Rare-Earth Orthophosphates From Atomistic Simulations

Yaqi Ji 1,2, Piotr M. Kowalski 1,2,*, Philip Kegler 1,2, Nina Huittinen 3, Nigel A. Marks 4, Victor L. Vinograd 1,2, Yulia Arinicheva 1,2,5, Stefan Neumeier 1,2 and Dirk Bosbach 1,2

1 Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research - IEK-6: Nuclear Waste Management and Reactor Safety, Jülich, Germany, 2 JARA High-Performance Computing, Aachen, Germany, 3 Institute of Resource Ecology, Petrography Mineralogy and Geochemistry (RAS), Russia

*Correspondence:
Piotr M. Kowalski
p.kowalski@fz-juelich.de

Keywords: rare-earth phosphates, atomistic simulations, monazite, xenotime, nuclear waste management, ceramics, thermodynamics, solid solutions

1. INTRODUCTION

Lanthanide phosphates (LnPO₄) are considered as a potential nuclear waste form for immobilization of Pu and minor actinides (Np, Am, and Cm). In that respect, in the recent years we have applied advanced atomistic simulation methods to investigate various properties of these materials on the atomic scale. In particular, we computed several structural, thermochemical, thermodynamic and radiation damage related parameters. From a theoretical point of view, these materials turn out to be excellent systems for testing quantum mechanics-based computational methods for strongly correlated electronic systems. On the other hand, by conducting joint atomistic modeling and experimental research, we have been able to obtain enhanced understanding of the properties of lanthanide phosphates. Here we discuss joint initiatives directed at understanding the thermodynamically driven long-term performance of these materials, including long-term stability of solid solutions with actinides and studies of structural incorporation of f elements into these materials. In particular, we discuss the maximum load of Pu into the lanthanide-phosphate monazites. We also address the importance of our results for applications of lanthanide-phosphates beyond nuclear waste applications, in particular the monazite-xenotime systems in geothermometry. For this we have derived a state-of-the-art model of monazite-xenotime solubilities. Last but not least, we discuss the advantage of usage of atomistic simulations and the modern computational facilities for understanding of behavior of nuclear waste-related materials.
.......
3. RESULTS AND DISCUSSION

3.1. Structural Data

The first test of a computational method is its ability to reproduce the measured lattice parameters of the computed crystalline solid. The lattice parameters of lanthanide phosphates were measured by different studies and are known for all the Ln cations, except Pm (Ni et al., 1995; Clavier et al., 2011). These could be also accurately estimated from the values of ionic radii of Ln cations (Shannon, 1976; Ni et al., 1995). The first DFT-based computational studies of structural parameters of lanthanide phosphates were performed for LaPO₄ monazite (Wang et al., 2005). In these studies the applied PW91 exchange-correlation functional (Perdew and Wang, 1992) resulted in slight overestimation of lattice parameters (by ~ 1% on average). Rustad (2012) used the PBE exchange-correlation functional (Perdew et al., 1996) to compute structural and thermochemical parameters of all lanthanide phosphates and obtained lattice parameters that are also ~ 1% too large. In similar, extensive studies of LnPO₄ monazite compounds, Feng et al. (2013) applied local spin approximation, but obtained lattice parameters that are far smaller than the experimental values (up to 10% understimation of volume). These studies show that the structural parameters of lanthanide-phosphates are very sensitive to the applied computational method, especially to the exchange-correlation functional. A correct treatment of strongly correlated 4f electrons also plays an important role here.

Blanca-Romero et al. (2014) performed extensive tests of the ability of different DFT-based approaches to reproduce the measured lattice parameters and bond-distances of monazite-type lanthanide-phosphates and the related lanthanide-oxides. In that paper, they found that the standard DFT method with explicitly computed 4f electrons overestimates the lattice parameters and bond-lengths by up to 3%, consistent with previous studies (Wang et al., 2005; Rustad, 2012). A very good match to the experimental values of structural parameters was obtained with the DFT+U method, in which the PBESol exchange-correlation functional was applied (Perdew et al., 2008) and the Hubbard U parameters that represent the strength of the on-site Coulomb repulsion between 4f electrons (thus electronic correlations), were derived ab initio. In Figure 1 we present the Ln-O bond lengths computed with this method vs. the measured data for monazite and xenotime systems. The match is excellent and the key to get such a good result was to compute the Hubbard U parameters for each Ln case. As demonstrated in Figure 1, this parameter varies a lot for the different Ln cations (from ~3 to ~ 10 eV). Having an improved description of structures using the PBESol exchange-correlation functional is also expected, as by recovering the exact charge density limit for slowly varying densities, it improves the description of structural parameters over the widely used PBE functional [see discussion by Perdew et al. (2008)]. Another practice in computation of 4f elements is to include the 4f electrons into the pseudopotential core and to not compute them explicitly [as done, for instance, by Rustad (2012)]. This is due to the fact that these do not participate in the chemistry (bonding). Blanca-Romero et al. (2014) and Beridze et al. (2016) illustrated this for lanthanide phosphates. They found that such a “f in the core” approach results in the formation enthalpies (energies) that are consistent with the ones derived with the DFT+U method (see discussion in section 3.2). This method, although not that accurate for the structural parameters as the aforementioned DFT+U approach (Beridze et al., 2016), was shown to be accurate for prediction of the thermodynamic and elastic parameters of lanthanide phosphates, which is discussed in the following sections.

3.2. Formation Enthalpies

The formation enthalpies of series of monazites and xenotimes have been measured by Ushakov et al. (2001). These were first computed at the DFT level by Rustad (2012). He noticed that there is a systematic offset between the computed and measured values of ~ 40 kJ/mol, with the computed enthalpies being less exothermic. Blanca-Romero et al. (2014) have shown that this
offset is present also in the DFT+U calculations and is to a large extent Ln-cation independent, which rules out the 4f electrons correlations as the underlying reason for it. They attributed this to the overestimation of P-O bond lengths, and thus volumes, of the LnPO₄ and P₂O₅ compounds. Beridze et al. (2016) have found an identical offset for xenotimes. When a constant shift of ~30 kJ/mol is applied to the computed formation enthalpies the measured values are nicely reproduced. The final result for series of LnPO₄ compounds is given in Figure 2. The computed formation enthalpies reproduce well the experimental trend for most of the compounds. The only significant discrepancies are observed for GdPO₄ and TbPO₄, which however is crucial for the discussion of the relative solubilities provided in section 3.7.

The correct prediction of the formation enthalpies of monazite and xenotime phases is essential to properly model the relative solubilities in the monazite-xenotime system. Mogilevsky (2007) in his estimations used an extrapolation of the experimentally measured values for TbPO₄ (Ushakov et al., 2001) - the only system for which formation enthalpies of both phases have been measured. Mogilevsky (2007) extrapolated these values by the following formula:

\[
\Delta h_x = (R_{tr} - R_x)/(R_{tr} - R_{Tb})\Delta h_{TbPO_4},
\]

\[
\Delta h_m = (R_m - R_{tr})/(R_tr - R_{Tb})\Delta h_{TbPO_4},
\]

where \(R_{tr}\) is the ionic radius of a hypothetical ion located between Gd and Tb for which energies in the monazite and xenotime structures are identical, \(R_{m,x}\) is the ionic radius of Ln cations, which at normal conditions form monazite (m) or xenotime (x), respectively. He assumed that \(R_{tr} = 1.0516\) Å and derived \(\Delta h_{m,x}\) which is the enthalpy difference between the standard phase and the other phase (e.g., for LaPO₄ the enthalpy difference between monazite and xenotime phase of LaPO₄). His result is given in Figure 3. In order to check these values we performed ab initio calculations of series of monazite and xenotimes counterparts of the existent phases. The advantage of atomistic simulations is that even non-existing phases could be modeled (e.g., LaPO₄ xenotime). The result is given in Figure 3. The computed \(\Delta h_{m-x}\) is significantly different from the estimation of Mogilevsky (2007), with the differences for LaPO₄ of ~20 kJ/mol. We note that our ab initio data could be reproduced assuming \(R_{tr} = 1.507\) Å. Having a good match to the experimental values of the measured compounds (see Figure 2) there is no reason to believe that our prediction for the non-existing phases could be that much wrong. We thus assume that the values computed here are correct.

3.3. Elastic Parameters

The elastic properties of lanthanide phosphates have been a topic of several experimental studies (Thomà et al., 1974; Harley and Manning, 1978; Nipko et al., 1996; Mogilevsky et al., 2006; Du et al., 2009; Thust et al., 2015). Also on the computational side these have been extensively investigated. Wang et al. (2005), Feng et al. (2013), and Kowalski and Li (2016) computed elastic constants and moduli for a series of monazites. We note that the later study gave the best match to the measured values. The key factor to obtain accurate results has been a good reproduction of structural parameters of the investigated materials. For instance, Kowalski and Li (2016) obtained volumes that are within 1% of the measured values, while in the earlier studies by Feng et al. (2013) the differences were as large as 10%. In the follow-up studies, Kowalski et al. (2017b) computed the variation of the Young's modulus along the La₁₋ₓEuₓPO₄ solid solution, which reproduced the experimental trend (Thust et al., 2015) and
allowed for better interpretation of these data. Computational methods were also applied to study the pressure effect on the elastic moduli and the relevant elastic anisotropy (Ali et al., 2016; Gomis et al., 2017).

The computed elastic moduli were also used to derive some related thermodynamic parameters. Feng et al. (2013) and Ji et al. (2017b) used the Slack model (Slack, 1973), and derived thermal conductivities of monazite and xenotime compounds, respectively. According to Slack (1973) the thermal conductivity can be estimated as:

\[\kappa = \frac{A}{\gamma^2 n^1 T} \]

where \(A = 3.12 \times 10^{-8} \text{W mol kg}^{-1} \text{m}^{-2} \text{K}^{-3} \) is a constant, \(\bar{M} \) is the average atomic mass, \(\delta^3 \) is the average volume per atom in the system, \(\Theta_D \) is the Debye temperature, \(n \) is the number of atoms per primitive unit cell and \(\gamma \) is the acoustic Grüneisen parameter. Here, using the same approach as by Ji et al. (2017b) we computed the standard thermal conductivity of LaPO\(_4\). The obtained value of room temperature thermal conductivity of 4.0 W m\(^{-1}\) K\(^{-1}\) is consistent with the measured value of 3.6 W m\(^{-1}\) K\(^{-1}\) (Du et al., 2009) and the data computed by Feng et al. (2013). The data for LaPO\(_4\) (m) and LuPO\(_4\) (x) are reported in Table 1. Interestingly, both experiment and simulation show significant differences in the thermal conductivity of the monazite and xenotime phases. This comes mainly from the different number of atoms in the primitive cell of both phases, 12 for xenotime and 24 for monazite (see Equation 3).

Mogilevsky (2007) used the Young’s modulus to estimate the excess energy of mixing [the Margules interaction parameter (Prieto, 2009)] in monazite-xenotime solid solution systems. By a combination of fitting to the existing data on solubilities and so computed mixing energies he proposed an accurate model to describe the maximum solubilities and miscibility gap in the monazite-xenotime system. Kowalski and Li (2016) have shown that this Young’s modulus-based approximation of elastic strain energy leads to a good description of the \textit{ab initio} Margules interaction parameters. These issues will be discussed in details in sections 3.6 and 3.7. Nevertheless, Mogilevsky (2007) used an approximation for the variation of Young’s modulus along lanthanide series. According to his derivation, for monazite compounds the Young’s modulus decreases along the series, while the computation of Kowalski and Li (2016) and the aforementioned measurements show an increase (from 140 GPa for La to \(~\) 160 GPa for Gd). In Figure 4 we present the collection of measured and computed Young’s moduli together with the Mogilevsky (2007) approximation. These results are important in the context of estimation of excess enthalpies of mixing and solubilities in the monazite-xenotime system (sections 3.6 and 3.7).

In the next section we will discuss that a careful selection of the computational method, which results in good description of...
3.4. Thermodynamic Parameters

Besides the thermal conductivity, the heat capacity is the most widely investigated thermodynamic parameter of lanthanide phosphates. There is a series of experimental papers on measurements of this parameter for different monazite compositions (Thiriet et al., 2004, 2005a; Popa and Konings, 2006; Popa et al., 2006a,b; Gavrichev et al., 2008, 2009; Bauer et al., 2016), including Pu-rich compounds (Thiriet et al., 2005b; Popa et al., 2007a; Benes et al., 2011), and xenotime (Gavrichev et al., 2006, 2010, 2012, 2013; Nikiforova et al., 2012; Gysi et al., 2016). These measurements revealed a quasi-random-like variation of the standard heat capacity and the standard entropy along the lanthanide series. This is illustrated in Figure 5. For instance, the standard values are largest for EuPO$_4$ and smallest for GdPO$_4$ with no visible trend. The first systematic computational studies of Feng et al. (2013) were unable to match
the experimental data and tried to explain these discrepancies by the large difference between computed constant volume \(C_p \) and measured \(C_p \) heat capacities. In order to shed the light on this variation, Kowalski et al. (2015) and Ji et al. (2017a) performed accurate \textit{ab initio} calculations of the heat capacity of monazites and xenotimes, respectively. They accounted for two effects: (1) the lattice vibration and (2) the thermal excitation of \(4f \) electrons, which had been known from experimental studies to significantly influence the heat capacity of monazites [e.g., Thiriet et al. (2005a,b)]. By doing so, Kowalski et al. (2015) were able to accurately reproduce the measured values for all the investigated cases. Using the same computational approach, Kowalski et al. (2017b) were able to explain the low temperature variation of heat capacity in the \(La_{1-x}Eu_xPO_4 \) monazite-type solid solution system (Thust et al., 2015). By applying a theoretically justified extrapolation, Kowalski et al. (2015) could also account for high temperature \((T > 800 \text{ K})\) anharmonic effects in monazites. We note however, that such a procedure was not that successful for xenotime phases, as here the anharmonic effects become important at a much lower temperature of \(\sim 400 \text{ K} \) (Ji et al., 2017a). Computational studies of the heat capacity of xenotime by Ji et al. (2017a) allowed also for the verification of the slightly conflicting experimental data sets published recently in the literature (Gavrilchev et al., 2010, 2012, 2013; Gysy et al., 2016).

The thermodynamics of lanthanide phosphate solid solutions is discussed in section 3.6.

3.5. Incorporation of Radionuclides

Incorporation of actinides into lanthanide phosphates ceramic is an important topic in terms of using these materials as potential nuclear waste forms. It is well known that the trivalent actinides such as Pu, Am and Cm could form monazite phases (e.g., PuPO\(_4\) Thiriet et al., 2005b; Clavier et al., 2011) and that the tetra-valent actinides such as U or Np can be introduced into the monazite lattice jointly with divalent cations [e.g., Ca, Clavier et al. (2011)]. However, an important aspect of the formation of such a solid solution is its homogeneity. In that respect, Huittinen et al. (2017) and Huittinen et al. (2018) investigated incorporation of Eu\(^{3+}\) into monazite and Cm\(^{3+}\) into monazite and rhabdophane phases, respectively. The latter compound is a hydrated lanthanide-phosphate which is a stable phase at lower temperatures (below \(T \sim 400 \text{ K} \)) (de Kerndaniel et al., 2007; Clavier et al., 2011). By a combination of time-resolved laser fluorescence spectroscopy (TRLFS) and atomistic modeling, Huittinen et al. (2017) have shown that monazite-type solid solutions are homogeneous. This conclusion was reached by explanation of the increased broadening of TRLFS profiles for the \(La_{1-x}Gd_xPO_4 \) solid solutions by the broad distribution of the dopant-O bond lengths in the measured mixed compounds. In these studies force-field methods were used to describe the interatomic interactions and special quasirandom structures (SQS) (Zunger et al., 1990) were used to model the ideal, homogeneous solid solutions. The same approach was used by Huittinen et al. (2018) to show homogeneous incorporation of Cm\(^{3+}\) into monazite. On the other hand, rhabdophane-type \(La_{1-x}Gd_xPO_4 \) solid solutions were found to be very selective in terms of actinides incorporation, with the anhydrous cation site (i.e., not coordinated to H\(_2\)O molecules) being preferred by the Cm dopant, and the preference increasing toward larger and lighter lanthanides [greater for LaPO\(_4\) \(0.67\text{H}_2\text{O}\) than GdPO\(_4\) \(0.67\text{H}_2\text{O}\), Huittinen et al. (2018)]. This selectivity was confirmed by the computation of the Cm solution (incorporation) energies.

3.6. Solid Solutions

Formation and thermodynamic stability of solid solutions of radionuclides-bearing lanthanide phosphates ceramic waste forms is a topic of extensive studies in the context of nuclear waste management (Popa et al., 2007a; Li et al., 2014; Kowalski and Li, 2016; Arinicheva et al., 2017; Hirsch et al., 2017; Neumeier et al., 2017b; Eremin et al., 2019). This is because the information gained allows for the assessment of long term stability of ceramic nuclear waste forms against phase separation. In that aspect there are two streams of research: (1) the investigation of homogeneity of a solid solution discussed in section 3.5 and (2) the investigation of its long-term thermodynamic stability. The second problem is a key issue for nuclear waste disposal because any desired waste form should be stable against formation of the miscibility gap. It was shown experimentally (Popa et al., 2007b) and by \textit{ab initio} simulations (Li et al., 2014) that monazite-type solid solutions are highly regular. The excess enthalpy of mixing, \(H^E \), of a \((A_1-xB_x)PO_4 \) could be described by a simple equation (Popa et al., 2007b):

\[
H^E = Wx(1-x),
\]

where \(W \) is a Margules interaction parameter (Prieto, 2009). A solid solution is stable against formation of a miscibility gap if \(W < 2RT \), where \(R \) is the gas constant. It is thus of interest to nuclear waste management strategies to characterize \(W \) for the considered solid solutions, especially for the mixture of actinides with the host matrix cations like Pu with La in a \(La_{1-x}Pu_xPO_4 \) solid solution.

The first systematic \textit{ab initio} calculations of \(W \) parameters for monazite-type solid solutions were performed by Li et al. (2014). They found that for the \(La_{1-x}Ln_xPO_4 \) solid solutions, \(W = 0.618(\Delta V_{(cm^3/mol)})^2 \), where \(\Delta V \) is the difference in the volume of solid solution endmembers. The obtained results suggest thermodynamic instability, characterized with \(W > 5 \text{kJ/mol at ambient conditions, of various solid solutions} \) [e.g., \((La_{1-x}Gd_xPO_4) \)]. In follow-up studies, Kowalski and Li (2016) explained the quadratic dependence of \(W \) parameter on the volumes difference by a strain energy-based model, in which

\[
W = \frac{E}{6V}(\Delta V)^2,
\]

where \(E \) is the Young's modulus and \(V \) is the volume. These studies show that \(\Delta V \) is an important parameter that determines the value of the \(W \) parameter.

Neumeier et al. (2017b) compared the derived \textit{ab initio} \(W \) parameters with the calorimetric measurements of \(La_{1-x}Ln_xPO_4 \) \((Ln = Eu, Gd) \) solid solutions. The measured values are smaller than the computed ones. The reason for this discrepancy is the difference in the value of measured and computed \(\Delta V \). These are summarized in Table 2. When Neumeier et al. (2017b) used the
measured \(V \) values and rescaled the \textit{ab initio} computed values according to Equation 5, namely:

\[W = \left(\frac{\Delta V_{\text{exp}}}{\Delta V_{\text{comp}}} \right)^2 W_{\text{computed}}, \]

as provided in Table 2, they obtained a good match to the measured values.

Compound	\(\Delta V_{\text{computed}} \)	\(\Delta V_{\text{measured}} \)	\(W_{\text{ab initio}} \)	\(W_{\text{rescaled}} \)	\(W_{\text{measured}} \)
\(\text{La}_{1-x}\text{Eu}_x\text{PO}_4 \)	7.6	5.2	13.4	6.2	2.5 \(\pm \) 2.6
\(\text{La}_{1-x}\text{Gd}_x\text{PO}_4 \)	8.4	6.1	16.5	8.6	11.4 \(\pm \) 3.1
\(\text{La}_{1-x}\text{Pu}_x\text{PO}_4 \)	4.3	2.9	4.0	1.9	

The provided \(W \) parameters come from: \(^6\)Li et al. (2014), \(^6\)Kowalski and Li (2016), \(^6\)Neumeier et al. (2017b).

The most important outcome of these studies is their implication for immobilization of actinides, for instance Pu. The obtained Margules interaction parameter for \(\text{La}_{1-x}\text{Pu}_x\text{PO}_4 \) solid solution case is \(W = 1.8 \text{kJ/mol} \) (Table 2), thus indicating thermodynamic stability of this solid solution against formation of a miscibility gap (as \(W \) is \(< 5 \) kJ/mol). On the other hand, although synthesis of the pure PuPO\(_4\) monazite has been successful (Thiriet et al., 2005b; Clavier et al., 2011), the experimental studies suggest a maximum content of Pu in \(\text{La}_{1-x}\text{Pu}_x\text{PO}_4 \) solid solution at \(x \sim 0.15 \) (Popa et al., 2007a; Arinicheva et al., 2017). In particular, recent experimental investigation by Arinicheva et al. (2017) indicates formation of Pu-oxides (PuO\(_2\)) for \(x > 0.15 \). In order to understand this contradiction, we computed the formation enthalpy of \(\text{La}_{1-x}\text{Pu}_x\text{PO}_4 \) solid solution from oxides. We consider the following reaction:

\[\frac{1}{2}(1-x)\text{La}_2\text{O}_3 + \frac{1}{2}x\text{Pu}_2\text{O}_5 + \frac{1}{2}\text{P}_2\text{O}_5 \rightarrow \text{La}_{1-x}\text{Pu}_x\text{PO}_4 \]

Because PuO\(_2\) is the most stable Pu-oxide at ambient conditions, we also account for the enthalpy of oxidation of PuO\(_2\) of 285 kJ/mol (Konings et al., 2014). The result is given in Figure 6. Interestingly, the formation enthalpy becomes positive, and the solid solution becomes unstable against formation of PuO\(_2\) for \(x \sim 0.15 \). We thus conclude that the experimentally observed maximum load of Pu in LaPO\(_4\) results from the positive formation enthalpies, and thus thermodynamic instability of \(\text{La}_{1-x}\text{Pu}_x\text{PO}_4 \) compounds for \(x > 0.15 \). \(^2\)We notice that in order to correctly quantify the thermodynamics of this process, the free energies should be considered. However, the consideration of the entropy terms (main contributor to the difference between the enthalpies and the free energies of the reaction 7) in the reaction 7 would slightly increase the threshold \(x \) value but on qualitative level, the outlined picture will not change.

3.7. Solubilities in Monazite-Xenotime System

The thermodynamic parameters of mixing, such as the \(W \) parameter, are very important for assessment of thermodynamic stability of monazite-type nuclear waste forms. Therefore, it is of high importance to validate the model presented in section 3.6 against all the available data. Interestingly, the Margules interaction parameters are equally important for the description of the miscibility gap, and the maximum solubilities, in the naturally occurring monazite-xenotime systems. The monazite-xenotime system has been proposed as a potential geothermometer and some relevant data on solubilities have been measured (Andrehs and Heinrich, 1998; Mogilevsky, 2007). Monazite-xenotime system shows a large miscibility gap, which is associated with a large difference between the formation enthalpies of monazite and xenotime (Figure 3). Nevertheless, the measured maximum solubilities can be good indicators of temperature and this phenomenon have been investigated \textit{“in situ”} experimentally (Andrehs and Heinrich, 1998), and by thermodynamic modeling (Mogilevsky, 2007). In order to model the maximum solubility of one phase in another we have to know the Margules interaction parameters \(W \) and the difference in the formation enthalpies between monazite and xenotime phases. The first is discussed in section 3.6 and as we concluded there, we have a good model for it. The latter is discussed in section 3.2.

The maximum solubilities of xenotime in monazite (\(x_1 \)) and monazite in xenotime (\(x_2 \)) are obtained by solving self-consistently two equations (Mogilevsky, 2007):

\[\Omega_m(1-x_1)^2 + RT\ln(x_1/(1-x_1)) = \Delta h_m + \Omega_m x_2^2, \]
\[\Omega_x(1-x_2)^2 + RT\ln(x_2/(1-x_2)) = \Delta h_x + \Omega_x x_1^2, \]

where \(\Omega_{x,m} = -\Delta h_{m,x} + W_{m,x} \). \(\Delta h_{m,x} \) is given by Equations 1, 2 (see also section 3.2) and \(W_{m,x} \) are the Margules interaction parameters for monazite (m)- and xenotime (x)-type solid solutions. The self-consistent solution of Equations 8 and 9...
In this contribution we presented recent atomistic modeling contribution to the research on lanthanide phosphates, focusing on the studies performed at Forschungszentrum Jülich. We have shown that on many occasions joint atomistic modeling and experimental work resulted in the enhanced description of the investigated materials. Examples of such joint studies are investigations of homogeneity and thermodynamic parameters of solid solutions and incorporation of actinides into lanthanide phosphate ceramics. With the improved understanding and description of the 4f electrons, achieved with the parameter free DFT+U approach, we were able to obtain very accurate description of the local Ln – O bonding environments and the formation enthalpies. This allowed us to obtain better estimates of the relative solubilities in the monazite-xenotime system, elastic and thermodynamic parameters for pure phases and solid solutions. The joint modeling and experimental investigation of the excess enthalpies of mixing in monazite-type solid solutions provided solid arguments for the long-term thermodynamic stability of the plutonium-lanthanum monazite-type ceramic waste form. With respect to our previously published studies, the novel contribution discussed here is the investigation of incorporation of Pu into LaPO₄ ceramics, which shows that the experimentally observed maximum load limit for Laₓ₋₅PuₓPO₄ is governed by the formation enthalpy from oxides, which becomes positive at ∼ x = 0.15. This value is consistent with the experimental observations. In addition, we reinvestigated the thermodynamics of monazite-xenotime system. We provide accurate values of the enthalpy difference between monazite and xenotime phases and estimates of maximal solubilities computed from the best available ab initio data. These results are of great importance for monazite/xenotime-based geothermometry. However, the obtained slight discrepancies between theoretical prediction and the available in situ data show a need for more in-depth experimental and theoretical studies of solubilities in the monazite-xenotime system.

The assortment of results provided here shows that atomistic modeling is a valuable research tool for the investigation of lanthanide phosphates. The best results have been obtained by a joint computational and experimental approach, or at least by extensive testing and comparison to the available experimental data. With the steady increase in the availability of computational power we expect that atomistic modeling research will be applied to tackle more complex problems, such as dissolution or corrosion kinetics, an important aspect of nuclear waste performance.

DATA AVAILABILITY

All datasets generated for this study are included in the manuscript and/or the supplementary files.

AUTHOR CONTRIBUTIONS

YJ and PMK contributed equally to computing the data, analysis and editing the manuscript. PK, NH, and YA contributed experimental support and expertise. VV contributed to the computation of thermodynamic parameters of solid solutions. NM contributed to the computation of thermal conductivity and force-field simulations. SN and DB contributed expertise on ceramic waste forms.

FUNDING

We gratefully acknowledge the funding from the German Federal Ministry for Education and Research (BMBF, Grant 02NUK021A).
ACKNOWLEDGMENTS

We thank Sergey Yudintsev and another reviewer for very positive and constructive comments on the manuscript. YJ is thankful to the China Scholarship Council (CSC) for providing financial support for her PhD study in Germany at Forschungszentrum Jülich/RWTH Aachen. Funded by the Excellence Initiative of the German federal and state governments and the Jülich Aachen Research Alliance – High-Performance Computing. We thank the JARA-HPC awarding body for time on the RWTH and Forschungszentrum Jülich computing resources awarded through JARA-HPC Partition.

REFERENCES

Ali, K., Arya, A., Ghosh, P. S., and Dey, G. K. (2016). “A first principle study of the pressure dependent elastic properties of monazite LaPO4,” AIP Conference Proceedings 1728:020090. doi: 10.1063/1.4946141

Andrees, G. and Heinrich, W. (1998). Experimental determination of REE distributions between monazite and xenotime: potential for temperature-calibrated geochronology. Chem. Geol. 149, 83–96.

Aриничева, Y., Popa, K., Schlenz, H., and Bosbach, D. (2014). Performance of DFT+U method for prediction of structural and thermodynamic parameters of monazite-type ceramics. J. Comput. Chem. 35, 1339–1346. doi: 10.1002/jcc.23618

Buckingham, R. (1938). The classical equation of state of gaseous helium, neon and argon. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 168, 264–283.

Chroneos, A., Ruishton, M., Jiang, C., and Tsoukalas, L. (2013). Nuclear wasteform materials: atomistic simulation case studies. J. Nucl. Mater. 441, 29–39. doi: 10.1016/j.jnucmat.2013.05.012

Clavier, N., Podor, R., and Dacheux, N. (2011). Crystal chemistry of the monazite structure. J. Eur. Ceram. Soc. 31, 941–976. doi: 10.1016/j.jeurceramsoc.2010.12.019

Cococcioni, M. and de Gironcoli, S. (2005). Linear response approach to the calculation of the effective interaction parameters in the LDA. Rev. B 71:035105. doi: 10.1103/PhysRevB.71.035105

de Kerdaniel, E. D. F., Clavier, N., Dacheux, N., Terra, O., and Podor, R. (2011). Actinide solubility-controlling phases during the dissolution of phosphate ceramics. J. Nucl. Mater. 362, 451–458. doi: 10.1016/j.jnucmat.2007.01.012

Ewing, R. (1999). Nuclear waste forms for actinides. Proc. Natl. Acad. Sci. U.S.A. 96, 3432–3439.

Ewing, R. and Wang, L. (2002). Phosphates as nuclear waste forms. Rev. Mineral. and Geochem. 48, 673–699. doi: 10.2138/rmg.2002.48.18

Feng, J., Xiao, B., Zhou, R., and Pan, W. (2013). Anisotropy in elasticity and thermal conductivity of monazite-type rpo4 (Re=La, Ce, Nd, Sm, Eu, Gd). J. Am. Ceram. Soc. 92, 2687–2692. doi: 10.1111/j.1551-2916.2009.03244.x

Gavrichev, K. S., Iturin, A. V., Gurevich, V. M., Khoshchilov, A. V., and Komissarova, L. N. (2012). Thermodynamic functions of erbium orthophosphate ErPO4 in the temperature range of 0-1600 K. Thermochim. Acta 533, 1–7. doi: 10.1016/j.tca.2012.02.002

Gavrichev, K. S., Ryumin, M. A., Iturin, A. V., Gurevich, V. M., and Komissarova, L. N. (2008). Refined heat capacity of LaPO4 in the temperature range 0-1600 K. Thermochim. Acta 474, 47–51. doi: 10.1016/j.tca.2008.05.004

Gavrichev, K. S., Ryumin, M. A., Iturin, A. V., Gurevich, V. M., and Komissarova, L. N. (2009). The heat capacity and thermodynamic functions of EuPO4 over the temperature range 0-1600 K. Russ. J. Phys. Chem. A 83, 901–906. doi: 10.1134/S0036024409060053

Gavrichev, K. S., Ryumin, M. A., Iturin, A. V., Gurevich, V. M., and Komissarova, L. N. (2010). Heat capacity and thermodynamic functions of xenotime YPO4(c) at 0-1600 K. Geochim. Int. 48, 932–939. doi: 10.1016/j.geochim.2009.09.006

Gavrichev, K. S., Ryumin, M. A., Iturin, A. V., Gurevich, V. M., Nikiforova, G. E., and Komissarova, L. N. (2013). Heat capacity and thermodynamic functions of YbPO4 from 0 to 1800 K. Inorg. Mat. 49, 701–708. doi: 10.10134/2016531070042

Gavrichev, K. S., Smirnova, N. N., Gurevich, V. M., Danilov, V. R., Iturin, A. V., Ryumin, M. A., et al. (2006). Heat capacity and thermodynamic functions of LuPO4 in the range 0-320 K. Thermochim. Acta 448, 63–65. doi: 10.1016/j.tca.2005.05.019

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Carr, R., Cavazzoni, C., et al. (2009). Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21:395505. doi: 10.1088/0953-8984/21/39/395502

Gomis, O., Lavina, B., Rodríguez-Hernández, P., Muñoz, A., Errando, E., and Errando, D., et al. (2017). High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4. J. Phys. Condens. Matter 29:395501. doi: 10.1088/1361-648X/aa516a

Gysi, A. P., Harlov, D., Costa Filho, D., and Williams-Jones, A. E. (2016). Experimental determination of the high temperature heat capacity of a natural xenotime-(Y) solid solution and synthetic DyPO4 and ErPO4 endmembers. Thermochim. Acta 627, 61–67. doi: 10.1016/j.tca.2016.01.016

Harley, R. T. and Manning, D. I. (1978). Jahn-Teller induced elastic constant changes in TmPO4. J. Phys. C Solid State Phys.. 11:6363.

Hikichi, Y., Ota, T., Daimon, K., Hattori, T., and Mizuno, M. (1998). Thermal, mechanical, and chemical properties of sintered xenotime-YPO4 (Y = Er, Yb, or Lu). J. Am. Ceram. Soc. 81, 2216–2218.

Hirsch, A., Kegler, P., Alencar, I., Ruiz-Fuertes, J., Shelyug, A., Peters, L., et al. (2017). Structural, vibrational, and thermochemical properties of the monazite-type solid solution La1−xPrxPO4. J. Solid State Chem. 245, 82–88. doi: 10.1016/j.jssc.2016.09.032

Huittinen, N., Arinicheva, Y., Kowalski, P., Vinograd, V., Neumeier, S., and Bosbach, D. (2017). Probing structural homogeneity of La1−xGdxPO4 monazite-type solid solutions by combined spectroscopic and computational studies. J. Nucl. Mater. 486, 148–157. doi: 10.1016/j.jnucmat.2017.01.024

Huittinen, N., Arinicheva, Y., Kowalski, P. M., Arinicheva, Y., Wilden, A., et al. (2018). A spectroscopic and computational study of Ca3+ incorporation in lanthanide phosphate rhodophane (LnPo4.67H2O) and monazite (LaPo4). Inorg. Chem. 57, 6252–6265. doi: 10.1021/acs.inorgchem.8b00995

Jahn, S. and Kowalski, P. M. (2014). Theoretical approaches to structure and spectroscopy of earth materials. Rev. Mineral. Geochem. 78, 691–743. doi: 10.2138/rmg.2014.78.17

Ji, Y., Beridze, G., Bosbach, D., and Kowalski, P. M. (2017a). Heat capacities of xenotime-type ceramics: An accurate ab initio prediction. J. Nucl. Mater. 494, 172–181. doi: 10.1016/j.jnucmat.2017.07.026

Ji, Y., Beridze, G., Li, Y., and Kowalski, P. M. (2017b). Large scale simulation of nuclear waste materials. Energy Procedia 127, 416–424. doi: 10.1016/j.egypro.2017.08.108
Ji, Y., Kowalski, P. M., Neumeier, S., Deissmann, G., Kuliya, P. K., and Gale, J. D. (2017c). Atomic modeling and experimental studies of radiation damage in monazite-type LaPO₄ ceramics. *Nucl. Instrum. Methods Phys. Res. Sect. B* 393, 54–58. doi: 10.1016/j.nimb.2016.09.031

Jolley, K., Asuvathraman, R., and Smith, R. (2017). Inter-atomic potentials for radiation damage studies in CePO₄ monazite. *Nucl. Instrum. Methods Phys. Res. B* 393, 93–96. doi: 10.1016/j.nimb.2016.10.016

Konings, R. J. M., Beneš, O., Kovács, A., Manara, D., Sedomidubský, D., Gorokhov, L., et al. (2014). The thermodynamic properties of the f-elements and their compounds. Part 2: The lanthanide and actinide oxides. *J. Phys. Chem. Ref. Data* 43, 013101. doi: 10.1063/1.4825256

Kowalski, P. M., Beridze, G., Ji, Y., and Li, Y. (2017a). Towards reliable modeling of challenging f electrons bearing materials: experience from modeling of nuclear materials. *MRS Advances* 2, 491–497. doi: 10.1557/advm.2017.46

Kowalski, P. M., Beridze, G., Li, Y., Ji, Y., Friedrich, C., Sasioglu, E., et al. (2016). Feasible and reliable ab initio approach to computation of materials relevant for nuclear waste management. *Ceram. Trans.* 258, 205–217. doi: 10.2138/cjercamt.2016.01.051

Li, Y., Kowalski, P. M., Beridze, G., Blanca-Romero, A., Ji, Y., Vinograd, V. L., and Bosbach, D. (2016). Atomic modeling of monazite and pyrochlore. *Ceram. Trans.* 255, 165. doi: 10.2138/cjercamt.2015.04.032

McGill, I. (2000). *Comprehensive Nuclear Materials: Minerals and Natural Analogues*, Vol 5. Oxford: Elsevier.

Macfarlane, A. (1999). Immobilization of excess weapon plutonium: a better alternative to glass. *Sci. Glob. Secur.* 7, 271–309.

McGill, I. (2000). *Rare Earth Elements*. Reading: American Cancer Society.

Mogilevsky, P. (2007). On the miscibility gap in monazite–xenotime systems. *Phys. Chem. Miner.* 34, 201–214. doi: 10.1007/s00269-006-0139-1

Mogilevsky, P., Zaretsky, E. B., Parthasarathy, T. A., and Meisenkothen, F. (2006). Ab initio calculation of excess properties of solid solutions. *J. Solid State Chem.* 220, 137–141. doi: 10.1016/j.jssc.2004.08.005

López-Solano, J., Rodríguez-Hernández, P., Muñoz, A., Gomis, O., Santamaría-Perez, D., Errandonea, D., et al. (2010). Theoretical and experimental study of the structural stability of TbPO₄ at high pressures. *Phys. Rev. B* 81:144126. doi: 10.1103/PhysRevB.81.144126

Lumpkin, G. and Geisler-Wierwille, T. (2012). *Comprehensive Nuclear Materials: Minerals and Natural Analogues*, Vol 5. Oxford: Elsevier.

Macfarlane, A. (1999). Immobilization of excess weapon plutonium: a better alternative to glass. *Sci. Glob. Secur.* 7, 271–309.

McGill, I. (2000). *Rare Earth Elements*. Reading: American Cancer Society.

Mogilevsky, P. (2007). On the miscibility gap in monazite–xenotime systems. *Phys. Chem. Miner.* 34, 201–214. doi: 10.1007/s00269-006-0139-1

Mogilevsky, P., Zaretsky, E. B., Parthasarathy, T. A., and Meisenkothen, F. (2006). Ab initio calculation of excess properties of solid solutions. *J. Solid State Chem.* 220, 137–141. doi: 10.1016/j.jssc.2004.08.005

López-Solano, J., Rodríguez-Hernández, P., Muñoz, A., Gomis, O., Santamaría-Perez, D., Errandonea, D., et al. (2010). Theoretical and experimental study of the structural stability of TbPO₄ at high pressures. *Phys. Rev. B* 81:144126. doi: 10.1103/PhysRevB.81.144126

Lumpkin, G. and Geisler-Wierwille, T. (2012). *Comprehensive Nuclear Materials: Minerals and Natural Analogues*, Vol 5. Oxford: Elsevier.

Macfarlane, A. (1999). Immobilization of excess weapon plutonium: a better alternative to glass. *Sci. Glob. Secur.* 7, 271–309.

McGill, I. (2000). *Rare Earth Elements*. Reading: American Cancer Society.

Mogilevsky, P. (2007). On the miscibility gap in monazite–xenotime systems. *Phys. Chem. Miner.* 34, 201–214. doi: 10.1007/s00269-006-0139-1

Mogilevsky, P., Zaretsky, E. B., Parthasarathy, T. A., and Meisenkothen, F. (2006). Ab initio calculation of excess properties of solid solutions. *J. Solid State Chem.* 220, 137–141. doi: 10.1016/j.jssc.2004.08.005

López-Solano, J., Rodríguez-Hernández, P., Muñoz, A., Gomis, O., Santamaría-Perez, D., Errandonea, D., et al. (2010). Theoretical and experimental study of the structural stability of TbPO₄ at high pressures. *Phys. Rev. B* 81:144126. doi: 10.1103/PhysRevB.81.144126

Lumpkin, G. and Geisler-Wierwille, T. (2012). *Comprehensive Nuclear Materials: Minerals and Natural Analogues*, Vol 5. Oxford: Elsevier.

Macfarlane, A. (1999). Immobilization of excess weapon plutonium: a better alternative to glass. *Sci. Glob. Secur.* 7, 271–309.

McGill, I. (2000). *Rare Earth Elements*. Reading: American Cancer Society.

Mogilevsky, P. (2007). On the miscibility gap in monazite–xenotime systems. *Phys. Chem. Miner.* 34, 201–214. doi: 10.1007/s00269-006-0139-1

Mogilevsky, P., Zaretsky, E. B., Parthasarathy, T. A., and Meisenkothen, F. (2006). Ab initio calculation of excess properties of solid solutions. *J. Solid State Chem.* 220, 137–141. doi: 10.1016/j.jssc.2004.08.005

López-Solano, J., Rodríguez-Hernández, P., Muñoz, A., Gomis, O., Santamaría-Perez, D., Errandonea, D., et al. (2010). Theoretical and experimental study of the structural stability of TbPO₄ at high pressures. *Phys. Rev. B* 81:144126. doi: 10.1103/PhysRevB.81.144126

Lumpkin, G. and Geisler-Wierwille, T. (2012). *Comprehensive Nuclear Materials: Minerals and Natural Analogues*, Vol 5. Oxford: Elsevier.

Macfarlane, A. (1999). Immobilization of excess weapon plutonium: a better alternative to glass. *Sci. Glob. Secur.* 7, 271–309.

McGill, I. (2000). *Rare Earth Elements*. Reading: American Cancer Society.
From Atomistic Simulations

Thust, A., Arinicheva, Y., Haussühl, E., Ruiz-Fuertes, J., Bayarjargal, L., Vogel, S. C., et al. (2015). Physical properties of La$_{1-x}$Eu$_x$PO$_4$, 0 ≤ x ≤ 1, Monazite-Type Ceramics. J. Am. Ceram. Soc. 98, 4016–4021. doi: 10.1111/jace.13841

Ushakov, S., Helean, K., and Navrotsky, A. (2001). Thermochemistry of rare-earth orthophosphates. J. Mater. Res. 16:2623–2633. doi: 10.1557/JMR.2001.0361

Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41:7892. doi: 10.1103/PhysRevB.41.7892

Wang, J., Zhou, Y., and Lin, Z. (2005). First-principles elastic stiffness of LaPO$_4$ monazite. Appl. Phys. Lett. 87:051902. doi: 10.1063/1.2005392

Williams, M. L., Jercinovic, M. J., and Hetherington, C. J. (2007). Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu. Rev. Earth Planet. Sci. 35, 137–175. doi: 10.1146/annurev.earth.35.031306.140228

Zunger, A., Wei, S. H., Ferreira, L. G., and Bernard, J. E. (1990). Special quasirandom structures. Phys. Rev. Lett. 65, 353–356.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Ji, Kowalski, Kegler, Huittinen, Marks, Vinograd, Arinicheva, Neumeier and Bobach. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.