State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET

Marion Chomet, Guus A. M. S. van Dongen, and Danielle J. Vugts*

ABSTRACT: Inert and stable radiolabeling of monoclonal antibodies (mAb), antibody fragments, or antibody mimetics with radiometals is a prerequisite for immuno-PET. While radiolabeling is preferably fast, mild, efficient, and reproducible, especially when applied for human use in a current Good Manufacturing Practice compliant way, it is crucial that the obtained radioimmunoconjugate is stable and shows preserved immunoreactivity and in vivo behavior. Radiometals and chelators have extensively been evaluated to come to the most ideal radiometal–chelator pair for each type of antibody derivative. Although PET imaging of antibodies is a relatively recent tool, applications with 89Zr, 64Cu, and 68Ga have greatly increased in recent years, especially in the clinical setting, while other less common radionuclides such as 52Mn, 86Y, 66Ga, and 44Sc, but also 18F as in $[^{18}$F$]$AlF are emerging promising candidates for the radiolabeling of antibodies. This review presents a state of the art overview of the practical aspects of radiolabeling of antibodies, ranging from fast kinetic antibody derivatives and nanobodies to slow kinetic intact mAbs. Herein, we focus on the most common approach which consists of the antibody with a chelator, and after eventual storage of the premodified molecule, radiolabeling as a second step. Other approaches are possible but have been excluded from this review. The review includes recent and representative examples from the literature highlighting which radiometal–chelator–antibody combinations are the most successful for in vivo application.

Antibodies and Immuno-PET

The Emerging Role of Antibodies. Monoclonal antibodies (mAbs) have emerged as next-generation therapeutic drugs, especially for the treatment of cancer, due to their high specificity toward certain antigens. Ideally, the target should be tumor selective to avoid binding of mAbs to healthy organs expressing the same target. While initially, only unconjugated IgGs (mostly of IgG1 subclass) were developed for therapy, mainly used for blocking signal transduction of tyrosine kinases or other membrane receptor targets involved in oncology and other diseases, the trend in the past decade is set on development of antibody–drug conjugates (ADC), multispecific mAbs, immune checkpoints inhibitors, and also mAb fragments such as single domain antibodies, nanobodies, and antibody mimetics such as affibodies (Figure 1; in this review collectively called "antibodies"). The development of this wide range of antibodies is accompanied by questions concerning their in vivo behavior, pharmacokinetics, and targeting efficiency. The growing field of mAb development is comprehensively described in the journal mAbs that publishes yearly an update on “antibodies to watch”, showing that between 2010 and the end of 2019, the cumulative number of antibodies approved in the US and EU has almost tripled resulting in a total of about 80 approvals. About 50% of the antibody therapeutics currently in phase II or III clinical studies are evaluated in noncancer applications. Positron Emission Tomography (PET) as a Tool to Evaluate Antibodies. Positron emission tomography (PET) is not only used for diagnosis and response monitoring using $[^{18}$F$]$FDG, but has also become a highly valuable imaging technique helping to understand the behavior of antibodies at an early stage during development by evaluating the radiolabeled antibodies in so-called immuno-PET imaging studies. Immuno-PET is now increasingly used in early-phase clinical trials for making go/no go decisions based on results obtained with a limited number of patients. In this way, immuno-PET enables steering drug design and contributes to drug and patient selection, and as a consequence, the development of new medicines is sped up in a cost-effective way. Thanks to its high resolution, sensitivity, and better quantification ability, PET is preferred over single-photon emission computed...
Figure 1. Representation of a monoclonal antibody, isotype IgG, containing two light (L) and heavy (H) chains maintained together via disulfide bonds. The variable region (Fv) is composed of the variable heavy (VH) and variable light (VL) chains. VH and VL are together with the constant light and heavy chain 1 (CL and CH1) constituting the Fab region. CH2 and CH3 are the constant region (Fc). Many of the smaller molecular weight antibody fragments have been engineered from this general structure and the ones discussed in this review are summarized here, including the antibody mimetic affibody. Approximative molecular weight and in vivo biological half-life are indicated.

Table 1. Physical Characteristics and Production Route of PET Radionuclides Discussed in This Review

radionuclide	production route	half-life	Eβ max (keV)	mean range in water (mm)	β⁺ (%)	characteristic main transition γ (keV)
⁵²Mn	Cyclotron ⁵³Cr(p,n) ⁵²Mn	5.6 d	β⁺ (573.3)	0.6	434.1	(100.0%)\(^b\)
⁹⁰Zr	Cyclotron ⁹⁰Y(p,n) ⁹⁰Zr	78.4 h	β⁺ (902)	1.2	935.5	(94.9%)
⁶⁸Y	Cyclotron ⁶⁸Sc(p,n) ⁶⁸Y	14.74 h	β⁺ (3153)	1.9	744.2	(90.3%)
⁶⁴Cu	Cyclotron ⁶⁸Ni(p,n) ⁶⁴Cu	12.7 h	β⁺ (653.0)	0.7	333.6	(5.1%)
⁶⁶Ga	Cyclotron ⁶⁸Zn(p,n) ⁶⁶Ga	9.49 h	β⁺ (4153)	9.3	909	(99.9%)
⁴⁴Sc	Cyclotron ⁴⁴Ca(p,n) ⁴⁴Sc-generator ⁴⁴Sc(p,2n) ⁴⁴Ti → ⁴⁴Sc	4.0 h	β⁺ (1473.5)	2.3	1039.2	(37.0%)\(^b\)
¹⁸F-Al	Cyclotron ¹⁸O(p,n) ¹⁸F	109.8 min (¹⁸F)	β⁺ (633.5)	0.6	2751.9	(23.3%)
⁶⁸Ga	Generator ⁶⁶Ge → ⁶⁸Ga	67.7 min	β⁺ (1899.1)	2.9	833.5	(5.9%)

\(^a\)Nonapplicable: ≤1%
\(^b\)Energies with an abundance <5% left out.
tomography (SPECT), while the availability of preclinical and clinical PET cameras strongly increased during the past
decade. 8

Radionuclides for PET Imaging of Antibodies. Antibodies are proteinaceous molecules typically ranging from a few to about 150 kDa in size. As a result, their pharmacokinetics also range from short (less than an hour serum half-life) to long (days) blood circulating half-life. To enable in vivo characterization of an antibody with a PET camera, a positron emitter has to be attached in a stable and inert way. For this purpose, radiometals are particularly interesting, since they can be used in combination with antibodies that have been premodified by means of a bifunctional chelating agent, allowing facile single-step radiolabeling. In addition, radiometals of such constructs possess residualizing properties. Zirconium-89, copper-64, and gallium-68 have emerged over the years as the preferred radiometals for radiolabeling of antibodies, because of their physical properties, availability, costs, and ease of radiolabeling (see Tables 1 and 2). 9,10 The half-life of zirconium-89 (t1/2 = 78.4 h) matches the biological half-life of long-circulating large (slow kinetic) molecules like intact mAbs (Figure 1), while copper-64 possesses an intermediate half-life (t1/2 = 12.7 h) that can be used for antibody fragments with medium to relatively fast kinetics. On the contrary, radioelements such as gallium-68 (t1/2 = 67.7 min) are preferred for antibody fragments and mimetics with a very short serum half-life such as nanobodies or affibodies (see Table 1). Although 89Zr, 64Cu, and 68Ga are the most commonly used radiometals for radiolabeling of antibodies, none of them are perfect, triggering research on other emerging radiometals such as manganese-52, yttrium-86, gallium-66, and scandium-44. Moreover, recent advances in 18F radiochemistry expand the options for radiolabeling of antibodies with 18F. 18F is by far the most commonly used PET radionuclide thanks to its short half-life (110 min), its ideal physical properties as extensively shown in small molecule imaging, and its increasing availability. Finally, the application of matching theranostic pairs (SPECT or PET for imaging combined with radionuclide therapy) is an interesting re-emerging field in nuclear medicine. Around 20 years ago, a first wave has been observed in the use of theranostics, which was followed by near-abandonment. 11 In recent years, there has been renewed interest in theranostics as exemplified by, e.g., PSMA imaging and therapy. 12 The concept of matching pairs relies on two different approaches, either using the same targeting ligand in combination with two different isotopes (a diagnostic and a therapeutic one) of the same element or using two different radionuclides. 13 The first approach is in theory ideal to assess biodistribution, target accumulation, and redistribution of the radioactive and nonradioactive catabolites to fully predict therapeutic response by dosimetric analysis. In the second approach, the diagnostic radiotracer is used as a scouting agent for the therapeutic one, but this requires that both tracers present the same in vivo behavior.

Bifunctional Chelators (BFCs) and Conjugation Strategies. (i) Antibodies are mostly radiolabeled with radiometals via a bifunctional chelator (BFC) consisting of a chelator to coordinate the radionuclide and a linker to allow coupling to the antibody. Antibodies are generally modified by either random or site-specific conjugation to lysines using activated carboxylic acids and isothiocyanates or to thiols using maleimides. 14 For details on recent advances in site-specific conjugation methods, refer to the reviews of Morais and Ma, 15 Adumeau et al., 16,17 Meyer et al., 18 and to the section on “new conjugation strategies” from the review of Wei et al. from 2020. 19 BFCs should be coupled in an inert and stable way, not affecting the protein integrity, immunoreactivity, and in vivo biodistribution of the antibody and avoiding the release of the radionuclide. Several aspects are of importance to guarantee inertness. BFC conjugation conditions should be relatively mild to avoid alteration of the protein integrity.

Among others, the pH of the conjugation reaction mixture is usually kept between 7 and 9, while high reaction temperature (>50 °C) can seriously alter the secondary and tertiary structures of the antibody and should be avoided to preserve antibody integrity. After BFC conjugation, usually a purification step is needed (i.e., via size exclusion) to remove uncoupled chelator molecules and to improve subsequent radiolabeling yields.

(ii) Conjugation to or near the antigen binding domain of the antibody should be avoided to prevent impairment of immunoreactivity. The larger the antibody is, the more lysines are available outside the antigen binding region, thus reducing the chance of impaired immunoreactivity. This becomes more challenging for small antibody derivatives like nanobodies where a site-specific conjugation might be preferred to avoid conjugation of the BFC to an amino acid to or near the complementary-determining regions (CDR) of the antibody. Site-specific coupling harbors the advantage of controlling where the antibody will be modified, thus resulting in a homogeneous product. This approach, however, requires either engineering of antibodies to introduce functional chemical group for BFC coupling or pretreating the antibody before BFC conjugation to obtain reaction sites.

(iii) The number of chelator molecules coupled per antibody molecule should be kept within limits, avoiding alteration of the normal biodistribution of the mAb. It is generally assumed that one to two chelators per antibody on average do not interfere with the normal biodistribution of the antibody. Apart from the number of chelators coupled, various factors can also be responsible for disturbing the pharmacokinetics of the antibody such as the overall charge, isoelectric point, and hydrophilicity of the radiolabeled molecule. Furthermore, the intramolecular positions of the lysine and thiol functions available for conjugation with the BFC are important. While modification on the Fc part of the mAb should be preferred, conjugation to the variable domain should be avoided to exclude impairment of the immunoreactivity of the mAb toward the antigen binding site.

Quality Controls. Radiotracers based on antibodies usually undergo quality control tests directly after radiolabeling and subsequent purification and formulation. Among the release specifications for preclinical and clinical application are radiochemical purity, protein integrity, and maintenance of biological properties such as antigen binding. Furthermore, storage conditions must be established and a shelf life should be set for which those release specifications are proven to be preserved.

Formulation of radiolabeled antibodies is typically done in aqueous buffers, and quality controls are performed by HPLC (i.e., size exclusion chromatography) or SDS-PAGE using radiodetection to determine the radiochemical purity and protein integrity. TLC or spin filter analysis, based on molecular weight size-exclusion separation, is used to assess
Table 2. Representative Radiolabeling Conditions for Antibodies or Antibody Derivatives Evaluated in Recent Preclinical Studies with 89Zr, 64Cu, 68Ga, and $[^{18}$F]AlF_4^{-}

radionuclide	chelator (-linker)	antibody derivatives	conjugation conditions	radiolabeling conditions	ref
89Zr	DFO(-NCS)	mAb	3 equiv; 30 min; 37 °C; pH ∼ 9	1 h; RT; pH ∼ 7	14,23−27,63
DFO(-maleimide)	mAb	60 equiv; 60 min; RT; pH not indicated	1 h; RT; pH ∼ 7	64	
Affibodies	34−40 equiv 2 h; 40 °C; pH ∼ 7.4 (in PBS)	1 h; RT; pH ∼ 7	65		
DFO(-N-suc-TFP ester)	mAb	2 equiv; 30 min; RT; pH ∼ 9; Fe removal with EDTA;	1 h; RT; pH ∼ 7	63,66,67	
64Cu	DOTA(-maleimido-monoamide)	Affibodies	15 equiv; 2 h; RT; pH 7.4	1 h; 40 °C; pH 6	69
DOTA(-NCS)	mAb	10 equiv; overnight; 37 °C; pH 8.5	1 h; 40 °C; pH 5.5	70	
DOTA(-NHS)	mAb	10−30 equiv; 1 h (or overnight at 4 °C); RT to 37 °C; pH 7.0−8.5	30 min−1 h; 37−43 °C; pH 5.0−7.0	71−73	
NOTA-(NCS)	Fab and F(ab′)2	5−10 equiv; 1−2 h, RT to 37 °C; rarely 24 h or overnight at 4 °C; pH 8.0−9.2	30 min (15 min to 1 h); 37−40 °C; mostly pH 5.0−5.5	74−99	
NOTA-maleimide	Diabody	equiv not indicated; 1 h; 37 °C; pH 8.5	20 min; 37 °C; pH 5.5	100−105	
NODAGA-(NCS)	Fab	20 equiv; 3 h; RT; pH 9.5	30 min; RT; pH 5.5	111	
NOTA(NHS)	mAb	50−55 equiv; 1 h RT or overnight at 4 °C; pH 7.5−8.6	1 h; 37−42 °C; pH 5.0−6.0	112	
NOTA-maleimide	Diabody	site specific with maleimide; pH 7.4	1 h; 40 °C; 1 h; pH 6	113	
NODAGA(-NHS)	Fab	equiv not indicated; 1 h; 37 °C; pH 8.5	20 min; 37 °C; pH 5.5	114	
PCTA-(NCS)	mAb	20 equiv; 1 h; RT; pH 9	30 min; RT; pH 5.5	115	
mAb	25 equiv; 16 h; 4 °C; in PBS; ∼ pH 7.4	1 h; 52 °C; pH 5−6	116		
mAb	53 equiv; overnight; 4°C pH ∼ 7	1 h; 42 °C; pH 7	117,118		
PCTA-(NCS)	mAb	10 equiv; RT 2 h then 4 °C overnight; pH 8.5	1 h; RT; pH 6.5	119	
NODAGA(-NHS)	mAb	5 equiv; overnight; 37 °C; pH 8.5	1 h; 40 °C; pH 5.5	120	
CB-TE2A with a Gly-Glu-Glu-Glu spacer	Affibodies	10 equiv; 2 h; RT; no pH indicated	45 min; 95 °C; pH 5.6	121	
phosphinate PS-(NCS)	mAb	40 equiv; 2 h RT, then 12 h; pH 8.5	40 min; 37 °C; pH 5.5	122	
Sarcophagine derivatives	mAb fragments 250 equiv chelator; 500 equiv EDC; RT (not indicated); 30 min; pH 5	30 min; 25 °C; pH 5	123		
68Ga	DOTA(-MMADOTA) (maleimide-monoamide)	Affibody	Site-specific; 37 °C; pH 5.5	15 min; 80 °C; pH 3.9	112
NOTA-(NCS)	mAb	25 equiv; 16 h; RT; pH 9	pH 5.0; 5 min; RT	113	
Nanobody	10−20 equiv; 2−2.5 h; RT; pH 8.5−8.7	5−10 min; RT; pH 4.7−5.0	114−116		
F(ab′)2	200 equiv; overnight; 4 °C pH 9	10−15 min; RT to 39 °C; pH 5.0−5.5	117,118		
Single domain antibody	~10−20 equiv; 2−18 h; RT; pH 8.5−8.7	10 min; RT; pH 4.0−5.0	119−121		
NOTA(-NHS)	mAb	3 equiv; overnight; 4 °C; in water (pH ∼ 7)	30 min; RT; pH 3.7	122	
scFv	~3.5 equiv; overnight; 4 °C; pH not indicated	30 min; RT; pH 3.7	123		
photoactivable chelate, HBED-CC-PEG3-ArN3	mAb	5 equiv; LED irradiated 10 min; RT; pH 8−9	RT; reaction followed by TLC; pH 4.4	124	
DFO comparison with 89Zr DFO-derivative	scFv	3 equiv; 30 min, 37 °C in 50 mM NaHCO₃	5 min; RT but low chelator-protein ratio obtained (0.14 DFO-NCS per scFv); pH 5.5	125	
the radiochemical purity as well. Finally, binding assays need to be developed to check that the immunoreactivity (binding to the antigen) of the radioimmunoconjugate is preserved via either cell-based or ELISA-like assays. Additionally, production of a radiotracer for clinical use needs to follow Good Manufacturing Practice (GMP) guidelines in a clean and controlled environment with a reproducible and validated manufacturing process and well-defined releasing criteria.

In this review, an overview of radiometal-labeled antibodies that have been evaluated in vivo in the past five years will be given. The constructs selected range from nanobodies to monoclonal antibodies (mAbs) (Figure 1) labeled with the often used radiometals 89Zr, 64Cu, and 68Ga; with less common radionuclides 52Mn, 86Y, 66Ga, and 44Sc; or with 18F using chelated aluminum as the metal. We will discuss practical considerations with respect to the chelators used and strategies for complexation of radiometals as well as the radiolabeling conditions of antibodies with radiometals. Approaches that consist of labeling of chelators first (prelabeling approach), followed by coupling to the biological molecule, are excluded from this review.

RADIOMETALS EVALUATED IN IMMUNO-PET

89Zr. Thanks to its half-life of 78.41 h, 89Zr has been extensively used for the radiolabeling of mAbs. 89Zr is readily available via commercial suppliers, produced in a cyclotron via the 89Y(p,n)89Zr nuclear reaction and obtained as 89Zr-oxalate ($[^{89}$Zr(C$_2$O$_4$)$_4$]$^{4-}$). 89Zr decays via β^+ emission (23%) and electron capture (77%) to 89mY ($t_{1/2} = 15.7$ s) and finally to 89Y via γ emission of 909 keV which does not interfere with PET imaging (see Table 1).

Remarkably, desferrioxamine (DFO) is still the only chelator used in clinical studies, which can be explained by the fact that it is a well-known chelator that has been used safely for decades as an antidote for iron overload. Furthermore, coupling reactions with commercially available bifunctional derivatives of DFO (TFP-N-suc-DFO and DFO-NCS) have been extensively reported with well-described and GMP compliant procedures. Recently, some comprehensive reviews have been published by Wei et al., Yoon et al., and van Dongen et al. on the preclinical and clinical use of 89Zr-immuno-PET.

Zirconium-89 is typically present in solution as Zr$^{4+}$, and is a hard Lewis acid with strong affinity for hard Lewis bases such as oxygen. An octadentate coordination sphere is preferred, while DFO can only provide hexadentate coordination. Two additional coordinating ligands are supposed to be needed for optimal stabilization of the 89Zr-complex. This has led to suboptimal stability with DFO in preclinical in vivo models and uptake of free 89Zr in bones. Whether this is a topic of concern in the clinical setting, especially regarding bone dosimetry at late time points and possible misdiagnosis in case of bone metastasis, is not clear yet and remains to be investigated. Multiple research groups have developed octadentate chelators for 89Zr to solve this issue while keeping synthesis, coupling, and radiolabeling conditions facile and mild. Research in the field on new chelators for 89Zr has been extensively reported in reviews, see Table 2 and Figure 2 for an overview of bifunctional chelators recently evaluated in a preclinical setting.

One of the newly developed octadentate chelators is DFO*, a derivative of DFO with an additional fourth hydroxamate group in comparison with DFO. DFO*-mAb
complexes demonstrated improved stability, in vitro as well as in vivo, with clearly less bone uptake.47−51 Moreover, DFO*, DFO*-NCS, and DFO*-maleimide have recently become commercially available, which should greatly facilitate clinical translation. In a recent study,50 DFO* was compared with DFOSq, a chelator introduced by Rudd et al. that also showed

Figure 2. Chemical structures of main chelators discussed in this review. If applicable, the most common position for conjugation via a linker has been indicated. \([\text{18F}]\text{AlF}\) has been indicated to illustrate the special coordination geometry of RESCA.
promising preliminary results, and DFO*SQ, a hybrid chelator used to better understand the influence of the extra hydroxamate group of DFO* and the Squaramide. In vivo uptake in bones was, however, unfavorable for DFO*SQ in comparison with the DFO* chelators and density function theory (DFT) measurements demonstrated that DFO*SQ is actually a seven-coordinate complex and thus not able to fully coordinate 89Zr.

Two other bifunctional chelators, p-SCN-Bn-HOPO (based on 3,4,3-(LI-1,2-HOPO)) and DFO-cyclo*p-Phe-NCS have shown promising preclinical results. However, the use of p-SCN-Bn-HOPO is hampered by the rather complicated synthesis of the BFC, and no clinical application has been reported yet. DFO-cyclo*p-Phe-NCS performed equally good as DFO*-NCS in preclinical in vivo studies. Differences have been observed in conjugation efficiency, being less efficient for DFO-cyclo*p-Phe-NCS, and in lipophilicity, being higher for DFO-cyclo*p-Phe-NCS. The fact that DFO-cyclo*p-Phe-NCS is a chiral compound makes this candidate less attractive from the pharmaceutical point of view. Finally, DOTA, a well-known chelator for many radiometals, has also been suggested to be able to fully coordinate and stabilize 89Zr. Because of the high temperature (90 °C) needed for radiolabeling DOTA with 89Zr, a prelabeling approach is required comprising the conversion of 89Zr-oxide to 89Zr-chloride followed by radiolabeling of DOTA and then coupling to an antibody. However, to the best of our knowledge, 89Zr-DOTA-mAb conjugates have not been evaluated in vivo yet. Note, development of novel candidate chelators for 89Zr remains a very active field as exemplified by the recent introduction of oxidoFDO*, FSC derivatives, 4HMS, DFO2, PCTA, and NOTA. However, for most of these chelators the suitability for stable, efficient, and inert 89Zr labeling of mAbs still has to be demonstrated, while in vivo evaluation to prove their superiority over DFO and DFO* is lacking.

64Cu. 64Cu (t1/2 = 12.7 h) is often considered a radionuclide with a short to intermediate half-life suitable for the labeling of antibody fragments with a medium to short biological half-life such as Fab and single-chain variable fragments (scFv). 64Cu is generally obtained via the bombardment of enriched 64Ni and provided as [64Cu]Cl2. 64Cu has been considered for its theranostic properties not only because of its intrinsic β− (39.0%) emission along with its β0 (17.9%) but also because 64Cu could be used as a pair with the therapeutic β− emitting radionuclide 68Cu, although applications with the latter are still limited due to its rare and expensive production. To reflect on exciting developments regarding 64Cu radiopharmaceuticals, comprehensive reviews have recently been published.

Due to the hardness of Cu**, aliphatic and aromatic amines as well as carboxylates have been widely used in BFCs for antibody labeling. Cu** is capable of forming complexes with four to six coordinating ligands, of which macrocyclic chelators containing six coordinating ligands are often preferred because of their increased complex stability. Many chelators have been evaluated over the years; however, DOTA remains the preferred chelator for evaluation of antibodies preclinically and clinically. This is surprising taking into account that 64Cu-DOTA demonstrates far from optimal stability in vivo resulting in hepatobiliary excretion of released copper and its transchelation to other proteins such as superoxide dismutase. Despite its suboptimal in vivo performance, DOTA has the advantage that it is commercially available and can be used also for other radiometals, while it has been safely used clinically for decades. Over the years, however, NOTA has emerged as a successful successor of DOTA in clinical studies showing improved in vivo stability while allowing fast (1 h or less depending on the protein) and mild labeling conditions (RT to 40 °C, pH ~ 5–6) for heat-sensitive antibodies (see Table 2). In vivo preclinical benchmarking studies comparing chelators are still ongoing and unsurprisingly show that DOTA is the least stable chelator for 64Cu (see Table 3).

Other chelators such as various cyclams have been evaluated but do not always show superior in vivo stability compared to DOTA and NOTA derivatives. In addition, CB-TEA and TETA chelators are promising but usually require radiolabeling conditions too harsh for sensitive antibodies (i.e., 90 °C), and thus their use is restricted to heat-stable proteins. Antibodies radiolabeled with sarcophagine (Sar) derivatives have shown promising in vivo stability in the past with fast (20–30 min) radiolabeling at RT. Research on new sarcophagine BFCs is actively ongoing and very recently showed promising results with trastuzumab. Publications with antibody fragments have also been described for which in contrast to intact mAbs, kidney retention is often observed, which most probably is caused by the positive charge of the 64Cu-chelator resulting in binding to negatively charged glomerulus cells in kidneys.

68Ga. In comparison with previously discussed radiometals such as 89Zr and 64Cu, 68Ga emits relatively high-energy positrons (Eγ = 1.9 MeV) that can hamper image quality (mean range in water 2.9 mm) (Table 1). 68Ga is generally produced via the decay of its mother radionuclide Germanium-68 (t1/2 = 271 d) and has emerged as a practical solution for small-scale PET tracer synthesis due the convenience of having a 68Ge/68Ga generator on site. Its short half-life (t1/2 = 68 min) limits, however, the option of central production for multicenter applications. Nevertheless, 68Ga has become a chelator of choice for radiolabeling of peptides and in recent years for antibody derivatives with a short biological half-life such as nanobodies.

68Ga** is considered a relatively hard cation, stable in acidic conditions, preferring hexadentate chelation via nitrogen and oxygen donors. However, 68Ga** slowly forms insoluble Ga(OH)3 complexes between pH 3 and 7, which requires complexation kinetics faster than their formation. At physiological pH, soluble [Ga(OH)4]− is formed, which shows slow chelation kinetics. As such, radiolabeling conditions are usually chosen that prevent the formation of Ga(OH)3 or in the presence of trapping reagents (i.e., citrate or acetate). Typically, 68Ga is eluted from the generator as 68GaCl3 in HCl solution. Over the years, many chelators have been developed, and some recent comprehensive reviews discuss in great detail the labeling conditions, yields, and variety of in vivo applications with 68Ga-radiolabeled peptides and antibody derivatives. Initially, DOTA was often used for complexation of 68Ga even though high reaction temperatures were needed for good radiolabeling efficiency. However, these relatively harsh conditions are not appropriate for heat-sensitive antibodies. For this reason, the use of DOTA in preclinical (see Table 2) and clinical studies is mainly restricted to antibodies that can handle high temperatures such as affibodies. As for 64Cu, NOTA is by far the most often used
Table 3. Representative Preclinical Benchmarking Studies with 64Cu Chelators Reported in the Last 5 Years

antibody	64Cu comparison of chelators	conjugation conditions	radiolabeling conditions	conclusion/comment
Cu-NOTA-(NCS)/89Zr-DFO-bivalent	5 equiv; 1 h; 37°C; pH 9.0	1 h; 37°C; pH not indicated	Similar uptake at day 1, 89Zr derivative preferred for later imaging time points (as for (NCS)scFv-Fc mAbs)	
DOTA-(NCS)/NOTA-(NCS) mAbs	20 equiv; 4 h; 4°C; pH 8.5	45 min; 38°C	Higher in vivo stability of TE6P conjugate against DOTA regarding transchelation especially at late time points	
NOTA; RT; pH not indicated	10 equiv; in DMSO, reaction quenched	45 min; 95°C; pH 5.6	Various reaction parameters. NODAGA more stable in vivo than DOTA derivative, NODAGA complex better regarding uptake in normal organs	
DOTA-(NCS)/DOTA-(NHS) A−bodies	310 equiv; overnight for NODAGA; 2 h for 45 min; 95°C; pH 5.6	NODAGA-a or NODAGA-(NHS)/DOTA-(NHS) mAb	Higher in vivo stability of NODAGA-radiolabeled conjugates regarding transchelation especially at later time points	
DOTA-(NCS)/DO3A-(NHS) mAb	50 equiv; 24 h; 35°C; pH 7.9	20 equiv; 26 h, 25°C; pH 7.9	Improved chelator properties especially regarding uptake in normal organs	

OTHER RADIONUCLIDES

52Mn. 52Mn is an interesting emerging radiometal for immuno-PET because of its half-life and low positron energy ($t_{1/2} = 5.59$ d, $E(\beta^+) = 29.6\%$, $E(\beta^-)_{\text{max}} = 0.576$ MeV, Table 1) that offers favorable resolution for imaging (in the range of 18F). There are safety concerns because of the concomitant high-energy gammas (744 keV (90%), 935 keV (95%), and 234 and 1434 keV (100%)) that result in a high radiation burden in in vivo applications. 52Mn is commonly produced in a cyclotron via the 52Cr(p,n)52Mn reaction. Manganese is a hard transition metal present in solution mainly in the active oxidation states 2+ and 3+, thus offering complexation as Mn2+ with polyaminocarboxylic acid chelators like DOTA.

Stable Mn has been of particular interest for MRI applications with dual-modality manganese-enhanced magnetic resonance imaging (MEMRI), but despite favorable physical characteristics, its use has been limited, most probably due to the biological toxicity of bulk manganese, its accumulation in organs such as the pancreas, and its neurotoxicity that can lead to Parkinson-like impairments.163-166 This is certainly not an issue for 52Mn PET tracer applications where the amounts of Mn needed (in the nanomolar range) to obtain a PET signal are very low, thus reducing toxicity issues to the minimum.167

To the best of our knowledge, there is only one study that reported on the in vivo evaluation of a 52Mn-labeled mAb. To this end, the anti-CD105 mAb TRC105 was conjugated with DOTA-NCS, followed by radiolabeling at pH 4.5 to 7.5 and a temperature ranging from RT to 55°C. In vivo data showed a maximum tumor uptake of 19%ID/g 24 h p.i. of the tracer with a slow blood clearance over time and relatively high bone and spleen uptake (>10%ID/g, 120 h p.i.), which requires further investigation.168

86Y. Yttrium-86 ($t_{1/2} = 14.74$ h, $E(\beta^+) = 33\%$, 3.1 MeV, Table 1) has generated interest as a surrogate isotope of yttrium that could be used as a matching pair for targeted radionuclide therapy with the β^+-emitter yttrium-90 ($t_{1/2} = 64.1$ h).168 86Y is most commonly produced via the 88Sr(p,n)86Y reaction. 86Yttrium is a transition metal ion that prefers an octadentate coordination in its 86Y3+ state and has mainly been used with the well-known polyaminocarboxylates chelators, DTPA and DOTA.169 Just a couple of publications have described the use of 86Y-DTPA radiolabeled antibodies in the last five years with successful radiolabeling under mild conditions (1 h at 37°C in sodium acetate) including therapy studies with the corresponding 86Y derivatives.170,171 86Y presents, however, more than 65% of its decay along with γ-rays ranging from 200 to 3000 keV that hamper contrast and quantification with the presence of false coincident γ detection.

68Ga. Gallium-68 ($t_{1/2} = 68$ h, $\beta^+ = 56.5\%$, 4.2 MeV, Table 1) is another β^+-emitting isotope of gallium produced by the 68Zn(p,n)68Ga nuclear reaction that is envisaged as a novel tool for PET imaging and has already been applied to peptides.172 In vivo applications to antibodies are, however, still
limited. An anti-EGFR affibody has been conjugated with DFO, followed by radiolabeling with 66Ga, 68Ga, and 89Zr and their in vivo behavior compared. The longer half-life of 66Ga allowed imaging at later time points which was beneficial for the tumor-to-organ ratios.173 Although 66Ga seems to be a more interesting radionuclide than 68Ga for the labeling of antibody derivatives with a longer serum half-life, application is limited due to its high positron range ($R_{\text{mean}} = 9.3$ mm in water) and co-emitting gammas that hamper spatial resolution and reliable PET quantification.174

44Sc. 44Sc can be obtained via a 44Ti/44Sc generator or via production in a cyclotron using a 44Ca$(p,n)^{44}$Sc reaction (see Table 1). Thus far, focus has been on improving the 44Sc production process to reduce costs that has been limiting its applicability.9,175 A half-life of about 4 h and a decay to nontoxic Ca make 44Sc an interesting radionuclide for immuno-PET imaging. Scandium is present in aqueous solutions as the hard trivalent cation Sc$^{3+}$ with a strong preference for hard oxygen donor ligands and a flexible coordination number (between 3 and 9, with 6 being the most reported).180 44Sc complexation strongly depends on pH, with pH 4 being considered the most optimal for radiolabeling.180 44Sc is a PET radionuclide with growing interest in recent years, however, mostly in the field of peptide labeling. This is probably due to the relatively harsh radiolabeling conditions not being compatible with antibodies. To date, in human studies have been reported with peptides (i.e., PSMA and DOTATOC) but not with larger biomolecules.181 Moreover, 44Sc is considered to form a theranostic pair with the therapeutic radionuclides 177Lu ($t_{1/2} = 6.7$ days) and 47Sc ($t_{1/2} = 3.4$ days), although their half-lives do not match optimally.182

Various chelators have been tested for 44Sc, with DOTA being favorable, but its application is still restricted to affibodies which can handle the required high reaction temperatures of 90–110 °C.183,184 Other chelators include a DTPA derivative, which was coupled to a Fab fragment of cetuximab and further evaluated in vivo. Radiolabeling was fast (30 min) at RT and gave better yields than the DOTA and NOTA derivatives.185 Finally, 18F-labeling of antibodies via this chelator has, however, raised a few points of concern. Elevated bone uptake has been observed indicating demetalation and/or defluorination and seems to depend on the pharmacokinetics of the molecule itself but could also be animal-species-dependent.198 The assumed mechanism of in vivo degradation involves glomerular filtration and conjugate degradation resulting in release and recirculation of free 18F. This phenomenon might also be dependent on the biological molecule itself, its half-life, preference for renal excretion, and the preclinical model used. Furthermore, the slightly more lipophilic nature of (±)-H3RESCA in comparison with other chelators such as NOTA could induce increased hepatic clearance.198 In vivo preclinical and clinical studies should confirm the potential of (±)-H3RESCA for $[^{18}$F]AlF radiolabeling of antibodies.

CONCLUSION

Radiolabeling of antibodies with radiometals is a growing and exciting field within PET imaging for which tremendous efforts have been made to develop general conjugation and radiolabeling methods with chelators that could be used for multiple radiometals. As illustrated in this review, there is, however, still no ideal chelator that could be used in an optimal way for multiple radiometals and compromises have to be made between ideal and practical aspects. Ideally, such a chelator should be commercially available and able to complex in a stable way multiple radiometals following well-established procedures and without altering the properties of the antibody to boost clinical applications. This remains, however, a challenge for the future of immuno-PET, as each radiometal possesses its own chemical and (sometimes harsh) labeling properties along with its specific decay characteristics. Bioconjugation and radiolabeling procedures should furthermore be GMP-compliant to facilitate translation to the clinic. Production costs and availability of the radiometal, the quality and in vivo performance of the obtained radioimmunoconjugate, and the logistics of its production and distribution are thus primordial parameters to take into account. For those reasons, despite very active developments in preclinical studies, the commercially available chelators, DFO, DOTA, and
NOTA, are still by far the most often used chelators in the clinic. Among the other promising radiometal–chelator pairs discussed in this review, future preclinical and clinical studies will confirm their potential as new gold standards for immuno-PET imaging.

AUTHOR INFORMATION

Corresponding Author

Daniele J. Vugts – Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, Amsterdam 1081 HV, The Netherlands; Email: d.vugts@amsterdamumc.nl

Authors

Marion Chomet – Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, Amsterdam 1081 HV, The Netherlands

Gaas M. S. van Dongen – Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, Amsterdam 1081 HV, The Netherlands

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.bioconjchem.1c00136

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Vugts, D. J., and van Dongen, G. A. M. S. (2019) Immunoglogulins as Radiopharmaceutical Vectors. In Radiopharmacaceutical Chemistry (Lewis, J. S., Windhorst, A. D., and Zeglis, B. M., Eds.) pp 163–179, Springer International Publishing, Cham. DOI: 10.1007/978-3-319-89497-1_9.

(2) van Dongen, G. A. M. S., Beaino, W., Windhorst, A. D., Zweezerijnen, G. J. C., Oprea-Lager, D. E., Hendrikse, N. H., van Kuijik, C., Boellaard, R., Huismann, M. C., and Vugts, D. J. (2021) The Role of 89Zr-Immuo-PET in Navigating and Derisking the Development of Biopharmaceuticals. J. Nucl. Med. 62 (4), 438–445.

(3) Lambert, J. M., and Morris, C. Q. (2017) Antibody-Drug Conjugates (ADCs) for Personalized Treatment of Solid Tumors: A Review. Adv. Ther. 34 (5), 1015–1035.

(4) Bouchard, H., Viskov, C., and Garcia-Echeverria, C. (2014) Antibody-Drug Conjugates—A New Wave of Cancer Drugs. Bioorg. Med. Chem. Lett. 24 (23), 5357–5363.

(5) Singh, S., Kumar, N. K., Dwivedi, P., Charan, J., Kaur, R., Sidhu, P., and Chugh, V. K. (2018) Monoclonal Antibodies: A Review. Curr. Clin. Pharmacol. 13 (2), 85–99.

(6) Kaplon, H., Muralidharan, M., Schneider, Z., and Reichert, J. M. (2020) Antibodies to Watch in 2020. MAla 12 (1), 1703531.

(7) Lu, R. M., Hwang, Y. C., Liu, I. J., Lee, C. C., Tsai, H. Z., Li, H. J., and Wu, H. C. (2020) Development of Therapeutic Antibodies for the Treatment of Diseases. J. Biomed. Sci. 27 (1), 1–30.

(8) Zanionicc, P. (2019) An Overview of Nuclear Imaging. In Radiopharmacetal Chemistry, pp 101–117, Springer International Publishing, Cham. DOI: 10.1007/978-3-319-89497-1_6.

(9) Price, T. W., Greenman, J., and Stasiuk, G. J. (2016) Current Advances in Ligand Design for Inorganic Positron Emission Tomography Tracers 68Ga, 64Cu, 89Zr and 44Sc. Dalt. Trans. 45 (40), 15702–15724.

(10) Boros, E. and Holland, J. P. (2018) Chemical Aspects of Metal Ion Chelation in the Synthesis and Application Antibody-Based Radiotracers. J. Labelled Compd. Radiopharm. 61 (9), 652–671.

(11) Verel, I., Visser, G. W. M., Boellaard, R., Boerman, O. C., van Eerd, J., Snow, G. B., Lammertsma, A. A., and van Dongen, G. A. M. S. (2003) Quantitative 89Zr Immuno-PET for in Vivo Scouting of 90Y-Labeled Monoclonal Antibodies in Xenograft-Bearing Nude Mice. J. Nucl. Med. 44 (10), 1663–1670.

(12) Filippi, L., Chiaravalloti, A., Schilacci, O., Cianni, R., and Bagni, O. (2020) Theranostic Approaches in Nuclear Medicine: Current Status and Future Prospects. Expert Rev. Med. Devices 17 (4), 331–343.

(13) Notni, J., and Wester, H. J. (2018) Re-Thinking the Role of Radiometal Isotopes: Towards a Future Concept for Theranostic Radiopharmaceuticals. J. Labelled Compd. Radiopharm. 61 (3), 141–153.

(14) Zeglis, B. M., and Lewis, J. S. (2011) A Practical Guide to the Construction of Radiometallated Bioconjugates for Positron Emission Tomography. Dalt. Trans 40 (23), 6168–6195.

(15) Morais, M., Ma, M. T., and Chudasama, V. (2018) Site-Specific Chelator-Antibody Conjugation for PET and SPECT Imaging with Radiometals. Drug Discovery Today: Technol. 30, 91–104.

(16) Adumeau, P., Sharma, S. K., Brent, C., and Zeglis, B. M. (2016) Site-Specifically Labeled Immunoconjugates for Molecular Imaging—Part 1: Cysteine Residues and Glycans. Mol. Imaging Biol. 18 (1), 1–17.

(17) Adumeau, P., Kiran Sharma, S., Brent, C., and Zeglis, B. M. (2016) Site-Specifically Labeled Immunoconjugates for Molecular Imaging-Part 2: Peptide Tags and Unnatural Amino Acids HHS Public Access. Mol. Imaging Biol. 18 (2), 153–165.

(18) Meyer, J.-P., Adumeau, P., Lewis, J. S., and Zeglis, B. M. (2016) Click Chemistry and Radiochemistry: The First 10 Years Graphical Abstract HHS Public Access. Bioconjugate Chem. 27 (12), 2791–2807.

(19) Wei, W., Ronskrans, Z. T., Liu, J., Huang, G., Luo, Q.-Y., and Cai, W. (2020) Immuno-PET: Concept, Design, and Applications. Chem. Rev. 120 (8), 3787–3851.

(20) Lindmo, T., Boven, E., Cuttitta, F., Fedorko, J., and Bunn, P. A. (1984) Determination of the Immunoactive Function of Radio-labeled Monoclonal Antibodies by Linear Extrapolation to Binding at Infinite Antigen Excess. J. Immunol. Methods 72 (1), 77–89.

(21) de Vries, E. G. E., Kist de Ruijter, L., Lub-De Hooge, M. N., Dierckx, R. A., Elias, S. G., and Oosting, S. F. (2019) Integrating Molecular Nuclear Imaging in Clinical Research to Improve Anticancer Therapy. Nat. Rev. Clin. Oncol. 16 (4), 241–255.

(22) Aluicio-Sarduy, E., Ellison, P. A., Barnhart, T. E., Cai, W., Nickles, R. J., and Engle, J. W. (2018) PET Radiometals for Antibody Labeling. J. Labelled Compd. Radiopharm. 61 (9), 656–651.

(23) Verel, I., Visser, G. W. M., Boellaard, R., Walsum, M. S., Van Snow, G. B., and Van Dongen, G. A. M. S. (2003) 89Zr Immuno-PET: Comprehensive Procedures for the Production of 89Zr-Labeled Monoclonal Antibodies. J. Nucl. Med. 44 (8), 1271–1281.

(24) Perk, L. R., Vosjan, M. J. W. D., Visser, G. W. M., Budde, M., Jurek, P., Kiefer, G. E., and van Dongen, G. A. M. S. (2010) P-Isothiocyanatobenzyl-Desferrioxamine: A New Bifunctional Chelate for Facile Radiolabeling of Monoclonal Antibodies with Zirconium-89 for Immuno-PET Imaging. Eur. J. Nucl. Med. Mol. Imaging 37 (2), 250–259.

(25) Zeglis, B. M., and Lewis, J. S. (2015) The Bioconjugation and Radiosynthesis of 89Zr-DFO-Labeled Antibodies. J. Visualized Exp., 96.

(26) Sharma, S. K., Glaser, J. M., Edwards, K. J., Khozeimah Sarsisheh, E., Salih, A. K., Lewis, J. S., and Price, E. W. (2020) A Systematic Evaluation of Antibody Modification and 89Zr-Labeling for Optimized Immuno-PET. Bioconjugate Chem., 1 DOI: 10.1021/acs.bioconjchem.0c00087.

(27) Vosjan, M. J. W. D., Perk, L. R., Visser, G. W. M., Budde, M., Jurek, P., Kiefer, G. E., and van Dongen, G. A. M. S. (2010) Conjagation and Radiolabeling of Monoclonal Antibodies with Zirconium-89 for PET Imaging Using the Bifunctional Chelate p-Isothiocyanatobenzyl-Desferrioxamine. Nat. Protoc. 5 (4), 739–743.

(28) Cohen, R., Stammes, M. A., de Roos, I. H., Stigter-Van Walsum, M., Visser, G. W., and van Dongen, G. A. (2011) Inert Coupling of IRDye800CW to Monoclonal Antibodies for Clinical Optical Imaging of Tumor Targets. EJNMMI Res. 1 (1), 31.
(63) Poot, A. J., Adamzek, K. W. A., Windhorst, A. D., Vosjan, M. J. W. D., Kropf, S., Wester, H.-J., van Dongen, G. A. M. S., and Vugs, D. J. (2019) Fully Automated 89Zr Labeling and Purification of Antibodies. J. Nucl. Med. 60 (5), 691–695.

(64) Jung, K.-H., Park, J. W., Lee, J. H., Lee, E. J., Moon, S. H., Cho, Y. S., and Lee, K.-H. (2020) 89Zr Labeled Anti-PD-L1 Antibody PET Monitors Gemcitabine Therapy-Induced Modulation of Tumor PD-L1 Expression. J. Nucl. Med. 250720.

(65) Martins, C. D., Da Pieve, C., Burley, T. A., Smith, R., Ciobota, D. M., Allott, L., Harrington, K. J., Oyen, W. J. G., Smith, G., and Kramer-Marek, G. (2018) HER3-Mediated Resistance to Hsp90 Inhibition Detected in Breast Cancer Xenografts by Affibody-Based PET Imaging. Clin. Cancer Res. 24 (8), 1853–1865.

(66) Sijbrandi, N. J., Merkul, E., Muns, J. A., Waadboer, D. C. J., Adamzek, K., Bolijn, M., Montserrat, V., Somsen, G. W., Haselberg, R., Steverink, P. J. G. M., et al. (2017) A Novel Platinum(II)-Based Bifunctional ADC Linker Benchmarked Using 89Zr-Desferrylauristatin F-Conjugated Trastuzumab. Mol. Imaging Biol. 23 (2), 250–259.

(67) Li, W., Wang, Y., Ruhins, D., Bencaceif, I., Holahan, M., Haley, H., Purcell, M., Gantert, L., Sude, J., et al. (2021) PET/CT Imaging of 89Zr-N-SucDfPembrolizumab in Healthy Cynomolgus Monkeys. Mol. Imaging Biol. 23 (1), 1 DOI: 10.1186/s41181-020-00109-6.

(68) Qi, S., Hoppmann, S., Xu, Y., and Cheng, Z. (2019) PET Imaging of HER2-Positive Tumors with Cu-64-Labeled Affibody Molecules. Mol. Imaging Biol. 21, 907–916.

(69) Yamaguchi, A., Achmad, A., Hanaoka, H., Heryanto, Y. D., Bhattarai, A., Rantiamo Khongorzul, E., Shintawati, R., Kartarnahidja, A. A. P., Kanai, A., et al. (2019) Immuno-PET Imaging for Non-Invasive Assessment of Cetuximab Accumulation in Non-Small Cell Lung Cancer. BMC Cancer 19 (1), 1000.

(70) Nataraian, A., Mayer, A. T., Reeves, R. E., Nagamine, C. M., and Gambhir, S. S. (2017) Development of a Novel ImmunoPET Tracer to Image Human PD-1 Checkpoint Expression on Tumor Infiltrating Lymphocytes in a Humanized Mouse Model HHS Public Access. Mol. Imaging Biol. 19 (6), 903–914.

(71) Srideshikan, S. M., Brooks, J., Zuro, D., Kumar, B., Sanchez, J., Echarvarria Parra, L., Orellana, M., Vishwasrao, P., Nair, L., Chea, J., et al. (2019) ImmunoPET, [64Cu]Cu-DOTA-Anti-CD33 PET-CT, Imaging of an AML Xenograft Model. Clin. Cancer Res. 25 (24), 7463–7474.

(72) Ehlerding, E. B., England, C. G., Hernandez, R., Graves, S. A., Majewski, R. L., Kamkaew, A., Lee, J., Winter, C. E., Barnhart, T. E., Yang, Y., and Cai, W. (2016) ImmunoPET of Tissue Factor Expression in Triple-Negative Breast Cancer with a Radiolabeled Antibody Fab Fragment. Eur. J. Nucl. Med. Mol. Imaging 42 (8), 1295–1303.

(73) Ehlerding, E. B., Lee, J. H., Jiang, D., Ferreira, C. A. Z., Zahir, C. D., Huang, P., Engle, J. W., Mcneel, D. G., and Cai, W. (2019) Antibody and Fragment-Based PET Imaging of CTLA-4+ T Cells in Humanized Mouse Models. Am. J. Cancer Res. 9 (1), 53–63.

(74) Boyle, A. J., Cao, P.-J., Hedley, D. W., Sidhu, S. S., Winkin, M. A., and Reilly, R. M. (2015) MicroPET/CT Imaging of Patient-Derived Pancreatic Cancer Xenografts Implanted Subcutaneously or Orthotopically in NOD-Scid Mice Using 64Cu-NOTA-Panitumumab F(ab')2 Fragments. Nucl. Med. Biol. 42 (2), 71–77.

(75) Sun, H., England, C. G., Hernandez, R., Graves, S. A., Majewski, R. L., Kamkaew, A., Jiang, D., Barmhart, T. E., Yang, Y., and Cai, W. (2016) ImmunoPET for Assessing the Differential Uptake of a CD146-Specific Monoclonal Antibody in Lung Cancer. Eur. J. Nucl. Med. Mol. Imaging 43 (12), 2169–2179.

(76) Luo, H., England, C. G., Hernandez, R., Graves, S. A., and Majewski, R. L., Kamkaew, A., Jiang, D., Barmhart, T. E., Yang, Y., and Cai, W. (2016) ImmunoPET for Assessing the Differential Uptake of a CD146-Specific Monoclonal Antibody in Lung Cancer. Eur. J. Nucl. Med. Mol. Imaging 43 (12), 2169–2179.

(77) Natarajan, A., Mayer, A. T., Reeves, R. E., Nagamine, C. M., and Gambhir, S. S. (2017) Development of a Novel ImmunoPET Tracer to Image Human PD-1 Checkpoint Expression on Tumor Infiltrating Lymphocytes in a Humanized Mouse Model HHS Public Access. Mol. Imaging Biol. 19 (6), 903–914.

(78) Wei, W., Liu, Q., Jiang, D., Zhao, H., Kutyreff, C. J., Engle, J. W., Liu, J., and Cai, W. (2020) Tissue Factor-Targeted ImmunoPET Imaging and Radioimmunotherapy of Anaplastic Thyroid Cancer. Adv. Sci. 7 (13), 1903595.
Bioconjugate Chemistry

Ferreira, C. A., Hernandez, R., Yang, Y., Valdivinos, H. F., Engle, J. W., and Cai, W. (2018) ImmunoPET of CD146 in a Murine Hindlimb Ischemia Model. *Mol. Pharmaceutics* 15 (8), 3434–3441.

Xu, M., Han, Y., Liu, G., Xu, Y., Duan, D., Liu, H., Du, F., Luo, P., and Liu, Z. (2018) Preclinical Study of a Fully Human Anti-PD-L1 Antibody as a Theranostic Agent for Cancer Immunotherapy. *Mol. Pharmaceutics* 15 (10), 4426–4433.

Wagner, M., Wuest, M., Hamann, I., Lopez-Campistrous, A., McMullen, T. P. W., and Wuest, F. (2018) Molecular Imaging of Platelet-Derived Growth Factor Receptor-Alpha (PDGFRα) in Papillary Thyroid Cancer Using Immuno-PET. *Nucl. Med. Biol.* 58, 51–58.

Zhao, Y., Jia, B., Wang, F., et al. (2019) Noninvasive Small-Animal Primary and Metastatic Osteosarcoma. In Vivo Expression of Disialoganglioside GD2 in Mouse Models of Primary and Metastatic Osteosarcoma. *Cancer Res.* 79 (12), 3112–3124.

Packard, A. B., et al. (2019) Positron Emission Tomography Detects 51Hindlimb Ischemia Model. *Am. J. Transl Res.* 11 (9), 6007–6015.

Butch, E. R., Mead, P. E., Amador Diaz, V., Tillman, H., Stewart, E., Mishra, J. K., Kim, J., Bahrami, A., Dearling, J. L. J., Packard, A. B., et al. (2019) Positron Emission Tomography Detects In Vivo Expression of Disialoganglioside GD2 in Mouse Models of Primary and Metastatic Osteosarcoma. *Cancer Res.* 79 (12), 3112–3124.

Lai, J., Lu, D., Zhang, C., Zhu, H., Gao, L., Wang, Y., Bao, R., Zhao, Y., Jia, B., Wang, F., et al. (2018) Noninvasive Small-Animal Imaging of Galectin-1 Upregulation for Predicting Tumor Resistance to Radiotherapy. *Biomaterials* 158, 1–9.

Jiang, J., Zhang, M., Li, G., Liu, T., Wan, Y., Liu, Z., Zhu, H., and Yang, Z. (2020) Evaluation of 64Cu Radiolabeled Anti-HDPL1 Nb6 for Positron Emission Tomography Imaging in Lung Cancer Tumor Mice Model. *Biosorg. Med. Chem. Lett.* 30 (4), 126915.

Fiedler, L., Kellner, M., Oos, B., Bönig, G., Ziegler, S., Bartenstein, P., Zeidler, R., Gildaheus, F. J., and Lindner, S. (2018) Fully Automated Production and Characterization of 64Cu and Proof-of-Principle Small-Animal PET Imaging Using 64Cu-Labeled CA XII Targeting 6A10 Fab. *ChemMedChem* 13 (12), 1230–1237.

Morad, H. O. J., Wild, A.-M., Wiehr, S., Davies, G., Maurer, A., Pichler, B. J., and Thornton, C. R. (2018) Pre-Clinical Imaging of Invasive Candidiasis Using ImmunoPET/MR. *Front. Microbiol.* 9, 1996.

Honndorf, V. S., Wiehr, S., Rolle, A.-M., Schmitt, J., Kreft, L., Quintanilla-Martinez, L., Kohlhoffer, U., Reichl, G., Maurer, A., Boldt, K., et al. (2016) Preclinical Evaluation of the Anti-Tumor Effects of the Natural Isoflavone Genistein in Two Xenograft Mouse Models Monitored by [18F]FDG, [18F]FLT, and [64Cu]NODAGA-Cetuximab Small Animal PET. *Oncotarget* 7 (19), 28247–28261.

van Dijk, L. K., Yim, C.-B., Franssen, G. M., Kaanders, J. H. A. M., Rajander, J., Solin, O., Grönroos, T. J., Boerman, O. C., and Eichendorff, C. (2017) Towards Translational ImmunoPET/MR Imaging of Invasive Pulmonary Aspergillosis: The Humanised Monoclonal Antibody JF5 Detects Aspergillus Lung Infections in Vivo. *Invasive Pulmonary Aspergillosis: The Humanised Monoclonal Antibody Conjugate in Rats with Collagen-Induced Arthritis and in Controls. Mol. Imaging Biol.* 17 (1), 87–93.

Xavier, C., Vaneycken, I., D’huyvetter, M., Heemskerk, J., Keyaerts, M., Vincke, C., Devoogdt, N., Muyldermans, S., Lahoutte, T., and Eizirik, D. (2020) A Nanobody-Based Nuclear Imaging Tracer Targeting Dipeptidyl Peptidase 6 to Determine the Mass of Human Beta Cell Grafts in Mice. *Diabetologia* 63 (4), 825–836.

Bala, G., Crawews, M., Blykers, A., Remory, I., Marschall, A. L. J., Dübél, S., Dumas, L., Broisat, A., Martin, C., Ballett, S., et al. (2019) Radiometal-Labeled Anti-VCAM-1 Nanobodies as Molecular Tracers for Atherosclerosis - Impact of Radiochemistry on Pharmacokinetics. *Biol. Chem.* 400 (5), 323–332.

Ma, T., Sun, X., Cui, L., Gao, L., Wu, Y., Liu, H., Zhu, Z., Wang, F., and Liu, Z. (2014) Molecular Imaging Reveals Trastuzumab-Induced Epidermal Growth Factor Receptor Downregulation in Vivo. *J. Nucl. Med.* 55 (6), 1002–1007.

Suman, S. K., Kameswaran, M., Pandey, U., Sarma, H. D., and Dash, A. (2019) Preparation and Preliminary Bioevaluation Studies of 68Ga-NOTA-Rituximab Fragments as Radioimmunocintigraphic Agents for Non-Hodgkin Lymphoma. *J. Labelled Compd. Radiopharm.* 62 (12), 850–859.

Lv, G., Sun, X., Qiu, L., Sun, Y., Li, K., Liu, Q., Zhao, Q., Qin, S., and Lin, J. (2020) PET Imaging of Tumor PD-L1 Expression with a Highly Specific Nonblocking Single-Domain Antibody. *J. Nucl. Med.* 61 (1), 117–122.

Krasniqi, A., D’huyvetter, M., Xavier, C., Van der Jeught, K., Muyldermans, S., Van Der Heyden, J., Lahoutte, T., Tavernier, J., and Devoogdt, N. (2017) Theranostic Radiolabeled Anti-CD20 SdAb for Targeted Radionuclide Therapy of Non-Hodgkin Lymphoma. *Mol. Cancer Ther.* 16 (12), 2828–2839.

Xavier, C., Blykers, A., Labou, D., Bolli, E., Vaneycken, I., Bridoux, J., Baudhuin, H., Raes, G., Everaert, H., Movahedi, K., et al. (2019) Clinical Translation of [68Ga]Ga-NOTA-Anti-MMR-SdAb...
for PET/CT Imaging of Protumorigenic Macrophages. Mol. Imaging Biol. 21 (5), 898–906.

(122) Xu, B., Li, X., Yin, J., Liang, C., Liu, L., Qiu, Z., Yao, L., Nie, Y., Wang, J., and Wu, K. (2015) Evaluation of 68Ga-Labeled MG7 Antibody: A Targeted Probe for PET/CT Imaging of Gastric Cancer. Sci. Rep. 5 (1), 8626.

(123) Zhang, X., Liu, C., Hu, F., Zhang, Y., Wang, J., Gao, Y., Jiang, Y., Zhang, Y., and Lan, X. (2018) PET Imaging of VCAM-1 Expression and Monitoring Therapy Response in Tumor with a 68Ga-Labeled Single Chain Variable Fragment. Mol. Pharmaceutics 15 (2), 609–618.

(124) Fay, R., Gut, M., and Holland, J. P. (2019) Photoradiosynthesis of 68Ga-Labeled HBED-CC-Azetepin-MeTMAB for Immuno-PET of c-MET Receptors. Bioconjugate Chem. 30 (6), 1814–1820.

(125) Ueda, M., Hisada, H., Temma, T., Shimizu, Y., Kimura, H., Ono, M., Nakamoto, Y., Togashi, K., and Saji, H. (2015) Gallium-68-Labeled Anti-HER2 Single-Chain Fv Fragment: Development and In Vivo Monitoring of HER2 Expression. Mol. Imaging Biol. 17 (1), 102–110.

(126) Su, X., Cheng, K., Jeon, J., Shen, B., Venturin, G. T., Hu, X., Rao, J., Chin, F. T., Wu, H., and Cheng, Z. (2014) Comparison of Two Site-Specifically 18F-Labeled Affibodies for PET Imaging of EGFR Positive Tumors. Mol. Pharmaceutics 11 (11), 3947–3956.

(127) Burley, T. A., Da Pieve, C., Martins, C. D., Ciobota, D. M., Allott, L., Oyen, W. J., Harrington, K. J., Smith, G., and Kramer-Marek, G. (2019) Affibody-Based PET Imaging to Guide EGFR-Targeted Cancer Therapy in Head and Neck Squamous Cell Cancer Models. J. Nucl. Med. 60 (3), 353–361.

(128) Da Pieve, C., Makarem, A., Turnock, S., Maczynska, J., Smith, G., and Kramer-Marek, G. (2020) Thiol-Reactive PODS-Bearing Bifunctional Chelators for the Development of EGFR-Targeting [18F]Affibody Conjugates. Molecules 25 (7), 1562.

(129) Cleeren, P., Lecca, J., Ahamed, M., Raes, G., Devoogdt, N., Caveliers, V., McQuade, P., Rubins, D. J., Li, W., Verbruggen, A., et al. (2020) A18 F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging. Theranostics 7 (11), 2924–2939.

(130) Gutfilen, B., Souza, S., and Valentini, G. (2018) Copper-64: A New Bifunctional Chelator Incorporating Dibromomaleimide Groups for Radiolabeling of Antibodies with Positron Emission Tomography Imaging Radioisotopes. Bioconjugate Chem., 1 DOI: 10.1021/acs.bioconjchem.0c00136

(131) Bolzati, C., and Duatti, A. (2020) The Emerging Value of 64Cu for Molecular Imaging and Therapy. Q. J. Nucl. Med. Mol. Imaging 64 (4), 329–337.

(132) Jalilian, A. R., Osso, J. A. Jr, Vera-Araujo, J., Kumar, V., Harris, M. J., Gutfilen, B., Guérin, B., Li, H., Zhuravlev, F., Chakravarty, R., et al. (2020) IAEA Contribution to the Development of 64Cu Radiopharmaceuticals for Theranostic Applications. Q. J. Nucl. Med. Mol. Imaging 64 (4), 338–345.

(133) Boschi, A., Martini, P., Janevik-Ivanovska, E., and Duatti, A. (2018) The Emerging Role of Copper-64 Radiopharmaceuticals as Cancer Theranostics. Drug Discovery Today 23 (8), 1489–1501.

(134) Natarajan, A. (2020) Copper-64-ImmunoPET Imaging: Bench to Bedside. Q. J. Nucl. Med. Mol. Imaging 64 (4), 356–363.

(135) Coenen, H. H., and Ermert, J. (2021) Expanding PET-Techniques in the Era of Advanced α-Therapy. J. Nucl. Med. 62 (1), 137–143.

(136) Zhao, J., Wen, X., Li, T., Shi, S., Xiong, C., Wang, Y. A., and Li, C. (2020) Concurrent Injection of Unlabeled Antibodies Allows Positron Emission Tomography Imaging of Programmed Cell Death Ligand 1 Expression in an Orthotopic Pancreatic Tumor Model. ACS Omega 5 (15), 8474–8482.

(137) Case, B. A., Kruziki, M. A., Stern, L. A., and Hackel, B. J. (2018) Evaluation of Affibody Charge Modification Identified by Synthetic Consensus Design in Molecular PET Imaging of Epidermal Growth Factor Receptor. Mol. Syst. Des. Eng. 3 (1), 171–182.

(138) Tomlach, V., Yoo, C.-B., Rajander, J., Perols, A., Karlstrom, A. E., Haaparanta-Solin, M., Grönroos, T. J., Solin, O., and Orlova, A. (2017) Comparative Evaluation of Anti-HER2 Affibody Molecules Labelled with 64 Cu Using NOTA and NODAGA. Contrast Media Mol. Imaging 2017, 1–12.

(139) Schjothe-Eskesen, C., Nielsen, C. H., Heisell, S., Hokrup, P., Hansen, P. R., Gillings, N., and Kjaer, A. (2015) [64Cu]-Labeled Trastuzumab: Optimisation of Labelling by DOTA and NODAGA Conjugation and Initial Evaluation in Mice. J. Labelled Compd. Radiopharm. 58 (6), 227–233.

(140) Mortimer, J. E., Bading, J. R., Park, J. M., Frankel, P. H., Carroll, M. I., Tran, T. T., Poku, E. K., Rockne, R. C., Raubitschek, A. A., Shively, J. E., et al. (2018) Tumor Uptake of 64Cu-DOTA-Trastuzumab in Patients with Metastatic Breast Cancer. J. Nucl. Med. 59 (1), 38–43.

(141) Lockhart, A. C., Liu, Y., Dehdashti, F., Laforest, R., Picus, J., Frye, J., Trull, L., Belanger, S., Desai, M., Mahmood, S., et al. (2016) Phase 1 Evaluation of [64Cu]DOTA-Patritumab to Assess Dosimetry, Apparent Receptor Occupancy, and Safety in Subjects with Advanced Solid Tumors. Mol. Imaging Biol. 18 (3), 446–453.

(142) Guo, X., Zhu, H., Zhou, N., Chen, Z., Liu, T., Liu, F., Xu, X., Jin, H., Shen, L., Gao, J., et al. (2018) Noninvasive Detection of HER2 Expression in Gastric Cancer by 64Cu-NOTA-Trastuzumab in PDX Mouse Model and in Patients. Mol. Pharmaceutics 15 (11), 5174–5182.

(143) Bailly, C., Gouraud, S., Guérard, F., Chalopin, B., Carlier, T., Faivre-Chauvet, A., Remaud-Le Saëc, P., Bourgeois, M., Chouin, N., RBah-Vidal, L., et al. (2019) What Is the Best Radionuclide for Immuno-PET of Multiple Myeloma? A Comparison Study Between 89Zr- and 64Cu-Labeled Anti-CD38 Antibody: A Targeted Probe for PET/CT Imaging of Gastric Cancer. Sci. Rep. 5 (2015) Evaluation of 68Ga-Labeled MG7 Antibody: A Targeted Probe for PET/CT Imaging of Gastric Cancer. Sci. Rep. 5 (1), 8626.

(130) Capriotti, G., and Duatti, A. (2020) Adding 64Cu Radiopharmaceuticals to the Toolkit of Molecular Imaging. Q. J. Nucl. Med. Mol. Imaging 64 (4), 327–328.

(131) Pasquali, M., Martini, P., Shahi, A., Jalilian, A. R., Osso, J. A., and Boschi, A. (2020) Copper-64 Based Radiopharmaceuticals for Brain Tumors and Hypoxia Imaging. Quarterly Journal of Nuclear Medicine and Molecular Imaging 64, 371–381.

(132) Zhou, Y., Baidoo, K. E., and Brechbiel, M. W. (2013) Mapping Biological Behaviors by Application of Longer-Lived Positron Emitting Radionuclides. Adv. Drug Delivery Rev. 65 (8), 1098–1111.

(133) Price, E. W., and Orvig, C. (2014) Matching Chelators to Radiometals for Radiopharmaceuticals. Chem. Soc. Rev. 43 (1), 260–290.

(134) Mortimer, J. E., Bading, J. R., Park, J. M., Frankel, P. H., Carroll, M. I., Tran, T. T., Poku, E. K., Rockne, R. C., Raubitschek, A. A., Shively, J. E., et al. (2018) Tumor Uptake of 64Cu-DOTA-Trastuzumab in Patients with Metastatic Breast Cancer. J. Nucl. Med. 59 (1), 38–43.
Comparison with Its Analogues. An Example of Bioconjugation on 9E7.4 MAB for Multiple Myeloma 64Cu-PET Imaging. Org. Biomol. Chem. 16 (23), 4261–4271.

(154) Navarro, A.-S., Le Bihan, T., Le Saëc, P., Bris, N., Le Bailly, C., Sai-Maurel, C., Bourgeois, M., Chérel, M., Tripier, R., and Faivre-Chauvet, A. (2019) TE1IPA as Innovating Chelator for 64Cu Immuno-TEP Imaging: A Comparative in Vivo Study with DOTA/NOTA by Conjugation on 9E7.4 MAB in a Syngeneic Multiple Myeloma Model. Bioconjugate Chem. 30 (9), 2393–2403.

(155) David, T., Hlinová, V., Kubíček, V., Bergmann, R., Stříese, F., Berndt, N., Szőlős, D., Kovács, T., Máthé, D., Bachmann, M., et al. (2018) Improved Conjugation, 64-Cu Radiolabeling, in Vivo Stability, and Imaging Using Nonprotected Bifunctional Macrocylic Ligands: Bis(Phosphinate) Cyclam (BPC) Chelators. J. Med. Chem. 61 (19), 8774–8796.

(156) Tisonou, M. I., Knapp, C. A., Foley, C. A., Munteanu, C. R., Cakebread, A., Imberti, C., Eykyn, T. R., Young, J. D., Paterson, B. M., Blower, P. J., et al. (2017) Comparison of Macroyclic and Acyclic Chelators for Gallium-68 Radiolabelling. RSC Adv. 7 (78), 49586–49599.

(157) Smith, D. L., Breeman, W. A. P., and Sims-Mourtada, J. (2013) The Untapped Potential of Gallium 68-PET: The Next Wave of 68Ga-Agents. Appl. Radiat. Isot. 76, 14–23.

(158) Sörensen, J., Velikyan, I., Sandberg, D., Wennborg, A., Feldwisch, J., Tolmachev, V., Orlova, A., Sandström, M., Lubarkin, M., Olofsson, H., et al. (2016) Measuring HER2-Receptor Expression In Metastatic Breast Cancer Using [68Ga]ABY-025 Affibody PET/CT. Bioconjugate Chem. 27, 1437–1446.

(160) Velikyan, I., Schweighöfer, P., Feldwisch, J., Seemann, J., Frejd, F. Y., Lindman, H., and Sörensen, J. (2019) Diagnostic HER2-Binding Radioimaging, [68Ga]ABY-025, for Routine Clinical Use in Breast Cancer Patients. Am. J. Nucl. Med. Mol. Imaging 9 (1), 12–23.

(161) Keyaerts, M., Xavier, C., Heemskerk, J., Devoogdt, N., Everaert, H., Ackaert, C., Vanhoey, M., Dahoux, F. P., Geraert, T., Simoertono, P., et al. (2016) Phase I Study of 68Ga-HER2-Nanobody for PET/CT Assessment of HER2 Expression in Breast Carcinoma. J. Nucl. Med. 57 (1), 27–33.

(162) Nawaz, S., Mullen, G. E. D., Sunasse, K., Bordoloi, J., Blower, P. J., and Ballinger, J. R. (2017) Simple, Mild, One-Step Labelling of Proteins with Gallium-68 Using a Tris(Hydroxymethyl)aminomethane Bifuctional Chelator: A 68Ga-THP-ScFv Targeting the Prostate-Specific Membrane Antigen. EJNMMI Res. 7 (1), 86.

(163) Brunnquell, C. L., Hernandez, R., Graves, S. A., Smit-Oistad, M., Naranjo-Carmona, C. M., Naranjo, C. M., Unc, G. A., Mastren, T., Brugh, M., Münchbaun, E. R., Olofsson, H., and van der Meulen, N. (2017) Measurement of 43Sc and 44Sc Production Cross-Section with an 18 MeV Medical PET Cyclotron. Appl. Radiat. Isot. 129, 96–102.

(177) Radchenko, V., Engle, C. A. L., Brugg, M., Münchbaun, E. R., Evens, J. D., Kock, K., and van der Meulen, N. (2017) Production of 43Sc and 44Sc Production Cross-Section with an 18 MeV Medical PET Cyclotron. Appl. Radiat. Isot. 129, 96–102.

(178) Chaple, I. F., and Lapi, S. E. (2018) Production and Use of the First-Row Transition Metal PET Radionuclides 43,44Sc, 52Mn, and 45Ti. J. Nucl. Med. 59 (11), 1655–1659.

(179) Müller, C., Domnanich, K. A., Umbricht, C. A., and Van Der Meulen, N. P. (2018) Scandium and Terbium Radionuclides for Radiotheranostics: Current State of Development towards Clinical Application. Br. J. Radiol. 91 (1091), 20180074.

(180) Huclier-Markai, S., Alliot, C., Kerdjourdi, R., Mougin-Degraef, M., Chouin, N., and Haddad, F. (2018) Promising Scandium Radionuclides for Nuclear Medicine: A Review on the Production and Chemistry up to In Vivo Proofs of Concept. Cancer Biother. Radiopharm. 33 (8), 316–329.

(181) Talip, Z., Favaretto, C., Geistlich, S., and Meulen, N. P. (2020) van der A. Step-by-Step Guide for the Novel Radiometal Production for Medical Applications: Case Studies with 68Ga, 44Sc, 177Lu and 161Tb. Molecules 25 (4), 966.

(182) Price, E. W., and Orvig, C. (2014) Matching Chelators to Radionuclides for Radiopharmaceuticals. Chem. Soc. Rev. 43 (1), 260–290.

(183) Majkowska-Pilip, A., and Bilewicz, A. (2011) Macrocyclic Complexes of Scandium Radionuclides as Precursors for Diagnostic and Therapeutic Radiopharmaceuticals. J. Inorg. Biochem. 105 (2), 313–320.
