How many cosmological parameters?

Andrew R. Liddle

Astronomy Centre, University of Sussex, Brighton BN1 9QH, United Kingdom

ABSTRACT

Constraints on cosmological parameters depend on the set of parameters chosen to define the model which is compared with observational data. I use the Akaike and Bayesian information criteria to carry out cosmological model selection, in order to determine the parameter set providing the preferred fit to the data. Applying the information criteria to the current cosmological data sets indicates, for example, that spatially-flat models are statistically preferred to closed models, and that possible running of the spectral index has lower significance than inferred from its confidence limits. I also discuss some problems of statistical assessment arising from there being a large number of ‘candidate’ cosmological parameters that can be investigated for possible cosmological implications, and argue that 95% confidence is too low a threshold to robustly identify the need for new parameters in model fitting. The best present description of cosmological data uses a scale-invariant ($n = 1$) spectrum of gaussian adiabatic perturbations in a spatially-flat Universe, with the cosmological model requiring only five fundamental parameters to fully specify it.

Key words: cosmology: theory

1 INTRODUCTION

Since the release of microwave anisotropy data from the Wilkinson Microwave Anisotropy Probe (WMAP, Bennett et al. 2003), it has been widely acknowledged that cosmology has entered a precision era, with many of the key cosmological parameters being determined at the ten percent level or better. By now, a wide range of analyses have been published, uniting this dataset with other cosmological datasets such as galaxy power spectrum information from the Two degree field (2dF) survey or the Sloan Digital Sky Survey (SDSS).

While the various analyses are in broad agreement with one another, typically some differences do arise in the precise constraints, for two reasons. One is that separate analyses often use slightly different data compilations, which of course should lead to differing results, hopefully consistent within the uncertainties. However, further differences arise due to the choice of cosmological model made, usually meaning the number of cosmological parameters allowed to vary. The standard approach thus far has been to first choose the set of parameters to be varied on a fairly ad hoc basis, and then use a likelihood method to find the best-fit model and confidence ranges for those parameters. Some papers analyze several combinations of parameters, primarily with the aim of investigating how the parameter confidence ranges are affected by modifying these assumptions.

So far, however, there have been few attempts to allow the data to determine which combination of parameters gives the preferred fit to the data. This is the statistical problem of model selection, which arises across many branches of science; for example, in studies of medical pathologies, one wishes to know which set of indicators, out of many potential factors, are best suited to predicting patient susceptibility. The emphasis is usually on ensuring the elimination of parameters which play an insufficient role in improving the fit to the data available. A key tool is this area is information criteria, specifically the Akaike information criterion (Akaike 1974) and the Bayesian information criterion (Schwarz 1978). These have led to considerable advances in understanding of statistical inference and its relation to information theory. Akaike’s 1974 paper now has over 3000 citations and is the subject of a complete textbook (Sakamoto, Ishiguro & Kitagawa 1986). However, so far they seem to have had minimal application in astronomy — keyword search on the abstracts of the entire astro-ph archive yields only four journal papers (Mukherjee et al. 1998; Takeuchi 2000; Connolly et al. 2000; Nakamichi & Morikawa 2003). In this paper I will apply the information criteria to the problem of selection of cosmological parameters.

2 THE INFORMATION CRITERIA

The information criteria have a deep underpinning in the theory of statistical inference, but fortunately have a very simple expression. The key aim is to make an objective comparison of different models (here interpreted as different selections of cosmological parameters to vary) which may feature different numbers of parameters. Usually in cosmology a basic selection of ‘essential’ parameters is considered, to which additional parameters might be added to make a more general model. It is assumed that the models will be compared to a fixed dataset using a likelihood method.

Typically, the introduction of extra parameters will allow an
improved fit to the dataset, regardless of whether or not those new parameters are actually relevant. A simple comparison of the maximum likelihood of different models will therefore always favour the model with the most parameters. The information criteria compensate for this by penalizing models which have more parameters, offsetting any improvement in the maximum likelihood that the extra parameters might allow.

The simplest procedure to compare models is the likelihood ratio test (Kendall & Stuart 1979, ch. 24), which can be applied when the simple model is nested within a more complex model. The quantity $2 \ln \frac{L_{\text{simple}}}{L_{\text{complex}}}$, where $L$ is the maximum likelihood of the model under consideration, is approximately chi-squared distributed and standard statistical tables can be used to look up the significance of any increase in likelihood against the number of extra parameters introduced. However the assumptions underlying the test are often violated in astrophysical situations (Protassov et al. 2002). Further, one is commonly interested in comparing models which are not nested.

The Akaike information criterion (AIC) is defined as

$$\text{AIC} = -2 \ln L + 2k,$$

where $L$ is the maximum likelihood and $k$ is the number of parameters of the model (Akaike 1974). The best model is the model which minimizes the AIC, and there is no requirement for the models to be nested. Typically, models with too few parameters give a poor fit to the data and hence have a low log-likelihood, while those with too many are penalized by the second term. The form of the AIC comes from minimizing the Kullback–Leibler information entropy, which measures the difference between the true distribution and the model distribution. The AIC arises from an approximate minimization of this entropy; an explanation geared to astronomers can be found in Takeuchi (2000), while the full statistical justification can be found in Sakamoto et al. (1986) and Burnham & Anderson (2002).

The Bayesian information criterion (BIC) was introduced by Schwarz (1978), and can be defined as

$$\text{BIC} = -2 \ln L + k \ln N,$$

where $N$ is the number of datapoints used in the fit (in current cosmological applications, this will be of order one thousand). It comes from approximating the Bayes factor (Jeffreys 1961; Kass & Raftery 1995), which gives the posterior odds of one model against another presuming that the models are equally favoured prior to the data fitting. Although expressed in terms of the maximum likelihood, it is therefore related to the integrated likelihood.

It is unfortunate that there are different information criteria in the literature, which forces one to ask which is better. Extensive Monte Carlo testing has indicated that the AIC tends to favour models which have more parameters than the true model (see e.g. Harvey 1993; Kass & Raftery 1995). Formally, this was recognized in a proof that the AIC is “dimensionally inconsistent” (Kashyap 1980), meaning that even as the size of the dataset tends to infinity, the probability of the AIC incorrectly picking an overparametrized model does not tend to zero. By contrast, the BIC is dimensionally consistent, as the second term in its definition ever more harshly penalizes overparametrized models as the dataset increases in size.

Table 1. Base parameters: those that appear essential for a successful cosmological model. Those below the line are in principle determinable from those above, but with present understanding are treated as free phenomenological parameters. Models based on these parameters alone provide an adequate fit to present cosmological data.

| Parameter    | Description                                      |
|--------------|--------------------------------------------------|
| $\Omega_m$   | matter density                                   |
| $\Omega_b$   | baryon density                                   |
| $\Omega_r$   | radiation density                                |
| $h$          | hubble parameter                                 |
| $A$          | adiabatic density perturbation amplitude         |
| $\tau$       | reionization optical depth                       |
| $b$          | bias parameter (or parameters)                   |

and hence the BIC does always pick the correct model for large datasets. Burnham & Anderson (2002) generally favour the AIC, but note that the BIC is well justified whenever the complexity of the true model does not increase with the size of the dataset and provided that the true model can be expected to be amongst the models considered, which one can hope is the case in cosmology. Accordingly, it seems that that BIC should ordinarily be preferred. Note though that for any likely dataset $N > 2$, and hence the AIC is always more generous towards extra parameters than the BIC. Hence the AIC remains useful as it gives an upper limit to the number of parameters which should be included.

In either case, the absolute value of the criterion is not of interest, only the relative value between different models. A difference of 2 for the BIC is regarded as positive evidence, and of 6 or more as strong evidence, against the model with the larger value (Jeffreys 1961; Mukherjee et al. 1998).

The rather limited literature on cosmological model selection has thus far not used the information criteria, but has instead used the more sophisticated idea of Bayesian evidence (see e.g. Jaynes 2003; MacKay 2003). This compares the total posterior likelihoods of the models, obtained as a product of the Bayes factor and the prior relative likelihood. This requires an integral of the likelihood over the whole model parameter space, which may be lengthy to calculate, but avoids the approximations used in the information criteria and also permits the use of prior information if required. It has been used in a variety of cosmological contexts by Jaffe (1996), Drell, Loredo & Wasserman (2000), John & Narlikar (2002), Hobson, Bridle & Lahav (2002), Slosar et al. (2003), Saini, Weller & Bridle (2004), and Niarchou, Jaffe & Pogosian (2004).

3 APPLICATION TO PRESENT COSMOLOGICAL DATA

3.1 Choice of parameters

Most of the recent work on cosmological parameters has chosen a particular parameter set or sets, and investigated parameter constraints when faced with different observational datasets. However, the information criteria ask how well different models fit the same dataset. First we need to decide which models to consider.

A useful division of parameters is into those which are definitely needed to give a reliable fit to the data, which I will call the base parameter set, and those which have proved irrelevant, or of marginal significance, in fits to the present data. The base parameter set is actually extraordinarily small, and given in Table 1. At present it seems that a scale-invariant spectrum of adiabatic gaussian density perturbations, requiring specification of just a single parameter (the amplitude), is enough to give a good fit to the data. The Universe can be taken as spatially-flat, with the dark matter, baryon,
and radiation densities requiring to be specified as independent parameters. The base model includes a cosmological constant/dark energy, whose density is fixed by the spatial flatness condition. To complete the parameter set, we need the Hubble constant. Accordingly, a minimal description of the Universe requires just five fundamental parameters. Further, the radiation density $\Omega_r$ is directly measured at high accuracy from the cosmic microwave background temperature and is not normally varied in fits to other data.

In addition to these fundamental parameters, comparisons with microwave anisotropy and galaxy power spectrum data require knowledge of the reionization optical depth $\tau$ and the galaxy bias parameter $b$ respectively. These are not fundamental parameters, as they are in principle computable from the above, but present understanding does not allow an accurate first-principles derivation and instead typically they are taken as additional phenomenological parameters to be fit from the data.

Complementary to this base parameter set is what I will call the list of candidate parameters. These are parameters which are not convincingly measured with present data, but some of which might be required by future data. Many of them are available in model prediction codes such as CMBFAST (Seljak & Zaldarriaga 1996). Cosmological observations seek to improve the measurement of the base parameters, and also to investigate whether better data requires the promotion of any parameters from the candidate set into the standard cosmological model. Table 2 shows a list of parameters which have already been discussed in the literature, and although already rather long is likely to be incomplete.

The upper portion of Table 2 lists possible additional parameters associated with the background space-time, while the lower part contains those specifying the initial perturbations. The base cosmological model assumes these are all zero (as defined in the table), and indeed it is a perfectly plausible cosmological model that they are indeed all zero, with the sole exception of the neutrino masses, for which there is good non-cosmological evidence that they are non-zero. One should be fairly optimistic about learning something about neutrino masses from cosmology, which is why they are included as cosmological parameters. It is also possible that one day they might be pinned down accurately enough by other measurements that cosmologists no longer need to worry about varying them, and then neutrino masses will not be cosmological parameters any more than the electron or proton mass are.

It is of course highly unlikely that all the parameters on the candidate list will be relevant (if they were, observational data would have little chance of constraining anything), and on theoretical grounds some are thought much more likely than others. In most cases parameters can be added individually to the base model, but there are some dependences; for example, it doesn’t make much sense to include spectral index running as a parameter unless the spectral index itself is included. Quite a lot of the parameters in Ta-

---

### Table 2. Candidate parameters: those which might be relevant for cosmological observations, but for which there is presently no convincing evidence requiring them. They are listed so as to take the value zero in the base cosmological model. Those above the line are parameters of the background homogeneous cosmology, and those below describe the perturbations. Of the latter set, the first six refer to adiabatic perturbations, the next three to tensor perturbations, and the remainder to isocurvature perturbations.

| Parameter | Description |
|-----------|-------------|
| $\Omega_k$ | spatial curvature |
| $N_{\nu} - 3.04$ | effective number of neutrino species (CMBFAST definition) |
| $m_{\nu_1}$ | neutrino mass for species 'i' [or more complex neutrino properties] |
| $m_{dm}$ | (warm) dark matter mass |
| $w + 1$ | dark energy equation of state |
| $dw/dz$ | redshift dependence of $w$ [or more complex parametrization of dark energy evolution] |
| $e^2 - 1$ | effects of dark energy sound speed |
| $l/\tau_{top}$ | topological identification scale [or more complex parametrization of non-trivial topology] |
| $do/dz$ | redshift dependence of the fine structure constant |
| $dG/dz$ | redshift dependence of the gravitational constant |
| $n - 1$ | scalar spectral index |
| $dn/d\ln k$ | running of the scalar spectral index |
| $k_{cut}$ | large-scale cut-off in the spectrum |
| $A_{feature}$ | amplitude of spectral feature (peak, dip or step) ... |
| $k_{feature}$ | ... and its scale |
| $f_{NL}$ | quadratic contribution to primordial non-gaussianity [or more complex parametrization of non-gaussianity] |
| $r$ | tensor-to-scalar ratio |
| $r + 8n_T$ | violation of the inflationary consistency equation |
| $dn_T/d\ln k$ | running of the tensor spectral index |
| $P_S$ | CDM isocurvature perturbation ... |
| $n_S$ | ... and its spectral index ... |
| $P_{SR}$ | ... and its correlation with adiabatic perturbations ... |
| $n_{SR} - n_S$ | ... and the spectral index of that correlation [or more complicated multi-component isocurvature perturbation] |
| $G\mu$ | cosmic string component of perturbations |

---

To be more precise, this base model assumes all the parameters to be listed in Table 2 are zero. Analyses may use different parameter definitions equivalent to those given here, for instance using the physical densities $\Omega_i h^2$ in place of the density parameters.
have now been added to a base parameter set (usually not the one I have adopted here, however) and compared to observational data. There is also the possibility that the simultaneous inclusion of two extra parameters, which are unrelated, might significantly improve the fit where neither parameter separately did. This is hard to fully test as there are so many possible combinations.

3.2 Application to WMAP+SDSS data

I will use the results from comparison of models to WMAP plus SDSS data given in Tegmark et al. (2004, henceforth T04). Much of the analysis in that paper focusses on a simple parameter set called the ‘vanilla’ model or sometimes the ‘six parameter’ model. Confusingly, it actually features seven parameters (they do not count the bias parameter, although it is an independent fit parameter). They are not quite the set given in Table 2, the radiation density parameter is omitted for reasons I explained above, while the spectral index n is included as an independent parameter. However n − 1 is not actually detected to be non-zero; its 1-sigma confidence range (table 4, column 6 of T04) is 0.952 < n < 1.016. In light of the above discussion, we might expect that the information criteria reject the inclusion of n − 1 as a useful parameter, and indeed that is the case.

The χ² values quoted by T04 are derived using the WMAP likelihood code [see Verde et al. (2003) and Spergel et al. (2003) for details] combined with a calculation of the likelihood from the SDSS data, and are defined as −2 ln L. The total number of data-points N (not corrected for the number of parameters in the fit) is N = 1367 (899 WMAP temperature spectrum, 449 WMAP polarization cross-correlation, 19 SDSS). I note that their Markov chains were designed to estimate confidence intervals rather than to accurately determine the precise maximum likelihood, and a modest bias might occur from the maximum being less well pinpointed the greater the model dimensionality. Once the approximate locations of the maxima are determined via a Markov Chain Monte Carlo procedure, a variation on that method could be used to determine the maximum likelihoods accurately as an additional part of the data analysis process.

As seen in the upper two rows of Table 2, both information criteria prefer the base model, with n fixed at one, as opposed to letting n vary. As has been remarked before, there is presently no evidence that the parameter n − 1 is needed to fit present data. T04 draw the same conclusion on subjective grounds, and refer to the base model as ‘vanilla lite’.

A similar argument applies to other cosmological parameters. Unfortunately the other models analyzed by T04 include variation of n (their table 3) and so other parameters are not directly compared with the base model, but anyway the trend seen in Table 2 is clear — the more parameters included the higher the AIC and BIC as compared to the base model. The need for these additional parameters is strongly rejected by the information criteria, particularly the BIC which strongly penalizes additional parameters for a dataset of this size. For example, the information criteria reject the need for Ωₖ as an independent parameter, instead identifying spatially-flat models as the preferred description of the data.

3 It is interesting to note that recent applications of the Bayesian evidence to cosmological model selection have also found no significant evidence against the simplest model considered (Slosar et al. 2003; Saini et al. 2004; Niarchou et al. 2004).

| Model | parameters | −2 ln L | AIC | BIC |
|-------|------------|---------|-----|-----|
| Base model | 6 | 1447.9 | 1459.9 | 1491.2 |
| Base + n | 7 | 1447.2 | 1461.2 | 1497.7 |
| Base + n,Ωₖ | 8 | 1445.4 | 1461.4 | 1503.2 |
| Base + n,r | 8 | 1446.9 | 1462.9 | 1504.7 |
| Base + n,r,ΔlnΩₖ | 10 | 1444.4 | 1464.4 | 1516.6 |

4 CANDIDATE PARAMETERS AND STATISTICAL SIGNIFICANCE

The information criteria are clearly a powerful tool for establishing the appropriate set of cosmological parameters. How do they relate to the standard approach in cosmology of looking at confidence levels of parameter detection?

Use of fairly low confidence levels, such as 95%, to identify new parameters is inherently very risky because of the large number of candidate parameters. If there were only one candidate parameter and it were detected at 95% confidence, that certainly be interesting. However there are many possible parameters, and if one analyzes a several of them and finds one at 95% confidence, then one can no longer say that the base model is ruled out at that level, because there were several different parameters any of which might, by chance, have been at its 95% limit. As an extreme example, if one considered 20 parameters it would be no surprise at all to find one at 95% confidence level, and that certainly wouldn’t mean the base model was excluded at that confidence. Consequently the true statistical significance of a parameter detection is always likely to be less than indicated by its confidence levels (e.g. Bromley & Tegmark 2000). This issue can arise both within a single paper which explores many parameters, and in a broader sense because the community as a whole investigates many different parameters.

This is a form of publication bias — the tendency for authors to preferentially submit, and editors to preferentially accept, papers showing positive statistical evidence. This bias is well recognized in the field of medical trials (see e.g. Sterne, Gavaghan & Egger 2000), where it can literally be a matter of life and death and tends to lead to the introduction of treatments which are at best ineffective and may even be harmful. The stakes are not so high in cosmology, but one should be aware of its possible effects. Publication bias comes in several forms, for example if a single paper analyzes several parameters, but then focusses attention on the most discrepant, that in itself is a form of bias. The more subtle form is where many different researchers examine different parameters for a possible effect, but only those who, by chance, found a significant effect for their parameter, decided to publicize it strongly.

Publication bias is notoriously difficult to allow for, as it mainly arises due to unpublished analyses of null results. However a useful guide comes from considering the number of parameters which have been under discussion in the literature. Given the list in Table 3, it is clear that, even if the base cosmological model is correct, there are enough parameters to be investigated that one should not be surprised to find one or two at the 95% confidence level.

I conclude that when considering whether a new parameter should be transferred from the candidate parameter list to the base parameter list, a 95% confidence detection should not be taken as persuasive evidence that the new parameter is needed. Because
there are so many candidate parameters, a more powerful threshold is needed. The BIC provides a suitably stringent criterion, whereas this line of argument supports the view that the AIC is too weak a criterion for cosmological model selection.

Another subtle point relating to cosmological data is the inability to fully repeat an experiment. Conventionally in statistics, once a dataset has identified an effect which looks interesting (e.g. spectral index running at 95% confidence), one is expected to throw away all that data and seek confirmation from a completely new dataset. This procedure is necessary to minimize publication bias effects, and failure to follow it is regarded as poor practice. Unfortunately, for the microwave anisotropies much of the noise comes from cosmic variance rather than instrumental effects, and so remeasuring does not give an independent realization of statistical noise. For example, if one analyzes the second-year WMAP data (once it becomes available) separately from the first-year data, there will be a tendency for the same cosmological parameter values to be obtained. Finding the same outlying parameter values therefore will have less statistical significance than were the datasets genuinely independent. Even Planck data will have noise significantly correlated to WMAP data in this sense, and properly allowing for that in determining statistical significance of parameter detections would be tricky. This supports the use of information criteria for model selection, rather than parameter confidence levels.

5 CONCLUSIONS

Various conclusions can be drawn from the information criterion approach. Most importantly, they provide a simple objective criterion for the inclusion of new parameters into the standard cosmological model. For example, it is sometimes said that the WMAP analysis actually mildly favours a closed cosmological model, as their best-fit value is $\Omega_0 h^2 = 1.02 \pm 0.02$ (at 1-sigma). However, the information criteria lead to the opposite conclusion: they say that the most appropriate conclusion to draw is that the spatial curvature is not needed as a parameter, and hence it is more likely that the observations were generated in a spatially-flat Universe. That’s not to say that future observations might not show that the Universe is closed, but a much higher significance level than 1-sigma is needed before it becomes the best description of the data in hand. Similar arguments can be applied also to parameters such as running of the spectral index; even in the absence of controversy over the use of lyman-alpha forest data, it seems likely that the information criteria would reject the running as a useful parameter (I can’t test it, as the WMAP team were unable to quote a maximum likelihood due to unknown error covariances). In general, a 95% detection of a particular new parameter cannot be taken to imply that the base model, without that parameter, is ruled out at anything like that significance.

According to the information criteria, the best current cosmological model features only five fundamental parameters and two phenomenological ones, as listed in Table 1. While there is an elegant simplicity to this model which is satisfying, such simplicity does come at a cost, because the cosmological parameters are what tells about the physical processes relevant to the evolution of the Universe. That there are so few parameters is telling us that there is very little physics that we are currently able to probe observationally. Accordingly, we should be hoping that new observational data is powerful enough to promote parameters from the candidate list to the base list; for example, we won’t be able to say anything quantitative about how cosmological inflation might have taken place unless $n - 1$, and ideally $r$ as well, make their way into the standard cosmological model.

The information criteria appear well suited to providing an objective criterion for the incorporation of new parameters, and have had considerable testing across many scientific disciplines. The BIC appears to be preferred to the AIC for cosmological applications. For the size of the current dataset the BIC penalizes extra parameters very strongly, indicating that a very high-significance detection is needed to justify adoption of a new parameter.

ACKNOWLEDGMENTS

This research was supported in part by PPARC. I thank Charles Goldie for directing me to the literature on the information criteria, and thank Sarah Bridle, Martin Kunz, Sam Leach, Max Tegmark, and the referee Håvard Sandvik for helpful discussions and comments.

REFERENCES

Akaike H., 1974, IEEE Trans. Auto. Control, 19, 716
Bennett C. L. et al. (the WMAP Team), 2003, ApJS, 148, 1
Bromley B. C., Tegmark M., 2000, ApJL, 524, L79
Burnham K. P., Anderson D. R., 2002, Model selection and multimodel inference, 2nd ed., Springer-Verlag, New York
Connolly A. J., Genovese C., Moore A. W., Nichol R. C., Schneider J., Wasserman L., 2000, astro-ph/0008187
Drell P. S., Loredo T. J., Wasserman L., 2000, ApJ, 530, 593
Harvey A. C., 1993, Time series models, 2nd ed., Prentice Hall, Hertfordshire (UK)
Hobson M. P., Bridle S. L., Lahav O., 2002, MNRAS, 335, 377
Jaffe A., 1996, ApJ, 471, 24
Jaynes E. T., 2003, Probability theory: the logic of science, Cambridge University Press
Jeffreys H., 1961, Theory of probability, 3rd ed., Oxford University Press
John M. V., Narlikar J. V., 2002, Phys. Rev. D, 65, 043506
Kashyap R., 1980, IEEE Trans. Auto. Control, 25, 996
Kass R. E., Raftery A. E., 1995, Journ. American Stat. Assoc., 90, 773
Kendall M., Stuart A., 1979, Advanced theory of statistics, vol. 2, 4th ed., Griffin, London
MacKay D. J. C., 2003, Information theory, inference, and learning algorithms, Cambridge University Press
Mukherjee S., Feigelson E. D., Babu G. J., Murtagh F., Fraley C., Raftery A., 1998, ApJ, 508, 314
Nakamichi A., Morikawa M., 2003, astro-ph/0304301
Nairchou A., Jaffe A. H., Pogosian L., 2003, Phys. Rev. D, 69, 063515
Protassov R., van Dyk D. A., Connors A., Kashyap V. L., Siemiginowska A., 2002, ApJ, 571, 545
Saini T. D., Weller J., Bridle S. L., 2004, MNRAS, 348, 603
Sakamoto Y., Ishiguro M., Kitagawa G., 1986, Akaike information criterion statistics, Kluwer academic publishers, Dordrecht
Schwarz G., 1978, Annals of Statistics, 5, 461
Seljak U., Zaldarriaga M., 1996, ApJ, 469, 1
Slosar A. et al., 2003, MNRAS, 341, L29
Spergel D. N. et al. (the WMAP Team), 2003, ApJS, 148, 175
Sterne J. A. C., Gavaghan D., Egger M., 2000, Journal of Clinical Epidemiology, 53, 1119
Tegmark M. et al. (the SDSS Collaboration), 2004, Phys. Rev. D, 69, 103501 (T04)
Takeuchi T. T., 2000, Astrophys. Space Sci., 271, 213
Verde L. et al., 2003, ApJS, 148, 195