Epidemiology of plasmid-mediated quinolone resistance in *Salmonella enterica* serovar *typhimurium* isolates from food-producing animals in Japan

Tetsuo Asai1*, Chizuru Sato2, Kaori Masani2, Masaru Usui1, Manao Ozawa1, Tomoe Ogino1, Hiroshi Aoki2, Takuo Sawada2, Hidemasa Izumiya3, Haruo Watanabe3

Abstract

A total of 225 isolates of *Salmonella enterica* serovar Typhimurium from food-producing animals collected between 2003 and 2007 were examined for the prevalence of plasmid-mediated quinolone resistance (PMQR) determinants, namely *qnrA*, *qnrB*, *qnrC*, *qnrD*, *qnrS*, *qepA* and *aac(6\'Ib-cr)*, in Japan. Two isolates (0.8%) of *S*. Typhimurium DT104 from different dairy cows on a single farm in 2006 and 2007 were found to have *qnrS1* on a plasmid of approximately 9.6-kbp. None of the *S*. Typhimurium isolates had *qnrA*, *qnrB*, *qnrC*, *qnrD*, *qepA* and *aac(6\'Ib-cr)*. Currently in Japan, the prevalence of the PMQR genes among *S*. Typhimurium isolates from food animals may remain low or restricted. The PFGE profile of two *S*. Typhimurium DT104 isolates without *qnrS1* on the farm in 2005 had an identical PFGE profile to those of two *S*. Typhimurium DT104 isolates with *qnrS1*. The PFGE analysis suggested that the already existing *S*. Typhimurium DT104 on the farm fortuitously acquired the *qnrS1* plasmid.

Findings

S. enterica serovar Typhimurium is prevalent in many animal species [1-3] including food-producing animals that are considered to be reservoirs for human infection. *S*. Typhimurium was the top 5 serovar found most frequently in cases of *Salmonella* foodborne illness in Japan between 2006 and 2010. *S*. Typhimurium definitive phage type 104 (DT104) causes human salmonellosis in Japan [3]. *S*. Typhimurium DT104 was first isolated in the late 1980’s, and has spread widely among food-producing animals across Japan [3-5]. Although a decreased proportion of DT104-related isolates among the animals was found between 2002 and 2005, multidrug-resistant *S*. Typhimurium remains prevalent among food-producing animals in Japan [6].

In Japan, fluoroquinolone drugs were approved in veterinary fields in 1991 and are commonly used for treatment of bacterial diseases such as enteritis and pneumonia in food-producing animals [7]. In 2001, fluoroquinolone resistance was found in *S*. Choleraesuis from pigs [8] and *S*. Typhimurium from cattle [9]. In addition, a fluoroquinolone-resistant *S*. Typhimurium was identified in bovine isolates in 2005 [6]. The mechanism of fluoroquinolone resistance in these isolates is the mutation of quinolone resistance-determining regions (QRDRs) in DNA gyrase and topoisomerase IV [8,9]. In 2006, *qnrS1* was identified in two *S*. Typhimurium isolates (including one DT104 isolate) from dairy cows and beef cattle, and *S*. Thompson from poultry in Japan [10]. The report identified the potential risk of foodborne infections of *Salmonella* conferring the gene from food-producing animals to humans in Japan.

Quinolone resistance mechanisms mediated by plasmids are responsible for target protection such as the *qnr* genes, active efflux such as *qepA*, and enzymatic modifications such as *aac(6\'Ib-cr)* [11]. The plasmid-mediated quinolone resistance (PMQR) genes contribute
to a reduction of quinolone susceptibility. In Japan, qnrS was first identified in human isolates of Shigella flexneri in 2003 [12]. qepA-harboring clinical isolates of Escherichia coli were found in 2002 in Japan [13]. qnrB in Klebsiella oxytoca, Pseudomonas mirabilis, and P. fluorescens, and qnrS in E. coli and Enterobacter cloacae were found in zoo animal isolates in 2006 [14]. In addition, the presences of qnrS1 and qnrS2 in Salmonella isolated from fecal samples of overseas travelers were reported in Japan [15]. These reports provided an infectious source of Enterobacteriaceae conferring plasmid-mediated quinolone resistance in Japan. We examined the prevalence of plasmid-mediated quinolone resistance in S. Typhimurium isolated from food-producing animals.

A total of 225 isolates of S. Typhimurium from food-producing animals collected between 2003 and 2007 were derived from 156 cattle, 62 pigs and 7 poultry: includes 42 isolates of DT104, 8 of DT104B, and 2 of U302 (Table 1). Bacteriophage typing was performed according to the methods of the Health Protection Agency, London, United Kingdom [16]. Of the isolates, 132 S. Typhimurium isolates collected between 2003 and 2005 [6] were subjected to detection of the PMQR genes. The remaining 93 isolates between 2006 and 2007 were investigated for the presence of the PMQR genes and antimicrobial susceptibility. The presence of qnrA, qnrB and qnrS genes was determined by PCR [17]. The qnrC and qnrD genes were detected using the primers as previously described [18,19], respectively. The qepA and acc(6')-Ib-cr genes were examined as previously described [20,21]. Nucleotide sequences of both strands were determined directly on PCR products. The DNA alignments and deduced amino acid sequences were examined using the BLAST program (National Center for Biotechnology Information, USA). Minimum inhibitory concentrations (MICs) of antimicrobial agents were determined using the agar dilution methods according to the Clinical and Laboratory Standards Institute (CLSI) guidelines [22]. The following 11 antimicrobials were tested: ampicillin (ABPC), cefazolin, colistin, chloramphenicol (CP), dihydrostreptomycin (DSM), gentamicin, kanamycin, oxytetracycline (OTC), nalidixic acid, enrofloxacin (ERFX), and trimethoprim. The MICs of each antimicrobial agent were interpreted using the recommendations of the CLSI [23]. The breakpoints not seen in the CLSI were defined in a previous study [1]. Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC29212, E. coli ATCC 25922 and P. aeruginosa ATCC 27853 were used as quality control strains.

Of 225 S. Typhimurium isolates, two isolates of DT104, 18-PLS-16 and 19-PLS-45, from different dairy cows on a single farm in 2006 and 2007 showed qnrS positive results. The sequencing of amplicons showed complete identity to qnrS1 previously identified on pAH0376 from a S. flexneri strain. None of the S. Typhimurium isolates had qnrA, qnrB, qnrC, qnrD, qepA and acc(6')-Ib-cr. The two isolates exhibited ERFX resistance (ERFX MIC, 2 mg/L) with resistances to ABPC, DSM, OTC and CP (Table 2).

The QRDR of gyrA, parC and parE was examined in ERFX-resistant isolates by PCR amplification and sequencing using primers as described elsewhere [24]. In addition, susceptibility of ERFX-resistant isolates to fluoroquinolones was examined using the micro broth dilution methods according to CLSI guidelines [22]. For evaluation of active efflux of the ERFX-resistant bacteria, the MIC of ERFX was determined by the agar dilution method in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP) (100 μM). They had no mutations in the QRDR of GyrA, ParC and ParE. The MIC of ERFX was not changed in the presence of CCCP (100 μM). The two isolates with qnrS1 exhibited almost the same MIC observed for each fluoroquinolone, which is relative low compared with the MIC for isolate (17-PLS-75) with mutations in the QRDR of GyrA and ParC.

Plasmid DNA was isolated from the qnrS1-positive isolates by the alkaline lysis method [25]. Extracted plasmids were transferred to Hybond-N+ membrane (Amersham Biosciences, Buckinghamshire, UK) using capillary blotting apparatus. The qnrS1 PCR product was labeled with DIG-11-dUTP by PCR using a DIG High Prime DNA Labeling Kit (Roche Diagnostics Ltd, Germany). The labeled PCR product was hybridized to the blot, washed according to the manufacturer’s instructions and visualized using an alkaline phosphatase-based detection system. Sequence analysis of plasmid-encoded genes was performed as described previously [26]. The plasmid DNA sequences were compared to the databases contained in the National Center for Biotechnology Information (NCBI) with the BLAST program. The complete identity to the annotated sequence was confirmed by DNA sequencing.

Table 1 Salmonella Typhimurium isolates used in this study

Isolation year	Cattle Phagetype	Pig Phagetype	Poultry Phagetype						
	Typhimurium	104	104B	U302	Typhimurium	104	104B	Typhimurium	104
2003	24	8	2	0	8	0	0	0	
2004	25	3	0	2	8	1	0	0	
2005	42	12	0	0	21	1	0	4	
2006	23	4	0	0	11	2	0	2	
2007	42	4	4	0	14	5	2	1	
Total	156	31	6	2	62	9	2	7	
The appearance of \textit{S.} Typhimurium DT104 conferring \textit{qnrS1} on the farm is caused either by the introduction of \textit{S.} Typhimurium DT104 conferring \textit{qnrS1} or the transfer of the \textit{qnrS1} plasmid to \textit{S.} Typhimurium DT104 already existing on the farm. According to the CDC PulseNet protocol [26], genetic relatedness of isolates were analyzed by PFGE with XbaI and BlnI restriction enzymes. The isolates tested included two \textit{qnrS1}-negative isolates of \textit{S.} Typhimurium DT104 isolated in 2005 on a farm in which \textit{qnrS1}-conferring isolates were found. In the present study, it was difficult to precisely distinguish between the two \textit{S.} Typhimurium DT104 isolates without \textit{qnrS1} and the two \textit{S.} Typhimurium DT104 isolates with \textit{qnrS1} by PFGE analysis (Figure 2).

Our previous study showed that there is a variation in the BlnI-digested PFGE profiles of \textit{S.} Typhimurium DT104 isolated from food-producing animals in Japan [5]. These results suggested that the \textit{S.} Typhimurium DT104 already present on the farm fortuitously acquired the \textit{qnrS1} plasmid. Previous studies showed that \textit{qnrS1} in Typhimurium isolated in the UK was present on plasmids of 10,066 bp, which were transferable by the conjugation test and carry an IncN replicon [27,28]. Further study need to clarify the source of plasmid bearing \textit{qnrS1}.
This study demonstrated that the two isolates of S. Typhimurium collected from different cattle on a farm in 2006 and 2007 harbored qnrS1 on a 9.6-kbp plasmid. At present in Japan, dissemination of qnrS1 among S. Typhimurium isolates from food animals may remain restricted. The spread of plasmids carrying qnr among Salmonella isolates of animal origin could have serious consequences for fluoroquinolone treatment of non-typhoid Salmonella infection in humans and animals. Previously, qnrS1 and qnrS2 were found in serovars Typhimurium, Corvallis, Montevideo, Agona, Braenderup and Alacua of Salmonella isolates from fecal samples of overseas travelers who had visited Thailand, Malaysia, Vietnam, Indonesia and Singapore, between 2001 and 2007 [15]. PMQR is identified in Braenderup and Alacua of Salmonella enterica serovar Typhimurium phage type DT104 and other multi-drug-resistant strains in Japan. Jpn J Infect Dis 1999, 52:133.

Sameshima T, Akiba M, Izuymi H, Terajima J, Tamura K, Watanabe H, Nakazawa M. Salmonella Typhimurium DT104 from livestock in Japan. Jpn J Infect Dis 2000, 53:15-16.

Esaki H, Morioka A, Kojima A, Ishihara K, Asai T, Tamura Y, Izuymi H, Terajima J, Watanabe H, Takahashi T. Epidemiological characterization of Salmonella Typhimurium DT104 prevalent among food-producing animals in the Japanese veterinary antimicrobial resistance monitoring program (1999-2001). Microb Immunol 2004, 48:53-556.

Kawagoe K, Mine H, Asai T, Kojima A, Ishihara K, Harada K, Ozawa M, Izuymi H, Terajima J, Watanabe H, et al. Changes of multi-drug resistance pattern in Salmonella enterica subspecies enterica serovar Typhimurium isolates from food-producing animals in Japan. J Vet Med Sci 2007, 69:1211-1213.

Asai T, Harada K, Ishihara K, Kojima A, Sameshima T, Tamura Y, Takahashi T. Association of antimicrobial resistance in Campylobacter isolated from food-producing animals with antimicrobial use on farms. Jpn J Infect Dis 2006, 60:290-294.

Esaki H, Chiu CH, Kojima A, Ishihara K, Asai T, Tamura Y, Takahashi T. Comparison of fluoroquinolone resistance genes of Salmonella enterica serovar Choleraesuis isolates in Japan and Taiwan. Jpn J Infect Dis 2004, 57:287-288.

Izuymi H, Terajima J, Matsushita S, Tamura K, Watanabe H. Characterization of multidrug-resistant Salmonella enterica serovar Typhimurium isolated in Japan. J Clin Microbiol 2001, 39:2700-2703.

Ahmed AM, Isha y, Shimamoto T. Molecular characterization of antimicrobial resistance in Salmonella isolated from animals in Japan. J Antimicrob Chemother 2009, 64:402-409.

Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis 2005, 41(Suppl 2):S120-126.

Hata M, Suzuki M, Matsumoto M, Takahashi M, Sato K, Ibe S, Sakae K. Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob Agents Chemother 2005, 49:801-803.

Yaman K, Wachin c, Suzuki S, Kimura K, Shi hata N, Kato H, Shibayama K, Konda T, Arakawa Y. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 2007, 51:334-3360.

Ahmed AM, Motoi Y, Sato M, Maruyama A, Watanabe H, Fukumoto Y, Shimamoto T. Zoo animals as reservoirs of gram-negative bacteria harboring integrons and antimicrobial resistance genes. Appl Environ Microbiol 2007, 73:6686-6690.

Taguchi M, Kawahara R, Seto K, Inoue K, Hayashi A, Yamagata N, Kamakura K, Kashiwagi E. Plasmid-mediated quinolone resistance in Salmonella isolated from patients with overseas travelers’ diarrhea in Japan. Jpn J Infect Dis 2009, 62:312-314.

Anderson ES, Ward LR, Save MJ, de Sa JD. Bacteriophage-typing designations of Salmonella typhimurium. J Hyg Lond 1977, 78:297-300.

Carroir V, Porel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother 2007, 60:394-397.

Wang M, Guo Q, Xu X, Wang X, Ye X, Wu S, Hooper DC, Wang M. New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. Antimicrob Agents Chemother 2009, 53:1892-1897.

Abbreviations

ABPC: ampicillin; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CLSI: Clinical and Laboratory Standards Institute; CP: chloramphenicol; DSM: dihydrostreptomycin; DT104: definitive phage type 104; MICs: Minimum inhibitory concentrations OTC: oxytetracycline; PMQR: plasmid-mediated quinolone resistance; QDRs: quinolone resistance-determining regions; ERFX: enrofloxacin.

Acknowledgements

We thank the staff of the Livestock Hygiene Service Centers across Japan for providing S. enterica serovar Typhimurium isolates. This work was supported in part by a grant-in-aid from the Japanese Ministry of Health, Labour and Welfare (H21-Shokuhin-Ippan-013).

Author details

1 National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan. 2Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Mutashino, Tokyo 180-8602, Japan. 3National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.

Authors’ contributions

TA conceived the study, the study design, participated in the determination of quinolone resistance and determinants, interpreted the data and drafted the manuscript. CS carried out large parts of the experimental work. KM helped to carried out prevalence of resistance genes. MU helped to carried out prevalence of resistance genes. MO carried out the antimicrobial susceptibility testing. TO carried out the antimicrobial susceptibility testing. HA helped to carried out determination of quinolone resistance and draft the manuscript. TS helped to draft the manuscript. HI carried out phage typing and helped to draft the manuscript. WH helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Published: 7 December 2010

Received: 17 November 2010

Accepted: 7 December 2010

References

1. Asai T, Esaki H, Kojima A, Ishihara K, Tamura Y, Takahashi T. Antimicrobial resistance in Salmonella isolates from apparently healthy food-producing animal from 2000 to 2003: the first stage of Japanese veterinary antimicrobial resistance monitoring (JVARM). J Vet Med Sci 2006, 68:881-884.

2. Asai T, Otagiri Y, Osumi T, Namimatsu T, Hirai H, Sato S. Isolation of Salmonella from diarrheic feces of pigs. J Vet Med Sci 2002, 64:159-160.

3. Izuymi H, Tamura K, Terajima J, Watanabe H. Salmonella enterica serovar. Typhimurium phage type DT104 and other multi-drug-resistant strains in Japan. Jpn J Infect Dis 1999, 52:133.

4. Sameshima T, Akiba M, Izuymi H, Terajima J, Tamura K, Watanabe H, Nakazawa M. Salmonella typhimurium DT104 from livestock in Japan. Jpn J Infect Dis 2000, 53:15-16.

5. Esaki H, Morioka A, Kojima A, Ishihara K, Asai T, Tamura Y, Izuymi H, Terajima J, Watanabe H, Takahashi T. Epidemiological characterization of Salmonella Typhimurium DT104 prevalent among food-producing animals in the Japanese veterinary antimicrobial resistance monitoring program (1999-2001). Microb Immunol 2004, 48:53-556.

6. Kawagoe K, Mine H, Asai T, Kojima A, Ishihara K, Harada K, Ozawa M, Izuymi H, Terajima J, Watanabe H, et al. Changes of multi-drug resistance pattern in Salmonella enterica subspecies enterica serovar Typhimurium isolates from food-producing animals in Japan. J Vet Med Sci 2007, 69:1211-1213.

7. Asai T, Harada K, Ishihara K, Kojima A, Sameshima T, Tamura Y, Takahashi T. Association of antimicrobial resistance in Campylobacter isolated from food-producing animals with antimicrobial use on farms. Jpn J Infect Dis 2006, 60:290-294.

8. Esaki H, Chiu CH, Kojima A, Ishihara K, Asai T, Tamura Y, Takahashi T. Comparison of fluoroquinolone resistance genes of Salmonella enterica serovar Choleraesuis isolates in Japan and Taiwan. Jpn J Infect Dis 2004, 57:287-288.

9. Izuymi H, Terajima J, Matsushita S, Tamura K, Watanabe H. Characterization of multidrug-resistant Salmonella enterica serovar Typhimurium isolated in Japan. J Clin Microbiol 2001, 39:2700-2703.

10. Ahmed AM, Isha y, Shimamoto T. Molecular characterization of antimicrobial resistance in Salmonella isolated from animals in Japan. J Antimicrob Chemother 2009, 64:402-409.

11. Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis 2005, 41(Suppl 2):S120-126.
19. Cavaco LM, Hasman H, Xia S, Aarestrup FM: qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob Agents Chemother 2009, 53:603-608.

20. Ma J, Zeng Z, Chen Z, Xu X, Wang X, Deng Y, Lu D, Huang L, Zhang Y, Liu J, et al: High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6’)-Ib-cr, and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals. Antimicrob Agents Chemother 2009, 53:519-524.

21. Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC: Prevalence in the United States of aac(6’)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 2006, 50:3953-3955.

22. CLSI: Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. Approved standard M31-A3. 3 edition. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.

23. CLSI: Performance standards for antimicrobial susceptibility testing; eighteenth informational supplement. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.

24. Giraud E, Brisabois A, Martel JL, Chaslus-Dancla E: Comparative studies of mutations in animal isolates and experimental in vitro- and in vivo-selected mutants of Salmonella spp. suggest a counterselection of highly fluorquinolone-resistant strains in the field. Antimicrob Agents Chemother 1999, 43:2131-2137.

25. Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 1979, 7:1513-1523.

26. Hunter SB, Vauterin P, Lambert-Fair MA, Van Duyne MS, Kubota K, Graves L, Wrigley D, Barrett T, Ribot E: Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J Clin Microbiol 2005, 43:1045-1050.

27. Kehrenberg C, Hopkins KL, Threlfall EJ, Schwarz S: Complete nucleotide sequence of a small qnrS1-carrying plasmid from Salmonella enterica subsp. enterica Typhimurium DT193. J Antimicrob Chemother 2007, 60:903-905.

28. Hopkins KL, Wootton L, Day MR, Threlfall EJ: Plasmid-mediated quinolone resistance determinant qnrS1 found in Salmonella enterica strains isolated in the UK. J Antimicrob Chemother 2007, 59:1071-1075.

29. Robicsek A, Jacoby GA, Hooper DC: The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 2006, 6:529-640.

doi:10.1186/1757-4749-2-17
Cite this article as: Asai et al: Epidemiology of plasmid-mediated quinolone resistance in salmonella enterica serovar typhimurium isolates from food-producing animals in Japan. Gut Pathogens 2010, 2:17.