Effects of Elevated CO₂ on Litter Chemistry and Subsequent Invertebrate Detritivore Feeding Responses

Matthew W. Dray¹*, Thomas W. Crowther¹,², Stephen M. Thomas¹, A. Donald A’Bear¹, Douglas L. Godbold³, Steve J. Ormerod¹, Susan E. Hartley⁴, T. Hefin Jones¹

¹Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom, ²School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, United States of America, ³Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria, ⁴York Environmental Sustainability Institute, University of York, York, United Kingdom

Abstract

Elevated atmospheric CO₂ can change foliar tissue chemistry. This alters leaf litter palatability to macroinvertebrate detritivores with consequences for decomposition, nutrient turnover, and food-web structure. Currently there is no consensus on the link between CO₂ enrichment, litter chemistry, and macroinvertebrate-mediated leaf decomposition. To identify any unifying mechanisms, we presented eight invertebrate species from aquatic and terrestrial ecosystems with litter from Alnus glutinosa (common alder) or Betula pendula (silver birch) trees propagated under ambient (380 ppm) or elevated (ambient +200 ppm) CO₂ concentrations. Alder litter was largely unaffected by CO₂ enrichment, but birch litter from leaves grown under elevated CO₂ had reduced nitrogen concentrations and greater C/N ratios. Invertebrates were provided individually with either (i) two litter discs, one of each CO₂ treatment (‘choice’), or (ii) one litter disc of each CO₂ treatment alone (‘no-choice’). Consumption was recorded. Only Odontocerum albicornatum showed a feeding preference in the no-choice test, consuming more ambient- than elevated-CO₂ birch litter. Species’ responses to alder were highly idiosyncratic in the no-choice test: Gammarus pulex and O. albicornatum consumed more elevated-CO₂ than ambient-CO₂ litter, indicating compensatory feeding, while Oniscus asellus consumed more of the ambient-CO₂ litter. No species responded to CO₂ treatment when fed birch litter. Overall, these results show how elevated atmospheric CO₂ can alter litter chemistry, affecting invertebrate feeding behaviour in species-specific ways. The data highlight the need for greater species-level information when predicting changes to detrital processing—a key ecosystem function—under atmospheric change.

Introduction

Global concentrations of atmospheric carbon dioxide (CO₂) could more than double by 2100 [1]. Typically, CO₂ enrichment leads to increased plant photosynthesis, resulting in greater biomass and production [2]. Plant tissue chemistry is typically modified, with decreasing nitrogen concentrations and increasing carbon-nitrogen (C/N) ratios affecting herbivore life-history and feeding responses [3].

Approximately 90% of primary production in forest ecosystems escapes herbivory and forms detritus [4], providing a crucial energy pool that underpins the trophic structure of soils and adjacent freshwater ecosystems [5]. The effect of elevated CO₂ on the chemical composition of green foliar tissues reduces its palatability to detritivores when it falls as litter [6]. In particular, elevated CO₂ can reduce litter resource quality by decreasing litter nitrogen content [7,8], subsequently increasing C/N ratios [9,10]. Increases in structural [6,9,9] and defensive [10,11] compounds have also been reported, along with both increases and decreases in phosphorus concentrations [12,13]. The potential for rising CO₂ concentrations to alter litter chemical composition is established, but the consequences for invertebrate-mediated decomposition – an important ecosystem function – remain unclear [14].

Detritivorous macroinvertebrates are functionally important in detritus-based ecosystems, as they are responsible for both comminution and consumption of litter, releasing nutrients for other organisms, such as saprophagous fungi [15,16]. To maintain optimal body nutrient concentrations, theoretical predictions and empirical evidence suggest that invertebrates can increase feeding rates of reduced-quality material (e.g. [17,18]), a process known as ‘compensatory feeding’ (as defined by [19]). Despite this, poor quality litter has also been shown to increase handling times [20], while reducing nutrient assimilation, slowing development rates, and increasing mortality [6,21]. These conflicting responses have resulted from studies focusing on a small number of species (e.g. [13,18]), which also fail to incorporate aquatic and terrestrial...
invertebrates, despite differences in detrital accumulation and energy flow between these habitats [22]. A broad-scale study incorporating a range of invertebrate species from different habitats is essential to identify the unifying mechanisms that govern invertebrate feeding responses to elevated-CO₂ litter.

We investigated the feeding preferences and consumption rates of eight detritivorous macroinvertebrate species presented with *Alnus glutinosa* (Linnaeus) Gaertner (common alder) and *Betula pendula* Roth (silver birch) leaf litter produced under ambient and elevated atmospheric CO₂. We tested the hypotheses that: (1) CO₂ enrichment will reduce leaf chemical quality and, given nitrogen-fixing ability in alder, responses will differ by tree species; (2) when presented with a choice between ambient and elevated CO₂ litter, invertebrates will prefer ambient material due to its higher quality; (3) when given litter of one CO₂ treatment only, consumption of elevated-CO₂ litter will be greater, to compensate for its reduced quality.

Methods

Leaf Litter Preparation

Alder and birch litters were produced at the BangorFACE facility, Bangor, UK [23] (Fig. 1). Trees were grown in eight identical plots (four ambient-CO₂ and four elevated-CO₂) to minimise infrastructure-induced artefacts. CO₂ enrichment was carried out using high velocity pure CO₂ injection, controlled using equipment and software modified from EuroFACE [24]. Elevated CO₂ concentrations, measured at 1 min intervals, were within 30% deviation from the pre-set target concentration of 580 ppm CO₂ (ambient +200 ppm) for 75–79% of the photosynthetically-active period (daylight hours from budburst until leaf abscission) of 2005–2008. Vertical profiles of CO₂ concentration of 5% from reference values obtained at the top of the canopy [23]. From the beginning of leaf senescence, fallen leaf litter was collected weekly until all leaves had abscised (October to December). Litter within each CO₂ treatment was homogenised and air-dried.

Initial chemical leaching and microbial colonisation of litter (‘conditioning’) are crucial steps in making litter palatable to detritivorous macroinvertebrates [25,26]. Prior to the start of the experiment, litter was conditioned in fine mesh bags (100 μm to permit microorganisms only) placed in plastic containers (29×29×10 cm; Fig. 1). For each tree species ×CO₂ treatment combination, one bag was placed in aerated stream water that was inoculated with stream-collected litter of mixed-species origin (‘aquatic conditioning’); a second bag per tree species ×CO₂ treatment combination was inserted between field-collected soil and mixed deciduous leaf litter (‘terrestrial conditioning’). Containers were maintained at 11±1°C with a 12:12 h light-dark cycle and terrestrial containers were sprayed with deionised water every three days to maintain humidity (~50%). These conditions were selected to represent natural conditioning processes in aquatic and terrestrial habitats in a controlled manner. After two weeks, leaf discs were cut using a 9 mm diameter cork-borer (avoiding the mid-vein), which were air-dried and weighed (±0.1 mg) prior to experimental use.

Litter samples allocated to chemical analyses (Fig. 1) were stored at –80°C before being oven-dried (50°C for 24 h) and ground into powder (120 s, 50 beats s⁻¹; Pulverisette 23 ball mill, Fritsch GmbH, Idar-Oberstein, Germany). Each sample was composed of litter from three separate leaves. For carbon, nitrogen and phosphorus analyses, five samples were processed per tree × CO₂ treatment × conditioning type combination; for lignin analysis, four samples were used. The percentage leaf dry mass (% leaf DM) of carbon and nitrogen, and the carbon-nitrogen (C/N) ratio, were determined by flash combustion and chromatographic separation of ~1.5 mg leaf powder using an elemental analyser (Elemental Combustion System 4010 CHNS-O Analyzer, Costech Analytical Technologies, Inc., Milan, Italy), calibrated against a standard (C₂₆H₂₆N₂O₈S). Phosphorus concentrations (% leaf DM) were quantified using X-ray fluorescence (see [27] for detailed methodology). The percentage Acetyl-Bromide-Soluble Lignin (% ABSL) was determined following the acetyl bromide spectrophotometric method [28]. Lignin-nitrogen (lignin/N) ratios were calculated for each tree species × CO₂ treatment × conditioning treatment combination.

Invertebrates

Eight macroinvertebrate species were selected for study (Table 1), representing a taxonomic range of litter consumers found in temperate forest habitats [29,30]. Aquatic species were collected from streams in the Brecon Beacons National Park, South Wales, UK (51°50'53"N, 3°22'16"W and 51°50'55"N, 3°33'43"W) and Roath Park, Cardiff, UK (51°30’00"N,
Experimental Arenas

All experiments were conducted in 11 × 16.5 × 3.5 cm lidded plastic arenas (Cater For You Ltd, High Wycombe, UK) lined with compacted sterilised aquarium gravel (Unipac, Northampton, UK) and were maintained at 11 ± 1 °C with a 12:12 h light-dark cycle. Aquatic microcosms were filled with 400 ml of filtered (100 µm mesh) stream water (circumneutral pH; collected from 51°50′35″N, 3°22′16″W) and aerated through a pipette tip (200 µl Greiner Bio-One) attached to an air-line. Terrestrial microcosms were sprayed with deionised water every three days to maintain moisture content and humidity (±50%). All arenas were uniquely labeled (‘microcosm ID’). These standardised conditions were chosen to mimic natural habitats, while minimising the availability of supplementary organic material that could act as a confounding resource during the feeding trials.

For litter of each tree species, detritivores were presented with: (i) a choice between ambient- and elevated-CO2 material, to provide a direct comparison of detritivore preferences, and (ii) a no-choice situation with each CO2 treatment presented on its own, approximating litter consumption in current (ambient-CO2) and future (elevated-CO2) atmospheric conditions (Fig. 1). In each experiment, ten microcosms were set up for each invertebrate and tree species combination. In the no-choice test, half of the no-choice control microcosms contained one ambient-CO2 disc and the other half contained one elevated-CO2 disc. Leaf discs were air-dried and weighed (±0.1 mg) after 14 days and their total mass loss calculated.

Data Analysis

Statistical analyses were performed separately for alder and birch litter using R version 3.0.1 [31]. Data available from http://dx.doi.org/10.6084/m9.figshare.791634. were checked for normality and homogeneity of variance following Crawley [32]; response variables were transformed using Box-Cox power transformations when assumptions were not met (car package [33]). Significance was set at α = 0.05 for all analyses. Two-way analysis of variance (ANOVA) was used to test the main and interactive effects of CO2 treatment and microcosm type on each chemical variable (carbon, nitrogen, phosphorus and lignin concentrations, and C/N ratio). Planned contrasts (lsmeans package [34]) were used to compare the effects of CO2 treatments for each conditioning treatment.

In the choice test, litter consumption per day was analysed using linear mixed-effects models with the main and interactive effects of CO2 treatment and litter chemistry as fixed effects and microcosm ID as a random effect. The same fixed terms were used to analyse control data from the no-choice test using two-way ANOVA.

In the choice test, litter consumption per day was analysed using linear mixed-effects models with the main and interactive effects of CO2 treatment and litter chemistry as fixed effects and microcosm ID as a random effect. Planned contrasts were performed to compare consumption of ambient- and elevated-CO2 discs with (i) each invertebrate species, and (ii) invertebrate species grouped by habitat of origin (contrast package [36]).

In the no-choice test, the main and interactive effects of CO2 treatment and invertebrate species on litter consumption were

Table 1. Detritivorous macroinvertebrate species used in the study.

Habitat	Name	Authority	Order: Family
Aquatic	Asellus aquaticus	(Linnaeus 1758)	Isopoda: Asellidae
	Gammarus pulex	(Linnaeus 1758)	Amphipoda: Gammaridae
	Odontocerum albicorne	(Scopoli 1763)	Trichoptera: Odontocerida
	Sericostoma personatum	(Kirby & Spence 1826)	Trichoptera: Sericostomatidae
Terrestrial	Blaniulus guttulatus	(Bosc 1792)	Julida: Blaniulidae
	Oniscus asellus	Linnaeus 1758	Isopoda: Oniscidae
	Porcellio scaber	Latreille 1804	Isopoda: Porcellionida
	Tachyplepius niger	(Leach 1815)	Julidae

doi:10.1371/journal.pone.0086246.t001
tested using two-way ANOVA. Planned contrasts were performed to test the effects of CO2 treatment on disc consumption within (i) each invertebrate species (lme4 package [34]) and (ii) invertebrate species grouped by habitat of origin (gmodels package [37]).

Results

Litter Chemistry

CO2 enrichment altered leaf litter chemistry, but effects differed between tree species. For birch, CO2-enriched litter contained lower nitrogen concentrations, and higher lignin concentrations and C/N ratios than ambient-CO2 litter (Tables 2 and 3). Litter chemistry varied between conditioning types, with higher carbon concentrations in aquatically-conditioned litter and lower nitrogen concentrations in terrestrially-conditioned litter (Table 2). For both conditioning types, elevated-CO2 litter contained lower nitrogen concentrations (aquatic, estimate = 0.76% DM, P<0.001; terrestrial, estimate = 1.17% DM, P<0.001; Table 3) and higher C/N ratios (aquatic, estimate = 8.31, P<0.001; terrestrial, estimate = 10.28, P<0.001; Table 3). For birch litter, the effect of CO2 treatment was less predictable, with differential responses between conditioning types (Table 2). Elevated CO2 increased birch nitrogen concentrations when conditioned terrestrially (estimate = 0.29% DM, P=0.036; Table 3), although there was no concurrent effect in aquatically-conditioned litter (estimate = 0.1% DM, P=0.44; Table 3). No treatment or species effects on litter phosphorus concentrations were observed (Tables 2 and 3).

Invertebrate Responses

For both tree species in the choice and no-choice control arenas, disc mass loss in the absence of invertebrates was unaffected by CO2 treatment and conditioning type (P>0.05). Litter mass loss in the presence of invertebrates was therefore assumed to be a result of invertebrate feeding alone.

In the choice test, leaf palatability affected invertebrate feeding, but this was dependent on tree species. Birch litter consumption was higher for ambient- than elevated-CO2 discs overall (F1,72 = 10.4, P = 0.002; there was no effect of CO2 on consumption of alder discs (F1,72 = 18.21, P = 0.34). Consumption also varied between invertebrate species (alder, F1,72 = 0.92, P<0.001; birch, F1,72 = 30.05, P<0.001). The effect of CO2 on birch consumption varied by invertebrate species (F1,72 = 3.4, P = 0.003), where O. albicorne preferred ambient-CO2 discs (estimate = 1.29 mg d⁻¹, P<0.001; Fig. 2B). The effect of CO2 on litter preference did not vary between invertebrate species feeding on alder (F1,72 = 0.5, P = 0.83; Fig. 2A). When grouped, aquatic species preferred ambient-CO2 birch discs over those grown under elevated CO2 (estimate = 1.09 mg d⁻¹, P = 0.006), but no other preferences were exhibited (aquatic species fed alder, estimate = 0.02 mg d⁻¹, P = 0.305; terrestrial species fed alder, estimate = 0.03 mg d⁻¹, P = 0.496; terrestrial species fed birch, estimate = 0.06 mg d⁻¹, P = 0.061).

In the no-choice test, consumption rates were higher when invertebrates fed on ambient- rather than elevated-CO2 birch discs (F1,54 = 6.39, P = 0.014). The trend was consistent across all invertebrate species, but no individual species showed a significant response (CO2 treatment × invertebrate species: F1,54 = 0.341, P = 0.932; Fig. 2D). This overall effect of CO2 did not occur in alder leaves (F1,54 = 3.6, P = 0.062), but the effect of CO2 varied significantly between species (F1,54 = 4.56, P<0.001); more of the elevated-CO2 discs were consumed by G. pulex (estimate = 2.89 mg, P = 0.002) and O. albicorne (estimate = 3.22 mg, P<0.001), while O. aequalis consumed more of the ambient-CO2 discs (estimate = 2.86 mg, P = 0.0022; Fig. 2C). When grouped by habitat, aquatic invertebrates ate more elevated-CO2 than ambient-CO2 alder (estimate = 1.965 mg, P<0.001) but there was no effect on birch (estimate = 0.1 mg, P = 0.073). CO2 treatment had no effect on consumption by terrestrial species fed either alder (estimate = 0.22 mg, P = 0.306) or birch (estimate = 0.1 mg, P = 0.085).

Discussion

Elevated atmospheric CO2 and microbial conditioning type modified leaf litter chemistry, though effects differed between tree species (supporting Hypothesis 1). Individual invertebrate species varied in their responses, suggesting that caution has to be taken when extrapolating general trends from single-species studies.

Elevated atmospheric CO2 reduced birch litter quality: the concentration of nitrogen decreased and the C/N ratio increased, regardless of conditioning type. Most species did not respond to this change; O. albicorne was the only species with behaviour that supported Hypothesis 2, showing a strong preference for ambient-CO2 litter. Prior work supports this response: Ferreira et al. [19] showed that low C/N ratios reduced birch litter consumption by the caddisfly Sericostoma vitatum Rambur, while Cotrufo et al. [17] found that the woodlouse P. scaber preferred high quality (lower C/N ratio and lignin concentration) Fraxinus excelsior Linnaeus litter grown under ambient CO2. Alder litter showed negligible chemical change as a result of elevated CO2, perhaps due to symbiosis with nitrogen-fixing bacteria that help maintain nutrient supplies [38]. Unexpectedly, a slight increase in quality increased

Table 2. ANOVA summary table of main and interactive effects of CO2 treatment (CO2) and conditioning type (CT) on litter chemistry.
Tree species

Alder
Birch

P values <0.05 are emboldened.
doi:10.1371/journal.pone.0086246.t002
nitrogen concentration) under elevated CO₂ occurred when alder litter was conditioned terrestrially, but this did not result in any feeding preferences. Effects of conditioning type on litter chemistry may have occurred due to differences in chemical leaching and microorganism activity between aquatic and terrestrial environments [39]. Our data indicate that CO₂ enrichment will affect litter palatability to macroinvertebrate detritivores as a result of chemical change, though these effects will be plant and invertebrate species-specific.

In the no-choice test, invertebrates were expected to compensate for low-quality litter by increasing consumption relative to high-quality litter. In contrast to this expectation, compensatory feeding was not observed in either tree species. There was no clear pattern for alder; invertebrate responses were highly idiosyncratic, with *O. asellus* being the only species to consume more of the low-quality litter under elevated CO₂ in both aquatic and terrestrial conditions.

Table 3. Chemical composition of leaf litter (mean ± 1 SEM).

Tree species	CT	CO₂	Carbon (% DM)	Nitrogen (% DM)	Phosphorus (% DM)	Lignin (% ABSL)	Chemical ratios	
Alder	Aquatic	Ambient	48.61±0.37a	3.73±0.16a	0.074±0.009a	22.17±2.64a	13.11±0.16a	5.94
	Elevated		48.48±0.25a	3.63±0.091a	0.064±0.009a	19.56±2.74a	13.37±0.36a	5.38
	Terrestrial	Ambient	48.04±0.22a	3.35±0.016a	0.084±0.009a	19.16±1.01a	14.33±0.02a	5.71
	Elevated		48.68±0.40a	3.65±0.026b	0.062±0.01a	24.34±1.14a	13.35±0.10a	6.68
Birch	Aquatic	Ambient	51.22±0.13a	2.54±0.018a	0.090±0.008a	22.03±3.28a	20.17±0.11a	8.7
	Elevated		50.84±0.13a	1.79±0.004b	0.066±0.01a	27.76±1.69a	28.47±0.08b	15.55
	Terrestrial	Ambient	49.86±0.24a	3.08±0.017a	0.082±0.01a	25.09±2.07a	16.19±0.04a	8.15
	Elevated		50.44±0.41a	1.91±0.063b	0.07±0.006a	29.32±1.52a	26.47±0.74b	15.33

Abbreviations: percent dry mass (% DM), percent acetyl-bromide-soluble lignin (% ABSL), conditioning type (CT). Different lowercase letters indicate significant differences (\(P<0.05\)) between CO₂ treatments for each tree species × CT combination.

doi:10.1371/journal.pone.0086246.t003

Figure 2. Effects of CO₂ treatment on feeding responses of each invertebrate species. The mean litter consumption (±1 SE) of each invertebrate species is shown for (A) alder and (B) birch in the choice test, and (C) alder and (D) birch in the no-choice test. Asterisks indicate significant differences between CO₂ treatments within each invertebrate species (***\(P<0.001\)). Species are arranged by habitat of origin: aquatic species are *Asellus aquaticus* (Aa), *Gammarus pulex* (Gp), *Odontocerum albicorne* (Oa) and *Sericostoma personatum* (Sp); terrestrial species are *Blaniulus guttulatus* (Bg), *Oniscus asellus* (On), *Porcellio scaber* (Ps) and *Tachypodoiulus niger* (Tn).

doi:10.1371/journal.pone.0086246.g002

Elevated CO₂, Litter Chemistry and Invertebrates

PLOS ONE | www.plosone.org

January 2014 | Volume 9 | Issue 1 | e86246
quality resource (terrestrially-conditioned alder litter contained lower nitrogen when grown under ambient-CO\(_2\)). Hättenschwiler et al. [19] detected a similar compensatory response for *O. axillars* and another woodlouse, *P. scaber*: higher consumption rates were recorded on low-quality, CO\(_2\)-enriched *F. sylvatica* litter (low nitrogen concentration, high C/N ratio). The current study showed that *G. pulex* and *O. albicorne* consumed more elevated-CO\(_2\) than ambient-CO\(_2\) alder, despite no observed chemical differences. It is possible that elevated CO\(_2\) reduced litter palatability by altering chemical constituents that were not quantified here, such as secondary metabolites. For example, phenolics and tannins have been shown to be affected by CO\(_2\) levels [40]. Birch litter responses appeared less idiosyncratic, with no individual species increasing consumption of elevated-CO\(_2\) litter. These results suggest that litter species identity determines the predictability of invertebrate feeding responses, but that compensatory feeding is not a unifying trend among detritivorous macroinvertebrates.

Feeding rates may have varied due to increased handling times associated with low quality birch litter (e.g. [20]), or because of differences in species’ body chemistry and their ability to cope with elemental imbalances with CO\(_2\)-enriched resources [41,42]. Heterotrophs, such as the detritivores in our study, tend to maintain constant body elemental composition [43] and may alter feeding behaviour to achieve optimum chemical balance. Our results show that individual invertebrate species rarely demonstrated significant responses to CO\(_2\) treatments in either test. This suggests that although individual species responses appear idiosyncratic, when considered as a whole, the invertebrate community generally shows consistent and predictable behavioural and functional responses to litter chemical changes induced by elevated CO\(_2\).

Altered consumption of litter by macroinvertebrates will affect energy release from detritus, in turn affecting secondary production, and food-web structure and functioning [5]. Specifically, on the basis of invertebrate responses in our study, mineralisation of carbon and nutrients could slow down in forests dominated by birch or other tree species with similar chemistry. This is reinforced by our observations of high lignin/N and C/N ratios of elevated-CO\(_2\) birch litter, which are predictors for slow decomposition rates [44]. Conversely, stands containing a lot of, or other species with lower C/N ratios, may show little response in terms of detrital processing and nutrient turnover.

Differences between tree species make it difficult to predict overall decomposition rates, a task made more difficult by the prevalence of litter mixtures in temperate deciduous forests, which tend to exhibit non-additive decay [45].

Changes to litter quality as a result of elevated CO\(_2\) may also affect invertebrate community composition, a potentially important determinant of decomposition rates [19]. This could be caused by changes to food selection [46] and increased patchiness of resource quality in litter mixtures on the forest floor [47]. Differential changes to feeding rates may alter competitive dynamics between invertebrate species, with advantages for species whose dietary breadth extends beyond leaf litter, such as *G. pulex* and *S. personatum* [40,49].

Our study provides, to date, the broadest assessment of detritivorous invertebrate species’ feeding responses to CO\(_2\)-enriched litter, improving our mechanistic understanding of a key ecosystem process in temperate woodland ecosystems. Future elevations of atmospheric CO\(_2\) are predicted to affect the breakdown of detritus indirectly by reducing leaf litter quality for macroinvertebrate detritivores. The study highlights that this process is highly tree species-specific, and there will be strong responses in some forest stands and minimal effects in others. Identifying the mechanisms governing such ecosystem variation in functional responses to climate change is essential if we are to predict the consequences of elevated CO\(_2\) for forest carbon dynamics and nutrient cycling at regional and landscape-scales.

Acknowledgments

Stefan Reidinger, Deborah Coldwell and Simon McQueen-Mason at the University of York for assistance with chemical profiling. Adriana De Palma for comments on early versions of the manuscript. Jamie Crowther for technical assistance.

Author Contributions

Conceived and designed the experiments: MWD TWC SMT ADA THJ. Performed the experiments: MWD SEH. Analyzed the data: MWD TWC SMT. Contributed reagents/materials/analysis tools: DLG SJO SEH. Wrote the paper: MWD. Wrote initial manuscript: MWD. Drafting and revising initial manuscript: MWD TWC SMT ADA DLG SJO SEH THJ.

References

1. IPCC (2007) Climate Change 2007: The physical science basis. In: Solomon SDQ, Manning M, Chen Z, Marquis M, Averet KB, et al., editors. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 799–045.
2. Curtis PS, Wang X (1998) A meta-analysis of elevated CO\(_2\) effects on woody plant mass, form and physiology. Oecologia 113: 219–313.
3. Robinson EA, Ryan GD, Newman JA (2012) A meta-analytical review of the effects of elevated CO\(_2\) on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194: 321–336.
4. Cebrian J [1999] Patterns in the fate of production in plant communities. Am Nat 154: 449–469.
5. Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, et al. (2004) Detritus, trophic dynamics, and biodiversity. Ecol Letters 7: 584–600.
6. Tuchman NC, Wetzel RG, Rier ST, Walther KA, Teeri JA (2002) Elevated atmospheric CO\(_2\) lowers leaf litter nutritional quality for stream ecosystem food webs. Glob Change Biol 8: 163–170.
7. Coûteaux M, Kurz C, Bottner P, Rasch A (1999) Influence of increased atmospheric CO\(_2\) concentration on quality of plant material and litter decomposition. Tree Physiol 19: 301–311.
8. Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO\(_2\) litter chemistry, and decomposition: A synthesis. Oecologia 127: 153–165.
9. Cotrufo MF, Ineson P, Rowland AP (1994) Decomposition of tree leaf litters grown under elevated CO\(_2\): Effect of litter quality. Plant Soil 163: 121–130.
10. Tuchman NC, Walther KA, Wetzel RG, Teeri JA (2003) Elevated atmospheric CO\(_2\) alters leaf litter quality for stream ecosystems: An in situ leaf decomposition study. Hydrobiologia 495: 203–211.
11. Parsons WJF, Lindroth RL, Boeckh JG (2004) Decomposition of *Betula papyrifera* leaf litter under the independent and interactive effects of elevated CO\(_2\) and O\(_3\). Glob Change Biol 10: 1666–1667.
12. Liu L, King JS, Gardina P (2007) Effects of elevated atmospheric CO\(_2\) and trophospheric O\(_3\) on nutrient dynamics: decomposition of leaf litter in trembling aspen and paper birch communities. Plant Soil 299: 65–82.
13. Ferreira V, Gonçalves AL, Gobbofil DL, Canhoto C (2010) Effect of increased atmospheric CO\(_2\) on the performance of an aquatic detritivore through changes in water temperature and litter quality. Glob Change Biol 16: 3281–3296.
14. Prather CM, Pelini SL, Laws A, Rivest E, Wolitz M, et al. (2012) Invertebrates, ecosystem services and climate change. Biol Rev 88: 327–348.
15. Wallace JB, Webster JR (1996) The role of macroinvertebrates in stream ecosystem function. Annu Rev Entomol 41: 115–139.
16. Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, et al. (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42: 83–915.
17. Cotrufo MF, Briones MJI, Ineson P (1998b) Elevated CO\(_2\) affects field decomposition rate and palatability of tree leaf litter: Importance of changes in substrate quality. Soil Biol Biochem 30: 1565–1571.
18. Hättenschwiler S, Bühler S, Körner C (1999) Quality, decomposition and isopod consumption of tree litter produced under elevated CO\(_2\). Oikos 85: 271–281.
19. Grossner MO, Swan CM, Dough CK, McKie BG, Burgdett RD, et al. (2010) Diversity meets decomposition. Trends Ecol Evol 25: 372–380.
20. On T, Rall BC, Brose U (2012) Climate change effects on macrofaunal litter decomposition: the interplay of temperature, body masses and stoichiometry. Philos T Roy Soc B 367: 3025–3032.
21. Frost PC, Tuchman NC (2005) Nutrient release rates and ratios by two stream detritivores fed leaf litter grown under elevated atmospheric CO2. Archiv Hydrobiol 163: 463–477.

22. Shurin JB, Gruner DS, Hillebrand H (2006) All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc Roy Soc B 273: 1–9.

23. Smith AR, Lukac M, Hood R, Healy JR, Miglietta F, et al. (2013) Elevated CO2 enrichment induces a differential biomass response in a mixed species temperate forest plantation. New Phytol 198: 156–168.

24. Miglietta F, Peressotti A, Vaccari FP, Zaldei A, deAngelis P, et al. (2001) Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytol 150: 465–476.

25. Daniel O, Schonholzer F, Ehlers S, Zeyer J (1997) Microbial conditioning of leaf litter and feeding by the wood-louse Porcellio scaber. Pedobiologia 41: 397–401.

26. Grac¸a MAS, Cressa C, Gessner MO, Feio MJ, Callies KA, et al. (2001) Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biol 46: 947–957.

27. Reidinger S, Ramsey M, Hartley SE (2012) Rapid and accurate analyses of silicon and phosphorus in plants using a portable X-ray fluorescence spectrometer. New Phytol 195: 699–706.

28. Foster CE, Martin TM, Pauly M (2010) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: Lignin. J Vis Exp 37: e1745.

29. Moog O (2002) Fauna Aquatica Austriaca. Vienna: Federal Ministry of Agriculture, Forestry, Environment and Water Management.

30. Wurst S, De Deyn GB, Orwin K (2012) Soil biodiveristy and functions. In: Wall DH, editor. Soil Ecology and Ecosystem Services. Oxford: Oxford University Press. 28–44.

31. R Development Core Team (2013) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

32. Crawley MJ (2007) The R Book. Chichester: John Wiley & Sons, Ltd. 942 p.

33. Fox J, Weinberg S (2011) car: Companion to applied regression. R package version 2.0–18.

34. Lenth RV (2013) lsmeans: Least-squares means. R package version 1.06–5.

35. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2013) nlme: Linear and nonlinear mixed effects models. R package version 3.1–109.

36. Kuhn M, Weston S, Wing J, Forester J (2011) contrast: A collection of contrast methods. R package version 0.1.

37. Barnes GR (2012) gmdt: Various R programming tools for model fitting. R package version 2.13-4.

38. Temperton VM, Grayston SJ, Jackson G, Barton CVM, Millard P, et al. (2003) Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Tree Physiol 23: 1051–1059.

39. Taylor M, Zimmer M (2012) Drowned or dry: A cross-habitat comparison of detrital breakdown processes. Ecosystems 15: 477–491.

40. Lindroth RL (2012) Atmospheric change, plant secondary metabolites and ecological interactions. In: Iason GR, Dicke M, Hartley SE, editors. The Ecology of Plant Secondary Metabolites: From Genes to Global Processes. Cambridge: Cambridge University Press. 120–153.

41. Martinson HM, Schneider K, Gilbert J, Hines JR, Hambbeck PA, et al. (2008) Detritivory: stoichiometry of a neglected trophic level. Ecol Res 23: 487–491.

42. Hladyz S, Gessner MO, Giller PS, Prinz J, Woodward G (2009) Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshwater Biol 54: 957–970.

43. Sterner RW, Elser JJ (2002) Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton: Princeton University Press. 564 p.

44. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621–626.

45. Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104: 230–246.

46. Hänschinger K, Breitner D (2001) Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Glob Change Biol 7: 563–579.

47. Swan CM, Palmer MA (2006) Preferential feeding by an aquatic consumer mediates non-additive decomposition of speciose leaf litter. Oecologia 149: 107–114.

48. MacNeil C, Dick JTA, Elwood RW (1997) The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): problems and perspectives concerning the functional feeding group concept. Biol Rev 72: 349–364.

49. Friberg N, Jacobsen DJ (1999) Variation in growth of the detritivore-shredder Sericostoma purpureum (Trichoptera). Freshwater Biol 32: 135–142.