Frequency of rare recessive mutations in unexplained late onset cerebellar ataxia

M. J. Keogh1,2 · H. Steele1,2 · K. Douroudis1 · A. Pyle1 · J. Duff1 · R. Hussain1 · T. Smertenko1 · H. Griffin1 · M. Santibanez-Koref1 · R. Horvath1,2 · P. F. Chinnery1,2

Received: 24 February 2015/Accepted: 29 April 2015/Published online: 16 May 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Sporadic late onset cerebellar ataxia is a well-described clinical presentation with a broad differential diagnosis that adult neurologists should be familiar with. However, despite extensive clinical investigations, an acquired cause is identified in only a minority of cases. Thereafter, an underlying genetic basis is often considered, even in those without a family history. Here we apply whole exome sequencing to a cohort of 12 patients with late onset cerebellar ataxia. We show that 33 % of ‘idiopathic’ cases harbor compound heterozygous mutations in known ataxia genes, including genes not included on multi-gene panels, or primarily associated with an ataxic presentation.

Keywords Ataxia · Whole exome sequencing · Next generation sequencing · Diagnosis

Introduction

Adult onset cerebellar ataxia poses a considerable diagnostic challenge. Initial investigations focus on detecting degenerative, toxic, structural and inflammatory etiologies which together underlie around a third of cases [1]. Thereafter, molecular investigations for a monogenic basis of disease are often undertaken despite 80 % of patients having no relevant family history [2].

Current molecular investigations for sporadic cases echo that of familial forms, beginning with testing for trinucleotide repeat disorders, such as the spinocerebellar ataxias (SCA1, 2, 3, 6, 7 and 17), dentatorubral pallidoluysian atrophy (DRPLA) and Friedreich’s ataxia (FDR) in most centres [1]. However, this approach fails to identify a molecular diagnosis in 87–98 % of late onset sporadic cases [1, 3], and subsequent investigations are undertaken on a gene-by-gene basis, often at considerable time and expense.

The difficulty in establishing monogenic forms of disease using this approach is increasingly challenging given that at least 60 causative ataxia genes are reported [4]. Recent studies have therefore utilized next generation sequencing focusing on infantile or juvenile onset cases [5], or adult onset ataxia with a demonstrable family history [4]. Only two studies have described sub-sets of patients with sporadic onset adult disease, despite it being a major form of ataxia, and suggested that a molecular diagnosis can be reached in ~10 % of cases [4, 6]. Given this, we applied whole exome sequencing to a cohort of individuals with sporadic late onset ataxia.

Methods

Unrelated individuals with sporadic ataxia beginning at 30 years of age or over were identified from routine referrals to our regional neurogenetic service, in Newcastle upon Tyne, England.

Electronic supplementary material The online version of this article (doi:10.1007/s00415-015-7772-x) contains supplementary material, which is available to authorized users.

© P. F. Chinnery
p.f.chinnery@ncl.ac.uk; patrick.chinnery@ncl.ac.uk

1 Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
2 Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
Acquired causes of ataxia were excluded and all participants had negative genetic testing for SCA 1, 2, 3, 6, 7, 17, DRPLA and Friedreich’s Ataxia (FA). In addition, all adult males had negative FMR1 testing.

Blood genomic DNA was fragmented, exome enriched and sequenced (Nextera Rapid Exome Capture 37 Mb and HiSeq 2000, 100 bp paired-end reads). In-house bioinformatic analysis included alignment to UCSC hg19, using BWA as aligner and GATK to detect SNV and INDELS across all samples using standard filtering parameters according to GATK Best Practise Recommendations [7] (see supplementary methods). Further analysis was performed on variants with a minor allele frequency <0.005 in several reference databases and 302 unrelated in-house controls (see supplementary methods). Rare heterozygous, homozygous and compound heterozygous variants were defined, and protein altering and/or putative ‘disease causing’ mutations as predicted by at least three out of four software programmes were included. Pathogenicity was defined in accordance with American College of Medical Genetic guidelines (see supplementary methods). Genes known or suggested to cause ataxia as a primary or secondary phenotype in humans from two suggested clinical panels [4, 8] together with additional genes in which ataxia may result as part of the phenotype (list-supplementary methods) were assessed for variants according to the above criteria, and confirmed by Sanger sequencing (supplementary methods).

Variants were defined using a priori criteria: (1) confirmed pathogenic: dominant disorders—variant previously shown to cause ataxia in humans; recessive disorders—either 2 variants previously shown to cause ataxia in humans; or 1 pathogenic variant with a second variant predicted to affect protein function by at least 3 of 4 prediction algorithms (SIFT, Polyphen2, Mutation Taster, LRT), or through frameshift or truncation. (2) Probable pathogenic: dominant and recessive disorders—variants in known genes causing ataxia in humans and predicted to affect protein function by at least three of four prediction algorithms; (3) uncertain significance: dominant and recessive disorders—variants predicted to affect protein function with weak evidence that gene alteration causes ataxia in humans.

The study was granted ethical approval from a Research Ethics Committee based in the North of England.

Results

Population

Twelve Caucasian individuals of British origin (5 male) with no known consanguinity were included (Table 1). Mean age at disease onset was 46.7 years (SD 11; range 30–70 years). Mean disease duration was 16.6 years (SD 6.9; range 6–30 years). For one patient, the disease duration fell within the range expected for multi-system atrophy [9]. This patient had a normal DaTscan and autonomic function tests. Three individuals had CSF examination with negative oligoclonal bands. Five had nerve conduction studies; two of which were abnormal. Detailed clinical features and the results of clinical investigations are shown in Table 1.

Diagnosis

We identified previously described pathogenic mutations in four of the 12 (33 %) patients in our cohort. All were present on confirmatory Sanger sequencing. No probable pathogenic variants were identified and variants of uncertain significance were found in an additional two cases (17 %). Findings are summarised in Table 2.

Discussion

We identified confirmed or probable pathogenic variants causing sporadic late onset ataxia in four patients (33 %) in our cohort. These findings are comparable to childhood/adolescent ataxia using targeted sequencing panels (40 %) [4] and whole exome sequencing (27 %) [5]. They are also significantly higher than previous data for adult onset cases using either panels or whole exome (both ~10 %) [4, 6].

We detected pathogenic variants in SPG7, SYNE1 and ANO10 (previously published by Balreira et al. [10]). Fogel et al. [6] also identified pathogenic variants in these genes (SPG7 (n = 2), SYNE1 (n = 3) and ANO10 (n = 1). The clinical features of these patients appear relatively homogeneous between their and our study, with pure cerebellar ataxia beginning above the age of 40 for ANO10 and SYNE1 cases, and a more heterogeneous age of onset (<20–50) with additional neurological features including spasticity and a polyneuropathy in SPG7 cases [6]. Therefore, pathogenic mutations in these genes appear to be an important and frequently identified cause of late onset sporadic ataxia.

We used whole exome sequencing (WES) rather than targeted next generation ‘panels’, and it remains a contentious issue as to which is more appropriate in the investigation of neurogenic disorders. WES enables greater genome coverage, and hence detection of pathogenic mutations in genes not considered as having ataxia as a primary phenotype. Our results highlight this as SPG7 was not covered by one ataxia panel [4], SYNE1 by another [8], and ANO10 was not included in either panel. WES however, may result in detection of unexpected findings such as pathogenic mutations predisposing to cancer or neurodegenerative...
Patient no., sex	Age (years)	Age onset (years)	Disease duration (years)	Presenting symptom	Gait ataxia	Limb ataxia	Ocular signs	Additional neurological features	Other features	MRI	LP	NCS/EMG	Other investigations	Muscle biopsy	Other negative molecular investigations
1, F	63	40	23	Slowly progressive midline and appendicular ataxic syndrome	+++	++		Early CPEO, dysmetric pursuit, broken saccades	None	CA	Normal−OCB	Bilateral CTS (CTS study only)	Normal IHC	Normal−OCB, FMR1	
2, F	47	30	17	Slowly progressive spastic ataxic syndrome	++ (Fr)	+		CPEO, temporal optic disc pallor, jerky pursuit, hypometric saccades	None	Mild CA	Normal−OCB	ND	Mild fibre size variation, nil		
3, F	57	45	12	Ataxia developed aged 45	+++	++		Epilepsy aged 7	None	CA and parieto-occipital atrophy	ND	Normal	ND	FMR1	
4, F	63	40	23	Slowly progressive midline cerebellar ataxia	++	+		GEN, TLE with ongoing infrequent focal seizures, no treatment	Cataracts (age 62)	CA	ND	ND	POLG, MT-ATP6 & 8		
5, F	55	35	20	Slowly progressive spastic ataxic syndrome	+++	+		GEN, jerky pursuit, hypometric saccades	None	CA	ND	ND	SPG7		
6, F	76	70	6	Progressive midline and appendicular ataxia	+++	++		GEN, up and down beat nystagmus, orthostatic tremor	None	Mild CA	ND	−DaT	MT-ATP6 & 8		
7, M	71	60	11	Slowly progressive midline ataxia	+	−		GEN, jerky ocular pursuit	None	None	CA	ND	Normal		
8, M	58	50	8	Midline ataxia	++	+		RAPD, OA, GEN, congenital hearing loss	None	CA	ND	SAN	POLG, WFSI, OPA1, MT-ATP6 & 8		

Table 1 Clinical features of the 12 patients in the cohort
Patient no., sex	Age (years)	Age onset (years)	Disease duration (years)	Presenting symptom	Gait ataxia	Limb ataxia	Ocular signs	Additional neurological features	Other features	MRI	LP	NCS/EMG	Other investigations	Muscle biopsy	Other negative molecular investigations	
9, M	70	40	30	Pure midline ataxia	+(stick)	−	None	None	None	CA	ND	ND	Normal IHC	Normal RCE	SCA12 mt-DNA LR-PCR	
10, M	59	44	15	Pure midline ataxia	+++	+	None	Prominent dysarthria, choking	Brisk reflexes	None	CA	ND	ND	Normal Q10	Normal RCE	SPG7 SCA8 SCA12
11, F	65	47	12	Pure midline ataxia	+++ (WhC)	+	Oscillopsia	Jerky pursuits and horizontal nystagmus	Hypometric saccades	Cataract, diabetes and short stature	Mild CA; high signal C3, 4 posterior columns; thin cord	−OCB	DRG	ND	POLG SPG7 POLG2 PEO1 ANT1 mt-DNA LR-PCR	
12, M	83	60	23	Midscale ataxia	++ (stick)	+	Jerky pursuit and coarse phasic nystagmus	Normal saccades	None	None	Mild CA	ND	ND	Patient declined	Nil	

Presence or absence of symptoms are indicated by + or − symbol, respectively.

AFTs autonomic function tests, CA Cerebellar atrophy, CPEO chronic progressive external ophthalmoplegia, CTS carpal tunnel syndrome, CVD cerebrovascular disease, DRG dorsal root ganglionopathy, Fr Frame, GEN gaze evoked nystagmus, IHC immunohistochemistry, ND not done, OA optic atrophy, OCB oligoclonal bands, PV periventricular, RAPD relative afferent pupillary defect, RCE respiratory chain enzyme, SVD small vessel disease, TLE temporal lobe epilepsy, WhC wheelchair, WM white matter.
Table 2 Genetic variants of interest identified in the 12 patients

Pt	Gene	Model	Exome seq identified variant (1) 1000 g	rs#	Variant pathogenicity prediction	Exome seq identified variant (2) 1000 g	MAF variant (1)	MAF variant (2)
1	SPG7	AR	c.1529C>T p. Ala510Val	rs61755320 0.003463 0.0014 c. 1053dupC p. Gly352fs	Pathogenic	rs121918358 0.000077 0 (1) Pathogenic (2) NA		
2	SPG7	AR	c.1529C>T p. Ala510Val	rs61755320 0.003463 0.0014 c.235T>A p. Leu78*	Pathogenic	rs138000380 0.000231 0.0005 c. 132_133insT p. Asp45fs		
3	ANO10	AR	c.1843G>A p. Asp615Asn	rs117360770 0.002307 0.0018 c.1762delC p. Leu588fs	Neutral	NA 0.003435 0 (1) NA		
4	SYNE1	AR	c.9148C>G p. Leu3050Val	rs138283229 0.002461 0.0009 NA	Neutral	NA 0.000077 0 NA		

Variants of uncertain significance

| 5 | SLC33A1 | AD | c.433G>A p. Gly145Ser | rs138000380 0.000231 0.0005 c.132_133insT p. Asp45fs | NA | NA 0.003435 0 NA |
| 6 | PLEKHG4| AD | c.2251G>A p. Asp751Asn | rs121918358 0.000077 0 NA | NA | NA 0.000077 0 NA |

Confirmed pathogenic: dominant disorders—variant previously shown to cause ataxia in humans; recessive disorders—either 2 variants previously shown to cause ataxia in humans; or 1 pathogenic variant with a second variant predicted to affect protein function by at least 3 of 4 prediction algorithms (SIFT, Polyphen2, Mutation Taster, LRT), through frameshift or truncation. Variants of uncertain significance: dominant and recessive disorders—variants predicted to affect protein function with weak evidence that gene alteration causes ataxia in humans.

D pathogenic or deleterious, P polymorphism, NA not applicable N neutral (frameshift mutations considered pathogenic)

References

1. Abele M, Burk K, Schols L, Schwartz S, Besenthal I, Dichgans J, Zuhlke C, Riess O, Klockgether T (2002) The aetiology of sporadic adult-onset ataxia. Brain J Neurol 125:961–968
2. Muzaimi MB, Thomas J, Palmer-Smith S, Rosser L, Harper PS, Wiles CM, Ravine D, Robertson NP (2004) Population based study of late onset cerebellar ataxia in south east Wales. J Neurol Neurosurg Psychiatry 75:1129–1134

3. Pujana MA, Corral J, Gratacos M, Combarros O, Berciano J, Genis D, Banchs I, Estivill X, Volpini V (1999) Spinocerebellar ataxias in Spanish patients: genetic analysis of familial and sporadic cases. The Ataxia Study Group. Hum Genet 104:516–522

4. Nemeth AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD, Shanks ME, Gregory L, Buck D, Zameel Cader M, Talbot K, de Silva R, Fletcher N, Hastings R, Jayawant S, Morrison PJ, Worth P, Taylor M, Tolmie J, O’Regan M, UK Ataxia Consortium, Valentine R, Packham E, Evans J, Seller A, Raguassis J (2013) Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain J Neurol 136:3106–3118

5. Sawyer SL, Schwartzentruber J, Beaulieu CL, Dyment D, Smith A, Warman Chardon J, Yoon G, Rouleau GA, Suchowersky O, Siu V, Murphy L, Hegele RA, Marshall CR, FORGE Canada Consortium, Bulman DE, Majewski J, Tarnopolsky M, Boycott KM (2014) Exome sequencing as a diagnostic tool for pediatric-onset ataxia. Hum Mutat 35:45–49

6. Fogel BL, Lee H, Deignan JL, Strom SP, Kantarci S, Wang X, Quintero-Rivera F, Vilain E, Grody WW,Perlman S, Geschwind DH, Nelson SF (2014) Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol 71:1237–1246

7. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella K, Altshuler D, Gabriel S, DePristo M (2013) From FastQ data to high-confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.11–11.10.33

8. Panel NDSN. http://www.sheffieldchildrens.nhs.uk/downloads/labgenetics/LabGenetics_NGSNDTests.pdf. Accessed 3 Nov 2014

9. Wenning GK, Geser F, Krismer F, Seppi K, Duerr S, Boesch S, Kollensperger M, Goebel G, Pfeiffer KP, Barone P, Pellecchia MT, Quinn NP, Koukouni V, Fowler CJ, Schrag A, Mathias CJ, Giladi N, Gurevich T, Dupont E, Ostergaard K, Nilsson CF, Widner H, Oertel W, Eggert KM, Albanese A, del Sorbo F, Tolosa E, Cardozo A, Deuschl G, Hellriegel H, Klockgether T, Dodel R, Sampaio C, Coelho M, Djaldetti R, Melamed E, Gasser T, Kamm C, Meco G, Colosimo C, Rascoc O, Meissner WG, Tison F, Poewe W, European Multiple System Atrophy Study Group (2013) The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol 12:264–274

10. Balfreira A, Boczonadi V, Barca E, Pyle A, Bansagi B, Appleton M, Graham C, Hargreaves IP, Rasim VM, Lochmuller H, Griffin H, Taylor RW, Naini A, Chinnery PF, Hirano M, Quinzii CM, Horvath R (2014) ANO10 mutations cause ataxia and coenzyme Q(1)(0) deficiency. J Neurol 261:2192–2198