Snapping Graph Drawings to the Grid Optimally

Andre Löffler, Thomas C. van Dijk, Alexander Wolff

Chair for Computer Science I:
Algorithms, Complexity and Knowledge-Based Systems
University of Würzburg

19. September 2016
Snap-rounding:

• Used to overcome precision-related problems of computational geometry.
• Conform to list of desired properties:
 • Fixed-precision representation (e.g. integer coordinates)
 • Geometric similarity (no large vertex movements)
 • Topological similarity (equivalence up to the collapsing of features)

Our question:

What about topological equivalence?
Introduction

Snap-rounding:

- Used to overcome precision-related problems of computational geometry.

Our question:

What about topological equivalence?
Snap-rounding:

- Used to overcome precision-related problems of computational geometry.
- Conform to list of desired properties:
 - Fixed-precision representation (e.g. integer coordinates)
 - Geometric similarity (no large vertex movements)
 - Topological similarity (equivalence up to the collapsing of features)
Snap-rounding:

- Used to overcome precision-related problems of computational geometry.
- Conform to list of desired properties:
 - Fixed-precision representation (e.g. integer coordinates)
 - Geometric similarity (no large vertex movements)
 - Topological similarity (equivalence up to the collapsing of features)

Our question:

What about topological equivalence?
Intuition

Snap-rounding: Topologically valid:

- Snap-rounding already is topologically equivalent.
Intuition

Snap-rounding: Topologically valid:

• Snap-rounding already is topologically equivalent.
Intuition

Snap-rounding: Topologically valid:

- Snap-rounding already is topologically equivalent.
Snap-rounding:

Topologically valid:
Intuition

Snap-rounding:

- Snap-rounding alters incidences and forces edges to collapse.
- Rounding to the nearest grid point changes the embedding of the upper-left vertex.

Topologically valid:
Intuition

Snap-rounding:

Topologically valid:
Snap-rounding alters incidences and forces edges to collapse.
Snap-rounding alters incidences and forces edges to collapse.
Rounding to the nearest grid point changes the embedding of the upper-left vertex.
Intuition

Snap-rounding: Topologically valid:

- Snap-rounding heavily modifies this graph.
- "Rounding" dense structures with no features collapsing is closely related to creating minimum-area drawings.
Snap-rounding: Topologically valid:

- Snap-rounding heavily modifies this graph.
- "Rounding" dense structures with no features collapsing is closely related to creating minimum-area drawings.
Intuition

Snap-rounding: Topologically valid:

Snap-rounding heavily modifies this graph. "Rounding" dense structures with no features collapsing is closely related to creating minimum-area drawings.
Intuition

Snap-rounding: Topologically valid:

- Snap-rounding heavily modifies this graph.
Snap-rounding heavily modifies this graph.

“Rounding” dense structures with no features collapsing is closely related to creating minimum-area drawings.
Topologically Safe Snapping

- We relax on geometric similarity and allow for larger vertex movements.

Problem (Topologically Safe Snapping)

Graph $G = (V, E)$ with given embedding, bounding box $B = [0, X_{\text{max}}] \times [0, Y_{\text{max}}]$.

Round G to integer coordinates within B, preserving the given embedding and minimizing total vertex movement.

Movement is measured in Manhattan-distance.
Topologically Safe Snapping

- We relax on geometric similarity and allow for larger vertex movements.
- We do not allow for features to collapse.
Topologically Safe Snapping

- We relax on geometric similarity and allow for larger vertex movements.
- We do not allow for features to collapse.

Problem (Topologically Safe Snapping)

\[\text{Graph } G = (V, E) \text{ with given embedding, bounding box } B = [0, X_{\text{max}}] \times [0, Y_{\text{max}}]. \]

Round \(G \) to integer coordinates within \(B \), preserving the given embedding and minimizing total vertex movement.
Topologically Safe Snapping

- We relax on geometric similarity and allow for larger vertex movements.
- We do not allow for features to collapse.

Problem (Topologically Safe Snapping)

Graph $G = (V, E)$ with given embedding,
bounding box $B = [0, X_{\text{max}}] \times [0, Y_{\text{max}}]$.

Round G to integer coordinates within B, preserving the given embedding and minimizing total vertex movement.

- Movement is measured in Manhattan-distance.
Our Contribution

- \(\mathcal{NP} \)-hardness proof for \textbf{Topologically Safe Snapping}.
Our Contribution

- \(\mathcal{NP} \)-hardness proof for **Topologically Safe Snapping**.

- Integer Linear Program (**ideas only**)

Our Contribution

- \mathcal{NP}-hardness proof for Topologically Safe Snapping.
- Integer Linear Program (ideas only)
- Experimental Evaluation
The \(\mathcal{NP} \)-hardness proof
• We reduce from **Planar Monotone 3SAT**.
NP-Hardness

- We reduce from **Planar Monotone 3SAT**.
- For reduction, consider a decision variant:

 Problem (Cost-bound Topologically Safe Snapping)

 \[
 \text{Graph } G = (V, E) \text{ with given embedding, bounding box } B = [0, X_{\text{max}}] \times [0, Y_{\text{max}}], \text{ cost-bound } c_{\text{min}} \in \mathbb{R}^+.
 \]

 Can \(G \) be rounded to integer coordinates within \(B \), preserving the given embedding with total movement of \(c_{\text{min}} \)?
PM3SAT-formula

\[(X \lor \overline{Y} \lor \overline{Z})\]

\[(X \lor Y)\]

\[(X \lor Z)\]
PM3SAT-formula

Andre Löffler, Thomas C. van Dijk, Alexander Wolff
Snapping Graph Drawings to the Grid Optimally
Our Construction
Our Construction
Our Construction
Our Construction
Tunnels & Pushes

- For a PM3SAT-formula F, our construction resembles its graph.
For a PM3SAT-formula F, our construction resembles its graph.

White vertices always cost at least 1 to be rounded.

If F is satisfiable, no black vertex needs to be moved.
Tunnels & Pushes

• For a PM3SAT-formula F, our construction resembles its graph.
• White vertices always cost at least 1 to be rounded.
• If F is satisfiable, no black vertex needs to be moved.
• Edges form tunnels
For a PM3SAT-formula F, our construction resembles its graph.
White vertices always cost at least 1 to be rounded.
If F is satisfiable, no black vertex needs to be moved.
Edges form **tunnels**.
For a PM3SAT-formula F, our construction resembles its graph.

- White vertices always cost at least 1 to be rounded.
- If F is satisfiable, no black vertex needs to be moved.
- Edges form tunnels that transmit pushes.
Tunnels & Pushes

- For a PM3SAT-formula F, our construction resembles its graph.
- White vertices always cost at least 1 to be rounded.
- If F is satisfiable, no black vertex needs to be moved.
- Edges form tunnels that transmit pushes.
For a \(\text{PM3SAT} \)-formula \(F \), our construction resembles its graph.

White vertices always cost at least 1 to be rounded.

If \(F \) is satisfiable, no black vertex needs to be moved.

Edges form **tunnels** that transmit **pushes**.

Topological safety ensures consistency of transmission.
At the center, there is a **decider** vertex with (up to) three possible target grid points.
• At the center, there is a decider vertex with (up to) three possible target grid points.

• Following one arrow, rounding generates pushes.
• At the center, there is a **decider** vertex with (up to) three possible target grid points.
• Following one arrow, rounding generates pushes.
• Blocking the bottom tunnel gives clause-gadgets for two variables.
Clauses

- At the center, there is a **decider** vertex with (up to) three possible target grid points.
- Following one arrow, rounding generates pushes.
- Blocking the bottom tunnel gives clause-gadgets for two variables.
- All-unnegated gadgets are constructed mirroring at a horizontal line.
Variables

- Has tunnel connections for negated and unnegated occurrences.
Variables

- Has tunnel connections for negated and unnegated occurrences.
- Grows horizontally with number of occurrences.
Variables

- Has tunnel connections for negated and unnegated occurrences.
- Grows horizontally with number of occurrences.
- At the left wall, there is an assignment vertex.
Variables

- Has tunnel connections for negated and unnegated occurrences.
- Grows horizontally with number of occurrences.
- At the left wall, there is an assignment vertex.
- Following one arrow blocks tunnels on this side and creates pushes.
Variables

- Has tunnel connections for negated and unnegated occurrences.
- Grows horizontally with number of occurrences.
- At the left wall, there is an assignment vertex.
- Following one arrow blocks tunnels on this side and creates pushes.
- Moving the assignment vertex up equals a TRUE-assignment, FALSE otherwise.
Theorem

Cost-bound Topologically Safe Snapping is NP-complete.

Sketch of proof:
Theorem

Cost-bound Topologically Safe Snapping is \(NP \)-complete.

Sketch of proof:

- Combine gadgets according to formula-graphs structure.
Theorem

Cost-bound Topologically Safe Snapping is \(NP \)-complete.

Sketch of proof:

- Combine gadgets according to formula-graphs structure.
- Cost-bound \(c_{\text{min}} \) equals number of white vertices.
Hardness Proof

Theorem

Cost-bound Topologically Safe Snapping is NP-complete.

Sketch of proof:

- Combine gadgets according to formula-graphs structure.
- Cost-bound c_{min} equals number of white vertices.
- If total movement cost equals c_{min}, truth-assignment is obtained from assignment vertices.
Hardness Proof

Theorem

Cost-bound Topologically Safe Snapping is \(NP \)-complete.

Sketch of proof:

- Combine gadgets according to formula-graphs structure.
- Cost-bound \(c_{\text{min}} \) equals number of white vertices.
- If total movement cost equals \(c_{\text{min}} \), truth-assignment is obtained from assignment vertices.
- If the formula is unsatisfiable, at least one black vertex has to be moved \(\Rightarrow c_{\text{min}} \) is exceeded.
Corollary

Topologically Safe Snapping is also \(NP \)-hard when using **Euclidean** distance.
Other results

Corollary

Topologically Safe Snapping is also \(\mathbb{NP} \)-hard when using **Euclidean** distance. *In this case it is also \(\mathbb{NP} \)-hard to minimize the maximum movement instead of the sum.*
Corollary

Topologically Safe Snapping is also \(\mathcal{NP} \)-hard when using **Euclidean** distance. *In this case it is also \(\mathcal{NP} \)-hard to minimize the maximum movement instead of the sum.*

Corollary

Euclidean **Topologically Safe Snapping** with the objective to minimize maximum movement is \(\mathcal{APX} \)-hard.
Integer Linear Program
Overview

Things to handle:

- Unique vertex coordinates (very simple)
- Planarity
- Embeddings

Basics:
- x_v, y_v are output coordinates.
- Objective function: Minimize $\sum_{v \in V} (|x_v - X_v| + |y_v - Y_v|)$
- Constraint: distinct vertex coordinates.
Overview

Things to handle:

- Unique vertex coordinates
Things to handle:

- Unique vertex coordinates (very simple)
Overview

Things to handle:

- Unique vertex coordinates (very simple)
- Planarity
Overview

Things to handle:
- Unique vertex coordinates (very simple)
- Planarity
- Embeddings
Overview

Things to handle:
- Unique vertex coordinates (very simple)
- Planarity
- Embeddings

Basics:
Overview

Things to handle:
- Unique vertex coordinates (very simple)
- Planarity
- Embeddings

Basics:
- x_v, y_v are output coordinates.
Overview

Things to handle:
- Unique vertex coordinates (very simple)
- Planarity
- Embeddings

Basics:
- x_v, y_v are output coordinates.
- Objective function:

\[
\text{Minimize } \sum_{v \in V} (|x_v - X_v| + |y_v - Y_v|)
\]
Overview

Things to handle:
- Unique vertex coordinates (very simple)
- Planarity
- Embeddings

Basics:
- x_v, y_v are output coordinates.
- Objective function:
 \[
 \text{Minimize} \sum_{v \in V} (|x_v - X_v| + |y_v - Y_v|)
 \]
- Constraint: distinct vertex coordinates.
Planarity

- Similar to Metro-Map Drawing by Nöllenburg & Wolff. [GD ’05]
Planarity

- Similar to Metro-Map Drawing by Nöllenburg & Wolff. [GD '05]
- **Idea:** every edge has some D_{min}-neighborhood that only incident edges are allowed to intersect.

Octilinear, $D_{\text{min}} = 0.5$
Planarity

- Similar to Metro-Map Drawing by Nöllenburg & Wolff. [GD '05]
- **Idea:** every edge has some D_{min}-neighborhood that only incident edges are allowed to intersect.

Octilinear, $D_{\text{min}} = 0.5$

- We consider any possible direction (not only octilinear ones).
Planarity

- Similar to Metro-Map Drawing by Nöllenburg & Wolff. [GD '05]
- **Idea:** every edge has some D_{min}-neighborhood that only incident edges are allowed to intersect.

![Diagram showing planarity](image)

Octilinear, $D_{\text{min}} = 0.5$

- We consider any possible direction (not only octilinear ones).
- According to bounding box size:

$$D_{\text{min}} = \frac{1}{\max\{X_{\text{max}}, Y_{\text{max}}\} + 1}$$
Directions

- Generated using the Farey sequence:

 \[
 \begin{array}{c}
 0/1 \\
 1/0 \\
 0/1 \\
 1/3 \\
 1/2 \\
 2/3 \\
 1/1
 \end{array}
 \]
Directions

- Generated using the Farey sequence:

\[
\begin{array}{c}
0/1 \\
2/3 \\
1/2 \\
1/3 \\
0/1
\end{array}
\]

Inside \([-k, k] \times [-k, k]\) area, there are \(\Theta(k^2)\) directions to consider.

Consider them to be ordered counter-clockwise.
Generated using the Farey sequence:
Directions

- Generated using the Farey sequence:

- Inside $[-k, k] \times [-k, k]$ area, there are $\Theta(k^2)$ directions to consider.
Directions

• Generated using the Farey sequence:

• Inside \([-k, k] \times [-k, k]\) area, there are \(\Theta(k^2)\) directions to consider.

• Consider them to be ordered counter-clockwise.
• Circular order of neighbors around any vertex must not change.
Embeddings

- Circular order of neighbors around any vertex must not change.
- **Idea:** for every vertex-neighbor pair, detect direction of that edge.
Circular order of neighbors around any vertex must not change.

Idea: for every vertex-neighbor pair, detect direction of that edge. Compare direction slopes to edge slope.
Embeddings

- Circular order of neighbors around any vertex must not change.
- **Idea:** for every vertex-neighbor pair, detect direction of that edge.
- Compare direction slopes to edge slope.

![Diagram](image_url)
• Circular order of neighbors around any vertex must not change.
• **Idea:** for every vertex-neighbor pair, detect direction of that edge.
• Compare direction slopes to edge slope.

• Map edges to directions
Embeddings

- Circular order of neighbors around any vertex must not change.
- **Idea:** for every vertex-neighbor pair, detect direction of that edge.
- Compare direction slopes to edge slope.

- Map edges to directions and compare the ordering of those directions to the given embedding.
Theorem

This ILP solves Topologically Safe Snapping.
Integer Linear Program

Theorem

This ILP solves Topologically Safe Snapping.

- In practice, our model easily becomes too large to solve (in reasonable time).
Theorem

This ILP solves Topologically Safe Snapping.

- In practice, our model easily becomes too large to solve (in reasonable time).
- We use delayed constraint generation to iteratively improve our model.
This ILP solves **Topologically Safe Snapping**.

- In practice, our model easily becomes too large to solve (in reasonable time).
- We use *delayed constraint generation* to iteratively improve our model.
- We generate most constraints on demand:
This ILP solves **Topologically Safe Snapping**.

- In practice, our model easily becomes too large to solve (in reasonable time).
- We use *delayed constraint generation* to iteratively improve our model.
- We generate most constraints on demand: first iteration is simple rounding (with unique coordinates).
Experimental Evaluation
The Setup

- Using the JAVA bindings for IBM CPLEX.
The Setup

- Using the JAVA bindings for IBM CPLEX.
- Test system: Linux server with 16 cores (2666 MHz, 4 MB cache), 16 GB main memory.
The Setup

- Using the JAVA bindings for IBM CPLEX.
- Test system: Linux server with 16 cores (2666 MHz, 4 MB cache), 16 GB main memory.
- Numbers of rows & columns before CPLEX presolving.
The Setup

- Using the JAVA bindings for IBM CPLEX.
- Test system: Linux server with 16 cores (2666 MHz, 4 MB cache), 16 GB main memory.
- Numbers of rows & columns before CPLEX presolving.
- Runtime in wall-clock time.
The Setup

- Using the JAVA bindings for IBM CPLEX.
- Test system: Linux server with 16 cores (2666 MHz, 4 MB cache), 16 GB main memory.
- Numbers of rows & columns before CPLEX presolving.
- Runtime in wall-clock time.
- For delayed constraint generation, time is accumulated total.
The Good

Even small examples take several seconds to solve.

This is a very simple example!

Delayed constraint generation gives speed-up.

	Full	Delayed
rows		
cols		
time		

Andre Löffler, Thomas C. van Dijk, Alexander Wolff
Snapping Graph Drawings to the Grid Optimally
The Good

Table

	Full	Delayed
rows		
cols		
time		

- Even small examples take several seconds to solve.
- This is a very simple example!
- Delayed constraint generation gives speed-up.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff

Snapping Graph Drawings to the Grid Optimally
The Good

- Even small examples take several seconds to solve.

	Full	Delayed
rows	42 699	
cols	11 300	
time	10.6 s	
The Good

- Even small examples take several seconds to solve.
- This is a very simple example!

	Full	Delayed
rows	42 699	
cols	11 300	
time	10.6 s	
The Good

- Even small examples take several seconds to solve.
- This is a very simple example!
- Delayed constraint generation gives speed-up.

	Full	Delayed
rows	42 699	88
cols	11 300	110
time	10.6 s	0.5 s
The Bad

- We have canceled this computation after 10 minutes using the full model.
- Delayed constraint generation did cut a lot of "trivial" constraints, but...
- ...waiting more than 3 minutes is too long for a graph on 20 vertices!

	Full	Delayed
rows		
cols		
time		
We have canceled this computation after 10 minutes using the full model.

Delayed constraint generation did cut a lot of "trivial" constraints, but...

...waiting more than 3 minutes is too long for a graph on 20 vertices!

	Full	Delayed
rows		
cols		
time		
The Bad

- We have canceled this computation after 10 minutes using the full model.

	Full	Delayed
rows	323	441
cols	82	816
time	†	
The Bad

- We have canceled this computation after 10 minutes using the full model.
- Delayed constraint generation did cut a lot of “trivial” constraints, but...

	Full	Delayed
rows	323 441	15 161
cols	82 816	4 044
time	†	

Andre Löffler, Thomas C. van Dijk, Alexander Wolff
Snapping Graph Drawings to the Grid Optimally
The Bad

- We have canceled this computation after 10 minutes using the full model.
- Delayed constraint generation did cut a lot of “trivial” constraints, but...
- ...waiting more than 3 minutes is too long for a graph on 20 vertices!

	Full	Delayed
rows	323 441	15 161
cols	82 816	4 044
time	†	211.6 s
The Ugly

- Graph and bounding box are small, thus the model is small.
- Using delayed constraint generation did worsen runtime.
- Rounding this graph is very similar to finding a minimum-area drawing, which is also \(\text{NP} \)-hard.

	Full	Delayed
rows		
cols		
time		
The Ugly

- Graph and bounding box are small, thus the model is small.
- Using delayed constraint generation did worsen runtime.
- Rounding this graph is very similar to finding a minimum-area drawing, which is also NP-hard.

	Full	Delayed
rows		
cols		
time		
The Ugly

- Graph and bounding box are small, thus the model is small.

	Full	Delayed
rows	2603	
cols	916	
time	4.8 s	
The Ugly

- Graph and bounding box are small, thus the model is small.
- Using delayed constraint generation did worsen runtime.

	Full	Delayed
rows	2 603	2 271
cols	916	816
time	4.8 s	20.2 s
The Ugly

- Graph and bounding box are small, thus the model is small.
- Using delayed constraint generation did worsen runtime.
- Rounding this graph is very similar to finding a minimum-area drawing.

	Full	Delayed
rows	2,603	2,271
cols	916	816
time	4.8 s	20.2 s
The Ugly

- Graph and bounding box are small, thus the model is small.
- Using delayed constraint generation did worsen runtime.
- Rounding this graph is very similar to finding a minimum-area drawing, which is also \(\mathcal{NP} \)-hard.

	Full	Delayed
rows	2 603	2 271
cols	916	816
time	4.8 s	20.2 s
Conclusion

What we did:

- We introduce the problem Topologically Safe Snapping and provide a proof that it is NP-hard.
- We give an integer linear program to solve it, that can be modified to find minimum-area drawings of graphs as well.

Open problems:
- Find better formulations for the constraints ⇒ speed-up ILP.
- Find some heuristic algorithm.
- Questions about approximability remain open.
Conclusion

What we did:

- We introduce the problem **Topologically Safe Snapping**
What we did:

- We introduce the problem **Topologically Safe Snapping**
- and provide a proof that it is \(\mathcal{NP} \)-hard.
Conclusion

What we did:

- We introduce the problem **Topologically Safe Snapping**
- and provide a proof that it is NP-hard.
- We give an integer linear program to solve it,
What we did:

- We introduce the problem **Topologically Safe Snapping**
- and provide a proof that it is \(\mathcal{NP} \)-hard.
- We give an integer linear program to solve it,
- that can be modified to find minimum-area drawings of graphs as well.
Conclusion

What we did:

- We introduce the problem **Topologically Safe Snapping**
- and provide a proof that it is \(\mathcal{NP} \)-hard.
- We give an integer linear program to solve it,
- that can be modified to find minimum-area drawings of graphs as well.

Open problems:
Conclusion

What we did:

- We introduce the problem **Topologically Safe Snapping**
- and provide a proof that it is NP-hard.
- We give an integer linear program to solve it,
- that can be modified to find minimum-area drawings of graphs as well.

Open problems:

- Find better formulations for the constraints \Rightarrow speed-up ILP.
Conclusion

What we did:

- We introduce the problem **Topologically Safe Snapping**
- and provide a proof that it is \mathcal{NP}-hard.
- We give an integer linear program to solve it,
- that can be modified to find minimum-area drawings of graphs as well.

Open problems:

- Find better formulations for the constraints \Rightarrow speed-up ILP.
- Find some heuristic algorithm.
Conclusion

What we did:

- We introduce the problem **Topologically Safe Snapping**
- and provide a proof that it is \(\mathcal{NP}\)-hard.
- We give an integer linear program to solve it,
- that can be modified to find minimum-area drawings of graphs as well.

Open problems:

- Find better formulations for the constraints \(\Rightarrow\) speed-up ILP.
- Find some heuristic algorithm.
- Questions about approximability remain open.