ИНИЦИРОВАННОСТЬ SARS-COV-2 В ЗАВИСИМОСТИ ОТ УРОВНЯ ОБЕСПЕЧЕННОСТИ ВИТАМИНОМ D

© Т.Л. Каронова1*, А.Т. Андреева1, К.А. Головатюк1, Е.С. Быкова1, И.И. Скибо2, Е.Н. Гринева1, Е.В. Шляхто1
1Национальный медицинский исследовательский центр им. В.А. Алмазова, Санкт-Петербург, Россия
2ООО «НПФ «ХЕЛИКС», Санкт-Петербург, Россия

ОБОСНОВАНИЕ. В настоящее время во всем мире активно обсуждается ассоциация между дефицитом витамина D и степенью тяжести течения COVID-19.

ЦЕЛЬ. Целью настоящей работы было оценить распространенность недостатка и дефицита витамина D и сопоставить с показателями инфицированности SARS-CoV-2 в восьми федеральных округах РФ.

МАТЕРИАЛЫ И МЕТОДЫ. В анализ включены результаты обследования 304 564 лиц (234 716 женщин; 77,1%), у которых были известны показатели концентрации 25(OH)D в сыворотке крови в период с сентября 2019 по октябрь 2020 г.

РЕЗУЛЬТАТЫ. Лишь 112 877 человек (37,1%) имели нормальный уровень 25(OH)D в сыворотке крови, остальные находились в недостатке или дефиците. Недостаток и дефицит витамина D были представлены с одинаковой частотой у женщин и мужчин, также не было выявлено различий в зависимости от географического расположения субъектов РФ и возраста у лиц от 18 до 74 лет. Однако лица старше 75 лет чаще имели дефицит витамина D, в то время как лица моложе 18 лет в более 50% случаев имели нормальный его уровень. У 21 506 больных было выполнено исследование на SARS-CoV-2 методом полимеразной цепной реакции (ПЦР), результаты которого сопоставлены с уровнем обеспеченности витамином D. Положительный результат ПЦР был выявлен у 3193 обследованных, отрицательный — у 18 313. Не было выявлено различий в инфицированности пациентов в условиях дефицита и нормального уровня обеспеченности витамином D. Так, при уровне 25(OH)D ниже 20 нг/мл (4,978 тестов) количество положительных ПЦР-тестов составило 14,8%, при уровне 20–30 нг/мл (7,542 тестов) — 14,9%, 30–50 нг/мл (6,622 тестов) — 15,0% и при значении более 50 нг/мл (4612 тестов) — 13,9%.

ЗАКЛЮЧЕНИЕ. Таким образом, не выявлено зависимости между уровнем обеспеченности витамином D и числом положительных ПЦР-тестов к SARS-Co-2 ни в одном из регионов проживания, что свидетельствует об отсутствии связи между инфицированностью COVID-19 в РФ и уровнем обеспеченности витамином D, хотя дефицит нутриента сохраняется во всех регионах и наиболее часто диагностируется у лиц старше 75 лет.

КЛЮЧЕВЫЕ СЛОВА: дефицит витамина D; 25(OH)D; SARS-CoV-2; COVID-19; ПЦР-тест.

SARS-COV-2 MORBIDITY DEPENDING ON VITAMIN D STATUS

© Tatiana L. Karonova1*, Alena T. Andreeva1, Ksenia A. Golovatyuk1, Ekaterina S. Bykova1, Irina I. Skibo2, Evgeny V. Shlyakhto1
1Almazov National Medical Research Centre, St.Petersburg, Russia
2RPF HELIX LLC, St.Petersburg, Russia

BACKGROUND: The association between vitamin D deficiency and the severity of COVID-19 is currently being actively discussed around the world.

AIM: The aim of this study was to assess the prevalence of vitamin D insufficiency and deficiency and compare it with the incidence rates of SARS-CoV-2 in eight Federal Districts of the Russian Federation.

MATERIALS AND METHODS: We included 304,564 patients (234,716 women; 77,1%) with serum 25(OH)D levels results performed September 2019 through October 2020.

RESULTS: Only 112,877 people (37.1%) had a normal serum 25(OH)D level, others had a deficiency. Vitamin D insufficiency and deficiency was presented with the same frequency in women and men, and no differences were found depending on the geographical location and age in subjects from 18 to 74 years old. However, subjects over 75 years more often had vitamin D deficiency, while subjects under 18 years had normal levels in over 50% cases. In addition, 21,506 patients were tested for SARS-CoV-2 by PCR with further comparison of results with serum 25(OH)D level. The SARS-CoV-2 positivity rate was detected in 3,193 subjects, negative in 18,313. There were no differences in the morbidity in a vitamin D deficiency and a normal level. Thus, 14.8% subjects had positive PCR rates among vitamin D deficiency patients (4,978 tests), 14.9% when 25(OD) D level was from 20 to 30 ng/ml (7,542 tests), 15.0% among those who had 25(OH)D 30- 50 ng/ml (6,622 tests), and 13.9% when vitamin D was more than 50 ng/ml (4,612 tests).
CONCLUSION: There was no association between the COVID-19 incidence and vitamin D status in different regions of Russia. Although the nutrient deficiency persists in all regions and is most often diagnosed in people over 75 years old.

KEYWORDS: vitamin D deficiency; 25(OH)D; SARS-CoV-2; COVID-19; PCR rate.
циации эндокринологов 2015 г., за нормальный уровень обеспеченности витамином D принималось значение 25(OH)D в сыворотке крови ≥30 нг/мл (≥75 нмоль/л), за недостаточность — ≥20 и <30 нг/мл (≥50 и <75 нмоль/л), за дефицит — <20 нг/мл (<50 нмоль/л) и за тяжелый дефицит витамина D — менее 10 нг/мл (<25 нмоль/л). Диапазон определения 25(OH)D составил 4,4–210,0 нг/мл.

Выявление РНК коронавируса SARS-CoV-2 проводили методом обратной транскрипции и ПЦР в режиме реального времени (SARS-CoV-2/SARS-CoV) по ТУ 21.20.23-116-46482062-2020 с использованием амплификатора детектирующего «ДТ Прайм» (ООО «НПО ДНК-Технология») и наборов для выявления РНК коронавирусов (производитель ООО «ДНК-Технология ТС»).

Статистический анализ
Статистический анализ данных выполнен с помощью программного комплекса IBM SPSS Statistics for Windows ver. 26 (IBM Corp., Armonk, N.Y., USA).

Этика́ическая эксперти́за
Протокол исследования Вер. 1.1 от 23.10.2020 г. был одобрен этическим комитетом ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» МЗ РФ 30 ноября 2020 г. (выписка № 1011-20-02С).

РЕЗУЛЬТАТЫ
Среди всех обследованных (304 564 человек) в ООО «НПФ ХЕЛИКС» в период с сентября 2019 по октябрь 2020 г. и имеющих результаты исследования уровня 25(OH)D крови лица в возрасте до 18 лет составили 45 811 (15,0%) (23 617 женщин; 51,6%). Доля лиц в возрасте от 18 до 44 лет была значительно выше — 154 310 (50,7%) (126 076 женщин; 81,7%). В возрасте 45–60 лет обследованы 62 853 (20,6%) (50 635 женщин; 80,6%), в возрасте 61–74 года — 34 331 (11,3%) (28 576 женщин; 83,2%) и старше 75 лет — 7 259 человек (2,4%) (5 812 женщин; 80,1%). Результаты обследования показали, что большинство обратившихся для определения уровня 25(OH)D в крови составили женщины независимо от возраста. Дефицит витамина D был обнаружен у 88 427 из 304 564 человек (29,0%), недостаток — 103 260 человек (33,9%). Таким образом, несмотря на активную профилактику недостатка и дефицита витамина D, проводимую в РФ на протяжении последних пяти лет, лишь 112 877 человек (37,1%) имели нормальный уровень 25(OH)D в сыворотке крови, а остальные находились в условиях недостатка или дефицита витамина D.

Результаты статистического анализа показали, что дефицит витамина D был представлен с одинаковой частотой как у женщин, так и у мужчин и составил 29,5 и 27,5% соответственно (p>0,05). Аналогичные результаты были получены и по встречаемости недостатка витамина D, который был обнаружен у 34,0% женщин и 33,6% мужчин (p>0,05). Таким образом, мы не выявили гендерных различий во встречаемости недостатка и дефицита витамина D в период с сентября 2019 по октябрь 2020 г.

В зависимости от возраста нами установлено, что среди лиц моложе 18 лет дефицит витамина D был диагностирован у 22,3% человек, недостаток — у 31,9%, среди лиц в возрасте 18–44 лет эти показатели соответственно составили 29,2 и 34,1%, среди лиц 45–60 лет — 30,0 и 35,2%, среди лиц в возрасте 61–74 лет — 32,6 и 34,8%. В группе старше 75 лет дефицит и недостаток были обнаружены в 42,2 и 27,2% случаев. Таким образом, различий по встречаемости недостатка и дефицита витамина D у лиц в возрасте от 18 до 74 лет получено не было, в то время как у обследованных в возрасте до 18 лет почти половина имели нормальный уровень 25(OH)D, а среди лиц старше 75 лет большее количество обследованных имели дефицит витамина D (рис. 1).

Необходимо отметить тот факт, что среди лиц как с нормальным уровнем 25(OH)D крови, так и с низкой концентрацией, вероятно, были пациенты, принимавшие препараты витамина D, однако их долю среди общей обследованной популяции установить в рамках проведенного исследования не представлялось возможным.

При анализе показателей 25(OH)D в зависимости от региона проживания было установлено, что дефицит и недостаток витамина D среди 121 жителя Дальневосточного ФО имели 62 человека (51,2%), среди лиц старше 75 лет большее количество обследованных имели дефицит витамина D (рис. 1).

Необходимо отметить тот факт, что среди лиц как с нормальным уровнем 25(OH)D крови, так и с низкой концентрацией, вероятно, были пациенты, принимающие препараты витамина D, однако их долю среди общей обследованной популяции установить в рамках проведенного исследования не представлялось возможным.
Приволжского ФО — 14 378 (60,2%), среди 95 147 жителей Северо-Западного ФО — 58 566 (61,6%), среди 10 948 жителей Сибирского ФО — 6466 (59,1%), среди 43 482 жителей Уральского ФО — 28 246 (65,0%), среди 10 948 жителей Северо-Кавказского ФО — 46 147 (66,5%) и среди 1394 жителей Южного ФО — 921 (66,1%). Таким образом, практически во всех регионах более 60% обследованных имели недостаток или дефицит витамина D, что несколько ниже ранее полученных данных. Однако, учитывая тот факт, что недостаток или дефицит мог быть диагностирован и у лиц, получавших препараты витамины D, полученные данные свидетельствуют об отсутствии достижения целевого уровня 25(OH)D в сыворотке крови у большинства обследованных независимо от региона проживания (рис. 2).

Среди 304 564 пациентов, имевших данные о концентрации 25(OH)D в сыворотке крови, 32 197 с целью диагностики SARS-CoV-2 выполнили обследование в период с 26.03.2020 по 31.10.2020 г. и имели данные ПЦР-тестов. После исключения повторных тестов у одного и того же пациента статистическому анализу стали доступны данные 21 506 тестов, из которых хотя бы один положительный результат был выявлен у 3193 обследованных, а в 18 313 случаях результаты теста были отрицательными. Результаты ПЦР-теста были сопоставлены с уровнем обеспеченности витамином D у жителей различных регионов. В том случае, если пациент имел более одного результата 25(OH)D в сыворотке крови, для статистического анализа использовали данные, максимально приближенные к дате выполнения ПЦР-теста.

Среди обследованных, имевших положительный результат ПЦР-теста, уровень 25(OH)D в сыворотке крови, а также встречаемость недостатка и дефицита витамина D были аналогичными по сравнению с данными показателями у лиц с отрицательным результатом ПЦР-теста (табл. 1).

Дополнительно в рамках исследования были проанализированы данные Росстата о численности населения, а также Минздрава РФ о количестве случаев заболевших COVID-19 и умерших в результате коронавирусной инфекции. Выявлено, что на 25.02.2021 г. количество случаев COVID-19 было несколько выше в Северо-Западном и Центральном ФО, а число умерших по причине COVID-19 находилось в диапазоне от 1,3% (Дальневосточный ФО) до 3,2% (Южный ФО) (табл. 2).

На основании известных данных о численности населения, числе заболевших COVID-19 и умерших нами были рассчитаны показатели инфицированности и летальности в различных ФО на 25.02.2021 г. (табл. 2, рис. 3).

Таблица 1. Уровень 25(OH)D и встречаемость дефицита витамина D у лиц с положительным тестом полимеразной цепной реакции к SARS-CoV-2

Параметр	Все n=21 506	ПЦР (+) n=3193	ПЦР (-) n=18 313	p
25(OH)D, нг/мл				
Min	3,22	4,24	3,22	
Max	210,5	159,52	210,5	
Среднее±SD	31,24±16,69	30,96±16,35	31,29±16,75	>0,05
Медиана, Me	27,41	27,29	27,43	
[Q25; Q75]	[20,54; 37,3]	[20,49; 36,68]	[20,55; 37,41]	

Статус витамина D:

- Норма, n (%): 8 988 (41,8), 1 337 (41,9), 7 651 (41,8)
- Недостаток, n (%): 7 542 (35,1), 1 120 (35,0), 6 422 (35,0)
- Дефицит, n (%): 4 976 (23,1), 736 (23,1), 4 240 (23,2) >0,05
- включая тяжелый дефицит (<10 нг/мл), n(%): 356 (1,7), 45 (1,4), 311 (1,7)

Рисунок 2. Распространенность дефицита витамина D в зависимости от региона проживания.

Таблица 2. Число случаев COVID-19 и умерших в результате коронавирусной инфекции по ФО на 25.02.2021 г.

ФО	Случаи COVID-19	Умерших от COVID-19
Дальневосточный ФО		1,3%
Приволжский ФО		3,2%
Северо-Западный ФО		
Сибирский ФО		
Уральский ФО		
Центральный ФО		
Южный ФО		
Северо-Кавказский ФО		

Проблемы эндокринологии 2021;67(5):20-28 doi: https://doi.org/10.14341/probl12820 Problems of Endocrinology. 2021;67(5):20-28
Таблица 2. Количество заболевших и умерших от COVID-19 в зависимости от региона проживания (данные на 25.02.2021 г.)

Федеральный округ	Численность населения (данные Росстата)	Выявлено случаев COVID-19	Инфицированность (человек на 1000 жителей)	Умерли от COVID-19	Летальность (%)
Дальневосточный	8 131 555	253 091	31,12	3261	1,3
Приволжский	29 087 997	518 761	17,83	10 231	2,0
Северо-Западный	13 952 964	704 649	50,50	15 363	2,2
Сибирский	17 009 249	349 461	20,55	10 180	2,9
Уральский	12 333 234	262 701	21,30	4986	1,9
Центральный	39 251 953	1 661 777	42,34	28 868	1,7
Южный	16 498 642	255 573	15,49	8081	3,2
Северо-Кавказский	9 967 301	163 043	16,36	3435	2,1
ИТОГО	146 232 895	4 169 056	28,51	80 970	1,9

Рисунок 3. Показатели численности населения (A), инфицированности (B) и летальности (В) от COVID-19 на 25.02.2021 г., адаптировано с сайта Минздрава РФ (www.стопкоронавирус.рф)
Как видно из данных, представленных выше, наибольшее количество выявленных случаев COVID-19 было зарегистрировано в Северо-Западном и Центральном ФО, а показатель летальности от COVID-19 был несколько выше в Сибирском и Южном ФО.

При анализе количества положительных ПЦР-тестов в зависимости от уровня 25(OH)D в сыворотке крови нами не выявлено различий инфицирования в условиях дефицита и нормального уровня обеспеченности витамином D. Так, при уровне 25(OH)D в сыворотке крови ниже 20 нг/мл количество положительных ПЦР-тестов составило 14,8% из 4978 тестов, выполненных при дефиците витамина D; при значениях от 20 до 30 нг/мл — 14,9% из 7542 тестов; в диапазоне 30–50 нг/мл — 15,0% из 6622 тестов, а при концентрации более 50 нг/мл — 13,9% из 4612 тестов.

Дополнительно нами было проанализировано количество положительных результатов ПЦР-теста (%) в зависимости от региона проживания и уровня обеспеченности витамином D этих лиц. Из всех регионов только данные из Дальневосточного ФО не подлежали анализу из-за малой выборки, а в остальных регионах достоверных различий получено не было (табл. 3).

Как видно из представленных данных, от 33,6 до 51,4% больных с положительным результатом ПЦР к SARS-CoV-2 имели нормальный уровень обеспеченности витамином D, в то время как у 36,4–48,6% при показателе 25(OH)D более 30 нг/мл ПЦР тест был отрицательным. Обращает на себя внимание лишь Северо-Кавказский ФО, где отмечалось наибольшее количество лиц с положительным ПЦР-тестом, имеющих дефицит витамина D (37,6%). Однако такая пропорция с преобладанием дефицитных пациентов наблюдалась и среди лиц с отрицательным результатом. Более детальный анализ также не выявил зависимости между суммарным количеством инфицированных и уровнем 25(OH)D в сыворотке крови (рис. 4).

Таблица 3. Распределение обследованных в зависимости от уровня обеспеченности витамином D и результатов ПЦР-тестов (результаты представлены по регионам)

Федеральный округ	ПЦР (+)	Уровень обеспеченности витамином D	ПЦР (-)	Уровень обеспеченности витамином D			
	n=3193	норма n=1337	недостаток n=1120	дефицит n=736	норма n=7651	недостаток n=6422	дефицит n=4240
Дальневосточный, n (%)	2 (16,7)	1 (50,0)	1 (50,0)	0 (85,7)	4 (33,3)	4 (33,3)	4 (33,3)
Приволжский, n (%)	81 (24,1)	39 (48,1)	30 (37,0)	12 (14,8)	336 (80,6)	167 (29,2)	98 (21,1)
Северо-Западный, n (%)	1677 (15,7)	716 (42,7)	607 (36,2)	354 (21,1)	10 713 (86,5)	4411 (41,2)	3857 (36,0)
Сибирский, n (%)	74 (30,2)	38 (51,4)	23 (31,1)	13 (17,6)	245 (76,8)	119 (48,6)	75 (30,6)
Уральский, n (%)	602 (20,8)	236 (39,2)	222 (36,9)	144 (23,9)	2897 (82,8)	1150 (39,7)	1045 (36,1)
Центральный, n (%)	360 (13,8)	165 (45,8)	113 (31,4)	82 (22,8)	2610 (87,9)	1231 (47,2)	835 (32,0)
Южный, n (%)	102 (25,4)	43 (42,2)	39 (38,2)	20 (19,6)	401 (79,7)	169 (42,1)	171 (42,6)
Северо-Кавказский, n (%)	295 (26,8)	99 (33,6)	85 (28,8)	111 (37,6)	1099 (78,8)	400 (36,4)	337 (30,7)

Рисунок 4. Процент положительных ПЦР-тестов при различном уровне 25(OH)D в сыворотке крови.
обсуждение

репрезентативность выборки

Пандемия новой коронавирусной инфекции (COVID-19), вызванная SARS-CoV-2, в настоящее время представляет собой одну из важных медико-социальных проблем, с которой столкнулось человечество за последний год [21, 22]. Как известно, большинство пациентов с COVID-19 имеют благоприятный прогноз, однако у части больных инфекция может приводить к тяжелым системным поражениям, требующим госпитализации, и нередко быть сопряженной с высокой летальностью [23]. К настоящему моменту уже известны факторы, увеличивающие риск тяжести течения и смертности при COVID-19, к которым относятся пожилой возраст, мужской пол, наличие сахарного диабета и/или ожирения, а также сердечно-сосудистые заболевания [22, 24]. Дополнительно к этим факторам исследования последних лет показали, что низкий уровень обеспеченности витамином D может представлять собой один из модифицируемых факторов риска развития коронавирусной инфекции COVID-19, а также ухудшающих течение и прогноз заболевания [25, 26]. Увеличение числа больных ОРВИ, так же как и лиц с дефицитом витамина D от юга к северу [27], а также наличие рецепторов к витамину D и экспрессия фермента 1-α гидроксилазы, участвующих в образовании активного гормона D — кальцириола, в клетках иммунной системы явилось предпосылкой для исследования иммуномодулирующих свойств данного нутриента [11, 12]. Самые первые данные об уровне 25(OH)D крови у больных COVID-19 поступили из Китая, где была опи- сана ассоциация между низким уровнем обеспеченности витамином D и тяжестью/исходами заболевания [28, 29]. В последующем появились работы, свидетельствующие о наличии обратной связи между концентрацией 25(OH)D в сыворотке крови и тяжестью COVID-19, а также смертностью больных [30–32].

Анализируя данные самого крупного на сегодня исследования, проведенного в США и объединяющего информацию о результатах ПЦР-теста на SARS-CoV-2 у больных COVID-19 с уровнями обеспеченности витамином D более чем у 190 000 человек, можно видеть зависимость количества положительных результатов ПЦР-теста от показателя концентрации 25(OH)D в сыворотке крови [16]. Так, авторами установлено, что при концентрации 25(OH)D менее 20 нг/мл положительный тест на SARS-CoV-2 встречался на 40% реже, чем у лиц с дефицитом витамина D.

Клиническая значимость результатов

Анализ данных об инфицированности COVID-19 среди жителей восьми ФО на основании результатов ПЦР-тестов одной из крупнейших сетей лабораторий (ООО «НПФ “ХЕЛИКС”) показал отсутствие различий в значениях количества позитивных тестов на SARS-Co-2 во всех регионах. В связи с малым количеством положительных тестов у жителей Дальневосточного региона с известным уровнем обеспеченности витамином D на период 31.10.2020 г. мы не можем в полной мере судить о вкладе дефицита витамина D в инфицированность COVID-19 на Дальнем Востоке. Однако, как видно из представленных данных по другим регионам, включая южные, мы не выявили зависимости количества позитивных тестов на SARS-CoV-2 от уровня 25(OH)D крови. Таким образом, в отличие от данных, опубликованных H.W. Kaufman и соавт., инфицированность COVID-19 в РФ не ассоциирована с уровнем обеспеченности витамином D, хотя дефицит этого важного для здоровья нутриента сохраняется во всех регионах и более часто диагностируется у лиц старше 75 лет. Учитывая факторы риска развития и течения коронавирусной инфекции, представляется чрезвычайно важным уделять большое внимание вопросам профилактики и лечения, особенно у этой возрастной группы.

ограничения исследования

Отсутствие информации о приеме, дозах и длительности приема препаратов витамина D. Отсутствие данных о наличии заболеваний, включая патологию желудочно-кишечного тракта, почек, которые могли повлиять на значения 25(OH)D у изучаемой популяции.
Направления дальнейших исследований

В планах проведение интервенционных исследований для оценки вклада терапии стандартными и насыщающими дозами колекальциферола в профилактику инфицирования SARS-CoV-2 медицинских работников, работающих в “красной” зоне, а также в снижение тяжести и летальности больных COVID-19 при добавлении к стандартной терапии.

ЗАКЛЮЧЕНИЕ

Таким образом, результаты исследования еще раз подтвердили высокую распространенность недостатка и дефицита витамина D в РФ, сохраняющуюся в период пандемии новой коронавирусной инфекции и наиболее часто представленную в группах лиц старше 75 лет. Однако нами не была выявлена зависимость между уровнем дефицита витамина D и числом положительных ПЦР-тестов к SARS-CoV-2 ни в одном из регионов проживания.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Источники финансирования. Государственное задание МЗ РФ. Инструменты финансирования. Государственный задание МЗ РФ. Инструменты финансирования.

СПИСОК ЛИТЕРАТУРЫ | REFERENCES

1. Cashman KD, Van den Heuvel EG, Schoemaker RJ, et al. 25-Hydroxyvitamin D as a Biomarker of Vitamin D Status and Its Modeling to Inform Strategies for Prevention of Vitamin D Deficiency within the Population. Adv Nutr. 2017;8(6):947-957. doi:10.3945/ajcn.117.159339.

2. Cashman KD, Dowling KG, Škrabáková Z, et al. Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr. 2016;103(4):1033-1044. doi: https://doi.org/10.3945/ajcn.115.120873.

3. Hilger J, Friedel A, Herr R, et al. A systematic review of vitamin D status in populations worldwide. Br J Nutr. 2014;111(1):23-45. doi:10.1017/S0007114513001840.

4. Каронова Т.Л., Гринева Е.Н., Никитина И.Л., и др. Уровень 25(ОН)D в сыворотке крови у больных COVID-19 // Журнал инфекции. — 2020. — Т. 12. — №3. [Karonova TL, Golovatyuk KA, Andreeva AT, Vashukova MA. Uroven' 25(ON)D v syvorotke krovi u bol'nyh COVID-19. Zhurnal infektologii. 2020;12(3). (In Russ.)].

5. Суплотова Л.А., Аведеева В.А., Рожинская Л.Я., и др. Анализ факторов риска дефицита витамина D по результатам первого этапа российского неинтервенционного регистрационного исследования // Медицинский союз. — 2021. — № 7. — С. 21-31. [Suplotova LA, Avdeeva VA, Roshinskaya LJ, et al. Analiz faktorov riska deficita vitamin D po rezul'tatam pervogo etapa rossijskogo neintervenционnogo registroznyh issledovanij. // Terapiya. — 2021. — №8. — С. 152-159. (In Russ.).]

6. Каронова Т.Л., Гринева Е.Н., Никитина И.Л., и др. Витамин D как фактор повышения иммунитета и снижения риска развития острых респираторных вирусных инфекций и COVID-19 // Артериальная гипертензия. — 2020. — Т. 26. — №3. — С. 295-303. [Karonova TL, Vashukova MA, Gusev DA, et al. Vitamin D kak faktor povyshenija immuniteta i snyzhenija riska razvitiya ostryh respiratornych virusnyh infekcij i COVID-19. Arterialnaja gipertenzija. 2020;26(3):295-303. (In Russ.).]

7. Grant WB, Lafata JE, Ewing SK, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12(4):988. doi:10.3390/nu12040988.

8. Каронова Т.Л., Васюкова М.А., Гусев Д.А., и др. Витамин D как фактор повышения иммунитета и снижения риска развития острых респираторных вирусных инфекций и COVID-19 // Артериальная гипертензия. — 2020. — Т. 26. — №3. — С. 295-303. (In Russ.).]

9. Hewison M, Freeman L, Hughes S, et al. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J Immunol. 2003;170(11):5382-5390. doi: https://doi.org/10.4049/jimmunol.170.11.5382.
28. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. doi: https://doi.org/10.1001/jama.2020.1585.

29. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi: https://doi.org/10.1016/S0140-6736(20)30566-3.

30. Carpagnano GE, Di Lecce V, Quaranta VN, et al. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J Endocrinol Invest. 2021;44(4):765-771. doi: https://doi.org/10.1007/s40618-020-01370-x.

31. Macaya F, Paeres CE, Valls A, et al. Interaction between age and vitamin D deficiency in severe COVID-19 infection. Nutrition Hosp. 2020;37(3):1039-1042. doi: https://doi.org/10.20960/nh.03193.

32. Ye K, Tang F, Liao X, et al. Does serum vitamin D level affect COVID-19 infection and its severity? A case-control study. J Am Coll Nutr. 2020;13:1-8. doi: https://doi.org/10.1080/07317738.2020.1826005.

33. Петрушкина А.А., Пигарова Е.А., Рожинская Л.Я. Эпидемиология дефицита витамина D в Российской Федерации // Остеопороз и остеопатии. — 2018. — №3. — С. 15-20. (Petrushkina AA, Pigarova EA, Rozhinskaya LY. The prevalence of vitamin D deficiency in Russia Federation // Osteoporosis and Osteopathy. — 2018. — No3. — P. 15-20).

ИНФОРМАЦИЯ ОБ АВТОРАХ [AUTHORS INFO]

Каронова Татьяна Леонидовна, д.м.н., профессор [Tatiana L. Karonova, MD, PhD, DSc, Professor]; адрес: Россия, 194021, Санкт-Петербург, пр. Пархоменко, д. 15; ORCID: https://orcid.org/0000-0002-1547-0123; e-mail: karonova@mail.ru

Андреева Алёна Тимуровна [Alena T. Andreeva, MD]; ORCID: https://orcid.org/0000-0002-1547-0123; e-mail: arabicaa@gmail.com

Головатюк Ксения Андреевна [Ksenia A. Golovatuk, MD]; ORCID: https://orcid.org/0000-0002-9342-507X; e-mail: ksgolovatiuk@gmail.com

Быкова Екатерина Сергеевна [Ekaterina S. Bykova, MD]; ORCID: https://orcid.org/0000-0002-9342-507X; e-mail: bykova160718@gmail.com

Скибо Ирина Ивановна [Irina I. Skibo]; ORCID: https://orcid.org/0000-0003-2418-6471; eLibrary SPIN: 5928-0616; e-mail: skibo@helix.ru

Гринева Елена Николаевна, д.м.н., профессор [Elena N. Grineva, MD, PhD, DSc, Professor]; ORCID: https://orcid.org/0000-0003-0004-7680; eLibrary SPIN: 6679-7621; e-mail: grineva_e@almazovcentre.ru

Шляхто Евгений Владимирович, д.м.н., академик РАН, профессор [Evgeny V. Shlyakhto, MD, PhD, DSc, Academician of RAS, Professor]; ORCID: https://orcid.org/0000-0003-2929-0980; eLibrary SPIN: 6679-7621; e-mail: shlyakhto_ev@almazovcentre.ru

ЦИТИРОВАТЬ:

Каронова Т.Л., Андреева А.Т., Головатюк К.А., Быкова Е.С., Скибо И.И., Гринева Е.Н., Шляхто Е.В. Инфицированность SARS-CoV-2 в зависимости от уровня обеспеченности витамином D // Проблемы эндокринологии. — 2021. — Т. 67. — №5. — С. 20-28. doi: https://doi.org/10.14341/probl12820

ТО CITE THIS ARTICLE:

Karonova TL, Andreeva AT, Golovatyuk KA, Bykova ES, Skibo II, Shlyakhto EV. SARS-CoV-2 morbidity depending on vitamin D status. Problems of Endocrinology. 2021;67(5):20-28. doi: https://doi.org/10.14341/probl12820