Characterization of flow cytometric immuno-phenotyping of acute myeloid leukemia with minimal differentiation and acute T-cell lymphoblastic leukemia: A retrospective cross-sectional study [version 1; peer review: awaiting peer review]

Enass Abdul Kareem Dagher Al-Saadi1, Marwa Ali Abdulnabi2, Faris Hanoon Jaafar3

1Pathology, University of Karbala, College of Medicine, Karbala, Karbala, Iraq
2Pathology, University of Baghdad, Al-Kindy College of Medicine, Baghdad, Iraq
3Pathology, Baghdad Medical City, Baghdad, Iraq

Abstract

\textbf{Background:} Acute leukemias (ALs) are a heterogeneous group of malignancies with various clinical, morphological, immunophenotypic, and molecular characteristics. Distinguishing between lymphoid and myeloid leukemia is often performed by flow cytometry. This study aimed to evaluate the immunophenotypic characterization and expression of immuno-markers in both acute myeloid leukemia (AML-M0) and acute T-cell lymphoblastic leukemia (T-ALL).

\textbf{Methods:} A retrospective cross-sectional study was conducted in the Pathology Department/Teaching Laboratories/Medical City/Iraq and included all patients newly diagnosed with AL from 5 January to 10 December 2018. Immunophenotypic analysis was performed on bone marrow samples, freshly collected in EDTA tubes. Flow cytometry (Canto-2 BD) was used, with laser excitation of blue and red wavelengths. A panel of monoclonal antibodies (MoAbs) was used for diagnosis, using a SSC/CD45 gating strategy.

\textbf{Results:} The study showed 41.6% of AML-M0 patients had no aberrant antigen expression, while 33.3%, 16.6%, 8.3%, and 8.3% had aberrant CD7, CD56, CD2, and CD19, respectively. In 16.6% of AML-M0 cases more than one aberrant antigen was expressed. With regard to T-ALL, 7.0% were pro-T type, 58.0% were pre-T, 13.0% were cortical, and 22.0% were mature-T type. In 55.5% of patients with T-ALL there was no aberrant antigen expression.

\textbf{Conclusion:} We concluded that most patients with AML-M0 have no aberrant antigen expression. In patients with T-ALL, the pre-T type is most common, according to the European Group for the Immunological Classification of Leukemias (EGIL) classification. Patients with T-ALL also generally lack aberrant antigen expression.
Keywords
Acute leukemia, Immuno-phenotyping, Acute lymphoblastic leukemia, Multi-parameter flowcytometry
Introduction
There are many characteristic categories of leukemia, which have well-known prognoses and specific treatments. Differentiation between lymphoid and myeloid leukemia is performed using flow cytometry\(^1\). The analysis of acute leukemia immunophenotypic done by flow cytometry, this method recently become a tool for distinguishing between myeloid and lymphoid lineages. Several types of acute leukemias identified morphologically with or without enzyme cytochemical analysis, but immunophenotyping stay a vital for the right identification of myeloid lineages in minimally differentiated acute myeloid leukemia (AML-M0) and the differentiation of B or T-cell lineages in acute lymphoblastic leukemia (ALL)\(^2\). Flow cytometry (FC) is a newer technology that can be used to detect many CD markers in or on a single malignant cell, and also possesses multi-parametric capabilities for combining the study of physical characteristics, such as cell size and granularity, alongside multiple CD markers. The advantages of FC include simultaneous analysis of multiple antigens on the same cell, assessing small samples, and providing results to make an objective diagnosis within a few hours\(^3\). Immunophenotyping permits reproducible lineage detection and assignment of leukemia types. On the other hand, intra-permeable cytoplasmic markers, such as myeloperoxidase, cCD22, cCD3, and cCD79a, are more accurate and specific indicators\(^4\). Distinguishing AML-M0 from ALL remains a challenge in a minority of cases. The French–American–British (FAB) Cooperative Group recognized that many cases morphologically classified as types of ALL appeared to be of myeloid origin, as determined by monoclonal antibodies and ultra-structural cytochemistry\(^5\).

This study aimed to evaluate the immunophenotypic characterization and the expression of commonly used immuno-markers in both acute myeloid leukemia with minimal differentiation (AML-M0) and T-cell acute lymphoblastic leukemia (T-ALL), and to define the best use and the role of multi-parameter flow-cytometry in the diagnosis and proper classification of these types of acute leukemia. Also, to evaluate the aberrant antigen expression in both AML-M0 and T-ALL and its correlation with clinical and prognostic criteria.

Methods
Study design and setting
A retrospective cross-sectional study was conducted among 69 participants with newly diagnosed AL (M0 or T-ALL); there were 24 cases of AML-M0, 12 females and 12 males; and 45 cases of T-ALL, 40 males and five females. This study was conducted in the Pathology Department/Teaching Laboratories/Medical City/Iraq, and included all patients newly diagnosed with AL during the period from 5 January to 10 December 2018. Demographic characters of patients like age, and gender were collected from medical records of the participants. General clinical feature of each patients collected either when taking the patients history or during clinical examination included hepatosplenomegaly; lymphadenopathy (LAP); pallor; history of bleeding from gum, gingivae, and skin; fever; effusion of pleura; and presenting with a mediastinal mass.

Inclusion criteria
1. T-ALL patients aged between (0.5–60) years old.
2. AML-M0 patients aged between (7–76) years old.
3. de novo cases, those not receiving steroid or chemotherapy before sample collection
4. Those with a positive diagnosis of T-ALL or AML-M0 confirmation.

Exclusion criteria
1. Death of patient prior to treatment
2. Those who received chemotherapy in other hospitals either before referral or after finishing induction.
3. Those whom refused treatment.
4. Those with history of steroid intake of than one week.

Diagnostic criteria
1. Those presented have fever, abdominal fullness, and skin rash.
2. Those have pallor, petechiae (bleeding under the skin), sternal tenderness to palpation, lymphadenopathy, and hepatosplenomegaly on physical examination.
3. Those with history of bleeding from gum, and gingivae.
4. Those with elevated WBC count, normal RBC counts, decrease platelets counts in CBC.
5. Those with chest masses on chest radiograph.
6. Those with LAP and organomegaly on CT scans of the chest and abdomen/pelvis.

Sample size calculation
A sample size of 69 participants was calculated by the following formula:

\[
n = \frac{Z^2 \times \hat{p}(1 - \hat{p})}{\varepsilon^2}
\]

where
- \(Z\) is the z score for 95% CI=1.96
- \(\varepsilon\) is the margin of error=5%
- \(n\) is sample size
- \(\hat{p}\) is the population proportion=50%

This means 69 or more measurements/surveys are needed to have a confidence level of 95% that the real value is within ±5% of the measured/surveyed value. We the population proportion based on historical data from our center, whereby we found 50% of those attending were eligible for the study or in other words 50% were diagnosed with T-ALL or AML-M0.
Period of recruitment, follow-up, and data collection
Participants were recruited at their first visit to the center. Each patient attending our center meeting the inclusion criteria were invited to be including in our study after which written informed consent was obtained. Follow-up was performed at every subsequent visit. In EDTA anti-coagulated tubes (ATACO / China, Catalogue No.:443N980100E), the bone marrow aspirate (BMA) samples were collected (2–3 ml). The method of collection as follow: we marked and cleaned the area where the biopsy needle will be inserted. The bone marrow fluid (aspirate) and tissue sample (biopsy) were usually collected from the top ridge of the back of the hipbone (posterior iliac crest). A small incision was made, into which the needle was inserted into the bone and into the bone marrow. A sample of the liquid portion of the bone marrow was then drawn. Following sampling pressure was applied to the area of insertion to stop the bleeding and then a bandage will be placed on the site. Bone marrow was either aspirated and tested the same day or stored, if necessary, in a refrigerator (2–8°C), for no more than 48 hours. We pre-washed all the sample using at least 25 volumes excess 1X PBS (BD biosciences, Catalogue No.: 554781), mixed well. Then, pelleted cells by centrifugation and re-suspend in 1X PBS with 0.1% sodium azide to the original volume.

Data measurement and quantitative variables
The panel used for diagnosis of both ALs included the following monoclonal antibodies (MoAbs): CD45, CD34, cMPO, CD13, CD33, CD14, CD15, CD64, CD117, cTdT, cCD79a, CD19, CD20, CD10, CD1a, CD2, sCD3, cCD3, CD4, CD5, CD7, CD8, and CD56, with an SSC/CD45 gating strategy, Table 1.

Antibodies	Supplier	Catalog no.	Concentration
CD45	BD biosciences	332784	6 μL for 100 μL blood
CD34	BD biosciences	333178	6 μL for 100 μL blood
CD13	BD biosciences	333164	6 μL for 100 μL blood
CD33	BD biosciences	333180	6 μL for 100 μL blood
CD14	BD biosciences	333116	6 μL for 100 μL blood
CD15	BD biosciences	333116	6 μL for 100 μL blood
CD64	BD biosciences	333116	6 μL for 100 μL blood
CD117	BD biosciences	332784	6 μL for 100 μL blood
cTdT	BD biosciences	335835	6 μL for 100 μL blood
CD19	BD biosciences	331355	6 μL for 100 μL blood
CD20	BD biosciences	331356	6 μL for 100 μL blood
CD10	BD biosciences	332775	6 μL for 100 μL blood
CD1a	BD biosciences	331167	6 μL for 100 μL blood
CD2	BD biosciences	335821	6 μL for 100 μL blood
sCD3	BD biosciences	332771	6 μL for 100 μL blood
cCD3	BD biosciences	333170	6 μL for 100 μL blood
CD4	BD biosciences	332772	6 μL for 100 μL blood
CD5	BD biosciences	331357	6 μL for 100 μL blood
CD7	BD biosciences	332772	6 μL for 100 μL blood
CD8	BD biosciences	333171	6 μL for 100 μL blood
CD56	BD biosciences	335826	6 μL for 100 μL blood
Immunophenotypic analysis was performed. Cells were stained using fluorescence-conjugated MoAbs and analyzed using a four-color Canto-2 BD flow cytometry device. The device software was based on the FACS DIVA-8 operating system for multi-parametric data acquisition, display, analysis, and instrument control. The Canto-2 BD is a high performance, accurate, and cost-effective flow cytometry device that employs two lasers (red and blue), six optical parameters, and offers four colors with forward scatter (FSC) and side scatter (SSC) in combination with four fluorescence channels (FL1–FL4).

Addition of surface antibodies
Each surface antibody (6 μl) was added to 100 μl of well-mixed EDTA (BD biosciences, Catalogue No.: 347689) anti-coagulated blood in labeled tubes, then incubated at room temperature in the dark for 15 minutes. Then, 2.5 ml 1X BD FACS lysis solution (BD biosciences, Catalogue No.: 349202) was added, and the samples were again incubated at room temperature in the dark for 15 minutes. The cells were washed three times by centrifugation at 1500 × g for 5 minutes before decanting the supernatant. FACS permeabilizing solution (BD biosciences, Catalogue No.: 347692) (0.5 ml) was added. Here, we vortex gently and incubated for 15 to 20 minutes in the dark at room temperature (20°C–25°C), and then the solution was re-suspended by vigorous shaking to mix. We then added 2 mL of CellWASH solution (BD biosciences, Catalogue No.: 349524) and centrifuged at 1200g for 5 minutes. Finally, we added 0.5 mL of CellFIX solution (BD biosciences, Catalogue No.: 340181) and mixed thoroughly. Then the samples were analyzed using the flow cytometer.

Addition of surface and cytoplasmic antibodies
After adding surface markers, 0.5 ml of permeabilizing reagent was added to each tube. The tubes were vortexed then incubated for 15 minutes in the dark. Then, 6 μl of each cytoplasmic marker was added and the samples were incubated at room temperature in the dark for 30 minutes. Then, 0.5 ml of FACS solution was added, and the samples were re-suspended by vigorous mixing before being analyzed using the flow cytometer.

Permeabilizing reagent
Permeabilizing Solution 2 (BD FACS™) is a premixed concentrate formulated specifically for use in flow cytometry. It is intended to permeabilize cell membranes prior to intracellular immunofluorescence staining with monoclonal antibodies.

Lysing reagent
Cell Lyse (BD biosciences, Catalogue No.: 559759), which is an erythrocyte lysing reagent kit for wash and no-wash procedures was used for cell lysis. Residual debris was removed by centrifugation and cell washing. Fixative reagent was used to fix and stabilize leukocytes. The fixed samples were stored for up to 24 hours at 2°C to 8°C before analysis.

Reagents
1. BD FACS™ lysing solution (10X) (Catalog No. 349202)
2. BD CellWASH™ (Catalog No.349524)
3. BD CellFIX™ (Catalog No. 340181)
4. BD FACS™ permeabilizing solution 2 (Catalog No. 347692)
5. Wash buffer of PBS with 0.1% sodium azide (Catalog No. 554781)
6. Distilled water (BDH Ltd., Catalogue No.:DW005HH2).

Equipment
1. Adjustable pipettes and their tips (Gelson/ France, Catalogue No.: 111-898-3).
2. Beakers (BD Biosciences, Catalogue No.: 33350410).
3. Flasks (BD Biosciences, Catalogue No.: 645392).
4. Centrifuge (Elite – Medichem/ (India), Catalogue No.: 153-33-IND).
5. Disposable slides (BD Biosciences, Catalogue No.: 335630).
6. EDTA tubes (ATACO / China, Catalogue No.:443N980100E).
7. Racks (BD Biosciences, Catalogue No.: 333489).
8. Refrigerator (HITACHI, Catalogue No.: HRPK0284A_E118-600L4D-STD-EX).
9. Stop watch (CTIZ / Japan, Catalogue No.:44448FHD).
10. Syringes (ATACO / China, Catalogue No.: CCD35560001).
11. Vortex mixer (Memmert/ Germany, Catalogue No.: CR076662088).
12. Wash bottle (BD Biosciences, Catalogue No.: 33635107).
13. Falcon® disposable 12 x 75-mm polystyrene test tubes (BD Biosciences, Catalogue No.: 343514).

Gating strategy
The dominant population of leukemic blasts was identified using side scatter versus CD45 dot plots to isolate the blast population. A 20% cut-off value was used to indicate the positivity of surface markers, while the cut-off value for cytoplasmic markers was 10%.

Software
Data acquisition and analysis was performed using FCS DIVA-8, made by the BD Software Company.

Ethical considerations
Written informed consent was obtained from all participants, or the parents of those aged less than 18 years. The Medical Ethical Committee at the Oncology Center, Al-Kindy College of Medicine, Baghdad University, Iraq, approved this study (code: 52).
Statistical analysis
We used Microsoft Excel (v. 2010) to calculate frequencies and percentages of variables, and to calculate means and standard deviations (SDs).

Results
A total of 69 patients were newly diagnosed with AL; 24 patients with AML-M0, 12 females and 12 males; and 45 patients with T-ALL, 40 males and 5 females, as shown in Figure 1, the age and sex of patients is shown in Table 2 and Table 3.

Regarding clinical findings, we listed in Table 4 as follow: hepatomegaly in 24.6%; splenomegaly in 36.2%; LAP in 44.9%; Pallor in 68.1%; bleeding in 71%; fever in 60.9%; pleural effusion in 1.4%; mediastinal mass in 5.8%.

This study identified 10 (41.6%) patients with AML-M0 who showed no aberrant antigen expression, while 33.3%, 16.6%, 8.3%, and 8.3% had aberrant CD7, CD56, CD2, and CD19 expression, respectively. In four (16.6%) cases of M0, there was more than one aberrant antigen expressed: two cases (8.3%) had both CD7 and CD56, one case (4.2%) had CD7 plus CD19, and one case expressed CD7 plus CD2. With regard to patients with T-ALL, we found the following: 7.0% of T-ALL patients had pro-T type, 58.0% had pre-T type, 13.0% had cortical type, and 22.0% had mature-T type, according to the European Group for the Immunological Classification of Leukemias (EGIL) criteria. Our study also showed that 55.5% of all patients with T-ALL lacked aberrant antigen expression, while 13.3%, 13.3%, 8.3%, and 8.3% had aberrant CD13, CD117, CD33, CD19, and CD56 expression, respectively. Six cases (13.3%) showed expression of more than one aberrant antigen, mainly CD13 plus CD10, CD19, or CD56; CD13 plus CD117 in two cases; and one case with aberrant CD33 plus CD19, Table 5, Table 6 and Table 7.

Discussion
Flow cytometry of leukemic cells plays an essential role in the identification of leukemia cell lines, maturation stage, and detection of residual disease. Immunophenotyping can improve both the accuracy and reproducibility of leukemia classification and is considered particularly useful for identifying AML with lymphoid marker expression and ALL with myeloid marker expression. Some cases of AML associated with the expression of CD7 have a poor prognosis, while other studies have reported CD2 and CD19 are better prognostic indicators in cases of AML. In this study, 69 participants with de novo AL were enrolled, 45 of whom had T-ALL and 24 of whom had AML-M0. Most patients (88%) with T-ALL were male, which was in accordance with a study by Abid Salih and colleagues and also similar to another study that showed a predominance of males among patients with T-ALL. The male:female ratio was 1:1 in patients with AML-M0 in our study, which was consistent with earlier work.

In the present study, the most common features patients with T-ALL presented with were pallor and fever, followed by hepatosplenomegaly and lymphadenopathy, which is in accordance with the findings of other studies. The least common presenting features were CNS involvement, pleural effusion, and mediastinal mass.

Regarding the clinical features of AML-M0, the current study found that pallor and fever were present in 16 (66.7%) of patients, consistent with the findings of Ghosh et al. Anemia is a common feature of all acute leukemias and is due to bone marrow infiltration; again, our results are comparable with other studies. Pahloosye et al. reported pallor and fever were prominent symptoms. The current study showed that bleeding occurred in 19 (79.2%) of patients with

Table 2. Patient diagnosis and gender.

Gender	All patients N = 69	AML-M0 N=24	T ALL N=45			
	N	%	N	%	N	%
Male	52	75.4	12	50	40	88.9
Female	17	24.6	12	50	5	11.1

Table 3. The age groups differences between AML-M0 and T-ALL patients.

Age	N	Min-Max	Mean±SD	P value
AML-M0	24	7-76	43.73±18.62	< 0.001
T-ALL	45	0.5-60	18.26±14.74	
AML-M0. Such bleeding may be due to a number of causes, such as thrombocytopenia due to bone marrow suppression by infiltrating malignant leukemic cells, and by platelet dysfunction that accompanies leukemic involvement in the bone marrow16. Gaydos et al. were the first to report this in 1962, when they found that there was a linear relationship between bleeding and platelet count21. Qazi et al. correlated this feature with thrombocytopenia alone or disseminated intravascular coagulopathy (DIC)22. Extramedullary infiltration by leukemic cells may result in lymphadenopathy, splenomegaly, and/or hepatomegaly. In our patients, we observed hepatomegaly in 24.6\% of them. We concluded that pleural effusion was absent in AML-M0 patients but present in one (2.2\%) patient with T-ALL. Regarding mediastinal mass, this was absent in cases of AML-M0, and this agree with that noted by Ghosh et al.17.

The incidence of lymphoid antigen expression in AML-M0 cases was 58.4\%, which was higher than that seen by El-Sissy et al.12 and Khalidi et al.23, who found aberrant lymphoid antigen expression in AML to be 47\% and 48.1\%, respectively. The incidence of CD56 expression was 16.6\% in this study, which was similar to rates recorded in previous studies24–28. Many studies have concluded that overall survival was significantly decreased in individuals who expressed CD5624–26. Regarding CD7, it was expressed in (33.3\%) of patients with AML-M0, which was in agreement with other studies that found that CD7 to be aberrantly expressed in 10\%–40\% of blasts in AML patients29. Kita et al.13 showed that CD7 expression on cells is indicative of phenotype, is functional when immature, and is regarded as a prognostic risk factor.

Here, the most commonly expressed lymphoid marker was CD7 (33.3\%), which is the same as recent reports by Bahia et al.30 and Zheng et al.31, although it is higher than the results reported by Venditti et al.31. CD4 was expressed in 25\% of patients with AML-M0, which is comparable to one other study32 but higher than values reported by some other studies, e.g., 17.5\%33 and 16\%23.

In the current study, CD19 was expressed in 8.3\% of patients, which is in accordance with the range of 8.6\%–10\% found in other studies like Khalidi et al.23, Bahia et al.30 and Venditti et al.31 but contrasts with other reports of 14\%23 and even lower

Table 4. The distribution of clinical features in patients with AML-M0 and T-ALL.

Clinical features	All patients N = 69	AML-M0 N = 24	T-ALL N = 45			
	N	%	N	%	N	%
Hepatomegaly						
Absent	52	75.4	24	100.0	28	62.2
Present	17	24.6	0	0.0	17	37.8
Splenomegaly						
Absent *	44	63.8	21	87.5	23	51.1
Present	25	36.2	3	12.5	22	48.9
LAP						
Absent *	38	55.1	20	83.3	44	97.8
Present	31	44.9	4	16.7	1	2.2
Pallor						
Absent*	22	31.9	8	33.3	14	31.1
Present	47	68.1	16	66.7	31	68.9
Bleeding						
Absent*	20	29.0	5	20.8	15	33.3
Present	49	71.0	19	79.22	30	66.7
Fever						
Absent*	27	39.1	8	33.3	19	42.2
Present	42	60.9	16	66.7	26	57.8
Pleural effusion						
Absent*	68	98.6	24	100.0	44	97.8
Present	1	1.4	0	0.0	1	2.2
Mediastinal mass						
Absent*	27	94.2	24	100.0	41	91.1
Present	4	5.8	0	0.0	4	8.9
Table 5. Patterns of markers expression in both AML-M0 and T-ALL.

Marker	AML-M0 (24)	AML-M0 (45)	T-ALL (45)	T-ALL (45)	Total Positive No (%)
CD45	1 (4.2)	1 (2.2)	36 (80.0)	8 (17.8)	23 (95.8)
HLADR	4 (16.7)	4 (16.7)	9 (37.5)	4 (16.7)	20 (83.3)
CD33	4 (16.7)	5 (20.8)	11 (45.8)	0	20 (83.3)
CD13	4 (16.7)	6 (25.0)	11 (45.8)	2 (8.3)	20 (83.3)
CD117	3 (12.5)	4 (16.7)	9 (37.5)	2 (8.3)	21 (87.5)
CD10	4 (16.7)	5 (20.8)	11 (45.8)	0	20 (83.3)
CD19	22 (91.7)	1 (4.2)	1 (4.2)	0	2 (8.3)
CD56	20 (83.3)	3 (12.5)	1 (4.2)	1 (2.2)	3 (6.7)
Cytoplasmic TdT	22 (91.7)	0 (91.7)	2 (0.0)	0 (8.3)	2 (8.3)
CD1a	39 (86.7)	3 (6.7)	3 (6.7)	0	6 (13.3)
CD2	42 (93.3)	3 (6.7)	0	0	3 (6.7)
Surface CD3	20 (83.3)	3 (12.5)	0	1 (2.2)	4 (16.6)
CD4	44 (97.8)	0	0	1 (2.2)	1 (2.2)
CD5	19 (42.2)	6 (13.3)	13 (28.9)	5 (11.1)	26 (57.8)
CD8	18 (75.0)	2 (8.3)	3 (12.5)	1 (4.2)	6 (25.0)
Cytoplasmic CD3	19 (42.2)	6 (13.3)	9 (20.0)	1 (2.2)	26 (57.8)
than 2.5%35. The current study showed that CD2 was expressed in 8.3% of cases of AML, similar to the proportion reported by Thalhammer-Scherrer\textit{et al.}36, who found the expression of CD2 to be 3%, while Bahia\textit{et al.}29 and Venditti\textit{et al.}31 found higher values, of 11.4% and 14%, respectively.

The pattern of myeloid expression is correlated with some genetic features of blast cells. CD15, CD33, and CD65 are expressed in ALL cases with a rearranged MLL gene, and CD13 and CD33 are expressed in cases with the ETV6-RUNX1 gene37. The presence of these antigens lacks prognostic significance in contemporary treatment programs38.

The CD13 and CD33 were expressed in 6 (13.3%) and 5 (11.1%) of cases, respectively, which is consistent with another study39. Acute T-cell lymphoblastic leukemia with aberrant CD117 presented in 6 (13.3%) patients and is also comparable with the proportion seen in other studies40–43. Three (6.7%) patients with T-cell acute lymphoblastic leukemia expressed aberrant CD19, a lower value than other studies which found the expression of CD19 in cases of T-ALL to be 22%44. T-cell acute lymphoblastic leukemia expressing aberrant CD56 was only seen in one (2.2%) patient, and this is consistent with other studies45.

Conclusion

We concluded that aberrant expression of CD markers was present in some cases of acute leukemia. The incidence of aberrant antigen expression was comparable with other studies and represents an indicator of poor prognosis. CD13, CD33, and CD117 were the most frequent aberrant myeloid antigens expressed in T-ALL cases, while CD19 and CD56 were expressed in fewer cases. A large number of AML cases had aberrant lymphoid phenotypes, with T-cell markers more common than B-cell markers. In addition, CD7 was a common aberrantly expressed lymphoid marker in AML. In the future, correlation studies of cytogenetic and lymphoid phenotypes should be performed to determine if there is any association between specific cytogenetic anomalies and the aberrant expression of certain lymphoid markers in patients with

Table 6. The frequency of aberrant antigen expression in T-ALL patients.

	Frequency	Percent
T-cell Acute lymphoblastic leukemia without aberrant expression	25	55.5
T-cell Acute lymphoblastic leukemia with aberrant CD13	6	13.3
T-cell Acute lymphoblastic leukemia with aberrant CD117	6	13.3
T-cell Acute lymphoblastic leukemia with aberrant CD10	6	13.3
T-cell Acute lymphoblastic leukemia with aberrant CD33	5	11.1
T-cell Acute lymphoblastic leukemia with aberrant CD19	3	6.7
T-cell Acute lymphoblastic leukemia with aberrant CD56	1	2.2

*Some cases had more than one aberrant antigen expression.

Table 7. The frequency of aberrant antigen expression in AML-M0 patients.

	Frequency*	Percent
AML/M0 without expression	10	41.6
AML/M0 with aberrant CD7 expression.	8	33.3
AML/M0 with aberrant CD4 expression	6	25
AML/M0 with aberrant CD56	4	16.6
AML/M0 with aberrant CD2	2	8.3
CD19	2	8.3

*Some cases had more than one aberrant antigen expression.
AML, or between specific cytogenetic anomalies and myeloid markers in patients with ALL.

Data availability

Underlying data

Zenodo: Leukemia data. http://doi.org/10.5281/zenodo.4021334

This project contains the following underlying data:

- Pdf files for each participant including a immuno phenotyping report with scatter plots
- Data.xlsx (Dataset containing immunophenotyping results for all participants)

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgments

Great thanks for Adam Bodley, MAEd from Peerwith for his copyediting services of this work.

References

1. Senexa R, Anand H: Flow cytometry in acute leukemia. Indian J Hematol Blood Transfus. 2008; 24(4): 140-150. PubMed Abstract | Publisher Full Text | Free Full Text

2. Lee EJ, Pollak A, Leavitt RD, et al.: Minimally differentiated acute nonlymphocytic leukemia: a distinct entity. Blood. 1987; 70(5): 1400-1406. PubMed Abstract | Publisher Full Text

3. Abdusalam A: Diagnosis of Acute Leukaemia in Under-Resourced Laboratories. Acute Leukemia - The Scientist's Perspective and Challenge. Prof. Mariaestefania Antica (Ed.). Croatia: In Tech. 2011. Publisher Full Text

4. Hoyer JD, Kurtin PJ, Hanson CA: Comparison of cytotoxic and immunologic methods for detecting myeloperoxidase (MPO) in acute leukemias. Med Pathol. 1996; 9(13 A).

5. Bennett JM, Catovsky D, Daniel MT, et al.: Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976; 33(4): 451-458. PubMed Abstract | Publisher Full Text

6. PARTEC: Reagents: monoclonal antibodies, antibody Premix, Partec reagents. Germany: Partec 2012; accessed at December, 10, 2019.

7. PARTEC: CyFlow® SL Healthcare | Immunology. The ultracompact and portable CyFlow® SL provides most accurate and uniquely affordable 3-colour reagents for use in research and routine applications. (accessed at 20, February, 2019).

8. BD Biosciences: BD FACS Permeabilizing Solution 2. Accessed at October, 15, 2014. Reference Source

9. PARTEC: Accessed at October, 17, 2014.

10. Al-Saadi EA: Leukemia data. F1000research. 2020. http://doi.org/10.5281/zenodo.4021334

11. Bene MC, Castoldi G, Knapp W, et al.: Proposals for the immunological classification of acute leukaemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995; 9(10): 1785-1786. PubMed Abstract

12. El-Sisy AH, El-Mashari MA, Bassuni WY, et al.: Ablerrant lymphoid antigen expression in acute myeloid leukemia in Saudi Arabia. J Egypt Natl Canc Inst. 2006; 18(3): 244-4. PubMed Full Text

13. Kita K, Miwa H, Nakase K, et al.: Clinical importance of CD7 expression in acute myelocytic leukemia. The Japan Cooperative Group of Leukemia/Lymphoma. Blood. 1993; 81(9): 2399-405. PubMed Abstract | Publisher Full Text

14. Drexler HG, Theil E, Ludwig WD: Acute myeloid leukemias expressing lymphoid-associated antigens: diagnostic incidence and prognostic significance. Leukemia. 1993; 7(4): 489-98. PubMed Abstract

15. Abid-Salih B: Evaluation of Oncogene Fusion Transcripts ([t(12;21)/TELAML, t(11;19)/E2A-PBX1, t(1;19)/MLL-AF4, and t(9;22)/BCR/ABL]) in Children with Acute Lymphoblastic Leukemia by Multiplex PCR Analysis (Phd in Hematopathology). Baghdad: Al-Nahrain University, College of Medicine. 2013.

16. Hassan MK, Ibrahim J, Abbas MS: The adverse effects of chemotherapeutic agents in IRAQI patients with acute lymphocytic drug, the induction phase. J A R 2013; 3(4): 586-592. Reference Source

17. Gosh S, Shinde SC, Kumaran GS, et al.: Haematologic and immunophenotypic profile of acute myeloid leukemia: an experience of Tata Memorial Hospital. Indian J Cancer. 2003; 40(2): 71-76. PubMed Abstract

18. Cascavilla N, Muto P, Darena G, et al.: Adult and childhood acute lymphoblastic leukemia: clinico-biological differences based on CD34 antigen expression. Haematologica. 1997; 82(1): 31-37. PubMed Abstract

19. Al-Barazanchi ZA, Al-Sani AK, Naerna NF, et al.: Haematological and cytomorphological study of Acute Lymphoblastic Leukemia (ALL). Bahrain Med Bull. 2005; 27(4): 1-4. Reference Source

20. Pahloosye A, Hashemi A, Mirmohammadi SJ, et al.: Presenting Clinical and Laboratory Data of Childhood Acute Lymphoblastic Leukemia. Iran J Ped Hematol Oncol. 2011; 1(3): 71-77. Reference Source

21. Gaydos LA, Freireich EJ, Mantel N: The quantitative relation between platelet count and hemorrhage in patients with acute leukemia. N Engl J Med. 1962; 266: 905-909. PubMed Abstract | Publisher Full Text

22. Qazi R, Hameed B: Bleeding diathesis in acute Myeloid Leukemia: Thrombocytopenia alone or in Disseminated Intravascular Coagulopathy. Pak J Med Sci. 2002; 13: 682-685. PubMed Abstract | Publisher Full Text

23. Khalid HS, Medeiros LJ, Chang KL, et al.: The immunophenotype of adult acute myeloid leukemia: high frequency of lymphoid antigen expression and comparison of immunophenotype, French-American-British classification, and karyotypic abnormalities. Am J Clin Pathol. 1998; 109(2): 211-20. PubMed Abstract | Publisher Full Text

24. Chang H, Salma F, Yi QL, et al.: Prognostic relevance of immunophenotyping in 379 patients with acute myeloid leukemia. Leuk Res. 2004; 28(1): 43-8. PubMed Abstract | Publisher Full Text

25. Chang H, Brandwein J, Yi QL, et al.: Extramedullary infiltrates of AML are associated with CD56 expression, 11q23 abnormalities and inferior clinical outcome. Leuk Res. 2004; 28(10): 1007-11. PubMed Abstract | Publisher Full Text

26. Ferrara F, Morabito F, Martinio B, et al.: CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy. J Clin Oncol. 2000; 18(6): 1295-300. PubMed Abstract | Publisher Full Text

27. Raspadori D, Damiani D, Lessio M, et al.: CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis. Leukemia. 2001; 15(8): 1161-4. PubMed Abstract | Publisher Full Text

28. Ogata K, Yokose N, Shioi Y, et al.: Reappraisal of the clinical significance of CD7 expression in association with cytogenetics in de novo acute myeloid leukemia. Br J Haematol. 2001; 115(3): 612-5. PubMed Abstract | Publisher Full Text

29. Bahia DM, Yamamoto M, Chauffaille Mde L, et al.: Ablerrant phenotypes in acute myeloid leukemia: a high frequency and its clinical significance. Haematologica. 2001; 86(8): 801-6. PubMed Abstract

30. Zheng J, Wang X, Hu Y, et al.: A correlation study of immunophenotypic, cytogenetic, and clinical features of 180 AML patients in China. Cytometry B Clin Cytom. 2008; 74(11): 25-9. PubMed Abstract | Publisher Full Text
31. Venditti A, Del Poeta G, Buccisano F, et al.: Prognostic relevance of the expression of Tdt and CD7 in 335 cases of acute myeloid leukemia. Leukemia. 1998; 12(7): 1056–63. PubMed Abstract | Publisher Full Text

32. Al-Anizi WM, Al-Mashta MA: The frequency of aberrant lymphoid antigens expression in 202 Iraqi patients with de novo acute myeloid leukemia. Iraqi J Hematol. 2017; 6(2): 49–54. Publisher Full Text

33. Abdulateef NAB, Ismail MM, Aljedani H: Clinical significance of co-expression of aberrant antigens in acute leukemia: A retrospective cohort study in makah mukaramah, saudi arabia. Asian Pac J Cancer Prev. 2014; 15(1): 221–7. PubMed Abstract | Publisher Full Text

34. Haycocks NG, Lawrence L, Cain JW, et al.: Optimizing antibody panels for efficient and cost-effective flow cytometric diagnosis of acute leukemia. Cytometry B Clin Cytom. 2011; 80(4): 221–9. PubMed Abstract | Publisher Full Text

35. Kaleem Z, Crawford E, Pathan MH, et al.: Flow cytometric analysis of acute leukemias. Diagnostic utility and critical analysis of data. Arch Pathol Lab Med. 2003; 127(1): 42–8. PubMed Abstract

36. Thalhammer-Scherrer R, Mitterbauer G, Simonitsch I, et al.: The immunophenotype of 325 adult acute leukemias: relationship to morphologic and molecular classification and proposal for a minimal screening program highly predictive for lineage discrimination. Am J Clin Pathol. 2002; 117(3): 380–9. PubMed Abstract | Publisher Full Text

37. Paietta E, Neuberg D, Richards S, et al.: Reappraisal of the clinical and biologic significance of myeloid-associated antigen expression in childhood acute lymphoblastic leukemia. J Clin Oncol. 1998; 16(12): 3768–3773. PubMed Abstract | Publisher Full Text

38. Campana D: Minimal residual disease in acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2010; 2010(1): 7–12. PubMed Abstract | Publisher Full Text

39. Larson RA: Acute lymphoblastic leukemia. In: Kaushansky K, Lichtman MA, Prchal JT et al. Williams Hematology. 9th ed. China. The McGraw-Hill education. 2016; 91: 1505–1527. Reference Source

40. Bachir F, Bennani S, Lahjouji A, et al.: Characterization of acute lymphoblastic leukemia subtypes in moroccan children. Int J Pediatr. 2009; 2009: 674801. PubMed Abstract | Publisher Full Text | Free Full Text

41. Seegmiller AC, Kroft SH, Karandikar NJ, et al.: Characterization of immunophenotypic aberrancies in 200 cases of B acute lymphoblastic leukemia. Am J Clin Pathol. 2009; 132(6): 940–949. PubMed Abstract | Publisher Full Text

42. Supriyadi E, Veerman AJP, Sutaryo, et al.: Myeloid Antigen Expression in Childhood Acute Lymphoblastic Leukemia and Its Relevance for Clinical Outcome in Indonesian ALL-2006 Protocol. J Oncol. 2012; 2012: 135186. PubMed Abstract | Publisher Full Text | Free Full Text

43. Rizzo K, Stetler Stevenson M, Wilson W, et al.: Novel CD19 expression in a peripheral T cell lymphoma: A flow cytometry case report with morphologic correlation. Cytometry B Clin Cytom. 2005; 67(3): 142–149. PubMed Abstract | Publisher Full Text | Free Full Text

44. Paietta E, Neuberg D, Richards S, et al.: Rare adult acute lymphocytic leukemia with CD56 expression in the ECOG experience shows unexpected phenotypic and genotypic heterogeneity. Am J Hematol. 2001; 66(3): 189–96. PubMed Abstract | Publisher Full Text

45. Fischer L, Gökbuget N, Schwartz S, et al.: CD56 expression in T-cell acute lymphoblastic leukemia is associated with non-lymphoid phenotype and resistance to induction therapy but no inferior survival after risk-adapted therapy. Haematologica. 2009; 94(2): 224–9. PubMed Abstract | Publisher Full Text | Free Full Text
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com