Stream Macroinvertebrates and Carbon Cycling in Tangled Food Webs

Benoît O. L. Demars, Joanna L. Kemp, Baptiste Marteau, Nikolai Friberg, and Barry Thornton

ABSTRACT

The annual global loss of organic carbon from terrestrial ecosystems into rivers is similar to the organic carbon stored in soils each year. Dissolved organic matter (DOM) flows through the food web to macroinvertebrates, but little is known about the effect of DOM increase on stream food webs and how much macroinvertebrates may contribute to the regulation of carbon fluxes in rivers. Using a before and after control impact (BACI) experimental design, we increased by 12% (+ 0.52 mg C L\(^{-1}\)) the concentration of DOM in a stream for three weeks by adding sucrose, with a distinctive \(\delta^{13}C\) signature, to simulate a pulse of natural DOM supply from soils. We partitioned the diet of macroinvertebrates from carbon sources according to the green pathway (autotrophs) and detrital pathways (bacteria and terrestrial organic matter). Our flow food web approach based on C fluxes, with bacteria as a key node, showed the dominant contribution of the detrital pathways for macroinvertebrates in the reference stream. DOM addition induced changes in the diets of individual taxa, but did not have any strong effects on the relative overall contribution of the detrital pathways versus the green pathway. Autotrophic uptake of CO\(_2\) respired by bacteria was much larger than bacterial C flux to invertebrates (that is, the classic microbial loop) and allowed a significant fraction of natural allochthonous organic carbon to make its way to macroinvertebrates via autotrophs fixing CO\(_2\) respired by bacteria. Overall macroinvertebrates did not regulate directly to any great extent the flux of stream DOM towards downstream ecosystems.

Key words: macroinvertebrates; stream food web; resource use efficiency; microbial loop; allochthony; autochthony.

HIGHLIGHTS

- Carbon from bacteria supports autotrophs more than macroinvertebrates
Tangled food web twists the allochthony debate
Macroinvertebrates do not regulate directly flux of dissolved organic matter

INTRODUCTION

The annual global loss of organic carbon from terrestrial ecosystems into rivers is similar to the organic carbon stored in soils each year (Dawson 2013). The delivery of this organic matter to rivers is currently increasing in many parts of the world due to changes in climate, atmospheric pollution, land use and urbanisation (Freeman and others 2004; Monteith and others 2007; Noacco and others 2017). The fate of this organic matter in rivers remains difficult to characterise, however, because of the different forms (for example, leaf litter and dissolved organic matter) and varying quality of organic matter, as well as spatial heterogeneity and temporal dynamics (Raymond and others 2016; Bernhardt and others 2018; Drake and others 2018). There is a pressing need to better understand the interactions between flow regime, biota and ecosystem processes (Demars 2019; Palmer and Ruhi 2019).

Coarse particulate organic matter (including leaf litter and wood) supports macroinvertebrate secondary production via decomposers in small, forested streams (Wallace and others 1997, 2015; Hall and others 2000, 2001; Friberg and others 2002). Labile dissolved organic matter (DOM) has been traced through the food web into macroinvertebrates via the bacterial pathway (Meyer 1994). Allochthonous carbon may also be used by the autotrophs via the uptake of CO₂ respired by bacteria (Meyer and others 2008; Demars and others 2020). Macroinvertebrates could therefore assimilate a large part of autochthonous carbon via bacteria, that is, via the detrital pathway (Meyer 1994). Allochthonous carbon may also be used by the autotrophs via the uptake of CO₂ respired by bacteria (Meyer and others 2020), but it is not known how much may be assimilated by macroinvertebrates. If we want to disentangle the origin of organic carbon (allochthony versus autochthony) from the quality of carbon assimilated by macroinvertebrates (green web versus brown web), then three primary sources of carbon for macroinvertebrates must be partitioned: heterotrophs, autotrophs and terrestrial organic matter. Although bulk analysis of periphyton has been used in many studies, periphyton is the product of these three primary sources and is unlikely to help solving the role of the microbial loop in the allochthony debate. One way to partition more effectively the carbon sources assimilated (directly and indirectly) by macroinvertebrates is to use compound-specific stable isotope ratios rather than bulk tissue analyses (for example, Nielsen and others 2018; Liew and others 2019).

The lability of organic matter is less linked to the molecular structure (aromaticity) of the organic matter than to changes in environmental conditions, both biotic and abiotic (Schmidt and others 2011; Dungait and others 2012). Thus, rapid turnover of allochthonous organic matter in aquatic ecosystems can occur once it leaves the soil matrix (for example, Marin-Spiotta and others 2014;
Drake and others 2015; Demars 2019). Here we traced a small addition of labile organic carbon (sucrose, C₁₂H₂₂O₁₁) with a distinctive δ¹³C through the base of the food web and macroinvertebrates in a blackwater stream. The time scale of the experiment (three weeks) corresponded to a pulse of soil derived DOM during a period of hydrological connectivity (wet soils) driving stream heterotrophic respiration in the studied streams (Demars 2019). The lability of the organic matter added corresponded to a large fraction of the natural dissolved organic matter because 36 ± 18% of the annual carbon inputs from the land (excluding peak flows) were respired away by benthic microbial metabolism within about an hour of water transit time (Demars 2019) and sucrose addition produced similar effects on bacterial respiration as observed during hydrological pulses (Demars and others 2020). We hypothesised that macroinvertebrates from small open canopy blackwater streams would mostly assimilate C derived directly from autotrophs, and a shift towards the bacterial C pathway as bacterial production increased more (+ 89%) than net primary production (+ 12%) following sucrose addition (Demars and others 2020). We further traced allochthonous organic carbon through the green and brown webs. Finally, we related macroinvertebrate secondary production to DOM supply and bacterial DOM demand (heterotrophic respiration and production) to estimate the role macroinvertebrates play in carbon cycling in first order streams.

METHODS

Study Area

We studied two heather moorland catchments with soils rich in organic carbon, within the Glensaugh research station of the James Hutton Institute in north-east Scotland (Long 2° 33' W, Lat 57° 55' N). The streams were about 0.8–1.0 m wide in the studied sections and their channels significantly undercut the banks by 30–46% of stream width. Brown trout (Salmo trutta fario, Salmonidae) were present in both streams. The management of the land included regular heather burning (10–12% of surface area yearly target) for hill farming: mixed grazing of sheep and cattle. The reference stream (Birnie Burn, ECN site) showed substantial increase in annual flow-weighted mean concentrations of stream water DOC (+ 0.28 mg C L⁻¹ year⁻¹ during 1994–2007, Stutter and others 2011). The reference stream (catchment area 0.76 km²) was paired with an adjacent stream (Cairn Burn, catchment area 0.9 km²) in 2005 to carry out whole ecosystem experiments and trace the fate of the dissolved organic matter (Fig. 1; Demars 2019; Demars and others 2020).

Terrestrial DOC: Main Source of Organic Carbon

DOC was the dominant form of organic carbon (98% of organic carbon concentration in the water) under stable flows with average concentrations of 9.3 ± 1.7 mg C L⁻¹ in the two studied streams (Stutter and others 2013; Demars 2019). DOC was of terrestrial origin (Stutter and others 2013). The pool of particulate organic carbon in the sediment was very small (Demars 2019), and coarse particulate organic matter (CPOM) was less than 10 g C m⁻² (determined from Surber sampling of invertebrates, see below). With such extremely low standing mass of CPOM, it is therefore likely that fungi played a negligible role in the studied streams (see Venarsky and others 2018) and thus were not considered in this study.

Dissolved CO₂ and the Carbonate Equilibrium

This study was carried out during a period of stable flows (discharge 3 to 30 L s⁻¹) where the pH averaged 7.1 (range 6.8 to 7.3) and HCO₃ concentrations averaged 0.35 (range 0.2 to 0.5) mmol HCO₃ L⁻¹. HCO₃ concentrations represented about 80% of observed dissolved inorganic carbon concentrations. However, the streams were far from equilibrium with excess partial pressure of CO₂ in the range 1.8 to 5.6 times atmospheric pressure, despite very high gas exchange coefficient at the water–air interface, as noted in Demars (2019). Under the open system conditions with steady state concentrations (under constant light), the instantaneous rate of CO₂ hydration, that is, formation of HCO₃⁻ and H⁺ from CO₂ and H₂O, was equivalent to 0.6% of dissolved CO₂ flux and 0.5% of CO₂ evasion rate at the stream reach scale—with calculations following Stumm and Morgan (1981). Bacterial respiration rates (CO₂ production) were derived from O₂ metabolism (assuming 1:1 molar O₂:CO₂ ratio, see Demars 2019). Moreover, photosynthesisers in CO₂ rich and low alkalinity systems use dissolved CO₂ (Maberly and Madsen 2002). In our system HCO₃ came from groundwater and biotic fluxes of dissolved inorganic C were thus represented with CO₂ fluxes. In other systems with low reaeration rates and high pH (abundant
OH⁻), the conversion of CO₂ to HCO₃ by hydroxylation is important to consider (Emerson 1975).

DOC Addition

A carboy was refilled every two days with 6 kg of sucrose (granulated pure cane sugar, Tate & Lyle PLC, London, UK) dissolved in over 60 L of stream water filtered through muslin square in a large funnel. The carboy was set as a Mariotte bottle to ensure a constant addition of sucrose for 22 days (23 August–14 September) raising the background DOC concentration below the mixing zone by +0.52 mg C L⁻¹ at the top of the treatment reach (28 m downstream the injection point), equivalent to +12% of ambient average DOC concentration (Fig. 1, Demars and others 2020). This small addition of sucrose did not promote the growth of fungi or sheathed filamentous bacteria (Demars and others 2020).

Identification of Carbon Sources

Natural Sources

DOC was retrieved from the stream water by cation exchange resin (Stutter and others 2013). Autotrophs (filamentous green algae and bryophytes), and allochthonous organic carbon (CPOM), were collected by hand along both studied reaches before and after sucrose addition. Although aquatic bryophytes covered by filamentous algae were not thought to contribute much to primary production at the time of the experiment (Demars and others 2020), they may contribute to macroinvertebrate diet (Jones 1949; Dangles 2002; Parker and Huryn 2006; Carroll and others 2016).

Additional tiles were deployed, three weeks prior to the start of sucrose addition in the reference and treatment reach, to identify periphyton autotrophs and bacteria from δ¹³C compound-specific phospholipid fatty acids (PLFAs) from the literature and the change in δ¹³C of individual PLFAs due to sucrose addition in the treatment (Demars and others 2020). We assumed a fractionation factor of −3‰ for the δ¹³C of fatty acids relative to bulk tissue samples to make the fatty acid δ¹³C comparable with bulk analyses of the other sources and mixtures (including macroinvertebrates)—Demars and others (2020). Biofilm growth was slow and the tiles had to be collected at the end of the experiment to have enough material for the analyses, so the bacterial source could only be compared between the reference and the treatment at the end of the experiment. All samples were freeze-dried and milled prior to analyses for C, N, δ¹³C and δ¹⁵N.

For further details, see Demars and others (2020).

Sucrose

The proportion of carbon derived from added sucrose (Fₛ) in resources and macroinvertebrates was calculated from their δ¹³C in the reference (R) and treatment (T) reaches, before (subscript B) and after (subscript A) sucrose addition as follows:
with \(-12\) representing the carbon stable isotope ratio of sucrose \(\delta^{13}C = -12^{\circ}\). All uncertainties were added in quadrature using standard deviation \(\delta x\) for sums, and relative uncertainties \(\delta x/x\) for the division. The standard error of the mean was calculated as \(sem = \delta x/\sqrt{n}\) with \(n\) average number of samples in \(R_A, R_B, T_A, T_B\). We also calculated \(F_S\) for macroinvertebrate taxa without \(\delta^{13}C\) data prior to sucrose addition as follows: \(F_S = (T_A - R_A)/(12 - R_A)\). The observed \(\delta^{13}C\) of the macroinvertebrates in the treatment reach following sucrose addition \((T_B, \text{Cairn impact})\) were corrected prior to \(F_S\) calculations (see below, Sect. 2.6). The values for \(\delta^{13}C\) and \(F_S\) were given in Supplementary Information (see Table S1).

Analytical Methods

The total carbon and total nitrogen concentrations and the \(\delta^{13}C\) and \(\delta^{15}N\) natural abundance isotope ratios of the macroinvertebrate samples were determined using a Flash EA 1112 Series Elemental Analyser connected via a Conflo III to a DeltaPlus XP isotope ratio mass spectrometer (all Thermo Finnigan, Bremen, Germany)—see Demars and others (2020).

Macroinvertebrates

Macroinvertebrate densities were estimated from twelve to thirteen Surber samples \((20 \times 20 \text{ cm}, \text{mesh size } 200 \mu\text{m})\) collected randomly along the reaches of the reference and treatment streams, before and after sucrose addition (total 51 samples). The samples were stored in 70% alcohol, sorted and identified. Macroinvertebrates for C, N and stable isotope studies were collected by kick sampling and hand net. The animals were quickly sorted into Petri dishes to avoid contact between predators and prey, identified live within a day, placed in Eppendorf tubes and freeze-dried. Subsamples of all macroinvertebrate taxa were kept in 70% alcohol for reference and comparison with the Surber samples. We removed portable caddisfly cases prior to freezing and assumed enough time had elapsed for gut evacuation. The average individual biomass of macroinvertebrate taxa was assessed by weighing the freeze-dried mass of all individuals divided by the number of animals within an Eppendorf tube. Whole macroinvertebrates were then crushed before insertion into a tin capsule for C, N, \(\delta^{13}C\) and \(\delta^{15}N\) analyses. The \(\delta^{13}C\) values used in the calculations of diet source partitioning before, after, control, impact are given in Table S1.

Nearly eighty macroinvertebrate taxa were identified from 7049 individuals recovered from the 51 Surber samples. Of these we retained 28 taxa for the estimation of density, representing over 97% of the individuals found, after omitting some rare taxa (notably those present in only one stream or one period of sampling) and grouping some taxa into genus or families (to correspond with the level of identification of the sampling for stable isotopes). We determined the individual freeze-dried mass, C, N, \(\delta^{13}C\) and \(\delta^{15}N\) on bulk samples for 18 of these taxa representing 97% of the individuals of the 28 taxa, on which all our calculations were based (Table 1). We only included the ten most representative taxa in many of our figures, still covering about 94% of the individuals.

Corrections for Stable Isotopic Ratio at Equilibrium with the New Diet

Bacteria and algae were likely to reach the new stable isotope ratio equilibrium within a week (Hall and Meyer 1998; Collins and others 2016), and three weeks of sucrose addition were thought to be sufficient for invertebrates, albeit not fully for all consumer species (especially predators), with carbon turnover ranging from about 10–35 days (Le Cren and Lowe-McConnell 1980; Hall and Meyer 1998; Collins and others 2016 and references therein). The change in isotopic ratio value (here \(\delta^{13}C\) in %o) from the time sucrose was added to the stream (diet shift) can be estimated with an exponential decay model of tissue isotopic ratio over time (Hobson and Clark 1992; Vander Zanden and others 2015): \(\delta_t = \delta_n + (\delta_0 - \delta_n) \exp(-\lambda t)\) with \(\delta_0\), initial isotopic value (%o) of the organism at time \(t\), \(\delta_0\) initial isotopic value (%o) at equilibrium with the old diet, \(\delta_n\) isotopic value (%o) after equilibration with the new diet, \(\lambda\) tissue isotopic turnover rate \((\text{day}^{-1})\), and \(t\) time since the diet switch (days).

The unknown stable isotope ratio at equilibrium \(\delta_n\) was derived by rearranging the above equation as follows:

\[\delta_n = \frac{\delta_t - \delta_0 \exp(-\lambda t)}{1 - \exp(-\lambda t)}\]

The proportion of \(\delta^{13}C\) isotopic tissue turnover (\(\tau\)) was calculated as \(\tau = \delta_t/\delta_n\) and indicated how close to equilibrium the isotopic ratio \(\delta^{13}C\) was in individual invertebrate taxa (Table S1). This model was
Order	Family	Species	FFG	Before density ind m⁻²	After density ind m⁻²	Control density ind m⁻²	Impact density ind m⁻²	After dry mass mg ind⁻¹	Impact dry mass mg ind⁻¹
Plecoptera	Nemouridae	Protonemura meyeri	Shr	31 ± 26	81 ± 50	179 ± 127	227 ± 170	0.27	0.13
	Leuctridae	Leuctra^a	Shr/Scr/Col	173 ± 104	892 ± 557	85 ± 41	138 ± 43	0.23	0.29
	Perlodidae	Perlodidae^b	Pre/Shr	2 ± 3	38 ± 21	0 ± 0	31 ± 13	0.75	0.05
Ephemeroptera	Baetidae	Baetidae (<i>Baetis rhodani</i>)	Scr/Col	358 ± 159	906 ± 446	183 ± 142	194 ± 81	0.39	0.63
Trichoptera	Limnephilidae	Limnephilidae^c	Shr	0 ± 0	38 ± 12	0 ± 0	19 ± 9	0.08	0.40
	Beraeidae	Beraea maurus	Shr/Col	6 ± 5	4 ± 3	4 ± 5	8 ± 5	0.50	0.25
	Odontoceridae	Odontocerum albiceps	Shr/Pre	15 ± 7	23 ± 13	12 ± 8	21 ± 10	3.43	0.20
	Polycentropodida	Plectrocnemia conspersa	Pre/Fil	4 ± 3	0 ± 0	4 ± 3	4 ± 3	3.07	1.60
	Rhyacophilidae	Rhyacophila^d	Pre	0 ± 0	12 ± 5	23 ± 15	58 ± 25	2.73	2.95
Coleoptera	Dytiidae	Orcoptes sanmarkii (ad)	Shr/Pre	4 ± 3	10 ± 8	17 ± 11	33 ± 17	1.35	1.03
	Elmidae	Elmis aetiosa (lv)	Scr/Shr	296 ± 194	462 ± 174	440 ± 173	1210 ± 442	0.36	0.40
	Elmidae	Elmis aetiosa (ad)	Scr/Shr	56 ± 62	108 ± 60	179 ± 110	400 ± 317	0.27	0.35
	Scirtidae	Elodes sp. (lv)	Scr/Shr	15 ± 13	42 ± 21	27 ± 15	40 ± 36	0.64	1.13
Diptera	Chironomidae	Chironomidae^e	mixed	106 ± 44	885 ± 284	600 ± 252	3302 ± 968	0.17	0.37
	Pediciidae	Dicranota sp.	Pre	31 ± 15	35 ± 18	44 ± 29	42 ± 18	0.48	1.67
	Simuliidae	Simuliidae	Fil	163 ± 110	231 ± 144	88 ± 47	104 ± 73	0.43	ND
Oligochaeta	Oligochaeta	Oligochaeta	Col	25 ± 11	40 ± 17	19 ± 20	48 ± 26	10.20	5.75
Hydracarina	Hydracarina	Hydracarina	Pre	8 ± 8	13 ± 6	12 ± 8	4 ± 3	0.17	ND

^a <i>L. hippopus, L. moselyi, L. fusca, L. inermis, L. nigra</i>.
^b <i>I. isoperla sp., D. bicaudata</i>.
^c <i>A. auricolis, P. potamophylax sp.</i>
^d <i>R. munda, R. oblitera, R. dorsalis</i>.
^e Mostly Orthocladiinae.
most appropriate for the Simuliidae, able to directly filter out colloids (Wotton 2009) on which sucrose may be adsorbed, but did not account for any time lag for lower trophic levels to reach equilibrium, so the estimates may still be conservative for other macroinvertebrates, the more so with the number of trophic levels (for example, invertebrate predators Rhyacophila and Plectrocnemia). For this reason, we computed two stable isotope ratios at equilib-rium with the new diet δ_{in} with $t = 21$ days and $t = 14$ days. These two estimates produced a bracket of likely δ^{13}C values for primary consumers.

The tissue isotopic turnover rate λ (day$^{-1}$) was derived from the isotopic half-life study of Vander Zanden and others (2015) general equation for invertebrates using fresh individual body mass, M (g)—see Method S1, Table S1:

$$\lambda = \frac{\ln(2)}{25.8M^{0.23}}$$

We converted our macroinvertebrate individual freeze-dried mass into fresh mass assuming freeze-dried mass was 20% of fresh mass (Waters 1977 cited in Wetzel 2001, p. 718).

Data Analyses for Carbon Sources and Pathways

Most food web studies now use δ^{13}C and δ^{15}N to identify the links (that is, diet). Here the BACI experimental design allowed the calculation of the proportion of sucrose (F_s) in all parts of the food web. F_s was used as a tracer, in addition to δ^{13}C, to determine the sources of carbon for bacteria and algae in the treatment reach after 21 days of sucrose addition (Demars and others 2020). Thus, the carbon pathways were identified with carbon tracers. End member mixing analyses were used to determine the proportion of C sources and their uncertainties in individual macroinvertebrate taxa. Autotrophic C was the average of filamentous green algae, periphyton autotrophs and bryophytes. The bryophytes were however introduced as a separate source from the other autotrophs in the treatment after sucrose addition (Cairn impact) because both δ^{13}C and its fraction of sucrose differed substantially from the other autotrophs (Demars and others 2020). No trophic enrichment factors (TEF) or isotopic fractionation was applied between sources and macroinvertebrates (cf McCutchan and others 2003 reporting an average $0.3 \pm 0.1\%$ fractionation for δ^{13}C in bulk tissue of consumers).

We checked the mixture data (macroinvertebrate taxa) were within the range of the sources and provided the numerical solutions using a Bayesian approach (MixSIAR 3.1.9, in R version 3.5.0, Stock and Semmens 2016; R Core Team 2018). MixSIAR used the Dirichlet distribution to specify the priors on source proportions. We used MixSIAR default minimally informative priors, assuming every possible set of proportions had equal probability (generalist diet)—see Stock and others (2018). The numerical solutions converged rapidly according to the Markov Chain Monte Carlo convergence diagnostics (Gelman-Rubin and Geweke).

Production of Macroinvertebrates

Secondary production was estimated from the samples collected at the end of the treatment period from the observed standing biomass (mg C m$^{-2}$) of individual taxa and macroinvertebrate daily growth rate (day$^{-1}$). The standing biomass was determined from the density (individuals m$^{-2}$) and average individual biomass (mg C individual$^{-1}$). The daily growth rate (G, day$^{-1}$) was determined from:

$$G = a \exp(bT)$$

with T average water temperature (10.5 °C), a and b taxon-specific constants derived from a global compilation of published data (Golubkov 2000; Gladyshev and others 2016, Table S1—similarly to Morin and Dumont 1994). Our approach was a pragmatic way to convert macroinvertebrate biomass estimates into secondary production units, knowing both are tightly related (Figure S1; Eklof and others 2017; Patrick and others 2019).

Ecosystem Carbon Fluxes and Efficiencies

Flow food webs based on carbon fluxes were assembled for the reference and treatment streams at the end of the experiment, the period for which we were able to distinguish biofilm autotrophs and bacteria δ^{13}C using PLFAs (see above). Differences in resource use efficiencies between the reference and treatment due to sucrose addition relied therefore on a simple comparison. We calculated the resource use efficiency of macroinvertebrate communities (sum of individual taxon contributions) as the ratios between macroinvertebrate secondary production and resource production (net primary production, bacterial production, DOM and sucrose fluxes), with all fluxes expressed in g C m$^{-2}$ day$^{-1}$. Net primary production was estimated...
as 0.5 ± 0.3 × GPP from whole stream metabolism. Heterotrophic respiration (HR) was estimated from whole ecosystem respiration minus autotrophic respiration. Heterotrophic (bacterial) production (HP) was derived from HR and heterotrophic growth efficiency (HGE range 5 to 20%) as follows:

\[HP = \frac{HR}{1 + HGE} \]

For more details, see Demars (2019) and Demars and others (2020).

Data Analyses of the Experiment (Stream Reach Scale)

We calculated the relative changes in macroinvertebrate densities, carbon fractions of autotrophic and natural terrestrial organic matter (OM) in macroinvertebrates using the values of the reference \((R)\) and treatment \((T)\) reaches, before \((B)\) and after \((A)\) sucrose addition as follows:

\[\text{Effect size} = \frac{(R_B - R_A) - (T_B - T_A)}{T_B} \]

Differences between the reference and treatment (when data prior to sucrose addition were not available) were quantified similarly as \((T_A - R_A)/T_A\). We calculated the effect size 10,000 times by varying randomly the values of the parameters according to their mean and standard deviation using a normal distribution and Monte Carlo simulations in R version 3.5.0 (R Core Team 2018; Method S2). We reported the 25th, 50th and 75th centiles (median and interquartile range). Because the experiment was unreplicated we did not report \(P\) values (see Hurlbert 1984). In the period prior to sucrose addition we used filamentous green algae and bryophyte \(\delta^{13}C\) to characterise the autotrophs in the reference and treatment reaches.

RESULTS

Macroinvertebrate Density, Biomass and Production

The macroinvertebrate total densities of the BACI were 1300, 4000, 2000 and 6000 individuals m\(^{-2}\), respectively (see Table 1). Sucrose addition may have decreased the average individual macroinvertebrate density by 81%, relative to the changes in the reference stream, but this decrease was very uncertain (about 500% interquartile range)—Figure S2. Chironomidae increased by 83% but with very large uncertainties (interquartile range 760%). At the end of the experiment, macroinvertebrate community biomass (dry mass) were 1.6 ± 0.8 g m\(^{-2}\) and 2.7 ± 1.1 g m\(^{-2}\) in the reference and treatment streams, respectively, and macroinvertebrate production was lower in the reference stream (20 ± 4 mg C m\(^{-2}\) day\(^{-1}\)) than in the treatment stream (36 ± 8 mg C m\(^{-2}\) day\(^{-1}\)).

Estimation of Isotopic Tissue Turnover in Macroinvertebrates

The tissue isotopic turnover rate \(\lambda\) ranged from 0.06 to 0.18 day\(^{-1}\) based on macroinvertebrate biomass of 0.05 to 10.2 mg dry mass ind\(^{-1}\) (Table 1, Table S1). The estimates of isotopic tissue turnover of consumers \((\tau)\) for the isotopic ratio \(\delta^{13}C\) were on average 96% (range 84–103%) over 14 days and 98% (range 93–101%) over 21 days, both very close to equilibrium. We used the isotopic tissue turnovers of consumers at \(\tau = 21\) days to correct the observed values of \(F_S\) and \(\delta^{13}C\) for the diet partitioning analyses for the treatment (Cairn impact, Table S1).

Tracing Sucrose into Macroinvertebrates

The BACI design allowed the quantification of the fraction of carbon derived from sucrose in the treatment reach for individual taxa with high accuracy (Fig. 2). The proportion of added sucrose \((F_S)\) in the macroinvertebrates varied widely between taxa, with \(F_S\) exceeding 30% in half of the taxa (Fig. 2). Among the ten most frequent and abundant taxa, Simuliidae had the highest proportion \((0.81 ± 0.03)\), followed by Protonemura, Leuctra, Baetidae and Rhyacophila \((0.40–0.53)\). Elmis, Dicranota, and Oligochaeta, consumed little or no sucrose derived food (see Table 1). Chironomidae assimilated C derived from sucrose only moderately \((0.33 ± 0.11)\), but because they were more abundant than other taxa, Chironomidae held 60% of the sucrose retained in the macroinvertebrate assemblage \((191 ± 62\) mg C m\(^{-2}\), Fig. 2). The mass of sugar retained by all macroinvertebrates was only 292 ± 107 mg C m\(^{-2}\), or about 25 g C for the treated stream reach, representing 0.2% of the sucrose flux over the three-week addition. Carbon flux from filter feeders were extremely small because the densities of blackflies were low (average 88–231 individuals m\(^{-2}\)).

Diet of Individual Macroinvertebrate Taxa

All invertebrates were within the bounds of the end members (sources), allowing to partition the diet of macroinvertebrate taxa (Fig. 3, Table S2 and Table S3). In the reference stream (at the end of the
experiment) most taxa assimilated a mixed diet including a large fraction of bacteria. Protonemura were mostly feeding on autotrophic C while Oligochaeta fed mostly on natural allochthonous organic matter—see Fig. 4. In the treatment, several taxa including Protonemura, Elmis aenea and Chironomidae derived their carbon from a large fraction of autotrophic C (Fig. 4), possibly larger than in the reference stream for Elmis aenea (Figure S3).

Four taxa were more abundant and determined the retention of primary sources: Baetidae and Oligochaeta in the reference and Elmis aenea and Chironomidae in the treatment (Fig. 4). The fraction of bacterial carbon in macroinvertebrates may be larger in the treatment relative to the reference in only three taxa: Leuctra, Baetidae and Rhyacophila (Figure S3). Simulidae switched to a diet dominated by sucrose (Fig. 4). The relative changes in autotrophs and natural terrestrial organic matter in invertebrate diet based on the more robust BACI design reflected similar patterns, except for Leuctra and Chironomidae (decrease in autotrophic C assimilation), adult Elmis aenea (decrease in terrestrial organic matter assimilation) and Chironomidae (increase in terrestrial organic matter)—Fig. 5.

Food Web Source Links to Macroinvertebrates

In the reference stream, macroinvertebrates fed predominantly on carbon directly derived from the detrital pathways (65 ± 25%): natural terrestrial organic matter (30 ± 15%) and bacteria (35 ± 20%), while autotrophs only contributed 35 ± 15%, see Fig. 6. The carbon originally derived from natural terrestrial organic matter contributed 54 ± 19% to macroinvertebrates: 30% directly, 0.51 \times 0.35 = 18\% through bacteria and 0.51 \times 0.37 \times 0.35 = 7\% through autotrophs (Fig. 6 and Table S4 for individual taxa).

In the treatment stream, it was possible to separate all sources with the following contribution to macroinvertebrate diet: autotrophs (48 ± 17%; including 22 ± 8% for bryophytes and 25 ± 11% for algae and biofilm autotrophs), sucrose (1 ± 1%), bacteria (28 ± 11%) and allochthonous natural organic matter (23 ± 11%), see Fig. 6. Hence, the detrital pathways (52 ± 16%) directly assimilated by macroinvertebrates were equivalent to the green pathway (autotroph) in the treatment. The carbon originally derived from natural terrestrial organic matter contributed 30 ± 12% to macroinvertebrates: 23% directly, 0.18 \times 0.28 = 5\% through bacteria and 0.18 \times 0.26 \times 0.25 = 1\% through algae and biofilm autotrophs, as bryophytes did not uptake bacterial CO$_2$ in the treatment streams (Fig. 6). Sucrose was the original source of 25 ± 8% of the carbon assimilated by macroinvertebrates: 1% directly, 0.62 \times 0.28 = 17\% through bacteria and 0.13 \times 0.25 = 3\% through algae and biofilm autotrophs (Fig. 6). So natural organic matter and sucrose contributed 51 ± 14% of macroinvertebrate diet in the treatment stream.

Hence, the addition of sucrose did not increase (as expected) the contribution of the detrital pathways to macroinvertebrate diet in the treatment stream (52 ± 16%) relative to the reference stream (65 ± 25%). The carbon originally derived from DOM (including sucrose) was virtually the same in the reference (54 ± 19%) and treatment stream (51 ± 14%).
Resource Use Efficiencies in Flow Food Webs

Macroinvertebrate production and links to sources were added to the base of the food webs of the reference and treatment streams (Fig. 7). In the reference stream, the direct assimilation of autotrophic C in macroinvertebrates was 7 ± 3 mg C m$^{-2}$ day$^{-1}$ and represented $3 \pm 2\%$ of net primary production (Fig. 7). Regarding bacterial C, $1.0 \pm 0.7\%$ to $4.7 \pm 3.3\%$ of heterotrophic production was assimilated by macroinvertebrates. In

Figure 3. Macroinvertebrate (circles) and sources (squares with error bars ± SD) in the reference stream Birnie Burn (Before, After) and treatment stream Cairn Burn (Control, Impact) of the before and after control impact (BACI) design. A random jittering was applied on the y axes of the Before, After, Control graphs to better visualise the data points. The source end members (filled squares) were autotrophs (including filamentous green algae, periphyton autotrophs and bryophytes—except in Impact where bryophytes were separated), organic matter (OM) and bacteria for all macroinvertebrates except for Simuliidae ($\delta^{13}C = -16.85, F_S = 0.81$) which also had sucrose as an end member in the treatment (Cairn impact). Periphyton was not used as a source in this study because it was a mixture of autotrophs, bacteria and natural terrestrial organic matter. The macroinvertebrate isotopic ratios of the impacted stream were corrected to be at equilibrium following the diet shift. No trophic enrichment factors (TEF) or isotopic fractionation were applied. The source bacteria could not be identified in the period prior to sucrose addition (Before, Control)—see “Method” section.
the treatment, the trophic transfer efficiencies were 1.8 ± 1.4% for autotrophic C and 1.5 ± 0.9% to 6.7 ± 3.8% for bacterial C—Fig. 7. The trophic transfer efficiencies appeared similar between the reference and the treatment streams. In the reference stream, assuming invertebrate production of the studied reach is similar throughout the full stream length (about 500 m² stream area), the daily carbon retention by macroinvertebrates represented only about 0.14% of the soil organic carbon

![Figure 4](image1.png)
Figure 4. Fractions of C sources (1 = 100%) in macroinvertebrates and their specific biomass (mg C m⁻²) in the reference and treatment reaches after three weeks of sucrose addition. Note only Simuliidae had sucrose as an additional direct source in the treatment (Cairn impact). lv = larvae, ad = adult, OM = organic matter.

![Figure 5](image2.png)
Figure 5. Relative changes (size effects, 1 = 100%) in the fractions of autotrophs and natural terrestrial organic matter in the diet of macroinvertebrates due to sucrose addition. Size effects were calculated as the median from 10,000 Monte Carlo simulations using the BACI experimental design. Error bars represent the interquartile range. lv = larvae, ad = adult.
delivered to the stream at the catchment scale (DOC flux at the outlet + heterotrophic respiration). The daily soil-derived carbon retention by macroinvertebrates at the catchment scale was only 3–12% of bacterial retention, and less than 1% of bacterial respiration and CO2 biotic emissions in the reference stream (Fig. 7).

Figure 6. Carbon source partitioning of autotrophs (black arrows), bacteria (grey arrows) and macroinvertebrate community (white arrows; weighted sum of individual contributions) in the reference (top) and treatment (bottom) after three weeks of sucrose addition. Numbers represent the proportion (%) of the sources and their uncertainties (SD). The calculations were based on carbon stable isotope ratio analyses ($\delta^{13}C$) and, in the treatment, also with the fraction of sucrose in the different compartments using the Bayesian mixing model MixSIAR.

Discussion

The flow food web including three primary sources (autotrophs, bacteria and natural organic matter) was dominated by the detrital pathway for macroinvertebrates. The small change in carbon supply (+ 12% ambient DOC), mimicking a natural pulse of dissolved organic matter, induced changes in the diet of individual taxa but did not have any disproportionate effects on the overall relative contribution of the detrital pathways versus green pathway. Daily carbon retention by macroinvertebrates represented only a tiny fraction of the flux of soil-derived DOC available at the base of the stream food web.

Twist in the Allochthony Debate

Bacteria play a central role in the food cycle (Lindeman 1942) and the use of fatty acid compound-specific stable isotope ratios allowed the quantification of the detrital pathway of carbon flow to invertebrates (65 ± 25% and 52 ± 16% in the reference and treatment, respectively). On an annual basis, the detrital pathway is likely to be much more prominent because gross primary production was extremely low during the winter (Demars 2019). The periphyton was clearly a mixture of primary sources and its use in flow food web cannot disentangle the origin of carbon, unless primary sources can be identified from compound-specific stable isotopes (for example, fatty acids or amino acids, Liew and others 2019; Demars and others 2020). When there are significant carbon exchanges between autotrophs and bacteria, bulk analyses of autotrophs and allochthonous organic matter can only tell us something about the quality of the food directly assimilated by macroinvertebrates, and not the origin of the carbon (allochthony versus autochthony). For now, the role of autochthonous carbon in consumers may have been overestimated in studies relying mostly from reviews of stable isotope bulk analyses (for example, Thorp and Delong 2002; Brett and others 2017). A range of approaches is now available to trace biomolecules through the food webs to improve further our understanding (for example, Nielsen and others 2018; Liew and others 2019; Whitteman and others 2019). Food web studies derived from carbon stable isotope ratios are based on assimilated carbon, which may differ from consumed (or ingested) carbon due to preferential uptakes as shown for bacteria (for example, Guillemette and others 2016). Further studies should
strive to directly quantify the fluxes of respired CO$_2$ and its δ^{13}C.

Dissolved Organic Matter Retention by Macroinvertebrates

Although this study shows that assimilation of DOC by macroinvertebrates was low relative to total DOC fluxes, there are indirect macroinvertebrate-mediated pathways that may still be significant (for example, Malmqvist and others 2001; Parr and others 2019, 2020). In our study macroinvertebrate recycling of limiting nutrients is unlikely to play a large role as the small addition of sucrose led to large shift in autotroph C:N:P stoichiometric ratios indicating nutrient limitation (Demars and others

Figure 7. Flow food webs, bacterial respiration and biotic CO$_2$ emissions under stable flows; in-stream biotic carbon fluxes (g C m$^{-2}$ day$^{-1}$, black arrows) in the reference stream (Birnie after) and treatment stream (Cairn impact) after three weeks of sucrose addition, based on source partitioning using stable isotopes (Fig. 6) and production estimates. The C fluxes going to autotrophs, bacteria and macroinvertebrates represent rates of biomass accrual, that is, net primary production, heterotrophic production and macroinvertebrate secondary production. Two estimates were given for bacterial production based on heterotrophic growth efficiencies of 0.05 (low) and 0.2 (moderate). Note the supply of natural terrestrial organic matter in the reference stream (85 ± 15 g C m$^{-2}$ day$^{-1}$) was higher than in the treatment (50 ± 15 g C m$^{-2}$ day$^{-1}$), also from lateral inflows, explaining the similar rates of bacterial production and respiration.
Macroinvertebrate Diet

The assimilation of labile carbon (here sucrose) varied greatly between species, as observed in previous studies (for example, Hall 1995; Hall and Meyer 1998; Collins and others 2016). The functional plasticity of macroinvertebrate diet is also well known (for example, Friberg and Jacobsen 1994; Dangles 2002; Merritt and Cummins 2007). Blackflies (Simuliididae) can directly assimilate dissolved organic matter, extracellular polysaccharides and colloidal particles (Couch and others 1996; Hershey and others 1996; Ciborowski and others 1997; Wotton 2009). The added sucrose solution was made every two days with stream water and it is likely that sucrose was adsorbed onto colloidal particles prior to filtration by Simulidae.

Chironomids relied to a large extent on autochthonous carbon in the treatment, against our expectations. In the treatment, Microspora was noticeably gelatinous to the touch and hosted chironomids in high densities, possibly feeding directly on degenerate filaments or exopolymeric substances secreted by the algae under strong nutrient limitations (Demars and others 2020). Stable isotope analyses suggested bryophytes contributed substantially to the diet of Limnephilidae (62 ± 17%) and Elmis aenea, both larvae (34 ± 16%) and adults (42 ± 16%), justifying bryophytes as a separate source from the other autotrophs in the treatment reach, after sucrose addition. Contribution from methane-oxidising bacteria (known for their very low δ13C) was dismissed in these small streams draining catchments with soils rich in organic matter, because measured δ13C of total inorganic carbon (75–95% as CO2) reflected natural soil (or soil derived) organic matter in a stream running on the other side of the hill (Palmer and others 2001).

Macroinvertebrate Density, Biomass and Production

In response to sucrose addition, chironomids may have shown a small density increase relative to the other taxa. Their growth rate may have been higher, as indicated by their larger average size in the treatment (0.37 mg C ind⁻¹) relative to the reference (0.17 mg C ind⁻¹). A three-year addition of sucrose (0.25–1.00 mg C L⁻¹) in a forested and flow regulated stream resulted in higher bacterial (Sphaerotilus), chironomids and trout production (Warren and others 1964). Similar results were reported from shaded experimental side channel experiments where increased DOC (2–3 mg C L⁻¹ of sucrose) led to higher bacterial abundances and higher densities of Chironomidae (Fuller and others 2004). A massive addition of dextrose (20 mg C L⁻¹) in a forested stream for eight-week periods also led to the production of thick microbial mats of sheathed bacteria and aquatic fungus on which macroinvertebrates thrived (including chironomids, Wilcox and others 2005). Our experiment simulating a natural pulse of dissolved organic matter in an open stream with bryophytes and filamentous green algae (Microspora) produced more subtle effects on invertebrates than in previous studies, as expected (Collins and others 2016).

Our method to estimate individual macroinvertebrate biomass was very rapid but lacked estimation of uncertainties. The calculations of macroinvertebrate growth rate for secondary production were also rapidly executed from individual taxa using empirical equations derived from a global synthesis (Golubkov 2000; Gladyshev and others 2016). Our secondary production estimates did not deviate, however, from expectations based on more accurately determined secondary productions using more time consuming approaches (Figure S1, Patrick and others 2019).

CONCLUSIONS

Our flow food web approach, with bacteria playing a pivotal role, showed the dominant contribution of the detrital pathways for macroinvertebrates in the reference, a first-order open blackwater stream. The small change in carbon supply (+ 12% ambient DOC), simulating a natural pulse of dissolved organic matter, induced changes in the diet of individual taxa, but did not have any strong effects on the overall relative contribution of the detrital pathways versus the green pathway. Autotrophic use of CO2 respired by bacteria played a much larger role than bacterial C assimilation by invertebrates (that is, the classic microbial loop, Meyer 1994), showing a much more strongly inter-connected base of the food web than generally depicted (for example, Thorp and Delong 2002). Autotrophic use of CO2 respired by bacteria allowed a significant fraction of natural organic carbon (7% in the reference) to make its way to
macroinvertebrates via autotrophs fixing CO₂ respired by bacteria. Our findings suggest that daily carbon retention by macroinvertebrates represented only a tiny fraction of the flux of soil derived organic carbon available at the base of the stream food web. Hence, while anthropogenic changes in allochthonous organic matter may impact the diet of individual species of stream macroinvertebrates, with possible knock on effects for upper trophic levels and riparian ecosystems, macroinvertebrates may not regulate directly to any great extent the flux of stream DOM towards downstream ecosystems. The reciprocal exchange of carbon between autotrophs and heterotrophs should take centre stage in flow food web studies if we are to understand the impact of changing DOM supply driven by climate and land use change on stream macroinvertebrates.

ACKNOWLEDGMENTS
We thank Carol Taylor and Helen Watson for managing the long-term monitoring at Glensaugh, Gillian Martin for preparing and running the samples for stable isotope ratio analysis, Glensaugh farm manager Donald Barrie for hosting BOLD and JLK during the experiment and facilitating our work. This study was funded by the Scottish Government Rural and Environmental Science and Analytical Services (RESAS), with additional funding support as part of the UK Environmental Change Network (ECN), and NERC Macronutrient Cycles Program. The writing up was partly funded by the Norwegian institute for water research (NIVA). We thank two anonymous referees for their comments.

DATA AVAILABILITY
The raw data necessary to reproduce all figures and calculations were given in supplementary information and Demars and others (2020).

FUNDING
Open access funding provided by Norwegian Institute For Water Research.

OPEN ACCESS
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

REFERENCES
Baxter CV, Fausch KD, Saunders WC. 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biology 50:201–20.
Bernhardt ES, Heffernan JB, Grimm NB, Stanley EH, Harvey JW, Arroita M, Appling AP, Cohen MJ, McDowell WH, Hall RO, Read JS, Roberts BJ, Stets EG, Yackulic CB. 2018. The metabolic regimes of flowing waters. Limnology and Oceanography 63:599–118.
Brett MT, Bunn SE, Chandra S, Galloway AWE, Guo F, Kainz MJ, Kankaala P, Lau DCP, Moulton TP, Power ME, Rasmussen JB, Taipale SJ, Thorp JH, Wehr JD. 2017. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshwater Biology 62:833–53.
Carr GM, Morin A, Chambers PA. 2005. Bacteria and algae in stream periphyton along a nutrient gradient. Freshwater Biology 50:1337–50.
Carroll TM, Thorp JH, Roach KA. 2016. Autochthony in karst spring food webs. Hydrobiologia 776:173–91.
Ciborowski JJH, Craig DA, Fry KM. 1997. Dissolved organic matter as food for black fly larvae (Diptera: Simuliidae). Journal of the North American Benthological Society 16:771–80.
Cole JJ, Carpenter SR, Kitchell J, Pace ML, Solomon CT, Weidel B. 2011. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proceedings of the National Academy of Sciences of the United States of America 108:1975–80.
Cole JJ, Findlay S, Pace ML. 1988. Bacterial production in fresh and saltwater ecosystems - a cross-system overview. Marine Ecology Progress Series 43:1–10.
Collins SM, Sparks JP, Thomas SA, Wheatley SA, Flecker AS. 2016. Increased light availability reduces the importance of bacterial carbon in headwater stream food webs. Ecosystems 19:396–410.
Couch CA, Meyer JL, Hall RO. 1996. Incorporation of bacterial extracellular polysaccharide by black fly larvae (Simuliidae). Journal of the North American Benthological Society 15:289–99.
Cumminws KW, Klug JJ, Wetzel RG, Petersen RC, SuberkroppKF, Manny BA, Wuycheck JC, Howard FO. 1972. Organic enrichment with leaf leachate in experimental lotic ecosystems. Bioscience 22:719–22.
Danger M, Cornut J, Chauvet E, Chavez P, Elger A, Lecerf A. 2013. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94:1604–13.
Dangles O. 2002. Functional plasticity of benthic macroinvertebrates: implications for trophic dynamics in acid streams. Canadian Journal of Fisheries and Aquatic Sciences 59:1563–73.

Dawson JJC. 2013. Losses of soil carbon to the atmosphere via inland surface waters. Lal R editor. Ecosystem Services and Carbon Sequestration in the Biosphere. Dordrecht: Springer Science. p 183–208.

Demars BOL. 2019. Hydrological pulses and burning of dissolved organic carbon by stream respiration. Limnology and Oceanography 64:406–21.

Demars BOL, Friberg N, Thornton B. 2020. Pulse of dissolved organic matter alters reciprocal carbon subsidies between autotrophs and bacteria in stream food webs. Ecological Monographs 90:e01399.

Di Sabatino A, Gerecke R, Martin P. 2000. The biology and ecology of loic water mites (Hydrachnida). Freshwater Biology 44:47–62.

Drake TW, Raymond PA, Spencer RGM. 2018. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnology and Oceanography Letters 3:132–42.

Drake TW, Wickland KP, Spencer RGM, McKnight DM, Striegl RG. 2015. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proceedings of the National Academy of Sciences of the United States of America 112:13946–51.

Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP. 2012. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology 18:1781–96.

Eklöf J, Austin A, Bergström U, Donadi S, Eriksson B, Hansen J, Sundblad G. 2017. Size matters: relationships between body size and body mass of common coastal, aquatic invertebrates in the Baltic Sea. PeerJ 5:e2906.

Emerson S. 1975. Chemically enhanced CO2 gas exchange in a eutrophic lake: A general model. Limnology and Oceanography 20:743–53.

Finlay JC. 2001. Stable-carbon-isotope ratios of river biota: Implications for energy flow in lotic food webs. Ecology 82:1052–64.

Fischer H, Sachse A, Steinberg CFW, Pusch M. 2002. Differential retention and utilization of dissolved organic carbon by bacteria in river sediments. Limnology and Oceanography 47:1702–11.

Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J. 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–8.

Friberg N, Jacobsen D. 1994. Feeding plasticity of two detritivore shredders. Freshwater Biology 32:133–42.

Friberg N, Larsen AD, Rodkjaer A, Thomsen AG. 2002. Shredder guilds in three Danish forest streams contrasting in forest type. Archiv für Hydrobiologie 153:197–215.

Fuller RL, Kennedy BP, Nielsen C. 2004. Macroinvertebrate responses to algal and bacterial manipulations in streams. Hydrobiologia 523:113–26.

Gladyshev MI, Sushchik NN, Anischenko OV, Makhotina ON, Kolmakov VI, Kalachova GS, Kolmakova AA, Dubovskaya OP. 2011. Efficiency of transfer of essential polyunsaturated fatty acids versus organic carbon from producers to consumers in a eutrophic reservoir. Oecologia 165:521–31.

Gladyshev MI, Sushchik NN, Shulepina SP, Ageev AV, Dubovskaya OP, Kolmakova AA, Kalachova GS. 2016. Secondary production of highly unsaturated fatty acids by zoobenthos across rivers contrasting in temperature. River Research and Applications 32:1252–63.

Golubkov SM. 2000. Functional Ecology of Aquatic Insects. St Petersburg (in Russian): Russian Academy of Sciences, Proceeding of the Zoological Institute. 294p.

Grieve A, Lau DCP. 2018. Do autochthonous resources enhance trophic transfer of allochthonous organic matter to aquatic consumers, or vice versa? Ecosphere 9:e02307.

Güllermette F, McCallister SL, del Giorgio PA. 2016. Selective consumption and metabolic allocation of terrestrial and algal carbon determine allochthony in lake bacteria. The ISME Journal 10:1373–82.

Guo F, Kainz MJ, Sheldon F, Bunn SE. 2016a. Effects of light and nutrients on periphyton and the fatty acid composition and somatic growth of invertebrate grazers in subtropical streams. Oecologia 181:449–62.

Guo F, Kainz MJ, Valdez D, Sheldon F, Bunn SE. 2016b. High-quality algae attached to leaf litter boost invertebrate shredder growth. Freshwater Science 35:1213–21.

Hall RO. 1995. Use of a stable carbon isotope addition to trace bacterial carbon through a stream food web. Journal of the North American Benthological Society 14:269–77.

Hall RO, Likens GE, Malcom HM. 2001. Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest. Journal of the North American Benthological Society 20:432–47.

Hall RO, Meyer JL. 1998. The trophic significance of bacteria in a detritus-based stream food web. Ecology 79:1993–2012.

Hall RO, Wallace JB, Eggert SL. 2000. Organic matter flow in stream food webs with reduced detrital resource base. Ecology 81:3445–63.

Hershey AE, Merritt RW, Miller MC, McCrea JS. 1996. Organic matter processing by larval black flies in a temperate woodland stream. Oikos 75:324–32.

Hobson KA, Clark RG. 1992. Assessing avian diets using stable isotopes: Turnover of 13C in tissues. Condor 94:181–8.

Hotchkiss ER, Hall RO Jr, Baker MA, Rosi-Marshall EJ, Tank JL. 2014. Modeling priming effects on microbial consumption of dissolved organic carbon in rivers. Journal of Geophysical Research-Biogeosciences 119:982–95.

Hurlbert SH. 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54:187–211.

Haack TK, McFeters GA. 1982. Nutritional relationships among microorganisms in an epilithic biofilm community. Microbial Ecology 8:115–26.

Jones JRE. 1949. A further ecological study on calcareous streams in the “Black Mountain” district of South Wales. Journal of Animal Ecology 18:142–59.

Le Cren ED, Lowe-McConnell RH. 1980. The functioning of freshwater ecosystems. Cambridge: Cambridge University Press.

Liew JH, Chua KWJ, Arsenault ER, Thorp JH, Suvarnaraksha A, Amiruddin A, Yeo DCJ. 2019. Quantifying terrestrial carbon in freshwater food webs using amino acid isotope analysis: Case study with an endemic cavefish. Methods in Ecology and Evolution 10:1594–605.

Maberly SC, Madsen TV. 2002. Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Functional Plant Biology 29:393–405.
Malmqvist B, Wotton RS, Zhang YX. 2001. Suspension feeders transform massive amounts of seston in large northern rivers. Oikos 92:35–43.

Marcarelli AM, Baxter CV, Mineau MM, Hall RO Jr. 2011. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92:1215–25.

Marin-Spiotta E, Gruley KE, Crawford J, Atkinson EE, Miesel JR, Greene S, Cardona-Correa C, Spencer RGM. 2014. Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry 117:279–298.

McCutchan JH, Lewis WM, Kendall C, McGrath CC. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–90.

Merritt RW, Cummins KW. 2007. Trophic relationships of macroinvertebrates. Hauer FR, Lamberti E editors. Methods in Stream Ecology. Amsterdam: Elsevier, p585–609.

Meyer JL. 1994. The microbial loop in flowing waters. Microbial Ecology 28:195–9.

Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T, Wilander A, Skjellkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–9.

Morin A, Dumont P. 1994. A simple model to estimate growth rate of lotic insect larvae and its value for estimating population and community production. Journal of the North American Benthological Society 13:357–67.

Nakano S, Murakami M. 2001. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of the United States of America 98:166–70.

Nielsen JM, Clare EL, Hayden B, Brett MT, Kratina P. 2018. Diet tracing in ecology: Method comparison and selection. Methods in Ecology and Evolution 9:278–91.

Noacco V, Wagener T, Worrall F, Burt TP, Howden NJK. 2017. Organic carbon bioavailability in an algal controlled ecosystem. Freshwater Biology 65:1298–310.

Patrick CJ, McGarvey DJ, Larson JH, Cross WF, Allen DC, Benke AC, Brey T, Huryn AD, Jones J, Murphy CA, Ruffing C, Saffarini P, Whiles MR, Wallace JB, Woodward G. 2019. Precipitation and temperature drive continental-scale patterns in stream invertebrate production. Science Advances 5:eaa2348.

Raymond PA, Saisers JE, Sobczak WV. 2016. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97:5–16.

Ruess L, Müller-Navarra DC. 2019. Essential biomolecules in food webs. Frontiers in Ecology and Evolution 7:269.

Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56.

Scott JT, Back JA, Taylo JM, King RS. 2008. Does nutrient enrichment decouple algal-bacterial production in periphyton? Journal of the North American Benthological Society 27:332–44.

Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX. 2018. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6:e5906.

Stock BC, Semmens BX. 2016. MixSIAR GUI User Manual. Version 3.1.

Stumm W, Morgan JJ. 1981. Aquatic Chemistry. An introduction emphasizing chemical equilibria in natural waters. New York: Wiley Interscience. 780p.

Stutter MI, Lumsdon DG, Rowland AP. 2011. Three representative UK moorland soils show differences in decadal release of dissolved organic carbon in response to environmental change. Biogeoosciences 8:3661–75.

Stutter MI, Richards S, Dawson JJC. 2013. Biodegradability of natural dissolved organic matter collected from a UK moorland stream. Water Research 47:1169–80.

Tachet H, Bournaud M, Richoux P, Usseglio-Polatera P. 2002. Invertébrés d'Eau Douce: Systématique, Biologie, Écologie. Paris (in French): CNRS Éditions.

Tantentzap AJ, Kielstra BW, Wilkinson GM, Berggren M, Craig N, del Giorgio PA, Grey J, Gunn JM, Jones SE, Karlsson J, Solomon CT, Pace ML. 2017. Terrestrial support of lake food webs: Synthesis reveals controls over cross-ecosystem resource use. Science Advances 3:e1601765.

Thorp JH, Delong AD. 2002. Dominance of autotrophic autotrophic carbon in food webs of heterotrophic rivers. Oikos 96:543–50.

Vander Zanden MJ, Clayton MK, Moody EK, Solomon CT, Weidel BC. 2015. Stable isotope turnover and half-life in animal tissues: a literature synthesis. Plos One 10:e0116182.

Venarsky MP, Benstead JP, Huryn AD, Huntsman BM, Edmonds JW, Findlay RH, Wallace JB. 2018. Experimental detritus manipulations unite surface and cave stream ecosystems along a common energy gradient. Ecosystems 21:629–42.

Wallace JB, Eggert SL, Meyer JL, Webster JR. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–4.

Wallace JB, Eggert SL, Meyer JL, Webster JR. 2015. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data. Ecology 96:1213–28.
Warren DE, Wales JH, Davis GE, Doudoroff P. 1964. Trout production in an experimental stream enriched with sucrose. Journal of Wildlife Management 28:617–60.

Wetzel RG. 2001. Limnology. Lake and river ecosystems. San Diego: Academic Press. 1006p.

Whiteman JP, Smith EAE, Besser AC, Newsome SD. 2019. A guide to using compound-specific stable isotope analysis to study the fates of molecules in organisms and ecosystems. Diversity 11:8.

Wiegner TN, Kaplan LA, Ziegler SE, Findlay RH. 2015. Consumption of terrestrial dissolved organic carbon by stream microorganisms. Aquatic Microbial Ecology 75:225–37.

Wilcox HS, Wallace JB, Meyer JL, Benstead JP. 2005. Effects of labile carbon addition on a headwater stream food web. Limnology and Oceanography 50:1300–12.

Wotton RS. 2009. Feeding in blackfly larvae (Diptera: Simuliidae) - The capture of colloids. Acta Zoologica Lituanica 19:17–20.