Literature-Informed Analysis of a Genome-Wide Association Study of Gestational Age in Norwegian Women and Children Suggests Involvement of Inflammatory Pathways

Jonas Bacelis1*, Julius Juodakis2, Verena Sengpiel1, Ge Zhang3,4, Ronny Myhre6, Louis J. Muglia4, Staffan Nilsson6, Bo Jacobsson2,5

1 Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra, Gothenburg, Sweden, 2 Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, 3 Human Genetics Division, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America, 4 Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center and March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, Ohio, United States of America, 5 Department of Genetics and Bioinformatics, Area of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway, 6 Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden

* jonas.bacelis@gu.se

Abstract

Background

Five-to-eighteen percent of pregnancies worldwide end in preterm birth, which is the major cause of neonatal death and morbidity. Approximately 30% of the variation in gestational age at birth can be attributed to genetic factors. Genome-wide association studies (GWAS) have not shown robust evidence of association with genomic loci yet.

Methods

We separately investigated 1921 Norwegian mothers and 1199 children from pregnancies with spontaneous onset of delivery. Individuals were further divided based on the onset of delivery: initiated by labor or prelabor rupture of membranes. Genetic association with ultrasound-dated gestational age was evaluated using three genetic models and adaptive permutations. The top-ranked loci were tested for enrichment in 12 candidate gene-sets generated by text-mining PubMed abstracts containing pregnancy-related keywords.

Results

The six GWAS did not reveal significant associations, with the most extreme empirical $p = 5.1 \times 10^{-7}$. The top loci from maternal GWAS with deliveries initiated by labor showed significant enrichment in 10 PubMed gene-sets, e.g., $p = 0.001$ and 0.005 for keywords “uterus” and "preterm" respectively. Enrichment signals were mainly caused by infection/inflammation-related genes TLR4, NFkB1, ABCA1, MMP9. Literature-informed analysis of top loci...
revealed further immunity genes: \textit{IL1A}, \textit{IL1B}, \textit{CAMP}, \textit{TREM1}, \textit{TFRC}, \textit{NFKBIA}, \textit{MEFV}, \textit{IRF8}, \textit{WNT5A}.

\section*{Conclusion}

Our analyses support the role of inflammatory pathways in determining pregnancy duration and provide a list of 32 candidate genes for a follow-up work. We observed that the top regions from GWAS in mothers with labor-initiated deliveries significantly more often overlap with pregnancy-related genes than would be expected by chance, suggesting that increased sample size would benefit similar studies.

\section*{Introduction}

The timing of human parturition is a poorly understood phenotype \cite{1}. In the United States the reported rate of preterm birth (PTB), defined as birth occurring at less than 37 completed weeks of gestation, is 9.6\% \cite{2}. Worldwide PTB rates range from about 5\% in some Northern European countries to 18\% in Malawi \cite{3}. PTB is the leading cause of death among neonates \cite{4}. According to a US report, preterm born infants have a 15-fold higher mortality rate than those born at term \cite{4}. More than 50\% of deaths are attributable to only 2\% of all infants—the ones who are born at less than 32 weeks of gestation \cite{4}. PTB is also correlated with long-term adverse health consequences such as cerebral palsy, mental retardation, autism and schizophrenia, conditions that render individual dependent on the healthcare system. More than 50\% of PTB occur in pregnancies without known risk factors. The currently available means of prediction (epidemiology- and biomarker-based models) and prevention (tocolytics, antibiotics, progesterone) are not effective enough to substantially reduce the rates of PTB and its adverse consequences \cite{5}.

Approximately 85\% of all pregnancies have a spontaneous onset of delivery, with gestational age not affected by doctor's decision to induce birth or to perform an elective caesarean section \cite{6}. These pregnancies can be used for analysis of genetic factors affecting gestational age.

Up to 30\% of variation in human gestational age could be accounted for by genetic factors, as reported by large register-based studies \cite{7, 8}. The evidence of an acting genetic component motivated two genome-wide association studies (GWAS). In 2013 Uzun et al. \cite{9} explored maternal genomes (884 preterm cases, 960 term controls). In 2015 Zhang et al. \cite{10} investigated maternal (935 preterm cases, 946 term controls) and neonatal genomes (916 preterm cases, 935 term controls). The authors did not find robust statistical evidence of association between PTB and the 560,000 and 800,000 (respectively) single-nucleotide polymorphisms (SNPs) tested.

The failure to identify genes increasing the risk for PTB could be due to insufficient sample size, however it could also be due to the following problems: 1) preterm birth status has a lower information content than gestational age; 2) low accuracy of gestational age dating; 3) different onsets of delivery might reflect different aetiologies; 4) omission of genetic variants with low minor-allele frequency from analyses; 5) omission of non-additive genetic models in analyses; 6) mixed ethnicities in a study sample; 7) omission of prior knowledge about SNP function and the biological role of implicated genes. In our study we tried to avoid these shortcomings.

The aim of the study was to find SNPs that are associated with gestational age at birth. The use of gestational age, as opposed to the use of dichotomous PTB, provides an advantage, as it utilizes the full information present in the phenotype \cite{11}. Our secondary aim was to highlight
the genes that might mediate discovered associations, by identifying common biochemical pathways, networks, and functional similarities between the top genes. In the broadest sense, our study aims to account for a part of heritability of human gestational age at birth.

We structured our GWA study into six parts: investigating each of the subtypes (labor-initiated / PROM-initiated deliveries) separately and also together, while analysing maternal and fetal genomes separately.

Methods

The Dataset

Study population. The Norwegian Mother and Child Cohort (MoBa) is a nationwide pregnancy cohort managed by the Norwegian Institute of Public Health [12]. It includes more than 107,000 pregnancies recruited from 1999 through 2008. Most of the pregnant women in Norway received a postal invitation in connection to the routine ultrasound screening at gestational weeks 17–19. Participation rate was 42.7%. For the current study, individuals were sampled from the Version 4 database containing 71,669 pregnancies. The MoBa dataset is linked to the Medical Birth Registry of Norway (MBRN), for additional information see [13].

For genotyping we selected mothers and live-born children from singleton pregnancies of mothers in the age group of 20–34 years resulting in a spontaneous onset of delivery. Pregnancies with complications (e.g., preeclampsia, gestational diabetes, placental abruption, placenta previa, cervical cerclage, small for gestational age, fetal malformation), pregnancies of mothers with pre-existing medical conditions (e.g., diabetes, hypertension, inflammatory bowel disease, systemic lupus erythematosus, rheumatoid arthritis), as well as pregnancies conceived by in vitro fertilization were excluded [14]. Random sampling was done from two gestational age ranges: 154–258 days (preterm births) and 273–286 days (term births), thus creating an oversampling of lower gestational ages ([S1 Fig](#)). In total 1921 mothers and 1199 children were selected for genotyping using blood-extracted DNA. All mothers gave a written consent to use anonymised data in scientific research. The Norwegian Regional Ethics Committee for Medical Research approved the study (REK/Sør-Ost 2010/2683 S-6075).

Phenotype and covariates. We used gestational age expressed in days as a dependent variable, as continuous phenotype contains more information than a dichotomous case/control classification. MBRN provides an accurate second-trimester ultrasound-based evaluation of gestational age. Pregnancies initiated by labor were analysed separately from pregnancies starting with prelabor rupture of membranes (PROM), with one additional analysis where all pregnancies were considered together ([Fig 1](#)).

We also used non-genotyped MoBa cohort data with more than 70,000 pregnancies to evaluate potential impact of known covariates and risk factors on gestational age. Together, the evaluated covariates explained only 1% of variation in the continuous phenotype. Since 22.8% of genotyped individuals did not have values for some of these covariates, we decided to use the larger sample of genotyped individuals and not to use adjustment.

Genotyping quality control. The genotype missingness filter for SNPs and individuals was set to 3%. Individuals with heterozygosity estimates deviating by more than 3 SD from the group mean were removed. For each mother-mother or child-child pair related closer than second cousins, a random individual was removed. Hardy-Weinberg filter removed SNPs with $p < 10^{-6}$. Non-Europeans were excluded after principal components analysis using the first three principal components and a threshold of 10 SD on the Euclidean distance from CEU cluster (HapMap). No minor-allele frequency filter was applied. Genomic inflation factor was estimated following standard procedures using continuous unadjusted gestational age in maternal samples (restricted to labor-initiated deliveries), linear regression, additive genetic
model and minor-allele frequency restriction to > 0.06. All genomic positions are presented in hg19 coordinates.

Association tests

Three genetic models (additive, recessive, dominant) were used to test for association with unadjusted continuous gestational age expressed in days (Fig 1). Permutation procedures are essential to avoid biases introduced by skewed phenotype distribution (a notable feature of gestational age), and by low counts of individuals in the minor genotypic group. We used permutation-based testing implemented in PLINK (v1.90b2n, 64-bit, 2 Nov 2014, Linux), with parameters for adaptive permutations: $alpha = 5 \times 10^{-8}$, $beta = 5 \times 10^{-8}$, $min = 10$, $max = 1 \times 10^9$, $b = 1$ and $a = 0.001$ [15]. Each SNP was assigned the most extreme empirical p-value from the three genetic models [16]: additive, recessive and dominant. X chromosomal SNPs were tested using only additive model. Two separate studies investigated our dataset for PTB association with X chromosomal SNPs [14] and mitochondrial SNPs [17] previously.

Gene-set enrichment analysis with INRICH

Clumping. To merge adjacent and correlated SNPs, PLINK function “—clump” was used. Clumps were formed around “index variants” with p-value < 0.0005. Index variants were chosen greedily starting with the lowest p-value. Sites that were less than 250 kb away from an

doi:10.1371/journal.pone.0160335.g001

Fig 1. Schematic overview of the workflow in analyses. C—child genomes, M—maternal genomes; add/rec/dom—additive, recessive and dominant genetic models respectively.
index variant, had r^2 larger than 0.25 with it, and had association p-value smaller than 0.05 were assigned to that index variant's clump. The r^2 values were computed using founders in the same genomic data.

PubMed gene-sets. We checked if the top GWAS loci were enriched in genes with known relations to pregnancy or reproductive anatomy. To test this, we used 12 *keywords* to create 12 gene-sets by text-mining the PubMed database, as described in the next paragraph and Fig 1. Out of these, 4 keywords represent pregnancy conditions ("gestation", "parturition", "pregnancy", "preterm"), another 4 describe female anatomy ("cervix", "endometrium", "myometrium", "uterus"), and the last 4 portray fetal anatomy ("fetus/embryo", "chorion", "amnion", "placenta"). We also created 16 gene-sets for *keywords* unrelated to pregnancy to be used as a control in enrichment analysis: 8 representing conditions and 8 representing anatomy (S1 Table).

Between June 1st and August 31st, 2015, the PubMed database was scanned for abstracts containing any semantic form or Latin/Greek form of the selected *keyword* together with the words indicating the genetic nature of a publication ("gene", "genes", "genomic", "genetic" or "GWAS"; plus corresponding MeSH terms), but restricted to abstracts not containing 65 custom-built non-human subject indicators (e.g., "cat", "feline", "cow", "bovine") or 466 custom-built medical-condition indicators (e.g., listeriosis, erythema, hepatitis, neuroblastoma). The latter indicators were constructed by text-mining the ICD code database (www.cms.gov) and searching for words with common disease suffixes (e.g., "-osis", "-itis", "-emia", "-oma"). These restrictions were applied to avoid inclusion of genes that represent medical conditions or species not present in our GWAS data. Abstracts were mined searching for gene names by cross-referencing each capitalised word with 23 945 HGNC [18] gene names. We took precaution to avoid false identification of commonly used acronyms as gene names, e.g., gene AGA and "Apropriate for Gestational Age", gene FGR and "Fetal Growth Retardation", gene SPTB and "Spontaneous Preterm Birth". In order to further reduce erroneous assignment of genes to *keywords*, only the genes mentioned in more than 1 abstract were used. In order to obtain a better representation of the *keyword*, we also used an "exclusivity" filter: the abstract must not contain more than one different *keyword* (with exception for very common and control *keywords*). All *keywords* and PubMed queries are listed in S1 Table.

Enrichment analysis. Each clump produced by PLINK represents a genomic region defined by distance, linkage disequilibrium (LD) and statistical association with the phenotype. INRICH [19] is a tool that detects overlap between such regions and predefined gene sets and reports the empirically estimated p-value of enrichment. For this purpose INRICH iteratively generates random clumps of similar size and SNP-density and then creates a distribution of enrichment statistic under the null-hypothesis ("no enrichment"). P-values estimated with this method are expected to be robust and unbiased. Analysis was performed using the INRICH algorithm (v.1.0, updated Oct/24/2014, Linux). GWAS interval was considered to be a 'hit' for a predefined gene-set if it fell within 25 kb of any of the genes in that set, 100 000 permutations were used to estimate p-values for each gene-set, maintaining 90–110% SNP density match. The 300 top clumps from each of the six GWAS (mothers, children × labor, PROM, all) were tested against 12 pregnancy-related gene-sets and 16 control gene-sets from the PubMed abstract mining (Fig 1).

Literature-informed analysis of GWAS results. By manually cross-referencing the 300 top SNPs from maternal GWAS in labor-initiated deliveries with the HaploReg v4.1 database (www.broadinstitute.org/mammals/haploreg, [20]) and with the scientific publication database MEDLINE, we selected biologically-relevant SNPs with their implicated genes. We grouped genes into categories, based on biological pathway that could modify gestational age. A prior evidence of association with gestational age / preterm birth, or evidence of interaction or
functional/structural similarity among the top genes were used as the criteria for reporting genes in the result tables.

Results

Genotyping quality control

After quality control procedures of genotyping data, 1743 maternal and 1109 fetal samples were left and had relevant phenotypic data (1407 labor and 336 PROM mothers; 884 labor and 225 PROM children). The number of genotyped SNPs passing the quality-control procedures is 513 273 autosomal and 12 304 from the X chromosome. Mitochondrial, Y chromosomal SNPs and pseudo-autosomal SNPs were not analysed in this study. Principal components analysis of genotyping data assured that study individuals belong to a homogeneous European population. Geographical homogeneity was also reflected by genomic inflation factor, estimated to be 0.993 and indicating no population stratification effects in GWAS for this phenotype.

Association tests

None of the 525 577 SNPs tested with the additive, recessive and dominant genetic models showed a genome-wide significance ($p < 5 \times 10^{-8}$) in any of the six GWA analyses. The most extreme association was observed in a GWAS with PROM mothers ($p = 5.1 \times 10^{-7}$, SNP rs6977715 in the *DPP6* gene). Due to the further-described findings in the post-GWAS analysis, in **Fig 2** we present only the results from a GWAS of maternal genomes and labor-initiated deliveries.

![Manhattan plot for maternal GWAS of gestational age in labor-initiated deliveries](image)

Fig 2. Manhattan plot for maternal GWAS of gestational age in labor-initiated deliveries. In total 1 407 genomes were analysed. Each SNP was assigned the most extreme empirical p-value from the three genetic models (additive, recessive, dominant). The top line indicates a genome-wide significance level (5×10^{-8}), while the bottom line marks a significance level (5×10^{-4}) determining the number of “clumps” (independent loci that were used in gene-set enrichment analyses). Genes from gene-set enrichment analyses are marked in blue, while other biologically relevant genes (from the literature-informed analyses) are marked in black.

doi:10.1371/journal.pone.0160335.g002
deliveries, with the top 20 independent loci together with proximal genes highlighted in Table 1. The top results from the remaining GWA analyses are presented in S2 Fig and S1 File.

Table 1 was pruned to show only independent loci. BP—physical position on the chromosome in hg19 coordinates, P—the most extreme empirical p-value from three genetic models, E/R—the effect allele and the reference allele, Mod—the most significant genetic model for that SNP, nXX—number of individuals in each genotypic group, mXX—mean gestational age in each genotypic group. Interpretation of mean gestational age values should take into account the bimodal phenotype distribution of genotyped individuals (S1 Fig). Genes were assigned to SNPs based on a 100 kb offset rule. Asterisk (*) indicates a gene family with multiple genes in that locus. No multiple-test correction is applied. Bolded genes are described in the literature-informed analyses. Genes with unknown function (LINC, LOC etc.) are not listed.

The GWAS with labor-initiated deliveries and the GWAS with all deliveries shared approximately one-third and one-half of the top SNPs in maternal and fetal genomes respectively, while top SNPs from GWAS with PROM-initiated deliveries were mostly unique (Fig 3).

Gene-set enrichment analysis with INRICH

Gene-sets. The sizes of the gene-sets in the PubMed-constructed pregnancy-themed group are as follows: 123 “preterm” genes, 214 “gestation” genes, 20 “parturition” genes, 540 “pregnancy” genes; maternal anatomy group: 59 “cervix” genes, 116 “endometrium” genes, 23 “myometrium” genes, 74 “uterus” genes; fetal anatomy group: 14 “fetus/embryo” genes, 35 “chorion” genes, 45 “amnion” genes, 259 “placenta” genes. The full list of gene-set sizes with
The overlap between top results in six GWAS is shown in Fig 3. The top 1000 SNPs were selected from each GWA analysis. Numbers in the Venn diagrams represent the number of SNPs. Numbers of individuals in each analysis were 1743, 1407, 336 (mothers) and 1109, 884, 225 (children) for all together, labor-initiated and PROM-initiated deliveries respectively.

The respective PubMed queries is shown in S1 Table. The full list of genes in each set is given in the S2 File.
Enrichment analysis. Only the maternal GWAS with labor-initiated deliveries showed consistent enrichment in all relevant candidate gene-sets, and consistently showed no enrichment in the control gene-sets (Fig 4).

In this particular analysis (mothers with labor-initiated deliveries), out of 300 selected top GWAS clumps, the INRICH algorithm removed 116 intervals without genes and then merged some of the remaining to form a final number of 178 independent (non-overlapping) genomic intervals. The top GWAS genes overlapping with candidate gene-sets are presented in Table 2 together with a probability (p-value) of observing a similar or more extreme overlap under no genotype-phenotype association. The gene-set with the most significant enrichment corresponds to the keyword "uterus" (empirical \(p = 0.001 \)). This gene-set contains 73 genes, 5 of which overlap

Table 2. Significantly enriched PubMed gene-sets in GWAS using mothers with labor-initiated deliveries.

Gene set	N genes	Hits	P	Enriched genes
Preterm	123	6	0.005	IGF2, KCNQ3, MMP9, NFKB1, OPRM1, TLR4
Gestation	212	7	0.018	ENG, IGF2, KCNQ3, MMP9, NFKB1, OPRM1
Parturition	20	2	0.031	MMP9, NFKB1
Pregnancy	536	12	0.046	ABCA1, DPY19L2, ENG, FRMD4A, GF11, GNB3, IGF2, KCNQ3, MEFV, MMP9, NFKB1, TLR4
Ageing	76	3	0.049	IGF2, MMP9, NFKB1
Cervix	59	3	0.026	MMP9, NFKB1, TLR4
Endometrium	116	5	0.014	IGF2, MMP9, NFKB1, SP3, TLR4
Myometrium	23	3	0.002	MMP9, NFKB1
Uterus	73	5	0.001	ENG, IGF2, MMP9, NFKB1, TLR4
Amnion	45	4	0.002	IGF2, MAP2, MMP9, NFKB1
Placenta	258	7	0.043	ABCA1, ENG, IGF2, KCNQ3, MMP9, NFKB1, TLR4

The column N genes indicates the number of genes in a gene-set, while Hits states how many overlap (25kb offset) with the genes from the top 300 independent GWAS loci ("clumps"). The empirical p-value of enrichment (P) is estimated using INRICH algorithm with 100 000 permutations. Only significantly enriched gene-sets (\(p < 0.05 \)) are shown out of 12 candidate sets and 16 control sets tested. No multiple-test correction is applied.

Fig 4. Enrichment in gene-sets generated using PubMed abstract text-mining. The figure shows an overlap between the genes implicated in six GWA analyses (rows) and genes related to specific keywords (columns). The overlap is represented as probability (p-value) of similar or greater enrichment arising due to pure chance under the null hypothesis of no enrichment (i.e., if GWAS would rank genes in a random order). The 300 top independent loci ("clumps") and their genes were used. The name of each gene-set indicates a keyword used in the PubMed abstract mining. The INRICH algorithm was used to estimate empirical p-values.

\[\text{doi:10.1371/journal.pone.0160335.g004} \]

The PLOS ONE article is titled "A Genome-Wide Association Study of Gestational Age."
with top GWAS intervals: *ENG* (endoglin), *IGF2* (insulin-like growth factor 2), *MMP9* (matrix metallopeptidase 9), *NFKB1* (nuclear factor κ-B DNA binding subunit), *TLR4* (toll-like receptor 4). These genes were also present in many other significantly enriched candidate gene-sets. Table 3 shows SNPs that implicated genes from Table 2, together with p-values from maternal GWAS using labor-initiated deliveries and genomic coordinates of respective clumped regions. Only 1 out of 16 control gene-sets (“ageing”) was enriched \((p = 0.05)\), while 10 out of 12 candidate gene-sets were enriched: all 4 pregnancy-themed sets, all 4 female anatomy sets, and 2 out of 4 fetal anatomy sets.

Literature-informed analysis of GWAS results

Manual inspection of the top 300 SNPs from maternal GWAS in labor-initiated deliveries highlighted 32 biologically relevant genes from 27 independent loci (Table 4). In total 284 genes had their biological background evaluated.

The SNPs were selected from the top 300 GWAS results, based on their proximity and/or functional relationship with genes biologically relevant to gestational age. *Rank*—the rank of that SNP among all GWAS results, based on the most significant empirical p-value \((P)\) from three genetic models, *BP*—physical position on the chromosome \((Chr)\) in hg19 coordinates, *E/R*—the effect allele and the reference allele, *Mod*—the most significant genetic model for that SNP, *nXX*—number of individuals in each genotypic group, *mXX*—mean of gestational age in each genotypic group. Interpretation of mean gestational age values should take into account the bimodal phenotype distribution of genotyped individuals (S1 Fig). No multiple-test correction is applied.

We grouped these genes into four functional categories related to possible aetiologies of pre-term birth: 1) bacterial or viral infection 2) utero-placental perfusion problems 3) cervical insufficiency 4) hormonal imbalance.

Infection. Bacterial infection is a well-known cause of too short gestation [1]. We observed 14 SNPs that are known expression quantitative trait loci (eQTLs) for (or are located in

Table 3. Genomic loci that implicate the genes mentioned in Table 2.

Rank	SNP	P	Clumped region	Gene
7	rs1609798	1.48e-5	chr4:103396333..103647047	*NFKB1*
8	rs10117075	1.55e-5	chr9:130358236..130586688	*ENG*
13	rs220381	2.12e-5	chr16:3301897..3344618	*MEFV*
51	rs6718188	5.73e-5	chr2:174739352..174835769	*SP3*
57	rs12336996	6.10e-5	chr9:107679500..107684276	*ABCA1*
77	rs1607800	8.36e-5	chr12:63790463..63982989	*DPY19L2*
84	rs3740121	9.01e-5	chr10:13834678..13838604	*FRMD4A*
100	rs12202611	1.08e-4	chr6:154204327..154333183	*OPRM1*
114	rs2301137	1.22e-4	chr12:6956462..7053149	*GNB3*
142	rs7045953	1.56e-4	chr9:120446826..120485795	*TLR4*
169	rs2365661	1.96e-4	chr2:210154210..210391837	*MAP2*
187	rs3746512	2.18e-4	chr20:44577314..44662413	*MMP9*
211	rs1457776	2.39e-4	chr8:133355244..133423654	*KCNQ3*
285	rs4320932	3.28e-4	chr11:2117403..2171601	*IGF2*
295	rs6662618	3.48e-4	chr1:92935411..93148377	*GFI1*

The *Rank* represents a rank of an independent genomic region (“clump”) based on the most extreme GWAS p-value \((P)\) of the representative index SNP in three genetic models. Genomic positions of regions are presented in hg19 coordinates.

doi:10.1371/journal.pone.0160335.t003
proximity of) 17 immunity-related genes (Table 5). Most of these genes act through activation of nuclear factor complex NF-κB, a central regulator of the terminal processes in human labor and delivery [21].

Besides their individual connection to preterm birth via immunity mechanisms, ten genes from independent loci interact among each other: Pyrin encoded by MEFV decreases activation of NF-κB complex [24], which includes NFKB1; pellino protein encoded by PELI2 is necessary for activation of NF-κB complex; NF-κB activation is induced by lipopolysaccharide and interleukine encoded by IL1B; NFKB1 binds with IRF8 [51]; CAMP decreases expression of NFKB1 [52]; NFKBIA gene (independent region from NFKB1) product inhibits NFKB1 responses; NFKBIA affects the expression of TFRC, as a defence-from-bacterial-infection strategy [41]; IL1B increases NFKBIA expression; SPSB2 gene together with the MEFV gene share a SPRY domain, which is involved in innate immunity [53]; IL1B can increase expression of MMP9 [54].

Viral infection is also a potential cause of preterm birth [55]. In Table 6 we present biologically relevant "viral-immunity" genes identified by maternal GWAS in labor-initiated deliveries. During the pregnancy, the immune system actively supports the growing fetus. Viral infection weakens this function allowing other microorganisms to propagate and lead to preterm birth [56]. Five genes are known to bind to each other and are likely to play a role in the

Table 4. Loci of biological relevance from maternal GWAS of gestational age in labor-initiated deliveries.

Rank	SNP	Chr	BP	P	E/R	Mod	nEE	nER	nRR	mEE	mER	mRR	Genes
5	rs17515010	1	226209989	1.00e-5	G/A	REC	4	141	1261	205	264	266	LEFTY2
10	rs1609798	4	103537442	1.48e-5	A/G	REC	128	601	677	259	266	268	NFKB1
11	rs10117075	9	130417033	1.55e-5	A/G	REC	12	190	1205	237	268	266	ENG
13	rs2287116	9	130420813	1.55e-5	A/C	REC	12	210	1185	237	267	266	TOR2A
19	rs220381	16	334461774	2.12e-5	G/A	DOM	159	559	689	270	268	264	MEFV
22	rs3117047	1	22345093	2.49e-5	A/G	REC	146	633	628	273	266	265	WNT4
24	rs6915083	6	41164005	2.64e-5	G/A	REC	197	648	561	261	268	266	TREM1, TREML2, TREML4
25	rs305080	16	85941774	2.67e-5	A/G	REC	143	586	678	273	266	265	IRF8
41	rs4312673	3	48401307	3.67e-5	A/G	DOM	7	72	1332	282	256	267	CAMP
65	rs634335	1	36335862	5.63e-5	C/A	DOM	23	310	1074	266	262	267	AGO3
66	rs6718188	9	17476111	5.73e-5	A/C	ADD	157	611	638	269	268	264	SP3
75	rs12336969	9	107679500	6.10e-5	A/C	REC	7	201	1199	229	267	266	ABCA1
88	rs2177539	7	16652523	7.24e-5	G/A	REC	109	566	728	259	267	264	ANKMY2
98	rs3913369	3	55481075	8.22e-5	A/C	ADD	69	498	840	262	264	268	WNT5A
100	rs12138039	1	156918137	8.29e-5	A/G	DOM	6	185	1214	259	261	267	ARHGEF11
101	rs4075688	3	195842864	8.30e-5	G/A	REC	177	668	559	261	266	268	TFRC
106	rs4789863	17	76897347	8.52e-5	A/G	DOM	1	122	1281	251	259	267	TIMP2
109	rs11866271	10	24881152	8.74e-5	C/A	DOM	107	582	713	266	264	268	TNRC6A
117	rs3021274	22	40395084	9.22e-5	A/G	DOM	230	653	524	269	267	264	TNRC6B
138	rs12207111	6	154237443	1.08e-4	A/G	REC	7	295	1105	230	266	266	OPRM1
146	rs395643	14	56541638	1.12e-4	G/A	REC	14	310	1083	242	266	266	PELI2
157	rs2301137	12	7018949	1.22e-4	A/G	DOM	86	536	784	267	263	268	GNB3, SPSB2
173	rs12435366	14	35833839	1.41e-4	A/G	REC	97	550	745	259	267	266	NFKBIA
197	rs7045953	9	120485795	1.56e-4	G/A	ADD	37	379	991	272	269	265	TLR4
266	rs3746512	20	44592636	2.18e-4	A/G	REC	34	394	979	253	266	267	MMP9
284	rs4849122	2	113560921	2.34e-4	G/A	REC	7	158	1242	233	266	266	IL1A, IL1B
293	rs1457776	8	133360660	2.39e-4	A/G	REC	52	433	922	256	266	267	KCNQ3
299	rs942364	13	28896097	2.44e-4	A/G	DOM	20	307	1080	270	262	267	PAN3

doi:10.1371/journal.pone.0160335.t004
Table 5. An overview of infection-related genes.

SNP	Rank	p-value	Gene	Function / relevance
rs1609798	10	1.5e-5	NFKB1	SNP is an eQTL for nuclear factor NFKB1 [22] known for association with preterm birth [23].
rs220381	19	2.1e-5	MEFV	SNP is an eQTL for pyrin (marenostin) encoded by MEFV [22]. Pyrin is an important modulator of innate immunity [24]. As a regulator of IL1B activation, pyrin might be involved in preterm birth, especially after intrauterine infection [25].
rs6915083	24	2.6e-5	TREML2, TREM1, TREML4	SNP is in LD (r² = 0.7) with a missense mutation in TREML2. This mutation (rs3747742) is also an eQTL for immunoreceptor encoded by a proximal gene TREM1 [22], which amplifies responses to bacterial lipopolysaccharide and is elevated in the cord blood of preterm fetuses [26]. Mutation is also an eQTL for a proximal gene TREML4 [22], which is a positive regulator of TLR7 signalling responsible for detecting single-stranded viral RNA [27].
rs305080	25	2.7e-5	IRF8	SNP is an eQTL for interferon regulatory factor encoded by IRF8 [22]. Importantly, interferon-γ protein is associated with preterm birth [28, 29], while SNP in interferon-γ gene is also associated with preterm birth [30].
rs4312673	41	3.7e-5	CAMP	A proximal gene CAMP encodes cathelicidin antimicrobial peptide, which binds to bacterial lipopolysaccharides and regulates inflammatory response. CAMP is present in the first trimester cervicovaginal secretions and is expressed at higher levels in women with bacterial vaginosis [31]. CAMP levels are higher in foetal membranes and myometrium after spontaneous labour than after elective caesarean section [32]. The SNP is also an eQTL for a proximal gene ZNF589 [33], which forms a fusion gene with CAMP.
rs12336969	75	6.1e-5	ABCA1	Intrinsic SNP in ABCA1 gene. Maternal expression of ABCA1 was previously associated with decreased gestational age [34]. This relation could be explained by ABCA1 involvement in infection-response [35]. Interestingly, a short-half-life ABCA1 protein binds to ARHGEF11 (Table 7), which prevents ABCA1 degradation [36].
rs3913369	98	8.2e-5	WNT5A	SNP is the most proximal to WNT5A gene and is in LD with 3’-UTR variant (r² = 0.9). WNT5A is upregulated under bacterial infection via TLR4 and NFKB activation, which induces interferon-γ production [37]. Lipopolysaccharide enhances WNT5A expression through TLR4 and NF-κB pathways [38]. Interestingly, WNT5A induces expression of fibronectin [39], a marker for preterm birth [40].
rs4075688	101	8.3e-5	TFRC	SNP is an eQTL for transferrin receptor TFRC [22], which binds to iron-loaded transferrin and sequesters iron inside a cell via receptor-mediated endocytosis. This is the first line of defense against bacterial infection called "nutritional immunity" (bacterial pathogens are dependent on iron from their hosts) [41]. Concentrations of transferrin receptors are significantly increased in women with vaginal infection [42]. Similarly, elevated maternal serum ferritin (another iron-binding protein) concentrations are associated with preterm birth [43] and intrauterine growth restriction [44], possibly via similar defense mechanism.
rs395643	146	1.1e-4	PEL12	SNP is an eQTL for pellin protein [22] necessary for activation of NF-κB complex.
rs2301137	157	1.2e-4	SPSS2	SNP is an eQTL for SPSS2 protein [22], which is involved in infection defense via the nitric oxide production [45].
rs12435366	173	1.4e-4	NFKB1	Proximal-gene product inhibits NFKB1 responses, also affects the expression of TFRC, as a defense-to-bacterial-infection strategy [41].
rs7045953	197	1.6e-4	TLR4	SNP is an eQTL for toll-like receptor TLR4 [22] that recognizes structurally conserved molecules derived from microbes. TLR4 mRNA levels are significantly elevated in preterm-delivering women [46]. TLR4 plays a critical role in inflammation-induced preterm birth in a murine model [47].
rs3746512	266	2.2e-4	MMP9	SNP is an eQTL for extracellular matrix remodelling enzyme matrix metalloproteinase MMP9 [22]. A genetic variant in MMP9 promoter is associated with preterm birth [48]. In myometrium, bacterial fragments increase the expression of MMP9 [21].
rs4849122	284	2.3e-4	IL1A, IL1B	Interleukins IL1A and IL1B are mediators between infection and inflammation. Genetic variants in IL1A and IL1B were associated with preterm birth in [49] and [50] respectively.

Genes were selected from the top 284 genes (top 300 SNPs) in maternal GWAS with labor-initiated deliveries. The genes are presented together with the leading SNP from that region and its most extreme empirical p-value from three genetic models. Rank represents the rank of that SNP among all GWAS results.

doi:10.1371/journal.pone.0160335.t005

defense against viral infection by utilizing the RNA-induced silencing complex (RISC). Argo-nauts (encoded by AGO1, AGO3, AGO4) are the main components of RISC together with TNRC6A and TNRC6B (both TNRC genes are located on different chromosomes). The host
can inhibit viral replication using a library of miRNAs that matches parts of viral RNA [57], and a RISC complex [58]. Moreover, the ability to suppress RISC was suggested as a counter-strategy deployed by viruses [59]. The ribonuclease subunit encoded by PAN3 binds to both TNRC proteins, while ANKMY2 binds to AGO3.

Utero-placental perfusion problems. In Table 7 we show the second group of genes that are involved in utero-placental perfusion problems characterised by either utero-placental angiogenic imbalances (LEFTY2, ENG, KCNQ3, TIMP2, MMP9, ABCA1), maternal blood pressure (TOR2A, ARHGEF11, GNB3), or by compromised placentation (WNT4, WNT5A).

Cervical insufficiency. Cervical ripening precedes the delivery and allows the fetus to pass through otherwise too-narrow outlet. Two genes described previously might also be involved in cervical ripening, compromising the structural integrity of extracellular matrix too early (Table 8).

Hormonal imbalance. The fourth group represents three genes that are connected to hormonal problems (Table 9), which can lead to preterm birth.

Discussion

In our study, GWA analyses showed no genome-wide significant associations. However, using a gene-set enrichment analysis of GWA results, we found evidence that genes acting in mothers might contribute to gestational age in deliveries that start with labor. These genes are known for their involvement in processes that affect the duration of gestation (e.g., infection/inflammation).

Genome-wide association study

Using a standard genome-wide significance threshold of 5×10^{-8} none of the six GWA analyses revealed significant associations. Similarly as in previous study [10], we used two types of study individuals: mothers and children, as the genes affecting pregnancy might manifest via both genomes. We further stratified our analyses based on the type of delivery initiation: deliveries starting with PROM, deliveries that start with labor, and all pregnancies together (Fig 1). Instead of dichotomising a continuous phenotype (preterm and term groups), we directly utilised accurately dated (ultrasound-based method) gestational age, retaining phenotypic variability. The long tail of the skewed phenotype distribution was oversampled (S1 Fig) to gain more power to detect large effects. The samples used in our study were collected in a single country and represent ethnically homogenous population. We also investigated allelic interactions (dominance effects) that are likely to contribute to the broad-sense heritability estimates of gestational age [7]. Additionally, our study did not set arbitrary minor-allele frequency filters.

SNP	Rank	p-value	Gene	Function / relevance
rs634335	65	5.6e-5	AGO3	SNP is an eQTL for a proximal gene AGO3 [60], which is a component of RNA-induced silencing complex (RISC).
rs2177539	88	7.2e-5	ANKMY2	Intronic SNP in the gene ANKMY2 encoding a protein, which binds to AGO3.
rs11866271	109	8.7e-5	TNRC6A	SNP is an eQTL for a proximal gene TNRC6A [22], which encodes a component of RISC complex.
rs3021274	117	9.2e-5	TNRC6B	The second most proximal gene encodes a component of RISC complex.
rs942364	299	2.4e-4	PAN3	SNP is an eQTL for a proximal gene PAN3 [33].

Table 6. An overview of “viral-immunity” genes.

Genes were selected from the top 284 genes (top 300 SNPs) in maternal GWAS with labor-initiated deliveries. The genes are presented together with the leading SNP from that region and its most extreme empirical p-value from three genetic models. Rank represents the rank of that SNP among all GWAS results.

doi:10.1371/journal.pone.0160335.t006
Table 7. An overview of utero-placental perfusion genes.

SNP	Rank	p-value	Gene	Description
rs17515010	5	1.0e-5	LEFTY2	The third most proximal gene LEFTY2 encodes a growth factor, an important member of the Nodal signalling pathway essential for uterine cycling, embryo implantation and endometrial decidualization [61].
rs10117075	11	1.6e-5	ENG	SNP is in LD (0.44 r^2) with synonymous mutation in gene ENG encoding transforming growth factor component endoglin involved in angiogenesis and preeclampsia [62].
rs2287116	13	1.6e-5	TOR2A	SNP is an eQTL for a potent hypotensive peptide TOR2A [60], which stimulates the release of vasopressin [63] and is associated with impaired intrauterine growth [64].
rs3117048	22	2.5e-5	WNT4	SNP is located 99 kb from the WNT4 gene. Wnt4 is important signalling molecule in decidualisation [65] in the mouse model.
rs12336969	75	6.1e-5	ABCA1	Intronic SNP in ABCA1 gene. Maternal expression of ABCA1 was previously associated with decreased gestational age [34], which could be explained by the fact that ABCA1 is upregulated by hypoxia [68] and plays a critical role in proper angiogenesis [67]. Interestingly, a short-half-life ABCA1 protein binds to ARHGEF11 (see below), which prevents ABCA1 degradation [36].
rs3913369	98	8.2e-5	WNT5A	SNP is the most proximal to WNT5A gene and is in LD with 3'-UTR variant (r^2 = 0.9). WNT5A encodes a major signalling molecule critical to healthy embryo development in the uterus of a mouse model: Wnt5a-dysregulated pregnant mice show increased resorption rates, poor decidual growth, disrupted placental development, embryos were substantially smaller [68].
rs12138039	100	8.3e-5	ARHGEF11	SNP is a synonymous mutation in a gene that regulates vascular smooth muscle contraction. ARHGEF11 modulates the effects of angiotensin [69], a vasoconstrictive hormone associated with preterm birth [70] likely due to a blood pressure-regulating potency. ARHGEF11 is also expressed in human myometrium at labour [71]. It obtained the most extreme permutation p-value in a family-based association study of idiopathic preterm birth [72]. Binds to ABCA1.
rs4789863	106	8.5e-5	TIMP2	SNP is an eQTL for tissue inhibitor of metalloproteinases TIMP2 [22]. TIMP2 can react to angiogenic factors and directly suppress the proliferation of endothelial cells, thus inhibiting trophoblast invasion and leading to fetal hypoxia [73], intrauterine growth restriction, preeclampsia[74], and consequently preterm birth [75]. Maternal genetic variant in TIMP2 was associated with spontaneous preterm labor before [76].
rs2301137	157	1.2e-4	GNB3	SNP is an eQTL for multiple genes, one of which is GNB3 [33], encoding guanine nucleotide binding protein transducin. A SNP in this gene is associated with essential hypertension; also there is statistical interaction between this SNP, SNP in ACE gene (angiotensin I converting enzyme) and hypertension [77].
rs3746512	266	2.2e-4	MMP9	SNP is an eQTL for extracellular matrix remodeling enzyme matrix metalloproteinase MMP9 [22]. Excess MMP9 expression (in response to infection/inflammation) may facilitate proteolysis of basement membrane proteins in the extracellular matrix, impede trophoblast invasion in human decidua, impair spiral artery remodeling and reduce uteroplacental blood flow [54].
rs1457776	293	2.4e-4	KCNQ3	Intronic SNP in gene KCNQ3 encoding potassium channel. KCNQ3 might be related to angiogenesis during utero-placental vascular development [78]. Expression was significantly upregulated in preeclampsia, a medical condition with structural/functional alterations in placental and maternal vasculature [79].

Genes were selected from the top 284 genes (top 300 SNPs) in maternal GWAS with labor-initiated deliveries. The genes are presented together with the leading SNP from that region and its most extreme empirical p-value from three genetic models. Rank represents the rank of that SNP among all GWAS results.

doi:10.1371/journal.pone.0160335.t007

and used permutation-based association tests, which are less affected by phenotypic outliers or small counts in the minor genotypic group. We believe that these analytical aspects supplement the methods of preceding studies [9, 10].

The exploratory nature of our study (2 types of genomes × 3 types of onset of delivery × 3 genetic models) requires adequate corrections for multiple testing. However, as most of the tests are not independent, a simple Bonferroni correction would be overly conservative. We chose to present uncorrected p-values, at the same time cautioning the reader to remember that more statistical tests were done than in a single GWAS.

Gene-set enrichment analysis

Subsequent gene-set enrichment analyses indicated that one of our GWAS ranked markers in a biologically meaningful manner (Fig 4). Two previous GWA studies investigating preterm
birth [9, 10] did not provide such evidence. Enrichment in known pregnancy-related genes justifies a closer inspection of top loci (see Literature-informed analyses) and warrants new GWA studies with larger sample sizes.

The results from gene-set enrichment analysis (Fig 4) illustrate the advantage of stratifying study subjects based on the onset of delivery. Only the GWAS investigating mothers with labor-initiated deliveries showed expected enrichment in pregnancy-related gene-sets and no enrichment in control gene-sets. The reasons for this could be that maternal genes play a more important role than the fetal. However, a smaller number of children (1.5-times less than mothers) could also explain this observation. Similarly, GWAS investigating PROM deliveries had a lower statistical power to detect associations (4-times smaller sample size) than GWAS investigating labor-initiated deliveries. Also, genetically determined gestational age in PROM pregnancies is likely to be shortened by environmental factors (e.g., the severity of the microbial invasion of the amniotic cavity), thus introducing noise and reducing the power of GWAS. Interestingly, even though analysis of mixed pregnancies had the largest sample size, it showed low enrichment in pregnancy-related genes. This observation suggests that gestational age determined by two onsets of delivery (labor and PROM) actually represents two separate endophenotypes.

Table 8. An overview of cervical insufficiency genes.

SNP	Index	p-value	Gene	Description
rs4789863	106	8.5e-5	TIMP2	SNP is an eQTL for a tissue inhibitor of metalloproteinases TIMP2 [22]. TIMP2 inhibits protease activity in tissues undergoing remodelling of the extracellular matrix, and can affect cervix dilation, which precedes delivery. Maternal genetic variant in TIMP2 was associated with spontaneous preterm labor with intact fetal membranes [76], indicating that TIMP2 more likely acts via cervix.
rs3746512	266	2.2e-4	MMP9	SNP is an eQTL for extracellular matrix remodeling enzyme matrix metalloproteinase MMP9 [22]. MMP9 plays a role in cervical ripening [80]. A genetic variant in MMP9 promoter is associated with preterm birth [48].

Genes were selected from the top 284 genes (top 300 SNPs) in maternal GWAS with labor-initiated deliveries. The genes are presented together with the leading SNP from that region and its most extreme empirical p-value from three genetic models. Rank represents the rank of that SNP among all GWAS results.

Table 9. An overview of hormonal genes.

SNP	Rank	p-value	Gene	Description
rs3117048	22	2.5e-5	WNT4	SNP is located 99 kb from the WNT4 gene. WNT4 is associated with hyper-androgenism in females (high levels of testosterone, acne, hirsutism) [81], likely due to a mutation increasing androgen biosynthesis [82]. Encodes a signaling protein that is negatively correlated with estrogen and progesterone levels [83], and is associated with uterine hypoplasia [84], as it is a known morphogen controlling eterine changes during pregnancy [83]. Importantly, PTB risk is higher for mothers with polycystic ovary syndrome, notable for high androgen levels [85]. Also, small intrauterine space (uterine hypoplasia) might be causally linked to the shorter gestational age [86].
rs6718188	66	5.7e-5	SP3	SNP is an LD (0.92 r²) with the SNP in 3'-UTR of the gene SP3. SP3 mediates progesterone-dependent induction of the hydroxysteroid dehydrogenase gene (involved in production of progesterone and testosterone) in human endometrium [87].
rs12202611	138	1.1e-4	OPRM1	Proximal gene OPRM1 encodes μ-opioid receptor (MOR). The MOR is the main target of endogenous opioid system [88], which has been implicated in the regulation of hormonal secretion and uterine contractility during pregnancy [89, 90]. Interestingly, OPRM1 contains an important modern-human-specific variant [91] (gestational in our species is very different from other primates).

Genes were selected from the top 284 genes (top 300 SNPs) in maternal GWAS with labor-initiated deliveries. The genes are presented together with the leading SNP from that region and its most extreme empirical p-value from three genetic models. Rank represents the rank of that SNP among all GWAS results.

doi:10.1371/journal.pone.0160335.t008
doi:10.1371/journal.pone.0160335.t009
Based on the results from gene-set enrichment analyses, in the literature-informed analyses we chose to investigate only the top SNPs from the maternal GWAS in labor-initiated deliveries.

Literature-informed overview of GWAS results

In the seminal publication by Romero et al. [92], the authors summarised the main pathological processes involved in the preterm parturition syndrome: (1) intrauterine infection/inflammation; (2) placental insufficiency (uteroplacental perfusion, angiogenic imbalances, decidualisation); (3) uterine overdistension and contractility; (4) abnormal allograft reaction; (5) allergy; (6) cervical insufficiency; (7) hormonal imbalance. Some genes implicated by the top 300 SNPs from maternal GWAS in labor-initiated deliveries could be comfortably assigned to these processes: infection/inflammation (NFKB1, TLR4, IRF8, ABCA1, TREML2, MEFV, WNT5A, NFKBIA), placental insufficiency (ENG, TOR2A, IGF2, KCNQ3, GNB3, LEFTY2, ARHGEF11, WNT4, WNT5A), cervical insufficiency (MMP9, TIMP2), and hormonal imbalance (WNT4, OPRM1, SP3).

We found 32 genes (Table 4) that 1) had suggestive evidence of association in GWA analysis, 2) were likely to have their function/expression affected by top GWAS SNPs, 3) had phenotype-relevant biological functions, and 4) their proteins formed clusters of interaction. Most of these genes belong to the "bacterial infection" group (Table 5).

Similar future studies might benefit from these observations: inclusion of recessive and dominant genetic models was advantageous, because allelic interactions (dominance effects) implicated approximately 90% of genes with biological relevance (Table 4). Similarly, 30% of genes would have been overlooked if a minor-allele frequency filter (MAF > 0.1) were to be applied, and over 50% would have been lost if GWAS sample size were to be increased by adding PROM-delivering mothers (N = 336) to the mothers with labor-initiated deliveries (N = 1407).

Replication studies should take into account that common infections in various geographical regions and climates might be caused by specific strains/species of bacteria. Similarly, different human populations might be unique in their immunity (vitamin D and sun exposure, vaccination policies, specific hygiene-related behaviours).

Infection/inflammation-related genes from our analyses (Table 5) could be used in gene-environment interaction (G×E) studies investigating how genotypes modulate the effect of infection-during-pregnancy on the gestational age at birth. Such studies could create the tools to identify women at high risk for delivering preterm.

Conclusion

In this study, no genome-wide significant associations with gestational age were found. We highlight 32 genes for the follow-up research, providing suggestive statistical evidence and biological relevance to gestational age, especially via inflammatory-pathways. Our study illustrates how post-GWAS analysis might give insights into the aetiology of the phenotype even without clear GWAS signals.

Supporting Information

S1 Fig. Phenotype distribution is six GWAS analyses. Frequency denotes the number of individuals with a particular value of gestational age. The red line represents phenotype distribution in the whole MoBa cohort with same exclusion criteria applied as was for genotyped sample, only without case-oversampling. Maximal height of the red line was adjusted to match
the histogram height. Individuals in different histograms might represent the same pregnancy.

S2 Fig. Manhattan plot for fetal GWAS of gestational age in labor-initiated deliveries. In total 884 fetal genomes were used. Each SNP was assigned the most extreme empirical p-value from three genetic models (additive, recessive, dominant). The top line indicates a genome-wide significance level (5×10^{-8}), while the bottom line marks a significance level (5×10^{-4}) determining the number of “clumps” (independent loci that are used in gene-set enrichment analyses).

S1 File. Results from all 6 GWA analyses. Best_emp_P—the most extreme empirical p-value from three genetic models, Eff/Ref—the effect allele and the reference allele, Genetic model—the most significant genetic model for that SNP. Only SNPs with best_emp_P values $\leq 10^{-3}$ are shown.

S2 File. All genes from 12 pregnancy-related gene-sets.

S1 Table. Text-mining PubMed abstracts for pregnancy-related genes. The table shows keywords and their queries used to search PubMed database. Numbers of keyword-related genes are shown before and after filtering.

Acknowledgments

We are grateful to all the families who take part in the on-going MoBa cohort, also, the Norwegian Ministry of Health, the Ministry of Education and Research, NIH/NIEHS and NIH/NINDS for funding it (grant No.1 UO1 NS 047537–01 and grant No.2 UO1 NS 047537-06A1).

Author Contributions

Conceptualization: BJ JB VS.
Data curation: JB JJ RM.
Formal analysis: JB JJ.
Funding acquisition: BJ JB.
Investigation: BJ RM.
Methodology: JB SN.
Project administration: BJ JB.
Resources: BJ.
Software: JB JJ.
Supervision: BJ.
Validation: GZ SN LJM.
Visualization: JB JJ.
Writing - original draft: JB.
Writing - review & editing: JJ GZ LJM SN BJ VS.

References
1. Muglia LJ, Katz M. The enigma of spontaneous preterm birth. N Engl J Med. 2010; 362(6):529–35. doi: 10.1056/NEJMra0904308 PMID: 20147718
2. Martin JA, Hamilton BE, Osterman MJ. Births in the United States, 2014. NCHS data brief. 2015 (216):1–8.
3. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012; 379(9832):2162–72. doi: 10.1016/S0140-6736(12)60820-4 PMID: 22682464
4. In: Behrman RE, Butler AS, editors. Preterm Birth: Causes, Consequences, and Prevention. The National Academies Collection: Reports funded by National Institutes of Health. Washington (DC)2007.
5. Iams JD, Romero R, Culhane JF, Goldenberg RL. Primary, secondary, and tertiary interventions to reduce the morbidity and mortality of preterm birth. Lancet. 2008; 371(9607):164–75. doi: 10.1016/S0140-6736(08)60108-7 PMID: 18191687
6. Lukasse M, Helbig A, Benth JS, Eberhard-Gran M. Antenatal maternal emotional distress and duration of pregnancy. PLOS One. 2014; 9(7):e101682. doi: 10.1371/journal.pone.0101682 PMID: 25000409
7. Wu W, Witterspoon DJ, Fraser A, Clark EA, Rogers A, Stoddard GJ, et al. The heritability of gestational age in a two-million member cohort: implications for spontaneous preterm birth. Hum Genet. 2015; 134(7):803–8. doi: 10.1007/s00439-015-1558-1 PMID: 25920518
8. Clausson B, Lichtenstein P, Cnattingius S. Genetic influence on birthweight and gestational length determined by studies in offspring of twins. BJOG. 2000; 107(3):375–81. PMID: 10740335
9. Uzun A, Dewan AT, Istrail S, Padbury JF. Pathway-based genetic analysis of preterm birth. Genomics. 2013; 101(3):163–70. doi: 10.1016/j.ygeno.2012.12.005 PMID: 23298525
10. Zhang H, Baldwin DA, Bukowski RK, Parry S, Xu Y, Song C, et al. A genome-wide association study of early spontaneous preterm delivery. Genet Epidemiol. 2015; 39(3):217–26. doi: 10.1002/gepi.21987 PMID: 25599974
11. Auger N, Abrahamowicz M, Wynant W, Lo E. Gestational age-dependent risk factors for preterm birth: associations with maternal education and age early in gestation. Eur J Obstet Gynecol Reprod Biol. 2014; 176:132–6. doi: 10.1016/j.ejogrb.2014.02.035 PMID: 24666799
12. Magnus P, Irgens LM, Haug K, Nystad W, Skjaerven R, Stoltenberg C, et al. Cohort profile: the Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol. 2006; 35(5):1146–50. PMID: 16926217
13. Irgens LM. The Medical Birth Registry of Norway; a source for epidemiological and clinical research. Scand J Rheumatol Suppl. 1998; 107:105–8. PMID: 9759145
14. Myking S, Boyd HA, Myhre R, Feenstra B, Jugessur A, Devold Pay AS, et al. X-chromosomal maternal and fetal SNPs and the risk of spontaneous preterm delivery in a Danish/Norwegian genome-wide association study. PLOS One. 2013; 8(4):e61781. doi: 10.1371/journal.pone.0061781 PMID: 23613933
15. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015; 4:7. doi: 10.1186/s13742-015-0047-8 PMID: 25722852
16. Tanikawa C, Urabe Y, Matsu K, Kubo M, Takahashi A, Ito H, et al. A genome-wide association study identifies two susceptibility loci for duodenal ulcer in the Japanese population. Nat Genet. 2012; 44(4):430–4, S1-2. doi: 10.1038/ng.1109 PMID: 22387998
17. Alleman BW, Mykking S, Ryckman KK, Myhre R, Feingold E, Feenstra B, et al. No observed association for mitochondrial SNPs with preterm delivery and related outcomes. Pediatr Res. 2012; 72(5):539–44. doi: 10.1038/pr.2012.112 PMID: 22902432
18. Gray KA, Yates B, Seal RL, Wright MW, Bruford EA. Genenames.org: the HGNC resources in 2015. Nucleic Acids Res. 2015; 43(Database issue):D1079–85. doi: 10.1093/nar/gku1071 PMID: 25361968
19. Lee PH, O’Dushlaine C, Thomas B, Purcell SM. INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics. 2012; 28(13):1797–9. doi: 10.1093/bioinformatics/bts191 PMID: 22513993
20. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012; 40(D1):D930–D4.
21. Lappas M. NOD1 and NOD2 regulate proinflammatory and prolabor mediators in human fetal membranes and myometrium via nuclear factor-kappa B. Biol Reprod. 2013; 89(1):14. doi: 10.1095/biolreprod.112.110056 PMID: 23740944

22. Westa HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013; 45(10):1238–43. doi: 10.1038/ng.2756 PMID: 24013639

23. MacIntyre DA, Lee YS, Migale R, Herbert BR, Waddington SN, Peebles D, et al. Activator protein 1 is a key terminal mediator of inflammation-induced preterm labor in mice. FASEB J. 2014; 28(5):2358–68. doi: 10.1096/fj.13-247783 PMID: 24497579

24. Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013; 45(10):1238–43. doi: 10.1038/ng.2756 PMID: 24013639

25. Fumagalli M, Cagliani R, Pozzoli U, Riva S, Corni GP, Menozzi G, et al. A population genetics study of the familial Mediterranean fever gene: evidence of balancing selection under an overdominance regime. Genes Immun. 2009; 10(8):678–86. doi: 10.1038/gene.2009.59 PMID: 19675583

26. Ramirez-Ortiz ZG, Prasad A, Griffith JW, Pendergraft WF 3rd, Cowley GS, Root DE, et al. The receptor TREML4 amplifies TLR7-mediated signaling during antiviral responses and autoimmunity. Nat Immunol. 2015; 16(5):495–504. doi: 10.1038/nai.2015.217 PMID: 25848864

27. Stehlík C, Fiorentino L, Dorfleutner A, Bruey JM, Ariza EM, Sagara J, et al. The PAAD/PYRIN-family protein ASC is a dual regulator of a conserved step in nuclear factorκB activation pathways. J Exp Med. 2002; 196(12):1605–15. doi: 12486103

28. Hanna N, Bonifacio L, Reddy P, Hanna I, Weinberger B, Murphy S, et al. IFN-gamma-mediated inhibition of COX-2 expression in the placenta from term and preterm labor pregnancies. Am J Reprod Immunol. 2004; 51(4):311–8. PMID: 15212685

29. Curry AE, Vogel I, Drews C, Schendel D, Skogstrand K, Flanders WD, et al. Cord blood transcriptome analysis identifies maternal inflammation as a risk factor for preterm birth. J Reprod Immunol. 2002; 51(3):203–14. doi: 10.1016/S0167-5652(02)00169-8 PMID: 12161734

30. Lappas M. Human cathelicidin antimicrobial protein 18 (hCAP18/LL-37) is increased in foetal membranes and myometrium after spontaneous labour and delivery. J Reprod Immunol. 2015; 107:31–42. doi: 10.1016/j.jri.2014.10.002 PMID: 25435436

31. Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015; 348(6235):648–50. doi: 10.1126/science.1255784 PMID: 26311012

32. Lim R, Barker G, Lappas M. Human cathelicidin antimicrobial protein 18 (hCAP18/LL-37) is increased in foetal membranes and myometrium after spontaneous labour and delivery. J Reprod Immunol. 2015; 107:31–42. doi: 10.1016/j.jri.2014.10.002 PMID: 25435436

33. Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015; 348(6235):648–60. PMID: 25954001

34. Frew L, Makieva S, McKinlay AT, McHugh BJ, Doust A, Norman JE, et al. Human cathelicidin production by the cervix. PLOS One. 2014; 9(8):e103434. doi: 10.1371/journal.pone.0103434 PMID: 25089904

35. Korhonen JT, Oikkonen VM, Lahesmaa R, Puolakkainen M. ABC-cassette transporter 1 (ABCA1) expression in epithelial cells in Chlamydia pneumoniae infection. Microb Pathog. 2013; 61:61–66. doi: 10.1016/j.micpath.2013.05.006 PMID: 23707398

36. Lappas M. NOD1 and NOD2 regulate proinflammatory and prolabor mediators in human fetal membranes and myometrium via nuclear factor-kappa B. Biol Reprod. 2013; 89(1):14. doi: 10.1095/biolreprod.112.110056 PMID: 23740944

37. Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T, et al. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood. 2006; 108(3):965–73. PMID: 16601243

38. He W, Wang Z, Zhou Z, Zhang Y, Zhu Q, Wei K, et al. Lipopolysaccharide enhances Wnt5a expression through toll-like receptor 4, myeloid differentiating factor 88, phosphatidylinositol 3-OH kinase/akt and nuclear factor kappa B pathways in human dental pulp stem cells. J Endod. 2014; 40(1):69–75. doi: 10.1016/j.joen.2013.09.011 PMID: 24331994

39. Vuga LJ, Ben-Yehudah A, Kovkova-Naumovska E, Oriss T, Gibson KF, Feghali-Bostwick C, et al. WNT5A is a regulator of fibroblast proliferation and resistance to apoptosis. Am J Respir Cell Mol Biol. 2009; 41(5):583–9. doi: 10.1165/rcmb.2008-0201OC PMID: 19251946
40. Honest H, Bachmann LM, Gupta JK, Kleijn J, Khan KS. Accuracy of cervicovaginal fetal fibronectin test in predicting risk of spontaneous preterm birth: systematic review. BMJ. 2002; 325(7359):301. PMID: 12169504

41. Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLOS Pathog. 2010; 6(8):e1000949. doi: 10.1371/journal.ppat.1000949 PMID: 20711357

42. Verstraelen H, Delanghe J, Roelens K, Blot S, Claays G, Temmerman M. Subclinical iron deficiency is a strong predictor of bacterial vaginosis in early pregnancy. BMC Infect Dis. 2005; 5:55. PMID: 16000177

43. Gao T, Zablith NR, Burns DH, Skinner CD, Koski KG. Second trimester amniotic fluid transferrin and uric acid predict infant birth outcomes. Prenat Diagn. 2008; 28(9):810–4. doi: 10.1002/pd.1981 PMID: 18646241

44. Soubasi V, Petridou S, Sarafidis K, Tsantali C, Diamanti E, Buonocore G, et al. Association of increased maternal ferritin levels with gestational diabetes and intra-uterine growth retardation. Diabet Med. 2010; 36(1):58–63. doi: 10.1111/j.1464-5491.2009.02615.x PMID: 19998580

45. Kuang Z, Lewis RS, Curtis JM, Zhan Y, Saunders BM, Babon JJ, et al. The SPRY domain-containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation. J Cell Biol. 2010; 190(1):129–41. doi: 10.1083/jcb.200912087 PMID: 20603330

46. Pawelczyk E, Nowicki BJ, Izbam MG, Pratap S, Sashit NA, Sanderson M, et al. Spontaneous preterm labor is associated with an increase in the proinflammatory signal transducer TLR4 receptor on maternal blood monocytes. BMC Pregnancy Childbirth. 2010;10.

47. Li L, Kang J, Lei W. Role of Toll-like receptor 4 in inflammation-induced preterm delivery. Mol Hum Reprod. 2010; 16(4):267–72. doi: 10.1093/molehr/gap106 PMID: 19998580

48. Ferrand PE, Parry S, Sammel M, Macones GA, Kuivaniemi H, Romero R, et al. A polymorphism in the interleukin-1 gene complex and spontaneous preterm delivery. Am J Obstet Gynecol. 2002; 187(1):157–63. PMID: 12114904

49. D'Cruz AA, Babon JJ, Norton RS, Nicola NA, Nicholson SE. Structure and function of the SPRY/B30.2 domain proteins involved in innate immunity. Protein Sci. 2013; 22(1):1–10. doi: 10.1002/pro.2185 PMID: 23139046

50. Cardenas I, Means RE, Aldo P, Koga K, Lang SM, Booth CJ, et al. Viral infection of the placenta leads to fetal inflammation and sensitization to bacterial products predisposing to preterm labor. J Immunol. 2010; 185(2):1248–57. doi: 10.4049/jimmunol.1000289 PMID: 20554966

51. Lockwood CJ, Oner C, Uz YH, Kayisli UA, Huang SJ, Buchwalder LF, et al. Matrix metalloproteinase 9 (MMP9) expression in preclampsia decidua and MMP9 induction by tumor necrosis factor alpha and interleukin 1 beta in human first trimester decidual cells. Biol Reprod. 2008; 78(6):1064–72. doi: 10.1095/biolreprod.107.063743 PMID: 18276934

52. Cardenas I, Means RE, Aldo P, Koga K, Lang SM, Booth CJ, et al. Viral infection of the placenta leads to fetal inflammation and sensitization to bacterial products predisposing to preterm labor. J Immunol. 2010; 185(2):1248–57. doi: 10.4049/jimmunol.1000289 PMID: 20554966

53. D'Cruz AA, Babon JJ, Norton RS, Nicola NA, Nicholson SE. Structure and function of the SPRY/B30.2 domain proteins involved in innate immunity. Protein Sci. 2013; 22(1):1–10. doi: 10.1002/pro.2185 PMID: 23139046

54. Lockwood CJ, Oner C, Uz YH, Kayisli UA, Huang SJ, Buchwalder LF, et al. Matrix metalloproteinase 9 (MMP9) expression in preclampsia decidua and MMP9 induction by tumor necrosis factor alpha and interleukin 1 beta in human first trimester decidual cells. Biol Reprod. 2008; 78(6):1064–72. doi: 10.1095/biolreprod.107.063743 PMID: 18276934

55. Swaminathan G, Martin-Garcia J, Navas-Martín S. RNA viruses and microRNAs: challenging discoveries for the 21st century. Physiol Genomics. 2013; 45(22):1035–48. doi: 10.1152/physigendis.00112.2013 PMID: 24046280
61. Park CB, Dufort D. NODAL signaling components regulate essential events in the establishment of pregnancy. Reproduction. 2013; 145(2):R55–64. doi: 10.1530/REP-12-0103 PMID: 23221013

62. Maynard SE, Moore Simas TA, Bur L, Crawford SL, Soltro MJ, Meyer BA. Soluble endoglin for the prediction of preeclampsia in a high risk cohort. Hypertens Pregnancy. 2010; 29(3):330–41. doi: 10.3109/106419509029668684 PMID: 20670156

63. Shichiri M, Ishimaru S, Ota T, Nishikawa T, Isogai T, Hirata Y. Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities. Nat Med. 2003; 9(9):1166–72. PMID: 12910263

64. Celik E, Celik O, Yilmaz E, Turkcuoglu I, Karaer A, Turhan U, et al. Association of low maternal levels of salusins with gestational diabetes mellitus and with small-for-gestational-age fetuses. Eur J Obstet Gynecol Reprod Biol. 2013; 167(1):29–33. doi: 10.1016/j.ejogrb.2012.10.032 PMID: 23178004

65. Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012; 18(12):1754–67. doi: 10.1038/nm.3012 PMID: 23223073

66. Ugozcai P, Hohenstatt A, Paragh G, Liebisch G, Langmann T, Wolf Z, et al. HIF-1beta determines ABCA1 expression under hypoxia in human macrophages. Int J Biochem Cell Biol. 2010; 42(2):241–52. doi: 10.1016/j.biocel.2009.10.002 PMID: 19828131

67. Fang L, Choi SH, Baek JS, Liu C, Almazon F, Ulrich F, et al. Control of angiogenesis by AIBP-mediated cholesterol efflux. Nature. 2012; 498(7452):118–22. doi: 10.1038/nature12166 PMID: 23719382

68. Cha J, Bartos A, Park C, Sun X, Li Y, Cha SW, et al. Appropriate crypt formation in the uterus for embryo homing and implantation requires Wnt5a-ROR signaling. Cell Reports. 2014; 8(2):382–92. doi: 10.1016/j.celrep.2014.06.027 PMID: 25043182

69. Ying Z, Giachini FR, Tostes RC, Webb RC. PYK2/PDZ-RhoGEF links Ca2+ signaling to RhoA. Arterioscler Thromb Vasc Biol. 2009; 29(10):1657–63. doi: 10.1161/ATVBAHA.109.190892 PMID: 19759375

70. Chen YP, Lu YP, Li J, Liu ZW, Chen WJ, Liang XJ, et al. Fetal and maternal angiotensin (1-7) are associated with preterm birth. J Hypertens. 2014; 32(9):1833–41. doi: 10.1097/HJH.0000000000000251 PMID: 24979298

71. O’Brien M, Flynn D, Mullins B, Morrison JJ, Smith TJ. Expression of RHOGTPase regulators in human myometrium. Reprod Biol Endocrinol. 2008; 6:1. doi: 10.1186/1477-7877-6-1 PMID: 18190708

72. McElroy JJ, Gutman CE, Shaffer CM, Busch TD, Puttonen H, Teramo K, et al. Maternal coding variants in complement receptor 1 and spontaneous idiopathic preterm birth. Hum Genet. 2013; 132(8):335–42. doi: 10.1007/s00439-013-1304-5 PMID: 23591632

73. Zhu JY, Pang ZJ, Yu YH. Regulation of trophoblast invasion: the role of matrix metalloproteinases. Rev Obstet Gynecol. 2012; 5(3–4):s137–43. PMID: 23483768

74. Goldman-Wohl D, Yagel S. Regulation of trophoblast invasion: from normal implantation to pre-eclampsia. Mol Cell Endocrinol. 2002; 187(1–2):105–19. doi: 10.1016/S0303-7207(02)00369-6 PMID: 12085807

75. Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014; 345(6198):760–5. doi: 10.1126/science.1251816 PMID: 25124429

76. Romero R, Velez Edwards DR, Kusanovic JP, Hassan SS, Mazaki-Tovi S, Vaisbuch E, et al. Identification of fetal and maternal single nucleotide polymorphisms in candidate genes that predispose to spontaneous preterm labor with intact membranes. Am J Obstet Gynecol. 2010; 202(5):431 e1–54. doi: 10.1016/j.ajog.2010.03.026 PMID: 20452482

77. Bae Y, Park C, Han J, Hong YJ, Song HH, Shin ES, et al. Interaction between GNB3 C825T and ACE I/D polymorphisms in essential hypertension in Koreans. J Hum Hypertens. 2007; 21(2):159–66. PMID: 17066084

78. Mistry HD, Kurlak LO, Whitley GS, Cartwright JE, Tribe RM, Broughton Pipkin F. OS081. Novel KCNQ3/KCNES isofrom protein and mRNA expression in first trimester human placenta. Pregnancy Hypertens. 2012; 2(3):221–2.

79. Mistry HD, McCallum LA, Kurlak LO, Greenwood IA, Broughton Pipkin F, Tribe RM. Novel expression and regulation of voltage-dependent potassium channels in placentas from women with preeclampsia. Hypertension. 2011; 58(3):497–504. doi: 10.1161/HYPERTENSIONAHA.111.173746 PMID: 21730298

80. Osmers RG, Adelmann-Grill BC, Rath W, Stuhlsatz HW, Tschesche H, Kuhn W. Biochemical events in cervical ripening dilatation during pregnancy and parturition. J Obstet Gynaecol (Tokyo 1995). 1995; 21(2):185–94.

81. Biaso-Lauber A, De Filippo G, Konrad D, Scarano G, Nazzaro A, Schoenel EJ. WNT4 deficiency—a clinical phenotype distinct from the classic Mayer-Rokitansky-Kuster-Hauser syndrome: a case report. Hum Reprod. 2007; 22(1):224–9. PMID: 16959810

82. Phillibert P, Biaso-Lauber A, Rouzier R, Pienkowski C, Paris F, Konrad D, et al. Identification and functional analysis of a new WNT4 gene mutation among 28 adolescent girls with primary amenorrhea and...
83. Kiewisz J, Kaczmarek MM, Andronowska A, Bilitek A, Zieczik AJ. Gene expression of WNTs, beta-catenin and E-cadherin during the perimplantation period of pregnancy in pigs— involvement of steroid hormones. Theriogenology. 2011; 76(4):687–99. doi:10.1016/j.theriogenology.2011.03.022 PMID: 21652061

84. Sultan C, Biason-Lauber A, Philibert P. Mayer-Rokitansky-Kuster-Hauser syndrome: recent clinical and genetic findings. Gynecol Endocrinol. 2009; 25(1):8–11. doi:10.1080/09513590802288291 PMID: 19165657

85. Lovvik TS, Wikstrom AK, Neovius M, Stephansson O, Roos N, Vanky E. Pregnancy and perinatal outcomes in women with polycystic ovary syndrome and twin births: a population-based cohort study. BJOG. 2015; 122(10):1295–302. doi: 10.1111/1471-0528.13339 PMID: 25761516

86. Zhang G, Bacelis J, Lengyel C, Teramo K, Hallman M, Helgeland O, et al. Assessing the Causal Relationship of Maternal Height on Birth Size and Gestational Age at Birth: A Mendelian Randomization Analysis. PLOS Med. 2015; 12(8):e1001865. doi: 10.1371/journal.pmed.1001865 PMID: 26284790

87. Cheng YH, Imir A, Suzuki T, Fenkci V, Yilmaz B, Sasano H, et al. SP1 and SP3 mediate progesterone-dependent induction of the 17beta hydroxysteroid dehydrogenase type 2 gene in human endometrium. Biol Reprod. 2006; 75(4):605–14. PMID:16807381

88. Pettersson FD, Gronbladh A, Nyberg F, Sundstrom-Poromaa I, Akerud H. The A118G single-nucleotide polymorphism of human mu-opioid receptor gene and use of labor analgesia. Reprod Sci. 2012; 19 (9):962–7. doi: 10.1177/1933719112438970 PMID: 22527985

89. Zhu Y, Pintar JE. Expression of opioid receptors and ligands in pregnant mouse uterus and placenta. Biol Reprod. 1998; 59(4):925–32. PMID: 9746745

90. Faletti A, Bassi D, Gimeno AL, Gimeno MA. Effects of beta-endorphin on spontaneous uterine contractions. Prostaglandins production and 45Ca2+ uptake in uterine strips from ovariectomized rats. Prostaglandins Leukot Essent Fatty Acids. 1992; 47(1):29–33. PMID: 1359570

91. Pruefer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 2014; 505(7481):43–9. doi: 10.1038/ nature12886 PMID: 24352235

92. Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O, et al. The preterm parturition syndrome. BJOG. 2006; 113 Suppl 3:17–42. PMID: 17206962