ON PSEUDO-HERMITIAN MAGNETIC CURVES IN SASAKIAN MANIFOLDS

Şaban Güvenç and Cihan Özgür

Abstract. We define pseudo-Hermitian magnetic curves in Sasakian manifolds endowed with the Tanaka-Webster connection. After we have given a complete classification theorem, we shall construct parametrizations of pseudo-Hermitian magnetic curves in $\mathbb{R}^{2n+1}(-3)$.

Keywords: magnetic curve; slant curve; Sasakian manifold; the Tanaka-Webster connection.

1. Introduction

The study of the motion of a charged particle in a constant and time-independent static magnetic field on a Riemannian surface is known as the Landau–Hall problem [16]. The main problem is to study the movement of a charged particle moving in the Euclidean plane \mathbb{E}^2. The solution of the Lorentz equation (called also the Newton equation) corresponds to the motion of the particle. The trajectory of a charged particle moving on a Riemannian manifold under the action of the magnetic field is a very interesting problem from a geometric point of view [16].

Let (N, g) be a Riemannian manifold, and F a closed 2-form, Φ the Lorentz force, which is a $(1, 1)$-type tensor field on N. F is called a magnetic field if it is associated to Φ by the relation

$$F(X, Y) = g(\Phi X, Y),$$

where X and Y are vector fields on N (see [1], [3] and [8]). Let ∇ be the Riemannian connection on N and consider a differentiable curve $\alpha : I \rightarrow N$, where I denotes an open interval of \mathbb{R}. α is said to be a magnetic curve for the magnetic field F, if it is a solution of the Lorentz equation given by

$$\nabla_{\alpha'(t)}\alpha'(t) = \Phi(\alpha'(t)).$$

Received February 28, 2020; accepted April 04, 2020
2020 Mathematics Subject Classification. Primary 53C25; Secondary 53C40, 53A04

1291
From the definition of magnetic curves, it is straightforward to see that their speed is constant. Specifically, unit-speed magnetic curves are called normal magnetic curves [9].

In [9], Drut˘ă-Romaniuc, Inoguchi, Munteanu and Nistor studied magnetic curves in a Sasakian manifold. Magnetic curves in cosymplectic manifolds were studied in [10] by the same authors. In [13], 3-dimensional Berger spheres and their magnetic curves were considered by Inoguchi and Munteanu. Magnetic trajectories of an almost contact metric manifold were studied in [14], by Jleli, Munteanu and Nistor. The classification of all uniform magnetic trajectories of a charged particle moving on a surface under the action of a uniform magnetic field was obtained in [19], by Munteanu. Furthermore, normal magnetic curves in para-Kaehler manifolds were researched in [15], by Jleli and Munteanu. In [17], Munteanu and Nistor obtained the complete classification of unit-speed Killing magnetic curves in \(S^2 \times \mathbb{R} \). Moreover, in [18], they studied magnetic curves on \(S^{2n+1} \). 3-dimensional normal para-contact metric manifolds and their magnetic curves of a Killing vector field were investigated in [5], by Calvaruso, Munteanu and Perrone. In [20], the present authors studied slant curves in contact Riemannian 3-manifolds with pseudo-Hermitian proper mean curvature vector field and pseudo-Hermitian harmonic mean curvature vector field for the Tanaka-Webster connection in the tangent and normal bundles, respectively. The second author gave the parametric equations of all normal magnetic curves in the 3-dimensional Heisenberg group in [21]. Recently, the present authors have also considered slant magnetic curves in S-manifolds in [11].

These studies motivate us to investigate pseudo-Hermitian magnetic curves in (2n + 1)-dimensional Sasakian manifolds endowed with the Tanaka-Webster connection. In Section 2, we summarize the fundamental definitions and properties of Sasakian manifolds and the unique connection, namely the Tanaka-Webster connection. We give the main classification theorems for pseudo-Hermitian magnetic curves in Section 3. We show that a pseudo-Hermitian magnetic curve cannot have osculating order greater than 3. In the last section, after a brief information on \(\mathbb{R}^{2n+1}(-3) \), we obtain the parametric equations of pseudo-Hermitian magnetic curves in \(\mathbb{R}^{2n+1}(-3) \) endowed with the Tanaka-Webster connection.

2. Preliminaries

Let \(N \) be a \((2n + 1)\)-dimensional Riemannian manifold satisfying the following equations

\[
\begin{align*}
\phi^2(X) &= -X + \eta(X)\xi, & \eta(\xi) &= 1, & \phi(\xi) &= 0, & \eta \circ \phi &= 0, \\
g(X, \xi) &= \eta(X), & g(X, Y) &= g(\phi X, \phi Y) + \eta(X)\eta(Y),
\end{align*}
\]

for all vector fields \(X, Y \) on \(N \), where \(\phi \) is a \((1, 1)\)-type tensor field, \(\eta \) is a 1-form, \(\xi \) is a vector field and \(g \) is a Riemannian metric on \(N \). In this case, \((N, \phi, \xi, \eta, g)\) is said to be an almost contact metric manifold [2]. Moreover, if \(d\eta(X, Y) = \Phi(X, Y) \),
On Pseudo-Hermitian Magnetic Curves in Sasakian Manifolds

where $\Phi(X, Y) = g(X, \phi Y)$ is the fundamental 2-form of the manifold, then N is said to be a contact metric manifold [2].

Furthermore, if we denote the Nijenhuis torsion of ϕ by $[\phi, \phi]$, for all $X, Y \in \chi(N)$, the condition given by

$$[\phi, \phi](X, Y) = -2\phi g(X, Y)$$

is called the normality condition of the almost contact metric structure. An almost contact metric manifold turns into a Sasakian manifold if the normality condition is satisfied [2].

From Lie differentiation operator in the characteristic direction ξ, the operator h is defined by

$$h = \frac{1}{2} L_\xi \phi.$$

It is directly found that the structural operator h is symmetric. It also validates the equations below, where we denote the Levi-Civita connection by ∇:

$$h\xi = 0, \quad h\phi = -\phi h, \quad \nabla \xi = -\phi X - \phi hX,$$

(see [2]).

If we denote the Tanaka-Webster connection on N by $\tilde{\nabla}$ ([22], [24]), then we have

$$\tilde{\nabla}_X Y = \nabla_X Y + \eta(X)\phi Y + \eta(Y)(\phi X + \phi hX) - g(\phi X + \phi hX, Y)\xi,$$

(2.4) for all vector fields X, Y on N. By the use of equations (2.3), the Tanaka-Webster connection can be calculated as

$$\tilde{\nabla}_X Y = \nabla_X Y + \eta(X)\phi Y + \eta(Y)(\phi X + \phi hX) - g(\phi X + \phi hX, Y)\xi.$$

The torsion of the Tanaka-Webster connection is

$$\tilde{T}(X, Y) = 2g(X, \phi Y)\xi + \eta(Y)\phi hX - \eta(X)\phi hY.$$

(2.5)

In a Sasakian manifold, from the fact that $h = 0$ (see [2]), the equations (2.4) and (2.5) can be rewritten as:

$$\tilde{\nabla}_X Y = \nabla_X Y + \eta(X)\phi Y + \eta(Y)\phi X - g(\phi X, Y)\xi,$$

$$\tilde{T}(X, Y) = 2g(X, \phi Y)\xi.$$

(2.6)

The following proposition states why the Tanaka-Webster connection is unique:

Proposition 2.1. [23] The Tanaka-Webster connection on a contact Riemannian manifold $N = (N, \phi, \xi, \eta, g)$ is the unique linear connection satisfying the following four conditions:

(a) $\tilde{\nabla}\eta = 0$, $\tilde{\nabla}\xi = 0$;

(b) $\tilde{\nabla}g = 0$, $\tilde{\nabla}\phi = 0$;

(c) $\tilde{T}(X, Y) = -\eta([X, Y])\xi$, $\forall X, Y \in \mathcal{D}$;

(d) $\tilde{T}(\xi, \phi Y) = -\phi \tilde{T}(\xi, Y)$, $\forall Y \in \mathcal{D}$.

3. Magnetic Curves with respect to the Tanaka-Webster Connection

Let \((N, \phi, \xi, \eta, g)\) be an \(n\)-dimensional Riemannian manifold and \(\alpha : I \to N\) a curve parametrized by arc-length. If there exists \(g\)-orthonormal vector fields \(E_1, E_2, \ldots, E_r\) along \(\alpha\) such that

\[
\begin{align*}
E_1 &= \alpha', \\
\hat{\nabla}_{E_1} E_1 &= \hat{k}_1 E_2, \\
\hat{\nabla}_{E_1} E_2 &= -\hat{k}_1 E_1 + \hat{k}_2 E_3, \\
\vdots & \\
\hat{\nabla}_{E_1} E_r &= -\hat{k}_{r-1} E_{r-1},
\end{align*}
\]

(3.1)

then \(\alpha\) is called a Frenet curve for \(\hat{\nabla}\) of osculating order \(r\), \((1 \leq r \leq n)\). Here \(\hat{k}_1, \ldots, \hat{k}_{r-1}\) are called pseudo-Hermitian curvature functions of \(\alpha\) and these functions are positive valued on \(I\). A geodesic for \(\hat{\nabla}\) (or pseudo-Hermitian geodesic) is a Frenet curve of osculating order 1 for \(\hat{\nabla}\). If \(r = 2\) and \(\hat{k}_1\) is a constant, then \(\alpha\) is called a pseudo-Hermitian circle. A pseudo-Hermitian helix of order \(r\) \((r \geq 3)\) is a Frenet curve for \(\hat{\nabla}\) of osculating order \(r\) with non-zero positive constant pseudo-Hermitian curvatures \(\hat{k}_1, \ldots, \hat{k}_{r-1}\). If we shortly state pseudo-Hermitian helix, we mean its osculating order is 3 [7].

Let \(N = (N^{2n+1}, \phi, \xi, \eta, g)\) be a Sasakian manifold endowed with the Tanaka-Webster connection \(\hat{\nabla}\). Let us denote the fundamental 2-form of \(N\) by \(\Omega\). Then, we have

\[
\Omega(X, Y) = g(X, \phi Y),
\]

(3.2)

(see [2]). From the fact that \(N\) is a Sasakian manifold, we have \(\Omega = d\eta\). Hence, \(d\Omega = 0\), i.e., it is closed. Thus, we can define a magnetic field \(F_q\) on \(N\) by

\[
F_q(X, Y) = q\Omega(X, Y),
\]

namely the contact magnetic field with strength \(q\), where \(X, Y \in \chi(N)\) and \(q \in \mathbb{R}\) [14]. We will assume that \(q \neq 0\) to avoid the absence of the strength of magnetic field (see [4] and [9]).

From (1.1) and (3.2), the Lorentz force \(\Phi\) associated to the contact magnetic field \(F_q\) can be written as

\[
\Phi = -q\phi.
\]

So the Lorentz equation (1.2) is

\[
\nabla_{E_1} E_1 = -q\phi E_1,
\]

(3.3)

where \(\alpha : I \to N\) is a curve with arc-length parameter, \(E_1 = \alpha'\) is the tangent vector field and \(\nabla\) is the Levi-Civita connection (see [9] and [14]). By the use of equations (2.6) and (3.3), we have

\[
\hat{\nabla}_{E_1} E_1 = \left[-q + 2\eta(E_1)\right]\phi E_1.
\]

(3.4)
Definition 3.1. Let $\alpha : I \to N$ be a unit-speed curve in a Sasakian manifold $N = (N^{2n+1}, \phi, \xi, \eta, g)$ endowed with the Tanaka-Webster connection $\hat{\nabla}$. Then it is called a normal magnetic curve with respect to the Tanaka-Webster connection $\hat{\nabla}$ (or shortly a pseudo-Hermitian magnetic curve) if it satisfies equation (3.4).

If $\eta(E_1) = \cos \theta$ is a constant, then α is called a slant curve [6]. From the definition of pseudo-Hermitian magnetic curves, we have the following direct result as in the Levi-Civita case:

Proposition 3.1. If α is a pseudo-Hermitian magnetic curve in a Sasakian manifold, then it is a slant curve.

Proof. Let $\alpha : I \to N$ be a pseudo-Hermitian magnetic curve. Then, we find

\[
\frac{d}{dt} g(E_1, \xi) = g(\hat{\nabla}_E_1 E_1, \xi) + g(E_1, \hat{\nabla}_{E_1} \xi) = g([-q + 2\eta(E_1)] \phi E_1, \xi) = 0.
\]

So we obtain

\[
\eta(E_1) = \cos \theta = \text{constant},
\]

which completes the proof. □

As a result, we can rewrite equation (3.4) as

\[
(3.5) \quad \hat{\nabla}_E_1 E_1 = (-q + 2 \cos \theta) \phi E_1,
\]

where θ is the contact angle of α. Now, we can state the following theorem:

Theorem 3.1. Let $(N^{2n+1}, \phi, \xi, \eta, g)$ be a Sasakian manifold endowed with the Tanaka-Webster connection $\hat{\nabla}$. Then $\alpha : I \to N$ is a pseudo-Hermitian magnetic curve if and only if it belongs to the following list:

(a) pseudo-Hermitian non-Legendre slant geodesics (including pseudo-Hermitian geodesics as integral curves of ξ);

(b) pseudo-Hermitian Legendre circles with $\hat{k}_1 = |q|$ and having the Frenet frame field (for $\hat{\nabla}$)

\[
\{ E_1, -\text{sgn}(q) \phi E_1 \};
\]

(c) pseudo-Hermitian slant helices with

\[
\hat{k}_1 = |-q + 2 \cos \theta| \sin \theta, \quad \hat{k}_2 = |-q + 2 \cos \theta| \varepsilon \cos \theta
\]

and having the Frenet frame field (for $\hat{\nabla}$)

\[
\left\{ E_1, \frac{\delta}{\sin \theta} \phi E_1, \frac{\varepsilon}{\sin \theta} (\xi - \cos \theta E_1) \right\},
\]

where $\delta = \text{sgn}(-q + 2 \cos \theta)$, $\varepsilon = \text{sgn}(\cos \theta)$ and $\cos \theta \neq \frac{q}{2}$.

Proof. Let us assume that \(\alpha : I \to N \) is a normal magnetic curve with respect to \(\hat{\nabla} \). Consequently, equation (3.5) must be validated. Let us assume \(\hat{k}_1 = 0 \). Hence, we have \(\cos \theta = \frac{q}{2} \) or \(\phi E_1 = 0 \). If \(\cos \theta = \frac{q}{2} \), then \(\alpha \) is a pseudo-Hermitian non-Legendre slant geodesic. Otherwise, \(\phi E_1 = 0 \) gives us \(E_1 = \pm \xi \). Thus, \(\alpha \) is a pseudo-Hermitian geodesic as an integral curve of \(\pm \xi \). So we have just proved that \(\alpha \) belongs to (a) from the list, if the osculating order \(r = 1 \). Now, let \(\hat{k}_1 \neq 0 \). From equation (3.5) and the Frenet equations for \(\hat{\nabla} \), we find

\[
\hat{\nabla}_{E_1} E_1 = \hat{k}_1 E_2 = (-q + 2 \cos \theta) \phi E_1.
\]

(3.6)

Since \(E_1 \) is unit, the equation (2.2) gives us

\[
g(\phi E_1, \phi E_1) = \sin^2 \theta.
\]

(3.7)

By the use of (3.6) and (3.7), we obtain

\[
\hat{k}_1 = | -q + 2 \cos \theta | \sin \theta,
\]

(3.8)

which is a constant. Let us denote \(\delta = \text{sgn}(-q + 2 \cos \theta) \). From (3.8), we can write

\[
\phi E_1 = \delta \sin \theta E_2.
\]

(3.9)

Let us assume \(\hat{k}_2 = 0 \), that is, \(r = 2 \). From the fact that \(\hat{k}_1 \) is a constant, \(\alpha \) is a pseudo-Hermitian circle. (3.9) gives us

\[
\eta(\phi E_1) = 0 = \delta \sin \theta \eta(E_2),
\]

which is equivalent to

\[
\eta(E_2) = 0.
\]

Differentiating this last equation with respect to \(\hat{\nabla} \), we obtain

\[
\hat{\nabla}_{E_1} \eta(E_2) = 0 = g\left(\hat{\nabla}_{E_1} E_2, \xi \right) + g\left(E_2, \hat{\nabla}_{E_1} \xi \right).
\]

Since \(\hat{\nabla} \xi = 0 \) and \(r = 2 \), we have

\[
g(-\hat{k}_1 E_1, \xi) = 0,
\]

that is, \(\eta(E_1) = 0 \). Hence, \(\alpha \) is Legendre and \(\cos \theta = 0 \). From equation (3.8), we get \(\hat{k}_1 = |q| \). In this case, we also obtain \(\delta = -\text{sgn}(q) \) and \(E_2 = -\text{sgn}(q) \phi E_1 \). We have proved that \(\alpha \) belongs to (b) from the list, if the osculating order \(r = 2 \). Now, let us assume \(\hat{k}_2 \neq 0 \). If we use \(\hat{\nabla} \phi = 0 \), we calculate

\[
\hat{\nabla}_{E_1} \phi E_1 = \hat{k}_1 \phi E_2.
\]

(3.10)

From (2.1) and (3.9), we find

\[
\phi^2 E_1 = -E_1 + \cos \theta \xi = \delta \sin \theta \phi E_2,
\]

(3.11)
which gives us
\[\phi E_2 = \frac{\delta}{\sin \theta} (-E_1 + \cos \theta \xi). \]
So equation (3.10) becomes
\[\hat{\nabla}_{E_1} \phi E_1 = \hat{k}_1 \frac{\delta}{\sin \theta} (-E_1 + \cos \theta \xi). \]

If we differentiate the equation (3.9) with respect to \(\hat{\nabla} \), we also have
\[\hat{\nabla}_{E_1} \phi E_1 = \delta \sin \theta \hat{\nabla}_{E_1} E_2 = \delta \sin \theta \left(-\hat{k}_1 E_1 + \hat{k}_2 E_3 \right). \]

By the use of (3.12) and (3.13), we obtain
\[\hat{k}_1 \cot \theta (\xi - \cos \theta E_1) = \hat{k}_2 \sin \theta E_3. \]
One can easily see that
\[g(\xi - \cos \theta E_1, \xi - \cos \theta E_1) = \sin^2 \theta. \]
From (3.14), we calculate
\[\hat{k}_2 = |-q + 2 \cos \theta| \varepsilon \cos \theta, \]
where we denote \(\varepsilon = \text{sgn}(\cos \theta) \). As a result, we get
\[E_3 = \frac{\varepsilon}{\sin \theta} (\xi - \cos \theta E_1), \]
\[E_2 = \frac{\delta}{\sin \theta} \phi E_1. \]
If we differentiate (3.15) with respect to \(\hat{\nabla} \), since \(\phi E_1 \parallel E_2 \), we find \(\hat{k}_3 = 0 \). So we have just completed the proof of (c). Considering the fact that \(\hat{k}_3 = 0 \), the Gram-Schmidt process ends. Thus, the list is complete.

Conversely, let \(\alpha : I \to N \) belong to the given list. It is easy to show that equation (3.5) is satisfied. Hence, \(\alpha \) is a pseudo-Hermitian magnetic curve. \(\square \)

A pseudo-Hermitian geodesic is said to be a pseudo-Hermitian \(\phi \)-curve if the set \(sp \{E_1, \phi E_1, \xi\} \) is \(\phi \)-invariant. A Frenet curve of osculating order \(r = 2 \) is said to be a pseudo-Hermitian \(\phi \)-curve if \(sp \{E_1, E_2, \xi\} \) is \(\phi \)-invariant. A Frenet curve of osculating order \(r \geq 3 \) is said to be a pseudo-Hermitian \(\phi \)-curve if \(sp \{E_1, E_2, \ldots, E_r\} \) is \(\phi \)-invariant.

Theorem 3.2. Let \(\alpha : I \to N \) be a pseudo-Hermitian \(\phi \)-helix of order \(r \leq 3 \), where \(N = (N^{2n+1}, \phi, \xi, \eta, g) \) is a Sasakian manifold endowed with the Tanaka-Webster connection \(\hat{\nabla} \). Then:
If \(\cos \theta = \pm 1 \), then it is an integral curve of \(\xi \), i.e. a pseudo-Hermitian geodesic and it is a pseudo-Hermitian magnetic curve for \(F_q \) for arbitrary \(q \);

(b) If \(\cos \theta \notin \{-1,0,1\} \) and \(\hat{k}_1 = 0 \), then it is a pseudo-Hermitian non-Legendre slant geodesic and it is a pseudo-Hermitian magnetic curve for \(F_{2\cos \theta} \);

(c) If \(\cos \theta = 0 \) and \(\hat{k}_1 \neq 0 \), i.e. \(\alpha \) is a Legendre \(\phi \)-curve, then it is a pseudo-Hermitian magnetic circle generated by \(F_{-\delta \hat{k}_1} \), where \(\delta = \text{sgn}(g(\phi E_1, E_2)) \);

(d) If \(\cos \theta = \frac{\varepsilon \hat{k}_2}{\sqrt{k_1^2 + k_2^2}} \) and \(\hat{k}_2 \neq 0 \), then it is a pseudo-Hermitian magnetic curve for \(F_{-\delta \sqrt{k_1^2 + k_2^2} + \frac{2\varepsilon}{\sqrt{k_1^2 + k_2^2}}} \), where \(\delta = \text{sgn}(g(\phi E_1, E_2)) \) and \(\varepsilon = \text{sgn}(\cos \theta) \).

(e) Except above cases, \(\alpha \) cannot be a pseudo-Hermitian magnetic curve for any \(F_q \).

Proof. Firstly, let us assume \(\cos \theta = \pm 1 \), that is, \(E_1 = \pm \xi \). As a result, we have

\[\hat{\nabla}_{E_1} E_1 = 0, \phi E_1 = 0. \]

Hence, equation (3.5) is satisfied for arbitrary \(q \). This proves (a). Now, let us take \(\cos \theta \notin \{-1,0,1\} \) and \(\hat{k}_1 = 0 \). In this case, we obtain

\[\hat{\nabla}_{E_1} E_1 = 0, \phi E_1 \neq 0. \]

So equation (3.5) is valid for \(q = 2\cos \theta \). The proof of (b) is over. Next, let us assume \(\cos \theta = 0 \) and \(\hat{k}_1 \neq 0 \). One can easily see that \(\alpha \) has the Frenet frame field (for \(\hat{\nabla} \))

\[\{E_1, \delta \phi E_1\} \]

where \(\delta \) corresponds to the sign of \(g(\phi E_1, E_2) \). Consequently, we get

\[\hat{\nabla}_{E_1} E_1 = \delta \hat{k}_1 \phi E_1, \]

that is, \(\alpha \) is a pseudo-Hermitian magnetic curve for \(q = -\delta \hat{k}_1 \). We have just proven (c). Finally, let \(\cos \theta = \frac{\varepsilon \hat{k}_2}{\sqrt{k_1^2 + k_2^2}} \) and \(\hat{k}_2 \neq 0 \). So \(\alpha \) has the Frenet frame field (for \(\hat{\nabla} \))

\[\left\{ E_1, \frac{\delta}{\sin \theta} \phi E_1, \frac{\varepsilon}{\sin \theta} \left(\xi - \cos \theta E_1 \right) \right\}, \]

where \(\delta = \text{sgn}(g(\phi E_1, E_2)) \) and \(\varepsilon = \text{sgn}(\cos \theta) \). After calculations, it is easy to show that equation (3.5) is satisfied for \(q = -\delta \sqrt{k_1^2 + k_2^2} + \frac{2\varepsilon}{\sqrt{k_1^2 + k_2^2}} \). Hence, the proof of (d) is completed. Except above cases, from Theorem 3.1, \(\alpha \) cannot be a pseudo-Hermitian magnetic curve for any \(F_q \). \(\square \)
4. Parametrizations of pseudo-Hermitian magnetic curves in $\mathbb{R}^{2n+1}(-3)$

In this section, our aim is to obtain parametrizations of pseudo-Hermitian magnetic curves in $\mathbb{R}^{2n+1}(-3)$. To do this, we need to recall some notions from [2]. Let $N = \mathbb{R}^{2n+1}$. Let us denote the coordinate functions of N with $(x_1, \ldots, x_n, y_1, \ldots, y_n, z)$. One may define a structure on N by $\eta = \frac{1}{2}(dz - \sum_{i=1}^{n} y_i dx_i)$, which is a contact structure, since $\eta \wedge (d\eta)^n \neq 0$. This contact structure has the characteristic vector field $\xi = 2\frac{\partial}{\partial z}$. Let us also consider a $(1,1)$-type tensor field ϕ given by the matrix form as

$$\phi = \begin{bmatrix} 0 & \delta_{ij} & 0 \\ -\delta_{ij} & 0 & 0 \\ 0 & y_j & 0 \end{bmatrix}.$$

Finally, let us take the Riemannian metric on N given by $g = \eta \otimes \eta + \frac{1}{4} \sum_{i=1}^{n} ((dx_i)^2 + (dy_i)^2)$. It is known that (N, ϕ, ξ, η, g) is a Sasakian space form and its ϕ-sectional curvature is $c = -3$. This special Sasakian space form is denoted by $\mathbb{R}^{2n+1}(-3)$ [2]. One can easily show that the vector fields

$$(4.1) \quad X_i = 2\frac{\partial}{\partial y_i}, \quad X_{n+i} = \phi X_i = 2(\frac{\partial}{\partial x_i} + y_i \frac{\partial}{\partial z}), \quad i = 1, n, \quad \xi = 2\frac{\partial}{\partial z}$$

are g-unit and g-orthogonal. Hence, they form a g-orthonormal basis [2]. Using this basis, the Levi-Civita connection of $\mathbb{R}^{2n+1}(-3)$ can be obtained as

$$\nabla X_i X_j = \nabla X_{m+i} X_{n+j} = 0, \quad \nabla X_i X_{m+j} = \delta_{ij} \xi, \quad \nabla X_{m+i} X_j = -\delta_{ij} \xi,$$

$$\nabla X_i \xi = \nabla \xi X_i = -X_{m+i}, \quad \nabla X_{m+i} \xi = \nabla \xi X_{m+i} = X_i,$$

(see [2]). As a result, the Tanaka-Webster connection of $\mathbb{R}^{2n+1}(-3)$ is

$$\tilde{\nabla} X_i X_j = \tilde{\nabla} X_{m+i} X_{n+j} = \tilde{\nabla} X_i X_{m+j} = \tilde{\nabla} X_{m+i} X_j = \tilde{\nabla} X_i \xi = \tilde{\nabla} \xi X_i = \tilde{\nabla} X_{m+i} \xi = \tilde{\nabla} \xi X_{m+i} = 0,$$

which was calculated in [12]. Now, we can investigate the parametric equations of pseudo-Hermitian magnetic curves in $\mathbb{R}^{2n+1}(-3)$ endowed with the Tanaka-Webster connection.

Let $N = \mathbb{R}^{2n+1}(-3)$ endowed with the Tanaka-Webster connection $\tilde{\nabla}$. Let $\alpha : I \subseteq \mathbb{R} \to N$, $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n, \alpha_{n+1}, \ldots, \alpha_{2n}, \alpha_{2n+1})$ be a pseudo-Hermitian magnetic curve. Then, the tangential vector field of α can be written as

$$E_1 = \sum_{i=1}^{n} \alpha_i \frac{\partial}{\partial x_i} + \sum_{i=1}^{n} \alpha_{n+i} \frac{\partial}{\partial y_i} + \alpha_{2n+1} \frac{\partial}{\partial z}.$$

In terms of the g-orthonormal basis, E_1 is rewritten as

$$E_1 = \frac{1}{2} \left[\sum_{i=1}^{n} \alpha_{n+i} X_i + \sum_{i=1}^{n} \alpha_i X_{n+i} + \left(\alpha_{2n+1} - \sum_{i=1}^{n} \alpha_i \alpha_{n+i} \right) \xi \right].$$
From Proposition 3.1, α is a slant curve. Hence, we have
\[\eta(E_1) = \cos \theta = \text{constant}, \]
which is equivalent to
\[\alpha'_{2n+1} = 2 \cos \theta + \sum_{i=1}^{n} \alpha_i' \alpha_{n+i}. \]
(4.2)

From the fact that α is parametrized by arc-length, we also have
\[g(E_1, E_1) = 1, \]
that is,
\[\sum_{i=1}^{2n} (\alpha'_i)^2 = 4 \sin^2 \theta. \]
(4.3)

Differentiating E_1 with respect to $\hat{\nabla}$, we obtain
\[\hat{\nabla}_{E_1} E_1 = \frac{1}{2} \left(\sum_{i=1}^{n} \alpha''_{n+i} X_i + \sum_{i=1}^{n} \alpha''_i X_{n+i} \right). \]

We also easily find
\[\phi_{E_1} = \frac{1}{2} \left(-\sum_{i=1}^{n} \alpha'_i X_i + \sum_{i=1}^{n} \alpha'_{n+i} X_{n+i} \right). \]

Since α is a pseudo-Hermitian magnetic curve, it must satisfy
\[\hat{\nabla}_{E_1} E_1 = (q - 2 \cos \theta) \phi_{E_1}. \]

Then, we can write
\[\frac{\alpha''_{n+1}}{-\alpha'_1} = \ldots = \frac{\alpha''_{2n}}{-\alpha'_n} = \frac{\alpha''_1}{\alpha''_{n+1}} = \ldots = \frac{\alpha''_n}{\alpha''_{2n}} = -\lambda, \]

where $\lambda = q - 2 \cos \theta$. From the last equations, we can select the pairs
\[\frac{\alpha''_{n+1}}{-\alpha'_1} = \frac{\alpha''_1}{\alpha''_{n+1}}, \ldots, \frac{\alpha''_{2n}}{-\alpha'_n} = \frac{\alpha''_n}{\alpha''_{2n}}. \]
(4.4)

Firstly, let $\lambda \neq 0$. Solving the ODEs, we have
\[(\alpha_i')^2 + (\alpha_{i+1}')^2 = c_i^2, \quad i = 1, \ldots, n \]
for some arbitrary constants c_i ($i = 1, \ldots, n$) such that
\[\sum_{i=1}^{n} c_i^2 = 4 \sin^2 \theta. \]
So we have

\[\alpha_i' = c_i \cos f_i, \quad \alpha_{n+i}' = c_i \sin f_i \]

for some differentiable functions \(f_i : I \to \mathbb{R} \) \((i = 1, \ldots, n)\). From (4.4), we get

\[\frac{\alpha''_{n+i}}{-\alpha'_i} = -f'_i = -\lambda, \]

which gives us

\[f_i = \lambda t + d_i \]

for some arbitrary constants \(d_i \) \((i = 1, \ldots, n)\). Here, \(t \) denotes the arc-length parameter. Then, we find

\[\alpha_i' = c_i \cos (\lambda t + d_i), \quad \alpha_{n+1}' = c_i \sin (\lambda t + d_i). \]

Finally, we obtain

\[\alpha_i = \frac{c_i}{\lambda} \sin (\lambda t + d_i) + h_i, \]

\[\alpha_{n+i} = -\frac{c_i}{\lambda} \cos (\lambda t + d_i) + h_{n+i}, \]

\[\alpha_{2n+1} = 2t \cos \theta + \sum_{i=1}^{n} \left\{ \frac{-c_i^2}{4\lambda^2} \left[2 (\lambda t + d_i) + \sin (2 (\lambda t + d_i)) \right] \right. \\
+ \left. \frac{c_i h_{n+i}}{\lambda} \sin (\lambda t + d_i) \right\} + h_{2n+1} \]

for some arbitrary constants \(h_i \) \((i = 1, \ldots, 2n+1)\).

Secondly, let \(\lambda = 0 \). In this case, \(q = 2 \cos \theta \) and \(\hat{k}_1 = 0 \). Hence, we have

\[\nabla_{E_1} E_1 = \frac{1}{2} \left(\sum_{i=1}^{n} \alpha''_{n+i} X_i + \sum_{i=1}^{n} \alpha''_i X_{n+i} \right) = 0, \]

which gives us

\[\alpha_i = c_i t + d_i, \quad i = 1, \ldots, 2n, \]

\[\alpha_{2n+1} = 2t \cos \theta + \sum_{i=1}^{n} c_i \left(\frac{c_{n+i}}{2} t^2 + d_{n+i} t \right) + c_{2n+1}, \]

where \(c_i \) \((i = 1, 2, \ldots, 2n+1)\) and \(d_i \) \((i = 1, 2, \ldots, 2n)\) are arbitrary constants such that

\[\sum_{i=1}^{2n} c_i^2 = 4 \sin^2 \theta. \]

To conclude, we can state the following theorem:
Theorem 4.1. The pseudo-Hermitian magnetic curves on $\mathbb{R}^{2n+1}(-3)$ endowed with the Tanaka-Webster connection have the parametric equations

$$\alpha : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2n+1}(-3), \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n, \alpha_{n+1}, \ldots, \alpha_{2n}, \alpha_{2n+1}),$$

where α_i ($i = 1, \ldots, 2n+1$) satisfies either

(a) $$\alpha_i = \frac{c_i}{\lambda} \sin (\lambda t + d_i) + h_i,$$
$$\alpha_{n+i} = \frac{-c_i}{\lambda} \cos (\lambda t + d_i) + h_{n+i},$$

$$\alpha_{2n+1} = 2 \cos \theta t + \sum_{i=1}^{n} \left\{ \frac{-c_i^2}{4\lambda^2} \left[2 (\lambda t + d_i) + \sin (2 (\lambda t + d_i)) \right] + \frac{c_i h_{n+i}}{\lambda} \sin (\lambda t + d_i) \right\} + h_{2n+1},$$

where $\lambda = q - 2 \cos \theta \neq 0$, c_i, d_i ($i = 1, \ldots, n$) and h_i ($i = 1, \ldots, 2n+1$) are arbitrary constants such that

$$\sum_{i=1}^{n} c_i^2 = 4 \sin^2 \theta;$$

or

(b) $$\alpha_i = c_i t + d_i,$$

$$\alpha_{2n+1} = 2t \cos \theta + \sum_{i=1}^{n} c_i \left(\frac{c_{n+i} t^2}{2} + d_{n+i} t \right) + c_{2n+1},$$

where $q = 2 \cos \theta$ and c_i ($i = 1, 2, \ldots, 2n+1$), d_i ($i = 1, 2, \ldots, 2n$) are arbitrary constants such that

$$q^2 + \sum_{i=1}^{2n} c_i^2 = 4.$$
4. J. L. Cabrerizo, M. Fernandez and J. S. Gomez: *On the existence of almost contact structure and the contact magnetic field*. Acta Math. Hungar. **125** (2009), 191–199.

5. G. Calvaruso, M. I. Munteanu and A. Perrone: *Killing magnetic curves in three-dimensional almost paracontact manifolds*. J. Math. Anal. Appl. **426** (2015), 423–439.

6. J. T. Cho, J. Inoguchi and J. E. Lee: *On slant curves in Sasakian 3-manifolds*. Bull. Austral. Math. Soc. **74** (2006), 359–367.

7. J. T. Cho and J. E. Lee: *Slant curves in contact pseudo-Hermitian 3-manifolds*. Bull. Austral. Math. Soc. **78** (2008), 383–396.

8. A. Comtet: *On the Landau levels on the hyperbolic plane*. Ann. Physics **173** (1987), 185–209.

9. S. L. Druta-Romaniuc, J. Inoguchi, M. I. Munteanu and A. I. Nistor: *Magnetic curves in Sasakian manifolds*. J. Nonlinear Math. Phys. **22** (2015), 428–447.

10. S. L. Druta-Romaniuc, J. Inoguchi, M. I. Munteanu and A. I. Nistor: *Magnetic curves in cosymplectic manifolds*. Rep. Math. Phys. **78** (2016), 33–48.

11. Ş. Güvenç and C. Özgür: *On slant magnetic curves in S-manifolds*. J. Nonlinear Math. Phys. **26** (2019), 536–554.

12. Ş. Güvenç: *On pseudo-Hermitian biharmonic slant curves in Sasakian space forms endowed with the Tanaka–Webster connection*. Bull. Iran. Math. Soc. **46** (2020), 207–223.

13. J. Inoguchi and M. I. Munteanu: *Periodic magnetic curves in Berger spheres*. Tohoku Math. J. **69** (2017), 113–128.

14. M. Jleli, M. I. Munteanu and A. I. Nistor: *Magnetic trajectories in an almost contact metric manifold \mathbb{R}^{2N+1}*. Results Math. **67** (2015), 125–134.

15. M. Jleli and M. I. Munteanu: *Magnetic curves on flat para-Kahler manifolds*. Turkish J. Math. **39** (2015), 963–969.

16. L. D. Landau and E. M. Lifshitz: *Course of theoretical physics*. Vol. 1. Mechanics. Third edition. Pergamon Press, Oxford-New York-Toronto, Ont., 1976.

17. M. I. Munteanu and A. I. Nistor: *The classification of Killing magnetic curves in $S^2 \times R$*. J. Geom. Phys. **62** (2012), 170–182.

18. M. I. Munteanu and A. I. Nistor: *A note on magnetic curves on S^{2n+1}*. C. R. Math. Acad. Sci. Paris **352** (2014), 447–449.

19. M. I. Munteanu: *The Landau-Hall problem on canal surfaces*. J. Math. Anal. Appl. **414** (2014), 725–733.

20. C. Özgür and Ş. Güvenç: *On some types of slant curves in contact pseudo-Hermitian 3-manifolds*. Ann. Polon. Math. **104** (2012), 217–228.

21. C. Özgür: *On magnetic curves in the 3-dimensional Heisenberg group*. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. **43** (2017), 278–286.

22. N. Tanaka: *On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections*. Japan. J. Math. (N.S.) **2** (1976), 131–190.

23. S. Tanno: *Variational problems on contact Riemannian manifolds*. Trans. Amer. Math. Soc. **314** (1989), 349–379.

24. S. M. Webster: *Pseudo-Hermitian structures on a real hypersurface*. J. Differential Geom. **13** (1978), 25–41.
Şaban Güvenç
Faculty of Arts and Sciences
Department of Mathematics
Campus of Çağış
10145 Balikesir, Turkey
sguvenc@balikesir.edu.tr

Cihan Özgür
Faculty of Arts and Sciences
Department of Mathematics
Campus of Çağış
10145 Balikesir, Turkey
cozgur@balikesir.edu.tr