Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing

Kiramage Chathuranga, Asela Weerawardhana, Niranjan Dodantenna, and Jong-Soo Lee

© The Author(s) 2021

A harmonized balance between positive and negative regulation of pattern recognition receptor (PRR)-initiated immune responses is required to achieve the most favorable outcome for the host. This balance is crucial because it must not only ensure activation of the first line of defense against viral infection but also prevent inappropriate immune activation, which results in autoimmune diseases. Recent studies have shown how signal transduction pathways initiated by PRRs are positively and negatively regulated by diverse modulators to maintain host immune homeostasis. However, viruses have developed strategies to subvert the host antiviral response and establish infection. Viruses have evolved numerous genes encoding immunomodulatory proteins that antagonize the host immune system. This review focuses on the current state of knowledge regarding key host factors that regulate innate immune signaling molecules upon viral infection and discusses evidence showing how specific viral proteins counteract antiviral responses via immunomodulatory strategies.

Experimental & Molecular Medicine (2021) 53:1647–1668; https://doi.org/10.1038/s12276-021-00691-y

INTRODUCTION

Viruses need to hijack the host cell machinery to replicate effectively; however, they must first overcome the host’s defenses. The efficacy of a viral infection depends on the comparative potency of the effector molecules used by the virus and the host. A critical determinant of whether a host succumbs to or can subvert a viral infection is the speed at which the host’s defenses are activated. Almost all innate immune responses require an extended sequence of actions: pathogen sensing, signal transduction, transcription, translation, protein folding, and transport to the site of action. To initiate signaling upon viral infection, host cells detect viral DNA or RNA using a set of PRRs; these include retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (RNA sensors), cyclic GMP-AMP (cGAMP) synthase (cGAS), interferon gamma-inducible protein 16 (IFI16), absent in melanoma 2 (AIM2), and double-stranded RNA-stimulated antiviral signaling protein (MAVS) or stimulator of interferon genes (STING), which induce expression of interferon (IFN)-stimulated genes via autocrine or paracrine mechanisms; the products of genes (proinflammatory cytokines, chemokines, and IFNs) inhibit viral replication and spread and induce activation of adaptive immune responses. These antiviral signaling pathways play a crucial role in achieving an optimal outcome for the host; therefore, much attention has been devoted to identifying and understanding the signaling pathways and regulatory factors involved in antiviral innate immunity.

Conventional posttranslational modifications such as polyubiquitination and phosphorylation, unconventional posttranslational modifications such as acetylation and methylation, and other regulatory mechanisms such as physical interactions and translocations affect the production of IFN-β and inflammatory cytokines by targeting innate immune sensors and downstream signaling molecules (e.g., receptors, adaptors, enzymes, and transcription factors). These aforementioned modifications play a critical role in regulating the production of IFNs and inflammatory cytokines, which can, if production is unchecked, have deleterious effects on the host by promoting the development of autoimmune disorders, allergies, and other immunopathologies, as well as by activating and regulating the cellular status to exacerbate the severity of viral disease.

It is not surprising that viruses exploit numerous strategies to enhance their replication. To establish efficient, lifelong infection and to initiate viral pathogenesis, a large portion of the viral genome encode numerous immunomodulatory proteins; the function of these proteins is to evade/disrupt the host immune system and ensure viral persistence. From the perspective of the virus, these actions are critically important because viruses depend on living cells for replication. This review focuses on current knowledge regarding two factors. First, we summarize the posttranslational modifications (PTMs) and other regulatory mechanisms of signaling molecules downstream of the RNA/DNA sensing cascade that regulate efficient IFN responses and/or maintenance of host immune homeostasis. Second, we summarize how RNA/DNA viruses evade transduced host innate immune signals, which are initiated by PRRs, to establish a permissive state in host cells.

ROLE OF PTMS IN REGULATING SIGNAL TRANSDUCTION

PTMs play an important role in regulating the stability, activity, subcellular localization, and folding of proteins. Advances in...
Experimental techniques used to map and quantify PTMs have led to marked progress in these areas. Such techniques have identified a number of PTMs that alter the innate immune response by regulating protein function, abundance, catalysis, interactions, or subcellular localization without necessarily requiring induction of a new transcriptional program. Additionally, some of these PTMs are highly dynamic and fully reversible, allowing both initiation and resolution of responses.

Phosphorylation, a process by which a phosphoryl group is attached to a serine, threonine, tyrosine, histidine, or aspartate residue, is a well-studied PTM regulated by the opposing actions of protein kinases and phosphatases; this PTM plays an important role in innate immunity. The introduction of a phosphoryl group imparts a negative (–2) charge at physiological pH, resulting in a major biophysical perturbation of protein structure. This is manifested by conformational changes that alter enzymatic activity and/or protein–protein interactions. Ubiquitination is another important PTM. During ubiquitination, proteins are modified via covalent attachment of a small 76-amino acid protein called ubiquitin, which (as the name implies) is expressed ubiquitously and is highly conserved in all eukaryotes. Ubiquitination is inversely regulated by ubiquitin activating (E1), ubiquitin-conjugating (E2), and ubiquitin protein ligase (E3) enzymes and by deubiquitinating enzymes (DUBs); thus, it plays a critical role in regulating innate immune signal transduction. In contrast to phosphorylation, a single target site can be modified by a single ubiquitin molecule (monoubiquitination) or by chains of linked ubiquitin molecules (polyubiquitination). Ubiquitin chains can be classified topologically into one of four types according to architecture: homogeneous chains, multiple chains (in which one substrate is separately modified by distinct chains), mixed chains (in which a tandem chain contains two linkage types), and branched chains. Lysine 48 (K48)-linked polyubiquitination induces proteasomal degradation of the target protein, whereas K63-linked polyubiquitination mediates signal transduction. Monoubiquitination, linear polyubiquitination, and K6-, K11-, K27-, K29-, and K33-linked ubiquitination are being investigated intensely to determine their divergent roles in innate immunity. Similar to conventional PTMs, unconventional PTMs also play a role in innate immune signal transduction. The transfer of acetyl groups from acetyl coenzyme A (acetyl-CoA) to the ε-amino acid groups of lysine residues (a process termed acetylation) results in charge neutralization, which alters the biological properties of proteins; in addition, lysine and arginine residues are inversely regulated by methyltransferases (a process termed methylation) and demethylases, and both acetylation and methylation play important roles in innate immune signaling.

Below we summarize the PTMs and other regulatory mechanisms of signaling molecules downstream of the RNA/DNA sensing cascade (also see Tables 1, 2, and 3).

Fig. 1 Regulatory host factors and interacting viral proteins of the RLR-mediated antiviral signaling pathway. Schematic representation of positive and negative regulatory host factors of Mitochondrial antiviral signaling protein (MAVS), TNF receptor-associated factor (TRAF3), TANK-binding kinase 1 (TBK1), NF-kappa-B essential modulator (NEMO), and IκB kinase (IKK) through posttranslational modifications (PTMs) or other regulatory mechanisms and viral proteins interacting with MAVS, TRAF3, TBK1, NEMO, or IKKε for viral evasion of the host immune response. The RLR-MAVS pathway consists of RIG-I and MDA5 as the main viral RNA sensors and the downstream signaling molecules MAVS and TRAF3, which activate IRF3/IRF7 via the kinases IKK and TBK1/IKKε. (Note: Host factors and viral proteins involved in TBK1 regulation upon infection with both RNA and DNA viruses are indicated as being common regulators in the figure.)
INNATE IMMUNE EVASION STRATEGIES USED BY RNA AND DNA VIRUSES

Viruses that have evolved with their host develop strategies to evade the innate immune system and ensure their replication and survival. Individual viruses or virus families use different strategies. This review explores the different mechanisms used by RNA and DNA viruses to subvert the functions of individual signaling molecules of the type 1 interferon (IFN) pathway. Many viruses use proteases to cleave target proteins, while some viral proteins promote the degradation of target innate immune signaling molecules. Furthermore, viral deubiquitinase enzymes remove K63-linked polyubiquitin chains from signaling molecules to prevent their activation, and viral E3 ubiquitin ligases transfer K48-linked polyubiquitin moieties to target molecules to trigger their proteasomal degradation. Some viral proteins recruit host E3 ubiquitin ligases to polyubiquitinate signaling molecules and increase their proteasomal degradation. The formation of signaling molecule complexes is crucial for downstream transduction of innate immune signals. Direct interactions with viral proteins inhibit the formation of signaling complexes such as the TRAF3, TANK, and TBK1 complexes. Another important mechanism of immune evasion is physical interaction between viral proteins and host signaling molecules, which prevents activation, dimerization, phosphorylation, or nuclear translocation. Below, we summarize the mechanisms underlying innate immune evasion mediated by viral proteins (also see Tables 4 and 5).

RNA-INDUCED SIGNAL TRANSDUCTION AND MECHANISMS UNDERLYING VIRAL EVASION OF HOST IMMUNITY

RLR (RIG-I-like receptor) family receptors are the main PRRs that detect intracellular viral RNA. The RLR family comprises RIG-I, melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2). RIG-I and MDA5 are typical PRRs, whereas LGP2 is a regulator of RIG-I and MDA5-mediated signal transduction. RIG-I and MDA5 contain two N-terminal caspase-recruitment domains, a central DExD/H-box helicase domain, and a C-terminal domain. RIG-I and MDA5 bind to viral RNA in the cytoplasm via an RNA binding motif, after which the signaling domain interacts with the downstream adapter molecule MAVS via a CARD-CARD-mediated interaction. This interaction causes aggregation of MAVS to form a prion-like protein complex, which relays the signal to kinases such as TBK1, IKK-ε, and IRF-7. Activation of this cascade results in phosphorylation of the transcription factors IFN-regulating factor 3 (IRF-3) and IRF-7.

Fig. 2 Regulatory host factors and interacting viral proteins of the cGAS-mediated antiviral signaling pathway. Schematic representation of positive and negative regulatory host factors of 2',3'-cyclic GMP-AMP (2',3'-cGAMP), stimulator of interferon gene (STING), Interferon regulatory factor 3 (IRF-3), and IRF-7 through posttranslational modifications (PTMs) or other modifications and viral proteins interacting with cGAMP or STING for viral evasion of the host immune response. The STING-mediated signaling pathway includes cGAS as the key sensor molecule that is mainly involved in the recognition of viral DNA. This recognition triggers cGAMP production and binding of cGAMP with STING, which leads to activation of IRF-3/IRF-7 and induction of type 1 IFNs. TBK1, IRF-3, and IRF-7 are involved in the IFN signaling cascade initiated upon sensing of RNA and DNA viruses. (Note: Host factors and viral proteins involved in IRF-3/IRF-7 are indicated as being common regulators in the figure.).
Table 1. Host regulators of RLR-initiated antiviral signaling.

Signaling molecule	Classification	Regulator	Function	Ref.	
MAVS	PTMs	Positive	MAVS	Aggregation	45
			TRIM31	Aggregation	47
			TRIM21	K27-linked ubiquitination	49
			OGT	K63-linked ubiquitination	48
			OTUD4	Deubiquitination	51
			TBK1 and IKKβ	Recruitment of IRF3 for its phosphorylation by TBK1	12
		Negative	RNF125	Ubiquitination	68
			MARCH8	K27-linked ubiquitination	69
			PCBP2	K48-linked ubiquitination	65
			RNF5	K48-linked ubiquitination	52
			TRIM25	K48-linked ubiquitination	59
			Smurf1	K48-linked ubiquitination	60
			Smurf2	K48-linked ubiquitination	61
			RNF115	K48-linked ubiquitination	58
			PCBP1	K48-linked ubiquitination	50
			pVHL	K48-linked ubiquitination	62
			MARCH5	K48-linked ubiquitination	63
			OTUD1	K48-linked ubiquitination	67
			ITCH	K48-linked ubiquitination	66
			TAX1BP1	K48-linked ubiquitination	66
			YOD1	Deubiquitination	64
			NLK	Phosphorylation and degradation	70
			PPM1A	Dephosphorylation	71
	Other regulatory mechanisms	Positive	MFN1	Abrogation of virus-induced redistribution of MAVS	55
			IFIT3	Induction of bridging between MAVS and TBK1	168
			NAC1	Induction of bridging between MAVS and TBK1	56
			FAK	Activation	57
			TRAF3	Activation	54
		Negative	PLK1	Disruption of the MAVS-TRAF3 interaction	77
			UBXN1	Interference with MAVS oligomerization and disruption of the MAVS/TRAFL3/TRAFL6 signalosome	74
			GPATCH3	Disruption of virus-induced MAVS signalosome formation	76
			gC1qR	Physical interaction	79
			Mitofusin 2	Physical interaction	80
			TTLL12	Direct interaction with MAVS, TBK1 and IKKβ; inhibition of the interactions of MAVS with other signaling molecules	73
			Lactate	Direct interaction with MAVS to prevent MAVS aggregation	72
			ASC	Physical interaction	81
			PSMA7	Physical interaction	82
			Rac1	Inhibition of MAVS ubiquitination, aggregation, and activation	78
			LGP2	Inhibition of IKKβ binding	75
TRAF3	PTMs	Positive	RNF166	Ubiquitination	115
			OPN	Deubiquitination	117
			cIAP1	K63-linked ubiquitination	111
			cIAP2	K63-linked ubiquitination	111
			TRIM24	K63-linked ubiquitination	113
			LGALS3BP	K63-linked ubiquitination	112
			DDX3	K63-linked ubiquitination	110
			TRIM35	K63-linked ubiquitination	114
			CK1ε	Phosphorylation and promotes K63-linked ubiquitination	116
		Negative	ERα	K48-linked ubiquitination	128
the major innate signaling molecules, along with the immunomodulatory mechanisms by which viruses evade them.

REGULATION OF MAVS BY HOST FACTORS

MAVS, also called IPS1, VISA, and CARDIF, is a key adaptor protein for RIG-I-like receptor-initiated signal transduction. Upon viral infection, RIG-I and MDA5 bind to MAVS, thereby activating downstream signal transduction. The MAVS protein, which contains 540 amino acids encoded by the nuclear genome, is localized predominantly on the mitochondrial outer membrane. However, experimental evidence shows that it also localizes to mitochondrial-associated endoplasmic reticulum membranes and peroxisomes. MAVS contains three domains: a CARD, a middle proline-rich region, and a C-terminal transmembrane domain. The CARD interacts with CARDs in RIG-I and MDA5, activating MAVS, whereas the proline-rich region interacts with the tumor necrosis factor-related factor (TRAF) family members TRAF2, TRAF3, TRAF5, and TRAF6 to activate downstream signaling. The TM domain plays a crucial role by ensuring the localization of MAVS to the mitochondrial outer membrane. Upon binding to the CARDs of RIG-I and MDA5, MAVS rapidly forms prion-like aggregates, which convert other MAVS proteins present on the mitochondrial outer membrane into prion-like aggregates. Activation of MAVS through aggregation recruits TRAF2, TRAF3, TRAF5, and TRAF6 via the PRR to promote the formation of the TBK1 complex (comprising TBK1, IkKε, IKKε, and NEMO). It is not surprising that the expression of MAVS is regulated to ensure that RLR-mediated signaling cascades are not activated rapidly upon stimulation; indeed, its function at this stage of viral infection is to prevent rapid viral replication.

Self-association and prion-like aggregate formation are markers of MAVS activation. The E3 ubiquitin ligase Tripartite motif-containing protein (TRIM) 31 interacts with MAVS and catalyzes K63-linked polyubiquitination of aa residues K10, K311, and K461 in MAVS to promote the formation of aggregates. Interestingly, this phenomenon occurs upon viral infection in the presence of RIG-I; thus, recruitment of RIG-I may be required for TRIM31-mediated MAVS aggregation upon viral infection. Moreover, K63-linked polyubiquitination is enhanced by O-linked N-acetyl glucosamine (O-GlcNAc) transferase (OGT)-mediated glycosylation of MAVS. Another recent study suggested that K27-linked polyubiquitination of K325 in MAVS by the E3 ubiquitin ligase TRIM21 promotes downstream signaling activation. The PRY-SPRY domain of TRIM21 interacts with MAVS, while the RING (Really Interesting New Gene) domain transfers the E3 ubiquitin protein complex to MAVS. K48-linked ubiquitination of MAVS leads to its proteasomal degradation; thus, proteins that inhibit MAVS K48-linked ubiquitination are positive regulators of MAVS-mediated signaling. Ovarian tumor family deubiquitinase 4 (OTUD4) removes K48-linked ubiquitin chains from MAVS to inhibit its degradation. Moreover, the expression of cyclophilin A is upregulated upon viral infection; cyclophilin A competes with TRIM25 for binding to MAVS. Inhibiting TRIM25 promotes MAVS ubiquitination and degradation.

Phosphorylation is an important PTM that regulates MAVS signaling. Activated MAVS recruits TBK1 and IKKε to the complex. These kinases mediate the phosphorylation of MAVS, enabling the recruitment of IRF3. Recruited IRF3 is phosphorylated by TBK1, which increases its homodimerization and nuclear translocation. Similar to PTMs, non-PTMs play a crucial role in regulating MAVS signaling. Importantly, TRAF3 interacts with MAVS (aa 450–468),

Table 1 continued

Signaling molecule	Classification	Regulator	Function	Ref.
Parkin	K48-linked ubiquitination	130		
Triad3A	K48-linked ubiquitination	131		
WDR82	K48-linked ubiquitination	129		
DUBA	Deubiquitination	121		
MYSM1	Deubiquitination	120		
USP19	Deubiquitination	122		
FOSL1	Deubiquitination	125		
OTUB1	Deubiquitination	123		
OTUB2	Deubiquitination	123		
UCHL1	Deubiquitination	124		
SRA	Deubiquitination	127		
HSCARG	Deubiquitination	126		

Other regulatory mechanisms

Positive

DOK3	TRAF3/TBK1 complex formation	118
RAβ18	Facilitation of the interaction with MAVS	119
NEMO	Disruption of the MAVS-TRAF3 complex	132

Negative

MARCH2	K48-linked ubiquitination	140
TRIM29	K48-linked ubiquitination	141
Rubicon	Inhibition of ubiquitination	142
PGRN/A20	Deubiquitination	143

IKKε

PTMs

Negative

| DDX19 | Degradation | 210 |

Other regulatory mechanisms

Positive

| SPL | Physical interaction | 208 |
| DDX3 | Activation | 209 |

Negative

| Fascin1 | Physical interaction | 211 |

Self-association and prion-like aggregate formation are markers of MAVS activation. The E3 ubiquitin ligase Tripartite motif-containing protein (TRIM) 31 interacts with MAVS and catalyzes K63-linked polyubiquitination of aa residues K10, K311, and K461 in MAVS to promote the formation of aggregates. Interestingly, this phenomenon occurs upon viral infection in the presence of RIG-I; thus, recruitment of RIG-I may be required for TRIM31-mediated MAVS aggregation upon viral infection. Moreover, K63-linked polyubiquitination is enhanced by O-linked N-acetyl glucosamine (O-GlcNAc) transferase (OGT)-mediated glycosylation of MAVS. Another recent study suggested that K27-linked polyubiquitination of K325 in MAVS by the E3 ubiquitin ligase TRIM21 promotes downstream signaling activation. The PRY-SPRY domain of TRIM21 interacts with MAVS, while the RING (Really Interesting New Gene) domain transfers the E3 ubiquitin protein complex to MAVS, resulting in recruitment of TBK1 to MAVS. K48-linked ubiquitination of MAVS leads to its proteasomal degradation; thus, proteins that inhibit MAVS K48-linked ubiquitination are positive regulators of MAVS-mediated signaling. Ovarian tumor family deubiquitinase 4 (OTUD4) removes K48-linked ubiquitin chains from MAVS to inhibit its degradation. Moreover, the expression of cyclophilin A is upregulated upon viral infection; cyclophilin A competes with TRIM25 for binding to MAVS. Inhibiting TRIM25 promotes MAVS ubiquitination and degradation.

Phosphorylation is an important PTM that regulates MAVS signaling. Activated MAVS recruits TBK1 and IKKε to the complex. These kinases mediate the phosphorylation of MAVS, enabling the recruitment of IRF3. Recruited IRF3 is phosphorylated by TBK1, which increases its homodimerization and nuclear translocation. Similar to PTMs, non-PTMs play a crucial role in regulating MAVS signaling. Importantly, TRAF3 interacts with MAVS (aa 450–468),
resulting in activation of MAVS signaling. Mitofusin 1 (MFN1) binds to MAVS to increase MAVS redistribution; MFN1 positively regulates the RLR-mediated innate antiviral response. Furthermore, nucleus accumbens-associated 1 (NAC1), a member of the BTB/POZ family, acts as a bridge between MAVS and TBK1, thereby activating downstream signaling. In addition, focal adhesion kinase (FAK) interacts with MAVS at the mitochondrial membrane in a viral infection-dependent manner to potentiate MAVS-mediated signaling via a kinase-independent mechanism.

Negative regulation of MAVS is mediated mainly by K48-linked ubiquitination of MAVS, signaling blockade, autophagy, and apoptosis. K48-linked polyubiquitination of MAVS triggers its proteasomal degradation and abrogates RLR-mediated signal transduction. Experimental evidence has shown that several E3 ubiquitin ligases are involved in K48-linked ubiquitination of MAVS and its proteasomal degradation; these ligases include RING finger protein 5 (RNF5), RNF115, TRIM25, Smurfl, Smurf2, von Hippel-Lindau protein (pVHL), and membrane-associated RING finger protein 5 (MARCH5). Importantly, the ubiquitin thioesterase OTU1 (YOD1) cleaves the K63-linked ubiquitin moiety and abrogates the formation of prion-like aggregates by MAVS, thereby attenuating IRF3-mediated production of IFN-β. Moreover, interactions between several proteins mediate MAVS ubiquitination and degradation via recruitment of E3 ubiquitin ligases. For example, poly(RC) binding protein 1/2 (PCBP1/PCBP2) and tax1-binding protein 1 (TAX1BP1)-mediated K48-linked ubiquitination of MAVS via AIP4/ITCH triggers proteasomal degradation of MAVS. Similarly, Smurfl-mediated K48-linked ubiquitination is upregulated by OTUD1. The E3 ubiquitin ligase RNF125 conjugates ubiquitin to MAVS, thereby suppressing its function, and K27-linked ubiquitination of MAVS mediated by the E3 ubiquitin ligase MARCH8 recruits the autophagy protein NDP52, resulting in lysosomal degradation of MAVS. Additional mechanisms that negatively regulate MAVS-mediated RLR signaling are phosphorylation and degradation of MAVS via Nemo-like kinase (NLK) and 2-BP. Protein phosphatase magnesium-dependent 1A (PPM1A; also called PP2Cα) is an inherent component of the TBK1/IKKe complex, which targets both MAVS and TBK1/IKKe for dephosphorylation, thereby disrupting MAVS-driven formation of the signaling complex.

Direct protein–protein interactions and signal blockade are other mechanisms that downregulate MAVS-mediated RLR signaling:

Table 2. Host regulators of cGAS-initiated antiviral signaling.

Signaling molecule	Classification	Regulator	Function	Ref.
2',3'-cGAMP	Positive	LRRC8	Transportation	290
	Negative	ENPP1	Hydrolysis	291
			Physical interaction & hydrolysis	292
STING	PTMs	AMFR/INSIG1	K27-linked ubiquitination	304
		MUL1	K63-linked ubiquitination	301
		TRAF6	K63-linked ubiquitination	302
		UBXN3B	K63-linked ubiquitination	303
		RNF115	K63-linked ubiquitination	59
		CYLD	Deubiquitination	308
		OTUD5	Deubiquitination	309
		USP44	Deubiquitination	307
		USP20/USP18	Deubiquitination	305
		USP20	Deubiquitination	306
		iRhom2	Deubiquitination	310
		CSK	Phosphorylation	315
		TBK1	Phosphorylation	313
		STING	Palmitoylation	312
	Negative	USP13	K33-linked ubiquitination	324
		TRIM30α	K48-linked ubiquitination	321
		TRIM29	K48-linked ubiquitination	320
		RNF90	K48-linked ubiquitination	319
		RNF5	K48-linked ubiquitination	318
		USP49	Deubiquitination	323
		USP21	Deubiquitination	322
		PTPN1/2	Dephosphorylation & degradation	325
		PPM1A	Dephosphorylation	314
		2-BP	Inhibition of palmitoylation	311,312
	Other regulatory mechanisms	ZDHHC1	Physical interaction	315
		TMED2	Physical interaction	316
		SNX8	Translocation	317
	Negative	Atg9a	Colocalization	329
		MRP	Physical interaction	326
		NLRX1	Physical interaction	327
		RIG-1/IL-6	Degradation	328
Table 3. Host regulators commonly involved in RLR/cGAS-initiated antiviral signaling.

Signaling molecule	Classification	Regulator	Function	Ref.	
TBK1	PTMs	Positive	MIB	K63-linked ubiquitination	161
			TBK1	K63-linked ubiquitination	154
			Nrdp1	K63-linked ubiquitination	163
			RNF128	K63-linked ubiquitination	162
			USP1–UA1 complex	Deubiquitination	164
			UBQLN2	Phosphorylation	159
			Src	Autophosphorylation	160
			TBK1	Autophosphorylation	155
			BK1P	Autophosphorylation	158
			GSK3β	Self-association and autophosphorylation	157
			Dnmt3a	Recruitment of HDAC9 for deacetylation	165
			HDAC3	Deacetylation	166
			TRIM9	Recruitment of GSK3β for activation	157
		Negative	ASB8	K48-linked ubiquitination	172
			USP38	K48-linked ubiquitination	176
			DYRK2	K48-linked ubiquitination	174
			THOC7	K48-linked ubiquitination	175
			TRIP	K48-linked ubiquitination	173
			Siglec1	Recruitment of TRIM27 for K48-linked ubiquitination	177
			NLRP4	Recruitment of DTX4 for K48-linked ubiquitination of TBK1	178
			A20 and TAX1BP1	Inhibition of K63-linked ubiquitination	179
			UBE2S	Recruitment of USP15 for deubiquitination	181
			USP2b	Deubiquitination	180
			CYLD	Deubiquitination	37
			TIPARP	ADP-ribosylation & TBK1 deactivation	183
			Lck/Hck/Fgr	Disruption of dimerization and activation	182
			PPM1B	Dephosphorylation	185
			PP4	Dephosphorylation and Deactivation	186
			Cdc25A	Dephosphorylation	184
	Other regulatory mechanisms	Positive	MSX1	Induction of the assembly of TBK1-associated complexes	118
			DOK3	Facilitation of TRAF3/TBK1 complex formation	170
			IFIT3	Bridging of TBK1 to MAVS on mitochondria	168
			BTN3A1	Transport of the TBK1/IRF3 complex to the perinuclear region	167
			PLA1A	Phosphorylation and modulation of mitochondrial morphology	171
		Negative	TRIM26	Induction of TBK1/NEMO interaction	169
			NLRP2	Disruption of IRF3 binding	187
			MIP-T3	Inhibition of TRAF3/TBK1 complex formation	189
			ISG56	Disruption of the interaction between MITA and MAVS or TBK1	190
			ERRα	Inhibition of the TBK1-IRF3 interaction	188
			INKIT	Physical interaction	191
IRF3	PTMs	Positive	NSD3	Methylation	223
			HSPD1	Phosphorylation and dimerization	61
			lnClrrc55-AS	Phosphorylation	221
		Negative	RBCK1	Ubiquitination	226
			RAUL	K48-linked ubiquitination	229
			TRIM26	K48-linked ubiquitination	230
signaling. Recent studies have shown that lactate, the end product of anaerobic glycolysis, acts as a negative regulator of RLR signal transduction by interacting with the TM domain of MAVS and preventing its mitochondrial localization and aggregation. Tubulin tyrosine ligase-like protein 1 (TTLL12) interacts with MAVS, TBK1, and IKKε to prevent interactions between MAVS and other molecules. However, upon viral infection, TTLL12 expression decreases, thereby activating downstream MAVS signaling via the release of MAVS blockade. During the late stage of viral infection, MAVS function is negatively regulated by UBX-domain-containing protein 1 (UBXN1). The expression of UBXN1 increases at the late stage of infection, and it then competes with TRAF3/TRAF6 for binding to MAVS. Additionally, the gpatch domain-containing protein 3 (GPATCH3) binds to MAVS to prevent MAVS/TRAF6/TBK1 complex formation, whereas binding of polo-like kinase 1 (PLK-1) to MAVS disrupts its interaction with TRAF3. The Rho family small guanosine triphosphatase Ras-related C3 botulinum toxin substrate 1 (Rac1) limits the interaction between MAVS and the E3 ubiquitin ligase-like activity of rotavirus NSP1 means that its interaction with the MAVS CARD or TM domain leads to ubiquitin-dependent proteasomal degradation of MAVS. Addition-ally, the structural protein VP3 of RV upregulates the phosphorylation of MAVS, leading to its K48-linked ubiquitination and degradation. Hepatitis B virus (HBV) protein X (HBX) binds to MAVS and promotes its ubiquitination and proteasomal degradation via an unknown E3 ubiquitin ligase. Additionally, HBV-induced Parkin recruits the linear ubiquitin assembly complex to mitochondria and abrogates IFN-β synthesis. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) open reading frame 9b (ORF-9b) catalyzes K48-linked ubiquitination of MAVS via the PCBP2-AIP4 axis. Moreover, HCV infection induces the expression of Golgi protein 73 (GP73), which mediates the proteasomal degradation of MAVS. HCV infection upregulates NLRX1 and recruits PCBP2 to MAVS, thereby triggering K48-linked ubiquitination and degradation of MAVS with the help of AIP4. In addition, the interaction between the HCV NS5A protein and MAVS prevents the binding of the latter to TRAF3 and TRAF6. The Nipah virus (NiV) V protein...

Table 3 continued

Signaling molecule	Classification	Regulator	Function	Ref.
Ro52	Ubiquitination	227		
Pin1	Ubiquitination	225		
OTUD1	Deubiquitination	231		
Mst1	Phosphorylation	235		
PP2A	Deyphosphorylation	234		
MKP5	Deyphosphorylation	233		
DD5X5	Deyphosphorylation	237		
FBXO17	Deyphosphorylation	236		
HDAC4	Inhibition of phosphorylation	238		
IFITM3	Autophagic degradation	232		
SENP2	DeSUMOylation	239		

Other regulatory mechanisms:
- **Positive**
 - USP22: Nuclear translocation
 - IRF1: Activation
- **Negative**
 - A20: Deubiquitination
 - TRIM28: SUMOylation
 - TRIM21/RO52: Degradiation

IRF7

- **PTMs**
 - **Positive**
 - TRAF6: K63-linked ubiquitination
 - **Negative**
 - Nmi: K48-linked ubiquitination
 - A20: Deubiquitination
 - TRIM28: SUMOylation
 - TRIM21/RO52: Degradiation

Other regulatory mechanisms:
- **Negative**
 - IFI204: Physical interaction
 - ATF4: Physical interaction
 - HSP70: Physical interaction

REGULATION OF MAVS BY VIRAL PROTEINS

From the perspective of the virus, it is important to avoid the host innate immune response during the early stage of infection. Since MAVS plays a critical role as a central adaptor molecule in the RLR-mediated signaling cascade, the genomes of many viruses encode proteins that interfere with MAVS. For example, enterovirus 71 (EV71) cysteine protease 2Apro cleaves MAVS at Gly209, Gly251, and Gly265. This was the first viral protein found to cleave MAVS at multiple aa residues. The small RNA viruses human rhinovirus C, coxsackievirus B3 (CVB3), and Seneca Valley virus (SVV) encode a cysteine protease, 3Cpro, which cleaves MAVS at Gln148 to prevent signal transduction. In addition, CVB3 encode another MAVS-cleaving protease named 2Apro; however, its cleavage site is unclear. Porcine reproductive and respiratory syndrome virus (PRRSV) produces a 3C-like serine protease (3CLSP) that cleaves MAVS at Glu268. Additionally, NS3-4A of hepatitis C virus (HCV38,89 and the 3ABC precursor of 3C90 of hepatitis A virus91 cleave MAVS to disrupt activation of its downstream signaling. The E3 ubiquitin ligase-like activity of rotavirus NSP1 means that its interaction with the MAVS CARD or TM domain leads to ubiquitin-dependent proteasomal degradation of MAVS. Additionally, the structural protein VP3 of RV upregulates the phosphorylation of MAVS, leading to its K48-linked ubiquitination and degradation. Hepatitis B virus (HBV) protein X (HBX) binds to MAVS and promotes its ubiquitination and proteasomal degradation via an unknown E3 ubiquitin ligase. Additionally, HBV-induced Parkin recruits the linear ubiquitin assembly complex to mitochondria and abrogates IFN-β synthesis. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) open reading frame 9b (ORF-9b) catalyzes K48-linked ubiquitination of MAVS via the PCBP2-AIP4 axis. Moreover, HCV infection induces the expression of Golgi protein 73 (GP73), which mediates the proteasomal degradation of MAVS. HCV infection upregulates NLRX1 and recruits PCBP2 to MAVS, thereby triggering K48-linked ubiquitination and degradation of MAVS with the help of AIP4. In addition, the interaction between the HCV NS5A protein and MAVS prevents the binding of the latter to TRAF3 and TRAF6. The Nipah virus (NiV) V protein...
Signaling molecules	Virus	Virulence factor	Function	Ref.	
MAVS	HCV	NS3-4A	Cleavage	38,89	
	HAV	3ABC	Cleavage	91	
	CVB3	3C_{pro}	Cleavage	85	
	EV71	2A_{pro}	Cleavage	83	
	CVB3	2A_{pro}	Cleavage	87	
	PRRSV	3CLSP	Cleavage	88	
	SVV	3C_{pro}	Cleavage	86	
	HBV	HBX	Ubiquitination	95	
	RV	NSP1	Degradation	93	
	SARS-CoV	ORF9b	Degradation	97	
	SARS-CoV-2	M	Inhibition of RIG-I, MAVS, TRAF3 and TBK-1 complex formation	26	
	SARS-CoV-2	M	Inhibition of MAVS aggregation	105	
	RV	VP3	Proteosomal degradation	94	
	RSV	NS1	Inhibition of the MAVS-RIG-I interaction	102	
	hMPV	M2-2	Inhibition of TRAF3-, TRAF5- and TRAF6-mediated recruitment of MAVS	104	
	HBV	Recruitment of LUBAC & disruption of MAVS signalosome formation	96		
	HCV	Recruitment of PCBP2 to MAVS and induction of K48-linked ubiquitination	25		
	HCV	Regulate the interaction between GP73 and MAVS for proteasomal degradation	98		
	NiV	V	Stabilization of UBXN1 and enhancement of its interaction with MAVS	100	
	HCV	N55A	Inhibition of the MAVS-TRAF3 interaction	99	
	FMDV	VP1	Inhibition of the TRAF3-MAVS interaction	101	
	TRAF3	SARS-CoV	M	Inhibition of TRAF3, TANK, and TBK1/IKKe complex formation	27
	FMDV	L_{pro}	Deubiquitination	133	
	HSV	UL36	Deubiquitination	134	
	EV-D68	2A_{pro}	Cleavage	135	
	NEMO	PDCoV	nsp5	Cleavage	150
	FMDV	3C_{pro}	Cleavage	144	
	PRRSV	NSP4	Cleavage	146,147	
	HAV	3C_{pro}	Cleavage	145	
	PEDV	NSP5	Cleavage	149	
	EAV	NSP4	Cleavage	147	
	FIP	NSP5	Cleavage	148	
	Influenza virus	–	Enhancement of the PGRN level to inhibit K63-linked ubiquitination	143	
	SARS-CoV-2	ORF9b	Deubiquitination of NEMO	151	
	TBK1	GCRV	–	K48-linked ubiquitination	24
	MHV	PLP2	Deubiquitination	195	
	FMDV	L_{pro}	Inhibition of TBK1 ubiquitination and activation	133	
	SFTSV	NS	Sequestration of the TBK1/IKKe complex into inclusion bodies	197,198	
	SARS-CoV	PLpro	Disruption of the STING-TRAF3-TBK1 interaction	204	
	DENV	NS	Inhibition of phosphorylation	194	
	HRTV	NS	Inhibition of TBK1 and IRF3 interaction	201	
	PEDV	N	Inhibition of the association between TBK1 and IRF3 by sequestration	200	
	MCV	MC159/MC160	Impairment of activation	205	
	ZIKV	NSS	Impairment of activation	202	
	SARS-CoV-2	NSP13	Inhibition of phosphorylation	192	
	SARS-CoV-2	NSP13	Disruption of the TBK1-MAVS interaction	203	
	HRTV	NS	Inhibition of phosphorylation	193	
	IKKe	MERS-CoV	ORF8b	Inhibition of HSP70-dependent activation	213
	DENV	NS2B	Binding and inhibition of kinase activity	212	
	HCV	NS2	Inhibition of IRF3 phosphorylation via interaction with IKKe	216	
interacts directly with UBXN1 to enhance the interaction between MAVS and UBXN1 via protein stabilization. A recent study showed that the wild-type VP1 (83E) but not the mutant VP1 (83K) protein of foot and mouth disease (FMDV) subverts MAVS signaling by disrupting the interaction between MAVS and TRAF3. Moreover, the NS1 and N proteins of respiratory syncytial virus attenuate the production of type I IFNs during infection by inhibiting the MAVS/RIG-I interaction and by localizing MAVS in inclusion bodies, respectively. The human metapneumovirus (hMPV) M2-2 protein prevents recruitment of the MAVS downstream adaptors TRAF3, TRAF5, and TRAF6. Interestingly, a recent study showed that the M protein of SARS-CoV-2 impairs MAVS aggregation and the recruitment of downstream TRAF3, TBK1, and IRF3, while another study reported that SARS-CoV-2 M2 inhibits RIG-I/MAVS/TRAF3 and TBK-1 complex formation and subsequent nuclear translocation of IRF3. Viral proteins known to interact with or affect MAVS are listed in Table 4.

REGULATION OF TRAF3 BY HOST FACTORS AND VIRAL PROTEINS

TRAF3 (also called Amn, CAP-1, CD40bp, CRAF1, LAP1, or T-BAM) is one of the most enigmatic, ubiquitously expressed members of the TRAF family. The protein contains 568 amino acids (64.295 kDa) and a typical C3HC4 RING finger domain upstream of five zinc fingers, an isoleucine zipper, and a TRAF3 domain in the C-terminal region. The TRAF domain is critical for binding to the cytoplasmic domain of tumor necrosis factor receptor (TNFR) family members and intracellular signaling mediators and for the formation of homo- or heterodimers. TRAF3 forms a stable complex with MAVS, which recruits kinases and IRF3 to itself, ultimately leading to IRF3 activation and nuclear translocation. The E3 ubiquitin ligases DEAD-box helicase 3 (DDX3), cIAP1, cIAP2, galectin 3 binding protein (LGALS3BP), TRIM24, and TRIM35 trigger K63-linked polyubiquitination of TRAF3. This modification of TRAF3 enables its association with MAVS and TBK1, which activates downstream antiviral signaling. Moreover, the E3 ubiquitin ligase RING finger protein 166 transfers ubiquitin to TRAF3 upon RNA virus infection, thereby activating IFN-β production. The serine-threonine kinase CK1ɛ interacts with TRAF3 and phosphorylates it on Ser349, which promotes Lys63 (K63)-linked ubiquitination of TRAF3 and subsequent recruitment of the kinase TBK1 to TRAF3. Osteopontin (OPN) interacts with TRAF3 to inhibit Triad3A-mediated K48-linked polyubiquitination and degradation of TRAF3. Downstream of kinase 3 (DOK3) interacts with TRAF3 through its tyrosine-rich CTD to induce TRAF3/TBK1 complex formation, whereas the interaction...
between TRAF3 and the GTPase-trafficking protein RAB1B facilitates the formation of the TRAF3/MAVS complex. As mentioned above, K63-linked polyubiquitination plays a critical role in activating TRAF3. Therefore, the deubiquitinases MYSM11120, DUBA1121, USP191122, OTUB1, OTUB21123, UCHL11124, and FOSL11125 remove ubiquitin chains from TRAF3 to negatively regulate its function. In addition, scavenger receptor A (SRA) and HSCARG1126 negatively regulate the stability of the TRAF3 protein by promoting recruitment of OTUB1 to TRAF31127. K48-linked polyubiquitination and degradation of TRAF3 mediated by estrogen receptor-alpha (ERα)1128, WD repeat domain (WDR) 82139, Parkin130, and Triad3A131 is another mechanism that downregulates IFN production via targeting of TRAF3. Linear-ubiquitinated NEMO associates with TRAF3 and disrupts the MAVS-TRAF3 complex, thereby inhibiting IFN activation132.

Since K63-linked polyubiquitination plays an important role in TRAF3-mediated signaling, it comes as no surprise to see that viruses encode proteins that inhibit TRAF3 ubiquitination to overcome host innate responses. The leader proteinase (Lpro) of FMDV133 and the ubiquitin-specific protease (UL36) of herpes simplex virus 1 (HSV-1)134 act as viral deubiquitinases that mediate TRAF3 deubiquitination, leading to downregulation of TRAF3 signaling. The nonstructural protein 2A protease (2Apro) of human enterovirus D68 (EV-D68) cleaves TRAF3 at G462135. The M protein of SARS-CoV forms a complex with TRAF3, TANK, and the TBK1/IKKε complex to inhibit TBK1/IKKε-dependent activation of the IRF3/IRF7 transcription factors27.

REGULATION OF NEMO BY HOST FACTORS AND VIRAL PROTEINS

NF-κB essential modulator (NEMO or IKKγ), which contains 419 aa, is the integral regulatory scaffolding protein of the canonical IKK complex located at the center of both the NF-κB and type I IFN signaling cascades136. The IKK complex comprises two kinases, IKKa and IKKB, and a regulatory subunit, NEMO137. For appropriate assembly of the IKK complex, NEMO associates with TRAF3 and disrupts the MAVS-TRAF3 complex, thereby inhibiting IFN activation132.

Since K63-linked polyubiquitination plays an important role in TRAF3-mediated signaling, it comes as no surprise to see that viruses encode proteins that inhibit TRAF3 ubiquitination to overcome host innate responses. The leader proteinase (Lpro) of FMDV133 and the ubiquitin-specific protease (UL36) of herpes simplex virus 1 (HSV-1)134 act as viral deubiquitinases that mediate TRAF3 deubiquitination, leading to downregulation of TRAF3 signaling. The nonstructural protein 2A protease (2Apro) of human enterovirus D68 (EV-D68) cleaves TRAF3 at G462135. The M protein of SARS-CoV forms a complex with TRAF3, TANK, and the TBK1/IKKε complex to inhibit TBK1/IKKε-dependent activation of the IRF3/IRF7 transcription factors27.

REGULATION OF NEMO BY HOST FACTORS AND VIRAL PROTEINS

NF-κB essential modulator (NEMO or IKKγ), which contains 419 aa, is the integral regulatory scaffolding protein of the canonical IKK complex located at the center of both the NF-κB and type I IFN signaling cascades136. The IKK complex comprises two kinases, IKKa and IKKB, and a regulatory subunit, NEMO137. For appropriate assembly of the IKK complex, NEMO associates with TRAF3 and disrupts the MAVS-TRAF3 complex, thereby inhibiting IFN activation132.

Since K63-linked polyubiquitination plays an important role in TRAF3-mediated signaling, it comes as no surprise to see that viruses encode proteins that inhibit TRAF3 ubiquitination to overcome host innate responses. The leader proteinase (Lpro) of FMDV133 and the ubiquitin-specific protease (UL36) of herpes simplex virus 1 (HSV-1)134 act as viral deubiquitinases that mediate TRAF3 deubiquitination, leading to downregulation of TRAF3 signaling. The nonstructural protein 2A protease (2Apro) of human enterovirus D68 (EV-D68) cleaves TRAF3 at G462135. The M protein of SARS-CoV forms a complex with TRAF3, TANK, and the TBK1/IKKε complex to inhibit TBK1/IKKε-dependent activation of the IRF3/IRF7 transcription factors27.

REGULATION OF NEMO BY HOST FACTORS AND VIRAL PROTEINS

NF-κB essential modulator (NEMO or IKKγ), which contains 419 aa, is the integral regulatory scaffolding protein of the canonical IKK complex located at the center of both the NF-κB and type I IFN signaling cascades136. The IKK complex comprises two kinases, IKKa and IKKB, and a regulatory subunit, NEMO137. For appropriate assembly of the IKK complex, NEMO associates with TRAF3 and disrupts the MAVS-TRAF3 complex, thereby inhibiting IFN activation132.

Since K63-linked polyubiquitination plays an important role in TRAF3-mediated signaling, it comes as no surprise to see that viruses encode proteins that inhibit TRAF3 ubiquitination to overcome host innate responses. The leader proteinase (Lpro) of FMDV133 and the ubiquitin-specific protease (UL36) of herpes simplex virus 1 (HSV-1)134 act as viral deubiquitinases that mediate TRAF3 deubiquitination, leading to downregulation of TRAF3 signaling. The nonstructural protein 2A protease (2Apro) of human enterovirus D68 (EV-D68) cleaves TRAF3 at G462135. The M protein of SARS-CoV forms a complex with TRAF3, TANK, and the TBK1/IKKε complex to inhibit TBK1/IKKε-dependent activation of the IRF3/IRF7 transcription factors27.
domain from the protein and impairing the ability of NEMO to noncanonical kinase IKK. Furthermore, the structure of TBK1 is similar to that of the acts as a regulatory domain by binding to the functional domains mieties from NEMO, thereby inhibiting its activation and subsequent signal transduction upon viral infection. Additionally, progranulin (PGRN) is expressed during influenza virus infection; PGRN interacts directly with NEMO and removes conjugated ubiquitin chains from K264 of NEMO, resulting in impaired activation of downstream signaling.

Viruses can escape antiviral immune responses by promoting cleavage or degradation of NEMO. Many viruses encode proteases that cleave NEMO independent of proteasomal degradation or apoptosis to inhibit RLR signaling. For example, 3C90 of FMDV specifically targets NEMO at Gln383, cleaving the C-terminal ZF domain from the protein and impairing the ability of NEMO to activate downstream IFN production. Additionally, the HAV 3C protease (3Cpro) cleaves NEMO at Q304, thereby abolishing its signaling adaptor function and abrogating the induction of IFN-β synthesis. NSP4, a viral 3C-like serine protease of PRRSV, cleaves NEMO at E166, E171, and E349, while NSP4 of equine arteritis virus, which is similar to NSP4 of PRRSV, cleaves NEMO at E166, E171, Q205, and E349 to inhibit downstream signaling and maintain viral infection. NSP5 of feline infectious peritonitis virus and NSP5 encoded by porcine epidemic diarrhea virus (PEDV) cleave NEMO at Q132, Q205, Q231, and Q231, resulting in downregulation of immune signaling. Similarly, NSP5 of porcine deltacoronavirus (PDCoV) cleaves NEMO at Q231 to impair the ability of NEMO to activate the IFN response and downstream signaling. Furthermore, ORF9b of SARS-CoV-2 disrupts K63-linked polyubiquitination of NEMO, thereby downregulating IFN production during SARS-CoV-2 infection.

REGULATION OF TBK1 BY HOST FACTORS

TRAF family member-associated NF-κB activator (TANK)-binding kinase 1 (TBK1, also called NAK or T2K) is one of two noncanonical IKKs implicated in regulating the activation of IRF3/IRF7 and the NF-κB signaling pathway. TBK1 is a 729 aa protein (84 kDa) containing an N-terminal kinase domain (KD), a ubiquitin-like domain (ULD), and two C-terminal coiled-coil domains. The ULD acts as a regulatory domain by binding to the functional domains of TBK1 as well as to substrates such as IRF3/IRF7, thereby enabling the KD to phosphorylate target substrate proteins. Furthermore, the structure of TBK1 is similar to that of the noncanonical kinase IKKε; indeed, both kinases always work together. Cellular expression of TBK1 is ubiquitous; thus, it plays an indispensable role in antiviral innate immunity. Upon infection with RNA viruses, TBK1 is activated by the upstream protein MAVS, and activated TBK1 recruits IRF3 and IRF7; these proteins undergo TBK1-mediated C-terminal phosphorylation to trigger their dimerization and nuclear translocation, an event followed by induction of IFN secretion.

As a vital kinase that regulates the activation of IRF3/IRF7 and the subsequent expression of IFN, the function of TBK1 must be regulated to maintain immune homeostasis and suppress viral replication. Therefore, several regulatory factors target TBK1 to control its function, while viruses have evolved mechanisms to disable it. Moreover, TRAF family E3 ubiquitin ligase-mediated K63-linked polyubiquitination of intact dimerized TBK1 at Lys30 and Lys401 results in transautophosphorylation on Ser172, which marks TBK1 for phosphorylation-mediated activation. Glycogen synthase kinase 3β (GSK3β) facilitates the aforementioned autophosphorylation of TBK1 at Ser172. TRIM9 short isofrom (TRIM9s) facilitates the recruitment of GSK3β to TBK1 upon viral infection, and Raf kinase inhibitory protein serves as a positive regulator; both of these proteins promote autophosphorylation of TBK1. Moreover, ubiquitin 2 (UBQLN2) promotes the stability and facilitates the phosphorylation of TBK1. Ubiquitination also plays a critical role in the activation of TBK1. Mindbomb E3 ubiquitin-protein ligase 1 (MIB1) and MIB2, ring finger protein 128 (RNF128), and neuregulin receptor degradation protein 1 (Nrdp1/RNF41) activate TBK1 by promoting its K63-linked ubiquitination. The deubiquitinase complex comprising ubiquitin-specific peptidase 1 (USP1) and USP1-associated factor 1 (UAF1), binds to TBK1 to remove K48-linked polyubiquitination and reverse the degradation process. The DNA methyltransferase Dnmt3a maintains high expression of the histone deacetylase HDAC9, which maintains deacetylation of TBK1 and increases its kinase activity, whereas HDAC3 positively regulates TBK1 in the same manner as HDAC9. Additionally, butyrophilin 3A1 (BTN3A1) interacts with TBK1 to facilitate its dynein-dependent transport to the perinuclear region to promote its association with IRF3 after viral infection. INI3-associated protein with tetratricopeptide repeats 3 (IFIT3) mediates the bridging of TBK1 to MAVS on mitochondria. Additionally, the E3 ubiquitin ligase TRIM26 bridges the interaction between NEMO and TBK1, which facilitates immune activation upon viral infection. Moreover, the homeobox protein MSX1 and docking protein 3 (DOK3) positively regulate TBK1 function to facilitate complex formation, and PLA1A upregulates TBK1 recruitment to mitochondria via modulation of mitochondrial morphology. In contrast, several TBK1-regulating proteins negatively impact TBK1. K48-linked polyubiquitination of TBK1 induced by E3 ubiquitin ligases such as SOCS box-containing 8 (ASB8), TRAF-interacting protein, dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2), and THO complex subunit 7 homolog (THOC7) triggers proteasomal degradation of TBK1 and ultimately terminates immune activation. Interestingly, USP38 permits K48-linked ubiquitination and subsequent degradation of TBK1 by specifically removing K33-linked ubiquitin chains from the same lysine site on TBK1. Additionally, Siglecs recruit TRIM27 and NLRP4 recruits DTX4 to trigger K48-linked polyubiquitination of TBK1. As noted above, K63-linked polyubiquitination plays a crucial role in activating TBK1. Therefore, any protein that disrupts the ubiquitin chain can be considered a negative regulator. For example, the deubiquitinating enzyme cylindromatosis (CYLD) removes K63-linked polyubiquitin moieties from TBK1, and the A20 regulatory complex (comprising the ubiquitin-editing enzyme A20, Taxi-binding protein 1 (TAX1BP1, also called T6BP or TXBP151), and ubiquitin-specific protease (USP) 2b (USP2b) antagonize K63-linked polyubiquitination of TBK1. Moreover, UBE2S recruits USP15 to TBK1, thereby removing K63-linked polyubiquitin chains. The Src family kinases Lck, Hck, and Fgr phosphorylate TBK1 directly at Tyr354/394 to prevent its dimerization and activation. The ADP-ribosylase TIPARP interacts with TBK1 to suppress its activity via ADP-ribosylation. The phosphatase Cdc25A dephosphorylates TBK1 at its activation site (S172) upon viral infection. Moreover, upon infection with RNA viruses, protein phosphatase 1B (PPM1B), Cdc25A, and protein phosphatase 4 (PP4) dephosphorylate Ser172 of TBK1 to prevent continuous activation of TBK1. Preventing protein–protein interactions is another method of inhibiting TBK1-driven immune activation. NOD-like receptors (e.g., NLRP2) and estrogen-related receptor α (ERRα) inhibit the interaction between TBK1 and IRF3, while MIP-T3 prevents the formation of the TRAF3/TBK1 complex. Additionally, ISG56
prior characteristic of the innate immune system, by activating the pattern recognition receptors (PRRs) on the cell surface, and by producing type I interferons (IFNs) to induce antiviral responses.

REGULATION OF TBK1 BY RNA VIRAL PROTEINS

TBK1 is a member of the IκB kinase (IKK) family that has been studied extensively due to its ability to activate type I IFN responses. It is a 716 aa protein comprising a KD, a ULD, and a scaffold dimerization domain. The KD of IKK is a 47.2 kDa protein that is expressed ubiquitously in tissues. IRF3 (also called IIAE7) is a master transcription factor responsible for the induction of innate antiviral immunity. It is a 427 aa (47.219 kDa) protein that is expressed ubiquitously in tissues. IRF3 contains an N-terminal DNA binding domain (DBD) and a C-terminal transactivation domain. After IRF3 activation, it is not surprising that IRF3 function is both positively and negatively regulated by host proteins or that viruses have evolved mechanisms to abolish protein expression. The long noncoding RNA (lncRNA) lncLrrc55-AS recruits methylesterase 1 (PME-1) to promote the interaction between PME-1 and the phosphatase PP2A, an inhibitor of IRF3 phosphorylation. Similarly, IRF1 interacts with IRF3 to augment the activation of IRF3 by blocking the interaction between IRF3 and PP2A. Heat shock protein family D (Hsp60) member 1 facilitates the phosphorylation and dimerization of IRF3 and increases IFN-β induction induced by SeV infection. The lysine methyltransferase nuclear receptor-binding SET domain 3 (NSD3) binds directly to the IRF3 C-terminal region through its PWWP1 domain and methylates IRF3 at K366. Monomethyltransferase maintains IRF3 phosphorylation by promoting the dissociation of IRF3 from the protein phosphatase PP1cc, thereby promoting the production of type I IFN. The deubiquitinating enzyme USP22 deubiquiti nates and stabilizes KPNA2 after viral infection, thereby facilitating efficient nuclear translocation of IRF3.

REGULATION OF IKKe BY HOST FACTORS AND VIRAL PROTEINS

IKKe (originally called IKKi) is a noncanonical member of the IkB kinase family that has been studied extensively due to its ability to promote type I IFN responses. It is a 716 aa protein comprising a KD, a ULD, and a scaffold dimerization domain. The KD of IKKe shares 49% identity and 65% similarity with that of TBK1. Activation of TBK1 and IKKe promotes phosphorylation and nuclear translocation of IRF3 and 7, leading to transcriptional upregulation of type I IFNs during the induction of the innate immune response. During the innate immune response, TBK1 and IKKe exhibit functional redundancy, although TBK1 appears to be more important than IKKe. The IKK subunit NEMO promotes activation of TBK1 and IKKe downstream of cytoplasmic DNA signaling, whereby ubiquitinated NEMO recruits IKKB to facilitate activation of TBK1 or IKKe.

Biochemical analysis has revealed that the interaction between sphingosine 1-phosphate (S1P) lyase and IKKe leads to IKKe-driven activation of IFN signaling. Viral infection triggers an interaction between DDX3 and IKKe. Expression of DDX3 amplifies TBK1/IKKe-mediated induction of the IFN-β promoter. DEX/D/H-box RNA helicase 19 (DDX19) recruits Lamtor2 to form the TBK1/IKKe-Lamtor2/DDX19/IRF3 complex, which suppresses IFN production by promoting degradation of TBK1 and IKKe. Fasclin1, an actin-bundling protein, interacts with IKKe to suppress the RIG-I-mediated signaling cascade in colon cancer cells.

To date, few studies have been conducted on viral proteins that interfere with the signaling mechanisms of IKKe. NS2B/3 of DENV interacts directly with IKKe; computational analysis revealed that via this interaction, NS2B/3 masks the KD of IKKε and potentially affects its functionality, thereby impairing the phosphorylation and nuclear translocation of IRF3. Interestingly, NS2 of HCV interacts physically with the IKKε/TBK1 kinase complex, thereby inhibiting IRF3 phosphorylation. Moreover, the VP35 protein of Ebola virus (EBOV) interacts with IKKε and TBK1 during the early phase of viral infection; this physical interaction with IKKε further prevents the interaction of IKKε with IRF3, IRF7, and MAVS.

REGULATION OF IRF3 BY HOST FACTORS

IRF3 (also called IIAE7) is a master transcription factor responsible for the induction of innate antiviral immunity. It is a 427 aa (47.219 kDa) protein that is expressed ubiquitously in tissues. IRF3 contains an N-terminal DNA binding domain (DBD) and a C-terminal transactivation domain. After IRF3 activation, it is not surprising that IRF3 function is both positively and negatively regulated by host proteins or that viruses have evolved mechanisms to abolish protein expression. The long noncoding RNA (lncRNA) lncLrrc55-AS recruits methylesterase 1 (PME-1) to promote the interaction between PME-1 and the phosphatase PP2A, an inhibitor of IRF3 phosphorylation. Similarly, IRF1 interacts with IRF3 to augment the activation of IRF3 by blocking the interaction between IRF3 and PP2A. Heat shock protein family D (Hsp60) member 1 facilitates the phosphorylation and dimerization of IRF3 and increases IFN-β induction induced by SeV infection. The lysine methyltransferase nuclear receptor-binding SET domain 3 (NSD3) binds directly to the IRF3 C-terminal region through its PWWP1 domain and methylates IRF3 at K366. Monomethyltransferase maintains IRF3 phosphorylation by promoting the dissociation of IRF3 from the protein phosphatase PP1cc, thereby promoting the production of type I IFN. The deubiquitinating enzyme USP22 deubiquiti nates and stabilizes KPNA2 after viral infection, thereby facilitating efficient nuclear translocation of IRF3.

Regarding the negative regulation of IRF3-mediated signaling, the E3 ubiquitin ligase interacting protein peptidyl-prolyl cis/trans isomerase, NIMA-interacting 122, and RBCC protein interacting with PKC1 (RBCK1), Ros2/TrIM21, the HECT domain ubiquitin-ε ligase RAUL, and TRIM26 catalyze the K48-linked polyubiquitination and subsequent proteasomal degradation of IRF3. Moreover, OTUD1 removes viral infection-induced K6-linked ubiquitin moieties from IRF3, resulting in dissociation of IRF3 from the promoter region of its target genes without affecting its protein stability, dimerization, or nuclear translocation. IFN-induced transmembrane protein 3 (IFITM3) associates with IRF3 and regulates the homeostasis of IRF3 by mediating its autophagic degradation. Phosphorylation of IRF3 is the key modification that leads to its activation. Therefore, dephosphorylation of IRF3 via phosphatases such as MAPK phosphatase 5 (MKP5) and the serine/threonine phosphatase PP2A inactivates IRF3. However, Mst1 associates with IRF3 and phosphorylates IRF3 directly at Thr75 and Thr253, which prevents IRF3 homodimerization.
reduces its ability to occupy chromatin, and dampens IRF3-mediated transcriptional responses.235 Interestingly, the F-box protein FBXO17 decreases IRF3 dimerization and nuclear translocation by recruiting protein phosphatase 2A (PP2A), resulting in dephosphorylation of IRF3.236 A recent study showed that open reading frame 6 (ORF6) of SARS-CoV-2 binds to the importin karyopherin (KPNA3 and KPNA4) and one of their cargo molecules, IRF3.237 JEV downregulates IRF3 phosphorylation and nuclear translocation, an effect that became more pronounced when the molar ratio of SFRNA to genomic RNA ultimately leading to the induction of type 1 IFN genes and other antiviral genes.238 Although other proteins, such as IFI16, DDX41, Ro52/TRIM21, also mediate DNA-induced IFN-β expression, these mechanisms, along with the immunomodulatory mechanisms by which viruses evade them.

REGULATION OF IRF7 BY HOST FACTORS AND RNA VIRAL PROTEINS

IRF7 is a 503 aa (55 kDa) protein containing an N-terminal DBD, an AID, a nuclear export sequence, an autoinhibitory domain, and a signal response domain composed of key serine residues.237,238 Unlike IRF3, IRF7 is not expressed ubiquitously in cells; instead, its expression is induced upon pathogen infection or stimulation. However, it is a master regulator of type I IFN gene expression and IFN-dependent innate immune responses.239 IKKe and TBK1 are the major kinases responsible for IRF7 phosphorylation and activation.240 Nuclear translocation and accumulation of IRF7 trigger the induction of IFN-β and IFN-α expression.241 K63-linked polyubiquitination of IRF7 on lysines 444, 446, and 452, a process that is important for its activation prior to its phosphorylation and nuclear translocation, is triggered by TRAF6.242 Research has shown that the regulation of IRF7 activity by several negative regulators maintains immune homeostasis. N-MyC and STAT inhibitor (Nme) promote K48-linked ubiquitination of IRF7 and its subsequent proteasome-dependent degradation, whereas Ro52/TRIM21 mediates its ubiquitination-promoted degradation upon upstream signaling activation.243 TRIM28 interacts with the SUMO E2 enzymes to increase the SUMOylation of IRF7. TRIM28-mediated SUMOylation of IRF7 increases during viral infection, resulting in transcriptional repression.244 The N-terminal deubiquitinase domain of the enzyme A20 interacts physically with IRF7 to reduce its K63-linked ubiquitination and negatively regulates transcriptional function.245 Moreover, physical interactions between IRF7 and the IFN-inducible p200 family protein IFI204,246 activating transcription factor 4 (ATF4), and HSP70247,248 downregulate IRF7 activity, leading to downregulation of innate immune activation. Different RNA viral proteins inhibit IRF7. VP35 of EBOV increases PIAS1-mediated SUMOylation of IRF7, thereby repressing IFN transcription.249 In addition, HCV infection impairs the nuclear translocation of IRF7.250 The Zn-binding domain of the CSFV Npro protein interacts directly with IRF7 to subvert its function.251 In particular, \(3_{\text{cpr}}\) of SVV was found to reduce IRF7 protein expression and phosphorylation in PK-15 cells.252 DNA VIRUS-INDUCED SIGNAL TRANSDUCTION AND IMMUNE EVASION MECHANISMS

Upon infection with DNA viruses, viral DNA is released into the host cell cytoplasm prior to viral protein synthesis. Cytosolic viral DNA is recognized mainly by cyclic GMP-AMP (cGAMP) synthase (cGAS), which contains a nucleotidyltransferase (NTase) domain. After DNA binding, cGAS synthesizes a second messenger molecule, cyclic GMP-AMP (cGAMP). This cGAMP isomer, called \(2',3'-\text{cGAMP}\), functions as a second messenger that binds to the ER membrane adaptor STING,253,254 to induce a conformational change that presumably results in activation of STING. STING then traffics from the ER to the ER-Golgi intermediate compartment and then to the Golgi apparatus.255,256 During this process, the carboxyl terminus of STING recruits and activates the kinase TBK1, which in turn phosphorylates the transcription factor IRF3. Phosphorylated IRF3 dimerizes and then enters the nucleus, ultimately leading to the induction of type 1 IFN genes and other antiviral genes.257 Although other proteins, such as IFI16, DDX41, and MRE11, also mediate DNA-induced IFN-β production in a STING-dependent manner, only cGAS, which enzymatically generates cGAMP as a second messenger that activates STING, provides a clear molecular mechanism for DNA-stimulated IFN-β production.258 However, DNA viruses exploit strategies to evade innate immune responses. Below, we describe the activation and regulation of these mechanisms, along with the immunomodulatory mechanisms by which viruses evade them.

REGULATION OF 2',3'-CGAMP BY HOST FACTORS AND VIRAL PROTEINS

Upon DNA recognition, cGAS generates the second messenger \(2',3'-\text{cGAMP}\) by using ATP and GTP.259,260 Unlike the secondary messengers in classical bacterial signaling (c-di-GMP and c-di-AMP), \(2',3'-\text{cGAMP}\) contains mixed phosphodiester bonds (\(G(2',5')pA\) and \(A(3',5')pG\)). The intermediate product, called \(5'-\text{pppG}(2',5')pA\), is generated by cGAS prior to synthesis of cyclic \(2',3'-\text{cGAMP}\).42 Next, \(2',3'-\text{cGAMP}\) interacts with STING to activate downstream signaling, resulting in strong induction of IFNs, which confer antiviral efficacy.261 To date, few studies have examined host factors and viral proteins that

REGULATION OF IRF3 BY RNA VIRAL PROTEINS

Due to genomic constraints, the immunomodulatory efforts of most viruses focus on host targets that are key players in the antiviral response. It is not surprising, therefore, that IRF3 is one of these targets. The NS1 proteins of influenza A virus (IAV)243 and porcine hemagglutinating encephalomyelitis virus (PHEV)244 are phosphorylated (P) of rabies virus (RABV)245, the PLpro protein (with ubiquitination activity) of SARS-CoV-2, the NS1 β protein of PMPV246 in the N protein of Pestivirus.247 The NSP15 protein of PEDV248 and the NSP1 protein of PEDV249 inhibit activation of IRF3 to downregulate nuclear translocation. A recent study reported that open reading frame 6 (ORF6) of SARS-CoV-2 binds to the importin karyopherin α2 (KPNA2), thereby inhibiting the nuclear translocation of IRF3.250 In addition, the ORF6, NSP12, and NSP5 proteins inhibit the nuclear translocation of IRF3 to prevent IFN production,249,250,251 while the NSP3/papain-like protease cleaves IRF3 to subvert IFN production.252 Moreover, NS5 of Japanese encephalitis virus (JEV) interacts with the nuclear transport proteins KPNA2, KPNA3, and KPNA4, which competitively block the interactions between KPNA3 and KPNA4 and one of their cargo molecules, IRF3.253 JEV downregulates IRF3 phosphorylation and nuclear translocation, an effect that became more pronounced when the molar ratio of sRNA to genomic RNA was increased.254 The V protein of Sendai virus (SeV) inhibits IRF3 translocation to the nucleus255 and the 3Cpro protein of SVV degrades IRF3 via its protease activity.256 The Npro protein of classical swine fever virus (CSFV)257 and the NS1 protein of RV258 trigger proteasomal degradation of IRF3. FMDV 3A interacts with DDX56 to inhibit type I IFN production by reducing the phosphorylation of IRF3.259 Hantavirus260 oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1)261 and the NS protein of DENV262 and the M protein of MERS-CoV263 downregulate IRF3 phosphorylation. Moreover, two reports revealed that the ML protein of Thogoto virus (TOV) and the NSP1 protein of RV block the dimerization and subsequent nuclear translocation of IRF3.264,265
regulate 2',3'-cGAMP function during innate immune activation. A recent study of HSV-1 infection showed that Leucine-rich repeat-containing protein (LRRC) LRRCA8/LRRC8ε-containing-ubiquitin-regulated anion channels transport cGAMP across the plasma membrane to initiate effective antiviral innate immunity.

In contrast, 2',3'-cGAMP is hydrolyzed predominantly by ectonucleotide pyrophosphatase/phosphodiesterase (ENPP1), thereby preventing STING activation. In general, viruses have evolved mechanisms to antagonize host innate immune activation. However, the antiviral second messenger 2',3'-cGAMP can be packaged into viral particles, including those of poxviruses, herpesviruses, and retroviruses, thereby enabling its transfer to newly infected cells, where it activates the immune response. Once 2',3'-cGAMP-carrying virions infect neighboring cells, they activate a STING-dependent antiviral program.

Moreover, the poxvirus immune nuclease (poxin) family, a member of the 2',3'-cGAMP-degrading enzymes, has been identified. Vaccinia virus poxin degrades 2',3'-cGAMP through metal-independent cleavage of the 3'-5' bond, thereby converting 2',3'-cGAMP into linear Gp [2'-5']Ap[3']. Furthermore, the same study revealed that deletion of the poxin gene (B2R) attenuates vaccinia virus replication in vivo, thereby restricting STING-dependent signaling.

REGULATION OF STING BY HOST FACTORS

STING, also called MITA, ERIS, TMEM173, or MPYS, is an ER membrane protein of 379 aa; it harbors a predicted TM portion (aa residues 1–173) at the N-terminus, which regulates its cellular localization and homodimerization, since the TM domains cross the ER membrane. It also harbors an intracellular soluble portion (aa residues 174–379) in the CTD, which functions to dock downstream molecules such as TBK1/IKKe and IRF3/IRF7296,297. To initiate signaling, the native ligand cGAMP binds to the V-shaped hydrophilic pocket in the STING dimer. The resulting conformational change exposes the hidden CTT of STING to TBK1 and IRF3.

Due to this conformational change, STING is transported from the ER to the ER-Golgi intermediate compartment and then to the Golgi apparatus and perinuclear region.

Since STING is essential for innate immune responses to cytosolic nucleic acids, its activity is tightly regulated to maintain immune homeostasis while enabling timely activation of down-stream signaling to fight against viral infections. Several PTMs are involved in regulating STING function. Among them, K63-linked polyubiquitination plays a critical activating role. Mitochondrial E3 involved in regulating STING function. Among them, K63-linked stream signaling to cytosolic nucleic acids, its activity is tightly regulated to maintain immune homeostasis.

RNF11559 also conjugate K63-linked polyubiquitin chains to STING, to dock downstream molecules such as TBK1/IKKε domains cross the ER membrane. It also harbors an intracellular homedimerization, since the TM N-terminus of STING332, while UL46 of HSV-1, one of the most common viral polymerase of HSV is translocated to the cytoplasm during stimulation328. Autophagy-related gene 9a (Atg9a) colocalizes with STING to suppress its activation337. The viral polymerase of HBV encodes a product referred to as M152, which interacts with STING to inhibit IRF3 activation. The HSV-1 γ34 protein downregulates STING trafficking from the ER to Golgi by interacting with the N-terminus of STING332, while UL46 of HSV-1, one of the most abundant HSV tegument proteins, interacts with STING to suppress its activation333. The HSV-1 VP1-2 protein deubiquitinates STING and inhibits its downstream signaling344. The human T lymphotropic virus type 1 (HTLV-1) Tax protein also deubiquitinates STING to inhibit its downstream signaling, while NS4B of HCV cleaves STING directly345, and virR1 of KSHV impairs the STING/TBK1 interaction336. Murine CMV (MCMV) encodes a product referred to as M152, which interacts with STING to suppress its activation. The viral polymerase of HBV interferes with K63-linked polyubiquitination of STING via its reverse transcriptase domains346. The HCMV tegument protein UL82 negatively regulates STING signaling by interacting directly with STING. It then inhibits STING trafficking from the ER to perinuclear punctate structures. The IE86 protein of HCMV facilitates proteasome-dependent degradation of STING to suppress the secretion of IFN-β and CXCL10340,341, and UL42 of HCMV impairs the translocation of STING from the ER to perinuclear punctate structures, which is required for STING activation342. Duck Embus virus (DTMUV) NS2B3 cleaves STING by interacting with aa residues 221–225; this method of STING cleavage is not strictly species-specific343.
REGULATION OF TBK1 BY DNA VIRAL PROTEINS
To complete their life cycles in the host, DNA viruses use numerous strategies to evade host immune signaling initiated by RLRs; they do this by targeting TBK1. The Us11 protein of HSV-1 and the endogenous Hsp90 to disrupt the Hsp90/TBK1 complex, which blocks TBK1 activation. Furthermore, Us11 induces destablization of TBK1 through a proteasome-dependent pathway that ultimately blocks phosphorylation of IRF3134. In addition, the UL46 protein of HSV-1 interacts with the C-terminal region of TBK1 to inhibit the interaction of TBK1 and STING343, whereas the gamma(1)34.5 protein forms a complex with TBK1 and disrupts the TBK1/IRF3 interaction, thereby preventing downstream signaling344. ORF11 of murine gammaherpesvirus 68 (MHV-68) gamma(1)34.5 protein forms a complex with TBK1 and disrupts IRF7348. Varicella-zoster virus (VZV) is an important alpha herpesvirus that infects only humans. Several VZV viral proteins interfere with IRF3 activity. VZV viral immediate-early protein 62 (IE62) inhibits IRF3 phosphorylation at key serine residues but does not interfere with the IRF3/TBK1 interaction349. ORF47 interacts directly with IRF3, thereby inhibiting subsequent signal transduction, while ORF61 interacts directly with IRF3 and induces its ubiquitination and proteasomal degradation350,351. The nuclear early protein N2 of vaccinia virus inhibits the phosphorylation and nuclear translocation of IRF3351.

REGULATION OF IRF3 BY DNA VIRAL PROTEINS
A number of DNA viral proteins inhibit IRF3 to suppress innate immune signaling. The VP24 protein of HSV-1 and the LANA2 (also called vIRF3) protein of Kaposi's sarcoma-associated herpesvirus (KHSV) limit the induction of IFN-β by interacting with IRF3 to inhibit its dimerization and phosphorylation29,347. The ICP0 protein (bICP0) encoded by bovine herpesvirus 1 (BoHV-1) induces proteasomal degradation of IRF3 but not IRF7346. Varicella-zoster virus (VZV) is an important alpha herpesvirus that infects only humans. Several VZV viral proteins interfere with IRF3 activity. VZV viral immediate-early protein 62 (IE62) inhibits IRF3 phosphorylation at key serine residues but does not interfere with the IRF3/TBK1 interaction349. ORF47 interacts directly with IRF3, thereby inhibiting subsequent signal transduction, while ORF61 interacts directly with IRF3 and induces its ubiquitination and proteasomal degradation350,351. The nuclear early protein N2 of vaccinia virus inhibits the phosphorylation and nuclear translocation of IRF3351.

REGULATION OF IRF7 BY DNA VIRAL PROTEINS
Different viral proteins inhibit and activate IRF7. The interaction of the Epstein-Barr virus oncoprotein LMP1 with IRF7 catalyzes RIP-dependent K63-linked polyubiquitination and subsequent activation of IRF7352. The VP23 protein of Marek's disease virus interacts with IRF7 and blocks its binding to TBK1, thereby inhibiting IRF7 phosphorylation and nuclear translocation, resulting in reduced IFN-β production353. The immediate-early nuclear transcription factor RTA encoded by KSHV and HHV8 acts as an ubiquitin E3 ligase to catalyze the polyubiquitination and proteasomal degradation of IRF7354. KSHV vIRF3 interacts specifically with either the DBD or the central IAD of IRF7, which inhibits the DNA binding activity of IRF7355. KSHV vIRF4 interacts specifically with IRF7, thereby inhibiting IRF7 dimerization and ultimately suppressing IRF7-mediated activation of type I IFNs356. LANA2 (also called vIRF3) of KSHV limits the induction of IFN-β by interacting with IRF7 and inhibiting its phosphorylation29.

CONCLUSIONS
Over the past few decades, tremendous research progress has been made in identifying and characterizing two antiviral innate immunity pathways: the RLR-MAVS pathway for cytoplasmic RNA sensing and the cGAS-cGAMP-STING pathway for cytosolic DNA recognition. In this review, we summarize the current knowledge of the mechanisms that positively and negatively regulate PRR-mediated immune responses. We also discuss the molecules involved in the two abovementioned signaling pathways, which maintain immune homeostasis to achieve the most favorable outcome for the host. Finally, we explain how viral proteins adapt to escape host antiviral mechanisms to maintain active infection. Due to advanced biomedical techniques such as fluorescence imaging, mass spectrometry, and nuclear magnetic resonance imaging, we now know much more about the molecular mechanisms and the host and viral factors that regulate signaling. Moreover, each new regulatory and molecular mechanism identified brings the inspiring possibility that we may identify and develop novel immunostimulatory agents, anti-inflammatory agents, vaccines, and antiviral agents that tilt the host-pathogen interaction in favor of the host. Despite tremendous advances in our knowledge regarding the functions and mechanisms of positive and negative regulatory molecules and of escape mechanisms used by viruses to evade innate immune signaling, several intriguing and important aspects regarding the regulation of RNA- and (especially) DNA-initiated signaling pathways and viral escape mechanisms remain elusive. These will be interesting topics for future investigations.

REFERENCES
1. Dawson, A. R., Wilson, G. M., Coon, J. J. & Mehle, A. Post-translation regulation of influenza virus replication. Front. Microbiol. 11, 517461 (2020).
2. Lee, H. C., Chathuranga, K. & Lee, J. S. Intracellular sensing of viral genomes and viral evasion. Exp. Mol. Med. 51, 1–13 (2019).
3. Barrat, F. J., Elkon, K. B. & Fitzgerald, K. A. Importance of nuclear acid recognition in inflammation and autoimmunity. Annu. Rev. Med. 67, 323–336 (2016).
4. Iwashiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).
5. Sin, W. X., Li, P., Yeong, J. P. & Chin, C. Activation and regulation of interferon-β in immune responses. Immunol. Rev. 35, 25–40 (2012).
6. Zhou, Y., He, C., Wang, L. & Ge, B. Post-translational regulation of antiviral innate signaling. Eur. J. Immunol. 47, 1414–1426 (2017).
7. Deribe, Y. L., Pawson, T. & Dijkstra, I. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 17, 666–672 (2010).
8. Mowen, K. A. & David, M. Unconventional post-translational modifications in immunological signaling. Nat. Immunol. 15, 512–520 (2014).
9. Mogensen, T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22, 240–273 (2009). Table of Contents.
10. Chan, Y. K. & Gack, M. U. Viral evasion of intracellular DNA and RNA sensing. Nat. Rev. Microbiol. 14, 360–373 (2016).
11. Liu, J., Qian, C. & Cao, X. Post-translational modification control of innate immunity. Immunity 45, 15–30 (2016).
12. Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, 3aa2630 (2015).
13. Pawson, T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116, 191–203 (2004).
14. Ben-Neria, Y. Regulatory functions of ubiquitination in the immune system. Nat. Immunol. 3, 20–26 (2002).
15. Jiang, X. & Chen, Z. J. The role of ubiquitination in immune defence and pathogen evasion. Nat. Rev. Immunol. 12, 35–48 (2011).
16. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).
17. Yau, R. & Rape, M. The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18, 579–586 (2016).
18. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).
19. Agbouwo, A. A., Huston, W. M., Gamble, A. B. & Tandall, J. D. A. Proteases and protease inhibitors in infectious diseases. Med. Res. Rev. 38, 1295–1331 (2018).
20. Kirschfeld, F. Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe 8, 55–67 (2010).
21. Ding, B. et al. The matrix protein of human parainfluenza virus type 3 induces mitophagy that suppresses interferon responses. Cell Host Microbe 21, 538–547.e534 (2017).
22. Wang, J., Yang, S., Liu, L., Wang, H. & Yang, B. HTLV-1 Tax impairs K63-linked ubiquitination of STING to evade host innate immunity. Virus Res 232, 13–21 (2017).

K. Chathuranga et al.
23. Frias-Staheli, N. et al. Ovarian tumor domain-containing viral proteases evade ubiquitin- and IG51-dependent innate immune responses. Cell Host Microbe 2, 404–416 (2007).
24. Rao, Y., Ji, J., Liao, Z., Su, H. & Su, J. GCRV hijacks TBK1 to evoke IRF7-mediated antiviral immune responses in grass carp Ctenopharyngodon idella. Fish. Shellfish Immunol. 93, 492–499 (2019).
25. Qin, Y. et al. NLRR1 mediates MAVS degradation to attenuate the hepatitis C virus-induced innate immune response through PCBP2. J. Virol. 91, e01264–17 (2017).
26. Zheng, Y. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type-I and III interferon production by targeting RIG-I/MDA5 signaling. Signal Transduct. Target. Ther. 5, 299 (2020).
27. Shi, K.-L. et al. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3,TANK,TBK1/IKKepsilon complex. J. Biol. Chem. 284, 16202–16209 (2009).
28. García-Sastre, A. Ten Strategies of Interferon Evasion by Viruses. Cell Host Microbe 22, 176–184 (2017).
29. Lubyova, B., Kellum, M. J., Frisancho, A. J. & Pitha, P. M. Kaposis’s sarcoma-associated herpesvirus-encoded WIF-1 stimulates the transcriptional activity of cellular IRF-3 and IRF-7. J. Biol. Chem. 279, 7643–7654 (2004).
30. Yoneyama, M. & Fujita, T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev. 227, 54–65 (2009).
31. Luo, Y. M. & Gale, M. Jr. Immune signaling by RIG-I-like receptors. Immunity 34, 680–692 (2011).
32. Bruns, A. M., Leser, G. P., Lamb, R. A. & Horvath, C. M. The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament assembly. Mol. Cell 55, 771–781 (2014).
33. Yoneyama, M. et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175, 2851–2858 (2005).
34. Friedman, C. S. et al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep. 9, 930–936 (2008).
35. Xu, L. G. et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol. Cell 19, 727–740 (2005).
36. Kawai, T., et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon signaling. Proc. Natl Acad. Sci. USA 106, 981–988 (2008).
37. Negishi, H., Taniguchi, T. & Yanai, H. The interferon (IFN) class of cytokines and the IFN regulatory factor (IRF) transcription factor family. Cold Spring Harb. Perspect. Biol. 10, a028423 (2018).
38. Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is required for antiviral responses through deubiquitinating and stabilizing MAVS. Mol. Cell. Biol. 38, 2957–2970 (2019).
39. Horner, S. M., Liu, H. M., Park, H. S., Briley, J. & Gale, M. Jr. Mitochondrial-LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament assembly. Mol. Cell 55, 771–781 (2014).
40. Horner, S. M., Liu, H. M., Park, H. S., Briley, J. & Gale, M. Jr. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc. Natl Acad. Sci. USA 108, 14590–14595 (2011).
41. Benda, S. et al. Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by hepatitis C virus. PLoS Pathog. 11, e1005264 (2015).
42. Dixit, E. et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141, 688–691 (2010).
43. Gao, P. et al. Cyclin G2(S5p[SA3’S5p]) is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153, 1094–1107 (2013).
44. Liu, S. et al. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. Elife 2, e00785 (2013).
45. Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and induces type I interferon production. J. Biol. Chem. 284, 496–509 (2010).
46. Liu, B. et al. The ubiquitin E3 ligase TRIM31 promotes aggregation and activation of the signaling adaptor MAVS through Lys63-linked polyubiquitination. Nat. Immunol. 18, 214–224 (2017).
47. Li, T. et al. O-GlcNAc transferase links glucose metabolism to MAVS-mediated antiviral innate immunity. Cell Host Microbe 24, 791–803.e796 (2018).
48. Xue, B. et al. TRIM21 promotes innate immune response to RNA viral infection through Lys27-linked polyubiquitination of MAVS. J. Virol. 92, e00321–18 (2018).
49. You, F. et al. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat. Immunol. 10, 1300–1308 (2009).
50. Liu, T. et al. Induction of OTUD4 by viral infection promotes antiviral responses through deubiquitinating and stabilizing MAVS. Cell Res. 29, 67–79 (2019).
83. Wang, B. et al. Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog. 9, e1003231 (2013).
84. Pang, L. L. et al. The suppression of innate immune response by human rhinovirus C. Biochem. Biophys. Res. Commun. 490, 22–28 (2017).
85. Mukherjee, A. et al. The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS Pathog. 7, e1001311 (2011).
86. Qian, S. et al. Seneca valley virus suppresses host type I interferon production by targeting adaptor proteins MAVS, TRIF, and TANK for cleavage. J. Virol. 91, e00823–e17 (2017).
87. Feng, Q. et al. Enterovirus 2Apro targets MD5 and MAVS in infected cells. J. Virol. 88, 3369–3378 (2014).
88. Dong, J. et al. Porcine reproductive and respiratory syndrome virus 3C protease cleaves the mitochondrial antiviral signalling complex to antagonize IFN-β expression. J. Gen. Virol. 96, 3049–3058 (2015).
89. Li, X. D., Sun, L., Seth, R. B., Pineda, G. & Chen, Z. J. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signalling protein off the mitochondria to evade innate immunity. Proc. Natl Acad. Sci. USA 102, 17717–17722 (2005).
90. Di Sabatino, A. et al. The hepatitis B virus-induced parkin-downregulating mitochondrial antiviral signaling protein. J. Immunol. 185, 1158–1168 (2010).
91. Uma, B. & Parvathavarthini, R. Antibacterial effect of hexane extract of sea urchin, Temnopleurus alexandri (Bell, 1884). J. Cell. Mol. Immunol. 18, 361–365 (2020).
92. Mukherjee, A. et al. The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. J. Virol. 91, e00823–e17 (2017).
93. Kim, S. S. et al. DOK3 is required for IFN-β production by enabling TRAF3/TKB1 complex formation and IRF3 activation. J. Immunol. 193, 840–848 (2014).
94. Beachboard, D. C. et al. The small GTPase RAB1B promotes antiviral innate immunity by interacting with TRAF-nuclear factor-κB-associated factor 3 (TRAF3). J. Biol. Chem. 294, 14231–14240 (2019).
95. Zhao, K. et al. Intracellular osteopontin stabilizes TRAF3 to positively regulate innate immune responses. J. Immunol. 197, 397–405 (2016).
96. Khan, M., Syed, G. H., Kim, S. J. & Siddiqui, A. Hepatitis B virus-induced parkin-downregulating mitochondrial antiviral signaling protein. Cell. Signal. 324 (2020).
97. Zhang, X. et al. GPR73 represses host innate immune response to promote virus replication by facilitating MAVS and TRAF6 degradation. PLoS Pathog. 13, e1006593 (2017).
98. Refolo, G. et al. Negative regulation of mitochondrial antiviral signalling protein-mediated antiviral signalling by the mitochondrial protein LRPPRC during hepatitis C virus infection. Hepatology 69, 34–50 (2019).
99. Khan, M., Syed, G. H., Kim, S. J. & Siddiqui, A. Hepatitis B virus-induced parkin-dependent recruitment of linear ubiquitin assembly complex (LUBAC) to mitochondria and attenuation of innate immunity. PLoS Pathog. 12, e1005693 (2016).
100. Chen, Y. et al. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc. Natl Acad. Sci. USA 104, 7253–7258 (2007).
101. Nandi, S. et al. MAVS protein is attenuated by rovativirus nonstructural protein 1. PLoS ONE 9, e92126 (2014).
102. Ping, S. et al. Rotavirus VP3 targets MAVS for degradation to inhibit type III interferon expression in intestinal epithelial cells. Front. IMMUNOL. 9, 203 (2018).
103. Wang, B. et al. Human respiratory syncytial virus nucleoprotein and inclusion bodies antagonize the innate immune response mediated by Toll-like receptor 3 and Nod1. J. Virol. 86, 7677–7682 (2012).
104. Shindler, K. et al. Human respiratory syncytial virus NS1 protein colocalizes with the mitochondrial antiviral signaling protein. Cytokine Growth Factor Rev. 14, 193–209 (2003).
105. Inoue, J. et al. Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp. Cell Res. 254, 14–24 (2000).
106. Mucke, L. et al. Inducible LGLIS1/90k activates antiviral innate immune responses by targeting TRAF6 and TRAF3 complex. PLoS Pathog. 15, e1008002 (2019).
107. Zhi, Q. et al. TRIM24 facilitates antiviral immunity through mediating K63-linked TRAF3 ubiquitination. J. Exp. Med. 217, e20192083 (2020).
108. Sun, N. et al. TRIM55 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2. Protein Cell 11, 894–914 (2020).
109. Kashleva, K. et al. Inducible LGLIS1/90k activates antiviral innate immune responses by targeting TRAF6 and TRAF3 complex. PLoS Pathog. 15, e1008002 (2019).
110. Gu, L. et al. The coxsackievirus B 3C protease UL36 inhibits beta interferon production by deubiquitinating TRAF3. J. Virol. 85, 3758–3766 (2011).
111. Wang, S. et al. The coxsackievirus B 3C protease UL36 inhibits beta interferon production by deubiquitinating TRAF3. J. Virol. 85, 11261–11268 (2011).
112. Wang, S. et al. Gamma 2 transcription factors (MTR) inhibit factor-kappaB-mediated innate immune evasion. J. Immunol. 188, 5902–5907 (2007).
113. Chen, Y. et al. Human respiratory syncytial virus NS1 protein colocalizes with the mitochondrial antiviral signaling protein MAVS following infection. PLoS ONE 7, e29386 (2012).
114. Li, J. et al. Human respiratory syncytial virus leaky protein and inclusion bodies antagonize the innate immune response mediated by MD5 and MAVS. J. Virol. 86, 8245–8258 (2012).
115. Chen, Y. et al. Functional motifs responsible for human metapneumovirus M2-2-mediated innate immune evasion. Virology 499, 361–368 (2016).
116. Wu, Y. et al. SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-mediated innate antiviral response. Cell. Mot. Immunol. 18, 613–620 (2020).
117. Arch, R. H., Gedrich, R. W. & Thompson, C. B. Tumor necrosis factor receptor-associated factors (TRAFs)-a family of adapter proteins that regulate life and death. Genes Dev. 12, 2821–2830 (1998).
118. Chung, J. Y., Park, Y. C., Ye, H. & Wu, H. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell. Sci. 115, 679–688 (2002).
119. Dempsey, P. W., Doyle, S. E., He, J. Q. & Cheng, G. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev. 14, 193–209 (2003).
120. Inoue, J. et al. Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp. Cell Res. 254, 14–24 (2000).
1666

198. Ning, Y. J. et al. Viral suppression of innate immunity via spatial isolation of TBK1/IKKε from mitochondrial antiviral platform. *J. Mol. Cell Biol.* 6, 324–337 (2014).

199. Moriyama, M. et al. Two conserved amino acids within the NS5 of severe fever with thrombocytopenia syndrome phlebovirus are essential for anti-interferon activity. *J. Virol.* 92, e00706–18 (2018).

200. Ding, Z. et al. Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IFIR3 and TBK1. *J. Virol.* 88, 8936–8945 (2014).

201. Ning, Y. J. et al. Heartland virus NS5 protein disrupts host defenses by blocking the TBK1 kinase–IRF3 transcription factor interaction and signaling required for interferon induction. *J. Biol. Chem.* 292, 16722–16733 (2017).

202. Jin, S. et al. Zika virus NS5 protein antagonizes type I interferon production via blocking TBK1 activation. *Virology* 527, 180–187 (2019).

203. Guo, G. et al. SARS-CoV-2 non-structural protein 13 (nsp13) hijacks host deubiquitinase USP13 and counteracts host antiviral immune response. *Signal Transduct. Target. Ther.* 6, 119 (2021).

204. Chen, X. et al. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TBIF3-TBK1 complex. *Protein Cell* 5, 369–381 (2014).

205. Randall, C. M., Biswas, S., Selen, C. V. & Shisler, J. L. Inhibition of interferon gene activation by death-effector domain-containing proteins from the molluscum contagiosum virus. *Proc. Natl Acad. Sci. USA* 111, E265–E272 (2014).

206. Durand, J. K., Zhang, Q. & Baldwin, A. S. Roles for the IFN-α/β-induced genes TBK1 and IKKε in cancer. *Cell* 7, 139 (2018).

207. Cai, X., Chiu, Y. H. & Chen, Z. J. The cGAS-STING pathway of cytosolic DNA sensing and signaling. *Mol. Cell* 54, 289–296 (2014).

208. Vijayan, M. et al. Sphingosine 1-phosphate lyase enhances the activation of IKK and promotes the proliferation of regulatory T cells. *EMBO J.* 27, 2147–2157 (2008).

209. Zhang, K. et al. DDX19 inhibits type I interferon production by disrupting TBK1 and IKK degradation. *Cell Rep.* 26, 1258–1272.e4 (2019).

210. Matsumura, T. et al. Fascin1 suppresses RIG-I-like receptor signaling and interferon-β production by associating with Ikβ kinase ε (IKKε) in colon cancer. *J. Biol. Chem.* 293, 6326–6336 (2018).

211. Angleró-Rodríguez, Y. I., Pantoja, P. & Sariol, C. A. Dengue virus subverts the function of interferon regulatory factor-activating kinases IKKε and TBK1. *J. Virol.* 85, 71–82 (2013).

212. Prins, K. C., Cárdenas, W. B. & Basler, C. F. Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKβ and TBK1. *J. Biol. Chem.* 83, 3069–3077 (2009).

213. Pythoud, C. et al. Arenavirus nucleoprotein targets interferon regulatory factor-activating kinase IKKε. *J. Virol.* 86, 7728–7738 (2012).

214. Le, D. K. et al. Middle east respiratory syndrome coronavirus ORF8b accessory protein suppresses type I IFN expression by impeding HIS70-dependent activation of IRF3 kinase IKKε. *J. Virol.* 205, 1564–1579 (2020).

215. Honda, K. & Taniguchi, T. IRFs: master regulators of signaling by Toll-like receptors and cytosolic pattern-recognition receptors. *Nat. Rev. Immunol.* 6, 644–658 (2006).

216. Servant, M. J. et al. Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA. *J. Biol. Chem.* 278, 9441–9447 (2003).

217. Takahashi, K. et al. Ser386 phosphorylation of transcription factor IRF-3 induces dimerization and association with CBP/p300 without overall conformational change. *Genes Cells* 15, 901–910 (2010).

218. Lin, R., Heybrock, C., Pitha, P. M. & Hiscott, J. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. *Mol. Cell. Biol.* 18, 2986–2996 (1998).

219. Zhou, Y. et al. Interferon-inducible cytoplasmic IncLcrs5-AS promotes antiviral innate responses by strengthening IRF3 phosphorylation. *Cell Rep.* 29, 641–654 (2019).

220. Wang, J. et al. IRF1 promotes the innate immune response to viral infection by enhancing the activation of IRF3. *J. Virol.* 94, e01231–20 (2020).

221. Wang, C. et al. The methyltransferase NSD3 promotes antiviral innate immunity via direct lysine methylation of IRF3. *J. Exp. Med.* 214, 3597–3610 (2017).
252. Moustai, M. et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg. Microbes Infect. 10, 178–195 (2021).

253. Ye, J. et al. Japanese encephalitis virus NS5 inhibits type I interferon (IFN) production by blocking the nuclear localization of IFN regulatory factor 3 and NF-κB. J. Virol. 91, e00399–12 (2017).

254. Chang, R. Y. et al. Middle East respiratory syndrome coronavirus M protein suppresses IRF3 function. Virology 87, 567–575 (2017).

255. Barro, M. & Patton, J. T. Rotavirus nonstructural protein 1 subverts innate immune responses. J. Virol. 81, 3087–3096 (2007).

256. Irie, T., Kiyotani, K., Igarashi, T., Yoshida, A. & Sakaguchi, T. Inhibition of interferon regulatory factor 3 by paramyxovirus M protein. J. Virol. 86, 7136–7145 (2012).

257. Yuen, C. K. et al. Suppression of type I interferon production by human T-cell leukemia virus type 1 oncoprotein tax through inhibition of IRF3 phosphorylation. J. Virol. 90, 3902–3912 (2016).

258. Lui, P. Y. et al. Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3. Emerg. Microbes Infect. 5, e39 (2016).

259. Barro, M. & Patton, J. T. Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. Proc. Natl Acad. Sci. USA 102, 4114–4119 (2005).

260. Chen, W. & Royer, W. E. Jr Structural insights into interferon regulatory factor 3 activation by paramyxovirus V protein. J. Virol. 86, 7136–7145 (2012).

261. Hemmi, H. et al. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. Sci. Immunol. 11, eaag459 (2016).

262. Chang, T. H. et al. Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery. PLoS Pathog. 5, e1000493 (2009)

263. Raychoudhuri, A. et al. Hepatitis C virus infection impairs IRF-7 translocation and alpha interferon synthesis in immortalized human hepatocytes. J. Virol. 84, 10991–10998 (2010).

264. Fiebach, A. R., Guylack-Piriou, L., Python, S., Sommerfeld, A. & Ruggli, N. Classical swine fever virus NPIRO limits type I interferon induction in plasmacytoid dendritic cells by interacting with interferon regulatory factor 7. J. Virol. 85, 8002–8011 (2011).

265. Gray, E. E. et al. The AIM2-like receptors are dispensable for the interferon regulatory factor 3 activation. J. Virol. 86, 7136–7145 (2012).

266. Wang, J. et al. Negative regulation of Nmi on virus-triggered type I interferon production by targeting IRF7. Virology 518, 1–7 (2018).

267. Niu, G. et al. P200 family protein IFI204 negatively regulates type I interferon production by targeting IRF7 downstream of the viral Toll-Like receptor 7. Virology 528, 549–559 (2020).

268. Sato, M. et al. Positive feedback regulation of type I IFN genes by the IFN-stimulated gene factor 1 (ISGF1) in epithelial cells. J. Exp. Med. 210, 2562–2574 (2020).

269. Chang, T. et al. Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery. PLoS Pathog. 5, e1000493 (2009).
313. Konno, H., Konno, K. & Barber, G. N. Cyclic dinucleotides trigger ULR1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. J. Virol. 155, 688–698 (2013).
314. Li, Z. et al. PPM1A regulates antiviral signaling by antagonizing TBK1-mediated STING phosphorylation and aggregation. PLoS Pathog. 11, e1004783 (2015).
315. Gao, P., Hu, M. M. & Shu, H. B. CSR promotes innate immune response to DNA virus by phosphorylating MITA. Biochem. Biophys. Res. Commun. 526, 199–205 (2020).
316. Sun, M. S. et al. TMED2 potentiates cellular IFN responses to DNA viruses by reinforcing MITA dimerization and facilitating its trafficking. Cell Rep. 25, 3086–3098.e3 (2018).
317. Wei, J. et al. SNX8 modulates innate immune response to DNA virus by mediating trafficking and activation of MITA. PLoS Pathog. 14, e1007336 (2018).
318. Zhang, X. et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity. 30, 397–407 (2009).
319. Yang, B. et al. RNF90 negatively regulates cellular antiviral responses by targeting MITA for degradation. PLoS Pathog. 16, e1008387 (2020).
320. Li, Q. et al. TRIM29 negatively controls antiviral immune response through targeting STING for degradation. Cell Discov. 4, 13 (2018).
321. Wang, Y. et al. TRIM33 is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathog. 11, e1005012 (2015).
322. Chen, Y. et al. P38 inhibition provides anti-DNA virus immunity by regulation of USP21 phosphorylation and STING activation. J. Exp. Med. 214, 991–1010 (2017).
323. Ye, L. et al. USP49 negatively regulates cellular antiviral responses via deconjugating K63-linked ubiquitination of MITA. PLoS Pathog. 15, e1007680 (2019).
324. Sun, H. et al. USP13 negatively regulates antiviral responses by deubiquitinating STING. Nat. Commun. 8, 15534–18 (2019).
325. Xia, Y. L. X. M., Wu, X., Shang, J. & Shu, H. B. PTPN1/2-mediated dephosphorylation of STING to prevent sustained innate immune signaling. Cell. Biol. 2918 (2007).
326. Chen, H. et al. An alternative splicing isoform of MITA antagonizes MITA-mediated signaling by the gamma(134.5) protein of herpes simplex virus 1. J. Virol. 85, 11079–11089 (2011).
327. Hube, L. E., Ning, S., Kellhier, M. & Pagano, J. S. Interferon regulatory factor 7 is activated by a viral oncoprotein through RIP-dependent ubiquitination. Mol. Cell. Biol. 27, 2910–2918 (2007).
328. Gao, L. et al. Inhibition of DNA-sensing pathway by Marek’s disease virus VP23 protein through suppression of interferon regulatory factor 7 activation. J. Virol. 83, e01934–18 (2019).
329. Yuan, W. et al. RNF146 negatively regulates cellular antiviral responses by targeting MITA for degradation. PLoS Pathog. 16, e1008387 (2020).
330. Hu, Y. et al. TRIM32 negatively controls antiviral immune response via targeting STING for degradation. Cell Discov. 4, 13 (2018).
331. Deschamps, T. & Kalamvoki, M. Evasion of the STING DNA-sensing pathway by herpes simplex virus 1 VP11/12. Biochem. Biophys. Res. Commun. 526 (2017).
332. Pan, S., Liu, X., Wu, X., Shang, J. & Shu, H. B. PTPN1/2-mediated dephosphorylation of STING to prevent sustained innate immune signaling. Cell. Biol. 2918 (2007).
333. Xia, T., Yi, X. M., Wu, X., Shang, J. & Shu, H. B. PTPN1/2-mediated dephosphorylation of STING to prevent sustained innate immune signaling. Cell. Biol. 2918 (2007).
334. Li, Q. et al. TRIM33 is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathog. 11, e1005012 (2015).
335. Cheng, H. et al. An alternative splicing isoform of MITA antagonizes MITA-mediated induction of type I IFNs. J. Immunol. 192, 1162–1170 (2014).
336. Gao, P. et al. NLRK1 sequesters STING to negatively regulate the interferon response, thereby facilitating the replication of HIV-1 and DNA viruses. Cell Host Microbe 19, 515–526 (2016).
337. Wu, X. et al. RIG-I and IL-6 are negative-feedback regulators of STING induced by double-stranded DNA. PLoS ONE 12, e0182961 (2017).
338. Salio, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl. Acad. Sci. U.S.A 106, 20842–20846 (2009).
339. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 461, 788–792 (2009).
340. Christensen, M. H. et al. HSV-1 IC27 targets the STING-activated STING signallne to inhibit virus-induced type I IFN expression. EMBO J. 35, 1385–1399 (2016).
341. Pan, S., Liu, X., Ma, Y., Cao, Y. & He, B. Herpes simplex virus 1 y134.5 protein inhibits STING activation that restricts viral replication. J. Virol. 90, e01015–18 (2018).
342. Deschamps, T. & Kalamvoki, M. Evasion of the STING DNA-sensing pathway by gamma-herpesviruses. Proc. Natl. Acad. Sci. U.S.A 112, E4306–E4315 (2015).
343. Stempel, M. et al. The herpesviral antagonist m152 reveals differential activation of STING-dependent IRF and NF-kB signaling and STING’s dual role during MCMV infection. EMBO J. 38, e100983 (2019).
344. Liu, Y. et al. Hepatitis C virus NS4B can suppress STING accumulation to evade innate immune responses. J. Virol. 90, 254–265 (2016).
345. Ma, Z. et al. Modulation of the cGAS-STING DNA sensing pathway by gamma-herpesviruses. Proc. Natl. Acad. Sci. U.S.A 112, E4306–E4315 (2015).
346. Kim, J. et al. IFN-stimulated gene 15 expression enhances herpesvirus-induced innate immunity. Cell. Biol. 2918 (2007).
347. Qi, Y. et al. Herpesvirus IE2 B6 KDa protein induces STING degradation and inhibits cGAMP-mediated STING induction. Microbiol. 8, 1854 (2017).
348. Lee, J. Y., Kim, J. E., Park, B. J. & Song, Y. J. Human cytomegalovirus IE2 B6 KDa protein induces STING degradation and inhibits cGAMP-mediated STING induction. Microbiol. 8, 1854 (2017).
349. Lee, J. Y., Kim, J. E., Park, B. J. & Song, Y. J. Human cytomegalovirus IE2 B6 KDa protein induces STING degradation and inhibits cGAMP-mediated STING induction. Microbiol. 8, 1854 (2017).
350. Verpoorten, D., Ma, Y., Hou, S., Yan, Z. & He, B. Control of TANK-binding kinase 1-mediated signaling by the gamma134.5 protein of herpes simplex virus 1. J. Biol. Chem. 284, 1097–1105 (2009).