studies carried out in models that test compounds by direct inoculation of small xenograft tumours, it is not appropriate to compare these data with results obtained from supermodels in which large tumour volumes were challenged by physiological, systemic drug delivery. The question remains which model is more predictive of clinical outcome? Like the fashion industry, I think I will place my money on the supermodels.

References
Gulino A, et al (2009) EMBO Mol Med 1: 300–302
Houghton PJ, et al (2007) Pediatr Blood Cancer 49: 928–940
Kimura H, et al (2008) Cancer Cell 13: 249–260
Lum LL, et al (2004) Science 304: 1755-1759
Romer JT, et al (2004) Cancer Cell 6: 229-240
Rubin LL, et al (2006) Nat Rev Drug Discov 5: 1026-1033
Rudin CM, et al (2009) N Engl J Med 361: 1173-1178
Sasaki K, et al (2006) Cancer Res 66: 4215-4222
Varnat F, et al (2009) EMBO Mol Med 1: 338-351
Von Hoff DD, et al (2009) N Engl J Med 361: 1164-1172
Yauch RL, et al (2008) Nature 455: 406-410 Epub 2008 Aug 27.

On hedgehogs and human cancer

Ariel Ruiz i Altaba and Frédéric Varnat
thank the editor for inviting a response to Dr. Curran’s letter, which questions the specificity of cyclopamine and the xenografts used in our recent work on human sporadic colon carcinomas (CCs) (Varnat et al, 2009). To respond, in detail, we address five issues.

First, a key issue is when and where is the pathway active in order to know if effects of HH-GLI antagonists can be specific. We and others established that GLI1 transcription is, so far, the only reliable and general HEDGEHOG-GLI (HH-GLI) pathway activation marker (e.g. Lee et al, 1997), and that it is expressed in many kinds of sporadic human tumours.

Second, is cyclopamine specific? The plant alkaloid cyclopamine, discovered by R. Keeler over 40 years ago has been extensively used (with over 400 entries in PubMed) to specifically block HH signalling. Cyclopamine induces cyclopia in newborns from mothers of several species that eat the producing plant Veratrum californicum, the mouse Shh KO mimics this phenotype and the labs of Roelink and Beachy showed that cyclopamine acts on cells that receive the Shh signal by blocking Smoothened (Smo; SMOH in humans) a key transducer of Hh signalling. Cyclopamine can block HH-GLI signalling in human sporadic tumour cells in vitro, specifically decreasing GLI1 messenger RNA (mRNA) levels, at concentrations ranging from 1 to 10 μM showing dose-dependent effects, modulated by serum levels. The best tests for specificity rely on mimicry by targeting SMOH with RNA interference (RNAi), the use of insensitive SMOH mutants and pathway epistatic analyses. Targeting SMOH through lentivector-mediated short hairpin RNA (shRNA) silencing mimics the effects of cyclopamine in multiple human tumour cells (Clement et al, 2007; Stecca et al, 2007; Varnat et al, 2009). The effects of 1–10 μM cyclopamine in CCs are rescued by expressing GLI1 or inhibiting suppressor of fused, positive and negative pathway elements, respectively, that act downstream of SMOH (Varnat et al, 2009; Frédéric Varnat and Ariel Ruiz i Altaba in preparation). SMOH RNAi is also rescued by GLI1 expression in gliomas and CCs (Clement et al 2007; Varnat et al, 2009).

Furthermore, expression of a constitutively active form of Smo (SmoA1) renders cells insensitive to 5 μM cyclopamine (Kim et al, 2010), and expression of N-Myc, a GLI target, in cerebellar cells rescues the effects of cyclopamine (Kessler et al, 2009). Claims that treatments with 1–10 μM cyclopamine are universally toxic or non-specific are thus unfounded.

While Sasai et al (2006) find that Hh signalling is repressed in medulloblastoma cells in vitro, several labs have proven activity in these cells (e.g. Eberhart, Gulino, Watkins). Indeed, results from over 35 labs (including those of Beachy, Dierks, Ingham, Nusslein-Volhard, Matsui, Melton, Reya, Robbins, Roussel, Scott, Tabin and Watkins) on species ranging from humans to fish support the specificity of this drug.

Third, is our conclusion that HH-GLI signalling is essential in human sporadic CCs based solely on data with cyclopamine? No. We have provided parallel lines of evidence in favour of a key role of HH-GLI in tumour cells using RNAi: independent, 21-nucleotide siRNAs to GLI1 block prostate cancer cell proliferation and lentivector-encoded shRNAs to SMOH or expression of GLI3R block melanoma, glioma and CC cancer proliferation, promoting apoptosis (Clement et al, 2007; Sanchez et al, 2004; Stecca

Correspondence
Tom Curran in Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Tel: +1 267 426 2819; Fax: +1 267 426 2791
E-mail: currant@email.chop.edu
DOI 10.1002/emmm.201000090
et al., 2007; Varnat et al., 2009). Conversely, the HH-GLI pathway can be further enhanced by shRNAs to \textit{P}TCH1, an inhibitor of SMOH and by increasing GLI1 levels in CCs (Varnat et al., 2009). We show that \textit{in vitro} and \textit{in vivo} these actions are mutually and epistatically rescued. Injection of cyclopamine into GLI1-overexpressing tumours had no effect (Varnat et al., 2009), and the growth of cell line and primary CCs in xenografts was abolished by knock-down of SMOH but rescued by co-expression of GLI1 (Varnat et al., 2009). The detailed results shown with a large number of controls in Varnat et al. (2009) have solved the controversy on the role of HH-GLI signalling in CCs in favour of an absolute requirement.

Fourth, in what concerns the CC and melanoma xenografts we have used we note that cyclopamine could eradicate tumours of 10 mm³ (Stecca et al., 2007; Varnat et al., 2009), but also ten times larger (100 mm³; Stecca et al., 2007). Moreover, when these tumours were fully ‘cured’ and cyclopamine treatment stopped, they recurred aggressively. We had to treat for 20 additional days to prevent all recurrences, as assessed even 1 year after cessation of treatment, and kill any remaining tumour stem cells (Stecca et al., 2007; Varnat et al., 2009). The animals so treated did not show any signs of non-specific damage.

It is important to note that systemic intraperitoneally delivered cyclopamine also blocks metastatic growth in the lungs of mice injected intravenously with human melanoma cells (Stecca et al., 2007). Here, cyclopamine treatment was started 2 weeks after injection, to make sure that the cells had time to seed the target tissues. No side effects were observed. Critically, similar results were obtained by blocking HH-GLI signalling with cell-autonomous shSMOH in CCs (Varnat et al., 2009), and conversely, the number and size of metastases were enhanced by knockdown of \textit{P}TCH1 or increased expression of GLI1.

These \textit{in vivo} assays provide critical insights into the role of HH-GLI signalling in human cancer, whether they fall into suggested regiments by the USA National Cancer Institute, pharma or not.

Fifth, in parallel with xenografts, cyclopamine treatment is effective against endogenous tumours in mouse genetic cancer models. For instance, systemic cyclopamine treatment prevented medulloblastoma growth in \textit{P}tch1−/−; \textit{p53}−/− mice (Sanchez and Ruiz i Altaba, 2005), and the growth \textit{in vitro} and \textit{in vivo} of \textit{Tyr}>\textit{NRASQ61K}; \textit{Ink4A}−/− sporadic melanomas, which express \textit{Glil}, was inhibited by cyclopamine treatment (Stecca et al., 2007). In addition, mice lacking \textit{Apc} develop intestinal adenomas, whereas those lacking \textit{Apc} and \textit{Smo} simultaneously (\textit{Apc}fl/f1; \textit{Smo}fl/fl; \textit{Cre}/\textit{Tam}) do not, and the effect of deleting \textit{Smo} is mimicked by systemic cyclopamine treatment (Varnat et al., 2010). Finally, other groups have shown that cyclopamine treatment and deletion of \textit{Smo} also yield similar results in mouse liquid tumours.

Taken together, the data fully support the specificity of cyclopamine under the conditions used and the essential and intrinsic role of HH-GLI signalling in a plethora of human tumours, including CCs as described in Varnat et al. More generally, the lack of effective antimetastatic drugs begs for new imaginative, detailed and rigorous approaches, whether these are fashionable or not.

The authors declare that they have no conflict of interest.

References

Chen J, et al (2002) Genes Dev 16: 2743-2748
clement V, et al (2007) Curr Biol 17: 165-172
dahmane N, et al (1997) Nature 389: 876-881
Kessler JD, et al (2009) Genes Dev 23: 157-170
Kim J, et al (2010) Cancer Cell 17: 388-399
lauth M, et al (2010) Nat Struct Mol Biol 17: 718-725
Lee J, et al (1997) Development 124: 2537-2552
Sanchez P, et al (2005) Mech Dev 122: 223-230
Sanchez P, et al (2004) Proc Natl Acad Sci USA 101: 12561-12566
sasai K, et al (2006) Cancer Res 66: 4215-4222
Stecca B, et al (2007) Proc Natl Acad Sci USA 104: 5895-5900
Varnat F, et al (2009) EMBO Mol Med 1: 338-351
Varnat F, et al (2010) Mech Dev 127: 73-81

A. Ruiz i Altaba is a consultant of Phistem. He has no financial interest in cyclopamine. We apologize for the omission of many important references that could not be included due to space restrictions.

A. Ruiz i Altaba and F. Varnat in Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
E-mail: Ariel.RuizAltaba@unige.ch
DOI: 10.1002/emmm.201000091