Appraisal of pavement from preservation against frost influence point of view is important point of its structure evaluation. The Slovak climatic conditions originate the same cycles of pavement and subgrade freezing during a winter period. This effect is dangerous from surface deformation and loss of serviceability point of view. Therefore is necessary to know the thermo-technical properties of layers’ materials for structure design. The values in nature state are measured and evaluated only, although during freezing process the characteristics in frozen state are active. Therefore an article deals with measuring of a heat conductivity factor of building materials during negative temperature by method of non-stationary thermal flow. The asphalt mixtures used for pavement wearing courses and some type of subgrade soils were selected for analysis.

1. Introduction

The thermal characteristics of road-building materials are very important for design of pavement from protection against the frost penetration into subgrade point of view. The values in a natural state are measured and evaluated only, although during the freezing process the pavement materials and subgrade are in frozen state. Therefore, for a few years the attention has been paid to the measurement of heat conductivity factor of building materials by negative temperature.

Some standard methods for measuring the heat conductivity factor are used in Slovakia. The method of non-stationary thermal flow [1], which was verified many years in UTC Žilina and was based on many measurements within the framework of research work solution, was selected for measurement of materials in frost phase [2].

2. The physical principle of methodology

In building materials is heat spreading almost exclusively by conduction. Therefore, the physical basis of method is Fourier flow of one-direct thermal spreading:

\[q \mid x,t \mid = -\lambda \cdot \frac{\partial T \mid x,t}{\partial x} \quad (1) \]
Teplotné pomery sa v sledovanej oblasti menia podľa vzťahu (2):
\[
\frac{\partial q}{\partial x} = -\frac{\partial T}{\partial x} \frac{x}{t}
\]

kde: \(\rho\) - objemová hmotnosť, kg.m\(^{-3}\)
\(c\) - merná tepelná kapacita, J.kg\(^{-1}\).K\(^{-1}\).

Zo vzťahov (1) a (2) získame rovnicu (3), popisujúcu vývoj teplotného pola, z ktorej je možné vypočítať koeficient tepelnej vodivosti \(\lambda\).
\[
\frac{\partial^2 T}{\partial x^2} = \frac{\rho \cdot c}{\lambda} \frac{\partial T}{\partial x}
\]

Počiatkové podmienky

Numerické riešenie vzťahu (3) je založené na principe merania koeficientu tepelnej vodivosti [3]. Vzorka je umiestnená v tepelne izolované nádobe. Zaznamenávaná je teplota na spodnej ploche vzorky, ktorou je možné vypočítať koeficient tepelnej vodivosti \(\lambda\).

Numerical solution of equation (3) is based on principles of a heat conductivity factor measuring [3]. A sample is located in the heat-isolated vessel. A temperature on the bottom site of sample is registered while keeping a constant temperature on the top site. The next initial conditions were determined:

\[
T(x,0) = T_o
\]
\[
T(\infty, t) = T_M
\]
\[
q(0) = 0
\]

kde: \(T_o\) - počiatčná teplota vzorky, °C
\(T_M\) - konštántna teplota na povrchu vzorky, °C
\(h\) - hĺbka vzorky, m
\(x\) - hodnotená úroveň, m
\(t\) - čas, s
\(q\) - hustota tepelného toku na spodnej ploche vzorky, W.m\(^{-2}\).

Vzorka je rozdelená na \(n\) vrstiev s hrúbkou vrstvy \(\Delta t\). Počiťaný je časový interval \(\Delta t\) medzi 10 % a 50 % poklesom počiatčnej tepelného gradientu na spodnej ploche vzorky. Porovnaním teoretickej a vypočítanej hodnoty bol pre výpočet koeficientu tepelnej vodivosti \(\lambda\) získaný vzťah:

\[
\lambda = 0.249 \cdot \frac{h^2}{\Delta t} \cdot \rho \cdot c.
\]

Okrajové podmienky

Na meranie materiálov v prirodzenom stave je používána počiatčná teplovočasová hmotnosť vzorky 20 °C a teplota na povrchu vzorky 0 °C. Ako médium pre zabezpečenie konštántnej povrchovej teploty sa používa zmes vody a lúdu. Problem vzniká v prípade merania materiálov v zamrznutom stave. V prvom rade musí byť zabezpečený teplovočasový rozdiel medzi vzorkou a médium minimálne 10 °C. Z fyzikálneho hľadiska nie je podstatné, či je vzorka schladzovaná alebo zahrievaná, ale z pohľadu nebezpečia vzniku latentného tepla je where: \(q\) - density of thermal flow, W.m\(^{-2}\)
\(\lambda\) - heat conductivity factor, W.m\(^{-1}\).K\(^{-1}\)
\(\frac{\partial T}{\partial x}\) - temperature gradient in level x and time t, °C.

The initial conditions

Numerical solution of equation (3) is based on principles of a heat conductivity factor measuring [3]. A sample is located in the heat-isolated vessel. A temperature on the bottom site of sample is registered while keeping a constant temperature on the top site. The next initial conditions were determined:

\[
T(x,0) = T_o
\]
\[
T(\infty, t) = TM
\]
\[
q(0) = 0
\]

where: \(T_o\) - initial temperature of sample, °C
\(T_M\) - constant temperature on the top of sample, °C
\(h\) - thickness of samples, m
\(x\) - evaluated point, m
\(t\) - time, s
\(q\) - heat flow density on the sample bottom area, W.m\(^{-2}\).

The sample is divided to \(n\)-layers system with thickness of layer \(\Delta t\). The time interval \(\Delta t\) between 10 % and 50 % decrease of initial temperature gradient on the bottom of the sample is calculated. Comparing theoretical and experimental values, the final equation for factor \(\lambda\) calculation was created:

\[
\lambda = 0.249 \cdot \frac{h^2}{\Delta t} \cdot \rho \cdot c.
\]

where all symbols are already known.

The border conditions

For measuring of material in a natural state the initial temperature of sample 20 °C and a top of sample 0 °C are used. The mixture of water and ice is used as a medium for assurance of the constant sample surface temperature. The problem arises in the case of measuring the material in the frozen phase. At first the temperature difference between sample and medium must be minimal 10 °C. From a physical point of view is not decisive if the sample is cooled or warmed, but from
Veľmi dôležité, aby nebola zasiahnutá hraniča nulovej teploty. Nasiaškáve stavebné materiály nemôžu počas merania prechádzať nulovou izotermou, maximálna teplota vzorky musí byť nižšia ako −3 °C. Predovšetkým v zemínach dochádza k fázojovej premene vody už pri teplotách od −1 °C do −3 °C, čo môže mať rozhodujúci vplyv na namerané výsledky. Z tohto dôvodu sa pre meranie používa teplotný rozsah od −5 °C do −20 °C.

Veľmi závažným problémom je výber typu média pre zabezpečenie konštantnej teploty na povrchu vzorky. Na základe odskúšania rôznych typov nemrznúcich kwapalin bol vybraný klasický soľný roziňok. Zvolený bol 30 % roziňok, ktorý zabezpečuje teplý stav média v meranom časovom rozsahu. Médium je kontinuálne miešané pre zabezpečenie rovnomernej distribúcie teploty po povrchu meranej vzorky. Na základe uvedených faktov boli odskúšané nasledovné kombinácie okrajových podmienok:

- teplota vzorky a vo vnútri klimatickej skrine −5 °C, teplota média −17 °C
- teplota vzorky a vo vnútri klimatickej skrine −18 °C, teplota média −5 °C

Variant a) zabezpečil konštantnú teplotu maximálne počas 15 minút, čo je na meranie nedostatočná doba. Preto boli pre rutinné meranie zvolené nasledovné teploty:
- Teplota vzorky −18 °C ± 2 °C.
- Teplota v klimatickej skrine −18 °C.
- Teplota média −5 °C.

Dôležitou podmienkou merania je konštantná teplota celého systému. Vzorka je umiestnená spolu s meracou aparaturou na 24 hodín do klimatickej skrine, v ktorej je potom realizovaný až vlastné meranie. Bezprostredne na povrch vzorky je umiestnené zariadenie, zabezpečujúce konštantnú teplotu média. Celá suprava je riadená elektronicky so záznamom teploty média v priebehu merania.

3. Meranie tepelnej kapacity

Merná tepelná kapacita ‘c’ je základným vstupným parametrom pre výpočet koeeficientu tepelnej vodivosti a je určovaná pre každú vzorku. Vypočet jej hodnoty pre zamrznuté materiály nie je možný z hodnoty suchého materiálu. Analógia s výpočtom hodnoty tepelnej kapacity pre vlhké vzorky pri kladných teplotách neobsahuje časový rozsah.

Tepelná kapacita je meraná na základe fyzikálnej definície (6). Prestup tepla je určovaný kalorimetrickou metódou, ktorá predpokladá tepelne izolovaný kalorimeter so vzorkou a médium. Merná tepelná kapacita je určovaná pomocou kalorimetrickej rovnice po dosiahnutí teplotnej rovnováhy.

\[
c = \frac{1}{m} \cdot \frac{\Delta q}{\Delta T}
\]

\[(6)\]

kde: \(m\) - hmotnosť vzorky, kg
\(\Delta q\) - odovzdané teplo vzorke, J
\(\Delta T\) - zmena teploty od odovzdaného tepla, K.

a latent heat standpoint is very important to not touch zero boundary. The absorptive building materials cannot proceed through zero point during measurement. The maximal temperature of sample must be below −3 °C. Above all the soils the water phase change occurs in temperatures from −1 °C to −3 °C, which has an ultimate influence to measure results. Therefore the temperatures ranging from −5 °C to −20 °C were used for measuring.

A very important problem of measurement was a medium for assuring the constant temperature of a sample top. After experiments with different types of non-freezing liquids classic salt water was selected. The 30 % salt solution that secures a permanent liquid state of medium in measuring range was selected. The medium is uninterruptedly mixed for equitable distribution of temperature on top of sample. For these reasons the next variants were examined:

- a) temperature of sample and inside of climatic chamber −5 °C, temperature of medium −17 °C
- b) temperature of sample and inside of climatic chamber −18 °C, temperature of medium −5 °C

The variant a) secures a constant temperature maximum 15 minutes, which is a short time for measuring. Therefore, the next temperatures were selected for routine measurements:

- temperature of sample −18 °C ± 2 °C.
- temperature in climatic chamber −18 °C.
- temperature of medium −5 °C.

An important condition of measurement is the constant temperature of the whole system. The sample with measuring apparatus is placed for 24 hours into a climatic chamber in which a measurement is realised after this time, too. Warming apparatus localised immediately above a surface of sample ensures the constant temperature of medium. An electronic recorder that registered a temperature of medium during measurement controls the apparatus.

3. The measuring of the heat capacity

The heat capacity ‘c’ as a basic input parameter for heat conductivity factor calculation is a determine for each sample. The calculation of frozen material value is not possible from value of dry natural material. An analogy with calculation the heat capacity of wet material during positive temperature is not confirmed by research.

The heat capacity is measured on the base of physical definition (6). The transmitted heat is determined by calorimetric method, which assumes the heat-isolated calorimeter with sample and medium. The specific heat capacity is determined by calorimetric equation after achievement of temperatures' balance.

\[
c = \frac{1}{m} \cdot \frac{\Delta q}{\Delta T}
\]

\[(6)\]

where: \(m\) - mass of the sample, kg
\(\Delta q\) - transmitted heat to sample, J
\(\Delta T\) - change of temperature for transmitted heat, K.
4. Meranie koeficientu tepelnej vodivosti

Príspevok sa venuje koeficientu tepelnej vodivosti vybratých cestných stavebných materiálov. Prvým materiáloňom sú asfaltové zmesi, druhým zmeny podložia. Ďalšie materiály sú analyzované v súčasnosti v rámci práce na grantovej výskumnnej úlohe.

Asfaltové zmesi
Pre meranie boli zvolené asfaltové zmesi, obsahujúce modifikovaný asfalt (vzorky 1, 2) a klasický asfalt (vzorka 3). Zmesi s modifikovaným spojivom sú v súčasnosti viac používané ako zmesí s klasickým spojivom pre ich lepšie deformačné charakteristiky. Porovnanie teplo-technických vlastností je jedným z cieľov súčasných výskumných aktivít na katedre. Základné údaje o zložení meraných zmesí sú uvedené v tab. 1.

Merania potvrdili nepodstatné rozdiely medzi teplotechnickými vlastnosťami suchých a zamrznutých materiálov. Na základe fyzikálnej podstaty zmesí z toho vyplýva, že nie je potrebné uvažovať ovoľovanie teploty na koeficient tepelnej vodivosti v zimných podmienkach.

Použitie rôznych spojív ukázalo, že modifikované asfalty nemajú podstatný vplyv na koeficient tepelnej vodivosti asfaltových zmesí. Maximálny rozdiel je okolo 10 %. Porovnanie nanebných a normových hodnôt naznačuje, že je potrebné spresniť výpočtové hodnoty pre AKM. Hodnota koeficientu tepelnej vodivosti 1.40 W.m⁻¹ K⁻¹ bola potvrdená len pri zmesi 1. Pri ďalších zmesiach bola prekročená o 25 – 80 %, čo nie je zanedbateľná hodnota. Výsledky meraní sú uvedené v tab. 2 a na obr. 1.

4. The measuring of the heat conductivity factor

The article treats the heat conductivity factor of selected road building materials. The first material is asphalt mixtures, second is soil of pavement subgrade. Other materials are analysed in frame of the grant research project in this time.

Asphalt mixtures
The asphalt mixtures containing the modified asphalt (sample 1, 2) and classic asphalt (sample 3) were selected for measuring. The mixtures with modified asphalt are using more in this time than with classic asphalt for better deformation characteristics. The comparison of thermal-technical properties is one from aims of recent research activities of our department. The basic composition of measured mixtures is described in Table 1.

Merania potvrdili nepodstatné rozdiely medzi teplotechnickými vlastnosťami suchých a zamrznutých materiálov. Na základe fyzikálnej podstaty zmesí z toho vyplýva, že nie je potrebné uvažovať ovoľovanie teploty na koeficient tepelnej vodivosti v zimných podmienkach.

Použitie rôznych spojív ukázalo, že modifikované asfalty nemajú podstatný vplyv na koeficient tepelnej vodivosti asfaltových zmesí. Maximálny rozdiel je okolo 10 %. Porovnanie nanebných a normových hodnôt naznačuje, že je potrebné spresniť výpočtové hodnoty pre AKM. Hodnota koeficientu tepelnej vodivosti 1.40 W.m⁻¹ K⁻¹ bola potvrdená len pri zmesi 1. Pri ďalších zmesiach bola prekročená o 25 – 80 %, čo nie je zanedbateľná hodnota. Výsledky meraní sú uvedené v tab. 2 a na obr. 1.
Zeminy podložia
Pre analýzu boli vybraté 4 druhy zemín podložia. Zvolené boli najčastejšie sa vyskytujúce zeminy z rôznych lokalít Slovenska. Základné parametre materiálov sú uvedené v tab. 3.

Hodnoty sledovaných charakteristík boli stanovené na vzorkách v suchom stave, pri optimálnej vlhkosti a v zamrznutom stave.

Získané hodnoty mernej tepelnej kapacity a koeficientu tepelnej vodivosti sú uvedené v tab. 4 a na obr. 2. Zeminy 1-3 sú veľmi podobné súdržné zeminy, zemina 4 je nesúdržný štrkový íl s rozdielnou granulometriou. Z toho vyplývajú tiež rozdielne teplo-technické vlastnosti.

The soils of subgrade
The four types of subgrade soil were selected for analysis. The option includes the most used types of soils from different localities in Slovakia. The basic parameters of materials are presented in Table 3.

The values of observed characteristics were determined on samples in the dry phase, in phase of natural moisture and after freezing. Obtained values of the heat capacity and the heat conductivity factors are presented in Table 4 and on Fig. 2. The soils 1-3 were very similar, coherent soils; soil 4 was non-coherent gravel loam with different grading. It follows the different thermal-technical properties, too.

Základné parametre zemín

Vzorka	1	2	3	4
Názov	il so strednou plasticitou F6 CI	il s vysokou plasticitou F8 CH	il piesčitý I F4 CS1	štrkovitý F2 CG
Optimalná vlhkosť	17,5 %	25,5 %	16,2 %	16,0 %
Maximalná objemová hmotnosť	1740 kg.m⁻³	1530 kg.m⁻³	1770 kg.m⁻³	1710 kg.m⁻³
Namržavosť	namržavá až nebezpečne namržavá	namržavá až nebezpečne namržavá	mierne namržavá	stredno-plastická, nebezpečne namržavá

The basic parameters of soils

Sample	1	2	3	4
Name	Loam with middle plasticity F6 CI	Loam with high plasticity F8 CH	Sandy loam I F4 CS1	Gravel loam F2 CG
Optimal moisture	17,5 %	25,5 %	16,2 %	16,0 %
Maximal mass density	1740 kg.m⁻³	1530 kg.m⁻³	1770 kg.m⁻³	1710 kg.m⁻³
Frost susceptibility	susceptible till danger susceptible	susceptible till danger susceptible	middle susceptible	danger susceptible

Teplotechnické vlastnosti zemín

Zemina	Tepelná kapacita, J.kg⁻¹.K⁻¹	Koeficient tepelnej vodivosti, W.m⁻¹.K⁻¹				
	suchá	vlhká	zamrznutá	suchá	vlhká	zamrznutá
1	733	1267	757	0,22	1,18	0,73
2	511	1265	713	0,12	0,77	0,52
3	624	1135	715	0,21	1,20	0,94
4	1710	1936	1464	0,58	1,13	0,64

Koeficient tepelnej vodivosti suchých zemín sa pohybuje v rozsahu 0,1 až 0,6 W.m⁻¹.K⁻¹ a vlhkých zemin 0,7 až 1,2 W.m⁻¹.K⁻¹. To poukazuje na ich rôznorodosť. Zeminy podobného typu majú rôzne fyzikálne vlastnosti, čo komplikuje možnosť generalizovania ich teplotechnických charakteristik.

The heat conductivity factor of dry soils ranges from 0.1 to 0.6 W.m⁻¹.K⁻¹ and of moist soil ranges from 0.7 to 1.2 W.m⁻¹.K⁻¹. It shows the soil diversity. The soils of similar type have the different physical properties and it obstructs the possibility to generalize thermal technical characteristics.
Hodnoty koeficientu tepelnej vodivosti zamrznutých zemín sú v zásade o 300 – 400 % vyššie ako nezamrznutých. Merania ukázali, že hodnoty koeficientu tepelnej vodivosti zamrznutých zemín sa približujú k hodnotám vlh- kých zemín, ale ich nedosa- hujú. Rozdiel je len pri zemine 4, ktorá je minimálne nasia- vá. Hodnoty pre suchú a za- mrznutú vzorku sú v tomto prí- pade veľmi podobné.

Celkové hodnotenie
Získané výsledky meraní koeficientu tepelnej vodivosti poukazujú na rezervy metódy na posudzovanie konštruk- cie vo zimnom období. Normové hodnoty nereagujú vždy na nepriaznivé podmienky v konštrukcii a mnohokrát sú podhodnotené. Name- rané hodnoty zodpovedali návrhovým u zemín podložia, pri asfal- tových zmesiach boli zistené značné rozdiely. Uvedené konštato- vania podporuje aj stav cestnej siete na Slovensku, predovšetkým po ukončení zimného obdobia.

5. Závery
Porovnanie nameraných hodnôt s návrhovými potvrdzuje ich platnosť pre zeminy podložia, pre ktoré sú teplotne vlast- nosti významnými parametro. V závislosti od ich hodnoty vzní- kajú deformácie povrchu a strata prevádzkovej spôsobilosti. Značná pozornosť musí byť venovaná vztahu medzi koeficientom tepelnej vodivosti a vlhkosťou. Nárazom vlhkosti bol potvrdený nárast koeficientu tepelnej vodivosti v niektorých prípadoch až o 800 % a prezentované hodnoty potvrdili dôsledok vplyvu vlhkosti zeminy podložia na vznik deformácií v zimnom a jarnom období.

Popsaná metóda hodnotenia koeficientu tepelnej vodivosti λ je ekonomická a časovo nenáročná. Účuje sledované charakteris- tiky v reálnych podmienkach konštrukcie vo zime. V súčasnosti sú uskutočňované merania s teplotným vplyvom na zimnom a jarnom období.

The values of the heat conductivity factor of frozen samples are mentioned approximately about 300 – 400 % upper than values of non-frozen samples. The measurements have showed that the value of the heat conductivity factor of frozen soils approaches the value of moist soil but doesn’t exceed it. The fact is different only in soil 4, which is a little absorptive. The values for dry and frozen sample are very close.

5. Conclusions
The comparison of measured and design values conforms their exact estimate for subgrade soil. The thermal-technical characteristics are significant parameters for subgrade soils. In consequence of this the road deformations originate and road service-ability and performance is lost. The attention was devoted to the relation between the heat conductivity factor and moisture. The increase of the heat conductivity factor was confirmed sometimes more than 800 %. Present results verify the weight of moisture influence of subgrade soil on the deformations incipient in win- tertime and springtime.

The described method of evaluation of the heat conductivity factor λ method is economically and timely underdemanding. The method determines conditions that correspond to real conditions in pavement structure. In this time the measurements of the heat conductivity factor of sub-base materials are realised. Attention is also paid to the determination of relation between specific heat capacity and a temperature of the sample. That relation can have an influence to the immediate value of coefficient λ at a definite negative temperature. We do not assume an influence that will have an expressive effect to present values.
6. Literatúra – References

[1] ČÁP, I.: Mérenie súčiniteľa tepelnej vodivosti λ metódou nestacionárneho tepelného toku. Záverečná správa výskumnej úlohy R12-127-005-03-E02, Žilina, VŠDS 1983. (Measurement of heat conductivity factor λ by using of non-stationary heat flow method. The final report from research work R12-127-005-03-E02, Žilina, UTC 1983).

[2] STN 721105 Stanovenie súčiniteľa tepelnej vodivosti metódou nestacionárneho tepelného toku. Vydavatelstvi norem Praha, 1991. (Determination of heat conductivity factor by method of the non-stationary heat flow. Slovak standard). Vydavatelstvi norem Praha, 1991.

[3] ČELKO, J. a kol.: Analýza vplyvu mechaniky cestných vozoviek na stav ich povrchu. Správa pre záverečnú oponentúru grantovej úlohy 1/4145/97. (The analysis of the influence of pavement mechanics to the surface conditions. Final report of grant project). 99 strán, ŽU 12/1999.