IMPROVEMENT OF THE CALCULATION METHOD OF CYCLONE DUST COLLECTORS

1. Introduction

Cyclone dust collectors are among the most common types of inertial dust collection equipment, due to the relatively high degree of purification from dust fractions with a diameter of more than 10 microns, simplicity of design, and high gas flow rate. Existing methods for calculating the effectiveness of dust removal in cyclones are not always accurate enough. Basically, experimental test methods are used for this, associated with a significant investment of time and money [1]. Therefore, the development of the most accurate and improved analytical method for calculating the parameters of the fractional degree of purification of cyclone apparatus still remains an extremely important and urgent task [2].

2. The object of research and its technological audit

The object of research is a method for calculating the efficiency of cyclones using the magnitude of the velocity of transverse pulsations of a turbulent gas flow in the inlet of the cyclone. The complexity of the existing methods for calculating the efficiency of cyclones is that it is necessary to take into account a large number of factors affecting the final result. Of these factors, the gas velocity in the inlet of the cyclone, the diameter of the cyclone, the diameter of the exhaust pipe of the cyclone, the distribution of dust particles in size, the density of gas, dust, etc. are influential.

That is, the problem is multifactorial and therefore rather difficult to solve, and the available methods for calculating the efficiency cyclones, in some cases, are not sufficiently inaccurate.

One of the most problematic issues when creating a new cyclonic technique for gas dust cleaning is the need to carry out a fairly large amount of work – modeling cyclones in laboratory conditions on model cyclones [3], taking into account the large-scale transition, etc. Therefore, the development of the most accurate analytical method for calculating cyclone efficiency is an important problem, since it makes it possible to quickly and accurately determine all the necessary cyclone parameters for specific production conditions [4, 5].
3. The aim and objectives of research

The aim of research is creation of the most accurate analytical method for calculating the efficiency of cyclones at various design and technological parameters.

To achieve this aim, it is necessary to complete the following objectives:

1. To analyze the effect of the mean cross-sectional average velocity of the transverse pulsations of the turbulent gas flow in the inlet of the cyclone on the «cut-off» diameter \(d_{50} \).
2. To justify the advantages of the proposed improved method for calculating the total degree of tin in various cyclones and various parameters of dust and gases.

4. Research of existing solutions of the problem

Among the main directions of solving the problem of developing analytical methods for calculating the efficiency of cyclones identified in the resources of scientific periodicals, [6, 7] can be distinguished, but they do not consider comparisons of various analytical methods for calculating the most important for calculating the efficiency of cyclones of diameter \(d_{50} \).

But the work [4] is devoted to the calculation of cyclone efficiency using the dependence of the diameter value \(d_{50} \) on the value of the hydraulic resistance coefficient of cyclones. However, there is an unresolved issue of the effect on the cleaning efficiency of the pulsation dynamic flow rate.

The author of [5] shows the influence of dust tons and their characteristics on the efficiency of cleaning cyclones. But the question remains of the effect on the cleaning efficiency of the pulsation parameters of the turbulent gas flow.

An alternative solution to the problem described in [8, 9] provides for the use of dust particle deposition conditions in the approximation of the «diffusion boundary layer», which is much closer to creating the most accurate analytical calculation method. However, it does not take into account the mean cross-sectional velocity of the transverse pulsations of the turbulent gas flow in the «diffusion boundary layer» over the cross section of the inlet of the cyclone. It also gives a much more complex scheme for calculating the «cut-off» diameter.

According to the authors of [10], the calculation of the «cut-off» diameter \(d_{50} \) should be performed by the final velocity of gas pulsations after they pass through the «diffusion boundary layer». This leads to some inaccuracies in the calculations.

Thus, the results of literature analysis allow to conclude that the existing analytical methods for calculating cyclones do not take into account the influence of the most important turbulent flow [11, 12]. Namely, the values of the transverse pulsation velocity of the turbulent gas flow average of the cross section of the inlet of the cyclone [13, 14].

5. Methods of research

To consider the problem of developing the most accurate method for calculating the cleaning efficiency in cyclones, let’s introduce the following notation:

- \(a \) – the width of the inlet of the cyclone (in fractions of the diameter of the cyclone);
- \(b \) – the height of the inlet of the cyclone (in fractions of the diameter of the cyclone);
- \(D_{c} \) – cyclone diameter;
- \(D_{e} \) – diameter of the exhaust pipe of the cyclone (in fractions of the diameter of the cyclone);
- \(d_{eq} \) – equivalent diameter of the inlet of the cyclone;
- \(d_{50} \) – median diameter of the ash;
- \(d_{h50} \) – «cut-off» diameter or the diameter of the particles of ash, captured in a cyclone with an efficiency of 50 \%;
- \(t \) – temperature, parameter of the fractional degree of purification;
- \(V \) – speed;
- \(E \) – particle capture coefficient by an obstacle (cyclone surface; dust bundle);
- \(h \) – cleaning efficiency;
- \(\mu \) – dynamic viscosity coefficient;
- \(u_{r} \) – dynamic velocity of the gas flow in the inlet of the cyclone;
- \(u_{c, k} \) – average cross-sectional velocity of the transverse pulsations of the turbulent gas flow over the cross section of the inlet of the cyclone;
- \(\nu \) – kinematic viscosity coefficient;
- \(\rho \) – density;
- \(\sigma_{d} \) – standard deviation of dust particle size distribution;
- \(\sigma_{h} \) – standard deviation of the distribution of the fractional degree of purification.

Indices:
- \(e \) – calculation;
- \(c \) – experiment;
- \(in \) – at the inlet to the cyclone;
- \(fr \) – fractional.

Abbreviations:
- \(eq. \) – equivalent;
- \(S_{ak} \) – Stokes test;
- \(com. \) – common.

6. Research results

The most common for analytical calculations of dust cyclone efficiency was obtained by the probabilistic calculation method based on the use of the log-normal law as a function of the size distribution of dust particles. In addition, the dependence of the dust collection efficiency in the cyclone on the «cut-off» diameter \(d_{50} \), that is, dust particles that are captured by the cyclone by 50 %, is also used [1].

When using this calculation method, it is necessary to have data on two parameters characterizing the dispersion of dust, it is captured \(d_{50}, \sigma_{d} \) known or which are set, and data in two parameters characterizing the cyclone efficiency \(\eta_{deq} \) and \(\eta_{eq} \).

The value of \(\lg \sigma_{d} \) for various cyclones can be assumed constant and equal to 0.35. The parameter \(\eta_{eq} \) is the only quantity that can be determined experimentally or calculated for some cyclones, after the corresponding experimental studies presented in the special reference literature [1].

These four parameters determine the value of the calculated parameter \(\eta \) [1]:

\[
\eta = \frac{\lg d_{50} - \lg d_{h50}}{\sqrt{\lg^{2} \sigma_{d} + \lg^{2} \sigma_{e}}},
\]

(1)
The total degree of purification of the gas stream from dust in the cyclone is finally calculated according to the dependence [1]:

\[h_{\text{tot}} = \Phi(t) = \frac{1}{2} \pi (\exp)^{1/2} \text{dt}, \]

(2)

where \(\Phi(t) \) – the Gaussian integral, which is determined from special probability tables [1].

When developing the theory of cyclonic cleaning and improving their designs, the significant influence on the cleaning efficiency of the hydrodynamic situation in the jet section of the cyclone (in the zone of gas flow in the cyclone body) was not taken into account. Therefore, the improvement of cyclones was mainly aimed at studying the influence of two other sections of the cyclone (cyclone body and exhaust pipe). Although, as was noted in [3], the underestimation of the effect of the jet section of the cyclone, for example, on heat transfer, leads to significant calculation errors (up to 40%).

Since the processes of transfer of substance (concentration, heat, speed) are described by Fick’s law of convective diffusion, it is possible to indirectly judge the determining effect of the initial section on the intensity of the dust collection process. So, for example, when considering the laws of heat transfer according to [4], where it is noted that at a distance of 0.25 m from the inlet pipe along the gas, the heat flux density and heat transfer coefficient decreased by 2–3 times. Moreover, in a cyclone with one inlet nozzle – 2 times and 3 times – in a cyclone with four inlet nozzles – compared with a similar value at the end of the initial section of turbulence formation.

In studies [2, 5], the contribution of cyclone (initial) section of cyclone chambers to dust cleaning efficiency was quantified, where it is noted that when the gas flow rotates 150°, the bulk of the dust settles on the cyclone wall. Approximately 70% of the dust settles in the first quarter of the cyclone circumference when the flow is rotated by 90° and another 20% is deposited in a further rotation of the flow by 45°.

This gives reason to conclude that it is the initial jet section of the cyclone chambers that determines the efficiency of cyclones. Therefore, when constructing various analytical methods for calculating the efficiency of dust removal in cyclones, one should take into account the patterns of dust deposition precisely on the initial jet section of cyclones.

This work is a continuation of the previously proposed method for calculating the efficiency of cyclones [8–10]. In these works, let’s use the characteristics of turbulent flows and the laws of the process of deposition of dust particles on the wall of the cyclone, on the surface of the «bundle» of dust in the «diffusion boundary layer».

This work is aimed at developing a new, most accurate and improved method for calculating the efficiency of cyclones using the basic characteristics of a turbulent flow. So, let’s use the velocity of transverse pulsations of the turbulent flow in the inlet of the cyclone, the dynamic velocity of the pulsations of the gas flow, etc. At the same time, the process of deposition of dust particles was carried out in the approximation of «diffusion boundary layer».

To this, let’s use the concept of free inertial flight of particles from a turbulent gas flow in the precipita-

...
path (cyclone wall, on the surface of the dust «bundle») in the «diffusion boundary layer» are also used.

The calculation of the dust collection efficiency in cyclone apparatuses according to the new method is proposed to be performed in the following sequence:

- equivalent diameter of the inlet of the cyclone \[d_w = \frac{2ab}{(a+b)} \]D; \[(3) \]

- dynamic Pulsation velocity of the gas flow in the inlet of the cyclone is determined by the dependence \[u_s = \frac{0.354u_u}{1.84}\log\text{Re} - 1.64 \] \[(4) \]

where

\[\text{Re} = \frac{u_u D_d}{v} \] \[(5) \]

- average cross-sectional velocity of the transverse pulsations of the turbulent gas flow over the cross section of the inlet of the cyclone \[u_s = 0.9u_u \] \[(6) \]

- Stokes criterion \[[1] \]

\[S_d = \frac{d^2u_s}{18D_d v} \] \[(7) \]

- coefficient of inertial capture of dust particles \[E \] - according to the most accurate interpolation dependence obtained by the author with a potential flow regime in the inlet pipe of cyclone apparatuses:

\[E = \left(\frac{S_d}{S_d + 0.24} \right)^2 \] \[(8) \]

It should be noted that there are a number of other dependencies for evaluating calculations of the particle capture coefficient at obstacles \[E \] under the potential flow regime and the most famous of them are given below:

- according to \[[11] \] for estimated calculations of the coefficient of capture of large dust particles by large drops of liquid in Venturi scrubbers with a potential flow regime:

\[E = \left(\frac{S_d}{S_d + 0.59} \right)^2 \] \[(9) \]

- according to \[[16] \] for the estimated calculations of the capture coefficient of spherical particles in a dispersed-ring flow:

\[E = \left(\frac{S_d}{S_d + 0.125} \right)^2 \] \[(10) \]

- according to \[[12] \]:

\[E = \left(\frac{S_d}{S_d + 0.155} \right)^2 \] \[(11) \]

An analysis of dependences (8)–(11) shows that formula (8) gives the most accurate estimate of the coefficient \[E \] of the inertial capture of dust particles by an obstacle during the potential flow regime in the inlet pipe of cyclone apparatuses. This applies both to the estimation of the «cut-off» diameter \(d_{n=50} \) and the estimation of the diameter \(d_{n=50} \), which determines the value of \(\lg \sigma_n \), which is important for the calculation of cyclones. In addition, errors in estimating the value of \(\lg \sigma_n = 0.35 \) (for \(\sigma_n = 2.24 \)), for example, for a cyclone of the «CN-15» type, are for formulas (8), (10), (11), respectively, 1.78 %; 30.6 %; 17.3 %, which also confirms the higher accuracy of the calculations of formula (8).

From the solution of equation (8) it follows that at \(E = 0.5 \), \(S_d = 0.59 \), the value of the «cut-off» diameter \(d_{n=50} \) is determined from the solution of equation (7) to evaluate the criterion \(S_d \) with the value of \(E = 0.5 \) (\(\eta = 0.5 \)). That is, when the value \(d_{n=50} \) should correspond to the dependence:

\[d_{q=50} = \sqrt{\frac{18 \cdot D_d}{\frac{v}{\eta}} \cdot S_d} \] \[(12) \]

if to consider that the optimal value for \(D_d = 100 \cdot 10^{-4} \text{ m} \) \[[15] \], and \(E = 0.5 \) \[[11] \]. \(S_d = 0.59 \) \[[11] \], then:

\[d_{q=50} = \sqrt{\frac{18 \cdot 100 \cdot 10^{-4} \cdot \eta}{\frac{\eta}{0.59} \cdot 0.9u_u \cdot 10^{-8}}}; \] \[(13) \]

- the value \(d^*_{n=50} \), taking into account the influence of the values \(D_d \) and \(u_u \), is calculated according to the dependence \[[9] \]:

\[d_{q=50} = \frac{D_d}{0.59} \left(\frac{D_d}{0.59} \right)^{1/4} \] \[(14) \]

- according to two parameters \((d_{n=50} \) and \(\sigma_n) \), as well as two dispersion parameters of the caught dust \((d_{q=50} \) and \(\sigma_q) \), the value of the auxiliary calculation parameter \(\lambda = \frac{\eta - \eta_{n=50}}{\eta_{n=50}} \) is determined by dependence (1):

\[\lambda = \frac{\lg d_{n=50} - \lg d_{n=50}}{\lg d_{n=50} - \lg d_{n=50}} \] \[\frac{\lambda}{\eta_{n=50}} = 50 + 44t - 10(t^2) \text{ for } t \leq 2; \]

\[\eta_{n=50} = 105.4 - \frac{15}{t} \text{ for } t > 2. \]

Table 1 shows the experimental and calculated methods proposed in this paper for calculating the values \(d_{n=50} \) and \(d_{n=50} \). Such calculations were performed for the 19 most widely used cylindrical and conical cyclones in industry, given in \[[9] \].

The average error in estimating the estimated value \(d_{n=50} \) for those given in Table 1 cyclone (19 pcs.) amounted to 6.7 %, which is lower than the average error of 7.52 % given for the same 19 cyclones in \[[9] \].
Assessment of cleaning efficiency in cyclones of various designs

Cyclone	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
\(a \)	0.26	0.26	0.26	0.26	0.26	0.18	0.264	0.21	0.2	0.26
\(b \)	0.66	0.48	1.1	0.6	0.8	0.4	0.535	0.52	0.4	0.7
\(D_{c}, \text{m} \)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	1.6	0.6
\(D_{w}, \text{m} \)	0.224	0.202	0.25	0.18	0.235	0.149	0.212	0.10	0.427	0.228
\(\zeta \)	0.59	0.59	0.59	0.59	0.5	0.22	0.33	0.34	0.203	0.5
\(\rho, \text{kg/m}^3 \)	1930	1930	1930	1930	1930	1930	2300	2200		
\(v_{g},10^6, \text{m}^2/\text{s} \)	25	25	25	25	15.3	25	25	25	35.5	
\(U_{in}, \text{m/s} \)	3.5	3.5	3.5	3.5	5.4	3.5	3.5	3.5	1.6	4.77
\(U_{av}, \text{m/s} \)	16	22	9.6	21.6	20.4	38.2	19.5	25.1	15.7	20.57
\(D_{h}=50, \mu \text{m} \)	4.5	3.65	8.5	4.12	2.75	1.13	2.31	1.95	2.27	3.0
\(D_{h}=50, \mu \text{m} \Delta d_{h}=50, \% \)	4.5	1.37	5.74	3.923	2.767	1.12	2.31	2.1	2.08	2.91

Note: No. 1 – CN-15 [1]; No. 2 – CN-11 [1]; No. 3 – CN-24 [1]; No. 4 – CBTI (C) [9]; No. 5 – MIOT (9); No. 6 – MIOT (9); No. 7 – CK-CN-34M [1]; No. 8 – CK-CN-35 [1]; No. 9 – [9]; No. 10 – [9]; No. 11 – SCN-40 [9]; No. 12 – [9]; No. 13 – RISI [9]; No. 14 – UC-38; No. 15 – VCNIIOP [9]; No. 16 – [9]; No. 17 – [9]; No. 18 – [9]; No. 19 – [9]; the quantities are marked with z), which correspond to the operating conditions of the cyclone ash collector.

The values \(d_{h=50} \) proposed by the State Research Institute for Industrial and Sanitary Gas Treatment (Kyiv, Ukraine) are calculated according to the dependence:

\[
d_{h=50} = 64.35 \zeta^{-0.51}, \tag{17}
\]

for conditions \(D_c=0.6 \text{ m}; V_g=3.5 \text{ m/s}; \mu_g=22.2\cdot10^{-6} \text{ Pa·s}; \rho_g=1930 \text{ kg/m}^3 \).

If necessary, recounting to other conditions can be carried out according to the formula:

\[
d_{h=50} = d_{h=50}^{130} \sqrt{\frac{D_c}{0.6} \frac{3.5}{V_g} \frac{\mu_g}{22.2\cdot10^{-6}} \frac{1930}{\rho_g}} \mu\text{m},
\]

where the quantities are marked with \(\zeta \), which correspond to the operating conditions of the cyclone ash collector.

The average loss for the recorded dependency by the Institute for Industrial and Sanitary Gas Treatment (17), with an estimate of the value \(d_{h=50} \) for the index in the Table 1 of the same cyclones (19 pcs.), 21.46% accumulated [9]. It is 3.2 times more dangerous than with the value of the rosette of \(d_{h=50} \) in the fallow deposits (8).

It should be noted that, in addition to higher accuracy, the new method allows forecasting the value of \(d_{h=50} \) when there is a change in the turbulence of the gas flow at the inlet to the cyclone, which is unacceptable when there is a complete change in method.

7. SWOT analysis of research results

Strengths. A positive effect of the studies is the high accuracy of analytical calculations of the cleaning efficiency of various cyclones both at the design stage and in industrial conditions of operation of cleaning systems.

Weaknesses. A negative factor in the study is that the conclusions of the work should be extended to a larger number of cyclone designs and conditions for dust dispersion and gas flow characteristics.

Opportunities. When implementing the results of the study, in some cases it is possible to significantly reduce capital costs for the purchase of more expensive treatment.
equipment for electrostatic precipitators, bag filters. This will give enterprises significant cost savings. The results of the work may be interesting not only for Ukraine.

Threats. When implementing the results of the study, additional costs are practically not required.

8. Conclusions

1. The analysis of the influence of the average cross-sectional average of the inlet pipe of the cyclone of the velocity of the transverse pulsations of the turbulent gas flow in the inlet of the cyclone [2, 13] on the value of the «cut-off» diameter $d_{h=50}$ [4]. It has been established that the greatest influence on the value of the «cut-off» diameter $d_{h=50}$, as well as on the cleaning efficiency, is exerted by the velocity of transverse pulsations of the turbulent gas flow in the inlet of the cyclone [2, 13].

2. The proposed improved method for calculating the efficiency of dust removal of cyclones is based on the characteristics of turbulent flows and the efficiency of the process of deposition of dust particles on the path (cyclone wall, on the surface of the dust bundle) in the approximation of the «diffusion boundary layer». This allows one to calculate with high accuracy the effective cleaning of industrial dusts in cyclones, significantly reduce the time spent and the amount of experimental work when developing new types of cyclones or selecting them for solving various problems in the field of aerosol mechanics. Using the most accurate experimental data on the effectiveness of dust cleaning in various cyclones [1, 9], the advantages of this method for calculating the total degree of ash extraction in cyclones with different designs and various parameters of dust and gases are substantiated. When assessing the accuracy of the calculations of the methods, the results of calculations by the most accurate method are considered [9, 10]. It is shown that the average accuracy in estimating $d_{h=50}$ is 12 % higher than in [9, 10].

References

1. Rusanov, A. A. (Ed.) (1983). Spravochnik po pyle- i zoloulovlitviyu. Moscow: Energatoymizdat, 312.
2. Vasilevskiy, M. V. (2008). Obespylivaniya gazov inertionnymi apparatami. Tomsk: Izdatel'stvo Tomskogo Politehnicheskogo Universiteta, 258.
3. Halatov, A. A. (1989). Teoriya i praktika zakruchennyh potokov. Kyiv: Naukova dumka, 192.
4. Val'dberg, A. Yu., Kirsanova, N. S. (1989). K raschetu effektivnosti tsiklonnyh pyleuloviteley. Teoreticheskie osnovy himicheskoy tehnologii, 23 (4), 355–556.
5. Razva, A. S. (2009). Otsenki gidrodinamicheskikh parametrov tsiklonnyh potofov: i razrabotka novyh tehnicheskikh resheniy inertionnyh pyleuloviteley. Tomsk, 19.
6. Priemov, S. I. (1997). The Calculation Method for Cyclone Type Dust Collectors. Heat Transfer Research, 28 (4–6), 371–375. doi: https://doi.org/10.1615/heattransfer.v28i4–6.230
7. Kurkin, V. P. (1991). Design of cyclone dust collectors. Chemical and Petroleum Engineering, 27 (7), 398–399. doi: https://doi.org/10.1007/bf01262673
8. Priemov, S. I. (2011). Ispol'zovanie kolmogorovskogo masshtaba turbulentnosti v kachestve parametra effektivnosti ulavlivaniya pyli v tsiklonnyh apparatah. Promyshlennaya teploenergetika, 33 (3), 86–92.
9. Priemov, S. I. (2014). Metody rascheta effektivnosti ochistki tsiklonnyh pyleuloviteley. Kyiv: Kafedra, 132.
10. Kryzhov, V. I., Tymoshenko, A. H., Pryiomov, S. I. (2015). Opyt empryymatsiiai systemy ochskh dymovyh baz. Visnyk Universytetu «Ukraina». Seriya: Informatyka, obchplyvalna tekhnika ta kibernetyka, 1 (17), 116–129.
11. Litvinov, A. T. (1969). Ob otsenke effekta zahvata krupnymi chastitami ili kaplyami zhidkosti melkikh chastits i o vliyanii gidrofil'nosti chastits na koeffitsient zahvata. IFZh, 16 (6), 1052–1061.
12. Sugak, E. V., Voynov, N. A., Zhikova, N. Yu. (2000). Ochistka gazovikh vybronov ot voskodispersnyh chastits v dispersno-kol'tsevom kanale. Himiya rastitel'nogo syr'ya, 4, 85–101.
13. Mednikov, E. P. (1980). Turbulentniy perenos i osazhdenie aerozoly. Moscow: Nauka, 176.
14. Zaostrovsky, F. P., Shabalin, K. N. (1951). Skorost' ulavlivaniya pyli v skrubberah. Khimicheskaia promyshlennost, 5, 148–149.
15. Frankin, F. L. (1953). Nekotorye voprosy ochisti rudnichnogo vozduha ot vitayushchey pyli pri pomoshchii orosheniya. Izv. AN SSSR, ONT, 11, 129–134.
16. Fukas, N. A. (1955). Mehanika aerozoly. Moscow: Izd-vo AN SSSR, 352.