Research Paper

Cholesterol: A modulator of the phagocyte NADPH oxidase activity - A cell-free study

Rawand Masoud, Tania Bizouarn, Chantal Houée-Levin *

Laboratoire de chimie physique, UMR 8000, Université Paris Sud-CNRS, Orsay 91405, France

A R T I C L E I N F O

Article history:
Received 7 August 2014
Received in revised form 2 October 2014
Accepted 12 October 2014

Keywords:
NADPH oxidase
Cholesterol
Cell-free system
Arachidonic acid activation
Superoxide production

A B S T R A C T

The NADPH oxidase Nox2, a multi-subunit enzyme complex comprising membrane and cytosolic proteins, catalyzes a very intense production of superoxide ions \(O_2^{•−} \), which are transformed into other reactive oxygen species (ROS). In vitro, it has to be activated by addition of amphiphiles like arachidonic acid (AA). It has been shown that the membrane part of phagocyte NADPH oxidase is present in lipid rafts rich in cholesterol. Cholesterol plays a significant role in the development of cardio-vascular diseases that are always accompanied by oxidative stress. Our aim was to investigate the influence of cholesterol on the activation process of NADPH oxidase. Our results clearly show that, in a cell-free system, cholesterol is not an efficient activator of NADPH oxidase like arachidonic acid (AA), however it triggers a basal low superoxide production at concentrations similar to what found in neutrophile. A higher concentration, if present during the assembly process of the enzyme, has an inhibitory role on the production of \(O_2^{•−} \). Added cholesterol acts on both cytosolic and membrane components, leading to imperfect assembly and decreasing the affinity of cytosolic subunits to the membrane ones. Added to the cytosolic proteins, it retains their conformations but still allows some conformational change induced by AA addition, indispensable to activation of NADPH oxidase.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

The damaging role of reactive oxygen species (ROS) in cardio-vascular diseases (atherosclerosis, vascular inflammation, and endothelial dysfunction) leading to coronary heart disease, stroke or angina pectoris has been known for some decades. NADPH oxidase Nox2 is one of the major actors at the origin of oxidative stress. Actually Nox2 is one of the main isoforms involved in the cardiovascular field [1]. On the other hand, high cholesterol level is linked to an elevated risk of cardiovascular disease [2], through high concentration of LDL-cholesterol in blood [3,4]. High cholesterol has also been associated with diabetes and high blood pressure [5,6]. Interestingly, NADPH oxidases have been found in lipid rafts (LR), which are dynamic, detergent-resistant plasma membrane microdomains highly enriched in cholesterol and sphingolipids [7,8]. Cytoplasmic proteins are efficiently recruited to these raft-associated flavocytochrome \(b_{558} \) upon activation to reconstitute the active complex [9]. Moreover, distribution and regulation of NADPH oxidase by LRs were reported in murine microglial cells and bovine aortic endothelial and coronary arterial endothelial cells [10–14]. These facts prompted us to study the effect of cholesterol on the functioning of NADPH oxidase. In this paper, we investigated the consequences of the presence of cholesterol on the production of reactive oxygen species.

The NADPH oxidase catalyzes the formation of superoxide anion (\(O_2^{•−} \)) by a single-electron reduction of the molecular oxygen using NADPH as the electron donor [15–17]. \(O_2^{•−} \) is considered to be the starting point for the generation of a vast assortment of reactive oxidants since it is subsequently transformed into hydrogen peroxide, hypochlorous acid, hydroxyl radical and peroxynitrite [18,19]. Deregulation of NADPH-oxidase activity is linked with a large panel of pathologies in addition to cardiovascular ones, involving inflammatory processes, renal damage, central nervous system diseases, immune system disorders, induction of apoptosis after irradiation by low doses of ionizing radiations etc., [20–31].

Abbreviations: AA, arachidonic acid; PBS, phosphate buffer saline; Cyt b558, cytochrome b558; Cyt c, cytochrome c; DTT, dithiothreitol; EDTA, ethylenediaminetetraacetic acid; FAD, flavin adenine dinucleotide; FMLP, formyl-methionyl-leucyl-phenylalanine; GTP, guanosine-5′-triphosphate; HEPES, [4-(2-hydroxyethyl)piperazine-1-yl]ethanesulfonic acid; IPTG, isopropylthiogalactoside; LB, Luria Bertoni; LDL, low density lipoprotein; LR, lipid raft; MF, membrane fractions; MβCD, methyl-β-cyclodextrin; NADPH, reduced β-nicotinamide adenine dinucleotide phosphate; PMSF, phenylmethanesulfonyl fluoride; PtdIns(3,4)P2, phosphatidylinositol(3,4)-bisphosphate; PX, phox homology domain; ROS, reactive oxygen species; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis

* Corresponding author.

E-mail address: Chantal.houee@u-psud.fr (C. Houée-Levin).

http://dx.doi.org/10.1016/j.redox.2014.10.001

2213-2317 © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
The functionally competent oxidase complex consists of a membrane-bound flavocytochrome b558 (Cyt b558), comprising two subunits (Nox2 also known as gp91phox, and p22phox) and four cytosolic components. Nox2 harbors the redox carriers (bound FAD and two hemes) and the NADPH binding site. The cytosolic components include p47phox, p67phox, p40phox, and a small GTPase Rac1 or Rac2 [32]. Because of the high toxicity of the reactive oxygen species (ROS), the NADPH-oxidase activity is tightly regulated spatially and temporally. In resting phagocytes, the components of the complex exist as separated entities but upon cell activation by pro-inflammatory mediators, the cytosolic subunits undergo posttranslational modifications such as phosphorylation [33,34] and migrate to the membrane bound Cyt b558 to constitute the activated NADPH-oxidase complex [35]. Actually this process involves a complicated set of protein–protein and protein–lipid interactions to conduct to oxidase assembly [36–39].

Studies on binding between the different soluble subunits p47phox, p67phox, p40phox performed in vitro suggested that these three cytosolic subunits are preassembled [40–42]. Recently, different constructions of chimeras were designed, in which individual cytosolic subunits were fused [p47phox–p67phox] or [p67phox–Rac1] and supplemented by the missing third subunit (Rac1 and p47phox, respectively). Another strategy was to construct a trimera which consisted of the following domains [p47phox (aa 1–286), p67phox (aa 1–212) and a full length Rac1 (aa 1–192)] in which interactions among cytosolic subunits were replaced by fusion. This trimera was found to act as potent amphiphile-dependent oxidase protein activator upon assembly to native phagocyte membrane or purified Cyt b558 [49]. The subsequent change from this construction was performed by adding isoprenyl group to the C-terminus of Rac1 part mimicking in vivo reality, where Rac is found exclusively in the prenylated form. Further modification was the introduction of Q61L mutation in the Rac part of the trimera, making Rac constitutively in the GTP-bound form. It ensures that in the trimera an intramolecular bond was built between Rac1 and p67phox which is essential for oxidase activity ability of trimera [50,51].

The development of a cell-free oxidation activation system was a great help in the understanding of the mechanism of NADPH oxidase activation. This system was designed to mimic in vivo oxidase activity under in vitro conditions. In cell-free systems, the activation process is bypassed by the introduction of an activator, an anionic amphiphilic such as arachidonic or other fatty acids or surfactants [52–57]. We took advantage of this system, which permits strict quantification of the components of interest, and modifications of membrane composition. In addition, for simplicity, we have replaced the cytosolic subunits by the trimera [49,50]. A precondition for using the trimera was to ascertain that it is functionally comparable with the separated cytosolic subunits. We have verified that the rates of production of superoxide anions were similar (supplementary material) and that the dependences of the activity in function of AA concentration were also comparable with the cytosolic fractions and the trimera [58]. In addition, the presence of two states in the activation process, a sensitive one followed by a resistant one against ROS damages, observed with the separated cytosolic subunits [59] was also found with the trimera (data not shown). Consequently, we have chosen the trimera instead of the separated subunits in order to diminish the number of independent parameters to consider and to facilitate the interpretation.

Material and methods

Materials

Equine heart cytochrome c (cyt c), arachidonic acid (cis-AA), phenylmethanesulfonyl fluoride (PMSF), isopropylthiogalatoside (IPTG), cholesterol, Dulbecco PBS and methyl-β-cyclodextrin (MβCD) were from Sigma (Saint-Quentin Fallavier, France). Reduced β-nicotinamide adenine dinucleotide phosphate (NADPH) was from Acros. Ni-sepharose, superdex 75 and Ficoll-Paque Plus was from GE Healthcare, France.

Neutrophil membrane preparation

The neutrophils were prepared from human blood from healthy donors (ESF, Paris, France) as described in [60]. Briefly, 500 mL of blood was sedimented in 2% dextran solution for 40 min. PBS was added to the pellets, and then the neutrophils were separated from lymphocytes and the red cells by centrifugation for 30 min at 400g on Ficoll. The red cells were further eliminated after their lysis by centrifugation for 8 min, 400g. 4°C. The pellet re-suspended in PBS pH 7.4 containing 340 mM sucrose, 7 mM magnesium sulfate, 1 mM PMSF, 0.5 mM leupeptin was sonicated in the 30% pulse mode at power pulses (6) in an ice-cooled beaker 6 times during 10 s with interval of 1 min between the sonications (sonicator XL, Misonix Inc.). Neutrophil membranes and cytosol were separated by centrifugation for 1 h 30 min at 200,000g at 4°C. The membrane fractions were resolubilized, aliquoted and stored at −80°C for further experiments.

Expression of the trimera

The plasmid of the trimera was a generous gift from Prof. E. Pick. Trimeras (p47phox aa 1–286, p67phox aa 1–212, and RacQ61L full length) was expressed and isolated from Escherichia coli BL21-DE3-lys. A stock culture of E. coli (glycerated, stored at −80°C) expressing the trimera was used to inoculate a Petri dish of Luria Bertani (LB) agar, supplemented with kanamycin and chloramphenicol, incubated at 37°C for further experiments.

Extraction of the trimera from bacteria

The bacterial pellet, containing the trimera obtained previously, was dissolved in a buffer containing 50 mM HEPES (pH 7.5), 200 mM NaCl and 1 mM EDTA to which was added 1 mg of DNase, 1 mM PMSF, 1 mM DTT and 1 mM benzamidine. The bacteria were sonicated during 4 times 2 min in a 50% pulse mood at power pulses (6) in an ice-cooled beaker with pauses of 2 min. The bacterial lysate was centrifuged at 160,000g for 1 h 30 min at 6°C. The cleared cell-free supernatant was filtered to remove all traces of debris and bacteria.

Purification of the trimera

The trimera was expressed as fusion protein. Thus it was purified by metal chelate affinity chromatography. The above supernatant was applied to nickel affinity column after being diluted.
twice with buffer (0.5 M NaCl, 30 mM Na2HPO4, 20 mM imidazole and 1 mM PMSF, pH 7.4). The mixture was loaded for 1 h 30 min so that the proteins of interest effectively cling to the nickel resin. Then the column was washed with the same buffer to remove unwanted bound proteins. The proteins bound to the beads were eluted from the resin with elution buffer (0.1 M NaCl, 30 mM Na2HPO4 and 300 mM imidazole, pH 7.4). Then size exclusion chromatography was carried out to better purify the trimera. Proteins concentration was determined using a NanoDrop2000 spectrophotometer (Thermo scientific, France) and the extinction coefficient of 1.5 mg\(^{-1}\) /ml cm. The purities of all proteins were checked by migration on 10% Bis-Tris–NuPAGE SDS gels (Invitrogen), stained with Coomassie Brilliant Blue (Fig. S1 in Supplementary material).

Dialysis and storage of the trimera

Trimera fractions were pooled in a dialysis tube whose membrane was of 10 kDa porosity. The tube was placed in 2 L dialysis buffer (100 mM NaCl and 30 mM Na2HPO4, pH 7.5) at 4 °C overnight. The dialyze was recovered and trimera was stored at −80 °C.

Quantification of intrinsic cholesterol

Intrinsic cholesterol concentration in human neutrophil membrane fractions was measured by the Amplex Red Cholesterol Assay Kit purchased from Invitrogen [61,62]. The intrinsic cholesterol concentration was estimated by three independent measurements on different blood donors.

Depletion of cholesterol from neutrophil membrane

Methyl-β-cyclodextrin (MβCD) is a well established cholesterol depleting reagent of phospholipidic membrane without affecting their permeability and it is the most commonly used reagent [63–66]. The neutrophil membranes were incubated for 1 h, at 4 °C, in presence of 10 mM MβCD. The mixture was centrifuged at 148,000g for 1 h 30 min at 4 °C. Neutrophil membranes were found in the pellet and the cyclodextrin–cholesterol complexes were in the supernatant. The neutrophil membranes were resolubilized in PBS.

Measurement of superoxide production in cell-free assays

Superoxide anion production rates were quantified by the initial rate of cytochrome c (Cyt c) reduction, as described before [67]. The reaction is as follows:

\[
\text{Cyt c}_{\text{ox}} + \text{O}_2^{-} \rightarrow \text{O}_2 + \text{Cyt c}_{\text{red}}
\]

Unless indicated, the components of the cell-free system were added as follows: (2–5 nM Cyt \(b_{550}\)) membrane fractions, (100–200 nM) trimera and (40 μM) arachidonic acid in 500 μl Phosphate Buffer Saline supplemented with 10 mM MgSO4 for 4 min of incubation at 25 °C in order to allow the Nox complex assembly. The production was initiated by addition of (250 μM) NADPH and the rate of \(\text{O}_2^{-}\) was quantified by the reduction of cytochrome c (50 μM). The rate was measured at 550 nm in a Thermo evolution500 Spectrophotometer. The amount of superoxide was calculated using a molar extinction coefficient (\(\Delta c\) of the reduced minus oxidized form of Cyt c) of 21 mM\(^{-1}\) cm\(^{-1}\). 20 mM stock solution of cholesterol was prepared in ethanol. Further dilutions have been done in ethanol to get a concentration range of cholesterol (0.1–16 mM), which was mixed with AA 65 mM. 3 μl of each mixture was introduced in the cell free system to finally have cholesterol 0.25–40 μM in a mixture with 40 μM AA in the final reaction volume. This allowed keeping the volume constant.

2.10. Determination of enzymatic parameters and curve plotting

The enzymatic parameters \(EC_{50}\) and \(V_{max}\) were calculated by non-linear least square fitting of the curves of superoxide rate of production vs. protein concentration using the following expression.

\[
v = \frac{V_{max}[P]}{EC_{50} + [P]}
\]

where \([P]\) is the concentration of the considered protein (trimera). Plotting and calculation were performed using Graph Pad Prism Version 6.

Intrinsic fluorescence assays

Steady-state fluorescence spectra were performed on a Photon Technology International scanning fluorimeter at 25 °C. Various concentrations of AA and/or cholesterol were added as indicated to a final volume of 3 mL of buffer (phosphate buffer saline supplemented with 10 mM MgSO4) containing trimera (60 nM) in a quartz cuvette. The tryptophan fluorescence spectra of trimera were obtained by exciting the samples at 290 nm (2 nm bandwidth) and recorded between 300 and 400 nm (5 nm bandwidth). The excitation wavelength was chosen at 290 nm to optimize the signal to noise ratio and to reduce the contribution of tyrosine residues to the signal [68].

Results

Intrinsic cholesterol concentration and effect of cholesterol depletion by methyl-β-cyclodextrin on superoxide production rate

We first measured the intrinsic cholesterol concentration in human neutrophil membrane fractions. We found 3 ± 1 μM cholesterol in the final reaction volume of cell free system assay (2 nM Cyt \(b_{550}\), 40 μg/mL membrane proteins) in three independent measurements. Then to investigate the role of cholesterol that is naturally present in the neutrophil membrane on NADPH oxidase, 10 μM MβCD was used to disrupt lipid rafts by removing cholesterol from membranes [66,69,70]. The rate was measured as described in Material and methods. We found that cholesterol depletion decreased superoxide production rate relative to the non-treated membrane neutrophil to (44 ± 7%).

In the following studies, the level of cholesterol was increased to a range corresponding to hypercholesterolemia (up to ca. 33% of the normal concentration) and above, to enlighten the effects of this addition.

Cholesterol as an activating molecule?

Having established the most propitious conditions for activation (see Materials and methods), we aimed at determining whether cholesterol could have an activator effect on NADPH oxidase. The results expressed as percentages of NADPH oxidase activity as a function of cholesterol are displayed in Fig. 1. Addition of cholesterol in the range 0.2–1 μM (ca. 7–33% increase compared to the intrinsic value) provoked slight but significant activation of NADPH oxidase complex, but not at an equivalent level to AA. The rate of production of \(\text{O}_2^{-}\) stayed at around 15% of the rate value obtained with AA for concentrations above 1 μM. Comparable results were obtained using the separated subunits where a
maximum activity of (20 ± 2)% of AA-dependent activity was reached (data not shown).

Superoxide production in the presence of AA plus added cholesterol

NADPH oxidase activity was inhibited by the addition of cholesterol

Since cholesterol alone does not activate NADPH oxidase, we have tested the cholesterol effect on activation by AA. The AA-induced NADPH-oxidase activity was followed upon increasing concentrations of cholesterol (Fig. 2). To avoid an increase of solvent volume, a mixture of cholesterol added with AA for each cholesterol concentration was prepared. The rate of production with AA alone was considered as 100%. Surprisingly, when membrane fractions and trimera were incubated together with 0.25 μM cholesterol and 40 μM AA, the activity dropped to about 86 ± 5%. The AA-induced NADPH oxidase activity was thus reduced by addition of less than 10% of the intrinsic cholesterol amount. The decrease of the activity could be fitted by a two inhibitory sites equation (Fig. 2) and the parameters of the fit are given in Table 1.

Effect of cholesterol on AA activation profile

To probe the effect of cholesterol on the NADPH activation profile by AA, we performed titrations of the activity vs. AA concentration in the absence and in the presence of two concentrations of cholesterol (0.5 and 20 μM). In this experiment cholesterol was added at the same time as Arachidonic acid (Fig. 3).

In the presence of cholesterol, the O$_2^••$ production was lower on the full range of concentrations of AA, which confirms the inhibitory effect of cholesterol in a concentration-dependent manner. However the maximum activity was achieved with the same AA concentration and the bell-shape curve was kept.

Modification of kinetic parameters in the presence of added cholesterol

The absence of effect of cholesterol on the AA activation profile described above raised the question of the mechanism by which addition of cholesterol decreases the activity of the complex. In that purpose, the rate of superoxide production for increasing concentrations of trimera with and without cholesterol was determined. This dependence could always be fitted using a Michaelis–Menten-like equation (see materials and methods) and from each curve one could determine EC$_{50}$ and V$_{max}$ values. There was a marked loss in the oxidase activity in the presence of cholesterol for the whole range of concentrations of trimera, with important variations for both the EC$_{50}$ and V$_{max}$ values (Fig. 4, Table 2). In the presence of cholesterol, the activity was as follow: ● no cholesterol; ■ 0.5 μM cholesterol; ● 20 μM cholesterol. Oxidase activities were expressed relative to the maximum activity (119 ± 12 mol O$_2^••$ /s/mol Cyt b$_{558}$). The rate of O$_2^••$ production was achieved as described in Materials and methods.

Table 1

Parameter	Value	Error
Y$_{max}$ (%)	35	9.6
Y$_{1}$ (%)	30	4.6
K$_{1}$ (μM)	0.19	0.09
Y$_{2}$ (%)	35	7.3
K$_{2}$ (μM)	21.2	16.7

Fig. 1. Dependence of NADPH oxidase activity as a function of cholesterol concentration in the absence of arachidonic acid. Membrane fractions (2 nM Cyt b$_{558}$) with trimera 200 nM were incubated 4 min in presence of different concentrations of cholesterol. Control experiment representing 100% (68 mol O$_2^••$ /s/mol Cyt b$_{558}$) of the activity was realized in presence of 40 μM AA and in absence of cholesterol. The rates of superoxide production were measured as described in Materials and methods. The values are an average of 3 independent measurements ± SEM.

Fig. 2. NADPH-oxidase activity inhibition by cholesterol. Neutrophil membrane fractions and trimera were incubated together in the presence of a mixture of varying amounts of AA plus cholesterol. The cholesterol concentration was as follow: ● no cholesterol; ■ 0.5 μM cholesterol; ● 20 μM cholesterol. Oxidase activities were expressed relative to the maximum activity (119 ± 12 mol O$_2^••$ /s/mol Cyt b$_{558}$). The rate of O$_2^••$ production was achieved as described in Materials and methods.

Fig. 3. Effect of cholesterol on the AA-dependent activation profile. Neutrophil membrane fractions and trimera were incubated together in the presence of a mixture of varying amounts of AA plus cholesterol. The cholesterol concentration was as follow: ● no cholesterol; ■ 0.5 μM cholesterol; ● 20 μM cholesterol. Oxidase activities were expressed relative to the maximum activity (119 ± 12 mol O$_2^••$ /s/mol Cyt b$_{558}$). The rate of O$_2^••$ production was achieved as described in Materials and methods.

Equation 1

\[Y = Y_{max} \frac{Y_1}{[1 + [chol]/K_1]} + \frac{Y_2}{[1 + [chol]/K_2]} \]
presence of cholesterol, the complex exhibited 1.5 times lower V_{max} value and the EC50 was 1.6 times higher than its values measured in absence of cholesterol, which might reflect a decrease of affinity of trimera for the Cyt b_{558}.

Effect of cholesterol addition during assembly phase

To examine whether cholesterol had an effect on the oxidase assembly process, 10 μM of cholesterol were added at different times during the 4-min phase of assembly (Fig. 5). Depending on the time at which cholesterol was added, various levels of inhibition were noticed. $O_2^{\cdot-}$ production was drastically lowered to \sim66% of the control when cholesterol was added immediately after all the NADPH-oxidase components. The inhibition was less and less important (up to 100% activity) for times longer than 1 min. If cholesterol addition took place 4 min after the mixing, the oxidase activity remained comparable to that of the control. Both results (Figs. 4 and 5) suggest that cholesterol interferes in the interaction between trimera and Cyt b_{558}.

Structural effects of added cholesterol

Effect of cholesterol on soluble and membrane proteins

To evaluate the sensitivity of each component, the membrane part and the trimera, to cholesterol, superoxide anion production rate was measured after pre-incubation of membrane components or trimera or both, either with AA alone (Fig. 6A) or with a mixture of cholesterol and AA (Fig. 6B). After 10 s of separate pre-incubations of the membrane and of the trimera, both solutions were mixed and left for a second incubation for 4 min. We chose to pre-incubate for 10 s because a preincubation for longer time (30 s) led
to a drastic decrease of the activity. This was also observed in the case of separated subunits [71].

First, when both membrane fractions and trimera were pre-incubated separately with AA, the activity was maintained to about 95% of the observed one in standard conditions. The same level of activity (95%) was measured when AA was incorporated only to the membrane fractions. On the other hand, when AA was added only to the trimera, the activity dropped to 73% (Fig. 6A).

The experiment with AA (Fig. 6A) served as control for the ones with cholesterol. In all cases, addition of cholesterol to AA either to the membrane or to the trimera or to both separately led to a decreased rate of superoxide production (Fig. 6B). Incorporating cholesterol to AA only to the membrane fractions or only to the trimera gave comparable effect, indicating that cholesterol could act on both partners. When cholesterol was added to both counterparts, the activity drop was more important, the addition of 5 μM or more of cholesterol to both fractions led to a decrease of the activity down to ~50%. The inhibition always increased by increasing cholesterol concentration, in agreement with the results presented Fig. 2.

Effect of AA and cholesterol on the tryptophan intrinsic fluorescence of the trimera

To probe the effect of AA and cholesterol on the trimera conformational state, we followed the variation of intrinsic tryptophan fluorescence spectra upon addition of AA and/or cholesterol (Fig. 7). Trimera contains a total of 13 tryptophan residues. It was previously shown that addition of AA to the cytosolic subunits p67phox and p47phox induced changes reflected by measurable decrease of the intrinsic tryptophan fluorescence level [68,72].

By increasing AA concentration up to 140 μM, the fluorescence yield of the trimera underwent a concentration dependent decrease (Fig. 7A). A small blue shift up to 5 nm was observed, consistent with a slightly more hydrophobic tryptophan environment.

Surprisingly, the addition of cholesterol had no effect on the fluorescence yield of the trimera but a similar blue shift up to 5 nm was detected by increasing cholesterol concentration to 50 μM (Fig. 7B), indicating that addition of cholesterol does not induce conformational changes in the trimera, as AA does. When cholesterol was added to the trimera treated with 40 μM AA, the initial quenching of 25% due to the presence of AA still was visible, but there was no further lowering due to cholesterol (Fig. 7C). In addition to that the same blue shift up to 5 nm was observed after the addition of both AA and cholesterol.

4. Discussion

In this work we have explored the effect of added cholesterol on the activity of the phagocyte NADPH oxidase. This study is related to events that could happen to Nox2 following hypercholesterolemia. It is also related to the hypothesis of modulation of NADPH oxidase activity by lipid rafts rich in cholesterol. In fact, some studies have reported the distribution and regulation of Nox proteins and oxidase subunits in LRs (most of the studies were performed in non-human cells [11–14] except those in human neutrophils) [9,73]. Given that, NADPH oxidase activation demands many partners to work together, LRs can provide a useful platform for Nox2 and its subunits to aggregate and then function as an active enzyme complex that produces \(\text{O}_2^{\cdot}\) [13,14,74–78]. In particular, it has been demonstrated that NADPH oxidase was assembled and activated in LR of neutrophils, producing \(\text{O}_2^{\cdot}\), causing respiratory bursts and killing bacteria [9]. The integrity of LRs would play a crucial role in the regulation of NADPH oxidase activity and cholesterol would be an essential component in LRs for NADPH oxidase in agreement with previous reports [11,79].
p47\textsubscript{phox} with phospholipids constitutes an essential mechanism to orchestrate the assembly of the cytoplasmic components with the phagosomal membrane. The PX domain of p40\textsubscript{phox} interacts selectively with phosphatidylinositol-3-phosphate, (PtdIns(3)P)[80,81], while the PX domain of p47\textsubscript{phox} preferentially recognizes (PtdIns(3,4)P2)[80,82].

On the required cholesterol concentration in neutrophils

The regulatory role of LR was rationalized by the fact that cholesterol exerts a stabilizing role in LRIs by filling the void space between sphingolipids and forming hydrogen bonds with them. Thus, cholesterol depletion by MβCD would lead to the breakdown of LRIs as it suppresses the glue effect of cholesterol on sphingolipids [83,84]. In addition to that, removal of raft cholesterol leads to dissociation of most proteins from the rafts, rendering them nonfunctional [85]. Shao et al. showed that incubation of the cells with MβCD resulted in a loss of association of gp91\textsubscript{phox} with the LR fractions [9] while Vilhardt et al. reported that cholesterol depletion by MβCD reduced significantly O₂•− production in both intact cells and a cell-free reconstituted system and MβCD effect was joined with a parallel reduction of the translocation of cytosolic components to the membrane [11]. Later, Fuhler et al. further demonstrated that treatment of neutrophils with the MβCD, abrogated IMLP-induced ROS production and activation of protein kinases ERK1/2 and B/Akt in both unprimed and primed neutrophils, further assisting the opinion that LR-associated NADPH oxidase produces ROS and contributes importantly to the onset of phagocytic respiratory bursts [86]. Our results about removal of cholesterol by MβCD are in agreement with the preceding findings since the oxidase activity was decreased to (44 ± 7)%.

On the effect of cholesterol

Our results indicated slight but significant activation of NADPH oxidase complex in cell free system by addition of cholesterol alone at physiological concentrations (ca. 10–30% above the normal level), without AA. Conversely, addition of cholesterol in this range has an inhibitory effect on AA activation of NADPH oxidase activity. Similar amplitude was also observed at 37 °C (data not shown). The effect of cholesterol did not interfere with that of AA (same profile), indicating different binding sites for both compounds. Several facts indicate the presence of two independent inhibitory binding sites. Effectively, in Fig. 2, the curve could be fitted only with a two-site inhibition equation. In addition, cholesterol effect has been observed when it was preincubated either with the membrane or with the trimera alone. When cholesterol (0.2–10 μM) was added to one component (membrane or trimera) (Fig. 7B) a small inhibition was observed (~20%), but when both components were preincubated with the same concentration, a higher inhibition was measured (~50%). It strengthens the idea that cholesterol affects not only the membrane fraction but also the cytosolic ones.

The kinetic parameters in the presence of cholesterol revealed that V\textsubscript{max} for trimera is lower while EC\textsubscript{50} is higher, which points out a less stable and imperfect assembly of the complex. Furthermore, cholesterol acts before assembly (Fig. 5), which might reflect that, one of the cholesterol binding sites is in the interaction region between membrane and cytosolic components, in the region hindered after assembly. Indeed, once the complex is formed, cholesterol cannot have access to it and makes no inhibitory effect. This effect has to be related to the observation that the depletion of cholesterol by MβCD also reduced the translocation of cytosolic proteins [10]. The cholesterol concentration found in membrane neutrophils seems to be optimal for NADPH oxidase activity.

4.3. On the conformation of the cytosolic partner

We have shown recently that AA modified the environment of tryptophan residues in the separated cytotoxic subunits: both p47\textsubscript{phox} and p67\textsubscript{phox} underwent fluorescence decrease, which would be related to structural modifications necessary for their interaction with Cyt b\textsubscript{552}[58,68]. A similar tryptophan fluorescence decrease was observed for the trimera upon addition of AA. No comparable effect of cholesterol on the trimera was observed, indicating that cholesterol cannot adapt the protein to the membrane subunit.

In conclusion, while the presence of cholesterol at physiological concentration (e.g. in lipid rafts) is important for the NADPH oxidase function, an increase of cholesterol amount might have several consequences: (i) a slight but significant activity in the absence of the usual pro-inflammatory signals such as AA with the possibility of a permanent mild inflammatory state and (ii) an inhibition of the activity of NADPH oxidase in the presence of pro-inflammatory signals. In both cases there would be a modification of the response to the signaling regulation.

Acknowledgments

We are grateful to Prof. E. Pick for the plasmids, to Dr. L. Baciou for helpful discussions and to Dr. F. Lederer for the preparation of neutrophils. We acknowledge the financial support of the COSTCM1201 Action (Biomimetic models) and of ANR2010-blanc-1536-01. We are indebted to EDF for financial support (contract RB 2013-15).

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.redox.2014.07.004.

References

[1] B.K. Rodiño-Janeiro, B. Paradelo-Dobarro, M.I. Castiñeiras-Landeira, S. Raposeiras-Roubín, J.R. González-Juanatey, E. Álvarez, Current status of NADPH oxidase research in cardiovascular pharmacology, Vascular Health and Risk Management 9 (2013) 401–428. http://dx.doi.org/10.2147/VHRM.S33053 23983473.

[2] J.E. James, S.S.C. Underwood, General and Systematic Pathology, Churchill Livinghill, London, 2009.

[3] M.S. Brown, J.L. Goldstein, How LDL receptors influence cholesterol and atherosclerosis, Scientific American 251 (5) (1984) 58–66. http://dx.doi.org/10.1038/scientificamerican1184-58 6390676.

[4] D. Bhatnagar, H. Soran, P.N. Durrington, Hypercholesterolaemia and its management, BMJ (Clinical Research Ed.) 337 (2008) a993. http://dx.doi.org/10.1136/bmj.a993 18719012.

[5] F.V. Craijle, W.C. Roberts, The extramural and intramural coronary arteries in juvenile diabetes mellitus: Analysis of nine necropsy patients aged 19–38 years with onset of diabetes before age 15 years, American Journal of Medicine 64 (2) (1978) 221–230. http://dx.doi.org/10.1016/0002-9347(78)90049-9 6290676.

[6] J. Sin, F. Zhou, Lipid raft redox signaling platforms in vascular dysfunction: features and mechanisms, Current Atherosclerosis Reports 11 (3) (2009) 220–226. http://dx.doi.org/10.1007/s11883-009-0034-6 19361354.

[7] K. Simons, R. Ehehalt, Cholesterol, lipid rafts, and disease, Journal of Clinical Investigation 110 (5) (2002) 597–603. http://dx.doi.org/10.1172/JCI16390 12208588.

[8] D. Shao, A.W. Segal, L.V. Dekker, Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils, FEBS Letters 550 (1–3) (2003) 101–106. http://dx.doi.org/10.1016/S0014-5793(03)00845-7 12935894.

[9] W. Han, H. Li, V.A. Villar, A.M. Pascua, M.I. Dajani, X. Wang, A. Natarajan, M. T. Quinn, R.A. Felder, P.A. Jose, P. Yu, Lipid rafts keep NADPH oxidase in the
inactive state in human renal proximal tubule cells, Hypertension 51 (2) (2008) 481–487. http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.103275

[11] F. Vilhardt, B. van Deurs, The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly, EMBO Journal 23 (4) (2004) 739–748. http://dx.doi.org/10.1038/sj.emboj.7600066 1675128.

[12] B. Yang, T.N. Oo, V. Rizzo, Lipid rafts mediate H2O2 prosurvival effects in cultured endothelial cells, FASEB Journal; Official Publication of the Federation of American Societies for Experimental Biology 20 (9) (2006) 1501–1503. http://dx.doi.org/10.1096/fj.05-3539fje 16754746.

[13] A.Y. Zhang, F.Y. Yi, G. Zhang, E. Gulbins, P.L. Li, Lipid raft clustering and redox signaling platform formation in coronary arterial endothelial cells, Hypertension 47 (1) (2006) 74–80. http://dx.doi.org/10.1161/01.HYP.0000233502.61643.72

[14] L. Zuo, M. Ushio-Fukai, LL. Hilinski, R.W. Alexander, Microtubules regulate antioxidant II type 1 receptor and Rac localization in caveolae/lipid rafts: role in NOX oxidase signaling in vascular smooth muscle cells. Thrombosis. (6) (2007) 1223–1228. http://dx.doi.org/10.1016/j.thromres.2007.04.020 15142821.

[15] W.M. Nauseef, How human neutrophils kill and degrade microbes: an integrated view, Immunological Reviews 219 (2007) 88–102. http://dx.doi.org/10.1111/j.1600-065X.2007.00758.x 17504848.

[16] A.W. Segal, How neutrophils kill microbes, Annual Review of Immunology 23 (2005) 197–222. http://dx.doi.org/10.1146/annurev.immunol.23.021704.155617.

[17] M.B. Bailer, Oxidants from phagocytes: agents of defense and destruction, Blood 64 (5) (1984) 959–966 6386737.

[18] K. Lapouge, K.H. Krause and p47phox fusion protein: NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology, Physiological Reviews 87 (1) (2007) 245–313. http://dx.doi.org/10.1152/physrev.00004.2005 17273347.

[19] M.B. Bailer, NADPH oxidase, Current Opinion in Immunology 16 (1) (2004) 42–48. http://dx.doi.org/10.1016/j.coi.2003.12.001 15400135.

[20] K.K. Griendling, D. Sorensu, M. Ushio-Fukai, NADPH oxidase: role in cardiovascular disease and biology, Circulation Research 86 (5) (2000) 494–501. http://dx.doi.org/10.1161/01.RES.86.5.494 10270409.

[21] T. Kamata, Roles of Nox1 and other Nox isoforms in cancer development, Cancer Science 100 (9) (2009) 1382–1388. http://dx.doi.org/10.1111/j.1349-7006.2009.01207.x 19493276.

[22] J.D. Lambeth, T. Kawahara, A. Diebold, Regulation of Nox and Duox enzymatic activity and expression, Free Radical Biology and Medicine 43 (3) (2007) 319–331. http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.028 17602947.

[23] B. Lassègue, K.K. Griendling, NADPH oxidases: functions and pathologies in the vasculature, Arteriosclerosis, Thrombosis, and Vascular Biology 30 (4) (2010) 591–601. http://dx.doi.org/10.1161/ATVBAHA.108.181610 19910640.

[24] R.A. Segar, Chronic granulomatous disease: recent advances in pathophysiology and treatment, Netherlands Journal of Medicine 68 (11) (2010) 334–340. http://dx.doi.org/10.1007/s00418-009-2116-026.

[25] S. Sorge, K.H. Krause, NOX enzymes in the central nervous system: from signaling to disease, Antioxidants and Redox Signaling 11 (10) (2009) 2481–2504. http://dx.doi.org/10.1089/ars.2009.0257 19309263.

[26] H. Li, S. Horke, U. Fürstmann, Oxidative stress in vascular disease and its physiological solution, Trends in Cardiovascular Medicine 24 (4) (2014) 313–319. http://dx.doi.org/10.1016/j.tcm.2013.03.007 23508227.

[27] Z.V. Varga, K. Kupai, G. Szics, R. Gáspár, J. Pálóczi, N. Faragó, A. Zvara, L. G. Puszkás, K. Ráza, T. Lisztesvácz, P. Beneckis, A. Görbe, C. Csomóka, P. Ferdinandy, T. Lázár. Differential interaction pattern of NOX family of NADPH oxidases (NOX) mediates hypercholesterolemia-induced oxidative/nitrite stress and subsequent dysfunction in the heart, Journal of Molecular and Cellular Cardiology 62 (3) (2013) 111–121. http://dx.doi.org/10.1016/j.ymcct.2013.05.009 23722270.

[28] A. Neumann, G. Brodgen, N. Jerjeniceva, S. Brodesser, H.Y. Naim, M. von Köckritz-Blickwede, Lipid alterations in human blood-derived neutrophils lead to formation of neutrophil extracellular traps, European Journal of Cell Biology 93 (2014) 347–354. http://dx.doi.org/10.1007/s10045-014-2377-75.

[29] G.R. Drummond, C.G. Sobey, Endothelial NADPH oxidases: which NOX to target in vascular disease? Trends in Endocrinology and Metabolism; TEM 25 (9) (2014) 452–463. http://dx.doi.org/10.1016/j.tem.2014.06.012 25066192.

[30] R. Vyas, C. Ou, L. Hsu, V. Sanguineti, J. Martin, B. Martire, A. Finocchi, M.C. Pietrogrande, C. Azzari, A.R. Soresina, S. Martino, Y. Berdichevsky, A. Mizrahi, Y. Ugolev, S. Molshanski-Mor, E. Pick, Tripartite interaction of Rac1 with p67phox and p47phox truncations efficiently reconstitutes NADPH oxidase with higher activity and stability than the individual components, Journal of Biological Chemistry 276 (27) (2001) 24498–24505. http://dx.doi.org/10.1074/jbc.M101122200 11333362.

[31] R. Sarsfieh, Y. Gorzalczany, A. Mizrahi, Y. Berdichevsky, M. Scholmsk-Mor, C. Weinbaum, M. Hirshberg, M.C. Dagher, E. Pick, Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p47phox, a study based on mutagenesis of p47phox-Rac1 chimeras, Journal of Biological Chemistry 279 (16) (2004) 16007–16016. http://dx.doi.org/10.1074/jbc.M113239420 14761978.

[32] Y. Gorzalczany, N. Alloul, N. Sigal, C. Weinbaum, E. Pick, A prenylated p47phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox: conversion of a pagan NADPH oxidase to monotheme, Journal of Biological Chemistry 277 (21) (2002) 18605–18610. http://dx.doi.org/10.1074/jbc.M112017200 1125617.

[33] Y. Berdichevsky, A. Mizrahi, Y. Ugolev, S. Molshanski-Mor, Y. Nakash, I. Danah, N. Alloul, Y. Gorzalczany, M. Scholmsk-Mor, C. Weinbaum, M. Hirshberg, M.C. Dagher, E. Pick, Rac1 is an effective activator of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships, Journal of Leukocyte Biology 79 (5) (2006) 881–895. http://dx.doi.org/10.1128/JLB.C50406-3133 14097. http://dx.doi.org/10.1021/bi010882u 11705402.

[34] A. Alloul, Y. Gorzalczany, M. Itan, R. Masoud et al. / Redox Biology 3 (2014) 16–24 23
