COMPUTING SKEW LEFT BRACES OF SMALL ORDERS

VALERIY G. BARDAKOV, MIKHAIL V. NESHCHADIM, AND MANOJ K. YADAV

Abstract. By improving Algorithm 5.1 of [Math. Comp. 86 (2017), 2519-2534], we enumerate left braces and skew left braces of orders upto 511 with some exceptions.

1. Introduction

A multiplicatively written group \(G \), with multiplicative structure on \(G \) given by \((g_1, g_2) \mapsto g_1.g_2\), is said to be a skew left brace if it admits an additional group structure given by \((g_1, g_2) \mapsto g_1 \circ g_2\) satisfying

\[
(1.1) \quad g_1 \circ (g_2.g_3) = (g_1 \circ g_2).g_1^{-1}(g_1 \circ g_3)
\]

for all \(g_1, g_2, g_3 \in G \), where \(g_1^{-1} \) denotes the multiplicative inverse of \(g_1 \). We call \((G, \cdot)\) the primary group and \((G, \circ)\) the secondary group of the skew left brace \(G \). A skew left brace \(G \) is said to be a left brace if \(G \) is an abelian groups under multiplicative structure. The concept of left braces was introduced by Rump [16] in 2007 in connection with non-degenerate involutive set theoretic solutions of the quantum Yang-Baxter equations. Thereafter the subject received a tremendous attention of the mathematical community; see [2, 4, 17, 18] and the references therein. Interest in the study of set theoretic solutions of the quantum Yang-Baxter equations was intrigued by the paper [9] of Drinfeld, published in 1992.

Let \(X \) be an arbitrary set and \(R : X \times X \to X \times X \) a bijective map. Recall that the pair \((X, R)\) is said to be a set theoretic solution of the Yang-Baxter equation if

\[
R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}
\]

holds in the set of all maps from \(X \times X \times X \) to itself, where \(R^{ij} \) is just \(R \) acting on the \(i \)th and \(j \)th components of \(X \times X \times X \) and identity on the remaining one. Let us write

\[
R(x, y) = (\sigma_x(y), \tau_y(x)), \quad x, y \in X
\]

with \(\sigma_x \) and \(\tau_y \) component maps from \(X \) to itself.

A solution \((X, R)\) is said to be non-degenerate if the component maps \(\sigma_x \) and \(\tau_y \) are bijections on \(X \) for all \(x, y \in X \). It is said to be involutive if \((\tau' \circ R)^2\) is the identity map, where \(\tau' : X \times X \to X \times X \) is the permutation map given by \(\tau'(x, y) = (y, x) \) for all \(x, y \in X \). The study of non-degenerate set theoretic solutions of the the quantum Yang-Baxter equations has been extensively taken up, e. g., [5, 8, 11, 14, 19] to mention a few.

The concept of skew left brace was introduced by Guarnieri and Vendramin [13] in 2017 in connection with non-involutive non-degenerate set theoretic solutions of the quantum Yang-Baxter equations. They invented an algorithm, by generalising a result of Bachiller [1] for computing all skew left braces of a given order. They themselves computed left braces and skew left braces of lot of groups upto order 120. Vendramin [20] extended the number upto 168 with some exceptions. All these computations are done using computer algebra systems MAGMA [3] and GAP [12] using the algorithm invented in [13]. For more work on skew braces see [6, 7, 15].

This article aims at filling up the gaps in the table produced in [20] to some extent and making further computations for larger orders. An ingenious observation on regular

2010 Mathematics Subject Classification. 16T25, 81R50.

Key words and phrases. Skew left braces, Left braces, Yang-Baxter equation.
subgroups of the holomorph of a given finite group allows us to improve the algorithm obtained in [13], which substantially enhances the performance of MAGMA computation. The improved algorithm, actually, avoids an expensive calculation in the existing algorithm. We compute the number of non-isomorphic left braces and skew left braces of orders upto 511 except certain cases (mainly when the order is a multiple of 32). These results settle [20, Problem 13] and [13, Problem 6.1]. The computations will help in building a database of left braces and skew left braces, which in turn will greatly enrich the library of solutions of the quantum Yang-Baxter equation.

It is striking that there are more than a million skew brace structures of order 2 and more than 20 millions skew brace structures of order 3. The reader will encounter many more surprises while going through the tables. We have used MAGMA on a computer with 3.5 GHz 6-Core Intel Xeon E5 processor and 64 GB memory for these computations.

2. Regular subgroups

Let \(G \) be a group, which acts on a set \(X \). The action of an element \(g \in G \) on an element \(x \in X \) is denoted by \(x^g \). A subgroup \(H \) of \(G \) is said to be action-closed if for each pair \((g, x) \in G \times X \), there exists an element \(h \in H \) such that \(x^g = x^h \).

Let \(G \) be a group and \(\text{Symm}(G) \) be the symmetric group on the set \(G \). Recall that a subgroup \(\mathcal{G} \) of \(\text{Symm}(G) \) is said to be regular if \(\mathcal{G} \)-action on \(G \) is free and transitive. By a free action we here mean that for any element \(g \in G \), its stabilizer in \(\mathcal{G} \) is the trivial subgroup. Observe that when \(G \) is finite, any regular subgroup of \(\text{Symm}(G) \) is of order \(|G|\).

For a group \(G \), \(\text{Hol}(G) \) denotes the holomorph of \(G \), which is defined as the semidirect product of \(G \) with \(\text{Aut}(G) \), the automorphism of \(G \). So

\[\text{Hol}(G) := \text{Aut}(G) \rtimes G, \]

where the product in \(\text{Hol}(G) \) is given by

\[(\alpha, g)(\beta, h) = (\alpha\beta, g\alpha(h)). \]

Notice that \(\text{Hol}(G) \) acts on \(G \) transitively under the following action:

\[g^{(\alpha, h)} = \pi_2([(\alpha, h)(1, g)]) = h\alpha(g) \]

for all \(\alpha \in \text{Aut}(G) \) and \(g, h \in G \), where \(\pi_2 : \text{Hol}(G) \to G \) is the projection map given by \(\pi_2((\alpha, g)) = g \). It follows that the stabilizer of any element of \(G \) in \(\text{Hol}(G) \) is isomorphic to \(\text{Aut}(G) \).

Let \(\mathcal{G} \) be a regular subgroup of \(\text{Hol}(G) \). Then it is not difficult to see that for each \(g \in G \), there exists a unique element \((\alpha, h) \in \mathcal{G} \) such that \(g^{(\alpha, h)} = h\alpha(g) = 1 \). Let \(\text{Reg}(G) \) denote the set of all regular subgroups of \(\text{Hol}(G) \). Then \(\text{Hol}(G) \) acts on \(\text{Reg}(G) \) by conjugation. With this setting, we have the following easy observation, which plays a key role in what follows.

Lemma 2.1. \(\text{Aut}(G) \), as a subgroup of \(\text{Hol}(G) \), is action-closed with respect to the conjugation action of \(\text{Hol}(G) \) on \(\text{Reg}(G) \).

Proof. Let \(\mathcal{G} \in \text{Reg}(G) \) and \((\alpha, h) \in \text{Hol}(G) \). Then there exists an element \((\alpha_1, h_1) \in \mathcal{G} \) such that \(h^{(\alpha_1, h_1)} = h_1\alpha_1(h) = 1 \). Notice that

\[(\alpha_1, h_1)(\alpha, h) = (\alpha_1\alpha, h_1\alpha_1(h)) = (\alpha_1\alpha, 1). \]

Let \(\beta := \alpha_1\alpha \), which lies in \(\text{Aut}(G) \). Thus,

\[\mathcal{G}^{(\beta, 1)} = (\mathcal{G}^{(\alpha_1, h_1)})(\alpha, h) = (\mathcal{G}^{(\alpha_1, h_1)})^{(\alpha, h)} = \mathcal{G}^{(\alpha, h)}. \]

Proof is now complete. \(\square \)

The preceding lemma enables us to get the following generalization of [13, Proposition 4.3].
Theorem 2.2. Let G be a group. Then non-isomorphic skew left brace structures over G are in bijective correspondence with conjugacy classes of regular subgroups in $\text{Hol}(G)$.

Proof. The result follows from [13, Proposition 4.3] along with Lemma 2.1. □

As a result, we get the following algorithm which improves [13, Algorithm 5.1].

Algorithm 2.3. For a finite group G, the following sequence of computations constructs all skew left brace structures over G:

1. Compute the holomorph $\text{Hol}(G)$ of G.
2. Compute the list of regular subgroups of $\text{Hol}(G)$ of order $|G|$ up to conjugation.
3. For each representative G of regular subgroups of $\text{Hol}(G)$, construct the map $\chi : G \to G$ given by $g \mapsto (f, f(g)^{-1})$, where $(f, f(g)^{-1}) \in G$. The triple (G, G, χ) yields a skew left brace structure over G with multiplication given by $g_1 \circ g_2 = \chi^{-1}(\chi(g_1)\chi(g_2))$ for all $g_1, g_2 \in G$.

As remarked in [13] too, for enumerating skew left brace structures over G we only need first two step of this algorithm.

3. Computations

Throughout this section, for a given positive integer n, $b(n)$ and $s(n)$, respectively, denote the total number of left braces and skew left braces of order n. For each such n, $pf(n)$ stands for the prime factorization of n. The following table remedy some gaps in the list obtained in [20].

n	32	54	64	72	80	81	96	108
$pf(n)$	2^5	$2^3.3^2$	2^6	$2^3.3^2$	$2^4.5$	3^4	$2^3.3$	$2^3.3^3$
$b(n)$	25281	80	?	489	1985	804	195971	494
$s(n)$	1223061	1028	17790	74120	8436	?	11223	

n	112	120	126	128	136	144	147	150
$pf(n)$	$2^3.7$	$2^3.5$	$2.3.7$	2^2	$2^3.17$	$2^3.3^2$	3.7^2	$2.3.5^2$
$b(n)$	1671	395	36	108	10215	9	19	
$s(n)$	65485	22711	990	986	3013486	123	401	

n	152	158	160	162	164	165	166	168
$pf(n)$	$2^3.19$	$2.7.9$	$2^3.5$	2.3^4	$2^2.41$	$3.5.11$	3.7^2	$2.3.5.7$
$b(n)$	90	2	209513	1374	11	2	2	443
$s(n)$	800	6	?	45472	43	12	6	28505

Table 1. Some missing values from [20]

We now enumerate $b(n)$ and $s(n)$ for $n \leq 511$ except some cases for which computations are too big to be handled by our computer. We have given a lower bound on the number of skew left braces of order 3^5, by taking into account the primary groups with Group Id’s \[243, m\], where $m = 1, \ldots, 31, 33, 37, 38, 48, 61, 67$. By the Group Id we mean the group identification of a group of given order in The Small Groups Library [10] implemented in GAP and MAGMA.
n	\(pf(n) \)	\(b(n) \)	\(s(n) \)
169	13^2 2.5.17 3^2.19 2^2.43 173	4 14 4 9 1	4 36 80 29 1
170	2^2.3.7.5 181 2.7.13 3.61 2.23 5.37 2.3.31 11.17 2^4.47	1 129 1 4 2	90 1 6 1 9
171	17/ 2 36 29 1	36 4 65466 1 6	
172	179 180 181 182	183 184 185 186 187 188	
173	2^2.3.5.181 2.7.13 3.61 2.23 5.37 2.3.31 11.17 2^4.47	165 4 1 1 2	22 2 4 1 16
174	5849 1 36 8 800 1 78 1 29		
175	199 190 191 192	193 194 195 196 197 198	
176	3^2.7 2.5.19 191 2^6.3 193 2.97 3.5.13 2^3.7^2 197 2.3^3.11	165 4 1 1	2 2 41 1 16
177	4569 36 1 1 8 389 1	294 1 294	
178	199 200 201 202 203 204 205 206 207 208		
179	2.5.17 3^2.19 2^2.43 173	1 129 1 4 2	90 1 6 1 9
180	2^2.3.7.5 181 2.7.13 3.61 2.23 5.37 2.3.31 11.17 2^4.47	165 4 1 1 2	22 2 4 1 16
181	5849 1 36 8 800 1 78 1 29		
182	219 220 221 222 223 224 225 226 227 228		
183	3^2.7 2.5.19 191 2^6.3 193 2.97 3.5.13 2^3.7^2 197 2.3^3.11	165 4 1 1	2 2 41 1 16
184	4569 36 1 1 8 389 1	294 1 294	
185	199 200 201 202 203 204 205 206 207 208		
186	2^2.3.7.5 181 2.7.13 3.61 2.23 5.37 2.3.31 11.17 2^4.47	165 4 1 1	2 2 41 1 16
187	4569 36 1 1 8 389 1	294 1 294	
188	219 220 221 222 223 224 225 226 227 228		

Further Computations

Table 2. Further Computations
\(n \)	\(pf(n) \)	\(b(n) \)	\(s(n) \)							
309	320	311	312	313	314	315	316	317	318	
2	6	1	507	1	2	11	9	1	4	
8	94	1	32075	1	6	47	29	1	36	
319	320	311	322	323	324	325	326	327	328	
4	6	1	507	1	2	11	9	1	4	
1	?	1	4	1	10225	4	2	2	108	
1	?	1	36	1	?	1	6	8	986	
329	330	331	332	333	334	335	336	337	338	
7.47	2.3.5.11	331	2.5.83	3.37	2.167	5.67	2.3.7	337	2.13	
1	12	1	9	14	2	1	10990	1	8	
1	564	1	29	80	6	1	5247711	1	59	
339	340	341	342	343	344	345	346	347	348	
3.113	2.5.7.19	1131	2.3.19	7	3	2.3.43	3.5.23	2.173	347	2.3.29
1	35	1	42	61	90	1	2	1	28	
1	739	1	1164	373	800	1	6	1	410	
349	350	351	352	353	354	355	356	357	358	
2.5.7.11	3.3.13	2.3.11	353	2.3.59	5.71	2.3.89	3.7.17	2.179		
1	16	166	195479	1	4	2	11	2	2	
1	306	491	?	1	36	12	43	8	6	
359	360	361	362	363	364	365	366	367	368	
2.5.3.5	192	2.181	3.112	2.2.13	5.73	2.3.61	367	2.23		
1	2035	4	5	27	1	6	1	1670		
1	535713	4	6	20	395	1	78	1	65466	
369	370	371	372	373	374	375	376	377	378	
129	4.1	2.5.7.19	393	394	395	396	397	398		
4	4	1	34	1	4	54	90	1	548	
4	36	1	606	1	36	253	800	1	47244	
379	380	381	382	383	384	385	386	387	388	
2.3.19	1327	2.191	383	2.7.3	5.71	1.2.193	3.2.43	2.97		
1	27	2	2	1	?	2	2	11	11	
1	395	8	6	1	?	12	6	47	43	
389	390	391	392	393	394	395	396	397	398	
3.5.17	1723	2.3.7	3.13	2.197	5.79	2.3.2.11	397	2.199		
1	12	1	463	1	2	111	1	2		
1	468	1	18078	1	6	1	4985	1	6	
399	400	401	402	403	404	405	406	407	408	
2.3.7.19	2.5.2	401	2.3.67	13.31	2.2.101	3.5	2.7.29	11.37	2.3.17	
5	12744	1	6	1	11	805	6	1	399	
113	3618636	1	78	1	43	8453	110	1	22923	
409	410	411	412	413	414	415	416	417	418	
3.1.7.19	2.5.41	3.13	2.7.103	7.59	2.3.23	5.83	2.3.13	3.139	2.11.19	
1	6	1	9	1	16	1	209507	2	4	
1	94	1	29	1	294	1	?	8	36	
419	420	421	422	423	424	425	426	427	428	
3.7.1.5.7	2.3.5.7	2.1.211	3.4.7	2.5.5	5.17	2.3.7.1	7.61	2.3.107		
1	104	1	2	4	106	4	4	1	9	
1	9052	1	6	4	944	4	36	1	29	
429	430	431	432	433	434	435	436	437	438	
3.11.13	2.5.43	3.1.2.3	433	3.7.31	3.5.29	2.3.109	19.23	2.3.73		
2	4	1	115708	1	4	1	11	1	6	
8	36	1	?	1	36	1	43	1	78	
439	440	441	442	443	444	445	446	447	448	
3.7.1.5.11	2.3.5.11	3.2.7	2.13.17	443	2.3.3.7	5.89	2.23	3.149	2.6	
1	474	55	4	1	40	1	2	1	?	
1	31970	1110	36	1	782	1	6	1	?	

Table 3. Further Computations
We now record some partial computations considering specific primary groups of given orders.

Group Id	Number	64, 1	64, 2	64, 26	64, 50	64, 55	64, 83
64, 10	1	11354	2742	142	?	734410	
64, 183	3124	?	253350	2189661	585558		

Table 5. Enumerations of left braces of order 64

Group Id	Number	480, 4	480, 199	480, 212	480, 919	480, 934	480, 1180	480, 1213
480, 128	4928	?	958965	99970	?	39650		

Table 6. Enumerations of left braces of order 480

We conclude by presenting a comparison on the time taken (in seconds) by [13, Algorithm 5.1] and Algorithm 2.3 for enumerating skew left braces of order 32 for select primary groups which took considerable amount of time on MAGMA.
Group Id of the primary group	32, 23	32, 24	32, 25	32, 28	32, 29	32, 30
Number of skew brace structures	39488	70400	138336	138336	138336	137526
Time on Algorithm 5.1 [13]	11238	9808	18720	10193	10083	34005
Time on Algorithm 2.3	539	709	1905	4308	3135	34005
Group Id of the primary group	32, 31	32, 32	32, 33	32, 45	32, 47	32, 51
Number of skew brace structures	70944	69236	91008	8015	7870	744
Time on Algorithm 5.1 [13]	14568	18342	17222	30102	28848	#
Time on Algorithm 2.3	4797	7302	8869	30	68	8

Table 7. Time comparison on skew left braces of order 32

Program was stopped after running more than a month without a result.

Acknowledgements. The third named author thanks L. Vendramin for supplying MAGMA codes for computing skew left braces, and acknowledges the support of DST-RSF Grant INT/RUS/RSF/P-2. The first and second named authors acknowledge the support from the RFBR-18-01-0057.

References

[1] D. Bachiller, Counterexample to a conjecture about braces. J. Algebra 453 (2016), 160-176.
[2] D. Bachiller, F. Cedo, E. Jespers and J. Okniński, Iterated matched products of finite braces and simplicity; new solutions of the Yang-Baxter equation. Trans. Amer. Math. Soc. 370 (2018), 4881-4907.
[3] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, Journal of Symbolic Computation 24 (1997), 235-265.
[4] F. Cedo, Left braces: solutions of the Yang-Baxter equation. Adv. Group Theory Appl. 5 (2018), 33-90.
[5] F. Cedo, E. Jespers and A. del Rio, Involutive Yang-Baxter groups. Trans. Amer. Math. Soc. 362 (2010), 2541-2558.
[6] F. Cedo, A. Smoktunowicz and L Vendramin, Skew left braces of nilpotent type. Proc. London Math. Soc. 118 (2019), 1367-1392.
[7] L. N. Childs, Skew braces and the Galois correspondence for Hopf Galois structures. J. Algebra 511 (2018), 270-291.
[8] P. Dehornoy, Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs. Adv. Math. 282 (2015), 93-127.
[9] V. Drinfeld, On some unsolved problems in quantum group theory. Quantum groups (Leningrad, 1990), Lecture Notes in Math. 1510, Springer, Berlin, 1992, pp. 1-8.
[10] B. Eick, H. U. Besche and E. O’Brien, SmallGrp - A GAP package, version 1.3 (2018). (https://www.gap-system.org/Packages/smallgrp.html)
[11] P. Etingof, T. Schedler and A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation. Duke Math. J. 100 (1999), 169-209.
[12] The GAP Group, Groups Algorithms and Programming, version 4.10.2 (2019). (http://www.gap-system.org)
[13] L. Guarnieri and L. Vendramin, Skew braces and the Yang-Baxter equation. Math. Comp. 86 (2017), 2519-2534.
[14] T. Gateva-Ivanova, Set-theoretic solutions of the Yang-Baxter equation, braces and symmetric groups. Adv. Math. 338 (2018), 649-701.
[15] K. Nejabati Zenouz, Skew braces and Hopf-Galois structures of Heisenberg type. J. Algebra 524 (2019), 187-225.
[16] W. Rump, Braces, radical rings and the quantum Yang-Baxter equations, J. Algebra 307 (2007), 153-170.
[17] W. Rump, Classification of cyclic braces, II. Trans. Amer. Math. Soc. 372 (2019), 305-328.
[18] A. Smoktunowicz, On Engel groups, nilpotent groups, rings, braces and the Yang-Baxter equation. Trans. Amer. Math. Soc. 370 (2018), 6535-6564.
[19] L. Vendramin, Extensions of set-theoretic solutions of the Yang-Baxter equation and a conjecture of Gateva-Ivanova. J. Pure Appl. Algebra 220 (2016), 2064-2076.
[20] L. Vendramin, Problems on skew braces, Adv. Group Theory Appl. 7 (2019), 15-37. (https://arxiv.org/pdf/1706.07963.pdf)
Sobolev Institute of Mathematics, pr. ak. Koptyuga 4, Novosibirsk, 630090, Russia and
Novosibirsk State University, Novosibirsk, 630090, Russia
E-mail address: bardakov@math.nsc.ru

Sobolev Institute of Mathematics, pr. ak. Koptyuga 4, Novosibirsk, 630090, Russia and
Novosibirsk State University, Novosibirsk, 630090, Russia
E-mail address: neshch@math.nsc.ru

Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Allahabad-211 019, India
E-mail address: myadav@hri.res.in