Building evidence for conservation globally

Journal of Threatened Taxa

10.11609/jott.2022.14.10.21903-22038
www.threatenedtaxa.org

26 October 2022 (Online & Print)
14(10): 21903–22038
ISSN 0974-7907 (Online)
ISSN 0974-7893 (Print)

Open Access
First report of Gymnopilus ochraceus Høil. 1998 (Agaricomycetes: Agaricales: Hymenogastraceae) from India and determination of bioactive components

Anjali Rajendra Patil 1 & Sushant Ishwar Bornak 1 2

1, 2 Department of Botany, Rajaram College, Kolhapur, Maharashtra 416004, India.
1 dhirajanj@gmail.com, 2 sushant.bornak94@gmail.com (corresponding author)

Abstract: A rare Gymnopilus species G. ochraceus Høil. collected from live Ficus platyphylla Del. tree is described and illustrated for the first time from India. Morphological and microscopic characters with molecular and biochemical analysis has been discussed. To indicate that, 25 species of Gymnopilus have previously been recorded from India and the species Gymnopilus ochraceus is hereby reported for the first time, thus making a total of 26 species from India.

Keywords: Biochemical analysis, Ficus platyphylla, fungi, microscopic characters, mushroom, taxonomy.

The genus Gymnopilus (family Hymenogastraceae) is represented by 200 species in the world (Kirk et al. 2008). Members of the genus are characterized by yellow to brown, ferruginous or purple fruiting bodies, saprotrophic nature, cortinoid to membranous veil and a rusty brown spore print (Kaur et al. 2015). The genus was confirmed by roughened basidiospores that range from verrucose to rugulose; capitate to sub-capitate, ventricose cheilocystidia and clamp connections present on almost all kinds of hyphae (Khan et al. 2017). Shape and size of the spores and cystidia are considered important characters for distinction among the species (Rees et al. 2004). Based on the pigments and the non-mycorrhizal habit, Kühner (1984) classified Gymnopilus together with Galerina Earle in the Strophariaceae family. Later, Singer (1986) placed it in family Cortinariaceae due to the ornamentation and lack of germinal pore of the basidiospores. Currently, according to the results of phylogenetic analysis, Gymnopilus forms an independent clade called “Gymnopilae” which is not related to any of the two families mentioned above by Matheny et al. (2006) and is currently placed in the family Hymenogastraceae (Kirk et al. 2008). 25 species of Gymnopilus have been reported from India (Kulkarni 1990; Thomas et al. 2003; Ministry of Environment and Forests 2011; Farook et al. 2013; Kumar et al. 2014; Kaur et al. 2015). Two species of Gymnopilus have been described from Maharashtra viz. G. karnalensis S.M.Kulk. and G. chrysopellus (Berk. & Crutis) Murril (Senthilarasu 2014; Patil 2019).

During the present study, mature fruiting body of G. ochraceus were collected on the living tree of Ficus platyphylla Del. from Kate Bhogaon, Panhala, Kolhapur district (M.S.), India. Morphological and microscopic analysis have been described in this paper. Analysis of ITS rDNA sequence was done to evaluate phylogenetic relationships and Gas Chromatography–Mass Spectrometry (GC-MS) was done for determination of bioactive components.
Material and Methods

a) Morphological and microscopic analysis

Morphological and ecological characters were noted in the field. Microscopic observations of fresh fruiting body were done with the help of 1.5% phloxine B staining and Lawrence & Mayo N-300M research microscope.

b) Identification of fungal strains

The identification of isolates was carried out at the sequencing facility of National Centre for Microbial Resource (NCMR), National Centre for Cell Science, Pune. At the facility, genomic DNA was isolated by the standard phenol/chloroform extraction method (Sambrook et al. 1989), followed by PCR amplification of the ITS regions using universal primers ITS1 [5’-TCC GTA GGT GAA CCT GCC G-3’] and ITS4 [5’-TCC TCC GCT TAT TGA TAT GC -3’]. The amplified ITS PCR product was purified by PEG-NaCl precipitation and directly sequenced on an ABI® 3730XL automated DNA sequencer (Applied Biosystems, Inc., Foster City, CA) as per manufacturer’s instructions. Essentially, sequencing was carried out from both ends so that each position was read at least twice. Assembly was carried out using Lasergene package followed by NCBI BLAST against sequences from type material for tentative identification (Boratyn et al. 2013).

c) GC-MS analysis

10% methanolic extract of dried fruiting bodies was sonicated for 60 minutes at 35°C followed by centrifugation at 10,000 rpm for five minutes. Supernatant was used for GC-MS analysis using Shimadzu, Japan TQ 8050 plus HS 20. Helium was used as the carrier gas at a flow rate of 1ml/min and an injection volume of 1.0 µL. Injector temperature was 250°C, ion source temperature 250°C. The oven temperature was 60°C isothermal for 2.0 min, with an increase of 10°C/ min to 250°C, then 5°C/min to 275°C, ending with 10 min. isothermal at 275°C. Detector voltage was 0.7ev.

Results and Discussion

Habitat: Growing on live F. platyphylla stem in a cluster (Image 1 A–G)

Pileus 2–8 cm wide, convex to plane, scaly, with appressed squamules at the centre, surface pale brown, honey brown, pale ochraceous to pale yellow brown, squamules pale to honey brown; lamellae adnexed to adnate, dark yellow brown; stipe 2–9 x 0.5–1.2 cm, cylindrical to somewhat clavate, fibrillose, concolourous with pileus, with an membranous pale yellow brown ring, context yellowish to pale buff, with bitter taste; Basidiospores (5.5) 5.6–7.1 (7.5) x (4) 4.2–5.3 (5.5) µm, ellipsoid to ovoid, verrucose to punctate, pale to yellow brown, dextrinoid; Basidia 16–26 x 5–6 µm with four sterigmata; Cheilocystidia 15–18 x 4.5–7 µm, ventricose-rostrate with a clavate or rounded apex with 3–3.5 µm broad content; Pleurocystidia not seen; hyphae of pileipellis 6–18 µm broad, smooth, yellow brown, hyaline, clamp connections present (Figure 1 A–D).

GC-MS analysis (Table 1 & Figure 2)

In GC-MS analysis three components are detected viz. 4,4’-Bipyridine, 9,12-Octadecadienoic acid, methyl ester and 9,12-Octadecadienoic acid (Z,Z). Application of 4,4’- 4,4’-bipyridine is a prototypical bridging ligand and an ideal connector between the transition metal atoms (Biradha et al. 2006). Heufler et. al. (1987) stated that 4,4’- bipyridine derivate orellanine causes acute renal failure in man. 9,12-Octadecadienoic acid (Z,Z)- methyl ester is used as fuel and fuel additive. It has potential cancer preventive, anti-inflammatory and anti-arthritic activities (Hagr et al. 2018).

Conclusion

The above described species *G. ochraceus* is reported for the first time from India. It clearly indicates that *G. ochraceus* is extremely rare species. Morphological and microscopic study along with ITS rDNA analysis confirms the species authentication. Many species of *Gymnopilus* are bitter or foul to taste, some are hallucinogenic and edibility of majority is unknown. There are many species and little consensus on identifying them. Microscopically they can be confused with *Pholiota* species and with the
Table 1. GC-MS analysis of Gymnopilus ochraceus.

Peak#	R.Time	F.Time	Molecular formula	Area%	Name
1	16.395	16.875	C10H8N2	95.47	4,4’-Bipyridine
2	24.655	24.715	C19H34O2	3.41	9,12-Octadecadienoic acid, methyl ester
3	25.590	25.605	C19H34O2	1.12	9,12-Octadecadienoic acid (Z,Z)-

Image 1. Gymnopilus ochraceus: A—C—Habit | D—Basidiospores | E—Basidia | F—Cheilocystidia | G—Pileipellis hyphae.
© Sushant Ishwar Bornak
First report of Gymnopilus ochraceus from India

Patil & Bornak

Figure 2. GC-MS chromatogram of Gymnopilus ochraceus

Figure 3. Phylogram of Gymnopilus ochraceus represented by A NOV 21 111

deadly Galerina marginata complex. Microscopically, spores of Gymnopilus species are finely roughened (warty) and lack an apical pore.

REFERENCES

Biradha, K., M. Sarkar & L. Rajput (2006). Crystal engineering of coordination polymers using 4,4′-bipyridine as a bond between transition metal atoms. Chemical Communications 40: 4169–4179. https://doi.org/10.1039/B606184B

Boratyn, G.M., C. Camacho, P.S. Cooper, G. Couloris, A. Fong, N. Ma, T.L. Madden, W.T. Matten, S.D. McGinnis, Y. Merezhuk, Y. Raytselis, E.W. Sayers, T. Tao, J. Ye & I. Zaretskaya (2013). BLAST: a more efficient report with usability improvements. Nucleic Acids Research 41, W29-W33. https://doi.org/10.1093/nar/gkt282

Campi, M., M. Yanine, G. Emanuel, N. Nicolás & G. Laura (2021). First contribution to the genus Gymnopilus (Agaricales, Strophariaceae) in Paraguay. Rodriguésia 72: e00752019. https://doi.org/10.1590/2175-7860202172013

Farook, V.A., S.S. Khan & P. Manimohan (2013). A checklist of agarics (gilled mushrooms) of Kerala state, India. Mycosphere 4(1): 97–131. https://doi.org/10.5943/mycosphere/4/1/6

Hag, T.E., K.S. Ali, A.E.A. Satti & S.A. Omer (2018). GC-MS analysis, phytochemical, and antimicrobial activity of sudanese Nigella sativa (l) oil. European Journal of Biomedical & Pharmaceutical Sciences 5(4): 23–29.

Heufler, C., G. Felmayer & H. Pratt (1987). Investigations on the mode of action of the fungus toxin orrillamine on renal cell cultures. Agents Actions 21: 203–208. https://doi.org/10.1007/BF01974943

Holland, K. (1998). Gymnopilus purpureosquamulosus and G. ochraceus spp. nov. (Agaricales, Basidiomycota)—two new species from Zimbabwe. Mycotaxon 69: 61–85.

Kaur, H., M. Kaur & H. Rather (2015). Species of Gymnopilus P. Karst: new to India. Mycosphere 6(1): 165–173. https://doi.org/10.5943/mycosphere/6/1/7

Khan, J., H. Sher & A.N. Khalid (2017). Gymnopilus penetrans and G. swaticus sp. nov. (Agaricomycota: Hymenogastraceae); a new record and a new species from northwest Pakistan. Phytotaxa 312(1): 60–70. https://doi.org/10.11646/phytotaxa.312.1.4

Kirk, P.M., P.F. Cannon, D.W. Minter & J.A. Stalpers (eds.) (2008). Dictionary of Fungi, 10th edition. CABI Publishing, UK. https://doi.org/10.1079/9780851998268.0000

Kühner, R. (1984). Some mainlines of classification in the gill fungi. Mycologia 76: 1059–1074. https://doi.org/10.2307/3793021

Kulkarni, S.M. (1990). Contributions to lignicolous Basidiomycetes flora of S.W. India — II. Geobios New Reports 9(1): 14–17.

Kumar, S., H. Kour & Y.P. Sharma (2014). A contribution to the Agarics of Jammu and Kashmir, India. Mushroom Research 23(1): 1–4.

Matheny, P.B., J.M. Curtis, V. Hofstetter, M.C. Aime, J.M. Moncalvo, Z.W. Ge, Z.L. Yang, J.C. Slot, J.F. Ammirati, T.J. Baroni, N.L. Bougher, K.W. Hughes, D.J. Lodge, R.W. Kerrigan, M.T. Sidl, D.K. Aanen, M. DeNittis, G.M. Daniele, D.E. Desjardin, B.R. Kropp, L.N. Norvell, A. Parker, E.C. Vellinga, R. Vilgalys & D.S. Hibbett (2006). Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98: 982–995. https://doi.org/10.1080/15572536.2006.1183267

Ministry of Environment & Forests (2011). Tamil Nadu State of
First report of *Gymnopilus ochraceus* from India

Patil, S.Y. (2019). Diversity of Macrofungi from North Maharashtra-II. *International Journal of Life Sciences, Special Issue A13*: 78–83.

Rees, B.J., A.D. Marchant & G.C. Zuccarello (2004). A tale of two species - possible origins of red to purple-coloured *Gymnopilus* species in Europe. *Australasian Mycologist* 21(3): 102–110.

Sambrook, J., E.F. Fritsch & T. Maniatis (1989). *Molecular Cloning a laboratory manual*. Cold Spring Harbor Laboratory Press, New York, 545 pp.

Senthilarasu, G. (2014). Diversity of agarics (gilled mushrooms) of Maharashtra, India. *Current Research in Environmental & Applied Mycology* 4(1): 58–78. https://doi.org/10.5943/cream/4/1/5

Singer, R. (1986). *The Agaricales in Modern Taxonomy*. Koeltz, Koenigstein, 916 pp.

Thomas, A.K., L. Guzmán-Dávalos & P. Manimohan (2003). A new species and new records of *Gymnopilus* from India. *Mycotaxon* 85: 297–305.
The killing of Fishing Cat *Prionailurus viverrinus* (Bennett, 1833) (Mammalia: Carnivora: Felidae) in Hakaluki Haor, Bangladesh – Meherun Niger Sultana, Ai Suzuki, Shinya Numata, M. Abdul Aziz & Anwar Palash, Pp. 21903–21917

Feeding ecology of the endangered Himalayan Gray Langur *Semnopithecus ajax* in Chamba, Himachal Pradesh, India – Rupali Thakur, Kranti Yardi & P. Vishal Ahuja, Pp. 21918–21927

Kleptoparasitic interaction between Snow Leopard *Panthera uncia* and Red Fox *Vulpes vulpes* suggested by circumstantial evidence in Pin Valley National Park, India – Vipin, Tirupathi Rao Golla, Vinita Sharma, Bheemavarapu Kesav Kumar & Ajay Gaur, Pp. 21928–21935

A comparison of the breeding biology of White-throated Kingfisher *Halcyon smyrnensis* Linnaeus, 1758 in plains and hilly areas of Bangladesh – Habibon Naher, Noor Jahan Sarker & Shawkat Imam Khan, Pp. 21936–21945

An updated checklist of reptiles from Dampa Tiger Reserve, Mizoram, India, with sixteen new distribution records – Malsawmdawngliana, Bitupan Boruah, Naitik G. Patel, Samuel Lalronunga, Isaac Zosangliana, K. Lalthmangaiha & Abhijit Das, Pp. 21946–21960

First report of marine sponge *Chelonaplysilla delicata* (Demospongiae: Darwinellidae) from the Andaman Sea/Indian Ocean with baseline information of epifauna on a mesophotic shipwreck – Rocktim Ramen Das, Titus Immanuel, Raj Kiran Lakra, Karan Baath & Ganesh Thiruchitrambalam, Pp. 21961–21967

Intertidal Ophiuroidea from the Saurashtra coastline, Gujarat, India – Hitisha Baroliya, Bhavna Solanki & Rahul Kundu, Pp. 21968–21975

Environmental factors affecting water mites (Acar i: Hydrachnidia) assemblage in streams, Mangde Chhu basin, central Bhutan – Mer Man Gurung, Cheten Dorji, Dhan B. Gurung & Harry Smit, Pp. 21976–21991

An overview of genus *Pteris* L. in northeastern India and new report of *Pteris amoena* Blume from Arunachal Pradesh, India – Ashish K. Soni, Vineet K. Rawat, Abhinav Kumar & A. Benniamin, Pp. 21992–22000

Nectar robbing by bees on the flowers of Volkameria inermis (Lamiaceae) in Coringa Wildlife Sanctuary, Andhra Pradesh, India – P. Suvarna Raju, A.J. Solomon Raju, C. Venkateswara Reddy & G. Nagaraju, Pp. 22001–22007

Contribution to the moss flora of northern Sikkim, India – Himani Yadav, Anshul Dhyani & Prem Lal Uniyal, Pp. 22008–22015

Firefly survey: adopting citizen science approach to record the status of flashing beetles – Nidhi Rana, Rajesh Rayal & V.P. Uniyal, Pp. 22016–22020

First report of *Gymnopilus ochraceus* Høil. 1998 (Agaricomycetes: Hymenogastraceae) from India and determination of bioactive components – Anjali Rajendra Patil & Sushant Ishwar Bornak, Pp. 22021–22025

A coastal population of Honey Badger *Mellivora capensis* at Chilika Lagoon in the Indian east coast – Tiasa Adhya & Partha Dey, Pp. 22026–22028

New distribution record of Black Softshell Turtle *Nilssonia nigricans* (Anderson, 1875) from Manas National Park, Assam, India – Gayatri Dutta, Ivy Farheen Hussain, Pranab Jyoti Nath & M. Firoz Ahmed, Pp. 22029–22031

First report of melanism in Indian Flapshell Turtle *Lissemys punctata* (Bonnaterre, 1789) from a turtle trading market of West Bengal, India – Ardhendu Das Mahapatra, Anwesha Patra & Sudipta Kumar Ghorai, Pp. 22032–22035

The Fawcett’s Pierrot *Niphanda asialis* (Insecta: Lepidoptera: Lycaenidae) in Bandarban: an addition to the butterfly fauna of Bangladesh – Akash Mojumdar & Rajib Dey, Pp. 22036–22038