Primary care interventions to address physical frailty among community-dwelling adults aged 60 years or older: A meta-analysis

Stephen H.-F. Macdonald, John Travers, Éidin Ni Shé, Jade Bailey, Roman Romero-Ortuno, Michael Keyes, Diarmuid O'Shea, Marie Therese Cooney

1 School of Nursing, Midwifery and Health Systems, University College Dublin, Dublin, Ireland, 2 School of Medicine, University College Dublin, Dublin, Ireland, 3 HSE Specialist Training Programme in General Practice, Trinity College Dublin, Dublin, Ireland, 4 School of Medicine, University College Dublin, Dublin, Ireland, 5 Discipline of Medical Gerontology, Trinity College Dublin, Dublin, Ireland, 6 Mercer’s Institute for Successful Ageing, St James’s Hospital, Dublin, Ireland, 7 St Vincent’s University Hospital, Dublin, Ireland

Abstract

Introduction
The best interventions to address frailty among older adults have not yet been fully defined, and the diversity of interventions and outcome measures makes this process challenging. Consequently, there is a lack of guidance for clinicians and researchers regarding which interventions are most likely to help older persons remain robust and independent. This paper uses meta-analysis to assess effectiveness of primary care interventions for physical frailty among community-dwelling adults aged 60+ and provides an up-to-date synthesis of literature in this area.

Methods
PubMed, CINAHL, Cochrane Register of Controlled Trials, and PEDro databases were searched, and RCTs, controlled pilot studies, or trials with similar study designs addressing frailty in the primary care setting among persons aged 60+ were chosen. Study data was abstracted following PRISMA guidelines, then meta-analysis was performed using the random effects model.

Results
31 studies with a total of 4794 participants were analysed. Interventions using predominantly resistance-based exercise and nutrition supplementation seemed to improve frailty status versus control (RR = 0.62 (CI 0.48–0.79), I² = 0%). Exercise plus nutrition education also reduced frailty (RR = 0.69 (CI 0.58–0.82), I² = 0%). Exercise alone seemed effective in reducing frailty (RR = 0.63 (CI 0.47–0.84), I² = 0%) and improving physical performance (RR = 0.43 (CI 0.18–0.67), I² = 0%). Exercise alone also appeared superior to control in improving gait speed (SMD = 0.36 (CI 0.10–0.61, I² = 74%), leg strength (SMD = 0.61 (CI 0.09–1.13), I² = 87%), and grip strength (Mean Difference = 1.08 (CI 0.02–2.15), I² = 71%)
though a high degree of heterogeneity was observed. Comprehensive geriatric assessment (RR = 0.77 (CI 0.64–0.93), $I^2 = 0\%$) also seemed superior to control in reducing frailty.

Conclusion

Exercise alone or with nutrition supplementation or education, and comprehensive geriatric assessment, may reduce physical frailty. Individual-level factors and health systems resource availability will likely determine configuration of future interventions.

Introduction

Frailty can be defined as a physiological state of vulnerability due to dysregulation in multiple physiological systems where an individual’s functional capacity and resilience against external stressors is reduced, leading to greater rates of illness, disability, and death.[1–3] Frailty can affect persons of any age, frequently arising in specific contexts such as malnutrition or long-term disease states such as diabetes, chronic obstructive pulmonary disease,[4] chronic heart failure,[5] or HIV infection.[6–8] Whilst it is tempting to view frailty simply as an inevitable consequence of ageing that is characterised by an increased risk of poor health outcomes,[9] a distinction must be made between an individual’s chronological and biological age, as some people may remain robust and disability-free even at advanced ages.[10–12] Individual-level factors such as resilience (physical and mental), external supports, and other forms of intrinsic capacity,[13] can help moderate frailty, and these also require consideration when examining pathways to alleviate frailty in clinical practice.[14,15]

Timely identification and interventions to address frailty will support older individuals to build resilience and live independently, but also help health systems use resources more efficiently in the context of growing life expectancy worldwide.[12,16–19] However, clinical circumstances, individual person factors, and resource constraints all affect identification and management of frailty, with the likelihood being that no “one size fits all” approach exists.[20,21] This is thematically supported by the systematic review and meta-analysis by Ekelund and colleagues, which found reductions in premature mortality among older adults with higher levels of physical activity, regardless of activity type or intensity.[22] Accordingly, evidence-based guidance is needed to aid clinicians in determining the most appropriate interventions. This may be hampered by the wide range of frailty measurement, operationalisation, and intervention types.[23–25]

Numerous frailty measures have been deployed across acute and primary care settings.[19,25–28] This diversity has arisen out of necessity as frailty incorporates numerous biological, functional, and psychosocial dimensions.[29] A widely used frailty operationalisation is the “physical frailty phenotype”, proposed by Fried and colleagues in 2001 as a syndrome defined by exhaustion, unexplained weight loss, reduced handgrip strength, slow gait speed, and reduced physical activity.[3] As such, physical frailty is conceptualised as being closely related with sarcopenia, which denotes poor skeletal muscle mass and/or function.[30] Therefore, measures of sarcopenia are often components of, or are closely related to, physical frailty.[31] There have been numerous adaptations of the original frailty phenotype reported in the literature.[32] Although physical frailty and disability overlap, the former is conceptualised as a pre-disability state[33] that may offer more possibilities for delaying or reversing the disabling process through interventions.
In this study, we examined the effectiveness of primary care interventions against physical frailty among community-dwelling older adults aged over 60 years. Our previous qualitative synthesis of the literature suggested that a combination of muscle strength training and protein supplementation was the most effective intervention to delay or reverse frailty, and the easiest to implement in primary care. However, the highly heterogeneous nature of the retrieved studies meant that a single meta-analysis could not be readily performed. To address that gap, we performed a new series of smaller meta-analyses, categorised by intervention and outcome measurement type, following the broad question: “What primary care interventions for community-dwelling older (60+) adults are superior to control in reducing frailty and its associated measures?”

Methods

Database searches, eligibility criteria and article selection

The terms (“primary care” or “community”) and (“screening” or “intervention” or “integrated-care”) and (“frailty” or “pre-frail”) were used to search the PubMed, CINAHL, Cochrane Register of Controlled Trials, and PEDro databases for articles in English without restriction on publication date, and excluding reviews. The protocol for this meta-analysis was not prospectively registered. Two authors independently reviewed titles and abstracts, and selected articles to include. Disagreements were resolved at meetings with at least three authors present. Articles selected for meta-analysis spanned a publication timeframe from May 1996 to June 2019 (time of writing), with 4 articles published in 2009 or earlier, 13 published between the beginning of 2010 and the end of 2015, and 14 published between the beginning of 2016 and the end of June 2019.

Published randomised controlled clinical trials, controlled pilot studies, or trials with similar study designs were considered. Reviews, case studies, and abstract-only publications were excluded. Eligible articles reported results of trials of interventions that focused on treating, delaying, or reversing physical frailty in the primary care setting among persons aged 60+. Where data was not available from the published studies, we emailed authors directly to request primary data for inclusion. If we were unable to contact the authors after two attempts, the article was excluded. Risk of bias was assessed at study level by two authors.

Transformation of data and meta-analysis

Data was entered into a data extraction spreadsheet; specific outcome measures were pre-specified by the research team and included Fried criteria or adaptations, and/or sarcopenia-related physical performance indicators. In studies with multiple timepoints we selected the immediate post-intervention timepoint where data was reported. For cross-over trial designs, we selected the last timepoint before cross-over. Results presented as percentages (e.g. percentage of participants who improved) were transformed into absolute figures where needed.

For dichotomised outcomes we have presented results as risk ratios with 95% confidence intervals, and performed number needed to treat (NNT) analysis by calculating absolute risk reduction (ARR) using the formula $NNT = 1/ARR$, where ARR results from subtracting the experimental event ratio (EER) from the control event ratio (CER) ($ARR = CER - EER$). For studies reporting multiple sub-groups for certain measures, these were combined into one group for pair-wise comparison with control, as recommended by the Cochrane Collaboration guidelines.[34] Continuous outcome measurement results are presented as standardised mean differences (SMD) plus 95% confidence intervals. In some studies, change scores were reported as opposed to final measurements, e.g. mean changes in time taken to perform a test versus mean final measurements of the time taken to perform the same test. If comparison
with final measurements was required, these were included in the relevant meta-analyses and results presented as unstandardized mean differences and 95% confidence intervals, in the manner recommended by the Cochrane Collaboration.[34] Studies using change scores were included as sub-groups within their respective analyses for clarity. For articles reporting gait speed as mean number of seconds taken to walk the test distance, rather than speed, these values were entered as reported and transformed to negative values to correct for directionality (i.e. improvements reflected by a decrease in mean time taken). [35]

Meta-analysis was performed using Review Manager (RevMan) version 5.3 using the inverse variance method, and random effects model to account for expected differences such as intervention dose and population variance. Inconsistency among the studies in each analysis was quantified using the I² statistic. Risk of bias was assessed in the manner recommended by the Cochrane Collaboration.[34]

Results

The search was initially completed in May 2018 and repeated at the end of June 2019. Thirty-one articles were included in this meta-analysis after the review process was completed (Fig 1). There was a total of 4794 participants at randomisation across the included studies, with a median study size of 100 participants, maximum size of 459, and minimum of 23. Characteristics of included studies are presented in S2 Table. We prepared a matrix of outcome measures used in each study to help group them together for meta-analysis in cases where two or more studies used the same, or conceptually similar, measure (S3 Table).

Two studies were included in the meta-analysis of frailty alongside those reporting Fried Criteria: Behm et al. used expanded criteria incorporating Fried’s [36] and Luger et al. used SHARE-FI[35] which is based on a latent class approach to modified Fried’s criteria. Studies by Kim et al.,[37] Ng et al.,[38] and Kwon et al.[39] examined the effect of exercise, nutrition supplementation or education, and combination interventions. Such data was treated as separate comparisons to control but analysed in discrete meta-analyses to avoid double-counting the shared control group.

Risk of bias summaries are presented for descriptive and exploratory purposes, and did not influence inclusion or weighting of studies in the meta-analysis (Fig 2).

Effect of interventions on physical frailty status

12 studies assessed frailty status using Fried criteria or similar measures, reporting change in frailty status, or frailty prevalence. We grouped these by intervention, conducting meta-analysis wherever two or more studies used similar interventions. Interventions using exercise and nutrition supplementation favoured intervention over control (n = 2, RR = 0.62 (CI 0.48–0.79), I² = 0%), whilst nutrition alone did not seem effective (n = 2, RR = 0.91 (CI 0.63–1.33), I² = 72%). Exercise and nutrition education (n = 4, RR = 0.69 (CI 0.58–0.82), I² = 0%), exercise-only (n = 4, RR = 0.63 (CI 0.47–0.84), I² = 0%), and comprehensive geriatric assessment (CGA) (n = 3, RR = 0.77 (CI 0.64–0.93), I² = 0%) all seemed effective versus control (Fig 3).

Number needed to treat analysis of data from these studies indicated an NNT of 4 for exercise and nutrition supplementation, 8 for exercise and nutrition education, 11 for exercise only, and 15 for CGA.

Effect of interventions on frailty-associated physical performance measures

Several additional physical frailty-associated measures were reported: physical performance tests such as the short physical performance battery (SPPB) or the physical performance test (PPT), gait speed, leg strength, timed up and go (TUG), grip strength, single-leg balance,
Four studies used physical performance as an outcome measure and employed exercise interventions, which seemed more effective than control (n = 4, SMD = 0.43 (CI 0.18–0.67), I² = 3%). Fifteen studies included gait speed as an outcome measure. Interventions using exercise and nutrition supplementation (n = 2, SMD = 0.26 (CI -0.19–0.71), I² = 52) were not superior to control, whilst exercise alone (n = 12, SMD = 0.36 (CI 0.10–0.61), I² = 74%) was superior although the results had a substantial degree of statistical heterogeneity. Nutrition only (n = 3, SMD = -0.01 (CI -0.26–0.24, I² = 0%) and exercise and nutrition education (n = 2, Mean Difference = 0.04 (CI -0.09–0.18), I² = 0%) were not superior to control (Fig 4).

Eleven studies included leg strength as a frailty-associated measure. Here, exercise and nutrition supplementation (n = 2, SMD = 0.21 (CI -0.26–0.67), I² = 54%) did not favour intervention over control, nor did nutrition supplementation alone (n = 3, SMD = -0.05 (CI -0.31–
Study	A	B	C	D	E	F	G
Akihiko et al. 2018	✔	✔	✔	✔	✔	✔	✔
Behm et al. 2016	✔	✔	✔	✔	✔	✔	✔
Binder et al. 2002	✔	✔	✔	✔	✔	✔	✔
Brown et al. 2000	✔	✔	✔	✔	✔	✔	✔
Cesari et al. 2015	✔	✔	✔	✔	✔	✔	✔
Chan et al. 2012	✔	✔	✔	✔	✔	✔	✔
Chan et al. 2017	✔	✔	✔	✔	✔	✔	✔
Chen et al. 2019	✔	✔	✔	✔	✔	✔	✔
Clegg et al. 2014	✔	✔	✔	✔	✔	✔	✔
Coelho-Junior et al. 2019	✔	✔	✔	✔	✔	✔	✔
Daniel et al. 2012	✔	✔	✔	✔	✔	✔	✔
Fairhall et al. 2012	✔	✔	✔	✔	✔	✔	✔
Hildreth et al. 2013	✔	✔	✔	✔	✔	✔	✔
Jacobsen et al. 2012	✔	✔	✔	✔	✔	✔	✔
Kim and Lee 2013	✔	✔	✔	✔	✔	✔	✔
Kim et al. 2015	✔	✔	✔	✔	✔	✔	✔
Kwon et al. 2015	✔	✔	✔	✔	✔	✔	✔
Li et al. 2010	✔	✔	✔	✔	✔	✔	✔
Liu et al. 2017	✔	✔	✔	✔	✔	✔	✔
Luger et al. 2016	✔	✔	✔	✔	✔	✔	✔
Mazza et al. 2018	✔	✔	✔	✔	✔	✔	✔
Muller et al. 2006	✔	✔	✔	✔	✔	✔	✔
Nagai et al. 2018	✔	✔	✔	✔	✔	✔	✔
Ng et al. 2015	✔	✔	✔	✔	✔	✔	✔
Oh et al. 2017	✔	✔	✔	✔	✔	✔	✔
Seino et al. 2017	✔	✔	✔	✔	✔	✔	✔
Serra-Prat et al. 2017	✔	✔	✔	✔	✔	✔	✔
Tarazona et al. 2016	✔	✔	✔	✔	✔	✔	✔
Wolf et al. 1996	✔	✔	✔	✔	✔	✔	✔
Yamada et al. 2012	✔	✔	✔	✔	✔	✔	✔
Yoon et al. 2018	✔	✔	✔	✔	✔	✔	✔

Risk of bias legend

(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias
0.21), \(I^2 = 0\%\), or hormone supplementation (\(n = 2\), SMD = -0.29 (CI -1.01–0.43), \(I^2 = 77\%\), and whilst exercise only (\(n = 8\), SMD = 0.61 (CI 0.09–1.13), \(I^2 = 87\%\)) favoured intervention over control a substantial degree of heterogeneity was observed (Fig 5).

Seventeen studies measured grip strength as a frailty-associated outcome, using a variety of interventions. Only exercise alone favoured intervention over control in this case, and there was a substantial degree of heterogeneity (\(n = 9\), Mean Difference = 1.08 (CI 0.02–2.15, \(I^2 = 71\%\)). The other interventions here did not appear effective versus control. These were: Exercise plus nutrition education (\(n = 4\), Mean Difference = 0.71 (CI -0.17–1.59, \(I^2 = 0\%\)), nutrition supplementation (\(n = 3\), SMD = -0.10 (CI -0.43–0.23), \(I^2 = 33\%\)), and hormone supplementation (\(n = 3\), Mean Difference = 0.10 (CI -1.13–1.34), \(I^2 = 0\%\)) (Fig 6).

Thirteen studies included the timed up and go test as an outcome measure, but in our meta-analysis none of the interventions tested were superior to control. These were: nutrition supplementation (\(n = 3\), SMD = -0.04 (CI -0.31–0.23), \(I^2 = 0\%\)), exercise alone (\(n = 8\), SMD = -0.47 (CI -0.98–0.05), \(I^2 = 82\%\)), and exercise plus nutrition education (\(n = 3\), Mean Difference = -0.42 (CI -1.06–0.23), \(I^2 = 53\%\)) (S1 Fig). Seven studies used single-leg balance as an outcome measure and employed exercise and nutrition education (\(n = 4\), Mean Difference = 3.88 (CI -1.72–9.48), \(I^2 = 71\%\)) and exercise only (\(n = 4\), Mean Difference = 0.04 (CI -2.98–3.06), \(I^2 = 60\%\)), which were not superior to control (S2 Fig). Three studies tested the effect of exercise on functional reach, which was not found to be superior to control (\(n = 3\), SMD = 0.19 (CI -0.10–0.48), \(I^2 = 0\%\)) (S2 Fig). Lastly, exercise was not superior to control for three studies using chair stands as an outcome measure, and these studies displayed a high degree of heterogeneity (\(n = 3\), SMD = 0.63 (CI -1.02–2.29), \(I^2 = 92\%\)) (S2 Fig).

Discussion

Our results suggest that physical frailty and related measures may be improved, mainly through resistance-based exercise. Exercise can confer functional and cognitive benefits for older individuals, even in the presence of comorbidities,[41,42] and our findings provide an up-to-date synthesis of the literature in support of this concept.

In some cases, exercise alone appeared to improve frailty-associated measures such as gait speed or leg strength (albeit with a high degree of heterogeneity) whilst exercise plus nutrition supplementation did not. An additive effect might have been expected, but we only retrieved two studies utilising this combination of strategies therefore the reason for this effect remains unclear. Further exploration of the underlying causes of this variation (e.g. participant heterogeneity, nutritional status at time of recruitment, dosage, compliance etc.) should take precedence over a quick interpretation that nutrition supplementation plus exercise is not a useful intervention. The range of possible dietary supplementation measures is also likely to be a confounding factor.[43] Although we retrieved only a few trials that examined the effect of nutrition alone in addressing frailty, and did not find it superior to control in improving any measures, it remains a potential avenue for further research. Indeed, poor nutritional status is associated with onset of frailty,[44] and intervention against the background levels of malnutrition commonly seen among older and frail individuals may at least act as an adjunct to support those individuals to make the best possible progress as they move through care and rehabilitation.[45,46]
A

Study or Subgroup	Intervention	Experimental Events	Control Events	Risk Ratio IV, Random, 95% CI
		Total	Total	
		Weight		
	Exercise plus nutrition supplements			
Kim et al. 2015	14	33	22	0.62 [0.39, 0.98]
Ng et al. 2015	24	46	39	0.62 [0.45, 0.83]
Subtotal (95% CI)		79	78	0.62 [0.48, 0.79]
	Total events	38	61	
Heterogeneity: Tau² = 0.00; Chi² = 0.00, df = 1 (P = 0.99); I² = 0%				
Test for overall effect: Z = 3.76 (P = 0.0002)				
	Nutrition supplements			
Kim et al. 2015	23	30	22	1.12 [0.82, 1.51]
Ng et al. 2015	29	45	39	0.76 [0.59, 0.98]
Subtotal (95% CI)		75	78	0.91 [0.63, 1.33]
	Total events	52	61	
Heterogeneity: Tau² = 0.05; Chi² = 3.63, df = 1 (P = 0.06); I² = 72%				
Test for overall effect: Z = 0.49 (P = 0.63)				

Fig 3. Effect of interventions on frailty status. A) Shows Risk ratio (RR, square data markers) with 95% confidence intervals (CI, horizontal lines) for meta-analysis of change in frailty status (dichotomised to not frail vs. frail; events indicate individuals whose status did not change) for interventions using exercise plus nutrition supplements or nutrition supplements alone. B) Shows RR with 95% CI for meta-analysis of change in prevalence of frailty (dichotomised to not frail vs. frail; events indicate frail individuals) for interventions using exercise plus nutrition education, exercise only, and comprehensive geriatric assessment. Size of data markers indicates study weighting in random effects meta-analysis. Diamond-shaped data markers indicate overall RR and CI for each grouping of interventions. I² statistic is reported for each group. Left side favours intervention.

https://doi.org/10.1371/journal.pone.0228821.g003

B

Study or Subgroup	Intervention	Experimental Events	Control Events	Risk Ratio IV, Random, 95% CI
		Total	Total	
		Weight		
	Exercise plus nutrition education			
Serra-Prat et al. 2017	3	61	11	0.32 [0.09, 1.10]
Seino et al. 2017	5	38	11	0.47 [0.18, 1.22]
Tarazona et al. 2016	35	51	49	0.69 [0.57, 0.83]
Luger et al. 2016	17	39	21	0.85 [0.53, 1.36]
Subtotal (95% CI)		189	201	0.69 [0.58, 0.82]
	Total events	60	92	
Heterogeneity: Tau² = 0.00; Chi² = 2.90, df = 3 (P = 0.41); I² = 0%				
Test for overall effect: Z = 4.26 (P < 0.0001)				
	Exercise only			
Chen et al. 2019	0	33	1	0.33 [0.01, 7.90]
Cesari et al. 2015	21	213	41	0.51 [0.31, 0.83]
Kim et al. 2015	16	33	22	0.71 [0.46, 1.08]
Nagai et al. 2018	7	21	9	0.74 [0.34, 1.61]
Subtotal (95% CI)		300	296	0.63 [0.47, 0.84]
	Total events	44	73	
Heterogeneity: Tau² = 0.00; Chi² = 1.34, df = 3 (P = 0.72); I² = 0%				
Test for overall effect: Z = 3.11 (P = 0.002)				
	CGA			
Mazya et al. 2018	54	135	54	0.72 [0.55, 0.94]
Li et al. 2010	23	129	34	0.73 [0.46, 1.16]
Behm et al. 2016	58	171	45	0.86 [0.63, 1.17]
Subtotal (95% CI)		435	351	0.77 [0.64, 0.93]
	Total events	135	133	
Heterogeneity: Tau² = 0.00; Chi² = 0.77, df = 2 (P = 0.68); I² = 0%				
Test for overall effect: Z = 2.73 (P = 0.006)				

Fig 3. Effect of interventions on frailty status. A) Shows Risk ratio (RR, square data markers) with 95% confidence intervals (CI, horizontal lines) for meta-analysis of change in frailty status (dichotomised to not frail vs. frail; events indicate individuals whose status did not change) for interventions using exercise plus nutrition supplements or nutrition supplements alone. B) Shows RR with 95% CI for meta-analysis of change in prevalence of frailty (dichotomised to not frail vs. frail; events indicate frail individuals) for interventions using exercise plus nutrition education, exercise only, and comprehensive geriatric assessment. Size of data markers indicates study weighting in random effects meta-analysis. Diamond-shaped data markers indicate overall RR and CI for each grouping of interventions. I² statistic is reported for each group. Left side favours intervention.

https://doi.org/10.1371/journal.pone.0228821.g003
Fig 4. Effect of interventions on physical performance and gait speed. A) Shows SMD (square data markers) with 95% CI (horizontal lines) for meta-analysis of mean scores ± SD for physical performance tests for interventions using exercise. B) Shows SMD with 95% CI for meta-analysis of gait speed as mean time taken to walk a set distance (measured in seconds) or mean speed ± SD (measured in metres).
Since frailty by nature is a complex construct comprising multiple interacting dimensions of capacity, resilience, and incapacity,\cite{3,29} it is unsurprising that some interventions purporting to address "frailty" as a phenomenon showed little effect on single-dimension frailty-associated measures. For example, endurance training focusing on walking and lower body strength could not reasonably be expected to improve handgrip strength. It could, however, be expected to improve criteria such as exhaustion, gait speed, or physical activity. Changes in such measures cannot themselves be interpreted as constituting improvements in overall

![Fig 5. Effect of interventions on leg strength. A) Shows SMD (square data markers) with 95% CI (horizontal lines) for meta-analysis of mean scores ± SD for leg strength (measured in kilogrammes, kilogramme metres, feet per pound, Newtons, or Newton metres) for interventions using exercise plus nutrition supplements, exercise only, and nutrition supplements only. B) Shows SMD with 95% CI for meta-analysis of leg strength reported as mean change from baseline ± SD (measured in Kilogrammes or Newton Metres), for interventions using hormone supplementation. Size of data markers indicates study weighting in random effects meta-analysis. Diamond-shaped data markers indicate overall SMD with CI for each grouping of interventions. I² statistic is reported for each group. Right side favours intervention.](https://doi.org/10.1371/journal.pone.0228821.g005)
Fig 6. Effect of interventions on grip strength. A, B, D) Show Mean Difference (square data markers) with 95% CI (horizontal lines) for meta-analysis of grip strength (measured in kilogrammes), reported either as change scores or as final

A

Study or Subgroup	Experimental	Control	Mean Difference IV, Random	95% CI	Mean Difference IV, Random			
	Mean	SD	Total	Mean	SD	Total	Weight	
Exercise plus nutrition education [final measurements]								
Seino et al. 2017	29.7	8	38	31.2	10.1	39	4.7%	-1.50 [-5.56, 2.56]
Serra-Pro et al. 2017	20.4	7.7	80	20.2	7.4	74	15.6%	0.20 [0.07, 0.47]
Subtotal (95% CI)	118	13	19.5%	-0.20 [-2.18, 1.78]				
Heterogeneity: Tau^2 = 0.00; CHi^2 = 0.51, df = 1 (P = 0.47); I^2 = 0%								
Test for overall effect: Z = 0.20 (P = 0.84)								

B

Study or Subgroup	Experimental	Control	Mean Difference IV, Random	95% CI	Mean Difference IV, Random			
	Mean	SD	Total	Mean	SD	Total	Weight	
Exercise only [final measurements]								
Cesar et al. 2015	25.69	8.95	178	25.84	8.64	167	12.5%	0.81 [-1.01, 2.63]
Chen et al. 2019	25.03	5.40	33	19.42	5.84	33	8.6%	5.61 [-2.88, 12.10]
Kim et al. 2015	18.36	3.28	33	19.18	3.5	32	13.4%	-0.82 [-2.47, 0.83]
Liu et al. 2017	13.91	4.81	29	11.87	3.99	21	9.7%	2.24 [-0.20, 4.68]
Nagai et al. 2018	11.6	4.6	23	18.6	3.8	20	9.4%	1.00 [-1.52, 3.52]
Wolf et al. 1996	22.5	8.5	58	22	6.2	54	8.6%	0.50 [-0.24, 1.24]
Yoon et al. 2018	23.6	7.76	20	23.78	7.14	23	4.4%	-0.18 [-0.46, 0.30]
Subtotal (95% CI)	356	372	66.5%	1.28 [-0.27, 2.82]				
Heterogeneity: Tau^2 = 0.68; CHi^2 = 17.01, df = 6 (P = 0.006); I^2 = 65%								
Test for overall effect: Z = 1.61 (P = 0.11)								

C

Study or Subgroup	Experimental	Control	Std. Mean Difference IV, Random	95% CI	Std. Mean Difference IV, Random			
	Mean	SD	Total	Mean	SD	Total	Weight	
Nutrition supplements								
Kim and Lee 2013	15.1	4.8	41	18.4	5.3	43	37.0%	-0.25 [-0.68, 0.18]
Kim et al. 2015	18.37	1.92	30	19.18	3.5	32	30.2%	-0.28 [-0.76, 0.22]
Yannas et al. 2012	26.1	6.3	35	24.1	6.2	35	32.9%	0.24 [-0.03, 0.51]
Total (95% CI)	106	106	100.0%	-0.19 [-0.43, 0.13]				
Heterogeneity: Tau^2 = 0.03; CHi^2 = 3.00, df = 2 (P = 0.22); I^2 = 33%								
Test for overall effect: Z = 0.60 (P = 0.55)								

D

Study or Subgroup	Experimental	Control	Mean Difference IV, Random	95% CI	Mean Difference IV, Random			
	Mean	SD	Total	Mean	SD	Total	Weight	
Hormone supplementation [final measurements]								
Jacobsen et al. 2012	22.83	3.13	76	22	4.5	52	76.0%	0.23 [-1.19, 1.65]
Muller et al. 2006	32.82	6.28	76	33.2	7.5	25	13.9%	-0.38 [-3.70, 2.94]
Subtotal (95% CI)	152	76	50.5%	0.14 [-0.17, 1.44]				
Heterogeneity: Tau^2 = 0.00; CHi^2 = 0.11, df = 1 (P = 0.47); I^2 = 0%								
Test for overall effect: Z = 0.20 (P = 0.84)								

Study or Subgroup	Experimental	Control	Mean Difference IV, Random	95% CI	Mean Difference IV, Random			
	Mean	SD	Total	Mean	SD	Total	Weight	
Hormone supplementation [change scores]								
Hildreth et al. 2013	3.2	10.3	49	3.4	6.7	22	9.5%	-0.20 [-4.22, 3.82]
Subtotal (95% CI)	49	49	9.5%	-0.20 [-4.22, 3.82]				
Heterogeneity: Not applicable								
Test for overall effect: Z = 0.10 (P = 0.92)								

Total (95% CI) | 201 | 98 | 100.0% | 0.10 [-1.13, 1.34] |
| Heterogeneity: Tau^2 = 0.00, CHi^2 = 0.13, df = 2 (P = 0.94); I^2 = 0% |
| Test for overall effect: Z = 0.16 (P = 0.87) |

Fig 6. Effect of interventions on grip strength. A, B, D) Show Mean Difference (square data markers) with 95% CI (horizontal lines) for meta-analysis of grip strength (measured in kilogrammes), reported either as change scores or as final
frailty, as they only represent one component in isolation. Caution must therefore be exercised in interpreting results in these cases, and attention must still be paid to the individual’s underlying risk factors associated with frailty. That notwithstanding, our results showing effects of interventions such as exercise in improving leg strength and gait speed are somewhat consistent with previous evidence syntheses from other groups that examined interventions against sarcopenia[47]–itself linked to many of the frailty-associated measures included in our analysis.[30] Some interventions may also simply not yet have a well-developed literature base: although hormone supplementation has been shown to improve strength and muscle power in settings outside of frailty,[48] there was only sufficient data among frailty-associated measures for us to meta-analyse its effect on leg strength and grip strength. No overall effect was shown, although those studies did report gains in other measures such as upper body strength and body composition.[49,50] Synergistic benefits might still be gained from hormone supplementation in tandem with targeted functional exercise interventions against frailty. It may be the case that future combinatorial interventions will yield the greatest benefits.

Heterogeneity among studies

I^2 statistics for our meta-analyses were generally low to moderate,[34] but when comparing nutrition interventions’ effect on changing frailty status, exercise-only interventions’ effect on leg strength and gait speed, effect of exercise and nutrition education, or exercise alone, on single-leg balance, and effect of exercise on chair stands, the I^2 was considerable, ranging from 71% to 92%. We had conducted the meta-analyses using the random effects model with the aim of producing more conservative levels of significance for the computed effect estimates [34] however we explored whether small-study effects might have been influencing the results by re-analysing using the fixed-effects model for the three analyses where a significant intervention effect was observed in the presence of heterogeneity greater than 60%. For the analysis of the effects of exercise alone on gait speed or leg strength the intervention effect estimate remained significant under the fixed-effects model, but for the analysis of the effect of exercise alone on grip strength, the effect estimate became non-significant (S3 Fig). In the latter instance, the apparent positive intervention effect may have been due to the small-study effect. This does not preclude the presence of small-study effects in the other two analyses, however it was not likely the only influencing factor.

In general, observed heterogeneity may have been due to diversity between approaches, since we did not narrow our searches within interventions (e.g. resistance training versus bodyweight, aerobic exercise etc.) but rather sought to examine if any intervention at all was a useful strategy. Dosage or adherence could also have influenced heterogeneity in outcomes—for example where self-directed exercise was encouraged in conjunction with the prescribed interventions, as opposed to only using a fixed regime. The frailty status of participants at the beginning of the studies is also likely to have been a source of heterogeneity to some degree: For example, the Fried criteria specify characteristics such as slowness, weight loss etc., which if present categorise a person as robust, pre-frail, or frail, and in many cases participants were classified this way at baseline, with pre-frailty often a selection criteria for trials. It is, however, difficult to identify each individual’s capacity for improvement or decline, and a seemingly
homogenous group of participants categorised as “pre-frail” might nevertheless each experience markedly different outcomes. A mixture of clinical and methodological heterogeneity is the most likely case, and incorporation of future studies in the area will aid in exploring the degree to which each of these exerts an influence.

The small number of studies in each outcome measure grouping also precluded our exploring heterogeneity using funnel plots in most cases.[51] However, we were able to do so for our meta-analysis of the effect of exercise on gait speed (S4 Fig), finding some degree of asymmetry around the overall effect line. For exploratory purposes, we excluded individual studies from the analysis and found that one study, Chen et al.,[52] was responsible for introducing the observed asymmetry (although we note additionally that the overall intervention effect remained significant even when that study was removed from the analysis). Participants in Chen and colleagues’ study were not blinded as to their allocated groups, which may have introduced some degree of performance bias (acknowledged as a key difficulty in designing exercise interventions[53]).

Suggestions for further research

We recommend that further studies should aim to delineate the optimal exercise interventions to delay or improve frailty status. Giné-Garriga and colleagues’ 2014 systematic review and meta-analysis noted that there will certainly be differences in the type of interventions suitable for non-frail older adults compared with those who are frail—for example the latter may require shorter-duration, performance-based sessions.[54] Future research should also focus on contextual factors supporting frailty interventions, such as health resources provisioning,[55] linkages between acute and long-term care services,[56] configuration of care packages,[57] and public and patient involvement in co-designing interventions.[58] There is also some incompatibility between frailty measures themselves, necessitating caution in comparing outcomes. Coordinated international movements towards a unifying set of frailty measures may be challenging, but will greatly aid future meta-analyses to clarify best-practice interventions.[2]

Our study may be interpreted as summarising the evidence related to the physical frailty phenotype, but the results should not be extrapolated to other frailty definition approaches such as the frailty index,[59] which defines frailty according to an accumulation of deficits model which often includes more advanced disability items. Lastly, several recent publications have reported successful results of multifactorial, multidisciplinary approaches simultaneously targeting physical activity, nutrition, polypharmacy, depression, cognitive function, and other factors.[60–64] These studies were beyond the scope of our meta-analysis due to the highly diverse components in each intervention, but this holistic approach certainly warrants further attention by researchers.

Implications for clinical practice

Resistance-based exercise could be employed alone, or in conjunction with nutrition supplementation or education, to help maintain functional capacity during the ageing process.[65,66] The majority of studies included in our meta-analysis featured resistance-based exercise, as performed using weights, elastic bands, or body weight. These were done alone or alongside aerobic or coordination and balance components. The ideal type, duration, and frequency of exercise will need to be tailored on a per-person basis, and such programming will likely feature a high degree of flexibility in configurations. As a starting point, our previous systematic review suggested generally higher effectiveness of resistance-based exercises compared to other forms of activity,[20] with the largest relative demonstrated effectiveness from a combinatorial programme of mixed exercises incorporating resistance.[67] Implementers may be
guided by the existing syntheses of the current literature, for example as summarised by Bray and colleagues[68] with training 2–3 times weekly using multi-component exercise programs featuring aerobic, resistance, balance, and flexibility, commencing at moderate intensity and gradually increasing to moderate-vigorous levels.[69–71] Frost and colleagues’ recent systematic review and meta-analysis also highlighted a need to explore the role of exercise in groups in determining effectiveness of interventions.[72] There is also a small but growing evidence base indicating relatively greater effectiveness of multi-domain over mono-domain interventions.[73]

Dietary changes might include appropriately-considered uptake of plant-based proteins, or other protein sources such as milk, fish, eggs, chicken, or commercial formula nutrient drinks, whilst nutritional education could focus on improvements in dietary variety, particularly with regard to protein intake. Initiatives such as group activities, goal setting, and checklists may also help improve nutritional status by encouraging consumption of a properly balanced diet.[35,74]

Three studies included CGA or CGA-like strategies as an intervention,[36,75,76] incorporating tools such as preventive home visits, multi-professional group meetings to discuss patients’ care, and treatments being prescribed based on individual need. Our meta-analysis suggests that this tailored approach is successful in reducing frailty prevalence but it is difficult to ascertain whether a specific component was responsible for improvement, or if there was a combinatorial effect, due to the varied needs of the individuals taking part in those studies.

Limitations

Our database searches were limited to literature published in English. This may be a source of bias towards selection of only positive results, which are more likely to be reported in international English-language journals whilst negative results may more commonly appear in local-language journals.[34] In this case, limitations of time and language expertise precluded full coverage. It was difficult to determine risk of bias regarding selective reporting of results within studies since original trial protocols were not available for many of the retrieved articles. However, this risk could be somewhat attenuated by our focus on commonly-reported frailty indices and associated measures.

We could only include a small number of studies in our meta-analyses since, for any given intervention, they frequently did not employ the same outcome metrics. This variability is a common feature noted by other systematic reviews and meta-analyses.[54,72] We also chose to include some non-RCT study designs such as controlled pilot studies. This decision was made pragmatically to incorporate non-randomised trials which nevertheless were of sufficient quality and had usable data.[77] Our meta-analyses were also limited to cases where two or more studies used the same effect measures, reflecting the current fragmented status of the literature around frailty interventions as a whole.[20,25] The difficulty in comparisons between frailty indices is also not a minor challenge for analysts,[24] and it must be noted that studies may have shown significant effects in reducing frailty[78] but could not be compared with others since they used unique indicators developed specifically for those studies.[59]

A possible limitation is that exercise/physical activity is included in the definition of physical frailty, and as such exercise intervention may improve the definition, but not necessarily the person. This has been a criticism in the literature (especially when using self-reported physical activity[79]) and so well designed clinical trials are still necessary to remove this possible source of bias that may be present in some included studies.
Conclusions
Interventions using predominantly resistance-based exercise and nutrition supplementation, exercise and nutrition education, exercise alone, and CGA, appear effective in improving frailty status among community-dwelling adults aged 60 years or older. Such interventions may also improve frailty-associated measures of physical capacity. Future research should focus on exploring the optimal configurations for these interventions. Insufficient evidence is available at time of writing to support the use of interventions such as hormone supplementation in addressing frailty status or frailty-associated measures of physical function, and future analyses should seek to incorporate any forthcoming studies in this area in order to create meaningful syntheses of their effect. Lastly, there may be value in expanding research comparing the multiple diverse frailty indices that exist, and studying their individual components, to aid future meta-analyses. Although only a small number of articles was retrieved, our meta-analysis follows our previous systematic review[20] in presenting an up-to-date view of the available information at the time of writing, and may guide clinicians and researchers wishing to develop and refine interventions against frailty in the primary care setting.

Supporting information
S1 Table. PRISMA checklist.
(PDF)

S2 Table. Characteristics of included studies. Showing study identifier, methods, participant information, interventions, outcomes, and citation for the studies included in the meta-analysis.
(XLSX)

S3 Table. Matrix of relevant outcome measures in included studies. Showing intervention type, study identifier, and outcome measures used in the studies included in the meta-analysis.
(XLSX)

S1 Fig. Effect of interventions on timed up and go test. A) Shows SMD (square data markers) with 95% CI (horizontal lines) for meta-analysis of mean ± SD time taken to perform timed up and go test (measured in seconds), for interventions using nutrition supplements or exercise alone. B) Shows Mean Difference with 95% CI for meta-analysis of time taken to perform TUG (measured in seconds), reported either as change scores or as final measurements ± SD, separated into sub-groups for clarity, for interventions using exercise plus nutrition education. Size of data markers indicates study weighting in random effects meta-analysis. Diamond-shaped data markers indicate overall SMD or Mean difference with CI for each grouping of interventions. I² statistic is reported for each group. Left side favours intervention.
(TIF)

S2 Fig. Effect of interventions on single-leg balance, functional reach, and chair stand test. A, B) Show Mean Difference (square data markers) with 95% CI (horizontal lines) for meta-analysis of single-leg balance (measured in seconds) reported either as change scores or as final measurements ± SD, separated into sub-groups for clarity, for interventions using exercise plus nutrition education and exercise only. C) Shows SMD with 95% CI for meta-analysis of mean scores (measured in centimetres or inches) for functional reach ± SD, for interventions using exercise. D) Shows SMD with 95% CI for meta-analysis of mean scores in chair stand test (measured as number of stands in 30 seconds or time taken to rise 5 times from sitting) ± SD for interventions using exercise. Size of data markers indicates study weighting in
random effects meta-analysis. Diamond-shaped data markers indicate overall SMD or Mean difference with CI for each grouping of interventions. I^2 statistic is reported for each group. Right side favours intervention.

(TIF)

S3 Fig. Comparison of random effects model vs. fixed effects model for meta-analysis of exercise interventions’ effect on gait speed, leg strength, and grip strength. Left side shows meta-analysis using Random Effects model; right side shows meta-analysis using Fixed Effects model. A) Shows effect (SMD) of exercise interventions on gait speed, B) shows effect (SMD) of interventions on leg strength, and C) shows effect (Mean Difference) of interventions on grip strength. Size of data markers indicates study weighting in meta-analysis. Diamond-shaped data markers indicate overall SMD or Mean difference with CI for each grouping of interventions. I^2 statistic is reported for each group. Right side favours intervention.

(TIF)

S4 Fig. Funnel plot of results of exercise interventions’ effect on gait speed. Open diamond shapes represent individual studies in the meta-analysis. Y axis shows SE of the SMD; X axis shows SMD. Blue dashed vertical line represents overall effect. Left panel shows funnel plot including the study by Chen et al. (2019); right panel shows funnel plot excluding Chen et al.

(TIF)

Acknowledgments

Dr. Marie Therese Cooney is the Principal Investigator of the “SAFE: Systematic Approach to improving care for Frail Elderly patients research programme”, funded by the HRB. The authors declare that there are no conflicts of interest. We gratefully acknowledge the assistance of the authors who helpfully provided primary data from their work to include in our meta-analysis.

Author Contributions

Conceptualization: Stephen H. -F. Macdonald, John Travers, Óidín Ní Shé, Jade Bailey, Roman Romero-Ortuno, Diarmuid O’Shea, Marie Therese Cooney.

Data curation: Stephen H. -F. Macdonald, Jade Bailey, Michael Keyes, Marie Therese Cooney.

Formal analysis: Stephen H. -F. Macdonald, John Travers, Jade Bailey, Marie Therese Cooney.

Funding acquisition: Marie Therese Cooney.

Investigation: Marie Therese Cooney.

Methodology: Stephen H. -F. Macdonald, Óidín Ní Shé, Roman Romero-Ortuno, Marie Therese Cooney.

Project administration: Marie Therese Cooney.

Supervision: Roman Romero-Ortuno, Marie Therese Cooney.

Validation: John Travers, Jade Bailey, Michael Keyes, Marie Therese Cooney.

Writing – original draft: Stephen H. -F. Macdonald, John Travers, Óidín Ní Shé, Jade Bailey, Roman Romero-Ortuno, Michael Keyes, Diarmuid O’Shea, Marie Therese Cooney.

Writing – review & editing: Stephen H. -F. Macdonald, John Travers, Óidín Ní Shé, Jade Bailey, Roman Romero-Ortuno, Diarmuid O’Shea, Marie Therese Cooney.
References

1. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet Lond Engl. 2013; 381: 752–762. https://doi.org/10.1016/S0140-6736(12)62167-9 PMID: 23395245

2. Junius-Walker U, Onder G, Soleymani D, Wiese B, Albaina O, Bernabei R, et al. The essence of frailty: A systematic review and qualitative synthesis on frailty concepts and definitions. Eur J Intern Med. 2018; 56: 3–10. https://doi.org/10.1016/j.ejim.2018.02.014 PMID: 29861330

3. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001; 56: M146–156. https://doi.org/10.1093/gerona/56.3.m146 PMID: 11253156

4. Marengoni A, Vetrano DL, Manes-Gravina E, Bernabei R, Onder G, Palmer K. The Relationship Between COPD and Frailty: A Systematic Review and Meta-Analysis of Observational Studies. Chest. 2018; 154: 21–40. https://doi.org/10.1016/j.chest.2018.02.014 PMID: 29477493

5. Jha SR, Ha HSK, Hickman LD, Hannu M, Davidson PM, Macdonald PS, et al. Frailty in advanced heart failure: a systematic review. Heart Fail Rev. 2015; 20: 553–560. https://doi.org/10.1007/s10741-015-9493-8 PMID: 25982016

6. Jayanama K, Theou O, Blodgett JM, Cahill L, Rockwood K. Frailty, nutrition-related parameters, and mortality across the adult age spectrum. BMC Med. 2018; 16: 188. https://doi.org/10.1186/s12916-018-1176-6 PMID: 30360759

7. Kelly SG, Wu K, Tassopoulou K, Erlandsson KM, Koletar SL, Paella FJ, et al. Frailty is an independent risk factor for mortality, cardiovascular disease, bone disease and diabetes among aging adults with HIV. Clin Infect Dis Off Publ Infect Dis Soc Am. 2018; https://doi.org/10.1093/cid/cyy011 PMID: 30590451

8. Park SK, Richardson CR, Holleman RG, Larson JL. Frailty in people with COPD, using the National Health and Nutrition Evaluation Survey dataset (2003–2006). Heart Lung J Crit Care. 2013; 42: 163–170. https://doi.org/10.1016/j.hrtlng.2012.07.004 PMID: 23531412

9. Lee L, Heckman G, Molnar FJ. Frailty: Identifying elderly patients at high risk of poor outcomes. Can Fam Physician Med Fam Can. 2015; 61: 227–231.

10. Jazwinski SM, Kim S. Metabolic and Genetic Markers of Biological Age. Front Genet. 2017; 8. https://doi.org/10.3389/fgene.2017.00064 PMID: 28588809

11. Gill TM, Gahbauer EA, Han L, Allore HG. Trajectories of Disability in the Last Year of Life. N Engl J Med. 2010; 362: 1173–1180. https://doi.org/10.1056/NEJMoa0909807 PMID: 20357280

12. Roe L, Normand C, Wren M-A, Browne J, O’Halloran AM. The impact of frailty on healthcare utilisation in Ireland: evidence from the Irish longitudinal study on ageing. BMC Geriatr. 2017; 17. https://doi.org/10.1186/s12877-017-0579-0 PMID: 28874140

13. Cesari M, Araujo de Carvalho I, Amuthavalai Thiyagarajan J, Cooper C, Martin FC, Reginster J-Y, et al. Evidence for the Domains Supporting the Construct of Intrinsic Capacity. J Gerontol Ser A. 2018; 73: 1653–1660. https://doi.org/10.1093/gerona/gly011 PMID: 29408961

14. Whitson HE, Duan-Porter W, Schmader KE, Morey MC, Cohen HJ, Colón-Emeric CS. Physical Resilience in Older Adults: Systematic Review and Development of an Emerging Construct. J Gerontol A Biol Sci Med Sci. 2016; 71: 489–495. https://doi.org/10.1093/gerona/gly011 PMID: 29086961

15. Moore RC, Eyler LT, Mausbach BT, Zlatar ZZ, Thompson WK, Peavy G, et al. Complex interplay between health and successful aging: Role of perceived stress, resilience, and social support. Am J Geriatr Psychiatry Off J Am Assoc Geriatr Psychiatry. 2015; 23: 622–632. https://doi.org/10.1016/j.jagp.2014.08.004 PMID: 25217186

16. Dicker D, Nguyen G, Abate D, Abate KH, Abay SM, Abbafati C, et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018; 392: 1684–1735. https://doi.org/10.1016/S0140-6736(18)31891-9 PMID: 30496102

17. Romero-Ortuno R, Fouweather T, Jagger C. Cross-national disparities in sex differences in life expectancy with and without frailty. Age Ageing. 2014; 43: 222–228. https://doi.org/10.1093/ageing/afu115 PMID: 23917483

18. Turner G, Clegg A, British Geriatrics Society, Age UK, Royal College of General Practitioners. Best practice guidelines for the management of frailty: a British Geriatrics Society, Age UK and Royal College of General Practitioners report. Age Ageing. 2014; 43: 744–747. https://doi.org/10.1093/ageing/afu138 PMID: 25336440

19. Romero-Ortuno R. Frailty in Primary Care. Interdiscip Top Gerontol Geriatr. 2015; 41: 85–94. https://doi.org/10.1159/000381170 PMID: 26301982
20. Travers J, Romero-Ortuno R, Bailey J, Cooney M-T. Delaying and reversing frailty: a systematic review of primary care interventions. Br J Gen Pract J Coll Gen Pract. 2019; 69: e61–e69. https://doi.org/10.3399/bjp18700241 PMID: 30510094

21. Apóstolo J, Cooke R, Bobrowicz-Campos E, Santana S, Marcucci M, Cano A, et al. Predicting risk and outcomes for frail older adults: an umbrella review of frailty screening tools. JBI Database Syst Rev Implement Rep. 2017; 15: 1154–1208. https://doi.org/10.11124/JBISRIR-2016-003018 PMID: 28398987

22. Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, Fagerland MW, et al. Dose-response associations between accelerometer measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ. 2019; 366: I4570. https://doi.org/10.1136/bmj.l4570 PMID: 31434697

23. Bouillon K, Kivimaki M, Hamer M, Sabia S, Fransson EI, Singh-Manoux A, et al. Measures of frailty in population-based studies: an overview. BMC Geriatr. 2013; 13: 64. https://doi.org/10.1186/1471-2318-13-64 PMID: 23786540

24. Aguayo GA, Donneau A-F, Vaillant MT, Schritz A, Franco OH, Stranges S, et al. Agreement Between 35 Published Frailty Scores in the General Population. Am J Epidemiol. 2017; 186: 420–434. https://doi.org/10.1093/aje/kwx061 PMID: 28633404

25. Puts MTE, Toubasi S, Andrew MK, Ashe MC, Ploeg J, Atkinson E, et al. Interventions to prevent or reduce the level of frailty in community-dwelling older adults: a scoping review of the literature and international policies. Age Ageing. 2017; 46: 383–392. https://doi.org/10.1093/ageing/afw247 PMID: 28064173

26. Theou O, Squires E, Mallery K, Lee JS, Fay S, Goldstein J, et al. What do we know about frailty in the acute care setting? A scoping review. BMC Geriatr. 2018; 18: 6 https://doi.org/10.1186/s12877-018-0823-2 PMID: 29898673

27. Santos-Eggimann B, Sirven N. Screening for frailty: older populations and older individuals. Public Health Rev. 2016; 37. https://doi.org/10.1186/s40965-016-0021-8 PMID: 29450049

28. Gobbens RJ, Schols JM, van Assen MA. Exploring the efficiency of the Tilburg Frailty Indicator: a review. Clin Interv Aging. 2017; 12: 1739–1752. https://doi.org/10.2147/CIA.S130686 PMID: 29089748

29. Dent E, Kowal P, Hoogendijk EO. Frailty measurement in research and clinical practice: A review. Eur J Intern Med. 2016; 31: 3–10. https://doi.org/10.1016/j.ejim.2016.03.007 PMID: 27039014

30. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019; 48: 16–31. https://doi.org/10.1093/ageing/afy169 PMID: 30312372

31. Cesari M, Landi F, Vellas B, Bernabei R, Marzetti E. Sarcopenia and Physical Frailty: Two Sides of the Same Coin. Front Aging Neurosci. 2014; 6. https://doi.org/10.3389/fnagi.2014.00192 PMID: 25120482

32. Theou O, Cann L, Blodgett J, Wallace LMK, Brothers TD, Rockwood K. Modifications to the frailty phenotype criteria: Systematic review of the current literature and investigation of 262 frailty phenotypes in the Survey of Health, Aging, and Retirement in Europe. Ageing Res Rev. 2015; 21: 78–94. https://doi.org/10.1016/j.arr.2015.04.001 PMID: 25846451

33. Fried LP, Ferrucci L, Darer J, Wilson JR, O’Leary DH, Charpentier P, et al. Frailty in older adults: Evidence for a phenotype. J Gerontol Ser A. 2004; 59: M255–M263. https://doi.org/10.1186/s40985-016-0021-8 PMID: 15031310

34. Higgins J, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions [Internet]. 5.1.0 (Updated March 2011. The Cochrane Collaboration; 2011. Available: https://training.cochrane.org/handbook

35. Luger E, Dorner TE, Haider S, Kapan A, Lackinger E, Schindler K. Effects of a Home-Based and Volunteer-Administered Physical Training, Nutritional, and Social Support Program on Malnutrition and Frailty in Older Persons: A Randomized Controlled Trial. J Am Med Dir Assoc. 2016; 17: 671.e9–671.e16. https://doi.org/10.1016/j.amed.2016.04.018 PMID: 27346650

36. Behm L, Eklund K, Wilhelmson K, Zideén L, Gustafsson S, Falk K, et al. Health Promotion Can Postpone Frailty: Results from the RCT Elderly Persons in the Risk Zone. Public Health Nurs Boston Mass. 2016; 33: 303–315. https://doi.org/10.1111/phn.12240 PMID: 26568469

37. Kim H, Suzuki T, Kim M, Kojima N, Ota N, Shimotyodore A, et al. Effects of exercise and milk fat globule membrane (MFGM) supplementation on body composition, physical function, and hematological parameters in community-dwelling frail Japanese women: a randomized double blind, placebo-controlled, follow-up trial. PLoS One. 2015; 10: e0116256. https://doi.org/10.1371/journal.pone.0116256 PMID: 25659147

38. Ng TP, Feng L, Nynut MSZ, Feng L, Niti M, Tan BY, et al. Nutritional, Physical, Cognitive, and Combination Interventions and Frailty Reversal Among Older Adults: A Randomized Controlled Trial. Am J Med. 2015; 128: 1225–1236.e1. https://doi.org/10.1016/j.amjmed.2015.06.017 PMID: 26159634
39. Kwon J, Yoshida Y, Yoshida H, Kim H, Suzuki T, Lee Y. Effects of a combined physical training and nutrition intervention on physical performance and health-related quality of life in prefrail older women living in the community: a randomized controlled trial. J Am Med Dir Assoc. 2015; 16: 263.e1–8. https://doi.org/10.1016/j.jamda.2014.12.005 PMID: 25659620

40. Freiburger E, de Vreede P, Schoene D, Rydwik E, Mueller V, Frândin K, et al. Performance-based physical function in older community-dwelling persons: a systematic review of instruments. Age Ageing. 2012; 41: 712–721. https://doi.org/10.1093/ageing/afs098 PMID: 22885845

41. Cadore EL, Izquierdo M. Exercise interventions in polypathological aging patients that coexist with diabetes mellitus: improving functional status and quality of life. Age. 2015; 37. https://doi.org/10.1007/s11357-015-9800-2 PMID: 26054955

42. Kennedy G, Hardman RJ, Macpherson H, Scholey AB, Pipingas A. How Does Exercise Reduce the Rate of Age-Associated Cognitive Decline? A Review of Potential Mechanisms. J Alzheimers Dis JAD. 2017; 55: 1–18. https://doi.org/10.3233/JAD-160665 PMID: 27636853

43. Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N, et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2017; 28: 1817–1833. https://doi.org/10.1007/s00198-017-3980-9 PMID: 28251287

44. Artaza-Artabe I, Sández-López P, Sánchez-Hernández N, Fernández-Gutierrez N, Malafarina V. The relationship between nutrition and frailty: Effects of protein intake, nutritional supplementation, vitamin D and exercise on muscle metabolism in the elderly. A systematic review. Maturitas. 2016; 93: 89–99. https://doi.org/10.1016/j.maturitas.2016.04.009 PMID: 27125943

45. Lorenzo-López L, Maseda A, de Labra C, Regueiro-Folgueira L, Rodríguez-Villamil JL, Millán-Cañete JC. Nutritional determinants of frailty in older adults: A systematic review. BMC Geriatr. 2017; 17: 108. https://doi.org/10.1186/s12877-017-0496-2 PMID: 28506216

46. Sanford AM. Anorexia of aging and its role for frailty. Curr Opin Clin Nutr Metab Care. 2017; 20: 54–60. https://doi.org/10.1097/MCO.0000000000000336 PMID: 27749690

47. Yoshimura Y, Wakabayashi H, Yamada M, Kim H, Harada A, Arai H. Interventions for Treating Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. J Am Med Dir Assoc. 2017; 18: 553.e1–553.e16. https://doi.org/10.1016/j.jamda.2017.03.019 PMID: 28549707

48. Storer TW, Basaria S, Trausladottir T, Harman SM, Pencina K, Li Z, et al. Effects of Testosterone Supplementation for 3 Years on Muscle Performance and Physical Function in Older Men. J Clin Endocrinol Metab. 2017; 102: 583–593. https://doi.org/10.1210/jc.2016-2771 PMID: 27754805

49. Hildreth KL, Barry DW, Moreau KL, Vande Griend J, Meacham RB, Nakamura T, et al. Effects of testosterone and progressive resistance exercise in healthy, highly functioning older men with low-normal testosterone levels. J Clin Endocrinol Metab. 2013; 98: 1891–1900. https://doi.org/10.1210/jc.2012-3695 PMID: 23533227

50. Muller M, Beld VD, W A, Schouw VD, T Y, Grobbee DE, et al. Effects of Dehydroepiandrosterone and Atestanestiane Supplementation on Frailty in Elderly Men. J Clin Endocrinol Metab. 2006; 91: 3988–3991. https://doi.org/10.1210/jc.2005-2433 PMID: 16804050

51. Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011; 343: d4002. https://doi.org/10.1136/bmj.d4002 PMID: 21784880

52. Chen R, Wu Q, Wang D, Li Z, Liu H, Liu Q, et al. Effects of elastic band exercise on the frailty states in pre-frail elderly people. Physiother Theory Pract. 2019; 0: 1–9. https://doi.org/10.1080/09593985.2018.1548673 PMID: 30741081

53. Hecksteden A, Faude O, Meyer T, Donath L. How to Construct, Conduct and Analyze an Exercise Training Study? Front Physiol. 2018; 9. https://doi.org/10.3389/fphys.2018.01007 PMID: 30140237

54. Giné-Garriga M, Roqué-Figuls M, Coll-Planas L, Sitjà-Robert M, Salva A. Physical exercise interventions for improving performance-based measures of physical function in community-dwelling, frail older adults: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2014; 95: 753–768.e3. https://doi.org/10.1016/j.apmr.2013.11.007 PMID: 24291597

55. García-Nogueras I, Aranda-Reneo I, Peña-Longobardo LM, Oliva-Moreno J, Abizanda P. Use of Health Resources and Healthcare Costs associated with Frailty: The FRADRA Study. J Nutr Health Aging. 2017; 21: 207–214. https://doi.org/10.1007/s12603-016-0727-9 PMID: 28112778

56. Goldstein J, McVey J, Ackroyd-Stolarz S. The Role of Emergency Medical Services in Geriatrics: Bridging the Gap between Primary and Acute Care. CJEM. 2016; 18: 54–61. https://doi.org/10.1017/cem.2015.73 PMID: 26282932

57. Hendry A, Carriazo AM, Vanhecke E, Rodríguez-Laso A. Integrated Care: A Collaborative ADVANTAGE for Frailty. Int J Integr Care. 18. https://doi.org/10.5334/ijic.4156 PMID: 30127685
Meta-analysis of frailty interventions for older adults

58. Ni Shé É, Keogan F, McAuliffe E, O’Shea D, McCarthy M, McNamara R, et al. Undertaking a Collaborative Rapid Realist Review to Investigate What Works in the Successful Implementation of a Frail Older Person’s Pathway. Int J Environ Res Public Health. 2018; 15. https:// doi.org/10.3390/ijerph15020199 PMID: 29370094

59. Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty index. BMC Geriatr. 2008; 8: 24. https:// doi.org/10.1186/1471-2318-8-24 PMID: 18826625

60. Jang I- Y, Jung H-W, Park H, Lee CK, Yu SS, Lee YS, et al. A multicomponent frailty intervention for socioeconomically vulnerable older adults: a designed-delay study. Clin Interv Aging. 2018; 13: 1799–1814. https:// doi.org/10.2147/CIA.S177018 PMID: 30275687

61. Gené Huguet L, Navarro González M, Kostov B, Ortega Carmona M, Carpallo Romera-Liebana L, Orfila F, Segura JM, Real J, Fabra ML, Möller M, et al. Effects of a Primary Care-Based Multifactorial Intervention on Physical and Cognitive Function in Frail, Elderly Individuals: A Randomized Controlled Trial. J Gerontol A Biol Sci Med Sci. 2018; 73: 1688–1674. https:// doi.org/10.1093/gerona/glx259 PMID: 29346524

62. van Lieshout MRJ, Bleijenberg N, Schuurmans MJ, de Wit NJ. The Effectiveness of a PRoactive Multicomponent Intervention Program on Disability in Independently Living Older People: A Randomized Controlled Trial. J Nutr Health Aging. 2018; 22: 1051–1059. https:// doi.org/10.1007/s12603-018-1101-x PMID: 30379302

63. Fairhall N, Sherrington C, Kurie SE, Lord SR, Lockwood K, Cameron ID. Effect of a multifactorial interdisciplinary intervention on mobility-related disability in frail older people: randomised controlled trial. BMC Med. 2012; 10: 120–120. https:// doi.org/10.1186/1741-7015-10-120 PMID: 23067364

64. Valenzuela PL, Morales JS, Pareja-Galeano H, Izquierdo M, Emanuele E, de la Villa P, et al. Physical strategies to prevent disuse-induced functional decline in the elderly. Ageing Res Rev. 2018; 47: 80–88. https://doi.org/10.1016/j.arr.2018.07.003 PMID: 30031068

65. Rodriguez-Mañas L, Fried LP. Frailty in the clinical scenario. The Lancet. 2015; 385: e7–e9. https:// doi.org/10.1016/S0140-6736(14)61595-6

66. Serra-Prat M, Sist X, Domenich R, Jurado L, Saiz A, Roces A, et al. Effectiveness of an intervention to prevent frailty in pre-frail community-dwelling older people consulting in primary care: a randomised controlled trial. Age Ageing. 2017; 46: 401–407. https:// doi.org/10.1093/ageing/afw242 PMID: 28064172

67. Bray NW, Smart RR, Jakobi JM, Jones GR. Exercise prescription to reverse frailty. Appl Physiol Nutr Metab. 2016; 41: 1112–1116. https:// doi.org/10.1139/apnm-2016-0226 PMID: 27649859

68. Gahbauer EA, Gill TM, Rockwood K. Multifactorial Intervention Program on Disability in Independently Living Older People. J Nutr Health Aging. 2018; 22: 1051–1059. https:// doi.org/10.1007/s12603-018-1101-x PMID: 30031068

69. Paterson DH, Jones GR, Rice CL. Ageing and physical activity: evidence to develop exercise recommendations for older adults. Can J Public Health Rev Can Sante Publique. 2007; 98 Suppl 2: S69–108.

70. Theou O, Stathokostas L, Roland KP, Jakobi JM, Patterson C, Vandervoort AA, et al. The effectiveness of exercise interventions for the management of frailty: a systematic review. J Aging Res. 2011; 2011: 569194. https:// doi.org/10.4061/2011/569194 PMID: 21584244

71. Cadore EL, Rodríguez-Mañas L, Sinclair A, Izquierdo M. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: a systematic review. Rejuvenation Res. 2015; 18: 105–114. https:// doi.org/10.1089/rej.2012.1397 PMID: 23327448

72. Dedyne L, Deschodt M, Verschueren S, Tournoy J, Gielen E. Effects of multi-domain interventions in (pre)frail elderly on frailty, functional, and cognitive status: a systematic review. Clin Interv Aging. 2017; 12: 873–896. https:// doi.org/10.2147/CIA.S130794 PMID: 28579766

73. Seino S, Nishi M, Murayama H, Narita M, Yokoyama Y, Nofuji Y, et al. Effects of a multifactorial intervention comprising resistance exercise, nutritional and psychosocial programs on frailty and functional health in community-dwelling older adults: A randomized, controlled, cross-over trial. Geriatr Gerontol Int. 2017; 17: 2034–2045. https:// doi.org/10.1111/ggi.13016 PMID: 28393440

74. Li C, Chen C, Wang W, Wu S. The effectiveness of a comprehensive geriatric assessment intervention program for frailty in community-dwelling older people: a randomized, controlled trial. Arch Gerontol Geriatr. 2010; 50: S30–42. https://doi.org/10.1016/S0167-4943(10)70011-X PMID: 20171455

75. Mazya AL, Garvin P, Ekdahl AW. Outpatient comprehensive geriatric assessment: effects on frailty and mortality in old people with multimorbidity and high health care utilization. Aging Clin Exp Res. 2018; https:// doi.org/10.1007/s40520-018-1004-z PMID: 30039453
77. Ferriter M, Huband N. Does the non-randomized controlled study have a place in the systematic review? A pilot study. Crim Behav Ment Health CBMH. 2005; 15: 111–120. https://doi.org/10.1002/cbm.43 PMID: 16470505

78. de Souto Barreto P, Rolland Y, Maltais M, Vellas B, MAPT Study Group. Associations of Multidomain Lifestyle Intervention with Frailty: Secondary Analysis of a Randomized Controlled Trial. Am J Med. 2018; 131: 1382.e7–1382.e13. https://doi.org/10.1016/j.amjmed.2018.06.002 PMID: 29969614

79. Limb ES, Ahmad S, Cook DG, Kerry SM, Ekelund U, Whincup PH, et al. Measuring change in trials of physical activity interventions: a comparison of self-report questionnaire and accelerometry within the PACE-UP trial. Int J Behav Nutr Phys Act. 2019; 16: 10. https://doi.org/10.1186/s12966-018-0762-5 PMID: 30670036
PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2-3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	Protocol not registered
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5-6
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6-7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6-7
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7-8
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6-7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	6-7
PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	14-15, 18
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	No additional analyses done

RESULTS

Study selection

| Study selection | 17 | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram. | 8, Fig 1 |

Study characteristics

| Study characteristics | 18 | For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations. | Supporting material S2 Table |

Risk of bias within studies

| Risk of bias within studies | 19 | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12). | 8, Fig 2 |

Results of individual studies

| Results of individual studies | 20 | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot. | 9-12 |

Synthesis of results

| Synthesis of results | 21 | Present results of each meta-analysis done, including confidence intervals and measures of consistency. | 15-16, 18 |

Additional analysis

| Additional analysis | 22 | Present results of any assessment of risk of bias across studies (see Item 15). | No additional analyses done |

Risk of bias across studies

| Risk of bias across studies | 23 | Present results of any assessment of risk of bias across studies (see Item 15). | No additional analyses done |

Additional analysis

| Additional analysis | 24 | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]). | No additional analyses done |

DISCUSSION

Summary of evidence

| Summary of evidence | 24 | Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers). | 12-18 |

Limitations

| Limitations | 25 | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias). | 18-19 |

Conclusions

| Conclusions | 26 | Provide a general interpretation of the results in the context of other evidence, and implications for future research. | 19 |

FUNDING

| Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. | 20 |

*From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097
For more information, visit: www.prisma-statement.org.*
Study	Methods (study design)	Participants	Interventions	Outcomes	Citation
Akihiro et al. 2018	Randomised clinical trial.	84 physically-frail older adults, mean age 83±4 yrs.	3 months low-intensity supervised exercise 3x per week including flexibility, balance, body handling, reaction, coordination, and strength (intervention, n= 23) and 3 months unsupervised home-based flexibility exercises (control, n= 24).	Timed up and go, gait speed, single leg balance, functional reach, measured at 3 months.	Akihiro B, Taia Y, Maeda K, Natsuume K, Sakakima H. Feasibility and effectiveness of home-based exercise programs on physical performance and health-related quality of life of the older people dwelling on an isolated, doctor-less island. Geriatr Gerontol Int. 2018;19(9):1313-1317. doi:10.1111/ggi.13459
Behm et al. 2016	Randomised controlled trial.	459 community-dwelling adults aged 80+	Multiprofessional senior group meeting (intervention, n= 171) or usual care (control, n= 114). (Other intervention not included in meta analysis: preventive home visits, n= 174).	Frailty status (expanded criteria based on Fried), measured at 1yr.	Behm L, Eklund K, Willemenon K, et al. Health Promotion Can Postpone Frailty: Results from the RCT Elderly Persons in the Risk Zone. Public Health Nurs Boston Mass. 2016;33(4):303-315. doi:10.1111/phn.12340
Binder et al. 2002	Randomised controlled trial.	119 adults with mild to moderate frailty, mean age 83±4 yrs.	6-month exercise training programme using flexibility, light resistance, and balance training, adding resistance after 3 months, and endurance training after a further 3 months (intervention, n= 69) or 9-month low-intensity home exercise programme (control, n= 50).	Physical performance test, leg strength, measured at 9 months.	Binder EF, Schechtman KB, Ehsani AA, et al. Effects of exercise training on frailty in community-dwelling older adults: results of a randomized, controlled trial. J Am Geriatr Soc. 2002;50(12):1921-1928.
Brown et al. 2000	Randomised controlled trial.	84 frail older adults, mean age 83±4 yrs.	3 months low intensity supervised exercise (intervention, n= 48) or 3 months home-based flexibility activities (control, n= 36).	Physical performance test, leg strength measured at 3 months.	Brown M, Sciarone DR, Ehsani AA, Binder EF, Hollisby JO, Kohrt WM. Low-intensity exercise as a modifier of physical frailty in older adults. Arch Phys Med Rehabil. 2000;91(7):965-969. doi:10.1053/apmr.2000.44425
Cesari et al. 2015	Randomised controlled trial.	424 community-dwelling older adults, mean age 76.8 yrs.	12 months physical activity including aerobic, strength, flexibility, and balance training (intervention, n= 213) or health education (control, n= 211).	Frailty (Fried), gait speed, grip strength, measured at 12 months.	Cesari M, Vellas B, Hsu F-C, et al. A physical activity intervention to treat the frailty syndrome in older persons: results from the LIFE-P study. J Gerontol A Biol Sci Med Sci. 2015;70(2):216-222. doi:10.1093/gerona/glu099
Chan et al. 2012	Randomised controlled trial with 2x2 factorial design.	117 older adults (age range 65-79yrs) who scored 3-6 on the Cardiovascular Health Study Phenotypic Classification of Frailty.	3 month exercise and nutrition education programme including walking, stretching, resistance, and balance training (intervention, n= 213) or health education (control, n= 211).	Single leg balance, measured at 3 months.	Chan D-C, Tsao H-K, Yang R-S, et al. A pilot randomized controlled trial to improve geriatric frailty. BMC Geriatr. 2012;12:58. doi:10.1186/1471-2318-12-58
Chan et al. 2017	Randomised controlled trial.	289 older adults (age range 65-79yrs) who scored 3-6 on the Cardiovascular Health Study Phenotypic Classification of Frailty.	High level care (intervention, n= 143): 6 months of problem solving therapy plus group exercise at a health facility incorporating walking, stretching, resistance, and balance training. Low level care (control, n= 146): same programme carried out unsupervised at home following one face to face educational session.	Timed up and go test, grip strength, single leg balance measured at 6 months.	Chan D-C, Tsao H-K, Chang C-B, et al. Integrated care for geriatric frailty and sarcopenia: a randomized control trial. J Cachexia Sarcopenia Musc. 2017;8(1):78-88. doi:10.1002/csm.12132
Chan et al. 2019	Randomised controlled trial.	70 pre-frail community-dwelling older adults aged between 65-85 years.	8-week exercise programme using elastic bands, 3 days per week for 45-60min. (intervention, n= 33), or usual daily activities (control, n= 33).	Frailty (Fried criteria), grip strength, gait speed, and physical activity measured at 4 and 8 weeks.	Chan R, Wu Q, Wang D, Li Z, Lu H, Lu G, Cui Y, Song L. Effects of elastic band exercise on the frailty states in pre-frail elderly people. Physiother Theory Pract. 2019 Feb 11:1-9. doi:10.1080/09593985.2018.1548673.
Clegg et al. 2014	Randomised controlled trial.	84 participants living at home and receiving case manager care, being housebound or attending day centres, mean age 79±5.2yrs.	12 week exercise programme including strengthening exercises to support everyday living activities delivered at three levels of difficulty according to participant status (intervention, n= 45) or usual care (control, n= 39).	Timed up and go test measured at 12 weeks.	Clegg A, Barber S, Young J, Riff S, Forster A. The Home-based Older People’s Exercise (HOPE) trial: a pilot randomised controlled trial of a home-based exercise intervention for older people with frailty. Age Ageing. 2014;43(5):687-695. doi:10.1093/ageing/afu033
Coelho-Júnior et al. 2019	Interventional controlled single-blind randomised study.	45 community-dwelling adults aged 50+ years.	26-week periodised / non-periodised resistance exercise training programme (intervention, n= 15 and 15, respectively) or activities as normal without taking part in other exercise programmes (control, n= 15).	Body composition, hand grip strength, leg strength, countermovement jump, timed up and go, gait speed, single-leg balance, cognition, falls, frailty (Kihon checklist).	Coelho-Júnior HJ, de Oliveira Gonçalves L, Sampayo RAC, Siew Sampayo PY, Cadore EL, Izquierdo M, Marzetti E, Uchida MC. Periodized and non-periodized resistance training programs on body composition and physical function of older women. Exp Gerontol. 2019 Jul 1;121:10-18. doi:10.1016/j.exger.2019.03.001. Epub 2019 Mar 9. PubMed PMID: 30862526
Daniel 2012
Pilot study with control group.
23 pre-frail older adults, mean age 77.7±5.3yrs.
15 weeks supervised small-group exercise sessions using a motion-controlled video game system whilst wearing a weighted vest (intervention, n= 8) or usual physical activities (control, n= 7). (Other intervention group took part in seated exercise classes (n=8), but not included in meta-analysis.)
Timed up and go test, chair stand measured at 15 weeks.
Daniel R, Wi-hab for pre-frail older adults. Rehabil Nurs Off J Assoc Rehabil Nurses. 2012;37(4):195-201. doi:10.1023/j.25

Fairhall et al. 2012
Randomised controlled trial.
241 frail community-dwelling older adults, mean age 83.3±4.9yrs.
12-month programme with supportive care and exercise targeting mobility (intervention, n=120) or usual care (control, n= 121).
Gait speed measured at 12 months.
Fairhall N, Sherrington C, Kurton SE, Lord SR, Lockwood K, Cameron ID. Effect of a multifactorial interdisciplinary intervention on mobility related disability in frail older people: randomised controlled trial. BMJ Med. 2012;1(1):120-120. doi:10.1186/1741-7015-120.

Hiddreth et al. 2013
Randomised placebo-controlled trial.
143 community-dwelling older adult men, mean age 66.1±4.8yrs with low-normal baseline total testosterone levels.
2 doses transdermal testosterone gel plus resistance training intervention, n= 49) or placebo plus resistance training (control, n= 22) for 12 months. (Placebo with no training, n= 29 and testosterone with no training, n= 47 not included in analysis.)
Leg strength, grip strength measured at 12 months.
Hiddreth KL, Barry DW, Moreau KL, et al. Effects of testosterone and progressive resistance exercise in healthy, highly functioning older men with low-normal testosterone levels. J Clin Endocrinol Metab. 2013;98(6):1891-1900. doi:10.1210/jc.2013-2227

Jacobsen et al. 2012
Randomised controlled trial.
206 older adult women aged over 70yrs.
24 months hormone and MFGM, Verhaar HJJ, Olde Rikkert MGM, Raloxifene and testosterone in elderly women: a randomized, double-blind, double-dummy, placebo-controlled trial. J Am Med Dir Assoc. 2012;13(1):89.e1-7. doi:10.1016/j.jamda.2011.05.005

Kim and Lee 2013
Randomised controlled trial.
87 frail older adults, mean age 78.9±1.5 (intervention group), 78.4±1.6 (control group).
12 weeks nutritional supplementation with commercial liquid formula (intervention, n= 43) or no supplementation (control, n= 44).
Short physical performance battery, timed up and go test, gait speed, grip strength measured at 12 weeks.
Kim CO, Lee KR. Preventive effect of protein-energy supplementation on the functional decline of frail older adults with low socioeconomic status: a community-based randomized controlled study. J Gerontol A Biol Sci Med Sci. 2013;68(3):309-316.

Kim et al. 2015
Randomised double-blind placebo controlled follow-up trial.
131 frail older adult women aged over 75yrs.
3 months moderate intensity physical exercise including strengthening resistance exercise, balance, and gait training and/or milk fat globule membrane (MFGM) supplementation on body composition, physical function, and hematological parameters in community-dwelling frail Japanese women: a randomized double blind, placebo-controlled, follow-up trial. PLoS One. 2015;10(2):e0119256. doi:10.1371/journal.pone.0119256

Kwon et al. 2015
Randomised controlled trial.
89 pre-frail older adult women aged 70+yrs.
12 weeks exercise including resistance strengthening and balance components plus nutrition education (exercise plus nutrition education intervention, n= 20), exercise alone (exercise only intervention, n= 28), or general health education control, n= 31).
Gait speed, grip strength, single leg balance measured at 3 months.
Kwon J, Yoshida Y, Yoshida H, Kim H, Suzuki T, Lee Y. Effects of a combined physical training and nutrition intervention on physical performance and health-related quality of life in frail older women living in the community; a randomized controlled trial. J Am Med Dir Assoc. 2015;16(3):283.e1-8. doi:10.1016/j.jamda.2014.12.005

Li et al. 2010
Randomised controlled trial.
310 pre-frail or frail older adults, mean age 78.8±1.8yrs.
Comprehensive geriatric assessment and subsequent care for 6 months (intervention, n= 150) or no intervention (control, n= 158).
Frailty (Fried) measured at 6 months.
Li C-L, Chen C, Wang W, Wu S. The effectiveness of a comprehensive geriatric assessment intervention program for frailty in community-dwelling older people: a randomized, controlled trial. Arch Gerontol Geriatr. 2015;59:335-42. doi:10.1016/j.jger.2014.09.037.

Lu et al. 2017
Quasi-experimental pilot study.
85 frail older people with fatigue, mean age 79.3±7.7yrs.
16 weeks exercise including balance and resistance exercises plus health discussion talks intervention, n= 30) or health discussion talks only control, n= 21. (Other intervention: combined exercise plus change behaviour, not included in meta-analysis, n= 34.)
Timed up and go, gait speed, grip strength, measured at 16 weeks.
Lu J-YW, Lai CK, Sui PM, Kwong SC, Tsai MM. An individualized exercise programme with and without behavioural change enhancement strategies for managing fatigue among frail older people: a quasi-experimental pilot study. Clin Rehabil. 2017;31(4):521-531. doi:10.1177/0269215516664926

Luger et al. 2018
Randomised controlled trial.
80 pre-and frail older adults, mean age 82.8±1.8yrs.
12 weeks strengthening exercises plus nutritional education discussions intervention, n=39) or social support (control, n= 41).
Frailty (SHARE-FI), measured at 12 weeks.
Luger E, Dorner TE, Hasler S, Kappen A, Lackinger C, Schindler K. Effects of a Home-Based and Volunteer-Administered Physical Training, Nutritional, and Social Support Program on Malnutrition and Frailty in Older Persons: A Randomized Controlled Trial. J Am Med Dir Assoc. 2016;17(7):761.e1-767.e16. doi:10.1016/j.jamda.2016.04.018

Mazya et al. 2018
Randomised controlled trial.
382 community-dwelling older adults, mean age 82.8yrs.
Comprehensive geriatric assessment and subsequent care intervention, n= 208) or usual care (control, n= 174).
Frailty (Fried), measured at 24 months.
Mazya AL, Garvin P, Ekdahl AWS. Outpatient comprehensive geriatric assessment: effects on frailty and mortality in old people with multimorbidity and high health care utilization. Aging Clin Exp Res. July 2018. doi:10.1007/s40520-018-1004-2
Mulier et al. 2006

Double-blind randomised controlled trial.

100 independently-living men aged 70+ yrs with low scores on strength tests.

38 weeks atamestane, DHEA, or atamestane + DHEA supplementation (intervention, n = 79, three separate arms combined into one comparison group) or placebo (control, n = 21).

Leg strength, grip strength, measured at 36 weeks.

Mulier M, Bold VD, WA, et al. Effects of Dehydroepiandrosterone and Atamestane Supplementation on Frailty in Elderly Men. J Clin Endocrinol Metab. 2006;91(10):3988-3991. doi:10.1210/jc.2005-2053.17

Nagai et al. 2018

Randomised controlled trial.

41 frail community-dwelling older adults, mean age 81.5 yrs.

6 months physical activity with resistance training (intervention, n = 21) or resistance training only (control, n = 20).

Frailty (Fried), timed up and go test, leg strength, gait speed, grip strength, measured at 6 months.

Nagai K, Miyamato T, Okumae A, et al Physical activity combined with resistance training reduces symptoms of frailty in older adults: A randomized controlled trial. Arch Gerontol Geriatr. 2018;76:41-47. doi:10.1016/j.archger.2018.02.005

Ng et al. 2015

Randomised controlled trial.

246 community-dwelling, pre-frail or frail older adults, mean age 70.0 yrs.

6 months moderate, gradually-increasing intensity exercise tailored to individual ability incorporating resistance and balance exercises focusing on functional ability and/or nutritional supplementation (exercise and nutritional supplementation intervention, n = 44) or exercise alone (exercise only intervention, n = 48) or nutritional supplementation alone (nutrition intervention, n = 49) or standard care with no supplementation (control, n = 55).

(Cognitive training, n = 50, not included in meta-analysis.)

Ng TP, Feng L, Hayajneh MS, et al. Nutritional, Physical, Cognitive, and Combination Interventions and Frailty Reversal Among Older Adults: A Randomized Controlled Trial. Am J Med. 2015;128(11):1225-1236.e1. doi:10.1016/j.amjmed.2015.05.017

Oh et al. 2017

Randomised controlled study.

80 older adult women aged 69 yrs.

18 weeks resistance exercise using resistance bands with increasing intensity plus health education (intervention, n = 40) or standard care plus low intensity stretching (control, n = 40).

Short physical performance battery, leg strength, gait speed, chair stand, measured at 18 weeks.

Oh S-L, Kim H-J, Woo S, et al. Effects of an integrated health education and elastic band resistance training program on physical function and muscle strength in community-dwelling elderly women: Healthy Aging and Happy Aging II study. Geriatr Gerontol Int. 2017;17(5):825-833. doi:10.1111/ggi.12795

Yamada M, Arai H, Yoshimura K, et al. Resistance Training Improved Skeletal Muscle Mass in Community-Dwelling Frail Elderly: A Randomized Clinical Trial. J Am Med Dir Assoc.. 2017;18(7):426-433. doi:10.1016/j.jamda.2016.01.019

Wolf SL, Barnhart H, Karter AG, et al. Multicomponent Exercise Intervention that Reverses Frailty and Improves Cognition, Emotion, and Social Networking in the Community-Dwelling Frail Elderly: A Randomized Clinical Trial. J Am Med Dir Assoc.. 2016;17(5):420-426. doi:10.1016/j.jamda.2016.03.019

Tarazona-Santabalbina et al. 2017

Interventional, controlled, simple randomised study.

100 community-dwelling frail older adults aged 70+ yrs.

24 weeks multicomponent exercise programme including proprioception, aerobic, strength, and stretching exercises (intervention, n = 51) or no exercise programme (control, n = 49).

Frailty (Fried), measured at 24 weeks.

Tarazona-Santabalbina FJ, Gómez Cabrera MC, Pérez-Ros P, et al. A Multicomponent Exercise Intervention that Reverses Frailty and Improves Cognition, Emotion, and Social Networking in the Community-Dwelling Frail Elderly: A Randomized Clinical Trial. J Am Med Dir Assoc.. 2017;18(5):420-426. doi:10.1016/j.jamda.2016.03.019

Tanaka M, Arai H, Yoshimura K, et al. Resistance Training Improved Skeletal Muscle Mass in Community-Dwelling Frail Elderly: A Randomized Clinical Trial. J Am Med Dir Assoc.. 2017;18(5):420-426. doi:10.1016/j.jamda.2016.03.019

Yoon et al. 2018

Randomised controlled trial.

95 community-dwelling older adults with cognitive frailty, mean age 73.9±4.3 yrs.

16 weeks high-speed resistance training using resistance bands (intervention, n = 32) or usual activities plus stretching (stretching, n = 33).

Short physical performance battery, timed up and go test, leg strength, gait speed, grip strength, measured at 16 weeks.

Yoon DH, Lee J-Y, Sohn W. Effects of Resistance Exercise Training on Cognitive Function and Physical Performance in Cognitive Frailty: A Randomized Controlled Trial. J Nutr Health Aging. 2018;22(8):944-951. doi:10.1007/s12603-018-1090-9
Intervention type	Study
Exercise and nutrition supplements	Kim et al. 2015 (Exercise + nutrition)
	Ng et al. 2015 (Exercise + nutrition)
Exercise and nutrition education	Chan et al. 2017
	Chan et al. 2012
	Kwon et al. 2015 (Exercise + nutr. ed)
	Luger et al. 2016
	Seino et al. 2017
	Serra-Prat et al. 2017
	Tarazona-Santabalbina et al. 2016
Exercise only	Akihiro et al. 2018
	Binder et al. 2002
	Brown et al. 2000
	Cesari et al. 2015
	Chen et al. 2019
	Clegg et al. 2014
	Coelho Junior et al. 2019
	Daniel 2012
	Fairhall et al. 2012
	Kim et al. 2015 (Exercise only)
	Kwon et al. 2015
	Liu et al. 2017
	Nagai et al. 2018
	Ng et al. 2015 (Exercise only)
	Oh et al. 2017
	Wolf et al. 1996
	Yoon et al. 2018
Nutrition only	Kim and Lee 2013
	Kim et al. 2015 (Nutrition only)
	Ng et al. 2015 (Nutrition only)
	Yamada et al. 2012
Comprehensive geriatric assessment	Behm et al. 2016
	Li et al. 2010
	Mazya et al. 2018
Hormone supplementation	Hildreth
-------------------------	---------
	Jacobsen
	Muller

*ND= No primary data available
Fried criteria	SPPB or physical performance test	Timed up and go test	Knee extension torque / knee strength	Gait speed	Grip strength	One leg stance	Functional reach	Chair stand
1	1	1	1	1	1	1	1	ND
ND	1	1	1	1	1	1	1	ND
ND	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
ND	1	1	1	1	1	1	1	ND
ND	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
ND	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
ND	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
ND	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
ND	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
ND	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
ND	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
ND	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
ND	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
ND	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
ND	1	1	1	1	1	1	1	ND
1	1	1	1	1	1	1	1	ND
A

Study or Subgroup	Experimental	Control	Std. Mean Difference					
	Mean	SD	Total	Mean	SD	Total		
Nutrition supplements	21.4	12.2	41	26.4	25.3	43	-0.25 [-0.68, 0.18]	
Kim and Lee 2013	10.53	2.77	30	10	4.32	32	0.14 [-0.36, 0.64]	
Yamada et al. 2012	14.8	7.9	35	14.5	6.7	35	0.04 [-0.43, 0.51]	
Subtotal (95% CI)	106	110	100.0%	-0.04 [-0.31, 0.23]				

Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 1.53$, df = 2 ($P = 0.47$); $I^2 = 0$
Test for overall effect: $Z = 0.30$ ($P = 0.76$)

B

Study or Subgroup	Experimental	Control	Mean Difference					
	Mean	SD	Total	Mean	SD	Total		
Exercise plus nutrition education [final measurements]	5.74	1.38	38	5.94	1.43	38	-0.20 [-0.83, 0.43]	
Seino et al. 2017	8	2.5	61	8	2.1	72	0.00 [-0.79, 0.79]	
Subtotal (95% CI)	99	110	70.8%	-0.12 [-0.62, 0.37]				

Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 0.15$, df = 1 ($P = 0.70$); $I^2 = 0$
Test for overall effect: $Z = 0.49$ ($P = 0.63$)

Study or Subgroup	Experimental	Control	Mean Difference					
	Mean	SD	Total	Mean	SD	Total		
Exercise plus nutrition education [change scores]	-1.95	3.29	143	-0.79	4.19	146	-1.16 [-2.03, -0.29]	
Subtotal (95% CI)	143	146	29.2%	-1.16 [-2.03, -0.29]				

Heterogeneity: Not applicable
Test for overall effect: $Z = 2.62$ ($P = 0.009$)

Total (95% CI): 242 | 256 | 100.0% | -0.42 [-1.06, 0.23] |

Heterogeneity: $\tau^2 = 0.17$; $\chi^2 = 4.30$, df = 2 ($P = 0.12$); $I^2 = 53$
Test for overall effect: $Z = 1.27$ ($P = 0.20$)
