Multi-Parameter Support with NTTs for NTRU and NTRU Prime on Cortex-M4

Erdem Alkim Vincent Hwang Bo-Yin Yang

CHES 2022, Leuven, Belgium
Organization of This Talk

Contributions
Backgrounds
NTTs and FFTs
Improved Naïve Butterflies
More on Good–Thomas FFT
 Dedicated Radix-(3, 2) Butterflies
 Potential Code Size Issues
Results
Contributions
Our NTT-based Polynomial Multiplications

- Compute the results in $\mathbb{Z}[x] \rightarrow$ reducing engineering effort
 - Compute in $\mathbb{Z}_{q'}[x]/\langle x^n - 1 \rangle$
 - n: 1440, 1536, 1728
- For 2 $\nmid r$, radix-r butterfly: replace $r - 1$ multiplications with $r - 1$ add./sub.
 - Extend the existence of subtraction in radix-2 to other radices
 - $r = 3, 5, 17, 257, 65537$, Fermat primes
- Good–Thomas FFT as an algebra isomorphism: $x^v \sim x^{(0)}_x^{(1)}$
 - Vectorization friendly [FP07]
 - Address potential code size issues with implicit permutations
- Vector–radix FFT
 - Reduce # mul. if more than one layer in each dimension
 - Dedicated radix-(2, 3) butterflies for implicit permutations
Summary of Applicability

Table 1: Overall strategies. Checked are applicable, starred are implemented.

Conv.	NTRU \((n, q)\)	NTRU Prime \((p, q)\)
	(677, 2048)	(653, 4621)
	(701, 8192)	(761, 4591)
	(821, 4096)	(857, 5167)
Size-1440	✓ *	✓*
Size-1536	✓ *	✓* ✓*
Size-1728	✓	✓* ✓* ✓*
Backgrounds
Polynomial Multiplications in NTRU and NTRU Prime

- "Big by small" polynomial multiplications: coeffs. of one input in \{0, \pm 1\}
- NTRU:
 - Rings \(\mathbb{Z}_q[x]/\langle x^n - 1 \rangle, \mathbb{Z}_q[x]/\langle x^{n-1} + \cdots + 1 \rangle, \mathbb{Z}_3[x]/\langle x^{n-1} + \cdots + 1 \rangle \)
 - NTRU-HPS (ntruhps): \((q, n) = (2048, 509), (2048, 677), (4096, 821), (4096, 1229)\)
 - NTRU-HRSS (ntruhrss): \((q, n) = (8192, 701), (16384, 1373)\)
- NTRU Prime:
 - Rings \(\mathbb{Z}_q[x]/\langle x^p - x - 1 \rangle, \mathbb{Z}_3[x]/\langle x^p - x - 1 \rangle \)
 - Streamlined NTRU Prime (sntrup)
 - NTRU LPrime (ntrulpr)
 - \((q, p) = (4621, 653), (4591, 761), (5167, 857), (6343, 953), (7177, 1013), (7879, 1277)\)
NTTs and FFTs
Number–Theoretic Transforms

- Ring R
- $n \perp \text{char}(R)$
- \exists principal n-th root of unity $\omega_n : \forall 1 \leq i < n, \sum_{0 \leq j < n} \omega_n^{ij} = 0$
- $R[x]/(x^n - \zeta^n) \cong \prod_{i=0}^{n-1} R[x]/(x - \zeta \omega_n^i)$
- $a(x) \mapsto a(\zeta \omega_n^i)i$, invertible $\zeta \in R$
Good–Thomas FFT

- Group algebra isomorphism (explained in [Ber01], implemented in [ACC+21]):
 - Let $G \cong G_0 \times G_1$ be a group isomorphism: $R[G] \cong R[G_0] \otimes R[G_1]$
 - $q_0 \perp q_1 \rightarrow \mathbb{Z}_{q_0 q_1} \cong \mathbb{Z}_{q_0} \times \mathbb{Z}_{q_1}$:
 \[
 \frac{R[x]}{(x^{q_0 q_1} - 1)} \cong \frac{R[x]}{(x^{q_0} - 1)} \otimes \frac{R[x]}{(x^{q_1} - 1)}
 \]

- Algebra isomorphism (already implied in [Goo58, FP07]):
 - \[
 \{ a(x) \mapsto a(\omega_{q_0 q_1}^i) \} \cong \{ (a(x^{(0)}) \mapsto a(\omega_{q_0}^i) j_0) \otimes (a(x^{(1)}) \mapsto a(\omega_{q_1}^i) j_1) \}
 \]
 - \[
 = \prod_{i_0, i_1} \frac{R[x, y]}{(x^{q_0} - y, y^{q_1} - 1)} \cong \prod_{i_0, i_1} \frac{R[x, y, u, w]}{(x^{q_0} - y, y^{q_1} - 1, u^{q_0} - 1, w^{q_1} - 1)}
 \]
 - \[
 = \prod_{i_0, i_1} \frac{R[x, y, u, w]}{(x^{q_0} - y, y^{q_1} - 1)}
 \]
 - \[
 = \prod_{i_0, i_1} \frac{R[x, y]}{(x^{q_0} - y, y^{q_1} - 1)}
 \]
Vector–Radix FFT

- For well-defined f_0, f_1, g_0, g_1, $(f_0 \circ f_1) \otimes (g_0 \circ g_1) = (f_0 \otimes g_0) \circ (f_1 \otimes g_1)$
- $(f_0 \circ \cdots \circ f_{d-1}) \otimes (g_0 \circ \cdots \circ g_{d-1}) = (f_0 \otimes g_0) \circ \cdots \circ (f_{d-1} \otimes g_{d-1})$
- NTT$^{(0)} := \text{add} \circ \text{mul} \circ \cdots \text{add} \circ \text{mul}$
- NTT$^{(1)} := \text{add} \circ \text{mul} \circ \cdots \text{add} \circ \text{mul}$
- NTT$^{(0)} \otimes$ NTT$^{(1)} = (\text{add} \otimes \text{add}) \circ (\text{mul} \otimes \text{mul}) \circ \cdots \circ (\text{add} \otimes \text{add}) \circ (\text{mul} \otimes \text{mul})$
- $(x^{(1)} \mapsto \zeta_1) \otimes (x^{(0)} \mapsto \zeta_0) = (x^{(0)})^{i_0} (x^{(1)})^{i_1} \mapsto \zeta_0^{i_0} \zeta_1^{i_1}$
 - $2q_0q_1 - q_0 - q_1$ multiplications $\implies q_0q_1 - 1$ multiplications
- Radix-(r_0, r_1): radix-r_0 butterfly \otimes radix-r_1 butterfly
Improved Näive Butterflies
Näive Butterflies

\[
\begin{pmatrix}
 c(\psi)
 \\
 c(\psi \omega_3)
 \\
 c(\psi \omega_3^2)
\end{pmatrix}
= \begin{pmatrix}
 c_0 + \psi c_1 + \psi^2 c_2 \\
 c_0 + \psi \omega_3 c_1 + \psi^2 \omega_3^2 c_2 \\
 c_0 + \psi \omega_3^2 c_1 + \psi^2 \omega_3 c_2
\end{pmatrix}
\]

- smull, smlal followed by Montgomery reduction (mul, smlal)

\[\psi \neq 1 \implies 15 \text{ cycles } (5 + 5 + 5); \quad \psi = 1 \implies 12 \text{ cycles } (2 + 5 + 5)\]

Algorithm 1 Näive butterflies

1: smull t1, c0', c1, \(\psi\) ▷ The last operand is \(\psi \omega_3\) for c1', \(\psi \omega_3^2\) for c2'
2: smlal t1, c0', c2, \(\psi^2\) ▷ The last operand is \(\psi^2 \omega_3^2\) for c1', \(\psi^2 \omega_3\) for c2'
3: mul t0, t1, \(q\')
4: smlal t1, c0', t0, \(q\) ▷ \(c0' = \psi c_1 + \psi^2 c_2\). If \(\psi = 1\), \(c0' = c_1 + c_2\) with add
5: ▷ Compute \(c(\psi) = c0' + c_0\), \(c(\psi \omega_3) = c1' + c_0\), \(c(\psi \omega_3^2) = c1' + c_0\)
Improved Näive Butterflies

Algorithm 2 Improved näive butterflies

1: ...
2: smull t1, c1', c1, $\psi\omega_3$
3: smlal t1, c1', c2, $\psi^2\omega_3^2$
4: mul t2, t1, q'
5: smlal t1, c1', t2, q
6: add c2', c1', c0'
7: sub c2, c0, c2'
8: add c1, c0, c1'
9: add c0, c0, c0'

$\triangleright c_0' = \psi c_1 + \psi^2 c_2$. If $\psi = 1$, $c_0' = c_1 + c_2$ with add

$\triangleright c_1' = \psi\omega_3 c_1 + \psi^2\omega_3^2 c_2$

$\triangleright c_2' = (\psi c_1 + \psi^2 c_2) + (\psi\omega_3 c_1 + \psi^2\omega_3^2 c_2) = -\psi\omega_3^2 c_1 - \psi^2\omega_3 c_2$

$\triangleright c_2 = c(\psi\omega_3^2)$

$\triangleright c_1 = c(\psi\omega_3)$

$\triangleright c_0 = c(\psi)$
Improved Näive Butterflies

Generalize to radix-\(r\) butterflies.

- \(\sum_{i=0}^{r-1} c(\psi \omega_r^i) = rc_0\)
- For a \(j\), \(c(\psi \omega_r^j) = rc_0 - \sum_{i=0, i \neq j}^{r-1} c(\psi \omega_r^i) = c_0 - \sum_{i=0, i \neq j}^{r-1} (c(\psi \omega_r^i) - c_0)\)
 - Compute \(c(\psi \omega_r^i) - c_0 = \sum_{j=1}^{r-1} c_j \psi_j \omega_r^i\) as usual
 - Compute \(c(\psi \omega_r^j) = c_0 - \sum_{i=0, i \neq j}^{r-1} (c(\psi \omega_r^i) - c_0)\) with \(r-1\) additions/subtractions
- \(r\) needs not to be odd, but odd numbers require more studies
Let r be an odd and $\psi = 1$ (the cyclic case). Many ways for $c(x) \mapsto c(\omega_r^i)_i$.

- Focus on prime $r = 2^{2^t} + 1$
- Fermat primes $3, 5, 17, 257, 65537$
- Radix-3 butterflies are improved
- Radix-5 butterflies are believed to be improved
- Radix-$2^{2\{2,3,4\}} + 1$ butterflies are probably not improved
More on Good–Thomas FFT
Dedicated Butterflies for Implicit Permutations

- $R[x]/\langle x^{24} - 1 \rangle \cong \prod_{i_0, i_1} R[x, u, w]/\langle x - uw, u - \omega^i_3, w^4 - \omega^i_2 \rangle$ or
 $\prod_{i'} R[x, u, w]/\langle x - uw, u^3 - 1, w - \omega^i_8 \rangle$?

- At most 6 ”dedicated” radix-(3, 2) butterflies

- Better than ”dedicated” 3-layer-radix-2 butterflies [ACC^+21]

- We save more because
 - Half of the entries are zeros: more saving with radix-3
 - There are more follow up radix-2 butterflies computing $(a, b) \mapsto (a + b, a - b)$
Potential Code Size Issues with Implicit Permutations

- Assume dedicated radix-(3, 2) at the beginning
- Size-$2^{k_0} \otimes$ size-3^{k_1} cyclic NTTs where $3^{k_1} < 2^{k_0-1}$
 - $R[x]/\langle x^{2^{k_0}3^{k_1}} - 1 \rangle \cong \prod_{i_0,i_1} R[x,u,w]/\langle x - uw, u^{2^{k_0-1}} - \omega^{i_0}_2, w^{3^{k_1-1}} - \omega^{i_1}_3 \rangle$
- A loop consisting of $3^{2^{k_1-1}}$ dedicated radix-(3, 2) butterflies
- Code sizes
 - $1440 = 160 \cdot 9, 3^{2^{k_1-1}} = 27$, compact code size
 - $1536 = 512 \cdot 3, 3^{2^{k_1-1}} = 3$, compact code size
 - $1728 = 64 \cdot 27, 3^{2^{k_1-1}} = 243$, large code size
Our Resolution

- q_0: power of 2, q_1: power of 3 with $q_0 < \frac{q_0}{2}$
- \tilde{q}: how incomplete Cooley–Tukey is
- v: how incomplete Good–Thomas is
- At most one of \tilde{q}, v is greater than 1

Consider $R[x]/\langle x^{q_0\tilde{q}q_1^v} - 1 \rangle \cong \prod_{i_0, i_1} R[x, u, w]/\langle x^v - uw, u\tilde{q} - \omega_{q_0}^i, w - \omega_{q_1}^i \rangle$

- $1440: (q_0, \tilde{q}, q_1, v) = (32, 5, 9, 1)$
- $1536: (q_0, \tilde{q}, q_1, v) = (128, 4, 3, 1)$
- $1728: (q_0, \tilde{q}, q_1, v) = (64, 1, 9, 3)$
Results
Polynomial Multiplications

Figure 1: Overall performance of polynomial multiplications.

NTRU	Convolution	This work	[CHK$^+$21]	[IKPC22]
(677, 2048)	Size-677	140k/143k	156k/–	144k/–
	Size-1440	147k/149k	–/–	–/–
	Size-1536	–/–	156k/–	–/–
(701, 8192)	Size-701	141k/143k	–/–	144k/–
	Size-1440	148k/150k	156k/–	–/–
	Size-1536	–/–	193k/–	–/–
(821, 4096)	Size-821	178k/182k	–/–	199k/–

NTRU Prime	Convolution	This work	[ACC$^+$21]	[Che21]1
(653, 4621)	Size-1320	142k/147k	–/–	120k/–
	Size-1440	–/–	–/–	–/–
(761, 4591)	Size-1530	151k/153k	159k/–	142k/–
	Size-1536	–/–	185k/–	–/–
	Size-1620	–/–	–/–	–/–
(857, 5167)	Size-1722	182k/186k	–/–	203k/–
	Size-1728	–/–	–/–	–/–
Table 2: Detailed numbers of polynomial multiplications for NTRU.

(n, q)	Size	polymul	NTT	NTT_small	basemul	iNTT	final_map
(677, 2048)	1440	140 444	34 102	33 241	27 690	36 756	8 835
		143 016	34 963	34 093	27 825	37 214	9 208
(677, 2048)	1536	147 126	37 485	36 573	23 322	41 437	8 489
		149 174	38 076	37 139	23 506	42 001	8 717
(701, 8192)	1440	140 577	34 102	33 241	27 690	36 756	8 968
		143 239	34 957	34 087	27 819	37 208	9 431
(701, 8192)	1536	147 670	37 485	36 573	23 322	41 437	9 033
		149 771	38 076	37 139	23 506	42 001	9 314
(821, 4096)	1728	181 534	48 629	47 627	21 848	53 098	10 512
		186 197	49 480	48 507	22 349	55 569	10 564
Polynomial Multiplications

Table 3: Detailed numbers of polynomial multiplications for NTRU Prime.

(p, q)	Size	polymul	NTT	NTT_small	basemul	iNTT	final_map
(653, 4621)	1440	142244	34104	33244	27690	36756	10629
		146665	34992	34095	27813	37214	12823
(761, 4591)	1536	151374	37487	36573	23322	41435	12739
		153299	38069	37138	23510	42001	12861
(857, 5167)	1728	184714	48629	47623	21848	53099	13695
		189523	49483	48499	22336	55720	13743
Institute of Information Science, Academia Sinica

NTRU Results

- Key generation from [Li21]
- NTRU–HPS: crypto_sort from NTRU Prime for K and E

Table 4: Overall performance of NTRU. $K =$ key generation, $E =$ encryption, $D =$ decryption.

	ntruhps2048677	ntruhrss701	ntruhps4096821						
	K	E	D	K	E	D	K	E	D
[CHK$^+$21]	143 725k	821k	818k	153 403k	377k	871k	207 495k	1 027k	1 030k
[IKPC22]	142 378k	816k	729k	153 479k	369k	787k	212 377k	1 026k	914k
[Li21]1	4 625k	820k	812k	4 233k	376k	868k	6 116k	1 027k	1 031k
This work	3 912k	525k	718k	3 822k	361k	778k	5 217k	654k	908k
NTRU Prime Results

- \([\text{ACC}^+21]\): secrete-dependent table lookup AES

Table 5: Overall performance of NTRU Prime.

	ntrulpr653	ntrulpr761	ntrulpr857						
	K	E	D	K	E	D	K	E	D
\([\text{ACC}^+21]\)^2	-	-	-	731k	1102k	1200k	-	-	-
[Che21]	678k	1158k	1233k	727k	1312k	1394k	-	-	-
This work	669k	1131k	1231k	710k	1266k	1365k	886k	1465k	1596k

	sntrup653	sntrup761	sntrup857						
	K	E	D	K	E	D	K	E	D
\([\text{ACC}^+21]\)^2	-	-	-	10778k	694k	572k	-	-	-
[Che21]	6715k	632k	487k	7951k	684k	538k	-	-	-
This work	6623k	621k	527k	7937k	666k	563k	10192k	812k	685k
Future Works

- Vectorization of Good–Thomas with $x^v \sim uw, v > 1$
 - Implemented in [FP07] (SSE) using program generator Spiral
 - Recently, NTT-based RSA-4096 in [BHK+22] (MVE)
 - How about Neon, AVX2, AVX512?

- In [BBCT21] for NTRU Prime, radix-2 Schönhage for ”big by big” polynomial multiplication because of vectorization

Q1 What is the role of the existing principal 3rd root of unity in \mathbb{Z}_{4591}?
Q2 How to combine vectorization-friendly Good–Thomas and Schönhage?
Thank you for your attention
Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan, Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederhagen, Cheng-Jhih Shih, Julian Wälde, and Bo-Yin Yang.

Polynomial Multiplication in NTRU Prime Comparison of Optimization Strategies on Cortex-M4.

IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021(1):217–238, 2021.

https://tches.iacr.org/index.php/TCHES/article/view/8733.

Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, and Nicola Tuveri.

OpenSSLNTRU: Faster post-quantum TLS key exchange.

arXiv preprint arXiv:2106.08759, 2021.
Daniel J. Bernstein.

Multidigit multiplication for mathematicians.
2001.

Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Lorenz Panny, and Bo-Yin Yang.

Efficient Multiplication of Somewhat Small Integers using Number–Theoretic Transforms.

Cryptology ePrint Archive, 2022.

https://eprint.iacr.org/2022/439.
Reference iii

Yun-Li Cheng.
Number Theoretic Transform for Polynomial Multiplication in Lattice-based Cryptography on ARM Processors.
Master’s thesis, 2021.
https://github.com/dean3154/ntrup_m4.

Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor Seiler, Cheng-Jhih Shih, and Bo-Yin Yang.
NTT Multiplication for NTT-unfriendly Rings New Speed Records for Saber and NTRU on Cortex-M4 and AVX2.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021(2):159–188, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/8791.

Franz Franchetti and Markus Puschel.
SIMD Vectorization of Non-Two-Power Sized FFTs.
In *2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07*, volume 2, 2007.

I. J. Good.
The Interaction Algorithm and Practical Fourier Analysis.
Journal of the Royal Statistical Society: Series B (Methodological), 20(2):361–372, 1958.
Írem Keskin Kurt Paksoy and Murat Cenk.

Faster NTRU on ARM Cortex-M4 with TMVP-based multiplication.
2022.
https://eprint.iacr.org/2022/300.

Ching-Lin Li.

Implementation of Polynomial Modular Inversion in Lattice-based cryptography on ARM.
Master’s thesis, 2021.
https://github.com/trista5658321/polyinv-m4.
Charles M. Rader.

Discrete fourier transforms when the number of data samples is prime.

Proceedings of the IEEE, 56(6):1107–1108, 1968.

Shmuel Winograd.

On Computing the Discrete Fourier Transform.

Mathematics of computation, 32(141):175–199, 1978.
A Series of Reductions to Fermat-Prime-Size Butterflies

For $\mathbf{a}(x) \mapsto (\mathbf{a}(\omega^i_r))_i$ with an odd r, ways for $\mathbf{c}(x) \mapsto \mathbf{c}(\omega^i_r)_i$:

- Nāive size-r butterfly
- $\exists q_0 \perp q_1, r = q_0 q_1$: Good–Thomas
- Prime power $r = p^k$: Winograd’s \mapsto size-$p^{k-1}(p - 1)$ convolution [Win78]
 - $k > 1$: $p - 1 \perp p \implies$ Good–Thomas
 - $k = 1$: Rader’s \implies size-$(p - 1)$ convolution [Rad68]
- Assume $r = p$, $p - 1$ is even
 - \exists odd $q_0 | p - 1$: Good–Thomas
 - $p - 1 = 2^h \implies p = F_t := 2^{2^c} + 1$
Size-1728 Convolution

\[R[x] / \langle x^{1728} - 1 \rangle = \prod_{i_{u,0}=0}^{2} \prod_{i_{w,0}=0}^{1} R[x, u, w] / \langle x^3 - uw, u^3 - \omega_{i_{u,0}^3}, w^3 - \omega_{i_{w,0}^3} \rangle \]

\[\prod_{i_{u,0}, i_{u,1}=0}^{2} \prod_{i_{w,0}, i_{w,1}=0}^{1} R[x, u, w] / \langle x^3 - uw, u - \omega_{i_{u,0}^3 + 3i_{u,1}}, w^3 - \omega_{i_{w,0}^3 + 2i_{w,1}} \rangle \]

\[\prod_{i_{u,0}, i_{u,1}=0}^{2} \prod_{i_{w,0}, \ldots, i_{w,5}=0}^{1} R[x, u, w] / \langle x^3 - uw, u - \omega_{9^3 + 3i_{u,1}}, w - \omega_{64}^{\sum_{j=0}^{5} 2^{j}i_{w,j}} \rangle \]

\[= \prod_{i_{u,0}, i_{u,1}=0}^{2} \prod_{i_{w,0}, \ldots, i_{w,5}=0}^{1} R[x] / \langle x^3 - \omega_{9^3 + 3i_{u,1}} \omega_{64}^{\sum_{j=0}^{5} 2^{j}i_{w,j}} \rangle \]
Size-1536 Convolution

\[
R[x]/\langle x^{1536} - 1 \rangle \equiv \prod_{i_u,0=0}^{2} \prod_{i_w,0=0}^{1} R[x, u, w]/\langle x - uw, u - \omega^i_{u,0}, w^{256} - \omega^{i_{w,0}} \rangle
\]

\[
\equiv \prod_{i_u,0=0}^{2} \prod_{i_{w,0,...,i_{w,3}}=0}^{1} R[x, u, w]/\langle x - uw, u - \omega^i_{u,0}, w^{32} - \omega^{\sum_{j=0}^{3} 2^j_{i_{w,j}}} \rangle
\]

\[
\equiv \prod_{i_u,0=0}^{2} \prod_{i_{w,0,...,i_{w,6}}=0}^{1} R[x, u, w]/\langle x - uw, u - \omega^i_{u,0}, w^{4} - \omega^{\sum_{j=0}^{6} 2^j_{i_{w,j}}} \rangle
\]
Size-1440 Convolution

\[R[x] / \langle x^{1440} - 1 \rangle \equiv \prod_{i_u,0=0}^{2} \prod_{i_w,0=0}^{1} R[x, u, w] / \langle x - uw, u^3 - \omega_3^{i_u,0}, w^{80} - \omega_2^{i_w,0} \rangle \]

\[\equiv \prod_{i_u,0,i_u,1=0}^{2} \prod_{i_w,0,i_w,1=0}^{1} R[x, u, w] / \langle x - uw, u - \omega_9^{i_u,0+3i_u,1}, w^{40} - \omega_4^{i_w,0+2i_w,1} \rangle \]

\[\equiv \prod_{i_u,0,i_u,1=0}^{2} \prod_{i_w,0,i_w,1=0}^{1} \prod_{i_w,2=i_w,3=0}^{1} R[x, u, w] / \langle x - uw, u - \omega_9^{i_u,0+3i_u,1}, w^{5} - \omega_{32}^{\sum_{j=0}^{4} 2^j i_w,j} \rangle \]