SPATIALLY RESOLVED O II RECOMBINATION LINE OBSERVATIONS OF THE RING NEBULA, NGC 6720

DONALD R. GARNETT
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721; dgarnett@as.arizona.edu

AND

HARRIET L. DINGERSTEIN
Department of Astronomy, University of Texas at Austin, RLM 15.308, Austin, TX 78712; harriet@astro.as.utexas.edu

Received 2001 February 26; accepted 2001 May 3

ABSTRACT

We present new long-slit CCD spectra of O II permitted lines and [O III] forbidden lines in the Ring Nebula NGC 6720. These observations provide spatially resolved information on both O II and [O III] over the 70" diameter of the main shell. We find significant differences in the spatial distribution of the O II lines and [O III] \(\lambda 4959 \). The [O III] emission follows the H\β emission measure, peaking slightly radially inward from the H\β peak. The O II emission peaks inside the [O III] emission. This suggests that radiative recombination may not be the primary mechanism for producing the O II lines. O\(^{+2}\) abundances derived from O II lines are 5-10 times larger than those derived from [O III] in the region within 20" of the central star. Outside of this region, however, the O II–derived and [O III]–derived abundances agree to within 0.2–0.3 dex. The electron temperature derived from [O III] lines rises smoothly from about 10,000 K in the outer shell to about 12,000 K in the center; we see no evidence for a temperature jump that would be associated with a shock. If temperature fluctuations are responsible for the discrepancy in O\(^{+2}\) abundances, the average temperature would have to be approximately 6500 K in the He\(^{+2}\) zone and about 9000 K in the outer shell in order to force the [O III]–derived abundance to equal that derived from O II. This would conflict with ionization models for planetary nebulae, which predict that the temperature is higher in the He\(^{+2}\) region close to the ionizing star. We therefore argue that temperature fluctuations cannot explain the abundance discrepancy. A comparison of the spatial distribution of O II emission with the location of dusty knots shows that the O II recombination lines do not peak where the dense knots are located, creating difficulties for models that explain the recombination line/forbidden line discrepancy by density fluctuations. We examine the possibility that high-temperature dielectronic recombination in a central hot bubble enhances the recombination line strengths in the central part of the nebula. However, comparison of recombination rates with collisional excitation rates shows that the increase in recombination emission due to dielectronic recombination at \(T \approx 10^5 \) K is not sufficient to overcome the increase in collisionally excited emission. We are unable to find a completely satisfactory model to explain the discrepancy between recombination line and forbidden line abundances.

Subject headings: atomic processes È ISM: abundances È line: formation È planetary nebulae: general È planetary nebulae: individual (NGC 6720)

1. THE O II RECOMBINATION LINE PROBLEM IN IONIZED NEBULAE

For approximately the past 3 decades, analysis of collisionally excited forbidden lines in the optical/UV wavelength region has been the primary means of determining the physical conditions and element abundances in H II regions and planetary nebulae (PNs). Studies of these emission lines have been a fundamental source of data for the study of the chemical evolution of galaxies other than the Milky Way and for comparison with models of stellar nucleosynthesis. For almost as long a time, however, there has been the nagging question of the reliability of such abundance measurements. The crux of the problem is that collisionally excited lines in the optical/UV part of the spectrum have large excitation energies (1–10 eV), and thus the excitation rates are acutely sensitive to electron temperature. Peimbert (1967) pointed out that if significant fluctuations about an average temperature are present, the collisionally excited line emission will be weighted toward hotter regions because of the exponential dependence on \(T_e \), while the Balmer recombination lines will be preferentially produced in cooler regions because of the inverse dependence on \(T_e \). In this case, ion abundances derived from the forbidden lines could be systematically underestimated by a large amount. It has not yet been demonstrated definitively that significant deviations from a smoothly varying temperature structure exist in photoionized nebulae, other than the gradients expected from ionization/thermal equilibrium models. Determining whether such temperature fluctuations exist and their magnitude is challenging observationally, and it is strongly debated whether temperature fluctuations have a significant effect on abundance determinations based on collisionally excited lines (see Mathis 1995 for a balanced discussion).

It is often suggested that observations of recombination lines from the heavy elements would provide more reliable measures of element abundances than the commonly observed collisionally excited lines. This is because recombination lines have very similar dependences on electron temperature, so the ratio of a given recombination line to, say, H\β is nearly independent of \(T_e \). Thus, heavy-element abundances could be calculated from recombination lines with virtually no systematic uncertainties, in principle. The main drawback is that recombination lines from elements heavier
than He are intrinsically faint, typically less than 1% of Hβ, because of the direct scaling of the emissivities with ion abundance. As a result, few measurements of heavy-element recombination lines have been published.

Nevertheless, improved spectrographs and detectors have enabled high-quality measurements of heavy-element recombination lines, particularly O II, to be made in recent years (Liu et al. 1995, 2000; Esteban et al. 1998). At the same time, improved computations of effective recombination coefficients for transitions of heavy-element recombination lines (see, e.g., Storey 1994) have made the analysis more reliable. For the Orion Nebula, Esteban et al. (1998) found that O II recombination lines gave somewhat higher O II/H than the [O III] collisionally excited lines, and they interpreted this in terms of modest temperature fluctuations. On the other hand, Liu et al. (1995, 2000) have found that O II and [O III] yield spectacularly discrepant O II abundances in the PNs NGC 7009 and NGC 6153—with the O II lines giving abundances 5–6 times larger than those derived from [O III]. These differences are so large that they cannot be accounted for in the context of the Peimbert (1967) small temperature fluctuation formulation.

We have been obtaining new measurements of O II recombination lines in PNs to further understand the cause of the O II–[O III] discrepancy. In H. L. Dinerstein, C. P. Lafon, & D. R. Garnett (2001, in preparation, hereafter Paper II), we will present measurements of integrated O II lines and derived abundances for a sample of 10 PNs and compare these abundances with published results based on [O III]. The main results from Paper II are summarized in Dinerstein, Lafon, & Garnett (2000) and Garnett & Dinerstein (2001). In particular, we find (1) a wide range of values for the difference between O II–derived and [O III]–derived abundances \(\Delta \log (O^{+2}/H^+) \) anywhere between 0.0 and 0.8 dex, (2) an inverse correlation between \(\Delta \log (O^{+2}/H^+) \) and the nebular diameter, and (3) that O II lines arising from levels populated mainly by dielectronic recombination are especially enhanced. In a companion program, we have obtained deep long-slit observations of some PNs to study and compare the spatial distribution of both O II and [O III] emission in the hope that this would provide new clues toward understanding the source of the abundance discrepancies. In this paper we describe the results for the largest object in our sample, the Ring Nebula NGC 6720.

2. LONG-SLIT SPECTROSCOPY OF O II LINES IN THE RING NEBULA

We have observed several Galactic PNs in long-slit mode in order to study the spatial distribution of emission from both the O II recombination lines and [O III] forbidden lines. These observations were obtained on the clear nights of 1999 June 6–7 using the 2.3 m Bok reflector at the Steward Observatory using the Boller and Chivens spectrograph. The spectrograph has a 1200 \times 800 Loral CCD with 15 \(\mu \)m pixels, corresponding to 0.83 pixel \(^{-1}\) at the detector. The 4' long slit thus covers about 285 rows on the detector. We used an 832 lines mm\(^{-1}\) grating in second order to cover the 4150–5000 \text{Å} spectral range. With a 2.5' slit, the spectral resolution was in the 2.1–2.3 \text{Å} range with the best resolution set at approximately 4650 \text{Å}. In our Ring Nebula observations, the spatial profiles of stars along the slit had an FWHM of approximately 2.5'. We centered the long slit on the NGC 6720 central star, with the slit at a position angle (P.A.) of 91°, where the P.A. is measured from north through east. We made four 15 minute exposures at this position.

The two-dimensional data were processed by standard methods. The wavelength solution for the spectra was determined from the positions of He-Ar lines from calibration lamp observations taken through the same spectrograph setup. The rms from a fourth-order polynomial solution was approximately 0.1 \text{Å}. The object frames were divided by a normalized flat field constructed by combining observations of the illuminated dome and the twilight sky. The spectra were corrected for atmospheric extinction using standard Kitt Peak National Observatory extinction coefficients, and, finally, the spectra were placed on a relative photometric scale using a spectrometer sensitivity function derived from observations of standard stars from the list of Massey et al. (1988). Note that because of the narrow slit, absolute spectrophotometry was not possible; however, the relative end-to-end photometric calibration is good to about 3%; the flat-field uncertainty adds another 1% to the errors.

After calibration, the four individual frames were combined to form a single image, and the sky background was subtracted. At this time, we also extracted a section of the frame 131 pixels (109') wide containing only the bright emission from the nebula (along the east-west direction) and rectified the image to align the centroid of the central star with the rows of the image to ensure that features in each emission line lined up spatially. We saw no variation in the background between the four separate observations, so we averaged the frames before subtracting the background to improve the signal-to-noise ratio (S/N) for the sky determination. The sky level along each column was determined by a linear fit to the background in regions along each column outside the bright part of the nebula. Note that the Ring Nebula has an extended halo outside the bright inner nebula (Chu, Jacoby, & Arendt 1987). The faint emission from this halo is seen in the brightest lines in our spectrum, Hβ, Hα, and [O III] \text{4959}. The halo emission extends across the entire slit; however, this emission has a surface brightness of less than 1% of the surface brightness in the bright shell. Therefore, subtraction of the halo component will have little effect on the line ratios we derive in the inner nebula.

The final processing of the data involved extracting spatial cuts of various emission lines from the image. The extraction method was similar to that used for extracting one-dimensional stellar spectra except that we did the extraction along lines of constant wavelength. As part of the extraction, we subtracted the nebular and stellar continuum by fitting to line-free regions of continuum near the wavelengths of each extracted emission line. The result was an array of pure emission-line flux versus spatial position for each extracted line. Note that continuum subtraction by this method does not take into account absorption lines in the central star spectrum or in starlight scattered by dust within the nebula that may coincide with an emission line. The effect of stellar absorption will manifest itself as peculiar emission-line ratios at the position of the central star, and, in general, we will exclude the regions including the central star from the discussion; the effects of scattered starlight will be much smaller and, in any case, would mean that the permitted lines are systematically even stronger than observed. Figure 1 shows examples of extracted spatial profiles for a few emission lines. Figure 2 shows an expanded
view of the spectral region around 4661 Å for two different positions along the slit. Figure 2 shows that, although [Fe III] 4658 is significantly stronger than O II 4661 in the inner part of the Ring Nebula, the two lines are readily distinguished and can be deconvolved accurately.

3. ANALYSIS OF EMISSION-LINEprofiles

3.1. Interstellar Reddening

We can estimate the interstellar reddening along the slit from the Hγ/Hβ intensity ratio. This ratio depends slightly on the nebular electron temperature T_e. For NGC 6720, T_e is between 10,000 and 12,000 K (Guerrero, Manchado, & Chu 1997); in this range of T_e, the Hγ/Hβ ratio is 0.47 (Hummer & Storey 1998). The relation between the observed and reddened line ratios is given by

$$\frac{I_{\text{obs}}(\lambda)}{I_{\text{obs}}(H\beta)} = \frac{I_{\text{int}}(\lambda)}{I_{\text{int}}(H\beta)} 10^{-c(\lambda) - f(H\beta)} ,$$

where I_{obs} and I_{int} are the observed and intrinsic line intensities, respectively, and $f(\lambda) - f(H\beta) = 0.13$ for $\lambda = H\gamma$, from the average interstellar reddening curve of Savage & Mathis (1979). The coefficient c [or, more commonly, c(Hβ)] is then the logarithmic “extinction” at Hβ—more accurately, a combination of absorption and scattering.

Figure 3a shows the spatial variation of c(Hβ) that we derive along the slit for NGC 6720. Generally, we see values for c ranging between 0.1 and 0.2 along the slit, with possibly a slow increase from east to west along the slit. The reddening values we derive are consistent with the values obtained by Barker (1987) and Guerrero et al. (1997). Note the spike at the position of the central star, at which the line ratio is very likely affected by stellar absorption. Note also the steep upturn at the east end and the downturn at the west end. We suspect these steep changes are not real, but artifacts resulting from a small misalignment of the Hβ and Hγ extractions combined with a small variation of the focus at positions at which the nebular surface brightness profile is declining rapidly (see Fig. 1).

Nevertheless, the correction for reddening relative to Hβ is small for all lines in our observed spectral region along most of the slit, less than 10% over the region ± 38" from the central star. This is illustrated in Figure 3b, where we show the ratio of $I(H\gamma)/0.47I(H\beta)$. If there were no reddening, this ratio would be close to unity; Figure 3b

![Fig. 1.—Continuum-subtracted intensity profile of the Hβ and Hγ emission lines along the slit in our spectrum of NGC 6720. East is to the left in this and subsequent similar figures.](image1)

![Fig. 2.—Portions of extracted spectra around O II 4661. The upper spectrum is from the inner 12" of the Ring Nebula, including the central star. The lower spectrum is from a region 17°–25° west of the central star in the bright shell. Note that the ratio of [Fe III] 4658 to O II 4661 reverses in the two spectra but that the two lines can be clearly distinguished in both cases.](image2)

![Fig. 3.—(a) Spatial variation in reddening along our slit. The coefficient c(Hβ) is the logarithm extinction at Hβ. The spike at the center marks the position of the central star, which likely has Balmer absorption lines that affect the emission-line ratio. The steep upturn at the east end and the steep downturn at the west end are likely due to small mismatches in the alignment and focus for the Hβ and Hγ profiles. (b) $I(H\gamma)/0.47I(H\beta)$ ratio across NGC 6720. This ratio has a value of unity for $T_e = 11,000$ K; deviation of this ratio from unity is a measure of the interstellar reddening correction. This plot demonstrates that the reddening correction relative to Hβ is less than 10% along most of the slit for lines in our NGC 6720 spectrum.](image3)
shows that this ratio is within 10% of unity over the region where the emission is bright. If we ratio the lines in the blue half of the spectrum to Hγ and those in the redward half to Hβ, the error accrued is less than 5% over the regions of interest in the nebula. In the end, we chose this method to correct the line intensities. The regions of the nebula beyond ±40′ from the central stars have S/Ns too low for the faint lines to contribute to our analysis, so we will exclude them from the following discussion.

3.2. Electron Density and Electron Temperature

Our spectrum includes the [Ar IV] λ4711, 4713 doublet; the ratio of these two lines is sensitive to the electron density \(n_e \), similar to the [S II] λ6717, 6731 pair. There is one complication in using the [Ar IV] ratio: λ4711 is blended with He I λ4713 at low resolution. This is apparent in our spectrum by a larger line width for λ4711 as well as a shift in wavelength from the inner nebula, in which [Ar IV] is strong and He I is weak, to the outer ring, in which He I predominates.

We can correct for the He I λ4713 contamination by subtracting a scaled version of the He I λ4471 profile. Guerrero et al. (1997) estimated \(n_e \) from [S II] line ratios in the Ring Nebula, obtaining values of 200–600 cm\(^{-3}\). At these densities, collisional excitation has a small effect on the λ4713/λ4471 ratio, so we choose to neglect it. For \(T_e \approx 10,000 \) K, the λ4713/λ4471 intensity ratio is 0.11, based on the emissivities computed by Benjamin, Skillman, & Smits (1999). Assuming a constant temperature in the He I zone, we multiply the λ4471 fluxes by 0.11, then subtract the result from the λ4711 line fluxes. The correction to the λ4711 fluxes is small for the inner nebula, where He I emission is faint, and greatest in the outermost parts of the nebula.

We estimated \(n_e \) from two regions on either side of the central star using the atomic code described by Shaw & Dufour (1995), assuming an electron temperature \(T_e = 11,000 \) K. East of the central star, the mean [Ar IV] ratio was 1.33 ± 0.03 (where the error is the rms scatter about the mean), which corresponds to \(n_e = 740 ± 250 \) cm\(^{-3}\), while west of the central star, the [Ar IV] ratio was 1.34 ± 0.06, which yields \(n_e = 660 ± 500 \) cm\(^{-3}\). These values are consistent with the densities obtained by Lame & Pogge (1994), Liu & Barlow (1996), and Guerrero et al. (1997). Barker (1987) derived densities approximately twice as large as ours; however, this is the result of using atomic data for [S II] that are now out of date. We have recomputed \(n_e \) using Barker’s data and the Shaw & Dufour program and obtain densities similar to the ones we obtain from [Ar IV].

Since we observe both [O III] λ4363 and [O III] λ4959, we can estimate the electron temperature \(T_e \) across the nebula. Figure 4a plots the variation of \(T_e \) derived from the [O III] ratio, showing a smooth increase in \(T_e \) from the shell to the interior of the nebula, from about 10,000 K in the shell to about 12,000 K in the center. This behavior is in good agreement with that derived by Guerrero et al. (1997).

For comparison, we plot in Figure 4b the [O III] λ4959/ Hβ line ratio across the slit. We note several features in the plot. First, the line ratio shows only a slow variation across most of the nebula, with a shallow minimum in the center. Second, we see a steep decline in [O III]/Hβ at about 36′ from the central star in both directions. This most likely corresponds to the transition from O\(^+2\) to O\(^+\) near the edge of the bright shell. Third, [O III]/Hβ increases again outside the bright shell, corresponding to the inner halo region, which evidently has rather high excitation and/or high ionization along these sight lines.

Note that the minima in \(T_e \) do not correspond to the minima in [O III]/Hβ but rather lie just interior to the low-excitation zones. \(T_e \) then appears to increase a bit in the region of low [O III]/Hβ; this increase may be a result of radiation hardening combined with inefficient cooling in the low-ionization zone of the nebula. The S/N in our λ4363 observation is too low to determine \(T_e \) in the halo region.

3.3. Determination of Ion Abundances across the Nebula

Now that we have established the variation of \(T_e \) across NGC 6720, we can proceed to determine abundances for the ions of interest. For this study, we will derive abundances relative to H\(^+\) for O\(^+2\) (from both [O III] λ4959 and O II λ6361), C\(^+2\) (from C II λ237), H\(^+\), and He\(^+\) as a function of position along our slit. Since the electron densities across the nebula are relatively small, we can assume the low-density limit and compute the ion abundances analytically.

The abundance of any ion relative to H\(^+\) derived from the ratio of the intensity of a transition \(\lambda \) to the intensity of Hβ is given by

\[
\frac{N(X^+)}{N(H^+)} = \frac{I(\lambda)}{I(H\beta)} \frac{\epsilon(H\beta)}{\epsilon(\lambda)},
\]

where \(\epsilon(\lambda) \) represents the volume emission coefficient for a given emission line \(\lambda \). For collisionally excited lines in the
low-density limit, the analysis in § 5.9 of Osterbrock (1989) applies.

The volume emission coefficient for a collisionally excited line is given by

$$
e(\lambda) = h\nu_{\text{coll}}(\lambda) = \frac{hc}{\lambda} \epsilon_{0} \alpha_{\text{eff}}(\lambda), \tag{3}$$

where Ω is the collision strength for the transitions observed, ω_{1} is the statistical weight of the lower level, and χ is the excitation energy of the upper level. For $[\text{O III}]$, we use the collision strengths from Lennon & Burke (1994), interpolated to a temperature of 11,000 K; the collision strength for $\lambda\lambda 4959, 5007$ varies by only 8% between 10,000 and 15,000 K, so the assumption of a constant Ω introduces only a small error.

For recombination lines, the emission coefficient is given by

$$
e(\lambda) = h\nu_{\text{rec}}(\lambda) = \frac{hc}{\lambda} \alpha_{\text{eff}}(\lambda), \tag{4}$$

where $\alpha_{\text{eff}}(\lambda)$ is the effective recombination coefficient for the recombination line λ. For $\text{O II} 4661$, we use the effective recombination coefficient derived by Storey (1994) for LS coupling in case B. For H and He II, we use the recombination coefficients from Hummer & Storey (1998), while for He I we used the emissivities computed by Benjamin et al. (1999). We employ a value $\alpha_{\text{eff}}(\text{O II} 4661)/\alpha_{\text{eff}}(\text{H}\beta) = 1.29$ for $T_{e} = 10,000$ K; this ratio varies by only 4% between 10,000 and 15,000 K. Similarly, $\epsilon(\text{He II} 4668) = 11.9\epsilon(\text{H}\beta)$ for $T_{e} = 11,000$ K, varying by only 9% between 10,000 and 20,000 K, and $\epsilon(\text{He II} 4471) = 0.501\epsilon(\text{H}\beta)$ at $T_{e} = 10,000$ K and $n_{e} = 100$ cm$^{-3}$; collisional excitation increases $\epsilon(4471)$ by only 5% at $n_{e} = 10^{4}$ cm$^{-3}$ (Benjamin et al. 1999). Given the relatively low densities that we derive for the Ring Nebula and the small variation across the nebula, we can neglect collisional excitation of He i. Finally, we computed C^{+2} abundances from $\text{C II} \lambda 4267$ using the case B effective recombination coefficient from Davey, Storey, & Kielisius (2000) and Liu et al. (2000). At $T_{e} = 10,000$ K, $\alpha_{\text{eff}}(\text{C II} \lambda 4267)/\alpha_{\text{eff}}(\text{H}\beta) \approx 9.1$.

4. RESULTS

Figure 5 shows a comparison of the spatial distribution of the $[\text{O III}] \lambda 4959$ emission and the $\text{O II} \lambda 4661$ emission in the Ring Nebula. It is readily apparent that the $[\text{O III}]$ and O II lines have distinctly different spatial distributions. The $[\text{O III}]$ emission essentially follows the $\text{H}\beta$ emission, peaking slightly interior to the $\text{H}\beta$ peak, which is consistent with the ringlike morphology of the nebula. In contrast, the O II emission peaks interior to the $[\text{O III}]$ emitting region. This behavior is remarkable—if the $\text{O II} \lambda 4661$ emission arises mainly from radiative recombination of O^{+2} to O^{+}, then one would predict that the O II emission would peak farther from the central star than the $[\text{O III}]$ emission, where the ionization decreases. Clearly, the O II and $[\text{O III}]$ emission lines arise under dissimilar conditions.

In Figure 6 we show the computed O^{+2} abundances as derived from the forbidden lines and the recombination lines using the electron temperatures shown in Figure 4a. Again, we see that O^{+2} as derived from $[\text{O III}]$ peaks in the shell, while O^{+2} derived from the recombination line is more concentrated toward the center of the nebula. To demonstrate that the results are not a result of a low S/N in $\lambda 4661$, we also plot in Figure 6 the abundances we obtain from binned (summed over $8^\circ-12^\circ$) spectra extracted at several intervals along the slit. The agreement between the binned spectra and the point-by-point measurements is excellent.

Another thing that is apparent on inspection of Figure 6 is that the discrepancy between the $[\text{O III}]$ and O II abundance results is not constant; the discrepancy is much larger for the central regions of the nebula, in which $\text{O}^{+2} (\text{O II})$ is as much as 10 times larger than $\text{O}^{+2} ([\text{O III}])$, than in the bright shell, in which the difference is not more than a factor of 2. Similar behavior has also been seen by Liu et al. (2000) in the PN NGC 6153, another shelllike nebula. This suggests a common origin for the forbidden line/recombination line abundance discrepancy.

The helium abundance derived from our observations is shown in Figure 7, with the total He/H plotted as a solid line and the He^{+2} contribution as dashed lines. The plot shows that the helium abundance remains rather constant as derived from binned (summed over $8^\circ-12^\circ$) spectra extracted at several intervals along the slit. The agreement between the binned spectra and the point-by-point measurements is excellent.

![Figure 5](image-url)
Figure 5. The $[\text{O III}] (\lambda \lambda 4959 + 5007)$ intensity profile along the slit (solid line) compared with $\text{O II} 4661$ (dotted line) and $\text{H}\beta$ (dashed line) in NGC 6720. Note that the O II emission peaks interior to $[\text{O III}]$ and $\text{H}\beta$.

![Figure 6](image-url)
Figure 6. O^{+2} abundance derived from $[\text{O III}]$ (from spatial profile [solid line] and from binned extractions [open squares]) and from $\text{O II} \lambda 4661$ (from spatial profile [dotted line] and from binned extractions [crosses]).
across the Ring Nebula, apart from possibly a small upturn at the edges of the shell. This increase is seen in He$^+$ and may be due to the assumption of a constant electron density across the shell; however, the effect is not large. The average helium abundance we derive, He/H ≈ 0.12, is about 10% smaller than that derived by Guerrero et al. (1997), He/H ≈ 0.135. The reason for the discrepancy is not clear. We do agree, however, that the helium abundance is essentially constant across the Ring Nebula.

Finally, in Figure 8 we display the C$^{+2}$ abundances derived from our measurements of C\equiv λ4267 compared with the O$^{+2}$ derived from O\equiv. The C$^{+2}$ abundance shows an increase toward the nebula center similar to that of O$^{+2}$, although the increase is not as strong. We find that C$^{+2}$/O$^{+2}$ ≈ 1 in the bright shell, decreasing to ≈0.5 (approximately the solar value) in the center. This variation could be due to ionization effects (the increasing importance of C$^{+3}$ in the interior), a real C/O abundance variation across the nebula, or a variation in the emission mechanism. Note that the C$^{+2}$ abundance in the shell is similar to that derived for NGC 6720 (C/H ≈ 6 × 10$^{-4}$) from the C\equiv λ1908 feature by Kwitter & Henry (1998).

Barker (1987) derived C$^{+2}$ abundances in the Ring Nebula from measurements of C\equiv λ4267 and from International Ultraviolet Explorer measurements of C\equiv λ1908. He found that the abundances derived from these two lines differed by a large factor in the central part of the Ring Nebula but that the difference decreased radially outward and essentially disappeared in the bright shell. This behavior is very similar to what we see for abundances derived from O\equiv and [O\equiv]. This suggests a common mechanism affecting emission lines from both O$^{+2}$ and C$^{+2}$.

5. DISCUSSION

Our long-slit observations of the Ring Nebula demonstrate that the O\equiv and [O\equiv] lines have very different spatial distributions. The big surprise is that the peak recombination line emission occurs in the region interior to the [O\equiv] zone, in contrast to the expectations if the O\equiv emission is the result of radiative recombination of O$^{+2}$. Either the O\equiv lines are enhanced in the inner nebula or the electron temperature derived from [O\equiv] is greatly overestimated in the nebular interior.

In Paper II we identify other surprising results. We find that the size of the O\equiv-[O\equiv] abundance discrepancy Δ log (O$^{+2}$/H$^+$) is anticorrelated with PN diameter and mean emission measure. We also see that O\equiv lines that arise from levels populated mostly by DR are more discrepant than other O\equiv lines when compared with the forbidden lines. These results, together with our new observations of the Ring Nebula, must be giving us important clues regarding the origin of the discrepancy between the recombination lines and the forbidden lines. Here we discuss some of the possible mechanisms for producing the abundance discrepancies; other possibilities will be examined in Paper II.

5.1. Temperature Fluctuations

Temperature fluctuations have been invoked to explain why collisionally excited lines give lower abundances than the recombination lines (Peimbert, Storey, & Torres-Peimbert 1993). Nevertheless, the abundance discrepancies observed in NGC 7009 (Liu et al. 1995), NGC 6153 (Liu et al. 2000), and the Ring Nebula (this paper) are so large that they are no longer in the regime in which Peimbert’s formalism of small temperature fluctuations applies. For example, in the Ring Nebula we find that the O\equiv lines yield abundances as much as 10 times larger than the [O\equiv] lines in the center of the nebula. If we assume that the O\equiv lines give the correct abundances, we can estimate the magnitude of temperature fluctuations needed to obtain the same abundances from the [O\equiv] lines. Forcing the [O\equiv] lines to give the same abundances requires an average temperature T_\equiv ≈ 6500 K in the center of the nebula and T_\equiv ≈ 9000 K in the shell, whereas we derived $T[O\equiv]$ ≈ 12,000 K in the center and $T[O\equiv]$ ≈ 10,000 K in the shell. Using the t^2 formalism of Peimbert (1967), these temperature differences imply t^2 ≈ 0.03 in the shell and t^2 ≈ 0.16 in the center of the nebula! The value t^2 = 0.16 corresponds to rms temperature variations of ±40%. It is difficult to imagine how such wild temperature variations could go unobserved (see Fig. 4a).

Still, we saw in Figure 4a that there is a radial gradient in $T[O\equiv]$ within the Ring Nebula. This variation could give rise to a noticeable t^2 term if the temperature measured from the summed spectrum differs significantly from the emission measure–weighted average temperature. We
compare the [O \text{III}] temperature derived from the Ring Nebula spectrum summed along the entire slit with the average [O \text{III}] temperature weighted by the [O \text{III}] 4959 \text{A} intensity along the slit. The temperature derived from the full-slit spectrum is 10,950 K, while the emission-weighted average temperature is 10,860 K. Using equation (4) of Garnett (1992), the measured difference in $T_{[\text{O III}]}$ corresponds to $t^2 = 0.003$. This is too small to have a significant impact on abundances. Nevertheless, such gradients in T_e are likely to be common in H II regions and PNs and should be taken into account whenever possible.

Liu et al. (2000) have also argued that temperature fluctuations are unable to account for the large discrepancy between forbidden line and recombination line abundances in NGC 6153. They derived T_e from both the [O \text{III}] lines and from the Balmer jump/line ratio in NGC 6153; the Balmer jump temperature was determined to be 3000 K smaller than the [O \text{III}] temperature. Nevertheless, Liu et al. (2000) found that this difference in T_e could account for only one-third of the factor of 9 difference in the derived O$^{+2}$ abundances in NGC 6153. Furthermore, they found that abundances derived from Infrared Space Observatory (ISO) measurements of collisionally excited [O \text{II}], [Ne \text{III}], and [S \text{III}] IR fine-structure lines agree very well with the results from corresponding optical forbidden lines. Since the IR fine-structure lines have a very weak temperature dependence compared to the optical forbidden lines, it is difficult to reconcile the good agreement in IR and optical abundances with the idea of significant temperature fluctuations. These results and ours are evidence that temperature fluctuations cannot account entirely for the large differences between recombination lines and forbidden lines in PNs.

5.2. Shocks

Shocks can provide a source of additional heating for a photoionized gas and have been proposed as a mechanism to account for temperature fluctuations (Peimbert, Sarmento, & Fierro 1991). Shocks can heat a photoionized plasma by transforming the kinetic energy of a flow (e.g., a stellar wind) into random thermal energy, and strong shocks heat the ambient medium to very high temperatures. High-excitation lines such as [O \text{III}] 4363 would be preferentially enhanced behind shocks in photoionized nebulae. Peimbert et al. (1991) showed that an interstellar shock superposed on the spectrum of an H II region could lead to a spuriously high measured electron temperature and thus to underestimated abundances from collisionally excited lines in the optical spectrum.

In a PN a shock front is expected to be formed at the interface between a fast stellar wind from the central star and the slowly expanding circumstellar envelope. The fast stellar wind would carve out a hot bubble in the interior of the nebula that would emit primarily in X-rays. Clear evidence for such hot bubbles has been found recently for a small number of PNs from X-ray imaging (Kastner et al. 2000; Kastner, Vrtilek, & Soker 2001; Chu et al. 2001).

However, evidence that shocks enhance temperatures in photoionized gas in an observable way is generally lacking. Physically, a shock is an extremely thin structure, only a few particle mean free paths thick; the high-temperature recombination zone downstream from the shock is generally only a few times 10^{15} cm deep in interstellar shock models (Shull & McKee 1979; Raymond 1979; Binette, Dopita, & Tuohy 1985). Therefore, one might expect the shock front to be manifested by a sharp, narrow spike in the spatial profile of T_e. Examination of Figure 4 shows that we observe no sharp jumps in T_e across the Ring Nebula, only a smooth increase from the shell to the center. The rms deviations from this smooth profile are less than 200 K. One must consider that the spatial resolution of our data, $2'5 \simeq 2 \times 10^{16}$ cm at a distance of 600 pc, is larger than the expected width of the shock cooling zone and that we are observing a temperature averaged along a chord through the nebula.

Another problem that must be considered is the structure of the PN and its effect on the propagation of the shock. Frank (1994) has simulated the radiation-gasdynamical evolution of a PN in the context of the interacting winds model (Kwok, Burton, & Fitzgerald 1978; Kwok 1994). These models begin with a slowly expanding red giant wind. The PN expansion is initiated by the onset of a slow, high-density “superwind” that lasts a few thousand years, creating a dense shell of gas around the central star. Following the end of the superwind, a high-velocity, low-density “fast wind” ensues, clearing out a central cavity and exposing the hot stellar core. Frank followed the gasdynamics and ionization/thermal evolution of the nebula simultaneously.

In the model the fast wind drives a shock into the superwind, creating a hot central bubble. The low density in the bubble allows radiation from the hot stellar remnant to penetrate and ionize the dense shell. The high pressure in the hot bubble drives a forward shock into the dense shell. Figure 2 of Frank (1994) shows a snapshot of the dynamical, thermal, and ionization properties of the nebula at a point that is comparable to the current state of the Ring Nebula. At this stage, the nebula is fully ionized, and the temperature profile in the dense shell is determined by radiative cooling and heating. At this point, the forward shock is nearly isothermal and does not produce a noticeable temperature jump. This behavior is consistent with the lack of a temperature discontinuity in our observations of the Ring Nebula. However, a sharp jump in T_e is seen at the contact discontinuity between the hot bubble and the dense shell in Frank’s models. One might then expect to see a sharp jump in observed T_e at this point in a PN. We do not observe such a jump in the Ring Nebula, but this may be due to insufficient spatial resolution.

Considering the results of our observations and Frank’s models leads us to conclude that shocks cannot explain the large discrepancy between forbidden line and recombination line abundances, although shocks should be present. Spectroscopic observations with better spatial resolution should show whether shocks produce any significant effect on temperature profiles in PNs.

5.3. Abundance Inhomogeneities

Torres-Peimbert, Peimbert, & Peña (1990) and Peimbert (1993) suggested that abundance inhomogeneities could produce anomalously strong recombination lines from heavy elements in PNs. If the central region of the PN contains hydrogen-depleted material, the metal-rich interior would be expected to have a low electron temperature because of strong cooling by IR fine-structure line emission. Thus, optical forbidden lines would be weakened in this region, while the recombination lines are enhanced. The optical forbidden lines would be produced mainly in the H-rich shell and would reflect the conditions and abundances there.
A number of observable consequences result from this model. First, it might be expected that the central nebula would be enriched in helium as well if the C and O enhancements result from incomplete mixing of He-burning products. Figure 7, however, shows that this is not the case for the Ring Nebula—He/H is essentially constant across the nebula. Alternatively, one might hypothesize that the central region is enhanced in C and O by a wind from an H- and He-depleted central star. However, the central star of the Ring Nebula is classified as H-rich (Napiwotski & Schönberner 1995; Napiwotski 1999).

Second, one would expect the observed T_e to decrease toward the center of the nebula. From Figure 4, however, we see that T_e increases toward the center. One could get around this by arguing that the derived temperature toward the center does not reflect the conditions in the interior but rather in the shell projected along the line of sight. Such a condition could occur if the nebula were shaped like a lozenge or an ellipsoid with the minor axis along the line of sight to the central star. In this configuration, gas near the minor axis would be closer to the central star and be subject to a stronger ionizing radiation field (i.e., a higher ionization parameter) and thus would have a higher T_e. This configuration conflicts with the model for the Ring Nebula presented by Guerrero et al. (1997). Based on the measured velocity field in the nebula, they argue that the Ring Nebula is a prolate ellipsoid with the major axis pointing at a small angle to the line of sight, a configuration roughly orthogonal to the one discussed above.

Finally, IR fine-structure line measurements do not show much evidence for the large abundance enhancements needed to explain the observed recombination line emission (Dinerstein et al. 1995; Liu et al. 2000; see also the discussion in § 5.1). From the above discussion, we conclude that the strong recombination line emission in the central region of the Ring Nebula does not reflect an H-poor, metal-enriched interior.

Liu et al. (2000) have also considered the question of abundance inhomogeneities. They first determined that simple density inhomogeneities in a nebula with homogeneous abundances could not account consistently for the strengths of forbidden lines, recombination lines, and the Balmer line ratios in NGC 6153. They next considered super–metal-rich (SMR) condensations and found that they could account for the emission-line strengths in NGC 6153 with a model having dense, H-depleted inclusions that occupy a very small fraction of the volume. In this model, the heavy-element recombination lines arise predominantly in the cool, dense condensations, while the forbidden lines are emitted primarily in the hotter, low-density component. Liu et al. (2000) were able to produce models of this kind that were able to reproduce the strengths of the recombination lines as well as the optical, UV, and IR collisionally excited lines.

Chemical inhomogeneities might be expected in a PN since C, N, and He are produced in different regions of the progenitor star. Convective mixing during the red giant phase could homogenize the PN envelope, but such mixing might never be complete, especially in very late stages prior to envelope ejection. Hydrodynamic instabilities would promote clumping in the gas, and a clumpy stellar wind may eject chemically inhomogeneous knots of gas. Evidence for knots of H-depleted material is seen in several PNs (e.g., A30; Jacoby 1979).

On the other hand, there are a number of difficulties with this model as an explanation for the apparent abundance discrepancies. Liu et al. (2000) noted the difficulty of maintaining the postulated dense knots in pressure equilibrium with the surrounding nebula. Another difficulty is the roughly equal enhancements of C, N, O, and Ne in the recombination line emission. This is inconsistent with the nucleosynthesis predicted for PN progenitors, which generally synthesize C, N, and He but not O or Ne.

In Paper II we will show that the difference between forbidden line and recombination line abundances in PNs is inversely correlated with the nebular emission measure and diameter: in compact, high surface brightness PNs the forbidden lines and recombination lines give essentially identical abundances, while large, low surface brightness PNs show large abundance discrepancies. This result suggests that the discrepancy between forbidden lines and recombination lines is apparent only when a PN is large and evolved. It is difficult to imagine why hydrogen-depleted knots would condense out of the PN only at late times. If hydrogen-depleted clumps were present in the ejected envelope, one would expect them to be present at early times as well. Evaporation of grains from dense globules cannot produce the SMR clumps required—enhanced recombination line emissions are seen not only for O and C but also for N and Ne, which largely do not condense onto grains. One possibility is a clumpy stellar wind from an H-poor central star, and indeed, the central star of NGC 6153 shows O VI emission indicating an H-depleted wind. However, as noted above, the Ring Nebula central star is H-rich. Obviously, a better understanding of the ejection and clumping of material in the nebula is needed to determine if this model can successfully account for PN emission.

An obvious consequence of the SMR knot model is that one might expect to see strong O II recombination lines associated with the presence of dense knots. Numerous small cometary knots have been observed in the Helix Nebula NGC 7293 (Vorontsov-Velyaminov 1968) and have been identified as elongated, dense, dusty globules with a surface photoluminescent by the central star (O'Dell & Handron 1996). Their origin has not been determined yet, and spectroscopic data on physical conditions and metallicities are not yet available. However, they (or the shadow regions behind them) are logical places to look for emission anomalies such as enhanced recombination line emission.

Imaging with the Hubble Space Telescope (HST) has revealed the presence of dusty, possibly cometary, knots in the Ring Nebula as well. We have extracted Wide-Field Planetary Camera 2 (WFPC2) images of the Ring Nebula from the HST archive (taken under program GO 7632). We obtained images in F502N ([O III] λ5007), F658N ([N II] λ6584), and F469N (He II λ4686). The three individual exposures in each filter were combined and mosaiced after removing cosmic rays and image defects. We combined the final filter images to highlight the dusty globules. (The STScI Office of Public Outreach Web site has a nice color

1 Another possible argument is that the higher temperature in the central nebula is the result of shocks located preferentially along those lines of sight. The kinematics discussed in Guerrero et al. (1997) appear to rule out such a situation.

2 See http://oposite.stsci.edu.
image of the Ring Nebula that clearly shows the dusty knots. We rotated the image so that the east-west direction was aligned with the horizontal axis and overlaid our spectrograph slit on the image. The upper panel of Figure 9 shows a negative composite image of NGC 6720 in the F469N, F502N, and F658N filters, with our slit outlined. Numerous dusty knots are seen in this image, beginning about 20° from the central star. High-resolution IR imaging of NGC 6720 shows that bright H$_2$ S(1) emission follows the rings of dusty knots (Kastner et al. 1994), indicating the presence of neutral and molecular material as well.

The lower panel in Figure 9 shows the distribution of O$^{+2}$/H$^+$ across this section of the Ring Nebula. Comparison with the upper panel shows that the peak of the recombination line emission does not coincide with the region of dusty knots but rather lies interior to the rings of knots. The discrepancy between the abundance derived from O II and that derived from [O III] is largest in the innermost regions and is declining in the regions in which the dusty knots are seen. Although the spatial resolution of our spectrum is poor compared to the HST imaging, we conclude that the knots observed in the Ring Nebula are not the primary

![Image of the Ring Nebula](image)

Fig. 9.—Top: Negative image of NGC 6720, showing numerous small dusty knots. The region of dust knots begins about 20° from the central star (see scale in bottom panel). The position and orientation of our spectrograph slit is marked. The image is a composite of WFPC2 images in the filters F469N, F502N, and F658N. Bottom: O$^{+2}$ abundances derived from O II and [O III] across the Ring Nebula, as in Fig. 5. The bars label the positions where dust knots are seen in the WFPC2 images. The top and bottom panels have the same horizontal spatial scale.
source for the enhanced recombination emission. Any metal-rich knots of the kind proposed by Liu et al. (2000) must be largely invisible at HST resolution.

5.4. Enhanced Dielectronic Recombination

We will show in Paper II (also Dinerstein et al. 2000 and Garnett & Dinerstein 2001) that some \(\text{O} \) II lines yield much larger \(\text{O}^{++} \) abundances than other lines. In particular, \(\lambda = 4590, 4596 \) from multiplet 15 are especially strong. The levels that these lines arise from are populated mainly by dielectronic recombination (DR). The large abundances obtained from these lines, even after taking into account the low-temperature DR rates (Nussbaumer & Storey 1984), indicate that low-temperature DR at nebular temperatures does not account for the great strength of the lines. We therefore investigate the possibility that the DR rates in the affected PNs could be severely underestimated. This could be the case if the rate coefficients to upper levels are grossly underestimated (which does not seem very likely for all of the ions involved) or if there is a component of DR that is not accounted for in standard PN emission models.

We hypothesize that this could be high-temperature DR in a hot central bubble; DR rates are enhanced by as much as a factor of 10 at \(T \approx 10^5 \) K compared to the rates at nebular temperatures of \(\approx 10^4 \) K (Nahar & Pradhan 1997; Nahar 1999).

The spatial distribution of \(\text{O} \) II emission in our long-slit observations of the Ring Nebula would appear to be consistent with this hypothesis. The \(\text{O} \) II lines are strongest just interior to the main shell, in the region where the interface between a hot bubble and the denser ionized shell would be expected. The spatial profile of the \(\text{O} \) II emission peak is fairly broad, perhaps broader than might be expected from such a transition layer; however, we have not accounted for the relatively low spatial resolution of the spectra nor for the effects of nebular geometry. Unfortunately, no X-ray images of the Ring Nebula exist, so we have no information on the presence or absence of hot gas.

At what temperature would the recombination coefficient be large enough to account for the increased emission? Let us assume that the \(\text{O} \) II emission in the main shell represents the intrinsic \(\text{O}^{++} \) abundance of \((7 \pm 1) \times 10^{-4} \) at a temperature of 10,000 K. The maximum derived \(\text{O}^{++} \) abundance is \((24 \pm 2) \times 10^{-4} \), or about 3.5 times the abundance in the shell. An equality of abundance would then imply that the recombination coefficient in the inner nebula is higher by the same factor. Based on the theoretical recombination coefficients tabulated by Nahar (1999), this is true if the material producing the excess \(\text{O} \) II emission is at \(T \approx 65,000 \) K. Similarly, the \(\text{C}^{++} \) abundance in the inner nebula is about twice as large as that in the shell. The recombination rate for \(\text{C} \) III \(\rightarrow \text{C} \) II is a factor 2 larger at \(T \approx 35,000 \) K than the rate at 10,000 K. On the other hand, Savin (2000) points out that the high-\(T \) DR rate from these \(LS\)-coupling calculations may be underestimated by perhaps a factor of 1.5–2 because of missing autoionizing levels, which would act in favor of our model.

One difficulty that arises is that any \(\text{O}^{++} \) ions recombining in this hot zone would be expected to emit very strongly in [O III], and a large increase in \(T \), and in the forbidden line strengths might be observed. This problem could be mitigated if the density in the hot zone is very small; the contribution to [O III] emission from the hot zone would then be overwhelmed by the strong emission from the main shell. We can check this by comparing the collisional excitation rates for [O III] with the recombination rates as a function of temperature. For the enhanced DR model to work, two conditions must be satisfied: first, there must be a temperature regime in which the recombination rate \(q_{\text{rec}} \) increases faster with increasing \(T \) than the collisional excitation rate \(q_{\text{coll}} \) at temperatures where DR dominates, and second, there must be a temperature regime in which \(q_{\text{rec}}/q_{\text{coll}} \) exceeds the value of this ratio at 10,000 K, the electron temperature we measure in the shell of the ring.

Figure 10 shows the results of a comparison of recombination rates to collisional excitation rates for \(\text{O}^{++} \), where we plot \(q_{\text{rec}}/q_{\text{coll}} \) versus temperature for both [O III] \(\lambda = 4363, 5007 \) and \(\lambda = 4363 \). Here we have computed the total recombination rate and assumed that the effective recombination rates to individual levels scale identically. We used the radiative recombination rates formulated by Pequignot, Petitjean, & Boisson (1991) together with the DR rates from Nussbaumer & Storey (1983) and Badnell & Pindzola (1989) to estimate \(q_{\text{rec}} \). The collisional rates \(q_{\text{coll}}(\lambda) \) were computed using the averaged temperature-dependent collision strengths of Baluja, Burke, & Kingston (1981), Aggarwal (1983), and Lennon & Burke (1994). Figure 10 shows that while the first condition listed above is met, the second is not. The plot shows that \(q_{\text{rec}} \) does increase faster than \(q_{\text{coll}} \) in the range 4.4 < log \(T \) < 5.5. On the other hand, while we do see that \(q_{\text{rec}}/q_{\text{coll}} \) (\(\lambda = 4363, 5007 \)) for log \(T \) = 5.1–5.7 exceeds the ratio at 10^4 K, the largest difference is only about 0.1 dex. This is not nearly enough to explain the large difference between recombination line abundances and forbidden line abundances in NGC 6720. Furthermore, Figure 10 shows us that for log \(T \) > 4.5, \(q_{\text{rec}}/q_{\text{coll}} \) (\(\lambda = 4363 \)) never exceeds the value at 10^4 K. In order for this model to work, the theoretical DR rates would have to be increased by a large factor, which appears to be outside the estimated uncertainties in current DR rate calculations. We are thus forced at the present time to conclude that the recombination/collisional excitation ratio cannot be increased sufficiently by the presence of hot gas, for any combination of gas temperatures, to account for the observations, at least with conventional physics.
6. SUMMARY AND CONCLUSIONS

We have demonstrated in this paper that the O II and [O III] lines in the Ring Nebula have distinctly different spatial distributions in the nebula; similar results have been found by Liu et al. (2000) for NGC 6153. The permitted line emission peaks closer to the central star than the forbidden line emission. This spatial distribution appears to be inconsistent with a model in which the permitted lines arise mainly from radiative recombination of O II in the transition zone to O II in the bright shell. In order to force the abundances from the [O II] lines to agree with those derived from O II would require such large temperature fluctuations that it would be difficult to hide them. Furthermore, it is difficult to reconcile large temperature fluctuations with the good agreement between optical and far-IR measurements of forbidden lines in NGC 6153. Thus, it appears clear that temperature fluctuations cannot account for most of the discrepancy between forbidden line and recombination line abundances in PNs.

Nor do we find that C +2 and O +2 derived from the optical recombination lines have similar overabundances relative to those obtained from the collisionally excited lines in the Ring Nebula. Comparing our C +2 abundance with that obtained by Kwitter & Henry (1998) from the UV C III lines, we find that the recombination-line abundance for C +2 is about a factor of 2 higher, while for O +2, the RLs give an abundance that is a factor of 4 higher than that derived from [O III]. Thus, it appears that the cause of the abundance discrepancy need not apply equally to all of the species.

Based on the enhanced strengths of O II multiplet 15, the correlation of the abundance discrepancy with nebular size (Paper II; Garnett & Dinerstein 2001) and the spatial distribution of the O II emission, we proposed that DR in a hot gas bubble might greatly enhance the emission rates of the permitted lines above the rates at nebular temperatures. A comparison of recombination rates versus collisional excitation rates for O +2 showed, however, that the increase in recombination rates due to DR at \(T_e \approx 10^4 \) K is not enough to overcome the increase in collisionally excited emission. Unless the theoretical DR rates are greatly underestimated, this does not appear to be a viable explanation for the recombination line–forbidden line discrepancy. In any case, our results suggest that we need to understand better the effects of DR on recombination line strengths in general.

A model in which the recombination emission arises mainly in cold, H-depleted clumps (Liu et al. 2000) could explain the enhanced recombination line emission in PNs, although we are unable to find a close correlation between enhanced O II emission and the locations of dusty globules in the Ring Nebula. Furthermore, we would also need to understand why such clumps are only seen in the larger, more evolved PNs. Perhaps this is a selection effect related to the surface brightness. Spectroscopy and imaging with high spatial resolution of other PNs should provide more clues to the nature of the relation between recombination line enhancement and nebular diameter.

Unfortunately, we are not able to convincing reconcile any of the proposed models to explain the RL enhancements with all of the observations of NGC 6720 and NGC 6153. We present our results here in the hope that it will inspire new thinking on the physics behind emission processes in photoionized nebulae.

What are the consequences for abundance measurements from forbidden lines? The results are a bit mixed at the present time. The agreement in abundances derived from optical/UV forbidden lines and IR lines measured by ISO for NGC 6153 (Liu et al. 2000) offers strong evidence that temperature fluctuations do not have sufficient magnitude to significantly affect forbidden line abundances. On the other hand, there is a significant discrepancy between the Balmer discontinuity temperature and the [O III] temperature in NGC 6153. It is possible that this discrepancy merely reflects variations in temperature across the nebula. As we have seen, the [O III] temperature is not constant across the Ring Nebula, and such a variation is expected based on ionization models. A detailed observational study of the spatial profile of various temperature indicators across nebulae would provide a clearer picture of the temperature variation within planetary nebulae.

We thank A. Frank, J. Mathis, and G. Shields for very helpful and stimulating discussions, Bob Benjamin for assistance in deriving the results shown in Figure 10, and the anonymous referee for several useful comments. The work of D. R. G. is supported by NASA LTSA grant NAG 5-7734, while H. L. D. acknowledges support from NSF grant AST 97-31156.

REFERENCES

Aggarwal, K. M. 1983, ApJS, 52, 387
Badnell, N. R., & Pindzola, M. S. 1989, Phys. Rev. A, 39, 1690
Baluju, K. L., Burke, P. G., & Kingston, A. E. 1981, J. Phys. B, 14, 119
Barker, T. 1987, ApJ, 322, 922
Benjamin, B. A., Skillman, E. D., & Smith, D. P. 1999, ApJ, 514, 307
Binette, L., Dopita, M. A., & Tuohy, I. R. 1985, ApJ, 297, 476
Chu, Y.-H., Guerrero, M. A., Grasdalen, R. L., Williams, R. M., & Kaler, J. B. 2001, ApJ, 533, L69
Chu, Y.-H., Jacoby, G., & Arendt, J. A. 1987, ApJ, 64, 529
Davey, A. R., Storey, P. J., & Kieliszek, R. 2000, A&AS, 142, 85
Dinerstein, H. L., Haas, M. R., Erickson, E. F., & Werner, M. W. 1995, in ASP Conf. Ser. 73, From Gas to Stars to Dust, ed. M. R. Haas, J. A. Davidson, & E. F. Erikson (San Francisco: ASP), 387
Dinerstein, H. L., Lafon, C. P., & Garnett, D. R. 2000, in ASP Conf. Ser. 199, Asymmetrical Planetary Nebulae II: From Origins to Microstructures, ed. J. Kastner, N. Soker, & S. Rappaport (San Francisco: ASP), 301
Esteban, C., Peimbert, T., Torres-Peimbert, S., & Escalante, V. 1998, MNRAS, 295, 401
Frank, A. 1994, AJ, 107, 261
Garnett, D. R. 1992, AJ, 103, 1330
Garnett, D. R., & Dinerstein, H. L. 2001, Rev. Mexicana Astron. Astrofis. Ser. de Conf., in press (astro-ph/0104145)
Guerrero, M. A., Manchado, A., & Chu, Y.-H. 1997, ApJ, 487, 328
Hummer, D. G., & Storey, P. J. 1998, MNRAS, 297, 1073
Jacoby, G. H. 1979, PASP, 91, 754
Kastner, J. H., Gatley, I., Merrill, K. M., Probst, R., & Weintraub, D. A. 1994, ApJ, 421, 600
Kastner, J. H., Soker, N., Vršnak, S. D., & Dgani, R. 2000, ApJ, 545, L57
Kastner, J. H., Vršnak, S. D., & Soker, N. 2001, ApJ, 550, L189
Kwitter, K. B., & Henry, R. B. C. 1998, ApJ, 493, 247
Kwok, S. 1994, PASP, 106, 344
Kwok, S., Purton, C. R., & Fitzgerald, P. M. 1978, ApJ, 219, L125
Lampe, N. J., & Poage, W. P. 1994, AJ, 108, 4060
Lennon, D. J., & Burke, V. M. 1994, A&AS, 103, 273
Liu, X.-W., & Barlow, M. J. 1996, MNRAS, 279, 511
Liu, X.-W., Barlow, M. J., & Clegg, R. E. 2000, MNRAS, 312, 585
Liu, X.-W., & Barlow, M. J., Danziger, I. J., Cohen, M., & Bryce, M. 2000, MNRAS, 312, 585
Massey, P., Strobel, K., Barnes, J. V., & Anderson, E. 1988, ApJ, 328, 315
Matthys, J. S. 1995, Rev. Mexicana Astron. Astrofis. Ser. de Conf., 3, 207
Nahar, S. 1999, ApJS, 120, 131
Nahar, S., & Pradhan, A. K. 1997, ApJS, 111, 339
Napiwotski, R. 1999, A&A, 350, 101
Napiwotski, R., & Schönberner, D. 1995, A&A, 301, 545
Nussbaumer, H., & Storey, P. J. 1983, A&A, 126, 75
———. 1984, A&AS, 56, 293
O’Dell, C. R., & Handron, K. D. 1996, AJ, 111, 1630
Osterbrock, D. E. 1989, Astrophysics of Gaseous Nebulae and Active
Galactic Nuclei (Mill Valley: University Science Books)
Peimbert, M. 1967, ApJ, 150, 825
———. 1993, Rev. Mexicana Astron. Astrofís. Ser. de Conf., 27, 9
Peimbert, M., Sarmiento, A., & Fierro, J. 1991, PASP, 103, 815
Peimbert, M., Storey, P. J., & Torres-Peimbert, S. 1993, ApJ, 414, 626
Pequignot, D., Petitjean, P., & Boisson, C. 1991, A&A, 251, 680
Raymond, J. C. 1979, ApJS, 39, 1
Savage, B. D., & Mathis, J. S. 1979, ARA&A, 17, 73
Savin, D. W. 2000, Rev. Mexicana Astron. Astrofís. Ser. de Conf., 9, 115
Shaw, R. A., & Dufour, R. J. 1995, PASP, 107, 896
Shull, J. M., & McKee, C. F. 1979, ApJ, 227, 131
Storey, P. J. 1994, A&A, 282, 999
Torres-Peimbert, S., Peimbert, M., & Peña, M. 1990, A&A, 233, 540
Vorontsov-Velyaminov, B. A. 1968, in IAU Symp. 34, Planetary Nebulae,
ed. D. E. Osterbrock & C. R. O’Dell (Dordrecht: Reidel), 256