Characterization of Extended-Spectrum Beta-Lactamase-Producing *Escherichia Coli* From Domestic Free-Range Poultry In Agogo, Ghana

Charity Wiafe Akenten (danquah@kccr.de)
Kumasi Centre for Collaborative Research in Tropical Medicine in Tropical Medicine

Linda Aurelia Ofori
Kwame Nkrumah University of Science and Technology

Joyce Mbwana
Institute for Medical Research (NIMR)

Nimako Sarpong
Kumasi Centre for Collaborative Research in Tropical Medicine in Tropical Medicine

Jürgen May
Bernhard Nocht Institute for Tropical Medicine

Thorsten Thye
Bernhard Nocht Institute for Tropical Medicine

Kwasi Obiri-Danso
Kwame Nkrumah University of Science and Technology

Ellis Kobina Paintsil
Kumasi Centre for Collaborative Research in Tropical Medicine in Tropical Medicine

Richard Odame Philipps
Kumasi Centre for Collaborative Research in Tropical Medicine in Tropical Medicine

Daniel Eibach
Bernhard Nocht Institute for Tropical Medicine

Ralf Krumkamp
Bernhard Nocht Institute for Tropical Medicine

Denise Dekker
Institute for Medical Research (NIMR)

Research Article

Keywords: *Escherichia coli*, antimicrobial resistance, domestic poultry, extended spectrum beta-lactamases, Ghana

Posted Date: February 4th, 2022
Abstract

Background: Extended-spectrum beta-lactamase (ESBLs) producing bacteria in poultry meat has been suggested as one of the sources of resistant genes, that can lead to difficult-to-treat infections in humans. This study aims at determining the frequency of ESBL-producing E. coli, the genetic characterization and antibiotic profile among domestic free-range poultry in Agogo, Ghana. Faecal samples were collected from domestic free-roaming chicken and cultured on ESBL screening agar. Strain identification and antibiotic susceptibility were performed using the VITEK 2 compact system. ESBL-producing E. coli were confirmed using the Double Disk Synergy (DDS) test. Molecular detection and further sequencing of \textit{bla}\textsubscript{TEM}, \textit{bla}\textsubscript{SHV} and \textit{bla}\textsubscript{CTX-M} genes was performed using standardized methods.

Results: 56.2% (n/N=81/144) of collected faecal samples were positive for ESBL-producing \textit{E. coli}. All (n/N=81/81) strains were resistant to ampicillin, ceftazidime, cefpodoxime, cefotaxime and cefuroxime. High rates of resistance were also observed for tetracycline (93.8%, n/N=76/81) and trimethoprim-sulfamethoxazole (66.67; n/N=54/81). Resistance to Carbapenems was not found. The majority of ESBL producing \textit{E. coli} carried \textit{bla}\textsubscript{CTX-M} genes with \textit{bla}\textsubscript{CTX-M-15}, 95.1% (n/N=77/81) being the dominant genotype.

Conclusions:

We report high ESBL rates, which is a potential infection source of animals as well as humans, and that a control of antibiotic overuse and animal hygiene/sanitation measures are important from a one health perspective.

Background

The rapid increase of resistance to commonly used antibiotics in human medicine and animal husbandry has become one of the leading global health concerns (1). Besides, overuse of antibiotics in both humans and animal farming has been considered as the driving force for the increase in antimicrobial resistance (AMR) worldwide. Currently, the World health organization (WHO) considers AMR as a ‘One Health issue’ as well as a “One World issue“ (2). Without preventive measures in place, by 2050 the annual deaths due to infections with AMR bacteria are expected to have reached 10 million (3).

AMR infections, including infections caused by extended-spectrum beta-lactamase (ESBL)-producing \textit{Escherichia coli} in sub-Saharan Africa (SSA), are a major concern. \textit{E. coli} are gram-negative bacteria found as commensals in the gut of humans and animals but are also implicated in a variety of infections, including life-threatening sepsis (4).

A recent study from Ghana indicated poultry as a likely source for ESBL-producing bacteria leading to difficult-to-treat infections in humans (5). This has also been shown in a global systemic review (6). ESBL-producing pathogens can be acquired by direct contact with animals or by consumption of meat products. In addition, ESBL-producing bacteria are often linked to concomitant resistance to other classes
of antibiotic agents leading to multidrug resistance (MDR) (7). Therefore, there are global ongoing efforts to address this issue and the issue of AMR as a whole (8, 9).

In Ghana, poultry farming is one of the predominant animal businesses with an estimated number of 74.5 million birds per year (10). Of these, approximately 25 million are kept on household level, freely roaming within communities (11). Amongst all meat products, poultry is the most popular, largely consumed in all regions of the country. In the quest to meet this demand, poultry keepers employ antimicrobials as growth promoter, and to prevent and treat infections (12).

Several studies on ESBL-producing bacteria, particularly E. coli, in commercial poultry farming have been published (5, 13, 14). However, to our knowledge, such studies have not been conducted on free-range poultry (household) farming-level in Ghana. Nevertheless, due to the animals’ proximity to humans, such studies are essential to identify possible ESBL-transmission reservoirs within communities. This study aims at determining the frequency of ESBL-producing E. coli, their genetic characterization and antibiotic profile among domestic free-range poultry in Agogo located in the Ashanti Region of Ghana.

Results

In total, 144 faecal samples were collected from six households from three communities in Agogo. From the 144 faecal samples investigated, 81 (56.3%, n/N=81/144) were phenotypically positive for ESBL-producing E. coli. Frequencies detected within the communities were 76.1%, (n/N=35/46) in Sukuumu, 52.9% (n/N=37/70) in Freetown and 32.1%, (n/N=9/28) in Bontodiase (Figure 1).

Genotype identification of ESBL-producing E. coli

Genotype characterization identified two different beta-lactamase-encoding genes (blaCTX-M and blaTEM) out of the three tested (blaCTX-M, blaSHV, blaTEM). The majority were blaCTX-M-15 (95.1%, n/N=77/81), followed in frequency by blaTEM1-b (2.5%, n/N=2/81) and blaCTX-M-15/TEM 1b (1.2%, n/N=1/81). None of the ESBL-producing E. coli isolates carried the SHV gene. However, in one of the phenotypic confirmed ESBL E. coli isolates neither blaCTX-M, blaSHV, nor blaTEM were identified.

2.2 Antibiotic Susceptibility of ESBL-producing E. coli

All E. coli were sensitive to meropenem, imipenem, ertapenem and tigecycline (100%, 81/81) (Figure 2). Aside 100% resistance to cephalosporins, the highest rate of resistance was observed for tetracycline (93.8%, n/N=76/81), followed by trimethoprim-sulfamethoxazole (66.7%, n/N=54/81) and ciprofloxacin (35.8%, n/N=29/81) as shown in Figure 2. MDR was found among the ESBL producing E. coli. 11.1% (n/N=9/81) of the ESBL producing E. coli were resistant to four classes of antibiotics (i.e., fluoroquinolone, tetracycline, aminoglycoside and sulphonamides), while 19.75% (n/N=16/81) isolates were resistant to three classes of antibiotics (i.e., fluoroquinolone, tetracycline and sulphonamides).

Discussion
The study examined ESBL-producing *E. coli* among domestic free-range poultry in a rural community of Ghana. The considerably high rate of ESBL-producing *E. coli* exceeds what was found in commercial poultry farming in Ghana (5). This is not surprising, as Paintstil and colleagues demonstrated that 43% of domestic farmers from the same study area use antibiotics in poultry farming (15), which in turn increases the risk of higher ESBL acquisition in the normal gut flora of the animal (16). In general, not exclusively on household farm-level, frequencies of ESBL-producing bacteria found in chicken seem high, on the African continent. For example, a study showed 20% ESBL-producing *E. coli* in poultry from Zambia (17). A review by Alonso and colleagues has reported 42.0% and 55.5% ESBL-producing *E. coli* among chicken faeces from Tunisia and Algeria respectively, as well as 61.6% from chicken meat in Egypt (18).

Generally, in resource limited countries, inadequate sanitation aside the overuse of antibiotics are likely to play significant roles in the selection and transmission of antibiotic resistance (19). This is probably particularly true for areas where free-range (domestic) chicken is raised in communities with close contact to their owners. In sub-Saharan African countries, the potential transmission risk of antimicrobial resistant bacteria from animals or animal products to humans has been demonstrated before (20).

Besides, high level of resistance to beta-lactam antibiotics, the degree of resistance seen for other classes of antibiotics such as tetracycline and trimethoprim-sulfamethoxazole but also the much lower levels as seen for gentamycin and piperacillin is in line with what was found in other studies around the globe (21–23). Resistance in this study was reflected by the overall usage and availability of drugs in Ghana (24, 25). Also fluoroquinolones, such as ciprofloxacin are important drugs in Ghana for the treatment of infections (26, 27). The level of ciprofloxacin resistance (35.8%, n/N=29/81) seen was in line with 35.7% that was reported from a study in poultry from Nigeria (14) but lower than 59% that was reported from a previous study in Ghana on poultry meat (13). The difference seen might be attributed to the fact that ciprofloxacin usage in farming on household level is not as common in this study area (15).

Globally also in most SSA countries, *bla*CTX-M positive *E. coli* have been shown to be the most common genotype found in clinical isolates from humans and animals (28, 29) with *bla*CTX-M-15 being the most prevalent gene associated with human infections (30). This was also true for the present study, where *bla*CTX-M-15 was found to be the dominant genotype amongst the ESBL-positive isolates. This is in line with data from a previous study analysing chicken meat in Ghana (5). *bla*CTX-M-15 as predominant genotype among the ESBL-producing strains is of particular interest, as it has been associated with clinical *E. coli* strains carrying several virulence factors (31, 32). *bla*CTX-M-15 is often found on incompatibility group FII plasmids (33), known as “epidemic resistance plasmids” (34) due to their tendency to acquire other resistance genes, and their high potential to be transmitted through horizontal gene transfer (35).

Notably, the coexistence of *bla*CTX-M-15 and *bla*TEM-1b observed in this study was considerably lower, with only 1.2% of isolates harbouring both resistance genes, than what was reported from Nigeria (8.1%) (14). As in the present study ESBL genes itself were analysed only, no assumption can be made on
whether these were located on the chromosome or the plasmid. Discrimination between chromosomal or plasmid location of ESBL genes in *E. coli* was previously analysed by Falgenhauer and colleagues (5) including isolates collected in the same area in which this study was conducted. The study revealed chromosomal and plasmid-mediated ESBL genes in the study area. Thus, we can assume that for some of our isolates carrying ESBL, the resistance can be located on the plasmids.

Our study has limitations, which have to be considered when interpreting the results. Faecal samples were collected from only three communities in the study area and from seven households. This may not be representative for other parts of Ghana. Also, the sample size was rather small. Therefore, to generalize the interpretation of this study, faecal samples from additional communities should be evaluated to cover a representative study area. Seasonality was not captured within this study as households were visited once within the 6 months study period only.

Conclusion

This study demonstrates a high frequencies of ESBL-producing *E. coli* in free-range chicken in rural Ghana. It also shows a high carriage level of CTX-M-15 producing *E. coli* isolates in household chicken. Hence, poultry, even when bred on household level, might be an important source for ESBL-producing bacteria in this part of the world.

Therefore, monitoring of antibiotic use and restrictions in poultry farming must be encouraged as well as the implementation of surveillance systems that monitor antimicrobial use and inform on emerging antibiotic resistant bacterial strains.

Methods

Study site and sample collection

Fresh faecal samples from poultry were randomly collected from six households in three different communities in Agogo in the Asante Akyem North Municipality within the Ashanti Region of Ghana (Fig. 1). Sample collection took place between June 2019 to December 2019. Faecal samples were collected from households where chickens were kept at the backyard. Each household possessed approximately 25 chicken and was visited once during the study period. Samples were transported at 2°C – 8°C in a cool box to the microbiology laboratory at the Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR) within 2-4 hours after sampling for further analyses.

Identification And Antibiotic Susceptibility Testing

On arrival to the laboratory, samples were cultured on two MacConkey agars containing 1mg/L Ceftazidime and 1mg/L Cefotaxime, respectively. Plates were incubated at 35°–37°C for 18–24h at normal atmosphere. All morphological different lactose fermenters colonies (not exceeding 3 colonies)
were subsequently sub-cultured on Columbia blood agar. Isolate identification and antibiotic susceptibility were tested using the VITEK 2 compact system (bioMérieux, Marcy L’Etoile, France). Confirmed *E. coli* were classified as S (Susceptible, standard dosing regimen) I (Susceptible, increased exposure) or R (Resistant) to commonly used antibiotics according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines (version 10.0, 2020; http://www.eucast.org/breakpoints/). Antibiotics tested included: ampicillin, ceftazidime, cefpodoxime, cefotaxime cefuroxime tetracycline, imipenem, meropenem, gentamicin, ciprofloxacin, ampicillin-sulbactam trimethoprim/sulfamethoxazole, ertapenem piperacillin-tazobactam and tigecycline and ESBL screening. MDR was defined as resistance to more than 2 classes of antibiotics.

Production of ESBLs was confirmed by the combined double-disk test with ceftazidime and cefotaxime alone and in combination with clavulanic acid (Becton, Dickinson Company, Sparks, MD, USA) as defined by EUCAST (EUCAST guidelines, version 10.0, 2020; http://www.eucast.org/breakpoints/).

Confirmed strains were saved in microbanks (Pro-lab Diagnostics, Richmond Hill, ON, Canada) and stored at -80°C for further analysis. Quality control of cephalosporin-containing agar was performed using the ATCC 25922 and a *bla*CTX-M-15 positive *E. coli*.

Genotyping Of Esbl Genes By Polymerase Chain Reaction

DNA extraction for *E. coli* was performed using the boiling method as described by Tellevik and colleagues (36). DNA was subject to molecular characterization by polymerase chain reaction (PCR) for the detection of the resistance genes *bla*TEM (temoneira), SHV (sulphydryl variable enzyme) and *bla*CTX-M, (cefotaximase-Munich) respectively as described elsewhere (37). To further differentiate the *bla*CTX-M groups, specific target primers (Table 1) were used for amplification and sequencing of the PCR amplicons (37). The PCR amplicon was sent to Microsynth Seqlab (Göttingen, Germany) for Sanger sequencing. The resulting sequences were aligned and identified by comparison with known sequences using CLC Sequence Viewer 8.0 (http://www.clcbio.com) and Resfinder 4.1 (https://cge.cbs.dtu.dk/services/ResFindeer)

Descriptive statistics were applied to analyse study data. All analysis were done using R studio software (https://www.rstudio.com).
Table 1
Primers for ESBL Genes

Target gene	Primer group	Sequences	Amplicon size (bp)
bla_{SHV}	SHV-F	5’-GCCGGGTTATTCTTATTTGTCCG-3’	1007
	SHV-R	5’-ATGCGGCGCCAGCTCA -3’	
bla_{TEM}	TEM-F	5’-GTATCCGCTCATGAGACAATA-3’	966
	TEM-R	5’-TCTAAAGTATATGAGTAAAC-3’	
bla_{CTX-M}	CTX-M-F	5’-TTTGCGATGTGCAGTACCAGTA-3’	544
	CTX-M-R	5’-CGATATCGTTGGTGTCGACATA-3’	
bla_{CTX-M-type}	CTX-M-1_F	5’-TCTTCCAGAATAAGGAATCCC-3’	909 bp
	CTX-M-1_R	5’-CCGTTCTCGATTAAGCCAA-3’	
bla_{CTX-M-type}	CTX-M-2_F	5’-ATGATGACTCAGAGCATT-3’	884 bp
	CTX-M-2_R	5’-TTATTGCATCAGAAACCGTG-3’	
bla_{CTX-M-type}	CTX-M-8_F	5’-TGATGAGACATCGGCGTAAG-3’	871 bp
	CTX-M-8_R	5’-TAAACCTCGGTACGGTATTT-3’	
bla_{CTX-M-type}	CTX-M-9_F	5’-ATGTTGACAAAAGGAGARTGCA-3’	873 bp
	CTX-M-9_R	5’-CAGCCCTTCGGCGATGAT-3’	
bla_{CTX-M-type}	CTX-M-14_F	5’-ATTCAACAAAACCAGTTACAGCCC-3’	897 bp
	CTX-M-14_R	5’-TTTGAGATGGTGACAAGA-3’	

Abbreviations

Abbreviation	Definition
WHO	World Health Organization
ESBL	Extended-Spectrum Beta-Lactamase
DDS	Double Disk Synergy
AMR	Antimicrobial Resistance
MDR	Multidrug Resistance
TEM	Temoneira
SHV	Sulphydryl Variable Enzyme
CTX-M——Cefotaximase-Munich

PCR———Polymerase Chain reaction

S———-Susceptible, standard dosing regimen

I———-Susceptible, increased exposure

R———-Resistant

Declarations

Additional Files Legends; NOT APPLICABLE

- Ethics approval and consent to participate

The ethical approval was obtained from the Committee on Human Research Publication and Ethics (CHRPE) of the School of Medical Sciences, KNUST, Kumasi.

The owner of each household poultry farm was informed of the study purpose and oral permission was obtained before sampling.

- Consent for publication:

Not applicable

- Availability of data and materials

All data generated or analysed during this study are included in this published article [and its supplementary information files].

- Competing interests; The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results

- Funding; This research was funded by German Research Foundation as part of SASSA PROJECT. (DFG; project number 380545990).

The funding body did not play any role in design, analysis and reporting of this study.

- Authors' contributions

CWA, LAO, DD designed and coordinated the study, N.S conducted and supervised fieldwork. CWA, and EKP conducted laboratory work. CWA, JM and RK, performed data analysis. CWA and TT performed the gene characterization, CWA wrote the first draft of the paper. ROP, DE, JM, KOD LAO, DD, supervised and validate the work. All authors read and approved the final manuscript. LAO and DD acquired the funds.
• Acknowledgements

The authors would like to acknowledge: Dennis Fosu, Seth Ofori, Kwabena Oppong, Abdul Seidu Razak, Cynthia Adu Kyerewaa, and Charlotte Ama Tweneboa Adu of Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR) and Doris Winter for technical assistance. We also thank the household chicken owners in Agogo.

• Authors' information (optional)

References

1. Rousham EK, Unicomb L, Islam MA. Human, animal and environmental contributors to antibiotic resistance in low-resource settings: integrating behavioural, epidemiological and One Health approaches. 2018;

2. Robinson TP, Bu DP, Carrique-Mas J, Fève EM, Gilbert M, Grace D, et al. Antibiotic resistance is the quintessential One Health issue. Trans R Soc Trop Med Hyg. 2016;110(7):377–80.

3. O’Neill J. Book review: Tackling drug-resistant infections globally. Arch Pharm Pract. 2016;7(3):110.

4. Ramos S, Silva V, de Lurdés Enes Dapkevicius M, Caniça M, Tejedor-Junco MT, Igrejas G, et al. Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals. 2020;10(12):1–15.

5. Falgenhauer L, Imirzalioglu C, Oppong K, Akenten CW, Hogan B, Krumkamp R, et al. Detection and characterization of ESBL-producing Escherichia coli from humans and poultry in Ghana. Front Microbiol [Internet]. 2019;10(JAN). Available from: www.frontiersin.org

6. Lazarus B, Paterson DL, Mollinger JL, Rogers BA. Do Human Extraintestinal Escherichia coli Infections Resistant to Expanded-Spectrum Cephalosporins Originate From Food-Producing Animals? A Systematic Review. 2014; Available from: https://academic.oup.com/cid/article/60/3/439/311224

7. WHO. Global antimicrobial resistance and use surveillance system (GLASS) report [Internet]. WHO. 2020. Available from: http://www.who.int/glass/resources/publications/early-implementation-report-2020/en/

8. O’Neill J. TACKLING DRUG-RESISTANT INFECTIONS GLOBALLY: FINAL REPORT AND RECOMMENDATIONS. Rev Antimicrob Resist. 2016;136(1):29–31.

9. WHO. Global Action Plan on Antimicrobial Resistance. Microbe Mag. 2015;10(9):354–5.

10. Boschloo R. Analysis poultry sector Ghana 2019: An update on the opportunities and Challenges. 2020.

11. Aning KG. The structure and importance of the commercial and village based poultry in Ghana. Poult Rev [Internet]. 2006;(August):44. Available from: http://www.fao.org/docs/eims/upload/214147/Poultry_review-2006.pdf
12. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health [Internet]. 2016;109(7):309–18. Available from: http://dx.doi.org/10.1179/2047773215Y.0000000030

13. Eibach D, Dekker D, Boahen KG, Akenten CW, Sarpong N, Campos CB, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in local and imported poultry meat in Ghana. Vet Microbiol. 2018;217:7–12.

14. Aworh MK, Kwaga J, Okolocha E, Harden L, Hull D, Hendriksen RS, et al. Extended-spectrum β-lactamase-producing Escherichia coli among humans, chickens and poultry environments in Abuja, Nigeria. One Heal Outlook [Internet]. 2020 Dec 27 [cited 2021 May 26];2(1):1–11. Available from: https://doi.org/10.1186/s42522-020-00014-7

15. Paintsil EK, Ofori LA, Akenten CW, Fosu D, Ofori S, Lamshöft M, et al. Antimicrobial Usage in Commercial and Domestic Poultry Farming in Two Communities in the Ashanti Region of Ghana. Antibiot 2021, Vol 10, Page 800 [Internet]. 2021 Jun 30 [cited 2021 Jul 19];10(7):800. Available from: https://www.mdpi.com/2079-6382/10/7/800/htm

16. Carattoli A. Animal reservoirs for extended spectrum β-lactamase producers. Vol. 14, Clinical Microbiology and Infection. Blackwell Publishing Ltd; 2008. p. 117–23.

17. Chishimba K, Hang’Ombe BM, Muzandu K, Mshana SE, Matee MI, Nakajima C, et al. Detection of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Market-Ready Chickens in Zambia. Int J Microbiol. 2016;2016.

18. Alonso, Zarazaga M, Ben Sallem R, Jouini A, Ben Slama K, Torres C. Antibiotic resistance in Escherichia coli in husbandry animals: the African perspective. Lett Appl Microbiol. 2017;64(5):318–34.

19. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist [Internet]. 2018 [cited 2021 Oct 19];11:1645. Available from: /pmc/articles/PMC6188119/

20. Falgenhauer L, Imirzalioglu C, Oppong K, Wiafe Akenten C, Hogan B, Krumkamp R, et al. Detection and Characterization of ESBL-producing Escherichia coli among Humans and Poultry in Ghana. Front Microbiol. 2018;9:3358.

21. Braykov NP, Eisenberg JNS, Grossman M, Zhang L, Vasco K, Cevallos W, et al. Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador. mSphere. 2016 Feb 25;1(1).

22. Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev [Internet]. 2018;053:68–80. Available from: http://orcid.org/0000-0002-6528-3158

23. Jaja IF, Oguttu J, Jaja CJI, Green E. Prevalence and distribution of antimicrobial resistance determinants of Escherichia coli isolates obtained from meat in South Africa. PLoS One [Internet]. 2020;15(5). Available from: https://doi.org/10.1371/journal.pone.0216914.g001
24. Turkson P. Use of drugs and antibiotics in poultry production in Ghana. Ghana J Agric Sci. 2009 Sep 21;41(1).

25. Nkansa M, Agbekponu H, Kikimoto BB, Chandler CI. Antibiotic use among poultry farmers in the Ghana Dormaa Municipality. 2020 [cited 2021 Jul 19];(December). Available from: https://doi.org/10.17037/PUBS.04658868

26. D’Arcy N, Ashiru-Oredope D, Olaoye O, Afriyie D, Akello Z, Ankrah D, et al. Antibiotic prescribing patterns in Ghana, Uganda, Zambia and Tanzania hospitals: Results from the global point prevalence survey (G-PPS) on antimicrobial use and stewardship interventions implemented. Antimicrobials [Internet]. 2021 Sep 17 [cited 2021 Nov 15];10(9):1122. Available from: https://www.mdpi.com/2079-6382/10/9/1122/htm

27. Yevutsey SK, Buabeng KO, Aikins M, Anto BP, Biritwum RB, Frimodt-Møller N, et al. Situational analysis of antibiotic use and resistance in Ghana: Policy and regulation. BMC Public Health. 2017;17(1).

28. Alonso CA, Zarazaga M, Ben Sallem R, Jouini A, Ben Slama K, Torres C. Antibiotic resistance in Escherichia coli in husbandry animals. the african perspective. Lett Appl Microbiol. 2017 Feb;

29. Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrobial Resist [Internet]. 2021 Jul 12 [cited 2021 Oct 19];3(3). Available from: /pmc/articles/PMC8284625/

30. Irrgang A, Falgenhauer L, Fischer J, Ghosh H, Guiral E, Guerra B, et al. CTX-M-15-producing E. coli isolates from food products in Germany are mainly associated with an IncF-type plasmid and belong to two predominant clonal E. coli lineages. Front Microbiol. 2017 Nov 21;8(NOV):2318.

31. Falgenhauer L, zur Nieden A, Harpel S, Falgenhauer J, Domann E. Clonal CTX-M-15-Producing Escherichia coli ST-949 Are Present in German Surface Water. Front Microbiol. 2021 Apr 12;12:857.

32. Lau SH, Kaufmann ME, Livermore DM, Woodford N, Willshaw GA, Cheasty T, et al. UK epidemic Escherichia coli strains A–E, with CTX-M-15 β-lactamase, all belong to the international O25:H4-ST131 clone. J Antimicrob Chemother [Internet]. 2008 Dec 1 [cited 2021 Nov 16];62(6):1241–4. Available from: https://academic.oup.com/jac/article/62/6/1241/767196

33. Coque TM, Novais Â, Carattoli A, Poirel L, Pitout J, Peixe L, et al. Dissemination of Clonally Related Escherichia coli Strains Expressing Extended-Spectrum β-Lactamase CTX-M-15 [Internet]. Vol. 14. 2008 [cited 2021 Nov 16]. Available from: https://stacks.cdc.gov/view/cdc/16778

34. Carattoli A. Plasmids in Gram negatives: Molecular typing of resistance plasmids. Vol. 301, International Journal of Medical Microbiology. Urban & Fischer; 2011. p. 654–8.

35. Cantón R, Coque TM. The CTX-M β-lactamase pandemic. Vol. 9, Current Opinion in Microbiology. Elsevier Current Trends; 2006. p. 466–75.

36. Tellevik MG, Blomberg B, Kommedal Ø, Maselle SY, Langeland N, Moyo SJ. High prevalence of faecal carriage of esbl-producing enterobacteriaceae among children in Dar es Salaam, Tanzania. PLoS One. 2016;11(12):1–13.
37. Belmar Campos C, Fenner I, Wiese N, Lensing C, Christner M, Rohde H, et al. Prevalence and genotypes of extended spectrum beta-lactamases in Enterobacteriaceae isolated from human stool and chicken meat in Hamburg, Germany. Int J Med Microbiol [Internet]. 2014 [cited 2020 Dec 11];304(5-6):678-84. Available from: http://dx.doi.org/10.1016/j.ijmm.2014.04.012

Figures

![Geographical Location of Domestic (Household) farms in Agogo, Ghana](image)

Figure 1

Geographical Location of Domestic (Household) farms in Agogo, Ghana
Figure 2

Antibiotic resistance among ESBL *E. coli* isolated from domestic poultry.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- CHARITYTRIMMEDFASTA.txt