Improvement of Peach Embryo Culture Through Mani

Abstract. Carbohydrate source of peach [Prunus persica (L.) Batsch] embryo culture media affects embryo growth and survival. The first objective of this study was to determine the effect of five carbohydrates (fructose, glucose, maltose, sorbitol, and sucrose) in Woody Plant Medium (WPM) on the germination and survival of peach embryos in vitro. Fructose (2% and 3%) produced greater survival than all other carbohydrates tested in smaller embryos (<10% ovule dry weight). However, sucrose was better than all other carbohydrates tested in larger embryos (>10% ovule dry weight). In addition, large embryos (>10% ovule dry weight) on fructose at 1% combined with glucose, maltose, sorbitol, or sucrose at 1% had equivalent or higher survival than all those on either 1% or 2% sucrose in conjunction with the same carbohydrates. Embryo survival on different carbohydrates varied with genotype. The second objective of this study was to determine the effect of three levels of MES buffer (0.0, 4.5, and 9.0 mM) on medium pH stability and embryo survival. MES buffer at 0.0 mM and 4.5 mM concentration produced significantly better embryo survival than 9.0 mM. The pH stability was better at MES 9.0 mM, however survival decreased significantly. Chemical name used: [2-(N-morpholino)-ethane sulfonic acid] (MES)

Materials and Methods

Healthy, well-developed fruit of 10 genotypes (‘Flordacrest’, ‘Flordahome’, TX585, TX4392-6, ‘Springprince’, TX5393-1, ‘Scarlettpearl’, TX4393-5, TX3189-1, and TX4D46W) was harvested from late April through late June, depending upon individual genotype maturation and stored at 4 °C ± 1 °C for a period of <14 d before use. Standard sterilization and culture procedures were followed (Rizzo et al., 1998). Ovule/embryo size and ovule percent dry weight were determined prior to culturing with destructive measurements on a representative sample of 10 ovules per genotype.

Fruit was first surface sterilized. Under sterile conditions ovules were extracted, seed coats removed, and the embryos were placed into 25 x 95 mm Baxter shell vials containing 10 mL of WPM medium. Ten to 18 replications (embryos) per treatment were used in all experiments (n = 10 to 18). Racks of vials containing medium and embryos were sealed in large paper bags (randomly) and stratified in the dark at 4 °C for 10 weeks, after which time they were removed and placed under fluorescent lighting at ~8.6 klux with a 16-h photoperiod at 28 ± 1 °C (1998) or 18 ± 2 °C (1999) to induce germination. After 3 weeks when the plants had both adequate shoot and root formation for survival out of culture, they were transferred to planting medium (Sunshine Mix #4, Sun Gro, Bellevue, Wash.) in 25 x 52 x 7 cm trays with humidity domes and grown under artificial fluorescent lighting at ~8.6 klux with a 16-h photoperiod at 28 ± 1 °C. Humidity domes were removed 2–3 d. After 2 to 3 weeks under lights in the laboratory, plants were transferred to mist benches in the greenhouse and left for ~1 week. When the shoots were ~10 cm long, they were planted into 5.1 x 6.4 x 25.4 cm Rooterins (Spencer-Lemaire, Alberta, Canada). Germination data were recorded on the number of embryos that developed to both adequate roots and shoots. Survival data was taken on the number of plants that survived transfer to Rootrainers in the greenhouse.

1998 carbohydrate source experiment. The basal medium was WPM nutrients and vitamins, (Lloyd and McCown, 1981) pH 6.00 ± 0.01 and 4.5 mM MES added as a buffer. The effects of the five carbohydrates (fructose, glucose, maltose, sorbitol, and sucrose) at 2% and 3% (10 treatments) were examined on five peach genotypes (‘Flordacrest’, TX585, TX4392-6, ‘Springprince’, and three successive harvests at 1-week intervals of ‘Flordaking’) in a factorial experiment.

1999 fructose, sucrose, or both combination experiment. The effects of WPM containing either 1% fructose or 1% or 2% sucrose in conjunction with either 1% glucose, maltose, sorbitol, or sucrose (12 treatments) were examined on three peach genotypes (‘Flordacrest’, TX4392-6, and TX4D46W) in a factorial experiment.

1998 pH experiment. The effects of MES at three concentrations (0.0, 4.5, and 9.0 mM) and two pH levels (5.7 or 6.0) were examined on four genotypes (‘Springprince’, TX5393-1, ‘Scarlettpearl’, and TX4393-5) with WPM containing 3% sucrose in a factorial experiment. Survival data was taken in a binomial format (0 = dead and 1 = alive) ±4 weeks after removal from stratification. Treatment effects in carbohydrate experiments (genotype, carbohydrate source, and carbohydrate concentration) and in pH experiments (genotype, pH level, and MES concentration) were analyzed.

d1-7222, p582-585 582

582 6/29/03, 3:40:37 PM
as factorials using the SAS GLM and Duncan’s multiple range test (SAS, 1985).

Results and Discussion

Since previous reports indicated that sucrose and fructose degraded upon autoclaving (Owen et al., 1991; Schenk et al., 1991), the carbohydrate concentrations were measured by liquid chromatography before and after autoclaving. Autoclaving was not found to substantially degrade any of the carbohydrates (data not shown). 1998 carbohydrate source experiment. The genotypes tested were grouped into two categories. Small embryos (<10% ovule dry weight) were from peach genotypes TX5B5 (7.8% ovule dry weight, 10.8 mm embryo length), ‘Flordaking’ first harvest (8.3% ovule dry weight, 9.7 mm embryo length), and ‘Flordaking’ second harvest (9.8% ovule dry weight, 10.2 mm embryo length). Large embryos (≥10% ovule dry weight) were from peach genotypes ‘Flordaking’ third harvest (10.0% ovule dry weight, 10.4 mm embryo length), TX4392-6 (11.2% ovule dry weight, 11.8 mm embryo length), ‘Springprince’ (11.5% ovule dry weight, 11.9 mm embryo length), and ‘Flordacrest’ (11.9% ovule dry weight, 10.6 mm embryo length). Survival was influenced by genotype and carbohydrate source main effects as well as the genotype × carbohydrate source, carbohydrate source × carbohydrate concentration, and genotype × carbohydrate source × carbohydrate concentration interactions (Table 1).

Across all genotypes and carbohydrate treatments, immature peach embryos germinated, grew, and survived best with fructose, maltose, and sucrose. The use of sorbitol gave the lowest percent survival and glucose was intermediate (Table 2). Sorbitol may have resulted in poor survival because the embryos may not be able to efficiently metabolize sorbitol once the seed coat is removed, since most of the enzyme sorbitol oxidase, which converts sorbitol to glucose, is produced in the seed coat (Yamaki and Ryugo, 1986). Although sucrose is the most popular carbohydrate for tissue culture, it alone is not necessarily the best for peach embryo culture.

The genotype survival ranged from 25% for the earliest harvested ‘Flordaking’ embryos to 56% for ‘Springprince’ (data not shown). This is in part related to embryo size as indicated by the lower survival (25%) of the smallest ‘Flordaking’ embryos (first harvest) compared to the larger ‘Flordaking’ embryos that were harvested 1 and 2 weeks later (33% to 39%).

The interaction between carbohydrate source and the carbohydrate concentration was primarily due to differential survival of embryos on the two separate concentrations of maltose and sucrose (Table 2). Normally, 2% to 3% sucrose is used in peach embryo culture based upon embryo size with the lower carbohydrate concentration better for the larger embryo sizes (Chaparro and Sherman, 1994; Ramming, 1985; Rizzo et al., 1998). Further examination of the data by embryo size indicated that small embryo (<10% ovule dry weight) embryos were from peach genotypes TX5B5, ‘Springprince’, ‘Flordacrest’, and TX4392-6. Large embryos (>10% ovule dry weight) were from TX4D46W, ‘Flordacrest’, (three harvests) n = 10, 18, 18; TX5B5, n = 12. The larger embryos (≥10% ovule dry weight) were from ‘Flordaking’ (third harvest), n = 18; ‘Springprince’, n = 16; ‘Flordacrest’, n = 12; and TX4392-6, n = 16 (n indicates the number of embryos from each genotype used with each treatment combination). Carbohydrate concentration (second harvest) varied from 1% fructose or 1% or 2% sucrose in combination with 1% glucose, maltose, sorbitol, or sucrose (1999 experiments). Different letters indicate significant differences according to Duncan’s multiple range test (P ≤ 0.05).

1Percent dry weight was determined with destructive measurements on a representative sample of 10 ovules per genotype.

Table 1. Percent germination and survival of immature peach embryos influenced by genotype, carbohydrate source, and carbohydrate concentration in 1998.

Variation	df	Germination	Survival
Genotype	6	***	***
Carbohydrate source	4	***	***
Carbohydrate concentration	1	NS	NS
Genotype × carbohydrate source	24	***	**
Carbohydrate source × concn	6	**	NS
Genotype × carbohydrate source × concn	4	***	***
Total	1019		

Table 2. Survival of immature peach embryos related to carbohydrate source and interactions with carbohydrate concentration and embryo size in 1998. Combined data from ‘Flordaking’ (three harvests), TX5B5, ‘Springprince’, ‘Flordacrest’, and TX4392-6 were used.

Carbohydrate source	Fructose	Glucose	Maltose	Sorbitol	Sucrose
Survival (%)	54 a	40 b	45 ab	10 c	52 a
2% carbohydrate	54 ab	44 bc	32 c	12 d	64 a
3% carbohydrate	55 ab	38 c	61 a	9 c	43 bc
<10% ovule dry weight	65 a	34 c	43 bc	10 d	33 c
>10% ovule dry weight	48 b	46 b	49 b	10 d	67 a

Fig. 1. Comparison of mean survival for immature peach embryos (all >10% ovule dry weight) over three harvests, n = 10, 18, 18; TX5B5, n = 12. The larger embryos (>10% ovule dry weight) were from ‘Flordaking’ (three harvests), n = 18; ‘Springprince’, n = 16; ‘Flordacrest’, n = 12; and TX4392-6, n = 16 (n indicates the number of embryos from each genotype used with each treatment combination).

1Different letters following values indicate significant differences within rows according to Duncan’s multiple range test (P ≤ 0.05).

Carbohydrate concentration (second harvest) varied from 1% fructose or 1% or 2% sucrose in combination with 1% glucose, maltose, sorbitol, or sucrose (1999 experiments). Different letters indicate significant differences according to Duncan’s multiple range test (P ≤ 0.05).
weight) survival is better on fructose and large embryo (>10% ovule dry weight) survival is better on sucrose (Table 2). Whereas there are reports that genotype (Brigden, 1994), sugar carbohydrate type (Hamnett, 1993; Scozzoli and Pasini, 1992), and embryo size (Kester and Hesse, 1955; Ramming, 1990) may affect plant growth in vitro, this is the first report of a differential carbohydrate type effect related to embryo size in peach.

1999 fructose, sucrose, or both combination experiment. All genotypes used had relatively large embryos (>10% ovule dry weight). Their size ranged from 12.6% to 20.3% ovule dry weight and 13.0 to 13.3 mm embryo length. Carbohydrate concentration affected immature peach embryo survival (Fig. 1). One percent fructose in conjunction with 1% glucose or 1% maltose produced better embryo survival than either 2% or 3% sucrose, the most common carbohydrate concentrations used in peach embryo culture (Chaparro and Sherman, 1994; Ramming, 1985).

All fructose combinations (1% fructose with either glucose, maltose, sorbitol, or sucrose each at 1%) produced embryo survival greater than or equal to the sucrose combinations (1% and 2% sucrose with either glucose, maltose, sorbitol, or sucrose each at 1%) for immature peach embryos >10 mm in length (Fig. 1).

Although the genotype × carbohydrate source combination interaction was significant (Table 3), there were no clear trends. The interaction was accounted for by only 3 of the 12 carbohydrate combinations. This is important because, to be widely used, embryo culture must produce acceptable survival on a wide range of genotypes that produce immature embryos.

These experiments indicate that carbohydrate combinations—especially those including fructose—have the potential to produce higher embryo survival than the standard approach of using one carbohydrate source (sucrose) in the media.

1998 pH experiment. All genotypes used had relatively large embryos (>10% ovule dry weight). Their size ranged from 11.6% to 23.2% ovule dry weight and 11.9 to 14.7 mm embryo length. Although genotypic survival differed significantly (50% to 80%) as expected and MES concentration was also significant, no differences in survival were caused by the two pH levels (5.7 and 6.0) (Table 4). This was most likely due to the narrow pH range tested and was in line with previous studies on *Vitis* somatic embryos (pH range 5.0 to 6.0) in which pH had no effect on average number of surviving embryos (Emershad and Ramming, 1994) and on peach rootstock (pH range 5.2 to 5.8) which showed no pH effect on mortality, but agar medium at pH 5.8 was best for growth (Reeves et al., 1983).

The addition of MES at both the 4.5 mM and 9.0 mM concentrations stabilized medium pH to within 0.5 pH units over a 10-week period compared to a >1.0 pH unit change without the MES buffer. Previous studies (Bugbee and Salisbury, 1985; Harbage and Stirmat, 1996; Owen et al., 1991) were short-lived compared to the 10 weeks of cold storage required for peach embryo culture. It is not surprising that the drop in pH associated with this experiment was more pronounced (0.20 to 1.54 pH units compared to 0.03 to 0.35 pH units from those prior experiments).

Autoclaving significantly alters the pH of medium (Schenk et al., 1991). In peach-embryo culture experiments, autoclaving lowered the pH of WPM without MES four to five times as much as medium with MES (pH change of 0.45 to 0.53 without compared to 0.10 to 0.11 with 9.0 mM) (Fig. 2).

In spite of the pH stabilization effects of MES (Fig. 2), the highest concentration (9.0 mM) was detrimental to embryo survival (Table 5). This detrimental effect was also shown with *Trifolium repens* L. (Rys and Phung, 1985), but

pH Level	Germination	Survival
5.7	*	***
6.0	*	NS
6.5	*	NS

Table 3. Germination and survival of immature peach embryos cultured in vitro by genotype and carbohydrate source combination in 1999.

Variation	df	Germination	Survival
Genotype	2	***	NS
Carbohydrate source combination	11	***	***
Genotype × carbohydrate source combination	22	**	**
Total	64		

Table 4. Germination and survival of immature peach embryos cultured in vitro by genotype, pH level, and MES concentration in 1998.

Fig. 2. MES concentration related to pH stability of Woody Plant Medium before autoclaving (AC), after AC, and after a 10-week period of cold storage (Cold) in 1998. (Beginning pH levels of 5.7 and 6.0 respectively). Fourteen to 16 peach embryos from each of four genotypes (‘Springprince’ n = 14, TX3591-4 n = 16, ‘Scarletpearl’ n = 16, and TX4393-5 n = 16) were used per treatment.
not with beans (*Phaseolus vulgaris* L.), corn (*Zea mays*, L.), lettuce (*Lactuca sativum*, L.), and tomatoes (*Lycopersicon esculentum* Mill.) (Bugbee and Salisbury, 1985). Consequently, the effect appears related to species sensitivity, period of storage/exposure time, or both. Although promising as a pH buffer, MES is not recommended for immature peach embryo culture except at low concentrations.

These experiments indicate that for small embryos (<10.0% ovule dry weight) fructose (2% to 3%) is better than similar levels of glucose, maltose, sorbitol, or sucrose. For larger embryos (>10.0% ovule dry weight) no single treatment was better than all the rest, but sugar combinations of 1% fructose combined with other sugars (either glucose, maltose, sorbitol, or sucrose at each 1%) were better than or equal to sucrose alone or in combinations.

Literature Cited

Almehdi, A.A. and D.E. Parfitt. 1986. In vitro propagation of peach: I. Propagation of ‘Lovell’ and ‘Nemaguard’ peach rootstocks. *Plant Var.* 40:12–17.

Bacon, T.A. and D.H. Byrne. 1995. Relationships of fruit development period, seed germination, seedling survival, and percent dry weight of ovule in peach. *HortScience* 30:833. (Abstr.)

Batty, N. and J. Dunwell. 1989. Effect of maltose on the response of potato anthers in culture. *Plant Cell Tiss. Organ.* 18:221–226

Bonga, J.M. and P. Aderkas. 1992. In vitro culture of trees. Kluwer Acad., Boston.

Bridgen, M.P. 1994. A review of plant embryo culture. *HortScience* 29:1243–1245.

Brooks, H.J. and L.F. Hough. 1958. Vernalization studies with peach embryos. *Proc. Amer. Soc. Hort. Sci.* 71:95–102.

Burgess, L.C. and F.B. Salisbury. 1985. An evaluation of MES [2(n-morpholino)ethanesulfonic acid] and amilorate ic-50 as pH buffers for nutrient solution studies. *J. Plant Nutr.* 8:567–583.

Bugbee, B.G. and F.B. Salisbury. 1985. Effect of pH on growth and nutrient uptake in tomato seedlings grown in substrates. *HortScience* 20:367–368.

Byrne, D. and H.B. Sherman. 1994. Culture date and germination procedure affects success of nectarine ovule and embryo culture. *Plant Var.* J. 48:173–175.

Evershed, R.L. and D.W. Ramming. 1994. Effects of buffers and pH on *Vitis* somatic embryo proliferation and enlargement. In: *Proc. Intl. Symp. Table Grape Prod.* Amer. Soc. Enol. Viticult. Spec. Iss.: 219–222.

Frick, J. and C.A. Mitchell. 1993. Stabilization of pH in solid-matrix hydroponic systems. *HortScience* 28:981–984.

Hammatt, N. 1993. Micropropagation of fastigiate *Malus* (Crataegus) species and cultivars. *HortScience* 28:981–984.

Hammatt, N. 1993. Micropropagation of fastigiate *Malus* (Crataegus) species and cultivars. *HortScience* 28:981–984.

Harbage, J.F. and D.P. Stimart. 1996. Effect of pH and 1H-indole-3-butryic acid (IBA) on rooting of apple microcuttings. *J. Amer. Soc. Hort. Sci.* 121:1049–1053.

Kester, D.E. and C.O. Hesse. 1955. Embryo culture of peach varieties in relation to season of ripening. *Proc. Amer. Soc. Hort. Sci.* 65:265–273.

Lloyd, G. and B. McCown. 1981. Commercially-feasible micropropagation of mountain laurel, *Kalina latifolia*, by use of shoot-tip culture. *Comb. Proc. Intl. Plant Prop. Soc.* 30:421–427.

Marino, G., G. Bartanza, E. Magnanini, and A.D. Altan. 1993. Comparative effects of sorbitol and sucrose as main carbon sources in micropropagation of apricot. *Plant Cell Tiss. Org.* Cult. 43:235–244.

Owen, H.R., D. Wengard, and A.R. Miller. 1991. Culture medium pH is influenced by basal medium, carbohydrate source, gelling agent, activated charcoal, and medium storage method. *Plant Cell Rpt.* 10:583–586.

Ramming, D.W. 1985. In ovulo embryo culture of early maturing *Prunus*. *HortScience* 20:419–420.

Ramming, D.W. 1990. The use of embryo culture in fruit breeding. *HortScience* 25:393–398.

Reeves, D.W., B.D. Horton, and G.A. Couvillon. 1983. Effect of media and media pH on in vitro propagation of ‘Nemaguard’ peach rootstock. *Sci. Hort.* 21:353–357.

Rizzo, M., K. Porter, D. Bassi, and D. Byrne. 1998. Growth of immature peach (*Prunus persica* (L.) Batsch.) embryos on different media. *Acta Hortic.*, 465:141–144.

Rys, G.J. and T. Phung. 1985. Nitrogen solution pH control using dipolar buffer in studies of *Trifolium repens* L. nitrogen nutrition. *J. Exp. Bot.* 36:426–431.

SAS Institute, Inc. 1985. *SAS user’s guide: Statistics*, version 5 ed. SAS Inst., Cary, N.C.

Schenk, N., K. Hsiao, and C. H. Bornman. 1991. Avoidance of precipitation and carbohydrate breakdown in autoclaved plant tissue culture media. *Plant Cell Rpt.* 10:115–119.

Scozzoli, A. and D. Pasini. 1992. Effects of different media constituents on development of peach embryos cultured in vitro. *Acta Hortic.* 300:265–268.

Sherman, W.B. and J. Rodriguez. 1987. Breeding of low-chill peach and nectarine for mild winters. *HortScience* 22:1233–1236.

U.S. Dept. of Agriculture. 1995. Fruit and tree nuts: Situation and outlook report. USDA Econ. Res. Serv., Washington, D.C.

Yamaki, S. and K. Ryu. 1986. Peach ovules, a model for studying photosynthate unloading mechanism. *HortScience* 21:757. (Abstr.)