Notes on the cheek region of the Late Jurassic theropod dinosaur *Allosaurus*

Serjoscha W Evers Corresp., 1, Christian Foth 1, Oliver WM Rauhut 2, 3, 4

1 Department of Geosciences, University of Fribourg, Fribourg, Switzerland
2 Bayerische Staatsammlung für Paläntologie und Geologie, Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB), München, Germany
3 Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität, München, Germany
4 GeoBioCenter, Ludwig-Maximilians-Universität, München, Germany

Corresponding Author: Serjoscha W Evers
Email address: serjoscha.evers@bluewin.com

Allosaurus, from the Late Jurassic of North America and Europe, is a model taxon for Jurassic basal tetanuran theropod dinosaurs. It has achieved an almost iconic status due to its early discovery in the late, 19th century, and due to the abundance of material from the Morrison Formation of the western U.S.A., making *Allosaurus* one of the best-known theropod taxa. Despite this, various aspects of the cranial anatomy of *Allosaurus* are surprisingly poorly understood. Here, we discuss the osteology of the cheek region, comprised by the jugal, maxilla, and lacrimal. This region of the skull is of importance for *Allosaurus* taxonomy and phylogeny, particularly because *Allosaurus* has traditionally been reconstructed with an unusual cheek configuration, and because the European species *Allosaurus europaeus* has been said to be different from North American material in the configuration of these bones. Based on re-examination of articulated and disarticulated material from a number of repositories, we show that the jugal participates in the antorbital fenestra, contradicting the common interpretation. The jugal laterally overlies the lacrimal, and forms an extended antorbital fossa with this bone. Furthermore, we document previously unrecorded pneumatic features of the jugal of *Allosaurus*.
Notes on the cheek region of the Late Jurassic theropod dinosaur *Allosaurus*

Serjoscha W. Evers¹, Christian Foth¹, Oliver W. M. Rauhut²,³,⁴

¹Department of Geosciences, University of Fribourg, Chemin du Musée 6, CH-1700 Fribourg, Switzerland;
²Staatliche naturwissenschaftliche Sammlungen Bayerns (SNSB), Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, D-80333 München, Germany;
³Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität, Richard-Wagner-Str. 10, D-80333 München, Germany;
⁴GeoBioCenter, Ludwig-Maximilians-Universität, Richard-Wagner-Str. 10, D-80333 München, Germany.

Corresponding author:
Serjoscha Evers
Department of Geosciences, University of Fribourg, Chemin du Musée 4, 1700 Fribourg, Switzerland
Email address: serjoscha.evers@googlemail.com
Abstract

Allosaurus, from the Late Jurassic of North America and Europe, is a model taxon for Jurassic basal tetanuran theropod dinosaurs. It has achieved an almost iconic status due to its early discovery in the late, 19th century, and due to the abundance of material from the Morrison Formation of the western U.S.A., making Allosaurus one of the best-known theropod taxa. Despite this, various aspects of the cranial anatomy of Allosaurus are surprisingly poorly understood. Here, we discuss the osteology of the cheek region, comprised by the jugal, maxilla, and lacrimal. This region of the skull is of importance for Allosaurus taxonomy and phylogeny, particularly because Allosaurus has traditionally been reconstructed with an unusual cheek configuration, and because the European species Allosaurus europaeus has been said to be different from North American material in the configuration of these bones. Based on re-examination of articulated and disarticulated material from a number of repositories, we show that the jugal participates in the antorbital fenestra, contradicting the common interpretation. The jugal laterally overlies the lacrimal, and forms an extended antorbital fossa with this bone. Furthermore, we document previously unrecorded pneumatic features of the jugal of Allosaurus.

Introduction

The theropod dinosaur Allosaurus is certainly one of the best-known dinosaur taxa for scientists and the general public alike. It was first described on the basis of a fragmentary specimen from the Late Jurassic Morrison Formation by Marsh (1877). However, more complete material, including an almost complete skeleton from the same locality, Felch Quarry, as the type and several skulls from other Morrison localities were referred to the same taxon shortly after (Marsh, 1884; Osborn, 1903, 1912). The former specimen was described in detail in a monograph by Charles Gilmore in, 1920 (although under the name Antrodemus; see Madsen [1976] for discussion), through which it became a reference taxon for theropod anatomy in general.

A large assemblage of theropod bones was found in sediments of the Morrison Formation close to Cleveland, Utah, in, 1927, and excavation at the Cleveland-Lloyd dinosaur quarry in subsequent decades has yielded a vast amount of Late Jurassic dinosaur specimens (see Madsen,
The most common dinosaur found at that site is *Allosaurus*, which is represented by at least 46 individuals (Carpenter, 2010), although the material is generally found disarticulated. The availability of such a large number of specimens of a single taxon led Madsen (1976) to publish a revised osteology of *Allosaurus*, in which he figured every individual bone for this genus, often in several views. It should be noted here that Madsen (1976: 2) himself noted that his description and illustrations were not intended to give an accurate account of the morphology of any individual element, but rather provide a composite reconstruction of the anatomy of this taxon. Nevertheless, due to his work, *Allosaurus* has become one of the best and most completely known theropod taxa, which is widely used in studies of theropod phylogeny, geometric morphometrics, biomechanics, and biology in general (e.g. Gauthier, 1986; Holtz, 1994; Rogers, 1998, 2005; Hanna, 2002; Rauhut, 2003; Rayfield et al., 2001; Rayfield, 2005; Carrano, Benson & Sampson, 2012; Brusatte et al., 2012; Foth & Rauhut, 2013a; Snively et al., 2013; Lautenschlager, 2015; Foth et al., 2015).

Due to the large number of specimens known for *Allosaurus*, several authors have observed variation among the material (Chure & Madsen, 1996; Smith, 1998; Chure, 2000; Carpenter, 2010; Loewen, 2009), arriving at different conclusions regarding the taxonomy of the genus *Allosaurus*. Because the holotype material of the type species *Allosaurus fragilis* is not diagnostic, USNM 4734, the nearly complete specimen from Felch Quarry (Gilmore, 1920; Carrano, Loewen & Evers, 2018), was proposed as a neotype (Paul & Carpenter, 2010; supported by several comments, e.g. Carpenter & Paul, 2015; Carrano, Loewen & Evers, 2018).

A second North American species, originally informally diagnosed in an unpublished PhD thesis (Chure, 2000) has recently been formally named as *Allosaurus jimmsdeni* (Chure & Loewen, in press). Further putative species, *Allosaurus lucasi* and *Allosaurus amplus*, are based on very fragmentary and probably undiagnostic material (Dalman, 2014; Galton, Carpenter & Dalman, 2015). As the Morrison Formation was deposited over a duration of 7 million years and crops out over 1.2 million km2 (Maidment & Muxworthy, 2019), reported variation among specimens of *Allosaurus* could possibly be explained by geographic or stratigraphic separation of occurrences. The taxonomy of *Allosaurus* needs to be revised, but this should only be done when the neotype for *Allosaurus fragilis* has been formalised by an ICZN decision, so it can be compared in detail with the species described by Chure & Loewen (in press). Here, we use the taxon *Allosaurus* without species epithet due to the unsolved taxonomic issues. However, our observations are
based on specimens that have been referred to both species, and we have not found any
differences between those for the elements of interest.

The cranial morphology of *Allosaurus* was first described by Osborn (1903, 1912) and
Gilmore (1920). These descriptions were based on three almost complete, but partially
disarticulated and/or distorted and damaged skulls, two from Bone Cabin Quarry (Osborn, 1903,
1912) and one from the type locality of the genus, Felch Quarry (Gilmore, 1920). All specimens
were, unfortunately, damaged or incomplete in the anterior cheek region, and although both
Osborn (1903: 697) and Gilmore (1920: 29) stated that the jugal formed part of the margin of the
antorbital fenestra, this was not unambiguously clear from their illustrations, as parts of this
region were reconstructed.

In contrast, Madsen (1976: pl. 1) reconstructed the skull of *Allosaurus* with an anteriorly
tapering jugal that is excluded from the margin of the antorbital fenestra in lateral view. This
reconstruction turned out to be very influential, with consequences for several kinds of studies
including this taxon. Thus, in a multitude of phylogenetic studies that used differences in the
expression of the jugal on the rim of the antorbital fenestra as a phylogenetic character,
Allosaurus was coded as lacking such an expression (e.g. Holtz, 1994, 1998; Currie & Carpenter,
2000; Rauhut, 2003; Holtz, Molnar & Currie, 2004; Smith *et al.*, 2007; Benson, Carrano &
Brusatte, 2010; Carrano, Benson & Sampson, 2012). Besides, a study of the biomechanical
significance of suture morphology of this taxon also used this configuration (Rayfield, 2005).

Furthermore, the clear presence of an expression of the jugal on the rim of the antorbital fenestra
was considered an important character to distinguish the European species of *Allosaurus, A.
europaeus*, from its North American counterparts (Mateus, Walen & Antunes, 2006; see also
Malafaia *et al.*, 2007).

Here, we review the evidence for the configuration of the maxilla, lacrimal and jugal and
its significance for the question whether the latter bone participated in the rim of the antorbital
fenestra in *Allosaurus*.

Materials & Methods

In order to assess the configuration of the anterior cheek region of *Allosaurus*, we studied
articulated skulls (DINO 11541; MOR 693; DINO 2560 [UUVP 6000]), a disarticulated skull
(SMA 0005), and isolated elements of this taxon from the Morrison Formation of North America. Isolated elements included numerous specimens of maxillae, jugals and lacrimals from the Cleveland-Lloyd Dinosaur Quarry of Utah, from which several elements were selected, in which the regions of interest are particularly well preserved. These specimens included three left maxillae (UMNH VP 9168, 9208 and 9216), a left (UMNH VP 9475) and a right lacrimal (UMNH VP 9473), and two right (UMNH VP 9083 and 9085) and one left jugal (UMNH VP 8972). Two further left jugals (UMNH VP 8973 and 8974) were documented, because in these pneumatic features were well visible due to breakage.

Institutional abbreviations. AMNH, American Museum of Natural History, New York, USA; DINO, Dinosaur National Monument, Jensen, Utah, USA; ML, Museu da Lourinhã, Lourinhã, Portugal; MOR, Museum of the Rockies, Bozeman, Montana, USA; NCSM, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA; PVSJ, Paleontología de Vertebrados, Universidd de San Juan, Argentina; SMA, Saurier-Museum Aathal, Switzerland; UMNH, Utah Museum of Natural History, Salt Lake City, Utah; USNM, United States National Museum of Natural History, Washington DC, USA.

Results

The configuration of the anterior cheek in Allosaurus: Madsen’s interpretation

As noted above, Madsen (1976) described the osteology of Allosaurus on the basis of abundant, but disarticulated material from the Cleveland-Lloyd dinosaur quarry of Utah, although he used a partially articulated specimen from Dinosaur National Monument, DINO 2560 (formerly UUVP 6000), as guidance (Madsen, 1976: 2). In his skull reconstruction, Madsen (1976: pl. 1) illustrated a broad contact between the ventral process of the lacrimal and the posterior process of the maxilla, visible in lateral view. Both bones form the posteroventral margin of the internal antorbital fenestra, while the jugal is excluded from the antorbital fenestra. In contrast to the individual reconstruction of the jugal (Madsen, 1976: pl. 4D, E), the anterior process of the jugal in the skull reconstruction was illustrated to be subdivided into a long and tapering anteroventral and a shorter posterodorsal process, which together formed a deeply concave anterodorsal
margin. In his figures of the individual elements, Madsen (1976) correctly illustrated the jugal
with a pronounced anterior expansion, but indicated that most of this expansion would have been
overlapped laterally by the lacrimal in the articulated skull (Madsen, 1976: pl. 4D), thus
interpreting the depressed area on the anterior expansion as the facet for the latter bone. His
interpretation was probably influenced by the curved rim of the antorbital fossa on the jugal,
which stands out prominently in articulated skulls, and was interpreted as the jugal-lacrimal
suture, and the very thin bone anterior to it, which resembles the distal end of the ventral process
of the lacrimal.

Configuration of the anterior cheek in other theropods

The morphology of the cheek region of theropod dinosaurs has recently been reviewed by
Sullivan & Xu (2017) and Wang et al. (2017), focusing primarily on the morphology of the
jugal. Apart from a few exceptions, the anterior process of the jugal in theropods participates in
the posteroventral margin of the antorbital fenestra. In small-bodied theropods this process is
usually slender and tapering, but it is dorsoventrally expanded in many large-bodied taxa.

In contrast, the exclusion of the jugal from the antorbital fenestra is occasionally present
in theropods, including various coelophysids (Raath, 1977; Colbert, 1989; Rowe, 1989; Tykoski,
1998; Bristowe & Raath, 2005), the ceratosaurid Ceratosaurus (Gilmore, 1920; Madsen &
Welles, 2000), and the basal alvarezsaurid Haplocheirus (Choiniere et al., 2014), while it is the
common morphology in non-avian Pygostylia (Wang et al., 2017). In addition, the configuration
was described for the basal theropod Zupaysaurus (Ezcura, 2007) and the megalosaurid
Torvosaurus (Brusatte et al., 2010). However, further preparation of the anterior cheek region of
Zupaysaurus revealed a jugal contribution to the antorbital fenestra (Martín Ezcurra, pers.
comm., 2012), while the incomplete preservation of the maxilla and jugal in Torvosaurus does
not allow a proper judgement of the true morphology. However, all taxa for which the exclusion
of the jugal from the antorbital fenestra can be confirmed with no doubt show a laterally exposed
contact between maxilla and lacrimal, the extent of which depends primarily on the shape of the
lacrimal ventral process. Accordingly, the contact is very broad in Coelophysis and
Ceratosaurus.
Regardless of the jugal contribution to the margin of the antorbital fenestra, the relative arrangement and articular surfaces of bones involved in the formation of the cheek are the same in all non-avian theropods: the jugal overlaps the lateral surface of the ventral process of the lacrimal. As noted by Sereno & Novas (1993), this is a saurischian synapomorphy. Consequently, the ventral end of the lacrimal is positioned medi ally to the jugal, so that a lacrimal-maxilla contact is not externally visible in taxa in which the jugal extends to the antorbital fenestra. However, even in taxa with this configuration, there is an internal contact between the lacrimal and the maxilla. The usually anteroposteriorly expanded basal plate of the lacrimal sits in a facet on the dorsal shelf of the maxilla that is situated medially to the groove for the jugal. This is the case even in taxa in which the lacrimal seems to be dorsoventrally short and is widely separated from the maxilla in external view of the articulated skull, such as in *Herrerasaurus* (PVSJ 53).

Data from specimens of Allosaurus

The posterior end of the maxilla of *Allosaurus* shows facets for the articulation with the jugal, lacrimal and palatine, which are roughly mediolaterally aligned. The contact with the jugal is positioned laterally with regard to the contact with the lacrimal, and both these contact facets form grooves on the dorsal surface of the posterior processes of the maxilla (Fig. 1). The facet for the palatine is the medialmost of the three contacts, and is visible on the medial surface of the maxilla.

The jugal facet is developed as a narrow, dorsally facing groove (Fig. 1C–D), which extends from the posteroverentral corner of the bone to the level of the third alveolous as counted from posterior. The posteriormost part of this groove is exposed laterally, but a dorsally ascending lamina conceals the anterior part of the groove in lateral view (Fig. 1C–D). The lacrimal facet is subparallel to the jugal facet, but separated from the former by a low, but relatively broad ridge (Fig. 1C–D). The lacrimal facet itself is developed as a subtle groove, which extends along the medial margin of the dorsal surface of the posterior process of the maxilla. This facet continues marginally further anteriorly than the facet for the jugal, forming a broad contact between maxilla and lacrimal. The third articulation facet, the palatine facet of the maxilla, is much broader than the other facets described above. It is positioned medial to the
lacrimal contact, and is developed as a roughened longitudinal area that spans from the first to
approximately the seventh tooth position as counted from posterior. The dorsal margin of the
palatine facet is developed as a near vertical shelf of bone, which prohibits a contact between the
palatine and lacrimal.

The lacrimal has a mediolaterally thin, and anteroposteriorly expanded ventral process
that articulates with the maxilla and jugal (Fig. 2). The ventral process can be divided into two
units. Anteriorly and ventrally, the ventral process forms a thin blade of bone (medial lamina),
which is recessed from a thickened posterior margin (lateral lamina) (Fig. 2B–C). A vertically
directed, anteriorly facing groove invades the thick posterior margin at the posterior end of the
thin blade (Fig. 2B). We interpret this incision as a facet for the posterior margin of the anterior
blade of the jugal. Consequently, the anterior process of the jugal covers large parts of the
lacrimal blade laterally when both bones are articulated. In his reconstruction of the lacrimal,
Madsen (1976: pl. 5A) illustrated a deep notch in the ventral margin of lacrimal. However, as
this region is often broken in Allosaurus specimens (see Osborn, 1903; Carpenter, 2010), the
presence of such a notch is probably an artefact. In those specimens (e.g., SMA 0005) in which
the ventral end of the ventral process is fully intact, this margin is almost straight (Fig. 2). This
observation fits with the dorsally exposed lacrimal facet groove of the maxilla.

The jugal of Allosaurus has a dorsally expanded anterior process that contacts the maxilla
and lacrimal. This process is often incompletely preserved (even in articulated specimens), but it
is nearly completely preserved in the specimen SMA 0005 (Fig. 3). The jugal of Allosaurus is
relatively tightly articulated with the maxilla via a ventral and a medial contact. The ventral
contact is formed by the relatively thin, keel-like margin of the jugal, which slots into the
dorsally exposed jugal facet on the posterior process of the maxilla. The second facet is a wedge-
shaped, posteriorly tapering depression in the lateral surface of the jugal, which receives the
lateral part of the posterior process of the maxilla (Fig. 3).

The lateral surface of the anterior process of the jugal is characterised by a sharp,
concavely curved step-like ridge, which separates the process into an extremely thin, blade-like
anterodorsal region, which is recessed from a thicker posteroventral region (Fig 3). We identify
this ridge as the posteroventral margin of the antorbital fossa. This margin is slightly excavated
to a shallow groove posteroventrally, as evident from several better-preserved specimens, such as
UMNH VP 9085, UMNH VP 8972 and SMA 0005. Unlike reported in other works (e.g.,
Brusatte et al., 2010; Eddy & Clarke, 2011), there is a small pneumatic foramen located within the margin of this groove (see Currie & Zhao, 1993; Coria & Currie, 2006). The foramen excavates posteriorly into the anterior process of the jugal (Fig. 4). Evidence for the pneumatic invasion of the jugal via the anterior process is also given by several specimens in which the anterior process of the jugal is broken off, exposing a pneumatic recess within it (e.g. UMNH VP 8973, UMNH VP 8974; Fig. 4). Because the anterior blade is extremely thin, it is often incompletely preserved (see Chure, 2000; Loewen, 2009; Carpenter, 2010), leading to different interpretations regarding the anterodorsal morphology of the process, specifically with regard to its extend into the antorbital fenestra (e.g. Madsen, 1976 vs. this study). However, some specimens (e.g., SMA 0005) show that the anterodorsal margin is convexly rounded, as reconstructed by Madsen for the isolated jugal (1976: pl. 4D, E). The thickened posterior margin of the anterior jugal process faces toward the orbit and slots into the facet in the lateral lamina of the lacrimal (see above). Consequentially, the lacrimal wraps around the posterior edge of the jugal, which is particularly well visible in articulated specimens (Fig. 5). The same articulation is also present in Acrocanthosaurus (NCSM 14345, pers. obs. by all authors, 2012). This contact appears to be relatively tight, so that kinematic movements between the lacrimal and jugal seem unlikely.

The thin jugal blade lies on the lateral surface of the medial lamina of the lacrimal. The low ridge that marks the margin of the antorbital fossa on the jugal aligns with the edge of the posteriorly thickened margin of the lacrimal, so that the antorbital fossa is continuous between both bones. This morphology can be also observed in various articulated Allosaurus skulls, including MOR 693 (pers. obs. SWE, 2014), UUVP 6000 (pers. obs. SWE and OWMR, 2016), and DINO 11541 (pers. obs. SWE and OWMR, 2016) (Fig. 3).

Discussion

The re-examination of the bones of the anterior cheek region in Allosaurus demonstrates that the famous skull reconstruction by Madsen (1976) is erroneous with respect to morphology of the anterior process of the jugal and its articulation with the lacrimal and maxilla. The anterior process of the jugal in Allosaurus is in fact enlarged and plate-like (Fig. 3) and covers the lateral side of the lacrimal in its ventral part (Figs 5–6). The anterodorsal margin of the anterior process...
of the jugal extends into the internal antorbital fenestra. This morphology was previously
described by Osborn (1903) for the disarticulated specimens AMNH 600, and by Gilmore (1920)
for the artificially articulated USNM 4734. In addition, other skull reconstructions based on
UUVP 6000 were illustrated with this configuration too (see Bakker, 1998: fig. 3B; Paul, 2002:
fig. 10.2F; Fastovsky & Weishampel, 2005: fig. 12.2F), but without commenting on the
discrepancy to Madsen’s (1976) reconstruction of the same specimen. As Madsen (1976: pl. 4D,
E) figures the morphology of the anterior process of the jugal correctly in the individual bone
reconstructions, we can only speculate why his reconstruction of the skull is erroneous. Based on
its position, the concavely shaped and gently recessed anterodorsally surface of the anterior
process (Madsen, 1976: pl. 1) clearly represents the jugal part of the antorbital fossa, which is
continuous with the respective margins of the ventral process of the lacrimal and posterior
process of the maxilla.

However, our current observations confirm a broad contact between maxilla and lacrimal
in *Allosaurus* as illustrated in Madsen (1976: pl. 1), but the articulation is covered laterally by the
anteroventral process of the jugal and only visible from medial view. A similar morphology can be
found in the carcharodontosaurid *Acrocanthosaurus* (right side of NCSM 14345, pers. obs. by all
authors, 2012). In addition, Hendrickx & Mateus (2014) described a prominent medially located
articulation facet for the lacrimal on the dorsal side of the distal end of the posterior process of
the maxilla of *Torvosaurus gurneyi*. This contact is also present in ornithomimosaurids (Kobayashi
et al., 2003), therizinosaurids (Clark, Perle & Norrell, 1994; Lautenschlager, 2014),
oviraptorosaurs (Clark, Norell & Rowe, 2002; Balanoff et al., 2009, 2012) and non-avian
Pygostylia (Wang et al., 2017), while it is absent in abelisaurids (Bonaparte, Novas & Coria,
1990; Sampson & Witmer, 2007; Canale et al., 2009), tyrannosaurids (Currie, 2003),
dromaeosaurids (Turner, Makovicky & Norell, 2012), troodontids (Tsuihiji et al., 2014) and
crown-group birds (Zusi, 1993).

Furthermore, the new observations have implications for the diagnosis of the European
Allosaurus europaeus (Mateus, Walen & Antunes, 2006; Fig. 5D) as a distinct species, for which
the jugal participation in the antorbital fenestra was listed as one of the few autapomorphic
characters that differentiate it from the North American species. Besides, the authors listed the
absence of a lacrimal-maxilla contact as a further apomorphy, which is related to the former
classification. However, as pointed out above, this is only true for the lateral view, while a medial
The cheek region of *Allosaurus* conforms to the general pattern observed in basal tetanurans: the jugal overlies the lateral surface of the lacrimal, and both bones articulate with the maxilla. The anterior process of the jugal of *Allosaurus* is anterodorsally expanded and contributes to the antorbital fenestra and forms parts of the antorbital fossa, contradicting the famous reconstruction by Madsen (1976). The articulation facets between the maxilla, lacrimal and jugal are relatively complex and indicate that the contacts between these cheek bones were relatively strong, probably allowing little if any movement. The configuration of cheek bones does not vary between the examined specimens in *Allosaurus*, and our observations furthermore indicate that the European species *Allosaurus europaeus* did not differ in this regard from North American material.

Acknowledgements

The authors would like to thank several people who provided access to specimens under their care. These are, in no particular order, Carrie Levitt-Bussian and Randall Irmis (UMNH), Brooks Britt and Rodney Scheets (BYU), Dan Chure (DINO/DNM), Octavio Mateus and Simão Mateus (ML), Vince Schneider and Lindsay Zanno (NCSM), Jack Horner, John Scanella and Bob Harmon (MOR), Kirby Siber, Thomas Bollinger and Ben Pabst (SMA), Mark Norell and Carl Mehling (AMNH), Paul Barrett (NHMUK). We would also like to thank Roger Benson for
providing additional photographs of *Neovenator salerii*. We are thankful to Mark Loewen, Matt Carrano, Dan Chure, and Octavio Mateus for numerous discussions about *Allosaurus*.

References

Bakker RT. 1998. Brontosaur killers: Late Jurassic allosaurids as sabre-tooth cat analogues. *Gaia* 15:145–158.

Balanoff AM, Norell MA. 2012. Osteology of *Khaan mckennai* (Oviraptorosauria: Theropoda). *Bulletin of the American Museum of Natural History* 372:1–77.

Balanoff AM, Xu X, Kobayashi Y, Matsufune Y, Norell MA. 2009. Cranial osteology of the theropod dinosaur *Incisivosaurus gauthieri* (Theropoda: Oviraptorosauria). *American Museum Novitates* 3651:1–35.

Benson RBJ, Carrano MT, Brusatte SL. 2010. A new clade of archaic large-bodied predatory dinosaurs (Theropoda: Allosauroidia) that survived to the latest Mesozoic. *Naturwissenschaften* 97:71–78.

Bonaparte JF, Novas FE, Coria RA. 1990. *Carnotaurus sastrei* Bonaparte, the horned, lightly built carnosaur from the Middle Cretaceous of Patagonia. *Contributions in Science* 416:1–42.

Bristowe A, Raath MA. 2004. A juvenile coelophysoid skull from the Early Jurassic of Zimbabwe, and the synonymy of *Coelophysis* and *Syntarsus*. *Palaeontology Africana* 40:31–41.

Brusatte SL, Benson RBJ, Currie PJ, Zhao X. 2010. The skull of *Monolophosaurus jiangi* (Dinosauria: Theropoda) and its implications for early theropod phylogeny and evolution. *Zoological Journal of the Linnean Society* 158:573–607.

Brusatte SL, Montanari S, Sakamoto M, Harcourt-Smith WEH. 2012. The evolution of cranial form and function in theropod dinosaurs: insight from geometric morphometrics. *Journal of Evolutionary Biology* 25:365–377.

Canale IC, Scanferla CA, Agnolin FL, Novas FE. 2009. New carnivorous dinosaur from the late Cretaceous of NW Patagonia and the evolution of abelisaurid theropods. *Naturwissenschaften* 96:409–414.

Carpenter K. 2010. Variation in a population of Theropoda (Dinosauria): *Allosaurus* from the Cleveland-Lloyd Quarry (Upper Jurassic), Utah, USA. *Paleontological Research* 14:250–259.
Carpenter K, Paul GS. 2015. Comment (Case 3506) on *Allosaurus* Marsh, 1877 (Dinosauria, Theropoda): proposed conservation of usage by designation of a neotype for its type species *Allosaurus fragilis* Marsh, 1877. *The Bulletin of Zoological Nomenclature* 72(1):79–80.

Carrano MT, Benson RBJ, Sampson SD. 2012. The phylogeny of Tetanurae (Dinosauria: Theropoda). *Journal of Systematic Palaeontology* 10:211–300.

Carrano MT, Loewen MA, Evers SW. 2018. Comment (Case 3506) - Conservation of *Allosaurus* Marsh, 1877 (Dinosauria, Theropoda): additional data in support of the proposed neotype for its type species *Allosaurus fragilis* Marsh, 1877. *The Bulletin of Zoological Nomenclature* 75:59–64.

Choiniere JN, Clark JM, Norell MA, Xu X. 2014. Cranial osteology of *Haplocheirus sollers* Choiniere et al., 2010 (Theropoda: Alvarezsauroidea). *American Museum Novitates* 3816:1–44.

Chure DJ. 2000. A new species of *Allosaurus* from the Morrison Formation of Dinosaur National Monument (UT-CO) and a revision of the theropod family Allosauridae. Columbia University.

Chure DJ, Loewen MA. In press. Cranial anatomy of *Allosaurus jimmadseni*, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America. *PeerJ*

Chure DJ, Madsen JHJ. 1996. Variation in aspects of the tympanic pneumatic system in a population of *Allosaurus fragilis* from the Morrison Formation (Upper Jurassic). *Journal of Vertebrate Paleontology* 16:63–66.

Clark JM, Norell MA, Rowe TB. 2002. Cranial anatomy of *Citipati osmolskae* (Theropoda, Oviraptorosauria), and a reinterpretation of the holotype of *Oviraptor philoceratops*. *American Museum Novitates* 3364:1–24.

Clark JM, Perle A, Norell MA. 1994. The Skull of *Erichosaurus andrewsi*, a Late Cretaceous “Segnosaur” (Theropoda: Therizinosaurs) from Mongolia. *American Museum Novitates* 3315:1–39.

Colbert EH. 1989. The Triassic dinosaur Coelophysis. *Museum of Northern Arizona Bulletin* 57:1–160.

Coria RA, Currie PJ. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. *Geodiversitas* 28:71–118.
Currie PJ. 2003. Cranial anatomy of tyrannosaurid dinosaurs from the Late Cretaceous of Alberta, Canada. *Acta Palaeontologica Polonica* 48:191–226.

Currie PJ, Carpenter K. 2000. A new specimen of *Acrocanthosaurus atokensis* (Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous, Aptian) of Oklahoma, USA. *Geodiversitas* 22:207–246.

Currie PJ, Zhao X. 1993. A new carnosaur (Dinosauria, Theropoda) from the Jurassic of Xinjiang, People’s Republic of China. *Canadian Journal of Earth Sciences* 30:2037–2081.

Dalman SG. 2014. Osteology of a large allosauroid theropod from the Upper Jurassic (Tithonian) Morrison Formation of Colorado, USA. *Volumina Jurassica* 12:159–180.

Eddy DR, Clarke JA. 2011. New information on the cranial anatomy of *Acrocanthosaurus atokensis* and its implications for the phylogeny of Allosauroidea (Dinosauria: Theropoda). *PLoS ONE* 6:e17932.

Ezcurra MD. 2007. The cranial anatomy of the coelophysoid theropod *Zupaysaurus rougieri* from the Upper Triassic of Argentina. *Historical Biology* 19:185–202.

Fastovsky DE, Weishampel DB. 2005. *The evolution and extinction of the dinosaurs*. Cambridge: Cambridge University Press.

Foth C, Evers SW, Pabst B, Mateus O, Flisch A, Patthey M, Rauhut OWM. 2015. New insights into the lifestyle of *Allosaurus* (Dinosauria: Theropoda) based on another specimen with multiple pathologies. *PeerJ* 3:e940. DOI: 10.7717/peerj.940.

Foth C, Rauhut OWM. 2013. Macroevolutionary and morphofunctional patterns in theropod skulls: a morphometric approach. *Acta Palaeontologica Polonica* 58:1–16.

Galton PM, Carpenter K, Dalman SG. 2015. The holotype pes of the Morrison dinosaur *Camptonotus amplus* Marsh, 1879 (Upper Jurassic, western USA) – is it *Camptosaurus*, Sauropoda or *Allosaurus*? *Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen* 275:317–335.

Gates TA. 2005. The Late Jurassic Cleveland-Lloyd Dinosaur Quarry as a drought-induced assemblage. *Palaios* 20:363–375.

Gauthier JA. 1986. Saurischian monophyly and the origin of birds. *Memoirs of the California Academy of Science* 8:1–55.
Gilmore GW. 1920. Osteology of the carnivorous dinosauria in the United States National Museum, with special reference to the genera Antrodemus (Allosaurus) and Ceratosaurus. *Bulletin of the United States National Museum* 110:1–159.

Hanna RR. 2002. Multiple injury and infection in a sub adult theropod dinosaur *Allosaurus fragilis* with comparisons to allosaur pathology in the Cleveland-Lloyd Dinosaur Quarry Collection. *Journal of Vertebrate Paleontology* 22:76–90.

Hendrickx C, Mateus O. 2014. *Torvosaurus gurneyi* n. sp., the largest terrestrial predator from Europe, and a proposed terminology of the maxilla anatomy in nonavian theropods. *PLoS ONE* 9:e88905. DOI: 10.1371/journal.pone.0088905.

Holtz TRJ. 1994. The phylogenetic position of the Tyrannosauridae: implications for theropod systematics. *Journal of Paleontology* 68:1100–1117.

Holtz TRJ. 1998. A new phylogeny of the carnivorous dinosaurs. *Gaia* 15:5–61.

Holtz TRJ, Molnar RE, Currie PJ. 2004. Basal Tetanurae. In: Weishampel DB, Dodson P, Osmólska H eds. *The Dinosauria*. Berkeley: University of California Press, 71–110.

Kobayashi Y, Lü J. 2003. A new ornithomimid dinosaur with gregarious habits from the Late Cretaceous of China. *Acta Palaeontologica Polonica* 48:235–259.

Lautenschlager S. 2015. Estimating cranial musculoskeletal constraints in theropod dinosaurs. *Royal Society Open Science* 2:150495.

Lautenschlager S, Witmer LM, Perle A, Zanno LE, Rayfield EJ. 2014. Cranial anatomy of *Erlikosaurus andrewsi* (Dinosauria, Therizinosauria): new insights based on digital reconstruction. *Journal of Vertebrate Paleontology* 34:1263–1291.

Loewen MA. 2009. Variation in the Late Jurassic theropod dinosaur *Allosaurus*: ontogenetic, functional, and taxonomic implications. University of Utah, Salt Lake City.

Madsen JHJ. 1976. *Allosaurus fragilis*: a revised osteology. *Utah Geological and Mineralogical Survey Bulletin* 109:3–163.

Madsen JHJ, Welles SP. 2000. *Ceratosaurus* (Dinosauria, Theropoda), a revised osteology. *Utah Geology Survey Miscellaneous Publication* 00–2:1–80.
Maidment SCR, Muxworthy A. 2019. A chronostratigraphic framework for the Upper Jurassic
Morrison Formation, western U.S.A. *Journal of Sedimentary Research* 89:1017–1038.

Malafaia E, Ortega F, Escaso F, Silva B, Ramalheiro G, Dantas P, Moniz C, Barriga F. 2007. A
preliminary account of a new *Allosaurus* individual from the Lourinhã Group (Upper Jurassic of
Torres Vedras, Portugal). In: Abstracts book of the IV International Symposium about Dinosaurs
Palaeontology and their Environment, Salas de los Infantes. 243–251.

Marsh OC. 1877. Notice of new dinosaurian reptiles from the Jurassic formation. *American
Journal of Science and Arts* 14:514–516.

Marsh OC. 1884. Principal characters of American Jurassic dinosaurs. Part 8. The order
Theropoda. *American Journal of Science* 27:329–341.

Mateus O, Walen A, Antunes MT. 2006. The large theropod fauna of the Lourinhã Formation
(Portugal) and its similarity to the Morrison Formation, with a description of a new species of
Allosaurus. *New Mexico Museum of Natural History and Science, Bulletin* 36:1–7.

Osborn HF. 1903. The skull of *Creosaurus*. *Bulletin of the American Museum of Natural History*
19:697–701.

Osborn HF. 1912. Crania of *Tyrannosaurus* and *Allosaurus*. *Memoirs of the American Museum
of Natural History* 1:1–30.

Paul GS. 2002. *Dinosaurs of the air: the evolution and loss of flight in dinosaurs and birds*.
Baltimore: The John Hopkins University Press.

Paul GS, Carpenter K. 2010. Case 3506 - *Allosaurus* Marsh, 1877 (Dinosauria, Theropoda):
proposed conservation of usage by designation of a neotype for its type species *Allosaurus
fragilis* Marsh, 1877. *Bulletin of Zoological Nomenclature* 67:53–56.

Peterson JE, Warnock JP, Eberhart SL, Clawson SR, Noto CR. 2017. New data towards the
development of a comprehensive taphonomic framework for the Late Jurassic Cleveland-Lloyd
Dinosaur Quarry, Central Utah. *PeerJ* 5:e3368. DOI: 10.7717/peerj.3368.

Raath MA. 1977. The anatomy of the Triassic theropod *Syntarsus rhodesiensis* (Saurischia:
Podokesauridae) and a consideration of its biology. Rhodes University, Salisbury.

Rauhut OWM. 2003. The interrelationships and evolution of basal theropod dinosaurs. *Special
Papers in Palaeontology* 69:1–213.
Rayfield EJ. 2005. Using Finite-Elemente Analysis to investigate suture morphology: a case study using large carnivorous dinosaurs. *The Anatomical Record* 283A:349–365.

Rayfield EJ, Norman DB, Horner CC, Horner JR, Smith PM, Thomason JJ, Upchurch P. 2001. Cranial design and function in a large theropod dinosaur. *Nature* 409:1033–1037.

Rogers SW. 1998. Exploring dinosaur neuropaleobiology: viewpoint computed tomography scanning and analysis of an *Allosaurus fragilis* endocast. *Neuron* 21:673–679.

Rogers SW. 2005. Reconstructing the behaviors of extinct species: an excursion into comparative paleoneurology. *American Journal of Medical Genetics* 13A:349–356.

Rowe TB. 1989. A new species of the theropod dinosaur *Syntarsus* from the Early Jurassic Kayenta Formation of Arizona. *Journal of Vertebrate Paleontology* 9:125–136.

Sampson SD, Witmer LM. 2007. Craniofacial anatomy of *Majungasaurus crenatissimus* (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. *Society of Vertebrate Paleontology Memoir* 8:32–102.

Sereno PC, Novas FE. 1993. The skull and neck of the basal theropod *Herrerasaurus ischigualastensis*. *Journal of Vertebrate Paleontology* 13:451–476.

Smith DK. 1998. A morphometric analysis of *Allosaurus*. *Journal of Vertebrate Paleontology* 18:126–142.

Smith ND, Makovicky PJ, Hammer WR, Currie PJ. 2007. Osteology of *Cryolophosaurus ellioti* (Dinosauria: Theropoda) from the Early Jurassic of Antarctica and implications for early theropod evolution. *Zoological Journal of the Linnean Society* 151:377–421.

Snively E, Cotton JR, Ridgely RC, Witmer LM. 2013. Multibody dynamics model of head and neck function in *Allosaurus* (Dinosauria, Theropoda). *Palaeontologia Electronica* 16:11A.

Sullivan C, Xu X. 2017. Morphological diversity and evolution of the jugal in dinosaurs. *The Anatomical Record* 300:30–48.

Tsuihiji T, Barsbold R, Watabe M, Tsogtbaatar K, Chinzorig T, Fujiyama Y, Suzuki S. 2014. An exquisitely preserved troodontid theropod with new information on the palatal structure from the Upper Cretaceous of Mongolia. *Naturwissenschaften* 101:131–142.
Turner AH, Makovicky PJ, Norell MA. 2012. A review of dromaeosaurid systematics and paravian phylogeny. *Bulletin of the American Museum of Natural History* 371:1–206.

Tykoski RS. 1998. The osteology of *Syntarsus kayentakatae* and its implications for ceratosaurid phylogeny. Austin: The University of Texas, Austin.

Wang M, Hu H. 2017. A comparative morphological study of the jugal and quadratojugal in early birds and their dinosaurian relatives. *The Anatomical Record* 300:62–75.

Zusi RL. 1993. Patterns of diversity in the avian skull. In: Hanken J, Hall BK eds. *The skull. Vol. 2. Patterns of structural and systematic diversity*. Chicago: University of Chicago Press, 391–437.
Figure 1

Completely preserved right lacrimal of SMA 0005, *Allosaurus jimmadsoni*.

(A) lateral view. (B) close-up of ventral process in lateral view. (C) line-drawing of B. Arrows in B indicate groove for articulation of jugal. Abbreviations: j c, jugal contact; llam, lateral lamina; mlam, medial lamina; mx c, maxilla contact. Scale bar in A equals 10 cm; scale bar in B-C equal 3 cm.
Figure 2

Incompletely preserved left maxilla of UMNH VP 9216, *Allosaurus fragilis*, showing details of the posterior process.

(A) lateral view. (B) dorsal view. (C) close-up of posterior process in dorsal view. (D) line-drawing of C. Dashed box in B shows region shown in more detail in C–D. Abbreviations: dasl, dorsally ascending lamina; dasm, dorsally ascending margin of posterior process; dfj, dorsal jugal facet of maxilla; laf, lacrimal facet. Scale bar in A–B equals 10 cm; scale bar in C–D equals 3 cm.
Figure 3

Completely preserved left jugal of SMA 0005, *Allosaurus jimmadsoni*.

(A) lateral view. (B) line drawing of A. (C) close-up of anterior jugal process in lateral view. (D) line-drawing of B. (E) medial view. (F) line-drawing of E. Abbreviations: aof, antorbital fossa; dep, depression; ect c, ectopterygoid contact; lacrimal contact; mx, maxilla; mx c, maxilla contact; po c, postorbital contact; pop, postorbital process of jugal; qj c, quadratojugal contact. Scale bars in A–B, E–F equal 2 cm; scale bar in C–D equals 3 cm.
Figure 4

Jugal pneumatisation in *Allosaurus fragilis*.

(A) left jugal UMNH VP 8973 in lateral view and with close-up on broken anterior process, revealing pneumatic recess. (B) UMNH VP 8974 in lateral view and with close-up on broken anterior process, revealing pneumatic recess. (C) right jugal UMNH VP 9085 in lateral view and anterolateral close-up of anterior process, showing pneumatic opening in the margin of the antorbital fossa. Note that images in C are reflected for comparison. Abbreviations: pn, pneumatic recess. Scale bars in close-ups equal 1 cm, scale bars for lateral views equal 3 cm.
Figure 5

Comparison of cheek regions in different specimens of *Allosaurus*.

(A) left cheek region of DINO 11541, designated holotype of *A. jimmsdenisi*. (B) left cheek region of MOR 693, *A. jimmsdenisi*. (C) reflected right cheek region of DINO 2560 (formerly UUVP 6000), *A. fragilis*. (D) left cheek region of ML 415, holotype of *A. europaeus*.

Abbreviations: j, jugal; la, lacrimal; mx, maxilla. Dashed lines represent bone sutures discussed in the text, and full lines represent the posteroventral margin of the antroblital fossa. Scale bars in B–D equal 10 cm, squares on scale bar in A each equal 1 cm.
Figure 6

Reconstruction of the skull of *Allosaurus*, based on MOR 693 (*A. jimmadseni*).

Note that the jugal participates in the antorbital fenestra, and that the lacrimal overlaps the posterior margin of the anterior jugal process.