The Non-thermal of a Large Solar Flares Associated with High Energy of Solar Burst Type III on 4th September 2017

*Z.S.Hamidi1,3, N.N.M.Shariff 2

1 Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
2 Academy of Islamic and Contemporary Studies, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
3 Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

Email: zetysh@salam.uitm.edu.my

Abstract. On 4th September 2017, the largest solar flare ever recorded this year saturated the GOES satellite X-ray detectors, making an assessment of its size difficult. We report a large solar flare that produces a hydrodynamic blast wave, moving out through interplanetary space with velocities of 573.6 km/sec and densities 18.1 protons/cm3 of protons. The type III burst with split band and herring bones has been recorded from the Kangarlussuaq, Greenland site. It shows a signature of propagating beams of nonthermal electrons with a large and complex structure. During that time, R1-R2 (Minor-Moderate) radio blackouts have occurred on 4 September, 2017; with sunspot number and radio flux is 96 and 120 respectively. The active region, RGN 2673 is a magnetically complex and compact sunspot group that has produced numerous C-class flares and occasional M-class flares on 4 September; the largest thus far was an M5 (R2-Moderate) event at 2033 UTC (1633 ET). Meanwhile, the active region, RGN 2674 is not as magnetically complex and has been relatively inactive. However, due to the development of mixed polarities within RGN 2673, its continued growth, and activity trends, the forecast now calls for expected R1-R2 events the remainder of 4th September on into 5 September.

1. Introduction

Classification of solar flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating [1]. There are 5 classes of solar flare (A, B, C, M and X). Class A flares have purely thermal, compact sources while Class B flares are impulsive bursts which show double footpoints in hard X-rays. Class C flares have gradually varying hard X-ray and microwave fluxes from high altitudes and show hardening of the X-ray spectrum through the peak and on the decay [2]. During solar flares, the X-ray flux received at the Earth increases dramatically, often within a few minutes, and then decays again in times ranging from a few tens of minutes to several hours [3]. The X-rays radiation from solar flares ionize the neutral atmosphere at D region heights greatly increasing the electron densities there and thus markedly lowering the effective VLF reflection height [4]. Previous studies shown that the energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation. The energy of solar flare dependence of the decrease may go inversely with particle rigidity, or it may be flatter, depending on the details of the magnetic configuration in and around the blast wave [5, 6]. Detailed analysis on the temperature of the underlying loops increased toward higher altitudes, while the temperature of the coronal source increased toward lower altitudes [7]. The previous results of the
analysis indicate that (1) most of the flare plasma was at temperatures between 3 and 10 million degrees; (2) the peak temperature decreased with time from about 8×10^8 K to 5×10^8 K over a period of 3.5 hours; (3) the differential emission measure steadily decreased with time at nearly all temperatures; (4) both radiation and conduction were important cooling mechanisms for the plasma at $T > 10^5$ K; and (5) a substantial amount of energy, of the order of 3×10^{31} ergs [8]. A time-intensity profiles for solar proton events are analyzed with respect to the acceleration of energetic particles from the ambient solar wind by an interplanetary shock [9]. The uncertainty in the determination of the level of the primary electron bremsstrahlung as well as the lack of measurements on the γ-ray emission above 100 MeV combine to allow rather a wide range of energy distribution parameters [10]. Some of these variations were irreversible, occurred in the vicinity of magnetic neutral lines, and likely were related to magnetic energy release in the flare [11]. It is shown that Sweet’s mechanism is much more effective in a highly compressible medium if the merging magnetic fields are exactly antiparallel [12].

Meanwhile, the type III solar burst is a common signature of near-relativistic electrons streaming through the background plasma of the solar corona and interplanetary space, offering a means to remotely trace these electrons [13]. This burst shows the coalescence of electron plasma waves from a nonthermal distribution with electron plasma waves from the distribution of thermal charge fluctuations [14, 15]. It is estimated that the total number of electrons $\gtrsim 22$ keV required to produce a type III burst is $\lesssim 10^{34}$ [16, 17]. This burst can occur singularly, in groups, or storm. This fast drift burst is the most common of the meter wavelength bursts [18].

2. Experimental

We use the Compound Astronomical Low cost, Low frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) as a main system of solar radio bursts and RFI-monitoring for astronomical science and education [19-21]. The e-CALLISTO is the worldwide network connected via internet [22, 23]. This system can cover 24 hour data of solar burst, which operates identical spectrograph in different locations around the world. It is more than 133 instruments in more than 67 locations with users from more than 132 countries [24, 25].

However, it solar burst can be detected only after they have travelled far enough from the Sun [15, 26]. In Malaysia, we used 5.5 meters Log Periodic Dipole Antenna with a gain of 6 dB. The timing of the CALLISTO is controlled by a GPS clock in which the relative timing is accurate to within less than one millisecond, whereas the absolute time is uncertain to within a few milliseconds due to internal delays. This system has an individual channel has 300 kHz bandwidth and can be tuned by the controlling software in steps of 62.5 kHz [27].

3. Results and Discussion

Figure 1 shows the type III burst with split band and herring bones from the Kangarlussuaq, Greenland site. It shows a signature of propagating beams of nonthermal electrons in the solar atmosphere. This fast drift burst has a very different physical origin that produces such different properties. This event produces a type III burst with a large and complex structure. Figure 2 shows the GOES X-ray Flux data starting from 2nd to 4th September 2017. The Type III radio burst is used as the indicator of the starting point of the magnetic reconnection. Strong evidence for the escape of energetic electrons would be presence of radio burst Type III. The subject of nonlinear wave-wave interaction which involving interaction of electrostatic electron plasma that called as Langmuir waves.
Figure 1. Strange group of type III solar radio bursts observed by Callisto in Kangarlussuaq, Greenland (credited to: e-CALLISTO data) and GOES X-ray Flux data starting on 2nd to 4th September 2017 (credited to: Solar monitor)

Table 1 shows the solar parameters during the explosion of solar flare. The active region AR2673 expanded more than 10-fold in a single day. Huge sunspot AR2673, which materialized with shocking speed over the few days period, is seething with activity. We can observe clearly the plasma currents surging inside the sunspot's magnetic canopy-apparently on the verge of an explosion in optical observation. It is then suddenly becomes one of the largest sunspots of the year. It has a 'beta-gamma' magnetic field that harbors energy for strong M-class solar flares. Any such explosion today would be geoeffective as the active region is directly facing Earth. Possible outcomes include moderately-strong shortwave radio blackouts, Earth-directed Coronal Mass Ejections (CMEs) and geomagnetic storms later this week.

Table 1. Solar Parameter during the explosion of solar flare

Parameter	Value
Solar wind speed	573.6 km/sec
Density Proton	18.1 protons/cm³
Sunspot number	96
10.7 cm flux	120
Interplanetary Mag. Field, B_{total}	6.1 nT
Interplanetary Mag. Field, B_{z}	0.5 nT north

During that time, R1-R2 (Minor-Moderate) radio blackouts have occurred on 4 September, 2017. The active region, RGN 2673 is a magnetically complex and compact sunspot group that has produced numerous C-class flares and occasional M-class flares on 4 September; the largest thus far was an M5 (R2-Moderate) event at 2033 UTC (1633 ET). Meanwhile, the active region RGN 2674 is not as magnetically complex and has been relatively inactive. However, due to the development of mixed polarities within RGN 2673, its continued growth, and activity trends, the forecast now calls for expected R1-R2 events the remainder of 4th September on into 5th September.
4. Conclusion

The eruption mechanism of solar flares and radio burst Type III are currently an extremely active area research, especially during the solar cycle is towards maximum. It is normally found at the pre-flare stage that could be a signature of electron acceleration. Solar radio burst type III potentially reveals about the acceleration site of the particles from the Sun to the Earth during large solar flare. In this case, the solar flare is one of the largest solar flare that occurred in 2017 due to the active region RGN 2673.

References

[1] R. Lin, H. Hudson, Non-thermal processes in large solar flares, Solar Physics, 50 (1976) 153-178.
[2] B.R. Dennis, Solar hard X-ray bursts, Solar Physics, 100 (1985) 465-490.
[3] Z.S. Hamid, N. Shariff, Z. Ibrahim, N. Ramli, Investigation of the statistical properties of solar radio burst type II and III, Space Science and Communication (IconSpace), 2015 International Conference on, IEEE, 2015, pp. 335-338.
[4] N.R. Thomson, C.J. Rodger, M.A. Clilverd, Large solar flares and their ionospheric D region enhancements, Journal of Geophysical Research: Space Physics, 110 (2005).
[5] E. Parker, Sudden Expansion of the Corona Following a Large Solar Flare and the Attendant Magnetic Field and Cosmic-Ray Effects, The Astrophysical Journal, 133 (1961) 1014.
[6] Z. Hamidi, N. Shariff, Z. Ibrahim, C. Monstein, W.W. Zulkifli, M. Ibrahim, N. Ariffin, N. Amran, Magnetic Reconnection of Solar Flare Detected by Solar Radio Burst Type III, Journal of Physics: Conference Series, IOP Publishing, 2014, pp. 012006.
[7] L. Sui, G.D. Holman, Evidence for the Formation of a Large-Scale Current Sheet in a Solar Flare.
[8] G. Withbroe, The thermal phase of a large solar flare, Astrophysical Journal, 225 (1978) 641-649.
[9] D. Reames, Acceleration of energetic particles by shock waves from large solar flares, Astrophysical Journal, 358 (1990).
[10] N. Vilmer, A. MacKinnon, G. Trottet, C. Barat, High energy particles accelerated during the large solar flare of 1990 May 24: X/γ-ray observations, Astronomy & Astrophysics, 412 (2003) 865-874.
[11] A. Kosovichev, V. Zharkova, Magnetic energy release and transients in the solar flare of 2000 July 14, The Astrophysical Journal Letters, 550 (2001) L105.
[12] E. Parker, The Solar-Flare Phenomenon And The Theory Of Reconnection And Annihilation Of Magnetic Fields, Astrophysical Journal, Supplement Series (US), 8 (1963).
[13] H.A.S. Reid, H. Ratcliffe, A review of solar type III radio bursts, Research in Astronomy and Astrophysics, 14 (2014) 773.
[14] D. Melrose, On the theory of type II and type III solar radio bursts. I. The impossibility of nonthermal emission due to combination scattering off thermal fluctuations, Australian Journal of Physics, 23 (1970) 871-884.
[15] Z. Hamidi, N. Shariff, Automatic Solar Radio Burst Type II and III Image Processing Tracking by Using CALLISTO System, Industrial Engineering, Management Science and Application (ICIMSA), 2017 International Conference on, IEEE, 2017, pp. 1-4.
[16] S. Kane, Evidence for a common origin of the electrons responsible for the impulsive X-ray and type III radio bursts, Solar Physics, 27 (1972) 174-181.
[17] Z. Hamidi, N. Anim, N. Shariff, Z. Abidin, Z. Ibrahim, C. Monstein, Dynamical structure of solar radio burst type III as evidence of energy of solar flares, AIP Conference Proceedings, AIP, 2013, pp. 11-15.
[18] M. Ali, S. Sabri, Z. Hamidi, N. Husien, N. Shariff, N. Zainol, M. Faid, C. Monstein, e-CALLISTO Network System and the Observation of Structure of Solar Radio Burst Type III, Industrial Engineering, Management Science and Application (ICIMSA), 2016 International Conference on, IEEE, 2016, pp. 1-5.
[19] Z. Hamidi, Z. Abidin, Z. Ibrahim, N. Shariff, Indication of radio frequency interference (RFI) sources for solar burst monitoring in Malaysia, ICPAP 2011, AIP Conference Proceedings-American Institute of Physics, 1454 (2012).
[20] Roslan Umar, Zamri Zainal Abidin, Zainol Abidin Ibrahim, Mohd Saiful Rizal Hassan, Zulfazli Rosli, Z.S.Hamidi, Population density effect on radio frequencies interference (RFI) in radio astronomy, ICPAP 2012, AIP Conference Proceedings, Bandung Indonesia, 2012, pp. 4.
[21] Z.Z. Abidin, N.M. Anim, Z.S. Hamidi, C. Monstein, Z.A. Ibrahim, R. Umar, N.N.M. Shariff, N. Ramli, N.A.I. Aziz, I. Sukma, Radio frequency interference in solar monitoring using CALLISTO, New Astronomy Reviews, 67 (2015) 18-33.
[22] S. Sabri, N. Zainol, M. Ali, N. Shariff, N. Hussien, M. Faid, Z. Hamidi, C. Monstein, The Dependence of Log Periodic Dipole Antenna (LPDA) and e-CALLISTO Software to Determine the Type of Solar Radio Burst (1-V), Industrial Engineering, Management Science and Application (ICIMSA), 2016 International Conference on, IEEE, 2016, pp. 1-5.
[23] Z.H. NM Anim, ZZ Abidin, C Monstein, NS Rohizat, Radio frequency interference affecting type III solar burst observations, in: R.S. et.al (Ed.) PERFIK 2012, American Institute of Physics, Malaysia, 2013, pp. 5.
[24] Z. Hamidi, N. Zainol, M. Ali, S. Sabri, N. Shariff, M. Faid, N. Husien, C. Monstein, Signal Detection of the Solar Radio Burst Type III Based on the CALLISTO System Project Management, Industrial Engineering, Management Science and Application (ICIMSA), 2016 International Conference on, IEEE, 2016, pp. 1-4.
[25] N. Zainol, S. Sabri, Z. Hamidi, M. Ali, N. Shariff, N. Husien, C. Monstein, M. Faid, Effective Data Collection and Analysis of Solar Radio Burst Type II Event Using Automated CALLISTO Network System, Industrial Engineering, Management Science and Application (ICIMSA), 2016 International Conference on, IEEE, 2016, pp. 1-5.
[26] N. Husien, N. Zainol, Z. Hamidi, S.N. Sabri, N.N. Shariff, M. Faid, M. Ali, C. Monstein, Solar radio bursts detected by CALLISTO system and their related events, 3rd International Conference on Industrial Engineering, Management Science and Applications, ICIMSA 2016, Institute of Electrical and Electronics Engineers Inc., 2016.
[27] Z. Hamidi, N. Shariff, An Evaluation Performance of Log Periodic Dipole Antenna Based on the Parameter of Flux Density of the Solar Radio Burst Event, Industrial Engineering, Management Science and Applications 2015, Springer Berlin Heidelberg2015, pp. 685-692.

Acknowledgments
We are grateful to CALLISTO network, STEREO, LASCO, SDO/AIA, NOAA and SWPC make their data available online. This work was partially supported by the UITM internal BESTARI grant, 600-IRMI/DANA 5/3/BESTARI (067/2017) from the Kementerian Pengajian Tinggi Malaysia. Special thanks to the National Space Agency and the National Space Centre for giving us a site to set up this project and support this project. Solar burst monitoring is a project of cooperation between the Institute of Astronomy, ETH Zurich, and FHNW Windisch, Switzerland, Universiti Teknologi MARA and University of Malaya. This paper also used the NOAA Space Weather Prediction Centre (SWPC) for the sunspot, radio flux and solar flare data for comparison purpose. The research has made use of the National Space Centre Facility and a part of an initiative of the International Space Weather Initiative (ISWI) program.