Advance of the Method estimating the Benefit of Storm Water Usage in Urban Area

Y Q Long1, Y W Gai2, X K Guan3, X Y Hu1, T T Cui1,3

1Nanjing Hydraulic Research Institute, Nanjing 210029, China
2Water Resources Service Center of Jiangsu Province, Nanjing 210029, China
3Hohai University, Nanjing 210098, China
gaiyongwei2008@126.com

Abstract. The storm water causes the flood in urban area, and it could be treated as a special water resource in storm water management which could be divided into three development phases. The urban storm water management systems are analysed in this paper. The methods estimating the benefit of storm water management including benefit identification, index system and estimate method are introduced.

1. Introduction

The urban flood caused by storm water has been widely recognized as one of the main scientific issues that need to be addressed with priority. Since 2010, several impressive urban floods occurred in many cities in China, such as Beijing, Shanghai, Nanjing, Guangzhou and Jinan. These floods brought serious impacts on these cities. However, water shortage becomes a universal problem during the urbanization progress in China. About 50 \% of the China’s 600 cities are experiencing water shortage \cite{1}.

Urban storm water usage is a multi-objects synthesized technology. Both engineering and non-engineering utilities could be employed to manage the storm water, to relief the urban flood, even to improve the river environment. The benefit estimation of urban storm water management is the foundation of the decision making for the developing scheme of cities.

In this paper, we analyze the development phases of urban storm water management, summarize the methods estimating the benefit of storm water management including benefit identification, index system and estimate method are introduced. This work might be useful for city programming, and LID development in urban area.

2. Storm water usage

The storm water which might cause urban flood could be taken as a special water resource by management or engineering projects collecting, storing, exploiting storm water to increase the water resource or improve living environment \cite{2-5}. Recently, many countries conduct the storm water management, and the successful cases could be the valuable experience for storm water usage.

2.1. Development of the storm water usage

The development of storm water usage could be divided into three stages. In the 1960s and 1970s, storage tanks were used to save storm water for irrigating greenland or watering the road surface \cite{6}.
Storm water storage and detention are forced to be implemented in Colorado, Florida, and Pennsylvania[7]. In the 1980s and 1990s, many research and practice were implemented in Japan, Germany, UK and USA[8-12]. Since 1990s, storm water management has considered ecology, water quality, and flood detention.

In 1980s and 1990s, several cities in China built some rain collecting projects to resist the arid events[13]. At the beginning of 21st century, many metropolises in China began to implement the LID conception[14, 15]. Since 2010, the storm water management or sponge city were promoted by the government[16-18].

2.2. Development of the storm water management

The storm water management does not only concern the rainwater drainage, it also involves in the city planning, building and landscape design. Many laws and guidelines have been enacted[19-21], both theory, technology, law and manage system were combined to exploit the resource attribute of the storm water[22]. Some typical management systems are shown in table 1.

Table 1. Some typical storm water management system

Country/Year	Management system	Summary
USA	Best Management Practices[23]	Best management practice is a term used to describe a type of water pollution control. Historically the term has referred to auxiliary pollution controls in the fields of industrial wastewater control and municipal sewage control, while in storm water management (both urban and rural) and wetland management.
USA	Low Impact Development[22]	Low-impact development (LID) is a term used to describe a land planning and engineering design approach to manage storm water runoff as part of green infrastructure. It emphasizes conservation and use of on-site natural features to protect water quality. It implements engineered small-scale hydrologic controls to replicate the pre-development hydrologic regime of watersheds through infiltrating, filtering, storing, evaporating, and detaining runoff close to its source.
USA	Green Infrastructures[24]	Green Infrastructure is a network providing the “ingredients” for solving urban and climatic challenges by building with nature. The main components of this approach include storm water management, climate adaptation, less heat stress, more biodiversity, food production, better air quality, sustainable energy production, clean water and healthy soils. It also serves to provide an ecological framework for social, economic and environmental health of the surroundings.
UK	Sustainable Urban Drainage System[25]	A sustainable urban drainage system is intended to reduce the potential impacts which a given development will have on surface water drainage discharges (run-off rates). A surface water drainage strategy is a report which seeks to meet the legal requirement through an investigation of how surface water will affect the site and the areas surrounding it and providing a suitable potential drainage strategy to mitigate the effects of the development.
Australia	Water Sensitive Urban Design[26]	Water-sensitive urban design is a land planning and engineering design approach which integrates the urban water cycle, including storm water, groundwater and
wastewater management and water supply, into urban design to minimise environmental degradation and improve aesthetic and recreational appeal.

3. Benefit of the storm water usage

Benefit estimation is conducted to evaluate the urban storm water usage. Benefit estimation involves benefit identification, index selection and quantification, and index system.

3.1. Identifying the benefit of urban storm water usage

Feng and Xu (2009)\cite{27} propose a benefit estimation method considering both the storm water function and the demand of storm water resource. The economic, ecological, and social benefit are estimated by combining the function attributes and resource attributes. Li (2010)\cite{28} also identifies the economic, ecological and social benefit, and analyses the connotation. Zhang (2012)\cite{29} estimates the benefit by combining the function attributes and the human demand. Feng et al (2013)\cite{30} conclude the estimate indexes based on the way of urban storm water usage. Five indexes, substitution for city water, reducing drainage fee, reducing backfill fee for Greenland, water for production, and water environment, are taken as the economic indexes. The water quality, groundwater recharge, relieving land subsidence, and supporting the ecosystem are the ecological indexes. The water efficiency, relieving water shortage, water saving, and promoting eco-friendly society are the social indexes.

3.2. Quantitative and qualitative analysis

Usually, the economic, ecological and social benefit are the common classification for benefit identification. The economic benefit could be divided into direct and indirect benefit. And most of researches give quantitative analysis to the economic benefit. Ecological benefit could be analyzed quantitatively or qualitatively. Usually, the social benefit is analyzed qualitatively.

Zhang et al (2007)\cite{31} give quantitative analysis to the ecological benefit and qualitative analysis to the social benefit. Gu (2007)\cite{32} estimate the economic, ecological and social benefit with input-output analysis. Zuo et al (2009)\cite{33} divide the benefit of urban storm water usage into direct use value, indirect use value, option value, and existence value. They analyze the benefit of city water, groundwater recharge, water saving, contamination reducing, urban drainage, flood controlling, land subsidence controlling. A cost-effectiveness model is constructed and applied on the 267 storm water usage projects in Beijing. Li et al (2010)\cite{34} use the multi-level semi-constructive fuzzy optimization model to estimate the benefit of storm water usage. Multiple objective optimization method with dual water quality supply is used to estimate the benefit of rain water usage\cite{35}. Ma et al (2013)\cite{36} analyze the full life cost and benefit of the LID, including the cost and running expense. Zhu et al (2014)\cite{37} estimate the storm water resource, and allocate them to livelihood, industry, agriculture, and ecosystem. They use water price, using emergy, and allocation coefficient to estimate the storm water benefit of the cities in the plain river network region. Cao and Zhou (2017)\cite{38} employ the benefit transfer method, restoration or replacement cost approach, shadow project approach, and prevention costs to estimate the cost and benefit of the LIDs. They also consider the benefit of contamination controlling, flood prevention and carbon emission reducing.

3.3. Estimating index and method

The benefit estimation could be divided into single benefit and comprehensive benefit. To evaluating these benefit, index system and estimating method are indispensable. Each single benefit might have the unique estimating method, the comprehensive benefit combines the single benefit. There is no uniform index system, and indexes are selected based on the characteristics of the estimated region. Both qualitative and quantitative indexes are involved. Many methods are used to estimate the
comprehensive benefit multi-attribute decision, operation methods, statistical method, system engineering, fuzzy mathematics, heuristic method, et al.

Sun (2007)[39] use analytic hierarchy process to estimate the urban storm water benefit. There are 12 indexes in this research. The economic indexes include water rent, water shortage, water saving, drainage, contamination, social indexes include employment opportunity, flood controlling, water supply self-sufficiency rate, technical benefit, population quality, ecological indexes include land subsidence controlling and water cycle. Xu and Li (2009)[40] analyse the urban storm water resource, evaluate the contribution for national economy. Guo and Lv (2009)[41] use 44 indexes to construct the economic and social benefit system. Kong et al (2009)[42] design an estimating model for environmental benefit, and appraise the environmental benefit with a estimating system consisted of ecological, economic, and social indexes selected by frequency statistic method. Huang et al (2012)[43] add adjusting temperature, reducing dust, increasing negative oxygen ion into ecological indexes, and estimate the storm water usage benefit in Beijing. Hu (2012)[44] analyse the environmental and carbon controlling benefit. Zhang (2012)[29] uses net present value, present value index, and earning yield to estimate benefit of urban storm water usage. Jiang et al (2014)[45] employs the vague set to estimate the landscape benefit of storm water. Yan (2017)[46] calculates the cost, operating benefit and payback period of rain collection.

The storm water usage projects bring the economic, ecological, and social benefit. Most of these researches divide the benefit in to the same types. However, different indexes should be selected for different storm water usage projects. Considering the different background of different cities, the estimating method should be selected carefully.

4. Conclusions
Recently, the storm water usage and management make a great progress. A lot of methods and theories are prompted to evaluate the storm water usage benefit. However, the problem is complex, all the methods cannot be suitable for all the projects and management cases. Further researches are needed in the future.

1) Most researches take the economic, ecological and social benefit as the common classification for benefit identification. The economic benefit consists of direct and indirect benefits. However, the benefit identification is a complex work which elaborate effort should be made in the further study.

2) Constructing the index system is the first step of estimating urban storm water usage benefit. Then the estimating methods are selected. The cost is an important factor for both these indexes and methods, and the indexes and methods should be selected carefully according to the characteristics of the estimated region.

3) Estimating the benefit of the urban storm water usage could be used to predict or evaluate the benefit of storm water usage projects and management schemes, and could be very helpful for management decision making.

Acknowledgments
This study is financially supported by the Technical Demonstration Project of Ministry of Water Resources (Grant No. SF-201706), the National Natural Science Foundation of China (Grant No. 51509157), the Commonwealth Science Research Project of Ministry of water resources, China (Grant No.201501014), the Jiangsu Water Science and Technology Project(Grant No. 2017038, 2017022), the National Non-profit Institute Basic Research Foundation funded special project (Grant No. Y516034, Y517007).

References
[1] The Ministry of Water Resources of the People’s Republic of China 2010 Comprehensive water resources planning in China
[2] Huang X W 2014 Study on international comparison of city’s rainfall & flood resources utilization Haihe Water Resources 5 1-4
[3] Guo Y C 2004 Comprehensive utilization of rain water resources in urban area South-to-North Water Transfer and Water Science & Technology 2 58-60
[4] Wang L 2009 Discussion on the utilization method of urban rain and flood resources Shanxi Water Resources 25 23+55
[5] Yan K, Fang G H, Huang X F, Luo Q, Wen X 2011 A Study on the pattern of utilization of rainfall flood resources and the nearly progress of this utilization Water Conservancy Science and Technology and Economy 17 58-60
[6] Cun L C, Liu Y K 2005 Take the rain back home: rainwater collection and utilization techniques and examples (Beijing: Tongxin Press)
[7] Zhang Y H 2005 Exploration on the tendency present situation and countermeasures of urban rainfall utilization South-to-North Water Transfer and Water Science & Technology 2 58-60
[8] REESE A J 2004 What’S your storm water paradigm Land and Water Magazine 34 27-29.
[9] PRINCE 1999 Low impact development: an integrated design approach (George’s county)
[10] Quan X F, Zhang K F, Li X Z 2006 Current situation and trend of urban rainwater utilization at home and abroad Energy and Environment 1 19-21
[11] OKADA N 2004 Urban diagnosis and integrated disaster risk management Journal of Natural Disaster Science 26 49-54.
[12] U.S. Environmental Protection Agency W D 1983 Results of the nationwide urban runoff program (Washington DC: U.S. Environmental Protection Agency Water Planning Division)
[13] Chen S S 2007 Study on the simulation and utilization of storm water in urban area (Nanjing: Hohai University)
[14] Ding N, Hu A B, Ren X X 2012 Application and prospect of low impact development model in Shenzhen Water & Wastewater Engineering 38 141-44
[15] Wang S X 2015 Research on storm water management system design in urban park (Beijing: Beijing University of Civil Engineering and Architecture)
[16] Wu D J, Zhan S Z, Li Y H, Xu M Z, Zheng J Y, Guo Y Y, Peng H Y 2016 New trends and practical research on the sponge cities with Chinese characteristics China Soft Science 1 79-97
[17] Ministry of Housing and Urban-Rural Development of the People’s Republic of China 2014 Technical guide for the construction of sponge city
[18] General Office of the State Council of the People’s Republic of China 2015 Guidance on promoting the construction of the sponge city
[19] Guo W X, Liu W Y, Wang H X 2015 Study and application of ecological management of urban rain and flood resources (China Water Power Press)
[20] Zhai X Y, Ye Y 2009 Development and prospect of urban rainwater utilization Journal of Water Resources &Water Technology 20 160-63
[21] Li G W, Suo N B, Han S D 2012 Make rational use of water resources and vigorously develop rain and flood resources. Modern Science 12 121
[22] Che W, Yan P, Li J Q, Zhao Y 2013 Localization research and extension of low impact development Construction Science and Technology 23 50-52
[23] Zhao J 2012 Sustainable storm water management in the background of urbanization Urban Planning International 2 114-19
[24] Huang L L, Zhu Q, Du X W, Liu Q B 2010 Green infrastructure — connecting landscape and community (China Architecture & Building Press)
[25] ELLIS J B, SHUTES R E, REVITT M D. 2003 Constructed Wet-lands and links with sustainable drainage systems (UK: Urban Pollution Research Centre Middlesex University)
[26] Che W, Zhao Y, Yan P 2013 Comprehensive management strategy of modern rainwater in eco city (The 10th China Urban Housing Conference Sustainable City Development and Social Housing Construction) (China Architecture & Building Press)
[27] Feng F, Xu S G 2009 A benefit identification method of coupling function and demand in rain and flood resources utilization HYDROLOGY 2 28-31
[28] Li M J 2010 The benefit assessment of urban rainwater utilization (Dalian: Dalian University of Technology)

[29] Zhang Y J 2012 Analysis of urban rainwater utilization project benefit assessment and incentive measures (Dalian: Dalian University of Technology)

[30] Feng F, Gu X W, He H M 2013 Research on utilization potential and benefit quantification of rainwater resources in Zhengzhou City Water Resources Protection 4 68-71

[31] Zhang S H, Chen J G, Ding Y Y 2007 Basic model and benefit analysis method of rainwater harvesting for utilization in urban areas Journal of Hydraulic Engineering 1 399-03

[32] Gu Z B 2007 Study on utilization and profitable analysis of north urban road rainwater resources (Handan: Hebei University of Engineering)

[33] Zuo J B, Liu C M, Zheng H X 2009 Cost-benefit analysis of urban rainwater harvesting: A case study of Beijing Resources Science 8 1295-02

[34] Li M J, Xu X Z, Xu S G, Zhao G H 2011 Benefit assessment of urban rainwater utilization Bulletin of Soil and Water Conservation 31 222-26

[35] Gao H C, Li Y X, Zhang K, Zhang X H, Kong Y H 2012 Multiple benefits assessment of the rainwater utilization system in Sino-Singapore Tianjin Eco-city by optimization method Water & Wastewater Engineering 38 17-21

[36] Ma H S, Xu T, Zhao L B, Liu Q Q 2013 Analysis on benefit and costs of low impact development in storm-water management Value Engineering 12 287-88

[37] Zhu L X, Huang X F, Jia X C 2014 Utilization mode and benefit analysis of rain and flood resources in Lianyungang City Water Conservancy Science and Technology and Economy 10 21-24

[38] Cao X L, Zhou Y K 2017 Low impact development design of Taizhou cigarette distribution center Value Engineering 11 75-77

[39] Sun J 2007 Study on Potential and benefit comprehensive evaluation of non-traditional water resources utilization in Beijing (Beijing: China Institute of Water Resources and Hydropower)

[40] Xu W P, Li K 2009 Economic value evaluation of utilization of urban rainwater resource Environmental Science & Technology 32 190-94

[41] Guo C L, Lv S B 2009 To study on the indexes system of economic and social benefits to storm water resources utilizing Value Engineering 28 13-16

[42] Kong G, Chen J G, Wang Q J, Zhang S H, Su D B 2009 Study on evaluation index system for environmental benefit of rainwater utilization Yellow River 31 67-68

[43] Huang J X, Wang F C, Ma D C, Wang Y Y, Wang L X 2012 Study on the evaluation of the benefit of rainwater resources in Beijing China Water Resources 51 62-64

[44] Hu Y L 2012 Analytical of study on the overall benefits of LID storm water system (Beijing: Beijing University of Civil Engineering and Architecture)

[45] Jiang D F, Qiu X, Yi X, 2014 Landscape approach and benefit analysis for urban rainwater utilization Resources Science 36 65-74

[46] Yan G M 2017 Analysis on the rain water collection and utilization benefit of the Technology-Window Project (Suzhou: Suzhou University of Science and Technology)