Induction of VEGFA and Snail-1 by meningitic *Escherichia coli* mediates disruption of the blood-brain barrier

Supplementary Materials

Supplementary Figure S1: The inhibition of VEGFR on meningitic *E. coli* invasion of the hBMEC. VEGFR inhibitor motesanib significantly decreased meningitic *E. coli* PCN033 invasion of hBMEC in a dose-dependent manner.

Supplementary Figure S2: The induction of proinflammatory factors by non-meningitic *E. coli* strain HB101. The transcriptional changes of cytokines and chemokines in hBMEC upon HB101 infection.
Supplementary Figure S3: *E. coli* K1 strain RS218 induction of VEGFA and Snail-1 requires the activation of MAPK-ERK1/2 signaling. Effects of the MAPK signaling inhibitors on the *E. coli* K1 strain RS218-induced upregulation of VEGFA and Snail-1. (A) The upregulation of VEGFA could be significantly inhibited by the treatment of U0126 (selective inhibitor of ERK1/2) and SB202190 (selective inhibitor of p38). (B) The upregulation of Snail-1 could be significantly blocked by U0126. Both upregulation of VEGFA and Snail-1 were not affected by the treatment of SP600125 (specific inhibitor of JNK).

Supplementary Figure S4: Regulation of VEGFA and Snail-1 by non-meningitic *E. coli* strain HB101. (A) Real-time PCR analysis of the VEGFA transcription in hBMEC in response to HB101 infection at the MOI of 10. GAPDH was used as the internal reference for the normalization. (B) Determination of the secretory VEGFA in the hBMEC culture supernatant in response to HB101 by ELISA. (C) Real-time PCR analysis of Snail-1 transcription in hBMEC in response to HB101 challenge.
Supplementary Table S1: Primers used for the real-time PCR in this study

Primers	Nucleotide sequence (5’-3’)	Amplified fragments
P1	TGTGGAAGAGGATGAAGATGAAGA	Human ZO-1
P2	GGTTGGAAGATGTCTGGTGTC	
P3	ACAAGCCACAAGATTACAAG	Human β-catenin
P4	ATCAGCAGTCTCATCCAA	
P5	TTAACCTCGCCTGTGGAT	Human Occludin
P6	TGTGTAGCTGTCTCATAGTG	
P7	CGCCTCTCCTGCCACAACAT	Human Claudin-5
P8	CCAGCACCGAGTCGTACACTT	
P9	TGCCCTGCTCTCCTACCT	
P10	GACATCCATGAACCTCACCACCTT	Human VEGFA
P11	ACTCGGATGTGAAGAGATAC	Human Snail-1
P12	AGACTCTTTGGTGCTTTGT	
P13	CCTTCGGTCAATGGCTCTTCT	Human IL-6
P14	GAGGTGAGTGGCTGTCTGTG	
P15	AGGATATGGAGCAACAAGT	Human IL-1β
P16	GCAGGACAGGTACAGATT	
P17	AATGGCGTGAGCGTGAGA	Human TNF-α
P18	TGGCACAGAGAGGGAGGAGGC	
P19	ATAGCAAGCCACCTCATT	
P20	GCTTCTTGGGACACTTG	Human MCP-1
P21	AGTGTGAAGGTGAAGGTCC	
P22	CTTTCTGCCATCTCTTGAG	
P23	TGCTGTCTCTCTCTCTAGTA	
P24	TGTGGCTATGTACTTGCGTTTGG	Human GRO-α
P25	TGCCCTCTCGACCAACACT	
P26	CGCCTGTCTCACCACCTCTC	Human GAPDH
P27	GCCCTCCTCCTCTGATACCTCCCTC	
P28	CTGGCAGTGTACTCACTCTTTC	Mouse ZO-1
P29	AGCCACAGATTACAAGAAGA	
P30	CCAATGTCCAGTCCAAAGA	Mouse β-catenin
P31	ATGGAGGCTATGGCTATGG	
P32	GGAAGCGAGATGAAAGGAGA	Mouse Occludin
P33	AAGGGCCTCATGGGCTGTGGTG	
P34	CTGGCTGTGGGCTGAGCTGGGA	Mouse Claudin-5
P35	CCATTCTCTGCTCCACT	
P36	TGGCAGTGATCTCTTCCACA	Mouse Snail-1
P37	CACTGCGCATCTCTCTCCTCCC	
P38	CAATAGTGATGACCTGGCCGT	Mouse β-actin