A NOTE ON REPRESENTATIONS OF SOME AFFINE VERTEX ALGEBRAS OF TYPE D

OZREN PERŠE

Abstract. In this note we construct a series of singular vectors in universal affine vertex operator algebras associated to $D^{(1)}_\ell$ of levels $n - \ell + 1$, for $n \in \mathbb{Z}_{>0}$. For $n = 1$, we study the representation theory of the quotient vertex operator algebra modulo the ideal generated by that singular vector. In the case $\ell = 4$, we show that the adjoint module is the unique irreducible ordinary module for simple vertex operator algebra $L_{D_4}(-2,0)$. We also show that the maximal ideal in associated universal affine vertex algebra is generated by three singular vectors.

1. Introduction

The classification of irreducible modules for simple vertex operator algebra $L_{\mathfrak{g}}(k,0)$ associated to affine Lie algebra \mathfrak{g} of level k is still an open problem for general $k \in \mathbb{C}$ ($k \neq -h^\vee$). This problem is connected with the description of the maximal ideal in the universal affine vertex algebra $N_{\mathfrak{g}}(k,0)$. One approach to this classification problem is through construction of singular vectors in $N_{\mathfrak{g}}(k,0)$.

The known (non-generic) cases include positive integer levels (cf. [FZ], [L], [MP]) and some special cases of rational admissible levels, in the sense of Kac and Wakimoto [KW] (cf. [A1], [A3], [AM], [AL], [DLM], [P1], [P2]). It turns out that negative integer levels also have some interesting properties. They appeared in bosonic realizations in [FF], and also recently in the context of conformal embeddings (cf. [AP]).

In this note we study a vertex operator algebra associated to affine Lie algebra of type $D^{(1)}_\ell$ and negative integer level $-\ell + 2$. This level appeared in [AP] in the context of conformal embedding of $L_{B_{\ell-1}}(-\ell + 2,0)$ into $L_{D_\ell}(-\ell + 2,0)$. This conformal embedding is in some sense similar to the conformal embedding of $L_{D_\ell}(-\ell + \frac{3}{2},0)$ into $L_{B_\ell}(-\ell + \frac{3}{2},0)$.

We will show that there are also similarities in singular vectors in universal affine vertex algebras $N_{B_\ell}(-\ell + \frac{3}{2},0)$ (studied in [P1]) and $N_{D_\ell}(-\ell + 2,0)$. More generally, we construct a series of singular vectors

$$v_n = \left(\sum_{i=2}^{\ell} e_{\epsilon_1 - \epsilon_i}(-1)e_{\epsilon_1 + \epsilon_i}(-1) \right)^n 1$$

1. 2000 Mathematics Subject Classification. Primary 17B69; Secondary 17B67, 81R10.
in $N_D(n-\ell+1,0)$, for any $n \in \mathbb{Z}_{>0}$. For $n = 1$, we study the representation theory of the quotient $N_D(\ell+2,0)$ modulo the ideal generated by v_1. Using the methods from [A1], [A2], [AM], [MP], we obtain the classification of irreducible weak modules in the category \mathcal{O} for that vertex algebra. It turns out that there are infinitely many of these modules.

In the special case $\ell = 4$, we obtain the classification of irreducible weak modules from the category \mathcal{O} for simple vertex operator algebra $L_{D_4}(-2,0)$. This vertex algebra also appeared in [AP] in the context of conformal embedding of $L_{G_2}(-2,0)$ into $L_{D_4}(-2,0)$. It follows that there are finitely many irreducible weak $L_{D_4}(-2,0)$–modules from the category \mathcal{O}, that the adjoint module is the unique irreducible ordinary $L_{D_4}(-2,0)$–module, and that every ordinary $L_{D_4}(-2,0)$–module is completely reducible. We also show that the maximal ideal in $N_{D_4}(-2,0)$ is generated by three singular vectors.

The author thanks Dražen Adamović for his helpful advice and valuable suggestions.

2. Preliminaries

We assume that the reader is familiar with the notion of vertex operator algebra (cf. [Bor], [FHL], [FLM], [FB], [FZ], [K2], [L], [LL]) and Kac-Moody algebra (cf. [K1]).

Let V be a vertex operator algebra. Denote by $A(V)$ the associative algebra introduced in [Z], called the Zhu’s algebra of V. As a vector space, $A(V)$ is a quotient of V, and we denote by $[a]$ the image of $a \in V$ under the projection of V onto $A(V)$. We recall the following fundamental result from [Z]:

Proposition 2.1. The equivalence classes of the irreducible $A(V)$–modules and the equivalence classes of the irreducible \mathbb{Z}_+–graded weak V–modules are in one-to-one correspondence.

Let \mathfrak{g} be a simple Lie algebra with a triangular decomposition $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$, and $\hat{\mathfrak{g}}$ the (untwisted) affine Lie algebra associated to \mathfrak{g}. Denote by $V(\mu)$ the irreducible highest weight \mathfrak{g}–module with highest weight μ, and by $L(k,\mu)$ the irreducible highest weight $\hat{\mathfrak{g}}$–module with highest weight $k\Lambda_0+\mu$.

Furthermore, denote by $N(k,0)$ (or $N_\mathfrak{g}(k,0)$) the universal affine vertex algebra associated to $\hat{\mathfrak{g}}$ of level $k \in \mathbb{C}$. For $k \neq -h^\vee$, $N(k,0)$ is a vertex operator algebra with Segal-Sugawara conformal vector, and $L(k,0)$ is a simple vertex operator algebra. The Zhu’s algebra of $N(k,0)$ was determined in [FZ]:

Proposition 2.2. The associative algebra $A(N(k,0))$ is canonically isomorphic to $U(\mathfrak{g})$. The isomorphism is given by $F : A(N(k,0)) \rightarrow U(\mathfrak{g})$

$$F([x_1(-n_1-1)\cdots x_m(-n_m-1)1]) = (-1)^{n_1+\cdots+n_m}x_m\cdots x_1,$$

for any $x_1,\ldots,x_m \in \mathfrak{g}$ and any $n_1,\ldots,n_m \in \mathbb{Z}_+$.
We have:

Proposition 2.3. Assume that a $\hat{\mathfrak{g}}$–submodule J of $N(k, 0)$ is generated by m singular vectors ($m \in \mathbb{Z}_{>0}$), i.e. $J = U(\hat{\mathfrak{g}})v^{(1)} + \ldots + U(\hat{\mathfrak{g}})v^{(m)}$. Then

$$A(N(k, 0)/J) \cong U(\mathfrak{g})/I,$$

where I is the two-sided ideal of $U(\mathfrak{g})$ generated by $u^{(1)} = F([v^{(1)}]), \ldots, u^{(m)} = F([v^{(m)}])$.

Let $J = U(\hat{\mathfrak{g}})v^{(1)} + \ldots + U(\hat{\mathfrak{g}})v^{(m)}$ be a $\hat{\mathfrak{g}}$–submodule of $N(k, 0)$ generated by singular vectors $v^{(1)}, \ldots, v^{(m)}$. Now we recall the method from [A1], [A2], [AM], [MP] for the classification of irreducible $A(N(k, 0)/J)$–modules from the category \mathcal{O} by solving certain systems of polynomial equations.

Denote by L the adjoint action of $U(\mathfrak{g})$ on $U(\mathfrak{g})$ defined by $X_L f = [X, f]$ for $X \in \mathfrak{g}$ and $f \in U(\mathfrak{g})$. Let $R^{(j)}$ be a $U(\mathfrak{g})$–submodule of $U(\mathfrak{g})$ generated by the vector $u^{(j)} = F([v^{(j)}])$ under the adjoint action, for $j = 1, \ldots, m$. Clearly, $R^{(j)}$ is an irreducible highest weight $U(\mathfrak{g})$–module. Let $R^{(j)}_0$ be the zero-weight subspace of $R^{(j)}$.

The next proposition follows from [A1], [AM], [MP]:

Proposition 2.4. Let $V(\mu)$ be an irreducible highest weight $U(\mathfrak{g})$–module with the highest weight vector v_μ, for $\mu \in \mathfrak{h}^*$. The following statements are equivalent:

1. $V(\mu)$ is an $A(N(k, 0)/J)$–module,
2. $R^{(j)}_0 V(\mu) = 0$, for every $j = 1, \ldots, m$,
3. $R^{(j)}_0 v_\mu = 0$, for every $j = 1, \ldots, m$.

Let $r \in R^{(j)}_0$. Clearly there exists the unique polynomial $p_r \in \mathcal{S}(\mathfrak{h})$ such that

$$rv_\mu = p_r(\mu)v_\mu.$$

Set $\mathcal{P}^{(j)} = \{ p_r \mid r \in R^{(j)}_0 \}$, for $j = 1, \ldots, m$. We have:

Corollary 2.5. There is one-to-one correspondence between

1. irreducible $A(N(k, 0)/J)$–modules from the category \mathcal{O},
2. weights $\mu \in \mathfrak{h}^*$ such that $p(\mu) = 0$ for all $p \in \mathcal{P}^{(j)}$, for every $j = 1, \ldots, m$.

In the case $m = 1$, we use the notation R, R_0 and \mathcal{P} for $R^{(1)}$, $R^{(1)}_0$ and $\mathcal{P}^{(1)}$, respectively.

3. **Vertex operator algebra associated to $D^{(1)}_\ell$ of level $-\ell + 2$**

In this section we study the representation theory of the quotient of universal affine vertex operator algebra associated to $D^{(1)}_\ell$ of level $-\ell + 2$, modulo the ideal generated by a singular vector of conformal weight two.

Denote by \mathfrak{g} the simple Lie algebra of type D_ℓ. We fix the root vectors for \mathfrak{g} as in [Bo1], [FF]. We have:
Theorem 3.1. Vector
\[v_n = \left(\sum_{i=2}^{\ell} e_{\epsilon_i - \epsilon_i} (-1) e_{\epsilon_1 + \epsilon_i} (-1) \right)^n 1 \]
is a singular vector in \(N_{D_n}(n - \ell + 1, 0) \), for any \(n \in \mathbb{Z}_{>0} \).

Proof. Direct verification of relations \(e_{\epsilon_k - \epsilon_{k+1}}(0)v_n = 0 \), for \(k = 1, \ldots, \ell - 1 \),
\(e_{\epsilon_{\ell-1} + \epsilon_\ell}(0)v_n = 0 \) and \(f_{\epsilon_1 + \epsilon_2}(1)v_n = 0 \).

In the case \(n = 1 \), we obtain the singular vector
\[v = \sum_{i=2}^{\ell} e_{\epsilon_i - \epsilon_i} (-1) e_{\epsilon_1 + \epsilon_i} (-1) 1 \]
in \(N_{D_1}(-\ell + 2, 0) \).

Remark 3.2. Vector \(v \) from relation (3.1) has a similar formula as singular vector
\[\frac{1}{4} e_{\epsilon_1} (-1)^2 1 + \sum_{i=2}^{\ell} e_{\epsilon_i - \epsilon_i} (-1) e_{\epsilon_1 + \epsilon_i} (-1) 1 \]
for \(B_{\ell}^{(1)} \) in \(N_{B_\ell}(-\ell + \frac{3}{2}, 0) \). The representation theory of the quotient of \(N_{B_\ell}(-\ell + \frac{3}{2}, 0) \) modulo the ideal generated by that vector was studied in [P1].

We will consider representations of the vertex operator algebra
\[V_{D_\ell}(-\ell + 2, 0) = \frac{N_{D_\ell}(-\ell + 2, 0)}{U(\mathfrak{g})v}. \]

Proposition 2.3 gives:

Proposition 3.3. The associative algebra \(A(V_{D_\ell}(-\ell + 2, 0)) \) is isomorphic to the algebra \(U(\mathfrak{g})/I \), where \(I \) is the two-sided ideal of \(U(\mathfrak{g}) \) generated by
\[u = \sum_{i=2}^{\ell} e_{\epsilon_i - \epsilon_i} e_{\epsilon_1 + \epsilon_i}. \]

We have the following classification:

Theorem 3.4. For any subset \(S = \{i_1, \ldots, i_k\} \subseteq \{1, 2, \ldots, \ell - 2\}, \)
\(i_1 < \ldots < i_k \), and \(t \in \mathbb{C} \), we define weights
\[\mu_{S,t} = \sum_{j=1}^{k} \left(i_j + 2 \sum_{s=j+1}^{k} (-1)^{s-j} i_s + (-1)^{k-j+1}(t + \ell - 1) \right) \omega_{i_j} + t \omega_{\ell-1}, \]
\[\mu'_{S,t} = \sum_{j=1}^{k} \left(i_j + 2 \sum_{s=j+1}^{k} (-1)^{s-j} i_s + (-1)^{k-j+1}(t + \ell - 1) \right) \omega_{i_j} + t \omega_{\ell}, \]
where \(\omega_1, \ldots, \omega_\ell \) are fundamental weights for \(\mathfrak{g} \). Then the set
\[\{ L_{D_\ell}(-\ell + 2, \mu_{S,t}), L_{D_\ell}(-\ell + 2, \mu'_{S,t}) \mid S \subseteq \{1, 2, \ldots, \ell - 2\}, t \in \mathbb{C} \} \]
provides the complete list of irreducible weak $V_{D_{s}}(-\ell + 2, 0)$–modules from the category \mathcal{O}.

Proof. We use the method for classification of irreducible $A(V_{D_{s}}(-\ell + 2, 0))$–modules in the category \mathcal{O} from Corollary \[2.5\] In this case $R \cong V_{D_{s}}(2\omega_1)$, and similarly as in [P1, Lemma 28] one obtains that

$$\dim R_0 = \ell - 1.$$

Furthermore, one obtains by direct calculation that

$$p_i(h) = h_i(h_{\ell} + \ell - i - 1), \quad \text{for } i = 1, \ldots, \ell - 1$$

are linearly independent polynomials in $P(0)$. Here $h_i (i = 1, \ldots, \ell)$ denote the simple coroots for g and

$$h_{\ell} = h_{\ell} + 2h_{\ell+1} + \ldots + 2h_{\ell-2} + h_{\ell-1} + h_{\ell}, \quad \text{for } i < \ell - 1.$$

Corollary \[2.5\] now implies that the highest weights of irreducible $A(V_{D_{s}}(-\ell + 2, 0))$–modules from the category \mathcal{O} are given as solutions of polynomial equations

$$p_i(h) = 0, \quad i = 1, \ldots, \ell - 1.$$

First we note that for $i = \ell - 1$, we obtain the equation

$$h_{\ell-1}h_{\ell} = 0.$$

Thus, either $h_{\ell-1} = 0$ or $h_{\ell} = 0$. Assume first that $h_{\ell-1} = 0$, and let $S = \{i_1, \ldots, i_k\}, i_1 < \ldots < i_k$ be the subset of $\{1, 2, \ldots, \ell - 2\}$ such that $h_i = 0$ for $i \not\in S$ and $h_i \neq 0$ for $i \in S$. Then we have the system

$$h_{i_1} + 2h_{i_2} + \ldots + 2h_{i_k} + h_{\ell} + \ell - i_1 - 1 = 0,$$

$$h_{i_2} + 2h_{i_3} + \ldots + 2h_{i_k} + h_{\ell} + \ell - i_2 - 1 = 0,$$

$$\vdots$$

$$h_{i_{k-1}} + 2h_{i_k} + h_{\ell} + \ell - i_{k-1} - 1 = 0,$$

$$h_{i_k} + h_{\ell} + \ell - i_k - 1 = 0.$$

The solution of this system is given by

$$h_{ij} = i_j + 2 \sum_{s=j+1}^{k} (-1)^{s-j}s + (-1)^{k-j+1}(t + \ell - 1), \quad \text{for } j = 1, \ldots, k;$$

$$h_{\ell} = t \quad (t \in \mathbb{C}).$$

It follows that $V_{D_{s}}(\mu_{S,\ell}^{(t)})$ is an irreducible $A(V_{D_{s}}(-\ell + 2, 0))$–module. Similarly, the case $h_{\ell} = 0$ gives that $V_{D_{s}}(\mu_{S,\ell})$ is irreducible $A(V_{D_{s}}(-\ell + 2, 0))$–module. We conclude that the set

$$\{V_{D_{s}}(\mu_{S,\ell}), V_{D_{s}}(\mu_{S,\ell}^{(t)}) \mid S \subseteq \{1, 2, \ldots, \ell - 2\}, t \in \mathbb{C}\}$$
provides the complete list of irreducible $A(\mathcal{V}_{D_4}(-\ell+2,0))$-modules from the category \mathcal{O}. The claim of theorem now follows from Zhu’s theory. □

Example 3.5. For $\ell = 4$, we have subsets $S = \emptyset, \{1\}, \{2\}, \{1, 2\}$ of the set $\{1, 2\}$, so we obtain that the set
\[
\{L_{D_4}(-\ell + 2, t\omega_2), L_{D_4}(-\ell + 2, t\omega_3), L_{D_4}(-\ell + 2, (-2 - t)\omega_1 + t\omega_3),
L_{D_4}(-\ell + 2, (-2 - t)\omega_1 + t\omega_4), L_{D_4}(-\ell + 2, (-1 - t)\omega_2 + t\omega_3),
L_{D_4}(-\ell + 2, (-1 - t)\omega_2 + t\omega_4), L_{D_4}(-\ell + 2, t\omega_1 + (-1 - t)\omega_2 + t\omega_3),
\}
\]
provides the complete list of irreducible weak $\mathcal{V}_{D_4}(-2,0)$-modules from the category \mathcal{O}.

Recall that a module for vertex operator algebra is called ordinary if $L(0)$ acts semisimply with finite-dimensional weight spaces. We have:

Corollary 3.6. The set
\[
\{L_{D_4}(-\ell + 2, t\omega_{\ell-1}), L_{D_4}(-\ell + 2, t\omega_\ell) \mid t \in \mathbb{Z}_{\geq 0}\}
\]
provides the complete list of irreducible ordinary $\mathcal{V}_{D_4}(-\ell + 2,0)$-modules.

Proof. If $L_{D_4}(-\ell + 2, \mu)$ is an ordinary $\mathcal{V}_{D_4}(-\ell + 2,0)$-module, then μ is a dominant integral weight. Then $\mu(h_{\ell i + \ell-1}) \in \mathbb{Z}_{\geq 0}$, for $i = 1, \ldots, \ell - 1$. Relations (3.2) and (3.3) then give that
\[
\mu(h_i) = 0, \quad \text{for } i = 1, \ldots, \ell - 2,
\]
and $\mu(h_{\ell-1}) = 0$ or $\mu(h_\ell) = 0$. Thus, $\mu = t\omega_{\ell-1}$ or $\mu = t\omega_\ell$, and $t \in \mathbb{Z}_{\geq 0}$ since μ is a dominant integral weight. □

It follows that:

Corollary 3.7. The set of irreducible ordinary $L_{D_4}(-\ell + 2,0)$-modules is a subset of the set
\[
\{L_{D_4}(-\ell + 2, t\omega_{\ell-1}), L_{D_4}(-\ell + 2, t\omega_\ell) \mid t \in \mathbb{Z}_{\geq 0}\}.
\]

4. **Case $\ell = 4$**

In this section we study the case $\ell = 4$. We determine the classification of irreducible weak $L_{D_4}(-2,0)$-modules from the category \mathcal{O}. It turns out that there are finitely many of these modules and that the adjoint module is the unique irreducible ordinary $L_{D_4}(-2,0)$-module. We also show that the maximal ideal in $\mathfrak{N}_{D_4}(-2,0)$ is generated by three singular vectors.

Denote by θ the automorphism of $\mathfrak{N}_{D_4}(-2,0)$ induced by the automorphism of the Dynkin diagram of D_4 of order three such that
\[
\theta(e_1 - e_2) = e_3 - e_4, \quad \theta(e_2 - e_3) = e_2 - e_3, \quad \theta(e_3 - e_4) = e_3 + e_4, \quad \theta(e_3 + e_4) = e_1 - e_2.
\]
Relation (3.1) implies that
\[
v = (e_{e_1 - e_2}(-1)e_{e_1 + e_2}(-1) + e_{e_1 - e_3}(-1)e_{e_1 + e_3}(-1) + e_{e_1 - e_4}(-1)e_{e_1 + e_4}(-1))1
\]
is a singular vector in $N_{D_4}(-2,0)$. Furthermore,

$$\theta(v) = (e_{\epsilon_3-\epsilon_4}(-1)e_{\epsilon_1+\epsilon_2}(-1)-e_{\epsilon_2-\epsilon_4}(-1)e_{\epsilon_1+\epsilon_3}(-1)+e_{\epsilon_2+\epsilon_3}(-1)e_{\epsilon_1-\epsilon_4}(-1))1,$$

and

$$\theta^2(v) = (e_{\epsilon_3+\epsilon_4}(-1)e_{\epsilon_1+\epsilon_2}(-1)-e_{\epsilon_2+\epsilon_4}(-1)e_{\epsilon_1+\epsilon_3}(-1)+e_{\epsilon_1+\epsilon_4}(-1)e_{\epsilon_2+\epsilon_3}(-1))1$$

are also singular vectors in $N_{D_4}(-2,0)$. We consider the vertex operator algebra

$$\tilde{L}_{D_4}(-2,0) = \frac{N_{D_4}(-2,0)}{J},$$

where J is the ideal in $N_{D_4}(-2,0)$ generated by vectors v, $\theta(v)$ and $\theta^2(v)$.

Proposition 2.3 gives that the associative algebra $A(\tilde{L}_{D_4}(-2,0))$ is isomorphic to the algebra $U(\mathfrak{g})/I$, where I is the two-sided ideal of $U(\mathfrak{g})$ generated by u, $\theta(u)$ and $\theta^2(u)$, and

$$u = e_{\epsilon_1-\epsilon_2}e_{\epsilon_1+\epsilon_2} + e_{\epsilon_1-\epsilon_3}e_{\epsilon_1+\epsilon_3} + e_{\epsilon_1-\epsilon_4}e_{\epsilon_1+\epsilon_4}.$$

Proposition 4.1. We have:

(i) The set

$$\{L_{D_4}(-2,0), L_{D_4}(-2,-2\omega_1), L_{D_4}(-2,-2\omega_3), L_{D_4}(-2,-2\omega_4), L_{D_4}(-2,-\omega_2)\}.$$

provides a complete list of irreducible weak $\tilde{L}_{D_4}(-2,0)$–modules from the category \mathcal{O}.

(ii) $L_{D_4}(-2,0)$ is the unique irreducible ordinary module for $\tilde{L}_{D_4}(-2,0)$.

Proof. (i) We use the method for classification from Corollary 2.5. In this case $R^{(1)} \cong V_{D_4}(-2\omega_1)$, $R^{(2)} \cong V_{D_4}(-2\omega_3)$, $R^{(3)} \cong V_{D_4}(-2\omega_4)$ and

$$\dim R^{(1)}_0 = \dim R^{(2)}_0 = \dim R^{(3)}_0 = 3.$$

Using polynomials from relation (3.2) and automorphisms θ and θ^2, one obtains that the highest weights μ of $A(\tilde{L}_{D_4}(-2,0))$–modules $V_{D_4}(\mu)$ are obtained as solutions of these 9 polynomial equations:

$$h_{\epsilon_1-\epsilon_2}(h_{\epsilon_1+\epsilon_2}+2) = 0$$

$$h_{\epsilon_2-\epsilon_3}(h_{\epsilon_2+\epsilon_3}+1) = 0$$

$$h_{\epsilon_3-\epsilon_4}h_{\epsilon_3+\epsilon_4} = 0$$

$$h_{\epsilon_3-\epsilon_4}(h_{\epsilon_1+\epsilon_2}+2) = 0$$

$$h_{\epsilon_2-\epsilon_3}(h_{\epsilon_1+\epsilon_4}+1) = 0$$

$$h_{\epsilon_3+\epsilon_4}h_{\epsilon_1-\epsilon_2} = 0$$

$$h_{\epsilon_3+\epsilon_4}(h_{\epsilon_1+\epsilon_2}+2) = 0$$

$$h_{\epsilon_2-\epsilon_3}(h_{\epsilon_1-\epsilon_4}+1) = 0$$

$$h_{\epsilon_1-\epsilon_2}h_{\epsilon_3-\epsilon_4} = 0.$$

This easily gives that $\mu = 0$, $-2\omega_1$, $-2\omega_3$, $-2\omega_4$ or $-\omega_2$, and the claim follows from Zhu’s theory.
Claim (ii) follows from the fact that \(\mu = 0 \) is the only dominant integral weight such that \(L_{D_4}(-2, \mu) \) is in the set given in the claim (i).

We have:

Theorem 4.2. Vertex operator algebra \(\widetilde{L}_{D_4}(-2, 0) \) is simple, i.e.

\[
L_{D_4}(-2, 0) = \frac{N_{D_4}(-2, 0)}{U(\hat{\mathfrak{g}}).v + U(\hat{\mathfrak{g}}).\theta(v) + U(\hat{\mathfrak{g}}).\theta^2(v)}.
\]

Proof. Let \(w \) be a singular vector for \(\hat{\mathfrak{g}} \) in \(\widetilde{L}_{D_4}(-2, 0) \). The classification result from Proposition 4.1 (ii) implies that \(U(\hat{\mathfrak{g}}).w \) is a highest weight \(\hat{\mathfrak{g}} \)–module with highest weight \(-2\Lambda_0\) and that \(w \) is proportional to \(1 \). The claim follows. \(\Box \)

We conclude:

Theorem 4.3.

(i) The set

\[\{L_{D_4}(-2, 0), L_{D_4}(-2, -2\omega_1), L_{D_4}(-2, -2\omega_2), L_{D_4}(-2, -2\omega_3), L_{D_4}(-2, -\omega_2)\} \]

provides a complete list of irreducible weak \(L_{D_4}(-2, 0) \)–modules from the category \(\mathcal{O} \).

(ii) \(L_{D_4}(-2, 0) \) is the unique irreducible ordinary module for \(L_{D_4}(-2, 0) \).

(iii) Every ordinary \(L_{D_4}(-2, 0) \)–module is completely reducible.

Proof. Proposition 4.1 and Theorem 4.2 imply claims (i) and (ii).

(iii) Let \(M \) be an ordinary \(L_{D_4}(-2, 0) \)–module, and let \(w \) be a singular vector for \(\hat{\mathfrak{g}} \) in \(M \). The classification result from (ii) implies that \(U(\hat{\mathfrak{g}}).w \) is a highest weight \(\hat{\mathfrak{g}} \)–module with highest weight \(-2\Lambda_0\). Claim (ii) also implies that any singular vector in \(U(\hat{\mathfrak{g}}).w \) has highest weight \(-2\Lambda_0\) and it is proportional to \(w \). Thus, \(U(\hat{\mathfrak{g}}).w \) is an irreducible \(\hat{\mathfrak{g}} \)–module and the claim follows. \(\Box \)

References

[A1] D. Adamović, Some rational vertex algebras, *Glas. Mat. Ser. III* **29** (1994), 25–40.

[A2] D. Adamović, A construction of some ideals in affine vertex algebras, *Int. J. Math. Math. Sci.* (2003), 971–980.

[A3] D. Adamović, A construction of admissible \(A^{(1)}_1 \)-modules of level \(-\frac{1}{2}\), *J. Pure Appl. Algebra* **196** (2005), 119–134.

[AM] D. Adamović and A. Milas, Vertex operator algebras associated to modular invariant representations for \(A^{(1)}_1 \), *Math. Res. Lett.* **2** (1995), 563–575.

[AP] D. Adamović and O. Perše, Some general results on conformal embeddings of affine vertex operator algebras, to appear in *Algebr. Represent. Theory*, doi: 10.1007/s10468-011-9293-3.

[AL] J. D. Axtell and K. H. Lee, Vertex Operator Algebras Associated to Type G Affine Lie Algebras, *J. Algebra* **337** (2011), 195-223.

[Bor] R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, *Proc. Natl. Acad. Sci. USA* **83** (1986), 3068–3071.
A NOTE ON REPRESENTATIONS OF SOME AFFINE VERTEX ALGEBRAS OF TYPE D

[**Bou**] Bourbaki, Groupes et algèbres de Lie, Hermann, Paris, 1975.

[**DLM**] C. Dong, H. Li and G. Mason, Vertex operator algebras associated to admissible representations of $\hat{\mathfrak{sl}}_2$, *Comm. Math. Phys.* **184** (1997), 65–93.

[**FF**] A. J. Feingold and I. B. Frenkel, Classical affine algebras, *Adv. in Math.*, **56** (1985), 117–172.

[**FB**] E. Frenkel and D. Ben-Zvi, *Vertex algebras and algebraic curves*, Mathematical Surveys and Monographs, 88, American Mathematical Society, Providence, RI, 2001.

[**FHL**] I. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, *Mem. Amer. Math. Soc.* **104**, 1993.

[**FLM**] I. Frenkel, J. Lepowsky and A. Meurman, *Vertex Operator Algebras and the Monster*, Pure and Appl. Math., *Vol. 134*, Academic Press, Boston, 1988.

[**FZ**] I. Frenkel and Y.-C. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, *Duke Math. J.* **66** (1992), 123–168.

[**K1**] V. G. Kac, *Infinite dimensional Lie algebras*, 3rd ed., Cambridge Univ. Press, Cambridge, 1990.

[**K2**] V. G. Kac, *Vertex Algebras for Beginners*, University Lecture Series, Second Edition, AMS, Vol. 10 (1998).

[**KW**] V. Kac and M. Wakimoto, Modular invariant representations of infinitesimal Lie algebras and superalgebras, *Proc. Natl. Acad. Sci. USA* **85** (1988), 4956–4960.

[**LL**] J. Lepowsky and H. Li, *Introduction to vertex operator algebras and their representations*, Progress in Math., *Vol. 227*, Birkhauser, Boston, 2004.

[**L**] H.-S. Li, Local systems of vertex operators, vertex superalgebras and modules, *J. Pure Appl. Algebra* **109** (1996), 143–195.

[**MP**] A. Meurman and M. Primc, *Annihilating fields of standard modules of $sl(2,\mathbb{C})$ and combinatorial identities*, Mem. Amer. Math. Soc. **137**, AMS, Providence RI, 1999.

[**P1**] O. Perše, Vertex operator algebras associated to type B affine Lie algebras on admissible half-integer levels, *J. Algebra* **307** (2007), 215–248.

[**P2**] O. Perše, Vertex operator algebras associated to certain admissible modules for affine Lie algebras of type A, *Glas. Mat. Ser. III* **43** (63) (2008), 41–57.

[**Z**] Y.-C. Zhu, Modular invariance of characters of vertex operator algebras, *J. Amer. Math. Soc.* **9** (1996), 237–302.