Application Research of Decision Tree Algorithm in Sports Grade Analysis

Zhu Lini*

Xi'an Physical Education University 710068, Shaanxi, China

Abstract: This paper introduces and analyses the data mining in the management of students' sports grades. We use the decision tree in analysis of grades and investigate attribute selection measure including data cleaning. We take sports course score of some university for example and produce decision tree using ID3 algorithm which gives the detailed calculation process. Because the original algorithm lacks termination condition, we propose an improved algorithm which can help us to find the latency factor which impacts the sports grades.

Keywords: Classification, decision tree algorithm, ID3 algorithm, sports grade analysis.

1. INTRODUCTION

With the rapid development of higher education, sports grade analysis as an important guarantee for the scientific management constitutes the main part of the sports educational assessment. The research on application of data mining in management of students' grades wants to talk how to get the useful uncovered information from the large amounts of data with the data mining and grade management [1-5]. It introduces and analyses the data mining in the management of students' grades. It uses the decision tree in analysis of grades. It describes the function, status and deficiency of the management of students' grades. It tells us how to employ the decision tree in management of students' grades. It improves the ID3 arithmetic to analyze the students' grades so that we could find the latency factor which impacts the grades. If we find out the factors, we can offer the decision-making information to teachers. It also advances the quality of teaching [6-10]. The sports grade analysis helps teachers to improve the teaching quality and provides decisions for school leaders.

The decision tree-based classification model is widely used as its unique advantage. Firstly, the structure of the decision tree method is simple and it generates rules easy to understand. Secondly, the high efficiency of the decision tree model is more appropriate for the case of a large amount of data in the training set. Furthermore the computation of the decision tree algorithm is relatively not large. The decision tree method usually does not require knowledge of the training data, and specializes in the treatment of non-numeric data. Finally, the decision tree method has high classification accuracy, and it is to identify common characteristics of library objects, and classify them in accordance with the classification model.

The original decision tree algorithm uses the top-down recursive way [11, 12]. Comparison of property values is done in the internal nodes of the decision tree and according to the different property values judge down branches from the node. We get conclusion from the decision tree leaf node. Therefore, a path from the root to the leaf node corresponds to a conjunctive rules, the entire decision tree corresponds to a set of disjunctive expressions rules. The decision tree generation algorithm is divided into two steps [13-15]. The first step is the generation of the tree, and at the beginning all the data is in the root node, then do the recursive data slice. Tree pruning is to remove some of the noise or abnormal data. Conditions of decision tree to stop splitting is that a node data belongs to the same category and there are not attributes used to split the data.

In the next section, we introduce construction of decision tree. In Section 3 we introduce attribute selection measure. In Section 4, we do empirical research based on ID3 algorithm and propose an improved algorithm. In Section 5 we conclude the paper and give some remarks.

2. CONSTRUCTION OF DECISION TREE USING ID3

The growing step of the decision tree is shown in Fig. (1). Decision tree generation algorithm is described as follows. The name of the algorithm is Generate_decision_tree which produce a decision tree by given training data (Fig 1). The input is training samples which is represented with discrete values. Candidate attribute set is attribute. The output is a decision tree.

Step 1. Set up node N. If samples is in a same class C then return N as lead node and label it with C.

Step 2. If attribute_list is empty, then return N as leaf node and label it with the most common class in the samples.

Step 3. Choose test_attribute with information gain in the attribute_list, and label N as test_attribute.

Step 4. While each a_i in every test_attribute do the following operation.
Step 5. Node N produces a branch which meets the condition of test_attribute = a.

Step 6. Suppose S_i is sample set of test_attribute = a in the samples. If S_i is empty, then plus a leaf and label it as the most common class. Otherwise plus a node which was returned by $\text{Generate} _\text{decision} _\text{tree}(s_i, \text{attribute_list} - \text{test_attribute})$.

![Diagram of decision tree growth](image)

Fig. (1). Growing step of the decision tree.

3. AN IMPROVED ALGORITHM

3.1. Attribute Selection Measure

Suppose S is data sample set of s number and class label attribute has m different values $C_i (i=1,2,\cdots,m)$. Suppose S_i is the number of sample of class C_i in S. For a given sample classification the demanded expectation information is given by formula 1.

$$I(s_i, s_j, K, s_m) = -\sum_{i=1}^{m} p_{ij} \log_2 p_{ij} (i=1,2,\cdots,K,n)$$

for $j = 1, 2, \cdots, s_j$

$$E(A) = \frac{\sum_{j=1}^{m} (S_j + S_{j+1} + \cdots + S_m)}{S} I(S_i, S_j, K, S_m)$$

$$p_i$$ is probability that random sample belongs to C_i and is estimated by s_i / s. Suppose attribute A has V different values (a_1, a_2, \cdots, a_r). We can use attribute A to classify S into V number of subset $(S_j, S_{j+1}, \cdots, S_m)$. Suppose S_j is the number of class C_i in subset S_j. The expected information of subset is shown in formula 2. $I(s_j, s_{j+1}, K, s_m)$ is the weight of the j-th subset. For a given subset S_j formula 3 sets up.

$$I(s_j, s_{j+1}, K, s_m) = -\sum_{i=1}^{m} p_{ij} \log_2 p_{ij} (i=1,2,\cdots,K,n)$$

$$P_j = \frac{S_j}{S}$$ is the probability that samples of S_j belongs to class C_i. If we branch in A, the information gain is shown in formula 4[14].

$$Gain(A) = I(s_1, s_2, \cdots, s_m) - E(A)$$

3.2. The Improved Algorithm

The improved algorithm is as follows. Function $\text{Generate} _\text{decision} _\text{tree} (\text{training samples}, \text{candidate attribute attribute_list})$

```c
{ Set up node N;
If samples are in the same class C then
Return N as leaf node and label it with C;
Record statistical data meeting the conditions on the leaf node;
If attribute\_list is empty then
Return N as the leaf node and label it as the most common class of samples;
Record statistical data meeting the conditions on the leaf node;
Suppose GainMax=max(Gain1, Gain2, \cdots, Gainn)
If GainMax< threshold
Return N as the leaf node and label it as the most common class of samples;
Choose attribute with the highest information gain of attribute\_list;
Label N as test_attribute;
For each $a_i$ of test_attribute, produce a branch from node N meeting the condition of test_attribute= $a_i$;
Suppose $S_i$ sample set of samples meeting the condition of test_attribute= $a_i$;
If $S_i$ is empty then Record statistical data meeting the conditions on the leaf node;
Add a leaf and label it as the most common class of samples;
```

RETRACTED ARTICLE
4. EMPIRICAL RESEARCH

4.1. Data Cleaning

This paper takes sports course score of some university for example. Examination score of the students is shown in Table 1.

Data in Table 1 is not suitable for classification, so we firstly do data cleaning. According to the general course, basic course, professional basic course and specialized course, classify the course into A, B, C, D. Score is divided into three categories outstanding, medium, general. Paper difficulty is divided into three categories 1, 2, 3.

According to formula 1, we obtain

$$I(s_1, s_2, s_3) = (210, 950, 580)$$

$$= -(210/1740) \log_2(210/1740) - (950/1740) \log_2(950/1740)$$

$$- (580/1740) \log_2(580/1740) = 1.074901$$

For no, $s_2 = 90$, $s_2 = 1000$, $s_3 = 300$.

$$I(s_1, s_2, s_3) = (90, 1000, 300)$$

$$= -(90/1390) \log_2(90/1390) - (1000/1390) \log_2(1000/1390)$$

$$- (300/1390) \log_2(300/1390) = 1.373186.$$

IF samples are classified according to whether re-learning, the expected information is

$$E("\text{whether re-learning"}) = (1740/3130) \cdot I(s_1, s_2, s_3)$$

$$+ (1390/3130) \cdot I(s_1, s_2, s_3)$$

$$= 0.555911 \cdot 1.074901 + 0.444089 \cdot 1.373186 = 1.240721.$$

So the information gain is

$$Gain("\text{whether re-learning"}) = I(s_1, s_2, s_3) - E("\text{whether re-learning"}) = 0.015282.$$

Secondly calculate course type, when it is A, $s_1 = 110, s_2 = 200, s_3 = 580$.

$$I(s_1, s_2, s_3) = (110, 200, 580)$$

$$= -(110/500) \log_2(110/500) - (200/500) \log_2(200/500) - (580/500) \log_2(580/500)$$

$$= 1.259382.$$

For course type B, $s_1 = 100, s_2 = 400, s_3 = 0$.

$$I(s_1, s_2, s_3) = (100, 400, 0)$$

$$= -(100/500) \log_2(100/500) - (400/500) \log_2(400/500)$$

$$= 0.721928.$$

For course type C, $s_1 = 0, s_2 = 550, s_3 = 50$.

$$I(s_1, s_2, s_3) = (0, 550, 0)$$

$$= -(0/550) \log_2(0/550) - (550/550) \log_2(550/550)$$

$$= 1.168009.$$

Table 1. Examination score of the students.

Course Code	Whether Re-Learning	Paper Difficulty	Whether Required Course	Score
110101290	no	high	yes	89
H200104088	no	middle	yes	75
H20010490	yes	middle	no	80
H12010160	yes	high	yes	65
120101288	yes	middle	yes	70
H200152069	no	low	no	90
For course type D, \(s_{14} = 90, s_{24} = 800, s_{34} = 300 \).

\[
I(s_{14}, s_{24}, s_{34}) = (90, 800, 300) \\
= -(90/1190)\log_2(90/1190) - (800/1190)\log_2(800/1190) - (300/1190)\log_2(300/1190) \\
= 1.168009.
\]

\[
E("\text{course type}") = (890/3130) \cdot I(s_{11}, s_{21}, s_{31}) \\
+ (500/3130) \cdot I(s_{12}, s_{22}, s_{32}) \\
+ (550/3130) \cdot I(s_{13}, s_{23}, s_{33}) \\
+ (1190/3130) \cdot I(s_{14}, s_{24}, s_{34}) \\
= 0.91749.
\]

\[
\text{Gain}("\text{course type}") = 1.256003 - 0.91749 = 0.338513.
\]

Thirdly calculate paper difficulty. For high, \(s_{11} = 110, s_{21} = 900, s_{31} = 280 \).

\[
I(s_{11}, s_{21}, s_{31}) = (110, 900, 280) \\
= -(110/1290)\log_2(110/1290) - (900/1290)\log_2(900/1290) - (280/1290)\log_2(280/1290) \\
= 1.14385.
\]

For medium, \(s_{12} = 190, s_{22} = 700, s_{32} = 300 \).

\[
I(s_{12}, s_{22}, s_{32}) = (190, 700, 300) \\
= -(190/1190)\log_2(190/1190) - (700/1190)\log_2(700/1190) - (300/1190)\log_2(300/1190) \\
= 1.374086.
\]

For low, \(s_{13} = 0, s_{23} = 350, s_{33} = 300 \).

\[
I(s_{13}, s_{23}, s_{33}) = (0, 350, 300) \\
= -(0/650)\log_2(0/650) - (350/650)\log_2(350/650) - (300/650)\log_2(300/650) \\
= 0.995727.
\]

\[
E("\text{paper difficulty}") = (1290/3130) \cdot I(s_{11}, s_{21}, s_{31}) \\
+ (1190/3130) \cdot I(s_{12}, s_{22}, s_{32}) \\
+ (650/3130) \cdot I(s_{13}, s_{23}, s_{33}) \\
= 1.200512.
\]

\[
\text{Gain}("\text{paper difficulty}") = 1.256003 - 1.200512 = 0.55497.
\]

Fourthly calculate whether required course. For yes, \(s_{11} = 210, s_{21} = 850, s_{31} = 600 \).

\[
I(s_{11}, s_{21}, s_{31}) = (210, 850, 600) \\
= -(210/1470)\log_2(210/1470) - (850/1470)\log_2(850/1470) - (600/1470)\log_2(600/1470) \\
= 1.220681.
\]

For no, \(s_{12} = 90, s_{22} = 1100, s_{32} = 280 \).

\[
I(s_{12}, s_{22}, s_{32}) = (90, 1100, 280) \\
= -(90/1470)\log_2(90/1470) - (1100/1470)\log_2(1100/1470) - (280/1470)\log_2(280/1470) \\
= 1.015442.
\]

\[
E("\text{whether required}") = (1660/3130) \cdot I(s_{11}, s_{21}, s_{31}) \\
+ (1470/3130) \cdot I(s_{12}, s_{22}, s_{32}) \\
= 1.256003 - 1.220681 = 0.035322.
\]

\[
\text{Gain}("\text{whether required}") = 1.256003 - 1.220681 = 0.035322.
\]

4.3. Result of Improved Algorithm

The original algorithm lacks termination condition. There are only two records for a sub-tree to be classified which is shown in Table 3.

All Gains calculated are 0.00, and GainMax=0.00 which does not conform to recursive termination condition of the

Course Type	Whether Re-Learning	Paper Difficulty	Whether Required	Score	Statistical Data
D	no	medium	no	outstanding	90
B	yes	medium	yes	outstanding	100
A	yes	high	yes	medium	200
D	no	low	no	medium	350
C	yes	medium	yes	general	300
A	yes	high	no	medium	250
B	no	high	no	medium	300
A	yes	high	yes	outstanding	110
D	yes	medium	yes	medium	500
D	no	low	yes	general	300
A	yes	high	no	general	280
B	no	high	yes	medium	150
C	no	medium	no	medium	200
The tree obtained is not reasonable, so we adopt the improved algorithm and decision tree using improved algorithm is shown in Fig. (2).

CONCLUSION

In this paper we study construction of decision tree and attribute selection measure. Because the original algorithm lacks termination condition, we propose an improved algorithm. We take course score of some university for example and we could find the latency factor which impacts the grades.

CONFLICT OF INTEREST

The author confirms that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] W. Bor-tyng, S. Tian-Wei, L. Jung-Chin, T. Jian-Wei, N. Masatake, “The study of soft computing on the field of sports education: Applying Grey S-P chart in sports writing assessment”, International Journal of Digital Content Technology and its Applications, vol. 5, no. 9, pp. 379-388, 2011.

[2] F. Huang, “Research of an algorithm for generating cost-sensitive decision tree based on attribute significance”, International Journal of Digital Content Technology and its Applications, vol. 6, no. 12, pp. 308-316, 2012.

[3] J. Guang-xian, “The research of decision tree learning algorithm in technology of data mining classification”, Journal of Convergence Information Technology, vol. 7, no. 10, pp. 216-223, 2012.

[4] H. Zhang, “Lazy decision tree method for distributed privacy preserving data mining”, International Journal of Advances in Computing Technology, vol. 4, no. 14, pp. 458-465, 2012.

[5] H. Xin, “Assessment and analysis of hierarchical and progressive bilingual sports education based on neuro-fuzzy approach. Advances in Information Sciences and Service Sciences, vol. 5, no. 1, pp. 269-276, 2013.

[6] C. Hong-chao, Z. Jin-ling and D. Ya-qiong, “Application of mixed-weighted-association-rules-based data mining technology in college examination grades analysis”, International Journal of Digital Content Technology and its Applications, vol. 6, no. 10, pp. 336-344, 2012.

[7] M. HongYan, Y. Wang and J. Zhou, “Decision rules extraction based on necessary and sufficient strength and classification algorithm”, Advances in Information Sciences and Service Sciences, vol. 4, no. 14, pp. 441-449, 2012.

[8] M. Bahrololum, E. Salahi and M. Khaleghi, “An improved intrusion detection technique based on two strategies using decision tree and neural network”, Journal of Convergence Information Technology, vol. 4, no. 4, pp. 96-101, 2009.

[9] M. F. M. Mohsin, M. H. Abd Wahab, M. F. Zaiyadi and C. F. Hibadullah, “An investigation into influence factor of student programming grade using association rule mining”, Advances in Information Sciences and Service Sciences, vol. 2, no. 2, pp. 19-27, 2010.

[10] S. M. Elayidom, S. M. Idikkula and J. Alexander, “Design and performance analysis of data mining techniques based on decision trees and naive bayes classifier for”, Journal of Convergence Information Technology, vol. 6, no. 5, pp. 89-98, 2011.

[11] T. Bai, J. Ji, Z. Wang, and C. Zhou, “Application of a global categorical data clustering method in medical data analysis”, Advances in Information Sciences and Service Sciences, vol. 4, no. 7, pp. 182-190, 2012.
[12] X. Xu, and C. Lou, “Applying decision tree algorithms in sports vocabulary test item selection”, International Journal of Advancements in Computing Technology, vol. 4, no. 4, pp. 165-173, 2012.

[13] Z. Xin-hua, Z. Jin-ling and L. Jiang-tao, “An education decision support system based on data mining technology”, International Journal of Digital Content Technology and its Applications, vol. 6, no. 23, pp. 354-363, 2012.

[14] Y. Wang, and L. Zheng, “Endocrine hormones association rules mining based on improved apriori algorithm”, Journal of Convergence Information Technology, vol. 7, no. 7, pp. 72-82, 2012.

[15] Z. Liu, and Y. XianFeng, “An application model of fuzzy clustering analysis and decision tree algorithms in building web mining”, International Journal of Digital Content Technology and its Applications, vol. 6, no. 23, pp. 492-500, 2012.