COVID-19-Associated Neurological Manifestations: An Emerging Electroencephalographic Literature

Geoffroy Vellieux1,2*, Romain Sonneville3,4, Sérafima Vledouts1,2, Pierre Jaquet3,4, Anny Rouvel-Tallec1,2 and Marie-Pia d’Ortho1,2

1 Université de Paris, NeuroDiderot, Inserm, Paris, France, 2 Neurophysiologie clinique, Service de Physiologie – Explorations Fonctionnelles, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France, 3 Médecine Intensive-Réanimation, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France, 4 Université de Paris, UMR 1148, LVTS, Paris, France

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide since the end of year 2019 and is currently responsive for coronavirus infectious disease 2019 (COVID-19). The first reports considered COVID-19 as a respiratory tract disease responsible for pneumonia, but numerous studies rapidly emerged to warn the medical community of COVID-19-associated neurological manifestations, including encephalopathy at the acute phase and other postinfectious manifestations. Using standard visual analysis or spectral analysis, recent studies reported electroencephalographic (EEG) findings of COVID-19 patients with various neurological symptoms. Most EEG recordings were normal or revealed non-specific abnormalities, such as focal or generalized slowing, interictal epileptic figures, seizures, or status epilepticus. Interestingly, novel EEG abnormalities over frontal areas were also described at the acute phase. Underlying mechanisms leading to brain injury in COVID-19 are still unknown and matters of debate. These frontal EEG abnormalities could emphasize the hypothesis whereby SARS-CoV-2 enters the central nervous system (CNS) through olfactory structures and then spreads in CNS via frontal lobes. This hypothesis is reinforced by the presence of anosmia in a significant proportion of COVID-19 patients and by neuroimaging studies confirming orbitofrontal abnormalities. COVID-19 represents a new viral disease characterized by not only respiratory symptoms but also a systemic invasion associated with extra-respiratory signs. Neurological symptoms must be the focus of our attention, and functional brain evaluation with EEG is crucial, in combination with anatomical and functional brain imaging, to better understand its pathophysiology. Evolution of symptoms together with EEG patterns at the distance of the acute episode should also be scrutinized.

Keywords: SARS-CoV-2, coronavirus, COVID-19, encephalopathy, neurophysiology, EEG

INTRODUCTION

The coronavirus infectious disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, was initially recognized as a respiratory tract disease which could lead to an acute respiratory distress syndrome. However, there is growing evidence of a multi-organ involvement (Gupta et al., 2020). Several authors...
reported central nervous system (CNS) manifestations, as anosmia referring to olfactory tract involvement. Other critical presentations, including meningoencephalitis, seizures, status epilepticus (SE), encephalopathy, and altered mental status were also described (Ellul et al., 2020). Neurological complications, such as encephalopathy and seizures/SE, and electroencephalographic (EEG) abnormalities, mainly diffuse slowing and epileptiform discharges, have already been described in past viral pandemics such as influenza A H1N1 (Ekstrand et al., 2010; Kedia et al., 2011; Ibrahim and Haddad, 2014). Results of EEG in patients with COVID-19 were increasingly reported. While the volume of COVID-19-related case studies is still growing, we present the spectrum of EEG findings published at the moment, allowing physicians to be cognizant of this new and emerging literature while dealing with COVID-19 patients.

METHODS

We considered all studies with EEG findings at the acute phase in COVID-19 patients with neurological manifestations. We performed an electronic search from December 1, 2019, to October 1, 2020, using the database PUBMED by Medline with the following terms (in all fields): (i) (“EEG” OR “electroencephalogram” OR “electroencephalography”) AND (“COVID” OR “coronavirus” OR “SARS-CoV-2”) and (ii) (“brain” OR “nervous system” OR “neurology”) AND (“COVID” OR “coronavirus” OR “SARS-CoV-2”). We also scanned the reference lists of all included articles or relevant reviews for studies to be included in our work. We did not include reviews, non-English articles, unavailable full-text articles, and animal studies. After exclusion of duplicates, we screened the title/abstract or full-text reports and decided whether these met the inclusion criteria.

EEG OBSERVATIONS IN COVID-19 PATIENTS

A total of 107 studies were included. Normal EEG findings were reported in adult series (Cecchetti et al., 2020; Helms et al., 2020b; Petrescu et al., 2020) and case reports of patients who displayed various neurological conditions such as focal or generalized seizures (Elgamsy et al., 2020; Fasano et al., 2020; Garcia-Howard et al., 2020; Lyons et al., 2020), non-epileptic seizures (Logmin et al., 2020), myoclonus (Muccioli et al., 2020b; Rábano-Suárez et al., 2020), psychotic symptoms (Lim et al., 2020), encephalopathy (Andriuta et al., 2020; Chaumont et al., 2020; Delorme et al., 2020; Paterson et al., 2020; Perrin et al., 2020), encephalitis (Paterson et al., 2020), brainstem encephalitis (Khoo et al., 2020), and encephalomyelitis (Zoghi et al., 2020). Some studies also reported non-specific abnormalities without more precise EEG features specified by authors (Chougur et al., 2020; Frei et al., 2020; Helms et al., 2020a; Pugin et al., 2020).

Diffuse and Focal Slowing

Diffuse slowing of the background activity or focal slowing (sometimes associated with focal sharp waves or epileptiform discharges) was the most frequently published abnormality, especially in adult series (Ayub et al., 2020; Canham et al., 2020; Cecchetti et al., 2020; Chougur et al., 2020; Galanopoulou et al., 2020; Helms et al., 2020a,b; Louis et al., 2020; Pasini et al., 2020; Pellinen et al., 2020; Petrescu et al., 2020; Pilotto et al., 2020a; Scullen et al., 2020; Sethi, 2020; Vespignani et al., 2020) (Figure 1A). Main results of adult series including at least 10 patients with confirmed SARS-CoV-2 infection and EEG recordings are summarized in Table 1. Diffuse or focal slowing was also associated in many case reports with various neurological presentations, mainly of vascular or inflammatory origin. Main vascular complications included ischemic and hemorrhagic strokes (Chaumont et al., 2020; Díaz-Pérez et al., 2020; Morassi et al., 2020;Soldatelli et al., 2020; Zahid et al., 2020), intracranial hemorrhage with cerebral venous thrombosis (Roy-Gash et al., 2020), posterior reversible encephalopathy syndrome (PRES) (Llansó and Urra, 2020; Princiotta Cariddi et al., 2020), intracranial vasculitis (Dixon et al., 2020), subarachnoid hemorrhage (Harrogate et al., 2020), acute hemorrhagic leukoencephalitis or leukoencephalomyelitis (Handa et al., 2020; Khaira et al., 2020; Svedung Wettervik et al., 2020), and acute necrotizing encephalopathy (Delamarre et al., 2020; Virhammar et al., 2020). Main inflammatory syndromes included acute disseminated encephalomyelitis (ADEM) (Parsons et al., 2020; Umahithi et al., 2020), acute leukoencephalopathy (Abenza-Abildúa et al., 2020; Anand et al., 2020; Brun et al., 2020; Huang H. et al., 2020; Khaira et al., 2020; Klironomos et al., 2020), acute leukoencephalitis (Perrin et al., 2020), meningencephalitis without any acute lesions on brain imaging (Duong et al., 2020; El-Zein et al., 2020; Pilotto et al., 2020b), Bickerstaff encephalitis (Llorente Ayuso et al., 2020), and concomitant autoimmune encephalitis (Grimaldi et al., 2020; Panariello et al., 2020). In critically ill patients, other conditions were described including post-hypoxic injury (Fischer et al., 2020; Radmanesh et al., 2020; Radnis et al., 2020; Vellieux et al., 2020), unresponsiveness after sedation discontinuation (Espinosa et al., 2020; Vellieux et al., 2020), encephalopathy or altered mental status without any acute lesions on brain imaging (Chaumont et al., 2020; Delorme et al., 2020; Filatov et al., 2020; Gaughan et al., 2020; Jang et al., 2020; Manganelli et al., 2020; Muccioli et al., 2020a; Méndez-Guerrero et al., 2020; Romero-Sánchez et al., 2020; Shokhr et al., 2020), encephalopathy with seizures (Ashraf and Sajed, 2020; Benameur et al., 2020; Farhadian et al., 2020; Haddad et al., 2020), defined toxic/metabolic encephalopathy (Flamand et al., 2020; Radmard et al., 2020; Rasmussen et al., 2020), neuroleptic malignant syndrome (Kajani et al., 2020), after seizures or SE (Anand et al., 2020; Edén et al., 2020; Emami et al., 2020), and critical illness-associated cerebral microbleeds (De Stefano et al., 2020). EEG slowing was also observed in pediatric reports (Abdel-Mannan et al., 2020; Abel et al., 2020; Dugue et al., 2020; Panda et al., 2020).
Seizures and SE
Seizures and/or SE were recorded in 10 patients out of 111 included in the series of Pellinen et al. (2020), in 2 out of 22 in the series of Louis et al. (2020), in 1 out of 37 in the series of Ayub et al. (2020), in 1 out of 15 in the series of Pasini et al. (2020), in 1 out of 27 in the series of Scullen et al. (2020), and in an unknown precise number of patients out of the 73 included in the series of Chougar et al. (2020) (Table 1).

Seizures and/or SE were recorded in reports of patients without any acute or chronic cortical lesions on brain imaging nor cerebrospinal fluid (CSF) abnormalities. The EEG of the patient reported by Balloy et al. (2020) revealed two widespread, but predominantly in frontal localizations, seizures that were interrupted by a moderate interictal frontal activity. Sohal and Mansur (2020) reported a patient whose 24-h EEG revealed six left temporal seizures and left temporal sharp waves. One of the two patients reported by Somani et al. (2020) displayed, on a continuous EEG (cEEG) monitoring, multiple seizures emanating from the midline and left frontocentral regions (Figure 1B). Hepburn et al. (2020) reported the cases of two patients whose cEEG monitoring showed, for the first one, three focal seizures arising from the right frontocentral region and,
TABLE 1 | Main results of case series including at least 10 patients admitted for COVID-19 with EEG recordings.

Series	Patients' features	Brain imaging results	CSF results	EEG settings	Ongoing psychoactive drugs	Main EEG results
Ayub et al., 2020	> Included, n=37	> CT-scan, n=36 and MRI, n=9	> CSF examination, n=4	> Total EEG recordings, n=37	> At time of EEG or the day prior	Absent PDR, n=34
USA	M/F, n=27/10					Asymmetry, n=4
Mono-centric	Median age: 66 years					Generalized delta and theta slowing, n=34
	anosmia, n=4					Burst suppression, n=5
	Intubated, n=28					Unreactive, n=1
	Prior neurological history					
	Stroke, n=6					
	Cerebral aneurysm, n=1					
	Epilepsy, n=1					
	ICH, n=1					
	DUB, n=1					
Canham et al., 2020	> Included, n=10	> CT-scan, n=10	> CSF examination, n=6	> Total EEG recordings, n=11	> At time of EEG	Generalized symmetrical slowing, n=11
United Kingdom	M/F, n=8/2					Anterior emphasis of slow activity, n=3
Mono-centric	Median age: 65 years					Asymmetry, n=1
	anosmia/agueusia, NA					
	Intubated, NA					
Canham et al., 2020	> Included, n=8	> CT-scan, n=8				Generalized sporadic discharges without triphasic waves, n=8
Italy	M/F, n=1/7					Generalized NCSE, n=1
Mono-centric	Mean age: 67 years					
	anosmia/agueusia, n=0					
	Intubated, NA					
Cecchetti et al., 2020	> Included, n=18	> CT-scan and/or MRI				Generalized symmetrical slowing, n=12
	M/F, n=11/7					

(Continued)
Series	Patients' features	Brain imaging results	CSF results	EEG settings	Ongoing psychoactive drugs	Main EEG results
Chougar et al., 2020	Included, n=73	MRI, n=73	CSF examination, n=39	Total EEG recordings, n=40	NA	Background activity / Epileptiform findings and seizures
France	M/F, n=49/25	No significant abnormalities, n=30	Abnormal WBC count, n=8	Types of EEG: NA	NA	Pathological findings related to seizure or encephalopathy, m=9
Mono-centric	Mean age: 66 years	Acute IS, n=17	Abnormal protein level, n=10	Period of recordings: NA	NA	Non-specific findings, m=24
	Anoxic/isoaemic, n=4	Multiple microhemorrhages, n=8	Oligoclonal bands, n=2	EEG indication: NA	NA	
	Intubated: NA	Multifocal enhancing WM lesions, n=4	Negative bacteriologic and virologic assays (including HSV 1 & 2, VZV, CMV, EBV and SARS-CoV-2 RT-PCR), n=59	NA		
Prior neurological history		Basal ganglia lesions, n=4				
Stroke, n=NA		Hyposic-ischemic lesions, n=3				
		Cytotoxic lesions of the CO, n=3				
		Central pontine myelinolysis, n=3				
		PRES, n=2				
		Meningeal enhancement, n=2				
		Nautria, n=2				
		Deep venous thrombosis, n=1				
		Corticospinal tracts FLAIR hyperintensity, n=1				
Galanopoulou et al., 2020	Included, n=22	Modality: NA (at least 1 brain MRI)		Total EEG recordings, n=31		Rhythmic and periodic patterns: NA
USA	M/F, n=14/8	Subcortical and mild periventricular WM signal hypereactivity, n=1		Types of EEG: NA		
Multicentric	Mean age: 63 years	SAH due to aneurysm, n=1		Period of recordings: NA		
	Anomalies/isoaemia, NA			EEG indication: NA		
	Intubated: n=14	SDH, n=1				
Prior neurological history	Epilepsy, n=4					
	Neurological disorders except epilepsy, n=7					
Helms et al., 2020a	Included, n=58	MRI, n=13	CSF examination, n=79	Total EEG recordings, n=8		Epileptiform findings and seizures
France	M/F: NA	Leptomeningeval enhancement, n=8	Normal WBC count, n=7	Types of EEG: NA		Bilateral frontal sharp waves, m=6
Bicentric	Median age: 63 years	Acute IS, n=2	Elevated protein level, n=1	Period of recordings: NA		Temporal or hemispheric sharp waves, m=2
	Anomalies/isoaemia, NA	Subacute IS, n=1	Oligoclonal bands with mirror pattern, n=2	EEG indication: NA		
	Intubated: n=58	Perfusion MRI, n=11	Negative SARS-CoV-2 RT-PCR, n=7			
Prior neurological history		Bilateral frontotemporal hypoperfusion, n=11				
	Isocortex, n=3					
	Partial epilepsy, MO, n=7					

(Continued)
Series	Patients’ features	Brain imaging results	CSF results	EEG settings	Ongoing psychoactive drugs	Main EEG results
Vellieux et al., 2020	> Included, n=140	MRI, n=120/40	Subarachnoid spaces FLAIR and T1 contrast enhancement, n=17	CSF examination, n=26	> Total EEG recordings, n=42	> Background activity
	France		WM microhemorrhages, n=7	EKG, n=8	Types of EEG: NA	Normal, n=0
			WM FLAIR hyperintensities, n=4, with small foci of contrast enhancement, n=2 and diffusion	Elevated protein level, n=9	> Period of recordings: NA	Unspecific abnormalities, with low voltage, rapid rhythm, and lack of asymmetry, n=26
			10hirarchymal hematomata, n=1	Positive SARS-CoV-2 RT-PCR	> EEG indication	Diffuse, especially bilateral, slow activity, n=11
	Bicentric		Acute IS, n=2	Negative bacterial cultures and viral research (HSV 1&2, antivirals), n=26	Unexplained and persistent altered consciousness after prolonged sedation discontinuation (1-3 days)	Rhythmic and periodic patterns: NA
			Preexisting IS, n=1	Rhythmic and periodic patterns: NA	Multimodality neurophysiological screening in combination with brain MRI and/or CSF examination	Epileptiform findings and seizures: NA
			> Perfusion MRI, n=26	> At time of EEG	Sedative drugs (including fentanyl, propofol and/or midazolam), n=14	Epileptiform findings and seizures
			Perfusion abnormalities, n=17	> Background activity	Continuous generalized polymorphic delta slowing, n=19	Epileptiform abnormalities, n=6
			NA	> Background activity	Elevated PDR, n=9	Seizures, n=2
			> Total EEG recordings, n=22	> Background activity	Absent PDR, n=11	Normal PDR, n=2
			Types of EEG	> Rhythmic and periodic patterns	Generalized slowing with theta predominance, n=5	Rhythmic and periodic patterns: NA
			eG, n=19	GPDs with triphasic morphology, n=5	GPDs with sharply contoured morphology, n=2	GPDS, m=17
			Routine EEG, n=3	Intermittent GPDs, n=11	Intermittent GPDs, n=11	GPDS, m=7
			Period of recordings: NA	Hemispheric LRDAs, n=1	Hemispheric LRDAs, n=1	GPDS, m=5
			> EEG indication	> Epileptiform findings and seizures	Epileptiform findings and seizures: NA	GPDS, m=2
			Altering mental status, n=17	Epileptic abnormalities, n=6	Epileptic abnormalities, n=6	GPDS with sharply contoured morphology, n=2
			Seizure-like event, n=5	Seizures, n=2	Seizures, n=2	Intermittent GPDs, n=11
			NA	Subset of non-post-anoxic patients, n=13	Subset of non-post-anoxic patients, n=13	Hemispheric LRDAs, n=1
			> At time of EEG	Generalized slowing with theta predominance, n=5	Generalized slowing with intrusions of theta/delta activity, n=4	Hemispheric LRDAs, n=1
	Italy	CT-scan, n=8	Control EEG, n=15	Focal slowing predominantly over the frontal or central regions, n=3	Focal slowing predominantly over the frontal or central regions, n=3	Hemispheric LRDAs, n=1
			> Total EEG recordings, n=15	Unreactive, n=10	Unreactive, n=10	Hemispheric LRDAs, n=1
	Pasini et al., 2020	MRI, n=6/9	CSF examination, n=5	Subacute post-anoxic coma, n=2	Subacute post-anoxic coma, n=2	Rhythmic and periodic patterns: NA
			Elevated protein level, n=4	Aphasia, n=1	Aphasia, n=1	Rhythmic and periodic patterns: NA
			Negative SARS-CoV-2 detection, n=5	> EEG indication	Confusion, n=11	Epileptiform findings and seizures: NA
			18 electrodes EEG, n=15	Impairment of consciousness, n=4 with post-anoxic coma, n=2	Impairment of consciousness, n=4 with post-anoxic coma, n=2	Epileptiform abnormalities, n=0
			> Period of recordings: NA	> Background activity	Severe electrolyte abnormalities, n=1	Subset of post-anoxic comas, n=2
			NA	Unreactive, n=2	Discouraged activity compatible with post-anoxic SE, n=1	Subset of post-anoxic comas, n=2
			> Background activity	Subacute post-anoxic coma, n=2	Unreactive, n=2	Subacute post-anoxic coma, n=2

(Continued)
Series	Patients’ features	Brain imaging results	CSF results	EEG settings	Ongoing psychoactive drugs	Main EEG results
Pellisson et al., 2020	Included, n=111	> Brain imaging, n=90 (with CT-scan only, n=75)	NA	> Total EEG recordings, n=118	> During EEG	> Background activity
USA	M/F, n=79/32	> Acute IS, n=18	> Types of EEG	> Sedative drugs (including propofol, midazolam, pentobarbital, dexmedetomidine and/or fentanyl)	> Mild generalized slowing	Normal, n=5
Multicentric	Median age: 64 years	> Acute ICH, n=15	> 21-channel EEG for a target of at least 24 hours, n=111	> Prior to EEG	> Moderate generalized slowing	n=17
	Anosmia/agueusia: NA	> Cerebral edema, n=6	> Rapid EEG system with 8-bipolar channel montage 0.5-12 hours, n=7	> AD, n=57	> Severe generalized slowing/discontinuous/ECI	n=67
	Intubated, n=79	> Diffuse leukoencephalopathy with microhemorrhages, n=6	> Period of recordings: NA		> Focal slowing	n=27
	Prior neurological history Stroke, n=23	> Mixed acute ischemic and hemorrhagic lesions, n=3				
	Epilepsy, n=13					
	Dementia, n=4					
	Developmental delay/intellectual disability, n=3					
	Brain tumor, n=3					
	Traumatic brain injury, n=2					
	Parkinson disease, n=2					
	Vascular malformation, n=1					
	Tuberous sclerosis complex, n=1					
	Herpes encephalitis, n=1					
Petrešcu et al., 2020	Included, n=36	> CT-scan, n=14	> CSF examination, n=4	> Total EEG recordings, n=40	> At time of EEG	> Background activity
France	M/F, n=26/10	Normal, n=4	Normal, n=4	> Types of EEG	> Levetiracetam, n=6	Normal, n=4
Monocentric	Mean age: 70 years	Abiphyn, n=9		> Routine 20 min EEG, n=40	> Sedations, n=5	Mildly altered, n=19
	Anosmia/agueusia: NA	BS, n=2		> Period of recordings: NA	> Risperidone, n=4	Moderately altered, n=4
	Intubated, n=11	Catatification, n=2			> Oxycodone, n=4	Severely altered, n=4
	Prior neurological history	SDH, n=1			> Carbamazepine, n=2	Severely altered, n=8
	Dementia, n=10	Leukoaraiosis, n=1			> Desmopressin, n=2	Critically altered, n=5
	Stroke, n=3	Marfanoma, n=1			> Citalopram or escitalopram, n=2	Focal biclaustral slowing, n=1
	SDH, n=2	Postoperative lesion, n=1			> OSU, n=2	Sporadic triphasic waves, n=1
	Memory impairment, n=1				> Phenytoin, n=2	
	Hydrocephalus, n=1	> MRI, n=11			> Oxazepam, n=1	
	Epilepsy, n=1	Abiphyn, n=4			> Haloperidol, n=1	
	Parkinson disease, n=1	BS, n=2			> Oxcarbazepine, n=1	
		SDH, n=2			> Diazepam, n=1	
		Glosia of CC, n=1			> Lamotrigine, n=1	
		Leukonnaesthesia, n=1				
		Lepotonominal enhancement, n=1				
		Prognostic aspectic lesions (multiple ischemic and hemorrhagic lesions) related to endocarditis, n=1				
		Multiple FLAIR hyperintense lesions, n=1				

(Continued)
Series	Patients' features	Brain imaging results	CSF results	EEG settings	Ongoing psychoactive drugs	Main EEG results
Pilotto et al., 2020a	Included patients, n=25	MRL, n=25	CSF examination, n=25	Total EEG recordings, n=25	NA	Background activity: Generalized slowing especially localized to frontal derivations, n=16
Italy	M/F, n=15/10	Normal, n=13	Normal, n=13	Normal, n=13	NA	Rhythmic and periodic patterns: NA
Multicentric	Mean age: 66 years	Multiple subcortical T2 hyperintensities, n=4	Elevated WBC count, n=9	Elevated protein level, n=15	Type of EEG: NA	Epileptiform findings and seizures: NA
Anosmia/agnosia: NA	Focal cortical T2 and DWI hyperintensities, n=3	Negative bacteriological and virological screening, n=25	Negative SAR-CoV-2 RT-PCR, n=14	Period of recordings: NA	EEG indication: Lennox/Gastaut mental status, n=17	Focal epileptic alterations, n=6
Intubated, n=4	Acute necrotizing encephalopathy, n=2	Disturbances of oxidative metabolism, n=25	Disturbances of oxidative metabolism, n=25	Disturbances of oxidative metabolism, n=25	Aphasias/dysarthrias, n=6	Seizures, n=6
Prior neurological history: Stria, n=4	Limbic encephalitis, n=2	Leptomeningeal enhancement, n=1	Leptomeningeal enhancement, n=1	Leptomeningeal enhancement, n=1	Aphasia/dysarthrias, n=6	Seizures, n=6
Mental retardation, n=1	High-normal ICP, n=1	Corneal reflex, n=1	Corneal reflex, n=1	Corneal reflex, n=1	Aphasia/dysarthrias, n=6	Seizures, n=6
Possible encephalitis and Bannyst disease, n=1	Papilloedema, n=1	Papilloedema, n=1	Papilloedema, n=1	Papilloedema, n=1	Aphasia/dysarthrias, n=6	Seizures, n=6
Vellieux et al., 2020	Included patients, n=25	MRL, n=25	CSF examination, n=25	Total EEG recordings, n=25	NA	Background activity: Generalized slowing especially localized to frontal derivations, n=16
Italy	M/F, n=15/10	Normal, n=13	Normal, n=13	Normal, n=13	NA	Rhythmic and periodic patterns: NA
Multicentric	Mean age: 66 years	Multiple subcortical T2 hyperintensities, n=4	Elevated WBC count, n=9	Elevated protein level, n=15	Type of EEG: NA	Epileptiform findings and seizures: NA
Anosmia/agnosia: NA	Focal cortical T2 and DWI hyperintensities, n=3	Negative bacteriological and virological screening, n=25	Negative SAR-CoV-2 RT-PCR, n=14	Period of recordings: NA	EEG indication: Lennox/Gastaut mental status, n=17	Focal epileptic alterations, n=6
Intubated, n=4	Acute necrotizing encephalopathy, n=2	Disturbances of oxidative metabolism, n=25	Disturbances of oxidative metabolism, n=25	Disturbances of oxidative metabolism, n=25	Aphasias/dysarthrias, n=6	Seizures, n=6
Prior neurological history: Stria, n=4	Limbic encephalitis, n=2	Leptomeningeal enhancement, n=1	Leptomeningeal enhancement, n=1	Leptomeningeal enhancement, n=1	Aphasia/dysarthrias, n=6	Seizures, n=6
Mental retardation, n=1	High-normal ICP, n=1	Corneal reflex, n=1	Corneal reflex, n=1	Corneal reflex, n=1	Aphasia/dysarthrias, n=6	Seizures, n=6
Possible encephalitis and Bannyst disease, n=1	Papilloedema, n=1	Papilloedema, n=1	Papilloedema, n=1	Papilloedema, n=1	Aphasia/dysarthrias, n=6	Seizures, n=6
Scullen et al., 2020	Included patients, n=27	MRL, n=27	CSF examination, n=27	Total EEG recordings, n=27	NA	Background activity: Generalized encephalopathy (i.e. irregular slowing with delta and theta frequency oscillations), n=11
USA	M/F, n=14/13	Normal, n=14	Normal, n=14	Normal, n=14	NA	Rhythmic and periodic patterns: NA
Monocentric	Mean age: 60 years	Multiple subcortical T2 hyperintensities, n=14	Elevated WBC count, n=6	Elevated protein level, n=6	Type of EEG: dEEG, n=13	Epileptiform findings and seizures: NA
Anosmia/agnosia, n=1	Diffuse hypodensities in deep structures, n=6	Negative bacteriological and virological screening, n=25	Negative SAR-CoV-2 RT-PCR, n=14	Period of recordings: NA	EEG indication: Lennox/Gastaut mental status, n=17	Focal epileptic alterations, n=6
Intubated: NA	Subcortical hypodensities, n=4	Disturbances of oxidative metabolism, n=25	Disturbances of oxidative metabolism, n=25	Disturbances of oxidative metabolism, n=25	Aphasias/dysarthrias, n=6	Seizures, n=6
Prior neurological history: Stria, n=3	Subcortical atrophy, n=3	Leptomeningeal enhancement, n=1	Leptomeningeal enhancement, n=1	Leptomeningeal enhancement, n=1	Aphasia/dysarthrias, n=6	Seizures, n=6
Pseudotumor cerebri, n=1	Viral encephalitis with diffuse involvement of the deep WM, CC and basal ganglia, n=NA	Disturbances of oxidative metabolism, n=25	Disturbances of oxidative metabolism, n=25	Disturbances of oxidative metabolism, n=25	Aphasias/dysarthrias, n=6	Seizures, n=6
Sethi, 2020	NA	NA	NA	NA	NA	Background activity: Diffuse theta and delta slowing
USA	NA	NA	NA	NA	NA	Rhythmic and periodic patterns: NA
Monocentric	NA	NA	NA	NA	NA	Epileptiform findings and seizures: NA
Vespignani et al., 2020	Subset of patients with PDs, n=5	MRL, n=5	CSF examination, n=5	Total EEG recordings, n=5	Subset of the 5 patients with PDs	Background activity: Diffuse theta and delta slowing
France	M/F, n=4/1	Normal, n=2	Normal, n=2	Normal, n=2	Subset of the 5 patients with PDs	Rhythmic and periodic patterns: NA
Multicentric	Mean age: 67 years	Multiple subcortical T2 hyperintensities, n=1	Elevated WBC count, n=26	Elevated protein level, n=26	EEG indication: Lennox/Gastaut mental status, n=17	Epileptiform findings and seizures: NA
Anosmia/agnosia, n=2	Diffuse WM hyperintensities, n=1	Negative bacteriological and virological screening, n=25	Negative SAR-CoV-2 RT-PCR, n=14	Period of recordings: NA	EEG indication: Lennox/Gastaut mental status, n=17	Epileptiform findings and seizures: NA
Intubated, n=4	Subcortical hypodensities, n=4	Disturbances of oxidative metabolism, n=25	Disturbances of oxidative metabolism, n=25	Disturbances of oxidative metabolism, n=25	Aphasias/dysarthrias, n=6	Seizures, n=6
Prior neurological history: NA	Viral encephalitis with diffuse involvement of the deep WM, CC and basal ganglia, n=NA	Disturbances of oxidative metabolism, n=25	Disturbances of oxidative metabolism, n=25	Disturbances of oxidative metabolism, n=25	Aphasias/dysarthrias, n=6	Seizures, n=6

AD: antiepileptic drug, ADEM: acute disseminated encephalomyelitis, CC: corpus callosum, cEEG: continuous EEG, CMV: cytomegalovirus, CSF: cerebrospinal fluid, CT: computed tomography, DLB: dementia with Lewy bodies, DWI: diffusion weighted imaging, EBV: Epstein-Barr virus, ECI: electrocerebral inactivity, EEG: electroencephalogram, FIRA: frontal intermittent rhythmic delta activity, FLAIR: fluid-attenuated inversion recovery, GPDs: generalized periodic discharges, GRDA: generalized rhythmic delta activity, HSV: herpes simplex virus, ICH: intracranial hemorrhage, IS: ischemic stroke, LRDA: lateralized rhythmic delta activity, MCI: mild cognitive impairment, M/F: male/female, n: number, MRL: magnetic resonance imaging, NA: not available, NCSE: non convulsive SE, PCR: polymerase chain reaction, PDR: posterior dominant rhythm, PDs: periodic discharges, PRES: posterior reversible encephalopathy syndrome, RDA: rhythmic delta activity, RT-PCR: reverse transcriptase PCR, SAH: subarachnoid hemorrhage, SARS-CoV-2: severe acute respiratory syndrome coronavirus 2, SDH: subdural hematoma, SE: status epilepticus, SIRPIDs: stimulus-induced rhythmic, periodic or ictal discharges, TIA: transient ischemic attack, VZV: varicella-zoster virus, WBC: white blood cells, WM: white matter.
Seizures and/or SE were recorded more rarely in patients with acute CNS lesions on brain imaging and/or significant CSF abnormalities, of either vascular or inflammatory origin. Among the four patients with a PRES reported by Parauda et al. (2020), two had seizures or SE emanating from posterior regions: for the first one, a focal NCSE arising from the left posterior quadrant and, for the second one, focal seizures arising from the right posterior quadrant. The history of a 2-month-old boy was published by Schupper et al. (2020). His brain imaging revealed multiple infarctions with hemorrhagic transformations, and his cEEG showed NCSE. Zanin et al. (2020) published the case of a patient with diffuse CNS demyelinating lesions on brain and spine imaging whose EEG revealed two seizures starting from the right frontotemporal region and diffusing in the homologous contralateral hemisphere. Hussein et al. (2020) reported the case of a patient with an ADEM whose EEG revealed left hemispheric seizures and, 3 days later, brief focal right posterior seizures. Finally, Bernard-Valnet et al. (2020) reported the history of a patient with a lymphocytic meningitis on CSF analysis with normal brain MRI whose EEG showed a focal anterior NCSE.

Seizures and/or SE were recorded in patients with a prior neurological history and radiological sequelae but without any acute lesions. The EEG of the second patient, who had a prior history of skull base surgery, reported by Somani et al. (2020) showed recurrent seizures emanating from either right or left frontoentoparietal regions. Vollono et al. (2020) reported the case of a left frontoentoparietal SE in a patient with a remote herpes simplex virus 1 encephalitis.

Seizures were reported on cEEG in the series of 33 patients published by Radmard et al. (2020), as frontotemporal and parasagittal seizures in two patients, but without precise imaging or CSF results available for these two patients.

Rhythmic and Periodic Discharges

Rhythmic discharges were mentioned in series, as generalized rhythmic delta activity (GRDA) (Ayub et al., 2020; Galanopoulou et al., 2020; Louis et al., 2020; Pellinen et al., 2020; Petrescu et al., 2020), lateralized rhythmic delta activity (LRDA) (Ayub et al., 2020; Galanopoulou et al., 2020; Louis et al., 2020; Pellinen et al., 2020), and fronto intermittent rhythmic delta activity (Canham et al., 2020; Pasini et al., 2020) (Table 1). Rhythmic patterns were also reported in a few case reports. Vandervorst et al. (2020) published the EEG of a patient with a clinical and radiological picture of encephalitis with temporal bilateral more left than right imaging abnormalities. The EEG showed short-lasting left temporal LRDA. In the series of Beach et al. (2020), one patient, with a previous history of dementia with Lewy bodies and remote traumatic brain injury, displayed GRDA with sharp contouring and bifrontal predominance, without any acute lesions on brain imaging. The EEG of the three other patients reported in the series of Chen et al. (2020) previously mentioned revealed GRDA, with unremarkable CSF analysis for the three and no acute lesions on brain imaging for one of them (unavailable for the two others). One EEG recorded among the seven patients reported by Anand et al. (2020) showed GRDA in a patient with extensive leukoencephalopathy on brain MRI and normal CSF sample.

Periodic discharges were noted in series, as generalized periodic discharges (GPDs) (Ayub et al., 2020; Galanopoulou et al., 2020; Louis et al., 2020; Pellinen et al., 2020; Petrescu et al., 2020; Vespignani et al., 2020) and lateralized periodic discharges (LPDs) (Pellinen et al., 2020; Petrescu et al., 2020; Vespignani et al., 2020) (Table 1). Especially, in the series of Vespignani et al. (2020), five EEGs out of 26 showed periodic discharges. Four of these five patients were under mechanical ventilation (MV), and three were sedated. One patient suffered from a cardiac arrest. EEG showed periodic (with a < 4 s interval), monomorphic biphasic, delta activity, which was diffuse with frontal predominance for four and lateralized over right frontal area for one. The second patient reported in the work of Beach et al. previously mentioned presented with a left-sided acute-on-chronic subdural hematoma (SDH) due to a fall with head trauma. The EEG showed frequent runs of epileptiform GPDs (Beach et al., 2020). Young et al. (2020) reported 1–1.5 Hz LPDs and diffuse delta–theta slowing in a patient who displayed Creutzfeldt–Jakob disease in tandem with symptomatic onset of COVID-19. Conte et al. (2020) published the history of a patient who presented a severe COVID-19 pneumonia and then a PRES-like encephalopathy. She displayed focal seizures, and after seizure treatment, EEG revealed LPDs in the right posterior regions. Vellieux et al. (2020) published the EEG of two critically ill patients who displayed a severe COVID-19 pneumonia requiring MV. For the first one, the brain MRI was consistent with a hypoxic encephalopathy, and the EEG was recorded while he was sedated and under extracorporeal membrane oxygenation. For the second one, the EEG was recorded 24 h after sedation discontinuation. EEG revealed continuous, symmetric, non-reactive, generalized but mainly bifrontal, monomorphic diphasic or even triphasic, periodic (with a short interval of 1–2 s) delta slow waves (Figure 1C). One patient, without any acute abnormalities on brain MRI and with normal CSF analysis, reported by Delorme et al. (2020) showed GPDs. In the previously mentioned case reported by Le Guennec et al. (2020), a control follow-up EEG was recorded the day after the first EEG. It showed persistent right fronto LPDs with a short interval (0.7–1.2 s). The brain MRI performed 1 month later was normal. Finally, the previously mentioned patient reported by Flamand et al. (2020) who benefited from iterative EEG showed, on the last two recordings, a generalized periodic triphasic activity with short periods (1–1.5 s) over a worsened background activity, without concomitant metabolic disorders.
Spectral Analysis

Two studies reported quantitative analysis of EEG (qEEG) in COVID-19 patients. The study of Pastor et al. (2020) reported 20 patients with COVID-19 encephalopathy for whom standard visual analysis of EEG showed scarce abnormalities. However, compared to 31 infectious toxic encephalopathy patients and 21 post-cardiorespiratory arrest encephalopathy patients, some qEEG features were specific in COVID-19 patients, such as the distribution of EEG bands, the structure of Shannon’s spectral entropy, and the hemispheric connectivity. Finally, the study of Pati et al. (2020) showed that some qEEG markers, especially an increase in both the theta power and its temporal variance during EEG reactivity, can predict a good neurological outcome in 10 critically ill COVID-19 patients.

DISCUSSION

The vast majority of these studies emphasized the absence of specificity of EEG abnormalities reported in COVID-19 patients, as generalized slowing of the background activity, focal slowing sometimes associated with sharp waves, seizures, SE, and predictable pattern of metabolic/toxic or postanoxic encephalopathy in ICU patients. Numerous EEGs in the context of COVID-19 were recorded in elderly patients and mainly in male patients, with multiple comorbidities especially chronic brain disorders, under various psychotropic drugs or in critically ill conditions. Confounding factors such as infections, metabolic disturbances, severe hypoxemia, hyperthermia, and psychotropic drugs (such as antiepileptic or sedative drugs) were frequent at the time of EEG recordings. All these confounding factors may contribute to the modification of brain activity and therefore EEG findings. Thus, based on the current literature, it seems not possible to identify a specific EEG pattern due to the suspected neuroinvasion of SARS-CoV-2 in patients who displayed neurological manifestations of COVID-19.

Most current studies with available EEG data are case reports or retrospective single-center series. All reported patients are very heterogeneous concerning prior neurological histories, illness severity, and use of psychotropic drugs. Moreover, some studies reported EEG recorded with limited montage and number of electrodes that may limit the detection of EEG abnormalities. EEG is not a systematic exam in the diagnostic workup of COVID-19 patients. All patients reported in the current literature had an EEG for an urgent clinical indication due to concerning neurological symptoms. A wider neurological multimodality screening, including EEG, of COVID-19 patients may be suggested to grow the body of knowledge on the SARS-CoV-2 infection. However, it will face many logistic difficulties and ethical and safety concerns regarding the availability of trained personnel to EEG recordings and the risk of contamination with the SARS-CoV-2.

It should be pointed out that many EEG abnormalities reported were recorded over anterior or frontal regions. Regardless of EEG montage used by clinicians and neurophysiologists, it thus seems essential to include frontal electrodes. Periodicity, morphology, and reactivity of these frontal abnormalities were not mentioned in all studies. Moreover, a few reported periodic patterns, as GPDs (Ayub et al., 2020; Beach et al., 2020; Delorme et al., 2020; Louis et al., 2020; Pellinen et al., 2020; Petrescu et al., 2020), GPDs with bifrontal predominance (Galanopoulou et al., 2020; Vellieux et al., 2020; Vespignani et al., 2020), and LPDs (Conte et al., 2020; Le Guennec et al., 2020; Pellinen et al., 2020; Petrescu et al., 2020; Vespignani et al., 2020; Young et al., 2020). In particular, these frontal periodic discharges were monomorphic and displayed a short interval, and the absence of reactivity was noted (Vellieux et al., 2020; Vespignani et al., 2020). These frontal periodic discharges may indicate an acute neurological process linked to the brain SARS-CoV-2 infection. In COVID-19 patients, the combination of the frontal localization of these EEG discharges, the frequently reported anosmia (Yazdanpanah et al., 2020), the olfactory bulb abnormalities found on brain imaging (Lin et al., 2020), and the hypometabolism within the orbitofrontal cortex on functional brain imaging (Karimi-Galougahi et al., 2020) may support the hypothesis whereby SARS-CoV-2 could invade the brain through the olfactory pathway. Then, it could spread transneuronally to other related brain areas particularly to frontal lobes, especially the orbital prefrontal cortex, which are adjacent to olfactory structures (Huang J. et al., 2020).

CONCLUSION

In the context of the SARS-CoV-2 infection, increasing EEG results were published along with clinical reports describing various neurological symptoms in patients with COVID-19. Due to the suspected neuroinvasion of SARS-CoV-2, the major issue when interpreting EEG is to determine whether the observed abnormalities reflect this viral neuroinvasion, a severe encephalopathy with systemic and brain inflammation, hypoxemia and hyperthermia, and/or many confounding factors especially due to critical illness. At this time, no study had described specific EEG abnormalities of the SARS-CoV-2 infection. The majority of currently reported EEGs showed generalized slowing, focal slowing, epileptiform discharges with seizures, and SE. However, frontal discharges, for some periodic, may integrate in the olfactory hypothesis of the CNS invasion of SARS-CoV-2. It reinforces the need to accumulate precise neurophysiological observations of COVID-19 patients worldwide and to aggregate multimodality screening of these patients also with clinical, radiological, biological, and neuropathological data.

AUTHOR CONTRIBUTIONS

GV collected the data and wrote the manuscript. RS, SV, PJ, and AR-T revised the manuscript. M-PO suggested and revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING STATEMENT

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Zoghi, A., Ramezani, M., Roozbeh, M., Darazam, I. A., and Sahraian, M. A. (2020). A case of possible atypical demyelinating event of the central nervous system following COVID-19. *Mult. Scler. Relat. Disord.* 44:102324. doi: 10.1016/j.msard.2020.102324

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Vellieux, Sonneville, Vledouts, Jaquet, Rouvel-Tallec and d'Ortho. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.