速 報
ロイコトリエン受容体拮抗薬（プランルカスト）のExercise-Induced Bronchospasm (EIB) に対する抑制効果の多施設二重盲検交叉比較試験による検討

日本小児アレルギー学会ガイドライン委員会・EBM作成班

西 田 三 麓1)* 古 庄 巻 史2) 森 川 昭 廣3) 望 月 博 之3) 赤 坂 微4) 杉 本 日 出 雄3) 池 部 敏 市6) 西 藤 田 敏 之7)
関 根 邦 夫7) 山 田 政 功8) 小 田 崎 博1) 本 村 貞 子1)

大 和 谷 厚4)**

国立療養所南福岡病院8）、九州栄養福祉大学9）、群馬大学医学部小児科10）、国立療養所八戸病院11）、国立療養所東崎玉病院小児科12）、横浜南共済病院小児科13）、国立療養所下志津病院14）、中部労災病院小児科15）、大阪大学医学系研究科生体情報科学講座16）

*：代表執筆者,**：コントローラー

key words：プランルカスト、ロイコトリエン受容体拮抗薬、運動誘発喘息、気管支喘息、長期管理薬

要 約

ロイコトリエン受容体拮抗薬（プランルカスト）が小児気管支喘息患者のExercise-Induced Bronchospasm (EIB) に対して有効であるかを検討した。対象は7～14歳（平均11.0歳）の無症状期の小児気管支喘息患者17名で、多施設二重盲検交叉比較試験により行った。試験薬剤を試験1日目の夕食後と2日目の朝食後の合計2回投与し、自転車エルゴメーターで運動負荷し、スパイロメーターにより肺機能を測定した。

その結果、プランルカストは、インアクティブラセボに比較して運動負荷による肺機能（FVC, FEV1.0, PEF, MMF, V50, V25）の低下を有意に抑制した。

はじめに

小児気管支喘息患者（以下、喘息児と略）は運動により気道収縮を生じるが、この現象を運動誘発気管支収縮（exercise-induced bronchospasm, EIB）という。EIBは、重症喘息患者、発作がコントロールされていない患者において、また運動強度の大きい運動を持续した場合、冷たい乾燥した環境で運動した場合などに起こりやすい。特に、家庭や学校で運動する機会が多い小児においては、呼吸困難が生じるために運動を回避する傾向が見られ、日常生活に大きな影響を与える。一般に、喘息児の約70～80％は運動後に一過性の呼吸困難を訴える。現在、EIBの治療や予防には、短時間作用型β2刺激薬やDSCG (disodium cromoglycate) の運動前の吸入が行われている。

一方、化学伝達物質の一つであるロイコトリエンは、ロイコトリエン受容体拮抗薬（Leukotriene receptor antagonist. 以下LTRA）の登場により、その臨床効果から気管支喘息の重要なメディエーターであることが確認され、LTRAは喘息治療薬の中で重要な位置を得つつある1,2）。しかし、LTRAのドライソロップ剤もあるプランルカストについては、小児のEIBに対するデータはない。このことから、日本小児アレルギー学会ガイドライン委員会として、その有効性を確認する必要があると判断し、小児のEIBに対する抑制効果について多施設二重盲検交叉比較試験により検討した。

対 象

無症状期の喘息児のうち、満6歳以上、運動負荷前の1秒値（FEV1.0）が予測値の70％以上で、かつ運動負荷後のFEV1.0が20％以上低下する喘息児、あるいはその保護者に十分な同意説明を行い試験実施の同意が
得られた児童を対象とした。

方 法

試験は、プラルカスト・ドライシロップ投与群（以下、プラルカスト群）とインアクティブラセボ・ドライシロップ投与群（以下、ラセボ群）による二重盲検交又比較試験により実施し、第一回日の試験と第二回目の試験の間に4〜14日間のwash out期間を設けた。なお、薬剤の割付はコントローラーにより無作為に行った。

1）投与方

プラルカスト・ドライシロップは2種類（プラルカストとして1包中に50mgまたは70mgを含有）を児童の体重区分に合わせて使用した。また、ラセボ群は、実験と外観、味、におい等の識別不能性をコントローラーが確認した製剤を用いた。

2）投与方法

試験薬剤は、第一回目と第二回目のいずれの試験においても、運動負荷試験実施前日の夕食後及び運動負荷試験実施当日の朝食後の合計2回投与した。なお、試験薬剤の投与量は、児童の体重区分別に1回分を体重12〜15kg: 50mg, 15〜24kg: 70mg, 25〜34kg: 100mg, 35〜45kg: 140mg, 45kg以上を220mgと定めた。

3）併用薬

吸入ステロイド薬（inhaled corticosteroid; ICS）、気管支拡張薬（β2刺激薬、テオフィリン徐放製剤）およびアレルギー薬（DSCG）を含む併用薬は可とした。ただし、吸入ステロイド薬と気管支拡張薬を使用している場合は運動負荷試験前の8時間以上（試験実施前夜まで）、抗アレルギー薬を使用している場合は24時間以上（試験実施前日の朝まで）のwash out期間を設けた。

4）運動負荷試験

自転車エルゴメーター（COMBI社製、コンピュータリンク67002 M）を使用、0.035 kp/kg, 60 rpm の負荷で6分間運動負荷を行った。運動負荷は、第一回目と第二回目のいずれの試験においても、朝食後（運動負荷前）の試験薬剤投与後5時間（最大8時間後まで）に実施した。運動負荷前、運動負荷直後、運動負荷後5分、15分、30分にスパイロメーター（CHEST社製、製品番号HI-701）を用い、肺機能判定（FVC、1秒量（FEV1.0）、ピークフロー（PEF）、中間最大呼気流量（MMF）、25%肺活量時の呼気速度（V25）、25%肺活量時の呼気速度（V50）を測定した。なお、同時に運動負荷中、負荷後30分までの心拍数を記録した。

5）評価方法

EIBに対するプラルカストの効果は、肺機能値（FVC、FEV1.0、PEF、MMF、V25、V50）に関し以下の項目をインアクティブラセボと比較した。また、統計解析は分散分析法により行った。

①肺機能値の経時変化

②Maximum % fall: 肺機能値の運動負荷後最大低下率

③AAC（Area Above Curve）0〜30min: 肺機能値の運動負荷後曲線（0〜30分）の面積

④% Recovery: 肺機能値の運動負荷後30分時の回復率（運動負荷後30分値÷運動負荷前値×100）

結果

1）児童背景

対象児童17名の内訳は、男児8名、女児9名で、年齢は7〜14歳、平均11.0±1.9歳であった。重症度別（母児気管支喘息治療・管理ガイドライン2000）では間欠型9例、軽症持続型3例、中等症持続型5例であった。

併用薬はDSCG（disodium cromoglycate）11例、テオフィリン徐放製剤10例、ICS10例、β2刺激薬4例、経口抗アレルギー薬2例であった。なお、ICSが使用されている10例については、CFC-BDP（chlorofluorocarbon-beclometasone dipropionate）に換算すると、1日当たり100〜400μg/day、平均320±132μg/dayが使用されていった。

また、プラルカスト投与群とプラセボ投与群の運動負荷開始時（運動前値）の肺機能値は表1に示すように両群に差はなく、運動負荷試験の実施状況（服薬からの検査時間、室温、湿度、運動負荷量、心拍数）についても両群に有意な差はなかった。

2）肺機能値の変化（表1）

両群の肺機能値の負荷前値、AAC0〜30min, Max. % fall, % recoveryの平均値±標準誤差を図1にまとめて示す。また、FEV1.0とV25については運動負荷前後の推移を図

肺機能	プランカルスト群	ブラセボ群	p
FVC			
負荷前値 (L)	2.32 ± 0.14	2.35 ± 0.13	NS
AAC0-30min (%・min)	-134.1 ± 50.0	-299.8 ± 88.2	NS
Max. % fall (%)	-12.3 ± 3.9	-15.7 ± 3.4	NS
% recovery (%)	100.4 ± 2.0	92.2 ± 3.4	NS
FEV1.0			
負荷前値 (L)	1.83 ± 0.12	1.85 ± 0.12	NS
AAC0-30min (%・min)	-154.9 ± 40.9	-387.4 ± 98.7	p<0.05
Max. % fall (%)	-14.1 ± 4.2	-20.2 ± 3.9	NS
% recovery (%)	104.8 ± 2.0	90.8 ± 4.0	p<0.05
MMF			
負荷前値 (L)	1.84 ± 0.17	1.82 ± 0.16	NS
AAC0-30min (%・min)	-238.1 ± 51.3	-553.9 ± 125.4	p<0.05
Max. % fall (%)	-23.1 ± 5.1	-31.4 ± 5.3	NS
% recovery (%)	113.4 ± 4.5	90.3 ± 5.9	p<0.01
PEF			
負荷前値 (L)	4.61 ± 0.27	4.64 ± 0.30	NS
AAC0-30min (%・min)	-214.8 ± 64.8	-482.6 ± 113.8	NS
Max. % fall (%)	-16.1 ± 4.5	-23.9 ± 4.2	NS
% recovery (%)	105.4 ± 2.4	87.1 ± 5.4	p<0.05
V25			
負荷前値 (L)	2.09 ± 0.20	2.06 ± 0.19	NS
AAC0-30min (%・min)	-254.3 ± 53.3	-567.5 ± 128.1	p<0.05
Max. % fall (%)	-21.7 ± 5.4	-32.1 ± 5.2	NS
% recovery (%)	112.2 ± 4.1	90.0 ± 6.1	p<0.05

Mean±SE unpaired t-test, ANOVA (プランカルスト群)

1にAAC0-30minを図2に、%recoveryを図3に例示した。

FVC：プランカルストはブラセボに比較して、運動負荷後15分のFVCの低下を有意に抑制した。

FEV1.0, MMF, V50：プランカルストはブラセボに比較して、運動負荷後15分および30分においてFEV1.0, MMF, V50のいずれの低下も有意に抑制し、AAC0-30minの低下および% Recoveryに対しても有意な効果を認めた。

PEF：プランカルストはブラセボに比較して、運動負荷後15分および30分においてPEFの低下を有意に抑制し、% Recoveryに対しても有意な効果を認めた。

V25：プランカルストはブラセボに比較して、運動負荷後30分においてV25の低下を有意に抑制し、AAC0-30minの低下および% Recoveryに対しても有意な効果を認めた。

Maximum % fallはすべてのパラメーターで有意差は認められなかった。その理由は対象症例の1例が、アクティブとブラセボでアクティブ＞ブラセボの大きな変化をしたため標準偏差が大きくなったことによる。クロスオーバー法によるプランカルスト・ドライドロップの持ち越し効果、すなわち先行する実験の効果が後に影響することは、全ての肺機能パラメーターにおいて認めなかった。
3）心拍数
運動負荷中と負荷後的心拍数の推移をみると、プランルカスト投与群とプラセボ投与群共に、心拍数はほぼ同様に推移した。すなわち運動負荷開始と共に徐々に増加し、負荷終了直後に最大値（プランルカスト投与群：171.4 ± 20.5 bpm、プラセボ投与群：171.7 ± 19.0 bpm）を示して30分後にはほぼ元に回復した。

4）副作用
プランルカストおよびプラセボのいずれにおいても副作用は認められなかった。

図1 運動負荷前後のプランルカスト群とプラセボ群におけるFEV1.0とV50の推移
Mean ± SE unpaired t-test（プランルカスト群 vs プラセボ群） **: P < 0.01 *: P < 0.05

図2 運動負荷試験におけるプランルカスト群とプラセボ群のAAC0-30min
Mean ± SE *: P < 0.05
考察

気管支喘息の治療目的は、喘息発作に対する治療だけでなく、非発作時にも治療を継続して行うことにより、最終的に喘息を良好にコントロールし、健常者と同様の日常生活をおこすことにある。しかし、気管支喘息患者では、運動による気道収縮が誘発されることがあり、このEIBは気管支喘息患者の70～80%に認められ、EIBの強度と頻度は重症の喘息患者ほど高い。

EIBの発症機序には、いくつかの考えがある。運動時の換気増大で気道の冷却(heat loss)5と水分喪失(water loss)6,7による気道上皮の浸透圧の上昇にあるとする説8や、rewarming説（運動による気道の冷却の後に、運動終了後に気道の温度が再上昇し、この気道の温度変化がEIBを起こすとする説）9などである。いずれにしても、EIB発生時、このような水分喪失や温度変化に伴う浸透圧の変化により、気道粘膜上にある肥満細胞などの炎症細胞が活性化し、化学伝達物質が遊離し気道収縮を起こすと考えられている。現在、EIBの治療や予防には、EIB抑制効果の最も強いとされる短時間作用型β2刺激薬やDSCGの運動前吸入が主に行われている9。

化学伝達物質の一であるロイコトリエンは、ヒスタミンの約1000分の1の濃度で同等の気道収縮を起こし、かつ持続的な気道収縮作用を持つ。さらに気道炎症を惹起する作用および気道過敏性を亢進する作用を持つ気管支喘息の重要なメディエーターである10。

EIBに対してもその原因として大きく関与していることが報告されている。EIBに対するLTRAの効果の報告には、成人気管支喘息に対して、プラクストン11,12、モルときルカスト13,14およびザフィルカスト15のいずれもFEV1.0の低下を有意に抑制したことを報告している。また、喘息児に対しては、モルときルカストは6歳以上の患者を対象に16、ザフィルカストは12歳以上の患者を対象に17、プラセボに比較してFEV1.0の低下を有意に抑制したことを報告している。しかし、プラクストンについては、小児気管支喘息のEIBに対する報告はない。

今回、プラクストンの運動誘発喘息に対する抑制効果について、インアクティブプラセボを対照に多施設二重盲検交又比較試験により検討した結果、明らかに効果性を認めた。また、肺機能の検査はFEV1.0のみでなく他のLTRAでは検討していないMME、V50、V25の末梢気道のパラメータについても検討したが、プラクストンはすべての肺機能検査項目について有意な抑制効果を示した。また、プラクストンは、％Recoveryに対して効果があり、いずれの検査項目においても運動負荷後15分および30分に有意な効果がみられており、EIBからの回復が早いことが確認された。今回、検討した17例中50％以上の喘息児にテオフィリン
徐放製剤、吸入ステロイド薬、あるいはDSGCが使用されており、このような対象児のEIBに対するブランクカストが効果を示したこと、ロイコトリエンによる気管支収縮作用を抑制した上乗せ効果があったと考えられる。

今回、ブランクカストが運動負荷による肺機能の各パラメーター（FVC、FEV_{1.0}, PEF, MMF, V_{50}, V_{25}）の低下を有意に抑制したことより、従来の経ロッカアレルギー薬とは異なり、LTRAは小児気管支喘息児の管理薬剤として重要な位置を占めることができ示唆された。

最近発表された日本小児アレルギー学会・小児気管支喘息管理ガイドライン2002やGINA2002では、長期管理薬としてLTRAは重症持続型にも記載されている。今後、喘息児のQOLの改善や呼吸中NOなどの炎症マーカーの抑制など、さらに幅広い検討でその有用性を確認することが必要と考えられる。

参考文献

1) 三河春樹、馬場 實、中島光好、小児気管支喘息に対するロイコトリエン受容体拮抗剤ブランクカストドライソルブの臨床評価—オキサトンミドドライソルブを対照とした二重盲検試験—. 臨床医薬 1997；13：423-456.
2) 奥 大資、塩田光隆、田村良香、宮崎真紀、大村馨代、瀬戸嗣朗、古庄巌史。小児気管支喘息におけるロイコトリエン受容体拮抗薬ブランクカストの長期投与の有効性の検討。アレルギー 2002；51：400-410.
3) 西原三馨、運動誘発喘息の自転車エルゴメーターによる運動負荷量の検討。日誌 1981；85：1030-1038.
4) Nishima S, Akasaka T, Arai Y, Ikura Y, Shinomiya K, Teramuchi T, Torii S, and Mikawa H. Standardization of the severity of exercise-induced bronchospasm in Japanese children with asthma. Acta Paediatr Jpn Overseas Ed 1983；25：241-248.
5) Straus RH, McFadden ER Jr, Ingram RH, et al. Enhancement of exercise-induced asthma by cold air. New Eng J Med 1977；297：743-747.
6) Anderson SD, Schoeffel RE, Follet R, et al. Sensitivity to heat and water loss at rest and during exercise in asthmatic patients. Eur J Respir Dis 1982；634：459-471.
7) Harn A, Anderson SD, Morton AR, et al. A reinterpretation of the effect of the inspired air in exercise-induced asthma. Am Rev Respir Dis 1984；13：575-579.
8) McFadden ER Jr, Lenner KA, and Strol KP. Post-exertional airway rewarming and thermally induced asthma. J Clin Invest 1986；78：18-25.
9) Morooka T, Nishima S and Ota S. Prevention of exercise-induced bronchospasm in asthmatic children. Effect of aerosol and oral procaterol hydrochloride. J Asthma 1987；24：335-346.
10) Paul M, OBryrne PM. Leukotrienes in the pathogenesis of asthma. Chest 1997；111：27S-34S.
11) 藤呂 元、馬場 實、服部寛洋、市村浩一、橋本 純男、堀江考至。Pranlukast Hydrate2週間投与による運動誘発喘息抑制効果の検討。アレルギー 2000；49：646-652.
12) 平田一人、栗原直嗣、紙森隆雄、引石文夫、藤本 純男、武田忠直。運動誘発喘息とロイコトリエン受容体拮抗薬 Exercise-induced asthma and leukotriene receptor antagonist. 臨床医薬 1993；9(suppl.1)：225-228.
13) Leff JA, Busse WW, et al. Montelukast, a leukotriene-receptor antagonist, for the treatment of mild asthma and exercise-induced bronchoconstriction. New Eng J Med 1998；339：147-152.
14) Villaran C, O'Neill SJ, et al. Montelukast versus salmeterol in patients with asthma and exercise-induced bronchoconstriction. J Allergy Clin Immunol 1999；104：547-553.
15) Dessanges J-F, Prefaut C, et al. The effect of zafirlukast on repetitive exercise-induced bronchoconstriction. The possible role of leukotrienes in exercise-induced refractoriness. J Allergy Clin Immunol 1999；104：1155-1161.
16) Kemp JF, Dockhheodore RJ, Shapiro GG, et al. Montelukast once daily inhibits exercise induced bronchoconstriction in 6- to 14-year-old children with asthma. J Pediatr 1998；133：424-428.
17) Pearlman DS, Ostrom NK, Bronsky EA, et al. The leukotriene D4-receptor antagonist zafirlukast attenuates exercise-induced bronchoconstriction in children. J Pediatr 1999；134：273-279.
18) 日本小児アレルギー学会、小児気管支喘息治療・
THE LEUKOTRIENE RECEPTOR ANTAGONIST, PRANLUKAST, INHIBITS EXERCISE-INDUCED BRONCHOSPASM (EIB) IN ASTHMATIC CHILDREN.

EBM Preparatory Group of Guideline, Executive Committee in Japanese Society of Pediatric Allergy and Clinical Immunology - Randomized Multicenter Doubled-Blind Placebo-Controlled 2-Period Crossover Trial
Sankei Nishima, Kenshi Furusho, Akihiro Morikawa, Hiroyuki Mochizuki, Toru Akasaka, Hideo Sugimoto, Toshiichi Ikebe, Toshiyuki Nishimuta, Kunio Sekine, Masataka Yamada, Hiroshi Odajima, Chikako Motomura, Atsushi Yamatodani

The purpose of this study was to determine whether pranlukast, a leukotriene receptor antagonist, attenuates exercise-induced bronchospasm (EIB) in children with asthma. Study design was a randomized multicenter doubled-blind placebo-controlled 2-period crossover trial.

Subjects were 17 stable asthmatic children aged 7 to 14 years (mean: 11.0 years) with a history of typical symptoms of EIB. They received dry syrup of pranlukast or placebo both after dinner in the first day and after breakfast in the second day in each period. For each patient, all exercise challenges were performed on a bicycle ergometer and spirometry measurements were collected pre- and post-exercise.

In conclusion, pranlukast, compared with placebo, significantly inhibited the reduction of pulmonary function after exercise, which was estimated by spirometry measurements (FVC, FEV1.0, PEF, MMF, V50 and V25). This study demonstrated that pranlukast, a leukotriene receptor antagonist, is a useful drug in asthma management.