Spectra of harmonium in a magnetic field using an initial value representation of the semiclassical propagator

Frank Grossmann¹ and Tobias Kramer²

¹ Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany
² Institut für Theoretische Physik, Universität Regensburg, D-93053 Regensburg, Germany

E-mail: frank@physik.tu-dresden.de

Received 8 July 2011, in final form 23 September 2011
Published 18 October 2011
Online at stacks.iop.org/JPhysA/44/445309

Abstract
For two Coulombically interacting electrons in a quantum dot with harmonic confinement and a constant magnetic field, we show that time-dependent semiclassical calculations using the Herman–Kluk initial value representation of the propagator lead to eigenvalues of the same accuracy as WKB calculations with a Langer correction. The latter are restricted to integrable systems, however, whereas the time-dependent initial value approach allows for applications to high-dimensional, possibly chaotic dynamics and is extendable to arbitrary shapes of the potential.

PACS numbers: 03.65.Ge, 03.65.Sq, 31.15.–p

(Some figures may appear in colour only in the online journal)

1. Introduction
The problem of two interacting electrons in atoms, ions and molecules is of fundamental importance in quantum mechanics, the understanding of the helium atom being one of the prime successes of the ‘new quantum mechanics’ [1]. If the Coulombic interaction between electrons and the nucleus is replaced by a harmonic confining potential, the system is referred to as harmonium, quantum dot helium or Hooke’s law atom. After early work without the additional magnetic field [2], this problem, with and without a magnetic field, has again become the focus of interest in the past 20 years, mainly for two different reasons.

First it is of principal interest to find (exact) analytic solutions for a problem with a genuine Coulomb interaction. That such exact solutions do exist has been shown for two electrons in a harmonic confinement in three dimensions, without an additional magnetic field [2, 3], and in two dimensions with a magnetic field by Verčin [4] and Taut [5]. The existence of closed solutions for specific ratios of the Coulomb interaction and the harmonic potential is related to an accidental (hidden) symmetry visible after mapping the Coulomb interaction
to a four-dimensional harmonic oscillator potential [6]. Furthermore, in two dimensions and using perturbation theory for the Coulomb interaction, analytic solutions have been given in [7]. The analytic solutions can be put to good use in the testing of density functionals and other methods for many-body systems [8–10]. Secondly, due to recent progress in nanofabrication, few electron quantum dots have come into the limelight as they may provide a realization of a quantum bit [11].

Due to the fact that exact analytic solutions of the Schrödinger equation are limited to an infinite set of discrete oscillator frequencies [3, 5], approximate analytic solutions have also been sought. Apart from the perturbation theoretic ones in 2D, mentioned above, semiclassical approaches have also been taken which rely on the Wentzel–Kramers–Brillouin (WKB) [12], respectively the Einstein–Brillouin–Keller (EBK) quantization rules [13]. Most notably, in 2D and with an additional magnetic field, this has been done analytically by Klama and Mishchenko [14]. It turned out that the problem of two electrons in 2D, although one of four degrees of freedom (DOF), is highly separable and therefore in the end only a 1 DOF WKB approach is needed, which describes the spectrum with a high accuracy. In another semiclassical analysis of the harmonium problem, including a magnetic field, dimensional effects have been discussed by Nazmitdinov and collaborators [15].

Whereas in WKB energy information is directly available, using the semiclassical initial value representation (IVR) of the quantum mechanical propagator of Herman and Kluk (HK) [16–18], spectra can be gained by Fourier transformation of a time series, usually an autocorrelation function [19]. In [20], it has been shown that accurate spectra for collinear helium can be obtained in this way. Furthermore, semiclassical work on one electron systems in external laser fields gives the explanation for the plateau formation in high harmonic spectra [21].

In this paper, we will show that the time-dependent semiclassical approach, complementary to the energy-domain WKB method, is also capable of reproducing high quality spectra for 2D harmonium in a homogeneous magnetic field. Thus, adding to the knowledge of semiclassics for interacting many-particle dynamics is not a mere exercise due to the fact that the time-dependent approach is not principally restricted in dimensionality nor to the case of a circular quantum dot, and also additional time-dependent potentials may be treated in a similar fashion without much more effort. In section 2, the Hamiltonian is briefly introduced, whereas in section 3, we review the semiclassical IVR of HK based on frozen Gaussian wavepackets. The new results we gained are compared with full quantum as well as with (Langer-corrected) WKB results in section 4, and we give conclusions and an outlook in section 5.

2. The Hamiltonian

The Hamiltonian for the problem of two charged particles (charge q) in a 2D circular quantum dot (dielectric constant ϵ) with a confinement frequency of ω_0 inside a magnetic field, derived from a vector potential $A(r_i)$ is given by

$$H = \sum_{i=1}^{2} \left(\frac{(p_i - qA(r_i))^2}{2m^*} + \frac{1}{2}m^*\omega_0^2r_i^2\right) + \frac{\kappa}{|r_1 - r_2|}.$$

(1)

Here, $\kappa = q^2/(4\pi\epsilon\epsilon_0)$ and for two electrons m^* is the (effective) mass and the charge is $q = -e$. We are not explicitly taking into account electron spin, thereby neglecting the Zeeman energy of the spins in the magnetic field, see also [15]. In addition, as will be seen and commented on below (see section 4.2), for the propagation in time, we will consider an unsymmetrized position-dependent part of the quantum mechanical wavefunction.
To make progress, the center of mass (cm) and relative coordinates are introduced, according to
\[
R = \frac{1}{2}(r_1 + r_2) \quad P = (p_1 + p_2),
\]
respectively,
\[
r = r_1 - r_2 \quad p = \frac{1}{2}(p_1 - p_2).
\]
In their terms, the Hamiltonian is separable (i.e. depends on the sum of two terms which depend only on cm or relative coordinates, respectively) and for \(A(r_i)\) depending linearly on coordinate reads
\[
H = H_{\text{cm}} + H_{\text{rel}}
\]
with
\[
H_{\text{cm}} := \frac{1}{2M} (P + 2eA(R))^2 + \frac{1}{2} M \omega_0^2 R^2
\]
\[
H_{\text{rel}} := \frac{1}{2\mu} \left(p + \frac{e}{2} A(r) \right)^2 + \frac{1}{2} \mu \omega_0^2 r^2 + \frac{\kappa}{r},
\]
where \(M = 2m^*\) is the sum of the two masses and \(\mu = m^*/2\) is the reduced mass.

A constant magnetic field in the \(z\) direction is derivable from a vector potential
\[
A_x = -yB/2, \quad A_y = xB/2, \quad A_z = 0
\]
given in Cartesian coordinates and in the symmetric gauge. For the relative motion Hamiltonian in 2D, this leads to
\[
H_{\text{rel}}(p, r) = \frac{1}{2\mu} \left(p_x^2 + p_y^2 \right) + \frac{1}{2} \mu \Omega^2 r^2 + \omega_L L_z + \frac{\kappa}{r},
\]
where \(L_z = p_x y - p_y x\) is the \(z\)-component of the angular momentum, \(\omega_L = eB/(2m^*)\) is the Larmor frequency and \(\Omega^2 = \omega_0^2 + \omega_L^2\).

In the following, we will exclusively concentrate on the relative motion, due to the fact that the solution of the cm problem is trivial (it can easily be gained from the solution of the relative motion by neglecting the Coulomb term and a suitable rescaling).

3. A semiclassical initial value propagator

Following early work by Heller [16], who first presented a semiclassical integral expression for a time-evolved wavefunction in terms of fixed width (frozen) Gaussian wavepackets, HK have derived the semiclassically correct prefactor for an \(N\)-degree of freedom system [17]. The resulting expression for the propagator in the case \(N = 2\) is
\[
K^{\text{HK}}(r, t; r', 0) = \int \frac{d^2p' \, d^2q' \, \sqrt{\text{det} h(r|g(p', q'))}}{(2\pi \hbar)^2} \exp \left\{ \frac{i}{\hbar} S(p', q', t) \right\} \langle g(p', q')|r' \rangle,
\]
where
\[
S(p', q', t) = \int_0^t d\tau' \{ p'^T \dot{q} - H_{\text{rel}}(p, q) \}
\]
is the classical action. With a series of papers in 1994 [18, 22, 23], Kay has laid the ground for a flurry of publications using the Herman–Kluk propagator. One of its main features is the integration over multiple Gaussian wavefunctions
\[
\langle r|g(p, q)\rangle = \left(\frac{\text{det} \gamma}{\pi^N} \right)^{1/4} \exp \left\{ -\frac{1}{2} (r - q)^T \gamma (r - q) + \frac{i}{\hbar} p^T (r - q) \right\}
\]
with the constant width parameter matrix γ (therefore, the term ‘frozen’ is frequently used), which we here assume to be the same for the initial and the final Gaussian.

Furthermore, the matrix h, whose determinant appears in the pre-exponential factor of the semiclassical propagator is given by

$$h(p', q', t) = \frac{1}{2}(m_{11} + \gamma m_{22} \gamma^{-1} - i\hbar \gamma m_{21} - \frac{1}{i\hbar} m_{12} \gamma^{-1})$$

(12)

for the diagonal γ-matrix, and contains sub-blocks of the so-called stability (or monodromy) matrix to be discussed in more detail below. In a numerical implementation, the branch of the square root in equation (9) has to be chosen in such a fashion that the whole expression is a continuous function of time [18].

Classical dynamics enters the HK IVR of the propagator via the classical trajectories $(p_t = p(p', q', t), q_t = q(p', q', t))$ that are initial value solutions of Hamilton’s equations, and which in the case of the relative motion of two electrons in a quantum dot read

$$\dot{q}_x = \frac{1}{\mu} p_x - \omega_L q_y$$

(13)

$$\dot{q}_y = \frac{1}{\mu} p_y + \omega_L q_x$$

(14)

$$\dot{p}_x = -\omega_L p_y - \mu \Omega^2 q_x + \frac{e^2 q_x}{q^3}$$

(15)

$$\dot{p}_y = \omega_L p_x - \mu \Omega^2 q_y + \frac{e^2 q_y}{q^3}.$$

(16)

An in-depth study of the classical dynamics of two interacting particles in a magnetic field in two dimensions has been given by Curilef and Claro [24]. Even without the harmonic confining potential, and in spite of the presence of the repulsive Coulomb interaction, the motion is bound due to the presence of the magnetic field.

Furthermore, also the equations of motion for the stability matrix are classical equations. They will be given in vector form and for $N = 2$ we define $\delta p' = (\delta p'_x, \delta p'_y), \delta q' = (\delta q'_x, \delta q'_y)$ as small initial deviations in phase space. Their time-evolved counterparts are

$$\delta p_i = m_{i1} \delta p' + m_{i2} \delta q'$$

(17)

$$\delta q_i = m_{21} \delta p' + m_{22} \delta q',$$

(18)

where the 2×2 matrices $m_{ij}(i, j = 1, 2)$ are submatrices of the stability (or monodromy) matrix

$$M \equiv \left(\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array} \right) \equiv \left(\begin{array}{cc} \frac{\partial p}{\partial p} & \frac{\partial p}{\partial q} \\ \frac{\partial q}{\partial p} & \frac{\partial q}{\partial q} \end{array} \right).$$

(19)

The equation of motion for M can be obtained by linearizing Hamilton’s equations for the deviations and reads (for more details, see, e.g., App. 2C in [25])

$$\frac{d}{dt} M = -\frac{\partial^2 H_{rel}}{\partial q_i \partial p_i} \frac{\partial p_i}{\partial q_i} - \frac{\partial^2 H_{rel}}{\partial q_i \partial q_i} \frac{\partial q_i}{\partial q_i} M = -\hbar H_{rel}.$$

(20)

4
Here, the skew symmetric matrix
\[
J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\] (21)
and the Hessian, i.e. the matrix containing the second derivatives of the Hamiltonian \(H_{\text{rel}}(p, q)\),
\[
H = \begin{pmatrix}
\frac{\partial^2 H_{\text{rel}}}{\partial p \partial p} & \frac{\partial^2 H_{\text{rel}}}{\partial p \partial q} \\
\frac{\partial^2 H_{\text{rel}}}{\partial q \partial p} & \frac{\partial^2 H_{\text{rel}}}{\partial q \partial q}
\end{pmatrix}
\] (22)
have been used. We note that the Hessian of the Hamiltonian (8), in contrast to the standard case of \(H = T(p) + V(q)\), for \(\omega_L \neq 0\) also contains nonzero mixed second derivatives.

The initial conditions follow from the definition of the stability matrix to be
\[
M(0) = \begin{pmatrix} m_{11}(0) & m_{12}(0) \\ m_{21}(0) & m_{22}(0) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\] (23)
and in the numerics we solve the stability equations along with the trajectories by using a symplectic integrator of second order, the so-called symplectic leap frog (or position Verlet) algorithm \[26\]. This automatically ensures that the action is discretized using a mid-point rule, which in general is necessary in the presence of a vector potential \[27\].

The HK propagator is determined entirely with the solution of classical initial value problems; hence, it is frequently referred to as an IVR, in contrast to the well-known van Vleck–Gutzwiller propagator \[28, 29\] which is based on the solutions of a classical root search problem (double-sided boundary value problem). In most numerical applications published so far, the bare propagator has been used to evolve a Gaussian wavefunction in time (see also below). Applying the propagator to such a wavefunction, centered around \((p_\alpha, q_\alpha)\) and with the same width parameter as the frozen Gaussians (11) used for the propagator, according to
\[
\Psi_\alpha(r, t) = \int d^3r' K^{HK}(r, r'; t, 0) \langle r' | \Psi_\alpha(0) \rangle
\] (24)
is eased by the fact that the integral over \(r'\) can be done analytically by using
\[
\langle g(p', q') | \Psi_\alpha(0) \rangle = \exp \left\{ -\frac{1}{4} (q' - q_\alpha)^T \gamma (q' - q_\alpha) + \frac{i}{2\hbar} (q' - q_\alpha)^T (p' + p_\alpha) - \frac{1}{4\hbar^2} (p' - p_\alpha)^T \gamma^{-1} (p' - p_\alpha) \right\}
\] (25)
for the overlap between the initial Gaussian wavefunction and the frozen Gaussian. After inserting the propagator (9) together with equation (25) into equation (24), an integration over the initial phase space (the initial conditions of the classical trajectories) remains to be done. The sampling of the initial phase space is done using the Monte Carlo integration technique \[30\] and facilitated by the exponential damping of the integrand far away from the center of the initial wavefunction. In the numerical results to be presented below, the convergence of the time signals was checked by increasing the number of propagated trajectories. For four phase space DOF, typically \(10^6\) trajectories are needed for converged results. In the cases of strongly chaotic dynamics (not considered here) and if long-time information is needed, this number may, however, increase dramatically \[31\]. We note in passing that in contrast to the multi-trajectory Herman–Kluk method \[32\], the single-trajectory thawed Gaussian wavepacket method \[33\] uses just a single trajectory to express the final wavefunction.
Table 1. (Dimensionless) Fock–Darwin WKB energies ($\kappa = 0$) and WKB energies with the Coulomb repulsion ($\kappa = 1$) for $\omega_L = \omega_0 = 1$.

nr	m = 0	m = 1	m = 2	Without Coulomb	m = 0	m = 1	m = 2
0	1.41	1.83	2.24	3.14	2.84	3.02	
1	4.24	4.66	5.07	5.75	5.55	5.78	

4. Semiclassical spectra

In the following we compare the spectra that have been gained by two different methods, the energy-domain WKB method and the time-domain IVR method with subsequent Fourier transform, to full quantum mechanical ones.

4.1. WKB spectra

In the case of a circular quantum dot in two dimensions that we consider, the semiclassical WKB approach becomes particularly attractive, due to the fact that the relative motion is separable in polar coordinates [14].

In the simple case without the Coulomb term, a one DOF WKB quantization of the radial motion leads to the Fock–Darwin energies [34, 35, 14, 15]

$$E_{\text{rel}}(n_r, m) = (2n_r + |m| + 1)\hbar \Omega - m\hbar \omega_L,$$

where

$$n_r = 0, 1, 2, \ldots \quad m = 0, \pm 1, \pm 2, \ldots$$

are the radial, respectively azimuthal, quantum numbers. We note in passing that these eigenvalues have originally been gained for a single electron in a magnetic field and an additional harmonic confinement. In the case $\omega_0 = 0$, i.e. without the external confinement for m positive or zero, the spectrum reduces to the so-called Landau levels $E_{\text{rel}} = (2n_r + 1)\hbar \omega_L$, which are infinitely degenerate with respect to the angular momentum quantum number, see also [12].

Separability is still given, also with the Coulomb term. The WKB energies can then be gained by solving for the roots of a quartic equation and numerically integrating a complete elliptic integral [14, 15]. We stress that in the course of the derivation the two-dimensional Langer modification [36] of the azimuthal (magnetic) quantum number $m^2 - 1/4 \rightarrow m^2$ has to be performed.

Graphical representations of the eigenvalues as a function of the magnetic field strength can, e.g., be found in [7, 14, 15]. It is worthwhile to note that as the magnetic field increases, the ground state shifts to levels with higher angular momentum because the (repulsive) Coulomb energy gets smaller when the angular momentum grows along with the average distance between the electrons [14]. Here, we give a collection of some eigenvalues in table 1, where by looking at the results with the Coulomb potential, one can see that for the chosen magnetic field, the $m = 1$ state is now the ground state. For the numerics in this paper, for reasons of simplicity, we made all quantities dimensionless by setting $\mu = \hbar = e = \kappa = 1$ (please note that this does not correspond to atomic units).
4.2. Spectra from time series

Now we turn to the determination of energies from time series. By using the semiclassical propagator, an auto-correlation function can be calculated, according to

\[c(t) = \langle \Psi(0) | \Psi(t) \rangle. \]

(28)

This time series can then be Fourier-transformed into the energy domain. Using the expansion of the wavefunctions in (orthogonalized) energy eigenstates \[|\Psi(t)\rangle = \sum_n c_n |n\rangle \exp\{-iE_n t/\hbar\}, \]

we get

\[S(\omega) = \frac{1}{2\pi \hbar} \int dt \exp(i\omega t) c(t) \]

(29)

\[= \sum_{n=0}^{\infty} |c_n|^2 \delta(E_n - \hbar\omega). \]

(30)

The peaks of the spectrum \(S(\omega) \) are thus located at the eigenvalues of the Hamiltonian [19, 25]. In principal, also a nonlinear procedure called harmonic inversion can be used to extract the spectral information. This has the advantage that shorter time signals and therefore less trajectories in the semiclassical calculations are needed [37].

We have performed the procedure just outlined both semiclassically with the HK propagator as well as fully quantum mechanically, using a finite difference method [38] and Cartesian coordinates for the two DOF. A comparison of the two different time series for an initial Gaussian wavepacket

\[\Psi(r, 0) = \left(\frac{2\alpha}{\pi}\right)^{1/2} \exp[-\alpha(r - q_x)^2 + i p_x^y (r - q_x)] \]

(31)

with \(q_{a,x} = 1, q_{a,y} = 0, p_{a,x} = 0, p_{a,y} = -1 \) and \(\alpha = 0.25 \) is given in figure 1. Please note that we are not using an (anti-)symmetrized state here. Then, both singlet and triplet states can be extracted from a single propagation without taking electron spin into account explicitly, see also [39].

We stress that without the Coulomb term, the IVR results would be numerically exact and on top of the quantum ones (not shown). In the IVR case, with \(\kappa = 0 \), even a single trajectory calculation according to the thawed Gaussian approximation [33] is sufficient to
generate the time-dependent semiclassical results. Therefore, the interesting case is the one with the Coulomb term.

For \(\kappa = 1 \), the results for some eigenvalues extracted from the time series shown above are listed in Table 2 and are compared to the corresponding WKB results. We note that the IVR and WKB semiclassical results are coinciding to within the given accuracy, although in the time-dependent calculations we did not (!) employ any Langer correction of the potential. For single electron dynamics in the Coulomb potential the Langer correction, necessary in the energy domain [40], is needed in the time domain if one uses non-Cartesian coordinates [41] and seems to be unnecessary for Cartesian coordinates [42, 43], which is corroborated here. Furthermore, with better than 1% accuracy, both semiclassical results are lying on top of the full quantum result, except for the \(m = 0 \) eigenvalue. In the specific case considered, the full quantum result is around 3% different from the semiclassical ones for \(m = 0 \). Furthermore, by coincidence, for the present parameters, two quantum eigenvalues for \(m = 0 \) and \(m = 2 \) are degenerate. They do split up for a different choice of the ratio \(\omega_L/\omega_0 \), however, where a similar agreement between the differently calculated energy eigenvalues is found (not shown). The marked difference (a few per cent) between the full quantum result for \(m = 0 \) and the semiclassical ones does persist.

5. Conclusions and outlook

We have shown that time-dependent semiclassical IVR methodology of Herman and Kluk, based on Cartesian coordinates, is able to capture spectral features of two-electron quantum dots to a similar degree of accuracy as the WKB approach without the need to employ a Langer correction, complementing work on the comparison of WKB tunneling probabilities with Fourier-transformed time-dependent semiclassical results [44, 45]. The semiclassical IVR method does not suffer from the restriction of WKB to integrable (e.g. one DOF) systems, however. This allows the investigation of non-circular quantum dots and also quantum dots in 3D or with more than two electrons. For the study of the dynamics of nuclear DOF, the HK method, in the meantime, has become a widely used tool in the physics and chemistry communities (for an early review, see, e.g., [46]). An open question in the application to more than two-electron systems is the problem of anti-symmetrization of the wavefunction, however. Furthermore, we stress that there is no restriction on the value of \(\omega \), as is the case for the exact analytical solutions of the problem presented by Taut [5], where the sequence of admissible \(\omega \) starts with a value of the order of 1 and converges to 0.

Acknowledgments

The authors would like to thank Eric J Heller, Jan-Michael Rost, Lawrence S Schulman, Dmitrii V Shalashilin and Steven Tomsovic for fruitful discussions. FG thanks the Deutsche Forschungsgemeinschaft for financial support through grant GR1210/4-2 and TK was
supported by the Emmy–Noether program KR 2889/2. This work was partially supported by the US National Science Foundation through a grant for the Institute for Theoretical Atomic, Molecular and Optical Physics at Harvard University and Smithsonian Astrophysical Observatory.

References

[1] Høgaasen H, Richard J-M and Sorba P 2010 Am. J. Phys. 78 86
[2] Kestner N R and Sinanoglu O 1962 Phys. Rev. 128 2687
[3] Taut M 1993 Phys. Rev. A 48 3561
[4] Verc¸in A 1991 Phys. Lett. B 260 120
[5] Taut M 1994 J. Phys. A: Math. Gen. 27 1045
[6] Turbiner A 1994 Phys. Rev. A 50 5335
[7] Merkt U, Huser J and Wagner M 1991 Phys. Rev. A 43 7320
[8] Cioslowski J and Pernal K 2000 J. Chem. Phys. 113 8434
[9] Loos P-F and Gill P M W 2010 Phys. Rev. Lett. 105 113001
[10] Kramer T 2010 AIP Conf. Proc. 1323 178
[11] Turton R 1995 The Quantum Dot: A Journey into Future Microelectronics (New York: Oxford University Press)
[12] Rosas R, Riera R, Marín J L and Le´on H 2000 Am. J. Phys. 68 835
[13] Larkoski A J, Ellis D G and Curtis L J 2006 Am. J. Phys. 74 572
[14] Klama S and Mishchenko E G 1998 J. Phys.: Condens. Matter 10 3411
[15] Nazmitdinov R G, Simonovic N and Rost J-M 2002 Phys. Rev. B 65 155307
[16] Keller E J 1981 J. Chem. Phys. 75 2923
[17] Herman M F and Kluk E 1984 Chem. Phys. 91 27
[18] Kay K G 1994 J. Chem. Phys. 100 4377
[19] Keller E J 1981 Acc. Chem. Res. 14 368
[20] Harabati C and Kay K G 2007 J. Chem. Phys. 127 084104
[21] van de Sand G and Rost J-M 2000 Phys. Rev. A 62 053403
[22] Kay K G 1994 J. Chem. Phys. 100 4432
[23] Kay K G 1994 J. Chem. Phys. 101 2250
[24] Curilef S and Claro F 1997 Am. J. Phys. 65 244
[25] Grossmann F 2008 Theoretical Femtosecond Physics: Atoms and Molecules in Strong Laser Fields (Berlin: Springer)
[26] Gray S K, Noid D W and Sumpter B G 1994 J. Chem. Phys. 101 4062
[27] Schulman L S 2005 Techniques and Applications of Path Integration (Mineola, NY: Dover) pp 22–6
[28] van Vleck J H 1928 Proc. Natl Acad. Sci. USA 14 178
[29] Gutzwilier M C 1967 J. Math. Phys. 8 1979
[30] Kluk E, Herman M F and Davis H L 1986 J. Chem. Phys. 84 326
[31] Goletz C-M, Grossmann F and Tomsovic S 2009 Phys. Rev. E 80 031101
[32] Grossmann F and Herman M F 2002 J. Phys. A: Math. Gen. 35 9489
[33] Keller E J 1975 J. Chem. Phys. 62 1544
[34] Fock V 1928 Z. Phys. 47 446
[35] Darwin C G 1931 Proc. Camb. Phil. Soc. 27 86
[36] Langer R E 1937 Phys. Rev. 51 669
[37] Grossmann F, Mandelstham V A, Taylor H S and Briggs J S 1997 Chem. Phys. Lett. 279 355
[38] Galbraith I, Ching Y S and Abraham E 1984 Am. J. Phys. 62 60
[39] Shalashilin D V and Child M S 2005 J. Chem. Phys. 122 224108
[40] Young L A and Uhlenbeck G E 1930 Phys. Rev. 36 1154
[41] Berry M V and Mount K E 1972 Rep. Prog. Phys. 35 315
[42] Manning R S and Ezra G S 1994 Phys. Rev. A 50 954
[43] Suarez-Barnes I M, Nauenberg M, Nockleby M and Tomsovic S 1994 J. Phys. A: Math. Gen. 27 3299
[44] van de Sand G and Rost J-M 1999 Phys. Rev. A 59 R1723
[45] Keshavamurthy S and Miller W H 1994 Chem. Phys. Lett. 218 189
[46] Grossmann F and Heller E J 1995 Chem. Phys. Lett. 241 45
[47] Grossmann F 1999 Comm. At. Mol. Phys. 34 141