Transcriptional regulation*

Peter G. Okkema§, Laboratory of Molecular Biology, University of Illinois at Chicago, Chicago, IL 60607, USA

Michael Krause§, Laboratory of Molecular Biology/NIDDK, Bethesda, MD 20892-0510, USA

Table of Contents

1. Introduction .. 2
2. Tools to study transcriptional regulation .. 2
3. Locating cis-acting regulatory elements ... 4
4. Simple promoters .. 4
5. Complex promoters ... 5
 5.1. myo-2: activation of a terminal differentiation gene by the combined activities of organ- and cell type-specific regulatory elements .. 5
 5.2. hlh-1: activation of gene expression by lineage-preference regulatory elements. 6
 5.3. lin-26: activation of gene expression by tissue-specific regulatory elements. 7
6. Trans-acting factors .. 8
7. Spatial specificity ... 29
 7.1. Organ specificity: control of pharyngeal gene expression by a master regulator 29
 7.2. Tissue specificity: regulation of gut gene expression by a cascade of redundant GATA factors. ... 30
 7.3. Cell type specificity: regulation of A1Y neuronal expression by a single core motif 31
8. Future .. 31
9. Acknowledgements ... 31
10. References ... 31

Abstract

The regulation of transcription in C. elegans shares many similarities to transcription in other organisms. The details of how specific transcription factors bind to target promoters and act as either activators or repressors are still being examined in many cases, but an increasing number of factors and their binding sites are being characterized. This chapter reviews the general concepts that have emerged with regards to promoter function in C. elegans. Included are the methods that have been successfully employed as well as limitations encountered to date. Specific cis-acting promoter elements from myo-2, hlh-1 and lin-26

*Edited by Thomas Blumenthal. Last revised April 12, 2005. Published December 23, 2005. This chapter should be cited as: Okkema, P. G. and Krause, M. Transcriptional regulation (December 23, 2005), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.45.1, http://www.wormbook.org.

Copyright: © 2005 Peter G. Okkema and Michael Krause, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

§To whom correspondence should be addressed. E-mail: okkema@uic.edu or mwkrause@helix.nih.gov
are discussed as examples of complex promoters regulated by multiple sequence elements. In addition, examples of organ-, tissue-, and cell type-specific mechanisms for generating spatial specificity in gene expression are discussed.

1. Introduction

Regulation of Polymerase II (Pol II) transcription in C. elegans can be described as typical for eukaryotes. Pol II appears to act in concert with TATA Binding Protein (TBP) and TBP-Associated Factors (TAFs) at the promoter of protein coding genes (Dantonel et al., 2000; Kaltenbach et al., 2000; Lichtsteiner and Tjian, 1993; Walker et al., 2004). Active Pol II is phosphorylated on the C-terminal domain (CTD) at serine 2 and 5 like other eukaryotes (Seydoux and Dunn, 1997; Wallenfang and Seydoux, 2002; Zhang et al., 2003). The functions of these proteins at the core of transcription are beginning to be defined and are reviewed in Transcription mechanisms. However, there are many things about transcription in C. elegans that we do not yet know for sure. For example, putative TATA and CAT boxes upstream of the coding region are often described, but this is largely done subjectively without any firm experimental evidence for the function of these elements. We also have not fully explored the role of histone modifications and chromatin organization in somatic cell transcription. Progress on these fronts has primarily been made in the areas of dosage compensation (see X-chromosome dosage compensation) and germline chromatin organization (see Germline chromatin). For these cases, the evolutionary conservation suggests that somatic cell transcription will similarly be influenced by typical eucaryotic mechanisms of chromatin organization. In many ways then, our understanding of transcription in C. elegans is still in its infancy, reflecting the fact that C. elegans, as a model biological system, is still a growing field that has primarily been exploited for its genetics.

The purpose of this chapter is to provide an overview of transcriptional regulation in C. elegans. It is geared towards an audience that is naive in the ways of C. elegans gene regulation, but, it also includes information that should be helpful even to the seasoned veteran. The tools for studying transcription in C. elegans will be described in an effort to illustrate successful approaches and highlight techniques that, while useful in other systems, are challenging in the nematode. A review of the general trends in regulatory elements is followed by specific examples of spatial and temporal regulatory strategies. The hope is that this information will serve as both a useful review and an entry point into literature appropriate for specific applications.

2. Tools to study transcriptional regulation

Reporter genes are the most commonly used method to study transcriptional regulation in C. elegans. It is straightforward to generate transgenic lines (see Transformation and microinjection), and, as C. elegans is transparent throughout its life, it is easy to visualize reporter gene expression in all cells. Early studies of gene expression relied on lacZ reporter genes and were aided by the development of a set of vectors by the Fire lab (Fire et al., 1990). These lacZ reporters were very useful for determining cis-acting transcriptional control elements (Fire and Waterston, 1989; MacMorris et al., 1994; Okkema et al., 1993) and lacZ continues to be a robust marker that can be pushed to detect even low levels of expression (Wilkinson and Greenwald, 1995).

More recently, Green Fluorescent Protein (GFP), or one of its variants, serves as the common reporter. A GFP coding cassette can be inserted in different locations within a large genomic clone (tens of kilobases) to generate transcriptional and/or translational fusions. These constructs provide the greatest chance of capturing required cis-acting regulatory elements. However, it is more common to make the assumption that genomic sequences 5′ to the coding region represent the core promoter. This region, usually a few kilobases in length, can be PCR amplified and easily cloned into the reporter gene backbone of choice. Alternatively, the Promoterome Project can serve as a source for many promoter regions and is useful if the reporter gene cloning strategy is Gateway (Invitrogen) compatible (Dupuy et al., 2004). These constructs are commercially available through Open Biosytems.

There are several considerations to take into account when making reporter genes. One is the distinction between transcriptional and translational reporters; often one would like to have both. For transcriptional reporters, expression can be engineered to highlight the cytoplasm, nucleus or other cellular compartments in the expressing cell. Nuclear localized reporters are useful for embryonic cell identification whereas cytoplasmic reporters are often more useful for larval cells, particularly in neurons where they highlight the axonal and dendritic tracks. The Chalfie lab is developing a two-part fluorescent expression system that has the potential to simplify cell type identification (Zhang et al., 2003). Translational reporter genes can provide information on the subcellular localization of the endogenous gene product. In this case, it is advisable to use the fusion protein to rescue a mutant phenotype, thus demonstrating that some or all aspects of the expression pattern and subcellular localization are biologically relevant.
Once a pattern of expression is determined, promoter analyses can be used to home in on important regulatory elements. Sequential deletions of putative promoter regions linked to a GFP reporter gene are easily made by traditional cloning or Splicing by Overlap Extension (SOEing) Polymerase Chain Reaction (PCR) amplification (Horton et al., 1990). The latter technique allows high throughput and convenience as PCR reactions can be injected directly into animals without purification or cloning (Hobert, 2002). As the control elements become localized to small genomic regions (several hundred base pairs or less), they can be placed upstream of “basal” promoters to assay for enhancer activity. These approaches are common in the C. elegans literature and can be very successful in defining important cis-acting regulatory sequences.

The use of reporter genes has several important caveats. First and foremost is that they are artificial and can easily misrepresent the pattern of gene expression. Important positive- and negative-acting control elements can be excluded by assuming promoter location leading to mosaicism, loss of expression, or ectopic expression (Krause et al., 1994). For example, reporter genes that lack sufficient control elements for fidelity are often expressed in the anterior and posterior intestinal cells or a small set of head neurons. Moreover, small changes in promoter regions can dramatically alter expression patterns as illustrated by the studies of the ges-1 gene (Egan et al., 1995). It is critical to confirm reporter gene expression patterns with an independent technique such as in situ hybridization, antibody staining, or mutant phenotype.

A second concern of reporter genes is the nature of any additional modules in the construct or in a co-injected marker that may have an effect on expression. For example, many of the standard constructs available from the Fire Lab have a 3′ untranslated region (UTR) derived from the unc-54 gene encoding muscle myosin heavy chain. These sequences may not be neutral when combined with promoters from other cell types. There are also reports of dramatic effects of co-transformation markers on expression levels suggesting that you should not rely on a single co-transformation marker when exploring the expression of a novel gene (Fukushige and Siddiqui, 1995). Similarly, “basal” promoters (e.g., pes-10) may be biased in working with certain types of genomic elements. This may cause them to fail to respond in certain cell types resulting in false information about a particular enhancer element (Natarajan et al., 2004). As long as you keep these limitations in mind, reporter genes can be very helpful in characterizing transcriptional control elements for the gene of interest.

Genome-wide approaches provide a more global assessment of transcriptional regulation and have begun to become more common in C. elegans. The availability of both spotted cDNA (see Kim Lab) and oligonucleotide microarrays (e.g., Affymetrix) for C. elegans has given birth to a large amount of gene expression data in response to tissue type (e.g., germline-enriched; Reinke et al., 2004), growth conditions (e.g., dauer; Liu et al., 2004), or mutant background (e.g., DAF-16; McElwee et al., 2003). Much of this data is available on web sites (e.g., http://genome-www5.stanford.edu/cgi-bin/login.pl) or is linked in Wormbase to individual genes. A second global approach for gene expression profiling is Serial Analysis of Gene Expression (SAGE) that has recently been combined with tissue isolation or cell type sorting (McKay et al., 2003; http://elegans.bcgsc.ca/home/sage.html). These approaches give an overview of expression. For specific genes, this data should be validated by an independent method, such as reverse transcriptase (RT)-PCR or reporter genes.

Bioinformatics provides another way to study gene regulation, either alone or in combination with other methods. Currently, the genome sequence of two Caenorhabditis species are finished (elegans and briggae), one is in draft (remanei), and two are planned (japonica and CB5161). Interspecific comparisons of non-coding regions provides a powerful tool in identifying important cis-acting regulatory elements controlling gene expression, as functional elements will remain constrained through evolution. Comparisons between C. elegans and C. briggae revealed important cis-acting sequences controlling the vitellogenin genes and helped to identify GATA-type transcription factors as likely regulators (MacMorris et al., 1994; Spieth et al., 1991; Winter et al., 1996; Zucker-Aprison and Blumenthal, 1989). Such comparison continue to provide valuable information about cis-acting sequences within gene promoter regions with many examples in the literature (Culetto et al., 1999; Kirouac and Sternberg, 2003; Marshall and McGhee, 2001; Natarajan et al., 2004; Teng et al., 2004). The power of these comparisons is increased as the number of species is increased and will thus become more informative as sequences of additional species are finished. Recently developed programs, such as FamilyJewels, provide methods for sophisticated multiple alignments (Brown et al., 2002). This approach will become widely exploited in coming years to pinpoint regulatory promoter elements.

Bioinformatic analysis of known transcription factor binding sites upstream of coding regions has also been successful. Given a known binding consensus site of sufficient length, the CisOrtho program can be used to ferret out a list of potential genes sharing expression patterns (Bigelow et al., 2004). Bioinformatic comparisons of
promoters from genes with the same or overlapping expression patterns can also be informative to home in on potential regulatory elements (for example, see Chang et al., 2004; Guhathakurta et al., 2004). A nice combination of bioinformatics and in vitro studies used the DNA binding properties of DAF-12, a regulator of dauer development and lifespan, to define potential binding sites and gene targets (Shostak et al., 2004). Regardless of the method used, candidate elements and gene targets should be validated experimentally by an independent means.

There are also several techniques for studying gene expression that, while commonplace in other organisms, are not routinely used in the worm. For example, one would ideally isolate pure populations of cells and tease apart transcriptional regulation at a biochemical level. At only 1mm in length as an adult, C. elegans makes tissue dissections tedious or impossible for generating enough homogeneous tissue for biochemical analysis. The recent development of cell culture techniques (see Methods in Cell biology), coupled with cell sorting, may make biochemical approaches more feasible in the future. However, the technique is still challenging enough that most researchers have opted for other methods to study transcription.

In situ hybridization is another common technique for cataloging transcriptional profiles in many organisms but it is less often used in C. elegans studies. The impermeable egg shell of C. elegans embryos and the cuticle of larvae and adults often lead to background hybridization or partially permeabilized animals, making it difficult to get in situ hybridization signals that are reproducible or trustworthy. Despite these difficulties, a genome-scale effort to catalog gene transcription profiles using in situ hybridization by the Kohara group is now underway. Their protocols and data are useful and can be accessed at http://nematode.lab.nig.ac.jp/db2/index.php.

3. Locating cis-acting regulatory elements

The majority of protein coding genes in C. elegans are within gene-dense regions of the genome. Consequently, cis-acting regulatory regions are usually close to the coding region. The minimal promoter region required for proper expression of most Pol II transcripts lies within a couple of kilobases upstream of the start codon. There are notable exceptions to this compact view of cis-acting sequences. For example, egl-l expression is controlled, in part, by an element located greater than 2 kb downstream of the coding region and beyond an unrelated, intervening gene (Thellmann et al., 2003). For lin-39, proper reporter gene expression required inclusion of ~30 kb of genomic DNA that extended upstream and downstream of the protein coding region (Wigmaister and Eisenmann, personal communication). Clearly C. elegans genes can have complex and distant control regions. However, a rule-of-thumb of 2 kb upstream of the ATG works well as a starting point in the search for cis-acting control elements.

It is important to remember that the minimal promoter region is not synonymous with the natural promoter. The natural promoter may span a much larger region due to redundancy in the function of regulatory elements that ensure proper and robust regulation of the endogenous gene. One common site of additional control elements is within introns. Most C. elegans introns are small (e.g., <100 bp; see Alternative splicing in C. elegans) and are thus unlikely to contain elements controlling expression. However, introns larger than several hundred base pairs do often have such elements (e.g., Nam et al., 2002; Okkema et al., 1993). Therefore, intron size can provide a clue in searching for transcriptional control sequences. Large introns, particularly at the beginning of a coding region, may also provide a clue to promoter organization and the presence of multiple transcriptional initiation sites. For example, nhr-23 has a 1.8 kb intron at the start of the gene that is included in one transcript and absent in a second (Kostrouchova et al., 1998). In cases such as this, the presence of a trans-spliced leader (see Trans-splicing and operons) on two or more different transcripts from a single gene can be an indicator of multiple messages, possibly encoding different protein isoforms.

4. Simple promoters

A simple promoter is defined here as one in which the cis-acting control elements necessary for proper expression are confined to a small region (a few hundreds of bp) of the genome. Housekeeping genes expressed in all tissues might be good candidates for regulation by simple promoters. Unfortunately, few housekeeping genes in C. elegans have been characterized. Among the best characterized simple promoters are those of the hsp-16 family of genes. This family consists of pairs of divergently transcribed genes with promoter regions sufficient for heat-regulated expression contained within the short (~350 bp) intragenic regions (Jones et al., 1986; Russnak and Candido, 1985; Stringham et al., 1992). Despite these compact promoters, distinct tissue expression patterns are induced from different hsp-16 promoters (Stringham et al., 1992), suggesting the presence of multiple regulatory sites within these simple promoters. Another excellent example of simple promoters are in the vitellogenin (vit) genes, which exhibit stage-, tissue- and sex-specific expression controlled, in the case of vit-2, by a 247 bp promoter.
vit-2 promoter activity depends on GATA-factor binding sites and a novel VPE2 site (TGTCAT) conserved in vit gene promoters in C. elegans and C. briggsae (Spieth et al., 1985; Zucker-Aprison and Blumenthal, 1989). Certain cell cycle promoters have also been shown to be remarkably simple. Analysis of several genes expressed only in proliferative cells and encoding G1 phase regulators (e.g., cyclin D) revealed that proper regulation minimally required a 67 bp region of the promoter (Brodigan et al., 2003; Park and Krause, 1999). How could genes with such dynamic expression profiles throughout development be regulated in an apparently simple way? The answer is likely that they are end effectors of a cell's decision to divide rather than integrating lineage or temporal information governing proliferation.

5. Complex promoters

The term complex is used here to describe a promoter in which the overall pattern of gene expression is the result of the composite action of several dispersed elements, each influencing or contributing to the overall expression pattern. This piecemeal organization has been described for the promoter region of several genes, including myo-2, hlh-1 and lin-26. These studies reveal examples in which spatial control of transcription is regulated by elements active in groups of cells related by cell-, tissue- and organ-type and by lineage history.

5.1. myo-2: activation of a terminal differentiation gene by the combined activities of organ- and cell type-specific regulatory elements

myo-2 encodes a myosin heavy chain expressed exclusively in the pharyngeal muscles as these cells undergo terminal differentiation (Ardizzi and Epstein, 1987; Miller et al., 1983). Characterization of the myo-2 promoter region in transgenic C. elegans and identification of trans-acting regulators indicates expression is regulated by a combination of organ- and cell type-specific signals targeting distinct regulatory sequences.

High level activity of the myo-2 promoter requires a transcriptional enhancer located approximately 300 bp upstream of the transcriptional start (Okkema et al., 1993). The intact myo-2 enhancer is active exclusively in the pharyngeal muscles, but, surprisingly, its activity depends on distinct cell-type-specific and organ-specific subelements, termed B and C, that can separately activate gene expression either specifically in the pharyngeal muscles, or more globally in all pharyngeal cell types (Okkema and Fire, 1994). In their endogenous context within the myo-2 gene, these subelements synergistically activate pharyngeal muscle gene expression.

Consistent with their distinct activities, the B and C subelements are targeted by transcription factors expressed in different spatial patterns in the pharynx (Figure 1). The cell-type-specific B subelement binds and is activated by the pharyngeal muscle specific NK-2 family homeodomain factor CEH-22 (Okkema and Fire, 1994; Okkema et al., 1997), which is structurally and functionally related to factors controlling cardiac muscle development in other species (Haun et al., 1998). The organ-specific C subelement binds and is activated by the pan-pharyngeal FoxA family transcription factor PHA-4 (Kalb et al., 1998), which is required for formation of pharyngeal muscle and all other pharyngeal cell types during embryonic development (see below).

CEH-22 is not the only factor functioning with PHA-4 to activate myo-2 expression. CEH-22 is expressed in most, but not all, myo-2 expressing pharyngeal muscles (Okkema and Fire, 1994). Likewise a ceh-22 mutant expresses myo-2, although these animals exhibit defects in B subelement activity and pharyngeal muscle development and function (Okkema et al., 1997). Thus, other as yet unidentified factors must contribute to myo-2 expression, and the characterization of these factors will enhance our understanding of pharyngeal muscle development.
Figure 1. CEH-22 and PHA-4 function in combination to activate pharyngeal muscle expression of myo-2. Myo-2 expression is activated by the pharyngeal muscle-specific CEH-22 and the pan-pharyngeal PHA-4, which bind the myo-2 enhancer B and C subelements, respectively. Micrographs indicate transgenic embryos expressing ceh-22::gfp in pharyngeal muscles and pha-4::gfp in all pharyngeal cells (top, delimited by arrowheads), and a transgenic adult expressing myo-2::lacZ in the pharyngeal muscles (bottom). Note pha-4::gfp is also expressed in the gut. GFP and β-galactosidase are targeted to nuclei to facilitate cell identification.

5.2. hlh-1: activation of gene expression by lineage-preference regulatory elements.

Hlh-1 encodes a basic helix-loop-helix transcription factor expressed in all body wall muscle cells and their precursors (Krause et al., 1990). The body wall muscle cells are derived from multiple cell lineages. Of the 81 body wall muscle cells born during embryogenesis, 1 is from the AB lineage, 28 are from the MS lineage, 32 are from the C lineage and 20 are from the D lineage (Sulston et al., 1983). An additional 14 body wall muscle cells (and other cell types) are born postembryonically from the M mesoblast (Sulston and Horvitz, 1977).

Dissection of the hlh-1 promoter shows that gene expression can be properly regulated by multiple elements spanning ~3 kb upstream of the ATG (Figure 2; Krause et al., 1994). A core element required for all expression resides just upstream of the ATG. In addition, there are several individual elements that drive expression preferentially in one or more lineages. However, no single element is specific for expression in just one lineage. In addition, the expression during embryogenesis is controlled by a different region than that controlling postembryonic expression. The overall pattern of hlh-1 expression is thus a composite of the action of several lineage-preference elements with overlapping domains of action, working in concert with an essential core element. Superimposed on this spatial pattern of regulation are distinct temporal control elements regulating timing of expression during development. As yet, no trans-acting factors have been identified that bind to the defined cis-acting elements, illustrating the difficulty in using promoter analysis alone to identify trans-acting factors.
Figure 2. Regulation of \textit{hlh-1} expression by lineage-preference elements. A) A schematic of body wall muscle nuclei is super-imposed on an image of a comma stage embryo. Each of four different lineages of origin is color-coded as shown in (B) (adapted from (Salston et al., 1983). C) The promoter and partial coding region (exons 1 and 2) of \textit{hlh-1} are shown (adapted from (Krause et al., 1990). All expression is dependent on a “core” element (star) located upstream of the ATG of exon 1. Below the gene structure diagram are color-coded elements that can direct lineage-preference expression of transgenes during embryogenesis; color coding as in (A) and (B). Mature body wall muscle is dependent on distinct temporal elements (purple boxes) that do not have lineage preferences.

5.3. \textit{lin-26}: activation of gene expression by tissue-specific regulatory elements.

\textit{lin-26} encodes a predicted zinc-finger transcription factor expressed in a broad range of ectodermally derived epithelial tissues, the somatic gonad and uterus (Labouesse et al., 1996; Labouesse et al., 1994). Within these ectodermally-derived epithelial tissues are the major hypodermis surrounding the body of the animal, specialized hypodermal cells located at the anterior and posterior ends of the body, and interfacial cells such as rectal cells connecting the external epithelium to the endoderm. A recent characterization of the \textit{lin-26} promoter region revealed this gene is regulated by a core element required for all expression working in concert with tissue-specific elements, rather than lineage-preference elements as discussed above for \textit{hlh-1} (Landmann et al., 2004).

\textit{lin-26} is the downstream gene in an alternatively spliced operon including \textit{lir-1} (Dufourcq et al., 1999), and proper expression of \textit{lin-26} requires an 11 kb upstream region including most of the \textit{lir-1} gene itself (den Boer et al., 1998). Within this region are tissue specific regulatory modules that activate gene expression in subsets of \textit{lin-26} expressing tissues (Figure 3; Landmann et al., 2004). For example, separable modules control expression in the major hypodermal cells, in the minor hypodermal cells and sheath and socket support cells, in rectal cells, or in the somatic gonad. In some cases, redundant elements contribute to expression in particular tissues (e.g., major hypodermal cells), and, in the case of the minor hypodermis and support cells located at the worms anterior and posterior ends, separable elements active either in anterior or posterior ends were identified. Thus, the \textit{lin-26} promoter region contains cis-regulatory elements active in cells that belong to the same organ, are functionally related, or have similar positions along the body (Landmann et al., 2004), and these elements together produce the full \textit{lin-26} expression pattern in a piecemeal fashion.
Regulation of *lin-26* by tissue-specific elements. A) A diagram of some of the cell types expressing *lin-26* (adapted from (Landmann et al., 2004)) is shown super-imposed on an image of a comma stage embryo. B) A partial embryonic lineage showing the origin of *lin-26* expressing cells with color coding matching the cell types shown in (A) (adapted from (Landmann et al., 2004)); major hypodermal cells include hyp 7 (green), seam cells (orange), and P cells (purple); support cells (red); somatic gonad precursors Z1 and Z4 (yellow). C) The promoter elements for *lin-26*. All expression is dependent on a "core" element (star) located in the intergenic region between *lin-26* and its upstream neighbor *lir-1*. Tissue-specific control elements, located within a *lir-1* intron, are shown below the gene structure diagram with color-coding as in (A) and (B). Most control elements function in cells related by tissue-type but not by lineage. Note also that temporal control is achieved by sequentially acting elements that are progressively further upstream from the ATG of *lin-26*.

One common theme to emerge from these three examples is redundancy of regulatory elements. In most cases, even when sub-elements are identified with specific tissue, lineage or organ activity, their loss does not prevent all expression in that region. Clearly endogenous gene regulation has evolved to include multiple and overlapping regulatory regions to ensure proper expression during development. The deconstruction of a promoter is most useful in showing a minimal set of cis-acting control elements. As studies employ more sophisticated techniques and assays, we may learn how extensive this redundancy is.

6. Trans-acting factors

The completion of the *C. elegans* genome makes it possible, in theory, to define all transcription factors in the worm. In practice, this effort is more difficult because of several uncertainties when surveying the properties of a given gene. For example, zinc finger motifs can bind DNA but also can serve other functions including RNA binding and protein-protein interactions. It is therefore difficult to conclude that a given gene product is indeed a transcription factor based solely on the presence of signature motifs. For factors that modify chromatin or participate in a transcription complex, the definition of a transcription factor often lies in the eyes of the investigator. A first-pass attempt at defining a list of *C. elegans* transcription factors is presented in Table 1. Originally compiled in the Sternberg Lab (courtesy of T. Ririe and J. Fernandes), we present a modified version of their list with the understanding that it will necessarily need refinement over time to correct inaccuracies and omissions. The current list includes 664 genes representing only about 3.5% of the predicted genes in *C. elegans*. This number is surprisingly low and about one half the number of transcription factors estimated previously (McGhee and Krause, 1997).
Gene	Affy probe set	Description
gfl-1	190531_at	AF-9-like
taf-11.3	188157_at	an ortholog of human TATA-binding protein associated factor TAF11
R07C12.4	185116_s_at	AP-1-like
F28C6.1	191919_at	AP-2-like
F28C6.2	191940_at	AP-2-like
K06A1.1	191145_at	AP-2-like
Y62E10A.17	186925_at	AP-2-like
Y73E7A.2	176887_at	Apoptosis antagonizing transcription factor
aha-1	172967_x_at, 172057_x_at	bHLH
ahr-1	193149_at	bHLH
C15C8.2	192573_at	bHLH
cnd-1	187594_at	bHLH
F38C2.8	172921_x_at	bHLH
hif-1	183824_s_at	bHLH
hlh-1	193759_at	bHLH
hlh-10	189550_at	bHLH
hlh-11	171841_x_at	bHLH
hlh-12	186469_at	bHLH
hlh-13	182960_at	bHLH
hlh-14	192984_at	bHLH
hlh-15	182141_at	bHLH
hlh-16	192331_at	bHLH
hlh-17	172921_x_at	bHLH
hlh-19	193041_at	bHLH
hlh-2	193176_s_at	bHLH
hlh-21	183551_at	bHLH
hlh-25	184961_s_at	bHLH
hlh-26	183674_at	bHLH
hlh-27	184961_s_at	bHLH
hlh-28	179991_s_at	bHLH
hlh-29	179991_s_at	bHLH
hlh-3	192523_at	bHLH
hlh-4	190064_at	bHLH
hlh-6	193106_at	bHLH
hlh-8	193985_at	bHLH
hnd-1	192707_at	bHLH
lin-32	188671_at	bHLH
mdl-1	193723_s_at	bHLH
Gene Affy probe set Description

Gene	Affy probe set	Description
ngn-1	176272_at	bHLH
T01D3.2	190290_at	bHLH
W02C12.3	190299_at	bHLH
Y105C5.29	172921_x_at	bHLH
Y39A3.6	186966_at	bHLH
mxl-1	193662_at	bHLH/ZIP
mxl-2	184737_s_at	bHLH/ZIP
mxl-3	192645_at	bHLH/ZIP
bra-2	172599_x_at	BMP receptor associated protein family
taf-3	177494_at	bromodomain
atf-2	189943_at	bZIP
atf-5	192027_s_at	bZIP
atf-6	188462_at	bZIP
atf-7	173892_s_at, 172407_x_at	bZIP
C27D6.4	188956_at, 187831_at, 176715_at, 193833_s_at	bZIP
C34D1.5	193844_at	bZIP
C48E7.11		bZIP
ces-2	193437_s_at	bZIP
crh-1	189423_s_at	bZIP
F17A9.3	191134_at	bZIP
F23F12.9	187591_at	bZIP
F23F12.9	171733_x_at	bZIP
F29G9.4	191088_at	bZIP
F57B10.1	185841_s_at	bZIP
K02F3.4	181230_at	bZIP
mgl-2	173929_s_at, 193356_s_at	bZIP
pha-1	188075_at	bZIP
R07H5.10	181517_at	bZIP
skn-1	188421_at	bZIP
srx-41	183336_at	bZIP
T24H10.7	180818_at, 188946_at	bZIP
T27F2.4	179204_s_at	bZIP
W02H5.7	182521_at	bZIP
W07G1.3	179163_at, 179658_at	bZIP
W08E12.1	184700_at	bZIP
xbp-1	190863_at	bZIP
Y75B8A.29	185348_at	bZIP
ZC376.7	189598_s_at	bZIP
ZC8.4a.1	191675_s_at	bZIP
zip-1	173457_s_at	bZIP
Gene	Affy probe set	Description
----------	----------------	--
T05C1.4	179917_at, 182254_s_at	calmodulin-binding transcription activator (CAMTA)
cbp-1	173017_at, 191123_s_at	CBP/p300 homolog
lpd-2	182912_at	CCAAT-binding
T08D10.1	189859_s_at	CCAAT-binding
F23F1.1	174270_s_at	CCAAT-binding, subunit C (HAP5)
Y51H1A.5	182089_at	CCAAT-binding
F22F1.3	194040_at	KIX domain, coactivator CBP
lag-1	175617_at, 192000_s_at	CSL
cdk-8	190709_at	cyclin C interactor
pqn-45	177704_at	DEC-1-like
pqn-47	182066_s_at	DEC-1-like
mab-23	192765_at	DM DNA-binding
mab-3	192765_at	DM DNA-binding
C27C12.6	173904_at	DM DNA-binding
Y53F4B.3	181571_s_at	DNA Polymerase epsilon subunit C
F10C1.5	192453_at	Doublesex
dpl-1	191593_s_at	E2F/DP1
F49E12.6	175552_at, 189678_at	E2F/DP1
elf-1(mex-2)	186476_s_at	E2F/DP1
elf-2	186271_at	E2F/DP1
C24A1.2	174325_at	ETS domain
C33A11.4	188664_at	ETS domain
C42D8.4	189894_at	ETS domain
C50A2.4	183564_at	ETS domain
C52B9.2	180922_at	ETS domain
F19F10.1	190163_at	ETS domain
F19F10.5	190230_at	ETS domain
F22A3.1	192249_at	ETS domain
lin-1	173446_s_at, 175607_s_at	ETS domain
T08H4.3	188791_s_at	ETS domain
Y73F8A.14		ETS-related
peb-1	188015_at	Zn-finger, FLYWCH
C34B4.2	192149_at	Forkhead
daf-16	188176_s_at, 181992_s_at	Forkhead
pes-1	188273_at	Forkhead
pha-4	193962_at	Forkhead
T27A8.2	189248_at	Forkhead
unc-130	190731_s_at	Forkhead
fkh-10	190179_at	Forkhead
fkh-2	193957_s_at, 174011_at	Forkhead
Transcriptional regulation

Gene	Affy probe set	Description
fkh-3	190724_s_at	Forkhead
fkh-4	172877_x_at	Forkhead
fkh-5	187411_at	Forkhead
fkh-6	191946_at	Forkhead
fkh-7	187837_at	Forkhead
fkh-8	181677_at	Forkhead
fkh-9	188781_at	Forkhead
let-381	175474_at	Forkhead
lin-31	188600_at	Forkhead
C18G1.2	191147_at, 183542_at, 174326_s_at	GATA
egl-18	190079_at	GATA
elt-1	192655_s_at	GATA
elt-2	193259_at	GATA
elt-3	193640_s_at	GATA
elt-4		GATA
elt-6	185110_at	GATA
elt-7		GATA
end-1	193618_at	GATA
end-3	193616_at	GATA
med-1	188376_at	GATA
med-2		GATA
F55A3.3	171809_s_at, 190137_s_at	global transcriptional regulator
F31F7.3	182888_at	Golden2-like
unc-37	173188_s_at, 193614_s_at	Groucho
egr-1	188149_s_at, 188166_s_at	HDAC, GATA-like)
K08B5.2	182979_at	heat shock
dro-1	192105_at	histone-like
W10D9.4	180226_s_at	histone-like
lin-22	175682_at	HLH
ref-1	193898_at	HLH
shp-1	192735_s_at	HLH
hmg-1.1	175799_at	HMG box
hmg-1.2	175806_at	HMG box
hmg-11	193301_at	HMG box
hmg-12	188169_at	HMG box
hmg-3	193484_s_at	HMG box
hmg-4	188651_s_at	HMG box
hmg-5	187989_at	HMG box
pop-1	188002_at	HMG box
gei-3	178044_at, 192981_at	HMG-box
C02F12.5	192268_at	homeobox domain
Gene	Affy probe set	Description
----------	-------------------------	--------------
C07E3.6	189406_at, 178029_at	homeobox domain
C09G12.1	189632_at	homeobox domain
C12D12.4	184383_at	homeobox domain
C12D12.5	184573_at	homeobox domain
C17H12.9	189669_at	homeobox domain
C18B12.3	189424_at	homeobox domain
C36F7.1	189594_at	homeobox domain
C49C3.5	189172_s_at	homeobox domain
ceh-1	176628_at	homeobox domain
ceh-10	176624_at	homeobox domain
ceh-12	192019_at	homeobox domain
ceh-13	176615_at	homeobox domain
ceh-14	192631_s_at	homeobox domain
ceh-16	188939_at	homeobox domain
ceh-17	191721_at	homeobox domain
ceh-19	192315_at	homeobox domain
ceh-2	191750_at	homeobox domain
ceh-22	175701_at, 193693_s_at	homeobox domain
ceh-23	189145_at	homeobox domain
ceh-24	193511_at	homeobox domain
ceh-26	176620_at	homeobox domain
ceh-27	192317_at	homeobox domain
ceh-28	193479_at	homeobox domain
ceh-30	189850_at	homeobox domain
ceh-31	189951_at	homeobox domain
ceh-32	193576_at	homeobox domain
ceh-33	188645_at	homeobox domain
ceh-34	192166_at	homeobox domain
ceh-35	192928_at	homeobox domain
ceh-36	173826_s_at	homeobox domain
ceh-37	192014_s_at	homeobox domain
ceh-40	192022_at	homeobox domain
ceh-41	193249_at	homeobox domain
ceh-43	193833_at	homeobox domain
ceh-5	191117_at	homeobox domain
ceh-6	194028_s_at	homeobox domain
ceh-7	191844_at	homeobox domain
ceh-8	193515_at	homeobox domain
ceh-9		homeobox domain
egl-5	175712_s_at	homeobox domain
F17A9.6	189546_s_at	homeobox domain
Gene	Affy probe set	Description
--------------	----------------	-----------------
F22A3.5	190371_at	homeobox domain
F42G2.6	181119_s_at	homeobox domain
F45C12.15	186689_s_at	homeobox domain
K02F3.8	181123_at	homeobox domain
lin-39	189637_at	homeobox domain
M6.3	189007_at	homeobox domain
mab-18	194012_s_at	homeobox domain
mab-5	173387_at, 176579_s_at	homeobox domain
mls-2	173754_at, 189498_s_at, 182023_at	homeobox domain
nob-1	191468_s_at	homeobox domain
pal-1	193341_at, 193342_s_at	homeobox domain
pax-1	192418_at	homeobox domain
pax-3	193866_at	homeobox domain
php-3	191509_at	homeobox domain
R04A9.5	193949_s_at	homeobox domain
R06F6.6	189665_at	homeobox domain
T13C5.4	189464_at	homeobox domain
tab-1	189979_at	homeobox domain
ttx-1	186833_s_at	homeobox domain
unc-39	192928_at	homeobox domain
unc-4	193581_at	homeobox domain
unc-42	191585_at	homeobox domain
vab-7	193846_at	homeobox domain
Y38E10A.6	171992_x_at, 186209_s_at	homeobox domain
Y80D3A.3	182349_s_at	homeobox domain
zag-1	193363_at	homeobox domain
ceh-20	177324_s_at	homeobox domain, cofactor
ceh-21	190942_at	homeobox domain, CUT
ceh-38	189668_at	homeobox domain, CUT
ceh-39	174323_at	homeobox domain, CUT
ceh-44	176483_at, 176499_at	homeobox domain, CUT
ZK1193.5	185625_at	homeobox domain, CUT
egl-13	188167_s_at, 193037_s_at	homeobox domain, HMG
sox-2	191681_at	homeobox domain, HMG
C25G4.4	188729_at	homeobox domain, HMG, SAND domain
eat-1	174122_s_at, 188775_s_at	homeobox domain, LIM
vab-15	192609_at	homeobox domain, MSH
K03A11.5	180454_s_at	homeobox domain, Nkx2
cog-1	189136_at	homeobox domain, Nkx6.1
R08B4.2	192223_at	homeobox domain, Paired domain
unc-30	174442_s_at, 193622_at	homeobox domain, Paired domain
Gene	Affy probe set	Description
--------------	-------------------------------------	--------------------------------------
Y53C12C.1	192900_at	homeobox domain, Paired domain
egl-38	193140_at	homeobox domain, Paired domain
vab-3	194012_s_at	homeobox domain, Paired domain
ceh-18	187890_at	homeobox domain, POU
unc-86	187875_s_at	homeobox domain, POU
unc-62	192045_s_at	homeobox domain, TALE
B0496.7	181555_at	LIM domain
B0496.8	189866_s_at	LIM domain
C26C6.6	188741_at	LIM domain
C28H8.6	189207_at	LIM domain
C34B2.4	181869_at	LIM domain
F20D12.5	184796_s_at	LIM domain
F25H5.1	180879_at, 193411_s_at, 193324_at, 181484_s_at, 181483_at	LIM domain
F28F5.3	181521_at	LIM domain
F33D11.1	188952_at	LIM domain
F42H10.4	176229_at	LIM domain
lim-4	191102_at	LIM domain
lim-6	187894_at	LIM domain
lim-7	191686_at	LIM domain
lin-11	194088_at	LIM domain
ltd-1	188644_at	LIM domain
mec-3	194097_s_at	LIM domain
ttx-3	172067_x_at, 194096_s_at	LIM domain
unc-115	190640_s_at	LIM domain
unc-95	176968_s_at	LIM domain
unc-97	193526_s_at	LIM domain
Y1A5A.1	193268_at	LIM domain
Y57G11A.1	192213_s_at	LIM domain
Y57G11A.3	192211_at	LIM domain
Y65B4A.7	176112_at, 176123_at	LIM domain
ZK381.5	180400_at, 181271_s_at	LIM domain
ZK622.4	187981_at	LIM domain
zyx-1	192073_at	LIM domain
pin-2	189051_at	LIM domain (Focal adhesion protein PINCH-1)
B0379.4a	193257_at, 178388_at	LIM domain, (basal component)
grh-1	186593_at	LSF/GRH-like
unc-120	188706_at	MADS box
mef-2	190718_s_at	MADS-box
dpy-22	187986_s_at, 173764_at	mediator
sur-2	172005_x_at, 190922_s_at	mediator
Gene	Affy probe set	Description
------------	---	---
Y62F5A.1	172520_x_at, 185066_s_at	mediator
F58H1.2	179510_at	Metencephalon-mesencephalon-olfactorystranscription factor 1
C50F4.12	183467_at	Mitochondrial transcription termination factor, mTERF
egl-27	188531_s_at, 188530_at, 187748_s_at, 175679_at	Myb-like DNA binding, GATA Zn finger
K11H12.8	184428_at, 184429_s_at	Myb-related
F40F9.7	190650_at	NC2-like transcriptional repressor
R11H6.5	190505_at	NFAT-like
C13C4.1	194101_at	NHR
C14C6.4	190050_at	NHR
C17A2.1	190255_s_at	NHR
C25E10.1	192196_at	NHR
C26B2.4	190868_at	NHR
C33G8.10	190253_at	NHR
C33G8.12	191187_at	NHR
C33G8.7	190077_at	NHR
C33G8.8	190084_at	NHR
C41G6.5	192406_at	NHR
C49D10.9	190255_s_at	NHR
C50B6.8	194133_at	NHR
C54E10.5	192526_at	NHR
dpr-1	192538_at	NHR
F16B4.1	190004_at	NHR
F16B4.11	190260_at	NHR
F16H9.2	194105_at	NHR
F38H12.3	191042_at	NHR
F41D3.3	192456_at	NHR
F44A2.4	190088_at	NHR
F44E7.8	189031_at	NHR
F47C10.1	186434_at	NHR
F47C10.3	191031_at	NHR
F47C10.4	185749_at	NHR
F47C10.7	185192_at	NHR
F47C10.8	191126_at	NHR
F59E11.10	190380_at	NHR
F59E11.11	1872090_at	NHR
fax-1	175757_s_at	NHR
M02H5.5	176016_at	NHR
nhr-1	192168_at	NHR
nhr-10	191884_s_at	NHR
Gene	Affy probe set	Description
-------	---	-------------
nhr-100	194112_at	NHR
nhr-101	172572_x_at	NHR
nhr-102	173975_s_at	NHR
nhr-103	190850_at	NHR
nhr-104	190875_at	NHR
nhr-105	189902_at	NHR
nhr-106	189964_at	NHR
nhr-107	191205_s_at	NHR
nhr-108	192601_s_at	NHR
nhr-109	175463_at, 182895_at	NHR
nhr-11	174023_at, 192634_at	NHR
nhr-110	188585_at, 188586_s_at	NHR
nhr-111	192431_at	NHR
nhr-112	173159_s_at	NHR
nhr-113	192511_s_at	NHR
nhr-114	177144_at	NHR
nhr-115	189980_at	NHR
nhr-116	190812_at	NHR
nhr-117	190287_at	NHR
nhr-118	189855_at	NHR
nhr-119	187893_s_at, 190018_at, 176194_at	NHR
nhr-12	193687_at	NHR
nhr-120	180497_at	NHR
nhr-121	181125_at	NHR
nhr-122	176072_at	NHR
nhr-123	175973_at	NHR
nhr-124	190854_at	NHR
nhr-125	182971_at	NHR
nhr-126	188808_at	NHR
nhr-127	192488_at	NHR
nhr-128	189920_at	NHR
nhr-129	194133_at	NHR
nhr-13	176625_at	NHR
nhr-130	190001_at	NHR
nhr-131	189948_at	NHR
nhr-132	190237_at	NHR
nhr-133	189999_at	NHR
nhr-134	190842_at	NHR
nhr-135	177337_at	NHR
nhr-136	194102_at	NHR
nhr-137	185968_at	NHR
Gene	Affy probe set	Description
-------	----------------------	-------------
nhr-138	--	NHR
nhr-14	193175_at	NHR
nhr-15	192935_at	NHR
nhr-16	190172_at	NHR
nhr-17	192635_at	NHR
nhr-18	192777_at	NHR
nhr-19	193637_at	NHR
nhr-2	193015_s_at	NHR
nhr-20	193638_s_at	NHR
nhr-21	194090_s_at	NHR
nhr-22	193245_s_at	NHR
nhr-23	194130_s_at	NHR
nhr-25	193001_s_at	NHR
nhr-28	173241_at	NHR
nhr-3	193679_s_at	NHR
nhr-31	192541_s_at	NHR
nhr-32	192460_at	NHR
nhr-34	174018_at, 193049_at	NHR
nhr-35	190373_at	NHR
nhr-38	193582_at	NHR
nhr-4	194123_s_at	NHR
nhr-40	175720_at, 194035_s_at	NHR
nhr-41	176582_at, 186589_at	NHR
nhr-42	192603_at	NHR
nhr-43	193483_at	NHR
nhr-44	192173_s_at	NHR
nhr-45	193486_at	NHR
nhr-46	192835_at	NHR
nhr-47	192271_s_at	NHR
nhr-48	193671_at	NHR
nhr-49	194120_at	NHR
nhr-5	188223_at	NHR
nhr-50	172035_x_at	NHR
nhr-51	193556_at	NHR
nhr-52	193670_at	NHR
nhr-53	193701_s_at	NHR
nhr-54	193559_s_at	NHR
nhr-55	192136_at	NHR
nhr-56	192231_at	NHR
nhr-57	192189_at	NHR
nhr-58	192282_at	NHR
Gene	Affy probe set	Description
--------	-------------------------------------	-------------
nhr-59	172034_x_at, 172722_x_at	NHR
nhr-6	194121_s_at	NHR
nhr-60	194128_s_at	NHR
nhr-61	193603_s_at	NHR
nhr-62	192819_at	NHR
nhr-63	193566_at	NHR
nhr-64	193768_at	NHR
nhr-65	173003_s_at, 193567_at	NHR
nhr-66	192260_at	NHR
nhr-67	192717_at	NHR
nhr-68	192782_at	NHR
nhr-69	194132_at	NHR
nhr-7	192920_s_at	NHR
nhr-70	193658_at	NHR
nhr-71	193513_s_at	NHR
nhr-72	192209_at	NHR
nhr-73	192748_s_at	NHR
nhr-74	192640_at, 192641_s_at	NHR
nhr-75	192291_at	NHR
nhr-76	182867_at, 192270_at	NHR
nhr-77	193530_at	NHR
nhr-78	188348_at	NHR
nhr-79	193540_s_at	NHR
nhr-8	193749_at	NHR
nhr-80	190236_s_at, 191574_at	NHR
nhr-81	193507_at	NHR
nhr-82	193508_at	NHR
nhr-83	192858_at	NHR
nhr-84	193542_at	NHR
nhr-85	193753_at	NHR
nhr-86	176830_s_at	NHR
nhr-87	176042_s_at	NHR
nhr-88	189858_at, 190898_at	NHR
nhr-89	193577_at	NHR
nhr-9	188454_at	NHR
nhr-90	189961_at	NHR
nhr-91	193433_at	NHR
nhr-92	174019_s_at, 176050_at	NHR
nhr-94	184113_at	NHR
nhr-95	183502_at	NHR
nhr-96	187786_at	NHR
Gene	Affy probe set	Description
--------------	----------------	-------------------------------
nhr-97	194122_at	NHR
nhr-98	175979_at	NHR
nhr-99	176003_at	NHR
R11G11.12	190367_at	NHR
R13D11.8	185889_at	NHR
sex-1	172940_x_at, 188033_s_at, 171736_x_at	NHR
T01G6.5	189965_at	NHR
T01G6.6	191004_at	NHR
T03E6.3	189871_at	NHR
T09D3.4	190944_at	NHR
Y116A8C.18	186548_at	NHR
Y17D7A.1	192543_at	NHR
Y17D7B.1	192565_s_at	NHR
Y22F5A.1	192564_at	NHR
Y41D4B.21	176108_at	NHR
Y54F10AM.1	176503_at	NHR
Y80D3A.4	182290_at	NHR
ZK455.6	192466_at	NHR
ZK488.4	189947_at	NHR
ZK697.2	190022_at	NHR
lin-14	193913_s_at	novel nuclear protein
unc-3	193538_s_at	HLH
F21A10.2	180693_at	p53-like
Y51H4A.19	184538_s_at	p53-like
pax-2	192273_at	homeobox domain, Paired domain
C28H8.9	187205_at	PHD-finger
C36C5.13	185704_at	PHD-finger
C44B9.4	193372_at	PHD-finger
F17A2.3	186658_at	PHD-finger
lin-49	175774_at, 192161_s_at	PHD-finger
lin-59	188202_s_at	PHD-finger
phf-5		PHD-finger
T06A10.4	174921_s_at, 186168_at	PHD-finger
T23B12.1	185082_at	PHD-finger
Y51H1A.4	188811_s_at	PHD-finger
Y51H4A.12	184300_s_at	PHD-finger
Y53G8AR.2	174165_at, 187052_at	PHD-finger
ZC132.2	179825_at	PHD-finger
K04C1.2	182794_s_at	Polycomb-group
mes-2	190261_s_at	Polycomb-group
mes-6	187971_at	Polycomb-group
Transcriptional regulation

Gene	Affy probe set	Description
sop-2	185770_at, 186277_at	Polycomb-group
mix-1	173070_s_at, 193889_at	possible T.F.
T12A7.6	175158_s_at	possible T.F.
arx-6	187615_at	possible T.F., ARp2/3 complex component
cdk-9	193890_s_at	P-TEF-b component
lin-35	188392_s_at	RB-like
daf-19	190486_s_at	RFX
lin-41	187703_s_at	RING finger
C36E8.1	186636_s_at	RNA polymerase I transcription factor
C15H11.8	192503_at	RNA polymerase I transcription factor TFIIS
icd-1	174688_at, 192927_s_at	RNA polymerase II BTF3 (basal component)
Y73B3A.8	175882_at	RNA polymerase II subunit 9
R03D7.4	186827_s_at	RNA polymerase II transcription elongation factor
spt-5	193747_s_at	RNA polymerase II transcription elongation factor DSIF/SUPT5/SPT5
pqn-51	185179_s_at	RNA polymerase II transcription initiation factor TFIIB, large chain
T16H12.4	174400_s_at	RNA polymerase II transcription initiation TFIIH
ZK1128.4	180510_s_at	RNA polymerase II transcription initiation TFIIH
ZK856.13	189860_s_at	RNA polymerase III transcription factor TFIIIC
C01B12.2	186210_at	SAND domain
C44F1.2	188653_at	SAND domain
T21B10.5	192141_at	SET domain
dac-1	189843_at	SKI/SNO domain
elc-1	192714_at	SKP1 component
daf-14	175659_at, 190867_s_at	SMAD
daf-3	188906_s_at	SMAD
daf-8		SMAD
R05D11.1	188788_at	SMAD
Y113G7B.14	187096_at	SNF2-related
R07E5.3	175088_at, 188857_at	SWI/SNF
taf-11.2	192267_at	TAFII28-like protein
Y37E11B.2	186683_at	TATA binding factor
mab-9	192729_at	T-box
mls-1	186222_at	T-box
tbx-11	187486_at	T-box
tbx-18	185577_s_at	T-box
tbx-2	188633_at	T-box
tbx-30	186686_s_at	T-box
Gene	Affy probe set	Description
----------	--	----------------------
tbx-31	182311_at	T-box
tbx-32	188373_at, 188374_s_at	T-box
tbx-33	176669_at	T-box
tbx-34	186275_s_at	T-box
tbx-35	187661_at	T-box
tbx-36	178364_at	T-box
tbx-37	186121_at	T-box
tbx-38	188023_at	T-box
tbx-39	184577_at	T-box
tbx-40	184249_at, 184250_s_at	T-box
tbx-41	189631_at	T-box
tbx-7	188450_at	T-box
tbx-8	190477_at	T-box
tbx-9	190539_s_at	T-box
Y59E9AR.5		T-box
taf-5	193468_at	TBP-associated T.F.
taf-6.1	188098_s_at	TBP-associated T.F.
taf-7.1	188233_at	TBP-associated T.F.
taf-8		TBP-associated T.F.
egl-44	193230_at	TEA/ATTS domain
Y73F8A.24	184394_s_at	Tfb2 T.F.
B0336.13	176733_at	TFIIA, (basal component)
taf-10	188274_at	TFIID
taf-13	190935_at	TFIID
tbp-1	188606_at	TFIID
tlf-1	187785_s_at, 193370_s_at, 193369_at	TFIID
taf-4	174570_s_at, 187952_at	TFIID component
taf-9	178055_at	TFIID; TAFII-31
cdk-7	172068_x_at, 176484_s_at	TFIIH complex (basal component)
brf-1	193633_s_at	TFIIB (basal component)
Y77F11A.6	186842_at	TFIIS
Y97E10AR.5	176591_s_at	TFIIS
F10D7.4	180109_at	Transcription elongation factor (basal component)
F59E12.9	185204_s_at	Transcription elongation factor S-II, central region
sqt-4	188021_at	Transcription elongation factor SPT4
T24H10.1	191738_at	Transcription elongation factor TFIIIS
Y51B9A.5	182001_at	Transcription factor 21-related motif
Y38E10A.1	185362_at	Transcription factor Sp3
C25H3.6	175492_at	Transcription factor TFIIIS elongin A-like
Y38F2AR.13	176361_at	Transcription factorsIIIC-alpha subunit
Transcriptional regulation

Gene	Affy probe set	Description
Y38F2AR.5	176179_at, 176323_at	Transcription factorsIIIC-alpha subunit
Y111B2A.13	193715_at	Transcription initiation factor IIA, gamma subunit
F54D5.11	193310_s_at	Transcription initiation factor IIE, beta subunit
C01F1.1	190074_s_at, 173313_s_at	Transcription initiation factor IIF, alpha subunit
Y39B6A.36	183088_at	Transcription initiation factor IIF, small subunit (RAP30)
tnb-1	172103_x_at, 192210_at	Transcription initiation factor TFIIB
Y56A3A.4	183864_s_at	transcription initiation factor TFIIID 20/15 kDa subunits
taf-1	193610_s_at	Transcription initiation factor TFIIID, subunit TAF1
taf-12	183864_s_at	Transcription initiation factor TFIIID, subunit TAF12
F01G4.1	174598_s_at	trithorax family
sdc-2	173447_s_at	X chromosome transcription repressor
eor-1	189910_s_at	Zn finger
eor-2	177725_at	Zn finger
F22D6.2	179366_at	Zn finger
arc-1	194111_at	Zn-finger
asc-1	184727_s_at	Zn-finger
C03G6.12	191749_at	Zn-finger
C06E1.8	176000_at	Zn-finger
C09F5.3	187378_at	Zn-finger
C28G1.6	192344_at	Zn-finger
C38D4.7	178513_at	Zn-finger
C55C2.1	192307_at	Zn-finger
ces-1	192612_at	Zn-finger
che-1	188612_at	Zn-finger
D1046.2	189843_at	Zn-finger
daf-12	187714_at, 192797_s_at	Zn-finger
dpy-20	191799_at	Zn-finger
egl-43	193452_at	Zn-finger
egl-46	192272_at	Zn-finger
egl-9	187973_s_at	Zn-finger
F33E11.2	174322_s_at, 184231_at	Zn-finger
F36F12.8	190224_at	Zn-finger
F45H11.1	190574_at	Zn-finger
F47H4.1	173993_s_at	Zn-finger
F53B3.1	182205_s_at	Zn-finger
F53B3.1	182204_at	Zn-finger
Gene	Affy probe set	Description
----------	----------------	-------------
F53F8.1	192448_at	Zn-finger
F56F11.3	190273_at	Zn-finger
ham-2	190176_at	Zn-finger
hbl-1	192791_s_at	Zn-finger
K01H12.1	180815_at	Zn-finger
K11D2.4	192478_at	Zn-finger
lin-13	189214_s_at	Zn-finger
lin-26	190309_at	Zn-finger
lin-28	172855_x_at, 191973_s_at	Zn-finger
Transcriptional regulation

The goal in studying transcription is to make the link between transcription factors and their target genes. For a small number of genes in *C. elegans*, this connection has been made and a chart showing some of these is presented in Table 2. Notice that most transcription factors have been defined as either activators or repressors. However, for some, both modes of action have been described highlighting the importance of co-factors and promoter context within chromatin in determining the transcriptional outcome of DNA binding by these proteins. The list of potential target genes for several transcription factors will explode over the coming years with the application of microarray methods. However, most of these will not be specifically tested to determine if the regulation is direct and which cis-acting elements mediate the effect.

Table 2. Transcription factor target genes

Class	Number of genes	Factor type	Factor	Partner	Activator	Repressor	Putative target genes	DNA binding sequence	References
Homeo-domain	83	HOX	LIN-39	CEH-20	YES	Possible	*hlh-8, egl-17, egl-18, elt-5,*	TGATTAAT (G/T) (G/A)	Ruvkun and Hobert, 1998
									Cui and Han, 2003; Koh et al.,
Class	Number of genes	Factor type	Factor	Partner	Activator	Repressor	Putative target genes	DNA binding sequence	References
--------------	-----------------	-------------	--------	---------	-----------	-----------	-----------------------	----------------------	--------------------------------------
Paired-like		CEH-10	TTX-3	YES	N.D.		elt-6, possible direct repressor of eff-1	elt-6, possible direct repressor of eff-1	2002; Liu and Fire, 2000; Shemer and Podbilewicz, 2002
		UNC-4	UNC-37	YES			VB motor neuron genes	TAATY-NR-ATTA	Winnier et al., 1999
		UNC-30	N.D.	YES	N.D.	unc-25, unc-47	unc-25, unc-47	unc-25, unc-47	Eastman et al., 1999; Jin et al., 1994
		EGL-38	N.D.	YES	N.D.	lin-48	lin-48	lin-48	Johnson et al., 2001
Even-skipped	VAB-7	N.D.	N.D.	YES	unc-4 (may be indirect)	N.D.	unc-4 (may be indirect)	unc-4 (may be indirect)	Esmaeili et al., 2002
LIM	TTX-3	CEH-10	YES	N.D.	ceh-23 and 38 other AIY terminal genes	AATTGG (C/T) TT (A/C) (G/A) TTA (G/A)	AATTGG (C/T) TT (A/C) (G/A) TTA (G/A)	Wenick and Hobert, 2004	
	UNC-86	YES	N.D.	mec-4, mec-7; see also UNC-86	CATNNNN-AATGCAT	CATNNNN-AATGCAT	CATNNNN-AATGCAT	Duggan et al., 1998; Way and Chalfie, 1988	
POU	UNC-86	MEC-3	YES	N.D.	mec-3, 50 plus candidate genes from screen; snap-25	TNNAGTG	TNNAGTG	TNNAGTG	Zhang et al., 2002; Hwang and Lee, 2003
Zn-Finger	CHE-1	N.D.	YES	N.D.	cog-1, ceh-36, gcy-5 other undefined ASE genes	N.D.	N.D.	N.D.	Chang et al., 2003
NK Class	CEH-22	N.D.	YES	N.D.	myo-1, myo-2 (B element)	TNNAGTG	TNNAGTG	TNNAGTG	Okkema and Fire, 1994; Okkema et al., 1997
EXD	CEH-20	LIN-39, UNC-62 (genetic evidence only)	YES	N.D.	hhl-8	TGATTAAT	TGATTAAT	TGATTAAT	Liu and Fire, 2000; Van Auken et al., 2002
Zn-Finger	GATA	ELT-1	N.D.	YES	N.D.	msp-113	msp-113	msp-113	Shim, 1999; Shim et al., 1995
		ELT-2	N.D.	YES	N.D.	ges-1, pho-1, mtl-1, mtl-2	ges-1, pho-1, mtl-1, mtl-2	ges-1, pho-1, mtl-1, mtl-2	Egan et al., 1995; Fukushige et al., 1995
Class	Number of genes	Factor type	Factor	Partner	Activator	Repressor	Putative target genes	DNA binding sequence	References
---------------	-----------------	-------------	--------	---------	-----------	-----------	-----------------------	---------------------	---
END-1	N.D.	YES	N.D.	elt-2	GATA				1998; Moilanen et al., 1999
MED-1, MED-2	N.D.	YES	N.D.	end-1, end-2	GATA				Fukushige et al., 1998; Shoichet et al., 2000
SAL	SEM-4	N.D.	N.D.	YES	elg-5, mec-3	ACACAA			Maduro et al., 2001; Maduro and Rothman, 2002; JHR unpublished
	CES-1	N.D.	N.D.	YES	egl-1	CACCTG			Toker et al., 2003
Gli	TRA-1A	N.D.	N.D.	YES	egl-1, mab-3	TGTGAGG-TC			Zarkower and Hodgkin, 1993; Conradt and Horvitz, 1999; Yi et al., 2000
DM domain	MAB-3	N.D.	N.D.	YES	vit-2 (probably all vits)	AATGTTG-CGA (T/A) NT			Yi and Zarkower, 1999
O/E	UNC-3	PAG-3?	YES	Possible acr-2 (indirect activator?)	N.D.			Prasad et al., 1998	
GFI	PAG-3	UNC-3?	N.D.	YES	pag-3	TAAATCAC (A/T) GCA			McDermott and Aamodt, unpublished; Zweidler-Mckay et al., 1996
LIN-29	N.D.	YES	N.D.	YES	col-19	N.D.			Rougvie and Ambros, 1995
NHR	284								Maglich et al., 2001
FTZ-F1	NHR-25	N.D.	YES	N.D.	lin-3	TCAGGTC-CA			Hwang and Sternberg, 2004
ROR/ RZR	NHR-23	N.D.	YES	N.D.	dpy-7?	AGGTCCAN-NNNNAG-GTCA			Kostrouchova et al., 1998; Kostrouchova et al., 2001
Vit D	DAF-12	N.D.	YES	YES	ceh-22, myo-2, many others	CA(C/G)AC (A/G); AGT-GCANNNNN-NAGTGA			Ao et al., 2004; Shostak et al., 2004
bHLH	39								Ledent et al., 2002
MyoD	HLH-1	HLH-1	YES	N.D.	N.D.	CAGCTG			Krause et al., 1992; Blackwell et al., 1994
E/Daughterless	HLH-2	HLH-2; HLH-3;	YES	N.D.	lin-3, lag-2	CACCTG			Hwang and Sternberg, 2004;
Class	Number of genes	Factor type	Factor	Partner	Activator	Repressor	Putative target genes	DNA binding sequence	References
-------	-----------------	-------------	--------	---------	-----------	-----------	-----------------------	----------------------	------------
	LIN-32	Achaete-scuter	HLH-3	HLH-2	YES	N.D.	egl-1	CACCTG	Karp and Greenwald, 2003
		Twist	HLH-8	HLH-8, HLH-2	YES	N.D.	ceh-24, egl-15, mls-1	CATATG; CAGGTG	Krause et al., 1997; Thellmann et al., 2003
Twist		Atonal	LIN-32	HLH-2	YES	N.D.	N.D.; several genes identified that respond to overexpression	CACGTG	Portman and Emmons, 2004
		bZIP	19					WWTRTC-AT	Ruvkun and Hobert, 1998
		Cap’n’ Collar	SKN-1	N.D.	YES	N.D.	med-1, med-2, end-1?, gcs-1		An and Blackwell, 2003; Blackwell et al., 1994; Carroll et al., 1997; Maduro et al., 2001; Walker et al., 2000
	Forkhead	Forkhead	15						Hope et al., 2003
	FOXO	FOXO	DAF-16	N.D.	YES	YES	microarray	TTGTTTAC	Furuyama et al., 2000; Lee et al., 2003; McElwee et al., 2003
	PHA-4	PHA-4	PEB-1	N.D.	YES	N.D.	myo-2 (C element)	TGTGTGC	Gaudet and Mango, 2002; Kalb et al., 1998; Okkema and Fire, 1994; Villimas et al., 2004
	UNC-1-30	UNC-1-30	N.D.	N.D.	YES		unc-129	WTRTTNN-NNY	Nash et al., 2000
	ETS	ETS	10						Hart et al., 2000
	T-box	T-box	20						Pocock et al., 2004
7. Spatial specificity

Spatial specificity refers to a pattern of gene expression that is limited to one or a few organs, tissues, or cell types. Examples of control mechanisms governing these types of spatial restriction are presented to show the logic underlying these patterns. Our current understanding shows that spatial specificity can be achieved by multiple mechanisms, ranging from the combinatorial action of overlapping transcription factors to transcriptional cascades.

7.1. Organ specificity: control of pharyngeal gene expression by a master regulator

The *C. elegans* pharynx is a complex organ consisting of five very different cell types, including muscles, neurons, epithelia, glands and marginal cells (Albertson and Thomson, 1976). The pharynx initially forms as a primordium of undifferentiated cells around mid-embryogenesis, and these cells subsequently differentiate and express cell type-specific genes (Sulston et al., 1983).

Formation of the pharynx and differentiation of all pharyngeal cell types depends on a single FoxA family transcription factor PHA-4 (Horner et al., 1998; Kalb et al., 1998; Mango et al., 1994). PHA-4 is expressed in all pharyngeal cells beginning at the time these cells become committed to a pharyngeal cell fate, as well as in the hindgut and intestine (Horner et al., 1998; Kalb et al., 1998). PHA-4 is believed to directly regulate most or all genes specifically expressed in the pharynx, including both early genes specifying fate of different pharyngeal cell types and late genes expressed during terminal differentiation (Gaudet and Mango, 2002). A major question in understanding pharyngeal development is how does PHA-4 regulate genes expressed in different pharyngeal cell types and at different times in pharyngeal development.
The function of PHA-4 in cell-type specific differentiation is best understood in the pharyngeal muscles. As discussed above, PHA-4 functions with the pharyngeal muscle-specific homeodomain factor CEH-22 to activate myo-2 expression during muscle cell differentiation (Kalb et al., 1998; Okkema and Fire, 1994). PHA-4 and CEH-22 similarly target a late functioning auto-regulatory enhancer from ceh-22 itself (Gaudet and Mango, 2002; Kuchenthal et al., 2001), suggesting these factors function together to control many regulatory sequences that function during terminal differentiation of the pharyngeal muscles. Earlier in pharyngeal muscle development, PHA-4 is also required for the initiation of ceh-22 expression (Mango et al., 1994; Vilimas et al., 2004), but the mechanism by which PHA-4 initially activates ceh-22 in the pharyngeal muscles remains unknown.

Less is known of how PHA-4 regulates specific gene expression in other pharyngeal cell types, largely because other pharyngeal specific promoters have not been extensively characterized. This situation, however, appears soon to be changed based on pioneering microarray studies that have identified >300 genes preferentially expressed in the pharynx (Ao et al., 2004; Gaudet and Mango, 2002). Analyses of these genes’ known expression patterns, in situ hybridization patterns, and placement on the Gene Expression Topo Map have identified clusters of genes expressed preferentially in subsets of pharyngeal cells, and comparisons of the promoters of genes within these clusters have identified conserved regulatory elements that likely impart positional or cell type specificity to PHA-4 target genes (Ao et al., 2004).

PHA-4 also regulates genes in temporally distinct patterns in the pharynx. This temporal regulation may involve both the affinity of PHA-4 for its binding sites in various gene promoters (Gaudet and Mango, 2002), and the presence of binding sites for additional factors functioning with PHA-4 (Gaudet et al., 2004). These mechanisms are likely not mutually exclusive and may be interdependent, as additional factors could affect PHA-4 binding affinity by cooperative binding.

7.2. Tissue specificity: regulation of gut gene expression by a cascade of redundant GATA factors.

The E blastomere is the clonal precursor of the gut, and the maternal factors specifying E blastomere identity are well understood. One effect of these maternal factors is to initiate zygotic gene expression, including expression of a series of sequentially functioning GATA family transcription factors expressed exclusively in the gut lineage (reviewed in Maduro and Rothman, 2002; Figure 4). These GATA factors bind WGATAR motifs required in many gut specific genes and directly activate gut gene expression (e.g., Britton et al., 1998; Egan et al., 1995; MacMorris et al., 1992; Nam et al., 2002).

The first of these gut-specific GATA factors is END-1, which is expressed transiently in the E lineage, beginning in the E cell itself and continuing until approximately the 8E stage (Figure 4; Zhu et al., 1997). ELT-2 is then expressed on one cell division later, beginning at the 2 E-cell stage (Fukushige et al., 1998). elt-2 expression is activated by END-1 (Zhu et al., 1998), but, unlike end-1, elt-2 remains expressed in the gut throughout the life of the worm through an autoregulatory mechanism (Fukushige et al., 1998; Fukushige et al., 1999). Interestingly, both end-1 and elt-2 appear to be members of redundant gene families. While ectopic expression of either of these genes activates widespread gut differentiation, loss-of-function studies reveal surprisingly mild defects in gut gene expression (Fukushige et al., 1998; Zhu et al., 1998; Zhu et al., 1997). Indeed, end-1 loss-of-function produces no phenotype. In comparison, elt-2 loss produces gut defects and lethality, while the effect on gene expression varies

![Figure 4](https://example.com/figure4.jpg)
from promoter to promoter (Fukushige et al., 2005; Fukushige et al., 1998; Oskouian et al., 2005). In both cases, the likely suspects for redundant genes encode additional GATA factors. end-1 may be redundant with the linked gene end-3, while elt-2 may be partially redundant with elt-7 (Maduro and Rothman, 2002). Thus, end-1 and end-3 are believed to establish endoderm fate in the E lineage, while elt-2 and elt-7 are likely the direct regulators of most genes expressed in the gut (Figure 4).

While most gut-specific promoters contain WGATAR motifs, their accurate regulation depends on more than simply turning on ELT-2. Gut genes are expressed under distinct temporal, sex-specific, and environmental controls, indicating other factors must contribute to gut gene regulation. In the case of the vit-2 gene, which encodes a yolk protein expressed only in the gut of adult hermaphrodites, repression in males requires the MAB-3 DM-domain protein (Yi and Zarkower, 1999). Likewise, ges-1, which encodes a gut-specific esterase, is activated in the gut by ELT-2 while being repressed in other regions of the digestive system by an unknown factor binding near the WGATAR motifs (Fukushige et al., 1996; Marshall and McGhee, 2001). In most cases, the identity of factors functioning with ELT-2 remain unknown, and there remains much to be learned about gut transcription.

7.3. Cell type specificity: regulation of AIY neuronal expression by a single core motif

Cell type specificity of gene expression is best exemplified by studies of neuronal gene expression (for example Chang et al., 2004; Zhang et al., 2004). Hobert and colleagues have studied the mechanism that regulates gene expression in a single pair of bilateral interneurons in the head called AIY left and right (AIYL & AIYR) that function in sensory input processing, learning, and memory (Ishihara et al., 2002; Mori and Ohshima, 1995; Tsalik et al., 2003). Differentiation of these interneurons is dependent on the transcription factors ceh-10 (Paired homeobox) and ttx-3 (LIM homeobox; Altun-Gultekin et al., 2001). Analysis of several promoters of genes expressed in AIY, including ceh-10 and ttx-3, revealed a consensus 16 bp AIY motif responsible for proper expression and comprising the core of an element that functions as an AIY-specific enhancer (Wenick and Hobert, 2004). This enhancer element is active in combination with some non-neuronal cell type promoters but not others demonstrating that promoter context is an important aspect of transcriptional regulation. Both ceh-10 and ttx-3 are part of an autoregulatory loop that activates their own expression, explaining the presence of an AIY motif within each of their promoters.

Control of AIY gene expression by ceh-10 and ttx-3 provides some insight into the logic of cell type-specific gene regulation (Wenick and Hobert, 2004). Cell type specificity is generated by using a combination of transcription factors that are unique to AIY interneurons in concert with a modular AIY response element upstream of target genes. Although some of the identified ceh-10/ttx-3 target genes were AIY specific, others were generally expressed in neurons or non-neuronal tissues. However, in most cases, expression in AIY was dependent on the AIY motif demonstrating that widespread expression may often be the composite action of several cell type-specific cis-acting elements. Finally, cis-acting control of gene targets encoding terminal differentiation products in AIY appeared to lack repressive elements. This suggests that the integration of positive and negative signals influencing cell type specificity is carried out by upstream transcription factors, ceh-10 and ttx-3 in this case. Once these upstream factors are activated, the downstream target gene battery will ensue largely independent of other influences.

8. Future

There is little doubt that the field of transcriptional regulation is on the verge of an information explosion. The combination of genome sequences from multiple Caenorhabditis species, microarray transcriptional profiling, and improved methodology will soon lead to a wealth of information on transcriptional activators and downstream target genes. One challenge will be the experimental verification of the mountains of data that will become available about upstream activators and downstream targets. Can these relationships be confirmed by independent approaches and are the interactions direct or indirect? We are entering an age in which the connections between most trans-acting factors and cis-acting regulatory target elements will be defined. Understanding how these connections regulate development will add an exciting chapter in the study of the worm and for transcriptional regulation in general.

9. Acknowledgements

This research was supported in part by the Intramural Research Program of the NIH, National Institute of Diabetes, Digestive and Kidney Diseases, and by grants from the NIH (GM053996) and the American Heart Association (03505487).
10. References

Albertson, D.G., and Thomson, J.N. (1976). The pharynx of *Caenorhabditis elegans*. Philos. Trans. R Soc. Lond. B Biol. Sci. 275, 299–325. Abstract

Altun-Gultekin, Z., Andachi, Y., Tsalik, E.L., Pilgrim, D., Kohara, Y., and Hobert, O. (2001). A regulatory cascade of three homeobox genes, *ceh-10*, *txr-3* and *ceh-23*, controls cell fate specification of a defined interneuron class in *C. elegans*. Development 128, 1951–1969. Abstract

An, J.H., and Blackwell, T.K. (2003). *SKN-1* links *C. elegans* mesendodermal specification to a conserved oxidative stress response. Genes Dev. 17, 1882–1893. Abstract

Ao, W., Gaudet, J., Kent, W.J., Muttumu, S., and Mango, S.E. (2004). Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR. Science 305, 1743–1746. Abstract Article

Ardizzi, J.P., and Epstein, H.F. (1987). Immunohistochemical localization of myosin heavy chain isoforms and paramyosin in developmentally and structurally diverse muscle cell types of the nematode *Caenorhabditis elegans*. J. Cell Biol. 105, 2763–2770. Abstract

Beaster-Jones, L., and Okkema, P.G. (2004). DNA binding and in vivo function of *C. elegans* *PEB-1* require a conserved FLYWCH motif. J. Mol. Biol. 339, 695–706. Abstract Article

Bigelow, H.R., Wenick, A.S., Wong, A., and Hobert, O. (2004). CisOrtho: a program pipeline for genome-wide identification of transcription factor target genes using phylogenetic footprinting. BMC Bioinformatics 5, 27. Abstract Article

Blackwell, T.K., Bowerman, B., Priess, J.R., and Weintraub, H. (1994). Formation of a monomeric DNA binding domain by Skn-1 bZIP and homeodomain elements. Science 266, 621–628. Abstract

Britton, C., McKerrow, J.H., and Johnstone, I.L. (1998). Regulation of the *Caenorhabditis elegans* gut cysteine protease gene *cpr-1*: requirement for GATA motifs. J. Mol. Biol. 283, 15–27. Abstract

Brodigan, T.M., Liu, J., Park, M., Kipreos, E.T., and Krause, M. (2003). Cyclin E expression during development in *Caenorhabditis elegans*. Dev. Biol. 254, 102–115. Abstract

Brown, C.T., Rust, A.G., Clarke, P.J., Pan, Z., Schilstra, M.J., De Buyscher, T., Griffin, G., Wold, B.J., Cameron, R.A., Davidson, E.H., and Bolouri, H. (2002). New computational approaches for analysis of cis-regulatory networks. Dev. Biol. 246, 86–102. Abstract Article

Carroll, A.S., Gilbert, D.E., Liu, X., Cheung, J.W., Michnowicz, J.E., Wagner, G., Ellenberger, T.E., and Blackwell, T.K. (1997). *SKN-1* domain folding and basic region monomer stabilization upon DNA binding. Genes Dev. 11, 2227–2238. Abstract

Chang, S., Johnston, R.J., Jr., Frokjaer-Jensen, C., Lockery, S., and Hobert, O. (2004). MicroRNAs act sequentially and asymmetrically to control chemosensory lateralization in the nematode. Nature 430, 785–789. Abstract Article

Chang, S., Johnston, R.J., Jr., and Hobert, O. (2003). A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons of *C. elegans*. Genes Dev. 17, 2123–2137. Abstract Article

Choi, K.Y., Ji, Y.J., Lee, C., Kim do, H., and Ahnn, J. (2002). Characterization of CeHDA-7, a class II histone deacetylase interacting with MEF-2 in *Caenorhabditis elegans*. Biochem. Biophys. Res. Commun. 293, 1295–1300. Abstract Article

Christensen, S., Kodoyianni, V., Bosenberg, M., Friedman, L., and Kimble, J. (1996). *lag-1*, a gene required for *lin-12* and *glp-1* signaling in *Caenorhabditis elegans*, is homologous to human CBF1 and Drosophila Su(H). Development 122, 1373–1383. Abstract

Corsi, A.K., Costas, S.A., Fire, A., and Krause, M. (2000). *Caenorhabditis elegans* twist plays an essential role in non-striated muscle development. Development 127, 2041–2051. Abstract
Cui, M., and Han, M. (2003). Cis regulatory requirements for vulval cell-specific expression of the *Caenorhabditis elegans* fibroblast growth factor gene *egl-17*. Dev. Biol. 257, 104–116. Abstract

Culetto, E., Combes, D., Fedon, Y., Roig, A., Toutant, J.P., and Arpagaus, M. (1999). Structure and promoter activity of the 5' flanking region of *ace-1*, the gene encoding acetylcholinesterase of class A in *Caenorhabditis elegans*. J. Mol. Biol. 290, 951–966. Abstract Article

den Boer, B.G., Sookhareea, S., Dufourcq, P., and Labouesse, M. (1998). A tissue-specific knock-out strategy reveals that *lin-26* is required for the formation of the somatic gonad epithelium in *Caenorhabditis elegans*. Development 125, 3213–3224. Abstract

Dantonel, J.C., Quintin, S., Lakatos, L., Labouesse, M., and Tora, L. (2000). TBP-like factor is required for embryonic RNA polymerase II transcription in *C. elegans*. Mol. Cell 6, 715–722. Abstract

Dichoso, D., Brodigan, T., Chwoe, K.Y., Lee, J.S., Llacer, R., Park, M., Corsi, A.K., Kostas, S.A., Fire, A., Ahnn, J., and Krause, M. (2000). The MADS-Box factor CeMEF2 is not essential for *Caenorhabditis elegans* myogenesis and development. Dev. Biol. 223, 431–440. Abstract Article

Dufourcq, P., Chanal, P., Vicaire, S., Camut, E., Quintin, S., den Boer, B.G., Bosher, J.M., and Labouesse, M. (1999). *lir-2*, *lir-1* and *lin-26* encode a new class of zinc-finger proteins and are organized in two overlapping operons both in *Caenorhabditis elegans* and in *Caenorhabditis briggsae*. Genetics 152, 221–235. Abstract

Duggan, A., Ma, C., and Chalfie, M. (1998). Regulation of touch receptor differentiation by the *Caenorhabditis elegans* *mec-3* and *unc-86* genes. Development 125, 4107–4119. Abstract

Dupuy, D., Li, Q.R., Deplancke, B., Boxem, M., Hao, T., Lamesch, P., Sequerras, R., Bosak, S., Doucette-Stamm, L., Hope, I.A., *et al.* (2004). A first version of the *Caenorhabditis elegans* Promoterome. Genome Res. 14, 2169–2175. Abstract Article

Eastman, C., Horvitz, H.R., and Jin, Y. (1999). Coordinated transcriptional regulation of the *unc-25* glutamic acid decarboxylase and the *unc-47* GABA vesicular transporter by the *Caenorhabditis elegans* UNC-30 homeodomain protein. J. Neurosci. 19, 6225–6234. Abstract

Egan, C.R., Chung, M.A., Allen, F.L., Heschl, M.F., Van Buskirk, C.L., and McGhee, J.D. (1995). A gut-to-pharynx/tail switch in embryonic expression of the *Caenorhabditis elegans* *ges-1* gene centers on two GATA sequences. Dev. Biol. 170, 397–419. Abstract

Esmaeili, B., Ross, J.M., Neades, C., Miller, D.M., 3rd, and Ahringer, J. (2002). The *C. elegans* even-skipped homologue, *vab-7*, specifies DB motoneurone identity and axon trajectory. Development 129, 853–862. Abstract

Fire, A., Harrison, S.W., and Dixon, D. (1990). A modular set of lacZ fusion vectors for studying gene expression in *Caenorhabditis elegans*. Gene 93, 189–198. Abstract

Fire, A., and Waterston, R.H. (1989). Proper expression of myosin genes in transgenic nematodes. EMBO J. 8, 3419–3428. Abstract

Fukushige, T., Goszczynski, B., Yan, J., and McGhee, J.D. (2005). Transcriptional control and patterning of the *pho-1* gene, an essential acid phosphatase expressed in the *C. elegans* intestine. Dev. Biol. 279, 446–461. Abstract Article

Fukushige, T., Hawkins, M.G., and McGhee, J.D. (1998). The GATA-factor *elt-2* is essential for formation of the *Caenorhabditis elegans* intestine. Dev. Biol. 198, 286–302. Abstract

Fukushige, T., Hendzel, M.J., Bazett-Jones, D.P., and McGhee, J.D. (1999). Direct visualization of the *elt-2* gut-specific GATA factor binding to a target promoter inside the living *Caenorhabditis elegans* embryo. Proc. Natl. Acad. Sci. USA 96, 11883–11888. Abstract

Fukushige, T., Schroeder, D.F., Allen, F.L., Goszczynski, B., and McGhee, J.D. (1996). Modulation of gene expression in the embryonic digestive tract of *C. elegans*. Dev. Biol. 178, 276–288. Abstract
Fukushige, T., and Siddiqui, S.S. (1995). Effect of the dpy-20 and rol-6 cotransformation markers on alpha-tubulin gene expression in C. elegans transformants. Transgenic Res. 4, 332–340. Abstract

Furuyama, T., Nakazawa, T., Nakano, I., and Mori, N. (2000). Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J. 349, 629–634. Abstract

Gaudet, J., and Mango, S.E. (2002). Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science 295, 821–825. Abstract Article

Gaudet, J., Muttumu, S., Horner, M., and Mango, S.E. (2004). Whole-genome analysis of temporal gene expression during foregut development. PLoS Biol. 2, e352. Abstract Article

Guhathakurta, D., Schrier, L.A., Waterston, R.H., and Stormo, G.D. (2004). Novel transcription regulatory elements in Caenorhabditis elegans muscle genes. Genome Res. 14, 2457–2468. Abstract Article

Harfe, B.D., and Fire, A. (1998). Muscle and nerve-specific regulation of a novel NK-2 class homeodomain factor in Caenorhabditis elegans. Development 125, 421–429. Abstract

Harfe, B.D., Vaz Gomes, A., Kenyon, C., Liu, J., Krause, M., and Fire, A. (1998). Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning. Genes Dev. 12, 2623–2635. Abstract

Hart, A.H., Reventar, R., and Bernstein, A. (2000). Genetic analysis of ETS genes in C. elegans. Oncogene 19, 6400–6408. Abstract Article

Haun, C., Alexander, J., Stainier, D.Y., and Okkema, P.G. (1998). Rescue of Caenorhabditis elegans pharyngeal development by a vertebrate heart specification gene. Proc. Natl. Acad. Sci. USA 95, 5072–5075. Abstract

Hobert, O. (2002). PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 32, 728–730. Abstract

Hope, I.A., Mounsey, A., Bauer, P., and Aslam, S. (2003). The forkhead gene family of Caenorhabditis elegans. Gene 304, 43–55. Abstract

Horner, M.A., Quintin, S., Domeier, M.E., Kimble, J., Labouesse, M., and Mango, S.E. (1998). pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev. 12, 1947–1952. Abstract

Horton, R.M., Cai, Z.L., Ho, S.N., and Pease, L.R. (1990). Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8, 528–535. Abstract

Hwang, B.J., and Sternberg, P.W. (2004). A cell-specific enhancer that specifies lin-3 expression in the C. elegans anchor cell for vulval development. Development 131, 143–151. Abstract Article

Hwang, S.B., and Lee, J. (2003). Neuron cell type-specific SNAP-25 expression driven by multiple regulatory elements in the nematode Caenorhabditis elegans. J. Mol. Biol. 333, 237–247. Abstract

Ishihara, T., Iino, Y., Mohri, A., Mori, I., Gengyo-Ando, K., Mitani, S., and Katsura, I. (2002). HEN-1, a secretory protein with an LDL receptor motif, regulates sensory integration and learning in Caenorhabditis elegans. Cell 109, 639–649. Abstract

Jin, Y., Hoskins, R., and Horvitz, H.R. (1994). Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 372, 780–783. Abstract Article

Johnson, A.D., Fitzsimmons, D., Hagman, J., and Chamberlin, H.M. (2001). EGL-38 Pax regulates the ovo-related gene lin-48 during Caenorhabditis elegans organ development. Development 128, 2857–2865. Abstract

Jones, D., Russnak, R.H., Kay, R.J., and Candido, E.P. (1986). Structure, expression, and evolution of a heat shock gene locus in Caenorhabditis elegans that is flanked by repetitive elements. J. Biol. Chem. 261, 12006–12015. Abstract
Kalb, J.M., Lau, K.K., Goszczynski, B., Fukushige, T., Moons, D., Okkema, P.G., and McGhee, J.D. (1998). *pha-4* is Ce-fkh-1, a fork head/HNF-3alpha,beta,gamma homolog that functions in organogenesis of the *C. elegans* pharynx. Development 125, 2171–2180. Abstract

Kaltenbach, L., Horner, M.A., Rothman, J.H., and Mango, S.E. (2000). The TBP-like factor CeTLF is required to activate RNA polymerase II transcription during *C. elegans* embryogenesis. Mol. Cell 6, 705–713. Abstract

Karp, X., and Greenwald, I. (2003). Post-transcriptional regulation of the E/Daughterless ortholog HLH-2, negative feedback, and birth order bias during the AC/VU decision in *C. elegans*. Genes Dev. 17, 3100–3111. Abstract Article

Kirouac, M., and Sternberg, P.W. (2003). cis-Regulatory control of three cell fate-specific genes in vulval organogenesis of *Caenorhabditis elegans* and *C. briggsae*. Dev. Biol. 257, 85–103. Abstract

Koh, K., Peyrot, S.M., Wood, C.G., Wagmaister, J.A., Maduro, M.F., Eisenmann, D.M., and Rothman, J.H. (2002). Cell fates and fusion in the *C. elegans* vulval primordium are regulated by the EGL-18 and ELT-6 GATA factors – apparent direct targets of the LIN-39 Hox protein. Development 129, 5171–5180. Abstract

Kostas, S.A., and Fire, A. (2002). The T-box factor MLS-1 acts as a molecular switch during specification of nonstriated muscle in *C. elegans*. Genes Dev. 16, 257–269. Abstract Article

Kostrouchova, M., Krause, M., Kostrouch, Z., and Rall, J.E. (1998). CHR3: a *Caenorhabditis elegans* orphan nuclear hormone receptor required for proper epidermal development and molting. Development 125, 1617–1626. Abstract

Kostrouchova, M., Krause, M., Kostrouch, Z., and Rall, J.E. (2001). Nuclear hormone receptor CHR3 is a critical regulator of all four larval molts of the nematode *Caenorhabditis elegans*. Proc. Natl. Acad. Sci. USA 98, 7360–7365. Abstract Article

Krause, M., Fire, A., Harrison, S.W., Priess, J., and Weintraub, H. (1990). CeMyoD accumulation defines the body wall muscle cell fate during *C. elegans* embryogenesis. Cell 63, 907–919. Abstract

Krause, M., Fire, A., White-Harrison, S., Weintraub, H., and Tapscott, S. (1992). Functional conservation of nematode and vertebrate myogenic regulatory factors. J. Cell Sci. 16(Suppl.), 111–115. Abstract

Krause, M., Harrison, S.W., Xu, S.Q., Chen, L., and Fire, A. (1994). Elements regulating cell- and stage-specific expression of the *C. elegans* MyoD family homolog hlh-1. Dev. Biol. 166, 133–148. Abstract

Krause, M., Park, M., Zhang, J.M., Yuan, J., Harfe, B., Xu, S.Q., Greenwald, I., Cole, M., Paterson, B., and Fire, A. (1997). A *C. elegans* E/Daughterless bHLH protein marks neuronal but not striated muscle development. Development 124, 2179–2189. Abstract

Kuchenthal, C.A., Chen, W., and Okkema, P.G. (2001). Multiple enhancers contribute to expression of the NK-2 homeobox gene ceh-22 in *C. elegans* pharyngeal muscle. Genesis 31, 156–166. Abstract

Labouesse, M., Hartweg, E., and Horvitz, H.R. (1996). The *Caenorhabditis elegans* LIN-26 protein is required to specify and/or maintain all non-neuronal ectodermal cell fates. Development 122, 2579–2588. Abstract

Labouesse, M., Sookhareea, S., and Horvitz, H.R. (1994). The *Caenorhabditis elegans* gene lin-26 is required to specify the fates of hypodermal cells and encodes a presumptive zinc-finger transcription factor. Development 120, 2359–2368. Abstract

Landmann, F., Quintin, S., and Labouesse, M. (2004). Multiple regulatory elements with spatially and temporally distinct activities control the expression of the epithelial differentiation gene lin-26 in *C. elegans*. Dev. Biol. 265, 478–490. Abstract

Ledent, V., Paquet, O., and Vervoort, M. (2002). Phylogenetic analysis of the human basic helix-loop-helix proteins. Genome Biol. 3, RESEARCH0030. Abstract
Lee, S.S., Kennedy, S., Tolonen, A.C., and Ruvkun, G. (2003). DAF-16 target genes that control C. elegans life-span and metabolism. Science 300, 644–647. Abstract Article

Lichtsteiner, S., and Tjian, R. (1993). Cloning and properties of the Caenorhabditis elegans TATA-box-binding protein. Proc. Natl. Acad. Sci. USA 90, 9673–9677. Abstract

Liu, J., and Fire, A. (2000). Overlapping roles of two Hox genes and the exd ortholog ceh-20 in diversification of the C. elegans postembryonic mesoderm. Development 127, 5179–5190. Abstract

Liu, T., Zimmerman, K.K., and Patterson, G.I. (2004). Regulation of signaling genes by TGFbeta during entry into dauer diapause in C. elegans. BMC Dev. Biol. 4, 11. Abstract Article

MacMorris, M., Broverman, S., Greenspoon, S., Lea, K., Madej, C., Blumenthal, T., and Spieth, J. (1992). Regulation of vitellogenin gene expression in transgenic Caenorhabditis elegans: short sequences required for activation of the vit-2 promoter. Mol. Cell. Biol. 12, 1652–1662. Abstract

MacMorris, M., Spieth, J., Madej, C., Lea, K., and Blumenthal, T. (1994). Analysis of the VPE sequences in the Caenorhabditis elegans vit-2 promoter with extrachromosomal tandem array-containing transgenic strains. Mol. Cell. Biol. 14, 484–491. Abstract

Maduro, M.F., Meneghini, M.D., Bowerman, B., Broitman-Maduro, G., and Rothman, J.H. (2001). Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3beta homolog is mediated by MED-1 and -2 in C. elegans. Mol. Cell 7, 475–485. Abstract

Maduro, M.F., and Rothman, J.H. (2002). Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm. Dev. Biol. 246, 68–85. Abstract Article

Maglich, J.M., Sluder, A., Guan, X., Shi, Y., McKee, D.D., Carrick, K., Kamdar, K., Willson, T.M., and Moore, J.T. (2001). Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol. 2, RESEARCH0029. Abstract

Mango, S.E., Lambie, E.J., and Kimble, J. (1994). The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. Development 120, 3019–3031. Abstract

Marshall, S.D., and McGhee, J.D. (2001). Coordination of ges-1 expression between the Caenorhabditis pharynx and intestine. Dev. Biol. 239, 350–363. Abstract Article

McElwee, J., Bubb, K., and Thomas, J.H. (2003). Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2, 111–121. Abstract

McGhee, J.D., and Krause, M.W. (1997). Transcription Factors and Transcriptional Regulation. In: C. elegans II, D.L. Riddle, T. Blumenthal, B.J. Meyer, and J.R. Priess, eds., Cold Spring Harbor, NY, CSHL Press, pp. 147–184.

McKay, S.J., Johnsen, R., Khattra, J., Asano, J., Baillie, D.L., Chan, S., Dube, N., Fang, L., Goszczyński, B., Ha, E., et al. (2003). Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb. Symp. Quant. Biol. 68, 159–169. Abstract

Miley, G.R., Fantz, D., Glossip, D., Lu, X., Saito, R.M., Palmer, R.E., Inoue, T., Van Den Heuvel, S., Sternberg, P.W., and Kornfeld, K. (2004). Identification of residues of the Caenorhabditis elegans LIN-1 ETS domain that are necessary for DNA binding and regulation of vulval cell fates. Genetics 167, 1697–1709. Abstract Article

Miller, D.M., 3rd, Ortiz, I., Berliner, G.C., and Epstein, H.F. (1983). Differential localization of two myosins within nematode thick filaments. Cell 34, 477–490. Abstract

Moilanen, L.H., Fukushima, T., and Freedman, J.H. (1999). Regulation of metallothionein gene transcription. Identification of upstream regulatory elements and transcription factors responsible for cell-specific expression of the metallothionein genes from Caenorhabditis elegans. J. Biol. Chem. 274, 29655–29665. Abstract
Mori, I., and Ohshima, Y. (1995). Neural regulation of thermotaxis in *Caenorhabditis elegans*. Nature 376, 344–348. Abstract Article

Nam, S., Jin, Y.H., Li, Q.L., Lee, K.Y., Jeong, G.B., Ito, Y., Lee, J., and Bae, S.C. (2002). Expression pattern, regulation, and biological role of runt domain transcription factor, run, in *Caenorhabditis elegans*. Mol. Cell. Biol. 22, 547–554. Abstract

Nash, B., Colavita, A., Zheng, H., Roy, P.J., and Culotti, J.G. (2000). The forkhead transcription factor UNC-130 is required for the graded spatial expression of the UNC-129 TGF-beta guidance factor in *C. elegans*. Genes Dev. 14, 2486–2500. Abstract

Natarajan, L., Jackson, B.M., Szyleyko, E., and Eisenmann, D.M. (2004). Identification of evolutionarily conserved promoter elements and amino acids required for function of the *C. elegans* beta-catenin homolog BAR-1. Dev. Biol. 272, 536–557. Abstract Article

Okkema, P.G., and Fire, A. (1994). The *Caenorhabditis elegans* NK-2 class homeoprotein CEH-22 is involved in combinatorial activation of gene expression in pharyngeal muscle. Development 120, 2175–2186. Abstract

Okkema, P.G., Ha, E., Haun, C., Chen, W., and Fire, A. (1997). The *Caenorhabditis elegans* NK-2 homeobox gene *ceh-22* activates pharyngeal muscle gene expression in combination with *pha-1* and is required for normal pharyngeal development. Development 124, 3965–3973. Abstract

Okkema, P.G., Harrison, S.W., Plunger, V., Aryana, A., and Fire, A. (1993). Sequence requirements for myosin gene expression and regulation in *Caenorhabditis elegans*. Genetics 135, 385–404. Abstract

Oskouian, B., Mendel, J., Shocron, E., Lee, M.A., Jr., Fyrst, H., and Saba, J.D. (2005). Regulation of sphingosine-1-phosphate lyase gene expression by members of the GATA family of transcription factors. J. Biol. Chem. Abstract Article

Park, M., and Krause, M.W. (1999). Regulation of postembryonic G(1) cell cycle progression in *Caenorhabditis elegans* by a cyclin D/CDK-like complex. Development 126, 4849–4860. Abstract

Pocock, R., Ahringer, J., Mitsch, M., Maxwell, S., and Woollard, A. (2004). A regulatory network of T-box genes and the even-skipped homologue *vab-7* controls patterning and morphogenesis in *C. elegans*. Development 131, 2373–2385. Abstract Article

Portman, D.S., and Emmons, S.W. (2004). Identification of *C. elegans* sensory ray genes using whole-genome expression profiling. Dev. Biol. 270, 499–512. Abstract Article

Powell-Coffman, J.A., Bradfield, C.A., and Wood, W.B. (1998). *Caenorhabditis elegans* orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc. Natl. Acad. Sci. USA 95, 2844–2849. Abstract

Prasad, B.C., Ye, B., Zackhary, R., Schrader, K., Seydoux, G., and Reed, R.R. (1998). *unc-3*, a gene required for axonal guidance in *Caenorhabditis elegans*, encodes a member of the O/E family of transcription factors. Development 125, 1561–1568. Abstract

Reinke, V., Gil, I.S., Ward, S., and Kazmer, K. (2004). Genome-wide germline-enriched and sex-biased expression profiles in *Caenorhabditis elegans*. Development 131, 311–323. Abstract Article

Rougvie, A.E., and Ambros, V. (1995). The heterochronic gene *lin-29* encodes a zinc finger protein that controls a terminal differentiation event in *Caenorhabditis elegans*. Development 121, 2491–2500. Abstract

Russnak, R.H., and Candido, E.P. (1985). Locus encoding a family of small heat shock genes in *Caenorhabditis elegans*: two genes duplicated to form a 3.8-kilobase inverted repeat. Mol. Cell. Biol. 5, 1268–1278. Abstract

Ruvkun, G., and Hobert, O. (1998). The taxonomy of developmental control in *Caenorhabditis elegans*. Science 282, 2033–2041. Abstract
Seydoux, G., and Dunn, M.A. (1997). Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of *Caenorhabditis elegans* and *Drosophila melanogaster*. *Development* 124, 2191–2201. Abstract

Shaham, S., and Bargmann, C.I. (2002). Control of neuronal subtype identity by the *C. elegans* ARID protein CFI-1. *Genes Dev.* 16, 972–983. Abstract Article

Shemer, G., and Podbilewicz, B. (2002). LIN-39/Hox triggers cell division and represses EFF-1/fusogen-dependent vulval cell fusion. *Genes Dev.* 16, 3136–3141. Abstract Article

Shim, Y.H. (1999). *elt-1*, a gene encoding a *Caenorhabditis elegans* GATA transcription factor, is highly expressed in the germ lines with nsp genes as the potential targets. *Mol. Cells* 9, 535–541. Abstract

Shim, Y.H., Bonner, J.J., and Blumenthal, T. (1995). Activity of a *C. elegans* GATA transcription factor, ELT-1, expressed in yeast. *J. Mol. Biol.* 253, 665–676. Abstract

Shoichet, S.A., Malik, T.H., Rothman, J.H., and Shivdasani, R.A. (2000). Action of the *Caenorhabditis elegans* GATA factor END-1 in Xenopus suggests that similar mechanisms initiate endoderm development in ecdysozoa and vertebrates. *Proc. Natl. Acad. Sci. USA* 97, 4076–4081. Abstract

Shostak, Y., Van Gilst, M.R., Antebi, A., and Yamamoto, K.R. (2004). Identification of *C. elegans* DAF-12-binding sites, response elements, and target genes. *Genes Dev.* 18, 2529–2544. Abstract Article

Spieth, J., Denison, K., Kirtland, S., Cane, J., and Blumenthal, T. (1985). The *C. elegans* vitellogenin genes: short sequence repeats in the promoter regions and homology to the vertebrate genes. *Nucleic Acids Res.* 13, 5283–5295. Abstract

Spieth, J., Shim, Y.H., Lea, K., Conrad, R., and Blumenthal, T. (1991). *elt-1*, an embryonically expressed *Caenorhabditis elegans* gene homologous to the GATA transcription factor family. *Mol. Cell. Biol.* 11, 4651–4659. Abstract

Stringham, E.G., Dixon, D.K., Jones, D., and Candido, E.P. (1992). Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic *Caenorhabditis elegans*. *Mol. Biol. Cell* 3, 221–233. Abstract

Sulston, J.E., and Horvitz, H.R. (1977). Post-embryonic cell lineages of the nematode, *Caenorhabditis elegans*. *Dev. Biol.* 56, 110–156. Abstract

Sulston, J.E., Schierenberg, E., White, J.G., and Thomson, J.N. (1983). The embryonic cell lineage of the nematode *Caenorhabditis elegans*. *Dev. Biol.* 100, 64–119. Abstract

Teng, Y., Girard, L., Ferreira, H.B., Sternberg, P.W., and Emmons, S.W. (2004). Dissection of cis-regulatory elements in the *C. elegans* Hox gene *egl-5* promoter. *Dev. Biol.* 276, 476–492. Abstract Article

Thatcher, J.D., Fernandez, A.P., Beaster-Jones, L., Haun, C., and Okkema, P.G. (2001). The *Caenorhabditis elegans* peb-1 gene encodes a novel DNA-binding protein involved in morphogenesis of the pharynx, vulva, and hindgut. *Dev. Biol.* 229, 480–493. Abstract

Thatcher, J.D., Haun, C., and Okkema, P.G. (1999). The DAF-3 Smad binds DNA and represses gene expression in the *Caenorhabditis elegans* pharynx. *Development* 126, 97–107. Abstract

Thellmann, M., Hatzold, J., and Conradt, B. (2003). The Snail-like CES-1 protein of *C. elegans* can block the expression of the BH3-only cell-death activator gene *egli-1* by antagonizing the function of bHLH proteins. *Development* 130, 4057–4071. Abstract

Toker, A.S., Teng, Y., Ferreira, H.B., Emmons, S.W., and Chalfie, M. (2003). The *Caenorhabditis elegans* split-like gene *sem-4* restricts touch cell fate by repressing the selector Hox gene *egl-5* and the effector gene *mec-3*. *Development* 130, 3831–3840. Abstract
Tsalik, E.L., Niacaris, T., Wenick, A.S., Pau, K., Avery, L., and Hobert, O. (2003). LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev. Biol. 263, 81–102. Abstract

Van Auken, K., Weaver, D., Robertson, B., Sundaram, M., Saldi, T., Edgar, L., Elling, U., Lee, M., Boese, Q., and Wood, W.B. (2002). Roles of the Homothorax/Meis/Prep homolog UNC-62 and the Exd/Pbx homologs CEH-20 and CEH-40 in C. elegans embryogenesis. Development 129, 5255–5268. Abstract

Venkatesan, K., McManus, H.R., Mello, C.C., Smith, T.F., and Hansen, U. (2003). Functional conservation between members of an ancient duplicated transcription factor family, LSF/Grainyhead. Nucleic Acids Res. 31, 4304–4316. Abstract

Vilimas, T., Abraham, A., and Okkema, P.G. (2004). An early pharyngeal muscle enhancer from the Caenorhabditis elegans ceh-22 gene is targeted by the Forkhead factor PHA-4. Dev. Biol. 266, 388–398. Abstract

Walker, A.K., See, R., Batchelder, C., Kophengnavong, T., Gronniger, J.T., Shi, Y., and Blackwell, T.K. (2000). A conserved transcription motif suggesting functional parallels between Caenorhabditis elegans SKN-1 and Cap’n’Collar-related basic leucine zipper proteins. J. Biol. Chem. 275, 22166–22171. Abstract Article

Walker, A.K., Shi, Y., and Blackwell, T.K. (2004). An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription. J. Biol. Chem. 279, 15339–15347. Abstract Article

Wallenfang, M.R., and Seydoux, G. (2002). cdk-7 Is required for mRNA transcription and cell cycle progression in Caenorhabditis elegans embryos. Proc. Natl. Acad. Sci. USA 99, 5527–5532. Abstract Article

Way, J.C., and Chalfie, M. (1988). mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 54, 5–16. Abstract

Wenick, A.S., and Hobert, O. (2004). Genomic cis-regulatory architecture and trans-acting regulators of a single interneuron-specific gene battery in C. elegans. Dev. Cell 6, 757–770. Abstract Article

Wilkinson, H.A., and Greenwald, I. (1995). Spatial and temporal patterns of lin-12 expression during C. elegans hermaphrodite development. Genetics 141, 513–526. Abstract

Winner, A.R., Meir, J.Y., Ross, J.M., Tavermarakis, N., Driscoll, M., Ishihara, T., Katsura, I., and Miller, D.M., 3rd (1999). UNC-4/UNC-37-dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans. Genes Dev. 13, 2774–2786. Abstract

Winter, C.E., Penha, C., and Blumenthal, T. (1996). Comparison of a vitellogenin gene between two distantly related rhabditid nematode species. Mol. Biol. Evol. 13, 674–684. Abstract

Yi, W., and Zarkower, D. (1999). Similarity of DNA binding and transcriptional regulation by Caenorhabditis elegans MAB-3 and Drosophila melanogaster DSX suggests conservation of sex determining mechanisms. Development 126, 873–881. Abstract

Zhang, F., Barboric, M., Blackwell, T.K., and Peterlin, B.M. (2003). A model of repression: CTD analogs and PIE-1 inhibit transcriptional elongation by P-TEFb. Genes Dev. 17, 748–758. Abstract Article

Zhang, S., Ma, C., and Chalfie, M. (2004). Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell 119, 137–144. Abstract Article

Zhu, J., Fukushima, T., McGhee, J.D., and Rothman, J.H. (1998). Reprogramming of early embryonic blastomeres into endodermal progenitors by a Caenorhabditis elegans GATA factor. Genes Dev. 12, 3809–3814.

Zhu, J., Hill, R.J., Heid, P.J., Fukuyama, M., Sugimoto, A., Priess, J.R., and Rothman, J.H. (1997). end-1 encodes an apparent GATA factor that specifies the endoderm precursor in Caenorhabditis elegans embryos. Genes Dev. 11, 2883–2896. Abstract
Zucker-Aprison, E., and Blumenthal, T. (1989). Potential regulatory elements of nematode vitellogenin genes revealed by interspecies sequence comparison. J. Mol. Evol. 28, 487–496. Abstract

Zweidler-Mckay, P.A., Grimes, H.L., Flubacher, M.M., and Tsichlis, P.N. (1996). Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor. Mol. Cell. Biol. 16, 4024–4034. Abstract