Museum specimens: An overlooked and valuable material for conservation genetics

Naoyuki Nakahama1,2

1Institute of Natural and Environmental Sciences, University of Hyogo, Sanda City, Japan
2The Museum of Nature and Human Activities, Hyogo, Sanda City, Japan

Abstract
Museum specimens include genetic information from when they were collected. This historical information, which is very difficult to ascertain from samples collected currently, could be a valuable material for use in conservation genetics. However, the genetic analysis of museum specimens is technically difficult because of DNA fragmentation and the deamination of cytosine to uracil. In recent years, various methods have been developed for the genetic analysis of museum specimens, such as data analysis techniques including next-generation sequencing. The development of approaches that extract historical genetic information from museum specimens is expected to provide a new perspective on conservation genetics. This review focuses on the availability of museum specimens as genetic resources for conservation genetics. Some case studies are introduced, and perspectives on the future utility of conservation genetic studies using museum specimens are discussed. Moreover, recommended genetic analysis methods and important points for the usage of museum specimens are presented. This review provides a strong case for increasing the usage of museum specimens in conservation genetics studies in the future.

KEYWORDS
conservation genetics, genetic diversity, museum, next-generation sequencing, specimen DNA

1 INTRODUCTION

Global biodiversity has declined rapidly since the Industrial Revolution because of human-induced environmental changes (Butchart et al., 2010; IUCN, 2016; Pimm et al., 2014; Sala et al., 2000). It is widely predicted that this decline in biodiversity will continue in the future (Pereira et al., 2010; Sala et al., 2000). Conservation studies of endangered species help to elucidate the mechanisms involved in population declines. Therefore, they must be undertaken before conservation strategies can be developed for the target species (Frankham, 2009). Genetic information is essential for conservation studies of endangered species to prevent inbreeding depression and genetic disturbance (Frankham, 2009). The effects of inbreeding depression, such as a decline in fitness, are generally caused by decreased genetic diversity (Leimu, Mutikainen, Koricheva, & Fischer, 2006; Mattila et al., 2012; Saccheri et al., 1998). Using the Glanville fritillary butterfly, Melitaea cinxia (Nymphalidae), Mattila et al. (2012) demonstrated that populations with low genetic diversity were likely to experience inbreeding depression.
control genetic diversity exhibited reduced fitness-related traits, including reductions in adult weight, flight metabolic rate, and egg viability. Genetic disturbance, in turn, causes the loss of the original spatial genetic structure of a species (Frankham, 2009; Mellink, Arntzen, van Delft, & Wielstra, 2015; Pierpaoli et al., 2003). Genetic disturbance might also carry a risk of outbreeding depression, which is a decline in fitness caused by hybridization between genetically divergent individuals (Frankham, 2009; Tallmon, Luikart, & Waples, 2004). Therefore, considering genetic information in the construction of conservation units is essential to prevent inbreeding and outbreeding depression caused by genetic disturbance. The estimation of genetic diversity and structure contributes to our understanding of the mechanisms underlying the decline or extinction of endangered species. For example, habitat fragmentation or a reduction in habitat area has adverse effects on the genetic diversity and structure of target species (Honnay, Adriaens, Coart, Jacquemyn, & Roldan-Ruiz, 2007; McDermid, Nienhuis, Al-Shamliah, Haxton, & Wilson, 2014; Nakahama, Uchida, Ushimaru, & Isagi, 2018; Smitz et al., 2014; Vandergast, Bohonak, Weissman, & Fisher, 2007). Furthermore, changes in habitat quality caused by management methods and natural disturbances also affect genetic diversity and structure (Dacasa Rüdinger, Glaeser, Hebel, & Dounavi, 2008; Marchi et al., 2013; Nakahama, Uchida, Ushimaru, & Isagi, 2016).

In attempting to conserve an endangered species that has experienced a rapid decline in recent years, genetic analysis using only extant individuals might not be sufficient to elucidate recent shifts in genetic characteristics. Genetic analysis using extant individuals cannot estimate the original genetic structure of a species before a reduction in population size because severe bottlenecks often change the allele frequencies of endangered populations (Harper, Maclean, & Goulson, 2006; Kekkonen, Hanski, Jensen, Väisänen, & Brommer, 2011; Nakahama & Isagi, 2018). Moreover, identifying the mechanisms of decline through genetic analysis of remnant individuals may be very difficult if both the area and quality of the habitat, as well as genetic diversity, are already diminished in all remnant populations of a critically endangered species.

To address this problem, historic genetic analysis, which is the analysis of specimens collected in the past, can be a valuable tool for the study and application of conservation genetics in endangered species (Wandeler, Hoeck, & Keller, 2007). Historic genetic information can reveal the genetic diversity and structure of a species before the reduction of population numbers through human activities. Harper et al. (2006) showed that the allele frequencies of the Adonis blue butterfly, Polyommatus bellargus (Lycaenidae), populations in the United Kingdom changed from 1896 to 1998–1999 because of genetic drift, local extinction, and recolonization. Cousseau, Husemann, Foppen, Vangestel, and Lens (2016) and Kekkonen et al. (2011) also demonstrated that the genetic differentiation of the house sparrow in Europe increased because of a decline in its population size. If all remnant populations of a target species have experienced a severe bottleneck, the genetic information of the populations before human disturbance, in addition to that of extant populations, could be used to construct more accurate and suitable conservation strategies. Even if a species’ habitat is diminished and genetic diversity has declined in all extant populations, historic information about habitat and genetic characteristics could enable us to identify the factors and mechanisms responsible for the decline. By comparing pre- and post-decline populations, we can estimate the effects of changes in environmental factors on temporal changes in genetic diversity and structure (Nakahama et al., 2018). However, genetic analysis of specimens collected in the past is generally much more difficult than is the analysis of fresh samples (Wandeler et al., 2007; Weiß et al., 2016). This is because DNA molecules fragment over time, which reduces the rate of successful genetic analysis of older specimen samples (Strange, Knoblett, & Griswold, 2009; Tin, Economo, & Mikheyev, 2014; Wandeler et al., 2007; Watts, Thompson, Allen, & Kemp, 2007). Furthermore, in the case of ancient DNA, including specimen samples, the frequency of substitutions from cytosine (C) to thymine (T) is increased in the terminal regions of the DNA fragments (Briggs et al., 2007; Pääbo et al., 2004; Sawyer, Krause, Guschanski, Savolainen, & Pääbo, 2012; Weiß et al., 2016). Moreover, the collection of a sufficient number of specimen samples is more difficult for historic samples than it is for current samples because 10–20 samples are needed to conduct population genetic analysis.

Another challenge to using museum specimens for genetic studies is obtaining permission from museum curators because some museums do not permit the destruction of material (Freedman, van Dorp, & Brace, 2018). Recently, various techniques have been established to conduct genetic analysis using museum specimens, and the number of conservation genetic studies using such specimens has been increasing (Nakahama et al., 2018; Suchan et al., 2016; Tin et al., 2014; Wandeler et al., 2007). For the purpose of this review, museum specimens are defined as specimens deposited in museums, universities, botanical gardens, insectariums, and personal homes. This review focuses on the potential use of museum specimens for conservation genetics, specifically addressing these three points: (a) contributions of museum specimens to conservation genetic studies, (b) genetic analysis methods and important points for the
usage of museum specimens, and (c) perspectives on future conservation genetic studies using museum specimens.

2 | CONTRIBUTIONS OF MUSEUM SPECIMENS TO CONSERVATION GENETICS

The advantage of using museum specimens is that we can access information from when the specimens were collected. This historical information has four main uses (Figure 1). First, we can establish the genetic relationships of extinct species or populations (Mikheyev et al., 2017; Waku et al., 2016). These phylogenetic studies would inform the development of a conservation strategy, such as the construction of conservation units, because they provide information about past genetic relationships when the influence of human activity was low. Using museum specimens, Waku et al. (2016) evaluated the genetic relationships between the extinct Japanese otter (*Lutra lutra nippon*) and other related species based on the mitochondrial genome. Such studies could contribute to assessing the genetic validity of reintroducing extinct species and populations, as well as the construction of phylogenetic trees including extinct species. They would also aid molecular identification when a species thought to be extinct is rediscovered. Mikheyev et al. (2017) rediscovered the Lord Howe Island stick insect (*Dryococelus australis*) using molecular analyses to compare the mitogenomes of museum specimens and fresh samples collected on Ball’s Pyramid. Other genetic studies, such as phylogenetics, have often used museum specimens as a ready means to sample target taxa (Ohshima & Yoshizawa, 2006; Waku et al., 2016).

Second, estimation of the temporal transition of genetic diversity in relation to effective population sizes would contribute to assessing the extinction risk of a species and indicate the mechanism of decline (Fountain et al., 2016; Nakahama et al., 2018). Species that show few changes can be considered to have a low conservation priority because their genetic diversity resembles that of historical populations. However, we should prioritize the conservation of species whose genetic diversity and effective population sizes have extensively decreased in recent years. It is possible to estimate the environmental factors that affect genetic diversity and effective population size using information about the temporal changes in the spatial distribution of genetic diversity. Nakahama et al. (2018) showed that recent declines in the grassland

FIGURE 1 Advantages of obtaining historical genetic information from museum specimens. We can estimate the following four points; (a) the phylogenetic status of extinct species, (b) temporal transition of genetic diversity of endangered species, (c) conservation units of endangered species, and (d) decrease or adaptation mechanisms to environmental changes based on genomic information [Color figure can be viewed at wileyonlinelibrary.com]
area have adverse effects on genetic diversity and effective population sizes in the endangered grassland butterfly, *Melataea ambigua*. These approaches would be useful to identify the factors that lead to reductions in genetic diversity and effective population sizes for critically endangered species, which do not currently have healthy populations. The number of insect museum specimens is much higher than that of other taxa, making insects more suitable for population genetic analysis using museum specimens.

Third, the use of museum specimens can contribute to the construction of conservation units based on spatial genetic structure (Kekkonen et al., 2011; Nakahama & Isagi, 2018). The spatial genetic structure of some endangered species has been shown to change rapidly because of genetic drift, which increases genetic differentiation, or decreased numbers of migrating individuals because of human disturbances (Kekkonen et al., 2011; Nakahama & Isagi, 2018). Following convention, conservation units have often been constructed using only the genetic information of the current sample (e.g., Carlson et al., 2016). However, the genetic diversity, allele frequency, and spatial genetic structure of critically endangered species, which have experienced extreme bottlenecks in recent decades, might have changed (Fountain et al., 2016; Kekkonen et al., 2011; Nakahama & Isagi, 2018). Estimation of target species genetic information before severe reductions in population sizes, using museum specimens, would enable the construction of more accurate conservation units.

Last, museum specimens are also useful for conservation genomics, including genomic and epi-genomic analyses. In general, inbreeding depression of in-situ or ex-situ conservation individuals should be avoided (Frankham, 2009). In the case of individuals that are reared in ex-situ conservation facilities, adaptation to the rearing environment should also be prevented because it could lead to reduced fitness in the wild (Frankham, 2009). Genomic and epi-genomic analyses using museum specimens could be used to elucidate the mechanisms behind these problems, as temporal difference can be detected using present and past samples. Gelabert et al. (2020) and Irestedt et al. (2019) determined the whole genomes of extinct species and discussed their processes of extinction on the basis of whole genome data. Moreover, Rubi, Knowles, and Dantzer (2020) demonstrated the utility of museum specimens for conducting epi-genomic analyses. Although these previous studies did not focus on conservation genomics, genomic and epi-genomic analyses have the potential to contribute to breakthroughs in conservation genomics.

3 Genetic Analysis Methods Using Museum Specimens

The methods suggested for the genetic analysis of museum specimens using conventional sequencing are Sanger sequencing and microsatellite analysis of short-length sequences (Table 1). The target of these analyses is usually short-length sequences of approximately 50–400 bp in length. Thus, Sanger sequences from specimen samples have less information than do those from fresh samples. Although universal primers for Sanger sequencing are used for specimen samples (Meusnier et al., 2008), unique primers are often designed for the analysis of short specimen sequences when using both methods (Hausmann et al., 2016; Ohshima & Yoshizawa, 2006). For microsatellite analysis, the genetic information obtained does not change regardless of the length of the DNA sequence used. Therefore, it is recommended that markers with shorter amplification lengths are developed because they tend to increase the success rate of analysis (Nakahama & Isagi, 2017; Nakahama, Izuno, Arima, & Isagi, 2015).

Through the recent development of next-generation sequencing technology, the number of genetic analyses has increased dramatically. In the case of determining genomic information of target or related species, sequencing or skimming of the whole, mitochondrial, or chloroplast genome could be performed using museum specimens (Cridland et al., 2018; Mikheyev et al., 2017; Waku et al., 2016; Zeng et al., 2018). Although the per-sample cost of analysis using this approach is high, these analyses are useful to determine the phylogenetic position of extinct species or populations. For population genetics with tens to hundreds of samples, more economical and efficient methods for detecting genome-wide single-nucleotide polymorphisms (SNPs), including the multiplexed ISSR genotyping by sequence (MIG-seq) and the restriction site-associated DNA sequencing (RAD-seq), have been developed (Miller, Dunham, Amores, Cresko, & Johnson, 2007; Suyama & Matsuki, 2015). Iwasaki et al. (2019) showed that MIG-seq could produce efficient reads for collecting SNPs from plant specimen samples collected at least 30–40 years earlier. Normal RAD-seq is an unsuitable method for sequencing museum specimen DNA because this method requires fresh and undegraded DNA (Miller et al., 2007). Tin et al. (2014) developed improved RAD-seq based methods, which were successful at genotyping insect specimen samples collected 30–100 years earlier. Moreover, these methods do not require genome information about the target species. Therefore, these methods are suitable for the study and application of conservation genomics.
genetics in endangered species, which are mostly non-model species.

Target capture is a mainstream analysis tool that uses specimen DNA (Bailey et al., 2015; Bi et al., 2013; Jones & Good, 2016; McCormack et al., 2016; Van Dam et al., 2017). To date, study species using this approach have been limited to organisms whose related species' genome or probe markers have been determined because this method requires the availability of probe sequences to conduct analysis (Bailey et al., 2015; Perry, Marioni, Melsted, & Gilad, 2010; Wang et al., 2010). Recently, ultra-conserved elements (UCEs), which are highly conserved and abundant nuclear sequences distributed throughout the genomes of most organisms, have been highlighted as potential universal probes for target capture (McCormack et al., 2016; Van Dam et al., 2017). Moreover, cost-effective, new target capture methods, which do not require probe sequences, have also been developed (Knyshov et al., 2019; Linck et al., 2017; Peñalba et al., 2014; Suchan et al., 2016). Although these techniques are mainly used in evolutionary biology and the study of molecular phylogenies (Bailey et al., 2015; Jones & Good, 2016; Van Dam et al., 2017), they could also contribute to conservation genetics.

4 | POINTS OF ATTENTION FOR MUSEUM SPECIMEN ANALYSIS

Conducting genetic analyses using specimen samples is more complicated than using fresh samples because of specimen-specific issues related to DNA degradation. Below, we outline some factors that will help to achieve successful sequencing and genetic analyses of museum samples.

Collection bias of museum samples should be avoided for genetic analysis. For some organisms, such as butterfly species, collectors may have selected individuals or

Analysis methods	Sequencer	Genome information	Specific marker	References
Sanger sequencing	Sanger sequencer	Unnecessary	Necessary/unnecessary	Frey et al. (2017); Janecka et al. (2014); Ohshima and Yoshizawa (2006); Satoh, Shutoh, Kurosa, Hayasaka, and Kaneko (2018); Xenikoudakis et al. (2015)
Microsatellite		Unnecessary	Necessary	Habel et al. (2014); Harper et al. (2006); Hoeck, Bollmer, Parker, and Keller (2010); Janecka et al. (2014); Kekkonen et al. (2011); Mizuki, Yamasaki, Kakutani, and Isagi (2010); Nakahama et al. (2018); Nakahama and Isagi (2018); Xenikoudakis et al. (2015)
Hybridization capture using RAD probes	Next-generation sequencer	Unnecessary	Unnecessary	Linck, Hanna, Sellas, and Dumbacher (2017); Suchan et al. (2016)
RAD-tag analysis		Unnecessary	Unnecessary	Tin et al. (2014)
MIG-seq		Unnecessary	Unnecessary	Iwasaki et al. (2019)
Target capture		Unnecessary	Necessary/unnecessary	Bailey et al. (2015); Blaimer, Lloyd, Guillory, and Brady (2016); Knyshov, Gordon, and Weirauch (2019); McCormack, Tsai, and Faircloth (2016); Van Dam et al. (2017)
Genome skimming		Necessary	Unnecessary	Hughey, Boo, and Boo (2016); Mikheyev et al. (2017); Waku et al. (2016); Zeng et al. (2018)
Amplicon sequencing		Unnecessary	Necessary/unnecessary	Forin et al. (2018); Haran et al. (2018)
Genome resequencing		Necessary	Unnecessary	Cridland, Ramirez, Dean, Sciligo, and Tsutsui (2018); Gelabert et al. (2020); Hykin, Bi, and McGuire (2015)
taxa without the full range of morphological characteristics (e.g., aberrant forms) because of their rarity (Yago, 2017). Therefore, there is the risk that a collection may not fully reflect the actual population. Although collection bias may not be a serious problem for genetic analysis using neutral loci, samples for genetic analysis should be preferentially selected from those collections with little morphological bias.

Another important consideration for using museum specimens in genetic studies is to ensure that specimen transport, preservation, and handling before and after museum deposition is performed in such a way as to avoid or minimize the risk of DNA fragmentation. This is important because DNA fragmentation makes genetic analyses more difficult. Numerous actions can increase the degradation of DNA. First, exposure to steam or water, which is used to soften museum specimens, promotes DNA degradation in dried and pinned insect specimens (Nasu, Hirowatari, & Yoshiyasum, 2016). For successful genetic analysis, insect specimens that have not undergone a softening treatment should be used for analyses. Second, thermal drying treatments, higher than 60°C, which are used to soften museum specimens, promotes DNA degradation in dried and pinned insect specimens (Nasu, Hirowatari, & Yoshiyasum, 2016). For successful genetic analysis, insect specimens that have not undergone a softening treatment should be used for analyses. Second, thermal drying treatments, higher than 60°C, which are used to dry specimens also present risks for DNA degradation in dried plant specimens (Särkinen, Staats, Richardson, Cowan, & Bakker, 2012). Therefore, it is important to moderate temperature when drying specimens. Third, formalin fixation of immersed specimens leads to a high frequency of sequence alteration (Williams et al., 1999). It is difficult to achieve fixation without formalin, and it is a standard method. Therefore, small amounts of tissues should be cut before fixation and preserved in 99% ethanol to use for DNA extraction and conducting genetic analyses. Some fumigants pose risks of further DNA fragmentation in museum specimens. For example, fumigation using dichlorvos, methyl bromide, ethylene oxide, and propylene oxide impedes the extraction and amplification of DNA from museum collections (Espeland et al., 2010; Kigawa, Nochide, Kimura, & Miura, 2003). However, 60% carbon dioxide treatment, thermal treatments with low temperatures (−20°C), and fumigation using methyl iodide, naphthalene, paradichlorobenzene, and sulfuryl fluoride do not negatively affect DNA molecules (Espeland et al., 2010; Kigawa et al., 2003). Hence, these treatments or fumigants can be used to control pests and molds. For dried insect specimens, a method has been developed for preparing samples with well-preserved DNA (Nakahama, Isagi, & Ito, 2019). Moreover, for other taxonomic groups, methods for the preparation of specimens with well-preserved DNA over a long period are expected in the future.

It is important to use specimens stored under conditions ideal for DNA preservation. Nakahama and Isagi (2017) reported that DNA extracted from moldy, dry specimens was severely degraded. Specimens that are degraded in appearance because of mold or putrefaction may also have degraded DNA, so this is an important factor in specimen selection. It may even be warranted to interview the curator about specimen preservation conditions in the museum as part of the selection process. Further, specimens that have undergone fumigation using dichlorvos, methyl bromide, ethylene oxide, and propylene oxide or have been exposed to steam or water as part of their processing should be avoided for genetic studies as these treatments degrade DNA.

Large amounts of DNA should be extracted to increase the chances of success in genetic analyses of museum specimens. For DNA extraction, proteinase K treatments, which remain active for two or three nights, and extended centrifugation for ethanol precipitation (30 min) can increase the amount of DNA extracted (Nakahama & Isagi, 2017). Cota-Sánchez, Remarchuk, and Ubayasena (2006) and Gütaker, Reiter, Furtwängler, Schuenemann, and Burbano (2017) also developed a DNA extraction protocol for plant specimens. For PCR, increasing the cycle number or decreasing the melting temperature may assist in the amplification of DNA from museum specimens (Nakahama & Isagi, 2017; Ohshima & Yoshizawa, 2006). However, increasing the number of cycles and decreasing the melting temperature might also increase the frequency of non-specific amplification (Wandel et al., 2007).

The most serious problem for genetic analysis using museum specimens is the risk of genotyping error. DNA fragmentations of museum specimen samples often leads to allelic dropout (Wandel et al., 2007). These problems are particularly noticeable in PCR-based analysis, such as microsatellite analysis and Sanger sequencing. This is because conducting PCR on fragmented DNA samples poses a risk of stochastic non-amplification of one of the two alleles, which is known as allelic dropout. Moreover, substitutions from cytosine to thymine (i.e., deamination) accumulate at the end of DNA fragments as time passes after specimen preparation (Sawyer et al., 2012; Weiß et al., 2016). Several approaches have been proposed to achieve higher reliability of genotyping. First, the use of NEBNext FFPE DNA Repair Mix (New England Bio Labs) is recommended after DNA extraction (Sproul & Maddison, 2017). This kit repairs degraded DNA fragments and deamination. Second, in PCR-based analysis, repeated and independent PCR amplifications are useful for determining the presence or absence of genotyping errors (Nakahama et al., 2018; Wandel et al., 2007). Third, the ends of DNA fragments should be removed because these regions have a risk of deamination (Sawyer et al., 2012; Wandel et al., 2007; Weiß et al., 2016).
Together, these approaches could improve the reliability of genetic analyses and make them more robust.

Non-destructive use is recommended for genetic analysis because specimens are very valuable. Non-destructive DNA sampling methods from museum specimens have been developed for many taxonomic groups, including vertebrates (Mundy, Unitt, & Woodruff, 1997; Rohland, Siedel, & Hofreiter, 2004), insects (Andersen & Mills, 2012; Gilbert, Moore, Melchior, & Worobey, 2007; Porco, Rougerie, Deharveng, & Hebert, 2010; Tin et al., 2014), freshwater invertebrates (Carew, Coleman, & Hoffmann, 2018), and plants (Sugita et al., 2020) (Table 2). However, it may be necessary to use specimens destructively, depending on the taxonomic group and the amount of DNA required for analysis. In that case, it may be necessary to consider reducing the amount of the specimen that is destroyed or carefully consulting with a curator (Shiga, 2013).

5 | CONCLUSION AND PERSPECTIVES FOR FUTURE USE

In this paper, I reviewed the methods, potential, and notable points regarding conducting conservation genetic studies using museum specimens. Museum curators and scientists will be able to highlight the value of museum specimens by increasing the application of genetic analysis research using museum specimens in the future. However, unfortunately and understandably, the number of studies using museum specimen samples is much lower than those using only fresh samples (Wandeler et al., 2007). Here, I propose several future directions to utilize specimen DNA samples for conservation genetics. First, it is important to reduce the start-up hurdles by generalizing the use of low-cost analysis methods. Although many analysis methods have been recently developed that use next-generation sequencing, most of these methods are expensive and require a substantial amount of work. Moreover, some methods can only process a few organisms that are determined by their whole or organelle genomes because these methods require genomic information (Cridland et al., 2018; Mikheyev et al., 2017). However, MIG-seq, which rapidly produces genome-wide single-nucleotide polymorphism genotyping data at a low cost, could be used to analyze non-model organisms (Suyama & Matsuki, 2015). Iwasaki et al. (2019) reported that successful analyses using plant specimen samples collected at least 30 years before. It is essential to clarify the age of museum specimens that can be analyzed in each taxonomic group because few studies are using MIG-seq for museum specimen samples. Furthermore, cost-effective target capture methods have also been developed (Knyshev et al., 2019; Linck et al., 2017; Suchan et al., 2016). These methods do not need genomic information for the genetic analysis of museum specimens. In the future, new low-cost and time-efficient analysis methods could also be developed.

Table 2 Non-destructive DNA extraction methods used in each taxonomic group

Taxonomic group	Specimens	Methods	References	
Chordata	Aves	Stuffed bird	Used from skin of feet and feathers with attached skin	Mundy et al. (1997)
Mammalia	Bone, tooth, and skin samples	Incubated in extraction buffers	Rohland et al. (2004)	
Arthropod	Arthropod	Immersed body with 80% ethanol	Extracted in extraction buffer	Rowley et al. (2007)
Entognatha	Preparation specimen for microscope	Immersed in lysis buffer	Porco et al. (2010)	
Insecta	Dried body	Distilled water and sonicated	Hunter, Goodall, Walsh, Owen, and Day (2008)	
	Dried body	Extracted in extraction buffer	Andersen and Mills (2012); Gilbert et al. (2007); Tin et al. (2014)	
	Frozen, immersed body with 70% ethanol, and dried	Extracted in extraction buffer	Santos, Ribeiro, Cabral, and Speranca (2018)	
Other animals	Freshwater invertebrates	Immersed body with 70% ethanol	Extracted in extraction buffer	Carew et al. (2018)
Plantae	Plantae, Polypodiopsida, eudicots	Dried leaf	Placed extraction buffer on the leaf	Sugita et al. (2020)
Second, utilizing genomic information is useful for understanding the temporal transition of mutations or methylations of functional genes (Gelabert et al., 2020; Irestedt et al., 2019; Rubi et al., 2020). This knowledge is also important for informing the conservation of endangered species. Genomic and epi-genomic information contributes to detailed demographic analysis and the identification of selected loci because of environmental changes. However, these analyses require genomic information and their target species are only model organisms for which the entire genomes are known. However, future cost reductions in determining whole genomes could reduce the hurdles and allow for the application of this approach to the study of conservation genomics.

Last, global guidelines for the use of specimens should also be constructed. If the frequency of specimen use increases, it is expected that the load on the curator would increase. Moreover, researchers who are not familiar with the uses of museum specimens could damage specimens. Zimkus and Ford (2014) proposed guidelines on the usage of museum specimens for genetic analysis. For instance, the integration and sharing of results including successes and failures of museum specimen analyses would provide important information for both researchers and curators as the condition of preserved specimens varies. Thus, the determination and standardization of more suitable genetic preservation methods are warranted to promote genetic analysis using museum specimens in the future.

There is no doubt that museum specimen DNA could be a valuable material for understanding biodiversity conservation in the future. Indeed, increasing the use of museum specimens might provide a new perspective on conservation genetics.

ACKNOWLEDGMENTS
This review is based on a presentation delivered at the seventh Suzuki Award at the 66th Annual Meeting of the Ecological Society of Japan, March 2019. I would like to thank Prof. Yuji Isagi, Prof. Motomi Ito, Prof. Atushi Ushimaru, members of the Laboratory of Forest Biology in Kyoto University, members of the Laboratory of Plant Evolution and Biodiversity in The University of Tokyo for various types of support in my research. I would also like to thank all the collaborating researchers, amateur collectors, and nature conservationists. This work was supported by JSPS KAKENHI grant numbers 15J00908, 17J00965, and 19K15856.

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

ORCID
Naoyuki Nakahama https://orcid.org/0000-0003-3106-8289

REFERENCES
Andersen, J. C., & Mills, N. J. (2012). DNA extraction from museum specimens of parasitic Hymenoptera. PLoS One, 7(10), e45549.
Bailey, S. E., Mao, X., Struebig, M., Tsagkogeorga, G., Csorba, G., Heaney, L. R., ... Rossiter, S. J. (2015). The use of museum samples for large-scale sequence capture: A study of congeneric horseshoe bats (family Rhinolophidae). Biological Journal of the Linnean Society, 117(1), 58–70.
Bi, K., Linderoth, T., Vanderpool, D., Good, J. M., Nielsen, R., & Moritz, C. (2013). Unlocking the vault: Next-generation museum population genomics. Molecular Ecology, 22(24), 6018–6032.
Blaimer, B. B., Lloyd, M. W., Guillory, W. X., & Brady, S. G. (2016). Sequence capture and phylogenetic utility of genomic ultra-conserved elements obtained from pinned insect specimens. PLoS One, 11(8), e0161531.
Briggs, A. W., Stenzel, U., Johnson, P. L., Green, R. E., Kelso, J., Prüfer, K., ... Pääbo, S. (2007). Patterns of damage in genomic DNA sequences from a Neandertal. Proceedings of the National Academy of Sciences of the United States of America, 104, 14616–14621.
Butchart, S. H., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J. P., Almond, R. E., ... Carpenter, K. E. (2010). Global biodiversity: Indicators of recent declines. Science, 328 (5982), 1164–1168.
Carew, M. E., Coleman, R. A., & Hoffmann, A. A. (2018). Can non-destructive DNA extraction of bulk invertebrate samples be used for metabarcoding? PeerJ, 6, e4980.
Carlson, E., MacDonald, A. J., Adamack, A., McGrath, T., Doucette, L. I., Osborne, W. S., ... Sarre, S. D. (2016). How many conservation units are there for the endangered grassland earless dragons? Conservation Genetics, 17(4), 761–774.
Cota-Sánchez, J. H., Remarchuk, K., & Ubayasena, K. (2006). Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Molecular Biology Reporter, 24(2), 161.
Cousseau, L., Husemann, M., Poppen, R., Vangestel, C., & Lens, L. (2016). A longitudinal genetic survey identifies temporal shifts in the population structure of Dutch house sparrows. Heredity, 117(4), 259–267.
Cridland, J. M., Ramirez, S. R., Dean, C. A., Sciligo, A., & Tsutsui, N. D. (2018). Genome sequencing of museum specimens reveals rapid changes in the genetic composition of honey bees in California. Genome Biology and Evolution, 10(2), 458–472.
Dacasa Rüdinger, M. C., Glaeser, J., Hebel, I., & Dounavi, A. (2008). Genetic structures of common ash (Fraxinus excelsior) populations in Germany at sites differing in water regimes. Canadian Journal of Forest Research, 38(5), 1199–1210.
Espeland, M., Irestedt, M., Johanson, K. A., Åkerlund, M., Bergh, J. E., & Källersjö, M. (2010). Dichlorvos exposure impedes extraction and amplification of DNA from insects in museum collections. Frontiers in Zoology, 7(1), 2.
Forin, N., Nigris, S., Voyron, S., Girlanda, M., Vizzini, A., Casadoro, G., & Baldan, B. (2018). Next generation sequencing
of ancient fungal specimens: The case of the Saccardo Mycological Herbarium. *Frontiers in Ecology and Evolution*, 6, 129.

Fountain, T., Nieminen, M., Sirén, J., Wong, S. C., Lehtonen, R., & Hanski, I. (2016). Predictable allele frequency changes due to habitat fragmentation in the Glenville firetale butterfly. *Proceedings of the National Academy of Sciences of the United States of America*, 113(10), 2678–2683.

Frankham, R. (2009). *Introduction to conservation genetics* (Second ed.). Cambridge: Cambridge university press.

Freedman, J., van Dorp, L. B., & Brace, S. (2018). Destructive sampling natural science collections: An overview for museum professionals and researchers. *Journal of Natural Science Collections*, 5, 21–34.

Frey, D., Reisch, C., Narduzzi-Wicht, B., Baur, E. M., Cornejo, C., Alessi, M., & Schoenenberger, N. (2017). Historical museum specimens reveal the loss of genetic and morphological diversity due to local extinctions in the endangered water chestnut *Trapa natans* L. (Lycaceae) from the southern Alpine lake area. *Botanical Journal of the Linnean Society*, 185(3), 343–358.

Gelabert, P., Sandoval-Velasco, M., Herder, G. L., Maclean, N., & Goulson, D. (2006). Analysis of habitat fragmentation in the Glanville fritillary butterfly. *Transactions of the Royal Society B: Biological Sciences*, 267(1137), 1127–1138.

Hanski, I. (2016). Predictable allele frequency changes due to habitat size, fitness and genetic variation? *Heredity*, 113(3), 205–214.

Haran, J., Delvare, G., Vayssieres, J. F., Benoit, L., Cruaud, P., Rasplus, J. Y., & Cruaud, A. (2018). Increasing the utility of barcode databases through high-throughput sequencing of amplicons from dried museum specimens, an example on parasitic hymenoptera (Braconidae). *Biological Control*, 122, 93–100.

Harper, G. L., Maclean, N., & Goulson, D. (2006). Analysis of museum specimens suggests extreme genetic drift in the Adonis blue butterfly (*Polyommatus bellargus*). *Biological Journal of the Linnean Society*, 88(3), 447–452.

Hausmann, A., Miller, S. E., Holloway, J. D., Dewaard, J. R., Pollock, D., Prosser, S. W., & Hebert, P. D. (2016). Calibrating the taxonomy of a megadiverse insect family: 3000 DNA barcodes from geometrid type specimens (Lepidoptera, Geometridae). *Genome*, 59(9), 671–684.

Hoeck, P. E., Bollmer, J. L., Parker, P. G., & Keller, L. F. (2010). Differentiation with drift: A spatio-temporal genetic analysis of Galapagos mockingbird populations (*Mimus* spp.). *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365(1543), 1127–1138.

Honnay, O., Adriaens, D., Coart, E., Jacquemyn, H., & Roldan-Ruiz, I. (2007). Genetic diversity within and between remnant populations of the endangered calcareous grassland plant *Globularia bisnagarica* L. *Conservation Genetics*, 8(2), 293–303.

Hughey, J. R., Boo, G. H., & Boo, S. M. (2016). Mitogenome of *Mytilus trossulus* (*Mytilidae, Bivalvia*) isolated from a 1920 herbarium specimen. *Mitochondrial DNA Part B*, 1(1), 452–453.

Hunter, S. J., Goodall, T. I., Walsh, K. A., Owen, R., & Day, J. C. (2008). Nondestructive DNA extraction from blackflies (Diptera: Simuliidae): Retaining voucher specimens for DNA barcoding projects. *Molecular Ecology Resources*, 8(1), 56–61.

Hykin, S. M., Bi, K., & McGuire, J. A. (2015). Fixing formalin: A method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing. *PLoS One*, 10(10), e0141579.

Irestedt, M., Ericson, P. G., Johansson, U. S., Oliver, P., Joseph, L., & Blom, M. P. (2019). No signs of genetic erosion in a 19th century genome of the extinct paradise parrot (*Psephotellus pulcherrimus*). *Diversity*, 11(4), 58.

IUCN (2016). *The IUCN red list of threatened species*. Retrieved from http://www.iucnredlist.org/.

Iwasaki, T., Kodama, A., Matsuo, A., Suyama, Y., Ohnishi, W., Ozeki, M., … Yamamoto, K. (2019). Examination of possibilities and methods for MIG-seq analysis using plant herbarium specimen-derived DNA. *Science Journal of Kanagawa University*, 30, 89–96 (in Japanese with English summary).

Janecke, J. E., Tewes, M. E., Laack, L., Caso, A., Grassman, L. I., & Honeycutt, R. L. (2014). Loss of genetic diversity among ocelots in the United States during the 20th century linked to human induced population reductions. *PLoS One*, 9(2), e89384.

Jones, M. R., & Good, J. M. (2016). Targeted capture in evolutionary and ecological genomics. *Molecular Ecology*, 25(1), 185–202.

Kekkonen, J., Hanski, I. K., Jensen, H., Viisänen, R. A., & Brommer, J. E. (2011). Increased genetic differentiation in house sparrows after a strong population decline: From panmixia towards structure in a common bird. *Biological Conservation*, 144(12), 2931–2940.

Kigawa, R., Nochide, H., Kimura, H., & Miura, S. (2003). Effects of various fumigants, thermal methods and carbon dioxide treatment on DNA extraction and amplification: A case study on freeze-dried mushroom and freeze-dried muscle specimens. *Collection Forum*, 18(1–2), 74–89.

Knyshev, A., Gordon, E. R., & Weirauch, C. (2019). Cost-efficient high throughput capture of museum arthropod specimen DNA using PCR-generated baits. *Methods in Ecology and Evolution*, 10(6), 841–852.

Leimu, R., Mutikainen, P. I. A., Koricheva, J., & Fischer, M. (2006). How general are positive relationships between plant population size, fitness and genetic variation? *Journal of Ecology*, 94(5), 942–952.

Linck, E. B., Hanna, Z. R., Sellas, A., & Dumbacher, J. P. (2017). Evaluating hybridization capture with RAD probes as a tool for museum genomics with historical bird specimens. *Ecology and Evolution*, 7(13), 4755–4767.

Marchi, C., Andersen, L. W., Damaarda, C., Olsen, K., Jensen, T. S., & Loechchke, V. (2013). Gene flow and population structure of a common agricultural wild species (*Microtus agrestis*) under different land management regimes. *Heredity*, 111(6), 486–494.

Mattila, A. L., Duplouy, A., Kirjokangas, M., Lehtonen, R., Rastas, P., & Hanski, I. (2012). High genetic load in an old isolated butterfly population. *Proceedings of the National Academy of Sciences of the United States of America*, 109(37), 2496–2505.
McCormack, J. E., Tsai, W. L., & Faircloth, B. C. (2016). Sequence capture of ultraconserved elements from bird museum specimens. *Molecular Ecology Resources*, 16(5), 1189–1203.

McDermid, J. L., Nienhuis, S., Al-Shamlih, M., Haxton, T. J., & Wilson, C. C. (2014). Evaluating the genetic consequences of river fragmentation in lake sturgeon (*Acipenser fulvescens Rafinesque*, 1817) populations. *Journal of Applied Ichthyology*, 30(6), 1514–1523.

Meilink, W. R., Arntzen, J. W., van Delft, J. J., & Wielstra, B. (2015). Genetic pollution of a threatened native crested newt species through hybridization with an invasive congener in The Netherlands. *Biological Conservation*, 184, 145–153.

Meusnier, I., Singer, G. A., Landry, J. F., Hickey, D. A., Hebert, P. D., & Hajibabaei, M. (2008). A universal DNA mini-barcode for biodiversity analysis. *BMC Genomics*, 9(1), 214.

Mikheyev, A. S., Zwick, A., Magrath, M. J., Grau, M. L., Qiu, L., Meusnier, I., Singer, G. A., Landry, J. F., Hickey, D. A., Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & McCormack, J. E., Tsai, W. L., & Faircloth, B. C. (2016). Sequence capture of ultraconserved elements from bird museum specimens. *Molecular Ecology Resources*, 16(5), 1189–1203.

Nakahama, N., Uchida, K., Ushimaru, A., & Isagi, Y. (2016). Timing of mowing influences genetic diversity and reproductive success in endangered semi-natural grassland plants. *Agriculture, Ecosystems & Environment*, 221, 20–27.

Nakahama, N., Uchida, K., Ushimaru, A., & Isagi, Y. (2015). Development of microsatellite markers for two endangered grassland butterflies, *Melitaea aegimia* and *M. protomedia* (Nymphalidae), using ion Torrent next-generation sequencing. *Conservation Genetics Resources*, 7(2), 525–527.

Nakahama, N., Ohshima, I., & Yoshizawa, K. (2006). Multiple host shifts between distantly related plants, Juglandaceae and Ericaceae, in the leaf-mining moth *Acrocercops leucophaea* complex (Lepidoptera: Gracillariidae). *Molecular Phylogenetics and Evolution*, 38(1), 231–240.

Pääbo, S., Poinar, H., Serre, D., Jaenick-Delarue, V., Hebler, J., Rohland, N., & Hofreiter, M. (2004). Genetic analyses from ancient DNA. *Annual Review of Genetics*, 38, 645–679.

Péanba, J. V., Smith, L. L., Tonione, M. A., Sass, C., Hykin, S. M., Skipworth, P. L., & Moritz, C. (2014). Sequence capture using PCR-enerated probes: A cost-effective method of targeted high-throughput sequencing for nonmodel organisms. *Molecular Ecology Resources*, 14(5), 1000–1010.

Pereira, H. M., Leadley, P. W., Proença, V., Alkemade, R., Scharlemann, J. P., Fernandez-Manjarres, J. F., & Chini, L. (2010). Scenarios for global biodiversity in the 21st century. *Science*, 330(6010), 1496–1501.

Perry, G. H., Marioni, J. C., Melsted, P., & Gilad, Y. (2010). Genomic-scale capture and sequencing of endogenous DNA from feces. *Molecular Ecology*, 19(24), 5332–5344.

Pierpaoli, M., Biro, Z. S., Herrmann, M., Hupe, K., Fernandes, M., Ragni, B., Randi, E. (2003). Genetic distinction of wildcat (*Felis silvestris*) populations in Europe, and hybridization with domestic cats in Hungary. *Molecular Ecology*, 12(10), 2585–2598.

Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., ... Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. *Science*, 344(6187), 1246752.

Porco, D., Rougerie, R., Dehaveng, L., & Hebert, P. (2010). Coupling non-destructive DNA extraction and voucher retrieval for small soft-bodied Arthropods in a high-throughput context: The example of Collombola. *Molecular Ecology Resources*, 10(6), 942–945.

Rohland, N., Siedel, H., & Hofreiter, M. (2004). Nondestructive DNA extraction method for mitochondrial DNA analyses of museum specimens. *Biotechnology*, 38(35), 814–821.

Rowley, D. L., Coddington, J. A., Gates, M. W., Norrbonom, A. L., Ochoa, R. A., Vandenberg, N. J., & Greenstone, M. H. (2007). Voucher DNA-barcoded specimens: Test of a nondestructive extraction protocol for terrestrial arthropods. *Molecular Ecology Notes*, 7(6), 915–924.

Rubin, T. L., Knowles, L. L., & Dantzer, B. (2020). Museum epigenomics: Characterizing cytosine methylation in historic museum specimens. *Molecular Ecology Resources*, 20(5), 1161–1170. https://doi.org/10.1111/1755-0998.13115

Saccomani, S., Lascari, S., Kankare, M., Vikman, P., Fortelius, W., & Hanski, I. (1998). Inbreeding and extinction in a butterfly metapopulation. *Nature*, 392(6675), 491–494.

Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., ... Leemans, R. (2000). Global biodiversity scenarios for the year 2100. *Science*, 287(5459), 1770–1774.

Santos, D., Ribeiro, G. C., Cabral, A. D., & Speranca, M. A. (2018). A non-destructive enzymatic method to extract DNA from arthropod specimens: Implications for morphological and molecular studies. *PLoS One*, 13(2), e0192200.

Särkinen, T., Staats, M., Richardson, J. E., Cowan, R. S., & Bakker, F. T. (2012). How to open the treasure chest? Optimising DNA extraction from herbarium specimens. *PLoS One*, 7(8), e43808.

Satoh, K., Shutoh, K., Kurosawa, T., Hayasaka, E., & Kaneko, S. (2018). Genetic analysis of Japanese and American specimens...
of Scirpus hattorianus suggests its introduction from North America. *Journal of Plant Research*, 131(1), 91–97.

Sawyer, S., Krause, J., Guschanski, K., Savolainen, V., & Pääbo, S. (2012). Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. *PLoS One*, 7(3), e34131.

Shiga, T. (2013). A relationships among curator, collector, and user surrounding natural history specimens: Toward a better specimen preservation, collection and usage (Museum and ecology (22)). *Japanese Journal of Ecology*, 63(3), 375–383 (in Japanese).

Smitz, N., Cornélis, D., Chardonnet, P., Caron, A., de Garine-Wichatitsky, M., Jori, F., ... Kanapeckas, K. L. (2014). Genetic structure of fragmented southern populations of African Cape buffalo (*Syncerus caffer caffer*). *BMC Evolutionary Biology*, 14(1), 203.

Sproul, J. S., & Maddison, D. R. (2017). Sequencing historical specimens: Successful preparation of small specimens with low amounts of degraded DNA. *Molecular Ecology Resources*, 17(6), 1183–1201.

Strange, J. P., Knoblett, J., & Griswold, T. (2009). DNA amplification from pin-mounted humble bees (*Bombus*) in a museum collection: Effects of fragment size and specimen age on successful PCR. *Apidologie*, 40(2), 134–139.

Suchan, T., Pitteloud, C., Gerasimova, N. S., Kostikova, A., Schmid, S., Arrigo, N., ... Alvarez, N. (2016). Hybridization capture using RAD probes (hyRAD), a new tool for performing genomic analyses on collection specimens. *PLoS One*, 11(3), e0151651.

Sugita, N., Ebihara, A., Hosoya, T., Jinbo, U., Kaneko, S., Kurosawa, T., ... Yukawa, T. (2020). Non-destructive DNA extraction from herbarium specimens: A method particularly suitable for plants with small and fragile leaves. *Journal of Plant Research*, 133(1), 133–141.

Suyama, Y., & Matsuji, Y. (2015). MIG-seq: An effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. *Scientific Reports*, 5, 16963.

Tallmon, D. A., Luikart, G., & Waples, R. S. (2004). The alluring simplicity and complex reality of genetic rescue. *Trends in Ecology & Evolution*, 19(9), 489–496.

Tin, M. M. Y., Economo, E. P., & Mikeyeev, A. S. (2014). Sequencing degraded DNA from non-destructively sampled museum specimens for RAD-tagging and low-coverage shotgun phylogenetics. *PLoS One*, 9(5), e96793.

Van Dam, M. H., Lam, A. W., Sagata, K., Gewa, B., Laufa, R., Balke, M., ... Riedel, A. (2017). Ultraconserved elements (UCEs) resolve the phylogeny of Australasian smurf-weevils. *PLoS One*, 12(11), e0188044.

Vandergast, A. G., Bohonak, A. J., Weissman, D. B., & Fisher, R. N. (2007). Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: Phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: *Stenopelma*). *Molecular Ecology*, 16(5), 977–992.

Waku, D., Segawa, T., Yonezawa, T., Akiyoshi, A., Ishige, T., Ueda, M., ... Sasaki, T. (2016). Evaluating the phylogenetic status of the extinct Japanese otter on the basis of mitochondrial genome analysis. *PLoS One*, 11(3), e0149341.

Wandeler, P., Hoecck, P. E., & Keller, L. F. (2007). Back to the future: Museum specimens in population genetics. *Trends in Ecology & Evolution*, 22(12), 634–642.

Wang, H., Chattopadhyay, A., Li, Z., Daines, B., Li, Y., Gao, C., ... Chen, R. (2010). Rapid identification of heterozygous mutations in *Drosophila melanogaster* using genomic capture sequencing. *Genome Research*, 20(7), 981–988.

Watts, P. C., Thompson, D. J., Allen, K. A., & Kemp, S. J. (2007). How useful is DNA extracted from the legs of archived insects for microsatellite-based population genetic analyses? *Journal of Insect Conservation*, 11(2), 195–198.

Weiß, C. L., Schuenemann, V. J., Devos, J., Shirsekar, G., Reiter, E., Gould, B. A., ... Burbano, H. A. (2016). Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens. *Royal Society Open Science*, 3(6), 160239.

Williams, C., Pontén, F., Moberg, C., Söderkvist, P., Uhlén, M., Pontén, J., ... Lundeberg, J. (1999). A high frequency of sequence alterations is due to formalin fixation of archival specimens. *The American Journal of Pathology*, 155(5), 1467–1471.

Xenikoudakis, G., Ersmark, E., Tison, J. L., Waits, L., Kindberg, J., Swenson, J. E., & Dalén, L. (2015). Consequences of a demographic bottleneck on genetic structure and variation in the Scandinavian brown bear. *Molecular Ecology*, 24(13), 3441–3454.

Yago, M. (2017). Annual review on entomology for 2016 in butterflies—Supplement—. *Yadoriga*, 253, 42–50 (in Japanese).

Zeng, C. X., Hollingsworth, P. M., Yang, J., He, Z. S., Zhang, Z. R., Li, D. Z., & Yang, J. B. (2018). Genome skimming herbarium specimens for DNA barcoding and phylogenomics. *Plant Methods*, 14(1), 43.

Zimkus, B. M., & Ford, L. S. (2014). Best practices for genetic resources associated with natural history collections: Recommendations for practical implementation. *Collection Forum*, 28(1–2), 77–112.