Observation of tensor glueball in the reactions
\[p\bar{p} \rightarrow \pi\pi, \eta\eta, \eta\eta' \]

V.V. Anisovich and A.V. Sarantsev
Petersburg Nuclear Physics Institute, Gatchina 188300, Russia

19.03.05

Abstract

Partial wave analysis of the reactions \(p\bar{p} \rightarrow \pi\pi, \eta\eta, \eta\eta' \) in the region of invariant masses 1900–2400 MeV indicates to the existence of four relatively narrow tensor-isoscalar resonances \(f_2(1920), f_2(2020), f_2(2240), f_2(2300) \) and the broad state \(f_2(2000) \). The determined decay couplings of the broad resonance \(f_2(2000) \rightarrow \pi^0\pi^0, \eta\eta, \eta\eta' \) satisfy the relations appropriate to those of tensor glueball, while the couplings of other tensor states do not, thus verifying the glueball nature of \(f_2(2000) \).

PACS numbers: 14.40-n, 12.38-t, 12.39-MK

In [1], the combined partial wave analysis was performed for the high statistics data on the reactions \(p\bar{p} \rightarrow \pi^0\pi^0, \eta\eta, \eta\eta' \) taken at antiproton momenta 600, 900, 1150, 1200, 1350, 1525, 1640, 1800 and 1940 MeV/c together with data obtained for polarised target in the reaction \(\bar{p}p \rightarrow \pi^+\pi^- \) that resulted in the determination of a number of isoscalar resonances \(f_J \) with \(J = 0, 2, 4 \) (for the review see [3, 4, 5]). In the 02\(^++\)-sector, five states are required to describe the data [1, 3]:

Resonance	Mass(MeV)	Width(MeV)
\(f_2(1920) \)	1920 ± 30	230 ± 40
\(f_2(2000) \)	2010 ± 30	495 ± 35
\(f_2(2020) \)	2020 ± 30	275 ± 35
\(f_2(2240) \)	2240 ± 40	245 ± 45
\(f_2(2300) \)	2300 ± 35	290 ± 50

The resonance \(f_2(1920) \) was observed earlier in spectra \(\omega\omega \) [6, 7, 8] and \(\eta\eta' \) [9, 10], see also compilation [11]. For the broad tensor-isoscalar resonance in the region around 2000 MeV the recent analyses give: \(M = 1980 \pm 20 \) MeV, \(\Gamma = 520 \pm 50 \) MeV in \(pp \rightarrow pp\pi\pi\pi\pi \) [12] and \(M = 2050 \pm 30 \) MeV, \(\Gamma = 570 \pm 70 \) MeV in \(\pi^-p \rightarrow \phi\phi n \) [13]. Following [1, 12, 13], we denote the broad resonance as \(f_2(2000) \).
The description of data in the reactions $p\bar{p} \to \pi^0\pi^0, \eta\eta, \eta\eta'$ is illustrated by Fig. 1. In Fig. 2, 3, one can see differential cross sections $p\bar{p} \to \pi^+\pi^-$, while Fig. 4 presents the polarisation data. In Fig. 5, we show cross sections for $p\bar{p} \to \pi^0\pi^0, \eta\eta, \eta\eta'$ in the $^3P_2\bar{p}p$ and $^3F_2\bar{p}p$ waves (dashed and dotted curves) and total ($J = 2$) cross section (solid curve) as well as the Argand-plots for the 3P_2 and 3F_2 wave amplitudes at invariant masses $M = 1.962, 2.050, 2.100, 2.150, 2.200, 2.260, 2.304, 2.360, 2.410$ GeV.

Partial wave analysis [11, 13] together with recent data for $\gamma\gamma \to K_SK_S$ [14] and re-analysis of $\phi\phi$-spectra [13] have clarified the situation with f_2-mesons in the mass region $1700 - 2400$ MeV. Based on these data, there was performed in [15] a systematisation of the non-exotic f_2-mesons on the (n, M^2)-trajectories, where n is the radial quantum number of the $q\bar{q}$-state. The systematisation [15] shows us that the broad resonance $f_2(2000 \pm 30)$ is an extra state for the (n, M^2)-trajectories being apparently the lowest tensor glueball. However, the statement about glueball nature of $f_2(2000)$ was based on indirect arguments:

(i) The leading Pomeron trajectory $\alpha_P(M^2) = \alpha_P(0) + \alpha'_P(0)M^2$ has the following values for the intercept and slope: $\alpha(0) \simeq 1.10 - 1.30$ and $\alpha'_P(0) \simeq 0.15 - 0.25$ (see, for example, [16, 17, 18]). These Pomeron parameters give for the tensor glueball $M \simeq 1.7 - 2.5$ GeV.

(ii) In the lattice calculations, a close value was obtained, namely, $M \simeq 2.2 - 2.4$ GeV [19].

(iii) The large width of $f_2(2000)$ can be considered as a signature of the glueball origin of this state. Exotic state appearing in a set of $q\bar{q}$ resonances accumulates their widths, thus transforming into broad resonance [20]. The phenomenon of width accumulation has been studied in [21, 22] for scalar glueball $f_0(1200 - 1600)$, and much earlier this phenomenon was observed in nuclear physics [23, 24, 25].

Direct arguments for the glueball nature of $f_2(2000)$ can be provided by the relations between decay coupling constants, and for tensor glueball such relations were presented in [15]. In [11, 13], the extraction of the decay couplings $f_J \to \pi\pi, \eta\eta, \eta\eta'$ was not performed — in the present paper we fill in this gap. The $\bar{p}p \to \pi^0\pi^0, \eta\eta, \eta\eta'$ amplitudes provide us the following ratios for the f_2 resonance couplings, $g_{\pi^0\pi^0} : g_{\eta\eta} : g_{\eta\eta'}$:

\[
\begin{align*}
 f_2(1920) & : 1 : 0.56 \pm 0.08 : 0.41 \pm 0.07 \\
 f_2(2000) & : 1 : 0.82 \pm 0.09 : 0.37 \pm 0.22 \\
 f_2(2020) & : 1 : 0.70 \pm 0.08 : 0.54 \pm 0.18 \\
 f_2(2240) & : 1 : 0.66 \pm 0.09 : 0.40 \pm 0.14 \\
 f_2(2300) & : 1 : 0.59 \pm 0.09 : 0.56 \pm 0.17.
\end{align*}
\]

These ratios are to be compared with those given in [15].

In the leading terms of $1/N_c$-expansion [20], there exist definite ratios for the glueball decay couplings. The next-to-leading terms in the decay couplings give the corrections of the order of $1/N_c$ (see, for example, [4]); numerical calculations of diagrams tell us that $1/N_c$ factor leads to a smallness of the order of $1/10$, and we neglect them. For the transitions tensor glueball $\to \pi^0\pi^0, \eta\eta, \eta\eta'$ the relations in the leading terms of $1/N_c$-expansion read (see Table in [15]):

\[
g_{\eta\eta}^{(glueball)} : g_{\eta\eta}^{(glueball)} : g_{\eta\eta'}^{(glueball)} = 1 : (\cos^2 \Theta + \lambda \sin^2 \Theta) : (1 - \lambda) \sin \Theta \cos \Theta. \quad (3)
\]
Here Θ is the mixing angle for $\eta-\eta'$ mesons: $\eta = n\bar{n}\cos \Theta - s\bar{s}\sin \Theta$ and $\eta' = n\bar{n}\sin \Theta + s\bar{s}\cos \Theta$, where $n\bar{n} = (u\bar{u} + d\bar{d})/\sqrt{2}$. We neglect a possible admixture of the gluonium component in η and η' (according to [27], the gluonium admixture in η is less than 5%, and in η' it is less than 20%). For the mixing angle Θ we use $\Theta = 37^\circ$.

Suppression parameter λ determines relative production probability of strange quarks by gluon field $u\bar{u}: d\bar{d}: s\bar{s} = 1 : 1 : \lambda$ with $0 \leq \lambda \leq 1$. The data provide us with the following values of this parameter: $\lambda \simeq 0.5$ [28] for central hadron production in hadron–hadron high energy collisions, $\lambda = 0.5 - 0.8$ [29] for the decay of tensor mesons and $\lambda = 0.5 - 0.9$ [30] for the decays of 0^{++} mesons.

For ($\lambda = 0.5$, $\Theta = 37^\circ$) eq. (3) gives us $1 : 0.82 : 0.24$, and for ($\lambda = 0.85$, $\Theta = 37^\circ$), correspondingly, $1 : 0.95 : 0.07$. Consequently, the relations between the coupling constants $g_{\pi^0\pi^0} : g_{\eta\eta} : g_{\eta\eta'}$ for the glueball are to be as follows:

$$2^{++}\text{glueball} \quad g_{\pi^0\pi^0} : g_{\eta\eta} : g_{\eta\eta'} = 1 : (0.82 - 0.95) : (0.24 - 0.07).$$

(4)

We see from [2] that precisely the coupling constants of the broad $f_2(2000)$ resonance are inside the intervals: $0.82 \leq g_{\eta\eta}/g_{\pi^0\pi^0} \leq 0.95$ and $0.24 \geq g_{\eta\eta'}/g_{\pi^0\pi^0} \geq 0.07$. Hence, it is just this resonance which can be considered as tensor glueball, with λ being fixed in the interval $0.5 \leq \lambda \leq 0.7$.

Taking into account that there is no room for $f_2(2000)$ on the (n, M^2)-trajectories [15], it becomes clear that this resonance is indeed the lowest tensor glueball.

The authors are grateful to A.V. Anisovich, D.V. Bugg, L.G. Dakhno, M.A. Matveev and V.A. Nikonov for useful discussions. The paper was supported by the grant No. 04-02-17091 of the RFFI.

References

[1] A.V. Anisovich et al., Phys. Lett. B 491, 47 (2000).
[2] E. Eisenhandler et al., Nucl. Phys. B98, 109 (1975).
[3] A.V. Anisovich, V.A. Nikonov, A.V. Sarantsev, V.V. Sarantsev, in "PNPI XXX, Scientific Highlight, Theoretical Physics Division, Gatchina (2001), p. 58.
[4] V.V. Anisovich, UFN, 174, 49 (2004) [Physics-Uspekhi, 47, 45 (2004)].
[5] D.V. Bugg, Phys. Rep., 397, 257 (2004).
[6] G.M. Beladidze et al. (VES Collab.), Z. Phys. C 54, 367 (1992).
[7] D.M. Alde et al. (GAMS Collab.), Phys. Lett., B 241, 600 (1990).
[8] D. Barberis et al. (WA 102 Collab.), Phys. Lett., B 484, 198 (2000).
[9] D.M. Alde et al. (GAMS Collab.), Phys. Lett. B 276, 375 (1992).
[10] D. Barberis et al. (WA 102 Collab.), Phys. Lett. B 471, 429 (2000).
[11] S. Eidelman et al. (PDG), Phys. Lett. B 592, 1 (2004).
[12] D. Barberis et al. (WA 102 Collab.), Phys. Lett. B 471, 440 (2000).
[13] R.S. Longacre and S.J. Lindenbaum, Report BNL-72371-2004.
[14] V.A. Schegelsky, A.V. Sarantsev, V.A. Nikonov, "Phenomenological investigation of the $K_S K_S$ final state in two-photon collisions and nonet classification of tensor resonances", L3 Note 3001, October 27, 2004.
[15] V.V. Anisovich, Pis'ma v ZhETF, 80, 845 (2004), hep-ph/0412093.
[16] A.B. Kaidalov and K.A. Ter-Martirosyan, Sov. J. Nucl. Phys. 39, 979 (1984).
[17] P.V. Landshoff, "Soft hadron reactions", in QCD: 20 Years Later, eds. P.M. Zerwas and H.A. Kastrup, (World Scientific, Singapore, 1993).
[18] L.G. Dakhno and V.A. Nikonov, Eur. Phys. J. A5, 209 (1999).
[19] G.S. Bali, K. Schilling, A. Hulsebos et al. (UK QCD Collab.), Phys. Lett. B 309, 378 (1993); C.J. Morningstar, M.J. Peardon, Phys. Rev. D 60, 034509 (1999).
[20] V.V. Anisovich, D.V. Bugg and A.V. Sarantsev, Phys. Rev. D 58, 111503 (1998).
[21] V.V. Anisovich, Yu.D. Prokoshkin and A.V. Sarantsev, Phys. Lett. B 389, 388 (1996); Z. Phys. A 357, 123 (1997).
[22] A.V. Anisovich, V.V. Anisovich, and A.V. Sarantsev, Phys. Lett. B 395, 123 (1997); Z. Phys. A 359, 173 (1997).
[23] I.S. Shapiro, Nucl. Phys. A 122 645 (1968).
[24] I.Yu. Kobzarev, N.N. Nikolaev, L.B. Okun, Yad. Fiz. 10, 864 (1969); [Sov. J. Nucl. Phys. 10, 499 (1966)].
[25] L. Stodolsky, Phys. Rev. D 1, 2683 (1970).
[26] G. 't Hooft, Nucl. Phys. B 72, 461 (1974); G. Veneziano, Nucl. Phys. B 117, 519 (1976).
[27] V.V. Anisovich, D.V. Bugg, D.I. Melikhov, V.A. Nikonov, Phys. Lett. B 404, 166 (1997).
[28] V.V. Anisovich, M.G. Hiber, M.N. Kobrinsky and B.Ch. Metsch, Phys. Rev. D 42, 3045 (1990).
[29] K. Peters, E. Klempt, Phys. Lett. B 352, 467 (1995).
[30] V.V. Anisovich and A.V. Sarantsev, Eur. Phys. J. A 16, 229 (2003).
Figure 1: Angle distributions in the reactions $p\bar{p} \rightarrow \pi\pi, \eta\eta, \eta'\eta'$ and their fit to resonances of eq. (1).
Figure 2: Differential cross sections in the reaction $p\bar{p} \rightarrow \pi^+\pi^-$ at proton momenta 360-1300 MeV and their fit to resonances of eq. (1).
Figure 3: Differential cross sections in the reaction $p\bar{p} \to \pi^+\pi^-$ at proton momenta 1350-2230 MeV and their fit to resonances of eq. (1).
Figure 4: Polarisation in $p\bar{p} \rightarrow \pi^+\pi^-$ and its fit to resonances of eq. (1).
Figure 5: Cross sections and Argand-plots for 3P_2 and 3F_2 waves in the reaction $p\bar{p} \rightarrow \pi^0\pi^0, \eta\eta, \eta\eta'$. The upper row refers to $p\bar{p} \rightarrow \pi^0\pi^0$: we demonstrate the cross sections for 3P_2 and 3F_2 waves (dashed and dotted lines, correspondingly) and total ($J = 2$) cross section (solid line) as well as Argand-plots for the 3P_2 and 3F_2 wave amplitudes at invariant masses $M = 1.962, 2.050, 2.100, 2.150, 2.200, 2.260, 2.304, 2.360, 2.410$ GeV. The figures on the second and third rows refer to the reactions $p\bar{p} \rightarrow \eta\eta$ and $p\bar{p} \rightarrow \eta\eta'$.