Corrections

Park, H. J., J. S. Park, Y. H. Jeong, J. Son, Y. H. Ban, B.-H. Lee, L. Chen, J. Chang, D. H. Chung, I. Choi, and S.-J. Ha. 2015. PD-1 upregulated on regulatory T cells during chronic virus infection enhances the suppression of CD8$^+$ T cell immune response via the interaction with PD-L1 expressed on CD8$^+$ T cells. J. Immunol. 194: 5801–5811.

In Fig. 3F, the representative data indicating in vivo expansion frequency of donor Thy1.1$^+$CD8$^+$ T cells in Rag1$^{-/-}$ mice were incorrect as published. The corrected Fig. 3 is shown. There is no change in the Results section of the article. The figure legend was correct as published and is shown below the figure for reference.

We apologize for the inconvenience caused by this inadvertent error.
FIGURE 3. Enhanced suppression of CD8⁺ T cell immune response by chronic Treg cells. (A) Suppression of CD8⁺ T cell proliferation by Treg cells isolated at various time points after acute or chronic viral infection. CFSE-labeled CD8⁺ T cells were stimulated in vitro with αCD3/CD28-coated beads for 72 h in the absence or presence of naive Treg, acute Treg, or chronic Treg cells (16 and 30 d p.i.). CFSE dilution in proliferated CD8⁺ T cells is depicted in each histogram (top) and summarized by the bar graph (bottom). The left top number in the histogram indicates the percentage of proliferated CD8⁺ T cells. (B) Proliferation profile of CD8⁺ T cells in (A). The percentage of population in each division stage was calculated by cell proliferation analysis. (C) Concentration of IFN-γ in the coculture media of (A). (D) Suppressive activity of each Treg cell population. Treg cells from naive, acutely, or chronically infected mice (16 d p.i.) and CFSE-labeled CD8⁺ T cells from naive mice were cultured together in vitro for 72 h in the presence of αCD3/CD28-coated beads. The percentage of inhibition was determined according to the following formula: % Inhibition = ([% of proliferated CD8⁺ T cells in the absence of Treg cells] - [% of proliferated CD8⁺ T cells in the presence of Treg cells])/[% of proliferated CD8⁺ T cells in the absence of Treg cells]) × 100. (E) Fold reduction in IFN-γ production by CD8⁺ T cells cocultured with each Treg cell population. The concentration of IFN-γ in the coculture media of (D) was measured, and the fold reduction in IFN-γ production was determined by the ratio of its concentration in the absence of Treg cells to that in the presence of Treg cells. (F) Homeostatic expansion frequency of donor Thy1.1⁺ CD8⁺ T cells in the spleen isolated from Rag1⁻/⁻ mice at 7 d after adoptive cell transfer. (G) Absolute number of donor Thy1.1⁺ CD8⁺ T cells in the spleen of Rag1⁻/⁻ mice. (H) Treg cell–mediated suppression of LCMV-specific CD8⁺ T cell proliferation (left) and the percentage of recently proliferated (5–6 divisions) CFSE-labeled P14 Thy1.1⁺ CD8⁺ T cells after coculture with Treg cells (right). CFSE-labeled P14 Thy1.1⁺ CD8⁺ T cells containing Dβ-restricted TCR specific for LCMV gp33–41 were cocultured with gp33–41 peptide-loaded feeder cells for 66 h in the absence or presence of isolated naive Treg cells, acute Treg cells, and chronic Treg cells at 16 d p.i. (I) Concentration of IFN-γ in the coculture media of (H). The data points in the line graphs and bar graphs represent the mean ± SEM and mean + SEM, respectively. Data are representative of three to four independent experiments. n = 3 mice per group in each experiment. *p < 0.05, **p < 0.01, ***p < 0.001. ns, not significant.