Virtualizing the p-ANAPL Library: A Step towards Drug Discovery from African Medicinal Plants

Fidele Ntie-Kang¹*, Pascal Amoa Onguéné²*, Ghislain W. Fotso³, Kerstin Andrae-Marobela⁴*, Merhatibeb Bezabih⁵, Jean Claude Ndom², Bonaventure T. Ngadjui⁶, Abiodun O. Ogundaini⁷, Berhanu M. Abezag⁸, Luc Mbaze Meva’a⁹*

¹ Department of Chemistry, Chemical and Bioactivity Information Centre, Faculty of Science, University of Buea, Buea, Cameroon, ² Department of Chemistry, Faculty of Science, University of Douala, Douala, Cameroon, ³ Department of Organic Chemistry, University of Yaoundé I, Yaoundé, Cameroon, ⁴ Department of Biological Sciences, University of Botswana, Gaborone, Botswana, ⁵ Department of Chemistry, University of Botswana, Gaborone, Botswana, ⁶ Department of Pharmaceutical Sciences and Traditional Pharmacopeia, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon, ⁷ Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria, ⁸ Academy of Sciences, Nairobi, Kenya

Abstract

Background: Natural products play a key role in drug discovery programs, both serving as drugs and as templates for the synthesis of drugs, even though the quantities and availabilities of samples for screening are often limited.

Experimental approach: A current collection of physical samples of > 500 compound derived from African medicinal plants aimed at screening for drug discovery has been made by donations from several researchers from across the continent to be directly available for drug discovery programs. A virtual library of 3D structures of compounds has been generated and Lipinski’s “Rule of Five” has been used to evaluate likely oral availability of the samples.

Results: A majority of the compound samples are made of flavonoids and about two thirds (2/3) are compliant to the “Rule of Five”. The pharmacological profiles of thirty six (36) selected compounds in the collection have been discussed.

Conclusions and implications: The p-ANAPL library is the largest physical collection of natural products derived from African medicinal plants directly available for screening purposes. The virtual library is also available and could be employed in virtual screening campaigns.

Citation: Ntie-Kang F, Amoa Onguéné P, Fotso GW, Andrae-Marobela K, Bezabih M, et al. (2014) Virtualizing the p-ANAPL Library: A Step towards Drug Discovery from African Medicinal Plants. PLoS ONE 9(3): e90655. doi:10.1371/journal.pone.0090655

Editor: Junxuan Lu, Texas Tech Univ School of Pharmacy, United States of America

Received December 27, 2013; Accepted February 3, 2014; Published March 5, 2014

Copyright: © 2014 Ntie-Kang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: We are grateful to the Office of Research and Development (ORD) of the University of Botswana which provided a Post-Doctoral position to GWF and a grant to KAM (K047) through which PAO was able to conduct the scientific work for this report. We are also grateful to the Stellenbosch Institute for Advanced Studies (STIAS), Stellenbosch, South-Africa which provided financial means for a stay of BMA in South-Africa during which he was able to write his contribution for this paper. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Imbaaze@yahoo.fr (LM); Marobelak@mopipi.ub.bw (KM)

¹ These authors contributed equally to this work.

Introduction

The African continent is highly endowed with diverse vegetation types constituting tropical rainforests, coastal and alpine forests, savannahs, woodlands and scrublands which is a reservoir for diverse natural product (NP) classes [1,2]. Natural products have always served as sources of inspiration for the design of new drugs and/or as drugs themselves [3–5]. In addition, it has been verified that natural products from Africa have an enormous potential for drugs [6]. The measured activities of compounds derived from plants of African origin have been reported in at least 2000 publications and it is believed that the active principles for these diseases may be found in the African flora [5,6], since some of these plants have been used extensively in the treatment of some of these diseases in African Traditional Medicine (ATM) [7]. In addition, the potential of natural products derived from African medicinal plants has been demonstrated by a number of recent review articles [6,8–16]. In order to properly exploit these data for drug development, African researchers have initiated efforts towards the collection of compound samples which should be readily available for screening. It is important to note that although natural products play important/evolving roles in drug discovery [17], huge pharmaceutical companies have reduced emphasis on natural products in terms of new drug development for the last two decades [17–19]. There are many reasons for this decreasing interest is the strategy of drug discovery employed by pharmaceutical companies, of which the most important is the time factor involved in the search for NP lead compounds. The trend has been drastically changing from a laborious search for potent NP leads (bioassay-guided isolation of natural products from crude extracts, without guaranteeing reasonable quantities of isolates for testing) to the rapid high-throughput screening of molecular target-based pure compound chemical libraries. The
chemical libraries are often generated, to a large extent, using combinatorial chemistry. However, streamlined screening procedures and enhanced organism sourcing mechanisms are among the new technologies which have been put in place in order to enhance natural product drug discovery in an industrial setting [20]. In order to considerably reduce the number of compound samples required for testing in bio-assays in drug discovery projects, computer-aided methods like docking and virtual screening (VS) have been employed. Computer-aided drug design (CADD) often involves VS of large compound datasets and the availability of such is vital for drug discovery protocols. Thus, the development of virtual libraries for this purpose is of utmost importance in a modern drug discovery program [21–23]. In this paper, we demonstrate that a “drug-like” and diverse library, constituting > 500 natural products collected from diverse regions within the continent of Africa (for which samples are directly available for screening), might be both a significant starting point and a useful tool in the drug discovery process, if virtual and biological screenings are employed.

What is p-ANAPL? The pan-African natural products library (p-ANAPL) is a consortium of natural product collections isolated from African biota and owned by scientists and/or groups of scientists working in African institutions. The p-ANAPL project was established in April 2009 by a group of natural product scientists from Botswana, Cameroon, Ethiopia, Kenya, Sudan and Tanzania, to build up the collection of natural products and to create an enhanced and efficient platform for their biological screening, and thereby promote the discovery of useful products from them. The p-ANAPL library is associated with the Center for Scientific Research, Indigenous Knowledge and Innovation (Cesriki), in the University of Botswana.

Materials and Methods

Collection method of the physical library

The compounds in the p-ANAPL collection were mainly obtained through the Network for Analytical and Bioassay Services in Africa (NABSA) which is based at the Department of Chemistry at the University of Botswana. NABSA was initiated in 1992 to share facilities with other African scientist working in facility-constrained environments. NABSA promotes and continues to do so, short-term visits by African researchers and postgraduate students to the University of Botswana and providing access to spectroscopic services (High Field NMR, High Resolution MS, Chiroptical Spectroscopy) for less privileged researchers and institutions. NABSA therefore promoted intra-African cooperation amongst several countries including Cameroon, Nigeria, Kenya, Ethiopia, Tanzania, the Democratic Republic of Congo and Zimbabwe. It is the policy of NABSA that visiting researchers who isolate and elucidate the structures of natural products voluntarily deposit specimens to establish a collection of natural products with full entitlement to any intellectual property (IP) that may arise from subsequent assay of these substances. It is mostly these compounds that formed the initial basis for p-ANAPL.

The first p-ANAPL consortium meeting in Gaborone, Botswana in 2009, defined its main goal as systematically organising compounds in a well-characterized natural product collection with the potential to expand and to use for bioactivity screening purposes. One of the co-authors of this paper, G. W. F., undertook the task of characterization and cataloguing all compounds forming the basis of this paper during a post-doctoral term at the University of Botswana from 2011 to 2013. The challenges and lessons learnt from this exercise will be published elsewhere.

Generation of 3D models and in silico determination of molecular descriptors

The 3D structures of the compounds had been sketched and energy minimisation subsequently using the graphical user interface (GUI) of the MOE software [24] running on a Linux workstation with a 3.5GHz Intel Core2 Duo processor. The 3D structures were generated using the builder module of MOE and energy minimization was subsequently carried out using the MMFF94 force field [25] until a gradient of 0.01 kcal/mol was reached. The 3D structures of the compounds were then saved as.mol2 files subsequently included into a MOE database (.mdb) file and converted to other file formats (.sdf,.mol,.mol2 and .kfb), which are suitable for use in several virtual screening workflow protocols. The molar weight (MW), number of rotatable bonds (NRB), lipophilicity parameter (log P), number of hydrogen bond acceptors (HBA), number of hydrogen bond donors (HBD) and number of Lapinski violations were calculated using the molecular descriptor calculator included in the QuISAR module of the MOE package [24]. A further treatment was carried out to ensure that the protonation states of the compounds were correct with respect to biological pH (strong acids were deprotonated, strong bases protonated and metal atoms removed). A maximum of 10 tautomers were generated for each molecule in the dataset.

Results and Discussion

Unique natural compounds within the library

The compounds in the p-ANAPL collection comprise about thirty (30) different classes of compounds that reflect a substantial chemical diversity even in a relatively small collection. It shows the potential of African natural products in terms of molecular diversity which has been noted to be often limited in large compound libraries used in high throughput screening (HTS) format [21,26]. Molecular diversity goes hand in hand with bioactivity diversity, which is an important consideration for drug discovery. A recent study based on a database of 197 201 natural products (NP) from plants, animals and microorganisms of mainly Chinese origin revealed that there was a large overlap between natural products and FDA-approved drugs, in terms of chemical space, indicating the potential of NPs to become lead compounds [27]. An analysis of NP-target networks suggested a high degree of polypharmacology associated with NPs. This seems to confirm comparisons by Feher and Schmidt, showing that overall, NPs are more similar to drugs than compounds obtained from combinatorial chemistry [28]. Close to half of the p-ANAPL compounds are flavonoids (mono-, di-, tri- prenylated and geranylated flavones, flavanones, chalcones; homoisoflavonoids, rotenoids, biflavonoids, bichalcones, etc.), a very versatile class of NPs, which have been associated with a relatively large margin of safety for therapeutic use in humans and which have recently been reported to display diverse anti-HIV bioactivities [29]. More than two hundred (200) flavonoids, such as proropensin (1) or Dinklagin B (2), isolated primarily from Dostania species [30,31]. Figure 4, are available in good quantities in the p-ANAPL collection. The p-ANAPL collection, furthermore, contains about forty (40) homoisoflavonoids isolated mainly from Hyacinthaceae species such as Scilla nervosa [32], which constitutes a quite unique contingent and the largest collection of compounds representing this class. An initial assessment of commercial availability of p-ANAPL compounds from major suppliers, PubChem entries and specifically dedicated webpages for supplies of chemicals revealed that approximately half of the compounds are currently not commercially available. Amongst them are compounds with very unique properties. Examples are the phenyl anthraquinones, Gaborouqui-
The chemical composition of the p-ANAPL library

A pie chart, showing the distribution of the five hundred and thirty four (534) samples currently lodged in the p-ANAPL library is shown in Fig. 1. As previously mentioned, a majority of the compound samples are flavonoids (flavanones, biflavonoid, isoflavones, homoisoflavonoids, and chalcones), constituting 47.19% of compound samples. This is followed by terpenoids (12.54%), quinones (11.61%), monoaromatic compounds (7.87%), alkaloids (5.43%), coumarins (3.74%), steroids (2.81%) and xanthones (2.43%). The remaining compound types each represented < 2% of the total sample collection.

Assessment of its “drug-likeness” and “lead-likeness” potential

Lipinski’s “Rule of Five” [44] (ro5) is a very useful tool for assessing chemical compound libraries to be used in drug discovery programs. This “rule” was derived from chemical libraries from the World Dug Index (WDI), as a criterion to evaluate likely oral bioavailability [44–45]. However, the highly valuable class of NPs was initially omitted, since Lipinski had postulated that the ro5 was not respected by NPs. NP libraries have however been previously analysed comparatively using the ro5 in order to have a rough idea of the extent of “drug-likeness” of a compound library to be used in virtual screening [21,41–43]. It is on these grounds that Lipinski’s criteria [44] are often used for the evaluation of “drug-likeness” of compounds within the designed libraries. Thus, Lipinski’s ro5 is often regarded as a useful filter for the elimination of compounds not likely to be orally available in the early stages of drug discovery protocols [45]. In summary, Lipinski’s ro5 defines a “drug-like” molecule as one with high likelihood to be orally available, for which the molar weight (MW) ≤ 500 Daltons (Da), the logarithm of the octanol-water partition coefficient (log P o/w) ≤ 5, the number of hydrogen bond acceptors (HBA) ≤ 10 and the number of hydrogen bond donors (HBD) ≤ 5. An additional rule for the number of rotatable bonds (NRB ≤ 5) is often included to the ro5. An evaluation of “lead-likeness” is often carried out using more stringent criteria defined by Oprea et al [46–49]. The “Rule of 3.5” for “lead-like” compounds is defined as: 150 ≤ MW ≤ 350; log P o/w ≤ 4; HBD ≤ 3; HBA ≤ 6. The criteria for “fragment-like” libraries is defined by Verdonk et al [50]. The criteria (also referred to as the “Rule of 2.5”) are such that MW ≤ 250; –2 ≤ log P o/w ≤ 3; HBD < 3; HBA < 6; NRB < 3. A pairwise scatter plot for the physico-chemical parameters defining the ro5 are shown in Fig. 2. These plots show that the regions of highest population density of points fall within the Lipinski compliance regions (LCR).

Fig. 3 shows the distribution of violations and compliance of Lipinski parameters in the p-ANAPL library, while the maxima, minima and mean values for each parameter are shown in Table 1, along with those of the “drug-like”, “lead-like” and “fragment-like” subsets, defined following the aforementioned criteria. An analysis of the total library showed that about 67% of the compounds had no Lipinski violations and almost 85% of the compounds showed < 2 violations (Fig 3A). The ‘drug-likeness’ is further highlighted by an analysis of individual parameters (MW, log P o/w, HBA and HBD). The MW values showed a Gaussian distribution with a peak value located between 301 and 400 Da, Fig. 3B. This interval corresponded to about 34% of the compounds currently included in the p-ANAPL database. In addition, only about 14% of all the compounds showed MW falling outside the recommended range for the ro5 (> 500 Da). The mean values for MW (= 370 Da), further highlighted the “drug-like” nature of our library, the mean MW of a typical drug
being equal to 310 Da [51]. The log $P_{o/w}$ distribution curve (Fig. 3C) showed a very steep Gaussian shape with a peak centred at 2.5 log $P_{o/w}$ units, with only 9.5% of the compounds having log $P_{o/w}$ > 5. Only six compounds (compounds 8 to 13) showed log $P_{o/w}$ > 8 units. These constitute stilbenoid and long chain alkyl esters of some pentacyclic triterpenoids (Fig. 5). The distribution curves for HBA and HBD respectively rose rapidly to maxima of 6 acceptors (corresponding to 17.66% of the compounds) and 2 donors (corresponding to 18.96% of the compounds). The two graphs then fell to 24 acceptors and 13 donors respectively (Fig. 3D,E). Moreover, only 10.41% of the compounds had HBA > 10 and only 12.45% of the compounds showed HBD > 5. The graph of the NRB showed two cusps; at 1 and 3 RBs (Fig. 3F) and rapidly fell to 21 rotatable bond (RBs), with only 14.60% of the compounds having NRB > 5. The mean values of all the Lipinski parameters indicate a high probability of finding ‘drug-like’ and ‘lead-like’ compounds within the p-ANAPL library (Table 1).

Figure 2. Pair-wise distribution of Lipinski parameters for the p-ANAPL library; (A) log P against MW, (B) HBA against MW, (C) HBD against MW and (D) NRB against MW.

doi:10.1371/journal.pone.0090655.g002

A discussion of pharmacological profiles of selected compounds

The chemical structures of selected compounds with interesting pharmacological profiles from the p-ANAPL library have been shown in Fig. 6. Esters of the monoaromatic mandelic acid (14) have been involved in the modulation of the enantioselectivity of lipases via controlled immobilization on glutaraldehyde supports [52]. In addition to previously known biological activities, Zolou et al. recently demonstrated the anti-malarial properties of the flavonoids quercitrin (15) and quercetin (16), derived from Dacryodes edulis (Burseraceae), a plant currently used in the treatment of malaria and fevers in West Cameroon [53]. Compound 15 exhibited IC$_{50}$ values of 5.96 and 2.26 µg mL$^{-1}$ against the 3D7 and Dd2 strains of Plasmodium falciparum respectively, while compound 16 exhibited IC$_{50}$ values of 6.07 and 5.91 µg mL$^{-1}$ against 3D7 and Dd2 respectively. The anthraquinones emodin (18) and aloe emodin (20) have demonstrated interesting anticancer properties [54–57], while chrysophanol (19) has shown the ability to induce necrosis through the
production of ROS and alteration of ATP levels in J5 human liver cancer cells [58], in addition to its antidiabetic [59], anti-inflammatory [60] and antimicrobial [61–62] properties. Moreover, chrysophanol-8-O-glucoside, has shown antiplatelet and anticoagulant activities [63]. It is also proven that physcion (17) and emodin (18) exhibit antibacterial properties against three Bacillus species, emodin exhibiting MICs in the range of 0.5 – 2.0 \(\mu \)g mL\(^{-1}\) [64]. Both compounds inhibited Pseudomonas aeruginosa, emodin being more effective, showing an MIC of 70 \(\mu \)g mL\(^{-1}\) [64].

Shikimic acid (21) is known to play a key role in aromatic biosynthesis [65]. This has been exploited in the design of modified shikimic acid derivatives as potential anti-tubercular agents, inhibiting Mycobacterium tuberculosis shikimate kinase enzyme [66]. The quinone knipholone (22) has been derived from Kniphofia foliosa (Asphodelaceae) and is known to exhibit antimalarial activity [67]. The antiplasmodial activity of knipholone is

Figure 3. Distribution of Lipinski parameters for the p-ANAPL library; (A) Bar chart showing the number of Lipinski violations, (B) Bar chart showing the MW parameter, (C) Plot of the lipophilicity parameter, (D) Plot of the HBA parameter, (E) Plot of the HBD parameter, and (F) Plot of the NRB parameter.

doi:10.1371/journal.pone.0090655.g003

Figure 4. Chemical structures of selected bioactive natural products from the p-ANAPL library (1 to 7).

doi:10.1371/journal.pone.0090655.g004
IC$_{50}$ = 0.38 μM compared to Chloroquine 0.09 μM [68]. The chalcones bartericin A (23), stipulin (24), kanzonol B (26) and 4-hydroxylonchocarpin (27) have also shown anti-malarial activities [69], while caffeine (25) is a common psychostimulant. Caffeine was also reported to inhibit HIV-1 transduction of non-dividing cells [70]. Knipholone anthrone (28) has shown anti-cancer activity, with IC$_{50}$ of 0.5 to 3.3 μM against leukaemic and melanocyte cancer cell lines [71]. Ellagic acid (29), isolated from the leaves of Alchornea cordifolia (Euphorbiaceae) by Banzouzi et al. [72], also showed good activity against Plasmodium berghei in mice with an ED$_{50}$ in the range of 0.2 – 0.151 μg mL$^{-1}$. The coumarin umbelliferone (30) has exhibited analgesic and anti-inflammatory [73], antihyperglycemic [74] and antioxidant [75–76] activities. The derivatives of umbelliferone have proven to be potent 5α-reductase type 1 inhibitors and provided the basis for further development for the treatment of human endocrine disorders.

Figure 5. Chemical structures of natural products from the p-ANAPL library with log P > 8 units.

doi:10.1371/journal.pone.0090655.g005

Library	Name	Size	Taut.	MW (Da)	LogP(o/w)	HBA	HBD	NRB	Max.	Min.	Avg.
p-ANAPL		534	1428	1131.27	84.16	370.19	13.96	–4.12	3.02	0	
Drug-like											
Lead-like		363	943	487.35	84.16	303.22	5.98	–4.12	2.48	0	
Fragment-like		304	774	488.45	84.16	289.49	5.30	–4.12	2.42	0	
Library	Name	Size	Taut.	MW (Da)	LogP(o/w)	HBA	HBD	NRB	Max.	Min.	Avg.
---------	--------------	-------	-------	---------	-----------	------	-----	-----	------	------	------
p-ANAPL		534	1428	1131.27	84.16	370.19	13.96	–4.12	3.02	0	
Drug-like											
Lead-like		363	943	487.35	84.16	303.22	5.98	–4.12	2.48	0	
Fragment-like		304	774	488.45	84.16	289.49	5.30	–4.12	2.42	0	

Library	Name	Size	Taut.	MW (Da)	LogP(o/w)	HBA	HBD	NRB	Max.	Min.	Avg.
p-ANAPL		534	1428	1131.27	84.16	370.19	13.96	–4.12	3.02	0	
Drug-like											
Lead-like		363	943	487.35	84.16	303.22	5.98	–4.12	2.48	0	
Fragment-like		304	774	488.45	84.16	289.49	5.30	–4.12	2.42	0	

Table 1. Summary of physico-chemical properties (often used to predict ‘drug-likeness’) of the compounds within the p-ANAPL library.
associated with overproduction of DHT by 5α-reductase type 1 [77]. Aesculetin (31) induces apoptosis through a ROS-mediated mitochondrial dysfunction pathway in human cervical cancer cells [78], in addition to its antimicrobial [79], and anti-inflammatory [80] activities.

Yohimbine (32) is an alkaloid extracted from Pausinystalia johimbe, a plant commonly used to treat erectile dysfunction in ATM in West and Central Africa [2]. Both yohimbine [81] and its hydrochloride [82] have proven to be potent in the treatment of erectile dysfunction by preferential blockade of presynaptic α-adrenoceptors in rabbits [83]. Starke et al. demonstrated that yohimbine is more potent in blocking the presynaptic than the postsynaptic α-adrenoceptors of the artery. Cannabidiol (33) is a non-psychotropic component of Cannabis with possible therapeutic use as an anti-inflammatory drug [84]. It is a neuroprotective antioxidant [85], an oral anti-arthritic therapeutic in murine collagen-induced arthritis [86], which induces anxiety and psychotic-like symptoms in healthy subjects [87]. The plant alkaloid piperine (34) exhibits several biological activities, including inhibition of ethidium bromide efflux in Mycobacterium smegmatis [88], inhibition of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis [89], selective inhibition of CYP3A4 [90], immunomodulatory and antitumor activities [91], inhibition of human P-glycoprotein [92], anti-inflammatory and antiarthritic effects [93–94], and inhibition of mammosphere formation [95]. Compound 35 (β-hydroxycinnamic acid) is known to exhibit antimalarial activity [96], stimulate bone formation/inhibit bone resorption [97] and act as a natural mediator for laccase oxidation of recalcitrant compounds [98]. Reynosin (36) has exhibited neuronal toxicity protection in Parkinson’s disease models [99].

Accessibility of the compounds

The virtual compound library is available as supplementary data accompanying this publication (Dataset S1). Updated versions of this dataset will be subsequently be available on request for non-commercial purposes through the corresponding author L. M. M. of this article. The 3D structures have been generated based on the chemical structure reported in the literature, and treated as previously described [41–43]. All requests for compounds samples for biological assays should be formally addressed to the corresponding author K. A. M. of this article.
Conclusions

We have recently reported the development of natural product virtual libraries for African medicinal plants [41–43]. However, to the best of our knowledge, the p-ANAPL library constitutes the largest collection of physical samples of NPs derived from African medicinal plants, which is available for biological screening. In addition, the virtual library is provided in several file formats (mol2, sdf, md1, and ldb), which are readable by several drug discovery software. These could be useful in virtual screening campaigns. Concerning the physical samples, the purity of each compound was tested by measurement of melting points, and confirmed to be > 95% pure before including in the database. The stability has been assured by keeping compounds at below 0°C in freezers. The uniqueness of the p-ANAPL library also lies in the fact that it is the largest collection of NPs with physical samples, specifically derived from African medicinal plants.

Supporting Information

Dataset S1: Electronic Supplementary Information (ESI) available: [Low energy 3D structures of compounds

References

1. Vasisht K, Kumar V (2002) Trade and Production of Herbal Medicines and Natural Health Products. ICS-UNIDO, Trieste, pp 3.
2. Vasisht K, Kumar V (2004) Compendium of Medicinal and aromatic plants. Volume 1: Africa. ICS-UNIDO, Trieste, pp 23–56.
3. Harvey AL (2006) Natural products in drug discovery. Drug Discov Today 13: 894–901.
4. Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51: 2389–2399.
5. Efange SMN (2002) Natural products: a continuing source of inspiration for the medicinal chemist. In M.M. Iwu & J.C. Wootton (Eds.), Advances in Phytochemistry, Vol. 1, Ethnomedicine and Drug Discovery (61–69). Amsterdam, The Netherlands: Elsevier Science.
6. Hostettmann K, Marston A, Ndjoko K, Wolfender JL (2000) The potential of African plants as a source of drugs. Curr Org Chem 4: 973–1010.
7. Chihale K, Davies-Coleman M, Masimirembwa C (2012) Drug discovery in Africa: impacts of genomics, natural products, traditional medicines, insights into medicinal chemistry, and technology platforms in pursuit of new drugs. Springer.
8. Tatinji VPK, Zofou D, Nguyen M (2008) The antimalarial potential of medicinal plants used for the treatment of malaria in Cameroon. J Ethnopharmacol 118: 263–272.
9. Schwikkard S, van Heerden FR (2002) Antimalarial activity of plant metabolites. Nat Prod Rep 19: 675–692.
10. Kuete V, Ellerth T (2010) Cameroon medicinal plants: pharmacology and derived natural products. Front Pharmacol 1: 123.
11. Ntie-Kang F, Lfongho LL, Mbaze LM, Ekouelle N, Owono LCO, et al. (2013) Cameroon medicinal plants: a bioactivity versus ethnomedicinal survey and chemotaxonomic classification. BMC Complement Altern Med 13(1): 147.
12. Magadula JJ, Erasto P (2009) Bioactive natural products derived from the East African flora. Nat Prod Rep 26: 1353–1354.
13. Ogouéné PA, Ntie-Kang F, Lfongho LL, Ndome JC, Sippl W, et al. (2013) The potential of anti-malarial compounds derived from African medicinal plants. Part I: A pharmacological evaluation of alkaloids and terpenoids. Malaria J 12: 449.
14. Ntie-Kang F, Ogouéné PA, Lfongho LL, Ndome JC, Sippl W, et al. (2013) The potential of anti-malarial compounds derived from African medicinal plants. Part II: A pharmacological evaluation of non alkaloids and non terpenoids. Malaria J 12: 449.
15. Kuete V (2010) Potential of Cameroon medicinal plants and derived products against microbial infections: a review. Planta Med 76: 1479–1491.
16. Zofou D, Ntie-Kang F, Sippl W, Efange SMN (2015) Bioactive natural products derived from the Central African flora over neglected tropical diseases and HIV. Nat Prod Rep 32: 1098–1120.
17. Koon F, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4: 206–220.
18. Li JWH, Verderas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325: 161–165.
19. Lam KS (2007) New aspects of natural products in drug discovery. Trends Microbiol 15: 279–289.
20. Pan L, Chai HB, Kinghorn AD (2013) Discovery of new anticancer agents from higher plants. Front. Biosci. (Schol Ed) 4: 142–156.
21. Quinn RJ, Carroll AR, Pham MB, Baron P, Palmfrane ME, et al. (2008) Nat Prod 71: 464–468.
22. Irwin J, Shoichet BK (2005) ZINC – A free database of commercially available compounds for virtual screening. J Chem Inf Model 45(3): 177–182.
23. Irwin J, Sterling T, Misuyen MB, Bostad ES, Coleman RG (2012) ZINC: A free tool to discover chemistry for biology. J Chem Inf Model 52: 1757–1768.
24. Chemical Computing Group Inc: Molecular Operating Environment Software. Montreal; 2010.
25. Halgren TA (1996) Merck molecular forcefield. J Comput Chem 17: 490–641.
26. Dobson CM (2004) Chemical space and biology. Nature 432(7019): 824–828.
27. Gu J, Gui Y, Yuan G, Lu HZ, Xu X (2013) Use of natural products as chemical library for drug discovery and network pharmacology. PLOS ONE 8(4): e62039.
28. Fehler M, Schmidt JM (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43:218–227.
29. Andrae-Marobela K, Fotso WG, Okanth H, Majinda KRT (2013) Polyphenols: A diverse class of multi-target anti HIV-agents. Current Drug Metabolism 14: 392–413.
30. Abegaz BM, Ngadji BT, Donge E, Bezañih MT (2000) Chemistry of the genus Diospyros. Current Contents in Organic Chemistry 4: 1079–1090.
31. Abegaz BM, Ngadji BT, Donge E, Ngamga N, Nitchi N, Bezañih MT (2002) Chalcones and other constituents of Diospyros pseudos and D. zinderi. Phytochemistry 59(8): 877.
32. Silayo A, Ngadji BT, Abegaz BM (1999) Homoisoflavonoids and stilbenes from the bulbs of Scilla nervosa. Phytochemistry, 52: 947–955.
33. Abegaz BM, Bezañih M, Muta T, Brum R, Menche D, et al. (2002) Gaboroquinoines A and B and 4’-O-demethylknightoline-4’-O-beta-D-glucopyranoside, phenylanthraquinones from the roots of Balanites frutescens. J Nat Prod 65(3): 1117–1121.
34. Mutanyatta J, Bezañih BM, Abegaz M, Bruan R, Brum R, et al. (2005) The first 6’-O-sulfated phenylanthraquinones: Isolation from Balanites frutescens, structural elucidation, enantiomeric purity, and partial synthesis. Tetrahedron 61: 8475–8480.
35. Guo MX, Wang ML, Deng H, Zhang XT, Wang ZY (2013) A novel anticancer agent Broussovaffalin B downregulates estrogen receptor (ER)-alpha36 expression and inhibits growth of ER-negative breast cancer MDA-MB-231 cells. Eur J Pharmacol 714: 56–64.
36. Guimarães LR, Rodrigues AP, Marinho PS, Muller AH, Guillom GM, et al. (2010) Activity of the juibortine, a glutamidyl alkaloid from Osten fulvis var. glabris, on Leishmania (L.) amazonensis. Parasitol Res 107(5): 1075–1081.
37. Mbaveng AT, Kuete V, Ngameni B, Beng VP, Ngadjui BT, et al. (2012) Antimicrobial activities of the methanol extract and compounds from the twigs of Detonia macro (Moraceae). BMC Complement Altern Med 12: 83.
38. Yongye AB, Waddell J, Medicna-Franco JL (2012) Molecular scaffold analysiss of natural product databases in the public domain. Chem Biodrug Des 80(5): 717–724.
39. Fullbeck M, Michalsky E, Dunkel M, Preissner R (2006) Natural products: soures and databases. Nat Prod Rep 23:347–356.
40. Dunkel M, Fullbeck M, Neumann S, Preissner R (2006) SuperNatural: a searchable database of available natural compounds. Nucleic Acids Res 34:D670–D683.
63. Seo EJ, Ngoc TM, Lee SM, Kim YS, Jung YS (2012) Chrysophanol-8-
64. Basu S, Ghosh A, Hazra B (2005) Evaluation of the antibacterial activity of
66. Blanco B, Prado V, Lence E, Otero JM, Garcia-Doval C, et al. (2013)
65. Davis BD (1951) Aromatic biosynthesis. I. The role of shikimic acid. J Biol Chem
67. Dagne E, Steglich W (1984) Knipholone: a unique antraquinone derivative from
61. Coopoosamy RM, Magwa ML (2006) Antibacterial activity of aloe emodin and
52. Palomo JM, Fernandez-Lorente G, Mateo C, Ortiz C, Fernandez-Lafuente R,
49. Schneider G (2002) Trends in virtual computational library design. Curr Med
47. Hann MM, Oprea TI (2004) Pursuing the leadlikeness concept in pharmaceu-
45. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and
44. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and
37. Vitorino M, Brandao J, Rosa M, Pinto A, Lopes C, et al. (2002) Antioxidant
36. Chindapa KS, Pongcharoen K, Chaiyapoom J, Suebsuk K, Suwancharoen K, et al. (2002) Measurement of the enantioselectivity of lipases via controlled immobilization and medium engineering; hydrolytic resolution of mandelic esters. Enzyme and Microbial Technology 31: 775–783.
35. Zofou D, Tematino EL, Ntie-Kang F, Tene M, Ngemenya MN, et al. (2013) New antimalarial hits from Dacryodes edulis (Burseraceae) - Part I: isolation, in vitro activity, as silica “drug-likeeness” and pharmacokinetic profiles. PLOS ONE 11(1): e015944.
34. Peccere T, Gazzolla MV, Mucignat C, Parolin C, Dalla F, et al. (2000) Aloe-emodin is a new type of an anticancer agent with selective activity against neuroectodermal tumors. Cancer Res 60: 2800–2804.
33. Kuo PL, Lin TC, Lin CC (2002) The antiproliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines. Life Sci 71: 1879–1892.
32. Cardenas C, Quesada AR, Medina MA (2006) Evaluation of the anti-angiogenic effect of aloe-emodin. Cell Mol Life Sci 63: 3083–3089.
31. Chen YY, Chiang SY, Lin JG, Ma YS, Lao CL, et al. (2010) Emodin, aloe-emodin and rhein inhibit migration and invasion in human tongue cancer SCC-4 cells through the inhibition of gene expression of matrix metalloproteinase-9. J Int Oncology 2010, 36: 1113–1120.
30. Lu CC, Yang JS, Huang AC, Hsia TC, Chou ST, et al. (2010) Chrysophanol induces necrosis through the production of ROS and alteration of ATP levels in J5 human liver cancer cells. Mol Nutr Food Res 54(7): 967–976.
29. Lee MS, Sohn CB (2008) Anti-diabetic properties of chrysophanol and its glucoside from rhubarb rhizome. Biol Pharm Bull 31(11): 2154–2157.
28. Kuo PL, Kim WJ, Lim JH, Park DH, Hwang HJ, et al. (2002) Modulation of the antiproliferative activity of chrysophanol through the suppression of NF-kB/Calcaspase-1 activation in vitro and in vivo. Molecules 15: 6435–6451.
27. Coopoonsamy RM, Magwa NL (2006) Antibacterial activity of aloe emodin and aloreamodin isolated from Aloe ferox. Afr J Biotech 5(11): 1092–1094.
26. Garcia-Sosa K, Villarreal-Alavez N, Lubiben P, Pette-Rodriguez LM (2006) Chrysophanol, an antimicrobial araquiquinone from the root extract of Colubrina grissi. J Mex Chem Soc 50(2): 77–78.
25. Seo EJ, Nye TM, Lee SM, Kim YS, Jung YS (2012) Chrysophanol-8-O-glucoside, an araquiquinone derivative in rhubarb, has antiproteinase and anticoagulant activities. J Pharmcol Sci 118: 245–254.
24. Busu S, Ghosh A, Haza B (2005) Evaluation of the antibacterial activity of Mentha haplocalyx Burm. , Rubus idaeus Linn. and Lantana camara Linn.; isolation of emodin and physcion as active antibacterial agents. Phytother Res 19: 888–894.
23. Davis BD (1951) Aromatic biosynthesis. I. The role of shikimic acid. J Biol Chem 191: 315–325.
22. Blanco B, Prado V, Lence E, Otero JM, Garcia-Davalos C, et al. (2013) Mycobacterium tuberculosis shikimate kinase inhibitors: design and simulation studies of the catalytic turnover. J Am Chem Soc 135(33): 12660–12676.
21. Donge E, Steglich W (1994) Kaempferol: a unique araquiquinone derivative from Kigelia africana. Phytochemistry 23: 1279–1273.
20. Brimmgang G, Menche D, Bezbah A, Abezog BM, Kamiński R (1999) Antiproliferative effect of kaempferol and related natural phenylpropanoids. Plant Sci 135: 421–429.
19. Ngiemi B, Watchueng J, Boyom FF, Keumedjio F, Ngadjui BT, et al. (2007) AntiPlasmodial activity of knipholone and related natural phenylanthraquinones. J Ethnopharmacol 112: 2361–2367.
18. Yang G, Xiao YL, He X, Li F, Guo F, Xu XM (2010) Arselenol-induced apoptosis through a ROS-mediated mitochondrial dysfunction pathway in human cervical cancer cells. J Natl Med Nat Prod Res 12(5): 185–193.
17. Jurlar, L., Core, J., King, J., Dassy, B., Hihara, K. (1971) Antimicrobial activity, of Atractylocarpus rhizoma (Himalayan Atractyloides), L. Willd. Ex. Del. Food Chemistry 19(191): 315–325.
16. Teague SJ, Davis AM, Lerson PD, Opea TI (1999) The design of leadlike combinatorial libraries. Angew Chem Int Ed 39: 3743–3748.
15. Hamza MM, Opea TI (2000) Pursuing the leadlikeness concept in pharmaceutical research. Curr Opin Chem Biol 5: 263 – 265
14. Opea TI (2002) Current trends in lead discovery: are we looking for the appropriate targets? J Comput-Aided Mol Des 16: 325–334.
13. Schneider G (2002) Trends in virtual pharmaceutical library design. Curr Med Chem 9: 2095–2102.
12. Verdonk ML, Cole JC, Hartshorn ML, Murray CW, Taylor RD (2003) Virtual screening: a database for virtual screening. BMC Complement Altern Med 13: 88.
11. Pecere T, Gazzola MV, Mucignat C, Parolin C, Dalla F, et al. (2000) Aloe-emodin is a new type of an anticancer agent with selective activity against neuroectodermal tumors. Cancer Res 60: 2800–2804.
10. Kuo PL, Lin TC, Lin CC (2002) The antiproliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines. Life Sci 71: 1879–1892.
9. Cardenas C, Quesada AR, Medina MA (2006) Evaluation of the anti-angiogenic effect of aloe-emodin. Cell Mol Life Sci 63: 3083–3089.
8. Chen YY, Chiang SY, Lin JG, Ma YS, Lao CL, et al. (2010) Emodin, aloe-emodin and rhein inhibit migration and invasion in human tongue cancer SCC-4 cells through the inhibition of gene expression of matrix metalloproteinase-9. J Int Oncology 2010, 36: 1113–1120.
7. Lu CC, Yang JS, Huang AC, Hsia TC, Chou ST, et al. (2010) Chrysophanol induces necrosis through the production of ROS and alteration of ATP levels in J5 human liver cancer cells. Mol Nutr Food Res 54(7): 967–976.
6. Lee MS, Sohn CB (2008) Anti-diabetic properties of chrysophanol and its glucoside from rhubarb rhizome. Biol Pharm Bull 31(11): 2154–2157.
5. Kuo PL, Kim WJ, Lim JH, Park DH, Hwang HJ, et al. (2002) Modulation of the antiproliferative activity of chrysophanol through the suppression of NF-kB/Calcaspase-1 activation in vitro and in vivo. Molecules 15: 6435–6451.
4. Coopoonsamy RM, Magwa NL (2006) Antibacterial activity of aloe emodin and aloreamodin isolated from Aloe ferox. Afr J Biotech 5(11): 1092–1094.
3. Garcia-Sosa K, Villarreal-Alavez N, Lubiben P, Pette-Rodriguez LM (2006) Chrysophanol, an antimicrobial araquiquinone from the root extract of Colubrina grissi. J Mex Chem Soc 50(2): 77–78.
2. Seo EJ, Nye TM, Lee SM, Kim YS, Jung YS (2012) Chrysophanol-8-O-glucoside, an araquiquinone derivative in rhubarb, has antiproteinase and anticoagulant activities. J Pharmcol Sci 118: 245–254.
1. Basu S, Ghosh A, Haza B (2005) Evaluation of the antibacterial activity of Mentha haplocalyx Burm. , Rubus idaeus Linn. and Lantana camara Linn.; isolation of emodin and physcion as active antibacterial agents. Phytother Res 19: 888-894.

PLOS ONE | www.plosone.org 9 March 2014 | Volume 9 | Issue 3 | e90655