Effects of hot air treatment and chitosan coating on citric acid metabolism in ponkan fruit during cold storage

Yang Gao1, Chaonan Kan1, Chunpeng Wan1, Chuying Chen1, Ming Chen1*, Jinyin Chen1,2*

1 Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China, 2 Pingxiang University, Pingxiang, China

* jinyinchen@126.com (JC); chenming@jxau.edu.cn (MC)

Abstract

In citrus fruit, citric acid is the predominant organic acid which influence fruit taste, flavor and quality. The effect of hot air treatment (HAT 40°C, 48 h) and 1.0% chitosan coating on the change of organic acids and the related gene expression of citric acid synthesis and degradation in ponkan (Citrus reticulata Blanco) fruit during cold storage have been studied. The results showed that citric acid was the main organic acid in fruit, the trend change of citric acid content was consistent with total organic acids and titratable acidity (TA) content, which decreased with the prolongation of storage time, hot air treatment significantly promoted but chitosan coating treatment significantly delayed citric acid degradation in Ponkan fruit. Hot air treatment could induced CitAco2/3, CitIDH2/3, CitGAD4, CitACLs, CitPEPCKs and CitFBPases expression during fruit storage period, but had no significant effect on CitGSs expression, The enhanced expression of degradation-related genes was closely related to the degradation of citric acid. The expressions of CitAco3, CitGAD4 CitACLα2/β, CitPEPCKs and CitFBPases were inhibited, which leading to the degradation rate of citric acid was slowed by chitosan coating during storage. These results showed that the degradation of citric acid in fruit was regulated by ATP citrate lyase (ACL) pathway and γ-aminobutyric acid (GABA) pathway.

Introduction

Acid is an important indicator of fruit quality. Depending on the type of major organic in ripe fruit, the fruit can be divided into three types: citric acid type, malic acid type and tartaric acid type fruit. Citrus fruit is citric acid type fruit Main text paragraph [1]. Ponkan (Citrus reticulata Blanco) is one of the main mandarin citrus in China, the fruit are rich of organic acid [2]. Zhang et al. [3] have demonstrated that citric acid was the major organic acid in Ponkan fruit, which accounting for 91.82% of the total content in single fruit. During the storage period, the content of organic acids in fruit not only affected fruit flavor and quality, but also affected the storage characteristics of fruit [4].
A large number of studies have shown that the appropriate postharvest treatment could effectively affect the fruit organic acid content, improve fruit storage quality. As a viable alternative to synthetic fungicides, the clove extract could significantly inhibit the water loss rate and decay rate in 'Newhall' navel orange fruit during storage, delay the degradation of TA, TSS and VC, and improve antioxidant enzymes activity, then the fruit could maintain good quality at the later stage of storage [5]. 1-methylcyclopropene treatment could maintain the apple acidity during fruit storage by adjusting the balance between malic acid biosynthesis and degradation [6]. Exogenous GABA treatment could decrease the fruit rot rate, increase the content of organic acids, maintenance and improvement of the storage performance of citrus fruits [7].

Hot air treatment as a common method has been used for many species of fruit and vegetable after harvest, such as strawberry [8], peaches [9], 'Qingnai' plum [10] and citrus fruit [2, 11]. Heat treatment of 50˚C for 5–10 minutes could delay the change of storage quality of sweet orange fruit and reduce the occurrence of fruit decay [12]. Hot air treatment could enhance oxygen scavenging and cell wall polysaccharides solubilization, thus enhancing the cold resistance of loquat fruits [13]. Chitosan, is a natural polysaccharide from a wide range of sources [14]. Due to its biocompatibility, biodegradability, bacteriostasis and film formation, chitosan has great potential in various fields [15–17]. Chitosan coating treatment, as a postharvest preservation method, has also been studied for many fruit [18, 19]. The effect of chitosan coating on the antioxidant activity and malic acid metabolism were studied in 'Huangguan' pear during storage, the results showed that chitosan treatment had a significantly positive effect on the activities of NAD-MDH and a negative effect on the activities of NADP-ME both in pulp and peel. It also inhibited the gene expression of vVAtp2, as well as promoted gene expression of vVAtp1 [20]. It was further proved that chitosan coating could effectively reduce the occurrence of fruit anthracnose and postpone the decline of postharvest quality of fruit [21, 22]. After treatment with a range (0.5, 1.0 and 2.0%) of chitosan solutions, respectively. The respiration rate and weight loss of longan fruits were decreased during storage, the increase in PPO activity and the changes in colour were delayed [23].

Most of research were focus on the effects of hot air treatment or chitosan coating on storage of fresh fruit, and their influences on organic acid metabolism during storage stage of citrus fruit were rarely studied. In this study, the changes of organic acids were measured in Ponkan fruit treated by hot air and chitosan coating during cold storage, and the citric acid degradation -related gene expression also were analyzed during storage, then the mechanism of citric acid degradation were discussed in Ponkan fruit during storage.

Materials and methods

Ethics statement

The owner of the land gave permission to conduct the study on this site. No specific permissions were required for these locations/activities. And the field studies did not involve endangered or protected species.

Plant materials

Mature Ponkan (C. reticulata Blanco cv. Ponkan) fruits were harvested from a commercial orchard in Jing’an county, Jiangxi Province, China (115°35’E, 28°88’N), at the mature stage (21th November, 2015). The fruit were transported to the laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agriculture University (Nanchang, China) on the day of harvest.
Treatments and sampling

Fruit in the uniform size and maturity, free of visible disease and mechanical wounding, were divided into 200 fruit per group for postharvest treatments. The fruit were subjected to the following treatments: (1) control: the fruit were directly stored at 10˚C, 90–95% RH in a cold room; (2) hot air treatment (HAT): the fruit were placed in a chamber at 40˚C, 90–95% RH for 48h, then the fruit were transferred to 10˚C with the same conditions as control treatment; (3) chitosan treatment: the fruit were coated with 1.0% chitosan and dried naturally, then the fruit were transferred to 10˚C with the same conditions as control treatment. All of the control, HAT and chitosan treatment fruit were stored till 120 d after harvest.

Fruit qualities were measured at 0, 2, 15, 30, 45, 60, 75, 90, 105, 120 d during storage. Each sampling consisted of fifteen fruit for each treatment, separated as three replicates with five fruit each. After measurements, the flesh tissue samples were frozen in liquid nitrogen, and stored at −80˚C, for further experiments.

TA and organic acids measurements

The fifteen fruit were divided into three replicates with five fruit each. Five grams of the filtrated juice for each group was titrated with 0.1 M NaOH to its end point at pH 8.1. The results were expressed as the percentage of citric acid (1g of citric acid per 100 g FW), which represented the titratable acidity (TA) value.

The method of extracted organic acids were modified from the description of Chen. Four grams of frozen flesh sample was ground to a powder in liquid nitrogen, add in 5.0 mL of ethanol (80%) solution and and water bathed at 35˚C for 20 min. The extract was centrifuged at 10,000×g for10 min. The residue was extracted twice and the supernatant was collected in volumetric flask to final 25 ml with 80% ethanol. 1 ml extract solution was filtered with Φ0.22 μm, Φ13mm water syringe filter (Shanghai Xingya Purification Material Factory, China). The filtered solution was used for organic acids analysis.

Organic acids were measured using high performance liquid chromatography (HPLC, SHIMADZU LC-20A, Japan). The liquid chromatograph equipped with a degasser, quaternary pump, 20 μL volume injection autosampler, ODS C18 column (4.6 mm×250 mm, Waters Corporation, USA) and a diode array detector. The mobile phase was a solvent system of 50 mM (NH4)2HPO4 phosphate buffer (pH = 2.7 adjusted with phosphoric acid) at a flow rate of 0.5 mL/min. Organic acids were detected at a wavelength of 210 nm. Lab Solutions Software (Shimadzu, Japan) was used to run the HPLC and process the results. Triplicate flesh samples were analyzed.

RNA extraction and cDNA synthesis

Total RNA was extracted from frozen tissues by CTAB method [24], and the quality was detected by agarose gel electrophoresis, each sample has three biological replicates. Reverse transcription of RNA using reverse transcription kit (TaKaRa's Cat. # RR047A, Japan). The cDNA was used as the template for real-time quantitative PCR analysis.

Real-time quantitative PCR (Q-PCR) analysis

Q-PCR was performed on a CFX 96 real-time PCR detection system (Bio-Rad, Hercules, CA, USA). The primers used in the qPCR analyses of individual genes were designed according to Chen [25] and Guo [26]. For each q-PCR reaction, 2 μL of each diluted sample was used as a template in a 25 μL reaction containing, 12.5 μL of SYBR green supermix (TaKaRa, Japan),
9.5 μL of ddH$_2$O and 2 μL of each primer. The following PCR conditions were used: 95˚C for 30s, followed by 40 cycles of 95˚C for 5 s, 60˚C for 30 s, and 95˚C for 15 s.

Gene-specific primers were described in previous report [25]. Three different RNA isolations and cDNA syntheses were used as replicates for qRT-PCR.

Statistical analysis

The experiments were performed using a completely randomized design. Standard errors (SE) and figures were made by GraphPad Prism (GraphPad Software, Inc., 7825 Fay Avenue, LA Jolla, USA). The analysis of significant difference by using the new Duncan type repolarization difference detection method in DPS 7.05 (Zhejiang University, Hangzhou, China).

Results

Effect of HAT and chitosan treatment on the content of organic acid and TA

Organic acids, including citric acid, tartaric acid, malic acid and quinic acid, were measured during Ponkan fruit storage “Fig 1”. Citric acid, the major organic acid in Ponkan fruit, showed a decreasing trend during storage. Compared with the control, HAT significantly accelerated the decrease of citric acid content in Ponkan fruit, but chitosan coating significantly delay the decrease of citric acid. Quinic acid and tartaric acid content increased first and then decreased in Ponkan fruit during storage, chitosan coating delay the decrease of quinic acid content in Ponkan fruit, HTA accelerated the decrease of tartaric acid content.

![Fig 1. Effect of hot air and chitosan coating on changes in the contents of citric (A), quinic (B), malic (C), tartaric (D), total organic acids (E) and TA (F) in flesh of Ponkan fruit during storage.](https://doi.org/10.1371/journal.pone.0206585.g001)
Throughout storage, malic acid content was less than 0.01mg/g in Ponkan fruit, which had little influence on fruit acidity in Ponkan fruit.

As the main of organic acid in Ponkan fruit, the degradation of citric acid led to the decreasing of total organic acids and TA in fruit during storage “Fig 1”. In parallel, the content of total organic acids and TA value were substantially lower in HAT fruit and higher in chitosan coating fruit than in control fruit.

Effect of HAT and chitosan treatment on the expression of CitAcos

The effects of HAT and chitosan coating on expression patterns of three CitAcos genes were different. HAT and chitosan coating had no significant effect on the expression of CitAco1, and the relative expression level of CitAco1 among the three treatments had no significant difference during the entire storage “Fig 2”. HAT transiently induced the expression of CitAco2

Fig 2. Effects of hot-air treatment and chitosan coating on expression s of CitAcos in Ponkan fruit. Vertical bars represent SD (n = 3). Significant differences (p < 0.05) between means are indicated by different letters.

https://doi.org/10.1371/journal.pone.0206585.g002
and CitAco3, and maintained the transcript abundance till the 75 d of storage. The CitAco2 expressions of HAT was 2.32 -fold of the initial value at 2d, the CitAco3 expressions of HAT was 3.20 -fold of the initial value at 40d of storage “Fig 2”. However, chitosan coating decreased the expression of CitAco2 and CitAco3. The stimulation of chitosan coating on CitAco2 expression was not significant, but the stimulation of chitosan coating on CitAco3 expression was significant at 60d, 75d and 105d of storage “Fig 2”. Thus, the significant increase of CitAco2/3 transcript levels, induced by HAT, may lead to the degradation of citric acid became more faster in HAT Ponkan fruit during storage, and the significant changes of CitAco3 transcripts, inhibited by chitosan treatment, may lead to the retard degradation of citric acid in Ponkan fruit treated by chitosan. Comparing the relative expression levels of the three CitAcos genes, it was found that the relative expression level of CitAco2 in HAT fruit at 2d was higher than that of CitAco3 2d and 15d of storage, and was lower at other storage time. The relative expression level of CitAco2 in chitosan coating fruit was higher than that of CitAco3, and the difference was greater in the middle and late stages of storage. This indicated that CitAco2 played a major role in the degradation of citric acid in the early storage stage of citrus fruits, while CitAco3 played a major role in the middle and late stages.

Effect of HAT and chitosan coating on the expression of CitIDHs

As the similar response to the CitAco genes, the effects of HAT and chitosan coating on expression patterns of three CitIDHs genes were also different. HAT and chitosan coating had no significant effect on the expression of CitIDH1, but HAT transiently induced CitIDH2 and CitIDH3 expression, HAT transiently induced CitIDH2 by 5.17-fold only at 2 d of storage “Fig 3”. HAT transiently induced CitIDH3 by 2.19-fold at 2 d and maintain higher transcript level during the following storage, and peaked at 45 d of storage. On the contrast, chitosan coating decreased the expression level of CitIDH2 and CitIDH3. The stimulations of chitosan coating on CitIDH2 and CitIDH3 expression were not significant.

Effect of HAT and chitosan coating on the expression of CitGADs and CitGS2

As presented in “Fig 4”, HAT and chitosan coating had significant effect on the expression of CitGAD4, but no significant effect on the expression of CitGAD5 and CitGS2. The expression of CitGAD4 was significantly higher in HAT fruit than control fruit during storage, which was 2.05 times of the control at 2 d. Chitosan coating significant decreased CitGAD4 expression, which made CitGAD4 expression in chitosan coating fruit significantly lower than the control.

Effect of HAT and chitosan coating on the expression of CitACLs

As presented in “Fig 5”, the effects of HAT and chitosan coating on expression patterns of three CitACLs genes were different. HAT significantly enhanced the expression of CitACLs family genes in Ponkan fruit during storage. The expression of CitACLs in HAT fruit increased at first and then decreased. The expression of CitACLα1 reached the highest value at 75 d and CitACLα2/β were 105d. Chitosan coating decreased the expression level of CitACLα2 and CitACLβ, which made CitACLα2 and CitACLβ expression in chitosan coating fruit significantly lower than the control during storage.

Effect of HAT and chitosan coating on the expression of CitPEPCKs

The effects of HAT and chitosan coating on expression patterns of CitPEPCKs genes were different “Fig 6”. HAT induced the expression of CitPEPCK1 and CitPEPCK2, and the expression
of CitPEPCKs in HAT fruit was significantly higher than that of control. However, the expression of CitPEPCK1 in chitosan coating fruit was significantly lower than that of control at 30 d and 45 d, and the expression of CitPEPCK2 was 45 d and 60 d.

Fig 3. Effects of hot-air treatment and chitosan coating on expressions of CitIDHs in Ponkan fruit. Vertical bars represent SD (n = 3). Significant differences (p < 0.05) between means are indicated by different letters.

https://doi.org/10.1371/journal.pone.0206585.g003
As presented in “Fig 7”, the expression of two CitFBPases genes in Ponkan fruit increased gradually during storage. After treatment with HAT, the expression levels of two CitFBPases
were significantly induced in Ponkan fruit, the expression of *CitFBPase1* was induced during the later storage and *CitFBPase2* was induced during the early storage. On the contrary, chitosan coating decreased *CitFPBPases* expression. The expression of *CitFBPase2* in chitosan coating fruit was significantly lower than that of control during the later storage.

![Fig 5. Effects of hot-air treatment and chitosan coating on expression of *CitACLs* in Ponkan fruit. Vertical bars represent SD (n = 3). Significant differences (p < 0.05) between means are indicated by different letters.](https://doi.org/10.1371/journal.pone.0206585.g005)
Discussion

Citrus is a typical non-transgenic fruit, and its quality decreases gradually during post-harvest storage [27]. Many studies had been shown that the appropriate postharvest treatments could control the post-harvest storage quality of fruit. The soluble sugar metabolism was related to the cold resistance of peach fruit, and the sucrose content of peach fruit treated with hot air treatment and methyljasmonate was increased and the fruit’s tolerance to cold was enhanced [28]. The CMC/chitosan bilayer coating could effectively improve fruit firmness during citrus storage, especially on grapefruit [22].

A lots of study on organic acids metabolism in citrus fruit had been reported. Yamaki et al. [29] analyzed the organic acids components in 47 citrus fruit juices. Citrus fruit contained citric acid, tartaric acid, quinic acid, malic acid, acetic acid, oxalic acid and so on. 44 citrus were citric acid-based fruit, which accounting for 75.4% -96.9% of organic acids content. The other 3 citrus were malic acid accumulation type, malic acid occupied 55.8% -60.1% of organic acid content. The results of HPLC showed that citric acid was the main organic acid in Jing’an Ponkan fruit, which was consistent with the results of Carballo et al. [30]. As shown in Fig 1, Hot
air treatment could significantly promote the decline of citric acid, the content of citric acid and total organic acid in the fruit was significantly lower than that in the control [25,31]. On the contrast, chitosan coating could significantly delayed the degradation of citric acid and maintained high level of organic acid content in ponkan fruit at the later stage of storage.

The organic acid metabolism in citrus fruit is very complicated, which includes the synthesis, degradation and transportation of citric acid. Tadeo [32] proposed a citric acid synthesis pathway: phosphoenolpyruvate (PEP) immobilized CO2 to form oxaloacetic acid (OAA) catalyzed by phosphoenolpyruvate carboxylase (PEPC), and OAA combined with acetyl coenzyme A to produce citric acid under the catalysis of citric acid synthase (CS). The citric acid content of 'Newhall' navel orange [33] and Ponkan [34] fruits decreased gradually at the late stage of fruit development, which was not directly related to citric acid synthesis genes CitCSs and Cit-PEPCKs expression, it is mainly influenced by the genes related to degradation. Chen [25] suggested that there was no significant correlation between postharvest organic acid metabolism and synthetical genes, suggesting that the regulation of organic acids in citrus fruits was not related to citric acid biosynthesis. Citric acid could be degraded in different ways, including acetyl coenzyme A pathway (ACL) pathway, glutamine (GS) pathway and gamma aminobutyric acid (GABA) pathway. Citric acid could produce acetoacetic acid and acetyl coenzyme A under the action of ACL, and then turn to sugar ISO pathway or synthesize secondary metabolites such as flavonoids and fatty acids through the action of PEPCK and FBPase [35]. CERCOS [36] and Katz [37] reported that ACL participates in citric acid accumulation during citrus fruit development and maturation. Citric acid was decomposed to isocitrate in the presence of
aconitase (Aco), then metabolized into 2-oxoglutarate and glutamate under the action of isocitrate dehydrogenase (IDH) [36]. On one hand, glutamate generated glutamine by the role of glutamine synthetase (GS), on the other hand glutamate was catalysed into γ-aminobutyric acid (GABA) pathway. The Aco activity of citrus fruit was significantly decreased and the content of citric acid was significantly increased after surface coating [38]. CitNAC62 and CitWRKY1 could transactivate the promoter of CitAco3, then improv the expression of CitAco3 to control the degradation of citric acid in citrus fruit [39]. Zhang et al. [3] found that 40% soil water stress treatment could significantly inhibit the expression of CitIDHs in Citrus fruit, and citric acid content was significantly increased, which was 66.3% higher than that of the control. The expression of CitGAD4 and CitGAD5 in citrus fruit was inhibited under the stress of water stress, and the degradation of citric acid was blocked and the organic acid was accumulated, which indicated the important role of GABA cycle on citric acid degradation in citrus fruit. Exogenous GABA treatment could inhibit the expression of glutamic acid decarboxylase (GAD) and increase the citric acid content of fruit. At the same time, the content of amino acid and the activity of resistance enzyme could be improved, and the fruit rot was reduced [7].

Our results showed that the expression of CitAco2/3, CitIDH2/3, CitGAD4, CitACLs, CitPEPCKs and CitFBPases could be induced by HAT, but HAT had no significant effect on the expression of CitGSs. The increased expression of these citrate degradation-related genes was associated with the degradation of citric acid, which led to the lower citric acid level in HAT Ponkan fruit than that of control during storage. Chitosan treatment could inhibit the expression of CitAco3, CitGAD4, CitACLs/β, CitPEPCKs and CitFBPases during storage, and the degradation rate of citric acid in chitosan coating Ponkan fruit was slowed down during storage. These results suggested that citric acid may be degraded mainly through ACL pathway and GABA pathway during postharvest storage of Ponkan fruit “Fig 8”.

Conclusions

Based on the present research, it was concluded that hot air treatment could induced the expression of CitAco2/3, CitIDH2/3 and CitGAD4 genes, which resulted in the acceleration of citric acid degradation through GABA pathway during Ponkan fruit storage. The chitosan coating inhibited the expression of CitAco3 and CitGAD4 genes, which caused the degradation of citric acid became slower in citrus fruit during storage. The specific regulation mechanism...
of citric acid metabolism in citrus fruit remains to be further studied in many ways, such as citric acid transport, and through the means of transcriptional group, metabolic group and proteomics.

Acknowledgments
The authors gratefully acknowledge the financial support of this study by the National Natural Science Foundation of China (31360466), the Natural Science Foundation of Jiangxi Province (20122BAB214024)

Author Contributions
Conceptualization: Yang Gao, Ming Chen, Jinyin Chen.
Data curation: Yang Gao, Chaonan Kan, Chunpeng Wan, Ming Chen.
Formal analysis: Yang Gao, Chaonan Kan.
Funding acquisition: Yang Gao.
Investigation: Yang Gao.
Methodology: Yang Gao, Chunpeng Wan, Ming Chen.
Project administration: Jinyin Chen.
Software: Chuying Chen.
Supervision: Chuying Chen.
Writing – original draft: Yang Gao.
Writing – review & editing: Yang Gao, Chunpeng Wan, Ming Chen, Jinyin Chen.

References
1. Albertini MV, Carcouet E, Pailly O, Gambotti C, Luro F, Berti L. Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. Journal of Agricultural and Food Chemistry. 2006; 54: 8335–8339. https://doi.org/10.1021/jf061648j PMID: 17032048
2. Tang D, Lin Q, Lin J, Wang D, Liu C, Wu W, et al. Effects of Combined Heat and Preservative Treatment on Storability of Ponkan Fruit (Citrus reticulata Blanco cv. Ponkan) during Postharvest Storage. Journal of Food Quality. 2017; 2017: 1–7. https://doi.org/10.1155/2017/5871756
3. Zhang GF, Xie SX. Influence of Water Stress on the Citric Acid Metabolism Related Gene Expression in the Ponkan Fruits. Agricultural Sciences. 2014; 05: 1513–1521. http://dx.doi.org/10.4236/as.2014.514162
4. Kou XH, Guo WL, Guo RZ, Li XY, Xue ZH. Effects of Chitosan, Calcium Chloride, and Pullulan Coating Treatments on Antioxidant Activity in Pear cv. “Huang guan” During Storage. Food & Bioprocess Technology 2014; 7: 671–681. https://doi.org/10.1007/s11947-013-1085-9
5. Zeng R, Zhang A, Chen J, Fu Y. Postharvest quality and physiological responses of clove bud extract dip on ‘Newhall’ navel orange. Scientia Horticulturae. 2012; 138: 253–258. https://doi.org/10.1016/j. scienta.2012.02.036
6. Liu R, Wang Y, Qin G, Tian S. Molecular basis of 1-methylcyclopropene regulating organic acid metabolism in apple fruit during storage. Postharvest Biology & Technology 2016; 117: 57–63. https://doi.org/10.1016/j.postharvbio.2016.02.001
7. Sheng L, Shen D, Luo Y, Sun X, Wang J, Luo T, et al. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit. Food Chemistry. 2017; 216: 138–145. https://doi.org/10.1016/j.foodchem.2016.08.024 PMID: 27598402
8. Wang CY. Effect of moist hot air treatment on some postharvest quality attributes of strawberries. Journal of Food Quality 2000; 23: 51–59. https://doi.org/10.1111/j.1745-4557.2004.tb00643.x
9. Yu F, Wei Y, Ni Z, Xu F, Wang H. Effects of hot air and methyl jasmonate treatment on the metabolism of soluble sugars in peach fruit during cold storage. Postharvest Biology & Technology. 2016; 113: 8–16. https://doi.org/10.1016/j.postharvbio.2015.10.013

10. Luo ZS. Effect of hot-air treatment on the ripening of 'Qingnaï' plum (Prunus salicina Lindl.). Journal of Horticultural Science & Biotechnology. 2010; 85: 12–16. http://dx.doi.org/10.1080/14620316.2010.11512623

11. Qiong L, Qing J, Juanying L, Dengliang W, Shaojia L, Liu C, et al. Heat shock transcription factors expression during fruit development and under hot air stress in Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit. Gene. 2015; 559: 129–136. http://dx.doi.org/10.1016/j.gene.2015.01.024 PMID: 25596345

12. Rab A, Najia Sajid M, Bibi F, Jan I, Nabi G, et al. Quality changes in heat treated sweet orange fruit during storage at low temperature. Journal of Animal & Plant Sciences. 2015; 25: 661–668. http://www.thejaps.org.pk/docs/v-25-03/10.

13. Shao X, Kang T. Hot Air Treatment Improved the Chilling Resistance of Loquat Fruit under Cold Storage. Journal of Food Processing & Preservation. 2014; 38: 694–703. http://dx.doi.org/10.1111/jfpp.12019

14. Egusa M, Iwamoto R, Izawa H, Morimoto M, Saimoto H, Kaminaka H, et al. Characterization of Chitosan Nanofiber Sheets for Antifungal Application. International Journal of Molecular Sciences. 2015; 16: 26202–26210. http://dx.doi.org/10.3390/ijms161125947 PMID: 26540046

15. Falamarzpour P, Behzad T, Zamani A. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid. International Journal of Molecular Sciences. 2017; 18: 396. http://dx.doi.org/10.3390/ijms18020396 PMID: 28208822

16. Govindharajulu JP, Chen X, Li Y, Rodriguez-Cabello JC, Battacharya M, Aparicio, C. Chitosan-Recombinamer Layer-by-Layer Coatings for Multifunctional Implants. International Journal of Molecular Sciences. 2017; 18: 369. http://dx.doi.org/10.3390/ijms18020369 PMID: 28208793

17. Koizumi R, Azuma K, Izawa H, Morimoto M, Ochi K, Tsuka T, et al. Oral Administration of Surface-Deacetylated Chitin Nanofibers and Chitosan Inhibit 5-Fluorouracil-Induced Intestinal Mucositis in Mice. International Journal of Molecular Sciences. 2017; 18: 279. http://dx.doi.org/10.3390/ijms18020279 PMID: 26134832

18. Ali A, Mahmud Tengku MM, Sijam K, Siddiqui Y. Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L) fruit during cold storage. Food Chemistry. 2010; 124: 620–626. https://doi.org/10.1016/j.foodchem.2010.06.085

19. Jawandha SK, Gill PPS, Kaur N, Verma A, Chawla N. Effect of edible surface coatings on the storability of pear fruits. Indian Journal of Horticulture. 2017; 74: 271. https://doi.org/10.5958/0974-0112.2017.00054.8

20. Kou XH, Wang S, Zhang Y, Guo RZ, Wu MS, Chen Q, et al. Effects of chitosan and calcium chloride treatments on malic acid-metabolizing enzymes and the related gene expression in post-harvest pear cv. ‘Huang guan’. Scientia Horticulturae. 2014; 165: 252–259. http://dx.doi.org/10.1016/j.scienta.2013.10.034

21. Deng L, Zeng K, Zhou Y, Huang Y. Effects of postharvest oligochitosan treatment on anthracnose disease in citrus (Citrus sinensis L. Osbeck) fruit. European Food Research & Technology. 2015; 240: 795–804. http://dx.doi.org/10.1007/s00217-014-2385-7

22. Arnon H, Zaitsev Y, Porat R, Povere nov E. Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biology & Technology. 2014; 87: 21–26. http://dx.doi.org/10.1016/j.postharvbio.2013.08.007

23. Jiang Y, Li Y. Effects of chitosan coating on postharvest life and quality of longan fruit. Food Chemistry. 2001; 73: 139–143. http://dx.doi.org/10.1016/S0308-8146(00)00246-6

24. Brandfass C, Karlovsky P. Upscaled CTAB-Based DNA Extraction and Real-Time PCR Assays for Fusarium culmorum and F. graminearum DNA in Plant Material with Reduced Sampling Error. International Journal of Molecular Sciences. 2008; 9: 2306. http://dx.doi.org/10.3390/ijms91123069 PMID: 19330077

25. Chen M, Jiang Q, Yin XR, Lin Q, Chen JY, Allan AC, et al. Effect of hot air treatment on organic acid-and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Scientia Horticulturae. 2012; 147: 118–125. http://dx.doi.org/10.1016/j.scienta.2012.09.011

26. Guo LX, Shi CY, Xiao L, Ning DY, Jing LF, Yang H, et al. Citrate Accumulation-Related Gene Expression and/or Enzyme Activity Analysis Combined With Metabolomics Provide a Novel Insight for an Orange Mutant. Sci Rep. 2016; 6: 29343. http://dx.doi.org/10.1038/srep29343 PMID: 27385485

27. Ziena HMS. Quality attributes of Bearss Seedless lime (Citrus latifolia Tan) juice during storage. Food Chemistry. 2000; 71: 167–172. http://dx.doi.org/10.1016/s0308-8146(00)00064-9
28. Yu K, Xu Q, Da X, Guo F, Ding Y, Deng X. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genomics. 2012; 13: 10. http://dx.doi.org/10.1186/1471-2164-13-10 PMID: 22230690

29. Yamaki YT. Organic Acids in the Juice of Citrus Fruits. Engei Gakkai Zasshi. 1989; 58: 587–594.

30. Carballo S, Zingarella FA, Maestre SE, Todoli JL, Prats MS. Optimisation of analytical methods for the characterisation of oranges, clementines and citrus hybrids cultivated in Spain on the basis of their composition in ascorbic acid, citric acid and major sugars. International Journal of Food Science & Technology. 2014; 49: 146–152. http://dx.doi.org/10.1111/ijfs.12289

31. Lin Q, Li S, Dong W, Feng C, Yin X, Xu C, et al. Involvement of CitCHX and CitDIC in developmental-related and postharvest-hot-air driven citrate degradation in citrus fruits. Plos One. 2015; 10: e0119410–e0119426. http://dx.doi.org/10.1371/journal.pone.0119410 PMID: 25738939

32. Tadeo FR, Cercós M, Colmenero-Flores JM, Iglesias DJ, Naranjo MA, Ríos G, et al. Molecular physiology of development and quality of citrus. Advances in Botanical Research. 2008; 47: 147–223. http://dx.doi.org/10.1016/S0065-2296(08)00004-9

33. Yang Y, Gao Y, Xiang M, Chen M, Chen J. Expression profile analysis of several citric acid metabolism related genes in the Newhall navel orange during fruit development. Journal of Fruit Science. 2016; 33: 400–408. http://dx.doi.org/10.1371/journal.pone.0150470

34. Gao Y, Kan C, Chen C, Chen M, Chen J. Changes of citric acid content and the related gene expression at different developmental stages of fruits in 'Jing' an ponkan'. Journal of Fruit Science. 2018; 35: 936–946. http://dx.doi.org/10.1371/journal.pone.0180044

35. Hu XM, Shi CY, Liu X, Jin LF, Liu YZ, Peng SA. Genome-wide identification of citrus ATP-citrate lyase genes and their transcript analysis in fruits reveals their possible role in citrate utilization. Molecular Genetics & Genomics. 2015; 290: 29–38. http://dx.doi.org/10.1007/s00438-014-0897-2 PMID: 25120169

36. Cercos M, Soler G, Iglesias DJ, Gadea J, Forment J, Talón M. Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric Acid utilization. Plant Molecular Biology. 2006; 62: 513–527. http://dx.doi.org/10.1007/s11103-006-9037-7 PMID: 16897488

37. Katz E, Blumwald E. The citrus fruit proteome: insights into citrus fruit metabolism. Planta. 2007; 226: 989–1005. http://dx.doi.org/10.1007/s10045-006-0545-8 PMID: 17541628

38. Jiang N, Jin LF, Silva JATD, Islam MZ, Gao HW, Liu YZ, et al. Activities of enzymes directly related with sucrose and citric acid metabolism in citrus fruit in response to soil plastic film mulch. Scientia Horticulturae. 2014; 168: 73–80. http://dx.doi.org/10.1016/j.scienta.2014.01.021

39. Li SJ, Liu XJ, Xie XL, Sun CD, Grierson D, Liu YZ. CrMYB73, a PH-like gene, contributes to citric acid accumulation in citrus fruit. Scientia Horticulturae. 2015; 197: 212–217. https://doi.org/10.1080/07352689.2017.1402850