Divalent metal transporter-related protein restricts animals to marine habitats

Author
Mieko Sassa, Toshiyuki Takagi, Azusa Kinjo, Yuki Yoshioka, Yuna Zayasu, Chuya Shinzato, Shinji Kanda, Naoko Murakami-Sugihara, Kotaro Shirai, Koji Inoue

journal or publication title
Communications Biology

volume
4

number
1

page range
463

year
2021-04-12

Publisher
Nature Portfolio

Rights
(C) 2021 The Author(s).

Author's flag
publisher

URL
http://id.nii.ac.jp/1394/00001917/
doi: info:doi/10.1038/s42003-021-01984-8
Utilization and regulation of metals from seawater by marine organisms are important physiological processes. To better understand metal regulation, we searched the crown-of-thorns starfish genome for the divalent metal transporter (DMT) gene, a membrane protein responsible for uptake of divalent cations. We found two DMT-like sequences. One is an ortholog of vertebrate DMT, but the other is an unknown protein, which we named DMT-related protein (DMTRP). Functional analysis using a yeast expression system demonstrated that DMT transports various metals, like known DMTs, but DMTRP does not. In contrast, DMTRP reduced the intracellular concentration of some metals, especially zinc, suggesting its involvement in negative regulation of metal uptake. Phylogenetic distribution of the DMTRP gene in various metazoans, including sponges, protostomes, and deuterostomes, indicates that it originated early in metazoan evolution. However, the DMTRP gene is only retained in marine species, and its loss seems to have occurred independently in ecdysozoan and vertebrate lineages from which major freshwater and land animals appeared. DMTRP may be an evolutionary and ecological limitation, restricting organisms that possess it to marine habitats, whereas its loss may have allowed other organisms to invade freshwater and terrestrial habitats.
Seawater contains various metal ions. Marine organisms utilize, and also are greatly influenced by metals in seawater. For example, Zn and Cu are trace essential elements involved in various physiological processes, while the biological roles of some other elements, such as Cd and Pb, are not well known. Especially, Zn is essential for various protein functions, and is considered to have influenced eukaryote evolution. However, even trace essential elements become harmful if their concentrations exceed certain levels; thus, metal regulation is essential for life in the sea. In addition, metal regulation systems seem to have diversified in marine organisms. For example, metals generally known as non-essential trace elements are detected in the bodies of certain marine fish and invertebrates, and some marine bacteria can use cadmium as a substitute for zinc. To understand metal regulation, in this study, we focused on the divalent metal transporter (DMT), which is also called natural resistance–associated macrophage protein 2 (Nramp2), a member of the SLC11 family, comprising proton-coupled metal ion transporters. DMT has been identified in many species from bacteria to humans, and transports a wide variety of metal ions. For example, rat DMT, expressed in Xenopus oocytes, transports Fe$^{2+}$, Cd$^{2+}$, Cu$^{2+}$, Ni$^{2+}$, Mn$^{2+}$, Pb$^{2+}$, and Zn$^{2+}$. Uptake of radioisotopes of Fe$^{2+}$, Mn$^{2+}$, Co$^{2+}$, Zn$^{2+}$, and Cd$^{2+}$ by DMTs of mammals and yeast has been documented using Xenopus oocytes. The crystal structure of DMT has been determined, and it has been reported that the amino acid residues DPGN and MPH, located in TM1 and TM6, are particularly important for uptake of metals.

Other members of the SLC11 family include Nramp1, which regulates macrophage activation against infectious and autoimmune diseases, but it occurs only in mammals. Teleost fishes lack Nramp1, but an additional family of Nramp genes that appeared during a third round whole genome duplication (3R) has been discovered and it serves Nramp1-like functions. In plants, many more paralogs have evolved subfunctionalized roles, e.g., transport of specific metals or different tissue distributions. Thus, DMTs have diversified into various lineages to accommodate specific physiological demands. However, there are few reports about DMTs of marine invertebrates, despite requirements imposed by marine environments.

In this study, we identified DMT in the crown-of-thorns starfish (COTS) Acanthaster planci, which is known to inhabit the reef and exhaust its transcriptomic information are available. Based on the sequences detected, we cloned two different cDNAs encoding DMT-like proteins, one of which is an ortholog of known DMTs, but the other encodes an unknown membrane protein specific to marine invertebrates. We further analyzed their functions using a yeast expression system, and found that the unknown protein is quite unlike known DMTs. Finally, we will discuss the possible significance of this protein gene relative to the habitat transition of animals from the sea to freshwater and land.

Results

Two distinct DMT-like proteins in COTS. Using the scallop DMT, the only marine invertebrate DMT whose multiple metal ion transport activities have been demonstrated electrophysiologically, as a query, a database search of the COTS genome detected two genes encoding DMT-like sequences. They are named DMT and DMTRP, based on results of the molecular phylogenetic analysis below. Alignment results of the scallop DMT with ApDMT and ApDMTRP are shown in Fig. S1. cDNAs of the two genes were cloned from starfish stomach because the fragments per kilobase per million reads mapped (FPKM) obtained from the database suggested that the stomach is the site of highest expression for both genes, which display 52.76% identity. By aligning cDNA and genome sequences, 16 and 17 exons were identified in the DMT and DMTRP genes, respectively (Fig. 1). Intron positions are conserved between the two sequences at nine locations. Both are estimated to have 12 transmembrane domains, manifesting...
Conserved locations. Consensus transport motifs (CTM)12,25,26 are also highly conserved. In addition, the sequences "DPGN" in transmembrane domain (TM) 1 and "MPH" in TM6 (Fig. 1), both of which have been reported as functionally important, are also conserved18. By motif search, common domains were identified using the MEME web server. Colored boxes indicate motifs. Black lines indicate whole proteins and numbers on the right indicate the length of the encoded amino acid sequence of each gene.

Table 1: Conserved transport motifs

Motif	Symbol	Consensus	Location	Sequence
1	GQSTMTGTYAGOFVMEGFLKJKWPWKRILLTRSI	QGSSSTMTGTYAGOFVMEGFLKJKWPWKRILLTRSI	643 aa	
2	GHLKLACHEWYFPFRVFLWMMEAIAGSDIQEGVIGSAIAAFNLSNG	GHLKLACHEWYFPFRVFLWMMEAIAGSDIQEGVIGSAIAAFNLSNG	575 aa	

Fig. 2 Conserved motif locations of the crown-of-thorns starfish (COTS), Acanthaster planci, divalent metal transporter (ApDMT) and DMT-related protein (ApDMTRP). Conserved domains were identified using the MEME web server. Colored boxes indicate motifs. Black lines indicate whole proteins and numbers on the right indicate the length of the encoded amino acid sequence of each gene.

Fig. 3 Genes around divalent metal transporter (DMT) and DMT-related protein (DMTRP) genes. a The crown-of-thorns starfish (COTS), Acanthaster planci and b the European starfish, A. rubens. Scaffold names and chromosome numbers are indicated on the left. Genes and their orientations are indicated by pentagons of the same size. DMT, DMTRP, and other genes are indicated in blue, magenta, and gray. Numbers above the COTS scaffold indicate start or end positions of gene locations. Protein names and gene IDs are listed in Table S2.

Phylogenetic relationship of the two DMT-like proteins. As a result of a BLASTP search using the cloned sequences as queries, DMT-like sequences of 48 organisms from bacteria to humans were obtained (Supplementary Data 1). A phylogenetic analysis was performed on those obtained sequences using the maximum-likelihood (ML) method. In the resulting phylogenetic tree (Fig. S4), bacterial sequences formed a single clade. Plant-derived and amoebozoa-derived sequences formed two separate clades, one of which occupies a position close to bacteria, suggesting its relationship with bacterial sequences. Especially, *Dictyostelium discoideum* AX4 1 may have resulted from horizontal gene transfer27 because it lacks introns, whereas another gene, *D. discoideum* AX4 2, has an intron (Gene ID: 8619995). In contrast, all metazoan sequences formed a single clade (Fig. S4) at a position close to the Choanoflagellate sequence (the organism most closely related to metazoans). Although the position of the metazoan DMT clades is also close to one of the plant DMT clades, the order of diversification is still unpredictable because it is difficult to root this tree.

Branching patterns within the metazoan clade of this tree were not robust, possibly due to limited alignment lengths, since the tree included bacterial, fungal, and plant sequences. Therefore, we conducted another molecular phylogenetic analysis using 32 metazoan sequences with Choanoflagellates as an outgroup (Fig. 4). As a result, metazoan sequences divided into two clades, each of which contained one of the COTS DMT-like sequences. Thus, we found that two DMT-like clades diverged after the divergence of the Metazoa, but before the differentiation of sponges.

All known DMTs reside in one clade, confirming that the COTS sequence belonging to this clade is homologous. We named it ApDMT (*A. planci* DMT). The other clade contained DMTRP sequences that have not been reported previously. In tetrapods, two known DMTs, *Nramp1* and *Nramp2*, belonging to the DMT clade, suggesting that their divergence occurred in the vertebrate lineage, as reported previously20. However, DMTRP is distinct from *Nramp1*.

Both clades included protostome and deuterostome sequences. Moreover, sponge sequences also occurred in both clades, indicating the divergence of DMT and DMTRP in an early ancestor of metazoans. Phylogenetic relationships of sequences in the DMT and DMTRP clades conflict with presumed phylogeny of many species, suggesting that DMT and DMTRP sequences have diversified in each taxon. Interestingly, all organisms...
possessing a DMTRP gene, including sponges, molluscs, echinoderms, and lancelets, possess the DMT gene as well. Moreover, all DMTRP-bearing animals are marine species. The DMTRP gene was not detected in vertebrates, insects, or nematodes, which are among the most successful freshwater and terrestrial animal taxa. Importantly, DMTRP does not occur in two freshwater gastropods either, the ramshorn and golden apple snails, although it is present in a marine gastropod, the owl limpet.

Functional analyses. Functional differences between ApDMT and ApDMTRP were examined using a yeast (*Saccharomyces cerevisiae*) expression system. First, localization of expression products on the yeast membrane was confirmed by adding the enhanced green fluorescent protein (EGFP) gene downstream of the DMT and DMTRP genes. As the result, fluorescence of ApDMT-EGFP and ApDMTRP-EGFP fusion proteins was observed on the cell membrane as expected (Fig. 5).

Subsequently, ApDMT and ApDMTRP, without EGFP, were expressed in yeast, and the yeast was exposed in separate experiments to one of six metals (Fe, Mn, Zn, Cd, Cu, and Pb). After exposure, metals in the cells were quantified using inductively coupled plasma-mass spectrometry (ICP-MS). For Fe, Mn, and Zn uptake-deficient mutants lacking specific metal transporter genes were used in addition to wild-type strains. When exposed to Fe,

Fig. 4 Maximum-likelihood trees of divalent metal transporter (DMT)-like protein sequences obtained from databases. A tree constructed using metazoan sequences. The tree was rooted using the sequence of a choanoflagellate, *Monosiga brevicollis*, as an outgroup. Bootstrap values more than 70% are indicated at nodes. The scale bar represents a phylogenetic distance of 0.2 substitutions per site.
ApDMT-expressing mutant and wild-type strains tended to accumulate more Fe than the control, while Fe accumulation tended to decrease in ApDMTRP-expressing yeast. The level of Fe in DMT-expressing yeast was significantly higher than DMTRP-expressing yeast when the wild-type strain was used (Fig. 6a, b).

In the case of Mn exposure, Mn level was significantly higher in ApDMT-expressing yeast than in control or ApDMTRP-expressing yeast, in both mutant and wild-type strains (Fig. 6c, d). In the case of Zn exposure, the ApDMTRP-expressing yeast accumulated Zn significantly less than the control and ApDMT-expressing yeast (Fig. 6e). A similar trend that ApDMTRP-expressing yeast accumulate Zn less than the control and ApDMT-expressing yeast was observed in an experiment using wild-type strains, although it was not statistically significant (Fig. 6f). For Cd, Pb, and Cu, for which no uptake-deficient mutants are available, experiments were conducted only in wild-type strains. ApDMT-expressing yeast tended to accumulate Cd compared to the control and ApDMTRP-expressing yeast, while ApDMTRP-expressing yeasts tended to decrease Cd levels compared to the control (Fig. 6g). ApDMT-expressing yeast significantly increased Pb accumulation relative to the control (Fig. 6h). The intracellular concentration of Cu was higher in ApDMT-expressing yeast than in ApDMTRP-expressed yeast and controls, but the difference was statistically insignificant (Fig. 6i).

Discussion

In this study, we discovered two genes encoding DMT-like sequences in the COTS genome. By phylogenetic analysis, one was identified as an ortholog of known DMTs from other organisms. The other gene encoded a unknown protein that we named DMTRP. Both genes were similar in sequence, arrangement of transmembrane domains and functional motifs, and positions of introns, suggesting that they originated from the same ancestral gene.

Molecular phylogenetic analysis showed that both DMT and DMTRP clades contained sequences from sponges, protostomes, and deuterostomes. However, only a single DMT-like gene was found in a choanoflagellate, *Monosiga brevicollis*, a unicellular organism more closely related to metazoa [13]. Thus, the divergence of DMT and DMTRP is likely to have occurred at an early stage of metazoan evolution. We also attempted to characterize the origin of DMTRP based upon gene synteny. The DMT and DMTRP genes were detected on the same scaffold in COTS, but their positions were 900 kb apart and no common syntenic genes were found around them. In the European starfish, DMT and DMTRP genes are on separate chromosomes (Fig. 3). In addition, DMT and DMTRP genes of oyster (*Crassostrea gigas*) are also localized on different chromosomes (Fig. S3). It seems that the localization of the two genes on the same scaffold in COTS may be the result of chromosome fusion or incidental translocation to the same chromosome that occurred specifically in COTS. Moreover, shared synteny between the regions containing the DMT and DMTRP genes does not exist in the European starfish genome. Therefore, the divergence of DMT and DMTRP could not be inferred from synteny. However, these results are consistent with the result of phylogenetic analysis indicating their ancient divergence.

As mentioned above, the structures of ApDMT and ApDMTRP are very similar. Amino acid residues that are essential for DMT function are well conserved in ApDMTRP (Fig. 1) [17,18,32,33]. Thus, as an original working hypothesis, we expected that the functions of ApDMT and ApDMTRP would be similar. In addition, FPKM data (Fig. S2) indicated that the stomach was the site of highest expression for both the ApDMT and ApDMTRP genes, suggesting that both are involved in regulating metal uptake in the digestive system. However, functional analysis by the expression system in yeast revealed that ApDMT and ApDMTRP have different functions. Fe, Cd, Zn, Mn, Pb, and Cu, tended to increase in yeasts expressing ApDMT, suggesting that it transports these metals into cells, as has been reported for mammalian DMTs [13]. In contrast, expression of ApDMTRP did not increase intracellular metal levels, other than Mn. In fact, the intracellular concentration of Zn in ApDMTRP-expressing yeast was significantly lower than that of a Zn-uptake-deficient strain. A similar result was obtained with wild-type yeast, even though the difference was not statistically significant. A similar trend was also observed for Fe and Cd. These results suggest that metal uptake is not ApDMTRP’s primary function, but that it reduces metal levels, especially Zn, although the mechanism employed remains to be discovered. That DMTRP does not import metals is also consistent with the fact that all species that have DMTRP also have DMT.

Interestingly, only marine organisms possess DMTRP. Despite the many animal genomes now available, the DMTRP gene does not appear in the genome of any freshwater aquatic or terrestrial
animal. Therefore, DMTRP must have a role specific to marine animals. The most remarkable function of the DMTRP demonstrated in this study is the prevention of Zn uptake (Fig. 6). Even though Zn is an essential metal for some physiological functions, elevated cellular concentrations of Zn are toxic34; thus, marine organisms must maintain tissue Zn levels within specific ranges35.

The vertical distribution of both Fe and Zn increases with ocean depth, but at most sites, Zn concentrations are higher than Fe, by up to 10-fold36. In addition, Zn levels in the ocean have been maintained at the levels comparable to the present since the occurrence of ancestral eukaryotes or before that5. Therefore, it seems reasonable that DMTRP regulates concentrations of specific metals, especially Zn, by exporting or preventing uptake of those that occur naturally in concentrations harmful to the

Fig. 6 Heavy metal accumulation in yeasts in which the crown-of-thorns starfish (COTS), Acanthaster planci, divalent metal transporter (ApDMT) and DMT-related proteins (ApDMTRP) were expressed. Wild-type or metal uptake-deficient strains of yeasts were transformed with the expression vector pDR195 containing ApDMT or ApDMTRP or empty vector (EV), and exposed to media containing FeCl\textsubscript{3} (a, b), MnSO\textsubscript{4} (c, d), ZnCl\textsubscript{2} (e, f), CdCl\textsubscript{2} (g), PbCl\textsubscript{2} (h), or CuCl\textsubscript{2} (i). The vertical axis shows the intracellular concentration measured by ICP-MS normalized by yeast optical density (OD\textsubscript{600}). The horizontal axis shows the names of expressed genes/yeast strains. Each bar represents the mean ± SEM (n = 3). One or two asterisks on the bar represent statistical significance by one way ANOVA with Tukey’s post-hoc HSD test at p < 0.01(*) or p < 0.05(**). DY, wild-type strain of DEY1453 and ZHY3; DEY, Fe-uptake-deficient yeast strain DEY1453; ZHY, Zn-uptake-deficient yeast strain ZHY3; BY4743, wild-type strain of single mutant strain Hom Dip YOL122C lacking SMF1; smf1, Mn-uptake-deficient yeast strain Hom Dip YOL122C lacking SMF1. Dot plots shows individual data points. Dot plots data are in Supplementary Data 2.
organisms. In contrast, retention of DMTRP may be disadvantageous for freshwater and terrestrial environments where Zn is less abundant35.

From an evolutionary viewpoint, our molecular phylogenetic tree (Fig. 4) showed that the disappearance of the DMTRP gene from vertebrate and insect lineages involves multiple, separate events. The DMTRP gene is detected in lancelets, but not in hagfish, which are obligate marine organisms37, so it may be that the loss of DMTRP occurred in an ancestral vertebrate before the transition into freshwater. DMTRP is also absent in marine crustaceans and insects, suggesting that its loss is common among arthropods. Furthermore, DMTRP is not detected in the nematode, Caenorhabditis elegans, suggesting that DMTRP loss occurred much earlier, in an ancestor of ecdysozoans. However, nematodes, crustaceans, and fish are abundant in the sea. Thus, they must have a function that substitutes for that of DMTRP. Although such substitutive mechanism is unknown at present, it may be related to metallothionein, which also binds metals in the cell and reduces their concentrations to tolerable levels38. Interestingly, taxa in which metallothioneins have been discovered, e.g., Nematoda, Arthropod, Chordata, and Cnidaria, approximately match those that have not retained DMTRP39. Regardless, results of this study suggest that freshwater and terrestrial animals are descended only from lineages that lack DMTRP. DMTRP seems to be an evolutionary and ecological roadblock, which restricts animals to marine environments.

Methods

Starfish sample collection and cDNA synthesis. A live COTS, A. planci, was collected in Okinawa, Japan. Since DMT is highly expressed in the stomach, that organ was dissected and quickly frozen in liquid nitrogen and stored at −80 °C until use. Total RNA was extracted from the intestine and stomach using TRIsure (BIOLINE, London, UK). DNase treatment employed Deoxyribonuclease I, Amplification Grade (Invitrogen, Carlsbad, CA). A double-stranded cDNA pool was synthesized from 455 ng total RNA with a SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen) and used as a cDNA template for PCR.

cDNA cloning. Throughout this study, KOD Plus DNA polymerase (TOYOBO, Osaka, Japan) was used for PCR and reaction mixtures were prepared according to the manufacturer’s protocol. Primers for PCR are listed in Table S1. Thermal cycle conditions were as follows: initial denaturation at 94 °C for 2 min, followed by 35 cycles of 94 °C for 15 s, 60 °C for 30 s, 68 °C for 2 min 30 s and a final extension at 72 °C for 7 min. In cases in which the amplified product was to be subcloned into T-vector, 5 μl Es Taq (Takara Bio, Kusatsu, Japan) were added before the last cycle. This procedure was also used for other PCR experiments unless otherwise indicated. ApDMT and ApDMTRP were amplified using the primers ApDMT-SUTR and ApDMT-SUTR. Similarly, ApDMTRP was amplified using the primers ApRP-SUTR and ApRP-SUTR. Sequence alignments were determined using an ABI PRISM 3130xl Genetic Analyzer (Applied Biosystems, Waltham, MA, USA).

Phylogenetic analyses. Using ApDMT and ApDMTRP sequences as queries, similar sequences were collected from the literature or by BLASTP searches of whole genome databases using non-redundant protein sequences (nr) at NCBI. In addition, hagfish sequences were derived from Ensembl [https://www.ensembl.org/Eptatretus_burgeri/Info/Index?db=addition, hag].

Table 1 Yeast strains used for functional analysis.

For Fe uptake test	For Zn uptake test	For Mn uptake test	For Cd, Cu, Pb uptake test
Wild type	Mutant		
DY1457	DEV1453(fet3fet4)	ZHY3(zrt1zrt2)	BY743
			Hom Dip YOL122C
			lacking SMF1
			DY1457

Table 1 Yeast strains used for functional analysis.

For Fe uptake test	For Zn uptake test	For Mn uptake test	For Cd, Cu, Pb uptake test
Wild type	Mutant		
DY1457	DEV1453(fet3fet4)	ZHY3(zrt1zrt2)	BY743
			Hom Dip YOL122C
			lacking SMF1
			DY1457

Table 1 Yeast strains used for functional analysis. The expression of DMT and DMTRP in yeast cells. pDR195+ApDMT+EGFP, pDR195 +ApDMTRP+EGFP, and empty vector pDR195 were introduced into competent yeast cells DY1457 using a frozen-EZ Yeast transformation II kit (Zymo Research Co., CA, USA). Transformants were selected on plates containing the synthetic dropout medium with appropriate amino acids. These yeast were incubated in 1 mL of synthetic defined (SD)-Ura medium buffered at pH 6.0 with 50 mM 2-morpholinoethanesulfonic acid at 30 °C for 24 h by centrifugation for 5 min at 6000 × g. Afterward, cells (OD600 = 0.1) were washed with sterile water and cultured in 1 mL SD-Ura medium (pH 6.0) at 30 °C overnight. A fluorescent microscope (Olympus BX-53 equipped with a high-pressure mercury lamp, U-HgLPS, and a fluorescent filter cube, U-FGEP, Olympus, Tokyo, Japan) was used to observe expressed fusion proteins, and images were captured using a digital camera DS-Ri1 (Nikon, Tokyo, Japan).

Heavy metal accumulation. Constructed vectors ApDMT+DR195 and ApDMTRP+DR195 were introduced into DYE1453 (fet3fet4), ZHY3 (zrt1zrt2), SMF1, DY1453, and BY743 using a Frozen-EZ Yeast Transformation II Kit. Transformants were selected using SD-Ura medium plates (pH 4.0) supplemented with 10 μM FeCl3, for DYE1453; SD-Ura medium plates (pH 5.2) supplemented with 10 μM each of FeCl3 and ZnCl2 for ZHY3; SD-Ura medium plates (pH 5.2) supplemented with 100 μM MnSO4 for SMF1; SD-Ura medium plates for Transformed DYE1453 and BY743. These yeast were incubated in 5 mL of liquid SD-Ura medium at 30 °C for 24 h and collected by centrifugation for 5 min at 6000 × g. Air-dried cells (OD600 = 0.1) were washed with sterile water and cultured in 10 mL of liquid SD-Ura medium containing 2 μM of one of the following metal salts, FeCl3, ZnCl2, MnSO4, CdCl2, PbCl2, and CuCl2, at 30 °C overnight for 24 h at 30 °C, with shaking at 250 rpm. After that, the yeast cells were pelleted by centrifugation at 3500 rpm for 5 min, washed with ice-cold 20 mM EDTA and rinsed three times with sterile water. Pellets were dried at 70 °C for 3 h. Dried cells were digested for 48 h in 0.5 mL 68% ultrapure HNO3 (Tama Chemicals Co., Kanagawa, Japan, TAMAPURE-AA-100) at 60 °C. Digested solution was diluted to 100 μL and measured for heavy metal concentration.
appropriate concentration for the analysis, ~60 times by weight. All dilutions were performed gravimetrically. The Fe, Zn, Mn, Cd, Pb, and Cu concentrations in digested-diluted solution were quantified using ICP-MS (Agilent 7700x ICP-MS, Agilent Technologies Inc., Santa Clara) based on the sensitivity factor obtained from ICP Multi-Element Standards IV (Merck, Darmstadt, Germany). A procedure blank was also evaluated and found to be negligible. Metal accumulations in the cells were calculated and normalized by yeast optical density (OD600). Typical blank was also evaluated and found to be negligible. Metal accumulations in the yeast were determined using separate colonies picked from plates. Statistical analyses of the data were performed using one way ANOVA with Tukey’s post-hoc HSD test in R (standard package) to show the significance of differences. A difference of p < 0.05 was considered statistically significant.

Database search for DMT-like genes of COTS. To obtain DMT-like sequences, a BLAST search was carried out in the Crown-of-thorns starfish (COTS) genome [https://www.ncbi.nlm.nih.gov/genome/7870?genome_assembly_id=301786] using the DMT of the scallop, *Mizuhopecten yessoensis* (GenBank: BAD99106.1) as a query25.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

DMT and DMTIP sequences of COTS and Asian green mussel are deposited to DDBJ/EMBL/Genbank Database under the accession numbers LC585429, LC585430, LC585431, LC585432, respectively.

Received: 10 October 2020; Accepted: 12 March 2021; Published online: 12 April 2021

References

1. Takeda, S. et al. Bioavailability and biogeochemical processes of trace metals in the surface ocean. *In Western Pacific Air–Sea Interaction Study* (eds Uematsu, M. et al.) 163–176 (TERRAPUB, 2014).
2. Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. *Nat. Geosci.* 6, 701–710 (2013).
3. Ochiai, E. Copper and the biological evolution. *BioSystems* 16, 81–86 (1983).
4. Kalay, M. & Canli, M. Elimination of essential (Cu, Zn) and non-essential (Cd, Pb) metals from tissues of a freshwater fish *Tilapia zillii* from *Turrk. J. Zool.* 24, 429–436 (2000).
5. Scott, C. et al. Bioavailability of zinc in marine systems through time. *Nat. Geosci.* 6, 125–128 (2012).
6. Migliaccio, O. et al. Maternal exposure to cadmium and manganese impairs reproduction and progeny fitness in the sea urchin *Paracentrotus lividus*. PLoS ONE 10, e0131815 (2015).
7. Migliaccio, O. et al. Stress response to cadmium and manganese in *Paracentrotus lividus* developing embryos is mediated by nitric oxide. *Aquat. Toxicol.* 156, 125–134 (2014).
8. Yilmaz, A. B. et al. Review of heavy metal accumulation on aquatic environment in Northern Eastern Mediterranean Sea part I: some essential metals. *Rev. Environ. Health* 32, 119–163 (2017).
9. Jeffrey, P. D. et al. Structure and metal exchange in the cadmium carbonyl anhydride of marine diatoms. *Nature* 452, 56–61 (2008).
10. Nevo, Y. & Nelson, N. The NRAMP family of metal-ion transporters. *Biochem. Biophys. Acta—Mol. Cell Res.* 1763, 609–620 (2006).
11. Tandy, S. et al. Nkrp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. *J. Biol. Chem.* 275, 10231–10239 (2000).
12. Cellmer, C. et al. Nkrp defines a family of membrane proteins. *Proc. Natl Acad. Sci. USA* 92, 10089–10093 (1995).
13. Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. *Nature* 388, 482–488 (1997).
14. Sacher, A. et al. Properties of the mammalian and yeast metal-ion transporters DMT1 and Smn1p expressed in *Xenopus laevis* oocytes. *J. Exp. Biol.* 204, 1053 (2001).
15. Marciani, P. et al. Modulation of DMT1 activity by redox compounds. *J. Membr. Biol.* 197, 91–99 (2004).

Acknowledgements

We thank Dr. Ihsan Ullah and Dr. David J. Eide, who provided the yeast strains and control vectors used in this experiment, and Dr. Yoshitaka Oka, Dr. Haruhiko Toyohara,
and Dr. Masaya Takagi for their support of this study. This work (partly) was supported by the Sasakawa Scientific Research Grant from The Japan Science Society.

Author contributions
M.S. conceived the study, performed all the experiments and drafted the manuscript. A.K. performed cDNA cloning and phylogenetical analysis. Y.Z. and C.S. coordinated COTs sampling. Y.Y. and C.S. performed bioinformatics analysis. S.K. performed microscopic analysis. T.T. carried out experiments on yeast. K.S. and N.M.-S. conducted ICP-MS analyses. K.I. conceived the concept and supervised the project. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s42003-021-01984-8.

Correspondence and requests for materials should be addressed to M.S.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021