Complete Genome Sequence of *Spiroplasma monobiae* MQ-1T (ATCC 33825), a Bacterium Isolated from the Vespid Wasp (*Monobia quadridens*)

Yi-Ming Tsai (蔡乙鳴), Wen-Sui Lo (羅文穗), Pei-Shan Wu (吳佩珊), Shu-Ting Cho (卓舒婷), Chih-Horng Kuo (郭志鴻)

Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan

ABSTRACT *Spiroplasma monobiae* MQ-1T (ATCC 33825) was isolated from the hemolymph of an adult vespid wasp (*Monobia quadridens*) collected in Maryland. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among *Spiroplasma* species.

Spiroplasma monobiae is known to be associated with the vespid wasps (Hymenoptera: Vespidae) in North America (1). The type strain MQ-1T was isolated from the hemolymph of an adult *Monobia quadridens* collected in Maryland and is the representative of group VII within the genus (2). Several interesting features were identified in the early characterization of this bacterium, including its possession of the smallest genome within the Apis clade (3, 4), its unique pattern of DNA methylation (5), and the potent effect of inducing tumor necrosis factor alpha secretion in mammalian cells by its membrane (6). To facilitate future investigation of the biology of this bacterium, as well as to improve the taxon sampling of available *Spiroplasma* sequences for comparative genomics and evolutionary studies (7), we determined its complete genome sequence.

The strain was acquired from the American Type Culture Collection (catalog number ATCC 33825). The freeze-dried sample was processed according to the manufacturer’s instructions and cultured in M1D medium (8) prior to DNA extraction using the Wizard genomic DNA purification kit (Promega, USA). PCR and Sanger sequencing were performed to verify that the 16S rRNA gene sequence matched the reference record (GenBank accession number GU585673).

The procedures for genome sequencing, assembly, and annotation were based on those described in our previous studies (9–20). Briefly, the Illumina MiSeq platform was used to generate raw reads from one paired-end library (~255-bp insert; ~600-fold coverage). The initial de novo assembly was performed using Velvet version 1.2.10 (21). Subsequently, PAGIT version 1 (22) was used to assist an iterative process for improving the assembly. For each iteration, the raw reads were mapped to the assembly using the Burrows-Wheeler transform version 0.7.12 (23), programatically checked using the MPILEUP program in SAMtools package version 1.2 (24), and visually inspected using Integrative Genomics Viewer (IGV) version 2.3.57 (25). Polymorphic sites and gaps were corrected based on the mapped reads. The process was repeated until the complete genome sequence was obtained. The programs RNAmer (26), tRNAscan-SE (27), and Prodigal (28) were used for gene prediction. The gene names and product descriptions were first annotated based on the homologous genes in other *Spiroplasma* genomes (9–20) as identified by OrthoMCL (29). Subsequent manual curation was based on the information obtained from the BlastKOALA tool (30) and BLASTp (31) searches against the NCBI nonredundant database (32). Putative clustered regularly interspaced short palindromic repeats (CRISPRs) were identified using CRISPRFinder (33).
The complete genome sequence of *Spiroplasma monobiae* MQ-1T consists of one circular chromosome that is 891,575 bp in size with a G+C content of 27.8%; no plasmid was found. The first version of the annotation includes one set of 16S-23S-5S rRNA genes, 29 tRNAs (covering all 20 amino acids), 813 protein-coding genes, and 2 pseudogenes; no CRISPR locus was found.

Accession number(s). The complete genome sequence of *Spiroplasma monobiae* MQ-1T has been deposited at DDBJ/EMBL/GenBank under the accession number CP025543.

ACKNOWLEDGMENTS

The Sanger sequencing service was provided by the Genomic Technology Core Facility of our institute. The Illumina paired-end sequencing service was provided by Yougene Bioscience (New Taipei City, Taiwan).

The funding for this project was provided by the Institute of Plant and Microbial Biology at Academia Sinica and the Ministry of Science and Technology of Taiwan (NSC 101-2621-B-001-004-MY3 and MOST 104-2311-B-001-019) to C.-H.K. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

REFERENCES

1. Whitcomb RF, Tully JG, Rose DL, Carle P, Bove JM, Henegar RB, Hackett KJ, Clark TB, Konai M, Adams J, Williamson DL. 1993. *Spiroplasma monobiae* sp. nov. from the vespid wasp *Monobia quadridens* (Hymenoptera: Vespidae). Int J Syst Bacteriol 43:256–260. https://doi.org/10.1099/00207713-34-2-256.

2. Whitcomb RF, Tully JG, Clark TB, Williamson DL, Bové JM. 1982. Revised serological classification of *spiroplasmas*, new provisional groups, and recommendations for serotyping of isolates. Curr Microbiol 7:291–296. https://doi.org/10.1007/BF01566869.

3. Carle P, Laigret F, Tully JG, Bové JM. 1995. Heterogeneity of genome sizes within the genus *Spiroplasma*. Int J Syst Bacteriol 45:178–181. https://doi.org/10.1099/00207713-45-1-178.

4. Gasparich GE, Whitcomb RF, Dodge D, French FE, Glass J, Williamson DL. 2004. The genus *Spiroplasma* and its non-helical descendants: phylogenetic classification, correlation with phenotype and roots of the *Mycoplasma* mycoides clade. Int J Syst Evol Microbiol 54:893–918. https://doi.org/10.1099/ijs.0.02688-0.

5. Nur I, Szfy M, Razin A, Glaser G, Rottem S, Razin S. 1985. Procaryotic and eucaryotic traits of DNA methylation in spiroplasmas (mycoplasmas). J Bacteriol 164:19–24.

6. Sher T, Yamin A, Rottem S, Gallily R. 1990. In vitro induction of tumor necrosis factor alpha, tumor cytolyis, and blast transformation by Spiroplasma membranes. J Natl Cancer Inst 82:1142–1145. https://doi.org/10.1093/jnci/82.13.1142.

7. Lo W-S, Huang Y-Y, Kuo C-H. 2016. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev 40:855–874. https://doi.org/10.1093/femsre/fwu028.

8. Whitcomb RF, Tully JG, McCawley P, Rose DL. 1982. Application of the growth inhibition test to *Spiroplasma* taxonomy. Int J Syst Bacteriol 32:387–394. https://doi.org/10.1099/00207713-32-4-387.

9. Lo W-S, Chen L-L, Chung W-C, Gasparich GE, Kuo C-H. 2013. Comparative genome analysis of *Spiroplasma melliferum* IPMB4A, a honeybee-associated bacterium. BMC Genomics 14:22. https://doi.org/10.1186/1471-2164-14-22.

10. Ku C, Lo W-S, Chen L-L, Kuo C-H. 2013. Complete genomes of two *spiroplasma*-associated *spiroplasmas* provided insights into the origin, dynamics, and impacts of viral invasion in *Spiroplasma*. Genome Biol Evol 5:1151–1164. https://doi.org/10.1093/gbe/evt084.

11. Lo W-S, Ku C, Chen L-L, Chang T-H, Kuo C-H. 2013. Comparison of metabolic capacities and inference of gene content evolution in mosquito-associated *Spiroplasma diminutum* and *S. taiwanense*. Genome Biol Evol 5:1512–1523. https://doi.org/10.1093/gbe/evt108.

12. Ku C, Lo W-S, Chen L-L, Kuo C-H. 2014. Complete genome sequence of *Spiroplasma apis* B31T (ATCC 33834), a bacterium associated with May disease of honeybees (*Apis mellifera*). Genome Announc 2(1):e01151-13. https://doi.org/10.1128/genomeA.01151-13.
25. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011. Integrative Genomics Viewer. Nat Biotechnol 29: 24–26. https://doi.org/10.1038/nbt.1754.
26. Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160.
27. Lowe T, Eddy S. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964.
28. Hyatt D, Chen G-L, LoCascio P, Land M, Larimer F, Hauser L. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. https://doi.org/10.1186/1471-2105-11-119.
29. Li L, Stoeckert CJ, Roos DS. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189. https://doi.org/10.1101/gr.1224503.
30. Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. https://doi.org/10.1016/j.jmb.2015.11.006.
31. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden T. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421.
32. Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2016. GenBank. Nucleic Acids Res 44:D67–D72. https://doi.org/10.1093/nar/gkv1276.
33. Grissa I, Vergnaud G, Pourcel C. 2007. CRISPRFinder: a Web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57. https://doi.org/10.1093/nar/gkm360.