Using Bayesian modelling to investigate factors governing antibiotic-induced Candida albicans colonization of the GI tract

Jyoti Shankar1, Norma V. Solis2, Stephanie Mounaud1, Sebastian Szpakowski1, Hong Liu2, Liliana Losada1, William C. Nierman1 & Scott G. Filler2,3

1 J. Craig Venter Institute, Rockville, MD, USA, 2 Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA, 3 David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

Received 7 November 2014
Accepted 7 January 2015
Published 3 February 2015

Correspondence and requests for materials should be addressed to J.S. (jyoti.shankar@gmail.com) or S.G.F. (sfiller@ucla.edu)

OPEN SUBJECT AREAS: MICROBIOME STATISTICAL METHODS NEXT-GENERATION SEQUENCING FUNGAL HOST RESPONSE

Receipt of broad-spectrum antibiotics enhances Candida albicans colonization of the GI tract, a risk factor for haematogenously-disseminated candidiasis. To understand how antibiotics influence C. albicans colonization, we treated mice orally with vancomycin or a combination of penicillin, streptomycin, and gentamicin (PSG) and then inoculated them with C. albicans by gavage. Only PSG treatment resulted in sustained, high-level GI colonization with C. albicans. Furthermore, PSG reduced bacterial diversity in the colon much more than vancomycin. Both antibiotic regimens significantly reduced IL-17A, IL-21, IL-22 and IFN-γ mRNA levels in the terminal ileum but had limited effect on the GI fungal microbiome. Through a series of models that employed Bayesian model averaging, we investigated the associations between antibiotic treatment, GI microbiota, and host immune response and their collective impact on C. albicans colonization. Our analysis revealed that bacterial genera were typically associated with either C. albicans colonization or altered cytokine expression but not with both. The only exception was Veillonella, which was associated with both increased C. albicans colonization and reduced IL-21 expression. Overall, antibiotic-induced changes in the bacterial microbiome were much more consistent determinants of C. albicans colonization than either the GI fungal microbiota or the GI immune response.

The fungus Candida albicans is a human commensal that grows on the skin and mucosal surfaces of healthy individuals1. However, in susceptible patients, C. albicans can enter the bloodstream, either by translocation across the mucosa of the gastrointestinal (GI) tract2 or via an indwelling vascular catheter3. The resulting haematogenously-disseminated infection is associated with a mortality of up to 49% and is the fourth most common cause of hospital-acquired bloodstream infections in the U.S.2.

Risk factors for developing disseminated and invasive candidiasis include the receipt of broad-spectrum antibiotics, immunosuppression, and colonization with Candida species. It is believed that broad-spectrum antibiotics predispose patients to developing disseminated candidiasis by suppressing the competing bacterial microbiota in the GI tract and encouraging the overgrowth of C. albicans2,4–7. In recent randomized clinical trials, probiotics were effective in reducing GI colonization by Candida species and decreasing the incidence of invasive candidiasis8,9. In immunodeficient and malnourished mice, introduction of Lactobacillus species into the GI tract decreased GI C. albicans burden and resulted in lower mortality10,11. These results suggest that the composition of the GI tract microbiota influences the level of C. albicans colonization.

Another potential influence on the level of C. albicans GI colonization is the host immune status12. Mutations in genes that code for host cytokines such as interleukin (IL) -17, IL-22 and interferon (IFN) -γ increase susceptibility to mucosal candidiasis in both mice and humans12,13. T-cell effector populations that drive cytokine responses express receptors for peptide antigens of specific commensal bacteria14. Among these, gram-positive bacilli from the genus Clostridium15 and the closely related genus, "Candidatus Arthromitus" also known as the segmented filamentous bacteria (SFB), are prominent activators of adaptive Th17 immunity in the GI tract16–18. By depleting these immune-activating bacteria19 and through possible direct immunomodulation20, antibiotics have the potential to enhance C. albicans GI colonization.
A mechanistic understanding of the tri-faceted interface of antibiologic action on the local immune response, GI bacterial and fungal microbiota, and C. albicans colonization is essential for developing strategies to reduce the incidence of candidiasis. Antibiotic regimens that include penicillin are associated with substantially higher rates of GI colonization with Candida species when compared with those without penicillin. Therefore, to examine the factors that influence the level of C. albicans GI colonization, we contrasted the effects of a combination of penicillin, streptomycin and gentamicin (PSG) with those of vancomycin in a mouse model. We studied two GI sites: a) the terminal ileum because the small intestine contains a large number of immune cells, particularly those involved in a Th17 response, and b) the colon (sampled via faecal pellets), which is the most commonly sampled site for profiling the microbiome.

Unlike humans, mice are not normally colonized with C. albicans unless the resident GI flora is perturbed by the administration of oral antibiotics. Hence, the mouse model provided us a controlled platform to perform our experiments.

Mouse studies that incorporate next generation sequencing (NGS) for measuring microbiome variables represent a high-dimensional setting where the number of measurements substantially exceeds the number of samples. As an example, an experiment with 30 mice can generate over 300 bacterial, fungal and immune measurements per mouse. As a consequence of this high-dimensionality, a large number of equally likely models with various combinations of microbes and other covariables can explain antibiotic effects and subsequent colonization. However, most current microbiome studies do not systematically explore this large model space. Instead, a number of these studies apply a univariate method such as the one-way ANOVA test, Wilcoxon rank-sum test or Kruskal–Wallis rank-sum test to individually screen each measured microbiome variable for a significant effect. This significance testing typically includes correction strategies for multiple testing. For any response of interest, the effects of the significant microbes selected by the univariate method are then estimated using a single regression model.

While univariate microbiome variable selection followed by a single regression model has yielded important new information about factors that affect the composition of microbiomes, the p-values or confidence intervals (CI) that are computed after univariate screening often overestimate the strength of conclusions. Even with corrections for multiple testing in place, independent tests do not consider the complex multivariable, correlational structure of microbiome data. Furthermore, the final step of inference is based upon a single model that ignores the uncertainty that compounds with each variable selection step prior to building the final model. Ensemble multivariable regression modelling approaches such as Bayesian model averaging (BMA) have been used in ecology to address these shortcomings. Ensemble methods examine a large number of variable configurations to identify significant variables and to simultaneously compute their effect sizes. After a systematic evaluation of several such ensemble approaches on our mouse microbiome data, we selected BMA for its strong performance across several variable selection and ranking metrics. In addition, BMA helps us formally account for model uncertainty in high-dimensions by simultaneously computing two crucial statistical metrics for each finding: a) consistency as measured by posterior inclusion probability (PIP), and b) statistical significance using the 95% CI of effect size. Thus, BMA has a distinct advantage over most statistical approaches, which typically provide estimates of statistical significance but not of consistency.

We employed BMA to identify the microbiome community and the host immune response signatures that characterize antibiotic treatment, and to probabilistically rank the influence of the microbiome and the host immune response on the level of C. albicans colonization of the mouse GI tract following gastric challenge with this organism. Our analysis revealed that antibiotic-induced changes in the bacterial microbiome were the most consistent determinants of C. albicans colonization. These bacterial genera typically influenced the growth of C. albicans without simultaneously altering the host GI immune response. Although antibiotics significantly altered the composition of GI fungal microbiota and suppressed the GI immune response, these factors were less influential on colonization relative to the bacterial microbiota.

Results

PSG and vancomycin had differential effects on C. albicans colonization and microbial diversity, but induced similar host immune responses. We used a mouse model to investigate the tri-faceted effect of antibiotics on the host immune response, the GI bacterial and fungal microbiota, and C. albicans colonization in the GI tract. Mice in the control group received sterile drinking water, while those in treatment groups received sterile drinking water containing either vancomycin or PSG. After 7 days, we inoculated some of the mice in the control and treatment groups with 10⁵ C. albicans cells, administered by gavage. We then continued the mice on their original control or treatment regimens for an additional 14 days. Each group had 3 to 7 mice, and the results of at least two independent experiments were combined (details in Methods).

Following exposure to C. albicans, the faecal pellets of control mice contained no detectable C. albicans cells by quantitative culture on days 9, 14 and 21 (Figure 2a). In contrast, mice that received PSG had sustained, high-level of colonization with C. albicans that persisted throughout the duration of the experiment. Unlike PSG treatment, vancomycin treatment induced only a low-level, transient colonization on day 9, and no C. albicans cells were cultured from the faecal pellets on days 14 and 21.

Next, we determined the local GI immune response in the various treatment groups using real-time PCR to measure the mRNA expression levels of six cytokines in the terminal ileum. These

Experimental Design	Day 0	Day 7	Day 9	Day 14	Day 21
C57BL/6 mice					
Controls	Water	16S	ITS	CFU	C mRNA
Treatment					
C. albicans challenge	+ vancomycin	16S	ITS	CFU	C mRNA
	+ PSG				

Figure 1 | **Experimental Design.** Following initiation of antibiotics, and inoculation with C. albicans, we collected samples of the mouse terminal ileum and faecal pellets. We then sequenced the bacterial 16S and fungal ITS amplicons in the samples by 454 sequencing and taxonomically classified these sequences using a tailored bioinformatics workflow. We quantified mRNA expression levels of 6 host cytokines (C mRNA) including IL-17A, IL-21, IL-22, IFN-γ, TNF-α and IL-4 from segments of the terminal ileum. Using quantitative culture, we determined the level of C. albicans colonization in the faecal pellets in terms of colony forming units per gram (CFU/g).
cytokines consisted of IL-4, IL-17A, IL-21, IFN-γ, and tumour necrosis factor (TNF-α). We selected these cytokines because they have been shown to be relevant in the context of C. albicans colonization of the GI tract. Relative to the controls, treatment with either vancomycin or PSG was associated with significantly depressed expression levels of IL-17A, IL-22 and IFN-γ on both days 7 and 21, both in the presence and absence of C. albicans exposure (Figure 2b).

Finally, we compared the bacterial and fungal diversity, using the inverse Simpson diversity index, in PSG and vancomycin-treated mice relative to controls. The GI bacterial and fungal microbiomes were profiled by sequencing the bacterial 16S rRNA and fungal ITS regions followed by taxonomic classification. Across our experiments, we detected 344 bacterial genera and 109 fungal genera. In the faecal pellets, both vancomycin and PSG treatments significantly decreased bacterial diversity on day 7 and day 21 in the presence of C. albicans, relative to controls. PSG treatment caused a greater reduction in diversity, as expected from the broader spectrum of activity of this antibiotic combination (Figure 2c). In the terminal ileum, treatment with vancomycin did not affect bacterial diversity, while treatment with PSG resulted in an increase in diversity, more so in the absence of C. albicans exposure (Figure 2c).
Compared to bacterial diversity, fungal diversity was lower in both the colon and terminal ileum. Two weeks after *C. albicans* challenge, there was an increase in fungal diversity in the vancomycin-treated mice in the faecal pellets. In contrast, the fungal diversity remained low in the PSG-treated mice (Figure 2c). In comparison to the faecal pellets, the fungal diversity in the terminal ileum of the controls was lower. Collectively, these results indicate that vancomycin and PSG had different effects on microbiomal diversity in the GI tract. Moreover, the effect of the antibiotics differed across locations in the GI tract.

Thus our exploratory analysis of the three facets of the microbiome-immune-colonization interface revealed that both vancomycin and PSG reduced bacterial diversity in the faecal pellets and suppressed cytokine mRNA expression in the terminal ileum. However, only PSG induced susceptibility to sustained *C. albicans* colonization.

The antibiotic-microbiome interface: PSG and vancomycin resulted in markedly different bacterial and fungal microbiome signatures.

We next identified the set of specific bacterial and fungal genera that were significantly and consistently altered by either PSG or vancomycin relative to controls by building multivariable BMA logistic regression models (Figure 3). BMA explored a set of 10,000 genera configurations that differentiated PSG and vancomycin from controls. The posterior inclusion probability (PIP) for any genus under BMA is the relative frequency with which it was selected as influential across these 10,000 configurations. Genera with higher PIPs were able to consistently differentiate antibiotics versus control status across samples.

The effect size for a given genus is its regression coefficient in the model and is determined by the difference in its relative abundance between antibiotic treated mice and control mice, after adjusting for all the other microbiome proportions and cytokine variables in the model. We built separate models to examine the effects of antibiotics on the bacterial and fungal microbiota in the faecal pellets and in the terminal ileum for days 7 and 21 (Figure 3). We show only the genera whose 95% CI of effect sizes did not include zero and thus, represent statistically significant antibiotic effects.

Overall, the maximum PIPs in the antibiotic-microbiome models were approximately 30%, indicating that neither PSG nor vancomycin had a consistent impact on any given genus across samples (Figures 3a and b). In the faecal pellets, the effects of PSG on the bacterial microbiome were the most heterogeneous, with a large number of high and significant effect sizes accompanied by relatively low PIPs (Figure 3a). Unlike PSG, vancomycin was associated with a lower number of significant effects. However, these effects were more consistent. In the terminal ileum, PSG and vancomycin had a similar pattern of effects on the bacterial microbiome, and the signatures in the ileum were more consistent than those in the faecal pellets (Figure 3b). In both GI sites, bacterial genera belonging to the *Bacteroidetes* and *Firmicutes* phyla had the most consistent antibiotic signatures with higher PIPs.

In the faecal pellets, PSG consistently and significantly suppressed most genera on both days 7 and 21 (Figure 3c). Most of these genera were members of phyla *Bacteroidetes* and *Firmicutes*. By contrast, *Parabacteroides* was the only genus that increased in relative abundance in the PSG-treated mice on days 7 and 21. Even though vancomycin reduced the relative abundance of several of the same genera as did PSG, the magnitude of the reduction was smaller in comparison. In addition, vancomycin increased multiple genera, including *Lactobacillus*, *Proteus*, *Cronobacter*, *Anaeroplasma*, *Parasutterella* and *Mucispirillum*.

In the terminal ileum, PSG treatment had a mixed effect, decreasing the relative abundance of some genera, but increasing others (Figure 3d). The increase in *Enterococcus*, *Streptaphya* and *Anaeroplasma* was especially notable at day 21 in the presence of *C. albicans* colonization. Vancomycin also had a similar mixed effect. It depleted the same genera as did PSG, including “*Candidatus Arthromitus*” which is known to stimulate a Th17 response in the GI tract. However, vancomycin treatment increased a greater number of genera than did PSG, especially on day 7.

On day 7, the fungal microbiome of mice receiving either PSG or vancomycin had substantial mouse-to-mouse variability in both GI sites (Figure 4a and 4b). However, by day 21, PSG induced a larger number of consistent effects in the fungal genera of the faecal pellets than did vancomycin. Five of these effects were on sequence clusters that mapped to *Candida* (Figure 4c). Of these, *Candida* [2] decreased under both antibiotics while *Candida* [1], [4] and [5] increased only under PSG. *Candida* [6] was present in a higher proportion in controls, increased under vancomycin and decreased under PSG.

In the terminal ileum, neither antibiotic had consistent effects on the fungal microbiome.

We were specifically interested in obtaining insights into *Candida* colonization and therefore explored the species level composition of *Candida* clusters that were identified as influential by the BMA approach. Using MegaBLAST, we found that the sequence clusters labelled *Candida* [1], [2], and [4] were predominantly composed of *C. albicans*. *Candida* [6] was primarily *Candida tropicalis*, while *Candida* [5] had a mixed composition. These results suggest that *C. albicans* likely displaced the other fungi in the faecal pellets, including other *Candida* species such as *C. tropicalis* that were present in the mouse gut before colonization. It was also notable that *C. tropicalis* was detectable only by ITS sequencing and not by quantitative culture suggesting a possible specific adaptation to the conditions of the GI tract and an inability to grow on the standard fungal medium that was used.

The antibiotic-microbiome-cytokine interface: Antibiotic treatment influenced cytokine mRNA levels primarily through effects on the bacterial and not the fungal microbiota.

Our exploratory analysis showed that both antibiotics significantly suppressed cytokine mRNA levels in the terminal ileum. We built BMA linear regression models to identify the underlying changes in microbial genera associated with the altered cytokine expression. In these models, the cytokine mRNA expression level served as the independent covariables. We estimated a separate model for each cytokine.

In the faecal pellets, the only genus with a fairly consistent positive effect on any cytokine was *Barnesiella*, which was positively associated with IL-22 at day 21 (PIP = 49%) (Figure 5a). In contrast, we observed several consistent effects in the terminal ileum especially on day 7. The genus *Clostridium* and the related genus, “*Candidatus Arthromitus*” had the most consistent and significant influence on cytokines. On day 7, *Clostridium* [2] was positively associated with IL-17A (PIP = 92%) and IL-22 (PIP = 57%) while “*Candidatus Arthromitus*” was positively associated with IFN-γ (PIP = 78%). Other consistent positive associations in the terminal ileum involved genera of the phylum *Proteobacteria*, including *Phyllobacterium* on IL-21 (PIP = 84%), *Proteus* on IL-17A (PIP = 81%) and *Comamonas* on IL-21 (PIP = 53%). The only genera with negative cytokine associations were *Lactococcus* on TNF-α (PIP = 67%) and *Veillonella* on IL-21 (PIP = 49%). On day 21, the only highly consistent positive effect was that of “*Candidatus Arthromitus*” on IL-22 (PIP = 96%). In the fungal models (Figure 5b), the only genus with a consistently positive association with IL-21 on day 7 was *Phoma* in the faecal pellets (PIP = 72%). On day 7, treatment with either PSG or vancomycin had a negative influence on IFN-γ in both GI sites. On day 21, the introduction of *C. albicans* without concurrent antibiotic treatment was associated with increased IL-17A mRNA levels in both GI sites, and with increased IL-22 in the faecal pellets.
Overall, both bacterial and fungal genera had relatively consistent positive associations with the panel of cytokines that were studied. Most of these bacteria were depleted due to antibiotic administration, thus explaining the decrease in the overall cytokine levels that we observed in our exploratory analyses (Figure 3b). The negative association of antibiotic treatment with IFN-γ only surfaced in the fungal model on day 7. Similarly, the positive effects of C. albicans on IL-17A and IL-22 only appeared in the fungal model. These differences between the bacterial and fungal models likely represent the stronger effects of the bacteria on the cytokines as compared to the

Figure 3 | Effect of antibiotics on the bacterial microbiome. Results from BMA logistic regression ensembles exploring the antibiotic and bacterial microbiome interface are shown in panels (a) and (c) for the faecal pellets and (b) and (d) for the terminal ileum. Panels (a) and (b) plot the median effect size of each bacterium against its posterior inclusion probability (PIP) in the model. PIP is expressed in %. The effect size of a microbe is its regression coefficient in the model and depends on its relative abundance under antibiotic treatment (PSG or Van.) relative to controls (Cntrl), after adjusting for all the other covariables in the model. We show only the effects that were statistically significant i.e. the corresponding Bayesian 95% CIs did not include zero. Higher PIPs indicate higher consistency in antibiotic effects. PIPs can range from 0% (not consistent) to 100% (very highly consistent). All models were built at the genus level. Each point in the graph denotes a genus coloured by its phylum membership. Panels (c) and (d) show heatmaps of relative abundances (scaled to the range 0–1) of bacteria with the top consistent and significant differences across the PSG (P), vancomycin (Van., V) and control (C) groups on days 7 and 21. Each genus is annotated with its phylum-level label in the heatmaps. Numbers in square brackets denote distinct sequence clusters that were mapped to the same genus but could not be collapsed since they were more than 3% dissimilar from each other.
fungi. The strong antibiotic effects on cytokines within the fungal models indicate that the antibiotic variables were proxies for the relevant effects of antibiotics on the bacterial microbiome.

The antibiotic-microbiome-cytokine-colonization interface: Antibiotic-shaped bacterial genera explained levels of \textit{C. albicans} colonization more consistently than either fungal genera or cytokines. In our final set of multivariable BMA models, we identified the microbiota and cytokines most influential on the level of \textit{C. albicans} colonization. We built separate BMA linear regression models for bacterial and fungal genera and one for each GI site (Figure 6). The covariables in the models consisted of the microbial genera, cytokine mRNA expression levels, day of sampling, antibiotic treatment, and \textit{C. albicans} exposure. The level of \textit{C. albicans} colonization (measured as CFUs in the faecal pellets) was the continuous response variable.

In each of the models, only a handful of variables obtained a high PIP (Figure 6). Genera from the phylum \textit{Firmicutes} had the highest PIP in both the faecal pellets and the terminal ileum (Figure 6a and b). In the faecal pellets, the bacterial genera with the highest PIPs were \textit{Streptococcus} and \textit{Parabacteroides} (Figure 6a). Both were positively associated with higher levels of \textit{C. albicans} colonization and had increased relative abundance in PSG-treated mice. \textit{Lactobacillus} and \textit{Prevotella} were protective against colonization, although they had lower PIPs. While the relative abundance of \textit{Prevotella} was higher in the control mice, the relative abundance of \textit{Lactobacillus} was higher mainly in the vancomycin-treated mice. In the terminal ileum, \textit{Veillonella} and to a lesser extent, \textit{Enterococcus}, were the primary genera positively associated with higher levels of colonization (Figure 6b). Both these genera increased under PSG treatment.

In the fungal models, variables encoding PSG treatment both with and without concomitant \textit{C. albicans} exposure were the most influential, with a large positive effect on colonization and a PIP of 100% (Figure 6c and d). All the other fungal and cytokine variables had very low PIPs. When this finding is viewed together with the high PIPs assigned to specific bacterial genera in the bacterial model, it is likely that the exclusion of these bacteria in the fungal model resulted in high PIP assignment to the categorical variables for PSG treatment and \textit{C. albicans} exposure, which served as proxies for the bacterial effects.

Using model diagnostics (see supplementary information for details), we determined that the bacterial model estimated from the faecal pellets was able to explain as much as 90% of the observed

Figure 4 | Effect of antibiotics on the fungal microbiome. Results from BMA logistic regression ensembles exploring the antibiotic and fungal microbiome interface are shown in panels (a) and (c) for the faecal pellets and (b) and (d) for the terminal ileum. Panels (a) and (b) plot the median effect size of each fungus against its posterior inclusion probability (PIP) in the model. PIP is expressed in %. The effect size of a microbe is its regression coefficient in the model and depends on its relative abundance under antibiotic treatment (PSG or Van.) relative to controls (Cntl), after adjusting for all the other covariables in the model. We show only the effects that were statistically significant i.e. the corresponding Bayesian 95% CIs did not include zero. Higher PIPs indicate higher consistency in antibiotic effects. PIPs can range from 0% (not consistent) to 100% (very highly consistent). All models were built at the genus level. Each point in the graph denotes a genus coloured by its phylum membership. Panels (c) and (d) show heatmaps of abundances (scaled to the range 0–1) of fungi with the top consistent and significant differences across the PSG (P), vancomycin (Van., V) and control (C) groups on days 7 and 21. Each genus is annotated with its phylum-level label in the heatmaps. Numbers in square brackets denote distinct sequence clusters that were mapped to the same genus but could not be collapsed since they were more than 3% dissimilar from each other. UC denotes sequence clusters that did not have a genus level classification in any of the databases (NCBI, SILVA) we used as reference for taxonomic classification and could not be resolved using the Megablast algorithm.
variation in C. albicans colonization levels, thus demonstrating good explanatory power. Furthermore, the intercept in the bacterial model had a very low PIP (\(< 0\%\)) indicating that the model was estimated using a large fraction of the relevant variables influential on C. albicans colonization levels.

The combined findings from the bacterial and fungal models indicate that antibiotic-induced changes in the GI bacterial microbiota and the antibiotics themselves constituted a far more influential effect on colonization than either the resident GI fungi or cytokines. In this study, we employed BMA, a Bayesian modelling approach, to examine the complex interface connecting antibiotics, the microbiome, cytokines and C. albicans colonization. Within each facet of this interface, BMA enabled us to identify the most influential variables and rank their relative contributions. Our results indicate that members of the antibiotic-influenced bacterial microbiome had the most consistent and substantial influence on C. albicans colonization than either the fungal microbiome or the local immune response.

Discussion

Broad-spectrum antibiotics are known to have a wide-ranging impact on the gut microbiome and immunomodulatory effects on both the innate and adaptive components of the immune system. Both the GI flora and the local GI immune response have the potential to prevent or limit GI colonization by C. albicans. In this study, we employed BMA, a Bayesian modelling approach, to examine the complex interface connecting antibiotics, the microbiome, cytokines and C. albicans colonization. Within each facet of this interface, BMA enabled us to identify the most influential variables and rank their relative contributions. Our results indicate that members of the antibiotic-influenced bacterial microbiome had the most consistent and substantial influence on C. albicans colonization than either the fungal microbiome or the local immune response.

Other groups have studied experimental setups that are similar to ours. However, our experiments differ from these studies in several important aspects. Our primary focus was on obtaining mechanistic insights into C. albicans colonization during a longer span of antibiotic treatment (21 days). In contrast, the earlier studies examined either reassembly of the microbiome after discontinuation of a short duration of antibiotics in the presence and absence of C. albicans exposure, or the impact of very long-term antibiotics without a specific focus on C. albicans colonization. While these studies primarily examined the differential abundance of microbiota across treatments, our modelling framework extends these analyses to simultaneously examine the impact of long-term antibiotics on the gut microbiome and antibiotic treatment on host cytokine mRNA expression. Results from BMA linear regression ensembles that explain cytokine expression level as a function of the microbiome and antibiotic treatment. A separate model was estimated for each cytokine. Panels (a) and (b) show findings in the bacterial and fungal models, respectively. We show only the effects that were statistically significant i.e. the corresponding Bayesian 95% CIs did not include zero. The effect sizes and the Bayesian 95% CIs of the top consistent and significant variables are presented. A higher value of PIP (expressed in %) indicates that the variable is consistently associated with cytokine expression levels across the space of models explored in BMA.

Figure 5 | Effect of the microbiome and antibiotic treatment on host cytokine mRNA expression. Results from BMA linear regression ensembles that explain cytokine expression level as a function of the microbiome and antibiotic treatment. A separate model was estimated for each cytokine. Panels (a) and (b) show findings in the bacterial and fungal models, respectively. We show only the effects that were statistically significant i.e. the corresponding Bayesian 95% CIs did not include zero. The effect sizes and the Bayesian 95% CIs of the top consistent and significant variables are presented. A higher value of PIP (expressed in %) indicates that the variable is consistently associated with cytokine expression levels across the space of models explored in BMA.
microbiome and the host immune response and their combined influence on *C. albicans* colonization. Furthermore, we studied colonization as a quantitative response by contrasting the effects of two antibiotic treatments (vancomycin and PSG) that induce differential levels of *C. albicans* colonization. Mason et al. 5 showed that introducing *C. albicans* prevents *Lactobacillus* species from repopulating the GI tract post-antibiotics and promotes the growth of *Enterococcus faecalis*. We complement their findings by showing that *Lactobacillus* is associated with protection against *C. albicans* colonization in the faecal pellets, while *Enterococcus* in the terminal ileum is positively associated with *C. albicans* colonization. We also found that treatment with vancomycin was associated with enhanced growth of *Lactobacillus* in the faecal pellets. It is thus tempting to speculate that the increased growth of this inhibitory genus was one of the reasons why mice that received vancomycin had only transient *C. albicans* colonization.

We further extend these mechanistic insights by showing that in the faecal pellets, *Streptococcus* and *Parabacteroides* appeared to promote *C. albicans* colonization and thus act antagonistically to *Lactobacillus* and *Prevotella*. *Streptococcus* was unique because this genus was consistently associated with colonization but not with either antibiotics or cytokines. This finding suggests that the colonization promoting action of *Streptococcus* involves pathways that do not involve either the immune response panel that we examined or the differential abundance effects induced by the antibiotics. This ties in well with recent research that suggests that *Streptococci* and *Candida* species interact through several molecular mechanisms to promote synergistic infection of the oral mucosa37,38. It is possible that similar mechanisms are prevalent in the GI tract.

In the cytokine models, we identified consistent positive effects of the genus *Clostridium* on the expression of IL-17A and IL-22 mRNA. The closely related genus “*Candidatus Arthromitus*” was also found to strongly promote IL-22 and IFN-γ, and was the only genus to strongly influence the cytokine response on day 21. These results are in agreement with previous reports of the stimulatory effects of “*Candidatus Arthromitus*” on the GI immune response8,16–18,39,40. Furthermore, we identified several other genera, such as *Phyllobacterium*, *Proteus*, *Comamonas*, *Lactococcus* and *Pandoraea* that likely influence GI cytokine mRNA levels in the terminal ileum. While these results need to be verified experimentally, they demonstrate the power of BMA to identify bacteria that may play important roles in shaping the GI immune response.

It was notable that neither *Clostridia* nor “*Candidatus Arthromitus*” were associated with *C. albicans* colonization. Conversely, other bac-
C. tropicalis colonization and, in addition, were not a substantial influence on the host cytokine expression. Among these displaced fungi were those that mapped to C. tropicalis. However, we could not detect this species using quantitative culture. Our findings are thus in agreement with those reported by Iliev et al. and suggest that the strain(s) of C. tropicalis that grow in the mouse GI tract may not grow under standard culture conditions.

A limitation of the current work is that our models did not incorporate absolute microbiota counts. However, model diagnostics showed that the BMA ensembles were able to explain up to 90% of the observed variation in C. albicans colonization levels. This indicates that changes in the absolute microbiota counts would be unlikely to add substantially to the model explaining C. albicans colonization levels, over and above the explanation afforded by the variables already in the model, including relative abundances of microbiota, cytokine expression levels and other experimental variables. Nevertheless, it is possible that absolute microbiota counts may constitute a more direct influence on colonization by other microorganisms in alternative models.

It is possible to apply frequentist stability-based approaches to explore large model spaces for variable selection in microbiome analysis. However, the key advantage of BMA is its ability to explore a much larger number of microbiome and cytokine variable configurations. Unlike frequentist approaches, BMA can simultaneously identify the most influential variables, capture heterogeneity in the effects of these variables, and provide uncertainty estimates around the effect sizes without any assumptions about their distributions. Employing BMA substantially reduces the likelihood of false positives that typically accumulate in multi-step modeling approaches.

BMA findings suggest that there were many substantial effects of individual members of the microbiome community on C. albicans colonization that were not uniformly strong across the samples. Although a majority of these effects may not be important by themselves, the combination of several such weak effects across the microbiome community likely constituted a substantial influence on C. albicans colonization.

Thus, BMA provided a broader insight into the nature and distribution of effects within the data. Incorporating versatile statistical methods such as BMA in microbiome preclinical studies is a strong step towards identifying consistent biomarkers that have a high likelihood of validation by downstream studies.

In conclusion, P.38 and V.39 can have complex effects on the bacterial microbiome and also significant effects on the host immune response. P.38 distinctly favours C. albicans colonization through direct effects on the bacterial microbiome. Although P.38 also alters the GI immune response and fungal microbiome, these changes have a lesser influence on the level of C. albicans colonization of the GI tract.
Data processing. After confirming that each of the two independent experimental replications showed similar trends, sequence count data and the cytokine expression data from these two independent replications were combined. The GAPDH normalized cytokine mRNA expression levels and genera level relative abundances of sequences were log transformed to bring the numerical attributes of the dataset into the same dynamic range.

Exploratory analyses. The 99.6% bootstrap CI of the Welch’s t-test statistic was computed to assess significant differences in microbial diversity and cytokine expression levels between each of the treatment (vancomycin, PSG) and the control groups. Differences were deemed significant when the 99.6% CI did not include zero. The CI was computed using 10,000 bootstrap resamples of the data, was free of distributional assumptions and included a conservative correction for 6 simultaneous hypotheses corresponding to the 6 cytokines. The analyses with the bacterial microbiome was performed using 30 mice; 10 in each treatment group while those with the fungal microbiome was performed on 36 mice; 12 in each treatment group. The computation of the Welch’s t-statistic allowed for unequal variances in the treatment groups.

Multivariable modelling. All multivariable statistical models were estimated using Bayesian Model Averaging (BMA) with a spike-and-slab prior distribution implemented in the BoomSpikeSlab R package. The spike prior is based on an assumption that a sparse set of variables can explain the response. It consists of a Bernoulli distribution that specifies whether or not a variable is selected as influential. The slab prior is a Gaussian distribution that models the effect size of the variables, conditional on their being chosen as influential. BMA combines information from these two priors and uses a Markov Chain Monte Carlo procedure to compute a space of 10,000 likely variable configurations that explain the response. The median effect size and its 95% Bayesian CI and the PIP are presented as the two formal measures of statistical significance and consistency for each variable.

BMA model specifications. Three separate sets of BMA models were estimated: a) logistic regression with antibiotic treatment (PSG or vancomycin) as response and controls as reference; linear regression with log(mRNA cytokine expression) as response, and c) colonization levels measured in log(CFU) as response. In our findings, the median effect size and its 95% Bayesian CI and the PIP are presented as the two formal measures of test sensitivity and predictive power for each variable.

Data and code availability. Sequencing data, experimental data and associated documentation are available on the accompanying website for our project. Source code for our analysis is available at GitHub.

1. Whittington, A., Gow, N. A. R. & Hube, B. From commensal to pathogen: Candida albicans. Human Fungal Pathogens. Kurzau, O. (ed.) 3–18 (Springer-Verlag, Berlin Heidelberg, 2014).
2. Koh, A. Y. Gastrointestinal Colonization of Fungi. Carr. Fungal Infect. Rep. 7, 144–151 (2013).
3. Wijsmuller, H. et al. Nosocomial bloodstream infections due to Candida spp. in the Netherlands: uses, characteristics, and biofilm susceptibility. Int. J. Antimicrob. Agents. 43, 78–81 (2014).
4. Mason, K. L. et al. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infect. Immun. 80, 3371–3380 (2012).
5. Mason, K. L. et al. Interplay between the gastric bacterial microbiota and Candida albicans during postantibiotic recolonization and gastritis. Infect. Immun. 80, 150–158 (2012).
6. Erb Downward, J. R., Falkowski, N. R., Mason, K. L., Muraglia, R. & Huffnagle, G. B. Modulation of post-antibiotic bacterial community reassembly and host immunity. J. Infect. Dis. 204, 2191 (2012).
7. Dollive, S. et al. Fungi of the murine gut: evolution, variation and proliferation during antibiotic treatment. PLoS One 8, e71806 (2013).
8. Kumar, S., Bansal, A., Chakrabarti, A. & Singh, S. Evaluation of Efficacy of Probiotics in Prevention of Candida Colonization in a Pigeon-A Randomized Controlled Trial. Care Med. 41, 565–572 (2013).
9. Roy, A., Chaudhuri, J., Sarkar, D., Ghosh, P. & Chakraborty, S. Role of Enteric Supplementation of Probiotics on Late-onset Sepsis by Candida species in Preterm Low Birth Weight Neonates: A Randomized, Double Blind, Placebo-controlled Trial. N. Am. J. Med. Sci. 6, 50–57 (2014).
10. Wagner, R. D. et al. Probiotic effects of feeding heat-killed Lactobacillus acidophilus and Lactobacillus casei to Candida albicans-colonized immunodeficient mice. J. Food Prot. 63, 638–644 (2000).
11. Villena, J., Salva, S., Agueru, G. & Alvarez, S. Immunomodulatory and protective effect of probiotic Lactobacillus casei against Candida albicans infection in malnourished mice. Microbiol. Immunol. 55, 434–445 (2011).
12. Underhill, D. M. & Ilevi, I. Therapy-induced interactions between commensal fungi and the host immune system. Nat. Rev. Immunol. 14, 405–416 (2014).
13. Puel, A. et al. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr. Opin. Allerg. Clin. Immunol. 12, 616–622 (2012).
14. Yang, Y. et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510, 152–156 (2014).
15. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).
16. Ivanov, I. I. et al. Induction of intestinal TH17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).
17. Goto, Y. et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal TH17 cell differentiation. Immunity 40, 594–607 (2014).
18. Lecuyer, E. et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40, 608–620 (2014).
19. Kwaikowska, B. et al. Immune system as a new therapeutic target for antibiotics. Adv. Biotechnol. Biotechnol. 40, 91–101 (2013).
20. Koh, A. Y., Kohler, J. R., Coggshall, K. T., Van Rooijen, N. & Pier, G. B. Mucosal Damage and Neutropenia Are Required for Candida albicans Dissemination. J. Infect. Dis. 197, 1479–1488 (2008).
21. Koh, A. Y. Murine models of Candida gastrointestinal colonization and dissemination. Eukaryot. Cell 12, 1416–1422 (2013).
22. Xu, G. et al. Bacterial community mapping of the mouse gastrointestinal tract. PLoS One 8, e74975 (2013).
23. Roberts, G. B. et al. Functional divergence in gastrointestinal microbiota in physically-separated genetically identical mice. Sci. Rep. 4, 5437 (2014).
24. Breiman, L. Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Stat. Sci. 16, 199–231 (2001).
25. Segata, N. et al. Metagenomic biomarker discovery and exploration. Genome Biol. 12, R60 (2011).
26. Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis (Springer Series in Statistics). (Springer Verlag, New York, 2010).
27. Greenland, S. Invited commentary: variable selection versus shrinkage in the control of multiple confounders. Am. J. Epidemiol. 167, 523–9; Discussion 530–1 (2008).
28. Viallefont, V., Raftery, A. E. & Richardson, S. Variable selection and Bayesian model averaging in case-control studies. Stat. Med. 20, 3215–3230 (2001).
29. Wintle, B. A., McCarthy, M. A., Volinsky, C. T. & Kavanagh, R. P. The Use of Bayesian Model Averaging for Better Represent Uncertainty in Ecological Models. Conserv. Biol. 17, 1579–1590 (2003).
30. Shankar, J. Regrel: A systematic evaluation of high-dimensional, ensemble based regression for exploring large model spaces in microbiome analyses, GitHub. http://github.com/openpencil/regrel (2014). Date of access: 18/12/2014.
31. Hulst, K. A., Madigan, D. A., Shafarman, B. F. & Volinsky, C. T. Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors). Stat. Sci. 14, 382–417 (1999).
32. Romani, L. Immune resistance and tolerance to fungi. G. Ital. Dermatol. Venereol. 148, 551–561 (2013).
33. Scott, S. L. BoomSpikeSlab: MCMC for spike-and-slab regression. The Comprehensive R Archive Network, http://CRAN.R-project.org/package=BoomSpikeSlab (2014). Date of access: 18/12/2014.
34. Camacho, C. et al. BLAST++: architecture and applications. BMC Bioinformatics 10, 421 (2009).
35. Rea, M. C. et al. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc. Natl. Acad. Sci. U. S. A. 108 Suppl 1, 4639–4644 (2011).
36. Nau, R. & Tauber, S. C. Immunomodulatory Properties of Antibiotics. Curr. Mol. Pharmacol. 1, 68–79 (2008).
37. Xu, H., Jenkinson, H. F. & Dongari-Bagtzoglou, A. F. Colony formation and dissemination from the murine gastrointestinal tract: the influence of morphology and Th17 immunity. Cell Microbiol. doi:10.1111/cmi.12388 (2014).
38. Ilevi, I. D. et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336, 1314–1317 (2012).
43. Lin, W., Shi, P., Feng, R. & Li, H. Variable selection in regression with compositional covariates. *Biometrika*. doi:10.1093/biomet/asu031 (2014).
44. Scott, S. L. Data augmentation, frequentist estimation, and the Bayesian analysis of multinomial logit models. *Statist. Papers* 52, 87–109 (2011).
45. Perrin, S. Preclinical research: Make mouse studies work. *Nature* 507, 423–425 (2014).
46. Wu, G. D. et al. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. *BMC Microbiol.* 10, 206 (2010).
47. Shankar, J. *bayesianmice*: A Bayesian model-based investigation of Candida *albicans* colonization in a preclinical mouse model. GitHub. http://openpencn.github.io/bayesianmice (2014). Date of access: 18/12/2014.
48. Szpakowski, S. YAP: A Computationally Efficient Workflow for Taxonomic Analyses of Bacterial 16S and Fungal ITS Sequences, GitHub. http://github.com/shpakoo/YAP (2013). Date of access: 18/12/2014.
49. Schloss, P. D., Gevers, D. & Westcott, S. L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. *PLoS One* 6, e27310 (2011).
50. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics* 27, 2194–2200 (2011).
51. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Appl. Environ. Microbiol.* 75, 7537–7541 (2009).
52. Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: a web server for clustering and comparing biological sequences. *Bioinformatics* 26, 680–682 (2010).
53. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. *Appl. Environ. Microbiol.* 73, 5261–5267 (2007).
54. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic Acids Res.* 41, D590–D596 (2013).
55. Cole, J. R. et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. *Nucleic Acids Res.* 37, D141–D145 (2009).
56. Arnaud, M. B. et al. The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. *Nucleic Acids Res.* 40, D653–D659 (2012).
57. Hoeting, J. A., Madigan, D., Raftery, A. E. & Volinsky, C. T. Bayesian Model Averaging: A Tutorial. *Stat. Sci.* 14, 382–417 (1999).
58. George, E. I. & McCulloch, R. E. Approaches for Bayesian variable selection. *Statistica Sinica* 7, 339–373 (1997).
59. Scott, S. L. & Varian, H. R. Predicting the Present with Bayesian Structural Time Series. *IJMNO* 5, 4–23 (2014).
60. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.R-project.org (2014). Date of access: 18/12/2014.

Acknowledgments

We thank the authors of BoomSpikeSlab, scales, ggplot2, plyr, reshape2, data.table, Hmisc, RcolorBrewer, R Studio and the R Core Development Team for their statistical packages. We thank Benjamin Rosen for his constructive comments and Reed Shabman for contributing "Reed’s mouse" to our manuscript. We gratefully acknowledge the collaborative platforms from Google Docs, Paperpile and GitHub. This work was supported by NIH grants R01AI054928 and R01DE017088 and OPP1017579 from the Bill and Melinda Gates Foundation.

Author contributions

J.S. and S.G.F. interpreted the analyses and wrote the manuscript. J.S. designed and implemented the statistical analysis. N.V.S. and H.L. conducted the mouse experiments and DNA/RNA extractions. S.M. conducted the sequencing experiments. S.S. designed and implemented the bioinformatics workflow. S.G.F., W.C.N., N.V.S., S.M. and L.L. designed the study. All authors reviewed the manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Shankar, J. et al. Using Bayesian modelling to investigate factors governing antibiotic-induced Candida *albicans* colonization of the GI tract. *Sci. Rep.* 5, 8131; DOI:10.1038/srep08131 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/