Forecast of Shanghai Port Throughput Based on ARIMA

JianChen Zhang¹, *

¹ College of Transport & Communications, Shanghai Maritime University
* Corresponding author: 202030610111@stu.shmtu.edu.cn

Abstract: The ARIMA model analyzes and predicts the total port throughput of Shanghai Port since its inception in 2016. The mathematical model is used to predict the port throughput, which provides a scientific basis for its formulation of port development strategies and is of great significance to ensure the sustainable development of the port.

1. Introduction

As the largest port in the world at present, Shanghai Port plays an important leading role in the development of the country and the world's shipping industry. Therefore, scientific prediction of the Shanghai Port throughput trend is of great significance to the adjustment and optimization of research development strategies. Zhou¹ scientifically analyzed and forecasted the container throughput of Ningbo Port; Han and Xu² carried out forecast research on the cargo throughput of Qingdao Port based on ARIMA and GM models; Tang³ analyzed the influencing factors of port throughput, and then used the systematic clustering method to determine the typical factors. Using the typical factors as independent variables, he applied the multiple linear regression analysis method to establish the port throughput typical factor forecasting model; Wang⁴ compared the time series model forecasting method, regression model forecasting method and gray model forecasting method, and summarized the characteristics and application of each method; Gui⁵ During the epidemic period, the gray model was used to predict the throughput of Shanghai Port, and based on the data results, the development countermeasures and thinking of Shanghai Port were put forward.

Based on existing research, this paper uses the ARIMA model to predict the total throughput data of Shanghai Port since 2016, and puts forward a scientific reference for the development strategy of Shanghai Port in the new era.

2. ARIMA model

The basic idea of ARIMA is: The observed value of the predicted object is to obtain random data in chronological order. These observations have a certain dependence, and this dependence is the past change law of a certain variable. Use this law to establish a certain The mathematical model of this model, once identified, can predict the future value from the past and present values of the time series. If the processed ARIMA model is accepted, it can be applied to the previous sample data and current data in the time series to predict future data. Based on time series theory, a series of related indicators can be predicted. The modeling of time series belongs to the category of dynamic economics and can be applied in a very wide range of fields, for example, in the prediction of future development of enterprises. The use of the ARIMA model requires the stability of the data. The stationarity requires that the fitted curve obtained through the sample time series can continue to be "inertial" along the current state for a period of time in the future; the stationarity requires the mean and sum of the series The variance does not change significantly; the greater the variance, the greater the data fluctuation. The variance
calculation formula is shown in the following formula:
\[
\sigma^2 = \frac{\sum (X - \mu)^2}{N}
\]

(1)

Among them: \(\sigma^2\) is the overall variance, \(X\) is the variable, \(\mu\) is the overall mean, \(N\) is the overall number of cases.

When the data fluctuates greatly, the difference method can be used to process the data to convert the non-stationary series into a stationary series.

The ARIMA \((p, d, q)\) model is called Autoregressive Integrated Moving Average Model, \(p\) is the autoregressive term, \(q\) is the number of moving average terms, and \(d\) is the time when the time series becomes stationary. Number of differences made. The so-called ARIMA model refers to a model established by transforming a non-stationary time series into a stationary time series, and then regressing the dependent variable only on its lag value and the present value and lag value of the random error term. The ARIMA model includes autoregressive process (AR), moving average process (MA), autoregressive moving average process (ARMA) and ARIMA process according to whether the original sequence is stable or not and the parts contained in the regression are different.

The autoregressive process (AR) describes the relationship between the current value and the historical value, and uses the historical time data of the variable itself to predict itself. The autoregressive model must meet the requirements of stationarity. The formula definition of the \(p\)-order autoregressive process:
\[
y_t = \mu + \sum_{i=1}^{p} \gamma_i y_{t-i} + \epsilon_t
\]

(2)

Among them: \(y_t\) is the current value, \(\mu\) is the constant term, \(p\) is the order, \(\gamma_i\) is the autocorrelation coefficient, and \(\epsilon_t\) is the error.

The moving average model (MA) focuses on the accumulation of error terms in the autoregressive model. The moving average method can effectively eliminate the random fluctuations in the forecast. The formula definition of the \(q\)-order autoregressive process:
\[
y_t = \mu + \epsilon_t + \sum_{i=1}^{q} \theta_i \epsilon_{t-i}
\]

(3)

Autoregressive moving average model (ARMA), a combination of autoregressive and moving average, the formula is defined as follows, we can get the following formula, when we get the ARMA model, we only need to specify three parameters \((p, d, q)\), \(d\) is the order, \(d=1\) is the first-order difference, \(d=2\) is the second-order difference, and so on.
\[
y_t = \mu + \sum_{i=1}^{p} \gamma_i y_{t-i} + \epsilon_t + \sum_{i=1}^{q} \theta_i \epsilon_{t-i}
\]

(4)

The time series modeling steps mainly include: First, plot the acquired series data and observe whether it is a stationary time series; if it is a stationary series, no data processing is required, if it is a non-stationary series, the \(d\)-order difference should be carried out to make It is transformed into a stationary series, \(d\) in the ARIMA\((p,d,q)\) model is the difference order; secondly, find the autocorrelation coefficient ACF and partial autocorrelation coefficient PACF of the stationary series, and the autocorrelation graph and partial autocorrelation coefficient Analyze the correlation graph to obtain \(p\) and order \(q\), thereby obtaining the ARIMA model; finally, the obtained ARIMA model is tested.

3. Model prediction
This article obtains the total throughput data from 2016 to May 2021 from SIPG's official website, and uses the ARIMA model to make predictions based on the data.
3.1. Model ordering
According to the time series diagram of the initial data (Fig. 1), the data fluctuates greatly from 2016 to May 2021, and the series is non-stationary. Therefore, the difference method needs to be used to obtain a stationary series (Fig. 2).

![Fig. 1 Throughput timing chart from 2016 to May 2021](image1)

![Fig. 2 Timing diagram after first-order difference](image2)

3.2. Model estimate
According to the stationarity characteristics of the series, by observing the autocorrelation coefficient graph (Fig. 3) and the partial autocorrelation coefficient graph (Fig. 4), it is determined to establish the ARIMA (0, 1, 1) model,
The model fitness parameters are shown in Table 1.

Table 1. Model fitness parameters

Fitness statistics	Fitness	Percentiles								
	average	minimum	maximum	5	10	25	50	75	90	95
Stationary R-squared	0.338	0.338	0.338	0.338	0.338	0.338	0.338	0.338	0.338	0.338
R-squared	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011
3.3. Residual test

Table 2 shows the Q statistic information of the model, including the statistic value and the p-value. The ARIMA model requires the model residuals to be white noise, that is, the residuals have no autocorrelation, and the white noise test can be performed by the Q statistic test (Null hypothesis: The residual is white noise);

For example, Q6 is used to test whether the first 6-order autocorrelation coefficients of the residuals meet white noise. Usually, the corresponding p value is greater than 0.1, indicating that the white noise test is satisfied (otherwise, it means that it is not white noise). In common cases, it can be directly analyzed for Q6.

If the white noise assumption is rejected (p<0.05), it means that the model is not well-fitted, otherwise it usually means that the model can be used normally.

From the results of Q statistics, the p value of Q6 is greater than 0.1, and the null hypothesis cannot be rejected at the significance level of 0.1. The residual of the model is white noise, and the model basically meets the requirements.

item	Statistics	p
Q6	0.009	0.924
Q_{12}	0.493	0.998
Q_{18}	24.637	0.017*
Q_{24}	26.533	0.088
Q_{30}	44.133	0.007**

3.4. Model fitting

The total throughput is predicted by ARIMA (0, 1, 1), and the fitting and prediction are shown in Fig.5. The degree of model fit is less fluctuating, and the accuracy and accuracy of the model are good.
Fig. 5 Fitting and prediction of total throughput model

ARIMA (0, 1, 1) predicts the total throughput of the next 15 periods as shown in Table 3, showing a steady increase.

Category	Predictive value
1	4527.794
2	4533.934
3	4540.075
4	4546.215
5	4552.356
6	4558.496
7	4564.637
8	4570.778
9	4576.918
10	4583.059
11	4589.199
12	4595.34
13	4601.48
14	4607.621
15	4613.761

4. Development countermeasures

Do fine enterprise management and promote technological innovation. Further optimize and improve the management system and mechanism, make every effort to promote the application of key technologies such as big data and artificial intelligence, vigorously promote the construction of port automation and the automation of traditional container terminals, and improve port operation efficiency and international competitiveness.

Build a shipping service industry chain and build a high-end shipping service market. Actively participate in the global competition for the allocation of international shipping resources, deepen the opening of the shipping service industry to a greater extent, conform to international shipping policies, and attract high-end shipping service elements.

With the help of free trade ports, the shipping finance industry will be developed. Shanghai Free
Trade Port is a functional system that integrates research and development related to advanced manufacturing, high-end assembly and assembly, offshore trade, and re-export trade. It can not only promote the prosperity of trade, but also promote the development of a large number of modern service industries such as ship supply, shipping finance, insurance and maritime law.

5. Conclusions
Taking into account the availability of data, this paper builds a prediction model based on the total throughput data of Shanghai Port from 2016 to May 2021. The results show that the ARIMA (0, 1, 1) model can accurately predict and can be used by related departments. The formulation of policy measures and the adjustment of development strategies provide a scientific basis.

References
[1] Zhou FengTing. Analysis and Forecast of Ningbo Port Container Throughput[J].Journal of Science & Technology Economics,2018,26(04):207.
[2] Han Yilun, Xu Xinxin. Research on Qingdao Port Cargo Throughput Forecast Based on ARIMA and GM Models[J].Waterways and Ports,2019,40(02):241-248.
[3] Tang Simin, Lan Peizhen, Zhu Jingjun. Prediction model of typical factors of port throughput[J].Journal of Shanghai Maritime University,2018,39(02):41-44+102.
[4] Wang Zhuo, Gao Lu. Research on Port Container Throughput Forecast Method[J].Journal of Shanghai University of Engineering Science,2020,34(02):201-206.
[5] Gui Dehuai, Zhang Xianxuan. Analysis of Shanghai Port Container Throughput Forecast Based on Grey Forecasting Model[J].Journal of Chuzhou Vocational and Technical College, 2020,19(03):33-36+40.