Water chemistry reveals a significant decline in coral calcification rates in the southern Red Sea

Zvi Steiner¹, Alexandra V. Turchyn¹, Eyal Harpaz² & Jacob Silverman³

Experimental and field evidence support the assumption that global warming and ocean acidification is decreasing rates of calcification in the oceans. Local measurements of coral growth rates in reefs from various locations have suggested a decline of ~6–10% per decade since the late 1990’s. Here, by measuring open water strontium-to-alkalinity ratios along the Red Sea, we show that the net contribution of hermatypic corals to the CaCO₃ budget of the southern and central Red Sea declined by ~100% between 1998 and 2015 and remained low between 2015 and 2018. Measured differences in total alkalinity of the Red Sea surface water indicate a 26 ± 16% decline in total CaCO₃ deposition rates along the basin. These findings suggest that coral reefs of the southern Red Sea are under severe stress and demonstrate the strength of geochemical measurements as cost-effective indicators for calcification trends on regional scales.

¹ Department of Earth Sciences, University of Cambridge, CB2 3EQ Cambridge, UK. ² ZIM Integrated Shipping Ltd., Haifa, 31016, Israel. ³ Israel Oceanographic & Limnological Research, Haifa, 31080, Israel. Correspondence and requests for materials should be addressed to Z.S. (email: steinerz@gmail.com) or to J.S. (email: jacobs1@ocean.org.il)
A

bison of excess anthropogenic CO₂ from the atmosphere into the oceans is reducing seawater pH and thus the carbonate ion concentration, making it increasingly more difficult for calcareous organisms to build their skeletons. The anticipated decrease in CaCO₃ production with increasing atmospheric CO₂ and resulting ocean acidification will significantly impact many aspects of the marine carbon cycle and lead to the deterioration of shallow-water-carbonate platform habitats, such as coral reefs. The effect of ocean acidification may be particularly hard for coral reefs as corals, which form the foundation of their carbonate framework will not be able to produce CaCO₃ at a rate that will equal or offset the sum of mechanically and biologically mediated erosive processes.

The adverse effects of ocean acidification on hermatypic coral calcification, as well as whole coral reef community calcification has been demonstrated experimentally in numerous laboratory experiments and two controlled field experiments. These findings have motivated numerous studies of coral reef community metabolism, which established a baseline for our understanding of the central variability in photosynthesis, respiration, calcification and CaCO₃ dissolution rates of whole reef communities. For example, measurements of community calcification made over two annual cycles in the Eilat Nature Reserve Reef, northern Red Sea, have been used to develop a gross coral reef calcification rate equation, which is a function of live coral coverage, reef-water temperature and aragonite saturation. Using this equation, together with modelled values of sea surface temperature and aragonite saturation for different future levels of atmosphere CO₂, it has been predicted that many tropical coral reefs might not be able to maintain their calcareous frameworks by the middle of the 21st century, when atmospheric CO₂ is expected to double relative to its pre-industrial level. Studies of community metabolism in the Great Barrier Reef compared rates of calcification measured in the past few years with similar measurements conducted 3–4 decades ago, which together suggested an alarming decline in net calcification rates, and confirmed the predicted decline according to the Eilat rate equation. In addition, numerous coral growth records derived from coral cores taken from live corals in the Great Barrier Reef, Red Sea and reefs in southeast Asia indicated that growth rates have been continuously declining since the 1990’s, on the order of ~6–10% per decade. In contrast, the same type of data suggests that coral calcification rates were stable in the decades preceding 1996 and 1998 in the Florida Keys and the Red Sea, respectively.

The alarming global decline in the state of coral reefs is largely due to periods of prolonged thermal stress that are increasing in frequency and duration, resulting in massive coral bleaching and mortality. In addition to local stress factors, such as coral mining and eutrophication, this global decline in the state of coral reefs warrants careful monitoring of these important ecosystems. Assessment of the state of coral reefs has traditionally relied mostly on annual visual community structure surveys. This method provides a wealth of information regarding the state of corals reef communities and allows the exploration of the processes that influence the state of the communities, yet the spatial coverage of these surveys is limited and they are very labour intensive. A different approach to assess the state of whole coral reef ecosystems is to measure changes in the water chemistry induced by biological activity, where precipitation of CaCO₃ by reef organisms (mainly hermatypic corals) induces changes in seawater total alkalinity (A₇). Furthermore, it has been proposed that this method can be applied to ocean basins or oceanic regions with a high prevalence of coral reefs, where changes in A₇, in conjunction with strontium and calcium concentrations that diverge from conservation with salinity can be used to determine the relative contributions of corals and calcareous plankton to their CaCO₃ budget. In the oceans, A₇ is typically conservative with seawater salinity, which itself changes mostly due to evaporation and/or precipitation. Upward divergence from the oceanic conservation of A₇ relative to salinity in surface waters indicates net dissolution of CaCO₃ or independent production of A₇, while downward divergence of A₇ relative to salinity in surface waters indicates net CaCO₃ precipitation or independent uptake of A₇. Thus, an increase in the slope of A₇ vs. salinity relative to a baseline slope in a defined oceanic region could indicate a decrease in net calcification. If the A₇ vs. salinity slope is higher than the slope of oceanic conservation, then it would indicate that the system has become a net source of A₇, being a source of alkalinity could indicate the dissolution of CaCO₃ or an external supply of A₇, such as riverine or groundwater input.

The physical oceanography of the Red Sea features several characteristics which make it an ideal basin for ocean-chemistry-based exploration and monitoring of the CaCO₃ cycle. It is a long and narrow basin located in a hyper arid region with no significant river discharge or terrestrial runoff. The only significant source of water to the Red Sea is surface water entering through the Straits of Bab-el-Mandeb, connecting the Red Sea with the Gulf of Aden and Indian Ocean. The shallow sill at Bab-el-Mandeb prevents intermediate and deep Indian Ocean waters from entering the Red Sea. Red Sea intermediate and deep waters form in the northern Red Sea and in the Gulf of Aqaba and Suez, and are isolated from global deep ocean waters. As a result, the Red Sea deep water mass has an unusually high temperature of 21 °C, maintaining supersaturation with respect to calcite and aragonite at all depths. Upper thermocline water in the south and central Red Sea is warmer throughout the year and less salty than the deep and intermediate waters of the Red Sea, suppressing deep water formation and ventilation in these regions. The Red Sea is of particular interest in the context of ocean acidification and climate change since it is home to the world’s longest continuous coral reef. The coral reefs of the southern Red Sea flourish under high summer time temperatures, which are generally above the thermal stress threshold considered to cause bleaching.

A Rayleigh distillation model has been previously used to calculate the contribution of coral reefs and calcareous plankton to carbonate production along the Red Sea, Gulf of Aden and north-western Indian Ocean based on data collected in October–November 1998. These calculations provide a baseline for long-term monitoring of changes in calcification on a basin scale, which we are now able to compare with new data collected along the Red Sea during December 2015–January 2016, April 2016 and March 2018 (Fig. 1). Comparing these new and old data, we find that changes in the salinity-normalized concentrations of strontium and A₇ along the north-south bisecting axis of the Red Sea indicate a 26 ± 16% decline in net calcification rates between 1998 and 2015. This is a dramatic decrease for a region that has been previously declared a refuge for corals and coral reefs in an age of global warming and ocean acidification. It seems that most of this decrease can be attributed to a reduction in net coral reef calcification rates in the tropical Red Sea while plankton calcification rates have also decreased. In addition, it is possible that dissolution in coral reefs increased as a result of coral bleaching, eutrophication and/or ocean acidification. Much of this region is presently inaccessible to researchers due to ongoing conflicts taking place in Yemen and Somalia, hence this large scale change could not be detected through standard visual surveys of coral reefs. This study demonstrates the strength of
geochemical tools in establishing baselines and following trends to determine environmental status on a large spatial and temporal scale.

Results and Discussion
Changes in the CaCO$_3$ budget of the Red Sea. The Red Sea region as a whole is a significant producer of CaCO$_3$, and the bulk of this CaCO$_3$ is not subsequently dissolved; as a result, the Red Sea region is a net sink for CaCO$_3$. We can see this net sink of CaCO$_3$ in the gradual decrease in salinity-normalized total alkalinity (nAT) in the Red Sea surface water as it flows northward from the straits of Bab-el-Mandeb (Fig. 2). The nAT of surface water samples collected in April 2016 and March 2018 is similar to the December 2015 data. The spatial distribution of this uptake also changed, nAT uptake decreased significantly in the southern Red Sea and western Gulf of Aden since 1998 and possibly increased from 20°N northward (Fig. 2), as the gap between the data sets becomes smaller in that region. The uptake of nAT in the Red Sea is equivalent to the difference between the slope of nAT-to-salinity in the Red Sea and the Indian Ocean (IO) surface waters. In 1998, the slope of nAT-to-salinity between the IO and Red Sea was 26.6 ± 2.0, while in 2015 and 2018 the slope was 35.8 ± 2.4 (Fig. 3). Assuming that the residence time of water in the Red Sea did not change significantly between 1998 and 2015, the decrease in nAT uptake in 2015 relative to 1998 is 26 ± 16%. The Indian Ocean nAT-to-salinity slope in 1998 and 2015–2018 remained unchanged with a value of 61.9 ± 4.0. The residence time of surface waters in the Red Sea is on the order of 1 year36, hence each of the profiles presented in Figs. 2 and 3 represents a yearly cycle and should be sensitive to interannual variability.

The full data set suggests that the 2015 surface water data is reliable for calculations of calcification rates in the central and southern Red Sea but not in the northern Red Sea. Concentrations of calcium and nAT (ΔCa$^{2+}$: ΔnAT) decrease at a ratio of 0.55 ± 0.11 mole mole$^{-1}$ along the southern and central Red Sea, in agreement with predicted ratios in precipitation of CaCO$_3$. However, in the northern Red Sea (north of 24.1°N), roughly one mole of calcium is added per two moles of nAT lost (ΔCa$^{2+}$: ΔnAT = −0.53 ± 0.08 mole mole$^{-1}$). Such ratios are characteristic of hydrothermal activity and reactions between basaltic minerals and seawater37. Mineralogical transformations of fresh basalts and mixing of seawater with hydrothermal fluids replace calcium by magnesium, acting as a net source of dissolved calcium and sink of dissolved magnesium for the overlying seawater$^{38–40}$. Strontium concentrations, on the other hand, are typically not significantly altered relative to chlorinity during high temperature circulation41. It was previously reported that surface water from
Relative contributions of corals and calcareous plankton. Each group of calcifying organisms precipitates CaCO₃ with a typical tendency to incorporate strontium in the mineral lattice (K_D, the distribution coefficient, is the ratio between a trace element and the major element in a solid versus the fluid it precipitates from). Corals precipitate aragonite with a slight preference for strontium over calcium (K_D^ref = 1.04 ± 0.03). The distribution coefficient of strontium in aragonite precipitated by red and green algae as well as inorganic aragonite are also high (K_D = 0.12, while pteropods precipitate aragonite with K_D = 0.12, and coccolithophorids precipitate low Mg-calcite with a typical K_D = 0.3). Taking all these calcifying plankton together, we can estimate an “average” distribution coefficient of strontium in planktonic CaCO₃ precipitated in the Red Sea, K_D^plankton, is 0.17 ± 0.03, similar to the average value for biotic low magnesium calcite in general. Because this number is significantly different from the distribution coefficient for strontium precipitated in corals (K_D^ref = 1.04 ± 0.03), by measuring the variations in strontium, calcium and alkalinity in the seawater along a transect we can determine the relative contributions of corals and calcareous plankton to the CaCO₃ budget of a defined oceanic region.

The average distribution coefficient of strontium in all CaCO₃ precipitated along a surface water flow trajectory can be calculated using the Rayleigh distillation equation:

$$R_w = f^{K_D-1}$$

where R_w is the Sr/Ca or Sr/AT ratio in each surface seawater sample; R_0 is the Sr/Ca or Sr/AT ratio in a reference sample and f is the fraction of salinity normalized calcium or AT lost relative to the reference sample.

In the present work, we focus on changes in AT relative to salinity and Sr/AT ratios since the relative changes in the concentrations of dissolved calcium were very small. If salinity normalized concentrations of calcium, AT and strontium change only due to precipitation of CaCO₃, it is reasonable to assume a two-end-member system in which one end member is coral aragonite and the other is calcareous plankton, each with a typical distribution coefficient for strontium in its precipitated carbonate (much lower for calcareous plankton than for coral aragonite). Under this assumption, the relative net contributions of plankton (X_{plankton}^plankton which includes benthic precipitators of calcite) and corals (1 − X_{plankton}^plankton which includes inorganic aragonite) to the CaCO₃ budget in the Red Sea can be expressed by Eq. (1) and solved using a water mass chemical balance:

$$K_D = K_D^{plankton} \cdot X_{plankton}^{plankton} + K_D^{ref} \cdot (1 - X_{plankton}^{plankton})$$

An important underlying assumption of the Rayleigh distillation model is that there is no back reaction, i.e. no dissolution of CaCO₃. Thus, Eq. (1) is not typically suitable for assessments of the CaCO₃ cycle in deeper water masses or in shallow water.
environments where inorganic or biogenic dissolution, respectively may play an important role in their CaCO₃ budget. In the Red Sea, deep water CaCO₃ dissolution is not prevalent because of the high temperature and saturation states of CaCO₃ minerals. In-situ dissolution of CaCO₃ at the site of its formation, as part of the diurnal cycle, does not measurably modify the chemistry of the water far away from the reef as long as dissolution is balanced by accretion, hence this natural process is normally transparent in our calculations. An additional underlying assumption of the model is that all calcification processes occurring within a body of water are reflected by its chemical composition, i.e. laterally mixed. The Red Sea has a channel like structure and a single significant entry point, ensuring that nearly all water found in the surface layer of the northern Red Sea originated from the strait of Bab-el-Mandeb, connecting the Red Sea with the Gulf of Aden and the Indian Ocean. Within this channel, a series of mesoscale eddies vigorously mixes the upper water column on the longitudinal axis, as reflected by the zonation of many physical and biological parameters.

The average distribution coefficient of strontium in the precipitated CaCO₃, as calculated using the Rayleigh distillation model for the south and central Red Sea, declined from 0.36 ± 0.20 in 1998 to 0.11 ± 0.06 in 2015 and 0.11 ± 0.07 in 2018 with 95% confidence intervals. This decline was considered to be a result of eutrophication due to nutrient emissions from nearby fish farm activity. The state of the coral reef in Eilat improved after 2004, following reductions in fish production and ultimate removal of this nutrient source.

Long term trends in the Gulf of Aqaba. The northernmost Gulf of Aqaba is the only region in the Red Sea system in which long-term monitoring of the ecology and chemistry of the marine environment has been conducted routinely since the 1990’s. Located at the terminus of the Red Sea surface water flow, water chemistry in the Gulf of Aqaba sums the processes occurring along the Red Sea with a likely overrepresentation of local processes occurring within the Gulf. In the northern Gulf of Aqaba, coral cover and the density of colonies declined significantly during the 1990’s and reached an alarming low in 2004. This decline was considered to be a result of eutrophication due to nutrient emissions from nearby fish farm activity. The state of the coral reef in Eilat improved after 2004, following reductions in fish production and ultimate removal of this nutrient source between 2006 and 2008. Changes in the abundance and species composition of planktonic foraminifera in recent decades...
have also been reported in the Gulf of Aqaba58. Monthly measurements of A_T in the northern Gulf of Aqaba suggest a decline in calcification rates between 1999 and 200459 and relative long-term stability with seasonal and inter-annual variability since 200814,58. Recorded increase in A_T of the surface waters of the Gulf of Aqaba in the years following 1998, probably reflects the local decline in the state of coral reefs in the northern Gulf of Aqaba24 as well as decreased calcification rates along the main basin of the Red Sea14,60.

Factors contributing to reduced calcification rates. Three main processes are most likely to contribute to reduced calcification rates along the southern Red Sea: Decreased carbonate ion concentration and aragonite saturation due to absorption of anthropogenic CO$_2$ by the surface waters61. Increased temperatures in this already very warm region14,50,62,63. Eutrophication, which may support colonization of hard substrates by macro algae and displacement of reef building corals, as well as the increase in boring activity (biogenic dissolution of CaCO$_3$) by organisms that inhabit the CaCO$_3$ framework of coral reefs19,64 and the bacterially mediated dissolution of carbonate sediments, which is also affected by ocean acidification20,65,66. In the following discussion, we shall see that all three processes probably contribute to the observed decline.

Rates of coral calcification strongly depend on the saturation state of aragonite11. The same is probably also true for calcite precipitation by foraminifera67. The partial pressure of CO$_2$ in surface waters of the Red Sea have been shown to be near equilibrium with atmospheric CO$_2$68, hence the ecosystem should quickly respond to changes in atmospheric CO$_2$. At the temperature-salinity range in the study area, increased temperatures increase the aragonite saturation state by 0.03 units-per-degree Celsius and may either increase or decrease biotic calcification rates, depending on the physiological response of organisms to temperatures. A null hypothesis of no change in live coral cover suggests that the increase in pCO$_2$ and warming of 0.25 °C69 between 1998 and 2015 should have decreased net coral calcification rates along the Red Sea by 4.4%, based on the observed response of a coral reef community in the Gulf of Aqaba to seasonal changes in the saturation state of aragonite and temperature (ref. 11; Supplementary Fig. 1). Therefore, the dramatic decline in net coral calcification rates in the southern and central Red Sea as inferred from Figs. 2 to 4 must result from additional processes.

Reduced rates of coral calcification and reduced abundance of large corals since 1998 has been previously reported for several Red Sea reefs14,60. It was suggested that this decline in coral growth rates was a result of a long series of warm years in the central Red Sea14. In 2015, global temperatures were particularly high and widespread coral bleaching events were reported globally, including sites in the central Red Sea, Persian Gulf and Indian Ocean18,50,62. In the Red Sea, sea surface temperatures in 2015 were 0.5 °C higher than the long term average, while in 2015 was warmer than average for this region, it was not the warmest on record in recent years63. The bleaching event clearly affected the metabolic state of Red Sea corals yet coral bleaching is a very rapid process, which is unlikely to induce a gradual decline in coral growth as documented for the central Red Sea14. It therefore seems that while bleaching played a major role in decreasing coral calcification rates, change in calcification rates started earlier. Data from April 2016 and March 2018 show that recovery from the 2015 bleaching event has yet to happen.

A third possible contributor to the observed decline in southern Red Sea net calcification rates is increased erosion. Increased nutrient availability and subsequent growth of epilithic algae, increases the activity of boring organism and dissolution rates of CaCO$_3$ in coral reefs69,70, as well as bacterially mediated dissolution of carbonate sediments and rubble39. For example, between 1960–1970 and 2009, the night-time dissolution rate of a reef in One Tree Island increased from 31 to 71% of the gross calcification rates, a three-fold increase in absolute terms13, likely driven by warming and ocean acidification.

Much like the Gulf of Aqaba, the central and southern parts of the Red Sea are increasingly threatened by overfishing, urban development and eutrophication71. The effect of eutrophication on trophic levels in central Red Sea coral reefs has been clearly documented72 and should impact the whole community growth and calcification rates. Support for this claim comes from the average regional distribution coefficient of strontium, suggesting that coccolithophores calcification rates have also decreased. Calcification rates by coccolithophores are less likely to respond dramatically to small changes in temperature or pCO$_2$ and more likely to be affected by eutrophication and pollution as these give rise to increased abundance of faster growing species37,74.

Methods

Sampling. During 27/12/2015–31/3/2016, 18–21/4/2016 and 23–31/3/2018 seawater samples were collected from the sea surface by submersible of the Container Ships ZIM Qingdao and Yokahama during their passage northward from the Arabian Sea through the Gulf of Aden and the Red Sea on their way to the Mediterranean (Fig. 1). Water samples were kept in refrigeration in 1.5 l gas tight plastic bottles until they were subsampled at the Israeli Oceanographic and Limnological Research (IOLR) lab in Haifa, Israel within 3 days from collection of the last sample. Water samples for total alkalinity (A$_T$), dissolved inorganic carbon (DIC) and density were kept in brown glass bottles and samples for Sr, Ca and Na analysis were kept in polypropylene tubes. Samples for A$_T$, DIC and density were measured within the first week after arriving at IOLR.

Carbonate chemistry. Total alkalinity was determined at IOLR by potentiometric Gran titration of ~22 g subamples, filtered through Whatman GFF 0.45 µm filters in a Research Titirino 785 Titirimer with a temperature corrected pH probe and HCl 0.05 N. A$_T$ was calculated from the intercepts and slopes of the linear regression fits between measured pHs and corresponding acid volumes in the pH range 3.8 and 3.75. The acid concentration was calibrated using seawater Dickson CRMs. The precision of these measurements was ±2 µmol kg$^{-1}$ (two measurements per sample). The DIC was extracted from 1.6 mL subamples by acidifying them with phosphoric acid (H$_3$PO$_4$, 10%) using an automated CO$_2$ extractor and delivery system (AERICA by MARIANDA) and high grade N$_2$ (99.999%) as a carrier gas connected on line with a LiCor 6252 IR CO$_2$ analyser. Measurements were calibrated using seawater Dickson CRMs. The repeatability of the measurements was 1.7 ± 1.3 µmol kg$^{-1}$ (mean ± STD of all measurement errors, n = 28).

Salinity. Salinity was calculated from density measurements conducted at IOLR using an Anton-Paar density and sound velocity metre, model DSA 5000 M. Together with the recorded temperature at the time of the measurements the results were input into the international equation of state for seawater67. The roots of the resulting polynomial with salinity as the unknown variable were calculated using the Newton–Raphson method. Validation of this method was done with a Dickson CRM and IAPSO standard seawater producing an accuracy of better than ±0.003.

Major elements. Concentrations of calcium, strontium and sodium were measured at the University of Cambridge by inductively coupled plasma optical emission spectroscopy using an Agilent Technologies 5100 ICP-OES. Samples were diluted with 0.1 N HNO$_3$ at 1:71 ratio and analysed in duplicates by sample standard bracketing. Initial calibration lines were obtained by running different dilutions of IAPSO seawater batch P157. For accuracy calibrations, IAPSO seawater was spiked with a 48Ca–48Ca spike; calcium was separated by ion chromatography by running the samples through Sr spec resin followed by AG50WX–X8 resin and measured by Thermo Scientific Triton Plus thermal ionization mass spectrometry (TIMS). Sr/Ca ratios and the concentrations of strontium in the deck were verified by running a standard with a known Sr/Ca ratio, prepared by Mervyn Greaves and utilized in many previous studies at the laboratory of Harry Elderfield. For this study, we used the Ca422.673, Sr421.552 and Na468.821 spectral lines. 48Ca concentrations were measured using a 48Ca spike; calcium was separated by ion chromatography by running the samples through Sr spec resin followed by AG50WX–X8 resin and measured by Thermo Scientific Triton Plus thermal ionization mass spectrometry (TIMS). Sr/Ca ratios and the concentrations of strontium in the deck were verified by running a standard with a known Sr/Ca ratio, prepared by Mervyn Greaves and utilized in many previous studies at the laboratory of Harry Elderfield. For this study, we used the Ca422.673, Sr421.552 and Na468.821 spectral lines. 1σ standard deviation of the analyses was 0.12% and 0.11% for Ca/Na and Sr/Na ratios, respectively (n = 33). All calcium and strontium measurements were normalized to salinity of 35 by assuming sodium concentrations of 468.5 mmol kg$^{-1}$ at that salinity76.
1. Feely, R. A. et al. Impact of anthropogenic CO₂ on the CaCO₃ system in the oceans. Science 305, 362–366 (2004).
2. Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO₂ problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).
3. Kleypas, J. A. et al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284, 118–120 (1999).
4. Silverman, J. et al. Regional decline in growth rates of massive Porites corals in the Red Sea and the Indian Ocean. J. Geophys. Res.: Oceans 107, 1777–1795 (2002).
5. Zouina, O., Dufour, A., Gulev, S. K. & Stenchikov, G. Regional hydrological change over the Red Sea in ERA-Interim. J. Hydrometeorol. 18, 65–83 (2017).
6. Soñanos, S. S. & Johns, W. E. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean. J. Geophys. Res.: Oceans 107, 11 (2002).
7. Soñanos, S. S. & Johns, W. E. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea. J. Geophys. Res.: Oceans 108, 15 (2003).
8. Cumber, R. P. On the sources, formation, and circulation of Red Sea deep water. J. Geophys. Res.: Oceans 93, 8175–8191 (1988).
9. Krumgalz, B. S. & Erzé, J. Chemical Oceanography Survey of the Northern Red Sea, the Straits of Tiran and the Gulf of Elat (I.O.L.R., 1984).
10. Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Glob. Change Biol. 19, 3640–3647 (2013).

Data availability
All data supporting the findings of this study is provided in the online Supplementary Information.

Received: 19 January 2018 Accepted: 3 August 2018
Published online: 06 September 2018

References

1. Feely, R. A. et al. Impact of anthropogenic CO₂ on the CaCO₃ system in the oceans. Science 305, 362–366 (2004).
2. Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO₂ problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).
3. Kleypas, J. A. et al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284, 118–120 (1999).
4. Silverman, J. et al. Regional decline in growth rates of massive Porites corals in the Red Sea and the Indian Ocean. J. Geophys. Res.: Oceans 107, 1777–1795 (2002).
5. Zouina, O., Dufour, A., Gulev, S. K. & Stenchikov, G. Regional hydrological change over the Red Sea in ERA-Interim. J. Hydrometeorol. 18, 65–83 (2017).
6. Soñanos, S. S. & Johns, W. E. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean. J. Geophys. Res.: Oceans 107, 11 (2002).
7. Soñanos, S. S. & Johns, W. E. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea. J. Geophys. Res.: Oceans 108, 15 (2003).
8. Cumber, R. P. On the sources, formation, and circulation of Red Sea deep water. J. Geophys. Res.: Oceans 93, 8175–8191 (1988).
9. Krumgalz, B. S. & Erzé, J. Chemical Oceanography Survey of the Northern Red Sea, the Straits of Tiran and the Gulf of Elat (I.O.L.R., 1984).
10. Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Glob. Change Biol. 19, 3640–3647 (2013).
Shlesinger, T. & Loya, Y. Recruitment, mortality, and resilience potential of scleractinian corals at Eilat, Red Sea. *Coral Reefs* **35**, 1357–1368 (2016).

Steiner, Z. et al. The effect of bioturbation in pelagic sediments: lessons from radioactive tracers and planktonic foraminifera in the Gulf of Aqaba, Red Sea. *Geochim. Cosmochim. Acta* **194**, 139–152 (2016).

Genin, A. & Shaked, Y. Annual Report of the Israel National Monitoring Program in the Northern Gulf of Aqaba (Israel Ministry of the Environment, 2005).

Riegl, B. M., Bruckner, A.W., Rowlands, G. P., Purkis, S. J. & Renaud, P. Red Sea coral reef trajectories over 2 decades suggest increasing community homogenization and decline in coral size. *PLoS ONE* **7**, e38396 (2012).

Steiner, Z. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. *Nature* **437**, 681–686 (2005).

Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. *Nature* **543**, 373–377 (2017).

Chaidez, V., Dreano, D., Agusti, S., Duarte, C. M. & Hoteit, I. Decadal trends in Red Sea maximum surface temperature. *Sci. Rep.* **7**, 8144 (2017).

Genin, A., Lazar, B. & Brenner, S. Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. *Nature* **377**, 507–510 (1995).

Islam, M. N., Casarato, B. E., Higuchi, T., Niraula, M. P. & Suzuki, Y. Contribution of coral reef associated microbial community to the dissolution of calcium carbonate under high pCO2. *Galaxea, J. Coral Reef Stud.* **14**, 119–131 (2012).

Schönberg, C. H. L., Fang, J. K. H., Carreiro-Silva, M., Tribollet, A. & Wisshak, M. Bioerosion: the other ocean acidification problem. *ICES J. Mar. Sci.* **74**, 895–925 (2017).

de Nooijer, L. J., Toyofuku, T. & Kitazato, H. Foraminifera promote calcification by elevating their intracellular pH. *Proc. Natl Acad. Sci. USA* **106**, 15374–15378 (2009).

Krumgalz, B. S., Erez, I. & Chen, C. T. A. Anthropogenic CO2 penetration in the northern Red Sea and in the Gulf of Elat (Aqaba). *Oceanol. Acta* **13**, 283–290 (1990).

Glynn, P. W. & Manzello, D. P. in Coral Reefs in the Anthropocene (ed. Birkeland, C.) Ch. 4 (Springer, Netherlands, Dordrecht, 2015).

Hallock, P. The role of nutrient availability in bioerosion: consequences to carbonate buildups. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **63**, 275–291 (1988).

Burke, L. *Reefs at Risk Revisited* (World Resources Institute, Washington, DC, 2011).

Kürtén, B. et al. Influence of environmental gradients on C and N stable isotope ratios in coral reef biota of the Red Sea, Saudi Arabia. *J. Sea Res.* **85**, 379–394 (2014).

Eppler, R. W., Rogers, J. N. & McCarthy, J. J. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. *Limnol. Oceanogr.* **14**, 912–920 (1969).

Feng, Y. Y. et al. Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response. *Mar. Ecol. Prog. Ser.* **388**, 13–25 (2009).

Sass, E. & Ben-Yaacov, S. The carbonate system in hypersaline solutions: dead sea brines. *Mar. Chem.* **5**, 183–199 (1977).

Millero, F. J. & Poisson, A. International one-atmosphere equation of state of seawater. *Deep-Sea Res. Part A-Oceanogr. Res. Pap.* **28**, 625–629 (1981).

Fofonoff, N. P. Physical properties of seawater: a new salinity scale and equation of state for seawater. *J. Geophys. Res.: Oceans* **90**, 3332–3342 (1985).

Burton, J. D. in *Oceanography: An Illustrated Guide* (eds Summerhayes, C. P. & Thorpe, S. A.) Ch. 11 (Manson, London, 1996).

Schlitzer, R. *Ocean Data View* (2018).

Acknowledgements

This study was supported by ERC Grant Stg (307582) CARBONSINK to A.V.T. and a Blavatnik postdoctoral fellowship to Z.S. We thank Mervyn Greaves for advice and support in ICP analyses.

Author contributions

J.S and Z.S. designed the study. E.H., J.S. and Z.S. performed research. Z.S., J.S. and A.V.T. analysed the data and wrote the paper.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-06030-6.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2018