Explaining anomalies in groups with characterizing subspace rules

Meghanath Macha¹ · Leman Akoglu¹

Received: 10 January 2018 / Accepted: 20 July 2018
© The Author(s) 2018

Abstract
Anomaly detection has numerous applications and has been studied vastly. We consider a complementary problem that has a much sparser literature: anomaly description. Interpretation of anomalies is crucial for practitioners for sense-making, troubleshooting, and planning actions. To this end, we present a new approach called x-PACS (for eXplaining Patterns of Anomalies with Characterizing Subspaces), which “reverse-engineers” the known anomalies by identifying (1) the groups (or patterns) that they form, and (2) the characterizing subspace and feature rules that separate each anomalous pattern from normal instances. Explaining anomalies in groups not only saves analyst time and gives insight into various types of anomalies, but also draws attention to potentially critical, repeating anomalies. In developing x-PACS, we first construct a desiderata for the anomaly description problem. From a descriptive data mining perspective, our method exhibits five desired properties in our desiderata. Namely, it can unearth anomalous patterns (i) of multiple different types, (ii) hidden in arbitrary subspaces of a high dimensional space, (iii) interpretable by human analysts, (iv) different from normal patterns of the data, and finally (v) succinct, providing a short data description. No existing work on anomaly description satisfies all of these properties simultaneously. Furthermore, x-PACS is highly parallelizable; it is linear on the number of data points and exponential on the (typically small) largest characterizing subspace size. The anomalous patterns that x-PACS finds constitute interpretable “signatures”, and while it is not our primary goal, they can be used for anomaly detection. Through extensive experiments on real-world datasets, we show the effectiveness and superiority of x-PACS in anomaly explanation over various baselines, and demonstrate its competitive detection performance as compared to the state-of-the-art.

Keywords Anomalies · Interpretability · Subspace clustering · Minimum description length · High dimensional data · Submodular optimization

Responsible editors: Jesse Davis, Elisa Fromont, Derek Greene, Björn Bringmann.

Meghanath Macha
meghanam@andrew.cmu.edu

Extended author information available on the last page of the article

Published online: 02 August 2018

Springer
1 Introduction

Given a large dataset containing normal and labeled anomalous points, how can we characterize the anomalies? What combinations of features and feature values make the anomalies stand out? Are there anomalous patterns, that is, do anomalies form groups? How many different types of anomalies (or groups) are there, and how can we describe them succinctly for downstream investigation and decision-making by analysts?

Anomaly mining is important for numerous applications in security, medicine, finance, etc., for which many detection methods exist (Aggarwal 2015). In this work, we consider a complementary problem to this vast body of work: the problem of anomaly description. Simply put, we aim to find human-interpretable explanations to already identified anomalies. Our goal is “reverse-engineering” known anomalies by unearthing their hidden characteristics—those that make them stand out.

The problem arises in a variety of scenarios, in which we obtain labeled anomalies, albeit no description of the anomalies that could facilitate their interpretation. Example scenarios are those where

(1) the detection algorithm is a “black-box” and only provides labels, due to intellectual property or security reasons [e.g., Yelp’s review filter studied in Mukherjee et al. (2013)],

(2) the detection algorithm does not produce an interpretable output and/or cannot explicitly identify anomalous patterns [e.g., ensemble detectors like bagged LOF by Lazarevic and Kumar (2005) or isolation forest by Ting et al. (2008)], and

(3) the anomalies are identified via external mechanisms (e.g., when software or compute-jobs on a cluster crash, loan customers default, credit card transactions get reported by card owners as fraudulent, products get reported by consumers as faulty, etc.). This setting also arises when security experts set up “honeypots” to attract malicious users, and later study their operating mechanisms (often manually). Examples include fake followers of honeypot Twitter accounts (Lee et al. 2011) and fraudulent bot-accounts that click honeypot ads (Dave et al. 2012).

Explaining anomalies is extremely useful in practice as anomalies are to be investigated by human analysts in almost all scenarios. Interpretation of the anomalies help the analysts in sense-making and knowledge discovery, troubleshooting and decision making (e.g., planning and prioritizing actions), and building better prevention mechanisms (e.g., policy changes).

Our work taps into the gap between anomaly detection and its end usage by analysts, and introduces x-PACS for characterizing the anomalies in high-dimensional datasets. Our emphasis is explaining the anomalies in groups.1 We model the anomalies to consist of (i) various patterns (i.e., sets of clustered anomalies) and (ii) outliers (i.e., scattered anomalies different from the rest). For example in fraud, malicious agents that follow similar strategies, or those who work together in “coalition”, exhibit similar properties and form anomalous groups. Bots deployed for e.g., click or email spam also tend to produce similar footprints as they follow the same source of

1 In this text, phrases ‘anomalous pattern’, ‘clustered anomalies’, and ‘group of anomalies’ are interchangeable.
command-and-control. At the same time, there may be multiple groups of fraudsters or bots with different strategies.

Explaining anomalies in groups has three key advantages: (1) it saves investigation time by providing a compact explanation, rather than the analyst having to go through anomalies one by one, (2) it provides insights into the characteristics of different anomaly types, and (3) importantly, it draws attention to anomalies that form patterns, which are potentially more critical as they are repetitive.

To lay out the challenges from a data mining perspective, we first introduce a list of desired properties (Desiderata 1–5) that approaches to the problem of anomaly explanation should satisfy. We then summarize our contributions.

1.1 Desiderata for anomaly description

In a nutshell, anomaly explanation methods should effectively characterize different kinds of anomalies present in the data, handle high dimensional datasets, and produce human-interpretable explanations that are distinct from normal patterns as well as succinct in length.

D1 Identifying different types of anomalies Anomalies are generated by mechanisms other than the normal. Since such mechanisms can vary (e.g., different fraud schemes), it is likely for the anomalies to form multiple patterns in potentially different feature subspaces. A description algorithm should be able to characterize all types of anomalies.

D2 Handling high-dimensionality Data instances typically have tens or even hundreds of features. It is meaningful to assume that the anomalies in a pattern exhibit only a (small) fraction of features in common. In other words, anomalies are likely to “hide” in sparse subspaces of the full space.

D3 Interpretable descriptions It is critical that the explanation of the anomalies can be easily understood by analysts. In other words, descriptions should convey what makes a group of instances anomalous in a human-interpretable way.

D4 Discriminative (or detection) power Explanations of anomalies should not also be valid for normal points. In other words, descriptions should be discriminative and separate the anomalies from the normal points sufficiently well. As a result, they could also help detect future anomalies of the same type.

D5 Succinct descriptions It is particularly important to have simple and concise representations, for ease of visualization and avoiding information overload. This follows the Occam’s razor principle.

1.2 Limitations of existing techniques

Providing interpretable explanations for anomalies is a relatively new area of study compared to anomaly detection. However, the problem has similarities to description based techniques for imbalanced datasets. Almost all existing work in the anomaly detection literature assume anomalies to be scattered, and try to explain them one
at a time (Dang et al. 2013, 2014; Keller et al. 2013; Knorr and Ng 1999; Kuo and Davidson 2016; Pevný and Kopp 2014). Related work on collective data description (Görnitz et al. 2009; Tax and Duin 2004), including rare class characterization (He and Carbonell 2010; He et al. 2010), assume a single pattern and/or do not look for subspaces. Other closely related areas are subgroup discovery and inductive rule learners. Subgroup discovery techniques (Gamberger and Lavrac 2002; Herrera et al. 2011; Klösgen 1996; Klösgen and May 2002; Loekito and Bailey 2008; Vreeken et al. 2011) aim to describe individual classes while inductive rule learners (Cohen 1995; Clark and Niblett 1989; Deng 2014; Friedman and Popescu 2008; Hara and Hayashi 2016) focus on describing multiple classes with the aim of generalization rather than explanation. Another related line of work involves techniques for explaining black-box classifiers (Fong and Vedaldi 2017; Koh and Liang 2017; Montavon et al. 2018; Ribeiro et al. 2016) where the emphasis is on explaining the prediction of a single instance rather than a group of instances. Moreover, none of these work has an explicit emphasis on succinct, minimal descriptions.

To the best of our knowledge and as we expand in related work in Sect. 5, there is no existing work that provides a principled and general approach to the anomaly description problem that meet all of the goals in our desiderata adequately. (See Table 9 for an overview and comparison of related work.)

1.3 Summary of contributions

Our work sets out to fill the gap, with the following main contributions:

- **Desiderata for Anomaly Description** We introduce a new desiderata and target five rules-of-thumb (D1–D5) for designing our approach.

- **Description-in-Groups (DiG) Problem** We formulate the explanation problem as one of identifying the various groups that the anomalies form (D1) within low-dimensional subspaces (D2).

- **Description Algorithm** x-PACSW We introduce a new algorithm that produces interpretable rules (D3)—intervals on the features in each subspace, that are also discriminative (D4)—characterizing the anomalies in the group within a subspace but as few normal points as possible.

- **A New Encoding Scheme** We design a new encoding-based objective for describing the anomalies in groups, based on the minimum description length (MDL) principle (Rissanen 1978). Through non-monotone submodular optimization we carefully select the minimal subspace rules (D5) that require the fewest ‘bits’ to collectively describe all the anomalies.

Reproducibility All of our code and datasets are open-sourced at http://cmuxpacs.github.io/.
Explaining anomalies in groups

2 Overview and problem statement

In a nutshell, our goal is to identify a few, small micro-clusters of anomalies hidden in arbitrary feature subspaces that collectively and yet succinctly represent the anomalies and separate them from the normal points. Specifically, our proposed x-PACS finds a small set of low-dimensional hyper-ellipsoids (i.e., micro-clusters corresponding to anomalous patterns each enclosing a subset of the anomalies), and reveals scattered anomalies (i.e., outliers not contained in any ellipsoid).

Features that are part of the subspace in which a hyper-ellipsoid lies constitute its characterizing subspace. Ranges of values these features take are further characterized by the location (center and radii) of a hyper-ellipsoid within the subspace. Each hyper-ellipsoid is simply a “pack of anomalies” (hence the name x-PACS). The rest of the paper uses ‘hyper-ellipsoid’ or ‘pack’ in reference to anomalous patterns.

2.1 Example x-PACS input–output

In Fig. 1 we show an example of the input and output of x-PACS. We consider the face images dataset, in which x-PACS identifies a minimum-description packing with two anomalous patterns and an outlier. In Fig. 1a, we visualize the dataset, where pixels are dimensions/features, that contains 9 labeled ‘anomalies’: [images 1–8] of 2 types (people w/ sunglasses or people w/ white t-shirt or both) + [image 9] an outlier (one person w/ beard). We also show [image 10], which is representative of 82 normal samples (people w/ black t-shirt w/out beard or sunglasses). In Fig. 1b, we display the anomalous patterns found by x-PACS (characterizing subspaces are 1-d, feature rules/intervals shown at the bottom with arrows—the smaller, the darker the pixel) together explain anomalies 1–8 succinctly; 1-d pack (left) encloses images {1–6}, 1-d pack (right) encloses images {1,2,5,7,8}. Corresponding features/pixels highlighted on enclosed images. In Fig. 1c, we plot the description length (in bits, see Sect. 3.3.1) of anomalies individually (0 packs), versus w/ 1–5 packs. x-PACS automatically finds

Fig. 1 (Best in color) Example x-PACS input–output. a [1–9]: anomalies, and [10]: typical normal image. b 2 anomalous patterns found by x-PACS. c description cost versus # packs

2 X- refers to the number of packs, which we automatically identify via our data encoding scheme (Sect. 3.3). We use this naming convention after X- MEANS, Pelleg and Moore (2000), which finds the number of k-means clusters automatically in an information-theoretic way.
the best number of patterns (=2) that describe the anomalies and reveals the (unpacked) outlier [image 9].

2.2 Main steps

Our x-PACS consists of three main steps, each aiming to meet various criteria in our desiderata (D1–D5).

1. First we employ subspace clustering to automatically identify multiple clusters of anomalies (D1) embedded in various feature subspaces. Advantages of subspaces are twofold: handling “curse of dimensionality” (D2) and explaining each pattern with only a few features (D5).

2. In the second step, we represent anomalies in each subspace cluster by an axis-aligned hyper-ellipsoid. Ellipsoids, in contrast to hyperballs, allow for varying spread of anomalies in each dimension. Axis-alignment ensures interpretable explanation with original features, which typically have real meaning to a user (D3). Moreover, we introduce a convex formulation to ensure that the ellipsoids are “pure” and enclose very few non-anomalous points, if at all, such that the characterization is discriminative (D4).

3. Final step is summarization, where we strive to generate minimal descriptions for ease of comprehension (D5). To decide which patterns describe the anomalies most succinctly, we introduce an encoding scheme based on the Minimum Description Length (MDL) principle (Rissanen 1978). Our encoding-based objective lends itself to non-monotone submodular function maximization. Using an algorithm with approximation guarantees we identify a short list of patterns (hyper-ellipsoids) that are (i) compact with small radii, i.e., range of values that anomalies take per feature in the characterizing subspace is narrow; (ii) non-redundant, which “pack” (i.e., enclose) mostly different anomalies in various subspaces, and (iii) pure, which enclose either none or only a few normal points. Importantly, the necessary number of packs is automatically identified based on the MDL criterion.

Remark Note that while x-PACS identifies descriptive patterns of the anomalies, those can also be used for detection. Each pattern, along with its characterizing features and its enclosing boundary within that subspace can be seen as a discriminative **signature** (or set of rules), and can be used to label future instances—a new instance that falls within any of the **packs** is labeled as anomalous. Instead of a single signature or an abstract classifier function or model, however, x-PACS identifies multiple, interpretable signatures.

2.3 Notation and definitions

Input dataset is denoted with $\mathcal{D} = \{(x_1, y_1), \ldots, (x_m, y_m)\}$, containing m points in d-dimensions, where \mathcal{F} depicts the feature set. A subset $\mathcal{A} \subset \mathcal{D}$ of points are labeled as $y_{\mathcal{A}} = \text{‘anomalous’}$, $|\mathcal{A}| = a$. The rest are $y_{\mathcal{D}\setminus\mathcal{A}} = \text{‘normal’}$ points, denoted by \mathcal{N}, $|\mathcal{N}| = n$, $a + n = m$.

Springer
Our goal is to find “enclosing shapes”, called packs, that collectively contain as many of the anomalies as possible. While arbitrary shapes would allow for higher flexibility, we restrict these shapes to the hyper-ellipsoids family for ease of interpretation. This is not a strong limitation, however, since anomalous patterns are expected to form compact micro-clusters in some feature subspaces, rather than lie on arbitrarily shaped manifolds. A pack is formally defined as follows.

Definition 1 (pack) A pack \(p_k \) is a hyper-ellipsoid in a feature subspace \(\mathcal{F}_k \subseteq \mathcal{F} \), \(|\mathcal{F}_k| = d_k\), characterized by its center \(\mathbf{c}_k \in \mathbb{R}^{d_k} \) and matrix \(\mathbf{M}_k \in \mathbb{R}^{d_k \times d_k} \) where

\[
p_k(\mathbf{c}_k, \mathbf{M}_k) = \left\{ \mathbf{x} | (\mathbf{x} - \mathbf{c}_k)^T \mathbf{M}_k^{-1} (\mathbf{x} - \mathbf{c}_k) \leq 1 \right\}.
\]

We denote the anomalies that \(p_k \) encloses by \(\mathcal{A}_k \subseteq \mathcal{A} \), and the normal points that it encloses by \(\mathcal{N}_k \subseteq \mathcal{N} \).

Definition 2 (packing) A packing \(\mathcal{P} \) is a collection of packs as defined above; \(\mathcal{P} = \{p_1(\mathbf{c}_1, \mathbf{M}_1), \ldots, p_K(\mathbf{c}_K, \mathbf{M}_K)\} \) with size \(K \).

2.4 Problem statement

Based on the above definitions, our description-in-groups problem is formally:

Problem 1 Given a dataset \(\mathcal{D} \in \mathbb{R}^{m \times d} \) containing \(a \) anomalous points in \(\mathcal{A} \) and \(n \) non-anomalous or normal points in \(\mathcal{N} \), \(a \ll n \);

Find a set of anomalous patterns (packs) \(\mathcal{P} = \{p_1, p_2, \ldots, p_K\} \), each containing/enclosing a subset of the anomalies \(\mathcal{A}_k \), where \(\bigcup_{1 \leq k \leq K} \mathcal{A}_k \subseteq \mathcal{A} \), such that \(\mathcal{P} \) provides the minimum description length \(L(\mathcal{A} | \mathcal{D}, \mathcal{P}) \) (in bits) for the anomalies in \(\mathcal{D} \). (We introduce our MDL-based encoding scheme and cost function \(L(\cdot) \) later in Sect. 3.3.)

Note that while packs enclose different subsets of anomalies in general, any two packs can have some anomalous points in common (since an anomaly can be explained in different ways), i.e., \(\mathcal{A}_k \cap \mathcal{A}_l \neq \emptyset \ \exists k, l \). Packs can also share common features in their subspaces (as different types of anomalies may share some common characteristics), i.e., \(\mathcal{F}_k \cap \mathcal{F}_l \neq \emptyset \ \exists k, l \). Moreover, the enclosing boundary of a pack may also contain some non-anomalous points. These issues related to the redundancy and purity of the packs would play a key role in the “description cost” of the anomalies. When it comes to identifying a small set of packs out of a list of candidates, we formulate an encoding scheme as a guiding principle to selecting the smallest, least redundant, and the purest collection of packs that would yield the shortest description of all the anomalies.

3 x-PACS: explaining anomalies in groups

Next we present the details of x-PACS, which consists of three building blocks:

Section 3.1 Subspace Clustering: Identify clusters of anomalies in various subspaces
Section 3.2 Refinement: Transform box-like subspace clusters to pure and compact hyper-ellipsoids (or packs)

Section 3.3 Summarization: Select subset of packs that yields the minimum description length of anomalies

We present our algorithms for each of these next.

3.1 Subspace clustering: finding hyper-rectangles

In our formulation, we allow for anomalies to form multiple patterns, intuitively each containing anomalies of a different kind. We model anomalous patterns as compact “micro-clusters” in various feature subspaces.

In the first step, we use a subspace clustering algorithm, similar to CLIQUE by Agrawal et al. (1998) and ENCLUS by Cheng et al. (1999), that discover subspaces with high-density anomaly clusters in a bottom-up, Apriori fashion. There are two main differences that we introduce. First, while prior techniques focus on a density (minimum count or mass) criterion, we use two criteria: (i) mass and (ii) purity, in order to find clusters that respectively contain many anomalous points, but also a low number of normal points. Second, we do not enforce a strict grid over the features but find varying-length high-density intervals through density estimation in a data-driven way.

Simply put, the search algorithm starts with identifying 1-dimensional intervals in each feature that meet a certain mass threshold. These intervals are then combined to generate 2-dimensional candidate rectangles. In general, k-dimensional hyper-rectangles are generated by merging (k − 1)-dimensional ones that meet the mass criterion in a hierarchical fashion. Thanks to the monotonicity property of mass, the search space is pruned efficiently. Hyper-rectangles generated during the course of the bottom-up algorithm that meet both the mass and purity criteria are reported as clusters. A hyper-rectangle is formally defined as follows.

Definition 3 (hyper-rectangle) Let \(\mathcal{F} = f_1 \times f_2 \times \ldots \times f_d \) be our original d-dimensional numerical feature space. A hyper-rectangle \(R = (s_1, s_2, \ldots, s_{d'}) \), \(d' \leq d \), resides in a space \(f_{t_1} \times f_{t_2} \times \ldots \times f_{t_{d'}} \) where \(t_i < t_j \) if \(i < j \), and has \(d' \) sides, \(s_z = [lb_z, ub_z] \), that correspond to individual intervals with lower and upper bounds in each dimension. A point \(x = (x_1, x_2, \ldots, x_d) \) is said to be contained or enclosed in hyper-rectangle \(R = (s_1, s_2, \ldots, s_d) \), if \(lb_z \leq x_z \leq ub_z \) \(\forall z = \{1, \ldots, d'\} \).

The outline of our subspace clustering is in Algorithm 1. It takes dataset \(D \) as input with anomalous and normal points, a mass threshold \(ms \) equal to the minimum number of required anomalous points and a purity threshold \(\mu \) equal to the maximum number of allowed normal points to be contained inside, and returns hyper-rectangles that meet the desired criteria.

To begin (line 1), we find 1-dimensional candidate hyper-rectangles, equivalent to intervals in individual features. To create promising candidate intervals initially, we find dense intervals with many anomalous points. To this end, we perform kernel den-
Explaining anomalies in groups

Algorithm 1 **SUBCLUS** (D, ms, μ)

Input: dataset $D = A \cup N \in \mathbb{R}^{m \times d}$ with labeled anomalous and normal points, mass threshold $ms \in \mathbb{Z}$, purity threshold $\mu \in \mathbb{Z}$

Output: set of hyper-rectangles $R = \{R_1, R_2, \ldots\}$ each containing min. ms anomalous & max. μ normal points

1: Let $R^{(k)}$ denote k-dimensional hyper-rectangles. Initialize $R^{(1)}$ by kernel density estimation with varying quantile thresholds in $q = [80, 85, 90, 95]$, set $k = 1$
2: **for each** hyper-rectangle $R \in R^{(k)}$ do
3: 3: if $\text{mass}(R) \geq ms$ then
4: 4: if $\text{impurity}(R) \leq \mu$ then $R^{(k)}_{\text{pure}} = R^{(k)}_{\text{pure}} \cup R$
5: 5: else $R^{(k)}_{\text{pure}} = R^{(k)}_{\text{pure}} \cup R$
6: 6: end if
7: 7: end for
8: $R = R \cup R^{(k)}_{\text{pure}}$
9: $R^{(k+1)} := \text{generateCandidates}(R^{(k)}_{\text{pure}} \cup R^{(k)}_{\text{pure}})$
10: if $R^{(k+1)} = \emptyset$ then return R
11: $k = k + 1$, go to step 2

Fig. 2 Identifying candidate hyper-rectangles in 1-d (equivalent to intervals) by KDE for varying quantile thresholds q

...density estimation (KDE\(^3\)) on the anomalous points and extract the intervals of significant peaks.\(^4\) This is achieved by extracting the contiguous intervals in each dimension with density larger than the q-th quantile of all estimated densities. q is varied in $[80, 95]$ to obtain candidate intervals of varying length. An illustration is given in Fig. 2. Since multiple peaks may exist, multiple intervals can be generated per dimension as q is varied.

At any given level (or iteration) of the Apriori-like SUBCLUS algorithm, we scan all the candidates at that level (line 2–6) and filter out the ones that meet the mass criterion (line 3). Those that pass the filter are later merged to form candidates for the next level. Others with mass less than required are discarded, with no implications on

3 KDE involves two parameters—the number of points sampled to construct the smooth curve and the kernel bandwidth. We set the sample size to 512 points and use the Silverman’s rule of thumb (Silverman 2018) to set the bandwidth.

4 For categorical features, we would instead use histogram density estimation.
accuracy. The correctness of the pruning procedure follows from the downward closure property of the mass criterion: for any \(k \)-dimensional hyper-rectangle with mass \(\geq ms \), its projections in any one of \((k-1)\)-dimensions must also have mass \(\geq ms \).

At each level, we also keep track of the hyper-rectangles that meet both the mass and the purity criteria (line 4). Purity exhibits the upward closure property: for any \((k-1)\)-dimensional hyper-rectangle that is pure (i.e. contains \(\leq \mu \) normal points), any \(k \)-dimensional hyper-rectangle that subsumes it is also pure. This property could help us stop growing pure candidates by excluding them from the candidate generation step and speeding up the termination. While correct, however, such early-termination would prevent us from finding even purer hyper-rectangles later up in the hierarchy. To obtain as many candidate packs as possible, we continue our search for all hyper-rectangles that meet the mass criterion, and use the purity criterion for selecting the ones to be output (line 7).

The algorithm proceeds level by level. Having identified \(k \)-dimensional hyper-rectangles that satisfy the mass criterion, denoted \(R_{\geq ms}^{(k)} = R_{\text{pure}}^{(k)} \cup R_{\text{not-pure}}^{(k)} \) (respectively for pure and not-pure sets), \((k+1)\)-dimensional candidates are generated (line 8) in two steps: join and prune. The join step combines hyper-rectangles having first \((k-1)\) dimensions as well as sides in common. That is, if \((s_{u_1}, s_{u_2}, \ldots, s_{u_k})\) and \((s_{v_1}, s_{v_2}, \ldots, s_{v_k})\) are two \(k \)-dimensional hyper-rectangles in \(R_{\geq ms}^{(k)} \), we require \(u_i = v_i \) and \(s_{u_i} = s_{v_i} \) \(\forall i \in \{1, \ldots, (k-1)\} \) and \(u_k < v_k \) to form candidate \((k+1)\)-dimensional hyper-rectangles of the form \((s_{u_1}, s_{u_2}, \ldots, s_{u_k}, s_{v_k})\). The prune step discards all \((k+1)\)-dimensional hyper-rectangles that have a \(k \)-dimensional projection outside \(R_{\geq ms}^{(k)} \). Again, the correctness of this procedure follows from the downward closure property of mass.

Choice of \((ms, \mu)\): To obtain hyper-rectangles of varying size and quality, packing potentially different anomalies (and non-anomalies), we run Algorithm 1 with “conservative” parameters, i.e., low \(ms \) and high \(\mu \). As such, to generate a good volume of candidates, we set \((ms, \mu)\) as the median of the number of anomalous points, normal points from the 1-dimensional hyper rectangles. Setting a higher \(ms \) and lower \(\mu \) would prune more (and potentially undesirably many) candidates in exchange of reduced time. We use the median to strike a balance between the quality and running time. As we describe later in Sect. 3.3, all these candidate packs are forwarded to a selection algorithm, which carefully chooses the subset that yields the shortest description of all the anomalies. As such, even though there are parameters input to Algorithm 1, we do not expect them from the user, rather we vary and set those so as to generate various candidate packs. Having more candidates is likely to increase our chance of finding a combination that explains the anomalies the best (i.e., fewest bits).

To conclude, we note that other subgroup discovery techniques designed to handle numerical attributes, such as SubgroupMiner by Klösgen and May (2002) or MIDOS by Wrobel (1997), can be used as an alternative to Algorithm 1; provided necessary modifications are incorporated to enforce the purity criterion.
3.2 Refining hyper-rectangles into hyper-ellipsoids

Grid or interval-based subspace clustering algorithms are limited to finding box-shaped rectangular clusters, and they may miss clusters inadequately oriented or shaped. To allow more flexibility, we refine each hyper-rectangle found by SubClus into a hyper-ellipsoid (which we call a pack, recall Definition 1). An ellipsoid with center c is written as

$$p(c, M) = \{ x \mid (x - c)^T M^{-1} (x - c) \leq 1 \}$$

for positive semi-definite matrix $M > 0$.

Given a hyper-rectangle R, let us denote the anomalous points it contains by $x_i \in \mathcal{A}$ for $i = 1, \ldots, a_R$ (see Denition 3) and anomalous points outside R by $x_j \in \mathcal{A}$ for $j = a_R + 1, \ldots, a$. The normal points are denoted by $x_l \in \mathcal{N}$ for $l = 1, \ldots, n$.

When we convert a given R to an ellipsoid, we would like all x_i’s (anomalous points) it already contains to reside inside the ellipsoid. In contrast, we would like all x_l’s (normal points) to remain outside the ellipsoid. The refinement is achieved by enclosing as many as the other anomalous points (x_j’s) that are in the vicinity of R inside the ellipsoid as well. Those would be the points that were left out due to axis-aligned interval-based box shapes that hyper-rectangles are limited to capture. An illustration is given in Fig. 3.

First we describe our approach for x_i’s and x_j’s, the positive and negative points that we respectively aim to include and exclude. The goal is to find a discriminating function $h(\cdot)$ where $h(x_i) > 0$ and $h(x_j) < 0$. To this end, we use the quadratic function $h(x) = x^T U x + w^T x + w_0$, with parameters $2 = \{ U, w, w_0 \}$. We solve for 2 by setting up an optimization problem based on a semi-deinite program (SDP), that satisfies $x_i^T U x_i + w^T x_i + w_0 > 0$ for all i and $x_l^T U x_l + w^T x_l + w_0 < 0$ for all l. Most SDP solvers do not work well with strict inequalities, thus we modify to a non-strict feasibility problem by adding a margin, and solve (for each R):
\[
\begin{align*}
\min_{U, w, w_0, \varepsilon} & \quad \sum \varepsilon_i + \lambda \sum \varepsilon_l \\
\text{s.t.} & \quad x_i^T U x_i + w^T x_i + w_0 \geq 1 - \varepsilon_i, \quad i = 1, \ldots, a_R \\
& \quad x_j^T U x_j + w^T x_j + w_0 \geq 1 - \varepsilon_j, \quad j = a_R + 1, \ldots, a \\
& \quad x_l^T U x_l + w^T x_l + w_0 \leq -1 + \varepsilon_l, \quad l = 1, \ldots, n \\
& \quad U \preceq -I, \quad \varepsilon_i \geq 0, \quad \varepsilon_l \geq 0
\end{align*}
\]

where \(U \) is a negative semi-definite matrix. We can show that \((U, w, w_0)\) define an ellipsoidal enclosing boundary, wrapping \(x_i\)'s inside and leaving \(x_l\)'s outside, for which we allow some slack \(\varepsilon \). \(\lambda \) is to account for the imbalance between the number of positive and negative samples. The optimization problem is convex, which we solve using an efficient off-the-shelf solver, where each hyper-rectangle output by SubClus can be processed independently.

Having set up our refinement step as a convex quadratic discrimination problem, we next describe how we incorporate \(x_j\)'s (anomalous points outside \(R \)) into the optimization. Intuitively, we would like to include as many other anomalies as possible inside the ellipsoid, but only those that are nearby \(x_i\)'s and not necessarily those that are far away. In other words, we only want to “recover” the \(x_j\)'s surrounding a given \(R \) and not grow the ellipsoid to include far away \(x_j\)'s to the extent that it would end up including many normal points as well.

To this end, we treat \(x_j\)'s similar to \(x_i\)'s but incur a lower penalty of excluding an \(x_j\) than excluding an \(x_i\) or including an \(x_l\). The optimization is re-written as

\[
\begin{align*}
\min_{U, w, w_0, \varepsilon} & \quad \sum \varepsilon_i + \alpha \sum \varepsilon_j + \lambda \sum \varepsilon_l \\
\text{s.t.} & \quad x_i^T U x_i + w^T x_i + w_0 \geq 1 - \varepsilon_i, \quad i = 1, \ldots, a_R \\
& \quad x_j^T U x_j + w^T x_j + w_0 \geq 1 - \varepsilon_j, \quad j = a_R + 1, \ldots, a \\
& \quad x_l^T U x_l + w^T x_l + w_0 \leq -1 + \varepsilon_l, \quad l = 1, \ldots, n \\
& \quad U \preceq -I, \quad \varepsilon_i \geq 0, \quad \varepsilon_j \geq 0, \quad \varepsilon_l \geq 0
\end{align*}
\]

Here, setting \(\alpha \) (penalty constant for \(x_j\)'s) smaller than both 1 and \(\lambda \) is likely a good choice. However, we do not know which \((\alpha, \lambda)\) pair would provide a good trade-off in general. Therefore, we sweep over a grid of possible values\(^5\) and generate various ellipsoids, as illustrated for the example case in Fig. 3. A last but important step is to sweep over the collection to discard dominated packs. Specifically, we output only the set of \(p\)'s in the Pareto frontier w.r.t. mass versus purity. In this set there are no two packs where one strictly dominates the other—by enclosing both higher number of anomalous points (higher mass) and lower number of normal points (higher purity).

We refine a hyper-rectangle \(R = (s_1, s_2, \ldots, s_d') \) into an ellipsoid within the same subspace, in other words, \(U \in \mathbb{R}^{d' \times d'} \) and \(w \in \mathbb{R}^{d'} \). For interpretability, we constrain \(U \) to be diagonal to obtain axis-aligned ellipsoids as shown in Fig. 3, since the original features have meaning to the user.\(^6\)

\(^5\) We use \(\alpha = \{10^{-6}, 10^{-5}, \ldots, 1\} \times \lambda = \{10^{-3}, 10^{-2}, \ldots, 10^3\} \).

\(^6\) If the anomalous patterns are to be used for detection, we estimate a full \(U \) matrix (i.e., possibly rotated ellipsoid).

\(\odot \) Springer
Our explanation consists of one rule on each feature in the subspace. A feature rule is a ± radius interval around the ellipsoid’s center. Formally:

Definition 4 (Feature rules) Given an axis-aligned ellipsoid \(p(c, M) \) in a subspace \(f_1 \times \ldots \times f_{d'} \), a rule on feature \(t_z \) is an interval \((c[z] - \text{radius}_z, c[z] + \text{radius}_z) \), where \(\text{radius}_z = \sqrt{M_{zz}} \), \(\forall z = \{1, \ldots, d'\} \). Conjunction of all \(d' \) feature rules constitute the signature of \(p \).

To wrap up, we show how to compute \(c \) and \(M^{-1} \) from \((U, w, w_0)\) to obtain the center and radii for an ellipsoid, using which we generate the feature rules.

Obtaining \(c \): At the boundary of the ellipsoid, \(h(x) = 0 \) and inside \(h(x) > 0 \). Center is the point where \(h(x) \) is the maximum. Hence;

\[
c := \max_x x^T U x + w^T x + w_0 = -\frac{1}{2} U^{-1} w
\]

Obtaining \(M^{-1} \):

\[
x^T (-U)x - w^T x - w_0 < 0 \\
x^T (-U)x + 2c^T U x - w_0 < 0 \quad \text{using Eq. (1)} \\
(x - c)^T (-U)(x - c) + c^T U c - w_0 < 0 \\
(x - c)^T \frac{-U}{(w_0 - c^T U c)}(x - c) < 1 \implies M^{-1} = \frac{-U}{(w_0 - c^T U c)}
\]

Obtaining radii:

\[
(x - c)^T M^{-1} (x - c) = \sum_{z=1}^{d'} (x[z] - c[z])^2 (M^{-1})_{zz} \leq 1
\]

To compute radius in dimension \(z \), we find point \(x \) where \(x[z'] = c[z'] \), \(\forall z' \neq z \), and \((x[z] - c[z])^2 \frac{1}{M_{zz}} = 1 \). It is easy to see that \(\text{radius}_z = |x[z] - c[z]| = \sqrt{M_{zz}} \).

3.3 Summarization: pack selection for shortest description

Our ultimate goal is to find anomalous patterns that explain or summarize the given anomalies in the dataset as succinctly as possible. Intuitively, “good” patterns enclose similar groups of points and hence help compress the data. To this end, we formulate our summarization objective by an encoding scheme and then devise an algorithm that carefully chooses a few patterns, in particular packs produced in Sect. 3.2, that yield the minimum encoding length. In the following, we describe our encoding scheme, followed by the proposed subset selection algorithm.

3.3.1 MDL formulation for encoding a given packing

Our encoding scheme involves a Sender (us) and a Receiver (remote). We assume both of them have access to dataset \(D \in \mathbb{R}^{m \times d} \) but only the Sender knows the set
of anomalous points A. The goal of the Sender is to transmit (over a channel) to the Receiver the information about which points are the anomalies using as few bits as possible. Naively encoding all feature values of every anomalous point individually would cost $|A|d\log_2 f$ bits.

The idea is that by encoding the enclosing boundary of packs (ellipsoids) found in Sect. 3.2, we (the Sender) could have the Receiver identify the anomalies in groups, which could save bits.

Obviously we would want to avoid “noisy” packs that include many normal points—that would necessitate spending extra bits for encoding those exceptions (i.e., “telling” the Receiver which points in a pack are not anomalies). Moreover, we would want to avoid using packs that encode largely overlapping group of anomalies, as bits would be wasted to redundancy. While identifying the packing that yields the fewest bits is the main problem, we first lay out our description length objective, for a given packing $P = \{ p_1(c_1, M_1), \ldots, p_K(c_K, M_K) \}$:

- Transmit number of packs $= \log^* K$\(^8\)
- For each pack $p_k \in P$:
 - Transmit number of dimensions $= \log^* d_k$, $d_k \leq d$
 - Transmit identity of dimensions $= \log_2 \binom{d}{d_k}$
 - Transmit the center $c_k = d_k \log_2 f$
 - Transmit $M_k = d_k^2 \log_2 f$ ($d_k \log_2 f$ if diagonal)
 - Transmit exceptions (i.e., non-anomalies in p_k):
 - number of normal points in $p_k = \log^* n_k$
 - identity of normal points; by forming all possible subsets of size n_k of m_k (total number of points in p_k) $= \log_2 \binom{m_k}{n_k}$ (based on a canonical ordering of subsets, where points are ordered by distance to center)\(^9\)

Total cost of encoding with packing P is then

$$\ell(P) = \log^* K + \sum_{k=1}^{K} L(p_k), \quad \text{where}$$

$$L(p_k) = \log^* d_k + \log_2 \binom{d}{d_k} + d_k(d_k + 1) \log_2 f + \log^* n_k + \log_2 \binom{m_k}{n_k} \quad (4)$$

3.3.2 MDL objective function

Our objective is to find a packing, that is to identify a subset of packs, which provides the minimum encoding length. However, we do not assume that all anomalies would be

\(^7\) Value of f is chosen according to the required floating point precision in the normalized feature space \mathbb{R}^d.

\(^8\) Cost of encoding an arbitrary integer K is $L_N(K) = \log^*(K) + \log_2(c)$, where $c \approx 2.865064$ and $\log^*(K) = \log_2(K) + \log_2(\log_2(K)) + \ldots$ summing only the positive terms (Rissanen 1978). We drop $\log_2(c)$ as it is constant for all packings.

\(^9\) Another way to identify the normal points in a pack: sort points by their distance to center and send the index of normal points in this list of length m_k. This costs more for $n_k \geq 2$: $n_k \log_2 m_k > \log_2 \frac{m_k}{n_k} > \log_2 \binom{m_k}{n_k}$.

© Springer
explained by a packing, i.e., \(\bigcup_k A_k \subseteq A \), as there could be anomalous points (outliers) that do not belong in any pattern but lie away from the others. The outliers \(A \setminus \bigcup_k A_k \) are yet to be encoded individually.

Description length of all anomalies \(A \) with packing \(P \) is

\[
L(A|D, P) = \left(|A| - \sum_{p \in P} |A_p| \right) d \log_2 f + \left[\log^* |P| + \sum_{p \in P} L(p) \right]
\]

where the second term [in brackets] is \(\ell(P) \): cost of transmitting \(P \) (and the anomalies covered by it) by Eq. (3), and the first term is the cost of individually encoding the remaining anomalies not covered by \(P \).

Notice that the objective of finding a subset \(S \) that minimizes the description length is equivalent to selecting a packing that reduces the naïve encoding cost of \(|A|d \log_2 f \) the most, i.e.:

\[
\max_S R_\ell(S) = \bigcup_{p \in S} A_p |c_u - \log^* |S| - \sum_{p \in S} L(p) + \left[\log^* |E| + \sum_{p' \in E} L(p') \right]
\]

where \(c_u = d \log_2 f \) is a constant unit-cost to encode a point, and set \(E \) denotes all the ellipsoids returned from the second part (refinement), as such, \(S \subseteq E \). First three terms of the objective capture the overall reduction in encoding cost due to the packing with ellipsoids in \(S \). We can read it as aiming to find a packing that covers as many anomalies as possible (expressive), while having small model cost (low complexity)—containing only a few packs in low dimensions. The constant term [in brackets] ensures that \(R_\ell(S) \) is a non-negative function.

3.3.3 Subset selection algorithm for MDL packing

To devise a subset selection algorithm, we start by studying the properties of our objective function \(R_\ell \), such as submodularity and monotonicity that could enable us to use fast heuristics with approximation guarantees. Unfortunately, \(R_\ell \) is not submodular as it is given in Eq. (5). However, with a slight modification where we fix the solution size (number of output packs) to \(|S| = K \), such that the second term is constant \(\log^* K \), the function becomes submodular, as we show below.

Theorem 1 Our cardinality-constrained objective set function \(R'_\ell(S) \) is submodular. That is, for all subsets \(S \subseteq T \subseteq E \) and packs \(p \in E \setminus T \), it holds that

\[
R'_\ell(S \cup \{p\}) - R'_\ell(S) \geq R'_\ell(T \cup \{p\}) - R'_\ell(T) .
\]

Proof Let \(\text{Cover}(S) = \bigcup_{p \in S} A_p \) return the number of anomalies contained by the union of packs in \(S \). Canceling the equivalent terms and constants on each side of the inequality, we are left with \(\text{Cover}(S \cup \{p\}) - \text{Cover}(S) \geq \text{Cover}(T \cup \{p\}) - \text{Cover}(T) \).
The inequality follows from the submodularity property of the \(\text{Cover} \) function.

It is also easy to see that \(R_\ell' \) is not monotonic.

Theorem 2 Our modified objective set function \(R_\ell'(S) \) is non-monotonic. That is, there exists \(S \subseteq T \) where \(R_\ell'(T) < R_\ell'(S) \).

Proof For \(S \subseteq T \), \(\text{Cover}(T) \geq \text{Cover}(S) \) due to monotonicity of \(\text{Cover} \) function. On the other hand, description cost of packs in \(T \) is \(\sum_{p \in T} L(p) = \sum_{p' \in S} L(p') + \sum_{p'' \in T \setminus S} L(p'') \) and hence is strictly greater than those of \(S \). As such, for two packings \(S \subset T \) with the same coverage, we would have \(R_\ell'(T) < R_\ell'(S) \).

Maximizing a submodular function is NP-hard as it captures problems such as Max-Cut and Max k-cover (Gharan and Vondrák 2011). Nevertheless the structure of submodular functions makes it possible to achieve non-trivial results. In particular, there exist approximation algorithms for non-monotone submodular functions that are non-negative, like our objective function \(R_\ell' \). In particular, one can achieve an approximation factor of 0.41 for the maximization of any non-negative non-monotone submodular function without constraints (Gharan and Vondrák 2011).

In our case, we need to solve our objective under the cardinality (i.e., subset size) constraint, where \(|S| \) is fixed to some \(K \) (since only then \(R_\ell \) is submodular). To this end, we use the RANDOM-GREEDY algorithm by Buchbinder et al. 2014, which provides the best known guarantee for the cardinality-constrained setting, with approximation factors in \([0.356, \frac{1}{2} - o(1)]\). The algorithm is quite simple; at each step of \(K \) iterations, it computes the marginal gain of adding a single pack \(p \in E \setminus S \) to \(S \) and selects one among the top \(K \) highest-gain packs uniformly at random.

Choice of \(K \): We identify \(K \), the number of packs to describe the anomalies, automatically, best of which is unknown apriori. Concretely, we solve to obtain subset \(S_K^* \) each time for a fixed \(K = |S_K^*| = 1, 2, \ldots, a \), and return the solution with the largest objective value of \(R_\ell(S_K^*) = R_\ell'(S_K^*) - \log^* K \) in Eq. (5). This is analogous to model selection with regularization for increasing model size.

3.4 Overall algorithm x-PACS

Algorithm 2 puts together all three components of x-PACS as described through Sects. 3.1–3.3. We conclude this section with the computational complexity analysis.

Computational complexity We analyze the complexity of each part separately. Main computation of Sect. 3.1 is the \textsc{SubClus} algorithm. Preliminary KDE to create 1-d intervals is independently done per dimension in parallel, only on the anomalous points. We use a constant number of sampling locations, as such, KDE complexity is \(O(a) \) where \(a \) is the number of anomalies. \textsc{SubClus} then proceeds level-by-level and makes as many passes over the data as the number of levels. For a \(d' \) dimensional hyper-rectangle that meets the mass and purity criteria, all its \(2^{d'} \) projections in any

10 Intuitively, this is where \(R_\ell \) drops when we add a new pack to \(S \) (with positive cost) that does not cover any new anomalies.
Algorithm 2 x-PACS ($A \cup N$): Explaining Anomalous Patterns

Input: dataset $D = A \cup N$ with labeled anomalies

Output: set of anomalous patterns (represented as hyper-ellipsoids)

$$\mathcal{P} = \{p_1(c_1, M_1), \ldots, p_K(c_K, M_K)\}$$

1: Set of hyper-rectangles $\mathcal{R} = \emptyset$
2: Obtain $\mathcal{R}^{(1)}$ (1-d intervals) by kernel density estimation, varying cut-off threshold in $q = \{80, 85, 90, 95\}$
3: $\hat{f}_a :=$ distribution of number of anomalies across $\mathcal{R}^{(1)}$
4: $\hat{f}_n :=$ distribution of number of normal points across $\mathcal{R}^{(1)}$
5: $\mathcal{R} := \text{SubClus}(D, ms = q(\hat{f}_a, 50), \mu = q(\hat{f}_n, 50))$ by Alg. 1 in §3.1
6: Set of hyper-ellipsoids $\mathcal{E} = \emptyset$
7: for $R \in \mathcal{R}$ do
8: $\mathcal{E}_R = \emptyset$
9: for $\alpha = \{10^{-6}, 10^{-5}, \ldots, 1\}$ do
10: for $\lambda = \{10^{-3}, 10^{-2}, \ldots, 10^3\}$ do
11: $\mathcal{E}_R := \mathcal{E}_R \cup \text{solve optimization problem in §3.2 for } (R, \alpha, \lambda)$
12: end for
13: end for
14: $\mathcal{E} := \mathcal{E} \cup \text{ParetoFrontier}(\mathcal{E}_R)$
15: end for
16: for $K = 1, \ldots, |A|$: select a subset $S^*_K \subset \mathcal{E}$ of K packs using the cardinality-constrained RANDOM-GREEDY algorithm by Buchbinder et al. (2014) to optimize the description length reduction objective $R_L(\cdot)$ in §3.3.
17: return $\mathcal{P} := \arg \max_{S^*_K} R'_L(S^*_K) - \log^* K$

subset of the dimensions also meet the mass criterion (although may not be pure). As such, running time of SubClus is exponential in the highest dimensionality of the hyper-rectangle that meets both criteria. Total time complexity of this step is $O(c_{d_{\text{max}}} + m_{d_{\text{max}}})$ for a constant c_{11} that accounts for possibly multiple d_{max}-dimensional hyper-rectangles and the smaller ones. The second term captures the passes over the data over d_{max} levels.

The main computation of Sect. 3.2 is solving the SDP optimization problem, for which we use the popular CVX SDPT3 solver that takes $O((d_{\text{max}} + m)^3)$ for an axis-aligned ellipsoid (or diagonal U) per iteration. 12 To speed up, we filter bulk of the points beyond a certain distance of a given hyper-rectangle, since its refined hyper-ellipsoid would mostly include/exclude points inside and nearby it. Filtering takes $O(m)$, after which we solve the SDP for a near-constant number of points. It is easy to show that finding the Pareto frontier set of non-dominating packs (line 14)—such that no pack has strictly larger mass and smaller impurity exists—can be done through two passes over all alternative hyper-ellipsoids generated for different (α, λ). This procedure does not change the overall complexity but is likely to yield a much smaller set of ellipsoids per rectangle. We refine each hyper-rectangle independently in parallel.

The main computation in the last part is the RANDOM-GREEDY algorithm, which makes K iterations for a given number of packs K. In each iteration, it makes a pass over the not-yet-selected hyper-ellipsoids, computes the marginal reduction in bits by selecting each, and picks randomly among the top K with the highest reduction.

11 For instance, if we have $t_{d_{\text{max}}}$-dimensional hyper-rectangles, then the complexity would be $O(t_{d_{\text{max}}} + m_{d_{\text{max}}})$, we could rewrite this as $O(c_{d_{\text{max}}} + m_{d_{\text{max}}})$.

12 In practice, the solver converges in 20–100 iterations.
Table 1

Name	Size \(m \)	Dim. \(d \)	Anom. \(a \)	%-savings
ImagesI	88	120	8	99.75
ImagesII	91	180	9	88.53
ImagesIII	110	180	12	99.51
DigitI	1371	16	228	99.83
DigitII	1266	16	211	99.72
BrCancer	683	9	239	93.74
Arrhythmia	332	172	87	92.92
Wine	95	13	24	97.04
Yeast	592	8	129	98.04

X-PACS achieves significant savings (in bits) by explaining anomalies in groups.

We use a size-\(K \) min-heap to maintain the top \(K \) as we make a pass over the packs. Worst case cost is \(O(|\mathcal{E}| \log K) \), multiplied by \(K \) iterations. We run \textsc{Random-Greedy} for \(K = 1, \ldots, a \), each of which is parallelized. Total complexity of Sect. 3.3 is \(O(|\mathcal{E}|a \log a) \).

The number of ellipsoids, \(|\mathcal{E}|\), is in the same order of the number of hyper-rectangles from Sect. 3.1, i.e., \(O(c^{d_{\text{max}}}) \). Thus, the overall complexity can be written as \(O(md_{\text{max}} + c^{d_{\text{max}}}a \log a) \); linear on the number of data points \(m \), near-linear on \(a \), and exponential in the largest pack dimensionality \(d_{\text{max}} \).

4 Experiments

Through experiments on real-world datasets we answer the following questions. A quick reference to the UCI datasets used in our experiments is in Table 1. Last column gives % savings (in bits) in describing/encoding the anomalies by x-PACS.

Q1. **Effectiveness**: How accurate, interpretable, and succinct are our explanations? How do they compare to descriptions by Decision Trees?

Q2. **Detection performance**: Do our explanations generalize? Can they be used as signatures to detect future anomalies? To this end, we compare x-PACS to 7 different baselines.

Q3. **Scalability**: How does x-PACS’s running time scale in terms of data size and dimensionality?

4.1 Effectiveness of explanations

Our primary focus is anomaly *description* where we unearth interpretable characteristics for known anomalies. To this end, we present 6 case studies with ground truth, followed by quantitative comparison to decision trees.
4.1.1 Case studies

Our Image dataset contains gray-scale headshot images of various people. We designate the majority wearing dark-color t-shirts as the normal samples. We create 3 versions containing different number of anomalous patterns, as we describe below. We compare x-PACS’s findings to the ground truth.

Case I: ImagesI We label 8 images of people wearing sunglasses as anomalies as shown in (a) below, and combine them with the normal samples none of which has sunglasses. In this simple scenario x-PACS successfully identifies a single, 1-d pattern shown in (b), which packs all the 8 anomalies but no normal samples. Also shown at the bottom of (b) is the interval of values, that is the ± radius range around the pack’s center, for the corresponding dimension (the lower, the darker the pixel).

![Image](a) anomalies ![Image](b) x-PACS packing

Case II: ImagesII Next, we construct the 9 anomalies as shown earlier in Sect. 2 in Fig. 1: 6 wearing sunglasses, 4 white t-shirt (2 wearing both), plus 1 person with a beard (normal samples has no beard). As detailed in the caption of the figure, x-PACS finds 2 pure packs, each 1-d, that collectively describe the 8 anomalies and none of the normal samples. The bearded image does not belong to any pack and is left out as an outlier.

Case III: ImagesIII We construct the third dataset with 12 anomalies: the same 9 from ImagesII plus 3 faces (10–12) with beard as shown below. In this case, x-PACS finds that characterizing the bearded images as a separate pattern is best to reduce the description cost, and outputs 3 pure, 1-d packs shown in (b).

![Image](a) +3 anomalies ![Image](b) x-PACS packing
In all scenarios, x-PACS is able to unearth simple (low-dimensional) and pure (discriminative) characteristics of the anomalies. Also, it automatically identifies the correct number of anomalous patterns that yield the shortest data description as shown in Fig. 4.

Next we study a different domain. The Digit dataset contains instances of digit hand-drawings in time. Features are the x and y coordinates of the hand in 8 consecutive time ticks during which a human draws each digit on paper. As such, each drawing has 16 features.

Case IV: Digit I We designate all drawings of digit ‘0’ as normal and a sample of digit ‘7’ as ‘anomalous’ to study the characteristics of drawing a ‘7’ as compared to a ‘0’. 8 different positions of the hand in time averaged over all corresponding samples of these two digits is shown below (a–b).

![Figures](image.png)

(a) avg. ‘0’-drawing (b) avg. ‘7’-drawing (c) x-PACS packing

x-PACS identifies a single, 2-d pack containing all 228 instances of ‘7’s and no ‘0’s, as given in Table 2, where we list the ellipsoid center and the \pm radius interval where the hand is positioned for the characterizing features. The anomalous pattern
Table 2 DigitI ‘0’ versus ‘7’: X-PACS finds one 2-d pack

| PackID | Feature | Center | Interval | \(|A_k|\) | \(|N_k|\) |
|--------|---------|--------|--------------|----------|----------|
| \(k = 1\) | \(x \@ t3\) | 0.82 | (0.66, 0.98) | 228 | 0 |
| | \(y \@ t6\) | 0.17 | (0.02, 0.31) | | |

Table 3 DigitII ‘8’ versus ‘2’, ‘3’: X-PACS’s one 4-d pack

| PackID | Feature | Center | Interval | \(|A_k|\) | \(|N_k|\) |
|--------|---------|--------|--------------|----------|----------|
| \(k = 1\) | \(y \@ t3\) | 0.83 | (0.71, 0.95) | 210 | 0 |
| | \(y \@ t4\) | 0.54 | (0.38, 0.69) | | |
| | \(y \@ t7\) | 0.04 | (0.00, 0.11) | | |
| | \(y \@ t8\) | 0.05 | (0.00, 0.12) | | |

suggests right & bottom positioning of the hand respectively at times t3 & t6, which follows human intuition—in contrast, typical hand positions for ‘0’ at those ticks are opposite; at the left & top. Corresponding avg. hand positions in 2-d is shown in (c) above.

Case V: DigitII We perform a second case study where we designate digit ‘8’ drawings as normal and ‘2’ and ‘3’ as the anomalies. Avg. drawings are illustrated in (a–b) below. X-PACS is able to describe 210 of the 211 anomalies in a single, 4-d pack listed in Table 3 and illustrated in (c). The single unpacked drawing is shown in (d) and looks like an odd ‘3’.

Looking at the avg. ‘8’ versus ‘2’ or ‘3’ drawings above, it appears that a single feature like \(y \@ t8\), i.e., vertical hand position at the end, should be discriminative alone; as ‘8’ tends to end at the top versus others at the bottom.

Interestingly, none of the 1-d packs on \(y \@ t8\) is pure like the 4-d one output. A non-anomalous sample it contains is shown on the right, which is an ‘8’ that starts and ends at the bottom just like most ‘2’ and ‘3’s.
Table 4 BrCancer: x-PACS finds five 1-d or 2-d packs

| PackID | Feature | Center | Interval | |A_k| | |N_k|
|--------|-------------|--------|---------------|---------|---------|---------|
| k = 1 | Chromatin | 0.76 | (0.63, 0.88) | 162 | 11 |
| k = 2 | Clumpthickness | 0.94 | (0.84, 1.00) | 145 | 5 |
| | Mitoses | 0.28 | (0.00, 0.63) | | |
| k = 3 | Epicellsize | 0.33 | (0.24,0.42) | 97 | 2 |
| | Barenuclei | 0.11 | (0.09,0.14) | | |
| k = 4 | Nucleoili | 0.98 | (0.93, 1.00) | 75 | 0 |
| k = 5 | Cellsize | 0.99 | (0.98, 1.00) | 67 | 0 |

Case VI: BrCancer Finally, breast cancer dataset contains 239 malign (anomalous) and 444 benign cancer instances. x-PACS finds 5 packs listed in Table 4, covering a total of 226 anomalies while also including 17 unique normal points in the packing. Pack 1 characterizes 162 cases with high ‘chromatin’. Second 2-d pack suggests large ‘clumpthickness’ and ‘mitoses’ (related to cell division and tissue growth) for 145 cases. Smaller pure 1-d packs, 4 and 5, indicate very large ‘cellsize’ and ‘nucleoili’. These findings are intuitive even to non-experts like us (although we lack the domain expertise to interpret pack 3).

4.1.2 x-PACS versus rule learners

Since in our work, we view anomalies as an already defined class, explaining anomalies is equivalent to describing an under represented target class (Wrobel 1997). Hence, we compare x-PACS to techniques that explain labeled data. To this end, we consider interpretable supervised models, specifically, inductive rule based learners that aim to extract rules from a labeled data set that are discriminative in nature. We argue that linear classifiers like logistic regression are not comparable to x-PACS for two key reasons. First, they do not group the anomalies, but rather output a single separating hyperplane. Second, they do not provide rules on the features, but only feature coefficients, which could be negative (hard to interpret). Further, techniques aiming to explain black box predictions are not directly comparable to our method since most of the works aim to explain one instance at a time compared to the group wise explanations x-PACS provides.

We compare x-PACS to the following popular rule based learners.

1. Decision Tree (DT): DT aims to partition (or group) the labeled data into pure leaves. We treat the leaves containing at least two anomalies analogous to our packs. Each such leaf is characterized by the feature rules (or predicates) on the path from the root.

2. Ripper (Cohen 1995): Ripper is a popular inductive rule learner that sequentially mines for feature rules with high accuracy and coverage with the aim to achieve generalization. We use a publicly available implementation of Ripper in the Weka repository for our experiments and consider rules that are labeled anomalous.
Explaining anomalies in groups

Table 5 Interpretability measures (a)–(d): x-PACS versus Rule learners

Measure/method	(a) # of groups	(b) Avg. length	(c) Avg. impurity	(d) Avg. width	Detection performance
DT-5	4.0000	2.9889	0.0233	0.4769	0.6252
DT-4	3.7778	2.7856	0.0422	0.4801	0.6070
DT-3	3.0000	2.4078	0.0700	0.4812	0.6210
DT-2	2.4444	1.8889	0.1378	0.4872	0.6236
DT-1	1.7778	1.0000	0.4056	0.5017	0.5656
RuleFit\(^a\)	12.0000	1.7800	0.0229	0.4643	0.8471
Ripper	2.4444	1.5244	0.0178	0.3889	0.7244
x-PACS	2.5556	2.1000	0.0152	0.2333	0.8781

Also given for reference is detection performance in AUPRC (see Sect. 4.2 for details)

Bold values indicate the best performing model

\(^a\)Note that RuleFit is averaged over seven datasets due to underspecified regression in Arrhythmia and Yeast

3. RuleFit (Friedman and Popescu 2008): RuleFit is an ensemble learner where the base learner is a rule generated by a decision tree. A regression/classification is setup using the base learners to identify the rules that are important in discriminating the different classes. We use the publicly available RuleFit\(^{13}\) implementation and use the rules with non-zero coefficients with at least two anomalies.

To compare x-PACS with rule learners, it is not fair to use description length since the listed techniques do not explicitly optimize it. Instead, we use the following external interpretability measures proposed in Lakkaraju et al. (2017) (all being lower the better): (a) number of groups (anomalous packs), (b) avg. length of rules (pack dimensionality), (c) avg. fraction of normal points within packs (impurity divided by \(n\)), and (d) avg. interval width across feature rules. In other words, an explanation with fewer groups, fewer rules, fewer exceptions, and smaller spread in features is considered more interpretable.

DT has no means to choose the number of packs automatically. Therefore, we report DT results for depths 1–5 as compared to x-PACS in Table 5, averaged across all datasets. In addition to the interpretability measures, we report the detection performance in AUPRC (area under precision-recall curve) on held-out data (80–20 split) that quantifies the generalization of the subspace rules. Results on individual datasets per measure are shown with radar charts in Fig. 5. (See Table 6 for detailed results.) Notice the trade-offs between the measures for DT: while (c) and (d) tend to decrease with increasing depth, (a) and (b) increase. The lack of rule summarization in RuleFit is evident in the number of groups (a) where x-PACS consistently produces smaller number of explanations across various data sets. We also note that x-PACS produces tighter intervals (d) compared to Ripper emphasizing the concreteness of the explanations. Overall, x-PACS achieves the best trade-off with lower overall values across the interpretability measures. Moreover, our signatures are significantly better at detecting future anomalies. We present more detailed experiments on detection next.

\(^{13}\) R package pre: https://CRAN.R-project.org/package=pre.
Fig. 5: X-PACS achieves the best balance between interpretability measures (a)–(d) (lower is better for all of them), and is significantly better at detection (e) (higher is better), as compared to several rule learners.
Table 6 Rule learners and DT (with respective depths 1–5) compared to x-PACS across datasets on interpretability measures (a)–(d) (all lower the better) as well as detection performance AUPRC (higher the better)

Measure	Dataset/Model	Image I	Image II	Image III	Digit I	Digit II	Br Cancer	Arry thmia	Wine	Yeast
(a) Number of groups	DT-5	1.00	2.00	2.00	3.00	2.00	10.00	9.00	1.00	6.00
	DT-4	1.00	2.00	2.00	3.00	2.00	8.00	9.00	1.00	6.00
	DT-3	1.00	2.00	2.00	3.00	2.00	6.00	6.00	1.00	4.00
	DT-2	1.00	2.00	2.00	3.00	2.00	4.00	4.00	1.00	3.00
	DT-1	1.00	2.00	2.00	2.00	2.00	2.00	2.00	1.00	2.00
	RuleFit	3.00	15.00	10.00	13.00	8.00	24.00	NA	11.00	NA
	Ripper	1.00	2.00	2.00	2.00	2.00	3.00	5.00	1.00	4.00
	x-PACS	1.00	2.00	3.00	1.00	1.00	5.00	7.00	1.00	2.00
(b) Avg. length of rules	DT-5	1.00	2.00	1.50	3.00	2.50	4.40	4.33	4.00	4.17
	DT-4	1.00	2.00	1.50	3.00	2.50	3.63	3.78	4.00	3.67
	DT-3	1.00	2.00	1.50	2.67	2.50	3.00	3.00	3.00	3.00
	DT-2	1.00	2.00	1.50	2.00	2.50	2.00	2.00	2.00	2.00
	DT-1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	RuleFit	1.00	1.40	1.80	1.80	1.92	2.67	NA	1.81	NA
	Ripper	1.00	1.00	1.50	2.00	1.50	1.67	1.80	2.00	1.25
	x-PACS	1.00	1.00	1.00	2.00	4.00	1.40	1.00	4.00	3.50
(c) Avg. fraction of normal	DT-5	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.00	0.11
fraction of normal points	DT-4	0.00	0.00	0.00	0.00	0.00	0.11	0.11	0.00	0.16
	DT-3	0.00	0.00	0.00	0.00	0.00	0.16	0.16	0.07	0.24
	DT-2	0.00	0.00	0.00	0.32	0.01	0.25	0.25	0.08	0.33
Table 6 continued

Measure	Dataset/Model	Image I	Image II	Image III	Digit I	Digit II	Br Cancer	Arrythmia	Wine	Yeast
	DT-1	0.00	0.50	0.50	0.50	0.50	0.50	0.15	0.50	0.50
	RuleFit	0.00	0.02	0.01	0.02	0.05	0.01	NA	0.05	NA
	Ripper	0.00	0.01	0.00	0.00	0.00	0.01	0.10	0.03	0.01
	x-PACS	0.00	0.00	0.00	0.00	0.00	0.00	0.13	0.00	0.01
(d) Avg. interval width	DT-5	0.29	0.50	0.49	0.53	0.26	0.56	0.53	0.68	0.46
	DT-4	0.29	0.50	0.49	0.53	0.26	0.54	0.53	0.68	0.51
	DT-3	0.29	0.50	0.49	0.53	0.26	0.50	0.54	0.72	0.51
	DT-2	0.29	0.50	0.49	0.51	0.29	0.50	0.50	0.79	0.52
	DT-1	0.29	0.50	0.50	0.50	0.50	0.50	0.73	0.73	0.50
	RuleFit	0.28	0.25	0.39	0.53	0.47	0.61	NA	0.72	NA
	Ripper	0.24	0.15	0.31	0.32	0.28	0.7	0.33	0.79	0.38
	x-PACS	0.21	0.15	0.16	0.31	0.19	0.20	0.39	0.21	0.28
AUPRC	DT-5	0.49	0.38	0.39	0.79	0.95	0.89	0.50	0.55	0.68
	DT-4	0.49	0.38	0.39	0.79	0.95	0.86	0.50	0.55	0.55
	DT-3	0.49	0.38	0.39	0.79	0.95	0.87	0.42	0.69	0.60
	DT-2	0.49	0.38	0.39	0.79	0.95	0.86	0.47	0.61	0.67
	DT-1	0.49	0.27	0.39	0.74	0.81	0.80	0.46	0.61	0.51
	RuleFit	0.93	0.93	0.51	0.98	0.97	0.90	NA	0.71	NA
	Ripper	1.00	0.35	0.43	0.97	0.98	0.91	0.43	0.70	0.75
	x-PACS	1.00	0.92	0.99	0.99	0.98	0.95	0.56	0.80	0.71

RuleFit leads to underspecified regression in Arrythmia and Yeast which we denote by NA.
4.1.3 Ablation study

We study the importance of the refinement step discussed in Sect. 3.2 by performing an ablation study. To this end, we omit the refinement of hyper-rectangles into hyper-ellipsoids in x-PACS (denoted as ablated x-PACS). Recall that the primary reason we perform the refinement step is to cover more anomalous points and reduce the number of normal points in the packs (see Fig. 3). Hence, to showcase the benefit, in Table 7, we compare the proportion of anomalous (higher is better) and normal points (lower is better) covered in the final packs obtained using x-PACS and the ablated x-PACS. In addition, we also report the %-savings (higher is better) achieved in both cases. In x-PACS, the summarization step (see Sect. 3.3) transmits the center and the diagonal matrix of the packs Sect. 3.3.1. To accommodate hyper rectangles, we modify this to transmit the upper and lower bounds of the hyper rectangles in the ablated x-PACS.

From Table 7, we observe that x-PACS is indeed able to cover more anomalous points, while avoiding normal points in the final packs for all the datasets. These results demonstrate the utility of the refinement step.

4.2 Detection performance

While not our primary focus, x-PACS can also be used to detect anomalies. Specifically, given the packs identified from historical/training data, a future test instance that falls in any one of the packs (i.e., enclosed within any hyper-ellipsoid in the packing) can be flagged as an anomaly.14

To measure detection quality, we compare x-PACS to 7 competitive baselines on all datasets.

1. Mixture of K- Gaussians on the anomalous points. $K \in \{1, 2, \ldots, 9\}$ chosen at the “knee” of likelihood. Anomaly score of test instance: maximum of the probabilities of being generated from each cluster.
2. KDE on the normal points. Gaussian kernel bandwidth chosen by cross-validation. Anomaly score: negative of the density at test point.
3. NN. Anomaly score: distance of test point to its nearest neighbor (nn) normal point in training set, divided by the distance of that nn point to its own nearest normal point in training set.
4. PCA+SVDD (Tax and Duin 2004) on all points. A single hyperball that aims to enclose anomalous points in the PCA-reduced space,15 for which the embedding dimensionality is chosen at the “knee” of the scree plot. Anomaly score: distance of test point from the hyperball’s center.
5. DT on all points, where we balance the data for training and regularize by tree-depth, chosen from $\{1, 2, \ldots, 30\}$ via cross-validation. Anomaly score: number of anomalous samples in the leaf the test point falls into divided by leaf size.

14 Note that, like any supervised method, x-PACS could only detect future instances of anomalies of known types.
15 SVDD optimization diverged for some high dimensional datasets, therefore, we performed PCA as a preprocessing step.
Method	Images I	Images II	Images III	Digit I	Digit II	Br Cancer	Arry thmia	Wine	Yeast
Coverage of anom. points									
x-PACS	1.00	0.89	1.00	1.00	1.00	0.95	0.93	0.96	0.68
Ablated x-PACS	1.00	0.89	1.00	0.96	0.89	0.88	0.78	0.92	0.62
Coverage of normal points									
x-PACS	0	0	0	0	0	0.03	0.35	0.11	0.10
Ablated x-PACS	0	0	0	0.01	0.01	0.05	0.53	0.18	0.13
%--savings									
x-PACS	99.75	88.53	99.51	99.83	99.72	93.74	92.92	97.04	98.04
Ablated x-PACS	99.75	88.53	99.51	92.11	87.21	85.68	78.16	91.42	90.51

Coverage of anomalous points (higher is better), coverage of normal points (lower is better), and % savings (higher is better)
Explaining anomalies in groups

6–7. SVM- LIN & SVM- RBF on all points. Hyperparameters set by cross-validation. Anomaly score: “confidence”, i.e., distance from decision boundary.

We create threefolds of each dataset, and in turn use 2/3 for training and 1/3 for testing, except the Images datasets with the fewest anomalies for which we do leave-one-out testing. All points receive an anomaly score by each method as described above. X-PACS’s anomaly score for a test instance x is the maximum $h_k(x) = \mathbf{x}^T \mathbf{U}_k \mathbf{x} + w^T \mathbf{x} + w_{0k}$ among all p_k’s in the packing resulting from training data. We rank points in decreasing order of their score, and report the area under the precision-recall curve in Table 8.

SVMs achieve the highest detection rate, as might be expected. However, kernel SVM cannot be interpreted. Linear SVM, like LR, does not identify anomalous patterns nor does it produce any explicit feature rules. Notably, X-PACS outperforms all other baselines considerably across datasets, including DT, which produces the most interpretable output among the baselines as discussed in Sect. 4.1.2.

4.3 Scalability

Finally, we quantify the scalability of X-PACS empirically. To this end, we implement a synthetic data generator, parameterized by data size, total dimensionality, maximum pack size and dimensionality and number of anomalous packs. Anomalies are sampled from a small range per feature within a subspace, and normal points are sampled from the reverse of the histogram densities derived from the anomalous points.

Figure 6 shows the running time w.r.t. data size m, dimensionality d, average pack dimensionality d_{avg}, and total number of anomalies a. All plots demonstrate near-linear scalability. Recall that we showed exponential complexity w.r.t. maximum pack dimensionality d_{max}. Notably, we observe linear time growth on average.

5 Related work

Related areas of study span across outlier explanation, subspace clustering and subspace outlier detection, data description, subgroup discovery, rule learning, rare class discovery and methods to explain black-box classifiers. We illustrate related work in the context of our desiderata in Table 9.

Outlier explanation The seminal work by Knorr and Ng (1999) provides what they call “intensional knowledge”, per outlier, by identifying the minimal subspaces in which it deviates. To find the optimal subset of features that differentiate the outliers from normal points, Kuo and Davidson (2016) formulate a constraint programming problem and Keller et al. (2013) take a subspace search route. Similarly, Dang et al. (2014, 2013), Micenkov et al. (2013) aim to explain one outlier at a time by features that participate in projection directions that maximally separate them from normal points. All existing work in this area assume the outliers are scattered and strive to explain them individually rather than in groups. Therefore, they cannot identify anomalous patterns. Moreover, they do not focus explicitly on shortest description, let alone in a principled, information-theoretic way as we address in this work.
Method	ImagesI	ImagesII	ImagesIII	DigitI	DigitII	BrCancer	Arrythmia	Wine	Yeast	
K-Gaussians	0.182	0.239	0.184	0.162	0.333	0.613	0.227	0.258	0.265	
KDE	0.952	0.978	0.987	0.989	0.997	0.981	0.571	0.667	0.681	
NN	0.491	0.472	0.659	0.967	0.821	0.520	0.546	0.562	0.348	
PCA+SVDD	0.286	0.217	0.212	0.331	0.529	0.861	0.295	0.566	0.606	
DT	0.802	0.764	0.812	0.831	0.961	0.884	0.516	0.637	0.673	
SVM-LIN	**1.000**	**1.000**	**1.000**	0.999	0.999	**0.984**	0.755	**0.994**	0.823	
SVM-RBF	**1.000**	**1.000**	**1.000**	**1.000**	**1.000**	0.964	**0.810**	0.984	**0.861**	
X-PACS	**1.000**	0.921	0.990	0.993	0.976	0.951	0.564	0.799	0.701	

Bold values indicate the best performing model.
Extending earlier work Angiulli et al. (2009) on explaining single outliers, Angiulli et al. (2013) aims to explain groups of outlier points or what they call sub-populations. They search for \((\text{context, feature})\) pairs, where the (single) feature can differentiate as many outliers as possible from normal points that share the same context. It is important to note that their goal is to explain a group (or set) of outliers altogether and not particularly explaining them with multiple groups. Similarly, Zhang et al. (2017) describes anomalies grouped in time. They construct explanatory Conjunctive Normal Form rules using features with low segmentation entropy, which quantifies how intermixed normal and anomalous points are. They heuristically discard highly correlated features from the rules to get minimal explanations. Again, they strive to explain all the anomalies as a group, and not in multiple groups.

We found that SRF (sapling random forest) proposed by Kopp et al. (2014) aims to explain and cluster outliers similar to our problem setting. They build on their earlier work Pevný and Kopp (2014), which explains outliers one at a time by learning an ensemble of small decision trees (called saplings) and combining the rules (from root to leaf in which the outlier lies) across the trees. SRF then groups the outliers using k-means clustering based on the similarity of their explanations. However, there is no guarantee on the minimality of their overall description, since grouping is done as a post-processing step and by using a local-optima-prone clustering algorithm. Moreover, there is not much discussion in their paper on the choice of the number of clusters, nor the format of the final description after the anomalies are clustered.

\begin{center}
\includegraphics[width=\textwidth]{images/fig6.png}
\end{center}

\textbf{Fig. 6} x-PACS scales linearly with input size
Table 9 Comparison of related work in terms of properties D1–D5 in reference to our Desiderata (see Sect. 1.1)

Property	Explain as-a-group?	Multiple groups?	Find subspace?	Rules on features?	Discriminative?	Minimal?
Subspace clustering (Agrawal et al. 1998; Cheng et al. 1999; Sequeira and Zaki 2004; Kriegel et al. 2005; Gnnemann et al. 2009)	✓	✓	✓	✓	✓	✓
Projected clustering (Aggarwal et al. 1999; Moise et al. 2006)	✓	✓	✓	✓	✓	✓
(Data descr.) SVDD (Tax and Duin 2004), SSSVDD (Görnitz et al. 2009)	✓	✓	✓	✓	✓	✓
(Rare category) RACH (He et al. 2010)	✓	✓	✓	✓	✓	✓
(Rare category) PALM (He and Carbonell 2010)	✓	✓	✓	✓	✓	✓
Knorr and Ng (1999)	✓	✓	✓	✓	✓	✓
RefOUT (Keller et al. 2013), CP (Kuo and Davidson (2016)), LODI (Dang et al. (2013)), LOGP (Dang et al. (2014))	✓	✓	✓	✓	✓	✓
EXPREX (Angiulli et al. 2013)	✓	✓	✓	✓	✓	✓
(Explaining black box classifiers) LIME (Ribeiro et al. 2016)	✓	✓	✓	✓	✓	✓
EXstream (Zhang et al. 2017)	✓	✓	✓	✓	✓	✓
Explainer (Pevný and Kopp 2014)	✓	✓	✓	✓	✓	✓
SRF (Kopp et al. 2014), Krimp (Vreeken et al. 2011), RuleFit (Friedman and Popescu 2008), Ripper (Cohen 1995)	✓	✓	✓	✓	✓	✓
X-PACS [this paper]	✓	✓	✓	✓	✓	✓
We are not aware of a publicly available implementation of SRF to compare with our proposed method and hence omit it from the experimental evaluation.

Subspace clustering and Outlier detection There is a long list of work on subspace clustering (Agrawal et al. 1998; Cheng et al. 1999; Kriegel et al. 2005; Gnnemann et al. 2009; Sequeira and Zaki 2004) that aim to find high-density clusters in feature subspaces. (See Parsons et al. (2004); Kriegel et al. (2009b) for reviews.) Some other works such as Aggarwal et al. (1999), Moise et al. (2006) are projection based that work in transformed feature spaces. However, these are unsupervised methods and their goal is not explaining labeled data, nor they focus on minimal explanations. There is also a long list of subspace-based outlier detection methods (Keller et al. 2012; Kriegel et al. 2009a, 2012; Miller et al. 2012; Muller et al. 2008; Miller et al. 2011), however, those do not address the description problem.

Data description and Rare class discovery Another line of related work is data description (Görnitz et al. 2009; Tax and Duin 2004) and rare class (or category) characterization (He et al. 2010; He and Carbonell 2010). The main goal behind all of these work is to explain the data via a hyperball separating rare-class points from normal points. However, all of them assume that the former cluster in a single hyperball, and with the exception of He and Carbonell (2010), search for a full-dimensional enclosing hyperball. As such, they do not address the curse-of-dimensionality or identify multiple clusters embedded in different subspaces.

Subgroup discovery and Rule learning Classification rule learning algorithms have the objective of generating models consisting of a set of rules inducing properties of all the classes of the target variable, while in subgroup discovery the objective is to discover individual rules of interest (see Herrera et al. (2011) for an overview). The seminal work of rule based learners such as Ripper by Cohen (1995) and CN2 by Clark and Niblett (1989) sequentially mine for rules with high accuracy and coverage. More recently, Friedman and Popescu (2008) proposes RuleFit, an ensemble learner where the base learner is a rule generated by a decision tree. A regression/classification is setup using the base learners to identify the rules that are important in discriminating the different classes. Few other work in ensemble learning by Deng (2014), Hara and Hayashi (2016) build ensemble trees. While rules are interpretable, they are learnt with an aim to achieve generalization (to unseen data). This is different from our work where we primarily focus on describing the under-represented class (anomalies) without emphasizing the generalization.

SubgroupMiner by Klösgen and May (2002) extends seminal work in subgroup discovery (MIDOS by Wrobel (1997) and Explora by Klösgen (1996)) to handle numerical and categorical attributes. Gamberger and Lavrac (2002) propose SD, an interactive subgroup discovery technique based on the variation of beam search algorithms guided by expert knowledge. Krimp Vreeken et al. (2011) develop a greedy MDL based approach to mine few frequent item sets describing a dataset. This method can be used on multi-class data to provide descriptions of each class, it is however limited to categorical attributes. Discriminative pattern mining techniques such as Loekito and Bailey (2008) also assume categorical features and aim to extract contrast patterns (item sets) with large support difference across classes.
A key difference between the techniques discussed above and our work is the summarization scheme described in Sect. 3.3. Our MDL based encoding scheme leads to a submodular rule selection with theoretical guarantees that the current subgroup discovery or rule learning algorithms do not explore. The improvement of the summarization scheme is evident from our experiments (See Table 6), comparing \(\text{x-PACS} \) to several rule learners on various interpretability measures.

Explaining black-box classifiers Approaches such as Fong and Vedaldi (2017), Koh and Liang (2017), Montavon et al. (2018), Ribeiro et al. (2016) aim to explain the decision made by a black-box predictor. LIME proposed by Ribeiro et al. (2016) finds nearest neighbors to single input labeled example to construct a linear interpretable model that is locally faithful to the predictor. Further, authors propose a submodular optimization framework to pick instances that are representative of the predictions of a classifier. Other works by Fong and Vedaldi (2017), Koh and Liang (2017), explain the model by perturbing the features to quantify the influence on prediction. However, these work do not aim to explain multiple instances collectively, as such they do not handle the summarization problem, which are hence not comparable to our proposed method.

All in all, none of the existing methods provides all of (1) collective (as opposed to individual) explanations, (2) explanations for multiple anomalous groups, (3) in characterizing subspaces, (4) using interpretable feature rules that can discriminate anomalies from normal points, (6) aiming to minimize description length.

6 Conclusion

We considered the problem of explaining given anomalies in high-dimensional datasets in groups. Our key idea is to describe the data by the patterns it contains. We proposed \(\text{x-PACS} \) for identifying a small number of low-dimensional anomalous patterns that “pack” similar, clustered anomalies and “compress” the data most succinctly. In designing \(\text{x-PACS} \), we combined ideas from data mining (bottom-up algorithms with pruning), optimization (nonlinear quadratic discrimination), information theory (data encoding with bits), and theory of algorithms (nonmonotone submodular function maximization). Our notable contributions are listed as follows.

- **A new desiderata** for the anomaly description problem, enlisting five desired properties (D1–D5),
- **A new problem formulation**, for explaining a given set of anomalies in groups (D1),
- **Description algorithm** \(\text{x-PACS} \), which provides low-dimensional (D2), interpretable (D3), and discriminative (D4) feature rules per anomalous group,
- **A new anomaly encoding scheme**, based on the minimum description length (MDL) principle, that lends itself to efficient optimization to produce minimal explanations (D5) with guarantees.

Through experiments on real-world datasets, we showed the effectiveness of \(\text{x-PACS} \) both in explanation and detection and superiority to competitive baselines. For
Explaining anomalies in groups

reproducibility, all of our source code and datasets are publicly released at http://cmuxpacs.github.io/.

Acknowledgements This research is sponsored by NSF CAREER 1452425 and IIS 1408287, ARO Young Investigator Program under Contract No. W911NF-14-1-0029, and the PwC Risk and Regulatory Services Innovation Center at Carnegie Mellon University. Any conclusions expressed in this material are of the authors and do not necessarily reflect the views, either expressed or implied, of the funding parties.

References
Aggarwal CC (2015) Outlier analysis. Springer, Cham, pp 237–263
Aggarwal CC, Wolf JL, Yu PS, Procopiuc C, Park JS (1999) Fast algorithms for projected clustering. In: Proceedings of the 1999 ACM SIGMOD international conference on management of data, SIGMOD ’99. ACM, New York, NY, USA, pp 61–72
Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD international conference on management of data, SIGMOD ’98. ACM, New York, NY, USA, pp 94–105
Angiulli F, Fassetti F, Palopoli L (2009) Detecting outlying properties of exceptional objects. ACM Trans Database Syst (TODS) 34(1):7:1–7:62
Angiulli F, Fassetti F, Palopoli L (2013) Discovering characterizations of the behavior of anomalous sub-populations. IEEE Trans Knowl Data Eng 25(6):1280–1292
Buchbinder N, Feldman M, Naor JS, Schwartz R (2014) Submodular maximization with cardinality constraints. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms, SODA ’14. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp 1433–1452
Cheng C-H, Fu AW, Zhang Y (1999) Entropy-based subspace clustering for mining numerical data. In: Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’99. ACM, New York, NY, USA, pp 84–93
Clark P, Niblett T (1989) The CN2 induction algorithm. Mach Learn 3(4):261–283
Cohen WW (1995) Fast effective rule induction. In: Prieditís A, Russell S (eds) Machine learning proceedings. Morgan Kaufmann, San Francisco, pp 115–123
Dang XH, Assent I, Ng RT, Zimek A, Schubert E (2014) Discriminative features for identifying and interpreting outliers. In: 2014 IEEE 30th international conference on data engineering, pp 88–99
Dang XH, Micenková B, Assent I, Ng RT (2013) Local outlier detection with interpretation. In: Blockeel H, Kersting K, Nijssen S, Železný F (eds) Machine learning and knowledge discovery in databases. Springer, Berlin, Heidelberg, pp 304–320
Dave V, Guha S, Zhang Y (2012) Measuring and fingerprinting click-spam in ad networks. In: Proceedings of the ACM SIGCOMM 2012 conference on applications, technologies, architectures, and protocols for computer communication, SIGCOMM ’12. ACM, New York, NY, USA, pp 175–186
Deng H (2014) Interpreting tree ensembles with intrees. arXiv preprint arXiv:1408.5456
Fong RC, Vedaldi A (2017) Interpretable explanations of black boxes by meaningful perturbation. In: 2017 IEEE international conference on computer vision (ICCV), pp 3449–3457
Friedman JH, Popescu BE (2008) Predictive learning via rule ensembles. Ann Appl Stat 2(3):916–954
Gamberger D, Lavrac N (2002) Expert-guided subgroup discovery: methodology and application. J Artif Int Res 17(1):501–527
Ghanem SO, Vondrák J (2011) Submodular maximization by simulated annealing. In: Proceedings of the twenty-second annual ACM-SIAM symposium on discrete algorithms, SODA ’11. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp 1098–1116
Görnitz N, Kloft M, Brefeld U (2009) Active and semi-supervised data domain description. In: Buntine W, Grobelnik M, Mladenić D, Shawe-Taylor J (eds) Machine learning and knowledge discovery in databases. Springer, Berlin Heidelberg, pp 407–422
Gnnemann S, Seidl T, Krieger R, Miller E, Assent I (2009) Relevant subspace clustering: mining the most interesting non-redundant concepts in high dimensional data. In: 2009 Ninth IEEE international conference on data mining (ICDM), pp 377–386
Hara S, Hayashi K (2016) Making tree ensembles interpretable. arXiv preprint arXiv:1606.05390
He J, Carbonell J (2010) Co-selection of features and instances for unsupervised rare category analysis. In: Proceedings of the 10th SIAM international conference on data mining, SDM 2010, pp 525–536
He J, Tong H, Carbonell J (2010) Rare category characterization. In: 2010 IEEE international conference on data mining, pp 226–235
Herrera F, Carmona CJ, González P, del Jesus MJ (2011) An overview on subgroup discovery: foundations and applications. Knowl Inf Syst 29(3):495–525
Keller F, Müller E, Bohm K (2012) Hics: High contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th international conference on data engineering, pp 1037–1048
Keller F, Müller E, Wixler A, Böhm K (2013). Flexible and adaptive subspace search for outlier analysis. In: Proceedings of the 22nd ACM international conference on information and knowledge management, CIKM ’13. ACM, New York, NY, USA, pp 1381–1390
Klösgen W (1996) Explora: A multipattern and multistrategy discovery assistant. In: Advances in knowledge discovery and data mining. American Association for Artificial Intelligence, Menlo Park, CA, USA, pp 249–271
Klösgen W, May M (2002) Census data mining: an application. In: Proceedings of the 6th European conference on principles and practice of knowledge discovery in databases (PKDD), Helsinki, Finland
Knorr EM, Ng RT (1999) Finding intensional knowledge of distance-based outliers. In: Proceedings of the 25th international conference on very large data bases, VLDB ’99. Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, pp 211–222
Koh PW, Liang P (2017) Understanding black-box predictions via influence functions. In: Precup D, Teh YW (eds) Proceedings of the 34th international conference on machine learning, vol 70 of Proceedings of machine learning research. International Convention Centre, Sydney, Australia, pp 885–1894
Kopp M, Pevný T, Holeňa M (2014) Interpreting and clustering outliers with sapling random forests. In: ITAT 2014. European conference on information technologies—applications and theory. Institute of Computer Science AS CR, pp 61–67
Kriegel HP, Kroger P, Renz M, Wurst S (2005) A generic framework for efficient subspace clustering of high-dimensional data. In: Fifth IEEE international conference on data mining (ICDM’05), pp 8
Kriegel H-P, Kröger P, Schubert E, Zimek A (2009a) Outlier detection in axis-parallel subspaces of high dimensional data. In: Theeramunkong T, Kjisirikul B, Cercone N, Ho T-B (eds) Advances in knowledge discovery and data mining. Springer, Berlin, Heidelberg, pp 831–838
Kriegel H-P, Kröger P, Zimek A (2009b) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 3(1):1:1–1:58
Kriegel HP, Kruger P, Schubert E, Zimek A (2012) Outlier detection in arbitrarily oriented subspaces. In: 2012 IEEE 12th international conference on data mining, pp 379–388
Kuo C-T, Davidson I (2016) A framework for outlier description using constraint programming. In: Proceedings of the thirtieth AAAI conference on artificial intelligence, AAAI’16. AAAI Press, pp 1237–1243
Lakkaraju H, Kamar E, Caruana R, Leskovec J (2017) Interpretable and explorable approximations of black box models. CoRR, abs/1707.01154
Lazarevic A, Kumar V (2005) Feature bagging for outlier detection. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining, KDD ’05. ACM, New York, NY, USA, pp 157–166
Lee K, Eoff BD, Caverlee J (2011) Seven months with the devils: a long-term study of content polluters on twitter. In: AAAI international conference on weblogs and social media (ICWSM). Citeseer
Loekito E, Bailey J (2008) Mining influential attributes that capture class and group contrast behaviour. In: Proceedings of the 17th ACM conference on information and knowledge management, CIKM ’08. ACM, New York, NY, USA, pp 971–980
Micenkov B, Ng RT, Dang XH, Assent I (2013) Explaining outliers by subspace separability. In: 2013 IEEE 13th international conference on data mining, pp 518–527
Moise G, Sander J, Ester M (2006) P3c: A robust projected clustering algorithm. In: Sixth international conference on data mining (ICDM’06), pp 414–425
Montavon G, Samek W, Müller K (2018) Methods for interpreting and understanding deep neural networks. Digit Signal Process Rev J 73:1–15
Mukherjee A, Venkataraman V, Liu B, Glance N (2013) What yelp fake review filter might be doing? In: 7th International AAAI conference on weblogs and social media, ICWSM 2013. AAAI Press
Muller E, Assent I, Steinhausen U, Seidl T (2008) Outrank: ranking outliers in high dimensional data. In: 2008 IEEE 24th international conference on data engineering workshop, pp 600–603
Explaining anomalies in groups

Müller E, Assent I, Iglesias P, Mille Y, Bhm K (2012) Outlier ranking via subspace analysis in multiple views of the data. In: 2012 IEEE 12th international conference on data mining, pp 529–538
Müller E, Schiffer M, Seidl T (2011) Statistical selection of relevant subspace projections for outlier ranking. In: 2011 IEEE 27th international conference on data engineering, pp 434–445
Parsons L, Haque E, Liu H (2004) Subspace clustering for high dimensional data: a review. SIGKDD Explor Newsl 6(1):90–105
Pelleg D, Moore AW (2000) X-means: Extending K-means with efficient estimation of the number of clusters. In: Proceedings of the seventeenth international conference on machine learning, ICML ’00. Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, pp 727–734
Pevný T, Kopp M (2014). Explaining anomalies with sapling random forests. In: Information technologies— applications and theory workshops, posters, and tutorials (ITAT 2014)
Ribeiro MT, Singh S, Guestrin C (2016) Why should I trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1135–1144
Rissanen J (1978) Modeling by shortest data description. Automatica 14(5):465–471
Sequeira K, Zaki M (2004). Schism: a new approach for interesting subspace mining. In: Data mining, 2004. ICDM ’04. Fourth IEEE international conference on data mining, pp 186–193
Silverman BW (2018) Density estimation for statistics and data analysis. Routledge, Abingdon
Tax DM, Duin RP (2004) Support vector data description. Mach Learn 54(1):45–66
Ting KM, Liu FT, Zhou Z (2008) Isolation forest. In: 2008 Eighth IEEE international conference on data mining (ICDM), pp 413–422
Vreeken J, van Leeuwen M, Siebes A (2011) Krimp: mining itemsets that compress. Data Min Knowl Disc 23(1):169–214
Wrobel S (1997) An algorithm for multi-relational discovery of subgroups. In: Komorowski J, Zytkow J (eds) Principles of data mining and knowledge discovery. Springer, Berlin, Heidelberg, pp 78–87
Zhang H, Diao Y, Meliou A (2017) Exstream: Explaining anomalies in event stream monitoring. In: Proceedings of the 20th international conference on extending database technology (EDBT), pp 156–167

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations

Meghanath Macha1 · Leman Akoglu1

Leman Akoglu
lakoglu@andrew.cmu.edu

1 Heinz College, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA