

¹ Astronomy Department, School of Physics, Peking University, Beijing 100871, China
² Department of Physics, Guangxi University, Nanning 530004, China

Received 2008 month day; accepted 2008 month day

Abstract We propose a star-quake model to understand X-ray flares of both long and short Gamma-ray bursts (GRBs) in a solid quark star regime. Two kinds of central engines for GRBs are available if pulsar-like stars are actually (solid) quark stars, i.e., the SNE-type GRBs and the SGR-type GRBs. It is found that a quark star could be solidified about 10^3 to 10^6 s later after its birth if the critical temperature of phase transition is a few MeV, and then a new source of free energy (i.e., elastic and gravitational ones, rather than rotational or magnetic energy) could be possible to power GRB X-ray flares.

Key words: gamma rays: bursts: X-rays; neutron stars; elementary particles

1 INTRODUCTION

Swift, a multi-wavelength gamma-ray burst (GRB) mission (Gehrels et al. 2004), has led to great progress in understanding the nature of the GRB phenomenon (see recent reviews by Mészáros 2006; Zhang 2007). With its promptly slewing capacity and high sensitivity, it catches the early afterglows and the extended prompt emission in details for the first time. This not only provides an opportunity to examine the conventional models established in the pre-Swift era (Willingale et al. 2007; Liang et al. 2007, 2008; Panaitescu 2007; Zhang et al. 2007), but also facilitates studies of the transition between the prompt emission and the afterglow (Zhang et al. 2007, 2008; Butler & Kocevski 2007), and even gives insight into the properties of both the progenitors and the GRB central engines (e.g., Liang et al. 2007; Kumar et al. 2008).

The GRB survey with CGRO (Compton Gamma-ray Observatory)/BATSE identified two types of GRBs, long-soft and short-hard GRBs, separated with burst duration of ~ 2 seconds (Kouveliotou et al. 1993). On one hand, with firmed detections of GRB-supernova connections for four nearby cases (Galama et al. 1998; Bloom et al. 1999; Hjorth et al. 2003; Thomsen et al. 2004; Campana et al. 2006), it is now generally accepted that long GRBs are associated with energetic core-collapse supernovae (Colgate 1974; Woosley 1993; for recent reviews by

* E-mail: r.x.xu@pku.edu.cn, lew@gxu.edu.cn; Contributed by Renxin Xu.
Woosley & Bloom 2006). Interestingly, Li (2006) found that the peak spectral energy of GRBs is correlated with the peak bolometric luminosity of the underlying supernovae (SNe), based on the four pair GRB-SNe connections. The X-ray transient 080109 associated with a normal core-collapse SN 2008D (Soderberg et al. 2008) also complies with this relation (Li 2008). Signatures of long GRB-SNe connection may be also derived from a red bump in late optical afterglow lightcurves (Bloom et al. 1999; Zeh, Klose, & Hartmann 2004) and a long time lag between the GRB precursor and the main burst observed in some GRBs (Wang & Mészáros 2007). On the other hand, short GRBs coincide with the early-type stellar population with no or little current star formation (Gehrels et al. 2005; Berger et al. 2005; Barthelmy et al. 2005; Hjorth et al. 2005; Villasenor et al. 2005; Fox et al. 2005; see recent review by Nakar 2007), favoring mergers of compact object binaries as the progenitors of the short GRBs (Goodman 1986; Eichler et al. 1989; Paczynski 1991; Mészáros & Rees 1992; Narayan, Paczynski, & Piran 1992).

Although the progenitors of the long and short GRBs are different, the models for their central engines are similar, and essentially all can be simply classed as a rotating compact object that drives an ultra-relativistic outflow to produce both the prompt gamma-rays and afterglows in lower energy bands. These models are highly constrained by the observations of the prompt gamma-rays and multi-wavelength afterglows. It is well believed that the prompt gamma-rays are produced by the internal shocks, and the burst duration is a measure of the central engine active timescale. In the merger models of compact object binaries for the short GRBs, the duration of the bursts is expected to be less than 1 second (Narayan, Piran, & Kumar 2001). This is challenged by the observations with Swift. One of the remarkable advances made by Swift is the discovery of erratic X-ray flares for both long and short GRBs, happening at very early time or hours even one day after the GRB trigger in the light curves observed with the X-ray telescope (XRT) (Burrows et al. 2005; Falcone et al. 2006; Chincarini et al. 2007). The X-ray flares are a superimposed component of the underlying afterglows, with a feature of rapid rise and fall times ($\delta t << t_{\text{peak}}$). Multiple flares are observed in some bursts. They are similar to the pulse of the prompt gamma-rays, but the fluence of the flares decrease with time and the durations of the flares at later time become broader than early flares. These properties generally favor the idea that most of them are of internal origin, having nothing to do with external-shock related events (Burrows et al. 2005; Fan & Wei 2005; Zhang et al. 2006; Liang et al. 2006). This indicates that the central engine should live much longer than the burst duration or it was re-restarted by an un-recovered mechanism. Several models have been proposed, such as magnetic explosions of a millisecond pulsar from NS-NS merger (Dai et al. 2006), fragmentation or gravitational instabilities in the massive star envelopes (King et al. 2005) or in the accretion disk (Perna et al. 2006), or magnetic barrier around the accretor (Proga & Zhang 2006).

The facts that X-ray flares are observed for both long and short GRBs motivate us to speculate that the central engines of the two kinds of GRBs are physically similar. We know that an accretor-disk system is hard to sustain a long lived engine for the short GRBs (Narayan, Piran, & Kumar 2001), except a fraction of materials is lunched to a large orbit. However, the fall-back of the materials cannot produce the observed erratic flares (Rosswog 2007). We therefore propose alternatively that the mechanism should be harborred in the central star (i.e., the engine).

Actually, the essential difficulty of reproducing two kinds of astronomical bursts are challenging today’s astrophysicists to find realistic explosive mechanisms. Besides the puzzling central engines of GRBs, it is still a long-standing problem to simulate supernovae successfully in the neutrino-driven explosion model (e.g., Buras et al. 2003). Nevertheless, it is shown now that both kinds of explosions could be related to the physics of cold matter at supra-nuclear density, which is unfortunately not well understood because of the uncertainty of non-perturbative
QCD (quantum chromo-dynamics). We still do not know the nature of pulsars with certainty even more than 40 years after the discovery, which is also relevant to the physics of cold dense matter. Nuclear matter (related to neutron stars) is one of the speculations, but quark matter (related to quark stars) is an alternative (e.g., Weber 2005). In this paper, we will speculate about the physical reasons that make the mechanisms for both long-soft and short-hard GRBs, which are related to the elemental strong interaction, says, the physics of the cold dense matter at supra-nuclear density. We suggest here that GRB X-ray flares could be the results of star quakes of solid quark stars (Xu 2003; Owen 2005; see, e.g., Xu 2008 for a general review about quark stars). Our idea for understanding GRB X-ray flares is presented in section 2, and the paper is summarized in section 3.

2 AN IDEA OF UNDERSTANDING GRB X-RAY FLARES

Based on different manifestations of pulsar-like stars, a conjecture of solid cold quark matter was addressed a few years ago (Xu 2003). Consequently, a variety of observational features, which may challenge us in the hadron star model, could be naturally understood in the solid quark star model (Xu 2008), including the giant flares of soft gamma-ray repeaters (Horvath 2005; Xu 2007).

What if pulsar-like stars are actually quark stars? One of the direct and important consequences could be the low baryon-loading energetic fireballs formed soon after quark stars, which would finally result in both supernova and GRBs. As addressed in Xu (2005), the bare quark surfaces could be essential for successful explosions of both types of core and accretion-induced collapses. The reason is that, because of the strong binding of baryons, the photon luminosity of a quark surface is not limited by the Eddington limit, and it is thus possible that the prompt reverse shock could be revived by photons, rather than by neutrinos. This point was then noted too by Paczyński and Haensel (2005) who proposed that classical long-duration gamma-ray bursts could be from the formation of quark stars several minutes after the initial core collapse, emphasizing the surface as a membrane allowing only ultrarelativistic non-baryonic matter to escape. Actually, a 1-dimensional (i.e., spherically symmetric) calculation by Chen, Yu & Xu (2007) showed that the lepton-dominated fireball supported by a bare quark surface do play a significant role in the explosion dynamics under a photon-driven scenario. Recently, the QCD phase transition for quark matter during the post-bounce evolution of core collapse supernovae was numerically investigated by Sagert et al. (2008), and they found that the phase transition produces a second shock wave that triggers a delayed supernova explosion. However, what if the expanding of a fireball outside quark surface is not spherically symmetric? An asymmetric explosion may result both in a GRB-like fire jet and in a kick on quark stars, and the statistical result of Cui et al. (2007) indicated that the kick velocity of pulsars could be consistent with an asymmetric explosion of GRBs.

Another consequence of quark star in a solid state is spontaneous quake occurring when elastic energy develops to a critical value there, if cold quark matter is actually in a solid state. A nascent quark star could be in a fluid state since quarks are just de-confined from hadrons, though it is still not sure whether the quarks are clustered in a fluid state initially. Anyway such a quark star should have to be solidified soon due strong cooling through both neutrino and photon, and we may use a toy model to estimate the timescale for a transition from fluid to solid states.

For the sake of simplicity, we may approximate a quark star as a star with homogenous density of \(\rho = 3 \rho_0 \) (\(\rho_0 \approx 2 \times 10^{14} \text{ g/cm}^{-3} \) is the nuclear density) and in a radius of \(R \), and its mass is then \(M = 4\pi R^3 \rho / 3 = 1.3 R_6^3 M_\odot \), where \(R = R_6 \times 10^6 \text{ cm} \). The total quark number is \(4.5 \times 10^{57} \), and the total number of quark clusters could be \(N_{qc} = 4.5 \times 10^{56} R_6^3 \) if the average
quark number in clusters is order of 10. The total thermal energy of a quark star is then

$$Q = \frac{3}{2} k T N_q = 1.1 \times 10^{51} T_1 R_6^3 \text{ ergs},$$ \hfill (1)

where the stellar temperature $T(t) = T_1$ MeV is assumed to be constant at certain age t.

In high temperature, neutrino emissivity via pair annihilation $(\gamma + \gamma \rightarrow e^+ e^- \rightarrow \bar{\nu} + \nu)$ dominates. We just consider this mechanism for neutrino cooling since the ν-emissivity of clustered quark matter is hitherto unknown. The emissivity was presented by Itoh et al. (1989) who used the Weinberg-Salam theory in their calculation, which is

$$\epsilon_{\text{pair}} = 1.089[1 + 0.104q(\lambda)]g(\lambda)e^{-2/\lambda}f(\lambda) \text{ erg s}^{-1} \text{ cm}^{-3},$$ \hfill (2)

where $\lambda = T/(5.9302 \times 10^9 \text{ K})$, $\xi = [\rho/\mu_c/(10^9 \text{ g/cm}^3)]^{1/3}\lambda^{-1}$, and,

$$q(\lambda) = (10.7480 \lambda^2 + 0.3967 \lambda^{0.5} + 1.0050)^{-1.0}[1 + (\rho/\mu_c)(7.692 \times 10^7 \lambda^3 + 9.715 \times 10^6 \lambda^{0.5})^{-1}]^{-0.3},$$

$$g(\lambda) = 1 - 13.04\lambda^2 + 133.5\lambda^4 + 1534\lambda^6 + 918.6\lambda^8,$$

$$f(\lambda) = \frac{(a_0 + a_1\xi + a_2\xi^2)e^{-\xi}}{\xi^3 + b_1\lambda^{-1} + b_2\lambda^{-2} + b_3\lambda^{-3}},$$

where $a_0 = 6.002 \times 10^{19}$, $a_1 = 2.084 \times 10^{20}$, $a_2 = 1.872 \times 10^{21}$; $b_1 = 0.9383$, $b_2 = -0.4141$, $b_3 = 0.05829$, $c = 5.5924$ for $T < 10^{10}$ K; $b_1 = 1.2383$, $b_2 = -0.8141$, $b_3 = 0.0$, $c = 4.9924$ for $T \geq 10^{10}$ K. According to the calculation by Zhu & Xu (2004) in the bag model, the ratio of number density of electron to that of quark is $< 10^{-4}$. We thus choose the electron mean molecular weight $\mu_e = 10^5$ for strange quark matter in following calculation.

Assuming the optical depth of neutrinos in proto-quark stars is less than 1, we then have the energy loss rate due to neutrino emission,

$$\dot{Q}_\nu \simeq \frac{4}{3}\pi R^3 \epsilon_{\text{pair}}.$$ \hfill (3)

Another important cooling mechanism for bare quark stars is thermal photon emission from quark surface,

$$\dot{Q}_\gamma \simeq 4\pi R^2 \sigma T^4,$$ \hfill (4)

and the total cooling rate is then,

$$\dot{Q} = \frac{3}{2} k N_q \frac{dT}{dt} = -\dot{Q}_\nu - \dot{Q}_\gamma.$$ \hfill (5)

A comparison of \dot{Q}_ν and \dot{Q}_γ is shown in Fig.1. It is evident that the neutrino loss dominated at high temperatures, while the photon emissivity dominates at low temperatures. The critical temperature T_{crit}, at which the energy loss rates of neutrinos and photons are equal, depends on stellar radius (or mass). Low mass quark stars have higher T_{crit}.

According to Eq. (5), we can also calculate the cooling curves of quark stars in the toy model, which is shown in Fig.2. It was suggested that quark-clusters in cold quark matter could be localized at lattices, breaking then the translational invariance, to form solid quark matter with rigidity (Xu 2003), but we are not sure about the critical temperature, T_c, at which the solidification phase transition happens because of lacking reliable way to calculate with the inclusion of non-perturbative QCD effects. Nevertheless, a quark star could be solidified about 10^3 to 10^6 s later after its birth if the critical temperature is $T_c \sim 1$ to 10 Mev, as is illustrated in Fig.2. That T_c is order of a few MeV could be reasonable and not surprising since the interacting strength of nuclei, where the non-perturbative QCD effects dominate, is also of this energy scale.
Fig. 1 Cooling rates due to neutrino and photon emissivities for quark stars with radii of 10 km (solid lines) and 1 km (dashed lines). It is evident that photon emissivity dominates except at the very beginning of stars with high temperature, and the critical temperature is higher for quark stars with lower masses.

Fig. 2 Cooling curves based on Eq. (5) for initial temperature $T_0 = 50$, 10 MeV and stellar radii of 10, 1 km. For a star with $T_0 = 10$ MeV and $R = 1$ km, its cooling curve fits the dotted line before age $t \sim 10^2$ s, but fits the dashed line after $t \sim 10^3$ s.

What if quark stars are in a solid state? Star-quake is a natural consequence when strains accumulate to a critical value. Two types of stress force could develop inside solid stars (Peng & Xu 2008): the bulk-variable and bulk-invariable forces. Both these forces could result in gravitational and elastic energy releases (to be in a same order), with an order of

$$E \simeq \frac{GM^2}{R} \sim 10^{53} \frac{\Delta R}{R} \text{ ergs}$$

(6)
for $M \sim M_\odot$, where ΔR is the radius-change during quakes. An energy release of $\sim 10^{50}$ ergs could be possible if stellar radius changes suddenly ~ 10 m during a quake of a solid quark star with radius of ~ 10 km. The rise time of a burst could be $\hat{t} \sim \hat{R}/c \sim 1$ ms, where \hat{R} is the scale of a quake-induced fireball in a magnetosphere and could be a few tens of stellar radius. The rise time would be $\gg \hat{t}$ if energy is ejected into fireball by a series of small quakes. The duration would actually depend on detail radiative process in magnetosphere.

In the regime of quark star, there could be two kinds of mechanisms for γ-ray bursts. The first one, we call as “SNE-type”, is relevant to the birth of quark stars and supernovae. A very clean (i.e., lepton-dominated) fireball forms soon above quark surface. In addition, more energy would be ejected into the fireball when star-quakes occur. The discovery of erratic X-ray flares in long-soft GRBs, happening at very early time or hours even one day after the GRB trigger, is consistent with this picture.

The second one, we call as “SGR-type”, is relevant to the later evolution of quark stars, especially in an accretion phase. An accretion-induced star-quake (AIQ) model was suggested to understand the huge energy bursts of soft Gamma-ray repeaters (SGRs), based on several calculations of the static, spherically symmetric, and interior solution (Xu et al. 2006, Xu 2007, Lai & Xu 2008). It is found that the energy released during star-quakes could be as high as $\sim 10^{47}$ ergs if the tangential pressure is $\sim 10^{-6}$ higher than the radial one. A big star-quake could power energetic relativistic outflow to produce the observed prompt emission of short-hard GRBs, and this quake may trigger a few smaller and stochastic quakes which result in following X-ray flares observed.

3 CONCLUSIONS

An idea to understand the X-ray flares of both long and soft Gamma-ray bursts is proposed in the quark star regime. We suggest an SNE-type GRB scenario when quark stars are born, and an SGR-type GRB scenario if giant quakes occur in solid quark stars during their latter accretion phases. However, stochastic quakes after initial GRBs could be responsible to the X-ray flares of both types of GRBs.

According to a toy model of cooling quark stars, we find that a quark star could be solidified about 10^3 to 10^6 s later after its birth if the critical transition temperature is ~ 1 to 10 MeV. This means that star-quakes could occur at a time of hours (even one day) after the GRB trigger, and the star-quake induced energy ejection would then results in the observed X-ray flares of SNE-type GRBs.

Acknowledgements We acknowledge valuable discussion with Dr. Lixin Li (KIAA) and Dr. Bing Zhang (UNLV). This work is supported by NSFC (10573002, 10778611, 10873002), the Key Grant Project of Chinese Ministry of Education (305001), the National Basic Research Program (“973” Program) of China (Grant 2009CB824800), the research foundation of Guangxi University, and the LCWR (LHXZ200602).

References

Barthelmy, S. D., et al. 2005, Nature, 438, 994
Berger, E., et al. 2005, Nature, 438, 988
Bloom, J. S., et al. 1999, Nature, 401, 453
Burrows, D. N., et al. 2005, Science, 309, 1833
Butler, N. R., & Kocevski, D. 2007, ApJ, 668, 400
Buras, R., Rampp, M., Janka, H.-Th., & Kifonidis, K., 2003, Phys. Rev. Lett., 90, 241101
Campana, S., et al. 2006, Nature, 442, 1008
Chen, A. B., Yu, T. H., Xu, R. X., 2007, ApJ, 668, L55
Cui, X. H., Wang, H. G., Xu, R. X., Qiao, G. J., 2007, A&A, 472, 1
Chincarini, G., et al. 2007, ApJ, 671, 1903
Colgate, S. A. 1974, ApJ, 187, 333
Dai, Z. G., Wang, X. Y., Wu, X. F., & Zhang, B. 2006, Science, 311, 1127
Eichler, D., Livio, M., Piran, T., & Schramm, D. N. 1989, Nature, 340, 126
Falcone, A. D., et al. 2006, ApJ, 641, 1010
Fan, Y. Z., & Wei, D. M. 2005, MNRAS, 364, L42
Fox, D. B., et al. 2005, Nature, 437, 845
Galama, T. J., et al. 1998, Nature, 395, 670
Gehrels, N., et al. 2004, ApJ, 611, 1005
Gehrels, N., et al. 2005, Nature, 437, 851
Goodman, J. 1986, ApJ, 308, L47
Hjorth, J., et al. 2003, Nature, 423, 847
Hjorth, J., et al. 2005, Nature, 437, 859
Horvath, J. 2005, Mod. Phys. Lett., A20, 2799
Itoh, N., Adachi, T., Nakagawa, M., Kohyama, Y., Munakata, H., 1989, ApJ, 339, 354
King, A., O’Brien, P. T., Goad, M. R., Osborne, J., Olsson, E., & Page, K. 2005, ApJ, 630, L113
Kouveliotou, C., Meegan, C. A., Fishman, G. J., Bhat, N. P., Briggs, M. S., Koshut, T. M., Paciesas, W. S., & Pendleton, G. N. 1993, ApJ, 413, L101
Kumar, P., Narayan, R., & Johnson, J. L. 2008, Science, 321, 376
Lai, X. Y., Xu, R. X., 2008, preprint (arXiv:0804.0983)
Li, L.-X. 2006, MNRAS, 372, 1357
Li, L.-X. 2008, MNRAS, 388, 603
Liang, E. W., et al. 2006, ApJ, 646, 351
Liang, E.-W., Zhang, B.-B., & Zhang, B. 2007, ApJ, 670, 565
Liang, E.-W., Racusin, J. L., Zhang, B., Zhang, B.-B., & Burrows, D. N. 2008, ApJ, 675, 528
Mészáros, P. 2006, Reports of Progress in Physics, 69, 2259
Mészáros, P., & Rees, M. J. 1992, ApJ, 397, 570
Nakar, E. 2007, Phys. Rep., 442, 166
Narayan, R., Paczynski, B., & Piran, T. 1992, ApJ, 395, L83
Narayan, R., Piran, T., & Kumer, P. 2001, ApJ, 557, 949
Owen, B. J. 2005, Phys. Rev. Lett., 95, 211101
Paczynski, B., & Haensel, P. 2005, MNRAS, 362, L4
Panaitescu, A. 2007, MNRAS, 380, 374
Peng, C., Xu, R. X., 2008, MNRAS, 384, 1034
Perna, R., Armitage, P. J., & Zhang, B. 2006, ApJ, 636, L29
Proga, D., & Zhang, B. 2006, MNRAS, 370, L61
Rosswog, S. 2007, MNRAS, 376, L48
Sagert, I., Hempel, M., Pagliara, G., Schaffner-Bielich, J., Fischer, T., Mezzacappa, A., Thielemann, F.-K., & Liebendörfer, M. 2008, preprint (arXiv:0809.4225)
Soderberg, A. M., et al. 2008, Nature, 453, 469
Thomsen, B., et al. 2004, A & A, 419, L21
Villasenor, J. S., et al. 2005, Nature, 437, 855
Weber, F., 2005, Prog. Part. Nucl. Phys., 54, 193
Wang, X.-Y., & Mészáros, P. 2007, ApJ, 670, 1247
Willingale, R., et al. 2007, ApJ, 662, 1093
Woosley, S. E., & Bloom, J. S. 2006, ARA&A, 44, 507
Woosley, S. E. 1993, ApJ, 405, 273
Xu, R. X., Tao, D. J., Yang, Y., 2006, MNRAS, 373, L85
Xu, R. X., 2003, ApJ, 596, L59
Xu, R. X. 2005, MNRAS, 356, 359
Xu, R. X., 2007, Adv. Spa. Res., 40, 1453
Xu, R. X., 2008, Modern Phys. Lett., A23, 1629
Zeh, A., Klose, S., & Hartmann, D. H. 2004, ApJ, 609, 952
Zhang, B. 2007, Chinese Journal of Astronomy and Astrophysics, 7, 1
Zhang, B., Fan, Y. Z., Dyks, J., Kobayashi, S., Mészáros, P., Burrows, D. N., Nousek, J. A., & Gehrels, N. 2006, ApJ, 642, 354
Zhang, B.-B., Liang, E.-W., & Zhang, B. 2007, ApJ, 666, 1002
Zhang, B.-B., Zhang, B., Liang, E.-W., & Wang, X.-Y. 2008, arXiv:0808.3793
Zhu, W. W., Xu, R. X., 2004, preprint (arXiv:astro-ph/0410265)