The Early Expansion of Cluster Cores

N. Bastian1,2, M. Gieles3, S.P. Goodwin4, G. Trancho5, L. J. Smith2,6, I. Konstantopoulos2, Yu. Efremov7

1 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
2 Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
3 European Southern Observatory, Casilla 19001, Santiago 19, Chile
4 Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
5 Gemini Observatory, 670 N. A'ohoku Place, Hilo, HI 96720, USA
6 Space Telescope Science Institute and European Space Agency, 3700 San Martin Drive, Baltimore, Maryland 21218, USA
7 Sternberg Astronomical Institute of Moscow State University, Universitetsky Prospect, 13, Moscow, 119899, Russia

Accepted. Received; in original form

ABSTRACT

The observed properties of young star clusters, such as the core radius and luminosity profile, change rapidly during the early evolution of the clusters. Here we present observations of 6 young clusters in M51 where we derive their sizes using HST imaging and ages using deep Gemini-North spectroscopy. We find evidence for a rapid expansion of the cluster cores during the first 20 Myr of their evolution. We confirm this trend by including data from the literature of both Galactic and extra-galactic embedded and young clusters, and possible mechanisms (rapid gas removal, stellar evolutionary mass-loss, and internal dynamical heating) are discussed. We explore the implications of this result, focussing on the fact that clusters were more concentrated in the past, implying that their stellar densities were much higher and relaxation times (t_{relax}) correspondingly shorter. Thus, when estimating if a particular cluster is dynamically relaxed, (i.e. when determining if a cluster’s mass segregation is due to primordial or dynamical processes), the current relaxation time is only an upper-limit, with t_{relax} likely being significantly shorter in the past.

Key words: galaxies: star clusters – galaxies: individual M51 – Galaxy: open clusters and associations: general

1 INTRODUCTION

The early evolution of stellar clusters and aggregates has a rich variety of physical processes at work including: stellar formation and evolution, gas inflow and outflow, stellar feedback and turbulence, the merging of stellar clumps and possibly, stellar interactions. The combination and effective efficiencies of these processes determine if the cluster, or part thereof, becomes/remains bound or if it forms an unbound loose aggregate of stars which will slowly blend into the background field population. These processes leave their mark on the cluster, in the size (core or effective radius), mass, profile shape, and possibly on the stellar mass function.

This work is a continuation of our previous investigations on the implications of rapid residual gas expulsion (RGE) on the survivability and properties of young clusters (Bastian & Goodwin 2006; Goodwin & Bastian 2006). In previous papers we have explored the evolution of the luminosity profile of the clusters as well as their dynamical state. Both were found to be highly variable which led us to conclude that the observed properties of young clusters were merely snapshots in their evolution and should not be regarded as their final properties. One general prediction from our models, as well as other models of RGE (e.g. Goodwin 1997, Kroupa & Boily 2002), is that the cluster will expand in response to the loss of the residual gas, the exact amount of which will depend on the (effective) star-formation efficiency,\cite{Goodwin}.\footnote{Goodwin (2008) reiterates that it is not the star formation efficiency \textit{per se} that is the critical factor in determining the effect of RGE, rather the dynamical state of the cluster at the onset of RGE which can be parameterised as an effective star formation efficiency.}

In the current work, we investigate the evolution of core radii for a sample of young clusters. The sample is partly composed of a small survey of young (age < 30 Myr) clusters in M51 for which we use high S/N (> 100) optical spectra in order to derive their ages, and HST-ACS imaging to...
derive their core radii. We supplement this sample with clusters taken from the literature, composed of both embedded and open clusters in the Galaxy, as well as massive extragalactic clusters. These datasets are designed to complement the study of Mackey & Gilmore (2003) who derived the core radius for 63 clusters in the LMC/SMC and found a strong relation between the core radius of a cluster and its age (as first found by Elson 1991), in the sense that older clusters have a wider spread of core radii than young clusters.

The core radius of a cluster is a particularly interesting parameter as it is largely responsible for setting the timescale over which the cluster evolves dynamically. For a given mass, it is the core radius which will set the core relaxation timescale and determine how quickly dynamical mass segregation proceeds and whether or not stellar mergers are likely to take place (Freitag et al. 2006), assuming that the underlying stellar IMF is sufficiently broad (Gürkan, Freitag, & Rasio 2004). The core radius of the cluster is expected to increase during the first few 10s of Myr due to three main effects. Firstly, from stellar evolution in which the most massive stars lose mass (this effect is heavily amplified if the core is mass-segregated – e.g. Mackey et al. 2007). Secondly, due to the expulsion of gas left over from the non-100% efficiency star-formation process (RGE, see Goodwin & Bastian 2006; Goodwin 2008 and references therein). Thirdly, dynamical heating of the core through ‘dark objects’ (i.e. black holes and neutron stars) interactions with lower-mass stars (e.g. Merritt et al. 2004, Mackey et al. 2007, 2008). All three effects are understood relatively well theoretically (see the recent review by Baumgardt & Kroupa 2007) and all are likely to play a large role. The goal of the present paper is to test this theoretical framework with observations. In addition to the above effects, external perturbations such as interactions with GMCs and other clusters, disk shocking and spiral arm passages are expected to also heat the cluster, causing them to expand (e.g. Gieles et al. 2006, 2007).

This paper is organised in the following way. In §2 we present the observations and numerical techniques. In §3 we describe in detail the methods employed to derive the age and core radius of each of the clusters in the M51 sample. In §4 the age-core radius relation is discussed using the M51, Galactic and other extra-galactic cluster samples and in §5 possible mechanisms are summarised. We discuss the results and implications in §6 and summarise the results in §7.

2 OBSERVATIONS

The spectroscopic observations were taken the nights of May 25-26th, 2006, using the GMOS spectrograph on the Gemini-North telescope in long slit mode (PI Bastian, GN-2006A-C-9). We used a slit width and length of 1.0” and 5.5’ respectively, and the B600 grating to achieve a resolution of ~150 km/s. We chose three slit positions which were based on the catalogue of young cluster complexes in M51 by Bastian et al. (2005), and we use their naming convention throughout this paper (the cluster positions in the galaxy can be found using Fig. 1 in Bastian et al. 2005). For each slit position, we obtained two 1800s exposures, which were centred on 508 and 512 nm. For all observations the seeing was in the 70th percentile (i.e. better than 0.8”). The data were flat-fielded, bias subtracted, wavelength calibrated, extracted, and combined using standard Gemini/IRAF software.

Since the slit positions were chosen to cover multiple complexes in the same pointing, the positions were independent of parallactic angle. As such, we have not corrected for wavelength dependent slit losses, which accounts for some of the observed differences in the spectral shapes of the clusters. The slit and cluster positions are shown in Fig. 1 and the spectra are shown in Fig. 2.

Each slit contained one to four clusters with individual clusters a1 and G2b observed during two different pointings (i.e. for a total of four exposures for these clusters). The spectra show features common to young stellar populations, namely a combination of emission lines and strong Balmer absorption lines.

The structural parameters of the clusters were derived using HST-ACS-WFC observations (F435W, F555W, and F814W). These observations were taken as part of the Hubble Heritage Project in January 2005 (proposal ID 10452, PI: S. V. W. Beckwith) and the data reduction and processing are described in detail in Mutchler et al. (2005). Throughout this paper we will use the standard B, V, I notation to discuss the colours of the clusters, however we note that no transformation has been applied.

We adopt a distance to M51 of 8.4 Mpc (Feldmeier et al. 1997).

§3 MEASURING PARAMETERS

3.1 Ages

Optical spectra are a powerful way to derive accurate ages for young clusters (e.g. Trancho et al. 2007a, b). For the present study we adopt the technique presented in Constantinopoulos et al. (2008), and we refer the reader there for the details of the method. In short, the method compares the detailed line profile shapes of the Hγ and Hβ lines with the Gonzalez-Delgado et al. (2005) simple stellar population models which have been degraded in resolution to match the observations (we have used a Salpeter stellar IMF, and solar metallicity tracks). The comparison between the model and observed spectra is done on rectified spectra in two bands which straddle the line. The centre of the line is avoided in order to minimise contamination from any underlying emission component. This comparison is done for model ages between 4 Myr and 10 Gyr and the model with the lowest reduced χ², χ², is selected. The range of acceptable model ages was determined by comparison of the models and observations by eye. In particular, we compared the line width and overall profile fit, including small features in the profile which were seen in the observed spectrum as well as the best fit model. An example of the procedure (3cl-a), is shown in Figure 3.

We have also fitted clusters a1, g2a, 3cl-a, and 3cl-b with SSP model tracks with Z=0.008, for which find good agreement with the solar metallicity fits. The results are given in
Expansion of cluster cores

Figure 1. Top: Slit positions superimposed on HST F555W and Hα (continuum subtracted) images of four of the clusters in the sample. Each image is 27.5" by 33.75", corresponding to 1.12 kpc by 1.375 kpc. North is up and east is to the left. Bottom: Slit positions superimposed on HST F555W and Hα (continuum subtracted) images of the two clusters within the complex G2. Each image is ∼ 610 pc on a side. All images are shown in negative scaling, where dark shading refers to greater intensity and light regions are places of low intensity or high extinction.

Table 1, however due to the good agreement, we will adopt the ages derived assuming solar metallicity throughout the paper. We note that cluster a1 is found in the center of an Hα bubble which is approximately 80 pc in radius. This may argue for a higher age, namely that found using the Z=0.008 models, but for consistency we adopt the younger Z=0.02 results for cluster a1.

For cluster 3cl-c, the lack of any absorption lines in the observed spectrum make this technique unfeasible. However, this cluster appears to be deeply embedded in a dust lane and has strong emission associated with it (see top panel of Fig. 1), which points to a very young age (<10 Myr). Additionally, the 'blue bump' is clearly observable in the spectrum at ∼ 4650 Å which is a feature normally attributed to the presence of Wolf-Rayet stars. Such stars have very short lifetimes and their presence in the cluster indicates an age between 2 and 5 Myr (see Crowther 2007 and references therein).

Cluster G2b appears similar to 3cl-c in the lack of strong absorption lines. It does not, however, show any strong Wolf-Rayet features in the spectrum. Due to the proximity of this cluster to the Hii region seen in the right panel of Figure 2 we associate this cluster with a young age, namely 5±2 Myr.

3.2 Structural Parameters

In order to determine the structural parameters of the clusters we used the ISHAPE algorithm (Larsen 1999). We empirically derived the PSF from bright isolated stars in the field of view.

- 3cl-a, 3cl-b, a1: These three clusters are extremely bright in all three bands (BV1) and hence we were able to have the index of the Elson, Fall & Freeman (1987, hereafter EFF) profile as a free parameter. A fitting radius of 15 pixels (∼ 30 pc) was used. The errors were estimated from the standard deviation between the B, V, and I-band fits. We have also estimated the errors in the fits using version 0.93.9beta of ISHAPE, which calculates the errors, including correlations between the parameters, and find errors slightly smaller than the standard deviation between the filters.

- G2a: No best fitting profile could be found, so we assumed an EFF profile and varied the index between 1 and 2.5 (2 ≤ γ ≤ 5), which are typical values for clusters in the LMC (e.g. Mackey & Gilmore 2003). We carried out the fits on all three bands (BV1) and took the average. The error was estimated in the same way as the above clusters.

- 3cl-c, G2b: We used a fitting radius of 10 pixels due to contamination from nearby objects. No clear best fitting profile could be found. We put an upper limit on the size by fitting EFF profiles with indices between 1 and 2.5 (2 ≤ γ ≤ 5) and found cluster radii between 0 (unresolved) and 0.42 pc.

One potential caveat in this method is that it implicitly assumes that the distribution of light within the cluster represents the underlying distribution of mass. If these clusters are, however, severely mass segregated then the profile derived from the light will underestimate the actual core radius (since the light will be dominated by the most massive stars which are more concentrated than the lower mass stars - e.g. Gaburov & Gieles 2008).
4 THE CORE RADIUS/AGE RELATION

Figure 4 shows the relation (filled blue circles) between the derived core radius and age for the six clusters in M51. There is a clear relation, with older clusters being larger than younger ones.

Young clusters are generally not found in isolation, but rather as parts of larger complexes due to the hierarchy of star-formation (e.g. Zhang, Fall, & Whitmore 2001; Bastian et al. 2005). As such, we expect, and observe, many sources around the young clusters (e.g. in the complex G2). These additional sources may cause blending with the clusters of interest, making them appear larger than they actually are. This bias, however, works in the opposite way to the observed trend (that the younger clusters are smaller), hence the actual trend may be stronger than we have observed.

In order to check if the observed relation between age and core radius is simply a reflection of an underlying mass-radius relation, we have estimated the mass of each of the clusters. For this we have compared the observed BVI colours and those expected at that age. We then use cluster reddening based on the deviation between the observed colours and those expected at that age. We then use the age dependent M/L ratios to estimate the mass using the spectrum.

We find that clusters a1, 3cl-a, 3cl-b, and 3cl-c have similar masses within a factor of two ($\sim 0.7 - 1.3 \times 10^5 M_\odot$). G2a and G2b have similar masses (a few $\times 10^5 M_\odot$), although G2a is at least twice as large (core radius) as G2b. Hence we conclude that there is not any strong mass-radius relation present within this small dataset.

In order to understand the R_{core}-age relation we searched the literature and found young clusters which have had their ages and core radii measured. We take only clusters which have had their ages derived by either CMD fitting or spectroscopic age dating in order to have as clean a sample as possible. Mackey & Gilmore (2003) presented a large database of LMC/SMC clusters with accurate core radii and ages, these are shown as open squares in Fig. 4.

In the Galaxy there have been a number of massive young clusters discussed, including NGC 3603, Westerlund 1, Westerlund 2, the Arches, and the Orion Nebula Cluster (compilation taken from Brandner et al. 2007; however using an age of 1.5 Myr for the ONC - Jeffries 2007), NGC 2316 (Teixeira et al. 2004), Trumpler 14 and DBSB48 (Ortolani et al. 2008). Some massive extra-galactic clusters have also been included, namely: NGC 1569B (Larsen et al. 2008), NGC 5236-805 (Larsen & Richler 2004), NGC 6946-1447 (Larsen et al. 2001), M82F (Bastian et al. 2007, and references therein), and M82-A1 (Smith et al. 2006).

In addition, we also include surveys of cluster systems. The surveys are included in Fig. 4 as large open symbols, where the error bars on R_{core} represent the standard deviation of all members and the symbols represent the median. The Rosette nebula (Román-Zúñiga et al. 2007) was included, which is a group of nine clusters still in the embedded phase ($\sim 3 - 5$ Myr). We include the survey of embedded clusters by Lada & Lada (2003) (assigning an average age of 3 ± 2 Myr). From the Kharchenko et al. (2005) catalogue of open clusters we take the mean core radius of all clusters with ages between 10 and 30 Myr (three clusters with estimated core radii larger than 20 pc were excluded). We have taken the mean values of Johnson et al. (2003) for young embedded radio detected clusters in IC 4662 whose core radii were estimated to be less than 1 pc, with adopted ages of 1-3 Myr. Finally, we include all clusters in M82 with ages between 100 and 200 Myr (three clusters with estimated core radii larger than 20 pc were excluded).

We have the mean values of Johnson et al. (2003) for young embedded radio detected clusters in IC 4662 whose core radii were estimated to be less than 1 pc, with adopted ages of 1-3 Myr. Finally, we include all clusters in M82 with ages between 100 and 200 Myr, from the recent study by Konstantopoulos et al. (2008b - in prep.).

Figure 4 clearly shows that the all of the clusters follow the trend observed in the M51 clusters – core radii increasing with age. The possible causes of this, and the implications are discussed in the next section.

Such a relation between cluster size and age has been seen before, albeit with smaller samples. Román-Zúñiga et al. (2007) have recently shown a similar relation among seven embedded clusters in the Rosette nebula, which they attribute to the effects of RGE. In this case, the clusters are expected to have ages less than ~ 5 Myr, and hence should

Cluster ID	agea (Myr)	$\chi^2_{v,\text{best}}$ b	agec (Myr)	R_{core} (pc)	Coordinates (J2000)
a1	5 $^{+9}_{-4}$	4.1	7.3 $^{+10}_{-4}$	0.63 \pm 0.10	13:29:54.64 47:12:08.1
3cl-a	16.5 $^{25.1}_{12.6}$	1.5	20 $^{+28}_{-14}$	1.65 \pm 0.05	13:29:55.59 47:11:50.9
3cl-b	5 $^{+4}_{-4}$	4.7	6 $^{+7}_{-4}$	1.02 \pm 0.33	13:29:55.67 47:11:48.8
3cl-c	3 $^{+9}_{-3}$	–	–	0.38e	13:29:55.81 47:11:45.6
G2a	6 $^{+4}_{-3}$	1.9	10 $^{+2}_{-2}$	1.08 \pm 0.35	13:29:43.31 47:11:38.8
G2b	5 $^{+7}_{-3}$	–	–	0.42e	13:29:43.02 47:11:37.8

a The best fit age is given (solar metallicity), along with the lower and upper limits as defined in the text.

b χ^2 of the best fitting template age for Hf.$$

c Same as for (a), but for Z=0.008.

d Age based on the presence of Wolf-Rayet emission features in the spectrum.

e Only an upper limit, as discussed in the text.
not have had a significant amount of mass loss due to stellar evolution. Additionally, in a sample of young extra-galactic clusters, Maíz-Apellániz (2001) found a relation between the size of a cluster and its age, which he attributed mainly to stellar evolutionary mass-loss. Comparison of detailed N-body models with observations of the Orion Nebular cluster also led Scally, Clarke, & McCaughrean (2005) to suggest that, despite its young age (\(\sim 1.5\) Myr), this cluster was substantially more dense in the past. Figer (2008) has estimated the density of young massive clusters in the Galaxy, and using his data (excluding the Galactic Centre cluster) it is clear that there is a strong trend of decreasing density with increasing age, consistent with the findings of the current study. Brandner (2008) also has noted that young clusters in the Galaxy have larger sizes at higher ages. Finally, we note that Scheepmaker et al. (2007) found larger sizes for red (presumably older) clusters in the disk of M51 than blue clusters, however precise age dating of the clusters was not available.

5 POSSIBLE CAUSES

As mentioned in § 1, there are a number of possible causes for the expansion of cluster cores with age. We limit our discussion here to causes that operate on the early evolution of clusters (\(\lesssim 100\) Myr).

5.1 Expansion by dynamical heating due to stellar mass black holes

Merritt et al. (2004) and Mackey et al. (2007, 2008) have suggested that the presence of stellar mass black holes in star clusters can lead to the expansion of the core radius. The stellar mass black holes form a dynamically distinct (invisible) ‘core’ and transfer energy into a stellar ‘halo’ causing the halo to expand, thus increasing the observed (i.e. stellar) core radius. Merritt et al. (2004) explain the spread in the observed core radii with age in the LMC/SMC data of Mackey & Gilmore (2003) by effectively changing the initial size scale of the cluster (through changing the scaling to N-body units). Mackey at al. (2007, 2008) can explain the same spread by introducing different degrees of initial mass segregation into their clusters and by changing the fraction of black holes that are retained by the cluster (ie. not lost due to large natal kick velocities).

5.2 Stellar evolution

When a star cluster loses mass, it will expand in an attempt to regain virial equilibrium. The mass loss due to stellar evolution will therefore result in an expansion of the core during the first \(\lesssim 100\) Myr when a large fraction (\(\sim 20\%\))
of the initial mass is lost. However, detailed N-body simulations including this effect find that the maximum growth factor of the core radius is only about a factor of two (e.g. Portegies Zwart et al. 1999).

However, Mackey et al. (2007, 2008) show that the effect of stellar evolution on the expansion of a cluster is far more significant if primordial mass segregation is included (Mackey et al. allow their cluster to relax for 450 Myr before turning-on stellar evolution). Their mass segregated clusters are initially compact, with $R_{\text{core}} \approx 0.25 \text{pc}$ at $t \approx 2 - 3 \text{Myr}$, which lies nicely on our empirical fit in Fig. 4. Due to the high fractional mass loss by stellar evolution in the core, the value of R_{core}, in the simulations of Mackey et al. (2007,2008), increases with log(age) roughly as $R_{\text{core}} = 2 \log(\text{age}) - 1$, which resembles our empirical curve $R_{\text{core}} = 1.4 \log(\text{age}) - 0.25$. If we attribute the core expansion as observed in Fig. 4 entirely to stellar evolution, it implies that all of the clusters we observe started with a strong degree of mass segregation. Gaburov & Gieles (2008) note that R_{core} of mass segregated star clusters appear to increase with age by roughly a factor of two, due to the massive stars that populate that core at young ages (this effect is also included by Mackey et al. 2007, 2008).

5.3 Residual gas expulsion (RGE)

Clusters initially contain a significant gas fraction which is expelled by feedback from the most massive stars after a few Myr. The rapid change in the potential of the cluster causes the cluster to expand, and possibly be destroyed (see Goodwin 2008 and references therein). Simulations show that R_{core} will expand by a factor of 5 – 10 over ~10 Myr as the cluster attempts to regain virial equilibrium (see esp. Kroupa et al. 2001; Goodwin & Bastian 2006; Baumgardt & Kroupa 2007). The R_{core} evolution of unbound clusters is very similar to the empirical fit of Fig. 4 i.e. R_{core} increases linearly with log(age). Baumgardt & Kroupa (2007) find clusters that remain bound after an expansion of a factor of ~5, making RGE a plausible explanation for the observed increase in R_{core}. However, Baumgardt & Kroupa (2007) defined their core radii in terms of the Lagrangian radii, which contains a fixed fraction of the total mass, as compared to our method which defines the core radius in terms of a profile fit. Therefore a direct comparison between the works should be taken with caution.

For the clusters that remain bound after RGE, R_{core} reaches a maximum and then decline after RGE. The reasons for this are twofold. Firstly, clusters tend to ‘overshoot’ in their attempt to re- virialise and oscillate around virial equilibrium. Thus the R_{core} are sometimes larger than for a virialised cluster. Secondly, R_{core} as measured from observations will tend to overestimate the final (‘true’) R_{core}. After RGE a cluster will lose a (significant) fraction of its stars even if a bound cluster remains at the end (‘infant weight loss’, see e.g. Goodwin & Bastian 2006). However, stars escape at a finite speed and so will be physically associated with the cluster for several Myr (as appears to be observed in a number of clusters as an excess of light at large radii, see Bastian & Goodwin 2006). Thus an observer may fit a profile that over-estimates R_{core} for the final, luminosity profile of the equilibrium cluster (Goodwin & Bastian 2006).

5.4 A combination of effects

Stellar evolution and an associated expansion in the core radius must occur in young clusters. However, how effective this is is clearly highly dependent on the degree of mass segregation present in the cluster at the onset of massive star death.

Similarly, RGE must occur as after a few Myr clusters change from being embedded to naked. However, the effectiveness of gas expulsion depends significantly on the dynamical state of the cluster at the onset of gas expulsion, a factor for which we have very few observational or theoretical constraints (Goodwin 2008).

The presence of a significant ‘dark’ component in clusters as required for later dynamical expansion is difficult to determine observationally. It seems plausible that at least some of the massive stellar remnants from early stellar evolution should remain in the cluster, but the numbers and their dynamical importance are unclear. It should be noted that this is the only mechanism so far proposed that can explain the later (> 100 Myr) expansion in core radii seen in the LMC/SMC.

Thus at least two of these proposed causes must be at work in causing the increase in R_{core} with time, and probably all three (and possibly other, as yet unknown mechanisms). In a future paper we will theoretically investigate the causes of core expansion in detail.

6 DISCUSSION AND IMPLICATIONS

6.1 Effect on dynamical age estimates

The results presented in Fig. 4 show that estimates of the dynamical age of a cluster, which can be defined as the number of core relaxation times (t_{rel}) that have passed, will be wrong when using the current R_{core}. Because R_{core} was smaller in the past, the cluster has dynamically evolved more than one would infer from the current properties (e.g. Portegies Zwart & Chen 2006). Using the empirical fit displayed in Fig. 4 we can estimate a correction factor F, that is, the ratio of the true dynamical age over the dynamical age assuming that R_{core} has been constant. Here we define the dynamical age as the number of core relaxation times that have passed, so that $F \equiv N_{\text{trel,real}}/N_{\text{trel,current}}$.

The core relaxation time scales as $R_{\text{core}}^{3/2}$, so we can calculate F as

$$F(t) = \frac{\int_0^t [R_{\text{core}}(t')]^{3/2} \, dt'}{t R_{\text{core}}^{3/2}(t)},$$

where we use $R_{\text{core}}(t') = 1.4 \log(\text{age}) - 0.25$ (Fig. 4). Since the empirical fit goes to $\sim \infty$ at $t = 0$, we have to assume an initial R_{core} at $t = 0$. In Fig. 5 we show in the left panel the functional form of the empirical fit, for three initial R_{core}. In the right panel we show the resulting $F(t)$ that follows from a numerical integration of Eq. 1. F depends strongly on the initial R_{core}, but we can safely say that for the observed value of very young clusters, F is somewhere between 3 and 5 at its peak value at an age of ~10 Myr. For ages ≥ 2 Myr $F = 1$ because we have assumed a constant R_{core} equal to the initial R_{core} there. F decreases again for ages ≥ 10 Myr because the increase of R_{core} has slowed down.

The results above and those shown in Fig. 5 are also
valid for the core crossing time of a cluster in the limit that no stellar mass is lost during the expansion. However, if mass loss is included the effect would be stronger on the crossing time (since $t_{\text{cross}} \propto M^{-0.5}$) and weaker on the relaxation time (since $t_{\text{relax}} \propto M^{0.5}$). If the core would lose 50% of its mass during the expansion phase, then t_{cross} would increase by a factor of $\sqrt{2}$ and t_{relax} would decrease by the same amount.

This effect must be taken into account when estimating the dynamical age of a cluster, for example to see whether the degree of mass segregation is of primordial or dynamical origin. We discuss this more in §6.1.1.

6.1.1 Mass segregation

Whether a cluster is mass-segregated due to dynamical effects (energy equipartition), or if it is primordial (set by the star/cluster formation process) in nature has potentially large ramifications for the star/cluster formation process. In order to test if a cluster’s observed mass segregation is dynamical or primordial in nature, a comparison is often made to the observed (current) relaxation time, $t_{\text{relax, current}}$, to that of the cluster age. If $t_{\text{relax, current}}$ is greater than the cluster age, then the mass segregation is thought to be primordial (e.g. Hillenbrand & Hartmann 1998; Gouliermis et al. 2004; de Grijs et al. 2002; Chen, de Grijs, Zhao 2007).

However, the results shown here indicate that the cluster cores expand rapidly during the first 20 Myr or so, and hence clusters were more compact in the past. Thus, $t_{\text{relax, current}}$ may overestimate the initial (and at earlier times) relaxation time by a large factor. Figure 5 shows an example of this effect, although we note that these calculations are meant as an illustrative example only, as we have not included mass loss. Indeed, Portegies Zwart & Chen (2006) find that the (half-mass) relaxation time can change by a factor of several due to stellar evolution over the first ~ 100 Myr.

Depending on the initial radius and cluster age, estimating the number of relaxation times that a cluster has gone through based on the current relaxation time can result in errors of a factor 1.5 to 6. Since this factor depends strongly on the initial cluster radius, and since this is generally not known nor well constrained, it is highly uncertain how many relaxation times a cluster has actually undergone. Thus, claims of primordial mass segregation based on $t_{\text{relax, current}}$ should be taken with caution.

6.1.2 Stellar mergers

The observed core expansion will significantly affect the internal dynamics of the cluster, causing the relaxation time to increase rapidly. Freitag (2007) estimates that the relaxation time could be up to 20 times longer after the core expansion phase. This implies that dynamical mass-segregation, core-collapse, and/or stellar merging only have a brief window in which to operate, namely the embedded phase which lasts for 1-3 Myr. The implications regarding stellar mergers, and the subsequent formation of very massive stars, have been considered in detail by Freitag et al. (2006). They conclude that while the very dense state of the cluster may only last for a short time, this may be compensated by the initially very high densities.

![Figure 5. Left: The evolution of R_{core} for three different initial radii, using the functional fit to the data in Fig. 4. Right: The ratio of $N(t_{\text{rel, real}})$ (the real number of relaxation times that have actually passed) to $N(t_{\text{rel, current}})$ (the number of relaxation times that have have passed assuming that the current relaxation time has been constant throughout the life of the cluster). Depending on the initial radius and age of the cluster, using $t_{\text{rel, current}}$ significantly underestimates the number of relaxation times that have elapsed within the cluster.](image-url)

6.2 Older compact clusters

While not found in our literature search (with the exception of NGC 1569B), it is possible that some clusters remain compact ($R_{\text{core}} < 1$ pc) during their first 10-100 Myr of evolution. This could happen if the effective star-formation efficiency is extremely high, if the gas-dispersal timescale is extremely long, or if the cluster stars were born with sub-virial velocities. However, even in these extreme cases, some expansion is expected due to stellar evolution. It is also clear that clusters can be formed initially with large core radii, however these clusters would be more likely to disrupt completely (due to RGE and stellar evolution) than their more compact counterparts, assuming that the star formation efficiency (or, more correctly, the initial dynamical state of the cluster) does not relate to cluster size.

7 CONCLUSIONS

We have presented high S/N spectra and high-resolution imaging of six clusters in M51. By comparing the H$_2$ and Hβ lines to template spectra, we have derived their ages. Additionally, we have measured their structural properties using the ISHAPE code of Larsen (1999). We find that the clusters are ~ 3 to 25 Myr old and have core radii ranging from <0.4 to 1.6 pc.

We note a strong trend between the core radius and age of the clusters, in the sense that older clusters are larger. Including clusters with measured ages and structural parameters from the literature, we find this to be a common feature in cluster evolution. The most promising explanation of this phenomenon is that clusters expand as they leave their embedded phase, due to the change of gravitational potential within the cluster. The growth in cluster size appears to begin at 2-3 Myr, in good agreement with the expected/observed duration of the embedded phase of cluster evolution and the onset of gas expulsion. As a cluster ex-
pands (in particular its core) the relaxation time increases dramatically (Freitag 2007), which limits dynamical mass segregation and significantly lowers the chances of stellar mergers (Freitag et al. 2006).

The rather small range in mass spanned by our M51 cluster sample argues that the observed relation between age and core radius is not simply a reflection of an underlying mass-radius relation. We caution, however, that the observed trend of increasing core radius with age could be an observational artifact if all clusters begin their lives severely mass segregated. This would cause an underestimate of the core radius for younger clusters whose light is dominated by a few very massive stars.

These results show that the early phases of cluster evolution are highly dynamic with many of a cluster’s fundamental parameters changing by large factors in a short time. This leads us to caution (as did Goodwin & Bastian 2006) that the determination of the parameters of young clusters must only be taken as instantaneous values, they are not the same as a few Myr previously, nor as they will be a few Myr hence.

ACKNOWLEDGMENTS

We thank Marc Freitag for useful discussions and the referee, Soeren Larsen, for his comments/suggestions which helped improve the manuscript. NB gratefully acknowledges the hospitality of the Harvard-Smithsonian Center for Astrophysics, where a significant part of this work took place. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and SECYT (Argentina). This paper is based on observations with the NASA/ESA Hubble Space Telescope which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.

REFERENCES

Anders, P., & Fritz-v. Alvensleben, U. 2003, A&A, 401, 1063
Bastian, N., Gieles, M., Efremov, Y. N., & Lamers, H. J. G. L. M. 2005, A&A, 443, 79
Bastian, N., & Goodwin, S. P. 2006, MNRAS, 369, L9
Bastian, N., Konstantopoulos, I., Smith, L. J., Trancho, G., Westmoquette, M. S., & Gallagher, J. S. 2007, MNRAS, 379, 1333
Baumgardt, H., & Kroupa, P. 2007, MNRAS, 380, 1589
Brandner, W. 2008 in “Massive Star Formation: Observations confront Theory” H. Beuther et al. (eds.) arXiv: 0803.1974
Brandner, W., Clark, J. S., Stolte, A., Waters, R., Negueruela, I., & Goodwin, S. P. 2008, A&A, 478, 137
Chen, L., de Grijs, R., & Zhao, J. L. 2007, AJ, 134, 1368
Crowther, P. A. 2007, ARAA, 45, 177
de Grijs, R., Gilmore, G. F., Johnson, R. A., & Mackey, A. D. 2002, MNRAS, 331, 245
Elson, R. A. W. 1991, ApJS, 76, 185
Elson, R. A. W., Fall, S. M., & Freeman, K. C. 1987, ApJ, 323, 54
Freitag, M. 2007, in “Massive Star Formation: Observations confront Theory” H. Beuther et al. (eds.) arXiv:0711.4097
Freitag, M., Gürkan, M. A., & Rasio, F. A. 2006, MNRAS, 368, 141
Feldmeier, J. J., Ciardullo, R., & Jacoby, G. H. 1997, ApJ, 479, 231
Figer, D.F. 2008, to appear in the proceedings of “Massive Stars as Cosmic Engines”, IAU Symp 250, (eds. F. Bresolin, P. A. Crowther, & J. Puls) arXiv:0801.1175
Gaburov, E., & Gieles, M. 2008, MNRAS, submitted arXiv:0801.0590
Gieles, M., Portegies Zwart, S. F., Baumgardt, H., Athanassoula, E., Lamers, H. J. G. L. M., Sipior, M., & Lada, E. A. 2006, MNRAS, 368, 793
Gieles, M., Athanassoula, E., & Portegies Zwart, S. F. 2007, MNRAS, 376, 809
González Delgado, R. M., Cerviño, M., Martins, L. P., Leitherer, C., & Hauschildt, P. H. 2005, MNRAS, 357, 945
Goodwin, S. P. 1997, MNRAS, 284, 785
Goodwin, S. P., & Bastian, N. 2006, MNRAS, 373, 752
Goodwin, S. P. 2008, to appear in the proceedings of “Young massive star clusters - Initial conditions and environments” (eds. E. Perez, R. de Grijs, R. Gonzalez Delgado) arXiv:0802.2207
Gouldienis, D., Keller, S. C., Kontizas, M., Kontizas, E., & Bellas-Velidis, I. 2004, A&A, 416, 137
Gürkan, M. A., Freitag, M., & Rasio, F. A. 2004, ApJ, 604, 632
Hillenbrand, L. A., & Hartmann, L. W. 1998, ApJ, 492, 540
Jeffries, R. D. 2007, MNRAS, 376, 1109
Johnson, K. E., Indebetouw, R., & Pisano, D. J. 2003, AJ, 126, 101
Kharchenko, N. V., Piskunov, A. E., Röser, S., Schilbach, E., & Scholz, R.-D. 2005, A&A, 438, 1163
Konstantopoulos, I. S., Bastian, N., Smith, L. J., Trancho, G., Westmoquette, M. S., & Gallagher, J. S. 2008, ApJ, 674, 846
Kroupa, P., Aarseth, S., & Hurley, J. 2001, MNRAS, 321, 699
Kroupa, P., & Boily, C. M. 2002, MNRAS, 336, 1188
Lada, C. J., & Lada, E. A. 2003, ARAA, 41, 57
Larsen, S. S., Brodie, J. P., Elmegreen, B. G., Efremov, Y. N., Hodge, P. W., & Richtler, T. 2001, ApJ, 556, 801
Larsen, S. S. 1999, A&AS 139, 393
Larsen, S. S., & Richtler, T. 2004, A&A, 427, 495
Larsen, S. S., Origlia, L., Brodie, J., & Gallagher, J. S. 2008, MNRAS, 383, 263
Mackey, A. D., & Gilmore, G. F. 2003, MNRAS, 338, 85
Mackey, A. D., Wilkinson, M. I., Davies, M. B., & Gilmore, G. F. 2007, MNRAS, 379, L40
Mackey, A. D., Wilkinson, M. I., Davies, M. B., & Gilmore, G. F. 2008, MNRAS, in press (arXiv:0802.0513)
Maiz-Apellániz, J. 2001, ApJ, 563, 151
Merritt, D., Piatak, S., Portegies Zwart, S., & Hemsendorf, M. 2004, ApJL, 608, L25
Mutchler, M., et al. 2005, Bulletin of the American Astronomical Society, 37, 452
Oortlani, S., Bonatto, C., Bica, E., Momany, Y., & Barbuy, B. 2008, New Astronomy in press (arXiv:0801.4661)
Portegies Zwart, S. F., Makino, J., McMillan, S. L. W., & Hut, P. 1999, A&A, 348, 117
Portegies Zwart, S. F., & Rasio, F. A. 2006, to appear in “Mass loss from stars and the evolution of stellar clusters”. Eds. A. de Koter, L. Smith and R. Waters (San Francisco: ASP), astro-ph/0610659
Román-Zúñiga, C. G., Elston, R., Ferreira, B., & Lada, E. A. 2008, ApJ, 672, 861
Scally, A., Clarke, C., & McCaughrean, M. J. 2005, MNRAS, 358,
Scheepmaker, R. A., Haas, M. R., Gieles, M., Bastian, N., Larsen, S. S., & Lamers, H. J. G. L. M. 2007, A&A, 469, 925
Smith, L. J., Westmoquette, M. S., Gallagher, J. S., O’Connell, R. W., Rosario, D. J., & de Grijs, R. 2006, MNRAS, 370, 513
Teixeira, P. S., Fernandes, S. R., Alves, J. F., Correia, J. C., Santos, F. D., Lada, E. A., & Lada, C. J. 2004, A&A, 413, L1
Trancho, G., Bastian, N., Schweizer, F., & Miller, B. W. 2007a, ApJ, 658, 993
Trancho, G., Bastian, N., Miller, B. W., & Schweizer, F. 2007b, ApJ, 664, 284
Zhang, Q., Fall, S. M., & Whitmore, B. C. 2001, ApJ, 561, 727

This paper has been typeset from a TeX/\LaTeX file prepared by the author.