Documentation of medicinal plants used by Aneuk Jamee tribe in Kota Bahagia Sub-district, South Aceh, Indonesia

ADI BEJO SUWARDI1✉, MARDUDI1, ZIDNI ILMN NAVIA2, BAIHAQI3, MUNTAHA4
1Department of Biology Education, Faculty of Teacher Training and Education, Universitas Samudra. Jl. Prof. Dr. Syarief Thayeb, Meurandeh, Langsa 24354, Aceh, Indonesia. Tel.: +62-641-426535, *email: adi.bsw@gmail.com
2Department of Biology, Faculty of Engineering, Universitas Samudra. Jl. Prof. Dr. Syarief Thayeb, Meurandeh, Langsa 24354, Aceh, Indonesia
3Department of English Education, Faculty of Teacher Training and Education, Universitas Samudra. Jl. Prof. Dr. Syarief Thayeb, Meurandeh, Langsa 24354, Aceh, Indonesia
4Sekolah Tinggi Ilmu Ekonomi Oostomo. Jl. Ampere, Kota Baru, Pontianak 78121, West Kalimantan, Indonesia

Abstract. Suwardi AB, Mardudi, Navia ZI, Baihaqi, Muntaha. 2021. Documentation of medicinal plants used by Aneuk Jamee tribe in Kota Bahagia sub-district, South Aceh, Indonesia. Biodiversitas 21: 6-15. Aneuk Jamee is one of the ethnic communities living along the western-south coast of Aceh. Various plants are used by the Aneuk Jamee tribe as a traditional medicine in treating diseases and disorders. The aim of this study was therefore to document the medicinal plants used by the Aneuk Jamee tribe in the Kota Bahagia sub-district, South Aceh, Indonesia. This study was conducted in three villages, namely Jumbo Keupok, Seunebok Kurani, and Alur Dua Mas, Kota Bahagia subdistrict, South Aceh District, Aceh Province. This study was based on field surveys, plant collection, and interviews with the local people. Interviews were performed with 60 informants selected using the Snowball Sampling technique. A total of 96 medicinal plant species, consisting of 50 families, have been documented to be used by the Aneuk Jamee tribe in the Kota Bahagia subdistrict. Fifty-nine (61%) species are cultivated and 37 (39%) species are wild. Leaves are the most widely used plant part (28%), followed by the fruit (19%), flower and tuber (6% each), seed (3%), and sap (2%) and the main mode of preparations are decoction (60%), followed by raw consumption (14%), smeared (10%), pounded (7%), dropped (6%), and affixed and squeezed (1% each). The high informant consensus factor (ICF=0.98) was assigned to the diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism category.

Keywords: Biodiversity, Traditional medicine, Aneuk Jamee, Kota Bahagia

INTRODUCTION

Plants are valuable in human livelihoods, providing a source of nourishment (Navia and Chikmawati 2015; Elfrida et al. 2010; Navia et al. 2019; Navia et al. 2020a; Suwardi et al. 2020a; Suwardi et al. 2020b), condiments and spices (Navia et al. 2020b), fragrances (Dar et al. 2017), ritual or magical values (Abbink 1995; Sutrisno et al. 2020), and traditional medicine (Liu et al. 2009; Silalahi et al. 2015; Nurlinda et al. 2018; Tsoutsisoi et al. 2019; Suwardi et al. 2019; Gowramma et al. 2020). Indonesia comprises more than 40,000 species of plants, of which approximately 6,000 have been used in traditional healing processes (Elfahmi et al. 2014). These plants are considered for their richness in biologically active secondary metabolites and essential oils for disease prevention (Ngbolua et al. 2018; Suwardi et al. 2018; Ortiz et al. 2020), and human beings have refined medicinal plants and their chemical properties in varying ways for therapeutic usages (Colalito 2018; Kumar et al. 2018). Traditional medicine has been focused on meeting the objectives of wider coverage of primary healthcare provision across all countries of the world (Bekalo et al. 2009). The World Health Organization (WHO) has confirmed that about 80% of the people living in developing countries rely on medicinal plants as part of their healthcare system (Ngbolua et al. 2016). The relationship between humans and plants has long been identified as one of the aspects of human civilization, particularly in medicinal domains (Yeung et al. 2020).

Aneuk Jamee is one of the ethnic communities in Indonesia inhabiting along the west-south coast of Aceh (Melalatoa 1995). Historical evidence suggests that the Minang tribe from West Sumatra migrated to western Aceh in the 17th century and assimilated with the indigenous population to establish new customs and culture recognized as Aneuk Jamee (Ramlí and Erwandi 2019). Like most tribes in the province of Aceh, Aneuk Jamee also uses various species of plants as traditional medicines. This knowledge is gained through experience passed down from generation to generation. However, the knowledge of medicinal plants possessed by rural communities has rarely been documented and is generally known merely to the elderly or traditional healers. Moreover, the younger generation, especially those already integrated into modern life, is less concerned with this traditional knowledge (Maulidiah et al. 2020). Several previous studies have shown the lack of ability of older generations to pass traditional knowledge to the younger generation (Sousa et al. 2012; Saynez-Vaquest et al. 2016; Navia et al. 2020a), resulting in the disaffection of younger generations from their surrounding environment and the ultimate loss of

Manuscript received: 6 November 2020. Revision accepted: 6 December 2020.
nature-related information. Traditional knowledge and use of medicinal plants are an integrated component among the Aneuk Jamee tribe, the extent of which has not yet been extensively studied. Documentation of medicinal uses of plants across ethnobotanical studies is important as an opportunity to promote the development of pharmaceutical drugs and the conservation of plants (Calzada and Bautista 2020). Various ethnobotanical studies suggest the use of medicinal plants for the treatment that has been used in their respective populations over several generations (Navia et al. 2020a; Navia et al. 2020b; Sutrisno et al. 2020; Suwardi et al. 2020c). The aim of this study was therefore to document the medicinal plants used by the Aneuk Jamee tribe in the Kota Bahagia sub-district, South Aceh, Indonesia.

MATERIALS AND METHODS

Study area

South Aceh district is located between 02° 23'24"-03°44'24" N and 96°57'36" - 97°56' 24" E with an average elevation of 25 meters above sea level (masl). This district has an area of 4,173.67 km² with land use is dominated by protected areas, namely protected forests (36.5%), Gunung Leuser National Park (18.8%), Trumon Wildlife Reserve (13.9%), Animal Corridors (0.2%), Coastal Border (0.3%) and River Border (1.2%) of the total area. South Aceh district consists of 18 sub-districts and 260 villages with a total population of 238,081,000 people (The Central Bureau of Statistics of South Aceh District 2020).

Kota Bahagia is one of the subdistricts in the South Aceh district located between 3°04'46" N, 97°33'30" E, 0.6-44.2 masl. Climatic conditions in the Kota Bahagia subdistrict are tropical humid, having an average annual rainfall varying 161.33 mm -440.78 mm, and the average daily temperature of the area is 29°C. This subdistrict has an area of 195.82 km² with a total population of 7,266 people consisting of 3,580 men and 3,686 women (The Central Bureau of Statistics of South Aceh District 2020). The study was conducted from July to Sept 2020 in the Jombo Keupok, Seuneubok Kuranti, and Alur Dua Mas villages, Kota Bahagia subdistrict, South Aceh District, Aceh Province (Figure 1).

Data collection

Data were collected through in-depth interviews with 60 informants who were selected using the Snowball Sampling technique (Table 1). Key people are people who practice the use of plants for traditional medicines. Subsequent informants were determined by the direction of the previous respondents. The interview activities have been carried by using a semi-structured questionnaire to assess traditional practices for the use of medicinal plant species, the part used, and the mode of preparation.

![Figure 1. Map of Kota Bahagia Subdistrict, South Aceh District, Aceh Province, Indonesia showing the study area](image-url)
The samples of plants were collected along with noting down their vernacular names. The identification of plant species was conducted in the Laboratory of Biology, Samudra University, Aceh, Indonesia. The botanical names have been updated using the Plants of the World online. (http://www.plantsoftheworldonline.org). For this study, we do not deposit plant specimens into the herbarium.

Data analysis

Use Value (UV)

The Use Value is calculated as the proportion of the number of citations per species (U) to the number of informants (N) following Polat et al. (2015):

\[\text{UV} = \frac{U}{N} \]

High UV implies high use-reports for a plant that possesses significance to the local community. Low UV suggests that there are few reports related to its use.

Informant Consensus Factor (ICF)

Informant Consensus Factor (ICF) is determined by using the following Cornara et al. (2014):

\[\text{ICF} = \frac{\text{Nur} - \text{Nt}}{\text{Nur} - 1} \]

Where Nur is the number of useful reports in each category and Nt is the number of species used by all informants for a particular category.

RESULTS AND DISCUSSION

Characteristics of medicinal plants

A total of 96 medicinal plant species, consisting of 50 families, have been documented which are used by the Aneuk Jamee tribe in the Kota Bahagia subdistrict (Table 2). Lamiaceae and Fabaceae are the most represented plant family with 7 species, followed by Asteraceae (6 species), Euphorbiaceae (5 species), and Acanthaceae, Amaranthaceae, Areceae, Rubiaceae, and Solanaceae with 4 species each. The other 41 families possess one to 3 representative species each. Fifty-nine (61.46%) species are cultivated and 37 (38.54%) species are wild. *Piper betle* and *Psidium guajava* are common plant species that have been used as traditional medicine by local people in the study area. *P. betle* widely found planted in home gardens and consistent with the reported in West Java, Central Java, East Java, and Bali (Sari et al. 2015). Respondents stated that along with the use as medicine, *P. betle* is also used as a material in traditional ceremonies. In addition, *P. guajava* provides multiple purposes, along with that plant as a medicine, this plant harvested the fruit for raw consumption. *P. guajava* has widely grown in the home garden, in line with the report by Elfrida et al. (2020) in the Aceh Tamiang district. The average number of species identified by each age group of the respondent ranged from 12.8 ± 0.11 (15-25 years) to 94.81 ± 0.02 (> 65 years). In addition, the average number of species identified by each educational status of the respondent ranged from 22.8 ± 1.14 (Senior High School) to 42.22 ± 0.12 (Junior High School). Thirty-seven (38.5%) medicinal plants were recognized by all respondents include *Durio zibethinus*, *Myristica fragrans*, *P. betle*, *P. guajava*, and *Kaempferia galanga*.

Plant part used

The leaves (28%) were the most used as traditional medicine, followed by the fruit (19%), flower and tuber (6% each), seed (3%), and sap (2%). Certain diseases are treated with the whole plant, approximately 20% of the total plant species identified in this study area (Figure 2).

Leaves are the most commonly used part for an ethnomedical practice of the Aneuk Jamee tribe. The leaves have been widely used in traditional medicine due to the presence of bioactive compounds other than parts of plants (Ismail and Ahmad 2019). These studies are consistent with the reports by Tantengco et al. (2018) that local communities in the Philippines have the most used leaves in ethnomedical practices compare to other parts of the plants. During the discussion, the respondents stated that leaves are also easy to collect and are the most abundant part of the plant. In addition, the use of plant parts as traditional medicine can protect plants and ensure the sustainability of plant usage. Leaves are known to synthesis a wide range of secondary metabolites such as alkaloids, saponins, and phenolic compounds (Ghorbani 2005; Tantengco et al. 2018) that could be concerned for the pharmacological effects encountered by the Aneuk Jamee tribe. Several of the plants used as traditional medicine by the Aneuk Jamee tribe, such as *Psidium guajava*, are known to have flavonoids and tannins expressing antioxidant activity (Ezquezlesli et al. 2010; Shakeera et al. 2013). In addition, secondary metabolites such as flavonoids, tannins, glycosides, and terpenoids, revealed by *P. guajava* leaves extract, have been reported to have various pharmacological properties such as antibacterial, anticoag, antidiabetic, antihyperlipidemic, cardioprotective, antimutagenic, hepatoprotective, and larvicidal (Ngbolua et al. 2018).

Parameter	Specification	Frequency	Percentage					
Gender	Male	38	63.3					
	Female	22	36.7					
Age	15-25	5	8.3					
	26-35	12	20					
	36-45	15	25					
	46-55	14	23.3					
	56-65	10	16.7					
	>65	4	6.7					
Education	None	6	10					
	Elementary School	17	28.3					
	Junior High School	16	26.7					
	Senior High School	16	26.7					
	University	5	8.3					
Scientific name	Family	Vernacular name	Plant type	Habit	Part used	Mode of preparation	Disease	UV
----------------------------------	-------------------------	-------------------	------------	-------------	-------------------	------------------------------	--	-----
Acalypha australis L.	Euphorbiaceae	Anting-anting	Shrub	Wild	Whole plants	Decoction, smeared	Wounds, diarrhoea, dysentery, cough	0.30
Acalypha hispida Burm.f.	Euphorbiaceae	Ekor kucing	Shrub	Cultivated	Leaves, flower	Decoction, pounded, smeared	Dysentery, nosebleed, anthelmintic, skin burn	0.68
Acanthus ebracteatus Vahl	Acanthaceae	Jenuju	Herb	Wild	Leaves	Decoction	Hepatitis	0.30
Achyranthes aspera L.	Amaranthaceae	Bungo bayom	Herb	Cultivated	Leaves, flower	Decoction	Fever, malaria, rheumatism, dysmenorrhea	0.80
Adenanthera pavonina L.	Fabaceae	Si baiy	Tree	Wild	Leaves	Decoction	Gastric ulcer	0.53
Agaratum conyzoides L.	Asteraceae	Simamih	Herb	Wild	Leaves	Smeared, decoction	Sore throat, wounds, itch	0.47
Alpinia galanga (L.) Wild.	Zingiberaceae	Langkuweh	Herb	Cultivated	Tubers	Decoction	Cough, fever, flatulence, stomachache	0.97
Amaranthus spinosus L.	Amaranthaceae	Bayam duri	Herb	Cultivated	Whole plants	Decoction, smeared	Fever, diarrhoea	0.68
Annona muricata L.	Annonaceae	Dzenlando	Tree	Cultivated	Fruit	Raw consumption	Gastric ulcer, sprue, hypertension	0.97
Areca catechu L.	Arecaceae	Pinang	Palm	Cultivated	Seed	Raw consumption	Gastric ulcer, jaundice, itch	0.95
Arenga pinnata (Wurmb) Merr.	Arecaceae	Ijouk	Palm	Wild	Leaves	Decoction	Diabetes	0.53
Artemisia vulgaris L.	Asteraceae	Barucina	Herb	Wild	Leaves	Decoction	Dysentery, diarrhea, leukorrhea	0.30
Averrhoa bilimbi L.	Oxalidaceae	Limbieng	Tree	Cultivated	Fruit	Raw consumption	Hypertension	0.53
Barleria cristata L.	Acanthaceae	Daun madu	Herb	Cultivated	Whole plants	Decoction, pounded, smeared	Gastric ulcer, pimple	0.37
Basella alba L.	Basellaceae	Limayuang	Herb	Cultivated	Leaves, fruit	Decoction, pounded, smeared	Gastric ulcer, toothache, insomnia, skin burn	0.48
Bidens pilosa L.	Asteraceae	Bungo adet-adet	Herb	Wild	Whole plants	Decoction	Tuberculosis, haematemesis	0.43
Canna indica L.	Cannaceae	Bunga tasbih	Herb	Cultivated	Leaves, flowers	Decoction	Hypertension, fever, jaundice	0.52
Carica papaya L.	Caricaceae	Botiek	Shrub	Cultivated	Leaves	Raw consumption, decoction	Fever, malaria	0.93
Celosia argentea L	Amaranthaceae	Bungo bayom	Herb	Cultivated	Leaves	Decoction	Hypertension	0.78
Centella asiatica (L.) Urb.	Apiceae	Pegago	Herb	Cultivated	Whole plants	Decoction	Cough	0.58
Chromolaena odorata (L.)	Asteraceae	Tutuba	Shrub	Wild	Leaves	Decoction, pounded, smeared	Gastric ulcer, wounds	0.37
R.M.King & H.Rob.								
Citrus maxima (Burm.) Merr.	Rutaceae	Jeruk bali	Tree	Cultivated	Fruit	Raw consumption	Sprue	0.82
Clerodendrum chinense (Osbeck) Mabb.	Lamiaceae	Bungo balai	Shrub	Wild	Flower	Decoction	Sore throat, sprue	0.65
Clerodendrum indicum (L.) Kuntze	Lamiaceae	Rumput pikuben	Shrub	Wild	Leaves, flower	Decoction	Gastric ulcer, diabetes	0.27
Clerodendrum thomsoniae Ball.f.	Lamiaceae	Kantin	Shrub	Wild	Flower	Decoction	Irritant contact dermatitis due to plants	0.28
Clinacanthus nutans (Burm.f.) Lindau	Acanthaceae	Sogi iju	Herb	Cultivated	Leaves	Decoction	Sore throat, sprue	0.27
Cocos nucifera L.	Arecaaceae	Karambie	Palm	Cultivated	Fruit	Decoction	Diarrhoea, digestive problems, constipation	0.77
Coleus amboinicus Lour.	Lamiaceae	Nilam bai	Herb	Wild	Leaves	Decoction	Hepatitis	0.72
Colubrina asiatica (L.) Brong.	Rhamnaceae	Pilaht	Shrub	Cultivated	Leaves	Decoction	Fever, sore throat	0.53
Combretum indicum (L.) DeFilippis	Combretaceae	Pocah pingen	Climber	Wild	Leaves, flower	Decoction	Anthelmintic	0.42
Cordyline fruticosa (L.) A.Chev.	Asparagaceae	Junjuang	Shrub	Cultivated	Whole plants	Smearred	Bruise, wounds	0.32
Scientific Name	Family	Plant Type	Cultivation Status	Parts Used	Use	Effect		
--------------------------------------	------------------	------------	--------------------	---------------------	-------------------------------	---		
Crinum asiaticum L.	Amaryllidaceae	Herb	Cultivated	Leaves, flower	Decoction	Cough, bruise, hypertension		
Cucumis melo L.	Cucurbitaceae	Herb	Cultivated	Leaves	Decoction	Wounds, bruise, rheumatism		
Cyclea barbata Miers	Menispermaceae	Herb	Cultivated	Leaves	Decoction	Sore throat, sprue		
Cymbopogon citratus (DC.) Stapf	Poaceae	Grass	Cultivated	Whole plants	Decoction	Sore throat, sprue, hypertension		
Cyperus rotundus L.	Cyperaceae	Grass	Cultivated	Leaves, flower	Decoction, squeezed	Cough		
Decalobanthus mammosus (Lour.)	Convolvulaceae	Climber	Cultivated	Tuber	Pounded, decoction	Cough, bruise		
A.R. Simões & Staples								
Dioscorea alata L.	Dioscoreaceae	Climber	Wild	Tuber	Pounded, decoction	Sore throat, sprue		
Dioscorea hispida Dennst.	Dioscoreaceae	Climber	Wild	Tuber	Pounded, decoction	Sore throat, sprue		
Durio zibethinus L.	Malvaceae	Tree	Cultivated	Fruit	Raw consumption	Hypertension		
Erythrina subumbrans (Hassk.) Merr.	Fabaceae	Tree	Wild	Leaves, flower, fruit	Decoction	Anemia, rheumatism		
Erythrina variegata L.	Fabaceae	Tree	Wild	Leaves, flower, fruit	Decoction	Jaundice		
Euphorbia hirta L.	Euphorbiaceae	Herb	Wild	Whole plants	Dropped	Eye inflammations		
Gomphrena globosa L.	Amaranthaceae	Herb	Cultivated	Flower	Decoction	Fever, cough, dysentery, diarrhoea		
Gynura japonica (Thunb.) Juel	Asteraceae	Herb	Wild	Leaves	Decoction	Flu, fever, diarrhoea, diabetes		
Helenium speciosa (J. Koenig) S.R. Dutta	Costaceae	Herb	Wild	Leaves	Decoction	Gastric ulcer		
Hibiscus rosa-sinensis L.	Malvaceae	Shrub	Cultivated	Flower	Decoction	Gastric ulcer		
Hippobroma longiflora (L.) G.Don	Campanulaceae	Herb	Cultivated	Leaves, flower	Dropped	Eye inflammations		
Illicium verum Hook.f.	Schisandraceae	Tree	Cultivated	Fruit	Decoction	Fever, sore throat, sprue, diarrhoea		
Imperata cylindrica (L.) P. Beauv.	Poaceae	Grass	Whole plants	Whole plants	Dropped	Fever, sore throat		
Jasminum sambac (L.) Aiton	Oleaceae	Tree	Cultivated	Leaves, flower	Dropped	Eye inflammations		
Justicia gendarussa Burm.f.	Acanthaceae	Herb	Cultivated	Leaves	Dropped	Wounds, toothache		
Kaempferia galanga L.	Zingiberaceae	Herb	Cultivated	Leaves	Dropped	Sore throat		
Kalanchoe pinnata (Lam.) Pers.	Crassulaceae	Herb	Cultivated	Tubers	Decoction	Sore throat		
Lantana domesticum Corrêa	Meliaceae	Shrub	Cultivated	Leaves	Decoction	Fever		
Lawsonia inermis L.	Lythraceae	Herb	Cultivated	Leaves	Decoction	Fever		
Lophatherum gracile Bronn.	Poaceae	Grass	Wild	Whole plants	Dropped	Sore throat		
Luffa acutangula (L.) Roxb.	Cucurbitaceae	Climber	Cultivated	Flower	Decoction	Hypertension		
Luffa aegyptiaca Mill.	Cucurbitaceae	Climber	Cultivated	Flower	Decoction	Hypertension		
Magnolia x alba (DC.) Figlar	Magnoliaceae	Tree	Cultivated	Flower	Decoction	Gastric ulcer		
Magnolia champaca (L.) Baill. ex Pierre	Magnoliaceae	Tree	Cultivated	Flower	Decoction	Gastric ulcer		
Manilkara zapota (L.) P. Royen	Sapotaceae	Herb	Wild	Leaves	Decoction	Wounds, diarrhoea		
Melastoma malabathricum L.	Melastomataceae	Shrub	Wild	Leaves	Dropped	Stroke, Influenza, headache, diabetes,		
Mirabilis jalapa L.	Nyctaginaceae	Herb	Cultivated	Whole plants	Dropped	Hypertension		
Morinda citrifolia L.	Rubiaceae	Tree	Cultivated	Fruit	Raw consumption, decoction	Gastric ulcer, pimple		
Murraya koenigii (L.) Spreng.	Lamiaceae	Shrub	Wild	Leaves	Decoction	Diarrhoea, diabetes, sore throat		
Myristica fragrans Houtt.	Myristicaceae	Tree	Cultivated	Seed	Pounded, smeared	Sprain		

Species	Pharmacological Activity						
C. asiaticum	Eye inflammation, fever, diarrhoea, hypertension						
C. melo	Hypertension						
C. barbata	Rheumatism, sprue						
C. citratus	Rheumatism, sprue, hypertension						
C. rotundus	Cough, bruise						
D. alata	Sore throat, sprue						
D. hispida	Sore throat, sprue, hypertension						
D. zibethinus	Anemia						
E. subumbrans	Sore throat, hepatitis						
E. variegata	Jaundice						
E. hirta	Eye inflammations						
G. globosa	Fever, cough, dysentery						
G. japonica	Fever, diarrhoea						
H. speciosa	Fever, diabetes						
H. rosa-sinensis	Gastric ulcer						
I. verum	Fever, sore throat, diarrhoea						
I. cylindrica	Fever, sore throat, sprue						
J. sambac	Eye inflammations						
J. gendarussa	Sore throat						
K. galanga	Fever, diarrhoea						
K. pinnata	Fever						
L. domesticum	Malaria						
L. inermis	Gastric ulcer						
L. rupinata	Gastric ulcer						
L. acutangula	Hypertension						
L. aegyptiaca	Fever						
M. x alba	Eye inflammations						
M. champaca	Gastric ulcer						
M. zapota	Wounds, diarrhoea						
M. koenigii	Stroke, Influenza, headache, diabetes, hypertension, rheumatism						
M. koenigii	Diarrhoea, diabetes, sore throat						
M. fragrans	Sprain						
Scientific Name	Family	Common Name(s)	Life Form	Part(s)	Preparation	Uses	Index Number
--------------------------------	------------	----------------	-----------	----------------	-------------	---	--------------
Nicandra physalodes (L.) Gaertn.	Solanaceae	Solanaceae	Wild	Fruit	Decoction	Hypertension	0.38
Nicotiana tabacum L.	Solanaceae	Solanaceae	Cultivated	Leaves	Decoction	Jaundice	0.30
Nypa fruticans Wurmb.	Arecaceae	Arecaceae	Cultivated	Leaves	Decoction	Jaundice	0.37
Ocimum tenuiflorum L.	Lamiaceae	Lamiaceae	Shrub	Whole plants	Raw consumption	Fever, sore throat	0.88
Oldenlandia corymbosa L.	Rubiaceae	Rubiaceae	Shrub	Leaves	Decoction	Hepatitis	0.55
Orthosiphon aristatus (Blume) Miqu.	Fabaceae	Fabaceae	Clumper	Leaves, flower	Decoction	Diabetes, hypertension, bladder stone	0.47
Pachyrhizus erosus (L.) Urb.	Fabaceae	Fabaceae	Clumper	Tuber	Raw consumption	Influenza, sore throat	0.60
Paederia foetida L.	Rubiaceae	Rubiaceae	Clumper	Whole plants	Decoction	Flatulence	0.38
Pandanus amarylifolius Roxb. ex Lindl.	Pandanaceae	Pandanaceae	Shrub	Whole plants	Decoction	Fever, insomnia, hypertension	0.65
Persea americana Mill.	Lauraceae	Lauraceae	Tree	Fruit	Raw consumption	Eye inflammations	0.37
Phyllanthus acidus (L.) Skeels	Phyllanthaceae	Phyllanthaceae	Tree	Fruit	Raw consumption	Sprue	0.32
Phyllanthus niruri L.	Phyllanthaceae	Phyllanthaceae	Tree	Whole plants	Decoction	Gastric ulcer, diabetes	0.45
Piper betle L.	Piperaceae	Piperaceae	Clumper	Leaves	Decoction, pounded, smeared	0.98	
Plantago major L.	Plantaginaceae	Plantaginaceae	Herb	Whole plants	Decoction	Cough	0.78
Plectranthus purpuratus Harv.	Lamiaceae	Lamiaceae	Herb	Whole plants	Decoction	Gastric ulcer, hemorrhoids, hepatitis	0.63
Pluchea indica (L.) Lees.	Asteraceae	Asteraceae	Herb	Whole plants	Decoction	Flatulence, hepatitis	0.37
Psidium guajava L.	Myrtaceae	Myrtaceae	Tree	Fruit, leaves	Raw consumption, decoction	0.98	
Punica granatum L.	Punicaceae	Punicaceae	Tree	Fruit	Eaten raw	Stroke, sore throat	0.60
Ricinus communis L.	Euphorbiaceae	Euphorbiaceae	Tree	Sap	Dropped, decoction	Wounds, hermia	0.73
Selaginella doederleinii Hieron	Selaginellaceae	Selaginellaceae	Tree	Whole plants	Decoction	Hepatitis	0.47
Senna alexandrina Mill.	Fabaceae	Fabaceae	Shrub	Leaves	Decoction	Scabies	0.43
Solanum lasiocarpum Dunal	Solanaceae	Solanaceae	Shrub	Fruit	Eaten as vegetable	Diabetes	0.58
Solanum nigrum L.	Solanaceae	Solanaceae	Shrub	Fruit, leaves	Decoction, dropped	Eye inflammations	0.63
Spondias dulcis Parkinson	Anacardiaceae	Anacardiaceae	Tree	Fruit, leaves	Decoction, dropped	Eye inflammations	0.52
Syzygium cumini (L.) Skeels	Myrtaceae	Myrtaceae	Tree	Leaves, Fruit	Decoction, Raw consumption	0.97	
Tamarindus indica L.	Fabaceae	Fabaceae	Tree	Fruit	Raw consumption	Sore throat, sprue	0.95
Trema orientale (L.) Blume	Cannabaceae	Cannabaceae	Tree	Leaves	Decoction	Cough, asthma, sore throat, fever	0.75
Uncaria gambir (W. Hunter) Roxb.	Rubiaceae	Rubiaceae	Clumper	Leaves	Decoction	Flatulence	0.73
The second-largest proportion of plant parts used by the Aneuk Jamee tribe as traditional medicine is fruit. Averrhoa bilimbi fruit is used by the Aneuk Jamee tribe as a hypertension treatment. Susanti et al. (2017) reported that the extract of A. bilimbi fruit could reduce blood glucose levels and can be used as a treatment for diabetes. A. bilimbi is known to contain flavonoids and saponins that act as antidiabetic agents (Kumar et al. 2013). The natural diuretic activity of A. bilimbi plays a significant role in combating hypertension (Andriyanto et al. 2011). Fruit of Morinda citrifolia is used for stroke, influenza, headache, diabetes, hypertension, and rheumatism, while Solanum lasiocarpum fruit is used for diabetes.

Mode of preparation

The major mode of preparation by the Aneuk Jamee tribe was found to be decoction (60%), followed by raw consumption (15%), smeared (10%), and pounded (7%) (Figure 3).

In order to treat diseases, the Aneuk Jamee tribe applied both internal and external administration routes. Most plant species have been used alone in the treatment of diseases, while several plants are combined. For example, Oldenlandia corymbosa was used alone in the treatment of hepatitis, while Centella asiatica was administered orally for cough treatment in combination with honey. In Indian folk medicine, the C. asiatica are useful for the treatment of asthma, skin disorders, gastric ulcer and body aches, gastric catarrh, kidney troubles, leprosy, stomach disorders, cure dysentery, and improve memory power (Jamial et al. 2007), while in Nepal, the leaf juice mixed with palm leaves used for cooling to body and stomach (Mahato and Chaudhary 2003).

Use value

The use-value (UV) of plants has been calculated to quantify the importance of a specific plant on the basis of how often it is cited by a specific number of people. UV scores ranged from 0.13 to 0.97, with Hellenia speciosa having lower UV (0.22) and Psidium guajava and Piper betle having the highest UV (0.97 each). P. guajava and P. betle are widely used by the Aneuk Jamee tribe to treat various diseases. P. guajava decoction has been used by the Aneuk Jamee tribe to treat various diseases such as dengue and diarrhoea. P. guajava is also the most widely used medicinal plant in many countries, such as Mexico, Africa, Asia and Central America (Naseer et al. 2018). In Andhra Pradesh, India, leaves of guava have been documented for use in mouth gastric ulcer (Lingaiah and Rao 2013), while in North Sikkim, India, raw young leaves and tender shoots of guava have been used for toothache and mouth gastric ulcer (Pradhan and Badola 2008). The decoction of leaves of P. betle is used to treat fever and sore throat, while leaves of P. betle were squeezed and placed on the wounds. P. betle leaf extracts contain bioactive compounds, such as sterol (Pradhan et al. 2013), which are responsible for the antibacterial activity and are suitable for wounds. Essential oil from the leaves of this plant has been used for antiseptic treatment (Amalia et al. 2008). In the traditional Indian system, P. betle leaves are used as digestive and pancreatic lipase stimulating activity (Mula et al. 2008).

Informant consensus factor

Diseases reported by respondents have been classified according to the International Classification of Diseases - 10 ver. 2019 (https://icd.who.int). Out of these categories, ICF values were determined and shown in Table 3.
A total of 47 diseases in 16 categories were documented in the study area. The most common use-report categories are diseases of the respiratory system (631 use-report, 25 species), followed by symptoms, signs and abnormal clinical and laboratory (584 use-reports, 24 species), diseases of the digestive system (503 use-reports, 21 species), diseases of the eye and adnexa (441 use-reports, 18 species), and certain infectious and parasitic diseases (386 use-reports, 13 species). The ICF values ranged from 0.939 to 0.982. The highest ICF value (0.982) is for diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism (anemia), while the lowest is for mental and behavioral disorders (0.939). Sandjaja et al. (2013) reported that the prevalence of anemia in rural areas is higher than in urban areas. This is affected by the consumption pattern of rural communities, which is still dominated by vegetables as a source of iron (non-heme iron), resulting in low use and absorption of iron. The respondents cited two species of plants for the treatment of anemia, i.e., *Spondias dulcis* and *Spondias促使*.
Durio zibethinus. During the discussion, the respondents stated that the Aneuk Jame tribe often consumes the fruit of *D. zibethinus* and the young fruits of *S. dulcis* which are believed to prevent anemia. *D. zibethinus* fruit is reported to be rich in nutrients including antioxidants that are important in the prevention of anemia (Amir and Saleh 2014), while *S. dulcis* fruits are rich in bioactive compounds and used in traditional medicines in Sri Lanka, India, Vietnam, and Malaysia to treat anemia, regulate blood glucose levels, and digestive problems (Jayaratna et al. 2020).

Traditional knowledge of medicinal plants in the Aneuk Jame tribe has been passed down from generation to generation. This traditional knowledge, however, is not well documented. Transfer of knowledge is still being carried out orally. However, during discussions with the respondents, it was noted that many children were interested in learning medicinal plants with healers or elders in their village. This traditional knowledge needs to be protected by involving the Indonesian Government through the Education Office with the integration of traditional knowledge into the basic education curriculum. This practice could be an effort to preserve traditional knowledge, natural resources, and biodiversity. Ramadoss and Moli (2011) reported that biodiversity education programs could increase students' knowledge, motivation, and expertise to conserve and protect local natural resources and biodiversity in India.

ACKNOWLEDGEMENTS

We are grateful to all the respondents in the study area for their kind friendliness and knowledge sharing. We are also thankful that this study has been supported by Samudra University, Indonesia.

REFERENCES

Abbink J. 1995. Medicinal and ritual plants of the Ethiopian Southwest: An account of recent research. Indigenous Knowledge and Development Monitor 3 (2): 6-8.

Amalia H, Sitompul R, Hutaurnuk J, Andrianjah, Mun'im A. 2008. Effectiveness of *Piper betle* leaf infusion as a palpebral skin antiseptic. Universa Medicina 28 (2): 83-91

Amir F, Saleh C. 2014. Antioxidant activity test of ethanol extract from *Durio zibethinus* Marc seeds by DPPH method. Jurnal Kimia Mulawarman 11 (2): 84-87

Andryanto, Kusumorni N, Yuska F. 2011. The potency of ethanolic extract of *Bilimbi* (*Averrhoa bilimbi*) fruits as a natural diuretic. Jurnal Ilmu Kefarmasian Indonesia 9 (2): 78-84

Bekalo TH, Woodmatas SD, Woldemariam ZA. 2009. An ethnobotanical study of medicinal plants used by local people in the lowlands of Konta Special Woreda, southern nations, nationalities and peoples regional state, Ethiopia. J Ethnobiol Ethnomed 5: 26

Calzada F, Bautista E. 2020. Plants used for the treatment of diarrhoea from Mexican flora with amoebicidal and guaiacidal activity, and their phytochemical constituents. J. Ethnopharmacology 253: 112676.

Colako C. 2018. What phytotherapy needs: Evidence-based guidelines for better clinical practice. Phytother. Res. 32 (3): 413-425.

Cornara L, La Rocca A, Terrizzano L, Dente F, Mariotti MG. 2014. Ethnobotanical and phytomedical knowledge in the North-Western Ligurian Alps. J Ethnopharmacol 155 (1): 463-84.

Dar RA, Shahnawaz M, Qazi PH. 2017. General overview of medicinal plants: A review. The J Phytopharmacology 6 (6): 349-351

Esfahni, Woordenbag H, Kayser O. 2014. Jamu: Indonesian traditional herbal medicine towards rational phytopharmaceutical use. J Herbal Med 4 (2): 51-73

Especies, Mubarak A, Suwardi AB. 2020. The fruit plant species diversity in the home gardens and their contribution to the livelihood of communities in rural area. Biodiversitas 21 (8): 3670-3675.

Ezekwesili JO, Nkemdilim UU, Okeke UU. 2010. Mechanism of antidiarrhoeal effect of ethanolic extract of *Psidium guajava* leaves. J Ethnopharmacol 127 (2): 85-90.

Ghorbani A. 2005. Studies in pharmaceutical ethnobotany in the region of Turkmenn Shaera, North of Iran (part 1): general results. J Ethnopharmacol 102: 58-68.

Govaramma B, Kyagavi G, Karibasamma H, Ramanjinaiah KM. 2020. Documentation of major medicinal plants in Sandure of Karnataka, India. Med Aromat Plants 9: 348.

Ismail A, Ahmad WANE. 2019. *Syzygium polynanthum* (Wight) Walp: A Potential Phytotherned Pharm J 11 (2): 429-438.

Jamal SS, Nizami Q, Salam M. 2007. *Centella asiatica* (Linn.) Urban: a review. Indian J Nat Prod Res 6 (2): 158-170.

Jayaratna PLI, Jayawardena IAEC, Vannarachchy MPG. 2020. Identification of physical, chemical properties and flavor profile of *Spondias dulcis* in three maturity stages. Int J Res Adv Eng Sci 5 (1): 208-211.

Kumar KA, Gousia SK, Anupama M, Latha JNL. 2013. A review on phytochemical constituents and biological assays of *Averrhoa bilimbi*. J Int Pharm Pharmaceut Sci Res 3 (4): 136-139.

Kumar S, Singh A, Singh B, Maurya R, Kumar B. 2018. Structural characterization and quantitative determination of bioactive compounds in ethanolic extraction of *Boerhaavia diffusa* by liquid chromatography-tandem mass spectrometry. J Sep Sci Plus 1 (9): 588-596.

Lingiaah M, Rao PN. 2013. An ethnobotanical survey of medicinal plants used by traditional healers of Adilabad district, Andhra Pradesh, India. Biolife 1: 17-23.

Liu Y, Dao Z, Yang C, Liu Y, Long C. 2009. Medicinal plants used by Tibetans in Shangri-la, Yunnan, China. J Ethnobiol Ethnomed 5: 15. DOI: 10.1186/1746-4269-5-15.

Mahato RB, Chaudhary RP. 2003. Ethnomedicinal study and antibacterial activities of selected plants of Palpa District, Nepal. Sci World 2: 38-45

Maulidiah, Winandari OP, Saputri DA. 2020. Utilization of plant organs as traditionally processed medicines in Kebun Tebu Subdistrict, West Lampung District. Jurnal Ilmu Kedokteran dan Kesehatan 7 (2): 443-447.

Melataloa MJ. 1995. Encyclopedia of Ethnic Groups in Indonesia. Ministry of Education and Culture of the Republic of Indonesia, Jakarta, [Indonesian]

Mula S, Banerjee D, Patro BS, Barik A, Bandopadhyay SK, Chattopadhyay S. 2008. Inhibitory property of the *Piper betle* phenolics against photosensitization induced biological damages. Bioorg Med Chem 16: 2932-2938.

Naseer S, Hussain S, Naem N, Perwaiz M, Rahman M. 2018. The phytochemistry and medicinal value of *Psidium guajava* (guava). Clin Physioci 4: 32. DOI: 10.1186/s40816-018-0093-8.

Navia ZI, Audria D, Afifah N, Tunip K, Nuraini, Suwardi AB. 2020b. Ethnobotanical investigation of spice and condiment plants used by the Tarning tribe in Aceh, Indonesia. Biodiversitas 21 (10): 4467-4473.

Navia ZI, Chikhwatwii T. 2015. *Durio tinjungpurenis* (Malvaceae), a new species and its one new variety from West Kalimantan, Indonesia. Bangladesh J Bot 44 (3): 429-436.

Navia ZI, Suwardi AB, Harmawan T, Syamsuardi, Mukhtar E. 2020a. The diversity and contribution of indigenous edible fruit plants to the rural community in the Gayo Highlands, Indonesia. J Agric Rural Dev Trop Subtrop 121 (1): 89-98.

Navia ZI, Suwardi AB, Saputri A. 2019. Characterization of local fruits in the Leuser Ecosystem of Aceh Taming District, Aceh. Buletin Plasma Nutfah 25 (2): 133-142.

Ngobula KN, Lufulubho LG, Moke LE, Bongo GN, Liyongco CI, Ashande CM, Sapo BS, Zoawe BG, Mpiana PT. 2018.A review on the Phytochemistry and Pharmacology of *Psidium guajava* L. (Myrtaceae) and Future direction. Discovery PhytoMedicine 5 (2): 7-13.

Ngobula KN, Mihigo SO, Mpiana PT, Inkoto CL, Masengo CA, Tshibang DST, Gbolo BZ, Baholy R, Fatiani PR. 2016. Ethno-
pharmacological survey and ecological studies of some plants used in traditional medicine in Kinshasa city (Democratic Republic of the Congo). Trop Plant Res 3 (2): 413-427.

Nurlinda, Payung I, Juana P, Suwardi AB. 2018. Anti-microbial activity of rhizome extract of Curcuma aromatica Roxb. (Zingiberaceae). J Chem Pharmaceut Res 10 (8): 33-36.

Ortiz AC, Musarella CM, Gomes CJP, Canas RQ, Fuentes JCP, Cano E. 2020. Phytosociological study, diversity and conservation status of the Cloud Forest in the Dominican Republic. Plants 9: 741. DOI: 10.3390/plants9060741.

Polat R, Cakicioglu U, Kaltalioğlu K, Ulusan MD, Türkmen Z. 2015. An ethnobotanical study on medicinal plants in Esipye and its surrounding (Giresun-Turkey). J Ethnopharmacol 163: 1-11.

Pradhan BK, Badola HK. 2008. Ethnomedicinal plant use by Lepcha tribe of Dzongu valley, bordering Khangchendzonga Biosphere Reserve, in North Sikkim, India. J Ethnobiol Ethnomed 4: 22. DOI: 10.1186/1746-4269-4-22.

Pradhan D, Suri KA, Pradhan DK, Biswasroyp S. 2013. Golden Heart of the Nature: Piper betle L. J Pharmacogn Phytochem 1 (6): 147-167.

Ramadoss A, Moli GP. 2011. Biodiversity Conservation through Environmental Education for Sustainable Development: A Case Study from Puducherry, India. Intl Electr J Environ Educ 1 (2): 97-111.

Ramli NFN, Erwan N. 2019. Comparative analysis between Jamee (Aceh) and Minangkabau (Bukit Tinggi) language. Linguistik Indonesia 37 (1): 81-95. [Indonesian]

Sandjaja S, Budiman B, Harahap H, Ernawati F, Soekatri M, Widodo Y, Sumedii E, Rastan E, Sofia G, Syaries SN, Khouw I. 2013. Food consumption and nutritional and biochemical status of 0-5-12-year-old Indonesian children: the SEANUTS study. Br J Nutr 110: S11-S20.

Sari ID, Yuniar Y, Siahaan S, Riswati, Syaripuddin M. 2015. Community tradition in planting and using medicinal plant in surround home yard. Jurnal Kefarmasian Indonesia 5 (2): 123-132

Saynes-Vázquez A, Vibrans H, Vergara-Silva F, Caballero J. 2016. Intracultural differences in local botanical knowledge and knowledge loss among the Mexican Isthmus Zapotec. PLoS ONE 11 (3): e0151693. DOI: 10.1371/journal.pone.0151693.

Shakeera BM, Shajatha K, Sridharan G, Manikandan R.2013. Anthyperglycemic and antihyperlipidemic potentials of Psidium guajava in alloxan-induced diabetic rats. Asian J Pharmaceut Clin Res 6 (2): 88-89.

Silalahi M, Supriatna J, Walujo EB, Nisyawati. 2015. Local knowledge of medicinal plants in sub-ethnic Batak Simalungun of North Sumatra, Indonesia. Biodiversitas 16 (1): 44-54.

Sousa RS, Hanazaki N, Lopes JB, de Barros RFM. 2012. Are gender and age important in understanding the distribution of local botanical knowledge in fishing communities of the Parnaíba Delta Environmental Protection Area? Ethnobot Res Appl 10: 551-559.

Susanti EY, Candra A, Nissa C. 2017. Effect of Belimbing Wuluh (Averrhoa bilimbi L.) extracts on fasting blood glucose levels in adult women. J Nutrition Health 5 (2): 102-115.

Sutrisno IH, Akob B, Navia ZI, Nuraimi, Suwardi AB. 2020. Documentation of ritual plants used among the Aceh tribe in Peureulak, East Aceh District, Indonesia. Biodiversitas 21 (11): 4990-4998

Suwardi AB, Indriaty, Navia ZI. 2018. Nutritional evaluation of some wild edible tuberous plants as an alternative foods. Innovare J Food Sci 6 (2): 9-12.

Suwardi AB, Navia ZI, Harmawan T, Syamsuardi, Mukhtar E. 2019. The diversity of wild edible fruit plants and traditional knowledge in West Aceh region, Indonesia. J Med Plants Stud 7 (4): 285-290.

Suwardi AB, Navia ZI, Harmawan T, Syamsuardi, Mukhtar E. 2020a. Wild edible fruits generate substantial income for local people of the Gunung Leuser National Park, Aceh Tamiang Region. Ethnobot Res Appl 20: 1-13.

Suwardi AB, Navia ZI, Harmawan T, Syamsuardi, Mukhtar E. 2020b. Ethnobotany, nutritional composition and sensory evaluation of Garcinia from Aceh, Indonesia. Mater Sci Eng 725 (1): 012064. DOI: 10.1088/1757-899X/725/1/012064.

Suwardi AB, Navia ZI, Harmawan T, Syamsuardi, Mukhtar E. 2020c. Ethnobotany and conservation of indigenous edible fruit plants in South Aceh, Indonesia. Biodiversitas 21 (5): 1850-1860.

Tantengco OA, Condes MLC, Estadillo HHT, Ragragio EM. 2018. Ethnobotanical Survey of Medicinal Plants used by Ayta Communities in Dinalupihan, Bataan, Philippines. Pharmacogn J 10 (5): 859-870.

The Central Bureau of Statistics of South Aceh District. 2020. South Aceh district in figure 2019. The Central Bureau of Statistics of South Aceh district, Indonesia.

Tsouatsou EE, Giordani P, Hanlidou E, Biagi M, Robino A, Tzvetkov NT, Atanasov AG. 2020. The ethnopharmacological literature: An analysis of the scientific landscape. J Ethnopharmacol 250: 112414. 10.1016/j.eph.2019.112414.