Multiplication index of *Lipaphis erysimi* on mustard cultivars under *in-vitro* conditions

Sandhya Sinha, Abhishek Shukla, Sumit Kakade and RB Yadav

DOI: https://doi.org/10.22271/chemi.2021.v9.i1ah.11589

Abstract

Mustard cultivars were screened under *in-vitro* conditions for their resistance to *Lipaphis erysimi*. Forty five cultivars of mustards were tested against *Lipaphis erysimi* (Kaltenbach). The results were categorized based on aphid multiplication index values. Lowest aphid multiplication index values were observed on two cultivars namely Aravali (3.23) and RP-9 (3.93) that were found under highly resistant category (mean aphid multiplication index values less than (4.04)).

Keywords: Mustard cultivars, *Lipaphis erysimi*, multiplication index

Introduction

Mustard (*Brassica juncea* (Linnaeus)) is an important oilseed crop grown in India during *Rabi* season. It was introduced to North-Eastern India from China, from where it was extended to Afghanistan via, Punjab (Chaudhari, 2008) [3]. India is placed fourth in terms of oilseed production and holds a premier position in rapeseed-mustard economy of the world with 2nd and 3rd rank in area and production, respectively (Anonymous, 2016) [10]. *Lipaphis erysimi* (Kaltenbach) is economically important and key pest of mustard crop. About 41.14% losses were reported by *Lipaphis erysimi* in mustard crop (Dotasara et al., 2018) [4]. Aphids have many generations in a year and have higher fecundity rate due to parthenogenesis. Both the adult and nymph stages suck the cell sap and cause damage to seeds, leaves, inflorescence and stem. In case of severe aphid infestation the production of honey dew is also observed to lead to the growth of fungus on affected plant parts that reduces photosynthesis rate and indirectly affects plant growth and yield (Patel et al., 2019) [6]. Present investigations were carried out to record the *in-vitro* multiplication of mustard aphid on various cultivars.

Material and Methods

The polyhouse experiment was conducted at the Department of Entomology, College of Agriculture, JNKVV, Jabalpur, Madhya Pradesh, during *rabi* season of the year 2019-20. Total 45 mustard cultivars were evaluated for determining multiplication index of aphids under *in-vitro* condition. Sowing was done in third week of November during *rabi* season, 2019-20. The mustard cultivars were grown in poly bags and kept outside the polyhouse till germination. After germination the same was arranged on polyhouse at a distance of 15 x 30 cm to ensure pest free condition. The experiment consisted of 3 replications and was arranged in completely randomized design (CRD). Identical set (set 2) of the experiment was maintained at another polyhouse.

Aphids were collected from the field from infested plants, with the help of soft camel hair brush on a petri plate. Ten aphids (nymphs) were released on each plant (30 days old). Multiplication of aphids was recorded 10 days after release. The multiplication index was calculated using the following formula, as proposed by Sharma (2007) [7].

\[
M. I. = \frac{N1}{N2}
\]

Where

- **M. I.** : Multiplication index
- **N1** : Aphid number at 10 days after releasing the nymphs
- **N2** : Number of nymphs (aphids) released initially
Statistical analysis

Construction and categorization of aphid index
The aphid index categorization was worked out on the points of inflexion of the normal distribution, as μ, $\mu + \sigma$, $\mu + 2\sigma$, $\mu + 3\sigma$, $\mu - \sigma$, $\mu - 2\sigma$, or $\mu - 3\sigma$ respectively. The five categories had been shown as given below:

$$
\mu - 3\sigma < HR < \mu - 2\sigma \\
\mu - 2\sigma < R < \mu - \sigma \\
\mu - \sigma < MR < \mu \\
\mu < MS < \mu + \sigma \\
\mu + \sigma < S < \mu + 2\sigma \\
\mu + 2\sigma < HS < \mu + 3\sigma
$$

Where

- μ = Mean aphid index value
- σ = Standard deviation of mean aphid index value
- HR = Highly resistant
- R = Resistant
- MR = Moderately resistant
- MS = Moderately susceptible
- S = Susceptible
- HS = Highly susceptible

On the other hand, if the categories belong to upper side of the normal distribution and one point below of the distribution than it indicated that our aphid index should be in positively skewed direction. The mean aphid index values were subjected to analysis of variance at 5% level of significance to compare different cultivars.

Result and Discussion

Based on pooled data of both sets, the categorization of various cultivars was done based on preferences and mean aphid multiplication index values. Lowest aphid multiplication index value was recorded on two cultivars namely Aravali (3.23) and RP-9 (3.93) that were found under highly resistant category (mean aphid multiplication index values less than 4.04). Three cultivars namely RVM-2 (4.66), RH-406 (5.04) and Durgamani (5.13) were found under resistant category, showing mean aphid multiplication index values of more than 4.04 but less than 5.13. Thirty-seven cultivars namely JTC-1 (5.21), Maya (5.26), RVM-3 (5.59), GSL-1 (5.6), Gujarat mustard-2 (5.61), JJ-31 (5.63), Shradha (5.63), China Kovind (5.64), RGN-73 (5.64), GSC-7 (5.69), NRC-HB-506 (5.76), RVM-1 (5.76), Kranti (5.88), Bhagirathi (5.90), DRMIRJ-31 (6.0), Jawahar mustard-2 (6.03), Geeta (6.06), SEJ-2 (6.09), Kiran (6.16), NRCDR-2 (6.28), BR-40 (6.29), Basanti (6.33), Ashirwad (6.34), PC-5 (6.36), NRCHB-101 (6.43), Jaganath (6.53), Jawahar mustard-1 (6.56), RH-749 (6.7), Varuna (6.71), Swarn Jyoti (6.79), Gujarat mustard-1 (6.84), JM-3 (7.04), Krishna (7.53), JM-2 (7.63), Pusa Bold (7.71), BSH-1 (7.83) and Lakshmi (7.75), were found moderately resistant, showing mean aphid multiplication index values of more than 513 but less than 8.26.

On the other hand, three cultivars namely YSH-401 (8.3), Rohini (8.48) and NC-1 (8.53), were found moderately susceptible, showing mean aphid multiplication index values of more than 8.26 but less than 9.35.

Table 1: Mean* Scale values of aphid multiplication on 30 days old mustard cultivars (pooled) during Rabi 2019-20

Sr. No.	Cultivars	Multiplication index value	Set - 1	Pool
1	Aravali	3.36* (1.96)**	3.1	3.23
2	Ashirwad	6.33 (2.61)	6.36	6.34
3	Basanti	6.16 (2.58)	6.5	6.33
4	Bhagirathi	5.50 (2.44)	6.3	5.9
5	BR-40	6.06 (2.56)	6.53	6.29
6	BSH-1	8.00 (2.91)	7.66	7.83
7	China Kovind	4.96 (2.33)	6.33	5.64
8	DRMIRJ-31	5.70 (2.48)	6.3	6.0
9	Durgamani	5.30 (2.40)	4.96	5.13
10	Geeta	5.73 (2.49)	6.4	6.06
11	GSC-7	5.13 (2.37)	6.26	5.69
12	GSL-1	5.50 (2.44)	5.7	5.6
13	Gujarat mustard-1	6.63 (2.67)	7.06	6.84
14	Gujarat mustard-2	5.70 (2.48)	5.53	5.61
15	JJ-31	5.53 (2.45)	5.73	5.63
16	Jaganath	6.43 (2.63)	6.63	6.53
17	Jawahar mustard-1	6.56 (2.65)	6.56	6.56
18	Jawahar mustard-2	6.13 (2.57)	5.93	6.03
19	JM-2	7.00 (2.73)	8.26	7.63
20	JM-3	7.83 (2.88)	6.26	7.04
21	JTC-1	5.33 (2.41)	5.1	5.21
22	Kranti	5.40 (2.42)	6.36	5.88
23	Kiran	6.10 (2.56)	6.23	6.16
24	Krishna	7.20 (2.77)	7.86	7.53
25	Lakshmi	7.40 (2.81)	8.1	7.75
26	Maya	5.23 (2.39)	5.3	5.26
27	NC-1	8.66 (3.02)	8.4	8.53
28	NRCDR-2	6.16 (2.58)	6.4	6.28
29	NRCHB-101	6.73 (2.68)	6.13	6.43
30	NRCHB-506	5.36 (2.42)	6.16	5.76
31	PC-5	5.93 (2.53)	6.8	6.36
32	Pusa Bold	8.03 (2.92)	7.4	7.71
33	RGN-73	5.26 (2.40)	6.03	5.64
Table 2: Categorization of mustard cultivars for their susceptibility to *L. erysimi* based on aphid multiplication index values (pooled)

S. No.	Category of resistance	MAMIV* scale and SD** (Based on normal distribution values)	Cultivars
1	Highly resistant	<4.04	Aravali, RP-9,
2	Resistant	>4.04 but <5.13	RVM-2, RH-406, Durgamani,
3	Moderately resistant	>5.13 but <8.26	JTC-1, Maya, RVM-3, GSL-1, Shradda, China Kovind, RGN-73, GSC-7, NRC-HB-506, RVM-1, Kranti, Bhagirathi, DRMRIJ-31, Jawahar mustard-2, Geeta, SEJ-2, Kiran, NRCDBR-2, BR-40, Basanti, Kishor, PC-5, NRCHB-101, Jaganath, Jawahar mustard-1, RH-749, Varuna, Swarn Jyoti, Gujarat mustard-1, JM-3, Krishna, JM-2, Pusa Bold, BSH-1, Lakshmi,
4	Moderately susceptible	>8.26 but <9.35	YSH-401, Rohini, NC-1,
5	Susceptible	>9.35 but <10.44	
6	Highly susceptible	>10.44	

*Mean of five samples and three replications

**Figures in parentheses are transformed (√x + 0.5) values

Jadon (2008) [5] recorded lowest multiplication index (8.13) on variety Geeta, while the highest multiplication index (12.77) was recorded on variety RK-05-1. Dhillon et al. (2018) [3] reported that under artificial infestation screening techniques, genotypes PM 30, PM-21, Pusa bold and Pusa Vijay displayed variable resistance against *Lipaphis erysimi*.
References
1. Anonymous. Agricultural Statistics at a glance. Department of Agricultural and Cooperation. Ministry of Agriculture, Government of India 2016.
2. Chaudhari MKT. Studies on insect pest complex of mustard and control of aphid through different techniques. M.Sc. Thesis, JNKVV, Jabalpur 2008, 12.
3. Dhillon MK, Singh N, Tanwar AK, Yadava DK, Vasudeva S. Standardization of screening techniques for resistance to Lipaphis erysimi (Kalt.) in rapeseed mustard under field condition. Indian Journal of Experimental Biology 2018;56:674-685.
4. Dotasara SK, Kumawat KC, Swami D, Jat GC, Choudhary HS, Jat SL. Assessment of crop loss due to insect pests in Indian mustard in semi-arid region of Rajasthan. Journal of Entomology and Zoology Studies 2018;6(3):770-772.
5. Jadon BS. Reaction of mustard genotypes and bioefficacy of botanicals against aphid, Lipaphis erysimi (Kalt.). M.Sc. Thesis, JNKVV, Jabalpur 2008, 28.
6. Patel S, Singh CP, Yadav SK. Monitoring of insect-pest complex on rapeseed mustard at pantnagar. Journal of Entomological research 2019;43(1):73-76.
7. Sharma A. Studies on the genotypic preference of mustard aphid, Lipaphis erysimi (Kalt.) and their natural enemies. M.Sc. Thesis, JNKVV, Jabalpur 2007, 28.