Quantum numbers of the $X(3872)$ state and orbital angular momentum in its $\rho^0 J/\psi$ decay

The LHCb collaboration

Abstract
Angular correlations in $B^+ \to X(3872)K^+$ decays, with $X(3872) \to \rho^0 J/\psi$, $\rho^0 \to \pi^+\pi^-$ and $J/\psi \to \mu^+\mu^-$, are used to measure orbital angular momentum contributions and to determine the J^{PC} value of the $X(3872)$ meson. The data correspond to an integrated luminosity of 3.0 fb$^{-1}$ of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be $J^{PC} = 1^{++}$. The $X(3872)$ is found to decay predominantly through S wave and an upper limit of 4% at 95% C.L. is set on the fraction of D wave.

Submitted to Physical Review D. Rapid Communications
© CERN on behalf of the LHCb collaboration, license [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)

†Authors are listed at the end of this paper.
The $X(3872)$ state was discovered in $B^{+,0} \rightarrow X(3872)K^{+,0}$, $X(3872) \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow \ell^+\ell^-$ decays by the Belle experiment \cite{1} and subsequently confirmed by other experiments \cite{2,4,7}. Its production was also studied at the LHC \cite{5,6}. However, the nature of this state remains unclear. The $X(3872)$ state is narrow, has a mass very close to the $D^0\bar{D}^{*0}$ threshold and decays to $\rho^0 J/\psi$ and $\omega J/\psi$ final states with comparable branching fractions \cite{7}, thus violating isospin symmetry. This suggests that the $X(3872)$ particle may not be a simple $c\bar{c}$ state, and exotic states such as $D^0\bar{D}^{*0}$ molecules \cite{8}, tetraquarks \cite{9} or mixtures of states \cite{10} have been proposed to explain its composition. The $X(3872)$ quantum numbers, such as total angular momentum J, parity P, and charge-conjugation C, impose constraints on the theoretical models of this state. The orbital angular momentum L in the $X(3872)$ decay may also provide information on its internal structure.

Observations of the $X(3872) \rightarrow \gamma J/\psi$ and $X(3872) \rightarrow \gamma\psi(2S)$ decays \cite{11,13} imply positive C, which requires the total angular momentum of the dipion system ($J_{\pi\pi}$) in $X(3872) \rightarrow \pi^+\pi^- J/\psi$ decays to be odd. Dipion mass, $M(\pi^+\pi^-)$, is limited by the available phase space to be less than 775 MeV, and so $J_{\pi\pi} \geq 3$ can be ruled out since there are no known or predicted mesons with such high spins at such low masses\cite{7}. In fact, the distribution of $M(\pi^+\pi^-)$ is consistent with $X(3872) \rightarrow \rho^0 J/\psi$ decays \cite{6,14,15}, conforming with $J_{\pi\pi} = 1$, the only plausible value.

The choices for J^{PC} were narrowed down to two possibilities, 1^{++} or 2^{-+}, by the CDF collaboration, via an analysis of the angular correlations in inclusively reconstructed $X(3872) \rightarrow \pi^+\pi^- J/\psi$ and $J/\psi \rightarrow \mu^+\mu^-$ decays, dominated by prompt production in pp collisions \cite{16}. Using 1.0 fb$^{-1}$ of pp collision data collected by LHCb, $J^{PC} = 2^{-+}$ was ruled out in favor of the 1^{++} assignment, using the angular correlations in the same decay chain, with the $X(3872)$ state produced in $B^+ \rightarrow X(3872)K^+$ decays \cite{17}. Both angular analyses assumed that the lowest orbital angular momentum between the $X(3872)$ decay products (L_{min}) dominated the matrix element. Significant contributions from $L_{\text{min}} + 2$ amplitudes could invalidate the 1^{++} assignment. Since the phase-space limit on $M(\pi^+\pi^-)$ is close to the ρ^0 pole (775.3 ± 0.3 MeV \cite{7}), the energy release in the $X(3872)$ decay, $Q \equiv M(J/\psi \pi^+\pi^-) - M(J/\psi) - M(\pi^+\pi^-)$, is a small fraction of the $X(3872)$ mass, making the orbital angular momentum barrier effective.\cite{8} However, an exotic component in $X(3872)$ could induce contributions from higher orbital angular momentum for models in which the size of the $X(3872)$ state is substantially larger than the compact sizes of the charmonium states. Therefore, it is important to probe the $X(3872)$ spin-parity without any assumptions about L. A determination of the magnitude of contributions from $L_{\text{min}} + 2$ amplitudes for the correct J^{PC} is also of interest, since a substantial value would suggest an anomalously large size of the $X(3872)$ state. In this article, we extend our previous analysis \cite{17} of five-dimensional angular correlations in $B^+ \rightarrow X(3872)K^+$, $X(3872) \rightarrow \rho^0 J/\psi$, $\rho^0 \rightarrow \pi^+\pi^-$, $J/\psi \rightarrow \mu^+\mu^-$ decays to accomplish these goals. The integrated luminosity of the data sample has been tripled by adding 8 TeV pp collision data collected in 2012.

1 The inclusion of charge-conjugate states is implied in this article.
2 We use mass and momentum units in which $c = 1$.
3 Dimuon candidates are constrained to the known J/ψ mass \cite{7}.
The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, described in detail in Ref. [18, 19]. The $X(3872)$ candidate selection, which is based on reconstructing $B^+ \to (J/\psi \to \mu^+ \mu^-) \pi^+ \pi^- K^+$ candidates using particle identification information, transverse momentum (p_T) thresholds and requiring separation of tracks and the B^+ vertex from the primary pp interaction vertex, is improved relative to that of Ref. [17]. The signal efficiency is increased by lowering requirements on p_T for muons from 0.90 to 0.55 GeV and for hadrons from 0.25 to 0.20 GeV. The background is further suppressed without significant loss of signal by requiring $Q < 250$ MeV. The $X(3872)$ mass resolution ($\sigma_{\Delta M}$) is improved from about 5.5 MeV to 2.8 MeV by constraining the B^+ candidate to its known mass and requiring its momentum to point to a pp collision vertex in the kinematic fit of its decay. The distribution of $\Delta M \equiv M(\pi^+ \pi^- J/\psi) - M(J/\psi)$ is shown in Fig. 1. A Crystal Ball function [20] with symmetric tails is used to model the signal shape, while the background is assumed to be linear. An unbinned maximum likelihood fit yields 1011 ± 38 $B^+ \to X(3872)K^+$ decays and 1468 ± 44 background entries in the $725 < \Delta M < 825$ MeV range used in the angular analysis. The signal purity is 80% within $2.5 \sigma_{\Delta M}$ from the signal peak. From studying the $K^+ \pi^+ \pi^-$ mass distribution, the dominant source of background is found to be $B^+ \to J/\psi K_1(1270)^+, K_1(1270)^+ \to K^+ \pi^+ \pi^-$ decays.

Angular correlations in the B^+ decay chain are analyzed using an unbinned maximum-likelihood fit to determine the $X(3872)$ quantum numbers and orbital angular momentum.
in its decay. The probability density function (\mathcal{P}) for each J^{PC} hypothesis, J_X, is defined in the five-dimensional angular space $\Omega \equiv (\cos \theta_X, \cos \theta_\rho, \Delta \phi_{X,\rho}, \cos \theta_{J/\psi}, \Delta \phi_{X,J/\psi})$, where θ_X, θ_ρ and $\theta_{J/\psi}$ are the helicity angles [21–23] in $X(3872)$, ρ^0 and J/ψ decays, respectively, and $\Delta \phi_{X,\rho}, \Delta \phi_{X,J/\psi}$ are the angles between the decay planes of the $X(3872)$ particle and of its decay products. The quantity \mathcal{P} is the normalized product of the expected decay matrix element (\mathcal{M}) squared and of the reconstruction efficiency (ϵ),

$$\mathcal{P}(\Omega|J_X) = |\mathcal{M}(\Omega|J_X)|^2 \epsilon(\Omega)/I(J_X),$$

where $I(J_X) = \int |\mathcal{M}(\Omega|J_X)|^2 \epsilon(\Omega) d\Omega$. The efficiency is averaged over the $\pi^+\pi^-$ mass using a simulation [24–28] of the $X(3872) \rightarrow \rho^0 J/\psi$, $\rho^0 \rightarrow \pi^+ \pi^-$ decay. The lineshape of the ρ^0 resonance can change slightly depending on the $X(3872)$ spin hypothesis. The effect on $\epsilon(\Omega)$ is very small and is neglected. The angular correlations are obtained using the helicity formalism [16],

$$|\mathcal{M}(\Omega|J_X)|^2 = \sum_{\Delta \lambda_\mu = -1,+1} \sum_{\lambda_{J/\psi},\lambda_\rho = -1,0,+1} A_{\lambda_{J/\psi},\lambda_\rho} D_{0,\lambda_{J/\psi} - \lambda_\rho}^I(0, \theta_X, 0)^* \ D_{\lambda_{J/\psi},\lambda_\rho}(\Delta \phi_{X,\rho}, \theta_\rho, 0)^* \ D_{\lambda_{J/\psi},\lambda_\rho}^I(\Delta \phi_{X,J/\psi}, \theta_{J/\psi}, 0)^* \ |^2,$$

(1)

where λ are particle helicities, $\Delta \lambda_\mu = \lambda_{\mu_+} - \lambda_{\mu_-}$, and $D_{\lambda_1,\lambda_2}^J$ are Wigner functions [21–23]. The helicity couplings, $A_{\lambda_{J/\psi},\lambda_\rho}$, are expressed in terms of the LS couplings, B_{LS}, with help of Clebsch-Gordan coefficients, where L is the orbital angular momentum between the ρ^0 and the J/ψ mesons, and S is the sum of their spins,

$$A_{\lambda_{J/\psi},\lambda_\rho} = \sum_L \sum_S B_{LS} \begin{pmatrix} J_{J/\psi} & J_{\rho} & S \\ \lambda_{J/\psi} & -\lambda_\rho & \lambda_{J/\psi} - \lambda_\rho \end{pmatrix} \begin{pmatrix} L & S & J_X \\ 0 & \lambda_{J/\psi} - \lambda_\rho & \lambda_{J/\psi} - \lambda_\rho \end{pmatrix}.$$

(2)

Possible values of L are constrained by parity conservation, $P_X = P_{J/\psi} P_{\rho} (-1)^L = (-1)^L$. In the previous analyses [14–16,17], only the minimal value of the angular momentum, L_{min}, was allowed. Thus, for the preferred $J^{PC} = 1^{++}$ hypothesis, the D wave was neglected allowing only S-wave decays. In this work all L values are allowed in Eq. (2). The corresponding B_{LS} amplitudes are listed in Table 1. Values of J_X up to four are analyzed. Since the orbital angular momentum in the B^+ decay equals J_X, high values are suppressed by the angular momentum barrier. In fact, the highest observed spin of any resonance produced in B decays is three [29,30]. Since \mathcal{P} is insensitive to the overall normalization of the B_{LS} couplings and to the phase of the matrix element, the B_{LS} amplitude with the lowest L and S is set to the arbitrary reference value $(1,0)$. The set of other possible complex B_{LS} amplitudes, which are free parameters in the fit, is denoted as α.

The function to be minimized is $-2 \ln \mathcal{L}(J_X, \alpha) \equiv -s w \sum_{i=1}^{N_{\text{data}}} w_i \ln \mathcal{P}(\Omega_i|J_X, \alpha)$, where $\mathcal{L}(J_X, \alpha)$ is the unbinned likelihood, and N_{data} is the number of selected candidates. The background is subtracted using the sPlot technique [31] by assigning a weight, w_i, to each candidate based on its ΔM value (see Fig. 1). No correlations between ΔM and Ω are observed. Prompt production of $X(3872)$ in pp collisions gives negligible contribution to the selected sample. Statistical fluctuations in the background subtraction are taken into
Table 1: Parity-allowed LS couplings in the $X(3872) \to \rho^0J/\psi$ decay. For comparison, we also list a subset of these couplings corresponding to the lowest L, used in the previous determinations \cite{14,16,17} of the $X(3872)$ quantum numbers.

J^{PC}	Any L value	Minimal L value
0^{-+}	B_{11}	B_{11}
0^{++}	B_{00}, B_{22}	B_{00}
1^{-+}	$B_{10}, B_{11}, B_{12}, B_{32}$	B_{10}, B_{11}, B_{12}
1^{++}	B_{01}, B_{21}, B_{22}	B_{01}
2^{-+}	$B_{11}, B_{12}, B_{31}, B_{32}$	B_{11}, B_{12}
2^{++}	$B_{02}, B_{20}, B_{21}, B_{22}, B_{32}$	B_{02}
3^{-+}	$B_{12}, B_{30}, B_{31}, B_{32}, B_{32}$	B_{12}
3^{++}	$B_{21}, B_{22}, B_{31}, B_{32}$	B_{21}, B_{22}
4^{-+}	$B_{31}, B_{32}, B_{31}, B_{32}$	B_{31}, B_{32}
4^{++}	$B_{22}, B_{40}, B_{41}, B_{42}, B_{62}$	B_{22}

account in the log-likelihood value via a constant scaling factor, $s_w = \sum_{i=1}^{N_{\text{data}}} w_i / \sum_{i=1}^{N_{\text{data}}} w_i^2$. The efficiency $\epsilon(\Omega)$ is not determined on an event-by-event basis, since it cancels in the likelihood ratio except for the normalization integrals. A large sample of simulated events, with uniform angular distributions, passed through a full simulation of the detection and the data selection process, is used to carry out the integration. $I(J_X) \propto \sum_{i=1}^{N_{\text{MC}}} |\mathcal{M}(\Omega_X)|J_X|^2|$, where N_{MC} is the number of reconstructed simulated events. The negative log-likelihood is minimized for each J_X value with respect to free B_{LS} couplings, yielding their estimated set of values $\hat{\alpha}$. Hereinafter, $\mathcal{L}(J_X) \equiv \mathcal{L}(J_X, \hat{\alpha})$.

The 1^{++} hypothesis gives the highest likelihood value. From angular momentum and parity conservation, there are two possible values of orbital angular momentum in the $X(3872)$ decay for this J^{PC} value, $L = 0$ or 2. For the S–wave decay, the total spin of the ρ^0 and J/ψ mesons must be $S = 1$; thus B_{00} is the only possible LS amplitude. For the D–wave decay, two values are possible, $S = 1$ or 2, corresponding to the amplitudes B_{21} and B_{22}, respectively. The squared magnitudes of both of these D–wave amplitudes are consistent with zero, as demonstrated by the ratios $|B_{21}|^2/|B_{01}|^2 = 0.002 \pm 0.004$ and $|B_{22}|^2/|B_{01}|^2 = 0.007 \pm 0.008$. Overall, the D–wave significance is only 0.8 standard deviations as obtained by applying Wilks theorem to the ratio of the likelihood values with the D–wave amplitudes floated in the fit and with them fixed to zero. The total D–wave fraction depends on the B_{LS} amplitudes, $f_D = \int |\mathcal{M}(\Omega_D)|^2 d\Omega / \int |\mathcal{M}(\Omega)^{S+D}|^2 d\Omega$, where $\mathcal{M}(\Omega_D)$ is the matrix element restricted to the B_{21} and B_{22} amplitudes only and $\mathcal{M}(\Omega)^{S+D}$ is the full matrix element. To set an upper limit on f_D, we populate the four-dimensional space of complex B_{21} and B_{22} parameters with uniformly distributed points in a large region around the B_{21} and B_{22} fit values (± 14 standard deviations in each parameter). For each point we determine the likelihood value from the data and an f_D value via numerical
Figure 2: Likelihood-weighted distribution of the D–wave fraction. The distribution is normalized to unity.

The likelihood ratio \(t = -2 \ln \left[\mathcal{L}(J_X^{\text{alt}}) / \mathcal{L}(1^{++}) \right] \) is used as a test variable to discriminate between the \(1^{++} \) and alternative spin hypotheses considered \((J_X^{\text{alt}}) \). The values of \(t \) in the data \((t_{\text{data}})\) are positive, favoring the \(1^{++} \) assignment. They are incompatible with the distributions of \(t \) observed in experiments simulated under various \(J_X^{\text{alt}} \) hypotheses, as illustrated in Fig. 3. To quantify these disagreements we calculate the approximate significance of rejection (p-value) of \(J_X^{\text{alt}} \) as \((t_{\text{data}} - \langle t \rangle) / \sigma(t)\), where \(\langle t \rangle \) and \(\sigma(t) \) are the mean and rms deviations of the \(t \) distribution under the \(J_X^{\text{alt}} \) hypothesis. In all spin configurations tested, we exclude the alternative spin hypothesis with a significance of more than 16 standard deviations. Values of \(t \) in data are consistent with those expected in the \(1^{++} \) case as shown in Fig. 3 with fractions of simulated \(1^{++} \) experiments with \(t < t_{\text{data}} \) in the 25%–91% range. Projections of the data and of the fit \(P \) onto individual angles show good consistency with the \(1^{++} \) assignment. Inconsistency with the other assignments is apparent when correlations between various angles are exploited. For example, the data projection onto \(\cos \theta_X \) is consistent only with the \(1^{++} \) fit projection after requiring \(|\cos \theta_\rho| > 0.6\) (see Fig. 1), while inconsistency with the other quantum number assignments is less clear without the \(\cos \theta_\rho \) requirement.
Figure 3: Distributions of the test statistic $t \equiv -2 \ln [\mathcal{L}(J_{\text{alt}}^X)/\mathcal{L}(1^{++})]$, for the simulated experiments under the $J^{PC} = J_{\text{alt}}^X$ hypothesis (blue solid histograms) and under the $J^{PC} = 1^{++}$ hypothesis (red dashed histograms). The values of the test statistics for the data, t_{data}, are shown by the solid vertical lines.

The selection criteria are varied to probe for possible biases from the background subtraction and the efficiency corrections. By requiring $Q < 0.1$ GeV, the background level is reduced by more than a factor of two, while losing only 20% of the signal. By tightening the requirements on the p_T of π, K and μ candidates, we decrease the signal efficiency by around 75% with similar reduction in the background level. In all cases, the
significance of the rejection of the disfavored hypotheses is compatible with that expected from the simulation. Likewise, the best fit f_0 values determined for these subsamples of data change within the expected statistical fluctuations and remain consistent with the upper limit we have set.

In summary, the analysis of the angular correlations in $B^+ \rightarrow X(3872)K^+$, $X(3872) \rightarrow \pi^+\pi^-J/\psi$, $J/\psi \rightarrow \mu^+\mu^-$ decays, performed for the first time without any assumption about the orbital angular momentum in the $X(3872)$ decay, confirms that the eigenvalues of total angular momentum, parity and charge-conjugation of the $X(3872)$ state are 1^{++}. These quantum numbers are consistent with those predicted by the molecular or tetraquark models and with the $\chi_{c1}(2^{3}P_1)$ charmonium state [32]. Other charmonium states are excluded. No significant D–wave fraction is found, with an upper limit of 4% at 95% C.L. The S–wave dominance is expected in the charmonium or tetraquark models, in which the $X(3872)$ state has a compact size. An extended size, as that predicted by the molecular model, implies more favorable conditions for the D wave. However, conclusive discrimination among models is difficult because quantitative predictions are not available.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF and MPG (Germany); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are indebted to the communities behind the multiple open source software packages on which we depend. We are also thankful for the computing resources and the access to software R&D tools provided by Yandex LLC (Russia). Individual groups or members have received support from EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union), Conseil général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR (Russia), XuntaGal and GENCAT (Spain), Royal Society and Royal Commission for the Exhibition of 1851 (United Kingdom).

References

[1] Belle collaboration, S.-K. Choi et al., Observation of a narrow charmonium-like state in exclusive $B^+ \rightarrow K^+\pi^+\pi^-J/\psi$ decays, Phys. Rev. Lett. 91 (2003) 262001, arXiv:hep-ex/0309032

[2] CDF collaboration, D. Acosta et al., Observation of the narrow state $X(3872) \rightarrow J/\psi\pi^+\pi^-$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. 93 (2004) 072001.
Figure 4: Background-subtracted distribution of $\cos \theta_X$ for candidates with $|\cos \theta_\rho| > 0.6$ for the data (points with error bars) compared to the expected distributions for various $X(3872) J^{PC}$ assignments (solid histograms) with the B_{LS} amplitudes obtained by the fit to the data in the five-dimensional angular space. The fit displays are normalized to the observed number of the signal events in the full angular phase space.

[3] D0 collaboration, V. M. Abazov et al., Observation and properties of the $X(3872)$ decaying to $J/\psi \pi^+ \pi^-$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. 93 (2004)
[4] BaBar collaboration, B. Aubert et al., Study of the $B^- \to J/\psi K^-\pi^+\pi^-$ decay and measurement of the $B^- \to X(3872)K^-$ branching fraction, Phys. Rev. D71 (2005) 071103, arXiv:hep-ex/0406022.

[5] LHCb collaboration, R. Aaij et al., Observation of $X(3872)$ production in pp collisions at $\sqrt{s} = 7$ TeV, Eur. Phys. J. C72 (2012) 1972, arXiv:1112.5310.

[6] CMS collaboration, S. Chatrchyan et al., Measurement of the $X(3872)$ production cross section via decays to $J/\psi\pi\pi$ in pp collisions at $\sqrt{s} = 7$ TeV, JHEP 04 (2013) 154, arXiv:1302.3968.

[7] Particle Data Group, K. A. Olive et al., Review of particle physics, Chin. Phys. C38 (2014) 090001, arXiv:1412.1408.

[8] N. A. Tornqvist, Isospin breaking of the narrow charmonium state of Belle at 3872-MeV as a deuson, Phys. Lett. B590 (2004) 209, arXiv:hep-ph/0402237.

[9] L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, Diquark-antidiquarks with hidden or open charm and the nature of $X(3872)$, Phys. Rev. D71 (2005) 014028, arXiv:hep-ph/0412098.

[10] C. Hanhart, Y. S. Kalashnikova, and A. V. Nefediev, Interplay of quark and meson degrees of freedom in a near-threshold resonance: multi-channel case, Eur. Phys. J. A47 (2011) 101, arXiv:1106.1185.

[11] BaBar collaboration, B. Aubert et al., Search for $B^+ \to X(3872)K^+$, $X(3872) \to J/\psi\gamma$, Phys. Rev. D74 (2006) 071101, arXiv:hep-ex/0607050.

[12] Belle collaboration, V. Bhardwaj et al., Observation of $X(3872) \to J/\psi\gamma$ and search for $X(3872) \to \psi'\gamma$ in B decays, Phys. Rev. Lett. 107 (2011) 091803, arXiv:1105.0177.

[13] LHCb collaboration, R. Aaij et al., Evidence for the decay $X(3872) \to \psi(2S)\gamma$, Nucl. Phys. B886 (2014) 665, arXiv:1404.0275.

[14] Belle collaboration, S.-K. Choi et al., Bounds on the width, mass difference and other properties of $X(3872) \to \pi^+\pi^-J/\psi$ decays, Phys. Rev. D84 (2011) 052004, arXiv:1107.0163.

[15] CDF collaboration, A. Abulencia et al., Measurement of the dipion mass spectrum in $X(3872) \to J/\psi\pi^+\pi^-$ decays., Phys. Rev. Lett. 96 (2006) 102002, arXiv:hep-ex/0512074.

[16] CDF collaboration, A. Abulencia et al., Analysis of the quantum numbers J^{PC} of the $X(3872)$, Phys. Rev. Lett. 98 (2007) 132002, arXiv:hep-ex/0612053.
[17] LHCb collaboration, R. Aaij et al., Determination of the X(3872) meson quantum numbers, Phys. Rev. Lett. 110 (2013) 222001, arXiv:1302.6269.

[18] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.

[19] LHCb collaboration, R. Aaij et al., LHCb detector performance, Int. J. Mod. Phys. A30 (2015) 1530022, arXiv:1412.6352.

[20] T. Skwarnicki, A study of the radiative cascade transitions between the Υ' and Υ resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.

[21] M. Jacob and G. C. Wick, On the general theory of collisions for particles with spin, Annals Phys. 7 (1959) 404.

[22] J. D. Richman, An experimenter’s guide to the helicity formalism, 1984, CALT-68-1148.

[23] S. U. Chung, General formulation of covariant helicity-coupling amplitudes, Phys. Rev. D57 (1998) 431.

[24] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv:hep-ph/0603175.

[25] I. Belyaev et al., Handling of the generation of primary events in GAUSS, the LHCb simulation framework, Nuclear Science Symposium Conference Record (NSS/MIC) IEEE (2010) 1155.

[26] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152.

[27] GEANT4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270, GEANT4 collaboration, S. Agostinelli et al., GEANT4: A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.

[28] M. Clemencic et al., The LHCb simulation application, GAUSS: Design, evolution and experience, J. of Phys. : Conf. Ser. 331 (2011) 032023.

[29] LHCb collaboration, R. Aaij et al., Observation of overlapping spin-1 and spin-3 \(\bar{D}^0 K^- \) resonances at mass 2.86 GeV/c², Phys. Rev. Lett. 113 (2014) 162001, arXiv:1407.7574.

[30] LHCb collaboration, R. Aaij et al., Dalitz plot analysis of \(B_s^0 \rightarrow \bar{D}^0 K^- \pi^+ \) decays, Phys. Rev. D90 (2014) 072003, arXiv:1407.7712.

[31] M. Pivk and F. R. Le Diberder, sPlot: A statistical tool to unfold data distributions, Nucl. Instrum. Meth. A555 (2005) 356, arXiv:physics/0402083v3.
[32] N. N. Achasov and E. V. Rogozina, $X(3872)$, $I^G(J^{PC}) = 0^+(1^{++})$, as the $\chi_{c1}(2P)$ charmonium, arXiv:1501.03583.
S.C. Haines, S. Hall, B. Hamilton, T. Hampson, X. Han, S. Hansmann-Menzemer, N. Harnew, S.T. Harnew, J. Harrison, J. He, T. Head, V. Heijne, K. Hennessy, P. Henrard, L. Henry, J.A. Hernando Morata, E. van Herwijnen, M. Heß, A. Hicheur, D. Hilt, M. Hoballah, C. Hombach, W. Hulsbergen, T. Humair, N. Hussain, D. Hutchcroft, D. Hynds, M. Idzik, P. Ilten, R. Jacobsson, A. Jaeger, J. Jalocha, E. Jans, A. Jawahery, F. Jing, M. John, D. Johnson, C.R. Jones, C. Joram, B. Jost, S. Jurik, S. Kandybei, W. Kanso, M. Karacson, T.M. Karbach, S. Karodia, M. Kelsey, I.R. Kenyon, M. Kenzie, T. Ketel, B. Khanji, C. Khurewathanauk, S. Klaver, K. Klimaszewski, O. Kochebina, M. Kolpin, I. Komarov, R.F. Koopman, P. Koppenburg, M. Korolev, L. Kravchuk, K. Kreplin, M. Kreps, G. Krocker, P. Krokovny, F. Kruse, W. Kuciewicz, M. Kucharczyk, V. Kudryavtsev, K. Kurek, S. Kvaratskheliya, V.N. La Thi, D. Lacarrere, G. Lafferty, A. Lai, D. Lambert, R.W. Lambert, G. Lanfranchi, S. Langenbruch, B. Langhans, T. Latham, C. Lazzeroni, R. Le Gaec, J. van Leerdam, J.-P. Lees, R. Lefèvre, A. Leflat, J. Lefrançois, T. Leroy, T. Lesiak, B. Leverington, Y. Li, T. Likhomanenko, M. Liles, R. Lindner, C. Linn, F. Lionetto, B. Liu, S. Lohn, I. Longstaff, J.H. Lopes, P. Lowdon, D. Lucchesi, H. Luo, A. Lupato, E. Luppi, O. Lupton, F. Machefert, F. Maciuc, O. Maev, S. Malé, A. Malinin, G. Manca, G. Mancinelli, P. Manning, A. Mapelli, J. Maratas, J.F. Marchaud, U. Marcon, C. Marin Benito, P. Marino, R. Märki, J. Marks, G. Martelli, M. Martinelli, D. Martinez Santos, F. Martinez Vidal, D. Martius Tostes, A. Massafferli, R. Matev, A. Mathad, Z. Mathe, C. Matteuzzi, A. Mauri, B. Maurin, A. Mazurov, M. McCann, J. McCarthy, A. McNab, R. McNulty, B. Meadows, F. Meier, M. Meissner, M. Merk, D.A. Milanes, M.-N. Minard, D.S. Mitzel, J. Molina, R. Montiel, M. Morandin, P. Morawski, A. Mordà, M.J. Morello, J. Moron, A.B. Morris, R. Mountain, F. Muheim, J. Müller, K. Müller, V. Müller, M. Musin, B. Muster, P. Naik, T. Nakada, R. Nandakumar, I. Nasteva, M. Needham, N. Neri, S. Neubert, N. Neufeld, M. Neuner, A.D. Nguyen, T.D. Nguyen, C. Nguyen-Mau, V. Niess, R. Niet, N. Nikitin, T. Nikodem, D. Ninci, A. Novoselov, D.P. O’Hanlon, A. Oblakowska-Mucha, V. Obraztsov, S. Ogilvy, O. Okhrimenko, R. Oldeman, C.J.G. Onderwater, B. Osorio Rodrigues, J.M. Otalora Goicochea, A. Otto, P. Owen, A. Oyanguren, A. Palano, F. Palombo, M. Palután, J. Panman, A. Papanestis, M. Pappalardo, L.L. Pappalardo, C. Parkes, G. Passaleva, G.D. Patel, M. Patel, C. Patrignani, A. Pearce, A. Pellegrino, G. Penso, M. Pepe Altarelli, S. Perazzini, P. Perret, L. Pescatore, K. Petridis, A. Petrolini, J. Petruzzo, E. Picatoste Olloqui, B. Pietrzyk, T. Pilat, A. Pinc, A. Pistone, S. Player, M. Plo Casasus, T. Poikela, F. Polci, A. Polyakov, J. Polakowska, G. Polapczak, A. Popov, D. Popov, B. Popovic, C. Potterat, E. Price, J.D. Price, J. Prisciandaro, A. Pritchard, C. Prouve, V. Pugatch, A. Puig Navarro, G. Punzi, W. Qian, R. Quagliani, B. Rachwalski, J.H. Rademacker, B. Rakotomiaramanana, M. Rama, M.S. Rangel, I. Raniuk, N. Rauschmayr, G. Raven, F. Redi, S. Reichert, M.M. Reid, A.C. dos Reis, S. Ricciardi, S. Richards, M. Rih, K. Rinnert, V. Rives Molina, P. Robbe, A.B. Rodrigues, E. Rodrigues, J.A. Rodriguez Lopez, P. Rodriguez Perez, S. Roiser, V. Romanovsky, A. Romero Vidal, M. Rotondo, J. Ruiz, T. Ruf, H. Ruiz, P. Ruiz Valls, J.J. Saborido Silva, N. Sagidova, P. Sail, B. Saiota, V. Salustino Guimarães, C. Sanchez Mayordomo, B. Sanmartin Sedes, R. Santacesaria.
C. Santamarina Rios37, M. Santimaria18, E. Santovetti24,t, A. Sarti18,m, C. Satriano25,n, A. Satta24, D.M. Saunders46, D. Savrina31,32, M. Schiller38, H. Schindler38 M. Schlupp9, M. Schmelling10, T. Schmelzer9, B. Schmidt38, O. Schneider39, A. Schopper38, M.-H. Schune7, R. Schwemmer38, B. Sciascia18, A. Sciubba25,m, A. Semennikov31, I. Sepp53, N. Serra40, J. Serrano6, L. Sestini22, P. Seyfert11, M. Shapkin35, I. Shapoval16,45,f, Y. Shcheglov30, T. Shears52, L. Shekhtman34, V. Shevchenko64, A. Shires3, R. Silva Coutinho48, G. Sim22, M. Sirendi47, N. Skidmore51, I. Skillicorn51, T. Skwarnicki39, E. Smith55,f, E. Smith53, J. Smith47, M. Smith54, H. Snoek41, M.D. Sokoloff57,38, F.J.P. Soler51, F. Soomro39, D. Souza46, B. Souza De Paula2, B. Spaan9, P. Spradlin51, S. Sridharan38, F. Stagni38, M. Stahl11, S. Stahl38, O. Steinkamp40, O. Stenyakin32, F. Sterlpa59, S. Stevenson35, S. Stoica29, S. Stone59, B. Storaci20, S. Stracka23,t, M. Stratinski29, U. Straumann40, R. Stroili22, L. Sun57, W. Sutcliffe53, K. Swientek27, S. Swientek9, V. Syropoulos42, M. Szczekowski28, P. Szczypka39,38, T. Szumlak27, S. T.Jampens4, B. Tekate, M. Teklishyn7, G. Tellarini16,f, P. Teubert38, C. Thomas55, E. Thomas38, J. van Tilburg41, V. Tisserand4, M. Tobin39, J. Todd57, S. Toik42, L. Tomassetti16,f, D. Tonelli38, S. Topp-Joergensen55, N. Torri55, E. Tournefier4, S. Tourneur39, K. Trabelsi39, M.T. Tran39, M. Tresch40, A. Trisovic38, A. Tsearegorodtsev6, P. Tsopelas41, N. Tuning31,38, A. Ukleja28, A. Ustyuzhanin55,64, U. Uwer11, C. Vacca15,e, V. Vagnoni14, G. Valenti14, A. Vallier7, R. Vazquez Gomez18, P. Vazquez Regueiro37, C. Vázquez Sierra37, S. Vecchi16, J.J. Velthuis46, M. Veltte, G. Veneziano39, M. Vesterinen11, B. Vian7, D. Vieira2, M. Vieites Diaz47, X. Vilasis-Cardona36,p, A. Vollhardt40, D. Volynskyy10, D. Voong46, A. Vorobyev39, V. Vorobyev34, C. Vo63, J.A. de Vries41, R. Wald63, C. Wallace48, R. Wallace12, J. Walsh23, S. Wandernoth41, J. Wang50, D.R. Ward47, N.K. Watson45, D. Websdale53, A. Weiden40, M. Whitehead48, D. Wiedner11, G. Wilkinson55,38, M. Wilkinson59, M. Williams38, M.P. Williams45, M. Williams56, F.F. Wilson49, J. Wimberley38, J. Wishahi9, W. Wislicki28, M. Witke26, G. Wormser7, S.A. Wotton47, S. Wright47, K. Wyllie38, Y. Xie61, Z. Xu39, Z. Yang3, X. Yuan54, O. Yushchenko35, M. Zangoli14, M. Zavertyaev11, M. Zharkova3, Y. Zhang3, A. Zhelazov23, F. Zhokhov31, L. Zhong3.

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4LAPP, Université Savoie Mont-Blanc, CNRS/IN2P3, Annecy-Le-Vieux, France
5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12School of Physics, University College Dublin, Dublin, Ireland
13Sezione INFN di Bari, Bari, Italy
14Sezione INFN di Bologna, Bologna, Italy
15Sezione INFN di Cagliari, Cagliari, Italy
16Sezione INFN di Ferrara, Ferrara, Italy
17Sezione INFN di Firenze, Firenze, Italy
18Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19Sezione INFN di Genova, Genova, Italy
20Sezione INFN di Milano Bicocca, Milano, Italy
21Sezione INFN di Milano, Milano, Italy
54
22 Sezione INFN di Padova, Padova, Italy
23 Sezione INFN di Pisa, Pisa, Italy
24 Sezione INFN di Roma Tor Vergata, Roma, Italy
25 Sezione INFN di Roma La Sapienza, Roma, Italy
26 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
27 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
28 National Center for Nuclear Research (NCBJ), Warsaw, Poland
29 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
30 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
31 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
32 Institute of Nuclear Physics, Moscow State University (ŠINP MSU), Moscow, Russia
33 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
34 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
35 Institute for High Energy Physics (IHEP), Protvino, Russia
36 Universitat de Barcelona, Barcelona, Spain
37 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
38 European Organization for Nuclear Research (CERN), Geneva, Switzerland
39 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
40 Physik-Institut, Universität Zürich, Zürich, Switzerland
41 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
42 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
43 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
44 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
45 University of Birmingham, Birmingham, United Kingdom
46 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
47 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
48 Department of Physics, University of Warwick, Coventry, United Kingdom
49 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
50 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
51 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
52 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
53 Imperial College London, London, United Kingdom
54 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
55 Department of Physics, University of Oxford, Oxford, United Kingdom
56 Massachusetts Institute of Technology, Cambridge, MA, United States
57 University of Cincinnati, Cincinnati, OH, United States
58 University of Maryland, College Park, MD, United States
59 Syracuse University, Syracuse, NY, United States
60 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2
61 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to 3
62 Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia, associated to 8
63 Institut für Physik, Universität Rostock, Rostock, Germany, associated to 11
64 National Research Centre Kurchatov Institute, Moscow, Russia, associated to 31
65 Yandex School of Data Analysis, Moscow, Russia, associated to 31
66 Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain, associated to 36
67 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands, associated to 41

a Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
b P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
c Università di Bari, Bari, Italy
Università di Bologna, Bologna, Italy
Università di Cagliari, Cagliari, Italy
Università di Ferrara, Ferrara, Italy
Università di Firenze, Firenze, Italy
Università di Urbino, Urbino, Italy
Università di Modena e Reggio Emilia, Modena, Italy
Università di Genova, Genova, Italy
Università di Milano Bicocca, Milano, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Roma La Sapienza, Roma, Italy
Università della Basilicata, Potenza, Italy
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
Hanoi University of Science, Hanoi, Viet Nam
Università di Padova, Padova, Italy
Università di Pisa, Pisa, Italy
Scuola Normale Superiore, Pisa, Italy
Università degli Studi di Milano, Milano, Italy
Politecnico di Milano, Milano, Italy
† Deceased