1. Introduction and literature review

The level of pollution by vehicular transport is a problem that affects the entire globe. Laws and regulations for the control of this phenomenon have been produced in many countries in the world.

Kyoto Protocol is the international reference for the evaluation of air pollution. In the Europe Union, the rules governing air pollution are based on Directive 2008/50/EC, which provide guidelines and criteria for the control of pollution (also from motor transport). For this reasons, the scientific community is very interested in this topic. Many researchers in this field have produced in models and procedures useful for the control of air pollution.

Pasquill (1961) and Briggs (1967) conducted the first studies. In particular, Pasquill (1961) suggested a relationship that takes account of parameters characterizing the dispersion of pollutants and it identifies the relationships for calculating the standard deviations of the Gaussian distribution. Briggs (1967) uses the same formula employed by Pasquill (1961) for the calculation of the concentration, however, propose different relations for calculating the standard deviations of the Gaussian distribution. Subsequently, many studies have been proposed, e.g. many based on standard analytical techniques, other – more innovative, on more advanced techniques such as ANN (Artificial Neural Network) and FLT (Fuzzy Logic Theory).

Sharan et al. (1996) developed a model for in low wind situations. This study based on the parameterization of the diffusivity coefficients expressing those regarding standard deviations of the crosswind and vertical distribution of the concentration Gaussian. Singh and Yadav (1996) proposed an evaluation model for the dispersion of air pollutants in conditions of light winds taking into account the spread in all directions. Raimondi et al. (1997) reported a study based on FLT, which allows taking into account model uncertainties and describes daily dynamics of a variable Dosage Area Product (DAP) – representative of ground level pollution produced by vehicular transport in urban areas of complex topography. Air pollution being an imprecise and variable event, the application of FLT an ultimate tool for improving the description of air pollution and is an area worth venturing in for future research. Tanaka et al. (1992) have reported other applications of FLT in air pollution. Moseholm et al. (1996) argued that neural networks be an effective and efficient method for exploring complex relationships between traffic, the wind, and short-term CO (carbon monoxide) concentrations near intersections. A neural network-based model for the analysis of CO pollution in the urban areas of Rosario due
to motor transport developed by Drozdowicz et al. (1997). Gualtieri and Tartaglia (1997) used a street canyon model to estimate NO$_2$ (nitrogen oxide) concentration due to traffic. Gardner and Dorling (1998) developed multi-layer perceptron model for forecasting hourly NO$_2$ (nitrogen oxide) levels in an urban area of London city. Tao and Xinmiao (1998) considered environment assessment methods. It involved applying multistage fuzzy clustering analysis, wherein after an initial setting up of an evaluation system, evaluation criteria, formulae for the subordination function, allocating weights and modelling design programme have been established. Johansson (1998) show levels of future specific vehicle emissions and the energy efficiency required to match long-term environmental. It appears to be possible to achieve sufficiently large reductions in both nitrogen oxide (NO$_2$) and non-methane volatile organic compound (NMVOC) emission to meet long-term Swedish environmental requirements even with continuing transport growth. Stockie (2011) described in detail the basic mathematics that lies behind the modelling of atmospheric dispersion, assuming a Gaussian dispersion type and point source. Chart-asia and Gibson (2015) showed a new approach for quantifying health impacts of traffic-related particulate matter air pollution at the urban project scale. Shorshani et al. (2015) showed a review of the status of the relationships between traffic, emissions, air quality, and water quality models, to recommend modelling approaches and to propose some directions for improving the state of the science.

2. Techniques used in data analysis

Two different types of techniques used for the analysis in this study: Multivariate Analysis (MVA) and Artificial Neural Network (ANN). For the first, the description is omitted because it is present for many years in the technical literature. For the second, much more recent, the following basic principles described.

2.1. Artificial Neural Network

The inspiration for the structure of the ANN is taken from the structure and operating principles of the human brain. It is made of interconnected artificial neurons that mimic some properties of biological neurons. The function of a biological neuron is to add its input and produce an output. This output is transmitted to subsequent neurons, through the synaptic joints, only if the transmitted signal is high (more than a predetermined value). Otherwise, the signal is not transmitted to the next neuron. In the network, therefore, a neuron calculates the weighted sum, using Eq (1) (considering the input x_i and weights w_i) and compares it with a threshold value; if the sum is more than the threshold value, the neuron lights up, and the signal is transmitted. Otherwise, the neuron does not turn on, and the flow stops (Žilioniene et al. 2014).

$$I = \sum_{i=1}^{n} w_i x_i$$ \hspace{1cm} (1)

where I – weighted sum, dimensionless; w_i – weight, dimensionless; x_i – input, dimensionless.

The activation value U_j rather than U_i, connected to weight w_{ij}, is a function of the weighted sum of the input. This function may take various forms. In this study, a function of type Eq (2) used (Žilioniene et al. 2014):

$$u_j = \frac{1}{1 + e^{-\left(\sum_{i=1}^{n} w_{ij} x_i + \theta_j\right)}}$$ \hspace{1cm} (2)

where θ_j – bias unit, dimensionless; u_j – degree of sensitivity of U_j when it receives an input signal from U_i, dimensionless; w_{ij} – weight between the connection of the neuron i with the neuron j, dimensionless.

2.2. Multi-Layer Perceptron and the Back Propagation algorithm

In this study, a neural network with Multi-Layer Perceptron (MLP) architecture used. Training carried out using the Back Propagation (BP) algorithm. The neurons (or units) that comprise this type of network organised into layers: an input layer, an output and some intermediate layers between input and output referred to as hidden, defined by the user. Initially, the weights values are assigned random (normalized in the range [0, 1] or [-0.5, +0.5]); moreover, there is input vector $X_0 = (X_0, X_1, X_2, ..., X_{n-1})$ with $X_0 = 1$ and an output vector $T_p = (T_{p1}, T_{p2}, ..., T_{pm})$ (Žilioniene et al. 2014).

In this way, the network will consist of $n-1$ input neurons and $m-1$ output neurons. The weighted sum of the inputs for each layer calculated using Eq (1) and its value of activation, e.g. output using Eq (2). Then, the weights changed so that the output of the network (e.g. the output of the last layer of neurons) increasingly approximates the target set by the user. It defined a function error (Eq (3)) proportional to the square of the difference between the output and target for all output neurons:

$$E_p = \frac{1}{2} \sum_{j=1}^{m} (T_{pj} - O_{pj})^2$$ \hspace{1cm} (3)

where T_{pj} – target (dimensionless); O_{pj} – output (dimensionless).

Subsequently, BP is applied, e.g. the weights varied, so that error E_p tends towards zero (starting from the last layer to the first). It is defined, for the current pattern p, a variation Δ_{wj} of weight w_{ij} between the neuron i and j that given by Eq (4) (Žilioniene et al. 2014).

$$\Delta_{pwj} = -\frac{\partial E_p}{\partial w_{ij}} + \beta \left(\Delta_{p-1} w_{ij}\right)$$ \hspace{1cm} (4)

where α – the learning coefficient (learning rate); β – the momentum; $\Delta_{p-1} w_{ij}$ – the variation of the same weight calculated according to the previous model. Eq (5) gives the new weights (Žilioniene et al. 2014):

$$w_{ij}^{new} = w_{ij}^{old} + \Delta_p w_{ij}$$ \hspace{1cm} (5)
The variation of the weights calculation starting from the layer of output neurons and backward toward the first hidden layer. The derivatives calculated (Žilioniene et al. 2014) (Eq (6)):

$$\Delta p w = \alpha A_i \delta_j + \beta \Delta p_{i-1} w_{ip}$$

where A_i – value of the i^{th} neuron of the layer being considered; δ_j – given by Eq (7) if considering the output layer (Žilioniene et al. 2014):

$$\delta_j = (T_j - O_j) O_j (1 - O_j)$$

Eq (8) gives it for all other intermediate layers (Žilioniene et al. 2014):

$$\delta_j = I_j (1 - I_j) \Sigma_k w_{jk} \delta_k$$

This process runs many times (at least 1000) with different patterns, each of which features a different weight to train a network. This process performed until the error is less than a predetermined value (the user sets the value). When the process converges, the network is ready to classify a new input with an unknown target. The parameters a and b are chosen by the user (range between 0 and 1), in the present study $\alpha = 0.5$ and $\beta = 0.4$. In particular, α is linked to the convergence of the network (Žilioniene et al. 2014).

3. Data collection

Figure 1 presents the analysed section of 30 km. The analysed section situated between ATM-01 and ATM-10.

The instrumentation used for monitoring is composed of a sampler and related accessories (Fig. 2). The relief of the level of concentration of the pollutant in the atmosphere (indicated by the symbol C) carried out continuously (24 hours per day) for a total period of six months. Moreover, from the monitoring station weather data (Table 1), situated near the stretch analysed, information (for the same period of six months), about wind speed and direction and temperature, have been acquired to get the total pollution E_{tot} (expressed in g/sec) the hour traffic (vehicles per hour (vph)) considered.

Table 1. Data collection

No of measure	Hours H, sec	Temperature T, °C	Wind speed u, m/s	Wind direction V, dimensionless	Unit single vehicle E, g/sec	Traffic TF, vph	E_{tot}, g/sec	Observed C, µg/m3
1	0.00	16.0	2.2	12.0	1.03	100	103.2	57.7
2	1.00	17.8	0.4	15.0	0.94	99	93.1	26.5
3	2.00	17.8	0.4	8.0	0.94	70	65.4	26.6
4	3.00	16.6	1.2	9.0	1.02	65	66.3	22.5
5	4.00	14.2	0.4	6.0	1.01	51	51.6	28.1
6	5.00	18.0	0.4	3.0	0.86	31	26.7	24.4
7	6.00	18.4	0.4	7.0	0.88	45	39.6	40.2
8	7.00	18.8	0.4	10.0	0.95	90	85.7	91.3
9	8.00	17.0	3.0	12.0	1.06	121	128.1	19.9

...

Fig. 1. Analysed section of the freeway

Fig. 2. Samplers
3.1. Data analysis and results

The data reported in Table 1 aggregated into traffic classes (to 25 vpd). Subsequently (to build the columns of Table 2) for all the variables given in Table 2 it was considered the average value in each class.

For the wind direction variable, the criteria presented in Fig. 3, were considered.

4.1. Multivariate Analysis model

The technique of MVA has been applied to the data contained in Table 2 using C as the dependent variable and the other variables as a predictor (T, u, V, E). The better relation between the dependent variable and predictors it has been the Gaussian type. Following is shown the expression of the model obtained:

$$C = \frac{ET}{\sqrt{2\pi}b_1} \exp \left[-\frac{1}{2}b_2 V^2 \right] \rho^2 = 0.94. \quad (9)$$

The model (9) was characterized by a coefficient of determination $\rho^2 = 0.94$ and a significance more than 95% (Table 3).
4.2. Artificial Neural Network model

The ANN technique has been applied, as in the case of the model (9), to the Table 2 data. The model has been obtained with the technique of ANN as given in Section 2.1. The variables that were considered and used in the model are listed in Table 1. The 70% of the data was used to train the network, and the remaining part of the data was used for verification. Different configurations were considered for the architecture of the neural network. Fig. 4 presents the best network architecture. Table 4 presents the estimated parameters.

![Architecture of ANN model](image)

Table 4. Parameters of ANN model

Predictor	Predicted Output	Hidden Layer 1	Hidden Layer 2	Leq				
		H(1:1)	H(1:2)	H(1:3)	H(2:1)	H(2:2)	H(2:3)	
(Bias)	−.827	−.366	.310					
T	−.053	−.300	.268					
u	−.157	−.538	−.099					
V	.326	.266	−.112					
E	−1.176	.403	.596					
			.341	−.051	.097			
Hidden Layer 1								
(Bias)							−.432	
H(1:1)			.132	−.656	−.105			
H(1:2)			−.118	.711	.753			
H(1:3)			−.073	.330	.092			
Hidden Layer 2							1.93	
(Bias)								−.279
H(2:1)								
H(2:2)								
H(2:3)								.757

Table 5. Main models available in literature

No.	Model	Equation
1	Pasquill (1961)	\(C = \frac{E}{u} \frac{1}{2\pi\sigma_y\sigma_z} \exp \left[-\left(\frac{y^2}{2\sigma_y^2} + \frac{z^2}{2\sigma_z^2} \right) \right] \sigma_y(x) = \frac{k_1x}{1 + \left(\frac{x}{k_2} \right)^{k_3}}, \sigma_z(x) = \frac{k_4x}{1 + \left(\frac{x}{k_2} \right)^{k_3}} \)
2	Briggs (1967)	\(C = \frac{E}{u} \frac{1}{2\pi\sigma_y\sigma_z} \exp \left[-\left(\frac{y^2}{2\sigma_y^2} + \frac{z^2}{2\sigma_z^2} \right) \right] \sigma_y = \sigma_z = \sigma = ax(1-bx)^c \)
3	Sharan et al. (1996)	\(C = \frac{q}{2\pi\beta y \lambda^2} \exp \left[-\frac{\lambda}{4\beta} \left(\frac{y^2}{\beta} + \frac{z^2}{\gamma} \right) \right] \)
4	Singh and Yadov (1996)	\(C = \frac{Q}{U \pi \sqrt{\beta} \lambda^2} \left[\frac{1}{x^2} \left(\frac{\alpha}{\beta} + \frac{\gamma}{\beta} \right) \right] \)
5	Stockie (2011)	\(C = \frac{Q}{4\pi u} \exp \left(-\frac{y^2}{4\sigma_y} \right) \exp \left(-\frac{(z-H)^2}{4\sigma_z} \right) + \exp \left(-\frac{(z+H)^2}{4\sigma_z} \right) \)
4.3. Artificial Neural Network model and Multivariate Analysis model versus literature models

The reliability of the models obtained through ANN and MVA was compared to the main models available in the literature (Table 5).

Table 6 and Fig. 5 present the comparison among the models. In particular, the estimated values with the analysis ANN turn out to be closer to the observed values (more less residual).

5. Conclusions

1. The pollution by motor transport affects the entire globe. Laws and regulations for the control of this phenomenon have been produced in many countries in the world. The most important document is Kyoto Protocol; it is the international reference for the evaluation of air pollution. In the European Union, the rules governing air pollution are based on Directive 2008/50/EC, which provide guidelines and criteria for the control of pollution (also from vehicular traffic). For this reason, the scientific community is very interested in this topic.

2. Two models of prediction of the concentration of pollutant produced by motor transport on the highway were built. The data collection period six months and involved a section of 30 km. Also, detected wind speed and direction, temperature and flow rate for the traffic.

3. The data aggregated for traffic classes and processed by Artificial Neural Network and Multivariate
Analysis techniques. The results showed that the two models (Model 1 proceeds through Artificial Neural Network and Model 2 proceeds through Multivariate Analysis) are very reliable. In fact, they have residues less than the observed values.

4. The simulation capacity of the models compared to the main models available in the literature. The comparison showed that the Artificial Neural Network model is the most reliable because it presented the best fit to the experimental data (it presented a less sum of residuals, i.e. difference between observed values and estimated values).

References

Briggs, G. A. 1967. Plume Rise: a Critical Survey, in Proc. of the USAEC Meteorological Information Meeting Held at Chalk River Nuclear Laboratories. 11–14 September, 1967, Chalk River Ontario, Canada. 2787: 1–21.

Chart-asa, C.; Gibson, J. M. 2015. Health Impact Assessment of Traffic-Related Air Pollution at the Urban Project Scale: Influence of Variability and Uncertainty, Science of the Total Environment 506–507: 409–421. https://doi.org/10.1016/j.scitotenv.2014.11.020

Drozdowicz, B.; Benz, S. J.; Santa Cruz, A. S. M.; Scenna, N. J. 1997. A Neural Network Based Model for the Analysis of Carbon Monoxide Contamination in the Urban Area of Rosario, Transactions on Ecology and the Environment 15: 677–689. http://dx.doi.org/10.2495/AIR970641

Gardner, M. W.; Dorling, S. R. 1998. Artificial Neural Networks (the Multilayer Perceptron) – a Review of Applications in the Atmospheric Sciences, Atmospheric Environment 32 (14–15): 2627–2636. https://doi.org/10.1016/S1352-2310(97)00447-0

Gualtieri, G.; Tartaglia, M. 1997. A Street Canyon Model for Estimating NOx Concentrations due to Road Traffic, in International Conference on Measurements and Modelling in Environmental Pollution. 211–220.

Johansson, B. 1998. Will New Technology be Sufficient to Solve the Problem of Air Pollution Caused by Swedish Road Transport?, Transport Policy 5(4): 213–221. https://doi.org/10.1016/S0967-070X(98)00023-7

Moseholm, L.; Silva, J.; Larson, T. 1996. Forecasting Carbon Monoxide Concentration Near a Sheltered Intersection Using Video Traffic Surveillance and Neural Networks, Transportation Research Part D: Transport and Environment 1(1): 15–28. https://doi.org/10.1016/S1361-9209(96)00002-8

Pasquill, F. 1961. The Estimation of the Dispersion of Windborne Material, Meteorological Magazine 90(1063): 33–49.

Raimondi, P. M.; Rando, F.; Vitale, M. C.; Calcaro, A. M. V. 1997. Short-Time Fuzzy DAP Predictor for Air Pollution due to Vehicular Traffic, WIT Transactions on Ecology and the Environment 19. http://dx.doi.org/10.2495/MMEP970191

Sharan, M.; Yadav, A. K.; Singh, M. P.; Agarwal, P.; Nigam, S. 1996. A Mathematical Model for the Dispersion of Air Pollutants in Low Wind Conditions, Atmospheric Environment 30(8): 1209–1220. https://doi.org/10.1016/1352-2310(95)00442-4

Shorshani, M. F.; André, M.; Bonhomme, C.; Seigneur, C. 2015. Modelling Chain for the Effect of Road Traffic on Air and Water Quality: Techniques, Current Status and Future Prospects, Environmental Modelling & Software 64: 102–123. https://doi.org/10.1016/j.envsoft.2014.11.020

Singh, M. P.; Yadav, A. K. 1996. Mathematical Model for Atmospheric Dispersion in Low Winds with Eddy Diffusivities as Linear Functions of Downwind Distance, Atmospheric Environment 30(7): 1137–1145. https://doi.org/10.1016/1352-2310(95)00368-1

Stockie, J. M. 2011. The Mathematics of Atmospheric Dispersion Modeling, SIAM Review 53(2): 349–372. https://doi.org/10.1137/10080991X

Tanaka, K.; Sano, M.; Watanabe, H. 1992. Identification and Analysis of Fuzzy Model for Air Pollution – an Approach to Self-Learning Control of CO Concentration, in Proc. of the International Conference on Industrial Electronics, Control, Instrumentation, and Automation on IEEE, Power Electronics and Motion Control, 13 November, 1992. 1431–1436. https://doi.org/10.1109/IECON.1992.254391

Tao, Y.; Xinmiao, Y. 1998. Fuzzy Comprehensive Assessment, Fuzzy Clustering Analysis and Its Application for Urban Traffic Environment Quality Evaluation, Transportation Research Part D: Transport and Environment 3(1): 51–57. https://doi.org/10.1016/S1361-9209(97)00021-7

Žilionienė, D.; De Luca, M.; Dell’Acqua, G.; Lamberti, R.; Biancardo, S. A.; Russo, F. 2014. Evaluating Freeway Traffic Noise Using Artificial Neural Network, in Proc. of the International Conference “Environmental Engineering”, 22–23 May, 2014, Vilnius, Lithuania. 9 p. http://dx.doi.org/10.3846/enviro.2014.182

10 October 2016; accepted 27 February 2017