Nanoparticles green synthesis macroalgae-based and its application and distribution in Indonesia – An overview

M Safaat†,*, S Tursiloadi†, B Perisha‡ and F Zulpikar‡

1 Research Center for Chemistry, Indonesian Institute of Science (LIPI), Kawasan PUSPIPTEK, Serpong, Tangerang Selatan, Banten 15314, Indonesia
2 Research Center for Oceanography, Indonesian Institute of Science (LIPI), Jl. Pasir Putih I, Ancol Timur, Jakarta Utara, 14430, Indonesia

*Corresponding author: muhammad.safaat52@gmail.com

Abstract. Nanoparticles have received much recent attention in areas such as chemistry, physics, materials science, life sciences and engineering. Many physical and chemical methods have disadvantages such as high costs, the use of chemicals that are harmful to the environment and health. The green nanoparticle synthesis approach, using plant extracts as a capping agent of nanoparticles, is the right solution to produce nanoparticles that are effective and environmentally friendly. Micro and macroalgae in the use of nanoparticle synthesis are increasingly being developed. However, the use of Sargassum in chemical applications has not been fully explained, and there are still some drawbacks that must be overcome. Sargassum spp. biomass has been recognized as a natural, renewable, and cost-effective material to become a capping agent for nanoparticles. This review is a summary highlighting the potential of metal-Sargassum composite-based materials as an alternative to biological protective activities, such as antibacterial. Synthesis and characterization of materials, key factors influencing material performance, and distribution of Sargassum in Indonesia are considered by the Government of Indonesia and investors in seeing opportunities to use Sargassum as an advanced material.

Keywords: characterization; green synthesis; Indonesia; nanoparticle; Sargassum sp.

1. Introduction
Nanoparticles receive a big research concern in areas such as chemistry, physics, materials science, life sciences and engineering. The high interest in nanoparticles is due to the unique optical, magnetic, electronic and catalytic properties with distinctive features on the size and shape of the nanoparticles [1, 2]. Many physical and chemical methods have disadvantages such as high costs, the use of chemicals that are harmful to the environment and cannot be applied in medicine because there are toxic capping agents [3]. These factors contribute to the investigation of new methods and materials for the production of nanoparticles based on the principles of ‘Green Chemistry.’ The emphasis in this approach is on the synthesis and application of nanoparticles for maximum social benefits, with minimal impact on ecosystems. Because both the synthesis and application of nanoparticles are important, many researchers from academia and industry focus on biological systems such as plants, marine algae, fungi and bacteria for the production of nanoparticles [4, 6]. Among the various biosynthetic approaches, the advantage of using plant extract are sustainable, safe handling, a board process of viability metabolite. The bioactive
compound that responsible for the synthesis of nanoparticles are terpenoids, flavones, ketones, aldehydes amides, etc.

The oceans are a rich source of many kinds of natural products. Seaweed is a plant that is often used by researchers and entrepreneurs as an added value material, one of which is nanoparticles. This is because the abundance of seaweed is very abundant, but it is still not widely used. Types of seaweed that can be used for the synthesis of nanoparticles that can be used as antibacterial, anticancer and mosquito-larvicidal properties are Galaxaura elongata [7], Sargassum ilicifolium [8], Sargassum muticum [9], Sargassum glaucescens [10], Sargassum polycystum [11], Turbinaria ornata [12], Enteromorpha compressa [13] and Cystoseira baccata [14]. Sargassum macroalgae have become the object of considerable research, especially in the synthesis of nanoparticles. This is because sargassum macroalgae have bioactive compounds such as proteins, lipids, carbohydrates, carotenoids, vitamins and many other secondary metabolites with various biological activities. Various biological properties of sargassum have been reported, which include antibacterial, anti-diabetic, antioxidant, and anti-inflammatory properties [6,15]. However, the use of sargassum in the industry in Indonesia has not been widely developed. This study is expected to be used as a reference for the Government of Indonesia and investors in looking at the prospects for sargassum, especially as a cheap and environmentally friendly raw material for nanoparticles.

In this study, it will explain the development of research and use of nanotechnology throughout the country to the development of the nanomaterial user industry in Indonesia. In addition, the nanoparticle synthesis method using sargassum and its application was also studied. The decomposition of the synthesis method aims to inform the most effective, easy, fast, and inexpensive process for the manufacture of nanoparticles. This study aims to provide an overview to the government and businessmen regarding the potential of sargassum macroalgae as an economical marine biota because many sectors can use these nanoparticles to provide added value to products because of the characteristics and wide distribution of sargassum in nature.

2. Abundance of Sargassum in Indonesia

Abundance is the number of individuals who occupy a certain area or the number of individuals per unit area or per unit volume [16]. Abundance can also be interpreted as a simple measurement of the number of species present in a community or trophic level [17]. The factor that can affect the population of algae abundance in marine waters is a hard and sturdy substrate that serves as a place to attach. This seaweed plant can only live in waters that get enough light. Clear waters, seaweed can grow and develop to a depth of 20-30 meters. The nutrients needed by seaweed can be obtained directly from suspended nutrients in seawater [18]—for example, the abundance of Sargassum sp. The Barracuda Beach area is very good and quite dense. This is because the condition of Barracuda Beach is very open and gets enough sunlight for the growth of Sargassum sp.

The area of coral waters in Indonesia is approximately 6800 km² [19]. These waters are a seaweed growing area. Seaweed producing areas include coastal waters that have reef flats, such as the Riau Islands, Bangka-Belitung, Seribu, Karimunjawa, the Sunda Strait, the southern coast of Java, Bali, West Nusa Tenggara, East Nusa Tenggara, islands in Sulawesi and Maluku [20]. Alginate-producing seaweed from the Sargassum clan is mostly found in the Sunda Strait, which is around the area around the reaches of 500 to 900 g/m² and the number of species obtained is seven species.

The types of macroalgae that are often found on Dofamuel Island are the types of the Phaeophyta division (6 species). This is because the types of phaeophyta divisions have good tolerance to waves found in tidal areas. Types of macroalgae that are generally resistant to waves will grow well, for example, macroalgae from the Phaeophyta Division (Sargassum, Turbinaria, Padina). Sargassum is a macroalgal that is able to form a unique environment by associating with other marine organisms so that it can defend itself and survive in marine waters.

The results of a local production survey of local residents show that in Kambuno Island, South Sulawesi, the density of natural Eucheuma biomass reaches 7 tonnes/km². In the Mentawai Islands, West Sumatra Gracilaria 31.4 tonnes/km². In the Sunda Strait, Sargassum reaches 5-10 tons/km². The south
coast of Java Island Gelidium 2-5 quintals/km² and Sargassum 5-15 tonnes/km². Production in the Riau Islands in 1979 was 251.4 tons from a coastal area of 84 ha. The islands in South Sulawesi in 1979 reached 142 tons and Maluku in 1979 as many as 4,301 tons [21].

The southern coast of Java Island is one of the seaweed habitats with a stable substrate condition. Seaweed from the family Gelidium, Gellidiella, Gracilaria and Sargassum can be found in the Pameungpeuk-Gurat, Binuangeun, Cilurah-Pandeglang and Krakal-Wonosari areas [22]. In Bali, Lombok, Moyo, Sumbawa, Kupang, East Kalimantan, Baran Lombo, Baran Ca in South and Southeast Sulawesi, Kwandang, North Sulawesi, Tagulandang, Ruang, Pasige and Sangir-Talaud are dominated by seaweed from the clans Halimeda, Padina, Sargassum, Gracilaria, Bornethella and Acanthophora [23]. In addition, Ambon, Seram, Kai, Gorong, Tanimbar and Maisel are dominated by the clans Caulerpa, Codium, Ulva, Dictyota, Padina, Sargassum, Amphiroa, Gracilaria, Halimenia, Hypnea, and Acanthophora [24]. Table 1 shows the density of sargassum in Indonesian waters.

Table 1. Density of Sargassum in several locations in Indonesian waters [25].

Location	Harvest (g/m²)	Presence (%)	Density (g/m²)	Distribution of reef flats (m²)
Pulau Kambuno, Sulawesi selatan	33	50	17	150
Siburu	5	3	1	100
Marak	5	3	1	100
Pisang	50	13	7	100

From table 1, it can be concluded that the sargassum harvest in Indonesia is 10,950 g. If it is assumed that the need for sargassum in synthesizing 1000 ml of nanoparticles is 10g, then Indonesia can produce around 1095 L of metal nanoparticles or the equivalent of US $ 7,697,490. This indicates that the prospect of sargassum as a nanoparticle is very good and can increase the economy of both the country and investors.

3. Nanotechnology developments in the world and Indonesia

Research and application in the scope of nanotechnology have developed rapidly in the last decade [26]. The latest technology has penetrated various sectors of life, such as textiles, food, cosmetics, health, food packaging, and various other consumer products. According to Hoerudin and Irawan [27] the rapid development of nanotechnology is a challenge and an opportunity for a country to play a role in the world market or it will only become a market destination. The final result of research in the field of nanomaterials is to change the technology from micrometer-scale materials to nanometer-scale materials-based technology. This is based on the belief that nanometer-sized materials have physical and chemical properties superior to bulk materials. These properties can be changed by controlling the size of the material, adjusting the chemical composition, surface modification, and controlling the interactions between particles. Nanotechnology has a wide application area and impact ranging from the fields of advanced materials, transportation, space, medicine, cosmetics, electronics, agriculture and food processing, environment, IT, to energy.

Leitch et al. [28] point to increasing interest in the nanotechnology industry in 'nano-1-dimensional' configurations such as layers and coatings and an increase in manufacturing process patents. Coating and coating products are in great demand by industry because they cover the primary needs of humans and industries, thereby increasing the economy of the nanotechnology industry. Layer and coating products are applied as laminates, such as packaging materials to corrosion inhibitors. These products are very important because these products will be consumed continuously. In addition, products for specific therapeutics are the most rapidly developing nanotechnology from 2007-2011. This specific therapeutic product includes various types of drugs and antiseptics, one of which is drug delivery and antibacterial. The main objective in designing drug delivery systems with nanoparticles is to control the particle size, surface properties and release of the active compound in order to obtain the particular pharmacological action of the drug at the dosage regimen.
The latest data released by the Nanotechnology Products Database shows that in July 2020 the number of nanoproducts marketed in the world market reached 8874 products, produced by 2454 companies from 62 countries [29]. The largest number of nanotechnology products produced by companies in the United States, far exceeding nanotechnology products produced by other countries. In 2020, Indonesia already had 14 industries that produce nanotechnology products. Nanoparticles that have been used for commercial products in Indonesia are silica oxide, aluminum oxide, titanium aluminum nitride, silver. Some of the products that have used nanotechnology are supplements (diabetes, cholesterol-lowering, osteoporosis, stomach, antioxidants), textiles (antibacterial, anti-odor, allergy), cosmetics (nutrition, moisturizer, lightening, skin nourishing, antioxidants), agriculture (fertilizers, durable water storage), surface (oxidation protection, heat resistance), house cleaning (antibacterial), petroleum (lubricant additive, injection well, corrosion-resistant), automotive (UV stability, anti-pollution, hydrophobic, waterproof, oil-resistant). This is also consistent with the nanotechnology roadmap in Indonesia designed by the Ministry of Industry 2010-2025. Industry in Indonesia has applied nanotechnology in the ceramics, textiles, food, automotive, and polymer sectors.

The focus of 3rd phase of the road map planned by the Ministry of Industry is energy storage and converters. This research has long been developed in various countries. One of the applications of nanoparticle technology is the manufacture of carbon in the nanometer size or so-called carbon nanoparticles (CNPs). CNPs are widely used as supercapacitors [30], high-performance electrode materials in batteries, and good photoluminescent materials [31]. CNPs are not only used as energy storage but also as antibacterial [32]. CNPs can be obtained from several bottom up techniques, namely pyrolysis [33-36], microwave plasma by increasing chemical vapor deposition [37, 38], liquid salt electrolysis [39], particle graphitization to obtain polymerization microemulsion [28, 40], laser vaporization of carbon pellets [41], and treatment in supercritical water [31, 42].

It has been mentioned that one of the resources that can be used as a storage area for energy is carbon. One of the sources of carbon that is quite a lot is marine organisms, such as macroalgae. This needs to be further developed regarding the potential of macroalgae as a carbon source for energy storage.

4. Phytochemical analysis of sargassum
The secondary metabolite of seaweed extracts such as flavonoids, phenols, citric acid, ascorbic acid, polyphenolic, terpenes, alkaloids and reductase can act as reducing agents [43]. The bioactive compound in the seaweed extracts was shown in table 2.

Methanol extract is more efficient than aqueous extract due to methanol extract contained a lot of secondary metabolites have 12 different species of Sargassum extract had high antibacterial activity against human pathogenic bacteria [44]. Similarly, Methanol extract of Sargassum plagiophyllum is active to inhibit Gram-positive bacteria [45], while acetone extract of Sargassum tenerrimum showed high activity against all tested strains. The interesting information is a green synthesis of silver nanoparticles by exploiting seaweed has immense antibacterial than other extracts. The study showed that seaweeds containing phytochemicals could be better opted for nanoparticle synthesis.

The result of the recent study showed that the extract of S. wightii, S. tenerrimum, S. angustifolium, which contained several phenolic compounds, could exhibit a greater antioxidant activity. In addition phenolics are strong antibacterial compounds and antibacterial properties of several plants are related to their phenolic contents. Table 1 shows S. wightii and S. tenerrimum have phenolic content and ability as antibacterial. Tropical conditions affect phytochemical constituents of the plants especially phenolic content, particularly in marine organisms. Targete et al. [49] suggested that there was a significant difference in phenolics of algae related to the climate conditions.
Table 2. Phytochemical analysis of *sargassum* sp.

	Sargassum wightii (Tamil Nadu) [6]	*Sargassum wightii* (Bengal) [46]	*Sargassum tenerrimum* [47]	*S. angustifolium* [48]
flavonoids	+	+	+	+
saponins	-	-	+	+
tannins	-	+	+	+
alkaloids	+	+	+	+
phenolics	+	NA	+	NA
steroids	+	+	NA	NA
amino acid	NA	-	+	NA
carbohydrate	NA	+	+	NA
sterols	NA	NA	+	+
protein	NA	-	+	NA

[+] present, [-] absent, [NA] None.

5. *Sargassum*-metal nanoparticle

5.1. *Synthesis and Characterization*

Brown algal contained high polysaccharides and hydroxyl groups. The results of Mata *et al.* [50] confirmed there is the participation of hydroxyl groups during biosynthesis of AuNPs using *Fucus vesiculosus*. Fucoxanthins, which are carotenoids that rich in hydroxyl groups and are algal pigments, can also contribute with respect to gold reduction as these have good reducing properties [51]. Fucoidans refer to a type of polysaccharide that contains considerable percentages of L-fucose and sulfate ester groups [52]. Control of the size and structure of the resultant nanoparticles could be related to the interactions between bio-compounds such as polysaccharides, proteins, polyphenols and phenolic compounds and metal atoms. Table 3 shows the characterization of metal nanoparticles with various sargassum that have different bioactive compounds.

Table 3 shows that, in general, the plasmon peak shifts toward higher wavelengths (redshift) from 408 to 436 nm for AgNP, meaning an increase of the particle size [60]. At a higher concentration, the AgNPs begin to aggregate and form into large particles [60]. Besides, the observed increase in the plasmon absorbance with rising alga concentration indicates a greater amount of Ag+ reduction. With increasing volumes of extract, the intensity of the SPR band increased; with further higher volumes of extract, the particles were not stable. According to the literature, an excess of reducing agents may result in instantaneous particle precipitation [61]. The uncoated particles undergo uncontrolled growth and aggregation phases.

It was also observed that the production of nanosize silver particles starts almost immediately on the addition of the reducing agent and continues throughout the investigated period, as indicated by the emergence and the progressive increase in the intensity of the well-defined plasmon band. The increase in absorbance is observed when the rate of silver nanoparticle formation has increased and more particles are formed during the same time. In this review, various types of sargassum are used to synthesize AgNP, which varies considerably according to the method used. If the synthesis used a high-temperature heating method, the reaction time required is very fast. If the synthesis is heated to a lower temperature (45 °C), the time needed is about 1-4 hours [62]. However, for the synthesis process that uses room temperature and does not carry out the stirring process, it takes a longer time (24 hours) [63]. With the increase of temperature, the reduction occurred very fast and the intensity of the SPR band also increased. In this review, the nanoparticle synthesis process is carried out using the inverse synthesis method, where the process of mixing metal salts with sargassum extract is carried out directly.
Table 3. Synthesis and characterization of nanoparticles with various Sargassum.

Sargassum	Location	Pretreatent	Powdered	Aquous extract	Synthesis of NP	Characterization of NP	References
Sargassum wightii	-	- Washed	- Dried at room temperature for 10 days - Blending	- 20 g seaweed with 100 ml water - Temp 60 °C for 20 min	- 50 ml of 1 mM AgNO₃ was treated with 5 ml Extract of sargassum - Incubate 28 °C for 24 h	Crystallite size: 17 nm Size: 5-22 nm Shape: spherical SPR: 439 nm	[53]
Sargassum wightii Mandapam	- Washed	- Dried at room temperature for 3 weeks - Blending	- 10 g seaweed with 100 ml water - Temp 60 °C for 30 min - Lyophilized	- 88 ml of 1 mM AgNO₃ was treated with 12 ml Extract of sargassum - Incubate for 24 h	Size: 18.45-41.59 nm Shape: spherical SPR: 420 nm (Abs: 10)	[6]	
Sargassum tenerrimum Mandapam, Tamilnadu	- Washed	- Dried at room temperature for 15 days - Grinding	- 200 mg seaweed with 100 ml water - Temp 60 °C for 20 min	- 95 ml of 1M AgNO₃ was treated with 5 ml Extract of sargassum - Mix 90 °C for 20 min	Size: 20 nm Shape: spherical SPR: 420 nm (Abs: 2.4)	[47]	
Sargassum cireneum Vagator and Dona Paula	- Dried in incubator for 2 days at 37 °C	- 25 g seaweed with 200 ml water - boiled for 30 min		- 45 ml of 1 mM AgNO₃ was treated with 5 ml Extract of sargassum	Size: 45-76 nm SPR: 408 nm	[54]	
Sargassum dentifolium Hurghada	- Washed	- Air dried - Grinding	- 1 g seaweed with 100ml water - Temp 100 °C - Filter	- 50 ml of 1M AgNO₃ was treated with 50 ml Extract of sargassum - Stirred for 4 h at 45 °C	Size: 113-155 nm SPR: 420 nm (AgNP) Shape: roughly spherical	[55]	
Table 3. Synthesis and characterization of nanoparticles with various Sargassum (continued).

Sargassum	Location	Pretreatent Powdered	Aqueous extract	Synthesis of NP	Characterization of NP	References
Sargassum myriocystum	Mandapam, Tamilnadu	- Washed under sunlight				
- Chopped to smaller size
- Grinded to pasta | - 15 g seaweed with 150 ml water
- boiled 60 °C for 20 min
- Filter
- Stored 4 °C | - 900 ml of 1 mM AgNO₃ was treated with 100 ml Extract of sargassum
- Incubated for 24 h under dark condition | Size: 30-150 nm
SPR : 420 nm (AgNP)
Shape: spherical | [56] |
| *Sargassum glaucescens* | | - 10ml extract seaweed with 50 ml water
- stirring | -20 ml of 5 mM HAuCl₄ was treated with 60 ml Extract of sargassum
- mingled for 4 h at room temp under dark condition
- Centrifuge for 20 min
- parched overnight at 30 °C with vacuum | Size: 2-5.3 nm
SPR : 538 nm
Shape: spherical | [11] |
| *Sargassum muticum* | Persian Gulf | - 1 g seaweed with 100 ml water
- Heated 100 °C | - 50 ml of 0.1 mM HAuCl₄ was reacted with 50 ml aquous Extract of sargassum
- Stirring at 45 °C for 1 h | Size: 4.3-6.6 nm
SPR : 550 nm
Shape: spherical | [57] |
| *Sargassum muticum* | Persian Gulf | - 1g seaweed with 100 ml water
- Heated 100 °C | - 50ml of 1mM HAuCl₄ was reacted with 50 ml aqueous Extract of sargassum
- Stirring at 45 °C for 1 h | Size: 4.3-6.6 nm
SPR : 520 nm
Shape: spherical | [58] |
| *Sargassum myriocystum* | Mandapam, Tamilnadu | - Washed
- Dried
- Powdered
- Store 4 °C | - 1g seaweed with 20 ml water
- boiled for 5 min
- filtered and centrifuge | - 45 ml of 1mM HAuCl₄ was reacted with 5 ml aqueous Extract of sargassum
- Stir it up at room temperature | Size: 4.3-6.6 nm
SPR : 547 nm
Shape: spherical | [59] |
Table 4. Development of nanoparticle studies using sargassum macroalgae.

Macroalgae	Metal	Method	Characterization of NP	Application	References
Sargassum sp	ZnO	Material: Zinc nitrate, Extract of sargassum, Method: Calcination	Size: increase (607-649 nm) with increase volume ratio (5-20% v/v)	NA	[64]
			Shape: hexagonal		
			Crystallite size: decrease (31.4 to 14.7 nm) with increase temp of calcination 400-600 °C		
			Shape: Spherical		
Sargassum wightii	ZnO	Material: Zinc nitrate, Method: extraction of sargassum using ethanol	Size: 20-62 nm	Reduce the fitness and reproduction of the malaria vector Anopheles stephensi	[65]
			Shape: spherical	and cotton bollworm Helicoverpa armigera	
			Geometry: FCC		
			SPR: 378 nm		
Sargassum muticum	ZnO	Material: Zinc acetate, Method: inverse synthesis. Alga (powder) was mixed with water distillation and heated at 100 °C	Size: 30-57 nm	Cancer supplement	[66]
			Shape: hexagonal		
			SPR: 334 nm		
Sargassum cinereum	Ag	AgNO3 was treated with extract of sargassum and stirred for 3 h	Size: 45-76 nm	Antibacterial	[54]
			SPR: 408 nm		
Sargassum tenerrimum	Ag	Material: silver nitrate, Preparation: Extract was prepared by heating at 60 °C for 20 min	Size: 20 nm	Antibacterial	[47]
			Shape: spherical		
			SPR: 420 nm		
Sargassum dentifolium	Ag	Material: silver nitrate, Preparation: heated at 100 °C	Size: 113-155 nm	Biomedicine	[55]
			Shape: spherical		
			SPR: 295 nm and 420 nm		
Sargassum myriocystum	Ag	Material: silver nitrate, Method: incubation for 24 h under dark condition	Size: 20 ± 2.2 nm	Biological and enviromental application	[56]
			Shape: hexagonal		
			SPR: 420 nm		
Sargassum wightii	Ag	Material: silver nitrate, Alga (powder) was diluted to mili Q and heated at 60 °C for 20 min	Crystallite size: 17 nm	Antibacerial	[53]
			Size: 5-22 nm		
			Shape: spherical		
			SPR: 439 nm		
Macroalgae	Metal	Method	Characterization of NP	Application	References
-----------------------	-------	--	--	--	------------
Sargassum polycystum	Ag	Material: silver nitrate, Optimum reaction temp: 60 °C	Size: 20-88 nm, Geometry: FCC, SPR: 418 nm	Anti larvicide	[67]
Sargassum muticum	Ag	Material: silver nitrate, Alga diluted to bidistillation water, heated and decanted	Shape: spherical, Geometry: FCC, Size: 43-79 nm, SPR: 438 nm	Vector control of mosquito (Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus)	[68]
Sargassum wightii	Ag	Material: silver nitrate, Powder alga diluted to water at 60 °C and lyophilized	Size: 18.45-41.59 nm, Shape: spherical, SPR: 420 nm	Enzyme inhibitor, Antibacterial, Antioxidant	[6]
Sargassum tenerrimum	Au	Material: AuCl4	Size: 5-57 nm	Catalyst for reduction of nitro aromatic compound	[69]
Sargassum Polycystum	Au	Material: HAUCl4, Powder alga diluted to water and heated for 15 min	Size: 30-60 nm, Shape: spherical, SPR: 532 nm, Crystallite size: 15 nm, Geometry: FCC	Bacteria killer	[70]
Sargassum wightii	ZrO2	ZrO(NO3)2·xH2O and extract of algae were mixed, fumaced at 400 °C	Crystallite size: 4.8 nm, Shape: spherical, Size: 5 mm, SPR: 277 nm	Antibacterial	[71]
Sargassum Ni-Fe		Material: NiCl2, FeCl3, Method: add sargassum to Ni-Fe solution, calcination N2 and carbonation at 800 °C	Size: 8.1-10.2 nm	Cracking catalyst	[72]
Table 5. Comparative study of the antibacterial activity.

Bacteria	Concentration	AgNO$_3$	Extract	AgNP	References
S. wightii	0 µl	0	1	3	N/A
S. ternerrium	8 µl	9.5	10	8	9.5
S. wightii	Extract	1	0	1.5	0.5
S. ternerrium	Extract	1	0	1.5	0.5
S. wightii	5 µl	5	5	7	N/A
S. ternerrium	5 µl	5	5	7	N/A
S. wightii	1 mM (30µl)	1	0	0.5	0.5
S. ternerrium	1 mM (30µl)	1	0	0.5	0.5
S. wightii	20 nm	17	18	16	17
S. ternerrium	20 nm	17	18	16	17
S. wightii	100 mic	N/A	N/A	N/A	N/A
S. ternerrium	100 mic	N/A	N/A	N/A	N/A
S. wightii	18.45-41.59 nm	N/A	N/A	N/A	15
S. ternerrium	18.45-41.59 nm	N/A	N/A	N/A	15
S. wightii	0.1 mM	0	0	0	N/A
S. ternerrium	0.1 mM	0	0	0	N/A
S. wightii	5 µl	N/A	N/A	17	11
S. ternerrium	5 µl	N/A	N/A	17	11
S. wightii	30-150 nm	15	7	15	11
S. ternerrium	30-150 nm	15	7	15	11

References:
- [53] (1 µM, 30 µl)
- [47] (10 µM, 30 µl)
- [6] (100 µM, 30 µl)
- [54] (1 mM, 30 µl)
- [56] (100 µM, 30 µl)

Bacteria – 1. P. aeruginosa; 2. V. cholerae; 3. K. pneumoniae; 4. S. aureus; 5. E. coli; 6. S. typhi; 7. B. subtilis; 8. S. flexneri.
5.2. Utilization of metal nanoparticle-sargassum

The earlier studies reported that the seaweeds, Sargassum ilicifolium [8], Sargassum muticum [9], Sargassum glaucescens [10], Sargassum polycystum [11] are excellent source for the synthesis of nanoparticles that show the potential of antibacterial, anticancer and mosquito-larvicidal property. Development of nanoparticle studies using sargassum macroalgae served on (table 4).

Based on table 4, the relationship between the characteristics of the synthesized nanoparticles and the type of sargassum on their antibacterial ability. Silver compounds are toxic to microorganisms with strong antibacterial effects, including multi-drug resistant bacteria [73]. Similarly, electrostatic interaction between positively charged nanoparticles and the negatively charged bacterial membrane induces cell permeability resulting in cell death [74].

5.3. Comparative study of the antibacterial activity

Antibacterial activity is the most important characteristic of medical textiles to provide adequate protection against microorganisms, biological fluids, and aerosols, as well as disease transmission. Smaller AgNPs having the large surface area available for interaction would give more antibacterial effect than the larger AgNPs. It is also possible that AgNPs not only interact with the surface of the membrane but can also penetrate inside the bacteria [75]. The reduced size of silver nanoparticles with the 20–80 nm size ranges can instantly interact with the bacterial cell wall and release silver ions which could penetrate into the bacterial cell and attach to the thiol groups of proteins and they prevent the DNA replication, resulting in bacterial inactivation [76]. Roberts et al. [77] revealed that there was some variation in most of the physico-chemical properties of the biochar between species collected from different locations. Sargassum from different locations had very different yields (49 and 62%) and S content (0.9 and 2.8%) (table 5).

6. Conclusion

Sargassum can be utilized as a reducing and capping agent for metal nanoparticles. The reagent ratio, synthesis temperature, reactant concentration and make it possible to obtain outstanding results on qualitative parameters such as mean particle size. Sargassum can be used as a biomedicine application, such as antibacteria. Sargassum has the potential to be an advanced material that can increase the economy of both country and investors.

References

[1] El-Sayed M A 2004 Small is different: Shape- size- and composition-dependent properties of some colloidal semiconductor nanocrystals Acc Chem Res 37(5): 326-333
[2] Nie S, Xing Y, Kim G J, and Simons J W 2007 Nanotechnology applications in cancer Annu Rev Biomed Eng 9(2007): 257-288
[3] Rodríguez-Sánchez L, Blanco M C, and López-Quintela M A 2000 Electrochemical Synthesis of Silver Nanoparticles J Phys Chem B 104(41): 9683-9688
[4] Li Y White TJ and Lim SH 2004 Low-temperature synthesis and microstructural control of titania nano-particles Journal of solid state chemistry 177(4-5): 1372-1381
[5] Ghorai T K 2011 Photocatalytic Degradation of 4-chlorophenol by CuMoO4-doped TiO2 Nanoparticles Synthesized by Chemical Route Journal of Physical Chemistry 1(2): 28-36
[6] Deepak P Amutha V Birundha R Sowmiya R Kamaraj C Balasubramanian V Aiswarya D Arul D and Perumal P 2018 Facile green synthesis of nanoparticles from brown seaweed Sargassum wightii and its biological application potential Advances in Natural Sciences: Nanoscience and Nanotechnology 9(3): 035019
[7] Abdel-Raouf N, Al-Enazi N M, and Ibraheem I B 2017 Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity Arabian J Chem 10: S3029-S3039
[8] Naveen B S and Padmesh T V 2014 Seaweed (Sargassum ilicifolium) assisted green synthesis of palladium nanoparticles Int J Sci Eng Res 5: 229-231
[9] Senthilkumar P, Priya L, Kumar R S, Bhuvaneshwari D S, Janani, and Prakash 2015 Potent α-glucosidase inhibitory activity of green synthesized gold nanoparticles from the brown seaweed padina boergeseni Int J Recent Adv Multidiscip Res 2(11): 917-923

[10] Namvar F, Rahman H S, Mohamad R, Rasedee A, Yeap S K, Charrand M S, Azizi S, and Tahir P M 2015 Apoptosis induction in human leukemia cell lines by gold nanoparticles synthesized using the green biosynthetic approach J Nanomater 2015: 1-10

[11] Ajdari Z, Rahman H, Shamek K, Abdullah R, Abd Ghani M, Yeap S, Abbasilaia S, Ajdari D, and Ariff A 2016 Novel Gold Nanoparticles Reduced by Sargassum glaucescens: Preparation Characterization and Anticancer Activity Molecules 21(3): 123

[12] Deepak P, Sowmya R, Ramkumar R, Balasubramani G, Aiswarya D, and Perumal P 2017 Structural characterization and evaluation of mosquito-larvicidal property of silver nanoparticles synthesized from the seaweed Turbinaria ornata (Turner) J Agardh 1848 Artif Cells Nanomed Biotech 45(5): 990-998

[13] Ramkumar V S, Pugazhendhi A, Prakash G, Ahila N K, Vinoj G, Selvam S, Kumar G, Kannapiran E, and Rajendran R B 2017 Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications Biomed Pharmacother 92: 479-490

[14] Gonzalez-Ballesteros N, Prado-Lopez S, Rodriguez-Gonzalez J B, Lastra M, and Rodriguez-Ariguelles M C 2017 Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells Colloids and Surfaces B: Biointerfaces 153: 190-198

[15] Khan M N A, Choi J S, Lee M C, et al 2008 Anti-inflammatory activities of methanol extracts from various seaweed species Journal of Environmental Biology 29(4): 465-469

[16] Michael P 1984 Metode ekologi: untuk Penyelidikan Ladang dan Laboratorium Jakarta: Universitas Indonesia Press [In Indonesian]

[17] Nybakken J W 1992 Biologi Laut Terjemahan M Eidman Jakarta: Gramedia [In Indonesian]

[18] Suantika Gede dkk 2007 Biologi Kelautan Jakarta: Universitas terbuka (in Bahasa Indonesia)

[19] Mubarak H S, Ilyas W, Ismail I S, and Wahyuni S T, Hartati E, Pratiwi Z, Jangkaru, and Arifudin 1990 Petunjuk Teknis Budidaya Rumput Laut PHP/KAN/PT/ 13/1990 Jakarta:93hal [In Indonesian]

[20] Kadi A 2004 Potensi rumput laut dibebutapera irain pantai indenesia Jurnal Oseana 29(4): 25-36 [In Indonesian]

[21] Kadi A 1988 Rumput laut (Algae): Jenis Reproduksi Produksi Budidaya dan Pascapanen P3O-LIPI Jakarta: 71 hal [In Indonesian]

[22] Sodiq AQ Arisandi A 2020 Identifikasi Dan Kelimpahan Makroalgla Di Pantai Selatan Gunungkidul Juvenil 1(3) 325-330 [In Indonesian]

[23] Sedjadi dan Budihardjo 2000 Rumput Laut Komuditas Unggulan Grasindo Jakarta [In Indonesian]

[24] Litaay C 2014 Sebaran Dan Keragaman Komunitas Makro Algae Di Perairan Teluk Ambon Jurnal Ilmu dan Tekonologi Kelautan Tropis 6(1) 131-142 [In Indonesian]

[25] Mubarak H, Sulistijja A, Djamanai, and Sumsadhiharta O K 1998 Sumber daya rumput laut Dalam: Potensi dan Penyebaran Sumber daya Ikan laut Di Perairan Indonesia (Johannes W, Azis KA, Priyono BE, Tamuboloh GH, Naami N, dan Jamali A D) Komisi Nasional Pengkajian Stok Sumber daya Ikan Laut LIPI Jakarta: 226-241 [In Indonesian]

[26] Duncan T V 2011 Applications of nanotechnology in food packaging and food safety: barrier materials antimicrobials and sensors J Colloid Interface Sci 363(1):1-24

[27] Hoorudin and Irawan B 2015 Prospek nanoteknologi dalam membangun ketahanan pangan Dalam: Pasandaran E, Rachmat M, Hermanto, Ariani M, Sumedi, Suradisastra K, dan Haryono editors Pembangunan pertanian berbasis ekoregion Jakarta (ID): IAARD Press 49-67 [In Indonesian]

[28] Leitch M E, Casman E, and Lowry G V 2012 Nanotechnology patenting trends through an environmental lens: analysis of materials and applications J Nanopart Res 14(12):1-23
[29] Statnano Nanotechnology Product https://stattnano.com Accessed in October 2020
[30] Laforgue A, Simon P, Fauvarque J F, Mastragostino M, Soavi F, Sarrat J F, Lailler P, Conte M, Rossi E, and Sagauati S 2003 Activated carbon/conducting polymer hybrid Journal of the Electrochemical Society 150(5): A645-A651
[31] Li H T, He X D, Liu Y, Huang H, Lian S Y, Lee S T, and Kang Z H 2011 One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties Carbon 49(2): 605-609
[32] Varghese S, Kuriakose S, and Jose S 2013 Antimicrobial Activity of Carbon Nanoparticles Isolated from Natural Sources against Pathogenic Gram-Negative and Gram-Positive Bacteria Journal of Nanosciences 457865
[33] Gherghel L, Kubel C, Lieser G, Rader H J, and Mullen K 2002 Pyrolysis in the mesophase: A chemist's approach toward preparing carbon nano-and microparticles J Am Chem Soc 124(44): 13130-13138
[34] Ding L H and Olesik S V 2004 Synthesis of polymer nanospheres and carbon nanospheres using the monomer 18-dihydroxymethyl-1357-octatetrayne Nano Lett 4(11): 2271-2276
[35] Néabo, Gagné, Z, Carrière, C V, and Morin J F 2013 Soluble conjugated one-dimensional nanowires prepared by topochemical polymerization of a butadiynes-containing star-shaped molecule in the xerogel state Langmuir 29(10): 3446-3452
[36] Ding L H and Olesik S V 2005 Carbon microbeads produced through synthesis and pyrolysis of poly (18-dibutyl-1357-octatetrayne) Chem Mater 17(9): 2353-2360
[37] Yu J, Ahn J, Zhang Q, Yoon S F, Rusli, Li Y J, Gan B, Chew K, and Tan K H 2002 Catalyzed growth of carbon nanoparticles by microwave plasma chemical vapor deposition and their field emission properties J Appl Phys 91(1): 433-436
[38] Wang X Z, Hu Z, Chen X, and Chen Y 2001 Preparation of carbon nanotubes and nanoparticles by microwave plasma-enhanced chemical vapor deposition Scr Mater 44(8-9): 1567-1570
[39] Hsu W K, Terrones M, Hare J P, Terrones H, Kroto H W, Walton D R M 1996 Electrolytic formation of carbon nanostructures Chem Phys Lett 262(1-2): 161-166
[40] Jang J, Oh J H, and Stucky G D 2002 Fabrication of ultrfine conducting polymer and graphite nanoparticles Angew Chem Int Ed 41(21): 4016-4019
[41] Asano H, Muraki H, Endo H, Bandow S, and Iijima S 2010 Strong magnetism observed in carbon nanoparticles produced by the laser vaporization of a carbon pellet in hydrogen-containing Ar balance gas J Phys Condens Matt 22(33): 1-6
[42] Yang X G, Li C, Wang W, Yang B J, Zhang S Y, and Qian Y T 2004 A chemical route from PT Fe to amorphous carbon nanospheres in supercritical water Chem Commun 3: 342-343
[43] Santhoshkumar J, Rajeshkumar S, and Kumar S V 2017 Phyto-assisted synthesis, characterization and applications of gold nanoparticles—A review Biochem Biophy Rep 11: 46-57
[44] Rao P S, Rao S, Karmarkar S M 1988 Antibacterial activity from Indian species of Sargassum Bot Mar 31: 295-298 http://dxdoi.org/101515/botm198831429525
[45] Shelat Y A 1979 Bioactive substances from Indian marine algae Doctoral dissertation Ph. D Thesis Saurashtra University, Rajkot, India
[46] Balachandran P, Anson M S, Ajay Kumar T V, and Parthasarathy V 2016 Preliminary phytochemical analysis of the ethanolic extract of brown Seaweed Sargassum wightii Int J Res Pharm Sci 7(2): 154-156
[47] Kumar P, Senthamil S S, Lakshmi A P, Prem K K, Ganeshkumar R S, and Govindaraju M 2012 Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its antibacterial activity Nano Biomed Eng 4(1): 12-16 DOI: 105101/nbenv4i1p12-16
[48] Mehdinezhad N, Ghannadi A, and Yegdaneh A 2016 Phytochemical and biological evaluation of some Sargassum species from Persian Gulf Res Pharm Sci 11(3): 243-249
[49] Targete N M, Coen L D, Boettcher A A, and Tanner C E 1992 Biogeographic comparisons of marine algal polyphenolics: evidence against a latitudinal trend Oecologia 89(4): 464-470
[50] Mata Y N, Torres E, Blazquez M L, Ballester A, González F M J A, and Munoz J A 2009 Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus J Hazard Mater 166(2-3): 612-618

[51] Vijayaraghavan K, Mahadevan A, Sathishkumar M, Pavagadhi S, and Balasubramanian R 2011 Biosynthesis of Au (0) from Au(III) via biosorption and bioreduction using brown marine alga Turbinaria conoides Chem Eng J 167(1): 223-227

[52] Li B, Lu F, Wei X, and Zhao R 2008 Fucoidan: structure and bioactivity Molecules 13(8): 1671-1695

[53] Shanmugam N, Rajkamal P, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G, and Sundaramanickam A 2013 Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens Appl Nanosci 4(7): 881-888 DOI 10.1007/s13204-013-0271-4

[54] Mohandass C, Vijayaraj A S, Rajasabapathy R, Satheeshbabu S, Rao S V, Shiva C and De-Mello I 2013 Biosynthesis of Silver Nanoparticles from Marine Seaweed Sargassum cinereum and their Antibacterial Activity Indian J Pharm Sci 75(5): 606-610

[55] Saber H, Alwaleed E A, Ebnalwaled A, and Salem W 2017 Efficacy of silver nanoparticles mediated by Jania rubens and Sargassum dentifolium macroalgae: Characterization and biomedical applications Egyptian Journal of Basic and Applied Sciences 4(4): 249-255

[56] Balaraman P, Balamuralikrishnan B, Durairaj K, Durai M, Kamyab H, Park S, Chelliaapan S, Lee C T, Maluventhen V, and Maruthupandian A 2020 Phyco-synthesis of Silver Nanoparticles Mediated from Marine Algae Sargassum myrioystum and Its Potential Biological and Environmental Applications Waste and Biomass Valorization 11: 5255-5271 https://doi.org/10.1007/s12649-020-01083-5

[57] Namvar F, Azizi S, Ahmad M B, Shameli K, Mohamad R, Mahdavi M, and Tahir P M 2014 Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum Research on Chemical Intermediates 41(8): 5723-5730

[58] Namvar F S, Azizi M B, Ahmad et al 2015 Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum Research on Chemical Intermediates 41(8): 5723-5730

[59] Dhas T S, Kumar V G, Abraham L S, Karthick V, and Govindaraju K 2012 Sargassum myrioystum mediated biosynthesis of gold nanoparticles Spectrochim Acta A Mol Biomol Spectrosc 99: 97-101

[60] Liz- Marzá N M and Lado-Touriño I 1996 Reduction and Stabilizationof Silver Nanoparticles in Ethanol by Nonionic Surfactants Langmuir 12(15): 3585-3589

[61] Yakovlev A V and Golubeva O Y 2014 Synthesis Optimization of Lysozyme Monolayer-Coated Silver Nanoparticles in Aqueous Solution Journal of Nanomaterials 2014: 1-8 https://doi.org/10.1155/2014/460605

[62] Lee S W, Chang S H, Lai Y S, Lin C C, Tsai C M, Lee Y C, Chen J C, and Huang C L 2014 Effect of Temperature on the Growth of Silver Nanoparticles Using Plasmon-Mediated Method under the Irradiation of Green LEDs Materials 7(12): 7781-7798 https://doi.org/10.3390/ma7127781

[63] Luu T L A, Cao X T, Nguyen V T, Pham N L, Nguyen H L, and Nguyen C T 2020 Simple Controlling Ecofriendly Synthesis of Silver Nanoparticles at Room Temperature Using Lemon Juice Extractand Commercial Rice Vinegar Journal of Nanotechnology 2020 3539701

[64] Sari RN Nurhasni Yaqin MA 2017 Sintesis nanopartikel ZnO ekstrak sargassum sp. dan karakteristik produknya JPHPI 20(2): 238-254 [In Indonesian]

[65] Murugan K, Roni M, Panneerselvam C, Aziz A T, Suresh U, Rajaganesh R, Aruliah R, Mahyoub J A, Trivedi S, Rehman H, Al-Aoh H A N, Kumar S, Higuchi A, Vaseeharan B, Wei H, Senthil-Nathan S, Canale A, Benelli G 2018 Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi
and cotton bollworm Helicoverpa armigera Physiological and Molecular Plant Pathology 101(2):202-213

[66] Azizi S, Mansor B A, Farideh N, and Rosfarizan M 2014 Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract Materials Letters 116: 275-277

[67] Vinoth S Gowri Shankar P Gurusaravanan B Janani J Karthika Devi 2018 Anti-larvicidal Activity of Silver Nanoparticles Synthesized from Sargassum polycystum Against Mosquito Vectors Journal of Cluster Science 30(1): 171-180 https://doi.org/10.1007/s10876-018-1473-4

[68] Madhiyazhagan P, Murugan K, Kumar A N, Nataraaj T, and Dinesh D 2015 Panneerselvam Subramaniam J Kumar PM Suresh U Roni M Nicoletti M Alarfa| A Akon Higuchi 6 Murugan A Munusamy 5 Giovanni Benelli Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens Parasitol Res 114(11): 4305-17

[69] Ramakrishna M, Babu D R, Gengan R M, Chandra S, and Rao G 2015 Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity J Nanostruct Chem 6(1): 1-13 DOI 10.1007/s40097-015-0173-y

[70] Sivaraj R, Priya S V R, Rajiv P, and Rajendran V 2015 Sargassum Polycystum CAgardh Mediated Synthesis of Gold Nanoparticles Assessing its Characteristics and its Activity against Water Borne Pathogens J Nanomed Nanotechnol 6(3): 1-4

[71] Kumaresan M, Anand K V, Govindaraju K S, Tamilselvan S, and Kumar V G 2018 Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria Microbial Pathogenesis 124: 311-315

[72] Liang S, Guo F, Du S, Tian B, Dong Y, Jia X, and Qian L 2020 Synthesis of Sargassum char supported Ni-Fe nanoparticles and its application in tar cracking during biomass pyrolysis Fuel 275: 117923 doi:101016/jfuel2020117923

[73] Wood B R, Quinn M A, Burden F R, and McNaughton D 1996 An Investigation into FTIR spectroscopy as a biodiagnostic tool for cervical cancer Biospectroscopy 2(3): 143-153

[74] Sondi I and Salopek-Sondi B 2004 Silver nanoparticles as antimicrobial agent: a case study on E coli as a model for Gram-negative bacteria Journal of Colloid and Interface Science 275(1): 177-182 http://dxdoi.org/101016/jjcsis200402012

[75] Morones J R, Elechiguerra J L, Camacho A, Holt K, Kouri J B, Ramírez J T, and Yacaman M J 2005 The bactericidal effect of silver nanoparticles Nanotechnology 16(10): 2346-2353

[76] Kumari R M, Thapa N, Gupta N, Kumar A, and Nimesh S 2016 Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotoma leaf extract Adv Nat Sci: Nanosci Nanotechnol 7: 045009

[77] Roberts D A, Paul N A, Dworjany S A, Bird M I, and De Nys R 2015 Biochar from commercially cultivated seaweed for soil amelioration Scientific Reports 5(1): 1-6