GENETIC SUSCEPTIBILITY OF TRANSCRIPTION FACTOR 7-LIKE 2 GENE VARIANT AND RISK OF TYPE 2 DIABETES IN ASIAN INDIANS

NAVNEET KAUR1, GURJIT KAUR BHATTI1, SANJAY KUMAR BHADADA1, SAMER SINGH4, JASVINDER SINGH BHATTI**

1Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India. 2Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India. 3Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India. 4Department of Microbial Biotechnology, Panjab University, Chandigarh, India.

INTRODUCTION
Type 2 diabetes mellitus (T2DM) is one of the most challenging problems of the 21st century. T2DM is characterized by hyperglycemia, impaired insulin secretion or insulin resistance, is the most common type of diabetes accounting 90–95% of total diabetic cases. The prevalence of T2DM is rising rapidly across the globe posing significant socioeconomic burden in the form of lost productivity and stress on health-care system, both in developed and developing countries [1]. At present, T2DM affects 285 million people all over the world and is predicted to rise to 642 million by 2040 globally [2]. India has become diabetic capital of the world. About 80% of the diabetic population lives in low- and middle-income countries. T2DM is a very complex metabolic disease in which both genetic and environmental factors play an important role in their pathophysiology [4]. The recent advancement in technology has made it possible to identify new genetic loci as well as genes associated with the risk of the development of T2DM. These genetic determinants can be used to better understanding of the pathogenesis of a disease, help in the development of policies to counter the economic burden, and provide a new way for improved and preventive therapeutic measures.

Transcription factor 7-like 2 (TCF7L2) gene is located on the long arm of chromosome 10q25.3 and involved in Wnt signaling pathway which plays a pivotal role in cell development and growth regulation [5]. The previous studies established TCF7L2 gene as possible determinants of type 2 diabetes [6,7]. Although several single-nucleotide polymorphisms (SNPs) in TCF7L2 gene have been replicated in different population and ethnicities, few studies have been done in Indian population. Furthermore, genetic association of TCF7L2 gene has not yet been explored in North Indian population. Hence, the present study was planned to investigate the association of rs7903146 (C/T) variant in TCF7L2 with the risk of T2DM in North Indian population.

METHODS
Study population
The present study included 638 participants (318 T2DM patients and 320 healthy controls) recruited from North Indian population. The diagnosis of T2DM was done using criteria established by the American Diabetes Association as follows: A medical record indicating either a fasting glucose levels >7.0 mmol/l or >126 mg/dl after a minimum 12-h fast or 2-h post-glucose level (oral glucose tolerance test or 2-h) >11.1 mmol/l or >200 mg/dl on more than one occasion with symptoms of diabetes. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was ethically approved by the Institutional Ethics Committees of Post Graduate Institute of Medical Education and Research, Chandigarh, India.

Received: 18 February 2019, Revised and Accepted: 30 March 2019

© 2019 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2019.v12i5.33130
and Research, Chandigarh and Panjab University, Chandigarh, India. A model consent form adhering to Indian, and International guidelines regarding the use of human subjects were used along with detailed questionnaire of details regarding demographic and socioeconomic characteristics. The participants self-reported age, sex, educational status, physical activity, dietary habits, family history of the disease and individual’s smoking and alcohol use, etc., were recorded.

Anthropometric measurements

Standard anthropometric measurements were performed including stature, weight, and waist and hip circumferences. Body mass index (BMI) was calculated according to Quetelet equation (BMI = weight in kilograms/height in meters squared). Waist-to-hip ratio (WHR) was calculated as ratio of abdomen to hip circumferences. Blood pressure (BP) was measured using Omron’s BP machine in a sitting position, from the left arm resting on the table, with legs uncrossed and feet flat.

The abdominal obesity was measured according to the new cutoffs proposed for South Asian Indians as mentioned in our previous study [8], i.e., WHR >0.89 for men and >0.81 for women. BMI ≥23 kg/m² has been proposed for low risk, 23–27.5 kg/m² for increased risk, and ≥27.5 kg/m² for high risk for developing weight-related diseases in Asian populations.

Clinical parameters

Venous blood samples were extracted from each subject after 12 h of fasting. A serum sample was analyzed for fasting serum glucose, creatinine, and lipid profile (triglycerides [TG], total cholesterol [TC], high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol [LDL-C]). Fasting and random blood glucose levels were measured using a portable glucometer (Abbott Optium Xceed, USA).

Genotyping of TCF7L2 gene

The genomic DNA was isolated from the blood using salting out method [9]. DNA yield was measured by absorbance at 260 nm and purity was checked by calculating A260/A280. Amplification of rs7903146 polymorphism in TCF7L2 gene was carried out using allele-specific polymerase chain reaction (PCR) as described in an earlier study [10]. Genotyping was based on differential amplification due to the presence of mismatches. In rs7903146 genotyping, two forward primers with a mismatch in their last 3’ nucleotide such a way that each is specific for one of the two variants of the polymorphism and a common reverse primer was used. The forward primers also contain a second mismatch at the third nucleotide from the 3′ end to enhance PCR specificity. The forward primers (rs7903146 C or rs7903146 T) specific for allele C detection: 5′ GAACAATTAGAGAGCTAAGCACTTTTTAGAGAT 3′ and forward primer for allele T detection: 5′ GAACAATTAGAGAGCTAAGCACTTTTTAGAAAC 3′ and a common reverse primer (rs7903146 R) 5′ AGATGAAATGTAACACGCTGAGTCC 3′ were combined in two parallel PCR reactions one with primers rs7903146 C and rs7903146 R (PCR C) and a second with primers rs7903146 T and rs7903146 R (PCR T). For each sample, two PCR reactions were run in parallel, one with primers rs7903146 C and rs7903146 R (PCR C) and a second with primers rs7903146 T and rs7903146 R (PCR T) each containing 200 ng genomic DNA, 1X Taq polymerase buffer, 1.5 mM MgCl₂, 10 pmol of each primer, 200 μmol/l dNTPs, and 1U of Taq DNA polymerase (Thermo) in a final volume of 25 μl. DNA amplification was carried out on thermal cycler (Eppendorf Mastercycler Nexus Gradient) with an initial denaturation for 3 min at 94°C, followed by 32 cycles of 1 min at 94°C, 1 min at 50°C, and 1 min at 72°C and final extension for 5 min at 72°C. Fig. 1 shows the amplified PCR products separated on 1.5% agarose gel electrophoresis.

Statistical analysis

Results were expressed as mean ± standard deviation. Chi-square analysis was applied to test the significance of differences in genotypic and allelic frequencies. Group comparisons were done using unpaired t-tests. p<0.05 (two tailed) was considered as statistically significant difference. Logistic regression analyses were performed to calculate odds ratio (OR) and 95% confidence intervals (CIs) for each risk factor. Statistical analysis was performed using IBM-SPSS for Windows, version 20 (SPSS, Inc., Chicago, IL).

RESULTS

Clinical and biochemical characteristics of the study subjects

Table 1 shows the clinical and biochemical characteristics of the study subjects. There was no significant difference in the age of the diabetic and control subjects (47.1±11.7 vs. 55.3±11.3, p=0.001). T2DM subjects show predominant abdominal obesity reflected by significantly higher values of BMI (26.9±4.6 vs. 25.9±4.7, p=0.02), waist circumference (93.1±10.5 vs. 88.1±10.8, p=0.001), and waist to hip circumference (0.96±0.06 vs. 0.93±0.08, p=0.001). No significant difference in body fat percent was observed in T2DM subjects compared to controls (33.7±10.3 vs. 32.7±9.1). Although TC levels fell under the limit of borderline, there is no significant difference between diabetic and non-diabetic controls. Significantly higher values of TG and reduced values of HDL were reported in diabetic patients than controls. Along with abdominal obesity evidenced by higher BMI and WHR, 12% of patients were having dyslipidemia and were on lipid-lowering drugs. Alterations in clinical and anthropometric measurements pretend a risk for the development of cardiac diseases as demonstrated by higher TC/HDL, LDL/HDL, and TG/HDL ratio in diabetic subjects compared to healthy controls (Table 1).

Association of TCF7L2 gene polymorphisms with T2DM

The distribution of genotype and allelic frequencies for rs7903146 polymorphisms of TCF7L2 gene are shown in Table 2. TCF7L2 rs7903146 gene polymorphism analysis demonstrated that the frequency of risk genotype TT genotype was significantly higher in diabetics than in controls (16.4% vs. 11.6%). The frequency of the “T” allele was significantly higher in diabetic subjects (42%) compared with that in the healthy control subjects (33%). Furthermore, CT genotype frequency was more predominant in T2DM subjects (51.3%) than control subjects (42.2%). Logistic regression analysis of the data demonstrated a significant association of TT genotype with 2-fold (OR with 95% of CI; 2.09 [1.29–3.42] p=0.003) and CT genotype with 1.7 fold (1.73 [1.23–2.44] p=0.002) increased risk of developing T2DM in this population. Under a dominant model of inheritance, T allele shows a significant association with type 2 diabetes (OR, 1.79 [1.30–2.47] p=0.0004). Furthermore, no significant association was observed with T2DM under recessive model of inheritance (1.49 [0.95–2.35] p=0.08).

Table 3 summarizes the comparison of clinical and biochemical characteristics of T2DM and control subjects according to different genotypes of TCF7L2 rs7903146. There were no significant differences in metabolic characteristics such as glucose, BMI, WC, WHR, body fat (%), systolic BP, diastolic BP, TC, TG, HDL, LDL, very LDL, and creatinine among T2DM as well as control subjects carrying CC, CT, and TT genotypes of rs7903146 polymorphisms in TCF7L2 gene.

![Fig. 1: Agarose gel electrophoresis of transcription factor 7-like 2 (rs7903146C/T) gene polymorphism. Lane M: 100 bp marker ladder; lanes (1,2) (5,6): GG genotype; lanes (3,4): GC genotype; lanes (7,8) (9,10): GG genotype](image-url)
Table 1: Comparison of anthropometric and clinical characteristics of the study subjects

Parameters	Controls (Mean±SD)	T2DM patients (Mean±SD)	p-value
BMI (kg/m²)	25.9±4.7	26.8±4.6	0.02*
Waist circumference (cm)	88.1±10.8	93.3±10.5	0.00*
Hip (cm)	95.1±10.1	96.9±10.3	0.03*
WHR	0.9±0.08	0.9±0.06	0.00*
Body fat (%)	32.6±9.1	33.7±10.3	0.18
SBP (mmHg)	145.9±7.1	130.7±15.3	0.00*
DBP (mmHg)	75.9±6.6	79.8±10.4	0.00*
Glucose (mg/dl)	92.2±11.0	146.4±53.2	0.00*
TC (mg/dl)	177.6±31.6	183.3±48.7	0.10
TG (mg/dl)	149.5±55.2	172.4±87.7	0.00*
HDL-C (mg/dl)	4.7±6.2	4.2±7.3	0.00*
LDL-C (mg/dl)	103.0±28.3	106.6±42.8	0.23
VLDL-C (mg/dl)	29.9±11.0	34.5±17.5	0.00*
Creatinine (mg/dl)	0.8±0.6	0.8±0.4	0.14
Total lipids [mg/dl]	504.8±102.7	539.1±158.8	0.00*
Castelli’s risk index I (TC/HDL)	4.05±0.9	4.47±1.4	0.00*
Castelli’s risk index II (LDL/HDL)	2.36±0.8	2.6±1.2	0.00*
Atherogenic coefficient (TG/HDL)	3.42±1.4	4.27±2.4	0.00*
Atherogenic index	0.5±0.2	0.57±0.2	0.00*

Data values are represented as mean±SD. BMI: Body mass index, SBP: Systolic blood pressure, DBP: Diastolic blood pressure, TC: Total cholesterol, HDL-C: High-density lipoprotein cholesterol, LDL: Low-density lipoprotein, VLDL: Very low-density lipoprotein, WHR: Waist-to-hip ratio, T2DM: Type 2 diabetes mellitus, TG: Triglyceride, SD: Standard deviation. *Significant difference between T2DM and control subjects. p<0.05 is considered as statistically significant value

Table 2: Test of association depicting TCF7L2 (rs7903146) gene polymorphism as a risk for T2DM in North Indian population

Genotypes	Human participants	Test of association		
	Controls	T2DM patients	Odds ratio (95% of CI)	Pearson Chi-square
CC	148 (46.2%)	103 (32.4%)	Reference	
CT	135 (42.2%)	163 (51.3%)	1.73 (1.23–2.44) p=0.002	10.18
TT	37 (11.6%)	52 (16.4%)	2.09 (1.29–3.42) p=0.003	9.01
Allele C	0.67	0.58		
Allele T	0.33	0.42		
Dominant model (CC vs. CT+TT)				
CC	148	103	Reference	
CT+TT	172	215	1.79 (1.30–2.47) p=0.0004	12.84
Recessive model (CC+CT vs. TT)				
CC+CT	283	266		
TT	37	52	1.49 (0.95–2.35) p=0.08	3.05

Data are presented as number (%) unless otherwise stated. T2DM: Type 2 diabetes mellitus, CI: Confidence interval, TCF7L2: Transcription factor 7-like 2. p<0.05 is considered as statistically significant value

DISCUSSION

India is currently experiencing an epidemic of DM. Both environmental and genetic factors contribute to the development of insulin resistance and type 2 diabetes [11,12]. It is evident from the previous studies that several genetic determinants are associated with increased risk of type 2 diabetes, but their conclusive role is still unclear [13]. TCF7L2 gene is considered as one of the most important candidate genes for type 2 diabetes mellitus, but their conclusive role is still unclear [13]. TCF7L2 gene is considered one of the most important candidate genes for T2DM, playing a key role in blood glucose homeostasis and beta-cell function [14]. TCF7L2 encodes a basic helix-loop-helix TCF-4, which acts as a nuclear receptor for the Wnt/β-catenin pathway [15] and can preferentially bind to Wnt-responsive elements in genes induced by β-catenin [16]. It is well known that the β-catenin/TCF-4 complex participates in various biological events. Particularly, the complex has been found to have an important role in pancreas islet cell proliferation and differentiation and thus contributes to T2DM initiation and progression.

Following the initial report by Grant et al. [17] showing that TCF7L2 variants were strongly associated with T2DM risk, several other studies consequently replicated this association in different ethnicities [6]. The present case-control study established the association of 2-fold increased diabetes risk with TT homozygous, while CT heterozygous carried 1.7-fold increase in T2DM risk when compared with CC homozygous of rs7903146 polymorphisms in the TCF7L2 gene. Bodhini et al. observed a significant association between the T allele of rs7903146(C/T) SNPs and T2DM in South Indians [18]. Chandak et al. also observed a strong association of rs7903146 polymorphism with T2DM [OR=1.46] [19]. A previous study revealed a positive significant association between TT genotype of rs7903146 (C/T) variant of TCF7L2 gene and diabetes-related complications in Indian population [20]. Several studies conducted in other parts of the world demonstrated significant relationship between TCF7L2 gene and T2DM in British [21], the US [22], Finnish [23], Amish [24], Scandinavian [25], Polish [26], French [26], Dutch Breda [27], European Whites, migrant Asian Indian, Afro-Caribbean [28], Northern Swedish [29], and Japanese populations [30]. A large meta-analysis study confirmed the association of TCF7L2 gene with T2DM in different ethnicities [31]. Our results are similar with the results from the overall meta-analysis of the rs7903146 polymorphism wherein heterozygous genotype CT carried over a 1.4-fold increased risk for T2DM, while TT homozygous carried near a 2.0-fold increase in T2DM risk when compared with CC homozygous of rs7903146 polymorphisms in the TCF7L2 gene.
Table 3: Metabolic characteristics stratified according to the genotypes of TCF7L2 rs7903146 polymorphism in controls and T2DM subjects

Parameters	Control subjects	T2DM subjects	p value	
	CC (n=148)	CT (n=135)	TT (n=37)	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
	Mean±SD	Mean±SD	Mean±SD	
obesity and other factors: In multinational community. Int J Pharm Pharm Sci 2014;6:257-60.

13. Hayrehparahane M, Leiter LA, Ceriello A, Davidson JA, Hanefeld M, Momier L, et al. Correlation of glycosylated hemoglobin levels with fasting and postprandial glucose in south Indian Type 2 diabetic patients. Int J Pharm Pharm Sci 2016;8:285-8.

14. Jyothi KU, Jayaraj M, Subburaj KS, Prasad KJ, Kumuda I, Lakshmi V, et al. Association of TCF7L2 gene polymorphisms with T2DM in the population of Hyderabad, India. PLoS One 2013;8:e60212.

15. Smith U. TCF7L2 and Type 2 diabetes we WNT to know. Diabetologia 2007;50:5-7.

16. Gougelet A, Torre C, Veber P, Sartor C, Bachelot L, Denechaud PD, et al. T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology 2014;59:2344-57.

17. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of Type 2 diabetes. Nat Genet 2006;38:320-3.

18. Bodhini D, Radha V, Dhar M, Narayani N, Mohan V. The rs7903146 (C/T) single nucleotide polymorphism of TCF7L2 gene are associated with Type 2 diabetes mellitus in Asian Indians. Metabolism 2007;56:1174-1177.

19. Chandak GR, Janipalli CS, Bhaskar S, Kulkarni SR, Mohankrishna P, Hattersley AT, et al. Common variants in the TCF7L2 gene are strongly associated with Type 2 diabetes mellitus in the Indian population. Diabetologia 2007;50:63-7.

20. Singh K, Agrawal NK, Gupta SK, Singh K. Association of variant rs7903146 (UT) single nucleotide polymorphism of TCF7L2 gene with impairment in wound healing among North Indian Type 2 diabetes population: A case-control study. Int J Low Extrem Wounds 2013;12:310-5.

21. Groves CJ, Zeggini E, Minton J, Frayling TM, Weedon MN, Rayner NW, et al. Association of transcription factor 7-like 2 (TCF7L2) gene polymorphisms in the Indian population. Diabetes 2006;55:2594-9.

22. Zhang C, Qi L, Hunter DJ, Meigs JB, Manson JE, van Dam RM.

23. Marzi C, Huth C, Kolz M, Gsellert H, Meisinger C, Wichmann HE, et al. Variants of the transcription factor 7-like 2 gene (TCF7L2) are strongly associated with Type 2 diabetes but not with the metabolic syndrome in the MONICA/KORA surveys. Horm Metab Res 2007;39:46-52.

24. Humphries SE, Gable D, Cooper JA, Ireland H, Stephens JW, Hare SJ, et al. Common variants in the TCF7L2 gene and predisposition for Type 2 diabetes in UK European whites, Indian Asians and Afro-caribbean men and women. J Mol Med (Berl) 2006;84:1005-14.

25. Cauchi S, Meyre D, Dina C, Choquet H, Samson C, Gallina S, et al. Transcription factor TCF7L2 genetic study in the French population: Expression in human aorta and adipose tissue and strong association with Type 2 diabetes. Diabetes 2006;55:2903-8.

26. van Vliet-Oostapchouk JV, Shiri-Sverdlov R, Zernakova A, Stremmman, van Haeften TW, Hofker MH, et al. Association of variants of transcription factor 7-like 2 (TCF7L2) with susceptibility to Type 2 diabetes in the dutch breda cohort. Diabetologia 2007;50:59-62.

27. Saxena R, Gianniny L, Burtt NP, Lyssenko V, Giuducci C, Sjögren M, et al. Common single nucleotide polymorphisms in TCF7L2 are reproductively associated with Type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes 2006;55:2890-5.

28. Cauchi S, Meyre D, Dina C, Choquet H, Samson C, Gallina S, et al. Transcription factor TCF7L2 genetic study in the French population: Expression in human aorta and adipose tissue and strong association with Type 2 diabetes. Diabetes 2006;55:2903-8.

29. van Vliet-Oostapchouk JV, Shiri-Sverdlov R, Zernakova A, Stremmman, van Haeften TW, Hofker MH, et al. Association of variants of transcription factor 7-like 2 (TCF7L2) with susceptibility to Type 2 diabetes in the dutch breda cohort. Diabetologia 2007;50:59-62.

30. Marzi C, Huth C, Kolz M, Grallert H, Meisinger C, Wichmann HE, et al. Common variants in the TCF7L2 gene are strongly associated with Type 2 diabetes but not with the metabolic syndrome in the MONICA/KORA surveys. Horm Metab Res 2007;39:46-52.

31. Horikoshi M, Hara K, Ito C, Nagai R, Froguel P, Kadowaki T, et al. Genetic variation of the transcription factor 7-like 2 gene is associated with Type 2 diabetes in the japanese population. Diabetologia 2007;50:747-51.

32. Tong Y, Lin Y, Zhang Y, Yang J, Zhang Y, Liu H, et al. Association between TCF7L2 gene polymorphisms and susceptibility to Type 2 diabetes mellitus: A large human genome epidemiology (HuGE) review and meta-analysis. BMC Med Genet 2009;10:15.

33. Song Y, Yeung E, Liu A, Vanderweeke TJ, Chen L, Lu C, et al. Pancreatic beta-cell function and Type 2 diabetes risk: Quantify the causal effect using a mendelian randomization approach based on meta-analyses. Hum Mol Genet 2012;21:5010-8.

34. Wang J, Hu F, Feng T, Zhao J, Yin L, Li L, et al. Meta-analysis of associations between TCF7L2 polymorphisms and risk of Type 2 diabetes mellitus in the Chinese population. BMC Med Genet 2013;14:8.

35. Luo Y, Wang H, Han X, Ren Q, Wang F, Zhang X, et al. Meta-analysis of the association between SNPs in TCF7L2 and Type 2 diabetes in East Asian population. Diabetes Res Clin Pract 2009;85:139-46.

36. Gupta V, Khadgawat R, Ng HK, Wai Gu, Kaila L, Rao VR, et al. Association of TCF7L2 and ADIPOQ with body mass index, waist-hip ratio, and systolic blood pressure in an endogamous ethnic group of India. Genet Test Mol Biomarkers 2012;16:948-51.

37. Mandour I, Darwish R, Fayez R, Naguib M, El-Sayegh S. TCF7L2 gene polymorphisms and susceptibility to Type 2 diabetes mellitus, a pilot study. Biomed Pharmacol J 2018;11:1045-9.

38. Phillips CM, Goumidi L, Bertrais S, Field MR, MacManus R, Hercberg S, et al. Dietary saturated fat, gender and genetic variation at the TCF7L2 locus predict the development of metabolic syndrome. J Nutr Biochem 2012;23:239-44.

39. Bodhini D, Gaal S, Shatwan I, Ramya K, Ellahi B, Suresh B, et al. Interaction between TCF7L2 polymorphism and dietary fat intake on high density lipoprotein cholesterol. PLoS One 2017;12:e0188382.