On Ashbaugh-Benguria’s Conjecture about Lower Order Dirichlet Eigenvalues of the Laplacian

Qiaoling Wanga, Changyu Xiaa

a. Departamento de Matemática, Universidade de Brasília, 70910-900-Brasília-DF, Brazil
Email: wang@mat.unb.br(Q. Wang), xia@mat.unb.br(C. Xia).

Abstract
We prove an isoperimetric inequality for lower order eigenvalues of the Dirichlet Laplacian on bounded domains of a Euclidean space which strengthens the celebrated Ashbaugh-Benguria inequality conjectured by Payne-Pólya-Weinberger on the ratio of the first two Dirichlet eigenvalues and makes an important step toward the proof of a conjecture by Ashbaugh-Benguria.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^n, $n \geq 2$. Let us denote by Δ the Laplace operator on \mathbb{R}^n and consider the homogeneous membrane problem

$$\begin{cases}
\Delta u = -\lambda u & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.
\end{cases} \quad (1.1)$$

It is well known that the spectrum of (1.1) is real and discrete consisting in a sequence

$$0 < \lambda_1 < \lambda_2 \leq \lambda_3 \cdots \rightarrow +\infty,$$

where each eigenvalue is repeated with its multiplicity. An important issue in analysis and geometry is to give good estimates to these and other eigenvalues, especially to obtain isoperimetric bounds for them. When $\Omega = \mathbb{B}^n$ is the n-dimensional unit ball in \mathbb{R}^n, it is well known that $\lambda_1(\mathbb{B}^n) = j_{n/2-1,1}^2$ and $\lambda_2(\mathbb{B}^n) = \cdots = \lambda_{n+1}(\mathbb{B}^n) = j_{n/2,1}^2$, where $j_{p,k}$ denotes the kth positive zero of the Bessel function $J_p(x)$ of the first kind of order p. One of the earliest isoperimetric inequalities for an eigenvalue is the Faber-Krahn inequality \cite{15, 18, 19} conjectured by Rayleigh \cite{23} in 1877:

$$\lambda_1(\Omega) \geq \left(\frac{\mathbb{B}^n}{|\Omega|}\right)^{\frac{2}{n}} j_{\frac{n}{2}-1,1}^2, \quad (1.2)$$

MSC 2010: 35P15; 58C40.

Key Words: Ashbaugh-Benguria’s Conjecture, Isoperimetric Inequality, Eigenvalues, Dirichlet Problem.
Q. Wang, C. Xia

with equality if and only if Ω is an n-ball. Here, $|\Omega|$ denotes the volume of Ω. In 1956, Payne-Pólya-Weinberger proposed the following well-known conjecture [21]:

Payne-Pólya-Weinberger Conjecture. The eigenvalues of (1.1) satisfy

$$\frac{\lambda_2(\Omega)}{\lambda_1(\Omega)} \leq \frac{\lambda_2(B^n)}{\lambda_1(B^n)},$$

(1.3)

$$\frac{\lambda_2(\Omega) + \cdots + \lambda_{n+1}(\Omega)}{\lambda_1(\Omega)} \leq n \frac{\lambda_2(B^n)}{\lambda_1(B^n)},$$

(1.4)

The conjecture (1.3) was studied by many mathematicians, for examples, Payne, Pólya and Weinberger [21, 22], Brands [9], Chiti [12, 13], de Vries [14], Hile and Protter [17]. Finally, Ashbaugh and Benguria proved this conjecture [2, 3, 4]. Ashbaugh-Benguria [7] and Benguria-Linde [8] also proved similar inequalities for the first $(n+1)$ Dirichlet eigenvalues of the Laplacian on bounded domains in a hemisphere or a hyperbolic space.

The conjecture (1.4) is stronger than (1.3) and was also studied by many authors. In 1956, Payne, Pólya and Weinberger [22] proved that for $\Omega \subset \mathbb{R}^2$,

$$\frac{\lambda_2 + \lambda_3}{\lambda_1} \leq 6,$$

(1.5)

which was improved by Brands [9] to

$$\frac{\lambda_2 + \lambda_3}{\lambda_1} \leq 3 + \sqrt{7}.$$

(1.6)

Furthermore, Hile-Protter [17] obtained

$$\frac{\lambda_2 + \lambda_3}{\lambda_1} \leq 5.622.$$

(1.7)

In [20], Marcellini obtained the bound

$$\frac{\lambda_2 + \lambda_3}{\lambda_1} \leq \frac{15 + \sqrt{345}}{6}.$$

(1.8)

Chen-Zheng proved in [11]

$$\frac{\lambda_2 + \lambda_3}{\lambda_1} \leq 5.3507^{-}.$$

(1.9)

For general dimensions $n \geq 2$, Thompson [26] obtained the bound (see also [6])

$$\frac{\lambda_1 + \lambda_2 \cdots + \lambda_{n+1}}{\lambda_1} \leq (n + 4).$$

(1.10)
In \cite{6}, Ashbaugh-Benguria proved
\begin{equation}
\frac{1}{\lambda_2 - \lambda_1} + \cdots + \frac{1}{\lambda_{n+1} - \lambda_1} \geq \frac{2j_{\frac{2}{n}-1,1}^2 + n(n - 4)}{6\lambda_1}.
\end{equation}

They observed that \cite{6}
\begin{equation}
\frac{2j_{\frac{2}{n}-1,1}^2 + n(n - 4)}{6} \approx \frac{n^2}{4} \left[1 + \frac{2}{3}(1.8557571) \frac{2^{\frac{2}{n}}}{n^{\frac{2}{n}}} - \frac{4}{n} + O(n^{-\frac{4}{n}}) \right],
\end{equation}
whereas
\begin{equation}
\frac{n}{\left(\frac{j_{\frac{2}{n}}}{j_{\frac{2}{n}-1}} \right)^2 - 1} \approx \frac{n^2}{4} \left[1 + \frac{2}{3}(1.8557571) \frac{2^{\frac{2}{n}}}{n^{\frac{2}{n}}} - \frac{2}{n} + O(n^{-\frac{4}{n}}) \right]
\end{equation}
and also conjectured that \cite{5, 6}
\begin{equation}
\frac{\lambda_1}{\lambda_2 - \lambda_1} + \cdots + \frac{\lambda_1}{\lambda_{n+1} - \lambda_1} \geq \frac{n}{\left(\frac{j_{\frac{2}{n}}}{j_{\frac{2}{n}-1}} \right)^2 - 1}
\end{equation}
with equality if and only if \(\Omega \) is an \(n \)-ball.

Ashbaugh \cite{1} and Henrot \cite{16} mentioned this conjecture again. One can also formulate a similar conjecture for the first \((n + 1) \) eigenvalues of the Dirichlet Laplacian on bounded domains in a hemisphere or a hyperbolic space.

In this paper, we prove the following isoperimetric inequality which supports strongly the conjecture (1.14).

Theorem 1.1 Let \(\Omega \) be a bounded domain with smooth boundary in \(\mathbb{R}^n \). Then the first \(n \) Dirichlet eigenvalues of \(\Omega \) satisfy
\begin{equation}
\frac{\lambda_1}{\lambda_2 - \lambda_1} + \cdots + \frac{\lambda_1}{\lambda_{n+1} - \lambda_1} \geq \frac{n - 1}{\left(\frac{j_{\frac{2}{n}}}{j_{\frac{2}{n}-1}} \right)^2 - 1},
\end{equation}
with equality holding if and only if \(\Omega \) is an \(n \)-ball.

For eigenvalues \(0 = \mu_0 < \mu_1 \leq \mu_2 \leq \cdots \to +\infty \) of the Neumann problem
\begin{equation}
\begin{cases}
\Delta u = \mu u & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega,
\end{cases}
\end{equation}
where \(\frac{\partial}{\partial \nu} \) is the outer normal derivative, the well-known Szegö-Weinberger inequality states that \cite{25, 28}
\begin{equation}
\mu_1(\Omega)|\Omega|^{2/n} \leq \mu_1(\mathbb{B}^n)|\mathbb{B}^n|^{2/n},
\end{equation}
where \(\mathbb{B}^n \) denotes the \(n \)-dimensional unit ball.
with equality holding if and only if Ω is a ball in \mathbb{R}^n. Ashbaugh and Benguria conjectured in [5] that
\[
\sum_{i=1}^{n} \frac{1}{\mu_i(\Omega)} \geq \frac{n}{\mu_1(B_\Omega)}, \quad \text{with equality if and only if } \Omega \text{ is a ball,} \tag{1.18}
\]
where $B_\Omega \subset \mathbb{R}^n$ is a ball of same volume as Ω. In [27], the authors proved the following inequality
\[
\sum_{i=1}^{n-1} \frac{1}{\mu_i(\Omega)} \geq \frac{n-1}{\mu_1(B_\Omega)}, \quad \text{with equality if and only if } \Omega \text{ is a ball,} \tag{1.19}
\]
which supports this conjecture of Ashbaugh and Benguria.

2 A proof of Theorem 1.1.

Before proving Theorem 1.1, let us recall some known facts (Cf. [2, 3, 4, 10, 16, 24, 29]). Let \(\{u_j\}_{j=1}^\infty \) be an orthonormal set of eigenfunctions of the problem (1.1), that is,
\[
\begin{aligned}
\Delta u_i &= -\lambda_i u_i \quad \text{in } \Omega, \\
\left. u_i \right|_{\partial \Omega} &= 0, \\
\int_{\Omega} u_i u_j dx &= \delta_{ij},
\end{aligned}
\tag{2.1}
\]
where dx denotes the volume element of Ω. For each $k = 1, 2, \cdots$, the variational characterization of $\lambda_{k+1}(\Omega)$ is given by
\[
\lambda_{k+1}(\Omega) = \inf_{\phi \in H^1_0(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla \phi|^2 dx}{\int_{\Omega} \phi^2 dx}. \tag{2.2}
\]

Let B_r be a ball of radius r centered at the origin in \mathbb{R}^n. It is known that
\[
\lambda_1(B_r) = \left(\frac{j_{n-2,1}}{r} \right)^2 \tag{2.3}
\]
with its corresponding eigenfunction given by the radial function
\[
u(x) := c |x|^{1-\frac{n}{2}} J_{\frac{n}{2}-1} \left(\frac{j_{n-2,1}}{r} |x| \right), \tag{2.4}
\]
where c is a nonzero constant. The second Dirichlet eigenvalue of B_r has multiplicity n, that is,
\[
\lambda_2(B_r) = \cdots = \lambda_{n+1}(B_r) = \frac{j_{n/2,1}^2}{r^2} \tag{2.5}
\]
and a basis for the eigenspace corresponding to $\lambda_2(B_r)$ consists of

$$\xi_i(x) = |x|^{1-\frac{n}{2}} J_{n/2} \left(\frac{j_{n/2,1}|x|}{r} \right) \frac{x_i}{|x|}, \quad i = 1, \ldots, n. \quad (2.6)$$

Define a function $w : [0, +\infty) \to \mathbb{R}$ by

$$w(t) \equiv \begin{cases} J_{n/2}^{(\beta t)} & \text{for } 0 \leq t < 1, \\ J_{n/2}^{(\alpha t)} & \text{for } t \geq 1, \end{cases} \quad (2.7)$$

where $\alpha = j_{n/2-1,1}$, $\beta = j_{n/2,1}$. We have $w(0) = 0$, $w(t) > 0$, $\forall t \in (0, +\infty)$ and for any $t \geq 0$, one concludes from Theorem 3.3 in [3] that

$$(w'(t))^2 \leq \left(\frac{w(t)}{t} \right)^2. \quad (2.8)$$

Let $\gamma = \sqrt{\lambda_1/\alpha}$ and set

$$B(t) \equiv w'(t)^2 + (n-1) \frac{w(t)^2}{t^2}; \quad (2.9)$$

then (Cf. (2.14), (2.15) and (2.22) in [3])

$$\int_{\Omega} B(\gamma|x|) u_1^2 dx \int_{\Omega} w(\gamma|x|)^2 u_1^2 dx \leq \beta^2 - \alpha^2. \quad (2.10)$$

Proof of Theorem 1.1. Observe that if

$$Q \neq 0 \quad \text{and} \quad \int_{\Omega} Qu_1^2 dx = \int_{\Omega} Qu_1 u_2 dx = \cdots = \int_{\Omega} Qu_1 u_k dx = 0, \quad (2.11)$$

then (2.2) gives

$$\lambda_{k+1} \leq \frac{\int_{\Omega} \nabla (Qu_1)^2 dx}{\int_{\Omega} Q^2 u_1^2 dx}, \quad (2.12)$$

which, yields by integration by parts that

$$\lambda_{k+1} - \lambda_1 \leq \frac{\int_{\Omega} |\nabla Q|^2 u_1^2 dx}{\int_{\Omega} Q^2 u_1^2 dx}. \quad (2.13)$$

We define $g : [0, +\infty) \to \mathbb{R}$ by

$$g(t) = w(\gamma t) \quad (2.14)$$

and fix an orthonormal basis $\{e_i\}_{i=1}^n$ of \mathbb{R}^n. By using the Brouwer fixed-point theorem, we can choose the origin of \mathbb{R}^n so that (Cf. [3])

$$\int_{\Omega} \langle x, e_i \rangle \frac{g(|x|)}{|x|} u_1^2 dx = 0, \quad i = 1, \cdots, n. \quad (2.15)$$
Next we show that there exists a new orthonormal basis \(\{ e'_i \}_{i=1}^n \) of \(\mathbb{R}^n \) such that

\[
\int_{\Omega} \langle x, e'_i \rangle \frac{g(|x|)}{|x|} u_{j+1} \, dx = 0,
\]

for \(j = 1, \cdots, i - 1 \) and \(i = 2, \cdots, n \). To see this, we define an \(n \times n \) matrix \(P = (p_{ij}) \) by

\[
p_{ij} = \int_{\Omega} \langle x, e_i \rangle \frac{g(|x|)}{|x|} u_{j+1} \, dx, \quad i, j = 1, 2, \cdots, n.
\]

Using the orthogonalization of Gram and Schmidt (QR-factorization theorem), one can find an upper triangle matrix \(T \) such that \(T = (T_{ij}) \) and an orthogonal matrix \(U = (u_{ij}) \) such that \(T = UP \). Hence,

\[
T_{ij} = \sum_{k=1}^{n} a_{ik} p_{kj} = \int_{\Omega} \sum_{k=1}^{n} a_{ik} (x, e_k) \frac{g(|x|)}{|x|} u_{j+1} \, dx = 0, \quad 1 \leq j < i \leq n.
\]

Letting \(e'_i = \sum_{k=1}^{n} a_{ik} e_k, \quad i = 1, \cdots, n \), one gets (2.16). Let us denote by \(x_1, x_2, \cdots, x_n \) the coordinate functions of \(\mathbb{R}^n \) with respect to the base \(\{ e'_i \}_{i=1}^n \), that is, \(x_i = \langle x, e'_i \rangle, \ x \in \mathbb{R}^n \). From (2.15) and (2.16), we have

\[
\int_{\Omega} g(|x|) \frac{x_i}{|x|} u_{j+1} \, dx = 0, \quad i = 1, \cdots, n, \quad j = 0, \cdots, i - 1.
\]

Let

\[
\phi_k = \frac{x_k}{|x|}, \quad k = 1, \cdots, n;
\]

then

\[
\phi_k \neq 0 \quad \text{and} \quad \int_{\Omega} \phi_k u_i^2 \, dx = \cdots = \int_{\Omega} \phi_k u_1 u_k \, dx = 0.
\]

It then follows from (2.13) that

\[
(\lambda_{k+1} - \lambda_1) \int_{\Omega} \phi_k^2 u_i^2 \, dx \leq \int_{\Omega} |\nabla \phi_k|^2 u_i^2 \, dx, \quad k = 1, \cdots, n.
\]

Substituting

\[
|\nabla \phi_k|^2 = g'(|x|)^2 \frac{x_k^2}{|x|^2} + \frac{g(|x|)^2}{|x|^2} \left(1 - \frac{x_k^2}{|x|^2}\right)
\]

into (2.20) and dividing by \((\lambda_{k+1} - \lambda_1) \), we have for \(k = 1, \cdots, n \), that

\[
\int_{\Omega} \phi_k^2 u_i^2 \, dx \leq \frac{1}{\lambda_{k+1} - \lambda_1} \int_{\Omega} \left(g'(|x|)^2 - \frac{g(|x|)^2}{|x|^2}\right) \frac{x_k^2}{|x|^2} u_i^2 \, dx + \frac{1}{\lambda_{k+1} - \lambda_1} \int_{\Omega} \frac{g(|x|)^2}{|x|^2} u_i^2 \, dx
\]
Summing on \(k \) from 1 to \(n \), one gets

\[
\int_{\Omega} g(|x|)^2 u_1^2 \, dx \leq \sum_{k=1}^{n} \frac{1}{\lambda_{k+1} - \lambda_1} \int_{\Omega} \frac{g(|x|)^2}{|x|^2} u_1^2 \, dx \quad (2.23)
\]

\[
+ \sum_{k=1}^{n} \frac{1}{\lambda_{k+1} - \lambda_1} \int_{\Omega} \left(g'(|x|)^2 - \frac{g(|x|)^2}{|x|^2} \right) \frac{x_k^2}{|x|^2} u_1^2 \, dx.
\]

Observe that

\[
\sum_{k=1}^{n} \frac{1}{\lambda_{k+1} - \lambda_1} x_k^2 = \sum_{k=1}^{n-1} \frac{1}{\lambda_{k+1} - \lambda_1} x_k^2 + \frac{1}{\lambda_{n+1} - \lambda_1} x_n^2
\]

\[
= \sum_{k=1}^{n-1} \frac{1}{\lambda_{k+1} - \lambda_1} x_k^2 + \frac{1}{\lambda_{n+1} - \lambda_1} \left(1 - \sum_{k=1}^{n-1} \frac{x_k^2}{|x|^2} \right).
\]

Therefore,

\[
\sum_{k=1}^{n} \frac{1}{\lambda_{k+1} - \lambda_1} \int_{\Omega} \left(g'(|x|)^2 - \frac{g(|x|)^2}{|x|^2} \right) \frac{x_k^2}{|x|^2} u_1^2 \, dx \quad (2.25)
\]

\[
= \sum_{k=1}^{n-1} \frac{1}{\lambda_{k+1} - \lambda_1} \int_{\Omega} \left(g'(|x|)^2 - \frac{g(|x|)^2}{|x|^2} \right) \frac{x_k^2}{|x|^2} u_1^2 \, dx
\]

\[
+ \frac{1}{\lambda_{n+1} - \lambda_1} \int_{\Omega} \left(g'(|x|)^2 - \frac{g(|x|)^2}{|x|^2} \right) u_1^2 \, dx - \frac{1}{\lambda_{n+1} - \lambda_1} \int_{\Omega} \left(g'(|x|)^2 - \frac{g(|x|)^2}{|x|^2} \right) \sum_{k=1}^{n-1} \frac{x_k^2}{|x|^2} u_1^2 \, dx.
\]

\[
= \sum_{k=1}^{n-1} \int_{\Omega} \left(\frac{1}{\lambda_{k+1} - \lambda_1} - \frac{1}{\lambda_{n+1} - \lambda_1} \right) \left(g'(|x|)^2 - \frac{g(|x|)^2}{|x|^2} \right) \frac{x_k^2}{|x|^2} u_1^2 \, dx
\]

\[
+ \frac{1}{\lambda_{n+1} - \lambda_1} \int_{\Omega} \left(g'(|x|)^2 - \frac{g(|x|)^2}{|x|^2} \right) u_1^2 \, dx.
\]

We have

\[
\frac{1}{\lambda_{k+1} - \lambda_1} - \frac{1}{\lambda_{n+1} - \lambda_1} \geq 0, \quad k = 1, \ldots, n - 1.
\]

It follows from (2.8) and (2.14) that

\[
g'(|x|)^2 - \frac{g(|x|)^2}{|x|^2} \leq 0 \quad \text{on } \Omega.
\]
Thus,

\[
\sum_{k=1}^{n-1} \int_\Omega \left(\frac{1}{\lambda_{k+1} - \lambda_1} - \frac{1}{\lambda_{n+1} - \lambda_1} \right) \left(g'(\|x\|)^2 - \frac{g(\|x\|)^2}{\|x\|^2} \right) \frac{x_k^2}{\|x\|^2} u_1^2 dx \leq 0,
\]

which, combining with (2.23) and (2.25), gives

\[
\int_\Omega g(\|x\|)^2 dx \leq \frac{1}{\lambda_{n+1} - \lambda_1} \int_\Omega g'(\|x\|)^2 u_1^2 dx + \sum_{k=1}^{n-1} \frac{1}{\lambda_{k+1} - \lambda_1} \int_\Omega g(\|x\|)^2 u_1^2 dx
\]

\[
= \frac{1}{\lambda_{n+1} - \lambda_1} \int_\Omega g'(\|x\|)^2 u_1^2 dx + \sum_{k=1}^{n-1} \frac{1}{\lambda_{k+1} - \lambda_1} \int_\Omega g(\|x\|)^2 u_1^2 dx
\]

\[
\leq \frac{1}{n-1} \sum_{k=1}^{n-1} \frac{1}{\lambda_{k+1} - \lambda_1} \int_\Omega \left(g'(\|x\|)^2 + (n-1) \frac{g(\|x\|)^2}{\|x\|^2} \right) u_1^2 dx.
\]

Consequently, we have from (2.9), (2.10), (2.14) and (2.26) that

\[
\frac{1}{n-1} \sum_{k=1}^{n-1} \frac{1}{\lambda_{k+1} - \lambda_1} \geq \frac{\int_\Omega g(\|x\|)^2 u_1^2 dx}{\int_\Omega \left(g'(\|x\|)^2 + (n-1) \frac{g(\|x\|)^2}{\|x\|^2} \right) u_1^2 dx}
\]

\[
= \frac{\alpha^2}{\lambda_1} \int_\Omega w(\gamma|x|)^2 u_1^2 dx
\]

\[
\geq \frac{\alpha^2}{\lambda_1 (\beta^2 - \alpha^2)},
\]

which proves (1.15). Also, one can see that the equality holds in (1.15) if and only if \(\Omega\) is an \(n\)-ball. This completes the proof of Theorem 1.1.

3 Lower Order Dirichlet eigenvalues of general elliptic equations

By using the arguments in the proof of Theorem 1.1 and the work of Ashbaugh-Benguria [3] one can generalize the inequality (1.15) to the first \(n\) eigenvalues of the following general problem

\[
\begin{cases}
- \sum_{i,j} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right) + q(x)u = \lambda r(x)u \quad \text{in } \Omega, \\
u|_{\partial \Omega} = 0,
\end{cases}
\]

where \(\Omega\) is bounded domain with smooth boundary in \(\mathbb{R}^n\) and \([a_{ij}(x)]\) is symmetric positive definite for any \(x \in \Omega\). Namely, we have
Theorem 3.1 For equation (3.1), assume that \(q \geq 0 \) on \(\Omega \) and that there are positive numbers \(a, A, c \) and \(C \) such that the matrix \([a_{ij}] \) satisfies
\[
a \leq [a_{ij}] \leq A
\]
in the sense of quadratic forms throughout \(\Omega \) and
\[
c \leq r(x) \leq C \text{ on } \Omega.
\]
Then the first \(n \) eigenvalues of the problem (3.1) satisfy
\[
\frac{\lambda_1}{\lambda_2 - \lambda_1} + \cdots + \frac{\lambda_1}{\lambda_n - \lambda_1} \geq \frac{(n-1)ac}{AC \left(\left(\frac{\lambda_1}{\lambda_2 - \lambda_1} \right)^2 - 1 \right)}.
\]
Furthermore, equality holds if and only if \(c = C, a = A, q \equiv 0, \) and \(\Omega \) is a ball in \(\mathbb{R}^n \).

Proof. Let \(\{v_k\}_{k=1}^\infty \) be an orthonormal set of eigenfunctions of the problem (3.1), that is,
\[
\begin{cases}
- \sum_{i,j} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial v_k}{\partial x_j} \right) + q(x)v_k = \lambda_k r(x)v_k \text{ in } \Omega, \\
v_k|_{\partial \Omega} = 0, \\
\int_\Omega r v_k v_l dx = \delta_{kl}.
\end{cases}
\]
For each \(k = 1, 2, \ldots \), the variational characterization of \(\lambda_{k+1} \) of the problem (3.1) is given by
\[
\lambda_{k+1}(\Omega) = \inf_{\psi \in H_0^1(\Omega) \setminus \{0\}} \frac{\int_\Omega \left(\sum_{i,j} a_{ij}(x) \frac{\partial \psi}{\partial x_i} \frac{\partial \psi}{\partial x_j} + q\psi^2 \right) dx}{\int_\Omega r \psi^2 dx}.
\]
Thus if \(Q \) is such that \(Q \neq 0 \) and
\[
\int_\Omega r Q v_1^2 dx = \cdots = \int_\Omega r Q v_k dx = 0,
\]
then
\[
\lambda_{k+1} \leq \frac{\int_\Omega \left(\sum_{i,j} a_{ij}(x) \frac{\partial (Q v_1)}{\partial x_i} \frac{\partial (Q v_1)}{\partial x_j} + q Q^2 v_1^2 \right) dx}{\int_\Omega r(x) Q^2 v_1^2 dx}.
\]
It then follows from integration by parts, (3.2), (3.3) and the fact that \(v_1 \) is an eigenfunction corresponding to the eigenvalue \(\lambda_1 \) that
\[
\lambda_{k+1} - \lambda_1 \leq \frac{\int_\Omega \left(\sum_{i,j} a_{ij}(x) \frac{\partial Q}{\partial x_i} \frac{\partial Q}{\partial x_j} v_1^2 \right) dx}{\int_\Omega r(x) Q^2 v_1^2 dx} \leq \frac{A \int_\Omega |\nabla Q|^2 v_1^2 dx}{c \int_\Omega Q^2 v_1^2 dx},
\]
Let ω and B be as in Section 2 and set
\[\gamma = \frac{1}{j_{n/2-1,1}} \sqrt{\frac{C \lambda_1}{a}}, \quad g(t) = \omega(\gamma t), \quad t \geq 0. \] (3.9)

From the proof of Theorem 1.1, we know that one can choose the origin and the coordinate system of \mathbb{R}^n properly so that
\[\int_{\Omega} rg(|x|) \frac{x_i}{|x|} v_{j+1} dx = 0, \quad i = 1, \ldots, n, \quad j = 0, \ldots, i - 1 \] (3.10)

and so for $k = 1, \ldots, n$,
\[(\lambda_{k+1} - \lambda_1) \int_{\Omega} \left(g(|x|) \frac{x_i}{|x|} \right)^2 v_1^2 dx \leq \frac{A}{a} \int_{\Omega} \left| \nabla \left(g(|x|) \frac{x_i}{|x|} \right) \right|^2 v_1^2 dx. \] (3.11)

Dividing (3.11) by $(\lambda_{k+1} - \lambda_1)$ and summing on k from 1 to n, one gets as in Section 2 that
\[\int_{\Omega} g(|x|)^2 v_1^2 dx \leq \frac{1}{n-1} \sum_{k=1}^{n-1} \frac{1}{\lambda_{k+1} - \lambda_1} A \int_{\Omega} \left(g'(|x|)^2 + (n-1) \frac{g(|x|)^2}{|x|^2} \right) v_1^2 dx. \] Hence,
\[\frac{1}{n-1} \sum_{k=1}^{n-1} \frac{1}{\lambda_{k+1} - \lambda_1} \geq \frac{c}{A} \int_{\Omega} \frac{g(|x|)^2 v_1^2 dx}{\left(g'(|x|)^2 + (n-1) \frac{g(|x|)^2}{|x|^2} \right) v_1^2 dx} \] (3.12)
\[= \frac{c}{A} \frac{\int_{\Omega} w(\gamma |x|)^2 v_1^2 dx}{\int_{\Omega} \frac{w(\gamma |x|)^2 v_1^2 dx}{B(\gamma |x|) v_1^2 dx}} \]
\[= \frac{c}{A} \frac{a j_{n/2-1,1}}{C \lambda_1} \frac{\int_{\Omega} w(\gamma |x|)^2 v_1^2 dx}{\int_{\Omega} B(\gamma |x|) v_1^2 dx}. \]

The proof of Theorem 4.1 in [3] shows that
\[\frac{\int_{\Omega} w(\gamma |x|)^2 v_1^2 dx}{\int_{\Omega} B(\gamma |x|) v_1^2 dx} \geq \frac{1}{j_{n/2-1,1}^2 - j_{n/2-1,1}^2}. \] (3.13)

Combining (3.11) and (3.12), we get (3.2). Also, we can see that the equality holds in (3.2) if and only if $c = C$, $a = A$, $q \equiv 0$, and Ω is a ball in \mathbb{R}^n. This completes the proof of Theorem 3.1.

Acknowledgments

Q. Wang was partially supported by CNPq, Brazil (Grant No. 307089/2014-2). C. Xia was partially supported by CNPq, Brazil (Grant No. 306146/2014-2).
References

[1] M. S. Ashbaugh, Open problems on eigenvalues of the Laplacian, Analytic and Geometric Inequalities and Applications. (1999), 13-28.

[2] M. S. Ashbaugh and R. D. Benguria, Proof of the Payne-Polya-Weinberger conjecture, Bull. Amer. Math. Soc. 25 (1991), 19-29.

[3] M. S. Ashbaugh and R. D. Benguria, A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. Math. 135 (1992), 601-628.

[4] M. S. Ashbaugh and R. D. Benguria, A second proof of the Payne-Pólya-Weinberger conjecture, Commun. Math. Phys. 147 (1992), 181-190.

[5] M. S. Ashbaugh and R. D. Benguria, Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions. Siam J. Math. Anal. 24 (1993), 557-570.

[6] M. S. Ashbaugh and R. D. Benguria, More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimensions, Siam J. Math. Anal. 24 (1993), 1622-1651.

[7] M. S. Ashbaugh and R. D. Benguria, A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of S^n, Trans. Am. Math. Soc. 353 (2001) 1055-1087.

[8] R. D. Benguria, H. Linde, A second eigenvalue bound for the Dirichlet Laplacian in hyperbolic space. Duke Math. J. 140 (2007), 245-279.

[9] J. J. A. M. Brands, Bounds for the ratios of the first three membrane eigenvalues, Arch. Rat. Mech. Anal., 16 (1964), 265-268.

[10] I. Chavel, Eigenvalues in Riemannian geometry (Academic, New York, 1984).

[11] D. Chen and T. Zheng, Bounds for ratios of the membrane eigenvalues, J. Differential Equations 250 (2011), 1575-1590.

[12] G. Chiti, Inequalities for the first three membrane eigenvalues, Boll. Un. Mat. Ital, 18-A (1981), 144-148.

[13] G. Chiti, A bound for the ratio of the first two eigenvalues of a membrane, SIAM J. Math. Anal. 14 (1983), 1163-1167.

[14] L. De Vries, On the upper bound for the ratio of the first two membrane eigenvalues, Z. Naturforschung, 22A (1967), 152-153.

[15] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsber. Bayr. Akad. Wiss. München, Math.-Phys. Kl. 1923, 169-172.
[16] A. Henrot, Extremum problems for eigenvalues of elliptic operators, Birkhäuser Verlag, BaselBostonBerlin, x + 202 pp., 2006. ISBN 978-3-76437705-2.

[17] G. N. Hile, M. N. Protter, Inequalities for eigenvalues of the Laplacian. Indiana Univ. Math. J. 29 (1980), 523-538.

[18] E. Krahn, Über eine von Rayleigh formulierthe Minimaleigenschaft des Kreises, Math. Ann. 94 (1925), 97-100.

[19] E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Comm. Univ. Tartu (Dorpat) A9 (1926), 1-44. [English translation: Minimal properties of the sphere in three and more dimensions, Edgar Krahn 1894-1961: A Centenary Volume, Ú. Lumiste and J. Peetre, editors, IOS Press, Amsterdam, 1994, Chapter 11, pp. 139-174.]

[20] P. Marcellini, Bounds for the third membrane eigenvalue. J. Diff. Equ. 37 (1980), 438-443.

[21] L.E. Payne, G. Pólya and H.F. Weinberger, Sur le quotient de deux fréquences propres consécutives, Comptes Rendus Acad. Sci. Paris, 241 (1955), 917-919.

[22] L.E. Payne, G. Pólya and H.F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. and Phys. 35 (1956), 289-298.

[23] J. W. S. Rayleigh, The Theory of Sound, second edition revised and enlarged (in 2 volumes), Dover Publications, New York, 1945 (republication of the 1894/96 edition).

[24] R. Schoen R, S. T. Yau, Lectures on Differential Geometry, Cambridge, 2004, MA: International Press.

[25] G. Szegö, Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal. 3 (1954) 343-356.

[26] C. J. Thompson, On the ratio of consecutive eigenvalues in n-dimensions, Stud. Appl. Math. 48 (1969) 281-283.

[27] Q. Wang and C. Xia, On a Conjecture of Ashbaugh and Benguria about Lower Eigenvalues of the Neumann Laplacian. arXiv preprint arXiv:1808.09520v3.

[28] H. F. Weinberger, An isoperimetric inequality for the n-dimensional free membrane problem, J. Rational Mech. Anal. 5 (1956) 633-636.

[29] C. Xia, Eigenvalues on Riemannian manifolds. Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2013. 29th Brazilian Mathematics Colloquium.