Paint by Example: Exemplar-based Image Editing with Diffusion Models

Binxin Yang1* Shuyang Gu2 Bo Zhang2† Ting Zhang2 Xuejin Chen1
Xiaoan Sun1 Dong Chen2 Fang Wen2

1 University of Science and Technology of China 2 Microsoft Research Asia

Figure 1. Paint by Example. Users are able to edit a scene by painting with a conditional image. Our approach can automatically alter the reference image and merge it into the source image, and achieve a high-quality result.

Abstract

Language-guided image editing has achieved great success recently. In this paper, we investigate exemplar-guided image editing for more precise control. We achieve this goal by leveraging self-supervised training to disentangle and re-organize the source image and the exemplar. However, the naive approach will cause obvious fusing artifacts. We carefully analyze it and propose a content bottleneck and strong augmentations to avoid the trivial solution of directly copying and pasting the exemplar image. Meanwhile, to ensure the controllability of the editing process, we design an arbitrary shape mask for the exemplar image and leverage the classifier-free guidance to increase the similarity to the exemplar image. The whole framework involves a single forward of the diffusion model without any iterative optimization. We demonstrate that our method achieves an impressive performance and enables controllable editing on in-the-wild images with high fidelity. The code and pretrained models are available at https://github.com/Fantasy-Studio/Paint-by-Example.

1. Introduction

Creative editing for photos has become a ubiquitous need due to the advances in a plethora of social media platforms. AI-based techniques [37] significantly lower the barrier of fancy image editing that traditionally requires specialized software and labor-intensive manual operations. Deep neural networks can now produce compelling results for various low-level image editing tasks, such as image inpainting [61, 68], composition [41, 67, 72], colorization [53, 71, 74] and aesthetic enhancement [7, 11], by learning from richly available paired data. A more challenging scenario, on the other hand, is semantic image editing, which intends to manipulate the high-level semantics of image content while preserving image realism. Tremendous efforts [2, 5, 36, 49, 55, 57] have been made along this way, mostly relying on the semantic latent space of generative models, e.g., GANs [16, 28, 70], yet the majority of existing works are limited to specific image genres.

* Work is done during the internship at Microsoft Research Asia.
† Corresponding author.
Recent large-scale language-image (LLI) models, based on either auto-regressive models [12,69] or diffusion models [19,45,50,54], have shown unprecedented generative power in modeling complex images. These models enable various image manipulation tasks [3,22,30,52] previously unassailable, allowing image editing for general images with the guidance of text prompt. However, even the detailed textual description inevitably introduces ambiguity and may not accurately reflect the user-desired effects; indeed, many fine-grained object appearances can hardly be specified by the plain language. Hence, it is crucial to develop a more intuitive approach to ease fine-grained image editing for novices and non-native speakers.

In this work, we propose an exemplar-based image editing approach that allows accurate semantic manipulation on the image content according to an exemplar image provided by users or retrieved from the database. As the saying goes, “a picture is worth a thousand words”. We believe images better convey the user’s desired image customization in a more granular manner than words. This task is completely different from image harmonization [20,64] that mainly focuses on color and lighting correction when compositing the foreground objects, whereas we aim for a much more complex job: semantically transforming the exemplar, e.g., producing a varied pose, deformation or viewpoint, such that the edited content can be seamlessly implanted according to the image context. In fact, ours automates the traditional image editing workflow where artists perform tedious transformations upon image assets for coherent image blending.

To achieve our goal, we train a diffusion model [24,59] conditioned on the exemplar image. Different from text-guided models, the core challenge is that it is infeasible to collect enough triplet training pairs comprising source image, exemplar and corresponding editing ground truth. One workaround is to randomly crop the objects from the input image, which serves as the reference when training the inpainting model. The model trained from such a self-reference setting, however, cannot generalize to real exemplars, since the model simply learns to copy and paste the reference object into the final output. We identify several key factors that circumvent this issue. The first is to utilize a generative prior. Specifically, a pretrained text-to-image model has the ability to generate high-quality desired results, we leverage it as initialization to avoid falling into the copy-and-paste trivial solution. However, a long time of finetuning may still cause the model to deviate from the prior knowledge and ultimately degenerate again. Hence, we introduce the content bottleneck for self-reference conditioning in which we drop the spatial tokens and only regard the global image embedding as the condition. In this way, we enforce the network to understand the high-level semantics of the exemplar image and the context from the source image, thus preventing trivial results during the self-supervised training. Moreover, we apply aggressive augmentation on the self-reference image which can effectively reduce the training-test gap.

We further improve the editability of our approach in two aspects. One is that our training uses irregular random masks so as to mimic the casual user brush used in practical editing. We also prove that classifier-free guidance [25] is beneficial to boost both the image quality and the style resemblance to the reference.

The proposed method, Paint by Example, well solves semantic image composition problem where the reference is semantically transformed and harmonized before blending into another image, as shown in Figure 1. Our method shows a significant quality advantage over prior works in a similar setting. Notably, our editing just involves a single forward of the diffusion model without any image-specific optimization, which is a necessity for many real applications. To summarize, our contributions are as follows:

- We propose a new image editing approach, Paint by Example, which semantically alters the image content based on an exemplar image. This approach offers fine-grained control while being convenient to use.
- We solve the problem with an image-conditioned diffusion model trained in a self-supervised manner. We propose a group of techniques to tackle the degenerate challenge.
- Our approach performs favorably over prior arts for in-the-wild image editing, as measured by both quantitative metrics and subjective evaluation.

2. Related Work

Image composition. Cutting the foreground from one image and pasting it on another image into a realistic composite is a common and widely used operation in photo editing. Many methods [8–10,27,43,47,60,63,64] have been proposed focusing on image harmonization to make the composite look more realistic. Traditional methods [8,27,63] tend to extract handcrafted features to match the color distribution. Recent works [6,21] leverage deep semantic features to improve the robustness. Semantic Generation Pyramid [58] achieves semantic image composition by combining the deep features of the foreground image and background image, but the result is not very similar to the foreground image. A more recent work DCCF [67] proposes four human comprehensible neural filters in a pyramid manner and achieves a state-of-the-art color harmonization result. However, they all assume that the foreground and the background are semantically harmonious and only adjust the composite in the low-level color space while keeping the structure unchanged. In this paper, we target at semantic image composition, taking the challenging semantic inharmony into consideration.
Semantic image editing. Semantic image editing, to edit the high-level semantics of an image, is of great interest in the vision and graphics community due to its potential applications. A steadily-developed line of work [2, 5, 48, 55, 57] carefully dissects the GAN’s latent space, aiming to find semantic disentangled latent factors. Whereas other research efforts leverage the discriminant model like attribute classifier [15, 26] or face recognition [34, 56] model to help disentangle and manipulate images. Another popular direction of works [5, 18, 36, 65, 73, 75] utilize semantic mask to control the editing. Yet most existing methods are limited to specific image genres, such as face, car, bird, cat etc. In this work, we focus on introducing a model that works for general and complex images in a high-precision manner.

Text-driven image editing. Among the various kinds of semantic image editing, text-guided image editing has been attracting increasing attention recently. Early works [1, 4, 14, 42, 66] leverage pretrained GAN generators [29] and text encoders [44] to progressively optimize the image according to the text prompt. However, these GAN-based manipulation approaches struggle on editing images of complex scenes or various objects due to the limited modeling capability of GANs. The rapid rise and development of diffusion models [45, 46, 54] have shown powerful capability in synthesizing high-quality and diverse images. Many works [3, 13, 22, 30, 31, 38, 39, 52] exploit diffusion models for text-driven image editing. For example, DiffusionCLIP [31], dreambooth [52], and Imagic [30] finetune the diffusion models case-specifically for different text prompts. Blended Diffusion [3] proposes a multi-step blended process to perform local manipulation using a user-provided mask. While these methods achieve remarkably impressive results, we argue that the language guidance still lacks precise control, whereas images can better express one’s concrete ideas. As such in this work we are interested in exemplar-based image editing.

3. Method

We target at exemplar-based image editing that automatically merges the reference image (either retrieved from a database or provided by users) into a source image in a way that the merged image looks plausible and photo-realistic. Despite the recent remarkable success of text-based image editing, it is still difficult to use mere verbal descriptions to express complex and multiple ideas. While images, on the other hand, could be a better alternative for conveying people’s intentions, as the proverb says: “a picture is worth a thousand words”.

Formally, denote the source image as \(x_s \in \mathbb{R}^{H \times W \times 3} \) with \(H \) and \(W \) being the width and height respectively. The edit region could be a rectangular or an irregular shape (at least connected) and is represented as a binary mask \(m \in \{0, 1\}^{H \times W} \) where value 1 specifies the editable positions in \(x_s \). Given a reference image \(x_r \in \mathbb{R}^{H' \times W' \times 3} \) containing the desired object, our goal is to synthesize an image \(y \) from \(\{x_s, x_r, m\} \), so that the region where \(m = 0 \) remains as same as possible to the source image \(x_s \), while the region where \(m = 1 \) depicts the object as similar to the reference image \(x_r \) and fits harmoniously.

This task is very challenging and complex because it implicitly involves several non-trivial procedures. Firstly, the model requires understanding the object in the reference image, capturing both its shape and texture while ignoring the noise from the background. Secondly, it is critical to enable synthesizing a transformed view of the object (different pose, different size, different illumination etc.) that fits in the source image nicely. Thirdly, the model needs to inpaint the area around the object to generate a realistic photo, showing a smooth transition across the merging boundary. Last, the resolution of the reference image may be lower than the edit region. The model should involve super-resolution in the process.

3.1. Preliminaries

Self-supervised training. It is impossible to collect and annotate paired data, i.e. \(\{(x_s, x_r, m), y\} \), for the training of exemplar-based image editing. It may take great expense and huge labor to manually paint reasonable output. Thus, we propose to perform self-supervised training. Specifically, given an image and the bounding box of an object in the image, to simulate the training data, we use the bounding boxes of the object as the binary mask \(m \). We directly regard the image patch in the bounding box of the source image as the reference image \(x_r = m \odot x_s \). Naturally, the image editing result should be the original source image \(x_s \). As such, our training data is composed of \(\{(m \odot x_s, x_r, m), x_s\} \), where \(m = 1 - m \) stands for the complementary of the mask \(m \), and 1 represents the all-ones matrix.

A naive solution. Diffusion models have achieved notable progress in synthesizing unprecedented image quality and have been successfully applied to many text-based image editing works [30, 31, 40, 52]. For our exemplar-based image editing task, a naive solution is to directly replace the text condition with the reference image condition.

Specifically, the diffusion model generates image \(y \) by gradually reversing a Markov forward process. Starting from \(y_0 = x_s \), the forward process yields a sequence of increasing noisy images \(\{y_t|t \in [1, T]\} \), where \(y_t = \sqrt{\alpha_t} y_0 + \sqrt{1 - \alpha_t} \epsilon \), \(\epsilon \) is the Gaussian noise, and \(\alpha_t \) decreases with the timestep \(t \). For the generative process, the diffusion model progressively denoises a noisy image from the last step given the condition \(c \) by minimizing the following loss function:

\[
\mathcal{L} = \mathbb{E}_{t, y_0, \epsilon} \left\| \epsilon \theta(y_t, m \odot x_s, c, t) - \epsilon \right\|^2_2.
\]
For text-guided inpainting models, the condition c is the given text and is usually processed by a pretrained CLIP [44] text encoder, outputting 77 tokens. Likewise, a naive solution is to directly replace it with CLIP image embeddings. We leverage the pretrained CLIP image encoder outputting 257 tokens, including 1 class tokens and 256 patch tokens, denoted as $c = \text{CLIP}_{\text{all}}(x_r)$.

This naive solution converges well on the training set. However, when we apply to test images, we found that the generated result is far from satisfactory. There exist obvious copy-and-paste artifacts in the edit region, making the generated image extremely unnatural, as illustrated in Figure 2. We argue that this is because, under the naive training scheme, the model learns a trivial mapping function: $\overline{m} \odot x_s + x_r = x_s$. It impedes the network to understand the content in the reference image and the connection to the source image, leading to failure generalization to test scenarios where the reference image is given arbitrarily but not the patch from the original image.

Our motivation. How to prevent the model from learning such a trivial mapping function and facilitate model understanding in a self-supervised training manner is a challenging problem. In this paper, we propose three principles. 1) We introduce the content bottleneck to force the network to understand and regenerate the content of the reference image instead of just copy. 2) We adopt strong augmentation to mitigate the train-test mismatch issue. This helps the network not only learn the transformation from the exemplar object, but also from the background. 3) Another critical feature for exemplar-based image editing is controllability. We enable control over the shape of the edit region and the similarity degree between the edit region and the reference image.

3.2. Model Designs

3.2.1 Content Bottleneck

Compressed representation. We re-analyze the difference between text condition and image condition. For text condition, the model is naturally compelled to learn semantics as text is an intrinsically semantic signal. In regards to image condition, it is very easy to remember instead of understanding the context information and copying the content, arriving at the trivial solution. To avoid this, we intend to increase the difficulty of reconstructing the mask region by compressing the information of the reference image.

Specifically, we only leverage the class token of a pretrained CLIP image encoder from the exemplar image as condition. It compresses the reference image from spatial size $224 \times 224 \times 3$ to a one-dimensional vector of dimension 1024.

We find that this highly compressed representation tends to ignore the high-frequency details while maintaining the semantic information. It forces the network to understand the reference content and prevents the generator from directly copy-and-paste to reach the optimal results in training. For expressiveness consideration, we add several additional fully-connected (FC) layers to decode the feature and inject it into the diffusion process through cross attention.

Image prior. To further avoid the trivial solution of directly remembering the reference image, we leverage a well-trained diffusion model for initialization as a strong image prior. Specifically, we adopt a text-to-image generation model, Stable Diffusion [51], in consideration of two main reasons. First, it has a strong capability to generate high-quality in-the-wild images, thanks to the property that given any vector lying in its latent space will lead to a plausible image. Second, a pretrained CLIP [44] model is utilized to extract the language information, which shares a similar representation to our adopted CLIP image embedding, making it a good initialization.

3.2.2 Strong Augmentation

Another potential issue of self-supervised training is the domain gap between training and testing. This train-test mismatch stems from two aspects.

Reference image augmentation. The first mismatch is that the reference image x_r is derived from the source image x_s during training, which is barely the case for the testing scenario. To reduce the gap, we adopt several data augmentation techniques (including flip, rotation, blur and elastic transform) on the reference image to break down the connection with the source image. We denote these data augmentation as \mathcal{A}. Formally, the condition fed to the diffusion model is denoted as:

$$c = \text{MLP}(\text{CLIP}(\mathcal{A}(x_r))).$$

(2)
Mask shape augmentation. On the other hand, the mask region \(\mathbf{m} \) from the bounding box ensures that the reference image contains a whole object. As a result, the generator learns to fill an object as completely as possible. However, this may not hold in practical scenarios. To address this, we generate an arbitrarily shaped mask based on the bounding box and use it in training. Specifically, for each edge of the bounding box, we first construct a Bessel curve to fit it, then we sample 20 points on this curve uniformly, and randomly add 1 – 5 pixel offsets to their coordinates. Finally, we connect these points with straight lines sequentially to form an arbitrarily shaped mask. The random distortions \(D \) on the mask \(\mathbf{m} \) break the inductive bias, reducing the gap between training and testing. i.e.,

\[
\mathbf{m'} = 1 - D(\mathbf{m}).
\]

We find these two augmentations can greatly enhance the robustness when facing different reference guidance.

3.2.3 Control the mask shape

Another benefit of mask shape augmentation is that it increases the control over mask shape in the inference stage. In practical application scenarios, a rectangle mask usually cannot represent the mask area precisely. e.g. the sun umbrella in Figure 1. In some cases people would like to edit a specific region while preserving the other area as much as possible, this leads to the demand for handling irregular mask shapes. By involving these irregular masks into training, our model is able to generate photo-realistic results given various shape masks.

3.2.4 Control the similarity degree

To control the similarity degree between the edited area and the reference image, we find that classifier-free guidance is actually the combination strategy [25] is a powerful tool. Previous work [62] found that the classifier-free guidance is the combination of both prior and posterior constraints.

\[
\log p(\mathbf{y}_t|\mathbf{c}) + (s - 1) \log p(\mathbf{c}|\mathbf{y}_t)
\]

\[
\propto \log p(\mathbf{y}_t) + s(\log p(\mathbf{y}_t|\mathbf{c}) - \log p(\mathbf{y}_t)),
\]

where \(s \) denotes the classifier-free guidance scale. It can also be regarded as the scale to control the similarity of the generated image to the reference image. A larger scale factor \(s \) denotes the fusion result relies more on the conditional reference input. In our experiments, we follow the settings in [62] and replace 20% reference conditions with a learnable vector \(\mathbf{v} \) during training. This term aims to model \(p(\mathbf{y}_t) \) with the help of a fixed condition input \(p(\mathbf{y}_t|\mathbf{v}) \). In the inference stage, each denoising step uses the modified prediction:

\[
\tilde{e}_\theta(\mathbf{y}_t, \mathbf{c}) = e_\theta(\mathbf{y}_t, \mathbf{v}) + s(e_\theta(\mathbf{y}_t, \mathbf{c}) - e_\theta(\mathbf{y}_t, \mathbf{v})).
\]

Without causing confusion, the parameters \(t \) and \(\mathbf{m} \circ \mathbf{x}_s \) are omitted here for brevity. Above all, the overall framework of our method is illustrated in Figure 3.

4. Experiments

4.1. Implementation Details and Evaluation

Implementation details. In order to manipulate the real-world images, first we utilize a powerful text-to-image generation model, Stable Diffusion [51], as initialization to provide a strong image prior. Then we select OpenImages [32] as our training dataset. It contains a total of 16 million bounding boxes for 600 object classes on 1.9 million images. During training, we preprocess the image resolution to 512 × 512, and train our model for 40 epochs, which takes about 7 days on 64 NVIDIA V100 GPUs.

Test benchmark. To the best of our knowledge, no previous works target at exemplar-based semantic image editing (or semantic image composition). So we build a test benchmark for qualitative and quantitative analysis. Specifically, we manually select 3,500 source images (\(\mathbf{x}_s \)) from MSCOCO [35] validation set, each image contains only one bounding box (\(\mathbf{m} \)), and the mask region is no more than half of the whole image. Then we manually retrieve a reference image patch (\(\mathbf{x}_r \)) from MSCOCO training set. The reference image usually shares a similar semantic with mask region to ensure the combination is reasonable. We named it COCO Exemplar-based image Editing benchmark, abbreviated as COCOEE. We will publish this benchmark, hoping to attract more follow-up works in this area.

Evaluation metrics. Our goal is to merge a reference image into a source image, while the editing region should be similar to the reference, and the fusion result should be photo-realistic. To measure these two aspects independently, we use the following three metrics to evaluate the generated images. 1) FID [23] score, which is widely used to evaluate generated results. We follow [33] and use CLIP model to extract the feature, calculating the FID score between 3,500 generated images and all images from COCO testing set. 2) Quality Score(QS) [17], which aims to evaluate the authenticity of each single image. We take average of it to measure the overall quality of generated images. 3) CLIP score [44], evaluating the similarity between the edited region and the reference image. Specifically, we resize these two images to 224 × 224, extract the features via CLIP image encoder and calculate their cosine similarity. Higher CLIP score indicates the edited region is more similar to reference image.

4.2. Comparisons

Considering that no previous works aim at editing images semantically and locally based on an exemplar image, we select four related approaches as baselines to our method: 1) Blended Diffusion [3], it leverages the CLIP
Blended Diffusion

Text

Blended Diffusion

Image

DCCF

Stable Diffusion

Ours

Figure 4. Qualitative comparison with other approaches. Our method can generate results that are semantically consistent with the input reference images in high perceptual quality.

model to provide gradients to guide the diffusion sampling process. We use a text prompt “a photo of C” to compute the CLIP loss, where C denotes the object class from exemplar image. 2) We slightly modify the Blended Diffusion by using the reference image to calculate the CLIP loss, denoted as Blended Diffusion (image). 3) Stable Diffusion [51]. We use the text prompt as condition to represent the reference image, and inpaint the mask region. 4) We also choose the state-of-the-art image harmonization method DCCF [67] as baseline. Considering it can only fuse a foreground image to background, we first use an unconditional image inpainting model LAMA [61] to inpaint the whole mask region, then extract the foreground of reference image through an additional semantic mask, and finally harmonize it into the source image.

Qualitative analysis. We provide the qualitative comparison of these methods in Figure 4. Text-guided Blended Diffusion is able to generate objects in the desired area, but they are unrealistic and incompatible with the source image. Another text-based method Stable Diffusion can generate much realistic results, but still fail to retain the characteristics of the reference image due to the limited representation of text information. Meanwhile, the image-guided Blended Diffusion also suffers from not similar to the reference image. We argue it may caused by the gradient guidance strategy that could not preserve enough content information. Finally, the generated result from image harmonization is almost the same as the exemplar image which is very incongruous with the background. The intrinsic reason is that the appearance of exemplar image can not match the source image directly in most cases. The generative model should transform the shape, size or pose automatically to fit the source image. In the last column of Figure 4, our method achieves a photo-realistic result while being similar to the reference.

Quantitative analysis. Table 1 presents the quantitative comparison results. The image-based editing method (including Blended Diffusion (image) and DCCF) reaches a high CLIP score, demonstrating that they are able to preserve the information from condition image, while the resulting image is of poor quality. The generated result from Stable Diffusion is much more plausible according to the FID and QS. However, it can hardly incorporate the conditional information of the image. Our approach achieves the best performance on all of these three metrics, verifying that it can not only generate high-quality images but also maintain the conditional information.

User study. In order to obtain the user’s subjective evaluation of the generated image, we conduct a user study on 50 participants who were students without relevant backgrounds. In the study, we use 30 groups of images, each
Figure 5. Visual ablation studies of individual components in our approach. We gradually eliminate the boundary artifacts through these techniques and finally achieve plausible generated results.

Table 2. Average ranking score of image quality and semantic consistency. 1 is the best, 5 is the worst. Users rated ours as the best quality, and semantic consistency is second only to the image harmonization method which copies from the exemplar image.

Method	Quality (↓)	Consistency (↓)
Blended Diffusion-Image [3]	3.83	3.84
Blended Diffusion-Text [3]	3.93	3.95
DCCF [67]	3.09	1.66
Stable Diffusion [51]	2.36	3.48
Ours	1.79	2.07

4.3. Ablation Study

In order to achieve high-quality exemplar-based image editing, we introduce four key techniques, namely leveraging image prior, strong augmentation, content bottleneck and the classifier-free guidance. In this section, we perform five gradually changed setting to validate them: 1) We denote the naive solution in Section 3.1 as baseline. It’s directly modified from text-guided inpainting models by replacing the text to image as conditional signal. 2) We leverage the pretrained text-to-image generation model for initialization as an image prior. 3) To reduce the training-test gap, we adopt the strong augmentation on the reference image. 4) To further avoid falling into the trivial solution, we highly compress the image information to increase the difficulty of reconstructing the input image during training, we denote it as the content bottleneck. 5) At last, we use classifier-free guidance to further improve the performance.

Table 3. Quantitative comparison of different variants.

Method	FID (↓)	QS (↑)	CLIP Score (↑)
Baseline	3.61	76.71	85.90
+ Prior	3.40	77.63	**88.79**
+ Augmentation	3.44	76.86	81.68
+ Bottleneck	3.26	76.62	81.41
+ Classifier-Free	3.18	77.80	84.97

We show the results in Table 3 and Figure 5. The baseline solution contains obvious boundary artifacts, and makes the generated image extremely unnatural. By leveraging the image prior, the image quality improved according to the lower FID score. However, it still suffers from the copy-and-paste issue. Adding augmentations can partially alleviate it. When we further leverage the content bottleneck technique to compress the information, these boundary artifacts could be completely eliminated. Meanwhile, as the mask region should be generated instead of directly copied, the quality of this region will decrease because the difficulty of the generator increased significantly. Finally, we add the classifier-free guidance to make the generated region more similar to the reference, it greatly boosts the overall image quality and achieves the best performance.

Figure 6. Effect of classifier-free guidance scale \(\lambda \). A larger \(\lambda \) makes the generated region more similar to the reference.
Figure 7. Comparison between progressively precise textual description and image as guidance. Using image as condition can maintain more fine-grained details.

Meanwhile, we also investigate how the classifier-free scale affects our result. As shown in Figure 6, as the scale λ grows, the generated region is more and more like the reference input. In our experiment, we set $\lambda = 5$ by default.

4.4. From Language to Image Condition

In Figure 7, we provide a comparison of the controllability between language and image. From left to right, we try to inpaint the mask region with gradually detailed language description. As the language becomes more precise, the generated results indeed become more and more similar to the reference image. But it still exists a large gap with the image-guided result. Ours could maintain the fur, expression, and even the collar on the neck.

4.5. In-the-wild Image Editing

Benefiting from the stochasticity in the diffusion process, our method can generate multiple outputs from the same input. We show the diverse generated results in Figure 9. Although the synthesized images vary, all of them keep the key identity of the reference image. e.g., all the dogs have yellow fur, white chests and drooping ears. More selected exemplar-based image editing results are shown in Figure 8 and appendix.

5. Conclusion

In this paper, we introduce a novel image editing approach, *Paint by Example*, which aims to semantically alter the image content based on an exemplar image. We achieve this goal by leveraging self-supervised training based on the diffusion model. The naive approach causes the boundary artifacts issue, we carefully analyze it and solve it by proposing a group of techniques, namely leveraging image prior, strong augmentation, content bottleneck and the classifier-free guidance. Our algorithm enables the user to precisely control the editing, and achieves an impressive performance on in-the-wild images. We hope this work will serve as a solid baseline and help support future research in exemplar-based image editing area.

Acknowledgements: This work was supported in part by the National Key R&D Program of China under Grant 2020AAA0108600 and in part by the National Natural Science Foundation of China under Grants 62076230 and 62032006.
References

[1] Rameen Abdal, Peihao Zhu, John Femiani, Niloy Mitra, and Peter Wonka. Clip2stylegan: Unsupervised extraction of stylegan edit directions. In ACM SIGGRAPH 2022 Conference Proceedings, pages 1–9, 2022. 3

[2] Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and Amit Bermano. Hyperstyle: Stylegan inversion with hypernetworks for real image editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18511–18521, 2021. 1, 3

[3] Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of natural images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18208–18218, 2022. 2, 3, 5, 6, 7

[4] David Bau, Alex Andonian, Audrey Cui, YeonHwan Park, Ali Jahanian, Aude Oliva, and Antonio Torralba. Paint by word. arXiv preprint arXiv:2103.10951, 2021. 3

[5] David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou, Jun-Yan Zhu, and Antonio Torralba. Semantic photo manipulation with a generative image prior. arXiv preprint arXiv:2005.07727, 2020. 1, 3

[6] Bor-Chun Chen and Andrew Kae. Toward realistic image compositing with adversarial learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8415–8424, 2019. 2

[7] Yu-Sheng Chen, Yu-Ching Wang, Man-Hsin Kao, and Yung-Chu Chuang. Deep photo enhancer: Unpaired learning with conditional gans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3436–3445, 2019. 3

[8] Shuyang Gu, Dong Chen, Jianmin Bao, Hao Yang, Dong Feng, and Lu Yuan. Mask-guided portrait editing with conditional gans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10696–10706, 2022. 2

[9] Zonghui Guo, Dongsong Guo, Haiyong Zheng, Zhaorui Gu, Bing Zheng, and Junyu Dong. Image harmonization with transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 14870–14879, 2021. 2

[10] Shuyang Gu, Jianmin Bao, Hao Yang, Dong Feng, and Bing Zheng. Intrinsic image harmonization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16367–16376, 2021. 2

[11] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yuval Alaluf, Omer Tov, Ron Mokady, and Daniel Cohen-Or. Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626, 2022. 2, 3

[12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in Neural Information Processing Systems, 30, 2017. 5

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33:6840–6851, 2020. 2

[14] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598, 2022. 2, 5

[15] Xiaoju Hou, Xiaokang Zhang, Hanbang Liang, Linlin Shen, Zhihui Lai, and Jun Wan. Guidedstyle: Attribute knowledge guided style manipulation for semantic face editing. Neural Networks, 145:209–220, 2022. 3

[16] Jiaya Jia, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. Drag-and-drop pasting. ACM Transactions on Graphics (TOG), 25(3):631–637, 2006. 2
A style-based generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021. 1

[29] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4401–4410, 2019. 1

[30] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic: Text-based real image editing with diffusion models. arXiv preprint arXiv:2210.09276, 2022. 2, 3

[31] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models for robust image manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2426–2435, 2022. 3

[32] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Samuli Laine, MatteoMalloci, AlexanderKolesnikov, et al. The open images dataset v4. International Journal of Computer Vision, 128(7):1956–1981, 2020. 5

[33] Tuomas Kynkänneniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko Lehtinen. The role of imagenet classes in fréchet inception distance. arXiv preprint arXiv:2203.00626, 2022. 5

[34] Lingzhi Li, Jianmin Bao, Hao Yang, Dong Chen, and Fang Wen. Faceshifter: Towards high fidelity and occlusion aware face swapping. arXiv preprint arXiv:1912.13457, 2019. 3

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, PietroPerona, DevaRamanan, PiotrDollár, and C LawrenceZitnick. Microsoft coco: Common objects in context. In European Conference on Computer Vision, pages 740–755. Springer, 2014. 5

[36] Huangh, KarstenKreis, DaqingLi, SeungWookKim, AntonioTorralba, and SanjaFidler. Editgan: High-precision semantic image editing. Advances in Neural Information Processing Systems, 34:16331–16345, 2021. 1, 3

[37] Ming-Yu Liu, Xun Huang, Jiahui Yu, Ting-Chun Wang, and ArunMallya. Generative adversarial networks for image and video synthesis: Algorithms and applications. Proceedings of the IEEE, 109(5):839–862, 2021. 1

[38] XihuiLiu, DongHukPark, SamanehAzadi, GongZhang, ArmanChopikyan, YuxiaoHu, HumphreyShi, AnnaRohrbach, and TrevorDarrell. More control for free! image synthesis with semantic diffusion guidance. arXiv preprint arXiv:2112.05744, 2021. 3

[39] AlexNichol, PrafullaDhariwal, AdityaRamesh, PranavShymam, PamelaMishkin, BobMcGrew, IlyaSutskever, and MarkChen. Glide: Towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021. 3

[40] AlexNichol, PrafullaDhariwal, AdityaRamesh, PranavShymam, PamelaMishkin, BobMcGrew, IlyaSutskever, and MarkChen. Glide: Towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021. 3

[41] Li Niu, WenyanCong, Liu Liu, YanHong, BoZhang, JingLiang, and LiqingZhang. Making images real again: A comprehensive survey on deep image composition. arXiv preprint arXiv:2106.14490, 2021. 1

[42] OrPatashnik, ZongzeWu, EliShechtman, DanielCohen-Or, and DaniLischinski. Styleclip: Text-driven manipulation of stylegan imagery. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 2085–2094, 2021. 3

[43] PatrickPérez, MichelGangnet, and AndrewBlake. Poissonimage editing. In ACM SIGGRAPH 2003 Papers, pages 313–318. 2003. 2

[44] AlecRadford, JongWookKim, ChrisHallacy, AdityaRamesh, GabrielGoh, SandhiniAgarwal, GirishSastry, AmandaAskill, PamelaMishkin, JackClark, et al. Learningtransferable visual models from natural language supervision. In International Conference on Machine Learning, pages 8748–8763. PMLR, 2021. 3, 4, 5

[45] AdityaRamesh, PrafullaDhariwal, AlexNichol, CaseyChu, and MarkChen. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022. 2, 3

[46] AdityaRamesh, MikhailPavlov, GabrielGoh, ScottGray, ChelseaVoss, AlecRadford, MarkChen, and IlyaSutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning, pages 8821–8831. PMLR, 2021. 3

[47] ErikReinhard, MichaelAdhikhmin, BruceGooch, and PeterShirley. Color transfer between images. IEEE Computer Graphics and Applications, 21(5):34–41, 2001. 2

[48] EladRichardson, YuvalAlaluf, OrPatashnik, YotamNitzan, YanivAzar, StavShapiro, and DanielCohen-Or. Encoding in style: a stylegan encoder for image-to-image translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2287–2296, 2021. 3

[49] DanielRoich, RonMokady, AmitHBernman, and DanielCohen-Or. Pivotal tuning for latent-based editing of real images. ACM Transactions on Graphics (TOG), 42(1):1–13, 2022. 1

[50] RobinRombach, AndreasBlattmann, DominikLorenz, PatrickEsser, and BjörnOmmer. High-resolution image synthesis with latent diffusion models, 2021. 2

[51] RobinRombach, AndreasBlattmann, DominikLorenz, PatrickEsser, and BjörnOmmer. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022. 4, 5, 6, 7

[52] NatanielRuiz, YuanzhenLi, VarunJampani, YaelPritch, MichaelRubinstein, and KfirAberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. arXiv preprint arXiv:2208.12242, 2022. 2, 3

[53] ChitwanSaharia, WilliamChan, HuiwenChang, ChrisLee, JonathanHo, TimSalimans, DavidFleet, and MohammadNorouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH 2022 Conference Proceedings, pages 1–10, 2022. 1

[54] ChitwanSaharia, WilliamChan, SaurabhSaxena, LalaLi, JayWhang, EmilyDenton, SeyedKamyarSeyed
Weihao Xia, Yujin Gu, Xiaou Tang, and Boiyuan Wu.

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for semantic face editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9243–9252, 2020.

Yujun Shen, Ping Luo, Junjie Yan, Xiaogang Wang, and Xiaou Tang. Faceid-gan: Learning a symmetry three-player gan for identity-preserving face synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 821–830, 2018.

Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in gans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1532–1540, 2021.

Assaf Shocher, Yossi Gandelman, Inbar Mosseri, Michal Yarom, Michal Irani, William Freeman, and Tali Dekel. Semantic pyramid for image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7457–7466, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.

Kalyan Sunkavalli, Micah K Johnson, Wojciech Matusik, and Hanspeter Pfister. Multi-scale image harmonization. ACM Transactions on Graphics (TOG), 29(4):1–10, 2010.

Roman Savovor, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky. Resolution-robust large mask inpainting with fourier convolutions. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 2149–2159, 2022.

Zhichong Tang, Shuyang Gu, Jianmin Bao, Dong Chen, Fang Wen, Yong Wang, and Baining Guo. Styleswin: Transformer-based gan for high-resolution image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11304–11314, 2022.

Bo Zhang, Mingming He, Jing Liao, Pedro V Sander, Lu Yuan, Amine Berrak, and Dong Chen. Deep exemplar-based video colorization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8052–8061, 2019.

He Zhang, Jianming Zhang, Federico Perazzi, Zhe Lin, and Vishal M Patel. Deep image compositing. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 365–374, 2021.

Pan Zhang, Bo Zhang, Dong Chen, Lu Yuan, and Fang Wen. Cross-domain correspondence learning for exemplar-based image translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5143–5153, 2020.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European Conference on Computer Vision, pages 649–666. Springer, 2016.

Xingran Zhou, Bo Zhang, Ting Zhang, Pan Zhang, Jianmin Bao, Dong Chen, Zhongfei Zhang, and Fang Wen. Cocosnet v2: Full-resolution correspondence learning for image translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11465–11475, 2021.