Tarragon (Artemisia Dracunculus L.) Could Alleviate Negative Effects of Stocking Density in Laying Hens

ABSTRACT

The study was conducted to determine the effects of stocking density (SD, 5 or 7 layers/cage) and tarragon (Artemisia dracunculus L.) diet supplementation at four levels (0, 1.2, 6 and 12 g/kg feed) on performance, certain egg characteristics, serum, liver, egg yolk and small intestine bacteria parameters in laying hens. The experiment was carried out over a period of 8 weeks, with 192 Lohman Brown commercial hybrids at 50-w-age. The results showed that an increased SD reduced feed intake (FI; p<0.01) and egg production (p<0.05), but had no effect on the weight gain, feed conversion ratio, damaged egg ratio, egg weight and egg quality (p>0.05) parameters. The supplementation of tarragon to the diet reduced the FI and damaged egg ratio (p<0.01), and improved egg production and FCR (p<0.01). While an increased SD reduced serum total antioxidants (p<0.05), it elevated corticosterone (CORT) and total oxidant serum (TOS) (p<0.05). Tarragon was found to enhance total immunoglobulin (p<0.05), but to decreased the CORT and TOS of the serum (p<0.05). An increased SD raised the malondialdehyde (MDA) in the serum (p<0.001), liver (p<0.05) and yolk (p<0.001). Tarragon supplementation reduced MDA of the serum (p<0.05), liver (p<0.001) and yolk (p<0.001). E. coli and total Mesophilic Aerobic Bacteria counts in the small intestine were raised (p<0.001) with increased SD. Tarragon decreased (p<0.05) mesophilic aerobic bacteria. It was thus found that, tarragon supplementation can be considered generally effective in improving performance parameters, alleviating stress-induced negativities, reducing lipid peroxidation, regulating the immune system and controlling some intestinal microorganisms.

INTRODUCTION

A high (H) stocking density (SD) is one approach to increasing profitability in conventional poultry production, although HSD decreases animal welfare and increases stress. In the event of stress, the adrenocorticotropin hormone secreted from the anterior pituitary affects the adrenal cortex for the synthesis of glucocorticoids (corticosterone [CORT] and cortisol). The primary glucocorticoid released from the hypothalamic-hypophysis-adrenal (HPA) axis with the effects of stress factors is corticosterone in poultry (Ralph & Tilbrook, 2016). An increase in the CORT hormone in poultry has been found to decrease performance (Kutlu & Forbes, 1993; Mirfendereski & Jahanian, 2015; Sahin et al., 2002; and immunity parameters (Mirfendereski & Jahanian, 2015; von Eugen et al., 2019). Stress factors effect total serum antioxidant (TAS) and oxidant (TOS) concentrations (Sohail et al., 2011). While light and moderate stressors can be easily handled, severe stressors can cause pathological conditions (Moberg & Mench, 2000). That said, contradictory data has been presented with regards to the reaction of the HPA axis in connection with the period and intensity of the stressors in chickens (Ericsson, 2016).
Basic free radicals deriving from oxygen in living systems play a role in oxidative stress and oxidative rancidity (Conforti et al., 2006). Oxidative stress damages important biological molecules, and when the body's ability to rid itself of radicals is reduced, at least one of the pathological findings in animals (Fellenberg & Speisky, 2006) lipid peroxidation in animal products (Galobart et al., 2001) occur. Today, medicinal aromatic plants with high phenolic and flavonoid content, as well as their extracts, are used to alleviate the negative effects of stress factors and synthetic antioxidants. It has been stated that the dietary supplementation of antioxidant substances regulates corticosteroid synthesis in the adrenal glands (Mirfendereski & Jahanian, 2015; Von Eugen et al., 2019) enhances immunity (Mirfendereski & Jahanian, 2015) and decreases the lipid peroxidation of egg yolk (Botsoglou et al., 2005; Karaalp et al., 2018). In addition, dietary supplementations of anti-microbial substances suppress pathogenic microflora in the digestive system (Wenk, 2000).

Artemisia dracunculus L., which is one of the 22 types of the Artemisia species grown in Turkey, has both antioxidant and antibacterial features. The dominant ingredients in the oil of Artemisia dracunculus L. plant, which is a multi-year woody plant, are (Z)-anethole (81%), (Z)-β-ocimene (6.5%), (E)-β-ocimene (3.1%), limonene (3.1%) and methyleugenol (1.8%) (Kordali et al. 2005). In another study conducted in the same period and in the same region, the β-ocimene (1.237.21 arbitrary units, AU×10^{-6}), α-pinene (114.4 AU×10^{-6}), β-thujene (166.92 AU×10^{-6}), D-limonene (366.2 AU×10^{-6}), γ-terpinene (187.27 AU×10^{-6}), terpinolene (129.92 AU × 10^{-6}) and Estragole (11 242 AU × 10^{-6}), levels were stated (Yilmaz et al. 2019).

There have to date been several studies examining the effects of Artemisia annua (Brisibe et al., 2008) Artemisia sieberi (Khalaji et al., 2011; Kheirabadi et al., 2014) and Artemisia dracunculus (Gharetappe et al., 2015; Hosseinzadeh & Moghaddam, 2014), all of which are Artemisia spp., in broiler chickens; and while there have been a few studies examining effects of Artemisia annua in laying hens (Brisibe et al., 2008; Li et al., 2016), no study has been found with specific focus on Artemisia dracunculus.

The initial humoral and cellular immune response takes the form of cytokines released from activated T cells. These cytokines are transformed into plasma cells that are capable of producing antibodies (IgG, IgA and IgM) through the stimulation of B lymphocytes (Taheri et al., 2005). There are three main antibody classes containing IgM, IgA and IgG (IgY) that have been identified in chickens (Ayaz et al., 2008). IgG in chickens accounts for approximately 75% of the total serum antibodies (Carlander et al., 2000).

One of the more common bacteria found in animal intestines is Escherichia coli (E. coli) (Omidpanah et al., 2016). Some serotypes of E. coli are pathogens for poultry (Dho-Moulin & Fairbrother, 1999; and some serotypes are pathogens for humans (Kassaify and Mine 2004). Aerobic mesophilic bacteria and their metabolites are the main pathogenic microorganisms causing environmental pollution (Witkowska & Sowińska, 2013).

The present study evaluates the effects of the dietary supplementation of Artemisia dracunculus L. in commercial laying hens housed in different SD on performance, certain egg quality characteristics, peroxidation, immune response and some intestinal bacteria.

MATERIALS AND METHODS

Animals, Experimental Desing and Feed

All procedures were approved by the Animal Experiments Local Ethics Committee of Gumushane University (Approval date: 10.05.2017; Decision No: 01-07). A total of 192 Lohman Brown layer hens (at 50-w old) were used in a 2×4 factorial (with 4 replications) arrangement of treatments that included two cage densities [5, normal (N) SD and 7 (HSD) hens per cage; 90x45x35 cm], and four ratios of ground tarragon (0, 1.2, 6 and 12 g/kg of ground tarragon) per 0.833 mmol/g according to Erel (2004). The dietary supplementation of 0, 1.2, 6 and 12 g/kg of ground tarragon corresponded to 0, T1.2, T6 and T12, respectively. The SDs were 810 and 580 cm² area per hen in the NSD and HSD groups, respectively.

The ingredients and chemical compositions of the commercial feed are presented in Table 1. The tarragon was obtained from the village of Yedigöze in the Bayburt Province, and was kept stored in a cool and dry environment. The total antioxidant amount of tarragon was measured as 0.833 mmol/g according to Erel (2004). The dietary supplementation of 0, 1.2, 6 and 12 g/kg of ground tarragon corresponded to 0, 1, 5 and 10 mmol of additional antioxidant, respectively. The first 2-w (48 to 50-w old) was the adaptation period. The main trial lasted for a total of 8-w, from 50 to 58-w old. The hens were exposed to 16 h light and 8 h darkness, feed and water were provided ad libitum, and the accommodation temperature was maintained at 21 to 24 °C throughout the trial period.

The diet was analyzed according to standard AOAC (2007), procedures for chemical composition.
Kaya H, Karaalp M, Kaynar Ö, Tekçe E, Aksakal A, Bayram B

Tarragon (Artemisia Dracunculus L.) Could Alleviate Negative Effects of Stocking Density in Laying Hens

Performance and Egg Quality Parameters

Weight gain (WG), feed intake (FI) and feed conversion ratio, FCR were determined every two weeks; the damaged egg ratio (DER), average egg weight (AEW) and egg weight (EW) were determined daily. In order to determine such egg quality parameters such as yolk height (YH), yolk color index (YCI), Haugh unit (HU), shell strength (SS), shell thickness (ST), shape index (SI) and shell weight (SW), three random egg samples were taken from each replication (12 from each group; total 96) at 4 and 8 w. After the samples were kept at room temperature for 24 hours, they were subjected to analysis with an advanced laser light method branded NABEL DET6000.

Serum CORT, IgG, TAS and TOS

At the end of the experiment, a total of 80 samples, 10 from each group, were taken for blood, yolk and tissue analysis. CORT, TAS, TOs and IgG in the blood; malondialdehyde (MDA) in the blood, yolk and liver; and E. coli and total mesophilic aerobic bacteria in the small intestine were determined. At the end of the experimental period, serum was separated by centripuging approximately 7 ml blood samples taken from the vena jugularis after 12-hours of fasting, and kept at -82°C until the analysis. CORT concentrations were determined using commercially available radio immune assay sets (Byk-Sangtec Diagnostica, Dietzenbach-Germany; Immulite 2000, DPC, LA) (Sahin et al., 2003). Serum IgG concentrations were determined using the ELISA method, as mentioned by Li et al. (2000). Linearity of the standard IgG was calculated using the Excel program. Serum TOS was measured spectrophotometrically and calibrated with hydrogen peroxide (Erel, 2005). Serum TAS level was measured using the colorimetric method developed by Erel (2004). The eggs that were selected for yolk MDA analysis were stored for 21 days at +6 ºC, after which, 10 samples were taken from the liver and yolk, and stored until the time of analysis at -82 ºC after being homogenized. The MDA analyses were carried out based on the method put forward by .

Small Intestine E. coli and Total Mesophilic Aerobic Bacteria

A total of 10 small intestine content samples were collected from each experiment group for total mesophilic aerobic bacteria and E. coli counts. The total E. coli and mesophilic aerobic bacteria counts reproduced at the end of the incubation period were determined in line with.

Statistical analysis

The data was subjected to an analysis of variance (General Linear Model procedure) with a completely randomized design using SPSS software (2002). Data on the egg quality parameters was analyzed according to the 2x2x4 factorial design. A Duncan multiple range test was applied to compare the effects of the different doses of tarragon.

RESULTS

Performance and Egg Quality Criteria

Effects on performance of SD and of different doses of tarragon in the diet are given in Table 2. SD and

Table 1 – Composition of experimental diet.

Ingredients	g/kg
Corn	352.40
Triticale	175.00
Wheat	75.00
Soybean meal, 340 g CP/kg	114.60
Sunflower meal, 330 g CP/kg	103.60
Hazelnut, 420 g CP/kg	35.00
Corn gluten meal, 600 g CP/kg	25.00
Vegetable oil	8.30
Limestone	95.50
Dicalcium phosphate	7.20
NaCl	3.20
Premix	2.50
L-Lysine HCl	1.50
Naturalbind-S	1.20

Chemical analysis of feed

Crude matter	892.20
Crude protein	167.50
Ether extract	46.60
Crude fiber	52.90
Crude ash	131.70
Starch	339.90

Calculated contents of feed (…/kg)

Metabolizable energy, MJ/kg	11.45
Methionine, g	3.70
Methionine + Cystine, g	6.70
Lysine, g	7.50
Linoleic acid, g	22.10
Ca, g	39.00
Available P, g	3.50
Na, g	1.50

| 1Premix provided per kilogram of diet: vitamin A (retinyl acetate), 6.7 mg; vitamin D₃ (cholecalciferol), 1.6 mg; vitamin E (α-tocopherol), 30 mg; vitamin K₃ (menadione), 2.5 mg; vitamin B₁ (thiamine), 3 mg; vitamin B₂ (riboflavin), 7 mg; vitamin B₆ (niacin), 40 mg; vitamin B₇ (Ca-D-pantothenate), 8 mg; vitamin B₉ (pyridoxine), 4 mg; vitamin B₁₂ (D-biotin), 0.1 mg; vitamin B₁₃ (folic acid), 1 mg; vitamin B₁₄ (cyanocobalamine), 0.02 mg; vitamin C (ascorbic acid), 50 mg; choline chloride, 125 mg; Mn, 80 mg; Fe, 60 mg; Zn, 60 mg; Cu, 5 mg; Co, 0.10 mg; Se, 0.15 mg. |
| 2Metabolisable energy (ME) is calculated according to the method provided by TSE (1991). |
Tarragon (Artemisia Dracunculus L.) Could Alleviate Negative Effects of Stocking Density in Laying Hens

Kaya H, Karaalp M, Kaynar Ö, Tekçe E, Aksakal A, Bayram B

Tarragon doses had no effect on body weight between the beginning and end of the test, WG and AEW (>0.05). An increase in SD had no effect on FCR and DER (>0.05), but decreased the daily FI (<0.01) and EP (<0.05). T1.2 and T6 diets decreased FI and DER (<0.01) and improved FCR (<0.01).

The effects on egg quality characteristics of SD and different tarragon doses in the diet are given in Table 3. It was determined that age, SD and tarragon dietary supplementation had no significant effect on the YH, HU, SS, SI or SW egg quality parameters. Age and SD had no effect on YCI (>0.05), while YCI was decreased by tarragon supplementation (<0.01). The interactions of D×S and D×S×T on YCI, on the other hand, were significant (<0.01), and SD and changes in the tarragon doses in the diet had no effect on ST (>0.05), but decreased as the age increased (<0.05).

Serum CORT, IgG, TAS and TOS

The effect of SD and tarragon doses on serum CORT, IgG, TAS and TOS quantities are presented in Table 4. Serum CORT, which was high (<0.001) in HSD, decreased (<0.001) in a parallel with tarragon dietary supplementation. Furthermore the S×T interaction on serum CORT was significant (<0.001). SD had no effect on the serum IgG (>0.05). T6 and T12 increased the serum IgG more than in the control, and the T12 effect was higher (<0.001). HSD decreased serum TAS (<0.01), and tarragon supplementation increased the TAS amount only numerically (>0.05). While SD increased serum TOS (<0.001), the tarragon doses decreased this parameter (<0.001). T12 was more effective (<0.05) in decreasing serum TOS when compared to T1.2 and T6.

Serum, Liver and Egg MDA

The effects of SD and tarragon doses on serum, liver and egg MDA quantities are presented in Table 5. HSD raised the MDA in the serum (<0.001), liver (<0.05) and egg yolk (<0.001). T6 and T12 diets decreased serum MDA. All doses of tarragon decreased the liver MDA (<0.001), and T6 and T12 were more effective than T1.2 on this parameter. Moreover S×T interaction was significant in the quantity of liver MDA (<0.05). The T6 and T12 diets decreased the yolk MDA (<0.001), and T12 was more effective on the yolk MDA when compared to T6 (<0.05).

Small Intestine E. coli and Total Mesophilic Aerobic Bacteria

The effects of SD and tarragon doses on serum, liver and egg MDA quantities are presented in Table 5. HSD raised the MDA in the serum (<0.001), liver (<0.05) and egg yolk (<0.001). T6 and T12 diets decreased serum MDA. All doses of tarragon decreased the liver MDA (<0.001), and T6 and T12 were more effective than T1.2 on this parameter. Moreover S×T interaction was significant in the quantity of liver MDA (<0.05). The T6 and T12 diets decreased the yolk MDA (<0.001), and T12 was more effective on the yolk MDA when compared to T6 (<0.05).
Tarragon (Artemisia Dracunculus L.) Could Alleviate Negative Effects of Stocking Density in Laying Hens

DISCUSSION

Performance

In the present study, SD and tarragon doses had no effect on body weight between the beginning and end of the test, WG and AEW (p > 0.05). There are also studies indicating that the HSD has a negative effect on the WG (Onbaşilar & Aksoy, 2005; Nahashon et al., 2006; Sahin et al., 2007; Sarica et al., 2008) and has no effect as in the present study (Jalal et al., 2006; Onbaşilar et al., 2009; Fidan, 2010). The differences between the results of the present study and those in literature could be attributed to the lack of standardization of area allocated per hen. In the present study, the addition of 40% more space per animal to the HSD group than in the NSD group was not sufficient to affect weight parameters (p > 0.05). It is stated that the dietary supplementation of 1% Artemisia sieberi (Khalaji et al., 2011), 2 and 4% Artemisia annua (Cherian et al., 2013) and 0.4% Artemisia dracunculus to broilers (Gharetappe et al., 2015) had no effect on WG. (Hosseinzadeh & Moghaddam, 2014) reported that the dietary supplementation of 0.125 and 0.25% of Artemisia dracunculus did not affect WG, while a 0.5% dose decreased it. Kheirabadi et al. (2014) reported that the incorporation of 5 mg/kg of Artemisia sieberi granulated extract (GEAS) into the diet reduced live weight at 42 days when compared to control group. It was reported that the incorporation of 10 and 20% of Artemisia annua (Brisibe et al., 2008); 0.5, 1 and 1.5% of Artemisia annua leaf powder with 2000 and 4000 ppm methanolic extract (Gholamrezaie et al., 2013); 1.5% of Artemisia annua (Drăgan et al., 2014); and 100, 150 and 200 g/kg of Artemisia

Table 3 – The effect of tarragon supplementation to diet on the egg shell quality parameters.

D	S	T, g/kg feed	EW, g	YH, mm	YCI	HB	SS, Kgf	ST, mm	SI	SW, g
28	N	0.658^a	6.3	9.7^a	75.7	2.19^a	0.37^a	73.6	8.0^a	
		1.2 64.4^b	6.1	6.8^{ab}	74.1	2.43^a	0.38^a	73.4	8.0^a	
		6 65.3^b	6.1	6.6^{ab}	74.3	2.46^{ab}	0.38^a	74.8	8.1^b	
		12 64.5^b	5.9	6.6^{ab}	73.3	2.34^{ab}	0.34^a	73.9	7.8^a	
	H	0 61.9^{ab}	6.2	7.5^{ab}	76.9	2.38^a	0.36^a	74.4	7.7^a	
		1.2 65.4^a	6.6	7.1^{ab}	77.5	2.42^a	0.39^{ab}	73.9	7.5^a	
		6 61.3^c	5.7	6.6^{ab}	71.5	2.35^{ab}	0.38^a	74.1	7.7^a	
		12 63.3^{ab}	6.0	7.6^{ab}	74.9	2.39^{ab}	0.35^a	74.3	7.7^a	
56	N	0 68.2^{ab}	5.6	7.5^{ab}	71.7	2.49^a	0.33^a	73.9	7.6^a	
		1.2 65.3^{ab}	6.4	6.8^{ab}	76.9	2.40^a	0.34^{ab}	73.3	7.7^b	
		6 61.8^b	6.1	5.8^b	73.8	2.33^{ab}	0.35^a	73.7	7.6^a	
		12 65.2^{ab}	5.7	6.7^{ab}	71.7	2.37^{ab}	0.36^a	73.8	7.8^b	
	H	0 64.8^{ab}	5.8	10.4^a	73.4	1.97^b	0.34^{ab}	74.0	7.4^a	
		1.2 65.4^a	6.4	6.4^b	77.1	2.38^a	0.36^b	73.1	8.0^a	
		6 62.1^{ab}	5.6	5.8^{bc}	73.1	2.43^{ab}	0.36^a	74.1	8.0^b	
		12 65.8^{ab}	5.6	6.6^{bc}	70.4	2.04^a	0.35^{ab}	72.9	7.7^{ab}	

SEM	0.5	0.1	0.2	0.8	0.03	0.01	0.2	0.1	
D	28	64.0	6.1	7.3	74.8	2.37	0.37^a	74.0	7.9
	56	64.8	5.9	7.1	73.5	2.35	0.35^a	73.6	7.6
S	N	65.0	6.0	7.0	73.9	2.38	0.36	73.8	7.7
	H	63.7	6.0	7.4	74.3	2.34	0.36	73.8	7.7

T, g/kg feed	D	NS	NS	NS	NS	NS	0.05	NS	NS
	S	NS							
	T	NS	NS	0.01	NS	NS	NS	NS	NS
	DxS	NS							
	DxT	NS							
	SxT	NS							
	DxSxT	NS	NS	0.01	NS	NS	NS	NS	NS

D, day; S, stocking; N, normal; H, high, T, tarragon; EW, egg weight; YH, yellow height; YCI; yellow color index NS, not significant; HB, haugh birimi; SS, shell strength; ST, shell thickness; SI, shape index; SW, shell weight.

Values within a column with different superscripts differ significantly (Duncan’s test).

p-value

D | NS | NS | NS | NS | NS | NS | 0.05 | NS | NS |
S | NS |
T | NS | NS | 0.01 | NS | NS | NS | NS | NS | NS |
DxS | NS |
DxT | NS |
SxT | NS |
DxSxT | NS | NS | 0.01 | NS | NS | NS | NS | NS | NS |
Tarragon (Artemisia Dracunculus L.) Could Alleviate Negative Effects of Stocking Density in Laying Hens

Kaya H, Karaalp M, Kaynar Ö, Tekçe E, Aksakal A, Bayram B

Table 4 – The effect of the tarragon supplementation on the blood serum CORT, IgG, TAS and TOS.

	T, g/kg feed	CORT nmol/L	IgG mg/dL	TAS μmol/L	TOS μmol/L
N					
0	43*	1.09bc	761*	21.9*	
1.2	39*	1.13bc	776*	19.1*	
6	39*	1.20bc	787*	19.8*	
12	37*	1.30a	798*	18.4*	
H					
0	102*	1.08*	710*	30.8*	
1.2	93*	1.13bc	728*	28.9*	
6	71c	1.16bc	735*	27.7c	
12	61*	1.20bc	749*	26.1*	
SEM	SEM	0.01	9	0.6	
S					
N	40*	1.18	781*	19.8*	
H	82*	1.14	730*	28.4*	
T					
0	73*	1.08*	735*	26.4*	
1.2	66*	1.13bc	752*	24.0*	
6	55*	1.18bc	761*	23.7*	
12	49*	1.25*	773*	22.3*	

p-values

S	0.001	0.109	0.004	0.001
T	0.001	0.001	0.967	0.001
S×T	0.001	0.541	1.000	0.550

S, stocking; N, normal; H, high; T, tarragon; CORT, corticosterone; IgG, total immunoglobulin G; TAS, total antioxidant of serum; TOS, total oxidant of serum; SEM, standard error of the mean.

Values within a column with different superscripts differ significantly (Duncan’s test).

absinthium (Kostadinović et al., 2015) into broiler diets increased WG. In the present study, the incorporation of different levels of tarragon into diets of laying hens had no significant effect on live weight or live weight gain (p>0.05).

In addition to the findings that SD had no effect on the FI of laying hens (Anderson et al., 2004; Simsek & Kilic, 2006), similar findings to those of our study that it decreased FI have been reported (p<0.01) (Sohail et al., 2004; Jalal et al., 2006; Sahin et al., 2007; Onbasilar et al., 2009; Fidan, 2010; Mirfendereski & Jahanian, 2015). It is considered that the reduction in feeder space per bird in HSD is the main factor reducing FI. T1.2 and T6 diets reduced FI when compared to the control

Table 5 – The effect of the tarragon supplementation on the MDA and intestine microorganisms.

	T, g/kg feed	SMDA mmol/L	LMADA mmol/L	EMDA mmol/L	E. coli Log, TBX	TMAB Log, PCA
N						
0	3.60*	95*	221*	3.65*	6.2*	
1.2	3.49*	94*	218*	3.61*	6.0*	
6	3.30*	91*	216*	3.52*	5.9*	
12	3.46*	85*	211*	3.42*	5.8*	
H						
0	4.25*	107*	254*	4.05*	6.8*	
1.2	3.99*	96*	248*	4.03*	6.7*	
6	3.73*	90*	237*	3.94*	6.4*	
12	3.79*	88*	227*	3.92*	6.4*	
SEM	0.05	1	2	0.04	0.1	
S						
N	3.51*	91*	217*	3.55*	6.0*	
H	3.94*	95*	242*	3.98*	6.6*	
T						
0	3.92*	101*	237*	3.85	6.5*	
1.2	3.74*	95*	233*	3.82	6.3*	
6	3.61*	90*	227*	3.73	6.1*	
12	3.62*	87*	219*	3.67	6.1*	

p-values

S	0.001	0.011	0.001	0.001
T	0.019	0.001	0.280	0.040
S×T	0.234	0.022	0.056	0.972

S, stocking; N, normal; H, high; T, tarragon; STR, serum total protein; LTR, liver total protein; SMDA, serum malondialdehyde; LMADA, liver malondialdehyde; EMDA, egg malondialdehyde; TMAB, total mesophilic aerobic bacteria; SEM, standard error of the mean.

Values within a column with different superscripts differ significantly (Duncan’s test).
group \((p<0.01)\), while the T12 diet had no effect on FI \((p>0.05)\) in the present study, which concurs with the findings of Gholamrezaie et al. (2013), who reported that the incorporation of \textit{Artemisia annua} extract and leaf powder mixture into broiler diets reduced FI. The incorporation of \textit{Artemisia sieberi} (Khalaji et al., 2011), \textit{Artemisia dracunculus} (Gharetappe et al., 2015; Hosseinzadeh & Moghaddam, 2014), \textit{Artemisia annua} (Cherian et al., 2013) and GEAS (Kheirabadi et al., 2014) into broiler diets did not affect FI, although Brisibe et al. (2008) reported that the incorporation of \textit{Artemisia annua} leaves increased FI.

There have been several studies indicating that SD affected (Onbaşlılar et al., 2009), had no effect (Anderson et al., 2004; Simsek & Kilic, 2006; Fidan, 2010; Mirfendereski & Jahanian, 2015)) or improved (Sahin et al., 2007) FCR in laying hens. In the present study, HSD had no effect on FCR \((p>0.05)\), while T1.2 and T6 diets improved FCR when compared to control diet \((p<0.05)\). There have been studies that the incorporation of different \textit{Artemisia} species into the diets of broilers improved FCR (Gholamrezaei et al., 2013; Đrăgan et al., 2014; Kheirabadi et al., 2014; Kostadinović et al., 2015) or not affected (Khalaji et al., 2011; Cherian et al., 2013; Gharetappe et al., 2015). Hosseinzadeh & Moghaddam (2014) reported that the incorporation of 0.5% tarragon into the diet affected FCR negatively, while lower levels (0.125% and 0.25%) had no effect.

In our study, it was found that HSD reduced EP as in previous studies (Onbaşlılar et al., 2005; Jalal et al. 2006; Sarica et al., 2008; Onbaşlılar et al., 2009; Fidan, 2010; Mirfendereski & Jahanian, 2015) \((p<0.05)\), and reduced feeder space per bird (Onbaşlılar & Aksoy, 2005; Jalal et al., 2006) and stress conditions caused by high stocking densities (Sarica et al., 2008; Mirfendereski & Jahanian, 2015;) were found to be responsible for this result. Mirfendereski & Jahanian (2015) found a reduction of EP in HSD to be associated with blood CORT levels. In some studies, it was reported that SD had no effect on EP (Simsek & Kilic, 2006; Sahin et al., 2007). Brisibe et al. (2008) reported that the incorporation of 20% \textit{Artemisia annua} leaves into laying hen diets increased EP. It has further been reported that the incorporation of an extract composed of 70% pine needle and 30% \textit{Artemisia annua} into laying hen diets (Li et al., 2016) improved EP. In the present study, the incorporation of tarragon into the diet increased EP in the T1.2 and T6 diets when compared to the control diet \((p<0.01)\). This improvement can be explained by the fact that tarragon, which has antioxidant properties, reduces serum CORT and TOS levels, thus reducing stress. It has further been reported that the incorporation of \textit{salvia officinalis}, \textit{thymbra spicata}, \textit{menthae piperitae} extracts, vitamin E (Kaya & Turgut, 2012) and \textit{Coriander Oil} extract (Çiftçi & Macit, 2018) into laying hen diets increased EP, while \textit{Rosmarinus officinalis} L. (Çimrin & Demirel, 2016) incorporation did not affect EP.

It has also been reported that HSD reduced EP and increased AEW (Onbaşlılar et al., 2009), while HSD reduced feeder space per bird, and thus AEW (Sohail et al., 2004; Sahin et al., 2007; Fidan, 2010). In addition, there have been studies reporting that increasing SD has no effect on AEW (Guesdon et al., 2006; Sarica et al., 2008; Mirfendereski & Jahanian, 2015), as in the present study, or affected AEW (Sahin et al., 2007; Onbaşlılar et al., 2009; Fidan, 2010). In the present study, the tarragon levels incorporated into the diet had no effect on AEW \((p>0.05)\). It has been reported that the incorporation of \textit{Artemisia annua} leaves into laying hen diets does not affect egg weight (Brisibe et al., 2008; Li et al., 2016), and that the incorporation of different plant extracts (Kaya & Turgut, 2012; Çimrin & Demirel, 2016) into laying hen diets did not affect or reduced (Çiftçi & Macit, 2018) egg weights. It has been stated that effects of phytogenic products on poultry performance data may differ depending on the origin, content and processing of the plant, as well as the species and age of the animal and environmental hygiene (Windisch et al., 2008).

In the present study, laying hens at 50 weeks of age were kept for 8 weeks. It is stated that it can be advantageous to provide antioxidant sources to old hens (Karaalp et al., 2018) whose egg shell quality may be more problematic due to many factors (Świtkiewicz et al., 2010). Contrary to the finding that HSD causes a significant increase in DER (Guesdon et al., 2006), there have also been reports of no such effects on DER \((p>0.05)\) (Sarica et al., 2008; Onbaşlılar et al., 2009), similar to the present study. It has been found that the incorporation of an extract composed of pine needle and \textit{Artemisia annua} into laying hen diets reduced DER, similar to the present study (Li et al., 2016). It has been further reported that the incorporation of different plant extracts into laying hen diets reduced (Kaya & Turgut, 2012) or had no affect (Çimrin & Demirel, 2016; Çiftçi & Macit, 2018) on DER. In the present study, T1.2 and T6 reduced DER when compared to the control diet \((p<0.01)\).

Egg Quality Criteria

The advancement of the trial period (50–58 weeks of age) had no effect on any egg quality criteria other
that are formed due to the oxidative stress that occurs.

of stressors (24 hours/day in this study) as well as the severity and duration (<p>0.05). The reduction in serum TAS concentration is considered to be related to the severity and duration of stressors (24 hours/day in this study) as well as the use of serum TAS in sweeping away the free radicals that are formed due to the oxidative stress that occurs.

The increases in the levels of tarragon, which contains antioxidant substances (Kordali et al., 2005), as well as the continuous overall reduction of serum CORT and TOS (first reduction in the T1.2 diet) (<p>0.05), the increase in serum IgG (first increase in T6 diet) (<p>0.05) and the fact that it does not affect serum TAS levels (<p>0.05) confirm our finding.

It is being suggested that antioxidant substances regulate corticosteroid synthesis in the adrenal glands and improve certain immune responses significantly (Gholamrezaie et al., 2013; Pardue & Thaxter 1984). High egg production (physiological stress) often causes a degeneration of lymphoid organs (Gray et al., 1989) and the suppression of humoral and cell-mediated immune response (Murray et al., 1987). Furthermore, it has been noted that cell-mediated immunity drops after 45 weeks of age (Fahey & Cheng, 2008). In the present study, the fact that SD did not affect serum IgG (<p>0.05) suggests that reducing the space per bird is not sufficient to reduce this parameter. In addition, the T6 diet increased serum IgG (<p>0.05). The overall increase in serum IgG with the increase of tarragon levels in the diet (p<0.001) can be associated with the immune-enhancing effect of tarragon. It is suggested that Artemisia annua leaf powder and methanolic extract affect performance by increasing the cellular and humoral immunity of broilers (Gholamrezaie et al., 2013). Furthermore, it has been reported that a 1% incorporation of Artemisia sieberi into broiler diets has no effect on plasma lymphocytes, eosinophils, basophils, primary or secondary antibody response against sheep red blood cells, but increases monocyte percentage (Khalaji et al., 2011). Gholamrezaie et al. (2013) reported that the effects of different natural products on the immune system were complicated, and that the stimulation of the lymphatic tissue of the digestive system was a direct effect, while the alteration of microbial population of the gastrointestinal system lumen was an indirect effect.

Serum, Liver and Egg MDA

In the present study, HSD, which is a social stressor, affected MDA, which is a lipid peroxidation indicator (in serum, liver, egg yolk), and some bacteria in the small intestine (E. coli and total mesophilic aerobic bacteria counts) desirably (<p>0.05). Furthermore, HSD in the present study caused an increase in serum, liver and egg MDA (<p>0.05) by increasing serum CORT and reducing serum TAS, resulting from the increased stress in hens. There are studies reporting that the incorporation of plants and plant products containing antioxidant substances into laying hen diets reduced...
with the incorporation of 2% and 4% *Artemisia annua* into broiler diets reduced MDA in the thigh and breast muscles of broilers. In the present study, serum, liver, and egg MDA levels reduced (*p*<0.05) in parallel to the reduction in serum CORT and TOS under the effect of the antioxidant substances found in the tarragon incorporated into the diets (Kordali et al., 2005). Serum and egg MDA started to reduce with the T6 diet, while liver MDA started to reduce with the T1.2 diet, when compared to the control diet (*p*<0.05).

Small Intestine E. coli and Total Mesophilic Aerobic Bacteria

The findings of the present study suggest that the increase in *E. coli* and total mesophilic aerobic bacteria counts in the small intestine due to HSD are related to contamination (*p*<0.001). In literature, the antimicrobial effects of artemisia species were mostly researched on coccidiosis, and these species were reported to be used for coccidiostatic purposes (Brisibe et al., 2008; De Almeida et al., 2012; Kostadinovic et al., 2012 Drăgan et al., 2014; Kheirabadi et al., 2014). Lopes-Lutz et al. (2008) reported that the oils of different *Artemisia* species are effective at different levels against microorganisms such as *Escherichia coli*, *Staphylococcus epidermidis* and *Staphylococcus aureus*. The fact that the incorporation of 1% *Artemisia sieberi* into broiler diets reduces cecal coliform and *Escherichia coli* populations (Khalaji et al., 2011), in addition to the findings in our study that the incorporation of different levels of tarragon into the diet has no effect on *E. coli* levels in the gut (*p*>0.05), can be associated with the difference in artemisia species used in the studies. Furthermore, the presence of 6 g or more tarragon in the diet was found to affect the reduction of total mesophilic aerobic bacteria counts when compared to the control diet (*p*<0.05).

CONCLUSIONS

With the incorporation of different levels of *Artemisia dracunculus* L. into the diets of laying hens in the second production cycle and housed under different SDs, it was found that: HSD reduced FI and EP, the T1.2 and T6 kg diets reduced FI and DER, increased EP and improved FCR. All levels of tarragon were found to reduce YCI levels. HSD increased serum CORT and TOS, as well as MDA levels in serum, liver and egg yolk, and reduced serum TAS, which was associated with the oxidative stress occurring resulting from the increasing social stress. The reduction of serum CORT and TOS (with all diets), serum and egg yolk MDA (T6 and T12 diets) and liver MDA (T1.2 diet) with the incorporation of tarragon into the diet was associated with the antioxidant substances found in tarragon. Serum IgG (with T6 and T12 g diets) increased with the incorporation of tarragon into the diet, indicating that tarragon has immune-enhancing substances. Total mesophilic aerobic bacteria counts reduced with the T6 and T12 diets, when compared to control diets, suggesting that tarragon contains a certain level of antibacterial substances.

ACKNOWLEDGMENT

This study was supported by Scientific Research Projects Coordinatorships of Bayburt University (Project No: 2017/01-69001-09) and Gümüşhane University (Project No: 17.B0121.02.01). This study was presented orally at the 1st International Erciyes Agriculture, Animal and Food Sciences Conference, AGANFOS-2019, 24-27 April 2019, Kayseri/TURKEY. No potential conflict of interest was reported by the author(s). Thanks to the Aydın Doğan Foundation for their contribution.
Carlander D, Kolberg H, Wejäker PE, Larsson A. Peroral immunotherapy with yoghob antibodies peroral immunotherapy with yoghob antibodies for the prevention and treatment of enteric infections. Immunologic Research 2000;21(1):1–6.

Cherian G, Orr A, Burke IC, Pan W. Feeding Artemisia annua alters digesta ph and muscle lipid oxidation products in broiler chickens. Poultry Science 2012;92(4):1085–1090.

Conforti F, Statti G, Uzunov D, Menichini F. Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. Pipertum (Ucra) coutinho seeds. Biological and Pharmaceutical Bulletin 2006;29(10):2056–2064.

Çiftçi ME, Macit M. Effect of costiander oil supplementation at different levels into diets of laying hens on performance, egg quality traits, yolks tbars values and some serum parameters. Alinteri Journel of Agriculture Sciences 2018;33(2):201–208.

Çimrin T, Demirel M. The effects of dietary Rosemary (Rosmarinus officinalis L.) essential oil supplementation on laying hen performance, egg quality and oxidative stability of egg. " Turkish Journal Of Agriculture Food Science And Technology 2016;4(2):113–119.

De Almeida GF, Horsted K, Thamsborg SM, Kyosgaard NC, Ferreira JFS, Hermansen JE. Use of Artemisia Annuas as a natural coccidiostat in free-range broilers and its effects on infection dynamics and performance. Veterinary Parasitology 2012;186(3-4):178–187.

Dho-Moulin M, Fairbrother JM. Avian pathogenic Escherichia Coli (APEC). Veterinary Research 1999;30(2-3):299–316.

Drägan L, Gyöke A, Ferreira JFS, Pop IA, Dunca I, Drägan M, et al. Effects of Artemisia annua and Foeniculum vulgare on chickens highly infected with Eimeria tenella (Phylum Apicomplexa). Acta Veterinaria Scandinavica 2014;56(1):22.

Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry 2004;37(4):277–285.

Erel O. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry 2005;38(12):1103–1111.

Ericsson M. Stress in chickens: effects of domestication and experience at different levels into diets of hens on performance, egg quality and yolk tbars values. Journal of Agricultural Faculty of Atatürk University 2010;19:1–6.

Fahey AG, Cheng HW. Group size and density effects on physical indices and cell-mediated immunity in two genetic lines of white leghorn layers. Poultry Science 2008;87(12):2500–2504.

Fellenberg MA, Speisky H. Antioxidants: their effects on broiler oxidative stress and its meat oxidative stability. World’s Poultry Science Journal 2006;62(1):53–70.

Fidan DE. Breeding parameters, phenotypic correlations among parameters with the effects of cage position and stocking density on stress and performance in the laying period in Denizli chickens [doctoral dissertation]. Aydin (TR): Adnan Menderes University; 2010.

Galobart J, Barroeta AC, Baucells MD, Codony R, Ternes W. Effect of dietary supplementation with Rosemary extract and α-tocopherol acetate on lipid oxidation in eggs enriched with α3-fatty acids. Poultry Science 2001;80(4):460–467.

Gharetappe FK, Hassanabadi A, Semnannizhezd H, Nassy MR. The effect of dietary tarragon (Artemisia dracunculus) and peppermint (Mentha piperita) leaves on growth performance and antibody response of broiler chickens. Iranian Journal of Applied Animal Science 2015;5(2):403–409.

Gholamrezaie SL, Mohammadi M, Jalali SJ, Abolghasemi SA, Roostaei AM. Extract and leaf powder effect of Artemisia annua on performance, cellular and humoral immunity in broilers. Iranian Journal of Veterinary Research 2013;14(1):15–20.

Gray HG, Paradis TJ, Chang PW. Physiological effects of adrenocorticotropic hormone and hydrocortisone in laying hens. Poultry Science 1989;68(12):1710–1713.

Guesdon V, Ahmed AMH, Mallet S, Faure JM, Nys Y. Effects of beak trimming and cage design on laying hen performance and egg quality. British Poultry Science 2006;47(1):1–12.

Hosseinzadeh Z, Moghaddam G. Effects of tarragon powders’ different levels (Artemisia dracunculus) on general performance and anometric properties of digestive system of male broiler chickens. International Journal of Advanced Biological and Biomedical Research 2014;2(5):1599–1605.

Jahanian R, Ashnagar M. Effect of dietary supplementation of mannanoligosaccharides on performance, blood metabolites, ideal nutrient digestibility, and gut microflora in escherichia coli-challenged laying hens. Poultry Science 2015;94(4):2165–2172.

Jalal MA, Scheideler SE, Marx D. Effect of bird cage space and dietary metabolizable energy level on production parameters in laying hens. Poultry Science 2006;85(2):306–311.

Karaalp M, Aksakal V, Sarıkaya SBO, Urusan H, Bayram B, Zulkadir A. The effect of apple cider vinegar and mushroom stalk supplementation on laying hens. Indian Journal of Animal Research 2018;52(10):1457–1461.

Karabayır A, Uzun O, Çakır G. Effects of stocking density on some egg quality parameters in caged Japanese quails (Coturnix coturnix japonica).“ Alinteri Journel of Agriculture Sciences 2010;19:1–6.

Kassafiy ZG, Mine Y. Nonimmunized egg yolk powder can suppress the colonization of Salmonella typhimurium, Escherichia coli O157:H7, and Campylobacter jejuni in laying hens. Poultry Science 2004;83(9):1497–1506.

Kaya A, Turgut L. Effects of sage (Salvia Officinalis), thyme (Thymbra scipata), mentha (Menthae piperitae) extracts and vitamin e supplementation at different levels into diets of hens on performance, egg quality and yolk tbars value. Journal of Agricultural Faculty of Atatürk University 2012;43(1):49–58.

Kaya H, Macit M. The effects of boron (Orthoboric acid) supplementation into diets of laying hens on egg shell quality and tibia biomechanic parameters and serum, shell and tibia mineral concentrations during late laying period. Atatürk University Journal of Veterinary Science. 2018;13(1):42–53.

Khalaji S, Zaghari M, Hatami KH, Hedari-Dastjerdi S, Lotfi L, Nazarian H. Black cumin seeds, Artemisia leaves (Artemisia sieberi), and Camellia L. plant extract as phytogenic products in broiler diets and their effects on performance, blood constituents, immunity, and cecal microbial population. Poultry Science 2011;90(11):2500–2510.

Kheirabadi KP, Katadji JK, Bahadoran S, Silva IAT da, Samani AD, Bashi MC. Comparison of the anticoagulic effect of granulated extract of Artemisia sieberi with monensin in experimental coccidiosis in broiler chickens. Experimental Parasitology 2014;141:129–33.

Kordali S, Kutan O, Mavi A, Cakir A, Ala A, Yildirim A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils. Journal of Agricultural and Food Chemistry 2005;53(24):9452–9458.
Kostadinoiv, L, Levic, J, Galonjia-Coghill, T, Rutnic, L. Anticoccidial effects of the Artemisia absinthium L. extracts in broiler chickens. Archivio Zootechnica 2012;15(2):69–77.

Kostadinoiv, L, Levic, J, Popovic, S, Cabarkapa, I, Duragic, O, Kormanjol, A, et al. Dietary inclusion of Artemisia absinthium for management of growth performance, antioxidative status and quality of chicken meat. European Poultry Science 2015;79:1–10.

Krause, E, Ternes, W. Bioavailability of the antioxidative Rosmarinus officinalis compound carnosic acid in eggs. European Food Research and Technology 2000;210(3):161–164.

Kutlu, H, Forbes, J.M. Changes in growth and blood parameters in heat-stressed broiler chicks in response to dietary ascorbic acid. Livestock Production Science 1993; 36(4):335–350.

Li, Z, Nestor, K.E, Saif, Y.M, Anderson, I.J.W, Patterson, R.A. Serum immunoglobulin g and m concentrations did not appear to be associated with resistance to pasteurella multocida in a large-bodied turkey line and a randombred control population. Poultry Science 2000;79(2):163–166.

Li, X.L., He, W.L., Wang, Z.B, Xu, T.S. Effects of chinese herbal mixture on performance, egg quality and blood biochemical parameters of laying hens. Journal of Animal Physiology and Animal Nutrition 2016;100(6):1041–1049.

Lopes-Lutz, D, Aliviano, D.S, Aliviano, C.S, Kolodziejczyk, P.P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry, 2008; 69(8):1732–1738.

Mifredereski, E, Jahanian, R. Effects of dietary organic chromium and vitamin c supplementation on performance, immune responses, blood metabolites, and stress status of laying hens subjected to high stocking density. Poultry Science 2015;94(2):281–88.

Moberg, G.P, Mench, J.A. The biology of animal stress: basic principles and implications for animal welfare. Wallingford: Cabi Publishing; 2000.

Munck, A, Guyre, P.M, Holbrook, N.J. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews 1984;5(1):25–44.

Murray, D.L, Brake, J, Thaxton, J.P. Effect of adrenocorticotropic and dietary ascorbic acid on cutaneous basophil hypersensitivity to phytohemagglutinin in chickens. Poultry Science 1987;66(11):1846–1852.

Nahashon, S.N, Adefope, N.A, Amenyenu, A, Wright, D. Laying performance of pearl gray guinea fowl hens as affected by caging density. Poultry Science 2006;85(9):1682–1689.

Omidpanah, S, Vazirian, M, Hadijakhondi, A, Babavi, S.M, Manayi, A. Evaluation of antibacterial activity of some medicinal plants against isolated escherichia coli from diseased laying hens. Progress in Nutrition 2016;18(4):429–435.

Onbasli, AA, Aksoy, FT. Stress parameters and immune response of layers under different cage floor and density conditions. Livestock Production Science 2005;95(3):255–263.

Onbasli, AA, Demirtas, SE, Kahraman, Z, Karademir, E, Demir, S. The influence of different beak trimming age on performance, H:L ratio and antibody production to SRBC in laying hens. Tropical Animal Health and Production 2009;41(2):221–227.

Onbasli, AA, Ulus, N, Erdem, E. Some egg quality traits of two laying hybrids kept in different cage systems. Ankara Universitesi Veteriner Fakultesi Dergisi 2018;61:51–55.

Pardue, S.L, Thaxton, J.P. Evidence for amelioration of steroid-mediated immunosuppression by ascorbic acid. Poultry Science 1984;63(6):1262–1268.

Proietti, P.C, Castellini, C, Pedrazzoli, M, Dal Bosco, A. Bacterial counts and characterization of intestinal flora in organic and conventional chickens. Proceedings of the 12th European Poultry Conference; 2006. Verona, Italy: World’s Poultry Science Association (WPSA); 2006.

Radwan, N, Hassan, L.R, Qota, E.M, Fayak, H.M. Effect of natural antioxidant on oxidative stability of eggs and productive and reproductive performance of laying hens. International Journal of Poultry Science 2008;7(2):134–150.

Ralph, C.R, Tilbrook, A.J. Invited Review: The usefulness of measuring glucocorticoids for assessing animal welfare. Journal of Animal Science 2016;94(2):457–470.

Ramirez-Tortosa, M.C, Mesa, M.D, Aguiler, M.C, Quiles, J.L, Baro, L, Ramirez-Tortosa, C.L, Martinez-Victoria, E, Gil, A. Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis 1999;147(2):371–378.

Sahin, K, Sahin, N, Yaraliloglu, S. Effects of vitamin C and vitamin E on lipid peroxidation, blood serum metabolites, and mineral concentrations of laying hens reared at high ambient temperature. Biological Trace Element Research 2002;85(1):35–45.

Sahin, K, Sahin, N, Kucuk, O. Effects of chromium, and ascorbic acid supplementation on growth, carcas traits, serum metabolites, and antioxidative status of broiler chickens reared at a high ambient temperature (32°C). Nutrition Research. 2003;23(2):225–238.

Sahin, S, Macit, M, Esenbuga, N, Karaca, H. Effect of cage density on performance and egg quality traits of layers. Journal of Applied Animal Research 2007;31(1):37–39.

Sarica, M, Boga, S, Yamak, U.S. The effects of space allowance on egg yield, egg quality and plumage condition of laying hens in battery cages. Czech Journal of Animal Science 2008;53(8):346–353.

Simsek, E, Kiliç, I. Building environment and interaction of population density and position and their relationship to layer performance. International Journal of Poultry Science 2006;5(9):856–862.

Sohail, S.S, Bryant, M.M, Roland, D.A. Effect of reducing cage density on performance and economics of second-cycle (force rested) commercial Leghorns. Journal of Applied Poultry Research 2004;13(3):401–405.

Sohail, M.U, Rahman, Z.U, Ijaz, A, Yousaf, M.S, Ashraf, K, Yaqub, T, et al. Single or combined effects of mannan-oligosaccharides and probiotic supplements on the total oxidants, total antioxidants, enzymatic antioxidants, liver enzymes, and serum trace minerals in cyclic heat-stressed broilers. Poultry Science 2011;90(11):2573–2577.

SPSS. SPSS advanced model. Version 11.5. Illinois; 2002.

Skwiatkiewicz, S, Koreski, L, Arczewska, A. Laying performance and eggshell quality in laying hens fed diets supplemented with prebiotics and organic acids. Czech Journal of Animal Science 2010;55(7):294–304.

Taheiri, H.R, Rahmani, H.R, Pourreza, J. Humoral immunity of broilers is affected by oil extracted propolis (OEP) in the diet. International Journal of Poultry Science 2004;5(7):414–417.

TSE - Turkish Standards Institute. Animal feeds-determination of metabolizable energy (chemical method) [Publ. 9610]. Ankara (TUR); 1991.

Von Eugen, K, Nordquist, R.E, Zenzstra, E, Van Der Staay, F.J. Stocking density affects stress and anxious behavior in the laying hen chick during rearing. Animals 2019;9(2):53.

Wenk, C. Why all discussion about herbs? Biotechnology in the feed industry. Proceeding of Alltech 16th Annual Symposium Alltech Technical Publications; 200. Nicholasville (KY): Nottginham University Press; 2000.
Windisch W, Schedle K, Piltzner C, Kroismayr A. Use of phytogenic products as feed additives for swine and poultry. Journal of Animal Science 2008;86(14):E140–48.

Witkowska D, Sowińska J. The effectiveness of peppermint and thyme essential oil mist in reducing bacterial contamination in broiler houses. Poultry Science 2013;92(11):2834–2843.

Yilmaz O, Kaban G, Kaya M. Essential oil compounds of tarragon and coriander seed. Bayburt University Journal Science 2019;2(1):17-24