Fredholm Properties and L^p-Spectra of Localized Rotating Waves in Parabolic Systems

University of Bremen, November 29, 2016

Denny Otten
Department of Mathematics
Bielefeld University
Germany

joint work with: Wolf-Jürgen Beyn (Bielefeld University)

W.-J. Beyn, D. Otten. Fredholm Properties and L^p-Spectra of Localized Rotating waves in Parabolic Systems. Preprint to appear, 2016.

W.-J. Beyn, D. Otten. Spatial Decay of Rotating Waves in Reaction Diffusion Systems. Dyn. Partial Differ. Equ., 13(3):191-240, 2016.

D. Otten. Spatial decay and spectral properties of rotating waves in parabolic systems. PhD thesis, Bielefeld University, Shaker Verlag, 2014.
Outline

1. Rotating patterns in \mathbb{R}^d
2. Spatial decay of rotating waves
3. Eigenvalue problem for rotating waves and some basic definitions
4. Fredholm properties of linearization in L^p
5. Essential L^p-spectrum and dispersion relation
6. Point L^p-spectrum and shape of eigenfunctions
7. Cubic-quintic complex Ginzburg-Landau equation
Outline

1. Rotating patterns in \mathbb{R}^d

2. Spatial decay of rotating waves

3. Eigenvalue problem for rotating waves and some basic definitions

4. Fredholm properties of linearization in L^p

5. Essential L^p-spectrum and dispersion relation

6. Point L^p-spectrum and shape of eigenfunctions

7. Cubic-quintic complex Ginzburg-Landau equation
Rotating Patterns in \mathbb{R}^d

Consider a reaction diffusion system

$$
\begin{align*}
 u_t(x, t) &= A \triangle u(x, t) + f(u(x, t)), \quad t > 0, \ x \in \mathbb{R}^d, \ d \geq 2, \\
 u(x, 0) &= u_0(x), \quad \ t = 0, \ x \in \mathbb{R}^d.
\end{align*}
$$

where $u : \mathbb{R}^d \times [0, \infty] \to \mathbb{R}^m$, $A \in \mathbb{R}^{m, m}$, $f : \mathbb{R}^m \to \mathbb{R}^m$, $u_0 : \mathbb{R}^d \to \mathbb{R}^m$.

Assume a rotating wave solution $u_* : \mathbb{R}^d \times [0, \infty] \to \mathbb{R}^m$ of (1)

$$
u_*(x, t) = v_*(e^{-tS}x)
$$

$v_* : \mathbb{R}^d \to \mathbb{R}^m$ profile (pattern), $0 \neq S \in \mathbb{R}^{d, d}$ skew-symmetric.

Transformation (into a co-rotating frame): $v(x, t) = u(e^{tS}x, t)$ solves

$$
\begin{align*}
 v_t(x, t) &= A \triangle v(x, t) + \langle Sx, \nabla v(x, t) \rangle + f(v(x, t)), \quad t > 0, \ x \in \mathbb{R}^d, \ d \geq 2, \\
 v(x, 0) &= u_0(x), \quad \ t = 0, \ x \in \mathbb{R}^d.
\end{align*}
$$

$$
\begin{align*}
\langle Sx, \nabla v(x) \rangle &= Dv(x)Sx = \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij} x_j D_i v(x) = \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} S_{ij} (x_j D_i - x_i D_j) v(x).
\end{align*}
$$

(Drift term) (Rotational term)
Rotating Patterns in \mathbb{R}^d

Consider a reaction diffusion system

$$u_t(x, t) = A \triangle u(x, t) + f(u(x, t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \geq 2,$$

$$u(x, 0) = u_0(x), \quad , \ t = 0, \ x \in \mathbb{R}^d.$$ \hspace{1cm} (1)

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m$, $A \in \mathbb{R}^{m \times m}$, $f : \mathbb{R}^m \to \mathbb{R}^m$, $u_0 : \mathbb{R}^d \to \mathbb{R}^m$.

Assume a rotating wave solution $u_\star : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m$ of (1)

$$u_\star(x, t) = v_\star(e^{-tS}x)$$

$v_\star : \mathbb{R}^d \to \mathbb{R}^m$ profile (pattern), $0 \neq S \in \mathbb{R}^{d \times d}$ skew-symmetric.

Transformation (into a co-rotating frame): $v(x, t) = u(e^{tS}x, t)$ solves

$$v_t(x, t) = A \triangle v(x, t) + \langle Sx, \nabla v(x, t) \rangle + f(v(x, t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \geq 2,$$

$$v(x, 0) = u_0(x), \quad , \ t = 0, \ x \in \mathbb{R}^d.$$ \hspace{1cm} (2)

$$\langle Sx, \nabla v(x) \rangle = Dv(x)Sx = \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij} x_j D_i v(x) = ^{S \top} \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} S_{ij} (x_j D_i - x_i D_j) v(x)$$

(drift term) \hspace{1cm} (rotational term)
Rotating Patterns in \mathbb{R}^d

Consider a reaction diffusion system

$$u_t(x, t) = A \triangle u(x, t) + f(u(x, t)), \; t > 0, \; x \in \mathbb{R}^d, \; d \geq 2,$$

$$u(x, 0) = u_0(x), \quad t = 0, \; x \in \mathbb{R}^d.$$ \hspace{1cm} (1)

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m$, $A \in \mathbb{R}^{m,m}$, $f : \mathbb{R}^m \to \mathbb{R}^m$, $u_0 : \mathbb{R}^d \to \mathbb{R}^m$.

Assume a rotating wave solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m$ of (1)

$$u_*(x, t) = v_*(e^{-tS}x)$$

$v_* : \mathbb{R}^d \to \mathbb{R}^m$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric.

Transformation (into a co-rotating frame): $v(x, t) = u(e^{tS}x, t)$ solves

$$v_t(x, t) = A \triangle v(x, t) + \langle Sx, \nabla v(x, t) \rangle + f(v(x, t)), \; t > 0, \; x \in \mathbb{R}^d, \; d \geq 2,$$

$$v(x, 0) = u_0(x), \quad t = 0, \; x \in \mathbb{R}^d.$$ \hspace{1cm} (2)

$$\langle Sx, \nabla v(x) \rangle = Dv(x)Sx = \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij}x_jD_i v(x) = \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} S_{ij} (x_jD_i - x_iD_j) v(x)$$

(drift term) \hspace{1cm} (rotational term)
Rotating Patterns in \mathbb{R}^d

Consider a reaction diffusion system

$$u_t(x,t) = A \triangle u(x,t) + f(u(x,t)), \quad t > 0, \ x \in \mathbb{R}^d, \ d \geq 2,$$

$$u(x,0) = u_0(x), \quad t = 0, \ x \in \mathbb{R}^d. \quad (1)$$

where $u : \mathbb{R}^d \times [0, \infty[\rightarrow \mathbb{R}^m, \ A \in \mathbb{R}^{m,m}, \ f : \mathbb{R}^m \rightarrow \mathbb{R}^m, \ u_0 : \mathbb{R}^d \rightarrow \mathbb{R}^m$.

Assume a rotating wave solution $u_\star : \mathbb{R}^d \times [0, \infty[\rightarrow \mathbb{R}^m$ of (1)

$$u_\star(x,t) = v_\star(e^{-tS}x)$$

$v_\star : \mathbb{R}^d \rightarrow \mathbb{R}^m$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric.

Transformation (into a co-rotating frame): $v(x,t) = u(e^{tS}x, t)$ solves

$$v_t(x,t) = A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \quad t > 0, \ x \in \mathbb{R}^d, \ d \geq 2,$$

$$v(x,0) = u_0(x), \quad t = 0, \ x \in \mathbb{R}^d. \quad (2)$$

Note: v_\star is a stationary solution of (2), i.e. v_\star solves the rotating wave equation

$$A \triangle v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)) = 0, \ x \in \mathbb{R}^d, \ d \geq 2.$$
Rotating Patterns in \mathbb{R}^d

Consider a reaction diffusion system

$$
\begin{align*}
 u_t(x, t) &= A \Delta u(x, t) + f(u(x, t)), \quad t > 0, \ x \in \mathbb{R}^d, \ d \geq 2, \\
 u(x, 0) &= u_0(x), \quad t = 0, \ x \in \mathbb{R}^d.
\end{align*}
$$

(1)

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m$, $A \in \mathbb{R}^{m,m}$, $f : \mathbb{R}^m \to \mathbb{R}^m$, $u_0 : \mathbb{R}^d \to \mathbb{R}^m$.

Assume a rotating wave solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m$ of (1)

$$
 u_*(x, t) = v_*(e^{-tS}x)
$$

$v_* : \mathbb{R}^d \to \mathbb{R}^m$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric.

Transformation (into a co-rotating frame): $v(x, t) = u(e^{tS}x, t)$ solves

$$
\begin{align*}
 v_t(x, t) &= A \Delta v(x, t) + \langle Sx, \nabla v(x, t) \rangle + f(v(x, t)), \quad t > 0, \ x \in \mathbb{R}^d, \ d \geq 2, \\
 v(x, 0) &= u_0(x), \quad t = 0, \ x \in \mathbb{R}^d.
\end{align*}
$$

(2)

Questions and Ingredients: I1: exp. decay of v_*, I2: spectral properties

Q1: Nonlinear stability of rotating waves on \mathbb{R}^d? (Tools: I1+I2)

Q2: Truncations of rotating waves to bounded domains? (Tools: I1+...)

Q3: Spatial approximation (e.g. with finite element method)? (open problem)

Q4: Temporal approximation (e.g. with Euler or BDF)? (open problem)
Examples for rotating waves

Cubic-quintic complex Ginzburg-Landau equation: (spinning solitons)

$$u_t = \alpha \triangle u + u \left(\delta + \beta |u|^2 + \gamma |u|^4 \right)$$

$$u(x, t) \in \mathbb{C}, \; x \in \mathbb{R}^d, \; t \geq 0, \; \alpha, \beta, \gamma \in \mathbb{C}, \; \text{Re} \alpha > 0, \; \delta \in \mathbb{R}, \; d \in \{2, 3\}.$$

λ-ω system: (spiral waves, scroll waves)

$$u_t = \alpha \triangle u + \left(\lambda (|u|^2) + i \omega (|u|^2) \right) u$$

$$u(x, t) \in \mathbb{C}, \; x \in \mathbb{R}^d, \; t \geq 0, \; \lambda, \omega : [0, \infty] \rightarrow \mathbb{R}, \; \alpha \in \mathbb{C}, \; \text{Re} \alpha > 0, \; d \in \{2, 3\}.$$

Barkley model: (spiral waves, also scroll waves)

$$u_t = \begin{pmatrix} 1 & 0 \\ 0 & D \end{pmatrix} \triangle u + \left(\frac{1}{\varepsilon} u_1 (1 - u_1)(u_1 - \frac{u_2 + b}{a}) \right) u_1 - u_2$$

$$u(x, t) \in \mathbb{R}^2, \; x \in \mathbb{R}^d, \; t \geq 0, \; 0 \leq D \ll 1, \; \varepsilon, a, b > 0, \; d \in \{2, 3\}.$$
References

Nonlinear stability of rotating waves for $d = 2$:

- W.-J. Beyn, J. Lorenz. Nonlinear stability of rotating patterns, 2008.

Ginzburg-Landau equation:

- L.D. Landau, V.L. Ginzburg. On the theory of superconductivity, 1950.
- L.-C. Crasovan, B.A. Malomed, D. Mihalache. Spinning solitons in cubic-quintic nonlinear media, 2001. Stable vortex solitons in the two-dimensional Ginzburg-Landau equation, 2000.
- A. Mielke. The Ginzburg-Landau equation in its role as a modulation equation, 2002.

λ-ω system:

- Y. Kuramoto, S. Koga. Turbulized rotating chemical waves, 1981.
- J. D. Murray. Mathematical biology, II: Spatial models and biomedical applications, 2003.

Barkley model:

- D. Barkley. A model for fast computer simulation of waves in excitable media, 1991. Euclidean symmetry and the dynamics of rotating spiral waves, 1994.
Outline

1. Rotating patterns in \mathbb{R}^d

2. Spatial decay of rotating waves

3. Eigenvalue problem for rotating waves and some basic definitions

4. Fredholm properties of linearization in L^p

5. Essential L^p-spectrum and dispersion relation

6. Point L^p-spectrum and shape of eigenfunctions

7. Cubic-quintic complex Ginzburg-Landau equation
Spatial decay of rotating waves

Theorem 1: (Exponential decay of profile \(v_\star \))

Let \(f \in C^2 \) \((\mathbb{R}^m, \mathbb{R}^m)\), \(v_\infty \in \mathbb{R}^m \), \(f(v_\infty) = 0 \), \(Df(v_\infty) \leq -\beta_\infty I_m < 0 \), assume (A1)-(A3) for some \(1 < p < \infty \), and let \(\theta(x) = \exp \left(\mu \sqrt{|x|^2 + 1} \right) \) be a weight function for \(\mu \in \mathbb{R} \).

Then for every \(0 < \varepsilon < 1 \) there exists \(K_1 = K_1(\varepsilon) > 0 \) with the following property:

Every classical solution \(v_\star \in C^2 \) \((\mathbb{R}^d, \mathbb{R}^m)\) of

\[
A \triangle v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)) = 0, \quad x \in \mathbb{R}^d,
\]

such that

\[
\sup_{|x| \geq R_0} |v_\star(x) - v_\infty| \leq K_1 \text{ for some } R_0 > 0
\]

satisfies

\[
v_\star - v_\infty \in W^{1,p}_\theta(\mathbb{R}^d, \mathbb{R}^m)
\]

for every exponential decay rate

\[
0 \leq \mu \leq \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} p}.
\]

\[
\begin{pmatrix}
a_{\max} &=& \rho(A) \\
-a_0 &=& s(-A) \\
-b_0 &=& s(Df(v_\infty))
\end{pmatrix}
\]

: spectral radius of \(A \)

: spectral bound of \(-A\)

: spectral bound of \(Df(v_\infty) \)
Spatial decay of rotating waves

Theorem 1: (Exponential decay of profile v_\star)

Let $f \in C^2(\mathbb{R}^m, \mathbb{R}^m)$, $v_\infty \in \mathbb{R}^m$, $f(v_\infty) = 0$, $Df(v_\infty) \leq -\beta_\infty I_m < 0$, assume (A1)-(A3) for some $1 < p < \infty$, and let $\theta(x) = \exp \left(\mu \sqrt{|x|^2 + 1} \right)$ be a weight function for $\mu \in \mathbb{R}$.

Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property:

Every classical solution $v_\star \in C^3(\mathbb{R}^d, \mathbb{R}^m)$ of

$$(RWE) \quad A \Delta v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)) = 0, \quad x \in \mathbb{R}^d,$$

such that

$$(TC) \quad \sup_{|x| \geq R_0} |v_\star(x) - v_\infty| \leq K_1$$

for some $R_0 > 0$ satisfies

$$v_\star - v_\infty \in W^{2,p}_\theta(\mathbb{R}^d, \mathbb{R}^m)$$

for every exponential decay rate

$$0 \leq \mu \leq \varepsilon \frac{\sqrt{a_0b_0}}{a_{\max}p}.$$

\[
\begin{pmatrix}
 a_{\max} & = & \rho(A) \\
 -a_0 & = & s(-A) \\
 -b_0 & = & s(Df(v_\infty))
\end{pmatrix} : \text{spectral radius of } A \\
: \text{spectral bound of } -A \\
: \text{spectral bound of } Df(v_\infty)
\]
Spatial decay of rotating waves

Theorem 1: (Exponential decay of profile v_\star: higher regularity)

Let $f \in C^{\max\{2, k-1\}}(\mathbb{R}^m, \mathbb{R}^m)$, $v_\infty \in \mathbb{R}^m$, $f(v_\infty) = 0$, $Df(v_\infty) \leq -\beta_\infty I_m < 0$, assume (A1)-(A3) for some $1 < p < \infty$, and let $\theta(x) = \exp\left(\mu \sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu \in \mathbb{R}$, $k \in \mathbb{N}$, $p \geq \frac{d}{2}$ (if $k \geq 3$).

Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property:

Every classical solution $v_\star \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^m)$ of

\[(RWE) \quad A\triangledown v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)) = 0, \quad x \in \mathbb{R}^d, \]

such that

\[(TC) \quad \sup_{|x| \geq R_0} |v_\star(x) - v_\infty| \leq K_1 \text{ for some } R_0 > 0 \]

satisfies

$$v_\star - v_\infty \in W_\theta^{k,p}(\mathbb{R}^d, \mathbb{R}^m)$$

for every exponential decay rate

$$0 \leq \mu \leq \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} p}.$$
Theorem 1: (Exponential decay of profile v_\star: pointwise estimates)

Let $f \in C^{\max\{2, k-1\}}(\mathbb{R}^m, \mathbb{R}^m)$, $v_\infty \in \mathbb{R}^m$, $f(v_\infty) = 0$, $Df(v_\infty) \leq -\beta_\infty I_m < 0$, assume (A1)-(A3) for some $1 < p < \infty$, and let $\theta(x) = \exp\left(\mu \sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu \in \mathbb{R}$, $k \in \mathbb{N}$, $p \geq \frac{d}{2}$ (if $k \geq 3$).

Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property:

Every classical solution $v_\star \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^m)$ of

\[(RWE) \quad A \triangle v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)) = 0, \quad x \in \mathbb{R}^d,\]

such that

\[\text{(TC) \quad } \sup_{|x| \geq R_0} |v_\star(x) - v_\infty| \leq K_1 \text{ for some } R_0 > 0\]

satisfies

\[v_\star - v_\infty \in W^{k,p}_\theta(\mathbb{R}^d, \mathbb{R}^m), \quad |D^\alpha(v_\star(x) - v_\infty)| \leq C \exp\left(-\mu \sqrt{|x|^2 + 1}\right) \forall x \in \mathbb{R}^d\]

for every exponential decay rate

\[0 \leq \mu \leq \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} p} \quad \left(\begin{array}{c}
a_{\max} = \rho(A) \\
-a_0 = s(-A) \\
-b_0 = s(Df(v_\infty))
\end{array}\right) : \begin{array}{c}\text{spectral radius of } A \\
\text{spectral bound of } -A \\
\text{spectral bound of } Df(v_\infty)
\end{array}\]

and for every multiindex $\alpha \in \mathbb{N}^d$ satisfying $d < (k - |\alpha|)p$.
Theorem 2: (Exponential decay of eigenfunctions \(\nu \))

Let \(f \in C^{\max\{2,k\}}(\mathbb{R}^m, \mathbb{R}^m) \), \(\nu_\infty \in \mathbb{R}^m \), \(f(\nu_\infty) = 0 \), \(Df(\nu_\infty) \leq -\beta_\infty I_m < 0 \), assume (A1)-(A3) for some \(1 < p < \infty \), and let \(\theta_j(x) = \exp \left(\mu_j \sqrt{|x|^2 + 1} \right) \) be a weight function for \(\mu_j \in \mathbb{R} \), \(j = 1, 2 \), \(k \in \mathbb{N} \), \(p \geq \frac{d}{2} \) (if \(k \geq 2 \)). Then for every \(0 < \varepsilon < 1 \) there exists \(K_1 = K_1(\varepsilon) > 0 \) such that for every classical solution \(\nu_\star \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^m) \) of (RWE) satisfying (TC) the following property holds: Every classical solution \(\nu \in C^{k+1}(\mathbb{R}^d, \mathbb{C}^m) \) of

\[
A \triangle \nu(x) + \langle Sx, \nabla \nu(x) \rangle + Df(\nu_\star(x))\nu(x) = \lambda \nu(x), \quad x \in \mathbb{R}^d,
\]

with \(\lambda \in \mathbb{C} \), \(\Re \lambda \geq -(1 - \varepsilon)\beta_\infty \), such that

\[
\nu \in L^p_{\theta_1}(\mathbb{R}^d, \mathbb{C}^m) \quad \text{for some exp. growth rate} \quad -\sqrt{\frac{\varepsilon \gamma A\beta_\infty}{2d|A|^2}} \leq \mu_1 < 0
\]
satisfies

\[
\nu \in W^{k,p}_{\theta_2}(\mathbb{R}^d, \mathbb{C}^m) \quad \text{for every exp. decay rate} \quad 0 \leq \mu_2 \leq \varepsilon \sqrt{a_0b_0 \max p}
\]
and

\[
|D^\alpha \nu(x)| \leq C \exp \left(-\mu_2 \sqrt{|x|^2 + 1} \right) \quad \forall x \in \mathbb{R}^d
\]

for every multiindex \(\alpha \in \mathbb{N}_0^d \) satisfying \(d < (k - |\alpha|)p \).
Exponentially weighted Sobolev spaces and assumptions

Exponentially weighted Sobolev spaces: For $K \in \{\mathbb{R}, \mathbb{C}\}$, $1 \leq p \leq \infty$, $k \in \mathbb{N}_0$, and weight function $\theta(x) = \exp\left(\mu \sqrt{|x|^2 + 1}\right)$ with $\mu \in \mathbb{R}$ we define

$$L^p_\theta(\mathbb{R}^d, K^m) := \{ v \in L^1_{\text{loc}}(\mathbb{R}^d, K^m) | \| \theta v \|_{L^p} < \infty \},$$

$$W^{k,p}_\theta(\mathbb{R}^d, K^m) := \{ v \in L^p_\theta(\mathbb{R}^d, K^m) | D^\beta u \in L^p_\theta(\mathbb{R}^d, K^m) \forall |\beta| \leq k \}.$$

Assumptions:

(A1) (**L^p-dissipativity condition**): For $A \in \mathbb{R}^{m,m}$, $1 < p < \infty$, there is $\gamma_A > 0$ with

$$|z|^2 \Re \langle w, Aw \rangle + (p - 2) \Re \langle w, z \rangle \Re \langle z, Aw \rangle \geq \gamma_A |z|^2 |w|^2 \forall z, w \in \mathbb{R}^m$$

(A2) (**System condition**): $A, Df(v_\infty) \in \mathbb{R}^{m,m}$ simultaneously diagonalizable over \mathbb{C}

(A3) (**Rotational condition**): $0 \neq S \in \mathbb{R}^{d,d}$, $-S = S^\top$

Note: Assumption (A1) is equivalent with

(A1') (**L^p-antieigenvalue condition**): $A \in \mathbb{R}^{m,m}$ is invertible and

$$\mu_1(A) := \inf_{\substack{w \in \mathbb{R}^m \\
w \neq 0 \\
Aw \neq 0}} \frac{\Re \langle w, Aw \rangle}{|w||Aw|} > \frac{|p - 2|}{p} \text{ for some } 1 < p < \infty$$

($\mu_1(A) :$ first antieigenvalue of A)
Exponentially weighted Sobolev spaces and assumptions

Exponentially weighted Sobolev spaces: For $K \in \{\mathbb{R}, \mathbb{C}\}$, $1 \leq p \leq \infty$, $k \in \mathbb{N}_0$, and weight function $\theta(x) = \exp\left(\mu \sqrt{|x|^2 + 1}\right)$ with $\mu \in \mathbb{R}$ we define

$$L^p_\theta(\mathbb{R}^d, K^m) := \left\{ v \in L^1_{\text{loc}}(\mathbb{R}^d, K^m) \mid \| \theta v \|_{L^p} < \infty \right\},$$

$$W^{k,p}_\theta(\mathbb{R}^d, K^m) := \left\{ v \in L^p_\theta(\mathbb{R}^d, K^m) \mid D^\beta u \in L^p_\theta(\mathbb{R}^d, K^m) \forall |\beta| \leq k \right\}.$$

Assumptions:

(A1) *(L^p\text{-dissipativity condition})*: For $A \in \mathbb{R}^{m,m}$, $1 < p < \infty$, there is $\gamma_A > 0$ with

$$|z|^2 \text{Re} \langle w, Aw \rangle + (p - 2) \text{Re} \langle w, z \rangle \text{Re} \langle z, Aw \rangle \geq \gamma_A |z|^2 |w|^2 \ \forall \ z, w \in \mathbb{R}^m$$

(A2) *(System condition)*: $A, Df(v_\infty) \in \mathbb{R}^{m,m}$ simultaneously diagonalizable over \mathbb{C}

(A3) *(Rotational condition)*: $0 \neq S \in \mathbb{R}^{d,d}$, $-S = S^\top$

Additionally:

(A4) *(L^q\text{-dissipativity condition})*: For $A \in \mathbb{R}^{m,m}$, $q = \frac{p}{p-1}$, there is $\delta_A > 0$ with

$$|z|^2 \text{Re} \langle w, A^H w \rangle + (q - 2) \text{Re} \langle w, z \rangle \text{Re} \langle z, A^H w \rangle \geq \delta_A |z|^2 |w|^2 \ \forall \ z, w \in \mathbb{R}^m$$
Outline of proof: Theorem 1 (Exponential decay of v_\star)

Exponential Decay: To show exponential decay for the solution v_\star of

$$A \Delta v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)) = 0, \ x \in \mathbb{R}^d,$$

investigate the linear system ($w_\star(x) := v_\star(x) - v_\infty$)

$$A \Delta w_\star(x) + \langle Sx, \nabla w_\star(x) \rangle + (Df(v_\infty) + Q_s(x) + Q_c(x)) w_\star(x) = 0, \ x \in \mathbb{R}^d.$$

Operators: Study the following operators

$$\mathcal{L}_c v := A \Delta v + \langle S \cdot, \nabla v \rangle + Df(v_\infty) v + Q_s v + Q_c v, \quad \text{(exp. decay)}$$

$$\mathcal{L}_s v := A \Delta v + \langle S \cdot, \nabla v \rangle + Df(v_\infty) v + Q_s v, \quad \text{(exp. decay)}$$

$$\mathcal{L}_\infty v := A \Delta v + \langle S \cdot, \nabla v \rangle + Df(v_\infty) v, \quad \text{(far-field operator)} \quad \text{(exp. decay)}$$

$$\mathcal{L}_0 v := A \Delta v + \langle S \cdot, \nabla v \rangle. \quad \text{(Ornstein-Uhlenbeck operator)} \quad \text{(max. domain)}$$

D. Otten.

Exponentially weighted resolvent estimates for complex Ornstein-Uhlenbeck systems, 2015.
The identification problem for complex-valued Ornstein-Uhlenbeck operators in $L^p(\mathbb{R}^d, \mathbb{C}^N)$, 2016.
A new L^p-antieigenvalue condition for Ornstein-Uhlenbeck operators, 2016.

W.-J. Beyn, D. Otten.

Spatial Decay of Rotating Waves in Reaction Diffusion Systems, 2016.
Outline of proof: Theorem 1 (Exponential decay of v_\star)

Exponential Decay: To show exponential decay for the solution v_\star of

$$A\triangle v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)) = 0, \ x \in \mathbb{R}^d,$$

investigate the linear system ($w_\star(x) := v_\star(x) - v_\infty$)

$$A\triangle w_\star(x) + \langle Sx, \nabla w_\star(x) \rangle + \left(Df(v_\infty) + Q_s(x) + Q_c(x)\right) w_\star(x) = 0, \ x \in \mathbb{R}^d.$$

Operators: Study the following operators

- $\mathcal{L}_c v := A\triangle v + \langle S \cdot, \nabla v \rangle + Df(v_\infty)v + Q_s v + Q_c v$, (exp. decay)
- $\mathcal{L}_s v := A\triangle v + \langle S \cdot, \nabla v \rangle + Df(v_\infty)v + Q_s v$, (exp. decay)
- $\mathcal{L}_\infty v := A\triangle v + \langle S \cdot, \nabla v \rangle + Df(v_\infty)v$, (far-field operator) (exp. decay)
- $\mathcal{L}_0 v := A\triangle v + \langle S \cdot, \nabla v \rangle$. (Ornstein-Uhlenbeck operator) (max. domain)

D. Otten.
Exponentially weighted resolvent estimates for complex Ornstein-Uhlenbeck systems, 2015.
The identification problem for complex-valued Ornstein-Uhlenbeck operators in $L^p(\mathbb{R}^d, \mathbb{C}^N)$, 2016.
A new L^p-antieigenvalue condition for Ornstein-Uhlenbeck operators, 2016.

W.-J. Beyn, D. Otten.
Spatial Decay of Rotating Waves in Reaction Diffusion Systems, 2016.
Outline of proof: Theorem 1 (Exponential decay of \(v_\star \))

Exponential Decay: To show exponential decay for the solution \(v_\star \) of

\[
A \triangle v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)) = 0, \ x \in \mathbb{R}^d,
\]

investigate the linear system (\(w_\star(x) := v_\star(x) - v_\infty \))

\[
A \triangle w_\star(x) + \langle Sx, \nabla w_\star(x) \rangle + (Df(v_\infty) + Q_s(x) + Q_c(x)) w_\star(x) = 0, \ x \in \mathbb{R}^d.
\]

Operators: Study the following operators

\[
L_c v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_\infty) v + Q_s v + Q_c v, \quad \text{(exp. decay)}
\]

\[
L_s v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_\infty) v + Q_s v, \quad \text{(exp. decay)}
\]

\[
L_\infty v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_\infty) v, \quad \text{(far-field operator)} \quad \text{(exp. decay)}
\]

\[
L_0 v := A \triangle v + \langle S \cdot, \nabla v \rangle. \quad \text{(Ornstein-Uhlenbeck operator)} \quad \text{(max. domain)}
\]

Maximal domain of \(L_0 \) **given by**

\[
\mathcal{D}_{loc}^p(L_0) = \{ v \in W^{2,p}_{loc}(\mathbb{R}^d, \mathbb{C}^m) \cap L^p(\mathbb{R}^d, \mathbb{C}^m) : L_0 v \in L^p(\mathbb{R}^d, \mathbb{C}^m) \}, \ 1 < p < \infty
\]

satisfies \(\mathcal{D}_{loc}^p(L_0) \subseteq W^{1,p}(\mathbb{R}^d, \mathbb{C}^m) \).
The operator \mathcal{L}_0

Ornstein-Uhlenbeck operator

$$[\mathcal{L}_0 \nu](x) = A \triangle \nu(x) + \langle S x, \nabla \nu(x) \rangle, \ x \in \mathbb{R}^d, \ d \geq 2.$$

↓

Heat kernel

$$H_0(x, \xi, t) = (4 \pi t A)^{-\frac{d}{2}} \exp \left(- (4tA)^{-1} \left| e^{tS} x - \xi \right|^2 \right), \ x, \xi \in \mathbb{R}^d, \ t > 0.$$

↓

Semigroup in $L^p(\mathbb{R}^d, \mathbb{C}^m), \ 1 \leq p \leq \infty$

$$[T_0(t) \nu](x) = \int_{\mathbb{R}^d} H_0(x, \xi, t) \nu(\xi) d\xi, \ t > 0.$$

↓

strong ↓ continuity

Infinitesimal generator

$$(A_p, \mathcal{D}(A_p)), \ 1 \leq p < \infty.$$

semigroup theory \checkmark

A-priori → exponential decay,

max. domain and max. realization, $1 < p < \infty$

identification problem

unique solv. of resolvent equ. for A_p, $1 \leq p < \infty$, Re$\lambda > 0$

$$(\lambda I - A_p) \nu_\star = g \in L^p.$$

$\nu_\star \in W^{1,p}_\theta.$

$A_p = \mathcal{L}_0$ on $\mathcal{D}(A_p) = \mathcal{D}^p_{\text{loc}}(\mathcal{L}_0).$
Identification problem of L_0

$$D^p_{\text{loc}}(L_0) := \left\{ v \in W^2_{\text{loc}}(\mathbb{R}^d, \mathbb{C}^m) \cap L^p(\mathbb{R}^d, \mathbb{C}^m) \mid L_0 v \in L^p(\mathbb{R}^d, \mathbb{C}^m) \right\}, \ 1 < p < \infty.$$

Infinitesimal generator

$$(A_p, D(A_p)), \ 1 \leq p < \infty.$$

S is a core for $(A_p, D(A_p))$

Identification of L_0 maximal domain and maximal realization for $1 < p < \infty$:

$A_p = L_0$ on $D(A_p) = D^p_{\text{loc}}(L_0)$

Ornstein-Uhlenbeck operator

$$[L_0 v](x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle, \ x \in \mathbb{R}^d, \ d \geq 2.$$

L^p-resolvent estimates and unique solv. of resolvent equ. for L_0 in $D^p_{\text{loc}}(L_0)$, $1 < p < \infty$

L^p-dissipativity condition:

$$\exists \gamma_A > 0 \quad |z|^2 \text{Re} \langle w, Aw \rangle + (p - 2)\text{Re} \langle w, z \rangle \text{Re} \langle z, Aw \rangle \geq \gamma_A |z|^2 |w|^2 \ \forall \ z, w \in \mathbb{K}^m$$

L^p-first antieigenvalue condition

$$\mu_1(A) := \inf_{\substack{w \in \mathbb{K}^m \\forall w \neq 0 \\forall Aw \neq 0}} \frac{\text{Re} \langle w, Aw \rangle}{|w||Aw|} > \frac{|p - 2|}{p}, \ 1 < p < \infty$$

Denny Otten
Spectral Properties of Localized Rotating Waves
Bremen 2016
References

Nonlinear stability of rotating waves for $d = 2$:

- W.-J. Beyn, J. Lorenz.
 Nonlinear stability of rotating patterns, 2008.

Exponential decay:

- M. Shub.
 Global stability of dynamical systems, 1987.

- P.J. Rabier, C.A. Stuart.
 Exponential decay of the solutions of quasilinear second-order equations and Pohozaev identities, 2000.

Ornstein-Uhlenbeck operator in $L^p(\mathbb{R}^d, \mathbb{R})$ and its identification problem:

- G. Metafune, D. Pallara, V. Vespri.
 L^p-estimates for a class of elliptic operators with unbounded coefficients in \mathbb{R}^N, 2005.

- G. Metafune.
 L^p-spectrum of Ornstein-Uhlenbeck operators, 2001.

Ornstein-Uhlenbeck operator in $C_b(\mathbb{R}^d, \mathbb{R})$ and its identification problem:

- G. Da Prato, A. Lunardi.
 On the Ornstein-Uhlenbeck operator in spaces of continuous functions, 1995.

Weight function of exponential growth rate:

- A. Mielke, S. Zelik.
 Multi-pulse evolution and space-time chaos in dissipative systems, 2009.

Semigroup theory:

- K.-J. Engel, R. Nagel.
 One-parameter semigroups for linear evolution equations, 2000.
References

Lp-dissipativity:

- A. Cialdea, V. Maz’ya.
 Criteria for the L^p-dissipativity of systems of second order differential equations, 2006.
 Criterion for the L^p-dissipativity of second order differential operators with complex coefficients, 2005.

- A. Cialdea
 Analysis, Partial Differential Equations and Applications, 2009.
 The L^p-dissipativity of partial differential operators, 2010.

Antieigenvalues:

- K. Gustafson.
 Antieigenvalue analysis: with applications to numerical analysis, wavelets, statistics, quantum mechanics, finance and optimization, 2012. The angle of an operator and positive operator products, 1968.

- K. Gustafson, M. Seddighin.
 On the eigenvalues which express antieigenvalues, 2005.
 A note on total antieigenvectors, 1993.
 Antieigenvalue bounds, 1989.

Rotating waves:

- C. Wulff.
 Theory of meandering and drifting spiral waves in reaction-diffusion systems, 1996.

- B. Fiedler, A. Scheel.
 Spatio-temporal dynamics of reaction-diffusion patterns, 2003.

- B. Fiedler, B. Sandstede, A. Scheel, C. Wulff.
 Bifurcation from relative equilibria of noncompact group actions: skew products, meanders, and shifts, 1996.
Outline

1. Rotating patterns in \mathbb{R}^d

2. Spatial decay of rotating waves

3. **Eigenvalue problem for rotating waves and some basic definitions**

4. Fredholm properties of linearization in L^p

5. Essential L^p-spectrum and dispersion relation

6. Point L^p-spectrum and shape of eigenfunctions

7. Cubic-quintic complex Ginzburg-Landau equation
Eigenvalue problem for linearization at rotating waves

Motivation: Stability is determined by spectral properties of linearization \mathcal{L}.

Eigenvalue problem:

$$ (\lambda I - \mathcal{L})v(x) = 0, \ x \in \mathbb{R}^d, \ d \geq 2, \ \lambda \in \mathbb{C}. $$

$$ \mathcal{L}v(x) = A\Delta v(x) + \langle Sx, \nabla v(x) \rangle + Df(v_*(x))v(x), \ x \in \mathbb{R}^d, \ d \geq 2. $$

Definition 3: (Strongly spectrally stable)

A rotating wave $u_*(x, t) = v_*(e^{-tS}x)$ is called strongly spectrally stable iff

1. $\text{Re} \sigma(\mathcal{L}) \leq 0$ (spectrally stable) and
2. $\forall \lambda \in \sigma(\mathcal{L}) \cap i\mathbb{R}: \lambda \in \sigma_{pt}(\mathcal{L})$, λ is caused by the $\text{SE}(d)$-group action and

$$ \sum_{\lambda \in \sigma(\mathcal{L}) \cap i\mathbb{R}} \text{alg}(\lambda) = \frac{d(d + 1)}{2} = \text{dimSE}(d), \ \text{alg}(\lambda) := \text{algebraic mult. of } \lambda. $$
Recall from spectral theory

Linearized operator is closed and densely defined

\[L v(x) = A \Delta v(x) + \langle S x, \nabla v(x) \rangle + D f(v_*(x)) v(x), \quad x \in \mathbb{R}^d, \quad d \geq 2, \]

\[D^p_{\text{loc}}(L_0) = \{ v \in W^{2,p}_{\text{loc}} \cap L^p \mid L_0 v \in L^p \}, \quad \| v \|_{L_0} := \| v \|_{L^p} + \| L_0 v \|_{L^p}. \]

Definition 4: (Spectrum of \(L \))

1. **Resolvent set**
 \[\rho(L) := \{ \lambda \in \mathbb{C} \mid (\lambda I - L)^{-1} : L^p \to D^p_{\text{loc}}(L_0) \text{ exists and is bounded} \}. \]

2. **Spectrum** \(\sigma(L) := \mathbb{C} \setminus \rho(L) \). \(0 \neq v \in D^p_{\text{loc}}(L_0) \) is an **eigenfunction** of \(L \) with eigenvalue \(\lambda \in \sigma(L) \) if \((\lambda I - L)v = 0 \). An eigenvalue \(\lambda \in \sigma(L) \)
 - is isolated if \(\exists \varepsilon > 0 \forall \lambda_0 \in \mathbb{C} \text{ with } 0 < |\lambda - \lambda_0| < \varepsilon : \lambda_0 \in \rho(L) \).
 - has finite (algebraic) multiplicity if \(\dim(N(\lambda I - L)) < \infty \) and \(\exists n_\lambda \in \mathbb{N} \forall y \in D^p_{\text{loc}}(L_0) \text{ s.t. } y(\lambda_0) = \sum_{j=0}^{n_\lambda} (\lambda - \lambda_0)^j y_j \text{ with } y_0 \neq 0: \)
 \[[(\lambda I - L)y]^{(\nu)}(\lambda) = 0 \text{ for } \nu = 0, \ldots, n - 1 \text{ and } [(\lambda I - L)y]^{(n)}(\lambda) \neq 0. \]

3. **Point spectrum**
 \[\sigma_{\text{pt}}(L) := \{ \lambda \in \mathbb{C} \mid \lambda \text{ is an isolated eigenvalue of finite alg. multiplicity} \}. \]

 \(\lambda \in \rho(L) \cup \sigma_{\text{pt}}(L) \) is called a **normal point** of \(L \).

4. **Essential spectrum**
 \[\sigma_{\text{ess}}(L) := \{ \lambda \in \mathbb{C} \mid \lambda \text{ is not a normal point of } L \}. \]

Note: \(\mathbb{C} = \rho(L) \cup \sigma(L), \quad \sigma(L) = \sigma_{\text{ess}}(L) \cup \sigma_{\text{point}}(L). \)
Recall from spectral theory

Linearized operator is closed and densely defined

\[\mathcal{L}v(x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + Df(v_*(x))v(x), \quad x \in \mathbb{R}^d, \quad d \geq 2, \]

\[\mathcal{D}_{\text{loc}}^p(\mathcal{L}_0) = \{ v \in W^{2,p}_{\text{loc}} \cap L^p \mid \mathcal{L}_0 v \in L^p \}, \quad \| v \|_{\mathcal{L}_0} := \| v \|_{L^p} + \| \mathcal{L}_0 v \|_{L^p}. \]

Definition 5: (Fredholm operator)

The linear operator \(\lambda I - \mathcal{L} : \mathcal{D}_{\text{loc}}^p(\mathcal{L}_0) \to L^p \) is called **Fredholm** iff

1. \(\lambda I - \mathcal{L} \) is closed,
2. \(\dim(\mathcal{N}(\lambda I - \mathcal{L})) < \infty \) and
3. \(\text{codim}(\mathcal{R}(\lambda I - \mathcal{L})) < \infty. \)

The **index** \(\kappa \) of the Fredholm operator \(\lambda I - \mathcal{L} \) is defined by

\[\kappa := \dim(\mathcal{N}(\lambda I - \mathcal{L})) - \text{codim}(\mathcal{R}(\lambda I - \mathcal{L})). \]

with \(\text{codim}(\mathcal{R}(\lambda I - \mathcal{L})) := \dim(\mathcal{D}_{\text{loc}}^p(\mathcal{L}_0)/\mathcal{R}(\lambda I - \mathcal{L})). \)

Adjoint operator: Let \(q = \frac{p}{p-1} \) for \(1 < p < \infty \)

\[\mathcal{L}_0^* v(x) = A^H \triangle v(x) + \langle S^T x, \nabla v(x) \rangle + Df(v_*(x))^H v(x), \quad x \in \mathbb{R}^d, \quad d \geq 2, \]

\[\mathcal{D}_{\text{loc}}^q(\mathcal{L}_0^*) = \{ v \in W^{2,q}_{\text{loc}} \cap L^q \mid \mathcal{L}_0^* v \in L^q \}, \quad \| v \|_{\mathcal{L}_0^*} := \| v \|_{L^q} + \| \mathcal{L}_0^* v \|_{L^q}. \]
Outline

1 Rotating patterns in \mathbb{R}^d

2 Spatial decay of rotating waves

3 Eigenvalue problem for rotating waves and some basic definitions

4 Fredholm properties of linearization in L^p

5 Essential L^p-spectrum and dispersion relation

6 Point L^p-spectrum and shape of eigenfunctions

7 Cubic-quintic complex Ginzburg-Landau equation
Theorem 6: (Fredholm properties of \mathcal{L})

Assume (A1)-(A3) for some $1 < p < \infty$, $v_\infty \in \mathbb{R}^m$, $f(v_\infty) = 0$, $f \in C^2(\mathbb{R}^m, \mathbb{R}^m)$ and $\lambda \in \mathbb{C}$, $\text{Re}\lambda \geq -b_0 + \gamma$ for some $\gamma > 0$ and $-b_0 = s(Df(v_\infty))$.

Then, for any $0 < \varepsilon < 1$ there is $K_1 = K_1(\varepsilon) > 0$ such that for any classical solution $v_\star \in C^2(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) satisfying (TC) the following properties hold:

1. **Fredholm properties**.

 $\lambda I - \mathcal{L} : (\mathcal{D}_{loc}^p(\mathcal{L}_0), \|\cdot\|_{\mathcal{L}_0}) \to (L^p(\mathbb{R}^d, \mathbb{C}^N), \|\cdot\|_{L^p})$ is Fredholm of index 0.
Properties of linearization at localized rotating waves

Theorem 6: (Fredholm properties of \mathcal{L})

Assume (A1)-(A3) for some $1 < p < \infty$, $v_\infty \in \mathbb{R}^m$, $f(v_\infty) = 0$, $f \in C^2(\mathbb{R}^m, \mathbb{R}^m)$ and $\lambda \in \mathbb{C}$, $\text{Re}\lambda \geq -b_0 + \gamma$ for some $\gamma > 0$ and $-b_0 = s(Df(v_\infty))$.

Then, for any $0 < \varepsilon < 1$ there is $K_1 = K_1(\varepsilon) > 0$ such that for any classical solution $v_\star \in C^2(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) satisfying (TC) the following properties hold:

1. **(Fredholm alternative).** Let in addition to (A4) hold for $q = \frac{p}{p-1}$ and $\lambda \in \sigma_{\text{pt}}(\mathcal{L})$ with geom. mult. $1 \leq n = \dim \mathcal{N}(\lambda I - \mathcal{L}) < \infty$.

 Then, there are exactly n linearly indep. eigenfunctions $v_j \in D^p_{\text{loc}}(\mathcal{L}_0)$ and adjoint eigenfunctions $\psi_j \in D^q_{\text{loc}}(\mathcal{L}_0^*)$ with
 $$(\lambda I - \mathcal{L})v_j = 0 \quad \text{and} \quad (\lambda I - \mathcal{L})^*\psi_j = 0 \quad \text{for} \quad j = 1, \ldots, n.$$

Moreover,

(IP)

$$(\lambda I - \mathcal{L})v = g, \quad g \in L^p(\mathbb{R}^d, \mathbb{C}^N)$$

has at least one (not necessarily unique) solution $v \in D^p_{\text{loc}}(\mathcal{L}_0)$ iff

$g \in (\mathcal{N}(\lambda I - \mathcal{L})^*)^\perp$, \quad i.e. $\langle \psi_j, g \rangle_{q,p} = 0, j = 1, \ldots, n.$

In this case, one can select a solution $v \in D^p_{\text{loc}}(\mathcal{L}_0)$ of (IP) with

$$\|v\|_{\mathcal{L}_0} \leq C \|g\|_{L^p} \quad \text{and} \quad \|v\|_{W^{1,p}} \leq C \|g\|_{L^p}.$$
Properties of linearization at localized rotating waves

Theorem 6: (Fredholm properties of \mathcal{L})

Assume (A1)-(A3) for some $1 < p < \infty$, $v_\infty \in \mathbb{R}^m$, $f(v_\infty) = 0$, $f \in C^2(\mathbb{R}^m, \mathbb{R}^m)$ and $\lambda \in \mathbb{C}$, $\Re \lambda \geq -b_0 + \gamma$ for some $\gamma > 0$ and $-b_0 = s(Df(v_\infty))$.

Then, for any $0 < \varepsilon < 1$ there is $K_1 = K_1(\varepsilon) > 0$ such that for any classical solution $v_\star \in C^2(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) satisfying (TC) the following properties hold:

1. **(Exponential decay).** Let in addition to 2:
 \[
 \theta_j(x) = \exp \left(\mu_j \sqrt{|x|^2 + 1} \right), \quad x \in \mathbb{R}^d, \quad \mu_j \in \mathbb{R}, \quad j = 1, \ldots, 4.
 \]

 Then, every classical solution $v \in C^2(\mathbb{R}^d, \mathbb{C}^m)$ and $\psi \in C^2(\mathbb{R}^d, \mathbb{C}^m)$ of
 \[
 (\lambda I - \mathcal{L})v = 0 \quad \text{and} \quad (\lambda I - \mathcal{L})^*\psi = 0
 \]
such that $v \in L^p_{\theta_1}(\mathbb{R}^d, \mathbb{C}^m)$ and $\psi \in L^q_{\theta_3}(\mathbb{R}^d, \mathbb{C}^m)$ for some exp. growth rate
 \[
 -\sqrt{\varepsilon \gamma A(\beta_\infty - b_0 + \gamma)} \leq \mu_1 \leq 0 \quad \text{and} \quad -\sqrt{\varepsilon \frac{\delta A(\beta_\infty - b_0 + \gamma)}{2d|A|^2}} \leq \mu_3 \leq 0
 \]
satisfies $v \in W^{1,p}_{\theta_2}(\mathbb{R}^d, \mathbb{C}^m)$ and $\psi \in W^{1,q}_{\theta_4}(\mathbb{R}^d, \mathbb{C}^m)$ for every exp. decay rate
 \[
 0 \leq \mu_2 \leq \varepsilon \frac{\sqrt{a_0 \gamma}}{a_{\max}p} \quad \text{and} \quad 0 \leq \mu_4 \leq \varepsilon \frac{\sqrt{a_0 \gamma}}{a_{\max}q}.
 \]
Theorem 6: (Fredholm properties of \(L \))

Assume (A1)-(A3) for some \(1 < p < \infty \), \(v_\infty \in \mathbb{R}^m \), \(f(v_\infty) = 0 \), \(f \in C^2(\mathbb{R}^m, \mathbb{R}^m) \) and \(\lambda \in \mathbb{C} \), \(\text{Re}\lambda \geq -b_0 + \gamma \) for some \(\gamma > 0 \) and \(-b_0 = s(Df(v_\infty)) \).

Then, for any \(0 < \varepsilon < 1 \) there is \(K_1 = K_1(\varepsilon) > 0 \) such that for any classical solution \(v_\star \in C^2(\mathbb{R}^d, \mathbb{R}^m) \) of (RWE) satisfying (TC) the following properties hold:

4. **(Pointwise estimates for \(v \)).** Let in addition to \(\Box \):

 - \(p \geq \frac{d}{2} \), \(f \in C^k(\mathbb{R}^m, \mathbb{R}^m) \), \(v_\star \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^m) \), \(v \in C^{k+1}(\mathbb{R}^d, \mathbb{C}^m) \), \(2 \leq k \in \mathbb{N} \).

 Then, \(v \in W_{\theta_2}^{k,p}(\mathbb{R}^d, \mathbb{C}^m) \) and

 \[
 |D^{\alpha}v(x)| \leq C \exp \left(-\mu_2 \sqrt{|x|^2 + 1} \right), \quad x \in \mathbb{R}^d
 \]

 for any \(\mu_2 \in \mathbb{R} \), \(0 \leq \mu_2 \leq \varepsilon \frac{\sqrt{a_0} \gamma}{a_{\max} p} \) and \(\alpha \in \mathbb{N}_0^d \), \(d < (k - |\alpha|)p \).

5. **(Pointwise estimates for \(\psi \)).** Let in addition to \(\Box \):

 - \(\min\{p, q\} \geq \frac{d}{2} \), \(\psi \in C^{k+1}(\mathbb{R}^d, \mathbb{C}^m) \).

 Then, \(\psi \in W_{\theta_4}^{k,q}(\mathbb{R}^d, \mathbb{C}^m) \) and

 \[
 |D^{\alpha}\psi(x)| \leq C \exp \left(-\mu_4 \sqrt{|x|^2 + 1} \right), \quad x \in \mathbb{R}^d
 \]

 for any \(\mu_4 \in \mathbb{R} \), \(0 \leq \mu_4 \leq \varepsilon \frac{\sqrt{a_0} \gamma}{a_{\max} q} \) and \(\alpha \in \mathbb{N}_0^d \), \(d < (k - |\alpha|)q \).
Outline of proof: Theorem 6 (Fredholm properties of \(\mathcal{L} \))

\[\mathcal{L}v = A\nabla^2 v + \langle Sx, \nabla v \rangle + Df(v_*(x))v. \]

1. Splitting off the stable part: \(Q(x) = Df(v_*(x)) - Df(v_\infty) \) implies

\[\mathcal{L}v = A\nabla^2 v + \langle Sx, \nabla v \rangle + (Df(v_\infty) + Q(x))v \]

\(v_*(x) \to v_\infty \) as \(|x| \to \infty \) \(\Rightarrow \ \sup_{|x| \geq R} |Q(x)| \to 0 \) as \(R \to \infty \)

2. Decomposition of \(Q \):

\[\mathcal{L}v = A\nabla^2 v + \langle Sx, \nabla v \rangle + (Df(v_\infty) + Q_s(x) + Q_c(x))v \]

\(Q(x) = Q_s(x) + Q_c(x) \), \(Q_s, Q_c \in L^\infty \), \(Q_s \) small w.r.t. \(\| \cdot \|_{L^\infty} \), \(Q_c \) comp. supported

3. Decomposition of \(\lambda \): \(\lambda \in \mathbb{C}, \ \text{Re} \lambda \geq -b_0 + \gamma \) for some \(\gamma > 0 \), then

\[\lambda = \lambda_1 + \lambda_2 \quad \text{with} \quad \lambda_2 := -b_0 + \gamma, \quad \lambda_1 := \lambda - \lambda_2. \]

4. Decomposition of \(\lambda I - \mathcal{L} \):

\[\lambda I - \mathcal{L} = (I - Q_c(\cdot)(\lambda_1 - \mathcal{L}_s)^{-1})(\lambda_1 I - \mathcal{L}_s) \]

\(\mathcal{L}_s = \mathcal{L}_s - \lambda_2 I, \quad \mathcal{L}_s v = A\nabla^2 v + \langle Sx, \nabla v \rangle + (Df(v_\infty) + Q_s(x))v \)
Outline of proof: Theorem 6 (Fredholm properties of \(\mathcal{L} \))

Decomposition of \(\lambda I - \mathcal{L} \):

\[
\lambda I - \mathcal{L} = \left(I - Q_c(\cdot)(\lambda_1 - \tilde{\mathcal{L}}_s)^{-1} \right) \left(\lambda_1 I - \tilde{\mathcal{L}}_s \right)
\]

\[
\tilde{\mathcal{L}}_s = \mathcal{L}_s - \lambda_2 I, \quad \mathcal{L}_s v = A\Delta v + \langle Sx, \nabla v \rangle + (Df(v_\infty) + Q_s(x)) v
\]

5. Fredholm properties:

- \(\lambda_1 I - \tilde{\mathcal{L}}_s \) is Fredholm of index 0:
 - unique solvability of resolvent equation for \(\tilde{\mathcal{L}}_s \)

- \(I - Q_c(\cdot)(\lambda_1 I - \tilde{\mathcal{L}}_s)^{-1} \) Fredholm of index 0:
 - \(Q_c(\cdot)(\lambda_1 I - \tilde{\mathcal{L}}_s)^{-1} \) is compact
 - compact perturbation of identity
 - unique solvability of resolvent equation for \(\tilde{\mathcal{L}}_s \)
 - \(\mathcal{D}_{\text{loc}}^p(\mathcal{L}_0) \subseteq W^{1,p}(\mathbb{R}^d, \mathbb{C}^m) \)

- \(\lambda I - \mathcal{L} \) Fredholm of index 0:
 - Theorem on products of Fredholm operators
Outline

1. Rotating patterns in \mathbb{R}^d
2. Spatial decay of rotating waves
3. Eigenvalue problem for rotating waves and some basic definitions
4. Fredholm properties of linearization in L^p
5. **Essential L^p-spectrum and dispersion relation**
6. Point L^p-spectrum and shape of eigenfunctions
7. Cubic-quintic complex Ginzburg-Landau equation
Essential Spectrum: Derivation of dispersion set $\sigma_{\text{disp}}(L)$

Eigenvalue problem:

\[(\lambda I - L)v = 0, \ x \in \mathbb{R}^d\]

\[Lv = A\Delta v + \langle Sx, \nabla v \rangle + Df(v_*(x))v\]

1. Splitting off the stable part: $Q(x) = Df(v_*(x)) - Df(v_\infty)$ implies

\[(\lambda I - L_Q)v = 0, \ x \in \mathbb{R}^d\]

\[L_Qv = A\Delta v + \langle Sx, \nabla v \rangle + (Df(v_\infty) + Q(x))v = Lv\]

$v_*(x) \to v_\infty$ as $|x| \to \infty$ \ \Rightarrow \ \sup_{|x| \geq R} |Q(x)| \to 0$ as $R \to \infty$
Essential Spectrum: Derivation of dispersion set $\sigma_{\text{disp}}(\mathcal{L})$

Splitting off the stable part:

\[(\lambda I - \mathcal{L}_Q)v = 0, \ x \in \mathbb{R}^d\]

\[\mathcal{L}_Q v = A\Delta v + \langle Sx, \nabla v \rangle + (Df(v_\infty) + Q(x))v\]

\[Q(x) = Df(v_\star(x)) - Df(v_\infty), \ \sup_{|x| \geq R} |Q(x)| \to 0 \text{ as } R \to \infty\]

2. Orthogonal transformation: $S \in \mathbb{R}^{d,d}$, $S = -S^\top$, implies $S = P\Lambda^SP^\top$ with

\[P \in \mathbb{R}^{d,d} \text{ orth.}, \ \Lambda^S_b = \text{diag}(\Lambda^S_1, \ldots, \Lambda^S_k, 0), \ \Lambda^S_j = \begin{pmatrix} 0 & \sigma_j \\ -\sigma_j & 0 \end{pmatrix}, \ \pm i\sigma_j \in \sigma(S).\]

Then, $\tilde{v}(y) = v(T_1(y))$ with $x = T_1(y) = Py$ yields

\[(\lambda I - \mathcal{L}_1)\tilde{v} = 0, \ y \in \mathbb{R}^d\]

\[\mathcal{L}_1\tilde{v} = A\Delta\tilde{v} + \langle \Lambda^S_b y, \nabla\tilde{v} \rangle + (Df(v_\infty) + Q(T_1(y)))\tilde{v}\]

\[\langle \Lambda^S_b y, \nabla\tilde{v} \rangle = \sum_{l=1}^k \sigma_l (y_{2l}\partial_{y_{2l-1}} - y_{2l-1}\partial_{y_{2l}})\tilde{v}\]
Essential Spectrum: Derivation of dispersion set $\sigma_{\text{disp}}(\mathcal{L})$

Orthogonal transformation:

$$(\lambda I - \mathcal{L}_1)\tilde{v} = 0, \ y \in \mathbb{R}^d$$

$$\mathcal{L}_1\tilde{v} = A\Delta\tilde{v} + \langle \Lambda^S_y, \nabla\tilde{v} \rangle + (Df(v_\infty) + Q(T_1(y)))\tilde{v}$$

$$\langle \Lambda^S_y, \nabla\tilde{v} \rangle = \sum_{l=1}^{k} \sigma_l \left(y_{2l-1}\partial_{y_{2l-1}} - y_{2l-1}\partial_{y_{2l}} \right) \tilde{v}$$

3. Several planar polar coordinates: For $\phi \in (-\pi, \pi]^k, \ r \in (0, \infty)^k$ define

$$\left(\begin{array}{c} y_{2l-1} \\ y_{2l} \end{array} \right) = T(r_l, \phi_l) := \left(\begin{array}{c} r_l \cos \phi_l \\ r_l \sin \phi_l \end{array} \right), \ l = 1, \ldots, k,$$

$$T_2(\xi) = (T(r_1, \phi_1), \ldots, T(r_k, \phi_k), \tilde{y}), \ \xi = (r_1, \phi_1, \ldots, r_k, \phi_k, \tilde{y}), \ \tilde{y} = (y_{2k+1}, \ldots, y_d).$$

Then, $\hat{v}(\xi) = \tilde{v}(T_2(\xi))$ with $y = T_2(\xi)$ and $Q(\xi) = Q(T_1(T_2(\xi))))$ yields

$$(\lambda I - \mathcal{L}_2)\hat{v} = 0, \ \xi \in \Omega$$

$$\mathcal{L}_2\hat{v} = A \left[\sum_{l=1}^{k} \left(\partial_{r_l}^2 + \frac{1}{r_l} \partial_{r_l} + \frac{1}{r_l^2} \partial_{\phi_l}^2 \right) + \sum_{l=2k+1}^{d} \partial_{y_l}^2 \right] \hat{v} - \sum_{l=1}^{k} \sigma_l \partial_{\phi_l} \hat{v} + (Df(v_\infty) + Q(\xi))\hat{v}.$$
Several planar polar coordinates: \(\Omega = ((0, \infty) \times (-\pi, \pi))^k \times \mathbb{R}^{d-2k} \)

\[
(\lambda l - \mathcal{L}_2)\hat{v} = 0, \quad \xi \in \Omega
\]

\[
\mathcal{L}_2 \hat{v} = A \left[\sum_{l=1}^{k} \left(\frac{1}{r_l} \partial_{r_l} + \frac{1}{r_l^2} \partial_{\phi_l}^2 \right) + \sum_{l=2k+1}^{d} \partial_{y_l}^2 \right] \hat{v} - \sum_{l=1}^{k} \sigma_l \partial_{\phi_l} \hat{v} + (Df(v_\infty) + Q(\xi)) \hat{v}.
\]

\[
Q(\xi) = Q(T_1(T_2(\xi)))
\]

4. Limit operator (far-field operator, simplified operator):
Let formally \(|x| \to \infty \) (i.e. \(r_l \to \infty \)) and use \(|Q(x)| \to 0 \) as \(|x| \to \infty \)

\[
(\lambda l - \mathcal{L}_\infty^{\text{sim}})\hat{v} = 0, \quad \xi \in \Omega
\]

\[
\mathcal{L}_\infty^{\text{sim}} \hat{v} = A \left[\sum_{l=1}^{k} \partial_{r_l}^2 + \sum_{l=2k+1}^{d} \partial_{y_l}^2 \right] \hat{v} - \sum_{l=1}^{k} \sigma_l \partial_{\phi_l} \hat{v} + Df(v_\infty) \hat{v}
\]
Essential Spectrum: Derivation of dispersion set $\sigma_{\text{disp}}(\mathcal{L})$

Limit operator:
$$\Omega = ((0, \infty) \times (-\pi, \pi))^k \times \mathbb{R}^{d-2k}$$

$$(\lambda I - \mathcal{L}_{\infty}^\text{sim})\hat{\nu} = 0, \xi \in \Omega$$

$$\mathcal{L}_{\infty}^\text{sim} \hat{\nu} = A \left[\sum_{l=1}^{k} \partial^2_{r_l} + \sum_{l=2k+1}^{d} \partial^2_{y_l} \right] \hat{\nu} - \sum_{l=1}^{k} \sigma_l \partial \phi_l \hat{\nu} + Df(\nu_\infty)\hat{\nu}$$

5. Angular Fourier transform:

For $n \in \mathbb{Z}^k$, $\omega \in \mathbb{R}^k$, $\rho, \tilde{y} \in \mathbb{R}^{d-2k}$, $\nu \in \mathbb{C}^m$, $|\nu| = 1$, $\phi \in (-\pi, \pi)^k$, $r \in (0, \infty)^k$.

Inserting

$$\hat{\nu}(\xi) = \exp \left(i \sum_{l=1}^{k} \omega_l r_l \right) \exp \left(i \sum_{l=1}^{k} n_l \phi_l \right) \exp \left(i \sum_{l=2k+1}^{d} \rho_l y_l \right) \nu, $$

$$= \exp(i\langle \omega, r \rangle + i\langle n, \phi \rangle + i\langle \rho, \tilde{y} \rangle)\nu$$

yields the *m-dimensional eigenvalue problem*

$$\left(\lambda I_m + (|\omega|^2 + |\rho|^2)A + i \sum_{l=1}^{k} n_l \sigma_l I_m - Df(\nu_\infty) \right) \nu = 0.$$
Angular Fourier transform: \(\omega \in \mathbb{R}^k, \rho \in \mathbb{R}^{d-2k}, n \in \mathbb{Z}^k, \mathbf{v} \in \mathbb{C}^m, |\mathbf{v}| = 1 \)

\[
\left(\lambda I_m + (|\omega|^2 + |\rho|^2)A + i \sum_{l=1}^{k} n_l \sigma_l I_m - Df(v_\infty) \right) \mathbf{v} = 0.
\]

6. Dispersion relation: Every \(\lambda \in \mathbb{C} \) satisfying

\[
(\text{DR}) \quad \det \left(\lambda I_m + (|\omega|^2 + |\rho|^2)A + i \sum_{l=1}^{k} n_l \sigma_l I_m - Df(v_\infty) \right) = 0
\]

for some \(\omega \in \mathbb{R}^k, \rho \in \mathbb{R}^{d-2k}, n \in \mathbb{Z}^k \) belongs to \(\sigma_{\text{ess}}(L) \).

Dispersion set:

\[
\sigma_{\text{disp}}(L) = \{ \lambda \in \mathbb{C} \mid \lambda \text{ satisfies (DR) for some } \omega \in \mathbb{R}^k, \rho \in \mathbb{R}^{d-2k}, n \in \mathbb{Z}^k \}.
\]
Illustration: Dispersion set $\sigma_{\text{disp}}(\mathcal{L})$

(DR) \[\det \left(\lambda I_m + (|\omega|^2 + |\rho|^2)A + i \sum_{l=1}^{k} n_l \sigma_l I_m - Df(v_\infty) \right) = 0 \]

$\sigma_{\text{disp}}(\mathcal{L}) = \{ \lambda \in \mathbb{C} | \lambda \text{ satisfies (DR) for some } \omega \in \mathbb{R}^k, \rho \in \mathbb{R}^{d-2k}, n \in \mathbb{Z}^k \}$

$S \in \mathbb{R}^{d,d}, S = -S^\top, \pm i\sigma_1, \ldots, \pm i\sigma_k$ nonzero eigenvalues of S, $\sigma_1, \ldots, \sigma_k \in \mathbb{R}$.

\begin{align*}
\text{Parameters for illustration: } & A = \frac{1}{2} + \frac{1}{2} i, \quad Df(v_\infty) = -\frac{1}{2}, \\
& \sigma_1 = 1.027, \quad \sigma_1 = 1, \quad \sigma_2 = 1.5, \quad \sigma_1 = 1, \quad \sigma_2 = \frac{\exp(1)}{2}
\end{align*}

$\sigma_{\text{disp}}(\mathcal{L}) \subseteq \{ \lambda \in \mathbb{C} | \Re \lambda \leq s(Df(v_\infty)) \}$ dense $\iff \exists \sigma_n, \sigma_m: \sigma_n \sigma_m^{-1} \notin \mathbb{Q}$.

$d = 2$ or 3 \quad $d = 4$ (not dense) \quad $d = 4$ (dense)
Essential L^p-spectrum of \mathcal{L}

$$(\text{DR}) \quad \det \left(\lambda I_m + (|\omega|^2 + |\rho|^2)A + i \sum_{l=1}^{k} n_l \sigma_l I_m - Df(v_\infty) \right) = 0$$

$$\sigma_{\text{disp}}(\mathcal{L}) = \{ \lambda \in \mathbb{C} \mid \lambda \text{ satisfies (DR) for some } \omega \in \mathbb{R}^k, \rho \in \mathbb{R}^{d-2k}, n \in \mathbb{Z}^k \}$$

$S \in \mathbb{R}^{d,d}$, $S = -S^\top$, $\pm i \sigma_1, \ldots, \pm i \sigma_k$ nonzero eigenvalues of S, $\sigma_1, \ldots, \sigma_k \in \mathbb{R}$.

Theorem 7: (Essential L^p-spectrum of \mathcal{L})

Let that assumptions of Theorem 1 (pointwise estimates) be satisfied. Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: For every classical solution $v_\ast \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) satisfying (TC) it holds

$$\sigma_{\text{disp}}(\mathcal{L}) \subseteq \sigma_{\text{ess}}(\mathcal{L}) \quad \text{in} \quad L^p(\mathbb{R}^d, \mathbb{C}^N).$$

- essential spectrum is determined by the far-field linearization
- Thm. 7 holds only for exponentially localized rotating waves, but **not** for nonlocalized rotating waves (e.g. spiral waves, scroll waves)
- essential spectrum for spiral waves much more involved (→ Floquet theory)
Outline

1. Rotating patterns in \mathbb{R}^d
2. Spatial decay of rotating waves
3. Eigenvalue problem for rotating waves and some basic definitions
4. Fredholm properties of linearization in L^p
5. Essential L^p-spectrum and dispersion relation
6. Point L^p-spectrum and shape of eigenfunctions
7. Cubic-quintic complex Ginzburg-Landau equation
Rotating wave equation:

\[(RWE)\quad 0 = A\nabla v(x) + \left\langle Sx, \nabla v(x) \right\rangle + f(v(x)), \quad x \in \mathbb{R}^d\]

\textbf{SE}(d)-group action:

\[[a(R, \tau)v](x) = v(R^{-1}(x - \tau)), \quad x \in \mathbb{R}^d, (R, \tau) \in \text{SE}(d). \]

1. Generators of \textbf{SE}(d)-group action: Applying the generators

\[D_l = \partial_{x_l} \quad \text{and} \quad D^{(i,j)} = x_j D_i - x_i D_j \]

to (RWE) leads to \[\frac{d(d+1)}{2} = d + \frac{d(d-1)}{2} \] equations

\[0 = D_l \left(A\nabla v(x) + \left\langle Sx, \nabla v(x) \right\rangle + f(v(x)) \right) \]

\[0 = D^{(i,j)} \left(A\nabla v(x) + \left\langle Sx, \nabla v(x) \right\rangle + f(v(x)) \right) \]

for \(l = 1, \ldots, d, \quad i = 1, \ldots, d - 1, \quad j = i + 1, \ldots, d. \)
Point spectrum: Derivation of symmetry set $\sigma_{\text{sym}}(\mathcal{L})$

Generators of $\mathbb{SE}(d)$-group action:

$$D_l = \partial_{x_l} \quad \text{and} \quad D^{(i,j)} = x_j D_i - x_i D_j$$

$$0 = D_l \left(A \triangle v_*(x) + \langle Sx, \nabla v_*(x) \rangle + f(v_*(x)) \right)$$

$$0 = D^{(i,j)} \left(A \triangle v_*(x) + \langle Sx, \nabla v_*(x) \rangle + f(v_*(x)) \right)$$

for $l = 1, \ldots, d$, $i = 1, \ldots, d - 1$, $j = i + 1, \ldots, d$.

2. Commutator relations of generators:

$$D_l D_k = D_k D_l,$$

$$D_l D^{(i,j)} = D^{(i,j)} D_l + \delta_{lj} D_i - \delta_{li} D_j,$$

$$D^{(i,j)} D^{(r,s)} = D^{(r,s)} D^{(i,j)} + \delta_{is} D^{(r,j)} - \delta_{ir} D^{(s,j)} - \delta_{js} D^{(r,i)} + \delta_{jr} D^{(s,i)},$$

$$0 = \mathcal{L}(D_l v_*) - \sum_{n=1}^{d} S_{ln} D_n v_* ,$$

$$0 = \mathcal{L}(D^{(i,j)} v_*) - \sum_{n=1}^{d} S_{jn} D^{(i,n)} v_* - \sum_{n=1}^{d} S_{in} D^{(n,j)} v_*.$$
Point spectrum: Derivation of symmetry set $\sigma_{\text{sym}}(\mathcal{L})$

Commutator relations of generators: $l = 1, \ldots, d$, $i = 1, \ldots, d-1$, $j = i+1, \ldots, d$

\[
0 = \mathcal{L}(D_i v_\star) - \sum_{n=1}^{d} S_{ln} D_n v_\star,
\]
\[
0 = \mathcal{L}(D^{(i,j)} v_\star) - \sum_{n=1}^{d} S_{jn} D^{(i,n)} v_\star - \sum_{n=1}^{d} S_{in} D^{(n,j)} v_\star.
\]

3. Finite-dimensional eigenvalue problem: Linear combination of generators

\[
v(x) = \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} C_{ij}^{\text{rot}} D^{(i,j)} v_\star(x) + \sum_{l=1}^{d} C_{l}^{\text{tra}} D_l v_\star(x) = \langle C^{\text{rot}} x + C^{\text{tra}}, \nabla v_\star(x) \rangle
\]

reduces $\mathcal{L} v = \lambda v$ to the following $\frac{d(d+1)}{2}$-dimensional eigenvalue problem

\[
\lambda C^{\text{tra}} = -SC^{\text{tra}},
\]
\[
\lambda C^{\text{rot}} = S^\top C^{\text{rot}} + C^{\text{rot}} S.
\]

- **Unknowns:** $\lambda \in \mathbb{C}$, $C^{\text{rot}} \in \mathbb{C}^{d,d}$ skew-symmetric, $C^{\text{tra}} \in \mathbb{C}^{d}$
- EVP appears in **block diagonal form** ⇒ solve EVPs separately
Point spectrum: Derivation of symmetry set $\sigma_{\text{sym}}(\mathcal{L})$

Finite-dimensional eigenvalue problem: $S \in \mathbb{R}^{d,d}, \ S = -S^\top$

\begin{align*}
(1) & \quad \lambda C^{\text{tra}} = -SC^{\text{tra}}, \\
(2) & \quad \lambda C^{\text{rot}} = S^\top C^{\text{rot}} + C^{\text{rot}} S.
\end{align*}

Unknowns: $\lambda \in \mathbb{C}, \ C^{\text{rot}} \in \mathbb{C}^{d,d}$ skew-symmetric, $C^{\text{tra}} \in \mathbb{C}^d$.

4. **Solution of (1)-(2):** S is unitary diagonalizable, i.e.

$\Lambda_S = U^H S U, \ U \in \mathbb{C}^{d,d}$ unitary, $\Lambda_S = \text{diag}(\lambda_1^S, \ldots, \lambda_d^S)$, $\sigma(S) = \{\lambda_1^S, \ldots, \lambda_d^S\}$

A transformation of (1)-(2) implies

\begin{align*}
\lambda &= -\lambda_i^S, \quad C^{\text{rot}} = 0, \quad C^{\text{tra}} = U e_i, \quad (d \text{ solutions}), \\
\lambda &= -(\lambda_i^S + \lambda_j^S), \quad C^{\text{rot}} = U (l_{ij} - l_{ji}) U^\top, \quad C^{\text{tra}} = 0, \quad \left(\frac{d(d-1)}{2} \text{ solutions}\right)
\end{align*}

Symmetry set:

$$
\sigma_{\text{sym}}(\mathcal{L}) = \sigma(S) \cup \{\lambda_i^S + \lambda_j^S \mid 1 \leq i < j \leq d\}$$
Illustration: Symmetry set $\sigma_{\text{sym}}(\mathcal{L})$

$$\sigma_{\text{sym}}(\mathcal{L}) = \sigma(S) \cup \{\lambda_i^S + \lambda_j^S \mid 1 \leq i < j \leq d\} \text{ & algebraic multiplicities}$$

Number of elements $\frac{d(d+1)}{2} = d + \frac{d(d-1)}{2}$ equals $\dim \text{SE}(d)$.

d	$\text{SE}(d)$
2	3
3	6
4	10
5	15
Theorem 8: (Point L^p-spectrum of \mathcal{L})

Let the assumptions of Theorem 6 be satisfied. Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: For every classical solution $\nu_* \in C^2(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) satisfying (TC) it holds

$$\sigma_{\text{sym}}(\mathcal{L}) \subseteq \sigma_{\text{pt}}(\mathcal{L}) \quad \text{in} \quad L^p(\mathbb{R}^d, \mathbb{C}^N).$$

In particular, Theorem 6 implies exponential decay of eigenfunctions and adjoint eigenfunctions.

- **point spectrum** is determined by the group action
- Thm. 8 even holds for nonlocalized rotating waves (spiral waves, scroll waves)
- $\nu(x) = \langle Sx, \nabla \nu_*(x) \rangle$ eigenfunction of $\lambda = 0$ for every $d \geq 2$
References

Spectrum at 2-dimensional localized rotating waves:

- W.-J. Beyn, J. Lorenz.
 Nonlinear stability of rotating patterns, 2008.

Spectrum of drift term:

- G. Metafune.
 L^p-spectrum of Ornstein-Uhlenbeck operators, 2001.

Spectrum at spiral and scroll waves:

- B. Sandstede, A. Scheel.
 Absolute and convective instabilities of waves on unbounded and large bounded domains, 2000.

- B. Fiedler, A. Scheel.
 Spatio-temporal dynamics of reaction-diffusion patterns, 2003.
Outline

1. Rotating patterns in \mathbb{R}^d
2. Spatial decay of rotating waves
3. Eigenvalue problem for rotating waves and some basic definitions
4. Fredholm properties of linearization in L^p
5. Essential L^p-spectrum and dispersion relation
6. Point L^p-spectrum and shape of eigenfunctions
7. Cubic-quintic complex Ginzburg-Landau equation
Example

Consider the **quintic complex Ginzburg-Landau equation** (QCGL):

\[
 u_t = \alpha \Delta u + u \left(\mu + \beta |u|^2 + \gamma |u|^4 \right), \quad u = u(x,t) \in \mathbb{C}
\]

with \(u : \mathbb{R}^d \times [0, \infty[\to \mathbb{C}, \ d \in \{2,3\} \). For the parameters

\[
 \alpha = \frac{1}{2} + \frac{1}{2}i, \quad \beta = \frac{5}{2} + i, \quad \gamma = -1 - \frac{1}{10}i, \quad \mu = -\frac{1}{2}
\]

this equation exhibits so called **spinning soliton** solutions.

Freezing method implies numerical results for profile \(v_\star \) and velocities \(S \).

\[
 \text{Re} \ v_\star(x) = \pm 0.5 \quad \text{Im} \ v_\star(x) = \pm 0.5 \quad |v_\star(x)| = 0.5
\]
Spatial decay of a spinning soliton in QCGL for \(d = 3 \): Assume
\[
\text{Re} \alpha > 0, \quad \text{Re} \delta < 0, \quad p_{\text{min}} = \frac{2|\alpha|}{|\alpha| + \text{Re} \alpha} < p < \frac{2|\alpha|}{|\alpha| - \text{Re} \alpha} = p_{\text{max}}
\]

Decay rate of spinning soliton:
\[
0 \leq \mu < \frac{\sqrt{-\text{Re} \alpha \text{Re} \delta}}{|\alpha| p} =: \mu^{\text{pro}}(p) < \frac{\sqrt{-\text{Re} \alpha \text{Re} \delta}}{|\alpha| \max\{p_{\text{min}}, \frac{d}{2}\}} =: \mu^{\text{pro}}_{\text{max}}.
\]

Parameters:
\[
\alpha = \frac{1}{2} + \frac{1}{2}i, \quad \beta = \frac{5}{2} + i, \quad \gamma = -1 - \frac{1}{10}i,
\]
\[
\mu = -\frac{1}{2}, \quad \nu_{\infty} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad a_0 = \text{Re} \alpha,
\]
\[
a_{\text{max}} = |\alpha|, \quad b_0 = \beta_{\infty} = -\text{Re} \delta = -\frac{1}{2},
\]

Numerical vs. theoretical decay rate: \((p = 2) \)
\[
\text{NDR} \approx 0.5387, \quad \text{TDR} = \mu^{\text{pro}}_{\text{max}} = \frac{\sqrt{2}}{4} \approx 0.4714.
\]
Spectrum of QCGL for a spinning soliton with $d = 3$: (numerical vs. analytical)

Point spectrum on $i\mathbb{R}$ and **essential spectrum** by dispersion relation:

$$
\sigma_{\text{disp}}(\mathcal{L}) = \{ \lambda = -\omega^2 \alpha_1 + \delta_1 + i(\mp \omega^2 \alpha_2 \pm \delta_2 - n\sigma_1) : \omega \in \mathbb{R}, n \in \mathbb{Z} \},
$$

$$
\sigma_{\text{sym}}(\mathcal{L}) = \{ 0, \pm i\sigma_1 \}, \quad \sigma_1 = 0.6888
$$

for parameters $\alpha = \frac{1}{2} + \frac{1}{2}i$, $\beta = \frac{5}{2} + i$, $\gamma = -1 - \frac{1}{10}i$, $\mu = -\frac{1}{2}$.
Eigenfunctions of QCGL for a spinning soliton with $d = 3$: $\text{Re}(x) = \pm 0.8$
Spatial decay of eigenfunctions of QCGL at a spinning soliton for $d = 3$: Note

$$\text{Re}\lambda \geq -(1 - \varepsilon)\beta_\infty = -(1 - \varepsilon)(-\text{Re}\delta) \iff \varepsilon \leq \frac{\text{Re}\lambda - \text{Re}\delta}{-\text{Re}\delta} =: \varepsilon(\lambda).$$

Decay rate of eigenfunctions:

$$0 \leq \mu \leq \frac{\varepsilon(\lambda)\sqrt{-\text{Re}\alpha\text{Re}\delta}}{|\alpha|p} =: \mu^\text{eig}(p, \lambda) < \frac{\varepsilon(\lambda)\sqrt{-\text{Re}\alpha\text{Re}\delta}}{|\alpha|\max\{p_{\text{min}}, \frac{d}{2}\}} =: \mu^\text{eig}_{\text{max}}(\lambda).$$

eigenvalue	NDR	TDR
$8.999 \cdot 10^{-15}$	0.5387	0.4714
$-5.6162 \cdot 10^{-4}$	0.5478	0.4714
$0.00110 \pm 0.68827i$	0.5507	0.4714
$0.00248 \pm 0.6874i$	0.5398	0.4714
$-0.06622 \pm 1.0112i$	0.4899	0.4090
$-0.07747 \pm 1.5274i$	0.5355	0.3984
$-0.22334 \pm 1.1593i$	0.4756	0.2608
$-0.26467 \pm 0.1193i$	0.4785	0.2219
$-0.30232 \pm 1.9457i$	0.4649	0.1864
$-0.43957 \pm 2.3248i$	0.3595	0.0570
$-0.44063 \pm 1.5128i$	0.3310	0.0560
$-0.47366 \pm 1.3552i$	0.4781	0.0248
$-0.48294 \pm 0.9163i$	0.4145	0.0161
$-0.48506 \pm 0.0991i$	0.2126	0.0141
$-0.49015 \pm 0.2535i$	0.3307	0.0093
$-0.55519 \pm 1.1222i$	0.3581	—
Eigenfunctions vs. adjoint eigenfunctions of QCGL for a spinning soliton with $d = 3$:

Eigenfunctions (above) and adjoint eigenfunctions (bottom) for $\lambda \in \sigma_{\text{sym}}(\mathcal{L})$
Eigenfunction \(\langle Sx, \nabla v_\star(x) \rangle \) of QCGL for a spinning soliton with \(d = 3 \):
Conclusion:

Theoretical results:

1. spatial decay of rotating waves
2. spectral properties of linearization at localized rotating waves
 - Fredholm properties in L^p
 - symmetry set, point L^p-spectrum, shape of eigenfunctions and spatial decay of eigenfunctions and adjoint eigenfunctions
 - dispersion set, essential L^p-spectrum

Numerical results:

3. approximation of rotating waves, spectra, eigenfunctions and adjoint eigenfunctions of QCGL (computation: COMSOL, postprocessing: MATLAB)
Open problems and work in progress

- **Fredholm properties and \(L^p \)-spectra of localized rotating waves**
 (joint work with: W.-J. Beyn)

- **Fourier-Bessel method on \(\mathbb{R}^d \) and on circular domains**
 (joint work with: W.-J. Beyn, C. Döding)

- **Nonlinear stability of relative equilibria in evolution equations**
 (joint work with: W.-J. Beyn, C. Döding)

- **Freezing traveling waves in incompressible Navier-Stokes equations**
 (joint work with: W.-J. Beyn, C. Döding)

- **Nonlinear stability of rotating waves for \(d \geq 3 \)**
 (joint work with: W.-J. Beyn)

- **Approximation theorem for rotating waves**
Outline

Outline of proof: Theorem 1

Outline of proof: Theorem 2

Outline of proof: Theorem 7
Outline of proof: Theorem 1 (Exponential decay of v_\star)

Consider the nonlinear problem

$$A\triangle v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)) = 0, \; x \in \mathbb{R}^d, \; d \geq 2.$$

1. Far-Field Linearization: $f \in C^1$, Taylor’s theorem, $f(v_\infty) = 0$

$$a(x) := \int_0^1 Df(v_\infty + tw_\star(x)) dt, \quad w_\star(x) := v_\star(x) - v_\infty$$

$$A\triangle w_\star(x) + \langle Sx, \nabla w_\star(x) \rangle + a(x)w_\star(x) = 0, \; x \in \mathbb{R}^d.$$
Outline of proof: Theorem 1 (Exponential decay of v_\star)

Consider the nonlinear problem

$$A \triangle v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)) = 0, \ x \in \mathbb{R}^d, \ d \geq 2.$$

2. Decomposition of a: Let $a(x) = Df(v_\infty) + Q(x)$ with

$$Q(x) := \int_0^1 Df(v_\infty + tw_\star(x)) - Df(v_\infty)dt, \quad w_\star(x) := v_\star(x) - v_\infty$$

$$A \triangle w_\star(x) + \langle Sx, \nabla w_\star(x) \rangle + (Df(v_\infty) + Q(x)) w_\star(x) = 0, \ x \in \mathbb{R}^d.$$

![Graph showing exponential decay and boundedness of $Q(x)$](image-url)
Outline of proof: Theorem 1 (Exponential decay of v_\star)

Consider the nonlinear problem

$$A \triangle v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)) = 0, \ x \in \mathbb{R}^d, \ d \geq 2.$$

2. Decomposition of a: Let $a(x) = Df(v_\infty) + Q(x)$ with

$$Q(x) := \int_0^1 Df(v_\infty + tw_\star(x)) - Df(v_\infty)dt, \quad w_\star(x) := v_\star(x) - v_\infty$$

$$A \triangle w_\star(x) + \langle Sx, \nabla w_\star(x) \rangle + (Df(v_\infty) + Q_s(x) + Q_c(x)) w_\star(x) = 0, \ x \in \mathbb{R}^d.$$

3. Decomposition of Q:

$$Q(x) = Q_s(x) + Q_c(x),$$

Q, Q_s, $Q_c \in L^\infty(\mathbb{R}^d, \mathbb{R}^{m,m})$,

Q_s small, i.e. $\|Q_s\|_{L^\infty} < K_1$,

Q_c compactly supported.
Outline of proof: Theorem 1 (Exponential decay of v_\star)

Consider the nonlinear problem

$$A\nabla v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)) = 0, \ x \in \mathbb{R}^d, \ d \geq 2.$$

2. Decomposition of a: Let $a(x) = Df(v_\infty) + Q(x)$ with

$$Q(x) := \int_0^1 Df(v_\infty + tw_\star(x)) - Df(v_\infty) dt, \ w_\star(x) := v_\star(x) - v_\infty$$

$$A\nabla w_\star(x) + \langle Sx, \nabla w_\star(x) \rangle + (Df(v_\infty) + Q_s(x) + Q_c(x)) w_\star(x) = 0, \ x \in \mathbb{R}^d.$$

3. Decomposition of Q:

$$Q(x) = Q_s(x) + Q_c(x),$$

$Q, Q_s, Q_c \in L^\infty(\mathbb{R}^d, \mathbb{R}^{m,m})$, Q_s small, i.e. $\|Q_s\|_{L^\infty} < K_1$, Q_c compactly supported.
Outline of proof: Theorem 1 (Exponential decay of v_\star)

Consider the nonlinear problem

\[A \Delta v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)) = 0, \quad x \in \mathbb{R}^d, \ d \geq 2. \]

2. Decomposition of a: Let $a(x) = Df(v_\infty) + Q(x)$ with

\[Q(x) := \int_0^1 Df(v_\infty + tw_\star(x)) - Df(v_\infty) dt, \quad w_\star(x) := v_\star(x) - v_\infty \]

\[A \Delta w_\star(x) + \langle Sx, \nabla w_\star(x) \rangle + (Df(v_\infty) + Q_s(x) + Q_c(x)) w_\star(x) = 0, \quad x \in \mathbb{R}^d. \]

3. Decomposition of Q:

\[Q(x) = Q_s(x) + Q_c(x), \]

$Q, Q_s, Q_c \in L^\infty(\mathbb{R}^d, \mathbb{R}^{m,m})$,

Q_s small, i.e. $\|Q_s\|_{L^\infty} < K_1$,

Q_c compactly supported.
Outline

Outline of proof: Theorem 1

Outline of proof: Theorem 2

Outline of proof: Theorem 7
Outline of proof: Theorem 2 (Decay of eigenfunctions)

Consider

\[A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + Df(v_\ast(x))v(x) = \lambda v(x), \ x \in \mathbb{R}^d. \]

1. Splitting off the stable part:

\[Df(v_\ast(x)) = Df(v_\infty) + (Df(v_\ast(x)) - Df(v_\infty)) =: Df(v_\infty) + Q(x), \ x \in \mathbb{R}^d, \]

leads to

\[[L_0 v](x) + (Df(v_\infty) + Q(x))v(x) = \lambda v(x), \ x \in \mathbb{R}^d. \]

2. Decomposition of (the variable coefficient) \(Q \):

\[Q(x) = Q_\varepsilon(x) + Q_c(x), \ Q_\varepsilon \in C_b(\mathbb{R}^d, \mathbb{R}^{N,N}) \text{ small w.r.t. } ||\cdot||_{C_b}, \]

\[Q_c \in C_b(\mathbb{R}^d, \mathbb{R}^{N,N}) \text{ compactly supported on } \mathbb{R}^d, \]

leads to

\[[L_0 v](x) + (Df(v_\infty) + Q_\varepsilon(x) + Q_c(x))v(x) = \lambda v(x), \ x \in \mathbb{R}^d. \]

(\(\rightarrow \) inhomogeneous Cauchy problem for \(L_c \))
Outline

Outline of proof: Theorem 1

Outline of proof: Theorem 2

Outline of proof: Theorem 7
Outline of proof: Theorem 7 (Essential L^p-spectrum of \mathcal{L})

Choose $R \geq 2$ large and cut-off function $\chi_R \in C^2_b$ (bounded indep. on R)

$$\chi_R : [0, \infty) \to [0, 1], \quad \chi_R(r) = \begin{cases} 0, & r \in l_1 \cup l_5, \\ \in [0, 1], & r \in l_2 \cup l_4, \\ 1, & r \in l_3, \end{cases}$$

$l_1 = [0, R - 1], l_2 = [R - 1, R], l_3 = [R, 2R], l_4 = [2R, 2R + 1], l_5 = [2R + 1, \infty)$.

Introducing

$$v_R(\xi) : = \left[\prod_{l=1}^{k} \chi_R(r_l) \right] \chi_R(|\tilde{y}|) \hat{v}(\xi), \quad w_R : = \frac{v_R}{\|v_R\|_{L^p}},$$

we want show that $w_R \in D^p_{loc}(\mathcal{L}_0)$ and

$$\|(\lambda I - \mathcal{L})w_R\|^p_{L^p} = \frac{\|(\lambda I - \mathcal{L})v_R\|^p_{L^p}}{\|v_R\|^p_{L^p}} \leq \frac{CR^{d-1} + CR^d \eta_R}{CR^d} = \frac{C}{R} + \eta_R \to 0 \text{ as } R \to \infty.$$

Then, $\lambda \notin \rho(\mathcal{L})$ (by continuity of resolvent), i.e. $\lambda \in \sigma(\mathcal{L})$. But $\lambda \notin \sigma_{pt}(\mathcal{L})$ (since varying ω or ρ shows that λ is not isolated), hence $\lambda \in \sigma_{ess}(\mathcal{L})$.
Outline of proof: Theorem 7 (Essential L^p-spectrum of \mathcal{L})

$$\chi_R(r) = \begin{cases} 0 & , r \in l_1 \cup l_5, \\ \in [0, 1] & , r \in l_2 \cup l_4, \\ 1 & , r \in l_3, \end{cases}$$
$$v_R(\xi) := \left[\prod_{l=1}^{k} \chi_R(r_l) \right] \chi_R(\tilde{y}) \hat{v}(\xi), \quad w_R := \frac{v_R}{\|v_R\|_{L^p}}$$

$l_1 = [0, R - 1], \ l_2 = [R - 1, R], \ l_3 = [R, 2R], \ l_4 = [2R, 2R + 1], \ l_5 = [2R + 1, \infty)$.

Aim:
$$\frac{\| (\lambda I - \mathcal{L}) v_R \|^p_{L^p}}{\| v_R \|^p_{L^p}} \leq \frac{CR^{d-1} + CR^d \eta_R}{CR^d} \quad \text{and} \quad w_R \in D^{p}_{loc}(\mathcal{L})$$

Show:

1. $\| v_R \|^p_{L^p} \geq CR^d$
2. $\| (\lambda I - \mathcal{L}) v_R \|^p_{L^p} \leq CR^{d-1} + CR^d \eta_R$
3. $| (\lambda I - \mathcal{L}_2) v_R(\xi) | = 0$, if $|\tilde{y}| \in l_1 \cup l_5$ or $r_l \in l_1 \cup l_5$ for some $1 \leq l \leq k$,
 $| (\lambda I - \mathcal{L}_2) v_R(\xi) | \leq C \ \forall |\tilde{y}|, r_l \in l_2 \cup l_3 \cup l_4$ for some $1 \leq l \leq k$,
 $| (\lambda I - \mathcal{L}_2) v_R(\xi) | \leq \left(\sum_{l=1}^{k} \frac{c_l}{r_l} + \eta_R \right)^{\frac{1}{p}} \ \forall |\tilde{y}|, r_l \in l_3$ for all $1 \leq l \leq k$,
4. $\| (\lambda I - \mathcal{L}^{\text{sim}}_{\infty}) v_R \|^p_{L^p} \leq CR^{d-1}$
5. $(\lambda I - \mathcal{L}^{\text{sim}}_{\infty}) v_R(\xi) = 0$
Outline of proof: Theorem 7 (Essential L^p-spectrum of \mathcal{L})

$$\chi_R(r) = \begin{cases} 0, & r \in I_1 \cup I_5, \\ \in [0, 1], & r \in I_2 \cup I_4, \\ 1, & r \in I_3, \end{cases}$$

$$v_R(\xi) := \left[\prod_{l=1}^{k} \chi_R(r_l) \right] \chi_R(|\tilde{y}|) \hat{v}(\xi), \quad w_R := \frac{v_R}{\| v_R \|_{L^p}}$$

$I_1 = [0, R - 1], I_2 = [R - 1, R], I_3 = [R, 2R], I_4 = [2R, 2R + 1], I_5 = [2R + 1, \infty)$.

Aim: \[\frac{\| (\lambda I - \mathcal{L}) v_R \|_{L^p}^p}{\| v_R \|_{L^p}^p} \leq \frac{CR^{d-1} + CR^d \eta_R}{CR^d} \quad \text{and} \quad w_R \in D_{\text{loc}}^p(\mathcal{L}_0) \]

Show:

1. \[\| v_R \|_{L^p}^p \geq CR^d \]
2. \[\| (\lambda I - \mathcal{L}) v_R \|_{L^p}^p \leq CR^{d-1} + CR^d \eta_R \]
3. \[(\lambda I - \mathcal{L}_2) v_R(\xi) = 0, \text{ if } |\tilde{y}| \in I_1 \cup I_5 \text{ or } r_l \in I_1 \cup I_5 \text{ for some } 1 \leq l \leq k, \]
4. \[(\lambda I - \mathcal{L}_2) v_R(\xi) \leq C \\forall |\tilde{y}|, r_l \in I_2 \cup I_3 \cup I_4 \text{ for some } 1 \leq l \leq k, \]
5. \[(\lambda I - \mathcal{L}_2) v_R(\xi) \leq \left(\sum_{l=1}^{k} \frac{C_l}{r_l} + \eta_R \right)^{\frac{1}{p}} \\forall |\tilde{y}|, r_l \in I_3 \text{ for all } 1 \leq l \leq k, \]
6. \[\| (\lambda I - \mathcal{L}_3) v_R \|_{L^p}^p \leq CR^{d-1} \]
7. \[(\lambda I - \mathcal{L}_3) v_R(\xi) = 0 \]
Outline of proof: Theorem 7 (Essential L^p-spectrum of \mathcal{L})

$$\chi_R(r) = \begin{cases}
0 & , \ r \in I_1 \cup I_5, \\
\in [0, 1] & , \ r \in I_2 \cup I_4, \\
1 & , \ r \in I_3,
\end{cases}$$

$$v_R(\xi) := \prod_{l=1}^k \chi_R(r_l) \chi_R(|\tilde{y}|) \hat{v}(\xi), \quad w_R := \frac{v_R}{\|v_R\|_{L^p}}$$

$I_1 = [0, R - 1], \ I_2 = [R - 1, R], \ I_3 = [R, 2R], \ I_4 = [2R, 2R + 1], \ I_5 = [2R + 1, \infty).$

Aim: \[\frac{\| (\lambda I - \mathcal{L}) v_R \|_{L^p}^p}{\| v_R \|_{L^p}^p} \leq \frac{CR^{d-1} + CR^d \eta_R}{CR^d} \quad \text{and} \quad w_R \in D_{\text{loc}}^p(\mathcal{L}_0) \]

Show:

1. $\|v_R\|_{L^p}^p \geq CR^d$
2. $\| (\lambda I - \mathcal{L}) v_R \|_{L^p}^p \leq CR^{d-1} + CR^d \eta_R$
3. $| (\lambda I - \mathcal{L}_2) v_R(\xi) | = 0$, if $|\tilde{y}| \in I_1 \cup I_5$ or $r_l \in I_1 \cup I_5$ for some $1 \leq l \leq k$, $| (\lambda I - \mathcal{L}_2) v_R(\xi) | \leq C \ \forall |\tilde{y}|, \ r_l \in I_2 \cup I_3 \cup I_4$ for some $1 \leq l \leq k$, $| (\lambda I - \mathcal{L}_2) v_R(\xi) | \leq \left(\sum_{l=1}^k \frac{C_l}{r_l} + \eta_R \right)^\frac{1}{p} \ \forall |\tilde{y}|, \ r_l \in I_3$ for all $1 \leq l \leq k$,
4. $\| (\lambda I - \mathcal{L}_{\infty}^{\text{sim}}) v_R \|_{L^p}^p \leq CR^{d-1}$
5. $| (\lambda I - \mathcal{L}_{\infty}^{\text{sim}}) v_R(\xi) | = 0$
Outline of proof: Theorem 7 (Essential L^p-spectrum of \mathcal{L})

\[\chi_R(r) = \begin{cases} 0 & , r \in I_1 \cup I_5, \\ \in [0, 1] & , r \in I_2 \cup I_4, \\ 1 & , r \in I_3, \end{cases} \quad v_R(\xi) := \left[\prod_{l=1}^{k} \chi_R(r_l) \right] \chi_R(|\tilde{y}|) \hat{v}(\xi), \quad w_R := \frac{v_R}{\|v_R\|_{L^p}} \]

\[I_1 = [0, R - 1], \quad I_2 = [R - 1, R], \quad I_3 = [R, 2R], \quad I_4 = [2R, 2R + 1], \quad I_5 = [2R + 1, \infty). \]

Aim: \[\frac{\| (\lambda I - \mathcal{L}) v_R \|_{L^p}^p}{\| v_R \|_{L^p}^p} \leq \frac{CR^{d-1} + CR^d \eta_R}{CR^d} \] and \[w_R \in D_{\text{loc}}^p(\mathcal{L}_0) \]

Show:

1. $\| v_R \|_{L^p}^p \geq CR^d$
2. $\| (\lambda I - \mathcal{L}) v_R \|_{L^p}^p \leq CR^{d-1} + CR^d \eta_R$
3. $| (\lambda I - \mathcal{L}_2) v_R(\xi) | = 0$, if $|\tilde{y}| \in I_1 \cup I_5$ or $r_l \in I_1 \cup I_5$ for some $1 \leq l \leq k$,
 $| (\lambda I - \mathcal{L}_2) v_R(\xi) | \leq C \ \forall |\tilde{y}|, \ r_l \in I_2 \cup I_3 \cup I_4$ for some $1 \leq l \leq k$,
 $| (\lambda I - \mathcal{L}_2) v_R(\xi) | \leq (\sum_{l=1}^{k} \frac{C_l}{r_l} + \eta_R)^{\frac{1}{p}} \ \forall |\tilde{y}|, \ r_l \in I_3$ for all $1 \leq l \leq k$,
4. $\| (\lambda I - \mathcal{L}_{\text{sim}}^\infty) v_R \|_{L^p}^p \leq CR^{d-1}$
5. $| (\lambda I - \mathcal{L}_{\text{sim}}^\infty) v_R(\xi) | = 0$