Supporting Information

A Nanographene-Based Two-Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst

E. Jin, S. Fu, H. Hanayama, M. A. Addicoat, W. Wei, Q. Chen, R. Graf, K. Landfester, M. Bonn*, K. A. I. Zhang*, H. I. Wang*, K. Müllen*, A. Narita*
Supporting Information
©Wiley-VCH 2019
69451 Weinheim, Germany

A Nanographene-Based Two-Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst

Enquan Jin, Shuai Fu, Hiroki Hanayama, Matthew A. Addicoat, Wenxin Wei, Qiang Chen, Robert Graf, Katharina Landfester, Mischa Bonn, Kai A. I. Zhang,* Hai I. Wang,* Klaus Müllen,* and Akimitsu Narita*

Abstract: Synthesis of covalent organic frameworks (COFs) with desirable organic units furnishes advanced materials with unique functionalities. As an emerging class of two-dimensional (2D) COFs, sp²-carbon–conjugated COFs provide a facile platform to build highly stable and crystalline porous polymers. Herein, a 2D olefin-linked COF was prepared by employing nanographene, namely, dibenzo[hi,fs]ovalene (DBOV), as a building block. The DBOV-COF exhibits unique ABC-stacked lattices, enhanced stability, and charge-carrier mobility of ~0.6 cm²·V⁻¹·s⁻¹ inferred from ultrafast terahertz conductivity measurements. The ABC-stacking structure was revealed by the high-resolution transmission electron microscopy and powder X-ray diffraction. DBOV-COF demonstrated remarkable photocatalytic activity in hydroxylation, which was attributed to the exposure of narrow-energy-gap DBOV cores in the COF pores, in conjunction with efficient charge transport following light absorption.
Table of Contents

- Experimental Procedures .. S3
- Results and Discussion ... S8
- References ... S88
- Author Contribution ... S88
SUPPORTING INFORMATION

Experimental Procedures

General Methods: All reactions were carried out under Ar atmosphere with standard Schlenk line technique. Unless otherwise noted, all reagents were purchased from commercial chemical companies and used without further purification. Column chromatography separation was performed with silica gel (particle size 0.04–0.06 mm). Solution Nuclear Magnetic Resonance (NMR) spectra were employed by Bruker DPX 300, and Bruker DRX 500 MHz NMR spectrometers. Chemical shifts (δ) were expressed in ppm relative to the deuterium solvents (1,2-dichlorobenzene (o-DCB)-d₆, ¹H: 7.20 ppm, ¹³C: 132.35 ppm). Coupling constants (J) were recorded in Hertz. High resolution mass spectra (HR MS) were recorded on a Bruker Reflex II-TOF spectrometer by matrix-assisted laser decomposition/ionization (MALDI) using 7,7,8,8-tetracyanoquinodimethane (TCNO) as matrix calibrated with poly(ethylene glycol). UV-vis absorption spectra were measured on a Perkin-Elmer Lambda 900 spectrometer. Infrared spectroscopy was recorded on a Bruker TENSOR II FTIR spectrometer. Each sample was conducted with a scan number of 64 and the background was subtracted. Cyclic voltammetry (CV) measurements were performed on a GSTAT-12 in a three-electrode cell in dichloromethane solution of n-Bu₄NPF₆ (0.1 M) at a scan rate of 50 mV/s at room temperature. A silver wire, a Pt wire and a glassy carbon electrode were used as the reference electrode, the counter electrode, and the working electrode, respectively. Anhydrous THF suspension of DBOV-COF was dropped on the working electrode and dried for the measurement. Scanning electron microscope (SEM) images were recorded on a LEO Gemini 1530 (Carl Zeiss AG, Germany) using an in lens SE detector, for which DBOV-COF suspension was drop-cast on a conductive tape. Thermal gravimetric analyses (TGA) measurement was performed under nitrogen with temperature increasing from 25 °C to 800 °C at a rate of 10 °C/min. Powder X-ray diffraction (PXRD) data were recorded on a Rigaku SmartLab X-ray diffractometer by setting powder on glass substrate, from 2θ = 2.0° up to 30° with 0.02° increment. Nitrogen gas sorption curves were measured on a Micrometrics TriStar II Plus gas sorption instrument. Before measurement, powder samples were degassed in vacuum at 120 °C for 6 h. The Brunauer-Emmett-Teller (BET) approach was introduced to evaluate the surface areas. Pore volume was calculated from the nitrogen gas sorption curve using the non-local density functional theory (NLDF) model. Molecular modeling and Pawley refinement were carried out using Reflex, a software package for crystal determination from XRD pattern, implemented in MS modeling version 4.4 (Accelrys Inc.). Pawley refinement to optimize the lattice parameters iteratively until the Rl and Rp values converge. Geometries of monolayer, AA, AB and ABC-stacking DBOV-DCTMP-COF were calculated using Density Functional Tight Binding (DFTB) as implemented in DFTB+ version 20.1.[1] All atom pairs were described using standard parameters from the mio-0-1 parameter set.[2] Following geometry optimization, the band structure, Density of States (DOS) and effective mass were calculated using 3rd order DFTB and the 3ob-3-1 parameter set.[3] All property calculations were undertaken in AMS-DFTB [AMS DFTB 2020, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands].[4]

Solid State NMR Spectroscopy

¹H MAS NMR and ¹³C CP/MAS NMR measurements were performed with a Bruker Avance III console operating at 700.25 MHz ¹H Larmor frequency, using a double-resonance MAS probe supporting zirconia MAS rotors with 2.5 mm outer diameter spinning at 25 kHz MAS frequency. The rf nutation frequency was adjusted to 100 kHz corresponding to a 2.5 μs 90° pulse length for signal excitation as well as for heteronuclear dipolar decoupling during acquisition, using the swFTPPM scheme[5] for efficient ¹H decoupling. 1024 transients with a repetition delay of 10 s were recorded for the CP/MAS NMR spectra, using 1 ms CP contact pulse and a 90-100% amplitude ramp on the ¹H channel at ambient conditions.

High-Resolution Transmission Electron Microscopy (HR-TEM)

HR-TEM analysis was conducted on ThermoFisher Titan G2 electron microscope, operated at 200 kV. This microscope was equipped with a Schottky XFEG electron source, S-TWIN objective lens, image Cs-corrector (CEOS GmbH), with Gatan 2k×2k UltrascanXP1000 camera. A Fischione 2020 single tilt tomography holder was used for this work. TEM grid precoated with a lacy microgrid (NS-C15, pore size 1.5 – 8 μm) was purchased from Okenshoji Co., Ltd. DBOV-COF (0.18 mg) was bath-sonicated in 18 mL of dichloromethane for 1 h. Then, 10 μL of the suspension was placed onto a microgrid and the excessive amount of solvent was blotted by a filter paper. This procedure was repeated for 5 times. The microgrid was dried under reduced pressure for 3 hours before observation by the electron microscope. We used an electron dose rate of (1.2-1.9) × 10⁶ e⁻nm²s⁻¹. The images were collected as a .dm4 format file on DigitalMicrograph software (Gatan Inc.) and processed using ImageJ 1.53c software. The HR-TEM images were filtered using a bandpass filter (filtering structures smaller than 3 pixels and larger than 40 pixels, tolerance of direction: 5%). TEM simulation images were generated by using a multi-slice procedure implemented in the ELBis software.[6]

Charge Carrier Mobility Measurement

Optical-pump THz-probe (OPTP) measurements were conducted using an amplified Ti:sapphire laser emitting ~50 fs laser pulses with a central wavelength of 800 nm and a repetition rate of 1 kHz. The DBOV-COF powder samples were sandwiched between two fused silica substrates and measured in a transmission geometry in a dry-nitrogen purged environment. The fundamental 800 nm beam is split into three pathways, namely, optical excitation, THz generation and sampling. For optical excitations, a 400 nm pump beam is obtained by frequency doubling of 800 nm beam using a β-barium borate (BBO) crystal. A single-cycle THz probe pulse (covering the bandwidth of 0.4-2.0 THz) is generated via optical rectification by focusing 800 nm pulses onto a 1 mm thick ZnTe (110) crystal. The
SUPPORTING INFORMATION

generated THz pulse is focused on the samples by a pair of off-axis parabolic mirrors for OPTP measurements, and the time-dependent THz electrical field is detected by electro-optic sampling method.

The frequency-resolved complex photoconductivity of DBOV-COF was measured at ~3 ps after photoexcitation and fitted by the Drude-Smith (DS) model:

\[\sigma_{DS}(\omega) = \frac{\omega_p^2 E_0 \tau}{1 - i \omega \tau} \times \left(1 + \frac{c}{1 - i \omega \tau} \right) \]

where \(\omega_p \), \(E_0 \), \(\tau \), and \(c \) represent plasma frequency, vacuum permittivity, Drude-Smith scattering time, and the \(c \) parameter, respectively. The Drude-Smith model, as a deviated model of the classical Drude model, has been extensively used to describe the motion of charge carriers subject to backscattering events due to, e.g., grain boundary and structural configuration. Here, we use the obtained Drude-Smith scattering time to approximate the charge carrier scattering time. The parameter \(c \) characterizes the back scattering possibility (with \(c = 0 \) for Drude-like transport and \(c \approx 1 \) for localized charge carriers with preferential 100% backscattering). The best fit to the data is shown by the solid lines in Figure 4b.

We estimate the charge mobility of DBOV-COF in the dc limit using equation:

\[\mu_{DS}(\omega \to 0) = \frac{e \tau}{m^*} (1 + c) \]

where \(e \) is elementary charge and \(m^* \) is effective mass.

Bi-exponential fit and averaged carrier lifetime for DBOV-COF

As discussed in the main text, we fit the decay process of THz photoconductivity dynamics of DBOV-COF by a bi-exponential model, as shown in equation (3),

\[y = A_1 e^{-\frac{x}{t_1}} + A_2 e^{-\frac{x}{t_2}} \]

The bi-exponential fitting parameters for DBOV-COF are summarized in Table S1.

DBOV-COF	\(A_1 \) (unitless)	\(t_1 \) (ps)	\(A_2 \) (unitless)	\(t_2 \) (ps)
	4.67E-04	1	2.17E-04	25

The average lifetime (\(\bar{t} \)) for DBOV-COF is calculated using equation (4),

\[\bar{t} = \frac{A_1 t_1 + A_2 t_2}{A_1 + A_2} \]

Calculation details of the apparent quantum yield (A.Q.Y.)

The energy of on photon (\(E_{\text{photon}} \)) with wavelength of \(\lambda_{\text{inc}} \) (nm) in calculated using the following equation:

\[E_{\text{photon}} = \frac{hc}{\lambda_{\text{inc}}} \]

where \(h \) (J·s) is Planck’s constant, \(c \) (m·s\(^{-1}\)) is the speed of light and \(\lambda_{\text{inc}} \) (m) is the wavelength of the incident monochromatic light.

And the total energy of the incident monochromatic light (\(E_{\text{total}} \)) is calculated using the following equation:

\[E_{\text{total}} = PS \]

where \(P \) (W·m\(^{-2}\)) is the power density of the incident monochromatic light, \(S \) (m\(^2\)) is the irradiation area and \(t \) (s) is the duration of the incident light exposure. The number of incident photons can be obtained through the following equation:

\[\text{Number of incident photons} = \frac{E_{\text{total}}}{E_{\text{photon}}} = \frac{PS\lambda_{\text{inc}}}{hc} \]

Quantum yield (Q.Y.), which is widely used to evaluate the performance of photocatalysts, is defined by the following equation:

\[\text{Q.Y.} \% = \frac{\text{Number of reacted electrons}}{\text{Number of incident photons}} \times 100 \]

However, it is difficult to directly determine the number of reacted electrons via experimental methods. As a result, the apparent quantum yield (A.Q.Y.) is defined as follow by substituting the number of product molecules formed for the number of reacted electrons.

\[\text{A. Q. Y.} \% = \frac{\text{Number of product molecules formed}}{\text{Number of incident photons}} \times 100 = \frac{n N_A hc}{P S \lambda} \times 100 \]

Synthetic Details:

The starting compounds 1,[7] DCTMP,[8] g-C\(_{3}O_{2}\)N\(_{2}\)-COF[9] and TFPPy-PDA-COF[10] were prepared using previously reported methods.

Scheme S1. Synthetic route towards DBOV-CHO (3).
To a solution of (4-bromo-3,5-dimethylphenyl)-1,3-dioxolane (812 mg, 3.16 mmol) in anhydrous tetrahydrofuran (THF) (10 mL) was added n-butyllithium (1.1 mL, 3.5 mmol, 1.6 M in hexane) dropwise under the atmosphere of Ar at -78 °C. The mixture was stirred for 2 h. Then, the resulting mixture was transferred to the anhydrous THF (150 mL) solution of 5,14-diformylbenzo[a]dininaphtho[2,1,8-cde:1',2',3',4'-ghi]perylene (1) (400 mg, 0.791 mmol) and stirred at room temperature for 12 h. After the completion of the reaction, the solution was poured into brine (150 mL) and then extracted with diethylether (Et₂O) (100 mL) for 3 times. The combined organic layers were dried over MgSO₄, and evaporated. After drying under vacuum using an oil pump for 6 h, the residue was redissolved in anhydrous dichloromethane (DCM) (150 mL) and BF₃·OEt₂ (10 mL) was added using a syringe. The mixture was stirred at room temperature for 6 h. After completion of the reaction, the mixture was poured into saturated NaHCO₃ solution (150 mL). The organic phase was separated and dried over MgSO₄. The solvents were evaporated under reduced pressure and the crude product was directly utilized for the next step.

6,14-bis(4-formyl-2,6-dimethylphenyl)dibenzo[hi,si]ovalene (DBOV-CHO 3)

The crude product of 2 was dissolved in THF (120 mL) and 1 M HCl (10 mL) was added. The mixture was stirred at room temperature for 1 h. After completion of the reaction, the mixture was poured into a saturated aqueous NaHCO₃ solution (100 mL). The organic phase was extracted with Et₂O (100 mL) for three times and dried over MgSO₄. The solvents were evaporated under reduced pressure and the residue was purified by column chromatography over silica gel (eluent: n-hexane/DCM = 1 : 8) to give DBOV-CHO 3 (279 mg, 48% yield for three steps) as blue powder. TLC Rₜ = 0.3 (n-hexane/DCM = 1 : 8); ¹H NMR (500 MHz, o-DCB-d₆, 413 K, ppm) δ 10.18 (s, 2H), 9.36 (d, J = 8.1 Hz, 2H), 9.08 (s, 2H), 8.47 (d, J = 8.2 Hz, 2H), 8.06 (d, J = 9.1 Hz, 2H), 7.94 (t, J = 7.9 Hz, 2H), 7.85 (s, 4H), 7.65 (d, J = 9.0 Hz, 2H), 2.08 (s, 12H); Well-resolved ¹³C NMR spectrum could not be recorded due to limited solubility and strong aggregation tendency. However, UV-vis and PL spectra as reported in Figure S10 agreed very well with those of previously reported DBOV derivatives, evidencing the formation of the DBOV structure. UV-vis absorption spectra is also consistent with theoretically calculated result shown in Figure S11. HR MS (MALDI-TOF): m/z Calcd for C₅₆H₃₂O₂: 736.2402, found: 736.2397.
Scheme S2. Synthetic route towards PyDMBA.

4,4’-(pyrene-2,7-diyl)bis(3,5-dimethylbenzaldehyde) (PyDMBA)

To a degassed solution of 2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrene (1.00 g, 2.20 mmol), 4-bromo-3,5-dimethylbenzaldehyde (1.03 g, 4.84 mmol) and K$_2$CO$_3$ (1.82 g, 13.2 mmol) in 1,4-dioxane/H$_2$O (100 mL/4 mL), Pd(PPh$_3$)$_4$ (127 mg, 0.110 mmol) was added. The mixture was heated at 120 °C overnight. Then the reaction mixture was cooled to room temperature and poured into H$_2$O (150 mL). The mixture was filtered and washed with 1M HCl, H$_2$O, methanol and Et$_2$O for several times. The residue was purified by column chromatography (n-hexane/DCM = 1 : 2) to give PyDMBA (0.80 g, 78% yield) as a white solid. TLC $R_f = 0.3$ (n-hexane/DCM = 1 : 2).

^1^H NMR (300 MHz, CD$_2$Cl$_2$, 298 K, ppm) δ 9.97 (s, 2H), 8.08 (s, 4H), 7.94 (s, 4H), 7.64 (s, 4H), 2.06 (s, 12H); ^1^C NMR (75 MHz, CD$_2$Cl$_2$, 298 K, ppm) δ 192.4, 148.3, 138.0, 137.7, 135.6, 131.5, 128.6, 127.7, 125.1, 123.5, 20.8. HR MS (MALDI-TOF): m/z Calcd for C$_{34}$H$_{34}$O$_6$: 466.1933, found: 466.1935.

DBOV-COF. A microwave tube (15 mL) placed with DBOV-CHO 3 (25 mg, 0.034 mmol), DCTMP (8.7 mg, 0.051 mmol) and N,N-dimethylacetamide (DMAc) (1 mL) was sonicated for 30 s and degassed through three freeze–pump–thaw cycles before sealing under vacuum. Piperidine (7.2 mg, 0.085 mmol) was added. The tube was sealed and stirred at 180 °C for 3 days. After cooling to room temperature, the deep blue colored precipitate was filtered and washed with THF and acetone for several times. The powder was dried under vacuum at 60 °C for 12 h to produce DBOV-COF in 83% yield. DBOV-COF could be further purified by washing with n-hexylamine in chlorobenzene (see Figure S1).

DBOV-CMP. A microwave tube (15 mL) placed with DBOV-CHO 3 (25.00 mg, 0.034 mmol), DCTMP (8.71 mg, 0.051 mmol) and DMAc/o-DCB (0.5 mL/0.5 mL) was sonicated for 30 s and degassed through three freeze–pump–thaw cycles before sealing under vacuum. Piperidine (7.22 mg, 0.085 mmol) was added. The tube was sealed and stirred at 150 °C for 3 days. After cooling to room temperature, the deep blue colored precipitate was filtered and washed with THF and acetone for several times. The powder was dried under vacuum at 60 °C for 12 h to produce DBOV-CMP in 72% yield.

Py-DCTMP-CMP. A microwave tube (15 mL) placed with PyDMBA (25 mg, 0.054 mmol), DCTMP (14 mg, 0.080 mmol) and DMAc (1 mL) was sonicated for 30 s and degassed through three freeze–pump–thaw cycles before sealing under vacuum. Piperidine (7.22 mg, 0.085 mmol) was added. The tube was sealed and stirred at 150 °C for 3 days. After cooling to room temperature, the yellow colored precipitate was filtered and washed with THF and acetone for several times. The powder was dried under vacuum at 60 °C for 12 h to produce Py-DCTMP-CMP in 77% yield.

General procedure for photocatalytic hydroxylation of aryl boronic acids to aryl phenols with diverse catalysts. Arylboronic acid (0.50 mmol), triethylamine (TEA) (1.50 mmol), photocatalyst (3.0 mg), and acetoneitrile (CH$_3$CN) (3.0 mL) were added to a 10 mL glass tube with a stirring bar. The mixture was stirred for certain time at room temperature under visible light irradiation with white LED lamp (0.07 W/cm2) and the presence of oxygen (1 atm). Subsequently, the COF or CMP catalyst was isolated by centrifugation and washed with DCM for several times. The organic phases were combined, and dried under vacuum to yield the crude product, which was further purified by silica gel column chromatography to determine the isolated yields as listed in Tables 1 and 2. NMR data are as follows.

pyren-1-ol

\[
\begin{align*}
&\text{OH} \\
\end{align*}
\]

^1^H NMR (300 MHz, DMSO-$_d_6$, 298 K, ppm) δ 10.68 (s, 1H), 8.38 (d, $J = 9.2$ Hz, 1H), 8.18 – 8.02 (m, 6H), 7.98 (t, $J = 9.5$ Hz, 1H), 7.65 (d, $J = 8.3$ Hz, 1H). ^1^C NMR (75 MHz, DMSO-$_d_6$, 298 K, ppm) δ 152.1, 131.3(3), 131.2(8), 127.4, 126.2, 126.1, 125.5, 125.4, 124.4, 123.9, 123.8, 123.6, 121.4, 118.0, 117.7, 113.2.

4-hydroxybenzonitrile

\[
\begin{align*}
&\text{NC} \\
\end{align*}
\]
SUPPORTING INFORMATION

1H NMR (300 MHz, DMSO-d_6, 298 K, ppm) δ 11.04 (s, 1H), 8.11 (d, $J = 9.1$ Hz, 2H), 6.93 (d, $J = 9.0$ Hz, 2H). 13C NMR (75 MHz, DMSO-d_6, 298 K, ppm) δ 161.6, 134.2, 119.5, 116.4, 101.0.

[1,1'-biphenyl]-4-ol

\[
\begin{align*}
\text{HO} &\text{-} &\text{-} &\text{OH} \\
\end{align*}
\]

1H NMR (300 MHz, DMSO-d_6, 298 K, ppm) δ 9.54 (s, 1H), 7.57 (d, $J = 7.7$ Hz, 2H), 7.48 (d, $J = 8.2$ Hz, 2H), 7.40 (t, $J = 7.6$ Hz, 2H), 7.27 (t, $J = 7.3$ Hz, 1H), 6.85 (d, $J = 8.2$ Hz, 2H). 13C NMR (75 MHz, DMSO-d_6, 298 K, ppm) δ 157.1, 140.2, 130.9, 128.8, 127.7, 126.3, 125.9, 115.7.

[1,1'-biphenyl]-4,4'-dil

\[
\begin{align*}
\text{HO} &\text{-} &\text{-} &\text{OH} \\
\end{align*}
\]

1H NMR (300 MHz, DMSO-d_6, 298 K, ppm) δ 9.37 (s, 2H), 7.36 (d, $J = 8.6$ Hz, 4H), 6.79 (d, $J = 8.1$ Hz, 4H); 13C NMR (75 MHz, DMSO-d_6, 298 K, ppm) δ 156.2, 131.1, 127.0, 115.5.

4-methoxyphenol

\[
\begin{align*}
\text{MeO} &\text{-} &\text{-} &\text{OH} \\
\end{align*}
\]

1H NMR (300 MHz, DMSO-d_6, 298 K, ppm) δ 8.88 (s, 1H), 6.74 (d, $J = 8.8$ Hz, 2H), 6.67 (d, $J = 9.1$ Hz, 2H), 3.65 (s, 3H). 13C NMR (75 MHz, DMSO-d_6, 298 K, ppm) δ 152.1, 151.1, 115.7, 114.5, 55.3.

4-fluorophenol

\[
\begin{align*}
\text{F} &\text{-} &\text{-} &\text{OH} \\
\end{align*}
\]

1H NMR (700 MHz, CDCl$_3$, 298 K, ppm) δ 6.93 (dd, $J = 8.0$, 7.5 Hz, 2H), 6.79-6.77 (m, 2H), 5.00 (s, 1H). 13C NMR (175 MHz, CDCl$_3$, 298 K, ppm) δ 157.3 (d, $J = 237.8$ Hz), 151.4, 116.3 (d, $J = 7.9$ Hz), 116.1 (d, $J = 22.7$ Hz). 19F-NMR (659 MHz, CDCl$_3$, 298 K, ppm): δ −124.1.

4-nitrophenol

\[
\begin{align*}
\text{O}_2\text{N} &\text{-} &\text{-} &\text{OH} \\
\end{align*}
\]

1H NMR (300 MHz, DMSO-d_6, 298 K, ppm) δ 10.61 (s, 1H), 7.63 (d, $J = 8.5$ Hz, 2H), 6.90 (d, $J = 8.5$ Hz, 2H). 13C NMR (75 MHz, DMSO-d_6, 298 K, ppm) δ 163.3, 139.6, 126.1, 115.7.

Naphthalene-2-ol

\[
\begin{align*}
\text{OH} \\
\end{align*}
\]

1H NMR (300 MHz, DMSO-d_6, 298 K, ppm) δ 9.72 (s, 1H), 7.77 (d, $J = 3.1$ Hz, 1H), 7.74 (d, $J = 3.7$ Hz, 1H), 7.67 (d, $J = 8.3$ Hz, 1H), 7.38 (t, $J = 7.5$ Hz, 1H), 7.25 (t, $J = 7.5$ Hz, 1H), 7.12 (d, $J = 2.2$ Hz, 1H), 7.08 (dd, $J = 8.7$, 2.4 Hz, 1H). 13C NMR (75 MHz, DMSO-d_6, 298 K, ppm) δ 155.2, 134.6, 129.3, 127.7, 127.5, 126.1, 125.9, 122.6, 118.6, 108.6.

General procedure for photocatalytic reductive dehalogenation of α-bromoacetophenone and photoredox borylation of diazonium salt to boronic ester.

α-Bromoacetophenone (0.50 mmol), N,N-diisopropylethylamine (DIEA) (0.55 mmol), DBOV-COF as photocatalyst (3.0 mg), Hantzsch ester (1.0 mmol), and CH$_3$CN (3.0 mL) were added to a 10-mL glass tube with a stirring bar. The mixture was stirred for 12 h at room temperature under N$_2$ and visible light irradiation with white LED lamp (0.07 W/cm2). Subsequently, the DBOV-COF catalyst was isolated by centrifugation and washed with DCM for several times. The organic phases were combined, and dried under vacuum to yield the crude product, which was further purified by silica gel column chromatography to determine the isolated yield as shown in Scheme S3.

Scheme S3. Photocatalytic reductive dehalogenation of α-bromoacetophenone with DBOV-COF as photocatalyst.
Diazonium salt (0.30 mmol), bis(pinacolato)diboron (B$_2$pin$_2$) (0.30 mmol), DBOV-COF as photocatalyst (1 mg/mL), and CH$_3$CN (3.0 mL) were added to a 10-mL glass tube with a stirring bar. The mixture was stirred for 12 h at room temperature under Ar and visible light irradiation with white LED lamp (0.07 W/cm2). Subsequently, the DBOV-COF catalyst was isolated by centrifugation and washed with DCM for several times. The organic phases were combined, and dried under vacuum to yield the crude product, which was further purified by silica gel column chromatography to determine the isolated yield as shown in Scheme S4.

NMR data are as follows.

Scheme S4. Photoredox borylation of diazonium salts with DBOV-COF as photocatalyst.

Acetophenone

![Acetophenone structure](image)

1H NMR (300 MHz, CDCl$_3$, 298 K, ppm) δ 8.00 – 7.89 (m, 2H), 7.61 – 7.50 (m, 1H), 7.44 (dd, J = 8.2, 6.6 Hz, 2H), 2.58 (s, 3H). 13C NMR (75 MHz, CDCl$_3$, 298 K, ppm) δ 198.1, 137.1, 133.1, 128.6, 128.3, 26.6.

2-(4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

![2-(4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane structure](image)

1H NMR (250 MHz, CD$_3$CN, 298 K, ppm) δ 7.57 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 3.71 (s, 3H), 1.22 (s, 12H). 13C NMR (75 MHz, CD$_3$CN, 298 K, ppm) δ 162.0, 135.9, 113.1, 83.2, 54.5, 23.9.
Results and Discussion

Figure S1. PXRD pattern of purified DBOV-COF before (black curve) and after (red curve) washing with n-hexylamine in chlorobenzene.

Figure S2. FTIR spectra of DBOV-CHO, DCTMP and DBOV-COF.

Figure S3. Solid-state NMR spectra of DCTMP (black), DBOV-CHO (blue), and DBOV-COF (red). Compared to the monomers of DCTMP and DBOV-CHO, the NMR signals of the DBOV-COF are significantly broadened. This broadening may originate from stacking imperfections of the 2D DBOV-COF layers in the bulk sample.
Figure S4. SEM images of DBOV-COF.

Figure S5. TGA analysis of DBOV-COF.
Figure S6. TEM images of DBOV-COF. a) TEM image of exfoliated sheets of DBOV-COF. b) TEM (left), a simulated image of DBOV-COF in ABC-stacking mode (right), and overlapped image (middle), showing good agreement between the experiment and simulation. c) Simulated images of DBOV-COF in AA- (left) and AB- (right) stacking mode.

Figure S7. CV profiles of DBOV-COF.
Figure S8. Band structure and PDOS of DBOV-COF. Electronic band structures (left panel) and projected density of states (PDOS) (right panel) of a) monolayer and b) multilayers of DBOV-COF.

Figure S9. A proposed mechanism of photocatalytic hydroxylation reaction with DBOV-COF as photocatalyst.
Figure S10. EPR spectra of DBOV-COF as a photocatalyst and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a superoxide radical trapping agent in acetonitrile in darkness (black curve) and under white light irradiation (blue curve), indicating the generation of DMPO−O₂⁻ adduct.

Figure S11. Recycling times and yields of DBOV-COF for photocatalytic oxidation from 2-naphthylboronic acid to 2-naphthol.

Figure S12. Chemical stability of DBOV-COF for photocatalytic process from 2-naphthylboronic acid to 2-naphthol (a) PXRD patterns before (black curve) and after (red curve) photocatalysis, (b) BET surface areas before (black curve) and after 8 cycles (red curve).
Figure S13. Time-dependent conversion plot for photocatalytic hydroxylation of 2-naphthylboronic acid to 2-naphthol.

Figure S14. Theoretical calculations of (a) VBM and (b) CBM of DBOV-COF by DFTB+/mio-0-1.

Figure S15. UV-vis absorption and fluorescence spectra of 10^{-6} M solutions DBOV-CHO in THF measured at room temperature.
Figure S16. UV-vis absorption spectra of DBOV-CHO by TD-DFT method.
Figure S17. 1H NMR spectrum of DBOV-CHO measured in o-DCB-d$_4$ (500 MHz, 413 K).

Figure S18. 1H NMR spectrum of 4,4'-(pyrene-2,7-diyl)bis(3,5-dimethylbenzaldehyde) measured in CD$_2$Cl$_2$ (300 MHz, 298 K).
Figure S19. 13C NMR spectrum of 4,4'-(pyrene-2,7-diyl)bis(3,5-dimethylbenzaldehyde) measured in CD$_2$Cl$_2$ (75 MHz, 298 K).

Figure S20. 1H NMR spectrum of pyren-1-ol measured in DMSO-d$_6$ (300 MHz, 298 K).
Supporting Information

Figure S21. 13C NMR spectrum of pyren-1-ol measured in DMSO-d$_6$ (75 MHz, 298 K).

Figure S22. 1H NMR spectrum of 4-hydroxybenzonitrile measured in DMSO-d$_6$ (300 MHz, 298 K).
Figure S23. 13C NMR spectrum of 4-hydroxybenzonitrile measured in DMSO-d$_6$ (75 MHz, 298 K).

Figure S24. 1H NMR spectrum of [1,1'-biphenyl]-4-ol measured in DMSO-d$_6$ (300 MHz, 298 K).
Figure S25. 13C NMR spectrum of [1,1'-biphenyl]-4-ol measured in DMSO-d_6 (75 MHz, 298 K).

Figure S26. 1H NMR spectrum of [1,1'-biphenyl]-4,4'-diol measured in DMSO-d_6 (300 MHz, 298 K).
Figure S27. 13C NMR spectrum of 1,1'-biphenyl]-4,4'-diol measured in DMSO-d_6 (75 MHz, 298 K).

Figure S28. 1H NMR spectrum of 4-methoxyphenol measured in DMSO-d_6 (300 MHz, 298 K).
Figure S29. 13C NMR spectrum of 4-methoxyphenol measured in DMSO-d$_6$ (75 MHz, 298 K).

Figure S30. 1H NMR spectrum of 4-fluorophenol measured in CDCl$_3$ (700 MHz, 298 K).
Figure S31. 13C NMR spectrum of 4-fluorophenol measured in CDCl$_3$ (175 MHz, 298 K).

Figure S32. 19F NMR spectrum of 4-fluorophenol measured in CDCl$_3$ (659 MHz, 298 K).
Figure S33. 1H NMR spectrum of 4-nitrophenol measured in DMSO-d_6 (300 MHz, 298 K).

Figure S34. 13C NMR spectrum of 4-nitrophenol measured in DMSO-d_6 (75 MHz, 298 K).
Figure S35. 1H NMR spectrum of naphthalen-2-ol measured in DMSO-d_6 (300 MHz, 298 K).

Figure S36. 13C NMR spectrum of naphthalen-2-ol measured in DMSO-d_6 (75 MHz, 298 K).
Figure S37. 1H NMR spectrum of acetophenone measured in CDCl$_3$ (300 MHz, 298 K).

Figure S38. 13C NMR spectrum of acetophenone measured in CDCl$_3$ (75 MHz, 298 K).
Figure S39. 1H NMR spectrum of 2-(4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane measured in CD$_3$CN (250 MHz, 298 K).

Figure S40. 13C NMR spectrum of 2-(4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane measured in CD$_3$CN (75 MHz, 298 K).
Table S2.
Summary of photocatalytic hydroxylation performance with different porous materials as photocatalysts.

Substrates	Loading amount (mg) for 1 mmol substrate	Light source	Reaction time (h)	Yield (%)	Toc (s⁻¹)
this work					
2-Naphthylboronic acid	6	LED lamp (0.5 W)	5	97	1.6 × 10⁻² s⁻¹
4-Cyanophenylboronic acid	6	LED lamp (0.5 W)	5	89	
4-Methoxyphenylboronic acid	6	LED lamp (0.5 W)	5	96	
4-Biphenylboronic acid	6	LED lamp (0.5 W)	5	98	
1-Pyrenylboronic acid	6	LED lamp (0.5 W)	5	97	
COF-p-3Ph					
2-Naphthylboronic acid	5	Xenon lamp (300 W)	4	99	1.5 × 10⁻² s⁻¹
4-Cyanophenylboronic acid	5	Xenon lamp (300 W)	4	99	
4-Biphenylboronic acid	5	Xenon lamp (300 W)	4	96	
4-Nitrophenylboronic acid	5	Xenon lamp (300 W)	4	99	
LZU-190					
2-Naphthylboronic acid	106	LED lamp (20 W)	96	81	3 × 10⁻³ s⁻¹
4-Cyanophenylboronic acid	106	LED lamp (20 W)	48	98	
4-Methoxyphenylboronic acid	106	LED lamp (20 W)	96	58	
4-Nitrophenylboronic acid	106	LED lamp (20 W)	30	99	
1-Pyrenylboronic acid	106	LED lamp (20 W)	96	55	
PCP-MF					
2-Naphthylboronic acid	20	LED lamp (1.2 W/cm²)	20	83	
4-Cyanophenylboronic acid	20	LED lamp (1.2 W/cm²)	20	96	
4-Methoxyphenylboronic acid	20	LED lamp (1.2 W/cm²)	24	93	
Table S3. Atomistic coordinates for the ABC-stacking mode of DBOV-COF optimized by using DFTB+ method. Space group: P1: \(a = 48.1779 \text{ Å}, b = 48.6991 \text{ Å}, c = 6.85233 \text{ Å}, \alpha = 90.0000^\circ, \beta = 90.0000^\circ, \) and \(\gamma = 120.0040^\circ. \)

C1	0.47847	0.26905	0.87033																																																																																																																																			
C2	0.49538	0.29036	0.71731																																																																																																																																			
C3	0.52876	0.30488	0.70911																																																																																																																																			
C4	0.54592	0.29812	0.8488																																																																																																																																			
C5	0.52893	0.27731	0.0028																																																																																																																																			
C6	0.49558	0.26292	0.01485																																																																																																																																			
C7	0.5008	0.31366	0.83332																																																																																																																																			
C8	0.59955	0.30402	0.92241																																																																																																																																			
C9	0.65284	0.35497	0.91396																																																																																																																																			
C10	0.68671	0.37073	0.91609																																																																																																																																			
C11	0.03061	0.02121	0.08321																																																																																																																																			
N1	0.01074	0.03337	0.07547																																																																																																																																			
C12	0.06535	0.04274	0.08726																																																																																																																																			
C13	0.08083	0.07242	0.01228																																																																																																																																			
C14	0.11579	0.09278	0.01829																																																																																																																																			
C15	0.13405	0.08948	0.16723																																																																																																																																			
C16	0.16738	0.10874	0.1726																																																																																																																																			
C17	0.18331	0.1316	0.02522																																																																																																																																			
C18	0.16524	0.13497	0.87455																																																																																																																																			
C19	0.13182	0.11607	0.87444																																																																																																																																			
C20	0.21871	0.187	0.27792																																																																																																																																			
C21	0.23585	0.1781	0.14831																																																																																																																																			
C22	0.27021	0.19665	0.14456																																																																																																																																			
C23	0.28661	0.22331	0.27273																																																																																																																																			
C24	0.26837	0.2311	0.39641																																																																																																																																			
C25	0.23477	0.21317	0.39801																																																																																																																																			
C26	0.28776	0.18852	0.01168																																																																																																																																			
C27	0.27115	0.16208	0.88549																																																																																																																																			
C28	0.23679	0.14309	0.89434																																																																																																																																			
C29	0.21934	0.15123	0.02295																																																																																																																																			
C30	0.22091	0.11556	0.77063																																																																																																																																			
C31	0.23766	0.10828	0.64044																																																																																																																																			
C32	0.27179	0.12777	0.62201																																																																																																																																			
C33	0.28586	0.15429	0.74877																																																																																																																																			
C34	0.32168	0.24161	0.26951																																																																																																																																			
C35	0.3389	0.23327	0.13544																																																																																																																																			
C36	0.32218	0.20694	0.0049																																																																																																																																			
C37	0.33946	0.19898	0.87113																																																																																																																																			
C38	0.32273	0.17277	0.73982																																																																																																																																			
	C39	C40	C41	C42	C43	C44	C45	C46	C47	C48	C49	C50	C51	C52	C53	C54	C55	C56	C57	C58	C59	C60	C61	H1	H2	H3	H4	C62	H5	H6	H7	H8	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23																																																																																							
---	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------																																																																																								
	0.33985	0.32228	0.28917	0.37317	0.39005	0.3725	0.33929	0.39061	0.3739	0.39137	0.37486	0.42446	0.44117	0.4251	0.44241	0.42573	0.39289	0.42644	0.44273	0.18196	0.18624	0.47795	0.4774	0.54164	0.54179	0.59187	0.58852	0.63757	0.96877	0.06706	0.12219	0.11814	0.19273	0.28007	0.22134	0.19508	0.22533	0.33477	0.27634	0.38532	0.32676	0.43708	0.46722	0.38103	0.43966	0.46874	0.19944	0.16478	0.13928	0.25116	0.27744	0.28508	0.26754	0.24274	0.21687	0.2083	0.18244	0.29535	0.287	0.19227	0.21545	0.15814	0.10409	0.24007	0.29678	0.32115	0.27246	0.33413	0.28182	0.37394	0.05132	0.08146	0.07204	0.11876	0.17283	0.25131	0.21987	0.10051	0.08736	0.13329	0.10134	0.30495	0.27417	0.31565	0.30039	0.15457	0.18275	0.22777	0.18142	0.60301	0.4735	0.48298	0.13039	0.2589	0.39102	0.39616	0.99762	0.86751	0.73679	0.60338	0.25131	0.12738	0.99703	0.87155	0.74157	0.48174	0.49117	0.61788	0.71168	0.3304	0.17745	0.56172	0.59034	0.11569	0.7363	0.00355	0.91196	0.151	0.75743	0.28171	0.49407	0.49561	0.78303	0.54845	0.36455	0.38314	0.49036	0.50114	0.34802	0.12511	0.37966	0.39789	0.62438	0.76769
---	---	---	---																																																																																																																																			
H24	0.19516	0.15025	0.61992																																																																																																																																			
H25	0.16494	0.16051	0.61902																																																																																																																																			
H26	0.17074	0.08984	0.38926																																																																																																																																			
H27	0.19841	0.09201	0.27268																																																																																																																																			
H28	0.20472	0.12667	0.38926																																																																																																																																			
H29	0.4648	0.21583	0.12228																																																																																																																																			
H30	0.49443	0.24115	0.28956																																																																																																																																			
H31	0.4604	0.24497	0.24481																																																																																																																																			
H32	0.46029	0.30266	0.62529																																																																																																																																			
H33	0.49366	0.31606	0.46673																																																																																																																																			
H34	0.4636	0.27581	0.47119																																																																																																																																			
N2	0.76319	0.37655	0.92199																																																																																																																																			
C63	0.14616	0.60179	0.2077																																																																																																																																			
C64	0.16291	0.62312	0.05448																																																																																																																																			
C65	0.19628	0.63776	0.04534																																																																																																																																			
C66	0.21362	0.63117	0.18456																																																																																																																																			
C67	0.19679	0.61024	0.33846																																																																																																																																			
C68	0.16343	0.5957	0.35136																																																																																																																																			
C69	0.24853	0.64713	0.16911																																																																																																																																			
C70	0.26761	0.63804	0.25966																																																																																																																																			
C71	0.32082	0.68924	0.24724																																																																																																																																			
C72	0.35471	0.70507	0.24836																																																																																																																																			
C73	0.69834	0.35555	0.41707																																																																																																																																			
N3	0.67851	0.36777	0.41076																																																																																																																																			
C74	0.73008	0.37705	0.42209																																																																																																																																			
C75	0.74857	0.40689	0.34951																																																																																																																																			
C76	0.78354	0.42724	0.35629																																																																																																																																			
C77	0.8017	0.42374	0.50508																																																																																																																																			
C78	0.83503	0.4429	0.51083																																																																																																																																			
C79	0.85107	0.46583	0.36399																																																																																																																																			
C80	0.83309	0.46944	0.21373																																																																																																																																			
C81	0.79966	0.45066	0.21326																																																																																																																																			
C82	0.88676	0.52109	0.61729																																																																																																																																			
C83	0.90377	0.51205	0.48756																																																																																																																																			
C84	0.93814	0.53039	0.48396																																																																																																																																			
C85	0.95469	0.55701	0.61227																																																																																																																																			
C86	0.93658	0.56493	0.73619																																																																																																																																			
C87	0.90297	0.54719	0.7377																																																																																																																																			
C88	0.95556	0.5221	0.35103																																																																																																																																			
C89	0.93881	0.4957	0.2247																																																																																																																																			
C90	0.90444	0.47694	0.23334																																																																																																																																			
C91	0.88711	0.48524	0.36193																																																																																																																																			
C92	0.88841	0.44945	0.10942																																																																																																																																			
C93	0.90504	0.44199	0.9794																																																																																																																																			
C94	0.9392	0.46128	0.96112																																																																																																																																			
C95	0.9561	0.48776	0.08796																																																																																																																																			
C96	0.98977	0.57514	0.60883																																																																																																																																			
	C97	0.00685	0.56664	0.47473																																																																																																																																		
---	------	---------	---------	---------																																																																																																																																		
	C98	0.98999	0.54033	0.34428																																																																																																																																		
	C99	0.00715	0.53223	0.21039																																																																																																																																		
	C100	0.99029	0.50606	0.07898																																																																																																																																		
	C101	0.00727	0.49796	0.94192																																																																																																																																		
	C102	0.98958	0.47248	0.81247																																																																																																																																		
	C103	0.95646	0.45448	0.82208																																																																																																																																		
	C104	0.04113	0.58438	0.46943																																																																																																																																		
	C105	0.05814	0.61071	0.59744																																																																																																																																		
	C106	0.04072	0.61852	0.72952																																																																																																																																		
	C107	0.0075	0.6011	0.73511																																																																																																																																		
	C108	0.05844	0.57579	0.33671																																																																																																																																		
	C109	0.0416	0.54995	0.20666																																																																																																																																		
	C110	0.05893	0.54127	0.07951																																																																																																																																		
	C111	0.04229	0.51549	0.94182																																																																																																																																		
	C112	0.09255	0.62849	0.58938																																																																																																																																		
	C113	0.10915	0.61995	0.46576																																																																																																																																		
	C114	0.09294	0.59328	0.33584																																																																																																																																		
	C115	0.11011	0.58438	0.21005																																																																																																																																		
	C116	0.09329	0.55822	0.07984																																																																																																																																		
	C117	0.06019	0.50716	0.81918																																																																																																																																		
	C118	0.09375	0.52321	0.82789																																																																																																																																		
	C119	0.11016	0.54829	0.9551																																																																																																																																		
	C120	0.84994	0.49274	0.05166																																																																																																																																		
	C121	0.85383	0.43816	0.66862																																																																																																																																		
	C122	0.14595	0.5729	0.51439																																																																																																																																		
	C123	0.14475	0.62951	0.90003																																																																																																																																		
	H35	0.20902	0.65407	0.92653																																																																																																																																		
	H36	0.20982	0.60549	0.45073																																																																																																																																		
	H37	0.25933	0.66751	0.07137																																																																																																																																		
	H38	0.25683	0.61593	0.34179																																																																																																																																		
	C124	0.30539	0.70805	0.2429																																																																																																																																		
	H39	0.63654	0.38567	0.48866																																																																																																																																		
	H40	0.73482	0.41605	0.27557																																																																																																																																		
	H41	0.78974	0.40623	0.61967																																																																																																																																		
	H42	0.78605	0.45351	0.09648																																																																																																																																		
	H43	0.86077	0.50709	0.62087																																																																																																																																		
	H44	0.94339	0.5851	0.83406																																																																																																																																		
	H45	0.88964	0.554	0.63542																																																																																																																																		
	H46	0.86254	0.43456	0.12154																																																																																																																																		
	H47	0.8926	0.4211	0.8873																																																																																																																																		
	H48	0.00196	0.46638	0.70345																																																																																																																																		
	H49	0.94352	0.43472	0.72226																																																																																																																																		
	H50	0.05365	0.63843	0.82843																																																																																																																																		
	H51	0.99508	0.60785	0.84004																																																																																																																																		
	H52	0.10526	0.64886	0.68555																																																																																																																																		
	H53	0.13519	0.63324	0.46327																																																																																																																																		
H54	0.04824	0.48767	0.7167																																																																																																																																			
H55	0.10687	0.5157	0.73366																																																																																																																																			
H56	0.13617	0.56054	0.96107																																																																																																																																			
H57	0.8673	0.516	0.10855																																																																																																																																			
H58	0.86328	0.48499	0.96028																																																																																																																																			
H59	0.83298	0.49514	0.95849																																																																																																																																			
H60	0.83818	0.42304	0.784																																																																																																																																			
H61	0.8669	0.4271	0.60948																																																																																																																																			
H62	0.87158	0.46068	0.73229																																																																																																																																			
H63	0.13168	0.5488	0.45847																																																																																																																																			
H64	0.16259	0.57312	0.62224																																																																																																																																			
H65	0.12939	0.57863	0.58737																																																																																																																																			
H66	0.12789	0.63563	0.96474																																																																																																																																			
H67	0.16092	0.64863	0.80377																																																																																																																																			
H68	0.13065	0.60845	0.81071																																																																																																																																			
N4	0.43122	0.71079	0.25579																																																																																																																																			
C125	0.81098	0.93466	0.53968																																																																																																																																			
C126	0.82783	0.95595	0.38651																																																																																																																																			
C127	0.86119	0.97032	0.37725																																																																																																																																			
C128	0.87837	0.96343	0.51608																																																																																																																																			
C129	0.86144	0.94265	0.67037																																																																																																																																			
C130	0.82811	0.92841	0.68343																																																																																																																																			
C131	0.91323	0.97888	0.49955																																																																																																																																			
C132	0.93204	0.96935	0.58903																																																																																																																																			
C133	0.98525	0.02036	0.57863																																																																																																																																			
C134	0.01912	0.03618	0.58085																																																																																																																																			
C135	0.36338	0.68629	0.75406																																																																																																																																			
N5	0.34356	0.69849	0.74665																																																																																																																																			
C136	0.3981	0.70781	0.76011																																																																																																																																			
C137	0.41356	0.73754	0.686																																																																																																																																			
C138	0.44848	0.75803	0.69339																																																																																																																																			
C139	0.46771	0.75455	0.84185																																																																																																																																			
C140	0.5	0.77392	0.84816																																																																																																																																			
C141	0.51594	0.79708	0.70239																																																																																																																																			
C142	0.49789	0.80071	0.55269																																																																																																																																			
C143	0.46449	0.78166	0.55139																																																																																																																																			
C144	0.5515	0.85217	0.95778																																																																																																																																			
C145	0.56855	0.84339	0.82665																																																																																																																																			
C146	0.60291	0.86193	0.82214																																																																																																																																			
C147	0.61941	0.88851	0.95077																																																																																																																																			
C148	0.60126	0.89618	0.07601																																																																																																																																			
C149	0.56766	0.87824	0.07851																																																																																																																																			
C150	0.62037	0.85388	0.68798																																																																																																																																			
C151	0.60369	0.82748	0.56156																																																																																																																																			
C152	0.56933	0.80854	0.57094																																																																																																																																			
C153	0.55196	0.81666	0.7004																																																																																																																																			
C154	0.55337	0.78103	0.44708																																																																																																																																			
---	---	---	---																																																																																																																																			
C155	0.57005	0.77371	0.31661																																																																																																																																			
C156	0.60416	0.79321	0.29731																																																																																																																																			
C157	0.62101	0.81973	0.42393																																																																																																																																			
C158	0.65448	0.90689	0.94614																																																																																																																																			
C159	0.6716	0.89865	0.81065																																																																																																																																			
C160	0.65479	0.87234	0.68013																																																																																																																																			
C161	0.67198	0.86466	0.54516																																																																																																																																			
C162	0.65517	0.83825	0.41391																																																																																																																																			
C163	0.67218	0.83032	0.27604																																																																																																																																			
C164	0.65454	0.80481	0.14677																																																																																																																																			
C165	0.62144	0.78659	0.1574																																																																																																																																			
C166	0.70586	0.91665	0.80408																																																																																																																																			
C167	0.72282	0.94297	0.93222																																																																																																																																			
C168	0.70537	0.9505	0.06573																																																																																																																																			
C169	0.67217	0.93284	0.07255																																																																																																																																			
C170	0.72321	0.9083	0.67011																																																																																																																																			
C171	0.70641	0.88242	0.54026																																																																																																																																			
C172	0.72379	0.8739	0.40839																																																																																																																																			
C173	0.7072	0.84804	0.2751																																																																																																																																			
C174	0.75721	0.961	0.92286																																																																																																																																			
C175	0.77385	0.9527	0.79603																																																																																																																																			
C176	0.7577	0.92601	0.66818																																																																																																																																			
C177	0.77492	0.91725	0.54181																																																																																																																																			
C178	0.75815	0.89103	0.41195																																																																																																																																			
C179	0.72515	0.83981	0.15227																																																																																																																																			
C180	0.75871	0.856	0.16044																																																																																																																																			
C181	0.77507	0.88118	0.28708																																																																																																																																			
C182	0.51465	0.82437	0.3923																																																																																																																																			
C183	0.51892	0.76931	0.00565																																																																																																																																			
C184	0.81048	0.90568	0.8465																																																																																																																																			
C185	0.80979	0.96249	0.232																																																																																																																																			
H69	0.87404	0.98657	0.25832																																																																																																																																			
H70	0.87432	0.93769	0.78258																																																																																																																																			
H71	0.92423	0.99923	0.40162																																																																																																																																			
H72	0.92107	0.94724	0.67114																																																																																																																																			
C186	0.96994	0.03929	0.57522																																																																																																																																			
H73	0.30211	0.71686	0.81951																																																																																																																																			
H74	0.39979	0.74652	0.61037																																																																																																																																			
H75	0.45486	0.73689	0.95588																																																																																																																																			
H76	0.45081	0.78453	0.43502																																																																																																																																			
H77	0.52552	0.83802	0.96206																																																																																																																																			
H78	0.61302	0.91632	0.17415																																																																																																																																			
H79	0.55431	0.88488	0.17718																																																																																																																																			
H80	0.52753	0.766	0.4598																																																																																																																																			
H81	0.55767	0.75277	0.22481																																																																																																																																			
H82	0.66694	0.79885	0.03708																																																																																																																																			
H83	0.60854	0.7668	0.0577																																																																																																																																			
	H84	0.71825	0.9704	0.1648																																																																																																																																		
---	------	---------	----------	--------																																																																																																																																		
	H85	0.65972	0.93939	0.17858																																																																																																																																		
	H86	0.76988	0.98138	0.01904																																																																																																																																		
	H87	0.79989	0.96618	0.79455																																																																																																																																		
	H88	0.71322	0.82025	0.05021																																																																																																																																		
	H89	0.77187	0.84854	0.06625																																																																																																																																		
	H90	0.80109	0.89354	0.2926																																																																																																																																		
	H91	0.53179	0.84757	0.45098																																																																																																																																		
	H92	0.52824	0.81701	0.30015																																																																																																																																		
	H93	0.49762	0.82672	0.29957																																																																																																																																		
	H94	0.50323	0.75283	0.116																																																																																																																																		
	H95	0.53447	0.79169	0.07635																																																																																																																																		
	H96	0.53530	0.79169	0.07635																																																																																																																																		
	H97	0.79596	0.88161	0.79053																																																																																																																																		
	H98	0.82705	0.90567	0.95408																																																																																																																																		
	H99	0.79414	0.91167	0.91866																																																																																																																																		
	H100	0.79306	0.96878	0.29665																																																																																																																																		
	H101	0.82604	0.98154	0.13562																																																																																																																																		
	H102	0.79558	0.94145	0.1428																																																																																																																																		
	N6	0.7957	0.79169	0.07635																																																																																																																																		
	C187	0.73049	0.2132	0.90159																																																																																																																																		
	C188	0.70812	0.20783	0.75246																																																																																																																																		
	C189	0.69245	0.22545	0.7417																																																																																																																																		
	C190	0.69951	0.24946	0.88599																																																																																																																																		
	C191	0.72189	0.25469	0.03418																																																																																																																																		
	C192	0.73703	0.23661	0.04419																																																																																																																																		
	C193	0.68363	0.26841	0.87426																																																																																																																																		
	C194	0.69718	0.29876	0.93696																																																																																																																																		
	N7	0.64943	0.30366	0.92319																																																																																																																																		
	C195	0.63477	0.32125	0.91554																																																																																																																																		
	C196	0.9785	0.01361	0.07475																																																																																																																																		
	C197	0.96498	0.98012	0.08461																																																																																																																																		
	C198	0.95839	0.02848	0.07718																																																																																																																																		
	C199	0.92918	0.01632	0.99269																																																																																																																																		
	C200	0.90841	0.0322	0.00435																																																																																																																																		
	C201	0.91137	0.05106	0.15565																																																																																																																																		
	C202	0.89132	0.06411	0.16374																																																																																																																																		
	C203	0.86785	0.05663	0.01815																																																																																																																																		
	C204	0.86437	0.03536	0.8674																																																																																																																																		
	C205	0.88428	0.02213	0.86338																																																																																																																																		
	C206	0.81177	0.0356	0.27147																																																																																																																																		
	C207	0.82096	0.06195	0.14579																																																																																																																																		
	C208	0.80265	0.07785	0.14803																																																																																																																																		
	C209	0.77613	0.06756	0.27956																																																																																																																																		
	C210	0.7581	0.04129	0.39962																																																																																																																																		
	C211	0.78564	0.02539	0.39421																																																																																																																																		
	C212	0.81086	0.10366	0.01777																																																																																																																																		
---	---	---	---																																																																																																																																			
C213	0.83709	0.11344	0.88767																																																																																																																																			
C214	0.85592	0.09803	0.89097																																																																																																																																			
C215	0.84784	0.13365	0.63470																																																																																																																																			
C216	0.84487	0.13872	0.75317																																																																																																																																			
C217	0.88326	0.08452	0.28314																																																																																																																																			
C218	0.79269	0.11977	0.01713																																																																																																																																			
C219	0.80066	0.14508	0.88555																																																																																																																																			
C220	0.82664	0.15455	0.75044																																																																																																																																			
C221	0.83467	0.17976	0.61608																																																																																																																																			
C222	0.75819	0.08452	0.28348																																																																																																																																			
C223	0.76659	0.11019	0.15150																																																																																																																																			
C224	0.79269	0.11977	0.01713																																																																																																																																			
C225	0.80066	0.14508	0.88555																																																																																																																																			
C226	0.82664	0.15455	0.75044																																																																																																																																			
C227	0.83467	0.17976	0.61608																																																																																																																																			
C228	0.84784	0.13365	0.63470																																																																																																																																			
C229	0.84487	0.13872	0.75317																																																																																																																																			
C230	0.88326	0.08452	0.28314																																																																																																																																			
C231	0.79269	0.11977	0.01713																																																																																																																																			
C232	0.80066	0.14508	0.88555																																																																																																																																			
C233	0.82664	0.15455	0.75044																																																																																																																																			
C234	0.83467	0.17976	0.61608																																																																																																																																			
C235	0.84784	0.13365	0.63470																																																																																																																																			
C236	0.84487	0.13872	0.75317																																																																																																																																			
C237	0.88326	0.08452	0.28314																																																																																																																																			
C238	0.79269	0.11977	0.01713																																																																																																																																			
C239	0.80066	0.14508	0.88555																																																																																																																																			
C240	0.82664	0.15455	0.75044																																																																																																																																			
C241	0.83467	0.17976	0.61608																																																																																																																																			
C242	0.84784	0.13365	0.63470																																																																																																																																			
C243	0.84487	0.13872	0.75317																																																																																																																																			
C244	0.88326	0.08452	0.28314																																																																																																																																			
C245	0.79269	0.11977	0.01713																																																																																																																																			
C246	0.80066	0.14508	0.88555																																																																																																																																			
C247	0.82664	0.15455	0.75044																																																																																																																																			
H103	0.67535	0.22122	0.63237																																																																																																																																			
H104	0.72719	0.27268	0.14491																																																																																																																																			
H105	0.70186	0.18379	0.59622																																																																																																																																			
H106	0.67535	0.22122	0.63237																																																																																																																																			
H107	0.72719	0.27268	0.14491																																																																																																																																			
H108	0.66018	0.25763	0.80399																																																																																																																																			
H109	0.72719	0.31044	0.99298																																																																																																																																			
H110	0.93084	0.95892	0.86837																																																																																																																																			
H111	0.94876	0.92016	0.19284																																																																																																																																			
H112	0.9203	0.9952	0.90198																																																																																																																																			
H113	0.9203	0.9952	0.90198																																																																																																																																			
----	----	----	----																																																																																																																																			
H114	0.8982	0.09877	0.77094																																																																																																																																			
H115	0.91121	0.14216	0.53938																																																																																																																																			
H116	0.86586	0.20822	0.37518																																																																																																																																			
H117	0.89737	0.17947	0.38283																																																																																																																																			
H118	0.6956	0.08504	0.51739																																																																																																																																			
H119	0.72591	0.05704	0.5174																																																																																																																																			
H120	0.68517	0.12628	0.3836																																																																																																																																			
H121	0.70035	0.17163	0.16335																																																																																																																																			
H122	0.84536	0.23157	0.40041																																																																																																																																			
H123	0.8175	0.26191	0.42754																																																																																																																																			
H124	0.77229	0.24544	0.65684																																																																																																																																			
H125	0.81645	0.02083	0.77085																																																																																																																																			
H126	0.84656	0.04828	0.61724																																																																																																																																			
H127	0.83773	0.00856	0.61658																																																																																																																																			
H128	0.9123	0.081	0.43312																																																																																																																																			
H129	0.90452	0.11077	0.26402																																																																																																																																			
H130	0.87278	0.08036	0.39434																																																																																																																																			
H131	0.78437	0.24974	0.14194																																																																																																																																			
H132	0.76304	0.26103	0.30186																																																																																																																																			
H133	0.75376	0.22114	0.28812																																																																																																																																			
H134	0.69632	0.16104	0.65896																																																																																																																																			
H135	0.68222	0.18034	0.50179																																																																																																																																			
H136	0.72309	0.1915	0.50527																																																																																																																																			
N8	0.62632	0.39008	0.90806																																																																																																																																			
N9	0.90358	0.94105	0.08525																																																																																																																																			
C249	0.39719	0.54662	0.24618																																																																																																																																			
C250	0.37489	0.54141	0.09685																																																																																																																																			
C251	0.35949	0.55928	0.09209																																																																																																																																			
C252	0.36675	0.58335	0.2299																																																																																																																																			
C253	0.38995	0.58833	0.37867																																																																																																																																			
C254	0.40384	0.57003	0.38892																																																																																																																																			
C255	0.3513	0.60267	0.2173																																																																																																																																			
C256	0.36515	0.63309	0.27905																																																																																																																																			
N10	0.31755	0.63803	0.26335																																																																																																																																			
C257	0.30282	0.65552	0.2525																																																																																																																																			
C258	0.64628	0.34806	0.4094																																																																																																																																			
C259	0.6327	0.31455	0.41757																																																																																																																																			
C260	0.62621	0.36297	0.41325																																																																																																																																			
C261	0.59705	0.35095	0.32822																																																																																																																																			
C262	0.57618	0.36472	0.34145																																																																																																																																			
C263	0.57908	0.38538	0.49376																																																																																																																																			
C264	0.55888	0.38825	0.50344																																																																																																																																			
C265	0.5353	0.39075	0.35848																																																																																																																																			
C266	0.5319	0.36965	0.20675																																																																																																																																			
C267	0.55197	0.35661	0.20109																																																																																																																																			
C268	0.47923	0.36948	0.61289																																																																																																																																			
C269	0.48832	0.39584	0.4875																																																																																																																																			
---	------------	------------	------------																																																																																																																																			
C270	0.46992	0.41165	0.4902																																																																																																																																			
C271	0.44343	0.40127	0.62201																																																																																																																																			
C272	0.43548	0.37499	0.74168																																																																																																																																			
C273	0.45309	0.35916	0.7357																																																																																																																																			
C274	0.47801	0.43744	0.36001																																																																																																																																			
C275	0.50418	0.44728	0.22942																																																																																																																																			
C276	0.52311	0.40646	0.35953																																																																																																																																			
C277	0.51518	0.40646	0.35953																																																																																																																																			
C278	0.55037	0.44361	0.10388																																																																																																																																			
C279	0.55741	0.46756	0.97508																																																																																																																																			
C280	0.53802	0.48225	0.96339																																																																																																																																			
C281	0.51181	0.47252	0.09482																																																																																																																																			
C282	0.42542	0.41817	0.6262																																																																																																																																			
C283	0.43369	0.44382	0.49465																																																																																																																																			
C284	0.45974	0.45346	0.35982																																																																																																																																			
C285	0.46758	0.47874	0.22828																																																																																																																																			
C286	0.49351	0.48827	0.09268																																																																																																																																			
C287	0.50143	0.51347	0.95844																																																																																																																																			
C288	0.52955	0.52139	0.82408																																																																																																																																			
C289	0.5445	0.50633	0.82663																																																																																																																																			
C290	0.41599	0.46023	0.49626																																																																																																																																			
C291	0.39001	0.45081	0.62933																																																																																																																																			
C292	0.3825	0.4256	0.75922																																																																																																																																			
C293	0.39981	0.40984	0.75759																																																																																																																																			
C294	0.42425	0.48607	0.36531																																																																																																																																			
C295	0.44982	0.49526	0.2309																																																																																																																																			
C296	0.45831	0.52133	0.10241																																																																																																																																			
C297	0.48405	0.53009	0.96588																																																																																																																																			
C298	0.3723	0.46736	0.6285																																																																																																																																			
C299	0.38043	0.49233	0.50582																																																																																																																																			
C300	0.40665	0.50279	0.37028																																																																																																																																			
C301	0.4151	0.52865	0.24511																																																																																																																																			
C302	0.44127	0.53843	0.11242																																																																																																																																			
C303	0.49254	0.55748	0.8482																																																																																																																																			
C304	0.47657	0.57481	0.86355																																																																																																																																			
C305	0.45125	0.56549	0.99169																																																																																																																																			
C306	0.50732	0.36192	0.04956																																																																																																																																			
C307	0.56303	0.42098	0.66387																																																																																																																																			
C308	0.4276	0.57586	0.54788																																																																																																																																			
C309	0.36848	0.51732	0.94066																																																																																																																																			
C310	0.34249	0.55524	0.97597																																																																																																																																			
C311	0.39435	0.60632	0.4895																																																																																																																																			
C312	0.3279	0.59214	0.14657																																																																																																																																			
C313	0.38954	0.64465	0.3353																																																																																																																																			
C314	0.59854	0.29341	0.4195																																																																																																																																			
H141	0.61622	0.25447	0.52178																																																																																																																																			
H142	0.58825	0.33	0.23601																																																																																																																																			
---	---	---	---																																																																																																																																			
H143	0.59705	0.39133	0.60694																																																																																																																																			
H144	0.54936	0.34052	0.08324																																																																																																																																			
H145	0.49315	0.35751	0.61063																																																																																																																																			
H146	0.41534	0.36634	0.84163																																																																																																																																			
H147	0.44618	0.33874	0.82966																																																																																																																																			
H148	0.56539	0.43283	0.11123																																																																																																																																			
H149	0.57809	0.47608	0.8792																																																																																																																																			
H150	0.53241	0.53991	0.71675																																																																																																																																			
H151	0.564	0.51325	0.72312																																																																																																																																			
H152	0.36287	0.41855	0.86202																																																																																																																																			
H153	0.39328	0.39064	0.86092																																																																																																																																			
H154	0.35228	0.45973	0.72918																																																																																																																																			
H155	0.3672	0.50501	0.50871																																																																																																																																			
H156	0.51214	0.56545	0.74467																																																																																																																																			
H157	0.48428	0.59576	0.73351																																																																																																																																			
H158	0.43897	0.57904	0.0023																																																																																																																																			
H159	0.48387	0.35492	0.11149																																																																																																																																			
H160	0.51382	0.38262	0.95812																																																																																																																																			
H161	0.50526	0.34298	0.95559																																																																																																																																			
H162	0.57977	0.42196	0.77367																																																																																																																																			
H163	0.57207	0.44481	0.6056																																																																																																																																			
H164	0.54027	0.41428	0.7349																																																																																																																																			
H165	0.45126	0.58348	0.48678																																																																																																																																			
H166	0.4295	0.59397	0.6485																																																																																																																																			
H167	0.42075	0.55427	0.63063																																																																																																																																			
H168	0.36324	0.49466	0.00342																																																																																																																																			
H169	0.3486	0.51368	0.84782																																																																																																																																			
H170	0.38954	0.52511	0.848																																																																																																																																			
N11	0.29388	0.72396	0.23732																																																																																																																																			
N12	0.57128	0.27557	0.41844																																																																																																																																			
C311	0.06351	0.87911	0.57301																																																																																																																																			
C312	0.04115	0.87363	0.42363																																																																																																																																			
C313	0.02532	0.8911	0.41921																																																																																																																																			
C314	0.03223	0.91507	0.55707																																																																																																																																			
C315	0.05457	0.92037	0.70558																																																																																																																																			
C316	0.06986	0.90244	0.7158																																																																																																																																			
C317	0.01627	0.93395	0.54474																																																																																																																																			
C318	0.02977	0.96433	0.60657																																																																																																																																			
N13	0.98198	0.96912	0.59107																																																																																																																																			
C319	0.96725	0.98663	0.58178																																																																																																																																			
C320	0.31132	0.67879	0.74489																																																																																																																																			
C321	0.29773	0.64528	0.75374																																																																																																																																			
C322	0.29145	0.69392	0.74671																																																																																																																																			
C323	0.26231	0.6821	0.66174																																																																																																																																			
C324	0.24199	0.69651	0.67213																																																																																																																																			
C325	0.2452	0.71754	0.82287																																																																																																																																			
C326	0.22538	0.73085	0.83063																																																																																																																																			
---	---	---	---																																																																																																																																			
C327	0.20192	0.72349	0.68508																																																																																																																																			
C328	0.19833	0.7022	0.53423																																																																																																																																			
C329	0.21798	0.68867	0.53074																																																																																																																																			
C330	0.1459	0.70222	0.93849																																																																																																																																			
C331	0.15502	0.72865	0.81361																																																																																																																																			
C332	0.13661	0.74444	0.68667																																																																																																																																			
C333	0.14472	0.77027	0.68667																																																																																																																																			
C334	0.17091	0.78017	0.55619																																																																																																																																			
C335	0.18985	0.76486	0.55884																																																																																																																																			
C336	0.18191	0.73932	0.68584																																																																																																																																			
C337	0.21709	0.7765	0.43028																																																																																																																																			
C338	0.22412	0.80047	0.30166																																																																																																																																			
C339	0.20475	0.81519	0.29035																																																																																																																																			
C340	0.17854	0.80543	0.42181																																																																																																																																			
C341	0.09205	0.75085	0.95241																																																																																																																																			
C342	0.08259	0.79291	0.95307																																																																																																																																			
C343	0.12643	0.78266	0.68661																																																																																																																																			
C344	0.13428	0.81159	0.55535																																																																																																																																			
C345	0.16022	0.82116	0.41984																																																																																																																																			
C346	0.1681	0.84637	0.2857																																																																																																																																			
C347	0.19326	0.85435	0.15146																																																																																																																																			
C348	0.21123	0.83933	0.15385																																																																																																																																			
C349	0.08259	0.79291	0.82283																																																																																																																																			
C350	0.05655	0.78339	0.9555																																																																																																																																			
C351	0.04904	0.75815	0.08517																																																																																																																																			
C352	0.0664	0.74245	0.08358																																																																																																																																			
C353	0.09085	0.8188	0.69222																																																																																																																																			
C354	0.11647	0.82806	0.55807																																																																																																																																			
C355	0.12492	0.85414	0.42965																																																																																																																																			
C356	0.15065	0.86373	0.29301																																																																																																																																			
C357	0.03874	0.79985	0.95437																																																																																																																																			
C358	0.04687	0.82485	0.83196																																																																																																																																			
C359	0.0732	0.83544	0.69709																																																																																																																																			
C360	0.08163	0.86134	0.57227																																																																																																																																			
C361	0.10781	0.87117	0.4396																																																																																																																																			
C362	0.15901	0.89203	0.17484																																																																																																																																			
C363	0.14294	0.90747	0.18988																																																																																																																																			
C364	0.11767	0.89816	0.31842																																																																																																																																			
C365	0.17397	0.69471	0.37596																																																																																																																																			
C366	0.2297	0.75379	0.99007																																																																																																																																			
C367	0.20936	0.90853	0.81617																																																																																																																																			
C368	0.09367	0.8497	0.26707																																																																																																																																			
C369	0.03512	0.88681	0.30314																																																																																																																																			
H171	0.00825	0.93834	0.81617																																																																																																																																			
---	---	---	---																																																																																																																																			
H173	0.99284	0.92309	0.47425																																																																																																																																			
H174	0.05417	0.9761	0.66269																																																																																																																																			
C372	0.26356	0.62422	0.75734																																																																																																																																			
H175	0.28154	0.58495	0.85696																																																																																																																																			
H176	0.25312	0.66083	0.57213																																																																																																																																			
H177	0.26307	0.72337	0.93661																																																																																																																																			
H178	0.21517	0.67237	0.41382																																																																																																																																			
H179	0.15982	0.69026	0.93604																																																																																																																																			
H180	0.08192	0.69893	0.16696																																																																																																																																			
H181	0.11279	0.67136	0.15463																																																																																																																																			
H182	0.23209	0.7657	0.43737																																																																																																																																			
H183	0.24478	0.80899	0.20559																																																																																																																																			
H184	0.19911	0.87289	0.04428																																																																																																																																			
H185	0.23074	0.84625	0.05036																																																																																																																																			
H186	0.02938	0.75104	0.18778																																																																																																																																			
H187	0.05987	0.72322	0.16871																																																																																																																																			
H188	0.01866	0.79213	0.05461																																																																																																																																			
H189	0.03357	0.83745	0.83457																																																																																																																																			
H190	0.17858	0.8982	0.07104																																																																																																																																			
H191	0.15053	0.92834	0.09927																																																																																																																																			
H192	0.10531	0.91163	0.32886																																																																																																																																			
H193	0.15047	0.68779	0.43684																																																																																																																																			
H194	0.18069	0.7155	0.28492																																																																																																																																			
H195	0.1719	0.67579	0.28183																																																																																																																																			
H196	0.2467	0.75505	0.09893																																																																																																																																			
H197	0.23847	0.7775	0.93057																																																																																																																																			
H198	0.20704	0.74705	0.06257																																																																																																																																			
H199	0.11739	0.91642	0.81408																																																																																																																																			
H200	0.09531	0.92651	0.97569																																																																																																																																			
H201	0.08704	0.88697	0.95758																																																																																																																																			
H202	0.02983	0.82701	0.32944																																																																																																																																			
H203	0.01539	0.84807	0.17287																																																																																																																																			
H204	0.05636	0.85764	0.17588																																																																																																																																			
N14	0.95869	0.05542	0.57025																																																																																																																																			
N15	0.23626	0.60653	0.75892																																																																																																																																			
C373	0.78869	0.52489	0.86235																																																																																																																																			
C374	0.79393	0.5083	0.71162																																																																																																																																			
C375	0.77591	0.47524	0.70652																																																																																																																																			
C376	0.75197	0.45824	0.84618																																																																																																																																			
C377	0.74695	0.47507	0.99591																																																																																																																																			
C378	0.76519	0.50808	0.00585																																																																																																																																			
C379	0.73352	0.42367	0.83449																																																																																																																																			
C380	0.70503	0.40541	0.92359																																																																																																																																			
C381	0.70134	0.35184	0.92009																																																																																																																																			
C382	0.68188	0.31821	0.92494																																																																																																																																			
C383	0.98521	0.96685	0.094																																																																																																																																			
C384	0.01861	0.98794	0.09286																																																																																																																																			
---	----	----	----																																																																																																																																			
C385	0.97121	0.93246	0.11205																																																																																																																																			
C386	0.98342	0.91565	0.0283																																																																																																																																			
C387	0.96957	0.88135	0.19782																																																																																																																																			
C388	0.94835	0.83107	0.20975																																																																																																																																			
C389	0.9351	0.86524	0.90806																																																																																																																																			
C390	0.96264	0.7935	0.31941																																																																																																																																			
C391	0.93681	0.76285	0.18708																																																																																																																																			
C392	0.9214	0.72895	0.17669																																																																																																																																			
C393	0.93193	0.71227	0.30094																																																																																																																																			
C394	0.95763	0.72981	0.4284																																																																																																																																			
C395	0.97286	0.76302	0.4367																																																																																																																																			
C396	0.89603	0.71222	0.0403																																																																																																																																			
C397	0.88383	0.72908	0.91851																																																																																																																																			
C398	0.90073	0.76292	0.93429																																																																																																																																			
C399	0.92627	0.77953	0.0672																																																																																																																																			
C400	0.88882	0.77919	0.81526																																																																																																																																			
C401	0.86491	0.76324	0.6829																																																																																																																																			
C402	0.85092	0.72967	0.6562																																																																																																																																			
C403	0.86099	0.71256	0.77811																																																																																																																																			
C404	0.9158	0.67767	0.28929																																																																																																																																			
C405	0.89063	0.66129	0.15133																																																																																																																																			
C406	0.88069	0.67831	0.02524																																																																																																																																			
C407	0.85586	0.66189	0.88739																																																																																																																																			
C408	0.84606	0.67892	0.76042																																																																																																																																			
C409	0.82144	0.66268	0.61922																																																																																																																																			
C410	0.81315	0.68058	0.49488																																																																																																																																			
C411	0.82732	0.71319	0.51325																																																																																																																																			
C412	0.87492	0.6275	0.1379																																																																																																																																			
C413	0.88464	0.61027	0.26144																																																																																																																																			
C414	0.90948	0.62697	0.39723																																																																																																																																			
C415	0.92449	0.65974	0.41086																																																																																																																																			
C416	0.84938	0.61693	0.00161																																																																																																																																			
C417	0.83955	0.62793	0.87554																																																																																																																																			
C418	0.81432	0.61128	0.74056																																																																																																																																			
C419	0.80484	0.6281	0.61037																																																																																																																																			
C420	0.8687	0.57632	0.24572																																																																																																																																			
C421	0.84372	0.56038	0.11983																																																																																																																																			
C422	0.83297	0.5769	0.99411																																																																																																																																			
C423	0.80708	0.56043	0.8659																																																																																																																																			
C424	0.7975	0.57732	0.73807																																																																																																																																			
C425	0.77908	0.61077	0.48321																																																																																																																																			
C426	0.76221	0.57753	0.48468																																																																																																																																			
C427	0.77106	0.56094	0.6095																																																																																																																																			
C428	0.97163	0.8153	0.75868																																																																																																																																			
-----	------	------	------																																																																																																																																			
C432	0.91191	0.81255	0.36945																																																																																																																																			
C433	0.79546	0.52579	0.16543																																																																																																																																			
C434	0.81828	0.52579	0.55597																																																																																																																																			
H205	0.78009	0.46249	0.59075																																																																																																																																			
H206	0.73289	0.4623	0.10702																																																																																																																																			
H207	0.74341	0.41259	0.74103																																																																																																																																			
H208	0.69364	0.41661	0.00203																																																																																																																																			
C435	0.73568	0.36592	0.92292																																																																																																																																			
C436	0.70404	0.9765	0.10473																																																																																																																																			
H209	0.09466	0.033	0.14839																																																																																																																																			
H210	0.00414	0.92767	0.93256																																																																																																																																			
H211	0.94216	0.876	0.30803																																																																																																																																			
H212	0.99431	0.8785	0.791																																																																																																																																			
H213	0.97419	0.80502	0.3272																																																																																																																																			
H214	0.96627	0.71786	0.52349																																																																																																																																			
H215	0.99278	0.77591	0.53673																																																																																																																																			
H216	0.89926	0.80465	0.83315																																																																																																																																			
H217	0.85603	0.77581	0.59494																																																																																																																																			
H218	0.790	0.66876	0.3831																																																																																																																																			
H219	0.82012	0.72631	0.41731																																																																																																																																			
H220	0.91677	0.61386	0.49268																																																																																																																																			
H221	0.94338	0.67166	0.51838																																																																																																																																			
H222	0.87668	0.56342	0.33823																																																																																																																																			
H223	0.83133	0.53466	0.11203																																																																																																																																			
H224	0.77138	0.62291	0.38291																																																																																																																																			
H225	0.74191	0.56482	0.38712																																																																																																																																			
H226	0.75775	0.53518	0.61076																																																																																																																																			
H227	0.97865	0.79912	0.82132																																																																																																																																			
H228	0.95051	0.80096	0.66882																																																																																																																																			
H229	0.99068	0.83195	0.66316																																																																																																																																			
H230	0.90989	0.82816	0.47465																																																																																																																																			
H231	0.88818	0.79672	0.30952																																																																																																																																			
H232	0.9193	0.7977	0.44669																																																																																																																																			
H233	0.75228	0.54201	0.1049																																																																																																																																			
H234	0.74084	0.50964	0.26484																																																																																																																																			
H235	0.78122	0.50415	0.2498																																																																																																																																			
H236	0.84138	0.54307	0.61942																																																																																																																																			
H237	0.82144	0.51025	0.49595																																																																																																																																			
H238	0.81084	0.54002	0.46711																																																																																																																																			
N16	0.0595	0.96808	0.11212																																																																																																																																			
C437	0.45644	0.85917	0.17997																																																																																																																																			
C438	0.46172	0.84224	0.03173																																																																																																																																			
C439	0.44388	0.80914	0.00364																																																																																																																																			
C440	0.41997	0.79246	0.1711																																																																																																																																			
C441	0.41485	0.80966	0.31788																																																																																																																																			
C442	0.43299	0.84269	0.32435																																																																																																																																			
C443	0.40159	0.75785	0.16326																																																																																																																																			
---	---	---	---																																																																																																																																			
C444	0.37299	0.73978	0.25169																																																																																																																																			
C445	0.36940	0.68624	0.25558																																																																																																																																			
C446	0.34999	0.65264	0.26449																																																																																																																																			
C447	0.65286	0.30121	0.42529																																																																																																																																			
C448	0.68628	0.32225	0.42436																																																																																																																																			
C449	0.65286	0.30121	0.42529																																																																																																																																			
C450	0.65082	0.24992	0.35709																																																																																																																																			
C451	0.63672	0.21557	0.37311																																																																																																																																			
C452	0.61524	0.19799	0.52356																																																																																																																																			
C453	0.60177	0.16512	0.5337																																																																																																																																			
C454	0.60943	0.1492	0.39021																																																																																																																																			
C455	0.63117	0.16658	0.23977																																																																																																																																			
C456	0.64493	0.19952	0.23459																																																																																																																																			
C457	0.62932	0.1135	0.64257																																																																																																																																			
C458	0.60359	0.09701	0.50957																																																																																																																																			
C459	0.58833	0.06313	0.48819																																																																																																																																			
C460	0.59891	0.04646	0.62217																																																																																																																																			
C461	0.6245	0.06399	0.75033																																																																																																																																			
C462	0.63959	0.09717	0.75956																																																																																																																																			
C463	0.56308	0.04643	0.36106																																																																																																																																			
C464	0.5528	0.06327	0.23973																																																																																																																																			
C465	0.56756	0.09709	0.25653																																																																																																																																			
C466	0.59301	0.11369	0.38747																																																																																																																																			
C467	0.55557	0.11334	0.13802																																																																																																																																			
C468	0.53171	0.09741	0.00534																																																																																																																																			
C469	0.5179	0.06388	0.97749																																																																																																																																			
C470	0.52806	0.04678	0.09875																																																																																																																																			
C471	0.58293	0.01187	0.60949																																																																																																																																			
C472	0.55791	0.09552	0.47057																																																																																																																																			
C473	0.54793	0.01254	0.3448																																																																																																																																			
C474	0.5232	0.99614	0.20624																																																																																																																																			
C475	0.51331	0.01317	0.07988																																																																																																																																			
C476	0.48878	0.99694	0.9382																																																																																																																																			
C477	0.4904	0.01485	0.81449																																																																																																																																			
C478	0.49439	0.04743	0.83399																																																																																																																																			
C479	0.54238	0.96176	0.456																																																																																																																																			
C480	0.5521	0.94452	0.57956																																																																																																																																			
C481	0.57675	0.9612	0.71645																																																																																																																																			
C482	0.59161	0.99395	0.73106																																																																																																																																			
C483	0.51699	0.94521	0.31875																																																																																																																																			
C484	0.50748	0.9622	0.19315																																																																																																																																			
C485	0.48193	0.94555	0.05775																																																																																																																																			
C486	0.47232	0.96237	0.92838																																																																																																																																			
C487	0.53633	0.9106	0.56271																																																																																																																																			
C488	0.51115	0.89468	0.43575																																																																																																																																			
C489	0.50073	0.91119	0.31028																																																																																																																																			
C490	0.47488	0.89471	0.18182																																																																																																																																			
-----	----	----	----																																																																																																																																			
C491	0.46523	0.91159	0.05446																																																																																																																																			
C492	0.44654	0.94503	0.80135																																																																																																																																			
C493	0.42978	0.91179	0.80215																																																																																																																																			
C494	0.43877	0.8952	0.92506																																																																																																																																			
C495	0.63862	0.14964	0.08317																																																																																																																																			
C496	0.57841	0.14645	0.69226																																																																																																																																			
C497	0.42729	0.86079	0.48147																																																																																																																																			
C498	0.48955	0.85982	0.87471																																																																																																																																			
H239	0.44825	0.7961	0.91776																																																																																																																																			
H240	0.3968	0.79717	0.42947																																																																																																																																			
H241	0.41167	0.74656	0.07331																																																																																																																																			
H242	0.36147	0.7512	0.32633																																																																																																																																			
C499	0.40373	0.70029	0.25748																																																																																																																																			
C500	0.70857	0.31075	0.43403																																																																																																																																			
H243	0.74717	0.36719	0.48193																																																																																																																																			
H244	0.67162	0.26193	0.26192																																																																																																																																			
H245	0.60901	0.21001	0.63405																																																																																																																																			
H246	0.66163	0.21288	0.11849																																																																																																																																			
H247	0.64076	0.13916	0.65107																																																																																																																																			
H248	0.63318	0.05204	0.8452																																																																																																																																			
H249	0.65943	0.11006	0.86014																																																																																																																																			
H250	0.56589	0.13877	0.15673																																																																																																																																			
H251	0.52275	0.10996	0.91789																																																																																																																																			
H252	0.46231	0.00305	0.70231																																																																																																																																			
H253	0.48712	0.06055	0.73851																																																																																																																																			
H254	0.58403	0.94809	0.81201																																																																																																																																			
H255	0.61037	0.00584	0.8394																																																																																																																																			
H256	0.5443	0.8977	0.65516																																																																																																																																			
H257	0.49926	0.86898	0.42694																																																																																																																																			
H258	0.43872	0.95716	0.70179																																																																																																																																			
H259	0.40945	0.89908	0.70481																																																																																																																																			
H260	0.42555	0.86944	0.9269																																																																																																																																			
H261	0.64561	0.1334	0.14552																																																																																																																																			
H262	0.61753	0.13534	0.99303																																																																																																																																			
H263	0.65771	0.16632	0.98803																																																																																																																																			
H264	0.57512	0.16187	0.79266																																																																																																																																			
H265	0.55516	0.12953	0.63069																																																																																																																																			
H266	0.58655	0.13272	0.77549																																																																																																																																			
H267	0.42103	0.87754	0.41856																																																																																																																																			
H268	0.40809	0.84494	0.57865																																																																																																																																			
H269	0.44884	0.87463	0.5688																																																																																																																																			
H270	0.50911	0.87678	0.93679																																																																																																																																			
H271	0.48901	0.84364	0.77968																																																																																																																																			
H272	0.47841	0.87342	0.78469																																																																																																																																			
N17	0.72709	0.30225	0.43908																																																																																																																																			
C501	0.12091	0.19037	0.52392																																																																																																																																			
C502	0.12602	0.17374	0.3729																																																																																																																																			
C503	0.108	0.14068	0.36822																																																																																																																																			
------	-------	---------	---------																																																																																																																																			
C504	0.08417	0.12372	0.50853																																																																																																																																			
C505	0.07921	0.1406	0.65822																																																																																																																																			
C506	0.09746	0.17361	0.6678																																																																																																																																			
C507	0.0658	0.08913	0.4977																																																																																																																																			
C508	0.03735	0.07087	0.58712																																																																																																																																			
C509	0.03383	0.01736	0.58643																																																																																																																																			
C510	0.01442	0.98374	0.5929																																																																																																																																			
C511	0.31792	0.63194	0.76129																																																																																																																																			
C512	0.35133	0.653	0.76108																																																																																																																																			
C513	0.30404	0.59752	0.77687																																																																																																																																			
C514	0.31657	0.58106	0.69212																																																																																																																																			
C515	0.30311	0.54678	0.70805																																																																																																																																			
C516	0.28206	0.52903	0.85974																																																																																																																																			
C517	0.26901	0.49621	0.86963																																																																																																																																			
C518	0.27669	0.48052	0.7247																																																																																																																																			
C519	0.29811	0.4981	0.57331																																																																																																																																			
C520	0.31146	0.531	0.56839																																																																																																																																			
C521	0.29679	0.44464	0.97451																																																																																																																																			
C522	0.27086	0.42823	0.84274																																																																																																																																			
C523	0.25526	0.39431	0.83261																																																																																																																																			
C524	0.26572	0.37754	0.95651																																																																																																																																			
C525	0.29152	0.325	0.0835																																																																																																																																			
C526	0.30691	0.42821	0.09165																																																																																																																																			
C527	0.2297	0.37767	0.69727																																																																																																																																			
C528	0.21951	0.39463	0.57622																																																																																																																																			
C529	0.23462	0.42849	0.5918																																																																																																																																			
C530	0.26032	0.44501	0.72123																																																																																																																																			
C531	0.22267	0.44484	0.47402																																																																																																																																			
C532	0.19853	0.42897	0.34293																																																																																																																																			
C533	0.18432	0.39537	0.31639																																																																																																																																			
C534	0.19442	0.37818	0.43721																																																																																																																																			
C535	0.24935	0.34292	0.94544																																																																																																																																			
C536	0.22396	0.32662	0.80871																																																																																																																																			
C537	0.21408	0.34374	0.68298																																																																																																																																			
C538	0.18902	0.32739	0.54638																																																																																																																																			
C539	0.17924	0.34451	0.42001																																																																																																																																			
C540	0.1544	0.32833	0.28007																																																																																																																																			
C541	0.14607	0.34632	0.15669																																																																																																																																			
C542	0.16045	0.37895	0.1748																																																																																																																																			
C543	0.20793	0.2928	0.79632																																																																																																																																			
C544	0.21755	0.27546	0.9197																																																																																																																																			
C545	0.24264	0.2921	0.05407																																																																																																																																			
C546	0.25796	0.3249	0.06664																																																																																																																																			
C547	0.18217	0.27631	0.66127																																																																																																																																			
C548	0.17282	0.29341	0.5354																																																																																																																																			
C549	0.14702	0.27684	0.40145																																																																																																																																			
---	---	---	---																																																																																																																																			
H273	0.11211	0.1279	0.25235																																																																																																																																			
H274	0.06122	0.12787	0.76973																																																																																																																																			
H275	0.07575	0.07804	0.40486																																																																																																																																			
H276	0.02591	0.08208	0.66494																																																																																																																																			
C563	0.06818	0.03153	0.58924																																																																																																																																			
C564	0.37371	0.64162	0.77203																																																																																																																																			
H277	0.41217	0.69806	0.82178																																																																																																																																			
H278	0.33731	0.59339	0.59679																																																																																																																																			
H279	0.27578	0.54088	0.97119																																																																																																																																			
H280	0.32787	0.54451	0.45138																																																																																																																																			
H281	0.30845	0.47032	0.98221																																																																																																																																			
H282	0.30009	0.38296	0.17846																																																																																																																																			
H283	0.32687	0.44105	0.19154																																																																																																																																			
H284	0.23325	0.47032	0.49186																																																																																																																																			
H285	0.18963	0.44161	0.25588																																																																																																																																			
H286	0.12771	0.33454	0.04598																																																																																																																																			
H287	0.1532	0.39214	0.07973																																																																																																																																			
H288	0.24987	0.27891	0.14927																																																																																																																																			
H289	0.27705	0.33676	0.17308																																																																																																																																			
H290	0.20909	0.2285	0.99796																																																																																																																																			
H291	0.16343	0.19991	0.77366																																																																																																																																			
H292	0.1041	0.2887	0.04472																																																																																																																																			
H293	0.07433	0.23062	0.04948																																																																																																																																			
H294	0.08999	0.20083	0.27318																																																																																																																																			
H295	0.31257	0.46507	0.47574																																																																																																																																			
H296	0.28448	0.46725	0.32458																																																																																																																																			
H297	0.32465	0.49823	0.32044																																																																																																																																			
H298	0.2444	0.4928	0.13794																																																																																																																																			
H299	0.22188	0.46323	0.96871																																																																																																																																			
H300	0.25268	0.46172	0.1006																																																																																																																																			
H301	0.08357	0.20682	0.76665																																																																																																																																			
H302	0.0738	0.17521	0.92992																																																																																																																																			
H303	0.11371	0.20652	0.90762																																																																																																																																			
H304	0.17334	0.20863	0.2792																																																																																																																																			
----	----	----	----																																																																																																																																			
H305	0.15346	0.17562	0.1207																																																																																																																																			
H306	0.14262	0.20521	0.12713																																																																																																																																			
N18	0.39243	0.63338	0.77893																																																																																																																																			
Table S4. Atomistic coordinates for the refined unit cell parameters for DBOV-DCTMP-COF via Pawley refinement. Space group: \(P1 \); \(a = 48.1910 \, \text{Å}, \, b = 48.7247 \, \text{Å}, \, c = 6.8537 \, \text{Å}, \, \alpha = 90.0000^\circ, \, \beta = 90.0000^\circ, \, \gamma = 120.0040^\circ \). Pawley-refined PXRD profile confirmed the correctness of the peak assignment as evident by a small difference with \(R_w \) and \(R_p \) values of 0.32% and 0.19%, respectively.

Atom	X	Y	Z
C1	0.47847	0.26905	0.87033
C2	0.49538	0.29036	0.71731
C3	0.52876	0.30488	0.70911
C4	0.54592	0.29812	0.8488
C5	0.52893	0.27731	0.0028
C6	0.49558	0.26292	0.01485
C7	0.5808	0.31366	0.83332
C8	0.59955	0.30402	0.92241
C9	0.65284	0.35497	0.91396
C10	0.68671	0.37073	0.91629
C11	0.03061	0.02121	0.08321
N1	0.01074	0.03337	0.07547
C12	0.06535	0.04274	0.08726
C13	0.08083	0.07242	0.01228
C14	0.11579	0.09278	0.01829
C15	0.13405	0.08948	0.16723
C16	0.16738	0.10874	0.1726
C17	0.18331	0.1316	0.02522
C18	0.16524	0.13497	0.87455
C19	0.13182	0.11607	0.87444
C20	0.21871	0.187	0.27792
C21	0.23585	0.1781	0.14831
C22	0.27021	0.19665	0.14456
C23	0.28661	0.22331	0.27273
C24	0.26837	0.2311	0.39641
C25	0.23477	0.21317	0.39901
C26	0.28776	0.18852	0.01168
C27	0.27115	0.16208	0.88549
C28	0.23679	0.14309	0.89434
C29	0.21934	0.15123	0.02295
C30	0.22091	0.11556	0.77063
C31	0.23766	0.10828	0.64044
C32	0.27179	0.12777	0.62201
C33	0.28856	0.15429	0.74877
C34	0.32168	0.24161	0.26951
C35	0.3389	0.23327	0.13544
C36	0.32218	0.20694	0.0049
C37	0.33946	0.19988	0.87113
C38	0.32273	0.17277	0.73982
C39	0.33985	0.16478	0.60301
C40	0.32228	0.13928	0.4735
C41	0.28917	0.12112	0.48298
C42	0.37317	0.25116	0.13039
C43	0.39005	0.27744	0.2589
---	-----	-----	-----
C44	0.3725	0.28508	0.39102
C45	0.33929	0.26754	0.39616
C46	0.39061	0.24274	0.99762
C47	0.3739	0.21687	0.86751
C48	0.39137	0.2083	0.73679
C49	0.37486	0.18244	0.60338
C50	0.42446	0.29535	0.25131
C51	0.44117	0.287	0.12738
C52	0.4251	0.26037	0.99703
C53	0.44241	0.25159	0.87155
C54	0.42573	0.22538	0.74157
C55	0.42899	0.17414	0.48174
C56	0.42444	0.19027	0.49117
C57	0.44273	0.21545	0.61788
C58	0.18196	0.15814	0.71168
C59	0.18624	0.10409	0.3304
C60	0.47795	0.24007	0.17745
C61	0.4774	0.29678	0.56172
H1	0.54164	0.32115	0.59034
H2	0.54179	0.27246	0.11569
H3	0.59187	0.33413	0.7363
H4	0.58852	0.28182	0.00355
C62	0.63757	0.37394	0.91196
H5	0.96877	0.05132	0.151
H6	0.06706	0.08146	0.93717
H7	0.12219	0.07204	0.28232
H8	0.11814	0.11876	0.75743
H9	0.19273	0.17283	0.28171
H10	0.28007	0.25131	0.49467
H11	0.22134	0.21987	0.49561
H12	0.19508	0.10051	0.78303
H13	0.22533	0.08736	0.54845
H14	0.33477	0.13329	0.36455
H15	0.27634	0.10134	0.38314
H16	0.38532	0.30495	0.49036
H17	0.32676	0.27417	0.50114
H18	0.43708	0.31565	0.34802
H19	0.46722	0.30309	0.12511
H20	0.38103	0.15457	0.37966
H21	0.43966	0.18275	0.39789
H22	0.46874	0.22777	0.62438
H23	0.19944	0.18142	0.76769
H24	0.19516	0.15025	0.61992
H25	0.16494	0.16051	0.61902
H26	0.17074	0.08984	0.44899
H27	0.19841	0.09201	0.27268
H28	0.20472	0.12667	0.38926
---	---	---	---
H29	0.4648	0.21583	0.12228
H30	0.49443	0.24115	0.28956
H31	0.4604	0.24497	0.24481
H32	0.46029	0.30266	0.62529
H33	0.49366	0.31606	0.46673
H34	0.4636	0.27581	0.47119
N2	0.76319	0.37655	0.92199
C63	0.14616	0.60179	0.2077
C64	0.16291	0.62312	0.05448
C65	0.19628	0.63776	0.04534
C66	0.21362	0.63117	0.18456
C67	0.19679	0.61024	0.33846
C68	0.16343	0.5957	0.35136
C69	0.24853	0.64713	0.16911
C70	0.26761	0.63804	0.25966
C71	0.32082	0.68924	0.24724
C72	0.35471	0.70507	0.24836
C73	0.69834	0.36777	0.41076
N3	0.73008	0.37705	0.42209
C74	0.74857	0.40689	0.34951
C75	0.78354	0.42724	0.35629
C76	0.8017	0.42374	0.50508
C77	0.83503	0.4429	0.51083
C78	0.85107	0.46853	0.36399
C79	0.83309	0.46944	0.21373
C80	0.79966	0.45066	0.21236
C81	0.88676	0.52109	0.61729
C82	0.90377	0.51205	0.48756
C83	0.93814	0.53039	0.48396
C84	0.95469	0.55701	0.61227
C85	0.93658	0.56493	0.73619
C86	0.90297	0.54719	0.7377
C87	0.95556	0.5221	0.35103
C88	0.93881	0.4957	0.2247
C89	0.90444	0.47694	0.23334
C90	0.86711	0.48524	0.36193
C91	0.88841	0.44945	0.10942
C92	0.90504	0.44199	0.9794
C93	0.9392	0.46128	0.96112
C94	0.9561	0.48776	0.08796
C95	0.98977	0.57514	0.60883
C96	0.00685	0.56664	0.47473
C97	0.98999	0.54033	0.34428
C98	0.00715	0.53223	0.21039
C99	0.99029	0.50606	0.07898
C100	0.00727	0.49796	0.94192
---	---	---	---
C102	0.98958	0.47248	0.81247
C103	0.95646	0.45448	0.82208
C104	0.04113	0.58438	0.46943
C105	0.05814	0.61071	0.59744
C106	0.04072	0.61852	0.72952
C107	0.0075	0.6011	0.73511
C108	0.05844	0.57579	0.33671
C109	0.04229	0.51549	0.94182
C110	0.09255	0.62849	0.58938
C111	0.09294	0.59328	0.3584
C112	0.11011	0.58438	0.21005
C113	0.10915	0.55822	0.07984
C114	0.09329	0.52321	0.82789
C115	0.11016	0.54829	0.9551
H35	0.20902	0.65407	0.92653
H36	0.20982	0.60549	0.45073
C120	0.84994	0.49274	0.05166
H37	0.25933	0.66751	0.07137
H38	0.25683	0.61593	0.34179
C121	0.30539	0.70805	0.2429
H39	0.63654	0.38567	0.48856
H40	0.73482	0.41605	0.27557
H41	0.78974	0.40623	0.61967
C124	0.14959	0.5729	0.51439
H43	0.14475	0.62951	0.90003
H44	0.20902	0.65407	0.92653
H45	0.20982	0.60549	0.45073
H46	0.25933	0.66751	0.07137
H47	0.25683	0.61593	0.34179
H48	0.30539	0.70805	0.2429
H49	0.63654	0.38567	0.48856
H50	0.73482	0.41605	0.27557
H51	0.78974	0.40623	0.61967
H52	0.14959	0.5729	0.51439
H53	0.14475	0.62951	0.90003
H54	0.20902	0.65407	0.92653
H55	0.20982	0.60549	0.45073
H56	0.25933	0.66751	0.07137
H57	0.25683	0.61593	0.34179
H58	0.30539	0.70805	0.2429
H59	0.63654	0.38567	0.48856
H60	0.73482	0.41605	0.27557
H61	0.78974	0.40623	0.61967
H62	0.14959	0.5729	0.51439
H63	0.14475	0.62951	0.90003

SUPPORTING INFORMATION
Name	Value1	Value2	Value3
H59	0.83298	0.49514	0.95849
H60	0.83818	0.42304	0.764
H61	0.8669	0.4271	0.60948
H62	0.87158	0.46068	0.73229
H63	0.13168	0.5488	0.45847
H64	0.16259	0.57312	0.62224
H65	0.12939	0.57863	0.58737
H66	0.12789	0.63563	0.96474
H67	0.13065	0.60845	0.81071
H68	0.43122	0.71079	0.25579
C125	0.81098	0.93466	0.53968
C126	0.82783	0.95595	0.38651
C127	0.86119	0.97032	0.37725
C128	0.87837	0.96343	0.51608
C129	0.86144	0.94265	0.67037
C130	0.82811	0.92841	0.68343
C131	0.91323	0.97888	0.49955
C132	0.93204	0.96935	0.58903
C133	0.98525	0.02036	0.57683
C134	0.01912	0.03618	0.58085
C135	0.36338	0.66629	0.75456
N5	0.34356	0.69849	0.74965
C136	0.3981	0.70781	0.76011
C137	0.41356	0.73754	0.668
C138	0.44848	0.75803	0.69339
C139	0.46671	0.75455	0.84185
C140	0.5	0.77392	0.88416
C141	0.51594	0.79708	0.70239
C142	0.49789	0.80071	0.55269
C143	0.46449	0.78166	0.55139
C144	0.5515	0.85217	0.95778
C145	0.56855	0.84339	0.82665
C146	0.60291	0.86193	0.82214
C147	0.61941	0.88851	0.95077
C148	0.60126	0.89618	0.07601
C149	0.56766	0.87824	0.07851
C150	0.62037	0.85388	0.68798
C151	0.60369	0.82748	0.56156
C152	0.56933	0.80854	0.57094
C153	0.55196	0.81666	0.7004
C154	0.55337	0.78103	0.44708
C155	0.57005	0.77371	0.31661
C156	0.60416	0.79321	0.29731
C157	0.62101	0.81973	0.42393
C158	0.65448	0.90689	0.94614
C159	0.6716	0.89865	0.81065
---	-------	-------	-------
C160	0.65479	0.87234	0.68013
C161	0.67198	0.86446	0.54516
C162	0.65517	0.83825	0.41391
C163	0.67218	0.83032	0.27604
C164	0.65454	0.80481	0.14677
C165	0.62144	0.78659	0.1574
C166	0.70586	0.91665	0.80408
C167	0.72282	0.94297	0.93222
C168	0.70537	0.9505	0.06573
C169	0.67217	0.93284	0.07255
C170	0.72321	0.9083	0.67011
C171	0.70641	0.88242	0.54026
C172	0.72379	0.8739	0.40839
C173	0.7072	0.84804	0.2751
C174	0.75721	0.961	0.92286
C175	0.77385	0.9527	0.79983
C176	0.7577	0.92601	0.68818
C177	0.77492	0.91725	0.54181
C178	0.75815	0.89103	0.41195
C179	0.72515	0.83981	0.15227
C180	0.75871	0.856	0.16044
C181	0.77507	0.88118	0.28708
C182	0.51465	0.62437	0.3923
C183	0.51892	0.76931	0.00565
C184	0.81048	0.90568	0.8465
C185	0.80979	0.96249	0.232
H69	0.87404	0.98657	0.25832
H70	0.87432	0.93769	0.78258
H71	0.92423	0.99923	0.40162
H72	0.92107	0.94724	0.67114
C186	0.96994	0.03929	0.57522
H73	0.30211	0.71686	0.81951
H74	0.39979	0.74852	0.61037
H75	0.45486	0.73689	0.95588
H76	0.45081	0.78453	0.43502
H77	0.52552	0.83802	0.96206
H78	0.61302	0.91632	0.17415
H79	0.55431	0.88488	0.17718
H80	0.52753	0.766	0.4598
H81	0.55767	0.75277	0.22481
H82	0.66694	0.79885	0.03708
H83	0.60854	0.7668	0.0577
H84	0.71825	0.9704	0.1648
H85	0.65972	0.93939	0.17858
H86	0.76868	0.98138	0.01904
H87	0.79989	0.96618	0.79455
H88	0.71322	0.82025	0.05021
---	---	---	---
H89	0.77187	0.84854	0.06625
H90	0.80109	0.89354	0.2926
H91	0.53179	0.84757	0.45098
H92	0.52824	0.81701	0.30015
H93	0.49762	0.82672	0.29957
H94	0.50323	0.75283	0.116
H95	0.53347	0.79169	0.95408
H96	0.49762	0.84757	0.06653
H97	0.53179	0.84757	0.45098
H98	0.49762	0.84757	0.06653
H99	0.50323	0.75283	0.116
H100	0.50323	0.75283	0.116
H101	0.0957	0.04225	0.58824
C187	0.73049	0.2132	0.90159
C188	0.70812	0.20783	0.75246
C189	0.69245	0.22545	0.74817
C190	0.69951	0.24946	0.88599
C191	0.72189	0.25469	0.03418
C192	0.73073	0.23661	0.04419
C193	0.68363	0.26841	0.87426
C194	0.69718	0.29876	0.93996
C195	0.64943	0.30366	0.92319
C196	0.63477	0.32125	0.91564
C197	0.96498	0.98012	0.08461
C198	0.95839	0.02848	0.07718
C199	0.92918	0.01632	0.99269
C200	0.90841	0.03202	0.00435
C201	0.91137	0.05106	0.15565
C202	0.89132	0.06411	0.16374
C203	0.86785	0.05663	0.01815
C204	0.86437	0.03536	0.8474
C205	0.86437	0.03536	0.8474
C206	0.81177	0.0356	0.27147
C207	0.82096	0.06195	0.14579
C208	0.80265	0.07785	0.14803
C209	0.77613	0.06756	0.27956
C210	0.7681	0.04129	0.39962
C211	0.78564	0.02539	0.39421
C212	0.81086	0.10366	0.01777
C213	0.83709	0.11344	0.88767
C214	0.85592	0.09803	0.89097
C215	0.84784	0.07247	0.01815
C216	0.88326	0.10963	0.76323
C217	0.89047	0.13365	0.6347
---	---	---	---
C218	0.87116	0.14843	0.62244
C219	0.84487	0.13872	0.75317
C220	0.75819	0.08452	0.28314
C221	0.76659	0.11019	0.1515
C222	0.85989	0.18767	0.48248
C223	0.76659	0.12667	0.15256
C224	0.71528	0.09206	0.41499
C225	0.73253	0.07624	0.41401
C226	0.79156	0.18775	0.75896
C227	0.8173	0.19721	0.62261
C228	0.70526	0.13389	0.28348
C229	0.71354	0.15891	0.16093
C230	0.79269	0.16168	0.88769
C231	0.7536	0.15255	0.02164
C232	0.78298	0.16618	0.88769
C233	0.79156	0.18775	0.75896
C234	0.8173	0.19721	0.62261
C235	0.70526	0.13389	0.28348
C236	0.71354	0.15891	0.16093
C237	0.73984	0.19523	0.90095
C238	0.74841	0.19523	0.90095
C239	0.82578	0.2237	0.50403
C240	0.80982	0.24105	0.51844
C241	0.78455	0.23188	0.64679
C242	0.83989	0.02764	0.70957
C243	0.89552	0.087	0.32322
C244	0.77457	0.20491	0.76835
C245	0.82578	0.2237	0.50403
C246	0.70186	0.18379	0.59622
C247	0.67535	0.22122	0.63237
C248	0.72719	0.27268	0.14491
C249	0.66018	0.25763	0.80399
H103	0.72158	0.31044	0.99298
H104	0.93084	0.95982	0.08637
H105	0.94876	0.92016	0.19384
H106	0.9203	0.9952	0.90198
H107	0.92927	0.05699	0.26928
H108	0.88162	0.00591	0.74626
H109	0.82563	0.02357	0.26965
H110	0.74796	0.03272	0.49947
H111	0.77868	0.005	0.48851
H112	0.89737	0.17947	0.38283
H113	0.6956	0.08504	0.51739
Location	X Value	Y Value	Z Value
----------	---------	---------	---------
H119	0.72591	0.05704	0.5174
H120	0.68517	0.12628	0.3836
H121	0.70035	0.17163	0.16335
H122	0.84536	0.23157	0.40041
H123	0.83773	0.00856	0.61658
H124	0.84656	0.04828	0.61724
H125	0.83773	0.00856	0.61658
H126	0.90452	0.11077	0.26402
H127	0.90452	0.11077	0.26402
H128	0.78437	0.24974	0.14194
H129	0.76304	0.26103	0.30166
H130	0.75376	0.22114	0.28812
H131	0.69632	0.16104	0.65886
H132	0.68222	0.18034	0.50179
H133	0.72309	0.1915	0.50527
N8	0.62632	0.39008	0.90806
N9	0.90358	0.94105	0.08525
C249	0.39719	0.54662	0.24618
C250	0.37489	0.54141	0.09685
C251	0.35949	0.55926	0.09209
C252	0.36675	0.58335	0.2299
C253	0.38895	0.58833	0.37867
C254	0.40384	0.57003	0.38892
C255	0.3513	0.60267	0.2173
C256	0.36515	0.63309	0.27965
N10	0.31755	0.63803	0.26335
C257	0.30282	0.65552	0.2525
C258	0.64628	0.34806	0.4094
C259	0.6327	0.31455	0.41757
C260	0.62621	0.36297	0.41325
C261	0.59705	0.35995	0.32822
C262	0.57618	0.36472	0.34145
C263	0.57908	0.38538	0.49376
C264	0.55888	0.39825	0.50344
C265	0.5353	0.39075	0.35848
C266	0.5319	0.36965	0.20675
C267	0.55197	0.35661	0.20109
C268	0.47923	0.36948	0.61289
C269	0.48832	0.39584	0.4875
C270	0.46992	0.41165	0.4902
C271	0.44343	0.40127	0.62201
C272	0.43548	0.37499	0.74168
C273	0.45309	0.35916	0.7357
C274	0.47801	0.43744	0.36001
------	-------	-------	-------
C275	0.50418	0.44728	0.22942
C276	0.52311	0.43197	0.23229
C277	0.51518	0.40646	0.35953
C278	0.55037	0.44361	0.10388
C279	0.55741	0.46756	0.97508
C280	0.53802	0.48225	0.96339
C281	0.51181	0.47252	0.09482
C282	0.42542	0.41817	0.6262
C283	0.43369	0.44382	0.49465
C284	0.45974	0.45346	0.35982
C285	0.46758	0.47874	0.22828
C286	0.49351	0.48827	0.09268
C287	0.50143	0.51347	0.95844
C288	0.52655	0.52139	0.82408
C289	0.5445	0.50633	0.82663
C290	0.41599	0.46023	0.49626
C291	0.39001	0.45081	0.62903
C292	0.3825	0.4256	0.75922
C293	0.39981	0.40984	0.75759
C294	0.42425	0.48607	0.36351
C295	0.44482	0.49526	0.2309
C296	0.45831	0.52133	0.10241
C297	0.48405	0.5309	0.96588
C298	0.3723	0.46736	0.6285
C299	0.38043	0.49233	0.50582
C300	0.40665	0.50279	0.37028
C301	0.4151	0.52865	0.24511
C302	0.44127	0.53843	0.11242
C303	0.49254	0.55748	0.8482
C304	0.47657	0.57481	0.86355
C305	0.45125	0.56549	0.99169
C306	0.50732	0.36192	0.04956
C307	0.56303	0.42098	0.66387
C308	0.4276	0.57586	0.54788
C309	0.36848	0.51732	0.94066
H137	0.34249	0.55524	0.97597
H138	0.39435	0.60632	0.4895
H139	0.3279	0.59214	0.14657
H140	0.38954	0.64465	0.3353
H141	0.59854	0.29341	0.4195
H142	0.61622	0.25447	0.52178
H143	0.58825	0.33	0.23661
H144	0.59705	0.39133	0.60694
H145	0.54936	0.34052	0.08324
H146	0.41534	0.36634	0.84163
H147	0.44618	0.33874	0.82966
H148	0.56539	0.43283	0.11123
-------	---------	---------	---------
H149	0.57809	0.47608	0.8792
H150	0.53241	0.53991	0.71675
H151	0.564	0.51325	0.72312
H152	0.36287	0.41855	0.86202
H153	0.39328	0.39064	0.86092
H154	0.35228	0.45973	0.72918
H155	0.3872	0.50501	0.50871
H156	0.51214	0.56545	0.74467
H157	0.48428	0.59576	0.77351
H158	0.43897	0.57904	0.0023
H159	0.48387	0.35492	0.11149
H160	0.51382	0.38262	0.95812
H161	0.50526	0.34298	0.95559
H162	0.57977	0.42196	0.77367
H163	0.57207	0.44481	0.6056
H164	0.54027	0.41428	0.7349
H165	0.45126	0.58348	0.48678
H166	0.4295	0.59397	0.6485
H167	0.42075	0.55427	0.63063
H168	0.36324	0.49466	0.00342
H169	0.3486	0.51368	0.84782
H170	0.38954	0.52511	0.848
N11	0.29388	0.72396	0.23732
N12	0.57128	0.27557	0.41844
C311	0.06351	0.87911	0.57301
C312	0.04115	0.87363	0.42363
C313	0.02532	0.8911	0.41921
C314	0.03223	0.91507	0.55707
C315	0.05457	0.92037	0.70558
C316	0.06986	0.90244	0.7158
C317	0.01627	0.93395	0.54474
C318	0.02977	0.96433	0.60657
N13	0.98198	0.96912	0.59107
C319	0.96725	0.98663	0.58178
C320	0.31132	0.67879	0.74489
C321	0.29773	0.64528	0.75374
C322	0.29145	0.69392	0.74671
C323	0.26231	0.6821	0.66174
C324	0.24199	0.69651	0.67213
C325	0.2452	0.71754	0.82287
C326	0.22538	0.73085	0.83063
C327	0.20192	0.72349	0.68508
C328	0.19833	0.70222	0.53423
C329	0.21798	0.68867	0.53074
C330	0.1459	0.70222	0.93849
C331	0.15502	0.72865	0.81361
----	----	----	----
C332	0.13661	0.74444	0.81649
C333	0.11008	0.73398	0.94805
C334	0.1021	0.70764	0.06725
C335	0.11972	0.73392	0.68584
C336	0.21709	0.7765	0.43028
C337	0.22412	0.80047	0.30166
C338	0.20475	0.81519	0.29035
C339	0.17854	0.84637	0.2857
C340	0.19326	0.85435	0.15146
C341	0.21123	0.83544	0.69709
C342	0.12643	0.78626	0.68661
C343	0.16022	0.82116	0.41984
C344	0.1681	0.84637	0.2857
C345	0.19326	0.85435	0.15146
C346	0.21123	0.83544	0.69709
C347	0.08259	0.79291	0.82283
C348	0.05655	0.78339	0.9555
C349	0.04904	0.75815	0.98517
C350	0.0664	0.74245	0.08358
C351	0.09085	0.8188	0.69222
C352	0.11647	0.82806	0.55807
C353	0.12492	0.85414	0.42965
C354	0.13428	0.81159	0.55535
C355	0.16022	0.82116	0.41984
C356	0.1681	0.84637	0.2857
C357	0.19326	0.85435	0.15146
C358	0.21123	0.83544	0.69709
C359	0.08259	0.79291	0.82283
C360	0.05655	0.78339	0.9555
C361	0.04904	0.75815	0.98517
C362	0.0664	0.74245	0.08358
C363	0.09085	0.8188	0.69222
C364	0.11647	0.82806	0.55807
C365	0.12492	0.85414	0.42965
C366	0.13428	0.81159	0.55535
C367	0.16022	0.82116	0.41984
C368	0.1681	0.84637	0.2857
C369	0.19326	0.85435	0.15146
C370	0.21123	0.83544	0.69709
C371	0.08259	0.79291	0.82283
C372	0.05655	0.78339	0.9555
H171	0.09367	0.90853	0.87497
H172	0.03512	0.8497	0.26707
H173	0.14294	0.90747	0.18988
H174	0.11767	0.89816	0.31842
H175	0.17397	0.69471	0.37596
H176	0.2297	0.75379	0.99007

60
H177	0.26307	0.72337	0.93661
H178	0.21517	0.67237	0.41382
H179	0.19582	0.69026	0.93604
H180	0.08192	0.69893	0.16696
H181	0.11279	0.67136	0.43737
H182	0.08192	0.68777	0.15463
H183	0.05987	0.72322	0.93661
H184	0.01866	0.79213	0.05461
H185	0.03357	0.83745	0.83457
H186	0.17858	0.92834	0.09927
H187	0.15053	0.91163	0.32886
H188	0.15047	0.68777	0.43684
H189	0.18069	0.7155	0.28492
H190	0.1719	0.67579	0.28183
H191	0.2467	0.75505	0.09993
H192	0.23847	0.7775	0.93057
H193	0.20704	0.74705	0.06257
H194	0.11739	0.91642	0.81408
H195	0.09531	0.92651	0.09756
H196	0.08704	0.88697	0.95758
H197	0.02983	0.82701	0.32944
H198	0.01539	0.84607	0.17287
H199	0.05636	0.85764	0.17588
N14	0.95869	0.05542	0.57025
N15	0.23626	0.60653	0.75892
C373	0.78869	0.52489	0.86235
C374	0.79393	0.5083	0.71162
C375	0.77591	0.47524	0.70652
C376	0.75197	0.45824	0.84618
C377	0.74695	0.47507	0.89591
C378	0.76519	0.50808	0.00585
C379	0.73352	0.42367	0.83449
C380	0.70503	0.40541	0.92359
C381	0.70134	0.35184	0.92009
C382	0.68188	0.31821	0.92494
C383	0.98521	0.96685	0.094
C384	0.01861	0.98794	0.09286
C385	0.97121	0.93246	0.11205
C386	0.98342	0.91565	0.0283
C387	0.96957	0.88135	0.04605
C388	0.94835	0.8639	0.19782
C389	0.9351	0.83107	0.20975
-----	--------	--------	--------
C390	0.94269	0.81505	0.06657
C391	0.96422	0.83233	0.91494
C392	0.97778	0.86524	0.09806
C393	0.96264	0.77935	0.31941
C394	0.93681	0.76285	0.18708
C395	0.9214	0.72895	0.17669
C396	0.93193	0.72895	0.30094
C397	0.97778	0.86524	0.90806
C398	0.96264	0.77935	0.31941
C399	0.9214	0.72895	0.18708
C400	0.88583	0.72908	0.91851
C401	0.90073	0.76292	0.93429
C402	0.92267	0.77935	0.06472
C403	0.88882	0.77919	0.81526
C404	0.86491	0.76324	0.68291
C405	0.85092	0.72967	0.6562
C406	0.86099	0.71256	0.77811
C407	0.9158	0.67767	0.28929
C408	0.89063	0.66129	0.15133
C409	0.88069	0.67831	0.02524
C410	0.85586	0.66189	0.88739
C411	0.84606	0.67892	0.76042
C412	0.82144	0.66268	0.61922
C413	0.81315	0.68058	0.49488
C414	0.82732	0.71319	0.51325
C415	0.87492	0.6275	0.1379
C416	0.88464	0.61027	0.26144
C417	0.90948	0.62697	0.39723
C418	0.92449	0.65974	0.41086
C419	0.84938	0.61093	0.00161
C420	0.83995	0.62793	0.87554
C421	0.81432	0.61128	0.74056
C422	0.80484	0.6281	0.61037
C423	0.8868	0.57632	0.24572
C424	0.84372	0.56038	0.11983
C425	0.83297	0.5769	0.99411
C426	0.80708	0.56043	0.8659
C427	0.7975	0.57732	0.73807
C428	0.77908	0.61077	0.48321
C429	0.76221	0.57753	0.48468
C430	0.77106	0.56094	0.6095
C431	0.97163	0.8153	0.75868
C432	0.91191	0.81255	0.36945
C433	0.75946	0.52579	0.16543
C434	0.81828	0.52623	0.55597
H205	0.78009	0.46249	0.59075
H206	0.72889	0.4823	0.10702
-------	-------	-------	-------
H207	0.74341	0.41259	0.74103
H208	0.69364	0.41661	0.00203
C435	0.73568	0.36592	0.92292
C436	0.04094	0.9765	0.10473
H209	0.07946	0.033	0.14839
H210	0.00414	0.92767	0.93256
H211	0.94216	0.876	0.30803
H212	0.99431	0.8785	0.791
H213	0.97419	0.80502	0.3272
H214	0.96627	0.71766	0.52349
H215	0.99278	0.77591	0.53673
H216	0.89926	0.80465	0.83315
H217	0.85603	0.77581	0.59494
H218	0.795	0.66867	0.3831
H219	0.82012	0.72631	0.41731
H220	0.91677	0.61386	0.49268
H221	0.94338	0.67166	0.51838
H222	0.87668	0.56342	0.33823
H223	0.83133	0.53466	0.11203
H224	0.77138	0.62291	0.38291
H225	0.74191	0.56482	0.38712
H226	0.75775	0.53518	0.61076
H227	0.97865	0.79912	0.82132
H228	0.95051	0.80966	0.66882
H229	0.99068	0.83195	0.66316
H230	0.90989	0.82816	0.47465
H231	0.88818	0.79672	0.30952
H232	0.9193	0.7977	0.44669
H233	0.75228	0.54201	0.1049
H234	0.74084	0.50964	0.26484
H235	0.78122	0.54015	0.2498
H236	0.84138	0.54307	0.61942
H237	0.82144	0.51025	0.45969
H238	0.81084	0.54002	0.46711
N16	0.0595	0.96808	0.11212
C437	0.45644	0.85917	0.17997
C438	0.46172	0.84224	0.03173
C439	0.44388	0.80914	0.03064
C440	0.41997	0.79246	0.1711
C441	0.41485	0.80966	0.31788
C442	0.43299	0.84269	0.32435
C443	0.40159	0.75785	0.16326
C444	0.37299	0.73978	0.25169
C445	0.3694	0.68624	0.25558
C446	0.34999	0.65264	0.26449
C447	0.65286	0.30121	0.42529
C448	0.68628	0.32225	0.42436
---	---	---	---
C449	0.63873	0.26678	0.44165
C450	0.65082	0.24992	0.35709
C451	0.63672	0.21557	0.37311
C452	0.61524	0.19799	0.52356
C453	0.60177	0.16658	0.23459
C454	0.60943	0.1492	0.64257
C455	0.63117	0.1135	0.49819
C456	0.63672	0.09701	0.50957
C457	0.64493	0.06313	0.62217
C458	0.6245	0.06399	0.75033
C459	0.63959	0.04643	0.36106
C460	0.5528	0.06327	0.23973
C461	0.56756	0.06970	0.25653
C462	0.59301	0.11369	0.38747
C463	0.55557	0.11334	0.13802
C464	0.53171	0.09741	0.00534
C465	0.5179	0.06388	0.97749
C466	0.52806	0.04678	0.09875
C467	0.58293	0.01187	0.60949
C468	0.55791	0.09552	0.47057
C469	0.54793	0.01254	0.3448
C470	0.5232	0.09614	0.20624
C471	0.51331	0.01317	0.07988
C472	0.48878	0.09694	0.9382
C473	0.4804	0.01485	0.81449
C474	0.49439	0.04743	0.83399
C475	0.54238	0.096176	0.456
C476	0.5521	0.094452	0.57956
C477	0.57675	0.01162	0.71645
C478	0.59161	0.09395	0.73106
C479	0.51699	0.094521	0.31875
C480	0.50748	0.09622	0.19315
C481	0.48193	0.94555	0.05775
C482	0.47232	0.96237	0.02638
C483	0.53633	0.9106	0.56271
C484	0.51151	0.09468	0.43575
C485	0.50073	0.091119	0.31028
C486	0.47488	0.09471	0.18182
C487	0.46233	0.091159	0.05446
C488	0.44654	0.94503	0.08135
C489	0.42978	0.91179	0.08215
C490	0.43877	0.8952	0.92606
C491	0.63862	0.14964	0.08317
---	-------	-------	-------
C496	0.57841	0.14645	0.69226
C497	0.42729	0.86079	0.48147
C498	0.48595	0.85982	0.87471
H239	0.44825	0.79717	0.42947
H240	0.41167	0.74656	0.07331
H242	0.36147	0.7512	0.32633
C499	0.40373	0.70029	0.25748
C500	0.70857	0.31075	0.43403
H243	0.74717	0.36719	0.48193
H244	0.67162	0.26193	0.26192
H245	0.60901	0.21001	0.63405
H246	0.66163	0.21288	0.11849
H247	0.64076	0.13916	0.06507
H248	0.63318	0.05204	0.8452
H249	0.65943	0.11006	0.86014
H250	0.56589	0.13877	0.15673
H251	0.52275	0.10996	0.91789
H252	0.46231	0.00305	0.70231
H253	0.48712	0.06055	0.73851
H254	0.58403	0.94809	0.81201
H255	0.61037	0.00564	0.8394
H256	0.5443	0.8977	0.65516
H257	0.49926	0.86898	0.42694
H258	0.43872	0.95716	0.70179
H259	0.40945	0.89908	0.70481
H260	0.42555	0.86944	0.9269
H261	0.64561	0.1334	0.14552
H262	0.61753	0.13534	0.99303
H263	0.65771	0.16632	0.98803
H264	0.57512	0.16187	0.79266
H265	0.55516	0.12953	0.63069
H266	0.58655	0.13272	0.77549
H267	0.42103	0.87754	0.41856
H268	0.40809	0.84944	0.57865
H269	0.44884	0.87463	0.5688
H270	0.50911	0.87678	0.93679
H271	0.46901	0.84364	0.77968
H272	0.47841	0.87342	0.78469
N17	0.72709	0.30225	0.43908
C501	0.12091	0.19037	0.52392
C502	0.12602	0.17374	0.3729
C503	0.108	0.14068	0.36822
C504	0.08417	0.12372	0.50853
C505	0.07921	0.1406	0.65822
C506	0.09746	0.17361	0.6678
C507	0.0658	0.08913	0.4977
---	---	---	---
C508	0.03735	0.07087	0.58712
C509	0.03383	0.01736	0.58643
C510	0.01442	0.98374	0.59291
C511	0.31792	0.63194	0.76129
C512	0.35133	0.52903	0.85974
C513	0.26901	0.49621	0.86963
C514	0.27669	0.48052	0.72470
C515	0.29811	0.49810	0.57331
C516	0.31146	0.53100	0.56839
C517	0.29679	0.44464	0.97451
C518	0.27086	0.42823	0.84274
C519	0.25526	0.39431	0.83261
C520	0.26572	0.37754	0.95651
C521	0.29152	0.39500	0.08350
C522	0.30691	0.42821	0.09165
C523	0.22970	0.37767	0.69727
C524	0.21951	0.39463	0.57622
C525	0.23462	0.42849	0.59180
C526	0.26032	0.44501	0.72123
C527	0.22267	0.44484	0.47402
C528	0.19853	0.42897	0.34293
C529	0.18432	0.39537	0.31639
C530	0.19442	0.37818	0.43721
C531	0.24935	0.34292	0.94544
C532	0.22396	0.32662	0.80871
C533	0.21408	0.34374	0.68298
C534	0.18902	0.32739	0.54638
C535	0.17924	0.34451	0.42001
C536	0.15440	0.32833	0.28007
C537	0.14607	0.34632	0.15669
C538	0.16045	0.37895	0.17480
C539	0.20793	0.29280	0.79632
C540	0.21755	0.27546	0.91970
C541	0.24264	0.29210	0.05407
C542	0.25796	0.32490	0.06664
C543	0.18217	0.27631	0.66127
C544	0.17282	0.29341	0.53540
C545	0.14702	0.27684	0.40145
C546	0.13759	0.29375	0.27155
C547	0.20124	0.24149	0.90532
C548	0.17608	0.22564	0.78050
C549	0.16547	0.24227	0.65471
C550	0.13945	0.22590	0.52726
---	---	---	---
C555	0.12998	0.24288	0.39953
C556	0.11173	0.27649	0.14493
C557	0.09469	0.24326	0.14674
C558	0.10344	0.22659	0.27156
C559	0.30557	0.48139	0.41505
C560	0.24581	0.47738	0.02855
C561	0.09173	0.19137	0.82714
C562	0.15025	0.19162	0.21651
H273	0.11211	0.1279	0.25235
H274	0.06122	0.12787	0.76973
H275	0.07575	0.07804	0.40486
H276	0.02591	0.08208	0.66494
C563	0.06818	0.03153	0.58924
C564	0.37371	0.64162	0.77203
H277	0.41217	0.69806	0.82178
H278	0.33731	0.59339	0.59679
H279	0.27578	0.54088	0.97119
H280	0.32787	0.54451	0.45138
H281	0.30845	0.47032	0.98221
H282	0.30009	0.38266	0.17846
H283	0.32687	0.44105	0.19154
H284	0.23325	0.47032	0.49186
H285	0.18963	0.44161	0.25588
H286	0.12771	0.33454	0.04598
H287	0.1532	0.39214	0.07973
H288	0.24987	0.2791	0.14927
H289	0.27705	0.33676	0.17308
H290	0.20909	0.2285	0.99796
H291	0.16343	0.19991	0.77366
H292	0.1041	0.2887	0.04472
H293	0.07433	0.23062	0.04948
H294	0.08999	0.20983	0.27318
H295	0.31257	0.46507	0.47574
H296	0.28448	0.46725	0.32458
H297	0.32465	0.49823	0.32044
H298	0.2444	0.4928	0.13794
H299	0.22188	0.46232	0.96871
H300	0.25268	0.46172	0.1006
H301	0.08357	0.20682	0.76665
H302	0.0738	0.17521	0.92992
H303	0.11371	0.20652	0.90762
H304	0.17334	0.20863	0.2792
H305	0.15346	0.17562	0.1207
H306	0.14262	0.20521	0.12713
N18	0.39243	0.63338	0.77893
Table S5. Atomistic coordinates for the AA-stacking mode of DBOV-COF optimized by using DFTB+ method. Space group: $P1$; $a = 49.4657$ Å, $b = 49.3679$ Å, $c = 10.8061$ Å, $\alpha = 89.4727^\circ$, $\beta = 89.6700^\circ$, and $\gamma = 59.3102^\circ$.

Atom	X	Y	Z
C1	0.61165	0.59185	0.91547
C2	0.64455	0.57284	0.93287
C3	0.66343	0.58706	0.93377
C4	0.61939	0.63734	0.90618
C5	0.59925	0.62463	0.89795
C6	0.56637	0.64441	0.86789
C7	0.65972	0.53901	0.94329
N1	0.54036	0.65949	0.83978
N2	0.67271	0.51195	0.94977
C8	0.59053	0.57913	0.91124
H1	0.57079	0.59081	0.84542
C9	0.60781	0.67127	0.89347
H2	0.62408	0.67727	0.84768
C10	0.69768	0.56741	0.94348
H3	0.70792	0.54221	0.92272
N3	0.65058	0.61846	0.92236
C11	0.5931	0.55572	0.9864
H4	0.61181	0.54572	0.05703
C12	0.71685	0.57822	0.97739
H5	0.70646	0.60296	0.00648
C13	0.58002	0.6942	0.94033
H6	0.56565	0.68725	0.99546
C14	0.57269	0.5423	0.98473
C15	0.57762	0.51908	0.07323
C16	0.54861	0.55089	0.89714
C17	0.55946	0.50466	0.07533
H7	0.5962	0.51209	0.14309
C18	0.53004	0.53693	0.89703
H8	0.54417	0.56872	0.82566
C19	0.53518	0.51343	0.98654
C20	0.75122	0.55611	0.98058
C21	0.7693	0.56312	0.0675
C22	0.76713	0.53338	0.89572
C23	0.80213	0.54359	0.0729
H9	0.75738	0.58218	0.1354
C24	0.79992	0.51391	0.89714
H10	0.75377	0.52955	0.82381
C25	0.81804	0.51857	0.98699
C26	0.56713	0.72822	0.92981
C27	0.57663	0.74226	0.83986
C28	0.54327	0.74816	0.01274
C29	0.56311	0.77505	0.8307
H11	0.59459	0.72745	0.77007
C30	0.52966	0.78097	0.00826
H12	0.5355	0.73769	0.08479
---	---	---	---
C31	0.53948	0.79501	0.91658
C32	0.50536	0.54756	0.79288
H13	0.48315	0.56855	0.82691
H14	0.51304	0.55424	0.7137
H15	0.49993	0.52929	0.77408
C33	0.56675	0.48034	0.17438
H16	0.58574	0.45682	0.14568
H17	0.57499	0.48615	0.2587
H18	0.54635	0.4782	0.19003
C34	0.81909	0.55014	0.17245
H19	0.82466	0.56819	0.14303
H20	0.8044	0.55923	0.25573
H21	0.84133	0.52907	0.19917
C35	0.81435	0.48895	0.7997
H22	0.81467	0.46731	0.82844
H23	0.80048	0.49714	0.7142
H24	0.83863	0.48234	0.7774
C36	0.50524	0.79975	0.10421
H25	0.48165	0.80516	0.0752
H26	0.51046	0.78627	0.19106
H27	0.50374	0.82224	0.12451
C37	0.57436	0.78772	0.72841
H28	0.59539	0.7865	0.77589
H29	0.58107	0.77255	0.64665
H30	0.55646	0.81168	0.69987
C38	0.52897	0.46569	0.96603
C39	0.482	0.51732	0.00831
C40	0.50997	0.45129	0.97309
C41	0.56199	0.44547	0.93876
C42	0.4625	0.50359	0.00001
C43	0.46723	0.54992	0.03757
C44	0.52438	0.41771	0.9672
C45	0.4768	0.47031	0.98628
C46	0.57563	0.41348	0.93071
H31	0.57678	0.45595	0.92443
C47	0.42891	0.52305	0.00877
C48	0.43492	0.56819	0.05174
H32	0.48145	0.56103	0.0499
C49	0.50578	0.40322	0.98152
C50	0.55751	0.39647	0.94905
C51	0.45781	0.45592	0.98727
H33	0.60096	0.39889	0.91084
C52	0.4095	0.50865	0.99095
C53	0.41573	0.55519	0.03512
H34	0.4241	0.59328	0.07501
C54	0.5205	0.36974	0.9873
C55	0.47219	0.42268	0.9876
---	-----	-----	-----
C56	0.5714	0.36536	0.94799
C57	0.42419	0.47539	0.98574
C58	0.37642	0.5272	0.97781
H35	0.39017	0.57075	0.04575
C59	0.50128	0.35551	0.01132
C60	0.55342	0.35143	0.96884
C61	0.45322	0.40827	0.99167
H36	0.59687	0.35032	0.93205
C62	0.40551	0.46091	0.97638
C63	0.3583	0.51333	0.96191
H37	0.36434	0.55309	0.97762
C64	0.46763	0.37497	0.00673
C65	0.51468	0.32336	0.04012
H38	0.56546	0.32554	0.9684
C66	0.41996	0.42731	0.98265
C67	0.37224	0.48021	0.96275
H39	0.33269	0.52842	0.94986
C68	0.44821	0.36123	0.0208
C69	0.49561	0.31041	0.06337
H40	0.54031	0.30779	0.04785
C70	0.40096	0.41287	0.97988
C71	0.35406	0.46521	0.94803
C72	0.4632	0.32866	0.05289
H41	0.50661	0.28535	0.08897
C73	0.3678	0.43317	0.95558
H42	0.32859	0.47987	0.93109
H43	0.44909	0.31757	0.07037
H44	0.35295	0.42274	0.94341
C74	0.49286	0.85055	0.89087
C75	0.54515	0.84328	0.93114
C76	0.47937	0.88416	0.89654
C77	0.47184	0.83904	0.86578
C78	0.53235	0.87666	0.91987
C79	0.57761	0.82407	0.96156
C80	0.44593	0.90476	0.89247
C81	0.49918	0.89707	0.90734
C82	0.43999	0.85876	0.85862
H45	0.48159	0.81365	0.85254
C83	0.5526	0.88955	0.92537
C84	0.59669	0.83692	0.97195
H46	0.58794	0.79665	0.97772
C85	0.43238	0.93801	0.90722
C86	0.42591	0.89211	0.87839
C87	0.48567	0.93067	0.90838
H47	0.42478	0.84897	0.84044
C88	0.53918	0.92342	0.90624
C89	0.58464	0.86922	0.9512
---	---	---	---
H48	0.62167	0.82162	0.99579
C90	0.3991	0.95812	0.91556
C91	0.4526	0.9509	0.91159
C92	0.39297	0.91272	0.87727
C93	0.50585	0.94363	0.90458
C94	0.55815	0.93705	0.88996
H49	0.60083	0.87822	0.95891
C95	0.38591	0.99164	0.94094
C96	0.37999	0.94474	0.89858
C97	0.43912	0.98446	0.9175
H50	0.37731	0.90328	0.86274
C98	0.4922	0.97707	0.897
C99	0.54499	0.96938	0.87524
H51	0.58391	0.9221	0.85668
C100	0.40609	0.00462	0.93565
C101	0.3541	0.01156	0.97182
H52	0.3542	0.95968	0.89997
C102	0.45884	0.99754	0.90742
C103	0.51209	0.98997	0.88132
H53	0.56049	0.97909	0.86079
C104	0.39336	0.03784	0.95161
C105	0.34217	0.04358	0.99669
H54	0.338	0.00243	0.97981
C106	0.44534	0.03119	0.90763
C107	0.4979	0.02356	0.87074
C108	0.36112	0.05662	0.98593
H55	0.31736	0.05853	0.0237
C109	0.46614	0.0431	0.88341
H56	0.51294	0.03366	0.85326
H57	0.35085	0.08187	0.00456
H58	0.45632	0.06868	0.87503
C110	0.39506	0.3649	0.00563
C111	0.37087	0.37373	0.09546
C112	0.40014	0.34126	0.91851
C113	0.3526	0.35942	0.09607
C114	0.36374	0.39802	0.19281
C115	0.38164	0.32722	0.92213
C116	0.42462	0.33065	0.81848
C117	0.35752	0.33598	0.01034
H59	0.334	0.36661	0.16636
H60	0.34445	0.42147	0.16413
H61	0.356	0.39197	0.27876
H62	0.38408	0.4004	0.21457
H63	0.38584	0.30946	0.85187
H64	0.44699	0.30986	0.8476
H65	0.41691	0.32371	0.73569
H66	0.4298	0.34901	0.79116
---	---	---	---
C118	0.33655	0.32318	0.01307
C119	0.34085	0.29731	0.95214
H67	0.31551	0.33622	0.07185
C120	0.31827	0.28627	0.95092
H68	0.32939	0.28224	0.90147
C121	0.28503	0.30712	0.95171
N4	0.33075	0.25487	0.94273
C122	0.26468	0.29477	0.95071
C123	0.27117	0.34089	0.94884
C124	0.31213	0.24238	0.93693
C125	0.27874	0.26169	0.94194
C126	0.23044	0.31617	0.95334
N5	0.25921	0.36788	0.9424
C127	0.32678	0.20821	0.92435
C128	0.25975	0.2473	0.93137
H69	0.22159	0.33821	0.89962
C129	0.21023	0.3109	0.02024
H70	0.3113	0.19952	0.89454
C130	0.35726	0.18739	0.95252
N6	0.2452	0.23525	0.92028
H71	0.21969	0.28992	0.08099
C131	0.17602	0.33158	0.02086
H72	0.37197	0.19632	0.98967
C132	0.37156	0.15312	0.94387
C133	0.15783	0.32679	0.10941
C134	0.16016	0.35589	0.93298
C135	0.36186	0.13905	0.85537
C136	0.3955	0.13327	0.02697
C137	0.12492	0.34558	0.11177
H73	0.16971	0.30799	0.17935
C138	0.12735	0.37497	0.93283
H74	0.17351	0.35993	0.86072
C139	0.37522	0.10629	0.85002
H75	0.34387	0.15385	0.78656
C140	0.40876	0.10046	0.02582
H76	0.40328	0.14377	0.09758
C141	0.10908	0.37012	0.02279
C142	0.10782	0.33874	0.21115
C143	0.11295	0.3998	0.83359
C144	0.39878	0.08639	0.93667
C145	0.36376	0.09363	0.75015
C146	0.43289	0.08172	0.1231
H77	0.10349	0.31982	0.18376
H78	0.12188	0.33062	0.29632
H79	0.08493	0.35943	0.234
H80	0.11122	0.422	0.86239
H81	0.1276	0.39213	0.74979
----	------	------	------
H82	0.08919	0.40532	0.80806
H83	0.34295	0.09263	0.78023
H84	0.35666	0.1085	0.66784
H85	0.38171	0.06976	0.72177
H86	0.45647	0.07685	0.09601
H87	0.42698	0.09263	0.20981
H88	0.43476	0.05896	0.14287
C147	0.05462	0.37765	0.99899
C148	0.05949	0.42399	0.04016
C149	0.07751	0.43803	0.07168
C150	0.09304	0.32909	0.9641
C151	0.07751	0.43803	0.07168
C152	0.00134	0.38401	0.99214
C153	0.00666	0.43078	0.0992
C154	0.04879	0.3168	0.96605
C155	0.09304	0.32909	0.9641
H90	0.01215	0.47789	0.03075
C157	0.06351	0.47038	0.08336
C158	0.08919	0.40532	0.80806
C159	0.01522	0.35078	0.97878
C160	0.08919	0.40532	0.80806
H91	0.05955	0.30624	0.94927
C161	0.09304	0.32909	0.9641
C162	0.03125	0.49032	0.06073
H92	0.07788	0.48063	0.1902
C163	0.94854	0.39867	0.00184
C164	0.93392	0.43721	0.99985
C165	0.95956	0.33777	0.97617
C166	0.95941	0.48423	0.99598
C167	0.9643	0.53099	0.98829
H93	0.02129	0.51588	0.06918
C168	0.9145	0.41024	0.01647
C169	0.96318	0.35678	0.98959
C170	0.92028	0.45713	0.99548
H94	0.00601	0.31219	0.9646
C171	0.92621	0.50371	0.97775
C172	0.93236	0.5498	0.96145
H95	0.97847	0.54238	0.98878
C173	0.90067	0.4438	0.00693
C174	0.89481	0.39801	0.04037
H96	0.94901	0.34538	0.98801
C175	0.90652	0.49023	0.9808
C176	0.9127	0.53679	0.95849
H97	0.92224	0.57524	0.94524
C177	0.86712	0.46425	0.01241
---	---	---	---
C178	0.86224	0.41812	0.05419
H98	0.90449	0.37251	0.05125
C179	0.87293	0.51013	0.96974
C180	0.87954	0.5557	0.9346
C181	0.84855	0.45042	0.03966
H99	0.84738	0.40804	0.07561
C182	0.86067	0.54293	0.93954
H100	0.86921	0.58093	0.91278
H101	0.82292	0.46534	0.05012
H102	0.83541	0.55826	0.92069
C183	0.0739	0.3906	0.02149
C184	0.85317	0.49753	0.98984
C185	0.41477	0.38009	0.00205
C186	0.51532	0.498	0.89688
C187	0.52544	0.83009	0.9119
C188	0.4129	0.05131	0.93235
C189	0.61165	0.59185	0.41547
C190	0.64455	0.57284	0.43287
C191	0.66343	0.58706	0.43377
C192	0.61939	0.63734	0.40618
C193	0.59925	0.62463	0.39795
C194	0.56637	0.64441	0.36789
C195	0.65972	0.53901	0.44329
N7	0.54036	0.65949	0.33978
N8	0.67271	0.51195	0.44977
C196	0.59053	0.57913	0.41124
H103	0.57079	0.59091	0.34542
C197	0.60781	0.67127	0.39347
H104	0.62408	0.67727	0.34768
C198	0.69768	0.56741	0.44348
H105	0.70792	0.54221	0.42272
N9	0.65058	0.61846	0.42236
C199	0.5931	0.55572	0.4864
H106	0.61181	0.54572	0.55703
C200	0.71685	0.57822	0.47739
H107	0.70646	0.60296	0.50648
C201	0.58002	0.6942	0.44033
H108	0.56565	0.68725	0.49546
C202	0.57269	0.5423	0.48473
C203	0.57762	0.51908	0.57323
C204	0.54861	0.55089	0.39714
C205	0.55946	0.50466	0.57533
H109	0.5962	0.51209	0.64309
C206	0.53004	0.53693	0.39703
H110	0.54417	0.56872	0.32566
C207	0.53518	0.51343	0.48654
C208	0.75122	0.55611	0.48058
----	----	----	----
C209	0.7693	0.56312	0.5675
C210	0.76713	0.53338	0.39572
C211	0.80213	0.54359	0.5729
H111	0.75738	0.58218	0.6354
C212	0.79992	0.51391	0.39572
H112	0.75377	0.52955	0.32381
C213	0.81804	0.51857	0.48699
C214	0.56713	0.72822	0.42981
C215	0.57663	0.74226	0.33866
C216	0.54327	0.74816	0.51274
C217	0.56311	0.77505	0.3307
H113	0.59459	0.72745	0.27007
C218	0.52966	0.78097	0.50826
H114	0.5355	0.73769	0.58479
C219	0.53948	0.79501	0.41658
C220	0.50536	0.54756	0.29828
H115	0.48315	0.56855	0.32691
H116	0.51304	0.55424	0.2137
H117	0.49993	0.52929	0.27408
C221	0.56675	0.48034	0.67438
H118	0.58574	0.45682	0.64568
H119	0.57499	0.48615	0.7587
H120	0.54635	0.4782	0.69903
C222	0.81909	0.55014	0.67245
H121	0.82466	0.56819	0.64303
H122	0.8044	0.55923	0.75573
H123	0.84133	0.52907	0.69917
C223	0.81435	0.48895	0.29972
H124	0.81467	0.46731	0.32844
H125	0.80048	0.49714	0.2142
H126	0.83863	0.48234	0.27741
C224	0.50524	0.79975	0.60421
H127	0.48165	0.80516	0.57522
H128	0.51046	0.78627	0.69106
H129	0.50374	0.82224	0.62451
C225	0.57436	0.78772	0.22841
H130	0.59539	0.7885	0.25589
H131	0.58107	0.77255	0.14665
H132	0.55646	0.81168	0.19987
C226	0.52897	0.46569	0.46603
C227	0.482	0.51732	0.50831
C228	0.50997	0.45129	0.47309
C229	0.56199	0.44547	0.43876
C230	0.4625	0.50359	0.50001
C231	0.46723	0.54992	0.53757
C232	0.52438	0.41771	0.46721
C233	0.4768	0.47031	0.48628
-----	-----	-----	-----
C234	0.57563	0.41348	0.43071
H133	0.57678	0.45595	0.42443
C235	0.42891	0.52305	0.50877
C236	0.43492	0.56819	0.55174
H134	0.48145	0.56103	0.5499
C237	0.50578	0.40322	0.48152
C238	0.55751	0.39847	0.44905
C239	0.45781	0.45592	0.48727
H135	0.60096	0.39889	0.41084
C240	0.4095	0.50885	0.49095
C241	0.41573	0.5519	0.53512
H136	0.4241	0.59328	0.57501
C242	0.5205	0.36974	0.4873
C243	0.47219	0.42268	0.4876
C244	0.5714	0.36536	0.44799
C245	0.42419	0.47539	0.48574
C246	0.37642	0.5272	0.47781
H137	0.39017	0.57075	0.54575
C247	0.50128	0.35551	0.51132
C248	0.55342	0.35143	0.46884
C249	0.45322	0.40827	0.49167
H138	0.59687	0.35032	0.43205
C250	0.40551	0.46091	0.47638
C251	0.3583	0.51333	0.46191
H139	0.36434	0.55309	0.47762
C252	0.46763	0.37497	0.50673
C253	0.51468	0.32336	0.54012
H140	0.56546	0.32554	0.4684
C254	0.41996	0.42731	0.48265
C255	0.37224	0.48021	0.46275
H141	0.33269	0.52842	0.44986
C256	0.44821	0.36123	0.5208
C257	0.49561	0.31041	0.56337
H142	0.54031	0.30779	0.54785
C258	0.40096	0.41287	0.47988
C259	0.35406	0.46521	0.44803
C260	0.4632	0.32866	0.55289
H143	0.50661	0.28535	0.58897
C261	0.3678	0.43317	0.45558
H144	0.32859	0.47987	0.43109
H145	0.44909	0.31757	0.57037
H146	0.35295	0.42274	0.44341
C262	0.49286	0.85055	0.39087
C263	0.54515	0.84328	0.43114
C264	0.47937	0.88416	0.39654
C265	0.47184	0.83904	0.36578
C266	0.53235	0.87666	0.41987
---	---	---	---
C267	0.57761	0.82407	0.46156
C268	0.44593	0.90476	0.39247
C269	0.49918	0.89707	0.40734
C270	0.43999	0.85676	0.35862
H147	0.48159	0.83685	0.47195
C271	0.5526	0.88955	0.42537
C272	0.59669	0.83692	0.47772
H148	0.58794	0.79865	0.40722
C273	0.42591	0.92342	0.40624
C274	0.48567	0.93067	0.40838
H149	0.42478	0.8497	0.34044
C275	0.53918	0.92342	0.40624
C276	0.58464	0.89707	0.40734
H150	0.62167	0.82162	0.49579
C277	0.3991	0.95812	0.41556
C278	0.4526	0.9509	0.41159
C279	0.39297	0.91272	0.37727
C280	0.50585	0.94363	0.40458
C281	0.55815	0.93705	0.3896
H151	0.60083	0.87822	0.45891
C282	0.38591	0.99164	0.44094
C283	0.37999	0.94474	0.39658
C284	0.43912	0.98446	0.4175
C285	0.37731	0.90328	0.36274
H152	0.4922	0.97707	0.397
C286	0.54499	0.96938	0.37524
C287	0.58391	0.9221	0.38568
H153	0.40609	0.00462	0.43565
C288	0.3541	0.01156	0.47182
C289	0.3542	0.05968	0.39997
H154	0.45884	0.99754	0.40742
C290	0.51209	0.98997	0.38132
H155	0.56049	0.97909	0.36079
C291	0.59336	0.03784	0.45161
C292	0.34217	0.04358	0.49669
H156	0.338	0.02043	0.47981
C293	0.44534	0.03112	0.40763
C294	0.44534	0.02356	0.37074
C295	0.36112	0.05662	0.48953
H157	0.31736	0.05853	0.5237
C296	0.46614	0.0431	0.38341
H158	0.51294	0.03366	0.35326
H159	0.35085	0.08187	0.50456
H160	0.45632	0.06868	0.37503
C297	0.39506	0.03649	0.50563
C298	0.37087	0.37373	0.59546
----	-----	-----	-----
C300	0.40014	0.34126	0.41851
C301	0.3526	0.35942	0.59607
C302	0.36374	0.32722	0.42213
C303	0.42462	0.33065	0.31848
C304	0.35752	0.33598	0.51034
H161	0.334	0.36661	0.66636
H162	0.34445	0.42147	0.66413
H163	0.356	0.39167	0.77876
H164	0.38408	0.4004	0.71457
H165	0.38584	0.30946	0.35187
H166	0.44699	0.30986	0.3476
H167	0.41691	0.32371	0.23569
H168	0.4298	0.34901	0.29116
C306	0.33655	0.32318	0.51307
C307	0.34085	0.29731	0.45214
H169	0.31551	0.33622	0.57185
C308	0.31827	0.28627	0.45092
H170	0.36293	0.28224	0.40147
C309	0.28503	0.30712	0.45171
N10	0.33075	0.25487	0.42473
C310	0.26468	0.29477	0.45071
C311	0.27117	0.34089	0.44884
C312	0.31213	0.24238	0.43693
C313	0.27874	0.26169	0.44194
C314	0.23044	0.31617	0.45334
N11	0.25921	0.36788	0.4424
C315	0.32678	0.20821	0.42435
C316	0.25975	0.2473	0.43137
H171	0.22159	0.33621	0.39962
C317	0.21023	0.3109	0.52024
H172	0.3113	0.19952	0.39454
C318	0.35726	0.18739	0.45252
N12	0.2452	0.23525	0.42028
H173	0.21969	0.28992	0.58099
C319	0.17602	0.33158	0.52086
H174	0.37197	0.19632	0.48967
C320	0.37156	0.15312	0.44387
C321	0.15783	0.32679	0.60941
C322	0.16016	0.35589	0.43298
C323	0.36186	0.13905	0.35537
C324	0.3955	0.13327	0.52697
C325	0.12492	0.34558	0.61177
H175	0.16971	0.30799	0.67935
C326	0.12735	0.37497	0.43283
H176	0.17351	0.35993	0.36072
C327	0.37522	0.10629	0.35002
------	------	------	------
H177	0.34387	0.15385	0.28656
C328	0.40876	0.10046	0.52582
H178	0.40328	0.14377	0.59758
C329	0.10908	0.37012	0.52279
C330	0.10782	0.38784	0.71115
C331	0.11295	0.3998	0.33359
C332	0.39878	0.08639	0.43667
C333	0.10908	0.37012	0.52279
C334	0.11122	0.422	0.36239
H179	0.10349	0.31982	0.68376
H180	0.12188	0.33062	0.79632
H181	0.08493	0.35943	0.734
H182	0.1276	0.39213	0.24979
H183	0.08919	0.40532	0.30806
H184	0.34295	0.09263	0.28023
H185	0.35666	0.10895	0.16784
H186	0.38171	0.06976	0.22177
H187	0.45647	0.07685	0.59601
H188	0.42698	0.095	0.70981
H189	0.43476	0.05896	0.64287
C335	0.05462	0.37765	0.49899
C336	0.05949	0.42399	0.54016
C337	0.22091	0.39756	0.50031
C338	0.06748	0.34456	0.475
C339	0.02613	0.44428	0.5258
C340	0.07751	0.43038	0.57168
C341	0.00134	0.38401	0.49214
C342	0.00686	0.43078	0.5092
C343	0.04879	0.33168	0.46605
H190	0.09304	0.32909	0.4641
C344	0.01215	0.47789	0.53075
C345	0.06351	0.47038	0.58336
H192	0.10295	0.423	0.58774
C346	0.96785	0.40361	0.49893
C347	0.01522	0.35078	0.47878
C348	0.97325	0.45067	0.50261
H193	0.05955	0.30624	0.44927
C349	0.97857	0.49806	0.50475
C350	0.03125	0.49032	0.56073
H194	0.07788	0.48063	0.60902
C351	0.94854	0.38987	0.50184
C352	0.95392	0.43721	0.49985
C353	0.99556	0.33777	0.47617
C354	0.95941	0.48423	0.49598
C355	0.9643	0.53099	0.48629
H195	0.02129	0.51588	0.56918
C356	0.9145	0.41024	0.51647
C357	0.96318	0.35678	0.48959
C358	0.92028	0.45713	0.49548
H196	0.00601	0.31219	0.4646
C359	0.92621	0.50371	0.47775
C360	0.93236	0.5498	0.46145
H197	0.97847	0.54238	0.48878
C361	0.90067	0.4438	0.50693
C362	0.89481	0.39801	0.54037
H198	0.94901	0.34538	0.48801
C363	0.90652	0.49023	0.4808
C364	0.9127	0.53679	0.45849
H199	0.92224	0.57524	0.44524
C365	0.86712	0.46425	0.51241
C366	0.86224	0.41812	0.55419
H200	0.90449	0.37251	0.55125
C367	0.87293	0.51013	0.46974
C368	0.87954	0.5557	0.4346
C369	0.84855	0.45042	0.53966
H201	0.84738	0.40804	0.57561
C370	0.86067	0.54293	0.43954
H202	0.86921	0.58093	0.41278
H203	0.82292	0.46534	0.55012
H204	0.83541	0.55826	0.42069
C371	0.0739	0.3906	0.52149
C372	0.85317	0.49753	0.48984
C373	0.41477	0.38009	0.50205
C374	0.51532	0.4984	0.48688
C375	0.52544	0.83009	0.4119
C376	0.4129	0.05131	0.43235
Table S6. Atomistic coordinates for the AB-stacking mode of DBOV-DCTMP-COF optimized by using DFTB+ method. Space group: P1; a = 49.4385 Å, b = 49.2021 Å, c = 5.5362 Å, α = 88.0245˚, β = 86.7419˚, and γ = 59.2427˚.

Atom	x	y	z																																																																																																																																										
C1	0.60147	0.58877	0.91888																																																																																																																																										
C2	0.63486	0.57036	0.90326																																																																																																																																										
C3	0.65297	0.58574	0.89741																																																																																																																																										
C4	0.60702	0.63617	0.90277																																																																																																																																										
C5	0.58781	0.62219	0.92025																																																																																																																																										
C6	0.55399	0.64075	0.94259																																																																																																																																										
C7	0.65097	0.53645	0.88227																																																																																																																																										
N1	0.52686	0.65408	0.96346																																																																																																																																										
N2	0.66398	0.50944	0.85592																																																																																																																																										
C8	0.58043	0.5759	0.92184																																																																																																																																										
H1	0.55611	0.59284	0.87192																																																																																																																																										
C9	0.59593	0.67027	0.89339																																																																																																																																										
H2	0.6153	0.67527	0.87335																																																																																																																																										
C10	0.68763	0.56743	0.89125																																																																																																																																										
H3	0.69898	0.54155	0.87693																																																																																																																																										
N3	0.6388	0.61746	0.89534																																																																																																																																										
C11	0.58797	0.54607	0.98709																																																																																																																																										
H4	0.61132	0.52945	0.95633																																																																																																																																										
C12	0.70555	0.5807	0.91648																																																																																																																																										
H5	0.69364	0.60656	0.93967																																																																																																																																										
C13	0.56594	0.69498	0.92109																																																																																																																																										
H6	0.54633	0.69049	0.94882																																																																																																																																										
C14	0.56646	0.53396	0.98555																																																																																																																																										
C15	0.57048	0.5103	0.15487																																																																																																																																										
C16	0.54257	0.54432	0.81845																																																																																																																																										
C17	0.55093	0.49737	0.16232																																																																																																																																										
H7	0.5888	0.50242	0.22882																																																																																																																																										
C18	0.52328	0.53111	0.81647																																																																																																																																										
H8	0.5396	0.56224	0.6808																																																																																																																																										
C19	0.52731	0.50738	0.98981																																																																																																																																										
C20	0.74012	0.56255	0.92313																																																																																																																																										
C21	0.75586	0.56974	0.09145																																																																																																																																										
C22	0.75849	0.53759	0.76186																																																																																																																																										
C23	0.78867	0.55194	0.10918																																																																																																																																										
H9	0.74216	0.58909	0.22025																																																																																																																																										
C24	0.79142	0.51984	0.76873																																																																																																																																										
H10	0.74709	0.53242	0.62057																																																																																																																																										
C25	0.80698	0.5264	0.94647																																																																																																																																										
C26	0.55703	0.72844	0.93575																																																																																																																																										
C27	0.56959	0.74215	0.77311																																																																																																																																										
C28	0.53475	0.74772	0.11684																																																																																																																																										
C29	0.55885	0.77464	0.77789																																																																																																																																										
H11	0.58679	0.72777	0.62829																																																																																																																																										
C30	0.52513	0.77979	0.13648																																																																																																																																										
H12	0.52547	0.7372	0.25181																																																																																																																																										
C31	0.53645	0.79392	0.96103																																																																																																																																										
	C32	H13	H14	H15	C33	H16	H17	H18	C34	H19	H20	H21	C35	H22	H23	H24	C36	H25	H26	H27	C37	H28	H29	H30	C38	C39	C40	C41	C42	C43	C44	C45	C46	H31	C47	C48	H32	C49	C50	C51	H33	C52	C53	H34	C54	C55	C56																																																																																														
---	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------																																																																																																
	0.49899	0.47691	0.50724	0.49293	0.55572	0.57673	0.55956	0.5355	0.80273	0.80715	0.78673	0.82522	0.80871	0.80701	0.79827	0.83381	0.50265	0.47807	0.50795	0.50351	0.57112	0.59512	0.57253	0.55618	0.52181	0.47408	0.50302	0.55522	0.45486	0.459	0.51788	0.46966	0.56934	0.56989	0.42113	0.42646	0.47318	0.49935	0.55132	0.45091	0.59497	0.4022	0.40753	0.4152	0.51429	0.46562	0.56556	0.54263	0.564	0.54909	0.52485	0.47353	0.45026	0.48102	0.47011	0.56103	0.58001	0.57025	0.54117	0.50356	0.48714	0.79818	0.80604	0.78358	0.81935	0.7877	0.78243	0.77695	0.81343	0.45956	0.51108	0.44485	0.43954	0.49722	0.54344	0.41109	0.46382	0.40733	0.45035	0.5166	0.5616	0.55429	0.39635	0.39199	0.44915	0.39281	0.50218	0.54869	0.58654	0.36275	0.41574	0.3587	0.6272	0.68747	0.45828	0.58205	0.35739	0.31688	0.53113	0.38587	0.30326	0.24024	0.46463	0.36284	0.57963	0.62058	0.40253	0.55714	0.34343	0.30442	0.50866	0.38647	0.5799	0.613	0.40488	0.55832	0.94557	0.03759	0.98451	0.8433	0.99448	0.09303	0.18844	0.00234	0.99278	0.92814															
---	---	---	---																																																																																																																																										
C57	0.41727	0.46856	0.98375																																																																																																																																										
C58	0.36928	0.52035	0.96562																																																																																																																																										
H35	0.38118	0.56421	0.11331																																																																																																																																										
C59	0.49489	0.34836	0.04975																																																																																																																																										
C60	0.54755	0.34455	0.97203																																																																																																																																										
C61	0.46681	0.40111	0.0019																																																																																																																																										
H36	0.59132	0.34371	0.90138																																																																																																																																										
C62	0.39897	0.45739	0.9638																																																																																																																																										
C63	0.35166	0.50614	0.93097																																																																																																																																										
H37	0.357	0.54635	0.96578																																																																																																																																										
C64	0.46129	0.36772	0.03634																																																																																																																																										
C65	0.50799	0.31619	0.10974																																																																																																																																										
H38	0.55986	0.31855	0.9784																																																																																																																																										
C66	0.41368	0.42007	0.97984																																																																																																																																										
C67	0.36587	0.47286	0.93357																																																																																																																																										
H39	0.32619	0.52109	0.90515																																																																																																																																										
C68	0.44184	0.35384	0.0646																																																																																																																																										
C69	0.48873	0.30305	0.15299																																																																																																																																										
H40	0.53352	0.30071	0.12836																																																																																																																																										
C70	0.39489	0.40543	0.97674																																																																																																																																										
C71	0.34813	0.45749	0.90485																																																																																																																																										
C72	0.45646	0.3212	0.12841																																																																																																																																										
H41	0.49952	0.27793	0.20441																																																																																																																																										
C73	0.36201	0.42535	0.92572																																																																																																																																										
H42	0.32292	0.47195	0.86815																																																																																																																																										
H43	0.4421	0.31006	0.15948																																																																																																																																										
H44	0.34761	0.41446	0.9045																																																																																																																																										
C74	0.49126	0.84976	0.92267																																																																																																																																										
C75	0.54381	0.8415	0.9918																																																																																																																																										
C76	0.47827	0.8834	0.93067																																																																																																																																										
C77	0.4701	0.83854	0.87887																																																																																																																																										
C78	0.53159	0.87492	0.96759																																																																																																																																										
C79	0.57617	0.82165	0.04362																																																																																																																																										
C80	0.44488	0.90444	0.92586																																																																																																																																										
C81	0.49855	0.8958	0.94423																																																																																																																																										
C82	0.43825	0.85668	0.8727																																																																																																																																										
H45	0.47973	0.8131	0.85153																																																																																																																																										
C83	0.55227	0.88736	0.97257																																																																																																																																										
C84	0.5956	0.8341	0.06044																																																																																																																																										
H46	0.58608	0.79607	0.07059																																																																																																																																										
C85	0.43176	0.93783	0.94542																																																																																																																																										
C86	0.4245	0.89212	0.90564																																																																																																																																										
C87	0.48559	0.92944	0.93556																																																																																																																																										
H47	0.42272	0.84927	0.8432																																																																																																																																										
C88	0.53959	0.92117	0.92657																																																																																																																																										
C89	0.58408	0.8665	0.02096																																																																																																																																										
H48	0.62049	0.81839	0.10218																																																																																																																																										
----	-------	-------	-------																																																																																																																																										
C90	0.39843	0.95851	0.9643																																																																																																																																										
C91	0.45251	0.95021	0.9402																																																																																																																																										
C92	0.39155	0.91318	0.91415																																																																																																																																										
C93	0.50633	0.94184	0.91696																																																																																																																																										
C94	0.55916	0.94541	0.94732																																																																																																																																										
H49	0.60056	0.87514	0.03269																																																																																																																																										
C95	0.45251	0.95021	0.9402																																																																																																																																										
C96	0.37892	0.98384	0.93427																																																																																																																																										
C97	0.58495	0.91908	0.88938																																																																																																																																										
C98	0.39155	0.91318	0.91415																																																																																																																																										
C99	0.5467	0.96639	0.83987																																																																																																																																										
H50	0.37563	0.90393	0.89687																																																																																																																																										
C100	0.34193	0.04572	0.08753																																																																																																																																										
C101	0.33709	0.0046	0.08843																																																																																																																																										
C102	0.4679	0.22988	0.7823																																																																																																																																										
C103	0.36144	0.02294	0.7273																																																																																																																																										
C104	0.3514	0.03798	0.03879																																																																																																																																										
C105	0.3514	0.03798	0.03879																																																																																																																																										
C106	0.36387	0.36729	0.22042																																																																																																																																										
C107	0.36387	0.36729	0.22042																																																																																																																																										
C108	0.36387	0.36729	0.22042																																																																																																																																										
C109	0.36387	0.36729	0.22042																																																																																																																																										
C110	0.36387	0.36729	0.22042																																																																																																																																										
C111	0.36387	0.36729	0.22042																																																																																																																																										
C112	0.36387	0.36729	0.22042																																																																																																																																										
C113	0.36387	0.36729	0.22042																																																																																																																																										
C114	0.36387	0.36729	0.22042																																																																																																																																										
C115	0.36387	0.36729	0.22042																																																																																																																																										
C116	0.36387	0.36729	0.22042																																																																																																																																										
C117	0.36387	0.36729	0.22042																																																																																																																																										
C118	0.36387	0.36729	0.22042																																																																																																																																										
---	---	---	---																																																																																																																																										
C119	0.32989	0.29632	0.9215																																																																																																																																										
H67	0.30351	0.3357	0.15547																																																																																																																																										
C120	0.30717	0.28556	0.91145																																																																																																																																										
H68	0.35281	0.28065	0.82716																																																																																																																																										
C121	0.27394	0.30618	0.90326																																																																																																																																										
N4	0.32011	0.25402	0.89815																																																																																																																																										
C122	0.30717	0.28556	0.91145																																																																																																																																										
H69	0.35281	0.28065	0.82716																																																																																																																																										
C123	0.29993	0.34009	0.90111																																																																																																																																										
C124	0.32011	0.25402	0.89815																																																																																																																																										
C125	0.26866	0.26006	0.87626																																																																																																																																										
C126	0.21975	0.31508	0.01164																																																																																																																																										
N5	0.24626	0.36719	0.89345																																																																																																																																										
C127	0.31854	0.20643	0.86437																																																																																																																																										
C128	0.25038	0.24519	0.84582																																																																																																																																										
H69	0.21218	0.3357	0.78017																																																																																																																																										
C129	0.19801	0.31058	0.01164																																																																																																																																										
H70	0.30485	0.19582	0.81063																																																																																																																																										
C130	0.34922	0.18787	0.92011																																																																																																																																										
N6	0.23644	0.23729	0.81648																																																																																																																																										
H71	0.20608	0.28949	0.12928																																																																																																																																										
C131	0.16386	0.3258	0.01619																																																																																																																																										
H72	0.36145	0.19948	0.98667																																																																																																																																										
C132	0.36696	0.15326	0.90908																																																																																																																																										
C133	0.14473	0.32921	0.19942																																																																																																																																										
C134	0.14911	0.35697	0.84358																																																																																																																																										
C135	0.3602	0.13684	0.74163																																																																																																																																										
C136	0.39138	0.13558	0.06863																																																																																																																																										
C137	0.1119	0.34948	0.21301																																																																																																																																										
H73	0.15581	0.31043	0.33701																																																																																																																																										
C138	0.11634	0.37737	0.85126																																																																																																																																										
H74	0.16326	0.35998	0.69572																																																																																																																																										
C139	0.37638	0.10372	0.73864																																																																																																																																										
H75	0.34221	0.15004	0.60786																																																																																																																																										
C140	0.40743	0.10238	0.07433																																																																																																																																										
H76	0.39711	0.14809	0.19913																																																																																																																																										
C141	0.09725	0.3738	0.0369																																																																																																																																										
C142	0.09327	0.3447	0.41623																																																																																																																																										
C143	0.10244	0.40251	0.65914																																																																																																																																										
C144	0.39971	0.08602	0.90984																																																																																																																																										
C145	0.36813	0.08602	0.55178																																																																																																																																										
C146	0.43201	0.0854	0.25909																																																																																																																																										
H77	0.08948	0.32507	0.37882																																																																																																																																										
H78	0.10581	0.33865	0.58569																																																																																																																																										
H79	0.07002	0.36587	0.45																																																																																																																																										
H80	0.10275	0.42388	0.70824																																																																																																																																										
H81	0.11602	0.39425	0.48587																																																																																																																																										
H82	0.07789	0.40982	0.62722																																																																																																																																										
---	---	---																																																																																																																																											
H83	0.34705	0.0868	0.60928																																																																																																																																										
H84	0.36267	0.10147	0.38065																																																																																																																																										
H85	0.38728	0.06378	0.51185																																																																																																																																										
H86	0.45454	0.08352	0.19843																																																																																																																																										
H87	0.4282	0.09811	0.43241																																																																																																																																										
H88	0.4368	0.06131	0.29717																																																																																																																																										
C147	0.04259	0.38266	0.99665																																																																																																																																										
C148	0.04803	0.4282	0.09035																																																																																																																																										
C149	0.00888	0.40309	0.00194																																																																																																																																										
C150	0.05538	0.34959	0.94608																																																																																																																																										
C151	0.01463	0.44911	0.07478																																																																																																																																										
C152	0.06655	0.44132	0.15301																																																																																																																																										
C153	0.98907	0.39007	0.97583																																																																																																																																										
C154	0.99516	0.43624	0.03297																																																																																																																																										
C155	0.03644	0.33724	0.9196																																																																																																																																										
H89	0.08111	0.33373	0.92961																																																																																																																																										
C156	0.0009	0.4826	0.10469																																																																																																																																										
C157	0.0528	0.47342	0.19486																																																																																																																																										
H90	0.09211	0.42585	0.16984																																																																																																																																										
C158	0.95551	0.41015	0.9878																																																																																																																																										
C159	0.00271	0.35691	0.9399																																																																																																																																										
C160	0.96163	0.45672	0.0222																																																																																																																																										
H91	0.04709	0.31183	0.88327																																																																																																																																										
C161	0.96734	0.50368	0.06489																																																																																																																																										
C162	0.02039	0.49405	0.16799																																																																																																																																										
H92	0.06746	0.483	0.24654																																																																																																																																										
C163	0.93578	0.39689	0.98024																																																																																																																																										
C164	0.94203	0.44375	0.00203																																																																																																																																										
C165	0.98272	0.34443	0.92281																																																																																																																																										
C166	0.94815	0.49039	0.02738																																																																																																																																										
C167	0.95311	0.53703	0.0568																																																																																																																																										
H93	0.01068	0.5194	0.19935																																																																																																																																										
C168	0.90157	0.41766	0.00628																																																																																																																																										
C169	0.95016	0.36386	0.94632																																																																																																																																										
C170	0.90852	0.46424	0.99008																																																																																																																																										
H94	0.99303	0.31893	0.89258																																																																																																																																										
C171	0.91527	0.5106	0.98854																																																																																																																																										
C172	0.92153	0.55668	0.00704																																																																																																																																										
H95	0.96715	0.54815	0.88438																																																																																																																																										
C173	0.88841	0.45129	0.99839																																																																																																																																										
C174	0.88104	0.40588	0.03926																																																																																																																																										
H96	0.93566	0.35293	0.93348																																																																																																																																										
C175	0.8954	0.4975	0.97187																																																																																																																																										
C176	0.90209	0.54401	0.97057																																																																																																																																										
H97	0.91159	0.58245	0.99627																																																																																																																																										
C177	0.85489	0.47228	0.00577																																																																																																																																										
C178	0.84835	0.42652	0.06791																																																																																																																																										
---	---	---	---																																																																																																																																										
H98	0.89019	0.38028	0.04886																																																																																																																																										
C179	0.86223	0.51791	0.93703																																																																																																																																										
C180	0.86979	0.56344	0.90642																																																																																																																																										
C181	0.83537	0.45896	0.05097																																																																																																																																										
H99	0.83275	0.41684	0.10092																																																																																																																																										
C182	0.86025	0.58889	0.87468																																																																																																																																										
H101	0.89062	0.47435	0.07309																																																																																																																																										
H102	0.82683	0.56615	0.82273																																																																																																																																										
C183	0.06207	0.39507	0.04211																																																																																																																																										
C184	0.84188	0.50562	0.9633																																																																																																																																										
C185	0.40864	0.37271	0.02675																																																																																																																																										
C186	0.50753	0.49238	0.98939																																																																																																																																										
C187	0.52364	0.82889	0.96047																																																																																																																																										
C188	0.4142	0.05079	0.92052																																																																																																																																										
C189	0.95149	0.92566	0.34095																																																																																																																																										
C190	0.98434	0.90605	0.36503																																																																																																																																										
C191	0.00331	0.92	0.38338																																																																																																																																										
C192	0.95917	0.97103	0.36725																																																																																																																																										
C193	0.93904	0.95876	0.33368																																																																																																																																										
C194	0.90618	0.97929	0.28561																																																																																																																																										
C195	0.99907	0.87206	0.35995																																																																																																																																										
N7	0.88021	0.99489	0.23779																																																																																																																																										
N8	0.01117	0.84494	0.35295																																																																																																																																										
N9	0.01117	0.84494	0.35295																																																																																																																																										
C196	0.93029	0.9131	0.32323																																																																																																																																										
H103	0.91262	0.92394	0.18343																																																																																																																																										
C197	0.94732	0.00522	0.37145																																																																																																																																										
H104	0.96351	0.01253	0.28938																																																																																																																																										
C198	0.03756	0.89989	0.39363																																																																																																																																										
H105	0.04769	0.875	0.34163																																																																																																																																										
N9	0.99039	0.95163	0.38773																																																																																																																																										
C199	0.93049	0.89114	0.47947																																																																																																																																										
H106	0.94758	0.88202	0.6241																																																																																																																																										
C200	0.05676	0.90994	0.4664																																																																																																																																										
H107	0.04618	0.93439	0.53248																																																																																																																																										
C201	0.9192	0.02691	0.4764																																																																																																																																										
H108	0.90479	0.0187	0.57802																																																																																																																																										
C202	0.90945	0.87839	0.48034																																																																																																																																										
C203	0.91317	0.85555	0.65717																																																																																																																																										
C204	0.88568	0.88774	0.31316																																																																																																																																										
C205	0.89433	0.84177	0.66627																																																																																																																																										
H109	0.93137	0.8482	0.79099																																																																																																																																										
C206	0.86642	0.87447	0.31832																																																																																																																																										
H110	0.88203	0.90563	0.17332																																																																																																																																										
C207	0.87078	0.85098	0.4947																																																																																																																																										
C208	0.09115	0.88972	0.46878																																																																																																																																										
C209	0.10832	0.89526	0.6355																																																																																																																																										
------	-------	-------	-------																																																																																																																																										
C210	0.10788	0.86473	0.30337																																																																																																																																										
C211	0.1412	0.87611	0.64263																																																																																																																																										
H111	0.09558	0.91454	0.76734																																																																																																																																										
C212	0.1408	0.84565	0.30226																																																																																																																																										
H112	0.09522	0.8604	0.16662																																																																																																																																										
C213	0.15791	0.85101	0.47372																																																																																																																																										
C214	0.90605	0.06121	0.47304																																																																																																																																										
C215	0.91488	0.0763	0.29091																																																																																																																																										
C216	0.88283	0.08007	0.65043																																																																																																																																										
C217	0.90134	0.10923	0.2864																																																																																																																																										
H113	0.93214	0.06226	0.14513																																																																																																																																										
C218	0.86927	0.1106	0.65311																																																																																																																																										
H114	0.87558	0.06862	0.7933																																																																																																																																										
C219	0.87857	0.12803	0.46994																																																																																																																																										
C220	0.84157	0.08567	0.13427																																																																																																																																										
H115	0.81923	0.90625	0.20081																																																																																																																																										
H116	0.84875	0.89318	0.9653																																																																																																																																										
H117	0.83638	0.8673	0.08828																																																																																																																																										
C221	0.89972	0.81773	0.86078																																																																																																																																										
H118	0.92102	0.79473	0.81916																																																																																																																																										
H119	0.90332	0.82532	0.0349																																																																																																																																										
H120	0.87986	0.81373	0.88813																																																																																																																																										
C222	0.15768	0.88302	0.83058																																																																																																																																										
H121	0.16322	0.90119	0.76668																																																																																																																																										
H122	0.14286	0.89217	0.99784																																																																																																																																										
H123	0.17998	0.86199	0.87984																																																																																																																																										
C223	0.15672	0.82037	0.11323																																																																																																																																										
H124	0.15444	0.79966	0.16055																																																																																																																																										
H125	0.14582	0.82917	0.93765																																																																																																																																										
H126	0.18195	0.81198	0.08502																																																																																																																																										
C224	0.84523	0.1313	0.85216																																																																																																																																										
H127	0.82181	0.13549	0.81166																																																																																																																																										
H128	0.8515	0.11819	0.02472																																																																																																																																										
H129	0.84267	0.15447	0.88235																																																																																																																																										
C225	0.91137	0.1236	0.08292																																																																																																																																										
H130	0.93345	0.12279	0.11985																																																																																																																																										
H131	0.91584	0.11053	0.91395																																																																																																																																										
H132	0.89357	0.14841	0.04856																																																																																																																																										
C226	0.86583	0.0803	0.43784																																																																																																																																										
C227	0.81803	0.85357	0.54973																																																																																																																																										
C228	0.84728	0.78806	0.44061																																																																																																																																										
C229	0.89921	0.78367	0.38002																																																																																																																																										
C230	0.79902	0.83953	0.52579																																																																																																																																										
C231	0.80292	0.88554	0.62817																																																																																																																																										
C232	0.86233	0.75456	0.40748																																																																																																																																										
C233	0.81397	0.80652	0.47682																																																																																																																																										
C234	0.91344	0.75182	0.34296																																																																																																																																										
	H133	C235	C236	H134	C237	C238	C239	H135	C240	C241	H136	C242	C243	C244	C245	C246	H137	C247	C248	C249	H138	C250	C251	H139	C252	C253	H140	C254	C255	H141	C256	C257	H142	C258	C259	C260	H143	C261	H144	H145	H146	C262	C263	C264	C265	C266	C267																																																																																														
---	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------																																																																																																								
	0.91374	0.79475	0.36643	0.76531	0.85842	0.55654	0.77053	0.90305	0.67034	0.817	0.89659	0.65678	0.84418	0.73934	0.42481	0.89563	0.73609	0.36211	0.79545	0.79167	0.46935	0.939	0.73785	0.30076	0.74635	0.84416	0.51229	0.75171	0.88998	0.63019	0.75931	0.92761	0.73331	0.85947	0.70569	0.41373	0.81048	0.75835	0.44973	0.91006	0.70297	0.33653	0.76169	0.81079	0.47938	0.71314	0.86226	0.49986	0.72606	0.90499	0.66195	0.84075	0.69051	0.45592	0.89249	0.68818	0.36555	0.79197	0.74342	0.45397	0.93565	0.68859	0.2969	0.74348	0.79606	0.45308	0.69551	0.84824	0.45893	0.70057	0.88814	0.51844	0.807	0.70978	0.46834	0.85461	0.65765	0.48835	0.90494	0.6623	0.34722	0.75862	0.76229	0.44881	0.71008	0.81506	0.43856	0.66978	0.8632	0.44646	0.78795	0.69554	0.50371	0.83593	0.64408	0.54217	0.88037	0.64193	0.47975	0.74004	0.74745	0.44336	0.69247	0.79974	0.40152	0.80334	0.66248	0.55431	0.84744	0.61841	0.57313	0.70681	0.76747	0.40361	0.66699	0.81432	0.37413	0.78943	0.65114	0.60087	0.69254	0.75657	0.37651	0.833	0.18448	0.43401	0.88595	0.17502	0.50532	0.82059	0.21802	0.44689	0.81135	0.17399	0.38702	0.87429	0.20836	0.48826	0.91827	0.15449	0.55507
---	----	----	----																																																																																																																																										
C268	0.7873	0.23965	0.4418																																																																																																																																										
C269	0.84134	0.22978	0.46587																																																																																																																																										
C270	0.77961	0.1947	0.37867																																																																																																																																										
H147	0.82054	0.14863	0.39521																																																																																																																																										
C271	0.89549	0.22008	0.49945																																																																																																																																										
C272	0.93817	0.16623	0.57855																																																																																																																																										
H148	0.92777	0.1289	0.5766																																																																																																																																										
C273	0.77476	0.2729	0.46712																																																																																																																																										
C274	0.76644	0.22803	0.4151																																																																																																																																										
C275	0.829	0.26331	0.46388																																																																																																																																										
H149	0.76375	0.18582	0.34514																																																																																																																																										
C276	0.8346	0.25386	0.46057																																																																																																																																										
C277	0.92719	0.19863	0.54685																																																																																																																																										
H150	0.96298	0.14997	0.6195																																																																																																																																										
C278	0.74151	0.29417	0.48478																																																																																																																																										
C279	0.79602	0.28462	0.46877																																																																																																																																										
C280	0.73361	0.24969	0.42226																																																																																																																																										
C281	0.8503	0.27505	0.45155																																																																																																																																										
C282	0.90361	0.2664	0.42791																																																																																																																																										
H151	0.94398	0.20677	0.56368																																																																																																																																										
C283	0.72928	0.32786	0.52406																																																																																																																																										
C284	0.72153	0.28175	0.46067																																																																																																																																										
C285	0.78368	0.31815	0.46932																																																																																																																																										
H152	0.71728	0.24105	0.39984																																																																																																																																										
C286	0.83793	0.30832	0.42348																																																																																																																																										
C287	0.89179	0.29649	0.38651																																																																																																																																										
H153	0.92934	0.25068	0.42915																																																																																																																																										
C288	0.75059	0.33961	0.50253																																																																																																																																										
C289	0.6973	0.34923	0.58224																																																																																																																																										
H154	0.69578	0.29751	0.46716																																																																																																																																										
C290	0.8046	0.32991	0.43737																																																																																																																																										
C291	0.85897	0.32002	0.38486																																																																																																																																										
H155	0.90826	0.30723	0.35626																																																																																																																																										
C292	0.73894	0.37293	0.51892																																																																																																																																										
C293	0.68627	0.38148	0.61637																																																																																																																																										
H156	0.68032	0.34109	0.60613																																																																																																																																										
C294	0.79225	0.36343	0.41729																																																																																																																																										
C295	0.84601	0.35323	0.33817																																																																																																																																										
C296	0.70637	0.39329	0.58264																																																																																																																																										
H157	0.66123	0.3976	0.66707																																																																																																																																										
C297	0.81416	0.37383	0.34929																																																																																																																																										
H158	0.86219	0.36199	0.29272																																																																																																																																										
H159	0.69676	0.41879	0.60566																																																																																																																																										
H160	0.80497	0.39902	0.30767																																																																																																																																										
C298	0.73478	0.69928	0.5019																																																																																																																																										
C299	0.71088	0.70832	0.6896																																																																																																																																										
C300	0.73944	0.67613	0.3308																																																																																																																																										
---	---	---	---																																																																																																																																										
C301	0.69201	0.69458	0.702																																																																																																																																										
C302	0.70478	0.73227	0.87889																																																																																																																																										
C303	0.72034	0.66271	0.1248																																																																																																																																										
C304	0.7638	0.66565	0.1248																																																																																																																																										
C305	0.69643	0.67169	0.53357																																																																																																																																										
H161	0.6735	0.7017	0.84723																																																																																																																																										
H162	0.68452	0.75571	0.83596																																																																																																																																										
H163	0.69893	0.72541	0.05689																																																																																																																																										
H164	0.72506	0.73526	0.90015																																																																																																																																										
H165	0.72372	0.64554	0.21136																																																																																																																																										
H166	0.78544	0.64337	0.16856																																																																																																																																										
H167	0.7552	0.66101	0.96111																																																																																																																																										
H168	0.77058	0.68325	0.07624																																																																																																																																										
C306	0.67512	0.6593	0.54482																																																																																																																																										
C307	0.68108	0.63305	0.42568																																																																																																																																										
H169	0.65323	0.67263	0.65765																																																																																																																																										
C308	0.65994	0.62059	0.41154																																																																																																																																										
H170	0.70447	0.61831	0.33684																																																																																																																																										
C309	0.62765	0.64045	0.39953																																																																																																																																										
N10	0.67411	0.58886	0.39949																																																																																																																																										
C310	0.60679	0.62731	0.40725																																																																																																																																										
C311	0.61437	0.6739	0.37047																																																																																																																																										
C312	0.65656	0.57522	0.3901																																																																																																																																										
C313	0.62278	0.59369	0.40678																																																																																																																																										
C314	0.57241	0.64906	0.41859																																																																																																																																										
N11	0.60683	0.7	0.33385																																																																																																																																										
C315	0.67284	0.54054	0.38268																																																																																																																																										
C316	0.60655	0.57626	0.42279																																																																																																																																										
H171	0.56523	0.67429	0.41125																																																																																																																																										
C317	0.54943	0.64151	0.44607																																																																																																																																										
H172	0.65798	0.52997	0.37114																																																																																																																																										
C318	0.70444	0.52127	0.39911																																																																																																																																										
N12	0.59538	0.56063	0.44153																																																																																																																																										
H173	0.55615	0.61645	0.46173																																																																																																																																										
C319	0.5152	0.66395	0.4608																																																																																																																																										
H174	0.71909	0.53203	0.4161																																																																																																																																										
C320	0.71985	0.48658	0.41059																																																																																																																																										
C321	0.49558	0.65567	0.60096																																																																																																																																										
C322	0.50071	0.69289	0.33328																																																																																																																																										
C323	0.71094	0.47048	0.25863																																																																																																																																										
C324	0.74306	0.46883	0.57897																																																																																																																																										
C325	0.46316	0.67745	0.63516																																																																																																																																										
H175	0.50586	0.63308	0.6986																																																																																																																																										
C326	0.46786	0.71134	0.32159																																																																																																																																										
H176	0.51507	0.70008	0.22124																																																																																																																																										
C327	0.72447	0.43759	0.27199																																																																																																																																										
H177	0.69372	0.48358	0.11942																																																																																																																																										
	x	y	z																																																																																																																																										
-----	------	------	------																																																																																																																																										
C328	0.75606	0.436	0.60405																																																																																																																																										
H178	0.75012	0.48103	0.70162																																																																																																																																										
C329	0.44852	0.70463	0.48276																																																																																																																																										
C330	0.44583	0.67136	0.84154																																																																																																																																										
C331	0.45514	0.73622	0.79671																																																																																																																																										
C332	0.74677	0.41991	0.44946																																																																																																																																										
H179	0.44698	0.64855	0.82458																																																																																																																																										
H180	0.45669	0.67041	0.01305																																																																																																																																										
H181	0.42094	0.68996	0.86161																																																																																																																																										
H182	0.46122	0.7546	0.15008																																																																																																																																										
H183	0.4655	0.72531	0.9481																																																																																																																																										
H184	0.42948	0.74799	0.11515																																																																																																																																										
H185	0.69157	0.4252	0.14325																																																																																																																																										
H186	0.71212	0.43403	0.91288																																																																																																																																										
H187	0.73164	0.39718	0.06701																																																																																																																																										
H188	0.80332	0.4138	0.73417																																																																																																																																										
H189	0.7733	0.4335	0.96054																																																																																																																																										
H190	0.7814	0.39651	0.85195																																																																																																																																										
C335	0.39463	0.71188	0.4434																																																																																																																																										
C336	0.39876	0.75645	0.53129																																																																																																																																										
C337	0.36086	0.73153	0.45659																																																																																																																																										
C338	0.40793	0.67878	0.39028																																																																																																																																										
C339	0.36541	0.77868	0.50867																																																																																																																																										
C340	0.4164	0.77246	0.5958																																																																																																																																										
C341	0.34162	0.71759	0.44805																																																																																																																																										
C342	0.34652	0.76486	0.47888																																																																																																																																										
C343	0.38953	0.66551	0.38015																																																																																																																																										
H191	0.43362	0.6636	0.36047																																																																																																																																										
C344	0.3511	0.81242	0.5221																																																																																																																																										
C345	0.40207	0.80493	0.62062																																																																																																																																										
H192	0.44176	0.75751	0.6251																																																																																																																																										
C346	0.30805	0.73694	0.47318																																																																																																																																										
C347	0.35588	0.68424	0.41874																																																																																																																																										
C348	0.31286	0.78455	0.47402																																																																																																																																										
H193	0.40059	0.64006	0.34325																																																																																																																																										
C349	0.31758	0.83247	0.47588																																																																																																																																										
C350	0.36992	0.82494	0.57874																																																																																																																																										
H194	0.41615	0.81524	0.67043																																																																																																																																										
C351	0.28699	0.72282	0.48946																																																																																																																																										
C352	0.29383	0.77069	0.47566																																																																																																																																										
C353	0.33646	0.67085	0.42464																																																																																																																																										
C354	0.29676	0.81828	0.46204																																																																																																																																										
C355	0.30297	0.8656	0.44132																																																																																																																																										
H195	0.35979	0.8506	0.5962																																																																																																																																										
C356	0.25484	0.74303	0.52928																																																																																																																																										
---	---	---	---																																																																																																																																										
C357	0.30399	0.68959	0.46393																																																																																																																																										
C358	0.26015	0.79042	0.47447																																																																																																																																										
H196	0.3472	0.64517	0.4005																																																																																																																																										
C359	0.26561	0.83751	0.42994																																																																																																																																										
C360	0.27115	0.88415	0.39431																																																																																																																																										
H197	0.31686	0.8773	0.44566																																																																																																																																										
C361	0.24077	0.77672	0.50725																																																																																																																																										
C362	0.23524	0.73065	0.58913																																																																																																																																										
H198	0.28999	0.67783	0.46959																																																																																																																																										
C363	0.2462	0.82363	0.44225																																																																																																																																										
C364	0.25183	0.87073	0.38997																																																																																																																																										
H199	0.26085	0.90973	0.36297																																																																																																																																										
C365	0.20713	0.79705	0.5251																																																																																																																																										
C366	0.20252	0.75071	0.62423																																																																																																																																										
H200	0.24516	0.70505	0.61403																																																																																																																																										
C367	0.21262	0.84325	0.42381																																																																																																																																										
C368	0.21886	0.8892	0.34209																																																																																																																																										
C369	0.18859	0.7631	0.59015																																																																																																																																										
H201	0.18775	0.74048	0.67634																																																																																																																																										
C370	0.20023	0.87602	0.3566																																																																																																																																										
H202	0.20853	0.91439	0.29399																																																																																																																																										
H203	0.16282	0.79804	0.61469																																																																																																																																										
H204	0.17513	0.89088	0.31789																																																																																																																																										
C371	0.41349	0.72512	0.48656																																																																																																																																										
C372	0.19307	0.83034	0.47445																																																																																																																																										
C373	0.75441	0.71445	0.48267																																																																																																																																										
C374	0.85138	0.83548	0.49483																																																																																																																																										
C375	0.86531	0.16309	0.46981																																																																																																																																										
C376	0.7598	0.38492	0.46582																																																																																																																																										
Table S7.
ASA calculation simulated directly from the structure using the rolling-ball method

	DBOV-COF
ASA Surface Area	1464.47 m²/g
Unit Cell Volume	13893.3
Density	0.876658
AV	0.226041 cm³/g

References

[1] B. Hourahine, S. Sanna, B. Aradi, C. Köhler, T. Niehaus, T. Frauenheim, J. Phys. Chem. A 2007, 111, 5671-5677.
[2] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 1998, 58, 7260-7268.
[3] M. Gaus, Q. Cui, M. Elstner, J. Chem. Theory Comput. 2011, 7, 931-948.
[4] http://www.scm.com
[5] C. Vinod Chandran, P. K. Madhu, N. D. Kurur, T. Bräuniger, Magn. Reson. Chem. 2008, 46, 943-947.
[6] F. Hosokawa, T. Shirkawa, Y. Arai, T. Sannomiya, Ultramicroscopy 2015, 158, 56-64.
[7] Q. Chen, S. Thoms, S. Stöttinger, D. Schollmeyer, K. Möllen, A. Narita, T. Basché, J. Am. Chem. Soc. 2019, 141, 16439-16449.
[8] F. Zhang, C. K. Arnatt, K. M. Haney, H. C. Fang, J. E. Bajacan, A. C. Richardson, J. L. Ware, Y. Zhang, Eur. J. Med. Chem. 2012, 55, 395-408.
[9] S. Bi, C. Yang, W. Zhang, J. Xu, L. Liu, D. Wu, X. Wang, Y. Han, Q. Liang, F. Zhang, Nat. Commun. 2019, 10, 2467.
[10] E. Jin, K. Geng, K. H. Lee, W. Jiang, J. Li, Q. Jiang, S. Irle, D. Jiang. Angew. Chem. Int. Ed. 2020, 59, 12162-12169.
[11] Q. Chen, D. Wang, M. Baumgarten, D. Schollmeyer, K. Möllen, A. Narita, Chem. Asian J. 2019, 14, 1703-1707.
[12] E. Jin, K. Geng, K. H. Lee, W. Jiang, J. Li, Q. Jiang, S. Irle, D. Jiang, Angew. Chem. Int. Ed. 2020, 59, 12162-12169.