FINITE GENERATION IN C^*-ALGEBRAS
AND HILBERT C^*-MODULES

DAVID P. BLECHER AND TOMasz KANIA

ABSTRACT. We characterize C^*-algebras and C^*-modules such that every proper maximal right ideal (resp. right submodule) is algebraically finitely generated. In particular, C^*-algebras satisfy the Dales–Zelazko conjecture.

1. INTRODUCTION

Magajna’s paper [10] characterizing C^*-modules consisting of compact operators has been much emulated, as is revealed by a cursory search in a citation index. Here we prove a complementary characterization, inspired by the recent Dales–Zelazko conjecture that if A is a unital Banach algebra all of whose maximal right ideals are algebraically finitely generated as right modules over A, then A is finite dimensional [8]. Indeed the instigation of this paper was a question Dales asked independently of both authors, and which both authors answered around August 2012, as to whether this conjecture was true for C^*-algebras. (He was able to answer this for special classes of C^*-algebras.) One ingredient of the solution is a characterization of algebraically finitely generated one-sided ideals in C^*-algebras. Although this is well known to experts (the algebraically finitely generated projective modules over a C^*-algebra constitute one of the common ways to picture its K-theory, and hence are well understood), we could not find it in the literature. Thus we include a direct proof due to Rørdam, as well as a very short C^*-module proof. We then use this to characterize C^*-algebras and C^*-modules such that every proper maximal right ideal (resp. right submodule) is algebraically finitely generated.

Turning to notation and background, A^1 is the unitization of the C^*-algebra A. By ‘projection’ in this paper we mean a selfadjoint idempotent e in A. Then e is a minimal projection in A if eAe is one dimensional (which if A is a von Neumann algebra, is equivalent to e having no nontrivial proper subprojections). For convenience we usually work with right modules in this paper. It is well known that all C^*-algebras have an abundant supply of proper maximal right ideals. This is equivalent to saying that the bidual A^{**}, which is a von Neumann algebra, has an abundant supply of nonzero minimal projections (see 3.13.6 in [12], or the paragraph before Lemma 2.2 below, for the correspondence between minimal projections and maximal right ideals). Indeed every right ideal is an intersection

Date: Jan 11, 2014.

The first author was supported by a grant from the NSF. We are also grateful to the QOP (Quantum groups, operators and non-commutative probability) research network and UK research council grant EP/K019546/1 for some assistance.

1
of proper maximal right ideals (see 3.13.5 in [12]). We will not really use the facts in the present paragraph though, except for those which we prove below.

Before we proceed we require a piece of terminology. Let H and K be Hilbert spaces. A closed subspace Z of $\mathcal{B}(K,H)$ is called a ternary ring of operators (or a TRO, for short) if it is closed under the ternary product, that is, $ZZ^*Z \subseteq Z$. Every Hilbert C^*-module Z may be viewed as a TRO by identifying it with the 1-2 corner of its linking algebra (see e.g. 8.1.19 and 8.2.8 in [2]). Thus we will write z^*w in place of (z,w) for elements in a right C^*-module Z. Also, the so-called compact operators $\mathbb{K}(Z)$ may be written as ZZ^* (here and below for sets X,Y we write XY for the closure of the span of products xy for $x \in X, y \in Y$). To say that two TRO’s are isomorphic as TRO’s means that there is a linear isomorphism between them which is a ternary morphism (that is, $T(xy^*z) = T(x)T(y)^*T(z)$). Hamana showed that this is equivalent to inducing a corner-preserving $*$-homomorphism between the Morita linking C^*-algebras of the TRO’s; and is also equivalent to being completely isometric as operator spaces (a result also contributed to by Harris, Kaup, Kirchberg, Ruan, and no doubt others. See e.g. [2] for references and self-contained proofs.

2. FINITELY GENERATED IDEALS

This following lemma is well known to experts, although we could not find a reference for it. We shall present a direct proof that we are grateful to Mikael Rørdam for having communicated to us.

Lemma 2.1. Every algebraically finitely generated closed left (resp. right) ideal of a C^*-algebra A is actually singly generated, and equals Ap (resp. pA) for an orthogonal projection $p \in A$.

Proof. We consider first the case where A is unital. Let $J \subseteq A$ be a closed left ideal. We shall use the following general fact: for each self-adjoint element $a \in J$ and each continuous function $f : [0, \infty) \to \mathbb{R}$ with $f(0) = 0$, we have $f(a) \in J$. (This follows by approximating f uniformly on the spectrum of a by real polynomials vanishing at 0.)

Suppose that J is generated as a left ideal by the elements a_1, \ldots, a_n for some $n \in \mathbb{N}$, and set $b = a_1^*a_1 + \cdots + a_n^*a_n \in J$. Then $b^{1/4}$ belongs to J by the above fact, so that $b^{1/4} = c_1a_1 + \cdots + c_na_n$ for some $c_1, \ldots, c_n \in A$. We may suppose that J is non-zero, which implies that b is non-zero, and consequently c_1, \ldots, c_n are not all zero. Since $x^*x + y^*y - (x^*y + y^*x) = (x - y)^*(x - y) \geq 0$ for any $x, y \in A$, we deduce that

$$a_j^*c_k^*c_ka_k + a_k^*c_k^*c_ja_j \leq a_j^*c_j^*c_ja_j + a_k^*c_k^*c_ka_k$$

for $j \neq k$. Hence

$$b^{1/2} = (b^{1/4})^{1/2} = \sum_{j,k=1}^n a_j^*c_j^*c_ka_k \leq n \sum_{j=1}^n a_j^*c_j^*c_ja_j \leq nK \sum_{j=1}^n a_j^*a_j = nKb,$$

where $K = \max_{1 \leq j \leq n} ||c_j||^2 > 0$. By elementary spectral calculus, this implies that the spectrum of b is contained in the set $\{0\} \cup [(nK)^{-2}, \infty)$, so that we can take a continuous
function $f: [0, \infty) \to [0, 1]$ such that $f(0) = 0$ and $f(t) = 1$ for each $t \geq (nK)^{-2}$. Then $p = f(b)$ is an orthogonal projection such that $pb = bp = b$, and p belongs to J by the fact stated above. In particular we have

$$0 = (1 - p)b(1 - p) = \sum_{j=1}^{n} (a_j(1 - p))^* a_j (1 - p),$$

which implies that $a_j = a_j p \in Ap$ for each $j \in \{1, \ldots, n\}$. Hence $J = Ap$, and the result follows.

Let us now consider the case where A is non-unital. Let J be a closed, finitely generated left ideal of A. Then J is finitely generated when regarded as a left ideal of A^1. Let p be an orthogonal projection in A^1 such that $J = A^1 p = \{x \in A^1 : xp = x\}$. Then $p = 1p \in J \subset A$, so $J = \{x \in A : xp = x\} = Ap$.

The right ideal case is similar or follows by symmetry by considering the opposite C^*-algebra.

\[\square \]

Remark. Lemma 2.1 also follows from a well known C^*-module 'generalization' of it, which is a basic result in the theory of Hilbert C^*-modules (see e.g. p. 255–257 in [14] or the proof of 8.1.27 in [2]). Namely, a right C^*-module Z over A is algebraically finitely generated over A iff there are finitely many $z_k \in Z$ with $z = \sum_k z_k z_k^* z$ for all $z \in Z$. Note that this immediately implies Lemma 2.1 by taking Z to be the right ideal in A in Lemma 2.1 in this case if $e = \sum_k z_k z_k^*$, which is in Z, then $e^2 = e$ and $e \geq 0$. So e is a projection in the right ideal, and now it is easy to see that this right ideal equals eA.

If K is a maximal right ideal in A then e, the complement of the support projection of K, is a minimal projection. This is well known (see 3.13.6 in [12]), but here is a simple argument for this. We recall that the support projection of K is the smallest projection $p \in A^{**}$ with $px = x$ for all $x \in K$. Thus e is the largest projection in A^{**} with $ex = 0$ for all $x \in K$. We will assume for simplicity that $e \in A$, which will be the case for us in Corollary 2.3 below, but the general case is very similar (but uses modifications of some steps below using Cohen factorization and 'second dual techniques' valid in any Arens regular Banach algebra, and one should replace eAe and eA below by $\{a \in A : a = eae\}$ and $\{a \in A : a = ea\}$). We will use only the well known fact that every non-trivial C^*-algebra has proper closed right ideals, e.g. the left kernel of any non-faithful state. If e is not minimal, that is if $A_e = eAe$ is not one dimensional, then A_e has a proper closed non-zero right ideal I, and $I = IA_e$ as usual. Then $W = IA$ is a closed right ideal of A. Note that $W \neq eA$ since $\{w \in W : we = w\} \subset I \neq A_e$. On the other hand, $K + W = A$ by maximality of K (note $K \cap W \subset (1 - e)A \cap eA = 0$). Thus $eA = e(K + W) = W$. This contradiction shows that e is a minimal projection.

Lemma 2.2. A C^*-algebra A is unital if even one maximal right ideal is algebraically finitely generated over A.

Proof. As we said above, the proper maximal right ideals in A have support projections whose complement is a minimal projection $q \in A^{**}$. On the other hand, if J is an algebraically finitely generated right ideal then by Lemma 2.1 the support projection of
J is in J. Thus if J is an algebraically finitely generated right ideal which is a proper maximal right ideal, then $1-q \in J \subset A$ for a non-zero minimal projection q in A^{**}. Hence $q = 1 - (1-q) \in M(A)$, and of course $qAq \neq (0)$ since $q \neq 0$. Therefore $(0) \neq qAq = Cq \subset A$, and so q and $1 = (1-q) + q$ are in A. So A is unital. □

Corollary 2.3. A C^*-algebra A is finite dimensional iff every maximal right ideal is algebraically finitely generated over A.

Proof. For the non-obvious direction, by Lemma 2.2 we may suppose that A is unital. Let J be the right ideal generated by all the minimal projections in A. If $J \neq A$ let K be a maximal (proper) right ideal of A containing J. The support projection of K is in A by the lemma at the start of our paper, hence its complement e is in A too. As we proved above Lemma 2.2 e is a minimal projection, and we obtain the contradiction $e \in J \subset K = (1-e)A$. So $A = J$, and therefore $1 = \sum_{k=1}^{n} e_k a_k = \sum_{k=1}^{n} a_k^* e_k$ for minimal projections e_k, and some $a_k \in A$. It is well known from pure algebra that $\dim(eAf) \leq 1$ for minimal $e, f \in A$ (a quick proof in our case where these are projections: if $v = eaf \neq 0$ then vv^* is a positive scalar multiple of f, so that left multiplication by v^* is an isomorphism $eAf \cong fAf$). From these facts it is clear that $A = \sum_{j,k=1}^{n} e_j A e_k$ is finite dimensional. □

Remark. Most of the last proof constitutes the well known fact that a unital Banach algebra with dense socle is finite dimensional (see e.g. 8.4.14 in [11]).

Corollary 2.4. A unital C^*-algebra A is finite dimensional iff A contains all minimal projections in A^{**}.

Proof. If A contains all such projections and J is a maximal right ideal in A, then the support projection p of J is in A (since its complement is a minimal projection). So $J = pA$. The result now follows from Corollary 2.3. □

Remark. One might ask which of the results above extend to an algebra A of operators on a Hilbert space, which is not necessarily selfadjoint. There are variants of some of the above for r-ideals, that is, closed right ideals with a left contractive approximate identity. For example, comparing with Lemma 2.1 the right ideals of the form eA for a projection $e \in A$ are precisely the r-ideals over A which are algebraically finitely generated over A (see [3, Section 5]). Comparing with Lemma 2.2, and following its proof, one sees that A is unital if it possesses even one r-ideal which is algebraically finitely generated over A, and which is maximal in the sense that the complement e of its support projection is minimal in the sense that $eA^{**}e$ is one-dimensional. However even if A is unital, it need not have any r-ideals at all. Thus our techniques above towards the Dales–Żelazko conjecture break down in this case, although our method suggests that the way to proceed may be via the socle of A.

3. A C^*-module generalization

We now show that C^*-modules of the form $\bigoplus_{k=1}^{m} \mathcal{B}(\mathbb{C}^{n_k}, H_k)$ (that is, direct sums of rectangular matrix blocks with the length of the rows in each block allowed to be infinite),
are the ‘only’ right C^*-modules Z such that every proper maximal right submodule of Z is algebraically finitely generated.

Theorem 3.1. Let Z be a right C^*-module. Then every proper maximal right submodule of Z is algebraically finitely generated iff there are positive integers m, n_1, \ldots, n_m, and Hilbert spaces H_k, such that $Z \cong \bigoplus_{k=1}^m \mathcal{B}(\mathbb{C}^{n_k}, H_k)$ as TRO's.

Proof. (\Rightarrow) We will be using the simple relationship between right submodules of Z and right ideals of ZZ^* perhaps first noticed by Brown [5]. Suppose that Z is a right C^*-module over a C^*-algebra B, and that every proper maximal right submodule of Z is algebraically finitely generated over B. Then every proper maximal right submodule W of Z is algebraically finitely generated over Z^*Z (since W is a non-degenerate Z^*Z-module and hence any $w \in W$ may be written as $w = wc$ for $w' \in W, c \in Z^*Z$ by Cohen’s factorization theorem). Hence $wb = w'(cb)$ with $cb \in Z^*Z$, for $b \in B$). So we may assume that $B = Z^*Z$.

If J is a proper maximal right ideal in $A = \mathbb{K}(Z) = ZZ^*$, then JZ is a right submodule of Z. If $JZ = Z$ then

$$J = JA = JZZ^* = ZZ^* = A,$$

a contradiction. So JZ is a proper right submodule of Z. If W were a proper closed right submodule of Z containing JZ, then WZ^* is a right ideal in $\mathbb{K}(Z)$ and it contains $JA = J$. If $WZ^* = A$, then $W = WZ^*Z = AZ = Z$, a contradiction. Hence $WZ^* = J$, so that $W = WZ^*Z = JZ$. Thus JZ is a proper maximal right submodule of Z, and hence JZ is finitely generated over Z^*Z. By the well known argument/fact in the remark after Lemma 2.1 above, JZ has generators z_1, \ldots, z_n with $\sum_{k=1}^n z_kz_k^*a = az$ for all $a \in J, z \in Z$. Hence $ea = a$ for all $a \in J$ where $e = \sum_{k=1}^n z_kz_k^* \in J$. Clearly $J = eZZ^*$. By Lemma 2.2 we see that ZZ^* is unital, and by Corollary 2.3 we have that ZZ^* is a finite dimensional C^*-algebra, hence $ZZ^* \cong \bigoplus_{k=1}^m M_{n_k}$-*isomorphically. Now we are in well known territory, indeed Hilbert C^*-modules over C^*-algebras of compact operators are completely understood. For example, by basic Morita equivalence (as in e.g. the proof p. 851–852 in [10], or p. 2125 of [13]) we have $Z^*Z \cong \bigoplus_{k=1}^m \mathbb{K}(H_k)$, and $Z \cong \bigoplus_{k=1}^m \mathcal{B}(\mathbb{C}^{n_k}, H_k)$, for Hilbert spaces H_k. (The cited papers do not explicitly use the term ‘ternary morphism’, but it is clear that their morphisms are such).

(\Rightarrow) This is the easy direction. Indeed if $Z = \bigoplus_{k=1}^m \mathcal{B}(\mathbb{C}^{n_k}, H_k)$ then every right Z^*Z-submodule W is finitely generated over Z^*Z (since WW^* is finite dimensional, hence unital). And clearly this property is preserved by ternary isomorphisms. \hfill \square

Remark. All right C^*-modules (which are not Hilbert spaces) have an abundant supply of proper maximal right submodules (one can see this for example from the paragraph before Lemma 2.2 and the correspondence in the proof of Theorem 3.1). Indeed every right submodule is an intersection of proper maximal right submodules.

Closing remark. Let κ be a cardinal number. We will say that a right module V over A is algebraically κ-generated if there is a countable set $\{v_\alpha : \alpha < \kappa\}$ in V such that every element in A is a finite sum $\sum_{k=1}^n v_{\alpha_k}a_k$ for some $a_k \in A^1$ and $\alpha_1, \ldots, \alpha_k < \kappa$. We call
algebraically \aleph_0-generated modules \textit{algebraically countably generated}. One might ask if 'algebraically finitely generated' could be replaced by 'algebraically countably generated' or 'algebraically κ-generated' for some uncountable cardinal κ in all of the results in our paper. In fact this is automatic in the countable case: It is proved in [4] that a right ideal of a Banach algebra is closed if its closure is algebraically countably generated in this sense. The proof in [4] works for modules too; thus a right submodule of a Banach module over A is closed if its closure is algebraically countably generated. Then as in [8, Corollary 1.6], closed algebraically countably generated right submodules of a Banach module over A are finitely generated. One can even go one step further using some set theory related to Martin’s axiom. We shall use the so-called \textit{pseudo intersection number} p, a certain cardinal. That is, p is the minimal cardinality of a family $(U_\alpha)_{\alpha<\lambda}$ of open dense subsets of \mathbb{R} such that $\bigcap_{\alpha<\lambda} U_\alpha$ is not dense in \mathbb{R}.

\textbf{Corollary 3.2.} A closed algebraically countably generated right submodule of a Banach module over A is finitely generated. Moreover, if a closed algebraically κ-generated right submodule of a Banach module is separable, where $\kappa < p$, then it is finitely generated.

\textit{Proof.} The ‘countably generated’ case is just as in the proof of [8, Corollary 1.6], but using the module version of Boudi’s result discussed above. In the other case, let G be a set of algebraic generators for a closed submodule I, with $|G| < p$. Then the family of all finite subsets of G has the same cardinality. For cardinals $< p$, there is a generalization of Baire’s category theorem valid in separable metric spaces e.g. [7, Corollary 22C]. We proceed similarly to the proof of [8, Corollary 1.6], but apply this generalized Baire principle to the union of the closed submodules generated by finite subsets of G, to see that one such submodule equals I. Finally, apply the module version of Boudi’s result discussed above.\hfill \Box

Let us note that the separability assumption in the Corollary cannot be dropped. Indeed, let $A = C[0, \omega_1]$, that is, A is the commutative C*-algebra of all continuous functions on the ordinal interval $[0, \omega_1]$. Let I be the ideal of A consisting of functions which vanish at ω_1. (As a Banach space, I is clearly non-separable.) Each function f in I has countable support $\text{supp } f$, since continuous functions on $[0, \omega_1]$ are eventually constant. Let $f \in I$. We can then write $f = f \cdot 1_{[0,\alpha]}$, where $1_{[0,\alpha]}$ is the characteristic function of the ordinal interval $[0,\alpha]$ and $\alpha = \sup \text{supp } f$. Since α is countable, we have $1_{[0,\alpha]} \in I$. Thus I is not finitely generated, but is algebraically \aleph_1-generated (regardless of whether $\aleph_1 < p$ or not).

\textbf{References}

[1] C. A. Akemann, Left ideal structure of C^*-algebras, \textit{J. Funct. Anal.} 6 (1970), 305–317.
[2] D. P. Blecher and C. Le Merdy, \textit{Operator algebras and their modules—an operator space approach}, Oxford Univ. Press, Oxford (2004).
[3] D. P. Blecher and C. J. Read, Operator algebras with contractive approximate identities, III, Preprint 2013.
[4] N. Boudi, Banach algebras in which every left ideal is countably generated, \textit{Irish Math. Soc. Bull.} 48 (2002), 17–24.
[5] L. G. Brown, Close hereditary C^*-subalgebras and the structure of quasi-multipliers, MSRI preprint # 11211–85, 1985.

[6] H. G. Dales, *Banach algebras and automatic continuity*, London Mathematical Society Monographs. New Series, 24, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 2000.

[7] D. Fremlin, *Consequences of Martin’s axiom*, Cambridge Tracts in Mathematics, 84. Cambridge University Press, Cambridge, 1984.

[8] H. G. Dales and W. Żelazko, Generators of maximal left ideals in Banach algebras, *Studia Math.* 212 (2012), 173–193.

[9] R. V. Kadison and J. R. Ringrose, *Fundamentals of the theory of operator algebras*, Vol. 1, Graduate Studies in Mathematics, Amer. Math. Soc. Providence, RI, 1997.

[10] B. Magajna, Hilbert C^*-modules in which all closed submodules are complemented, *Proc. Amer. Math. Soc.* 125 (1997), 849–852.

[11] T. W. Palmer, *Banach algebras and the general theory of $*$-algebras*, Vol. I. Algebras and Banach algebras, Encyclopedia of Math. and its Appl., 49, Cambridge University Press, Cambridge, 1994.

[12] G. K. Pedersen, *C^*-algebras and their automorphism groups*, Academic Press, London (1979).

[13] J. Schweizer, A description of Hilbert C^*-modules in which all closed submodules are orthogonally closed, *Proc. Amer. Math. Soc.* 127 (1999), 2123–2125.

[14] N. E. Wegge-Olsen, *K-theory and C^*-algebras*, Oxford University Press, New York, 1993.

Department of Mathematics, University of Houston, Houston, TX 77204-3008

E-mail address, David P. Blecher: dblecher@math.uh.edu

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956, Warsaw, Poland

E-mail address: tomasz.marcin.kania@gmail.com