Modulation of Mast Cell Reactivity by Lipids: The Neglected Side of Allergic Diseases

Philipp M. Hagemann¹, Stephanie Nsiah-Dosu², Jennifer Elisabeth Hundt³, Karin Hartmann²,4 and Zane Orinska¹*

¹ Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany; ² Department of Dermatology, University of Luebeck, Luebeck, Germany; ³ Luebeck Institute of Experimental Dermatology, University of Luebeck, Luebeck, Germany; ⁴ Division of Allergy, Department of Dermatology, University of Basel, Basel, Switzerland

Mast cells (MCs) have long been mainly regarded as effector cells in IgE-associated allergic disorders with potential immunoregulatory roles. Located close to the allergen entry sites in the skin and mucosa, MCs can capture foreign substances such as allergens, toxins, or noxious substances and are exposed to the danger signals produced by epithelial cells. MC reactivity shaped by tissue-specific factors is crucial for allergic responses ranging from local skin reactions to anaphylactic shock. Development of Th2 response leading to allergen-specific IgE production is a prerequisite for MC sensitization and induction of FcεRI-mediated MC degranulation. Up to now, IgE production has been mainly associated with proteins, whereas lipids present in plant pollen grains, mite fecal particles, insect venoms, or food have been largely overlooked regarding their immunostimulatory and immunomodulatory properties. Recent studies, however, have now demonstrated that lipids affect the sensitization process by modulating innate immune responses of epithelial cells, dendritic cells, and NK-T cells and thus crucially contribute to the outcome of sensitization. Whether and how lipids affect also MC effector functions in allergic reactions has not yet been fully clarified. Here, we discuss how lipids can affect MC responses in the context of allergic inflammation. Direct effects of immunomodulatory lipids on MC degranulation, changes in local lipid composition induced by allergens themselves and changes in lipid transport affecting MC reactivity are possible mechanisms by which the function of MC might be modulated.

Keywords: mast cells, degranulation, allergy, lipids, lipid mediators, flippases, floppases, scramblases

INTRODUCTION

Mast cells are long-living tissue-resident hematopoietic cells equipped with secretory granules containing a broad spectrum of biologically active mediators such as histamine, proteases, and cytokines (1, 2). Preferentially located in the skin and mucosa, MCs detect potentially dangerous or noxious substances in concert with danger signals produced by epithelial cells at damaged barriers. Extensive MC degranulation as an urgent response to different types of stimulation and its wide-ranging local or systemic effects are the reasons why MCs are the main effector cells in allergies (3). Here, we summarize recent findings describing how reactivity of MCs can be modulated by lipids and discuss how interference with intracellular lipid transport could affect MC reactivity.
LIPOID STRUCTURE AND MOLECULAR FEATURES

Lipids are overall hydrophobic or amphipathic molecules consisting of a hydrophilic head group and a hydrophobic tail group connected either by esters or ether bonds. Other lipids like sterols consist of a ring structure with various modifications. Lipids, in contrast to proteins and nucleic acids, are synthesized by a series of specific interlinked enzymatic reactions generating a high diversity of different lipid molecules. According to their hydrophobic characteristics and chemically functional backbones, lipids are categorized into eight main groups, namely fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, and polyketides (http://www.lipidmaps.org). Lipids are essential in storage of energy, arrangement of signaling complexes, participation in signal processing as second messengers and building of membranes as physical barriers. Membranes in mammalian cells consist mainly of sphingolipids, glycerophospholipids, and cholesterol (4). They are fluidic bilayers characterized by different lipid compositions in their inner and outer sides where lipids together with proteins form highly ordered structures essential for organization of cellular compartments. An integral part of membranes is cholesterol. It is synthesized in the endoplasmic reticulum (ER), transported then to the Golgi complex, and further to the plasma membrane which shows the highest cholesterol concentration. Together with sphingolipids, cholesterol regulates the membrane permeability and facilitates organization of ordered protein islets. Glycerophospholipids and sphingolipids are also synthesized in the ER and further modified in the Golgi complex as well as the mitochondria (5–7). The lysosome, on the other hand, plays a crucial role in lipid sorting and metabolism (8). Enzymatically induced changes in the lipid composition of the membrane are associated with a new ordering of membrane proteins and altered membrane microdomains (9). In general, any change in the lipid or protein compartment of a membrane affects both partners and is therefore tightly controlled by the cell. MCs in particular undergo dramatic membrane reorganization while degranulation and recovery. The schematic structure of the different lipid categories and exemplary representatives of these categories with effects on MC functions are summarized in Table 1.

PRODUCTION OF LIPOID MEDIATORS IS ASSOCIATED WITH CHANGES IN MAST CELL REACTIVITY

Activated in settings of allergic responses, mainly through stimulation of the high affinity receptor FcεRI complex by IgE-recognizing specific antigens, MCs release pre-stored biogenic amines, proteases, proteoglycans, chemokines as well as cytokines. In addition, MCs are well-known producers of different lipid mediators such as leukotrienes (LT) and prostaglandins (PG) (14, 20, 35) and production of these lipid mediators has in turn been shown to regulate MC functions. For example, MC-produced lipid mediators have been found to enhance inflammation in specific situations (36, 37) or to limit inflammation in other circumstances associated with reestablishment of tissue homeostasis (38, 39). Recent studies also demonstrated that enzymes responsible for production of lipid mediators belong to the MC-specific gene expression signature (40). Furthermore, in vitro generated connective tissue-like MCs and mucosal-like MCs differ in their eicosanoid patterns (41) and skin MCs are unique in showing the lowest expression levels of Alox5 gene encoding 5-lipoxygenase (40), indicating that lipid mediator production is coordinated by tissue-specific regulatory mechanisms. Production of eicosanoid mediators, sphingolipid metabolites, and platelet-activating factor (PAF) by MCs is extensively reviewed elsewhere (15, 42). Thus, during allergic responses, MCs produce a variety of lipid mediators acting in a paracrine and autocrine manner. In addition, MC reactivity is modulated by lipid mediators produced by other cells exposed to environmental challenges.

ENDOCANNABINOIDS AFFECT MAST CELL REACTIVITY

Often overlooked regarding their modulatory effects on MC function are endocannabinoids—a group of bioactive lipids serving as secondary immune modulators participating in down-regulation of inflammatory processes (17, 43). The best characterized members of endocannabinoid lipid mediators are N-arachidonoylthanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG) (44, 45), which are derived from membrane phospholipids in response to physiological or pathological stimuli. Furthermore, new signaling mechanisms for intracellular transport and storage of endocannabinoids have been described (46–49). Endocannabinoids act through type-1 (CB1) and type-2 (CB2) G protein-coupled cannabinoid receptors, G protein-coupled receptor GPR55, transient receptor potential channel of the vanilloid subfamily 1 (TRPV1), and peroxisome proliferator-activated receptor γ (PPAR γ) (50). CB1 and CB2 are expressed on MCs (51) and initiate a series of signal transduction events that converge at the transcriptional level to regulate cell migration and production of cytokines and chemokines (52, 53). Acting in concert with GPR55, CB2 mediates signals inhibiting MC degranulation and cytokine synthesis (54). Described anti-fibrotic effects of cannabinoid receptors in different MC-related disease models (55, 56) together with the recently deciphered crystal structure of CB1 and CB2 (57, 58) will allow development of selective agonists and their implementation in novel therapeutic concepts for allergic diseases.

ALLERGY-ASSOCIATED IMMUNOMODULATORY LIPOS ACT ON MAST CELLS

One would expect that allergen-associated lipids of plants or bacterial origin preferentially affect epithelial cells. Interaction of lipids with MCs might rather be possible in tissues with a damaged barrier (mainly by proteolytic activity of allergens) or indirectly in individuals showing previous sensitization
Lipid category	Schematic structure	Examples of lipids with effects on MC reactivity	References
Fatty acyls	![Structure of α-Linolenic acid](image)	Fatty acids, Omega 3, and 6 polyunsaturated fatty acids PG, TX, LT, LX AEA	(10–13) (14–16) (17)
Glycerolipids	![Triglyceride](image)	2-AG	(17)
Glycerophospholipids	![Phosphatidylethanolamine](image)	PC, PE, PI, PS, PAF	(18–20)
Sphingolipids	![Sphingomyelin](image)	Ceramide C1P, S1P	(21) (22, 23)
Sterol lipids	![Cholesterol](image)	Cholesterol Steroids Vitamin D₃	(24–27) (28) (29, 30)
Prenol lipids	![Vitamin A](image)	Carotenoids Vitamin E	(11) (31)
Saccharolipids	![Lipid A -disaccharide-1-phosphate](image)	LPS	(32, 33)
Polyketides	![Griseorhodin A](image)	Antibiotics Flavonoids	(34) (11)

http://www.lipidmaps.org.is a source for structure of lipids. TX, thromboxane; PI, phosphatidylinositol.
and presence of specific IgE and active transport of IgE-
antigen complexes containing lipids. MCs are regulated by
lipids associated with different allergens, as extensively reviewed
elsewhere (59, 60). Interestingly, epithelial cells from healthy
donors sense allergens differently than epithelial cells from
allergic patients (61). Therefore, enhanced reactivity of MCs
could be the result of a combined action of allergen-lipid
complexes and pro-allergic inflammatory mediators produced
by epithelial cells (Figure 1). Degranulation of human lung
MCs has been shown to be inhibited in coculture with bronchial epithelial cells (62), substantiating the hypothesis
that epithelial cells can provide the inhibitory signals to
MCs as well. Attractive candidates potentially limiting MC-
reactivity are specialized pro-resolving mediators (SPMs) crucial
for the resolution of inflammatory processes (63, 64). Four
classes of SPMs have been characterized so far. Lipoxins
(LX) are biosynthetic products of arachidonic acid. Resolvins,
protectins, and maresins are products of eicosapentaenoic aci d
(EPA), docosapentaenoic acid (n-3DPA) or docosahexaenoic
acid (DHA) (64). The epithelial cell-derived resolvins D1, D2,
and lipoxin A4 have been found to suppress IgE-mediated histamine release from MCs via G-protein-coupled receptors
(65). Furthermore, airway inflammation, mucus production, and
airway hyperresponsiveness in vivo as well as MC degranulation
and cytokine release were decreased by lipoxin B4 application
(16), indicating therapeutic potential of pro-resolving lipid
mediators in regulation of MC reactivity. Whether SPMs could
be produced by MCs themselves, is unknown.

One major class of allergen-containing particles represent
plant pollens, where pollen grains are coated with different lipids
essential for plant fertilization (66). By interacting with immune
cells and epithelial cells, pollen lipids may play an important
role in immunoregulation. Two classes of pollen-associated lipid
mediators (PALMs) have been described so far, namely LTB4-like
mediators, which are monoxydroxylated derivatives of linoleic
acid, and phytoprostanes generated from α-linolenic acid in
response to oxidative stress (67). Effects of PALMs on MC
degranulation have been reported for aqueous pollen extracts
(APE) derived from birch pollen and for APE from Ambrosia
artemisiifolia (68). Here, degranulation was induced in skin MCs
of C57BL/6 mice by intradermal injection of APE in the absence
of specific IgE. It is not known whether MC degranulation can
be induced by APE themselves in the presence of an intact skin
barrier. In experiments with RBL cells, it has been shown that
Ambrosia pollen extract induces histamine release by a ROS-
dependent mechanisms, but not β-hexosaminidase release (69).
In experiments with mountain ceder (Juniperus ashei) pollen
extract, release of both serotonin and β-hexosaminidase was
induced in RBL cells in an IgE-independent, but ROS-dependent
manner. Added to suboptimal IgE/Ag concentrations, pollen
extracts enhanced degranulation of RBL cells (70), although
lipid components in particular extracts were not analyzed.
Interestingly, persistent contact with grass pollen in early
childhood has been found to represent one of various allergy-
protective factors (71). However, whether lipids are essential for
tolerance induction and whether MCs are directly involved in
tolerance development remains to be investigated.

ALLERGENS INDUCE CHANGES IN MAST CELL LIPID COMPOSITION

Interaction of honeybee venom phospholipase A2 (PLA2)
with membrane lipids is an example how allergen-induced
modification of lipids could tune MC reactivity. Insect venom,
particularly Hymenoptera venoms, induces a pronounced Th2
response by coopting evolutionary conserved immunological
and neurological mechanisms (3, 72). A mixture of different
substances, including enzymes, toxic peptides, lipids, and
biogenic amines, is transported into the skin by the insect
sting and induces a local inflammatory reaction, leading to
sensitization and IgE production. Phospholipase A2 is one of
the two major honeybee (Apis mellifera) venom allergens (73,
74). Cleaving cell membrane phosphodiacylglycerides, PLA2
induces the release of lysophospholipids, particularly lysopho
sphatidylcholine (LPC), together with fatty acids. This local
lipid remodeling can affect MC reactivity per se and lead to
MC degranulation (75, 76) (Figure 1). The stimulatory effect
on MCs is absent if the enzymatically inactive form of PLA2 is
used (77). PLA2 enzymatic activity is also required to induce
a Th2 response (78). Generated neoantigens in the skin are
presented by the CD1a molecules of antigen-presenting cells
(APCs) and then induce a polyclonal T cell response (79).
Interestingly, the stimulatory effects of PLA2 were observed
only in the presence of lipids, either venom- or host-derived,
indicating that lipid and protein components act in concert to
induce a T cell response (79). PLA2 activity has also been detected

![Figure 1](image-url)

FIGURE 1 | Modulation of MC reactivity by allergen-associated lipids and lipid mediators.
in house dust mite extracts (80), indicating that generation of lyso-phospholipids could be a part of allergic sensitization program. Moreover, an interaction between MCs and dendritic cells (DCs) has been demonstrated in contact hypersensitivity models (81, 82), where MCs were “cross-dressed” with DC MHC class II complexes. How the local changes of lipid composition, induced by e.g., PLA2 activity, modulate the MC-DC interaction and which functional consequences this would have for the T cell response in allergic settings remains to be further elucidated.

MEMBRANE LIPID ORGANIZING ENZYMES ARE TARGETS TO MODULATE MAST CELL ACTIVATION

Organization of membrane lipids plays an important role in regulation of MC degranulation. The inner leaflet, facing the inside of the cell, contains negatively charged amine-phospholipids, and phosphatidylethanolamine (PE). The outer leaflet, facing the outside environment, contains phosphatidylcholine (PC) and sphingomyelin. Asymmetric distribution of phospholipids in the plasma membrane plays an essential role in regulation of MC exocytosis (83). Interestingly, one of the earliest events in MC degranulation is a redistribution of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] disappearing from the plasma membrane within seconds after stimulation (84). Furthermore, MC degranulation is associated with reversible phosphatidylserine (PS) translocation to the plasma membrane (85), in contrast to various other cell types, in which the PS translocation represents an apoptotic “eat-me” signal. PS exposure can implicate endocytosis, acquisition of membrane curvature, regulation of transmembrane proteins, interactions with cytoskeletal elements as well as involvement in PS signaling (19). Lipid transporting phospholipid scramblase 1 (PLSCR1), floppase ABCA1 or transmembrane protein TMEM16F are the candidates responsible for PS translocation (19, 86). Interestingly, PS translocation in MCs could be induced not only by FceRI-mediated activation. Croslinking of glycosylphosphatididylinositol-anchored proteins by specific antibodies or lectins also induce PS externalization, using probably a different Ca²⁺-independent mechanism (87). It seems that the context in which MCs recognize PS is important, since free PS and lyso-PS enhance FceRI-mediated degranulation (88) and phosphatidylserine-specific phospholipase A1, released e.g., by activated platelets, generates lyso-PS and strongly enhances MC histamine release (75). However, recognition of PS on the surface of apoptotic cells by the inhibitory receptor CD300a leads to a downregulation of inflammatory cytokine and chemokine production (89). Also, rodent MCs express α-galactosyl derivatives of the ganglioside GD1b (90). Antibodies recognizing this ganglioside inhibit degranulation and histamine release by modulating FceRI endocytosis (90, 91) but in contrast, are also able to promote release of cytokines and lipid mediators (92).

Lipid content and distribution in membranes are regulated by different enzymes. Three types of phospholipid transportation enzymes are responsible for maintenance of the phospholipid asymmetry in membranes: (1) flippases that catalyze translocations of phospholipids between membrane leaflets in an energy-dependent or-independent manner, primarily from the external to the internal leaflet, (2) floppases that transport lipids from the cytoplasmic leaflet to the external membrane leaflet, and (3) scramblases that move lipids between the two leaflets [as reviewed in Pomorski and Menon (93)]. Potential effects of flippases, floppases, and scramblases on MC function are outlined in Figure 2.

Flippases are members of the P4-type ATPase family with a similar structure containing 10 transmembrane domains, an actuator domain, a phosphorylation domain, and a nucleotide-binding domain associating with an accessory subunit Cdc50, forming a heterodimeric complex. In mammals, 14 different P4-ATPases have been identified as heterodimers consisting of a catalytic subunit in association with one member of the Cdc50 family (94). Many P4-ATPases are ubiquitously expressed and have been implicated in different metabolic diseases (95). P4-ATPases are also involved in the phospholipid transport between different subcellular compartments and are responsible for maintenance of phospholipid asymmetry in different cell types. Lipid transport by P4-ATPases is lipid-specific, head group-, and backbone-dependent (96). P4-ATPases regulate vesicular trafficking and the bidirectional vesicular transport between

Figure 2 | Potential effects of flippases, floppases, and scramblases on MC function. Lipid transporting enzymes could be involved in regulation of different cellular processes. Granule biogenesis (A), endocytosis (B), and exocytosis (C) could be regulated by flippases. MCs are participating in transport of lipid mediators (D) and could be involved in regulation of MC exocytosis (E). Scramblases regulate FcεRI-mediated signaling and MC degranulation (F), could be potentially involved in TLR-signaling in endosomes (G) and regulation of gene transcription (H).
the Golgi complex and early endosomes, but also vesicle biogenesis by enriching specific phospholipids in yeast cells, formation of post-Golgi vesicles in plant cells, as well as maintenance of membrane integrity and secretory processes (95, 97). Involvement of this class of lipid transporters in MC granule biogenesis and exocytosis is obvious. Genetic models with MC-specific P4-ATPase inactivation/overexpression could help to better understand essential regulatory steps in granule development, maturation and degranulation of MCs. Improvement of the knowledge on MC granule organization will also help to develop new strategies to interfere with MC degranulation.

Lipid transporters, shipping lipids from the inner membrane leaflet to the outer leaflet, are ATP-binding cassette (ABC) proteins, originally identified as multidrug resistance gene products in tumor cells. ABC proteins are encoded as single polypeptides, which can form homo- or heterodimers, contain an ATP-binding site, a nucleotide-binding domain and up to 17 transmembrane domains (98). Leukotriene C4 was the first lipid mediator described, transported by ABCC1/MRP1 (99). Different other lipid mediators such as prostaglandin A2 (PGA2) and 15-deoxy-Δ12,14-prostaglandin J2, lyso-phosphatidylinositol (LPI) are also transported by specific ABC proteins (100, 101). In MCs with downregulated ABCC1/MRP1 expression, transport of SIP was strongly reduced, indicating an ABC-dependent regulation of MC chemotaxis and migration (102). How the lipid transport can be modulated by targeting other ABC proteins and how this will affect MC function is currently unknown. Mutations of ABC lipid transporters are responsible for several human diseases, such as neonatal surfactant deficiency (ABCA3 mutation) or Tangier disease (ABCA1 mutation), characterized by decreased removal of cholesterol from peripheral tissues (103).

Scramblases are structurally related proteins, containing a DNA-binding domain, a palmitoylation motif, a Ca\(^{2+}\)-binding motif, transmembrane domains and a nuclear localization signal. Located in the plasma membrane, scramblases are involved in the Ca\(^{2+}\)-dependent distribution of phospholipids (scrambling) (104). In 2008, the group of Benhamou identified phospholipid scramblase 1 (PLSCR1) as specific regulator of FcεRI signaling (105). Initially, PLSCR1 was only marked responsible for the rapid redistribution of phospholipids between two leaflets of the plasma membrane after cell activation or apoptosis, leading to the disruption of their asymmetric distribution (106–108). In the meantime, however, it is known that PLSCR1 serves numerous functions beyond the redistribution of phospholipids, such as the regulation of cell proliferation, differentiation, apoptosis, and tumor development (109–112). PLSCR1 requires palmitoylation to be stabilized at the plasma membrane. In the absence of palmitoylation, it is found in the nucleus, where it can bind DNA and activate the transcription of the inositol phosphate-3 (IP3) receptor (113, 114). When palmitoylated and localized at the plasma membrane, it participates in the epidermal growth factor signaling (115) by amplifying activation of the tyrosine kinase Src (116).

Knock-down of PLSCR1 in RBL-2H3 cells significantly impaired FcεRI-mediated degranulation and release of vascular endothelial growth factor (105). Earlier, Pastorelli had already observed that phosphorylation of PLSCR1 is increased following the engagement of FcεRI in RBL-2H3 cells (117). Tyrosine phosphorylation of PLSCR1 following FcεRI aggregation relies on Lyn and Syk tyrosine kinases and partially also on calcium mobilization. In contrast, Fyn signaling negatively regulated PLSCR1 phosphorylation, suggesting a complex modulation of FcεRI-dependent MC activation by PLSCR1 (105, 118). In vivo studies using Plscr1\(^{-/-}\) mice showed reduced FcεRI-dependent passive systemic anaphylaxis and serum histamine levels compared to wild-type mice (119), demonstrating the involvement of PLSCR1 in IgE-mediated anaphylaxis without affecting the phenotype or tissue distribution of resting MCs. Surprisingly, anaphylactic reactions induced by direct injection of histamine were slightly increased in Plscr1\(^{-/-}\) animals, indicating that PLSCR1 also counter-regulates IgE-dependent anaphylaxis at later stages.

The modulatory ability of PLSCR1, allowing increased as well as decreased biological responses, might serve to sophisticatedly regulate inflammation, host defense, tissue remodeling and homoeostasis and provide a rationale for exploiting PLSCR1 as therapeutic target in allergies (119, 120). Interestingly, in plasmacytoid DCs, PLSCR1 interacts with TLR9, and regulates the type I IFN response by modulating endosomal trafficking of TLR9 (121). Also, scramblase 2 (PLSCR2) has been found to be involved in the antiviral response. PLSCR2 binds to STAT3 and in this way also participates in downregulating the type I interferon response (122). Whether comparable effects will be observed in MCs and whether the antiviral response of MCs is compromised in the absence of scramblases remains an open question for future investigations. Mice deficient for scramblase 3 developed metabolic syndrome and lipid accumulation in abdominal fat pads (123).

Modulation of MC degranulation by affecting the lipid composition of the cell membrane or the enzyme activity modulating the lipid distribution of the membrane are potential emerging therapeutic strategies for the treatment of allergic diseases.

CONCLUSION AND PERSPECTIVES

The rapidly emerging field defining modulation of MC reactivity by lipids, in addition to proteins, reveals novel and unprecedented targets, which may serve to preclude MC effects in allergic reactions. Active substances secreted by MCs have already been studied extensively, but data on the overall lipid composition of MCs and on stimulus-specific as well as sub-cell type-specific lipidomic data are still missing. Direct effects of immunomodulatory lipids on MC degranulation, changes in MC lipid composition induced by allergens themselves and changes in lipid transport and metabolism in MCs have not yet been comprehensively investigated. Furthermore, current studies investigating MC lipids are often limited by use of non-physiologic conditions or narrow restriction of the lipids that were analyzed. Therefore, addition of modern lipidomic approaches to the toolbox of immunology and cell
biology is crucial. Hereby, the added knowledge of lipid production and regulation together with deep understanding of MC biology will help find new mechanisms regulating MC responses. Coupled with this, an in-depth knowledge will be considerably advantageous for patients with anaphylaxis, asthma, allergic rhinitis, eczema, urticaria, mastocytosis, and other allergic diseases.

AUTHOR CONTRIBUTIONS

PH, SN-D, JH, KH, and ZO wrote sections of the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

REFERENCES

1. Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. (2018) 282:121–50. doi: 10.1111/imr.12634
2. Wernersson S, Peijer G. Mast cell secretory granules: armed for battle. Nat Rev Immunol. (2014) 14:678–94. doi: 10.1038/nri3690
3. Palm NW, Rosenstein RK, Medzhitov R. Allergic host defences. Nature. (2012) 484:465–72. doi: 10.1038/nature11047
4. Storck EM, Özbalci C, Eggert US. Lipid cell biology: a focus on lipids in cell division. Ann Rev Biochem. (2018) 87:839–69. doi: 10.1146/annurev-biochem-062917-012448
5. Litvinov DY, Savushkin EV, Dergunov AD. Intracellular and plasma membrane events in cholesterol transport and homeostasis. J Lipids. (2018) 2018:1–22. doi: 10.1155/2018/3695054
6. van Meer G, de Kroon AIPM. Lipid map of the mammalian cell. EMBO Rep. (2011) 124:5–8. doi: 10.1242/jcs.071233
7. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. (2008) 9:112–24. doi: 10.1038/nrm2330
8. Thelen AM, Zoncu R. Emerging roles for the lysosome in lipid metabolism. Trends Cell Biol. (2017) 27:833–50. doi: 10.1016/j.tcb.2017.07.006
9. Márquez MG, Favale NO, Leocata Nieto F, Pescio LG, Steiner-Speziale N. Changes in membrane lipid composition cause alterations in epithelial cell–cell adhesion structures in renal papillary collecting duct cells. Biochim Biophys Acta. (2012) 1818:491–501. doi: 10.1016/j.bbamem.2011.11.018
10. Gueck T, Seidel A, Fuhrmann H. Effects of essential fatty acids on mediators of mast cells in culture. Prostagl Leukot Essent Fatty Acids. (2003) 68:317–22. doi: 10.1016/S0952-3278(03)00022-X
11. Hagenlocher Y, Lorenz A. Immunomodulation of mast cells by nutrients. Mol Immunol. (2015) 63:25–31. doi: 10.1016/j.molimm.2015.03.12.005
12. Ju H-R, Wu H-Y, Nishizono S, Sakono M, Ikeda I, Sugano M, et al. Effects of dietary fats and curcumin on IgE-mediated degranulation of intestinal mast cells in brown norway rats. Biosci Biotechnol Biochem. (1996) 60:1856–60. doi: 10.1271/bbb.60.1856
13. Wang X, Kulka M. n-3 Polyunsaturated fatty acids and mast cell activation. J Leukocyte Biol. (2015) 97:859–71. doi: 10.1189/jlb.2RU081-388R
14. Samuelsson B, Dahlen S, Lindgren J, Roucer C, Serhan C. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. (1987) 237:1171–6. doi: 10.1126/science.2820055
15. Boyce JA. Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol Rev. (2007) 217:168–85. doi: 10.1111/j.1600-065X.2007.00512.x
16. Karra L, Haworth O, Priluck R, Levy BD, Levi-Schaffer F. Lipoxin B4 promotes the resolution of allergic inflammation in the upper and lower airways of mice. Mucosal Immunol. (2015) 8:852–62. doi: 10.1038/mi.2014.116
17. Chiurchiu V, Battistini L, Maccarrone M. Endocannabinoid signalling in innate and adaptive immunity. Immunology. (2015) 144:352–64. doi: 10.1111/imm.12441
18. Byrne R, Larjani B. The role of phosphoinositides in mast cell signalling. Signal Trans. (2006) 6:81–91. doi: 10.1002/sst.200500074
19. Shimoda LMN, Dixon AM, Speck M, Stokes AJ, Turner H, Umemoto EY. Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells. BioArchitecture. (2014) 4:127–37. doi: 10.1080/19499092.2014.995516
20. Schauberger E, Peinhaupt M, Cazares T, Lindsay AW. Lipid mediators of allergic disease: pathways, treatments, and emerging therapeutic targets. Curr Allergy Asthma Rep. (2016) 16:468. doi: 10.1007/s11882-016-0628-3
21. Chiba N, Masuda A, Yoshikai Y, Matsuguchi T. Ceramide inhibits LPS-induced production of IL-5, IL-10, and IL-13 from mast cells. J Cell Physiol. (2007) 213:126–36. doi: 10.1002/jcp.21101
22. Olivera A, Rivera J. Sphingolipids and the balancing of immune cell function: lessons from the mast cell. J Immunol. (2005) 174:1153–8. doi: 10.4049/jimmunol.174.3.1153
23. Sturgill JL. Sphingolipids and their enigmatic role in asthma. Adv Biol Regul. (2018) 70:74–81. doi: 10.1016/j.bior.2018.09.001
24. Baumruker T. Activation of mast cells by incorporation of cholesterol into rafts. Int Immunol. (2003) 15:1207–18. doi: 10.1093/immunol/dxg120
25. Kato N, Nakaniishi M, Hiroshima N. Cholesterol depletion inhibits stores-operated calcium currents and exocytotic membrane fusion in RBL-2H3 cells. Biochemistry. (2003) 42:11808–14. doi: 10.1021/bi034758h
26. Surviladze Z, Dráberová L, Kovárová M, Boubelík M, Dráber P. Differential sensitivity to acute cholesterol lowering of activation mediated via the high-affinity IgE receptor and Thy-1 glycoprotein. Eur J Immunol. (2001) 31:1–10. doi: 10.1002/1521-4141(20010131)31:1<1::AID-IMMU1>3.0.CO;2-W
27. Kovarova M, Wassif CA, Odom S, Liao K, Porter FD, Rivera J. Cholesterol deficiency in a mouse model of Smith-Lemli-Opitz syndrome reveals increased mast cell responsiveness. J Exp Med. (2006) 203:1161–71. doi: 10.1084/jem.20051701
28. Mori T, Abe N, Saito K, Toyama H, Endo Y, Ejima Y, et al. Hydrocortisone and dexamethasone dose-dependently stabilize mast cells derived from rat peritoneum. Pharmacol Rep. (2016) 68:1358–65. doi: 10.1016/j.pharep.2016.09.005
29. Liu Z-Q, Li X-X, Qu S-Q, Yu Y, Li M-G, Yang L-T, et al. Vitamin D contributes to mast cell stabilization. Allergy. (2017) 72:1184–92. doi: 10.1111/all.13110
30. Yip K-H, Kolesnikoff N, Yu C, Hauschild N, Taing H, Biggs L, et al. Mechanisms of vitamin D3 metabolite repression of IgE-dependent mast cell activation. J Allergy Clin Immunol. (2014) 133:1356–64.e14. doi: 10.1016/j.jaci.2013.11.030
31. Zingg J. Vitamin E and mast cells. In: Lidwack G, editor. Vitamins and Hormones. Amsterdam: Elsevier. p. 393–418. doi: 10.1016/S0088-6729(07)76015-6
32. Masuda A, Yoshikai Y, Aiba K, Matsuguchi T. Th2 cytokine production from mast cells is directly induced by lipopolysaccharide and distinctly

FUNDING

This work was supported by the Research Center Borstel to PH and ZO, the Medical Faculty of the University of Luebeck to JH and KH, and the German Research Foundation (DFG), Project HA 2393/6-1 to KH, Research Training Group 1727 “Modulation of Autoimmunity” (RTG 1727) to PH, SN-D, JH, KH, ZO, and Excellence Cluster 306 “Inflammation at Interfaces” (EXC 306) to PH and KH.

ACKNOWLEDGMENTS

We thank Prof. Dr. Heinz Fehrenbach for continuous support.
regulated by c-Jun N-terminal kinase and p38 pathways. J Immunol. (2002) 169:3801–0. doi: 10.4049/jimmunol.169.7.3801
53. Vanadradjilou S, Feger F, Thiebmont N, Hamouda NB, Pleau J-M, Dy M, et al. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur J Immunol. (2003) 33:899–906. doi: 10.1002/eji.200323830
54. Kazama I, Saito K, Baba A, Mori T, Abe N, Endo Y, et al. Clarithromycin dose-dependently stabilizes rat peritoneal mast cells. Chemotherapy. (2016) 61:295–303. doi: 10.1159/000445023
55. Kulinski JM, Muñoz-Can R, Olivera A. Sphingosine-1-phosphate and other lipid mediators generated by mast cells as critical players in allergy and mast cell function. Eur J Pharmacol. (2016) 778:56–67. doi: 10.1016/j.ejphar.2015.02.058
56. Bankova LG, Lai J, Yoshimoto E, Boyce JA, AustenKF, Kakano Y, et al. Leukotriene E4 elicits respiratory epithelial cell mucin release through the G-protein–coupled receptor, GPR89. Proc Natl Acad Sci USA. (2016) 113:242-7. doi: 10.1073/pnas.1605957113
57. Maccarrone M, Dainese E, Oddi S. Intracellular trafficking of anandamide: new concepts for signaling. Trends Biochem Sci. (2013) 38:577–88. doi: 10.1016/j.tibs.2013.05.005
58. Li X, Hua T, Vemuri K, Jo HH, Wu Y, Wu L, et al. Crystal structure of the human cannabinoid receptor CB2. Cell. (2019) 176:645–7. doi: 10.1016/j.cell.2018.12.011
59. Bublin M, Eiwegger T, Breiteneder H. Do lipids influence the allergic sensitization process? J Allergy Clin Immunol. (2014) 134:521–9. doi: 10.1016/j.jaci.2014.04.015
60. del Moral MG, Martinez-Naves E. The role of lipids in development of allergic responses. Immun Netw. (2017) 17:133. doi: 10.4110/in.2017.17.3.133
61. Mattila P, Renkonen J, Toppila-Salmi S, Parviainen V, Joenväärä S, Alif-Tuomala S, et al. Time-series nasal epithelial transcriptomics during natural pollen exposure in healthy subjects and allergic patients. Allergy. (2010) 65:175–83. doi: 10.1111/j.1398-9995.2009.02181.x
62. Yang W, Wardlaw AJ, Bradding P. Attenuation of human lung mast cell degranulation by bronchial epithelium. Allergy. (2006) 61:569–75. doi: 10.1111/j.1398-9995.2006.01041.x
63. Basil MC, Levy BD. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol. (2015) 15:1631. doi: 10.1038/nri.2015.4
64. Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest. (2018) 128:2657–69. doi: 10.1172/JCI97943
65. Martin N, Ruddick A, Arthur GK, Wan H, Woodman I, Brightling CE, et al. Primary human airway epithelial cell-dependent inhibition of human lung mast cell degranulation. PLoS ONE. (2012) 7:e34554. doi: 10.1371/journal.pone.0034554
66. Gilles S, Behrendt H, Ring J, Träidal-Hoffmann C. The pollen enigma: modulation of the allergic immune response by non-allergenic, pollen-derived compounds. Curr Pharm Design. (2012) 18:2314–9. doi: 10.2174/1389450128016016040
67. Metz M, Gilles S, Geldmacher A, Behrendt H, Träidal-Hoffmann C, Maurer M. Evidence for non-allergic mast cell activation in pollen-associated inflammation. J Invest Dermatol. (2011) 131:987–90. doi: 10.1038/jid.2010.419
68. Chodaczek G, Baci A, Dharijaya N, Sur S, Hazra TK, Bödkh G. Ragweed pollen-mediated IgE-independent release of biogenic amines from mast cells via induction of mitochondrial dysfunction. Mol Immunol. (2009) 46:2505–14. doi: 10.1016/j.molimm.2009.05.023
70. Endo S, Hochman DJ, Mídooro-Horiuti T, Goldblum RM, Brooks EG. Mountain cedar pollen induces IgE-independent mast cell degranulation,
IL-4 production, and intracellular reactive oxygen species generation. Cell Immunol. (2011) 271:488–95. doi:10.1016/j.cellimm.2011.08.019

71. Sudre B, Vacheyrou M, Braun-Fahrlander C, Normand A-C, Waser M, Rebuffé S, et al. High levels of grass pollen inside European dairy farms: a role for the allergy-protective effects of environment? Allergy. (2009) 64:1068–73. doi:10.1111/j.1398-9995.2009.01958.x

72. Elieh Ali Komi D, Shafaghat E, Zwiener RD. Immunology of bee venom. Clin Rev Allergy Immunol. (2018) 54:386–96. doi:10.1007/s12016-017-8597-4

73. Bilò MB, Antonicelli L, Bonfazi F. Honeybee venom immunotherapy: certainties and pitfalls. Immunotherapy. (2012) 4:1153–66. doi:10.2217/imm.12.113

74. Müller UR. Insect venoms. In: Ring I, editor. Chemical Immunology and Allergy (Basel: KARGER). p. 141–156. doi:10.1159/000315948

75. Hosono H, Aoki J, Nagai Y, Bandoh K, Ishida M, Taguchi R, et al. Phosphatidyserine-specific phospholipase A1 stimulates histamine release from rat peritoneal mast cells through production of 2-acetyl-1-lysophosphatidylserine. J Biol Chem. (2001) 276:29964–70. doi:10.1074/jbc.M104597200

76. Murakami M, Hara N, Kudo I, Inoue K. Triggering of degranulation in mast cells by exogenous type II phospholipase A2. J Immunol. (1993) 151:5675.

77. Dudler T, Machado DC, Kolbe L, Annand RR, Rhodes N, Gelb MH, et al. Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite–derived mast cell activation, and allergenicity of bee venom phospholipase A2. J Immunol. (1995) 155:2605.

78. Palm NW, Rosenstein RK, Yu S, Schenten D, F horsheim E, Medzhitov R. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. Immunity. (2013) 39:976–85. doi:10.1016/j.immuni.2013.10.006

79. Bourgeois EA, Subramaniam S, Cheng T-Y, De Jong A, Layre E, Ly D, et al. Bee venom processes human skin lipids for presentation by CD1d. J Exp Med. (2015) 212:149–63. doi:10.1084/jem.20141505

80. Jarrett R, Salio M, Lloyd-Laverty A, Subramaniam S, Bourgeois E, Archer J, et al. Filaggrin inhibits generation of CD1a neolipid antigens by mast cells. J Cell Sci. (2016) 129:3266–73. doi:10.1242/jcs.166833

81. Dudeck A, Dudeck J, Scholten J, Petzold A, Surianarayanan S, Petzold A, et al. Mast cell specific gangliosides modulate FcεRI endocytosis in mast cells. J Cell Sci. (2015) 128:2021–32. doi:10.1242/jcs.174026

82. Martin S, Pombo I, Pontet P, David B, Arock M, Blank U. Bee venom processes human skin lipids for presentation by CD1a. J Biol Chem. (2001) 276:29964–70. doi:10.1074/jbc.M104597200

83. Kato N, Nakanishi M, Hirashima N. Transbilayer asymmetry of phospholipid scramblase activity of TMEM16 protein family members. FEBS Lett. (2006) 580:707–12. doi:10.1016/j.febslet.2006.03.055

84. Hammond GRV. Elimination of plasma membrane phosphatidylinositol (4,5)-bisphosphate is required for exocytosis from mast cells. J Cell Sci. (2006) 119:2084–94. doi:10.1242/jcs.02912

85. Martin S, Pombo I, Pontet P, David B, Arock M, Blank U. Immunologic stimulation of mast cells leads to the reversible exposure of phosphatidylserine in the absence of apoptosis. Int Arch Allergy Immunol. (2000) 123:249–58. doi:10.1159/000024451

86. Suzuki J, Fuji T, Imao T, Ishihara K, Kuba H, Nagata S. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J Biol Chem. (2013) 288:13305–16. doi:10.1074/jbc.M113.547937

87. Sui P, Draberová L, Draber P. Non-apoptotic phosphatidylserine externalization Induced by engagement of glycosylphosphatidylinositol-anchored proteins. J Biol Chem. (2007) 282:10487–97. doi:10.1074/jbc.M611090200

88. Martin TW, Lagouff D. Interactions of lysophospholipids and mast cells. Nature. (1979) 279:250–2. doi:10.1038/279250a0

89. Nakahashi-Oda C, Tahara-Hanoaka S, Shoji M, Okoshi Y, Nakano-Yokomizo T, Ohkohchi N, et al. Apoptotic cell suppresses mast cell inflammatory responses via the CD300a immunoceptor. J Exp Med. (2012) 209:1493–503. doi:10.1084/jem.20120096

90. Guo N, Her GR, Reinhold VN, Brennan MJ, Siragianin RP, Ginsburg V. Monoclonal antibody AA4, which inhibits binding of IgE to high affinity receptors on rat basophilic leukemia cells, binds to novel G-galactosyl derivatives of ganglioside GDβ1. J Biol Chem. (1989)113267–72.
autoantigen, is externalized during neutrophil apoptosis: evidence for a functional association with phospholipid scramblase 1 and interference with macrophage phagocytosis. *Blood.* (2007) 110:4086–95. doi: 10.1182/blood-2007-03-080457

112. Huang Y, Zhao Q, Zhou C-X, Gu Z-M, Li D, Xu H-Z, et al. Antileukemic roles of human phospholipid scramblase 1 gene, evidence from inducible PLSCR1-expressing leukemic cells. *Oncogene.* (2006) 25:6618–27. doi: 10.1038/sj.onc.1209677

113. Ben-Efraim I, Zhou Q, Wiedmer T, Gerace L, Sims PJ. Phospholipid scramblase 1 is imported into the nucleus by a receptor-mediated pathway and interacts with DNA. *Biochemistry.* (2004) 43:3518–26. doi: 10.1021/bi0356911

114. Zhou Q, Ben-Efraim I, Bigcas J-L, Junqueira D, Wiedmer T, Sims PJ. Phospholipid scramblase 1 binds to the promoter region of the inositol 1,4,5-triphosphate receptor type 1 gene to enhance its expression. *J Biol Chem.* (2005) 280:35962–8. doi: 10.1074/jbc.M504821200

115. Sun J, Nanjundan M, Pike LJ, Wiedmer T, Sims PJ. Plasma membrane phospholipid scramblase 1 is enriched in lipid rafts and interacts with the epidermal growth factor receptor. *Biochemistry.* (2002) 41:6338–45. doi: 10.1021/bi025610l

116. Nanjundan M, Sun J, Zhao J, Zhou Q, Sims PJ, Wiedmer T. Plasma membrane phospholipid scramblase 1 promotes EGF-dependent activation of c-Src through the epidermal growth factor receptor. *J Biol Chem.* (2003) 278:37413–8. doi: 10.1074/jbc.M308182200

117. Pastorelli C, Veiga J, Charlez N, Vognier E, Moussu H, Monteiro RC, et al. Phospholipid scramblase, a new effector of FcεRI signaling in mast cells. *Mol Immunol.* (2002) 38:1235–8. doi: 10.1016/S0161-5890(02)00069-X

118. Kassas A, Moura JC, Yamashita Y, Scheffel J, Guérin-Marchand C, Blank U, et al. Regulation of the tyrosine phosphorylation of phospholipid scramblase 1 in mast cells that are stimulated through the high-affinity IgE receptor. *PLoS ONE.* (2014) 9:e109800. doi: 10.1371/journal.pone.0109800

119. Kassas-Guediri A, Coudrat J, Pacreau E, Launay P, Monteiro RC, Blank U, et al. Phospholipid scramblase 1 amplifies anaphylactic reactions in vivo. *PLoS ONE.* (2017) 12:e0173815. doi: 10.1371/journal.pone.0173815

120. Dichilberger A, Kovanen PT, Schneider WJ. Mast cells: from lipid droplets to lipid mediators. *Clini Sci.* (2013) 125:121–30. doi: 10.1042/CS2013012

121. Talekder AH, Bao M, Kim TW, Facchinetti V, Hanabuchi S, Bover L, et al. Phospholipid Scramblase 1 regulates Toll-like receptor 9-mediated type 1 interferon production in plasmacytoid dendritic cells. *Cell Res.* (2012) 22:1129–39. doi: 10.1038/cr.2012.45

122. Tsai M-H, Lee C-K. STAT3 cooperates with phospholipid scramblase 2 to suppress type I interferon response. *Front Immunol.* (2018) 9:1886. doi: 10.3389/fimmu.2018.01886

123. Mutch DM, O’Malie G, Wikoff WR, Wiedmer T, Sims PJ, Siuzdak G. Mobilization of pro-inflammatory lipids in obese Plscr3-deficient mice. *Genome Biol.* (2007) 8:R38. doi: 10.1186/gb-2007-8-3-r38

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The handling Editor declared a shared affiliation, though no other collaboration, with the authors PH and ZO.

Copyright © 2019 Hagemann, Nsiah-Dosu, Hundt, Hartmann and Orinska. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.