RESEARCH ARTICLE

Staphylococcus aureus SrrAB Affects Susceptibility to Hydrogen Peroxide and Co-Existence with Streptococcus sanguinis

Yuichi Oogai, Miki Kawada-Matsuo, Hitoshi Komatsuzawa *

Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan

* hkomatsu@dent.kagoshima-u.ac.jp

Abstract

Staphylococcus aureus is a pathogen and a commensal bacterial species that is found in humans. Bacterial two-component systems (TCSs) sense and respond to environmental stresses, which include antimicrobial agents produced by other bacteria. In this study, we analyzed the relation between the TCS SrrAB and susceptibility to the hydrogen peroxide (H$_2$O$_2$) that is produced by Streptococcus sanguinis, which is a commensal oral streptococcus. An srrA-inactivated S. aureus mutant demonstrated low susceptibility to the H$_2$O$_2$ produced by S. sanguinis. We investigated the expression of anti-oxidant factors in the mutant. The expression of katA in the mutant was significantly higher than in the wild-type (WT) in the presence or absence of 0.4 mM H$_2$O$_2$. The expression of dps in the mutant was significantly increased compared with the WT in the presence of H$_2$O$_2$ but not in the absence of H$_2$O$_2$. A katA or a dps-inactivated mutant had high susceptibility to H$_2$O$_2$ compared with WT. In addition, we found that the nitric oxide detoxification protein (flavohemoglobin: Hmp), which is regulated by SrrAB, was related to H$_2$O$_2$ susceptibility. The hmp-inactivated mutant had slightly lower susceptibility to the H$_2$O$_2$ produced by S. sanguinis than did WT. When a srrA-inactivated mutant or the WT were co-cultured with S. sanguinis, the population percentage of the mutant was significantly higher than the WT. In conclusion, SrrAB regulates katA, dps and hmp expression and affects H$_2$O$_2$ susceptibility. Our findings suggest that SrrAB is related in vivo to the co-existence of S. aureus with S. sanguinis.

Introduction

Staphylococcus aureus is a human pathogen that causes several diseases such as suppurative diseases, food poisoning and toxic shock syndrome [1, 2]. Recently, methicillin-resistant S. aureus epidemics in hospitals have become a worldwide health problem [3–5]. S. aureus is a commensal bacterium found in humans that has been isolated from the skin and nasal mucosa...
of healthy subjects with a frequency of 20 to 60\% [6, 7]. Additionally, \textit{S. aureus} is known to inhabit the oral cavity, including the oral mucosa, gingiva and dental plaque [8–10].

In a commensal bacterial flora, many bacteria produce anti-bacterial agents such as bacteriocins [11, 12] and hydrogen peroxide compete with other bacterium [13–15]. It was demonstrated in virginal flora that \textit{H}_2\text{O}_2\text{-producing lactobacilli inhibited the growth of pathogens} [16, 17]. In oral flora, viridans group streptococci produced \textit{H}_2\text{O}_2\text{ and had an antagonistic effect on pathogens} [13–15]. \textit{Streptococcus sanguinis} is an oral bacterium that is found primarily in dental plaques and has been reported to be an \textit{H}_2\text{O}_2\text{-producing species}. Several reports have demonstrated that the \textit{H}_2\text{O}_2 produced by \textit{S. sanguinis} can kill other oral bacterial species [18, 19]. Uehara \textit{et al.} reported that viridans group streptococci containing \textit{S. sanguinis} inhibit colonization with \textit{S. aureus} in newborns, which has been attributed to \textit{H}_2\text{O}_2 [20, 21]. On the other hand, \textit{S. aureus} was reported to possess several factors that confer resistance to \textit{H}_2\text{O}_2, such as catalase (KatA), alkyl hydroperoxide reductase (AhpC) and DNA-binding proteins from starved cells (Dps) [22–24]. KatA and AhpC are enzymes that decompose \textit{H}_2\text{O}_2. Dps is an inhibitor of hydroxyl radical (\textit{OH}) production from \textit{H}_2\text{O}_2 in the presence of iron via the Fenton chemistry. Therefore, the biological relevance of interactions between \textit{S. sanguinis}, a resident of the oral cavity, and \textit{S. aureus} is uncertain.

Two-component systems (TCSs) are composed of a sensor kinase and a response regulator and are bacterial-specific gene regulation systems. When a sensor kinase senses a stimulant in the extracellular environment, the response regulator is phosphorylated and regulates several genes to facilitate adaptation to the environment [25]. Recently, several TCSs have been reported to be important for adaptation to \textit{H}_2\text{O}_2 stress. In \textit{Escherichia coli}, \textit{Salmonella enterica} Serovar Typhimurium and \textit{Haemophilus influenzae}, ArcAB has an oxygen sensing function and is essential for resisting reactive oxygen species, including \textit{H}_2\text{O}_2 [26–28]. In \textit{S. aureus}, Sun \textit{et al.} demonstrated that two TCSs (AgrCA and AirSR) affected the susceptibility to \textit{H}_2\text{O}_2 [29, 30].

The TCS SrrAB is a known oxygen sensor in \textit{S. aureus} and regulates several virulence genes under low oxygen conditions [31–33], as well as anaerobic metabolism genes and a flavohemoglobin \textit{hmp} under low oxygen conditions or upon exposure to nitric oxide (NO) [34, 35]. However, the relation between susceptibility to \textit{H}_2\text{O}_2 and SrrAB is unknown. In this study, we investigated the effects of SrrAB on susceptibility to the \textit{H}_2\text{O}_2 produced by \textit{S. sanguinis}.

Materials and Methods

Bacterial strains and growth conditions

The bacterial strains used in this study are listed in Table 1. \textit{S. aureus} was grown in 5 ml of tryptic soy broth (TSB) (Becton Dickinson Microbiology Systems, Cockeysville, MD, USA) in test tubes (18 mm diameter × 150 mm tall) at 37\(^\circ\)C under aerobic conditions with shaking (120 rpm). \textit{S. sanguinis} was aerobically grown in 5 ml of TSB in test tubes (18 mm diameter × 150 mm tall) at 37\(^\circ\)C under 5\% \textit{CO}_2 without shaking. Tetracycline (Tc; 5 \(\mu\)g / ml) and chloramphenicol (Cp; 3 \(\mu\)g / ml) were added for the maintenance of \textit{S. aureus} mutant strains. Ampicillin (100 \(\mu\)g / ml) and spectinomycin (50 \(\mu\)g / ml) were added for the maintenance of \textit{E. coli} mutant strains.

Construction of \textit{S. aureus} mutants

The \textit{srrA}-inactivated mutants were previously constructed [36, 37]. The genes \textit{dps}, \textit{katA}, \textit{hmp} and \textit{perR} were inactivated in \textit{S. aureus} strain MW2 using the thermosensitive plasmid pCL52.1 by a previously described method [38]. Gene complementation was performed in the \textit{srrA}-inactivated mutants using pCL8, which is an \textit{E. coli}-\textit{S. aureus} shuttle vector [39]. Entire sequences of \textit{srrAB} with their own promoters were amplified by PCR. The amplified DNA was
cloned into the pCL8 vector using *E. coli* XLII-Blue cells. The constructs were purified and electroporated into *S. aureus* RN4220, which was the recipient for the foreign plasmid [40]. Then, the plasmid was transduced into the mutant strains using the phage 80 alpha [41]. As a control strain for co-culture assays, strain MW2 harbouring the empty pCL8 was constructed. The primers used are listed in Table 2.

Table 1. Strains and plasmids used in this study.

Strains or plasmids	Description	References or source
Staphylococcus aureus		
MW2	Clinical strain, sepsis, methicillin resistant (mecA+)	[59]
TY34	Clinical strain, impetigo, methicillin resistant (mecA+)	[37]
RN4220	Restriction-deficient transformation recipient	[40]
MW2 ΔsrrA	srrA::pCL52.1 in MW2, Tc[']	[36]
MW2 srrAB compl.	srrAB complemented in MW2 ΔsrrA by pYO10, Tc['] Cp[']	This study
TY34 ΔsrrA	srrA::pCL52.1 in TY34, Tc[']	[37]
TY34 srrAB compl.	srrAB complemented in TY34 ΔsrrA by pYO10, Tc['] Cp[']	This study
MW2 Δhmp	hmp::pCL52.1 in MW2, Tc[']	This study
MW2 Δdps	dps::pCL52.1 in MW2, Tc[']	This study
MW2 ΔkatA	katA::pCL52.1 in MW2, Tc[']	This study
MW2 ΔperR	perR::pCL52.1 in MW2, Tc[']	This study
MW2::pCL8	MW2 harbouring pCL8, Cp[']	This study
Streptococcus sanguinis		
GTC217	Ofloxacin resistance	GTC
Escherichia coli		
XLII-Blue	endA1 supE44 thi-1 hsdR17 recA1 gyrA96 relA1 lac [F⁺ proAB lacI^Q ΔM15 Tn10 (Tet^R) Amy Cam^R]*	Stratagene
Plasmids		
pCL52.1	*E. coli*–*S. aureus* shuttle vector, thermosensitive replicon of pE194, Tc['] (S. aureus), Spc['] (E. coli)	[39]
pCL8	*E. coli*–*S. aureus* shuttle vector, Cp['] (S. aureus), Amp['] (E. coli)	[39]
pYO10	pCL8 containing a PCR fragment of srrAB for complementation	This study

Tc['], resistant to tetracycline; Cp['], resistant to chloramphenicol; Spc['], resistant to spectinomycin; Amp['], resistant to ampicillin; GTC, gifu type culture.

doi:10.1371/journal.pone.0159768.t001

Direct assay for evaluating susceptibility to H₂O₂ produced by *S. sanguinis*

The direct assay method was modified from a previously described method [42]. A total of 5 μl of *S. sanguinis* (10⁵ cells / ml) was dropped onto a tryptic soy agar (TSA) plate. After 16 h of aerobic incubation at 37°C under 5% CO₂, the mid-log phase (cell density 660 nm = 0.8) of *S. aureus* strains (10⁷ cells) mixed with 6 ml of pre-warmed tryptic soy soft agar (0.5% agar) was poured over the plates. The plates were incubated overnight at 37°C under aerobic conditions. To analyze the effects of anaerobic conditions on the production of an antibacterial agent, *S. sanguinis* was grown on TSA plates anaerobically using a GasPak system (Mitsubishi Gas Chemical Company Inc., Tokyo, Japan). Then, after pouring tryptic soy soft agar containing *S. aureus*, the plate was incubated overnight at 37°C under anaerobic conditions. To neutralize the H₂O₂ produced by *S. sanguinis*, 20 μl of bovine liver catalase (100 μg / ml) (Sigma-Aldrich, St. Louis, MO, USA) was dropped onto the area surrounding the *S. sanguinis* colony, and the direct assay was performed under aerobic conditions. The diameter of the *S. aureus* inhibition
zone was measured in three directions to evaluate the inhibitory size. Three independent experiments were performed and are expressed as the mean ± SD.

H$_2$O$_2$ susceptibility test

Mid-log phase (cell density at 660 nm = 0.8) *S. aureus* strains were washed with PBS and re-suspended in TSB. Then, 0.5 × 108 cells were inoculated into 10 ml of TSB or TSB containing 0.4 mM H$_2$O$_2$ in a test tube (18 mm diameter × 150 mm tall) and grown aerobically at 37°C with shaking at 120 rpm. Bacterial growth was monitored to measure the bacterial density (OD 660 nm) for 2 to 10 h using the spectrophotometer miniphoto 518R (Taitec Corporation, Saitama, Japan).

Quantitative PCR

A small amount of the *S. aureus* strains (108 cells) was inoculated in 10 ml of TSB and grown aerobically to mid-log phase (cell density at 660 nm = 0.8) at 37°C with shaking at 120 rpm. The cultures were transferred to a centrifuge tube and treated with or without 0.4 mM H$_2$O$_2$ for 10 min at 37°C with shaking (120 rpm). RNA extraction was performed using a FastRNA Pro Blue Kit (MP Biomedicals, Santa Ana, CA, USA) according to the manufacturer’s protocol. One microgram of total RNA was reverse-transcribed into cDNA using a Transcriptor First Strand cDNA Synthesis Kit (Roche Diagnostics, Basel, Switzerland). Using cDNA as the template, quantitative PCR was performed using a LightCycler Nano (Roche Diagnostics). The primers used are listed in Table 2. Transcriptional levels were determined using 2$^{-\Delta\Delta Ct}$ methods [43]. The Ct value of 16S rRNA in 1000-fold diluted cDNA was used as a reference. The means of Ct values in WT untreated with H$_2$O$_2$ ($N= 5$) were used as the calibrator. All test and calibrator samples were normalized to the ΔCt value ($\Delta Ct_{(test)} = Ct_{(target \ test)}-Ct_{(reference \ test)}$; $\Delta Ct_{(calibrator)} = Ct_{(target \ calibrator)}-Ct_{(reference \ calibrator)}$). Then, the $\Delta \Delta Ct$ value was determined ($\Delta \Delta Ct = \Delta Ct_{(test)}-\Delta Ct_{(calibrator)}$). The relative expression level was calculated using the formula $F = 2^{-\Delta \Delta Ct}$. Individual experiments were performed three or five times, and the results expressed as the mean ± SD.

Table 2. Primers used in this study.

Gene name	Forward primer	Reverse primer
For gene inactivation		
hmp	5’- TTCAAGCTTGGCAAAAACATATGGCG	5’- GCGGGATCTCTGGCTGAGATCTG
dps	5’- GTTAAGCTTGATTTGAACTCAAAGCCG	5’- TTAGGATCTCTTCTGAGCTACAG
katA	5’- AAAAAGCTTCGGAATAGGAGC	5’- AATGGATCTCTTCTGAGCTG
perR	5’- ACCAAGCTTGGCAAAGCTACTG	5’- AGTGGATCTCTGAGCTAAAT
For complementation		
snrAB	5’- TTAGGATCTCGTAATGCGGTCTTCTG	5’- AGTGGATCTCTGAGCTTAAT
For quantitative PCR		
16s rRNA	5’- CTTATGATTTGGGCTAC	5’- TACAATCCGAGGACTGAGCA
katA	5’- AAGGTTCTGGTGGATTGG	5’- AAGCCTATTCTCGAATGTC
ahpC	5’- TTATCGAACGACGCTTGG	5’- TAGGCTCTTCTCCCTTTA
dps	5’- CGATAAGGGAGAAACCCTGTA	5’- TTAGGATCTCTGAGCTAAAT
hmp	5’- AAGGCTTAATTTGGCCTGGA	5’- TGGCAAGGCTTGGTGGGAA
cidA	5’- TAGGCAGCTATTGTTGG	5’- AATTCGGAAGCAACATCC
perR	5’- ACAAGCAGGGCTAAGAAT	5’- GTCGCAACACTTATATTG

Restriction sites are underlined.

doi:10.1371/journal.pone.0159768.t002
Co-culture assay

Co-culture assays were performed using a previously described method [42]. Mid-log phase cells (cell density at 660 nm = 0.8) of the \(\textit{S. sanguinis} \) and \(\textit{S. aureus} \) strains were adjusted to \(2 \times 10^8 \) cells / ml using PBS. The same volume of \(\textit{S. aureus} \) and \(\textit{S. sanguinis} \) was mixed and 20 \(\mu \)l of the mixture was dropped onto a TSA plate. The plate was incubated for 2 h at 37°C under 5% CO\(_2\). The agar in the spotted area was excised and incorporated into 500 \(\mu \)l of PBS. Then, the agar was vigorously mixed to detach the bacterial cells from the agar. Appropriate dilutions were plated on TSA plates containing Cp (3 \(\mu \)g / ml), Tc (5 \(\mu \)g / ml), or ofloxacin (Oflx) (1 \(\mu \)g / ml) because of different susceptibilities to antibiotics. WT \(\textit{S. aureus} \) (MW2::pCL8) were selected with Cp. \(\textit{S. aureus} \) mutants, and complemented strains were selected with Tc. \(\textit{S. sanguinis} \) was selected with Oflx. After an overnight incubation at 37°C under 5% CO\(_2\), CFUs were determined, and the population percentage for each \(\textit{S. aureus} \) strain was calculated.

To analyze the effects of pre-culturing \(\textit{S. sanguinis} \), ten microliters of \(\textit{S. sanguinis} \) (10\(^8\) cells / ml) was dropped onto a TSA plate and the plate was incubated for 1 h at 37°C under 5% CO\(_2\). Then, ten microliters of \(\textit{S. aureus} \) (10\(^8\) cells / ml) was dropped onto a \(\textit{S. sanguinis} \) colony and the plate was incubated for 2 h at 37°C under 5% CO\(_2\). The population percentage of \(\textit{S. aureus} \) was determined by the method described above. Three independent experiments were performed and the results are expressed as the mean ± SD.

Statistical analysis

All statistical analyses were performed with statistical software EZR version 1.32 (http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmedEN.html).

Results

Susceptibility of the \(\text{srrA} \)-inactivated mutants to H\(_2\)O\(_2\) produced by \(\textit{S. sanguinis} \)

A direct assay demonstrated that the \(\text{srrA} \)-inactivated MW2 mutant showed a small inhibition zone surrounding \(\textit{S. sanguinis} \) compared with the WT and that the small zone of the mutant was restored by complementation with \(\text{srrAB} \) (Fig 1A and 1C). Additionally, we investigated the susceptibility of an \(\text{srrA} \)-inactivated TY34 mutant to \(\textit{S. sanguinis} \) and found that the mutant had a small inhibition zone compared with the WT (Fig 1C). Under anaerobic conditions, \(\textit{S. aureus} \) WT showed no inhibition zone, and no inhibition zone was observed after catalase treatment (Fig 1B). In the growth curve experiment, the growth of the \(\text{srrA} \)-inactivated mutant was higher than the WT in the presence of 0.4 mM H\(_2\)O\(_2\). Statistical significance was observed between WT and the mutant in the presence of 0.4 mM H\(_2\)O\(_2\) at 10 h incubation. This phenotype in the mutant was restored by complementation with \(\text{srrAB} \) (Fig 2).

Expression of anti-oxidant factors and \(\text{hmp} \) in the \(\text{srrA} \)-inactivated mutant

We used quantitative PCR to investigate the expression of three anti-oxidant factors (\(\text{katA} \), \(\text{dps} \) and \(\text{ahpC} \)) in the \(\text{srrA} \)-inactivated mutant exposed to 0.4 mM H\(_2\)O\(_2\) for 10 min. The expression of these three factors in the WT, the \(\text{srrA} \)-inactivated mutant and the complemented strain was increased by H\(_2\)O\(_2\) treatment. Compared with WT, the expression of \(\text{katA} \) was significantly higher in the mutant in the presence or absence of H\(_2\)O\(_2\) treatment. The high level was restored in the \(\text{srrAB} \)-complemented strain. The expression of \(\text{dps} \) in the mutant did not increase in the absence of H\(_2\)O\(_2\), but the expression was significantly higher in the mutant treated with H\(_2\)O\(_2\). The increased expression in the mutant was restored by complementation. The expression of
ahpC in the mutant was slightly increased, but the expression was decreased in the mutant compared to the WT when treated with H₂O₂ (Fig 3).

Next, we focused on the expression of hmp because hmp expression is regulated by SrrAB in *S. aureus* [34, 35] and is related to oxidative stress in *S. enterica* Serovar Typhimurium [44, 45]. The expression of hmp in the srrA-inactivated mutant was significantly less than in WT treated or untreated with H₂O₂. The expression pattern in the complemented strain was similar to that of WT. The expression of hmp in the WT was increased 2.4-fold by H₂O₂ treatment (Fig 3).

Susceptibility of H₂O₂ and expression of anti-oxidant factors in the perR-inactivated mutant

PerR is related to the regulation of anti-oxidant factors in *S. aureus* [46]. We analyzed the susceptibility of the perR-inactivated mutant to the H₂O₂ produced by *S. sanguinis*. As shown
in Fig 4A, a perR-inactivated mutant strain had significantly lower susceptibility to the H$_2$O$_2$ produced by S. sanguinis than the srrA-inactivated mutant. The expression of katA, dps and ahpC was significantly increased in the perR-inactivated mutant in the absence of H$_2$O$_2$ (Fig 4B).

Fig 2. Susceptibility of the srrA-inactivated mutant to H$_2$O$_2$. The bacterial density (OD 660 nm) of S. aureus MW2 WT, ΔsrrA and srrAB compl. grown in TSB or TSB containing 0.4 mM H$_2$O$_2$ was measured as described in the Materials and Methods. The data shown represent the means ± SD of three biological independent experiments. Significant differences between the WT and the srrA-inactivated mutant grown in TSB containing 0.4 mM H$_2$O$_2$ were calculated by student’s t-test.

doi:10.1371/journal.pone.0159768.g002

Fig 3. Expression of genes involved in the resistance to oxidative stress and hmp. The expression of katA, dps, ahpC and hmp in S. aureus MW2 WT, srrA-inactivated mutant and the complemented strain incubated with or without 0.4 mM H$_2$O$_2$ was determined by quantitative PCR as described in the Materials and Methods section. The data are the mean ± SD of five biological independent experiments. ***, P < 0.001; ***, P < 0.001; N.S., not significant by Tukey’s honestly significant difference test.

doi:10.1371/journal.pone.0159768.g003
Susceptibility of the \(\text{katA} \), \(\text{dps} \) or \(\text{hmp} \)-inactivated mutant to \(\text{H}_2\text{O}_2 \) produced by \(\text{S. sanguinis} \)

Because the expression of the two factors (\(\text{katA} \) and \(\text{dps} \)) was increased in the \(\text{srrA} \)-inactivated mutant treated with \(\text{H}_2\text{O}_2 \), we constructed a mutant at each locus and performed a direct assay to identify the factor(s) that affected susceptibility to \(\text{H}_2\text{O}_2 \). The \(\text{katA} \) and \(\text{dps} \)-inactivated mutants had a large inhibition zone compared with the WT (Fig 5). Additionally, we analyzed

Susceptibility of the \(\text{katA} \), \(\text{dps} \) or \(\text{hmp} \)-inactivated mutant to \(\text{H}_2\text{O}_2 \) produced by \(\text{S. sanguinis} \)

The susceptibilities of \(\text{S. aureus} \) MW2, the \(\text{srrA} \)-inactivated mutant and the \(\text{perR} \)-inactivated mutant to the \(\text{H}_2\text{O}_2 \) produced by \(\text{S. sanguinis} \) were determined by direct assay under aerobic conditions (5% CO\(_2\)). The expression of \(\text{katA} \), \(\text{dps} \) and \(\text{ahpC} \) in \(\text{S. aureus} \) MW2 WT and in the \(\text{perR} \)-inactivated mutant grown in TSB to mid-log phase was determined by quantitative PCR as described in the Materials and Methods section. The data shown represent the mean ± SD of three biological independent experiments. Significant differences compared with WT were determined by Student's t-test (***, \(P < 0.001 \)).

\(\text{ doi:10.1371/journal.pone.0159768.g004 } \)

Fig 4. Susceptibility to \(\text{H}_2\text{O}_2 \) and expression of \(\text{katA} \), \(\text{dps} \) and \(\text{ahpC} \) in the \(\text{perR} \)-inactive mutant. (A) The susceptibilities of \(\text{S. aureus} \) MW2, the \(\text{srrA} \)-inactivated mutant and the \(\text{perR} \)-inactivated mutant to the \(\text{H}_2\text{O}_2 \) produced by \(\text{S. sanguinis} \) were determined by direct assay under aerobic conditions (5% CO\(_2\)). (B) The expression of \(\text{katA} \), \(\text{dps} \) and \(\text{ahpC} \) in \(\text{S. aureus} \) MW2 WT and in the \(\text{perR} \)-inactivated mutant grown in TSB to mid-log phase was determined by quantitative PCR as described in the Materials and Methods section. The data shown represent the mean ± SD of three biological independent experiments. Significant differences compared with WT were determined by Student's t-test (***, \(P < 0.001 \)).

\(\text{ doi:10.1371/journal.pone.0159768.g004 } \)

Fig 5. Susceptibility of the \(\text{katA} \), \(\text{dps} \) or \(\text{hmp} \)-inactivated mutant to \(\text{H}_2\text{O}_2 \) produced by \(\text{S. sanguinis} \). (A) The susceptibilities of the \(\text{S. aureus} \) MW2 WT, MW2 \(\text{katA} \), \(\text{dps} \) or \(\text{hmp} \)-inactivated mutants to the \(\text{H}_2\text{O}_2 \) produced by \(\text{S. sanguinis} \) were analyzed by direct assay, as described in the Materials and Methods section. (B) The diameter of the inhibition zone of \(\text{S. aureus} \) strains were measured. The data are the mean ± SD of three biological independent experiments. Significant differences compared with WT were determined by Dunnnett's test (***, \(P < 0.001 \)).

\(\text{ doi:10.1371/journal.pone.0159768.g005 } \)
the susceptibility of the *hmp*-inactivated mutant to H$_2$O$_2$, and found that the mutant had a small inhibition zone compared with the WT (Fig 5).

Co-culture of the *S. aureus srrA*-inactivated mutant with *S. sanguinis*

In a preliminary experiment, we demonstrated that the strain MW2 harbouring an empty pCL8 vector (MW2::pCL8) showed an inhibition zone similar to that of strain MW2 with no vector (S1 Fig). Therefore, we used this strain as a WT control for the co-culture assays. Additionally, we analyzed the growth of each *S. aureus* strain and *S. sanguinis* on TSA plates for 2 h and found that the growth was approximately the same among the *S. aureus* strains but that *S. sanguinis* grew approximately 2-fold more rapidly compared to the *S. aureus* strains (S1 Table). Fig 6A shows the population percentages for the *S. aureus* strains co-cultured with *S. sanguinis* for 2 h. The mutant population was approximately 2-fold larger than the WT. Fig 6B
shows the population percentages of the *S. aureus* strains when *S. sanguinis* was pre-cultured on a TSA plate for 1 h. Before the co-culture assay, we demonstrated in a preliminary experiment that the number of *S. sanguinis* cells increased 4-fold after 1 h incubation when *S. sanguinis* cells alone were spotted on a TSA plate (S1 Table). The mutant population was 18-fold larger than that of the WT.

Discussion

We demonstrated in this study that an srrA-inactivated mutant has a smaller inhibition zone surrounding *S. sanguinis* than does the WT by a direct assay and that this inhibition was completely relieved by anaerobic incubation or catalase treatment (Fig 1). In addition, the mutant had a low susceptibility to H₂O₂ (Fig 2). Therefore, the small inhibition zone of the srrA mutant was caused by the low susceptibility to the H₂O₂ produced by *S. sanguinis*. Additionally, we demonstrated that the expression of both katA and dps was increased in the mutant exposed to H₂O₂ (Fig 3). Based on these findings, we concluded that the low susceptibility of the srrA mutant to H₂O₂ was primarily due to the increased expression of *katA* and *dps*.

SrrAB acts as a sensor for low oxygen tension and NO and regulates several factors that facilitate adaptation to these conditions. SrrAB regulates several virulence genes (*tst, spa* and *icaA*) under anaerobic or low oxygen conditions [31–33]. The expression of genes involved in anaerobic respiratory pathways (*pflAB, adhE* and *nrdDG*), cytochrome assembly and biosynthesis (*qoxABCD, cydAB* and *hemaBCX*), iron-sulfur cluster repair (*scdA*) and NO detoxification protein (*hmp*) were altered in the *srrAB* mutant under low oxygen or NO stress conditions [34, 35]. Furthermore, phosphatidylinositol-specific phospholipase C (*plc*) was regulated via SrrAB by hypochlorous acid or polymorphonuclear leukocytes [47]. However, the regulation of *katA* and *dps* by SrrAB has not been demonstrated. Recently, Windham et al. reported that SrrAB modulates *S. aureus* (strain UAMS-1) cell death in high glucose conditions and that an *srrA* mutant had increased susceptibility to H₂O₂. They attributed the increased susceptibility to H₂O₂ in the *srrAB* mutant to the production of endogenous reactive oxygen species by the expression of *cidABC* via SrrAB [48]. This report contains results conflicting with our results using *S. aureus* strain MW2 and TY34 (Figs 1 and 2). We investigated the expression of *cidA* in the *srrA* mutant of MW2 and found that the expression of *cidA* was significantly repressed by SrrAB (S2 Fig). Therefore, we think that the effect of *cidA* in the *srrA* mutant is not much below the background of MW2 and TY34.

Previously, Horsburgh et al. reported that *katA* and *dps* expression in *S. aureus* was repressed by PerR, which is a Fur family protein [46]. As shown in Fig 4A, a *perR*-inactivated mutant showed lower susceptibility to H₂O₂ than the *srrA*-inactivated mutant. Therefore, we analyzed the relation between SrrAB and PerR. First, we investigated *perR* gene expression in the *srrA*-inactivated mutant and found that *perR* gene expression was unaltered (S3 Fig).

Then, we investigated the expression of anti-oxidant factors, and found a higher expression of *katA, dps* and *ahpC* in the *perR*-inactivated mutant in the absence of H₂O₂ treatment (Fig 4B). Conversely, the increased expression of *dps* was not observed in the *srrA*-inactivated mutant untreated with H₂O₂ (Fig 3). These results suggest that the increased expression of *dps* in the *srrA* mutant is not directly related to PerR. PerR is a repressor for several anti-oxidant factors, and this repression was alleviated by H₂O₂ [49]. The increased expression of *katA, dps* and *ahpC* in the WT and the mutant treated with H₂O₂ (Fig 3) indicates that PerR is also involved in the expression of these factors. Compared with the WT, a higher level of *katA* and *dps* transcripts was observed in the *srrA*-inactivated mutant treated with H₂O₂ (Fig 3). These results indicate that SrrAB together with PerR is independently involved in *katA* and *dps* regulation. The increased expression of these genes might be an indirect effect of a
change in the redox-potential in the srrA-inactivated mutant because the mutant showed a decreased expression of the genes responsible for cytochrome assembly and heme biosynthesis in the electron transport chain [35]. However, because the expression pattern of katA and dps in the mutant was different (Fig 3), further studies will be required to clarify the link between SrrAB and katA or dps.

In addition, we demonstrated for the first time that Hmp was associated with H2O2 susceptibility in S. aureus. A relationship between Hmp and susceptibility to oxidative stress has been reported in E. coli and S. typhimurium [50, 44]. In the presence of NO, Hmp converts NO to nitrate (NO3−) by the reaction NO + O2 + e− → NO3− utilizing an electron from the reduction of flavin adenine dinucleotide (FAD) [51]. In the absence of NO, Hmp has the potential to generate superoxide anion radicals (O2−) by the reaction O2 + e− → O2− utilizing an electron from the reduction of FAD [52]. In addition, Hmp is associated with the production of ·OH from H2O2 via the Fenton chemistry in the absence of NO [44]. Based on these reports, it is thought that hmp inactivation in S. aureus suppresses the generation of intracellular oxidative stress, and the mutant showed lower susceptibility to H2O2 than the WT. NsrR, which is a Rrf2 family transcription repressor, was demonstrated to repress the generation of oxidative stress in the absence of NO by repressing the expression of hmp in several bacterial species, including E. coli, S. typhimurium and B. subtilis [53]. The inactivation of nsrR results in high susceptibility to H2O2 in S. typhimurium [45]. However, we could not find the gene nsrR or an nsrR homologue in the S. aureus genome database. TCS, SrrAB and/or ResDE have been reported to regulate Hmp in the presence of NO in S. aureus and Bacillus subtilis [34, 35, 54]. In B. subtilis, ResDE regulates Hmp expression in an NsrR-dependent manner [55], whereas in S. aureus, Hmp was dependent on SrrAB regulation. We suggest that the expression of hmp is regulated by SrrAB and affects the susceptibility to H2O2.

In a co-culture assay, the percentage of the srrA-inactivated mutant was high in a mixed culture with S. sanguinis. Because several oral streptococci, such as S. sanguinis, S. parasanguinis, S. gordonii and S. oralis, can produce H2O2 [56–58], S. aureus requires H2O2 resistance to survive in the oral cavity. In the oral cavity, S. aureus can colonize under anaerobic (dental plaque and gingival sulcus) and aerobic conditions (oral mucosa) [8–10]. Therefore, S. aureus can modulate its susceptibility to H2O2 by SrrAB activity and coexist with H2O2-producing oral streptococci, including S. sanguinis. Further studies will be required to analyze the functions of SrrAB involved in the co-existence with H2O2-producing bacteria in vivo, particularly in the oral cavity.

Supporting Information

S1 Fig. Susceptibility of MW2 harbouring the empty pCL8 to H2O2 produced by S. sanguinis. The susceptibilities of S. aureus MW2 and MW2 harbouring an empty pCL8 vector (MW2::pCL8) to H2O2 produced by S. sanguinis were determined by direct assay under aerobic conditions (5% CO2).

(TIF)

S2 Fig. Expression of cidA in srrA-inactivated mutant. The expression of cidA in mid-log phase (cell density at 660 nm = 0.8) cells of S. aureus MW2 WT, srrA-inactivated mutant and the complemented strain grown in TSB was determined by quantitative PCR as described in the Materials and Methods section. The data are the mean ± SD of five biological independent experiments. Significant differences compared with WT were determined by Dunnett’s test (***, P < 0.001; N.S., not significant).

(TIF)
S3 Fig. Expression of perR in srrA-inactivated mutant. The expression of perR in mid-log phase (cell density at 660 nm = 0.8) cells of S. aureus MW2 WT, srrA-inactivated mutant and the complemented strain grown in TSB was determined by quantitative PCR as described in the Materials and Methods section. The data are the mean ± SD of five biological independent experiments. Significant differences compared with WT were determined by Dunnett’s test (N.S., not significant).

(TIF)

S1 Table. Bacterial growth of S. sanguinis and S. aureus strains on TSA plates.

(DOCX)

Acknowledgments

This study was supported in part by Grants-in-Aid for Young Scientists (B) (Grant No: 25861749) from the Ministry of Education, Culture, Sports, Sciences, and Technology of Japan.

Author Contributions

Conceived and designed the experiments: YO HK. Performed the experiments: YO MK-M. Analyzed the data: YO HK. Contributed reagents/materials/analysis tools: YO MK-M. Wrote the paper: YO HK.

References

1. Foster TJ. The Staphylococcus aureus “superbug.” J Clin Invest. 2004; 114: 1693–1696.
2. Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998; 339: 520–532. PMID: 9709046
3. Duerden B, Fry C, Johnson AP, Wilcox MH. The Control of Methicillin-Resistant Staphylococcus aureus Blood Stream Infections in England. Open Forum Infect Dis. 2015; 2: ofv035. doi: 10.1093/ofid/ofv035 PMID: 26380336
4. Okado JB, Bogni SC, Reinato LA, Martinez R, Gir E, Camargo IL. Molecular analysis of methicillin-resistant Staphylococcus aureus dissemination among healthcare professionals and/or HIV patients from a tertiary hospital. Rev Soc Bras Med Trop. 2016; 49: 51–6. doi: 10.1590/0037-8682-0284-2015 PMID: 27163564
5. Chipolombwe J, Török ME, Mbelle N, Nyasulu P. Methicillin-resistant Staphylococcus aureus multiple sites surveillance: a systemic review of the literature. Infect Drug Resist. 2016; 9: 35–42. doi: 10.2147/IDR.S95372 PMID: 26929653
6. Peacock SJ, de Silva I, Lowy FD. What determines nasal carriage of Staphylococcus aureus? Trends Microbiol. 2001; 9: 605–610. PMID: 11728874
7. von Eff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group N Engl J Med. 2001; 344: 11–16.
8. Smith AJ, Jackson MS, Bagg J. The ecology of Staphylococcus species in the oral cavity. J Med Microbiol. 2001; 50: 940–946. PMID: 11695989
9. Passariello C, Puttini M, Iebba V, Pera P, Gigola P. Influence of oral conditions on colonization by highly toxigenic Staphylococcus aureus strains. Oral Dis. 2012; 18: 402–9. doi: 10.1111/j.1601-0825.2011.01889.x PMID: 22221343
10. Ohara-Nemoto Y, Haraga H, Kimura S, Nemoto TK. Occurrence of staphylococci in the oral cavities of healthy adults and nasal—oral trafficking of the bacteria. J Med Microbiol. 2008; 57: 95–9. PMID: 18065673
11. Reeves P. The bacteriocins. Bacteriol Rev. 1965; 29: 24–45. PMID: 14295984
12. Nissen-Meyer J, Nes IF. Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol. 1997; 167: 67–77.
13. Zhu L, Kreth J. The role of hydrogen peroxide in environmental adaptation of oral microbial communities. Oxid Med Cell Longev. 2012; 717843: 10 pages.
14. Barnard JP, Stinson MW. Influence of environmental conditions on hydrogen peroxide formation by Streptococcus gordonii. Infect Immun. 1999; 67:6558–64. PMID: 10569775
15. Willcox MDP, Drucker DB. Partial characterisation of the inhibitory substances produced by Streptococcus oralis and related species. Microbios 1988; 55: 135–45. PMID: 3216798
16. V Sgibnev A, A Kremleva E. Vaginal Protection by H2O2-Producing Lactobacilli. Jundishapur J Microbiol. 2015; 8: e22913. doi: 10.5812/jimr.22913 PMID: 26587206
17. Otero MC, Nader-Macias ME. Inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim Reprod Sci. 2006; 96: 35–46. PMID: 16386389
18. Holmberg K, Hallander HO. Production of bactericidal concentrations of hydrogen peroxide by Streptococcus sanguis. Arch Oral Biol. 1973; 18: 423–34. PMID: 4515970
19. Krith J, Zhang Y, Herzberg MC. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol. 2008; 190: 4632–4640. doi: 10.1128/JB.00276-08 PMID: 18441055
20. Uehara Y, Kikuchi K, Nakamura T, Nakama H, Agrmatsu K, Kawakami Y, et al. H2O2 Produced by Vaginal Protection by H2O2-Producing Lactobacilli. Jundishapur J Microbiol. 2015; 8: e22913. doi: 10.5812/jimr.22913 PMID: 26587206
21. Uehara Y, Kikuchi K, Nakamura T, Nakama H, Agematsu K, Kawakami Y, et al. Inhibition of methicillin-resistant Staphylococcus aureus colonization of oral cavities in newborns by viridans group streptococci. Clin Infect Dis. 2001; 32: 1399–407. PMID: 11317239
22. Mandell GL. Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal—leukocyte interaction. J Clin Invest. 1975; 55: 561–6. PMID: 117067
23. Cosgrove K, Cutts G, Jonsson IM, Tarkowski A, Kokai-Kun JF, Mond JJ, et al. Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. J Bacteriol. 2006; 189: 1025–35. PMID: 17114262
24. Morikawa K, Ohniwa RL, Kim J, Maruyama A, Ohta T, Takeyasu K. Bacterial nucleoid dynamics: oxidative stress response via an intramolecular disulfide redox switch in the response regulator AgrA. Proc Natl Acad Sci. 2012; 109: 9095–100. doi: 10.1073/pnas.1200603109 PMID: 22586129
25. Hoch JA. Two-component and phosphorelay signal transduction. Curr Opin Microbiol. 2000; 3: 165–70. PMID: 10745001
26. Loui C, Chang AC, Lu S. Role of the ArcAB two-component system in the resistance of Escherichia coli to reactive oxygen stress. BMC Microbiol. 2009; 9: 183. doi: 10.1186/1471-2180-9-183 PMID: 19716602
27. Morales EH, Calderón IL, Collao B, Gil F, Ponwollik S, Mc Clelland M, et al. Hypochlorous acid and hydrogen peroxide-induced negative regulation of Salmonella enterica serovar Typhimurium ompW by the response regulator ArcA. BMC Microbiol. 2012; 12: 63. doi: 10.1186/1471-2180-12-63 PMID: 22545862
28. Wong SM, Alugupalli KR, Ram S, Akerley BJ. The ArcA regulon and oxidative stress resistance in Haemophilus influenzae. Mol Microbiol. 2007; 64: 1375–90. PMID: 17542927
29. Sun F, Lianh H, Kong X, Xie S, Cho H, Deng X, et al. Quorum-sensing agr mediates bacterial oxidation response via an intramolecular disulfide redox switch in the response regulator AgrA. Proc Natl Acad Sci U S A. 2012; 109: 9095–100. doi: 10.1073/pnas.1200603109 PMID: 22586129
30. Sun F, Ji Q, Jones MB, Deng X, Liang H, Frank B, et al. AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus. J Bacteriol. 2006; 189: 1025–35. PMID: 17114262
31. Pragman AA, Yarwood JM, Tripp TJ, Schlievert PM. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus. J Bacteriol. 2004; 186: 2430–8. PMID: 15060046
32. Schlievert PM. Repression of Staphylococcus aureus SrrAB using inducible antisense srrA alters growth and virulence factor transcript levels. Biochemistry. 2007; 46: 314–21. PMID: 17198402
33. Ulrich M, Bastian M, Cromant SE, Ziegler K, Pragman AA, Bragonzi A, et al. The staphylococcal respiratory response regulator SrrAB induces ica gene transcription and polysaccharide intercellular adhesion expression, protecting Staphylococcus aureus from neutrophil killing under anaerobic growth conditions. Mol Microbiol. 2007; 65: 1276–87. PMID: 17697253
34. Richardson AR, Dunman PM, Fang FC. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol. 2006; 61: 927–39. PMID: 16859493
35. Kinkel TL, Roux CM, Dunman PM, Fang FC. The Staphylococcus aureus SrrAB two-component system promotes resistance to nitrosative stress and hypoxia. MBio. 2013; 4: e00696–13. doi: 10.1128/mBio.00696-13 PMID: 2422487
36. Matsuo M, Kato F, Oogai Y, Kawai T, Sugai M, Komatsuzawa H. Distinct two-component systems in methicillin-resistant *Staphylococcus aureus* can change the susceptibility to antimicrobial agents. J Antimicrob Chemother. 2010; 65: 1536–7. doi: 10.1093/jac/dkq141 PMID: 20430791

37. Kato F, Kadomoto N, Iwamoto Y, Bunai K, Komatsuzawa H, Sugai M. Regulatory mechanism for exfoliative toxin production in *Staphylococcus aureus*. Infect Immun. 2011; 79: 1660–70. doi: 10.1128/IAI.00872-10 PMID: 21282415

38. Yoshida Y, Matsuo M, Oogai Y, Kato F, Nakamura N, Sugai M, et al. Bacitracin sensing and resistance in *Staphylococcus aureus*. FEMS Microbiol Lett. 2011; 320: 33–9. doi: 10.1111/j.1574-6968.2011.02291.x PMID: 21517944

39. Lin WS, Cunneen T, Lee CY. Sequence analysis and molecular characterization of genes required for gene repression by environmental factors in *Staphylococcus aureus*. FEMS Microbiol Lett. 2011; 320: 33–9. doi: 10.1111/j.1574-6968.2011.02291.x PMID: 21517944

40. Kreiswirth BN, Lófdahl S, Betley MJ, O'Reilly M, Schlievert PM, Bergdoll MS, et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a phage. Nature. 1983; 305: 709–12. PMID: 6226876

41. Novick R P. Analysis by transduction of mutations affecting penicillinase formation in *Staphylococcus aureus*. J Gen Microbiol. 1963; 33: 121–136. PMID: 14072829

42. Kawada-Matsuo M, Yoshida Y, Zendo T, Nagao J, Oogai Y, Nakamura Y, et al. Three distinct two-component systems are involved in resistance to the class I bacteriocins, Nukacin ISK-1 and nisin A, in *Staphylococcus aureus*. PLoS One. 2013; 8(7): e69455. doi: 10.1371/journal.pone.0069455 PMID: 23894484

43. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 4: 402–8.

44. Bang IS, Liu L, Vazquez-Torres A, Crouch ML, Stamler JS, Fang FC. Maintenance of nitric oxide and superoxide in vitro and causes oxidative stress in vivo. FEBS Lett. 1996; 382: 141–6. doi: 10.1016/0014-5793(96)00086-8 PMID: 8612736

45. Gilberthorpe NJ, Lee ME, Stevanin TM, Read RC, Poole RK. NsrR: a key regulator circumventing hydrogen peroxide sensor using iron-mediated histidine oxidation. J Biol Chem. 2015; 290: 1020374-8. doi: 10.1128/JBC.00954-15 PMID: 26134568

46. Horsburgh MJ, Clements MO, Crossley H, Ingham E, Foster SJ. PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in *Staphylococcus aureus*. Infect Immun. 2001; 69: 3744–54. PMID: 11349039

47. White MJ, Boyd JM, Horswill AR, Nasseif WM. Phosphatidylinositol-specific phospholipase C contributes to survival of *Staphylococcus aureus* USA300 in human blood and neutrophils. Infect Immun. 2014; 82: 1559–71. doi: 10.1128/IAI.01168-13 PMID: 24452683

48. Windham IH, Chaudhari SS, Bose JL, Thomas VC, Bayles KW. SrrAB Modulates *Staphylococcus aureus* Cell Death through Regulation of *cidABC* Transcription. J Bacteriol. 2016; 198: 1114–22. doi: 10.1128/JBC.00954-15 PMID: 26811317

49. Ci J, Kim JH, Won YB, Lee YE, Choi TW, Ju SY, et al. *Staphylococcus aureus* PerR is a hypersensitive hydrogen peroxide sensor using iron-mediated histidine oxidation. J Biol Chem. 2015; 290: 20374–86. doi: 10.1074/jbc.M115.664961 PMID: 26134568

50. Membrillo-Hernández J, Ioannidis N, Poole RK. The flavo-haemoglobin (Hmp) of *Escherichia coli* generates superoxide in vitro and causes oxidative stress in vivo. FEBS Lett. 1996; 382: 141–4. PMID: 8612736

51. Gardner PR, Gardner AM, Martin LA, Salzman AL. Nitric oxide dioxygenase: an enzymic function for flavohaemoglobin. Proc Natl Acad Sci U S A. 1998; 95: 10378–83. PMID: 9724711

52. Poole RK, Rogers NJ, D’mello RA, Hughes MN, Orii Y. *Escherichia coli* flavohaemoglobin (Hmp) reduces cytochrome c and Fe(III)-hydroxamate K by electron transfer from NADH via FAD: sensitivity of oxido-reductase activity to haem-bound dioxygen. Microbiology. 1997; 143: 1557–65. PMID: 9168606

53. Tucker NP, Le Brun NE, Dixon R, Hutchings MI. There's NO stopping NsrR, a global regulator of the bacterial NO stress response. Trends Microbiol. 2010; 18: 149–56. doi: 10.1016/j.tim.2009.12.009 PMID: 20167493

54. LaCelle M, Kumano M, Kurita K, Yamane K, Zuber P, Nakano MM. Oxygen-controlled regulation of the flavohaemoglobin gene in *Bacillus subtilis*. J Bacteriol. 1996; 178: 3803–8. PMID: 8682784

55. Nakano MM, Geng H, Nakano S, Kobayashi K. The nitric oxide-responsive regulator NsrR controls ResDE-dependent gene expression. J Bacteriol. 2006; 188: 5878–87. PMID: 16885456

56. Ryan CS, Kleinberg I. Bacteria in human mouths involved in the production and utilization of hydrogen peroxide. Arch Oral Biol. 1995; 40: 753–763. PMID: 7487577
57. Liu X, Ramsey MM, Chen X, Koley D, Whiteley M, Bard AJ. Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. Proc Natl Acad Sci U S A. 2011; 108: 2668–73. doi:10.1073/pnas.1018391108 PMID: 21282623

58. Okahashi N, Sumitomo T, Nakata M, Sakurai A, Kuwata H, Kawabata S. Hydrogen peroxide contributes to the epithelial cell death induced by the oral mitis group of streptococci. PLoS One. 2014; 9: e88136. doi: 10.1371/journal.pone.0088136 PMID: 24498253

59. Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, Oguchi A, et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet. 2002; 359: 1819–27. PMID: 12044378