Gaucher disease carrier with gestational thrombocytopenia and anemia: a case report

Takako Sugiura*, Arisa Fujiwara, Takasugi Yo, Kana Kashinoura, Chihiro Hayase, Yumiko Taura, Yasuhiro Kawarabayashi, Yasuyuki Hasuo and Shinji Ogawa

Abstract

Background: Gaucher disease is an autosomal recessive inborn error of metabolism that causes disorders of blood, bone, and central nervous system as well as hepatosplenomegaly. We present the case of a carrier of Gaucher disease with gestational thrombocytopenia and anemia that required blood transfusion therapy.

Case presentation: A 24-year-old Nepalese primipara was diagnosed with idiopathic thrombocytopenia at 12 weeks of gestation. Her platelet count had reduced to 30,000/µL at 21 weeks of gestation, and the hemoglobin content reduced to 7.6 g/dL at 27 weeks of gestation. As she did not respond to any medication, blood transfusion was performed. A female infant weighing 2677 g was delivered vaginally at 39 weeks of gestation. On the 78th day of puerperium, the platelet count of the mother recovered to 101,000/µL, and the hemoglobin content recovered to 12.5 g/dL. The infant had convulsions, respiratory depression, wheezing, systemic purpura, and exfoliation of the epidermis at birth. The infant was diagnosed with Gaucher disease at 37 days of age and passed away at 82 days of age. Subsequently, the parents were diagnosed as carriers of Gaucher disease.

Conclusion: As carriers of this disease do not usually show symptoms, it is imperative to provide information regarding disease management for future pregnancies.

Keywords: Gaucher disease, Gestational thrombocytopenia, Idiopathic thrombocytopenic purpura

Introduction

Thrombocytopenia during pregnancy is observed in approximately 10% of all pregnancies. Gestational thrombocytopenia is quite common, in which the platelet count of the mother is usually around 70,000–100,000/µL [1, 2]. However, the platelet count returns to normal range within 1–2 months after childbirth. In our case, the mother was diagnosed with idiopathic thrombocytopenic purpura (ITP) and anemia during pregnancy. She underwent blood transfusion as other therapies turned out to be ineffective. After birth, the infant was diagnosed with Gaucher disease, an autosomal recessive disorder, and the mother was diagnosed as a disease carrier. Gaucher disease is characterized by thrombocytopenia, anemia, hepatosplenomegaly, and bone disorders. However, disease carriers are usually asymptomatic; therefore, the clinical course of the disease might be different between disease carriers and disease-affected patients. In this report, we present the case of a carrier of Gaucher disease with gestational thrombocytopenia and anemia.

Case presentation

A 24-year-old Nepalese primigravida with no remarkable personal or family medical history was admitted to our hospital with a platelet count of 97,000/µL at 12 weeks of gestation. Blood biochemistry analysis revealed elevated levels of platelet associated (PA) immunoglobulin G (IgG) [360x146 Helicobacter pylori IgG, human immunodeficiency virus (HIV) antibody, hepatitis C virus.
matched platelets were transfused, as the platelet count was only 26,000/µL. On the sixth day of puerperium, no significant changes were observed through bone marrow puncture and spinal magnetic resonance imaging (MRI). On the seventh day of puerperium, the platelet count and hemoglobin level recovered to 63,000/µL and 8.3 g/dL respectively, and the patient was discharged (Fig. 1).

All oral medications were discontinued on the 29th day of puerperium, when the platelet count was 44,000/µL and the hemoglobin level reached 10.2 g/dL. The patient was diagnosed with gestational thrombocytopathy on the 78th day of puerperium, since the platelet count spontaneously recovered to 101,000/µL. Additionally, mild splenomegaly was observed during the puerperium through transabdominal ultrasonography.

The infant’s Apgar score was 5 points after 1 min and 7 points after 5 minutes. She had weak breathing and started convulsions 3 minutes after birth. Some other symptoms in the infant included attenuated light reflex, midline fixation of the eyeballs, respiratory depression, and wheezing. Hypertonia and purpura were observed throughout the body, and the epidermal detachment of the face and limbs was remarkable (Fig. 2). Additionally, her platelet count was 17,000/µL, and acute subdural hematoma and hepatosplenomegaly were observed. These symptoms were refractory to therapeutic interventions such as concentrated platelets and immunoglobulins. The infant was diagnosed with Gaucher disease at 37 days of age by mass screening, and a homozygous mutation (p.L483R) was found in the glucocerebrosidase (GBA) gene. After receiving enzyme replacement therapy at 64 and 78 days of age, she died of suffocation at 82 days of age. The β-glucosidase activity of the patient and her husband was normal, and a heterozygous mutation in the GBA gene was found in both. Therefore, we diagnosed them as carriers of Gaucher disease and provided genetic counseling for future pregnancies including prenatal diagnosis such as amniocentesis and chorionic villus sampling.

Discussion and conclusions
The causes of thrombocytopenia during pregnancy include gestational thrombocytopenia (74%), preeclampsia (21%), ITP (4.1%), and some other diseases accounting for less than 1% of the total cases [1]. Gestational thrombocytopenia is diagnosed if the platelet count recovers after delivery. During pregnancy, the symptoms of gestational thrombocytopenia and ITP are indistinguishable, and both diseases are diagnosed by exclusion [2]. In gestational thrombocytopathy, the platelet count is less than 100,000/µL in 1.0%, and less than 80,000/µL in about 0.1% of cases [3]. It is recommended to manage thrombocytopathy as ITP, in cases with platelet counts of 100,000/µL or less early in pregnancy, with declining
platelet counts as gestation progresses [2]. Prednisolone therapy at 0.5–1 mg/kg/day is the first choice for ITP, and high-dose immunoglobulin therapy at 0.4 g/kg/day is administered before invasive procedures [2]. The platelet count increases to 30,000/µL in about 80%, and 100,000/µL in approximately 50% of cases administered prednisolone therapy [4]. In patients administered high-dose immunoglobulin therapy, the platelet count increases to 100,000/µL in 64% of the cases [5].

Our patient was diagnosed with ITP, and as both prednisolone and immunoglobulin therapy were ineffective, a thrombopoietin receptor agonist, rarely used in pregnant cases, was administered. Despite the 80% success rate of the thrombopoietin receptor agonist [6], it was found to be ineffective. None of the therapies including transfusion could rescue the platelet count, which fell to 8000/µL at 38 weeks of gestation. In total, we administered 50 units of platelets during pregnancy and 65 units of platelets during labor and puerperium (including 25 units of HLA-matched platelets), which had no significant effect in restoring platelet levels. However, the patient’s platelet count and hemoglobin level returned to normal range spontaneously during puerperium, due to which she was diagnosed with gestational thrombocytopenia. We realized that the course of progression of gestational thrombocytopenia was strange, as platelet levels fell to 10,000/µL (extremely rare) and anemia did not respond to medication during pregnancy.

Eventually, our patient was diagnosed as a carrier of Gaucher disease, an autosomal recessive inborn error of metabolism caused by genetic mutation in the
lysosomal enzyme GBA [7]. More than 300 mutations have been reported in the GBA gene, which is located on chromosome 1 (q21–q31) in humans. Gaucher disease affects approximately 1 in 40,000 to 1 in 60,000 newborns. A decrease in the β-glucocerebrosidase enzyme (encoded by GBA) activity leads to progressive accumulation of glucosylceramide in reticuloendothelial cells such as macrophages. As a result, hematological abnormalities such as thrombocytopenia and anemia, hepatosplenomegaly, and bone disorders such as bone pain and pathological fractures are observed. Glucosyl sphingosine, another substrate of β-glucocerebrosidase, accumulates in the brain and causes central nervous system disorders including respiratory dysfunction, dysphagia, eye movement disorders, convulsive seizures, intellectual regression, joint contraction, involuntary movements, and dysarthria. According to the severity of symptoms, the central nervous system disorders are classified as type 1 (non-nerve type), type 2 (acute nerve type), and type 3 (subacute nerve type). Type 1 accounts for 90–95% of Gaucher disease cases, and the age of onset for more than half of the cases is before 20 years. Splenomegaly is present in more than 90% of cases, as well as bone and nonserious hematological abnormalities. Type 2 has a classic type and a perinatal type, accounting for less than 5% and less than 1% of all Gaucher disease cases, respectively. The classic type develops around 3–6 months after birth, causes central nervous system disorders, with life expectancy being around 2 years. The perinatal type is the most severe and may lead to hydrops fetalis and intrauterine fetal death. In addition to hepatosplenomegaly and thrombocytopenia, infants affected with the perinatal type are born with ichthyosis-like skin desquamation and are called colloid babies. Central nervous system disorders develop immediately after birth in infants affected with the perinatal type of Gaucher disease, and their life expectancy is usually less than 3 months. Type 3 accounts for approximately 5% of the disease, develops by around 2 years of age, and presents with ocular motility disorder, cerebellar ataxia, epilepsy, and valvular heart disease [7, 8]. In our case, the infant exhibited central nervous system disorders immediately after birth; thus, she was diagnosed with type 2 (perinatal type) Gaucher disease.

Thrombocytopenia and anemia during pregnancy and puerperal splenomegaly are classic symptoms of Gaucher disease; however, Gaucher disease carriers are usually asymptomatic. To confirm this further, we searched for medical literature using search terms such as “Gaucher disease carrier,” “thrombocytopenia,” and “anemia” on PubMed and the Japan Medical Abstracts Society, but could not find any reports describing disease carriers who showed symptoms. In our case as well, the patient had not exhibited any symptoms such as anemia, thrombocytopenia, or bone disorders in the past. Additionally, none of her family members showed any symptoms similar to Gaucher disease.

Sickle cell disease, which has the same autosomal recessive inheritance as Gaucher disease, is symptomatic in carriers under certain conditions such as excessive exercise [9]. Since Gaucher disease is rare, few carriers have been identified. This is the first case report of a Gaucher disease carrier with blood disorder. Hence, further investigations are needed to establish management outcomes. In our case, all the medications were ineffective, and the patient recovered spontaneously during puerperium. After the newborn was diagnosed with Gaucher disease type 2, she was identified as a carrier of Gaucher disease with a heterozygous mutation in the GBA gene. As described in this case, Gaucher disease carriers may present with symptoms.

Gaucher disease carriers are usually asymptomatic, but in our case, hematological abnormalities such as thrombocytopenia and anemia during pregnancy and puerperal splenomegaly were observed. In the future, it will be recommended to provide Gaucher disease carriers with information about both fetal and maternal complications and management.

Abbreviations

ITP: Idiopathic thrombocytopenic purpura; HIV: Human immunodeficiency virus; HCV: Hepatitis C virus; HLA: Human leukocyte antigen.

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Authors’ contributions

TS drafted the manuscript. TS and AF treated the patient. KK and AF edited the manuscript. SO was the supervisor. All authors read and approved the final manuscript.

Funding

This research received no external funding.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests

The authors declare no conflict of interest.

Competing interests

The authors declare no conflict of interest.

Competing interests

The authors declare no conflict of interest.
References
1. Gill KK, Kelton JG. Management of idiopathic thrombocytopenic purpura in pregnancy. Semin Hematol. 2000;37:275–89. https://doi.org/10.1016/s0037-1963(00)90106-9.
2. Gernsheimer T, James AH, Stasi R. How I treat thrombocytopenia in pregnancy. Blood. 2013;121:38–47. https://doi.org/10.1182/blood-2012-08-448944.
3. Reese JA, Peck JD, Deschamps DR, McIntosh JJ, Knudtson EJ, Terrell DR, et al. Platelet counts during pregnancy. N Engl J Med. 2018;379:32–43. https://doi.org/10.1056/NEJMoa1802987.
4. George JN, el-Harake MA, Raskob GE. Chronic idiopathic thrombocytopenic purpura. N Engl J Med. 1994;331:207–11. https://doi.org/10.1056/NEJM199411033311807.
5. Russel JB, Pham LC. Intravenous treatment with gammaglobulin in adults with immune thrombocytopenic purpura: review of the literature. Vox Sang. 1987;52:206–11. https://doi.org/10.1111/j.1423-0410.1987.tb03029.x.
6. Cines DB, Wasser J, Rodeghiero F, Chong BH, Steurer M, Provan D, et al. Safety and efficacy of romiplostim in splenectomized and nonsplenectomized patient with primary immune thrombocytopenia. Haematologica. 2017;102:1342–51. https://doi.org/10.3324/haematol.2016.161968.
7. Stirnemann J, Belmatoug N, Camou F, Serratrice C, Froissart R, Caillaud C, et al. A review of Gaucher disease pathophysiology, clinical presentation and treatments. Int J Mol Sci. 2017;18:441. https://doi.org/10.3390/ijms18020441.
8. Grabowski GA, Petsko GA, Kolondny EH. 146: Gaucher disease. The online metabolic and molecular bases of inherited disease (OMMBID). http://ommbid.mhmedical.com/. Accessed 18 April 2021.
9. Meremikwu MM, Okomo U. Sickle cell disease. BMJ Clin Evid. 2011;14:2402.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.