2328. Community-Onset Invasive Bacterial Infections in Infants Under 3 Months—10 Years of Experience in Auckland, New Zealand
Sarah Primhak, MBBS BSc(Hons)1; Lesley M. Voss, MB, ChB1; Elizabeth Wilson, MBBS BSc2; Diana R. Lenton, MB, ChB2; Rachel Webb, MBChB1 and Emma Best, BHB, MBChB, DTMH, FRACP (PAEDS), MMED (Research)2; Pediatric Infectious Diseases, Starship Children’s Hospital, Auckland, New Zealand, 1Population Child and Youth Health, University of Auckland, Auckland, New Zealand, 2Paediatric Infectious Diseases, University of Auckland, Auckland, New Zealand
Session: 247. Pediatric Bacterial Infections
Saturday, October 6, 2018: 12:30 PM
Background. Serious infections remain the leading cause of death in the first year of life. Sepsis in neonatal intensive care units is well described but infants with bacterial infections presenting from the community has not previously been described in New Zealand. Recent studies suggest an increasing incidence of Staphylococcus aureus and Streptococcus pyogenes in New Zealand pediatric populations. It is, therefore, important to understand the unique pattern of infections seen in the infant population in New Zealand as this may impact on empiric management.

Methods. A retrospective study (2007–2017) including infants aged 8 to 90 days presenting with clinically significant infection and positive culture from a sterile site. Cases were identified from laboratory database and ICD discharge codes, enabling data collection and analysis.

Results. 192 cases were identified from two major hospitals in Auckland. This represented an incidence of invasive bacterial infections of 129/100,000 live births. Escherichia coli (40%) and Streptococcus agalactiae (22%) were the commonest pathogens. Streptococcus pyogenes and Staphylococcus aureus caused 14% and 12% of bacteremias respectively. Pacific island infants had the highest rates of infection (255/100,000) as did those from deprived backgrounds.

Conclusion. Escherichia coli and Streptococcus agalactiae are the commonest causative organisms in community-onset infant sepsis in Auckland.

Rates of invasive bacterial infections in this age group are higher than reported in other industrialized countries (including published data from the USA), with Staphylococcus aureus and Streptococcus pyogenes being the most disproportionately. Our study demonstrates the increased risk of invasive Staphylococcus aureus and Streptococcus pyogenes in New Zealand, even at this early age, and this impacts on empiric antibiotic prescribing and management of infant sepsis in New Zealand. The risk of invasive infection is highest in Pacific and Māori infants and those from deprived backgrounds.

A small number of multi-resistant organisms were present in this age group, prior to antibiotic exposure, illustrating that rising rates of community antimicrobial resistance will need to be considered even when prescribing for infants.

Disclosures. All authors: No reported disclosures.

Table 2: Survival Analysis

Factor	Risk Ratio	95% CI	P-Value
+ BSI	5.3	0.5–56.6	0.145
Male	1.0	1.0–5.3	0.976
African American	4.7	1.1–33.0	0.014
No enteral feeds	1.5–25.3	0.014	
Surgery	170	2.8–150.4	0.002
Recurrence	2.9	0.2–11.4	0.172

2330. Comparison of Clinical Symptoms in Children Who Present With Sore Throat Who Are Later Determined to Be Carriers vs. Acutely Infected
Anne-Marie Rick, MD, MPH1; Haniah Zaheer, BS2 and Judith M. Martin, MD1; Department of Pediatrics, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, 1University of Pittsburgh, Pittsburgh, Pennsylvania
Session: 247. Pediatric Bacterial Infections
Saturday, October 6, 2018: 12:30 PM

Background. Among symptomatic children who test positive for Group A Streptococcus (GAS) by throat swab, approximately 20–25% are GAS carriers. Current laboratory methods cannot distinguish acute infection from the carrier state at time of diagnosis.

Methods. We examined findings from two longitudinal studies of children 5 to 15 years of age who had throat cultures performed for the detection of GAS while endorsing at least one symptom consistent with streptococcal pharyngitis. Cohort 1 was a surveillance study in which cultures were performed at regular intervals and with illnesses. Cohort 2 were children who were selectively tested by their care providers and then followed. Symptoms were assessed systematically at the time of the first GAS culture. Each participant had at least two follow-up cultures performed between 7–21 days and 22–35 days after the first culture. We defined acute infection as two or more negative follow-up cultures for GAS and carriage as two or more positive follow-up cultures in the absence of symptoms. We compared symptoms at the time of the first positive culture between those with acute infection or carriage using chi-square statistics.

Results. A total of 181 children contributed 228 symptomatic episodes; 52% were female, with a mean age of 8.8 years. In cohort 1: 96/122 (79%) were acute infections vs. 26/122 (21%) were carriers. Children endorsed at least one symptom consistent with streptococcal pharyngitis. Cohort 1 at time of diagnosis. Current laboratory methods cannot distinguish acute infection from the carrier state at time of diagnosis. There was no difference in severity score or duration of symptoms. There was no difference in severity score or duration of symptoms.

Conclusion. This study highlights that when children are selectively tested for GAS based on clinical judgement fewer GAS carriers are identified. For those who were selectively tested, clinical symptoms, including nasal congestion, were more common in children identified as GAS carriers.

Disclosures. All authors: No reported disclosures.

2331. Household Pets and Recovery of Moraxella catarrhalis and Other Respiratory Pathogens From Children With Asthma
Karen J. Balcer, MD, PhD MPH1; Kathryn Dalton, VMD, MPH1; Zoe Johnson, BS2; Shanna谈恋爱, PhD3; Katie Sabelia, DVM4; Michelle Newman, RN5; Susan Balcer Whaley, MPH1; Corinne Keet, MD, PhD6; Meredith C. McCormack, MD, MHS7; Karen C. Carroll, MD, FIDSA6 and Elizabeth C. Matsui, MD, MHS8; 1Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 2Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, 3Johns Hopkins School of Medicine, Baltimore, Maryland, 4Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, 5Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, 6Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
Session: 247. Pediatric Bacterial Infections
Saturday, October 6, 2018: 12:30 PM

Background. Upper respiratory tract colonization with a number of bacterial pathogens has been associated with significant respiratory disease and asthma in children. As part of a larger study to evaluate microbial contributions from animals with new evidence of deep seated infections and to obtain initial evidence for effectiveness of WBMRI.

Results. 20 patients were included with male predominance (12, 60%). 9/20 patients < 12 months old and 4 between the ages of 12–70 months. The most common comorbidity was sickle cell disease (n = 6) and 16/20 patients had a recent/current central venous catheter. The reasons for imaging were fever (9, 45%), pain/swelling (5, 25%), and abnormal labs/imaging (6, 30%). 19 patients had other diagnostics studies prior to WBMRI, 17 of whom had ionizing radiation using studies (X-rays / CT scans). 10/19 also had additional trips to the radiology department for focal MRIs. Duration of sedation for WBMRI averaged 88 minutes, with propofol (10/14) being the most common agent used. No complications from the sedation or the MRI contrast were recorded. WBMRI found an average of 1–4 areas of osteomyelitis in 11 patients and up to 8 other locations of deep seated infections in 15 patients. 11/20 had post WBMRI surgical intervention or debridement/drainage. Gram-positive cocci were isolated from 10/17 patients with positive blood/tissue cultures. Of those, 6 were methicillin-resistant Staphylococcus aureus.

Conclusion. Utilized as an early imaging modality in pediatric patients with persistent bacteremia/fevers, WBMRI commonly facilitated timely definitive interventions while sparing the patient exposure to ionizing radiation. WBMRI with STIR was safe and is likely to be cost effective.

Disclosures. All authors: No reported disclosures.

S692 • OFID 2018:5 (Suppl 1) • Poster Abstracts