Hidden diversity of Acoelomorpha revealed through metabarcoding

Alicia S. Arroyo1, David López-Escardó1, Colomban de Vargas2,3 and Iñaki Ruiz-Trillo1,4,5

1Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, 37-49, 08003 Barcelona, Spain
2CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
3Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
4Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
5ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

IR-T, 0000-0001-6547-5304

Animals with bilateral symmetry comprise the majority of the described species within Metazoa. However, the nature of the first bilaterian animal remains unknown. As most recent molecular phylogenies point to Xenacoelomorpha as the sister group to the rest of Bilateria, understanding their biology, ecology and diversity is key to reconstructing the nature of the last common bilaterian ancestor (Urbilateria). To date, sampling efforts have focused mainly on coastal areas, leaving potential gaps in our understanding of the full diversity of xenacoelomorphs. We therefore analysed 18S rDNA metabarcoding data from three marine projects covering benthic and pelagic habitats worldwide. Our results show that acceols have a greater richness in planktonic environments than previously described. Interestingly, we also identified a putative novel clade of acceols in the deep benthos that branches as sister group to the rest of Acoela, thus representing the earliest-branching acelo clade. Our data highlight deep-sea environments as an ideal habitat to sample acceols with key phylogenetic positions, which might be useful for reconstructing the early evolution of Bilateria.

1. Introduction

The vast majority of the described animal species are bilaterally symmetrical [1]. The establishment of two orthogonal body axes provided the basis for enormous structural complexity compared with radially symmetrical animals, which allowed a more diverse evolutionary outcome [2]. However, how bilaterians evolved and the nature of the first bilaterian animal remains elusive.

Bilaterian animals are separated into four major groups: Acoelomorpha, Ecdysozoa, Lophotrochozoa (or Spiralia) and Deuterostomia [1,3,4]. Although there has been some disagreement, it now seems clear that Xenacoelomorpha is the sister group to the rest of Bilateria (also known as Nephrozoa [5]) [6–8]. Thus, Xenacoelomorpha is a key taxon to compare with the rest of the bilaterians and reconstruct the nature of the last bilaterian common ancestor, namely Urbilateria.

Members of Xenacoelomorpha, which is formed by Acoela, Nemertodermatida and Xenoturbellida, are morphologically quite simple: the digestive system only has one opening, they lack circulatory, respiratory and excretory systems, and also lack a body cavity between the gut and the epidermis [8,9]. Xenacoelmorphs live in benthic habitats, and the majority of described species have come...
from sediments, mainly in coastal areas [10–12]. This morphological simplicity of Xenacoelomorpha seems to support the planuloid–acoeloid hypothesis proposed by Von Graff [13] and Hyman [14], which envisaged Urbilateria to be a simple, benthic acoelomate organism exhibiting direct development [2,15].

However, the full diversity and morphological disparity of Xenacoelomorpha is not yet known, because it has never been approached in a systematic, high-throughput manner. It is therefore possible that there are unobserved or unsampled xenacoelomorph lineages with more complex morphologies or lifestyles, in different habitats, or occupying earlier phylogenetic positions in the Xenacoelomorpha tree. For example, some studies have described acoel morphospecies in freshwater [16,17], brackish water [18] and planktonic habitats [19]. Thus, any attempt to understand the nature and ecology of Urbilateria will require a more global and systematic analyses of Xenacoelomorpha diversity.

2. Material and methods

Clustered operational taxonomic units (OTUs) were obtained from public repositories or directly from the authors. The reference tree was constructed from 255 acoelomorph 18S rDNA GenBank sequences (from herein RefTree). Alignment was carried out using the E-INS-I option from MAFFT v. 7.271 [20] and manually trimmed. The maximum-likelihood (ML) tree was built using RAxML v. 8.0.0 [21] considering a GTR+G model of evolution. Pplacer v. 1.1 [24] was used to perform a phylogenetic placement of the OTUs into the RefTree. Novelty blast percentages were obtained running a blastn 2.2.31 [25] against our curated Acoelomorpha-GenBank database.

A more detailed description of Materials and Methods can be found in the electronic supplementary material.

3. Results and conclusion

Here, we use a comprehensive metabarcoding approach with 18S rDNA to assess xenacoelomorph diversity in marine environments. The aim was to search for potential novel lineages that may be of interest to understand the ancestral xenacoelomorph body plan, as well as to identify the environments in which it would be possible to find them. To this end, we analysed the most complete marine eukaryotic metabarcoding datasets to date, comprising both benthic and pelagic marine environments and from diverse global samplings. In particular, we analysed three major metabarcoding projects (figure 1): (1) BioMarks, with benthic and pelagic samples from European coastal areas (biomarks.eu), (2) Tara Oceans, with pelagic samplings from all over the world (oceana.taraexpeditions.org) and (3) a deep-sea project (hereafter DeepSea), with benthic samples from great depths (more than 3000 m) in both North Pacific and North Atlantic Oceans [26].

We found a total of 101 Xenacoelomorpha environmental OTUs (figure 1 and Material and Methods; see electronic
supplementary material, S1 and S2 for raw data). Of those, 97 OTUs corresponded to Acoela and four to Nemertodermatida. We did not recover any Xenoturbella OTUs. Interestingly, a high percentage (74%) of those sequences show a low blast identity (less than 90%) against the Acoelomorpha 18S rDNA data present in NCBI (figure 2a). This indicates that most of the sequences we recovered are molecularly quite different to the acoelomorphs sequenced so far, even though extensive sampling efforts have been undertaken for acoelomorphs in the last decade [10–12,27].

In order to relate the Acoelomorpha novelty with their phylogeny, we performed a phylogenetic placement of all our OTUs against our Acoelomorpha reference tree using pplacer (see Material and Methods). The more internally an OTU is located by pplacer in the tree, the more molecularly different this OTU is compared with the known reference database. Interestingly, more than half of the acoelomorph OTUs (68%) appeared phylogenetically located in internal rather than external nodes of the Acoelomorpha tree (figure 2c). Therefore, our data indicate that the genetic diversity of Acoelomorpha is much broader than previously thought.

To identify the exact phylogenetic position of our OTUs, we performed ML and Bayesian inference phylogenetic trees (figure 2b; electronic supplementary material, figure S1). Our trees confirmed that some of the new molecular diversity was found in pivotal positions as sister group to major clades. Two OTUs were especially noteworthy, because they probably represent completely new lineages. This is the case of the OTU_DS_13115-11580 (which we name as ‘deep-sea Acoela clade 2’), which appears as the sister group of the Crucimusculata group [27]. Even more important is the finding of a new clade (‘deep-sea Acoela clade 1’, from OTU_DS_4335-14605) that represents, with high statistical
support, the sister group to the rest of Acoela. This novel acoel clade branches earlier than Diopisthophoridae, an acoel family thought to be the earliest offshoot and suggested to possess many ancestral characters [27]. Interestingly, both OTUs representing novel clades were found in very deep environments, where the physico-chemical conditions differ from those of shallow coastal areas. While deep sea Acoela 2 was found in fine mud at 4878 m depth in the North Atlantic Ocean, deep sea Acoela clade 1 was found at a depth of 3678 m in the North Pacific Ocean, around 170 km offshore from Monterey Bay, California. This finding suggests that deep benthos is an ideal habitat in which to search for new acoelomorph taxa that may provide important information about the full genomic and morphological diversity of this group. It is perhaps not surprising, then, that the most recently described *Xenoturbella* species were also identified in that habitat [7].

Having identified the most appropriate habitats for sampling of key acoel lineages, we then analysed the full diversity of our OTUs among all samples. These data revealed interesting biogeographic patterns in acoels. For example, some acoel OTUs appear to be cosmopolitan and very abundant in pelagic environments. This is surprising given that only a few acoel species had been described as planktonic [19]. These species have ecological capabilities that distinguish them from sedimentary acoels, such as strong endosymbiotic relationships with algae and mixotrophy strategies [19] that could help them to cope with the oligotrophic condition in open marine waters. Thus, our high-throughput analysis indicates that there is a greater complexity in the ecology and lifestyle of acoels than previously suspected (see electronic supplementary material for an extended discussion of the differences between Nematodermatida and Acoela diversity).

Overall, our data reveal substantial hidden molecular diversity in Acoelomorpha, especially within acoels, than shown in previous morphological studies. In particular, we show that plankton harbours a huge diversity of unsampled acoels, although within known families, while deep-sea sediments have the potential to uncover key acoel taxa, including the here reported putative sister group to the rest of acoels. As Hejnol & Pang [8] pointed out, ‘strategic sampling is essential for understanding the evolution of major traits’. We believe that our data could help to design future projects with the specific goal of finding new morpho-species from phylogenetically relevant lineages in which the study of anatomical, morphological and molecular evolution could be carried out.

Data accessibility. Sequences here reported and the phylogenetic alignment are available as electronic supplementary material.

Authors’ contributions. I.R.-T. designed and coordinated the study. C.d.V. and D.L.-E. provided some of the data. A.S.A. undertook the analysis and prepared the figures. D.L.-E., A.S.A. and I.R.-T. interpreted the data, and finally A.S.A. and I.R.-T. wrote the manuscript. All authors agreed to be held accountable for the content of the manuscript and approved the final version to be published.

Competing interests. We have no competing interests.

Funding. This work was supported by a grant from Ministerio de Economía y Competitividad (MINECO) (BFU2014-57779-P) and a European Research Council Consolidator Grant (ERC2012Co616960) to I.R.-T., the former co-funded by the European Regional Development Fund. We acknowledge support from Secretaria d’Universitats i Recerca de la Generalitat de Catalunya (Project 2014 SGR 619).

Acknowledgements. We thank Javier del Campo, Dan Ritcher and Alexey Kozlov for their suggestions.

References

1. Dunn CW, Gribet G, Edgecombe GD, Hejnol A. 2014. Animal phylogeny and its evolutionary implications. *Annu. Rev. Ecol. Evol. Syst.* 45, 371 – 395. (doi:10.1146/annurev-ecolsys-120213-091627)

2. Baguñà J, Riutort M. 1999. Acoel flatworms: earliest extant bilaterian Metazoans, not members of the Platyhelminthes. *Zootaxa,* 1126, 3 – 19. (doi:10.11604/zootaxa.1126.0107688)

3. Hejnol A et al. 2009. Assessing the root of bilaterian animal phylogeny and its evolutionary implications. *Proc. R. Soc. B* 276, 4545 – 4552. (doi:10.1098/rspb.2009.0896)

4. Rouse GW, Wilson NG, Carvajal JI, Vrijenhoek RC, Hejnol A. 2014. The dawn of bilaterian Metazoans, not members of the Platyhelminthes. *Zool. Scr.* 43, 201 – 215. (doi:10.1111/zss.12011)

5. Jondelius U, Ruiz-Trillo I, Baguñà J, Riutort M. 2004. The invertebrates: Protozoa through Ctenophora: *The invertebrates: Protozoa* ed. Hyman LH. 1940. vol. 1. New York, NY: McGraw-Hill.

6. Rioja LE, Vannini M, Carvajal JI, Vrijenhoek RC, Hejnol A. 2012. Patterns of diversity in Acoelomorpha, especially within acoels, than shown in previous morphological studies. *Zootaxa,* 3941, 401 – 413. (doi:10.11646/zootaxa.3941.3.6)

7. Kozlov for their suggestions.

8. Cannon JT, Vellutini BC, Smith J, Ronquist F, Baguñà J, Riutort M. 2002. The dawn of bilaterian Metazoans, not members of the Platyhelminthes. *Zootaxa,* 100090.x (doi:10.11604/zootaxa.1000.0107688)

9. Haszprunar G. 2015. Review of data for a culturable acoel species from the Mediterranean, *Oligochoerus limnophilus.* *Hydrobiologie* 112, 1 – 13. (doi:10.1371/journal.pone.0107688)

10. Meyer-Wachsmuth I, Curini-Galletti M, Jondelius U. 2014. Hyper-cryptic marine meiofauna: species complexes in Nemertodermatida. *PloS ONE,* 9, e107688. (doi:10.1371/journal.pone.0107688)

11. Saulnier MO, Facel C, Cassier P. 2008. *Nemertozoa* (Acoela, Acoelomorpha). *Zoologische Mededelingen* 82, 1 – 17. (doi:10.11604/zootaxa.1126.0107688)

12. Zochner T, Salvenmoser W, Egger B. 2015. A cultivable acoel species from the Mediterranean, *Aphanostoma pisa* sp. nov. (*Acoela*, *Acoelomorpha*). *Zoostaxa* 3941, 401 – 413. (doi:10.11646/zootaxa.3941.3.6)

13. Graff LV. 1882 Monographie der Turbellarien I. *Rhabdocoelida.* Leipzig, Germany: Verlag von Wilhelm Engelmann. I. 1-13.

14. Haszprunar G. 2015. Review of data for a culturable acoel species from the Mediterranean, *Oligochoerus limnophilus.* *Hydrobiologie* 112, 1 – 13. (doi:10.1371/journal.pone.0107688)
19. Stoecker D, Swanberg N, Tyler S. 1989. Oceanic mixotrophic flatworms. Mar. Ecol. Prog. Ser. 58, 41–51. (doi:10.3354/meps058041)

20. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. (doi:10.1093/molbev/mst010)

21. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. (doi:10.1093/bioinformatics/btu033)

22. Berger SA, Krompass D, Stamatakis A. 2011. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst. Biol. 60, 291–302. (doi:10.1093/sysbio/syr010)

23. Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. (doi:10.1093/bioinformatics/btg180)

24. Matsen FA, Kodner RB, Armbrust EV. 2010. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538. (doi:10.1186/1471-2105-11-538)

25. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST plus: architecture and applications. BMC Bioinform. 10, 1. (doi:10.1186/1471-2105-10-421)

26. Bik HM, Sung W, De Ley P, Baldwin JG, Sharma J, Rocha-Olivares A, Thomas WK. 2012. Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments. Mol. Ecol. 21, 1048–1059. (doi:10.1111/j.1365-294X.2011.05297.x)

27. Jondelius U, Wallberg A, Hooge M, Raikova Ol. 2011. How the worm got its pharynx: phylogeny, classification and bayesian assessment of character evolution in Acoela. Syst. Biol. 60, 845–871. (doi:10.1093/sysbio/syr073)

rsbl.royalsocietypublishing.org
Biol. Lett. 12, 20160674

Downloaded from http://rsbl.royalsocietypublishing.org/ on June 20, 2017