Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer

Suresh V. Kuchipudi,a,b,1 Meera Surendran-Naira,b Myra R. Ruden,c,d Rachel M. Ruden,e,f Michele Yon,g Ruth H. Nissy,h i Andrew J. K. Conlan,i,j Randall J. Olsen,k,l James J. Davis, i James M. Musser,m,n,o Peter J. Hudson,p,q and Vivek Kapur,q,r,s,t

*aAnimal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802; bHuck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802; cWildlife Bureau, Iowa Department of Natural Resources, Des Moines, IA 50319; dDepartment of Veterinary Diagnostics and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011; eThe Center for Infectious Disease Dynamics, Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802; fDepartment of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802; gDepartment of Animal Science, The Pennsylvania State University, University Park, PA 16802; hDisease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom; iLaboratory of Molecular and Translational Human Infectious Disease Research, Center for Infectious Diseases, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030; jDepartment of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021; kDepartment of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021; lDepartment of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021; and mUniversity of Chicago Consortium for Advanced Science and Engineering, University of Chicago and Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL 60439

Edited by Peter Palese, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY; received November 30, 2021; accepted December 16, 2021

Many animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and could act as reservoirs; however, transmission in free-living animals has not been documented. White-tailed deer, the predominant cervid in North America, are susceptible to SARS-CoV-2 infection, and experimentally infected fawns can transmit the virus. To test the hypothesis that SARS-CoV-2 is circulating in deer, 283 retropharyngeal lymph node (RPLN) samples collected from 151 free-living and 132 captive deer in Iowa from April 2020 through January of 2021 were assessed for the presence of SARS-CoV-2 RNA. Ninety-four of the 283 (33.2%) deer samples were positive for SARS-CoV-2 RNA as assessed by RT-PCR. Notably, following the November 2020 peak of human cases in Iowa, and coinciding with the onset of winter and the peak deer hunting season, SARS-CoV-2 RNA was detected in 80 of 97 (82.5%) RPLN samples collected over a 7-wk period. Whole genome sequencing of all 94 positive RPLN samples identified 12 SARS-CoV-2 lineages, with B.1.2 (n = 51; 54.5%) and B.1.1311 (n = 19; 20%) accounting for ~75% of all samples. The geographic distribution and nesting of clusters of deer and human lineages strongly suggest multiple human-to-deer transmission events followed by subsequent deer-to-deer spread. These discoveries have important implications for the long-term persistence of the SARS-CoV-2 pandemic. Our findings highlight an urgent need for a robust and proactive “One Health” approach to obtain enhanced understanding of the ecology, molecular evolution, and dissemination of SARS-CoV-2.

SARS-CoV-2 | deer | spillover | One Health | animal reservoir

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19 in humans, is a novel coronavirus in the genus Betacoronavirus (subgenus Sarbecovirus) (1). SARS-CoV-2 was first identified in Wuhan, China, toward the end of 2019 (2), and has caused a pandemic with more than 250 million COVID-19 cases and over 5 million deaths globally as of November 2021 (3). The virus continues to evolve and spread, with a growing concern for the emergence of new variants. SARS-CoV-2 uses the host angiotensin-converting enzyme 2 (ACE-2) receptor to enter cells (4). ACE-2 receptors are well conserved across vertebrate species, including humans (5), and computational analyses predict high binding affinities of SARS-CoV-2 to the ACE-2 receptor in multiple animal species, indicating potential susceptibility to infection (5). Included among these are three species of cervids: the Père David’s deer (Elaphurus davidianus), reindeer (Rangifer tarandus), and white-tailed deer (Odocoileus virginianus) (6).

Global dissemination of SARS-CoV-2 among humans provides opportunities for spillover transmission into nonhuman hosts (5, 7). Consistent with this idea, SARS-CoV-2 infections have been documented in dogs, cats, zoo animals, and farmed mink (8, 9). In principle, SARS-CoV-2 infection of a nonhuman animal host might result in establishing a reservoir that can further drive the emergence of novel variants with the potential for spillback to humans. This type of transmission cycle has been described among workers on mink farms (10). However, widespread SARS-CoV-2 transmission in a free-living animal species has not yet been documented.

Our study was prompted by a recent report that 40% of free-living white-tailed deer in the United States had antibodies against SARS-CoV-2 (11). Recent studies have also provided evidence of SARS-CoV-2 transmission among experimentally infected deer (6, 12). To test the hypothesis that infection and subsequent transmission of SARS-CoV-2 in deer occurs in

Significance

The results provide strong evidence of extensive SARS-CoV-2 infection of white-tailed deer, a free-living wild animal species with widespread distribution across North, Central, and South America. The analysis shows infection of deer resulted from multiple spillovers from humans, followed by efficient deer-to-deer transmission. The discovery of widespread infection of white-tailed deer indicates that the establishment as potential reservoir hosts for SARS-CoV-2, a finding with important implications for the ecology, long-term persistence, and evolution of the virus, including the potential for spillback to humans.

Author contributions: S.V.K., R.M.R., J.M.M., and V.K. designed research; S.V.K., M.S.-N., R.M.R., M.Y., R.H.N., L.L., R.J.O., and V.K. performed research; S.V.K., M.S.-N., J.M.M., and V.K. analyzed data; and S.V.K., M.S.-N., R.M.R., M.Y., R.H.N., L.L., B.M.J., C.D.M., N.L., K.W., A.J.K.C., R.J.O., and V.K. wrote the paper. The authors declare no competing interest.

1To whom correspondence may be addressed. Email: skuchipudi@psu.edu or vkapur@psu.edu.

This article contains supporting information online at http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121644119/-/DCSupplemental.

Published January 25, 2022.
nature, we assayed 283 retropharyngeal lymph node (RPLN) samples collected from free-living and captive deer in Iowa from April 2020 through January 2021. Sequence analysis of SARS-CoV-2 genomes in all 94 positive samples discovered multiple lineages corresponding to viral genotypes circulating contemporaneously in humans. In the aggregate, our results are consistent with a model of multiple independent human-to-deer transmission events followed by subsequent deer-to-deer transmission. The findings raise the concerning possibility of reverse zoonoses, especially in exurban areas with high deer density. Our results also highlight the potential risks and considerable knowledge gaps associated with the continued molecular evolution of SARS-CoV-2 in animal hosts. Implementation of enhanced surveillance programs to define the magnitude of the deer reservoir problem and determine whether other reservoir species exist at the animal–human interface is warranted.

Results and Discussion

SARS-CoV-2 RNA is Present in a Substantial Fraction of White-Tailed Deer across Iowa. A total of 283 RPLN samples recovered from white-tailed deer, either free living on public lands or in periurban environments or living in managed settings (“captive”) such as hunting preserves in Iowa between 8 April 2020 and 6 January 2021, were analyzed by RT-PCR for the presence of SARS-CoV-2 RNA (13) (SI Appendix, Table S1). The sampling period closely follows the trajectory of the pandemic in Iowa and includes the 2020 white-tailed deer hunting season (3) (Fig. 1). Sources and characteristics of the 283 RPLN samples are summarized in Table 1. Overall, 94 of the 283 (33.2%; 95% CI: 28, 38.9) RPLN samples were found to be positive for SARS-CoV-2 RNA. A majority (n = 261, 91.9%) of the 283 RPLN samples in our study were harvested from deer from September through December of 2020, a period that coincided with the regular deer hunting season in Iowa that started on 19 September 2020 and ended 10 January 2021.

Strong Evidence of Temporal Clustering among the Positive Deer Samples. We explored temporal trends in the recovery of SARS-CoV-2 RNA from deer in the sample set. The 17 RPLNs from deer collected during April through August 2020 were negative for the presence of SARS-CoV-2 RNA (Table 1). The first identification of SARS-CoV-2 in deer was on 28 September 2020, in a captive deer harvested on a game preserve in southeastern Iowa (Fig. 2 and SI Appendix, Table S1). This was closely followed by a second positive sample identified in a free-living deer killed in a road accident on 30 September 2020, ~300 miles away in Woodbury County on the state’s western border (SI Appendix, Table S1). In total, 2 of the 39 samples collected in September were positive for SARS-CoV-2 RNA (5.1%; 95% CI: 1.4, 16.9). Similarly, in October 2020, 4 of 70 (5.7%; 95% CI 2.2, 13.8) RPLNs recovered from deer, one each from Des Moines and Pottawattamie counties, and two from Woodbury, were found to be positive for SARS-CoV-2 RNA. Coinciding with the major peak of infection in humans in Iowa, the positivity rate in deer rapidly increased, with 22 of 77 RPLN samples (27.8%; 95% CI 19.2, 38.6) harboring SARS-CoV-2 RNA in November 2020, and 61 of 75 samples (81.3%; 95% CI: 71.1, 88.5) positive in December of 2020 (Fig. 1). During the second week of January 2021, at the end of the regular hunting season, all five deer RPLN samples were positive for SARS-CoV-2 RNA (95% CI: 56.6, 100). Notably, during the 7 wk starting 23 November 2020 through the end of hunting season on 10 January 2021, 80 of 97 (82.5%; 95% CI: 73.7, 88.8) deer RPLN samples from across the state were positive for SARS-CoV-2 RNA. Importantly, the results show a high viral RNA copy number in deer RPLN samples (ranging from 2.7 copies to 2.3 × 10^6 copies per milliliter) (SI Appendix, Fig. S1), suggesting that many of the deer likely had a high viral load.

Ecological Associations and Risk Factors for Recovery of SARS-CoV-2 RNA from Free-Living and Captive Deer in Iowa. An exploratory analysis of potential risk factors for the identification of SARS-CoV-2...
Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer

Table 1. Characteristics, demographics, and recovery of SARS-CoV-2 in Iowa

Month	Negative samples (N)	Positive samples (N)	Total samples (N)	Proportion/prevalence (%) (95% CI)
April 2020	7	7	14	0.86 (M, F).
May 2020	4	4	8	0.59 (A, Y).
June 2020	4	4	8	< 0.0001 (C, FL).
August 2020	2	2	4	
September 2020	37	2	39	5.13 (1.42–16.9).
October 2020	66	4	70	7.11 (2.24–13.8).
November 2020	55	22	77	28.9 (19.7–39.5).
December 2020	14	61	75	87.3 (71.1–88.5).
January 2021	0	5	5	100 (56.6–100).
Total	189	283	472	33.2 (28.0–38.9).

Sex				
Male (M)	59	179	238	33.0 (26.1–39.9)*
Female (F)	35	103	138	34.0 (24.8–43.1)*
Unknown	1			1.0 (0.0–2.0)
Total	94	283	377	33.2 (28.0–38.9)

Age				
Adult (A)	82	250	332	32.8 (26.9–38.6)*
Yearling (Y)	12	32	44	37.5 (20.7–54.3)
Total	94	283	377	33.2 (28.0–38.9)

Status				
Captive (C)	27	131	158	20.6 (13.7–27.5)*
Free living (FL)	67	152	229	44.1 (36.1–51.8)*
Total	94	283	377	33.2 (28.0–38.9)

County				
Allamakee	11	11	22	100 (74.1–100)
Jasper	4	4	8	100 (51.0–100)
Polk	6	7	13	85.7 (48.7–97.4)
Appanoose	21	28	49	75.6 (56.6–87.3)
Fayette	6	10	16	60 (31.3–83.2)
Jefferson	4	8	12	50 (21.5–78.5)
Woodbury	13	46	59	28.3 (17.3–42.6)
Pottawattamie	5	22	27	22.8 (10.1–43.4)
Des Moines	23	112	135	20.5 (1.5–28.9)
Dubuque	1	12	13	8.3 (1.5–35.4)
Black Hawk	9	0	9	
Dickinson	1	0	1	
Henry	6	0	6	
Jackson	3	0	3	
Keokuk	1	0	1	
Van Buren	1	0	1	
Washington	1	0	1	
Webster	1	0	1	
Total	94	283	377	33.2 (28.0–38.9)

Lineage				
B.1	7		7	7.5 (3.7–14.6)
B.1.1	1		1	
B.1.119	2		2	
B.1.2	51		51	54.2 (44.2–64.0)
B.1.234	6		6	6.4 (3.0–13.2)
B.1.240	1		1	
B.1.264	1		1	
B.1.311	19		19	20.2 (13.3–29.4)
B.1.362	2		2	
B.1.400	2		2	
B.1.459	1		1	
B.1.596	1		1	
Total	94		94	

Notes:
*P = 0.86 (M, F).
‡P = 0.59 (A, Y).
§P < 0.0001 (C, FL).
described genome sequence analysis pipelines (15–17). Next, we used an automated vSNP pipeline (18) to identify single-nucleotide polymorphisms (SNPs) and construct phylogenetic trees in the context of 84 additional publicly available animal origin SARS-CoV-2 isolates as well as from 372 SARS-CoV-2 isolates identified from humans in Iowa during this same period (SI Appendix, Table S2). All newly sequenced SARS-CoV-2 consensus genomes from deer RPLN are deposited in Global nucleotide Information (NCBI) Short Read Archive (BioProject Number PRJNA776532).

The analysis identified a total of 12 SARS-CoV-2 lineages among the 94 samples from deer, with two lineages, B.1.2 (n = 51; 54.5%), and B.1.311 (n = 19; 20%), representing ~75% of all samples (Table 1). Together with the next two most abundant lineages, B.1 (n = 7) and B.1.234 (n = 6), these four lineages represented ~88% of SARS-CoV-2 circulating among geographically widely distributed deer in the state (Table 1; SI Appendix, Table S2). While the number of SARS-CoV-2 sequences from Iowa is not very high (only 372 sequences are available) during this period in publicly available data, it is noteworthy that the B.1.2 was also the most abundant (~43.5%) SARS-CoV-2 lineage circulating in humans in Iowa (SI Appendix, Table S2). In contrast, the B.311 lineage, accounting for about one-fifth of the isolates in deer, was relatively poorly represented (~16%) among the publicly available SARS-CoV-2 from humans in Iowa (SI Appendix, Table S2). The second-most abundant SARS-CoV-2 lineage in humans, B.1.565, accounting for ~8.1% of available sequences, was not identified among the sampled deer. However, given the lack of representativeness of the sampling from both humans and deer, we urge caution in interpreting these findings of apparent differences in the prevalence of SARS-CoV-2 lineages between deer and sympatric human hosts.

The temporal and geographic patterns of clustering of SARS-CoV-2 lineages, together with phylogenetic analyses, provide strong evidence of multiple likely zooanthroponotic spillovers from humans to deer. This is evidenced by the near-simultaneous recovery of multiple SARS-CoV-2 lineages within temporally and geographically restricted deer herds at various locations throughout the state (SI Appendix, Tables S1 and S2). For instance, between April 2020 and December 2020, 22 of 23 SARS-CoV-2 positive samples recovered from deer in a game preserve in southeastern Iowa were of B.1.2 lineage. However, the single outlier isolate lineage B.1.311 was recovered from a deer at this preserve together with 12 specimens harboring the B.1.2 lineage on the same day (24 November 2020). Similarly, in the Yellow River State Forest area in Allamakee County, during the 5 d between 5 December and 9 December, all 11 hunter-killed deer were positive for the presence of SARS-CoV-2 RNA in their RPLNs. Nine of these samples were represented by the B.1.2 lineage. The two outliers, represented by B.1.311 and B.1.459 lineages were recovered from hunter-killed deer on the same date, 8 December 2020, as was another deer harboring the B.1.2 lineage. All these deer were hunted within a few miles of each other. A third example of the near-synchronous recovery of genetically distinctive SARS-CoV-2 lineages from infected deer is from the Volga River State Recreation Area in Fayette County, where four lineages were recovered from the RPLN of hunter-killed deer within a 2-mi radius in the 3 d spanning 7 December through 9 December 2020. A final example is from within a 5-mi radius of the Lake Rathbun area of Appanoose County where, on a single day, 10 positive deer RPLNs were harvested by hunters. Five distinct lineages were represented among these samples—lineage B.1.311 was recovered from six deer RPLNs, while lineages B.1.362, B.1.240, B.1.400, and B.1 were recovered from one RPLN each. Together, these findings strongly suggest multiple point sources of spillover of distinct SARS-CoV-2 lineages to captive and free-living deer.

Fig. 2. Temporal and spatial distribution of SARS-CoV-2 positive RPLN samples from white-tailed deer in Iowa. The 94 SARS-CoV-2 positive RPLN samples show strong temporal clustering in frequency of detection. (A) Monthly snapshots showing number and location of SARS-CoV-2 positive RPLNs from white-tailed deer. (B) Progression in number of positive cases in white-tailed deer from September through December 2020 in three exemplary regions in Iowa (Left) highlighting different sampling intensities and geographic sizes of sampling areas but similar trends of increase in incidence during November and December of 2020. Each black circle represents a negative test result, and each red circle represents a positive test result for presence of SARS-CoV-2 RNA in RPLNs. Due to geographic proximity of site of sample collection, all individual points overlaps are not visible on the state map depicted on Left and are highlighted for selected regions in Right.
Recent evidence suggests that experimentally infected fawns are readily infected and transmit the virus to other susceptible fawns between 3 d and 5 d postinfection. The virus can be recovered from the palatine tonsils and RPLNs of infected animals for up to 21 d postexposure (6). Similarly, it has been shown that adult white-tailed deer are also highly susceptible to SARS-CoV-2 infection and transmit the virus through direct contact and vertically from doe to fetus (12). However, evidence for deer-to-deer transmission of SARS-CoV-2 in free-living deer was not well documented. Deer experimentally infected with SARS-CoV-2 show no notable clinical signs; however, pathological changes characterized by rhinitis, marked attenuation of the respiratory epithelium of the trachea, bronchitis, and, in some cases, bronchiolitis were observed (12). The clinical outcomes of SARS-CoV-2 infection in free-living deer and whether or not they develop symptoms or disease remain unknown. This is important, since nearly three-quarters of humans who test positive for SARS-CoV-2 by RT-PCR also remain asymptomatic (19). Hence, well-powered longitudinal studies may be needed to get sufficient statistical power to determine the nature of the clinical outcome of SARS-CoV-2 infection in deer.

To explore evidence for potential sylvatic transmission in free-living deer, we applied a molecular epidemiologic approach to explore the temporal patterns of recovery of SARS-CoV-2 lineages from free-living deer to identify possible evidence of deer-to-deer transmission. One example is evident from the Lake Rathbun area of Appanoose County, where lineage B.1.311 was predominant among deer, representing 14 of 21 positive samples (SI Appendix, Tables S1 and S2). The first RPLN sample harboring a B.1.311 lineage was recovered on 5 December 2020, from a hunter-killed deer from this area. This was followed by additional recoveries of B.1.311 on 8 December 2020, and then again on 2 January 2021, and 9 January 2021—more than a month apart—and with high viral loads in the lymph nodes suggestive of active infection. Together with the observation that the B.1.311 lineage was less frequently reported (based on available sequences) from humans in Iowa as well as in deer in other Iowa counties, the results suggest the continued circulation of this lineage among deer in free-living settings. However, it is important to note that, in the absence of a comprehensive longitudinal study of circulating lineages, it is not possible to formally exclude the possibility that B.1.311 was circulating within humans or other hosts in this area, and the deer were repeatedly exposed to the same point source(s) of infection.

Finally, to better visualize phylogenetic relationships among circulating SARS-CoV-2 originating in free-living and captive deer, we generated an SNP-based maximum likelihood tree exploring the temporal patterns of recovery of SARS-CoV-2 and the subsequent reemergence of lineages with increased virulence for the original host. Since many animal species already harbor an extensive array of endemic CoVs, the presence of SARS-CoV-2 in deer offers a potential opportunity for the virus to recombine and acquire or evolve increased fitness traits such as increased virulence, transmissibility, pathogenicity, and immune evasion (30). Evidence of some of these exists in the Denmark mink spillover event where the Y435F substitution (which conferred increased affinity of the spike protein to human ACE-2) evolved after human-to-mink transmission (8, 10, 30). Animal reservoirs can also provide a refuge outside of a largely immune/vaccinated human population and thus increase the threat of subsequent reemergence of ancestral genotypes into immunologically naïve or susceptible human hosts (31). Such was the case with the 2009 A-H1N1 (swine flu) pandemic where the virus, related to both the pandemic 1918 strain and strains circulating in the early 20th century, spilled over to humans from infected pigs (31, 32).

Predicting how a virus using a new host species can affect virulence in the primary host is not simple. In theory, pathogen evolution within a single-host system involves trade-offs between increased virulence and transmissibility, presence of a free-living reservoir host for SARS-CoV-2 may provide an opportunity for the virus to recombine and acquire or evolve increased fitness traits such as increased virulence, transmissibility, pathogenicity, and immune evasion (30). Evidence of some of these exists in the Denmark mink spillover event where the Y435F substitution (which conferred increased affinity of the spike protein to human ACE-2) evolved after human-to-mink transmission (8, 10, 30).

A reservoir host can facilitate viral evolution and the emergence of lineages with increased virulence for the original host. Since many animal species already harbor an extensive array of endemic CoVs, the presence of SARS-CoV-2 in deer offers a potential opportunity for the virus to recombine and acquire or evolve increased fitness traits such as increased virulence, transmissibility, pathogenicity, and immune evasion (30). Evidence of some of these exists in the Denmark mink spillover event where the Y435F substitution (which conferred increased affinity of the spike protein to human ACE-2) evolved after human-to-mink transmission (8, 10, 30). Animal reservoirs can also provide a refuge outside of a largely immune/vaccinated human population and thus increase the threat of subsequent reemergence of ancestral genotypes into immunologically naïve or susceptible human hosts (31). Such was the case with the 2009 A-H1N1 (swine flu) pandemic where the virus, related to both the pandemic 1918 strain and strains circulating in the early 20th century, spilled over to humans from infected pigs (31, 32).

Predicting how a virus using a new host species can affect virulence in the primary host is not simple. In theory, pathogen evolution within a single-host system involves trade-offs between increased virulence and transmissibility, presence of a free-living reservoir host for SARS-CoV-2 may provide an opportunity for the virus to recombine and acquire or evolve increased fitness traits such as increased virulence, transmissibility, pathogenicity, and immune evasion (30). Evidence of some of these exists in the Denmark mink spillover event where the Y435F substitution (which conferred increased affinity of the spike protein to human ACE-2) evolved after human-to-mink transmission (8, 10, 30). Animal reservoirs can also provide a refuge outside of a largely immune/vaccinated human population and thus increase the threat of subsequent reemergence of ancestral genotypes into immunologically naïve or susceptible human hosts (31). Such was the case with the 2009 A-H1N1 (swine flu) pandemic where the virus, related to both the pandemic 1918 strain and strains circulating in the early 20th century, spilled over to humans from infected pigs (31, 32).
be complex, they often result in more stable dynamics with multiple reservoir hosts, and pathogens that utilize many hosts can be at a selective advantage, since they are not lost in case they fade out in an individual species.

Study Limitations. The study has several limitations. The RPLN samples tested were from only one state in the United States, and the sampling was not uniform within the state. However, while the generalizability of our findings remains to be tested, we see no reason why this scenario has also not already played out in other regions with large deer populations with opportunities for contact with humans. Another limitation of our study was that RPLN samples tested were all from 2020 and early 2021, representing the early part of the pandemic before the global dissemination of the highly successful Alpha and Delta variants. Hence, surveillance efforts with robust longitudinal sampling approaches are urgently needed to determine whether deer will become long-term reservoirs for SARS-CoV-2 and potentially assume a role as generators of novel variant viruses that may repeatedly reemerge in humans or spill over to other animal hosts.

Concluding Comments and Future Directions. White-tailed deer are the most abundant wild cervid species in the United States, with an estimated 25 million individuals, and deer hunting is the most popular form of hunting in the United States, contributing over $20 billion to the US GDP and supporting more than 300,000 jobs in 2016 (34). In addition to the abundance, social relevance, and economic importance of deer to the US economy, the discovery of sylvatic and enzootic transmission in a substantial fraction of free-living deer has important implications for the natural ecology and long-term persistence of SARS-CoV-2, including through spillover to other free-living or captive animals and potential for spillback to humans.

In this context, there are several important questions that require urgent attention. For instance, it is important to understand whether the observed widespread SARS-CoV-2 infection and transmission among white-tailed deer will result in virus adaptation to cervids similar to what has been observed in other species such as the mustelids. Previously, a high similarity in the white-tailed deer ACE-2 sequence was shown relative to human ACE-2, and the changes within the domains that bind the SARS-CoV-2 Spike protein are at residues D30E, L79M, M82T, and E329D (5, 35). Therefore, it is not altogether surprising that the deer ACE-2 receptors enable efficient binding by the Spike protein for viral entry, perhaps even slightly better than humans (35), that will allow the highly efficient transmission of SARS-CoV-2 in deer. Hence, it is tempting to predict that, unlike the observed rapid adaptations in Spike in mustelids with a restricted ACE-2 receptor, any adaptations of SARS-CoV-2 in deer during the initial waves of infection are more likely to occur in regions outside of the Spike protein. However, since experimental SARS-CoV-2 infection in deer elicits a rapid neutralizing antibody immune response (12), future investigations should closely monitor the evolutionary trajectories of...
SARS-CoV-2, using robust surveillance and whole genome sequencing to better understand the drivers and mechanisms of adaption of SARS-CoV-2 in a free-living natural reservoir host.

Given their abundance and widespread range in North, Central, and South America, it is important to consider that white-tailed deer overlap with a number of other wild and domestic species that are either known to be susceptible or predicted to be susceptible [i.e., deer mice, bushy-tailed woodrats, and house cats (36)]. Hence, it will be important to understand and monitor whether the high levels of infection in deer observed in our studies might result in spillover and onward transmission to other hosts, with opportunities for further viral adaptation. In particular, we note that domesticated cattle have shown low susceptibility to infection with low levels of viral replication and only limited seroconversion when experimentally challenged with extant lineages of SARS-CoV-2 (36–38). However, it remains unknown whether cattle and other large, farmed ungulate species, including sheep, goats, camelds, or equids, may become susceptible to emergent SARS-CoV-2 variants adapted in deer. Hence, it will be important to establish robust and comprehensive surveillance programs to monitor the evolutionary trajectories of SARS-CoV-2 in white-tailed deer together with potential spillover to other susceptible peridomestic and domestic animals.

Finally, our findings highlight that, to predict or prevent the emergence of the next pandemic and control infectious diseases with pandemic and zoonotic potential, a better understanding of the human–animal molecular and ecological interface and its relevance to infection transmission dynamics is essential (9). Thus, we identify an urgent need to implement a more proactive and robust “One Health” approach to better understand the ecology and evolution of SARS-CoV-2 in deer and other animal species, including through active surveillance and longitudinal studies.

Materials and Methods

RPLN Samples. The Iowa Department of Natural Resources (DNR) routinely collects medi al RPLNs from white-tailed deer statewide for use in its Chronic Wasting Disease (CWD) surveillance program. Paired RPLNs were collected by trained field staff or partners (e.g., taxidermists), placed into separate Whirl-Pak bags, and frozen at –20 °F. Individuals involved in sample collection were personal protective equipment, consisting of disposable gloves at a minimum. While masking was not required, the Iowa DNR had mandatory in the field and lab in order to prevent potential transmission with pandemic and zoonotic potential, a better understanding of the relevance to infection transmission dynamics is essential (9). Thus, we identify an urgent need to implement a more proactive and robust “One Health” approach to better understand the ecology and evolution of SARS-CoV-2 in deer and other animal species, including through active surveillance and longitudinal studies.

Detection of SARS-CoV-2 Viral RNA by RT-PCR. The presence of SARS-CoV-2 nucleic acid was assessed by a real-time RT-PCR assay using the OPTI Medical SARS-CoV-2 RT-PCR kit following the manufacturer’s instructions on an ABI 7500 Fast Instrument (ThermoFisher Scientific). The OPTI Medical SARS-CoV-2 RT-PCR assay detects two different targets in the gene encoding viral nucleocapsid (N) protein coding region (13, 39). The assay is highly sensitive, with a limit of detection of 0.36 copies per μL. The internal control Rnase P (RP) was used to ensure samples were not inadvertently contaminated with human origin tissue or fluids during harvesting or processing. All samples were tested and found negative for the presence of the human RP gene by RT-PCR. We generated a standard curve using SARS-CoV-2 RNA with a known copy number. Using the standard curve, viral RNA copies per milliliter of tissue homogenate were calculated.

To ensure assay specificity, a subset of 25 positive and 25 negative samples were additionally tested with the TaqPath kit (Thermofisher Scientific) that targets the SARS-CoV-2 ORF1ab, N gene, and S gene (39, 40). All results were concordant with both assays. As an additional check of assay specificity, all 60 RPLN samples collected in 2019 prior to the first reported SARS-CoV-2 case in humans in the United States were negative for the presence of SARS-CoV-2 RNA.

SARS-CoV-2 Genome Sequencing. Total RNA extracted from RPLN samples was used for sequencing the whole genomes of SARS-CoV-2 as previously described (14–16, 41). Briefly, sequencing libraries were prepared according to version 4 of the ARTIC ncov-2019 protocol (42). We used a semi-automated workflow that employed BioMe (i7 liquid-handling workstations (Beckman Coulter Life Sciences) and MANTIS automated liquid handlers (FORMULATRIX). Short sequence reads were generated with a NovaSeq 6000 instrument (Illumina). To ensure a very high depth of coverage, the RPLN sequencing libraries were prepared in duplicate and sequenced with an SP 300 cycle reagent kit.

SARS-CoV-2 Genome Sequence Analysis and Identification of Variants. Viral genomes were assembled with the BV-BRC SARS-CoV-2 assembly service (43, 44). The BV-BRC assembly service currently uses a pipeline that is similar to the One Codex SARS-CoV-2 variant-calling pipeline (45). Briefly, the pipeline uses seutil version 1.3-1116 for sequence trimming (46), minimap version 2.1.40 (47) for aligning reads against reference genome Wuhan-Hu-1 (ref. 48, NC_045512.2; ref. 49), samtools version 1.11 (50) for sequence and file manipulation (51), and iVar version 1.2.2 (52) for primer trimming and variant calling (53). To increase stringency, the minimum read depth for assemblies (based on samtools mpileup) was set at three to determine consensus. Genetic lineages, variants being monitored, and variants of concern were identified and designated by Pangolin version 3.1.11 (14) with pangolEARn module 2021-08-24. SARS-CoV-2 genomes were identified using the vSNP (18) SNP analysis program.

QGIS (geographic information system) mapping software version 3.16.10 was used to visually portray the geographic location of the white-tailed deer sampled (54).

Data Availability. All SARS-CoV-2 consensus genomes are deposited in GISAID, https://www.gisaid.org; Accession numbers EPI_ISL_580476–EPI_ISL_580477 and EPI_ISL_6425286–EPI_ISL_6425287, and raw reads have been submitted to NCBI’s Short Read Archive (BioProject number: PRJNA776532).

Acknowledgments. We thank Abhinay Gontu, Gouthada Chodde, Patriva Jakka, and Abirami Ravichandran for help with tissue homogenization, and Vincent Nelson, Lindsey LaBella, and Corey Price for help with sample processing. We thank Matthew, Sindu Pena, Cristina Reppond, Madison N. Shyner, Jessica Cambric, Ryan Gadd, Rashmi Thakur, Akanksha Batajoo, and Regan Mangham for genome sequencing. We are grateful to Dr. Suelle Robbe-Austerman, Tod Stuber, and Kristina Lantz, US Department of Agriculture (USDA) National Veterinary Services Laboratory, for invaluable assistance and wise counsel. This study was possible through the collective efforts of Iowa DNR field staff, with special thanks to Rigs Wilson for help with sample collection. The study was funded by the Huck Institutes of the Life Sciences (S.V.K. and V.K.); USDA National Institute of Food and Agriculture (2020-07151-32175); US Fish and Wildlife Service Wildlife and Sport Fish Restoration Program Grant Awards FY20 17-22322; FY20 17-22323; FY20 17-22324; and Iowa DNR Fish and Game Protection Fund. This project was also funded, in part, by the Houston Methodist Academic Institute Infectious Diseases Fund (J.M.M. and R.J.O.) and supported, in part, by National Institute of Allergy and Infectious Diseases, NIH, Department of Health and Human Services, Contract 75N93019C0076 (J.D.D.); K.J.V. was partially supported by the NSF Ecology and Evolution of Infectious Diseases program (Grant 1619072).

1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 356–544 (2020).

2. V. J. Munster, M. Koopmans, N. van Doremalen, D. van Riel, E. de Wit, A novel coronavirus emerging in China - Key questions for impact assessment. N. Engl. J. Med. 382, 692–694 (2020).

3. E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).

4. Y. Wan, J. Shang, R. Graham, R. S. Baric, F. Li, Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 94, e01217–20 (2020).

5. J. Damas et al., Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl. Acad. Sci. U.S.A. 117, 22311–22322 (2020).

6. M. V. Palmer et al., Susceptibility of white-tailed deer (Odocoileus virginianus) to SARS-CoV-2. J. Virol. 95, e00823–21 (2021).

Kuchipudi et al.
Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer
0. B. E. Oude Munnink et al., Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021).
11. J. C. Chandler et al., SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc. Natl. Acad. Sci. U.S.A. 118, e2114828118 (2021).
12. K. Cool et al., Infection and transmission of SARS-CoV-2 and its alpha variant in pregnant white-tailed deer. Emerg. Microbes Infect. 11, 95–112 (2022).
13. M. C. Smithgall, M. Dowlatshahi, S. L. Spitalnik, E. A. Hod, A. J. Rai, Types of assays for community transmission. Transbound. Emerg. Dis. 68, 1850–1867 (2021).
14. S. Cleaveland, M. K. Laurenson, L. H. Taylor, Diseases of humans and their domestic mammals: Pathogen characteristics, host range and the risk of emergence. Emerg. Infect. Dis. 20, 1842–1847 (2005).
15. L. H. Taylor, M. M. Latham, M. E. J. Woolhouse, Risk factors for human disease emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 983–989 (2001).
16. S. W. Long et al., Sequence analysis of 20,453 severe acute respiratory syndrome coronavirus 2 genomes from the Houston metropolitan area identifies the emergence and widespread distribution of multiple isolates of all major variants of concern. Am. J. Pathol. 191, 983–992 (2021).
17. S. W. Long et al., Molecular architecture of early dissemination and massive second wave of the SARS-CoV-2 virus in a major metropolitan area. MBio 11, e02707-20 (2020).
18. T. Stuber, USDA-VS/SVSNP. https://github.com/USDA-VS/SVSNP. Accessed 27 October 2021.
19. D. P. Oran, E. J. Topol, The proportion of SARS-CoV-2 infections that are asymptomatic: A systematic review. Ann. Intern. Med. 174, 655–662 (2021).
20. M. E. J. Woolhouse, S. Gowtage-Sequeria, Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 11, 1842–1847 (2005).
21. D. A. Meekins, N. N. Gaudreault, J. A. Richt, Natural and experimental SARS-CoV-2 infection in domestic and wild animals. Viruses 13, 1993 (2021).
22. N. Verma, D. Patel, A. Pandya, Emerging diagnostic tools for detection of COVID-19 and perspective. Biomed. Microdevices 22, 83 (2020).
23. C. K. Lee et al., Clinical performance of Roche cobas 6800, Luminex ARIES, MIRXES Fortitude Kit 2.1, Altona RealStar, and Applied Biosystems TaqPath for SARS-CoV-2 detection in nasopharyngeal swabs. J. Med. Virol. 93, 4603–4607 (2021).
24. P. A. Christensen et al., Delta variants of SARS-CoV-2 cause significantly increased vaccine breakthrough COVID-19 cases in Houston, Texas. Am. J. Pathol., 10.1016/j.ajpath.2021.10.019 (2021).
25. ARTIC Network, ARTIC nCoV-2019 protocol version 4. https://artic.network/hcov-n-2019. Accessed 27 October 2021.
26. Bacterial and Viral Bioinformatics Resource Center, BV-BRC Beta. https://www.bv-brc.org/app/comprehensivesars2analysis. Accessed 27 October 2021.
27. J. J. Davis et al., The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Res. 48, D666–D672 (2020).
28. M. G. Hemida et al., MERS coronavirus in dromedary camel herd, Saudi Arabia. Emerg. Infect. Dis. 20, 1233–1241 (2014).
29. A. Banerjee, K. Kulcsar, V. Mira, M. Frieman, K. Mossmann, Bats and coronaviruses. Viruses 11, 41 (2019).
30. R. Bayarra-Olmos et al., The SARS-CoV-2 Y453F mink variant displays a pronounced increase in ACE-2 affinity but does not challenge antibody neutralization. J. Biol. Chem. 296, 100536 (2021).
31. A. Teleni et al., After the pandemic: Perspectives on the future trajectory of COVID-19. Nature 596, 495–504 (2021).
32. B. Manicassamy et al., Protection of mice against lethal challenge with 2009 H1N1 influenza A virus by 1918-like and classical swine H1N1 based vaccines. PLoS Pathog. 6, e1000745 (2010).
33. M. E. Woolhouse, L. H. Taylor, D. T. Haydon, Population biology of multihost pathogens. Science 292, 1109–1112 (2001).
34. National Shooting Sports Foundation, Hunting in America: An economic force for conservation wildlife restoration, 2018 edition. https://www.fishwildlife.org/application/files/381573197536/Southwick_Assoc__-__NSF_Hunting_Econ.pdf. Accessed 27 October 2021.
35. C. Conceicao et al., The SARS-CoV-2 spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol. 18, e3001016 (2020).
36. D. A. Meekins, N. N. Gaudreault, J. A. Richt, Natural and experimental SARS-CoV-2 infection in farmed minks, the Netherlands, April–May 2020. Emerg. Infect. Dis. 26, 2979–2981 (2020).
37. L. Ulrich, K. Wernike, D. Hoffmann, T. C. Mettenleiter, M. Beer, Experimental infection of cattle with SARS-CoV-2. Emerg. Infect. Dis. 26, 2979–2981 (2020).
38. S. Falkenberg et al., Experimental inoculation of young calves with SARS-CoV-2. Viruses 13, 441 (2021).
39. N. D. Grubaugh et al., Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus. Evol. 7.2, veab064 (2021).
40. R. J. Olsen et al., Trajectory of growth of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in Houston, Texas, January through May 2021, based on 12,476 genome sequences. Am. J. Pathol. 191, 1754–1773 (2021).
41. A. O’Toole et al., Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus. Evol. 7, 2021.
42. ARTIC Network, ARTIC nCoV-2019 protocol version 4. https://artic.network/hcov-n-2019. Accessed 27 October 2021.
43. Bacterial and Viral Bioinformatics Resource Center, BV-BRC Beta. https://www.bv-brc.org/app/comprehensivesars2analysis. Accessed 27 October 2021.
44. J. J. Davis et al., The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Res. 48, D666–D672 (2020).
45. C. He, SARS-CoV-2 variant calling and consensus assembly pipeline. https://github.com/oncocodex/sars-cov-2.git. Accessed 27 October 2021.
46. H. Li, Toolkit for processing sequences in FASTA/Q formats. https://github.com/hf3/seqt. Accessed 27 October 2021.
47. H. Li, A versatile pairwise aligner for genomic and spliced nucleotide sequences. minimap2 version 2.1. https://github.com/hf3/minimap2. Accessed 27 October 2021.
48. F. Wu et al., A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020).
49. H. Li, Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
50. Samtools, Samtools version 1.11. http://www.htslib.org. Accessed 27 October 2021.
51. H. Li et al.; 1000 Genome Project Data Processing Subgroup, The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
52. K. G. Andersen, iVar version 1.2.2. https://github.com/andersen-lab/ivar/releases. Accessed 27 October 2021.
53. K. G. Andersen, iVar version 1.2.2. https://github.com/andersen-lab/ivar/releases. Accessed 27 October 2021.
54. QiGS.Org, QiGS geographic information system version 3.16.10. https://www.qgis.org. Accessed 27 October 2021.