Alterations of Dynamic Regional Homogeneity in Trigeminal Neuralgia: A Resting-State fMRI Study

Jianhao Yan1,2†, Meng Li2†, Shishun Fu1, Guomin Li1, Tianyue Wang2, Yi Yin2, Guihua Jiang2, Jingzhi Lin3, Wuming Li2, Jin Fang2 and Junzhang Tian1,2*

1 The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China, 2 The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China, 3 The Department of Neurosurgery, Guangdong Second Provincial General Hospital, Guangzhou, China

OPEN ACCESS

Edited by:
Massimiliano Valeriani, Bambino Gesù Children Hospital (IRCCS), Italy

Reviewed by:
Lei Gao, Zhongnan Hospital, Wuhan University, China
Elcio J. Piovesan, Federal University of Paraná, Brazil

*Correspondence:
Junzhang Tian
Tianjz.tian@163.com

†These authors have contributed equally to this work

Keywords: trigeminal neuralgia, resting-state fMRI, dynamic regional homogeneity, pain duration, brain function

INTRODUCTION

Trigeminal neuralgia (TN) is a common disease of the nervous system that manifests as episodes of severe pain over a distributed area of one or more branches of the trigeminal nerve (1). TN has an annual incidence of four to five per 100,000, and it is estimated that one in every 15,000–20,000 people worldwide is affected by TN (2–4). Despite the potential personal and social burden of TN, its pathogenesis remains poorly understood.

Neuroimaging studies have shown that chronic pain (e.g., back pain, migraine, and fibromyalgia) causes changes in brain structure and function (5–7). Recent studies have shown that TN is associated with pain, attention, emotion, and structural changes in the brain (8–11). Obermann et al. used voxel-based morphometry (VBM) to compare the brain morphology between TN patients and healthy individuals and showed that TN patients had a reduction in the gray-matter volume within multiple brain regions, which was similar to that found in our previous study of TN gray-matter volume (8, 11). However, to the best of our knowledge, fewer studies have explored the resting-state regional-homogeneity (ReHo) changes in TN patients and have yielded inconsistent results (12–14). For example, a study by Yuan et al. showed an increased ReHo in the anterior cingulate gyrus, middle temporal gyrus, and superior frontal gyrus and a decreased ReHo in the insula and cerebellum of TN patients, compared with those of the control group (13). In contrast, Wang et al. showed an increased ReHo in the inferior temporal gyrus, thalamus, inferior parietal lobule, and precentral and postcentral gyri of TN patients and a decreased ReHo in the amygdala, parahippocampal, and cerebellum (12). Xiang et al. reported an increased ReHo in the inferior temporal gyrus, fusiform gyrus, middle temporal gyrus, superior frontal gyrus,
and precentral gyrus of TN patients and no decrease in ReHo (14). As such, whether or not TN development affects spontaneous neural activity remains uncertain.

ReHo analysis is a form of data-driven resting-state functional magnetic resonance imaging (rsfMRI) that measures the temporal similarity of a given voxel to that of adjacent voxels and does require knowledge of the experimental design in advance (15, 16). Recently, dynamic ReHo (dReHo) has been used as a research indicator to provide a new perspective for abnormal brain activity (16). A previous dReHo study using the sliding-window approach showed that brain regions with large fluctuations in dReHo are often functional centers in the brain (17). In addition, this research method has been extensively used in the study of depression, schizophrenia, and bipolar disorder (18–20). However, no relevant studies have reported in the changes of dReHo in TN patients.

To investigate the spontaneous neural activity in the brain of TN patients during the resting state, the present study measured the dReHo throughout the entire brain. Based on our previous findings, we hypothesized that TN patients have changes of dReHo compared to that of controls in some temporal, parietal regions. In addition, studies of different types of chronic pain have shown that the structural and/or functional changes in patients with pain are often associated with pain duration. Therefore, we also hypothesized that the duration of pain is related to abnormal dReHo.

MATERIALS AND METHODS

Subjects

Permission to undertake this study was granted by the ethics committee of Guangdong Second Provincial General Hospital. In 2017, we recruited 28 TN patients. Each of the TN patients was screened according to the International Classification of Headache Disorders version III criteria (1) to confirm the diagnosis of TN. Prior to the examination, none of the patients had undergone any psychotherapy. The inclusion criteria for the patients were as follows: (i) age > 18 years; (ii) right-hand dominance; (iii) unilateral pain in the distribution of one or more branches (the ophthalmic [V1], the maxillary [V2], and the mandibular [V3]) of the trigeminal nerve; (iv) no psychiatric medications or substance abuse; (v) no MR imaging contraindications; and (vi) no head trauma or neurologic disorders. Exclusion criteria were: (i) patients with neural-associated diseases or chronic pain other than TN; (ii) patients with brain surgery history; (iii) contraindications to MRI.

Twenty-eight age- and gender-matched healthy controls (HC) were also recruited for this study. The inclusion criteria for healthy controls were as follows: (i) age > 18 years; (ii) right-hand dominance; (iii) no psychiatric medications or substance abuse; and (iv) no MR imaging contraindications. Written informed consent was obtained from each subject.

Assessment of Mental Status

Before undergoing resting-state MRI, all TN patients were screened for International Classification of Headache Disorders-III and with visual-analog scales (VAS) in order to estimate the intensity and frequency of the symptoms. In addition, emotional assessments were conducted for all participants, via the self-rating anxiety scale (SAS) (21) and the self-rating depression scale (SDS) (22).

Data Acquisition

The MR imaging data was acquired on a 3.0 T Philips Ingenia MR scanner using a 32-channel head coil at the department of Medical Imaging in Guangdong Second Provincial General Hospital. The resting-state fMRI data were acquired using gradient echo-planar imaging (EPI) with the following parameters: repetition time (TR)/echo time (TE) = 2,000 ms/30 ms; matrix = 64 × 64; field-of-view (FOV) = 230 × 230 mm; flip angle (FA) = 90°; slice thickness = 3.6 mm, 0.6-mm gap; interleaved scanning; 38 transverse slices; 240 volumes; each volume was aligned along the anterior–posterior commissure. T1-weighted 3D high resolution brain structural images were obtained using a fast field echo (FFE) pulse sequence with TR/TE = 7.9/3.6 ms, matrix = 256 × 256, (FOV) = 256 × 256 mm, FA = 8°, slice thickness = 1.0 mm, and 186 sagittal slices.

Resting-State fMRI Data Preprocessing

The preprocessing of the functional images was performed with the DPARSF 4.3 Advanced Edition (http://rfmri.org/DPARSF) and the SPM12 package (www.fil.ion.ucl.ac.uk/spm) based in MATLAB (Mathworks, Inc., Natick, MA, USA). First, for signal equilibration the first 10 volumes of each dataset were discarded, and the remaining data were processed with following steps: slice-timing correction, realignment and co-registration with the anatomical scan. Second, individual T1-weighted images were co-registered with the functional images, and then were segmented into gray matter, white matter and cerebrospinal fluid. Third, these functional images were then normalized into the Montreal Neurological Institute (MNI) space with a voxel size of 3 × 3 × 3 mm3. We eliminated the data of subjects with motion of more than 1.5-mm maximum displacement in any dimension and 1.5 degrees of angular motion during the entire fMRI scan. Fourth, linear-detrending processing was conducted to remove the linear-signal drift. Individual-level regression analysis was conducted to minimize the influence of head motion (Friston 24 model), white-matter signal noise, and cerebrospinal-fluid signal noise. A temporal band-pass filter (0.08–0.10 Hz) was applied to the data to remove the physical noise. Last, we performed spatial smoothing with an 8-mm full-width at-half-maximum (FWHM) kernel before performing the dReHo group analysis.

The dReHo calculation was as follows. The ReHo algorithm measured the voxel-wise short-distance functional connectivity with Kendall’s coefficient of concordance (KCC) (15) using the following formula:

$$W = \frac{\sum_{i=1}^{N} R_{i}^2 - N R}{\frac{1}{12} K^2 (N^3 - N)}$$

where W is the KCC among the given voxels, N denotes the length of the time series, K = 27 is the size of the voxel cluster containing 3 × 3 × 3 adjacent voxels, R_{i} denotes the summation
No significant differences were observed between the TN and HC groups in terms of age, gender, or education. In addition, SAS and SDS also showed no significant differences between these two groups. The average duration of pain in the TN group was 4.45 years.

dReHo Analysis

The TN patients exhibited an increased dReHo (more variability) in the thalamus. We also found a decreased dReHo (less variability) in the left middle temporal gyrus (MTG), superior parietal lobe (SPL), and precentral gyrus (PCG; Table 2 and Figure 1).
maladaptation of brain activity caused by pain. It has been reported that the lateral parietal cortex is involved in pain prediction through meta-analysis, which may represent the second level of the pain-information-processing circuit that supports the active, conscious, and cognitive assessment of pain perception (7).
In addition, in the present study, an abnormal change in the ReHo value of the left precentral gyrus was found compared with that of HCs. The precentral gyrus is part of the primary motor cortex that reflects the sensory pain response, inhibition of maxillary movement, and facial muscle tension (35). Even simple and painless exercise can cause painful episodes in TN patients (12). Therefore, limiting facial movement can reduce pain. A change in the dReHo value of the precentral gyri suggested that there is a local synchronization of brain activity and pain regulation in TN patients. Thus, we hypothesize that the primary motor cortex inhibits the pain response of the trigeminal nerve and inhibits the maxillary tension to relieve pain.

In addition, increased dReHo was mainly located in the thalamus, which is consistent with previous findings (12, 36). A previous study showed increased ReHo in the thalamus of TN patients and a low N-acetylaspartate/creatine ratio in the thalamus on the affected side (37). Moreover, brain structural examinations showed that the thalamic volume of TN patients was higher than that of controls in the previous study (36). Thus, we speculate that the increased dReHo may reflect a persistent injury-induced input caused by pain, which is closely related to the symptoms of TN. We also found that the mean dReHo value of the thalamus was positively correlated with the duration of disease; the longer the pain lasted, the higher the dReHo of the thalamus, suggesting that chronic pain alters spontaneous brain activity in function.

This study has some limitations. First, the cross-sectional design of this study was not able to study the causal relationship between the functional abnormalities and TN development. Second, this study only observed correlations between the imaging and duration of TN, which may be due to the small sample size of the TN group. Thus, further studies with larger sample sizes will be necessary to verify the findings of our present study. Third, uneven distribution of the affected side (9 left/19 right) may contribute to the left-lateralization of dReHo, which may indicate neuroadaptation or possible compensatory changes. Future studies should take the impact of the affected side in consideration. Lastly, all TN patients of this study consumed painkillers and, therefore, we cannot rule out the possible confounding effects of drugs on the ReHo analysis.

In brief, this study used resting-state analysis to measure the changes of dReHo in TN patients, which were found to be mainly in the thalamus and some areas of the temporal lobe and parietal lobe. These brain areas are primarily involved in pain perception and regulation. The present study also showed that the increased dReHo in the thalamus was associated with increased pain duration in TN patients. These results provide important information for the limited studies of brain functional changes in TN patients.

DATA AVAILABILITY STATEMENT
The datasets generated for this study are available on request to the corresponding author.

ETHICS STATEMENT
The studies involving human participants were reviewed and approved by Ethics committee of Guangdong Second Provincial General Hospital. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS
JY designed the experiment. JY and ML carried out the experiment. GL and YY collected and sorted out the data. SF, TW, GJ, JL, WL, and JF helped on data management and processing. JY, ML, and JT wrote the manuscript.

FUNDING
This study was funded by the National Natural Science Foundation of China (Grant number: 81701111, and 81771807), and the Science and Technology Planning Project of Guangdong Province, China (2017A020215077).

REFERENCES
1. Headache Classification Committee of the International Headache S. The international classification of headache disorders, 3rd edition (beta version). *Cephalalgia*. (2013) 33:629–808. doi: 10.1177/0333102413485658
2. Katusic S, Williams DB, Beard CM, Bergstralh EJ, Kurland LT. Epidemiology and clinical features of idiopathic trigeminal neuralgia and glossopharyngeal neuralgia: similarities and differences, Rochester, Minnesota, 1945–1984. *Neuropathology*. (1991) 10:276–81. doi: 10.1159/000110284
3. Gronseth G, Cuccu G, Alkane J, Argoft C, Brainin M, Burchiel K, et al. Practice parameter: the diagnostic evaluation and treatment of
trigeminal neuralgia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the European Federation of Neurological Societies. *Neurology* (2008) 71:1183–90. doi: 10.1212/01.wnl.0000326598.83183.04

4. Mueller D, Obermann M, Yoon MS, Poitz E, Hansen N, Katsarava Z. Prevalence of trigeminal neuralgia and persistent idiopathic facial pain: a population-based study. *Cephalalgia*. (2011) 31:1542–8. doi: 10.1177/0333102411424619

5. Simons LE, Moulton EA, Linnman C, Carpino E, Becerra L, Borsook D. The human amygdala and pain: evidence from neuroimaging. *Hum Brain Mapp*. (2015) 35:527–38. doi: 10.1002/hbm.22199

6. Zuo XN, Xu T, Jiang L, Yang Z, Cao XY, Milham MP. Toward reliable characterization of functional homogeneity in the human brain: a multivoxel spectroscopy study. *Neuroimage*. (2013) 80:246–62. doi: 10.1016/j.neuroimage.2013.04.081

7. Schweinhardt P, Bushnell MC. Pain imaging in health and disease—how far have we come? *J Clin Invest*. (2010) 120:3788–97. doi: 10.1172/JCI3498

8. May A. Structural brain imaging: a window into chronic pain. *Neuroscientist*. (2011) 17:209–20. doi: 10.1177/1073858410396220

9. Buchsbaum BR, Hickok G, Humphries CJCS. Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. *Cognit Sci Multidiscip J*. (2001) 25:663–78. doi: 10.1207/s15516709cog2505_2

10. Friston KJ, Ashburner J, Kiebel SJ, Nichols TE, et al. Statistical parametric mapping: the analysis of functional brain images. *Neuroimage*. (2007) 34:1–29. doi: 10.1016/j.neuroimage.2006.06.008

11. Smallwood RF, Laird AR, Ramage AE, Parkinson AL, Lewis JDA. Decision-making in classic trigeminal neuralgia concurrent with a pontine cavernous malformation: causal or coincidental association? *Neurocurgia*. (2015) 26:90–4. doi: 10.1016/j.neuciruc.2014.09.003

12. Li M, Yan J, Li S, Wang T, Zhan W, Wen H, et al. Reduced volume of gray matter and pain in patients with trigeminal neuralgia. *Brain Imaging Behav*. (2018) 12:620–30. doi: 10.1007/s11682-016-9529-2

13. Rashid B, Damaraju E, Pearlson GD, Calhoun VD. Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects. *Front Hum Neurosci*. (2014) 8:897. doi: 10.3389/fnhum.2014.00897

14. Qiu L, Xia M, Cheng B, Yuan L, Kuang W, Bi F, et al. Abnormal dynamic functional connectivity of amygdalar subregions in untreated patients with first-episode major depressive disorder. *J Psychiatry Neurosci*. (2018) 43:262–72. doi: 10.1503/jpnp.170112

15. Zung WW. A rating instrument for anxiety disorders. *Psychosomatics*. (1971) 12:371–9. doi: 10.1176/psycnos.31827(21)71247-0

16. Zung WW. A self-rating depression scale. *Arch Gen Psychiatr*. (1965) 12:63–70. doi: 10.1001/archpsyc.1965.01720130066008

17. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. *Neuroimage*. (2002) 17:825–41. doi: 10.1006/nimg.2002.0502

18. Yan CG, Craddock RC, Zuo XN, Zang YF, Milham MP. Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes. *Neuroimage*. (2013) 80:246–62. doi: 10.1016/j.neuroimage.2013.04.081

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.