Methodology for assessing the impact of transport accessibility on the competitiveness of residential facilities

I Lukmanova1*, E Zubeeva2, M Aleksandrova3 and Y Kosova3

1Moscow State University of Civil Engineering 26, Yaroslavskoye Shosse, Moscow, 129337, Russia
2Moscow Aviation Institute, Volokolamskoe highway, 4, Moscow, 125993, Russia
3Russian State University of Justice, 69, Novocheremushkinskaya street, 117418, Moscow, Russia

E-mail: lukmanova@mdsu.ru

Abstract. The purpose of this study is to develop a methodology for assessing the impact of various factors of consumer choice on the competitiveness of residential facilities. One of the key factors in the work is the presence of a developed transport infrastructure. As a result of the study, their functional interdependencies were determined, an algorithm for assessing and analyzing the competitiveness indicator of the construction object from the point of view of the consumer was developed.

1. Introduction

Existing scientific approaches to determining the competitiveness of construction products are based on a combination of a number of its properties and market position. However, they do not reflect the influence of the totality of its properties on the possibility of maximizing the utility received by the consumer from the acquisition of housing [1-3].

2. Materials and Methods

Based on the identified shortcomings of existing scientific approaches to determining the factors of competitiveness of housing products [4,5], it is proposed to clarify and supplement quality indicators, price characteristics, a description of the ready time of products, and to structure these groups of parameters into a classification of factors of competitiveness of housing products (table. 1).

The application of this classification allows taking into account the totality of competitiveness factors, including clarifying and supplementing the quality indicators of housing construction products, using the elements that form the payment structure, and specifying the description of the ready time of products.

The developed classification is based on the conceptual functional dependence of demand for a product D on the totality of its quality indicators OC, price characteristics Z_f, and ready time of products T:

$$D = f(OC, Z_f, T) = f(Q_f, Q_w, Q_n, R_f, Z_f, T)$$
Table 1. Classification of factors of competitiveness.

Groups of factors	Designation	Factors
Apartment characteristics	S_G	Size of the total area with balconies
	S_R	Living rooms
	S_{LIV}	Size of the living space
	S_{DR}	Dining rooms
	S_{BR}	Bedrooms
	S_{LAV}	Bathrooms
	S_{NRI}	Size of non-residential area
	S_{KIF}	Kitchen
	S_{COR}	Corridors
	S_{STOR}	Storerooms
General characteristics	Q_p	Planning factor
	K_I	Sizes of a loggia, balconies
	S_{BAL}	View characteristics from windows
	K_{STR}	Floor of an apartment in question
	H_G	Apartment height
	Z_V	Combination of kitchen and living room in one room
	Z_N	Influence on the sound comfort of neighboring rooms
Interior parameters	Z_I	Quality and availability of finishes, fittings of sanitary equipment, features of engineering systems
		Parameters of water supply, sanitation, heating, air conditioning, ventilation, electricity, gas supply, waste collection systems.
Engineering systems	Z_{EN}	Home management organization
Operational	Z_M	Technologies and typification of construction parameters
		Stationary Height and number of storeys
		Decoration of facades
General technical	Q_B	Proximity of coastal and forest zones, kindergartens and schools, health facilities, cultural and sports centers, harmful enterprises; building density.
Building characteristics		Seismological activity, climatic features, the presence of aggressive and homogeneous fields, social equality and cultural harmony
		Parking parameters
Surroundings	L	Quality of intra-quarter roads, the availability of bicycle and pedestrian roads
Neighborhood	Q_N	Presence and parameters of landscaping elements
Road infrastructure	Z_L	Cost of an apartment
		Unit cost of an apartment
		Loan amount
		Cost of production, taking into account the overpayment
Landscape	Z_S	Final cost of the loan
		Initial fee
Qualitative indicators OC of housing construction products are divided by the author into four groups of parameters considered within the apartment Q_r, the entire building Q_s, the surroundings of the house Q_z, as well as the transport accessibility of the facility R_T, and are caused by their constituent elements - competitiveness factors, and, taking into account the dependencies of the constituent elements, have the following form:

$$Q_r = f(S_G, S_{LV}, K_1, K_{ST}, H_G, Z_N, Z_N, Z_N)$$ \hspace{1cm} (2)

$$Q_s = f(Z_{EN}, Z_{AF}, Y_{GF}, Y_{AF})$$ \hspace{1cm} (3)

$$Q_z = f(Z_N, Z_N, Z_N, L)$$ \hspace{1cm} (4)

$$R_T = f(R_T, R_0)$$ \hspace{1cm} (5)

Price characteristics Z_p consist of the absolute P and relative P_{rel} cost of the product, the elements that form the payment structure Y_r and depend on the financial capabilities of the consumer (current and future savings - P_0 and P_n) and credit conditions (duration N and interest rate I) and, taking into account the dependencies of the constituent elements, are formed as follows:

$$Z_p = f(P, P_0, P_{rel}, P_n, I, N)$$ \hspace{1cm} (6)

Using the conceptual relationship between demand for a product (1) and a combination of its quality indicators (2;3;4;5), cost characteristics (6) and the availability period, it is possible to bring the factors of competitiveness of housing construction products to a single functional dependence.

Based on the restrictions imposed on the compared objects and their influence on the assessment and analysis of competitiveness, the author proposes to clarify the developed classification of factors, taking into account those that affect consumer choice (Table 2) [6].

Table 2. Classification of factors of competitiveness of housing products affecting consumer choice.

No.	Factors	Designation	Dimension
1	Size of the total area with balconies	S_G	square meters
2	Living space size	S_{LV}	
3	Planning factor	K_1	
4	Group indicator of transport accessibility	R_G	minutes
5	Individual indicator of transport accessibility	R_p	
6	Cost of an apartment	P	
7	Initial fee	P_0	rubles
8	Monthly payment	P_n	
9	Unit cost of an apartment	P_{rel}	ruble/square meter
10	Credit rate	I	percent
11	Loan terms	N	months
12	Time to completion of construction	T	
The use of this classification allows clarifying the relationship between demand for products \(D_i \) depending on the quality parameters \(Q'_i \) that can be recognized by the consumer in accordance with the restrictions imposed on the compared objects. The author proposes to use an indicator of the competitiveness of housing products \(CIC \), based on factors of consumer choice, as follows:

\[
CIC = D_i = f(Q'_i, R_i, Z_r, T) = f(S_c, S_{LV}, K_i, R_i, R_o, P, P_o, P_n, P_a, I, N, T)
\]

(7)

The competitiveness indicator \(CIC \), in accordance with the indicated dependence (7) and given restrictions, is identified with the level of demand, is determined individually for each object and characterizes it at the time of assessment, based on the competitiveness factors of housing construction products that affect consumer choice.

The application of this approach allows clarifying the principle of the influence of factors of product competitiveness on consumer choice [7, 8].

3. Results

The problems of applying existing approaches to determining the competitiveness of products are associated with the peculiarity of using the method of expert assessments, which does not give complete objectivity, the lack of universal indicators that take into account the specifics of construction in progress, for comparison, the methodological difficulties of quantifying and bringing the results to financial indicators.

The developed algorithm for assessing and analyzing the competitiveness of housing products is based on a comparative approach to real estate assessment and is reduced to the following eight stages.

First stage. Determining the value of existing consumer savings \(P_0 \) and its ability to make monthly payments \(P_n. \)

Second stage. Definition of objects acceptable for assessment and analysis, terms \(T \) to completion of their construction. Consideration of affordable mortgage programs and setting the size of the interest rate on the loan \(I \), as well as the maximum possible loan period \(N_{\text{max}}. \)

Third stage. The choice of specific apartments in available objects, the determination of the sizes of their general \(S_c \) and living \(S_{LV} \) areas, the declared price \(P \) of the apartments of interest and their planning coefficients \(K_i. \):

\[
K_i = \frac{S_{LV}}{S_c}
\]

(8)

Fourth stage. Calculation of the loan term \(N. \) based on annuity payments, the ability to make payments during this period with the specified parameters \(P, P_o, P_n, I. \)

\[
N = \frac{100 \times (P - P_o)}{100 \times P_n - I \times (P - P_o) + 12}
\]

(9)

Comparison of the calculated value \(N \) with a given value \(N_{\text{max}}. \)

Fifth stage. Clarification of the number of objects allowed for evaluation and analysis. Calculation of the unit cost of the apartment \(P_{\text{m}}. \):

\[
P_{\text{m}} = \frac{P}{S_c}
\]

(10)

Sixth stage. Definition of group \(R_o \) and individual indicators \(R_i \) of transport accessibility based on the location of the place of work of the consumer or the logistics center of the city. Calculation of the
daily difference in transit t_Δ and the cost of time TC required to determine the amount of additional transport costs TP.

The daily difference in transit t_Δ characterizes the additional time costs for moving the consumer from the logistics center to the selected object. With an equal ratio of cases of using personal and public transport, the daily difference in transit is formalized as follows:

$$t_\Delta = R_P + R_G$$ (11)

The calculation of the cost of time costs TC is necessary to bring the daily difference in transit to the financial equivalent during the calendar month (consists of 21 working days, 8 hours per day), calculated on the basis of the borrower’s income (adopted as $2.5\ P_n$).

$$TC = \frac{2.5P_n}{21*8*60} = \frac{P_n}{4032}$$ (12)

This formula involves the average number of working days in a month – 21, and hours per day - 8, a coefficient of 0.4 characterizes the size of the monthly payment of the level of the estimated monthly income.

The amount of additional transport costs TP is determined by the cost of time costs TC and the daily difference in transit t_Δ during $N - T$ months (average number of days - 21):

$$TP = TC * t_\Delta * 21 * (N - T) = P_n * t_\Delta * (N - T)$$ (13)

When considering an object with a minimum daily difference in transit t_Δ, in case of coincidence of the places of residence and location of the compared objects, or coincidence of the terms of lending and completion of construction $N = T$, the additional current transport costs TP are zero.

Seventh stage. Calculation of the competitiveness indicator of housing products by the specific value method CIC_v.

It is proposed to calculate this indicator by the ratio of the sum of all current and future costs - P_0 and P_{MT} related to the purchase of the selected housing, as well as possible additional costs for transportation TP to the total area S_G of the object in question:

$$CIC_v = \frac{P_0 + P_{MT} + TP}{S_G}$$ (14)

$$= \frac{P_0 + (P - P_0) * \left(\frac{100 + I \cdot \frac{N}{12}}{100} \right) + P_n * (R_P + R_G) * (N - T)}{S_G}$$

Eighth stage. Prioritization of CIC_v, K, and P_{w^*}. Analysis and assessment of the results. Choosing the most competitive facility.

The proposed algorithm for assessing and analyzing the competitiveness of housing construction products (Fig. 1) on the basis of calculation of the competitiveness indicator by the specific value method CIC_v is based on the ratio of the sum of multidirectional parameters P_0, P_{MT}, TP, the increase of which decreases CIC_v to a unidirectional indicator S_G, the increase of which contributes to its growth. Thus, products with a minimum value of the indicator CIC_v will be the most competitive.

Table 3 presents the proposed summary sheet of parameters for calculating the competitiveness indicator of housing products using the specific value method. These parameters are determined by the capabilities of the consumer - P_0 and P_α, by the characteristics of the object - S_G, S_{av}, P, T, R_α, and R_γ, by the loan conditions - I and N.
Table 3. Summary sheet of parameters for calculating the competitiveness index using the specific value method.

No.	S_{LIV}	S_G	R_G	R_P	T	N	I	P_0	P_N	P
	square meters	minutes	months	percent				thousand rubles		
1										
2										
...										
n										

Figure 1. The algorithm for assessing and analyzing the competitiveness of housing products.

The indicated parameters (Table 3) are used to calculate the competitiveness indicator CIC_U, unit cost P_m, and planning coefficient K_1, which are used to compare selected objects.

Table 4 presents the proposed summary sheet of parameters for assessing and analyzing the competitiveness of housing products based on the competitiveness indicator calculated using the specific value method and relative values - K_1 and P_m'.
Table 4. Summary sheet of parameters for assessing and analyzing the competitiveness of housing products.

No.	Object name	Building	CIC_{uc}	P_{m^2}	K_1
			(thousand rubles/square meter)		

The selection of the most competitive object is carried out in accordance with the selected priority for indicators CIC_{uc}, P_{m^2}, and K_1.

4. Conclusion
The proposed algorithm for assessing and analyzing the competitiveness of housing products on the basis of calculation of the competitiveness indicator by the specific value method as the ratio of the sum of all current and future costs associated with the purchase of selected housing, as well as subsequent additional transportation costs to the total area of the facility in question, allows one to: take into account in the assessment the time until completion of the construction of the objects under consideration; avoid using the method of expert assessments when comparing them; identify universal indicators for the analysis; reduce the result of the assessment of competitiveness to a financial indicator.

References
[1] Gorobnyak A A 2016 The estimate method of economic reliability in the development of the urban underground Procedia Engineering 165 1287-1292
[2] Blagodatskaya A A 2019 Development of a business model in the process of business planning Economy and entrepreneurship 5(106) 1220-1224
[3] Kotova E S 2017 The main approaches to assessing the innovative potential of the organization Economic environment (Economicheskaya sreda) 1(19) 166-171
[4] Kolomyts O N, Savelenko V M 2017 Methodological approaches to assessing innovation and investment potential and prospects for innovative development of socio-economic systems Economics and management: problems, solutions 5(12) 5-8
[5] Valko D V, Sergeicheva I A 2016 Effectiveness of business processes as a part of company innovative strategic potential Scientific Bulletin of the Volgograd Branch of RANEPA. Series: Economics 1 89-95
[6] Bykovsky V V 2015 The innovative potential of an organization, its place and role in its overall economic potential Economy. Innovation. Quality control 3(12) 81-82
[7] Kankhva V 2018 Using the entropy of cover method in the analysis of investment risks MATEC Web of Conferences 212 08003 https://doi.org/10.1051/matecconf/201821208003
[8] Lukmanova I, Golov R 2018 Modern energy efficient technologies of high rise construction E3S Web of Conferences 33 02047 https://doi.org/10.1051/e3sconf/20183302047