Background information on in vitro CL_{int}, Caco-2 P_{app}, and F_{up} measurements: pages 1-3

OECD harmonised template description of the applied PBK model: pages 4-5

RVs sensitivity analysis: pages 6-15

Background information on the in vitro CL_{int}, Caco-2 P_{app}, and F_{up} measurements

Background information CL_{int} measurements

Different protocols exist to measure in vitro kinetic constants for metabolism. Incubations are most frequently performed with primary hepatocytes or subcellular liver fractions like microsomes or S9 (in the presence of relevant cofactors) (Gouliarmou et al., 2018; Lipscomb and Poet, 2008; Pelkonen and Turpeinen, 2007). Primary hepatocytes are considered the gold standard for performing in vitro metabolism studies. Generally, experiments are performed with cryopreserved primary hepatocytes, as these can be stored for a longer period, making them more readily available than freshly prepared hepatocytes. Cryopreserved hepatocytes retain most of the activity of freshly prepared hepatocytes (Lipscomb and Poet, 2008). With a so-called "metabolite formation protocol", in vitro incubations are performed at different substrate concentrations at a fixed incubation time and cell concentration (Fig. S1A). The formation of metabolites, which follows the Michaelis-Menten equation (Seibert and Tracy, 2014), is then measured in these experiments:

\[v = \frac{V_{\text{max}} \cdot [\text{compound}]}{K_m + [\text{compound}]} \]

In this equation, \(V_{\text{max}} \) is the maximum velocity (for example \(\mu \text{mol/ min}/10^6 \) hepatocytes) and \(K_m \) is the Michaelis-Menten constant with the unit \(\mu \text{M} \) (Peters, 2012). A key advantage of this approach is that the kinetic constants obtained can be used to describe the formation of metabolites and allow to account for concentration-dependent saturation of the enzymes. A disadvantage of this protocol is that standards of the metabolites are required for quantification. Given that such standards cannot be easily obtained for most compounds, the metabolic conversion of compounds is more frequently measured with a so-called "substrate depletion approach" in which the disappearance of a compound is measured over time to derive CL_{int} based on the slope of the substrate depletion curve (Jones and Houston, 2004). One of the most critical aspects of substrate depletion experiments is that the substrate concentration should be well below the \(K_m \) (linear region), as only then the rate, \(v \), can be simplified as depicted in Equation 2 (Seibert and Tracy, 2014).

\[v = \frac{V_{\text{max}} \cdot [\text{compound}]}{K_m} = CL_{\text{int}}[\text{compound}] \]

The obtained CL_{int} values can therefore only be used in situations where no saturable metabolism is to be expected. This can be explored with in vitro range finding experiments at different concentrations to determine at which concentrations saturation of metabolism occurs (Nichols et al., 2018; Sjögren et al., 2012). First estimates of the internal concentrations with a PBK model can be used to determine if these saturable conditions are likely to be reached in the liver. Other aspects that need to be considered when performing in vitro metabolic clearance studies are, for example, the protein amount in the incubation mixture, whether or not serum is added to the incubation, number of time points and sampling schedule, the percentage of test item consumption at the end of the incubation, and aspects related to the analytical techniques that are used to analyse the sample (Gouliarmou et al., 2018; Louisse et al., 2020). In addition, it is important to include positive controls (marker substrates for different metabolic enzymes) in the experimental setup to check the proper performance of the test system (Hernandez-Jerez et al., 2021).

doi:10.14573/altex.2202131s2
Fig. S1: Examples of A) Michaelis-Menten kinetics with a K_m of 25 µM and a V_{max} of 100 nmol/min/10^6 hepatocytes, and B) a metabolic clearance study with a $t_{1/2}$ of 30 min and a CL_{int} of ln(2)/30 = 0.02 mL/min/10^6 hepatocytes when performed in an incubation that contains 10^6 hepatocytes per mL.

Background information on Caco-2 P_{app} measurements
The Caco-2 cellular model of intestinal absorption is one of the most frequently used in vitro test system to study the rate of transport of compounds across the intestinal cell layer. Although Caco-2 cells are derived from a human colon carcinoma, the cells mimic the epithelial barrier of the small intestine when cultured in a monolayer (Hubatsch et al., 2007). For in vitro P_{app} measurements, the cells are grown in a so-called Transwell system, in which the cells are seeded on a permeable filter insert and are cultured for about 21 days to form a layer of differentiated cells. To measure the cellular transport of a compound, the cell culture medium at the apical compartment of the Transwell is replaced by a transport buffer in which the compound is dissolved, and the cell culture medium at the basolateral compartment is replaced by the transport buffer, often containing bovine serum albumin to mimic the protein content of the blood compartment (Hubatsch et al., 2007). A critical aspect of P_{app} measurements is that the experiments are performed under a concentration gradient, otherwise diffusion cannot take place. This means that the time-range in which the absorption studies are performed needs to be optimized to make sure that less than 10% of the compound is diffused to the basolateral compartment (also called sink-conditions) (Usansky and Sinko, 2005). Such sink conditions provide the best representation of physiological conditions, as a concentration gradient between the gut lumen and the plasma will exist in vivo due to distribution of the chemical in the body after absorption. In addition, it should be noted that Caco-2 experimental results often vary between labs and with batches of cells. Therefore, a range of reference substrates should be included in the experimental setup to normalize the results. A final important experimental aspect that can affect the P_{app} measurement is the pH gradient that is applied between the apical and basolateral compartment. A pH gradient of 6.5-7.4 provides the best representation of the physiological conditions in the intestinal lumen and blood (Neuhoff et al., 2003).

Background information on F_{up} measurements
Various methods have been developed to measure F_{up}, the equilibrium dialysis test system being the most commonly applied. For these experiments, so-called equilibrium dialysis devices are used, which consist of a base plate and different dialysis inserts. Each of the dialysis inserts consists of two chambers separated by a dialysis membrane. The human plasma, generally containing 2 to 5 µM of the substrate, is added to one chamber and phosphate-buffered saline (PBS) to the other (Ryu et al., 2021). The concentrations in the two chambers are monitored until an equilibrium is reached. The equilibrium dialysis technique particularly poses challenges with measuring the fraction unbound for highly protein-bound compounds. For these compounds the levels in the receiving PBS chamber may be close to the limit of detection, hampering derivation of F_{up} values. In addition, there is a higher chance for non-specific binding for these compounds. For highly bound compounds, modified equilibrium dialysis has therefore been proposed, including bidirectional equilibrium dialysis, dilution methods, and pre-saturation methods (Ferguson et al., 2019; Wambaugh et al., 2019).

References
Ferguson, K. C., Luo, Y. S., Rusyn, I. et al. (2019). Comparative analysis of rapid equilibrium dialysis (RED) and solid phase micro-extraction (SPME) methods for in vitro-in vivo extrapolation of environmental chemicals. Toxicol In Vitro 60, 245-251. doi:10.1016/j.tiv.2019.06.006
Gouliarmou, V., Lostia, A. M., Coecke, S. et al. (2018). Establishing a systematic framework to characterise in vitro methods for human hepatic metabolic clearance. Toxicol In Vitro 53, 233-244. doi:10.1016/j.tiv.2018.08.004
Hernandez-Jerez, A. F., Adriaanse, P., Aldrich, A. et al. (2021). Scientific opinion of the scientific panel on plant protection products and their residues (PPR panel) on testing and interpretation of comparative in vitro metabolism studies. EFSA J 19, e06970. doi:10.2903/j.efsa.2021.6970

Hubatsch, I., Ragnarsson, E. G. E. and Artursson, P. (2007). Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc 2, 2111-2119. doi:10.1038/nprot.2007.303

Jones, H. M. and Houston, J. B. (2004). Substrate depletion approach for determining in vitro metabolic clearance: Time dependencies in hepatocyte and microsomal incubations. Drug Metab Dispos 32, 973-982. doi:10.1124/dmd.104.000125

Lipscomb, J. C. and Poet, T. S. (2008). In vitro-in vivo extrapolation of hepatic clearance: Biological tools, scaling factors, model assumptions and correct concentrations. Xenobiotica 37, 1066-1089. doi:10.1080/00498250701620726

Ryu, S., Riccardi, K., Jordan, S. et al. (2021). Determination of fraction unbound and unbound partition coefficient to estimate intracellular free drug concentration. In G. R. Rosania and G. M. Thurber (eds), Quantitative Analysis of Cellular Drug Transport, Disposition, and Delivery (81-96). Methods in Pharmacology and Toxicology. New York, NY, USA: Humana Press Inc. doi:10.1007/978-1-0716-1250-7_4

Seibert, E. and Tracy, T. S. (2014). Fundamentals of enzyme kinetics. Methods Mol Biol 1113, 9-22. doi:10.1007/978-1-62703-758-7_2

Sjögren, E., Svanberg, P. and Kanebratt, K. P. (2012). Optimized experimental design for the estimation of enzyme kinetic parameters: An experimental evaluation. Drug Metab Dispos 40, 2273-2279. doi:10.1124/dmd.112.047373

Usansky, H. H. and Sinko, P. J. (2005). Estimating human drug oral absorption kinetics from Caco-2 permeability using an absorption-disposition model: Model development and evaluation and derivation of analytical solutions for ka and Fa. J Pharmacol Exp Ther 314, 391-399. doi:10.1124/jpet.104.076182

Wambaugh, J. F., Wetmore, B. A., Ring, C. L. et al. (2019). Assessing toxicokinetic uncertainty and variability in risk prioritization. Toxicol Sci 172, 235-251. doi:10.1093/toxsci/kfz205
OECD harmonized template description of the PBK model

Category	Characteristic
Scope and purpose of the model	Model purpose: generic model code to simulate plasma and tissue concentrations of chemicals (parent chemicals, not metabolites) based on a minimal set of (in vitro- and/or in silico-derived) chemical-specific input parameters (metabolic clearance, blood:plasma partition coefficients, fraction unbound plasma and blood:plasma ratio) Species: human. Age, life stage(s), sex, exposure window(s): adult 70 kg (human), not gender specific. Exposure route(s) and dose metric(s): IV and oral (mg/kg bw) Target organs and tissues: lung, adipose, bone, brain, heart, muscle, skin, liver, kidney, gut, spleen, venous and arterial blood.
Model structure and mathematical description	13 perfusion-limited compartments Differential equations Perfusion-limited Mass balance equations given Abortion: First order rate constant (Jones and Rowland-Yeo (2013)) Distribution: Homogenous and blood-flow limited distribution was assumed in each compartment. Metabolism: Linear with dose (no saturation included) Excretion: Urinary excretion is included in the kidney compartment as glomerular filtration rate times the free venous plasma concentration.

Computer implementation
- Model implemented in R
- Model codes and syntax available

Parameter estimation and analysis
- Anatomical and physiological parameter values as reported by Jones and Rowland-Yeo (2013).
- Partition coefficients Rodgers and Rowland (2006).
- Intrinsic hepatic clearance (in vitro intrinsic hepatic clearance data are scaled to the in vivo situation).
- Fup from in vitro experiments.
- Intestinal uptake scaled from in vitro Caco-2 apparent permeability data as describey by Punt et al. (2021).
- Global sensitivity analysis with Rvis (https://github.com/GMPtk/RVis/releases, v0.15, using R 4.1.1)
Model calibration and validation

Calibration: In vitro and in silico input data are used for the parameterization to make an estimation of the in vivo toxicokinetics. No calibration step is therefore needed.

Validation: Generally, adequate estimations of in vivo kinetic parameters (particularly Cmax) can be made with the model for chemicals that are rapidly absorbed and when liver metabolism is the main clearance route. However, this is not the case for chemicals that will largely depend on, for example, extrahepatic metabolism and/or active transporter-mediated kinetics. Without data to evaluate model performance, one should therefore be cautious when applying the model for different chemicals. Predictions need to be evaluated on a case-by-case basis.

Model documentation

Peer reviewed model
Publicly available model

Evaluation of the PBPK model according to WHO criteria

The goal of the model of Jones and Rowland-Yeo (2013) is to make first-tier estimates of expected plasma and/or tissue concentrations making use of a minimal set of chemical-specific input data, i.e., intrinsic hepatic clearance, partitioning into tissues, the fraction unbound in plasma, and the blood:plasma ratio. The model structure contains the major body compartments (lung, adipose, bone, brain, heart, muscle, skin, liver, kidney, gut, spleen, venous and arterial blood). The original model of Jones and Rowland-Yeo (2013) was adopted by Punt et al. (2021) for use in an online platform (www.qivivetools.wur.nl) and modified with respect to the following points:

- Conversion of the model code from Berkeley Madonna to R, solving the differential equations with the R deSolve package.
- Cliverfree defined as Cliver/Kp(tissue:part) instead of Cliver*Fup.
- Fraction absorbed (F) accounted for in the initial setting of the dose rather than the differential equation for oral absorption (the latter would be the rate of absorption and not the fraction that is absorbed).
- Renal clearance (urinary excretion) simulated as GFR times the free plasma concentration. (Within the model of Jones and Rowland-Yeo (2013), renal clearance is described as CLrenal*Cspland it is not specified whether this renal clearance corresponds to urinary excretion or metabolic clearance.)
- Conversion of plasma concentration to nM as output of the model.
- Kp(tissue:part) coefficient rest body) set equal to the muscle partition coefficient.
- Mass balance equations added.

References

Grandoni, S., Cesari, N., Brogin, G. et al. (2019). Building in-house PBPK modelling tools for oral drug administration from literature information. ADMET DMPK 7, 4-21. doi:10.5599/admet.638

Jones, H. and Rowland-Yeo, K. (2013). Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT pharmacometrics Syst Pharmacol 2, e63. doi:10.1038/psp.2013.41

Punt, A., Pinckaers, N., Peijnenburg, A. et al. (2021) Development of a web-based toolbox to support quantitative in-vitro-to-in-vivo extrapolations (QIVIVE) within nonanimal testing strategies. Chem Res Toxicol 34, 460-472. doi:10.1021/acs.chemrestox.0c00307

Yu, L. X. and Amidon, G. L. (1999) A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm 186, 119-125. doi:10.1016/S0378-5173(99)00147-7
To import the PBK model, follow steps 1 to 13. These steps are only required ones.

1. Open Rvis and click on import R
2. Select the model code with Browse
3. Select the model code
4. Click inspect
5. Click Select

6. select "run_model" here

7. select "parameters" here

8. click “OK”
9. Click "Import"

10. Click "Use All" to select all parameters

11. Go to the "OUTPUT" tab
12. Click on USE? in front of Cplasmavenous.AVE and AUC. These output parameters will be plotted.

13. Click on “Import”
To run the model follow steps 14 to 16 to run the model

14. Select one of the imported models

15. Click "Run"
16. Click “Plotter” to select the output Cplasmavenous.AVE (i.e. simulated plasma concentration in time) or AUC (simulated area under the plasma concentration-time curve)
Follow steps 17 to 27 to perform the sensitivity analysis

17. Select the “Sensitivity” tab

18. Select “CL_{int}”, “f_{up}” and “P_{appAB}” as parameters for the sensitivity analysis
19. Click to define the distributions (see Rvis_input_variation.csv file on https://github.com/wfsrqivive/PBPK_exp_variation.git for the average and variance in these parameters based on the observed experimental variation for each compound.
20. Click on the “Design” tab

21. Select “e-FAST” and 100 samples

22. Click “Create Design”

23. Click “Start”
24. Go to the “EFFECTS” tab to see the results of the sensitivity analyses.

25. As output the AUC or Cplasmavenous.AVE can be selected.

26. To determine the contribution of the three varied parameters on the C_{max}, set the slider to the time-point of the C_{max}. (in case of the AUC, the slider needs to be set at 24h).

27. Export the data as Microsoft Excel file.