Improved Prediction of Wind Speed Using Machine Learning

G Giftson Samuel1,*, Gangadharayya F Salimath2, T Porsevi3, and V Karthikeyan4
1Department of Electrical and Electronics Engineering, Sir Issac Newton College of Engineering and Technology, Nagapattinam, Tamil Nadu, India
2Department of Electrical and Electronics Engineering, KLE’S Society's Polytechnic College, Balligongal, Karnataka, India
3Department of Electrical and Electronics Engineering, Sri Sairam Engineering College, Chennai, Tamil Nadu, India
4Department of Electrical and Electronics Engineering, AMET Deemed to be University, Kanathur, Tamil Nadu, India
Email: *giftsam2k@gmail.com, ²salimath.1984@gmail.com, ³porsevi.eee@sairam.edu.in, ⁴vasu.karthi@gmail.com

Abstract. In wind energy systems, wind speed estimation plays an important role. For wind energy systems, accurate forecasting of wind direction is essential, but it is challenging because of its variability. In this paper, wind speed prediction is accomplished using a machine learning-based random forest (RF) method. For the production of wind energy, short-term wind speed prediction is a significant activity. However, it is difficult only to obtain deterministic estimation since wind supplies are erratic and unpredictable. It increases learning that helps to project future values. Average wind speed is a major feature that affects the atmosphere. This paper explains the estimation of wind speed with ML algorithm. It is valuable for assessing the prospects for abnormal climate events and wind energy in the future.

Keywords: Machine learning, wind speed prediction, random forest.

1. Introduction
For the growth of the national economy, energy is an essential base. The country's prosperity relies on energy regulation. It has a beneficial impact on human society's sustainability and growth to produce and use resources efficiently. Renewable energy sources are inherently plentiful and can be used to fulfil industrial and trade needs for energy production. There is a huge growth of the renewable sector, and a detailed estimate is important [1-5]. The green aspect of wind energy has made it more appealing in recent years. Many countries face many energy challenges today because of many environmental conditions and initial uncertainty.

Today, wind energy generation has driven the human community's growth to the modern energy age as a revolutionary, clean, energy technology. It has been highly applicable across the globe. With the rise in wind power penetration, preserving the power grid's reliability is getting more difficult for operators [6-9]. The intermittent and instability of the winds are implicit in this. The quantity of wind energy generated to schedule the planning of power stations for the next day became important. Since the wind is an important factor in assessing the atmosphere, attempts to forecast the average wind speed have been made. The Speed of Wind is known as the wind passes rapidly at some point. The average time is measured over a single unit. For the determination of climate trends, the monitoring of wind speed is critical. Wind direction and intensity also relate to weather patterns [10-14].
Wind direction is expressed in degrees, wind speed in miles per hour. Anemometers are used for calculating the wind velocity and a vane for measuring the speed is another instrument. The criteria for detecting hurricanes, dust storms and hurricanes are included. An overwhelming majority of the wind energy predictive models take two crucial steps: first the wind velocity forecast at a given stage, secondly, the transition to wind energy based on the power curve of these predictions. This power curve depends on the wind turbine's features [15-18].

Various factors influence the development of wind velocity, and hence there is a strong random variance of the wind speed series that further add to the variability of wind power. Depending on the time horizon of the projection, different strategies work differently. Forecasts are produced in three groups: very brief, minutes to several hours, short and 48 to 72 hours long forecasts, medium-term and short-term predictions to 7 days. Estimates are normally divided into three categories. Short term forecasting in the day-to-day market, which is the major focus of this study. The grid controllers would be given the requisite details to assess the grid's operating schedule, including a reliable prediction for the next 48 hours.

2. Methods
Six blocks are used in the proposed system. Data selection, pre-processing, and model building all reflect various phases, but it is considered one step to break data into training and testing. The following step is to render the performance block prediction. Although more data will contribute to a more accurate model, it is computer-intensive. Information was created and obtained from MATLAB simulations, as it was needed to concentrate on the technique.

![Figure1. Learning and Running Stages of the Machine Learning Algorithms.](image)

After training in historical details, the ML algorithm can be used to forecast the reference voltage exactly, as shown in fig. 1. We use an algorithm to learn the system, RF and evaluate the device output using each algorithm. Our regression, role simulation, and prediction capabilities are well-known. A feature selection approach decreases the machine completeness of the learning algorithm, enhances prediction efficiency, improves data interpretation, and reduces data storage capacity. Feature selection in machine learning systems has gained tremendous prominence. The feature collection determines the minimal number of feature subsections that holds the new additions that extremely reliable.

3. Random Forest Method
RF is an ensemble learning approach focused on a Decision Tree (DT) for classification and regression applications. In order to improve precision, the DT algorithm is run N-times in RF. When
used together, each DT generated independently generates RF. RF is very easy, sturdy to fit over and as many trees as the user needs can be built. The preparation of the model is clear. This methodology makes it easy to find a strong, robust model. The difficulty is also increasing as the number of trees in the forest increases. Random forests are a combination of tree predictors such that each tree focuses on the independently sampled values of a random variable for all trees of the forest.

Random Forest is an ML methodology that can forecast activities using multiple decision-making trees and statistical processes such as bagging. This approach increases the model's reliability and reduces the variance. The bootstrap mixture includes various templates from the same range of training. As the random forest approach usually fits well for provisional assessment, the equilibrium response has been effectively obtained.

4. Results
As a standard nonlinear time series, wind speed data can enhance the wind speed forecast precision due to the extreme inevitable random changes. The approach is to maximize weights by the identification of factors that eliminate mistakes. The findings show that the proposed approach benefits by up to 20\% compared to the analytical decomposed mode. The key conclusion is that the proposed solution will help forecast the non-stationary wind speed on other models. The wind speed concerning time is shown in fig. 2 and Histogram of the observed maximum wind speed at 10 m height is represented in fig. 3. The RF-based actual and forecast wind speed output is shown in fig. 4.

![Figure 2. Wind speed concerning the time](image1)

![Figure 3. Histogram of the observed maximum wind speed at 10 m height](image2)
5. Conclusion

The fast-growing green energy source is wind energy. Owing to its unpredictable existence, a reliable estimate of wind speed is a difficult activity. MI feature selection approach was used in this paper to locate critical features to boost the wind speed forecast using RF. Machine learning has been used in various data sets and a modelling experiment to show certain enticing features. Our ultimate inference is that the RF-based system provides a versatile way to combine convective data sets which are globally available and at the same time, increase the potential wind speed at 10 m and describe their variability.

The proposed approach will promote emergency preparedness activities in the face of extreme weather by several stakeholder groups. This perfection model demands that a more precise provision for extreme future accidents be made in various regions to generalize the analysis findings.

References

[1] Zhang, Y., Pan, G., Chen, B., Han, J., Zhao, Y., & Zhang, C. (2020). Short-term wind speed prediction model based on GA-ANN improved by VMD. Renewable Energy, 156, 1373-1388.
[2] Zhang, Y., Gao, S., Han, J., & Ban, M. (2019). Wind speed prediction research considering wind speed ramp and residual distribution. IEEE Access, 7, 131873-131887.
[3] Jiang, Y., Huang, G., Yang, Q., Yan, Z., & Zhang, C. (2019). A novel probabilistic wind speed prediction approach using real-time refined variational model decomposition and conditional kernel density estimation. Energy Conversion and Management, 185, 758-773.
[4] Wang, J., & Li, Y. (2019). An innovative hybrid approach for multi-step ahead wind speed prediction. Applied Soft Computing, 78, 296-309.
[5] Wang, J., Zhang, N., & Lu, H. (2019). A novel system based on neural networks with linear combination framework for wind speed forecasting. Energy Conversion and Management, 181, 425-442.
[6] Jamil, M., & Zeeshan, M. (2019). A comparative analysis of ANN and chaotic approach-based wind speed prediction in India. Neural Computing and Applications, 31(10), 6807-6819.
[7] Chen, Y., Dong, Z., Wang, Y., Su, J., Han, Z., Zhou, D., ... & Bao, Y. (2021). Short-term wind speed predicting framework based on EMD-GA-LSTM method under large-scaled wind history. Energy Conversion and Management, 227, 113559.
[8] Anitha, S., Keerthana, A., Kaviya, S. and JayaRajan, R., 2017. QUADRIPLEGIC AMBULATING ADDENDUM. International Journal of MC Square Scientific Research, 9(2), pp.15-23.
[9] Anjana, R. (2019, Feb). Fuzzy and PI Based Speed Control of BLDC Motor using Bidirectional Converter for Electric Vehicle Application. *Trends in Electrical Engineering*, 8(3), 35-45.

[10] Routray, A., Mistry, K. D., Arya, S. R., & Chittibabu, B. (2021). Applied machine learning in wind speed prediction and loss minimization in the unbalanced radial distribution system. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects*, 1-21.

[11] Malik, H., & Yadav, A. K. (2021). A novel hybrid approach based on relief algorithm and fuzzy reinforcement learning approach for predicting wind speed. *Sustainable Energy Technologies and Assessments*, 43, 100920.

[12] Demetriou, D., Michailides, C., Papanastasiou, G., & Onoufriou, T. (2021). Coastal zone significant wave height prediction by supervised machine learning classification algorithms. *Ocean Engineering*, 221, 108592.

[13] Wang, S., Janabi, A., & Wang, B. (2020, October). Generalized Optimal SVPWM for the Switched-Capacitor Voltage Boost Converter, ECCE, (pp. 2708-2711). IEEE.

[14] Gibbons MS, Gilbert CL, Deshpande MS, inventors; Lear Corp, assignee. Methodology of maximizing charging power transfer for an electric vehicle when ac voltage sags. United States patent application US 15/801,772. 2019 May 2.

[15] Yadav, D., Parekh, U., Patel, K., Parmar, R., & Prakash, M. (2019). Application of Modified Three Phase Conduction Method to Minimize Torque Ripple in BLDC Motor. *IJRAR*, vol. 6(1), 155-156.

[16] Rajkumar, S., Sundaram, C. S., Sedhuraman, K., & Muruganandhan, D. (2019, March). Performance Analysis of Hub BLDC Motor Using Finite Element Analysis. In *2019 ICSCAN*, (pp. 1-5). IEEE.

[17] Gupta, G., & Kumar, D. (2020). Power Quality Mitigation using DSTATCOM and DVR.

[18] Macinnis, AG and Walls, F.G., Avago Technologies General IP Singapore Pte Ltd, 2018. Bounded rate near-lossless and lossless image compression. US Patent 9,883,180.