On the Existence of B-Root Subgroups
on Affine Spherical Varieties

R. S. Avdeev* and V. S. Zhgoon*b,**

Presented by Academician of the RAS V.P. Platonov December 14, 2021

Received December 22, 2021; revised December 22, 2021; accepted December 28, 2021

Abstract—Let X be an irreducible affine algebraic variety that is spherical with respect to an action of a connected reductive group G. In this paper, we provide sufficient conditions, formulated in terms of weight combinatorics, for the existence of one-parameter additive actions on X normalized by a Borel subgroup B ⊂ G. As an application, we prove that every G-stable prime divisor in X can be connected with an open G-orbit by means of a suitable B-normalized one-parameter additive action.

Keywords: additive group action, toric variety, spherical variety, Demazure root, locally nilpotent derivation, local structure theorem

DOI: 10.1134/S1064562422020053

1. Let X be an irreducible algebraic variety over an algebraically closed field \(\mathbb{K} \) of characteristic zero equipped with an action of a connected reductive algebraic group G. Every nontrivial regular action on X of the additive group \(\mathbb{G}_a = (\mathbb{K}, +) \) induces an algebraic subgroup in the automorphism group \(\text{Aut}(X) \), which is called an \(\mathbb{G}_a \)-subgroup. For an arbitrary \(\mathbb{G}_a \)-subgroup \(H \) on X, every nonzero element of the one-dimensional Lie algebra \(\text{Lie}(H) \) naturally defines a locally nilpotent derivation (LND) \(\partial \) on the algebra of regular functions \(\mathbb{K}[X] \), and, in the case of quasi-affine X, the subgroup H can be recovered by taking the exponent of \(\partial \).

In this paper, we are interested in \(\mathbb{G}_a \)-subgroups on X normalized by the action of a Borel subgroup B ⊂ G. Following [1], we call such \(\mathbb{G}_a \)-subgroups B-root subgroups on X. For every B-root subgroup H on X, the adjoint action of B on \(\text{Lie}(H) \) reduces to multiplying by a character of B, which we denote by \(\chi_H \) and call the weight of H. If \(\partial \) is an LND on \(\mathbb{K}[X] \) corresponding to H, then \(\partial \) is also normalized by B with the same weight \(\chi_H \).

2. Throughout this paper, we assume that X is a spherical G-variety, that is, X is normal and possesses an open B-orbit. Let \(\mathfrak{D}^B \) (\(\mathfrak{D}^G \)) denote the finite set of all B-stable (respectively, G-stable) prime divisors in X. Elements of the set \(\mathfrak{D} = \mathfrak{D}^B \setminus \mathfrak{D}^G \) are traditionally called colors of X.

Now we recall the well-known division of colors in X into three types (see [2, 3]). Fix an arbitrary color D ∈ \(\mathfrak{D} \). Then one can always choose a minimal parabolic subgroup \(Q \supset B \) in G such that \(QD \neq D \). For every subgroup \(F \subset Q \), let \(\bar{F} \) denote its image in \(Q/Q_r \), where \(Q_r \) is the solvable radical of Q. Choose an arbitrary point \(z \) in the open B-orbit in X, and let \(Q_z \) be the stabilizer of \(z \) in Q. Note that \(Q_z \cap D \neq D \). Since \(Q_z \subset B \), the natural morphism

\[
Q_z \simeq Q/Q_r \rightarrow Q/(Q_zQ_r) \simeq \bar{Q}/\bar{Q}_z
\]

(1)
of factorizing by \(Q_z \) induces a codimension-preserving bijection between B-orbits in \(Qz \) and \(B \)-orbits in \(\bar{Q}/\bar{Q}_z \). In particular, \(\bar{Q}/\bar{Q}_z \) contains an open \(\bar{B} \)-orbit. Since \(\bar{Q} \) is isomorphic to either \(\text{SL}_2 \) or \(\text{PSL}_2 \), there are the following three possibilities for \(\bar{Q}_z \):

Type (U): \(\bar{Q}_z \) contains a maximal unipotent subgroup in \(\bar{Q} \). In this case, \(Qz\setminus Bz \) is a single B-orbit of codimension 1, which coincides with \(Qz \cap D \).

Type (T): \(\bar{Q}_z \) is a maximal torus in \(\bar{Q} \). In this case, \(Qz\setminus Bz \) contains two B-orbits of codimension 1 and one of them coincides with \(Qz \cap D \).
Type (N): \tilde{Q}_z is the normalizer of a maximal torus in \tilde{Q}. In this case, $Q_z\cdot B_z$ is a single B-orbit of codimension 1, which coincides with $Q_z \cap D$.

It is well known that the above-defined type does not depend on the choice of a minimal parabolic subgroup $Q \supset B$ satisfying $QD \neq D$ (see [3, Proposition 1]). This makes the type of every color in X well-defined.

Remark 1. The above-defined types (U), (T), and (N) of colors in X coincide with the types b, a, a', respectively, in the notation of Luna (see [4, Sect. 2.7, 3.4] or [5, Sect. 30.10]).

3. It follows from [1, Proposition 1.6] that, for every B-root subgroup H on X, there exists at most one divisor $D \in \mathcal{D}^+$ such that $HD \neq D$. The following result generalizes [1, Corollary 4.25], where the case of affine X was considered.

Proposition 1. Suppose that a B-root subgroup H on X satisfies $HD \neq D$ for some divisor $D \in \mathcal{D}^+$, then D is either G-stable or is a color of type (T).

Proof. Assume that D is a color of type (U) or (N) and choose a minimal parabolic subgroup $Q \supset B$ satisfying $QD \neq D$. Then, in the notation of Section 2, the orbit Qz splits into two B-orbits, $O_z = Bz$ and $O_z' = O \cap D$. In this case, it follows from the discussion in [1, Sect. 3 1.5] that the set Qz is H-stable; moreover, each H-orbit in Qz is isomorphic to the affine line \mathbb{A}^1 and meets O_z at exactly one point. For every subgroup $F \subset Q$, let \tilde{F} denote its image in Q/Qz, where Qz is the unipotent radical of Q. Similarly to (1), the morphism

$$\varphi: Qz \simeq Q/Q_z \to Q/(Qz_{Qz}) \simeq \tilde{Q}/\tilde{Q}_z \quad (2)$$

of factorizing by Qz induces a codimension-preserving bijection between B-orbits in Qz and \tilde{B}-orbits in \tilde{Q}/\tilde{Q}_z. Since the actions of H and Qz on Qz commute, the former descends to a nontrivial action of H on \tilde{Q}/\tilde{Q}_z normalized by the action of \tilde{B}. In particular, there are exactly two \tilde{B}-orbits $\varphi(O_z)$ and $\varphi(O_z')$ in \tilde{Q}/\tilde{Q}_z, and every H-orbit is isomorphic to \mathbb{A}^1 and meets $\varphi(O_z')$ at exactly one point. Next, we consider the cases of types (U) and (N) separately. The condition on each of these types is reformulated in view of the fact that \tilde{Q} is the quotient of \tilde{Q} by its connected center.

Type (U): \tilde{Q}_z contains a maximal unipotent subgroup in \tilde{Q}. Then \tilde{Q}/\tilde{Q}_z has a point fixed by the unipotent radical \tilde{B}_u of \tilde{B}. Since \tilde{B}_u is normalized by \tilde{B} and commutes with the action of H, the set of \tilde{B}_u-fixed points in \tilde{Q}/\tilde{Q}_z is stable with respect to both \tilde{B} and H and, hence, coincides with the whole \tilde{Q}/\tilde{Q}_z. Therefore, \tilde{B}_u acts trivially on \tilde{Q}/\tilde{Q}_z, a contradiction.

Type (N): \tilde{Q} contains a subgroup \tilde{Q}_z of index 2 that is the preimage of the connected component of the identity in \tilde{Q}_z. Then the natural morphism $\psi: \tilde{Q}/\tilde{Q}_z \to \tilde{Q}/\tilde{Q}_z$ is an unramified two-fold covering. Moreover, the set $\psi^{-1}(\varphi(O_z))$ is an open \tilde{B}-orbit in \tilde{Q}/\tilde{Q}_z, and the set $\psi^{-1}(\varphi(O_z'))$ splits into two \tilde{B}-orbits of codimension 1, which we denote by D_1 and D_2. Now let $y = \varphi(z)$ and $\psi^{-1}(y) = \{y_1, y_2\}$. Since $Hy \simeq \mathbb{A}^1$, the set $\psi^{-1}(Hy)$ is a disjoint union of two components Y_1 and Y_2, each of which maps isomorphically onto Hy. Without loss of generality, we assume that $y_i \in Y_j$ for $i = 1, 2$. Let $b \in B$ be such that $hy_i = y_j$. Then $b \in \tilde{B}_z$ and, hence, $hy_2 = y_1$. Since Hy is \tilde{B}-stable, the action of b interchanges Y_1 and Y_2. On the other hand, the set $\psi^{-1}(Hy \cap \varphi(O_z))$ consists of two points belonging to different \tilde{B}-orbits, a contradiction.

In the terminology of [1, Sect. 3 4.2], a B-root subgroup H on X is called vertical if it preserves an open B-orbit and horizontal otherwise. If H is horizontal and $HD \neq D$ for some $D \in \mathcal{D}^+$, then we say that H moves D. According to Proposition 1, horizontal B-root subgroups can be divided into two types.

Definition 1. Let H be a horizontal B-root subgroup on X, and let a divisor $D \in \mathcal{D}^+$ be such that $HD \neq D$. If $D \in \mathcal{D}^G$, then we call H toroidal. If D is a color of type (T), then we call H blurring.

4. For every subset $\mathcal{F} \subset \mathcal{D}$, put $D_\mathcal{F} = \bigcup_{D \in \mathcal{D}^\mathcal{F}} D$, $X_\mathcal{F} = X \setminus D_\mathcal{F}$, and let $P_\mathcal{F}$ denote the stabilizer of the set $X_\mathcal{F}$ in G. Then $P_\mathcal{F}$ is a parabolic subgroup of G containing B. In our subsequent consideration, a key role is played by the local structure theorem (see [7, Theorem 2.3, Proposition 2.4; 8, Theorem 1.4]), which in our situation can be stated as follows.

Theorem 1. Suppose that $\mathcal{F} \subset \mathcal{D}$ is an arbitrary subset and $P = L \times P_u$ is a Levi decomposition of the group $P = P_\mathcal{F}$. Then there exists a closed L-stable subvariety $Z \subset X_\mathcal{F}$ such that the map $P \times Z \to X_\mathcal{F}$ given by the formula $(p, z) \mapsto px$ is a P-equivariant isomorphism, where the action of P on $P \times Z$ is defined as $lu(p, z) = (lul^{-1}, lz)$ for all $l \in L$, $u, p \in P_u$, $z \in Z$. Moreover, if P coincides with the stabilizer of the open B-orbit in X, then the derived subgroup of L acts trivially on Z.

Below we will need the following observation.
Proposition 2. Suppose that $\mathcal{F} = \mathcal{D}$ or $\mathcal{F} = \mathcal{D}\{D_0\}$, where D_0 is a color of type (T). Then the group P_ρ coincides with the stabilizer of the open B-orbit in X.

Proof. If $\mathcal{F} = \mathcal{D}$, then the assertion is obvious, so in what follows we assume that $\mathcal{F} = \mathcal{D}\{D_0\}$ for a color D_0 of type (T). Let $Q \supset B$ be an arbitrary minimal parabolic subgroup of G. Then the condition $QD_0 \neq D_0$ can hold only if $QD' \neq D'$ for some color $D' \in \mathcal{D}\{D_0\}$. Therefore, if $Q \subset P_\rho$, then $QD_0 = D_0$. Since P_ρ is generated as a group by all minimal parabolic subgroups contained in it, we obtain $P_\rho D_0 = D_0$, which yields the required result.

5. Throughout the rest of this paper, we assume that X is an affine spherical (T)-variety. Now we introduce some notation.

Fix a maximal torus $T \subset B$, and let $\chi(T)$ denote its character lattice. Let $\Delta \subset \chi(T)$ be the root system of G with respect to T, and let $\Lambda^+ \subset \chi(T)$ be the monoid of dominant weights with respect to B.

Let $M(\Delta)$ be the lattice (respectively, the monoid) of weights of B-semi-invariant rational (respectively, regular) functions on X. Since X is affine, we have $M = \mathbb{Z}\Delta$ (see, e.g., [5, Proposition 5.14]). Consider the dual lattice $N = \text{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$ and the corresponding rational vector space $N_Q = N \otimes_{\mathbb{Z}} \mathbb{Q}$. The natural pairing $N \times M \to \mathbb{Z}$ is denoted by $\langle \cdot , \cdot \rangle$.

Since X contains an open B-orbit, for every $\lambda \in M$, there exists a unique, up to proportionality, B-semi-invariant rational function f_λ on X of weight λ. Requiring all such functions to take the value 1 at a fixed point of the open B-orbit, we assume that $f_\lambda f_\mu = f_{\lambda+\mu}$ for all $\lambda, \mu \in M$. Every divisor $D \in \mathcal{D}^B$ defines an element $\alpha(D) \in N$ by the formula $\langle \alpha(D), \lambda \rangle = \text{ord}_D(f_\lambda)$ for all $\lambda \in M$. Since X is normal, we have

$$\Gamma = \{ \lambda \in M \mid \langle \alpha(D), \lambda \rangle \geq 0 \text{ for all } D \in \mathcal{D}^B \}.$$

(3)

In particular, the set $\{ \langle \alpha(D), \lambda \rangle \mid D \in \mathcal{D}^B \}$ generates a strictly convex cone in N_Q.

For each strictly convex finitely generated cone $\mathcal{C} \subset N_Q$, let \mathcal{C}_1 denote the set of primitive elements ρ of the lattice N such that the ray $Q_{\rho} = \mathbb{R}_{\rho}$ is a face of \mathcal{C}. For every $\rho \in \mathcal{C}_1$, define the set

$$\mathcal{R}_\rho(\mathcal{C}) = \{ \mu \in M \mid \langle \rho, \mu \rangle = -1 \};$$

$$\langle \rho', \mu \rangle \geq 0 \text{ for all } \rho' \in \mathcal{C}_1, \rho \in \mathcal{C}_1.$$

(4)

Elements of the set $\mathcal{R}(\mathcal{C}) = \bigcup_{\rho \in \mathcal{C}_1} \mathcal{R}_\rho(\mathcal{C})$ are called Demazure roots of the cone \mathcal{C}. Put

$$\Gamma(\mathcal{C}) = \{ \lambda \in M \mid \langle \lambda, \lambda \rangle \geq 0 \text{ for all } \lambda \in \mathcal{C} \}$$

and consider the algebra $A(\mathcal{C}) = \bigoplus_{\lambda \in \Gamma(\mathcal{C})} \mathbb{K}_{f_\lambda}$. Below, we will need the following well-known result (see [9, Theorem 2.7]), which provides a description of all T-normalized LNDs on $A(\mathcal{C})$.

Theorem 2. Let $\mathcal{C} \subset N_Q$ be an arbitrary strictly convex finitely generated cone.

(a) The set of weights of all T-normalized LNDs on $A(\mathcal{C})$ equals $\mathcal{R}(\mathcal{C})$.

(b) For each $\rho \in \mathcal{C}_1$ and each $\mu \in \mathcal{R}_\rho(\mathcal{C})$, there exists a unique, up to proportionality, T-normalized LND ∂_μ on $A(\mathcal{C})$ of weight μ, which is defined by the formula

$$\partial_\mu(f_\lambda) = \langle \rho, \lambda \rangle f_\lambda f_\mu$$

(6)

for all $\lambda \in \Gamma(\mathcal{C})$.

6. Suppose that H is a B-root subgroup on X and $\mathcal{F}_H = \{ D \in \mathcal{D} \mid HD = D \}$. Then H preserves the open subset $X_{\mathcal{F}_H} \subset X$, thus defining a B-normalized LND on the algebra $\mathbb{K}[X_{\mathcal{F}_H}]$. Note that $\mathcal{F}_H = \mathcal{D}$ in the case of vertical or toroidal H and $\mathcal{F}_H = \mathcal{D}\{D_0\}$ in the case of blurring H moving a color D_0 of type (T).

Now let $\mathcal{F} = \mathcal{D}$ or $\mathcal{F} = \mathcal{D}\{D_0\}$, where $D_0 \in \mathcal{D}$ is a color of type (T). Our goal in this section is to describe all B-normalized LNDs on the algebra $\mathbb{K}[X_{\mathcal{F}}]$.

Applying Theorem 1 and retaining the notation Z, L, P_ρ used in this theorem. Then there is a P-equivariant isomorphism $X_{\mathcal{F}} \simeq P_\rho \times Z$, via which we will identify these two varieties below. Without loss of generality, we assume that $L \supset T$. By Proposition 2, the derived subgroup of L acts trivially on Z. Since X_ρ contains an open B-orbit, the variety Z contains an open T-orbit, which will be denoted by Z_ρ. Fix also an arbitrary point $z_0 \in Z_\rho$. Let L_ρ denote the kernel of the action of L on Z and put $T_\rho = T \cap L_\rho$. Note that M consists of exactly those characters of T that restrict trivially to T_ρ.

For every $\lambda \in M$, the restriction of f_λ to the subvariety Z is a T-semi-invariant rational function, which will still be denoted by f_λ. The $\mathbb{K}[Z] = \bigoplus_{\lambda \in \Gamma_{T_\rho}} \mathbb{K}_{f_\lambda}$, where

$$\Gamma_{T_\rho} = \{ \lambda \in M \mid \langle \alpha(D), \lambda \rangle \geq 0 \text{ for all } D \in \mathcal{D}^B \{ \mathcal{F} \} \}.$$

(7)

Without loss of generality, we assume that $f_\lambda(z_0) = 1$ for all $\lambda \in M$.

Consider the adjoint representation of the group L on the space $p_\rho = \text{Lie}P_\rho$, and decompose p_ρ into a direct sum of irreducible L-invariant subspaces. It is well known (see [6, Theorem 0.1]) that all summants in this decomposition are pairwise nonisomorphic as
\[\begin{align*}
\Omega_\mu &= \{ \alpha \in \Omega \mid \mu|_{t_\alpha} = \alpha|_{t_\alpha} \}; \\
\Omega_\mu^0 &= \{ \alpha \in \Omega_\mu \mid \mu - \alpha \in \Gamma_Z \}.
\end{align*} \]

Note that the condition \(\mu|_{t_\alpha} = \alpha|_{t_\alpha} \) is equivalent to \(\mu - \alpha \in M \).

Theorem 3. Every \(B \)-normalized LND of weight \(\mu \) on the algebra \(\mathbb{K}[P_u \times Z] \) has the form
\[\sum_{\alpha \in \Omega_\mu} c_\alpha f_{\mu-\alpha} \delta_\alpha + \partial_Z, \tag{9} \]
where \(c_\alpha \in \mathbb{K} \) and \(\partial_Z \) is a \(T \)-normalized LND of weight \(\mu \) on \(\mathbb{K}[Z] \) extended trivially to \(\mathbb{K}[P_u] \). Conversely, every derivation on \(\mathbb{K}[P_u \times Z] \) of the above form is \(B \)-normalized of weight \(\mu \) and locally nilpotent.

Proof. Suppose that \(\partial \) is a \(B \)-normalized LND of weight \(\mu \) on \(\mathbb{K}[P_u \times Z] \), and let \(\partial_Z \) be the restriction of \(\partial \) to the subalgebra \(\mathbb{K}[Z] \). In what follows, we regard \(\partial_Z \) as a derivation on the whole algebra \(\mathbb{K}[P_u \times Z] \) by setting \(\partial_Z(\mathbb{K}[P_u]) = 0 \). The extension of the derivation \(\partial - \partial_Z \) to the algebra \(\mathbb{K}[P_u \times Z_0] \) determines a \(B \)-semi-invariant vector field \(\xi \) of weight \(\mu \) on the smooth variety \(P_u \times Z_0 \). Since \(B \) acts transitively on \(P_u \times Z_0 \), \(\xi \) is uniquely determined by its value \(v \) at the point \((e, z_0) \), where \(e \in P_u \) is the identity element. Since \(\partial - \partial_Z \) acts trivially on \(\mathbb{K}[Z_0] \), it follows that \(v \) is a \(B \cap L_0 \)-semi-invariant vector in \(P_u \) of weight \(\mu|_{t_\alpha} \); therefore,
\[v = \sum_{\alpha \in \Omega_\mu} c_\alpha e_\alpha \]
for some \(c_\alpha \in \mathbb{K} \). On the other hand, we observe that the derivation \(\sum_{\alpha \in \Omega_\mu} c_\alpha f_{\mu-\alpha} \delta_\alpha \) on \(\mathbb{K}[Z_0] \) is also \(B \)-semi-invariant of weight \(\mu \) and corresponds to the same tangent vector at \((e, z_0) \); hence, it coincides with \(\partial - \partial_Z \). Since this derivation preserves the algebra \(\mathbb{K}[P_u \times Z] \), the condition \(c_\alpha = 0 \) should hold for all \(\alpha \in \Omega_\mu \) with \(\mu - \alpha \in \Gamma_Z \), which proves the first claim.

Now suppose that \(\partial \) is a derivation on \(\mathbb{K}[P_u \times Z] \) of the form (9). Then \(\partial \) is automatically \(B \)-normalized of weight \(\mu \), and it remains to prove that \(\partial \) is locally nilpotent. Since \(\mathbb{K}[P_u] \) is a rational \(P_u \)-module (with respect to the action on the right), it suffices to check that \(\partial \) is locally nilpotent on an arbitrary subspace of the form \(V \otimes_{\mathbb{K}} \mathbb{K}[Z] \), where \(V \subset \mathbb{K}[P_u] \) is a finite-dimensional \(P_u \)-invariant subspace. Since the image of the algebra \(P_u \) in \(gl(V) \) nilpotent, in \(V \) there exists a flag of subspaces
\[0 = V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_s = V \tag{10} \]
with the property \(p_u V_i \subset V_{i-1} \) for all \(i = 1, \ldots, s \). It follows that, for all \(i = 1, \ldots, s, g \in V_i \), and \(f \in \mathbb{K}[Z] \), we have
\[\partial(gf) = \sum_{\alpha \in \Omega_\mu} c_\alpha \delta_\alpha(g)f_{\mu-\alpha}f + g\partial_Z(f) \tag{11} \]
in \(g\partial_Z(f) + V_{i-1} \otimes_{\mathbb{K}} \mathbb{K}[Z] \), because \(\delta_\alpha(g) = e_\alpha g \in V_{i-1} \) for all \(\alpha \in \Omega \). Since \(\partial_Z \) is an LND on \(\mathbb{K}[Z] \), we obtain \(\partial^k \) \((gf) \in V_{i-1} \otimes_{\mathbb{K}} \mathbb{K}[Z] \) for some \(k > 0 \). The proof is completed by induction on \(i \).

7. Retain the assumptions and notation used in Section 6. Now we study when a \(B \)-normalized LND on the algebra \(\mathbb{K}[P_u \times Z] \) preserves the subalgebra \(\mathbb{K}[X] \) and thus defines a \(B \)-root subgroup on the whole variety \(X \). Let \(\lambda \mapsto \overline{\lambda} \) be an arbitrary projection operator from \(\mathcal{X}(T) \otimes_{\mathbb{Q}} \mathbb{Q} \) onto the subspace \(M \otimes_{\mathbb{Q}} \mathbb{Q} \). Let \(\mathcal{E}_z \subset N_{\mathbb{Q}} \) be the cone generated by the set \(\{ \alpha(D) \mid D \in \mathcal{D}_z \} \), so that \(\Gamma_z = \Gamma(\mathcal{E}_z) \) in view of (7) and \(\mathbb{K}[Z] = A(\mathcal{E}_z) \) (see the notation in Section 5).

Theorem 4. There exists a collection of constant \(\{ C_D \mid D \in \mathcal{F} \} \) with the following property: if \(\mu \in \mathcal{X}(T) \) and \(\langle \nu_{\mu}, \overline{\nu} \rangle \geq C_D \) for all \(D \in \mathcal{F} \), then every \(B \)-normalized LND on \(\mathbb{K}[P_u \times Z] \) of weight \(\mu \) preserves \(\mathbb{K}[X] \).

Proof. Fix a generating system \(F_1, \ldots, F_k \) of the algebra \(\mathbb{K}[X] \). For every \(i = 1, \ldots, k \), we have
\[F_i = \sum_{j=1}^n g_{ij} f_{\lambda_j} \]
for some functions \(g_{ij} \in \mathbb{K}[P_u] \) and weights \(\lambda_j \in \Gamma_Z \). If \(\partial \) is an arbitrary derivation of the algebra \(\mathbb{K}[P_u \times Z] \), then \(\partial \) preserves \(\mathbb{K}[X] \) if and only if \(\text{ord}_P(\partial(F_i)) \geq 0 \) for all \(D \in \mathcal{F} \) and \(i = 1, \ldots, k \).

By Theorem 3, to find the required collection of constants, for each weight \(\mu \in \mathcal{X}(T) \), it suffices to require that each summand in (9) preserve \(\mathbb{K}[X] \).
ON THE EXISTENCE OF B-ROOT SUBGROUPS

If \(\partial_Z \neq 0 \), then, by Theorem 2, we have \(\mu \in \mathcal{R}_\mu(\mathfrak{g}_Z) \) for some \(\rho \in \mathfrak{g}_Z^1 \) (in particular, \(\mu \in M \) and \(\mu = \mu \)) and there exists a nonzero constant \(c \in \mathbb{K} \) such that \(\partial_Z(f_\lambda) = c(\rho, \lambda)f_\lambda f_\mu \) for all \(\lambda \in \Gamma_Z \). Then, for all \(D \in \mathcal{D} \) and \(i = 1, \ldots, k \), with \(\partial_Z(F_i) \neq 0 \), we have

\[
\text{ord}_D(\partial_Z(F_i)) = \text{ord}_D \left(\sum_{j=1}^n \langle \rho, \lambda_{ij} \rangle g_i f_\lambda f_\mu \right) = \langle \nu_D, \overline{\lambda} \rangle + \text{ord}_D \left(\sum_{j=1}^n \langle \rho, \lambda_{ij} \rangle g_i f_\lambda f_\mu \right) \geq \langle \nu_D, \overline{\lambda} \rangle + \min \{ \text{ord}_D(g_i f_\lambda) \mid j = 1, \ldots, n \}.
\]

It remains to be noted that all expressions in (12) and (13) are nonnegative for a suitable choice of the required constants.

8. Let us deduce several consequences of Theorems 3 and 4.

Corollary 1. All \(B \)-normalized LNDs on \(\mathbb{K}[X] \) of the same weight form a finite-dimensional vector space over \(\mathbb{K} \).

Proof. In view of [1, Proposition 4.22], any two horizontal \(B \)-root subgroups on \(X \) of the same weight \(\mu \) move the same divisor \(D \in \mathcal{D} \). Therefore, under the conditions of Section 6, one can choose a subset \(\mathcal{D} \subset \mathcal{D} \) such that all \(B \)-root subgroups on \(X \) of weight \(\mu \) move the same divisor \(D \). By Theorems 3 and 2, all \(B \)-normalized LNDs on \(\mathbb{K}[X] \) of weight \(\mu \) form a finite-dimensional vector space. The condition of preserving the subalgebra \(\mathbb{K}[X] \) determines a subspace in that vector space.

Let \(\mathcal{E} \subset N_0^+ \) be the cone generated by the set \(\{ a(D) \mid D \in \mathcal{D} \} \), so that \(\Gamma = \Gamma(\mathcal{E}) \) in view of (3).

Corollary 2. Let \(D \in \mathcal{D} \) be such that \(D \in \mathcal{D}^G \) or \(D \) is a color of type \(T \). Suppose that there exists an element \(\rho \in \mathcal{E}^1 \) such that \(a(D) \in \mathbb{Q}_{\geq 0} \rho \) and \(a(D') \notin \mathbb{Q}_{\geq 0} \rho \) for all \(D' \in \mathcal{D}\setminus \{D\} \). Then there exists a \(B \)-root subgroup on \(X \) that moves \(D \).

Proof. Put \(\mathcal{F} = \mathcal{D} \) for \(D \in \mathcal{D}^G \) and \(\mathcal{F} = \mathcal{D}\setminus \{D\} \) otherwise. Retain the notation of Sections 6 and 7. Since \(\rho \in \mathcal{C}_Z \) and \(\mathcal{C}_Z \subset \mathcal{E} \), we have \(\rho \in \mathcal{C}_Z \). Choose any element \(\mu \in \mathcal{R}_\mu(\mathcal{C}_Z) \) and consider the \(B \)-normalized LND \(\partial_\mu \) on \(\mathbb{K}[P] \times Z \) of weight \(\mu \) that acts trivially on \(\mathbb{K}[P] \) and by formula (6) on \(\mathbb{K}[Z] \). It follows from the hypothesis that there exists a weight \(\lambda \in \Gamma \) such that \(\langle \rho, \lambda \rangle = 0 \) and \(\langle \lambda(D'), \lambda \rangle > 0 \) for all \(D' \in \mathcal{F} \). Then, for all integers \(N > 0 \), we have \(N\lambda + \mu \in \mathcal{R}_\mu(\mathcal{C}_Z) \). By Theorem 4, there is a value \(N_0 \) such that, for all \(N \geq N_0 \), the LND \(\partial_{N\lambda+\mu} = f_{N\lambda+\mu} \partial_\mu \) preserves \(\mathbb{K}[X] \) and, therefore, defines a \(B \)-root subgroup on \(X \). This \(B \)-root subgroup moves \(D \) due to [1, Proposition 4.22].

In view of [1, Proposition 3.9], every divisor \(D \in \mathcal{D}^G \) automatically satisfies the conditions of Corollary 2. This implies the following result, which was stated as a conjecture in [1, Conjecture 4.29].

Corollary 3. For every \(D \in \mathcal{D}^G \), there exists a \(B \)-root subgroup on \(X \) that moves \(D \).

FUNDING

The research of R.S. Avdeev was supported by the Russian Science Foundation, grant no. 22-41-02019. The research of V.S. Zhgoon was performed within the state assignment for basic scientific research (project no. FNEF-2022-0011) and the HSE University Basic Research Program.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. I. Arzhantsev and R. Avdeev, “Root subgroups on affine spherical varieties,” Preprint (2021). arXiv:2012.02088v2.

2. F. Knop, “On the set of orbits for a Borel subgroup,” Comment. Math. Helv. 70 (2), 285–309 (1995).

3. M. Brion, “On orbit closures of spherical subgroups in flag varieties,” Comment. Math. Helv. 76 (2), 263–299 (2001).

4. D. Luna, “Grosses cellules pour les variétés sphériques,” in Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser. 9 (Cambridge Univ. Press, Cambridge, 1997), pp. 267–280.

5. A. Timashev, Homogeneous Spaces and Equivariant Embeddings, Encycl. Math. Sci., Vol. 138 Springer-Verlag, Berlin, 2011.

6. B. Kostant, “Root systems for Levi factors and Borel–de Siebenthal theory,” in Symmetry and Spaces, Progress in Mathematics, Vol. 278 (Birkhäuser, Boston, 2010), pp. 129–152.

7. F. Knop, “The asymptotic behavior of invariant collective motion,” Invent. Math. 116 (1), 309–328 (1994).

8. M. Brion, D. Luna, and Th. Vust, “Espaces homogènes sphériques,” Invent. Math. 84 (3), 617–632 (1986).

9. A. Liendo, “Affine \(T \)-varieties of complexity one and locally nilpotent derivations,” Transform. Groups 15 (2), 389–425 (2010).