Transformation of BALB/c-3T3 Cells: V. Transformation Responses of 168 Chemicals Compared with Mutagenicity in Salmonella and Carcinogenicity in Rodent Bioassays

by Edwin J. Matthews1, Judson W. Spalding2, and Raymond W. Tennant2

This report describes the activities of 168 chemicals tested in a standard transformation assay using A-31-I-13 BALB/c-3T3 cells. The data set included 81 carcinogens, 77 noncarcinogens, and 7 research chemicals. Carcinogens included 49 mutagens and 35 nonmutagens; noncarcinogens included 24 mutagens and 53 nonmutagens. The transformation assay did not use an exogenous activation system, thus, all chemical responses depended on the inherent target cell metabolic capacity where metabolic activation was required. The upper dose limit was 100 milli-osmolar because the assay could not discriminate active and inactive chemicals tested above this concentration. Certain physicochemical properties resulted in technical problems that affected chemical biological activity. For example, chemicals that reacted with plastic were usually nonmutagenic carcinogens. Similarly, chemicals that were insoluble in medium, or bound metals, were usually nonmutagenic and nontransforming.

Multifactorial data analyses revealed that the transformation assay discriminated between nonmutagenic carcinogens and noncarcinogens; it detected 64% of the carcinogens and only 16% of the noncarcinogens. In contrast, the transformation assay detected most mutagenic chemicals, including 94% of the mutagenic carcinogens and 70% of the mutagenic noncarcinogens. Thus, transformation or Salmonella typhimurium mutagenicity assays could not discriminate mutagenic carcinogens from mutagenic noncarcinogens. Data analyses also revealed that mutagenic chemicals were more cytotoxic than nonmutagenic chemicals; 88% of the mutagens had an LD50 < 5 mM, whereas half of the nonmutagens had an LD50 > 5 mM. Binary data analyses of the same data set revealed that the transformation assay and rodent bioassay had a concordance of 71%, a specificity for carcinogens of 80%, and a specificity for detecting noncarcinogens of 66%. In contrast, Salmonella mutagenicity assays and rodent bioassays had a concordance of 63%, a sensitivity of 58%, and a specificity of 69%. The transformation assay complemented the Salmonella mutagenesis assay in the identification of nonmutagenic carcinogens; thus, the two assays had a combined 83% sensitivity for all carcinogens and a 75% specificity for nonmutagenic noncarcinogens.

Introduction

Recent investigations supported by the National Toxicology Program (NTP) have revealed that many chemical carcinogens were not detected in Salmonella typhimurium mutagenesis assays (1-4). These carcinogens have been operationally classified as either nongenotoxic or nonmutagenic carcinogens, based on their activity in the Salmonella assay (1-4). While some of the nonmutagenic carcinogens induced chromosomal aberrations (ABS) and sister chromatid exchanges (SCE) in Chinese hamster ovary cells (CHO), or TK+/- mutations in mouse lymphoma (ML) L5178Y cells, the chemicals were not consistently active in all three assays (4). Furthermore, the three genotoxicity assays all detected as many nonmutagenic noncarcinogens as nonmutagenic carcinogens (4). Thus, there is a continuing need to develop a short term, in vitro assay with which to selectively characterize nonmutagenic carcinogens.
The National Institute of Environmental Health Sciences (NIEHS) has supported research programs using different cell transformation assay systems because such assays demonstrate phenotypes that respond to carcinogen treatments and mimic certain events in the multistep process of chemical carcinogenesis in vivo (5–8). The BALB/c-3T3 transformation assay was one of the assays evaluated because chemical-induced morphologically transformed cells are easily recognized and induced at relatively high frequencies in this assay (7,9–12). Furthermore, normal BALB/c-3T3 cells have been demonstrated to be biologically different from chemical-induced transformed cells isolated from a type III focus. Whereas normal BALB/c-3T3 cells were nonmalignant and grow at low frequencies in soft agar, transformed cells readily grew in soft agar and were tumorigenic in vivo (7,11,13).

This report summarizes the results we obtained in testing 168 chemicals in a standard BALB/c-3T3 cell transformation assay protocol. The protocol was developed in this laboratory (10,14), and it differed substantially from the method first described by Kakunaga (7) and that currently recommended by government agencies (6,15). Our method modified the standard assay design to enhance the sensitivity for detection of chemical-induced transformation (14,16). The improved sensitivity was achieved without using an exogenous activation system; thus, all chemical responses were dependent on the inherent metabolic capability of the BALB/c-3T3 cells. Each chemical was tested in two or more experiments, and a total of 110 experiments were conducted over a 2.5-year period. The majority of the 168 test chemicals were selected from the NTP database of 301 chemicals tested in rodent bioassay (3); thus, the chemical structures and biological activities of most of these chemicals in several assay systems were readily available for comparative analyses (1–4).

The 168 test chemicals in this data set included comparable numbers of chemicals with three different biological activities (carcinogenicity, cytotoxicity, and mutagenicity). For example, the data set contained roughly equal numbers of carcinogens and noncarcinogens, as well as mutagenic and nonmutagenic chemicals. Furthermore, this data set also included many examples of nonmutagenic carcinogens as well as mutagenic noncarcinogens. Currently both groups of chemicals reduce our ability to predict carcinogenicity in rodents using in vitro tests for genotoxicity. Finally, this set contained many examples of cytotoxic and noncytotoxic chemicals that differed in their carcinogenic and mutagenic activities. The only chemicals tested in the assay that were omitted from this paper were 24 chemicals with unknown carcinogenicity, which were reported separately (14), 10 polycyclic aromatic hydrocarbons (unpublished data), and 21 test chemicals with a unique technical problem. The 21 chemicals rapidly reacted with plastic culture vessels at treatment dose concentrations that were tested for transforming activity and will have to be evaluated separately in a chemoresistant culture vessel. Taken together, none of the test chemical responses detected during this investigation were either selectively, or arbitrarily, omitted from this report.

This study included a major effort to determine the appropriate upper dose limit for the BALB/c-3T3 cell transformation assay and to investigate the relationship of chemical cytotoxicity to transformation, mutagenicity, and carcinogenicity. Currently most in vitro genotoxicity assays using cultured mammalian cells employ an arbitrary upper dose limit of 5–10 mg/mL. This decision creates two problems. Because test chemicals have widely different molecular weights, the 5–10 mg/mL limit represents a high physiological treatment dose for some chemicals and a relatively lower dose for other chemicals. We avoided this problem by analyzing chemical activities in terms of treatment doses expressed in millimolar (mM) concentrations. In addition, the use of an arbitrary dose limit inhibits one from determining the actual upper dose limit. For the purpose of this investigation, the actual upper dose limit of an assay was defined as the dose at which the assay could not discriminate active and inactive test chemicals. This upper dose limit can only be determined when all chemicals are tested at comparable ranges of cytotoxic responses. This report will provide evidence that the actual upper dose limit for noncytotoxic test chemicals was equivalent to a treatment dose of 100 millimolar (mM).

The statistical methods used in this report to evaluate the activities of chemicals in one or more experiments, as well as those used to weight and rank-order chemical transformation responses, have been described previously (17–18). These methods were developed because transformation experiments had different statistical sensitivities (17) and different detection sensitivities for chemical-induced transformation (18). The statistical weighting procedures used mean and rank t-statistics (18), and these methods solved three data analysis problems. First, statistically weighted chemical responses provided an unbiased method for comparing responses in two independent experiments and could be used to determine whether chemical activities detected in two consecutive experiments were reproducible. Second, the statistical weighting procedure provided an easy and unbiased method for combining the data for a chemical tested in two or more trials. Third, rank-ordered and statistically weighted chemical responses provide a very sensitive means of comparing biological activities of small sets of chemicals.

This report does not present a single table with all of the test chemicals and their transformation responses. A binary presentation of positive and negative test chemical responses was too simplistic and masked the multifactorial activities of chemicals in this database. Thus, binary procedures were only used to demonstrate that the data set had a comparable distribution of chemicals to that of other NTP data sets. In contrast, multifactorial procedures were used to compare the activities of chemicals that shared selected biological activities. Multifactorial comparisons of groups of chemicals were examined for many different correlations between biological properties before they were presented in the format of the tables contained herein.
Materials and Methods
Cell Culture
The investigations in this report used the A31-1-13 clone of BALB/c-3T3 cells (19,20). The materials and methods used to culture the cells have been previously reported in detail (10) and are summarized in part I of these investigations (17).

Standard Clonal Survival Assay
The standard clonal survival assay was used to a) estimate the cytotoxic activity of a test chemical, b) select treatment doses for the preliminary co-culture clonal survival assay, c) assess the reproducibility of the chemical-induced cytotoxic responses, and d) determine the relative shift in test chemical cytotoxic responses between high- and low-density cell cultures. The standard clonal survival assay using low-density cultures of BALB/c-3T3 cells was conducted according to our modification (10,14) of the method described by Kakunaga (7). Briefly, 200 wild type (WT) cells were seeded in either 60-mm culture dishes (or 25-cm² culture flasks), and chemical treatment doses were applied to triplicate cultures for 48 hr beginning 2 days after seeding. After a total culture period of 8 days, the vessels were washed, fixed in methanol, stained with Giemsa, and colonies of cells were hand tabulated according to the procedure described in part IV of these investigations (14).

Co-culture Clonal Survival Assay
The co-culture clonal survival assay was used to a) select chemical treatment doses for transformation assays, b) assess the reproducibility of chemical-induced cytotoxic responses, and c) verify that the test chemical and positive control treatment doses were cytotoxic in the transformation assay. The procedure used for the co-culture clonal survival assay has been previously reported in detail (11,13) and is summarized in part III of this series (21).

Transformation Assay
Chemical-induced transformation of BALB/c-3T3 cells was evaluated in a standard transformation assay protocol that has been reported in detail (10) and is summarized in part IV of this series (14). Briefly, each transformation assay contained three components: a standard clonal survival assay (10,14), a co-culture clonal survival assay (21), and a transformation assay (10,14). In each experiment, chemical-induced transformation was detected in 18–20 vessels/dose seeded with 3.2 × 10⁴ cells/vessel. Chemical doses were applied to cell cultures for 48 hr, days 2–4, using standard procedures (14). A total of three to six test chemicals were included in each transformation experiment, and each chemical was tested at four treatment doses in two or more independent trials. The procedure for selecting the four doses has been described in part IV of these investigations (14), and the doses covered a range of cytotoxic responses of approximately 10–100% relative cloning efficiency (RCE).

Transformation Assay Acceptance and Evaluation Criteria
A complete explanation of the transformation assay acceptance and evaluation criteria for a test chemical evaluated in a single trial or in multiple trials is provided in part IV of this investigation (14). Briefly, a test chemical evaluated in one experiment had one of four possible transformation responses: sufficient positive (SP), limited activity (LA), sufficient negative (SN), and limited negative (LN). Briefly, an SP transformation response required that a test chemical response was statistically significant at two or more consecutive treatment doses. In contrast, an LA transformation response required that a test chemical response was statistically significant at either one treatment dose alone at the 99% confidence level or at two consecutive doses at the 95% confidence level. An SN transformation response required that a test chemical response did not have a statistically significant increase in transformation responses at any of the four treatment doses. An LN transformation response occurred under two different circumstances. First, the four test chemical treatment doses did not induce a statistically significant transformation response; however, in contrast to an SN transformation response, the test chemical treatments did not have a significant cytotoxic response. Therefore, higher concentrations of the test chemical could have induced a significant cytotoxic response, and this could have resulted in a statistically significant transformation response. Second, the test chemical had the equivalent of an SN transformation response; however, the positive control for the transformation experiment was inactive and did not induce a statistically significant response.

Evaluation of Transformed Foci
The method used to evaluate transformed foci of BALB/c-3T3 cells has been reported in detail (10) and is summarized in part IV (14) of these investigations. Briefly, the number of type I–III transformed foci of BALB/c-3T3 cells was identified microscopically using published criteria (6–8,12,17), and type III foci had three phenotypic properties: piling and overlapping cells, disorientation of cells at the periphery of the focus, and invasion of transformed cells into a contact-inhibited monolayer of WT cells. Type I and II foci also appeared in many different sizes, but they lacked one or more of the three phenotypic properties of the type III transformed focus.

Handling of Test Chemicals
Many chemicals in this investigation had physicochemical properties that could have potentially interfered with them being adequately tested in the BALB/c-3T3 cell transformation assay (Table 1). Therefore, procedures were developed to ensure that all test chemicals would be consistently and adequately evaluated, and the procedures are described in detail in part IV of these investigations (14).
Table 1. Cytotoxicity of 168 test chemicals

Group of chemicals	LD₅₀mM	No.
1. Cytotoxic	<5mM	114
2. Nontoxic	5mM–100mM	43
3. Very nontoxic	>100mM	11

Abbreviations: LD₅₀ lethal dose for 50% of the cells; mOsm, milliosmolar; no., number of chemicals in a subgroup of chemicals.

Chemical-induced, cytotoxic response data for this table were obtained from Tables A1 and A4.

Statistical Analyses and Mathematical Models

Mathematical Transformation of Focus Data. The method used to determine the distribution of spontaneous transformed foci of BALB/c-3T3 cells has been previously reported (10,11) and is described in detail in part I of these investigations (17).

Significance of Transformation Responses. The methods used to determine the statistical significance of a chemical-induced transformation response has been described in detail in part IV of these investigations (14). Briefly, the significance was determined using analysis of variance (F-test) and modified Student's t-tests, and the computations were performed using SAS software (22).

Method for Rank-Ordering Test Chemical Transformation Responses. The method used to rank-order test chemical transformation responses on the basis of the significance of their activity in the transformation assay has been described in detail in part IV of these investigations (14). Briefly, the significance of the chemical response was observed to vary proportionally to the magnitude of the t-statistic, and the t-statistic was independent of the absolute spontaneous transformation response of the solvent control. The average significance of each chemical transformation response, or mean t-statistic, was calculated by averaging the t-statistics of the four test chemical, (or two positive control) treatment doses. Treatment doses with <5% RCE and incomplete monolayers were deleted, and negative t-statistics were arbitrarily assigned the value of zero. This mean t-statistic was used to rank order chemical transformation responses in individual experiments. The test chemical activity in two or more experimental trials was assessed using a weighted version of the rank t-statistic. It was calculated using all the t-statistics for test chemical treatments in two or more experimental trials (see Tables A3 and A6 for actual and estimated rank t-statistics of 168 chemical transformation responses). Examples of these calculations are provided in Results.

Effect of Statistical Sensitivity on Detection Sensitivity for BaP. Both the magnitude of the spontaneous and the benzo[a]pyrene (BaP) transformation response varied among the 110 experiments included in this investigation (17,18). Variable spontaneous transformation responses resulted in experiments with different statistical sensitivity to detect test chemical responses (17) and different detection sensitivity for BaP (18).

Experiments with significantly low statistical sensitivity were demonstrated to have a low detection sensitivity for BaP (18). Therefore, these experiments had a high probability of underestimating the activity and rank r-statistics of test chemicals. In contrast, experiments with normal or significantly high statistical sensitivity had normal detection sensitivity for BaP (18). To compensate for the diminished sensitivity to detect chemical-induced transformation, the rank r-statistic was multiplied by a correction factor to obtain an estimated rank r-statistic (14). Example calculations using the actual rank r-statistic and the correction factor to determine the estimated rank r-statistics are provided in Tables A3 and A6.

Test Chemicals

The 43 cytotoxic, mutagenic carcinogens evaluated in this investigation were tested either as coded test chemicals (marked with an asterisk below) or as uncoded test chemicals. In addition, five chemicals were tested as both coded and uncoded (dichlorvos, C. I. basic red 9-HCl, HC red 3, dimethyl morpholinophosphoramidate, and methyl carbamate). The following 39 test chemicals were supplied by Radian Corporation (Houston, TX): *2-amino-4-nitrophenol; *2-amino-5-nitrophenol; benzidine-2HCl; 2-biphenylamine; 4-biphenylamine; 4-chloro-o-phenylenediamine; 3-(chloromethyl)pyridine-HCl; 4-chloro-o-toluidine-HCl; 5-chloro-o-toluidine; C. I. acid orange 3; C. I. basic red 9-HCl; C. I. basic red 9-HCl; C. I. disperse blue 1; C. I. disperse yellow 14; cytembena; 1,2-dibromo-3-chloropropane; 2,6-dichloro-p-phenylenediamine; 1,3-dichloropropene; dichlorvos; *dichlorvos; diglycidyl resorcinol ether; 2,4-dinitrotoluene; epichlorohydrin; *1,2-epoxybutane; 1,2-epoxypropene; ethylene dibromide; HC blue 1; *iodinated glycerol; melphalan; *N-methyl-o-acrylamide; 4,4-methylendianiline; 2-naphthylamine; *nitrofurantoin; *nitrofurazone; 2-nito-p-henzenediamine; 4,4-oxydianiline; quinoline; selenium sulfide; o-toluidine; and ziram. Three chemicals were purchased from Sigma Chemical Company (St. Louis, MO): acetyliminofluorene, 5-azacytidine, and N-methyl-N'-nitro-N-nitosoguanidine. One chemical, acrylonitrile, was purchased from Aldrich Chemical Company (Milwaukee, WI).

The 21 cytotoxic, mutagenic, noncarcinogens evaluated in this investigation were supplied by Radian Corporation (Houston, TX): 4-acetyliminofluorene; 4-(chloroacetyl)acetonilide; 2(chloromethyl)pyridine-HCl; 3-chloro-p-toluidine; coumaphos; dimethoate; 2,4-dimethoxyaniline-HCl; HC blue 2; HC red 3; *HC red 3; 8-hydroxyquinoline; malaonox; 1-naphthylamine; N-(1-naphthylethenediamine-2HCl); 1-nitroanthphalene; 4-nitro-o-phenylenediamine; 3-nitropionic acid; p-phenylenediamine-2HCl; *N-phenyl-2-naphthylamide; 2,3,5,6-tetrachloro-4-nitroanisol; tetraethylthirum disulfide; and 2,6-toluenediamine-2HCl.

Nineteen of 20 cytotoxic, nonmutagenic carcinogens evaluated in this investigation were supplied by Radian Corporation: allyl isothiocyanate; allyl isovalerate; *chlorendic acid; *chlorinated paraffins C23, 43% chlorine (also
cholorwax 40); *chlorinated paraffins 60% chlorine (also chlorowax 500c); 3-chloro-2-methylpropene; *dimethyl vinyl chloride; cinnamyl anthranilate; ethyl acrylate; isophorone; *D-limonene; *malonaldehyde, sodium salt; *2-mercaptobenzothiazole; methagyrilene-HCl; polybrominated diphenyl mixture; reserpine; tris(2-ethylhexyl)-phosphate; and *4-vinylcyclohexene. One chemical, diethyldildestrol, was purchased from Aldrich, and one chemical, trisodium salt, was purchased from Sigma.

The 30 cytotoxic, nonmutagenic noncarcinogens evaluated in this investigation were all supplied by Radian: anilazine; L-ascorbic acid; bisphenol A; carbomol; *chlorpheniramne-maleate; C. I. acid red 14; C. I. acid yellow 73; *ephrine sulfate; *erythromycin stearate; ethoxylated dodecyl alcohol; ethylenediamine tetraacetic acid, trisodium salt; *eugenol; geranyl acetate; *4-hexylresorcinol; D,L-menthol; methoxychlor; *methylkopa sesquihydrate; methylphendate-HCl; *oxytetracycline-HCl; phenol; *phenylephrine-HCl; propyl gallate; *rotenone; sodium diethyldithiocarbamate; stannous chloride; *tetracycline-HCl; *tetrais(hydroxymethyl)phosphonium chloride; *tetrais(hydroxymethyl)phosphonium sulfate; trifluoracryltin hydroxide; and *xylens (mixed).

Fourteen of 21 nontotoxic, carcinogens evaluated in this investigation were supplied by Radian: 11-aminooudecanoic acid; DC red no. 9; *decabromodiphenyloxide; di(2-ethylhexyl)adipate; di(2-ethylhexyl)phthalate; diethanolnitrosamine; dimethyl hydrogen phosphate; dimethyl methyl phosphate; dimethylmorpholinophosphoramide; *dimethylmorpholinophosphoramide; ethylene thiourea; melamine; methyl carbamate; *methyl carbamate; monuron; and 2,4-, and 2,6-toluene diisothiocyanate. Six chemicals were purchased from Sigma: 3-amino-1,2,4-triazole; cyclamate; sodium salt; diethylnitrosamine; dimethylnitrosamine; phenobarbital, sodium salt; and saccharin, sodium salt. One chemical, hexamethylphosphoramide, was purchased from Aldrich.

The 26 nontoxic noncarcinogenic evaluated in this investigation were supplied by Radian: aldicarb; *ampicillin trihydrate; o-anthranilic acid; benzoin; *benzyl alcohol; caprolactam; 2-chloroethanol; (2-chloroethyl)trimethylammonium chloride; C. I. acid orange 10; dimethyl terephthalate; diphenylhydantoin; FD&C yellow no. 6; n-mannit; *methyl methacrylate; molybdenum trioxide; 4-nitroantrhanilic acid; *penicillin VK +; phthalamide; phthalic anhydride; *roxarsone; sodium(2-ethylhexyl) alcohol sulfate; sulfisoxazole; 3-sulfolene; tetrahydrofuran; titanium dioxide; and witch hazel.

The seven very nontoxic chemicals evaluated in this investigation were all supplied by three companies: Sigma, Fisher Scientific, and U.S. Industrial Products.

Results

Range of Cytotoxic Responses of 168 Chemicals

A co-culture clonal survival assay was used to measure the cytotoxic responses of 168 chemicals (21), and each chemical was tested in two or more experiments. The cytotoxic responses of individual chemicals are presented in detail in Tables A1 and A4. The data set had a range of cytotoxic responses of over 7 logs. The most cytotoxic chemical was ziram, and it had an average cytotoxic response, or LD50, of 0.0000073 mM. Based on a molecular weight of 305.51, this concentration was equivalent to approximately 0.0114 μg/mL. The least cytotoxic chemical was witch hazel, and it had an LD50 estimated at approximately 540 mM.

The 168 chemicals were arbitrarily divided into three groups according to their relative cytotoxic responses: group 1, cytotoxic chemicals with an LD50 < 5 mM; group 2 nontoxic chemicals with an LD50 5 mM–100 mM; and group 3, very nontoxic chemicals with an LD50 > 100 mM (Table 1). There were 114 cytotoxic chemicals, 43 nontoxic chemicals and 11 very nontoxic chemicals (see Table 1). Chemical cytotoxic responses were divided into groups 1–3 based on three empirical observations. First, using the appropriate solvent vehicles, nearly all cytotoxic chemicals could be tested at treatment doses either at or below their solubility limit in culture medium. In contrast, many nontoxic chemicals had to be tested at treatment doses above their solubility limit to obtain cytotoxicity to the BALB/c-3T3 cells. Second, many cytotoxic chemicals (LD50 < 5 mM) were consistently inactive in the transformation assay; however, few nontoxic chemicals (LD50 > 5 mM) were inactive if they were fully soluble in culture medium. Thus, the solubility of nontoxic test chemicals clearly correlated their potential activity in the transformation assay, and nearly all of the nontoxic chemicals that were inactive in the transformation assay had solubility problems in culture medium. Third, mutagenic and nonmutagenic test chemicals had very different profiles of cytotoxic responses. Most mutagenic chemicals were cytotoxic chemicals, while only half of the nonmutagenic chemicals were cytotoxic. Data supporting this observation will be presented later in this report.

Distribution of Cytotoxic Responses among Carcinogens and Noncarcinogens

The cytotoxic responses of carcinogenic and noncarcinogenic chemicals were compared in the data set of 168 chemicals (Table 2). This set of chemicals included 84 carcinogens and 77 noncarcinogens, and the remaining 7 test chemicals were model chemicals that had not been evaluated in the NTP rodent bioassay. These analyses of the data revealed that the data set contained a balanced distribution of cytotoxic responses among the carcinogens and noncarcinogens. Furthermore, the data set contained many examples of cytotoxic and nontoxic carcinogens and noncarcinogens (Table 2). Thus, these data demonstrated that in vitro cytotoxicity of chemicals to BALB/c-3T3 cells neither correlated nor predicted their in vivo carcinogenic activity.
induction of transforming activity occurred at slightly higher treatment dose concentrations that were close to the chemical’s LD₅₀ dose. Taken together, the BALB/c-3T3 cell transformation assay could not discriminate active and inactive chemicals when they were tested at concentrations above about 134 mOsM; thus, the actual dose limit for the data set of 168 chemicals was set at 100 mOsM.

Physicochemical Properties of 168 Chemicals

We were concerned in this investigation that uncontrolled test chemical technical problems could affect the activity of a chemical in the transformation assay. This concern arose because most of the 168 chemicals in this investigation had physicochemical properties that could potentially have caused technical problems when they were tested in an *in vitro* assay using cultured mammalian cells (refer to chemical technical problems listed in Tables A1 and A4). Fortunately, the majority of the technical problems were avoided by using specific techniques to handle the test chemicals [see Materials and Methods in part IV of this series (14)].

Nevertheless, six types of technical problems were difficult to control in this investigation, and each of these problems could have influenced the results in these experiments (Table 4). First, 21 chemicals reacted with plastic polystyrene culture vessels; thus, treatment times were reduced from 48 hr to minutes. The chemical reaction with plastic was unusual in that it occurred after the chemical was completely dissolved in the aqueous environment. Because this problem could only be overcome through the use of chemical-resistant culture vessels such as glass bottles, these chemicals were not included in this investigation. A complete list of the 21 chemicals is provided in the Discussion. Second and third, 56 chemicals were oxidized by air and 15 chemicals reacted with water; thus, the BALB/c-3T3 cells were exposed to not only the parent test chemical, but also its oxidized and hydrolyzed byproducts. Fourth, eight chemicals reacted with biochemicals; thus, they could have combined with biochemicals in the culture medium or biochemicals within the target cells. Fifth, seven chemicals bound different metal salts; thus, they could have complexed with critical metals in either the culture medium or the target cell. Finally, over half of the chemicals had solubility problems in an aqueous environment. Fortunately, the use of organic solvents in conjunction with the nonionic surfactant pluronic F68 (14,23) resulted in most of these chemicals being soluble at concentrations that induced cytotoxicity to the BALB/c-3T3 cells. Nevertheless, 14 test chemicals could not be solubilized and were insoluble at a portion or all of the treatment dose concentrations used to test for cytotoxic and transforming activities.

Thus, we predicted that any one of the six technical problems could have affected detection of chemical-induced transformation of BALB/c-3T3 cells. Furthermore, we anticipated that the same six technical problems might also have affected detection of mutagenicity in

Table 2. Cytotoxicity of carcinogens versus noncarcinogens.*

Type of chemical	LD₅₀	No.	%
Cytotoxic chemicals			
Carcinogens	< 5 mM	63	55.3
Noncarcinogens	< 5 mM	51	44.7
Noncytotoxic chemicals			
Carcinogens	5 mM–100 mOsM	21	44.7
Noncarcinogens	5 mM–100 mOsM	26	55.3
Total chemicals			
Carcinogens	84	59.2	
Noncarcinogens	77	47.8	

Abbreviations: LD₅₀, lethal dose for 50% of the cells; mOsM, milliosmolar; No., number of chemicals in a subgroup; %, percentage of chemicals in a subgroup (e.g., 63/63 + 51 = 52.2%).

*Chemical-induced, cytotoxic response data for this table were obtained from Tables A1 and A4.

Upper Dose Limit of the Transformation Assay

This investigation did not use an arbitrary upper dose limit of 5–10 mg/mL for the BALB/c-3T3 cell transformation assay. All chemicals were tested over a comparable range of cytotoxicity of 0–100% RCE, and the data from these experiments were retrospectively used to determine an empirical upper dose limit. In addition, the concentration of test chemical treatment doses was expressed in millimoles, and not in micrograms per milliliter because the 168 test chemicals had molecular weights that ranged from 46.07 for ethanol to approximately 1200 for ethoxylated dodecyl alcohol.

The upper dose limit of the BALB/c-3T3 cell transformation assay was set at 100 mOsM based on two empirical observations in this investigation. First, we observed that the test chemicals that were the least cytotoxic to the target cells all had an LD₅₀ over a narrow range of 240–504 mOsM (see Tables 3 and A4). Second, all of the very noncytotoxic chemicals were active in the transformation assay (Appendix H). Furthermore, each of these chemicals began to induce significant transforming activity at an average concentration of 134 mOsM (Table 3). Optimal
Salmonella assays and carcinogenicity in rodent bioassay. Therefore, we examined sets of chemicals with the six technical problems to determine whether any of the problems correlated with the expression of carcinogenicity, mutagenicity, and transformation. If a chemical technical problem had either no effect or a random effect on a biological activity, then there would be equal distributions of active and inactive chemicals with this problem (i.e., ratio of active/inactive chemicals = 1.00). Conversely, if a technical problem had a consistent effect on the biological activity, then the distribution of active and inactive chemicals would be altered (i.e., ratio of active/inactive chemicals <1.00 or >1.00).

The results of these comparisons are summarized in Table 4. It was found that two of the technical problems, reaction with air and water, had no significant effect on all three biological activities. Three additional technical problems had no effect on carcinogenicity, but they were correlated with suppressed detection of transformation and mutagenic activities. For example, chemicals with severe solubility problems and chemicals that bound metal salts tended to be inactive in both BALB/c-3T3 transformation and Salmonella mutagenicity assays. Conversely, chemicals that reacted with biochemicals tended to be active in both mutagenicity and transformation assays. In contrast, only one of the technical problems had an effect on all three biological properties of carcinogenicity, transformation, and mutagenicity. Nearly all of the 21 chemicals that reacted with plastic culture vessels in BALB/c-3T3 cytotoxicity assays (unpublished observations) were carcinogenic, and they did not induce either transformation or mutagenicity in Salmonella. Thus, the presence of this technical problem significantly correlated with these chemicals being nonmutagenic carcinogens in rodent bioassay.

Transformation Responses of 168 Chemicals

Variability among spontaneous transformation responses resulted in experiments with different statistical sensitivities to detect chemical-induced transformation responses (17). Likewise, variability among BaP responses demonstrated that individual experiments had different detection sensitivities for BaP (18). Thus, individual experiments had different sensitivities to measure test chemical-induced transformation responses. Therefore, the responses of test chemicals in the BALB/c-3T3 cell transformation assay were evaluated in terms of the rank-ordered sensitivity of individual experiments to detect both spontaneous and BaP-induced transformation responses (14,17,18).

In the current study, the 168 chemicals were tested in two or more transformation assay experiments. The results of individual experiments for each test chemical are provided in detail in Appendices B–H. In addition, a summary of transformation responses of all the chemicals is presented in summary Tables A2 and A5. Explanations for the different response calls and evaluation criteria for a single transformation assay experiment have been reported (14) and are summarized in Materials and Methods. The final determination of the rank-ordered activity of each chemical is summarized in Tables A3 and A6. The method used for combining the activities of chemicals tested in two or more experiments has been discussed in detail in part IV of these investigations (14). For the reader who is interested in the cumulative data associated with an individual test chemical, a narrative description of the activities of individual chemicals is provided in Appendix A. To facilitate comparative analyses of chemicals with different biological activities, the same sequence of chemicals has been presented within each of the tables of Appendix A.

Comparison of Carcinogenicity with Mutagenicity and Transformation Responses

The data set of 161 carcinogens and noncarcinogens was compared to the activities of different sets of chemicals tested in other NTP investigations (1–4). In these binary analyses, the concordance of each assay was compared to

Table 4. Effect of test chemical technical problems on biological activities of carcinogenicity, mutagenicity and transformation.

Biological activity	Test chemical problems	Relative effect
Carcinogenicity	Reacts with plastic	3.49^a
	Reacts with water	1.47
	Reacts with biochemicals	1.38
	Reacts with air	1.22
	Solubility problem	1.09
	Binds metal salts	1.08
Transformation	Reacts with biochemicals	3.00^a
	Reacts with water	1.77
	Binds metal salts	1.29
	Reacts with air	1.26
	Solubility problem	0.393^b
	Reacts with plastic	0.000^c
Mutagenicity	Reacts with biochemicals	2.43^d
	Reacts with air	1.38
	Reacts with water	1.08
	Solubility problem	0.574^d
	Binds metal salts	0.246^d
	Reacts with plastic	0.105^d

^aThe three biological activities included carcinogenicity in rodent bioassay, mutagenicity in Salmonella, and transformation in BALB/c-3T3 cells.

^bTest chemicals in this investigation had several different problems: 56 chemicals were oxidized upon exposure to air; 21 chemicals reacted with plastic; 15 chemicals reacted with water; 14 chemicals had severe solubility problems in culture medium that was not corrected by the use of pluronic F68; 8 chemicals reacted with biochemicals (i.e., alkylating agents and chemicals that reacted with alcohols and amine groups); and 7 chemicals bound metal salts.

^cWhen a technical problem had no effect on the biological property, it resulted in a relative effect of 1.00 (i.e., equal ratio of inactive and active chemicals). When a technical problem correlated with an enhanced biological activity, it resulted in a relative effect > 2.00. Conversely, when a technical problem correlated with a decreased biological activity, it resulted in a relative effect < 0.500.

^dChemicals with relative effects either >2.00 or <0.500.

^eBecause the 21 chemicals that reacted with plastic could not be tested for transformation, they were all arbitrarily considered inactive to get a relative effect of 0.000.
Table 5. Correlation of rodent bioassay carcinogenicity and Salmonella mutagenicity data.5

Carcinogenicity	Mutagenicity	No.
Carcinogenic	Mutagenic	49
Noncarcinogenic	Nonmutagenic	53
Carcinogenic	Nonmutagenic	35
Noncarcinogenic	Mutagenic	24

Concordance = \(\frac{49 + 53}{161} = 63.4\%\)
Sensitivity = \(\frac{49}{84} = 58.3\%\)
Specificity = \(\frac{53}{77} = 68.8\%\)

No., number of chemicals in a subgroup.

The computations for this table were made using data obtained from Tables A3 and A6.

Table 6. Correlation of rodent bioassay carcinogenicity and BALB/c-3T3 transformation data.

Carcinogenicity	Transformation	No.
Carcinogenic	Transforming	64
Noncarcinogenic	Nontransforming	40
Carcinogenic	Nontransforming	16
Noncarcinogenic	Transforming	27

Concordance = \(\frac{64 + 40}{147} = 70.7\%\)
Sensitivity = \(\frac{64}{80} = 80.0\%\)
Specificity = \(\frac{40}{67} = 59.7\%\)

No., number of chemicals in a subgroup.

The computations in this table excluded 4 carcinogens and 10 noncarcinogens that had an indeterminate transformation response (Tables A3 and A6).

The rodent bioassay using a chi-square method. In this database the concordance of Salmonella mutagenicity data with rodent bioassay was 63.4% (Table 5). Using the same group of chemicals, Salmonella assays had a sensitivity to detect carcinogens of 58.3% and a specificity for detecting noncarcinogens of 68.8%. Thus, this database was comparable to other NTP data sets (1-4), and it contained a large number of nonmutagenic carcinogens and mutagenic noncarcinogens.

Transformation data were also analyzed using the same method, and the concordance of BALB/c-3T3 transformation response was compared to carcinogenicity data from rodent bioassay (Table 6). The transformation assay exhibited a concordance with the rodent bioassay of 70.7%, which was 7.3% higher than Salmonella (i.e., 70.7 versus 63.4%). Likewise, the transformation assay also had a 21.7% higher sensitivity for carcinogens (i.e., 80.0% versus 58.3%) and a 9.2% lower specificity for detecting noncarcinogens (i.e., 59.7% versus 68.9%) compared to Salmonella assays.

Correlation of Test Chemical Cytotoxicity with Mutagenicity

Binary comparisons of the responses of 147 chemicals in BALB/c-3T3 transformation and 161 chemicals in Salmonella mutagenicity assays revealed that the data from both assays had a high concordance with rodent bioassay (Tables 5 and 6). However, this database contained a disproportionate number of cytotoxic, versus noncytotoxic, test chemicals (see Table 2). Thus, the concordance of the transformation and Salmonella mutagenesis assays might have been affected by the relative cytotoxicity of the test chemicals. Because the number of carcinogens and noncarcinogens was roughly equal in both of these groups of chemicals, the correlation of test chemical cytotoxicity with mutagenicity in Salmonella and rodent bioassay carcinogenicity could be directly compared.

The correlation of test chemical cytotoxicity to BALB/c-3T3 cells with mutagenicity in Salmonella assays was examined first (Table 7). These multifactorial analyses revealed that Salmonella mutagenicity was highly correlated with chemical cytotoxicity. About 88% of the mutagenic chemicals had an LD₅₀ < 5 mM, including both mutagenic carcinogens and noncarcinogens. In contrast, chemical cytotoxicity was not correlated with carcinogenicity; about 57% of both carcinogens and noncarcinogens were cytotoxic. Thus, cytotoxicity of the test chemical to BALB/c-3T3 cells correlated most with its capacity to induce mutations in Salmonella (Table 8). In contrast, cytotoxicity did not correlate with either the induction of transformation in BALB/c-3T3 cells or carcinogenicity in the rodent bioassay (Table 8). Thus, the in vitro capability of a chemical to induce tumors in rodents was not correlated with its in vitro cytotoxicity to a cultured mammalian cell.

Taken together, these data showed that among the four biological variables in this investigation (i.e., carcinogenicity, cytotoxicity, mutagenicity, and transformation), the highest correlation of variables was observed for results from BALB/c-3T3 transformation assays with rodent bioassay (70.7% concordance) and Salmonella mutagenicity assays (69.8% concordance) (Table 8). A less significant correlation was noted for BALB/c-3T3 cytotoxicity and Salmonella mutagenicity (63.4% concordance) and carcinogenicity and Salmonella mutagenicity (63.4% concordance). All other binary comparison of variables were not significantly correlated.

Comparison of Mutagenicity and Transformation

Because BALB/c-3T3 cell transformation and Salmonella mutagenicity assay data both exhibited a high concordance with rodent bioassay data, it was of interest to see whether the two assays detected the same profile of chemicals. If the two assays were to detect the same chemicals, this result would imply, but not prove, that the BALB/c-3T3 transformation assay was detecting primarily mutagenic test chemicals. Thus, a mutation at a gene for the transformed cell phenotype would be the most likely explanation of the activity of chemicals in the assay.

When the BALB/c-3T3 transformation response data was compared to the Salmonella assay data, the transformation assay was observed to detect 92.5% of the mutagenic carcinogens and approximately 70% of the mutagenic noncarcinogens (Table 9). These data demonstrated that the transformation assay detected a high
Table 7. Correlation of BALB/c-3T3 cytotoxicity with Salmonella mutagenicity and rodent bioassay carcinogenicity.a

Cytotoxicity	Mutagenicity	Carcinogenicity	No.	%
73 Mutagens				
Cytotoxic	Mutagenic	43 Carcinogens + 21 noncarcinogens	64	87.7
Noncytotoxic	Mutagenic	6 Carcinogens + 3 noncarcinogens	9	12.3
88 Nonmutagens				
Cytotoxic	Nonmutagenic	20 Carcinogens + 30 noncarcinogens	50	56.8
Noncytotoxic	Nonmutagenic	15 Carcinogens + 23 noncarcinogens	38	43.2

Cytotoxicity versus mutagenicity
Concordance = 43 + 21 + 15 + 23 / 64 + 9 + 50 + 38 = 102/161 = 63.4%
Sensitivity = 43 + 21 / 64 + 50 = 64/114 = 56.1%
Specificity = 15 + 23 / 9 + 38 = 38/47 = 80.9%

Cytotoxicity versus carcinogenicity
Concordance = 43 + 20 + 3 + 23 / 64 + 9 + 50 + 38 = 89/161 = 55.3%
Sensitivity = 43 + 20 / 43 + 6 + 20 + 15 = 63/84 = 75.0%
Specificity = 3 + 23 / 21 + 3 + 30 + 23 = 26/77 = 33.8%

Abbreviations: No., number of chemicals in a subgroup; %, percentage of the chemicals in a subgroup (e.g., 43 + 21/64 = 87.7%).

a The data for this table were obtained from Tables A3 and A6.

The percentage of mutagenic carcinogens and mutagenic noncarcinogens. Most of the mutagenic noncarcinogens in this group were analogues of known carcinogens, and they all had DNA reactive structural alerts (1–4). Thus, neither the BALB/c-3T3 assay nor the Salmonella mutagenesis assays were able to distinguish mutagenic carcinogens from mutagenic noncarcinogens. Fortunately, the frequency of mutagenic noncarcinogens in rodent bioassays has been relatively small.

Table 8. Concordance of carcinogenicity, transformation, mutagenicity, and cytotoxic data.a

Biological property	%	Concordance (relative significance)
Carcinogenicity		XXXXXXXXXXXXXXXXXXXXXXXXXXXX
Mutagenicity	63.4	XXXXXXXXXXXXXXXXXXX
Cytotoxicity	55.3	XXXX
Control	50.0	–
Transformation	70.7	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Mutagenicity	63.4	XXXXXXXXXXXXXXXXXXX
Cytotoxicity	55.3	XXXX
Control	50.0	–
Mutagenicity	69.8	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Cytotoxicity	63.4	XXXXXXXXXXXXXXXXXXX
Control	50.0	–

Abbreviations: %, the percentage of concordance between the two biological properties.
aThe concordance of each biological activity with the remaining three biological activities is presented as percentage and as a bar graph. A concordance of 50% is the control (–) and each X is equivalent to 1% concordance over the control.

Detection of Nonmutagenic Carcinogens

Because the BALB/c-3T3 transformation assay did not detect all of the mutagenic carcinogens (Table 9) but it had a higher sensitivity to detect carcinogens than Salmonella (Table 8), the transformation assay must have detected a substantial number of nonmutagenic carcinogens. This data set included 35 nonmutagenic carcinogens, which was 41.7% of the total of 84 carcinogens. The nonmutagenic carcinogens were approximately equally divided between cytotoxic and noncytotoxic chemicals. A total of 20 of 35 carcinogens were cytotoxic, and 15 of 35 chemicals were noncytotoxic chemicals.

Table 9. Detection of mutagenic chemicals by the standard BALB/c-3T3 transformation assay.a

Mutagenicity/carcinogenic	Transformation	No.	%
Cytotoxic chemicals (LD₅₀ < 5 mM)	Transforming	37/40	92.5
Mutagenic/carcinogenic	Transforming	13/20	65.5
Nonmutagenic chemicals (LD₅₀ ≥ 5mM)	Transforming	6/6	100.0
Mutagenic/noncacinogenic	Transforming	3/3	100.0
Total chemicals	Transforming	43/46	93.5
Mutagenic/carcinogenic	Transforming	16/23	69.6

Concordance = 43 + 7/69 = 72.5%
Sensitivity = 43/46 = 93.5%
Specificity = 7/23 = 30.4%
aAbbreviations: No., ratio of the number of chemicals in a subgroup that induced significant transformation responses versus the total number of chemicals in the subgroup; %, the ratio of chemicals expressed as a percentage (e.g., 37/40 = 92.5%); LD₅₀, lethal dose for 50% of the cells.
bData for this table were obtained from Tables A3 and A6. The computations in this table excluded 4 carcinogens and 10 noncarcinogens that had an indeterminate transformation response.

A total of only 7 chemicals were mutagenic, noncarcinogenic, and nontransforming (i.e., 23 – 16 = 7).
Table 10. Detection of nonmutagenic carcinogens by the Standard BALB/c-3T3 transformation assay.\(^a\)

Mutagenicity/carcinogenicity	Transformation	No.	%
Cytotoxic chemicals (LD\(_{50}\) < 5 mM)	Nonmutagenic/carcinogenic	10/19	52.6
	Nonmutagenic/noncarcinogenic	6/26	23.1
Noncytotoxic chemicals (LD\(_{50}\) ≥ 5 mM)	Nonmutagenic/carcinogenic	11/14	78.6
	Nonmutagenic/noncarcinogenic	5/16	31.3
Total chemicals	Nonmutagenic/carcinogenic	21/33	63.6
	Nonmutagenic/noncarcinogenic	11/42	26.2

Concordance = \(\frac{21 + 31}{75} = 69.3\%\)
Sensitivity = \(\frac{21}{33} = 63.6\%\)
Specificity = \(\frac{31}{42} = 73.8\%\)^b

Abbreviations: no., ratio of the number of chemicals in a subgroup that induced significant transformation responses versus the total number of chemicals in the subgroup; %, the ratio of chemicals expressed as a percentage (e.g., 10/19 = 52.6%); LD\(_{50}\) lethal dose for 50% of the cells.

^a Data for this table were obtained from Tables A3 and A6. The computations in this table excluded carcinogens and noncarcinogens that had an indeterminate response transformation.

^b A total of 31 chemicals were nonmutagenic, noncarcinogenic and nontransforming (i.e., 42 - 11 = 31).

The capability of the BALB/c-3T3 assay to detect nonmutagenic carcinogens is summarized in Table 10. These data revealed that there was a high concordance of 69.3% between nonmutagenic carcinogens detected in rodent bioassay and transformation responses measured in the transformation assay. In addition, the transformation assay had a sensitivity for detecting nonmutagenic carcinogens of 63.6% (21/33), and a high specificity for not detecting noncarcinogens of 73.8% (31/42). The number of nonmutagenic carcinogens used in these analyses was 33 out of a total of 35 because 2 chemicals had an indeterminate activity (Tables A3 and A6).

Comparison of the Relative Carcinogenic Activity of Mutagenic and Nonmutagenic Carcinogens

The relative carcinogenic activity of chemicals in rodent bioassay has been evaluated in terms of their level of effect (1–3). The most active carcinogens induced tumors at one or more tissue sites in both species of rodents and were defined as having a level A effect (Table 11). In contrast, carcinogens with lower activities induced tumors in only one species, and they were evaluated as having level B, C, or D effects. Finally, chemicals that did not induce a significant tumor response were evaluated as having an equivocal activity (level E) or as being inactive (level F). Occasionally, a chemical was evaluated as having an indeterminate activity, because it has not been evaluated in a rodent bioassay that fulfilled all of the required prerequisites.

The relative level of activity of mutagenic and nonmutagenic carcinogens in rodent bioassay has also been compared (1,3). Ashby and Tennant (1,3) concluded that mutagenic carcinogens in general induced more multi-site and trans-species effects in the rodent bioassay than nonmutagenic carcinogens. Furthermore, they found evidence that mutagenic carcinogens induced tumors in a different profile of tissues sites than nonmutagenic carcinogens (1). Thus, it was of interest to determine whether the mutagenic and nonmutagenic carcinogens included in these investigations had a comparable profile of activities as previously reported. It was also of interest to determine whether the BALB/c-3T3 cell transformation assay selectively detected carcinogens of either high or low activity.

The results of these analyses are presented in Table 12. They confirmed the reported observation that the majority of the 49 mutagenic carcinogens in this investigation had a relatively high level of effect in the rodent bioassay (i.e., 37 were A or B versus 12 were C or D; Tables A3 and A6). In addition, a total of 74% of the carcinogens detected by Salmonella and in the BALB/c-3T3 transformation assay had a level A or B effect. In contrast, the 35 nonmutagenic carcinogens in this investigation contained roughly equal numbers of chemicals with a high or low level of effect (i.e., 19 were A or B and 16 were C or D). In this group the BALB/c-3T3 transformation assay prefer-

Table 11. Relative activity of carcinogens in rodent bioassays.\(^a\)

Activity	Level of effect	Species	Tissues	
Carcinogenic	High	A	2	1 or more
	High	B	1	2 or more
Low	C	1	1 tissue/both sexes	
Low	D	1	1 tissue/1 sex	
Noncarcinogenic	Equivocal	E		
	Inactive	F		

\(^a\) A method for estimating the relative activity of carcinogens in rodent bioassay as reported by Ashby and Tennant (1,3).

Table 12. Correlation of level of effect of carcinogenicity with BALB/c-3T3 transformation responses.\(^a\)

Transformation	Level of effect	No. AB	No. CD	% AB
46 Mutagenic carcinogens	Transforming	32	11	74.4
	Nontransforming	3	0	—
33 Nonmutagenic carcinogens	Transforming	13	8	61.9
	Nontransforming	6	6	—
79 Total carcinogens	Transforming	45	19	70.3
	Nontransforming	9	6	—

Abbreviations: no. AB, number of the chemicals with a level of effect A or B (C or D) of the subgroup of chemicals; % AB, percentage of chemicals with level of effect A or B (e.g., 32/26 + 11 = 74.4%).

\(^a\) The data for this table were obtained from Tables A3 and A6. (Note: three of the mutagenic carcinogens and two of the nonmutagenic carcinogens had indeterminate activity and were not included in these analyses.)
entially detected 62% of the carcinogens with a high A or B level of effect.

Discussion

There were five accomplishments of this investigation. First, we were able to validate the use of the BALB/c-3T3 transformation assay and demonstrate that it selectively detected carcinogenic, versus noncarcinogenic, test chemicals. The data from this study show that the BALB/c-3T3 cell transformation assay exhibits a somewhat higher concordance with the rodent bioassay than Salmonella mutagenicity data, i.e., 70.7 versus 63.4% (Tables 5 and 6). Thus, both of these assays selectively detected carcinogens versus noncarcinogens in this data set. However, the BALB/c-3T3 transformation assay also detected a large number of noncarcinogenic chemicals that were active in Salmonella mutagenicity assays (i.e., mutagenic noncarcinogens). Thus, neither assay could discriminate most matched pairs of carcinogens and noncarcinogens, which have very similar chemical structures. Nearly all of the matched pairs of carcinogens and noncarcinogens, such as 2- and 3-chloromethylpyridine, were active in both assays. The only matched pairs which were discriminated by BALB/c-3T3 transformation assays were the active carcinogens 2-acetylaminofluorene and BaP and the inactive noncarcinogens 4-acetylaminofluorene and benzo[a]pyrene (unpublished observation). One matched pair, HC blue 1 and 2, had either an inactive or an indeterminate activity in the transformation assay.

Second, the data obtained in this investigation demonstrate that the BALB/c-3T3 cell transformation assay can be used to selectively detect some carcinogens that were inactive in the Salmonella mutagenicity assays (i.e., nonmutagenic carcinogens). There were a total of 53 nonmutagenic carcinogens selected for evaluation in the transformation assay; however, only 35 chemicals were tested. The activities of the remaining 18 chemicals will be discussed below. Among the 35 chemicals that were tested in the standard transformation assay, 21 chemicals were active, including 10 of 19 cytotoxic and 11 of 14 noncytotoxic chemicals and 2 chemicals that had an indeterminate activity (Table 10). Of the remaining 12 inactive, nonmutagenic carcinogens, 3 carcinogens (i.e., cinamyl anthranilate, methapyrile, and reserpine) have been demonstrated to be active in a new BALB/c-3T3 cell transformation assay that uses noncytotoxic treatment doses of the test chemical (unpublished data). In this protocol the BALB/c-3T3 cells are exposed continuously to multiple chemical treatment doses, and the assay is only used to evaluate the activities of cytotoxic test chemicals (LD$_{50}$ < 5 mM). The remaining six cytotoxic, nonmutagenic carcinogens that were inactive (e.g., allyl isovalerate, chlorowax 40, chlorowax 500, D-limonene, tris(2-ethylhexyl)phthlate, and 4-vinylcyclohexene) and one equivocal (e.g., 2-mercaptobenzothiazole) transformation response await further testing with the multiple treatment (MTA) assay. In contrast, the four noncytotoxic, nonmutagenic carcinogens could not be evaluated in this assay: decabromodiphenyloxide, di(2-ethylhexyl)adipate, di(2-ethylhexyl)phthlate, and monuron. These carcinogens have severe solubility problems in culture medium, and they were noncytotoxic at treatment dose well above their solubility limit.

Taken together, the Salmonella mutagenesis assays and the standard BALB/c-3T3 transformation assay were complementary and detected 83.3% (70/84) of the carcinogens in this investigation, including 21 nonmutagenic carcinogens. Of the remaining 14 nonmutagenic carcinogens, 10 were cytotoxic and were eligible for evaluation in the BALB/c-3T3 MTA assay. Three of these 10 chemicals have already been shown to be active in a MTA protocol that has a high sensitivity to detect carcinogenic test chemicals. Thus, only four noncytotoxic, nonmutagenic carcinogens with severe solubility problems in culture medium would be predicted to lack activity in the two assays. The sacrifice in specificity in using the two assays could be to detect all 24 mutagenic noncarcinogens and approximately 26% of the nonmutagenic noncarcinogens.

An additional group of 18 nonmutagenic carcinogens were originally selected to be tested in the BALB/c-3T3 cell transformation assay. However, these chemicals were part of a group of 21 chemicals that reacted with polystyrene, plastic culture vessels (Table 4); thus, these chemicals could not be evaluated in the standard transformation assay. This reaction occurred at concentrations that were completely soluble in culture medium and used as treatment doses to detect cytotoxic and transforming activity (Table 4). While most of these chemicals had severe solubility problems in culture medium, they were all completely soluble in culture medium supplemented with pluronic F68. Thus, these chemicals reacted with polystyrene while they were in solution in water. These chemicals are distinguishable from chemicals such as acetone that react with polystyrene as a neat chemical, but not when it is dissolved in culture medium.

Among this group of 21 test chemicals that reacted with polystyrene, Salmonella detected only one weak positive (1,2-dichloropropane). An additional chemical, bis(2-chloro-1-methyl(prop)ether), had a minor structural alert (J). Of the remaining 19 chemicals, 17 were nonmutagenic carcinogens: benzene; benzyl acetate; bromodichloromethane; bromoform; butyl benzyl phthlate; p-chloroaniline; chlorobenzene; chlorodibromomethane; diallyl phthlate; 1,4-dichlorobenzene; methylene chloride; pentachloroethane; safrole; 1,1,1,2-tetrachloroethane; tetrachloroethylene; 1,1,1-trichloroethane; and trichloroethylene (1-3). There were only 2 noncarcinogens in the group of 21 chemicals (N-butyl chloride and 1,2-dichlorobenzene). It should be noted that one of these chemicals, benzene, has been reported by Fitzgerald et al. to induce significant transformation of BALB/c-3T3 cells when the cells were treated in chemical-resistant glass dishes (25).

Third, we were able to determine the actual upper dose limit for testing chemicals in the BALB/c-3T3 cell transformation assay. To achieve this goal, we tested all of the noncytotoxic chemicals at very high treatment doses to determine the point at which the assay could not dis-
distinguish active and inactive chemicals. Furthermore, we tested a number of chemicals with solubility problems in culture medium at concentrations far exceeding their solubility limit. The results of these experiments revealed that the upper dose limit for the standard transformation assay was 100 mOsM because all of the least cytotoxic test chemicals induced significant transforming activity at treatment dose concentrations of about 134 mOsM or higher (Table 3). In the process of conducting these experiments we discovered that many of the chemicals which were tested at doses far above their solubility limit in culture medium were inactive in the transformation assay. In fact, noncytotoxic chemicals with solubility problems in culture medium were far less likely to be active in the transformation assay than chemicals that were freely soluble in culture medium (Table 4).

Fourth, we were able to ascertain that most of the chemicals tested in the standard BALB/c-3T3 transformation assay induced reproducible transformation responses. To accomplish this goal we tested all chemicals in two or more experiments. In addition, five chemicals were tested as both coded and uncoded test chemicals: C. I. basic red 9, dichlorvos, dimethylmorpholinophosphoramide, HC red 3, and methyl carbamate. The results of these experiments showed that the cytotoxic responses of the paired chemicals were nearly identical (Tables A1 and A4). Likewise, the transformation responses of all 5 pairs of chemicals were not significantly different from one another (Tables A2 and A5). Both sources of dimethylmorpholinophosphoramide, HC red 3, and methyl carbamate were active in the transformation assay, and C. I. basic red no 9 was inactive. The uncoded source of dichlorvos was inactive in the transformation assay, and the coded source of the chemical was evaluated as having an equivocal response.

Test chemical transformation responses were also observed to be very reproducible for the total group of 168 chemicals tested to at least two consecutive trials. A total of 82.7% (139/168) chemicals were clearly active or inactive in the transformation assay (Tables A3 and A6). Of the remaining 29 test chemicals, 8.9% (15/168) of the chemicals were evaluated as having weakly active or equivocal activities in the transformation assay. Thus, only 8.3% (14/168) of the chemicals had an indeterminate activity which resulted from different transformation responses being detected in two consecutive experiments. Therefore, the majority of the chemicals tested in the transformation assay had reproducible activities detected in two consecutive experiments.

The fifth accomplishment of this investigation has been to use the computer-automated structural evaluation software system (CASE) to investigate quantitative structure–activity relationships (QSAR) for BALB/c-3T3 transformation response data (unpublished observations). Because a combined database of 205 chemicals tested in a standard BALB/c-3T3 transformation assay was available [i.e., 168 chemicals in the current study, 24 chemicals in part IV of this series (14), and 13 polycyclic aromatic hydrocarbons (unpublished observations)], sufficient data were available to investigate a possible correlation of induction of transformation with specific portions of the chemical structure (i.e., biophores). This investigation revealed that the induction of transformation response data was significantly correlated with the presence of only 13 biophores; conversely, just four biophores were associated with the inhibition of transformation. In addition, the study showed that the four biophores were present on many of the 14 chemicals which had indeterminate activity in the transformation assay. In a companion investigation, CASE utilized the BALB/c-3T3 cell cytotoxicity data from the co-culture clonal survival assay to investigate QSAR for chemical-induced cytotoxic responses. This investigation revealed that a limited number of biophores were highly correlated with certain chemicals being cytotoxic to BALB/c-3T3 and other cultured mammalian cells [unpublished observations (26)]. QSAR investigations have determined that a limited number of biophores are highly correlated with the induction of cytotoxicity and transformation, and this information can be used to predict cytotoxic and transformation responses of chemicals untested in the BALB/c-3T3 transformation assay.

In conclusion, one of the major goals of the NTP Genetic Toxicology program during the 1980s has been to develop and evaluate in vitro assays that selectively detect carcinogenic chemicals that were inactive in Salmonella mutagenesis assays. If such assays could be developed, they could be used to investigate in vitro biological activities in common among the active chemicals and thereby lead to a clearer understanding of the mechanism(s) by which nonmutagenic carcinogens are carcinogenic in rodent bioassays. This report and the companion investigations have demonstrated progress in achieving this goal. The data in this report show that the majority of the 35 nonmutagenic carcinogens (21/35) were selectively detected in a standard BALB/c-3T3 transformation assay. In addition, CASE has identified chemical fragments of each of the nonmutagenic carcinogens that significantly correlated with the effects of the chemical in the transformation assay. Therefore, it now feasible to investigate the several different nonmutagenic carcinogens to determine the mechanism(s) by which they induced a permanent change in the transformed phenotype of BALB/c-3T3 cells. It is hoped that these investigations will help to close the current gap in our understanding of in vitro and in vivo chemical carcinogenesis.

The opinions expressed in this paper are solely those of the authors and do not necessarily reflect the positions of the U.S. Food and Drug Administration.

The experimental work was supported by funds from the National Institute of Environmental Health Sciences, contract no. N01-ES-55150. The experimental investigations were conducted at Litton Bionetics, Inc. and Hazleton Laboratories America, Inc.

REFERENCES

1. Ashby, J., and Tennant, R. W. Chemical structure, Salmonella mutagenicity, and extent of carcinogenicity, as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U. S. NCI/NTP. Mutat. Res. 204: 17–115 (1988).
2. Ashby, J., Tennant, R. W., Zeiger, E., and Stasiewicz, S. Classification according to chemical structure, mutagenicity to Salmonella and level
of carcinogenicity of a further 42 chemicals tested for carcinogenicity by the U. S. National Toxicology Program. Mutat. Res., 223: 73–103 (1989).

3. Ashby, J., and Tennant, R. W. Evaluation of 301 chemicals for carcinogenicity: definitive relationships between chemical structure, carcinogenicity and mutagenicity. Mutat. Res., in press.

4. Tennant, R. W., Margolin, B. H., Shelby, M. D., Zeiger, E., Haseman, J. K., Spalding, J., Caspary, W., Resnick, M., Stasiewicz, S., Anderson, B., and Minor, R. Prediction of chemical carcinogenicity in rodents from in vitro genetic toxicity assays. Science 259: 933–941 (1989).

5. Heidelberger, C., Freeman, A. E., Pienta, R. J., Sivak, A., Bertram, J. S., Casto, B. C., Dunkel, V. C., Francis, M. W., Kakunaga, T., Little, J. B., and Scheetman, L. M. Cell transformation by chemical agents—a review and analysis of the literature. Mutat. Res. 114: 283–385 (1983).

6. IARC/NCI/EPA Working Group. Cellular and molecular mechanisms of cell transformation and standardization of transformation assays of established cell lines for the prediction of carcinogenic chemicals: overview and recommended protocols. Cancer Res. 45: 2395–2399 (1985).

7. Kakunaga, T. A quantitative system for assay of malignant transformation by chemical carcinogens using a clone derived from BALB/c-3T3. Int. J. Cancer 12: 463–473 (1973).

8. Reznikoff, C. A., Bečterm, J. S., Brunckow, D. W., and Heidelberger, C. Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to post confluence inhibition of cell division. Cancer Res. 33: 3239–3249 (1973).

9. Dunkel, V. C., Pienta, R. J., Sivak, A., and Traul, K. A. Comparative neoplastic transformation responses of BALB/c-3T3 cells, Syrian hamster embryo cells and Rauscher murine virus-infected Fischer's 344 rat embryo cells to chemical carcinogens. J. Natl. Cancer Inst. 67: 1303–1315 (1981).

10. Matthews, E. J. Assessment of chemical carcinogen-induced transforming activity using BALB/c-3T3 cells. J. Tissue Culture Methods 10: 157–164 (1986).

11. Rundell, J. O., Guntakatta, M., and Matthews, E. J. Criterion development for the application of BALB/c-3T3 cells to routine testing for chemical carcinogenic potential. In: Short-term Bioassays in the Analysis of Complex Environmental Mixtures 111 (M. D. Waters, S. S. Sandhu, J. Lewtas, L. Claxton, N. Chernoff, and S. Nesnow, Eds.), Plenum Publishing, New York, 1983, pp. 302–327.

12. Rundell, J. O. In vitro transformation assays using mouse embryo cell lines: BALB/c-3T3 cells. In: Carcinogenesis and Mutagenesis Testing (J. F. Douglas, Ed.), Humana Press, Clifton, NJ, 1984, pp. 279–285.

13. Sivak, A., Charest, M. C., Dudenko, L., Silveira, D. M., Simons, L., and Wild, A. W. BALB/c-3T3 cells as target cells for chemical induced neoplastic transformation. In: Advances in Modern Environmental Toxicology, Mammalian Cell Transformation by Chemical Carcinogens, Vol. 1 (N. Mishra, V. Dunkel, and M. Mehlan, Eds.), Senate Press, Princeton Junction, NJ, 1981, pp. 133–180.

14. Matthews, E. J., Spalding, J. W., and Tennant, R. W. Transformation of BALB/c-3T3 cells: IV. Rank-ordered potency of 24 chemical responses detected in a sensitive new assay procedure. Environ. Health Perspect. 101(Suppl. 2): 319–345 (1993).

15. Morphologic transformation of cells in culture. 52(97): 795.285 (1987).

16. Matthews, E. J. Comparison of two different protocols for detection of chemical-induced transformation of BALB/c-3T3 cells (abstract). Environ. Mol. Mutagen. 14: 124 (1989).

17. Matthews, E. J. Transformation of BALB/c-3T3 cells: I. Investigation of experimental parameters that influence detection of spontaneous transformations. Environ. Health Perspect. 101(Suppl. 2): 277–291 (1993).

18. Matthews, E. J. Transformation of BALB/c-3T3 cells: II. Investigation of experimental parameters that influence detection of benzo(a)pyrene-induced transformation. Environ. Health Perspect. 101(Suppl. 2): 293–310 (1993).

19. Kakunaga, T., and Crow, J. D. Cell variants showing differential susceptibility to ultraviolet light-induced transformation. Science 295: 505–507 (1989).

20. Lo, K., and Kakunaga, T. Similarities in the formation and removal of covalent DNA adducts in benzo(a)pyrene-treated BALB/c-3T3 variant cells with different induced transformation frequencies. Cancer Res. 42: 2644–2650 (1982).

21. Matthews, E. J. Transformation of BALB/c-3T3 cells: III. Development of a co-culture clonal survival assay for quantification of chemical cytotoxicity of cells in high-density cultures. Environ. Health Perspect. 101(Suppl. 2): 311–318 (1993).

22. SAS/STAT Users Guide, release 6.03 ed. SAS Institute, Cary, NC, 1988.

23. Papciak, R. J., Brecher, S., Grant, M., Khar, S. H., and Marino, D. J. Suitably of pluronic polyols as vehicles for petroleum hydrocarbons and results with four in vitro assays (abstract). Environ. Mutagen. 7: 80 (1985).

24. WHO/IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Overall Evaluations of Carcinogenicity: Updating of IARC Monographs, Volumes 1 to 42. International Agency for Research on Cancer, Lyon, 1987.

25. Fitzgerald, D. J., Piccoli, C., and Yamasaki, H. Detection of non-genotoxic carcinogens in the BALB/c-3T3 cell transformation/mutation assay system. Mutagenesis 4: 286–291 (1989).

26. Rosenkranz, H. S., Matthews, E. J., and Klopop, G. Relationships between cellular toxicity, the maximum tolerated dose, lipophilicity, and electrophilicity. ATLA 20: 549–562 (1992).
Appendix A

Cytotoxic, Mutagenic Carcinogens

2-Acetylamino-fluorene. 2-Acetylamino-fluorene was a potent level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was cytotoxic to the BALB/c-3T3 cells and had an average LD\textsubscript{50} of 0.171 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 83 and 89/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 70 and 87/110, respectively (Table A2). The test chemical had an SP transformation response in two consecutive experiments. 2-Acetylamino-fluorene was evaluated as very active in the transformation assay, and its actual and estimated rank t-statistics were 3.12 and 4.67, respectively (Table A3).

Acrylonitrile. Acrylonitrile was a level B carcinogen (Table A3). This chemical had one serious technical problem, because it was reported to be oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells and had an average LD\textsubscript{50} of 0.337 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 52 and 41/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 79 and 83/110, respectively (Table A2). In both trials the chemical had an LA transformation responses. Acrylonitrile was evaluated as having had weak activity in the transformation assay. Its actual and estimated rank t-statistics were 3.75 and 4.35, respectively (Table A3).

2-Amino-4-Nitrophenol. 2-Amino-4-nitrophenol was a relatively weak level D carcinogen (Table A3). It had one difficult technical problem, because it is oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD\textsubscript{50} of 0.933 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 13 and 56/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 66 and 109/110, respectively (Table A2). In trials 1 and 2 the chemical had SN transformation responses. However, there were two problems with the second transformation experiment. The test chemical cytotoxic response in the second experiment did not have a large cytotoxic shift as noted in previous experiments, and the detection sensitivity was very low in the experiment. Therefore, the test chemical should be tested in a third experiment to properly evaluate its activity in the transformation assay. 2-Amino-5-nitrophenol was therefore evaluated as having had an indeterminate activity in the transformation assay. Its actual and estimated rank t-values were both 0.00 (Table A3).

2-Amino-5-Nitrophenol. 2-Amino-5-nitrophenol was a relatively weak level D carcinogen (Table A3). It had one difficult technical problem, because it is oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD\textsubscript{50} of 0.409 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 71, 43 and 21/110, respectively; the detection sensitivities for BaP of trials 1-3 were 23, 9 and 58/110, respectively (Table A2). In a preliminary trial 1 the chemical had a SN transformation response. In trials 2 and 3 the chemical had SP transformation responses. 2-Amino-5-nitrophenol was therefore evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 5.94 (Table A3).

5-Azacytidine. 5-Azacytidine was a level D carcinogen (Table A3) with no serious technical problems reported (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD\textsubscript{50} of 0.00463 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 45 and 101/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 38 and 104/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. 5-Azacytidine was evaluated as one of the most active chemicals in the transformation assay. Its actual and estimated rank t-statistics were 12.8 and 16.8, respectively (Table A3).

Benzidine-2HCl. Benzidine-2HCl was a level A carcinogen (Table A3). It had one serious technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD\textsubscript{50} of 0.121 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 30 and 34/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 4 and 45/110, respectively (Table A2). In trial 1 and 2 the chemical had an SP transformation response. Benzidine-2HCl was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 3.38 (Table A3).
43 Mutagenic Carcinogens

Group I. Moderately Cytotoxic Chemicals

Name	CAS No.	M.W.	1	2	3	Co-culture Assay
5-chloro-o-toluidine	95-79-4	141.61	S	DFC	a, ac, al, o	1.69
C. I. disperse yellow 3	2832-40-8	269.31	S	DFC	o	1.50
1,2-epoxybutane	106-88-7	72.11	L	C	ai, a, b, bc, ls, mh, o, p, ts	1.45
1,2-epoxypropane	75-56-9	58.08	L	C	a, al, b, bc, mc, mh, msc, o, p, r	1.60
ethylene dibromide	106-93-4	187.88	L	DFC	b, ls, met, o, p, r	1.69
HC blue 1	2784-94-3	256.31	S	DFC	al	1.96
iodinated glycerol	5634-39-9	260.0	L	C	ls	3.47
4,4-methylenediamine	101-77-9	271.21	S	DFC	al, ls	1.56
N-methyl-o-acrylamide	924-42-5	101.11	S	FC	ls, ts, o	1.75
2-naphthylamine	91-59-8	143.18	S	CF	a, ai, o	1.59
quinoline	91-22-5	129.16	L	DFC	a, ls, msc, o, p	4.09
o-toluidine	95-53-4	107.16	L	DFC	a, ai, o, p, r	4.33

Group II. Cytotoxic Chemicals

Name	CAS No.	M.W.	1	2	3	Co-culture Assay
2-acetylaminofluorene	53-96-3	223.3	S	DFC		0.171
acrylonitrile	107-13-1	53.06	L	DC	ai, v	0.337
2-amino-4-nitrophenol	99-57-0	154.13	S	DFC	a, ac, ai, ls, o, ts	0.933
2-amino-5-nitrophenol	121-88-0	154.13	S	DFC	ai, ls, ts,	0.409
benzidine-2HCl	531-85-1	257.18	S	DFC	ai, ls	0.121
2-biphénylamine	90-41-9	169.22	S	DFC	mel, o	0.421
4-biphénylamine	92-67-1	169.23	S	DFC	ai, o	0.479
4-chloro-o-toluidine-HCl	3165-93-3	178.07	L	DFC	a, ac, ai, o	0.650
C. I. acid orange 3	6573-74-6	453.41	S	DFC		0.102
C. I. disperse blue 1	2475-45-8	268.3	L	DFC	sp, ts	0.260
C. I. solvent yellow 14	842-07-9	248.30	S	AFC	ls, o, sp	0.199
1,2-dibromo-3-chloropropane	96-12-8	236.35	L	DFC	b, met, r	0.401
2,6-dichloro-o-phenylenediamine	609-20-1	177.0	S	DFC	ai, ls, ts	0.921
1,3-dichloropropene	542-75-6	110.98	L	DFC	a, hc, met, o, tc	0.280
dichlorovos uncodded	62-73-7	220.98	L	DC	a, b, met, p, ru, w	0.165
2,4-dinitrotoluene	121-14-2	182.14	S	DCF	a, r, ts	0.917
epichlorhydrin	106-89-8	92.53	L	DC	ai, a, b, c, msc, o, w	0.364
nitrofurantoin	67-20-9	238.16	S	DFC	a, b, ls, met, o, ts	0.106
2-nitro-o-phenylenediamine	5307-14-2	153.16	S	DFC	ai, ls, o	0.947
4,4-oxidaniline	101-80-4	200.24	S	DFC	ai, ls, o,	0.270
selenium sulfide	7446-34-6	111.02	S	CF		0.125

Group III. Very Cytotoxic Chemicals

Name	CAS No.	M.W.	1	2	3	Co-culture Assay
5-azacytidine	320-67-2	244.2	S	DC	ts,	0.00463
4-chloro-o-phenylenediamine	95-83-0	142.59	S	DFC	ai, k, l, o	0.0318
3-(chloromethyl)pyridine-HCl	6959-48-4	164.04	S	C	a, o	0.0756
C. I. basic red 9-HCL uncoded	569-61-9	232.83	S	FC		0.00281
(947733)						0.00216
cytambena	21739-91-3	307.09	S	C		0.153
diglycidyl resinorcinol ether	101-90-6	222.26	L	DCF	alk	0.00416
mephalan	148-82-3	305.23	S	FC	ls, ts, w	0.00120
N-methyl-N-nitro-N'-nitrosoguanidine	70-25-7	147.1	S	DC	ls, ts, w	0.0154
nitrofurazone	59-87-0	198.16	S	DFC	ls	0.0515
ziram	137-30-4	305.81	S	DFC	a, b, met	0.0000373

21 Mutagenic Non-Carcinogens

Group I. Moderately Cytotoxic Chemicals

Name	CAS No.	M.W.	1	2	3	Co-culture Assay
4-acetylaminofluorene	28322-02-3	223.29	S	DFC	sp	4.07
3-chloro-o-toluidine	95-74-9	141.60	S	DFC	a, ach, ai, l, o	1.17
2,4-dimethoxyaniline-HCl	54150-69-5	189.66	S	DFC	-	1.13
HC blue 2	33229-34-4	285.34	S	C	ai	5.21
HC red 3 (uncoded)	2871-01-4	197.22	S	FC		3.72
(coded)						4.50

(Continued on next page)
Table A1. Continued.

Test Chemical*	Physicochemical Properties	Cytotoxic Responses^b (millimolar LD₅₀)				
Name	**CAS No.**	**M.W.**	**1**	**2**	**3**	**Assay**
3-nitropropionic acid	504-88-1	119.08	S	C	a, a1, b, o	1.23
2,6-toluenediamine-2HCl	15481-70-6	195.11	S	C	-	4.11
Group II. Cytotoxic Chemicals						
2-(chloromethyl) pyridine-HCl	6959-47-3	164.04	S	DC	o	0.118
coumaphos	56-72-4	362.78	S	DFC	b, o	0.218
dimethoate	60-51-5	229.27	L	DFC	b, v	0.602
malaoxon	1634-78-2	314.32	L	DC	a1, v	0.468
1-naphthylamine	134-32-7	143.18	S	DFC	a, a1, l, o	0.506
N-(1-naphthyl) ethylenediamine	1465-25-4	259.18	S	DFC	a, a1, c, l, o	0.125
N,N-dimethyl-2-naphthylamine	-2HCl					
1-nitronaphthalene	86-57-7	173.17	S	DFC	a, a1, r	0.464
4-nitro-o-phenylenediamine	99-56-9	153.14	S	DFC	a, a1, c, a1, l, o	0.292
N-phenyl-2-naphthylamide	135-88-2	219.30	S	DFC	a1, l	0.195
Group III. Very Cytotoxic Chemicals						
4'- (chloroacetyl) acetamidine	140-49-8	211.66	S	DFC	-	0.00336
8-hydroxyquinoline	148-24-3	145.16	S	DC	l, m, o	0.00251
p-phenylenediamine-2HCl	624-18-0	181.07	S	C	a1, l, o	0.0712
2,3,5,6-tetrachloro-4-nitranosilane	2433-88-2	290.91	S	DFC	-	0.0437
tetraethylthiuram disulfide	97-77-8	296.54	S	DFC	o	0.000583

20 Non-Mutagenic Carcinogens

Name	CAS No.	M.W.	1	2	3	Co-culture
allyl isovalerate	2835-39-4	142.22	L	DFC	-	4.51
chloroendic acid	115-28-6	388.83	S	DFC	m	4.07
chlorowax 40	108171-27-3	560.0	L	FC	b, l, o, r, ts	1.43
chlorowax 500	108171-26-2	415.0	L	AFC	l, o, r, ts	1.58
dimethylvinyl chloride	513-37-1	90.55	L	DFC	a1, b, o, l, t, v	4.74
isophorone	78-59-1	138.23	L	DFC	o, t, v	5.18
malonaldehyde, sodium salt	24362-04-5	94.05	S	C	l, vts	3.74
nitrotriacetic acid	139-13-9	257.1	S	C	m	5.98
4-vinylcyclohexene	100-40-3	108.20	L	DFC	a1, o, ts	3.88

Group II. Cytotoxic Chemicals

Name	CAS No.	M.W.	1	2	3	Co-culture
3-chloro-2-methylpropene	563-47-3	99.55	L	DFC	b, o, l, t, v, W	0.662
D-limonene	5989-27-5	136.24	L	DFC	a, a1, l, o, ts	0.988
2-mercaptobenzothiazole	169-30-4	167.25	S	DFC	a, o, W	0.130
methapyrline-HCl	135-23-9	197.28	S	C	-	0.812
polybrominated biphenyl mixture	67774-32-1	627.59	S	DFC	l, sp	0.291
tris(2-ethylhexyl)phosphate	78-42-2	434.65	L	DFC	o	0.338

Group III. Very Cytotoxic Chemicals

Name	CAS No.	M.W.	1	2	3	Co-culture
allyl isothiocyanate	57-06-7	99.16	L	DFC	a, a1, b, o, v, W	0.00712
cinnamyl anthranilate	87-29-6	253.32	S	DFC	a1, a1d, l	0.0947
diethylstilbestrol	56-51-3	268.34	S	DFC	-	0.0858
ethyl acrylate	140-88-5	100.12	L	DC	a, b, o, p, v, W	0.0746
reserpine	50-55-5	608.70	S	DC	a1, l, o, r	0.0133

30 Non-Mutagenic Non-Carcinogens

Group I. Moderately Cytotoxic Chemicals

Name	CAS No.	M.W.	1	2	3	Co-culture
carboram	77-65-6	237.10	S	DFC	a1, l	3.60
C. L. acid red 14	3567-69-9	502.44	S	C	-	3.38
C. L. acid yellow 73	518-47-8	376.0	S	C	o	4.65
ephedrine sulfate	134-72-5	428.54	S	C	l, ts	1.53
ethylenediamine tetraacetic acid, trisodium salt	15356-70-4	156.27	S	DFC	o, oc	4.63
D,L-menthol	280-59-9	269.80	S	C	-	5.63
methylphenidate-HCl	108-95-2	94.11	S/L	C	a, a1, b, l, o, oc, S, ts	3.29

(Continued on next page)
Table A1. Continued.

Test Chemical*	Physicochemical Properties	Cytotoxic Responses*<small>Co-culture (millimolar LD₅₀)</small>				
Name	CAS No.	M.W.	1	2	3	Assay
phenylephrine-HCl	61-76-7	203.67	S	C	a, ai, ach, l, o, ts	3.52
tetracycline-HCl	64-75-5	480.94	S	FC	ai, l, o, ts	3.24
xylenes, mixed	1330-20-7	106.17	L	DFC	o, ts	3.20

Group II. Cytotoxic Chemicals

L-ascorbic acid	50-81-7	176.14	S	C	ai, l, m, o, r	0.363
bisphenol A	80-05-7	228.29	S	AFC	a, mo, o	0.0475
chlorpheniramine-maleate	113-92-8	390.87	S	C	-	0.0746
eugenol	97-53-0	164.20	L	DFC	ai, b, l, o, ts, v	0.875
geranyl acetate	105-87-3	196.32	L	DFC	-	0.302
4-hexylresorcinol	136-77-6	194.27	L	DFC	ach, l, o, ts	0.103
oxytetracycline-HCl	2058-46-0	496.90	S	FC	l, ts, w	0.523

Group III. Very Cytotoxic Chemicals

anilazine	101-05-3	275.53	S	AFC	b, mo	0.0475
erythromycin stearate	643-22-1	1018.59	S	AFC	a	0.0746
ethoxylated dodecyl alcohol	9002-92-0	-1200.00	L	DC	b, o, v	0.0172
methoxychlorine	72-43-5	343.66	S	DFC	l, mo, o	0.0978
methyl dipheptane sesquihydrate	555-30-6	238.24	S	DFC	b, ts	0.0810
propyl gallate	121-79-9	212.20	S	DFC	a, b, i, r	0.0631
rotenone	83-79-4	394.43	S	AFC	ai, b, l, o, ts	0.000644
sodium diethyldithiocarbamate	148-18-5	171.27	S	C	a, o	0.000142
stannous chloride	7772-99-8	189.60	S	DC	ai, am, b, mo, o	0.0285
tetraakis(hydroxymethyl) phosphonium chloride	124-64-1	190.58	L	C	b, o, ts	0.00825
tetraakis(hydroxymethyl) phosphonium sulfate	55666-30-8	406.32	L	C	b, o	0.00438
triphenyltin hydroxide	76-87-9	367.03	S	FC	a, l, ts	0.000134

Abbreviations: CAS No., Chemical Abstract Service registry number; LD₅₀, lethal dose for 50% of the cells; M.W., molecular weight.

Abbreviations for Test Chemical Physicochemical Properties: Physicochemical considered in this study included: [1] physical state (S = solid; L = liquid); [2] solvent vehicle (D = dimethyl sulfoxide, C = culture medium; F = pluronic F68, A = acetone, E = ethanol) and [3] technical problems. The technical problems indicated test chemicals that were a = reactive with acids; ac = reactive with acid chlorides and acid anhydrides; ai = reactive with air; ai = reactive with alcohols; alk = alkylating agent and reacts with labile hydrogen; b = reacts with bases; bc = reacts with biochemicals (amino, hydroxyl, and carbonyl groups); he = reacts with halogenated chemicals; k = reacts with alpha keto acids; ls = light sensitive; m = binds metals; mel = melts with hexachloro- and trichloroethylene; met = reacts with metals (aluminum, iron, magnesium, potassium, sodium, tin or zinc); mh = metal halides; ms = reacts with miscellaneous organic chemicals (i.e., alpha-aminoethanol, chlorosulfonic acid, ethylene imine, linseed oil, maleic anhydride, oleum, or K-tartaric acid); o = reacts with oxidizing agents; p = reacts with plastics; pi = polymerization initiators; r = reacts with reducing agents; ru = reacts with rubber; sp = solubility problem in culture medium; tc = reacts with thiocyanates; ts = temperature sensitive; vs = very temperature sensitive; v = volatile at 37°C; and w = reacts with water [refer to MATERIALS and METHODS].

*Test Chemical: Tables A1 and A3 contain 168 chemicals along with their individual CAS registry number and molecular weight. The chemicals were divided into groups of chemicals that correspond to the groups of chemicals that were compared in different text Tables 1–12. Thus, the chemicals were divided into two groups, including 114 cytotoxic test chemicals (LD₅₀ < 5.0 mM) presented in Table A1, and 53 noncytotoxic chemicals (LD₅₀ > 5.0 mM) presented in Table A4. The 114 cytotoxic chemicals in Table A1 were subdivided into groups of 43 mutagenic carcinogens, 21 mutagenic noncarcinogens, 20 nonmutagenic carcinogens, and 30 nonmutagenic noncarcinogens. The 53 noncytotoxic test chemicals in Table A4 were subdivided into groups of 21 carcinogens, 26 noncarcinogens and 7 model very noncytotoxic chemicals. In addition, all of the cytotoxic test chemicals were separated into three groups, including: group I, moderately cytotoxic test chemicals [LD₅₀ 1–5 mM]; group II, cytotoxic chemicals [LD₅₀ 0.1–1.0 mM]; and group III, very cytotoxic chemicals [LD₅₀ < 0.1 mM]. In addition, this table presents important physicochemical properties that influenced the procedure used in testing the chemicals.

*Cytoxic Response: The co-culture clonal survival assay design used to detect the cytotoxic response of the test chemical is described in Materials and Methods. The cytotoxic responses of chemicals in individual experiments are summarized in terms of the millimolar (mM) LD₅₀ tretreatment dose that resulted in 50% survival of the chemically-treated cells relative to the survival of untreated or solvent control treated cell cultures. The LD₅₀ cytotoxic response of each chemical in Tables A1 and A4 is an average of two or more experiments with the chemical. The molecular weight of each chemical is provided in order that treatment doses could be converted from mM to µg/mL. For example, based on the molecular weight of 141.61, the LD₅₀ detected for the first chemical in Table A1, 5-chloro-o-toluidine, was 1.89 mM or 229 µg/mL.
Table A2. Transformation responses of 114 cytotoxic chemicals.

Chemical	Exp. No.	Spontaneous Transformation Response	Test Chemical
		Foci/Vessel: Call: Rank Order	Call: mean t-statistic
Active Chemicals			
2-acetylaminofluorene	1 (17)	.327 83 SP 70 SP 4.15	
	2 (24)	.308 89 SP 87*** SP 2.08	
acrylonitrile	1 (86)	.464 52 SP 79* LA 5.36	
	2 (92)	.579 41 SP 83* LA 2.14	
2-amino-5-nitrophenol	1 (62)	6.02 3*** SN 110*** LN .000	
	2 (83)	.351 71 SP 23** SN .575	
	3 (93)	.416 43 SP 9*** SP 5.41	
	4 (103)	.874 21 SP 53 SP 11.8	
5-azacytidine	1 (6)	.431 45 SP 38 SP 16.7	
	2 (11)	.301 101 SP 104*** SP 9.03	
benzidine-2HCl	1 (43)	1.05 30 SP 4*** SP 4.54	
	2 (52)	1.09 34 SP 45 SP 2.22	
2-biphenylamine	1 (33)	1.04 49 SP 24** SP 2.63	
	2 (52)	1.09 34 SP 45 SP 3.79	
4-biphenylamine	1 (35)	1.97 14 SP 72 LA 2.21	
	2 (53)	2.78 11* SP 39 SP 2.51	
3-(chloromethyl)pyridine-HCl	1 (14)	.213 99 SP 82* LA 1.35	
	2 (22)	.893 36 SP 28 SP 2.77	
4-chloro-o-phenylenediamine	1 (13)	.201 96 SP 86*** LN .870	
	2 (20)	.368 81 SP 22*** SP 2.76	
	3 (101)	.260 62 SP 48 SP 8.92	
4-chloro-o-toluidine-HCl	1 (81)	7.36 2*** SP 2*** SP 7.18	
	2 (92)	.597 41 SP 83* SP 4.44	
5-chloro-o-toluidine	1 (81)	7.36 2*** SP 2*** SP 3.57	
	2 (92)	.597 41 SP 83* SP 5.38	
C.I. acid orange 3	1 (70)	.526 47 SP 43 LA 1.55	
	2 (87)	.346 63 SP 101*** SP 4.23	
C.I. disperse blue 1	1 (73)	.274 80 SP 80** SP 3.53	
	2 (97)	.414 54 SP 44 SN .405	
	3 (107)	2.95 5** SP 46 SN .000	
C.I. solvent yellow 14	1 (7)	.135 105* SP 69 SP 3.52	
	2 (67)	.085 107*** SP 106*** SP 4.64	
	3 (1P17)	.411 -99 SP -37 LA 2.16	
	4 (1P18)	.189 -105* SP -39 SP 3.43	
cytembena	1 (70)	.526 47 SP 43 LA 4.34	
	2 (83)	.351 71 SP 25** SP 7.12	
1,2-dibromo-3-chloroprobe	1 (23)	.661 66 SP 81* LN .333	
	2 (27)	.555 78 SP 58 SP 6.36	
	3 (102)	.697 27 SP 63 SP 4.83	
selenium sulfide	1 (7)	.135 105* SP 69 SP 3.34	
	2 (11)	.301 101 SP 104*** SN .223	
	3 (97)	.414 54 SP 44 SP 2.24	

(Continued on next page)
Table A2. Continued.

Chemical\a	Name	Exp. No.	Spontaneous\c	Transformation Response\d	Test Chemical\e
	Spontaneous Foci/Vessel: Rank Order		Benzo(a)pyrene Call: Rank Order	Call: mean t-statistic	
0-toluidine	1 (16)	.344 87	SP 64	LA .900	
	2 (25)	.101 106*	SP 51	SP 9.28	
	3 (98)	.618 59	SP 17***	SP 4.31	
ziram	1 (77)	.972 17	SP 6***	LA 1.17	
	2 (91)	.322 56	SP 109***	SP 4.10	
Chemical with an Equivocal Activity					
dichlorvos	1 (68)	.226 98	SP 60	SN .460	
	2 (DR15)	1.27 -72	NA	LA 3.51	
	3 (98)	.618 59	SP 17***	SN 0.00	
dichlorvos	1 (78)	3.28 9*	SP 37	SN 0.697	
	2 (90)	1.95 15	SP 21**	2.66	
Inactive Chemicals					
C. I. basic red 9-HCl	1 (48)	.537 64	SP 84*	SN .353	
	2 (66)	.056 108**	SP 99***	SN .700	
	3 (DR14)	.668 82	NA	SN 0.00	
C. I. basic red 9-HCl	1 (73)	.274 80	SP 89**	SN .098	
	2 (95)	2.84 8*	SP 29	SN 0.00	
2,4-dinitrotoluene	1 (46)	.384 88	SP 77	1.57	
	2 (55)	.129 104*	SP 90***	0.478	
	3 (DR12)	.503 88	NA	0.00	
Chemicals with an Indeterminate Activity					
2-amin o-4-nitrophenol	1 (63)	1.92 13	SP 66	SN 0.00	
	2 (91)	.322 56	LA 109	SN 0.00	
	3 (NA)				
C. I. disperse yellow 3	1 (71)	1.06 24	SP 10***	SN 0.00	
	2 (91)	.322 56	LA 109***	SN 0.155	
	3 (NA)				
Chemicals with an Indeterminate Activity					
HC blue 1	1 (15)	.186 100	SP 42	SN 1.51	
	2 (21)	.347 79	SP 75	SN 0.725	
	3 (DR12)	.503 88	NA	3.09	
	4 (NA)				
Active Chemicals					
2-(chloromethyl)pyridine-HCl	1 (14)	.213 99	SP 82	SP 2.36	
	2 (22)	.893 36	SP 28*	SP 2.77	
3-chloro-p-toluidine	1 (81)	7.36 2***	SP 2***	SP 2.60	
	2 (92)	.597 41	SP 83*	SP 3.92	
coumaphos	1 (30)	.787 40	SP 54	SN 0.00	
	2 (95)	2.847 8*	SP 29	3.75	
	3 (99)	.586 33	SP 14**	7.60	
dimethoate	1 (41)	.274 90	SP 13***	LA 1.24	
	2 (94)	1.52 18	SP 31	5.39	
HC red 3	1 (40)	.533 60	SP 27*	2.50	
	2 (57)	.278 86	SP 74	2.77	

(Continued on next page)
Table A2. Continued.

Chemicala	Exp. No.	Name	Foci/Vessel:	Transformation Responseb	Test Chemicalc
			Rank Order	Benzo(a)pyrene	mean t-statistic
HC red 3 (260886)	1 (61)	.222	93	SP 100***	LA 1.61
	2 (99)	.586	33	SP 14**	SP 9.58
malaaxon	1 (16)	.344	87	SP 64	LA 4.17
	2 (25)	.101	106*	SP 51	SP 9.46
1-naphthylamine	1 (13)	.201	96	SP 86***	SP 2.66
	2 (19)	.357	77	SP 67	SP 2.97
4-nitro-o-phenylenediamine	1 (14)	.213	99	SP 82	SP 3.83
	2 (18)	.663	46	SP 80*	LA 1.27
3-nitropropionic acid	1 (39)	.427	82	SP 18***	SP 3.90
	2 (85)	.588	67	SP 78	SP 5.47
p-phenylenediamine-2HCl	1 (37)	.631	58	SP 55	SP 3.81
	2 (89)	.492	51	SP 50	SP 2.27
N-phenyl-2-naphthylamide	1 (61)	.222	93	SP 100***	SP 4.79
	2 (87)	.346	63	SP 101***	SP 3.71
tetraethylthiuram disulfide	1 (80)	3.024	10*	SP 5***	SP 4.60
	2 (93)	.416	43	SP 9***	SP 2.92
2,6-toluenediamine	1 (29)	.606	68	SP 40	SP 3.89
	2 (44)	1.52	23	SP 11***	SP 10.0
4’-(chloroacetyl)-acetanilide	1 (37)	.631	58	SP 55	LA 1.85
	2 (95)	2.84	8*	SP 29	LA 1.46
2,4-dimethoxyaniline	1 (34)	2.51	7*	SP 56	SP 5.95
	2 (87)	.346	63	SP 101***	SN 1.32
	3 (97)	.414	54	SP 44	SN .960
8-hydroxyquinoline	1 (3)	.285	94	SP 91***	SP 2.46
	2 (9)	.149	102*	SP 95***	SN .170
	3 (28)	.818	39	SP 68	SN .128
N-(1-naphthyl)ethylene-diamine-2HCl	1 (38)	.696	69	SP 12***	LA .957
	2 (87)	.346	63	SP 101***	LA 2.31
2,3,7,8-tetrachloro-4-nitroanisole	1 (29)	.606	68	SP 40	LA 2.47
	2 (93)	.416	43	SP 9***	LA 1.70
Inactive Chemicals					
HC blue 2	1 (5)	.035	110***	SP 107***	LA 4.31
	2 (10)	.053	109**	SP 103***	SN 1.43
Chemicals with an Indeterminate Activity					
4-acetylaminofluorene	1 (12)	.160	103*	SP 73	LN .963
	2 (17)	.327	83	SP 70	LN 1.64
1-nitronaphthalene	1 (33)	1.04	49	SP 26**	SN .000
	2 (87)	.346	63	SP 101***	SP 2.53

(Continued on next page)
Table A2. Continued.

Chemical*	Exp. No.	Spontaneous* Foci/Vessel:	Transformation Response*	Test Chemical*			
				Call: Rank Order	Call: mean t-statistic		
Name							
2,6-dichloro-p-phenylene-diamine	1 (32)	1.99	19	SP	34	SP	2.50
	2 (54)	.265	91	SP	85	SP	2.03
1,3-dichloropropene	1 (79)	5.12	4**	SP	1***	SP	3.11
	2 (94)	1.52	18	SP	31	SN	.000
	3 (104)	.878	26	SP	93**	LA	1.75
diglycidyl resorcinol ether	1 (6)	.348	45	SP	38	SP	15.2
	2 (12)	.160	103*	SP	73	SP	6.66
epichlorohydrin	1 (68)	.226	98	SP	60	LA	2.38
	2 (815)	1.27	–72 NA	SP			
1,2-epoxybutane	1 (79)	5.12	4**	SP	1***	LN	NA
	2 (104)	.878	26	SP	93***	SP	3.64
	3 (108)	1.17	20	SP	19**	SP	2.50
1,2-epoxypropane	1 (72)	.289	70	SP	41	SP	4.04
	2 (88)	.406	57	SP	88***	SP	4.93
ethylene dibromide	1 (74)	.657	32	SP	108***	SP	8.53
	2 (92)	.597	41	SP	83*	SP	2.83
iodinated glycerol	1 (74)	.657	32	SP	108***	SP	6.04
	2 (106)	1.30	28	SP	15***	SN	1.31
melphalan	1 (80)	3.02	10*	SP	5***	LA	1.37
	2 (96)	.660	31	SP	52	SP	4.81
N-methyl-0-acrylamide	1 (70)	.526	47	SP	43	LA	1.53
	2 (85)	.313	67	SP	78	SP	3.88
4,4-methyleneedianiline	1 (40)	.533	60	SP	27*	SP	1.93
	2 (55)	.129	104*	SP	90***	SP	1.82
N-methyl-N’-nitro-N-nitrosoguanidine	1 (93)	.416	43	SP	9***	SP	10.1
	2 (192)	1.13	–54 NA	SP			
2-naphthylamine	1 (15)	.201	96	SP	86***	SP	3.33
	2 (26)	.907	37	SP	29***	SP	3.99
nitrofurantoin	1 (61)	.222	93	SP	100***	SN	.778
	2 (93)	.416	43	SP	9***	SP	4.25
nitrofurazone	1 (71)	1.06	24	SP	10***	LN	.000
	2 (77)	.972	17	SP	6***	SP	3.26
	3 (87)	.346	63	SP	101***	SP	4.99
2-nitro-p-phenylene-diamine	1 (15)	.186	100	SP	42	SP	4.21
	2 (21)	.347	79	SP	75	SN	1.38
	3 (98)	.660	31	SP	52	SP	4.38
4,4-oxydianiline	1 (1)	1.44	25	SP	36	SP	1.81
	2 (8)	2.19	16	SP	7***	SP	3.72
quinoline	1 (16)	.344	87	SP	64	LN	.000
	2 (27)	.555	78	SP	58	LN	.000
	3 (31)	.930	42	SP	25*	LA	1.93
	4 (104)	.878	26	SP	93***	SP	3.96

(Continued on next page)
Table A2. Continued.

Chemicala	Spontaneousb Foci/Vessel: Rank Order	Transformation Responseb Benzo(a)pyrene Call: Rank Order	Test Chemicalb Call: mean t-statistic	
Active Chemicals				
allyl isothiocyanate	1 (41)	.274 90	SP 13***	LA 1.62
	2 (98)	.226 98	SP 60	SP 4.09
chlorendic acid	1 (63)	1.92 13	SP 66	SP 1.96
	2 (83)	.351 71	SP 23**	LA 2.01
3-chloro-2-methylpropene	1 (29)	3.28 9*	SP 37	LA 1.62
	2 (31)	.406 57	SP 88***	SP 2.66
diethylstilbestrol	1 (42)	.861 55	SP 8***	LA 2.22
	2 (96)	.660 31	SP 52	SP 3.38
dimethylvinyl chloride	1 (76)	1.79 12*	SP 98***	LA 1.45
	2 (102)	.697 27	SP 63	SP 3.74
ethyl acrylate	1 (23)	.661 66	SP 81	LA 2.49
	2 (36)	.424 74	SP 35	SP 6.02
isophorone	1 (25)	.101 106*	SP 51	LN .203
	2 (36)	.424 74	SP 35	SP 3.46
	3 (104)	.878 26	SP 93***	SP 2.06
malonaldehyde, sodium salt	1 (75)	.882 21	SP 26*	SP 1.92
	2 (97)	.414 54	SP 44	LA 1.55
nitroliotriacetic acid	1 (73)	.274 80	SP 89**	SP 2.46
	2 (99)	.586 33	SP 14**	SP 8.41
polybrominated biphenyl mixture	1 (20)	.368 81	SP 22***	SP 2.22
	2 (28)	.818 39	SP 68	SP 1.64

Chemical with an Equivocal Activity

2-mercaptobenzothiazole	1 (62)	6.02 3*	LA 110***	LN .000
	2 (77)	.970 17	SP 6**	LA 1.23
	3 (89)	.492 51	SP 50	LA 1.22

Inactive Chemicals

allyl isovalerate	1 (23)	.661 66	SP 81*	LN .080
	2 (27)	.555 78	SP 58	LN .055
	3 (31)	.950 42	SP 25*	SN .591
	4 (102)	.697 27	SP 63	LA 2.35
chlorowax 40	1 (76)	1.79 12*	SP 98***	LA .850
	2 (104)	.878 26	SP 93***	SN .078
chlorowax 500	1 (74)	.657 32	SP 108***	SN .185
	2 (90)	1.95 15	SP 21***	SN .000
cinnamyl anthranilate	1 (2)	.660 53	SP 30	SN .010
	2 (9)	.149 102*	SP 95***	SN .000
	3 (DFR3)	.424 -92	NA	SN .000
D-limonene	1 (72)	.289 70	SP 41	LN 1.02
	2 (76)	1.79 12*	SP 98***	SN .473
	3 (88)	.406 57	SP 88***	SN .000
methapyrilene-HCl	1 (40)	.533 60	SP 27*	SN .000
	2 (54)	.265 91	SP 85	SN .417
	3 (DFR4)	.668 -82	NA	SN .000

(Continued on next page)
Table A2. Continued.

Chemical	Exp. No.	Spontaneous Foci/Vessel Rank Order	Transformation Response	Test Chemical
reserpine	1 (1)	1.44 25	SP 36	LA 1.38
	2 (8)	2.19 16	SP 7***	SN 0.000
	3 (DR3)	.426 -92	NA	SN 0.887
tris(2-ethylhexyl)phosphate	1 (88)	.406 57	SP 88***	SN 0.000
	2 (98)	.618 59	SP 17***	SN 0.000
4-vinylcyclohexene	1 (74)	.657 32	SP 108***	SN 0.000
	2 (110)	.609 38	SP 16***	SN 0.000

30 Non-Mutagenic Non-Carcinogens

Active Chemicals

C. I. acid red 14	1 (30)	.787 40	SP 54	SP 2.26
	2 (45)	.732 35	SP 57	SP 2.05
phenol	1 (76)	1.79 12*	SP 26*	SP 10.5
	2 (90)	1.95 15	SP 21**	SP 4.60
propyl gallate	1 (3)	.285 94	SP 91***	SP 2.42
	2 (9)	.169 102*	SP 95***	LA 0.958
sodium diethyldithiocarbamate	1 (38)	.496 69	SP 12***	SP 3.37
	2 (96)	.660 31	SP 52	SP 2.52

Weakly Active Chemicals

carbromal	1 (35)	1.97 14	SP 72	SN 0.673
	2 (44)	1.52 23	SP 11***	SP 3.94
chlorpheniramine-maleate	1 (70)	.526 47	SP 43	SN 0.000
	2 (85)	.313 67	SP 78	SP 1.97

Chemicals with an Equivocal Activity

| anilazine | 1 (29) | .606 68 | SP 40 | LA 1.09 |
| | 2 (85) | .313 67 | SP 78 | LA 2.81 |

Chemicals with an Equivocal Activity

tetrakis(hydroxymethyl)phosphonium chloride	1 (72)	.289 70	SP 41	SN 0.288
	2 (90)	1.95 15	SP 21**	SP 3.53
	3 (98)	.618 59	SP 17***	SN 0.000

Inactive Chemicals

L-ascorbic acid	1 (4)	1.51 50	SP 59	SN 0.300
	2 (11)	.301 101	SP 104***	SN 0.348
bisphenol A	1 (2)	.660 53	SP 30	SN 0.060
	2 (8)	2.196 16	SP 7***	LA 1.15
	3 (IP17)	.411 -99	SP -37	SN 0.393
	4 (IP18)	.789 -105*	SP -39	SN 0.000
C. I. acid yellow 73	1 (77)	.972 17	SP 6***	SN 0.000
	2 (83)	.351 71	SP 23***	SN 0.065
ephedrine sulfate	1 (71)	1.061 24	SP 10***	LN 0.810
	2 (77)	.972 17	SP 6***	SN 0.000
	3 (89)	.492 51	SP 50	SN 0.320
erythromycin stearate	1 (71)	1.06 24	SP 10***	SN 0.000
	2 (89)	.492 51	SP 50	SN 0.163

(Continued on next page)
Table A2. Continued.

Chemical^a	Exp. No.	Spontaneous[®] Foci/Vessel: Rank Order	Transformation Response^b Benzo(a)pyrene^d Call: Rank Order	Test Chemical^e Call: mean t-statistic
Inactive Chemicals				
ethoxylated dodecyl alcohol 1 (82)	8.01 1***	SP 3***	SN .000	
2 (90)	1.95	15	SP 21**	SN .583
ethylenediamine tetraacetic acid, trisodium salt 2 (85)	.274 80	SP 89***	LA 2.49	
.313 67	SP 78	SN .810		
geranyl acetate 1 (84)	.511 44	SP 65	SN .530	
2 (92)	.597 41	SP 83*	SN .090	
4-hexylresorcinol 1 (63)	1.92 13	SP 66	SN .000	
2 (85)	.313 67	SP 78	LA .920	
D,L-menthol 1 (18)	.663 46	SP 80*	SN .215	
2 (24)	.308 89	SP 87***	SN .083	
methoxychlor 1 (37)	.651 58	SP 55	SN .705	
2 (89)	.492 51	SP 50	LA 1.26	
methyldopa sesquihydrate 1 (75)	.882 21	SP 26*	LA 1.67	
2 (91)	.322 56	SP 109***	SN .600	
methylphenidate-HCl 1 (48)	.537 64	SP 84*	SN 1.31	
2 (57)	.278 86	SP 74	SN .780	
oxtetracycline-HCl 1 (73)	.274 80	SP 89***	SN .000	
2 (103)	.874 22	SP 53	SN .000	
3 (107)	2.95 5***	SP 46	SN .000	
phenylephrine-HCl 1 (73)	.274 80	SP 89**	SN .385	
2 (105)	.581 29	SP 97***	SN .260	
rotenone 1 (75)	.882 21	SP 26*	SN .000	
2 (96)	.660 31	SP 52	SN .510	
stannous chloride 1 (19)	.357 77	SP 67	SN .175	
2 (26)	.907 37	SP 20***	SN 1.58	
tetracycline-HCl 1 (71)	1.06 24	SP 10***	SN .000	
2 (89)	.492 51	SP 50	SN .043	
tetrakis(hydroxymethyl) phosphonium sulfate 2 (84)	.289 70	SP 41	SN .125	
.511 44	SP 65	SN .000		
xylenes, mixed 1 (72)	.289 70	SP 41	SN .000	
2 (100)	.268 73	SP 49	SN .945	
Chemicals with an Indeterminate Activity				
eugenol 1 (74)	.657 32	SP 108***	LN 1.88	
2 (94)	1.52	18	SP 31	SN .000
triphenyltin hydroxide 1 (39)	.427 82	SP 18***	SN .828	
2 (93)	.416 43	SP 9***	SP 3.27	

General Abbreviations: Exp. No., experiment number; NA, not available.

Abbreviations for Transformation Responses: SP, sufficient positive; LA, limited activity; SN, sufficient negative; LN, limited negative.

^aThe 114 cytotoxic chemicals in Table A2 are identical to those in Table A1, and they are subdivided into groups of 43 mutagenic carcinogens, 21 mutagenic noncarcinogens, 20 nonmutagenic carcinogens, and 30 nonmutagenic noncarcinogens.

^bTransformation Response: This table presents a summary of the spontaneous, BaP, and test chemical transformation responses detected in two or more experiments per test chemical. The assay design and procedures used in the standard transformation assay are described in the Materials and Methods. The transforming activities of individual chemical treatment doses (i.e., focus data), as well as the individual transformation responses (i.e., type III foci/vessel), are provided in detail in the Appendices B–H. Appendices B, C, D, E, F, G and H contain the activities of the 43 cytotoxic, mutagenic carcinogens; 21 cytotoxic, mutagenic noncarcinogens; 20 cytotoxic, nonmutagenic carcinogens; 30 cytotoxic, nonmutagenic, noncarcinogens; 21 noncytotoxic carcinogens; 26 noncytotoxic noncarcinogens; and 7 very noncytotoxic model test chemicals.

(Continued on next page)
Table A2. Continued.

1Spontaneous Transformation Response: The method used to calculate the spontaneous transformation response, as well as the positive control and test chemical responses, is explained in the Materials and Methods. The transformation responses are expressed as type III foci/vessel and were calculated using a log_{10} mathematical transformation procedure. The arithmetic value for foci/vessel in this table is the antilog of the log_{10} mean transformation response minus one. The procedure for rank ordering the spontaneous responses from 110 experiments is based upon the different statistical sensitivities of transformation experiments with different spontaneous responses is explained in the Statistical Sensitivity versus Spontaneous Response section of the Materials and Methods. Experiments with high spontaneous responses had a high statistical sensitivity and have relatively low rank-order numbers. For example, 2-amino-5-nitrophenol had a high spontaneous response of 6.02 foci/vessel in experiment 62, which had a high statistical sensitivity and rank order number 3/110. Conversely, experiments with a low statistical sensitivity had high rank-order numbers. For example, C.I. solvent yellow 14 had a low spontaneous response of 0.085 foci/vessel in experiment 67, which had a low statistical sensitivity and high rank-order number 107/110.

2Significant spontaneous or BaP transformation response, 0.01 < p ≤ 0.05.

**Significant transformation response, 0.001 < p ≤ 0.01.

***Significant transformation response, p < 0.001.

3Benzo(a)pyrene Transformation Response. The method used to call individual transformation experiments is described in detail in Materials and Methods. The method used to rank order the BaP transformation responses from the 110 experiments is based upon statistical comparison of the BaP transformation at the two treatment doses detected in an individual experiment with the median historical activity of the assay. This procedure is described in the Detection Sensitivity versus Benzo(a)pyrene Transformation Response section of the Materials and Methods. The rational for rank-ordering the experiments is analogous to that described for the spontaneous transformation responses (refer to footnote c above).

4Test Chemical Transformation Response: The method used to call individual experiments is described in detail in Materials and Methods, and the abbreviations for the calls are provided above. The significance of the transformation responses of individual chemical treatment doses were calculated using SAS statistical software (22). The mean t-statistic represents the average of the t-statistics of the four test chemical treatment doses in the experiment. The t-statistics for individual chemical treatment doses which were used to calculate the mean t-statistic are provided in the Appendices B–H.
Table A3. Rank-ordered potency of the transformation responses of 114 cytotoxic chemicals compared to rodent bioassay activities.

Test Chemical	Rodent Bioassay	Transformation Response			
Name	Level of Activity	Rank t-statistic			
	High	Low	None	Actual	Estimated

43 Mutagenic Carcinogens

Total Active Chemicals [92.5%]

Active Chemicals	Level of Activity	Rank t-statistic
5-azacytidine	D	12.8
diglycidyl resorcinol ether	A	9.31
N-methyl-N-nitro-N'-nitrosoguanidine	A	10.3
ethylenedibromide	A	5.68
2-amino-5-nitrophenol	D	5.94
cytembena	B	5.93
4-chloro-α-phenylenediamine	A	5.84
1,2-dibromo-3-chloropropane	A	5.59
o-toluidine	A	4.83
4-chloro-α-toluidine-HCl	C	5.61
C. I. solvent yellow 14	C	3.52
1,2-epoxypropane	A	4.48
2-acetylaminofluorene	A	3.12
acrylonitrile	B	3.75
epichlorohydrin	A	3.03
2-nitro-p-phenylenediamine	D	3.60
nitrofurazone	A	4.12
2-naphthylamine	B	3.66
5-chloro-α-toluidine	B	3.92
iodinated glycerol	A	3.68
melphalan	A	3.66
benzidine-2HCl	A	3.38
C. I. acid orange 3	D	2.89
N-methyl-α-acrylamide	B	3.10
2-biphenylamine	D	3.21
1,2-epoxybutane	B	2.99
quinoline	C	2.94
selenium sulfide	A	1.92
ziram	D	2.72
4,4-oxianiline	A	2.60
nitrofurantoin	A	2.26
4,6-methylenedianiline	A	1.87
4-biphenylamine	A	2.38
2,6-dichloro-p-phenylenediamine	C	2.26
3-(chloromethyl)pyridine-HCl	A	2.06
1,3-dichloropropene	A	1.77
C. I. disperse blue 1	C	1.31 (7.08)

Total Inactive Chemicals [7.5%]

Chemicals with Equivocal Activity	Level of Activity	Rank t-statistic
dichlorvos (uncoded)	A	1.49
(coded)	A	1.68

Inactive Chemicals	Level of Activity	Rank t-statistic
C. I. basic red 9-HCl (uncoded)	A	.41
(coded)	A	.05
2,4-dinitrotoluene	B	.73

Chemicals with an Indeterminate Activity	Level of Activity	Rank t-statistic
2-amino-4-nitrophenol	D	.00
C. I. disperse yellow 3	A	.07
HC blue 1	A	1.72

(Continued on next page)
Table A3. Continued.

Test Chemical	Rodent Bioassay\(^a\)	Transformation Response\(^c\)			
	Level of Activity	Rank t-statistic			
	High	Low	None	Actual	Estimated\(^d\)
21 Mutagenic Non-Carcinogens					
Active Chemicals					
malaoxon	F	8.14	11.4		
2,6-toluenediamine-2HCl	F	6.95	6.95		
N-phenyl-2-naphthylamine	E	4.25	6.90		
3-nitropropionic acid	E	4.69	5.22		
HC red 3 (AVG.)	E	4.12	4.54		
(coded)	E	5.60	6.11		
(uncoded)	E	2.64	2.96		
1-naphthylamine	F	2.82	4.18		
coumaphos	F	4.12	4.12		
tetraethylthiuram disulfide	F	3.88	3.88		
4-nitro-o-phenylenediamine	F	2.54	3.54		
dimethoate	F	3.31	3.31		
3-chloro-p-toluidine	F	3.26	3.26		
p-phenylenediamine-2HCl	F	3.04	3.04		
2-(chloromethyl)pyridine-HCl	F	2.56	2.85		
Total Inactive Chemicals [35.0%]					
Chemicals with Equivocal Activity					
2,4-dimethoxyaniline-HCl	F	3.06	3.06		
2,3,5,6-tetrachloro-4-nitroanisole	F	2.08	2.08		
N-(1-naphthyl)ethylenediamine-2HCl	F	1.64	1.83		
4'-(chloroacetyl)acetanilide	F	1.65	1.65		
8-hydroxyquinoline	F	0.78	1.16		
Inactive Chemical					
HC blue 2	F	1.80	3.51		
Inactive Chemical (Indeterminate Activity)					
4'-acetylaminofluorene	F (I)	1.30	1.94		
Chemicals with an Indeterminate Activity					
1-nitronaphthalene	F	1.45	1.56		
20 Non-Mutagenic Carcinogens					
Active Chemicals					
nitritoltriacetic acid	A	5.86	5.86		
ethyl acrylate	A	4.51	5.25		
allyl isothiocyanate	D	2.86	3.39		
diethylylstilbestrol	A	2.91	2.91		
isophorone	D	2.76	2.86		
dimethylvinyl chloride	A	2.59	2.59		
3-chloro-2-methylpropene	A	2.14	2.14		
chlorendic acid	A	1.98	1.98		
polybrominated bipheryl mixture	A	1.93	1.93		
malonaldehyde, sodium salt	C	1.87 (5.81)	1.87		
Total Inactive Chemicals [47.4%]					

(Continued on next page)
Table A3. Continued.

Test Chemical	Rodent Bioassayb	Transformation Responsec			
	Level of Activity	Rank t-statistic	Actual	Estimatedd	
	High	Low	None		
Chemical with Equivocal Activity					
2-mercaptobenzothiazole	C		1.23	1.23	
Inactive Chemicals					
allyl isovalerate	A		1.65	1.65	
D-limonene	A		.24	.24	
reserpine	A		.24	.24	
methapyrilene-HCl	C		.14	.17	
chlorowax 500	A		.06	.06	
cinnamyl anthranilate	A		.004	.005	
tris(2-ethylhexyl)phosphate	D		.00	.00	
4-vinylcyclohexene	D		.00	.00	
Chemicals with an Indeterminate Activity					
chlorowax 40	D		.46	.48	

30 Non-Mutagenic Non-Carcinogens

Total Active Chemicals [20.0%]

Active Chemicals

Name	Level of Activity	Actual	Estimated
phenol	F	7.60	7.60
propyl gallate	E	1.70	2.95
sodium diethyldithiocarbamate	F	2.94	2.94
C.I. acid red 14	F	2.15	2.15

Weakly Active Chemicals

Name	Level of Activity	Actual	Estimated
carbromal	F	2.26	2.26
chlorpheniramine-maleate	F	1.18	1.26

Total Inactive Chemicals [80.0%]

Chemicals with Equivocal Activity

Name	Level of Activity	Actual	Estimated
anilazine	F	1.82	2.09
tetrakis(hydroxymethyl)phosphonium chloride	F	1.27	1.27

Inactive Chemicals

Name	Level of Activity	Actual	Estimated
ethylenediamine tetraacetic acid, Na³	F	1.41	2.01
methyl phenidate-HCl	I	1.05	1.47
methyldopa sesquihydrate	E	1.21	1.21
methoxychlor	F	1.08	1.08
bisphenol A	E	.79	.79
stannous chloride	E	.78	.78
xylenes, mixed	F	.47	.50
4-hexylresorcinol	E	.46	.47
L-ascorbic acid	F	.32	.46
phenylephrine-HCl	F	.31	.42
geranyl acetate	F	.35	.37
ethoxylated dodecyl alcohol	F (I)	.29	.29
rotenone	E	.26	.26
D,L-menthol	F	.16	.22
ephedrine sulfate	F	.16	.16
erythromycin stearate	F	.08	.08
tetrakis(hydroxymethyl)phosphonium SO₃	F	.083	.083
C.I. acid yellow 73	I	.030	.030
tetracycline-HCl	F	.021	.021
oxytetracycline-HCl	E	.000	.000

(Continued on next page)
Table A3. Continued.

Test Chemical	Rodent Bioassay^a	Transformation Response^b			
Name	Level of Activity	Rank t-statistic			
	High	Low	None	Actual	Estimated^c
triphenyltin hydroxide	F	1.64	1.64		
eugenol	E	1.07	1.07		

^aTest Chemical: The 114 cytotoxic chemicals in Table A3 are identical to those in Table A1, and they are subdivided into groups of 43 mutagenic carcinogens, 21 mutagenic noncarcinogens, 20 nonmutagenic carcinogens, and 30 nonmutagenic noncarcinogens.

^bRodent Bioassay Level of Activity: The relative carcinogenic activity of chemicals in rodent bioassay has been described in terms of the chemical's level of effect (1, 3). The highest level A corresponds to chemicals that cause cancer in both mice and rats at one or more sites, and level B refers to chemicals that cause cancer at multiple sites in one species of rodent. Level C includes chemicals carcinogenic at one site in both sexes of one species, and D includes chemicals carcinogenic at one site in only one sex of a single species. Level E chemicals that only equivocal evidence of carcinogenic activity. Finally, level F includes both noncarcinogens and chemicals that had inadequate carcinogenicity studies.

^cTransformation Response Rank t-statistic: The method used to calculate the significance of test chemical transformation responses employed SAS statistical software (22) and is described in detail in Materials and Methods. The correct t-statistics of each treatment dose of the test chemical in a single experiment are presented in the Appendices B–H, and these t-statistics were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Table A2). The mean t-statistics for two or experiments for each chemical was weighted according to the number of treatment doses evaluated and averaged to determine the actual rank t-statistic presented in this table. For example, the actual rank t-statistic of 5-azacytidine transformation responses in experiments 6 and 11 is equal to 12.8 [i.e., 8.36 + 9.11 + 15.3 + 33.9 (Exp. 6) + 14.7 + 16.5 + 4.21 + .70 (Exp. 11)/8 = 12.8; Appendix B].

^dEstimated Rank t-statistic: The estimated rank t-statistic is used to estimate both the historical behavior of the test chemical in the transformation assay, as well as predicting the future behavior or the chemical. It is calculated by correcting the actual rank t-statistic. The data presented in Table A2 showed that individual experiments had very different rank-ordered sensitivities to detect chemical-induced transformation. Therefore, the estimated rank t-statistic modified the actual rank t-statistic to correct for differences in the sensitivities of individual experiments. The method uses the rank ordered sensitivity of individual experiments to detect spontaneous and BaP-induced transformation, and an example calculation is provided below.

The most active test chemical, 5-azacytidine, had statistical sensitivities for spontaneous transformation responses of 45 and 101/110 for experiments 6 and 11, respectively, and detection sensitivities for BaP of 38 and 104/110 (Table A2). Therefore, the average rank order of the two experiments was 72.0 (i.e., 45 + 101 + 38 + 104/4 = 72). For a total of 110 experiments, the median experiment has an automatic average rank order of 55.0 (i.e., 110/2 = 55.0). Therefore, the correction factor for the experimental sensitivity to detect chemical transformation was 72.0/55.0 or 1.31. Because the correction factor had more than one, the actual rank t-statistic would have been multiplied by the correction factor to obtain the estimated rank t-statistic of 16.8. A justification for this correction factor has been reported (18), and it is explained in the Materials and Methods.

^ePercentage (%) of Active Chemicals: Active chemicals included chemicals with active and weakly active transformation responses. In contrast, inactive chemicals included chemicals with equivocal and inactive transformation responses. Chemicals with an indeterminate activity have to be retested in an additional experiment in order to determine their activity in the standard transformation assay. Therefore, chemicals with indeterminate transformation responses were omitted from the computation of the percentage (%) of the total chemicals that were either active or inactive in the assay.

Mutagenic Carcinogens

2-Biphenylamine. 2-Biphenylamine was a relatively weak level D carcinogen (Table A3) with no serious technical problems reported (Table A1). However, an isomer of the chemical, 4-biphenylamine, has been reported to be oxidized upon exposure to air. It was cytotoxic to the BALB/c-3T3 cells with an average LD₅₀ of 0.421 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 49 and 84/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 24 and 45/110, respectively (Table A2). In trial 1 and 2 the chemical had a SP transformation response. 2-Biphenylamine was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 3.21 (Table A3).

4-Biphenylamine. 4-Biphenylamine was a level A carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD₅₀ of 479 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 14 and 11/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 72 and 39/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. 4-Biphenylamine was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 5.84 (Table A3).
3-(Chloromethyl)pyridine-HCl. 3-(Chloromethyl)pyridine-HCl was a potent level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 0.0756 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 99 and 36/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 82 and 28/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. 3-(Chloromethyl)pyridine-HCl was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 2.06 and 2.29, respectively (Table A3).

4-Chloro-o-Toluidine-HCl. 4-Chloro-o-toluidine-HCl was a relatively weak level C carcinogen (Table A3) with no serious technical problems reported (Table A1). However, an isomer of the chemical, 5-chloro-o-toluidine, has been reported to be oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 0.650 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 2 and 41/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 2 and 83/110, respectively (Table A2). In trial 1 and 2 the chemical had an SP transformation response. 4-Chloro-o-toluidine-HCl was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 5.61 (Table A3).

5-Chloro-o-Toluidine. 5-Chloro-o-toluidine was a potent level B carcinogen (Table A3). It had one serious technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 1.69 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 2 and 41/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 2 and 83/110, respectively (Table A2). In trial 1 and 2 the chemical had an SP transformation response. 5-Chloro-o-toluidine was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 3.92 (Table A3).

C. I. Acid Orange 3. C. I. Acid orange 3 was a relatively weak level D carcinogen (Table A3) with no serious technical problems reported (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 0.102 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 47 and 63/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 43 and 101/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. C. I. acid orange 3 was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 2.89 and 3.34, respectively (Table A3).

C. I. Basic Red 9-HCl. C. I. Basic red 9-HCl was one of five chemicals that was tested as both a coded and an uncoded test chemical in this investigation. It was a potent level A carcinogen (Table A3) with no serious technical problems reported (Table A1). Both chemical samples were very cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 0.00281 and 0.00216 mM (Table A1). For the uncoded test chemical, the statistical sensitivities of transformation assay trials 1-3 were 64, 108 and 82/110, respectively; the detection sensitivities for BaP of trials 1-3 were 84, 99 and NA/110, respectively (Table A2). For the coded test chemical, the statistical sensitivities of trials 1 and 2 were 80 and 8/110; the detection sensitivities for BaP were 89 and 29/110, respectively. The coded and uncoded test chemical had SN transformation responses in a total of 5 trials. Therefore, C. I. basic red 9-HCl was evaluated as inactive in the transformation assay. The actual and estimated rank t-statistics of the uncoded test chemical were 0.41 and 0.65, respectively (Table A3). The actual and estimated rank t-statistics of the coded test chemical were both 0.05 (Table A3). Taken together, the coded and uncoded test chemicals had nearly identical cytotoxic and transforming activities in the BALB/c-3T3 cell transformation assay.

C. I. Disperse Blue 1. C. I. Disperse blue 1 was a level C carcinogen (Table A3). It had one difficult technical problem. It was insoluble in culture medium at a portion of the treatment doses that were used to evaluate both cytotoxic and transforming activity (Table A1). In addition, this test chemical was observed to bind to the target cells, and it could not be removed using the standard washing procedure. It was cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 0.240 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 80, 54 and 5/110, respectively; the detection sensitivities for BaP of trials 1-3 were 89, 44 and 46/110, respectively (Table A2). In a preliminary trial 1, the chemical had a SP type III focus transformation response. In trials 2 and 3, the chemical had a SN type III transformation response. In contrast, the test chemical had an SP type I-III transformation response for all three trials. Thus, this test chemical had the unusual and consistent capability of inducing very significant levels of type I and II foci, but not for type III foci. This type of transformation response is shared by two other carcinogens, asbestos and polybrominated biphenyl mixture. Taken together, C. I. acid orange 3 was evaluated as weakly active in the transformation assay. Its actual and estimated rank t-statistics for the type III transformation response were both 1.31; however, the actual and estimated rank t-statistics for the type I-III response were both 7.06 (Table A3).

C. I. Disperse Yellow 3. C. I. Disperse yellow 3 was a level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 1.560 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 24 and 56/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 10 and 109/110, respectively (Table A2). In trials 1 and 2 the chemical had an SN transformation response. C. I. disperse yellow 3 was evaluated as having had an indeterminate activity in the transformation assay. Its actual and estimated rank t-statistics were both 0.07 (Table A3).

C. I. Solvent Yellow 14. C. I. Solvent yellow 14 was a relatively weak level C carcinogen (Table A3). It was insoluble at a portion of the treatment doses that were
evaluated for both cytotoxic and transforming activities (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.199 mM (Table A1). The statistical sensitivities of transformation assay trials 1-4 were 105, 107, 99 and 105/110, respectively; the detection sensitivities for BaP of trials 1-4 were 69, 106, 37, and 39/110, respectively (Table A2). In trials 1, 2 and 4 the chemical had SP transformation responses. In trial 3 the chemical had an LA transformation response. The test chemical was evaluated in more than two experiments, because it was used as a model test chemical in the development of additional assay protocols. C. I. solvent yellow 14 was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 3.52 and 5.34, respectively (Table A3).

Cytembena. Cytembena was a level B carcinogen (Table A3) with no serious technical problems reported (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.153 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 47 and 71/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 43 and 23/110, respectively (Table A2). In a preliminary trial the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. Cytembena was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 5.93 (Table A3).

1,2-Dibromo-3-Chloropropane. 1,2-Dibromo-3-chloropropane was a potent level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.401 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 66, 78 and 27/110, respectively; the detection sensitivities for BaP of trials 1-3 were 81, 58 and 63/110, respectively (Table A2). In a preliminary trial the chemical had an LA transformation response, because the chemical treatment doses were noncytotoxic to the target cells. In trials 2 and 3 the chemical had an SP transformation response. 1,2-Dibromo-3-chloropropane was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 5.59 and 5.74, respectively (Table A3).

2,6-Dichloro-p-Phenylenediamine. 2,6-Dichloro-p-phenylenediamine was a relatively weak level C carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.921 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 19 and 91/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 34 and 85/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. 2,6-Dichloro-p-phenylenediamine was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 2.26 and 2.35, respectively (Table A3).

1,3-Dichloropropene. 1,3-Dichloropropene was a potent level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.280 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 4, 18 and 26/110, respectively; the detection sensitivities for BaP of trials 1-3 were 1, 31 and 93/110, respectively (Table A2). In a preliminary trial the chemical had a SP transformation response, and in trial 2 the chemical had a SN transformation response. Because these responses were disparate and significantly different from one another, the test chemical was evaluated in a third trial. In the third experiment the chemical had an LA transformation response. 1,3-Dichloropropene was evaluated as weakly active in the transformation assay. Its actual and estimated rank t-statistics were both 1.77, respectively (Table A3).

Dichlorvos. Dichlorvos was one of five chemicals that was tested as both a coded and an uncoded test chemical in this investigation. It was evaluated as a noncarcinogen for its first rodent bioassay trial; however, it was determined in a second trial using a different route of exposure to be a potent level A carcinogen (Table A3). This test chemical had one difficult technical problem because it was rapidly hydrolyzed in water (Table A1). Both chemical samples were cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.145 and 0.140 mM (Table A1). For the uncoded test chemical, the statistical sensitivities of transformation assay trials 1-3 were 98, 72 and 59/110, respectively; the detection sensitivities for BaP of trials 1-3 were 60, NA and 17/110, respectively (Table A2). For the coded test chemical, the statistical sensitivities of trials 1 and 2 were 9 and 15/110, the detection sensitivities for BaP were 37 and 21/110, respectively. The uncoded test chemical had SN transformation responses in 2 trials and an LA transformation response in one trial. The coded test chemical had an SN transformation response in a preliminary trial and an SP transformation response in trial 2. The mean t-statistics of the SP and LA transformation responses were not significantly different from the corresponding SN responses, which showed that the test chemical activity in the assay was relatively weak. Taken together, dichlorvos was evaluated as having had equivocal activity in the transfection assay. The actual and estimated rank t-statistics of the uncoded test chemical were 1.49 and 1.66, respectively (Table A3). The actual and estimated rank t-statistics of the coded test chemical were both 1.68 (Table A3). Taken together, the coded and uncoded test chemicals had nearly identical cytotoxic and transforming activities in the BALB/c-3T3 cell transformation assay.

Diglycidyl Resorcinol Ether. Diglycidyl resorcinol ether was a potent level A carcinogen (Table A3). It is an alkylating chemical; thus, it could react with labile hydrogen atoms not only on DNA, but also on a variety of biochemicals in the culture medium (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.00416 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 45 and 108/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 38 and 73/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. Diglycidyl resorcinol ether was evaluated as one of the most active chemicals in the transformation assay. Its actual and estimated rank t-statistics were 9.31 and 11.0, respectively (Table A3).
2,4-Dinitrotoluene. 2,4-Dinitrotoluene is a relative potent level B carcinogen (Table A3) with no serious technical problems reported (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.917 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 88, 104 and 88/110, respectively; the detection sensitivities for BaP of trials 1-3 were 77, 90 and NA/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trials 1-3 the chemical had SN transformation responses. 2,4-Dinitrotoluene was evaluated as inactive in the transformation assay. Its actual and estimated rank t-statistics were 0.73 and 1.19, respectively (Table A3).

Epichlorohydrin. Epichlorohydrin was a level A carcinogen (Table A3). It had two serious technical problems, because it was reported to become oxidized upon exposure to air and it reacts with water (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 3.64 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 98 and 72/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 60 and NA/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. Epichlorohydrin was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 3.03 and 4.22, respectively (Table A3).

1,2-Epoxybutane. 1,2-Epoxybutane was a relatively weak level D carcinogen (Table A3). It was reported to be a highly reactive chemical (Table A1), and it reacts with carboxyl and hydroxyl groups found on constituent biochemicals in culture medium, as well as in the target cells. It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 1.45 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 4, 26 and 20/110, respectively; the detection sensitivities for BaP of trials 1-3 were 1, 99 and 19/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LN transformation response because the chemical treatment doses were too high and completely cytotoxic to the cells. In trials 2 and 3 the chemical had SP transformation responses. 1,2-Epoxybutane was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 2.99 (Table A3).

1,2-Epoxypropane. 1,2-Epoxypropane was a potent level A carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 1.60 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 70 and 57/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 41 and 88/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. 1,2-Epoxypropane was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 4.48 and 5.21, respectively (Table A3).

Ethylene Dibromide. Ethylene dibromide was a level A carcinogen (Table A3). It was reported to be highly reactive chemical, but none of these problems were serious (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 1.69 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 32 and 41/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 108 and 83/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. Ethylene dibromide was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 5.68 and 6.82, respectively (Table A3).

HC Blue 1. HC Blue 1 was a level A carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 1.96 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 100, 79 and 88/110, respectively; the detection sensitivities for BaP of trials 1-3 were 42, 75 and NA/110, respectively (Table A2). In trials 1 and 2 the chemical had an SN transformation response. Ordinarily this chemical would not have been tested in a third experiment, but it was selected as a model chemical with an inactive response in the transformation assay. In the third experiment, the test chemical had an SP transformation response. This disparate transformation response could have been caused by the different sample batches of test chemicals that were tested in experiments 1 and 2 versus experiment 3. Therefore, the test chemical has to be tested in a fourth experimental trial. HC blue 1 was evaluated as having had an indeterminate activity in the transformation assay. Its actual and estimated rank t-statistics were 1.72 and 2.40, respectively (Table A3).

Iodinated Glycerol. Iodinated glycerol was a level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 3.47 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 32 and 28/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 108 and 15/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LN transformation response. In trial 2 the chemical had an SN transformation response. The disparate transformation responses were examined further, and the mean t-statistics of the two experiments were not significantly different from one another. In addition, there was a dose-related increase in test chemical activity in the experiment with an SN response at treatment doses that were comparable to that inducing an SP response. Taken together, iodinated glycerol was evaluated as weakly active in the transformation assay. Its actual and estimated rank t-statistics were both 3.68, respectively (Table A3).

Melphalan. Melphalan was a level A carcinogen (Table A3). It had one serious technical problem because it was reported to react with water (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD_{50} of 0.00120 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 10 and 31/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 5 and 62/110, respectively (Table A2). In a
preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. Melphalan was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 3.66, respectively (Table A3).

N-Methyl-o-Acrylamide. N-Methyl-o-acrylamide is a level B carcinogen (Table A3) with no insurmountable technical problems (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD₅₀ of 1.75 mM (Table A1). The statistical sensitivities of trials 1 and 2 were 47 and 67/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 43 and 78/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. N-Methyl-o-acrylamide was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 3.10 and 3.31, respectively (Table A3).

4,4-Methylenediamine. 4,4-Methylenediamine was a potent level A carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD₅₀ of 1.56 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 60 and 104/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 27 and 90/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. 4,4-Methylenediamine was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 1.87 and 2.39, respectively (Table A3).

N-Methyl-N’-Nitro-N-Nitrosoguanidine. N-Methyl-N’-Nitro-N-nitrosoguanidine was a potent level A carcinogen (Table A3). It had one serious technical problem because it reacts with water (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD₅₀ of 0.0154 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 43 and 54/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 9 and NA/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. N-Methyl-N’-nitro-N-nitrosoguanidine was one of the most active chemicals in the transformation assay. Its actual and estimated rank t-statistics were both 10.3 (Table A3).

2-Naphthylamine. 2-Naphthylamine was a level B carcinogen (Table A3). It had one serious technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD₅₀ of 1.59 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 96 and 37/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 86 and 20/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. 2-Naphthylamine was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 3.66 and 3.98, respectively (Table A3).

Nitrofurantoin. Nitrofurantoin was a potent level A carcinogen (Table A3). It was reported to be a highly reactive chemical, but none of the problems were serious (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD₅₀ of 0.106 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 93 and 43/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 100 and 9/110, respectively (Table A2). In a preliminary trial 1 the chemical had an SN transformation response. In trial 2 the chemical had an SP transformation response. The disparate transformation responses were examined further, and the mean t-statistics of the two experiments were not significantly different from one another. In addition, there was a dose-related increase in test chemical activity in the experiment with an SN response at treatment doses that were comparable to that inducing an SP response. Taken together, nitrofurantoin was evaluated as having had weak activity in the transformation assay. Its actual and estimated rank t-statistics were 2.26 and 2.52, respectively (Table A3).

Nitrofurazone. Nitrofurazone was a potent level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD₅₀ of 0.0515 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 24, 17 and 63/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 10, 6 and 101/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LN transformation response, because the chemical treatment doses were too cytotoxic. In trials 2 and 3 the chemical had an SP transformation response. Nitrofurazone was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 4.12, respectively (Table A3).

2-Nitro-p-Phenylenediamine. 2-Nitro-p-phenylenediamine was a relatively weak level D carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD₅₀ of 0.947 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 100, 79 and 31/110, respectively; the detection sensitivities for BaP of trials 1-3 were 42, 75 and 52/110, respectively (Table A2). In a preliminary trial 1 the chemical had an SP transformation response. In trial 2 the chemical had an SN transformation response. The disparate transformation responses were examined further, and the mean t-statistics of the two experiments were significantly different from one another. Therefore, the chemical was tested in a third trial, and the activity in this experiment was evaluated as an SP. There was no obvious reason for the absence of activity of the test chemical in the second experiment. Taken together, 2-nitro-p-phenylenediamine was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 3.60 and 4.13, respectively (Table A3).

4,4-Oxydianiline. 4,4-Oxydianiline was a potent level A carcinogen (Table A3). It had one serious technical problem, because it was reported to become oxidized upon exposure to air (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD₅₀ of 0.270 mM (Table A1). The statistical sensitivities of trials 1 and 2 were 25 and
16/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 36 and 7/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. 4,4'-Oxydianiline was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 2.60 (Table A3).

Quinoline. Quinoline was a level C carcinogen (Table A3). It was reported to be a highly reactive chemical, but none of the problems were serious (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 4.09 mM (Table A1). The statistical sensitivities of transformation assay trials 1-4 were 87, 78, 42 and 26/110, respectively; the detection sensitivities for BaP of trials 1-4 were 64, 58, 25 and 93/110, respectively (Table A2). In trials 1 and 2 the chemical had an LN transformation response because the chemical treatment doses did not induce a significant cytotoxic activity. In trial 3 the chemical had an LA transformation response, and trial 4 the response was evaluated as an SP. Quinoline was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 2.94 (Table A3).

Selenium Sulfide. Selenium sulfide was a potent level A carcinogen (Table A3) with no serious technical problems reported (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 0.125 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 105, 101 and 54/110, respectively; the detection sensitivities for BaP of trials 1-3 were 69, 104 and 44/110, respectively (Table A2). In a preliminary trial 1, the chemical had an SP transformation response. In trial 2, the chemical had an SN transformation response. The disparate transformation responses were examined further, and the mean t-statistics of the two experiments were significantly different from one another. Therefore, the test chemical had to be tested in a third experiment, and the activity in this trial was evaluated as an SP. There was no obvious explanation for the disparate transformation responses in second experiment, versus the experiments 1 and 3. Taken together, selenium sulfide was evaluated as weakly active in the transformation assay. Its actual and estimated rank t-statistics were 1.92 and 2.78, respectively (Table A3).

o-Toluidine. o-Toluidine was a potent level A carcinogen (Table A3). It had one difficult technical problem because it was reported to become oxidized upon exposure to air (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 4.33 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 87, 106 and 59/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 64, 51 and 17/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response, but it did not induce a significant increase in type I and II foci (data not presented). Because of this unusual activity, the test chemical was tested in a third trial. In the third experiment the chemical response was evaluated as an SP. Taken together, o-toluidine was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 4.83 and 5.62, respectively (Table A3).

Ziram. Ziram is a relatively weak level D carcinogen (Table A3) with no serious technical problems reported (Table A1). It was the most cytotoxic chemical in this group of test chemicals, and it had an average LD$_{50}$ of 0.0000373 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 17 and 56/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 6 and 109/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. Ziram was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 2.72 (Table A3).

Cytotoxic, Mutagenic Noncarcinogens

2-Acetylaminofluorene. 2-Acetylaminofluorene is a level F(I) noncarcinogen because it has not been evaluated in a complete rodent bioassay (Table A3). It had one difficult technical problem, because it had a solubility limit in culture medium supplemented with pluronic F68 of 200 µg/ml (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ estimated to be over 500 µg/ml or about 0.07 mM (Table A1). Thus, the LD$_{50}$ was considerably above the solubility limit of the test chemical. The statistical sensitivities of transformation assay trials 1 and 2 were 103 and 83/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 73 and 70/110, respectively (Table A2). The test chemical had an LN transformation response in both experiments, and it was tested at treatment doses that were both above and below its solubility limit. Taken together, 2-acetylaminofluorene was evaluated as an inactive chemical with an indeterminate activity in the transformation assay. Its actual and estimated rank t-statistics were 1.30 and 1.49, respectively (Table A3).

4'-((Chloroacetyl)acetanilide. 4'-((Chloroacetyl)acetanilide is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.00336 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 58 and 8/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 55 and 29/110, respectively (Table A2). In trials 1 and 2 the test chemical had LA transformation responses. 4'-((Chloroacetyl)acetanilide evaluated as having equivocal activity in the transformation assay, and its actual and estimated rank t-statistics were both 1.65 (Table A3).

2-(Chloromethyl)pyridine-HCl. 2-(Chloromethyl)pyridine is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.118 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 99 and 36/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 82 and 28/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. 2-(Chloromethyl)pyridine was evaluated as active in the transformation assay, and its actual and
estimated rank t-statistics were 2.56 and 2.85, respectively (Table A3).

3-Chloro-p-Toluidine. 3-Chloro-p-toluidine is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air, and it was exposed to air during the treatment period (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 1.17 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 2 and 41/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 2 and 83/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. 3-Chloro-p-toluidine was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 3.26 (Table A3).

Coumaphos. Coumaphos is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.218 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 40, 8 and 33/110, respectively; the detection sensitivities for BaP of trials 1-3 were 54, 29 and 14/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an SP response in the second experiment. Because the mean t-statistics of the transformation responses in the first two experiments were significantly different from one another, the test chemical was evaluated in a third trial. In the third experiment the test chemical had an SP transformation response. Coumaphos was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 4.12 (Table A3).

Dimethoate. Dimethoate is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.602 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 90 and 18/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 13 and 31/110, respectively (Table A2). The test chemical had an LA transformation response in the first experiment, and an SP response in the second experiment. Dimethoate was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 3.31 (Table A3).

2,4-Dimethoxyaniline-HCl. 2,4-Dimethoxy is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 1.13 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 7, 63 and 54/110, respectively; the detection sensitivities for BaP of trials 1-3 were 56, 101 and 44/110, respectively (Table A2). The test chemical had a SP transformation response in the first experiment, and a SN response in the second experiment. Because the mean t-statistics of the transformation responses in the first two experiments were significantly different from one another, the test chemical was evaluated in a third trial. The test chemical had a SN transformation response in the third experiment. 2,4-Dimethoxyaniline was evaluated as having had equivocal activity in the transformation assay, and its actual and estimated rank t-statistics were both 3.06 (Table A3).

HC Red 3. HC red 3 was one of five chemicals that was tested as both a coded and an uncoded test chemical in this investigation. It is a level E noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 3.72 mM as a uncoded test chemical and 4.50 mM as a coded chemical (Table A1). For the uncoded test chemical the statistical sensitivities of transformation assay trials 1 and 2 were 60 and 86/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 27 and 74/110, respectively (Table A2). In trials 1 and 2 the uncoded test chemical had SP transformation responses. For the coded test chemical the statistical sensitivities of transformation assay trials 1 and 2 were 93 and 33/110, respectively; the detection sensitivities for BaP were 100 and 14, respectively. The coded test chemical had an LA transformation response in the first experiment, and an SP transformation response in the second experiment. Both the uncoded and the coded HC Red 3 were evaluated as active in the transformation assay. The coded test chemical actual estimated rank t-statistics were 5.60 and 6.11, respectively; the uncoded test chemical actual and estimated rank t-statistics were 2.64 and 2.96, respectively (Table A3).

8-Hydroxyquinoline. 8-Hydroxyquinoline is a level F noncarcinogen (Table A3). It had one difficult technical problem because it was reported to combine with different metal salts (Table A1). Thus, it could have combined with metal salts in FBS and EMEM medium. The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.00251 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 94, 102 and 39/110, respectively; the detection sensitivities for BaP of trials 1-3 were 91, 95 and 68/110, respectively (Table A2). The test chemical had an SP transformation response in the first experiment, and an SN response in the second experiment. Because the mean t-statistics of the transformation responses of the first two experiments were significantly different from one another the chemical was evaluated in a third trial. The test chemical had an SN transformation response in the third experiment. 8-Hydroxyquinoline was evaluated as having equivocal activity in the transformation assay, and its actual and estimated rank t-statistics were 0.78 and 1.16, respectively (Table A3).

Malaoxon. Malaoxon is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air, and it was exposed to air during the treatment period (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.468 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 87 and 106/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 64 and 51/110, respectively (Table A2). The test chemical had an LA transformation response in the first experiment, and an SP response in the
second experiment. Malaoxon was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 8.14 and 11.4, respectively (Table A3).

1-Naphthylamine. 1-Naphthylamine is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air, and it was exposed to air during the treatment period (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.506 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 96 and 77/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 86 and 67/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. 1-Naphthylamine was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 2.82 and 4.18, respectively (Table A3).

N-(1-Naphthyl)ethylenediamine-2HCl. N-(1-Naphthyl)ethylenediamine-2HCl is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.125 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 69 and 63/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 12 and 101/110, respectively (Table A2). In trials 1 and 2 the test chemical had LA transformation responses. N-(1-naphthyl)ethylenediamine-2HCl evaluated as having equivocal activity in the transformation assay, and its actual and estimated rank t-statistics were 1.64 and 1.83, respectively (Table A3).

1-Nitronaphthalene. 1-Nitronaphthalene is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.464 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 49 and 63/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 24 and 101/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an SP response in the second experiment. Because the mean t-statistic responses of the two transformation experiments were significantly different from one another, this chemical has to be tested in a third trial. In the absence of these data 1-nitronaphthalene was evaluated as having had an indeterminate activity in the transformation assay, and its actual and estimated rank t-statistics were 1.45 and 1.56, respectively (Table A3).

4-Nitro-o-phenylenediamine. 4-Nitro-o-phenylenediamine is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air, and it was exposed to air during the treatment period (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.292 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 99 and 46/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 82 and 80/110, respectively (Table A2). The test chemical had an SP transformation response in the first experiment, and an LA response in the second experiment. 4-Nitro-o-phenylenediamine was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 2.54 and 3.54, respectively (Table A3).

3-Nitropropionic Acid. 3-Nitropropionic acid is a level E noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air, and it was exposed to air during the treatment period (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 1.23 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 82 and 67/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 18 and 78/110, respectively (Table A2). The test chemical had an SP transformation response in the first and second experiments. 3-Nitropropionic acid was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 4.69 and 5.22, respectively (Table A3).

p-Phenylenediamine-2HCl. p-Phenylenediamine-2HCl is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air, and it was exposed to air during the treatment period (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.0712 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 58 and 51/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 55 and 50/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. p-Phenylenediamine-2HCl was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 3.04 (Table A3).

N-Phenyl-2-Naphthylamide. N-Phenyl-2-naphthylamide is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air, and it was exposed to air during the treatment period (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.195 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 93 and 63/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 100 and 101/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. N-Phenyl-2-naphthylamine was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 4.25 and 6.90, respectively (Table A3).

2,3,5,6-Tetrachloro-4-Nitroanisole. 2,3,5,6-Tetrachloro-4-nitroanisole is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.0437 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 68 and 43/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 40 and 9/110, respectively (Table A2). In trials 1 and 2 the test chemical had LA transformation responses. 2,3,5,6-Tetrachloro-4-nitroanisole was evaluated as having equivocal activity in the transformation assay, and its actual and estimated rank t-statistics were both 2.08 (Table A3).
Tetraethylthiuram Disulfide. Tetraethylthiuram disulfide is a level F noncarcinogen (Table A3). It had one no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.0000583 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 10 and 43/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 5 and 9/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. Tetraethylthiuram disulfide was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 3.88 (Table A3).

2,6-Toluenediamine-2HCl. 2,6-Toluenediamine-2HCl is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 4.11 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 68 and 23/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 40 and 11/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. 2,6-Toluenediamine-2HCl was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 6.95 (Table A3).

Cytotoxic, Nonmutagenic Carcinogens

Allyl Isothiocyanate. Allyl isothiocyanate is a level D carcinogen (Table A3). It had one difficult technical problem because it was reported to react with water (Table A1). The test chemical was a very cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.00712 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 90 and 98/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 13 and 60/110, respectively (Table A2). The test chemical had an LA transformation response in the first experiment, and an SP response in the second experiment. Allyl isothiocyanate evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 2.86 and 3.39, respectively (Table A3).

Allyl Isovalerate. Allyl isovalerate is a level A carcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 4.51 mM (Table A1). The statistical sensitivities of transformation assay trials 1–4 were 66, 78, 42, and 27/110, respectively; the detection sensitivities for BaP of trials 1–4 were 81, 58, 35, and 63/110, respectively (Table A2). The test chemical had an LN transformation response in the first two experiments, an SN response in the third experiment, and an LA response in the fourth experiment. Allyl isovalerate was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 1.65 (Table A3).

Chlorencid Acid. Chlorencid acid was a level A carcinogen (Table A3). This chemical was reported to bind metal salts (Table A1); thus, it could have affected the concentration of metal salts in FBS and culture medium. The test chemical was moderately cytotoxic chemical with an average LD$_{50}$ of 4.07 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 9 and 57/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 37 and 88/110, respectively (Table A2). In a preliminary trial 1 the chemical had an SP transformation response. In trial 2 the chemical had an LA transformation response. Chlorencid acid was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 1.98 (Table A3).

3-Chloro-2-Methylpropene. 3-Chloro-2-methylpropene was a level A carcinogen (Table A3). It had many technical problems including its reported reaction (Table A1). The test chemical was a cytotoxic chemical with an average LD$_{50}$ of 0.662 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 9 and 57/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 37 and 88/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation responses. In trial 2 the chemical had an SP transformation response. 3-Chloro-2-methylpropene was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 2.14 (Table A3).

Chlorowax 40. Chlorowax 40 is a level D carcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 1.43 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 12 and 26/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 98 and 93/110, respectively (Table A2). The test chemical had an LA transformation response in the first experiments and an SN response in the second experiment. Chlorowax 40 was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.46 and 0.48, respectively (Table A3).

Chlorowax 500. Chlorowax 500 is a level A carcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 1.58 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 32 and 15/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 108 and 21/110, respectively (Table A2). The test chemical had an SN transformation response in both experiments. Chlorowax 500 was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.06 (Table A3).

Cinnamyl Anthranilate. Cinnamyl anthranilate is a level A carcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized by air; thus, it could have reacted with air during the treatment period (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.0947 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 53, 102 and 92/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 30, 95 and ND/110, respectively (Table A2). The test chemical had an SN transformation response in all three experiments. Cinnamyl anthranilate was evaluated as inactive in
the transformation assay, and its actual and estimated rank t-statistics were 0.004 and 0.006, respectively (Table A3).

Diethylstilbestrol. Diethylstilbestrol is a level A carcinogen (Table A3) with no technical problems (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 0.0858 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 55 and 31/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 8 and 52/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. Diethylstilbestrol was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 2.91, respectively (Table A3).

Dimethylvinyl Chloride. Dimethylvinyl chloride is a level A carcinogen (Table A3). It had one technical problem because it was noted to be oxidized upon exposure to air (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 4.74 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 12 and 27/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 98 and 63/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. Dimethylvinyl chloride was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 2.59 (Table A3).

Ethyl Acrylate. Ethyl acrylate is a level A carcinogen (Table A3). It has one difficult technical problem because it was reported to react with water (Table A1). It was very cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 0.0746 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 66 and 74/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 81 and 35/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LA transformation response. In trial 2 the chemical had an SP transformation response. Ethyl acrylate was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 4.51 and 5.25, respectively (Table A3).

Isophorone. Isophorone is a level D carcinogen (Table A3) with no insurmountable technical problems (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 5.18 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 106, 74 and 26/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 51, 35 and 93/110, respectively (Table A2). In a preliminary trial 1 the chemical had an LN transformation response because the test chemical treatment doses were noncytotoxic to the cells. In trials 2 and 3 the chemical had an SP transformation response. Isophorone was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 2.76 and 2.86, respectively (Table A3).

D-Limonene. D-Limonene is a level D carcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized by air; thus, it could have reacted with air during the treatment period (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.988 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 70, 12 and 57/110, respectively; the detection sensitivities for BaP of trials 1-3 were 41, 98 and 88/110, respectively (Table A2). The test chemical had an LN transformation response in the first experiments and an SN response in the second and third experiments. D-Limonene was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 0.24 and 0.27, respectively (Table A3).

Malonaldehyde, Sodium Salt. Malonaldehyde, sodium salt, is a level C carcinogen (Table A3). It was found to be one serious technical problem because it is very temperature sensitive (Table 1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells with an average LD$_{50}$ of 3.74 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 21 and 54/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 26 and 44/110, respectively (Table A2). In a preliminary trial 1 the chemical had an SP transformation response. In trial 2 the chemical had an LA transformation response. Malonaldehyde, sodium salt, was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were 1.87 and 1.87, respectively (Table A3).

Methapyrilene-HCl. Methapyrilene-HCl is a level C carcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.812 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 60, 91 and 82/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 27, 85 and ND/110, respectively (Table A2). The test chemical had an SN transformation response in all three experiments. Methapyrilene-HCl was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 0.14 and 0.17, respectively (Table A3).

2-Mercaptobenzothiazole. 2-Mercaptobenzothiazole is a level C carcinogen (Table A3). It had one serious technical problem. It was reported to react with water; thus, its activity in the transformation assay could have been unavoidably affected by its exposure to an aqueous environment during the 48-hr treatment period (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.130 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 3.17 and 51/110, respectively; the detection sensitivities for BaP of trials 1-3 were 110, 6 and 50/110, respectively (Table A2). The test chemical had a LN transformation response in the first experiment, because the positive control did not induce significant transformation in this experiment. In the second and third experiments the test chemical had LA transformation responses. 2-Mercaptobenzothiazole was evaluated as having had equivocal activity in the transformation assay, and its actual and estimated rank t-statistics were both 1.23 (Table A3).

Nitrilotriacetic Acid, Trisodium Salt. Nitrilotriacetic acid, trisodium salt, is a level A carcinogen (Table A3).
Because this chemical was reported to bind metal salts, it could have affected the concentration of metal salts in FBS and culture medium (Table A1). It was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 5.98 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 80 and 39/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 89 and 14/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation response. Nitrotriacetic acid, trisodium salt, was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 5.86, respectively (Table A3).

Polybrominated Biphenyl Mixture. Polybrominated biphenyl mixture is a level A carcinogen (Table A3). This test chemical was insoluble in culture medium at a portion of the treatment doses that were used to induce both cytotoxic and transforming activity (Table A1). It was cytotoxic to the BALB/c-3T3 cells with an average LD₅₀ of 0.291 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 81 and 39/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 22 and 68/110, respectively (Table A2). In trials 1 and 2 the chemical had an SP transformation responses for both type III and type I-III focus transformation responses. However, this test chemical was very unusual in that it induced proportionally a much higher response for the type I and II foci, than for the type III foci (refer to the Discussion). Polybrominated biphenyl mixture was evaluated as active in the transformation assay. Its actual and estimated rank t-statistics were both 1.93 for the type III focus response, and 5.81 for the type I and II focus response (Table A3).

Reserpine. Reserpine is a level A carcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized by air; thus, it could have reacted with air during the treatment period (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.0133 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 25, 16 and 92/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 36 and 7/110, respectively (Table A2). The test chemical had an LA transformation response in the first experiment and an SN response in the second and third experiments. Reserpine was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.24, respectively (Table A3).

Tris(2-ethylhexyl)phosphate. Tris(2-ethylhexyl)phosphate is a level D carcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.398 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 57 and 59/110, respectively, the detection sensitivities for BaP of trials 1 and 2 were 88 and 17/110, respectively (Table A2). The test chemical had an SN transformation response in both experiments. Tris(2-ethylhexyl)phosphate was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.00 (Table A3).

4-Vinylcyclohexene. 4-Vinylcyclohexene is a level D carcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air; thus, it could have reacted with air during the treatment period (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 3.98 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 32 and 38/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 108 and 16/110, respectively (Table A2). The test chemical had an SN transformation response in both experiments. 4-Vinylcyclohexene was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.00 (Table A3).

Cytotoxic, Nonmutagenic Noncarcinogens

Anilazine. Anilazine is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was a very cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.0475 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 68 and 67/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 40 and 78/110, respectively (Table A2). In trials 1 and 2 the test chemical had LA transformation responses. Aniline was evaluated as having equivocal activity in the transformation assay, and its actual and estimated rank t-statistics were 1.81 and 2.07, respectively (Table A3).

L-Ascorbic Acid. L-Ascorbic acid is a level F noncarcinogen (Table A3). It had two difficult technical problems. It was reported to become oxidized upon exposure to air; thus, it could have reacted with air during the treatment period. In addition, it was noted to be oxidized by air; thus, it could have combined with metal salts in FBS and EMEM medium (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.363 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 50 and 101/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 50 and 104/110, respectively (Table A2). In trials 1 and 2 the test chemical had SN transformation responses. L-Ascorbic acid was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 0.32 and 0.45, respectively (Table A3).

Bisphenol A. Bisphenol A is a level E noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.147 mM (Table A1). The statistical sensitivities of transformation assay trials 1-4 were 53, 16, 99 and 105/110, respectively; the detection sensitivities for BaP of trials 1-4 were 30, 7, 37 and 39/110, respectively (Table A2). The test chemical had an SN transformation response in all four experiments. Bisphenol A was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.79 (Table A3).

Carbromal. Carbromal is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized by air; thus, it could have reacted with
air during the treatment period (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 3.60 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 14 and 23/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 72 and 11/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an SP response in the second experiment. Although the test chemical had disparate transformation responses in two experiments, the mean t-statistics of the two responses were not significantly different from one another. Carbromal was evaluated as weakly active in the transformation assay, and its actual and estimated rank t-statistics were both 2.26 (Table A3).

Chlorpheniramine-Maleate. Chlorpheniramine maleate is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.287 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 47 and 67/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 43 and 78/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an SP response in the second experiment. Although the test chemical had disparate transformation responses, the mean t-statistics of the two responses were not significantly different from one another. Chlorpheniramine-maleate was evaluated as weakly active in the transformation assay, and its actual and estimated rank t-statistics were 1.18 and 1.26, respectively (Table A3).

C. I. Acid Red 14. C. I. Acid red 14 is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 3.38 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 40 and 35/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 54 and 57/110, respectively (Table A2). In trials 1 and 2 the test chemical had SP transformation responses. C. I. Acid red 14 was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 60th 2.15 (Table A3).

C. I. Acid Yellow 73. C. I. Acid yellow 73 is a level F(I) noncarcinogen which has been reclassified as an incomplete bioassay study (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 4.65 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 17 and 71/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 6 and 23/110, respectively (Table A2). In trials 1 and 2 the test chemical had SN transformation responses. C. I. Acid yellow 73 was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.03 (Table A3).

Ephedrine Sulfate. Ephedrine sulfate is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 1.53 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 24, 17 and 51/110, respectively; the detection sensitivities for BaP of trials 1-3 were 10, 6 and 50/110, respectively (Table A2). The test chemical had an LN transformation response in the first experiment because the test chemical did not have significant cytotoxic activity. The test chemical had an SN response in the second and third experiments. Ephedrine sulfate evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.16 (Table A3).

Erythromycin Stearate. Erythromycin stearate is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.0746 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 24 and 51/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 10 and 50/110, respectively (Table A2). The test chemical had an SN transformation response in both the first and second experiments. Erythromycin stearate was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.08 (Table A3).

Ethoxylated Dodecyl Alcohol. Ethoxylated dodecyl alcohol is a level F noncarcinogen which has been reclassified as an incomplete study (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.0172 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 1 and 15/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 3 and 21/110, respectively (Table A2). The test chemical had an SN transformation response in both the first and second experiments. Ethoxylated dodecyl alcohol was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.29 (Table A3).

Ethylene diamine Tetraacetic Acid, Trisodium Salt. Ethylenediamine tetraacetic acid, trisodium salt, is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to bind with certain metal salts; thus, it could have reacted with metal salts in FBS and EMEM medium (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 1.89 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 80 and 67/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 89 and 78/110, respectively (Table A2). The test chemical had an LN transformation response in the first experiment, and an SN response in the second experiment. Ethylenediamine tetraacetic acid, trisodium salt, was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 1.41 and 2.01, respectively (Table A3).

Eugenol. Eugenol is a level E noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized upon exposure to air; thus, it could have reacted with air during the treatment period (Table A1).
The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.875 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 32 and 18/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 108 and 31/110, respectively (Table A2). The test chemical had an LN transformation response in the first experiment, because the test chemical did not induce significant cytotoxic activity. In the second experiment the test chemical had an SN transformation response. Since the test chemical had an LN transformation response in the first experiment, it had to be tested in two additional trials. Therefore, eugenol was evaluated as having had an indeterminate activity in the transformation assay, and its actual and estimated rank t-statistics were both 1.07 (Table A3).

Geranyl Acetate. Geranyl acetate is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.302 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 44 and 41/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 65 and 88/110, respectively (Table A2). The test chemical had an SN transformation response in the first and second experiments. Geranyl acetate was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 0.35 and 0.37, respectively (Table A3).

4-Hexylresorcinol. 4-Hexylresorcinol is a level E noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.103 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 13 and 67/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 66 and 78/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an LA response in the second experiment. 4-Hexylresorcinol was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 0.46 and 0.47, respectively (Table A3).

D.L.-Menthol. D.L-Menthol is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 4.63 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 46 and 89/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 50 and 87/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment and second experiments. D.L-Menthol was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 0.16 and 0.22, respectively (Table A3).

Methoxychlor. Methoxychlor is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.0978 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 58 and 51/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 55 and 50/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an LA response in the second experiment. Methoxychlor was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 1.08 (Table A3).

Methyldopa Sesquihydrate. Methyldopa sesquihydrate is a level E noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.0810 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 21 and 56/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 26 and 109/110, respectively (Table A2). The test chemical had an LA transformation response in the first experiment, and an SN response in the second experiment. Methyldopa sesquihydrate was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 1.21, respectively (Table A3).

Methylphenidate-HCl. Methylphenidate is a level I noncarcinogen because it has not been evaluated in a complete rodent bioassay study (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 5.63 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 64 and 86/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 84 and 74/110, respectively (Table A2). In trials 1 and 2 the test chemical had SN transformation responses. C. I. Acid red 14 was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 1.05 and 1.47, respectively (Table A3).

Oxytetracycline-HCl. Oxytetracycline is a level E noncarcinogen (Table A3). It had one difficult technical problem. It was reported to hydrolyze in water; thus, it could have reacted with water during the treatment period (Table A1). The test chemical was cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 0.523 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 80, 22 and 5/110, respectively; the detection sensitivities for BaP of trials 1-3 were 89, 53 and 46/110, respectively (Table A2). The test chemical had an SN transformation response in all three experiments. The test chemical was tested in the third experiment, because the its cytotoxic activity in the first experiment was excessive. Oxytetracycline-HCl was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.00, respectively (Table A3).

Phenol. Phenol is a level F noncarcinogen (Table A3). It had two difficult technical problems. It was reported to become oxidized by air; thus, it could have reacted with air during the treatment period. In addition, it was reported to react with sulfate groups on chemicals; thus, it could have reacted with biochemicals in culture medium, as well as biochemicals in the target cells (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 3.29 mM (Table A1). The
statistical sensitivities of transformation assay trials 1 and 2 were 12 and 15/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 26 and 21/110, respectively (Table A2). The test chemical had an SP transformation response in the first and second experiments. Phenol was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 7.60 (Table A3).

Phenylephrine-HCl. Phenylephrine-HCl is a level F noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized by air; thus, it could have reacted with air during the treatment period (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 3.52 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 80 and 29/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 89 and 97/110, respectively (Table A2). The test chemical had an SN transformation response in the first and second experiments. Phenylephrine-HCl was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 0.31 and 0.42, respectively (Table A3).

Propyl Gallate. Propyl gallate is a level E noncarcinogen (Table A3). It had one difficult technical problem. It was reported to react with iron; thus, it could have reacted with the iron in FBS (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.0631 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 94 and 102/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 91 and 95/110, respectively (Table A2). The test chemical had an SP transformation response in the first experiment, and an LA response in the second experiment. Propyl gallate was evaluated as active in the transformation assay. Because the statistical sensitivity and detection sensitivity for BaP in both of the experiments were significantly low, and the test chemicals actual and estimated rank t-statistics were very different (i.e., 1.70 and 2.95, respectively (Table A3).

Rotenone. Rotenone is a level E noncarcinogen (Table A3). It had one difficult technical problem. It was reported to become oxidized by air; thus, it could have reacted with air during the treatment period (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.000464 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 21 and 31/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 26 and 52/110, respectively (Table A2). The test chemical had an SN transformation response in the first and second experiments. Rotenone was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.26 (Table A3).

Sodium Diethylthiocarbamate. Sodium diethylthiocarbamate is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.000142 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 69 and 31/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 12 and 52/110, respectively (Table A2). The test chemical had an SP transformation response in the first and second experiments. Sodium diethylthiocarbamate was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 2.94 (Table A3).

Stannous Chloride. Stannous chloride is a level E noncarcinogen (Table A3). It had two difficult technical problems. It was reported to react with both alcohols and amines; thus, it could have reacted with biochemicals with this group in both FBS and EMEM medium (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.0285 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 77 and 37/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 67 and 20/110, respectively (Table A2). The test chemical had an SN transformation response in the first and second experiments. Stannous chloride was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.78 (Table A3).

Tetracycline-HCl. Tetracycline-HCl is a level F noncarcinogen (Table A3). It had one difficult technical problem, because it was reported to become oxidized upon exposure to air; thus, it could have reacted with air during the treatment period (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 3.24 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 24 and 51/110, respectively, the detection sensitivities for BaP of trials 1 and 2 were 10 and 50/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment and second experiments. Tetracycline-HCl was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.021 (Table A3).

Tetrakis(hydroxymethyl)phosphonium Chloride. Tetrakis(hydroxymethyl)-phosphonium chloride is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.00825 mM (Table A1). The statistical sensitivities of transformation assay trials 1-3 were 70, 15 and 59/110, respectively; the detection sensitivities for BaP of trials 1-3 were 41, 21 and 17/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and an SP response in the second experiment. Because the mean t-statistics of the test chemical transformation responses in the first two experiments were significantly different from one another, the test chemical had to be tested in a third trial. The test chemical had a SN transformation response in the third experiment. Tetrakis(hydroxymethyl)-phosphonium chloride was evaluated as having had equivocal activity in the transformation assay, and its actual and estimated rank t-statistics were both 1.27 (Table A3).

Tetrakis(hydroxymethyl)phosphonium Sulfate. Tetrakis(hydroxymethyl)-phosphonium sulfate is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very
cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.00438 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 70 and 44/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 41 and 65/110, respectively (Table A2). The test chemical had an SN transformation response in the first and second experiments. Tetrais(hydroxymethyl)phosphonium hydroxide. Tetrais(hydroxymethyl)phosphonium hydroxide was estimated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.083 (Table A3).

Triphenyltin Hydroxide. Triphenyltin hydroxide is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was very cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 0.000134 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 82 and 43/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 18 and 9/110, respectively (Table A2). The test chemical had an SN transformation response in the first experiment, and a SP response in the second experiment. Since the mean t-statistics of the test chemical transformation responses in the first two experiments were significantly different from one another, it had to be tested in a third experiment. Therefore, triphenyltin hydroxide was evaluated as having had an indeterminate activity in the transformation assay, and its actual and estimated rank t-statistics were both 1.64 (Table A3).

Xylenes, (mixed). Xylenes (mixed) is a level F noncarcinogen (Table A3). It had no insurmountable technical problems (Table A1). The test chemical was moderately cytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 3.20 mM (Table A1). The statistical sensitivities of transformation assay trials 1 and 2 were 70 and 73/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 41 and 49/110, respectively (Table A2). The test chemical had an SN transformation response in the first and second experiments. Xylenes (mixed) was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 0.47 and 0.50, respectively (Table A3).

Noncytotoxic, Mutagenic Carcinogens

DC Red No. 9. DC Red no. 9 is a level B carcinogen (Table A6). It had no insurmountable technical problems; however it had a solubility limit in culture medium of about 500 µg/ml. This improved to 2250 µg/ml when the medium was supplemented with the solvent vehicle pluronic F68 (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 3.82 mM and 6.52 mM, either with or without using pluronic F68 (Table A4). The statistical sensitivities of transformation assay trials 1-3 were 30, 91 and 107/110, respectively; the detection sensitivities for BaP of trials 1-3 were 4, 85 and 106/110, respectively (Table A5). The test chemical had an SP transformation response in two experiments, and an LA response in one experiment. Significant test chemical transforming activity was detected at doses both above and below its solubility limit in culture medium. DC Red No. 9 was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 4.33 and 5.50, respectively (Table A6).

Diethanolnitrosamine. Diethanolnitrosamine is a level I carcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 61.1 mM (Table A4). The test chemical was only evaluated in one trial due to the limited availability during this investigation. The statistical sensitivity of transformation assay trial 1 was 52/110; the detection sensitivity for BaP of trial 1 was 79/110, respectively (Table A5). The test chemical had an SP transformation response in the only experiment conducted for this test chemical. Diethanolnitrosamine was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 4.01 and 4.87, respectively (Table A6).

Diethylnitrosamine. Diethylnitrosamine is a level A carcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 46.0 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 4 and 27/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 1 and 63/110, respectively (Table A6). The test chemical had an SP transformation response in the two consecutive experiments. Diethylnitrosamine was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 4.69 (Table A6).
Table A4. Cytotoxic responses of 54 nontoxic chemicals.

Name	CAS No.	M.W.	Physicochemical Properties	Cytotoxic Responses^a (millimolar LD₅₀)	Co-assay
3-amino-1,2,4-triazole	61-82-5	84.08	S C a, ach, m, o	109.	
cyclamate, sodium salt	139-05-9	201.22	S C a, b, m, n, o	132.	
dimethyl hydrogen phosphate	866-85-9	110.05	L C ac, b, o, v, w	130. (260 mOsM)	
dimethyl methylphosphonate	756-79-6	124.08	L C a, alk, b, o, oh, v	172.	
dimethylnitrosamine	62-75-9	76.08	L C a, b, o, v	256.	
methyl carbamate (uncoded)	598-55-0	75.07	S C	225.	
(coded)				195.	
saccharin, sodium salt	81-07-2	205.2	S C	76.5 (153 mOsM)	
D & C red no. 9	5160-02-1	444.49	S C a, o, sp	3.82 (6.52)	
deca bromodiphenyloxide	1163-19-5	959.22	S C l, o, sp	>6.26	
di(2-ethylhexyl)phthalate	103-23-1	370.57	L C o, sp, v	98.4	
di(2-ethylhexyl)phthalimide	117-81-7	390.54	L C a, b, n, o, v	21.4	
diethanoliminoantimone	55-18-5	102.14	L C a, l, v	61.1	
diethylnitrosamine	597-25-1	195.18	L C a, a, v	17.1	
dimethylphosphamide (coded)				24.4	
ethylene thiourea	96-45-7	102.16	S C a	91.4	
hexamethylphosphoramide	680-31-9	179.2	L C v	64.4	
melamine	608-78-1	126.12	S C a, o, sp	39.6	
mononaron	150-68-5	198.65	S C a, b, sp	5.54	
phenobarbital, sodium salt	57-30-7	254.22	S C a, a, o	6.11	
2,4- & 2,6-toluene disisothiocyanate	26471-62-5	174.16	L C a, am, b, l, ts, v, w	7.93	

Group I. Very Non-Cytotoxic Chemicals

Group II. Non-Cytotoxic Chemicals

Name	CAS No.	M.W.	Physicochemical Properties	Cytotoxic Responses^a (millimolar LD₅₀)	Co-assay
21 Carcinogens					
26 Non-Carcinogens					
D-mannitol	69-65-8	182.18	S C	>329.	
3-sulfolene	77-79-2	118.15	S C ts	117.	
witch hazel	68916-39-2	46.07	L C o, v	540.	
alicarb	116-06-3	190.27	S C a, b, ts	10.7	
ampicillin trihydrate	7177-48-2	403.50	S C a, b, ts	23.8	
o-anthranilic acid	118-92-3	137.14	S C a, l, ts	72.9	
benzoin	119-53-9	212.25	S C a, l, ts	14.8	
benzyl alcohol	100-51-6	108.13	L C a, ach, a, ts	17.9	
caprolactam	105-60-2	113.16	S C a, b, ch, o, ts	71.8	
2-chloroethanol	107-07-3	80.52	L C a, b, o, ts	81.0	
(2-chloroethoxy)trimethylammonium chloride	999-81-5	158.07	S C a, m, o	62.0	
C.I. acid orange 10	1935-15-8	452.38	S C a, b, o, sp, ts	>15.4	
dimethyl terephthalate	120-61-9	194.19	S C a, m, b, o, sp, ts, w	>15.4	
diphenylyldantoin	57-41-0	252.27	S C a, b, o, sp	5.02	
FD & C yellow No. 6	2783-94-0	452.37	S C a, b, o, sp	67.7	
methyl methacrylate	80-62-6	100.12	L C a, am, b, l, ra, ts	10.8	
molybdenum trioxide	1313-27-5	144.0	S C a, am, b, l, ra, ts	9.38	
4-nitroantranilic acid	619-17-0	182.15	S C a, ach, b, o	8.58	
penicillin VK+	132-98-9	388.51	S C a, ach, b, o	17.8	
phthalaldehyde	88-96-0	164.18	S C a, sp	73.1	
phthalic anhydride	85-44-9	148.12	S C a, am, b, o, ra, ts	13.2	
roxarsone	121-19-7	260.00	S C a, l, o, ts	43.8	
sodium(2-ethylhexyl) alcohol sulfate	126-92-1	232.28	L C a, l, o, ts	12.5	
sulfisoxazole	127-69-5	267.32	S C a, b, o, ts	18.7	
tetrahydrofuran	109-99-9	72.11	L C a, b, o, ts	90.3	
titanium dioxide	13463-67-7	79.90	S C m, sp	12.1	

(Continued on next page)
Table A4. Continued.

Name	CAS No.	M.W.	Physicochemical Properties	Cytotoxic Responses^b (millimolar LD₅₀)
				Co-culture Assay

7 Model Very Non-Cytotoxic Chemicals

Group I. Non-Cytotoxic Chemicals

Name	CAS No.	M.W.	Physicochemical Properties	Cytotoxic Responses^b (millimolar LD₅₀)
acetone	67-64-1	58.08	L C a, l, o, oc, ts	257.
dimethyl sulfoxide	67-68-5	78.13	L C a, ach, am, r, o	507.
ethanol	64-17-5	46.07	L C a, ach, o, am	429.
glycerol	56-81-5	92.09	L C -	401.
sodium chloride	7647-14-5	58.44	S C -	144.
sucrose	57-50-1	342.30	S C a	240.
urea	57-13-6	60.07	S C -	254.

Abbreviations: CAS No., Chemical Abstract Service registry number; LD₅₀, lethal dose for 50% of the cells; M.W., molecular weight.

Abbreviations for Test Chemical Physicochemical Properties: Physicochemical considered in this study included: [1] physical state (S = solid, L = liquid); [2] solvent vehicle (D = dimethyl sulfoxide, C = culture medium, F = pluronic F68, A = acetone, E = ethanol) and [3] technical problems. The technical problems included test chemicals that were a = reacts with acids; ae = reacts with acid chlorides and acid anhydrides; ai = reacts with air; al = reacts with alcohols; alk = alkylation agent and reacts with labile hydrogen; b = reacts with bases; bc = reacts with biochemicals (amino, hydroxy, and carboxyl groups); he = reacts with halogenated chemicals; k = reacts with alpha keto acids; ls = light sensitive; m = binds metals; ml = reacts with hexachloro- and trichloromelamine; met = reacts with metals (aluminum, iron, magnesium, potassium, sodium, tin or zinc); mh = metal halides; mac = reacts with miscellaneous organic chemicals (i.e. alpha-aminoethanol, chlorosulfonic acid, ethylene imine, linseed oil, maleic anhydride, oleum, or K-tert-butylxide); o = reacts with oxidizing agents; p = reacts with plastics; pi = polymerization initiators; r = reacts with reducing agents; ru = reacts with rubber; sp = solubility problem in culture medium; tc = reacts with thiocyanates; ts = temperature sensitive; v = volatile at 37°C; and w = reacts with water [refer to MATERIALS and METHODS].

^aTest Chemical: Tables A1 and A3 contain 188 chemicals along with their individual CAS registry number and molecular weight. The chemicals were divided into groups of chemicals that correspond to the groups of chemicals that were compared in different text Tables 1–12. Thus, the chemicals were divided into two groups, including 114 cytotoxic test chemicals (LD₅₀ < 5.0 mM) presented in Table A1, and 53 nontoxic test chemicals (LD₅₀ > 5.0 mM) presented in Table A4. The 114 cytotoxic chemicals in Table A1 were subdivided into groups of 43 mutagenic carcinogens, 21 mutagenic noncarcinogens, 20 nonmutagenic carcinogens, and 30 non-mutagenic noncarcinogens. The 53 nontoxic test chemicals in Table A4 were subdivided into groups of 21 carcinogens, 28 noncarcinogens, and 7 model very nontoxic chemicals. In addition, all of the cytotoxic test chemicals were separated into three groups, including: Group I, moderately cytotoxic test chemicals [LD₅₀ 1-5 mM]; Group II, cytotoxic chemicals [LD₅₀ 0.1-1.0 mM]; and Group III, very cytotoxic chemicals [LD₅₀ <0.1 mM]. In addition, this table presents important physicochemical properties that influenced the procedure used in testing the chemicals.

^bCytotoxic Response: The co-culture clonal survival assay design used to detect the cytotoxic response of the test chemical is described in Materials and Methods. The cytotoxic responses of chemicals in individual experiments are summarized in terms of the millimolar (mM) LD₅₀ treatment dose that resulted in 50% survival of the chemically-treated cells relative to the survival of untreated or solvent control treated cell cultures. The LD₅₀ cytotoxic response of each chemical in Tables A1 and A4 is an average of two or more experiments with the chemical. The molecular weight of each chemical is provided in order that treatment doses could be converted from mM to µg/ml. For example, based upon the molecular weight of 84.08, the LD₅₀ detected for the first chemical in Table A4, 3-amino-1,2,4-triazole, was 109 mM or 9165 µg/ml.
Table A5. Transformation responses of 54 nontoxic chemicals.

Chemical	Transformation Responsea	Test Chemicalb	
	Spontaneousc	Benzo(a)pyrene d	Call: Mean t-statistic
Name	Exp. No.	Foci/Vessel : Rank Order	Call : Rank Order

21 Carcinogens

Active Chemicals (false positives)

dimethyl hydrogen phosphite 1 (84) 2 (104)
2.48 .878 26 SP 93*** SP 5.93

dimethyl methyl phosphonate 1 (84) 2 (102)
2.51 .697 27 SP 65 SP 3.63

Active Chemicals

3-amino-1,2,4-triazole 1 (69) 2 (99)
2.288 .586 33 SP 102*** SP 3.54

11-aminoundecanoic acid 1 (17) 2 (24) 3 (32) 4 (67)
2.327 .308 89 SP 70 SP 87*** SP 1.10
2.199 1.99 19 SP 34 SP 1.86
2.085 107*** SP 106*** SP 2.37

cyclamate, sodium salt 1 (71) 2 (107)
2.106 2.95 5*** SP 10*** SP 5.24

D & C red No. 9 1 (43) 2 (54) 3 (67)
2.105 .265 91 SP 85 SP 106*** SP 8.46
2.085 107*** SP 106*** SP 3.42

diethanolnitrosamine 1 (86) 2 (NA)
2.464 52 SP 79* SP 4.01

diethylnitrosamine 1 (79) 2 (102)
2.512 5.12 4** SP 1*** SP 5.91
2.697 27 SP 63 SP 3.88

dimethylmorpholinophosphoramidate (uncoded) 1 (86) 2 (106)
2.464 1.30 28 SP 15*** SP 2.68

dimethylmorpholinophosphoramidate (coded) 1 (86) 2 (108)
2.464 1.17 20 SP 19** SP 4.44

dimethylnitrosamine 1 (31) 2 (100)
2.930 .268 73 SP 25* SP 3.64

hexamethylphosphoramidate 1 (78) 2 (98)
2.328 .618 59 SP 37 SP 17*** SP 1.53

melamine 1 (43) 2 (58)
2.105 .189 97 SP 94** SP 1.99

21 Carcinogens Continued

Active Chemicals Continued

methyl carbamate 1 (42) 2 (66) 3 (80)
2.861 .056 108** SP 8*** SP 7.80
3.02 10* SP 5*** SP 5.08

methyl carbamate (315183-S) 1 (83) 2 (99)
2.351 .586 33 SP 23** SP 2.38
2.586 6* SP 14** SP 4.81

phenobarbital, sodium salt 1 (59) 2 (109)
2.297 2.55 75 SP 76 SP 2.01
2.351 6* SP 92*** SP 3.52

saccharin, sodium salt 1 (75) 2 (101)
2.882 .260 21 SP 26* SP 4.95
2.260 62 SP 48 SP 10.3

(Continued on next page)
Table A5. Continued.

Chemical*	Transformation Response*	Spontaneous*	Benzo(a)pyrene*	Test Chemical*
		Foci/Vessel : Rank Order	Call : Rank Order	Call : Mean \(t \)-statistic
Name	Exp. No.			
2,4- & 2,6-toluene diisothiocyanate	1 (76)	1.79 12*	SP 98***	SP 2.61
	2 (106)	1.30 28	SP 15***	SP 3.54
Weakly Active Chemicals				
ethylene thiourea	1 (59)	.297 75	SP 76	LN 1.57
	2 (65)	.244 95	SP 61	SP 2.17
Inactive Chemicals				
di(2-ethylhexyl) adipate	1 (88)	.406 57	SP 88***	SN .000
	2 (108)	1.17 20	SP 19***	SN .000
di(2-ethylhexyl) phthalate	1 (36)	.424 74	SP 35	SN .000
	2 (100)	.268 73	SP 49	SN .000
monuron	1 (20)	.368 81	SP 22***	LA 1.57
	2 (28)	.818 39	SP 68	SN .453
Inactive Chemical with an Indeterminate Activity				
decabromodiphenyloxide	1 (75)	.882 21	SP 26*	LN .150
	2 (101)	.260 62	SP 48	LN .430

26 Non-Carcinogens

Active Chemicals

Chemical*	Transformation Response*	Spontaneous*	Benzo(a)pyrene*	Test Chemical*
		Foci/Vessel : Rank Order	Call : Rank Order	Call : Mean \(t \)-statistic
benzyl alcohol	1 (81)	7.36 2***	SP 2***	LA 2.11
	2 (110)	.609 38	SP 16***	SP 1.79
2-chloroethanol	1 (78)	3.28 9*	SP 37	SP 3.78
	2 (100)	.268 73	SP 49	SP 2.66
(2-chloroethyl)trimethylammonium chloride	1 (30)	.787 40	SP 54	SP 1.90
	2 (45)	.752 35	SP 57	LA 1.68
FD & C yellow No. 6	1 (34)	2.51 7*	SP 56	SP 8.18
	2 (65)	.244 95	SP 61	SP 4.85
	3 (103)	.874 22	SP 53	SP 9.90
penicillin VK*	1 (80)	3.02 10*	SP 5***	SP 6.26
	2 (101)	.260 62	SP 48	SP 5.76
3-sulfolene	1 (33)	1.04 49	SP 24**	SP 3.84
	2 (44)	1.52 23	SP 11***	LA 3.00
Weakly Active Chemicals				
methyl methacrylate	1 (79)	5.12 6**	SP 1***	SP 4.34
	2 (106)	1.30 28	SP 15***	SN 1.19
4-nitroanthranilic acid	1 (34)	2.51 7*	SP 56	SN .015
	2 (103)	.874 22	SP 53	SP 2.16
Chemical with an Equivocal Activity				
ampicillin trihydrate	1 (83)	.351 71	SP 23***	LA 1.04
	2 (105)	.581 29	SP 97***	LA 1.52

(Continued on next page)
Table A5. Continued.

Chemical/ Test Chemical	Spontaneous/ Foci/Vessel : Rank Order	Transformation Response/ Benzo(a)pyrene Call : Rank Order	Test Chemical/ Call : Mean t-statistic
Inactive Chemicals			
benzoin	1 (4) 1.51 50 SP 59 SN 0.00		
	2 (10) 0.053 109** SP 103*** SN 1.48		
caprolactam	1 (5) 0.035 110*** SP 107*** SN 1.37		
	2 (10) 0.053 109** SP 103*** SN 1.08		
C. I. acid orange 10	1 (64) 0.291 92 SP 71 SN 0.825		
	2 (103) 0.874 22 SP 53 SN 0.435		
diphenyldantoin	1 (56) 0.260 84 SP 105*** SN 0.00		
	2 (65) 0.244 95 SP 61 SN 0.00		
molybdenum trioxide	1 (47) 0.579 61 SP 47 LA 0.830		
	2 (56) 0.260 84 SP 105*** SN 0.347		
phthalic anhydride	1 (39) 0.427 82 SP 18*** LA 1.60		
	2 (107) 2.95 5** SP 46 SN 0.00		
tetrahydrofuran	1 (82) 8.01 1*** SP 3*** SN 0.393		
	2 (106) 1.30 28 SP 15*** LA 1.36		
Inactive Chemical with an Indeterminate Activity			
titanium dioxide	1 (38) 0.596 82 SP 12*** SN 0.000		
	2 (109) 2.55 6* SP 92*** SN 0.000		
Active Chemicals (false positive)			
D-mannitol	1 (18) 0.663 46 SP 80* LN 0.728		
	2 (45) 0.732 35 SP 57 LA 1.23		
	3 (110) 0.609 38 SP 16*** SP 4.69		
witch hazel	1 (81) 7.36 2*** SP 2*** LA 1.61		
	2 (110) 0.609 38 SP 16*** LA 2.17		
Chemicals with an Indeterminate Activity			
aldicarb	1 (32) 1.99 19 SP 34 SN 0.267		
	2 (99) 0.586 33 SP 14*** SP 3.17		
0-anthranilic acid	1 (15) 0.186 100 SP 42 SN 1.47		
	2 (22) 0.893 36 SP 28* SP 2.99		
dimethyl terephthalate	1 (103) 0.874 22 SP 53 SP 1.71		
	2 (107) 2.95 5*** SP 46 LA 1.86		
phthalamide	1 (35) 1.97 14 SP 72 LN 0.000		
	2 (110) 0.609 38 SP 16*** LA 2.02		
roxarsone	1 (80) 3.02 10* SP 5*** SP 2.94		
	2 (109) 2.55 27 SP 92*** SN 0.000		
sodium(2-ethylhexyl) alcohol sulfate	1 (82) 8.01 1*** SP 3*** SN 0.180		
	2 (108) 1.17 6* SP 19*** SP 3.42		
sulfoisoxazole	1 (19) 0.357 77 SP 67 LN 0.690		
	2 (26) 0.907 37 SP 20*** LA 1.26		

(Continued on next page)
Table A5. Continued.

Chemical	Exp. No.	Transformation Response	Test Chemical	
		Spontaneous^c		
		Foci/Vessel : Rank Order	Call : Rank Order	Call : Mean t-statistic
acetone	1 (82)	8.01 1***	SP 3***	LA 8.19
	2 (102)	.697 27	SP 63	SP 3.25
dimethyl sulfoxide	1 (41)	.274 90	SP 13***	LA 3.92
	2 (100)	.268 73	SP 49	SP 2.97
ethanol	1 (81)	7.36 2***	SP 2***	LA 3.03
	2 (108)	1.17 20	SP 19***	SP 2.23
glycerol	1 (82)	8.01 1***	SP 3***	SP 2.55
	2 (108)	1.17 20	SP 19***	SP 3.69
sodium chloride	1 (80)	3.02 10*	SP 5***	SP 12.2
	2 (109)	2.55 6*	SP 92***	SN .855
	3 (R1)	.416 106*	NA	SP 4.35
sucrose	1 (101)	.260 62	SP 48	SP 10.4
	2 (107)	2.95 5**	SP 46	SP 2.24
urea	1 (109)	2.55 6*	SP 92***	SP 1.81
	2 (NA)			

Model Very Non-Cytotoxic Chemicals

Active Chemicals (false positives)

General Abbreviations: Exp. No., experiment number; NA, not available.
Abbreviations for the Transformation Responses: SP, sufficient positive; LA, limited activity; SN, sufficient negative; LN, limited negative.

^aTest Chemical: The 54 noncytotoxic chemicals in Table A5 are identical to those in Table A4, and they are subdivided into groups of 21 carcinogens, 26 noncarcinogens; and 7 model very noncytotoxic chemicals.

^bTransformation Response: This table presents a summary of the spontaneous, BaP, and test chemical transformation responses detected in two or more experiments per test chemical. The assay design and procedures used in the standard transformation assay are described in the Materials and Methods. The transforming activities of individual chemical treatment doses (i.e., focus data), as well as the individual transformation responses (i.e., type III foci/vessel), are provided in detail in the Appendices B-H. Appendices B, C, D, E, F, G and H contain the activities of the 48 cytotoxic, mutagenic carcinogens; 21 cytotoxic, mutagenic noncarcinogens; 20 cytotoxic, non-mutagenic carcinogens; 10 noncytotoxic, non-mutagenic noncarcinogens; 21 noncytotoxic carcinogens; 26 noncytotoxic noncarcinogens; and 7 very noncytotoxic model test chemicals.

^cSpontaneous Transformation Response: The method used to calculate the spontaneous transformation response, as well as the positive control and test chemical responses, is explained in the Materials and Methods. The transformation responses are expressed as type III foci/vessel and were calculated using a log₁₀ mathematical transformation procedure. The arithmetic value for foci/vessel in this table is the antilog of the log₁₀ mean transformation response minus one.

The procedure for rank ordering the spontaneous responses from 110 experiments is based upon the different statistical sensitivities of transformation experiments with different spontaneous responses is explained in the Statistical Sensitivity versus Spontaneous Transformation Response section of the Materials and Methods. Experiments with high spontaneous responses had a high statistical sensitivity and have relatively low rank-order numbers. For example, diethylstilbestrol had a high spontaneous response of 5.12 foci/vessel in exp. 79, which had a high statistical sensitivity and rank order number 4/110. Conversely, experiments with a low statistical sensitivity and have high rank-order numbers. For example, 11-aminoundecanoic acid had a low spontaneous response of .085 foci/vessel in exp. 67, which had a low statistical sensitivity with a high rank order number 107/110.

^dBenzo(a)pyrene Transformation Response: The method used to call individual transformation experiments is described in detail in Materials and Methods. The method used to rank order the BaP transformation response from the 110 experiments is based upon statistical comparison of the BaP transformation at the two treatment doses detected in an individual experiment with the median historical activity of the assay. This procedure is described in the Detection Sensitivity versus Benzo(a)pyrene Transformation Response section of the Materials and Methods. The rational for rank-ordering the experiments is analogous to that described for the spontaneous transformation responses (refer to footnote c above).

The Chemical Transformation Response: The method used to call individual experiments is described in detail in Materials and Methods, and the abbreviations for the calls are provided in footnote d above. The significance of the transformation responses of individual chemical treatment doses were calculated using SAS statistical software (29). The mean t-statistic represents the average of the t-statistics of the four test chemical treatment doses in the experiment. The t-statistics for individual chemical treatment doses which were used to calculate the mean t-statistic are provided in Appendices B-H.

^e Significant spontaneous or BaP transformation response, 0.01 < p ≤ 0.05.

^f Significant spontaneous or BaP transformation response, 0.001 < p ≤ 0.01.

^g Significant spontaneous or BaP transformation response, p ≤ 0.001.
Table A6. Rank-ordered potency of the transformation responses of 54 noncytotoxic chemicals compared to rodent bioassay activities.

Test Chemical* Name	Rodent Bioassay Level of Activity	Transformation Response Rank t-statistic			
	High	Low	None	Actual	Estimatedd
6 Mutagenic Carcinogens					
Total Active Chemicals [100%]					
Active Chemicals					
D & C red no. 9	B	4.33	5.50		
diethanolnitrosamine	I	4.01	4.87		
diethylnitrosamine	A	4.69	4.69		
dimethylnitrosamine	A	4.45	4.45		
phenobarbital, sodium salt	A	2.77	3.14		
2,4- & 2,6-toluene disisothiocyanate	A	3.01	3.01		
15 Non-Mutagenic Carcinogens					
Total Active Chemicals [73.3%]					
Active Chemicals (false positive)					
dimethyl hydrogen phosphite	B	5.97	6.19		
dimethyl methyl phosphonate	D	2.90	2.90		
Active Chemicals					
saccharin, sodium salt	A	7.99	7.99		
3-amino-1,2,4-triazole	A	6.14	6.53		
methyl carbamate (Average)	C	4.12	4.12		
(uncoded)	(4.48)	(4.48)			
(coded)	(3.76)	(3.76)			
cyclamate, sodium salt	A	4.09	4.09		
dimethyl morpholino- phosphoramidate (average)	C	3.71	3.71		
(uncoded)	(3.19)	(3.19)			
(coded)	(4.23)	(4.23)			
11-aminoundecanoic acid	B	2.11	2.55		
melamine	D	2.10	2.15		
hexamethylyphosphoramidate	C	2.08	2.08		
Weakly Active Chemical					
ethylene thiourea	A	2.84	3.96		
Total Inactive Chemicals [26.7%]					
Inactive Chemicals					
monuron	B	1.01	1.01		
di(2-ethylhexyl)adipate	C	.00	.00		
di(2-ethylhexyl)phthalate	A	.00	.00		
Inactive Chemical (Indeterminate Activity)					
decabromodiphenyloxide	C	.29	.29		
3 Mutagenic Non-Carcinogens					
Total Active Chemicals [100%]					
Active Chemicals					
2-chloroethanol	F	3.22	3.22		
Weakly Active Chemicals					
methyl methacrylate	F	2.54	2.54		
4-nitroantranilic acid	F	1.09	1.09		

(Continued on next page)
Table A6. Continued.

Test Chemical* Name	Rodent Bioassay Level of Activity	Transformation Response* Rank t-statistic	Actual	Estimated*
	High	Low	None	
23 Non-Mutagenic Non-Carcinogens				

Total Active Chemicals [23.8%]

Active Chemicals

- FD & C Yellow No. 6
- Penicillin VK+
- Benzyl alcohol
- (2-Chloroethyl)trimethylammonium Cl
- 3-Sulfolene

Inactive Chemicals

- Caprolactam
- Phthalic anhydride
- Benzoin
- C. I. acid orange 10
- Diphénylhydantoin
- Molybdenum trioxide
- Tetrahydrofuran

Inactive Chemical (Indeterminate Activity)

- Titanium dioxide

Total Inactive Chemicals [76.2%]

Chemical with Equivocal Activity

- Ampicillin trihydrate

Chemicals with Indeterminate Activity

- Aldicarb
- O-anthrаниlic acid
- Dimethyl terephthalate
- Phthalamide
- Roxarsone
- Sodium(2-ethylhexyl)alcohol sulfate
- Sulfoisoxazole

Active Chemicals (false positives)

- D-mannitol
- Witch hazel

7 Model Very Non-Cytotoxic Chemicals

False Positive Active Chemicals

- Sodium chloride
- Sucrose
- Acetone
- Dimethyl sulfoxide
- Glycerol
- Ethanol
- Urea

(Continued on next page)
Table A6. Continued.

aTest Chemical: The 54 noncytotoxic chemicals in Table A6 are identical to those in Table A4, and they are subdivided into groups of 21 carcinogens, 26 noncarcinogens and 7 model very noncytotoxic chemicals.

bRodent Bioassay Level of Activity: The relative carcinogenic activity of chemicals in rodent bioassay has been described in terms of the chemical’s level of effect (L.D.). The highest level A corresponds to chemicals that cause cancer in both mice and rats at one or more sites, and level B refers to chemicals that cause cancer at multiple sites in one species of rodent. Level C includes chemicals carcinogenic at one site in both sexes of one species, and D includes chemicals carcinogenic at one site in only one sex of a single species. Level E includes chemicals that only equivocal evidence of carcinogenic activity. Finally, level F includes both noncarcinogens and chemicals that had inadequate carcinogenicity studies.

cTransformation Response Rank t-statistic: The method used to calculate the significance of test chemical transformation responses employed SAS statistical software (22) and is described in detail in Materials and Methods. The correct t-statistics of each treatment dose of the test chemical in a single experiment are presented in the Appendices B-H, and these t-statistics were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Table A2). The mean t-statistics for two or more experiments for each chemical was weighted according to the number of treatment doses evaluated and averaged to determine the actual rank t-statistic presented in this table. For example, the actual rank t-statistic of D&C red no. 9 in experiments 43, 54 and 67 is equal to 4.33 (i.e., 10.9 + 10.5 + 7.16 + 5.26 (exp. 43) + 2.96 + 1.39 + .04 + .00 (Exp. 54) + 5.47 + 3.37 + 3.07 + 1.78 (exp. 67); Appendix F).

dEstimated Rank t-statistic: The estimated rank t-statistic is used to estimate both the historical behavior of the test chemical in the transformation assay, as well as predicting the future behavior or the chemical. It is calculated by correcting the actual rank t-statistic. The data presented in Table A5 showed that individual experiments had very different rank-ordered sensitivities to detect chemical-induced transformation. Therefore, the estimated rank t-statistic modified the actual rank t-statistic to correct for differences in the sensitivities of individual experiments. The method uses the rank ordered sensitivity of individual experiments to detect spontaneous and BaP-induced transformation, and an example calculation is provided below.

The most active mutagenic carcinogen, D&C red no. 9, had statistical sensitivities for spontaneous transformation responses of 30, 91 and 107/110 for experiments 43, 54 and 67, respectively, and detection sensitivities for BaP of 4, 85 and 106/110 for the same experiments. The average rank order of the three experiments was 70.5 (i.e., 30 + 91 + 107 + 4 + 85 + 106/110 = 78.5). For a total of 110 experiments, the median experiment has an automatic average rank order of 55.0 (i.e., 110/2 = 55.0). Therefore, the correction factor for the experimental sensitivity to detect chemical-induced transformation was 70.5/55.0 or 1.28.

Thus, these two experiments had a combined statistical sensitivity and detection sensitivity that was above the median of 55.0. The actual rank t-statistic was multiplied by the correction factor to obtain the estimated rank t-statistic (i.e., 5.50). A justification for this correction factor has been reported (18), and it is explained in the Materials and Methods.

ePercentage (%) of Active Chemicals: Active chemicals included chemicals with active and weakly active transformation responses. In contrast, inactive chemicals included chemicals with equivocal and inactive transformation responses. Chemicals with an indeterminate activity have to be retested in an additional experiment in order to determine their activity in the standard transformation assay. Therefore, chemicals with indeterminate transformation responses were omitted from the computation of the percentage (%) of the total chemicals that were either active or inactive in the assay.
Dimethylnitrosamine. Dimethylnitrosamine is a level A carcinogen (Table A6). It had one difficult technical problem. It was reported to be oxidized upon exposure to air, and it was exposed to air during the standard treatment period (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 256 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 42 and 73/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 25 and 49/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. Dimethylnitrosamine was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 4.45 (Table A6).

Phenobarbital, Sodium Salt. Phenobarbital, sodium salt, is a level A carcinogen (Table A6). It had one difficult technical problem. It was reported to be oxidized by air, and it was exposed to air during the standard treatment period (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 6.11 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 75 and 6/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 76 and 92/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. Phenobarbital was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 2.77 and 3.14, respectively (Table A6).

2,4- and 2,6-Toluene Disiothiocyanate. 2,4- and 2,6-Toluene disiothiocyanate is a level A carcinogen (Table A6). It had three difficult technical problems. It was reported to react with strong bases such as NaOH, and stock solutions were acidic and had to be neutralized before testing. It was also reported to react with water, and treatments were performed in an aqueous environment. Finally, it was noted to react with amines; thus, it could have reacted with the amine portion of biochemicals in culture medium, as well as in the target BALB/c-3T3 cells (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 7.98 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 12 and 28/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 98 and 15/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. 2,4 and 2,6-Toluene disiothiocyanate was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 3.01 (Table A6).

Noncytotoxic, Nonmutagenic Carcinogens

3-Amino-1,2,4-Triazole. 3-Amino-1,2,4-triazole is a level A carcinogen (Table A6). It had one difficult technical problem. It was reported to bind metals; thus, it could have bound metals contained in FBS and MEM medium (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 109 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 85 and 33/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 102 and 14/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. 3-Amino-1,2,4-triazole was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 6.14 and 6.53, respectively (Table A6).

11-Aminoundecanoic Acid. 11-Aminoundecanoic acid is a level B carcinogen (Table A6). It had no insurmountable technical problems; however, it had a limited solubility of 1500 µg/ml in culture medium supplemented with pluronic F68 (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 19.4 mM (Table A4). The statistical sensitivities of transformation assay trials 1-4 were 83, 89, 19 and 107/110, respectively; the detection sensitivities for BaP of trials 1-4 were 70, 87, 34 and 106/110, respectively (Table A5). The test chemical had a LN transformation response in the first two experiments because it was not tested at cytotoxic treatment doses. In contrast, it had an SP transformation response in the last two experiments. Significant transforming activity was only detected at treatment doses that were slightly above the solubility limit of the test chemical in culture medium. 11-Aminoundecanoic acid was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were 2.11 and 2.55, respectively (Table A6).

Cyclamate, Sodium Salt. Cyclamate, sodium salt, is a level A carcinogen (Table A6). It had one difficult technical problem. It was reported to bind potassium salts; thus, it could have bound the potassium in culture medium (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 132 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 24 and 5/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 10 and 46/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. Cyclamate was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 4.09 (Table A6).

Decabromodiphenyl oxide. Decabromodiphenyl oxide is a level C carcinogen (Table A6). It had one difficult technical problem. It had a limited solubility in culture medium of 250 µg/ml (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 6.26 mM (Table A4). Thus, the test chemical LD$_{50}$ was about 24-fold higher than its solubility limit in culture medium. The statistical sensitivities of transformation assay trials 1 and 2 were 21 and 62/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 26 and 48/110, respectively (Table A5). The test chemical had an LN transformation response in the two consecutive experiments. It was tested at treatment doses that far exceeded its solubility limit in culture medium, but these doses were not cytotoxic to the target cells. Taken together, decabromodiphenyl oxide was evaluated as both inactive and indeterminate in the transformation assay, and its actual and estimated rank t-statistics were both 0.29 (Table A6).
Di(2-ethylhexyl)adipate. Di(2-ethylhexyl)adipate is a level C carcinogen (Table A6). It had one difficult technical problem. Its solubility limit in culture medium supplemented with pluronic F68 was only 1000 nM/ml (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 98.4 mM (Table A4). Thus, this LD$_{50}$ far exceeded the solubility limit of the test chemical. The statistical sensitivities of transformation assay trials 1 and 2 were 57 and 20/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 88 and 19/110, respectively (Table A5). The test chemical had an SN transformation response in the two consecutive experiments. The test chemical was tested using treatment doses that were both above and below its solubility limit. Di(2-ethylhexyl)adipate was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.00 (Table A6).

Di(2-ethylhexyl)phthalate. Di(2-ethylhexyl)phthalate is a level A carcinogen (Table A6). It had no insurmountable technical problems, and its solubility limit in culture medium supplemented with pluronic F68 was 12000 nM/ml (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 21.4 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 74 and 78/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 35 and 49/110, respectively (Table A5). The test chemical had an SN transformation response in the two consecutive experiments. Di(2-ethylhexyl)phthalate was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 0.00 (Table A6).

Dimethyl Hydrogen Phosphite. Dimethyl hydrogen phosphite is a level B carcinogen (Table A6). It had two difficult technical problems. It was a very acidic test chemical, and stock solutions had to be neutralized with NaOH. Unfortunately, the test chemical was reported to react with strong bases and with water; thus, it could have been altered during the treatment period (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 130 mM (Table A4). Since it required an equal molar concentration of NaOH to neutralize the test chemical, this LD$_{50}$ was actually equal to 260 mOsM. The statistical sensitivities of transformation assay trials 1 and 2 were 44 and 26/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 65 and 93/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments; however, significant transforming activity was detected at treatment doses that exceeded the upper dose limit of the assay of 100 mOsM. Taken together, dimethyl hydrogen phosphite was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were 5.97 and 6.19, respectively (Table A6).

Dimethyl Methyl Phosphonate. Dimethyl methyl phosphonate is a level D carcinogen (Table A6). It had two difficult technical problems. It was reported to react with air, and it was exposed to air during the treatment period. In addition, it was noted to be an alkylating agent and reacted with basic nitrogen compounds. Thus, this test chemical could have reacted not only with biochemicals in culture medium, but also with biochemicals in the target cells (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 172 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 44 and 27/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 65 and 68/110, respectively (Table A5). The test chemical had an LA transformation response in the first experiment, and an SP transformation response in the second experiment. Significant transforming activity for this test chemical was detected using treatment doses that exceeded the upper dose limit of the assay of 100 mOsM. Taken together, dimethyl methyl phosphonate was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were both 2.90 (Table A6).

Dimethylmorpholinophosphoramidate. Dimethylmorpholinophosphoramidate is one of five chemicals that was tested as a coded and as an uncoded test chemical in this investigation. It is a level C carcinogen (Table A6), and it had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells, and the uncoded and coded test chemicals had an average LD$_{50}$ of 17.1 and 24.4 mM, respectively (Table A4). For the uncoded test chemical the statistical sensitivities of transformation assay trials 1 and 2 were 52 and 28/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 79 and 15/110, respectively (Table A5). For the coded test chemical the statistical sensitivities of transformation assay trials 1 and 2 were 52 and 20/110; the detection sensitivities for BaP of trials 1 and 2 were 79 and 19/110, respectively. Both the uncoded and coded test chemical had an SP transformation response in the two consecutive experiments. Dimethylmorpholinophosphoramidate was evaluated as active in the transformation assay. The actual and estimated rank t-statistics for the uncoded test chemical were both 3.19; the actual and estimated rank t-statistics for the coded test chemical were both 4.23 (Table A6). Taken together, the coded and uncoded test chemicals had virtually identical cytotoxic and transforming activities in the BALB/c-3T3 cell transformation assay.

Ethylene Thiourea. Ethylene thiourea is a level A carcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 91.4 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 75 and 95/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 76 and 61/110, respectively (Table A5). The test chemical had an LN transformation response in the first experiment and an SP transformation response in the second experiment. Ethylene thiourea was evaluated as weakly active in the transformation assay, and its actual and estimated rank t-statistics were 2.84 and 3.96, respectively (Table A6).

Hexamethylphosphoramidate. Hexamethylphosphoramidate is a level C carcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 64.4 mM (Table A4). The statisti-
cal sensitivities of transformation assay trials 1 and 2 were 9 and 59/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 37 and 17/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. Hexamethylphosphoramide was evaluated as active in the transformation assay, and its actual and estimated rank \(t \)-statistics were both 2.08 (Table A6).

Melamine. Melamine is a level \(D \) carcinogen (Table A6). It had one difficult technical problem, because its solubility limit in culture medium supplemented with pluronic F68 was about 1000 \(\mu g/ml \) (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average \(LD_{50} \) of 39.6 mM (Table A4). Thus, this \(LD_{50} \) far exceeded the solubility limit of the test chemical in culture medium. The statistical sensitivities of transformation assay trials 1 and 2 were 30 and 97/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 4 and 94/110, respectively (Table A5). The test chemical had an SP transformation response in the first experiment, and an LA transformation response in the second experiment. Melamine was evaluated as active in the transformation assay, and its actual and estimated rank \(t \)-statistics were 2.10 and 2.15, respectively (Table A6).

Methyl Carbamate. Methyl carbamate is one of five chemicals that was tested as a coded and as an uncoded test chemical in this investigation. It is a level \(C \) carcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells, and the uncoded and coded test chemicals had an average \(LD_{50} \) of 225 and 195 mM, respectively (Table A4). For the uncoded test chemical the statistical sensitivities of transformation assay trials 1-3 were 55, 108 and 10/110, respectively; the detection sensitivities for BaP of trials 1-3 were 8, 99 and 5/110, respectively (Table A5). For the coded test chemical the statistical sensitivities of transformation assay trials 1 and 2 were 71 and 33/110; the detection sensitivities for BaP of trials 1 and 2 were 23 and 14/110, respectively. The uncoded test chemical had two SP and a LA transformation responses in three experiments. The coded test chemical had an SP transformation response in the two consecutive experiments. Methyl carbamate was evaluated as active in the transformation assay. The actual and estimated rank \(t \)-statistics for the uncoded test chemical were both 4.48; the actual and estimated rank \(t \)-statistics for the coded test chemical were 3.76 (Table A6). Taken together, the coded and uncoded test chemicals had virtually identical cytotoxic and transformation responses in the BALB/c-3T3 cell transformation assay.

Monuron. Monuron is a level \(B \) carcinogen (Table A6). It had one difficult technical problem. It had a limited solubility in culture medium supplemented with pluronic F68 of about 25 \(\mu g/ml \) (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average \(LD_{50} \) of 5.54 mM (Table A4). Thus, this \(LD_{50} \) far exceeded the solubility limit of the test chemical in culture medium. The statistical sensitivities of transformation assay trials 1 and 2 were 81 and 39/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 22 and 68/110, respectively (Table 2). The test chemical had an LA transformation response in the first experiment and an SN transformation response in the second experiment. Monuron was evaluated as inactive in the transformation assay, and its actual and estimated rank \(t \)-statistics were both 1.01 (Table A6).

Saccharin, Sodium Salt. Saccharin, sodium salt, is a level \(A \) carcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average \(LD_{50} \) of 76.5 mM and 153 mOsM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 21 and 62/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 26 and 48/110, respectively (Table A5). The test chemical had an SP transformation response in the two consecutive experiments. Significant transforming activity was detected at treatment doses that were below the upper dose limit of the assay of 100 mOsM. Saccharin was evaluated as active in the transformation assay, and its actual and estimated rank \(t \)-statistics were both 7.99 (Table A6).

Nonyctotoxic, Mutagenic Noncarcinogens

2-Chloroethanol. 2-Chloroethanol is a level \(F \) noncarcinogen (Table A6). It had one difficult technical problem. It was reported to react with water; thus, it may have been altered by the aqueous environment during the treatment period (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average \(LD_{50} \) of 81.0 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 9 and 73/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 37 and 49/110, respectively (Table A5). The test chemical had an SP transformation response in the both the first and second experiments. 2-Chloroethanol was evaluated as active in the transformation assay, and its actual and estimated rank \(t \)-statistics were both 3.22 (Table A6).

Methyl Methacrylate. Methyl methacrylate is a level \(F \) noncarcinogen (Table A6). It had two difficult technical problems. It was reported to react with air; thus, it may have been altered by exposure to air during the treatment period. In addition, it was noted to react with amines; therefore, it may have reacted with amines on biochemicals in culture medium and in the target BALB/c-3T3 cells (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average \(LD_{50} \) of 10.8 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 4 and 28/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 1 and 15/110, respectively (Table A5). The test chemical had an SP transformation response in the first experiment and an SN transformation response in the second experiment. Since the mean \(t \)-statistics of the two transformation responses were not significantly different from one another, the test chemical did not have to be evaluated in a third trial. Methyl methacrylate was evaluated as having been weakly active in the transformation assay, and its actual and estimated rank \(t \)-statistics were both 2.54 (Table A6).
4-Nitroanthranilic Acid. 4-Nitroanthranilic acid is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was nontoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 8.58 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 7 and 22/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 56 and 53/110, respectively (Table A5). The test chemical had an SN transformation response in the first experiment and an SP transformation response in the second experiment. Because the mean t-statistics of the two transformation responses were not significantly different from one another, the test chemical was not evaluated in a third trial. 4-Nitroanthranilic acid was evaluated as having been weakly active in the transformation assay, and its actual and estimated rank t-statistics were both 1.09 (Table A6).

Nontoxic, Nonmutagenic Noncarcinogens

Aldicarb. Aldicarb is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was nontoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 10.7 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 19 and 33/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 34 and 14/110, respectively (Table A5). The test chemical had an SN transformation response in the first experiment, and an SP response in the second experiment. Since the mean t-statistics of the transformation responses in the two experiments were significantly different from one another, the test chemical has to be evaluated in a third trial. In the absence of the data from a third trial, aldicarb was evaluated as having an indeterminate activity in the transformation assay. Its actual and estimated rank t-statistics were both 1.93 (Table A6).

Ampicillin Trihydrate. Ampicillin trihydrate is a level E noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was nontoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 23.8 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 71 and 29/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 23 and 97/110, respectively (Table A5). The test chemical had an LA transformation response in the both the first and second experiments. Ampicillin trihydrate was evaluated as having an equivocal activity in the transformation assay, and its actual and estimated rank t-statistics were both 1.32 (Table A6).

o-Anthranilic Acid. o-Anthranilic acid is a level F noncarcinogen (Table A6). It had one difficult technical problem. It was reported to become oxidized by air; thus, it may have been altered by exposure to air during the treatment period (Table A4). The test chemical was nontoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 72.9 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 100 and 36/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 42 and 28/110, respectively (Table A5). The test chemical had an SN transformation response in the first experiment and an SP transformation response in the second experiment. Since the mean t-statistics of the two transformation responses were significantly different from one another, the test chemical has to be evaluated in a third trial. In the absence of data from a third trial, o-anthranilic acid was evaluated as having an indeterminate activity in the transformation assay. Its actual and estimated rank t-statistics were both 2.19 (Table A6).

Benzoin. Benzoin is a level E noncarcinogen (Table A6). It had one difficult technical problem. The solubility limit of this test chemical in culture medium supplemented with pluronic F68 was about 500 μg/ml (Table A4). The test chemical was nontoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 14.8 mM (Table A4). Thus, this test chemical had a LD$_{50}$ that far exceeded its solubility limit in culture medium. The statistical sensitivities of transformation assay trials 1 and 2 were 50 and 109/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 59 and 103/110, respectively (Table A5). The test chemical had an SN transformation response in the both the first and second experiments. The test chemical was tested at treatment doses that far exceeded its solubility limit in culture medium. Benzoin was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 0.74 and 1.08, respectively (Table A6).

Benzy1 Alcohol. Benzy1 alcohol is a level F noncarcinogen (Table A6). It had one difficult technical problem. It was reported to become oxidized by air; thus, it may have been altered by exposure to air during the treatment period (Table A4). The test chemical was nontoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 17.9 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 2 and 38/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 2 and 16/110, respectively (Table A5). The test chemical had an LA transformation response in the first experiment and an SP transformation response in the second experiment. Benzy1 alcohol was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 1.95 (Table A6).

Caprolactam. Caprolactam is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was nontoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 71.8 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 110 and 109/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 107 and 103/110, respectively (Table A5). Thus, both of these experiments had an unusually low statistical sensitivity and detection sensitivity for BaP. The test chemical had an SN transformation response in the both the first and second experiments. Caprolactam was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 1.20 and 2.34, respectively (Table A6).

(2-Chloroethyl)trimethylammonium Chloride. (2-Chloroethyl)trimethylammonium chloride is a level F non-
carcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 62.0 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 40 and 35/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 54 and 57/110, respectively (Table A5). The test chemical had an SP transformation response in the first experiment and an LA transformation response in the second experiment.

(2-Chloroethyl)trimethylammonium chloride was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 1.74 (Table A6).

C. I. Acid Orange 10. C. I. Acid orange 10 is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 26.5 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 92 and 22/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 71 and 53/110, respectively (Table A6). The test chemical had an SN transformation response in the both the first and second experiments. C. I. Acid orange 10 was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 0.63 and 0.68, respectively (Table A6).

Dimethyl Terephthalate. Dimethyl terephthalate is a level F noncarcinogen (Table A6). It had two difficult technical problems. It was reported to be very temperature sensitive and react with water. Because the test chemical was insoluble in water, it had to be sonicated and warmed at 37°C for 30 minutes or more to become a fine particulate suspension in culture medium supplemented with pluronic F68. Its solubility in culture medium was about 125 µg/ml (Table A4). Thus, it is possible that the test chemical was altered during the procedure to solubilize the test chemical as well as the treatment period. The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 15.4 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 22 and 5/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 53 and 46/110, respectively (Table A5). The test chemical had an SP transformation response in the first experiment and an LA transformation response in the second experiment. The test chemical was tested at doses that far exceeded its solubility in culture medium. Taken together, dimethyl terephthalate was evaluated as having an indeterminate activity in the transformation assay, because it needs to be retested at treatment doses closer to its solubility limit in culture medium. Furthermore, it must be evaluated using a procedure less likely to alter it while it is being solubilized for testing. Its actual and estimated rank t-statistics were both 1.79 (Table A6).

Diphenylhydantoin. Diphenylhydantoin is a level I chemical, because its testing in rodent bioassay is incomplete (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 5.02 mM (Table A4). The solubility limit of this test chemical was about 500 µg/ml in culture medium supplemented with pluronic F68. The statistical sensitivities of transformation assay trials 1 and 2 were 84 and 95/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 105 and 61/110, respectively (Table A5). The test chemical had an SN transformation response in two consecutive experiments, and it was tested at treatment doses above its solubility limit. Diphenylhydantoin was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.00 (Table A6).

FD and C Yellow No. 6. FD and C Yellow no. 6 is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 67.7 mM (Table A4). The statistical sensitivities of transformation assay trials 1-3 were 7, 95 and 22/110, respectively; the detection sensitivities for BaP of trials 1-3 were 56, 61 and 53/110, respectively (Table A5). The test chemical had an SP transformation response in the all three experiments. FD and C Yellow No. 6 was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 7.65 (Table A6).

D-Mannitol. D-Mannitol is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ estimated to be over 324 mM (Table A4). The statistical sensitivities of transformation assay trials 1-3 were 46, 35 and 38/110, respectively; the detection sensitivities for BaP of trials 1-3 were 80, 57 and 16/110, respectively (Table A5). The test chemical had an LN transformation response in the first experiment, an LA response in the second experiment, and an SP response in the third experiments. In all three experiments significant transforming activity was only detected at treatment doses that exceeded the upper dose limits of the assay of 100 mOsM. Taken together, D-mannitol was evaluated as active and a false positive in the transformation assay, and its actual and estimated rank t-statistics were 3.00 and 1.99, respectively (Table A6).

Molybdenum Trioxide. Molybdenum trioxide is a level I noncarcinogen (Table A6). It had one difficult technical problem. It was reported to form polymeric compounds when it was exposed to acids and bases. Since stocks of the test chemical were acidic and had to be neutralized with NaOH in order to tested, it is possible that the test chemical was altered during preparation of the dosing solutions (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 9.38 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 61 and 84/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 47 and 105/110, respectively (Table A5). The test chemical had an LA transformation response in the first experiment and an SN transformation response in the second experiment. Molybdenum trioxide was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were 0.64 and 0.86, respectively (Table A6).

Penicillin VK+. Penicillin VK + is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD₅₀ of 17.8 mM
(Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 10 and 62/110, respectively, the detection sensitivities for BaP of trials 1 and 2 were 5 and 48/110, respectively (Table A5). The test chemical had an SP transformation response in two consecutive experiments. Penicillin VK+ was evaluated as active in the transformation assay, and its actual and estimated rank t-statistics were both 5.96 (Table A6).

Phthalamide. Phthalamide is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 73.1 mM (Table A4). This LD_{50} was far above the solubility limit of the test chemical of 1000 \(\mu \)g/ml in culture medium supplemented with pluronic F68. The statistical sensitivities of transformation assay trials 1 and 2 were 14 and 38/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 72 and 16/110, respectively (Table A5). The test chemical had an LN transformation response in the first experiment and an LA transformation response in the second experiment. Phthalamide was evaluated as having an indeterminate activity in the transformation assay, and its actual and estimated rank t-statistics were 1.01 and 0.64, respectively (Table A6).

Phthalic Anhydride. Phthalic anhydride is a level F noncarcinogen (Table A6). It had three difficult technical problems. It was reported to react with water and strong bases. Because the test chemical stock solutions were very acidic, they had to be neutralized with NaOH; thus, the test chemical may have been altered during the preparation of dosing solutions. In addition, the test chemical was noted to react with amine groups, thus it may have reacted with amine groups on biochemicals in culture medium, as well as biochemicals in the target cells (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 13.2 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 82 and 5/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 18 and 46/110, respectively (Table A5). The test chemical had an LA transformation response in the first experiment and an SN transformation response in the second experiment. Phthalic anhydride was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.80 (Table A6).

Roxarsone. Roxarsone is a level E noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 43.8 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 10 and 27/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 5 and 92/110, respectively (Table A5). The test chemical had an SP transformation response in the first experiment and an SN transformation response in the second experiment. Since the mean t-statistics of the two test chemical transformation responses were significantly different from one another, it has to be evaluated in a third trial. In the absence of data from a third trial, roxarsone was evaluated as having an indeterminate activity in the transformation assay, and its actual and estimated rank t-statistics were both 1.67 (Table A6).

Sodium(2-ethylhexyl) Alcohol Sulfate. Sodium(2-ethylhexyl) alcohol sulfate is a level F(1) noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 12.5 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 1 and 6/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 3 and 19/110, respectively (Table A5). The test chemical had an SN transformation response in the first experiment and an SP transformation response in the second experiment. Since the mean t-statistics of the two test chemical transformation responses were significantly different from one another, the chemical has to be evaluated in a third trial. In the absence of data from a third experiment, sodium(2-ethylhexyl) alcohol sulfate was evaluated as having an indeterminate activity in the transformation assay, and its actual and estimated rank t-statistics were both 2.04 (Table A6).

Sulfoisoxazole. Sulfoisoxazole is a level F noncarcinogen (Table A6). It had one difficult technical problem. It was reported to become oxidized upon exposure to air; thus, it may have been altered by exposure to air during the treatment period (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} estimated to be 18.7 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 1 and 6/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 3 and 19/110, respectively (Table A5). The test chemical had an LN transformation response in the first experiment and an SP transformation response in the second experiment. Since the LN transformation response did not qualify as one of the two required trials, the test chemical has to be tested in a third experiment. Taken together, sulfoisoxazole was evaluated as having an indeterminate activity in the transformation assay, and its actual and estimated rank t-statistics were both 1.26 (Table A6).

3-Sulfolene. 3-Sulfolene is a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 117 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 49 and 23/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 24 and 11/110, respectively (Table A5). The test chemical had an SP transformation response in two consecutive experiments. 3-Sulfolene was evaluated as having been weakly active in the transformation assay, and its actual and estimated rank t-statistics were both 3.24 (Table A6).

Tetrahydrofuran. Tetrahydrofuran is a level F chemical because its testing in rodent bioassay is incomplete (Table A6). It had one difficult technical problem because it was reported to react with water (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 90.3 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 1 and 28/110, respectively; the detection sensitivities for BaP of
The test chemical had an SN transformation response in two consecutive experiments. Tetrahydrofuran was evaluated as inactive in the transformation assay, and its actual and estimated rank t-statistics were both 0.72 (Table A6).

Titanium Dioxide. Titanium dioxide is a level F noncarcinogen (Table A6). It had one difficult technical problem. It was reported to be reduced by metals such as calcium, magnesium, potassium and sodium; thus, it could have been altered by these metals in culture medium. In addition, this test chemical was very insoluble in culture medium supplemented with pluronic F68, and had a solubility limit of about 125 µg/ml (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 12.1 mM (Table A4). Thus, this LD$_{50}$ far exceeded the solubility limit of the test chemical in culture medium. The statistical sensitivities of transformation assay trials 1 and 2 were 28 and 6/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 12 and 92/110, respectively (Table A5). The test chemical had an LN transformation response in two consecutive experiments, and it was tested at treatment doses that far exceeded its solubility limit. Titanium dioxide was evaluated as an inactive with an indeterminate activity in the transformation assay. Its actual and estimated rank t-statistics were both 0.00 (Table A6).

Witch Hazel. Witch hazel is a mixture of chemicals that include 15% v/v ethanol, 85% v/v water and some inert ingredients. It has been shown to be a level F noncarcinogen (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ estimated to be 540 mOsM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 2 and 38/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 2 and 16/110, respectively (Table A5). The test chemical had an LA transformation response in two consecutive experiments. This test chemical only induced significant transforming activity at treatment doses that exceeded the upper dose limit of the assay of 100 mOsM. Taken together, witch hazel was evaluated as having an equivocal activity and a false positive in the transformation assay. Its actual and estimated rank t-statistics were both 1.95 (Table A6).

Very Noncytotoxic Chemicals

Acetone. Acetone has not been evaluated in rodent bioassay, therefore, its level of carcinogenicity is classified as a level I chemical (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of about 257 mOsM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 1 and 27/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 3 and 68/110, respectively (Table A5). The test chemical had an LA transformation response in the first experiment, and an SP response in the second experiment. This test chemical induced significant transforming activity only at treatment doses above the upper dose limit of the assay of 100 mOsM. Taken together, acetone was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were both 4.49 (Table A6).

Dimethyl Sulfoxide. Dimethyl sulfoxide has not been evaluated in rodent bioassay; therefore, its level of carcinogenicity is classified as a level F chemical (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 507 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 90 and 78/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 13 and 49/110, respectively (Table A5). The test chemical had an LA transformation response in the first experiment, and an SP response in the second experiment. This test chemical induced significant transforming activity only at treatment doses above the upper dose limit of the assay of 100 mOsM. Taken together, dimethyl sulfoxide was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were 8.38 and 3.45, respectively (Table A6).

Ethanol. Ethanol has not been evaluated in rodent bioassay; therefore, its level of carcinogenicity is classified as a level I chemical (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 429 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 2 and 20/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 2 and 19/110, respectively (Table A5). The test chemical had an LA transformation response in the first experiment, and an SP response in the second experiment. This test chemical induced significant transforming activity only at treatment doses above the upper dose limit of the assay of 100 mOsM. Taken together, ethanol was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were both 2.50 (Table A6).

Glycerol. Glycerol has not been evaluated in rodent bioassay; therefore, its level of carcinogenicity is classified as a level I chemical (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD$_{50}$ of 401 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 1 and 20/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 3 and 19/110, respectively (Table A5). The test chemical had an SP transformation response in both the first and second experiments. This test chemical induced significant transforming activity only at treatment doses above the upper dose limit of the assay of 100 mOsM. Taken together, glycerol was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were both 3.09 (Table A6).

Sodium Chloride. Sodium chloride has not been evaluated in rodent bioassay; therefore, its level of carcinogenicity is classified as a level I chemical (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells
and had an average LD_{50} of about 144 mM (288 mOsM) (Table A4). The statistical sensitivities of transformation assay trials 1-3 were 10, 6 and 106/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 5, 92 and ND/110, respectively (Table A5). The test chemical had an SP transformation response in the first and third experiments, and an SN response in the second experiment. There was no apparent explanation for the absence of test chemical transforming activity in the second experiment. This test chemical induced significant transforming activity only at treatment doses above the upper dose limit of the assay of 100 mOsM. Taken together, sucrose was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were both 5.73 (Table A6).

Sucrose. Sucrose has not been evaluated in rodent bioassay; therefore, its level of carcinogenicity is classified as a level I chemical (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of 240 mM (Table A4). The statistical sensitivities of transformation assay trials 1 and 2 were 62 and 5/110, respectively; the detection sensitivities for BaP of trials 1 and 2 were 48 and 46/110, respectively (Table A5). The test chemical had an SP transformation response in both the first and second experiments. This test chemical induced significant transforming activity only at treatment doses above the upper dose limit of the assay of 100 mOsM. Taken together, sucrose was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were both 6.53 (Table A6).

Urea. Urea has not been evaluated in rodent bioassay; therefore, its level of carcinogenicity is classified as a level I chemical (Table A6). It had no insurmountable technical problems (Table A4). The test chemical was noncytotoxic to the BALB/c-3T3 cells and had an average LD_{50} of about 254 mM (Table A4). The statistical sensitivity of transformation assay trial 1 was 6/110; the detection sensitivity for BaP of trial 1 was 92/110 (Table A5). The test chemical had an SP transformation response in the first experiment. This test chemical induced significant transforming activity only at treatment doses above the upper dose limit of the assay of 100 mOsM. Taken together, urea was evaluated as active and a false positive in the transformation assay. Its actual and estimated rank t-statistics were both 1.81 (Table A6).
Appendix B.
Summary of the transformation responses of 43 cytotoxic, mutagenic carcinogens.

Drug	Conc., mM	Cytotoxic Activity*	Transforming Activity*	Transformation Response*	Significance*	
	S.A	CC.A	RCE (%)	Focus Data	Foci/Vessel	
				Type Vessels	Focus Type	t-statistic
				III (N)	III	
				II (N)		
2-Acetylaminofluorene [2AAF, M.W. = 223.3]						
Trial 1 [17]						
B(a)P .000791	.000	52.9	96 (20)	4.43 ***	+ 13.5	
B(a)P .000250	3.54	79.1	86 (20)	3.91 ***	+ 11.6	
2AAF .358	.442	47.4	36 (20)	1.54 ***	+ 5.56	
2AAF .179	3.54	55.6	62 (20)	2.34 ***	+ 5.81	
2AAF .0900	19.5	102.	30 (20)	1.25 ***	+ 4.39	
2AAF .0450	66.8	113.	14 (20)	.473	+ .85	
NC-1 Control	100.	100.	18 (40)	.327	Control	
Mean t = 4.73						
Trial 2 [24]						
B(a)P .000791	.000	18.7	83 (20)	3.65 ***	+ 10.7	
B(a)P .000250	5.66	70.0	86 (20)	3.73 ***	+ 10.7	
2AAF .358	.000	34.8	21 (20)	.781*	+ 2.19	
2AAF .179	7.55	47.1	31 (20)	1.18 ***	+ 4.06	
2AAF .0900	23.3	83.3	18 (20)	.686*	+ 2.08	
2AAF .0450	59.7	108.	2 (20)	.072	.00 (-1.01)	
NC-1 Control	100.	100.	18 (40)	.308	Control	
Mean t = 2.08						

Acrylonitrile [ACRL, M.W. = 53.06, Density = 0.806 g/ml]

Trial 1 [86]					
B(a)P .000791	18.7	63.0	64 (18)	3.32***	+ 9.07
B(a)P .000250	47.9	87.6	42 (18)	2.02***	+ 5.74
ACRL .608	.000	.000	4 (15,18)	.203	+ 0.84
ACRL .304	1.17	71.7	79 (18)	3.90***	+ 12.5
ACRL .152	49.0	83.9	13 (18)	.503	+ 2.28
ACRL .0760	84.4	94.0	8 (18)	.297	+ 1.31
NC-1 Control	100.	100.	47 (72)	.464	Control
Mean t = 5.36					
Trial 2 [92]					
B(a)P .00250	.394	45.3	69 (18)	3.54***	+ 8.31
B(a)P .000791	18.2	72.2	44 (18)	2.14***	+ 5.20
B(a)P .000250	19.4	78.2	32 (17)	1.52***	+ 3.32
ACRL .608	.000	.000	0 (15,18)	.000	.00 (-7.93)
ACRL .456	.000	.000	11 (18)	.479	.00 (-.41)
ACRL .304	.396	39.3	57 (18)	2.57***	+ 6.43
ACRL .152	28.5	80.5	10 (18)	.423	.00 (-.90)
NC-1 Control	100.	100.	62 (71)	.579	Control
Mean t = 2.14					

2-Amino-4-nitrophenol [847910-S, M.W. = 154.13]

Trial 1 [63]					
B(a)P .000791	4.00	80.5	141 (20)	6.13***	+ 6.33
B(a)P .000250	24.8	93.1	93 (20)	3.20*	+ 2.02
847910-S .200	.000	.201	2 (12)	.122	.00 (-7.26)
847910-S .100	.000	78.5	2 (9)	.167	.00 (-6.04)
847910-S .500	9.45	90.6	8 (13)	.696	.00 (-3.61)
847910-S .250	57.5	93.4	33 (18)	1.63	.00 (-.85)
NC-1 Control	100.	100.	84 (39)	1.92	Control
Mean t = .00					

(Continued on next page)
Appendix B. Continued.

Treatment Condition*	Cytotoxic Activity*	Transforming Activity*	Transformation Response*	Significance*
	RCE (%)	Focus Data Type Vessels	Foci/Vessel Focus Type	t-statistic
Drug Conc., mM	S.A CC.A.	III (N)		Mean t = .00
2-Amino-5-Nitrophenol [738717-S, M.W. =154.13]				
Trial 1 [62]				
B(a)P .000791	28.9 73.6	60 (20)	2.00*** + 7.77	
	58.1 89.9	14 (20)	.503 + 2.63	
B(a)P .000250	0.00 0.00	0 (0,20)	.000 .00 (-3.67)	
	2.36 92.5	7 (20)	.256 .00 (-1.48)	
NC-1A+1B Control	100. 100.	31 (79)	.322 Control	
Mean t = .00				
Trial 2 [83]				
B(a)P .000791	5.24 72.5	188 (20)	8.32* + 2.50	
	18.6 85.1	105 (18)	5.59 NS .00 (-.62)	
738717-S 2.00	.000 32.1	13 (20)	.473 .00 (-13.6)	
	1.43 26.2	5 (19)	.182 .00 (-17.0)	
	10.5 78.6	30 (20)	1.26 .00 (-9.93)	
	46.2 95.0	96 (20)	4.31 .00 (-2.54)	
NC-1 Control	100. 100.	261 (40)	6.02 Control	
Mean t = .00				
Trial 3 [93]				
B(a)P .000791	2.65 46.7	138 (20)	6.48*** + 16.8	
	7.96 79.9	115 (20)	4.80*** + 12.0	
738717-S 1.33	.000 7.92	38 (20)	1.44*** + 3.66	
	3.33 42.7	15 (16)	2.28*** + 8.22	
	25.3 71.7	5 (14)	1.73*** + 4.66	
	31.9 85.1	6 (15)	1.47*** + 5.10	
NC-1A+1B Control	100. 100.	48 (80)	.416 Control	
Mean t = 5.41				
Trial 4 [103]				
B(a)P .000791	8.60 76.9	95 (20)	4.59*** + 13.7	
	23.6 91.5	75 (20)	2.86*** + 5.37	
738717-S 1.67	.000 30.3	90 (20)	4.24*** + 11.3	
	6.45 38.3	115 (20)	4.97*** + 9.09	
	24.5 32.7	140 (20)	6.79*** + 18.4	
	38.3 41.5	122 (20)	5.02*** + 8.57	
NC-1A+1B Control	100. 100.	89 (79)	.874 Control	
Mean t = 11.8				

5-Azacytidine [SAZA, M.W. = 244.2]

Trial 1 [6]				
B(a)P .000791	1.71 26.9	141 (20)	6.80*** + 21.9	
	13.7 74.0	69 (20)	3.14*** + 18.5	

(Continued on next page)
Appendix B. Continued.

Treatment Condition\(^a\)	Cytotoxic Activity\(^b\)	Transforming Activity\(^c\)	Transformation Response\(^d\)	Significance\(^e\)			
	RCE (%)	Focus Data	Foci/Vessel Focus Type	t-statistic			
Drug	Conc., mM	S.A	CC.A	III (N)	III		
5AZA	.0164	.000	11.1	62 (20)	2.59***	+ 8.36	
5AZA	.0123	.000	18.2	70 (20)	2.22***	+ 9.00	
5AZA	.00615	4.79	41.0	134 (20)	6.16***	+ 15.3	
5AZA	.00308	15.4	80	316 (20)	15.3***	+ 33.9	
NC-1	Control	100.	100.	24 (74)	.431	Control	

Trial 2 [11]

B(a)P	.000791	1.37	34.4	128 (20)	4.94***	+ 10.5
B(a)P	.000250	7.22	36.0	37 (20)	1.62***	+ 5.38
5AZA	.0061	.000	25.8	182 (20)	8.10***	+ 14.7
5AZA	.0031	4.12	73.1	248 (20)	12.0***	+ 16.5
5AZA	.0015	20.9	71.0	52 (20)	1.77***	+ 4.21
5AZA	.0008	27.8	77.4	11 (20)	.423	+ .70
NC-1	Control	100.	100.	21 (40)	.301	Control

Benzidine-2HCl [BENZD, M.W. = 257.18]

Trial 1 [43]

B(a)P	.000791	1.00	53.0	382 (20)	18.9***	+ 26.3
B(a)P	.000250	4.80	77.5	270 (20)	13.0***	+ 19.0
BENZD	.194	.000	3.94	42 (18)	2.00**	+ 2.71
BENZD	.146	.000	26.3	64 (17)	3.57***	+ 6.41
BENZD	.0972	2.38	62.1	82 (20)	3.74***	+ 6.79
BENZD	.0486	42.9	70.9	40 (18)	1.85*	+ 2.26
NC-1	Control	100.	100.	44 (35)	1.05	Control

Trial 2 [52]

B(a)P	.000791	4.05	39.1	150 (20)	6.63***	+ 9.35
B(a)P	.000250	11.1	73.8	126 (20)	5.61***	+ 8.18
BENZD*	.1944	96.3	94.0	37 (20)	1.66	+ 1.73
BENZD*	.1658	98.3	96.3	49 (20)	2.20**	+ 3.04
BENZD*	.0972	98.7	103.	46 (20)	1.95*	+ 2.43
BENZD*	.0486	99.7	110.	36 (20)	1.63	+ 1.66
NC-1	Control	100.	100.	55 (38)	1.09	Control

2-Biphenylamine [2BPA, M.W. =169.22]

Trial 1 [33]

B(a)P	.000791	3.44	2.40	214 (20)	10.0***	+ 13.6
B(a)P	.000250	5.73	51.4	130 (20)	5.86***	+ 7.74
2-BPA	.591	.000	7.46	12 (18)	.562	.00 (1.97)
2-BPA	.433	3.05	28.5	49 (20)	2.26***	+ 3.66
2-BPA	.296	4.58	53.8	77 (20)	3.33***	+ 4.74
2-BPA	.148	40.1	106.	44 (19)	1.91*	+ 2.10
NC-1	Control	100.	100.	54 (37)	1.04	Control

Trial 2 [52]

B(a)P	.000791	4.04	39.8	150 (20)	6.63***	+ 9.35
B(a)P	.000250	11.1	75.4	126 (20)	5.61***	+ 8.18
2BPA	.296	8.08	59.0	33 (20)	1.43	+ 1.03
2BPA	.222	36.0	80.3	63 (20)	2.85***	+ 4.40
2BPA	.148	59.6	84.9	66 (20)	3.06***	+ 5.54
2BPA	.074	83.8	95.9	93 (20)	3.21***	+ 4.20
NC-1	Control	100.	100.	55 (38)	1.09	Control

(Continued on next page)
Appendix B. Continued.

Drug	Concentration, mM	S.A	C.C.A.	Focus Data Type	Vessels	FOCl/Vessel Focus Type	Significance
4-Biphenylamine [4BPA, M.W. = 169.22]							
Trial 1 [35]							
B(a)P .0000791	1.75	36.1	177	(20)	6.73***	13.3	
B(a)P .0000250	5.26	74.7	61	(20)	2.45***	7.12	
4BPA .0732	0.00	52.9	10	(20)	.374	1.22	
3CMP .0488	8.33	89.5	3	(20)	.110	.00 (- 1.02)	
3CMP .0122	74.1	102.	25	(20)	.542	1.42	
NC-1 Control	100	100.	128	(20)	2.78	Control	
Trial 2 [22]							
B(a)P .0000791	1.86	53.4	187	(20)	8.86***	16.0	
B(a)P .0000250	6.52	81.4	116	(20)	5.25***	9.33	
3CMP .0488	12.4	99.7	52	(20)	2.07**	3.43	
3CMP .0122	59.6	94.3	68	(20)	2.59***	4.41	
3CMP .00610	89.8	88.9	31	(20)	1.07	.60	
NC-1 Control	100	100.	45	(40)	.893	Control	
4-Chloro-o-Phenylenediamine [4CPD, M.W. = 142.59]							
Trial 1 [13]							
B(a)P .0000791	0.823	30.6	95	(20)	4.38***	14.2	
B(a)P .0000250	2.06	75.4	66	(20)	3.14***	15.7	
4CPD .0245	4.12	85.1	23	(20)	.871**	3.37	
4CPD .0123	25.6	97.9	6	(20)	.214	.11	
4CPD .00614	63.3	100.	1	(20)	.035	.00 (- 2.39)	
4CPD .00307	88.5	99.4	2	(20)	.056	.00 (- 1.55)	
NC-1 Control	100	100.	11	(40)	.201	Control	

(Continued on next page)
Appendix B. Continued.

Drug	Conc., mM	S.A	CC.A	Focus Data	Transformation Response	Significance
4CPD	.0351	3.91	58.2	59 (20)	2.61*** + 8.16	
4CPD	.0245	5.47	82.4	28 (20)	1.03** + 2.89	
4CPD	.0140	4.69	96.6	9 (20)	.308 + 0.0 (.37)	
4CPD	.00701	21.1	112.	4 (20)	.132 + 0.0 (.171)	
NC-1	Control	100.	100.	21 (40)	.368 Control	
					Mean t = 2.76	

Trial 3 [101]

Drug	Conc., mM	S.A	CC.A	Focus Data	Transformation Response	Significance
4CPD	.0526	25.6	35.7	107	5.19*** + 19.4	
4CPD	.0394	27.0	47.1	55	2.37*** + 8.26	
4CPD	.0263	43.3	76.4	38	1.59*** + 5.83	
4CPD	.0131	76.8	90.9	18	[.652* + 2.19	
NC-1	Control	100.	100.	27	.260 Control	
					Mean t = 8.92	

4-Chloro-α-Toluidine-HCl [M.W. = 178.07]

Trial 1 [81]

Drug	Conc., mM	S.A	CC.A	Focus Data	Transformation Response	Significance
4CT	.842	0.00	.516	88 (16,18)	4.05 + .00 (- 2.44)	
4CT	.632	7.34	92.3	349 (18)	19.2*** + 14.6	
4CT	.421	28.3	102.	209 (18)	11.4*** + 5.93	
4CT	.211	55.9	106.	150 (18)	8.04 + 1.00	
NC-1	Control	100.	100.	583 (72)	.736 Control	
					Mean t = 7.18	

Trial 2 [92]

Drug	Conc., mM	S.A	CC.A	Focus Data	Transformation Response	Significance
4CT	.786	6.73	33.3	35 (17,18)	1.59** + 3.39	
4CT	.590	11.9	81.0	47 (18)	2.28*** + 5.54	
4CT	.393	61.4	95.8	31 (18)	1.52*** + 3.56	
4CT	.197	108.	95.5	30 (18)	1.56*** + 5.28	
NC-1	Control	100.	100.	62 (71)	.597 Control	
					Mean t = 4.44	

5-Chloro-α-Toluidine [M.W. = 141.61]

Trial 1 [81]

Drug	Conc., mM	S.A	CC.A	Focus Data	Transformation Response	Significance
5CT	2.26	0.00	.344	12 (9,18)	1.03 + .00 (- 7.06)	
5CT	1.69	14.3	62.8	221 (18)	11.4*** + 3.71	
5CT	1.13	38.5	93.3	288 (18)	15.4*** + 6.51	
5CT	.565	72.7	106.	158 (18)	7.88 + .54	
NC-1	Control	100.	100.	583 (72)	7.36 Control	
					Mean t = 3.57	

Trial 2 [92]

Drug	Conc., mM	S.A	CC.A	Focus Data	Transformation Response	Significance
5CT	2.26	1.19	19.9	19 (17,18)	.682 + .58	
5CT	1.69	7.92	49.5	48 (17)	2.36*** + 5.43	
5CT	1.13	22.2	92.8	78 (17)	3.75*** + 7.67	
5CT	.565	49.9	87.2	53 (18)	1.80*** + 3.03	
NC-1	Control	100.	100.	62 (71)	.597 Control	
					Mean t = 5.38	

(Continued on next page)
Appendix B. Continued.

Drug	Conc., mM	RCE (%)	S.A	CC.A	Focus Data Foci/Vessel Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
C. I. Acid Orange 3 [038399-S, M.W. = 453.51]							
Trial 1 [70]							
B(a)P	.000791	1.24	48.9	11	(3)		
B(a)P	.000250	11.8	81.0	19	(5)		
038399-S	.222	.000	.000	0	(0,20)		.000
038399-S	.111	.000	38.9	34	(16)		1.69***
038399-S	.0555	1.86	90.7	13	(18)		.562
038399-S	.0278	61.5	97.4	5	(15)		.260
NC-1A+1B	Control	100.	100.	36	(54)		.526
							Mean t = 1.55
Trial 2 [87]							
B(a)P	.000791	25.1	77.0	59	(20)		2.26***
B(a)P	.000250	42.2	80.2	34	(20)		1.45***
038399-S	.178	.000	.000	0	(0,20)		.000
038399-S	.1334	.000	35.9	44	(20)		1.81***
038399-S	.0890	1.86	90.7	13	(18)		.562
038399-S	.0445	13.8	109.	14	(20)		.534
NC-1	Control	100.	100.	43	(80)		.346
							Mean t = 4.23
C. I. Basic Red 9-HCl [CIBR9, M.W. = 323.83]							
Trial 1 [48]							
B(a)P	.000791	2.28	47.9	148	(20)		7.06***
B(a)P	.000250	10.1	90.8	63	(20)		2.68***
CIBR9	.00679	.000	.000	4	(20)		.149
CIBR9	.00509	.000	.252	5	(20)		.189
CIBR9	.00340	2.61	29.0	5	(20)		.189
CIBR9	.00170	32.6	67.3	23	(20)		.861
NC-1	Control	100.	100.	29	(40)		.537
							Mean t = .353
Trial 2 [66]							
B(a)P	.000791	2.33	52.0	90	(20)		3.92***
B(a)P	.000250	6.08	98.4	24	(20)		.795**
CIBR9	.00617	.000	.188	2	(18,20)		.080
CIBR9	.00309	44.9	29.7	4	(20)		.149
CIBR9	.00154	62.8	97.8	1	(20)		.035
CIBR9	.00077	74.3	109.	3	(19)		.116
NC-1	Control	100.	100.	3	(38)		.056
							Mean t = .700
Trial 3 [DRI4]							
B(a)P	.000791	ND	ND	ND	ND		ND
B(a)P	.000250	ND	ND	ND	ND		ND
CIBR9	.00463	ND	10.6	5	(20)		.189
CIBR9	.00309	ND	79.5	12	(20)		.443
CIBR9	.00154	ND	103.	8	(20)		.301
NC-1	Control	ND	100.	18	(20)		.668
							Mean t = .000
C. I. Basic Red 9-HCl [947733-S, m.w. = 323.83]							
Trial 1 [73]							
B(a)P	.000791	2.21	71.9	61	(19)		2.60***
B(a)P	.000250	7.18	88.8	48	(20)		1.58***

(Continued on next page)
Appendix B. Continued.

Drug	Conc., mM	Cytotoxic Activitya	Transforming Activitya	Transformation Responsea	Significancea
947733-S	.00375	.000 3.3	12 (20)	.338	+ .39
947733-S	.00250	.000 33.6	7 (20)	.238	.00 (- .25)
947733-S	.00125	30.4 88.6	3 (20)	.110	(- .124)
947733-S	.000625	43.6 96.9	7 (20)	.203	.00 (- .50)
NC-1A+1B	Control	100. 100	45 (79)	.274	Control
					Mean t = .098
Trial 2 [95]					
B(a)P	.000791	16.0 ND	152 (20)	7.35***	+ 9.48
B(a)P	.000250	33.3 ND	115 (20)	5.27***	+ 3.82
947733-S	.00281	.000 ND	18 (20)	.620	.00 (- 6.44)
947733-S	.00211	.000 ND	38 (19)	1.82	.00 (- 2.39)
947733-S	.00140	15.1 ND	26 (20)	1.07	.00 (- 4.70)
947733-S	.000700	65.2 ND	37 (19)	1.69	.00 (- 2.68)
NC-1A+1B	Control	100. 100	263 (77)	2.84	Control
					Mean t = .000

C. I. Disperse Blue 1 [933178-S. M.W. = 268.3]

Drug	Conc., mM	Cytotoxic Activitya	Transforming Activitya	Transformation Responsea	Significancea
933178-S	3.70	.000 17.1	20 (20)	.572	+ 1.66
933178-S	1.17	4.42 59.3	18 (20)	.787**	+ 2.93
933178-S	.370	33.1 72.3	36 (20)	1.56**	+ 5.85
933178-S	.117	68.0 100.	22 (20)	.955**	+ 3.67
NC-1A+1B	Control	100. 100	45 (79)	.274	Control
					Mean t = 3.53
Trial 2 [97]					
B(a)P	.000791	4.74 78.0	118 (20)	5.02***	+ 12.5
B(a)P	.000250	17.4 104.	52 (20)	2.26***	+ 7.26
933178-S	1.48	3.16 27.9	6 (18)	.260	.00 (- 1.01)
933178-S	.741	9.49 32.6	9 (20)	.282	.00 (- .86)
933178-S	.370	13.4 45.2	13 (18)	.513	+ .55
933178-S	.185	20.2 41.9	14 (18)	.608	+ 1.07
NC-1A+1B	Control	100. 100	47 (80)	.414	Control
					Mean t = .405
Trial 3 [107]					
B(a)P	.000791	5.81 47.3	131 (20)	6.09***	+ 5.74
B(a)P	.000250	21.2 75.8	122 (20)	5.53***	+ 4.05
933178-S	1.85	19.1 6.98	11 (20)	.443	.00 (- 7.86)
933178-S	.926	22.2 16.5	22 (20)	.792	.00 (- 6.00)
933178-S	.463	36.6 23.8	5 (20)	.189	.00 (- 12.9)
933178-S	.231	44.1 28.2	6 (19)	.226	.00 (- 9.38)
NC-1A+1B	Control	100. 100	274 (80)	2.95	Control
					Mean t = .000

C. I. Disperse Blue 1 [933178-S. M.W. = 268.3]

Drug	Conc., mM	Cytotoxic Activitya	Transforming Activitya	Transformation Responsea	Significancea
933178-S	3.70	.000 17.1	104 (20)	3.91***	+ 7.00
933178-S	1.17	4.42 59.3	86 (20)	3.97***	+ 10.4
933178-S	.370	33.1 72.3	122 (20)	5.49***	+ 11.8
933178-S	.117	68.0 100.	77 (20)	3.25***	+ 6.22
NC-1A+1B	Control	100. 100	99 (79)	.608	Control
					Mean t = 8.86

(Continued on next page)
Treatment Condition	Cytotoxic Activitya	Transforming Activitya	Transformation Responsed	Significancee		
Drug	Conc., mM	S.A.	CC.A.	Focus Data Type Vessels III (m)	Focus Type III	t-statistic
Trial 2 [97]						
B(a)P	.000791	4.74	78.00	248 (20)	3.95***	+ 11.3
B(a)P	.00250	17.4	104.0	126 (20)	5.14***	+ 7.49
93317B-S	1.48	3.16	27.90	46 (18)	2.05	+ 2.51
93317B-S	.741	9.49	32.60	51 (20)	2.05	+ 2.64
93317B-S	.370	13.4	45.20	67 (18)	3.51***	+ 7.80
93317B-S	.185	20.2	41.90	78 (18)	3.45***	+ 5.03
NC-1A1B	Control	100.0	100.0	118 (80)	1.07	
Mean t = 4.50						
Trial 3 [107]						
B(a)P	.000791	5.81	47.30	402 (20)	19.5***	+ 8.11
B(a)P	.00250	21.2	75.80	330 (20)	16.0***	+ 6.00
93317B-S	1.85	19.1	6.98	59 (20)	27.8***	+ 15.3
93117B-S	.926	22.2	16.50	650 (20)	32.0***	+ 16.2
93317B-S	.463	36.6	23.80	160 (20)	7.07	+ 0.7 (1.63)
93317B-S	.231	44.1	28.20	143 (19)	7.31	+ 0.0 (3.00)
NC-1A1B	Control	100.0	100.0	929 (80)	9.56	
Mean t = 7.88						
C. I. Disperse Yellow 3 [DY3, M.W. = 269.31]						
Trial 1 [71]						
B(a)P	.000791	4.48	50.70	251 (20)	11.0***	+ 12.1
B(a)P	.00250	18.1	68.70	77 (20)	3.50***	+ 7.12
DY3	1.423	.000	41.80	19 (20)	.772	+ 0.0 (-1.030)
DY3	.450	.000	92.40	12 (20)	.423	+ 0.0 (-2.53)
DY3	.142	.000	89.30	15 (17)	.340	+ 0.0 (-2.60)
DY3	.065	14.3	104.0	3 (20)	.094	+ 0.0 (-6.70)
NC-1	Control	100.0	100.0	110 (75)	1.06	
Mean t = .000						
Trial 2 [91]						
B(a)P	.000791	28.9	73.60	60	2.00***	+ 5.11
B(a)P	.00250	58.1	89.90	14	.503	+ 1.31
DY3	1.577	21.7	79.30	8	.301	+ 0.0 (-0.17)
DY3	.788	29.2	87.40	11	.402	+ 0.0 (-0.62)
DY3	.394	41.4	89.10	1	.035	+ 0.0 (-4.52)
DY3	.197	66.7	93.40	2	.072	+ 0.0 (-3.31)
NC-1	Control	100.0	100.0	31	.322	
Mean t = .155						
Cytosembra [CYTB, M.W. = 307.09]						
Trial 1 [70]						
B(a)P	.00079	1.24	48.90	11 (3)	3.38***	+ 4.23
B(a)P	.0025	11.8	81.00	19 (5)	3.62***	+ 5.73
CYTB	.325	.000	.000	0 (9,16)	.000	+ 0.0 (-7.39)
CYTB	.243	.000	2.25	7 (15)	.356	+ 0.0 (-0.98)
CYTB	.162	4.97	29.90	88 (18)	4.48***	+ 11.2
CYTB	.081	19.9	89.70	42 (20)	1.11	+ 1.83
NC-1	Control	100.0	100.0	36 (54)	.526	
Mean t = 4.34						
Trial 2 [83]						
B(a)P	.00079	2.86	73.00	141 (20)	6.14***	+ 13.5
B(a)P	.0025	13.8	78.90	64 (20)	2.93***	+ 9.12
CYTB	.243	.000	8.74	21 (16)	.979*	+ 2.76
CYTB	.183	.000	39.1	92 (19)	4.35***	+ 11.2
CYTB	.122	5.71	73.30	119 (20)	5.18***	+ 12.1
CYTB	.061	20.5	94.10	20 (20)	.808*	+ 2.41
NC-1	Control	100.0	100.0	48 (80)	.351	
Mean t = 7.12						

(Continued on next page)
Transformation Responses of 168 Chemicals

Appendix B. Continued.

Treatment Condition^a	Cytotoxic Activity^b RCE (%)	Transforming Activity^c	Transformation Response^d	Significance^e	
Drug Conc., mM	S.A	CC.A	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
C. I. Solvent Yellow 14 [CISY14, M.W. = 248.30]					
Trial 1 [7]					
B(a)P .000791	1.52 48.4	212 (20)	10.0***	+ 26.6	
B(a)P .000250	3.41 56.9	41 (19)	1.80***	+ 7.07	
CIS .242	6.06 70.4	13 (19)	.535*	+ 2.69	
CIS .121	13.6 66.5	16 (19)	.739***	+ 4.72	
CIS .0605	19.7 66.2	16 (19)	.713***	+ 4.33	
CIS .0303	20.1 75.8	12 (19)	.480*	+ 2.34	
NC-1 Control 100. 100.	7 (36)	.135 Control	Mean t = 3.52		
Trial 2 [67]					
B(a)P .000791	5.87 34.4	48 (20)	2.07***	+ 8.71	
B(a)P .000250	20.8 63.9	39 (20)	.969***	+ 3.32	
CISY14 .242	34.9 73.9	16 (20)	.634***	+ 3.79	
CISY14 .161	52.5 80.7	26 (20)	.927***	+ 4.18	
CISY14 .0805	52.8 79.5	28 (20)	1.09***	+ 5.23	
CISY14 .0403	56.5 83.4	21 (20)	.888***	+ 5.34	
NC-1 Control 100. 100.	5 (39)	.085 Control	Mean t = 4.64		
Trial 3 [IP17]					
B(a)P .000791	0.00 ND	100 (15)	5.28***	+ 8.30	
B(a)P .000250	3.1 ND	84 (15)	5.27***	+ 11.4	
CISY14 .201	0.00 ND	15 (15)	.838	+ 1.63	
CISY14 .101	5 ND	21 (15)	1.12*	+ 2.36	
CISY14 .0503	5 ND	19 (14)	1.16*	+ 2.50	
NC-1 Control 100. 100.	5 (39)	.411 Control	Mean t = 2.16		
Trial 4 [IP18]					
B(a)P .000791	1.33 3.77	110 (12)	8.86***	+ 20.5	
B(a)P .000250	2.67 22.1	82 (12)	6.31***	+ 10.7	
CISY14 .242	1.71 10.6	6 (12)	.348	+ .98	
CISY14 .161	5.15 14.7	12 (12)	.861***	+ 3.68	
CISY14 .0805	11.2 35.7	25 (12)	1.73***	+ 4.82	
CISY14 .0403	22.3 58.1	19 (12)	1.32***	+ 4.23	
NC-1 Control 100. 100.	6 (24)	.189 Control	Mean t = 3.43		

^aTrial was conducted in 100mm culture dishes.

1,3-Dibromo-3-Chloropropane [DBCP, M.W. = 236.35, Density = 2.093 g/ml]

Trial 1 [23]

Drug Concentration	Cytotoxic Activity RCE (%)	Transforming Activity	Transformation Response	Significance
DBCP .213	.00 98.2	14 (18)	.572	0.00 (- .37)
DBCP .159	2.4 85.6	19 (18)	.957	+ 1.17
DBCP .106	6.06 93.1	16 (18)	.698	+ .16
DBCP .0531	39.4 95.4	20 (18)	.590	0.00 (- .26)
NC-1 Control 100. 100.	23 (27)	.661 Control	Mean t = .333	

Trial 2 [27]

Drug Concentration	Cytotoxic Activity RCE (%)	Transforming Activity	Transformation Response	Significance
DBCP .531	.00 36.9	163 (18)	8.21***	+ 12.0
DBCP .398	1.24 67.0	111 (18)	5.51***	+ 9.35
DBCP .266	9.94 81.1	36 (18)	1.64***	+ 3.26
DBCP .133	35.7 70.2	17 (18)	.765	+ .83
NC-1 Control 100. 100.	31 (36)	.555 Control	Mean t = 6.36	

(Continued on next page)
Appendix B. Continued.

Treatment Conditiona	Cytotoxic Activityb	Transforming Activityf	Transformation Responseg	Significanceh	
Drug Conc., mM	S.A.	CC.A.	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
				Control	
B(a)P 0.000791	9.64 69.9	99 (18)	4.65***	+ 9.48	
B(a)P 0.000250	19.3 93.1	45 (18)	2.22***	+ 5.22	
DBCP 0.708	0.00 1.33	9 (18)	0.392	0.00 (- 1.65)	
DBCP 0.531	0.00 7.73	51 (18)	2.27***	+ 4.97	
DBCP 0.354	1.68 34.7	109 (18)	5.09***	+ 9.56	
DBCP 0.177	13.4 70.1	47 (18)	2.14***	+ 4.77	
NC-1 Control 100.	64 (72)	.697	Control	Mean t = 4.83	
2.6-Dichloro-p-Phenylenediamine [26DCPD. M.W. = 177.]					
Trial 1 [32]					
B(a)P 0.000791	10.1 51.7	197 (19)	10.1***	+ 12.6	
B(a)P 0.000250	6.37 77.4	115 (20)	5.46***	+ 6.94	
26DCPD 1.130	0.00 39.5	68 (20)	2.96	+ 1.91	
26DCPD 1.847	1.87 62.7	86 (20)	4.07***	+ 4.63	
26DCPD 0.565	4.12 76.0	101 (20)	4.05**	+ 3.41	
26DCPD 0.282	4.16 86.3	38 (20)	1.55	+ 0.00 (- 1.08)	
NC-1 Control 100.	91 (38)	1.99	Control	Mean t = 2.50	
Trial 2 [54]					
B(a)P 0.000791	1.47 17.6	105 (20)	4.75***	+ 13.8	
B(a)P 0.000250	4.90 61.1	100 (20)	4.52***	+ 13.5	
26DCPD 1.130	0.00 35.8	17 (20)	.677*	+ 2.51	
26DCPD 1.847	2.94 55.7	21 (20)	.865**	+ 3.27	
26DCPD 0.565	4.41 90.5	11 (20)	.443	+ 1.25	
26DCPD 0.282	34.9 89.5	11 (20)	.423	+ 1.08	
NC-1 Control 100.	15 (40)	.265	Control	Mean t = 2.03	
1,3-Dichloropropene [13DCP. M.W. = 110.98. Density = 1.217 g/ml]					
Trial 1 [79]					
B(a)P 0.000791	22.7 79.6	279 (13)	20.8***	+ 13.9	
B(a)P 0.000250	39.3 94.2	241 (18)	12.9***	+ 9.34	
13DCP .308	0.00 59.0	263 (18)	13.9***	+ 8.91	
13DCP .231	0.00 91.8	194 (18)	9.08***	+ 3.53	
13DCP .154	.413 96.6	93 (18)	4.74	0.00 (- .48)	
13DCP .0770	40.1 108.	80 (18)	4.01	0.00 (- 1.49)	
NC-1 Control 100.	430 (72)	5.12	Control	Mean t = 3.11	
Trial 2 [94]					
B(a)P 0.000791	0.00 75.7	122 (18)	5.92***	+ 6.26	
B(a)P 0.000250	17.4 114.	81 (18)	3.88***	+ 4.08	
13DCP .330	0.00 .000	11 (11,18)	.753	0.00 (- 1.80)	
13DCP .247	0.00 63.2	33 (18)	1.41	0.00 (- .26)	
13DCP .165	0.00 132.	37 (18)	1.47	0.00 (- .12)	
13DCP .0824	0.00 155.	21 (18)	.634	0.00 (- 2.58)	
NC-1 Control 100.	150 (71)	1.52	Control	Mean t = .000	
Trial 3 [104]					
B(a)P 0.000791	25.0 64.5	62 (18)	2.79***	+ 4.87	
B(a)P 0.000250	50.6 89.6	63 (18)	2.47***	+ 4.10	

(Continued on next page)
Appendix B. Continued.

Drug	Conc., mM	S.A	CC.A.	Type Vessels	Focus Type	Significance*	
				III (N)			
				Mean t = 1.75			
				Mean t = 15.2			
				Mean t = 6.66			

Diglycidyl Resorcinol Ether [DIG, M.W. = 222.26, Density = 1.21 g/ml]

Trial 1 [6]

B(a)P	.000791	1.71	30.6	175 (18)	9.16*** + 21.9
	.00250	13.7	85.9	101 (18)	5.42*** + 18.5
DIG	.00953	2.02	.000	0 (2,18)	.000 (- .742)
DIG	.00626	3.63	.588	31 (7,18)	1.51 + 1.25
DIG	.00408	5.24	19.4	230 (18)	11.8*** + 20.1
DIG	.00218	17.7	80.0	71 (18)	3.49*** + 10.3
NC-1	Control	100.	100.	18 (74)	.348 Control

Dichlorvos [DCV, M.W. = 220.98, Density = 1.415 g/ml]

Trial 1 [68]

B(a)P	.000791	3.60	51.9	91 (18)	4.63*** + 3.24
	.00250	4.50	77.2	37 (18)	1.73*** + 15.0
DCV	.181	.000	.000	4 (13,18)	.211 (- .11)
DCV	.0905	16.7	83.2	11 (18)	.433 + 1.38
DCV	.0452	50.0	101.	2 (18)	.080 (- 1.43)
DCV	.0226	73.9	101.	4 (18)	.167 (- .53)
NC-1	Control	100.	100.	11 (36)	.226 Control

Trial 2 [98]

B(a)P	.000791	8.38	79.6	132 (18)	6.82*** + 11.8
	.00250	29.3	91.3	75 (18)	3.38*** + 6.81
DCV	.181	.000	.000	0 (1,18)	.000 (- .92)
DCV	.136	.000	.186	7 (16,18)	.330 (- 1.38)
DCV	.0905	9.42	52.1	9 (18)	.370 (- 1.21)
DCV	.0452	67.0	83.5	9 (18)	.326 (- 1.43)
NC-1	Control	100.	100.	39 (45)	.618 Control

Trial 3 [DR15]

B(a)P	.000791	NA	NA		
DCV	.136	NA	16.6	187 (18)	9.84** + 8.82
DCV	.0905	NA	79.0	47 (18)	2.20 + 1.71
DCV	.0452	NA	98.3	6 (18)	.29 (- 2.88)
NC-1	Control	NA	100.	46 (18)	1.27 Control

(Continued on next page)
Appendix B. Continued.

Drug	Conc., mM	S.A	CC.A	Focus Data	Type Vessels	Focus Type	Significance
					III (N)	III	t-statistic
B(a)P	0.000791	6.09	80.6	116 (18)	6.11***	+ 4.93	
B(a)P	0.000250	14.9	84.2	184 (18)	9.84***	+ 9.74	
676384-L	0.162	0.002	2.49	17 (6,18)	1.98	0.00 (-1.40)	
676384-L	0.136	0.426	26.6	96 (18)	4.47	0.00 (-1.57)	
676384-L	0.0910	8.94	72.2	97 (18)	4.83*	+ 2.09	
676384-L	0.0450	37.4	88.4	41 (18)	2.01	0.00 (-2.36)	
NC-1	Control	100.	100.	296 (72)	3.28		

Trial 1 [78]

Trial 2 [90]

Drug	Conc., mM	S.A	CC.A	Focus Data	Type Vessels	Focus Type	Significance
					III (N)	III	t-statistic
B(a)P	0.000791	28.5	76.0	157 (18)	7.60***	+ 5.89	
B(a)P	0.000250	51.8	95.8	110 (18)	4.91***	+ 3.71	
676384-L	0.159	0.000	1.95	27 (14,17)	1.51	0.00 (-0.78)	
676384-L	0.119	0.000	24.7	103 (18)	4.85***	+ 3.76	
676384-L	0.080	52.5	83.6	104 (18)	4.10***	+ 2.82	
676384-L	0.040	107.	114.	85 (18)	2.91	+ 1.41	
NC-1	Control	100.	100.	219 (71)	1.95		

2,4-Dinitrotoluene [24DNT. M.W. = 182.14]

Trial 1 [46]

Trial 2 [55]

Drug	Conc., mM	S.A	CC.A	Focus Data	Type Vessels	Focus Type	Significance
					III (N)	III	t-statistic
B(a)P	0.00791	5.52	35.7	127 (20)	6.14***	+ 12.4	
B(a)P	0.00250	22.4	81.1	75 (20)	3.32***	+ 8.63	
24DNT	2.333	0.000	0.000	0 (5,20)	.000	0.00 (-4.15)	
24DNT	1.167	11.0	55.1	38 (20)	1.61***	+ 4.70	
24DNT	0.583	56.6	85.8	20 (20)	.527	+ 0.66	
24DNT	0.292	79.7	93.3	7 (20)	.275	0.00 (-0.67)	
NC-1	Control	100.	100.	24 (40)	.384		

Trial 3 [DR12]

Drug	Conc., mM	S.A	CC.A	Focus Data	Type Vessels	Focus Type	Significance
					III (N)	III	t-statistic
MNNG	0.00850	60.8	NA	262 (20)	11.7***	+ 19.0	
24DNT	1.373	23.0	NA	2 (20)	.072	0.00 (-3.10)	
24DNT	0.686	41.6	NA	6 (20)	.196	0.00 (-1.76)	
24DNT	.343	79.0	NA	12 (20)	.357	0.00 (-0.68)	
NC-1	Control	100.	100.	13 (20)	.503		

Epichlorohydrin [EPCH. M.W. = 92.53. Density = 1.181 g/ml]

Trial 1 [68]

Drug	Conc., mM	S.A	CC.A	Focus Data	Type Vessels	Focus Type	Significance
					III (N)	III	t-statistic
B(a)P	0.000791	3.60	51.9	91 (18)	4.65**	+ 3.24	
B(a)P	0.000250	4.50	77.2	37 (18)	1.73***	+ 15.0	

(Continued on next page)
Appendix B. Continued.

Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels	Foci/Vessel Focus Type	Significance
EPCH	.670	.000	.000	0 (0, 17)	.000	ND
EPCH	.447	.000	.531	0 (3, 18)	.000	+ .00 (-3.60)
EPCH	.223	.450	73.6	39 (18)	1.57***	+ 4.51
EPCH	.112	33.8	105.	8 (18)	.260	+ .24
NC-1 Control	100.	100.	11 (36)	.226	Control	

Mean t = 2.38

1,2-Epoxybutane [835701-L. M.W. = 72.11. Density = 0.8297 g/ml]

Trial 1 [79]

| B(a)P | .000791 | 22.7 | 79.6 | 279 (18) | 20.8*** | + 13.9 |
| B(a)P | .000250 | 39.3 | 94.2 | 241 (18) | 12.9*** | + 9.34 |

Mean t = ND

Trial 2 [104]

| B(a)P | .000791 | 25.0 | 64.5 | 62 (18) | 2.79*** | + 4.87 |
| B(a)P | .000250 | 50.6 | 89.6 | 63 (18) | 2.47*** | + 4.10 |

Mean t = 3.64

Trial 3 [108]

| B(a)P | .000791 | 15.5 | 31.3 | 139 (18) | 7.38*** | + 13.9 |
| B(a)P | .000250 | 30.0 | 65.7 | 72 (13) | 4.77*** | + 5.96 |

Mean t = 2.50

1,2-Epoxypropane [12EP. M.W. = 58.08. Density = NA g/ml]

Trial 1 [72]

| B(a)P | .000791 | 2.75 | 56.8 | 85 (18) | 4.11*** | + 12.7 |
| B(a)P | .000250 | 6.61 | 82.1 | 84 (18) | 3.04*** | + 6.20 |

Mean t = 4.04
Appendix B. Continued.

Treatment Conditionα	Cytotoxic Activityα	Transforming Activityα	Transformation Responseα	Significanceα				
Drug	Conc., mM	S.A.	CC.A.	Focus Data	Foci/Vessel Focus Type	t-statistic	Mean t	
				Type Vessels	III	III		
				(N)				
Trial 2 [88]								
B(a)P	0.000791	15.8	73.9	54 (15)	3.36***	+ 9.58		
B(a)P	0.000250	35.4	82.6	24 (15)	1.50***	+ 4.90		
12EP	1.38	0.000	74.0	39 (18)	1.90***	+ 6.22		
12EP	1.03	5.92	82.2	60 (17)	2.73***	+ 6.05		
12EP	0.699	28.4	87.4	29 (14)	1.81***	+ 5.41		
12EP	0.344	83.6	93.8	7 (6)	1.04*	+ 2.04		
NC-1 Control	100. 100.	100.	100.	37 (67)	.406	Control		
Ethylene Dibromide [EDB. M.W. = 187.88. Density = 2.177 g/ml]								
Trial 1 [74]								
B(a)P	0.000791	3.00	69.2	43 (18)	2.02***	+ 4.51		
B(a)P	0.000250	9.58	78.4	27 (18)	1.29*	+ 2.49		
EDB	0.852	0.000	48.5	137 (18)	7.33***	+ 18.7		
EDB	0.639	35.9	97.2	89 (18)	3.86***	+ 7.81		
EDB	0.426	62.3	104.	50 (18)	2.46***	+ 5.66		
EDB	0.213	105.	93.8	59 (18)	1.51	+ 1.93		
NC-1 Control	100. 100.	100.	100.	65 (71)	.657	Control		
Mean t = 8.53								
Trial 2 [92]								
B(a)P	0.00250	0.394	45.3	69 (18)	3.54***	+ 8.31		
B(a)P	0.000791	18.2	72.2	44 (18)	2.14***	+ 5.20		
B(a)P	0.000250	19.4	78.2	32 (17)	1.52**	+ 3.32		
EDB	0.958	0.396	54.1	33 (16)	1.68***	+ 3.68		
EDB	0.719	2.77	80.5	38 (18)	1.90***	+ 4.71		
EDB	0.479	28.1	94.6	26 (18)	1.20*	+ 2.45		
EDB	0.240	72.8	89.5	16 (18)	.698	+ .47		
NC-1 Control	100. 100.	100.	100.	62 (71)	.597	Control		
Mean t = 1.51								
HC Blue 1 [HCB1. M.W. = 256.31]								
Trial 1 [15]								
B(a)P	0.000791	.851	12.4	209 (20)	8.95***	+ 15.8		
B(a)P	0.000250	3.83	56.7	72 (20)	3.40***	+ 14.9		
HCB1	2.35	1.28	32.5	11 (17)	.488	+ 2.13		
HCB1	1.76	2.55	83.7	11 (20)	.423	+ 1.86		
HCB1	1.18	16.2	101.	9 (19)	.291	+ .71		
HCB1	0.588	87.7	121.	11 (19)	.397	+ 1.35		
NC-1 Control	100. 100.	100.	100.	10 (39)	.186	Control		
Mean t = 1.51								
Trial 2 [21]								
B(a)P	0.000791	.441	46.1	133 (18)	6.92***	+ 15.8		
B(a)P	0.000250	1.32	75.8	63 (19)	3.11***	+ 10.5		
HCB1	2.45	0.000	0.000	6 (7,19)	.524	+ .72		
HCB1	1.75	0.000	39.8	17 (18)	.671	+ 1.65		
HCB1	1.05	1.32	97.9	4 (17)	.177	+ .00 (- 1.22)		
HCB1	0.526	54.6	103.	15 (18)	.576	+ 1.25		
NC-1 Control	100. 100.	100.	100.	19 (40)	.347	Control		
Mean t = .725								
Trial 3 [DR12]								
MNG	.00850	60.8	NA	242 (20)	11.7***	+ 19.0		
HCB1	2.45	49.8	NA	26 (20)	1.07*	+ 2.18		
HCB1	1.23	51.9	NA	51 (19)	2.08***	+ 4.12		
HCB1	.613	92.0	NA	46 (19)	1.65**	+ 2.98		
NC-1 Control	100. 100.	100.	100.	13 (20)	.503	Control		
Mean t = 3.09								

(Continued on next page)
Iodinated Glycerol [513502-L, M.W. = 258.07, Density = 1.797 g/ml]

Drug	Conc., mM	S.A.	CC.A.	RCE (%)	Focus Data	Foci/Vessel	Focus Type	T-Statistic	Significance
NC-1	Control	100	100		74 (43)	.657	Control	Mean t = 6.04	

Trial 1 [74]

B(a)P	.000791	3.00	69.2	43 (17)	2.02***	+ 4.51		
B(a)P	.000250	9.58	78.4	27 (17)	1.29*	+ 2.69		
513502-L	2.69	.000	.000	9 (13)	0.498	.00 (-.67)		
513502-L	2.02	.000	50.6	89 (18)	4.22***	+ 8.41		
513502-L	1.35	.000	86.4	99 (17)	4.29***	+ 6.11		
513502-L	.673	10.2	102.2	37 (18)	1.68***	+ 3.61		
NC-1	Control	100	100		65 (71)	.657	Control	Mean t = 6.04

Trial 2 [106]

B(a)P	.000791	24.8	56.9	134 (18)	6.88***	+ 8.00		
B(a)P	.000250	40.7	77.9	91 (18)	4.53***	+ 5.56		
513502-L	2.69	.000	1.31	6 (8)	0.622	.00 (-1.58)		
513502-L	2.02	.000	24.7	24 (18)	.923	.00 (-1.06)		
513502-L	1.35	.000	68.5	42 (18)	2.13	+ 1.99		
513502-L	.673	16.8	95.4	42 (18)	2.11	+ 1.95		
NC-1	Control	100	100		74 (43)	.660	Control	Mean t = 1.31

Melphalan [MELP, M.W. = 305.23]

Trial 1 [80]

MELP	.00721	.890	3.40	0 (0)	.000	NA		
MELP	.00361	2.67	6.16	0 (0)	.000	NA		
MELP	.00180	8.01	30.3	48 (20)	1.72	.00 (-2.44)		
MELP	.00090	46.3	75.9	113 (20)	5.10***	+ 2.73		
NC-1	Control	100	100		317 (80)	3.02	Control	Mean t = 1.37

Trial 2 [96]

B(a)P	.000791	11.0	43.5	86 (20)	4.03***	+ 9.40		
B(a)P	.000250	38.9	75.4	62 (20)	2.88***	+ 7.12		
MELP	.00262	5.11	6.66	13 (20)	.443	.00 (-1.11)		
MELP	.00197	14.9	26.2	37 (20)	1.70***	+ 5.21		
MELP	.00131	32.6	47.0	62 (20)	2.92***	+ 9.30		
MELP	.000655	76.6	104.1	43 (20)	1.92***	+ 4.71		
NC-1	Control	100	100		62 (70)	.660	Control	Mean t = 4.81

N-Methyl-o-Acrylamide [027516-S, M.W. = 101.11]

Trial 1 [70]

B(a)P	.000791	1.26	48.9	11 (3)	3.38***	+ 4.23
B(a)P	.000250	11.8	81.0	19 (5)	3.62***	+ 5.73
027516-S	5.00	.000	.000	0 (0)	.000	NA
027516-S	2.50	.000	2.89	7 (12)	.381	.00 (-.72)
027516-S	1.25	.000	85.2	27 (16)	1.27**	+ 2.97
027516-S	.625	15.5	107.5	12 (16)	.542	+ .08
NC-1A+18	Control	100	100	36 (54)	.526	Control

Trial 2 [85]

B(a)P	.000791	18.8	55.6	133 (20)	3.43***	+ 5.10
B(a)P	.000250	28.7	91.8	66 (19)	2.10***	+ 4.56

(Continued on next page)
Appendix B. Continued.

Treatment Conditiona	Cytotoxic Activityb	Transforming Activityc	Transformation Activityd	Significancee		
Drug	Conc., mM	S.A.	C.C.A.	Focus Data	Foci/Vessel	t-statistic
		RCE (%)		III (N)	Type Vessel	
027516-S 2.00	.000 20.2	76 (19)	3.41***	+ 10.5		
027516-S 1.50	.000 69.8	32 (20)	1.17***	+ 4.28		
027516-S 1.00	10.4 100.	9 (20)	.327	+ .10		
027516-S .500	34.7 101.	18 (20)	.445	+ .65		
NC-1 Control	100. 100.	38 (80)	.313	Control		
			Mean t = 3.88			

4,4-Methylenedianiline [44MD. M.W. = 271.21]

Trial 1 [40]
B(a)P .000791 1.06 39.7 182 (19) 8.71*** + 14.9
B(a)P .000250 8.48 79.2 101 (18) 4.86*** + 9.93

Trial 2 [55]
B(a)P .000791 2.26 23.9 133 (20) 5.49*** + 15.2
B(a)P .000250 4.07 62.4 48 (20) 1.88*** + 7.12

N-Methyl-N’-Nitro-N-Nitrosoguanidine [MNNG. M.W. = 147.1]

Trial 1 [93]
B(a)P .000791 2.65 46.7 138 (20) 6.48*** + 16.8
B(a)P .000250 7.96 79.9 115 (20) 4.80*** + 12.0

MNNG .0204 1.00 1.58 19 (20) .634 + 1.02
MNNG .0153 0.00 14.2 102 (19) 4.54*** + 9.02
MNNG .0102 8.85 46.7 169 (20) 8.01*** + 18.8
MNNG .00510 21.2 90.2 80 (19) 3.83*** + 11.7
NC-1 Control 100. 100. 43 (79) .416 Control
Mean t = 10.1

Trial 2 [IP2]
B(a)P .000791 ND ND
B(a)P .000250 ND ND

MNNG .0170 30.0 ND 228 (20) 10.9*** + 13.2
MNNG .00850 81.0 ND 219 (20) 6.51*** + 5.64
MNNG .00425 79.6 ND 101 (20) 3.47*** + 3.72
NC-1 Control 100. ND 71 (40) 1.13 Control
Mean t = 7.52

2-Naphthylamine [2NAP. M.W. = 143.18]

Trial 1 [13]
B(a)P .000791 .823 30.6 95 (20) 4.38*** + 14.2
B(a)P .000250 2.06 75.4 66 (20) 3.14*** + 15.7

2NAP 1.40 .000 34.8 9 (20) .347 + 1.20
2NAP .698 4.12 73.1 21 (20) .850*** + 4.14
2NAP .348 14.0 99.2 25 (20) 1.05*** + 5.21
2NAP .175 51.9 95.7 14 (18) .608*** + 2.75
NC-1 Control 100. 100. 11 (40) .201 Control
Mean t = 3.33

(Continued on next page)
Appendix B. Continued.

Drug	Conc., mM	S.A	CC.A	Focus Data	Foci/Vessel	Significance
B(a)P	0.000791	3.82	13.5	204 (20)	9.88***	+ 17.8
B(a)P	0.000250	1.15	56.2	144 (20)	6.58***	+ 10.5
2NAP	1.05	.763	101.	112 (20)	4.57***	+ 7.41
2NAP	.698	11.1	93.4	49 (20)	2.09***	+ 3.55
2NAP	.348	46.6	94.5	42 (20)	1.86***	+ 3.08
NC-1 Control	100. 100.	71.0	97.8	38 (20)	1.50	+ 1.92
NC-1 Control	100. 100.	46	46	46 (40)	.907	Control

Nitrofurazone [196993-S, M.W. = 198.14]

Drug	Conc., mM	S.A	CC.A	Focus Data	Foci/Vessel	Significance
B(a)P	0.000791	2.65	46.7	138 (20)	6.48***	+ 16.8
B(a)P	0.000250	7.96	79.9	115 (20)	4.80***	+ 12.0
291535-S	.167	.000	.90	3 (20)	.110	.00 (- 3.34)
291535-S	.125	.000	.317	31 (20)	1.17***	+ 2.99
291535-S	.0833	21.2	44.3	59 (20)	2.59***	+ 8.73
291535-S	.0417	97.3	105.	15 (20)	.578	+ 1.03
NC-1 Control	100. 100.	100	100	12 (40)	.222	Control

Nitrofurantoin [291535-S, M.W. = 238.16]

Drug	Conc., mM	S.A	CC.A	Focus Data	Foci/Vessel	Significance
B(a)P	0.000791	4.48	50.7	251 (20)	11.0***	+ 12.1
B(a)P	0.000250	18.1	68.7	77 (20)	3.50***	+ 7.12
196993-S	1.00	.000	.000	0 (0,19)	.000	NA
196993-S	.750	.000	.000	0 (0,20)	.000	NA
196993-S	.500	.000	.000	0 (0,19)	.000	NA
196993-S	.250	.000	.000	16 (20)	.196	.00 (- 4.94)
NC-1 Control	100. 100.	110	110	110 (75)	1.06	Control

Trial 3 [87]

Drug	Conc., mM	S.A	CC.A	Focus Data	Foci/Vessel	Significance
B(a)P	0.000791	25.1	77.0	59 (20)	2.26***	+ 5.84
B(a)P	0.000250	42.2	80.2	34 (20)	1.45***	+ 5.24
196993-S	.0750	.000	16.6	57 (20)	2.33***	+ 7.56
196993-S	.0563	1.09	35.0	64 (20)	2.60***	+ 8.33
196993-S	.0375	3.27	72.1	29 (20)	1.16***	+ 3.89
196993-S	.0188	45.1	90.0	10 (20)	.374	+ 1.18
NC-1 Control	100. 100.	43	43	43 (80)	.346	Control

(Continued on next page)
Appendix B. Continued.

Drug	Conc., mM	S.A.	C.C.A.	RCE (%)	Focus Data	Foci/Vessel	Significance*	
					Type Vessels	III (N)	III	f-statistic
Treatment Cytotoxic Transforming Response	**Activity**	**Activity**						
Condition	**Activity**	**Response**						
Drug	Conc., mM	S.A.	C.C.A.		Type Vessels	III (N)	III	f-statistic
4,4-Oxydianiline [OXY. M.W. = 200.24]								
Trial 1 [1]								
B(a)P .0000791	9.75	56.3	171 (20)	8.16*** + 12.1				
B(a)P .000250	15.5	91.0	114 (20)	5.18*** + 6.68				
OXY .674	.000	10.4	17 (20)	.644	.00 (-2.66)			
OXY .549	.000	32.6	36 (20)	1.41	.00 (-.06)			
OXY .370	1.08	73.6	51 (20)	2.34* + 2.31				
OXY .165	26.0	117.	70 (20)	3.28*** + 4.92				
NC-1 Control	100.	100.	73 (40)	1.44	Control			
Trial 2 [8]								
B(a)P .0000791	1.45	5.83	244 (19)	10.7*** + 8.19				
B(a)P .000250	4.35	52.4	254 (20)	11.8*** + 11.2				
OXY .499	.000	.000	32 (20)	1.25	.00 (-2.24)			
OXY .375	.000	92.8	68 (20)	2.93	+ 1.38			
OXY .250	2.90	25.2	134 (20)	5.88** + 5.12				
OXY .125	22.2	89.3	163 (20)	7.70*** + 8.36				
NC-1 Control	100.	100.	110 (40)	2.19	Control			
Trial 3 [9]								
B(a)P .0000791	3.81	12.4	209 (20)	8.95*** + 15.8				
B(a)P .000250	3.83	56.7	72 (20)	3.40*** + 14.9				
2NPD .653	.426	.000	0 (8,20)	.000	.00 (-3.31)			
2NPD 3.27	.851	9.64	22 (19)	.965** + 4.84				
2NPD 1.63	2.31	11.6	27 (20)	.977** + 3.55				
2NPD .816	4.26	54.0	50 (20)	2.16*** + 8.23				
NC-1 Control	100.	100.	10 (39)	.186	Control			
Quinoline [QUIN. M.W. = 129.16. Density = 1.095 g/ml]								
Trial 1 [16]								
B(a)P .0000791	11.0	43.5	86 (20)	4.03*** + 9.40				
B(a)P .000250	38.9	75.4	62 (20)	2.88*** + 7.12				
2NPD 1.63	3.54	61.7	35 (19)	1.57** + 3.39				
2NPD 1.22	7.47	62.1	29 (18)	1.17	+ 1.93			
2NPD .816	19.3	60.4	46 (19)	2.28*** + 7.57				
2NPD .408	64.8	82.5	43 (19)	1.93*** + 4.64				
NC-1 Control	100.	100.	62 (70)	.600	Control			
Mean t = 4.38								

(Continued on next page)
Appendix B. Continued.

Treatment Condition*	Cytotoxic Activityb RCE (%)	Transforming Activityc Focus Data Type Vessels III (N)	Transformation Responsec Foci/Vessel Focus Type III	Significance* t-statistic
Drug Conc., mM S.A CC.A.				
QUIN 1.70	8.81 94.3	6 (18)	.260	.00 (- .570)
QUIN 1.10	27.8 96.8	7 (18)	.289	.00 (- .36)
QUIN .551	53.3 94.6	2 (18)	.080	.00 (- 2.51)
QUIN .276	99.1 109.	4 (18)	.148	.00 (- 1.40)
NC-1 Control 100. 100.	17 (36)	.344	Control	
Trial 2 [27]				
B(a)P .000791	4.04 33.7	170 (18)	8.90***	+ 14.8
B(a)P .000250	13.0 47.4	73 (18)	3.18***	+ 5.71
QUIN 2.54	17.4 77.4	16 (18)	.737	+ .73
QUIN 1.70	23.6 95.2	18 (18)	.765	+ .81
QUIN .848	52.8 81.1	14 (18)	.537	.00 (- .07)
QUIN .424	91.3 44.2	5 (18)	.193	.00 (- 2.12)
NC-1 Control 100. 100.	31 (36)	.555	Control	
Trial 3 [31]				
B(a)P .000791	1.87 69.1	136 (15)	8.63***	+ 11.1
B(a)P .000250	5.14 99.9	126 (18)	6.06***	+ 8.51
QUIN 6.32	.00 0.485	2 (4,18)	.316	.00 (- 1.330)
QUIN 4.24	.467 29.1	39 (17)	1.80*	+ 2.29
QUIN 3.18	9.35 64.0	33 (18)	1.59*	+ 2.05
QUIN 2.12	12.6 93.1	28 (18)	1.36	+ 1.44
NC-1 Control 100. 100.	43 (36)	.930	Control	
Trial 4 [104]				
B(a)P .000791	25.0 64.5	62 (18)	2.79***	+ 4.87
B(a)P .000250	50.6 89.6	63 (18)	2.67***	+ 4.10
QUIN	.00 22.5	21 (14,18)	.950	+ .22
QUIN 21.8	72.8	51 (18)	2.37***	+ 4.11
QUIN 46.5	101.	66 (18)	3.22***	+ 5.83
QUIN 65.8	96.2	32 (18)	1.47	+ 1.94
NC-1 Control 100. 100.	83 (71)	.878	Control	
Selenium Sulfide [SESU, M.W. = 111.02]				
Trial 1 [7]				
B(a)P .000791	1.52 48.4	212 (19)	10.0***	+ 26.6
B(a)P .000250	3.41 56.9	41 (20)	1.80***	+ 7.07
SESU .180	.758 21.3	26 (19)	1.06***	+ 4.34
SESU .108	14.4 48.7	18 (18)	.793**	+ 3.69
SESU .0721	22.0 45.6	13 (20)	.503*	+ 2.56
SESU .0360	57.2 76.2	11 (19)	.761**	+ 2.78
NC-1 Control 100. 100.	7 (36)	.135	Control	
Trial 2 [11]				
B(a)P .000791	1.37 34.4	128 (20)	4.94**	+ 10.5
B(a)P .000250	7.22 36.0	37 (20)	1.62**	+ 5.38
SESU .180	6.19 49.5	7 (18,20)	.309	+ .06
SESU .108	14.4 103.	16 (20)	.410	+ .56
SESU .0721	25.1 125.	6 (20)	.214	+ .00 (- .56)
SESU .0360	32.6 131.	15 (20)	.322	+ .11
NC-1 Control 100. 100.	21 (40)	.301	Control	
Trial 3 [97]				
B(a)P .000791	4.74 78.0	118 (20)	5.02***	+ 12.5
B(a)P .000250	17.4 104.	52 (20)	2.26***	+ 7.26

(Continued on next page)
Appendix B. Continued.

Drug	Conc., mM	S.A	CC.A.	Focus Data	Transforming Activity	Transformation Activity	Significance	t-statistic
SESU	.225	79.8	84.6	22 (16)	.956*	+ 2.45	Mean t = 2.24	
SESU	.169	92.5	85.4	22 (19)	1.03**	+ 3.17		
SESU	.113	111.	84.6	18 (18)	.765	+ 1.81		
SESU	.0563	115.	92.0	44 (19)	.916	+ 1.51		
NC-1	Control	100.	100.	47 (80)	.614	Control		
OTOL	4.70	1.32	88.3	22 (18)	.950**	+ 2.81		
OTOL	3.06	5.73	90.5	11 (18)	.409	+ .37		
OTOL	1.41	26.4	100.	10 (18)	.414	+ .42		
OTOL	.705	44.1	109.	6 (18)	.212	.00 (-.87)		
NC-1	Control	100.	100.	17 (36)	.344	Control		
OTOL	9.41	NA	6.77	25 (17,18)	1.25**	+ 5.90		
OTOL	7.05	NA	12.5	30 (18)	1.67**	+ 7.50		
OTOL	4.70	NA	26.6	39 (18)	2.01***	+ 12.6		
OTOL	2.35	NA	92.0	57 (18)	2.80***	+ 11.1		
NC-1	Control	NA	100.	5 (36)	.101	Control		
OTOL	4.70	6.28	80.4	33 (18)	1.62***	+ 3.48		
OTOL	3.53	7.33	79.4	60 (18)	2.78***	+ 5.73		
OTOL	2.35	12.6	81.1	60 (18)	2.38***	+ 4.87		
OTOL	1.18	23.0	86.8	38 (18)	1.63**	+ 3.17		
NC-1	Control	100.	100.	39 (45)	.618	Control		

Ziram [ZIRAM, M.W. = 305.81]

Drug	Conc., mM	S.A	CC.A.	Focus Data	Transforming Activity	Transformation Activity	Significance	t-statistic
ZIRAM	.000791	5.66	69.5	179 (20)	8.33***	+ 13.6	Mean t = 1.17	
ZIRAM	.000250	16.5	78.7	114 (19)	5.53***	+ 10.0		
ZIRAM	.00164	.00	1.65	22 (19)	.825	.00 (-.63)		
ZIRAM	.0000818	.00	3.30	36 (19)	1.62*	+ 2.33		
ZIRAM	.0000409	4.72	27.8	34 (18)	1.58*	+ 2.12		
ZIRAM	.0000204	12.7	74.8	26 (16)	1.06	+ .24		
NC-1	Control	100.	100.	94 (78)	.972	Control		
ZIRAM	.000114	.00	2.12	40 (20)	1.62***	+ 5.21		
ZIRAM	.0000572	12.0	8.91	54 (20)	2.54***	+ 11.2		
ZIRAM	.0000286	56.4	78.5	8 (20)	.301	.00 (-.17)		
ZIRAM	.0000143	91.3	101.	27 (20)	.303	.00 (-.08)		
NC-1	Control	100.	100.	31 (75)	.322	Control		

Mean t = 4.10

(Continued on next page)
Appendix B. Continued.

Abbreviations: BaP, benzo(a)pyrene; CCA, co-culture clonal survival assay; Conc., concentration; mM, millimole; M.W., molecular weight; N, number of culture vessels, NC, negative control; ND; not determined; %RCE, percent relative cloning efficiency; S.A., standard clonal survival assay.

Treatment condition: The experimental design for the transformation assay is described in detail in the Materials and Methods. The concentration of the positive control and test chemical treatment are presented in mM, but they can be converted to μg/ml using the molecular weight that is provided with each chemical. The solvent vehicles used for the individual test chemicals were listed in Appendix Tables A1 and A3, and the concentrations of the solvent vehicles are presented in the Materials and Methods.

Cytotoxic activity: The experimental design for the standard survival assay (SA) and the co-culture clonal survival assay (CCA) were described in the Materials and Methods. The test chemical cytotoxic response was expressed as %RCE and was calculated as described in the Materials and Methods.

Criteria: The criteria used to evaluate the transformed foci of BALB/c-3T3 cells is described in the Materials and Methods. The number of type III foci > 2-mm in diameter per culture vessel scored are recorded in this table.

Transformation response: The transformation responses are expressed as type III foci/vessel and were calculated using a log_{10} mathematical transformation procedure (refer to Materials and Methods). The arithmetic value or foci/vessel represents the antilog of the log_{10} mean transformation response minus one.

Significance: The significance of test chemical transformation responses was calculated by a computer using the SAS statistical software (22), and the method is described in detail in Materials and Methods. The correct t-statistic according to the F-test is presented in this table. The t-statistics of each treatment dose of the test chemical in a single experiment were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Appendix Tables A2 and A5). The mean t-statistics for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank t-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (−) t-statistics were given a value of zero (0).

Significant BaP or test chemical transformation response, 0.01 < p ≤ 0.05.

**Significant BaP or test chemical transformation response, 0.001 < p ≤ 0.01.*

***Significant or BaP or test chemical transformation response, p ≤ 0.001.*
Appendix C.

Summary of the transformation responses of 21 cytotoxic, mutagenic noncarcinogens.

Drug	Treatment Condition*	Cytotoxic Activity* RCE (%)	Transforming Activity* Focus Data Type Vessels III (M)	Transformation Response* Foci/Vessel Focus Type III	Significance* t-statistic
4-Acetylaminofluorene					
Trial 1 [12]					
B(a)P*	.000791	90.7 99.0	61 (19)	2.90 ***	+ 13.1
B(a)P	.000250	77.6 114.	81 (17)	3.94 ***	+ 10.5
4AAF	1.79	47.3 123.	11 (18)	.432	+ 1.92
4AAF	1.31	63.5 129.	5 (19)	.200	+ .61
4AAF	.896	77.1 129.	5 (17)	.206	+ .61
4AAF	.448	71.9 128.	5 (18)	.212	+ .71
NC-1 Control	Control	100. 100.	8 (40)	.160 Control	Mean t = .963

*NOTE: B(a)P was accidentally not dosed in the standard and the co-culture clonal survival assays.

Drug	Treatment Condition*	Cytotoxic Activity* RCE (%)	Transforming Activity* Focus Data Type Vessels III (M)	Transformation Response* Foci/Vessel Focus Type III	Significance* t-statistic
4'-Chloroacetyl)acetalnilde					
Trial 1 [37]					
B(a)P	.000791	1.60 46.0	101 (20)	4.59***	+ 9.94
B(a)P	.000250	6.80 77.2	113 (20)	5.38***	+ 13.5
4CAA	.00375	5.00 57.1	55 (20)	2.37***	+ 5.49
4CAA	.00263	0.00 74.9	21 (20)	.702	+ .31
4CAA	.00189	1.60 90.9	21 (20)	.839	+ .92
4CAA	.00094	58.0 86.2	22 (20)	.787	+ .66
NC-1 Control	Control	100. 100.	32 (39)	.631 Control	Mean t = 1.85

Drug	Treatment Condition*	Cytotoxic Activity* RCE (%)	Transforming Activity* Focus Data Type Vessels III (M)	Transformation Response* Foci/Vessel Focus Type III	Significance* t-statistic
2-(Chloromethyl)pyridine-HCl					
Trial 1 [14]					
B(a)P	.000791	1.75 36.1	177 (20)	6.73***	+ 13.3
B(a)P	.000250	5.26 74.7	61 (20)	2.45***	+ 7.12
2CMP	.152	0.00 8.89	23 (20)	.938***	+ 4.28
2CMP	.107	4.82 73.0	12 (19)	.526*	+ 2.21
2CMP	.0535	36.4 103.	18 (20)	.550	+ 1.66
2CMP	.0267	93.0 108.	15 (20)	.452	+ 1.29
NC-1 Control	Control	100. 100.	12 (40)	.213 Control	Mean t = 2.36

Drug	Treatment Condition*	Cytotoxic Activity* RCE (%)	Transforming Activity* Focus Data Type Vessels III (M)	Transformation Response* Foci/Vessel Focus Type III	Significance* t-statistic
2-(Chloromethyl)pyridine-HCl					
Trial 2 [22]					
B(a)P	.000791	1.86 53.4	187 (20)	8.86***	+ 16.0
B(a)P	.000250	6.52 81.4	116 (20)	5.29***	+ 9.33

(Continued on next page)
Appendix C. Continued.

Drug	Conc., mM	S.A	CC.A	Focus Data	Transformation Activity	Transformation Activity	Significance
				Type Vessels	Foci/Vessel		t-statistic
				III (N)	Focus Type		
NC-1	Control	100	100	45 (40)	.893	Control	

3-Chloro-p-Toluidine [3CT. M.W. = 141.60]

Trial 1 [81]

Drug	Conc., mM	S.A	CC.A	Focus Data	Transformation Activity	Transformation Activity	Significance
				Type Vessels	Foci/Vessel		t-statistic
				III (N)	Focus Type		
NC-1	Control	100	100	45 (40)	.893	Control	

Trial 2 [92]

Drug	Conc., mM	S.A	CC.A	Focus Data	Transformation Activity	Transformation Activity	Significance
				Type Vessels	Foci/Vessel		t-statistic
				III (N)	Focus Type		
NC-1	Control	100	100	45 (40)	.893	Control	

Coumaphos [COU. M.W. = 362.78]

Trial 1 [30]

Drug	Conc., mM	S.A	CC.A	Focus Data	Transformation Activity	Transformation Activity	Significance
				Type Vessels	Foci/Vessel		t-statistic
				III (N)	Focus Type		
NC-1	Control	100	100	45 (40)	.893	Control	

Trial 2 [95]

Drug	Conc., mM	S.A	CC.A	Focus Data	Transformation Activity	Transformation Activity	Significance
				Type Vessels	Foci/Vessel		t-statistic
				III (N)	Focus Type		
NC-1	Control	100	100	45 (40)	.893	Control	

Trial 3 [99]

Drug	Conc., mM	S.A	CC.A	Focus Data	Transformation Activity	Transformation Activity	Significance
				Type Vessels	Foci/Vessel		t-statistic
				III (N)	Focus Type		
NC-1	Control	100	100	45 (40)	.893	Control	

(Continued on next page)
Drug	Conc., mM	S.A	C.C.A.	Treatment Condition	Cytotoxic Activity (RCE %)	Transforming Activity (RCE %)	Transformation Response (Focus/Vessel)	Significance
Dimethoate [CYGON, M.W. = 229.27, Density = 1.277 g/ml]								
Trial 1 [41]								
B(a)P	.000791	1.29	33.6	189 (18)	10.2***	+		
B(a)P	.000250	6.45	78.2	123 (18)	6.37***	+		
CYGON	.668	1.29	50.1	16 (18)	.655*	+		
CYGON	.334	14.8	78.2	16 (18)	.698*	+		
CYGON	.167	85.8	89.2	8 (18)	.309	+		
CYGON	.0835	91.3	103.	6 (18)	.260	+		
NC-1	Control	100	100.	13 (36)	.274	Control		
Trial 2 [94]								
B(a)P	.000791	.000	75.7	122 (18)	5.92***	+		
B(a)P	.000250	17.4	114.	81 (18)	3.88***	+		
CYGON	.835	2.05	55.9	117 (18)	6.33***	+		
CYGON	.627	2.05	53.5	129 (18)	6.26***	+		
CYGON	.418	14.4	64.6	69 (18)	3.39***	+		
CYGON	.209	40.0	123.	30 (18)	.935	+		
NC-1	Control	100	100.	150 (71)	1.52	Control		
2,4-Dimethoxyaniline-HCl [DMAN, M.W. = 189.66]								
Trial 1 [34]								
B(a)P	.000791	6.91	58.7	167 (20)	8.23***	+ 14.5		
B(a)P	.000250	19.3	84.5	138 (20)	6.39***	+ 7.66		
DMAN	1.32	.000	55.6	91 (20)	4.20***	+ 4.09		
DMAN	.923	.000	78.9	108 (20)	5.18***	+ 6.27		
DMAN	.527	.000	86.5	124 (20)	5.76***	+ 6.81		
DMAN	.264	9.09	69.5	127 (20)	5.85***	+ 6.63		
NC-1	Control	100	100.	108 (40)	2.51	Control		
Trial 2 [87]								
B(a)P	.000791	25.1	77.0	59 (20)	2.26***	+ 5.84		
B(a)P	.000250	42.2	80.2	34 (20)	1.45***	+ 5.24		
DMAN	1.58	.000	2.69	1 (18,20)	.039	.00(-4.02)		
DMAN	1.19	.000	58.7	18 (20)	.662	+ 1.79		
DMAN	.791	.000	77.3	17 (20)	.601	+ 1.46		
DMAN	.395	44.7	88.3	13 (20)	.460	+ .70		
NC-1	Control	100	100.	43 (80)	.346	Control		
Trial 3 [97]								
B(a)P	.000791	4.74	78.0	118 (20)	5.02***	+ 12.5		
B(a)P	.000250	17.4	104.	52 (20)	2.26***	+ 7.26		
DMAN	1.48	.000	.000	3 (16,20)	.139	.00(-2.50)		
DMAN	1.11	.000	10.9	7 (20)	.238	.00(-1.19)		
DMAN	.738	.000	60.2	16 (20)	.644	+ 1.32		
DMAN	.369	9.48	93.9	15 (17)	.711	+ 1.56		
NC-1	Control	100	100.	47 (80)	.414	Control		
HC Blue 2 [HCB2, M.W. = 285.34]								
Trial 1 [5]								
B(a)P	.000791	7.76	9.41	84 (19)	3.97***	+ 15.5		
B(a)P	.000250	12.5	12.5	57 (20)	2.58***	+ 12.5		

(Continued on next page)
Drug	Conc., MM	S.A	CC.A	Focus Data	Transforming Activity\(\%\)	Focus Type	Transformation Response\(\%\)	Significance*
HCB2	7.01	.000	.000	0 (20)	0.000	ND		
HCB2	5.84	.000	14.1	0 (20)	0.000	ND		
HCB2	4.21	.431	11.8	2 (8,20)	.072	+ .65		
HCB2	3.50	.000	127	11 (20)	.423	+ 3.30		
NC-1	Control	100	100	2 (40)	.035	Control		

Trial 2 [10]

Drug	Conc., MM	S.A	CC.A	Focus Data	Transforming Activity\(\%\)	Focus Type	Transformation Response\(\%\)	Significance*
Trial 2 [10]								
B(a)P	.000791	1.89	30.6	105 (20)	4.79***	+ 18.3		
B(a)P	.000250	8.49	91.7	34 (20)	1.37***	+ 6.23		
HCB2	4.21	.000	94.4	12 (20)	.264	+ 1.42		
HCB2	3.50	.000	168	3 (20)	.110	+ 1.90		
HCB2	2.80	.000	135	7 (20)	.256	+ 2.02		
HCB2	2.10	.000	214	5 (19)	.182	+ 1.58		
NC-1	Control	100	100	3 (40)	.053	Control		

HC Red 3 [HCR3, M.W. = 197.22]

Drug	Conc., MM	S.A	CC.A	Focus Data	Transforming Activity\(\%\)	Focus Type	Transformation Response\(\%\)	Significance*
Trial 1 [40]								
B(a)P	.000791	1.06	39.7	182 (19)	8.71***	+ 14.9		
B(a)P	.000250	8.48	79.2	101 (18)	4.86***	+ 9.93		
HCR3	6.09	.000	34.3	25 (19)	1.16**	+ 2.86		
HCR3	3.04	.353	35.1	27 (19)	1.07*	+ 2.19		
HCR3	1.52	11.0	72.1	44 (20)	1.29*	+ 2.24		
HCR3	.761	78.8	91.1	25 (20)	1.11**	+ 2.71		
NC-1	Control	100	100	28 (40)	0.533	Control		

Trial 2 [57]

Drug	Conc., MM	S.A	CC.A	Focus Data	Transforming Activity\(\%\)	Focus Type	Transformation Response\(\%\)	Significance*
Trial 2 [57]								
B(a)P	.000791	3.55	30.1	162 (20)	7.55***	+ 18.7		
B(a)P	.000250	5.32	69.9	37 (20)	1.63***	+ 6.91		
HCR3	6.09	.000	9.42	29 (20)	1.18***	+ 4.69		
HCR3	3.04	28.0	88.0	31 (20)	1.22***	+ 3.99		
HCR3	1.52	80.5	88.4	14 (20)	.534	+ 1.66		
HCR3	.761	81.6	84.0	10 (17)	.395	+ .74		
NC-1	Control	100	100	15 (40)	.278	Control		

HC Red 3 [HCR3, 260886-S, M.W. = 197.22]

Drug	Conc., MM	S.A	CC.A	Focus Data	Transforming Activity\(\%\)	Focus Type	Transformation Response\(\%\)	Significance*
Trial 1 [61]								
B(a)P	.000791	.377	32.6	95 (20)	4.28***	+ 14.3		
B(a)P	.000250	9.81	69.9	43 (20)	1.92***	+ 8.76		
260886-S	6.00	.000	46.1	11 (18)	.503*	+ 2.07		
260886-S	3.00	2.26	67.1	12 (20)	.494*	+ 2.08		
260886-S	1.50	13.6	86.4	17 (20)	.568	+ 1.89		
260886-S	.750	44.9	86.4	7 (19)	.272	+ .41		
NC-1	Control	100	100	12 (40)	.222	Control		

Trial 2 [99]

Drug	Conc., MM	S.A	CC.A	Focus Data	Transforming Activity\(\%\)	Focus Type	Transformation Response\(\%\)	Significance*
Trial 2 [99]								
B(a)P	.000791	18.9	68.4	160 (20)	6.67***	+ 12.4		
B(a)P	.000250	32.1	85.0	94 (20)	3.59***	+ 7.95		
260886-S	7.89	3.40	38.5	135 (20)	5.94***	+ 11.7		
260886-S	3.95	9.43	38.7	81 (20)	3.38***	+ 7.92		
260886-S	1.97	17.7	74.2	94 (20)	4.07***	+ 9.28		
260886-S	.986	67.2	81.8	89 (20)	4.01***	+ 9.41		
NC-1	Control	100	100	65 (80)	.586	Control		

(Continued on next page)
Appendix C. Continued.

Treatment Condition	Cytotoxic Activity^a	Transforming Activity^b	Transformation Response^c	Significance^d		
	Drug Conc., mM	S.A	CC.A.	Focus Data Type Vessels	Foci/Vessel Focus Type	t-statistic
				III (n)	III	
8-Hydroxyquinoline [8HYQ, M.W. = 145.16]						
Trial 1 [3]						
B(a)P .000791	10.7	47.1	127 (20)	5.84***	+ 14.8	
B(a)P .000250	13.4	81.6	39 (20)	1.61***	+ 5.63	
B(a)P .000791	.000	2.30	6 (19,20)	.245	.00(- .30)	
B(a)P .000250	.000	13.8	21 (20)	.787*	+ 2.61	
B(a)P .000791	.000	19.5	20 (20)	.850**	+ 3.19	
B(a)P .000250	.000	46.0	14 (20)	.547	+ 1.59	
NC-1 Control	100.	100.	17 (40)	.285	Control	
Mean t = 2.46						

Trial 2 [9]					
B(a)P .000791	3.14	3.83	108 (20)	4.93***	+ 16.2
B(a)P .000250	8.52	87.2	47 (20)	1.92***	+ 7.04
B(a)P .000791	.000	1.03	4 (20)	.149	.00
B(a)P .000250	.000	3.08	3 (20)	.110	.00(- .46)
B(a)P .000791	.000	41.0	4 (20)	.149	.00
B(a)P .000250	.000	89.2	17 (20)	.270	+ .68
NC-1 Control	100.	100.	8 (40)	.149	Control
Mean t = .170					

Trial 3 [28]					
B(a)P .000791	2.84	28.6	189 (20)	9.02***	+ 16.9
B(a)P .000250	6.74	68.0	62 (20)	2.78***	+ 5.73
B(a)P .000791	.000	48.9	22 (20)	.937	+ .51
B(a)P .000250	.000	66.0	21 (20)	.756	.00(- .25)
B(a)P .000791	.000	70.0	25 (20)	.341	.00(- 1.72)
B(a)P .000250	.000	75.2	19 (20)	.726	.00(- .39)
NC-1 Control	100.	100.	8 (40)	.818	Control
Mean t = .128					

Malaoxon [MALX, M.W. = 314.32; Density = NA g/ml]					
Trial 1 [16]					
B(a)P .000791	.881	47.5	139 (17)	7.96***	+ 17.5
B(a)P .000250	4.85	76.6	58 (17)	2.77***	+ 7.77
MALX .2.36	.000	.000	0 (0,18)	.000	ND
MALX .1.57	.000	.000	0 (0,18)	.000	ND
MALX .766	.000	.000	0 (0,18)	.000	ND
MALX .393	.000	78.8	44 (18)	1.81***	+ 4.17
NC-1 Control	100.	100.	17 (36)	.344	Control
Mean t = 4.17					

Trial 2 [25]					
B(a)P .000791	ND	21.4	192 (18)	9.74***	+ 19.9
B(a)P .000250	ND	73.4	59 (18)	2.55***	+ 7.52
MALX .589	ND	9.90	0 (0,18)	.000	ND
MALX .393	ND	61.9	87 (18)	4.64***	+ 22.7
MALX .255	ND	84.4	29 (18)	1.15***	+ 4.24
MALX .118	ND	85.9	9 (18)	.309	+ 1.43
NC-1 Control	ND	100.	5 (36)	.101	Control
Mean t = 9.46					

1-Naphthylamine [1NAP, M.W. = 143.18]					
Trial 1 [13]					
B(a)P .000791	.823	30.6	95 (20)	4.38***	+ 14.2
B(a)P .000250	2.06	75.4	66 (20)	3.14***	+ 15.7

(Continued on next page)
Transformation Responses of 168 Chemicals

Appendix C. Continued.

Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels	Foci/Vessel Focus Type	Significance
1NAP	.210	.823	84.3	22 (20)	.775**	+ 2.85
1NAP	.140	4.94	82.0	21 (20)	.890***	+ 4.65
1NAP	.0698	14.4	96.3	16 (20)	.634**	+ 3.02
1NAP	.0349	50.6	113.	6 (20)	.214	+ .11
NC-1 Control		100.	100.	11 (40)	.201	Control

Mean t = 2.66

N-(1-Naphthyl)ethylenediamine-2HCl [NED, M.W. = 259.18]

Trial 1 [38]

B(a)P	.000791	2.10	28.4	174 (20)	7.75***	+ 15.6
B(a)P	.000250	9.44	74.7	162 (20)	8.17***	+ 18.0

NED

.193	.000	.000	4 (12,19)	.230	.00(-1.33)
.145	.000	64.4	9 (19)	.368	.00(-.73)
.0965	33.9	78.5	16 (20)	.494	.00(-.01)
.0482	71.7	75.5	31 (20)	1.21**	2.87

NC-1 Control

| Control | 100. | 100. | 27 (40) | .496 | Control |

Mean t = .957

Trial 2 [87]

B(a)P	.000791	25.1	77.0	59 (20)	2.26***	+ 5.84
B(a)P	.000250	42.2	80.2	34 (20)	1.45***	+ 5.24

NED

.193	.000	.000	0 (1,20)	.000	.00(-.64)
.145	.000	39.9	19 (19)	.826*	2.60
.0965	22.2	72.4	11 (19)	.419	+ .45
.0482	105.	71.6	23 (19)	1.09***	3.89

NC-1 Control

| Control | 100. | 100. | 43 (80) | .346 | Control |

Mean t = 2.31

1-Nitronaphthalene [1NINAP, M.W. = 173.17]

Trial 1 [33]

B(a)P	.000791	3.44	2.40	214 (20)	10.0***	+ 13.6
B(a)P	.000250	5.73	51.4	130 (20)	5.86***	+ 7.74

1NINAP

.866	.000	.000	1 (3,20)	.260	.00(-1.32)
.577	1.53	10.7	20 (19)	.727	.00(-.98)
.289	29.4	93.2	10 (20)	.394	.00(-2.85)
.144	49.6	98.0	9 (20)	.327	.00(-2.79)

NC-1 Control

| Control | 100. | 100. | 54 (37) | 1.04 | Control |

Mean t = .000

Trial 2 [87]

B(a)P	.000791	25.1	77.0	59 (20)	2.26***	+ 5.84
B(a)P	.000250	42.2	80.2	34 (20)	1.45***	+ 5.24

1NINAP

.577	16.4	54.5	20 (19)	.826*	2.54
.433	25.8	68.7	24 (16)	1.11**	3.37
.289	33.8	73.6	17 (14)	.950*	2.72
.144	59.6	75.8	11 (14)	.641	1.50

NC-1 Control

| Control | 100. | 100. | 43 (80) | .346 | Control |

Mean t = 2.53

(Continued on next page)
Appendix C. Continued.

Drug Conc., mM	S.A	C.C.A.	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic	Significance*

4-Nitro-o-Phenylenediamine [4NPD, M.W. = 153.14]

Trial 1 [14]
- B(a)P .000791 1.75 36.1 177 (20) 6.73*** + 13.3
- B(a)P .000250 5.26 74.7 61 (20) 2.45*** + 7.12

- 4NPD .490 1.32 46.8 23 (20) .955*** + 4.48
- 4NPD .245 3.95 52.2 22 (20) .860*** + 3.85
- 4NPD .123 7.46 70.9 41 (20) 1.58*** + 5.14
- 4NPD .0306 22.8 102. 13 (20) .481 + 1.86
- NC-1 Control 100. 100. 12 (40) .213 Control

Mean t = 3.83

Trial 2 [18]
- B(a)P .000791 2.26 45.8 125 (20) 5.91*** + 13.0
- B(a)P .000250 8.52 78.5 86 (20) 3.36*** + 7.28

- 4NPD .261 .000 81.1 25 (20) 1.10* + 1.99
- 4NPD .131 .448 88.6 34 (20) 1.32* + 2.46
- 4NPD .0653 8.97 86.1 14 (17) .671 + .77
- 4NPD .0326 23.8 90.2 17 (19) .777 + .57
- NC-1 Control 100. 100. 33 (40) .663 Control

Mean t = 1.27

3-Nitropropionic Acid [3NPA, M.W. = 119.08]

Trial 1 [39]
- B(a)P .000791 1.07 23.6 172 (20) 8.04*** + 14.5
- B(a)P .000250 3.56 64.5 145 (20) 6.84*** + 15.8

- 3NPA 3.36 .000 1.24 21 (20) .699 + 1.20
- 3NPA 1.68 .000 15.7 52 (20) 2.41*** + 6.95
- 3NPA .840 8.19 52.9 60 (20) 2.43*** + 6.01
- 3NPA .420 30.6 78.5 19 (20) .737 + 1.43
- NC-1 Control 100. 100. 27 (40) .427 Control

Mean t = 3.90

Trial 2 [85]
- B(a)P .000791 18.8 55.6 133 (20) 3.43*** + 5.10
- B(a)P .000250 28.7 91.8 66 (19) 2.10*** + 4.56

- 3NPA 2.52 2.00 21.7 74 (20) 2.82*** + 6.63
- 3NPA 1.68 4.00 47.6 77 (20) 3.16*** + 9.87
- 3NPA .840 14.0 86.6 50 (20) 1.65*** + 4.15
- 3NPA .420 43.5 105. 13 (20) .503 + 1.24
- NC-1 Control 100. 100. 38 (80) .313 Control

Mean t = 5.47

p-Phenylenediamine-2HCl [PD, M.W. = 181.07]

Trial 1 [37]
- B(a)P .000791 1.60 47.6 101 (20) 4.59*** + 9.94
- B(a)P .000250 6.80 79.7 113 (20) 5.38*** + 13.5

- PD .110 .000 4.51 18 (20) .702 + .33
- PD .0552 .000 56.9 72 (20) 3.31*** + 8.06
- PD .0276 35.6 66.0 44 (20) 1.96*** + 4.84
- PD .0138 98.4 100. 35 (19) 1.21* + 2.01
- NC-1 Control 100. 100. 32 (39) .631 Control

Mean t = 3.81

Trial 2 [89]
- B(a)P .000791 8.13 69.0 119 (20) 4.77*** + 10.3
- B(a)P .000250 31.9 89.1 63 (20) 2.33*** + 5.84

(Continued on next page)
Appendix C. Continued.

Drug	Conc., mM	S.A	CC.A.	Type Vessels	III	t-statistic	Significance*
PD	.0828	.000	65.6	45 (20)	1.80*** + 4.88		
PD	.0552	2.61	75.4	49 (18)	1.71** + 3.29		
PD	.0276	64.2	84.4	16 (20)	.668 + .91		
PD	.0138	99.6	96.6	10 (20)	.347 .00(-.82)		
NC-1 Control	100. 100.	57	79	130688-S.114	.492 Control		

N-Phenyl-2-Naphthylamide [130668-S, M.W. = 219.30]

Trial 1 [61]

| B(a)P | .000791 | .377 | 32.6 | 94 (20) | 4.28*** + 14.3 |
| B(a)P | .000250 | 9.81 | 69.9 | 43 (20) | 1.92*** + 8.76 |

Trial 2 [87]

| B(a)P | .000791 | 25.1 | 77.2 | 59 (20) | 2.26*** + 5.84 |
| B(a)P | .000250 | 42.2 | 80.2 | 34 (20) | 1.45*** + 5.24 |

2,3,5,6-Tetrachloro-4-Nitroanisole [TCNA, M.W. = 290.91]

Trial 1 [29]

| B(a)P | .000791 | 1.15 | 57.0 | 122 (20) | 5.79*** + 13.1 |
| B(a)P | .000250 | 2.29 | 78.5 | 142 (20) | 6.19*** + 10.3 |

Trial 2 [93]

TCNA	.155	.000	.000	0 (3,20)	.000 .00(-5.58)
TCNA	.103	.000	.000	1 (15,20)	.047 .00(-4.42)
TCNA	.052	.000	34.3	33 (20)	1.50** + 3.32
TCNA	.025	12.6	76.2	26 (20)	1.03 + 1.61
NC-1 Control	100. 100.	36	40	130688-S.114	.606 Control

Tetraethylthiuram Disulfide [TETD, M.W. = 296.54]

Trial 1 [80]

| B(a)P | .000791 | 16.9 | 65.2 | 261 (20) | 12.9*** + 13.0 |
| B(a)P | .000250 | 35.6 | 87.2 | 185 (20) | 8.53*** + 7.65 |

(Continued on next page)
Methods.

In this experiment, the number of treatment transformations responses were used to determine the mean t-statistic of the test chemical transformation responses in Appendix Tables A3 and A6. The mean t-statistic for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank t-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (−) t-statistics were given a value of zero (0).

Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels	Foci/Vessel Focus Type	Significance
B(a)P	0.000791	2.65	46.7	138 (20)	6.48***	+ 16.8
B(a)P	0.000250	7.96	79.9	115 (20)	4.80***	+ 12.0
TETD	0.000169	0.00	0.00	0 (0, 20)	0.00	ND
TETD	0.000843	1.77	79.2	26 (20)	0.99**	+ 3.13
TETD	0.000422	31.0	79.2	34 (20)	1.44***	+ 5.12
TETD	0.000211	46.0	108	13 (20)	0.49	+ 0.51
NC-1 Control	100.	100.	43	(79)	0.41	Control
Mean	t = 2.92					

2,6-Toluenediamine-2HCl [26TD. M.W. = 195.11]

Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels	Foci/Vessel Focus Type	Significance
B(a)P	0.000791	1.15	57.0	122 (20)	5.79***	+ 13.1
B(a)P	0.000250	2.29	78.5	142 (20)	6.19***	+ 10.3
T26D	8.20	0.00	3.29	24 (19)	0.825	+ 0.82
T26D	6.15	0.00	14.2	31 (20)	1.31*	+ 2.63
T26D	4.10	1.53	43.5	40 (20)	1.54**	+ 3.06
T26D	2.05	31.7	92.7	94 (20)	4.35***	+ 9.05
NC-1 Control	100.	100.	36	(40)	0.606	Control
Mean	t = 3.89					

Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels	Foci/Vessel Focus Type	Significance
B(a)P	0.000791	5.07	25.9	335 (20)	15.8***	+ 16.3
B(a)P	0.000250	14.2	67.2	137 (20)	6.15***	+ 7.33
T26D	4.00	5.41	30.4	91 (20)	4.23***	+ 5.29
T26D	2.00	45.6	55.6	172 (20)	7.76***	+ 8.77
T26D	1.00	79.1	64.0	180 (20)	8.42***	+ 11.3
T26D	0.500	91.2	88.4	218 (19)	11.1***	+ 14.7
NC-1 Control	100.	100.	77	(40)	1.52	Control
Mean	t = 10.0					

Abbreviations: BaP, benzo(a)pyrene; CC.A., co-culture clonal survival assay; Conc., concentration; mM, millimole; M.W., molecular weight; N, number of culture vessels; NC, negative control; ND, not determined; %RCE, percent relative cloning efficiency; S.A., standard clonal survival assay.

Treatment condition: The experimental design for the transformation assay is described in detail in the Materials and Methods. The concentration of the positive control and test chemical treatment are presented in mM, but they can be converted to μg/ml using the molecular weight that is provided with each chemical. The solvent vehicles used for the individual test chemicals were listed in Appendix Tables A1 and A3, and the concentrations of the solvent vehicles are presented in the Materials and Methods.

Cytotoxic activity: The experimental design for the standard survival assay (SA) and the co-culture clonal survival assay (CCA) were described in the Materials and Methods. The test chemical cytotoxic response was expressed as % RCE and was calculated as described in the Materials and Methods.

The criteria used to evaluate the transformed foci of BALB/c-3T3 cells is described in the Materials and Methods. The number of type III foci > 2-mm in diameter per culture vessel scored are recorded in this table.

Transformation response: The transformation responses are expressed as type III foci/vessel and were calculated using a log10 mathematical transformation procedure (refer to Materials and Methods). The arithmetic value of foci/vessel represents the antilog of the log10 mean transformation response minus one.

Significance: The significance of test chemical transformation responses was calculated by a computer using the SAS statistical software (22), and the method is described in detail in Materials and Methods. The correct t-statistic according to the F-test is presented in this table. The t-statistics of each treatment dose of the test chemical in a single experiment were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Appendix Tables A2 and A5). The mean t-statistics for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank t-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (−) t-statistics were given a value of zero (0).

*Significant BaP or test chemical transformation response, 0.01 < p ≤ 0.05.
**Significant BaP or test chemical transformation response, 0.001 < p ≤ 0.01.
***Significant BaP or test chemical transformation response, p ≤ 0.001.
Appendix D.

Summary of the transformation responses of 20 cytotoxic, nonmutagenic carcinogens.

Treatment Condition*	Cytopathic Activity†	Transforming Activity‡	Transformation Response§	Significance*	
Drug Conc., mM	S.A.	CC.A.	Focus Data Type Vessels	Foci/Vessel Type	t-Statistic

Allyl Isothiocyanate [ALITC. M.W. = 99.16. Density = 1.0165 g/ml]

Trial 1 [41]	B(a)P	.000791	1.29	33.6	189 (18)	10.2*** + 23.1
ALITC .0133	.000250	6.45	78.2	123 (18)	6.37*** + 17.1	
ALITC .00666	.000250	22.6	76.4	29 (18)	.339 + .44	
ALITC .00333	.000250	63.9	91.0	7 (18)	.309 + .27	
NC-1 Control	100.	100.	13 (36)	.274 Control		

Mean t = 1.62

Trial 2 [98]	B(a)P	.000791	3.60	51.9	91 (18)	4.63*** + 3.24
ALITC .0133	.000250	4.50	77.2	37 (18)	1.73*** + 15.0	
ALITC .00666	.000250	18.5	43.5	46 (18)	.414 + 1.38	
ALITC .00333	.000250	73.9	94.0	10 (18)	.424 + 1.40	
NC-1 Control	100.	100.	11 (36)	.226 Control		

Mean t = 4.09

Chlorendic Acid [954870-S. M.W. = 388.83]

Trial 1 [63]	B(a)P	.000791	4.00	80.5	141 (20)	6.13*** + 6.87
B(a)P .000250	24.8	93.1	93 (20)	3.20* + 2.02		
954870-S 4.00	32.7	30.5	45 (18)	1.78 + .00 (-.20)		
954870-S 2.00	37.8	38.0	55 (20)	2.34 + 1.08		
954870-S 1.00	46.1	71.3	107 (18)	4.68*** + 4.70		
954870-S .500	94.9	96.6	63 (20)	2.76* + 2.05		
NC-1 Control	100.	100.	84 (39)	1.92 Control		

Mean t = 1.96

Trial 2 [83]	B(a)P	.000791	2.86	73.0	141 (20)	6.14*** + 13.5
B(a)P .000250	13.8	78.9	64 (20)	2.93*** + 9.12		
954870-S 3.85	27.6	37.5	12 (20)	.473 + .73		
954870-S 1.92	52.4	56.3	54 (20)	2.27*** + 7.30		
954870-S .962	70.5	89.2	9 (20)	.347 + .02		
954870-S .481	98.1	94.3	6 (20)	.214 + .00 (-.93)		
NC-1A+1B Control	100.	100.	48 (80)	.351 Control		

Mean t = 2.01

Allyl Isovalerate [ALIV. M.W. = 142.22. Density = 0.882 g/ml]

Trial 1 [23]	B(a)P	.000791	0.00	61.0	157 (18)	6.71*** + 9.25
B(a)P .000250	4.84	100.	57 (18)	3.04*** + 8.07		
ALIV .744	6.67	98.5	8 (18)	.361 .00 (-1.52)		
ALIV .372	58.8	108.	9 (18)	.370 + .140		
ALIV .186	89.1	105.	13 (18)	.562 + .43		
ALIV .0930	90.9	87.7	16 (18)	.737 + .32		
NC-1 Control	100.	100.	23 (27)	.661 Control		

Mean t = .080

(Continued on next page)
Chlorinated Paraffins C23 43% Chlorine [Chlorowax 40, 499546-L. M.W.avg. = 560. Density = ND]

Drug	Conc., mM	S.A.	CC.A.	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic	Significance*
TRIAL 2 [27]							
B(a)P	.0000791	4.04	33.7	170 (18)	8.90***	+ 14.8	
B(a)P	.000250	13.0	47.4	73 (18)	3.18***	+ 5.71	
ALIV	1.40	17.7	61.5	7 (18)	.260	.00(-1.41)	
ALIV	.930	35.1	45.6	12 (18)	.513	.00(- .18)	
ALIV	.465	62.7	75.6	11 (18)	.456	.00(- .43)	
ALIV	.233	88.2	52.4	14 (18)	.608	+ .22	
NC-1 Control	100.	100.	31 (36)		.555	Control	

Trials 3 [31]

Drug	Conc., mM	S.A.	CC.A.	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic	Significance*
TRIAL 3 [31]							
B(a)P	.0000791	1.87	69.1	136 (15)	8.63***	+ 11.1	
B(a)P	.000250	5.14	99.9	126 (18)	6.06***	+ 8.51	
ALIV	5.58	.000	.000	0 (0,18)	.000	ND	
ALIV	4.34	.000	53.3	1 (4,18)	.189	.00(-2.50)	
ALIV	3.10	.000	94.3	28 (17)	1.30	+ 1.18	
ALIV	1.86	.000	109.	19 (18)	.834	.00(- .35)	
NC-1 Control	100.	100.	43 (36)		.930	Control	

Trials 4 [102]

Drug	Conc., mM	S.A.	CC.A.	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic	Significance*
TRIAL 4 [102]							
B(a)P	.0000791	9.64	69.9	99 (18)	4.65***	+ 9.48	
B(a)P	.000250	19.3	93.1	45 (18)	2.22***	+ 5.22	
ALIV	5.89	.000	13.6	3 (4,18)	.565	.00(- .33)	
ALIV	4.42	.000	83.2	41 (18)	2.05***	+ 4.83	
ALIV	2.95	.419	79.2	26 (18)	1.10	+ 1.66	
ALIV	1.47	7.55	91.5	19 (18)	.828	+ .59	
NC-1 Control	100.	100.	64 (72)		.697	Control	

Chlorinated Paraffins C12 60% Chlorine [Chlorowax 500c, 164848-L. M.W.avg. = 415. Density = ND]

Drug	Conc., mM	S.A.	CC.A.	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic	Significance*
TRIAL 1 [76]							
B(a)P	.0000791	7.71	46.8	97 (18)	7.16***	+ 9.48	
B(a)P	.000250	31.9	97.0	72 (18)	2.47***	+ 4.10	
295546-L ND	74.9	78.9	43 (18)		7.16***	+ 9.48	
164846-L ND	111.	98.2	17 (18)		2.05***	+ 4.83	
NC-1 Control	100.	100.	83 (71)		1.19	Control	

Trials 2 [104]

Drug	Conc., mM	S.A.	CC.A.	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic	Significance*
B(a)P	.0000791	3.00	69.2	43 (18)	2.02***	+ 4.51	
B(a)P	.000250	9.58	78.4	27 (18)	1.29*	+ 2.49	
164848-L ND	2.89	.000	.000	0 (0,18)	.000	ND	
164848-L 1.93	.000	.000	.000	0 (0,18)	.000	ND	
164848-L .964	.000	68.3	16 (18)		.737	+ .37	
164848-L .482	24.6	98.6	11 (18)		.456	.00(-1.00)	
NC-1 Control	100.	100.	65 (71)		.657	Control	

(Continued on next page)
Appendix D. Continued.

Drug	Conc., mM	S.A.	C.C.A.	Activity	Focus Data	Activity	Focus Data	Response	Significance
B(a)P	.000791	28.5	76.0	157 (18)	7.60***	+ 5.89			
B(a)P	.000250	51.8	95.8	111 (18)	4.91***	+ 3.71			
B(a)P	.000791	28.5	76.0	157 (18)	7.60***	+ 5.89			
B(a)P	.000250	51.8	95.8	111 (18)	4.91***	+ 3.71			
164848-L	.482	94.6	107.0	15 (18)	.618	.00 (-3.32)			
164848-L	.964	29.2	78.7	27 (18)	1.07	.00 (-1.89)			
164848-L	.482	94.6	107.0	15 (18)	.661	.00 (-4.16)			
NC-1	Control	100.	100.	219 (71)	1.95	Control	Mean t = .000		

3-Chloro-2-Methylpropene [3C2MP, M.W. = 99.55, Density = 0.928 g/ml]

Drug	Conc., mM	S.A.	C.C.A.	Activity	Focus Data	Activity	Focus Data	Response	Significance
B(a)P	.000791	8.09	60.6	116 (18)	6.11***	+ 4.93			
B(a)P	.000250	14.9	84.2	184 (18)	9.84***	+ 9.74			
3C2MP	.883	.000	60.3	162 (18)	8.23***	+ 5.22			
3C2MP	.442	12.8	97.0	102 (18)	4.21	+ 1.25			
3C2MP	.221	56.2	97.6	60 (18)	2.53	.00 (-1.23)			
3C2MP	.110	57.4	95.1	54 (18)	2.72	.00 (-.95)			
NC-1	Control	100.	100.	296 (72)	3.28	Control	Mean t = 1.62		

Cinnamyl Anthranilate [CIN. M.W. = 253.32]

Drug	Conc., mM	S.A.	C.C.A.	Activity	Focus Data	Activity	Focus Data	Response	Significance
CIN	.115	.000	17.2	5 (20)	.172	.00 (-2.97)			
CIN	.105	3.07	17.9	37 (20)	.656	.00 (-.01)			
CIN	.0829	58.0	83.8	16 (20)	.668	+ .04			
CIN	.0651	61.1	99.0	5 (20)	.189	.00 (-2.90)			
NC-1	Control	100.	100.	34 (20)	.660	Control	Mean t = .010		

CIN .142 ND .000 0 (17) .000 ND
CIN .095 ND 37.3 8 (18) .318 .00 (-.65)
CIN .0475 ND 109. 8 (20) .275 .00 (-.66)
NC-1 Control ND 100. 5 (9) .424 Control
Mean t = .000

(Continued on next page)
Appendix D. Continued.

Drug	Conc., mM	S.A	CC.A.	Treatment	Cytotoxic Activity	Transforming Activity	Transformation Response	Significance
				Condition	RCE (%)	Focus Data Type Vessels	Foci / Vessel Focus Type	t-statistic

Diethylstilbestrol [DES. M.W. = 268.]

Trial 1 [42]

B(a)P	.000791	2.41	35.7	280 (20)		13.7***	+ 20.2	
B(a)P	.000250	5.72	65.4	161 (19)		7.44***	+ 9.55	
DES	.00894	1.81	13.5	31 (19,20)		1.19	+ .97	
DES	.0671	62.0	65.1	15 (20)		.578	+ .00 (-1.10)	
DES	.0447	54.5	64.4	11 (20)		.443	+ .00 (-1.76)	
DES	.0112	75.6	77.5	154 (19)		6.79***	+ 8.84	
NC-1	Control	100.	100.	52 (10)		.861	Control	

Trial 2 [96]

B(a)P	.000791	11.0	43.5	86 (20)		4.03***	+ 9.40	
B(a)P	.000250	38.9	75.4	62 (20)		2.88***	+ 7.12	
DES	.112	31.4	74.6	37 (20)		1.62***	+ 3.69	
DES	.0838	51.5	86.5	44 (20)		1.89***	+ 4.44	
DES	.0559	54.2	83.4	37 (20)		1.52***	+ 3.30	
DES	.0279	59.3	79.0	32 (20)		1.19*	+ 2.07	
NC-1	Control	100.	100.	62 (70)		.660	Control	

Dimethylvinyl Chloride [309712-L. M.W. = 90.55. Density = ND g/ml]

Trial 1 [76]

309712-L	4.00	5.91	63.1	87 (18)		4.41***	+ 5.23	
309712-L	2.00	23.3	97.0	54 (18)		2.72*	+ 2.26	
309712-L	1.00	15.4	87.1	38 (18)		1.69	+ .90 (-.24)	
309712-L	.500	58.8	94.3	41 (18)		1.62	+ .00 (-.43)	
NC-1	Control	100.	100.	152 (71)		1.79	Control	

Trial 2 [102]

309712-L	7.78	69.9	99.1	99 (18)		4.65***	+ 9.48	
309712-L	5.83	93.1	95.1	45 (18)		2.22***	+ 5.22	
309712-L	1.94	13.4	93.3	17 (18)		.834	+ .65	
NC-1	Control	100.	100.	64 (72)		.697	Control	

Ethyl Acrylate [ETAC. M.W. = 100.12. Density = ND g/ml]

Trial 1 [23]

B(a)P	.000791	4.84	100.	157 (18)		6.71***	+ 9.25	
B(a)P	.000250	4.84	100.	57 (18)		3.04***	+ 8.07	
ETAC	.1199	0.00	0.00	1 (1,18)		1.00	+ .00 (-4.75)	
ETAC	.0799	0.00	21.8	59 (18)		3.03***	+ 6.71	
ETAC	.0400	4.05	84.9	20 (18)		.864	+ .77	
ETAC	.0200	37.0	97.9	7 (18)		.289	+ .00 (-1.90)	
NC-1	Control	100.	100.	23 (27)		.661	Control	

Trial 2 [36]

B(a)P	.000791	2.98	40.1	73 (9)		7.27***	+ 21.8	
B(a)P	.000250	7.66	78.1	88 (18)		4.37***	+ 10.8	

(Continued on next page)
Appendix D. Continued.

Drug	Conc., mM	S.A	CC.A	III	t-statistic	Significance
ETAC	.1199	1.28	55.8	45	1.87***	+ 4.96
ETAC	.0899	8.09	79.8	53	2.68***	+ 8.05
ETAC	.0599	27.7	94.8	50	2.20**	+ 5.02
ETAC	.0300	65.4	99.3	43	2.08***	+ 6.04
NC-1 Control	100.	100.		20	.424	Control

Mean t = 6.02

Isophorone

[ISPH, M.W. = 138.21, Density = 0.9229 g/ml]

Trial 1 [25]

Drug	Conc.	S.A	CC.A	III	t-statistic	Significance
B(a)P	.000791	ND	21.4	192	9.74***	+ 19.9
B(a)P	.000250	ND	73.4	59	2.55***	+ 7.52
ISPH	1.34	ND	92.2	7	.268	.00 (- 1.35)
ISPH	1.00	ND	89.6	3	.122	+ .27
ISPH	.668	ND	102.	3	.122	+ .27
ISPH	.334	ND	102.	3	.122	+ .27
NC-1 Control	100.	100.		5	.101	Control

Mean t = .203

Trial 2 [36]

Drug	Conc.	S.A	CC.A	III	t-statistic	Significance
B(a)P	.000791	2.98	40.1	73	7.27***	+ 21.8
B(a)P	.000250	7.66	78.1	88	4.37***	+ 10.8
ISPH	4.01	0.00	31.5	33	1.65**	+ 5.29
ISPH	2.00	.851	92.9	17	.754	+ 1.66
ISPH	1.00	21.3	98.6	20	.950*	+ 2.60
ISPH	.501	76.6	108.	28	1.38**	+ 4.29
NC-1 Control	100.	100.		5	.101	Control

Mean t = 3.46

Trial 3 [104]

Drug	Conc.	S.A	CC.A	III	t-statistic	Significance
B(a)P	.000791	25.0	64.5	62	2.79***	+ 4.87
B(a)P	.000250	50.6	89.6	63	2.47***	+ 4.10
ISPH	5.34	6.75	80.2	34	1.68*	+ 2.61
ISPH	4.01	16.8	103.	30	1.53**	+ 2.85
ISPH	2.67	31.6	104.	36	1.66*	+ 2.45
ISPH	1.34	45.9	97.6	21	.963	+ .32
NC-1 Control	100.	100.		83	.878	Control

Mean t = 2.06

D-Limonene

[036267-L, M.W. = 136.24, Density = 0.8411 g/ml]

Trial 1 [72]

Drug	Conc.	S.A	CC.A	III	t-statistic	Significance
B(a)P	.000791	2.75	56.8	85	4.11***	+ 12.7
B(a)P	.000250	6.61	82.1	84	3.04***	+ 6.20
036267-L	.224	.000	90.7	7	.248	.00(-.30)
036267-L	.179	.000	101.	9	.392	+ .75
036267-L	.134	.000	94.4	17	.619	+ 1.54
036267-L	.089	.000	96.2	15	.572	+ 1.80
NC-1 Control	100.	100.		29	.289	Control

Mean t = 1.02

Trial 2 [76]

Drug	Conc.	S.A	CC.A	III	t-statistic	Significance
B(a)P	.000791	5.91	63.1	87	4.41***	+ 5.23
B(a)P	.000250	23.3	97.0	54	2.72*	+ 2.26
036267-L	1.57	.000	.893	1	.042	.00(-13.6)
036267-L	1.18	18.4	33.8	15	.557	.00(-4.30)
036267-L	.786	49.6	104.	60	1.95	+ .27
036267-L	.393	82.4	100.	30	1.39	+ 1.15
NC-1 Control	100.	100.		152	1.79	Control

Mean t = .473

(Continued on next page)
Appendix D. Continued.

Drug Conc., mM	S.A.	C.C.A.	Treatment Condition	Cytotoxic Activity	Transforming Activity	Transformation Response	Significance
				RCE (%)	Focus Data Type Vessels	Foci/Vessel Focus Type	
B(a)P	.000250	15.8	73.9	54 (15)	3.36***	+ .9.58	
B(a)P	1.43	.000	.167	0 (6,16)	.000	+ .00(-6.49)	
036267-L	9.07	88.0	85.7	10 (18)	.392	+ .00(-.09)	
036267-L	.357	103.	90.1	9 (18)	.392	+ .00(-.09)	
NC-1	100.	100.	100.	37 (67)	.406	Control	

Malonaldehyde, Sodium Salt [605428-S. M.W. = 94.05]

Drug Conc., mM	S.A.	C.C.A.	Treatment Condition	Cytotoxic Activity	Transforming Activity	Transformation Response	Significance
				RCE (%)	Focus Data Type Vessels	Foci/Vessel Focus Type	
B(a)P	.000250	7.10	66.5	149 (20)	6.35***	+ 10.9	
B(a)P	.000250	28.4	85.4	67 (20)	3.10***	+ 6.56	
605428-S	5.00	.000	14.2	34 (20)	1.18	+ 1.08	
605428-S	3.75	2.92	66.5	19 (20)	.777	+ 00(-.68)	
605428-S	2.50	15.9	80.9	61 (20)	2.65***	+ 5.06	
605428-S	1.25	59.3	93.1	38 (19)	1.79*	+ 2.61	
NC-1	100.	100.	100.	89 (78)	.882	Control	

2-Mercaptobenzothiazole [481989-S. M.W. = 167.25]

Drug Conc., mM	S.A.	C.C.A.	Treatment Condition	Cytotoxic Activity	Transforming Activity	Transformation Response	Significance
				RCE (%)	Focus Data Type Vessels	Foci/Vessel Focus Type	
B(a)P	.000250	5.24	72.5	188 (20)	8.32*	+ 2.50	
B(a)P	.000250	18.6	85.1	105 (18)	5.59	+ .00(-.62)	
481989-S	.294	.000	1.91	15 (20)	.543	+ .00(-12.8)	
481989-S	.221	.476	11.0	48 (20)	1.84	+ .00(-5.85)	
481989-S	.147	16.1	70.1	56 (17)	2.90	+ .00(-5.06)	
481989-S	.074	49.0	84.5	60 (20)	2.42	+ .00(-5.59)	
NC-1	100.	100.	100.	261 (40)	6.02	Control	

(Continued on next page)
TRANSFORMATION RESPONSES OF 168 CHEMICALS

Appendix D. Continued.

Treatment	Cytotoxic Activity^a	Transforming Activity^b	Transformation Response^d	Significance^e		
Drug	Conc., mM	S.A.	C.C.A.	Focus Data III (N)	Foci/Vessel Focus Type III	t-statistic

Methapyrilene-HCl [MEPY, M.W. = 297.88]

Trial 1 [40]

B(a)P	.000791	1.06	39.7	182 (19)	8.71*** + 14.9
B(a)P	.000250	8.48	79.2	101 (18)	4.86*** + 9.93
MEPY	1.43	0.00	4.87	4 (17,20)	.177 .00 (-2.22)
MEPY	.955	.707	53.1	14 (20)	.468 .00 (-3.4)
MEPY	.477	21.9	88.7	7 (20)	.256 .00 (-1.72)
MEPY	.239	68.9	95.2	6 (19)	.208 .00 (-2.00)
NC-1 Control	100. 100.	28 (40)	.333 Control	Mean t = 1.22	

Trial 2 [54]

B(a)P	.000791	1.47	17.6	105 (20)	4.75*** + 13.8
B(a)P	.000250	4.90	61.1	100 (20)	4.52*** + 13.5
MEPY	1.15	0.00	0.00	3 (17,20)	.130 .00 (-1.10)
MEPY	.859	3.92	18.6	7 (20)	.231 .26 (-0.26)
MEPY	.573	20.6	81.1	11 (20)	.443 .125
MEPY	.286	33.8	81.4	3 (20)	.110 .00 (-1.39)
NC-1 Control	100. 100.	15 (40)	.265 Control	Mean t = 0.417	

Trial 3 [OR14]

B(a)P	.000791	ND	ND	ND	ND	ND
B(a)P	.000250	ND	ND	ND	ND	ND
MEPY	1.28	ND	13.2	0 (20)	.04 .00 (-3.94)	
MEPY	.853	ND	83.2	8 (20)	.32 .00 (-1.68)	
MEPY	.426	ND	100.	5 (20)	.19 .00 (-2.51)	
NC-1 Control	ND	ND	18 (20)	.67 Control	Mean t = 0.000	

Nitrilotriacetic Acid, Trisodium Salt [NTTA. M.W. = 257.1]

Trial 1 [73]

B(a)P	.000791	2.21	71.9	61 (19)	2.60*** + 8.09
B(a)P	.000250	7.18	88.8	48 (20)	1.58*** + 4.37
NTTA	7.78	.000	.836	3 (15,20)	.127 .00 (-.95)
NTTA	5.83	.000	12.7	24 (20)	.807* + 2.76
NTTA	3.89	14.4	87.1	28 (20)	1.03*** + 3.72
NTTA	1.94	44.8	92.5	10 (20)	.414 + .91
NC-1 Control	100. 100.	45 (79)	.274 Control	Mean t = 2.46	

Trial 2 [99]

B(a)P	.000791	18.9	68.4	160 (20)	6.67*** + 12.4
B(a)P	.000250	32.1	85.0	94 (20)	3.59*** + 7.95
NTTA	7.00	7.92	65.0	125 (20)	5.58*** + 11.5
NTTA	5.25	23.8	89.3	148 (20)	6.87*** + 13.3
NTTA	3.50	61.9	108.	64 (20)	2.37*** + 4.55
NTTA	1.75	76.6	103.	49 (20)	1.78*** + 4.30
NC-1 Control	100. 100.	65 (80)	.586 Control	Mean t = 8.41	

(Continued on next page)
Appendix D. Continued.

Polybrominated Biphenyl Mixture [PBB. M.W. = 628.]

Treatment Condition	Cytotoxic Activity^a	Transforming Activity^b	Transformation Response^c	Significance^d				
	Drug	Conc., mM	S.A	CC.A.	Focus Data Type	Vessels III (N)	Foci/Vessel Type III	t-statistic

Trial 1 [20]

- B(a)P .0000791 .000 39.4 268 (20) 13.0*** + 26.3
- B(a)P .000250 2.34 77.3 99 (20) 4.00*** + 9.22
- PBB .398 13.3 75.3 29 (19) 1.25*** + 3.85
- PBB .199 33.6 92.4 23 (18) 1.07** + 3.30
- PBB .100 35.9 92.4 18 (20) .668 + 1.55
- NC-1 Control 100. 100. 21 (40) .368 Control

Trial 2 [28]

- B(a)P .0000791 2.84 28.6 189 (20) 9.02*** + 16.9
- B(a)P .000250 6.74 68.0 62 (20) 2.78*** + 5.73
- PBB .398 14.2 47.4 41 (20) 1.77** + 3.24
- PBB .199 67.8 44.3 33 (20) 1.37* + 2.00
- PBB .100 84.0 58.2 19 (20) .737 Control
- NC-1 Control 100. 100. 41 (40) .818 Control

Reserpine [RES. M.W. = 608.70]

Trial 1 [1]

- B(a)P .000791 9.75 56.3 171 (20) 8.16*** + 12.1
- B(a)P .000250 15.5 91.0 114 (20) 5.18*** + 6.68
- RES .0230 .000 .000 0 (4,20) .000 Control
- RES .0197 2.53 .000 0 (16,20) .000 Control
- RES .0156 22.4 57.6 9 (20) .301 Control
- RES .0099 94.2 105. 51 (20) 2.36** + 2.37
- NC-1 Control 100. 100. 73 (40) 1.44 Control

Trial 2 [8]

- B(a)P .0000791 1.45 5.83 244 (19) 10.7*** + 8.19
- B(a)P .000250 4.35 52.4 254 (20) 11.8*** + 8.12
- RES .0164 28.0 .000 17 (20) .677 Control
- RES .0123 68.1 91.3 37 (20) 1.60 Control
- RES .0082 94.2 202. 39 (20) 1.54 Control
- RES .0041 90.3 221. 52 (20) 2.03 Control
- NC-1 Control 100. 100. 110 (40) 2.19 Control

Trial 3 [DR13]

- B(a)P .000791 ND ND
- B(a)P .000250 ND ND
- RES .0148 ND 54.5 5 (15) .277 Control
- RES .00986 ND 101. 32 (16) 1.31* + 1.80
- RES .00493 ND 106. 11 (13) .682 Control
- NC-1 Control ND 100. 5 (9) .424 Control

Tris(2-ethylhexyl)phosphate [T2EHP. M.W. = 434.65. Density = 0.925 g/ml]

Trial 1 [88]

- B(a)P .0000791 15.8 73.9 54 (15) 3.36*** + 9.58
- B(a)P .000250 35.5 82.6 24 (15) 1.50*** + 4.90

(Continued on next page)
Appendix D. Continued.

Treatment	Cytotoxic Activity	Transforming Activity	Transformation Response	Significance				
Drug	Conc., mM	S.A.	CC.A.	Focus Data	Foci/Vessel	Focus Type	III	t-statistic
TC250	.920	.000	.000	0 (2,18)	.000	Control	.000	.00(-6.49)
TC250	.460	.000	27.4	7 (18)	.260	Control	.000	.00(-.97)
TC250	.230	.000	74.9	2 (18)	.080	Control	.000	.00(-2.50)
TC250	.115	.000	84.7	6 (18)	.260	Control	.000	.00(-1.00)
NC-1	Control	100.	100.	37 (67)	.406	Control	.000	.000

Trial 2 [98]

Drug	Conc., mM	S.A.	CC.A.	Focus Data	Foci/Vessel	Focus Type	III	t-statistic
B(a)P	.000791	8.38	79.6	21 (18)	6.82***	+ 11.8	.000	.000
B(a)P	.000250	29.3	91.3	17 (18)	3.38***	+ 6.81	.000	.000
TC250	.575	.000	36.5	10 (17,18)	.453	.00(-.76)	.000	.000
TC250	.431	7.33	69.0	7 (18)	.268	.00(-1.79)	.000	.000
TC250	.287	9.42	73.8	11 (18)	.479	.00(-.65)	.000	.000
TC250	.144	6.28	67.3	13 (18)	.572	.00(-.21)	.000	.000
NC-1	Control	100.	100.	39 (45)	.618	Control	.000	.000

Trial 1 [74]

Drug	Conc., mM	S.A.	CC.A.	Focus Data	Foci/Vessel	Focus Type	III	t-statistic
B(a)P	.000791	3.00	69.2	43 (18)	2.02***	+ 4.51	.000	.000
B(a)P	.000250	9.58	78.4	27 (18)	1.29*	+ 2.49	.000	.000
195579-L	5.23	.000	2.53	1 (4,18)	.189	.00(-1.31)	.000	.000
195579-L	4.18	22.8	93.1	3 (12,18)	.208	.00(-2.02)	.000	.000
195579-L	3.14	28.7	98.6	9 (18)	.348	.00(-1.70)	.000	.000
195579-L	2.09	60.5	107.	11 (18)	.456	.00(-1.00)	.000	.000
NC-1	Control	100.	100.	65 (71)	.657	Control	.000	.000

Trial 2 [110]

Drug	Conc., mM	S.A.	CC.A.	Focus Data	Foci/Vessel	Focus Type	III	t-statistic
B(a)P	.000791	11.6	61.1	116 (18)	5.78***	+ 10.7	.000	.000
B(a)P	.000250	26.7	88.0	75 (18)	3.89***	+ 8.52	.000	.000
195579-L	5.82	.000	0.00	0 (1,18)	.000	.00(-7.87)	.000	.000
195579-L	4.36	8.04	.712	0 (3,18)	.000	.00(-7.87)	.000	.000
195579-L	2.91	.322	4.24	4 (15,17)	.157	.00(-2.19)	.000	.000
195579-L	1.45	83.6	87.7	14 (18)	.598	.00(-.05)	.000	.000
NC-1	Control	100.	100.	65 (75)	.609	Control	.000	.000

Abbreviations: B(a)P, benzo(a)pyrene; C.C.A., co-culture clonal survival assay; Conc., concentration; mM, millimole; M.W., molecular weight; N, number of culture vessels; NC, negative control; ND, not determined; %RCE, percent relative cloning efficiency; S.A., standard clonal survival assay.

> **Treatment condition:** The experimental design for the transformation assay is described in detail in the Materials and Methods. The concentration of the positive control and test chemical treatment are presented in mM, but they can be converted to μg/ml using the molecular weight that is provided with each chemical. The solvent vehicles used for the individual test chemicals were listed in Appendix Tables A1 and A3, and the concentrations of the solvent vehicles are presented in the Materials and Methods.

> **Cytotoxic activity:** The experimental design for the standard survival assay (SA) and the co-culture clonal survival assay (CCA) were described in the Materials and Methods. The test chemical cytotoxic response was expressed as %RCE and was calculated as described in the Materials and Methods.

> **The criteria used to evaluate the transformed foci of BALB/c-3T3 cells is described in the Materials and Methods. The number of type III foci > 2-mm in diameter per culture vessel scored are recorded in this table.**

> **Transformation response:** The transformation responses are expressed as type III foci/vessel and were calculated using a log10 mathematical transformation procedure (refer to Materials and Methods). The arithmetic value or foci/vessel represents the antilog of the log10 mean transformation response minus one.

> **Significance:** The significance of test chemical transformation responses was calculated by a computer using the SAS statistical software (22), and the method is described in detail in Materials and Methods. The correct t-statistic according to the F-test is presented in this table. The t-statistics of each treatment dose of the test chemical in a single experiment were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Appendix Tables A2 and A3). The mean t-statistics for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank t-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (−) t-statistics were given a value of zero (0).

> **Significant BaP or test chemical transformation response, 0.01 < p ≤ 0.05.**

> **Significant BaP or test chemical transformation response, 0.001 < p ≤ 0.01.**

> **Significant or BaP or test chemical transformation response, p ≤ 0.001.**
Appendix E.

Summary of the transformation responses of 30 cytotoxic, nonmutagenic noncarcinogens.

Treatment Condition	Cytotoxic Activity RCE (%)	Transforming Activity Focus Data Type Vessels III (%)	Transformation Response Foci/Vessel Focus Type III	Significance t-statistic
Drug Conc., mM S.A CC.A.				
Anilazine [ANIL. M.W. = 275.53]				
Trial 1 [29]				
B(a)P 0.000791	1.15 57.0	122 (20)	5.79*** + 13.1	
B(a)P 0.000250	2.29 78.5	142 (20)	6.19*** + 10.3	
ANIL .0581	5.34 7.59	9 (20)	.347 (.00(-1.31))	
ANIL .0436	34.0 71.1	43 (20)	1.81*** + 3.86	
ANIL .0290	73.7 87.3	19 (20)	.721 + .48	
ANIL .0145	93.9 105.	13 (20)	.503 (.00(-.48))	
NC-1 Control 100. 100.	36 (40)	.606 Control		
Trial 2 [85]				
B(a)P 0.000791	18.8 55.6	133 (20)	3.43*** + 5.10	
B(a)P 0.000250	28.7 91.5	66 (19)	2.10*** + 4.56	
ANIL .0581	3.19 20.4	4 (11,20)	.110 (.00(-.59))	
ANIL .0436	51.1 64.7	46 (20)	2.00*** + 7.57	
ANIL .0290	46.7 96.7	13 (20)	.365 + .34	
ANIL .0145	50.3 107.	14 (20)	.394 + .52	
NC-1 Control 100. 100.	38 (80)	.313 Control		
L-Ascorbic Acid [ASC. M.W. = 176.14]				
Trial 1 [4]				
B(a)P 0.000791	15.7 74.7	184 (20)	8.81*** + 9.38	
B(a)P 0.000250	24.0 82.9	116 (20)	4.38*** + 3.62	
ASC .341	62.0 53.5	34 (20)	1.34 (.00(-.33))	
ASC .298	75.2 58.1	68 (20)	2.24 + 1.20	
ASC .256	89.7 56.2	43 (20)	1.08 (.00(-.82))	
ASC .199	100. 84.8	30 (20)	1.02 (.00(-1.03))	
NC-1 Control 100. 100.	118 (40)	1.51 Control		
Trial 2 [11]				
B(a)P 0.000791	1.37 34.4	128 (20)	4.96*** + 10.5	
B(a)P 0.000250	7.22 36.0	37 (20)	1.62*** + 5.38	
ASC .568	9.97 73.1	18 (20)	.525 + 1.11	
ASC .426	23.4 86.0	6 (20)	.231 (.00(-.45))	
ASC .284	63.2 90.3	5 (20)	.189 (.00(-.86))	
ASC .142	78.0 64.5	9 (20)	.347 + .28	
NC-1 Control 100. 100.	21 (40)	.301 Control		
Bisphenol A [BIS. M.W. = 228.29]				
Trial 1 [2]				
B(a)P 0.000791	1.02 36.4	187 (20)	8.89*** + 15.5	
B(a)P 0.000250	3.41 68.7	110 (20)	4.52*** + 8.43	
BIS .215	2.39 56.4	8 (20)	.282 (.00(-2.11))	
BIS .193	11.3 73.5	12 (19)	.449 (.00(-1.04))	
BIS .167	46.4 95.5	18 (20)	.712 + .24	
BIS .127	61.1 118.	16 (20)	.573 (.00(-.41))	
NC-1 Control 100. 100.	34 (40)	.660 Control		
Trial 2 [8]				
B(a)P 0.000791	1.45 5.83	244 (19)	10.7*** + 8.19	
B(a)P 0.000250	4.35 52.4	254 (20)	11.8*** + 11.2	

(Continued on next page)
Appendix E. Continued.

Drug	Conc., mM	S.A	CC.A	Focus Data Type	Foci/Vessel Focus Type	Significance*
BIS	.263	.000	.000	1 (15)	.047	.00(-10.8)
BIS	.219	7.25	.000	13 (18)	.572	.00(-4.58)
BIS	.175	22.2	1.94	55 (20)	2.15	.00(-0.08)
BIS	.131	43.9	27.2	89 (19)	4.31**	+ 3.45
NC-1	Control 100.	100.	110 (40)	2.19	Control	Mean t = 1.15
Trial 3	[PI7]					
B(a)P	.000791	.000	NA	100 (15)	5.28***	+ 8.30
B(a)P	.000250	3.1	NA	84 (15)	5.28***	+ 11.4
BIS	.197	8.3	NA	4 (15)	.18	.00(-1.15)
BIS	.131	34.8	NA	15 (15)	.72	+ 1.14
BIS	.0657	76.0	NA	8 (15)	.62	+ 1.04
NC-1	Control 100.	100.	20 (29)	.41	Control	Mean t = .393
Trial 4	[PI8]					
B(a)P	.000791	1.3	3.7	82 (11)	6.31***	+ 20.5
B(a)P	.000250	2.6	22.1	110 (12)	8.85***	+ 10.7
BIS	.210	.000	2.7	1 (12)	.059	.00(-1.18)
BIS	.158	3.0	19.5	10 (12)	.55	+ 1.48
BIS	.105	20.6	52.3	11 (12)	.658	+ 1.92
BIS	.0526	69.5	81.3	17 (12)	1.01*	+ 2.75
*NC-1	Control 100.	100.	6 (24)	.189	Control	Mean t = 1.54

* *Trial No. 6 was conducted in 100 mm dishes using 20000 BALB/c-3T3 Cells (refer to Exp. PI8).

Carbromal [CARB. M.W. = 237.10]

Trial 1	[35]					
B(a)P	.000791	4.51	66.1	103 (20)	4.91***	+ 6.41
B(a)P	.000250	12.3	87.5	133 (20)	6.01***	+ 6.34
CARB	5.06	2.05	12.5	12 (11,20)	.782	.00(-2.76)
CARB	3.80	7.79	72.1	67 (20)	2.96*	+ 2.02
CARB	2.53	30.7	115.	36 (20)	1.41	.00(-1.41)
CARB	1.27	59.0	111.	37 (20)	1.68	.00(-.79)
NC-1	Control 100.	100.	94 (40)	1.97	Control	Mean t = .673
Trial 2	[44]					
B(a)P	.000791	5.07	25.9	335 (20)	15.8***	+ 16.3
B(a)P	.000250	14.2	67.2	137 (20)	6.15***	+ 7.33
CARB	4.00	9.80	22.0	156 (20)	7.00***	+ 8.03
CARB	2.00	35.1	85.2	83 (19)	3.80**	+ 4.39
CARB	1.00	89.2	84.4	68 (20)	2.60*	+ 2.26
CARB	.500	98.3	91.3	47 (20)	1.97	+ 1.09
NC-1	Control 100.	100.	77 (40)	1.52	Control	Mean t = 3.00

Chloropheniramine-Maleate [005004-S. M.W. = 390.87]

Trial 1	[70]					
B(a)P	.000791	1.24	48.9	11 (3)	3.38***	+ 4.23
B(a)P	.000250	11.8	81.0	19 (5)	3.62***	+ 5.73

(Continued on next page)
Appendix E. Continued.

Treatment Condition	Cytotoxic Activity^a	Transforming Activity^b	Transformation Response^c	Significance^e		
Drug	Conc., mM	S.A.	CC.A.	Focus Data Type	Foci/Vessel Focus Type	t-statistic
				Vessels III (N)		
005004-S	.513	.000	.000	0 (8)	.000	NA
005004-S	.385	.000	4.50	1 (4,11)	.119	.00(-1.15)
005004-S	.256	.000	74.3	2 (9)	.167	.00(-1.83)
005004-S	.128	8.07	105.8	10 (17)	.503	.00(-.13)
CIAY73	Control	100.	100.	36 (54)	.526	Control
						Mean t = .000
Trial 2 [85]						
B(a)P	.000791	18.8	55.6	133 (20)	3.43***	+ 5.10
B(a)P	.000250	28.7	91.8	66 (19)	2.10***	+ 4.56
005004-S	.410	.000	.000	3 (10,20)	.231	.00(-.55)
005004-S	.308	.000	34.1	20 (20)	.807**	+ 2.91
005004-S	.205	1.20	91.8	18 (20)	.737*	+ 2.56
005004-S	.103	63.1	103.	10 (20)	.374	.63
NC-1	Control	100.	100.	38 (80)	.313	Control
						Mean t = 1.97
C. I. Acid Red 14 [CIAR14. M.W. = 502.44]						
Trial 1 [30]						
B(a)P	.000791	1.32	60.3	158 (20)	7.23***	+ 12.3
B(a)P	.000250	2.63	101.	98 (19)	4.25***	+ 8.08
CIAR14	3.98	3.95	32.6	44 (20)	1.54*	+ 2.33
CIAR14	2.98	21.5	48.4	35 (20)	1.61**	+ 3.17
CIAR14	1.99	32.9	51.7	38 (20)	1.59**	+ 2.75
CIAR14	1.00	72.4	78.5	22 (20)	.966	+ .78
NC-1	Control	100.	100.	40 (40)	.787	Control
						Mean t = 2.26
Trial 2 [45]						
B(a)P	.000791	8.74	42.5	186 (20)	8.98***	+ 20.9
B(a)P	.000250	28.2	86.4	77 (20)	3.42***	+ 8.88
CIAR14	4.00	13.9	87.9	26 (20)	.868*	+ 2.15
CIAR14	2.00	89.3	103.	48 (19)	2.30***	+ 8.11
CIAR14	1.00	102.	99.2	35 (20)	1.48***	+ 4.80
CIAR14	.500	100.	103.	15 (20)	.547	+ 1.32
NC-1	Control	100.	100.	54 (59)	.732	Control
						Mean t = 4.09
C. I. Acid Yellow 73 [CIAY73. M.W. = 376.]						
Trial 1 [77]						
B(a)P	.000791	5.66	69.5	179 (20)	8.33***	+ 13.6
B(a)P	.000250	16.5	78.7	114 (19)	5.53***	+ 10.0
CIAY73	7.98	2.83	11.9	13 (16)	.664	.00(-1.31)
CIAY73	5.98	.000	18.7	14 (16)	.645	.00(-1.36)
CIAY73	3.99	9.91	66.0	7 (20)	.221	.00(-4.09)
CIAY73	1.99	54.2	86.4	17 (20)	.702	.00(-1.25)
NC-1	Control	100.	100.	94 (78)	.972	Control
						Mean t = .000
Trial 2 [83]						
B(a)P	.000791	2.86	73.0	141 (20)	6.14***	+ 13.5
B(a)P	.000250	13.8	78.9	64 (20)	2.95***	+ 9.12
CIAY73	7.98	.000	13.1	3 (13)	.173	.00(-1.01)
CIAY73	5.98	2.38	23.9	10 (13)	.406	+ .26
CIAY73	3.99	4.29	35.7	4 (12)	.230	.00(-.64)
CIAY73	1.99	34.8	78.4	6 (20)	.231	.00(-.81)
NC-1	Control	100.	100.	48 (80)	.351	Control
						Mean t = .065

(Continued on next page)
TRANSFORMATION RESPONSES OF 168 CHEMICALS

Appendix E. Continued.

Drug	Conc., mM	S.A (g/ml)	CC.A (g/ml)	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
Ephedrine Sulfate [213387-S. M.W. = 428.54]						
Trial 1 [71]	B(a)P .000791	4.48	50.7	251 (20)	11.0***	+ 12.1
	B(a)P .000250	18.1	68.7	77 (20)	3.50***	+ 7.12
	213387-S .279	73.9	80.9	18 (20)	.712	.00(-1.26)
	213387-S .209	75.7	79.4	16 (20)	.611	.00(-1.67)
	213387-S .140	80.6	87.8	37 (15)	1.96*	+ 2.14
	213387-S .0700	93.1	83.2	24 (15)	1.51	+ 1.10
	NC-1 Control 100.	100.		110 (75)	1.06	Control
	Mean t = .810					
Trial 2 [77]	B(a)P .000791	5.66	69.5	179 (20)	8.33***	+ 13.6
	B(a)P .000250	16.5	78.7	114 (19)	5.33***	+ 10.0
	213387-S 2.79	.000	.367	0 (7,20)	.000	.00(-12.5)
	213387-S 2.09	.000	10.6	4 (19)	.157	.00(-6.21)
	213387-S 1.40	.943	83.6	28 (20)	.880	.00(-.57)
	213387-S .698	30.2	97.6	19 (19)	.760	.00(-.92)
	NC-1 Control 100.	100.		94 (78)	.972	Control
	Mean t = .000					
Trial 3 [89]	B(a)P .000791	8.13	69.0	119 (20)	4.77***	+ 10.3
	B(a)P .000250	31.9	89.1	63 (20)	2.33***	+ 5.84
	213387-S 2.09	?	2 ?	0 (5,20)	.000	.00(-7.01)
	213387-S 1.74	42.5 ?	2.3 ?	8 (15)	.270	.00(-1.12)
	213387-S 1.40	102.	13.3	23 (19)	.704	+ .96
	213387-S .698	107.	91.9	12 (19)	.480	.00(-.06)
	NC-1 Control 100.	100.		57 (79)	.492	Control
	Mean t = .320					
Erythromycin Stearate [302486-S. M.W. = 1018.59]						
Trial 1 [71]	B(a)P .000791	4.48	50.7	251 (20)	11.0***	+ 12.1
	B(a)P .000250	18.1	68.7	77 (20)	3.50***	+ 7.12
	302486-S .118	.000	13.4	6 (16)	.242	.00(-3.18)
	302486-S .0882	.000	39.1	7 (20)	.275	.00(-4.65)
	302486-S .0588	1.79	75.1	9 (20)	.366	.00(-3.89)
	302486-S .0294	25.1	98.9	10 (16)	.461	.00(-2.13)
	NC-1 Control 100.	100.		110 (75)	1.06	Control
	Mean t = .000					
Trial 2 [89]	B(a)P .000791	8.13	69.0	119 (20)	4.77***	+ 10.3
	B(a)P .000250	31.9	89.1	63 (20)	2.33***	+ 5.84
	302486-S .118	.000	12.0	5 (20)	.172	.00(-2.55)
	302486-S .0882	.000	27.0	7 (20)	.275	.00(-1.31)
	302486-S .0588	2.61	75.4	11 (20)	.402	.00(-5.0)
	302486-S .0294	89.3	83.7	17 (20)	.620	+ .65
	NC-1 Control 100.	100.		57 (79)	.492	Control
	Mean t = .163					
Ethoxylated Dodecyl Alcohol [EDA. M.W. = -1200.. Density = 0.999 g/ml]						
Trial 1 [82]	B(a)P .000791	46.8	47.2	371 (18)	19.4***	+ 7.45
	B(a)P .000250	56.3	51.6	288 (18)	15.5***	+ 7.97

(Continued on next page)
Appendix E. Continued.

Drug	Conc., mM	S.A	CC.A.	RCE (%)	Focus Data Type Vessels	Transformation Response	Significance
EDA	0.0417	.000	.000	0 (0,18)	6.42	0.00	Control (NA)
EDA	0.0132	.000	.000	125 (18)	5.77	0.00	Control (NA)
EDA	0.00417	101.	26.9	110 (18)	4.40	0.00	Control (NA)
EDA	0.00132	91.8	63.3	82 (18)	8.01	Control (NA)	
NC-1	Control	100.	100.	649 (72)	Control	Control (NA)	

Trial 2 [90]

B(a)P	.000791	28.5	76.0	157 (18)	7.60***	+ 5.89
B(a)P	.000255	51.8	95.8	111 (18)	4.91***	+ 3.71

EDA

Focus Data Type Vessels	Transformation Response	Significance
0 (0,18)	6.42	0.00 (1.74)
125 (18)	5.77	0.00 (2.59)
110 (18)	4.40	0.00 (6.45)
649 (72)	8.01	Control (NA)

Ethylenediamine Tetraacetic Acid, Trisodium Salt [EDTA, M.W. = 358.22]

Trial 1 [73]

B(a)P	.000791	2.21	71.9	61 (19)	2.60***	+ 8.09
B(a)P	.000250	7.18	88.8	48 (20)	1.58***	+ 4.37

EDA

2.72	0.00	3.13	5 (20)	.172	0.00 (-0.45)	
1.81	5.00	60.0	34 (20)	1.26**	+ 4.49	
1.36	45.3	79.4	14 (20)	0.525	+ 1.50	
.907	80.1	98.8	19 (20)	0.542	+ 1.48	
NC-1	Control	100.	100.	45 (79)	.274	Control

Trial 2 [85]

B(a)P	.000791	12.8	55.6	133 (20)	3.43***	+ 5.10
B(a)P	.000250	22.4	91.8	66 (19)	2.10***	+ 4.56

EDA

2.79	0.00	0.00	2 (15,20)	.072	0.00 (-2.26)	
2.33	1.20	2.33	11 (20)	.423	+ 0.75	
1.67	37.5	49.1	15 (20)	.576	+ 1.68	
.837	94.6	89.7	7 (20)	.272	0.00 (-0.29)	
NC-1	Control	100.	100.	38 (80)	.313	Control

Eugenol [EUG, M.W. = 164.20. Density = 1.064 g/ml]

Trial 1 [74]

B(a)P	.000791	?	69.2	43 (18)	2.02***	+ 4.51
B(a)P	.000250	9.58	78.4	27 (18)	1.29*	+ 2.49

EUG

0.649	0.00	96.3	43 (18)	1.99***	+ 4.45	
0.325	11.4	110.	30 (18)	1.00	+ 1.03	
0.162	39.5	99.1	23 (18)	1.035	+ 1.51	
0.0812	66.5	107.	17 (18)	.765	+ 0.49	
NC-1	Control	100.	100.	65 (18)	.657	Control

Trial 2 [94]

B(a)P	.000791	0.00	75.7	122 (18)	5.92***	+ 6.26
B(a)P	.000250	17.4	114.	81 (18)	3.88***	+ 4.08

(Continued on next page)
Appendix E. Continued.

Treatment Condition*	Cytotoxic Activity*^b RCE (%)	Transforming Activity^c Focus Data Type Vessels III (N)	Transformation Response^d Foci/Vessel Focus Type III t-statistic	Significance<sup*e</sup>

Drug	Conc., mM	S.A	CC.A.
EUG	1.62	.000	.000
EUG	.812	.000	59.8
EUG	.406	5.13	121.1
EUG	.203	5.13	137.7
NC-1	Control	100.	100.

Geranyl Acetate [GEAC, M.W. = 196.32, Density = 0.907 - 0.918 g/ml]

Trial 1 [84]

B(a)P	.000791	49.8	57.9
B(a)P	.000250	ND	71.7
GEAC	.560	.733	1.68
GEAC	.280	53.5	50.9
GEAC	.140	84.2	60.6
GEAC	.0700	114.	101.
NC-1	Control	100.	100.

Trial 2 [92]

B(a)P	.000250	.394	45.3
B(a)P	.000791	18.2	72.2
B(a)P	.000250	19.4	78.2
GEAC	.509	1.19	.000
GEAC	.382	14.7	19.9
GEAC	.255	61.4	66.2
GEAC	.127	89.5	98.1
NC-1	Control	100.	100.

4-Hexylresorcinol [012776-S, M.W. = 194.27]

Trial 1 [63]

B(a)P	.000791	4.00	80.5	141 (20)
B(a)P	.000250	24.8	93.1	93 (20)
012776-S .158	4.7	2.21	2 (18)	
012776-S .118	14.5	51.0	3 (9)	
012776-S .079	49.1	82.7	16 (10)	
012776-S .039	76.3	103.	26 (15)	
NC-1	Control	100.	100.	

Trial 2 [85]

B(a)P	.000791	12.8	55.9	133 (20)
B(a)P	.000250	28.7	79.4	66 (19)
012776-S .147	2.00	.000	2 (19)	
012776-S .111	25.1	44.4	26 (20)	
012776-S .074	48.3	80.2	12 (20)	
012776-S .037	70.3	95.2	7 (20)	
NC-1	Control	100.	100.	

D,L-Menthol [MENT, M.W. = 156.27]

Trial 1 [18]

| B(a)P | .000791 | 2.24 | 45.8 | 125 (20) |
| B(a)P | .000250 | 8.52 | 78.5 | 86 (20) |

(Continued on next page)
Appendix E. Continued.

Drug	Conc., mM	S.A	CC.A	Focus Data Type	Foci/Vessel	t-statistic	Significance
MENT	6.40	.000	.000	7 (10, 20)	.578	.00(-.34)	
MENT	3.20	.000	39.8	3 (4, 19)	.414	.00(-.67)	
MENT	1.60	42.2	102.	14 (20)	.525	.00(-.71)	
MENT	.800	69.5	110.	58 (20)	.925	+.69	
NC-1 Control	100.00			33 (40)	.663		
Trial 2 [24]							
B(a)P	.000791	.000	18.7	83 (20)	3.65***	+ 10.7	
B(a)P	.000250	5.66	70.0	86 (20)	3.73***	+ 10.7	
MENT	4.80	.629	.000	2 (15, 20)	.097	.00(-1.92)	
MENT	3.20	50.3	85.6	4 (20)	.132	.00(-1.35)	
MENT	1.60	65.8	91.7	6 (20)	.231	.00(-.56)	
MENT	.800	72.3	98.7	10 (20)	.347	+ .25	
NC-1 Control	100.00			18 (40)	.308		

Methoxychlor [METH, M.W. = 345.66]

Drug	Conc., mM	S.A	CC.A	Focus Data Type	Foci/Vessel	t-statistic	Significance
Trial 1 [37]							
B(a)P	.000791	1.60	46.0	101 (20)	4.59***	+ 9.94	
B(a)P	.000250	6.80	77.2	113 (20)	5.38***	+ 13.5	
METH	.231	.000	.000	0 (0, 20)	.000	ND	
METH	.174	.000	.000	0 (5, 20)	.000	.00(-6.66)	
METH	.116	.000	2.48	7 (19)	.272	.00(-2.01)	
METH	.058	72.8	78.3	24 (20)	.966	+ 1.41	
NC-1 Control	100.00			32 (39)	.631		
Trial 2 [89]							
B(a)P	.000791	8.13	69.0	119 (20)	4.77***	+ 10.3	
B(a)P	.000250	31.9	89.1	63 (20)	2.33***	+ 5.84	
METH	.145	.000	16.8	3 (14)	.160	.00(-1.79)	
METH	.108	31.1	60.9	21 (19)	.809	+ 1.45	
METH	.072	65.8	84.4	30 (20)	1.30***	+ 3.54	
METH	.056	90.3	85.0	15 (18)	.502	+ .25	
NC-1 Control	100.00			57 (79)	.492		

Methyldopa Sesquihydrate [973697-S, M.W. = 238.24]

Drug	Conc., mM	S.A	CC.A	Focus Data Type	Foci/Vessel	t-statistic	Significance
Trial 1 [75]							
B(a)P	.000791	7.10	66.5	149 (20)	6.35***	+ 10.9	
B(a)P	.000250	28.4	85.4	67 (20)	3.10***	+ 6.56	
973697-S	.119	.000	45.8	51 (20)	2.09***	+ 3.85	
973697-S	.0595	55.5	71.3	39 (20)	1.37	+ 1.71	
973697-S	.0298	92.3	71.0	32 (20)	1.87	+ 1.11	
973697-S	.0169	100.0	72.2	17 (20)	.677	.00(-.93)	
NC-1 Control	100.00			89 (78)	.882		
Trial 2 [91]							
B(a)P	.000791	28.9	73.6	60 (20)	2.00***	+ 5.11	
B(a)P	.000250	58.1	89.9	14 (20)	.933	+ 1.31	
973697-S	.167	.000	84.9	5 (10, 20)	.155	+ .08	
973697-S	.125	.000	16.1	17 (18, 20)	.596	+ 1.80	
973697-S	.083	.000	84.4	5 (20)	.172	.00(-1.34)	
973697-S	.042	93.5	93.1	3 (20)	.110	.00(-2.04)	
NC-1 Control	100.00			31 (75)	.322		

(Continued on next page)
Appendix E. Continued.

Drug	Conc., mM	S.A	CC.A.	M.E.P.H.	Control
B(a)P	.000791	2.28	47.9	148 (20)	7.06*** + 16.5
MEPH	8.36	.000	5.80	23 (20)	.927 + 1.72
MEPH	6.27	3.91	73.6	25 (20)	1.08* + 2.40
MEPH	4.18	57.2	103.	18 (19)	.777 + 1.12
MEPH	2.09	82.6	102.	9 (20)	.327 + 0.00(-1.19)

Oxycycline-HCl [925728-S, M.W. = 496.90]

B(a)P	.000791	3.55	30.1	162 (20)	7.55*** + 18.7
B(a)P	.000250	5.32	69.9	37 (20)	1.63*** + 6.91
MEPH	8.00	.000	20.3	14 (20)	.525 + 1.60
MEPH	6.00	12.4	71.4	12 (20)	.473 + 1.35
MEPH	4.18	68.4	81.8	3 (20)	.094 + 0.00(-1.66)
MEPH	2.09	95.0	78.6	8 (20)	.301 + 0.17

Phenol [PHENOL, M.W. = 94.11]

| B(a)P | .000791 | 5.91 | 63.1 | 87 (18) | 4.41*** + 5.23 |
| B(a)P | .000250 | 23.3 | 97.0 | 54 (18) | 2.72* + 2.26 |

(Continued on next page)
Appendix E. Continued.

Drug	Conc., mM	S.A	CC.A	Transforming Activity^b	Cytotoxic Activity^a	Transforming Response^d	Significance^e
				Focus Data	Type Vessels	Foci/Vessel Focus Type	t-statistic
				III (N)	III	III	
PHENOL	4.25	0.00	65.0	239 (18)	13.0**⁺	+ 20.3	
PHENOL	2.13	4.60	82.9	152 (18)	8.01**⁺	+ 12.3	
PHENOL	1.06	25.9	92.4	89 (18)	4.61**⁺	+ 5.54	
PHENOL	0.53	59.1	102.	97 (18)	3.86**⁺	+ 3.90	
NC-1	Control	100.	100.	152 (171)	1.79	Control	
PHENOL	4.25	7.65	42.5	159 (18)	8.17**⁺	+ 8.78	
PHENOL	3.19	13.6	48.6	114 (18)	5.95**⁺	+ 7.15	
PHENOL	2.13	17.7	67.9	55 (18)	2.74	+ 1.80	
PHENOL	1.06	61.2	90.9	49 (18)	2.33	+ .67	
NC-1	Control	100.	100.	219 (71)	1.95	Control	
Trial 2 [90]							
B(a)P	.000791	28.5	76.0	157 (18)	7.60**⁺	+ 5.89	
B(a)P	.000250	51.8	95.8	111 (18)	4.91**⁺	+ 3.71	
PHENOL	4.25	7.65	42.5	159 (18)	8.17**⁺	+ 8.78	
PHENOL	3.19	13.6	48.6	114 (18)	5.95**⁺	+ 7.15	
PHENOL	2.13	17.7	67.9	55 (18)	2.74	+ 1.80	
PHENOL	1.06	61.2	90.9	49 (18)	2.33	+ .67	
NC-1	Control	100.	100.	219 (71)	1.95	Control	
Phenylephrine-HCl [571483-S. M.W. = 203.67]							
Trial 1 [73]							
B(a)P	.000791	2.21	71.9	61 (19)	2.60**⁺	+ 8.09	
B(a)P	.000250	7.18	88.8	48 (20)	1.58**⁺	+ 4.37	
571483-S	7.00	0.00	.209	0 (3,20)	.000	.00(-4.49)	
571483-S	5.25	0.00	2.09	0 (19,20)	.000	.00(-4.49)	
571483-S	3.50	.552	38.6	8 (20)	.275	.00	
571483-S	1.75	88.4	99.2	10 (20)	.394	+ .77	
NC-1	Control	100.	100.	45 (79)	.274	Control	
Trial 2 [105]							
B(a)P	.000791	5.67	63.1	59 (20)	2.43**⁺	+ 6.70	
B(a)P	.000250	18.2	86.5	40 (19)	1.93**⁺	+ 5.54	
571483-S	6.00	0.00	.792	0 (10,19)	.000	.00(-8.86)	
571483-S	4.50	0.00	10.6	6 (20)	.172	.00(-2.68)	
571483-S	3.00	9.67	89.2	20 (20)	.715	+ .69	
571483-S	1.50	81.7	98.7	14 (18)	.598	+ .09	
NC-1	Control	100.	100.	58 (77)	.581	Control	
Propyl Gallate [PRGA. M.W. = 212.22]							
Trial 1 [3]							
B(a)P	.000791	10.7	47.1	127 (20)	5.84**⁺	+ 14.8	
B(a)P	.000250	13.4	81.6	39 (20)	1.61**⁺	+ 5.63	
PRGA	.087	0.00	32.2	33 (19)	1.04*	+ 2.60	
PRGA	.075	0.00	37.9	27 (20)	.977**⁺	+ 3.31	
PRGA	.059	0.00	42.5	17 (20)	.658*	+ 2.24	
PRGA	.038	0.00	72.4	14 (20)	.556	+ 1.65	
NC-1	Control	100.	100.	17 (40)	.285	Control	
Trial 2 [9]							
B(a)P	.000791	3.14	38.3	108 (20)	4.93**⁺	+ 16.2	
B(a)P	.000250	8.52	87.2	47 (20)	1.92**⁺	+ 7.04	
PRGA	.094	0.00	44.1	25 (20)	.800**	+ 2.98	
PRGA	.071	0.00	66.7	7 (20)	.238	+ .85	
PRGA	.067	1.35	83.1	3 (20)	.110	.00(- .46)	
PRGA	.024	74.4	84.1	0 (20)	.000	.00(-3.12)	
NC-1	Control	100.	100.	8 (40)	.149	Control	
(Continued on next page)
Appendix E. Continued.

Drug	Conc., mM	S.A.	C.C.A.	Treatment Condition	Cytotoxic Activity^a	Transforming Activity^a	Transformation Response^a	Significance^a
		S.A.			RCE (%)	Focus Data Type Vessels	Foci/Vessel Focus Type	

Rotenone [959444-S, M.W. = 394.43]

Trial 1 [75]
- B(a)P 0.000791 (.000250) 7.10 66.5 149 (20) 6.35*** + 10.9
- 959444-S .000513 959444-S .00162 0.00 13.7 1 (19,20) .037 .00(-8.85)
- 959444-S .000513 959444-S .000513 2.92 45.4 2 (19) .060 .00(-7.10)
- NC-1 Control 100. 100. 89 (78) .882 Control

Trial 2 [96]
- B(a)P 0.000791 (.000250) 11.0 43.5 86 (20) 4.03*** + 9.40
- 959444-S .00256 959444-S .000810 3.76 53.5 0 (1,20) .000 .00(-1.02)
- 959444-S .000810 959444-S .000256 21.6 54.6 18 (20) .813 + 9.4
- 959444-S .000810 NC-1 Control 100. 100. 62 (70) .660 Control

Sodium Diethyldithiocarbamate [SDEDTC, M.W. = 171.27]

Trial 1 [38]
- B(a)P 0.000791 (.000250) 2.10 28.4 174 (20) 7.75*** + 15.6
- SDEDTC .000467 .000234 17.1 12.9 42 (19) 1.91*** + 5.18
- SDEDTC .0000117 959444-S .000504 96.5 84.3 19 (19) .815 + 1.50
- NC-1 Control 100. 100. 27 (40) .696 Control

Trial 2 [96]
- B(a)P 0.000791 (.000250) 11.0 43.5 86 (20) 4.03*** + 9.40
- SDEDTC .000350 959444-S .000263 7.07 11.1 46 (20) 1.98*** + 4.64
- SDEDTC .000175 959444-S .0000876 97.4 100. 13 (20) .49 .00(-.86)
- NC-1 Control 100. 100. 62 (70) .660 Control

Stannous Chloride [STCL, M.W. = 189.60]

Trial 1 [19]
- B(a)P 0.000791 (.000250) .000 62.5 99 (20) 4.61*** + 13.4
- STCL .0633 .000 9.19 11 (20) .402 + .28
- STCL .0422 7.08 29.6 9 (20) .327 .00(-.20)
- STCL .0211 47.9 72.4 10 (20) .266 .00(-.58)
- STCL .0105 75.0 93.0 11 (20) .423 + .42
- NC-1 Control 100. 100. 18 (38) .357 Control

Trial 2 [26]
- B(a)P 0.000791 (.000250) .382 13.5 204 (20) 9.88*** + 17.8
- B(a)P 0.000791 (.000250) 1.14 56.2 144 (20) 6.58*** + 10.5

(Continued on next page)
Appendix E. Continued.

Treatment Conditiona	Cytotoxic Activityb	Transforming Activityd	Transformation Responsed	Significanceb			
	Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
STCL	.0527	3.82	33.6	28 (20)	1.18	+ .99	
STCL	.0264	26.3	69.7	35 (20)	1.45	+ .77	
STCL	.0132	56.8	56.9	39 (20)	1.61*	+ 2.27	
STCL	.00659	78.2	68.2	25 (20)	1.04	+ .48	
NC-1 Control	100.	100.	46 (40)	.907	Control		

Mean t = 1.38

Tetracycline-HCl [186206-S. M.W. = 480.94]

Condition	Treatment	Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
Control	B(a)P	.000791	4.48	50.7	251 (20)	11.0***	+ 12.1	
Control	B(a)P	.000250	18.1	68.7	77 (20)	3.50***	+ 7.12	
Control	186206-S	.542	0.00	0.00	3 (20)	.110	.00(-6.87)	
Control	186206-S	.406	3.58	1.27	3 (20)	.110	.00(-6.87)	
Control	186206-S	.271	27.3	18.5	25 (20)	.988	.00(-.25)	
Control	186206-S	.135	43.5	61.1	20 (16)	1.03	.00(-.09)	
NC-1 Control	100.	100.	110 (75)	1.06	Control			

Mean t = .000

Tetrakishydroxymethyl)phosphonium Chloride [120152-L. M.W. = 190.58, Density = 1.322 g/ml]

Condition	Treatment	Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
Control	B(a)P	.000791	2.75	56.8	85 (18)	4.11***	+ 12.7	
Control	B(a)P	.000250	6.61	82.1	84 (18)	3.04***	+ 6.20	
Control	120152-L	.0263	0.00	3.76	11 (18)	.456	+ 1.15	
Control	120152-L	.0132	0.00	14.5	4 (18)	.148	.00(-1.16)	
Control	120152-L	.00658	17.1	53.1	3 (18)	.122	.00(-1.42)	
Control	120152-L	.00329	40.8	91.2	5 (18)	.212	.00(-.61)	
NC-1 Control	100.	100.	29 (72)	.289	Control			

Mean t = .288

Condition	Treatment	Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
Control	B(a)P	.000791	28.5	76.0	157 (18)	7.60***	+ 5.89	
Control	B(a)P	.000250	51.8	95.8	111 (18)	4.91***	+ 3.71	
Control	120152-L	.0132	3.48	4.89	101 (18)	4.93***	+ 3.88	
Control	120152-L	.00987	2.43	18.6	122 (18)	5.70***	+ 4.52	
Control	120152-L	.00658	12.2	38.1	106 (18)	5.22***	+ 5.42	
Control	120152-L	.00329	50.4	78.7	66 (18)	2.12	+ .29	
NC-1 Control	100.	100.	219 (71)	1.95	Control			

Mean t = 3.53

Condition	Treatment	Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
Control	B(a)P	.000791	8.38	79.6	132 (18)	6.82***	+ 11.8	
Control	B(a)P	.000250	29.3	91.3	75 (18)	3.38***	+ 6.81	
Control	120152-L	.0132	0.00	17.8	12 (18)	.469	.00(-.59)	
Control	120152-L	.00987	2.10	26.3	10 (18)	.414	.00(-.98)	
Control	120152-L	.00658	5.24	44.2	6 (18)	.240	.00(-.199)	
Control	120152-L	.00329	17.8	71.2	5 (18)	.212	.00(-.2.68)	
NC-1 Control	100.	100.	39 (45)	.618	Control			

Mean t = .000

(Continued on next page)
Appendix E. Continued.

Drug	Conc., mM	S.A	C.C.A.	Focus Data Type Vessels	Transformation Response	Significance
				III (N)	Foci/Vessel Focus Type	
						t-statistic

Tetrakis(hydroxymethyl)phosphonium Sulfate [003374-L, M.W. = 404.32, Density = NA g/ml]

Trial 1 [72]	B(a)P .0000791	2.75	56.8	85 (18)	4.11*** + 12.7
B(a)P .000250	6.61	82.1	84 (18)	3.04*** + 6.20	
003374-L .01098	.000	1.25	10 (18)	.361 + .50	
003374-L .000732	.000	1.75	6 (18)	.220 .00(-.53)	
003374-L .00366	12.1	35.3	4 (18)	.148 .00(-1.16)	
003374-L .00183	51.8	68.9	1 (18)	.039 .00(-3.59)	
NC-1 Control	100.	100.	29 (72)	.289 Control	

Mean $t = .125$

Triphenyltin Hydroxide [TPH, M.W. = 367.03]

Trial 1 [39]	B(a)P .0000791	1.07	23.6	172 (20)	8.06*** + 14.5
B(a)P .000250	3.56	64.5	145 (20)	6.84*** + 15.8	
TPTH .000272	.000	35.1	5 (18)	.193 + .50	
TPTH .000136	26.0	78.5	24 (20)	.955 + .51	
TPTH .0000681	.000	212	1 (16,18)	.044 .00(-5.25)	
TPTH .0000341	67.6	88.4	16 (20)	.533* + 2.30	
NC-1 Control	100.	100.	27 (40)	.427 Control	

Mean $t = .828$

Xylenes, (Mixed) [109591-L, M.W. = 106.17, Density = NA g/ml]

Trial 1 [72]	B(a)P .0000791	2.75	56.8	85 (18)	4.11*** + 12.7
B(a)P .000250	6.61	82.1	84 (18)	3.04*** + 6.20	
109591-L 4.77	.000	.000	0 (0,18)	.000 NA	
109591-L 3.18	.000	53.8	0 (1,18)	.000 .00(-.65)	
109591-L 2.39	20.9	44.3	3 (10,18)	.231 .00(-.35)	
109591-L 1.59	53.4	99.7	5 (18)	.193 .00(-.76)	
NC-1 Control	100.	100.	29 (72)	.289 Control	

Mean $t = .000$

Trial 2 [100]

| B(a)P .0000791 | 89.7 | 77.9 | 65 (18) | 3.30*** + 11.7 |
| B(a)P .000250 | 81.0 | 93.8 | 62 (18) | 2.85*** + 7.75 |

(Continued on next page)
Appendix E. Continued.

Treatment Condition	Cytotoxic Activity^a	Transforming Activity^b	Transformation Response^d	Significance^e		
Drug	Conc., mM	S.A	CC.A.	Foci/Vessel		
			III (N)	Focus Type		
109591-L	9.09	.000	.000	(2, 18)	.000	.00(-5.11)
109591-L	6.82	29.9	54.1	(8, 18)	.091	.00(-1.06)
109591-L	4.55	30.3	71.8	(18)	.348	+ .57
109591-L	2.27	57.0	92.1	(18)	.464	+ 1.32
NC-1 Control	Control	100.0	100.0	28 (72)	.268	Control

Abbreviations: B(a)P, benzo(a)pyrene; CC.A., co-culture clonal survival assay; Conc., concentration; mM, millimole; M.W., molecular weight; N, number of culture vessels, NC, negative control; ND, not determined; %RCE, percent relative cloning efficiency; S.A., standard clonal survival assay.

^aTreatment Condition: The experimental design for the transformation assay is described in detail in the Materials and Methods. The concentration of the positive control and test chemical treatment are presented in mM, but they can be converted to μg/ml using the molecular weight that is provided with each chemical. The solvent vehicles used for the individual test chemicals were listed in Appendix Tables A1 and A3, and the concentrations of the solvent vehicles are presented in the Materials and Methods.

^bCytotoxic activity: The experimental design for the standard survival assay (SA) and the co-culture clonal survival assay (CCA) were described in the Materials and Methods. The test chemical cytotoxic response was expressed as & RCE and was calculated as described in the Materials and Methods.

^cThe criteria used to evaluate the transformed foci of BALB/c-3T3 cells is described in the Materials and Methods. The number of type III foci > 2-mm in diameter per culture vessel scored are recorded in this table.

^dTransformation response: The transformation responses are expressed as type III foci/vessel and were calculated using a log₁₀ mathematical transformation procedure (refer to Materials and Methods). The arithmetic value of foci/vessel represents the antilog of the log₁₀ mean transformation response minus one.

^eSignificance: The significance of test chemical transformation responses was calculated by a computer using the SAS statistical software (22), and the method is described in detail in Materials and Methods. The correct t-statistic according to the F-test is presented in this table. The t-statistics of each treatment dose of the test chemical in a single experiment were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Appendix Tables A2 and A5). The mean t-statistics for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank t-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (−) t-statistics were given a value of zero (0).

^fSignificant BaP or test chemical transformation response, 0.01 < p ≤ 0.05.

^gSignificant BaP or test chemical transformation response, 0.001 < p ≤ 0.01.

^hSignificant or BaP or test chemical transformation response, p ≤ 0.001.
Appendix F.

Summary of the transformation responses of 12 noncytotoxic carcinogens.

Drug	Conc., mM	S.A	CC.A	Focus Data	Foci/Vessel	Significance
3-Amino-1,2,4-Triazole	AMT, M.W. = 84.08					
Trial 1 [69]						
B(a)P .000791	1.72	50.1	63 (20)	2.67***	+ 9.34	
B(a)P .000250	11.3	68.1	33 (20)	1.17**	+ 3.53	
AMT 200.	.000	.000	1 (9,20)	.080	+ .00(-1.42)	
AMT 100.	3.44	57.7	21 (20)	.798*	+ 2.53	
AMT 50.0	53.3	94.2	33 (20)	1.30***	+ 4.24	
AMT 25.0	86.7	75.3	27 (19)	1.14***	+ 3.86	
NC-1 Control	100.	100.	15 (40)	.288	Control	
Mean t = 3.54						
Trial 2 [99]						
B(a)P .000791	18.9	68.4	160 (20)	6.67***	+ 12.4	
B(a)P .000250	32.1	85.0	94 (20)	3.59***	+ 7.95	
AMT 107.	4.91	31.0	50 (20)	2.20***	+ 5.77	
AMT 80.3	39.6	56.9	123 (20)	5.57***	+ 11.6	
AMT 53.5	87.5	87.3	104 (20)	4.39***	+ 9.35	
AMT 26.8	96.6	106.	53 (20)	2.20***	+ 5.60	
NC-1 Control	100.	100.	65 (80)	.586	Control	
Mean t = 8.08						
Cyclamate, Sodium Salt [CYC. M.W. = 201.22]						
Trial 1 [71]						
B(a)P .000791	4.48	50.7	251 (20)	11.0***	+ 12.1	
B(a)P .000250	18.1	68.9	77 (20)	3.50***	+ 7.12	
CYC 29.8	42.3	84.4	74 (18)	3.10***	+ 4.21	
CYC 22.4	57.4	78.9	54 (18)	2.30***	+ 3.12	
CYC 14.9	67.6	76.3	55 (19)	2.40***	+ 3.32	
CYC 7.45	78.4	77.3	28 (20)	1.18	+ .38	
NC-1 Control	100.	100.	110 (75)	1.06	Control	
Mean t = 2.76						
Trial 2 [107]						
B(a)P .000791	5.81	47.3	131 (20)	6.09***	+ 5.74	
B(a)P .000250	21.2	75.8	122 (20)	5.53***	+ 4.05	
CYC 149.	8.55	31.4	61 (20)	2.57	.00(- .78)	
CYC 112.	25.0	77.1	159 (19)	7.99***	+ 9.43	
CYC 74.6	67.4	87.8	151 (20)	7.21***	+ 8.24	
CYC 37.3	92.3	85.6	142 (20)	5.60***	+ 4.00	
NA-1 Control	100.	100.	274 (80)	2.95	Control	
Mean t = 5.42						
11-Aminoundecanoic Acid [11AMI. M.W. = 201.35]						
Trial 1 [17]						
B(a)P .000791	.000	52.9	94 (20)	4.43***	+ 13.5	
B(a)P .000250	3.54	79.1	86 (20)	3.91***	+ 11.6	
11AMI .497	.000	100.	15 (20)	.578	+ 1.49	
11AMI .248	.000	102.	11 (20)	.374	+ .30	
11AMI .124	9.29	104.	17 (20)	.606	+ 1.54	
11AMI .0621	57.1	106.	12 (20)	.694	+ 1.08	
NA-1 Control	100.	100.	18 (40)	.327	Control	
Mean t = 1.10						
Trial 2 [24]						
B(a)P .000791	.000	18.7	83 (20)	3.65***	+ 10.7	
B(a)P .000250	5.66	70.0	86 (20)	3.73***	+ 10.7	

(Continued on next page)
Appendix F. Continued.

Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels	Focus/Vessel	t-statistic
11AMI	.993	105	105	100. (20)	1.032	10.1***
11AMI	.745	104	104	100. (20)	1.100	6.94**
11AMI	.497	106	106	100. (20)	1.072	3.21**
11AMI	.248	104	104	100. (20)	1.072	3.21**
NC-1	Control	100	100	100. (20)	1.072	3.21**

Trial 1 [32]

B(a)P	.000791	10.1	51.7	197 (19)	10.1***	+ 12.6
B(a)P	.000250	6.37	77.4	115 (20)	5.46***	+ 6.94

Trial 4 [67]

B(a)P	.000791	5.87	34.4	48 (20)	2.17***	+ 8.71
B(a)P	.000250	20.8	63.9	39 (20)	.969***	+ 3.32

Decabromodiphenyloxi[917884-S, M.W. = 959.22]

Trial 1 [75]

B(a)P	.000791	7.10	66.5	149 (20)	6.35***	+ 10.9
B(a)P	.000250	28.4	85.4	67 (20)	3.10***	+ 6.56

Trial 2 [101]

B(a)P	.000791	ND	66.8	108 (20)	4.63***	+ 12.7
B(a)P	.000250	ND	83.6	48 (20)	2.11***	+ 9.73

DC Red No. 9 [DCR9, M.W. = 444.49]

Trial 1 [43]

B(a)P	.000791	1.02	53.0	382 (20)	18.9***	+ 26.3
B(a)P	.000250	4.75	77.5	270 (20)	13.0***	+ 19.0

DCR9	4.50	30.0	80.5	145 (20)	6.75***	+ 10.9
DCR9	2.50	71.1	85.8	108 (20)	5.12***	+ 10.5
DCR9	1.12	93.9	96.7	95 (20)	4.22***	+ 7.16
DCR9	.562	98.3	107.	75 (20)	3.16***	+ 5.26
NC-1	Control	100.	100	44 (35)	1.05	Control

Mean t = 4.30

(Continued on next page)
Appendix F. Continued.

Drug	Conc., mM	S. A	C. A.	Focus Data	Cytotoxic Activity	Transforming Activity	Transformation Response	Significance
				Type Vessels	RCE (%)	III (N)		
					Focus Type		t-statistic	
				III				

Trial 2 [54]

Drug	Conc., mM	S. A	C. A.	Focus Data	Cytotoxic Activity	Transforming Activity	Transformation Response	Significance
				Type Vessels	RCE (%)	III (N)		
					Focus Type		t-statistic	
				III				

Drug	Conc., mM	S. A	C. A.	Focus Data	Cytotoxic Activity	Transforming Activity	Transformation Response	Significance
				Type Vessels	RCE (%)	III (N)		
					Focus Type		t-statistic	
				III				

Trial 3 [67]

Drug	Conc., mM	S. A	C. A.	Focus Data	Cytotoxic Activity	Transforming Activity	Transformation Response	Significance
				Type Vessels	RCE (%)	III (N)		
					Focus Type		t-statistic	
				III				

Di(2-Ethylhexyl)adipate [DEHA, M.W. = 370.57, Density = 0.928 g/ml]

Drug	Conc., mM	S. A	C. A.	Focus Data	Cytotoxic Activity	Transforming Activity	Transformation Response	Significance
				Type Vessels	RCE (%)	III (N)		
					Focus Type		t-statistic	
				III				

Di(2-Ethylhexyl)phthalate [DEHP, M.W. = 390.54, Density = 0.981 g/ml]

Drug	Conc., mM	S. A	C. A.	Focus Data	Cytotoxic Activity	Transforming Activity	Transformation Response	Significance
				Type Vessels	RCE (%)	III (N)		
					Focus Type		t-statistic	
				III				

(Continued on next page)
Appendix F. Continued.

Drug	Conc., mM	S.A	CC.A	Condition	Cytotoxic Activity	Transforming Activity	Transformation Response	Significance
	RCE (%)	Focus Data Type Vessels	III (N)	Foci/Vessel Focus Type	t-statistic			
DEHP	37.7	49.8	57.9	Focus	71 (18)	3.27***	+ 6.82	
	18.8	ND	71.7	Focus	57 (18)	2.44***	+ 6.14	
	9.42	50.6	89.6	Focus	63 (18)	1.18	+ 1.01	
NC-1	Control	100.	100.	Focus	50 (72)	.511	Control	
DMHP	200	.000	.000	Focus	0 (3,18)	.000	.00(-7.45)	
	150.	1.47	7.36	Focus	7 (18)	.248	.00(-1.56)	
	100.	5.13	66.9	Focus	141 (18)	7.00***	+ 13.6	
NC-1	Control	100.	100.	Focus	33 (18)	1.60***	+ 4.47	
DMHP	164.	.000	16.6	Focus	30 (18)	1.18	+ 1.01	
	123.	6.96	65.7	Focus	111 (18)	5.76***	+ 9.55	
	81.8	16.8	71.0	Focus	89 (18)	4.67***	+ 11.1	
NC-1	Control	100.	100.	Focus	83 (71)	.878	Control	
Diethyl Nitrosamine [DEN. M.W. = 102.14, Density = ND g/ml]								
DEHP	37.7	9.42	36.9	NC-1	100.	62 (18)	30 (18)	111 (18)
	18.8	55.3	36.9	NC-1	Control	99.	99.	99.
	9.42	18.4	55.3	NC-1	Control	99.	99.	99.
Dimethyl Nitrosamine [DMN. M.W. = 74.08, Density = 1.01 g/ml]								
DEHP	37.7	5.14	99.9	NC-1	Control	99.	99.	99.
	18.8	55.3	36.9	NC-1	Control	99.	99.	99.

(Continued on next page)
Appendix F. Continued.

Treatment Condition	Cytotoxic Activity^a	Transforming Activity^a	Transformation Response^d	Significance^e			
Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels	Foci/Vessel	Focus Type	t-statistic
DMN 489	0.00	0.00	0.00	1 (18)	0.59	0.00 (-5.78)	
DMN 367	0.00	34.2	31	18 (31)	1.49	1.78	
DMN 244	0.00	88.0	42	17 (42)	1.98**	2.72	
DMN 267	10.7	113.	123	18 (123)	4.76**	6.42	
NC-1 Control	100.	100.	43	36 (43)	0.93	Control	

Trial 2 [100]

Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels	Foci/Vessel	Focus Type	t-statistic
B(a)P 945355-L	0.00791	49.8	57.9	18 (49.8)	3.27***	+ 6.82	
B(a)P 945355-L	0.00250	61.0	93.8	18 (61.0)	2.44***	+ 6.14	

Dimethyl Methyl Phosphonate [267599-L. M.W. = 124.08. Density = 1.145 g/ml]

Trial 1 [84]

Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels	Foci/Vessel	Focus Type	t-statistic
B(a)P 267599-L	0.00791	49.8	57.9	18 (49.8)	3.27***	+ 6.82	
B(a)P 267599-L	0.00250	61.0	93.8	18 (61.0)	2.44***	+ 6.14	

Dimethylmorpholin phosphoramide [945355-L. M.W. = 195.18. Density = NA g/ml]

Trial 1 [86]

Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels	Foci/Vessel	Focus Type	t-statistic
B(a)P 945355-L	0.00791	18.7	63.3	18 (18.7)	3.32***	+ 9.07	
B(a)P 945355-L	0.00250	47.9	87.6	18 (47.9)	2.02***	+ 5.74	

(Continued on next page)
Appendix F. Continued.

Drug Conc., mM	S.A	C.C.A.	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
Dimethylmorpholinophosphoramidate [DMMP. M.W. = 195.16. Density = ND g/ml]					
Trial 1 [86]					
B(a)P .000791	18.7	63.3	64 (18)	3.32***	+ 9.07
B(a)P .000250	47.9	87.6	42 (18)	2.02***	+ 5.74
DMMP 16.4	.000	50.7	64 (18)	2.99***	+ 7.70
DMMP 8.21	4.09	74.0	29 (18)	1.31**	+ 3.56
DMMP 4.10	12.1	83.0	28 (18)	1.06*	+ 2.54
DMMP 2.05	49.8	82.6	14 (18)	.650	+ .98
NC-1 Control 100. 100.	47 (72)	.464	**Control**	Mean t = 3.70	
Trial 2 [106]					
B(a)P .00079	27.0	56.9	134 (18)	6.88***	+ 8.00
B(a)P .00025	44.3	77.9	91 (18)	4.53***	+ 5.56
DMMP 23.1	.000	47.3	47 (18)	2.30*	+ 2.28
DMMP 17.3	.000	61.3	66 (18)	3.13***	+ 3.56
DMMP 11.5	.000	89.1	57 (18)	2.86**	+ 3.35
DMMP 5.77	7.65	91.2	41 (18)	1.95	+ 1.54
NC-1 Control 100. 100.	74 (43)	1.30	**Control**	Mean t = 2.68	
Diethanolnitrosamine [DETN. M.W. = 134.14. Density = ND g/ml]					
Trial 1 [86]					
B(a)P .000791	18.7	63.3	64 (18)	3.32***	+ 9.07
B(a)P .000250	47.9	87.6	42 (18)	2.02***	+ 5.74
DETN 59.6	.000	66.6	38 (18)	1.83***	+ 5.39
DETN 44.7	1.17	75.2	24 (18)	1.24***	+ 3.61
DETN 29.8	26.1	87.0	21 (18)	1.06**	+ 2.75
DETN 14.9	49.8	90.5	25 (18)	1.18**	+ 3.22
NC-1 Control 100. 100.	47 (72)	.464	**Control**	Mean t = 4.01	
Ethylene Thiourea [ETU. M.W. = 102.16]					
Trial 1 [59]					
B(a)P .000791	1.3	36.5	165 (20)	7.31***	+ 17.9
B(a)P .000250	7.4	74.5	33 (19)	1.34***	+ 4.28
ETU 157.	7.4	80.8	14 (20)	.533	+ 1.62
ETU 117.	47.8	96.1	12 (20)	.473	+ 1.27
ETU 78.3	68.4	83.9	59 (20)	1.21*	+ 2.41
ETU 39.1	80.8	104.	13 (20)	.459	+ .99
NC-1 Control 100. 100.	15 (40)	.297	**Control**	Mean t = 1.57	
Trial 2 [65]					
B(a)P .000791	6.95	60.7	85 (18)	4.38***	+ 13.9
B(a)P .000250	19.2	90.2	43 (20)	1.80***	+ 6.94
ETU 157.	2.65	.000	12 (11.20)	.829**	+ 2.72
ETU 78.3	15.2	57.3	19 (20)	.772**	+ 3.18
ETU 39.1	45.7	62.5	10 (20)	.394	+ 1.10
ETU 3.91	106.	65.1	17 (20)	.611*	+ 2.22
NC-1 Control 100. 100.	14 (40)	.244	**Control**	Mean t = 2.17	

(Continued on next page)
Appendix F. Continued.

Treatment Condition	Cytotoxic Activity^a	Transforming Activity^b	Transformation Response^c	Significance^d			
Drug	Conc., mM	S.A.	C.C.A.	Focus Data Type Vessels III (N)	Focus Type III	Foci/Vessel III	t-statistic
Hexamethylphosphoramide [HMPA, M.W. = 179.2, Density = NA g/ml]							
Trial 1 [78]							
B(a)P	0.000791	8.09	60.6	116 (18)	6.11***	+ 4.93	
B(a)P	0.000250	14.9	84.2	184 (18)	9.84***	+ 9.74	
HMPA 78.1	.426	34.0	92	18 (18)	4.02	+ 1.01	
HMPA 58.6	.426	76.5	167	18 (18)	8.50***	+ 5.42	
HMPA 39.1	8.09	77.6	103	18 (18)	5.44***	+ 4.05	
HMPA 19.5	48.9	94.8	64	18 (18)	3.13	.00(- .23)	
NC-1 Control	100.	100.		296 (72)	3.28	Control	Mean t = 2.62

Trial 2 [98]							
B(a)P	0.000791	8.38	79.6	132 (18)	6.82***	+ 11.8	
B(a)P	0.000250	29.3	91.3	75 (18)	3.38***	+ 6.81	
HMPA 83.7	1.05	26.0	10	18 (18)	.401	.00(-1.03)	
HMPA 62.8	5.24	62.2	34	18 (18)	1.43**	+ 2.67	
HMPA 41.9	6.28	83.5	39	18 (18)	.805	+ .75	
HMPA 20.9	36.6	93.0	31	18 (18)	1.40**	+ 2.71	
NC-1 Control	100.	100.		39 (43)	.618	Control	Mean t = 1.53

Melamine [MELM, M.W. = 126.12]
Trial 1 [43]
B(a)P
B(a)P
MELM 31.7
MELM 15.9
MELM 7.93
MELM 3.96
NC-1 Control

Trial 2 [58]							
B(a)P	0.000791	3.92	34.3	128 (20)	6.17***	+ 22.5	
B(a)P	0.000250	14.7	60.6	71 (20)	1.83***	+ 4.78	
MELM 32.0	14.0	68.9	26	20 (20)	1.12**	+ 5.97	
MELM 16.0	25.2	70.7	10	20 (20)	.414	+ 1.97	
MELM 8.00	87.9	80.7	4	19 (19)	.157	.00(- .33)	
MELM 4.00	93.1	80.4	4	20 (20)	.149	.00(- .43)	
NC-1 Control	100.	100.		10 (40)	.189	Control	Mean t = 1.99

Methyl Carbamate [MEC, M.W. = 75.07]
Trial 1 [42]
B(a)P
B(a)P
MEC 293.
MEC 220.
MEC 147.
MEC 73.3
NC-1 Control

Trial 2 [66]						
B(a)P	0.000791	2.33	48.6	90 (20)	3.92***	+ 14.1
B(a)P	0.000250	6.08	98.4	24 (20)	.795***	+ 3.69
Appendix F. Continued.

Drug	Conc., mM	MEC	B(a)P	NC-1	Control
200	5.41	80.6	10	(16)	.330
63.3	86.1	101.	13	(20)	.525***
20.0	91.9	109.	4	(19)	.123
6.32	105.	111.	1	(20)	.035
NC-1	Control		3	(38)	.056

Trial 3 [80]

Drug	Conc., mM	MEC	B(a)P	NC-1	Control
320	.000791	16.9	65.2	261	12.9***
240	.000250	35.6	87.2	185	8.53***
160	.000000	3.86	60.6	86	3.54
80.0	.000000	52.2	76.3	179	8.56***
NC-1	Control	100.	100.	317	3.02

Methyl Carbamate [315183-S, M.W. = 75.07]

Drug	Conc., mM	MEC	B(a)P	NC-1	Control
325.	.000791	2.86	73.0	141	6.14***
24.	.000250	13.9	78.9	64	2.93***
315183-S	325.	.000000	1	(18,20)	.039
315183-S	24.	.000000	1	(18,20)	.031
315183-S	163.	3.86	34.2	8	.002
315183-S	81.3	71.9	87.9	48	16.3***
NC-1	Control	100.	100.	48	.351

Monuron [MNU, M.W. = 198.65]

Drug	Conc., mM	MEC	B(a)P	NC-1	Control
7.95	.000791	2.34	77.3	99	13.0***
2.52	.000250	1.56	79.5	14	2.17***
.795	.000000	7.03	89.7	6	.385
.252	.000000	28.1	92.4	3	.214
NC-1	Control	100.	100.	21	.110

Trial 2 [28]

Drug	Conc., mM	MEC	B(a)P	NC-1	Control
12.1	.000791	2.84	28.6	189	9.02***
8.05	.000250	6.74	68.0	62	2.78***
4.03	.000000	0.00	45.9	4	.167
2.01	.000000	15.6	109.	32	.807
NC-1	Control	100.	100.	41	.818

(Continued on next page)
Appendix F. Continued.

Treatment	Condition	Cytoxic Activity^a RCE (%)	Transforming Activity^a	Transformation Response^a	Significance^a
Drug Conc., mM	S.A	CC.A	Focus Data Type Vessels III (N)	Foci/Vessel Type Focus III	t-statistic
Phenobarbital, Sodium Salt [PHENB. M.W. = 254.22]					
Trial 1 [59]	B(a)P .000791	1.35 36.5	165 (20)	7.31*** + 17.9	
	B(a)P .000250	7.41 74.3	33 (19)	1.34*** + 4.28	
	PHENB 7.87	21.2 23.1	12 (20)	.494 + 1.46	
	PHENB 5.90	33.0 81.7	11 (20)	.414 + .86	
	PHENB 3.94	59.6 89.9	14 (20)	.578 + 1.88	
	PHENB 1.97	100. 100.	22 (20)	.927*** + 3.85	
	NC-1 Control 100. 100.	15 (40)	.297 Control		
Trial 2 [109]	B(a)P .000791	51.9 94.3	99 (20)	4.69*** + 5.31	
	B(a)P .000250	66.2 108.	81 (20)	3.91*** + 4.16	
	PHENB 3.94	69.1 104.	72 (20)	3.37 + 1.78	
	PHENB 2.95	70.1 110.	128 (20)	5.99*** + 5.76	
	PHENB 1.97	85.0 112.	95 (17)	5.25*** + 4.50	
	PHENB .984	86.9 112.	81 (20)	3.56* + 2.04	
	NC-1 Control 100. 100.	237 (80)	2.55 Control		
Saccharin, Sodium Salt [SAC. M.W. = 205.2]					
Trial 1 [75]	B(a)P .000791	7.10 66.5	149 (20)	6.35*** + 10.9	
	B(a)P .000250	28.4 85.4	67 (20)	3.10*** + 6.56	
	SAC 136.	.835 .000	10 (20)	.394 .00(-2.50)	
	SAC 102.	7.93 19.2	63 (20)	2.41*** + 4.55	
	SAC 68.2	33.4 59.5	64 (20)	2.88*** + 5.93	
	SAC 34.1	82.3 73.2	51 (20)	2.23*** + 4.36	
	NC-1 Control 100. 100.	89 (78)	.882 Control		
Trial 2 [101]	B(a)P .000791	ND 64.8	108 (20)	4.63*** + 12.7	
	B(a)P .000250	ND 85.6	48 (20)	2.11*** + 9.73	
	SAC 122.	.000 12.2	33 (18)	1.30** + 3.74	
	SAC 91.4	28.7 53.2	67 (17)	3.33*** + 9.12	
	SAC 60.9	91.3 67.7	149 (17)	8.32*** + 21.8	
	SAC 30.5	93.4 108.	48 (19)	2.05*** + 6.43	
	NC-1 Control 100. 100.	27 (78)	.260 Control		
2,4- 2,6-Toluene Diisothiocyanate [TDIC. M.W. = 174.16. Density = 1.255 g/ml]					
Trial 1 [76]	B(a)P .000791	5.91 63.1	87 (18)	4.41*** + 5.23	
	B(a)P .000250	23.3 97.0	54 (18)	2.72* + 2.26	
	TDIC 8.76	115. 59.2	46 (18)	1.39 .00(-.68)	
	TDIC 4.38	110. 64.7	92 (18)	3.60* + 2.40	
	TDIC 1.39	106. 72.6	83 (17)	4.53*** + 5.32	
	TDIC .438	107. 83.6	65 (18)	3.02** + 2.70	
	NC-1 Control 100. 100.	152 (71)	1.79 Control		
Trial 2 [106]	B(a)P .000791	2.48 56.9	134 (18)	6.88*** + 8.00	
	B(a)P .000250	40.7 77.9	91 (18)	4.53*** + 5.56	

(Continued on next page)
Methods.

Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels	Foci/Vessel Focus Type	Significance	
TDIC	4.02	0.00	2.19	6 (14, 16)		.281	
TDIC	3.02	12.8	10.3	12 (18)		.513	.00 (-3.38)
TDIC	2.01	64.8	47.7	60 (17)	3.17***	+ 3.74	
TDIC	1.01	100.	92.6	78 (17)	4.33***	+ 6.89	
NC-1	Control	100.	100.	74 (43)	1.30	Control	

Abbreviations: BaP, benzo(a)pyrene; CC.A., co-culture clonal survival assay; Conc., concentration; mM, millimole; M.W., molecular weight; N, number of culture vessels, NC, negative control; ND, not determined; %RCE, percent relative cloning efficiency; S.A., standard cloning survival assay.

*Treatment Condition: The experimental design for the transformation assay is described in detail in the Materials and Methods. The concentration of the positive control and test chemical treatment are presented in mM, but they can be converted to μg/ml using the molecular weight that is provided with each chemical. The solvent vehicles used for the individual test chemicals were listed in Appendix Tables A1 and A3, and the concentrations of the solvent vehicles are presented in the Materials and Methods.

*Cytotoxic activity: The experimental design for the standard survival assay (SA) and the co-culture clonal survival assay (CCA) were described in the Materials and Methods. The test chemical cytotoxic response was expressed as % RCE and was calculated as described in the Materials and Methods.

*The criteria used to evaluate the transformed foci of BALB/c-3T3 cells is described in the Materials and Methods. The number of type III foci > 2-mm in diameter per culture vessel scored as recorded in this table.

*Transformation response: The transformation responses are expressed as type III foci/vessel and were calculated using a log_{10} mathematical transformation procedure (refer to Materials and Methods). The arithmetic value of foci/vessel represents the antilog of the log_{10} mean transformation response minus one.

*Significance: The significance of test chemical transformation responses was calculated by a computer using the SAS statistical software (22), and the method is described in detail in Materials and Methods. The correct t-statistic according to the F-test is presented in this table. The t-statistics of each treatment dose of the test chemical in a single experiment were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Appendix Tables A2 and A5). The mean t-statistics for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank t-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (−) t-statistics were given a value of zero (0).

*Significant BaP or test chemical transformation response, 0.01 < p < 0.05.

**Significant BaP or test chemical transformation response, 0.001 < p < 0.01.

***Significant or BaP or test chemical transformation response, p ≤ 0.001.
Appendix G.

Summary of the transformation responses of 26 nontoxic, noncarcinogens.

Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels	Foci/Vessel	t-statistic
Aldicarb	15.8	0.00	0.00	115 (20)	2.36	+ 0.80
ALDC	10.5	0.00	38.4	52 (19)	1.41	0.00 (-1.85)
ALDC	5.26	6.37	95.0	29 (19)	1.58	0.00 (-1.00)
NC-1 Control	100.	100.		91 (38)	1.99	Control
Trial 2 [99]	14.7	15.5	24.0	41 (18, 20)	1.73	+ 3.92
ALDC	11.0	26.4	97.2	43 (19)	1.76	+ 4.09
ALDC	7.36	47.2	86.6	30 (20)	1.23**	+ 2.69
ALDC	3.68	51.7	108	27 (20)	1.05*	+ 1.99
NC-1 Control	100.	100.		65 (80)	0.586	Control
Mean t = 3.17						

Ampicillin Trihydrate [577642-S, M.W. = 403.50]

Drug	18.9	68.4	160 (20)	4.67***	+ 12.4
B(a)P	32.1	85.0	94 (20)	3.59***	+ 7.95
577642-S	15.5	24.0	41 (18, 20)	1.73***	+ 3.92
NC-1 Control	100.	100.	65 (80)	0.586	Control
Mean t = 1.94					

o-Anthranilic Acid [ANT, M.W. = 137.14]

Drug	68.9	95.9	14 (16)	0.593	+ 0.6
B(a)P	86.5	86.5	40 (19)	1.93***	+ 5.54
577642-S	11.7	13.0	45 (16)	2.07**	+ 3.60
NC-1 Control	100.	100.	58 (77)	0.581	Control
Mean t = 1.52					

(Continued on next page)
Appendix G. Continued.

Drug	Conc., mM	S.A	CC.A.	Focus Data Type	III (N)	Foci/Vessel Focus Type	Significance
ANT	18.2	70.2	95.2	44 (19)	2.06***+ 3.71		
ANT	9.11	82.6	106.	52 (20)	2.11**+ 3.42		
ANT	4.56	90.4	105.	38 (20)	1.60*+ 2.33		
ANT	2.28	91.0	108.	37 (20)	1.62*+ 2.51		
NC-1	Control	100.	100.	45 (40)	.893	Control	Mean t = 2.99

Benzoin [BENZ. M.W. = 212.25]

Treatment Condition	Cytotoxic Activity RCE (%)	Transforming Activity Foci Data Type Vessels	Transformation Response Significance	
Trial 1 [4]				
B(a)P .000791	15.7	74.7	184 (20)	8.81*** + 9.38
B(a)P .000250	24.0	82.9	116 (20)	4.38*** + 3.62
BENZ 14.1	.000	54.4	29 (20)	.869
BENZ 9.42	.000	61.8	34 (20)	1.20
BENZ 4.71	.000	62.7	18 (20)	.711
BENZ 2.36	2.89	75.6	30 (20)	1.12
NC-1 Control	100.	100.	118 (40)	1.51
Mean t = .000				

Trial 2 [10]				
B(a)P .000791	1.89	30.6	105 (20)	4.79*** + 18.3
B(a)P .000250	8.49	91.7	34 (20)	1.37*** + 6.23
BENZ 9.42	.000	69.4	3 (19)	.116
BENZ 4.71	.000	76.4	9 (20)	.308*
BENZ 2.36	.000	100.	5 (20)	.189
BENZ 1.18	.000	115.	10 (19)	.266
NC-1 Control	100.	100.	3 (40)	.053
Mean t = 1.48				

Benzyl Alcohol [926895-L. M.W. = 108.13. Density = 1.04013 g/ml]

Treatment Condition	Cytotoxic Activity RCE (%)	Transforming Activity Foci Data Type Vessels	Transformation Response Significance	
Trial 1 [81]				
B(a)P .000791	10.2	63.9	378 (18)	20.8*** + 15.5
B(a)P .000250	28.0	67.8	280 (18)	15.3*** + 10.5
926895-L 20.0	.000	10.2	59 (18)	2.41
926895-L 15.0	3.15	72.1	167 (18)	8.66
926895-L 10.0	10.8	85.0	243 (18)	13.1*** + 7.10
926895-L 5.00	24.8	101.	136 (18)	6.00
NC-1 Control	100.	100.	583 (72)	7.36
Mean t = 2.11				

Trial 2 [110]				
B(a)P .000791	11.6	61.1	116 (18)	5.78*** + 10.7
B(a)P .000250	26.7	88.0	75 (18)	3.89*** + 8.52
926895-L 20.0	.000	51.1	14 (18)	.572
926895-L 15.0	8.04	84.4	29 (18)	1.25* + 2.39
926895-L 10.0	28.6	95.1	40 (18)	1.97*** + 4.60
926895-L 5.00	48.2	101.	15 (18)	.645
NC-1 Control	100.	100.	65 (75)	.609
Mean t = 1.79				

Caprolactam [CAP. M.W. = 113.16]

Treatment Condition	Cytotoxic Activity RCE (%)	Transforming Activity Foci Data Type Vessels	Transformation Response Significance	
Trial 1 [5]				
B(a)P .000791	7.76	9.41	84 (19)	3.97*** + 15.5
B(a)P .000250	12.5	12.5	57 (20)	2.58*** + 12.5

(Continued on next page)
Appendix G. Continued.

Drug	Conc., mM	S.A	C.C.A.	RCE (%)	Focus Data Type Vessels	Foci/Vessel Focus Type	Transformation Response^d	Significance^e
					III (N)	III	t-statistic	
CAP	106.	.862	.000	1	(18,20)	.039	+ .09	
CAP	88.4	.862	18.0	2	(20)	.072	+ .72	
CAP	70.7	4.74	58.0	3	(20)	.110	+ 1.12	
CAP	53.0	23.7	95.7	7	(20)	.256*	+ 2.26	
NC-1	Control	100.	100.	2	(40)	.035 Control		

Trial 2 [10]

B(a)P	.000791	8.49	91.7	105	(20)	4.79***	+ 18.3	
-------	-----------	-----	--------	-------	------------------------	----------------------	--------------------------	
NC-1	Control	100.	100.	3	(40)	.053 Control		

2-Chloroethanol [2CE, M.W. = 80.52, Density = 1.200 g/ml]

Trial 1 [78]

B(a)P	.000791	8.09	60.6	116	(18)	6.11***	+ 4.93	
-------	-----------	-----	--------	-------	------------------------	----------------------	--------------------------	
2CE	74.3	.000	67.7	133	(18)	6.98***	+ 5.81	
2CE	74.3	.000	65.8	35	(18)	1.52**	+ 4.76	
2CE	74.3	.000	65.8	35	(18)	1.52**	+ 4.76	
NC-1	Control	100.	100.	296	(72)	3.28 Control		

Trial 2 [102]

B(a)P	.000791	89.7	77.9	65	(18)	3.30***	+ 11.7	
-------	-----------	-----	--------	-------	------------------------	----------------------	--------------------------	
2CE	74.3	.000	65.8	35	(18)	1.52**	+ 4.76	
2CE	74.3	.000	65.8	35	(18)	1.52**	+ 4.76	
2CE	74.3	.000	65.8	35	(18)	1.52**	+ 4.76	
NC-1	Control	100.	100.	28	(18)	.268 Control		

(2-Chloroethyl)trimethylammonium Chloride [2CETS, M.W. = 158.07]

Trial 1 [30]

B(a)P	.000791	8.74	42.5	186	(20)	8.98***	+ 19.5	
-------	-----------	-----	--------	-------	------------------------	----------------------	--------------------------	
2CETA	75.9	.000	17.8	54	(20)	1.88**	+ 3.24	
2CETA	75.9	.000	17.8	54	(20)	1.88**	+ 3.24	
NC-1	Control	100.	100.	40	(40)	.787 Control		

Trial 2 [45]

B(a)P	.000791	8.74	42.5	186	(20)	8.98***	+ 19.5	
-------	-----------	-----	--------	-------	------------------------	----------------------	--------------------------	
2CETA	75.9	.000	17.8	54	(20)	1.88**	+ 3.24	
2CETA	75.9	.000	17.8	54	(20)	1.88**	+ 3.24	
NC-1	Control	100.	100.	40	(40)	.787 Control		

(Continued on next page)
Appendix G. Continued.

Drug	Conc., nM	S.A	CC.A.	Focus Data Type Vessels	Foci/Vessel Focus Type	Significance*
C. I. Acid Orange 10 [CIA010. M.W. = 452.38]						
Trial 1 [64]						
B(a)P	0.000791	6.45	26.6	98 (20)	4.47***	+ 12.7
CIA010	32.0	.000	9.35	6 (20)	.231	.00(-.45)
CIA010	16.0	20.2	78.3	4 (20)	.149	.00(-1.13)
CIA010	8.00	37.1	103.	13 (20)	.473	+ 1.10
CIA010	4.00	56.4	81.2	19 (20)	.702*	+ 2.20
NC-1 Control	100.	100.		17 (40)	.291	Control
Trial 2 [103]						
B(a)P	0.000791	8.60	76.9	95 (20)	4.59***	+ 13.7
B(a)P	0.00250	23.6	91.5	75 (20)	2.86***	+ 5.37
CIA010	35.4	.000	.798	18 (20)	.751	.00(-.54)
CIA010	17.7	4.73	63.3	19 (20)	.726	.00(-.64)
CIA010	8.84	43.0	99.2	15 (20)	.588	.00(-1.32)
CIA010	4.42	82.2	104.	37 (20)	1.37	+ 1.74
NC-1 Control	100.	100.		89 (79)	.874	Control
						Mean t = .825
Dimethyl Terephthalate [DMTP. M.W. = 194.19]						
Trial 1 [103]						
B(a)P	0.00791	8.60	76.9	95 (20)	4.59***	+ 13.7
B(a)P	0.00250	23.6	91.5	75 (20)	2.86***	+ 5.37
DMTP	5.15	18.5	81.1	43 (20)	1.50*	+ 2.15
DMTP	2.58	24.5	83.2	45 (20)	1.85**	+ 3.12
DMTP	1.29	45.6	100.	26 (20)	1.02	+ .57
DMTP	.644	67.1	98.1	27 (19)	1.14	+ 1.00
NC-1 Control	100.	100.		89 (79)	.874	Control
						Mean t = 1.71
Trial 2 [107]						
B(a)P	0.00791	5.81	47.3	131 (20)	6.09***	+ 5.74
B(a)P	0.00250	21.2	75.8	122 (20)	5.53***	+ 4.05
DMTP	5.15	94.7	64.8	90 (20)	3.26	+ .55
DMTP	3.87	94.7	75.2	74 (20)	3.20	+ .48
DMTP	2.58	90.8	76.1	77 (20)	3.65	+ 1.82
DMTP	1.29	107.	87.2	101 (19)	5.02***	+ 4.59
NC-1 Control	100.	100.		274 (80)	2.95	Control
						Mean t = 1.86
Diphenylhydantoin [DPH. M.W. = 252.27]						
Trial 1 [56]						
B(a)P	0.000791	2.55	32.7	122 (20)	5.54***	+ 16.5
B(a)P	0.000250	2.19	61.0	33 (20)	1.47***	+ 6.97
DPH	39.6	52.6	31.4	0 (20)	.000	.00(-4.36)
DPH	12.5	55.8	45.7	1 (20)	.035	.00(-3.10)
DPH	3.96	57.3	50.4	2 (20)	.072	.00(-2.27)
DPH	1.25	66.4	55.1	5 (20)	.172	.00(-.79)
NC-1 Control	100.	100.		13 (39)	.260	Control
						Mean t = .000
Trial 2 [65]						
B(a)P	0.000791	6.95	60.7	85 (18)	4.30***	+ 13.9
B(a)P	0.000250	19.2	90.2	43 (20)	1.80***	+ 6.94

(Continued on next page)
Appendix G. Continued.

Drug	Conc., mM	S.A.	CC.A.	Focus Data Type Vessels	Foci/Vessel Focus Type	Transformation Response	Significance
DPH	39.6	19.2	27.3	1 (20)	8.23***	+ 14.5	
DPH	12.5	31.1	42.4	1 (20)	6.59***	+ 7.66	
DPH	3.96	33.8	52.0	2 (19)	7.02***	+ 8.24	
DPH	1.25	46.0	54.1	4 (19)	6.71***	+ 7.96	
NC-1	Control	100.	100.	14 (40)	5.67***	+ 7.06	
						Control	Mean t = .000
FD C Yellow No. 6	[FDGY6, M.W. = 452.37]						
Trial 1 [34]							
B(a)P	.0000791	6.91	58.7	167 (20)	4.38***	+ 13.9	
B(a)P	.000250	19.3	84.5	138 (20)	1.80***	+ 6.94	
FDCY6	63.2	.000	47.7	40 (20)	1.54***	+ 4.81	
FDCY6	20.0	70.5	47.4	61 (200)	2.25***	+ 6.05	
FDCY6	6.32	73.5	56.9	33 (20)	1.34***	+ 5.27	
FDCY6	2.00	99.0	56.7	10 (20)	.762**	+ 3.27	
NC-1	Control	100.	100.	14 (40)	.244	Control	
Trial 2 [65]							
B(a)P	.0000791	6.95	60.7	85 (18)	4.59***	+ 13.7	
B(a)P	.000250	19.2	90.2	43 (20)	2.86***	+ 5.37	
FDCY6	88.4	.652	38.0	40 (17)	2.05***	+ 3.63	
FDCY6	44.2	46.5	59.8	162 (20)	7.69***	+ 16.8	
FDCY6	22.1	55.3	91.0	92 (18)	4.61***	+ 8.38	
FDCY6	11.1	75.3	91.5	85 (20)	4.02***	+ 10.8	
NC-1	Control	100.	100.	89 (79)	.874	Control	
Trial 3 [103]							
B(a)P	.0000791	8.60	76.9	95 (20)	5.91***	+ 17.4	
B(a)P	.000250	23.6	91.5	75 (20)	3.36***	+ 6.80	
FDCY6	88.4	.652	38.0	40 (17)	2.05***	+ 3.63	
FDCY6	44.2	46.5	59.8	162 (20)	7.69***	+ 16.8	
FDCY6	22.1	55.3	91.0	92 (18)	4.61***	+ 8.38	
FDCY6	11.1	75.3	91.5	85 (20)	4.02***	+ 10.8	
NC-1	Control	100.	100.	89 (79)	.874	Control	
D-Mannitol [MANN, M.W. = 60.07]							
Trial 1 [18]							
B(a)P	.000791	2.24	45.8	125 (20)	5.91***	+ 17.4	
B(a)P	.000250	8.52	78.5	86 (20)	3.36***	+ 6.80	
MANN	109.8	93.3	86.5	37 (20)	1.27*	+ 3.06	
MANN	54.9	108.	103.	14 (20)	.600	.00(-.29)	
MANN	27.4	102.	101.	13 (20)	.547	.00(-.58)	
MANN	13.7	105.	106.	21 (20)	.792	+ .38	
NC-1	Control	100.	100.	33 (40)	.663	Control	
Trial 2 [45]							
B(a)P	.000791	8.74	42.5	186 (20)	8.98***	+ 19.5	
B(a)P	.000250	28.2	86.4	77 (20)	3.42***	+ 7.04	
MANN	110.	90.3	98.3	46 (20)	1.93***	+ 3.91	
MANN	4.00	94.8	104.	16 (20)	.556	.00(-.79)	
MANN	2.00	96.8	98.6	22 (20)	.987**	+ 1.01	
MANN	1.00	100.	99.0	16 (19)	.677	.00(-.24)	
NC-1	Control	100.	100.	86 (98)	.732	Control	
Mean t = 1.72							

(Continued on next page)
Appendix G. Continued.

Treatment Condition	Cytotoxic Activity*^a	Transforming Activity*^a	Transformation Response*^a	Significance*^a		
Drug	Conc., mM	S.A	CC.A.	Focus Data Type Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
Trial 3 [110]						
B(a)P	.000791	11.6	61.1	116 (18)	5.78*** + 17.5	
B(a)P	.000250	26.7	88.0	75 (18)	3.89*** + 8.98	
MANN 220.0		114	101.	68 (20)	3.00*** + 8.55	
MANN 110.0		100	100.	50 (20)	2.17*** + 5.60	
MANN 54.9		111	92.	28 (20)	1.23** + 3.06	
MANN 27.4		168	100.	28 (20)	1.61 + 1.53	
NC-1 Control		100	100.	65 (75)	.609	Control

Methyl Methacrylate [794248-L. M.W. = 110.12. Density = 0.9433 g/ml]

Trial 1 [79]						
B(a)P	.000791	22.7	79.6	279 (18)	20.8*** + 13.9	
B(a)P	.000250	39.3	94.2	241 (18)	12.9*** + 9.34	
794248-L 17.0		.000	.324	19 (13,17)	.615	.00(-6.94)
794248-L 12.8		.000	60.7	174 (18)	8.60** + 3.29	
794248-L 8.50		4.13	90.8	244 (18)	13.1*** + 9.73	
794248-L 4.25		45.0	100.	83 (18)	4.42	.00(-1.38)
NC-1 Control		100	100.	430 (62)	5.12	Control

Mean t = 4.34

Trial 2 [106]						
B(a)P	.000791	24.8	56.9	134 (18)	6.88*** + 8.00	
B(a)P	.000250	40.7	77.9	91 (18)	4.53*** + 5.56	
794248-L 16.0		.000	1.31	3 (7)	.292	.00(-2.44)
794248-L 8.00		3.98	68.5	47 (18)	2.28*	+ 2.09
794248-L 4.00		51.1	95.4	33 (18)	1.57	+ .69
NC-1 Control		100	100.	74 (43)	1.30	Control

Mean t = 1.19

Molybdenum Trioxide [MOTO. M.W. = 144.0]

Trial 1 [47]						
B(a)P	.000791	.351	28.1	173 (20)	8.10*** + 14.6	
B(a)P	.000250	7.72	75.6	88 (20)	3.89*** + 8.73	
MOTO 9.06		.000	.000	7 (9,20)	.661	+ .29
MOTO 6.80		2.81	83.2	29 (19,20)	1.29**	+ 2.80
MOTO 4.53		36.1	96.5	7 (20)	.238	.00(-1.97)
MOTO 2.27		67.7	96.0	3 (20)	.110	.00(-3.72)
NC-1 Control		100	100.	31 (39)	.579	Control

Mean t = .830

Trial 2 [56]						
B(a)P	.000791	2.55	32.7	122 (20)	5.54*** + 16.5	
B(a)P	.000250	2.19	61.0	33 (20)	1.67*** + 6.97	
MOTO 11.0		1.46	.000	9 (18,20)	.339	+ .57
MOTO 8.28		70.8	75.3	12 (18,20)	.446	+ 1.04
MOTO 5.52		67.5	80.6	3 (20)	.099	.00(-1.63)
MOTO 2.76		93.8	94.6	5 (20)	.182	.00(-.79)
NC-1 Control		100	100.	13 (39)	.260	Control

Mean t = .000

(Continued on next page)
Appendix G. Continued.

Drug	Conc., mM	S.A.	CC.A.	Cytotoxic Activity^a	Focus Data Type Vessels^b	Transforming Activity^a	Transformation Response^a	Significance^a
4-Nitroanthranilic Acid [4NANA, M.W. = 182.15]								
Trial 1 [34]								
B(a)P	.000791	6.91	58.7	167 (20)	8.23***	+ 14.5		
B(a)P	.000250	19.3	84.5	138 (20)	6.39***	+ 7.66		
4NANA	9.88	8.36	59.3	41 (19)	1.99	.00(-1.62)		
4NANA	6.59	16.7	81.0	55 (20)	2.53	+ .06		
4NANA	4.92	38.2	89.8	41 (20)	1.80	.00(-2.12)		
4NANA	3.29	86.9	83.2	45 (20)	2.00	.00(-1.57)		
NC-1 Control	100.	100.		108 (40)	2.51	Control		
Trial 2 [103]								
B(a)P	.000791	8.60	76.9	95 (20)	4.59***	+ 13.7		
B(a)P	.000250	23.6	91.5	75 (20)	2.86***	+ 5.37		
4NANA	9.88	2.58	.000	24 (20)	.955	+ .33		
4NANA	6.59	4.30	82.7	75 (20)	2.59***	+ 3.79		
4NANA	4.94	5.59	85.4	55 (19)	2.42***	+ 4.52		
4NANA	3.29	49.5	98.9	12 (20)	.423	.00(-2.18)		
NC-1 Control	100.	100.		89 (79)	.874	Control		
Penicillin VK+ [519829-S, M.W. = 388.51]								
Trial 1 [80]								
B(a)P	.000791	16.9	65.2	261 (20)	12.9***	+ 13.0		
B(a)P	.000250	35.6	87.2	185 (20)	8.53***	+ 7.65		
519829-S	25.6	.000	1.13	29 (17,20)	1.35	.00(-3.24)		
519829-S	19.2	15.1	18.0	156 (19)	7.62***	+ 6.69		
519829-S	12.8	79.2	89.3	282 (20)	12.7***	+ 8.16		
519829-S	6.41	97.3	98.2	144 (20)	6.22***	+ 3.80		
NC-1 Control	100.	100.		317 (80)	3.02	Control		
Trial 2 [101]								
B(a)P	.000791	ND	64.8	108 (20)	4.63***	+ 12.7		
B(a)P	.000250	ND	83.6	48 (20)	2.11***	+ 9.73		
519829-S	25.6	ND	8.80	10 (19)	.334	+ .60		
519829-S	19.2	ND	54.7	39 (20)	1.53***	+ 5.03		
519829-S	12.8	ND	95.8	81 (18)	4.05***	+ 16.5		
519829-S	6.41	ND	108.	15 (19)	.652**	+ 2.92		
NC-1 Control	100.	100.		27 (78)	.260	Control		
Phthalamide [PHAM, M.W. = 164.18]								
Trial 1 [35]								
B(a)P	.000791	4.51	66.1	103 (20)	4.91***	+ 6.41		
B(a)P	.000250	12.3	87.5	133 (20)	6.01***	+ 6.34		
PHAM	48.7	4.92	97.7	28 (20)	1.17	.00(-2.24)		
PHAM	24.5	20.5	111.	29 (20)	1.23	.00(-.14)		
PHAM	12.2	46.3	116.	42 (20)	1.92	.00(-2.06)		
PHAM	6.09	92.3	112.	52 (20)	2.28	.00(-.70)		
NC-1 Control	100.	100.		94 (40)	1.97	Control		
Trial 2 [110]								
B(a)P	.000791	11.6	61.1	116 (18)	5.78***	+ 17.5		
B(a)P	.000250	26.7	88.0	75 (18)	3.89***	+ 8.98		

(Continued on next page)
Appendix G. Continued.

Drug	Conc., mM	S.A	CC.A	RCE (%)	Focus Data Type Vessels	Foci/Vessel Focus Type	t-statistic
PHAM	60.9	8.68	61.5	9 (20)	.29	1.12	1.27
PHAM	30.5	51.1	89.3	20 (20)	.75	+ .64	2.02
PHAM	15.2	87.1	97.5	30 (20)	1.12	+ 1.87	1.27
PHAM	7.60	102.	102.	42 (20)	1.87**	+ 5.55	1.27
NC-1	Control	100.	100.	65 (75)	.609	Control	1.27

Phthalic Anhydride [PHAN, M.W. = 148.12]

Trial 1 [39]

Drug	Conc., mM	S.A	CC.A	RCE (%)	Focus Data Type Vessels	Foci/Vessel Focus Type	t-statistic
PHAN	27.0	.000	6.20	26 (15,20)	.22	+ .61	2.61
PHAN	13.5	61.9	9.92	24 (20)	.955*	+ 2.27	1.27
PHAN	6.75	97.2	79.3	17 (18)	.765	+ 1.53	1.27
PHAN	3.38	95.7	96.3	11 (20)	.402	.00(-.13)	1.27
NC-1	Control	100.	100.	27 (40)	.427	Control	1.27

Trial 2 [107]

Drug	Conc., mM	S.A	CC.A	RCE (%)	Focus Data Type Vessels	Foci/Vessel Focus Type	t-statistic
PHAN	20.3	102.	68.5	53 (20)	1.87	.00(-1.80)	1.27
PHAN	15.2	112.	75.2	34 (20)	1.06	.00(-3.69)	1.27
PHAN	10.1	114.	75.8	27 (14,19)	1.30	.00(-3.56)	1.27
PHAN	5.06	115.	82.1	46 (20)	1.91	.00(-2.34)	1.27
NC-1	Control	100.	100.	274 (80)	2.95	Control	1.27

Roxarsone [998307-S, M.W. = 260.??]

Trial 1 [80]

Drug	Conc., mM	S.A	CC.A	RCE (%)	Focus Data Type Vessels	Foci/Vessel Focus Type	t-statistic
998307-S	40.0	4.45	68.5	117 (18)	5.96**	+ 3.49	1.27
998307-S	30.0	13.1	88.7	122 (20)	5.44**	+ 3.11	1.27
998307-S	20.0	44.2	89.6	79 (20)	3.75	+ 1.67	1.27
998307-S	10.0	89.3	112.	142 (20)	5.91**	+ 3.47	1.27
NC-1	Control	100.	100.	317 (80)	3.02	Control	1.27

Trial 2 [109]

Drug	Conc., mM	S.A	CC.A	RCE (%)	Focus Data Type Vessels	Foci/Vessel Focus Type	t-statistic
998307-S	76.9	.000	.000	0 (12,20)	.000	.00(-23.0)	2.94
998307-S	57.7	.000	2.67	3 (20)	.110	.00(-14.7)	2.94
998307-S	38.5	6.05	28.4	19 (20)	.721	.00(-5.74)	2.94
998307-S	19.2	42.7	92.6	28 (20)	1.06	.00(-4.28)	2.94
NC-1	Control	100.	100.	237 (80)	2.55	Control	2.94

3-Sulfolene [3SULF, M.W. = 118.15]

Trial 1 [33]

Drug	Conc., mM	S.A	CC.A	RCE (%)	Focus Data Type Vessels	Foci/Vessel Focus Type	t-statistic
3-Sulfolene	.000791	3.44	2.40	214 (20)	10.0***	+ 13.6	1.27
3-Sulfolene	.000250	5.73	51.4	130 (20)	5.86***	+ 7.74	1.27

(Continued on next page)
Appendix G. Continued.

Drug	Conc., mM	S.A	CC.A	NCE (%)	Focus Data	Transforming Activity	Response	Significance
3SULF	114.3	.000	64.4	59 (20)	III (21)	2.54**	+ 5.80	
3SULF	76.2	.000	92.9	86 (20)	III (20)	3.50**	+ 4.49	
3SULF	38.1	13.4	107.	53 (20)	III (20)	2.32**	+ 3.63	
3SULF	19.0	48.1	101.	26 (20)	III (20)	1.07	+ .00(-.39)	
NC-1	Control	100.	100.	54 (37)	III (20)	1.04	Control	Mean t = 3.48

Trial 2 [44]

B(a)P	.000791	5.07	25.9	335 (20)	15.8***	+ 16.3
B(a)P	.000250	14.2	67.2	137 (20)	6.15***	+ 7.33
3SULF	76.2	7.09	86.5	166 (20)	7.35***	+ 8.22
3SULF	4.00	95.6	90.5	57 (20)	2.02	+ 1.11
3SULF	2.00	94.9	94.2	46 (20)	1.80	+ 0.67
3SULF	1.00	95.3	92.9	60 (20)	2.43*	+ 2.01
NC-1	Control	100.	100.	77 (40)	1.52	Control

Sulfisoxazole [SULF. M.W. = 267.32]

Trial 1 [19]

B(a)P	.000791	5.07	25.9	335 (20)	15.8***	+ 16.3
B(a)P	.000250	14.2	67.2	137 (20)	6.15***	+ 7.33
SULF	12.0	14.6	71.5	18 (20)	.439	+ .37
SULF	5.99	37.5	89.7	16 (18)	.682	+ 1.73
SULF	2.99	62.1	93.0	12 (19)	.471	+ 1.66
SULF	1.50	75.4	103.	5 (19)	.182	0.00(-1.29)
NC-1	Control	100.	100.	18 (38)	.357	Control

Mean t = .690

Trial 2 [26]

B(a)P	.000791	5.07	25.9	335 (20)	15.8***	+ 16.3
B(a)P	.000250	14.2	67.2	137 (20)	6.15***	+ 7.33
SULF	13.1	30.9	86.1	58 (20)	2.60***	+ 4.74
SULF	6.55	66.8	89.7	24 (20)	.988	+ .31
SULF	3.27	76.4	97.1	18 (20)	.713	0.00(-.99)
NC-1	Control	100.	100.	46 (40)	.907	Control

Mean t = 1.26

Sodium(2-ethylhexyl) Alcohol Sulfate [S2EHAS. M.W. = 232.28. Density = 1.114 g/ml]

Trial 1 [82]

B(a)P	.000791	5.07	25.9	335 (20)	15.8***	+ 16.3
B(a)P	.000250	14.2	67.2	137 (20)	6.15***	+ 7.33
S2EHAS	17.2	2.82	0	1 (18)	.039	0.00(-3.44)
S2EHAS	12.9	35.3	1.3	187 (18)	8.13	+ .07
S2EHAS	8.61	71.7	95.8	170 (18)	8.58	+ .54
S2EHAS	4.31	81.7	90.2	142 (18)	6.69	0.00(-1.32)
NC-1	Control	100.	100.	649 (72)	8.01	Control

Mean t = .180

Trial 2 [108]

B(a)P	.000791	5.07	25.9	335 (20)	15.8***	+ 16.3
B(a)P	.000250	14.2	67.2	137 (20)	6.15***	+ 7.33
S2EHAS	17.2	17.6	90.3	48 (18)	2.44***	+ 4.24
S2EHAS	12.9	33.1	105.	45 (18)	2.27**	+ 2.96
S2EHAS	8.61	59.4	93.4	61 (18)	3.09**	+ 4.64
S2EHAS	4.31	94.9	97.3	41 (18)	1.84	+ 1.85
NC-1	Control	100.	100.	108 (70)	1.17	Control

Mean t = 3.42

(Continued on next page)
Appendix G. Continued.

Treatment Condition*	Cytotoxic Activity*	Transforming Activity*	Transformation Response*	Significance*			
Drug	Conc., mM	S.A.	C.C.A.	Focus Data Type	Vessels III (N)	Foci/Vessel Focus Type III	t-statistic

Titanium Dioxide [TIDI, M.W. = 79.90]

Trial 1 [38]

Drug	Conc., mM	S.A.	C.C.A.	Focus Data Type	Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
B(a)P	.000791	2.10	28.4	174 (20)	7.75***	+ 15.6	
B(a)P	.000250	9.44	74.7	162 (20)	8.17***	+ 18.0	
TIDI	12.5	98.3	54.2	5 (20)	.189	.00(-2.01)	
TIDI	6.26	98.6	66.8	5 (19)	.182	.00(-1.97)	
TIDI	3.13	92.3	79.9	5 (20)	.189	.00(-2.00)	
TIDI	1.56	101.	88.4	11 (20)	.394	.00(-.56)	
NC-1	Control	100.	100.	27 (40)	.496	Control	

Trial 2 [109]

Drug	Conc., mM	S.A.	C.C.A.	Focus Data Type	Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
B(a)P	.000791	51.9	94.3	99 (20)	4.69***	+ 5.31	
B(a)P	.000250	66.2	108.	81 (20)	3.91***	+ 4.16	
TIDI	12.5	99.0	45.7	2 (20)	.072	.00(-16.4)	
TIDI	6.25	87.6	55.4	8 (19)	.272	.00(- 8.31)	
TIDI	3.13	97.8	72.4	28 (20)	.818	.00(- 3.95)	
TIDI	1.56	104.	90.9	46 (20)	2.01	.00(- 1.35)	
NC-1	Control	100.	100.	237 (80)	2.55	Control	

Tetrahydrofuran [THF, M.W. = 72.11, Density = 0.9 g/ml]

Trial 1 [82]

Drug	Conc., mM	S.A.	C.C.A.	Focus Data Type	Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
B(a)P	.000791	46.8	47.2	371 (18)	19.4***	+ 7.45	
B(a)P	.000250	56.3	51.6	288 (18)	15.5***	+ 7.97	
THF	111.	600	63.4	206 (18)	9.88	+ 1.57	
THF	55.5	600	83.1	155 (18)	7.99	.00(- .01)	
THF	27.7	25.1	80.9	133 (18)	6.09	.00(-1.95)	
THF	13.9	65.7	76.5	110 (18)	5.75	.00(-2.61)	
NC-1	Control	100.	100.	649 (72)	8.01	Control	

Trial 2 [106]

Drug	Conc., mM	S.A.	C.C.A.	Focus Data Type	Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
B(a)P	.000791	24.8	56.9	134 (18)	6.88***	+ 8.00	
B(a)P	.000250	40.7	77.9	91 (18)	4.53***	+ 5.56	
THF	351.	0.00	0.00	0 (0,18)	0.00	NA	
THF	263.	.306	.306	0 (9,13)	0.00	.00(-9.15)	
THF	176.	3.67	68.1	15 (14)	.805	.00(-1.35)	
THF	87.8	7.34	82.1	35 (10)	3.02**	+ 2.72	
NC-1	Control	100.	100.	74 (43)	1.30	Control	

Witch Hazel [WH, M.W. = 46.07, Density = 0.790 g/ml]

Trial 1 [81]

Drug	Conc., mM	S.A.	C.C.A.	Focus Data Type	Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
B(a)P	.000791	10.2	63.9	378 (18)	20.8***	+ 15.5	
B(a)P	.000250	28.0	67.8	280 (18)	15.3***	+ 10.5	
WH	150000.	1.05	85.2	167 (18)	8.85	+ 1.58	
WH	100000.	2.24	86.1	213 (18)	11.2***	+ 3.55	
WH	50000.	53.8	91.7	148 (17)	8.07	+ .75	
WH	25000.	75.5	96.9	149 (18)	7.87	+ .57	
NC-1	Control	100.	100.	583 (72)	7.36	Control	

Trial 2 [110]

Drug	Conc., mM	S.A.	C.C.A.	Focus Data Type	Vessels III (N)	Foci/Vessel Focus Type III	t-statistic
B(a)P	.000791	11.6	61.1	116 (18)	5.78***	+ 17.5	
B(a)P	.000250	26.7	88.0	75 (18)	3.89***	+ 8.98	

(Continued on next page)
Appendix G. Continued.

Treatment Condition	Cytotoxic Activitya	Transforming Activityc	Transformation Responseg	Significancea	
Drug	Conc., mM	S.A.	Focus Data Type Vessels	Foci/Vessel Focus Type	
		CC.A.	III (N)	III	
WH 150000.	80.7	97.7	26 (18)	1.11	+ 1.99
WH 100000.	99.0	101.	32 (18)	1.34*	+ 2.36
WH 75000.	97.7	95.3	23 (18)	1.07	+ 1.98
WH 50000.	102.	97.8	34 (18)	1.37*	+ 2.36
NC-1 Control	100.	100.	65 (71)	.609 Control	Control
				Mean t = 2.17	

Abbreviations: B(a)P, benzo(a)pyrene; CC.A., co-culture clonal survival assay; Conc, concentration; mM, millimole; M.W., molecular weight; N, number of culture vessels, NC, negative control; ND, not determined; %RCE, percent relative cloning efficiency; S.A., standard clonal survival assay.

1. Treatment Condition: The experimental design for the transformation assay is described in detail in the Materials and Methods. The concentration of the positive control and test chemical treatment are presented in mM, but they can be converted to µg/ml using the molecular weight that is provided with each chemical. The solvent vehicles used for the individual test chemicals were listed in Appendix Tables A1 and A3, and the concentrations of the solvent vehicles are presented in the Materials and Methods.
2. Cytotoxic activity: The experimental design for the standard survival assay (SA) and the co-culture clonal survival assay (CCA) were described in the Materials and Methods. The test chemical cytotoxic response was expressed as %RCE and was calculated as described in the Materials and Methods.

The criteria used to evaluate the transformed foci of BALB/c-3T3 cells is described in the Materials and Methods. The number of type III foci per 2-mm diameter per culture vessel scored are recorded in this table.
4. Transformation response: The transformation responses are expressed as type III foci/vessel and were calculated using a log10 mathematical transformation procedure (refer to Materials and Methods). The arithmetic value or foci/vessel represents the antilog of the log10 mean transformation response minus one.

5. Significance: The significance of test chemical transformation responses was calculated by a computer using the SAS statistical software (22), and the method is described in detail in Materials and Methods. The correct t-statistic according to the F-test is presented in this table. The t-statistics of each treatment dose of the test chemical in a single experiment were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Appendix Tables A2 and A5). The mean t-statistics for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank t-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (-) t-statistics were given a value of zero (0).

*Significant BaP or test chemical transformation response, 0.01 < p < 0.05.
**Significant BaP or test chemical transformation response, 0.001 < p < 0.01.
***Significant BaP or test chemical transformation response, p < 0.001.
Appendix H.

Summary of the transformation responses of 7 very nontoxic chemicals.

Drug	Conc., mM	S.A	CC.A.	Focus Data (N)	Foci/Vessel	Significance	
		RCE (%)		III	Type Vessels	Focus Type	t-statistic
Acetone [ACET, M.W. = 58.08, Density = 0.786 g/ml]							
Trial 1 [82]							
B(a)P	0.000791	46.8	47.2	371 (18)	19.6***	+ 7.45	
B(a)P	0.000250	56.3	51.6	288 (18)	15.5***	+ 7.97	
ACET 1377.	.000	.000	0	0 (0,18)	.000	ND	
ACET 1033.	.000	.000	0	0 (0,18)	.000	ND	
ACET 689.	.000	.000	10	6 (18)	1.15	.00(-4.78)	
ACET 344.	1.08	75.7	397 (18)	21.0***	+ 8.19		
NC-1 Control	100.	100.	649 (72)	8.01	Control		
Trial 2 [102]							
B(a)P	0.000791	9.64	69.9	99 (18)	4.65***	+ 9.48	
B(a)P	0.000250	19.3	93.1	45 (18)	2.22***	+ 5.22	
ACET 517.	.000	.000	6	13 (18)	.347	.00(-1.66)	
ACET 344.	.000	.000	28	18 (18)	1.30*	+ 2.40	
ACET 172.	1.26	76.8	55 (18)	2.67***	+ 6.15		
ACET 86.1	34.8	79.5	22 (18)	.976	+ 1.20		
NC-1 Control	100.	100.	64 (72)	.697	Control		
Dimethyl Sulfoxide [DMSO, M.W. = 78.13, Density = 1.100 g/ml]							
Trial 1 [41]							
B(a)P	0.000791	1.29	33.6	189 (18)	10.2***	+ 23.1	
B(a)P	0.000250	6.45	78.2	123 (18)	6.37***	+ 17.1	
DMSO 851.	.000	.000	0	13 (18)	.000	.00(-4.11)	
DMSO 568.	22.9	27.4	69 (18)	3.15***	+ 7.36		
DMSO 284.	76.8	77.1	15 (18)	.587	+ 1.59		
DMSO 142.	88.4	89.9	17 (18)	.754**	+ 2.81		
NC-1 Control	100.	100.	13 (36)	.274	Control		
Trial 2 [100]							
B(a)P	0.000791	89.7	77.9	65 (18)	3.30***	+ 11.7	
B(a)P	0.000250	81.0	93.8	62 (18)	2.85***	+ 7.75	
DMSO 563.	27.1	.000	31	18 (18)	1.42***	+ 5.84	
DMSO 426.	57.0	11.0	18 (18)	.720*	+ 2.19		
DMSO 282.	91.5	83.9	16 (18)	.636*	+ 2.25		
DMSO 141.	94.3	88.7	16 (18)	.586	+ 1.61		
NC-1 Control	100.	100.	28 (72)	.268	Control		
Ethanol [ETOH, M.W. = 46.07, Density = 0.790 g/ml]							
Trial 1 [81]							
B(a)P	0.000791	10.2	63.9	378 (18)	20.8***	+ 15.5	
B(a)P	0.000250	28.0	67.8	280 (18)	15.3***	+ 10.5	
ETOH 866.	.000	.000	0	0 (18)	.000	NA	
ETOH 650.	.000	2.93	6	11 (11,18)	.422	.00(-13.2)	
ETOH 433.	.000	49.1	159	8.07	+ .74		
ETOH 217.	22.7	90.0	263 (18)	13.7***	+ 5.31		
NC-1 Control	100.	100.	583 (72)	7.36	Control		
Trial 2 [108]							
B(a)P	0.000791	15.5	31.3	139 (18)	7.38***	+ 13.9	
B(a)P	0.000250	30.0	65.7	72 (13)	4.77***	+ 5.96	

(Continued on next page)
Drug	Conc., mM	S.A	CC.A.	Focus Data	Transforming Activity	Transformation Response	Significance
ETOH 606	.000	1.68		1 (10)	.072	.00(-7.45)	
ETOH 455	2.46	47.0		25 (14)	1.59	+ 1.15	
ETOH 303	36.5	99.5		48 (10)	3.92***	+ 4.34	
ETOH 152	114.	91.1		47 (16)	2.61***	+ 3.44	
NC-1	Control	100.	100.	108 (70)	1.17	Control	Mean t = 2.23

Glycerol [GLY, M.W. = 92.09, Density = 1.25245 g/ml]

Drug	Conc., mM	S.A	CC.A.	Focus Data	Transforming Activity	Transformation Response	Significance
GLY 434	.000	1.31		91 (18)	4.04	.00(-3.65)	
GLY 326	1.30	44.2		308 (18)	16.2***	+ 5.79	
GLY 217	16.3	91.8		220 (18)	11.5**	+ 2.95	
GLY 109	70.2	77.8		191 (18)	9.64	+ 1.47	
NC-1	Control	100.	100.	649 (72)	8.01	Control	Mean t = 2.55

Sodium Chloride [NaCl, M.W. = 58.44]

Drug	Conc., mM	S.A	CC.A.	Focus Data	Transforming Activity	Transformation Response	Significance
NaCl 154	16.9	56.7		496 (20)	24.1***	+ 20.6	
NaCl 116	68.8	84.9		463 (20)	22.2***	+ 17.3	
NaCl 77.0	78.3	84.1		216 (20)	10.0***	+ 8.86	
NaCl 38.5	86.9	100.		86 (20)	4.00*	+ 2.04	
NC-1	Control	100.	100.	317 (80)	3.02	Control	Mean t = 12.2

(Continued on next page)
Appendix H. Continued.

Treatment Condition	Cytotoxic Activity^a	Transforming Activity^b	Transformation Response²	Significance²	
Drug	Conc., mM	S.A, CC.A.	Focus Data	Foci/Vessel	t-statistic

Sucrose [SUC, M.W. = 342.30]

Trial 1 [101]

Drug	Conc.	S.A	CC.A.	Focus Data	Foci/Vessel	t-statistic
B(a)P	.000791	ND	64.8	108 (20)	.000	
B(a)P	.000250	ND	83.6	48 (20)	.000	
SUC						
SUC	438.5	.000	.000	0 (0,20)	.000	NA
SUC	219.2	28.7	61.1	205 (19)	10.3***	+ 25.2
SUC	110.0	91.3	112.4	38 (18)	1.67***	+ 5.19
SUC	54.8	93.4	112.4	9 (20)	.347	+ .75
NC-1	Control	100.0	100.0	27 (78)	.260	Control

Trial 2 [107]

Drug	Conc.	S.A	CC.A.	Focus Data	Foci/Vessel	t-statistic
B(a)P	.000791	5.81	47.3	131 (20)	6.09***	+ 5.74
B(a)P	.000250	21.2	75.8	122 (20)	5.53***	+ 4.05
SUC						
SUC	292.1	6.81	38.4	53 (20)	2.45	.00(-1.11)
SUC	219.5	31.5	49.8	115 (20)	5.34***	+ 3.85
SUC	146.6	65.3	77.7	114 (20)	5.37***	+ 5.09
SUC	73.0	96.4	93.0	60 (20)	2.60	.00(-.72)
NC-1	Control	100.0	100.0	274 (80)	2.95	Control

Urea [UREA, M.W. = 60.07]

Trial 1 [109]

Drug	Conc.	S.A	CC.A.	Focus Data	Foci/Vessel	t-statistic
B(a)P	.000791	51.9	94.3	99 (20)	4.69***	+ 5.31
B(a)P	.000250	66.2	108.0	81 (20)	3.91***	+ 4.16
UREA						
UREA	416.2	.000	.243	0 (20)	.000	.00(-23.0)
UREA	312.0	43.0	17.5	43 (20)	1.85	.00(-1.80)
UREA	208.0	80.6	69.2	102 (20)	4.40***	+ 3.39
UREA	104.2	90.8	74.1	80 (20)	3.57*	+ 2.05
NC-1	Control	100.0	100.0	237 (80)	2.55	Control

Abbreviations: B(a)P, benzo(a)pyrene; CC.A., co-culture clonal survival assay; Conc., concentration; mM, millimole; M.W., molecular weight; N, number of culture vessels; NC, negative control; ND, not determined; %RCE, percent relative cloning efficiency; S.A, standard clonal survival assay.

*a*Treatment Condition: The experimental design for the transformation assay is described in detail in the Materials and Methods. The concentration of the positive control and test chemical treatment are presented in mM, but they can be converted to µg/ml using the molecular weight that is provided with each chemical. The solvent vehicles used for the individual test chemicals were listed in Appendix Tables A1 and A3, and the concentrations of the solvent vehicles are presented in the Materials and Methods.

*b*Cytotoxic activity: The experimental design for the standard survival assay (SA) and the co-culture clonal survival assay (CCA) were described in the Materials and Methods. The test chemical cytotoxic response was expressed as % RCE and was calculated as described in the Materials and Methods.

The criteria used to evaluate the transformed foci of BALB/c-3T3 cells is described in the Materials and Methods. The number of type III foci > 2-mm in diameter per culture vessel scored are recorded in this table.

Transformation response: The transformation responses are expressed as type III foci/vessel and were calculated using a log₁₀ mathematical transformation procedure (refer to Materials and Methods). The arithmetic value or foci/vessel represents the antilog of the log₁₀ mean transformation response minus one.

Transformation response: The transformation responses are expressed as type III foci/vessel and were calculated using a log₁₀ mathematical transformation procedure (refer to Materials and Methods). The arithmetic value or foci/vessel represents the antilog of the log₁₀ mean transformation response minus one.

Significance: The significance of test chemical transformation responses was calculated by a computer using the SAS statistical software (22), and the method is described in detail in Materials and Methods. The correct t-statistic according to the F-test is presented in this table. The t-statistics of each treatment dose of the test chemical in a single experiment were averaged to determine the mean t-statistic of the test chemical for the experiment (refer to Appendix Tables A2 and A5). The mean t-statistics for two or experiments for each chemical was weighted to the number of treatment doses evaluated and averaged to determine the rank t-statistic which was used to rank-order the test chemical transformation responses in Appendix Tables A3 and A6. Arbitrarily, transformation responses with negative (-) t-statistics were given a value of zero (0).

Significant BaP or test chemical transformation response, 0.01 < p ≤ 0.05.

Significant BaP or test chemical transformation response, 0.001 < p ≤ 0.01.

Significant or BaP or test chemical transformation response, p ≤ 0.001.