Wongia gen. nov. (Papulosaceae, Sordariomycetes), a new generic name for two root-infecting fungi from Australia

Wanporn Khemmuk¹,², Andrew D.W. Geering¹,², and Roger G. Shivas²,³

¹Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, GPO Box 267, Brisbane, Queensland, 4001, Australia
²Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce, ACT 2617, Australia
³Plant Pathology Herbarium, Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park 4102, Australia; corresponding author e-mail: roger.shivas@daf.qld.gov.au

Abstract: The classification of two root-infecting fungi, Magnaporthe garrettii and M. griffinii, was examined by phylogenetic analysis of multiple gene sequences. This analysis demonstrated that M. garrettii and M. griffinii were sister species that formed a well-supported separate clade in Papulosaceae (Diaporthomycetidae, Sordariomycetes), which clusters outside of the Magnaporthales. Wongia gen. nov, is established to accommodate these two species which are not closely related to other species classified in Magnaporthe nor to other genera, including Nakataea, Magnaporthiopsis and Pyricularia, which all now contain other species once classified in Magnaporthe.

Key words: Ascomycota Cynodon Diaporthomycetidae multigene analysis one fungus-one name molecular phylogenetics root pathogens

Article info: Submitted: 5 July 2016; Accepted: 7 October 2016; Published: 11 October 2016.

INTRODUCTION

The taxonomic and nomenclatural problems that surround generic names in the Magnaporthales (Sordariomycetes, Ascomycota), together with recommendations for the suppression and protection of some of these names, were explained by the Pyricularia/Magnaporthe Working Group established under the auspices of the International Commission on the Taxonomy of Fungi (ICTF; Zhang et al. 2016). One of these generic names, Magnaporthe, was proposed for suppression by Zhang et al. (2016) because Magnaporthe is congeneric with Nakataea (Hara 1939) as the types of both genera, Magnaporthe salvinii (syn. Leptosphaeria salvinii) and Nakataea sigmoidea (syn. Helminthosporium sigmoideum) are conspecific (Krause & Webster 1972, Luo & Zhang 2013).

Magnaporthe was morphologically characterised by having dark perithecia with long necks immersed in host tissue, unitunicate asci, and 4-celled fusiform hyaline to pale brown ascospores (Krause & Webster 1972). Subsequently, seven species were assigned to Magnaporthe based on morphology, namely, M. salvinii (Krause & Webster 1972), M. grisea (Barr 1977), M. rhizophila (Scott & Deacon 1983), M. poae (Landschoot & Jackson 1989), M. oryzae (Couch & Kohn 2002), and M. garrettii and M. griffinii (Wong et al. 2012). Most of these species belong to other genera, specifically Magnaporthiopsis, Nakataea, and Pyricularia (Luo & Zhang 2013). The two exceptions are the Australian ectotrophic species, M. garrettii and M. griffinii, which infect roots of some turf grasses (Wong et al. 2012). One of these species, M. griffinii, was found by Klaubauf et al. (2014) to be distant from Sordariomycetes based on ITS sequences (GenBank JQ390311, JQ390312).

This study aims to resolve the classification of M. garrettii and M. griffinii using molecular sequence data from the type specimens. Four loci from the nuclear genome namely, ITS and the large subunit (LSU) of rDNA, translation elongation factor 1-alpha (TEF1), and the largest subunit of RNA polymerase II (RPB1) were selected for analysis.

MATERIALS AND METHODS

Fungal cultures and DNA extraction

Dried specimens of the holotypes of Magnaporthe garrettii (DAR 76937) and M. griffinii (DAR 80512) were borrowed from the Plant Pathology Herbarium, New South Wales Agriculture (DAR). Dried perithecia were excised with a needle and soaked in extraction buffer overnight at 65 °C before extraction of DNA with an UltraClean® Microbial DNA Isolation Kit (MoBIO Laboratories) as per the manufacturer’s instructions. An additional culture of M. griffinii (BRIP 60377) was grown on PDA for 6 wk before enough mycelium was produced for DNA extraction.

PCR amplification

The primer pairs ITS1/ITS4 (White et al. 1990), RPB-Ac/ RPB-Cr (Castlebury et al. 2004, Matheny et al. 2002), LR5/ LROR and EF1983F/2218R (Schoch et al. 2009) were...
Species	Voucher	Substrate	Locality	GenBank accession no.			
				ITS	LSU	RPB1	TEF1
Annulusmagnus triseptatus	CBS 128831	Decayed wood	France	GQ996540			
Bambusicularia brunnea	CBS 133599¹	Sasa sp.	Japan	KM484830 KM484948 KM485043			
Barretomyces calatheae	CBMAI 1060¹	Calathea longifolia	Brazil	GU294490			
Brunneosporella aquatica	HKUCC 3708	Submerged wood	Hong Kong	AF132326			
Budhanggurabania cynodonticola	BRIP 59305¹	Cyordon dactylon	Australia	KP162134 KP162140 KP162143 KP162138			
Buergenerula spartinae	ATCC 22848¹	Spartina alterniflora		JX134666 DQ341492 JX134720 JX134692			
Calosphaeria pulchella	CBS 115999	Prunus avium	France	AY761075			
Camarops ustulinoides	AFTOL-ID 72	-	-	DQ470941 DQ471121 DQ471050			
Coniochaeta ligniaria	NRRL 30616	Soil	Hong Kong	AF132332			
Cordana pauciseptata	CBS 121804	-	Spain	HE672160			
Cryphonectria havanensis	CBS 505.63	Eucalyptus saligna	Russia	AF408339			
C. parasitica	ATCC 38755	Castanea dentata	USA	Genome³ Genome⁴ Genome⁵ Genome⁶			
Diaporthe eres	CBS 109767	Acer campestre	Austria	AF408350			
Diaporthe phaseolorum	ATCC 64802	-	-	AY346279			
Fluminicola coronata	HKUCC 3717	-	Hong Kong	AF132332			
Gaemunnomyces oryzainus	CBS 235.32	Oryza sativa	USA	JX134669 JX134681 JX134723 JX134695			
Harknessia eucalypti	CBS 342.97	Eucalyptus regnans	Australia	AF408363			
Lecythophora luteoviridis	CBS 206.38	-	Switzerland	FR691987			
Magnaporthiopsis agrostidis	BRIP 59300¹	Agrostis stolonifera	Australia	KT364753 KT364754 KT364755 KT689623			
M. poae	ATCC 64411	Triticum aestivum	USA	JF414836 JF414885 JF710433 JF710415			
Nakataea oryzae	ATCC 44754	Oryza sativa	Japan	JF414838 JF414887 JF710441 JF701406			
Neurospora crassa	MUCL 19026	-	-	AF286411			
Ophioceras leptosporum	CBS 894.70	Dead stem	UK	JX134678 JX134690 JX134732 JX134704			
O. dolichostomum	CBS 114926	Rotten wood	China	JX134677 JX134689 JX134731 JX134703			
O. commune	YMF1.00980	Rotten wood	China	JX134675 JX134687 JX134729 JX134701			
Ophiostoma floccosum	AU55-6 in G	Pinus sp.	Canada	AF234836			
O. stenoceras	AFTOL-ID 1038	-	-	DQ836904			
Papulosa amerospora	AFTOL-ID 748	-	-	DQ470950 DQ471143 DQ471069			
Pseudophialophora eragrostis	RUTTP-CM12m²	Eragrostis sp.	USA	KF689648 KF689638 KF689618 KF689628			
Pseudopyricularia kyllingae	CBS 133597¹	Kylilnga brevifolia	Japan	KM484876 KM484992 KM485096			
Pyricularia grisea	M 83	Digitaria sp.	USA	JX134671 JX134683 JX134725 JX134697			
P. oryzae	70-15	-	USA	Genome⁴ Genome⁵ Genome⁶ Genome⁷			
Togniniella acerosa	CBS 113648	Decayed wood	New Zealand	AY761076			
used to amplify ITS, RPBI, LSU, and TEF1 sequences, respectively. PCR amplifications were conducted in a 20 µl reaction volume containing 1 µl of 5-10 ng DNA, 10 µl of high fidelity Phusion DNA Polymerase (New England Biolabs), 1 µl of primers (10 µM) and 7 µl of sterile water with the thermal cycling program as follows: 98 ºC for 30s, 30 cycles of 98 ºC for 10 s, 58–62 ºC for 30 s and 72 ºC for 1 min, and a final extension of 72 ºC for 10 min. PCR products were sent to Macrogen (Korea) for direct sequencing using the amplification primers.

Phylogenetic analysis
All sequences were assembled with Sequencher v. 5.1 (Gene Codes, Ann Arbor, MI). Alignments were generated for individual loci using MAFFT v. 6.611 (Katoh & Toh 2008), and then the alignments concatenated for the phylogenetic analyses. DNA sequences were deposited in GenBank with the accession numbers listed in Table 1 and the final curated alignment deposited in TreeBASE under accession no. ID 19968. Phylogenetic trees were reconstructed with two phylogenetic criteria, Maximum likelihood (ML) and Bayesian Inference (BI). ML was carried out with RAxML v. 7.2.6 using GTRGAMMA as the model of evolution (Stamatakis 2006), choosing the rapid bootstrap analysis (command –f a) with a random starting tree and 1000 maximum likelihood bootstrap replications. BI was done with MrBayes v. 3.1.2 (Ronquist et al. 2012), utilizing four parallel MCMC chains, which were allowed to run for 10 million generations, with sampling every 1000 generations and saving trees every 5 000 generations. The cold chain was heated at a temperature of 0.25. All phylogenetic trees were visualized using FigTree (Morariu et al. 2009).

RESULTS
Molecular phylogeny
The phylogenetic trees recovered from the ML and BI analyses had identical topologies and were well-supported by bootstrap and posterior probabilities (Fig. 1). The analyses comprised 36 taxa belonging to eight orders and two families in the subclass Diaporthomycetidae (Sordariomycetes). Camarops ustulinoides (Boniliales, Sordariomycetes) was used as the outgroup (Table 1). The phylogenetic analysis revealed Magnaporthe garrettii (DAR 76937) and M. griffinii (DAR 80512) as sister species that formed a distinct well-supported (100/1.0) monophyletic clade in Papulosaceae that sat outside Magnaporthales. The analysis provided moderate support (67/0.93) for placement of M. garrettii and M. griffinii in Papulosaceae, which has not yet been assigned to any order of Diaporthomycetidae. Based on this analysis, a new generic name is established here to accommodate M. garrettii and M. griffinii.

TAXONOMY
Wongia Khemmuk, Geering & R.G. Shivas, gen. nov.
MycoBank MB817529

Etymology: Named after the eminent Australian mycologist and plant pathologist, Percy T.W. Wong (University of Sydney), who first studied and classified these fungi.

Diagnosis: Differs from all other genera in the subclass Diaporthomycetidae in having non-amyloid apical rings in the asci with 3-septate ascospores that have dark brown middle cells and pale brown to subhyaline shorter distal cells.
Type species: Wongia garrettii (P. Wong & M.L. Dickinson) Khemmuk et al. 2016

Classification: Ascomycota, Sordariomycetes, Diaporthomycetidae.

Description: Mycelium comprised of brown, straight or flexuous hyphae, with simple hyphopodia. Ascomata perithecial, superficial and immersed, mostly solitary or sometimes aggregated in small groups, globose, black, ostiolate, with a long or short neck, perithecial wall composed of textura epidermoidea, external cell much darker. Paraphyses thin-walled, hyaline, filiform, septate.

Asci unitunicate in structure, cylindrical, mostly straight, short stalked, tapered towards a rounded apex, with a light refractive, non-amyloid apical ring, 8-spored. Ascospores uniseriate, cylindrical to fusiform, straight or slightly curved with rounded ends, 3-septate, middle cells dark brown and distal cells pale brown to subhyaline and shorter.

Wongia garrettii (P. Wong & M.L. Dickinson) Khemmuk, Geering & R.G. Shivas, **comb. nov.** (Fig. 2A–B)

MycoBank MB817530
Basionym: Magnaporthe garrettii P. Wong & M.L. Dickinson, Australasian Plant Pathology 41: 326 (2012).

Type: Australia: South Australia: Adelaide, Colonel Light Gardens Bowling Club, on Cynodon dactylon, 30 Oct. 2004, M.L. Dickinson (DAR 76937 – holotype).

Description and Illustration: Wong et al. (2012).

Wongia griffinii (P.Wong & A.M. Stirling) Khemmuk, Geering & R.G. Shivas, **comb. nov.** (Fig. 2C–D)

MycoBank MB817531
Basionym: Magnaporthe griffinii P. Wong & A.M. Stirling, Australasian Plant Pathology 41: 327 (2012).
Wongia gen. nov. for two root infecting fungi

Type: Australia: Queensland: Coolum, Hyatt Coolum Golf Club, on Cynodon dactylon × transvaalensis, 13 Mar. 2008, M. Whatman (DAR 80512 – holotype).

Description and illustration: Wong et al. (2012)

Other specimens examined: Australia: New South Wales: Cobbitty, on Cynodon dactylon, 19 Apr. 2013, G. Beehag, (BRIP 60378). Queensland: Brisbane, on on Cynodon dactylon × transvaalensis, Jan. 2000, A.M. Stirling (BRIP 60377).

DISCUSSION

Magnaporthe is a synonym of Nakataea as their respective type species, Magnaporthe salvinii and Nakataea sigmoidea, refer to the same species (Krause & Webster 1972, Luo & Zhang 2013, Klaubauf et al. 2014, Zhang et al. 2016). This led us to re-examine two Australian species, M. garrettii and M. griffinii, pathogenic on roots of couch (Cynodon dactylon) and hybrid couch (C. dactylon × transvaalensis) (Wong et al. 2012). We establish Wongia here to accommodate these two species, based on molecular and morphological analysis.

Multigene analyses placed W. garrettii and W. griffinii in Papulosaceae (Diaporthomycetidae, Sordariomycetes; Maharachchikumbura et al. 2015) with moderate bootstrap support (Fig. 1). The Papulosaceae has not yet been placed in an order within Sordariomycetes (Winka & Erikson 2000). Wongia is the fourth genus to be placed in Papulosaceae, along with Brunneosporella (Rancho & Hyde 2001), Fluminicola (Wong et al. 1999), and Papulosa (Kohlmeyer & Volkmann-Kohlmeyer 1993). Most members in this family are found on submerged wood in freshwater habitats and grow slowly in culture on potato dextrose agar (Rancho & Hyde 2001). Wongia garrettii and W. griffinii are morphologically different from other genera of Papulosaceae in having non-amyloid apical rings in the asci using Melzer’s reagent, while others have amyloid apical rings (Winka & Erikson 2000). The long perithecial necks of W. garrettii differentiate it from W. griffinii (Wong et al. 2012), which also has larger ascospores (24–35 x 6–9 µm) than W. garrettii (19–25 x 5–7 µm) (Wong et al. 2012). Asexual morphs have not been found in either W. garrettii or W. griffinii in nature or in cultures grown on artificial media under laboratory conditions (Wong et al. 2012).

ACKNOWLEDGEMENTS

We acknowledge support of the Australian Government’s Cooperative Research Centres Program (project no. PBCRC62082), and the Plant Pathology Herbarium, New South Wales Agriculture (DAR), for lending us the type specimens of the two species for sequencing.
REFERENCES

Barr ME (1977) Magnaporthe, Telinnellena, and Hyponectria (Physosporiellaceae). Mycologia 69: 952–966.
Castlebury LA, Rossman AY, Sung GH, Hyten AS, Spatafora JW (2004) Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycological Research 108: 864–872.
Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94: 683–693.
Harada K (1949) The Diseases of the Rice-plant. 2nd edn. Gifu: Japanese Society for Fungi.
Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9: 286–298.
Krause RA, Webster RK (1972) The morphology, taxonomy, and sexuality of the rice stem rot fungus, Magnaporthe salvinii (Leptosphaeria salvinii). Mycologia 64: 103–114.
Landschoot PJ, Jackson N (1989) Magnaporthe poae sp. nov., a hypopodiate fungus with a Phialophora anamorph from grass roots in the United States. Mycological Research 93: 59–62.
Luo J, Zhang N (2013) Magnaportheopsis, a new genus in Magnaporthaceae (Ascomycota). Mycologia 105: 1019–1029.
Maharachchikumbura SN, Hyde K, Jones EBG, McKenzie EC, Huang SK, et al. (2015) Towards a natural classification and backbone tree for Sordariomycetes. Fungal Diversity 72: 199–301.
Matheny PB, Liu YJ, Ammirati JF, Hall BD (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). American Journal of Botany 89: 688–698.
Moradii VI, Srinivasan BV, Raykar VC, Duraiswami R, Davis LS (2009) Automatic online tuning for fast Gaussian summation. In: Advances in Neural Information Processing Systems 21: 22nd Annual Conference on Neural Information Processing Systems 2008 (Proceedings of a meeting held 8–10–December 2008, Vancouver) (Koller D, Schuurmans D, Bengio Y, Bottou L, eds): 1113–1120. Neural Information Processing Systems.
Ranghoo VM, Tsui CKM, Hyde KD (2001) Brunneosporella aquatica gen. et sp. nov., Aqualignicola hyalina gen. et sp. nov., Jobellisia viridifusca sp. nov. and Porosphaerellipsoides bipolaris sp. nov. (Ascomycetes) from submerged wood in freshwater habitats. Mycological Research 105: 625–633.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.
Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, et al. (2009) A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64: 1–15.
Scott DB, Deacon JW (1983) Magnaportha rhizophila sp. nov., a dark mycelial fungus with a Phialophora conidial state, from cereal roots in South Africa. Transactions of the British Mycological Society 81: 77–81.
Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to methods and applications (Innis M, Gelfand D, Shinsky J, White T, eds): 315–322. San Diego: Academic Press.
Wink K, Eriksson OE (2000) Papulosa amerospora accommodated in a new family (Papulosaceae, Sordariomycetes, Ascomycota) inferred from morphological and molecular data. Mycosen 41: 97–103.
Wong PTW, Dong C, Stirling AM, Dickinson ML (2012) Two new Magnaporthe species pathogenic to warm-season turf grasses in Australia. Australasian Plant Pathology 41: 321–329.
Wong SW, Hyde KD, Jones EBG (1999) Ultrastructural studies on freshwater ascomycetes, Fluminicola bipolaris gen. et sp. novo. Fungal Diversity 2: 189–197.
Zhang N, Luo J, Rossman AY, Aoki T, Chuma I, et al. (2016) Generic names in Magnaporthales. IMA Fungus 7: 155–159.