Direct-write single electron transistors by focused electron beam induced deposition

Giorgia Di Prima1, Roland Sachser1, Piet Trompenaars1, Hans Mulders2 and Michael Huth1

1 Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
2 Thermo Fisher Scientific, Eindhoven, The Netherlands

E-mail: diprima@physik.uni-frankfurt.de

Keywords: single electron transistor (SET), focused electron beam induced deposition (FEBID), Coulomb blockade, electron irradiation, etching, Coulomb oscillations

Abstract

Single-electron transistor (SET) device fabrication for operation in the tens of Kelvin range is still challenging due to the need of controlled definition of the metallic island with a diameter far below 100 nm and proper tuning of the island’s tunnel couplings to the drain and source leads. Here we present results on SET device fabrication using focused electron beam induced deposition (FEBID) for island definition between pre-fabricated SET electrode structures. The island’s nano-granular microstructure allows us, in conjunction with in situ tuning of the inter-grain tunnel coupling by post-growth electron irradiation, to study the effect of the island’s electronic granularity on SET device performance. In addition we show that for reliable SET operation FEBID-associated co-deposit in proximity of the island has to be removed which can be accomplished by a novel in situ Ar ion etching process. For the low-temperature properties of functioning SET devices we obtain good agreement of capacitance values deduced from the current–voltage characteristics and capacitance calculations based on the geometry of the device electrodes and the microstructure of the island. Complementary simulations of the SET current–voltage characteristics based on the master equation approach are in good agreement with the experimental data. The observation of well-defined Coulomb oscillations indicates that FEBID-based SET structures can be useful as on-demand charge monitor devices with high lateral positioning flexibility.

Introduction

Over the last 40 years, increasing interest in ultra-low-power and ultra-high-density integrated circuits has pushed the development to smaller and smaller devices. With achieving the ability of making miniaturized elements on the scale of less than few hundreds of nanometers, devices based on single-electron effects have been realized and even proposed as replacement for silicon transistors [1–6], albeit not for very large scale integration.

The single-electron transistor (SET) is based on a nano-island which is connected by tunnel junctions to source and drain electrode leads and is capacitively coupled to one or more gate electrodes. In the island, electrons are confined and their number is quantized. The current through the island can be tuned by the gate voltage which controls the number of excess charges on the SET island. Coulomb blockade in SETs is the basis for the realization of ultra sensitive electrometers [7–10], memory devices [11–15], logic switches and gates [16–19], molecule-based transistors [20, 21], displacement [22, 23] and chemical sensors [24, 25].

The most used SET implementation methods are shadow evaporation [26–29], scanning probe microscope tip modification [30, 31], electromigration [32–34], nanoscale oxidation [35, 36] and mechanically controlled break junction formation [37, 38]. By the advance of nanofabrication processes and technology the use of nanoscale objects like nanoparticles [39–44], nanotubes [45–47], fullerenes [48, 49] and single-molecules [20, 50] as nano-islands for SET devices has been demonstrated. However, controlling the size and position of the nano-island as part of an SET device can be very challenging if self-assembly process steps are involved. In this framework, the use of focused electron beam induced deposition (FEBID) has been reported as suitable
technique for SET fabrication [51–55], FEBID is a direct-write technique based on the electron beam assisted dissociation of precursor molecules adsorbed on a substrate surface inside a scanning electron microscope (SEM). The precursor is injected through a gas injection system into the SEM chamber in close proximity to the substrate surface and in the focus of the electron beam it dissociates into volatile fragments and the non-volatile deposit [56]. FEBID serves numerous application fields since it can be used on any kind of substrate, is capable of sub-10 nm resolution, and a wide range of materials can be deposited with high flexibility in pattern design, even in 3D [57, 58]. In particular, FEBID is used in mask repair [59, 60], plasmonics [61, 62], nano-magnetism [58, 63], superconductivity [64, 65] and strain sensing [66–68]. The main advantage of FEBID as compared to conventional lithographic techniques is that, being a direct-write technique, intermediate steps such as resist-coating, developing, metal deposition and lift-off are not necessary. In this way, possible modifications of the surface chemistry and shape of the nanostructures are bypassed. The majority of FEBID precursors are metalorganic which generally results in carbon-rich deposits with low metal content. This is the case for the platinum precursor MeCpPtMe3 (Me: methyl, Cp: cyclopentadienyl) which leads to a Pt content of 16–26at% [69]. The deposit consists of nm-sized grains of fcc Pt embedded in a carbon matrix and the distance between the grains is on the 1 nm scale [70]. Therefore, as-grown Pt FEBID deposits are nano-granular metals whose electrical transport is the result of the interplay of diffusive charge transport inside the Pt grains and thermally assisted tunneling between those grains [57]. The delocalization effects due to tunneling and the tendency for localization can be finely tuned from insulating to metallic behavior through a post-growth electron irradiation treatment [71–74]. Lately, several other methods have been reported adopting high temperature treatments (300°C–550°C) and/or exposure to O2, H2O or H-radicals [69, 75–81] or pulsed laser light exposure [82]. Although FEBID provides very defined structures, it has the disadvantage of a co-deposition halo in close proximity to the defined structure caused by precursor dissociation beyond the incident beam location mainly due to secondaries caused by backscattered electrons [83–86]. For SET fabrication with FEBID the halo can undermine device operation, e.g. by undesired charge trapping in localized states near the nano-island. In the work reported here we have used post-growth irradiation of a nano-granular Pt island positioned between pre-fabricated drain, source and gate electrodes in conjunction with in situ localized Ar+ ion-etching [87] in order to remove the halo in proximity of the island. By this we were able to tune the tunnel coupling strength inside the island and between the leads so that stable SET operation was achieved. The obtained results have been confirmed by capacitance simulations performed with the software Fastcap2 [88] and complementary simulations of the SET current–voltage characteristics based on the master equation approach, see e.g. [89, 90]. The observation of well-defined Coulomb oscillations indicates that FEBID-based SET structures can be useful as on-demand charge monitor devices with high lateral positioning flexibility and may serve as building blocks of more complex structures.

Experimental details

We used p-doped (100) silicon as substrate material insulated with a 200 nm thick thermally grown SiO2 layer on which contact electrodes of 35 nm Au/Cr were prepared by UV-lithography in a cross configuration. The chip was cleaned in a solution of H2O2 and H2SO4 in a 1:3 ratio (piranha solution) to remove any surface contaminants. The device definition entailing Ga+ ion-milling of the contacts, island deposition, post-growth irradiation and localized Ar+ ion-etching, was carried out in a dualbeam SEM/FIB microscope (FEI, Nova Nanolab 600) equipped with a Schottky electron emitter.

In the first step, a Ga+ ion beam with 30 kV acceleration voltage and 10 pA current was used to etch the cross region of the contacts in order to obtain a base SET design with two gates (figure 1(a)). The distance between source and drain electrodes was around 50 nm and the distance between the cross center and the two gate electrodes was 150 nm.

For FEBID of the nano-granular Pt island we used the precursor MeCpPtMe3 which was heated to 44 °C for 60 min prior to deposition. The precursor was injected in the SEM by a capillary with 0.5 mm inner diameter in close proximity to the focus of the electron beam on the substrate surface. The island was written with an electron beam energy of 15 keV, a current of 140 pA, 25 μs dwell time and 200 passes. The chamber pressure during deposition was about 7.5 × 10⁻⁶ mbar. In order to increase the inter-grain tunnel coupling inside the islands, the islands were subjected to a post-growth electron irradiation treatment. This was carried out 3 h after deposition in order to ensure complete removal of residual precursor before the irradiation. Samples A and B, presented here, were treated with irradiation doses of 3 μC μm⁻² and 1 μC μm⁻², respectively. Samples subjected to lower irradiation doses were also fabricated but are not reported here since they did not show SET behavior.

As a last step in SET fabrication, the island region was subjected to localized Ar+ ion-etching inside the SEM using a beam induced polishing and sputtering system installed in our SEM by Thermo Fisher Scientific [87]. A
localized Ar flow over the sample was provided by a capillary having an inner radius of 17.5 μm which was positioned in close proximity to the sample. The substrate was tilted by 45° from the e-beam axis, maintaining 100 μm distance in vertical direction from the Ar gas nozzle. A voltage of 100 V was applied between the gas nozzle and the substrate surface. Ionization of the Ar flux was established by scanning the e-beam over a slit previously cut with the Ga⁺+ FIB close to the nozzle aperture (see figure 1(b)). Thus generated thermal Ar⁺ ions were accelerated in the electrostatic field between the nozzle and the substrate causing sputtering of the sample surface over a disc-like field of approximately 20 μm diameter. The island region was exposed for 60 s overall etching time divided in 15 s intervals. This ion etching timing was chosen such that the in situ measured drain-source resistance at room-temperature ended up in the range of 500 kΩ–5 MΩ.

After fabrication the samples were inserted in a 3He cryostat equipped with a vacuum-sealed insert. The time period between venting the SEM and mounting the samples in the evacuated cryostat insert was kept as short as possible in order to minimize deposit aging effects [77, 91]. Current–voltage curves were taken at the lowest accessible temperature of 270 mK and up to 160 K. For the measurements a Keithley two-channel sourcemeter (model 2636A) was used. The source contact was forced to ground potential defined by the insert. Data were taken in two-probe geometry. Contact and wiring resistances were about 300 Ω as was verified by complimentary four-probe measurements.

Results

In figure 2(a) we show a SEM image of sample A and in figure 2(b) the corresponding circuit diagram. The tunnel junctions drain-island (Jdi) and island-source (Jis) can be represented as capacitances (Cis, Cdi) and resistors in parallel (Ris, Rdi), respectively. The island is capacitively coupled to two gates having the capacitances Cgs1 and Cgs2. The two gate capacitances act in parallel and are connected to the gate voltage source Vgs. The total gate
Capacitance is $C_{cc} = C_{gs} + C_{gd} + C_0$, where C_0 is the background capacitance formed by the gate electrodes and the p-doped Si substrate.

Before the exposure to the Ar^+ ion-etching, Sample A and Sample B showed a total resistance $(R_{tt} = R_{ds} + R_{ss})$ at room-temperature (290 K) of 2.7 kΩ and 6.3 kΩ, respectively. Their resistance strongly decreased after exposing them to 60 s (in 15 s intervals) of Ar^+ ion-etching. In particular, after the etching process and still inside the SEM chamber Sample A had a total resistance of 1.6 MΩ and Sample B of 2.8 MΩ. These resistance values did not change by more than 5%–10% towards low temperature.

In Figure 3(a) we present the current–voltage characteristics of sample A at 270 mK for various gate voltages in 0.05 V steps up to 5 V. The diamond-shaped features around zero drain-source voltage V_{ds} as well as the step-like increase of the drain-source current I_{ds} versus V_{ds} at a gate-voltage dependent threshold voltage (Coulomb blockade) are typical for a functional SET [90, 92–94]. In particular, the first step-like increase is due to the probability $p(n = ±1)$ of having one excess charge on the island beginning to increase from 0. In parallel, the probability $p(n = 0)$ of having no excess charge begins to fall from 1. At the second step in addition the probability of having two excess charges $p(n = ±2)$ starts to rise from zero at the expense of the probability $p(n = 0)$.

A particularly clear representation of the Coulomb blockade regions is provided by the stability diagram shown in Figure 4(a), where the differential conductance dI/dV as obtained by numerical differentiation of the I–V curves from figure 3(a) is drawn as filled contours versus V_{gd} and V_{gs}. Apparently, the Coulomb blockade diamonds appear periodically and with constant shape. We observe the largest Coulomb blockade for $V_{gs} = 0.15$ V which repeats itself every 0.75 V interval. This interval corresponds to $\frac{1}{e}$, where e is the electron
charge. From this we obtain \(C_{gg} = 0.21 \, \text{aF} \). The initial shift of 0.15 V on the \(V_{gg} \)-axis is due to a background charge of \(Q_0 = C_{gg} \times (0.75 - 0.15) \, \text{V} \) leading to \(Q_0 = 0.76|e| \).

Analyzing further, from the maximum threshold voltage \(V_{ds}^{\text{max}} \) the capacitance \(C_S \) can be derived using \(V_{ds}^{\text{max}} = \frac{|e|}{C_S} \) with \(C_S = C_{di} + C_{is} + C_{gg} \). The symmetric shape of the diamonds furthermore indicates that the two junction capacitances are very similar \((C_{si} \approx C_{di}) \) and that the gate capacitance is small in relation \((C_{gg} \ll C_{si}) \). The remaining capacitances and the charging energy \(E_C \) can now be extracted from the stability diagram. We obtain \(C_{gg} \approx C_{di} = 2.06 \, \text{aF}, C_S = C_{gg} + 2C_{Is} \approx 4.33 \, \text{aF} \) and \(E_C = \frac{|e|^2}{C_S} \approx 0.018 \, \text{eV} \).

In figure 4(b) we show for sample A the gate-voltage dependent current through the island for different drain-source voltages as indicated. Peaks in the current—the Coulomb oscillations—occur whenever the Coulomb blockade is suppressed due to the gate voltage. The excess charge confined to the island in the blockade region is quantized and each peak is associated with the change of the total excess charge by one electron.

We now turn to the temperature dependence of the device characteristic. Thermally assisted tunneling through the barriers leads to a shrinkage of the Coulomb blockade region. In figure 5 we present the evolution of the \(I_d(V_{ds}) \)-characteristics for \(V_{gs} = 0 \) for a selection of temperatures. With increasing temperature the Coulomb blockade region shrinks until at about 160 K the Coulomb blockade is completely gone and the \(I-V \) characteristic becomes linear. This corresponds favorably with the calculated charging energy \(E_C = 0.018 \, \text{eV} \) which implies about 210 K thermal energy. From this, reasonable SET operation for sample A is expected up to about \(T_{\text{max}} \approx 30 \, \text{K} \), corresponding to the criterion \(E_C > 7k_B T_{\text{max}} \).

We now show selected results obtained for sample B, which has been subjected to a smaller post-growth irradiation dose. A SEM image is presented in figure 6.

Similar to sample A, sample B shows Coulomb blockade regions in the stability diagram (see figure 7(a)). However, the diamonds are not simply periodic with increasing \(V_{gs} \). This is also apparent from figure 7(b) which reveals a much more complex structure of the Coulomb oscillations. In addition, the threshold voltages are diode-like asymmetric reaching maximum absolute values of 0.023 and 0.015 V for positive and negative bias, respectively (see figure 8). This corresponds to less than half the value observed for sample A. We conclude this section by noting that for sample B, in contradistinction to sample A, the Coulomb blockade disappears already for \(T \) larger than about 77 K, as is expected due to the smaller charging energy.

Discussion

We begin our discussion by analyzing whether the device parameters \((C_{si} \approx C_{di}, C_{gg}) \) deduced from the stability diagram are plausible with regard to the device geometry and material properties. In a first step a 3D-model of the devices was generated considering the geometry of sample A. This is straightforward for the pre-defined drain, source and gate electrode structures but less so with regard to the nano-granular Pt island. For this we assumed an overall composition of Pt\(_{17}\)C\(_{83}\) consistent with the beam parameters during deposition. For the island geometry after the irradiation treatment we assumed a core–shell configuration with a metallic Pt core of semi-spherical shape with 37 nm diameter and a hollow carbon semi-spherical shell of 3.5 nm thickness. The
SET model structure was located on top of a homogenous SiO₂ dielectric with a relative dielectric constant of 3.7 at 0.3 K \[95\]. Ga⁺-ions implantation \[96\] in the SiO₂ did not lead to appreciable leakage between source and drain contacts as evidenced by a current level of about 0.1 pA at 2 V after Ga⁺-milling. The p-doped Si was assumed to be either metallic, thus representing an additional electrode, or insulating, as is expected to be the case at 0.3 K. The results of the capacitance calculation reported here refer to the insulating case. Next, all surfaces of the model were subdivided into small quadrangular- or triangular-shaped elements (see figure 9) which were used in capacitance calculations employing Fastcap2 \[88\], a fast field solver that uses an adaptive multipole algorithm based on a generalized conjugate residual iterative technique that allows to solve for the elements of the capacitance matrix. The capacitances resulting from the simulation were \(C_{is} = C_{di} = 2.03 \text{ aF}\) and \(C_{gs} = 0.14 \text{ aF}\) in very reasonable agreement with the deduced experimental values.

We proceed now to simulating the SET \(I-V\) characteristics. To this end we employ the master equation approach in the stationary case, as, e.g. detailed in \[99\]. Very briefly, we calculate the tunneling rates between the island and the drain and source electrodes using Fermi’s golden rule under the assumption of energy-independent tunnel matrix elements. These rates depend on the change of free energy of the SET as the island charge is changed by \(\pm |e|\). In addition, we calculate the probabilities for excess charge occupation \(p(n)\) of the island from the probability continuity equations assuming stationary conditions. This then allows us to calculate the drain-source current for any given drain-source and gate voltage. We used the capacitance values deduced from the stability diagram of sample A. The junction resistances at low temperatures are not known to us, since we could not measure to such high \(V_{ds}\) values to be in the linear regime without destroying the SET structure.

Figure 6. SEM image of sample B.

Figure 7. (a) Stability diagram of sample B. The diamonds are not simply periodic and do also vary in size in contradistinction to the stability diagram of sample A (figure 4 (a)). The black, red and blue lines correspond to the \(V_{gs}\) values for which the Coulomb oscillations in (b) are reported. (b) Complex Coulomb oscillation characteristic for sample B for different \(V_{gs}\) as indicated.
However, by comparing our simulation results for $I_{ds}(V_{ds})$ for different values of $R_{is} = R_{di}$ with the measured I–V characteristics, we found good correspondence for $R_{is} = R_{di} = 750 \, \Omega$ or $R_{is} + R_{di} = 1.5 \, \text{M} \Omega$ which is almost identical with the measured room-temperature drain-source resistance of sample A. In figure 8 we show the results of our simulations of the stability diagram and the Coulomb oscillations for direct comparison with the experimental data presented in figure 4. The agreement is quite satisfactory, as is particularly evident by directly comparing the experimental results (device parameters, current peak positions of Coulomb oscillations) with the simulation, see figure 11. The values differ by less than 5%.

We now turn to the specific advantages we see in using the SET fabrication approach presented here. Starting from the UV-lithography contacts the complete SET fabrication as well as electrical testing can be done in situ. This is a clear advantage when using a direct-write technique such as FEBID in the prototyping stage or for few device fabrication. An additional advantage lies in the type of island material deposited. The island consists of a nano-granular metal with only 2–3 nm Pt grain size [70]. Nano-granular metals are tunable systems in which the electronic properties are the result of the interplay of the diffusive charge transport inside the grains and the (thermally assisted) tunnel processes between the grains combined with the essential features of general disordered system [57, 97]. By means of the post-growth irradiation treatment the inter-granular tunnel coupling strength can be finely tuned in the vicinity of the critical tunnel coupling at which an insulator-metal
transition occurs in the three-dimensional case [72]. This increase in tunnel coupling strength derives mainly from an enhanced graphitization of the carbon matrix [71].

As indicated in figure 12, different transmission channels exist which can be described through different types of conductances normalized to the quantum conductance G_0: g_0, the intra-grain conductance, g, the conductance between an electrode lead and the most favorable metal grain in the island, and g', the conductance between the grains in the island. g' is an effective quantity and may itself be written following Landauer [98] as the sum of all conductance channels the electron has when propagating through the nano-granular island. For a nano-granular metal the identification of the most important conductance channels is a hard problem due to the large charging energies associated with the small grain size [97]. If $g' \ll 1$, the island is insulating at low temperatures. On the other hand, if $g' \gg 1$ the nano-granular island is metallic. Considering that $g_0 \gg g, g'$ we are left with different regimes depending on the ratio g'/g. For $g'/g \gg 1$ the island is behaving as a metallic system and the device resistance is dominated by the small parameter g. In the weak lead-coupling regime $g \ll G_0$ the charge is quantized and confined to the island. This represents the standard working regime of a SET. For $g'/g \approx 1$ and if $g' \geq 1$ at least one of the junctions is in the strong lead-coupling regime. In this case the probability of co-tunneling is strongly enhanced resulting in undesired leakage currents through the SET [99].

Here the nano-granular nature of the island can improve the situation, since for $g' \approx 0.1$ co-tunneling events spanning from drain to source can be effectively blocked if the number of grains is not too small. Yet, the conductance inside the island is still large enough to not compromise its quasi-metallic behavior. For this reason, the use of FEBID for nano-granular island definition in conjunction with post-growth irradiation allows for fine tuning the device towards effective suppression of leakage currents in the Coulomb blockade regime. Finally, if $g'/g \ll 1$ the device is too highly resistive. In our case, sample A shows very defined and reproducible Coulomb diamonds and Coulomb oscillations typical of a device with metallic island. The irradiation dose of
3 μC μm⁻² used for this sample relates to bulk nano-granular Pt FEBID deposits with quasi-metallic behavior of the temperature-dependent conductance [72]. For a single island, this dose appears to be enough to promote metallic behavior. In contradistinction, for sample B (irradiation dose 1 μC μm⁻²) the Coulomb diamonds and the Coulomb oscillations are not as well defined, albeit still clearly visible. We speculate that for this dose g′ is slightly too small, so that different excess charge trapping distributions over the nano-grains in the island occur with comparable probability. We consider this multiplicity of charge trapping states within the island to be the most important factor for the weaker performance of sample B. An additional factor to be considered is that for lower irradiation doses one expects an increased island to drain/source resistance for otherwise identical geometrical dimensions. Furthermore, the effective dielectric constant of the carbon matrix of the island does also depend on the irradiation dose.

We conclude our discussion with some remarks concerning the halo. As a consequence of the post-growth irradiation of the island region an associated conductance increase of the halo may be promoted. This can and does cause several problems, such as leakage currents, parasitic capacitances and charge trapping, all of which compromise SET operation. In preceding experiments comparable structures not treated with Ar⁺ ion-etching did not show any evident conductance dependence on Vgs. From this we conclude that the Ar⁺ ion-milling step for halo removal is essential. The parallel milling of the island and part of the leads is uncritical as the halo thickness is only in the 1 nm range for nano-islands of the size fabricated in this work. Nevertheless, the brief milling step is apparently enough to remove electrostatic inhomogeneities around the island. Thanks to the in situ electrical monitoring of the source-drain current in between the Ar⁺ ion-milling intervals, the associated resistance increase could be nicely followed and ensured that the conditions for which Coulomb blockade effects occur can be met, such as R_{ds/di} 26 kΩ.

Conclusions

In this work we present the focused electron beam induced deposition direct-write fabrication of lateral-gate single electron transistors where the nano-island consists of a nano-granular Pt dot of roughly semi-spherical shape of about 40 nm diameter. By means of a post-growth electron irradiation treatment of the island, we were able to tune the tunnel-coupling strength between the Pt grains in the island, as well as the junction couplings to source and drain. By this, different transport regimes of the SET are established. As a result of localized Ar⁺ ion-etching undesired co-deposit in the island region is removed, a process that can be conveniently monitored by in situ drain-source conductance measurement. By drain-source I–V characteristics measured for different gate voltages and at different temperatures we demonstrate stable transistor operation for SET structures subject to optimally tuned post-growth irradiation doses. Capacitance simulations of the working device and simulations of the SET I–V curves are found to be in very good agreement with the experimental data. We consider our approach to be particularly useful for prototyping and single to few SET device fabrication with high flexibility.

Acknowledgments

GDP acknowledges financial support by the Beilstein-Institut, Frankfurt am Main. MH acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG) under grant no. HU 752/11-1 and through the
priority program 1928 (Coordination Networks: Building Blocks for Functional Systems) under grant no. HU 752/12-1.

OCRID iDs

Giorgia Di Prima © https://orcid.org/0000-0001-8228-1595

References

[1] Averin D V and Likharev K K 1992 Possible applications of the single charge tunneling Single Charge Tunneling (Boston, MA: Springer) p 311
[2] Nakamura Y, Chen C and Tsai J 1996 100 K operation of al-based single-electron transistors Jpn. J. Appl. Phys. 35 L1465
[3] Yano K, Ishii K T, Hashimoto T, Kobayashi T, Murai F and Seki T 1994 Room-temperature single-electron memory IEEE Trans. Electron Devices 9 1628
[4] Chen R H and Likharev K K 1998 Multiple-junction single-electron transistors for digital applications Appl. Phys. Lett. 72 621
[5] Korotkov A N, Chen R H and Likharev K K 1995 Possible performance of capacitively coupled single-electron transistors in digital circuits J. Appl. Phys. 78 2520
[6] Inokawa H, Fujitawa A and Takahashi Y 2002 A merged single-electron transistor and metal-oxide-semiconductor transistor logic for interface and multiple-valued functions Jpn. J. Appl. Phys. 41 2566
[7] Lafarge P, Pothier H, Williams E R, Esteve D, Urbina C and Devoret M H 1991 Direct observation of macroscopic charge quantization Physik B 327 327
[8] Krupenin V A, Presnov D E, Zorin A B and Niemeyer J 2000 Aluminium single electron transistors with islands isolated from the substrate J. Low Temp. Phys. 118 287
[9] Schoelkopf R J, Wahlgren P, Kozhevnikov A A, Delsing P and Prober D E 1998 The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer Science 280 1238
[10] Wei Y Y, Weis J, Klitzing K V and Eberl J 1997 Single-electron transistor as an electrometer measuring chemical potential variations Appl. Phys. Lett. 71 2514
[11] Kouwenhoven L P 1992 Quantized current in a quantum dot turnstile Phys. Scr. 1992 133
[12] Pothier H H, Lafarge P, Urbina C, Esteve D and Devoret M H 1992 Single-electron pump based on charging effects Europhys. Lett. 17 249
[13] Kautz R L, Keller W M and Martinis J M 1999 Leakage and counting errors in a seven-junction electron pump Phys. Rev. B 60 8199
[14] Tiwari S, Rana F, Hanafi H, Hartstein A, Crabbé E F and Chan K 1996 A silicon nanocrystals based memory Appl. Phys. Lett. 68 1377
[15] Guo L, Leobandung E and Chou S Y 1997 A room-temperature silicon single-electron metal-oxide-semiconductor memory with nanoscale floating-gate and ultranarrow channel Appl. Phys. Lett. 70 850
[16] Devoret M H and Schoelkopf R J 2000 Amplifying quantum signals with the single-electron transistor Nature 406 1039
[17] Zhuang L, Guo L and Chou S Y 1998 Silicon single-electron quantum-dot transistor switch operating at room temperature Appl. Phys. Lett. 72 1205
[18] Kim S I, Lee J J, Kang H J, Choi J B, Yu Y S, Takahashi Y and Hasko D G 2012 One electron-based smallest flexible logic cell Appl. Phys. Lett. 101 183101
[19] Maeda K, Okabayashi N, Kano S, Takeshita S, Tanaka D, Sakamoto M, Teranishi T and Majima Y 2012 Logic operations of chemically assembled single-electron transistor Nano 6 2798
[20] Liang W, Shores M P, Bockrath M, Long J R and Park H 2002 Kondo resonance in a single-molecule transistor Nature 417 725
[21] Henderson J J, Ramsey C M, Del Barco E, Mishra A and Christou G 2007 Fabrication of nanogapped single-electron transistors for transport studies of individual single-molecule magnets J. Appl. Phys. 9 E102
[22] Knobel R G and Cleland A N 2003 Nanometre-scale displacement sensing using a single electron transistor Nature 424 291
[23] Blencowe M P and Wybourne M N 2000 Sensitivity of a micromechanical displacement detector based on the radio-frequency single-electron transistor Appl. Phys. Lett. 77 3845
[24] Jain B, Vinod Kumar K, Santhi Bhushan B, Gaurav K, Pattanaik M and Srivastava A 2018 A tetracene-based single-electron transistor as a chloride sensor J. Comput. Electron. 17 1515
[25] Karre P S K, Acharya M, Knudsen W R and Bergstrom P L 2008 Single electron transistor-based gas sensing with tungsten nanoparticles at room temperature IEEE Sens. J. 8 797
[26] Weimann T, Wolf H, Scherer H, Niemeyer J and Krupenin V A 1997 Metallic single electron devices fabricated using a multilayer technique Appl. Phys. Lett. 71 713
[27] Sillanpää M A and Hakonen P J 2002 Titanium single-electron transistor fabricated by electron-beam lithography Physica E 15 41
[28] Dolata R, Scherer H, Zorin A B and Niemeyer J 2003 Single electron transistors with Nb/AIOx/Nb junctions J. Vac. Sci. Technol. B 21 775–80
[29] Persson S H M, Olofsson L, Hedberg L, Sutherland D and Olsson E 1998 A self-assembled single-electron tunneling device Ann. New York Acad. Sci. 852 188
[30] Brink M 2007 Imaging single-electron charging in nanostructures by low-temperature scanning force microscopy PhD Thesis Cornell University
[31] Brenning H T A, Kubatkin S E, Ertz D, Kafanov S G, Bauch T and Delsing P 2006 A single electron transistor on an atomic force microscope probe Nano Lett. 6 937
[32] Bolotin K I, Kuemmeth F, Pasupathy A N and Ralph D C 2004 Metal-nanoparticle single-electron transistors fabricated using electromigration Appl. Phys. Lett. 84 3154
[33] Park H, Lim A K L, Alivisatos A P, Park J and McEuen P L 1999 Fabrication of metallic electrodes with nanometer separation by electromigration Appl. Phys. Lett. 75 301
[34] Ito M, Yagi M and Shirakashi H 2018 Fabrication of single-electron transistors with electromigrated Ni nanogaps AIP Adv. 8 075210
[35] Moriya R, Kobayashi H, Shibata K, Masubuchi S, Hirakawa K, Iida H, Arakawa Y and Mac Hida T 2010 Fabrication of single-electron transistor composed of a self-assembled quantum dot and nanogap electrode by atomic force microscope local oxidation Appl. Phys. Express 3 035001
[36] Matsumoto K, Ishii M, Segawa K, Oka Y, Vartanian B J and Harris J S 1996 Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanoxidation process for the TiOx/Ti system Appl. Phys. Lett. 68 34
[37] Parks J J, Champagne A R, Hutchison G R, Flores- Torres S, Abruña H D and Ralph D C 2007 Tuning the Kondo effect with a mechanically controllable break junction Phys. Rev. Lett. 99 026601
[38] Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Conductance of a molecular junction Science 278 252
[39] Tsai L C, Cheng I C, Tu M C, Chen C D and Lin H Y 2010 Formation of single-electron transistors using self-assembly of nanoparticle chains J. Nanopart. Res. 12 2859
[40] Azuma Y, Suzuki S, Maeda K, Okabayashi N, Tanaka D, Sakamoto M, Teranishi T, Buitelaar M R, Smith C G and Majima Y 2011 Nanoparticle single-electron transistor with metal-bridged top gate and nanogap electrodes Appl. Phys. Lett. 99 1
[41] Junno T, Magnusson M H, Carlsson S B, Deppert K, Malm J O, Montelius L and Samuelson L 1999 Single-electron devices via controlled assembly of designed nanoparticles Microelectron. Eng. 47 179
[42] Okabayashi N, Maeda K, Muraki T, Tanaka D, Sakamoto M, Teranishi T and Majima Y 2012 Uniform charging energy of single-electron transistors by using size-controlled Au nanoparticles Appl. Phys. Lett. 100 1
[43] Gerasimov V Y, Shorokhov V V and Snigirev O V 2015 Electron transport through thiolized gold nanoparticles in single-electron transistor J. Supercond. Novel Magn. 28 781
[44] Bitton O, Gutman D B, Berkovits R and Friedman A 2017 Multiple periodicity in a nanoparticle-based single-electron transistor Nat. Commun. 8 8
[45] Ch Postma H W, Teepen T, Yao Z, Grifoni M and Dekker C 2001 Carbon nanotube single-electron transistors at room temperature Science 293 76
[46] Seike K, Kanai Y, Ohno Y, Mochashi K, Inoue K and Matsumoto K 2015 Carbon nanotube single-electron transistors with single-electron charge storage Japan. J. Appl. Phys. 54
[47] Khademhosseini V, Dideban D, Ahmad M T, Ismail R and Heidari H 2018 Single electron transistor scheme based on multiple quantum dot islands: carbon nanotube and fullerene ECS J. Solid State Sci. Technol. 7 M1145
[48] Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P and McEuen P L 2000 Nanomechanical oscillations in a single-C60 transistor Nature 407 57
[49] Nasr A, Boubaker A, Hafi B, Khalid W and Kalboushi A 2018 High-sensitivity sensor using 60-single molecule transistor IEEE Sens. J. 18 248
[50] Park J et al 2002 Coulomb blockade and the Kondo effect in single-atoms transistors Nature 417 722
[51] Komuro M and Hiroshima H 1997 Fabrication and properties of dot array using electron-beam–induced deposition Microelectron. Eng. 35 273
[52] Miura N, Umaguchi T N, Amada A Y, Onagai M K and Hirakashi J S 1998 Room temperature operation of amorphous carbon-based single-electron transistors fabricated by beam-induced deposition techniques Jpn. J. Appl. Phys. 37 423
[53] Fang J, Qin S, Zhang X, Liu D and Chang S 2014 Annealing effect of platinum–incorporated nanowires created by focused ion/ electron-beam–induced deposition Chin. Phys. B 23 081111
[54] George H C, Orlova T A, Orlov O A and Snider G L 2011 Novel method for fabrication of nanoscale single-electron transistors: Electron beam deposition of Pt and atomic layer deposition of tunnel barriers J. Vac. Sci. Technol. B 29 06FB01
[55] Durran Z A K, Jones M E, Wang C, Scotuzzi M and Hagen C W 2017 Electron transport and room temperature single-electron charging in 10 nm scale Pt–C nanostructures formed by electron beam induced deposition Nanotechnology 28 474002
[56] Utke I, Hoffmann P and Melngailis J 2008 Gas-assisted focused electron beam and ion beam processing and Fabrication J. Vac. Sci. Technol. B 26 1197
[57] Huth M, Porратi F and Dobrovolskiy O V 2018 Focused electron beam induced deposition meets materials science Microelectron. Eng. 185 3
[58] Keller L and Huth M 2018 Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition Betl. J. Nanotechnol. 9 2581
[59] Edinger K, Wolff K, Steigerwald H, Auth N, Spies P, Oster J, Schneider H, Budach T, Hofmann M and Waiblinger M 2014 Bringing mask repair to the next level Proc. SPIE 9235 92500R
[60] Liang T, Freundberg E, Lieberman B and Sivers A 2005 Advanced photolithographic mask repair using electron beams J. Vac. Sci. Technol. B 23 3101
[61] Winkelr K, Schmidt F, Haselmann U, Fowleske J, Lewis B B, Kothleitner G, Rack P D and Plank H 2017 Direct-write 3D nanoprinting of plasmonic structures ACS Appl. Mater. Interfaces 9 8233
[62] De Angelis F, Liberale C, Colacuo M L, Cojoc F and Di Fabrizio E 2011 Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies Nanoscale 3 2689
[63] Pablo-Navarro J, Magen C and De Teresa J M 2016 Three-dimensional core–shell ferromagnetic nanowires grown by focused electron beam induced deposition Nanotechnology 27 3
[64] Sengupta S, Li G, Baumeier C, Kasumov A, Guérion S, Bouchiat H and Fortuna F 2015 Superconducting nanowires by electron-beam-induced deposition Appl. Phys. Lett. 106 042601
[65] Winhold M, Weirich P M, Schwab C H and Huth M 2014 Superconductivity and metallic behavior in Pb,Cu,S systems prepared by focused electron beam induced deposition Appl. Phys. Lett. 105 162603
[66] Schwab C H et al 2010 A tunable strain sensor using nanogranular metals Sensors 10 9847
[67] Dukic M, Winhold M, Schwab C H, Adams J D, Stavrov V, Huth M and Fantner G E 2016 Direct–write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers Nat. Commun. 7 12487
[68] Moczala M, Kwoła K, Piasecki T, Kunicki P, Sierakowski A and Gotszalk T 2017 Fabrication and characterization of micromechanical bridges with strain sensors deposited using focused electron beam induced technology Microelectron. Eng. 176 111
[69] Mulders J J L, Belova I M and Riazanova A 2011 Electron beam induced deposition at elevated temperatures: compositional changes and purity improvement Nanotechnology 22 055502
[70] De Teresa J M, Córdoba R, Fernández-Pacheco A, Montero O, Strichovanec P and Ibarra M R 2009 Origin of the difference in the resistivity of as-grown focused-ion- and focused-electron-beam-induced Pt nanodeposits J. Nanomater. 936863
[71] Porrat F, Sachser R, Schwab C H, Frangakis A S and Huth M 2011 Tuning the electrical conductivity of Pt-containing granular metals by postgrowth electron irradiation J. Appl. Phys. 109 063715
[72] Sachser R, Porrat F, Schwab C H and Huth M 2011 Universal conductance correction in a tunable strongly coupled nanogranular metal Phys. Rev. Lett. 107 206803
[73] Frabboni S, Gazzadi G C, Felisari L and Spessot A 2006 Fabrication by electron beam induced deposition and transmission electron microscopy characterization of sub-10-nm freestanding Pt nanowires Appl. Phys. Lett. 88 213116
[74] Plank H, Kothleitner G, Hofer F, Michelitsch S G, Gspan C, Hohenau A and Krenn J 2011 Optimization of postgrowth electron-beam curing for focused electron-beam-induced Pt deposits J. Vac. Sci. Technol. B 29 051501
[75] Botman A, Mulders J J L, Weemaes R and Mentink S 2006 Purification of platinum and gold structures after electron-beam-induced deposition Nanotechnology 17 3779
[76] Frabboni S, Gazzadi G C and Sponsot A 2007 TEM study of annealed Pt nanostructures grown by electron beam-induced deposition Physica E 37 265
[77] Botman A, Hesselberth M and Mulders J J L 2008 Improving the conductivity of platinum-containing nanostructures created by electron-beam-induced deposition Microelectron. Eng. 85 1139
[78] Mehandale S, Mulders J J L and Trompenaars P H F 2013 A new sequential EBID process for the creation of pure Pt structures from MeCpPtMe3, Nanotechnology 24 145303
[79] Geier B, Gspan C, Winkler R, Schmied R, Fowlkes J D, Fitzek H, Rauch S, Rattenberger J, Rack P D and Plank H 2014 Rapid and highly compact purification for focused electron-beam-induced deposits: a low temperature approach using electron stimulated H2O reactions J. Phys. Chem. C 118 14009
[80] Sachser R, Reith H, Huzel D, Winhold M and Huth M 2014 Catalytic purification of directly written nanostructured Pt microelectrodes ACS Appl. Mater. Interfaces 6 15868
[81] Villamor E, Casanova F, Trompenaars P H F and Mulders J J L 2015 Embedded purification for electron beam induced Pt deposition using MeCpPtPMes, Nanotechnology 26 095303
[82] Stanford M G, Lewis B B, Noh J H, Fowlkes J D, Roberts N A, Plank H and Rack P D 2014 Purification of nanoscale electron-beam-induced platinum deposits via a pulsed laser-induced oxidation reaction ACS Appl. Mater. Interfaces 6 21256
[83] Van Dorp W F, Van Someren B, Hagen C W, Kruit P and Crozier P A 2005 Approaching the resolution limit of nanometer-scale electron beam-induced deposition Nano Lett. 5 1303
[84] van Oven J C, Berwald F, Berggren K K, Kruit P and Hagen C W 2011 Electron-beam-induced deposition of 3-nm-half-pitch patterns on bulk Si, J. Vac. Sci. Technol. B 29 06F305
[85] Crozier P A 2008 Proximity effects in nanoscale patterning with high resolution electron beam induced deposition J. Vac. Sci. Technol. B 26 249
[86] Plank H, Smith D, Haber T, Rack P D and Hofer F 2012 Fundamental proximity effects in focused electron beam induced deposition ACS Nano 6
[87] Mulders J J L and Trompenaars P H F 2016 An in-situ low energy argon ion source for local surface modification European Microscopy Congress 2016: Proceedings (Hoboken, NE: Wiley) (https://doi.org/10.1002/9783527808465.EMC2016.6024)
[88] Nabor S, Kim S and White J 1992 Fast capacitance extraction of general three-dimensional structures IEEE Trans. Microw. Theory Tech. 40 1496
[89] Kulik I O and Shekhter R I 1975 Kinetic phenomena and charge discreteness effects in granular media Sov. Phys.—JETP 41 308
[90] Averin D V and Likharev K K 1986 Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions J. Low Temp. Phys. 62 345
[91] Winhold M 2015 Focused electron-beam-induced deposition, from process optimization to cantilever-based strain-sensing applications using nanogranular tunneling resistors PhD Thesis Johann Wolfgang Goethe Universität in Frankfurt am Main
[92] Grabert H and Devoret M H 1993 Single charge tunneling, Coulomb blockade phenomena in nanostructures Adv. Sci. Inst. Ser. B 294 335
[93] Meirav U and Foxman E B 1996 Single-electron phenomena in semiconductors Semicond. Sci. Technol. 11 235
[94] Nazarov Y V and Blanter Y M 2010 Quantum Transport: Introduction to Nanoscience (New York: Cambridge University Press) (https://doi.org/10.10119/1.3431333)
[95] McCammon R D and Work R N 1965 Measurement of the dielectric properties and thermal expansion of polymers from ambient to liquid helium temperatures Rev. Sci. Instrum. 36 1169
[96] Giannuzzi L A and Stevie F A (ed) 2005 Introduction to Focused Ion Beams (Boston, MA: Springer) (https://doi.org/10.1007/b101190)
[97] Beloborodov I S, Lopatin A V and Vinokur V M 2005 Coulomb effects and hopping transport in granular metals Phys. Rev. B 72 1
[98] Landauer R 1957 Spatial variation of currents and cations Rev. Mod. Phys. 29 64
[99] Furusaki A and Matveev K A 1995 Coulomb blockade oscillations of conductance in the regime of strong tunneling Phys. Rev. Lett. 75 709