D’yakonov-Perel’ spin relaxation in InSb/AlInSb quantum wells

Jun Li and Kai Chang
SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083, China

F. M. Peeters
Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
(Dated: November 4, 2009)

We investigate theoretically the D’yakonov-Perel’ spin relaxation time by solving the eight-band Kane model and Poisson equation self-consistently. Our results show distinct behavior with the single-band model due to the anomalous spin-orbit interactions in narrow band-gap semiconductors, and agree well with the experiment values reported in recent experiment (K. L. Litvinenko, et al., New J. Phys. 8, 49 (2006)). We find a strong resonant enhancement of the spin relaxation time appears for spin align along [110] at a certain electron density at 4 K. This resonant peak is smeared out with increasing the temperature.

PACS numbers: 72.25.Rb, 71.28.+d, 71.70.Ej.

Spin relaxation time (SRT) is very important for the coherent manipulation of electron spin and applications in spintronics devices. There are four different spin relaxation mechanisms, i.e., the D’yakonov-Perel’ (DP), Elliott-Yafet (EY), Bir-Aronov-Pikus and hyperfine interactions mechanism. Among them, the DP mechanism is found to be the dominating spin relaxation mechanism in zinblende semiconductor structures over a wide range of temperature. According to the DP theory, the electrons lose their initial spin orientation due to a momentum-dependent effective magnetic field that changes its orientation frequently which is caused by random impurity scattering. Therefore the momentum-dependent effective magnetic field is the key factor to determine the spin relaxation time, and it is induced by two types of spin-orbit interactions (SOIs) in structures without inversion symmetry, i.e., the Rashba SOI (RSOI) arising from structure inversion asymmetry and the Dresselhaus SOI (DSOI) caused by bulk inversion asymmetry. In conventional semiconductor quantum structures, the DP theory based on the single-band model with linear momentum-dependent SOIs have been demonstrated to agree well with the experiments, e.g., GaAs/AlGaAs quantum well (QW), and InGaAs/InP QW. Recently, the spin relaxation time in narrow band-gap semiconductor InSb/AlInSb QW also attracted much interest, because of its unusual properties for spintronics devices, e.g., small electron effective mass, strong spin-orbit coupling, large effective Landé g factor. However, the SOIs in narrow band-gap semiconductor is quite different from the single-band model with linear momentum-dependent SOIs. For example, the Rashba spin-splitting exhibits a nonlinear behavior while the kinetic energy of the electron is comparable to the band-gap. Therefore a detailed theoretical investigation beyond the single band model for the DP spin relaxation time is necessary in the case of narrow band-gap InSb/AlInSb QW for the potential spintronics device and basic physics.

In this work, we investigate theoretically the DP spin relaxation time and its dependencies on the temperature, electron density and the thickness of the InSb/AlInSb QW. The effective magnetic field and the spin relaxation time is calculated based on the self-consistent solution of the eight-band Kane Hamiltonian and the Poisson equation. We find that the effective magnetic field obtained from the eight-band model deviates strongly from that obtained by the single-band model with the momentum-linear SOI. We show that the eight-band model results are in good agreement with experiment values without introducing any fitting parameter. We find a strong anisotropic SRT: a strong resonant peak of SRT for spins aligned along the [110] direction can be seen by tuning the electron density since electron at T = 4 K. But this peak is gradually smeared out with increasing temperature. Our results could be helpful to observe new physical phenomenon, e.g., the intrinsic spin Hall effect and persistent spin helix in such narrow band-gap InSb/AlInSb QWs.

We consider an asymmetric n-doped InSb/AlInSb QW grown along the [001] crystallographic direction (see Fig. 1 (a)). The n-doping layer is assumed to be located 20 nm on the left-side of the InSb well and with an exponentially decaying profile. We extend the previous theory (see Refs. 15 and 16) to the framework of the eight-band model by changing all operators in two-band model to the eight-band model,17,18 the DP spin relaxation time \(\tau_\alpha (\alpha = +, -, z) \), representing the spin relaxation time for the spin of the injected electrons oriented along [110], [1\bar{1}0], [001], respectively can be written as

\[
\frac{1}{\tau_\alpha} = 4 \frac{\tau_T}{h^2} \frac{\xi_\nu}{\xi_0} \frac{\xi_\nu}{\xi_{\nu+1}},
\]

with

\[
\xi_\nu = \sum_s \int_0^\infty d\kappa \Gamma_{s,\alpha}(\kappa)[|E_s(\kappa)|^2]^{\nu} \Delta F_{s,+}(E_F,\kappa),
\]

and
\[\zeta' = \sum_s \int_0^\infty dk |E_s^\nu(k)|^\nu \Delta F_{s,+}(E_F, k). \] (3)

Here, \(E_s^\nu(k) \equiv E_s(k) - E_s(0) \) is the kinetic energy of an electron in the \(s \)-th subband, \(\Delta F_{s,+}(E_F, k) \equiv F_{s,+}(E_F, k) - F_{s,-}(E_F, k) \) is the Fermi distribution difference between the spin-up and spin-down subband, \(\tau_r \) is the transport relaxation time and \(\Gamma_{s,\alpha}(k) (\alpha = +, -, z) \) is the spin relaxation rates

\[\Gamma_{s,+}(k) = \Lambda_{xx} + \Lambda_{yy} - \Lambda_{xy} - \Lambda_{yx}, \] (4)

\[\Gamma_{s,-}(k) = \Lambda_{xx} + \Lambda_{yy} + \Lambda_{xy} + \Lambda_{yx}, \] (5)

\[\Gamma_{s,z}(k) = \Lambda_{zz} \] (6)

with

\[\Lambda_{ij} = 4 \sum_{n=-\infty}^{\infty} \left[\sum_i \Omega^{n}_{s,i} \Omega^{n}_{s,i} \delta_{ij} - \Omega^{n}_{s,j} \Omega^{n}_{s,i} \right] \eta^{n,\nu} \] (7)

\[\eta^{n,\nu} = \int_0^{2\pi} \frac{1 - \cos \theta}{\sin^{\nu}(\theta/2)} \int_0^{2\pi} \frac{1 - \cos(n\theta)}{\sin^{\nu}(\theta/2)}, \] (8)

\[\Omega^{n}_{s,i}(k) = \int_0^{2\pi} \frac{d\varphi_k}{2\pi} \Omega_{s,i}(k) e^{-in\varphi_k}. \] (9)

\(\Omega_{s,i}(k) \) \((i = x, y)\) is the components of the in-plane effective magnetic field of the \(s \)-th subband. \(\Omega_{s,i}(k) \) can be obtained by ascribing the spin-splitting induced by space inversion asymmetry to the Zeeman splitting caused by the effective magnetic field. Therefore, by using the eight-band Zeeman term \(H_z = \mu_B B \cdot \Sigma_i \Omega_{s,i}(k) \) can be written as

\[\Omega_{s,i}(k) \equiv \mu_B B_{i} = \frac{S_{s,i}(k) \Delta E_s(k)}{2\sqrt{S_{s,x}(k)^2 + S_{s,y}(k)^2}}, \] (10)

\[S_{s,i}(k) = \langle \psi_{s,+}(k)|\Sigma_i|\psi_{s,+}(k) \rangle - \langle \psi_{s,-}(k)|\Sigma_i|\psi_{s,-}(k) \rangle. \] (11)

\(\Sigma_i \) \((i = x, y)\) are the components of the eight-band effective spin matrices which can be found in Ref. [18] and [19]. \(\Delta E_s(k) \equiv E_{s,+}(k) - E_{s,-}(k) \) is the spin-splitting of the \(s \)-th subband. The eigen-energy \(E_{s,\pm}(k) \) and eigenstates \(|\psi_{s,+}(k)\rangle \) can be numerically obtained by solving the eight-band Kane Hamiltonian and the Poisson equation self-consistently [18]. Through this approach, the non-parabolic effect and the anomalous behavior of SOIs in narrow band-gap semiconductors can be taken into account. In Eq. [11] - [15], \(\nu \) is a constant characterizing the relation of momentum scattering time on the electron kinetic energy \((\tau_{\nu}(k) \propto |E_s^\nu(k)|^\nu) \). For acoustic phonon and screened ionized impurities scattering (type I), \(\nu = 0 \), for polar optical phonon scattering (type II), \(\nu = 1 \), for weakly screened ionized impurities (type III), \(\nu = 2\frac{1}{2} \).

In Figs. (1a) and (b) we show the calculated potential profile, the electron probability and the energy dispersion of a 10 nm InSb/Al_{0.15}In_{0.85}Sb QW at \(T = 4 \) K including the effect of built-in electric field caused by the charge redistribution. All the Kane parameters of the materials used in our calculation are taken from Ref. [21] and the ratio of the conduction band offset and the conduction band offset is taken as 62\%:38\%[24]. The bulk inversion asymmetry of zincblende crystal is introduced by the \(B \) parameter in the eight-band Kane Hamiltonian [22], which is taken to be \(B = 31.4 \) eV \cdot Å\(^2\). Besides, we should notice that the temperature dependence of the bandgap (Varshini relation) [24] is more pronounced in a narrow bandgap semiconductor than that in a wide bandgap semiconductor, for instance, the bulk bandgap of InSb, of which the bulk band gap is 0.235 eV at 4 K, and 0.174 eV at 300 K, i.e., up to a 26\% variation of the bandgap with increasing temperature. Because the SOI and spin-
splitting is intimately related to the conduction-valence band coupling, the decreasing of band gap could lead to an enhancement of the SOI and results in the increasing of electron subband spin-splitting and the effective magnetic field (about 11%).

Fig. II(c) shows the effective magnetic field as a function of the in-plane momentum. The effective magnetic field of a (001)-grown InSb/AlInSb QW always lie in the QW plane. Due to the interplay of RSOI and DSOI, the effective magnetic field exhibits a C_{2v} symmetry. Notice that the effective magnetic field is enhanced or weakened when k along the [110] or [110] directions. Fig. II(d) shows the self consistent eight-band modeling for the magnitude of the effective magnetic field for k along [100], [110], [110] (see the solid curves). Along [110] crystallographic direction, the effective magnetic field pointing along [110] vanishes at a certain Fermi wavevector k, which makes the spin lifetime τ_\parallel become very long. In Fig. II(d) we compare these results with those from the single-band model with k-linear SOI. One can see clearly that the deviation of effective magnetic field is very large (up to 42%) at $k = 0.2$ nm$^{-1}$ ([100]). This deviation comes from the weakening of the interband coupling as the electron kinetic energy becomes comparable to the bandgap. Therefore the single-band model may not be good enough to describe the strong SOIs in such narrow bandgap QWs.

In Fig. 2 we compare the numerical results of SRT τ_\parallel with the experimental measurement reported in Ref. [9]. The transport momentum relaxation time τ_\parallel used in our calculation are obtained from the measured Hall mobility ($\tau_\parallel = m^*\mu_{Hall}/(e\mu_{Hall})$). The electron density is assumed to increase linearly from 3.6×10^{11} cm$^{-2}$ to 5.3×10^{11} cm$^{-2}$ for sample 1833 and from 5.7×10^{11} cm$^{-2}$ to 7.3×10^{11} cm$^{-2}$ for sample 1831F when temperature increase from 77 K to 300 K. Considering different momentum relaxation mechanisms, our eight-band numerical results agree quite well with the experiment values without having to introduce any fitting parameter. From panel (a), we can see the weekly screened impurity scattering ($\nu = 2$) and polar phonon scattering ($\nu = 1$) dominate at $T < 150$ K and the ionized impurity scattering dominates at $T > 150$ K. Noticed that in heavily doped semiconductor samples, the dominant momentum scattering mechanisms varied through neutral (weekly screened) impurities scattering, acoustic and polar phonon scattering, and ionized impurity scattering with increasing temperature [22], therefore our results are reasonable and also consistent with the previous work [16,21]. One can see that, due to the overestimate of SOI strength by the linear SOI model, the single-band model will underestimate the SRT compared to the eight-band model and doesn’t agree with the measured SRT. For the uniformly doped sample 1831F, our calculated DP SRT is larger than the measured value. The discrepancy between the calculated DP SRT from the eight-band model with measured value is reasonable because the SRT induced by the EY mechanism could be comparable to the DP SRT [22]. The calculated SRT from the single-band model in this symmetric doped sample is similar with that from the eight-band model. This is because the cubic DSOI term (the RSOI is absent due to symmetric doping) in this sample may play a dominant role.

In Fig. 3 we calculate the spin relaxation times τ_\parallel, τ_+ and τ_- as a function of electron density n_e in a 10 nm n-doped InSb/Al$_{0.15}$In$_{0.85}$Sb QW for different temperatures. As shown in the figure, the SRT τ_\parallel, τ_+ decrease with increasing electron density due to the enhancement of SOIs with increasing the Fermi wavevector. When temperature increases, the τ_\parallel and τ_- are suppressed strongly, but τ_+ is not very sensitive to tem-

![FIG. 2: Calculated spin relaxation time τ_\parallel versus temperature compare to the experimental results reported in Ref. [9]. (a) Sample 1833 (asymmetrically n-doped 20 nm InSb/Al$_{0.15}$In$_{0.85}$Sb QW) (b) Sample 1831F (uniformly n-doped 20 nm InSb/Al$_{0.15}$In$_{0.85}$Sb QW). The black, blue, red lines represent the eight-band numerical results for type I ($\nu = 0$), type II ($\nu = 1$), and type III ($\nu = 2$) momentum scattering mechanism. The dashed lines with the same colors represent the results from the single-band model with linear SOI.

![FIG. 3: Spin relaxation times τ_\parallel, τ_+ and τ_- as a function of electron density n_e in a 10 nm asymmetric n-doped InSb/Al$_{0.15}$In$_{0.85}$Sb QW for different temperature. The dashed lines with the same colors represent the results of single-band model with linear SOI.](image-url)
dotted lines represent the numerical results of QWs. The black solid, blue dashed, red dashdot and green dotted lines represent the numerical results of $L_{\text{InSb}} = 10, 15, 20$ and 25 nm. The dashed lines with the same colors represent the results of the single-band model with linear SOI.

In Fig. 4 we exhibit the SRTs τ_z, τ_+ and τ_- as a function of electron density in asymmetric n-doped InSb/Al$_{0.15}$In$_{0.85}$Sb QWs. The solid black, blue dashed, red dashdot and green dotted lines represent the numerical results of $L_{\text{InSb}} = 10, 15, 20$ and 25 nm. The dashed lines with the same colors represent the results of the single-band model except at small n_e.

In summary, we investigated theoretically the SRT in InSb/AlInSb QW beyond the single-band model. Our results are obtained within the eight-band model and agree very well with the measured SRTs, while the SRT obtained from the single-band model with linear momentum-dependent SOIs deviates strongly from that of the eight-band model due to the strong interband-coupling in narrow bandgap QWs. We also demonstrate that the SRT along [110]-direction shows a resonant peak at a certain electron density, i.e., very long SRT. The resonant peak will be smeared out with increasing temperature.

Acknowledgments

This work is supported by the NSFC Grant No. 60525405 and 10874175, and the bilateral program between China and Belgium, and the Belgian Science Policy (IAP).
1966), Vol. 1, page 75.

23 B. K. Ridley, in Quantum Processes in Semiconductors, 2nd Edition, (Oxford University Press, Oxford, 1988), Chap. 3.

24 V. I. Puller, L. G. Mourokh, N. J. M. Horing, and A. Y. Smirnov, Phys. Rev. B 67, 155309 (2003).