Valiron-Titchmarsh Theorem for Positive Temperatures

J. B. Lacay

Bronx Community College of the City University of New York
Mathematics and Computer Science Department
2155 University Avenue, Bronx, NY 10453, USA

Abstract. In this note, we prove an analog of the Valiron-Titchmarsh theorem for positive temperatures.

Key words: Entire functions, Counting function, Parabolic cylinder.

2010 Mathematics Subject Classification: 35K05, 35B40

1. Introduction and Statement of Results

Let \(f(z) \) be an entire function of order \(\rho < 1 \) with only negative zeros.

\[
\log f(r) \approx \frac{\pi}{\sin \pi \rho} r^\rho \text{ as } r \to \infty.
\]

If the counting function \(n(r) \) of the zeros of \(f \) satisfies \(n(r) \approx r^\rho, r \to \infty \), then, it is immediate that

\[
\log f(r) \approx \frac{\pi}{\sin \pi \rho} r^\rho, r \to \infty.
\]

The converse statement of Tauberian nature was proved independently by Valiron and Titchmarsh [14], and it is often referred as the Valiron-Titchmarsh theorem on entire functions with negative zeros; its current exposition can be found, in [11, Lec 12-13]. For the history and generalizations of the Valiron-Titchmarsh theorem (see, e.g., [10] or [5] and the references therein. In [13], it was shown that, for an entire function of non-integer order with zeros on the negative real half-line, the existence of the asymptotics of a certain form for one of the functions along some ray implies the existence of certain asymptotics for the counting function of the zeros. In [5], the author showed that for an entire function \(f(z) \) of finite order \(\rho \) with all its zeros lie on a finite collection of rays in the interior of a sector \(S: \alpha < \arg z < \beta \), such a function is called completely regular along \(\arg z = \theta(\alpha, \beta) \). If the \(\lim_{r \to \infty} r^{-\rho} \log |f(re^{i\theta})| \) exists, then \(f(z) \) is of completely regular growth on the whole plane. Recently, [6] extended the Drasin complement to the Valiron-Titchmarsh theorem and showed that if \(u \) is
a subharmonic function of this class and order 0 < ρ < 1, then the existence is the lim_{r→∞} log \frac{u(r)}{N(r)}. In [7], the problems under consideration examined the relationship of the initial data f and that of the solution u. From the main theorem, we proved the interesting corollary that $u(x, t) = \alpha x^\rho + \bar{\alpha}(r^\alpha)$ for each $t \to \infty$ if and only if $f(y) = \alpha y^\rho + \bar{\alpha}(y^\alpha), y \to \infty$. In [9], we considered two-term analogs of the Valiron-Titchmarsh theorem for the temperatures.

In this note, we prove an analog of the Valiron-Titchmarsh theorem for positive temperatures, i.e for positive solutions of the heat equation.

(1.1) \[\frac{\partial u(x, t)}{\partial t} = \kappa \frac{\partial^2 u(x, t)}{\partial x^2} \]
in the slab $S^T = \mathbb{R}^2 \times (0, T)$, where the constants $\kappa > 0$ and $0 < T \leq \infty$. Thereafter, these solutions are called temperatures.

It is known [16, p.57] that a positive temperature in S^T has the Gauss-Weierstrass representation

(1.2) \[u(x, t) = \frac{1}{4\pi\kappa t} \int_{\mathbb{R}^2} e^{-\frac{1}{4\kappa t} ||x-y||^2} \, d\mu(y). \]

where $x = (x_1, x_2), x = (r \cos \theta, r \sin \theta), r \geq 0, 0 \leq \theta < 2\pi$, and $y = (y_1, y_2), y = (s \cos \phi, s \sin \phi), s \geq 0, 0 \leq \phi < 2\pi$ in spherical coordinates respectively. Here, $|| \cdot ||$ is the Euclidean norm in \mathbb{R}^2, and $d\mu$ is a non-negative function on \mathbb{R}^2.

It is known [16, p.57, Theor 2.10] that if u is real-valued and continuous up to the boundary $\mathbb{R}^2 \times [0]$, then $d\mu(y) = u(y, 0)dy$. It is also known [16, p.8], that under this assumption the measures μ are absolutely continuous with respect to the Lebesgue measure in \mathbb{R}^2. To derive an analog of the Valiron-Titchmarsh theorem for the positive temperatures, we assume that the function $d\mu(y)$ is supported on the ray $\arg y = \theta_0$. Thus, in the case under consideration, (1.2) can be represented as

(1.3) \[u(x, t) = \frac{1}{4\pi\kappa t} \int_{0}^{\infty} e^{-\frac{1}{4\kappa t} ||x-y||^2} \, dn(s), \]

where now $y = (s \cos \theta_0, s \sin \theta_0)$ and $n(s)$ denotes the number of zeros in the circle $|z| \leq r$ and $n(s) = \mu(\{|y| \leq s\})$ is the total μ-measure of the disk $|y| \leq s$. Since we are interested in asymptotic properties of temperatures, we can assume without any loss of generality that some vicinity at the origin is \mathbb{R}^2 is free of the measure $d\mu$, i.e. $n(s_0) = 0$ for some $s_0 > 0$, in particular, $n(0) = 0$. Moreover, since $u(0, t) < \infty$, we
have from (1.3)

\[(1.4) \quad \int_0^\infty e^{-\frac{1}{4}t} s^2 dn(s) < \infty.\]

We also assume for the rest of the note that for any \(t > 0\),

\[(1.5) \quad \lim_{s \to \infty} n(s)e^{-s^2/4t} = 0.\]

Integrating (1.4) by parts and using (1.5), we derive the representation

\[(1.6) \quad u(0, t) = \frac{1}{4\pi \kappa t} \int_0^\infty sn(s)e^{-\frac{1}{4}s^2} ds.\]

Suppose the measure \(u\) is supported on the ray \((s, \theta_0), s > 0, 0 \leq \theta_0 < 2\pi\). Thus, in (1.3) the measure \(n(s) = n((0, s])\) of the semi-interval \((0, s]\) for all \(s > 0\). Integrating (1.3) by parts, we have

\[(1.7) \quad u(x, t) = \frac{1}{2t} \int_0^\infty (s - r\cos(\theta - \theta_0)) e^{-\frac{r^2 - 2r\cos(\theta - \theta_0)}{4t}} n(s) ds \]

\[= \frac{1}{2t} e^{-\frac{r^2}{4t}} \int_0^\infty (s - r\cos(\theta - \theta_0)) e^{-\frac{s^2 - 2r\cos(\theta - \theta_0)}{4t}} n(s) ds.\]

Remark 1.1. Since we are interested in temperatures with power growth of the measure, when (1.5) is clearly valid, (1.5) is not an essential restriction for us.

Theorem 1.1. Let the temperature \(u\) have a representation

\[u(x, t) = Ax^\alpha + v(x, t)\]

where

\[\lim_{x \to \infty} x^{-\alpha} \int_0^x v(y, t) dy = 0\]

is uniform in \(t \in [0, t_0]\) for some \(0 < t_0 < a\). Then

\[f(r) = Ar^\alpha + o(r^\alpha), r \to \infty.\]

Proof. For a function \(f\), denote \([f](x) = \frac{1}{2}((f(x^+) + f(x^-))\). By assumption \(f(y) = 0\) in some neighborhood of \(y = 0\), thus \([f](0) = 0\) and by [17, p. 69, Theor. 6],

\[\lim_{t \to 0} \int_0^r u(y, t) dy = [f](r)\]

therefore

\[\lim_{t \to 0} \int_0^r f(y) dy + \lim_{t \to 0} \int_0^r v(y, t) dy = Ar^\alpha + \lim_{t \to 0} \int_0^r v(y, t) dy.\]
The limits as \(r \to +\infty \) and as \(t \to 0^+ \) can be interchanged due to the uniformity assumption, thus

\[
\lim_{r \to \infty} r^{-\alpha} \lim_{t \to 0^+} \int_0^r v(y, t) dy = \lim_{t \to 0^+} \lim_{r \to \infty} r^{-\alpha} \int_0^r v(y, t) dy = 0.
\]

Theorem 1.2. Under some assumptions on a temperature \(u \)

\[
u(r) = \lim_{t \to 0^+} \int_{|y| \leq r} v(y, t) dy
\]

if \(u(x, t) \approx A(\theta_0)|x|^\rho \). Then

(1.8)

\[
f|\chi| = \alpha|x|^\rho + \overline{\sigma}(x^\rho)
\]

Proof. By [16, Theor. 7.2]

(1.9)

\[
u(r) = \lim_{t \to 0^+} \int_{|y| \leq r} v(y, t) dy
\]

\[
= \lim_{t \to 0^+} \int_{|y| \leq r} A(\theta)|x|^\rho dy + \lim_{t \to 0^+} \int_{|y| \leq r} u(y, t) dy, y = (y_1, y_2) = (B, \theta).
\]

Suppose

\[
\lim_{t \to 0^+} r^{-s-2} \int_{|y| \leq r} V(s, \theta, t) dy = 0.
\]

If under some assumptions on a temperature \(u \),

\[
u(r) = \lim_{t \to 0^+} \int_{|y| \leq r} u(y, t) dy.
\]

Then,

\[
\lim_{r = |x| \to \infty} \frac{u(x, t)}{|x|^\rho+2} = \frac{1}{\rho+2} \int_0^{2\pi} A(\theta) d\theta.
\]

Since

\[
u(x, t) = A(t, \theta)|x|^\rho + V(x, t), y = (y_1, y_2) = (B, \theta).
\]

It follows,

\[
\int_{|y| \leq r} A(t, \theta) s^\rho dy = \int_0^r \int_{0}^{2\pi} s A(t, \theta) s^\rho d\theta ds
\]
\[
= \int_0^{2\pi} A(t, \theta) \int_0^r s^{\rho+1} ds
\]
\[
= \frac{r^{\rho+2}}{\rho + 2} \int_0^{2\pi} A(t, \theta) d\theta
\]

Now, we can state our result.

Theorem 1.3. Let \(u(x, t) \) be a positive temperature given by (1.2) with the measure \(d\mu \) supported at the ray, \(\arg z = \theta_0 \). If \(n(s_0) = 0 \) and

\[
(1.10) \quad n(s) = a_0 s^{\alpha(s)} + n_1(s), \quad s > s_0,
\]

where the constants \(a_0 \) and \(\alpha \) satisfy \(a_0 \geq 0, \alpha > -1 \), and the remainder

\[
\lim_{s \to \infty} s^{-\alpha(s)} n_1(s) = 0,
\]

then

\[
(1.11) \quad u(x, t) = \begin{cases}
\frac{a_0}{2^{\frac{\alpha}{2}}\kappa t} \left(r \cos(\theta - \theta_0) \right)^{\alpha} e^{-\frac{r^2 \sin^2(\theta - \theta_0)}{4t}}, & \cos(\theta - \theta_0) > 0 \\
\frac{a_0}{\pi} \Gamma\left(\frac{\alpha+1}{2} \right) 2^{\alpha-2} t^{\frac{\alpha-1}{2}} e^{-\frac{t}{4}}, & \cos(\theta - \theta_0) = 0 \\
\frac{a_0}{\pi} \Gamma(\alpha + 1) 2^{\alpha-1} t^{\alpha} e^{-\frac{t}{4}}, & \cos(\theta - \theta_0) < 0.
\end{cases}
\]

Proof. We write (1.3) as

\[
(1.12) \quad u(x, t) = u_0(x, t) + u_1(x, t)
\]

\[
\equiv \frac{a_0}{8\pi t^2} \int_0^\infty e^{-\frac{4}{t} ||x-y||^2} s^{\alpha(s)} ds + \frac{b}{8\pi t^2} \int_0^\infty e^{-\frac{4}{t} ||x-y||^2} n_1(s) ds.
\]

We find the principal term of the asymptotic formula by estimating \(u_0 \),

\[
(1.13) \quad u_0(x, t) = \frac{a_0}{4\pi kt} \int_0^\infty e^{-\frac{4}{t} ||x-y||^2} s^{\alpha(s)} ds
\]

\[
= \frac{a_0}{4\pi kt} \int_0^\infty e^{-\frac{s^2 - 2rs \cos(\theta - \theta_0) + r^2}{4t}} s^{\alpha(s)} ds,
\]

\[
= \frac{a_0 e^{-\frac{r^2}{4t}}}{4\pi kt} \int_0^\infty e^{-\frac{s^2 - 2rs \cos(\theta - \theta_0)}{4t}} s^{\alpha(s)} ds.
\]
To simplify the integral \(u_0 \), set \(s = \sqrt{2t}w \), \(\alpha = -\nu - 1 \), while letting \(z = -\frac{r \cos(\theta - \theta_0)}{\sqrt{2t}} \),

\[
u_0(x,t) = \frac{a_0}{4\pi kt} e^{\frac{z^2}{2}} \left(\sqrt{2t} \right)^{\alpha(s)+1} \int_0^\infty w^\alpha e^{-\frac{w^2}{2} - zw} \, dw.
\]

The above integral \(u_0 \) can be expressed through and estimated by making use of the parabolic cylinder functions, where \(D_\nu(z) \) is the Weber function [1, Section 8.3,(3)],

\[
D_\nu(z) = \frac{e^{-z^2/4}}{\Gamma(-\nu)} \int_0^\infty e^{-zt-t^2/2} t^{-\nu-1} \, dt, \ \Re \nu < 0.
\]

Using (2.2) and (2.3), \(u_0 \) can be written as

\[
u_0(x,t) = \frac{a_0 \Gamma(\alpha(s)+1)}{\pi} \frac{2^{\alpha(s) - 1} \alpha(s)}{\Gamma(1+\sin^2(\theta - \theta_0))} D_{-\alpha-1}(z),
\]

We consider here two cases, \(\cos(\theta - \theta_0) > 0 \) and \(\cos(\theta - \theta_0) < 0 \). We cut the \(z \) - plane along the negative \(x \) - axis, \(x = \text{Re}z \), thus \(-\pi < \theta \leq \pi \) and fix the value \(\text{arg}(1) = 0 \). Then in the half-plane, \(\theta_0 - \pi/2 < \theta < \theta_0 + \pi/2, z = -\frac{r \cos(\theta - \theta_0)}{\sqrt{2t}} < 0, \text{arg}z = \pi \).

Using the known asymptotic formula [2, p. 307] for a fixed value of \(\nu \) and \(\pi/4 < |\text{arg}z| < 5/4\pi \), as \(z \to \infty \), we have

\[
D_\nu(z) = z^\nu e^{-\frac{1}{4}z^2} \left[\sum_{n=0}^N \frac{(-1/2\nu)_n (1/2 - 1/2\nu)_n}{n!(-1/2z^2)^n} + O(|z^2|^{-N-1}) \right]
\]

\[- \frac{(2\pi)^{1/2}}{\Gamma(-\nu)} e^{\nu\pi i} z^{-\nu-1} e^{\frac{1}{4}z^2} \left[\sum_{n=0}^N \frac{(1/2\nu)_n (1/2 + 1/2\nu)_n}{n!(1/2z^2)^n} + O(|z^2|^{-N-1}) \right].
\]

For \(\cos(\theta - \theta_0) > 0, e^{\frac{1}{4}z^2} \gg e^{-\frac{1}{4}z^2}, n = 0 \),

\[
D_\nu(z) \approx - \frac{(2\pi)^{1/2}}{\Gamma(-\nu)} e^{\nu\pi i} z^{-\nu-1} e^{\frac{1}{4}z^2}
\]

Thus,

\[
u_0(x,t) \approx \frac{a_0}{\pi} \frac{2^{\alpha(s)-1} \alpha(s-1)}{\Gamma(\alpha(s))} \left(\frac{r \cos(\theta - \theta_0)}{\sqrt{2\pi}} \right)^{\alpha(s)} e^{-\frac{r^2}{2\pi} \sin^2(\theta - \theta_0)}
\]

Similarly, for \(\cos(\theta - \theta_0) < 0 \)

\[
D_\nu(z) \approx \frac{(2\pi)^{1/2}}{\Gamma(-\nu)} e^{-\frac{1}{4}z^2}
\]

\[1\text{The corresponding formulas in [1, Sect. 8.4] contain misprints - missing brackets.}\]
\[u_0(x, t) = \frac{a_0}{\pi} 2^{\frac{\alpha-3}{2}} t^{\frac{\alpha-1}{2}} (r \cos(\theta - \theta_0))^{\alpha} e^{-\frac{r^2}{4t}} \]

Now, we estimate \(u_1 \) by (1.6),
\[u_1(x, t) = \frac{b}{4\pi \kappa t} \int_0^\infty e^{-\frac{1}{4\kappa t}||x-y||^2} n_1(s) ds. \]

Since \(\lim_{s \to \infty} s^{-\alpha(s)} n_1(s) = 0 \). Therefore,
\[Ae^{-\frac{1}{4\kappa t}||x-y||^2} \to 0, s \to \infty, \]
uniformly in \(t \).

References

[1] Bateman, H., Erdelyi, A., *Higher Transcendental Functions*, Vol. 2. McGraw-Hill, New York, Toronto, London, 1953.

[2] Bleistein, N., Handelsman, R.A., *Asymptotic Expansions of Integrals*. Dover, New York, 1986.

[3] Cannon, J.R., *The One-Dimensional Heat Equation*. Addison-Wesley Publ. Co., 1984.

[4] Evgrafov, M.A., *Asymptotic Estimates and Entire Functions*. 3rd Ed. (Russian), "Nauka", Moscow, 1979.

[5] Kheyfits, A.I., A generalization of the E. Titchmarsh theorem on entire functions with negative zeros, *Izv. VUZov. Math.* 1973, No. 2 (129), 99-105.

[6] Kheyfits, A.I., A Complement to the Valiron-Titchmarsh Theorem for Subharmonics Functions, *Anal. Theory Appl.* 30 (2014), no. 1, 136–140.

[7] Kheyfits, A.I., Lacay, J.B., *Asymptotic Behavior of the One-Dimensional Heat Equation* International Journal of Evolution Equations, 2010, Vol. 5, pp.103-108.

[8] Lacay, J.B., *Asymptotic Behavior of Positive Solutions of the Heat Equation*. PanAmerican Mathematics International Journal 2011, Vol. 5, pp.99-103.

[9] Lacay, J.B., Abelian and Tauberian Theorems for Solutions of the One-Dimensional Heat Equation with Respect to Proximate Order, *International Journal of Mathematical Analysis*, 2017, Vol. 11, pp.173-188.

[10] Levin, B.Y., *The Distribution of Zeros of Entire Functions* Transl. Math. Monographs, Vol 5, AMS, Providence, RI, 1980.
[11] Levin, B.Y., Lectures on Entire Functions. Amer. Math. Soc., Providence, Rhode Island, 1996.

[12] Seneta, E., Regularly Varying Functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-Heidelberg-New York, 1976.

[13] Strochik, N. N. Some Tauberian theorems for entire functions with negative zeros. Dynamical systems and complex analysis (Russian), 42–54, “Naukova Dumka”, Kiev, 1992.

[14] Titchmarsh, E.C., On integral functions with real negative zeros. Proc. London Math. Soc. 26, p.185-200. 1927.

[15] Valiron, G., Sur les fonctions entières d’ordre nul et d’ordre fini et en particulier les fonctions à correspondance régulière Ann. Fac. Sci. Univ. Toulouse,5, 117–257 (1914). MathSciNet Google Scholar

[16] Watson, E., Parabolic Equations on an Infinite Strip. M. Dekker, New York, Basel, 1989.

[17] Widder, D.V., The Heat Equation, Acad. Press, New York, San Francisco, London, 1975.

[18] Zakharov, S.V., Heat distribution in an infinite rod, Mathematical Notes, 2006, Vol. 80, 366-371.