A New study to the Schrödinger equation for Modified Potential
\[V(r) = ar^2 + br^{-4} + cr^{-6} \]

in Nonrelativistic three dimensional real spaces and phases

ABDELMADJID MAIRECHE\(^1,\ a^*\)

\(^1\)Physics department, Sciences Faculty, University of M'sila-Algeria.
\(^a\)Email: abmaireche@yahoo.fr

Keywords: Schrödinger equation, Star product, Boopp’s shift method, harmonic and anharmonic potential, noncommutative space and noncommutative phase.

ABSTRACT: In present work, by applying Boopp’s shift method and standard perturbation theory we have generated exact nonrelativistic bound states solution for a modified potential \[V_\alpha(\vec{r}) = ar^2 + br^{-4} + cr^{-6} + V_{\text{pert-}\alpha}(r, \Theta, \vartheta) \]
in both three dimensional noncommutative space and phase (NC: 3D-RSP) at first order of two infinitesimal parameters antisymmetric \[\left(\theta^{\mu \nu}, \vartheta^{\mu \nu} \right) \]
we have also derived the corresponding noncommutative Hamiltonian.

1. INTRODUCTION:

It is well-known that the exact solutions the non relativistic Schrödinger equation and relativistic two equations Klein-Gordon and Dirac with central potentials play principal and important roles in different fields of sciences like atomic, nuclear, molecular, an harmonic and anharmonic spectroscopy [1-23]. In the last few years, the provisos study were extended to the noncommutative space-phase at two, three and N generalized dimensions [24-45]. The notions of noncommutativity of space and phase based essentially on Seiberg-Witten map and Boopp's shift method and the star product, defined on the first order of two infinitesimal parameters antisymmetric \[\left(\theta^{\mu \nu}, \vartheta^{\mu \nu} \right) = \frac{1}{2} \epsilon_{\mu \nu \kappa} \left(\partial_{\kappa}, \vartheta \right) \]
as [29-41]:

\[f(x)* g(x) = f(x)* g(x) - \frac{i}{2} \theta^{\mu \nu} \left(\hat{\epsilon}_{\mu \nu}^p f(x) \hat{\epsilon}_{\mu \nu}^p g(x) \right) - \frac{i}{2} \vartheta^{\mu \nu} \left(\hat{\epsilon}_{\mu \nu}^p f(x) \hat{\epsilon}_{\mu \nu}^p g(x) \right) \]

Which allow us to obtaining the two new non nulls commutators \[\left[x^i, x^j \right] \] and \[\left[\hat{p}_i, \hat{p}_j \right] \]:

\[\left[x^i, x^j \right] = i\partial_{ij} \quad \text{and} \quad \left[\hat{p}_i, \hat{p}_j \right] = i\partial_{ij} \]

The Boopp’s shift method will be apply in this paper instead of solving the (NC-3D) spaces and phases with star product, the Schrödinger equation will be treated by using directly the two commutators, in addition to usual commutator on quantum mechanics [29-41]:

\[\left[x^i, \hat{x}^j \right] = i\partial_{ij} \quad \text{and} \quad \left[\hat{p}_i, \hat{p}_j \right] = i\partial_{ij} \]

The main goal of this work is to extend our study in reference [34] for the potential \[V(r) = ar^2 + br^{-4} + cr^{-6} \] into noncommutative three dimensional spaces and phases on based to the principal reference [23] to discover the new spectrum and a possibility of obtain new applications to the modified potential \[V_\alpha(\vec{r}) = ar^2 + br^{-4} + cr^{-6} + V_{\text{pert-}\alpha}(r, \Theta, \vartheta) \] in different fields.

The rest of present search is organized as follows: In next section, we briefly review the Schrödinger equation with \[V(r) = ar^2 + br^{-4} + cr^{-6} \] in three dimensional spaces. In section 3, we review and applying Boopp's shift method to derive: the deformed potential and noncommutative spin-orbital Hamiltonian. In section 4, we apply perturbation theory to find the spectrum for ground stat and first excited states and then we deduce the spectrum produced automatically by the external magnetic field. In section 5, we resume the global spectrum for modified potential \[V_{\text{nc-}\alpha}(r) \] and we conclude the corresponding global noncommutative Hamiltonian in (NC-3D) space and phase in first
2. REVIEW THE \(V(r) = ar^2 + br^{-4} + cr^{-6} \) POTENTIAL IN THREE DIMENSIONAL SPACES

In this section, we shall review the eigenvalues and eigenvalues for spherically symmetric for the potential \(V(r) [23] \):

\[
V(r) = ar^2 + br^{-4} + cr^{-6}
\]

The three parameters: \(a \), \(b \) and \(c \) are constants, the complex eignenfunctions \(\psi(r, \theta, \varphi) \) in 3-dimensional space for above potential satisfied the Schrödinger equation in polar coordinates \((h=2m=c=1)\) is [23]:

\[
(-\Delta + ar^2 + br^{-4} + cr^{-6}) \psi(r, \theta, \varphi) = E \psi(r, \theta, \varphi)
\]

Where \(\psi(r, \theta, \varphi) = r^{-1} R_i(r) Y_l^m(\theta, \varphi) \), \(\varphi \) and \(E \) represent angular momentum and the energy while \(-l \leq m \leq +l \). The radial part \(R_i(r) \) satisfies in 3-dimensions space [23]:

\[
\frac{d^2 R_i(r)}{dr^2} + \left[E - ar^2 + br^{-4} + cr^{-6} - \frac{l(l+1)}{r^2} \right] R_i(r) = 0
\]

The radial part \(R_i(r) \) in terms of a Laurent-series [23]:

\[
R_i(r) = N r^k \exp \left(-\frac{1}{2} \sqrt{a} r^2 - \frac{1}{2} \sqrt{c} r^{-2} \right) \sum_{m=-M}^{M} h_m r^{2m}
\]

For the ground state and the first existed states, the corresponding radial function \(R_0(r) \) and \(R_l(r) \), respectively, are given by [23]:

\[
R_0(r) = N_0 r^{k_0} \exp \left(-\frac{1}{2} \sqrt{a} r^2 - \frac{1}{2} \sqrt{c} r^{-2} \right) \\
R_l(r) = N_l (1 + \beta r^2 + \gamma r^{-2}) r^{k_1} \exp \left(-\frac{1}{2} \sqrt{a} r^2 - \frac{1}{2} \sqrt{c} r^{-2} \right)
\]

Where \(\beta \neq 0, \gamma \neq 0 \), \(N_0 \) and \(N_l \) are the normalizations constants, the two parameters \(k_0 \) and \(k_1 \) are given by:

\[
k_0 = \frac{b + 3 \sqrt{c}}{2 \sqrt{c}}, \quad k_1 = \frac{b + 7 \sqrt{c}}{2 \sqrt{c}}
\]

Then, the complete normalized wave functions and corresponding energies for the ground state and the first existed states, respectively [23]:

\[
\psi^{(0)}(\hat{r}) = N_0 r^{k_0-1} \exp \left(-\frac{1}{2} \sqrt{a} r^2 - \frac{1}{2} \sqrt{c} r^{-2} \right) Y_l^0(\theta, \varphi) \quad \text{and} \quad E_0 = \frac{\sqrt{a}}{c} (b + 4 \sqrt{c})
\]

\[
\psi^{(1)}(\hat{r}) = N_l (1 + \beta r^2 + \gamma r^{-2}) r^{k_1-1} \exp \left(-\frac{1}{2} \sqrt{a} r^2 - \frac{1}{2} \sqrt{c} r^{-2} \right) Y_l^m(\theta, \varphi) \quad \text{and} \quad E_1 = \frac{\sqrt{a}}{c} (b + 12 \sqrt{c})
\]

3. NONCOMMUTATIVE PHASE-SPACE HAMILTONIAN FOR MODIFIED POTENTIAL \(V_o(\hat{r}) = ar^2 + br^{-4} + cr^{-6} + V_{\text{perturb}}(r, \Theta, \bar{\Theta}) \):

3.1 FORMALISM OF BOOPP'S SHIFT METOD

Know, we shall review some fundamental principles of the quantum noncommutative Schrödinger equation which resumed in the following steps for modified potential \(V_o(\hat{r}) \) [25-42]:

Ordinary Hamiltonian: \(\hat{H}(p_i, x_i) \) \rightarrow NC-Hamiltonian: \(\hat{H}(\hat{p}_i, \hat{x}_i) \)

Ordinary - complex wave function: \(\psi(\hat{r}) \) \rightarrow NC - complex wave function: \(\psi(\hat{r}) \)

Ordinary - energy: \(E \) \rightarrow NC - Energy: \(E_{nc-is} \)

Ordinary - product \rightarrow New star product - acting on phase and space: *
Which allow us to writing the three dimensional space-phase quantum noncommutative Schrödinger equations as follows:

\[H(\hat{p}_i, \hat{x}_i)\psi(\hat{r}) = E_{nc-3D}\psi(\hat{r}) \]

(13)

The Boop’s shift method permutes to reduce the above equation to simplest the form:

\[H_{nc-3D}(\hat{p}_i, \hat{x}_i)\psi(\hat{r}) = E_{nc-3D}\psi(\hat{r}) \]

(14)

The new modified Hamiltonian \(H_{nc-3D}(\hat{p}_i, \hat{x}_i) \) defined as a function of \(\hat{x}_i \) and \(\hat{p}_i \):

\[H_{nc-3D}(\hat{p}_i, \hat{x}_i) = \hat{p}_i^2 + V_{\tilde{r}}(\hat{r}) \]

(15)

And the modified three dimensional potential \(V_{\tilde{r}}(\hat{r}) \):

\[V_{\tilde{r}}(\hat{r}) = a\hat{r}^2 + b\hat{r}^{-4} + \hat{r}^{-6} \]

(16)

The two \(\hat{x}_i \) and \(\hat{p}_i \) operators in (NC-3D) phase and space are given by [25-42]:

\[\hat{x}_i = x_i - \frac{\theta_j}{2} p_j \text{ and } \hat{p}_i = p_i - \frac{\theta_j}{2} x_j \]

(17)

On based to our references [37-40], we can write the two operators \(\hat{r}^2 \) and \(\hat{p}^2 \) in noncommutative three dimensional spaces and phases as follows:

\[\hat{r}^2 = r^2 - \vec{L}\vec{\Theta} \text{ and } \hat{p}^2 = p^2 + \vec{L}\vec{\Theta} \]

(18)

Where \(\vec{L}\vec{\Theta} \) and \(\vec{L}\vec{\Theta} \) denotes to \(\left(L_x\Theta_{12} + L_y\Theta_{23} + L_z\Theta_{13}\right) \) and \(\left(L_x\bar{\Theta}_{12} + L_y\bar{\Theta}_{23} + L_z\bar{\Theta}_{13}\right) \), with \(\Theta = \frac{\theta}{2} \), respectively. After straightforward calculations one can obtains the different terms in noncommutative three dimensional spaces and phases as follows:

\[
\begin{align*}
\frac{a\hat{r}^2}{\hat{r}^4} = ar^2 - a\vec{L}\vec{\Theta} \\
\frac{b\hat{r}^4}{\hat{r}^6} = \frac{b}{r^4} + \frac{2b}{r^6} \vec{L}\vec{\Theta} \\
\frac{c\hat{r}^6}{\hat{r}^8} = \frac{c}{r^6} + \frac{3c}{r^8} \vec{L}\vec{\Theta}
\end{align*}
\]

(19)

Which allow us to writing the modified three dimensional studied potential \(V_{\tilde{r}}(\hat{r}) \) in noncommutative three dimensional spaces and phases as follows:

\[V_{\tilde{r}}(\hat{r}) = ar^2 + br^{-4} + cr^{-6} + V_{pert-}\tilde{r}(r, \Theta, \bar{\Theta}) \]

(20)

It’s clearly that, the first 3-terms in eq. (20) represent the ordinary potential while the rest term is produced by the deformation of space and phase. The global perturbative potential operators \(V_{pert-}\tilde{r}(r, \Theta, \bar{\Theta}) \) for studied potential \(V_{nc-3D}(r) \) in both noncommutative three dimensional spaces and phases will be written as:

\[V_{pert-}\tilde{r}(r, \Theta, \bar{\Theta}) = \left(\frac{3c}{r^8} + \frac{2b}{r^6} - a\right)\vec{L}\vec{\Theta} + \bar{\vec{L}}\vec{\Theta} \]

(21)

4. THE NONCOMMUTATIVE HAMILTONIAN FOR MODIFIED POTENTIAL \(V_{\tilde{r}}(\hat{r}) \):

4.1 THE NONCOMMUTATIVE SPIN-ORBITAL HAMILTONIAN FOR MODIFIED POTENTIAL \(V_{\tilde{r}}(\hat{r}) \) IN (NC: 3D- RSP):

We replace \(\vec{L}\vec{\Theta} \) and \(\bar{\vec{L}}\vec{\Theta} \) by \(2\vec{S}\vec{L} \) and \(2\bar{\vec{S}}\vec{L} \), to obtain the new forms of \(H_{pert}(r, \Theta, \bar{\Theta}) \) for modified potential \(V_{\tilde{r}}(\hat{r}) \):
\[
H_{\text{per}}(r, \Theta, \overline{\Theta}) = 2 \left\{ \Theta \left(\frac{3c}{r^8} + \frac{2b}{r^6} - a \right) + \overline{\Theta} \right\} \overline{S}
\]

(22)

Here \(\overline{S} = \frac{1}{2} \) denote the spin of electron; it’s possible also to rewriting eq. (22) to equivalent physical form:

\[
H_{\text{per}}(r, \Theta, \overline{\Theta}) = \left\{ \Theta \left(\frac{3c}{r^8} + \frac{2b}{r^6} - a \right) + \overline{\Theta} \right\} G^2
\]

(23)

Where \(G^2 \) denote to the \(\frac{1}{2} \left(\overline{J}^2 - \overline{L}^2 - \overline{S}^2 \right) \). As it well known, \((\overline{J}^2, \overline{L}^2, \overline{S}, \overline{s}_z) \) formed complete basis on quantum mechanics, then the operator \(\left(\overline{J}^2 - \overline{L}^2 - \overline{S}^2 \right) \) will be gives 2-eigenvalues \(k_{\pm} = \frac{1}{2} \left((l \pm \frac{1}{2})^2 + l(l+1) - \frac{3}{4} \right) \), corresponding \(j = l \pm \frac{1}{2} \) respectively. Then, one can form a diagonal matrix \(H_{so- \overline{\Theta}}(r, \overline{p}, \Theta, \overline{\Theta}) \) of order \((3 \times 3) \), with non null elements \((H_{so- \overline{\Theta}})_{11}, (H_{so- \overline{\Theta}})_{22} \) and \((H_{so- \overline{\Theta}})_{33} \) for in both (NC:3D) space and phase:

\[
(H_{so- \overline{\Theta}})_{11} = k_+ \left\{ \Theta \left(\frac{3c}{r^8} + \frac{2b}{r^6} - a \right) + \overline{\Theta} \right\} \text{ if } j = l + \frac{1}{2} \Rightarrow \text{spin up}
\]

\[
(H_{so- \overline{\Theta}})_{22} = k_- \left\{ \Theta \left(\frac{3c}{r^8} + \frac{2b}{r^6} - a \right) + \overline{\Theta} \right\} \text{ if } j = l - \frac{1}{2} \Rightarrow \text{spin down}
\]

(24)

After profound straightforward calculation, one can show that, the radial function \(R_i(r) \) satisfied the following differential equation, in (NC:3D: RSP) for studied potential \(V_{ni}(\overline{r}) \):

\[
\frac{d^2 R_i(r)}{dr^2} + \left[E_{nc-\overline{\Theta}} - ar^2 - br^4 - cr^6 - \frac{l(l + 1)}{r^2} + \left\{ \Theta \left(\frac{3c}{r^8} + \frac{2b}{r^6} - a \right) + \overline{\Theta} \right\} G^2 \left(\Theta \left(\frac{3c}{r^8} + \frac{2b}{r^6} - a \right) + \overline{\Theta} \right) \right] R_i(r) = 0
\]

(25)

4-2 THE EXACT SPIN-ORBITAL SPECTRUM MODIFICATIONS FOR MODIFIED POTENTIAL \(V_{nc-\overline{\Theta}}(r) \) FOR FUNDAMENTAL STAES IN (NC: 3D- RSP):

The modifications to the energy levels for fundamental states \(E_{u-\overline{\Theta}} \) and \(E_{d-\overline{\Theta}} \) for spin up and spin down, respectively, at first order of two parameters \(\theta \) and \(\overline{\theta} \) obtained by applying the standard perturbation theory:

\[
E_{u-\overline{\Theta}} = |N_0|^2 k_+ \int_0^{+\infty} r^{2k_0} \exp \left(-\sqrt{a}r^2 - \sqrt{c}r^{-2} \right) \left\{ \Theta \left(\frac{3c}{r^8} + \frac{2b}{r^6} - a \right) + \overline{\Theta} \right\} dr.
\]

(26.a)

\[
E_{d-\overline{\Theta}} = |N_0|^2 k_- \int_0^{+\infty} r^{2k_0} \exp \left(-\sqrt{a}r^2 - \sqrt{c}r^{-2} \right) \left\{ \Theta \left(\frac{3c}{r^8} + \frac{2b}{r^6} - a \right) + \overline{\Theta} \right\} dr
\]

(26.b)

A direct simplification gives:

\[
E_{u-\overline{\Theta}} = |N_0|^2 k_+ \left\{ \Theta \sum_{i=1}^3 T_i + \overline{\Theta} T_4 \right\}
\]

(27.a)

\[
E_{d-\overline{\Theta}} = |N_0|^2 k_- \left\{ \Theta \sum_{i=1}^4 T_i + \overline{\Theta} \frac{T_5}{2m_0} \right\}
\]

(27.b)
Where, the five terms $T_i (i = 1, 5)$ are given by:

$$ T_1 = 3c \int_0^{\infty} r^{(2z-3)-1} \exp\left(-\sqrt{a}r^2 - \sqrt{cr}^2\right) dr, T_2 = 2b \int_0^{\infty} r^{(2z-1)-1} \exp\left(-\sqrt{a}r^2 - \sqrt{cr}^2\right) dr $$
$$ T_3 = -a \int_0^{\infty} r^{(2z+1)-1} \exp\left(-\sqrt{a}r^2 - \sqrt{cr}^2\right) dr, T_4 = \int_0^{\infty} r^{(2z+1)-1} \exp\left(-\sqrt{a}r^2 - \sqrt{cr}^2\right) dr $$

(28)

Applying the following special integration [46]:

$$ \int_0^{\infty} x^{\nu-1} \exp\left(-\beta x^p - \gamma x^{-p}\right) dx = \frac{2}{P} \left(\frac{\gamma}{\beta}\right)^{1/2} K_{v/p} \left(2\sqrt{\beta\gamma}\right) $$

(29)

Where $K_{v/p}$ denote to the Bateman’s function, $Re l(\beta) > 0$ and $Re l(\gamma) > 0$. After straightforward calculations, we can obtain the explicitly results:

$$ T_1 = 3c \left(\frac{c}{a}\right)^{2k-5} K_{(2k-5)/2} \left(2(ac)^{1/4}\right), T_2 = 2b \left(\frac{c}{a}\right)^{2k-3} K_{(2k-3)/2} \left(2(ac)^{1/4}\right) $$
$$ T_3 = -a \left(\frac{c}{a}\right)^{2k+3} K_{(2k+3)/2} \left(2(ac)^{1/4}\right) \text{ and } T_4 = \left(\frac{c}{a}\right)^{2k+3} K_{(2k+1)/2} \left(2(ac)^{1/4}\right) $$

(30)

Which allow us to obtaining the exact modifications of ground states $E_{u, is}$ and $E_{d, is}$ produced by spin-orbital effect:

$$ E_{u, is} = N_0^2 k_i \left\{ gT_{nc-0, is} + \bar{\Theta} T_{nc-0, pis} \right\} $$
$$ E_{d, is} = N_0^2 k_i \left\{ \bar{g}T_{nc-0, is} + \bar{\Theta} T_{nc-0, pis} \right\} $$

(31)

(32)

Where $T_{nc-0, is}$ and $T_{nc-0, pis}$ are given by:

$$ T_{nc-0, is} = \left\{ 3c \left(\frac{c}{a}\right)^{2k-1} K_{(2k-1)/2} \left(2(ac)^{1/4}\right) + 2b \left(\frac{c}{a}\right)^{2k-3} K_{(2k-1)/2} \left(2(ac)^{1/4}\right) - a \left(\frac{c}{a}\right)^{2k+3} K_{(2k+1)/2} \left(2(ac)^{1/4}\right) \right\} $$
$$ T_{nc-0, pis} = \left(\frac{c}{a}\right)^{2k+3} K_{(2k+1)/2} \left(2(ac)^{1/4}\right) $$

(33.a)

(33.b)

The two terms $T_{nc-0, is}$ and $T_{nc-0, pis}$ are represent the noncommutative geometry of space and phase, respectively.

4.3 THE EXACT SPIN-ORBITAL MODIFICATIONS FOR MODIFIED POTENTIAL $V_{nc} (r) \text{ IN (NC: 3D-RSP)}$:

Now, we turn to the modifications to the energy levels for first excited states $E_{u, 1lp}$ and $E_{d, 1lp}$ corresponding spin up and spin down, respectively, at first order of two parameters $\bar{\Theta}$ and $\bar{\Theta}$, which obtained by applying the standard perturbation theory:

$$ E_{u,1lp} = |N_1^1| k_i \int_0^{\infty} \left[(1+2\gamma) + 2\beta r^2 + \beta^2 r^4 + 2\gamma r^2 + r^2 r^4 \right] r^{2k} \exp\left(-\sqrt{ar}^2 - \sqrt{cr}^2\right) \left(\frac{3c}{r^3} + \frac{2b}{r^5} - a \right) \bar{\Theta} dr $$
$$ E_{d,1lp} = |N_1^1| k_i \int_0^{\infty} \left[(1+2\gamma) + 2\beta r^2 + \beta^2 r^4 + 2\gamma r^2 + r^2 r^4 \right] r^{2k} \exp\left(-\sqrt{ar}^2 - \sqrt{cr}^2\right) \left(\frac{3c}{r^3} + \frac{2b}{r^5} - a \right) \bar{\Theta} dr $$

(34.a)

(34.b)

A direct simplification gives:

$$ E_{u,1lp} = |N_1^1|^2 k_i \left\{ \bar{\Theta} \sum_{i=1}^{14} L_i + \bar{\Theta} \sum_{i=16}^{20} T_i \right\} $$

(35.a)
\[E_{4,1p} = \left| N_1 \right|^2 k_+ \left\{ \theta \sum_{i=1}^{15} L_i + \theta \sum_{i=16}^{20} T_i \right\} \]
(35.b)

Where, the 20-terms \(L_i (i = 1, 20) \) are given by:

\[L_1 = 3(1 + 2\gamma \beta) \int_0^{r(2k_1 - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr, \quad L_2 = 2(1 + 2\gamma \beta) \int_0^{r(2k_2 - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr \]

(36.a)

\[L_3 = -a \int_0^{r(2k_3 - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr, \quad L_4 = 6\beta c \int_0^{r(2k_4 - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr \]

\[L_5 = 4\beta b \int_0^{r(2k_5 - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr, \quad L_6 = -2\beta a \int_0^{r(2k_6 - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr \]

(36.b)

\[L_7 = 3 \beta^2 c \int_0^{r(2k_7 - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr, \quad L_8 = 2 \beta^2 b \int_0^{r(2k_8 - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr \]

\[L_9 = -\beta^2 a \int_0^{r(2k_9 - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr, \quad L_{10} = 6\gamma \int_0^{r(2k_{10} - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr \]

(36.b)

\[L_{11} = 4\gamma b \int_0^{r(2k_{11} - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr, \quad L_{12} = -2\gamma \int_0^{r(2k_{12} - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr \]

\[L_{13} = 3\gamma^2 c \int_0^{r(2k_{13} - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr, \quad L_{14} = 2b \gamma^2 \int_0^{r(2k_{14} - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr \]

\[L_{15} = -\gamma^2 a \int_0^{r(2k_{15} - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr, \quad L_{16} = (1 + 2\gamma \beta) \int_0^{r(2k_{16} - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr \]

(36.c)

\[L_{17} = 2 \beta b \int_0^{r(2k_{17} - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr, \quad L_{18} = \beta^2 b \int_0^{r(2k_{18} - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr \]

\[L_{19} = 2 \gamma b \int_0^{r(2k_{19} - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr, \quad L_{20} = \gamma^2 b \int_0^{r(2k_{20} - 1)} \exp\left(-\sqrt{ar^2 - \sqrt{cr}^2}\right) dr \]

(36.d)

Now we apply the special integral which represents by eq. (29) to obtain:

\[L_1 = 3(1 + 2\gamma \beta) \left(\frac{c}{a} \right)^{2k_1 - 7} K_{(2k_1 - 7)/2} \left(2(\alpha c)^{1/4} \right), L_2 = 2(1 + 2\gamma \beta) \left(\frac{c}{a} \right)^{2k_2 - 5} K_{(2k_2 - 5)/2} \left(2(\alpha c)^{1/4} \right) \]

(37.a)

\[L_3 = -a \left(\frac{c}{a} \right)^{2k_3 - 1} K_{(2k_3 - 1)/2} \left(2(\alpha c)^{1/4} \right), L_4 = 6\beta c \left(\frac{c}{a} \right)^{2k_4 - 1} K_{(2k_4 - 1)/2} \left(2(\alpha c)^{1/4} \right) \]

\[L_5 = 4\beta b \left(\frac{c}{a} \right)^{2k_5 - 3} K_{(2k_5 + 1)/2} \left(2(\alpha c)^{1/4} \right), L_6 = -2\beta a \left(\frac{c}{a} \right)^{2k_6 - 1} K_{(2k_6 - 1)/2} \left(2(\alpha c)^{1/4} \right) \]

(37.b)

\[L_7 = 3 \beta^2 c \left(\frac{c}{a} \right)^{2k_7 - 3} K_{(2k_7 - 3)/2} \left(2(\alpha c)^{1/4} \right), L_8 = 2 \beta^2 b \left(\frac{c}{a} \right)^{2k_8 - 1} K_{(2k_8 - 1)/2} \left(2(\alpha c)^{1/4} \right) \]

\[L_9 = -\beta^2 a \left(\frac{c}{a} \right)^{2k_9 - 1} K_{(2k_9 + 1)/2} \left(2(\alpha c)^{1/4} \right), L_{10} = 6\gamma c \left(\frac{c}{a} \right)^{2k_{10} - 1} K_{(2k_{10} - 1)/2} \left(2(\alpha c)^{1/4} \right) \]

\[L_{11} = 4\gamma b \left(\frac{c}{a} \right)^{2k_7 - 3} K_{(2k_7 - 1)/2} \left(2(\alpha c)^{1/4} \right), L_{12} = -2a \gamma c \left(\frac{c}{a} \right)^{2k_{12} - 1} K_{(2k_{12} - 1)/2} \left(2(\alpha c)^{1/4} \right) \]
\[L_{13} = 3\gamma^2 \left(\frac{c}{a} \right)^3 \frac{2k_{1-11}^2}{K(2k_{1-11})} 2(2(ac)^{1/4}) \]
\[L_{14} = 2\beta_3^2 \left(\frac{c}{a} \right)^{2k_{1-9}} K(2k_{1-9})^2 2(2ac)^{1/4} \] \hspace{1cm} (37.c)
\[L_{15} = -a\gamma^2 \left(\frac{c}{a} \right)^3 \frac{2k_{1-3}^2}{K(2k_{1-3})} 2(2(ac)^{1/4}) \]
\[L_{16} = (1 + 2\gamma E) \left(\frac{c}{a} \right)^{2k_{1-5}^2} K(2k_{1-5})^2 2(2ac)^{1/4} \]
\[L_{17} = 2\beta_3 \frac{2k_{1-3}^2}{K(2k_{1-3})} 2(2(ac)^{1/4}) \]
\[L_{18} = \beta_3^2 \left(\frac{c}{a} \right)^{2k_{1-5}^2} K(2k_{1-5})^2 2(2ac)^{1/4} \] \hspace{1cm} (37.d)
\[L_{19} = 2\gamma \left(\frac{c}{a} \right)^3 \frac{2k_{1-1}^2}{K(2k_{1-1})} 2(2(ac)^{1/4}) \] \hspace{1cm} and \hspace{1cm} \[L_{20} = \gamma^2 \left(\frac{c}{a} \right)^{2k_{1-5}^2} K(2k_{1-5})^2 2(2ac)^{1/4} \]

Which allow us to obtaining the exact modifications \(E_{m\pm\omega} \) and \(E_{d\pm\omega} \) of degenerated first excited states corresponding to polarized two spin-orbital effect:

\[E_{u1\pm\omega} = \left| N \right|^2 k \left\{ \theta \left| E_{m=\pm\omega} \right| + \frac{\theta}{2m} \right\} \] \hspace{1cm} (38.a)
\[E_{d1\pm\omega} = \left| N \right|^2 k \left\{ \theta \left| E_{m=\pm\omega} \right| + \frac{\theta}{2m} \right\} \] \hspace{1cm} (38.b)

Where \(L_{m=\pm\omega} \) and \(L_{m=\pm\omega} \) are given by:

\[L_{m=\pm\omega} = \sum_{i=1}^{15} L_{i} \] \hspace{1cm} and \hspace{1cm} \[L_{m=\pm\omega} = \sum_{i=16}^{20} L_{i} \] \hspace{1cm} (39)

4.4 THE EXACT MAGNETIC SPECTRUM MODIFICATIONS FOR MODIFIED POTENTIAL \(V_{m\pm\omega}(\hat{r}) \) IN (NC: 3D- RSP):

On another hand, it’s possible to found another automatically symmetry for modified potential \(V_{m\pm\omega}(\hat{r}) \) related to the influence of an external uniform magnetic field, it’s deduced by the following replacements:

\[\Theta \rightarrow \chi \beta \] \hspace{1cm} and \hspace{1cm} \[\theta \rightarrow \chi \beta \] \hspace{1cm} (40)

Here \(\chi \) and \(\sigma \) are infinitesimal real proportional’s constants and we choose the magnetic field \(\vec{\beta} = B\hat{k} \), then we can make the following transformation:

\[\left\{ \Theta \left(3c \frac{3b}{r^2} - a \right) + \theta \right\} B_{\hat{L}} \rightarrow \left(\chi \left(3c \frac{3b}{r^2} - a \right) + \sigma \right) B_{\hat{L}} \] \hspace{1cm} (41)

Which allow us to introduce the modified new magnetic Hamiltonian \(H_{m\pm\omega} \) in noncommutative three dimensional spaces and phases as:

\[H_{m\pm\omega} = \left(\chi \left(3c \frac{3b}{r^2} - a \right) + \sigma \right) \left[B_{\hat{J}} - \bar{S}_{\hat{B}} \right] \] \hspace{1cm} (42)

Here \(\left(-\bar{S}_{\hat{B}} \right) \) denote to the ordinary Hamiltonian of Zeeman Effect. To obtain the exact noncommutative magnetic modifications of energy \(E_{m=\pm\omega} \) for modified potential \(V_{m\pm\omega}(\hat{r}) \), we replace: \(k_+, \Theta_1 \) and \(\bar{\Theta}_1 \) in the Eqs.(32.a) and (35.a) by the following parameters: \(m \), \(\chi \) and \(\bar{\sigma} \), respectively:

\[E_{m\pm\omega} = \left| N \right|^2 B_m \left\{ \left| E_{m=\pm\omega} \right| + \sigma \left| E_{m=\pm\omega} \right| \right\} \] \hspace{1cm} (43.a)
\[E_{m\pm\omega} = \left| N \right|^2 B_m \left\{ \left| E_{m=\pm\omega} \right| + \sigma \left| E_{m=\pm\omega} \right| \right\} \] \hspace{1cm} (43.b)

Where \(E_{m\pm\omega} \) and \(E_{m\pm\omega} \) are the exact magnetic modifications of spectrum corresponding the fundamental states and first excited states, respectively and \(-l \leq m \leq +l \).
5. THE EXACT MODIFIED ENERGY OF THE LOWEST EXCITATIONS SPECTRUM FOR MODIFIED POTENTIAL $V_{nc-\alpha}(r)$ IN (NC: 3D- RSP):

The total modified energies ($E_{nc\text{u}0-0} - E_{nc\text{d}0-0}$) and ($E_{nc\text{u}1-1} - E_{nc\text{d}1-1}$) of a particle fermionic with spin up and spin down corresponding fundamental states and first excited states, respectively, for modified potential $V_{\alpha}(\hat{r})$ in (NC: 3D-RSP) are determined on based to the Eqs. (10), (11), (31), (32), (38.a), (38.b), (43.a) and (43.b):

$$E_{nc\text{u}0-0} = -\frac{1}{\alpha} \left[(b + 4\sqrt{c}) + |N_0|^2 k_e \{ \partial T_{nc-\text{u}0} + \bar{T}_{nc-\text{u}0} \} + |N_0|^2 B_m \{ \chi T_{nc-\text{u}0} + \bar{\sigma} T_{nc-\text{u}0} \} \right]$$ (44.a)

$$E_{nc\text{d}0-0} = -\frac{1}{\alpha} \left[(b + 4\sqrt{c}) + |N_0|^2 k_e \{ \partial T_{nc-\text{d}0} + \bar{T}_{nc-\text{d}0} \} + |N_0|^2 B_m \{ \chi T_{nc-\text{d}0} + \bar{\sigma} T_{nc-\text{d}0} \} \right]$$ (44.b)

And

$$E_{nc\text{u}1-1} = -\frac{1}{\alpha} \left[(b + 12\sqrt{c}) + |N_0|^2 k_e \{ \partial L_{nc-\text{u}1} + \bar{L}_{nc-\text{u}1} \} + |N_0|^2 B_m \{ \chi L_{nc-\text{u}1} + \bar{\sigma} L_{nc-\text{u}1} \} \right]$$ (44.c)

$$E_{nc\text{d}1-1} = -\frac{1}{\alpha} \left[(b + 12\sqrt{c}) + |N_0|^2 k_e \{ \partial L_{nc-\text{d}1} + \bar{L}_{nc-\text{d}1} \} + |N_0|^2 B_m \{ \chi L_{nc-\text{d}1} + \bar{\sigma} L_{nc-\text{d}1} \} \right]$$ (44.d)

The quantum number m can be takes $(2l + 1)$ values and we have also two values for $j = l \pm \frac{1}{2}$, thus every state in usually three dimensional space of modified potential $V_{nc-\alpha}(r)$ will be in (NC: 3D-RSP): 2$(2l + 1)$ sub-states. It’s clearly, that the obtained eigenvalues of energies are reals and then the noncommutative diagonal Hamiltonian $H_{nc-3\alpha}$ is Hermitian. Regarding the previous obtained results, we can deduce the global diagonal noncommutative Hamiltonian matrix $H_{nc-3\alpha}$ of order (3×3), with elements $(H_{nc-3\alpha})_{11}$, $(H_{nc-3\alpha})_{22}$ and $(H_{nc-3\alpha})_{33}$ in both (NC-3D) phase and space:

$$(H_{nc-3\alpha})_{11} = -\Delta + ar^2 + br^{-4} + cr^{-6} + k \left\{ \Theta \left[\frac{3c}{r^3} + \frac{2b}{r^6} - a \right] \right\} + \left(\chi \left[\frac{3c}{r^3} + \frac{2b}{r^6} - a \right] + \bar{\sigma} \right) B_l \text{ if } j = l + \frac{1}{2} \Rightarrow \text{spin up (45.a)},$$

$$(H_{nc-3\alpha})_{22} = -\Delta + ar^2 + br^{-4} + cr^{-6} + k \left\{ \Theta \left[\frac{3c}{r^3} + \frac{2b}{r^6} - a \right] \right\} + \left(\chi \left[\frac{3c}{r^3} + \frac{2b}{r^6} - a \right] + \bar{\sigma} \right) B_l \text{ if } j = l - \frac{1}{2} \Rightarrow \text{spin-down (45.b)},$$

And

$$(H_{nc-3\alpha})_{33} = -\Delta + ar^2 + br^{-4} + cr^{-6} \rightarrow \text{Non-polarised - electron}$$ (45.c)

6. CONCLUSIONS

We have obtained exact degenerated bound state solution in both three dimensional space and phase by applying perturbation theory and Boopp’s Shift method instead to solving Schrödinger equation directly with star product for modified potential $V_{\alpha}(\hat{r}) = ar^2 + br^{-4} + cr^{-6} + V_{\text{pert-u}}(\hat{r}, \Theta, \bar{\Theta})$. We showed the obtained degenerated spectrum for the modified studied potential corresponding three modes of fermionic particles, the first one with spin up and the second with spin down while the last is non-polarized particle.

ACKNOWLEDGMENTS

This work was supported with search laboratory of: Physique et Chimie des matériaux, in university of M'sila, Algeria.
References

[1] M.S. Child, S.-H. Dong, and X.-G. Wang, “Quantum states of a sextic potential: hidden symmetry and quantum monodromy,”, Journal of Physics A. vol. 33, no. 32, (2000) pp. 5653–5661.

[2] S. K. Bose, *Exact bound states for the central fraction power singular potential* $V(r)=\alpha r^{2/3}+\beta r^{-2/3}+\gamma r^{-4/3}$, IL NUOVO CIMENTO. 109, (1994) 1217.

[3] L. Buragohain, S. A. S. Ahmed, *Exactly solvable quantum mechanical systems generated from the anharmonic potentials*, Lat. Am. J. Phys. Educ. Vol. 4, No. 1 (2010).

[4] Rauschel, S. A. S. Ahmed, Borah, B. C. and Sarma, D., *Generation of exact bound state solutions From solvable non-power law potentials by a transformations method*, Eur. Phys. J. D17 (1992) 335-338.

[5] Sameer M. Ikhdair and Ramazan Sever, *Exact solutions of the radial Schrödinger equation for some physical potentials*, CEJP. 5(4) (2007) 516–527.

[6] M.M. Nieto: “Hydrogen atom and relativistic pi-mesic atom in N-space dimension”, Am. J. Phys.. Vol.47 (1979), pp. 1067–1072.

[7] S.M. Ikhdair and R. Sever, “Exact polynomial eigensolutions of the Schrödinger equation for the pseudoharmonic potential”, J. Mol. Struc.-Theochem. Vol. 806, (2007), pp. 155–158.

[8] Ahmed, A. S. and Buragohain, L., *Generation of new classes of exactly solvable potentials*, Phys.Scr.80. (2009) 1-6.

[9] Bose, S. K., *Exact solution of non-relativistic Schrödinger equation for certain central physical potentials*, Nouvo Cimento B. 113 (1996) 299-328.

[10] Flesses, G. P. and Watt, A., *An exact solution of the Schrödinger equation for a multiterm potential*, J. Phys. A: Math. Gen. 14, (19981) L315-L318.

[11] M. Ikhdair and R. Sever: “Exact solution of the Klein–Gordon equation for the PTsymmetry generalized Woods–Saxon potential by the Nikiforov–Uvarov method”, Ann. Phys. (Leipzig), Vol. 16, (2007), pp. 218–232.

[12] S.-H. Dong, “Schrodinger equation with the potential $V(r) = r^*-4 + r^*-3 + r^*-2 + r^*-1$, Physica Scripta. Vol. 64, no. 4 (2001) pp. 273–276.

[13] S.-H. Dong and Z.-Q. Ma, “Exact solutions to the Schrodinger ”equation for the potential $V(r) = r^*2 + r^*-4 + r^*-6$ in two dimensions”, Journal of Physics A. Vol. 31, no. 49 (1998) pp.9855–9859.

[14] S.-H. Dong, “A new approach to the relativistic Schrödinger “equation with central potential:Ansatz method”, International Journal of Theoretical Physics. Vol. 40, no. 2 (2001) pp. 559–567.

[15] Ali Akder et al., *A new Coloumb ring-shaped potential via generalized parametetric Nikiforov-Uvarov method*, Journal of Theoretical and Applied Physics. 7 (2013) 17.

[16] Sameer M. Ikhdair and Ramazan Sever, *Relativistic Two-Dimensional Harmonic Oscillator Plus Cornell Potentials in External Magnetic and AB Fields*, Advances in High Energy Physics. Volume 2013, Article ID 562959, 11 pages.

[17] Shi-Hai Dong, Guo-Hua San, *Quantum Spectrum of Some Anharmonic Central Potentials: Wave Functions Ansatz*, Foundations of Physics Letters. 16, Issue 4 (2003) pp 357-367.

[18] L.Buragohain1, S.A.S.Ahmed, *Exactly solvable quantum mechanical systems generated from the anharmonic potentials*, Lat. Am. J. Phys. Educ. Vol. 4, No. 1 (2010) 79-83.
[19] S. M. Ikhdair, “Exact solution of Dirac equation with charged harmonic oscillator in electric field: bound states”, Journal of Modern Physics. vol. 3, no. 2 (2012) pp. 170–179.

[20] H. Hassanabadi et al., Exact solution Dirac equation for an energy-dependent potential, Tur. Phys. J. Plus. 127 (2012) 120.

[21] H. Hassanabadi, M. Hamzavi, S. Zarrinkamar and A. A. Rajabi, Exact solutions of N-Dimensional Schrödinger equation for a potential containing coulomb and quadratic terms, International Journal of the Physical Sciences, Vol. 6(3), pp. 583–586, 2011.

[22] Shi-Hai Dong, Zhoung-Qi Ma, and Giampieero Esposito, Exact solutions of the Schrödinger equation with inverse-power potential, Fondations of Physics Letters. Vol. 12, N. 5, 1999.

[23] Shi-Hai Dong, Xi Wen Hou and Zhoung-Qi Ma, Schrödinger equation with Potential \(V(r)=ar^2+br^{-4}+cr^{-6} \), arXiv:quanta-ph/9808037 v1 21 Aug 1998.

[24] A. Connes., Noncommutative geometry, 1st ed. (Academic Press, Paris, France, 1994). [25] H. Snyder, The Quantization of space time, Phys. Rev. 71 (1946) 38-41.

[25] Anselme F. Dossa, Gabriel Y. H. Avossevou, Noncommutative Phase Space and the Two Dimensional Quantum Dipole in Background Electric and Magnetic Fields, Journal of Modern Physics. 4 (2013) 1400-1411.

[26] D. T. Jacobus. PhD, Department of Physics, Stellenbosch University, South Africa, (2010).

[27] Anais Smailagic et al. New isotropic versus anisotropic phase of noncommutative 2-D Harmonic oscillator, Phys.Rev. D65 (2002) 107701.

[28] Yang, Zu-Hua et al., DKP Oscillator with spin-0 in Three dimensional Noncommutative Phase-Space, Int. J. Theor. Phys. 49 (2010) 644-657.

[29] Y. Yuan et al. Spin ½ relativistic particle in a magnetic field in NC PH, Chinese Physics C, 34(5) (2010) 543.

[30] Behrouz Mirza et al., Relativistic Oscillators in a Noncommutative space in a Magnetic field, Commun. Theor. Phys. 55 (2011) 405-409.

[31] Abdelmadjid Maireche, Quantum Schrödinger Equation with Octic Potential in Non Commutative Two-Dimensional Complex space, Life Sci. J. 11(6) (2014) 353-359.

[32] Abdelmadjid Maireche, Spectrum of Schrödinger Equation with H.L.C. Potential in Non-Commutative Two-dimensional Real Space, The African Rev. Phys. 9:0060 (2014) 479-483.

[33] Abdelmadjid Maireche, Deformed Quantum Energy Spectra with Mixed Harmonic Potential or Nonrelativistic Schrödinger equation, J. Nano- Electron. Phys. 7 No. 2, (2015) 02003.

[34] Abdelmadjid Maireche, A Study of Schrödinger Equation with Inverse Sextic Potential in 2-dimensional Non-commutative Space, The African Rev. Phys. 9:0025 (2014) 185-193.

[35] Abdelmadjid Maireche Deformed Bound States for Central Fraction Power Potential: Non Relativistic Schrödinger equation, the African Rev. Phys. 10:0014 (2015) 97-103.

[36] Abdelmadjid Maireche, Nonrelativistic Atomic Spectrum for Companied Harmonic Oscillator Potential and its Inverse in both NC-2D: RSP, International Letters of Chemistry, Physics and Astronomy. Vol. 56 (2015) pp. 1-9.

[37] Abdelmadjid Maireche "A New Approach to the Non Relativistic Schrödinger equation for an Energy-Depended Potential \(V(r,E_W)=V_0(1+nE_W) \) in Both Noncommutative three Dimensional spaces and phases", International Letters of Chemistry, Physics and Astronomy. Vol. 60 (2015) pp. 11-19.

[38] Abdelmadjid Maireche, Spectrum of Hydrogen Atom Ground State Counting Quadratic Term in Schrödinger Equation, The African Rev. Phys. 10:0025 (2015) 177-183.
[39] Abdelmadjid Maireche "New Exact Solution of the Bound States for the Potential Family $V(r)=A/r^2-B/r+C r^k$ $(k=0,-1,-2)$ in both Noncommutative Three Dimensional Spaces and Phases: Non Relativistic Quantum Mechanics", International Letters of Chemistry, Physics and Astronomy. Vol. 58 (2015) pp. 164-176.

[40] Abdelmadjid Maireche, New exact bound states solutions for (C.F.P.S.) potential in the case of Non commutative three dimensional non relativistic quantum mechanics, Med. J. Model. Simul. 04 (2015) 60-072.

[41] Abdelmadjid Maireche, Spectrum of Schrödinger Equation with H.L.C. Potential in Noncommutative Two-dimensional Real Space, The African Rev. Phys. 9:0025 (2014) 479-485.

[42] A.E.F. Djemei and H. Smail, On Quantum Mechanics on Noncommutative Quantum Phase Space, Commun. Theor. Phys. (Beijing, China). 41 (2004) pp.837-844.

[43] Shaohong Cai, Tao Jing, Guangjie Guo, Rukun Zhang, Dirac Oscillator in Noncommutative Phase Space, International Journal of Theoretical Physics. 49(8) (2010) pp 1699-1705.

[44] Joohan Lee, Star Products and the Landau Problem, Journal of the Korean Physical Society, Vol. 47, No. 4, Oc (2005) pp. 571-576.

[45] A. Jahan, Noncommutative harmonic oscillator at finite temperature: a path integral approach, Brazilian Journal of Physics, vol. 37, no. 4(2007) 144-146.

[46] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, (7th. ed.; Elsevier, 2007).