META-ANALYSIS

Rituximab or plasmapheresis for prevention of recurrent focal segmental glomerulosclerosis after kidney transplantation: A systematic review and meta-analysis

Boonphiphop Boonpheng, Panupong Hansrivijit, Charat Thongprayoon, Shennen A Mao, Pradeep K Vaitla, Tarun Bathini, Avishek Choudhury, Wisit Kaewput, Michael A Mao, Wisit Cheungpasitporn

ORCID number: Boonphiphop Boonpheng 0000-0002-3232-8861; Panupong Hansrivijit 0000-0002-5044-4290; Charat Thongprayoon 0000-0002-8313-3604; Shennen A Mao 0000-0002-7571-2542; Pradeep K Vaitla 0000-0001-5234-6722; Tarun Bathini 0000-0002-3775-8689; Avishek Choudhury 0000-0002-5342-0709; Wisit Kaewput 0000-0003-2923-7235; Michael A Mao 0000-0003-1814-7003; Wisit Cheungpasitporn 0000-0001-9954-9711.

Author contributions: Boonphiphop B performed the conceptualization, data curation, formal analysis, investigation, methodology, software, validation, visualization, preparation of original draft, review and editing of manuscript; Hansrivijit P performed the conceptualization, data curation, investigation, visualization, review and editing of manuscript; Thongprayoon C performed the conceptualization, supervision, visualization, review and editing of manuscript; Mao SA supervision, visualization, review and editing of manuscript; Vaitla PK, Bathini T, Mao MA, and Choudhury A performed the project administration; Bathini T, Kaewput W, and Choudhury A performed the project resources; Vaitla PK, Boonphiphop Boonpheng, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States

Panupong Hansrivijit, Department of Internal Medicine, UPMC Pinnacle, Harrisburg, PA 17104, United States

Charat Thongprayoon, Department of Medicine, Mayo Clinic, Rochester, MN 55905, United States

Shennen A Mao, Division of Transplant Surgery, Mayo Clinic, Jacksonville, FL 32224, United States

Pradeep K Vaitla, Division of Nephrology, Department of Internal Medicine, University of Mississippi Medical Center, Jackson, MS 39216, United States

Tarun Bathini, Department of Internal Medicine, University of Arizona, Tucson, AZ 85721, United States

Avishek Choudhury, School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030, United States

Wisit Kaewput, Department of Military and Community Medicine, Phramongkutklao College of Medicine, Bangkok 10400, Thailand

Michael A Mao, Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL 32224, United States

Wisit Cheungpasitporn, Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, United States

Corresponding author: Wisit Cheungpasitporn, MD, FACP, FASN, FAST, Associate Professor, Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States. wcheungpasitporn@gmail.com

Abstract

BACKGROUND

Focal segmental glomerulosclerosis (FSGS) is one of the most common glomerular...
Focal segmental glomerulosclerosis (FSGS) is associated with a high risk of recurrence after kidney transplantation. Plasmapheresis and/or rituximab has been used to prevent recurrence with conflicting results. This meta-analysis is among the first to report that the use of preemptive rituximab, either alone or in combination with plasmapheresis, or plasmapheresis alone, did not alter the recurrence risk of FSGS after kidney transplantation.

Core Tip: Focal segmental glomerulosclerosis (FSGS) is associated with a high risk of recurrence after kidney transplantation. Plasmapheresis and/or rituximab has been used to prevent recurrence with conflicting results. This meta-analysis is among the first to report that the use of preemptive rituximab, either alone or in combination with plasmapheresis, or plasmapheresis alone, did not alter the recurrence risk of FSGS after kidney transplantation.

Citation: Boonpheng B, Hansrivijit P, Thongprayoon C, Mao SA, Vaitla PK, Bathini T, Choudhury A, Kaewput W, Mao MA, Cheungpasitporn W. Rituximab or plasmapheresis for prevention of recurrent focal segmental glomerulosclerosis after kidney transplantation: A
INTRODUCTION

Focal segmental glomerulosclerosis (FSGS) is an important glomerular cause of end-stage kidney disease, and is associated with a high risk of disease recurrence after kidney transplantation[1-5]. Approximately 30% of patients[6,7] develop recurrent FSGS following kidney transplantation, with studies reporting a range between 17% and 55%[8]. FSGS has been shown to negatively affect overall graft survival[9-12]. Although the exact pathogenesis of this disease is unknown, it is believed that circulating factors affecting podocytes and glomerular permeability may play an important role. FSGS recurrence presents early after kidney transplantation; thus, supporting the pathophysiological role of circulating factors.

Treatment for recurrent FSGS in kidney transplant recipients is difficult. Steroids have been used as the main therapy in adults. Unfortunately, only 50% of patients achieve remission following a course of steroid treatment[13]. Furthermore, a large proportion of patients relapse, eventually becoming either steroid-resistant, or steroid-dependent[14]. Plasmapheresis has been effectively used to treat recurrent FSGS after kidney transplantation, purportedly by removing pathophysiological circulating factors and inducing FSGS remission. Preemptive plasmapheresis following kidney transplantation has been proposed as a preventive measure for FSGS.

Rituximab is a monoclonal, chimeric antibody against CD20+ B lymphocytes, and has been used to both prevent and treat recurrent FSGS after kidney transplantation. In 2020, Hansrivijit and Ghahramani[15] reported promising outcomes after treatment of recurrent FSGS in kidney transplant recipients, using either a combination of rituximab and plasmapheresis, or plasma exchange alone. Their study demonstrated an overall remission rate of 72.7%, determined by a significant reduction in serum creatinine levels and the degree of proteinuria. Nevertheless, the efficacy of rituximab or plasmapheresis as a preventive measure for post-transplant recurrent FSGS remains controversial.

This systematic review and meta-analysis were conducted to explore the effectiveness of rituximab—with or without plasmapheresis—compared with plasmapheresis alone, for the prevention of recurrent FSGS after kidney transplantation.

MATERIALS AND METHODS

Search strategy

This systematic review was conducted in accordance with the Meta-analysis of Observational Studies in Epidemiology guidelines[16]. A literature search was performed to identify studies that investigated the effect of preventive use of plasmapheresis and/or rituximab on the risk of recurrent FSGS after kidney transplantation. This was independently conducted by two investigators (Boonpheng B and Hansrivijit P) in the MEDLINE, EMBASE, and Cochrane databases, from inception through March 2021. Search terms included ‘FSGS’, ‘steroid-resistant nephrotic syndrome’, ‘rituximab’, and ‘plasmapheresis’. The references of selected articles were manually searched for additional relevant studies. There were no language restrictions.

Inclusion criteria

Studies were eligible for inclusion if they met the following criteria: (1) Original, published, randomized controlled cohort (either prospective or retrospective), case-control, or cross-sectional studies; (2) The odds ratio, relative risk, and standardized incidence ratio with 95% confidence intervals (CIs), or sufficient raw data to calculate these ratios, were provided; and (3) Subjects without interventions (controls) were used as comparators in cohort and cross-sectional studies.

Study eligibility was independently assessed by the investigators. Any disagreements were resolved through mutual consensus. The quality of each study was assessed utilizing the Newcastle-Ottawa Quality Scale[17]. This scale assesses each study using three categories: (1) The representativeness of the subjects; (2) The comparability between the study groups; and (3) Ascertainment of the exposure or
outcome of interest for case-control and cohort studies respectively.

Review process and data extraction
Two investigators independently reviewed the titles and abstracts of all retrieved articles. Articles that did not fulfill the inclusion criteria were excluded. Only potentially relevant articles underwent full-text reviews to determine eligibility. A standardized data collection form was used to extract the following data: First author’s name, year of publication, year of study, country of origin, study design, source of population, number of subjects, baseline characteristics of the subjects, and effect estimates. This data extraction process was performed in duplicate to ensure accuracy.

Statistical analysis
All statistical analyses were performed using R version 3.2.0 (the R Foundation for Statistical Computing, Vienna, Austria). The pooled risk ratios for recurrent FSGS in the active intervention group compared with the no intervention group were calculated using the generic inverse method of DerSimonian and Laird[18]. A random effects model was utilized given the high likelihood of between-study variance due to differences in underlying population as well as methodology. Cochran’s Q-test, supplemented by the I² statistic, was used to evaluate statistical heterogeneity. This statistic quantifies the proportion of total variation across studies due to true heterogeneity rather than chance. An I² value of 0-25% represented insignificant heterogeneity, 25%-50% represented low heterogeneity, 50%-75% represented moderate heterogeneity, and > 75% represented high heterogeneity[19].

RESULTS
The initial search yielded 813 articles, all of which underwent both title and abstract reviews. Most were excluded at this step as they did not fulfill our inclusion criteria; i.e., they were case reports, letters to the editor, review articles, or interventional studies. A total of 38 studies underwent full-length article review. Of 17 were excluded, as they did not include controls or report the outcome of interest. A total of 21 observational studies, including 920 patients, met our inclusion criteria[8,20-39] and were included in the meta-analysis. Figure 1 outlines our search methodology and selection process. The baseline characteristics of the included studies are summarized in Tables 1-4 (detailed characteristics in Tables 3 and 4).

Preemptive rituximab
Eleven studies[22-31,39], with a total of 399 kidney transplant recipients with FSGS, evaluated the use of rituximab with or without plasmapheresis. There was no significant difference in recurrence between the group that received rituximab (with or without plasmapheresis) and the standard treatment group, with a pooled risk ratio of 0.82 (95%CI: 0.47-1.45, P = 65%). Figure 2 shows the forest plot.

Subgroup analysis, based on five studies[22-24,30,31] that evaluated preemptive rituximab use without concurrent plasmapheresis compared with no intervention, also showed no significant association; the pooled risk ratio was 0.82 (95%CI: 0.23-2.92, P = 81%).

Four studies[24,29-31] selected only patients deemed to be at high-risk of recurrence, based on demographic and clinical criteria. Only the study by Fornoni et al[24] showed a significantly lower recurrence risk in the rituximab group. The remaining three studies reported a numerically higher recurrence in the rituximab group[29-31].

Sensitivity analyses were also performed after excluding five studies[22,23,25,27,28,39] that did not report the rituximab dose or protocol; all were published as abstracts. The risk ratio was also not significant (risk ratio: 1.09, 95%CI: 0.37-3.19).

Preemptive plasmapheresis
Thirteen studies[8,20,21,25-27,32-38], including 571 kidney transplant recipients with FSGS, evaluated the use of plasmapheresis alone. Compared with no plasmapheresis, plasmapheresis was not found to be associated with any significant difference in FSGS recurrence, with a pooled risk ratio of 0.85 (95%CI: 0.60-1.21, P = 23%, Figure 3).

Subgroup analysis in pediatric patients also did not yield a significant association, with a pooled risk ratio of 0.86 (95%CI: 0.29-4.49, P = 63%).

Sensitivity analysis, after excluding three studies[25,27,34] that were published as abstracts and did not report the protocol or regimen of plasmapheresis, did not show a significant change in the risk ratio (1.07, 95%CI: 0.66-1.72, P = 22%).
Table 1 Characteristics of included studies evaluating the outcomes of preemptive plasmapheresis

Ref.	Country	Design	n (%)	Population	Age	PP protocol	Def of recurrence	Recurrence	Graft survival	Quality assessment
Kawaguchi et al. [20], 1994	Japan	Retrospective	14	FSGS children	2:12 yr at FSGS Dx	2-3 sessions immediately before KT (-5, -3, and -1 d) ATG 7-14 d pre-op	N/A	3/8 (38%) vs 4/6 (67%)	93% graft survival in overall cohort	Fair, 4-1-2
Otsuki et al. [21], 1999	Japan	Retrospective	37	FSNS undergoing KT	22 yr at KT	N/A	Clinical and biopsy in all cases	4/19 (21%) vs 9/18 (50%)	75% at 5 yr, 63% at 10 yr	Fair, 4-1-2
Iguchi et al. [22], 1997	Japan	Prospective cohort	11	FSNS undergoing KT	33.3 (20-43) yr	3 sessions of pre-op PP within 3 d before KT	Clinical and/or pathologic	1/3 (33%) vs 4/8 (50%)	100% vs 63.6%	Fair, 4-2-2
Otta et al. [33], 2001	Japan	Retrospective	21	FSGS children	Age of FSGS onset 69.5 ± 36.4 mo (range 9-134 mo)	1-2 sessions immediately before KT (-5, -3, and -1 d). Therapeutic PP until reduction of proteinuria	Clinical and/or pathologic	5/15 (33%) vs 4/6 (67%)	13/15 vs 3/5 (1 death with functioning graft in Non-PP)	Fair, 4-2-2
Somers and Baum [34], 2009	United States	Retrospective	52	FSGS children	12.5 yr	N/A	N/A	5/19 (26%) vs 18/33 (55%)	Overall, 11/52 graft loss	Fair, 4-1-2
Gonzalez et al. [35], 2011	United States	Retrospective	34	FSGS children	Age of KT: 13 ± 5 yr. Age at FSGS diagnosis: 5.3 yr (n = 19, recurrence group), 6.9 yr (n = 15, no recurrence group)	1-10 sessions	Clinical and/or pathologic	9/17 (53%) vs 10/17 (59%)	Graft loss at 3 yr: 25% in recurrence group vs 20% in non-recurrence	High, 4-2-3
Miyaochi et al. [25], 2011	Japan	Prospective cohort	25	FSNS undergoing KT	N/A	N/A	N/A	3/9 (33%) vs 2/4 (50%)	N/A	Low, 3-1-1
Park et al. [36], 2014	South Korea	Retrospective	27	FSNS undergoing KT	Age of KT: 39 ± 14 yr and 36 ± 11 yr	PP and IVGV infusion after each session of PP prior to transplantation	Clinical confirmed by biopsy	1/4 (25%) vs 5/18 (27%)	FSGS with recurrence had less graft survival than those without recurrence (P = 0.01)	High, 4-2-3
Okumi et al. [27], 2015	Japan	Retrospective	38	FSGS undergoing KT	N/A	N/A	N/A	4/10 (40%) vs 2/5 (40%)	5/38 graft loss overall	Low, 3-1-1
Verghese et al. [36], 2018	United States	Retrospective	57	FSGS children	Age of KT: 13.2 ± 4.5 yr (after 2006 with PP) vs 10.4 ± 5.4 yr (before 2006, no PP)	LDKT: 3 sessions PP pre-op. DDKT: 1 session of PP pre-op. Post-op: 5 sessions of PP every other day starting POD1	Biopsy; if unable to do biopsy, persistent nephrotic range proteinuria	7/26 (27%) vs 8/31 (26%)	Death-censored graft survival not sig different (P = 0.63)	High, 4-2-3
Koyun et al. [37], 2019	Turkey	Retrospective	46	FSGS children	Age of KT: 7.2 ± 1.2 yr (PP) vs 10.7 ± 4.5 yr (no PP)	LDKT: 2-5 sessions of PP pre-op. DDKT: 1 session of PP pre-op. Post-op: 5 session of early PP	N/A	3/6 (50%) vs 5/40 (12.5%)	N/A	Low, 3-1-1
Campise et al. [38], 2019	Italy	Retrospective	73	FSNS undergoing	Age of FSGS Dx: 27 (15-35) yr. Age of KT: 41 (38-52) yr	2005-2008: post-transplant PP only 2008-2014: 1 session immediately before	Post-transplant proteinuria; confirmed	Biopsy-proven: 5/21 (24%) vs	Death-censored graft survival: 81% (17/21) vs	High, 4-2-3
Timing of recurrence

Although only five studies reported the timing of post-transplant recurrent FSGS, it appears that most cases occurred relatively early. Park et al.[26] reported the time to recurrence in all 6 patients with recurrent FSGS: 3 patients experienced early recurrence, within the first week; 1 experienced a recurrence within the first month; and 3 experienced late recurrence, at 6–12 mo. Verghese et al.[36] included a Kaplan-Meier curve for FSGS recurrence; this was not significantly different between the two intervention groups, but again showed a trend towards early recurrence. In the study by Alasfar et al.[29], the median time to recurrence of the entire cohort was 1.25 mo (range: 1 d to 30 mo). Similarly, Auñón et al.[31] and Uffing et al.[8] reported the median time to recurrence as 3 and 1.5 mo, respectively. Overall, this data supports the hypothesis that pre-existing circulating factors play a role in FSGS recurrence.

Effects on allograft function

Some studies reported decreased allograft survival in patients who experienced FSGS recurrence compared to those who did not.[8, 26, 31-33, 35, 39] Allograft survival appears to depend on response to recurrent FSGS therapy, which variably consists of plasmapheresis with more intensive immunosuppressive regimens. Neither preemptive plasmapheresis or rituximab per se seems to have effects on allograft survival.

Evaluation for publication bias

The funnel plots for the outcomes of rituximab and plasmapheresis are shown in Figures 4 and 5, respectively. They are symmetrical, and do not suggest the presence of publication bias in favor of positive studies. Egger’s asymmetry test yielded P-values of 0.56 and 0.83 for the rituximab and the plasmapheresis groups, respectively.

DISCUSSION

Primary FSGS often recurs after kidney transplantation, leading to graft loss and morbidity.[6-8] Multiple basic science and clinical studies have implicated circulating factors in the pathogenesis of recurrent FSGS.[40-42] The tendency of recurrent FSGS...
Table 2 Characteristics of included studies evaluating the outcomes of preemptive rituximab

Ref.	Country	Design	n (%)	Population	Age	Rituximab dose and protocol	Concurrent PP	Def of recurrence	Recurrence	Graft survival	Follow-up duration	Quality assessment
Burke et al	United States	Retrospective	29	FSGS undergoing KT	Age at KT: 6-21 yr	N/A	No	New onset proteinuria	6/18 (31%) vs 8/11 (72%)	No significant difference in graft survival	N/A	Fair, 3-1-2
Sagheshima et al	United States	Prospective	40	FSGS undergoing KT	Age at KT: 4-24 yr	N/A	No	UPCR > 3.5 post-transplant	8/29 (28%) vs 7/11 (64%)	N/A	N/A	Low, 3-1-1
Fornoni et al	United States	Retrospective	41	High-risk pediatric/young adult FSGS undergoing KT: (< 25 yr at FSGS Dx or progression to ESKD within 7 yr)	Age at KT: 15 ± 5.5 yr (rituximab), 12.3 ± 5.2 yr (control)	One dose of rituximab (375 mg/m²) within 24 h of kidney transplantation	No	UPCR > 3.5 within 30 d post-transplant or need for PP. Protocol biopsy in 20/27 (74%)	7/27 (26%) vs 9/14 (64%)	1-yr graft survival: 95.8% vs 85.7% (P = 0.26)	N/A	High, 4-1-3
Miyauchi et al	Japan	Prospective	25	FSGS undergoing KT	N/A	N/A	N/A	N/A	2/12 (17%) vs 5/13 (38%)	N/A	N/A	Low, 3-1-1
Park et al	South Korea	Retrospective	27	FSGS undergoing KT	Age at KT: 39 ± 14 yr (n = 7, recurrence), 36 ± 11 yr (n = 20, no recurrence)	PP and IVGV infusion after each session of PP prior to transplantation	Yes	Clinical confirmed by biopsy	1/4 (25%) vs 5/18 (27%)	FSGS with recurrence had less graft survival than those without recurrence (P = 0.01)	N/A	High, 4-1-3
Okumi et al	Japan	Retrospective	38	FSGS undergoing KT	N/A	N/A	Yes	N/A	5/23 (22%) vs 6/15 (40%)	5/38 graft loss overall. Cr at yr 2 and 6 significantly lower in those who received both R + PP	N/A	Low, 3-1-1
Futamura et al	Japan	Retrospective	28	FSGS undergoing KT	N/A	N/A	Yes	N/A	3/7 (43%) vs 5/21 (24%)	N/A	N/A	Low, 3-1-1
Alasfar et al	United States	Prospective	64	High-risk FSGS undergoing KT (2 of: white, age ≤ 30 at Dx, progression to ESKD ≤ 5 yr. Albumin < 3 g/dL during disease course, h/o failed KT due to recurrence)	Age at FSGS Dx: 29.2 ± 17.2. Age at KT: 38 ± 16.5	Rituximab was given in 1 or 2 doses (375 mg/m²/yr dose)	Yes; 3-10 sessions of PP day-7 to POD 2	Clinical and biopsy	25/37 (62%) vs 14/27 (51%)	Trend toward better renal allograft survival in nonrecurrent group compared to the recurrent group (P = 0.0662)	29.5 mo	High, 4-1-3
Lu et al	United States	Retrospective	55	High-risk FSGS undergoing KT considered (age ≤ 25 at Dx, proteinuria ≥ 5 g/dL, progression to ESKD ≤ 5-7 yr)	Age at KT: 44	One dose of rituximab (375 mg/m², max 100 mg)	No	Proteinuria and biopsy	4/7 (57%) vs 6/48 (13%)	Graft loss: 1/7 (14%) vs 8/48 (17%)	N/A	Fair, 3-2-2
to present early and rapidly after kidney transplantation supports the pathophysiologic role of circulating factors[43]. Case reports of successful kidney allograft transfers from recipients with severe, early, refractory recurrent FSGS, to recipients without a history of primary FSGS, also indirectly suggest the role of circulating factors in disease recurrence[44,45].

Plasmapheresis is considered an effective treatment able to induce remission in established recurrent diseases[46]. Likewise, plasmapheresis has been used as a prevention of FSGS after kidney transplant. By rapidly removing pre-existing circulating factors, especially in conjunction with immunosuppressive medication, it is presumed that some of the putative circulating factors can be eliminated or suppressed to the level low enough not to affect glomerular permeability. Plasmapheresis is performed prior to kidney transplantation in an attempt to prevent FSGS recurrence and associated allograft injury, which may affect graft survival[9,10].

More recently, rituximab has been effectively used to treat many glomerular diseases, including FSGS[47]. The exact mechanism of rituximab in the treatment of FSGS is unknown; however, it is believed that rituximab may have a B-cell-independent effect on podocyte cytoskeletal stabilization, in addition to its B-cell depleting effects[48]. Therefore, rituximab is also utilized to prevent FSGS recurrence, either alone or in combination with plasmapheresis.

Our meta-analysis is among the first to report that the use of preemptive rituximab (either alone or in combination with plasmapheresis) or plasmapheresis alone did not alter the recurrence risk of FSGS after kidney transplantation. To increase power, we combined the patients who received rituximab alone and those who received both rituximab and plasmapheresis into the same group. This might have overestimated the effect of rituximab. However, sensitivity analyses in the subgroup that received rituximab alone or rituximab with plasmapheresis did not change the association so this is unlikely to be significant. The timing of recurrence was also not affected by the preventive measure. In contrast, rituximab and plasmapheresis have been shown to be effective for the treatment of recurrent FSGS after kidney transplantation. The efficacy and safety of combined rituximab and plasmapheresis in patients with recurrent FSGS was recently demonstrated in a meta-analysis, reporting that up to 72.7% of patients achieved remission[15]; of these, most patients achieved complete remission. The
Table 3 Detailed characteristics of included studies evaluating the outcomes of preemptive plasmapheresis

Ref.	Country	Age	Genetic testing	Race	Time to ESKD	Repeat KT	Induction	IS	Donor types	Biopsy	Follow-up duration
Kawaguchi et al [20], 1994	Japan	2-12 yr at FSGS Dx	N/A	Asian	12-117 mo	ATG only in PP group	CS, CsA, AZA/mizolibine	13/14 living/14 DDKT	N/A	N/A	
Obsubo et al [21], 1999	Japan	22 yr at KT	N/A	Asian	N/A	CS, CsA/Tac	CS, CsA/Tac, AZA/mizolibine	34/37 LRKT, 4/37 DDKT	Per-cause biopsy	N/A	
Iguchi et al [3], 1997	Japan	33.3 (20-43) yr	N/A	Asian	None	ATG during first 2 wk in PP group	CS, CsA, AZA	100% LRKT	Intra-op biopsy (1 h) in all cases then as clinically indicated	N/A	
Ohta et al [33], 2001	Japan	Age of FSGS onset 69.5 ± 36.4 mo (range 9-134 mo)	N/A	Asian	N/A	None	ATG during first 2 wk in PP group	CS, CsA, AZA	3/21 DDKT (14%) vs 18/21 (LRKT)	Intra-op biopsy (1 h) in all cases then as clinically indicated 62.7 (IP group), 41.6 mo (non-PP group)	
Somers and Baum [34], 2009	United States	12.5 yr (85% white)	N/A	85% White	3 yr (median)	N/A	N/A	CsA-based regimen	42% living donor	N/A	
Gonzalez et al [35], 2011	United States	Age at KT: 13 ± 5 yr	NPHS2 mutation testing on 10 patients (9 tested negative, 1 with heterozygous mutation)	29% White, 15% African, 44% Hispanic, 12% others	4.2 yr (n = 19, recurrence group), 3.1 yr (n = 15, no recurrence group)	Recurrence in previous graft 5/34	rATG (if ATN) or daclizumab	CS, CsA/Tac, MMF	15/34 living, 19/34 DDKT	Per-cause biopsy	N/A
Miyauchi et al [25], 2011	Japan	N/A	N/A	N/A	N/A	N/A	CS, CsA/Tac, AZA/mizolibine	N/A	N/A	N/A	
Park et al [26], 2014	South Korea	Age at KT: 39 ± 14 yr (n = 7, recurrence), 36 ± 11 yr (n = 20, no recurrence)	N/A	Asian	46 ± 44 mo (n = 7, recur group), 68 ± 67 mo (n = 20, no recur group)	none	Basiliximab (20 mg) on days 0 and 4	CS, CsA/Tac, MMF	4/27 DDKT, 24/27 living (17/27 LRKT)	Per-cause biopsy	N/A
Okumi et al [27], 2015	Japan	N/A	N/A	Asian	N/A	N/A	Basiliximab (after 2002)	CS, CsA/Tac, MMF	N/A	N/A	N/A
Verghese et al [36], 2018	United States	Age at KT: 13.2 ± 4.5 yr (after 2006 with PP) vs 10.4 ± 5.4 yr (before 2006, no PP)	NPHS2 mutation testing (for those with NPHS2 homozygous mutation, PP not indicated)	N/A	N/A	93% received lymphocyte depleting induction	Before 2006: AZA (90%), MMF (16%), CsA (97%), CS (97%); After 2006: AZA (12%), MMF (88%), CsA (62%)/Tac (38%), CS (12%)	DDKT 37% vs Living 63%	Per-cause biopsy	N/A	
Koyun et al	Turkey	Age at KT: 7.2 ± 1.2	Genetic testing	N/A							

Boonpheng B et al. Rituximab vs plasmapheresis for prevention of FSGS.
Authors' Summary

The authors also described a significant reduction in serum creatinine levels (-0.65 mg/dL) and proteinuria (-4.79 g/d) following treatment[15].

Many studies suggest that recurrent FSGS in kidney transplant recipients is at least partially mediated by circulating factors and/or antibodies[43]. The ineffectiveness of prophylactic rituximab in the prevention of FSGS via suppression of antibody production, or plasmapheresis in the removal of pre-formed circulating factors, suggests either circulating factors may be inactive in quiescent FSGS or that removing the putative circulating factors may not be enough to prevent the immunologic cascades that trigger the onset of disease recurrence. It is possible that yet-to-be-identified B-cell-independent immunologic factors may trigger the onset of FSGS recurrence, which leads to production of circulating factors and stimulation of B cells, which are targeted by plasmapheresis and rituximab. The fact that patients who developed FSGS recurrence despite pre-emptive plasmapheresis or rituximab still responded well to plasmapheresis with or without rituximab supports that the initial triggering event is not the putative circulating factors per se and is likely B-cell independent.

Beyond plasmapheresis and rituximab, low-density lipoprotein (LDL) apheresis has been evaluated as a preventive strategy for recurrent FSGS in a Japanese study[49]. LDL apheresis removes plasma lipids, a source of oxidative stress, as well as multiple circulating humoral factors that contribute to disease recurrence. The authors reported no FSGS recurrence in five patients using this regimen of pre-transplant LDL apheresis, in addition to rituximab and basiliximab induction; however, this finding should be confirmed by larger studies.

The results of this meta-analysis should be interpreted with attention to the study limitations. First, all included studies were observational in design; thus, the risk of

Table: Study Characteristics

Study	Country	Age at KT/FSGS	Race	Serum Creatinine	Proteinuria	Treatment	Outcome
Boonpheng B et al[37], 2019	Thailand	30-50 yr (no PP)	N/A	N/A	N/A	N/A	N/A
Campise et al[38], 2019	Italy	Age at FSGS: 27 (15-35) yr. Age at KT: 41 (38-52) yr	100% White	5 (1-10) yr, 33% rapid (< 3 yr) progression to ESKD	(7/21) 33% in PP group; previous graft loss due to recurrence	Basiliximab (20 mg) on days 0 and 4	Baseline 80%
Uffing et al[39], 2020	United States, Europe, Brazil	Age at KT: 38 (29-47) yr. Age at FSGS Dxt: 27 (17-40) yr	Not done in most patients	25%; prior graft loss due to FSGS 9%	rATG (42%), basiliximab (42%), daclizumab (3%), none (13%)	CS + Tac + MMF	100% DDKT Per-cause biopsy 45 (30-107) mo

N: Number; ESKD: End-stage kidney disease; FSGS: Focal segmental glomerulosclerosis; PP: Plasmapheresis; KT: Kidney transplantation; RTX: Rituximab; N/A: Not available; LUKT: Living-related kidney transplantation; CS: Corticosteroids; CsA: Cyclosporine; Tac: Tacrolimus; MMF: Mycophenolate mofetil; AZA: Azathioprine; rATG: Rabbit anti-thymocyte globulin; DDKT: Deceased donor kidney transplantation; LRKT: Living-related kidney transplantation.
| Ref. | Country | Age at KT: 6-21 yr | Country | Age at KT: 4-24 yr | Country | Age at KT: 15 ± 5.5 yr | Country | Age at KT: 39 ± 14 (n = 7, recurrence), 36 ± 11 (n = 20, no recurrence) | Country | Age at KT: 44 | United States | Age at KT: 35 yr | Race | Time to ESKD | Repeat KT | Induction | IS | Follow-up duration |
|-----------------|------------------|--------------------|------------------|--------------------|------------------|------------------------|------------------|---|------------------|----------------|-----------------|----------------|----------------|----------------|-----------------|----------------|-------------------|
| Burke et al | United States | N/A | Sagheshima et al | United States | N/A | Fornoni et al | United States | N/A | Park et al | N/A | Japan | N/A | N/A | Asian | N/A | N/A | N/A |
| [22], 2009 | | | [23], 2010 | | [24], 2011 | [25], 2011 | [26], 2014 | United States | N/A | [27], 2015 | N/A | South Korea | N/A | N/A | Asian | N/A | N/A | N/A |
| | | | | | [28], 2016 | [29], 2018 | [30], 2018 | | FSGS undergoing KT | [31], 2021 | N/A | Japan | N/A | N/A | Asian | N/A | N/A | N/A |
| | | | | | | Alasfar et al | United States | N/A | Lu et al | N/A | United States | N/A | N/A | Hispanic 4% | N/A | N/A | N/A |
| | | | | | [29], 2018 | [30], 2018 | [31], 2021 | | Age at FSGS Dx: 29.9 ± 17.2. Age at KT: 36 ± 16.5 | [32], 2021 | N/A | Spain | N/A | N/A | Hispanic -13% | N/A | N/A | N/A |
| | | | | | | Mukku et al | United States | N/A | | N/A | | | | | N/A | N/A | N/A |

N: Number; ESKD: End-stage kidney disease; FSGS: Focal segmental glomerulosclerosis; RRT: Renal replacement therapy; PP: Plasmapheresis; IS: Immunosuppression; KT: Kidney transplantation; RTX: Rituximab; CS: Corticosteroids; CsA: Cyclosporine; Tac: Tacrolimus; MMF: Mycophenolate mofetil; AZA: Azathioprine; rATG: Rabbit anti-thymocyte globulin; DDKT: Deceased donor kidney transplantation; LRKT: Living-related kidney transplantation; LUKT: Living-related kidney transplantation; N/A: Not available.
bias was present, and causality could not be established. Second, the sample size of most studies was small. Third, some studies did not report patient characteristics or prognostic factors. Fourth, the treatment regimen, dose of rituximab, and plasmapheresis protocol (frequency, duration, and volume of exchange) were not standardized. Fifth, the use of induction and background immunosuppression varied across studies, depending on the institutional protocol and era of medication availability. Finally, as evidenced by the widely varying recurrence risks reported, it is possible that the different studies enrolled FSGS patients with inherently varying risk of recurrence, resulting in further difficulties regarding the interpretation of post-transplant risk; the eligibility criteria were heterogeneous.

Efforts to elucidate the pathogenic mechanisms of FSGS are ongoing. Further clinical research is therefore required, both to accurately identify the subgroup of patients with FSGS who are at a higher risk for disease recurrence, as well as evaluate preventive interventions within this subgroup. At the time of writing, one ongoing randomized controlled trial (clinical trial number: NCT03763643) was identified, with the primary endpoint of preventing recurrent FSGS through the use of preemptive rituximab plus plasmapheresis or plasmapheresis alone.
CONCLUSION

In unselected patients with FSGS, preemptive rituximab with or without plasmapheresis, or plasmapheresis alone, was not associated with a lower risk of FSGS recurrence after kidney transplantation.
ARTICLE HIGHLIGHTS

Research background
Focal segmental glomerulosclerosis (FSGS) is one of the most common glomerular diseases leading to kidney failure. FSGS has a high risk of recurrence after kidney transplantation. Prevention of recurrent FSGS using rituximab and/or plasmapheresis has been evaluated in multiple small studies with conflicting results.

Research motivation
FSGS is associated with a high risk of recurrence after kidney transplantation. Plasmapheresis and/or rituximab has been used to prevent recurrence with conflicting results.

Research objectives
This meta-analysis was conducted to assess the effectiveness of rituximab—with or without plasmapheresis—compared with plasmapheresis alone, for the prevention of recurrent FSGS after kidney transplantation.

Research methods
This meta-analysis and systematic review were performed by first conducting a literature search of the MEDLINE, EMBASE, and Cochrane databases, from inception through March 2021; search terms included ‘FSGS’, ‘steroid-resistant nephrotic syndrome’, ‘rituximab’, and ‘plasmapheresis’. We identified studies that assessed the risk of post-transplant FSGS after use of rituximab with or without plasmapheresis, or plasmapheresis alone.

Research results
Eleven studies, with a total of 399 kidney transplant recipients with FSGS, evaluated the use of rituximab with or without plasmapheresis; thirteen studies, with a total of 571 kidney transplant recipients with FSGS, evaluated plasmapheresis alone. Post-transplant FSGS recurred relatively early. There was no significant difference in recurrence between the group that received rituximab (with or without plasmapheresis) and the standard treatment group, with a pooled risk ratio of 0.82 [95% confidence intervals (CI): 0.47-1.45]. Similarly, plasmapheresis alone was not associated with any significant difference in FSGS recurrence when compared with no plasmapheresis; the pooled risk ratio was 0.85 (95%CI: 0.60-1.21). Subgroup analyses in the pediatric and adult groups did not yield a significant difference in recurrence risk. We also reviewed and analyzed post-transplant outcomes including timing of recurrence and graft survival.

Research conclusions
The use of rituximab with or without plasmapheresis, or plasmapheresis alone, is not associated with a lower risk of FSGS recurrence after kidney transplantation.

Research perspectives
This meta-analysis is among the first to report that the use of preemptive rituximab, either alone or in combination with plasmapheresis, or plasmapheresis alone, did not alter the recurrence risk of FSGS after kidney transplantation.

REFERENCES
1 Bukosza EN, Kornauth C, Hummel K, Schachner H, Huttary N, Krieger S, Nöbauer K, Oszwald A, Razzazi Fazeli E, Kratochwill C, Aufricht C, Szénási G, Hamar P, Gebeshuber CA. ECM Characterization Reveals a Massive Activation of Acute Phase Response during FSGS. Int J Mol Sci 2020; 21 [PMID: 32197499 DOI: 10.3390/ijms21062095]
2 Kwiatkowska E, Stefąńska K, Zielinski M, Sakowska J, Jankowiak M, Trzonkowski P, Marek-Trzonkowska N, Kwiatkowski S. Podocytes-The Most Vulnerable Renal Cells in Preeclampsia. Int J Mol Sci 2020; 21 [PMID: 32708979 DOI: 10.3390/ijms21145051]
3 Shuster S, Ankawi G, Licht C, Reiser J, Wang X, Wei C, Chitayat D, Hladunewich M. Fetal Renal Echogenicity Associated with Maternal Focal Segmental Glomerulosclerosis: The Effect of Transplacental Transmission of Permeability Factor suPAR. J Clin Med 2018; 7 [PMID: 30287750 DOI: 10.3390/jcm7100324]
4 Dumas De La Roque C, Prezelin-Reydit M, Vermeire A, Lepreux S, Deminière C, Combe C,
Sphingomyelinase-like phosphodiesterase 3b-precursor to prevent FSGS recurrence after renal transplantation in recipients with focal and segmental glomerulosclerosis.

Burke GW, Higgins JP, DerSimonian R. 10.1007/s10654-010-9491-z

TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting.

Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe JD, Tomlanovich S, Vincenti F. Recurrent focal glomerulosclerosis: a report from Renal Allograft Disease Registry (RADR).

Cattran DC, Roza AM, Vincenti F, George V. Recurrent and de novo glomerular disease after renal transplantation: natural history and response to therapy.

Hariharan S, Adams MB, Brennan DC, Davis CL, First MR, Johnson CP, Ouseph R, Peddi VR, Pelz CJ, Roza AM, Vincenti F, George V. Recurrent and de novo glomerular disease after renal transplantation: a report from Renal Allograft Disease Registry (RADR). Transplantation 1999; 68: 355-361 [PMID: 10507481 DOI: 10.1097/00007890-199909150-00007]

Vallianou K, Moranne O, Fornoni A, Wei C, Saenz M, Li J, Mattiazzi A, Ladino M, Kamalaveni P, Ricordi C, Rastaldi MP, Mundel P, Reiser J, Burke GW. Effect of rituximab in the regulation of sphingomyelinase-like phosphodiesterase 3b-precursor to prevent FSGS recurrence after renal transplantation in recipients with focal and segmental glomerulosclerosis. Am J Transplant 2001; 1: 371-379 [PMID: 11157379 DOI: 10.1033/ajt.2001.21311]

Artero M, Biava C, Amend W, Tomlanovich S, Vincenti F. Recurrent focal glomerulosclerosis: natural history and response to therapy. Am J Med 1992; 92: 375-383 [PMID: 1558084 DOI: 10.1016/0002-9343(92)90267-f]

Harirahan S, Adams MB, Brennan DC, Davis CL, First MR, Johnson CP, Ouseph R, Peddi VR, Pelz CJ, Roza AM, Vincenti F, George V. Recurrent and de novo glomerular disease after renal transplantation: results of a nationwide study. Am J Transplant 2021; 10: 33498157 [DOI: 10.1111/ajt.16504]

Cattran DC, Rao P. Long-term outcome in children and adults with classic focal segmental glomerulosclerosis. Am J Kidney Dis 1998; 32: 72-79 [PMID: 9669427 DOI: 10.1053/ajkd.1998.32.009669427]

Moranne O, Watier L, Rossert J, Stengel B. GN-Progress Study Group. Primary glomerulonephritis: an update on renal survival and determinants of progression. QJM 2008; 101: 215-224 [PMID: 18245806 DOI: 10.1093/qjmed/hcm142]

Hansrivijit P, Ghahramani N. Combined rituximab and plasmapheresis or plasma exchange for focal segmental glomerulosclerosis in adult kidney transplant recipients: a meta-analysis. Int Urol Nephrol 2020; 52: 1377-1387 [PMID: 32306197 DOI: 10.1007/s11255-020-02462-6]

Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283: 2008-2012 [DOI: 10.1001/jama.283.15.2008]

Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603-605 [PMID: 20652370 DOI: 10.1007/s10654-010-9491-z]

Don Simonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-188 [PMID: 3802833 DOI: 10.1016/0197-2456(86)90046-2]

Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-560 [PMID: 12958120 DOI: 10.1136/bmj.327.7411.557]

Kawaguchi H, Hattori M, Ito K, Takahashi K, Ota K. Recurrence of focal glomerulosclerosis of allografts in children: the efficacy of intensive plasma exchange therapy before and after renal transplantation. Transplant Proc 1994; 26: 7-8 [PMID: 8109028]

Otsubo S, Tanabe K, Tomimoto T, Ishikawa N, Shinnura H, Oshima T, Shimizu T, Harano M, Inui K, Fuchinoe S, Nishii H, Toma H. Long-term outcome in renal transplant recipients with focal and segmental glomerulosclerosis. Transplant Proc 1999; 31: 2860-2862 [PMID: 10578316 DOI: 10.1016/S0041-1345(99)00592-8]

Burke GW, Sageshima J, Fornoni A, Chen L, Abitbol C, Chandar J, Kupin W, Guerra G, Roth D, Shariatmadar S, Zilleruelo G, Ciancio G. Rituximab induction in high risk predominantly pediatric kidney transplant recipients may decrease the incidence and severity of recurrence of focal segmental glomerulosclerosis. Pediatr Transplant 2009; 13: 1050-1056 [PMID: 19507481 DOI: 10.1111/j.1399-5007.2008.01132.x]

Sageshima J, Fornoni A, Wei C, Saenz M, Li J, Mattiazzi A, Gadino M, Kamalaveni P, Ricordi C, Rastaldi MP, Mundel P, Reiser J, Burke GW. Effect of rituximab on the regulation of spingomyelinase-like phosphodiesterase 3b-precursor to prevent FSGS recurrence after renal transplantation in recipients with focal and segmental glomerulosclerosis. Am J Transplant 2001; 1: 371-379 [PMID: 11157379 DOI: 10.1033/ajt.2001.21311]
Boonpheng B et al. Rituximab vs plasmapheresis for prevention of FSGS

transplantation. Am J Transplant 2010; 25 [PMID: 20089116 DOI: 10.1111/j.1600-6143.2010.03024.x]

24 Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, Li J, Mattiazz A, Ciancio G, Chen L, Zilleruelo G, Abitbol C, Chandar J, Seehurnung V, Ricordi C, Iketha M, Rastaldi MP, Reiser J, Burke GW 3rd. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 2011; 3: 85ra46 [PMID: 21632984 DOI: 10.1126/scitranslmed.3002231]

25 Miyachi Y, Shirakawa H, Shimizu T, Omoto K, Ishida H, Tanabe K. Excellent outcomes of rituximab administration plus plasmapheresis as prophylactic treatment prior to kidney transplantation in patients with focal segmental glomerulosclerosis. Am J Transplant 2011; 427 [DOI: 10.1111/j.1600-6143.2011.03534.x]

26 Park HS, Hong Y, Sun JO, Chung BH, Kim HW, Choi BS, Park CW, Jin DC, Kim YS, Yang CW. Effects of pretransplant plasmapheresis and rituximab on recurrence of focal segmental glomerulosclerosis in adult renal transplant recipients. Korean J Intern Med 2014; 29: 482-488 [PMID: 25045296 DOI: 10.3904/kjim.2014.29.4.482]

27 Okumi M, Miyachi Y, Yagisawa T, Unagami K, Toki D, Omoto K, Ishida H, Tanabe K. Excellent outcomes of prophylactic rituximab administration with plasmapheresis in kidney transplant recipients with focal segmental glomerulosclerosis. Am J Transplant 2015

28 Futamura K, Okada M, Naga T, Yamamoto T, Hiramitsu T, Tsujita M, Goto N, Narumi S, Watarai Y. Recurrent focal segmental glomerular sclerosis after renal transplantation; prevention and treatment with Rituximab. Transplant 2016; S658 [DOI: 10.1097/01.tp.0000490147.72544.1a]

29 Alasfar S, Matar D, Montgomery RA, Desai N, Lonez B, Vujini V, Estrella MM, Manillo Dieck J, Khneizer G, Sever S, Reiser J, Alachkar N. Rituximab and Therapeutic Plasma Exchange in Recurrent Focal Segmental Glomerulosclerosis Postkidney Transplantation. Transplantation 2018; 102: e115-e120 [PMID: 29189487 DOI: 10.1097/TP.0000000000002008]

30 Lu Y, Lyons J, Tischer S, Woodside K, Park J. Efficacy and safety of a single-dose rituximab for prevention of focal segmental glomerulosclerosis recurrence after kidney transplant. Am J Transplant 2018; 801 [DOI: 10.1111/ajt.14918]

31 Auñón P, Polanco N, Pérez-Sáez MJ, Rodrigo E, Sancho A, Pascual J, Andrés A, Praga M. Preventive rituximab in focal and segmental glomerulosclerosis patients at risk of recurrence after kidney transplantation. Clin Kidney J 2021; 14: 139-148 [PMID: 33564412 DOI: 10.1093/ckj/szf120]

32 Iguchi Y, Tanabe K, Yagisawa T, Fuchinoue S, Kawai T, Kawaguchi H, Takahashi K, Ito K, Toma H, Agishi T, Ota K. Plasmapheresis for prevention of recurrent focal segmental glomerulosclerosis of kidney allograft in adult recipients. Ther Apher 1997; 1: 191-194 [PMID: 10225770 DOI: 10.1111/1.744-9987.1997.tb00400.x]

33 Ohta T, Kawaguchi H, Hattori M, Komatsu Y, Akioya Y, Nagata M, Shira H, Ito K, Takahashi K, Ishikawa N, Tanabe K, Yagisawa Y, Ota K. Effect of pre-and postoperative plasmapheresis on posttransplant recurrence of focal segmental glomerulosclerosis in children. Transplantation 2001; 71: 628-633 [PMID: 11292291 DOI: 10.1097/00007590-200103150-00008]

34 Somers MJG, Baum MA. Pre-transplant conditioning with plasmapheresis and cyclosporine infusion reduces recurrence of focal segmental glomerulosclerosis (fsgs) in children. Pediatr Transplant 2009; 96

35 Gonzalez E, Ettenger R, Riantavom P, Tsai E, Malekzadeh M. Preventive plasmapheresis and recurrence of focal segmental glomerulosclerosis in pediatric renal transplantation. Pediatr Transplant 2011; 15: 495-501 [PMID: 21338460 DOI: 10.1111/j.1399-3046.2011.01478.x]

36 Verghees PS, Rheault MN, Jackson S, Matas AJ, Chinnakotla S, Chavers B. The effect of peri-transplant plasmapheresis in the prevention of recurrent FSGS. Pediatr Transplant 2018; 22: e13154 [PMID: 29388290 DOI: 10.1111/petr.13154]

37 Koyun M, Comak E, Akman S. Peri-transplant Plasmapheresis in FSGS. Pediatr Transplant 2019; 23: e13322 [PMID: 30450731 DOI: 10.1111/petr.13322]

38 Campise M, Favi E, Messa P. Clinical Outcomes of Prophylactic and Therapeutic Plasmapheresis in Adult Deceased-Donor Kidney Transplant Recipients With Primary Focal Segmental Glomerulosclerosis. Exp Clin Transplant 2019; 17: 461-469 [PMID: 30570457 DOI: 10.6002/ect.2018.0106]

39 Mukku VK, Hassain S, Mujtaba MA. 201 Overview of Recurrence of Focal Segmental Glomerulosclerosis in Renal Transplant Patients and Effectiveness of Preemptive Plasma Exchange and Rituximab in Preventing Recurrence. Am J Kidney Dis 2021; 630 [DOI: 10.1053/j.ajkd.2021.02.206]

40 Savin VJ, Sharma R, Sharma M, McCarthy ET, Swan SK, Ellis E, Lovell H, Warady B, Gunwar S, Chonko AM, Arteo M, Vincenti F. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med 1996; 334: 878-883 [PMID: 8596570 DOI: 10.1056/NEJM199604043341402]

41 Le Berre L, Godfrin Y, Günther E, Buzelin F, Perretto S, Smit H, Kerjaschki D, Usal C, Curtur C, Soulillou JP, Dantal J. Extrarenal effects on the pathogenesis and relapse of idiopathic nephrotic syndrome in Buffalo/Mna rats. J Clin Invest 2002; 109: 491-498 [PMID: 11854321 DOI: 10.1172/JCI8258]

42 Delville M, Sigdel TK, Wei C, Li J, Hsieh SC, Fornoni A, Burke GW, Bruneval P, Naesens M, Jackson A, Alachkar N, Caraud G, Legendre C, Anglicheau D, Reiser J, Sarwal MM. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci — Sci Transl Med 2020; 12: eae4281 DOI: 10.1126/scitranslmed.aab5378
Boonpheng B et al. Rituximab vs plasmapheresis for prevention of FSGS

Transl Med 2014; 6: 256ra136 [PMID: 25273097 DOI: 10.1126/scitranslmed.3008538]

43 Kienzl-Wagner K, Waldegger S, Schneeberger S. Disease Recurrence-The Sword of Damocles in Kidney Transplantation for Primary Focal Segmental Glomerulosclerosis. Front Immunol 2019; 10: 1669 [PMID: 31379860 DOI: 10.3389/fimmu.2019.01669]

44 Gallon L, Leventhal J, Skaro A, Kanwar Y, Alvarado A. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N Engl J Med 2012; 366: 1648-1649 [PMID: 22533598 DOI: 10.1056/NEJMct1202500]

45 Kienzl-Wagner K, Rosales A, Scheidl S, Giner T, Bösmüller C, Rudnicki M, Oberhuber R, Margreiter C, Soleiman A, Őfner D, Waldegger S, Schneeberger S. Successful management of recurrent focal segmental glomerulosclerosis. Am J Transplant 2018; 18: 2818-2822 [PMID: 29962080 DOI: 10.1111/ajt.14998]

46 Kashgary A, Sontrop JM, Li L, Al-Jaishi AA, Habibullah ZN, Alsolaimani R, Clark WF. The role of plasma exchange in treating post-transplant focal segmental glomerulosclerosis: A systematic review and meta-analysis of 77 case-reports and case-series. BMC Nephrol 2016; 17: 104 [PMID: 27473582 DOI: 10.1186/s12882-016-0322-7]

47 Santos JE, Fiel D, Santos R, Vicente R, Ahsar R, Santos I, Amoedo M, Pires C. Rituximab use in adult glomerulopathies and its rationale. J Bras Nefrol 2020; 42: 77-93 [PMID: 31904761 DOI: 10.1590/2175-8239-]

48 Gauckler P, Shin JI, Alberici F, Audard V, Bruchfeld A, Busch M, Cheung CK, Crnogorac M, Delbarba E, Eller K, Faguer S, Galesic K, Griffin S, Hrušková Z, Jeyabalan A, Karras A, King C, Kohli HS, Maas R, Mayer G, Moiseev S, Muto M, Oder B, Pepper RJ, Quintana LF, Radhakrishnan J, Ramachandran R, Salama AD, Segelmark M, Tesaf V, Wetzel S, Willcocks L, Windpessl M, Zand L, Zonozi R, Kronbichler A; RITERM study group. Rituximab in adult minimal change disease and focal segmental glomerulosclerosis - What is known and what is still unknown? Autoimmun Rev 2020; 19: 102671 [PMID: 32942039 DOI: 10.1016/j.autrev.2020.102671]

49 Sannomiya A, Murakami T, Koyama I, Nitta K, Nakajima I, Fuchinoue S. Preoperative Low-Density Lipoprotein Apheresis for Preventing Recurrence of Focal Segmental Glomerulosclerosis after Kidney Transplantation. J Transplant 2018; 2018: 8926786 [PMID: 29808114 DOI: 10.1155/2018/8926786]
