FORMULAS DERIVED FROM MOMENT GENERATING
FUNCTIONS AND BERNSTEIN POLYNOMIALS

Dedicated to Academician Professor Gradimir Milovanović
on the occasion of his 70th birthday.

Buket Simsek

The purpose of this paper is to provide some identities derived by moment
generating functions and characteristics functions. By using functional equa-
tions of the generating functions for the combinatorial numbers \(y_1(m,n;\lambda)\),
defined in [12, p. 8, Theorem 1], we obtain some new formulas for mo-
ments of discrete random variable that follows binomial (Newton) distribu-
tion with an application of the Bernstein polynomials. Finally, we present
partial derivative formulas for moment generating functions which involve
derivative formula of the Bernstein polynomials.

1. INTRODUCTION

Characteristic functions and generating functions such as moment generat-
ing functions, ordinary generating functions, and exponential generating functions
have been widely used in variety of fields (namely, probability theory, engineering,
and variety branches of mathematics such as discrete mathematics, mathematical
statistics, and mathematical physics). The motivation of this paper is to apply
characteristic functions and generating functions to the special probability distri-
butions. After these applications, we give some formulas and identities. Therefore,
these distributions are not only the well-known Bernstein polynomials under the

2010 Mathematics Subject Classification. 11B83, 05A15, 11KXX, 12D10, 11B68, 26C05.
Keywords and Phrases. Special polynomials and numbers, Generating functions,
Array polynomials, Stirling numbers, Moment generating function, Characteristic functions,
Distribution functions, Binomial coefficients, Combinatorial identities.
some restrictions, but also the Newton distribution, which is very important probability model when there are two possible outcomes. In addition, these applications, formulas and identities are also associated with well-known special numbers, special polynomials and moments of a random variable of the probability distribution. In recent years, there are many interesting and useful applications on these functions, combinatorial identities, special polynomials and numbers (cf. [1]-[16]; and the references cited therein).

We briefly introduce some well-known generating functions for the special numbers and polynomials that are used when deriving our identities and formulas.

Let X be a random variable of the probability distribution $f(x)$. The well-known characteristic function and moment generating function of the random variable X are given as follows, respectively:

$$K_x(t) = \mathbb{E}(e^{itx}),$$

and

$$M_x(t) = \mathbb{E}(e^{tx}),$$

where $\mathbb{E}(X)$ denotes the expected value or mean of the random variable X and $i^2 = -1$ (cf. [10], p. 10, Eq-(1.3.2)), [15, p. 112]; and the references cited therein).

In [10, p. 15, Eq-(1.3.6) and Theorem 2.1.1], for distribution function $f(x)$, Lukacs gave various proprieties of the characteristic function $K_x(t)$:

$$K_x(t) = \int_{-\infty}^{\infty} f(x) \exp(itx) dx.$$

By using definition of the function $K_x(t)$, we have

$$K(0) = 1,$$

$$|K(t)| \leq 1$$

and

$$K_x(-t) = \overline{K_x(t)},$$

where $\overline{K_x(t)}$ is a the complex conjugate of $K_x(t)$.

The function $K_x(t)$ is uniformly continuous on \mathbb{R}, denotes the set of real numbers (cf. [10], [15]).

The λ-Stirling numbers are defined by

$$(1) \quad F_s(t, m; \lambda) = \frac{(\lambda e^t - 1)^m}{m!} = \sum_{n=0}^{\infty} S_2(n, m; \lambda) \frac{t^n}{n!},$$

(cf. [3], [11], [14]; and the references therein). If $\lambda = 1$, then the λ-Stirling numbers reduce to the Stirling numbers of the second kind (cf. [3], [2], [6], [8], [12], [?]; and the references therein).
The polynomials $S_m^m(x;\lambda)$, so-called array type polynomials, are defined by

$$F_A(t,x;m;\lambda) = F_s(t,m;\lambda)e^{xt} = \sum_{n=0}^{\infty} S_m^m(x;\lambda) \frac{t^n}{n!},$$

where λ is a complex or real numbers (cf. [3], [6], [14]; and the references therein). When $\lambda = 1$ in equation (2), we have the array polynomials:

$$S_n^m(x) = S_n^m(x;1).$$

Using equation (2), an explicit formula for the polynomials $S_n^m(x)$ is given by

$$S_m^n(x) = \frac{1}{m!} \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} (x+j)^n,$$

(cf. [3], [4], [6], [14]; and the references therein). Some basic properties of the polynomials $S_m^n(x)$ are given by

$$S^n_n(x) = 1,$$

where $n \geq 0$, and

$$S^m_0(x) = x^n.$$

If $m > n$, then

$$S^n_m(x) = 0$$

(cf. [3], [4], [6], [14]; and the references therein).

Let k be a nonnegative integer. Let λ be a complex number. The combinatorial numbers $y_1(n,k;\lambda)$ are defined by

$$F_{y_1}(t,k;\lambda) = \frac{1}{k!} (\lambda e^t + 1)^k = \sum_{n=0}^{\infty} y_1(n,k;\lambda) \frac{t^n}{n!}.$$

By using equation (3), we have the following well-known formula for combinatorial numbers $y_1(n,k;\lambda)$:

$$y_1(n,k;\lambda) = \frac{1}{k!} \sum_{j=0}^{k} \binom{k}{j} j^n \lambda^j$$

(cf. [12]).

2. Moment generating function related to binomial (Newton) type distribution including the Bernstein polynomials.
In this section, we firstly illustrate that the moment generating function of binomial (Newton) type distribution is related to well-known the Bernstein polynomials. Thus, using this moment generating function, we derive the partial derivative formulas.

The Bernstein polynomials are defined by

\[
B^n_k(x; a, b) = \binom{n}{k} \left(\frac{x-a}{b-a} \right)^k \left(\frac{b-x}{b-a} \right)^{n-k},
\]

where \(a\) and \(b\) are real numbers (cf. [5, Chapter 5, pp. 299-306], [7], [9], [13]).

Now, assume that \(0 \leq \frac{x-a}{b-a} \leq 1\) and \(0 \leq \frac{b-x}{b-a} \leq 1\), then equation (4) reduces to binomial type distribution (cf. [9], [13]). We note that when \(a = 0\) and \(b = 1\), equation (4) reduces to the binomial distribution for \(0 \leq x \leq 1\).

Moment generating function can be described as

\[
M_X(t, x : n; a, b) = \sum_{k=0}^{n} e^{kt} B^n_k(x; a, b).
\]

Substituting (4) into the above equation, we have

\[
M_X(t, x : n; a, b) = \left(e^t \frac{x-a}{b-a} + \frac{b-x}{b-a} \right)^n.
\]

Substituting \(a = 0\) and \(b = 1\) into the above equation, we also have the well-known moment generating function for the Binomial distribution:

\[
M_X(t, x : n; 0, 1) = (xe^t + 1 - x)^n
\]

(cf. [10], [15, p. 100]).

2.1. Partial Derivative formulas

In this section, we briefly summarize the derivation of the partial derivative formulas for moment generating function that involves the Bernstein polynomials.

\[
\frac{\partial^l}{\partial x^l} \{M_X(t, x : n; a, b)\} = \sum_{k=0}^{n} e^{kt} \frac{d^l}{dx^l} \{B^n_k(x; a, b)\}.
\]

Next, the following modifying Theorem. 2.6. in [13, p. 7, 2.6. Theorem]

\[
\frac{\partial^l}{\partial x^l} \{B^n_k(x; a, b)\} = \frac{n!}{(n-l)!} \sum_{j=0}^{l} (-1)^{l-j} \binom{l}{j} B^{n-l}_{k-j}(x; a, b)
\]
Formulas derived from moment generating functions...

is substituted into (7) to obtain the following differential equation:

$$\frac{\partial^l}{\partial x^l} \{ M_X(t, x : n; a, b) \} = \frac{n!}{(n - l)!} \sum_{j=0}^{l} (-1)^{l-j} \binom{l}{j} \sum_{k=0}^{n} e^{kt} B_{k-j}^n(x; a, b),$$

where $B_{k-j}^n(x; a, b) = 0$ if $k - j < 0$ or $n - j < k - j$. Substituting $a = 0$, $b = 1$ and $l = 1$ into the above equation, we have

$$\frac{\partial}{\partial x} \{ M_X(t, x : n; 0, 1) \} = \sum_{k=0}^{n} e^{kt} \frac{d}{dx} \{ B_k^n(x) \}.$$

Since

$$\frac{d}{dx} \{ B_k^n(x) \} = n \left(B_{k-1}^{n-1}(x) - B_k^{n-1}(x) \right),$$

(cf. [5], [13]), we get

$$(1 - x) \frac{\partial}{\partial x} \{ M_X(t, x : n; 0, 1) \} = (x - x^2) \sum_{k=0}^{n} \frac{\partial}{\partial t} \{ e^{kt} B_k^n(x) \} - M_X(t, x : n; 0, 1).$$

Therefore,

$$(x - 1) \frac{\partial}{\partial x} \{ M_X(t, x : n; 0, 1) \} + (x - x^2) \frac{\partial}{\partial t} \{ M_X(t, x : n; 0, 1) \} = M_X(t, x : n; 0, 1).$$

The moments are given by

$$G_X(t, x : m; n, a, b) = \frac{\partial^m}{\partial x^m} \{ M_X(t, x : n; a, b) \}.$$

Substituting $t = 0$ into the above equation, we have

$$E_X(X^m : n; a, b) = m_m(x : m, n) = G_X(0, x : n; a, b) = \sum_{k=0}^{n} k^m B_k^n(x; a, b).$$

The characteristic function is given by

$$K_X(t, x : n) = \sum_{k=0}^{n} e^{kti} B_k^n(x; a, b).$$

Substituting (4) into the above equation, we get

$$K(t, x : n; a, b) = \left(e^{it} \frac{x - a}{b - a} + \frac{b - x}{b - a} \right)^n.$$
By rearranging the above equation, we obtain

$$K_X(t, x : n; a, b) = \sum_{k=0}^{n} \sum_{v=0}^{k} \binom{k}{v} B_k^n(x; a, b) \left(\cos t\right)^v (i \sin t)^{k-v}.$$

Since

$$i \sin t = \sinh t,$$

equation (10) can be rewritten as by the following theorem:

Theorem 1. Let a and b are real numbers and n be nonegative integer. We assume that $0 \leq \frac{x-a}{b-a} \leq 1$ and $0 \leq \frac{b-x}{b-a} \leq 1$. Then we have

$$K_X(t, x : n; a, b) = \sum_{k=0}^{n} \sum_{v=0}^{k} \binom{k}{v} B_k^n(x; a, b) \left(\cos t\right)^v (\sinh t)^{k-v}.$$

3. Combinatorial Identities and Formulas

In this section, using functional equations of the generating functions for the combinatorial numbers and moments, we derive new formulas and combinatorial identities for moments, the combinatorial numbers $y_1(n, k; \lambda)$ and the Bernstein polynomials.

Theorem 2. Let a and b are real numbers and n be nonegative integer. Then we have

$$y_1(m, n; \frac{x-a}{b-x}) = \frac{1}{n!} \left(\frac{b-a}{b-x}\right)^n \sum_{k=0}^{n} k^m B_k^n(x; a, b)$$

Proof. By equation (5), we have

$$M_X(t, x : n; a, b) = \sum_{m=0}^{\infty} \sum_{k=0}^{n} k^m B_k^n(x; a, b) \frac{t^m}{m!}.$$

Combining (3) with (6), we get the following equation:

$$M_X(t, x : n; a, b) = n! \left(\frac{b-x}{b-a}\right)^n F_{y_1} \left(t, n; \frac{x-a}{b-x} \right).$$

By using the above equation, we obtain

$$M_X(t, x : n; a, b) = n! \left(\frac{b-x}{b-a}\right)^n \sum_{m=0}^{\infty} y_1(m, n; \frac{x-a}{b-x}) \frac{t^m}{m!}.$$

Combining (11) with (13) yields the assertion of the theorem. \qed
Theorem 3. Let a and b are real numbers and n be nonegative integer. We assume that $0 \leq \frac{x-a}{b-a} \leq 1$ and $0 \leq \frac{b-x}{b-a} \leq 1$. Then we have

\begin{equation}
\mathbb{E}(X^m : n; a, b) = n! \left(\frac{b-x}{b-a} \right)^n y_1 \left(m, n; \frac{x-a}{b-x} \right).
\end{equation}

Proof. Since
\[M_X(t, x : n; a, b) = \mathbb{E}(e^{tx} : n; a, b), \]
we have
\[M_X(t, x : n; a, b) = \sum_{m=0}^{\infty} \left(\sum_{k=0}^{n} k^m B_k(x; a, b) \right) \frac{t^m}{m!} \]
\[= \sum_{m=0}^{\infty} \mathbb{E}(X^m : n; a, b) \frac{t^m}{m!}. \]
Combining the above equation with (13), and after some elementary computations, we get the assertion of the theorem. □

For $m = 1$ and 2, we compute few values of the numbers $\mathbb{E}(X^m : n; a, b)$ given by equation (14). Computing the expected value or mean, $\mu_X(n; a, b)$ and variance $\sigma_X^2(n; a, b)$ of the random variable X with the help of formula in (14) as follows:

Substituting $m = 1$ into (14), we have
\[\mu_X(n; a, b) = \mathbb{E}(X : n; a, b) = n! \left(\frac{b-x}{b-a} \right)^n y_1 \left(1, n; \frac{x-a}{b-x} \right) \]
and $m = 2$ into (14), we have
\[\sigma_X^2(n; a, b) = \mathbb{E}(X^2 : n; a, b) - \mathbb{E}^2(X : n; a, b) = \frac{n(x-a)(b-x)}{(b-a)^2} \]
(cf. [13]).

Setting $a = 0$ and $b = 1$, we easily see that
\[\mu_X(n; 0, 1) = \mu_X = nx \]
and
\[\sigma_X^2(n; 0, 1) = \sigma_X^2 = nx(1 - x) \]
(cf. [5, Chapter 5, pp. 299-306], [9], [13], [15, p. 77]).

Theorem 4. Let a and b are real numbers and n be nonegative integer. We assume that $0 \leq \frac{x-a}{b-a} \leq 1$ and $0 \leq \frac{b-x}{b-a} \leq 1$. Then we have
\[\mathbb{E}(X^m : n; a, b) = n! \left(\frac{b-x}{b-a} \right)^n S_2 \left(m, n; \frac{x-a}{b-x} \right). \]
Proof. Combining (9) with (1), we get the following equation:

\[
K_X(t, x : n; a, b) = n! \left(\frac{b - x}{b - a} \right)^n F_{S}\left(it, n; \frac{x - a}{b - x} \right).
\]

From the above equation, we have

\[
K_X(t, x : n; a, b) = n! \left(\frac{b - x}{b - a} \right)^n \sum_{m=0}^{\infty} \frac{t^m}{m!} S_2^c \left(m, n; \frac{x - a}{b - x} \right).
\]

On the other hand, using (9), we also have

\[
K_X(t, x : n; a, b) = \sum_{m=0}^{\infty} \frac{t^m}{m!} \mathbb{E}(X^m : n; a, b).
\]

Combining the above equation with (15), we arrive the assertion of the theorem. \(\square\)

By combining Theorem 1, Theorem 3 and Theorem 4, we have

\[
K_X(t, x : n; a, b) = \sum_{m=0}^{\infty} \sum_{k=0}^{n} \sum_{v=0}^{k} \left(\begin{array}{c} k \\ v \end{array} \right) \frac{t^m}{m!} \mathbb{E}(X^m : n; a, b) \mathbb{E}(X^m : n; a, b) \frac{t^m}{m!}.
\]

Combining the above equation with (9) yields the following theorem after some elementary computations:

Theorem 5. Let \(a\) and \(b\) are real numbers and \(n\) be nonegative integer. Then we have

\[
S_2^c \left(m, n; \frac{x - a}{x - b} \right) = \left(\frac{b - x}{b - a} \right)^{-n} \sum_{k=0}^{n} \sum_{v=0}^{k} \left(\begin{array}{c} k \\ v \end{array} \right) \frac{v!(k - v)!2^{m-k}B_k^n(x; a, b)}{n!} \mathbb{E}(X^m : n; a, b) \mathbb{E}(X^m : n; a, b) \frac{t^m}{m!}.
\]

Acknowledgement. The present paper was supported by the Scientific Research Project Administration of Akdeniz University.
REFERENCES

1. B. SIMSEK, B. SIMSEK: The computation of expected values and moments of special polynomials via characteristic and generating functions. AIP Conf. Proc. 1863 (2017), 300012-1–300012-5; doi: 10.1063/1.4992461.

2. L. COMTE: Advanced Combinatorics: The Art of Finite and Infinite Expansions. Reidel: Dordrecht and Boston, 1974.

3. N. P. CAKIC, G. V. MILOVANOVIC: On generalized Stirling numbers and polynomials. Math. Balkanica (N.S.), 18 (2004), 241–248.

4. C.-H. CHANG, C.-W. HA: A multiplication theorem for the Lerch zeta function and explicit representations of the Bernoulli and Euler polynomials. J. Math. Anal. Appl. 315 (2006), 758–767.

5. R. GOLDMAN: Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling. (Morgan Kaufmann Publishers, R. Academic Press, San Diego), 2002.

6. G. B. DJORDJEVIC and G. V. MILOVANOVIC: Special classes of polynomials. University of Nis, Faculty of Technology Leskovac, 2014.

7. G. V. MILOVANOVIC, D. S. MITRINOVIC, T. M. RASSIAS: Topics in Polynomials: Extremal Problems, Inequalities, Zeros. World Scientific Publishing Co. Pte. Ltd. Singapore, 1994.

8. T. KIM: On Extended Stirling polynomials of the second kind and extended Bell polynomials associated with Poisson random variables. Proceedings Book of MICOPAM2018 Antalya, Turkey October 26 –29, 2018, http://elibrary.matf.bg.ac.rs/handle/123456789/4699.

9. G. G. LORENTZ: Bernstein Polynomials. Chelsea Pub. Comp. New York, N. Y. 1986.

10. E. LUKACS: Characteristic function. Charles griffin & Company Limited (Second Edition), London 1970.

11. Q-M. LUO, H. M. SRIVASTAVA: Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind. Appl. Math. Comput. 217 (2011), 5702–5728.

12. Y. SIMSEK: New families of special numbers for computing negative order Euler numbers and related numbers and polynomials. Appl. Anal. Discrete Math. 12 (2018), 1–35.

13. Y. SIMSEK: Generating functions for the Bernstein type polynomials: A new approach to deriving identities and applications for the polynomials. Hacettepe J. Math. And Stat. 43 (2014),1–14.

14. Y. SIMSEK: Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications. Fixed Point Theory Appl. 2013 (87) (2013), 28 pp.

15. T. T. SOONG: Fundamentals of Probability and Statistics for Engineers. John Wiley&Sons, Ltd. 2004.

16. H. M. SRIVASTAVA, C. VIGNAT: Probabilistic proofs of some relationships between the Bernoulli and Euler polynomials. European J. Pure Appl. Math. 5 (2) (2012), 97–107.
