Supporting Information

Palladium Complexes Based on Ylide-Functionalized Phosphines (YPhos): Broadly Applicable High-Performance Precatalysts for the Amination of Aryl Halides at Room Temperature

Jens Tappen, Ilja Rodstein, Katie McGuire, Angela Großjohann, Julian Löffler, Thorsten Scherpf, and Viktoria H. Gessner*[

chem_201905535_sm_miscellaneous_information.pdf
Index

1. Experimental Details 2
 1.1 General methods 2
 1.2 Ligand and Gold Complex Preparation 2
 1.2.1 Preparation of L2 2
 1.2.2 Preparation of L2·AuCl 3
 1.3 Synthesis of the Palladium Complexes 3
 1.3.1 Palladium Allyl Complexes 3
 1.3.2 Palladium Cinnamyl Complexes 5
 1.3.3 Palladium Indenyl Complexes 6
 1.4 Catalysis: Procedure of the Test Reactions and Detailed Results 7
 1.4.1 Reaction Procedure 7
 1.4.2 Test Reactions: Full Results 7
 1.5 Isolations and gram-scale applications (aryl chlorides) 8
 1.5.1 General procedure for the small-scale isolation 8
 1.5.2 General procedure for gram-scale applications 10
 1.6 General procedure for the coupling of aryl iodides and bromides (Scheme 4) 12
 1.6.1 General Procedure for Catalysis 12
 1.6.2 General Procedure for Isolations 13
 1.7 Kinetic studies 14

2. NMR spectra 17
 2.1 NMR spectra of the ligand and palladium complexes 17
 2.2 NMR spectra of the isolated products 32

3. Crystal Structure Determination 50
 3.1 General information 50
 3.2 Crystal structures 53
 3.2.1 Crystal Structure Determination of L2 53
 3.2.2 Crystal Structure Determination of L2·AuCl 56
 3.2.3 Crystal Structure Determination of P_{al}1 59
 3.2.4 Crystal Structure Determination of P_{al}3 62
 3.2.5 Crystal Structure Determination of P_{cin}2 65
 3.2.6 Crystal Structure Determination of P_{cin}3 68
 3.2.7 Crystal Structure Determination of P_{inc}1 71
 3.2.8 Crystal Structure Determination of (μ-allyl)(μ-Cl)Pd_{2}(L2)_{2} 75

4. References 89
1. Experimental Details

1.1 General methods

All experiments were carried out under a dry, oxygen-free argon atmosphere using standard Schlenk techniques. Involved solvents were dried using an MBraun SPS-800 (THF, toluene and pentane) or dried in accordance with standard procedures. \(^1\)H, \(^{13}\)C\(^{\text{[H]}}\), \(^{31}\)P\(^{\text{[H]}}\) NMR spectra were recorded on Avance-400 spectrometers at 25 °C if not stated otherwise. All values of the chemical shift are in ppm regarding the δ-scale. All spin-spin coupling constants (J) are printed in Hertz (Hz). To display multiplicities and signal forms correctly the following abbreviations were used: s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublet, ddd = doublet of doublet of doublet, br = broad signal, vbr = very broad signal. Signal assignment was supported by APT, HSQC and HMBC. Elemental analyses were performed on an Elementar vario MICRO-cube elemental analyzer. IR-Spectra were recorded on a Thermo Nicolet iS5 FT-IR in transmission mode with a Specac “Omni-cell” with KBr plates and a 0.1 mm spacer or with an ATR module at 22 °C. Column chromatography was performed on a Reveleris X2 (BUCHI) Flash Chromatography- System using Reveleris packed columns. Melting Points were collected on a Stuart SMP 30 with a heat up speed of 2 °C per minute. Chlorodicyclohexylphosphine was prepared according to published procedures.\(^1\) All other reagents were purchased from Umicore, Sigma-Aldrich, ABCR, Rockwood Lithium or Acros Organics and used without further purification.

1.2 Ligand and Gold Complex Preparation

1.2.1 Preparation of L2

\[\text{Ph} \quad \text{Cy}_3\text{P}^+ \quad \text{PCy}_2 \]

6.00 g (13.3 mmol, 1 eq.) benzyltricyclohexylphosphonium bromide were suspended in 120 ml THF. Slowly 5.63 ml (13.3 mmol, 1 eq.) n-BuLi (2.38 M in hexane) was added to the suspension. The suspension was stirred for 40 min and then 3.68 ml (4.02 g; 17.3 mmol; 1.3 eq.) Cy\(_2\)PCl were added. The suspension was stirred for 40 min at room temperature. The solid was filtered off and washed twice with 50 ml THF and dried in vacuo (7.73 g). The solid and 1.72 g (15.3 mmol) potassium tert-butanoate were suspended in 120 ml toluene. The suspension was stirred for 16 h and then heated to 100 °C for 1 h. The hot solution was filtered off and cooled to room temperature. The cooled solution was concentrated to 40 ml in vacuo until a solid precipitated. The suspension was reheated to 100 °C and stirred for 1 h. The resulting solution was first cooled to room temperature and then to -30 °C for 16 h. The cold solid was filtered off and washed 3 times with 50 ml cold pentane. The solid was dried in vacuo and the product was obtained as a white solid (5.99 g, 10.56 mmol, 80 %).

\(^1\)H NMR (400 MHz, C\(_6\)D\(_6\)) δ = 0.99 – 1.20 (m, 9H, CH\(_2\), PCy\(_2\), H\(_3\) + H\(_4\) PCy\(_3\), H\(_3\) + H\(_4\)), 1.22 – 1.63 (m, 19H, CH\(_2\), PCy\(_2\), H\(_2\) + H\(_3\) + H\(_4\) PCy\(_3\), H\(_2\) + H\(_3\) + H\(_4\)), 1.63 – 1.89 (m, 12H, CH\(_2\), PCy\(_2\), H\(_3\) PCy\(_3\), H\(_2\) + H\(_3\) + H\(_4\)), 1.89 – 2.08 (m, 10H, CH\(_2\), PCy\(_2\), H\(_2\) + H\(_3\) PCy\(_3\), H\(_1\) + H\(_3\)), 2.34 – 2.52 (m, 5H, CH, PCy\(_2\), H\(_2\), PCy\(_2\), H\(_1\)), 7.01 – 7.08 (m, 1H, CH, Ph, para), 7.24 – 7.32 (m, 2H, CH, Ph, meta), 7.40 – 7.47 (m, 2H, CH, Ph, ortho) ppm.

\(^{13}\)C\(^{\text{[H]}}\)-NMR (101 MHz, C\(_6\)D\(_6\)): δ = 20.5 (dd, \(^1\)JC\(_P\) = 104.6 Hz, \(^1\)JC\(_P\) = 28.1 Hz, P-C\(^-\)-P), 26.8 – 27.0 (m, CH\(_2\), PCy\(_2\), C\(_4\)), 27.5 – 27.7 (m, CH\(_2\), PCy\(_2\), C\(_4\)), 28.0 (d, \(^3\)JC\(_P\) = 11.1 Hz, CH\(_2\), PCy\(_3\), C\(_3\)), 28.2 (d, \(^3\)JC\(_P\) = 9.1 Hz, CH\(_2\), PCy\(_2\), C\(_3\)), 28.7 – 29.1 (m, CH\(_2\), PCy\(_2\), C\(_3\) PCy\(_3\), C\(_3\)), 31.9 (d, \(^2\)JC\(_P\) = 13.2 Hz, CH\(_2\), PCy\(_2\), C\(_2\)), 33.2 (d, \(^2\)JC\(_P\) = 16.3 Hz, CH\(_2\), PCy\(_2\), C\(_2\)), 35.5 (dd, \(^1\)JC\(_P\) = 49.0 Hz, \(^3\)JC\(_P\) = 8.8 Hz, CH, PCy\(_3\), C\(_1\)), 39.9 (dd, \(^1\)JC\(_P\) = 14.3 Hz, \(^3\)JC\(_P\) = 5.0 Hz, CH, PCy\(_2\), C\(_1\)), 122.5 – 122.8 (m, CH, Ph, para), 127.9 – 128.2 (m, CH, Ph, meta), 133.6 (d, \(^3\)JC\(_P\) = 6.3 Hz, CH, Ph, ortho), 146.0 (dd, \(^2\)JC\(_P\) = 10.7 Hz, \(^2\)JC\(_P\) = 2.3 Hz, C, Ph) ppm. \(^{31}\)P\(^{\text{[H]}}\)-NMR (162.1 MHz, C\(_6\)D\(_6\)): δ = -5.2 (d, \(^2\)JP = 132.1 Hz, PCy\(_3\)), 21.6 (d, \(^2\)JP = 132.1 Hz, PCy\(_3\)) ppm. CHNS: Calculated: C: 78.40, H: 10.67. Measured: C: 78.61, H: 10.60. IR (ATR): 2915 (s), 2845 (s), 1585 (m), 1478 (m), 1443 (m), 1230 (m), 1171 (w), 1006 (s), 977 (m), 885 (s), 845 (m), 703 (s), 651 (w), 540 (s), 527 (s), 506 (m), 493 (w) cm\(^{-1}\). mp: 204.5 °C.
1.2.2 Preparation of L2-AuCl

100 mg (0.18 mmol, 1.06 eq.) L2 and 53.7 mg (tetrahydrothiophene)gold (I) chloride (0.17 mmol, 1.0 eq.) were suspended in 1.5 ml pentane and stirred for 18 h. The solid was filtered off, washed twice with 5 ml pentane and dried in vacuo and obtained as a white solid (118 mg, 0.15 mmol, 89 %).

1H NMR (400 MHz, CD$_2$Cl$_2$) δ = 1.09 – 1.31 (m, 17H, CH$_2$, PCy$_2$, H$_3$ + H$_4$), 1.40 – 2.06 (m, 33H, CH$_2$PCy$_2$, H$_1$), CH$_2$:PCy$_2$, H$_2$ + H$_3$ + H$_4$ PCy$_2$, H$_2$ + H$_3$ + H$_4$), 2.16 – 2.30 (m, 2H, CH$_2$:PCy$_2$, H$_2$), 2.49 – 2.77 (m, 3H, CH$_3$PCy$_3$, H$_1$), 7.11 – 7.23 (m, 3H, CH$_2$, Ph, meta, para), 7.28 – 7.34 (m, 2H, CH, Ph, ortho) ppm. 13C(1H)-NMR (101 MHz, C$_6$D$_6$): δ = 15.2 (dd, 1JC = 104.0 Hz, 1JCP = 63.7 Hz, P-C$^\text{C}$-P), 26.8 – 26.9 (m, CH$_2$:PCy$_2$, C$_4$), 26.9 – 27.0 (m, CH$_2$:PCy$_3$, C$_4$), 27.6 (d, 3JCP = 12.9 Hz, CH$_2$:PCy$_2$, C$_3$), 28.0 (d, 3JCP = 11.6 Hz, CH$_2$:PCy$_3$, C$_3$), 28.1 (d, 3JCP = 13.0 Hz, CH$_2$:PCy$_2$, C$_3$), 29.1 (d, 3JCP = 3.0 Hz, CH$_2$:PCy$_3$, C$_3$), 31.6 – 31.7 (m, CH$_2$:PCy$_2$, C$_2$), 32.3 – 32.5 (m, CH$_2$:PCy$_2$, C$_2$), 35.3 (dd, 1JC = 49.4 Hz, 3JCP = 1.3 Hz, CH$_2$:PCy$_3$, C$_1$), 41.4 (dd, 1JC = 39.2 Hz, 3JCP = 1.2 Hz, CH$_2$:PCy$_2$, C$_1$), 125.9 – 126.1 (m, CH, Ph, para), 128.1 – 128.3 (m, CH, Ph, meta), 137.6 – 137.8 (m, CH, Ph, ortho), 140.9 (dd, 3JCP = 5.4 Hz, 2JCP = 2.4 Hz, C, Ph) ppm. 31P(1H)-NMR (162.1 MHz, CD$_2$Cl$_2$): δ = 25.0 (d, 3JP = 56.8 Hz, PCy$_3$), 30.5 (d, 2JP = 56.8 Hz, PCy$_2$) ppm.

CHNS: Calculated: C: 55.60, H: 5.57. Measured: C: 55.44, H: 7.897. IR (ATR): 2920 (m), 2848 (w), 1484 (m), 1200 (w), 1182 (w), 1075 (w), 1046 (w), 1021 (s), 996 (m), 913 (w), 888 (m), 847 (m), 709 (s), 543 (s), 515 (m), 497 (w), 480 (m) cm$^{-1}$. mp: 218.2 °C (decomposition).

1.3 Synthesis of the Palladium Complexes

1.3.1 Palladium Allyl Complexes

1.3.1.1 Pd$_{\text{al}}$1

1.5 g (2.97 mmol, 1 eq.) of ligand L1 was stirred with 0.54 mg (1.49 mmol, 0.5 eq.) of allylpalladium (II) chloride dimer in 10 ml of dry toluene and the solution was stirred overnight. The solid was filtered off and washed with 5 ml of dry toluene and 15 ml pentane. The solid was dried in vacuo and the product was obtained as yellow solid (1.83 mg, 2.75 mmol, 92 %).

1H NMR (400 MHz, CD$_2$Cl$_2$) δ = 1.12 – 1.58 (m, 25H, CH$_2$:PCy$_5$ + PCy$_3$), 1.62 (dd, 3JHP = 12.4 Hz, 3JHP = 8.3 Hz, 3H, CH$_3$), 1.67 – 2.05 (m, 25H, CH$_2$:PCy$_5$ + PCy$_3$), 2.10 – 2.24 (m, 2H, CH$_2$:PCy$_5$, H$_1$), 2.43 – 3.70 (vbr, 2H, CH$_2$:C$_6$H$_5$), 2.54 – 2.72 (m, 3H, CH$_2$:PCy$_5$, H$_1$), 3.54 (dd, 2JHH = 13.7 Hz, 3JHH = 8.5 Hz, 1H, CH$_2$:C$_6$H$_5$), 4.25 – 4.40 (m, 1H, CH$_2$:C$_6$H$_5$), 5.19 – 5.41 (m, 1H, CH$_2$:C$_6$H$_5$) ppm. 13C(1H)-NMR (101 MHz, CD$_2$Cl$_2$): δ = -2.7 (dd, 1JCP = 112.1, 1JCP = 46.8 Hz, P-C-P), 15.5 – 15.8 (m, CH$_3$), 26.9 (d, 3JCP = 1.5 Hz, CH$_2$:PCy$_5$, C$_4$), 27.2 – 27.5 (m, CH$_2$:PCy$_5$, C$_4$), 27.8 (d, 3JCP = 13.4 Hz, CH$_2$:PCy$_5$, C$_3$), 28.1 (d, 3JCP = 11.3 Hz, CH$_2$:PCy$_3$, C$_3$), 28.60 (d, 3JCP = 9.9 Hz, CH$_2$:PCy$_3$, C$_3$), 28.63 (d, 3JCP = 2.6 Hz, CH$_2$:PCy$_3$, C$_3$), 30.0 – 30.5 (m, CH$_2$:PCy$_3$, C$_3$), 31.2 (d, 2JCP = 5.2 Hz, CH$_2$:PCy$_3$, C$_3$), 32.7 – 36.6 (m, CH$_2$:PCy$_3$, C$_3$), 38.4 – 39.6 (br, CH$_2$:PCy$_3$, C$_3$), 52.5 – 52.9 (m, CH$_2$:C$_6$H$_5$), 79.5 (d, 2JCP = 28.4 Hz, CH$_2$:C$_6$H$_5$), 114.9 (d, 2JCP = 4.4 Hz, CH$_2$:C$_6$H$_5$) ppm. 31P(1H)-NMR (162 MHz, CD$_2$Cl$_2$): δ = 20.5 (d, 3JP = 63.5 Hz, PCy$_3$), 31.5 (d, 2JP = 63.5 Hz, PCy$_3$) ppm. CHNS: Calculated: C: 61.13, H: 9.23. Measured: C: 61.03, H: 9.34. IR (ATR): 2919 (s), 2846 (s), 1445 (m), 1153 (m), 1070 (w), 1046 (w), 1023 (w), 850 (w), 729 (w), 513 (w). mp: 129.8 °C (decomposition).
1.3.1.2 Pdₐ₂

340 mg (0.60 mmol, 1.03 eq.) of L₂ and 108 mg (0.29 mmol, 0.5 eq.) η²-allyl palladium(II) chloride dimer were suspended in 10 ml pentane and stirred for 30 min. The light-yellow suspension formed a yellow solid. The solid was filtered off and washed twice with 5 ml pentane and dried for 1 h in vacuo (385 mg, 0.51 mmol, 90%).

¹H-NMR (400 MHz, CD₂Cl₂): δ = 1.00 – 1.42 (m, 17H, CH₂, PCy₂ + PCy₃), 1.45 – 1.64 (m, 6H, CH₂, PCy₃ + PCy₂), 1.64 – 1.87 (m, 18H, CH₂, PCy₂ + PCy₃), 1.88 – 2.20 (m, 11H, CH, PCy₂, H₁, CH₂, PCy₃ + PCy₂), 2.72 – 2.86 (m, 3H, CH, PCy₃, H₁), 2.48 – 3.51 (br, 2H, CH₂, C₃H₅), 3.57 – 3.68 (m, 1H, CH, C₃H₅), 4.39 – 4.49 (m, 1H, CH₂, C₃H₅), 5.38 – 5.51 (m, 1H, CH₂, C₃H₅), 7.08 – 7.18 (m, 1H, CH, Ph, para), 7.19 – 7.27 (m, 2H, CH, Ph, meta), 7.34 – 7.46 (m, 2H, CH, Ph, ortho) ppm. ¹³C(¹H)-NMR (100.6 MHz, CD₂Cl₂): δ = 16.4 (dd, ¹JC₃H₅ = 105.9 Hz, ¹JC₃H₅ = 34.1 Hz, PCP), 27.6 (m, CH₂, PCy₂, C₄), 27.7 (m, CH₂, PCy₂, C₄), 28.2 – 28.7 (m, CH₂, PCy₃ + PCy₂), 28.8 – 29.2 (m, CH₂, PCy₂), 29.7 – 30.0 (m, CH₂, PCy₃), 31.3 (d, ¹JC₃H₅ = 4.0 Hz, CH₂, PCy₂), 37.5 (dd, ¹JC₃H₅ = 105.9 Hz, ³JC₃H₅ = 34.1 Hz, CH, PCy₃, C₁), 42.3 (dd, ¹JC₃H₅ = 13.0 Hz, ³JC₃H₅ = 6.6 Hz, CH, PCy₂, C₁), 55.9 (s, CH, C₃H₅), 79.9 (d, ³JC₃H₅ = 27.9 Hz, CH₂, C₃H₅), 115.8 (d, ²JC₃H₅ = 4.2 Hz, CH₂, C₃H₅), 125.4 (s, CH, Ph, para), 128.3 (s, CH, Ph, meta), 138.1 (s, CH, Ph, ortho), 143.9 (s, C, Ph) ppm. ³¹P(¹H)-NMR (162.1 MHz, CD₂Cl₂): δ = 15.4 – 18.6 (br, PCy₂), 23.7 (d, ²JP = 66.6 Hz, PCy₂) ppm.

CHNS: Calc.: C: 63.99, H: 8.86. Measured: C: 64.21, H: 8.87. IR (ATR): 2919 (s), 284 (s), 1583 (w), 1441 (s), 1189 (m), 1009 (s), 989 (s), 886 (m), 847 (m), 706 (s), 642 (w), 538 (s), 485 (m), 471 (w) cm⁻¹. mp: 170.4 °C (decomposition).

1.3.1.3 Pdₐ₃

300 mg (0.66 mmol, 1.05 eq.) of ligand L₃ was stirred with 113 mg (0.31 mmol, 0.5 eq.) of allylpalladium (II) chloride dimer in 7 ml of toluene overnight. A yellow precipitate was filtered off in a Schlenk frit and washed with 10 ml of toluene. The product was dried in vacuo for multiple hours and obtained as a light yellow solid (350 mg, 0.55 mmol, 89%).

¹H NMR (400 MHz, CD₂Cl₂) δ = 1.02 – 1.56 (m, 15H, CH₂, cy, H₂ + H₃ + H₄), 1.21 (d, ³JMF = 13.0 Hz, 9H, CH₃, Ph, Me), 1.47 (d, ³JMF = 13.3 Hz, 9H, CH₃, Ph, Me), 1.57 – 1.67 (m, 3H, CH₂, cy, H₄), 1.68 – 1.89 (m, 9H, CH₂, cy, H₃ + CH₃), 1.84 – 1.99 (br, 3H, CH₂, cy, H₂), 2.08 – 2.20 (br, 3H, CH₂, cy, H₂), 2.69 – 2.99 (br, 3H, CH, cy, H₁), 2.91 – 3.85 (vbr, 2H, CH₂, C₃H₅), 3.56 (dd, ²JHF = 13.5 Hz, ³JHF = 8.4 Hz, 1H, CH₂, C₃H₅), 4.27 – 4.35 (m, 1H, CH₂, C₃H₅), 5.16 – 5.62 (m, 1H, CH, C₃H₅) ppm. ¹³C(¹H)-NMR (101 MHz, CD₂Cl₂) δ = 4.0 (dd, ¹JC₃H₅ = 105.1 Hz, ¹JC₃H₅ = 41.3 Hz, P-C-P), 18.0 – 19.5 (m, CH₃), 26.9 (d, ²JC₃H₅ = 1.5 Hz, CH₂, PCy₃, C₄), 27.9 (d, ³JC₃H₅ = 12.4 Hz, CH₂, cy, C₃), 28.4 (d, ³JC₃H₅ = 11.0 Hz, CH₂, cy, C₃), 29.0 (CH₂, cy, C₂), 29.6 (CH₂, cy, C₂), 31.6 (CH₃, Ph, Me), 32.9 (CH₃, Ph, Me), 34.4 (d, ¹JC₃H₅ = 48.1 Hz, CH, cy, C₁), 42.0 – 42.3 (m, C, Ph), 56.3 (d, ²JC₃H₅ = 2.4 Hz, CH₂, C₃H₅), 79.1 – 79.7 (m, CH₂, C₃H₅), 113.7 (d, ²JC₃H₅ = 3.1 Hz, CH, C₃H₅) ppm. ³¹P(¹H)-NMR (162 MHz, CD₂Cl₂) δ = 30.8 (d, ²JP = 63.4 Hz, PCy₂), 58.0 (br, PBu₃) ppm.

CHNS: Calculated: C: 58.58, H: 9.36. Measured: C: 58.85, H: 9.31. IR (ATR): 2924 (m), 2845 (m), 1447 (w), 1353 (w), 1137 (w), 1050 (w), 898 (s), 887 (s), 850 (w), 803 (w), 608 (w), 565 (w), 536 (w), 522 (w), 509 (w) ppm. mp: 152.2 °C (decomposition).
1.3.2 Palladium Cinnamyl Complexes

1.3.2.1 Pd_{cin}1

Inside the glovebox, 36.0 mg (0.070 mmol, 2 eq.) of ligand L1 and 18.5 mg (0.035 mmol, 1 eq.) of cinnamylpalladium (II) chloride dimer was added into a J. Young NMR tube and dissolved in 0.6 ml THF-d8. After 15 minutes full product conversion was observed. Due to solubility and stability issues, the product could not be isolated.

^1H NMR (400 MHz, THF) δ = 0.96 – 2.32 (m, 55H, CH_{PCy2, H1} + CH_{PCy3 + PCy2} + CH_{Ph}), 2.67 – 2.99 (m, 3H, CH_{PCy3, H1}), 3.00 – 3.48 (vbr, 2H, CH_{C3H4}), 5.01 (dd, 3J_{HH} = 13.2 Hz, 3J_{HH} = 9.0 Hz, 1H, CH_{C3H4}), 5.85 (dt, 3J_{HH} = 13.3 Hz, 3J_{HH} = 9.3 Hz, 1H, CH_{C3H4}), 7.13 – 7.25 (m, 3H, CH_{Ph}), 7.41 – 7.48 (m, 2H, CH_{Ph}) ppm. ^31P(^1H) NMR (162 MHz, THF-d8) δ = 26.5 (d, ^2J_{PP} = 63.4 Hz, PCy_{2}), 31.5 (d, ^2J_{PP} = 63.4 Hz, PCy_{3}) ppm.

1.3.2.2 Pd_{cin}2

340 mg (0.60 mmol, 1.03 eq.) of L2 and 151 mg (0.29 mmol, 0.5 eq.) c^2-cinnamyl palladium (II) chloride complex were suspended in 10 ml pentane and stirred for 30 min. An orange solid was formed immediately at the start of stirring. The solid was filtered off and washed twice with 5 ml pentane and dried for 1 h in vacuo (468 mg, 0.57 mmol, 99 %).

^1H NMR (400 MHz, CD_{2}Cl_{2}) δ = 1.10 – 1.34 (m, 17H, CH_{PCy3 + PCy2}), 1.37 – 1.51 (m, 6H, CH_{PCy3 + PCy2}), 1.57 – 1.82 (m, 19H, CH_{PCy3 + PCy2}), 1.85 - 2.06 (m, 10H, CH_{PCy2, H1}, CH_{PCy3 + PCy2}), 2.70 - 2.87 (m, 3H, CH_{PCy3, H1}), 2.92–3.18 (vbr, 2H, CH_{PCy2, C28.1}), 4.97 - 5.07 (m, 1H, CH_{PCy3, C28.2}), 5.68 - 5.85 (m, 1H, CH_{PCy3, C28.3}), 7.03 - 7.11 (m, 1H, CH_{Ph, para}), 7.12 - 7.19 (m, 2H, CH_{Ph, meta}), 7.23 - 7.38 (m, 5H, CH_{cin, Ph}), 7.41 - 7.47 (m, 2H, CH_{Ph, ortho}) ppm. ^31C(^1H) NMR (101 MHz, CD_{2}Cl_{2}) δ = 27.1 - 27.2 (m, CH_{PCy3}), 27.2 - 27.4 (m, CH_{PCy2}), 27.9 - 28.3 (m, CH_{PCy3 + PCy2}), 28.5 – 28.8 (m, CH_{PCy3}), 29.2 – 29.7 (m, CH_{PCy3 + PCy2}), 31.0 – 31.2 (m, CH_{PCy2}), 37.5 (d, ^1J_{CP} = 48.2 Hz, C_{ cin}), 42.3 (d, ^1J_{CP} = 16.2 Hz, C_{ PCy2}), 51.0 (d, ^1J_{CP} = 1.3 Hz, CH_{ cin, C28.1}), 98.1 – 98.8 (m, CH_{ cin, C28.2}), 109.4 – 109.8 (br, CH_{ cin, C28.3}), 125.1 (s, CH_{ Ph, para}), 127.7 (s, CH_{ cin, Ph}), 127.9 (s, CH_{ cin, Ph}), 128.3 (s, CH_{ Ph, meta}), 138.0 (s, CH_{ Ph, ortho}), 138.1 – 138.4 (m, C_{ cin, C28.3}), 143.5 (s, C_{ Ph}) ppm. The signal for the anionic carbon atom cannot be found. ^31P(^1H)-NMR (162.1MHz, CD_{2}Cl_{2}): δ = 21.5 – 24.7 (vbr, PCy_{2}), 23.7 (d, ^2J_{PP} = 59.9 Hz, PCy_{3}) ppm. CHNS: Calculated: C: 66.90, H: 8.42. Measured: C: 66.74, H: 8.651. IR (ATR): 2925 s, 2846 m, 1584 w, 1480 s, 1443 m, 1201 m, 1172 m, 1127 w, 1010 s, 990 s, 884 w, 845 w, 756 s, 728 s, 708 m, 645 w, 546 s, 532 s, 515 s, 453 w cm^{-1}. mp: 185.4°C (decomposition).

1.3.2.3 Pd_{cin}3

3.0 g (6.6 mmol, 2.05 eq.) of ligand L3 and 1.67 g (3.2 mmol, 1 eq.) of cinnamylpalladium (II) chloride dimer was dissolved in 20 ml of dry THF and stirred under an immediate color change from light yellow to dark orange. The solution was stirred for approximately 5 minutes until all yellow solid was dissolved in a dark brown solution, the solvent was then removed in vacuo. The solid was filtered off and washed with 15 ml of dry pentane. The solid was dried under reduced pressure and the product was obtained as an orange solid (4.2 g, 5.83 mmol, 90 %).
1.3.3 Palladium Indenyl Complexes

1.3.3.1 PdInd1

300 mg (0.59 mmol, 1.05 eq.) of ligand L1 and 177 mg (0.28 mmol, 0.5 eq.) of n°-1-tert-butylindenyl palladium chloride dimer were added into a Schlenk flask and suspended with 10 ml of dry pentane. The solid was filtered off and washed with 10 ml of dry THF and 10 ml of dry pentane. The brown solid was dried in vacuo and 360 mg (0.44 mmol, 78%) were obtained. The product contains 2.5 weight-% of Pd metal, which could not be removed, since the product is insoluble in all common solvents.

1H NMR (400 MHz, THF-d8, 320 K) δ = 1.54 (s, 9H, CH3, tBu), 1.00 – 2.42 (m, 51H, CH2, PCy2 + PCy3 + CH2, PCy2), 1.58 – 1.69 (m, 3H, CH3, Me), 2.62 – 3.09 (m, 3H, CH2, PCy2, H1), 4.57 – 4.79 (m, 1H, CH2, tBu), 6.72 (dd, JHH = 3.0 Hz, 1H, CH2, tBu), 6.79 (t, JHH = 7.4 Hz, 1H, CH3, tBu), 6.83 – 6.90 (m, JHH = 7.4 Hz, 1H, CH3, tBu), 6.97 (d, JHH = 7.4 Hz, 1H, CH3, tBu), 7.45 (d, JHH = 7.7 Hz, 1H, CH3, tBu). 13C (1H) NMR was not possible due to a high insolubility of the compound in most common deuterated solvents. 31P (1H) NMR (162 MHz, THF-d8, T = 320 K) δ = 29.2 – 30.2 (br, PCy2), 31.7 (d, JPP = 55.7 Hz, PCy2, ppm IR (ATR): 2917 (s), 2845 (s), 1443 (s), 1195 (w), 1158 (m), 1110 (w), 1048 (m), 1000 (w), 918 (vs), 899 (m), 892 (m), 846 (m), 826 (m), 759 (s), 738 (w), 710 (m), 592 (w), 536 (w), 516 (m). mp: 152.2 °C (decomposition). CHNS: Calculated: C: 66.08, H: 9.00, Calculated with 2.5 weight-% of Pd metal: C: 64.41, H: 8.77. Measured: C: 64.47, H: 8.797.

1.3.3.2 PdInd2

340 mg (0.60 mmol, 1.03 eq.) L2 and 179 mg (0.29 mmol, 0.5 eq.) p-tert-butylidenylpalladium(II) chloride dimer were suspended in 30 ml of pentane and stirred for 16 h. After 10 min a dark bronze colored solid formed which was filtered off and washed two times with 10 ml pentane. The solvent was removed in vacuo and a dark bronze colored solid was obtained (399 mg, 0.45 mmol, 80%).

1H NMR (400 MHz, THF-d8) δ = 1.07 – 2.22 (m, 61H, CH2, PCy2, H1, CH2, PCy3 + PCy2, CH3, tBu), 2.54 – 3.34 (br, 3H, CH3, PCy3, H1), 4.78 – 5.04 (m, 1H, CH3, ind, HA), 6.63 – 6.69 (m, 1H, CH3, ind, Hb), 6.74 – 6.82 (m, 1H, CH3, arom), 6.84 – 6.90 (m, 1H, CH3, arom), 6.98 – 7.10 (m, 2H, CH3, arom), 7.12 – 7.22 (m, 1H, CH3, arom), 7.31 – 7.55 (vbr, 2H, CH3, arom).
7.41 – 7.47 (m, 1H, CH₃), ppm. 13C\(^{1}\)H-NMR (100.6 MHz, THF-d₈) δ = 26.0 – 29.7 (m, CH₂, PCy3 + PCy₂), 30.4 (s, CH₃, fBu), 34.5 (s, C, fBu), 36.6 (d, $^1\text{JC}P$ = 41.2 Hz, CH, PCy₃), 63.8 – 65.2 (br, CH, CA), 109.0 – 111.3 (br, CH, CB), 117.3 (s, CH, arom), 120.4 (s, CH, arom), 123.4 – 123.8 (m, CH, arom), 124.2 (s, CH, arom), 124.7 (s, CH, arom), 126.5 – 127.9 (s, CH, arom) 136.4 – 137.9 (br, CH, arom), 139.2 (s, CH, arom), 141.8 – 142.3 (br, CH, arom), 142.6 – 143.2 (br, CH, arom) ppm. The signal for the anionic carbon atom as well as the ipso carbon atom of PCy₃ cannot be found. 31P\(^{1}\)H-NMR (162.1 MHz, THF-d₈): δ = 17.7 – 31.4 (br, PCy₃), 23.5 (d, $^3\text{J}_{PP}$ = 58.3 Hz, PCy₃) ppm. CHNS: Calculated: C: 68.25, H: 8.59. Measured: C: 67.95, H: 8.374. IR (ATR): 2922 (s), 2851 (w), 1584 (w), 1444 (m), 1191 (m), 1010 (s), 990 (s), 885 (s), 848 (m), 743 (s), 707 (s), 642 (w), 538 (s), 473 (s), 418 (m) cm\(^{-1}\). mp: 170.6 °C (decomposition).

1.4 Catalysis: Procedure of the Test Reactions and Detailed Results

1.4.1 Procedure

A 5 ml vial with a rubber cap and a stirring bar was charged in a glovebox with 189 mg (1,69 mmol, 2 eq.) of potassium tert-butoxide and 143 mg (0.85 mmol, 1 eq.) of 1,3,5-trimethoxybenzene. The vial was taken outside of the glovebox and 4 ml of tetrahydrofuran, 0.1 ml (107.6 mg, 0.85 mmol, 1 eq.) of 4-chlorotoluene and 0.92 mmol (1.1 eq.) of the amine were added via syringe. A second vial was charged with the appropriate amount of precatalyst or in case of L-Pd(dba)₃, an equimolar amount of the free ligand and tris(dibenzylideneacetone)dipalladium(0). The catalyst was dissolved in 0.5 ml of THF and stirred for 30 minutes. The catalyst solution was added to the reaction mixture and stirred at room temperature. For reaction monitoring, small aliquots of the reaction mixture were quenched with 0.2 ml of water and the organic phase was extracted. The solution was filtered through a pipette, the solvent was allowed to evaporate, and the residue was dissolved in CDCl₃ for recording an 1H NMR spectrum. The conversion was determined by integration of the product peaks in comparison to 1,3,5-trimethoxybenzene as the standard reagent.

1.4.2 Test Reactions: Full Results

product	cat	Time [h]	Yield [%]	product	cat	Time [h]	Yield [%]
3aa	L₁+Pd₂(dba)₃	1 (6)	>99	L₁+Pd₂(dba)₃	1 (6)	>99	
	L₂+Pd₂(dba)₃	6 (6)	>99	L₂+Pd₂(dba)₃	6 (6)	>99	
	L₃+Pd₂(dba)₃	24 (6)	57	L₃+Pd₂(dba)₃	24 (6)	31	
	Pₐ₁	1 (6)	>99	Pₐ₁	1 (6)	65	
	Pₐ₂	1 (6)	>99	Pₐ₂	1 (6)	66	
	Pₐ₃	6 (6)	>99	Pₐ₃	6 (6)	66	
	Pₐ₄	1 (6)	>99	Pₐ₄	1 (6)	55	
	Pₐ₅	1 (6)	>99	Pₐ₅	1 (6)	55	
	Pₐ₆	1 (6)	>99	Pₐ₆	1 (6)	55	
3ab	L₁+Pd₂(dba)₃	1 (6)	41 (51)	L₁+Pd₂(dba)₃	1 (6)	>99	
	L₂+Pd₂(dba)₃	1 (6)	76 (98)	L₂+Pd₂(dba)₃	24 (6)	71	
	L₃+Pd₂(dba)₃	1 (6)	37 (44)	L₃+Pd₂(dba)₃	24 (6)	63	
	Pₐ₁	1 (6)	>99	Pₐ₁	1 (6)	>99	
	Pₐ₂	1 (6)	>99	Pₐ₂	1 (6)	>99	
	Pₐ₃	1 (6)	>99	Pₐ₃	1 (6)	>99	
	Pₐ₄	1 (6)	>99	Pₐ₄	1 (6)	>99	
	Pₐ₅	1 (6)	>99	Pₐ₅	1 (6)	>99	
	Pₐ₆	1 (6)	>99	Pₐ₆	1 (6)	>99	

Supporting Information
1.5 Isolations and gram-scale applications (aryl chlorides)

1.5.1 General procedure for the small-scale isolation

4.3 mmol (0.5 mL, 1 eq.) of 4-chlorotoluene, 4.7 mmol (1.1 eq.) of the corresponding amine as well as 8.5 mmol (954 mg, 2.0 eq.) potassium tert-butoxide were added into a Schlenk flask and dissolved in 15 ml THF. 21.3 μmol (0.5 mol%; 1.0 mol% for 3ad) of catalyst dissolved in 2.5 ml THF were added to the solution and stirred for 1 h (6 h for 3ad). The reaction was quenched by addition of 10 ml water. The phases were separated, and the aqueous phase was washed two times with 10 ml ethyl acetate. The combined organic phases were dried over sodium sulfate. The crude product was purified via column chromatography (12 g silica-packed weld column; 0-30% EtOAc in hexane).

Coupling reactions with other aryl halides were performed in a similar manner with a 1:1.1 ratio of aryl halide and amine.

\[
\begin{align*}
\text{Yield: 0.798 g (4.05 mmol; 95%)} & \text{ obtained as a pale-yellow oil.} \\
\text{^1H NMR (400 MHz, CDCl}_3) \delta = 2.44 \text{ (s, 3H, } \text{CH}_3) \text{, 3.39 (s, 3H, } \text{-NCH}_3) \text{, 6.98 (t, } \text{3}_\text{JHH} = 7.3 \text{ Hz, 1H, ArH}) \text{,} \\
& 7.05 \text{ (d, } \text{3}_\text{JHH} = 7.9 \text{ Hz, 2H, ArH}) \text{, 7.12 (d, } \text{3}_\text{JHH} = 8.4 \text{ Hz, 2H, ArH}) \text{, 7.23 (d, } \\
& \text{3}_\text{JHH} = 8.3 \text{ Hz, 2H, ArH}) \text{, 7.35 (dd, } \text{3}_\text{JHH} = 8.5 \text{ Hz, } \text{3}_\text{JHH} = 7.4 \text{ Hz, 2H, ArH}) \text{ ppm.} \\
\text{^13C(^1H)-NMR (100.6 MHz, CDCl}_3) \delta = 20.8 \text{ (s, CH}_3) \text{, 40.3 (s, } \text{-NCH}_3) \text{, 118.3 (s, ArC) \text{, 119.9 (s, ArC),} } \\
& 122.6 \text{ (s, ArC), 129.1 (s, ArC), 130.0 (s, ArC), 132.0 (s, ArC), 146.7 (s, ArC), 149.4 (s, ArC) ppm.} \\
\end{align*}
\]

Spectral data obtained for the compound are in good agreement with the reported data.²

\[
\begin{align*}
\text{Yield: 0.623 g (3.82 mmol; 89%)} & \text{ obtained as a pale-yellow oil.} \\
\text{^1H NMR (400 MHz, CDCl}_3) \delta = 1.03 \text{ (t, } \text{JHCH} = 7.3 \text{ Hz, 3H, CH}_3) \text{, 1.42 - 1.70 (m, 4H, } \text{CH}_2) \text{, 2.32 (s, 3H, } \text{CH}_3) \text{, 3.15 (t, } \\
& \text{JHCH} = 7.1 \text{ Hz, 2H, CH}_2) \text{, 3.50 (br, 1H, NH), 6.60 (d, } \text{JHCH} = 8.4 \text{ Hz, 2H,} \\
\end{align*}
\]

N-n-butyl-4-methylaniline, 3ab
Supporting Information

S9

ArH), 7.06 (d, 3JHH = 8.3 Hz, 2H, ArH) ppm. 13C(1H)-NMR (100.6 MHz, CDCl₃) δ = 14.0 (s, CH₃), 20.4 (s, CH₂), 20.4 (s, CH₃), 31.8 (s, CH₂), 44.0 (s, CH₂), 112.9 (s, ArC), 126.1 (s, ArC), 129.7 (s, ArC), 146.4 (s, ArC) ppm. Spectral data obtained for the compound are in good agreement with the reported data.³

N-tert-butyl-4-methylaniline, 3ac

Yield: 0.620 g (3.80 mmol; 89%) obtained as a pale-yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 1.37 (s, 9H, CH₃, βBu), 2.33 (s, 3H, CH₂), 3.28 (br, 1H, NH), 6.78 (d, 3JHH = 8.4 Hz, 2H, ArH), 7.06 (d, 3JHH = 8.2 Hz, 2H, ArH) ppm. ¹³C(¹H)-NMR (100.6 MHz, CDCl₃) δ = 20.5 (s, CH₃), 30.1 (s, CH₂), 51.7 (s, C, βBu), 119.0 (s, ArC), 128.4 (s, ArC), 129.4 (s, ArC), 144.2 (s, ArC) ppm. Spectral data obtained for the compound are in good agreement with the reported data.⁴

N-iso-propy-4-methylaniline, 3ad

Yield: 0.441 g (2.96 mmol; 69%) obtained as a pale-yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 1.26 (d, 3JHH = 6.3 Hz, 6H, CH₃, Pr), 2.32 (s, 3H, CH₂), 3.32 (br, 1H, NH), 3.56 – 3.82 (m, 1H, CH, Pr), 6.59 (d, 3JHH = 8.4 Hz, 2H, ArH), 7.06 (d, 3JHH = 8.2 Hz, 2H, ArH) ppm. ¹³C(¹H)-NMR (100.6 MHz, CDCl₃) δ = 20.4 (s, CH₃), 23.0 (s, CH₂, Pr), 44.4 (s, CH₂, Pr), 113.5 (s, ArC), 126.1 (s, ArC), 129.8 (s, ArC), 145.3 (s, ArC) ppm. Spectral data obtained for the compound are in good agreement with the reported data.⁵

N,N-diethyl-4-methylaniline 3ae

Yield: 0.603 g (3.69 mmol; 86%) obtained as a pale-yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 1.31 (t, 3JHH = 7.1 Hz, 6H, CH₂, Et), 2.43 (s, 3H, CH₂), 3.60 – 3.77 (q, 3JHH = 7.1 Hz, 4H, CH₂, Et), 6.80 (d, 3JHH = 8.6 Hz, 2H, ArH), 7.20 (d, 3JHH = 8.5 Hz, 2H, ArH) ppm. ¹³C(¹H)-NMR (100.6 MHz, CDCl₃) δ = 12.6 (s, CH₂, Et), 20.2 (s, CH₂), 44.5 (s, CH₂, Et), 112.6 (s, ArC), 124.8 (s, ArC), 129.8 (s, ArC), 145.9 (s, ArC) ppm. Spectral data obtained for the compound are in good agreement with the reported data.⁶

1-(p-tolyl)piperidine,3af

Yield: 0.718 g (4.09 mmol; 96%) obtained as a pale-yellow oil. ¹H NMR (400 MHz, CDCl₃) δ = 1.58 – 1.70 (m, 2H, CH₂, Pip), 1.73 – 1.87 (m, 4H, CH₂, Pip), 2.36 (s, 3H, CH₂), 2.98 – 3.34 (m, 4H, CH₂, Pip), 6.95 (d, 3JHH = 8.3 Hz, 2H, ArH), 7.15 (d, 3JHH = 8.0 Hz, 2H, ArH) ppm. ¹³C(¹H)-NMR (100.6 MHz, CDCl₃) δ = 20.5 (s, CH₂), 24.4 (s, CH₂), 26.0 (s, CH₂), 51.4 (s, CH₂), 117.0 (s, ArC), 128.7 (s, ArC), 129.6 (s, ArC), 150.3 (s, ArC) ppm. Spectral data obtained for the compound are in good agreement with the reported data.⁷
N-benzyl-4-methylaniline, 3ag

Yield: 0.813 g (4.12 mmol; 96%) obtained as a pale-yellow oil. 1H NMR (400 MHz, d8-DCM) δ = 2.63 (s, 3H, CH3), 4.34 (br, 1H, NH), 4.66 (s, 2H, CH2), 6.93 (d, 3JHH = 8.5 Hz, 2H, ArH), 7.37 (d, 3JHH = 8.4 Hz, 2H, ArH), 7.60 – 7.80 (m, 5H, ArH) ppm. 13C{1H}-NMR (100.6 MHz, d8-DCM) δ = 20.8 (s, CH3), 48.9 (s, CH2), 113.5 (s, ArC), 127.1 (s, ArC), 127.6 (s, ArC), 128.0 (s, ArC), 129.1 (s, ArC), 130.3 (s, ArC), 140.6 (s, ArC), 146.6 (s, ArC) ppm. Spectral data obtained for the compound are in good agreement with the reported.8

1.5.2 General procedure for gram-scale applications

8.0 mmol (1 eq.) of the aryl halide, 8.8 mmol (1.1 eq.) of the corresponding amine as well as 16 mmol (1.80 g, 2.0 eq.) potassium tert-butoxide were added into a Schlenk flask and dissolved in 30 ml THF. 40.0 µmol (35.2 mg; 0.5 mol%) of catalyst Pind2 dissolved in 4.0 ml THF were added to the solution and stirred for 6 h. The reaction was quenched by addition of 20 ml water. The phases were separated, and the aqueous phase was washed two times with 20 ml ethyl acetate. The combined organic phases were dried over sodium sulfate. After filtration and evaporation of the solvent, the crude product was purified via column (12 g silica-packed weld column; 0-30% EtOAc in hexane).

4-(4-(methoxy-butyl)phenyl)piperidine, 3ef

Yield: 1.51 g (7.89 mmol; 99%) obtained as a pale-yellow oil. 1H NMR (400 MHz, CDCl3) δ = 1.52 – 1.65 (m, 2H, CH2, Pip), 1.70 – 1.84 (m, 4H, CH2, Pip), 3.02 – 3.10 (m, 4H, CH2, Pip), 3.78 (s, 3H, -OCH3), 6.86 (d, 3JHH = 9.2 Hz, 2H, ArH), 6.95 (d, 3JHH = 9.1 Hz, 2H, ArH) ppm. 13C{1H}-NMR (100.6 MHz, CDCl3) δ = 24.2 (s, CH2), 26.1 (s, CH2), 52.2 (s, CH2), 55.4 (s, -OCH3), 114.3 (s, ArC), 118.7 (s, ArC), 146.9 (s, ArC), 153.5 (s, ArC) ppm. Spectral data obtained for the compound are in good agreement with the reported.7

4-(4-(methoxy-butyl)phenyl)morpholine, 3eh

Yield: 1.50 g (7.77 mmol; 98%) obtained as a white solid. 1H NMR (400 MHz, CDCl3) δ = 3.00 – 3.12 (m, 4H, CH2, Morph), 3.77 (s, 3H, -OCH3), 3.82 – 3.91 (m, 4H, CH2, Morph), 6.83 – 6.92 (m, 4H, ArH) ppm. 13C{1H}-NMR (100.6 MHz, CDCl3) δ = 50.9 (s, CH2), 55.6 (s, -OCH3), 67.1 (s, CH2), 114.6 (s, ArC), 117.9 (s, ArC), 145.7 (s, ArC), 154.1 (s, ArC) ppm. Spectral data obtained for the compound are in good agreement with the reported.7

4-(4-(tert-butyl)phenyl)piperidine, 3ff

Yield: 1.64 g (7.52 mmol; 94%) obtained as a pale-yellow solid. 1H NMR (400 MHz, CDCl3) δ = 1.43 (s, 9H, CH3, tBu), 1.63 – 1.74 (m, 2H, CH2, Pip), 1.76 – 1.89 (m, 4H, CH2, Pip), 3.17 – 3.30 (m, 4H, CH2, Pip), 7.01 (d, 3JHH = 8.9 Hz, 2H, ArH), 7.39 (d, 3JHH = 8.9 Hz, 2H, ArH) ppm. 13C{1H}-NMR (100.6 MHz, CDCl3) δ = 24.4 (s, CH2), 26.1 (s, CH2), 31.6 (s, CH3, tBu), 34.0 (s, C, tBu), 51.0 (s, CH2), 116.3 (s, ArC), 125.8 (s, ArC), 141.9 (s, ArC), 150.1 (s, ArC) ppm. Spectral data obtained for the compound are in good agreement with the reported data.9
4-(4-(tert-butyl)phenyl)morpholine, 3fh

Yield: 1.72 g (7.86 mmol; 99%) obtained as a white solid. 1H NMR (400 MHz, CDCl$_3$) δ = 1.31 (s, 9H, CH$_3$, pBu), 3.10 – 3.18 (m, 4H, CH$_2, \text{Morph}$), 3.82 – 3.90 (m, 4H, CH$_2, \text{Morph}$), 6.88 (d, 3J$_{HH}$ = 8.9 Hz, 2H, ArH), 7.32 (d, 3J$_{HH}$ = 8.9 Hz, 2H, ArH) ppm. 13C(1H)-NMR (100.6 MHz, CDCl$_3$) δ = 31.6 (s, CH$_3$, pBu), 34.1 (s, C, pBu), 49.7 (s, CH$_2$), 67.2 (s, CH$_2$), 115.6 (s, ArC), 126.1 (s, ArC), 142.9 (s, ArC), 149.1 (s, ArC) ppm. Spectral data obtained for the compound are in good agreement with the reported data.\(^{10}\)

4-(pyridin-2-yl)piperidine, 3gf

Yield: 1.27 g (7.85 mmol; 99%) obtained as a pale-yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ = 1.57 (s, 6H, CH$_2, \text{Pip}$), 3.46 (s, 4H, CH$_2, \text{Pip}$), 6.43 – 6.51 (m, 1H, ArH), 6.56 (d, 3J$_{HH}$ = 8.6 Hz, 1H, ArH), 7.35 (ddd, J = 8.9, 7.1, 2.0 Hz, 1H, ArH), 8.10 – 8.14 (m, 1H, ArH) ppm. 13C(1H)-NMR (100.6 MHz, CDCl$_3$) δ = 24.7 (s, CH$_2$), 25.5 (s, CH$_2$), 46.2 (s, CH$_2$), 107.0 (s, ArC), 112.3 (s, ArC), 137.2 (s, ArC), 147.9 (s, ArC), 159.7 (s, ArC) ppm. Spectral data obtained for the compound are in good agreement with the reported data.\(^{11}\)

4-(pyridin-2-yl)morpholine, 3gh

Yield: 1.29 g (7.84 mmol; 98%) obtained as a pale-yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ = 3.39 (t, 3J$_{HH}$ = 5.1 Hz, 4H, CH$_2, \text{Morph}$), 3.71 (t, 3J$_{HH}$ = 4.9 Hz, 4H, CH$_2, \text{Morph}$), 6.42 – 6.66 (m, 2H, ArH), 7.39 (ddd, J = 9.0, 7.2, 2.0 Hz, 1H, ArH), 7.99 – 8.21 (m, 1H, ArH) ppm. 13C(1H)-NMR (100.6 MHz, CDCl$_3$) δ = 45.4 (s, CH$_2$), 66.6 (s, CH$_2$), 106.7 (s, ArC), 113.6 (s, ArC), 137.3 (s, ArC), 147.8 (s, ArC), 159.4 (s, ArC) ppm. Spectral data obtained for the compound are in good agreement with the reported data.\(^{11}\)

1-(3,5-dimethoxyphenyl)piperidine, 3hf

Yield: 1.73 g (7.83 mmol; 98%) obtained as a pale-yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ = 1.54 – 1.63 (m, 2H, CH$_2, \text{Pip}$), 1.66 – 1.76 (m, 4H, CH$_2, \text{Pip}$), 3.12 – 3.21 (m, 4H, CH$_2, \text{Pip}$), 3.78 (s, 6H, -OCH$_3$), 6.01 (t, J = 2.1 Hz, 1H, ArH), 6.13 (d, J = 2.2 Hz, 2H, ArH) ppm. 13C(1H)-NMR (100.6 MHz, CDCl$_3$) δ = 24.3 (s, CH$_2$), 25.7 (s, CH$_2$), 50.5 (s, CH$_2$), 55.0 (s, -OCH$_3$), 91.1 (s, ArC), 95.2 (s, ArC), 154.0 (s, ArC), 161.3 (s, ArC) ppm. Spectral data obtained for the compound are in good agreement with the reported data.\(^{12}\)

4-(3,5-dimethoxyphenyl)morpholine, 3hh

Yield: 1.75 g (7.84 mmol; 98%) obtained as a pale-yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ = 3.10 – 3.19 (m, 4H, CH$_2, \text{Morph}$), 3.77 (s, 6H, -OCH$_3$), 3.81 – 3.89 (m, 4H, CH$_2, \text{Morph}$), 6.04 (t, J = 2.1 Hz, 1H, ArH), 6.08 (d, J = 2.1 Hz, 2H, ArH) ppm. 13C(1H)-NMR (100.6 MHz, CDCl$_3$) δ = 49.4 (s, CH$_2$), 55.3 (s, -OCH$_3$), 67.0 (s, CH$_2$), 91.9 (s, ArC), 94.8 (s, ArC), 153.4 (s, ArC), 161.6 (s, ArC) ppm. Spectral data obtained for the compound are in good agreement with the reported data.\(^{13}\)
1.6 General procedure for the coupling of aryl iodides and bromides (Scheme 4)

1.6.1 General Procedure for Catalysis

A 5 ml vial with a rubber cap and a stirring bar was charged in a glovebox with 189 mg (1.69 mmol, 2 eq.) of potassium tert-butoxide and 143 mg (0.85 mmol, 1 eq.) of 1,3,5-trimethoxybenzene (internal standard). The vial was taken outside of the glovebox and 3 ml of tetrahydrofurane, 0.85 mmol (1 eq.) of an aryl halide and 0.94 mmol (1.1 eq.) of the amine were added via syringe. A second vial was charged with 3.7 mg (0.5 mol%) of P$_{3}$Ph$_{2}$. The catalyst was dissolved in 0.5 ml of THF and stirred for 30 minutes. The catalyst solution was added to the reaction mixture and stirred at room temperature. For reaction monitoring, small aliquotes of the reaction mixture were quenched with 0.2 ml of water and the organic phase was extracted. The solution was filtered through a pipette, the solvent was allowed to evaporate, and the residue was dissolved in CDCl$_{3}$ for recording an 1H NMR spectrum. The conversion was determined by integration of the product peaks in comparison to 1,3,5-trimethoxybenzene as internal standard.

Results

Aryl Halide	Amine	Product	Time [h]	Conversion [%]
![Aryl Halide](image1.png)	![Amine](image2.png)	![Product](image3.png)	1	>99
![Aryl Halide](image4.png)	![Amine](image2.png)	![Product](image5.png)	1	>99
![Aryl Halide](image6.png)	![Amine](image7.png)	![Product](image8.png)	1	>99
![Aryl Halide](image9.png)	![Amine](image10.png)	![Product](image11.png)	1	>99
![Aryl Halide](image12.png)	![Amine](image13.png)	![Product](image14.png)	1	96
![Aryl Halide](image15.png)	![Amine](image16.png)	![Product](image17.png)	3	99
1.6.2 General Procedure for Isolations

4.3 mmol (0.5 mL, 1 eq.) of an iodohalide, 4.7 mmol (1.1 eq.) of the corresponding amine as well as 8.5 mmol (954 mg, 2.0 eq.) potassium tert-butoxide were added into a Schlenk flask and dissolved in 12 ml THF. 21.3 µmol (0.5 mol%) of catalyst dissolved in 3 ml THF were added to the solution and stirred for 2 h. The reaction was quenched by addition of 10 ml water. The phases were separated, and the aqueous phase was washed three times with 10 ml ethyl acetate. The combined organic phases were dried over sodium sulfate. The crude product was purified via column chromatography (12 g silica-packed weld column; 0-30% EtOAc in hexane).

N-benzynaphthalen-1-amine, 3bg

Yield: 0.935 g (4.01 mmol; 94%) obtained as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.83 – 7.69 (m, 2H, ArH), 7.44 – 7.15 (m, 9H, ArH), 6.57 (d, J = 7.4 Hz, 1H, ArH), 4.65 (br s, 1H, NH), 4.43 (s, 2H, CH₂) ppm. ¹³C(¹H) NMR (101 MHz, CDCl₃) δ = 143.3, 139.2, 134.4, 128.9, 128.8, 127.9, 127.6, 126.7, 125.9, 124.9, 123.6, 120.0, 117.9, 105.0, 48.8 ppm. Spectral data obtained for the compound are in good agreement with the reported data. However, in contrast to the literature report 3cg is a solid; m.p. 70.8 °C.
N-Isopropyl-2-methylaniline, 3cd

Yield: 0.467 g (3.13 mmol; 74%) obtained as a yellow oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.12\) (t, \(J = 7.7\) Hz, 1H, ArH), 7.05 (d, \(J = 7.3\) Hz, 1H, ArH), 6.70 – 6.58 (m, 2H, ArH), 3.68 (hept, \(J = 6.3\) Hz, 1H, C\(\text{H}\)), 3.31 (br s, 1H, NH), 2.12 (s, 3H, ArCH\(_3\)), 1.25 (d, \(J = 6.3\) Hz, 6H, NHCH\(_3\)) ppm. \(^{13}\)C{\(^1\)H} NMR (101 MHz, CDCl\(_3\)) \(\delta = 145.5, 130.3, 127.2, 121.8, 116.5, 110.4, 44.1, 23.3, 17.7\) ppm. Spectral data obtained for the compound are in good agreement with the reported data.\(^{15}\)

N-benzyl-2-methylbenzeneamine, 3cg

Yield: 0.903 g (4.58 mmol; 97%) obtained as a light off-white solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.45 – 7.33\) (m, 4H, ArH), 7.32 – 7.27 (m, 1H, ArH), 7.16 – 7.06 (m, 2H, ArH), 6.69 (td, \(J = 7.4\) Hz, 1.2 Hz, 1H, ArH), 6.63 (d, \(J = 8.0\) Hz, 1H, ArH), 4.39 (s, 2H, CH\(_2\)), 3.90 (br s, 1H, NH), 2.18 (s, 3H, CH\(_3\)) ppm. \(^{13}\)C{\(^1\)H} NMR (101 MHz, CDCl\(_3\)) \(\delta = 146.2, 139.6, 130.2, 128.8, 127.7, 127.4, 122.1, 117.3, 110.1, 48.4, 17.7\) ppm. Spectral data obtained for the compound are in good agreement with the reported data.\(^{16}\) However, in contrast to the literature report 3cg is a solid; m.p. 61.2 °C.

1.7 Kinetic studies

Procedure:

A 100 ml Schlenk round-bottom flask with a stirring bar was charged in a glovebox with 2 equivalents of potassium tert-butoxide and 1 equivalent of 1,3,5-trimethoxybenzene. The flask was taken outside of the glovebox and 4-chlorotoluene and piperidine were added and filled up to a volume of 24.5 mL (E1) or 25.0 mL (E2) with THF via syringe. A second vial was charged with the appropriate amount of precatalyst. The catalyst was dissolved in 0.5 ml (E1) or 5.0 ml (E2) of THF, stirred for 30 minutes. The catalyst solution was added to the reaction mixture and stirred at room temperature. For reaction monitoring, small aliquotes of the reaction mixture were taken every minute and worked up according to 1.4.1.

Experiment 1 (E1)	Experiment 2 (E2)
1.00 mmol / 118 µL 4-chlorotoluene	10.0 mmol / 1.18 mL 4-chlorotoluene
1.00 mmol / 100 µL piperidine	10.0 mmol / 1.00 mL piperidine
0.5 mol% cat in THF	0.5 mol% cat in THF
Total volume: 25 mL	Total volume: 30 mL

Experiment 3 (E3)	Experiment 4 (E4)
2.00 mmol / 236 µL 4-chlorotoluene	1.00 mmol / 118 µL 4-chlorotoluene
1.00 mmol / 100 µL piperidine	2.00 mmol / 200 µL piperidine
0.5 mol% cat in THF	0.5 mol% cat in THF
Total volume: 25 mL	Total volume: 25 mL
Results

Table S1. Results of the kinetic studies for the amination of \(p \)-chlorotoluene with piperidine with 0.5 mol\% \(\text{P} \text{ind}_2 \) at different concentrations.

Time [min]	\([\text{ArCl}]:[\text{amine}] = 1:1; 0.04 \text{ M (E1)}\)	\([\text{ArCl}]:[\text{amine}] = 1:1; 0.33 \text{ M (E2)}\)	\([\text{ArCl}]:[\text{amine}] = 2:1; 0.04 \text{ M (E3)}\)	\([\text{ArCl}]:[\text{amine}] = 1:2; 0.04 \text{ M (E4)}\)
0	0	0	0	0
0.17	0	10	0	0
1	8	100	14	8
2	18	100	36	17
3	29	100	58	27
4	40	100	80	38
5	54	100	94	47
6	66	100	100	55
7	75	100	100	63
8	85	100	100	71
9	93	100	100	81
10	99	100	100	86
11	100	100	100	93
12	100	100	100	99
13	100	100	100	100
14	100	100	100	100
15	100	100	100	100
16	100	100	100	100

Figure S1. Conversion-time plots for the amination of \(p \)-chlorotoluene with piperidine with \(\text{P} \text{ind}_2 \) as catalyst at different concentrations and amine:ArCl ratios. Conditions: 0.5 mol\% \(\text{P} \text{ind}_2 \), room temperature, THF. Conversion was determined by NMR spectroscopy with 1,3,5-methoxybenzene as standard.
Supporting Information

Figure S2. Determination of the initial reaction rate for the amination of p-chlorotoluene with piperidine with P$_{ind}$ as catalyst. Conditions: 0.5 mol% P$_{ind}$, RT, equiv. ArCl:amine:base = 1:1:2, THF, 0.04 mol/L. Conversion was determined by NMR spectroscopy with 1,3,5-methoxybenzene as standard.

Figure S3. Variable time normalization analysis with (top) excess ArCl and (bottom) excess analysis. Analysis gives an overlay of the two reaction profiles with a reaction order of 0.75 and -0.2, respectively.
2. **NMR spectra**

2.1 **NMR spectra of the ligand and palladium complexes**

2.1.1 **NMR spectra of L2**

Figure S4. 31P(1H) NMR spectrum of L2.

Figure S5. 1H NMR spectrum of L2.
Figure S6. 13C(1H) NMR spectrum of L2.

2.1.2 NMR spectra of L2·AuCl

Figure S7. 31P(1H) NMR spectrum of L2·AuCl.
Figure S8. 1H NMR spectrum of L2·AuCl.

Figure S9. 13C(1H) NMR spectrum of L2·AuCl.
2.1.3 NMR spectra of \(\text{P_{al1}} \)

Figure S10. \(^{31}\text{P}(^1\text{H}) \) NMR spectrum of \(\text{P_{al1}} \). The Signals at 22 and 35 ppm correspond to the free ligand.
Figure S11. 1H NMR spectrum of $P_{\text{al}1}$.

Parameter	Value
1 Title | IR-ESMR-69_1200_2200_12.5M
2 Solvent | CDCl3
3 Temperature | 298.0
4 Experiment | 10
5 Number of Scans | 8/32
6 Acquisition Date | 2019-05-05T01:46:44
7 Spectrometer Frequency | 400.13
8 Nucleus | 1H

Figure S12. 13C (1H) NMR spectrum of $P_{\text{al}1}$.

2.1.4 NMR spectra of $P_{\text{al}2}$

Parameter	Value
1 Title | SI-100_6,12201.10-Rg
2 Solvent | CDCl3
3 Temperature | 298.0
4 Experiment | 10
5 Number of Scans | 128
6 Acquisition Date | 2019-05-22T18:04:13
7 Spectrometer Frequency | 100.61
8 Nucleus | 13C
Figure S13. 31P{1H} NMR spectrum of \(\text{Pa}_2 \).

Figure S14. \(^1\)H NMR spectrum of \(\text{Pa}_2 \).
Figure S15. 13C(1H) NMR spectrum of P$_{al2}$.

2.1.5 NMR spectra of P$_{al3}$

Figure S16. 31P(1H) NMR spectrum of P$_{al3}$.
Figure S17. 1H NMR spectrum of Pal$_3$.

Figure S18. 13C (1H) NMR spectrum of Pal$_3$.

2.1.6 NMR spectra of Pal$_1$
Figure S19. $^{31}P(\text{H})$ NMR spectrum of reaction mixture of the formation of $P_{\text{cin}1}$. Signals at 1.0 and 30.6 ppm belong to unconsumed ligand $L1$.

Figure S20. 1H NMR spectrum of reaction mixture of the formation of $P_{\text{cin}1}$. Signals at 1.0 and 30.6 ppm belong to unconsumed ligand $L1$.

Parameter	Value
Title	IR-DHPF-C1_15min_THF-d8.11 AM
Solvent	THF
Temperature	298.0
Experiment	1D
Number of Scans	16
Acquisition Date	2018-05-03T17:15:18
Spectrometer Frequency	400.33
Nucleus	1H
2.1.7 NMR spectra of P_{cin2}

Figure S21. $^{31}P\{^1H\}$ NMR spectrum of P_{cin2}.

Figure S22. $^{31}P\{^1H\}$ NMR spectrum of P_{cin2}.
Supporting Information

Figure S23. 13C(1H) NMR spectrum of Pcin2.

2.1.8 NMR spectra of Pcin3

Figure S24. 31P(1H) NMR spectrum of Pcin3 at 320 K.
Figure S25. 1H NMR spectrum of $P_{\text{cm}3}$ at 320 K.

Figure S26. 13C (1H) NMR spectrum (APT) of $P_{\text{cm}3}$ at 320 K.
2.1.9 NMR spectra of \(\text{Pind}1 \)

Figure S27. \(^{31}\text{P}\{\text{H}\} \) NMR spectrum of \(\text{Pind}1 \).

Figure S28. \(^{1}\text{H} \) NMR spectrum of \(\text{Pind}1 \).
2.1.10 NMR spectra of P_{ind2}

Figure S29. 31P{1H} NMR spectrum of P_{ind2}.

Figure S30. 1H NMR spectrum of P_{ind2}.
Figure S31. 13C(1H) NMR spectrum of P_{ind2}.
2.2 NMR spectra of the isolated products

3aa, N,4-dimethyl-N-phenylaniline

Figure S32. 1H NMR spectrum of 3aa.

Figure S33. 13C(1H) NMR spectrum of 3aa.
3ab, N-butyl-4-methylaniline

Figure S34. 1H NMR spectrum of 3ab.

Figure S35. 13C(1H) NMR spectrum of 3ab.
3ac, N-tert-butyl-4-methylaniline

Figure S36. 1H NMR spectrum of 3ac.

Figure S37. 13C(1H) NMR spectrum of 3ac.
3ad, *N*-iso-propyl-4-methylaniline

Figure S38. 1H NMR spectrum of 3ad.

Figure S39. 13C(1H) NMR spectrum of 3ad.
3ae, *N,N*-diethyl-4-methylaniline

Figure S40. 1H NMR spectrum of 3ae.

Figure S41. 13C(1H) NMR spectrum of 3ae.
3af, 1-(p-tolyl)piperidine

Figure S42. 13C(1H) NMR spectrum of 3af.

Figure S43. 13C(1H) NMR spectrum of 3af.
3ag, N-benzyl-4-methylaniline

Figure S44. 1H NMR spectrum of 3ag.

Figure S45. 13C(1H) NMR spectrum of 3ag.
N-benzynaphthalen-1-amine, 3bg

![NMR spectra](image)

Figure S46. 1H NMR spectrum of 3bg.

Figure S47. 13C(1H) NMR spectrum of 3bg.
N-Isopropyl-2-methylaniline, 3cd

Figure S48. 1H NMR spectrum of 3cd.

Figure S49. 13C(1H) NMR spectrum of 3cd.
N-benzyl-2-methylbenzeneamine, 3cg

Figure S50. 1H NMR spectrum of 3cg.

Figure S51. 13C(1H) NMR spectrum of 3cg.
3ef, 1-(4-methoxyphenyl)piperidine

Figure S52. 1H NMR spectrum of 3ef.

Figure S53. 13C(1H) NMR spectrum of 3ef.
3eh, 4-(4-methoxyphenyl)morpholine

Figure S54. ¹H NMR spectrum of 3eh.

Figure S55. ¹³C(¹H) NMR spectrum of 3eh.
3ff, 1-(4-tert-butylphenyl)piperidine

Figure S56. 1H NMR spectrum of 3ff.

Figure S57. 13C(1H) NMR spectrum of 3ff.
3fh, 4-(4-(tert-butyl)phenyl)morpholine

Figure S58. 1H NMR spectrum of 3fh.

Figure S59. 13C(1H) NMR spectrum of 3fh.
3gf, 2-(piperidin-1-yl)pyridine

Figure S60. 1H NMR spectrum of 3gf.

Figure S61. 13C(1H) NMR spectrum of 3gf.
3gh, 4-(pyridin-2-yl)morpholine

Figure S62. 1H NMR spectrum of 3gh.

Figure S63. 13C(1H) NMR spectrum of 3gh.
3hf, 1-(3,5-dimethoxyphenyl)piperidine

Parameter	Value
1. Title	J7-072A_4202018.11.5d
2. Solvent	CDCl3
3. Temperature	298.1
4. Experiment	1D
5. Number of Scans	16
6. Acquisition Date	2019-09-03T07:37:19
7. Spectrometer Frequency	100.57
8. Nucleus	13C

Figure S64. 1H NMR spectrum of 3hf.

Figure S65. 13C(1H) NMR spectrum of 3hf.
3hh, 4-(3,5-dimethoxyphenyl)morpholine

Figure S66. 1H NMR spectrum of 3hh.

Figure S67. 13C(1H) NMR spectrum of 3hh.
3. Crystal Structure Determination

3.1 General information

Data collection of all compounds was conducted with an Oxford SuperNova diffractometer. The structures were solved using direct methods, refined with the Shelx software package and expanded using Fourier techniques. The crystals of all compounds were mounted in an inert oil (perfluoropolyalkylether). Crystal structure determinations were affected at 100 K. Crystallographic data (including structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1952269-1952275 and 1978563. Copies of the data can be obtained free of charge on application to Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; [fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk].

Details on the structure solutions

\(\text{P}_{\text{al3}} \) contained a disordered allyl group with an occupancy of 0.95:0.05. It was modelled by using RIGU and SADI restraints.

\((\mu\text{-allyl})(\mu\text{-Cl})\text{Pd}(L2)_2\) contained three disordered allyl groups with occupancies of 0.62:0.38, 0.50:0.50 and 0.44:0.56. The structure contained a highly disordered free pentane molecule that was treated by using the PLATON/SQUEZZE routine. Additionally, it was a merohedral twin with an occupancy of 0.61:0.39.

Table S2. Data collection and structure refinement details for the compounds \(\text{L2}, \text{L2-AuCl} \) and \(\text{P}_{\text{al1}} \).

Compound	\(\text{L2} \)	\(\text{L2-AuCl} \)	\(\text{P}_{\text{al1}} \)
CCDC No.	1952269	1952270	1952271
Formula	\(\text{C}_{37}\text{H}_{60}\text{P}_2 \)	\(\text{C}_{39}\text{H}_{64}\text{AuCl}_5\text{P}_2 \)	\(\text{C}_{35}\text{H}_{63}\text{ClP}_2\text{Pd} \)
Formula weight	566.79	969.05	687.64
Temperature	100.05(10)	99.90(14)	100.00(14)
Wave length	1.54184	1.54184	1.54184
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	\(\text{P}_2_1/n \)	\(\text{P}_2_1 \)	\(\text{P}_2_1/n \)
\(a \) [Å]	13.1189(4)	10.43643(13)	10.6583(2)
\(b \) [Å]	17.2309(9)	16.0519(2)	15.2493(3)
\(c \) [Å]	14.9442(6)	12.59762(19)	21.5766(4)
\(\alpha \) [°]	90	90	90
\(\beta \) [°]	98.531(3)	98.4531(13)	100.5571(19)
\(\gamma \) [°]	90	90	90
Volume [Å³]	3340.8(2)	2087.48(5)	3447.53(11)
\(Z \)	4	2	4
Calc. density	1.127	1.542	1.325
\(\mu \) [mm⁻¹]	1.332	10.482	6.078
\(F(000) \)	1248	984	1464
Table S3. Data collection and structure refinement details for the compounds P\textsubscript{al3} and P\textsubscript{cin2}.

Compound	P\textsubscript{al3}	P\textsubscript{cin2}
CCDC No.	1952272	1952273
Formula	C\textsubscript{31}H\textsubscript{59}ClP\textsubscript{2}Pd	C\textsubscript{368}H\textsubscript{552}Cl\textsubscript{8}P\textsubscript{16}Pd\textsubscript{8}
Formula weight [g·mol-1]	635.57	6606.38
Temperature [K]	100.00(14)	100(2)
Wave length [Å]	1.54184	1.54184
Crystal system	Monoclinic	Orthorhombic
Space group	P2\textsubscript{1}/n	Pbca
a [Å]	9.87310(13)	10.4368(4)
b [Å]	13.48921(19)	19.9071(7)
c [Å]	23.5503(3)	39.2909(16)
α [°]	90	90
β [°]	91.5609(13)	90
γ [°]	90	90
Volume [Å3]	3135.27(7)	8163.3(5)
Z	4	1
Calc. density [Mg·m-3]	1.346	1.344
μ [mm-1]	6.637	5.231
F(000)	1352	3504
Crystal dimensions [mm]	0.147 x 0.039 x 0.026	0.048 x 0.047 x 0.040
Theta range [°]	3.755 to 72.119	2.249 to 74.998
Index ranges	–12 ≤ h ≤ 11	–12 ≤ h ≤ 12
	–16 ≤ k ≤ 16	–20 ≤ k ≤ 24
Reflections collected 35778 33504
Independent reflections 6176 \([R_{int} = 0.0420]\) 8188 \([R_{int} = 0.0696]\)
Data/Restraints/Parameter 6176 / 53 / 536 8188 / 0 / 451
Goodness-of-fit on \(F^2\) 1.012 1.058
Final \(R\) indices \([I>2\sigma(I)]\) \(R_1 = 0.0219, \ wR_2 = 0.0501\) \(R_1 = 0.0538, wR_2 = 0.1354\)
\(R\) indices (all data) \(R_1 = 0.0281, \ wR_2 = 0.0528\) \(R_1 = 0.0775, wR_2 = 0.1486\)
Largest diff. peak and hole 0.364 and -0.498 1.319 and -1.664

Table S4. Data collection and structure refinement details for the compounds \(P_{\text{cin}3}\) and \(P_{\text{ind}1}\).

Compound	\(P_{\text{cin}3}\)	\(P_{\text{ind}1}\)	\((\mu\text{-allyl})(\mu\text{-Cl})\text{Pd}_2(L2)_2\)
CCDC No.	1952274	1952275	1978563
Formula	\(\text{C}_{37}\text{H}_{63}\text{ClPd}_2\)	\(\text{C}_{53}\text{H}_{89}\text{ClO}_2\text{Pd}_2\)	\(\text{C}_{492}\text{H}_{822}\text{ClPd}_2\)
Formula weight [g·mol\(^{-1}\)]	711.66	962.03	8970.23
Temperature [K]	100(2)	100 (2)	100 (2)
Wave length [Å]	1.54184	1.54184	1.54184
Crystal system	Triclinic	Triclinic	Triclinic
Space group	\(P\overline{1}\)	\(P\overline{1}\)	\(P\overline{1}\)
\(a\) [Å]	11.7098(4)	10.6066(7)	23.3437(4)
\(b\) [Å]	12.0381(5)	15.4445(8)	23.8482(4)
\(c\) [Å]	14.5289(3)	16.6483(10)	25.8949(2)
\(\alpha\) [°]	78.495(3)	84.749(5)	94.4720(1)
\(\beta\) [°]	82.349(2)	71.902(5)	95.4370(10)
\(\gamma\) [°]	65.088(4)	73.666(5)	118.847(2)
Volume [Å\(^3\)]	1817.39(12)	2487.6(3)	12443.1(4)
\(Z\)	2	2	1
Calc. density [Mg·m\(^{-3}\)]	1.300	1.284	1.197
\(\mu\) [mm\(^{-1}\)]	5.785	4.363	4.804
\(F(000)\)	756	1032	4788
Crystal dimensions [mm]	0.073 x 0.054 x 0.024	0.123 x 0.021 x 0.013	0.106 x 0.085 x 0.044
Theta range [°]	3.109 to 77.484	2.792 to 67.183	2.552 to 77.502
Index ranges	\(-14 \leq h \leq 14\)	\(-12 \leq h \leq 12\)	\(-29 \leq h \leq 26\)
	\(-13 \leq k \leq 15\)	\(-18 \leq k \leq 14\)	\(-30 \leq k \leq 30\)
	\(-18 \leq l \leq 18\)	\(-19 \leq l \leq 19\)	\(-32 \leq l \leq 32\)
Reflections collected	7299	31897	84855
Independent reflections	7299 \([R_{int} = 0.0590]\)	8795 \([R_{int} = 0.1473]\)	8795 \([R_{int} = ?]\)
Data/Restraints/Parameter	7299 / 0 / 377	8795 / 0 / 536	84855 / 0 / 2300
3.2 Crystal structures

3.2.1 Crystal Structure Determination of L2

![ORTEP Plot of L2](image)

Figure S68 ORTEP Plot of L2. Ellipsoids are drawn at the 50% probability level.

Table S5 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for L2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	U(eq)		
P(1)	6311(1)	2504(1)	4534(1)	12(1)		
P(2)	8191(1)	2472(1)	3682(1)	14(1)		
C(1)	6816(1)	2399(1)	3547(1)	14(1)		
C(2)	6196(1)	2504(1)	2636(1)	16(1)		
C(3)	6161(1)	1913(1)	1990(1)	23(1)		
C(4)	5646(1)	2006(1)	1115(1)	31(1)		
C(5)	5140(1)	2694(1)	859(1)	33(1)		
C(6)	5154(1)	3285(1)	1487(1)	28(1)		
C(7)	5676(1)	3192(1)	2362(1)	21(1)		
C(8)	6838(1)	1755(1)	5356(1)	15(1)		
C(9)	6711(1)	919(1)	5006(1)	18(1)		
C(10)	7441(1)	390(1)	5623(1)	21(1)		
C(11)	7223(1)	431(1)	6600(1)	23(1)		
	U11	U22	U33	U23	U13	U12
-------	-------	-------	-------	-------	-------	-------
P(1)	12(1)	13(1)	12(1)	0(1)	2(1)	0(1)
P(2)	12(1)	17(1)	13(1)	0(1)	2(1)	0(1)
C(1)	13(1)	17(1)	12(1)	0(1)	2(1)	0(1)
C(2)	13(1)	22(1)	14(1)	2(1)	3(1)	-4(1)
C(3)	21(1)	28(1)	19(1)	-4(1)	2(1)	-3(1)
C(4)	29(1)	44(1)	17(1)	-7(1)	-1(1)	-9(1)
C(5)	27(1)	53(1)	17(1)	5(1)	-6(1)	-8(1)
C(6)	21(1)	36(1)	26(1)	11(1)	-3(1)	-1(1)
C(7)	18(1)	25(1)	20(1)	4(1)	2(1)	-1(1)
C(8)	17(1)	16(1)	13(1)	1(1)	2(1)	0(1)
C(9)	21(1)	15(1)	18(1)	0(1)	1(1)	0(1)
C(10)	22(1)	18(1)	23(1)	2(1)	4(1)	3(1)
C(11)	22(1)	22(1)	24(1)	9(1)	4(1)	4(1)
C(12)	28(1)	26(1)	17(1)	4(1)	3(1)	2(1)

Table S6 Anisotropic displacement parameters ($\text{Å}^2 \times 10^3$) for L2. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [\text{h}^2 a^2 U_{11} + \ldots + 2\text{hka} b \cdot \text{U}^{12}]$.
C(13)	24(1)	19(1)	16(1)	2(1)	6(1)	2(1)
C(14)	17(1)	15(1)	15(1)	2(1)	4(1)	-1(1)
C(15)	16(1)	18(1)	21(1)	-4(1)	2(1)	-2(1)
C(16)	21(1)	22(1)	24(1)	-6(1)	2(1)	-5(1)
C(17)	33(1)	18(1)	33(1)	-6(1)	5(1)	-7(1)
C(18)	31(1)	15(1)	28(1)	-2(1)	3(1)	2(1)
C(19)	23(1)	16(1)	19(1)	-1(1)	3(1)	1(1)
C(20)	13(1)	17(1)	15(1)	2(1)	1(1)	-1(1)
C(21)	16(1)	27(1)	21(1)	-3(1)	5(1)	0(1)
C(22)	16(1)	30(1)	30(1)	2(1)	5(1)	2(1)
C(23)	13(1)	30(1)	40(1)	-2(1)	5(1)	-3(1)
C(24)	18(1)	25(1)	32(1)	-6(1)	-3(1)	-3(1)
C(25)	17(1)	18(1)	27(1)	-4(1)	2(1)	-2(1)
C(26)	15(1)	20(1)	17(1)	-1(1)	3(1)	2(1)
C(27)	15(1)	25(1)	23(1)	0(1)	5(1)	1(1)
C(28)	18(1)	29(1)	26(1)	0(1)	8(1)	4(1)
C(29)	23(1)	25(1)	39(1)	-2(1)	12(1)	7(1)
C(30)	25(1)	21(1)	40(1)	-6(1)	12(1)	1(1)
C(31)	19(1)	20(1)	26(1)	-1(1)	8(1)	2(1)
C(32)	17(1)	17(1)	19(1)	0(1)	6(1)	-1(1)
C(33)	25(1)	22(1)	19(1)	2(1)	6(1)	0(1)
C(34)	33(1)	25(1)	29(1)	9(1)	13(1)	4(1)
C(35)	36(1)	24(1)	44(1)	7(1)	20(1)	-3(1)
C(36)	32(1)	25(1)	41(1)	-4(1)	13(1)	-11(1)
C(37)	23(1)	27(1)	27(1)	-2(1)	4(1)	-9(1)
3.2.2 Crystal Structure Determination of L2·AuCl

Figure S69 ORTEP Plot of L2·AuCl. Ellipsoids are drawn at the 50% probability level.

Table S7 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for L2·AuCl. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	U_{eq}
Au(1)	8242	6923	5164	13
Cl(1)	10057	7146	6443	19
P(1)	8175	5405	2884	11
P(2)	6522	6718	3879	12
C(1)	6760	5976	2905	13
C(2)	5699	5898	1949	15
C(3)	5821	6212	930	18
C(4)	4821	6139	69	22
C(5)	3658	5756	211	24
C(6)	3525	5436	1202	23
C(7)	4526	5510	2067	19
C(8)	7780	4573	1887	14
C(9)	6885	3904	2252	20
C(10)	6385	3328	1315	27
C(11)	7500	2912	871	28
C(12)	8442	3563	544	26
C(13)	8938	4144	1481	20
C(14)	8848	4980	4205	15
Table S8 Anisotropic displacement parameters (Å² x 10³) for L₂·AuCl. The anisotropic displacement factor exponent takes the form: –2π² [h²a²U₁₁ + ... + 2 h k a b U₁₂].

	U¹¹	U²²	U³³	U¹²	U¹³	U²³
Au(1)	12(1)	15(1)	12(1)	-1(1)	1(1)	0(1)
Cl(1)	16(1)	23(1)	16(1)	-2(1)	-5(1)	-2(1)
C(3)	17(2)	19(2)	15(2)	-3(2)	-2(2)	3(2)
C(4)	21(2)	23(2)	19(2)	-3(2)	-4(2)	4(2)
C(5)	17(2)	26(2)	26(2)	-6(2)	-7(2)	6(2)
C(6)	14(2)	27(3)	27(2)	-4(2)	-1(2)	-2(2)
C(7)	14(2)	22(2)	20(2)	-1(2)	1(2)	-1(2)
C(8)	16(2)	14(2)	13(2)	-3(2)	1(2)	-1(2)
C(9)	24(2)	18(2)	19(2)	-2(2)	4(2)	-9(2)
C(10)	31(3)	23(3)	27(2)	-7(2)	1(2)	-14(2)
C(11)	41(3)	19(2)	25(2)	-9(2)	2(2)	-7(2)
C(12)	34(3)	23(3)	22(2)	-4(2)	1(2)	3(2)
C(13)	14(2)	15(2)	15(2)	2(2)	2(2)	3(2)
C(14)	16(2)	24(2)	19(2)	6(2)	6(2)	4(2)
C(15)	15(2)	30(3)	26(2)	10(2)	-2(2)	1(2)
C(16)	22(2)	30(3)	20(2)	10(2)	3(2)	2(2)
C(17)	27(2)	26(3)	17(2)	6(2)	9(2)	8(2)
C(18)	17(2)	27(3)	21(2)	11(2)	4(2)	3(2)
C(19)	12(2)	13(2)	16(2)	3(2)	3(2)	0(2)
C(20)	15(2)	13(2)	18(2)	-1(2)	1(2)	-2(2)
C(21)	13(2)	23(2)	15(2)	-2(2)	3(1)	-3(2)
C(22)	18(2)	21(2)	20(2)	4(2)	4(2)	-6(2)
C(23)	17(2)	23(3)	17(2)	4(2)	5(1)	-1(2)
C(24)	13(2)	17(2)	15(2)	2(2)	3(2)	-2(2)
C(25)	13(2)	18(2)	16(2)	-1(2)	4(2)	-1(2)
C(26)	16(2)	25(2)	22(2)	4(2)	5(2)	1(2)
C(27)	21(2)	30(3)	28(2)	8(2)	10(2)	1(2)
C(28)	28(3)	39(3)	25(2)	6(2)	15(2)	6(2)
C(29)	22(2)	33(3)	24(2)	-3(3)	10(2)	5(3)
C(30)	23(2)	27(3)	23(2)	-4(2)	5(2)	-2(2)
C(31)	12(2)	13(2)	20(2)	2(2)	2(2)	-1(2)
C(32)	14(2)	16(2)	22(2)	7(2)	-3(2)	0(2)
C(33)	18(2)	17(2)	31(3)	4(2)	-1(2)	4(2)
C(34)	24(2)	26(3)	29(2)	11(2)	-3(2)	0(2)
C(35)	18(2)	18(2)	23(2)	2(2)	2(2)	-3(2)
C(36)	16(2)	17(2)	18(2)	0(2)	5(2)	2(2)
Cl11	55(1)	62(1)	64(1)	-20(1)	25(1)	-8(1)
Cl21	67(1)	47(1)	59(1)	-4(1)	10(1)	-2(1)
Cl12	78(5)	55(5)	38(4)	-4(3)	9(3)	-33(4)
Cl22	58(1)	38(1)	54(1)	-7(1)	12(1)	7(1)
Cl22	62(1)	68(1)	46(1)	-4(1)	5(1)	14(1)
3.2.3 Crystal Structure Determination of P$_{a1}$

Figure S70 ORTEP Plot of P$_{a1}$. Ellipsoids are drawn at the 50% probability level.

Table S9 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å2 x 10^3) for P$_{a1}$. U(eq) is defined as one third of the trace of the orthogonalized U$_{ij}$ tensor.

	x	y	z	U(eq)
Pd(1)	5024(1)	3575(1)	988(1)	18(1)
Cl(1)	6958(1)	4304(1)	1400(1)	24(1)
P(1)	6439(1)	2095(1)	2645(1)	14(1)
P(2)	5781(1)	2133(1)	1162(1)	15(1)
C(1)	6289(2)	1643(1)	1907(1)	16(1)
C(2)	6709(2)	679(1)	1886(1)	18(1)
C(3)	8085(2)	2385(1)	3042(1)	17(1)
C(4)	8622(2)	3173(1)	2730(1)	19(1)
C(5)	9974(2)	3404(1)	3071(1)	22(1)
C(6)	10870(2)	2621(1)	3082(1)	26(1)
Table S10 Anisotropic displacement parameters (Å² x 10³) for Pₐ1. The anisotropic displacement factor exponent takes the form: -2π² [h²a²U¹¹ + ... + 2hkabU¹²].

	U¹¹	U¹²	U¹³	U¹²	U¹³	U¹²
Pd(1)	18(1)	17(1)	20(1)	1(1)	2(1)	1(1)
Cl(1)	21(1)	19(1)	31(1)	-1(1)	0(1)	-3(1)
P(1)	12(1)	15(1)	14(1)	-2(1)	2(1)	-1(1)
P(2)	14(1)	16(1)	14(1)	0(1)	3(1)	0(1)
C(1)	17(1)	14(1)	15(1)	-1(1)	3(1)	1(1)
C(2)	22(1)	16(1)	17(1)	-2(1)	4(1)	1(1)
C(3)	15(1)	19(1)	16(1)	-1(1)	2(1)	-3(1)
C(4)	18(1)	17(1)	22(1)	0(1)	2(1)	-2(1)
-------	-------	-------	-------	-------	-------	-------
C(5)	17(1)	23(1)	25(1)	1(1)	2(1)	-5(1)
C(6)	15(1)	28(1)	36(1)	4(1)	4(1)	-3(1)
C(7)	17(1)	26(1)	34(1)	9(1)	0(1)	0(1)
C(8)	17(1)	18(1)	26(1)	2(1)	2(1)	0(1)
C(9)	17(1)	17(1)	16(1)	-2(1)	4(1)	-2(1)
C(10)	24(1)	23(1)	16(1)	-2(1)	4(1)	-3(1)
C(11)	26(1)	28(1)	16(1)	1(1)	4(1)	-2(1)
C(12)	28(1)	30(1)	24(1)	6(1)	8(1)	-6(1)
C(13)	24(1)	25(1)	25(1)	2(1)	4(1)	-9(1)
C(14)	20(1)	24(1)	18(1)	1(1)	2(1)	-6(1)
C(15)	17(1)	18(1)	17(1)	-1(1)	3(1)	2(1)
C(16)	21(1)	21(1)	23(1)	-8(1)	2(1)	0(1)
C(17)	27(1)	20(1)	33(1)	-7(1)	8(1)	1(1)
C(18)	26(1)	22(1)	34(1)	-4(1)	10(1)	6(1)
C(19)	19(1)	26(1)	27(1)	0(1)	4(1)	4(1)
C(20)	16(1)	21(1)	21(1)	-2(1)	4(1)	0(1)
C(21)	18(1)	21(1)	18(1)	-1(1)	6(1)	-2(1)
C(22)	19(1)	25(1)	22(1)	0(1)	7(1)	-2(1)
C(23)	19(1)	34(1)	31(1)	1(1)	10(1)	0(1)
C(24)	29(1)	37(1)	37(1)	3(1)	21(1)	-2(1)
C(25)	38(1)	33(1)	24(1)	4(1)	14(1)	-1(1)
C(26)	24(1)	28(1)	22(1)	6(1)	7(1)	0(1)
C(27)	18(1)	20(1)	16(1)	-2(1)	1(1)	-1(1)
C(28)	22(1)	26(1)	16(1)	-4(1)	3(1)	1(1)
C(29)	24(1)	31(1)	20(1)	-8(1)	-2(1)	2(1)
C(30)	21(1)	30(1)	26(1)	-6(1)	-4(1)	-2(1)
C(31)	21(1)	25(1)	28(1)	-2(1)	2(1)	-5(1)
C(32)	19(1)	22(1)	18(1)	-1(1)	2(1)	-3(1)
C(33)	18(1)	30(1)	35(1)	-1(1)	-4(1)	3(1)
C(34)	26(1)	33(1)	38(1)	8(1)	-6(1)	7(1)
C(35)	31(1)	21(1)	47(1)	8(1)	-2(1)	7(1)
3.2.4 Crystal Structure Determination of $P_{a}3$

![ORTEP Plot of $P_{a}3$. Ellipsoids are drawn at the 50% probability level.](image)

Figure S71 ORTEP Plot of $P_{a}3$. Ellipsoids are drawn at the 50% probability level.

Table S11 Atomic coordinates ($x \times 10^4$) and equivalent isotropic displacement parameters ($\text{Å}^2 \times 10^3$) for $P_{a}3$. $U(eq)$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$U(eq)$
Pd(1)	7237(1)	3108(1)	4260(1)	15(1)
Cl(1)	8320(1)	3326(1)	3382(1)	25(1)
P(1)	5570(1)	969(1)	3124(1)	12(1)
P(2)	4959(1)	2790(1)	3920(1)	15(1)
C(1)	4594(2)	1922(1)	3375(1)	16(1)
C(2)	3244(2)	1996(2)	3037(1)	21(1)
C(3)	4619(2)	-216(1)	3135(1)	15(1)
C(4)	3861(2)	-441(1)	3679(1)	19(1)
C(5)	2962(2)	-1358(2)	3588(1)	23(1)
C(6)	3790(2)	-2259(2)	3410(1)	24(1)
C(7)	4577(2)	-2034(1)	2875(1)	22(1)
C(8)	5468(2)	-1115(1)	2957(1)	16(1)
C(9)	5943(2)	1063(1)	2350(1)	14(1)
C(10)	4795(2)	729(1)	1934(1)	18(1)
C(11)	5229(2)	825(1)	1317(1)	19(1)
C(12)	5674(2)	1877(2)	1179(1)	21(1)
C(13)	6820(2)	2198(2)	1585(1)	22(1)
Table S12 Anisotropic displacement parameters (Å$^2 \times 10^3$) for Pd3. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 U^{11} + \ldots + 2hkabU^{12}]$.

	U11	U22	U33	U12	U13	U23
Pd(1)	15(1)	17(1)	13(1)	-1(1)	0(1)	1(1)
Cl(1)	31(1)	28(1)	17(1)	-3(1)	5(1)	-12(1)
P(1)	11(1)	13(1)	12(1)	1(1)	-1(1)	1(1)
P(2)	14(1)	15(1)	14(1)	0(1)	0(1)	3(1)
C(1)	14(1)	18(1)	17(1)	-1(1)	-2(1)	3(1)
C(2)	16(1)	23(1)	24(1)	-2(1)	-5(1)	5(1)
C(3)	14(1)	16(1)	16(1)	1(1)	0(1)	1(1)
C(4)	18(1)	20(1)	20(1)	2(1)	2(1)	1(1)
C(5)	18(1)	22(1)	28(1)	6(1)	4(1)	-3(1)
C(6)	24(1)	18(1)	32(1)	4(1)	2(1)	-4(1)
C(7)	23(1)	18(1)	24(1)	-3(1)	-2(1)	-2(1)
C(8)	15(1)	16(1)	18(1)	-2(1)	1(1)	-1(1)
C(9)	14(1)	17(1)	12(1)	-1(1)	-1(1)	0(1)
C(10)	16(1)	21(1)	16(1)	0(1)	-3(1)	-4(1)
C(11)	20(1)	21(1)	15(1)	-2(1)	-4(1)	-4(1)
C(12)	23(1)	24(1)	14(1)	4(1)	-3(1)	-5(1)
-------	-------	-------	-------	-------	-------	-------
C(13)	22(1)	26(1)	17(1)	2(1)	-3(1)	-10(1)
C(14)	20(1)	21(1)	16(1)	0(1)	-1(1)	-5(1)
C(15)	12(1)	16(1)	16(1)	1(1)	-2(1)	0(1)
C(16)	14(1)	25(1)	18(1)	-1(1)	0(1)	2(1)
C(17)	14(1)	31(1)	26(1)	-1(1)	-2(1)	1(1)
C(18)	18(1)	27(1)	27(1)	-2(1)	-9(1)	4(1)
C(19)	23(1)	25(1)	18(1)	-1(1)	-6(1)	3(1)
C(20)	17(1)	22(1)	15(1)	2(1)	-1(1)	3(1)
C(21)	18(1)	22(1)	20(1)	-2(1)	5(1)	1(1)
C(22)	25(1)	29(1)	24(1)	-7(1)	6(1)	4(1)
C(23)	17(1)	30(1)	28(1)	-2(1)	4(1)	1(1)
C(24)	22(1)	26(1)	19(1)	2(1)	5(1)	0(1)
C(25)	23(1)	16(1)	22(1)	-1(1)	-3(1)	6(1)
C(26)	26(1)	26(1)	36(1)	-2(1)	-7(1)	12(1)
C(27)	31(1)	16(1)	29(1)	-4(1)	-4(1)	4(1)
C(28)	39(1)	19(1)	22(1)	4(1)	-2(1)	6(1)
C(29A)	28(2)	31(3)	10(2)	-8(2)	1(1)	-3(2)
C(30A)	28(2)	26(2)	12(1)	-4(1)	-10(1)	3(2)
C(31A)	13(3)	31(5)	19(2)	-3(3)	-6(2)	0(3)
C(29B)	35(4)	41(5)	10(3)	-8(4)	-2(2)	1(4)
C(30B)	33(3)	34(4)	17(3)	-10(2)	-13(2)	6(3)
C(31B)	20(5)	32(8)	28(4)	2(6)	-9(3)	2(5)
3.2.5 Crystal Structure Determination of P\textsubscript{cin}2

Figure S72 ORTEP Plot of P\textsubscript{cin}2. Ellipsoids are drawn at the 50% probability level.

Table S13 Atomic coordinates (x 10\(^4\)) and equivalent isotropic displacement parameters (Å\(^2\) x 10\(^3\)) for P\textsubscript{cin}2. U(eq) is defined as one third of the trace of the orthogonalized U\(_{ij}\) tensor.

	x	y	z	U(eq)
Pd(1)	5242	6683	6151	31(1)
Cl(1)	6243	5638	6018	42(1)
P(1)	8516	7858	6101	27(1)
P(2)	6712	7006	6561	26(1)
C(1)	8268	7283	6427	27(1)
C(2)	9438	6895	6532	26(1)
C(3)	9734	6272	6391	33(1)
C(4)	10842	5925	6483	39(1)
C(5)	11665	6182	6721	40(1)
C(6)	11390	6793	6871	40(1)
C(7)	10295	7140	6780	36(1)
C(8)	8807	7511	5671	33(1)
C(9)	10117	7174	5614	38(1)
C(10)	10245	6966	5238	47(1)
C(11)	9173	6496	5136	60(2)
C(12)	7860	6805	5199	57(2)
C(13)	7735	7020	5573	42(1)
C(14)	9984	8349	6182	35(1)
C(15)	10039	8756	6515	40(1)
C(16)	11429	8963	6583	52(1)
Table S14: Anisotropic displacement parameters (Å\(^2\) x 10\(^3\)) for Pd(1). The anisotropic displacement factor exponent takes the form: \(-2\pi^2 [h^2 a^2 U_{11} + \ldots + 2h k a b U_{12}]\).

	\(U_{11}\)	\(U_{22}\)	\(U_{33}\)	\(U_{12}\)	\(U_{13}\)
Pd(1)	26(1)	26(1)	42(1)	-1(1)	-6(1)
Cl(1)	43(1)	28(1)	53(1)	-5(1)	-8(1)
P(1)	20(1)	24(1)	37(1)	-1(1)	2(1)
P(2)	20(1)	23(1)	34(1)	-1(1)	1(1)
C(1)	22(2)	25(2)	35(2)	-1(2)	4(2)
C(2)	18(2)	25(2)	36(2)	-1(2)	0(2)
---	---	---	---	---	---
C(3)	34(2)	25(2)	39(2)	-2(2)	0(2)
C(4)	37(3)	32(2)	48(3)	1(2)	5(2)
C(5)	23(2)	44(3)	54(3)	13(2)	1(2)
C(6)	26(2)	49(3)	45(3)	2(2)	-5(2)
C(7)	29(2)	33(2)	45(3)	-1(2)	2(2)
C(8)	25(2)	35(2)	40(2)	2(2)	8(2)
C(9)	31(2)	36(2)	48(3)	3(2)	13(2)
C(10)	44(3)	50(3)	48(3)	1(2)	21(2)
C(11)	56(4)	69(4)	55(3)	-22(3)	16(3)
C(12)	48(3)	70(4)	53(3)	-25(3)	7(3)
C(13)	36(3)	48(3)	42(3)	-12(2)	7(2)
C(14)	22(2)	29(2)	54(3)	7(2)	1(2)
C(15)	29(2)	31(2)	59(3)	-5(2)	6(2)
C(16)	31(3)	37(3)	88(4)	-8(3)	-12(3)
C(17)	34(3)	38(3)	135(6)	8(3)	-14(3)
C(18)	37(3)	39(3)	102(5)	22(3)	8(3)
C(19)	31(3)	32(2)	70(4)	13(2)	4(2)
C(20)	23(2)	27(2)	36(2)	-3(2)	2(2)
C(21)	34(2)	39(2)	37(2)	2(2)	2(2)
C(22)	32(2)	43(3)	37(2)	3(2)	-6(2)
C(23)	38(3)	41(3)	49(3)	7(2)	-10(2)
C(24)	34(2)	29(2)	46(3)	-3(2)	-2(2)
C(25)	28(2)	26(2)	40(2)	-1(2)	6(2)
C(26)	21(2)	19(2)	38(2)	1(2)	0(2)
C(27)	28(2)	33(2)	42(3)	-2(2)	-1(2)
C(28)	38(3)	25(2)	44(3)	3(2)	2(2)
C(29)	43(3)	26(2)	49(3)	6(2)	-2(2)
C(30)	31(2)	32(2)	47(3)	2(2)	-4(2)
C(31)	33(2)	30(2)	39(2)	3(2)	0(2)
C(32)	26(2)	24(2)	39(2)	1(2)	4(2)
C(33)	29(2)	33(2)	40(2)	-6(2)	6(2)
C(34)	33(3)	40(3)	53(3)	-4(2)	11(2)
C(35)	51(3)	35(2)	45(3)	-7(2)	12(2)
C(36)	46(3)	28(2)	44(3)	-5(2)	-2(2)
C(37)	31(2)	24(2)	35(2)	-5(2)	-3(2)
C(38)	34(3)	40(3)	68(4)	-1(2)	-11(2)
C(39)	43(3)	50(3)	71(4)	-5(3)	-22(3)
C(40)	37(3)	62(4)	65(4)	1(3)	-6(3)
C(41)	44(3)	35(2)	58(3)	3(2)	-12(2)
C(42)	54(3)	47(3)	59(3)	9(2)	-9(3)
3.2.6 Crystal Structure Determination of Pcin3

![ORTEP Plot of Pcin3. Elipsoids are drawn at the 50% probability level.](image)

Figure S73 ORTEP Plot of Pcin3. Elipsoids are drawn at the 50% probability level.

Table S15 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for Pcin3. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor:

	x	y	z	U(eq)
Pd(1)	4423(1)	2249(1)	1488(1)	24(1)
Cl(1)	2794(1)	4244(1)	1045(1)	32(1)
P(1)	3281(1)	3943(1)	3857(1)	22(1)
P(2)	5588(1)	2744(1)	2453(1)	21(1)
C(1)	4784(4)	3626(3)	3359(3)	24(1)
C(2)	5407(4)	4315(4)	3743(3)	32(1)
C(3)	3302(4)	3640(3)	5158(3)	26(1)
Table S16 Anisotropic displacement parameters (Å² x 10³) for \(P \text{c}n\overline{3} \). The anisotropic displacement factor exponent takes the form: \(-2\pi² [h²a\cdot U_{11} + \ldots + 2hkab\cdot U_{12}].\)

	\(U_{11} \)	\(U_{22} \)	\(U_{33} \)	\(U_{12} \)	\(U_{13} \)	\(U_{23} \)																																					
Pd(1)	24(1)	22(1)	26(1)	-10(1)	-1(1)	-8(1)																																					
Cl(1)	31(1)	28(1)	34(1)	-5(1)	-5(1)	-7(1)																																					
	P(1)	P(2)	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	C(7)	C(8)	C(9)	C(10)	C(11)	C(12)	C(13)	C(14)	C(15)	C(16)	C(17)	C(18)	C(19)	C(20)	C(21)	C(22)	C(23)	C(24)	C(25)	C(26)	C(27)	C(28)	C(29)	C(30)	C(31)	C(32)	C(33)	C(34)	C(35)	C(36)	C(37)				
---	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------
3.2.7 Crystal Structure Determination of $P_{\text{ind}1}$

Figure S74 ORTEP Plot of $P_{\text{ind}1}$. Ellipsoids are drawn at the 50% probability level.

Table S17 Atomic coordinates ($x \times 10^4$) and equivalent isotropic displacement parameters ($\text{Å}^2 \times 10^3$) for $P_{\text{ind}1}$. $U(\text{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	$U(\text{eq})$
Pd(1)	6583(1)	3304(1)	1921(1)	36(1)
Cl(1)	4502(2)	2959(1)	2073(1)	45(1)
P(1)	7210(2)	667(1)	3000(1)	37(1)
P(2)	8062(2)	1901(1)	1422(1)	34(1)
C(1)	8165(6)	878(4)	2010(4)	33(1)
C(2)	9168(7)	50(4)	1503(5)	42(2)
C(3)	6413(7)	1669(4)	3675(4)	42(2)
C(4)	7476(8)	1995(5)	3934(5)	46(2)
C(5)	6774(9)	2903(5)	4406(5)	58(2)
C(6)	5552(9)	2843(5)	5170(5)	60(2)
C(7)	4518(9)	2502(5)	4911(5)	57(2)
C(8)	5220(7)	1587(5)	4472(5)	47(2)
C(9)	8293(8)	-229(4)	3493(5)	44(2)
C(10)	7625(8)	-472(5)	4405(5)	50(2)
C(11)	8477(8)	-1334(5)	4689(6)	54(2)
C(12)	9940(9)	-1274(5)	4589(6)	60(2)
C(13)	10620(9)	-982(6)	3692(6)	63(2)
C(14)	5761(7)	179(4)	3067(5)	41(2)
C(15)	4610(7)	852(4)	2797(5)	42(2)
C(16)	3404(7)	470(5)	2870(5)	47(2)
C(17)	3895(8)	-387(5)	2336(5)	50(2)
C(18)	5021(8)	-1078(5)	2609(5)	52(2)
C(19)	6242(7)	-692(4)	2543(5)	48(2)
C(20)	7802(6)	1678(4)	415(4)	35(2)
C(21)	7648(7)	2543(4)	-136(4)	39(2)
C(22)	9826(7)	2082(4)	1034(4)	38(2)
C(23)	10415(7)	2046(4)	1768(5)	42(2)
C(24)	11706(7)	2388(5)	1507(5)	46(2)
C(25)	12799(8)	1853(5)	771(5)	55(2)
C(26)	12234(8)	1868(5)	17(5)	52(2)
C(27)	10927(6)	1526(4)	283(5)	42(2)
C(28)	5713(7)	4904(4)	2172(5)	43(2)
C(29)	6833(7)	4469(4)	2480(5)	47(2)
C(30)	8006(7)	4121(4)	1771(5)	43(2)
C(31)	7696(7)	4574(4)	1017(4)	40(2)
C(32)	6268(7)	5040(4)	1262(4)	39(2)
C(33)	5719(8)	5523(4)	645(5)	50(2)
C(34)	6559(9)	5566(5)	-190(5)	56(2)
C(35)	7958(9)	5102(5)	-411(5)	52(2)
C(36)	8525(8)	4598(4)	195(5)	48(2)
C(37)	4298(8)	5378(5)	2735(5)	50(2)
C(38)	4049(10)	5026(6)	3641(6)	65(2)
C(39)	3106(8)	5276(5)	2415(6)	55(2)
C(40)	4201(9)	6401(5)	2730(6)	61(2)
O11	643(8)	5855(5)	5151(5)	89(2)
A18 Anisotropic displacement parameters (Å² x 10³) for \(\text{Pind1} \). The anisotropic displacement factor exponent takes the form: \(-2π^2 [h^2a^2U^{11} + \ldots + 2hkabU^{12}]\).

	\(U^{11}\)	\(U^{22}\)	\(U^{33}\)	\(U^{23}\)	\(U^{13}\)	\(U^{12}\)
Pd(1)	32(1)	32(1)	45(1)	-10(1)	-13(1)	-6(1)
Cl(1)	34(1)	38(1)	64(1)	-8(1)	-14(1)	-10(1)
P(1)	38(1)	38(1)	42(1)	-4(1)	-15(1)	-15(1)
P(2)	30(1)	34(1)	42(1)	-7(1)	-13(1)	-9(1)
C(1)	31(3)	34(3)	34(3)	-1(3)	-8(3)	-9(3)
C(2)	41(4)	37(3)	49(4)	-4(3)	-11(3)	-11(3)
C(3)	48(4)	43(3)	40(4)	-4(3)	-16(3)	-16(3)
C(4)	55(5)	52(4)	42(4)	-3(3)	-13(4)	-30(4)
C(5)	75(6)	55(4)	56(5)	-13(4)	-16(4)	-34(4)
C(6)	80(6)	50(4)	58(5)	-15(4)	-22(5)	-23(4)
C(7)	64(5)	57(4)	49(5)	-18(4)	-7(4)	-22(4)
C(8)	47(4)	48(4)	47(4)	-11(3)	-9(4)	-20(3)
C(9)	54(4)	45(3)	42(4)	0(3)	-21(3)	-23(3)
C(10)	58(5)	46(4)	55(5)	3(3)	-28(4)	-18(4)
C(11)	59(5)	46(4)	66(5)	3(4)	-28(4)	-21(4)
C(12)	63(5)	57(4)	78(6)	10(4)	-41(5)	-22(4)
C(13)	46(5)	64(5)	91(7)	16(5)	-35(5)	-20(4)
C(14)	49(5)	61(4)	56(5)	9(4)	-23(4)	-29(4)
C(15)	42(4)	33(3)	56(4)	-5(3)	-25(3)	-11(3)
C(16)	41(4)	42(3)	47(4)	-4(3)	-12(3)	-16(3)
C(17)	45(4)	48(4)	58(5)	-6(3)	-25(4)	-18(3)
C(18)	47(4)	53(4)	59(5)	-11(4)	-22(4)	-17(3)
C(19)	56(5)	46(4)	67(5)	-5(4)	-26(4)	-23(4)
C(20)	45(4)	38(3)	69(5)	-9(3)	-28(4)	-12(3)
C(21)	29(3)	40(3)	39(4)	-8(3)	-12(3)	-8(3)
C(22)	39(4)	36(3)	43(4)	-9(3)	-15(3)	-6(3)
---	---	---	---	---	---	---
C(23)	42(4)	38(3)	42(4)	-3(3)	-13(3)	-8(3)
C(24)	45(4)	40(3)	50(4)	-7(3)	-22(4)	-5(3)
C(25)	39(4)	36(3)	43(4)	-8(3)	-12(3)	-10(3)
C(26)	33(4)	39(3)	51(4)	-7(3)	-17(3)	-12(3)
C(27)	35(4)	36(3)	41(4)	-6(3)	-11(3)	-8(3)
C(28)	40(4)	40(3)	55(4)	-5(3)	-22(3)	-14(3)
C(29)	33(4)	50(4)	60(5)	-9(3)	-19(4)	-9(3)
C(30)	36(4)	61(4)	73(6)	-8(4)	-22(4)	-12(4)
C(31)	37(4)	60(4)	59(5)	-12(4)	-10(4)	-12(3)
C(32)	25(3)	43(3)	55(4)	-16(3)	-8(3)	-4(3)
C(33)	50(4)	39(3)	46(4)	-4(3)	-18(4)	-16(3)
C(34)	57(5)	27(3)	68(5)	-13(3)	-29(4)	-12(3)
C(35)	37(4)	34(3)	63(5)	-9(3)	-13(3)	-17(3)
C(36)	49(4)	32(3)	48(4)	0(3)	-25(4)	-16(3)
C(37)	45(4)	28(3)	50(4)	-1(3)	-25(3)	-6(3)
C(38)	58(5)	39(3)	58(5)	-9(3)	-23(4)	-11(3)
C(39)	74(6)	53(4)	51(5)	-3(4)	-28(4)	-22(4)
C(40)	63(5)	44(4)	58(5)	0(4)	-22(4)	-23(4)
C(41)	44(4)	42(3)	60(5)	-7(3)	-10(4)	-20(3)
C(42)	54(5)	47(4)	49(5)	-8(3)	-19(4)	-5(3)
C(43)	68(6)	60(5)	57(5)	-9(4)	-14(5)	-5(4)
C(44)	42(4)	47(4)	74(6)	-17(4)	-18(4)	0(3)
C(45)	61(5)	49(4)	72(6)	-24(4)	-25(5)	-3(4)
O11	98(6)	84(4)	89(5)	-13(4)	-35(5)	-18(4)
C11	83(8)	59(5)	102(8)	-2(5)	-38(6)	-10(5)
C21	79(7)	74(6)	87(8)	-7(6)	-27(6)	-1(5)
C31	106(9)	86(6)	67(7)	2(5)	-31(6)	-36(6)
C41	108(9)	71(6)	100(9)	0(6)	-54(7)	-16(6)
O12	105(6)	157(7)	79(5)	-1(5)	-31(5)	-65(6)
C12	63(7)	105(8)	103(9)	-8(7)	-16(6)	-41(6)
C22	168(15)	290(20)	94(10)	-93(13)	51(10)	171(17)
C32	112(9)	97(7)	86(8)	-26(6)	-17(7)	-50(7)
C42	75(7)	97(7)	76(7)	-10(6)	-18(6)	-31(6)
3.2.8 Crystal Structure Determination of (μ-allyl)(μ-Cl)Pd₂(L₂)

Figure S75 ORTEP Plot of (μ-allyl)(μ-Cl)Pd₂(L₂). Ellipsoids are drawn at the 50% probability level.

Table S19 Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for (μ-allyl)(μ-Cl)Pd₂(L₂). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	U(eq)																																																																																																																																																												
Pd(1)	3067(1)	2133(1)	1826(1)	36(1)																																																																																																																																																												
Pd(2)	3998(1)	2087(1)	2444(1)	36(1)																																																																																																																																																												
Cl(1)	3014(1)	1128(1)	2003(1)	56(1)																																																																																																																																																												
P(1)	2147(1)	1160(1)	393(1)	44(1)																																																																																																																																																												
P(2)	2099(1)	1987(1)	1357(1)	36(1)																																																																																																																																																												
P(3)	3802(1)	1179(1)	3738(1)	30(1)																																																																																																																																																												
P(4)	4726(1)	1848(1)	2921(1)	33(1)																																																																																																																																																												
C(1)	1799(4)	1568(4)	699(4)	44(2)																																																																																																																																																												
C(2)	1244(5)	1613(4)	405(4)	51(2)																																																																																																																																																												
C(3)	1325(6)	1920(4)	-43(4)	55(3)																																																																																																																																																												
C(4)	815(6)	1954(5)	-330(5)	76(4)																																																																																																																																																												
C																																																																																																																																																																
--------	---	---	---	---																																																																																																																																																												
C(5)	199(7)	1698(6)	-160(6)	83(4)																																																																																																																																																												
C(6)	97(6)	1393(5)	303(6)	81(4)																																																																																																																																																												
C(7)	620(5)	1347(5)	566(5)	60(3)																																																																																																																																																												
C(8)	3042(5)	1666(5)	309(5)	63(3)																																																																																																																																																												
C(9)	3545(6)	1885(8)	779(6)	82(4)																																																																																																																																																												
C(10)	4237(5)	2214(7)	687(4)	70(3)																																																																																																																																																												
C(11)	4362(5)	2772(8)	389(5)	87(5)																																																																																																																																																												
C(12)	3156(4)	2215(5)	4(4)	54(2)																																																																																																																																																												
C(13)	1734(5)	847(4)	-294(4)	48(2)																																																																																																																																																												
C(14)	1779(6)	400(7)	-1192(5)	76(3)																																																																																																																																																												
C(15)	1030(6)	10(6)	-1304(4)	73(3)																																																																																																																																																												
C(16)	711(5)	313(5)	-973(4)	64(3)																																																																																																																																																												
C(17)	976(5)	405(5)	-389(4)	50(2)																																																																																																																																																												
C(18)	2098(6)	494(5)	730(4)	58(3)																																																																																																																																																												
C(19)	2528(9)	184(7)	588(5)	85(4)																																																																																																																																																												
C(20)	2491(10)	-279(8)	980(5)	100(6)																																																																																																																																																												
C(21)	1779(11)	-784(7)	1036(6)	114(7)																																																																																																																																																												
C(22)	1349(8)	-472(6)	1149(5)	85(4)																																																																																																																																																												
C(23)	1370(7)	-41(5)	736(4)	72(4)																																																																																																																																																												
C(24)	2151(4)	2789(4)	1343(4)	43(2)																																																																																																																																																												
C(25)	2594(4)	3176(4)	964(3)	36(2)																																																																																																																																																												
C(26)	2747(5)	3876(4)	1049(4)	48(2)																																																																																																																																																												
C(27)	2129(5)	3932(4)	989(4)	49(2)																																																																																																																																																												
C(28)	1657(5)	3528(4)	1356(4)	48(2)																																																																																																																																																												
C(29)	1514(5)	2833(4)	1278(4)	48(2)																																																																																																																																																												
C(30)	1462(4)	1619(4)	1799(4)	48(2)																																																																																																																																																												
C(31)	1733(5)	1992(4)	2357(4)	52(2)																																																																																																																																																												
C(32)	1241(6)	1691(5)	2738(5)	64(3)																																																																																																																																																												
C(33)	1040(6)	988(6)	2738(5)	69(3)																																																																																																																																																												
C(34)	770(5)	599(5)	2188(5)	60(3)																																																																																																																																																												
C(35)	1254(4)	906(4)	1815(4)	46(2)																																																																																																																																																												
C(36)	3606(5)	3126(4)	1991(5)	59(3)																																																																																																																																																												
C(37)	4139(10)	3059(7)	2101(13)	48(7)																																																																																																																																																												
C(38)	3986(14)	3093(10)	2380(16)	37(7)																																																																																																																																																												
C(39A)	4542(5)	3072(4)	2526(5)	59(3)																																																																																																																																																												
C(39B)	4549(4)	1467(4)	3503(3)	35(2)																																																																																																																																																												
C(40)	5110(4)	1458(4)	3829(3)	34(2)																																																																																																																																																												
C(41)	5369(4)	1789(4)	4341(4)	41(2)																																																																																																																																																												
C(44)	5869(4)	1762(4)	4641(4)	45(2)																																																																																																																																																												
-------	---------	---------	---------	-------																																																																																																																																																												
C(45)	6160(5)	1420(5)	4436(4)	58(3)																																																																																																																																																												
C(46)	5924(4)	1095(5)	3925(4)	50(2)																																																																																																																																																												
C(47)	5399(4)	1109(4)	3638(3)	38(2)																																																																																																																																																												
C(48)	3834(4)	806(4)	4336(4)	40(2)																																																																																																																																																												
C(49)	3215(5)	568(4)	4605(4)	47(2)																																																																																																																																																												
C(50)	3346(6)	408(5)	5147(4)	57(2)																																																																																																																																																												
C(51)	3568(6)	-96(5)	5117(4)	58(3)																																																																																																																																																												
C(52)	4153(5)	106(5)	4827(4)	53(2)																																																																																																																																																												
C(53)	4009(5)	254(4)	4279(3)	43(2)																																																																																																																																																												
C(54)	3540(4)	1770(4)	3960(3)	34(2)																																																																																																																																																												
C(55)	4011(4)	2287(4)	4411(3)	36(2)																																																																																																																																																												
C(56)	3726(4)	2713(5)	4597(4)	44(2)																																																																																																																																																												
C(57)	3570(5)	3019(4)	4142(4)	49(2)																																																																																																																																																												
C(58)	3127(5)	2523(5)	3694(4)	49(2)																																																																																																																																																												
C(59)	3414(4)	2102(4)	3513(3)	40(2)																																																																																																																																																												
C(60)	3096(4)	596(4)	3246(3)	38(2)																																																																																																																																																												
C(61)	2401(4)	460(5)	3332(4)	50(2)																																																																																																																																																												
C(62)	1879(5)	34(5)	2865(5)	64(3)																																																																																																																																																												
C(63)	1898(6)	-580(5)	2706(4)	72(4)																																																																																																																																																												
C(64)	2579(7)	-449(4)	2634(4)	66(3)																																																																																																																																																												
C(65)	3080(5)	-45(4)	3128(4)	51(2)																																																																																																																																																												
C(66)	4917(4)	1373(4)	2429(3)	40(2)																																																																																																																																																												
C(67)	4352(4)	672(4)	2286(3)	41(2)																																																																																																																																																												
C(68)	4481(5)	291(5)	1858(4)	53(2)																																																																																																																																																												
C(69)	4610(6)	626(5)	1370(4)	60(3)																																																																																																																																																												
C(70)	5185(5)	1315(5)	1506(4)	54(2)																																																																																																																																																												
C(71)	5066(5)	1709(4)	1930(4)	47(2)																																																																																																																																																												
C(72)	5537(4)	2608(4)	3105(3)	36(2)																																																																																																																																																												
C(73)	5528(4)	3056(4)	3551(3)	38(2)																																																																																																																																																												
C(74)	6115(4)	3724(4)	3624(4)	45(2)																																																																																																																																																												
C(75)	6750(4)	3693(4)	3724(4)	48(2)																																																																																																																																																												
C(76)	6790(4)	3255(4)	3285(4)	48(2)																																																																																																																																																												
C(77)	6182(4)	2577(4)	3202(4)	43(2)																																																																																																																																																												
Pd11	4078(1)	7083(1)	2296(1)	42(1)																																																																																																																																																												
Pd21	3153(1)	6175(1)	2735(1)	40(1)																																																																																																																																																												
Cl11	3095(1)	7107(1)	2493(1)	59(1)																																																																																																																																																												
P11	3871(1)	7738(1)	930(1)	35(1)																																																																																																																																																												
P21	4815(1)	7990(1)	1959(1)	38(1)																																																																																																																																																												
P31	2396(1)	6302(1)	4054(1)	31(1)																																																																																																																																																												
-------	-------	-------	-------	-------																																																																																																																																																												
P41	2206(1)	5425(1)	3028(1)	36(1)																																																																																																																																																												
C11	4626(4)	8186(4)	1330(3)	40(2)																																																																																																																																																												
C21	5182(5)	8737(4)	1136(4)	46(2)																																																																																																																																																												
C31	5463(5)	9374(4)	1390(4)	54(2)																																																																																																																																																												
C41	5997(6)	9881(4)	1224(6)	71(3)																																																																																																																																																												
C51	6252(6)	9769(5)	787(6)	72(3)																																																																																																																																																												
C61	5974(5)	9147(5)	527(5)	62(3)																																																																																																																																																												
C71	5455(4)	8643(5)	706(4)	48(2)																																																																																																																																																												
C81	3894(4)	8104(4)	319(3)	40(2)																																																																																																																																																												
C91	4089(5)	8824(4)	363(4)	47(2)																																																																																																																																																												
C101	4225(5)	9067(5)	-157(4)	57(2)																																																																																																																																																												
C111	3630(6)	8685(5)	-582(4)	60(3)																																																																																																																																																												
C121	3395(6)	7960(5)	-623(4)	56(2)																																																																																																																																																												
C131	3272(5)	7714(4)	-98(4)	50(2)																																																																																																																																																												
C141	3606(4)	6889(4)	682(3)	35(2)																																																																																																																																																												
C151	4076(4)	6811(4)	337(4)	40(2)																																																																																																																																																												
C161	3821(5)	6118(4)	112(4)	48(2)																																																																																																																																																												
C171	3678(5)	5679(4)	537(4)	54(2)																																																																																																																																																												
C181	3206(5)	5752(4)	864(4)	53(2)																																																																																																																																																												
C191	3478(5)	6453(4)	1104(4)	43(2)																																																																																																																																																												
C201	3172(4)	7683(4)	1246(4)	42(2)																																																																																																																																																												
C211	2467(5)	7154(5)	1000(4)	52(2)																																																																																																																																																												
C221	1963(6)	7129(7)	1366(5)	72(3)																																																																																																																																																												
C231	2022(7)	7788(7)	1477(6)	86(5)																																																																																																																																																												
C241	2713(7)	8303(6)	1707(5)	75(4)																																																																																																																																																												
C251	3198(5)	8332(5)	1340(4)	53(2)																																																																																																																																																												
C261	5617(5)	7984(4)	1961(4)	46(2)																																																																																																																																																												
C271	6265(5)	8630(5)	1991(4)	53(2)																																																																																																																																																												
C281	6865(4)	8530(5)	2056(4)	52(2)																																																																																																																																																												
C291	6805(5)	8030(5)	1614(5)	57(3)																																																																																																																																																												
C301	6166(5)	7404(5)	1570(5)	57(3)																																																																																																																																																												
C311	5572(5)	7507(4)	1503(4)	47(2)																																																																																																																																																												
C321	5054(5)	8673(5)	2485(4)	47(2)																																																																																																																																																												
C331	5301(5)	8545(5)	3003(4)	53(2)																																																																																																																																																												
C341	5502(5)	9114(5)	3446(4)	55(2)																																																																																																																																																												
C351	4928(5)	9239(5)	3503(4)	53(2)																																																																																																																																																												
C361	4692(5)	9383(5)	2985(4)	54(2)																																																																																																																																																												
C371	4496(4)	8830(4)	2542(4)	43(2)																																																																																																																																																												
C381	4601(5)	6600(5)	2359(5)	55(2)																																																																																																																																																												
C39A1	4232(11)	6281(12)	2710(12)	44(7)																																																																																																																																																												
Symbol	C39B1	C401	C411	C421	C431	C441	C451	C461	C471	C481	C491	C501	C511	C521	C531	C541	C551	C561	C571	C581	C591	C601	C611	C621	C631	C641	C651	C661	C671	C681	C691	C701	C711	C721	C731	C741	C751	C761	C771	Pd12																																																																																																																								
--------	-------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------																																																																																																																								
	4009(17)	6052(17)	2366(17)	68(11)	3683(5)	5698(5)	2720(5)	58(3)	1966(4)	5577(4)	3640(3)	36(2)	1402(4)	5012(4)	3820(4)	41(2)	761(4)	4719(5)	3536(4)	49(2)	242(4)	4193(5)	3691(5)	56(3)	337(5)	3953(5)	4150(6)	67(3)	961(5)	4234(5)	4435(5)	58(3)	1490(4)	4757(4)	4272(4)	43(2)	1960(4)	6251(4)	4625(3)	40(2)	1223(4)	6067(5)	4509(4)	47(2)	902(5)	5884(6)	5007(4)	59(3)	1250(5)	6444(6)	5443(4)	63(3)	2001(5)	6690(6)	5556(4)	54(2)	2309(4)	6843(5)	5053(3)	46(2)	2515(4)	7008(4)	3731(3)	35(2)	1872(4)	7026(4)	3589(4)	42(2)	1974(5)	7540(5)	3243(4)	52(2)	2510(5)	8203(5)	3514(4)	55(2)	3150(5)	8210(5)	3674(4)	53(2)	3052(4)	7680(4)	4018(3)	40(2)	3241(4)	6538(4)	4367(3)	36(2)	3722(4)	6669(5)	3964(3)	41(2)	4430(4)	6913(5)	4224(4)	54(2)	4453(4)	6431(6)	4559(4)	55(3)	3984(4)	6287(5)	4951(4)	47(2)	3268(4)	6039(4)	4699(3)	39(2)	2218(4)	4644(4)	3035(4)	43(2)	1572(5)	4005(4)	2972(4)	49(2)	1700(5)	3432(4)	2922(4)	47(2)	2171(5)	3481(5)	3397(4)	47(2)	2816(5)	4108(5)	3476(4)	50(2)	2683(4)	4681(4)	3515(4)	39(2)	1520(4)	5185(4)	2470(3)	41(2)	1319(4)	5708(4)	2429(4)	44(2)	766(6)	5505(6)	1967(4)	61(3)	937(7)	5317(6)	1460(4)	69(3)	1144(7)	4801(6)	1495(4)	71(4)	1706(5)	5026(5)	1960(4)	51(2)	7924(1)	5986(1)	2542(1)	41(1)
---	---	---	---	---																																																																																																																																																												
Pd22	7956(1)	6923(1)	3183(1)	40(1)																																																																																																																																																												
C12	8940(1)	6899(1)	2997(1)	59(1)																																																																																																																																																												
P12	8782(1)	6094(1)	1231(1)	32(1)																																																																																																																																																												
P22	8091(1)	5223(1)	2064(1)	34(1)																																																																																																																																																												
P32	8902(1)	7618(1)	4667(1)	44(1)																																																																																																																																																												
P42	8178(1)	7859(1)	3710(1)	43(1)																																																																																																																																																												
C12	8468(4)	5368(4)	1482(3)	36(2)																																																																																																																																																												
C22	8461(4)	4810(4)	1171(4)	40(2)																																																																																																																																																												
C32	8113(4)	4548(4)	665(4)	44(2)																																																																																																																																																												
C42	8138(4)	4055(5)	369(4)	53(2)																																																																																																																																																												
C52	8494(5)	3771(5)	578(6)	69(3)																																																																																																																																																												
C62	8829(5)	4014(5)	1088(5)	62(3)																																																																																																																																																												
C72	8824(4)	4528(4)	1367(4)	47(2)																																																																																																																																																												
C82	9416(4)	6759(4)	1718(3)	40(2)																																																																																																																																																												
C92	10044(4)	6691(5)	1833(4)	50(2)																																																																																																																																																												
C102	10469(4)	7108(5)	2333(5)	57(3)																																																																																																																																																												
C112	10657(5)	7798(5)	2308(5)	62(3)																																																																																																																																																												
C122	10077(5)	7908(5)	2149(4)	57(3)																																																																																																																																																												
C132	9628(5)	7457(4)	1644(4)	54(2)																																																																																																																																																												
C142	9139(4)	6041(4)	628(3)	38(2)																																																																																																																																																												
C152	9682(4)	5852(5)	671(4)	47(2)																																																																																																																																																												
C162	9828(5)	5710(5)	128(4)	56(3)																																																																																																																																																												
C172	10051(5)	6296(6)	-165(5)	59(3)																																																																																																																																																												
C182	9534(5)	6512(5)	-193(4)	54(2)																																																																																																																																																												
C192	9382(5)	6646(4)	349(4)	43(2)																																																																																																																																																												
C202	8203(4)	6386(4)	1017(3)	38(2)																																																																																																																																																												
C212	7910(5)	6560(5)	1470(4)	47(2)																																																																																																																																																												
C222	7489(6)	6853(6)	1277(4)	61(3)																																																																																																																																																												
C232	6937(5)	6384(6)	846(5)	66(3)																																																																																																																																																												
C242	7203(5)	6186(5)	392(4)	50(2)																																																																																																																																																												
C252	7645(4)	5901(5)	576(4)	45(2)																																																																																																																																																												
C262	7287(4)	4446(4)	1897(4)	42(2)																																																																																																																																																												
C272	6848(4)	4477(4)	1436(4)	41(2)																																																																																																																																																												
C282	6144(4)	3900(5)	1357(4)	50(2)																																																																																																																																																												
C292	6156(4)	3272(4)	1284(4)	49(2)																																																																																																																																																												
C302	6592(4)	3235(5)	1729(4)	52(2)																																																																																																																																																												
C312	7291(4)	3808(4)	1812(4)	45(2)																																																																																																																																																												
C322	8552(4)	4998(4)	2555(3)	42(2)																																																																																																																																																												
C332	8225(4)	4860(5)	3046(4)	50(2)																																																																																																																																																												
C342	8598(5)	4687(5)	3471(4)	57(3)																																																																																																																																																												
---	---	---	---	---																																																																																																																																																												
C352	9317(5)	5213(5)	3612(4)	55(2)																																																																																																																																																												
C362	9650(5)	5353(5)	3124(4)	53(2)																																																																																																																																																												
C372	9283(4)	5525(4)	2702(4)	40(2)																																																																																																																																																												
C382	6909(5)	5518(5)	2453(5)	59(3)																																																																																																																																																												
C39A	6980(10)	6132(15)	2599(12)	47(8)																																																																																																																																																												
C39B	6944(8)	5908(13)	2868(13)	56(8)																																																																																																																																																												
C402	8579(4)	8057(4)	4386(4)	44(2)																																																																																																																																																												
C412	8596(4)	8611(5)	4709(5)	54(3)																																																																																																																																																												
C422	8236(4)	8518(5)	5139(5)	56(3)																																																																																																																																																												
C432	10065(6)	8476(7)	6405(5)	76(4)																																																																																																																																																												
C452	9877(6)	8874(6)	6083(5)	69(3)																																																																																																																																																												
C462	9772(4)	8650(5)	5497(4)	55(3)																																																																																																																																																												
C472	9312(5)	6753(5)	4701(5)	65(3)																																																																																																																																																												
C482	8312(5)	6753(5)	4701(5)	65(3)																																																																																																																																																												
C492	8047(7)	6320(6)	4202(5)	75(3)																																																																																																																																																												
C502	7626(7)	5593(5)	4273(5)	76(4)																																																																																																																																																												
C512	7064(7)	5523(6)	4564(5)	84(4)																																																																																																																																																												
C522	7286(6)	5946(6)	5077(5)	73(3)																																																																																																																																																												
C532	7751(5)	6663(5)	5003(5)	56(2)																																																																																																																																																												
C542	9557(5)	7610(6)	4343(4)	56(3)																																																																																																																																																												
C552	10155(5)	8274(7)	4375(5)	80(4)																																																																																																																																																												
C562	10599(6)	8265(7)	3974(5)	82(4)																																																																																																																																																												
C572	10788(7)	7727(8)	4079(5)	84(4)																																																																																																																																																												
C582	10223(6)	7090(7)	4081(5)	76(4)																																																																																																																																																												
C612	9774(7)	7105(7)	4459(5)	75(4)																																																																																																																																																												
C622	7386(4)	7889(4)	3705(4)	47(2)																																																																																																																																																												
C632	6935(4)	7430(4)	4052(4)	41(2)																																																																																																																																																												
C642	6240(4)	7339(5)	3937(4)	48(2)																																																																																																																																																												
C652	6260(5)	7984(5)	4033(5)	55(2)																																																																																																																																																												
C702	6734(5)	8466(5)	3706(5)	57(3)																																																																																																																																																												
C712	7424(5)	8548(5)	3827(5)	60(3)																																																																																																																																																												
C722	8630(4)	8529(5)	3317(5)	59(3)																																																																																																																																																												
C732	8261(5)	8374(6)	2775(5)	73(4)																																																																																																																																																												
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}																																																																																																																																																										
-------	--------	--------	--------	--------	--------	--------																																																																																																																																																										
Pd(1)	38(1)	32(1)	35(1)	8(1)	0(1)	16(1)																																																																																																																																																										
Pd(2)	40(1)	31(1)	35(1)	4(1)	-4(1)	17(1)																																																																																																																																																										
Cl(1)	59(1)	28(1)	60(1)	9(1)	-24(1)	12(1)																																																																																																																																																										
P(1)	51(1)	32(1)	41(1)	1(1)	-13(1)	18(1)																																																																																																																																																										
P(2)	36(1)	28(1)	41(1)	7(1)	0(1)	14(1)																																																																																																																																																										
P(3)	36(1)	25(1)	30(1)	4(1)	-2(1)	16(1)																																																																																																																																																										
P(4)	36(1)	28(1)	33(1)	3(1)	0(1)	16(1)																																																																																																																																																										
C(1)	51(5)	34(4)	41(5)	4(3)	-5(4)	20(4)																																																																																																																																																										
C(2)	59(5)	29(4)	54(6)	3(4)	-14(4)	18(4)																																																																																																																																																										
C(3)	76(6)	30(4)	49(6)	0(4)	-15(5)	22(4)																																																																																																																																																										
C(4)	79(8)	46(6)	81(8)	0(5)	-40(7)	25(6)																																																																																																																																																										
C(5)	85(9)	48(6)	103(10)	-2(6)	-47(8)	35(6)																																																																																																																																																										
C(6)	57(6)	40(5)	128(12)	-9(7)	-30(7)	20(5)																																																																																																																																																										
C(7)	48(5)	40(5)	81(8)	1(5)	-16(5)	20(4)																																																																																																																																																										
C(8)	47(5)	36(5)	96(9)	9(5)	-14(5)	17(4)																																																																																																																																																										
C(9)	58(7)	110(11)	78(9)	26(8)	6(6)	40(7)																																																																																																																																																										
C(10)	53(6)	120(11)	42(6)	12(6)	0(5)	48(7)																																																																																																																																																										
C(11)	41(5)	135(13)	65(8)	37(8)	16(5)	22(7)																																																																																																																																																										
C(12)	58(7)	86(9)	85(9)	8(7)	19(6)	26(6)																																																																																																																																																										
C(13)	44(5)	49(5)	66(7)	7(5)	-1(4)	23(4)																																																																																																																																																										
C(14)	58(5)	41(5)	38(5)	6(4)	-3(4)	21(4)																																																																																																																																																										
C(15)	74(7)	73(7)	46(6)	13(5)	3(5)	41(6)																																																																																																																																																										
C(16)	82(8)	88(9)	45(6)	5(6)	5(6)	34(7)																																																																																																																																																										
C(17)	94(8)	66(7)	36(5)	10(5)	2(5)	23(6)																																																																																																																																																										
C(18)	63(6)	50(6)	46(6)	11(5)	-5(5)	5(5)																																																																																																																																																										
C(19)	53(5)	40(5)	40(5)	2(4)	-3(4)	11(4)																																																																																																																																																										
C(20)	88(7)	36(5)	46(5)	-6(4)	-15(5)	33(5)																																																																																																																																																										
C(21)	162(14)	84(9)	49(7)	8(6)	12(7)	93(10)																																																																																																																																																										
C(22)	191(18)	90(11)	56(8)	5(7)	-3(9)	102(12)																																																																																																																																																										
C(23)	220(20)	57(8)	71(9)	3(7)	-29(11)	86(11)																																																																																																																																																										
C(24)	125(11)	48(6)	57(7)	15(5)	-10(7)	26(7)																																																																																																																																																										
C(25)	110(9)	31(5)	46(6)	-1(4)	-24(6)	19(5)																																																																																																																																																										

Table S20 Anisotropic displacement parameters (Å² x 10³) for (μ-allyl)(μ-Cl)Pd₂(L²). The anisotropic displacement factor exponent takes the form: \(-2π²[h²a·U^{11} + ... + 2 h k a·b·U^{12}].\)
C(26)	47(4)	39(4)	42(5)	17(4)	12(4)	19(4)
C(27)	43(4)	33(4)	33(4)	11(3)	1(3)	19(3)
C(28)	54(5)	36(4)	50(5)	5(4)	3(4)	20(4)
C(29)	62(5)	33(4)	55(6)	13(4)	7(4)	26(4)
C(30)	56(5)	42(5)	52(6)	9(4)	5(4)	30(4)
C(31)	53(5)	36(4)	59(6)	17(4)	12(4)	24(4)
C(32)	43(4)	32(4)	68(6)	19(4)	6(4)	18(4)
C(33)	59(5)	34(4)	56(6)	11(4)	17(5)	14(4)
C(34)	77(7)	53(6)	68(7)	18(5)	38(6)	29(5)
C(35)	75(7)	58(7)	67(8)	21(6)	30(6)	21(6)
C(36)	51(5)	40(5)	80(8)	26(5)	10(5)	14(4)
C(37)	44(4)	28(4)	55(6)	7(4)	4(4)	9(3)
C(38)	58(6)	24(4)	87(8)	12(4)	-7(5)	16(4)
C(39A)	54(10)	23(7)	56(15)	1(7)	-21(9)	17(6)
C(39B)	56(14)	19(10)	31(16)	-5(9)	2(11)	16(9)
C(40)	59(5)	24(4)	86(8)	18(4)	-9(5)	14(4)
C(41)	35(4)	30(4)	42(5)	5(3)	-1(3)	20(3)
C(42)	37(4)	30(4)	37(4)	5(3)	2(3)	18(3)
C(43)	43(4)	33(4)	45(5)	7(4)	-1(4)	19(3)
C(44)	48(5)	27(4)	53(5)	-1(4)	-17(4)	18(3)
C(45)	53(5)	43(5)	73(7)	4(5)	-21(5)	24(4)
C(46)	43(5)	47(5)	63(6)	6(4)	-4(4)	28(4)
C(47)	39(4)	34(4)	41(5)	6(3)	1(3)	20(3)
C(48)	43(4)	31(4)	46(5)	8(3)	3(4)	18(3)
C(49)	62(5)	43(5)	47(5)	24(4)	16(4)	30(4)
C(50)	84(7)	60(6)	48(6)	20(5)	20(5)	49(6)
C(51)	90(7)	53(6)	49(6)	21(5)	10(5)	46(6)
C(52)	70(6)	45(5)	55(6)	20(4)	8(5)	36(5)
C(53)	63(5)	40(4)	37(5)	15(4)	8(4)	32(4)
C(54)	35(4)	27(3)	34(4)	2(3)	-2(3)	14(3)
C(55)	35(4)	35(4)	37(4)	0(3)	1(3)	19(3)
C(56)	45(4)	46(5)	42(5)	-4(4)	0(4)	26(4)
C(57)	61(5)	41(5)	59(6)	7(4)	11(4)	37(4)
C(58)	58(5)	56(5)	43(5)	13(4)	8(4)	36(5)
C(59)	50(5)	38(4)	39(5)	11(4)	5(4)	28(4)
C(60)	47(4)	28(4)	32(4)	5(3)	-2(3)	14(3)
C(61)	37(4)	49(5)	50(6)	11(4)	-3(4)	11(4)
C(62)	49(5)	38(5)	67(7)	10(5)	-6(5)	-6(4)
C(63)	88(8)	37(5)	40(5)	10(4)	-14(5)	-4(5)
C(64)	128(10)	22(4)	36(5)	2(4)	4(6)	29(5)
C(65)	71(6)	27(4)	41(5)	3(3)	4(4)	14(4)
C(66)	44(4)	40(4)	35(4)	2(3)	4(3)	20(4)
C(67)	50(5)	34(4)	37(5)	1(3)	5(4)	22(4)
C(68)	68(6)	42(5)	47(6)	4(4)	11(4)	25(4)
C(69)	89(8)	57(6)	38(5)	-7(4)	8(5)	40(6)
C(70)	71(6)	52(6)	41(5)	2(4)	13(4)	30(5)
C(71)	50(5)	37(4)	41(5)	4(4)	11(4)	11(4)
C(72)	45(4)	26(4)	34(4)	2(3)	-1(3)	15(3)
C(73)	43(4)	32(4)	33(4)	0(3)	5(4)	16(3)
C(74)	49(5)	36(4)	39(5)	0(4)	-2(4)	14(4)
C(75)	47(5)	36(4)	41(5)	2(4)	-6(4)	8(4)
C(76)	44(5)	43(5)	43(5)	6(4)	3(4)	12(4)
C(77)	40(4)	40(4)	44(5)	-2(4)	-1(4)	18(4)
Pd11	55(1)	45(1)	38(1)	12(1)	17(1)	33(1)
Pd21	49(1)	47(1)	36(1)	14(1)	12(1)	32(1)
Cl11	79(2)	69(2)	70(2)	38(1)	41(1)	59(1)
P11	45(1)	30(1)	35(1)	8(1)	11(1)	21(1)
P21	47(1)	37(1)	36(1)	1(1)	8(1)	25(1)
P31	31(1)	36(1)	31(1)	9(1)	6(1)	20(1)
P41	41(1)	39(1)	34(1)	4(1)	0(1)	25(1)
C11	45(4)	38(4)	40(5)	6(3)	7(3)	23(4)
C21	54(5)	34(4)	52(5)	2(4)	2(4)	24(4)
C31	65(6)	29(4)	64(7)	2(4)	0(5)	21(4)
C41	76(7)	22(4)	100(10)	11(5)	-4(7)	16(4)
C51	63(6)	48(6)	99(10)	32(6)	21(6)	18(5)
C61	58(6)	48(6)	84(8)	26(5)	27(5)	22(5)
C71	46(5)	43(5)	57(6)	10(4)	11(4)	22(4)
C81	56(5)	26(4)	41(5)	6(3)	7(4)	23(3)
C91	70(6)	28(4)	46(5)	8(4)	7(4)	26(4)
C101	73(6)	40(5)	62(7)	19(5)	17(5)	28(5)
C111	74(7)	45(5)	59(6)	25(5)	11(5)	26(5)
C121	74(6)	48(5)	47(6)	8(4)	4(5)	31(5)
C131	54(5)	32(4)	55(6)	2(4)	5(4)	15(4)
C141	39(4)	27(4)	35(4)	2(3)	8(3)	13(3)
C151	41(4)	30(4)	47(5)	-1(3)	8(4)	16(3)
C161	60(5)	34(4)	50(6)	3(4)	10(4)	24(4)
C171	73(6)	29(4)	71(7)	8(4)	9(5)	33(4)
C181	64(6)	30(4)	60(6)	10(4)	7(5)	20(4)
C191	56(5)	26(4)	48(5)	13(3)	15(4)	19(4)
C201	54(5)	47(5)	40(5)	9(4)	16(4)	35(4)
C211	51(5)	60(6)	52(6)	18(5)	16(4)	30(5)
------	-------	-------	-------	-------	-------	-------
C221	77(7)	99(9)	83(8)	48(7)	45(6)	66(7)
C231	101(10)	100(10)	124(12)	65(9)	73(9)	86(9)
C241	132(11)	87(8)	67(7)	23(6)	39(5)	47(5)
C251	73(6)	55(6)	48(6)	6(4)	9(4)	35(4)
C261	57(6)	55(6)	48(6)	0(4)	9(4)	35(4)
C271	60(5)	40(5)	49(5)	0(4)	9(4)	35(4)
C281	57(5)	59(6)	52(6)	0(4)	9(4)	35(4)
C291	44(5)	48(5)	64(6)	0(4)	9(4)	35(4)
C301	54(5)	55(5)	45(5)	3(4)	7(4)	39(4)
C311	56(5)	55(5)	45(5)	3(4)	7(4)	39(4)
C321	54(5)	55(5)	45(5)	3(4)	7(4)	39(4)
C331	52(5)	56(5)	87(8)	8(5)	16(5)	33(5)
C341	69(6)	64(6)	39(5)	-9(4)	-2(4)	44(5)
C351	59(5)	58(6)	44(5)	-10(4)	5(4)	33(5)
C361	74(6)	67(6)	42(5)	-4(5)	10(4)	52(5)
C371	52(5)	36(4)	44(5)	-3(4)	0(4)	26(4)
C381	59(6)	40(5)	76(7)	19(5)	15(5)	32(4)
C39A1	64(12)	66(13)	39(15)	28(11)	24(10)	54(11)
C39B1	94(19)	90(20)	70(20)	52(18)	53(18)	71(18)
C401	56(5)	48(5)	87(8)	8(5)	20(5)	39(5)
C411	32(4)	36(4)	38(4)	0(3)	-1(3)	18(3)
C421	33(4)	40(4)	52(5)	6(4)	5(3)	20(3)
C431	41(4)	53(5)	55(6)	-2(4)	-2(4)	28(4)
C441	38(4)	43(5)	83(8)	8(5)	6(5)	19(4)
C451	45(5)	45(5)	118(11)	29(6)	37(6)	20(4)
C461	56(6)	57(6)	78(7)	36(5)	35(5)	33(5)
C471	44(4)	49(5)	47(5)	12(4)	10(4)	30(4)
C481	35(4)	45(4)	44(5)	8(4)	9(3)	24(3)
C491	30(4)	56(5)	57(6)	4(4)	12(4)	23(4)
C501	45(5)	70(7)	69(7)	14(6)	25(5)	30(5)
C511	60(6)	83(8)	57(6)	16(6)	28(5)	41(6)
C521	54(5)	76(7)	42(5)	7(5)	14(4)	39(5)
C531	43(4)	64(6)	37(5)	5(4)	6(4)	30(4)
C541	42(4)	31(4)	32(4)	6(3)	8(3)	19(3)
C551	48(4)	44(5)	40(5)	2(4)	-2(4)	29(4)
C561	69(6)	64(6)	41(5)	8(4)	-1(4)	47(5)
C571	73(6)	49(5)	62(6)	19(5)	16(5)	42(5)
C581	59(5)	55(6)	51(6)	16(5)	16(4)	31(5)
C591	44(4)	34(4)	43(5)	9(3)	5(4)	19(3)
----	---	---	---	---	---	---
C601	33(4)	46(4)	32(4)	8(3)	5(3)	22(3)
C611	38(4)	49(5)	36(4)	6(4)	8(3)	21(4)
C621	33(4)	62(6)	66(7)	4(5)	9(4)	24(4)
C631	36(4)	75(7)	51(6)	-6(5)	-7(4)	30(5)
C641	43(4)	55(5)	37(5)	-1(4)	-3(4)	24(4)
C651	37(4)	46(5)	37(4)	4(4)	3(3)	25(4)
C661	51(4)	48(5)	38(4)	6(4)	3(3)	26(4)
C671	50(4)	38(5)	51(6)	8(4)	1(4)	30(4)
C681	50(4)	56(5)	47(5)	12(4)	4(4)	36(4)
C691	53(4)	38(5)	51(6)	8(4)	1(4)	37(4)
C701	35(4)	36(4)	50(5)	15(4)	3(3)	22(3)
C711	52(5)	37(4)	40(5)	5(3)	-5(4)	28(4)
C721	50(5)	51(5)	39(5)	4(4)	-7(4)	35(4)
C731	81(7)	76(7)	47(6)	0(5)	-15(5)	61(6)
C741	105(9)	89(8)	42(6)	-5(5)	-22(6)	77(8)
C751	109(9)	81(8)	47(6)	-17(6)	-20(6)	74(8)
C761	75(6)	52(5)	41(5)	-3(4)	-7(4)	47(5)
Pd12	36(1)	50(1)	36(1)	4(1)	5(1)	22(1)
Pd22	38(1)	49(1)	39(1)	11(1)	11(1)	24(1)
C12	34(1)	71(2)	59(1)	-15(1)	8(1)	21(1)
P12	30(1)	34(1)	34(1)	3(1)	3(1)	18(1)
P22	31(1)	33(1)	36(1)	5(1)	3(1)	15(1)
P32	40(1)	40(1)	55(1)	-3(1)	3(1)	23(1)
P42	39(1)	40(1)	59(1)	17(1)	19(1)	23(1)
C12	29(3)	35(4)	43(5)	3(3)	1(3)	17(3)
C22	33(4)	35(4)	52(5)	9(4)	10(3)	17(3)
C32	39(4)	39(4)	49(5)	4(4)	13(4)	16(4)
C42	44(5)	47(5)	66(7)	-11(5)	10(4)	22(4)
C52	47(5)	46(6)	109(10)	-9(6)	19(6)	21(4)
C62	56(6)	50(6)	92(9)	10(6)	16(6)	35(5)
C72	49(5)	39(4)	60(6)	3(4)	7(4)	28(4)
C82	44(4)	38(4)	36(4)	-1(3)	8(3)	18(3)
C92	42(4)	44(5)	58(6)	3(4)	0(4)	18(4)
C102	37(4)	45(5)	73(7)	-2(5)	-3(4)	10(4)
C112	51(5)	56(6)	65(7)	-8(5)	4(5)	19(5)
C122	58(6)	42(5)	63(7)	-2(5)	24(5)	17(4)
C132	69(6)	25(4)	51(6)	-3(4)	12(5)	10(4)
C142	40(4)	42(4)	37(4)	4(3)	6(3)	25(4)
C152	43(4)	48(5)	61(6)	11(4)	15(4)	30(4)
---	---	---	---	---	---	
C162	56(5)	56(6)	75(7)	13(5)	27(5)	40(5)
C172	58(6)	70(7)	60(6)	11(5)	28(5)	37(5)
C182	63(6)	58(6)	52(6)	11(5)	17(5)	35(5)
C192	53(5)	41(4)	47(5)	10(4)	15(4)	31(4)
C202	42(4)	38(4)	41(5)	4(3)	7(3)	26(4)
C212	59(5)	57(5)	47(5)	11(4)	17(4)	44(5)
C222	75(7)	80(7)	62(7)	20(6)	32(5)	60(6)
C232	64(6)	96(9)	75(8)	25(6)	19(6)	65(7)
C242	56(5)	64(6)	46(5)	18(5)	7(4)	40(5)
C252	40(4)	49(5)	52(5)	1(4)	2(4)	30(4)
C262	35(4)	44(5)	44(5)	11(4)	7(3)	16(3)
C272	33(4)	42(4)	44(5)	-1(4)	-1(3)	17(3)
C282	35(4)	55(6)	47(5)	-3(4)	-2(4)	15(4)
C292	40(4)	43(5)	43(5)	2(4)	-5(4)	7(4)
C302	48(5)	46(5)	53(6)	8(4)	2(4)	17(4)
C312	45(4)	27(4)	56(6)	8(4)	1(4)	13(3)
C322	37(4)	38(4)	41(5)	5(4)	-2(3)	13(3)
C332	34(4)	59(6)	45(5)	7(4)	-2(4)	16(4)
C342	59(6)	59(6)	52(6)	23(5)	-1(5)	28(5)
C352	55(5)	67(6)	46(5)	11(5)	-7(4)	34(5)
C362	45(5)	59(6)	54(6)	14(5)	-5(4)	26(4)
C372	37(4)	39(4)	43(5)	9(4)	-1(3)	18(3)
C382	44(5)	50(5)	86(8)	10(5)	16(5)	24(4)
C39A2	31(10)	94(19)	15(12)	2(12)	6(8)	32(11)
C39B2	34(8)	90(16)	39(14)	-10(12)	14(8)	28(9)
C402	41(5)	52(6)	110(10)	9(6)	18(5)	25(4)
C412	39(4)	38(4)	59(6)	5(4)	13(4)	23(4)
C422	39(4)	41(5)	86(8)	0(5)	11(5)	23(4)
C432	36(4)	48(5)	79(8)	-8(5)	13(4)	18(4)
C442	45(5)	59(7)	115(11)	-23(7)	19(6)	22(5)
C452	64(7)	52(7)	167(16)	-24(8)	26(9)	26(6)
C462	72(8)	37(6)	167(16)	1(7)	32(9)	24(5)
C472	50(5)	42(5)	119(11)	9(6)	20(6)	26(4)
C482	40(4)	49(5)	64(6)	-3(5)	7(4)	24(4)
C492	56(6)	61(7)	81(8)	10(6)	15(5)	29(5)
C502	79(8)	93(9)	61(7)	20(7)	28(6)	48(7)
C512	66(7)	100(10)	58(7)	7(7)	12(6)	38(7)
C522	61(6)	72(7)	63(7)	-8(6)	14(5)	25(6)
C532	36(4)	52(6)	61(6)	-5(5)	8(4)	12(4)
C542	57(6)	46(6)	92(9)	-5(6)	-2(6)	29(5)
---	---	---	---	---	---	---
C552	109(10)	51(6)	64(8)	22(6)	15(7)	36(6)
C562	109(10)	44(6)	55(7)	-4(5)	-13(7)	27(6)
C572	98(9)	63(7)	64(8)	6(6)	18(7)	20(7)
C582	74(7)	61(7)	75(8)	11(6)	7(6)	26(6)
C592	55(5)	38(5)	70(7)	8(5)	-1(5)	22(4)
C602	58(5)	91(8)	42(5)	-9(5)	1(4)	57(6)
C612	43(5)	123(11)	63(7)	-19(7)	7(5)	39(6)
C622	59(6)	105(10)	73(8)	-8(7)	30(6)	35(7)
C632	80(8)	135(13)	69(8)	1(8)	18(6)	79(9)
C642	79(8)	103(10)	74(8)	5(7)	6(6)	69(8)
C652	99(9)	111(10)	58(7)	7(7)	4(6)	88(9)
C662	38(4)	46(5)	64(6)	25(4)	18(4)	23(4)
C672	39(4)	39(4)	47(5)	12(4)	16(4)	18(3)
C682	45(5)	53(5)	54(6)	19(4)	19(4)	27(4)
C692	42(5)	57(6)	76(7)	18(5)	19(5)	30(4)
C702	49(5)	68(6)	75(7)	33(6)	28(5)	39(5)
C712	51(5)	51(5)	100(9)	31(6)	37(5)	36(5)
C722	38(5)	49(5)	97(9)	28(5)	21(5)	23(4)
C732	50(5)	90(8)	101(10)	64(8)	36(6)	42(6)
C742	74(8)	100(11)	145(15)	86(11)	49(9)	50(8)
C752	74(8)	99(10)	122(12)	75(10)	50(8)	51(7)
C762	51(6)	71(8)	123(12)	43(8)	35(7)	29(6)
C772	43(5)	55(6)	89(8)	35(6)	31(5)	27(4)
4. References

[1] a) W. Voskuil, J. F. Arens, Org. Synth. 1968, 48, 47; b) W. Voskuil, J. F. Arens, Rec. Trav. Chim. 1963, 82, 302.
[2] A. S. Guram, S. L. Buchwald, J. Am. Chem. Soc. 1994, 116, 7901–7902.
[3] Y. Watanabe, Y. Tsuji, H. Ige, Y. Ohsugi, T. Ohta, J. Org. Chem. 1984, 49, 3359–3363.
[4] P. G. Gassman, G. A. Campbell, R. C. Frederick, J. Am. Chem. Soc. 1972, 94, 3884–3891.
[5] P. Bernardi, P. Dembech, G. Fabbri, A. Ricci, G. Seconi, J. Org. Chem. 1999, 64, 641–643.
[6] K. Kamikawa, S. Sugimoto, M. Uemura, J. Org. Chem. 1998, 63, 8407–8410.
[7] Y. Tsuji, K-T. Huh, Y. Ohsugi, Y. Watanabe, J. Org. Chem. 1985, 50, 1365–1370.
[8] B. Sreedhar, P. Surendra Reddy, D. Keerthi Devi, J. Org. Chem. 2009, 74, 8806–8809.
[9] J. P. Wolfe, S. L. Buchwald, J. Org. Chem. 1997, 62, 1264–1267.
[10] J. P. Wolfe, S. L. Buchwald, J. Org. Chem. 1997, 62, 6066–6068.
[11] S. Thomas, S. Roberts, L. Pasumansky, S. Gamsey, B. Singaram, Org. Lett. 2003, 5, 3867–3870.
[12] B. P. Fors, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 15914–15917.
[13] A. Razzuk, E. R. Biehl, J. Org. Chem. 1987, 52, 2619–2622.
[14] Vellakkaran, M.; Singh, K.; Banerjee, D. ACS Catal., 2017, 7, 8152-8158.
[15] T. J. Reddy, M. Leclair and M. Proulx, Synlett, 2005, 4, 583-586.
[16] L. Homberg, A. Roller, K. C. Hultzsch, Org. Lett. 2019, 21, 3142-3147.