Endoplasmic reticulum stress induced by tunicamycin increases resistin messenger ribonucleic acid through the pancreatic endoplasmic reticulum eukaryotic initiation factor 2α kinase–activating transcription factor 4–CAAT/enhancer binding protein-α homologous protein pathway in THP-1 human monocytes

Junpei Hamada1, Hiroshi Onuma2*, Fumihiro Ochi1, Hiroki Hirai1, Koji Takemoto1, Akiko Miyoshi2, Manami Matsushita2, Yuko Kadota2, Jun Ohashi3, Ryoichi Kawamura2, Yasunori Takata2, Wataru Nishida2, Seiichi Hashida4, Eiichi Ishii1, Haruhiko Osawa2*

Departments of 1Pediatrics, and 2Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, 3Department of Biological Sciences, Tokyo University Graduate School of Science, Tokyo, and 4Institute for Health Sciences, Tokushima Bunri University, Tokushima, Japan

Keywords
Endoplasmic reticulum stress, Human monocytes, Resistin

*Correspondence
Hiroshi Onuma
Tel.: +81-89-960-5647
Fax: +81-89-960-5627
E-mail address: onuma@m.ehime-u.ac.jp
Haruhiko Osawa
Tel.: +81-89-960-5647
Fax: +81-89-960-5627
E-mail address: harosawa@m.ehime-u.ac.jp

J Diabetes Investig 2016; 7: 312–323
doi: 10.1111/jdi.12434

ABSTRACT

Aims/Introduction: Resistin, secreted from adipocytes, causes insulin resistance in mice. In humans, the resistin gene is mainly expressed in monocytes and macrophages. Tunicamycin is known to induce endoplasmic reticulum (ER) stress, and reduce resistin gene expression in 3T3-L1 mouse adipocytes. The aim of the present study was to examine whether ER stress affects resistin gene expression in human monocytes.

Materials and Methods: The relationship between resistin messenger ribonucleic acid (mRNA) and ER stress markers mRNA was analyzed by reverse transcription polymerase chain reaction in isolated monocytes of 30 healthy volunteers. The effect of endotoxin/lipopolysaccharides or tunicamycin on resistin gene expression was analyzed in THP-1 human monocytes. Signaling pathways leading to resistin mRNA were assessed by the knockdown using small interfering RNA or overexpression of key molecules involved in unfolded protein response.

Results: Resistin mRNA was positively associated with immunoglobulin heavy chain-binding protein (BiP) or CAAT/enhancer binding protein-α homologous protein (CHOP) mRNA in human isolated monocytes. In THP-1 cells, lipopolysaccharides increased mRNA of BiP, pancreatic endoplasmic reticulum eukaryotic initiation factor 2α kinase (PERK) and CHOP, as well as resistin. Tunicamycin also increased resistin mRNA. This induction appeared to be dose- and time-dependent. Tunicamycin-induced resistin mRNA was inhibited by chemical chaperone, 4-phenylbutyric acid. The knockdown of either PERK, activating transcription factor 4 (ATF4) or CHOP reduced tunicamycin-induced resistin mRNA. Conversely, overexpression of ATF4 or CHOP increased resistin mRNA.

Received 6 March 2015; revised 9 September 2015; accepted 23 September 2015
Conclusions: Endoplasmic reticulum stress induced by tunicamycin increased resistin mRNA through the PERK–ATF4–CHOP pathway in THP-1 human monocytes. ER stress could lead to insulin resistance through enhanced resistin gene expression in human monocytes.

INTRODUCTION
Resistin is secreted from adipocytes in mice, and its serum levels have been reported to be increased in obese diabetic mice1,2. Treatment with peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands reduces serum resistin in mice. Mice that overexpress the mouse resistin gene (retn) in the liver have high serum resistin and are insulin resistant3. Retn (−/−) mice show lower insulin resistance and fasting blood glucose4. In humans, the human resistin gene (RETN) is not expressed in adipocytes, but is highly expressed in monocytes and macrophages5, suggesting that its pathophysiological relevance might be different between humans and mice.

We previously carried out a systematic search for single nucleotide polymorphisms (SNPs) in RETN, and reported that the G/G genotype of a promoter SNP at −420 was associated with susceptibility to type 2 diabetes mellitus6,7. In addition, we reported that subjects with type 2 diabetes mellitus had higher plasma resistin than subjects without type 2 diabetes mellitus8. In the Japanese general population, plasma resistin was highest in the G/G genotype, followed by C/G and C/C9.

Recent studies have shown that resistin is related to inflammation. Pro-inflammatory stimuli, such as interleukin-6, tumor necrosis factor-α (TNF-α) and lipopolysaccharides (LPS), induce RETN expression in primary human macrophages or humans peripheral blood mononuclear cells (PBMCs)10,11. In addition, on tissue injury, pro-inflammatory stimuli increased the expression of monocyte chemoattractant protein (MCP)-1/ CCL2 gene, which could trigger endoplasmic reticulum (ER) stress, caused by the accumulation of unfolded or misfolded proteins in the ER lumen12–14. Therefore, resistin gene expression could be influenced by ER stress as well as by inflammation, based on current information.

Eukaryotic cells have an intracellular signaling pathway for reducing ER stress, known as the unfolded protein response15,16. When unfolded or misfolded proteins accumulate, glucose regulated protein 78, also referred to the immunoglobulin heavy chain-binding protein (BiP), releases three critical transmembrane ER signaling proteins, namely, pancreatic ER eukaryotic initiation factor 2 (eIF2) α kinase (PERK), activating transcription factor (ATF) 6, and the inositol requiring enzyme (IRE) 117–19. PERK phosphorylates the α-subunit of eIF2α and suppresses protein translation. In contrast, PERK selectively promotes the translation of ATF4, which induces the expression of several genes involved in ER-associated degradation. ATF6 induces XBP1 gene transcription, and upregulates the formation of ER molecular chaperons, which, in turn, facilitate protein folding with IRE117,20,21. However, when ER stress is prolonged or excessive, unfolded protein response is closely interconnected with pro-inflammatory pathways and/or apoptosis, through the overexpression of CAAT/enhancer binding protein-α (C/EBP) homologous protein (CHOP), the PERK/ATF4-dependent transcription factor. As a result, the cells are unable to maintain ER homeostasis, and finally undergo apoptotic cell death22.

The effect of ER stress on retn expression has been studied in 3T3-L1 mouse adipocytes, where the opposite effects were observed. Lefterova et al.23 reported that tunicamycin, an inducer of ER stress, reduced resistin mRNA and protein by suppressing resistin activators, C/EBP and PPAR-γ, in 3T3-L1 adipocytes24,25. In contrast, Chen et al.26 reported that oxidized low-density lipoprotein, another ER stress inducer, increased retn expression and protein through the upregulation of BiP and CHOP in 3T3-L1 adipocytes27. As the expression of the resistin gene is clearly different between humans and mice, the relationship between ER stress and resistin in human monocytes should be pursued.

In view of this, to elucidate whether ER stress affects RETN expression in humans, we examined the relationship between ER stress and RETN expression in isolated human monocytes and THP-1 human monocytes. The findings show that ER stress induced by tunicamycin increased resistin mRNA through the PERK–ATF4–CHOP pathway in THP-1 human monocytes.

MATERIALS AND METHODS
Participants
A total of 30 healthy volunteers (11 men and 19 women, age 23.8 ± 2.9 years [range 21–31 years], body mass index 20.3 ± 1.5 [range 17.7–23.3 years]) were analyzed. They had a normal glucose tolerance, as assessed by a 75-g oral glucose tolerance test. Their routine blood tests were within normal ranges. All participants were informed of the purpose of the study and their consent was obtained. The study was approved by the ethics committee of the Ehime University Graduate School of Medicine.

Isolation of human monocytes
Peripheral mononuclear cells were collected from whole blood using a Lymphoprep Tube (Axis-Shield PoC AS, Oslo, Norway), and monocytes were isolated from the mononuclear cells using an anti-CD14 antibody of the MACS system (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany).
Cell culture and treatment

The human monocyte cell line derived from an acute monocytic leukemia patient, THP-1, was purchased from JCRB (Osaka, Japan) and cultured in Roswell Park Memorial Institute Medium 1640 (Life Technologies, Paisley, UK) supplemented with 10% fetal bovine serum (Life Technologies), 2 mmol/L L-glutamine, 50 U/mL penicillin and 50 μg/mL streptomycin. THP-1 cells were grown in a humidified 5% CO₂ atmosphere at 37°C. For experiments with inflammation, THP-1 cells (2 × 10⁵ cells/mL) were treated with 100 ng/mL LPS (Sigma-Aldrich, St. Louis, MO, USA) for 24 h. For experiments with ER stress, THP-1 cells (3 × 10⁵ cells/mL) were treated with 0.01, 0.1, or 1.0 μg/mL tunicamycin (Sigma-Aldrich) for 4, 8, 12, 24, 48 or 72 h. Pharmacological inhibition of ER stress was achieved by preincubating THP-1 cells with the chemical chaperone 4-phenylbutyric acid (4-PBA; Sigma-Aldrich, Steinheim, Germany) at a final concentration of 0.75, 1.5, 3.0 or 7.5 mmol/L for 14 h. After this pretreatment, the cells were treated with 0.1 μg/mL tunicamycin for 24 h.

RNA isolation, reverse transcription and real-time polymerase chain reaction

Total RNA was isolated from THP-1 cells using a RNeasy® Mini Kit (QiAGEN, Hilden, Germany). The concentration and purity (A260/A280 ratio) of RNA were determined by NanoDrop 2000® (Thermo Fisher Scientific, Waltham, MA, USA). First-strand complementary deoxyribonucleic acid (DNA) was synthesized from 0.5 μg of total RNA using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). Reverse transcription polymerase chain reaction (RT–PCR) was carried out using 12.5 μL of Taqman® Universal Master Mix (Applied Biosystems), 1 μL of Taqman® Gene Expression Assays (Applied Biosystems) and RNase free water to a final volume of 25 μL. PCR amplification was carried out in an ABI 7500 RT–PCR System (Applied Biosystems) with the cycle conditions (initial cycle at 50°C for 2 min, initial denaturation at 95°C for 10 min, 40 cycles of denaturation at 95°C for 15 s and annealing/extension at 60°C for 1 min). Relative RNA levels were calculated by the 2⁻ΔΔCt method using 18S ribosomal RNA or glyceraldehyde 3-phosphate dehydrogenase as the internal control. The following primers were purchased from Applied Biosystems and used for RT–PCR: glyceraldehyde 3-phosphate dehydrogenase (Hs99999905_m1), 18S (Hs99999901_s1), RETN (Hs00220767_m1), BiP/HSPA5 (Hs00607129_gH), PERK/EIF2AK3 (Hs00984005_m1), ATF4 (Hs00995669_g1), CHOP/DDIT3 (Hs00358796_g1), ATF6α (Hs00232586_m1), IRE1α/ERN1 (Hs00176385_m1) and XBP1 (Hs00319361_m1).

Small interfering RNA transfection

Small interfering RNA (siRNA) oligos targeting PERK, ATF4, CHOP, ATF6, IRE1 and a non-target negative control were purchased from Sigma-Aldrich (St. Louis, MO, USA). THP-1 cells were transfected with siRNA using Ingenio® Electroporation Kits and Solution (Mirus Bio Corporation, Madison, WI, USA). The siRNA complexes with 2.5 × 10⁶ THP-1 cells and 500 nmol/L siRNA in 250 μL Ingenio® Solution were made and electroporated with a voltage of 250 V and a capacitance of 950 μF using a 0.4-cm cuvette. Thereafter, electroporated cells were added to 50 μL of fresh serum-containing medium in 24-well plates and treated with 0.1 μg/mL tunicamycin for 24 h. The following siRNA were used: negative control (Mission_SIC-001), PERK (Hs_EIF2AK3_6845), ATF4 (Hs_ATF4_2313), CHOP (Hs_DDIT3_3015), ATF6 (Hs_ATF6_3439), IRE1 (Hs ERN1_4923) and XBP1 (Hs_XBP1_3590).

Overexpression of ATF4 and CHOP

The expression vectors, pCMV6-XL5 containing the coding sequence of human ATF4 (SC119103), and pCMV6-AC containing the coding sequence of human CHOP (SC324377), were purchased from OriGene Technologies, Inc (Rockville, MD, USA). THP-1 cells were transfected with 20 μg of plasmid DNA using Ingenio® Electroporation Kits and Solutions. The complexes with 2.5 × 10⁶ THP-1 cells and 20 μg of plasmid in 250 μL Ingenio® Solution were made and electroporated with a voltage of 250 V and a capacitance of 950 μF using a 0.4-cm cuvette. Thereafter, electroporated cells were added to 50 μL of fresh serum-containing medium in 24-well plates and allowed to grow for 48 h. It was estimated that at least approximately 17% of the THP-1 cells overexpressed introduced genes by transfection (Figure S1).

Measurements of resistin protein

Cell Lysis

After specific treatments, THP-1 cells frozen with liquid nitrogen were lysed using Cell Lysis Buffer (20 mmol/L Tris-HCl [pH 7.5], 150 mmol/L NaCl, 1 mmol/L Na₂ ethylenediaminetetraacetic acid, 1 mmol/L ethylene glycol tetraacetic acid, 1% Triton, 2.5 mmol/L sodium pyrophosphate, 1 mmol/L beta-glycerophosphate, 1 mmol/L Na₂VO₄, 1 μg/mL leupeptin and 1 mmol/L phenylmethylsulfonyl fluoride) with Complete Mini protease inhibitor (Roche Applied Science, Mannheim, Germany). The cells were subjected to three cycles of freezing and thawing, and subsequently stirred at 4°C for 1 h. Thereafter, the cells were centrifuged at 14,000 g at 4°C for 10 min. Total cell protein was quantified using the collected supernatant on a Spectrophotometer (Beckman Coulter, Inc., Fullerton, CA, USA).

Human resistin and antibodies for ultrasensitive enzyme-linked immunosorbent assay

Human resistin and mouse anti-human resistin monoclonal antibody (184320; Ab-resistin-1) were purchased from R&D Systems, Inc. (Minneapolis, MN, USA). Rabbit (anti-2,4-dinitrophenyl [DNP]-BSA) serum and bovine serum albumin (BSA; fraction V) were purchased from Shibayagi Co., Ltd. (Shibukawa, Japan) and Intergen Co. (Purchase, NY, USA), respectively. The ultrasensitive sandwich immune assay was performed as described.
respectively. Mouse anti-human resistin monoclonal antibody (5G51B22; Ab-resistin-2) was prepared by ourselves. In brief, human resistin complementary DNA (CCDS 12182.1) was amplified using PCR from human leukocytes RNA and sub-cloned into the pEU-GST(TEV)-N2 vector. Glutathione S-transferase (GST)-tagged recombinant human resistin protein was automatically synthesized by the Robotic Protein Synthesizer Protemist DT II (CellFree Sciences, Matsuyama, Japan) according to a cell-free protein synthesis system using wheat germ ribosomal RNA. Monoclonal antibodies were raised against the GST-tagged resistin based on the mouse spleen method. Further information for the preparation of the monoclonal antibody is available on request.

Ultrasonic enzyme-linked immunosorbent assay, immune complex transfer enzyme immunoassay, for human resistin Immune complex transfer enzyme immunoassay for human resistin was carried out by following the established method previously described. Precisely, an aliquot (100 μL) of standard human resistin or samples diluted in buffer A (10 mmol/L sodium phosphate buffer (pH 7.0), containing 0.4 mol/L NaCl, 0.1 g/L BSA, 1 mmol/L MgCl₂ and 1.0 g/L NaN₃) was incubated overnight at 4°C with 100 μL buffer A containing 30 fmol of Ab-resistin-2 Fab’-β-D-galactosidase, and 10 fmol Ab-resistin-1 immunoglobulin G2b conjugated with DNP and biotin (formation). Thereafter, one polystyrene bead coated with rabbit anti-DNP-BSA immunoglobulin G was added to the mixture and incubated for 30 min (entrapment). After removing the incubation mixture, the polystyrene bead was washed twice with buffer B (10 mmol/L sodium phosphate buffer [pH 7.0], containing 0.1 mol/L NaCl, 1.0 g/L BSA, 1.0 mmol/L MgCl₂ and 1.0 g/L NaN₃) and then incubated in 150 μL buffer B containing 2 mmol/L 4-Chloro-2,4-DNP-L-lysine for 30 min (elution). After removal of the polystyrene bead, one streptavidin-coated polystyrene bead was added to the eluate and incubated for 30 min (transfer). The bead was then washed, and the bound β-D-galactosidase activity was assayed fluorometrically with 4-methylumbelliferyl-β-D-galactoside (0.2 mmol/L) as a substrate for 20 h at 30°C. The incubations with polystyrene beads were carried out with shaking at 210 strokes/min at room temperature throughout. The within-assay and between-assay coefficient variations (CVs) for resistin were 5.2–9.7% (n = 5) and 5.0–9.7% (n = 5), respectively. The detection limit and sensitivity for resistin were 0.003 pg/mL and 0.15 pg/mL of medium sample, respectively. The detection limit was 1000-fold less than that of conventional enzyme-linked immunosorbent assay. A typical calibration curve of immune complex transfer enzyme immunoassay for resistin is shown in Figure S2.

Statistical analysis ANOVA with Scheffe’s test or unpaired Student’s t-test was used for statistical analyses. Simple regression analyses were used for correlation between resistin mRNA and ER stress markers mRNA in human monocytes. These analyses were carried out using Excel 2010 (Microsoft, Seattle, WA, USA) with the add-in software Statcel 3. Differences between groups were considered to be statistically significant at values of P < 0.05. All results are reported as the mean ± the standard error of the mean (SEM).

RESULTS Resistin mRNA was positively correlated with BiP or CHOP mRNA in human isolated monocytes To examine the relationship between RETN expression and ER stress in human monocytes, we first analyzed the mRNA of resistin and ER stress marker genes, BiP and CHOP, in isolated monocytes obtained from the 30 healthy volunteers. Resistin mRNA was positively correlated with either BiP or CHOP mRNA (R = 0.453, P < 0.05, and R = 0.420, P < 0.05, respectively) (Figure 1a,b). Therefore, resistin mRNA could be induced by ER stress in human monocytes.

LPS increased resistin, BiP, PERK and CHOP mRNA in THP-1 human monocytes We next examined whether LPS affected ER stress markers as well as resistin mRNA in THP-1 human monocytes. Resistin mRNA was increased to ~1.5-fold in the presence of 100 ng/mL of LPS within 24 h (Figure 2). LPS also enhanced mRNA of the ER stress markers, BiP, PERK and CHOP. Therefore, LPS increased resistin and ER stress markers mRNA in THP-1 human monocytes under the same conditions.

ER Stress, induced by tunicamycin, increased resistin mRNA in THP-1 human monocytes To determine whether ER stress affected resistin mRNA, we examined the effect of tunicamycin, which induces ER stress by inhibiting N-linked glycosylation, in THP-1 human monocytes. Tunicamycin treatment increased resistin mRNA for 24 h (Figure 3a). This induction appeared to be dose-dependent, and reached a maximum for 0.1 μg/mL of tunicamycin. We then examined the time-course for this using a concentration of tunicamycin of 0.1 μg/mL. The induction of resistin mRNA by tunicamycin appeared to be time-dependent up to 24 h, and then declined to 48 h (Figure 3b). The mRNA of ER stress markers, except for ATF6, was also enhanced by tunicamycin for 24 h (Figure 3c). Therefore, tunicamycin, which induces ER stress, increased resistin mRNA in THP-1 human monocytes. Similarly, thapsigargin, another ER stress inducer, increased resistin mRNA in THP-1 human monocytes (Figure S3a).

4-phenylbutyrate, a chemical chaperone, reduced tunicamycin-induced resistin and ER stress markers mRNA in THP-1 human monocytes We examined the effect of 4-phenylbutyrate (4-PBA), a chemical chaperone of ER stress, on resistin and ER stress marker genes. The 4-PBA inhibited the tunicamycin-induced mRNA
of the ER stress markers, BiP, PERK, ATF4, CHOP, IRE1 and XBP1 (Figure 4a). Resistin mRNA induced by tunicamycin was also reduced by 4-PBA (Figure 4b). These effects of 4-PBA appeared to be dose-dependent. The mRNA of resistin and ER stress markers in THP-1 cells without tunicamycin treatment was not affected by 4-PBA (data not shown). Therefore, the 4-PBA reduced tunicamycin-induced resistin and ER stress markers mRNA in THP-1 human monocytes.

Knockdown of PERK, ATF4 or CHOP inhibited tunicamycin-induced resistin mRNA in THP-1 human monocytes
To determine the signaling pathway responsible for tunicamycin-induced resistin mRNA, siRNA of key molecules involved in ER stress was used. The siRNA of PERK inhibited tunicamycin-induced resistin mRNA in THP-1 human monocytes (Figure 5a). The siRNA of downstream molecules, ATF4 or CHOP, also reduced tunicamycin-induced resistin mRNA (Figure 5b,c). The siRNA of PERK, ATF4 or CHOP blocked its own mRNA. Resistin mRNA was not affected by the siRNA of ATF6, IRE1 or XBP1, whereas their own mRNA was reduced (Figure S4). Therefore, the PERK–ATF4–CHOP pathway appears to be involved in tunicamycin-induced resistin mRNA in THP-1 monocytes.

Overexpression of ATF4 or CHOP increased resistin mRNA in THP-1 human monocytes
To confirm the involvement of ATF4 and CHOP in the induction of resistin mRNA, the effect of the transient overexpression of ATF4 or CHOP was examined. ATF4 and CHOP were overexpressed (Figure 6a,b). ATF4 increased resistin mRNA by 1.52-fold compared with controls (Figure 6a). Likewise, CHOP induced resistin mRNA by 1.25-fold (Figure 6b). Therefore, ATF4 and CHOP, downstream molecules of PERK in the ER stress signaling pathway, were involved in the tunicamycin-induced resistin mRNA in THP-1 human monocytes.
Enhanced resistin mRNA expression by tunicamycin is reduced by 4-PBA.

Figure 3 | Endoplasmic reticulum stress, induced by tunicamycin, increased resistin messenger ribonucleic acid (mRNA) in THP-1 human monocytes. (a) Tunicamycin increased resistin mRNA in THP-1 human monocytes (dose–response). THP-1 cells were treated with 0 (control), 0.01, 0.1 or 1.0 μg/mL tunicamycin for 24 h. The mRNA of human resistin was quantitated using reverse transcription polymerase chain reaction, and the data are shown relative to 18S rRNA mRNA as described in the Materials and Methods. The mRNA of the control was defined as 1.0. The mean ± standard error of the mean of six separate experiments with triplicate samples is shown. ANOVA; *P < 0.01 compared with control, †P < 0.05 compared with 0.01 μg/mL tunicamycin. (b) (Time-course) THP-1 cells were treated with 0.1 μg/mL tunicamycin for 4, 8, 12, 24, 48 or 72 h. The mRNA of the control (0 h) was defined as 1.0. The mean ± standard error of the mean of six separate experiments with triplicate samples are shown. ANOVA; P = 2.63 × 10^-6; Scheffe’s test; *P < 0.01 compared with 4 and 72 h in THP-1 cells treated with 0.1 μg/mL tunicamycin, †P < 0.05 compared with 8, 12 and 48 h in THP-1 cells treated with 0.1 μg/mL tunicamycin. (c) The mRNA of endoplasmic reticulum stress markers, immunoglobulin heavy chain-binding protein (BiP), pancreatic endoplasmic reticulum eukaryotic initiation factor 2α kinase (PERK), activating transcription factor 4 (ATF4), CAAT/enhancer binding protein-α homologous protein (CHOP), inositol requiring enzyme 1 (IRE1) or X-box binding protein 1 (XBP1) was increased by tunicamycin. THP-1 cells were treated with 0.1 μg/mL tunicamycin for 24 h. The mRNA of control (tunicamycin [−], 24 h) was defined as 1.0. The mean ± standard error of the mean of six separate experiments with triplicate samples is shown. Unpaired Student’s t-test was used for statistical analyses. *P < 0.01, ††P < 0.001 vs control.

Intracellular resistin protein appeared to be enhanced by tunicamycin in THP-1 human monocytes

We next measured resistin protein in the cell lysate of THP-1 cells treated with or without 0.1 μg/mL tunicamycin for 6, 12 or 24 h. Resistin protein in the cell lysate treated without tunicamycin was lower at 24 h than 0 h (Figure 7). In contrast, resistin protein in the cell lysate treated with tunicamycin was maintained at 24 h. When the fold induction of resistin protein by tunicamycin was compared at each time-point, this induction was higher at 24 h than 0 and 6 h. Therefore, intracellular resistin protein appeared to be enhanced under tunicamycin-induced ER stress in THP-1 human monocytes at at least 24 h.

Figure 4 | The 4-phenylbutyrate (4-PBA) reduced tunicamycin-induced resistin and ER stress markers messenger ribonucleic acid (mRNA) in THP-1 human monocytes. THP-1 cells were pre-incubated with 750, 1500, 3000 or 7500 μmol/L of 4-PBA, a chemical chaperone, for 14 h, and 0.1 μg/mL tunicamycin was subsequently added to the medium for 24 h. The mRNA of (a) endoplasmic reticulum stress markers (immunoglobulin heavy chain-binding protein [BiP], pancreatic endoplasmic reticulum eukaryotic initiation factor 2α kinase [PERK], activating transcription factor 4 [ATF4], CAAT/enhancer binding protein-α homologous protein [CHOP], ATF6, inositol requiring enzyme 1 [IRE1] or X-box binding protein 1 [XBP1]) and (b) resistin (RETN) were quantitated using reverse transcription polymerase chain reaction and shown relative to 18S rRNA mRNA as described in the Materials and Methods. The mRNA of control (4-PBA [−], tunicamycin [−]) was defined as 1.0. The mean ± standard error of the mean of five separate experiments with triplicate samples is shown. ANOVA; P = 8.49 × 10^-16 (BiP), P = 0.00040 (PERK), P = 2.46 × 10^-6 (ATF4), P = 1.53 × 10^-5 (CHOP), P = 0.00085 (ATF6), P = 0.0070 (IRE1), P = 0.00016 (XBP1), P = 5.44 × 10^-6 (RETN); Scheffe’s test; ††P < 0.01, †P < 0.05 vs control (tunicamycin [−], 4-PBA [−]), **P < 0.01, *P < 0.05.
Tunicamycin decreased resistin protein secretion from THP-1 human monocytes

Finally, we measured the amount of resistin protein secreted from THP-1 cells into the medium. THP-1 cells were treated with or without 0.1 µg/mL tunicamycin for 6, 12 or 24 h. Paradoxically, the resistin protein in the medium was lower with tunicamycin treatment at 12 and 24 h (Figure 8). Therefore, tunicamycin decreased resistin protein secreted from THP-1 human monocytes, while increasing resistin mRNA, and possibly protein in these cells.
DISCUSSION

We have shown that ER stress markers mRNA was positively associated with resistin mRNA in isolated human monocytes. ER stress induced by tunicamycin also increased resistin mRNA in THP-1 human monocytes. The PERK–ATF4–CHOP pathway was involved in this increase, as evidenced by knockdown using siRNA and the overexpression of key molecules associated with ER stress.

In the present study, resistin mRNA was positively associated with mRNA of ER stress markers, BiP and CHOP, in isolated monocytes from healthy volunteers. We previously reported that plasma resistin was positively correlated with insulin resistance in the Japanese general population. In addition, Degasperi et al. reported that activated ER stress was observed in monocytes from obese patients compared with healthy controls. Most recently, Gregor et al. reported that mRNA of the ER stress markers, BiP and spliced XBP-1, was decreased in subcutaneous abdominal adipose tissues in obese subjects, when insulin resistance was improved by weight loss after gastric bypass surgery. Therefore, ER stress appears to be positively associated with resistin mRNA in human monocytes, as well as insulin resistance.

We found that LPS, a typical inducer of RETN expression, also increased mRNA of BiP, PERK and CHOP in THP-1 human monocytes. Lehrke et al. reported that LPS increased RETN expression in primary human macrophages, which was inhibited by anti-inflammatory drugs or the PPAR-γ ligand. Therefore, inflammatory stimuli, such as LPS, could induce resistin mRNA through ER stress in human monocytes.

We found that ER stress induced by tunicamycin increased resistin mRNA in THP-1 human monocytes. This induction appeared to be time-dependent for periods of up to 24 h, and then declined to 48 h. Cell death caused by ER stress-induced apoptosis could account for this decline. In contrast, previous studies have reported that the expression of retn was downregulated by LPS or tunicamycin-induced ER stress in 3T3-L1 mouse adipocytes. The opposite effects of LPS or tunicamycin between human monocytes and mouse adipocytes sug-
suggest that resistin gene expression was differentially regulated between these cells.

We showed that 4-PBA reduced tunicamycin-induced resistin mRNA in THP-1 cells. The 4-PBA also inhibited tunicamycin-induced mRNA of typical molecules involved in ER stress in THP-1 cells. The 4-PBA is known to be a representative chemical chaperone of ER stress, and functions to reduce ER stress-mediated inflammation by inhibiting BiP and PERK gene expression. Therefore, 4-PBA could reduce tunicamycin-induced RETN expression by inhibiting ER stress in THP-1 cells.

We found that the siRNA of either PERK, ATF4 or CHOP inhibited tunicamycin-induced resistin mRNA in THP-1 human monocytes. The siRNA of ATF6, IRE1 or XBP1 had no effect on the tunicamycin-induced resistin mRNA. Conversely, the overexpression of ATF4 and CHOP increased resistin mRNA. In addition, the induction of CHOP mRNA by tunicamycin appeared to be time-dependent up to 8 h, and then declined to 24 h (data not shown), whereas that of resistin mRNA reached a peak later at 24 h. Therefore, the PERK–ATF4–CHOP pathway appears to be mainly involved in tunicamycin-induced resistin mRNA in THP-1 human monocytes.

Consistent with resistin mRNA, intracellular resistin protein appeared to be enhanced by tunicamycin in THP-1 cells at 24 h. Paradoxically, resistin protein secretion was decreased by tunicamycin in these cells. Most recently, Suragani et al. reported a similar discrepancy regarding tunicamycin treatment in U937 human monocytes. They also showed that resistin was retained in the ER as a possible chaperone of misfolded proteins on tunicamycin treatment, which could account for the decreased secretion of resistin. In addition, the secretion of secretory proteins, such as resistin, could be decreased by tunicamycin as a result of its blocking effect on N-linked glycosylation. Under ER stress conditions, such as diabetes and obesity in vivo, circulating resistin could be increased in the absence of pharmacological effects of tunicamycin.

Several limitations should be noted. First, the effects of pharmacological agents might not be limited to ER stress. Although two known ER stress inducers, tunicamycin and thapsigargin, similarly increased resistin mRNA in THP-1 human monocytes, DTT, another ER stress inducer, paradoxically decreased resistin mRNA, possibly through a different mechanism (Figure S3a,b). Second, the effect of tunicamycin on resistin mRNA was assessed only in the THP-1 human monocytes cell line. It appeared to be difficult to assess the effect of tunicamycin on
resistin mRNA in isolated human monocytes, as resistin mRNA was decreased to approximately one-fifth of its initial level in 24 h after the isolation of monocytes (Figure S5). Nagaev et al.\(^2\) also reported the decrease in resistin mRNA after isolation of human monocytes.

In summary, we have shown that ER stress induced by tunicamycin increased resistin mRNA through the PERK–ATF4–CHOP pathway in THP-1 human monocytes. How ER stress induces the expression of RETN, especially at the transcriptional level, and the pathophysiological roles of resistin under conditions of ER stress in humans remain unclear. Further studies will be required to clarify these points.

ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI grant number 2546135, grants from Ehime University and support from a fund from Mr Takashi Ikeda. We thank Dr Takeshi Kiyoi (Ehime University) for technical assistance.

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
1. Steppan C, Lazar M. The current biology of resistin. J Intern Med 2004; 255: 439–447.
2. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature 2001; 409: 307–312.
3. Rangwala S, Rich A, Rhoades B, et al. Abnormal glucose homeostasis due to chronic hyperresistinemia. Diabetes 2004; 53: 1937–1941.
4. Banerjee R, Rangwala S, Shapiro J, et al. Regulation of fasted blood glucose by resistin. Science 2004; 303: 1195–1198.
5. Patel L, Buckels A, Kinghorn I, et al. Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun 2003; 300: 472–476.
6. Osawa H, Onuma H, Murakami A, et al. Systematic search for single nucleotide polymorphisms in the resistin gene in the absence of evidence for the association of three identified single nucleotide polymorphisms with Japanese type 2 diabetes. Diabetes 2002; 51: 863–866.
7. Osawa H, Yamada K, Onuma H, et al. The G/G genotype of a resistin single-nucleotide polymorphism at -420 increased type 2 diabetes mellitus susceptibility by inducing promoter activity through specific binding of Sp1/3. Am J Hum Genet 2004; 75: 678–686.
8. Osawa H, Onuma H, Ochi M, et al. Resistin SNP-420 determines its monocyte mRNA and serum levels inducing type 2 diabetes. Biochem Biophys Res Commun 2005; 335: 596–602.
9. Osawa H, Tabara Y, Kawamoto R, et al. Plasma resistin, associated with single nucleotide polymorphism -420, is correlated with insulin resistance, lower HDL cholesterol, and high-sensitivity C-reactive protein in the Japanese general population. Diabetes Care 2007; 30: 1501–1506.
10. Kaser S, Kaser A, Sandhofer A, et al. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem Biophys Res Commun 2003; 309: 286–290.
11. Lehre K, Reilly MP, Millington SC, et al. An inflammatory cascade leading to hyperresistinemia in humans. PLoS Med 2004; 1: e45.
12. Kolattukudy PE, Niu J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ Res 2012; 110: 174–189.
13. Niu J, Kolattukudy PE. Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clin Sci (Lond) 2009; 117: 95–109.
14. Deshmule SL, Kremlev S, Amini S, et al. Monocyte chemoattractant protein-1: an overview. J Interferon Cytokine Res 2009; 29: 313–326.
15. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest 2002; 110: 1389–1398.
16. Bernales S, Papa FR, Walter P. Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol 2006; 22: 487–508.
17. Shen X, Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat 2004; 28: 79–92.
18. Lee AS. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 2005; 35: 373–381.
19. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011; 334: 1081–1086.
20. Harding HP, Zhang Y, Bertolotti A, et al. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 2000; 5: 897–904.
21. Yoshida H, Matsu T, Yamamoto A, et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 2001; 107: 881–891.
22. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 2005; 115: 2656–2664.
23. Lefferova MI, Mullican SE, Tomaru T, et al. Endoplasmic reticulum stress regulates adipocyte resistin expression. Diabetes 2009; 58(8): 1879–1886.
24. Hartman HB, Hu X, Tyler KV, et al. Mechanisms regulating adipocyte expression of resistin. J Biol Chem 2002; 277: 19754–19761.
25. Tomaru T, Steger DJ, Leflerova MI, et al. Adipocyte-specific expression of murine resistin is mediated by synergism between peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding proteins. J Biol Chem 2009; 284: 6116–6125.
26. Chen Y, Chen M, Wu Z, et al. Ox-LDL induced ER stress and promotes the adipokines secretion in 3T3-L1 adipocytes. PLoS ONE 2013; 8: e81379.
27. Sanson M, Augé N, Vindis C, et al. Oxidized low-density lipoproteins trigger endoplasmic reticulum stress in vascular cells: prevention by oxygen-regulated protein 150 expression. Circ Res 2009; 104: 328–336.
28. Bardóczi V, Géczi V, Sawasaki T, et al. A set of ligation-independent in vitro translation vectors for eukaryotic protein production. BMC Biotechnol 2008; 8: 32.
29. Madin K, Sawasaki T, Ogasawara T, et al. A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc Natl Acad Sci USA 2000; 97: 559–564.
30. Sawasaki T, Ogasawara T, Morishita R, et al. A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci USA 2002; 99: 14652–14657.
31. Hashida S, Ishikawa E. Detection of one milliattomole of ferritin by novel and ultrasensitive enzyme immunoassay. J Biochem 1990; 108: 960–964.
32. Hashida S, Hashinaka K, Ishikawa E. Ultrasensitive enzyme immunoassay. Biotechnol Annu Rev 1995; 1: 403–451.
33. Yanai H. Statcel – The useful add-in software forms on Excel, 3rd edn. Saitama: OMS, 2011: 172–175.
34. Degasperi GR, Denis RG, Morari J, et al. Reactive oxygen species production is increased in the peripheral blood monocytes of obese patients. Metabolism 2009; 58: 1087–1095.
35. Gregor MF, Yang L, Fabbrini E, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 2009; 58: 693–700.
36. Xiang X, An W, Jiang C, et al. Lipopolysaccharide inhibits the expression of resistin in adipocytes. J Mol Endocrinol 2013; 51: 287–299.
37. Ozcan U, Yilmaz E, Ozcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006; 313: 1137–1140.
38. Ozcan L, Ergin AS, Lu A, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 2009; 9: 35–51.
39. Kawasaki N, Asada R, Saito A, et al. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep 2012; 2: 799.
40. Zeng W, Guo YH, Qi W, et al. 4-Phenylbutyric acid suppresses inflammation through regulation of endoplasmic reticulum stress of endothelial cells stimulated by uremic serum. Life Sci 2014; 103: 15–24.
41. Suragani M, Aadinarayana VN, Pinjari AB, et al. Human resistin, a proinflammatory cytokine, shows chaperone-like activity. Proc Natl Acad Sci USA 2013; 110: 20467–20472.
42. Nagaev I, Bokarewa M, Tarkowski A, et al. Human resistin is a systemic immune-derived proinflammatory cytokine targeting both leukocytes and adipocytes. PLoS ONE 2006; 1: e31.

SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of this article:

Figure S1 | It was estimated that at least approximately 17% of the THP-1 cells overexpressed introduced genes by transfection.
Figure S2 | Calibration curves for resistin by immune complex transfer enzyme immunoassay.
Figure S3 | (a) Thapsigargin, the endoplasmic reticulum stress inducer, increased resistin messenger ribonucleic acid (mRNA) in THP-1 human monocytes. (b) DTT, another ER stress inducer, paradoxically decreased resistin mRNA in THP-1 human monocytes. ATF4, activating transcription factor 4; CHOP, CAAT/enhancer binding protein-α homologous protein; PERK, pancreatic ER eukaryotic initiation factor 2a kinase; RETN, human resistin gene.
Figure S4 | Resistin messenger ribonucleic acid (mRNA) was not affected by the small interfering RNA of activating transcription factor 6 (ATF6), inositol requiring enzyme 1 (IRE1) or X-box binding protein 1 (XBP1), whereas their own mRNA was reduced. RETN, human resistin gene.
Figure S5 | Resistin messenger ribonucleic acid (mRNA) was decreased to approximately one-fifth of its initial level in 24 h after the isolation of monocytes. RETN, human resistin gene.