Are GeV and TeV spectra connected?
the case of Galactic γ-ray sources

P. Tam
Institute of Astronomy and Department of Physics,
National Tsing Hua University, Hsinchu, Taiwan

S. Wagner
Landessternwarte, Universität Heidelberg, Königstuhl, Heidelberg, Germany

To understand Galactic objects that emit GeV-TeV emission, a spatial correlation study between the Fermi bright source catalog \cite{1} and TeV source population was carried out in \cite{2}, finding that a significant number of very high-energy (VHE; $E > 100$ GeV) sources are also emitting at GeV energies. We extended our previous study utilizing the first Fermi catalog (1FGL) sources \cite{3}. A cross-correlation comparison of the 1FGL sources was carried out with the VHE γ-ray sources in the literature as of May 2011. While it is found that a significant number of VHE γ-ray sources were also detected in the GeV band, the GeV-TeV spectra of some of these spatially coincident sources cannot be described by a single spectral component. While some of these cases are γ-ray pulsars accompanied by VHE γ-ray emitting nebulae, we present cases where the 100 MeV to multi-TeV spectra of coincident 1FGL/VHE source pairs do not seem to be well fit by a single spectral component.

I. INTRODUCTION

During the last decade, many different kinds of astrophysical objects in our Galaxy were discovered at photon energies above 100 MeV: pulsars (PSRs), pulsar wind nebulae (PWNe), supernova remnants (SNRs), high-mass X-ray binaries (HMXBs), and one H II region. They were all made by utilizing the high-energy (HE; 30 MeV–100 GeV) and very high-energy (VHE; 100 GeV–100 TeV) γ-ray experiments including current generation of imaging atmospheric Cherenkov telescopes (IACTs) H.E.S.S., MAGIC, and VERITAS, and the Large Area Telescope (LAT) aboard the Fermi satellite. More than 100 sources are now known at VHE γ-ray energies and 1451 sources are listed in the first Fermi LAT catalog, comparing with \sim10 VHE γ-ray sources and \sim300 HE γ-ray sources around the turn of the century. Given the large number of sources, we follow previous studies \cite{2} \cite{4} and compare the HE and VHE source positions, as an important step to identify a group of sources emitting both in the HE and VHE bands.

II. SPATIAL COINCIDENCE STUDY

We cross-correlated the 1FGL source centroid positions with VHE γ-ray source centroid positions. Only sources that are not associated with an extragalactic source were considered. Using the same manner as described in \cite{2}, the VHE source extent and 95% uncertainty in the 1FGL source centroids are taken into account. All first Fermi/LAT catalog sources are assumed to be point sources as in \cite{3}. Those sources with an ending ‘c’ should be regarded with caution given the imperfect knowledge of the diffuse γ-ray background \cite{3}. In total we identified 31 1FGL sources that are spatially coincident with one VHE source. In addition, the VHE source in the Westerlund 1 region, which are \sim0.6$^\circ$ extended, is found to be spatially coincident with three 1FGL sources. HESS J1809$-$193 is coincident with two 1FGL sources. The list of these 1FGL-VHE source pairs are presented in Table I.

Based on pulsar timing information and dedicated efforts described in the corresponding literature, as well as spatial coincidences, the 1FGL sources in the list of coincidences include several classes: 2 HMXBs (LS I$+61^\circ$ 303 and LS 5039), 8 PSRs, 4 SNRs (IC 443, W28, W49B, W51C), 2 PSR/PWN (Crab and Vela), 6 SNR/PWN candidates, one H II region, and 13 unassociated sources.

III. GEV-TEV SPECTRA

The GeV spectral points are taken from the 1FGL catalog where point source analysis was used, while the VHE spectra shown are the best-fit power law taken from the respective literature.

We identify several cases of which the 0.1–100 GeV spectra and the VHE spectra cannot be described by a single spectral components, as shown in Figs 1–5. The flux in the five energy bands in \cite{3} are plotted together with the best-fit power law in the VHE range. In several other cases, the GeV emission come from a γ-ray pulsar, i.e., those 1FGL source identified as a pulsar, that shows cutoff at several GeV and VHE emission mostly likely come from the associated VHE γ-ray emitting PWN. We only present cases where the 1FGL source is not identified as a pulsar.
IV. CASES OF SPECTRAL ‘MIS-MATCH’

We found five VHE sources that are spatially coincident with a 1FGL source but the GeV–TeV spectra are incompatible with a single spectral component: HESS J0852−463, HESS J1614−518, HESS J1702−420, HESS J1809−193, and HESS J1848−018. The cases presented here might represent a group of GeV/TeV sources where the spectral mis-matches indicate different radiations working at different energies or that radiation comes from different parts of a γ-ray source. Further studies of these spectral mis-match GeV/TeV spatially coincident cases are encouraged.

V. CONCLUSION

In this study, it is found that a significant number of VHE sources are spatially coincident with a counterpart in the first Fermi/LAT catalog, establishing a population of sources that emit both in the HE and VHE energy bands. This confirms our previous assessment using the Fermi bright source list[2]. However, the GeV-TeV spectra of some of these spatially coincident sources cannot be described by a single spectral component. While some of these cases are γ-ray pulsars accompanied by VHE γ-ray emitting nebulae, we highlight five cases where the 100 MeV to multi-TeV spectra of coincident 1FGL/VHE source pairs do not seem to be well fit by a single spectral component.

Notes added in proof: The second Fermi catalog has been released after the conference. We note that one of the coincidence pairs, 1FGL J1702.4−4147c, does not have a 2FGL counterpart.

Acknowledgments

P. Tam acknowledges the support of the Formosa Program of Taiwan, NSC100-2923-M-007-001-MY3, and the NSC grant, NSC100-2628-M-007-002-MY3.

References

[1] Abdo, A. A., Ackermann, M., Ajello, M., et al. (Fermi/LAT Collaboration) 2009, ApJS, 183, 46.
[2] Tam, P.H.T., Wagner, S., Tibolla, O., & Chaves, R.C.G., A&A, 2010, 518, A8.
[3] Aharonian, F. A., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. (H.E.S.S. Collaboration) 2006, A&A, 457, 899.
[4] Aharonian, F. A., Akhperjanian, A. G., Barres de Almeida, U., et al. (H.E.S.S. Collaboration) 2008, A&A, 477, 353.
[5] Abramowski, A., Acero, F., Aharonian, F., et al. (H.E.S.S. Collaboration) 2011, A&A, 528, 143.
[6] Aharonian, F. A., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. (H.E.S.S. Collaboration) 2007, A&A, 472, 429.
[7] Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJL, 698, L133.
[8] Aharonian, F. A., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. (H.E.S.S. Collaboration) 2006, A&A, 448, L43.
[9] Aharonian, F. A., Akhperjanian, A. G., Barres de Almeida, U., et al. (H.E.S.S. Collaboration) 2008, ApJ, 681, 236.
[10] Abramowski, A., Acero, F., Aharonian, F., et al. (H.E.S.S. Collaboration) 2011, A&A, 525, 46.
[11] Abramowski, A., Acero, F., Aharonian, F., et al. (H.E.S.S. Collaboration) 2007, A&A, 464, 245.
[12] Achard, F., Aharonian, F. A., Akhperjanian, A. G., et al. (H.E.S.S. Collaboration) 2010, MNRAS, 402, 1877.
[13] Aharonian, F. A., Akhperjanian, A. G., Barres de Almeida, U., et al. (H.E.S.S. Collaboration) 2008, A&A, 481, 401.
[14] Aharonian, F. A., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. (H.E.S.S. Collaboration) 2006, A&A, 460, 743.
[15] Abramowski, A., Acero, F., Aharonian, F., et al. (H.E.S.S. Collaboration) 2010, ApJ, 718, 348.
[16] Abramowski, A., Acero, F., Aharonian, F., et al. (H.E.S.S. Collaboration) 2008, A&A, 477, 353.
[17] Aharonian, F. A., Akhperjanian, A. G., Barres de Almeida, U., et al. (H.E.S.S. Collaboration) 2008, ApJ, 679, L133.
[18] Abramowski, A., Acero, F., Aharonian, F., et al. (H.E.S.S. Collaboration) 2011, A&A, 525, 46.
[19] Aharonian, F. A., Akhperjanian, A. G., Barres de Almeida, U., et al. (H.E.S.S. Collaboration) 2007, A&A, 472, 489.
[20] Aharonian, F. A., Akhperjanian, A. G., Barres de Almeida, U., et al. (H.E.S.S. Collaboration) 2007, A&A, 472, 489.
[21] Acero, F., Aharonian, F. A., Akhperjanian, A. G., et al. (H.E.S.S. Collaboration) 2010, MNRAS, 402, 1877.
[22] Abramowski, A., Acero, F., Aharonian, F., et al. (H.E.S.S. Collaboration) 2007, A&A, 472, 489.
[23] Aharonian, F. A., Akhperjanian, A. G., Barres de Almeida, U., et al. (H.E.S.S. Collaboration) 2008, A&A, 481, 401.
[24] Aharonian, F. A., Akhperjanian, A. G., Barres de Almeida, U., et al. (H.E.S.S. Collaboration) 2006, A&A, 460, 743.
[25] Hoppe, S., for the H.E.S.S. Collaboration, 2008, Proceedings of the 30th International Cosmic Ray Conference; Rogelio Caballero, Juan Carlos D’Olivo, Gustavo Medina-Tanco, Lukas Nellen, Federico A. Sánchez, José F. Valdés-Galicia (eds.); Universidad Nacional Autónoma de México, Mexico City, Mexico,
ECONF C110509

TABLE I: 1FGL sources with spatially coincident VHE counterpart as of May 2011. The class denoted ‘SNR/PWN’ means SNR/PWN candidates, according to [3].

1FGL source	association	class	γ-ray source	association	\(l\)	\(b\)	extension	ref
J0240.5+6113	LS I+61 303	HMXB	VER J0240+612	LS I+61 303	1.08	pt src	[9]	
J0534.5+2200	Crab	PSR/PWN	HESS J0534+220	Crab nebula	5.78	pt src	[6]	
J0617.2+2333	IC 443	SNR	VER J0616.9+2330	IC 443	0.16	[4, 5]		
J0835.3−4510	Vela	PSR/PWN	HESS J0835−455	Vela X	0.43	[9]		
J0854.0−4632	SNR/PWN	HESS J0852−463	RX J0852.0−4622	1.0	[10]			
J1023.0−5746	PSR J1023−5746	HESS J1023−575	PSR J1023−5746/Wd 2	0.18	[11]			
J1418.7−6057	PSR J1418−6058	PSR	J1418−6059	G343.3+0.1 (Rabbit)	0.06	[12]		
J1420.1−6048	PSR J1420−6048	PSR	J1420−607	PSR J1420−6048	0.07	[12]		
J1501.6−4204	SNR/PWN	HESS J1502−421	SN 1006 SW	0.13	[13]			
J1503.4−5805c	Unid	SNR/PWN	HESS J1503−582	PVW J19.8+0.3?	0.24	[16]		
J1617.4−5138c	Unid	PSR	HESS J1614−518	0.58	[2]			
J1640.8−4634c	SNR/PWN	HESS J1640−465	G338.3−0.0	0.05	[15]			
J1648.4−4690c	PSR J1648.4−4611	PSR	339.47−0.79	Jesterlund I region	0.9	[16]		
J1649.3−4501c	Unid	SNR/PWN	340.44−0.38	same as above	[16]			
J1651.5−4602c	Unid	SNR/PWN	339.91−1.12	same as above	[16]			
J1702.4−4147c	Unid	PSR	HESS J1702−420	PSR J1702−4128	0.22	[17]		
J1707.9−4110c	Unid	SNR/PWN	345.66−0.44	0.08	[17]			
J1709.7−4429c	PSR B1706−44	PSR	HESS J1708−443	PSR B1706−44/G343.1−2.3	0.29	[18]		
J1711.7−3944c	SNR/PWN	PSR J1713−397	RX J1713.7−3946	0.25	[19]			
J1718.2−3825	PSR J1718−3825	PSR	348.83−0.49	0.015	[20]			
J1745.6−2800c	SNR/PWN	HESS J1745−290	Sgr A°/G359.95−0.04	0.04	[21]			
J1800.5−2359c	W28−A2	H II region	HESS J1800−240B	W28−A2	0.17	[22, 23]		
J1801.3−2322c	W28	SNR	HESS J1801−233	W28	0.17	[22, 23]		
J1805.2−2137c	SNR/PWN	HESS J1804−216	W30/PSR J1803−2137?	0.20	[22, 23]			
J1808.5−1554c	Unid	SNR/PWN	HESS J1809−193	PSR J1809−1917?	0.03	[23]		
J1810.9−1905c	Unid	SNR/PWN	10.43−0.03	same as above	[20]			
J1826.2−1450c	LS 5039	HMXB	HESS J1826−148	LS 5039	0.28	[24]		
J1837.5−0659c	Unid	SNR/PWN	25.13−0.12	HESS J1837−069	0.12	7.2°x3'	[15]	
J1844.3−0309c	Unid	SNR/PWN	29.32−0.13	~29.08±0.16	0.25	[25]		
J1848.1−0145c	Unid	SNR/PWN	30.99−0.08	HESS J1843−033	~29.08±0.16	[25]		
J1907.9+0602c	PSR J1907+0602	PSR	HESS J1908+063	MGRO J1908+06	0.39	[27]		
J1910.9+0906c	SNR	W 49B	HESS J1912+101	PSR J1913+101	0.27	[30]		
J1913.7+1007c	Unid	SNR/PWN	44.48−0.28	PSR J1923+141	0.15	[31, 32]		
J1922.9+1411c	W 51C	SNR	49.14−0.6	w51	0.15	[31, 32]		
J2020.1+0404c	Unid	SNR/PWN	78.37−2.53	VER J2019+047	0.11	[33]		
J2032.2+4127c	PSR J2032.2+4127	PSR	80.22±1.03	TeV J2032+4130	0.10	[34]		

2, 579, preprint arXiv:1104.5003

[26] Chaves, R. C. G., de Oña Wilhemi, E., & Hoppe, S., for the H.E.S.S. Collaboration 2009, AIP Conference Proceedings, 1085, 372.
[27] Aharonian, F. A., Akhperjanian, A. G., Anton, G., et al. (H.E.S.S. Collaboration) 2009, A&A, 499, 723.
[28] Abdo, A. A., Ackermann, M., Ajello, M., et al. (Fermi/LAT Collaboration) 2009, ApJL, 706, L1.
[29] Fiasson, A., Marandon, V., Chaves, R. C. G., Tibolla, O., for the H.E.S.S. Collaboration 2009, Proceedings of the 31st International Cosmic Ray Conference
[30] Weinstein, A., for the VERITAS collaboration 2009, proceedings of the 2009 Fermi Symposium, preprint arXiv:0912.5355
[31] Aharonian, F. A., Akhperjanian, A. G., Belicic, M., et al. (HEGRA Collaboration) 2005, A&A, 431, 197.
FIG. 1: The 100 MeV to several tens TeV spectra of four spatially coincident but spectrally ‘mis-match’ 1FGL/VHE source pairs

FIG. 2: The 100 MeV to several tens TeV spectra of 1FGL J1848.1-0145c and HESS J1848-018. 1FGL J1848.1-0145c has a 0FGL counterpart whose best-fit power law is also shown.