Slaughterhouse Wastewater Treatment by Electrocoagulation Process

F A Nugroho, A Z Arif, G Z M Sabila and P T P Aryanti*
Chemical Eng. Dept., Universitas Jenderal Achmad Yani, Jl. Ters. Jend. Sudirman, Cimahi
*Corresponding author: p.teta@lecture.unjani.ac.id

Abstract. Slaughterhouse wastewater contains a high concentration of colloids, organic compounds, and suspended solids, which cannot be directly discharged to the environment. In this research, the electrocoagulation process was used to treat slaughterhouse wastewater. The pH of the solution was neutralized by adding Ca(OH)_2. The influence of current density (933 mA/dm^2 and 1400 mA/dm^2) and electrode configuration (3 anodes 3 (three) cathodes and 4 (four) anodes 2 (two) cathodes) was investigated. The experimental results showed that the treated wastewater at a current density of 1400 mA/dm^2 produced a lower contaminant concentration than the current density of 933 mA/dm^2. The current density of 1400 mA/dm^2 and electrode configuration of 4 anodes-2 cathodes reduced BOD by 56.4%, TDS by 20.25%, and TSS by 99.47%.

1. Introduction
The slaughterhouse wastewater contains a high concentration of biodegradable organic compounds (such as proteins and blood), colloidal (such as fat, oil, and grease), suspended solids (such as grit, manure, and undigested feeds), nitrogen, phosphorus, and pathogenic bacteria [1]. These contaminants lead to a high value of BOD, COD, and turbidity, which must be treated before being discharged into the environment [2]. Coagulation/flocculation [3-5], trickling filtration [6], and biological process [7-9] are standard techniques used for wastewater treatment. Among these technologies, biological treatment, either anaerobic or aerobic treatment [7, 10, 11], has been widely chosen due to its high removal efficiency to remove the biological contaminants in slaughterhouse wastewater. Some parameters, such as long hydraulic retention time, the high energy requirement for aeration, large area, and high concentration of sludge produced during the process, become a problem in extensive scale application of biological processes [12].

Electrocoagulation (EC) has recently been used as an alternative process for slaughterhouse wastewater treatment [13, 14]. The EC is an electrochemical process, which combines coagulation, adsorption, precipitation, and flotation in a one-stage procedure. This process involves two electrodes, namely anode, and cathode, which are arranged in pairs. When a direct current is applied to the electrodes, soluble metal cations are released from the anode, neutralizing the stable charge on the subsequent pollutants and destabilizing the contaminants to form flocs. Meanwhile, hydrogen gas and hydroxyl ions are released from the cathode. The hydrogen gas lifts the pollutants to the top of the solution. Then, they are collected and removed by a skimmer. The EC process’s chemical reactions have been explained in kinds of literature [15, 16]. When using aluminum (Al) as an anode, Al^{3+} ions are released from the anode. Besides destabilizing the charge of pollutants, the Al^{3+} reacts with hydroxyl (OH)\(^{-}\) ion to form coagulants, Al(OH)\(_3\), and enlarge the agglomeration of flocs.
Several studies have been conducted using the EC process to treat slaughterhouse wastewater, mostly carried out in a batch mode. Cruz et al. [17] compared three types of electrodes, namely pure aluminum (Al), pure iron (Fe), and a combination of Al and Fe. They found that the Al electrode provided higher COD removal, up to 97%, compared to other electrodes. Paulista et al. [18] used aluminum and graphite electrode for poultry slaughterhouse treatment. High-efficiency removal of COD was achieved when the coagulant load was more than 51 mg/L, and the gas load was more than 60 NmL/L. The COD removal was up to 85%, while the turbidity removal was up to 99%. Kobyta et al. [13] used Al and Fe electrodes for treating poultry slaughterhouse waste with COD of 26,000 – 29,000 mg/L. Around 93% removal of COD was reached in 25 minutes of EC process when the applied current density was 150 A/m². It was estimated that the total operating cost of the slaughterhouse wastewater treatment by EC process was varied from 0.015 US$/kg COD removed (Fe electrode) to 0.027 US$/kg COD removed (Al electrode) or 0.4 US$/m³ (Fe electrode) to 0.7 US$/m³ (Al electrode) [19]. Potrich et al. [20] also compared Al and Fe electrodes’ performances in EC reactor to remove total nitrogen and phosphorus in poultry slaughterhouse wastewater. The EC process was conducted in batch-mode. The optimum result was achieved at 20 minutes by using Al electrode at operating treatment conditions of 30 mA/cm² current density and initial pH of 8. The lowest cost was 3.89 US$/m³. In this study, the slaughterhouse wastewater was treated using a continuous EC process. The EC reactor was equipped with a turbine impeller and six Al electrodes as baffles. The influence of electrode configurations and applied current densities was investigated.

2. Material and Methods

The experimental set-up and method were referred to in our previous work [21, 22]. A cylindrical EC reactor was used with a diameter of 25 cm and a height of 30 cm. Six Al electrodes were used as baffles, which had length, width, and thickness of 33 cm, 4 cm, and 3 mm, respectively. These electrodes were connected to a DC power supply to provide a current density of 933 mA/dm² (10A) and 1400 mA/dm² (15 A). The EC reactor’s mixing process was conducted using a turbine impeller at a stirring rate of 100 rpm.

Meanwhile, the feed flow rate was maintained at 233.3 mL/min. The experimental apparatus used in this research is shown in Figure 1. The wastewater was obtained from one of the cattle slaughterhouse industries in Cimahi, West Java, Indonesia. The influent’s pH was adjusted to 7 (neutral) by adding Ca(OH)₂. The concentration of TDS, turbidity, pH, and COD of the effluent was measured after 120 EC process minutes. The analysis methods refer to our previous research [21, 23].

![Figure 1. Experimental set-up: (1) feed tank, (2) feed pump, (3) stabilizer tank, (4) EC reactor equipped with a turbine impeller and baffles, (5) sedimentation tank, (6) effluent tank, and (7) control panel.](image-url)
3. Result and Discussion

3.1. The influence of operating parameters on TDS, turbidity, and pH of the slaughterhouse wastewater

Figure 2 shows the influence of operating parameters on effluent qualities, including TDS, turbidity, and pH of the solution. It shows that higher TDS removal was achieved when four anodes and two cathodes (4A-2C) were used in the EC reactor compared to three anodes and three cathodes (3A-3C) configuration. When the current density was increased from 933 mA/dm2 (10A) to 1400 mA/dm2 (15A) the TDS concentration was reduced by 11.81% (from 2370 to 2090 mg/L) when using 3A-3C configuration. The TDS reduction was improved to 17.72% when using the 4A-2C configuration at a current density of 933 mA/dm2 and 20.25% at a current density of 1400 mA/dm2 (Figure 2A). In this research, more than 98% reduction in turbidity can be achieved in the whole experiments. It has been reported that the amount of applied current was related to the coagulant dose produced by the anode [24]. The increase of applied current density enhanced the amount of ion Al$^{3+}$ released from the anode. The Al$^{3+}$ ions form complex compounds that act as coagulants to destabilize the contaminants, allowing contaminants to agglomerate and form flocs. The amount of Al$^{3+}$ ions can be enhanced by increasing the number of anodes or increasing the applied current density value. Besides, the reaction of Al$^{3+}$ with hydroxide ions (OH$^-$) in solution resulted in Al(OH)$_3$, which was able to adsorb contaminants and form larger flocks, then settled to the bottom of the EC reactor. The Al$^{3+}$ ions and Al(OH)$_3$ were easier to destabilize colloids and particulates than ionic contaminants, and therefore, higher removal in turbidity was resulted compared to TDS.

![Figure 2](image_url)

Figure 2. The influence of operating parameters on reducing: (a) TDS, (b) turbidity, and (c) pH of slaughterhouse wastewater.
Figure 2c shows the change in pH of the solution during the EC process, where the influent’s initial pH was adjusted to 7. In general, the solution’s pH will be raised during the EC process due to OH- ions in the cathode. The electrode configuration of 4A-2C showed a more significant change in pH compared to 3A-3C. The lowest change in pH (i.e., 2.63%) has occurred at the electrode configuration of 4A-2C and a current density of 933 mA/dm2. It was suggested that the OH- ions in the solution was mostly reacted to Al$^{3+}$ ions to form Al(OH)$_3$. Therefore, the concentration of OH- was low, and the pH of the solution was slightly changed. The increase in current density led to a more significant change in pH. As the charge density increased to 1400 mA/dm2, many OH- ions were produced. Consequently, the pH of the solution was changed by 7.79% (from 7.6 to 8.2). Several research studies have been conducted and reported that the slaughterhouse wastewater treatment using the EC process was optimum when the treatment process was completed at pH 3.

3.2. The influence of operating parameters on the decrease in BOD by the EC system

The influence of the configuration of electrodes and current density on BOD removal is presented in Figure 3. There was no significant change in BOD removal by increasing the number of anodes in the EC reactor. In both electrode configurations, i.e. 3A-3C and 4A-2C, the BOD removal was by 37.97% (from 710.60 to 440.80 mg/L) and 39.38% (from 710.60 to 430.80), respectively. However, BOD removal was improved to 56% by increasing the current density. It has been mentioned that the current per area of electrodes in the EC reactor was proportional to the number of metal ions or coagulant produced from the electrodes. As the current density increased, a larger amount of coagulant was produced to destabilize the wastewater contaminants. The increase of current density reduced the bubble size of H$_2$ gas in the cathode, which enhanced the bubble densities to upward the contaminants to the top of the EC reactor. The smaller size of bubbles improved particle attachment’s surface area, and thus higher separation efficiency could be achieved [25]. However, the percentage of BOD reduction was still below 60%. Therefore, further experimental by varying the current density and other operating parameters are still required to improve the BOD removal.

![Figure 3](image-url)
4. Conclusion

In this research, a continuous electrocoagulation (EC) process is used to treat cattle slaughterhouse wastewater that contains a high concentration of colloids, organic compounds, and suspended solids. The cylindrical EC reactor is designed to combine mixing and electrocoagulation in a one-stage process and is conducted using a six-blade turbine impeller. Six Al electrodes are used as baffles to generate turbulence during the EC process. The pH of the solution is neutralized by adding Ca(OH)₂.

The influence of current density (933 mA/dm² and 1400 mA/dm²) and electrode configuration (3 anodes 3 (three) cathodes and 4 (four) anodes 2 (two) cathodes) is investigated. The experimental results showed that the treated wastewater at a current density of 80 mA/cm² produced a lower contaminant concentration than the current density of 50 mA/cm². The current density of 80 mA/cm² and electrode configuration of 4 anodes-2 cathodes reduced BOD by 56.4%, TDS by 20.25%, and TSS by 99.47%.

Acknowledgment

LPPM Universitas Jenderal Achmad Yani supported this work through “Internal Competitive Research Program 2020” (letter no. SKEP/129/UNJANI/V/2020).

References

[1] Aluoch E O 2015 Use of enzymes in anaerobic sequencing batch reactor (ASBR) treatment of slaughterhouse wastewater Doctoral Dissertation University of Nairobi
[2] Olayinka O, Adedeji O and Oladeru I 2013 Water Quality and Bacteriological Assessment of Slaughterhouse Effluent on Urban River In Nigeria Journal of Applied Sciences in Environmental Sanitation 8 (4) 277-286
[3] Al-Mutairi N, Hamoda M and Al-Ghusain I 2004 Coagulant selection and sludge conditioning in a slaughterhouse wastewater treatment plant. Bioresource technology 95 (2) 115-119
[4] Aguilar M, Saez J, Llorens M, Soler A and Ortuno J 2003 Microscopic observation of particle reduction in slaughterhouse wastewater by coagulation-flocculation using ferric sulphate as coagulant and different coagulant aids Water Research 37 (9) 2233-2241
[5] Sanchis M I A Sáez J, Lloréns M, Soler A, and Ortuño J F 2003 Particle size distribution in slaughterhouse wastewater before and after coagulation-flocculation Environmental progress 22 (3) 183-188.
[6] Kharat D S 2019 Pollution Control in Meat Industry Current Environmental Engineering 6 (2) 97-110.
[7] Aziz A, Basheer F, Sengar A, Khan S U and Farooqi I H 2019 Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater Science of the total environment 686 681-708
[8] Salehiyoun A R, Di Maria F, Sharifi M, Norouzi O, Zilouei H and Aghbashlo M 2020 Anaerobic co-digestion of sewage sludge and slaughterhouse waste in existing wastewater digesters Renewable Energy 145 2503-2509
[9] Vidal J, Huiliñir C and Salazar R 2016 Removal of organic matter contained in slaughterhouse wastewater using a combination of anaerobic digestion and solar photoelectro-Fenton processes Electrochimica Acta 210 163-170
[10] Salminen E and Rintala J 2002 Anaerobic digestion of organic solid poultry slaughterhouse waste–a review Bioresource technology 83 (1) 13-26
[11] Ardestani F and Abbasi M 2019 Poultry slaughterhouse wastewater treatment using anaerobic fluid bed reactor and aerobic mobile-bed biological reactor International Journal of Engineering 32 (5) 634-640
[12] Leicester D D, Amezaga J M, Moore A and Heidrich E S 2020 Optimising the Hydraulic Retention Time in a Pilot-Scale Microbial Electrolysis Cell to Achieve High Volumetric Treatment Rates Using Concentrated Domestic Wastewater Molecules 25 (12) 2945

[13] Kobya M, Senturk E and Bayramoglu M 2006 Treatment of poultry slaughterhouse wastewaters by electrocoagulation Journal of hazardous materials 133 (1-3) 172-176

[14] Reilly M, Cooley A P, Tito D, Tassou S A, and Theodorou M K 2019 Electrocoagulation treatment of dairy processing and slaughterhouse wastewaters Energy Procedia 161 343-351

[15] Hakizimana J N, Gourich B, Chafi M, Stiriba Y, Vial C, Drogui P and Naja J 2017 Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches Desalination 404 1-21

[16] Bayramoglu M, Eyvaz M and Kobya M 2007 Technical and economic evaluation Chemical Engineering Journal 128 (2-3) 155-161

[17] Cruz K D, Francisco J T J, Mellendrez K J M and Pineda J M F Electrocoagulation treatment of swine slaughterhouse wastewater: effect of electrode material E3S Web of Conferences

[18] Paulista L O, Presumido P H, Theodoro J D P and Pinheiro A L N 2018 Efficiency analysis of the electrocoagulation and electrofloation treatment of poultry slaughterhouse wastewater using aluminum and graphite anodes Environmental Science and Pollution Research 25 (20) 19790-19800

[19] Bayramoglu M, Kobya M, Eyvaz M and Senturk E 2006 Electrocoagulation for the treatment of poultry slaughterhouse wastewater Separation and Purification Technology 51 (3) 404-408

[20] Potrich M C, Duart E S A, Sikora M S and Costa da Rocha R D 2020. Electrocoagulation for nutrients removal in the slaughterhouse wastewater: comparison between iron and aluminum electrodes treatment Environmental Technology 1-15

[21] Nugroho F A, Aryanti P T P, Nurhayati S and Muna H M 2019 A combined electrocoagulation and mixing process for contaminated river water treatment AIP Conference Proceedings 2097 (1) 030017

[22] Nugroho F, Aryanti P T P, Irawan B, Kurnia M and Prasetyo T 2019 Integrated Electrocoagulation and Tight Ultrafiltration Membrane for Wastewater Reclamation and Reuse Reaktor 18 (4) 209-215

[23] Nugroho F A, Sani M M, Apriyanti F and Aryanti P T P 2020 The Influence of Applied Current Strength and Electrode Configuration in Laundry Wastewater Treatment by Electrocoagulation. Journal of Physics: Conference Series 1477 (5) 052018

[24] Zini L P, Longhi M, Jonko E and Giovanela M 2020 Treatment of automotive industry wastewater by electrocoagulation using commercial aluminum electrodes Process Safety and Environmental Protection 142 272-284

[25] Chen G 2004 Electrochemical technologies in wastewater treatment Separation and purification Technology 38 (1) 11-41