Acute Methylmercury Exposure and the Hypoxia-Inducible Factor-1α Signaling Pathway under Normoxic Conditions in the Rat Brain and Astrocytes in Vitro

Jie Chang,1* Bobo Yang,2* Yun Zhou,1* Changsheng Yin,2,4 Tingting Liu,1 Hai Qian,1 Guangwei Xing,1 Suhua Wang,1 Fang Li,1 Yubin Zhang,1 Da Chen,4 Michael Aschner,5 and Rongzhu Lu1,6

1Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, China
2Institute of Life Sciences, Jiangsu University, Zhenjiang, China
3Department of Occupational Health and Toxicology, School of Public Health, Pudan University, Shanghai, China
4School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
5Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
6Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, China

BACKGROUND: As a ubiquitous environmental pollutant, methylmercury (MeHg) induces toxic effects in the nervous system, one of its main targets. However, the exact mechanisms of its neurotoxicity have not been fully elucidated. Hypoxia-inducible factor-1α (HIF-1α), a transcription factor, plays a crucial role in adaptive and cytoprotective responses in cells and is involved in cell survival, proliferation, apoptosis, inflammation, angiogenesis, glucose metabolism, erythropoiesis, and other physiological activities.

OBJECTIVES: The aim of this study was to explore the role of HIF-1α in response to acute MeHg exposure in rat brain and primary cultured astrocytes to improve understanding of the mechanisms of MeHg-induced neurotoxicity and the development of effective neuroprotective strategies.

METHODS: Primary rat astrocytes were treated with MeHg (0–10 μM) for 0.5 h. Cell proliferation and cytotoxicity were assessed with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) release assay, respectively. Reactive oxygen species (ROS) levels were analyzed to assess the level of oxidative stress using 2'-7'-dichlorofluorescin diacetate (DCFH-DA) fluorescence. HIF-1α, and its downstream proteins, glucose transporter 1 (GLUT-1), erythropoietin (EPO), and vascular endothelial growth factor A (VEGF-A) were analyzed by means of Western blotting. Real-time PCR was used to detect the expression of HIF-1α mRNA. Pretreatment with protein synthesis inhibitor (CHX), proteasome inhibitor (MG132), or proline hydroxylase inhibitor (DHB) were used to investigate the putative role of oxidative stress in MeHg-induced alterations in HIF-1α levels. The expression of HIF-1α and related downstream proteins was detected in adult rat brain exposed to MeHg (0–10 mg/kg) for 0.5 h in vivo.

RESULTS: MeHg caused lower cell proliferation and higher cytotoxicity in primary rat astrocytes in a time- and concentration-dependent manner. In comparison with the control cells, exposure to 10 μM MeHg for 0.5 h significantly inhibited the expression of astrocytic HIF-1α, and the downstream genes GLUT-1, EPO, and VEGF-A (p < 0.05), in the absence of a significant decrease in HIF-1α mRNA levels. When protein synthesis was inhibited by CHX, MeHg promoted the degradation rate of HIF-1α, MG132 and DHB significantly blocked the MeHg-induced decrease in HIF-1α expression (p < 0.05). Overexpression of HIF-1α significantly attenuated the decline in MeHg-induced cell proliferation, whereas the inhibition of HIF-1α significantly increased the decline in cell proliferation (p < 0.05). NAC and Trolox, two established antioxidants, reversed the MeHg-induced decline in HIF-1α protein levels and the decrease in cell proliferation (p < 0.05). MeHg suppressed the expression of HIF-1α and related downstream target proteins in adult rat brain.

DISCUSSION: MeHg induced a significant reduction in HIF-1α protein by activating proline hydroxylase (PHD) and the ubiquitin proteasome system (UPS) in primary rat astrocytes. Additionally, ROS scavenging by antioxidants played a neuroprotective role via increasing HIF-1α expression in response to MeHg toxicity. Moreover, we established that up-regulation of HIF-1α might serve to mitigate the acute toxicity of MeHg in astrocytes, affording a novel therapeutic target for future exploration. https://doi.org/10.1289/EHP5139

Introduction

Methylmercury (MeHg) is a global environmental contaminant targeting the central nervous system (CNS) (Farina and Aschner 2017; Santos et al. 2016). Consumption of MeHg-containing fish products (Canuel et al. 2006; Carrasco et al. 2011; Steuerwald et al. 2000; Stopford and Goldwater 1975) and rice (Rothenberg et al. 2014; Zhang et al. 2010) has been shown to induce neurodegeneration as well as be associated with neurodevelopmental disorders (Belletti et al. 2002; Carocci et al. 2014; Ceccatelli et al. 2010). However, the underlying cellular and molecular mechanisms of MeHg-induced neurotoxicity have yet to be fully elucidated. Meanwhile, there is still a lack of treatment to effectively protect against MeHg-induced brain damage.

Hypoxia-inducible factor-1 (HIF-1), a DNA-binding transcription factor, plays a crucial role in a diverse range of adaptive responses to oxygen tension. HIF-1 is a heterodimer comprising an oxygen-labile α-subunit (HIF-1α) and a constitutively expressed β-subunit (HIF-1β), under normal oxygen conditions (>5% O2), prolyl hydroxylase (PHD) has been shown to mediate hydroxylation of HIF-1α (Berra et al. 2003; Ivan et al. 2001). Hydroxylated HIF-1α is rapidly degraded by the ubiquitin proteasome system (UPS), mediated by interaction with the von-Hippel Lindau tumor suppressor gene product (pVHL) (Briuc and McKnight, 2001; Lee et al. 2007). Under hypoxic conditions (<5% O2) or stimulation by other environmental factors, stabilized HIF-1α dimerizes with HIF-1β to transactivate a series of adaptive genes, including vascular endothelial growth factor A (VEGF-A), glucose transporter 1 (GLUT-1), and erythropoietin (EPO) (Semenza and Wang, 1992). Several metals and organic chemicals have been shown to affect HIF-1α expression and activity (Dong et al. 2016; Lee et al. 2009; Liao et al. 2014; Wikenheiser et al. 2013; Wu et al. 2014).
whereas increased expression of HIF-1α has been shown to be protective against neurotoxins (Feng et al. 2014; Lee et al. 2009; Wu et al. 2010). Manganese has also been shown to increase HIF-1α protein levels in Hep2 cells by regulating mitogen-activated protein kinases (MAPKs) (Shin et al. 2010). Chloquinol (a copper and zinc chelator) decreased HIF-1α degradation by inhibiting HIF-1α ubiquitination and hydroxylation in SH-SY5Y cells and HepG2 cells, whereas addition of copper and zinc reversed these effects (Choi et al. 2006). Cadmium was shown to up-regulate HIF-1α expression in human lung epithelial cells via the production of reactive oxygen species (ROS) through the activation of the protein kinase B (Akt), and extracellular signal-regulated protein kinase (ERK) signaling pathways (Jing et al. 2012). Notably, deferoxamine (DFO), an iron chelator, was shown to attenuate neuronal cell death and the generation of ROS caused by MeHg and methylphenyl tetrahydro-pyridine (MPTP) in in vivo rodent models (Guo et al. 2016; LeBel et al. 1992). Furthermore, it was shown that by inhibiting the activity of proline hydroxylase (PHD) in mouse hippocampal neurons, DFO decreased degradation of HIF-1α and increased intracellular levels of HIF-1α protein (Hamrick et al. 2005). Recently, several studies have further documented that HIF-1α is neuroprotective because it drives the expression of critical genes that diminish neuronal cell death (Chen et al. 2017; Sen and Sen 2016). Increased HIF-1α expression and activity have been shown to promote glycolysis and glucose metabolism, thus countering oxidative stress by producing NADH and NADPH to propagate neuroprotective responses (Soucek et al. 2003). HIF-1α has also been shown to improve cerebral blood flow, which could oppose the toxicity of hypoxia (Ilyambe et al. 2017). Overexpression of HIF-1α and/or HIF-1β target genes, such as VEGF-A and EPO, may be an early adaptation to the oxidative stressors that characterize MeHg-induced neuropathology. Thus, we speculate that the molecular events that constitute this early adaptation are likely neuroprotective and might mitigate neuronal injury caused by MeHg.

Previous studies have indicated an association between HIF-1α activity and intracellular ROS production. ROS was reported to promote HIF-1α accumulation by the inhibition of PHD catalytic activity via the oxidation of PHD-bound Fe²⁺ (Koivunen et al. 2007; Pan et al. 2007). However, it has been noted that a paradox exists between them, because the HIF-1α-dependent transcriptional program can prevent mitochondrial ROS generation (Jain et al. 2016). It is unclear whether MeHg-induced toxicity is associated with the expression of HIF-1α, whereas the specific relationship between ROS production and HIF-1α also remains unclear. MeHg predominantly accumulates in the CNS, particularly in astrocytes; the latter have been shown to play an important role in mediating MeHg-induced neurotoxicity (Ceccatelli et al. 2010; Shanker et al. 2003), inhibit glutamate uptake, and contribute to secondary excitotoxicity (Aschner et al. 2000; Deng et al. 2014; Liu et al. 2013, 2014). Astrocytes perform diverse important functions in providing support and nutrition (Abbott 2002; Rudge et al. 1994), inducing neuronal differentiation (Barkho et al. 2006) and mediating immune responses (Aschner 1998a, 1998b; Jensen et al. 2013). Therefore, we aimed to investigate the role of HIF-1α in MeHg-induced acute neurotoxicity by using primary rat astrocytes and adult rats, with special emphasis on an ROS mode of toxicity, so as to further identify novel therapeutic targets against MeHg-induced neuronal injury.

Materials and Methods

Primary Rat Astrocyte Isolation and Culture

Sprague-Dawley (SD) rats at the 1–2-d postnatal stage were purchased from the Laboratory Animal Center of Jiangsu University. Primary neonatal rat astrocytes were prepared as previously described (Bai et al. 2015, 2016; Fang et al. 2016; Yang et al. 2018; Yin et al. 2011). The procedures were as follows: Rats were rapidly decapitated, and the cerebral hemispheres were quickly obtained and rinsed with 4°C phosphate buffered solution (PBS). After dissecting away part of the meninges, basal ganglia, midbrain, and blood vessels, the remaining cortical tissues were cut into 1 mm² pieces and dissociated with 0.25% trypsin (Gibco) for 15 min at room temperature in the absence of stirring. Cells were grown in Dulbecco’s Modified Eagle Medium (DMEM; Hyclone) containing 10% fetal bovine serum (Gibco), and 1% penicillin/streptomycin (Gibco). Culture medium was replaced with fresh medium twice a week, and cultures were maintained in a 5% CO₂ environment at 37°C. Cultured cells were used for experiments when astrocytes reached 75%–85% confluency. Protocols were approved by the Animal Ethics Committee of Jiangsu University of China and were carried out in accordance with the established Guiding Principles for Animal Research.

Reagents and Antibodies

Methylmercuric chloride (MeHgCl; Sigma-Aldrich) was dissolved in PBS to form a stock concentration of 10 mM; MG132; 3,4-Dihydroxybenzoic acid (DBH); cobalt chloride (CoCl₂); N-acetyl-cysteine (NAC) and Trolox (6-hydroxy-2,5,7,8-tetra-methylchroman-2-carboxylic acid); and 3-(4,5-Dimethylthia-zol-2-yl)-2,5-diphenyl diphenyltetrazolium bromide (MTT) were obtained from Sigma-Aldrich. Clioquimexime (CHX) was purchased from MedChemExpress; 2-methoxyestradiol (2-MeOE2) was purchased from Selleck Chemicals. For Western blotting analysis, the primary polyclonal antibodies to HIF-1α, VEGF-A, GLUT-1, and EPO were obtained from Immunoway, and antibodies to HIF-1α and β-actin were obtained from Cell Signaling Technology and CMATAG, respectively. Secondary antibodies used for immunoblotting included horseradish peroxidase (HRP)-conjugated antimouse (Santa Cruz Biotechnology) or anti-rabbit antibodies (Santa Cruz Biotechnology).

Cell Treatment

Astrocytes were treated for 0.5 h with MeHg at concentrations of 1.0, 2.5, 5.0, or 10 µM in the medium, and the cells treated by culture medium without MeHg were used as the control group. These concentrations were used in previous studies (Allen et al. 2001; Shapiro and Chan 2008). H₂O₂ (6 µM, 0.5 h), CHX (400 µM, 0.5, 1, or 2 h), MG132 (1 µM, 24 h), DHB (1 mM, 6 h), CoCl₂ (200 µM, 0.5 h), 2-MeOE2 (10 µM, 0.5 h), and NAC (2.5 mM, 4 h) or Trolox (2.5 mM, 4 h) were administered prior to MeHg treatment.

Cell Proliferation Assay

Cell proliferation was measured in astrocytes cultured in 96-well plates (1 × 10⁴/well) using the MTT assay. At the end of treatment, MTT was added to each well at a final concentration of 0.5 mg/mL and incubated at 37°C for 4 h. Next, the MTT solution was replaced with dimethyl sulfoxide (150 µL/well) for 10 min to dissolve the dark-blue formazan crystals in intact cells, and the absorbance was measured at 490 nm with a Bio-Rad 680 Microplate Reader (Bio-Rad Laboratories).

Lactate Dehydrogenase (LDH) Release Assay

Cytotoxicity was detected using an LDH release assay kit (Jiancheng Bioengineering Institute of Nanjing) according to the manufacturer’s protocol. Cells were cultured in 96-well plates (1 × 10⁴/well), and after treatment supernatants were transferred...
Measurement of Intracellular ROS Generation

To measure ROS generation, a fluorometric assay was carried out using the cell membrane permeable dye 2’,7’-dichlorofluorescin diacetate (DCFH-DA). In the quantitative experiment of fluorescence intensity, cells cultured in 96-well plate (1 × 10⁴/well) were treated with different concentrations of MeHg (1, 2.5, 5, and 10 µM) for 0.5 h and were then incubated with 10 µmol/L DCFH-DA in serum-free medium for 0.5 h at 37°C. After washing with PBS, the fluorescence intensity was measured with Cytation™ 5 (Biotek), with an excitation wavelength of 488 nm and an emission wavelength of 525 nm. In the imaging experiment, cells cultured in 24-well plates (5 × 10⁴/well) were treated with MeHg (10 µM, 0.5 h) or H₂O₂ (6 µM, 0.5 h). After washing with PBS, the nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI) for 15 min at room temperature. Then the cells were incubated with 10 µmol/L DCFH-DA in serum-free medium for 0.5 h at 37°C. Finally, the resulting fluorescence was detected with a fluorescence microscope (Zeiss Axio Observer). Cells treated with H₂O₂ were used as the positive control. The intensity of fluorescence reflects the extent of oxidative stress.

Western Blotting Analysis

To prepare the whole protein lysate, cells were washed three times with cold PBS, lysed in lysis buffer (RIPA lysis buffer containing 1% PMSF, obtained from Beyotime), incubated on ice for 15 min, and collected after 12,000 × g for 15 min. The protein concentration was determined by a BCA protein assay reagent kit (Beyotime). A total of 60 µg of cell total protein was separated using 10% or 12% SDS-PAGE, then transferred to a PVDF membrane (Millipore). After being blocked with 5% skim milk in TBST (10 mM Tris–HCl, 120 mM NaCl, 0.1% Tween 20, pH 7.4) for 2 h at room temperature, the membranes were incubated with specific primary antibodies overnight at 4°C (Table 1). On the second day, the membranes were washed three times with TBST buffer and further incubated with HRP-labeled secondary antibodies at room temperature for 1 h, and then washed three times in TBST. Finally, signal density of the immunoblots was performed using the MiniChemi Mini Chemiluminescent Imaging System (Beijing Sage Creation Science Co., Ltd.) and analyzed with Image J software (National Institutes of Health).

Adenovirus-Mediated HIF-1α Overexpression

Adenovirus carrying the HIF-1α gene was obtained from Hanbio Biotechnology Co., Ltd. Astrocytes were seeded in 6-well plates at a 60% confluence, and cells were transfected with pHBAd-EF1-MCS-GFP according to multiplicity of infection (MOI) = 30 × 10⁸ PFU/mL 8 h later, cells were supplemented with fresh medium and continuously cultured for an additional 48 h to observe transfection efficiency by means of Western blotting.

siRNA Transfection

The small interfering RNAs (siRNAs) for HIF-1α were designed and purchased from Guangzhou Ribobio Co., Ltd. The sequences of the three siRNAs were as follows: #1 (siB07514101244) 5’-TCGACACCTAAGAAAGAG dTdT-3’, #2 (siB07514101312) 5’-GGACATATGAGACATT dTdT-3’ and #3 (siG081230140326) 5’-CTGATAAGCTGAACAAATA dTdT-3’.

Astrocytes were plated in 6-well plates at 60% confluence, transfected with HIF-1α siRNA (50 nM), or a negative control (NC, a scrambled sequence) siRNA (50 nM) with Lipofectamine® 2000 in Opti-MEM medium (Invitrogen), according to the manufacturer’s protocol. The transfected cells were incubated at 37°C for an additional 48 h and validated the silencing efficacy via Western blotting analysis.

Total RNA Extraction and Quantitative Real-Time PCR (RT-PCR)

Total RNA was extracted from astrocytes using the TRizol reagent (Invitrogen). Five hundred nanograms of total RNA were reverse-transcribed to cDNA using an RT reagent kit (TaKaRa), which was then amplified with SYBR green dye on a CFX96 Real-Time PCR Detection System (Bio-Rad). The relative quantification of mRNA levels was calculated using the standard 2–ΔΔCt relative quantification method.

The primers for rat HIF-1α and β-actin were designed and synthesized by Shanghai Generay Biotech Co., Ltd (Shanghai, China), and the sequences were as follows:

HIF-1α:
Forward primer: 5’-TCACAAAATGCAGCAAGCAC-3’
Reverse primer: 5’-AAGGGGAAGAAGACAAAAACCG-3’
β-actin:
Forward primer: 5’-CCTAGACTTCCAGGCAAGAGA-3’
Reverse primer: 5’-GAAGGAAGGCCTTGAAGA-3’

Animal Model

Male SD rats (8 wk old) weighing 200 ± 20 g were obtained from the Laboratory Animal Center of Jiangsu University (Accreditation Number: SCXK [SU] 2018-0012). The rats were housed in a temperature- and humidity-controlled room (22 ± 2°C and 50 ± 10% relative humidity) with a 12 h:12 h light:dark cycle (dark phase from 1900 to 0700) and were maintained on standard laboratory chow with ad libitum access to water and food (n = 6 per cage). The rats were acclimatized for at least 7 d prior to MeHg exposure.

Rats were divided randomly into six groups (n = 6):
Group I: Normal saline was injected intraperitoneally for 0.5 h

Table 1. Protein antibodies used for Western blotting.

Antibodies	Source	Catalog no.	Lot	Dilution
HIF-1α	ImmunoWay	YT2133	B301	1:1,000
HIF-1β	Cell Signaling Technology	D28F3	2	1:1,000
GLUT-1	ImmunoWay	YT1928	B2801	1:1,000
EPO	ImmunoWay	YM0237	B3701	1:1,000
VEGF-A	ImmunoWay	YT5108	B0801	1:1,000
β-actin	CMCTAG	AT0048	380436SB	1:10,000
Mouse antirabbit IgG-HRP	Santa Cruz Biotechnology	sc-2357	K0718	1:10,000
m-IgGx BP-HRP	Santa Cruz Biotechnology	sc-516102	E2318	1:10,000
Group II: MeHg [2 mg/kg body weight (BW)] was injected intraperitoneally for 0.5 h
Group III: MeHg (4 mg/kg BW) was injected intraperitoneally for 0.5 h
Group IV: MeHg (6 mg/kg BW) was injected intraperitoneally for 0.5 h
Group V: MeHg (8 mg/kg BW) was injected intraperitoneally for 0.5 h
Group VI: MeHg (10 mg/kg BW) was injected intraperitoneally for 0.5 h

At the end of the exposure period, the rats were anesthetized by intraperitoneal (IP) injection of pentobarbital to alleviate any potential discomfort and pain. Next, the brain cortices were rapidly frozen in liquid nitrogen and transferred to a –80°C freezer. All experimental procedures were conducted following a protocol approved by the Animal Care and Use Committee and Animal Ethics Committee of Jiangsu University (Accreditation Number: SYXX [SU] 2013-0036). All animals used in this study were treated humanely according to the institutional guidelines, with full consideration for the alleviation of distress and discomfort.

Statistical Analysis

All data are presented as the mean ± standard deviation (SD). All assays were repeated at least three times with at least three independently derived astrocyte cultures. Statistical significance was assessed by analysis of variance (ANOVA) with correction for multiple comparisons in post hoc analysis. CHX treatment assay was analyzed by a two-way ANOVA with Dunnett’s post hoc test. Other multiple comparisons were analyzed by one-way ANOVA with Dunnett’s or Tukey’s post hoc test. All statistical analyses were performed using GraphPad Prism software. A p value of <0.05 was considered to be statistically significant.

Results

Effects of Methylmercury on Astrocyte Proliferation, Cytotoxicity, and Production of ROS

To investigate the effects of MeHg on cell proliferation and cytotoxicity in astrocytes, we incubated astrocytes with this organo-metal (0–10 μM) for 0.5 h. The MTT assay and LDH leakage were subsequently assessed. As shown in Figure 1A, compared with control cells, those treated with MeHg exhibited lower cell proliferation, which appeared to be concentration-dependent. MeHg treatment significantly increased LDH release in astrocytes, especially at concentrations of 5 and 10 μM (Figure 1B). Exposure to MeHg (5 and 10 μM, 0.5 h) induced a ~1.6-fold increase in astrocytic LDH release compared with controls (p < 0.05). Next, we analyzed the effects of MeHg on ROS production using 2′,7′-dichlorofluorescin diacetate (DCFH-DA) fluorescence. As is shown in Figure 1C, MeHg at 5 and 10 μM caused a significant increase in ROS formation. Additionally, fluorescence images also showed that the fluorescence intensity of ROS was obviously enhanced in MeHg (10 μM, 0.5 h) group (Figure 1D).

Figure 1. Cell proliferation, cytotoxicity and ROS production after treatment with MeHg for 0.5 h in astrocytes. (A) Cell proliferation in astrocytes was measured using the MTT assay. (B) Cytotoxicity in astrocytes was detected via LDH release. (C) Effects of MeHg treatment on ROS production using the fluorescent probe DCFH-DA. The fluorescence intensity was detected by the microplate reader. (D) Representative images for ROS generation induced by MeHg (10 μM, 0.5 h) treatment. Scale bar = 100 μm. H2O2 (6 μM, 0.5 h) was set as a positive control for ROS generation. Green fluorescence indicates ROS and blue (DAPI) indicates the nucleus. Note: Data are presented as mean ± SD from three independent experiments (n = 3). con, control (culture medium treatment without MeHg); DAPI, 4′,6-diamidino-2-phenylindole; DCFH-DA, 2′,7′-dichlorofluorescin diacetate; H2O2, hydrogen peroxide; LDH, lactate dehydrogenase; MeHg, methylmercury; MITT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; ROS, reactive oxygen species. *p < 0.05 vs. control by one-way analysis of variance (ANOVA) with Dunnett’s post hoc test.
Effects of Methylmercury on the Expression of HIF-1α-Related Proteins in Astrocytes

We incubated astrocytes in the absence or presence of MeHg (1–10 μM) for 0.5 h and assessed HIF-1α and HIF-1β expression by Western blotting. MeHg-treated astrocytes exhibited a significant reduction in HIF-1α expression in a concentration-dependent manner (Figure 2A). In contrast, HIF-1β remained unaffected irrespective of the MeHg concentration (Figure 2B). Next, we analyzed the expression of HIF-1α targets (GLUT-1, EPO, and VEGF-A) in astrocytes treated with various concentrations of MeHg. A significant decrease in the expression of GLUT-1, EPO, and VEGF-A proteins was observed in astrocytes treated with 10 μM MeHg for 0.5 h (p < 0.05) (Figure 2C). These results are consistent with the ability of MeHg to decrease astrocytic HIF-1α levels, followed by a decrease in GLUT-1, EPO, and VEGF-A expression.

Figure 2. Effects of MeHg on the expression of HIF-1α–related proteins in astrocytes. (A) Western blotting for HIF-1α in astrocytes following MeHg (0, 1, 2.5, 5 or 10 μM, 0.5 h) exposure. (B) Western blotting for HIF-1β in astrocytes following MeHg (0, 1, 2.5, 5, or 10 μM, 0.5 h) exposure. (C) Effect of MeHg (0, 1, 2.5, 5, or 10 μM, 0.5 h) exposure on the expression of the downstream proteins of HIF-1α, including GLUT-1, EPO, and VEGF-A. β-actin was used as the internal control. Note: Data are presented as mean ± SD from three independent experiments (n = 3). con, control (culture medium treatment without MeHg); EPO, erythropoietin; GLUT-1, glucose transporter 1; HIF-1α, Hypoxia-inducible factor-1α; HIF-1β, Hypoxia-inducible factor-1β; MeHg, methylmercury; VEGF-A, vascular endothelial growth factor A. *p < 0.05 vs. control by one-way ANOVA with Dunnett’s post hoc test.

Effects of Protein Synthesis, Proteasome, and PHD Inhibitors on Protein Expression of HIF-1α and Downstream Effectors in Methylmercury-Treated Astrocytes

To determine the means by which MeHg regulated HIF-1α expression, we analyzed the expression of the HIF-1α gene with RT-PCR. As shown in Figure 3A, MeHg pretreatment did not affect HIF-1α mRNA levels. Therefore, we further explored the potential causes of the significant reduction in HIF-1α levels caused by MeHg in astrocytes. CHX is a broad-spectrum and nonspecific protein synthesis inhibitor, and astrocytes were harvested after CHX pretreatment (400 μM) for 0.5, 1, and 2 h with and without MeHg treatment (10 μM, 0.5 h). In addition, MeHg treatment alone group (10 μM for 0.5, 1, and 2 h) was also established. Then, HIF-1α protein expression was analyzed (Figure 3B). In comparison with the control group, the protein level of HIF-1α in CHX alone group decreased in a time-dependent manner. Notably, when compared with the corresponding time point of CHX treatment alone group, the level of HIF-1α protein was found to be significantly lower in the CHX + MeHg group (p < 0.05, Figure 3B). We pretreated astrocytes with or without MG132 (1 μM, 24 h), a proteasome inhibitor, followed by 10 μM MeHg, and incubated the cells for an additional 0.5 h. The cells were harvested at the end of the treatment, and the levels of HIF-1α and its targets were measured via Western blotting. As shown in Figure 3C, MG132 treatment inhibited the significant MeHg-induced reduction in HIF-1α and its target proteins in astrocytes. Previous research has suggested that HIF-1α degradation is attributable to the activation of proline hydroxylase (PHD).
(Marxsen et al. 2004). To define the potential contribution of PHD-mediated inhibition of HIF-1α in response to MeHg treatment, we treated astrocytes with 1 mM DHB [a small-molecule prolyl hydroxylase (PHD) inhibitor] (Siddiq et al. 2005) for 6 h and exposed astrocytes to 10 μM MeHg for 0.5 h. Notably, compared with cells treated with MeHg alone, astrocytic HIF-1α expression in cells treated with MeHg and either the proteasome inhibitor (Figure 3C) or the PHD inhibitor (Figure 3E) was significantly higher. In addition, both the proteasome inhibitor and PHD inhibitor restored MeHg-inhibited cell proliferation (Figure 3D and 3F).

Effects of Pharmacologic and Genetic Manipulation of HIF-1α on Cell Proliferation

We hypothesized that decreased HIF-1α protein contributes to astrocytic cytotoxicity. To further confirm this hypothesis, we treated astrocytes with CoCl₂ (200 μM, 0.5 h) or 2-MeOE2 (10 μM, 0.5 h) in the absence or presence of MeHg (0.5 h exposure). We used CoCl₂, an inducer of HIF-1α expression (Triantafyllou et al. 2006), and 2-MeOE2, a HIF-1α inhibitor (Chen et al. 2008; Parada-Bustamante et al. 2015; Pribluda et al. 2000), to regulate HIF-1α expression in MeHg-treated astrocytes (Figure 4A and 4C). Analogous to the data shown in Figure 3D and 3F, overexpression of HIF-1α protein mitigated the MeHg-reduced cell proliferation in astrocytes (p < 0.05) (Figure 4B), whereas down-regulation of HIF-1α protein significantly aggravated the decline in astrocytic proliferation (p < 0.05) (Figure 4D). To confirm this observation, we further used siRNA and adenovirus overexpression, which target the HIF-1α gene (Figure 4E to 4H). Consistent with the results of CoCl₂ and 2-MeOE2 treatment, overexpression of HIF-1α significantly attenuated the decline in MeHg-
Figure 4. Effects of pharmacologic and genetic manipulation of HIF-1α on cell proliferation. (A) Astrocytes were pretreated with CoCl₂ (200 μM, 0.5 h) and then treated with 10 μM MeHg for 0.5 h. Western blotting was used to evaluate protein levels of HIF-1α, GLUT-1, EPO, and VEGF-A. (B) Effect of CoCl₂ pretreatment (200 μM, 0.5 h) on the cell proliferation was evaluated using an MTT assay. (C) Effect of 2-MeOE2 pretreatment (10 μM, 0.5 h) on the expression of HIF-1α, GLUT-1, EPO, and VEGF-A was detected by Western blotting. (D) Effect of 2-MeOE2 pretreatment (10 μM, 0.5 h) on the cell proliferation was evaluated using an MTT assay. For Western blotting analyses, representative blots are shown, and the intensities are presented as fold changes relative to the control group (β-actin as the internal control). *p < 0.05 vs. control, #p < 0.05 vs. MeHg-only group. (E) The protein expression levels of HIF-1α, GLUT-1, EPO, and VEGF-A after overexpression of HIF-1α. *p < 0.05 vs. HIF-1α-null group. (F) Effect of adenovirus-induced HIF-1α overexpression on the decrease in MeHg-induced cell proliferation as determined by an MTT assay. *p < 0.05 vs. control group, #p < 0.05 vs. MeHg + HIF-1α-null group. (G) Effect of HIF-1α siRNA on the protein expression of HIF-1α, GLUT-1, EPO, and VEGF-A. (H) Effect of HIF-1α siRNA on the MeHg-induced decrease in cell proliferation. Note: Statistical analysis was performed by one-way ANOVA with Tukey’s post hoc test. Data are presented as the mean ± SD from three independent experiments (n = 3). CoCl₂, cobalt chloride; con, control (culture medium treatment without MeHg); EPO, erythropoietin; GLUT-1, glucose transporter 1; HBAD, pHBA5F1-MCS-GFP; HIF-1α, Hypoxia-inducible factor-1α; 2-MeOE2, 2-methoxyestradiol; MeHg, methylmercury; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; nc siRNA, negative control (scrambled sequence) siRNA; siRNA, small interfering RNA; VEGF-A, vascular endothelial growth factor A. *p < 0.05 vs. nc siRNA group. #p < 0.05 vs. control group, &p < 0.05 vs. MeHg + nc siRNA group.
induced cell proliferation (Figure 4F), whereas inhibition of HIF-1α significantly increased the decline in cell proliferation (Figure 4H; \(p < 0.05 \)).

HIF-1α Protein Expression and Cell Proliferation after Pretreatment with Antioxidants in Methylmercury-Treated Astrocytes

We investigated whether ROS production were associated with decreased HIF-1α expression in MeHg-exposed astrocytes. Astrocytes were pretreated with NAC (2.5 mM, 4 h) and Trolox (2.5 mM, 4 h) followed by 10 µM MeHg for 0.5 h. NAC and Trolox are antioxidants that are commonly used to mitigate ROS (Aremu et al. 2008; Bai et al. 2015; Kaur et al. 2010). As shown in Figures 5A and 5C, cells pretreated with either NAC or Trolox and then treated with MeHg exhibited higher HIF-1α protein levels, similar to those of control cells, than those treated with MeHg alone. Pretreated cells exhibited higher levels (as much as \(\sim 30\% \)) of cell proliferation than those treated with MeHg alone \((p < 0.05) \) (Figure 5B and 5D).

Protein Expression of HIF-1α and Downstream Effectors following MeHg Administration in in Vivo Rat Models

Finally, to evaluate the in vivo effects of MeHg on HIF-1α protein expression, we established a SD rat model. Animals were administered with MeHg (0, 2, 4, 6, 8, and 10 mg/kg, each group with 6 rats) by intraperitoneal injection and sacrificed 0.5 h later. The expression of HIF-1α and its target proteins in brain tissues was measured by Western blotting. As shown in Figure 6, MeHg treatment significantly decreased the expression of HIF-1α and its targets, especially in rats exposed to 8 mg/kg and 10 mg/kg MeHg \((p < 0.05) \).

Discussion

In the present study, we report that, compared with the vehicle control, treatment with 5 or 10 µM MeHg for 0.5 h resulted in lower cell proliferation and higher ROS generation in primary rat astrocytes, and these results were associated with lower expression of HIF-1α. To define the mechanism(s) of the MeHg-induced alteration in HIF-1α expression, first we detected the mRNA level of HIF-1α after MeHg treatment. The results showed that MeHg exposure resulted in a significant reduction in HIF-1α levels without affecting HIF-1α transcription. Then, we speculated that whether MeHg affected the degradation of HIF-1α protein. The results showed that treating cells with CHX + MeHg results in lower protein expression of HIF-1α than does treating cells with CHX alone in three different time points. Because CHX blocks protein synthesis, it would stand to reason that the effect of MeHg in these cells is associated with protein degradation. Additionally, we also demonstrated that the proteasome inhibitor (MG132) and the PHD inhibitor (DHB), both of which block protein degradation of HIF-1α, partially restored the inhibitory effect of MeHg on HIF-1α protein, further suggesting that the MeHg-induced decrease in HIF-1α protein is due to the promoted degradation. Furthermore, taking advantage of genetic and pharmacological methods to alter inherent levels of the HIF-1α protein, we provide evidence directly linking MeHg toxicity with HIF-1α inhibition. It is noteworthy that lower HIF-1α protein expression was related to the production of ROS, as demonstrated by NAC and Trolox. Taken together, our

![Figure 5](http://example.com/figure5.png)

Figure 5. HIF-1α protein expression and cell proliferation after pre-treatment with antioxidants in MeHg-treated astrocytes. (A) Effect of NAC pretreatment (2.5 mM, 4 h) on HIF-1α protein expression. (B) Effect of NAC pretreatment on the decreased cell proliferation induced by MeHg. (C) Effect of Trolox pretreatment (2.5 mM, 4 h) on HIF-1α protein expression. (D) Effect of Trolox pretreatment on the MeHg-induced decrease in cell proliferation. Note: Statistical analysis was performed by one-way ANOVA with Tukey’s post hoc test. Data are presented as the mean ± SD from three independent experiments \((n = 3) \). con, control (culture medium treatment without MeHg); HIF-1α, Hypoxia-inducible factor-1α; MeHg, methylmercury; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl diphenyltetrazolium bromide; NAC, N-acetyl-cysteine, Trolox, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid. \(* p < 0.05\) vs. control, \(* p < 0.05\) vs. MeHg-only group.
Figure 6. Protein expression of HIF-1α and downstream effectors following MeHg administration in *in vivo* rat models. Adult Sprague-Dawley rats were administered with MeHg (0, 2, 4, 6, 8, 10 mg/kg) by intraperitoneal injection for 0.5 h. Whole brain lysates were analyzed by Western blotting for the indicated proteins. Note: Data are presented as mean ± SD (n = 6 rats/group), con, control (intraperitoneal injection of saline); EPO, erythropoietin; GLUT-1, glucose transporter 1; HIF-1α, Hypoxia-inducible factor-1α; MeHg, methylmercury; VEGF-A, vascular endothelial growth factor A. *p < 0.05 vs. control group by one-way ANOVA with Dunnett’s post hoc test.

novel observations suggest that ROS act as an important regulator of HIF-1α inhibition in MeHg-treated astrocytes and that overexpression of HIF-1α may afford a novel neuroprotective effect in the treatment of MeHg-induced neurotoxicity. Moreover, we also found that MeHg inhibited the expression of HIF-1α in the SD rat brain, which better revealed the relationship between MeHg and the HIF-1α signaling pathway found in the *in vitro* and *in vivo* experiments.

MeHg is an established neurotoxicant (Aschner and Syversen 2005; Clarkson and Magos 2006; Culbreth and Aschner, 2016; Farina et al. 2011a, 2011b), whose mechanism(s) of toxicity have yet to be fully understood; however, oxidative stress seems to play a role (Aschner et al. 2007; Santos et al. 2018; Ishihara et al. 2016). Oxidative stress is one of the known mechanisms for the induction of HIF-1α. Previous studies have consistently shown that metals, such as lead (Das et al. 2015), aluminum (Mailloux and Appanna 2007), manganese (Han et al. 2009), and zinc (Pan et al. 2013; Park et al. 2018), as well as other xenobiotics, such as isoflurane (Cao et al. 2018; Sun et al. 2013), can increase HIF-1α expression. In contrast, concentration-dependent inhibition of HIF-1α in Hep3B cells has been reported in response to cadmium and inorganic mercury (Hg) treatment (Horiguchi et al. 2000).

We speculated that two factors contribute to the decreased level of HIF-1α protein in response to MeHg treatment. First, MeHg-induced mitochondrial damage might cause a reduction in oxygen consumption and increase relative oxygen content, leading to redistribution of oxygen and binding to PHD and an increase in PHD activity (Wu et al. 2010), whereas other metals, including inorganic mercury, mimicked a hypoxic state and induced pseudohypoxia to promote the translocation of HIF-1α (Mailloux and Appanna 2007). MeHg did not change the level of HIF-1α in brain microvascular pericytes (Hirooka et al. 2013). Second, MeHg might increase 2-oxoglutarate (2-OG) levels, a cofactor of PHD. 2-OG has been shown to increase PHD activity, resulting in increased degradation of HIF-1α and a net decrease in HIF-1α protein (Dehne et al. 2010; Mailloux et al. 2009; Matsumoto et al. 2006). As shown in Figure 3, MeHg appeared to have activated PHD and UPS, thus promoting HIF-1α degradation.

HIF-1α regulates the expression of a large number of genes that are involved in glucose metabolism, energy production, angiogenesis, migration, and other cellular processes (Liu et al. 2012; Semenza 2002). Thus, reduced availability of HIF-1α and the subsequent reduction in expression of its target genes may cause cellular dysfunction. VEGF-A, GLUT-1, and EPO are typical downstream target proteins of HIF-1α (Ashok et al. 2017; Cramer et al. 2003; Mense et al. 2006; Semenza 2002). VEGF-induced angiogenesis has previously been shown to improve the blood supply to neurons and slow the clinical deterioration in Alzheimer’s disease (Bogaert et al. 2006). VEGF and EPO have been shown to improve tissue oxygen content by promoting erythropoiesis and angiogenesis, which may stimulate genes involved in glucose transport and metabolism (Ashok et al. 2017; Semenza 2002). It is noteworthy that HIF-1α complexes can regulate the biological functions of various genes, such as those involved in vascular growth, oxygen transport, and energy metabolism (Cziwik 2010). Thus, we suggest that the mechanism of MeHg neurotoxicity involves, at least in part, a reduction in HIF-1α and its downstream proteins (GLUT-1, EPO, and VEGF-A), leading to secondary alterations in blood flow, tissue oxygenation, and ATP production. In addition, studies on the regulation of PHD have generated interest as investigational drugs for anemia and neurodegenerative diseases. The use of a small molecule of HIF-1α PHD inhibitor (FG-4952), has been promoted to clinical trials for treating anemia by increasing erythropoiesis through HIF-1α mediated transcription (Besarab et al. 2016; Chen et al. 2017; Haase 2017), as well as for treating Parkinson’s disease by HIF-1α-targeted positive regulation of redox biology and mitochondrial function (Li et al. 2018). In the present study, the suppression of MeHg toxicity by both CoCl2 and adeno-virus-targeted HIF-1α overexpression suggested that activation of the HIF-1α pathway can reverse inhibition of cell proliferation by MeHg (Figure 4). Thus, we suggest that HIF-1α can be pursued as a novel target for MeHg poisoning.

MeHg-induced toxicity is mediated, at least in part, by oxidative stress (Polunas et al. 2011; Yee and Choi 1996). In addition, rapid degradation of HIF-1α may result from ROS generation (Beattie et al. 2005; Cairo et al. 1996; Henkel and Krebs 2004; Jaeckel et al. 2005; Li et al. 2006; Sato and Kondoh 2002). We initially considered that ROS generation could play a role in the altered HIF-1α protein expression to mediate MeHg toxicity. Treatment of rat astrocytes with oxygen radical scavengers (NAC and Trolox) resulted in higher HIF-1α protein expression and increased cell proliferation (Figure 5), suggesting that detoxification of ROS by HIF-1α is associated with its neuroprotective effects. Reductions in HIF-1α expression in MeHg-treated astrocytes and rats suggest that the up-regulation of HIF-1α affords neuroprotective effects. Taking into account the limitations of the pharmacological and genetic regulations of clinical toxicity and the ability of antioxidants to promote HIF-1α expression, the use of antioxidants should be considered for clinical detoxification. However, MeHg can affect many cellular and molecular functions if the MeHg exposure concentrations and duration are sufficient.
Thus, additional research on the toxicological significance of HIF-1α suppression by acute exposure to MeHg is warranted, in addition to a more precise delineation of its protective mechanisms.

In conclusion, we demonstrated that MeHg led to astrocytic neurotoxicity in vitro by reducing levels of HIF-1α and its downstream proteins, which may result from increasing PHD activity, which in turn promoted HIF-1α degradation. Furthermore, the up-regulation of HIF-1α imparted protection against MeHg neurotoxicity. Taken together, these findings—both in vivo and in vitro experiments—suggest that HIF-1α may be as of yet an unrecognized and important mediator or regulator of MeHg-induced neurotoxicity, and this means of increasing HIF-1α activation in astrocytes may afford a therapeutic strategy for mitigating MeHg poisoning.

Acknowledgments
The authors are grateful to P. Spencer at Oregon Health & Science University, M. Ghert at McMaster University, and J. Cai at University of Oklahoma Health Science Center for their critical comments. This work was supported in part by the Natural Science Foundation of China (Nos. 30872139, 81273124, 31100964) and R01 ES07331, R01 ES10563, and ES020852 from the National Institute of Environmental Health Sciences (NIEMHS).

References
Abbott NJ. 2002. Astrocye-endothelial interactions and blood-brain barrier permeability. J Anat 200(6):629–638, PMID: 12162730, https://doi.org/10.1046/j.1469-7580.2002.00064.x.

Allen JW, El-Oqayli H, Aschner M, Syversen T, Sonnewald U. 2001. Methylmercury has a selective effect on mitochondria in cultured astrocytes in the presence of [U-13C]glutamate. Brain Res 908(2):149–154, PMID: 11454225, https://doi.org/10.1016/S0006-8993(01)02629-2.

Aremu DA, Madejczyk MS, Ballatori N. 2008. N-acetylcysteine as a potential antioxidant and biomonitoring agent of methylmercury exposure. Environ Health Perspect 116(1):26–31, PMID: 18197295, https://doi.org/10.1289/ehp.10383.

Aschner M. 1998a. Immune and inflammatory responses in the CNS: modulation by astrocytes. Toxicol Lett 102-103(3):283–287, PMID: 10022287, https://doi.org/10.1016/S0378-4274(98)00234-5.

Aschner M. 1998b. Astrocytes as mediators of immune and inflammatory responses in the CNS. Neurotoxicology 19(2):269–281, PMID: 9553964, https://doi.org/10.1016/S0197-0186(97)00039-2.

Aschner M, Syversen T. 2005. Methylmercury: recent advances in the understanding of its toxic mechanism. Ther Drug Monit 27(3):278–283, PMID: 15907957, https://doi.org/10.1093/thedrug/27.3.278.

Aschner M, Syversen T, Souza DO, Rocha JB, Farina M. 2007. Involvement of glutamate transport in astrocytes. Neurochem Int 37(2–3):199–206, PMID: 18012205, https://doi.org/10.1016/j.neubiorev.2007.08.001.

Ashok BS, Ajith TA, Sivanesan S. 2017. Hypoxia-inducible factors as neuroprotective agents in Alzheimer disease. Front Aging Neurosci 9:173, PMID: 28774480, https://doi.org/10.3389/fnagi.2017.00173.

Ashok BS, Ajith TA, Sivanesan S. 2017. Hypoxia-inducible factors as neuroprotective agents in Alzheimer disease. Front Aging Neurosci 9:173, PMID: 28774480, https://doi.org/10.3389/fnagi.2017.00173.

Ashok BS, Ajith TA, Sivanesan S. 2017. Hypoxia-inducible factors as neuroprotective agents in Alzheimer disease. Front Aging Neurosci 9:173, PMID: 28774480, https://doi.org/10.3389/fnagi.2017.00173.

Ashok BS, Ajith TA, Sivanesan S. 2017. Hypoxia-inducible factors as neuroprotective agents in Alzheimer disease. Front Aging Neurosci 9:173, PMID: 28774480, https://doi.org/10.3389/fnagi.2017.00173.

Ashok BS, Ajith TA, Sivanesan S. 2017. Hypoxia-inducible factors as neuroprotective agents in Alzheimer disease. Front Aging Neurosci 9:173, PMID: 28774480, https://doi.org/10.3389/fnagi.2017.00173.

Ashok BS, Ajith TA, Sivanesan S. 2017. Hypoxia-inducible factors as neuroprotective agents in Alzheimer disease. Front Aging Neurosci 9:173, PMID: 28774480, https://doi.org/10.3389/fnagi.2017.00173.

Ashok BS, Ajith TA, Sivanesan S. 2017. Hypoxia-inducible factors as neuroprotective agents in Alzheimer disease. Front Aging Neurosci 9:173, PMID: 28774480, https://doi.org/10.3389/fnagi.2017.00173.
Polunas M, Halliday A, Tjalkeks RB, Philbert MA, Lowndes H, Reuhl K. 2011. Role of oxidative stress and the mitochondrial permeability transition in methymercury cytotoxicity. Neurotoxicology 32(3):526–534, PMID: 21621920, https://doi.org/10.1016/j.neuro.2011.07.006.

Pribluda VS, Guibish ER Jr, Lavallée TM, Treston A, Swartz GM, Green SJ. 2000. 2-Methoxyestradiol: an endogenous antiangiogenic and antiproliferative drug candidate. Cancer Metastasis Rev 19(1):173–179, PMID: 11191057, https://doi.org/10.1023/a:1020543801878.

Rothenberg SE, Windham-Myers L, Creswell JE. 2014. Rice methylmercury exposure and mitigation: A comprehensive review. Environ Res 133:407–423, PMID: 24972509, https://doi.org/10.1016/j.envres.2014.03.001.

Rudge JS, Li Y, Pasnikowski EM, Mattsson K, Pan L, Yancopoulos GD, et al. 1994. Neurotrophic factor receptors and their signal transduction capabilities in rat astrocytes. Eur J Neurosci 6(5):693–705, PMID: 8075814, https://doi.org/10.1111/j.1460-9568.1994.tb00981.x.

Santos AAD, Hort MA, Culbreth M, López-Granero C, Farina M, Rocha JB, et al. 2018. Methymercury and brain development: a review of recent literature. J Trace Elem Med Biol 38:99–107, PMID: 26987277, https://doi.org/10.1016/j.jtemb.2016.03.001.

Santos AAD, López-Granero C, Farina M, Rocha JB, Bowman AB, Aschner M. 2018. Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astrocytic cells. Food Chem Toxicol 113:328–336, PMID: 29428217, https://doi.org/10.1016/j.fct.2018.01.057.

Sato M, Kondoh M. 2002. Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals. Tohoku J Exp Med 196(1):9–16, PMID: 12213597, https://doi.org/10.1628/tjem.196.9.

Semenza G. 2002. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64(5–6):993–998, PMID: 12213597, https://doi.org/10.1016/S0006-2952(02)00116-1.

Semenza GL, Wang GL. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12(12):5447–5454, PMID: 1448077, https://doi.org/10.1128/mcb.12.12.5447.

Sen T, Sen N. 2016. Treatment with an activator of hypoxia-inducible factor 1, DMOG provides neuroprotection after traumatic brain injury. Neuropharmacology 107:79–88, PMID: 26970014, https://doi.org/10.1016/j.neuropharm.2016.03.009.

Shanker G, Syversen T, Aschner M. 2003. Astrocyte-mediated methymercury neurotoxicity. BTER 95(1):1–10, PMID: 14555794, https://doi.org/10.1385/BTER:95:1:1.

Shapiro AM, Chan HM. 2008. Characterization of demethylation of methymercury in cultured astrocytes. Chemosphere 74(1):112–118, PMID: 18950830, https://doi.org/10.1016/j.chemosphere.2008.09.019.

Shin HJ, Choi MS, Ryoo NH, Nam KY, Park GY, Bae JH, et al. 2010. Manganese-mediated up-regulation of HIF-1alpha protein in Hep2 human laryngeal epithelial cells via activation of the family of MAPKs. Toxicol In Vitro 24(4):1208–1214, PMID: 20152896, https://doi.org/10.1016/j.tiv.2010.02.008.

Siddiq A, Ayoub IA, Chavez JC, Aminova L, Shah S, LaManna JC, et al. 2005. Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J Biol Chem 280(50):41732–41743, PMID: 16227210, https://doi.org/10.1074/jbc.M504963200.

Soucek T, Cumming R, Dargusch R, Maher P, Schubert D. 2003. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron 39(1):43–56, PMID: 12848931, https://doi.org/10.1016/j.neuron.2003.03.067.

Steuerwald U, Weihe P, Jørgensen P, Bjerve K, Brock J, Heinowz B, et al. 2000. Maternal seafood diet, methymercury exposure and neonatal neurologic function. J Pediatr 136(5):599–605, PMID: 10802490, https://doi.org/10.1016/j.jpeds.2000.10.2774.

Stopford W, Goldwater LJ. 1975. Methymercury in the environment: a review of current understanding. Environ Health Perspect 12:115–118, PMID: 1227851, https://doi.org/10.1289/ehp.7512115.

Sun Y, Li QF, Zhang Y, Hu R, Jiang H. 2013. Isoflurane preconditioning increases survival of rat skin random-pattern flaps by induction of HIF-1α expression. Cell Physiol Biochem 31(4):579–591, PMID: 22635649, https://doi.org/10.1159/000350078.

Triantafyllou A, Liakos P, Tsakalof A, Georgatsou E, Simos G, Bonanou S. 2006. Cobalt induces hypoxia-inducible factor-1alpha (HIF-1alpha) in HeLa cells by an iron-independent, but ROS-, PI-3K and MAPK-dependent mechanism. Free Radic Res 40(8):847–856, PMID: 17015263, https://doi.org/10.1080/10715760600730810.

Wikenheiser J, Karunamuni G, Sloter E, Walker MK, Roy D, Wilson DL, et al. 2013. Altering HIF-1α through 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) exposure affects coronary vessel development. Cardiovasc Toxicol 13(2):161–167, PMID: 23284863, https://doi.org/10.1007/s12012-012-9194-7.

Wu Y, Liu X, Xie W, Jankovic J, Le W, Pan T. 2010. Neuroprotection of deferoxamine on rotenone-induced injury via accumulation of HIF-1 alpha and induction of autophagy in SH-SY5Y cells. Neurochem Int 57(1):198–205, PMID: 20548614, https://doi.org/10.1016/j.neuint.2010.05.008.

Yang B, Bai Y, Yin C, Gian H, Xing G, Wang S, et al. 2018. Activation of autophagic flux and the Nrf2/ARE signaling pathway by hydrogen sulfide protects against acrylonitrile-induced neurotoxicity in primary rat astrocytes. Arch Toxicol 92(6):2093–2108, PMID: 29725710, https://doi.org/10.1007/s00204-016-2208-x.

Yee S, Choi BH. 1998. Oxidative stress in neurotoxic effects of methymercury poisoning. Neurotoxicology 17(1):17–26, PMID: 9784815.

Yin Z, Lee E, Ni M, Jiang H, Milatovic D, Rongzhu L, et al. 2011. Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen. Neurotoxicology 32(3):291–299, PMID: 21300091, https://doi.org/10.1016/j.neurotox.2011.01.004.

Zhang H, Feng XB, Larssen T, Gius GL, Vogt RD. 2010. In inland China, rice, rather than fish, is the major pathway for methymercury exposure. Environ Health Perspect 118(9):1183–1188, PMID: 20378486, https://doi.org/10.1289/ehp.1001915.