Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent

Laura Wrzosek1,2,3, Sylvie Miquel1,2,3, Marie-Louise Noordine1,2,3, Stephan Bouet4,5,6, Marie Joncquel Chevalier-Cunt7,8,9, Véronique Robert1,2,3, Catherine Philippe1,2,10, Chantal Bridonneau1,2,3, Claire Cherbuy1,2,3, Catherine Robbe-Masselo7,8,9, Philippe Langella1,2,3* and Muriel Thomas1,2,3*

Abstract

Background: The intestinal mucus layer plays a key role in the maintenance of host-microbiota homeostasis. To document the crosstalk between the host and microbiota, we used gnotobiotic models to study the influence of two major commensal bacteria, Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii, on this intestinal mucus layer. B. thetaiotaomicron is known to use polysaccharides from mucus, but its effect on goblet cells has not been addressed so far. F. prausnitzii is of particular physiological importance because it can be considered as a sensor and a marker of human health. We determined whether B. thetaiotaomicron affected goblet cell differentiation, mucin synthesis and glycosylation in the colonic epithelium. We then investigated how F. prausnitzii influenced the colonic epithelial responses to B. thetaiotaomicron.

Results: B. thetaiotaomicron, an acetate producer, increased goblet cell differentiation, expression of mucus-related genes and the ratio of sialylated to sulfated mucins in mono-associated rats. B. thetaiotaomicron, therefore, stimulates the secretory lineage, favoring mucus production. When B. thetaiotaomicron was associated with F. prausnitzii, an acetate consumer and a butyrate producer, the effects on goblet cells and mucin glycosylation were diminished. F. prausnitzii, by attenuating the effects of B. thetaiotaomicron on mucus, may help the epithelium to maintain appropriate proportions of different cell types of the secretory lineage. Using a mucus-producing cell line, we showed that acetate up-regulated KLF4, a transcription factor involved in goblet cell differentiation.

Conclusions: B. thetaiotaomicron and F. prausnitzii, which are metabolically complementary, modulate, in vivo, the intestinal mucus barrier by modifying goblet cells and mucin glycosylation. Our study reveals the importance of the balance between two main commensal bacteria in maintaining colonic epithelial homeostasis via their respective effects on mucus.

Keywords: Germ-free rats, Goblet cells, Mucin O-glycosylation, KLF4, Short chain fatty acid
Background
Understanding the crosstalk between the microbiota and the intestinal epithelium is essential because of the involvement of the intestinal microbiota in human health [1]. About 90% of the bacterial community that composes the intestinal microbiota and colonizes the gastrointestinal tract (GIT) are members of the phyla Bacteroidetes or Firmicutes [2-4]. B. thetaiotaomicron is a Gram negative bacterium, belonging to the Bacteroides genus from the Bacteroidetes phylum. Faecalibacterium prausnitzii is a Gram positive bacterium, in the Clostridium leptum group from the Firmicutes phylum. These two species are metabolically complementary: B. thetaiotaomicron is an acetate producer whereas F. prausnitzii is an acetate consumer and a butyrate producer [5,6]. Both are major components of the intestinal microbiota and, therefore, contribute to the interactions between the microbiota and the GIT. To establish a relevant simplified model of microbiota, we studied these two commensal bacteria as functional members of the microbiome influencing host metabolism [7].

The intestinal mucus layer is located at the interface between the intestinal epithelium and the microbiota; it is, therefore, a key factor in the crosstalk between the intestinal epithelium and the microbiota and, hence, in the maintenance of intestinal homeostasis. Disruption of this protective layer may lead to inflammation [8]. Mucus is continuously secreted into the GIT lumen by specialized epithelial cells, the goblet cells, and is mainly composed of heavily O-glycosylated proteins called mucins [9]. The number and function of goblet cells are modulated by the microbiota [10-12]. However, neither the species nor the mechanisms involved in this process have been described. The microbiota expresses a wide range of carbohydrate-degrading enzymes which process otherwise indigestible dietary compounds and mucus polysaccharides [13,14]. The host genome does not encode homologs of many of these enzymes, evidence of the complementarity between host and microbiota and illustrating the adaptation of the intestinal microbiota to the host digestive environment [15,16]. B. thetaiotaomicron possesses a large repertoire of genes involved in sensing and hydrolyzing numerous diet- and host-derived polysaccharides [17,18]. According to nutrient availability, B. thetaiotaomicron can redirect its metabolism from dietary polysaccharides to host-derived polysaccharides, including mucus, and vice versa, and further refine its niche specificity [19,20]. This ability of B. thetaiotaomicron to grow on mucus contributes to its colonization and persistence in the GIT [18]. Although the ability of B. thetaiotaomicron to use polysaccharides from mucus has been described, little is known about its effect on goblet cells.

F. prausnitzii has been only poorly described in vivo; it is extremely oxygen sensitive and thus difficult to cultivate. Nevertheless, various observations link F. prausnitzii with health status. F. prausnitzii is of particular physiological importance because it can be considered as a sensor and a marker of human health [21]. Intestinal disorders, such as inflammatory bowel diseases [22-25], irritable bowel syndrome [26], colorectal cancer [27,28] and obesity [29] have all been reported to be associated with a diminished prevalence and abundance of F. prausnitzii. Moreover, several diseases have been shown to be associated with abnormal Bacteroidetes to Firmicutes ratios [1]. Therefore, analysis of the species B. thetaiotaomicron and F. prausnitzii may be informative about the crosstalk between the host and microbiota. The first objective of our work was to determine whether B. thetaiotaomicron affects goblet cell differentiation, mucin synthesis and glycosylation in the colonic epithelium. We then investigated how F. prausnitzii influences the colonic epithelial responses to B. thetaiotaomicron. For this study, we developed a new model based on B. thetaiotaomicron and F. prausnitzii di-associated gnotobiotic rodents to show metabolic cooperation between these species. This work illustrates how two bacteria, representative of the two main phyla, can modulate the mucus profile in the colon.

Results
Establishment of a model of Bacteroides thetaiotaomicron mono-associated rats stable as early as 2 days and up to 30 days after inoculation
B. thetaiotaomicron colonized the GIT of recipient germfree (GF) rats quickly and stably: the maximum count, 10^{10} CFU/g of content, was attained with one day of inoculation and was maintained for at least 30 days (Figure 1A). Scanning electron microscopy of cecal contents of Bt-2d (2 days after inoculation) and Bt-30d (30 days after inoculation) rats revealed B. thetaiotaomicron as short bacilli with rounded ends (Figure 1B); the bacteria were associated with luminal contents, food-residue particles and shed mucus, consistent with previous descriptions in the distal gut intestine [20]. The cell surface of B. thetaiotaomicron differed between Bt-2d rats and Bt-30d rats. Most of the bacteria in Bt-2d rats but not those in Bt-30d rats exhibited granules on the cell surface (Figure 1B). The presence of B. thetaiotaomicron was associated with the cecal-content pH being much lower than that in controls (Figure 1C). Short-chain fatty acid (SCFA) production by B. thetaiotaomicron was investigated: acetate and propionate was produced within two days of implantation but no butyrate was produced (Figure 1D). Thus, two days after inoculation, B. thetaiotaomicron was stably and abundantly implanted and was metabolically active.
B. thetaiotaomicron modulates the cell signaling pathway in the colon by favoring goblet cell differentiation

Histological staining of the colonic epithelium from Bt-2d and Bt-30d mono-associated rats and from GF rats showed that there were no significant differences in general morphology, crypt depth or total numbers of cells per crypt (see Additional file 1: Figure S1A and Figure 2A). B. thetaiotaomicron is specialized in the degradation of polysaccharides, notably those of mucus. We, therefore, analyzed goblet cell counts and differentiation. The numbers of goblet cells stained either by Alcian blue (AB) or periodic-acid Schiff (PAS), specific for acidic and neutral mucopolysaccharides, respectively, were significantly higher in Bt-2d and Bt-30d rats than GF rats (Figure 2B, C). Similarly, the amount of KLF4 protein, a transcription factor involved in goblet cell terminal differentiation [30], was higher in Bt-2d and Bt-30d than GF rats (Figure 2D). Also, muc2, muc4, c1galt1 and b4galt4 mRNAs, encoding proteins involved in mucin synthesis and glycosylation, were significantly more abundant in Bt-2d and Bt-30d rats than in GF rats (Table 1). The klf4 mRNA level was higher in Bt-2d, but not in Bt-30d, than in controls (Table 1). The amount of chromogranin A protein, a marker of enteroendocrine cells, another population of differentiated cells of the secretory lineage, was lower in Bt-30d rats than in control rats (Figure 2D). Thus, B. thetaiotaomicron appears to stimulate the goblet cell differentiation pathway of the secretory lineage.

Acetate, a bacterial metabolite produced by B. thetaiotaomicron, modulates goblet cells in vitro

The main metabolites produced by B. thetaiotaomicron in the GIT were acetate (up to 6 mM) and propionate (up to 2 mM) (Figure 1D). We evaluated the effects of these bacterial metabolites on the amount of KLF4 protein produced by the mucus-producing cell line HT29-MTX [31]. The amount of KLF4 protein was higher in the presence than in the absence of acetate (10 and 20 mM) (Figure 3A) whereas propionate (5 and 10 mM) and butyrate (1 and 5 mM) had no effect (Figure 3B, C). The amount of butyrate-responsive protein, P21 [32], was increased by incubation of HT29-MTX cells with butyrate and there were similar trends with propionate and acetate (Figure 3). Thus, consistent with the findings in vivo in the presence of B. thetaiotaomicron (Figure 2), KLF4 protein production in vitro was up-regulated by acetate, the major metabolite produced by B. thetaiotaomicron. However, the stimulation was lower in vitro than in vivo.

Metabolic cooperation between B. thetaiotaomicron and Faecalibacterium prausnitzii in vitro and in vivo

Bacterial metabolites are essential for epithelium homeostasis [33,34]. We investigated whether the effects of
B. thetaiotaomicron are modulated in the presence of F. prausnitzii which is a major butyrate-producer and acetate-consumer [5].

We first checked in vitro that B. thetaiotaomicron produced acetate and propionate and that F. prausnitzii consumed acetate and produced butyrate (Figure 4A). When both bacteria were grown together, butyrate was produced rather than acetate. The butyrate production by F. prausnitzii was higher in the presence than absence of B. thetaiotaomicron (10.9 ± 0.3 mM versus 7.8 ± 0.5 mM) suggesting that F. prausnitzii synthesized butyrate from the acetate produced by B. thetaiotaomicron. We thus developed an experimental model of associated B. thetaiotaomicron and F. prausnitzii in rats (Figure 4B). Two single consecutive inoculations of the two bacteria did not lead to a stable di-associated model. Inoculation with F. prausnitzii was thus repeated weekly (arrows on Figure 4B) but it became implanted only after

![Figure 2 Characterization of the colonic epithelial response in B. thetaiotaomicron mono-associated rats.](image)
From week 4 to week 8, a stable balance was maintained between the two bacteria, with *B. thetaiotaomicron* counts being 100-fold higher. In these Bt + Fp-30d rats, there was less acetate and more butyrate than in Bt-30d rats: 3.6 ± 0.2 mM acetate, 1.0 ± 0.1 mM propionate and 1.3 ± 0.1 mM butyrate in the cecal contents of Bt + Fp-30d rats, versus 6.0 ± 0.2 mM acetate, 1.8 ± 0.2 mM propionate and no butyrate in Bt-30d rats (Figure 4C).

F. prausnitzii is an extremely oxygen-sensitive bacterium. We, therefore, monitored the Eh value, reflecting the oxido-reduction potential, in the cecum. The Eh value progressively decreased in the presence of *B. thetaiotaomicron* (141 ± 9 mV to 46 ± 10 mV for Bt-2d and Bt-30d, respectively) from the value found for GF rats (178 ± 13 mV) and decreased further in the presence of *F. prausnitzii*, that is, in Bt + Fp-30d rats (−275 ± 13 mV) (Figure 4D). Moreover, the pH of the cecal content in Bt + Fp-30d rats was significantly higher (6.00 ± 0.04) than that in Bt-30d rats (5.88 ± 0.01).

We were unable to obtain *F. prausnitzii* monoassociated rats since successful implantation of *F. prausnitzii* required the presence of *B. thetaiotaomicron*. In di-associated rats, *B. thetaiotaomicron* produced acetate and *F. prausnitzii* converted it into butyrate. We then used this gnotobiotic model, where both bacteria were metabolically active, to study the effects of these two commensal bacteria on the mucus production pathway.

Table 1 Analysis of host gene expression in the colonic epithelium

	GF	Bt-2d	Bt-30d	Bt + Fp-30d
muc2	1.04 ± 0.05 ^a^	1.52 ± 0.10 ^a,b^	1.71 ± 0.10 ^b^	1.79 ± 0.22 ^a^
muc4	1.00 ± 0.05 ^a^	3.51 ± 0.33 ^b^	2.69 ± 0.29 ^a,b^	2.83 ± 0.43 ^b^
klf4	1.01 ± 0.05 ^a^	1.30 ± 0.10 ^b^	1.09 ± 0.04 ^a,b^	1.08 ± 0.09 ^a,b^
c1gal1	1.00 ± 0.03 ^a^	2.28 ± 0.26 ^b^	1.23 ± 0.16 ^a^	1.54 ± 0.24 ^a,b^
b4gal1	1.02 ± 0.11 ^a^	3.89 ± 0.42 ^b^	2.13 ± 0.20 ^a,c^	3.00 ± 0.39 ^b,c^
st3gal4	1.05 ± 0.14 ^a^	2.98 ± 0.37 ^b^	1.39 ± 0.16 ^a^	1.67 ± 0.22 ^a^
st6galnac3	1.07 ± 0.27 ^a^	0.80 ± 0.29 ^a^	1.11 ± 0.55 ^a^	0.41 ± 0.11 ^a^
ga1s3t3	n.d.	n.d.	n.d.	n.d.
chst7	1.17 ± 0.36 ^a^	1.84 ± 0.55 ^a^	1.02 ± 0.23 ^a^	0.77 ± 0.20 ^a^

Relative abundance of muc2, muc4, klf4, c1gal1, b4gal1, st3gal4, st6galnac3, ga1s3t3 and chst7 mRNAs in germfree (GF) (n = 4 to 10), Bt-2d (n = 4), Bt-30d (n = 6) and Bt + Fp-30d (n = 6). Means with different letters (a, b, c) are significantly different (P-value <0.05); n.d., not detected.

Week 4. From week 4 to week 8, a stable balance was maintained between the two bacteria, with *B. thetaiotaomicron* counts being 100-fold higher. In these Bt + Fp-30d rats, there was less acetate and more butyrate than in Bt-30d rats: 3.6 ± 0.2 mM acetate, 1.0 ± 0.1 mM propionate and 1.3 ± 0.1 mM butyrate in the cecal contents of Bt + Fp-30d rats, versus 6.0 ± 0.2 mM acetate, 1.8 ± 0.2 mM propionate and no butyrate in Bt-30d rats (Figure 4C). *F. prausnitzii* is an extremely oxygen-sensitive bacterium. We, therefore, monitored the Eh value, reflecting the oxido-reduction potential, in the cecum. The Eh value progressively decreased in the presence of *B. thetaiotaomicron* (141 ± 9 mV to 46 ± 10 mV for Bt-2d and Bt-30d, respectively) from the value found for GF rats (178 ± 13 mV) and decreased further in the presence of *F. prausnitzii*, that is, in Bt + Fp-30d rats (−275 ± 13 mV) (Figure 4D). Moreover, the pH of the cecal content in Bt + Fp-30d rats was significantly higher (6.00 ± 0.04) than that in Bt-30d rats (5.88 ± 0.01).

We were unable to obtain *F. prausnitzii* monoassociated rats since successful implantation of *F. prausnitzii* required the presence of *B. thetaiotaomicron*. In di-associated rats, *B. thetaiotaomicron* produced acetate and *F. prausnitzii* converted it into butyrate. We then used this gnotobiotic model, where both bacteria were metabolically active, to study the effects of these two commensal bacteria on the mucus production pathway.

F. prausnitzii shifts the steady state induced by *B. thetaiotaomicron* in the colonic epithelium

In Bt + Fp-30d rats, colonic epithelium morphology, crypt depth and total number of cells per crypt were similar to those in Bt-30d rats (see Figure 5A and Additional file 1: Figure S1A). However, the numbers of AB- and PAS-positive cells per crypt were lower in Bt + Fp-30d than Bt-30d rats (see Figure 5B and Additional file 1: Figure S1B, C). Furthermore, the amount of KLF4 protein tended to be lower in Bt + Fp-30d than Bt-30d rats (Figure 5C). The amounts of muc2, muc4, klf4, c1gal1 and b4gal1 mRNAs were not different between

Figure 3 Effects of bacterial metabolites on KLF4 protein in HT29-MTX cells. Representative Western blot and densitometric analyses of KLF4 and P21 proteins in HT29-MTX cells incubated with (A) 0, 10, 20 mM acetate, (B) 0, 5, 10 mM propionate, and (C) 0, 1, 5 mM butyrate. Each graph reports means of three independent experiments with three internal repeats per experiment. Means with different letters are significantly different (P-value <0.05).
Bt-30d and Bt + Fp-30d rats (Table 1). MUC2 staining was clearly lower in Bt + Fp-30d than Bt-30d rats and, indeed, was similar to that in GF rats (Figure 5D). The numbers of MUC2-positive cells tended to be lower in GF and Bt + Fp-30d rats (19.5 ± 0.6 and 21.6 ± 1.08 per crypt, respectively) than in Bt-30d rats (22.8 ± 1.7 per crypt). Chromogranin A protein was more abundant in Bt + Fp-30d than Bt-30d rats (Figure 5C). Thus, in this model with two metabolically complementary bacteria, *F. prausnitzii* seemed to attenuate the effects of *B. thetaiotaomicron* on goblet cell differentiation.

Implantation of both commensal bacteria is associated with a shift in the mucin glycosylation profile

Having investigated mucus quantity by evaluating goblet cell number and mucin synthesis, we assessed expression of genes encoding host enzymes and mucus quality by studying the profile of mucin O-glycosylation. We performed analyses of sialyltransferase (*st3gal4* and *st6galnac3*) and sulfotransferase (*gal3st3* and *chst7*) gene expression (Table 1). In Bt-2d rats, we observed an increase in the expression of the sialyltransferase *st3gal4*. No modification was observed for the other genes tested. In parallel, we quantified the proportions of neutral/sulfated/sialylated oligosaccharides in the rat colonic mucins by studying the profile of mucin O-glycosylation. There were substantial changes to mucin glycosylation after colonization by *B. thetaiotaomicron* (see Additional file 2: Table S1). In Bt-2d rats, the proportions of sulfated (4.5% of total oligosaccharides instead of 12.9%) and neutral (40.1% instead of 52.8%) oligosaccharides were lower than in GF rats, and this was associated with higher proportions of O-glycans carrying NeuAc (24.2% instead of 18.9%) or NeuGc (31.2% instead of 15.4%) residues (Figure 6A). Only minor differences were observed between the mucins in Bt-2d and Bt-30d rats. The pattern of glycosylation of mucins from di-associated Bt + Fp-30d rats resembled that in GF rats. Interestingly, *B. thetaiotaomicron* increased the ratio of sialylated (NeuAc and NeuGc) to sulfated mucins in mono-associated compared to GF and di-associated rats (Figure 6B). Thus, as observed for goblet cell differentiation, *F. prausnitzii* seemed to attenuate the effects of *B. thetaiotaomicron*.

Figure 4 Behavior of *B. thetaiotaomicron* and *F. prausnitzii* in combination in vitro and in vivo. (A) Acetate, butyrate and propionate concentrations from culture media, pure cultures of *B. thetaiotaomicron* (Bt), *F. prausnitzii* (Fp) and cocultures. (B) Establishment of *B. thetaiotaomicron* and *F. prausnitzii* in the gastrointestinal tract (GIT) of Bt + Fp-30d rats (n = 16) was monitored weekly by enumeration in the feces; arrows represent the various inoculations with *F. prausnitzii* before successful colonization. (C) Cecal concentration of short chain fatty acids (SCFA) in the cecum of germfree (GF) (n = 12), Bt-30d rats (n = 19), and Bt + Fp-30d rats (n = 16). (D) Measurement of oxidoreduction potential (mV) in the cecal contents of GF (n = 11), Bt-2d (n = 13), Bt-30d (n = 19) and Bt + Fp-30d rats (n = 16). Means with different letters are significantly different (P-value <0.05).
Discussion

We report that commensal bacteria can influence goblet cells and mucin composition in the gut, providing new information about the relation among mucus, bacteria and intestinal homeostasis. *B. thetaiotaomicron* enhances goblet cell differentiation leading to an increase of goblet cell number and mucin gene expression in the colon of gnotobiotic rats. The presence of *B. thetaiotaomicron* also affects the composition of mucin O-glycans, with relative decreases in sulfated and neutral oligosaccharides in favor of sialylated oligosaccharides. *B. thetaiotaomicron*, therefore, appears to provoke modifications in the secretory lineage compared to GF rats, favoring mucus production and we could hypothesize that...
this is possibly for its own benefit. When \textit{B. thetaiotaomicron} is associated with \textit{F. prausnitzii}, which is an acetate consumer and a butyrate producer, the effects on both goblet cells and mucin O-glycosylation are attenuated. Using a novel gnotobiotic model, which is the first described involving \textit{F. prausnitzii}, we showed that two major species of commensal bacteria can modulate the effects of the bacteria on goblet cells and thus on mucus production and mucin glycosylation.

The GIT is an environment with harsh constraints (pH, oxygen, access to nutrients) which shape the microbial composition. The genome of \textit{Bacteroides} species possesses gene clusters for capsular polysaccharide synthesis [17,18] and these polysaccharides are important for bacterial colonization of the GIT: they improve survival in the GIT, and also stimulate the immune system [35-37]. Scanning electron microscopy revealed differences in the \textit{B. thetaiotaomicron} cell wall in Bt-2d and Bt-30d rats. Possibly, during the first days of adaptation to the GIT, \textit{B. thetaiotaomicron} produce capsular polysaccharides which collapse through a dehydration process, as previously described [38,39]. The transcriptomic profile of \textit{B. thetaiotaomicron} before and after its passage through GIT shows that \textit{B. thetaiotaomicron} adapts its metabolism to survive in the GIT [20]. When \textit{B. thetaiotaomicron} is associated with \textit{Eubacterium rectale}, a representative of the \textit{C. coccoides} group, both bacteria adapt their own metabolism to the presence of the other [6]. Thus, bacteria in the GIT presumably adapt to the host, and also to other bacteria [40]. In this study, we observed that in mono-associated rats, \textit{B. thetaiotaomicron} induces goblet cell differentiation leading to an increase in mucin gene expression and goblet cell number, and a parallel decrease in chromogranine produced by enteroendocrine cell. These observations are in accordance with previous work showing that the colonic epithelium also adapts to the presence of bacteria [41-43]; these adaptations are parts of the mutual interactions essential for human health.

We show that, following colonization of the GIT by \textit{B. thetaiotaomicron}, the pattern of mucin glycosylation changes, with increased expression of glycans carrying sialic acid residues (either NeuAc or NeuGc), correlated with decreased expression of sulfated and neutral oligosaccharides. A previous immunohistochemical study described similar alterations in the glycosylation pattern in the mouse intestine, induced by \textit{B. thetaiotaomicron} implantation or by soluble factors produced by this microorganism [44]. \textit{B. thetaiotaomicron} also induces fucosylation of intestinal epithelial cells, which is linked to its ability to use fucose, a component of glycosylated mucin [45]. Thus, glycan production or distribution is modulated by \textit{B. thetaiotaomicron}, and this may involve processes important for signaling and mediating the host mucosal response. According to the enhancement of the expression of \textit{st3gal4} in the presence of \textit{B. thetaiotaomicron}, we can assume that there is a mechanism by which this bacterium modulates the composition of mucus chain O-glycans by impacting directly enzyme expression of the host. \textit{B. thetaiotaomicron} may require high levels of expression of sialylated mucins for attachment and colonization of the GIT. Indeed, \textit{B. thetaiotaomicron} may express adhesins specifically recognizing and binding to sialic acid residues and may also use sialic acid residues as host substrates. \textit{B. thetaiotaomicron} possesses 28 predicted sulfatases and only 1 single predicted anaerobic sulfatase-maturing enzyme which allow bacteria to adapt to and forage on host sulfated glycans as nutrients [46]. Our observations of a substantial decrease in sulfated oligosaccharides in the rats colon two days after \textit{B. thetaiotaomicron} colonization are consistent with this enzymatic potential. Presumably, \textit{B. thetaiotaomicron} uses these sulfate residues rapidly not only as nutrient sources but also to gain access to other monosaccharides, such as N-acetylgalactosamine (GlcNAc) and galactose (Gal), the two monosaccharides substituted by sulfate residues on mucin O-glycans. In a favorable ecosystem (that is, in the absence of other microorganisms), there is probably no need for the bacteria or the host to maintain a high level of expression of sulfated glycans. However, when \textit{B. thetaiotaomicron} is associated with \textit{F. prausnitzii}, the proportion of sulfated glycans is greater than that observed in the presence of \textit{B. thetaiotaomicron} alone. This suggests that, in a more complex environment involving a competitive ecosystem, sulfated glycans may confer an ecological advantage on \textit{B. thetaiotaomicron}.

We were unable to obtain, on a large scale and reproducibly, \textit{F. prausnitzii} mono-associated rats; the implantation of \textit{F. prausnitzii} required the prior presence of \textit{B. thetaiotaomicron}. Furthermore, \textit{F. prausnitzii} was unable to colonize the GIT early after the introduction of \textit{B. thetaiotaomicron}. This may have been due to the physicochemical environment. \textit{F. prausnitzii} became established in the gut only after a decrease in the oxidoreduction potential, caused by the presence of \textit{B. thetaiotaomicron}, suggesting that \textit{B. thetaiotaomicron} “prepares” the GIT to accommodate sustainably more oxygen-sensitive bacteria. \textit{F. prausnitzii} and, to a larger extent, the \textit{C. leptum} group, arrive in the GIT late after birth, presumably because they are sensitive to oxygen. Moreover, after intestinal resection, disrupting the gut structure and exposing the colon to oxygen, the \textit{C. leptum} group disappears from the microbiota [47]. In the case of strict anaerobes like \textit{F. prausnitzii}, their ability to colonize is governed by the physicochemical constraints of gut rather than by any lack of metabolic substrates. This contrasts with \textit{Lactobacillus bulgaricus},
which is an aerobic-tolerant lactic acid bacterium, and which does not colonize the gut of GF rats in the absence of lactose [48]. That colonization by B. thetaiotaomicron precedes the implantation of F. prausnitzii gives clues about mechanisms governing microbial ecology and processes of colonization.

The two bacteria were metabolically complementary both in vitro and in vivo. F. prausnitzii consumes acetate produced by B. thetaiotaomicron and in turn produces butyrate. Short-chain fatty acids (SCFA) trigger pleiotropic signals in the host, including signals regulating mucin synthesis and secretion [33,49-51]. SCFA, in particular butyrate and to a lesser extent acetate, are reported to have inducer effects on mucin synthesis and production in vitro [33,49,51]. Butyrate also increases the expression of the transcription factor klf4 in HT29 cells [52]. On the contrary, another experiment reported an inhibitor effect of butyrate on mucin synthesis in vitro [53]. All these data show the potential role of SCFA in modulating the mucus pathway and it may be a mechanism by which they affect the goblet cell differentiation pathway in our gnotobiotic models. Using HT29-MTX, a mucus producing cell line, we showed that acetate increases KLF4 abundance. Understanding the effects of the microbiota on mucus production and goblet cell differentiation is of major importance as mucus acts as a protective barrier and disruption of this mucus layer leads to inflammation [54]; abnormalities of the mucus layer, and modulations of goblet cells and mucin secretion have been described in inflammatory bowel diseases [55]. In a murine model of DSS-induced colitis, the mucus layer is altered before the induction of any inflammation evidencing the importance of mucus layer integrity to prevent inflammation [56]. The O-glycosylation pattern of mucins has also a determinant role in health, with sulfated colonic mucins playing a protective role [57]. Indeed, mucins are poorly sulfated in patients with ulcerative colitis [58]. Butyrate induces the expression of sulfotransferases, the enzymes catalyzing sulfation of mucin in the mouse colon [57] and also up-regulates expression of galactose-3-O-sulfotransferase 4 in human intestinal epithelial goblet cells [59]. The increase in sulfated mucins observed in our B. thetaiotaomicron and F. prausnitzii di-associated rats is consistent with these previous studies. We, therefore, suggest that metabolites, mainly acetate and butyrate, produced by B. thetaiotaomicron and F. prausnitzii, respectively, may be responsible, at least in part, for the modifications that we observed in goblet cells and mucin O-glycosylation.

Conclusions

Our study reveals relationships between intestinal microbiota and the differentiation and secretory program of colonic goblet cells. We propose that B. thetaiotaomicron and F. prausnitzii, two main members of microbiota representative of Bacteroidetes and Firmicutes, contribute to the establishment of epithelial homeostasis. These two bacteria, which are metabolically complementary, modulate in vivo the intestinal mucus barrier by modifying goblet cells and mucin glycosylation. Here we show how the balance between B. thetaiotaomicron and F. prausnitzii could be determinant for maintaining colonic epithelial homeostasis and health via their respective effects on mucus.

Methods

Bacterial strains and culture conditions

The reference strains B. thetaiotaomicron VPI-5482 (ATCC 29148) and F. prausnitzii A2-165 (DSM 17677), isolated from human fecal stool, were used. Bacteria were grown overnight at 37°C in YBHI medium (brain-heart infusion medium supplemented with 0.5% Difco yeast extract (Becton Dickinson and Company, Le Pont De Claix, France) supplemented with 1 mg/ml cellobiose, 1 mg/ml maltose and 0.5 mg/ml L-cysteine (all from Sigma-Aldrich, St-Louis, MO, USA) in an anaerobic chamber containing a gas mix of 90% N₂, 5% CO₂ and 5% H₂. For co-culture, the 24 h pre-culture of each was added to fresh medium at 1/10 and 1/100 for F. prausnitzii and B. thetaiotaomicron, respectively.

B. thetaiotaomicron and/or F. prausnitzii were enumerated weekly in the feces of mono- and di-associated rats. Fresh feces were introduced into the anaerobic chamber, serially diluted 10-fold and plated on supplemented YBHI agar. To enumerate only F. prausnitzii in the feces of di-associated rats, 1 ml of the 10² dilution of the feces was treated with 0.1 ml of sodium azide (3%) for five minutes at 37°C and then serially diluted 10-fold and plated on supplemented YBHI agar with added sodium azide (0.02%).

Animals and experimental design

All procedures were carried out according to European and French guidelines for the care and use of laboratory animals (permission 78-123, granted to M.T.). GF rats (males, Fisher 344) were used. Animals were born and bred at the Institut National de la Recherche Agronomique (Jouy-en-Josas, France). All rats were housed in Trexler-type isolators (La Calhène, Vézly, France) and fed with a standard diet, rich in polysaccharides (R03, SAFE) sterilized by gamma irradiation (45 kGy). GF rats were used as controls (n = 16). To obtain rats mono-associated with B. thetaiotaomicron, GF rats were inoculated by a single oral gavage with 1 ml of culture of B. thetaiotaomicron (10⁹ CFU/ml) and euthanized 2 days (Bt-2d rats, n = 13) or 30 days (Bt-30d rats, n = 19) after inoculation. To obtain rats di-associated with B. thetaiotaomicron and F. prausnitzii, GF rats were orally inoculated with 1 ml of culture of B. thetaiotaomicron; 24 h...
later, when this bacterium was established in the GIT, 1 ml of 100× concentrated culture of *F. prausnitzii* (7×10⁹ CFU/ml) was administered orally to a donor rat pretreated with 0.1 ml of sodium bicarbonate (0.2 M). This manipulation was repeated every week until *F. prausnitzii* was established in a donor rat. Once one rat di-associated with the two bacteria was obtained, its feces were administrated orally to additional rats pretreated with sodium bicarbonate. Rats were euthanized 30 days after *F. prausnitzii* implantation (Rt + Fp-30d rats, n = 16).

All rats were euthanized at the age of three months; rats were anesthetized at 9:00 a.m. with isoflurane,ecal contents were collected and colons were recovered and immediately used for cell isolation or histology.

Scanning electron microscopy
Scanning electron microscopy [60] analyses were performed on the MIMA2 platform (INRA, Massy, France). Aliquots of 0.2 g of cecal contents were suspended and fixed in 200 μl of glutaraldehyde, 3% ruthenium red for two hours in an anaerobic chamber and then stored at 4°C. Scanning electron microscopy was performed as reported previously [47].

Short chain fatty acid analysis
Acetate, propionate and butyrate concentrations were determined in cecal contents, supernatants from bacterial culture and culture media after water extraction of acidified samples using gas liquid chromatography (Nelson 1020, Perkin-Elmer, St Quentin en Yvelines, France) as described previously [61]. SCFA concentrations are expressed in mM.

Oxidoreduction potential (Eh) and pH measurement
The measurement of pH and oxidoreduction potential was as described by Martin et al., after a total immersion of the electrode in the cecal content [62]. A combined autoclavable electrode (InLab®, Mettler-Toledo SAS, Viroflay, France) was used for all measurements.

Histology and immunohistochemistry assays
Flushed colons were opened longitudinally and cut into 2 cm sections. The samples were fixed in 4% paraformaldehyde (4 h, room temperature), dehydrated, and embedded in paraffin according to standard histological protocols. Four-micrometer thick sections of distal colon were mounted on SuperFrost® Plus slides (Thermo Fisher, Waltham, MA, USA). Paraffin-embedded sections were deparaffinized and stained with: Haematoxylin-Eosin-Safran (HES) to measure crypt depth and Alcian blue (AB) solution pH 2.5 or periodic acid-Schiff (PAS) reagent to count goblet cell number per crypt. MUC2 immunostaining was performed using the EnVision + System-HRP (Dako-Cytomation, Trappes, France) and anti-MUC2 (1:5,000; sc-15334, Santa Cruz Biotechnology, Heidelberg, Germany) as the primary antibody as previously described [12]. For all markers studied (HES, AB, PAS, MUC2), only U-shaped longitudinally cut crypts with open lumina were considered. Results reported are means obtained by analysis two distal colon sites for each rat and at least 10 crypts per site with NanozoomerDigitalPathology view software (Hamamatsu Photonics, Hamamatsu, Japan).

Western blot analysis
Colon epithelial cells were isolated from the whole colon according to the method described by Cherbuy et al. [63]. The cell pellet from whole colon or HT29-MTX cell cultures was immediately used for protein extraction [41] and Lowry’s procedure was used for protein assays [64]. Western blot analysis was performed as previously described [41] using 12% SDS-PAGE and anti-KLF4 (1:500; IMG-6081A, Imgenex, San Diego, CA, USA), anti-Chromogranin A (1:500; ab15160, Abcam, Cambridge, MA, USA), or anti-P21 (1:200; sc-397, Santa Cruz Biotechnology) with appropriate peroxidase-conjugated secondary antibodies (Jackson ImmunoResearch Laboratories, West Grove, PA, USA). For each Western blot, protein loads were determined using anti-cullin1 antibodies (1:400; sc-17775, Santa Cruz Biotechnology). Signals detected on autoradiographic films were quantified by scanning densitometry with Biovision 1000 and Bio-1D software (Vilber Lourmat, France).

Total RNA extraction and real-time quantitative PCR analysis
Total RNA was extracted from isolated colonic epithelial cells by the guanidinium thiocyanate method [65]. RNA concentration and purity were determined by absorbance measurement using a nanodrop ND-1000 (Thermo Fisher Scientific, Illkirch, France) and RNA Integrity Number (RIN) was checked using the RNA 6000 Nano LabChip® kit (Agilent Technologies, Santa Clara, CA, USA) and the Agilent 2100 bioanalyzer at ICE platform (INRA, Jouy-en-Josas, France). All RNA had a RIN between 8 and 10, indicating a high RNA quality in all samples. Reverse transcription was performed with 7 μg of RNA of each sample using the High-Capacity cDNA Archive Kit (Applied Biosystems by Life Technologies SAS, Saint Aubin, France) according to the manufacturer’s instructions. Each cDNA sample was tested for PCR inhibition with the TaqMan® Exogenous Internal Positive Control (Applied Biosystems) and no inhibition was detected for any sample. The cDNA products were analyzed in triplicate by RT-qPCR with an ABI PRISM 7000 Sequence Detection System and the 7000 system software version 1.2.3 (Applied Biosystems). Several genes were analyzed using TaqMan Gene Expression Assays (Applied Biosystems): klf4 (Rn00821506_g1), muc2 (Rn01498197_m1), muc4
procedure. After derivation, the reaction products were permethylated by the sodium hydroxide
water and lyophilized. Mucins were then subjected to isopycnic density-gradient centrifugation (Beckman Coulter LE80K ultracentrifuge; 70.1 Ti rotor, 58,000 rpm at 15°C for 72 h; Beckman Coulter France S.A.S, Villepinte, France). The mucin-containing fractions were pooled, dialyzed against 1.4 g/mL and mucins were purified by isopycnic density-gradient centrifugation in B. thetaiotaomicron and F. prausnitzii di-associated rats. (A) Representative pictures of colonic sections stained with HES in GF, Bt-2d, Bt-30d and Bt + Fp-30d rats. Representative pictures showing goblet cells staining with (B) alcian blue (indicated as AB) and (C) periodic acid Schiff (indicated as PAS) in Bt-30d rats and Bt + Fp 30d (n = 3) rats. Scale bars, 50 μm.

Additional file 2: Table S1. Deduced monosaccharide composition of mucus O-glycans from GF, Bt-2d, Bt-30d and Bt + Fp 30d rats, as identified by MALDI-TOF mass spectrometry in positive ion reflective mode as [M + Na+]. The relative proportions of each oligosaccharide were calculated by integration of peaks on MS spectra. Mucus O-glycans types were separated into neutral oligosaccharides (blue), oligosaccharides carrying sialic acid (orange) and sulfated residues (green). Results are presented as means ± SD of the percentage of each oligosaccharide.

Analysis of mucin glycosylation
Rat colonic mucosa was scraped and mucins were purified as previously described [66]. Briefly, mucins were solubilized in 4 M guanidine chloride solution containing 5 mM EDTA, 10 mM benzamidine, 5 mM N-ethylmaleimide, 0.1 mg/mL soy bean trypsin inhibitor and 1 mM PMSF (phenylmethanesulfonyl fluoride). Bacteria were removed by centrifugation at 3,000 g for 15 minutes. Supernatant was collected and CsCl was added to give a density of 1.4 g/mL and mucins were purified by isopycnic density-gradient centrifugation (Beckman Coulter LE80K ultracentrifuge; 70.1 Ti rotor, 58,000 rpm at 15°C for 72 h; Beckman Coulter France S.A.S, Villepinte, France). The mucin-containing fractions were pooled, dialyzed against water and lyophilized. Mucins were then subjected to β-elimination under reducing conditions (0.1 M NaOH, 1 M KBH4 for 24 h at 45°C). The mixtures of oligosaccharide alditols were permethylated by the sodium hydroxide procedure. After derivation, the reaction products were dissolved in 200 μl of methanol and further purified on a C18 Sep-Pak (Waters Corporation, Milford, MA, USA). Permethylated oligosaccharides were analyzed by MALDI TOF mass spectrometry in positive ion reflective mode as [M + Na+]. The relative proportions of each oligosaccharide were calculated by integration of peaks on MS spectra, and are expressed as percentages of the total.

Statistical analyses
Data are reported as means ± SEM for the number of animals indicated. Group data were compared using one-way analysis of variance (ANOVA) followed by a Wilcoxon test (jmp version 7) when the ANOVA revealed differences between groups. Differences with P-value <0.05 were considered to be statistically significant.

Additional files

Additional file 1: Figure S1. Characterization of the colonic epithelial response in B. thetaiotaomicron and F. prausnitzii di-associated rats. (A) Representative pictures of colonic sections stained with HES in GF, Bt-2d, Bt-30d and Bt + Fp-30d rats. Representative pictures showing goblet cells staining with (B) alcian blue (indicated as AB) and (C) periodic acid Schiff (indicated as PAS) in Bt-30d rats and Bt + Fp 30d (n = 3) rats. Scale bars, 50 μm.

Abbreviations
AB: Alcian blue; Ct: Threshold cycle; DMEM: Dulbecco’s modified Eagle’s minimal essential medium; FCS: Fetal calf serum; Gal: galactose; GF: germfree; GIT: Gastrointestinal tract; GlcNAc: N-acetylglucosamine; HES: Haematoxylin-Eosin-Safran; PAS: Periodic-acid Schiff; RIN: RNA Integrity Number; SCFA: Short-chain fatty acid.

Competing interests
The authors have no conflicting financial interests.

Authors’ contributions
LW, SM, CC, PL and MT designed in vivo and in vitro and in vivo experiments and LW, SM, MLN, SB, MJC, VR, CP, CB and CRM performed these experiments. LW, SM, CRM, PL and MT wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We thank Alhosna Benjdia, Muriel Mercier-Bonin, Harry Sokol and Julie Tomas for fruitful discussions and critical reading of the manuscript and the Animalerie Axénique de MICALIS (ANAXEM) platform (Microbiologie de l’Alimentation au Service de la Santé (MICALIS), Jouy-en-Josas, France) for animal facilities. We gratefully acknowledge Thierry Meylheuc for scanning electron microscopy (MIMA2 platform, INRA, Massy, France) and Rémi Cachon for technical assistance with oxidoreduction potential (Eh) analysis (GPMA, Dijon, France). LW was the recipient of a PhD grant from the French Ministry of Education and Research. This study was a part of FPARIS collaborative project selected and supported by the Vitagora Competitive Cluster and funded by the French FUI (Fond Unique Interministériel; FUI: n°F1010012D), the FEDER (Fonds Européen de Développement Régional,
Intestinal goblet cells and mucins in health and disease:

1. Leith AS: Microbes in gastrointestinal health and disease. Gastroenterology 2009, 136:65–80.

2. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI: Diversity of the human intestinal microbial flora. Science 2005, 308:1635–1638.

3. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Relman DA: Functional diversity of the human gut microbiome. Science 2008, 320:1647–1651. Erratum in: Science 2008, 322:1188.

4. Tzipori S, Reis B, Huggett J, Gonsalves C, Amin M, Levander S, Bajaj ES, Davis PA: Growth requirements and fermentation products of Faecalibacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 2002, 52:1411–1416.

5. Hohlfeld R, Zilles K, Schilling K, Neufang B, Klapper JH: Comparative and functional genomics analyses of Faecalibacterium prausnitzii indicate strain-specificity and host adaptation. FEMS Microbiol Lett 2007, 269:360–368.

6. Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepeau P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renaud P, et al: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464:56–59.

7. Xu J, Bursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI: A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 2003, 299:2074–2078.

8. Martens EC, Chiang HC, Gordon JI: Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 2008, 4:447–457.

Received: 25 January 2013 Accepted: 15 May 2013

Published: 21 May 2013

References

1. Neish AS: Microbes in gastrointestinal health and disease. Gastroenterology 2009, 136:65–80.

2. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gil SR, Nelson KE, Relman DA: Diversity of the human intestinal microbial flora. Science 2005, 308:1635–1638.

3. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Relman DA: Functional diversity of the human gut microbiome. Science 2008, 320:1647–1651. Erratum in: Science 2008, 322:1188.

4. Tzipori S, Reis B, Huggett J, Gonsalves C, Amin M, Levander S, Bajaj ES, Davis PA: Growth requirements and fermentation products of Faecalibacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 2002, 52:1411–1416.

5. Hohlfeld R, Zilles K, Schilling K, Neufang B, Klapper JH: Comparative and functional genomics analyses of Faecalibacterium prausnitzii indicate strain-specificity and host adaptation. FEMS Microbiol Lett 2007, 269:360–368.

6. Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepeau P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renaud P, et al: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464:56–59.

7. Xu J, Bursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI: A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 2003, 299:2074–2078.

8. Martens EC, Chiang HC, Gordon JI: Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 2008, 4:447–457.

9. Bursell MK, Martens EC, Gordon JI: Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem 2006, 281:36269–36279.

10. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Bhuler JD, Gordon JI: Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005, 307:1095–1099.

11. Sokol H, Pigneur B, Watterot L, Laikadi O, Bermudez-Human LG, Gratadoux JI, Blugeon S, Broduerre C, Forer J, Cortinier G, Grangeot-Kero G, Varescon P, Nocchi P, Trugnan G, Thomas G, Blottiere H, Dore J, Marteau P, Seksik P, Langella P, Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterial identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008, 105:16731–16736.

12. Manichanh C, Rottgitter-Goiss L, Bonnadea A, Goux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J: Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 2006, 55:205–211.

13. Seksik P, Sokol H, Lepeau P, Varescon P, Nocchi P, Manichanh C, Mangeri I, Pochart P, Dore J, Marteau P: Review article: the role of bacteria in onset and perpetuation of inflammatory bowel disease. Aliment Pharmacol Ther 2006, 24:11–18.

14. Sokol H, Seksik P, Forer J, Firmesse O, Nonn-Lamurier I, Beaugerie L, Cosnes J, Cortinier G, Marteau P, Dore J: Low counts of Faecalibacterium prausnitzii in colitis microbiota. IJFMBM 2009, 15:1183–1189.

15. Wadhwa G, Alam J, Dhar N, Ahmad I, Malik N, Ganguly A, Jain A, Sethi S, Chandra S, Vats A, Jain S, Khurana JK, Khurana J, Garg A, Khurana JK: The diversity of the Faecalibacterium prausnitzii in the colorectal cancer (CRC) patients. PLoS One 2011, 6:e16393.

16. Strauss J, Jin Y, Zhong H, Zhang J, Lincion J, Wong ML, Xu A, Chavakis T, Borsboom AB, Ehrnhart-Borsboom M, Lamoureaux-Zepher V, Lohmann T, Wolf T, Borsboom MJ: Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J 2012, 12(4):287–302.

17. Katz JP, Pereraulk N, Goldstein BG, Lee CS, Labsky PA, Yang WW, Kaetzel KH: The zinc-finger transcription factor KLF4 is required for terminal differentiation of goblet cells in the colon. Development 2002, 129:6219–6228.

18. Lesuffleur T, Porchet N, Aubert JP, Swallow D, Gunn JR, Kim YS, Real FK, Zweibaum A: Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucous-secreting HT-29 cell subpopulations. J Cell Sci 1993, 106:771–783.

19. Archer SY, Meng S, Shei A, Hodin RA: Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 2011, 6:e16393.
intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem J 2009, 420:211–219.

34. Macfarlane GT, Macfarlane S: Fermentation in the human large intestine: its physiological consequences and the potential contribution of prebiotics. J Clin Gastroenterol 2011, 45:5120–5127.

35. Coyne MJ, Chatzidsaki-Livanis M, Paolelli LC, Comstock LE: Role of glycans on the bacterial symbiont Bacteroides fragilis. Proc Natl Acad Sci U S A 2008, 105:13099–13104.

36. Coyne MJ, Reinaip B, Lee MM, Comstock LE: Human symbionts use a host-like pathway for surface fucosylation. Science 2005, 307:1778–1781.

37. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL: An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005, 122:107–118.

38. Evarard B, Balestrino D, Doguillert A, Bouya-Gachancard JI, Charbonnel N, Forestier C, Tidion A: Roles of capsule and lipopolysaccharide O antigens in interactions of human monocyte-derived dendritic cells and Klebsiella pneumoniae. Infect Immun 2010, 78:210–219.

39. Kachlany SC, Levery SB, Kim JS, Reuhs BL, Lion LW, Ghiorse WC: Bacteroides thetaiotaomicron influence the production of mucus glycans and S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging glycosylation changes. J Biol Chem 2012.

40. Turpin W, Humblot C, Noordine ML, Wroczek L, Tomas J, Mayeur C, Cherbuy C, Guyot JP, Thomas M: Behavior of lactobacilli isolated from fermented slurry (ben-saalga) in gnotobiotic rats. PLoS One 2013, 8:e57711.

41. Cherbuy C, Homowy-Houeto E, Bruneau A, Bridonneau C, Mayeur C, Duee PH, Laboisse C, Tidion A: Microbiota matures colonic mucus through a coordinated induction of cell cycle-related proteins in gnotobiotic rats. Am J Physiol Gastrointest Liver Physiol 2010, 299:G348-G357.

42. Rul F, Ben-Yaia H, Chegadi F, Wroczek L, Thomas S, Noordine ML, Gitton C, Cherbuy C, Langella P, Thomas M: Impact of the metabolic activity of Streptococcus thermophilus on the colon epithelium of gnotobiotic rats. J Biol Chem 2011, 286:10288–10296.

43. Thomas M, Wroczek L, Ben-Yaia H, Noordine ML, Gitton C, Chevret D, Langella P, Mayeur C, Cherbuy C, Rul F: Carbohydrate metabolism is essential for the colonization of Streptococcus thermophilus in the digestive tract of gnotobiotic rats. PLoS One 2011, 6:e28789.

44. Freitas M, Axelsson LG, Cayot N, Midveldt T, Truong C: Indigenous microbes and their soluble factors differentially modulate intestinal glycosylation steps in vivo. Use of a “lectin assay” to survey in vivo glycosylation changes. Histochem Cell Biol 2005, 124:423–433.

45. Bry L, Falk PG, Midveldt T, Gordon JI: A model of host-microbial interactions in an open mammalian ecosystem. Science 1996, 273:1380–1383.

46. Benjdia A, Martens EC, Gordon JI, Berteau O: Carbohydrate metabolism is essential for the colonization of Streptococcus thermophilus in the digestive tract of gnotobiotic rats. PLoS One 2011, 6:e28789.

47. Joly F, Mayeur C, Bruneau A, Noordine ML, Meyhecue T, Langella P, Messing B, Duee PH, Cherbuy C, Thomas M: Drastic changes in fecal and mucosa-associated microbiota in adult patients with short bowel syndrome. Biochimie 2010, 92:753–761.

48. Ben-Yaia H, Mayeur C, Rul F, Thomas M: Growth advantage of Streptococcus thermophilus over Lactobacillus bulgaricus in vitro and in the gastrointestinal tract of gnotobiotic rats. Benef Microbes 2012, 3:211–219.

49. Gaudier E, Jany A, Blottiere HM, de Coppet P, Buisine MP, Albert JP, Laboisse C, Cherbuy C, Hoebler C: Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastrointest Liver Physiol 2004, 287:G166–G174.

50. Gaudier E, Rival M, Buisine MP, Robineau L, Hoebler C: Butyrate enemas upregulate MUC genes expression but decrease adherent mucus thickness in mice colon. Physiol Res 2009, 58:111–119.

51. Hayatama H, Iwasita J, Kuwajima A, Abe T: The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS1T47. Biochem Biophys Res Commun 2007, 356:639–649.

52. Chen ZY, Rey-S, Tiang CC: Knipperl-like factor 4 is transactivated by butyrate in colon cancer cells. J Nutr 2004, 134:792–798.

53. Augenlicht L, Shi L, Mariadason J, Laboisse C, Velichc A: Repression of MUC2 gene expression by butyrate, a physiological regulator of intestinal cell maturation. Oncogene 2003, 22:4983–4992.

54. Van der Sluis M, De Koninck BA, De Brujin AC, Velichc A, Meijerink JP, Van Goudoever JB, Buller HA, Dekker J, Van Seuningen I, Renes IB, Einerhand AW: Muc2-deficient mice spontaneously develop colitis, indicating that Muc2 is critical for colonic protection. Gastroenterology 2006, 131:117–129.

55. Gensemann M, Becker S, Kubler I, Koslowski M, Wang G, Herlinger KR, Griger J, Fritz P, Fellermann K, Schwab M, Weihkamp J, Stange EF: Differences in goblet cell differentiation between Crohn's disease and ulcerative colitis. Differentiation 2009, 77:84–94.

56. Johansson ME, Gustafsson JK, Sjogberg KE, Petersson J, Holm L, Spovall H, Hansson GC: Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model. PLoS One 2010, 5:e12338.

57. Tobisawa Y, Imai Y, Fukuda M, Kawashima H: Sulphation of colonic mucins by N-acetylglucosamine 6-O-sulfotransferase-2 and its protective function in experimental colitis in mice. J Biol Chem 2010, 285:6750–6760.

58. Roauf AH, Tzial HH, Parker N, Hoffman J, Walker RJ, Rhodes JM: Sulphation of colonic and rectal mucin in inflammatory bowel disease: reduced sulphation of rectal mucus in ulcerative colitis. Clin Sci (Lond) 1992, 83:623–626.

59. Gaudier E, Forestier L, Goyeur V, Huet G, Julien R, Hoebler C: Butyrate regulation of glycosylation-related gene expression: evidence for galectin-1 upregulation in human intestinal epithelial goblet cells. Biochem Biophys Res Commun 2004, 325:1044–1051.

60. Dalf O, Kannan TR, Blaylock MW, Baseman JB: Elongation factor Tu and E1 beta subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol Microbiol 2002, 46:1041–1051.

61. Lan A, Bruneau A, Bensaada M, Philippe C, Bellaud P, Rabot S, Jan G: Increased induction of apoptosis by Propionibacterium freudenreichii TL133 in colonic mucosal crypts of human microbially-associated rats treated with 1,2-dimethylhydrazine. Br J Nutr 2008, 100:1251–1259.

62. Martin F, Cachon R, Pennin K, De Coninck J, Gervais P, Guichard E, Gayot N: Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt. J Dairy Sci 2011, 94:614–622.

63. Cherbuy C, Darcy-Vrillon B, Morel MT, Pegorier JP, Duee PH: Effect of germfree state on the capacities of isolated rat colonocytes to metabolize n-butyrate, glucose, and glutamine. Gastroenterology 1995, 109:1890–1899.

64. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265–275.

65. Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987, 162:156–159.

66. Rossey V, Maes E, Lefebvre Darrom T, Gorsset P, Ecobichon D, Jansacqu J, Chevalier Curt M, Bonna O, Michalicki J, Robbe Masselot C: Almost all human gastric mucin O-glycans harbor blood group A, B or H antigens and are potential binding sites for Helicobacter pylori. Glycobiology 2012, 22:1193–1206.

Cite this article as: Wrzosek et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucin glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biology 2013 11:61.