Expression of CCR5, CXCR4 and DC-SIGN in Cervix of HIV-1 Heterosexually Infected Mexican Women

Lydia Guadalupe Rivera-Morales*,1, Paulo Lopez-Guillen2, Jose Manuel Vazquez-Guillen1, Gerardo C. Palacios-Saucedo3, Adrian G. Rosas-Taraco4, Antonio Ramirez-Pineda1, Patricia Irene Amaya-Garcia1 and Cristina Rodriguez-Padilla1

1Laboratorio de Inmunologia y Virologia; Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Mexico
2Unidad de Infectologia “Dr. Juan I. Menchaca”. Hospital General Regional No. 45. Instituto Mexicano del Seguro Social, Jalisco, Mexico
3Departamento de Pediatria, Unidad Medica de Alta Especialidad No. 25 and Centro de Investigacion Biomedica del Noreste, Instituto Mexicano del Seguro Social, Nuevo Leon, Mexico
4Departamento de Inmunologia del Hospital Universitario “Dr. Jose Eleuterio Gonzalez”, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Mexico

Abstract: Background: A number of studies have demonstrated that receptor and co-receptor expression levels which may affect viral entry, promoting cervical HIV infection. The aim was to evaluate the expression levels of CCR5, CXCR4 and DC-SIGN mRNA in a sample of heterosexually HIV infected Mexican women.

Methods: We enrolled twenty-six HIV heterosexual infected women attending a local infectious diseases medical unit. RNA was isolated from the cervix and gene expression analysis was performed using real-time PCR.

Results: Expression rates for mRNA of CCR5 (median 1.82; range 0.003–2934) were higher than those observed for CXCR4 (0.79; 0.0061–3312) and DC-SIGN (0.33; 0.006–532) receptors (p < 0.05). A high correlation was found between the mRNA expression levels of these three receptors (rs = 0.52 to 0.85, p < 0.01).

Conclusion: Levels of expression of the tested chemokine receptors in the cervix are different from each other and also vary from woman to woman, and seem to support the suggestion that chemokine receptor expression in genital tissues may be playing a role in the HIV transmission.

Keywords: AIDS, HIV-1, Mucosae, CCR5, CXCR4, DC-SIGN.

BACKGROUND

The Acquired Immunodeficiency Syndrome (AIDS) is a serious public health problem worldwide with 33.4 million people currently living with the Human Immunodeficiency Virus (HIV) according to UNAIDS and WHO [1]. In Mexico, the number of persons living with HIV is estimated to be 200,000 [2]. Although HIV infection initially affected homosexual men, the virus is now spreading to a growing number of heterosexual individuals. The male-to-female ratio among HIV-1-infected people in Mexico is estimated to be 4.9:1 [3].

A number of HIV-1 infected patients acquired the virus during heterosexual exposure where the virus binds to the CD4 receptor and other co-receptors present on immune cells of the genital mucosa [4, 5]. HIV infection is mediated by a complex interaction between HIV envelope proteins and receptors on target cells, particularly CD4 receptors; however, expression of this molecule alone is not enough to establish the infection. It is well known that CCR5 and CXCR4 co-receptors are necessary for the virus entrance [6]. Viral strains that utilize CCR5 are classified as R5-tropic (which replaced the designation M-tropic), whereas those that utilize CXCR4 are termed X4-tropic (replacing the designation T-tropic) [7]. R5 variants have been suggested to be the predominant strains following sexual transmission [7, 8]. Experimental evidence indicates that co-receptor expression levels have impact on the efficiency of viral entry and may affect the pathogenesis of the HIV-1 infection [7]. However, data from previous studies have shown differences in the chemokine receptor expression, which possibly indicate that the transmission of R5 variants may not be directly associated with the levels of CCR5 within the genital tract [9]. Another important factor in viral transmission is the C-type lectin DC-SIGN (Dendritic Cell – Specific ICAM-3 Grabbing Nonintegrin, CD-209), which plays a central role in the mucosal HIV-1 infection from...
Dendritic cells (DCs) to T cells. DC-SIGN binds the glycoprotein 120 (gp120) with a high affinity and independently of the other receptors and then transmits virions to T lymphocytes using the physiological functions of the dendritic cells to gain access to the lymphoid tissues [10-12].

Recently, the interest in HIV tropism has re-emerged due mainly to the generation of new promising antiretroviral drugs that target CCR5, CXCR4, and DC-SIGN. Unfortunately, information regarding the events immediately following the HIV-1 infection in humans is insufficient. Therefore, it is important to identify cellular and molecular factors of the host that may be contributing to HIV-1 transmission, not only to understand the subjacent immunopathogenesis but also to obtain information that can be useful to develop strategies to prevent the infection [13]. The aim of this study was to evaluate the mRNA expression of CCR5 and CXCR4 co-receptors and of the DC-SIGN receptor in cervical biopsies in a case series of HIV-1 heterosexually infected Mexican women.

METHODS

Patients and sample collection. HIV-1 heterosexually infected women undergoing medical care at the “Dr. Juan I. Menchaca Unidad de Infectología” Hospital General Regional No. 45, Instituto Mexicano del Seguro Social in Guadalajara, Western Mexico, were eligible. Written informed consent was obtained from each patient, and the study was approved by the institutional research and ethics review board of the Hospital General Regional No. 45. Superficial cervical biopsies (probably containing transitional epithelium with some few endocervical glands) were taken from each patient and stored in 1 mL of RNA stabilization solution (RNAlater; Ambion, Austin, TX) at room temperature. Menopausal patients, those who engaged in sexual activity within 48 hours prior to sampling, those with symptoms of any known genital tract infection, and those with a history of intravenous drug use or blood transfusion were excluded. Women younger 48 years of age were classified as premenopausal, while those with 48 years old and over were considered postmenopausal [14].

RNA isolation and cDNA synthesis. Cervical tissues were homogenized in 1 mL of TRizol reagent (Invitrogen, Carlsbad, CA) and then processed following the manufacturer’s instructions. RNA isolate was eluted in RNase-free water treated with diethylpyrocarbonate (DEPC). RNA concentration was determined by the absorbance at 260 nm. For synthesis of the single strand cDNA, SuperScript II Reverse Transcriptase (Invitrogen) and Oligo dT Primer (Invitrogen) were used. The reactions were adjusted to 5 μg of total RNA concentration, and were mixed with 1 μL of 10 mM dNTP’s Mix (Amersham Biosciences, Piscataway, NJ). This was completed at a final volume of 20 μL with sterile Milli-Q water. The mix was incubated for 50 min at 42°C and then for 15 min at 70°C to inactivate the reaction.

Real-time PCR. Receptor mRNA relative expression was measured with real-time PCR using the 2^ΔΔCT_ method [15]. The relative expression of the target (HIV-infected), normalized to an endogenous reference (18S rRNA) and controls (15 non–HIV-infected women), was obtained by 2^-ΔΔCT_, whereas ΔΔCT was defined as the difference of ΔCT (target) and ΔCT (controls), and the ΔCT was defined as the difference in CT (CCR5, CXCR4 or DC-SIGN) and the Ct (endogenous reference) [16]. Serial dilutions from one of the samples were made to validate the efficiency of the quantitative PCR (qPCR) assay and were tested with the Taqman probes. The results were analyzed in a calibration curve considering that the regression value must be close to 1 and the slope close to -3.32 [17]. All reactions were adjusted to a concentration of 10 ng. Double distilled water was used as a negative control. Ten microliters of the TaqMan Universal PCR master mix (Applied Biosystems/Roche, Foster City, CA) were mixed with 1 μL of the corresponding TaqMan assay. Reactions were completed at 20 μL total volume by adding double distilled water and were performed using the iCycler thermocycler (Bio-Rad, Hercules, CA) in the required settings for TaqMan assays. Primers and probes were designed based on the mRNA sequence, and the sequences were 5'-TGT AGA AGG AGA AGG TCT CAG TGG TT-3' for the forward primer, 5'-GCC GTC AAG GTT CTT CAT GAT CTA G-3' for the reverse primer and 6FAM-5'- CCT CCC CAT GTC TTC C-3' TAMRA fluorogenic probe for the CCR5 co-receptor. 5'-GTT GTG TGA ACC CCA TCC TCT ATG-3' forward, 5'-CGT GCT GGG CAG CAG TGT TT-3' reverse and 6FAM-5'-AAT TTG GCT CCA AGG AAA G-3'-TAMRA probe for CXCR4; and for the DC-SIGN, 5'-GTC AGG AGC AAA G-3'-TAMRA probe. Each qPCR reaction was made in triplicate.

Statistical Analysis. Medians and ranges were used to describe the main results. The Kolmogorov–Smirnov test was used to evaluate the normality of variables. The non-parametric Wilcoxon’s signed rank test and the Friedman’s analysis of variance (ANOVA) for repeated measures were used to compare expression levels between the evaluated co-receptors. To compare expression of these co-receptors according to the HAART status of the patients the Mann–Whitney U test and the Kruskal–Wallis’ ANOVA were used. The Spearman’s test was used to evaluate the correlation of the co-receptor expression levels with the VL and T CD4+ lymphocytes counts. Analysis was carried out using the SPSS version 15.0 (SPSS Inc., Chicago, IL, USA). A p value < 0.05 was considered statistically significant.

RESULTS

Patient sample. Cervical biopsies from 26 HIV-1 heterosexually infected women, 22 to 69 year old, were examined. All patients were asymptomatic and had been diagnosed with HIV-1 infection 1 to 13 years prior to enrollment. At the time of sampling, fourteen patients were on Highly Active Antiretroviral Therapy (HAART) and nine had a history of antiretroviral treatment. Most of these
patients had previously received or were receiving the combination of one protease inhibitor boosted with ritonavir plus two Nucleoside Reverse Transcriptase Inhibitors (NRTI). The other three patients had never received antiretroviral therapy. The viral load (VL) of most of the patients was under the detection level (<50 RNA copies/ml) with the exception of four patients whose VL was between 1200 and 5600 copies/ml. Absolute CD4+ cell counts of all patients were above 200/μl (Table 1).

Expression of CCR5, CXCR4 and DC-SIGN mRNA. Different expression levels were found for the three co-receptor mRNAs evaluated in the cervical biopsies (p<0.0001). Expression of CCR5 (Ratio[test/calibrator] median 1.82; range 0.003–2934) was higher than that observed for CXCR4 (0.79; 0.0061–3312) (p=0.025), and the expression of the former was in turn higher than that of the DC-SIGN receptor (0.33; 0.006–532) (p=0.046) (Fig. 1). A high positive correlation was observed between the expression levels of the three receptor-mRNAs evaluated (r_s ranging from 0.52 to 0.85, p<0.01). No correlation was found between the expression levels of the three co-receptors evaluated with the CD4+ cell counts in blood (r_s ranging from 0.104 to 0.155, p=NS), but we found a moderate correlation of the levels of plasma viral load with the expression of CCR5 (rs=0.41, p=0.04) and DC-SIGN (rs=0.40, p=0.04). On the other hand, we did not find any difference when expression levels of the three evaluated co-receptor mRNAs were compared according to the HAART status. Thus, median and ranges of CCR5 levels were 1.76 [0.02–759.42], 1.36 [0.00–2934.20] and 31.31 [0.04–98.27] for patients currently on HAART, previously on HAART and naïve, respectively (p=0.91). The expression levels of CXCR4 were 0.81 [0.01–696.39], 0.27 [0.01–3312.30] and 6.69 [0.06–146.40] for the same groups of patients (p=0.87).

Table 1. Clinical Characteristics of 26 HIV-1 Heterosexually Infected Mexican Women Included in the Study

Patient No.	Age	Time of Infection	Sexual Partners	Current CD4+ Cell Count	Current Viral Load	HAART Treatment Status	Contraceptive Use
1	69	6	1	560	<50	Currently	Abstention
2	67	3	1	260	<50	Previously	None
3	41	4	1	200	1870	Currently	Intrauterine device
4	32	3	1	357	5600	Naive	Abstention
5	36	11	1	421	<50	Previously	Hormonal oral
6	47	2	1	350	<50	Naive	None
7	38	13	1	1200	<400	Currently	Condom
8	34	1	1	201	<50	Previously	Hormonal oral
9	38	8	1	258	<50	Previously	Abstention
10	26	10	1	445	<50	Currently	Abstention
11	40	2	2	360	<50	Currently	Bilateral tubal occlusion
12	48	9	1	560	<50	Currently	None
13	39	1	2	450	<50	Previously	Abstention
14	48	1	1	800	<50	Currently	Abstention
15	51	2	1	430	<50	Previously	Condom
16	48	6	1	208	1800	Previously	Abstention
17	51	3	1	798	<50	Currently	None
18	41	2	1	546	<50	Previously	None
19	46	1	1	452	<400	Currently	Hormonal oral
20	35	4	1	246	<50	Currently	None
21	27	1	1	450	<50	Previously	None
22	22	6	2	310	400	Currently	Condom
23	46	1	1	969	400	Previously	Abstention
24	29	3	1	300	1200	Naive	Abstention
25	38	9	1	609	<50	Currently	Abstention
26	62	3	1	550	<400	Currently	Hormonal oral

*From the date of the HIV diagnosis in years.

*Personal information obtained through direct questioning.

*As the number of cells/mm³ of blood.

*As the number of RNA copies/ml of plasma using the COBAS Amplicor HIV-1 Monitor (Roche Diagnostics, Branchburg, NJ, USA).
while DC-SIGN levels were 0.32 [0.01–327.50], 0.27 [0.01–532.36] and 8.61 [0.03–12.18] (p=0.94). No significant differences were found in the expression of the three receptors when we compared pre- and post-menopausal HIV infected patients; however, in pre-menopausal patients all of them were higher. Thus, median and ranges of CCR5 levels were 4.34 [0.00–2934.20] and 0.30 [0.02–759.42] in pre-menopausal and post-menopausal women, respectively (p=0.16). The expression levels of CXCR4 were 2.49 [0.01–3312.60] and 0.26 [0.01–693.39] for the same groups of women (p=0.17) and for DC-SIGN 4.74 [0.01–532.36], and 0.09 [0.01–327.70] (p=0.19).

Fig. (1). Box and whisker plot of CCR5, CXCR4 and DC-SIGN receptor expression relative to receptor expression in uninfected women in cervical biopsies of 26 HIV-1 heterosexually infected Mexican women determined by the real-time PCR relative quantification scheme. Extreme values are hidden.

DISCUSSION

The global spread of the HIV-1 infection has been achieved by sexual transmission through the genital tract and women seem to be at a higher risk than men are [18]. Infection of cells with HIV-1 in sexual contact sites requires an additional chemokine receptor and it has been suggested that CCR5 is the first receptor utilized, followed by CXCR4 during advanced stages of the disease. Some studies have suggested that the higher expression of CCR5 may be the primary explanation for preferential transmission of CCR5-tropic (R5) isolates within the genital tract; however, this concern is still controversial [9]. In this study, the expression levels of CCR5, CXCR4 and DC-SIGN co-receptor mRNA in cervical biopsies of HIV-1 infected Mexican women were evaluated.

In the present study, the expression of CCR5 mRNA was higher than that observed for CXCR4 or DC-SIGN. Patterson et al. [8] also found that the expression levels of CCR5 mRNA were significantly higher than the CXCR4 levels in cervical biopsies obtained from five HIV infected patients. However, McClure et al. [9] evaluated cervical scrape samples obtained from a cohort of healthy women and reported that the expression of CCR5 was lower than that of CXCR4. This inconsistency could be due to differences in the evaluated patients and tissue sampling. In contrast to the McClure study, we did not evaluate healthy women. Our findings also differ from those reported by Zhang et al. [19] who, by immunohistochemical staining, found a high expression of CXCR4 in vaginal and cervical samples obtained from both women and macaques. Although in the present study immunohistochemical techniques were not used as Zhang et al. did, we used a more sensitive and well-accepted method to quantitatively evaluate mRNA expression levels of these co-receptors [20, 21].

All patients included in the present study acquired HIV infection through sexual intercourse, the most common way of transmission. Sheffield et al. [22] showed increased numbers of CD4+ cells expressing CCR5 in biopsies obtained from genital ulcers and it is well known that this type of visible lesions on the cervical mucosa increases the risk of HIV transmission in women [22, 23]. We may exclude such lesions as an explanation for the observed levels of expression of the receptors evaluated because patients with genital ulcers were excluded from our study, however, we did not evaluate the expression levels of mRNA of these receptors on CD4+ cells alone, but on all cells of the endocervix.

A number of studies have shown that the menstrual cycle does not significantly affect the immune status of the genital tract [24-26], nevertheless, Howell et al. found that receptor and co-receptor expressions in the genital tract vary as a function of menstrual cycle stages [27]. Therefore, we excluded menstruating patients and those with recent vaginal intercourse to reduce the possibility of mucosal changes related to these events. Prakash et al. [28] demonstrated that the use of oral contraceptives is associated with an increased expression of CCR5 on CD4+ T endocervical lymphocytes, which may increase the susceptibility of these cells to HIV-1 infection [29]. Although the microenvironment of the female genital tract may be altered by the use of oral contraceptives, it is highly unlikely that our findings were secondary to their use owing to a low percentage of our patients using them. Moreover, we did not find significant differences between the mRNA expression levels of the three co-receptors, but they tended to be higher in pre-menopausal women when compared with those of post-menopausal women. This suggests that the pre-menopausal women are at a higher risk of re-infection by sexual intercourse with HIV-1 infected partners, but further studies are needed to elucidate the role of the sex hormone status in modifying HIV receptors’ and co-receptors’ expression and changing the susceptibility of target cells to the HIV infection.

We found no significant differences in the expression levels of mRNA of the three receptors tested according to the antiretroviral treatment status. Previous studies have demonstrated an upregulation of CCR5 expression on several immune cells occurring early in the HIV infection that seems to provide a selective advantage to the virus but that is downregulated toward a normal expression by the antiretroviral therapy [30, 31]. The lack of differences we found might be attributed to the wide variability in the levels of expression observed which in turn might be due to the small number of patients evaluated. In the study by McClure et al. [9], a wide range of CXCR4 expression in the female ecto and endocervix was found but not for CCR5.

It has been demonstrated that in addition to the conventional binding of HIV to CD4 and the chemokine coreceptors (CCR5, CXCR4), HIV can interact with
Expression of CCR5, CXCR4 and DC-SIGN

ACKNOWLEDGEMENTS

This study was financially supported by grants SEP CONACYT 2004-CO1-46101 and PAICYT SA-1450-06. We thank Roberto Mercado-Hernandez for his helpful comments regarding the manuscript.

REFERENCES

[1] UNAIDS. 2009 AIDS Epidemic Update. Geneva, Switzerland: Joint United Nations Programme on HIV/AIDS (UNAIDS); 2009. Available at: http://www.unaids.org/en/ [Accessed: August 29, 2011].

[2] Secretaría de Salud, México. 2009. Casos de SIDA en México (Cifras al 31 de marzo de 2009). Centro Nacional para la Prevención y el Control del VIH/SIDA (CENSIDA). Available: http://www.censida.salud.gob.mx/ [Accessed: August 29, 2011].

[3] Magis C, Hernández M Epidemiología del SIDA en México. In Córdova J.A., Ponce de León S., Valdés-espino J.L.(Eds), 25 Años de SIDA en México. Logros, Desaciertos y Retos. México: Secretaría de Salud 2008; pp. 85-103

[4] Terrazas-Aranda K, Van Herrewege Y, Hazuda D, et al. Human immunodeficiency virus type 1 (HIV-1) infection: a potential target for microbicides to prevent cell-free or cell-associated HIV-1 infection. Antimicrob Agents Chemother 2008; 52: 2544-54.

[5] Wu L, Kewal Ramani VN. Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol 2006; 6: 859-68.

[6] Coakley E, Petropoulos CJ, Whitcomb JM. Assessing chemokine co-receptor usage in HIV. Curr Opin Infect Dis 2005; 18: 9-15.

[7] Poveda E, Briz V, Quiñones MM, Soriano V. HIV tropism: diagnostic tools and implications for disease progression and treatment with entry inhibitors. AIDS 2006; 20: 1359-67.

[8] Patterson BK, Landay A, Andersson J, et al. Repertoire of chemokine receptor expression in the female genital tract. Am J Pathol 1998; 153: 481-90.

[9] McClure CP, Tíghe PJ, Robins RA, et al. HIV coreceptor and chemokine ligand gene expression in the male urethra and female cervix. AIDS 2005; 19: 1257-65.

[10] Serrano-Gomez D, Sierra-Filardi E, Martinez-Nuñes RT, et al. Structural requirements for multimerization of the pathogen receptor dendritic cell-specific ICAM3-grabbing non-integrin (CD209) on the cell surface. J Biol Chem 2008; 283: 3889-903.

[11] Vazquez-Guillen JM, Garcia-Jacobo PJ, Zapata-Benavides P, et al. DC-SIGN expression in peripheral blood dendritic cells of patients with typical, slow and rapid progression to AIDS. Arch Med Res 2009; 40: 132-5.

[12] van Kooyk Y, Geijtenbeek TB. DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 2003; 3: 697-709.

[13] Jameson B, Baribaud F, Pöhlmann S, et al. Expression of DC-SIGN in peripheral blood dendritic cells of patients with typical, slow and rapid progression to AIDS. Arch Med Res 2009; 40: 132-5.

[14] Terrazas-Aranda K, Van Herrewege Y, Hazuda D, et al. Human immunodeficiency virus type 1 (HIV-1) infection: a potential target for microbicides to prevent cell-free or cell-associated HIV-1 infection. Antimicrob Agents Chemother 2008; 52: 2544-54.

[15] Wu L, Kewal Ramani VN. Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol 2006; 6: 859-68.

[16] Coakley E, Petropoulos CJ, Whitcomb JM. Assessing chemokine co-receptor usage in HIV. Curr Opin Infect Dis 2005; 18: 9-15.

[17] Poveda E, Briz V, Quiñones MM, Soriano V. HIV tropism: diagnostic tools and implications for disease progression and treatment with entry inhibitors. AIDS 2006; 20: 1359-67.

[18] Patterson BK, Landay A, Andersson J, et al. Repertoire of chemokine receptor expression in the female genital tract. Am J Pathol 1998; 153: 481-90.

[19] McClure CP, Tíghe PJ, Robins RA, et al. HIV coreceptor and chemokine ligand gene expression in the male urethra and female cervix. AIDS 2005; 19: 1257-65.

[20] Serrano-Gomez D, Sierra-Filardi E, Martinez-Nuñes RT, et al. Structural requirements for multimerization of the pathogen receptor dendritic cell-specific ICAM3-grabbing non-integrin (CD209) on the cell surface. J Biol Chem 2008; 283: 3889-903.

[21] Vazquez-Guillen JM, Garcia-Jacobo PJ, Zapata-Benavides P, et al. DC-SIGN expression in peripheral blood dendritic cells of patients with typical, slow and rapid progression to AIDS. Arch Med Res 2009; 40: 132-5.

[22] van Kooyk Y, Geijtenbeek TB. DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 2003; 3: 697-709.

[23] Jameson B, Baribaud F, Pöhlmann S, et al. Expression of DC-SIGN in peripheral blood dendritic cells of patients with typical, slow and rapid progression to AIDS. Arch Med Res 2009; 40: 132-5.

[24] Terrazas-Aranda K, Van Herrewege Y, Hazuda D, et al. Human immunodeficiency virus type 1 (HIV-1) infection: a potential target for microbicides to prevent cell-free or cell-associated HIV-1 infection. Antimicrob Agents Chemother 2008; 52: 2544-54.
[22] Sheffield JS, Wendel GD Jr, McIntire DD, Norgard MV. Effect of genital ulcer disease on HIV-1 coreceptor expression in the female genital Tract. J Infect Dis 2007; 196: 1509-16.

[23] Myer L, Wright TC Jr, Denny L, Kuhn L. Nested case-control study of cervical mucosal lesions, ectopy, and incident HIV infection among women in Cape Town, South Africa. Sex Transm Dis 2006; 33: 683-7.

[24] Ma Z, Lu FX, Torten M, Miller CJ. The number and distribution of immune cells in the cervicovaginal mucosa remain constant throughout the menstrual cycle of rhesus macaques. Clin Immunol 2001; 100: 240-9.

[25] Poppe WA, Drijkoningen M, Ide PS, Lauweryns JM, Van Assche FA. Lymphocytes and dendritic cells in the normal uterine cervix. An immunohistochemical study. Eur J Obstet Gynecol Reprod Biol 1998; 81: 277-82.

[26] Prakash M, Kapembwa MS, Gotch F, Patterson S. Oral contraceptive use induces upregulation of the CCR5 chemokine receptor on CD4+ T cells in the cervical epithelium of healthy women. J Reprod Immunol 2002; 54: 117-31.

[27] Howell AL, Asin SN, Yeaman GR, Wira CR. HIV-1 Infection of the Female Reproductive Tract. Curr HIV/AIDS Rep 2005; 2: 35-38.

[28] Prakash M, Patterson S, Gotch F, Kapembwa MS. Ex vivo analysis of HIV-1 co-receptors at the endocervical mucosa of women using oral contraceptives. BJOG 2004; 111: 1468-70.

[29] Baeten JM, Lavreys L, Overbaugh J. The influence of hormonal contraceptive use on HIV-1 transmission and disease progression. Clin Infect Dis 2007; 45: 360-9.

[30] Kumar SP, Smith KY, Pulvirenti JJ, Fouts SB, Kessler HA, Landay AL. Effects of Antiretroviral Therapy (ART) on CCR5 and CXCR4 Receptor Expression. Abstr Intersci Conf Antimicrob Agents Chemother 2000 Sep 17-20; 40: 288. Chicago, IL.

[31] Nicholson JKA, Browning SW, Hengel RL, et al. CCR5 and CXCR4 expression on memory and naive t cells in HIV-1 infection and response to highly active antiretroviral therapy. J AIDS 2001; 27: 105-15.

[32] Hirbod T, Kaldensjö T, Lopalco L, et al. Abundant and superficial expression of C-Type lectin receptors in ectocervix of women at risk of HIV infection. J Acquir Immune Defic Syndr 2009; 51: 239-47.

[33] Gurney KB, Elliott J, Nassanian H, et al. Binding and transfer of human immunodeficiency virus by DC-SIGN+ cells in human rectal mucosa. J Virol 2005; 79: 5762-73.

[34] Van Montfort T, Thomas AA, Pollakis G, Paxton WA. Dendritic cells preferentially transfer CXCR4-using human immunodeficiency virus type 1 variants to CD4+ T lymphocytes in trans. J Virol 2008; 82: 7886-96.