NEW SELF-DUAL CODES FROM 2×2 BLOCK CIRCULANT MATRICES, GROUP RINGS AND NEIGHBOURS OF NEIGHBOURS

JOE GILDEA
Department of Mathematics, Faculty of Science and Engineering
University of Chester, England

ABIDIN KAYA
Harmony Public Schools
Houston, TX, USA

ADAM MICHAEL ROBERTS AND RHIAN TAYLOR
Department of Mathematics, Faculty of Science and Engineering
University of Chester, England

ALEXANDER TYLYSHCHAK
Department of Algebra
Uzhgorod National University, Uzhgorod, Ukraine

(Communicated by Steven Dougherty)

Abstract. In this paper, we construct new self-dual codes from a construction that involves a unique combination; 2×2 block circulant matrices, group rings and a reverse circulant matrix. There are certain conditions, specified in this paper, where this new construction yields self-dual codes. The theory is supported by the construction of self-dual codes over the rings \mathbb{F}_2, $\mathbb{F}_2 + u\mathbb{F}_2$ and $\mathbb{F}_4 + u\mathbb{F}_4$. Using extensions and neighbours of codes, we construct 32 new self-dual codes of length 68. We construct 48 new best known singly-even self-dual codes of length 96.

1. Introduction

Linear block codes, and specifically self-dual codes, have rapidly evolved since its introduction in the 1970’s ([2, 19, 28, 29]). The double circulant construction (introduced in [5, 24]) is one of the most extensively used techniques to construct self-dual codes. The double circulant construction considers generator matrices of the form $(I | A)$ where A is a circulant matrix. Another useful method of constructing self-dual codes is considering generator matrices of the form $(I | A)$ where A is a block circulant matrix [15]. In recent years, self-dual codes have been constructed using group rings [3, 10, 9] and also using some interesting construction methods as extensions of double circulant modifications [16]. In this paper we construct self-dual codes by considering generator matrices as a unique combination of 2×2 block circulant constructions, group rings and reverse circulant matrices. Specifically, we construct self-dual codes from generator matrices of the form:

2020 Mathematics Subject Classification: 94B05, 20C05, 16S34, 15B33.

Key words and phrases: Combinatorial problems, extremal self-dual codes, codes over rings, quadratic residues, quadratic circulant matrices.
where A and B are matrices that arise from a group ring construction and C is a reverse circulant matrix.

The remainder of this paper is set out as follows; firstly, we will introduce fundamental definitions and theorems required for further sections. In section 2, we describe the construction itself. We present the structure of the generator matrix and discuss associated theory in order to put some restrictions on unknowns. These restrictions aim to maximise the practicality of the construction method by reducing the search field. Following the theory, we look at the numerical results from certain groups of order 4, 8 and 17. We then apply extensions and consider neighbours of codes as methods of finding new codes. Finally, we apply the construction directly over $\mathbb{F}_4 + u\mathbb{F}_4$ to construct new codes of length 96.

2. Preliminaries

Firstly, we describe some essential definitions in coding theory. A code over a finite commutative ring R is defined as any subset C of R^n, where an element of C is called a codeword. If a code, C, satisfies $C = C^\perp$ then C is said to be self-dual, alternatively if $C \subseteq C^\perp$ then the code is said to be self-orthogonal. The Hamming weight enumerator of a code is defined as:

$$W_C(x, y) = \sum_{c \in C} x^{n - \text{wt}(c)} y^{\text{wt}(c)}.$$

For binary codes, a self-dual code where all weights are congruent to 0 (mod 4) is said to be Type II, and otherwise, Type I. If a code satisfies $W_C(x, y) = W_{C^\perp}(x, y)$ then the code is said to be formally self-dual. The bounds on the minimum distances, $d(n)$ for Type I and Type II codes are (\cite{30})

$$d(n) \leq 4\left\lfloor \frac{n}{24} \right\rfloor + 4$$

and

$$d(n) \leq \begin{cases} 4\left\lfloor \frac{n}{24} \right\rfloor + 4 & \text{if } n \not\equiv 22 \pmod{24} \\ 4\left\lfloor \frac{n}{24} \right\rfloor + 6 & \text{if } n \equiv 22 \pmod{24} \end{cases}$$

If these bounds are met for self-dual codes, they are called extremal. Although the theoretical results are based around finite Frobenius rings of characteristic 2, the numerical results are based on the rings \mathbb{F}_2, $\mathbb{F}_2 + u\mathbb{F}_2$ and $\mathbb{F}_4 + u\mathbb{F}_4$.

Now consider the commutative ring $\mathbb{F}_2 + u\mathbb{F}_2 := \mathbb{F}_2[X]/(X^2)$, where u satisfies $u^2 = 0$. Note that this ring is also defined as R_1 since $R_k = \mathbb{F}_2[u_1, u_2, \ldots, u_k]/\langle u_1^2, u_iu_j - u_ju_i \rangle$. The elements of the ring may be written as 0, 1, u and $1 + u$, where 1 and $1 + u$ are the units of $\mathbb{F}_2 + u\mathbb{F}_2$. Secondly, we consider $\mathbb{F}_4 + u\mathbb{F}_4$: the commutative ring of size 16, which can be viewed as an extension of $\mathbb{F}_2 + u\mathbb{F}_2$. Therefore, we can express any element of $\mathbb{F}_4 + u\mathbb{F}_4$ in the form $\omega a + (1 + \omega)b$, where $a, b \in \mathbb{F}_2 + u\mathbb{F}_2$. These rings are generalised in \cite{12} and \cite{13}. The most effective way of displaying these results is to use the hexadecimal system. This is achieved by use of the ordered
basis \(\{ u\omega, \omega, u, 1 \} \):

\[
\begin{array}{c c c c}
0 & \leftrightarrow & 0000, & 1 \leftrightarrow 0001, \ 2 \leftrightarrow 0010, \ 3 \leftrightarrow 0011, \\
4 & \leftrightarrow & 0100, & 5 \leftrightarrow 0101, \ 6 \leftrightarrow 0110, \ 7 \leftrightarrow 0111, \\
8 & \leftrightarrow & 1000, & 9 \leftrightarrow 1001, \ A \leftrightarrow 1010, \ B \leftrightarrow 1011, \\
C & \leftrightarrow & 1100, & D \leftrightarrow 1101, \ E \leftrightarrow 1110, \ F \leftrightarrow 1111.
\end{array}
\]

The following Gray Maps were introduced in [14, 27, 8]:

\[
\begin{align*}
\psi_{\mathbb{F}_4} & : a\omega + b\omega \mapsto (a, b), \ a, b \in \mathbb{F}_2^4 \\
\varphi_{\mathbb{F}_2 + u\mathbb{F}_2} & : a + bu \mapsto (b, a + b), \ a, b \in \mathbb{F}_2^4 \\
\psi_{\mathbb{F}_2 + u\mathbb{F}_4} & : a\omega + b\omega \mapsto (a, b), \ a, b \in (\mathbb{F}_2 + u\mathbb{F}_2)^n \\
\varphi_{\mathbb{F}_2 + u\mathbb{F}_4} & : a + bu \mapsto (b, a + b), \ a, b \in \mathbb{F}_4^n
\end{align*}
\]

These Gray maps preserve orthogonality in the respective alphabets, [25, 27]. The binary codes \(\varphi_{\mathbb{F}_2 + u\mathbb{F}_2} \circ \psi_{\mathbb{F}_4 + u\mathbb{F}_4} (C) \) and \(\psi_{\mathbb{F}_4} \circ \varphi_{\mathbb{F}_4 + u\mathbb{F}_2} (C) \) are equivalent to each other.

Proposition 2.1. ([27]) Let \(C \) be a code over \(\mathbb{F}_4 + u\mathbb{F}_4 \). If \(C \) is self-orthogonal, so are \(\psi_{\mathbb{F}_4 + u\mathbb{F}_4} (C) \) and \(\varphi_{\mathbb{F}_2 + u\mathbb{F}_4} (C) \). \(C \) is a Type I (resp. Type II) code over \(\mathbb{F}_4 + u\mathbb{F}_4 \) if and only if \(\varphi_{\mathbb{F}_2 + u\mathbb{F}_2} (C) \) is a Type I (resp. Type II) \(\mathbb{F}_4 \)-code, if and only if \(\psi_{\mathbb{F}_4 + u\mathbb{F}_2} (C) \) is a Type I (resp. Type II) \(\mathbb{F}_2 + u\mathbb{F}_2 \)-code. Furthermore, the minimum Lee weight of \(C \) is the same as the minimum Lee weight of \(\psi_{\mathbb{F}_4 + u\mathbb{F}_4} (C) \) and \(\varphi_{\mathbb{F}_2 + u\mathbb{F}_4} (C) \).

Corollary 2.2. Suppose that \(C \) is a self-dual code over \(\mathbb{F}_4 + u\mathbb{F}_4 \) of length \(n \) and minimum Lee distance \(d \). Then \(\varphi_{\mathbb{F}_2 + u\mathbb{F}_2} \circ \psi_{\mathbb{F}_4 + u\mathbb{F}_4} (C) \) is a binary \([4n, 2n, d] \) self-dual code. Moreover, \(C \) and \(\varphi_{\mathbb{F}_2 + u\mathbb{F}_2} \circ \psi_{\mathbb{F}_4 + u\mathbb{F}_4} (C) \) have the same weight enumerator. If \(C \) is Type I (Type II), then so is \(\varphi_{\mathbb{F}_2 + u\mathbb{F}_2} \circ \psi_{\mathbb{F}_4 + u\mathbb{F}_4} (C) \).

Theorem 2.3. ([26]) Let \(C \) be a self-dual code of length \(n \) over a commutative Frobenius ring with identity \(R \) and \(G = \langle r_i \rangle \) be a \(k \times n \) generator matrix for \(C \), where \(r_i \) is the \(i \)-th row of \(G \), \(1 \leq i \leq k \). Let \(c \) be a unit in \(R \) such that \(c^2 = -1 \) and \(X \) be a vector in \(S^n \) with \(\langle X, X \rangle = -1 \). Let \(y_i = \langle r_i, X \rangle \) for \(1 \leq i \leq k \). The following matrix

\[
\begin{bmatrix}
1 & 0 \\
y_1 & cy_1 & r_1 \\
& \vdots & \vdots & \vdots \\
y_k & cy_k & r_k
\end{bmatrix}
\]

generates a self-dual code \(D \) over \(R \) of length \(n + 2 \).

Two self-dual binary codes of length \(2n \) are said to be neighbours of each other if their intersection has dimension \(n - 1 \). Let \(x \in \mathbb{F}_2^{2n} \setminus C \) then \(D = \langle x \rangle^\perp \cap C, x \rangle \) is a neighbour of \(C \).

Terminology discussed in this paper required for group rings are as follows: Let \(G \) be a finite group of order \(n \), then the group ring \(RG \) consists of \(\sum_{i=1}^{n} \alpha_i g_i \), \(\alpha_i \in R \), \(g_i \in G \). Addition in the group ring is defined as:

\[
\sum_{i=1}^{n} \alpha_i g_i + \sum_{i=1}^{n} \beta_i g_i = \sum_{i=1}^{n} (\alpha_i + \beta_i) g_i.
\]
The product of two elements in a group ring is defined as:

\[
\left(\sum_{i=1}^{n} \alpha_i g_i \right) \left(\sum_{j=1}^{n} \beta_j g_j \right) = \sum_{i,j} \alpha_i \beta_j g_i g_j.
\]

It follows, that the coefficient of \(g_k \) in the product is \(\sum_{i,j} \alpha_i \beta_j g_i g_j \). Note that, \(e_G \) denotes the identity element of any group \(G \).

The following construction of a matrix was first given by Hurley [22]. This was utilised to provide a link between the automorphism group of a code and the underlying group under a certain construction in [10] among other results. Let \(R \) be a finite commutative Frobenius ring and let \(G = \{ g_1, g_2, \ldots, g_n \} \) be the elements of a group of order \(n \) in a given listing. Let \(v = \sum_i \alpha_i g_i \in RG \). We define the matrix \(\sigma(v) \in M_n(R) \) to be \(\sigma(v) = (\alpha_{g_i^{-1}g_j}) \) where \(i, j \in \{1, 2, \ldots, n\} \).

In this work, we refer to two special types of matrices. A circulant \(n \times n \) matrix denoted \(\text{circ}(\alpha_1, \alpha_2, \ldots, \alpha_n) \), where each row vector is rotated one element to the left relative to the preceding row vector [7]. Additionally, a reverse circulant \(n \times n \) matrix is denoted \(\text{rcir}(\alpha_1, \alpha_2, \ldots, \alpha_n) \), where each row vector is rotated one element to the right relative to the preceding row vector. The notation \(CIR(A_1, A_2, \ldots, A_m) \) denotes the block circulant matrix where the first row of block matrices are \(A_1, \ldots, A_n \).

If \(v = \sum_i \alpha_i x^i \in RC_n \), then \(\sigma(v) = \text{circ}(\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \) where \(C_n = \langle x \mid x^n = 1 \rangle \) and \(\alpha_i \in R \). We will now look at the structure of the matrix \(\sigma(v) \) where \(v \) is an element of \(C_{2^p} \).

Let \(C_{2^p} = \langle x \mid x^{2^p} = 1 \rangle \) and

\[
v = \sum_{i=0}^{p-1} \sum_{j=0}^{1} \alpha_{i+pj+1} x^{2i+j} \in RC_{2^p}
\]

then,

\[
\sigma(v) = \begin{pmatrix} A_1 & A_2 \\ A_2' & A_1 \end{pmatrix}
\]

where \(A_j = \text{circ}(\alpha_{(j-1)p+1}, \alpha_{(j-1)p+2}, \ldots, \alpha_{jp}) \) and \(A_j' = \text{circ}(\alpha_{jp}, \alpha_{(j-1)p+1}, \ldots, \alpha_{jp-1}) \).

Recall the canonical involution * : \(RG \rightarrow RG \) on a group ring \(RG \) is given by \(v^* = \sum g \alpha g^{-1} \), for \(v = \sum g \alpha g \in RG \). If \(v \) satisfies \(vv^* = 1 \), then we say that \(v \) is a unitary unit in \(RG \). Furthermore, note that \(\sigma(v^*) = \sigma(v)^T \).

Following these fundamental theorems and definitions, we will now introduce a new construction and present the theory allowing this method to construct new self-dual codes.

3. Construction

Consider the matrix \(M(\sigma) \), where \(v_1 \) and \(v_2 \) are distinct group ring elements from the same group ring \(RG \) where \(R \) is a finite Frobenius commutative ring of characteristic 2 and \(G \) is a finite group of order \(n \). \(\sigma(v) \) is a matrix generated from a group ring element and \(A \) denotes a reverse circulant matrix. The construction is given as:
Lemma 3.1. Let a self-dual code. The first Lemma shows a generalisation of our construction and the conditions for $R G$ between unitary units in C. Let M be a finite commutative Frobenius ring of characteristic 2 and let B and C be $n \times n$ matrices over R. Then, the matrix

$$M = \begin{bmatrix} I_{2n} & B & C \\ B & C & B \end{bmatrix}$$

generates a self-dual code iff $(B + C)(B + C)^T = I_n$ and $BC^T = CB^T$.

Proof. Clearly, the code generated by M has free rank $2n$, as the left-hand side of the matrix M is the $2n \times 2n$ identity matrix. The code generated by M is self-dual iff the code generated by M is self-orthogonal. Now,

$$MM^T = I_{2n} + \begin{bmatrix} B & C \\ C & B \end{bmatrix} \begin{bmatrix} B^T & C^T \\ C^T & B^T \end{bmatrix} = \begin{bmatrix} I_n + BB^T + CC^T & BC^T + CB^T \\ CB^T + BC^T & I_n + CC^T + BB^T \end{bmatrix}$$

and $MM^T = 0$ iff $I_n + BB^T + CC^T = 0$ and $BC^T + CB^T = 0$. Adding these equations, we obtain

$$I_n + BB^T + CC^T + BC^T + CB^T = 0 \iff (B + C)(B + C)^T = I_n.$$

\[\Box\]

Using this result, we can consider the matrix $M(\sigma)$ and the conditions for C_σ, the code generated by $M(\sigma)$, to be self-dual.

Theorem 3.2. Let R be a finite commutative Frobenius ring of characteristic 2 and let G be a finite group of order n. Then, C_σ generates a self-dual code of length $4n$ iff $(\sigma(v_1 + v_2) + A)(\sigma((v_1 + v_2)^*) + A) = I_n$ and $\sigma(v_1)(\sigma((v_1 + v_2)^*) + A) = (\sigma(v_1 + v_2) + A)\sigma(v_1^*)$.

Proof. By the previous result, C_σ generates a self-dual code iff

$$(\sigma(v_1) + \sigma(v_2) + A)(\sigma(v_1) + \sigma(v_2) + A)^T = I_n \text{ and } \sigma(v_1)(\sigma(v_2) + A)^T = (\sigma(v_2) + A)\sigma(v_1)^T.$$

Now, $\sigma(v_1) + \sigma(v_2) + A = \sigma(v_1 + v_2) + A$ and

$$(\sigma(v_1) + \sigma(v_2) + A)^T = \sigma(v_1)^T + \sigma(v_2)^T + A^T$$
$$= \sigma(v_1^*) + \sigma(v_2^*) + A$$
$$= \sigma(v_1^* + v_2^*) + A$$
$$= \sigma((v_1 + v_2)^*) + A.$$

Clearly, $\sigma(v_1)(\sigma(v_2) + A)^T = (\sigma(v_2) + A)\sigma(v_1)^T$ is equivalent to

$$\sigma(v_1)\sigma(v_1)^T + \sigma(v_1)(\sigma(v_2) + A)^T = \sigma(v_1)\sigma(v_1)^T + (\sigma(v_2) + A)\sigma(v_1)^T.$$
Considering the left-and right-hand sides separately, we obtain:
\[
\sigma(v_1)\sigma(v_1)^T + \sigma(v_1)(\sigma(v_2) + A)^T = \sigma(v_1)\sigma(v_1)^* + \sigma(v_1)(\sigma(v_2)^T + A^T)
\]
\[
= \sigma(v_1)\sigma(v_1)^* + \sigma(v_1)\sigma(v_2) + \sigma(v_1)A
\]
\[
= \sigma(v_1)(\sigma(v_1)^* + \sigma(v_2)^* + A)
\]
\[
= \sigma(v_1)(\sigma(v_1^* + v_2^*) + A)
\]
\[
= \sigma(v_1)(\sigma((v_1 + v_2)^*) + A).
\]
and
\[
(\sigma(v_2) + A)\sigma(v_1)^T + \sigma(v_1)(\sigma(v_2) + A)^T = \sigma(v_1)\sigma(v_1)^* + (\sigma(v_2) + A)\sigma(v_1^*)
\]
\[
= \sigma(v_1)\sigma(v_1)^* + \sigma(v_2)\sigma(v_1^*) + A\sigma(v_1^*)
\]
\[
= (\sigma(v_1) + \sigma(v_2) + A)\sigma(v_1^*)
\]
\[
= (\sigma(v_1 + v_2) + A)\sigma(v_1^*).
\]

\[\square\]

In addition to the main theorem of this paper, we will now present some interesting results regarding circulant and reverse circulant matrices over rings and the structure of \(\sigma(v)\).

Lemma 3.3. Let \(R\) be a finite commutative Frobenius ring of characteristic 2, \(A\) be an \(n \times n\) reverse circulant over \(R\) and \(V\) be an \(n \times n\) circulant matrix over \(R\). Then,
\[
AV^T + VA^T = 0.
\]

Proof. Let \(V = \text{circ}(v_1, v_n, v_{n-1}, \ldots, v_3, v_2)\). Clearly, \(V = v_1I_n + v_2P + v_3P^2 + \cdots + v_nP^{n-1}\) where \(P = \text{circ}(0, 0, \ldots, 0, 1)\) and \(A = \text{rcirc}(a_1, a_2, \ldots, a_{n-1}, a_n)\). Now,
\[
V^T = v_1I_n^T + v_2P^T + v_3(P^2)^T + \cdots + v_n(P^{n-1})^T
\]
\[
= v_1I_n + v_2P^T + v_3(P^2)^T + \cdots + v_n(P^{n-1})^T.
\]

As \(A = A^T\), it remains to show that \(AP^T + PA = 0\). Finally,
\[
PA = \text{circ}(0, 0, \ldots, 0, 1) \cdot \text{rcirc}(a_1, a_2, \ldots, a_{n-1}, a_n) = \text{rcirc}(a_n, a_1, \ldots, a_{n-1})
\]
and
\[
AP^T = \text{rcirc}(a_1, a_2, \ldots, a_{n-1}, a_n) \cdot \text{circ}(0, 1, \ldots, 0, 0) = \text{rcirc}(a_n, a_1, \ldots, a_{n-1}).
\]

\[\square\]

Lemma 3.4. Let \(R\) be a commutative ring and let \(G = \{g_1 = e, \ldots, g_n\}\) be a finite group of order \(n > 1\). The \(\sigma(v)\) is symmetric for any \(v \in RG\) if and only if \(G\) is abelian group of exponent 2.

Proof. Clearly, \(\sigma(v)\) is symmetric for any \(v \in RG\) if and only if \(a_{g_i^{-1}g_j} = a_{g_j^{-1}g_i}\) for any \(v = \sum_{g \in G} a_gg \in RG\). Furthermore, we have \(g_i^{-1}g_j = g_j^{-1}g_i\) or \(xy = y^{-1}x^{-1}\) for any \(x, y \in G\). Note that for an abelian group of exponent 2, \(xy = x^{-1}\) or \(xy = e\) or \((xy)^2 = e\) for any \(x, y \in G\). Therefore, we have that \(g^2 = e\) for any \(g \in G\); thus, \(G\) has exponent 2.

It is interesting to note that any group of exponent 2 is abelian because \(xyxy = e\) and \(xxyy = ee = e\) since \(x\) and \(y\) are commutative for any \(x, y \in G\). \[\square\]
Lemma 3.5. Let \(R \) be a commutative ring. An \(n \times n \)-matrix \(X \) satisfies \(XA = AX^T \) for any \(n \times n \) reverse circulant matrix \(A \) over \(R \) if and only if \(X \) is a circulant matrix.

Proof. This proof follows from lemma 3.3. Let \(X \) be an \(n \times n \)-matrix which satisfies \(XA = AX^T \). Then
\[
XA = A^TX^T
\]
and
\[
XA = (XA)^T
\]
for any \(n \times n \) reverse circulant matrix \(A \) over \(R \). This implies that \(XA \) is symmetric.

Let \(D = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & 0 & 0 \end{pmatrix} = \text{rcirc}(0, \ldots, 0, 1), \quad X = (x_{i,j}). \) Clearly, we have \(D^2 = I_n \) and \(XD^2A \) is symmetric for any \(n \times n \) reverse circulant matrix \(A \) over \(R \). Therefore, \((x_{i,n-j})DA \) is symmetric.

So we have \((x_{i,n-j})B \) is symmetric for any \(n \times n \) circulant matrix \(B \) over \(R \). This is equivalent to the fact that \((x_{i,n-j})P^k \) is symmetric for any \(k \in \{1, \ldots, n\} \) and \(n \times n \) matrix \(P = \text{circ}(0, \ldots, 0, 1) \). Thus, \((x_{i,(k-j)\mod n+1}) \) is symmetric for any \(k \in \{1, \ldots, n\} \). We have
\[
x_{i,(k-j)\mod n+1} = x_{j,(k-i)\mod n+1} \quad i, j, k \in \{1, \ldots, n\}
\]
It is easy to see that \(j' = (k-j) \mod (n+1) \) equivalent to \(j = (k-j') \mod (n+1) \) where \(i, j, j', k \in \{1, \ldots, n\} \). So
\[
x_{i,j'} = x_{j,(k-j') \mod n+1, (k-i) \mod n+1} \quad i, j', k \in \{1, \ldots, n\}
\]
Thus \(((k-j') \mod (n+1)) - ((k-i) \mod (n+1)) \equiv i - j \mod n \). Therefore, we have that \(x_{i,j'} \) is constant if \(i - j \mod n \) is fixed. Thus, \(X \) is circulant. \(\square \)

Lemma 3.6. Let \(R \) be a finite commutative Frobenius ring of characteristic 2 and let \(G \) be a finite abelian group of order \(n \) of exponent 2. Then, \(C_\sigma \) generates a self-dual code of length \(4n \) if \(\sigma(v_1), \sigma(v_2) \) are circulant matrices, \(\sigma((v_1 + v_2)^2) + A^2 = I_n \).

Proof. We note that \(A\sigma(v_1^*) = \sigma(v_1)A, A\sigma(v_2^*) = \sigma(v_2)A \) by lemma 3.3. By lemma 3.4 for any \(v \in RG, \sigma(v) \) is symmetric, so \(\sigma(v^*) = \sigma(v)^T = \sigma(v) \). We also know by Theorem 3.2 that \(C_\sigma \) generates a self-dual code iff
\[
(\sigma(v_1) + \sigma(v_2) + A)(\sigma(v_1) + \sigma(v_2) + A)^T = I_n \quad \text{and} \quad (\sigma(v_1)(\sigma(v_2) + A))^T = (\sigma(v_2) + A)\sigma(v_1)^T.
\]
Now,
\[
(\sigma(v_1) + \sigma(v_2) + A)(\sigma(v_1) + \sigma(v_2) + A)^T \\
= (\sigma(v_1 + v_2) + A)(\sigma(v_1 + v_2)^* + A) \\
= \sigma(v_1 + v_2)\sigma((v_1 + v_2)^*) + [\sigma(v_1 + v_2)A + A\sigma((v_1 + v_2)^*)] + A^2 \\
= \sigma((v_1 + v_2)(v_1 + v_2)^*) + A^2 \\
= \sigma((v_1 + v_2)^2) + A^2 = I_n.
\]
Lemma 3.7. Let R be a finite commutative Frobenius ring of characteristic 2 and let G be a finite cyclic group of order n. Then, C_{σ} generates a self-dual code of length $4n$ iff $\sigma((v_1 + v_2)(v_1 + v_2)^*) + A^2 = I_n$ and $v_1v_2^* = v_2v_1^*$.

Proof. We note that $A\sigma(v^*) = \sigma(v)A$ for all $v \in RG$ by the previous result. We also know that C_{σ} generates a self-dual code iff
\[
(\sigma(v_1) + \sigma(v_2) + A)(\sigma(v_1) + \sigma(v_2) + A)^T = I_n \text{ and } \sigma(v_1)(\sigma(v_2) + A)^T
\]
\[
= (\sigma(v_2) + A)\sigma(v_1)^T.
\]
Now,
\[
(\sigma(v_1) + \sigma(v_2) + A)(\sigma(v_1) + \sigma(v_2) + A)^T
\]
\[
= (\sigma(v_1 + v_2) + A)(\sigma((v_1 + v_2)^*) + A)
\]
\[
= \sigma(v_1 + v_2)\sigma((v_1 + v_2)^*) + [\sigma(v_1 + v_2)A + A\sigma((v_1 + v_2)^*)] + A^2
\]
\[
= \sigma((v_1 + v_2)(v_1 + v_2)^*) + A^2 = I_n
\]
and
\[
\sigma(v_1)(\sigma(v_2) + A)^T + (\sigma(v_2) + A)\sigma(v_1)^T
\]
\[
= \sigma(v_1)\sigma(v_2^*) + [\sigma(v_1)A + A\sigma(v_1^*)] + \sigma(v_2)\sigma(v_1^*)
\]
\[
= \sigma(v_1v_2^*) + \sigma(v_2v_1^*)
\]
\[
= \sigma(v_1v_2^* + v_2v_1^*).
\]
Finally, $\sigma(v_1v_2^* + v_2v_1^*) = 0$ iff $v_1v_2^* = v_2v_1^*$.

Lemma 3.8. Let R be a finite commutative Frobenius ring of characteristic 2 and let G be a finite abelian group of order n. Let C_{σ} be self-dual. If $A = 0$, then $v_1 + v_2$ is unitary.

Proof. If C_{σ} is self-dual and $A = 0$, then $\sigma((v_1 + v_2)(v_1 + v_2)^*) = I_n$ and $(v_1 + v_2)(v_1 + v_2)^* = 1$.

This concludes the theoretical part of this paper. We will now show the numerical results.

4. Numerical results

In this section, we construct 32 new self-dual codes of length 68 and 48 new self-dual codes of length 96. We begin with the construction of self-dual codes of length 64 from groups of order 4 and 8. Using Theorem 2.3, we construct new self-dual codes of length 68. Next, we construct codes of length 68 from groups of order 17. We then find new self-dual codes of length 68 by finding neighbours of these codes and neighbours of these neighbours. We conclude this section by constructing new self-dual codes of 96 from groups of order 6. Magma ([4]) was used to construct all of the codes throughout this section.
4.1. New codes of length 68. The possible weight enumerators for a self-dual Type I [64,32,12]-code are given in [6,11] as:

\[W_{64,1} = 1 + (1312 + 16\beta)y^{12} + (22016 - 64\beta)y^{14} + \ldots, \quad 14 \leq \beta \leq 284, \]

\[W_{64,2} = 1 + (1312 + 16\beta)y^{12} + (23040 - 64\beta)y^{14} + \ldots, \quad 0 \leq \beta \leq 277. \]

Extremal singly even self-dual codes with weight enumerators \(W_{64,1} \) are known ([1, 32, 17]):

\[\beta \in \{ 14, 16, 18, 19, 20, 22, 24, 25, 26, 28, 29, 30, 32, 34, 35, 36, 38, 39, 44, 46, 49, 53, 54, 58, 59, 60, 64, 74 \} \]

and extremal singly even self-dual codes with weight enumerator \(W_{64,2} \) are known for:

\[\beta \in \{ 0, \ldots, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 64, 69, 72, 80, 88, 96, 104, 108, 112, 114, 118, 120, 184 \} \setminus \{ 31, 39 \}. \]

The weight enumerator of a self-dual [68,34,12] code is in one of the following forms:

\[W_{68,1} = 1 + (442 + 4\beta)y^{12} + (10864 - 8\beta)y^{14} + \ldots, \]

\[W_{68,2} = 1 + (442 + 4\beta)y^{12} + (14960 - 8\beta - 256\gamma)y^{14} + \ldots, \]

where \(\beta \) and \(\gamma \) are parameters and \(0 \leq \gamma \leq 9. \)

The existence of codes in \(W_{68,1} \) are known for ([9]) \(\beta = 104, 105, 112, 115, 117, 119, 120, 122, 123, 125, \ldots, 284, 287, 289, 291, 294, 301, 302, 308, 313, 315, 322, 324, 328, \ldots,, 336, 338, 339, 345, 347, 350, 355, 379 and 401.

The first examples of codes with a \(\gamma = 7 \) in \(W_{68,2} \) are constructed in [33]. Together with these, the existence of the codes in \(W_{68,2} \) is known for the following parameters (see [33, 17]):

- \(\gamma = 0, \beta \in \{ 2m|m = 0, 7, 11, 14, 17, 21, \ldots, 99, 102, 105, 110, 119, 136, 165 \} \}; or \(\beta \in \{ 2m + 1|m = 3, 5, 8, 10, 15, 16, 17, 20, \ldots, 82, 87, 93, 94, 101, 104, 110, 115 \} \};
- \(\gamma = 1, \beta \in \{ 2m|m = 19, 22, \ldots, 99 \}; or \beta \in \{ 2m + 1|m = 24, \ldots, 85 \};
- \(\gamma = 2, \beta \in \{ 2m|m = 29, \ldots, 100, 103, 104 \}; or \beta \in \{ 2m + 1|m = 32, \ldots, 81, 84, 85, 86 \};
- \(\gamma = 6 \) with \(\beta \in \{ 2m|m = 69, 77, 78, 79, 81, 88 \};
- \(\gamma = 7 \) with \(\beta \in \{ 7m|m = 14, \ldots, 39, 42 \}. \)

Note that all binary codes of length 68 with an automorphism of order 17 are classified in [21]. Firstly, we construct self-dual codes of length 64 from \(C_4 \) (over \(F_4 + uF_4 \)), \(C_{2,4} \) (over \(F_2 + uF_2 \)) and \(C_8 \) (over \(F_2 + uF_2 \)). We then construct three self-dual codes of length 68 (Table 4) by applying Theorem 2.3 to the codes constructed in Tables 1,2 and 3. We replace \(1 + u \in F_2 + uF_2 \) with 3 to save space.

Table 1. Self-dual code over \(F_4 + uF_4 \) of length 64 from \(C_4 \) and \(C_4 \).

\(\beta \)	\(r_A \)	\(v_1 \in C_4 \) \(v_2 \in C_4 \)	\(\text{Aut}(A) \)	
\(0 \)	\(\beta \)	\((8906) \) \((0000) \) \((A617) \)	\(2^4 \)	0

Table 2. Self-dual code over \(F_2 + uF_2 \) of length 64 from \(C_8 \) and \(C_8 \).

\(\beta \)	\(r_A \)	\(v_1 \in C_8 \) \(v_2 \in C_8 \)	\(\text{Aut}(B) \)
\((uuuu10311) \) \((uu011uu0) \) \((u6390013) \)	\(2^4 \)	0	
We now construct two self-dual codes of length 68 using C_{17} (Table 5). We let $v_2 = 0 \in RC_{17}$. We note that in this case, the construction is equivalent to the usual four circulant construction.

Table 5. Self-dual codes over \mathbb{F}_2 of length 68 ($W_{68,2}$) from C_{17} and C_{17}.

| E_i | $v_1 \in C_{17}$ | $v_2 \in C_{17}$ | r_A | $|Aut(D_i)|$ | γ | β |
|------|-----------------|-----------------|-------|-------------|-------|-------|
| 1 | (00000000000011011) | (00000000000000000) | (00100110010110111) | 113 | 4 | 2 |
| 2 | (00000001100111111) | (00000000000000000) | (00100110010110111) | 61 | 2 | 2 |
| 3 | (001303031011000110) | (001303030101000110) | (001303030101000110) | 179 | 1 | 2 |

We now construct neighbours of these codes and neighbours of these neighbours.

Table 6. New codes of length 68 from neighbours of E_1 and E_2

| F_i | E_i | $(x_{35}, x_{36}, \ldots, x_{68})$ | $|Aut(F_i)|$ | γ | β | Type |
|------|------|-----------------|-------------|-------|-------|-------|
| 1 | 2 | (011101111011100011010000001000010100) | 2 | 0 | 208 | $W_{68,2}$ |
| 2 | 2 | (11110001101101000010010000000010001) | 0 | 2 | 214 | $W_{68,2}$ |
| 2 | 2 | (0001001110111011101100001010011001) | 2 | 1 | 191 | $W_{68,2}$ |
| 2 | 2 | (0010011111111101000111110101100101) | 2 | 1 | 202 | $W_{68,2}$ |
| 2 | 2 | (1001101111111101000100001010010110) | 1 | 1 | 210 | $W_{68,2}$ |
| 2 | 2 | (0101001100011001100110010001000110) | 1 | 1 | 211 | $W_{68,2}$ |
| 2 | 2 | (0010110101011011111111110111111111) | 1 | 1 | 229 | $W_{68,2}$ |
| 2 | 2 | (1111111111111111111111111111111111) | 1 | 1 | 317 | $W_{68,1}$ |

Table 7. New codes of length 68 from neighbours of F_7 and F_8

| G_i | F_i | $(x_{35}, x_{36}, \ldots, x_{68})$ | $|Aut(G_i)|$ | γ | β | Type |
|------|------|-----------------|-------------|-------|-------|-------|
| 1 | 8 | (00010011110100001001100000010011010100) | 1 | 0 | 218 | $W_{68,2}$ |
| 2 | 7 | (0010000010001001001100110110101000100) | 1 | 1 | 193 | $W_{68,2}$ |
| 3 | 7 | (1001001010110101110110011011110100000) | 1 | 1 | 195 | $W_{68,2}$ |
| 4 | 7 | (010101010101010101010101010101010101) | 1 | 1 | 233 | $W_{68,2}$ |
| 5 | 7 | (011101010101010101010101010101010101) | 1 | 2 | 193 | $W_{68,2}$ |
| 6 | 7 | (110010110100001011101011011101011111) | 1 | 2 | 195 | $W_{68,2}$ |
New self-dual codes from 2×2 block circulant matrices, group rings and ... 11

Table 8. New codes of length 68 from neighbours of G_5

| H_i | G_i | $(x_{35}, x_{36}, ..., x_{68})$ | $|\text{Aut}(H_i)|$ | γ | β | Type | $W_{68,2}$ |
|-------|-------|-------------------------------|------------------|-------|-------|------|--------|
| 1 | 5 | (001001011001100000010111011110) | 1 | 1 | 197 | | |
| 2 | 5 | (010000101001101101010111011111) | 1 | 1 | 199 | | |
| 3 | 5 | (110001010111011011011101011110) | 1 | 2 | 199 | | |
| 4 | 5 | (00100001001110011000010100000001) | 1 | 2 | 191 | | |
| 5 | 5 | (00010010100110101010011101100100) | 1 | 2 | 204 | | |
| 6 | 5 | (1011010010000101010111101101) | 1 | 2 | 218 | | |

Table 9. Code of length 68 from the neighbours of D_1

| I_i | D_i | $(x_{35}, x_{36}, ..., x_{68})$ | $|\text{Aut}(I_i)|$ | γ | β | Type | $W_{68,2}$ |
|-------|-------|-------------------------------|------------------|-------|-------|------|--------|
| 1 | 1 | (111001011001101101101101111010) | 1 | 5 | 133 | | |

Table 10. Code of length 68 from the neighbours of I_1

| J_i | L_i | $(x_{35}, x_{36}, ..., x_{68})$ | $|\text{Aut}(I_i)|$ | γ | β | Type | $W_{68,2}$ |
|-------|-------|-------------------------------|------------------|-------|-------|------|--------|
| 1 | 1 | (0000100001011000111011000111100) | 1 | 6 | 141 | | |

Table 11. New codes of length 68 from the neighbours of J_1

| K_i | J_i | $(x_{35}, x_{36}, ..., x_{68})$ | $|\text{Aut}(K_i)|$ | γ | β | Type | $W_{68,2}$ |
|-------|-------|-------------------------------|------------------|-------|-------|------|--------|
| 1 | 1 | (1111111100110001011001000101) | 1 | 6 | 158 | | |

Table 12. New codes of length 68 from the neighbours of K_2

| L_i | K_i | $(x_{35}, x_{36}, ..., x_{68})$ | $|\text{Aut}(L_i)|$ | γ | β | Type | $W_{68,2}$ |
|-------|-------|-------------------------------|------------------|-------|-------|------|--------|
| 1 | 2 | (0101111110100110001101101110) | 1 | 7 | 155 | | |
| 2 | 2 | (0101010101010100010110101011) | 1 | 7 | 156 | | |
| 3 | 2 | (0000101101110101101011101010) | 1 | 7 | 157 | | |
| 4 | 2 | (1111111101111011101110111101) | 1 | 7 | 159 | | |
| 5 | 2 | (1001111110001000111111101010101) | 1 | 7 | 160 | | |
| 6 | 2 | (1000101001010010010001100110101) | 1 | 7 | 162 | | |
| 7 | 2 | (10000101001101001101110111110111) | 1 | 7 | 164 | | |
| 8 | 2 | (01000010101111110100011011001101) | 1 | 7 | 165 | | |
| 9 | 2 | (01111110001011111101011111110111) | 1 | 7 | 167 | | |

4.2. New codes of length 96. The possible weight enumerators of a singly-even binary self-dual $[96, 48, 16]$ code are given in [20] as

$$W_{96,1} = 1 + (\alpha - 5814)x^{16} + (97280 + 64\beta)x^{18} + (1784320 - 16\alpha - 384\beta)x^{20}$$
$$+ (17626112 + 192\beta)x^{22} + \cdots,$$

$$W_{96,2} = 1 + (\alpha - 5814)x^{16} + (97280 + 64\beta)x^{18} + (1694208 - 16\alpha - 384\beta + 4096\gamma)x^{20}$$
$$+ (18969600 + 192\beta - 49152\gamma)x^{22} + \cdots,$$

where $\alpha, \beta, \gamma \in \mathbb{Z}$. Previously known (α, β, γ) values for weight enumerators $W_{96,1}$ and $W_{96,2}$ can be found online at [31] (see [34, 20, 18]).

We construct 48 new codes of length 96 as the binary images of codes of length 24 over $\mathbb{F}_4 + u\mathbb{F}_4$ from C_6 (Table 13).
| C_{6,1} | v_1 \in C_6 | v_2 \in C_6 | r_A | |Aut(C_{6,1})| | \alpha | | \beta | | \gamma | | Type |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | (171D00) | (DC34AE,B) | (7C11I1C) | 2^* | 11104 | -68 | 0 | W_{9,2} |
| 2 | (C00E11) | (C89D49) | (F656F5) | 2^* | 10208 | -52 | 0 | W_{9,2} |
| 3 | (6492FF) | (640D6D) | (7C11I1C) | 2^* - 3 | 11328 | -28 | 0 | W_{9,2} |
| 4 | (1236FC) | (0147F98) | (D1DE6E) | 2^* | 11312 | -108 | 2 | W_{9,2} |
| 5 | (3E222F) | (6E9A97) | (D1DE6E) | 2^* | 11728 | -100 | 2 | W_{9,2} |
| 6 | (C6E6B5F) | (E56C61) | (7C11I1C) | 2^* | 11184 | -84 | 2 | W_{9,2} |
| 7 | (8B89D66) | (99068F) | (7C11I1C) | 2^* | 10592 | -80 | 2 | W_{9,2} |
| 8 | (1D271F) | (A876E) | (6B6DDB) | 2^* | 11184 | -76 | 2 | W_{9,2} |
| 9 | (0476D3) | (126325) | (6B6DDB) | 2^* | 11468 | -72 | 2 | W_{9,2} |
| 10 | (55DD11) | (F1E6C6B) | (6B6DDB) | 2^* | 10624 | -64 | 2 | W_{9,2} |
| 11 | (C2F3D9) | (16D6F6A) | (6B6DDB) | 2^* | 10944 | -60 | 2 | W_{9,2} |
| 12 | (D1871D) | (9FCD5D) | (6B6DDB) | 2^* | 11224 | -56 | 2 | W_{9,2} |
| 13 | (41433E) | (4F2221) | (7C11I1C) | 2^* | 10782 | -48 | 2 | W_{9,2} |
| 14 | (B899AB) | (6D95F90) | (D1DE6E) | 2^* | 12320 | -156 | 4 | W_{9,2} |
| 15 | (F74016) | (A59E6B) | (D1DE6E) | 2^* | 11104 | -140 | 4 | W_{9,2} |
| 16 | (EF2862) | (886745) | (F656F5) | 2^* | 11528 | -136 | 4 | W_{9,2} |
| 17 | (A569B3) | (317171) | (7C11I1C) | 2^* | 11472 | -132 | 4 | W_{9,2} |
| 18 | (4250B6) | (979C73) | (D1DE6E) | 2^* | 11728 | -120 | 4 | W_{9,2} |
| 19 | (01AK16) | (CA0455) | (F656F5) | 2^* | 11360 | -116 | 4 | W_{9,2} |
| 20 | (F2E6F3) | (23B01B) | (F656F5) | 2^* | 11160 | -112 | 4 | W_{9,2} |
| 21 | (6C02AE) | (6F090F) | (6B6DDB) | 2^* | 11328 | -112 | 4 | W_{9,2} |
| 22 | (479924) | (AA7C9) | (D1DE6E) | 2^* | 11568 | -112 | 4 | W_{9,2} |
| 23 | (5F687B) | (4E06D5) | (7C11I1C) | 2^* | 11088 | -108 | 4 | W_{9,2} |
| 24 | (35222F) | (C6S9E9F) | (6B6DDB) | 2^* | 11488 | -108 | 4 | W_{9,2} |
| 25 | (9588C0) | (07DE80) | (7C11I1C) | 2^* | 11072 | -104 | 4 | W_{9,2} |
| 26 | (988C6F) | (7901A) | (F656F5) | 2^* | 10672 | -100 | 4 | W_{9,2} |
| 27 | (313074) | (346929) | (7C11I1C) | 2^* | 10944 | -100 | 4 | W_{9,2} |
| 28 | (35490C) | (990765) | (7C11I1C) | 2^* | 11084 | -96 | 4 | W_{9,2} |
| 29 | (505084) | (57696E) | (F656F5) | 2^* | 11064 | -88 | 4 | W_{9,2} |
| 30 | (6D41401) | (92296E) | (6B6DDB) | 2^* | 11504 | -84 | 4 | W_{9,2} |
| 31 | (5826B3) | (195810) | (6B6DDB) | 2^* | 10888 | -80 | 4 | W_{9,2} |
| 32 | (94AE7C) | (749032) | (F656F5) | 2^* | 12504 | -160 | 6 | W_{9,2} |
| 33 | (7348CF) | (D46308) | (F656F5) | 2^* | 11552 | -156 | 6 | W_{9,2} |
| 34 | (F07D3B) | (6B7D2) | (6B6DDB) | 2^* | 11872 | -156 | 6 | W_{9,2} |
| 35 | (B4196E) | (978B05) | (D1DE6E) | 2^* | 11376 | -148 | 6 | W_{9,2} |
| 36 | (47ESC7) | (CE7CE) | (6B6DDB) | 2^* - 3 | 11736 | -148 | 6 | W_{9,2} |
| 37 | (6B58E6) | (113C19) | (F656F5) | 2^* | 11576 | -140 | 6 | W_{9,2} |
| 38 | (B1C856) | (F7152D) | (D1DE6E) | 2^* | 12348 | -140 | 6 | W_{9,2} |
| 39 | (F18963) | (85DD11) | (D1DE6E) | 2^* | 11088 | -132 | 6 | W_{9,2} |
| 40 | (6C1491) | (A5S34) | (6B6DDB) | 2^* | 11304 | -132 | 6 | W_{9,2} |
| 41 | (859C8C) | (FD6017) | (7C11I1C) | 2^* | 11312 | -120 | 6 | W_{9,2} |
| 42 | (9217CF) | (DCD676) | (7C11I1C) | 2^* | 12928 | -192 | 8 | W_{9,2} |
| 43 | (C620D5) | (FAE564) | (7C11I1C) | 2^* | 11768 | -172 | 8 | W_{9,2} |
| 44 | (3617E2) | (192066) | (7C11I1C) | 2^* | 11272 | -168 | 8 | W_{9,2} |
| 45 | (3B4E33) | (G6S5E2) | (7C11I1C) | 2^* | 11968 | -168 | 8 | W_{9,2} |
| 46 | (E90S89) | (D62E2) | (D1DE6E) | 2^* | 12896 | -260 | 12 | W_{9,2} |
| 47 | (B80454) | (F5F331) | (D1DE6E) | 2^* | 12288 | -244 | 12 | W_{9,2} |
| 48 | (E9DA51) | (6D030D) | (6B6DDB) | 2^* | 12320 | -244 | 12 | W_{9,2} |

5. Conclusion

In this work, we introduced a new construction that involved both block circulant matrices and a reverse circulant matrix. We demonstrated the relevance of this new
construction by constructing many binary self-dual codes, including new self-dual
codes of length 68 and 96. To summarise the numerical results, we construct the
following unknown $W_{68,1}$ code:

$$\beta = \{317\}.$$

Furthermore, we construct the following unknown $W_{68,2}$ codes:

$$\beta = \{208, 214, 218\},$$

$$(\gamma = 1, \beta = \{179, 191, 193, 195, 197, 199, 202, 210, 211, 229\}),$$

$$(\gamma = 2, \beta = \{61, 191, 193, 195, 199, 204, 218\}),$$

$$(\gamma = 6, \beta = \{131\}),$$

$$(\gamma = 7, \beta = \{155, 156, 157, 158, 159, 160, 162, 164, 165, 167\})$$

We also construct the following new codes of length 96 with weight enumerator $W_{96,2}$:

$$(\gamma = 0, (a, b) = \{(11104, -68), (10208, -52), (11328, -28)\}),$$

$$(\gamma = 2, (a, b) = \{(11312, -108), (11728, -100), (11184, -84), (10592, -80),$$

$$ (11184, -76), (11488, -72), (10624, -64), (10944, -60), (11224, -56),$$

$$ (10728, -48)\}),$$

$$(\gamma = 4, (a, b) = \{(12320, -156), (11104, -140), (11528, -136), (11472, -132),$$

$$ (11728, -120), (11360, -116), (11160, -112), (11328, -112), (11568, -112),$$

$$ (11088, -108), (11488, -108), (11072, -104), (10672, -100), (10944, -100),$$

$$ (11048, -96), (11064, -88), (11504, -84), (10888, -80)\}),$$

$$(\gamma = 6, (a, b) = \{(12504, -160), (11552, -156), (11872, -156), (11376, -148),$$

$$ (11736, -148), (11576, -140), (12448, -140), (11008, -132),$$

$$ (11304, -132), (11312, -120)\}),$$

$$(\gamma = 8, (a, b) = \{(12928, -192), (11768, -172), (11272, -168), (11968, -168)\}),$$

$$(\gamma = 12, (a, b) = \{(12896, -260), (12288, -244), (12320, -244)\})$$

Regarding this construction, we were restricted to small group rings due to com-
putational limitations. With a higher computational power, it would be possible
to investigate larger group rings which would yield more results. One could also
consider other families of rings.

References

[1] D. Anev, M. Harada and N. Yankov, New extremal singly even self-dual codes of lengths 64
and 66, J. Algebra Comb. Discrete Struct. Appl., 5 (2018), 143–151.

[2] E. R. Berlekamp, F. J. MacWilliams and N. J. A. Sloane, Gleason’s theorem on self-dual
codes, IEEE Trans. Inform. Theory, IT-18 (1972), 409–414.

[3] F. Bernhardt, P. Landrock and O. Manz, The extended golay codes considered as ideals, J.
Combin. Theory Ser. A, 55 (1990), 235–246.

[4] W. Bosma, J. Cannon and C. Playoust, The magma algebra system. I. the user language,
Computational Algebra and Number Theory (London, 1993), J. Symbolic Comput., 24 (1997),
235–265,
[5] C. L. Chen, W. W Peterson and E. J. Weldon. Jr, Some results on quasi-cyclic codes, Information and Control, 15 (1969), 407–423.
[6] J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319–1333.
[7] P. J. Davis, Circulant Matrices, A Wiley-Interscience Publication; Pure and Applied Mathematics, John Wiley & Sons, New York-Chichester-Brisbane, 1979.
[8] S. T. Dougherty, P. Gaborit, M. Harada and P. Solé, Type ii codes over $\mathbb{F}_2 + u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32–45.
[9] S. T. Dougherty, J. Gildea, A. Korban, A. Kaya, A. Tyllyshchak and B. Yildiz, Bordered constructions of self-dual codes from group rings and new extremal binary self-dual codes, Finite Fields Appl., 57 (2019), 108–127.
[10] S. T. Dougherty, J. Gildea, R. Taylor and A. Tyllyshchak, Group rings, g-codes and constructions of self-dual and formally self-dual codes, Des. Codes Cryptogr., 66 (2013), 2115–2138.
[11] S. T. Dougherty, T. A. Gulliver and M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory, 43 (1997), 2036–2047.
[12] S. T. Dougherty, B. Yildiz and S. Karadeniz, Codes over R_k, gray maps and their binary images, Finite Fields Appl., 17 (2011), 205–219.
[13] S. Dougherty, B. Yildiz and S. Karadeniz, Self-dual codes over R_4 and binary self-dual codes, Eur. J. Pure Appl. Math., 6 (2013), 89–106.
[14] P. Gaborit, Quadratic double circulant codes over fields, J. Combin. Theory Ser. A, 97 (2002), 85–107.
[15] S. D. Georgiou and E. Lappas, Self-dual codes from circulant matrices, Des. Codes Cryptogr., 64 (2012), 129–141.
[16] J. Gildea, H. Hamilton, A. Kaya and B. Yildiz, Modified quadratic residue constructions and new extremal binary self-dual codes of lengths 64, 66 and 68, Information Processing Letters, 157.
[17] J. Gildea, A. Kaya, A. Korban and B. Yildiz, Constructing self-dual codes from group rings and reverse circulant matrices, Adv. Math. Commun., 15 (2021), 471–485.
[18] J. Gildea, A. Korban and A. M. Roberts, New binary self-dual codes of lengths 80, 84 and 96 from composite matrices, 2021, https://arxiv.org/abs/2108.12355.
[19] A. M. Gleason, Weight polynomials of self-dual codes and the macwilliams identities, 1971, 211–215.
[20] T. A. Gulliver and M. Harada, On extremal double circulant self-dual codes of lengths 90–96, Appl. Algebra Engrg. Comm. Comput., 30 (2019), 403–415.
[21] M. Gürel and N. Yankov, Self-dual codes with an automorphism of order 17, Math. Commun., 21 (2016), 97–107.
[22] T. Hurley, Group rings and rings of matrices, Int. J. Pure Appl. Math., 31 (2006), 319–335.
[23] S. Karadeniz and B. Yildiz, New extremal binary self-dual codes of length 66 as extensions of self-dual codes over R_4, J. Franklin Inst., 350 (2013), 1963–1973.
[24] M. Karlin, New binary coding results by circulants, IEEE Trans. Inform. Theory, IT-15 (1969), 81–92.
[25] A. Kaya, B. Yildiz and I. Siap, Quadratic residue codes over $\mathbb{F}_p + v\mathbb{F}_p$ and their Gray images, J. Pure Appl. Algebra, 218 (2014), 1999–2011.
[26] J.-L. Kim, New extremal self-dual codes of lengths 36, 38, and 58, IEEE Trans. Inform. Theory, 47 (2001), 386–393.
[27] S. Ling and P. Solé, Type ii codes over $\mathbb{F}_4 + u\mathbb{F}_4$, European J. Combin., 22 (2001), 983–997.
[28] F. J. MacWilliams, C. L. Mallows and N. J. A Sloane, Generalizations of gleason’s theorem on weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, IT-18 (1972), 794–805.
[29] F. J. MacWilliams, N. J. A Sloane and J. G. Thompson, Good self dual codes exist, Discrete Math., 3 (1972), 153–162.
[30] E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory, 44 (1998), 134–139.
[31] A. M. Roberts, Weight Enumerator Parameter Database for Binary Self-Dual Codes, 2021, https://amr-wepd-bdsc.netlify.app.
[32] N. Yankov and D. Anev, On the self-dual codes with an automorphism of order 5, Appl. Algebra Engrg. Comm. Comput., 32 (2021), 97–111.
[33] N. Yankov, M. Ivanova and M. H. Lee, Self-dual codes with an automorphism of order 7 and s-extremal codes of length 68, Finite Fields Appl., 51 (2018), 17–30.
[34] R. Yorgova and A. Wassermann, Binary self-dual codes with automorphisms of order 23, *Des. Codes Cryptogr.*, **48** (2008), 155–164.

Received March 2021; revised June 2021; early access September 2021.

E-mail address: j.gildea@chester.ac.uk
E-mail address: nabidin@gmail.com
E-mail address: adamichaelroberts@outlook.com
E-mail address: rhian.taylor@chester.ac.uk
E-mail address: alxtik@bigmir.net