Markers for sepsis diagnosis in the forensic setting: state of the art

Cristian Palmiere, Marc Augsburger
cristian.palmiere@chuv.ch
University Center of Legal Medicine, Lausanne, Switzerland

Abstract Reliable diagnoses of sepsis remain challenging in forensic pathology routine despite improved methods of sample collection and extensive biochemical and immunohistochemical investigations. Macroscopic findings may be elusive and have an infectious or non-infectious origin. Blood culture results can be difficult to interpret due to postmortem contamination or bacterial translocation. Lastly, peripheral and cardiac blood may be unavailable during autopsy. Procalcitonin, C-reactive protein, and interleukin-6 can be measured in biological fluids collected during autopsy and may be used as in clinical practice for diagnostic purposes. However, concentrations of these parameters may be increased due to etiologies other than bacterial infections, indicating that a combination of biomarkers could more effectively discriminate non-infectious from infectious inflammations. In this article, we propose a review of the literature pertaining to the diagnostic performance of classical and novel biomarkers of inflammation and bacterial infection in the forensic setting.

Worldwide, sepsis and its sequels are still a common cause of acute illness and death in patients with community-acquired and nosocomial infections (1). Multiple organ dysfunction syndrome (MODS) is common in critical cases of severe sepsis and a primary cause of death (2). The American College of Chest Physicians and the Society of Critical Care Medicine Consensus Conference (Northbrook, IL, USA; August 1991) defined sepsis as a systemic inflammation response caused by infection (1,3,4). However, in the early stages of the process, the source of infection may be unclear and the related systemic response indistinguishable from non-infectious disease. Consequently, diagnosis may be missed or delayed, posing a serious concern since strong evidence associates early treatment with greater clinical success (5,6). At present, there is no ideal, clinical gold standard for the diagnosis of sepsis, as microbiology is not sensitive enough and laboratory tests unspecific for use as a reference standard (1,2,5).

Bacteremia is identified in only a portion of patients with sepsis, also depending on previous antibiotic treatment. Culture-negative patients accounted for percentages ranging from 25% to 48% of all septic cases in a series of clinical studies performed in North America, Europe, and Asia (1,7).

Early clinical signs, such as fever, tachycardia, and leukocytosis, are usually unspecific and overlap with signs of systemic inflammatory response syndrome (SIRS) of non-infectious origin. More specific signs of sepsis, such as arterial hypotension, thrombocytopenia, and increased lactate concentration, often indicate progression to organ dysfunction (1,8).

Though C-reactive protein (CRP) and procalcitonin are currently used as clinical indicators of inflammation and infection, several other biochemical markers have been investigated for their ability to detect sepsis in an early, reversible phase (1,3). Nonetheless, identification of an ideal biomarker (or panel of biomarkers) capable of making a clear distinction between sepsis and SIRS is imperative (2).

Reliable diagnoses of sepsis remain challenging in the forensic field, despite improved methods of collecting blood and tissue samples for postmortem bacteriology and extensive research in biochemical and immunohistochemical investigations. There are a myriad of reasons for this difficulty in diagnosis, such as the fact that forensic pathologists rarely have full access to medical records before autopsy is performed. Furthermore, macroscopic findings (myocardial ischemia, pulmonary edema, hypoxic liver damage, mesenteric ischemia, gastrointestinal hemorrhages, spleen infarction, kidney ischemia, and brain edema) and histological observations may be elusive or non-specific and have an infectious or non-infectious origin. In addition, blood culture results can be difficult to interpret due to contamination during sampling procedures or bacterial translocation. Postmortem samples might also prove insufficient, unavailable, or absent during autopsy, especially in infant autopsy. Procalcitonin, CRP, and in-
terleukin-6 can be measured in biological fluids collected during autopsy and may be used as in clinical practice for diagnostic purposes. However, the concentrations of these parameters can be increased due to etiologies other than bacterial infections. Hence, as in the clinical field, in recent years other laboratory parameters have been investigated in order to define the most suitable biomarker (or combination of biomarkers) that might more effectively discriminate non-infectious from infectious inflammations (9-15).

The identification of reliable markers of sepsis in the forensic setting is, however, more difficult than in the clinical field. Indeed, biochemical profiles after death may show considerable variations consequent to various factors including survival time, molecule leakage from necrotic or damaged cells due to rapid cell membrane breakdown, molecule redistribution dependent on concentration gradients, and molecule denaturation. All these factors therefore limit the application of postmortem biochemistry to relatively stable markers and only some, specific biological fluids (16-18). The aim of this article is to propose a review of the literature pertaining to the diagnostic performance of classical and novel biomarkers of sepsis in forensic pathology routine.

PROCALCITONIN

High serum procalcitonin concentrations were first described in children with severe bacterial infections by Asicot et al (19), and were suggested as a specific marker for bacterial infection. Procalcitonin, the precursor of the hormone calcitonin, is a glycoprotein consisting of 116 amino acids with a molecular weight of 13 kDa. Gene products transcribed from the CALC-I gene (located on the short arm of the human chromosome 11) represent a large array of related proteins including calcitonin gene-related peptide, amylin, adrenomedullin, and calcitonin (calcitonin family) that are restricted to neuroendocrine cells of the thyroid under normal metabolic conditions. Only one of these peptides, procalcitonin, seems to play a pivotal role in the host response to microbial infections. Procalcitonin is produced from the common precursor, pre-procalcitonin, which consists of 141 amino acid residues by removal of 25 amino acids from the N-terminus. Procalcitonin is made up of a centrally placed calcitonin (a 32-amino acid peptide) and two flanking peptides, N-terminal region (a 57-amino acid peptide), and katalcin (a 21-amino acid peptide). Regular enzymatic processing and further cleavage in the C-cells of the thyroid gland result in the production of mature procalcitonin. In the absence of infection, the extra-thyroid transcription of the CALC-I gene is suppressed. However, during bacterial infections, pre-procalcitonin mRNA is ubiquitously expressed in various extra-thyroid neuroendocrine tissues and non-neuroendocrine parenchymal cells throughout the body. Consequently, under septic circumstances, procalcitonin is released into the bloodstream by a continuous constitutive pathway. Elevated concentrations of procalcitonin during severe bacterial infections are commonly observed in patients who had already undergone total thyroidectomy. In patients with sepsis, non-neuroendocrine parenchymal cells are stimulated to produce and secrete large amounts of procalcitonin. However, these lack the post-translational capacity of neuroendocrine cells to biosynthesize mature calcitonin hormone from procalcitonin. A significant increase in calcitonin during sepsis therefore rarely occurs. Though hepatocytes may produce procalcitonin, it is still debated whether the liver and splancnic area produce procalcitonin during infections (3,8,20-25).

Systemic activation of immunocompetent cells in response to microorganisms or microbial endotoxin induces inflammatory cytokine release at the infection site. This is the pivotal mechanism in the pathogenesis of the sepsis cascade. Even though procalcitonin is not produced by circulating blood cells, its synthesis seems to be closely dependent on the cytokines involved in initiating the inflammatory cascade. Procalcitonin can be detected after 3-4 hours in response to bacterial endotoxins and peaks at 6-8 hours with a half-life of approximately 24-30 hours (8,20-22).

In healthy individuals, all the procalcitonin produced in C-cells is converted to calcitonin, so that circulating procalcitonin concentrations are below detection levels of 0.1 ng/mL (0.1 μg/L). In patients with sepsis, procalcitonin concentration may increase up to 5000 to 10000 times with calcitonin still in the reference range. No enzymes in blood can break down the procalcitonin circulating molecule (8,20,22).

The physiologic role of procalcitonin is not yet completely understood. Bacterial endotoxins are the most potent stimulators of procalcitonin release, though gram-positive infections may also induce its production. Apart from bacterial infections, various situations of tissue damage in non-infected patients such as prolonged cardiogenic shock, major surgery, severe trauma, or burns, may induce increases in blood procalcitonin concentrations. However, blood levels observed under these conditions are usually not as high as those in patients with severe sepsis or septic shock. Hence, in cases of trauma or extensive surgery, increased level per-
sistence as well as secondary procalcitonin increases at a later time may herald the onset of infectious complications. Local viral infections do not induce increased procalcitonin levels, whereas systemic viral infections may determine levels as high as those noted in bacterial infections. Systemic fungal infections may be characterized by increased procalcitonin levels, though concentrations tend to be lower than those in patients with bacterial infections. Conversely, infections by the malaria parasite often lead to very high serum procalcitonin levels (8,20,23).

Procalcitonin determination for the postmortem diagnosis of sepsis in the realm of forensic pathology was originally proposed by Tsokos et al (26). These authors measured procalcitonin concentrations in postmortem serum obtained from septic and control cases and compared antemortem and postmortem procalcitonin values in septic cases. They observed increased procalcitonin levels in all septic cases and normal concentrations in most control cases. They also observed a postmortem decrease in procalcitonin values compared to antemortem levels, suggesting that the postmortem measurement of this marker seems reasonable until at least 140 hours after death. These authors concluded that increased procalcitonin levels could be considered a reliable diagnostic tool for the postmortem diagnosis of sepsis. Furthermore, they proposed at least two positive postmortem procalcitonin values at different postmortem intervals in order to better estimate the most probable procalcitonin level at the time of death by using linear regression analysis.

Vitreous, pericardial, and cerebrospinal fluid procalcitonin levels in septic and control cases were investigated by Schrag et al (10,27), who reported promising results with vitreous and pericardial fluid procalcitonin concentrations in septic cases. Bode-Jänisch et al (28) measured procalcitonin concentrations in postmortem serum obtained from septic and control cases and compared postmortem levels to antemortem procalcitonin concentrations when available. The results confirmed the stability of procalcitonin in postmortem samples and the reliability of this biomarker in the postmortem diagnosis of bacterial sepsis.

C-REACTIVE PROTEIN

CRP, named for its capacity to precipitate the somatic C-polysaccharide of Streptococcus pneumoniae, was the first, acute-phase protein to be described. It is a systemic marker of inflammation and tissue damage, widely used in the diagnosis and management of various clinical conditions. The acute-phase response comprises the nonspecific physiological and biochemical responses of endothermic animals to most forms of tissue damage, infection, inflammation, and malignant neoplasia. In particular, the synthesis of numerous proteins is rapidly up-regulated, mainly in hepatocytes, under the control of cytokines originating at the site of tissue damage. The human CRP molecule is composed of five identical non-glycosylated polypeptide subunits, each containing 206 amino acid residues. In healthy young adults, the median concentration of CRP is 0.8 mg/L, the 90th percentile is 3.0 mg/L, and the 99th percentile is 10 mg/L, but, following an acute-phase stimulus, values may increase to more than 500 mg/L, hence 10 000 times. Plasma CRP is produced only by hepatocytes, predominantly under transcriptional control of IL-6, although other sites of local CRP synthesis and possibly secretion have been suggested. De novo hepatic synthesis starts very rapidly after a single stimulus, concentrations rising above 5 mg/L by about 4 to 6 hours and peaking around 24 to 48 hours. CRP plasma half-life is about 19 hours and is constant under all conditions of health and disease, so that the sole determinant of circulating CRP concentration is the synthesis rate, which thus directly reflects the intensity of the pathological process(es) stimulating its production (3,29-31).

CRP levels remain elevated during the acute response phase. When the stimulus for increased production completely ceases, the circulating CRP concentration falls rapidly and returns to within reference values when tissue damage is resolved. Due to its rapid response, short half-life, and high magnitude of increase, CRP is a useful indicator of the acute phase response in several situations. These may include infections (bacterial, viral, fungal, and mycobacterial), inflammatory diseases, necrosis (myocardial infarction, pancreatitis, trauma, and malignancy). In most, though not all, diseases, the circulating value of CRP reflects ongoing inflammation and/or tissue damage much more accurately than do other laboratory parameters of the acute-phase response. Acute-phase CRP values show no diurnal variation and are unaffected by eating. Liver failure impairs CRP production, but no other intercurrent pathologies and very few drugs reduce CRP values unless they also affect the underlying pathology providing the acute-phase stimulus. CRP concentration is thus a very useful, nonspecific biochemical marker of inflammation as well as an important measurement that may contribute to determining disease severity and progression (30,31).

In the forensic field, the diagnostic application of CRP determination was originally proposed by Laurier et
al (32). These authors measured CRP values in postmortem serum and pericardial fluid in a series of 26 forensic autopsies that were selected based on agony duration (long and short agonies). The results of this study showed statistically significant increases in CRP levels in both postmortem serum and pericardial fluid in long agonies. The authors attributed this result to agonal pericarditis possibly resulting from agonal myocardial necrosis.

Further studies focusing on CRP levels in postmortem samples have been performed by several other research teams (10,27,29,33-38). Uhlin-Hansen (33), Astrup and Thomsen (37), and Tsokos et al (34) compared antemortem and postmortem CRP levels and observed increased concentrations of this marker in septic cases, reflecting the existence of ongoing inflammatory processes at the time of death. These authors also found that antemortem CRP levels were higher than postmortem concentrations, likely suggesting molecule proteolysis due to decompositional changes along with irrelevant postmortem molecule release from hepatocytes in the early postmortem period. Maeda et al (35) found low CRP levels in some infantile and elderly cases of pneumonia that were postulated as age-dependent, low inflammatory responses. Astrup and Thomsen (37) observed that CRP levels in postmortem serum stored at 5°C were stable for several weeks. CRP levels measured in liver samples (collected from the central part of the right lobe), though less stable, correlated well with postmortem serum samples.

INTERLEUKIN-6

Interleukin-6 (IL-6) is a multifunctional, proinflammatory cytokine with pleiotropic expressions produced by a wide variety of cell types (leukocytes, fibroblasts, and endothelial cells) in the early phase of inflammation. It is a 26 kDa protein that modulates a variety of functions and has a key role in the acute-phase inflammatory response, being the primary determinant of hepatic CRP production. In addition to this role, IL-6 is important in specific immunologic response development, including activated B cell differentiation, culminating in the production of immunoglobulin (34,39-44).

IL-6 is normally not detected in the serum of healthy young individuals unless there is trauma, infection, or some other stress. Under these circumstances, IL-6 is rapidly expressed and contributes to a cascade of events typical of inflammation. These include leukocytosis, lymphocyte activation, and acute-phase protein synthesis as well as a general catabolic shift in metabolic pathways (39).

IL-6 plays a central role in the pathogenesis of sepsis. Numerous clinical studies have demonstrated consistently increased IL-6 values in both adult and pediatric septic populations. Serum levels above 1000 pg/mL have been shown to predict sepsis-related death in adult patients (3).

Tsokos et al (34) investigated IL-6 levels in the postmortem serum of a series of sepsis and control cases, comparing antemortem and postmortem levels. They observed high (>1,000 pg/mL) values in most individuals included in the sepsis group as well as a notable increase in IL-6 concentration in postmortem serum compared with IL-6 levels in antemortem samples. According to the authors, this increase correlated well with the interval after death and suggested molecule release from cells storing IL-6 due to autolysis and decompositional changes.

SOLUBLE INTERLEUKIN-2 RECEPTOR

Interleukin-2 (IL-2) is secreted from activated T cells in several immunologic processes and is the major growth factor for T-lymphocytes. IL-2 acts by binding with a membrane IL-2 receptor (IL-2R, CD25), which is widely expressed by many leukocytes that include activated B cells, monocytes, eosinophil granulocytes, and natural killer cells. Early in the activation process, T cells express IL-2R, which consists of three subunits (α, β, γ) encoded by different genes. The combination of IL-2Rβ and γ can bind IL-2. However, the expression of all three subunits is required for the high affinity state. In situations where a high expression of membrane IL-2R occurs, the subunit α (IL-2Ra, sIL-2R or sCD25) is shed from the cell surface by proteolytic cleavage and released into the circulation. sIL-2R release was found to be proportional to its membrane bound-expression, and its determination was therefore proposed as a useful, indirect marker of T-cell activation in several immunologic situations including various chronic autoimmune diseases, neoplastic disorders, acute graft-vs-host disease, chronic liver diseases, and sepsis (45-48).

Reichelt et al (49) investigated sIL-2R in the postmortem serum of a series of sepsis and control cases, comparing antemortem and postmortem levels. They observed increased (>1,000 U/mL) levels in all individuals included in the sepsis group and values below the reference limit in most control cases. Antemortem levels were generally higher than postmortem concentrations. Moreover, using linear regression analysis, sIL-2R levels calculated for the time of death correlated well with the levels measured in antemortem samples.
LIPOPOLYSACCHARIDE BINDING PROTEIN

Innate immunity is the first line of defense against microbial infections. Host organism responses are activated when microbial components are recognized by a variety of pathogen sensors, stimulating the host defense effector system by rapidly triggering proinflammatory processes. Among microbial components, lipopolysaccharide (LPS), lipo-oligosaccharides (LOS), and their bioactive portion, lipodisaccharide lipid A are commonly defined as endotoxins. These are potent immune response stimulants and even small differences in LPS structure can have a great influence on host immune responses. The induction of inflammatory responses by endotoxins is achieved by the coordinated, sequential action of four principal endotoxin-binding proteins: LBP (LPS-binding protein), CD14, toll-like receptor 4 (TLR4), and MD-2 (myeloid differentiation protein), herein further discussed (50).

LBP was first described in 1990. It is a 58-kDa glycoprotein mainly synthesized in the liver, which is released into circulation as a type I acute-phase reactant. Reference plasma level ranges from 5 to 15 µg/mL. LBP levels peak shortly after bacteremia or endotoxemia, and remain increased for up to 72 hours later (8,51).

LBP interacts with endotoxin-rich bacterial membranes and purified endotoxin aggregates, catalyzing endotoxin monomer extraction and transfer to CD14, which in turn transfers endotoxin monomers to MD-2 and to MD-2–TLR4 complex. The transfer of LPS from CD14 to MD-2, coupled with the association of MD-2 to TLR4, is required for downstream signaling and initiation of the intracellular signal cascade that culminates in transcription factor translocation to the nucleus and cytokine biosynthesis. Some of these, specifically IL-6, in turn induce the synthesis of acute-phase proteins in the liver (50-55).

Forensic use of LBP was investigated by Reichelt et al (49) in a series of sepsis-related deaths and control subjects. LBP levels were above 10 µg/mL (reference limit in healthy subjects) in serum samples obtained prior to death and postmortem serum samples obtained during autopsy in all septic cases. A notable decrease in LBP levels was observed in the sepsis group, with concentrations still measurable up to 48 hours after death. A less marked decrease in LBP levels was also noted in the control cases. According to the authors, the decrease in postmortem serum LBP levels correlated well with the interval after death in both studied groups and suggested molecule proteolysis due to decompositional changes along with irrelevant postmortem molecule release from hepatocytes in the early postmortem period. The authors concluded that increased LBP levels could be considered a reliable diagnostic tool for the postmortem diagnosis of sepsis. They proposed at least two measurements at different postmortem intervals in order to better estimate the most probable LBP levels at the time of death by using linear regression analysis.

Augsburger et al (56) compared procalcitonin and LBP values in postmortem serum and pericardial fluid in a series of sepsis-related cases and control subjects. They observed increased (>10 µg/mL) values in most septic cases and reference (<10 µg/mL) levels in most control cases, thereby confirming a high diagnostic accuracy of LBP in identifying sepsis-related deaths. No associations were found between postmortem serum and pericardial fluid LBP levels in either the septic or control cases.

SCD14-ST

CD14, the high-affinity receptor for LPS-LBP complexes, is a 55-kDa glycosylphosphatidylinositol-anchored protein lacking a cytoplasmic domain. CD14 can only bind LPS in the presence of LBP and, although LPS is considered its main ligand, CD14 also recognizes other microbial constituents, including the proteoglycans of Gram-positive bacteria. CD14 is constitutively expressed in most innate immune response cells and exists either in an anchored membrane form (mCD14) or in a circulating soluble form (sCD14). The latter is a 43-53 kD glycoprotein that derives from either protease-mediated membrane CD14 shedding or liver synthesis as a type II acute-phase reactant. During inflammation, plasma protease activity generates soluble CD14 fragments: one of these is a 13-kDa truncated N-terminal fragment of 64 amino acid residues called sCD14 subtype (sCD14-ST) or presepsin (50-55,57-63).

By facilitating binding to the CD14 cell membrane molecules, LBP enhances the sensitivity of monocytes and granulocytes to LPS, whereas the soluble form of CD14 mediates LPS activation of CD14-negative cells (53).

sCD14-ST is normally present in very low concentrations in the serum of healthy individuals and has recently been suggested as a marker for the diagnosis of sepsis. Indeed, preliminary studies have indicated that presepsin values significantly differ in healthy individuals, in patients with local infection, SIRS, sepsis or severe sepsis (57-63).
In the forensic setting, increased postmortem serum sCD14-ST levels have been found in a series of sepsis-related deaths using cutoff values ranging from 600 to 1200 pg/mL. Though postmortem serum sCD14-ST levels, individually considered, failed to provide better sensitivity and specificity than procalcitonin in detecting sepsis cases, the combined determination of procalcitonin and sCD14-ST in parallel was proposed as useful in improving the diagnostic performance of each biomarker individually considered in situations with elusive, preliminary findings (64).

SOLUBLE TRIGGERING RECEPTOR EXPRESSED ON MYELOID CELLS-1

Triggering receptor expressed on myeloid cells type 1 (TREM-1) is a recently discovered member of the immunoglobulin superfamily engaged as a cell membrane receptor on the myeloid cell family. TREM-1 expression on monocyte and macrophage surfaces was shown to be markedly up-regulated in human biological fluids as well as tissues infected by gram-positive and gram-negative bacteria. The functional significance of TREM-1 was discovered when it was observed that the blockade of TREM-1 signaling protects mice from the lethal effects of lipopolysaccharide-induced septic shock. Moreover, up-regulation of cell-surface TREM-1 expression was shown to result in marked plasma elevation of the soluble form of the molecule (sTREM-1) (65-71).

Increased plasma sTREM-1 values, individually considered or in association with other laboratory parameters, have been described in patients with bacterial infections and sepsis. Additionally, elevated broncho-alveolar lavage fluid sTREM-1 concentrations were found in patients with bacterial or fungal pneumonia and increased pleural fluid sTREM-1 levels in patients with infectious effusions (72-79). However, increased plasma sTREM-1 concentrations were also observed in patients with acute pancreatitis and non-infectious inflammations after traumatic lung contusion or pulmonary aspiration syndromes (80-82). In addition, the diagnostic and prognostic performances of sTREM-1 in sepsis and septic shock was reported to be variable, controversial, and even contradictory according to other clinical studies that reaffirmed the central role of traditional laboratory parameters, such as CRP, IL-6, and procalcitonin, in distinguishing sepsis from systemic inflammatory response syndrome (65).

In the forensic field, sTREM-1 levels were determined in postmortem serum, pericardial fluid, and urine in septic and control cases. Increased postmortem serum sTREM-1 levels (cutoff value 90 pg/mL) were observed in sepsis-related deaths, whereas most control cases had postmortem serum sTREM-1 levels lower than 90 pg/mL. Increased sTREM-1 values were also found in pericardial fluid and urine in septic cases. However, postmortem serum sTREM-1 levels did not seem to provide improved sensitivity and specificity compared to procalcitonin in detecting sepsis after death, indicating that the simultaneous assessment of both biomarkers could eventually help in clarifying specific situations characterized by elusive macroscopic, microscopic, and laboratory findings (9).

ENDOCAN

The vascular endothelium has been demonstrated as playing a critical role in the pathogenesis of sepsis by producing cytokines and chemotactic factors as well as expressing surface adhesion molecules that induce circulating leukocyte migration into tissues. Consequently, there is a strong, biological rationale for targeting markers of endothelial activation as biomarkers of sepsis (83,84).

In clinical practice, a large number of molecules secreted by the endothelial cells have been investigated as potential biomarkers for the early diagnosis of sepsis. These have included regulators of endothelial activation, adhesion molecules, as well as mediators of coagulation, permeability, and vasomotor tone (84).

Endocan (endothelial cell-specific molecule-1) is a soluble 50-kDa proteoglycan made up of a mature polypeptide of 165 amino acids and a single dermatan sulfate chain covalently linked to the serine residue at position 137. The molecule is naturally expressed by endothelial cells, is highly regulated in presence of proinflammatory cytokines and proangiogenic molecules and may be considered an accurate marker of endothelial activation. Endocan expression was associated with a growing number of pathological conditions characterized by neoangiogenesis and vascular growth. The molecule was found freely circulating at low levels in the serum of healthy subjects and overexpressed by several types of human tumors, particularly highly vascularized cancers (85-97).

Additionally, increased endocan levels were described in patients with sepsis, severe sepsis, and septic shock compared to healthy individuals, with concentrations related to the severity of the disease. Scherpereel et al (83) proposed a cutoff value of 1.2 ng/mL, which would provide the best
Markers for sepsis diagnosis in the forensic setting

In the forensic setting, endocan levels have been determined in postmortem serum in septic and control cases. Simultaneous increases in both procalcitonin and endocan levels were identified in septic cases only. Endocan concentrations were low or undetectable in most control cases, irrespective of the postmortem interval, suggesting that the molecule is not systematically released into the bloodstream after death following the onset of decompositional changes. Conversely, concentrations over 1.0 ng/mL were observed only in control cases characterized by diffuse vascular injuries, presumably indicating endocan leakage in the bloodstream due to direct endothelial cell damage (99).

NEOPTERIN

Neopterin (D-erythro-1',2',3'-trihydroxypropylpterin), a biochemical product of the guanosine triphosphate pathway, was first isolated from human urine in 1965. The discovery of neopterin as a marker of T-cell activation dates back to the 1980s. The molecule is produced primarily in monocyte/macrophage and related cells when stimulated by interferon-γ released from activated T cells. Other cell types do not produce measurable amounts of neopterin following various stimuli. Therefore, the production of the molecule appears to be closely associated with cellular immune system activation. The biological function of neopterin is not completely clear. However, it has been demonstrated that neopterin has relations with nitric oxide synthesis and reactive oxygen metabolites. Based on this, it has been postulated that the molecule may be toxic for microorganisms and be part of the proinflammatory and cytotoxic armature of activated human macrophages. The upper limit of the reference range is approximately 10 nmol/L (= 2.5 ng/mL) (8,100-104).

High neopterin concentrations in serum and urine were shown to be a reliable indicator of the severity of viral (HIV), bacterial, protozoic, parasitic, or fungi-induced infections. Correlations between neopterin levels and disease states were also found for autoimmune disorders (rheumatoid arthritis, systemic lupus erythematosus, Crohn’s disease, and autoimmune thyroid diseases). Serum levels of neopterin were shown to be elevated in subjects with coronary and peripheral artery disease, with concentrations potentially predicting adverse cardiovascular events and heart failure development in patients with coronary artery disease, acute coronary syndromes, or severe peripheral artery disease. In various types of malignant diseases, increased neopterin concentrations were indicated as predictive in tumor progression, metastasis development and mortality. Although not produced by tumor cells themselves, increased neopterin concentrations most likely reflect the host-defense reaction elicited by the aggressiveness of the tumor. Furthermore, the monitoring of neopterin concentrations would also allow early detection of immunological and infectious complications in allograft recipients following kidney, heart, liver, lung, pancreas, and bone marrow transplants. Since elevated levels are found in infectious and non-infectious inflammations, the specificity of neopterin as a clinical marker of bacterial sepsis is, however, limited (101-104).

Forensic use of neopterin was investigated by Ishikawa et al (36) and Ambach et al (105,106). Postmortem serum neopterin levels over 500 nmol/L were observed in bacterial and viral infection-related cases as well as in delayed deaths due to trauma, thus confirming systemic inflammatory response syndromes and monocyte/macrophage activation.

CONCLUSIONS

Many advances have been made in the identification of novel biomarkers for sepsis diagnosis. However, substantial discoveries are yet to be made in this field, both in clinical and forensic casework. Although more than 178 biomarkers have been identified, it remains controversial which of these is the most reliable for the diagnosis of sepsis. None of the currently available markers can be used to undoubtedly determine whether or not a patient is infected. Similarly, in the forensic field, none of the currently available biomarkers can be used to establish a definite diagnosis of sepsis-related death. These limits notwithstanding, at present procalcitonin represents the most reliable parameter for the postmortem diagnosis of sepsis.

Due to the complexity of the sepsis response, several authors have postulated that a combination of biomarkers, rather than a single laboratory parameter, might be more effective in order to obtain early and reliable diagnosis of sepsis in living patients. In our opinion, this same consideration should be applied to the postmortem field, where the diagnosis of sepsis is even more challenging.
We consider that it is not advisable to reach the diagnosis of sepsis-related death based on laboratory investigations only, especially when biochemical analyses are limited to a single parameter. Conversely, in our view, postmortem bacteriology and postmortem biochemistry must always be part of the diagnostic work-up and results must always be interpreted in context, with information from circumstantial data and medical records (when available), autopsy, histology, and, when feasible, neuropathology and immunohistochemistry (1-3,8,107,108).

References

1. Wacker C, Prkno A, Brunskhorst FM, Schlattmann P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13:426-35. Medline:23735419 doi:10.1016/S1473-3099(12)70323-7
2. Su L, Feng L, Song Q, Kang H, Zhang X, Liang Z, et al. Diagnostic value of dynamics serum sCD163, sTREM-1, PCT, and CRP in differentiating sepsis, severity assessment, and prognostic prediction. Mediators Inflamn. 2013;2013:969875. Medline:23935252 doi:10.1155/2013/969875
3. Samraj RS, Zingarelli B, Wong HR. Role of biomarkers in sepsis care. Shock. 2013;40:358-65. Medline:24088989 doi:10.1037/SHK.0b013e3182a66bd6
4. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. Definition for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864-74. Medline:1597042 doi:10.1097/00003246-199206000-00025
5. Jaimes FA, De la Rosa GD, Valencia ML, Arango CM, Gomez CI, Garcia A, et al. A latent class approach for sepsis diagnosis supports use of procalcitonin in the emergency room for diagnosis of severe sepsis. BMC Anesthesiol. 2013;13:23. Medline:24050481 doi:10.1186/1471-2253-13-23
6. Levy MM, Dellinger RP, Townsend SR, Linde-Zwirble WT, Marshall JC, Bion J, et al. The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Intensive Care Med. 2010;36:222-31. Medline:20069275 doi:10.1007/s00134-009-1738-3
7. Phua J, Ngerng WJ, See KC, Tay CK, Kiong T, Lim HF, et al. Characteristics and outcomes of culture-negative versus culture-positive severe sepsis. Crit Care. 2013;17:R202. Medline:24028771 doi:10.1186/cc12896
8. Reinhart K, Meisner M, Brunskhorst FM. Markers for sepsis diagnosis: what is useful? Crit Care Clin. 2006;22:503-19. Medline:16893736 doi:10.1016/j.ccc.2006.03.003
9. Palmieri C, Barty D, Mangin P, Augsburger M. Value of sTREM-1, procalcitonin and CRP as laboratory parameters for postmortem diagnosis of sepsis. J Infect. 2013;67:545-55. Medline:24012914 doi:10.1016/j.jinf.2013.08.020
10. Schrag B, Roux-Lombard P, Schneider D, Vaucher P, Mangin P, Palmieri C. Evaluation of C-reactive protein, procalcitonin, tumor necrosis factor alpha, interleukin-6, and interleukin-8 as diagnostic parameters in sepsis-related fatalities. Int J Legal Med. 2012;126:505-12. Medline:21735293 doi:10.1007/s00441-011-0596-z
11. Reichelt U, Jung R, Nierhaus A, Toksos M. Serial monitoring of interleukin-1beta, soluble interleukin-2 receptor and lipopolysaccharide binding protein levels after death A comparative evaluation of potential postmortem markers of sepsis. Int J Legal Med. 2005;119:80-7. Medline:15378307 doi:10.1007/s00441-004-0481-0
12. Toksos M. Postmortem diagnosis of sepsis. Forensic Sci Int. 2007;165:155-64. Medline:16787725 doi:10.1016/j.forsciint.2006.05.015
13. Toksos M, Püschel K. Postmortem bacteriology in forensic pathology: diagnostic value and interpretation. Leg Med (Tokyo). 2001;3:15-22. Medline:12935728 doi:10.1016/S1344-0623(01)00002-5
14. Torgersen C, Moser P, Luckner G, Mayr V, Jochberger S, Hasibeder WR, et al. Macrosopic postmortem findings in 235 surgical intensive care patients with sepsis. Anesth Analg. 2009;108:1841-7. Medline:19448210 doi:10.1213/ane.0b013e318195e11d
15. Dermengiu D, Curca GC, Ceausu M, Hostiuc S. Particularities regarding the etiology of sepsis in forensic services. J Forensic Sci. 2013;58:1183-8. Medline:23822886 doi:10.1111/1556-4029.12222
16. Maeda H, Zhu BL, Ishikawa T, Quan L, Michiue T. Significance of postmortem biochemistry in determining the cause of death. Leg Med (Tokyo). 2009;11:546-9. Medline:19269240 doi:10.1016/j.legalmed.2009.01.048
17. Maeda H, Ishikawa T, Michiue T. Forensic biochemistry for functional investigation of death: concept and practical application. Leg Med (Tokyo). 2011;13:55-67. Medline:21269863 doi:10.1016/j.legalmed.2010.12.005
18. Madea B, Musshoff F. Postmortem biochemistry. Forensic Sci Int. 2007;165:165-71. Medline:16781101 doi:10.1016/j.forsciint.2006.05.023
19. Assicot M, Gendrel D, Carsin H, Raymond J, Guibaud J, Bohuon C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet. 1993;341:515-8. Medline:8094770 doi:10.1016/0140-6736(93)90277-N
20. Reinhart K, Bauer M, Riedelmann NC, Hartog CS. New approaches to sepsis: molecular diagnostics and biomarkers. Clin Microbiol Rev. 2012;25:609-34. Medline:23034322 doi:10.1128/CMR.00016-12
21. Dahaba AA, Metzler H. Procalcitonin’s role in the sepsis cascade. Is procalcitonin a sepsis marker or mediator? Minerva Anestesiol. 2009;75:447-52. Medline:18987569
22. Picariello C, Lazzeri C, Valente S, Chiostri M, Gensini GF. Procalcitonin in acute cardiac patients. Intern Emerg Med.
Markers for sepsis diagnosis in the forensic setting

23 Becker KL, Snider R, Nylen ES. Procalcitonin assay in systemic inflammation, infection, and sepsis: clinical utility and limitations. Crit Care Med. 2008;36:941-52. Medline:18431284 doi:10.1097/CCM.0b013e31818165AA

24 Maruna P, Nedelníková K, Gürlich R. Physiology and genetics of procalcitonin. Physiol Res. 2000;49 Suppl 1:S57-61. Medline:10984072

25 Naot D, Cornish J. The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism. Bone. 2008;43:813-8. Medline:18687416 doi:10.1016/j.bone.2008.07.003

26 Tsokos M, Reichelt U, Nierhaus A, Püschel K. Serum procalcitonin (PCT): a valuable biochemical parameter for the postmortem diagnosis of sepsis. Int J Legal Med. 2001;114:237-43. Medline:11354042 doi:10.1007/s004140000177

27 Schrag B, Iglesias K, Mangin P, Palmiere C. Procalcitonin and C-reactive protein in pericardial fluid for the postmortem diagnosis of sepsis. Int J Legal Med. 2012;126:567-72. Medline:22456852 doi:10.1007/s00414-012-0692-8

28 Bode-Jänisch S, Schütz S, Schmidt A, Tschernig T, Debertin AS, Pfister I, et al. Procalcitonin and interleukin-6 in postmortem blood – an analysis with special regard to investigation of fatal hyperthermia. Forensic Sci Int. 2008;179:135-43. Medline:18541395 doi:10.1016/j.forsciint.2008.04.021

29 Fujita MQ, Zhu BL, Ishida K, Quan L, Oritani S, Maeda H. Serum interleukin-6 (IL-6) and IL-8: a value biochemical parameter for the postmortem diagnosis of sepsis. Physiol Res. 2000;49 Suppl 1:S57-61. Medline:10984072

30 Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. 2003;113:1805-12. Medline:12813603 doi:10.1172/JCI200318921

31 Ho KM, Lipman J. An update on C-reactive protein for intensivists. Anaesth Intensive Care. 2009;37:234-41. Medline:19400486

32 Laurier E, Gosset D, Hennache B, Nuttens MC, Debuire B, Lenoir L, et al. Pericardial C-reactive protein. A marker of agonal cardiac disease? [in French]. Presse Med. 1991;20:405-8. Medline:17081411

33 Uhlin-Hansen L. C-reactive protein (CRP), a comparison of pre- and post-mortem blood levels. Forensic Sci Int. 2001;124:32-5. Medline:11477575 doi:10.1016/S0379-0738(01)00558-8

34 Tsokos M, Reichelt U, Jung R, Nierhaus A, Püschel K. Interleukin-6 and C-reactive protein levels in sepsis-related fatalities during the early postmortem period. Forensic Sci Int. 2001;119:47-56. Medline:11348793 doi:10.1016/S0379-0738(00)00391-1

35 Maeda H, Zhu BL, Bessho Y, Ishikawa T, Quan L, Michiue T, et al. Postmortem serum nitrogen compounds and C-reactive protein levels with special regard to investigation of fatal hyperthermia. Forensic Sci Med Pathol. 2008;4:175-80. Medline:19291458 doi:10.1016/j.fsmpr.2007.09.008-9029-9

36 Ishikawa T, Hamel M, Zhu BL, Li DR, Zhao D, Michiue T, et al. Comparative evaluation of postmortem serum concentrations of neopterin and C-reactive protein. Forensic Sci Int. 2008;179:135-43. Medline:18541395 doi:10.1016/j.forsciint.2008.04.021

37 Astrup BS, Thomsen JL. The routine use of C-reactive protein in forensic investigations. Forensic Sci Int. 2007;172:49-55. Medline:17222998 doi:10.1016/j.forsciint.2006.10.021

38 Uemura K, Shintani-Ishida K, Saka K, Nakajima M, Ikegaya H, Kikuchi Y, et al. Biochemical blood markers and sampling sites in forensic autopsies. J Forensic Leg Med. 2008;15:312-7. Medline:18511006 doi:10.1016/j.jflm.2007.12.003

39 Ershler WB, Keller ET. Age-associated increased interleukin-6 gene expression, late-life diseases, and fragility. Annu Rev Med. 2000;51:245-70. Medline:10774463 doi:10.1146/annurev.med.51.1.245

40 Oda S, Hirasawa H, Shiga H, Nakanishi K, Matsuda K, Nakamura M. Sequential measurement of IL-6 blood levels in patients with systemic inflammatory response syndrome (SIRS)/sepsis. Cytokine. 2005;29:169-75. Medline:15652449 doi:10.1016/j.cytob.2004.10.010

41 Lu-Kuo JM, Austen KF, Katz HR. Post-transcriptional stabilization by interleukin-1beta of interleukin-6 mRNA induced by c-kit ligand and interleukin-10 in mouse bone marrow-derived mast cells. J Biol Chem. 1996;271:22169-74. Medline:8703029 doi:10.1074/jbc.271.36.22169

42 Kishimoto T. Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther. 2006;8 Suppl 2:S5. Medline:16899106 doi:10.1186/ar1916

43 Kishimoto T. IL-6: from its discovery to clinical applications. Int Immunol. 2010;22:347-52. Medline:20410258 doi:10.1093/intimm/dxq030

44 Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101:1767-72. Medline:10769275 doi:10.1161/01.CIR.101.15.1767

45 Peteiro-Cartelle FJ, Alvarez-Jorge A. Dynamic profiles of interleukin-6 and the soluble form of CD25 in burned patients. Burns. 1999;25:487-91. Medline:10498355 doi:10.1016/S0305-4179(99)00032-7

46 Foley R, Couban S, Walker I, Greene K, Chen CS, Messner H, et al. Monitoring soluble interleukin-2 receptor levels in related and unrelated donor allogenic bone marrow transplantation. Bone Marrow Transplant. 1998;21:769-73. Medline:9603399 doi:10.1038/sj.bmt.1701163

47 Saito K, Wagatsuma T, Toyama H, Ejima Y, Hoshi K, Shibusawa M, et al. Sepsis is characterized by the increases in percentages of circulating CD4+CD25+ regulatory T cells and plasma levels of soluble CD25. Tohoku J Exp Med. 2008;216:61-8. Medline:18193339 doi:10.1620/tjem.216.61

48 Seidler S, Zimmermann HW, Weiskirchen R, Tautzwein C, Tacke F. Elevated circulating soluble interleukin-2 receptor in patients with chronic liver diseases is associated with non-classical
monocytes. BMC Gastroenterol. 2012;12:38. Medline:22530792

doi:10.1186/1471-230X-12-38

49 Reichelt U, Jung R, Nierhaus A, Tsokas M. Serial monitoring of interleukin-1beta, soluble interleukin-2 receptor and lipopolysaccharide binding protein levels after death: a comparative evaluation of potential postmortem markers of sepsis. Int J Legal Med. 2005;119:80-7. Medline:15378307

doi:10.1007/s00414-004-0481-0

50 Petri F, Piazza M, Calabrese V, Damore G, Cighetti R. Exploring the LPS/TR4 signal pathway with small molecules. Biochem Soc Trans. 2010;38:1390-5. Medline:20863319 doi:10.1042/BST0381390

51 Gonzalez-Quintela A, Alonso M, Campos J, Vizcaíno L, Loidi L, Gude F. Determinants of serum concentrations of lipopolysaccharide-binding protein (LBP) in the adult population: the role of obesity. PLoS ONE. 2013;8:e54600. Medline:23349936 doi:10.1371/journal.pone.0054600

52 Ohno U, Fukase K, Miyake K, Shimizu T. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4-MD-2. Proc Natl Acad Sci U S A. 2012;109:7421-6. Medline:22532668 doi:10.1073/pnas.1201193109

53 Kitano K, Lazec B, Hoijer S, Derganc M. Diagnostic accuracy of lipopolysaccharide-binding protein for predicting bacteremia: clinical sepsis in children with febrile neutropenia: comparison with interleukin-6, procalcitonin, and C-reactive protein. Support Care Cancer. 2014;22:269-77. Medline:24057110 doi:10.1007/s00520-013-1978-1

54 Schumann RR, Kirschning CJ, Unbehauen A, Aberle HP, Knoppe HP, Lamping N, et al. The lipopolysaccharide-binding protein is a secretory class 1 acute-phase protein whose gene is transcriptionally activated by APFR/STAT3 and other cytokine-inducible nuclear proteins. Mol Cell Biol. 1996;16:3490-503. Medline:8668165

55 Sakr Y, Burgett U, Nacul FE, Reinhart K, Brunhoffst F. Lipopolysaccharide binding protein in a surgical intensive care unit: a marker of sepsis? Crit Care Med. 2008;36:2014-22. Medline:19077971 doi:10.1097/CCE.0b013e31817b86e3

56 Augsburger M, Iglesias K, Bardy D, Mangin P, Palmieri C. Diagnostic value of lipopolysaccharide-binding protein and procalcitonin for sepsis diagnosis in forensic pathology. Int J Legal Med. 2013;127:427-35. Medline:23064651 doi:10.1007/s00414-012-0780-9

57 Ulla M, Pizzolato E, Lucchieri M, Loiacono M, Soardo F, Forno D, et al. Diagnostic and prognostic value of Presepsin in the management of sepsis in the emergency department: a multicentre prospective study. Crit Care. 2013;17:R168. Medline:23899120 doi:10.1186/cci12847

58 Urbosan V, Eikudate A, Tamulienė I. The predictive value of soluble biomarkers (CD14 subtype, interleukin-2 receptor, human leucocyte antigen-G) and procalcitonin in the detection of bacteremia and sepsis in pediatric oncology patients with chemotherapy-induced febrile neutropenia. Cytokine. 2013;62:34-7. Medline:23510625 doi:10.1016/j.jcyto.2013.02.030

59 Chenevier-Gobeaux C, Trabattoni E, Roelens M, Borderie D, Claessens YE. Presepsin (sCD14-ST) in emergency department: The need for adapted threshold values? Clin Chim Acta. 2014;427:34-6. Medline:24072535 doi:10.1016/j.cca.2013.09.019

60 Chenevier-Gobeaux C, Trabattoni E, Elfassy Y, Picard C, Guérin S, Borderie D, et al. Decisional procalcitonin thresholds are not adapted to elderly patients admitted to the emergency room. Biomarkers. 2012;17:477-81. Medline:22607374 doi:10.1016/j.biomar.2012.08.005

61 Cakir Madenci O, Yakupoğlu S, Benzonzana N, Yucel N, Akbaba D, Orcun Kaptanagas A. Evaluation of soluble CD14 subtype (presepsin) in burn sepsis. Burns. 2013 pii: S0305-4179(13)00263-5. Medline:24074718

62 Liu B, Chen YX, Yin Q, Zhao YZ, Li CS. Diagnostic value and prognostic evaluation of Presepsin for sepsis in an emergency department. Crit Care. 2013;17:R244. Medline:24138799 doi:10.1186/cc13070

63 Vodnik T, Kaljevic G, Tadic T, Majic-Singh N. Presepsin (sCD14-ST) in preoperative diagnosis of abdominal sepsis. Clin Chem Lab Med. 2013;51:2053-62. Medline:23740685 doi:10.1515/cclm-2013-0061

64 Palmieri C, Mussap M, Bardy D, Cibecchini F, Mangin P. Diagnostic value of soluble CD14 subtype (sCD14-ST) presepsin for the postmortem diagnosis of sepsis-related fatalities. Int J Legal Med. 2013;127:799-808. Medline:22263410 doi:10.1007/s00414-012-0804-5

65 Bopp C, Hofer S, Bouchon A, Zimmermann JB, Martin E, Weigand MA. Soluble TREM-1 is not suitable for distinguishing between systemic inflammatory response syndrome and sepsis survivors and nonsurvivors in the early stage of acute inflammation. Eur J Anaesthesiol. 2009;26:504-7. Medline:19307971 doi:10.1097/EJA.0b013e3282329a6ca

66 Mazzucchelli I, Garofoli F, Ciardelli L, Borghesi A, Tzialla C, Di Comite A, et al. Diagnostic performance of triggering receptor expressed on myeloid cells-1 and CD64 index as markers of sepsis in preterm newborn. Pediatr Crit Care Med. 2013;14:178-82. Medline:23314180 doi:10.1097/PCC.0b013e31826ee726d

67 Li L, Zhu Z, Chen J, Ouyang B, Chen M, Guan X. Diagnostic value of soluble triggering receptor expressed on myeloid cells-1 in critically ill, postoperative patients with suspected sepsis. Am J Med Sci. 2013;345:178-84. Medline:22739556 doi:10.1097/MAJ.0b013e318253a1a6

68 Oku R, Oda S, Nakada TA, Sadahiro T, Nakamura M, Hirayama Y, et al. Differential pattern of cell-surface and soluble TREM-1 between sepsis and SIRS. Cytokine. 2013;61:112-7. Medline:23046618 doi:10.1016/j.cyto.2012.09.003

69 Derive M, Gibot S. Urine TREM-1 assessment in diagnosing sepsis and sepsis-related acute kidney injury. Crit Care. 2011;15:1013. Medline:22136371 doi:10.1186/cc10533
Markers for sepsis diagnosis in the forensic setting

Palazzo SJ, Simpson T, Schnapp LM. Triggering receptor expressed on myeloid cells type 1 as a potential therapeutic target in sepsis. Dimens Crit Care Nurs. 2012;31:1-6. Medline:22156803 doi:10.1097/DCC.0b013e31823a5298

Gibot S, Cravoisy A, Levy B, Bene MC, Faure G, Bollaert PE. Soluble triggering receptor expressed on myeloid cells type 1: its diagnostic accuracy in patients with suspected sepsis. Ann Intern Med. 2004;141:9-15. Medline:15238365 doi:10.1097/01.0000000000000009

Knapp S, Gibot S, de Vos A, Versteeg HH, Colonna M, van der Poll T. Cutting edge: expression patterns of surface and soluble triggering receptor expressed on myeloid cells-1 in the diagnosis of pneumonia. N Engl J Med. 2004;350:451-8. Medline:14749453 doi:10.1056/NEJMoa031544

Barraud D, Gibot S. Triggering receptor expressed on myeloid cell 1. Crit Care Clin. 2011;27:265-79. Medline:21440201 doi:10.1016/j.ccc.2010.12.006

Gibot S, Cravoisy A, Dupays R, Barraud D, Nace L, Levy B, et al. Combined measurement of procalcitonin and soluble TREM-1 in the diagnosis of nosocomial sepsis. Scand J Infect Dis. 2007;39:604-8. Medline:17577825 doi:10.1080/036537071199832

Porcel JM, Vives M, Cao G, Bielsa S, Ruiz-González A, Martinez-Iribarren A, et al. Biomarkers of infection for the differential diagnosis of pleural effusions. Eur Respir J. 2009;34:1383-9. Medline:19541708 doi:10.1183/09031936.00197208

Chen HL, Hung CH, Tseng HI, Yang RC. Soluble form of triggering receptor expressed on myeloid cells-1 in patients with acute pancreatitis. Crit Care Med. 2008;36:2048-53. Medline:18552693 doi:10.1097/CCM.0b013e31817b8824

El Solh AA, Akinnusi ME, Peter M, Berim I, Schultz MJ, Pineda L. Triggering receptors expressed on myeloid cells in pulmonary aspiration syndromes. Intensive Care Med. 2008;34:1012-9. Medline:18392807 doi:10.1007/s00134-008-1087-7

Bingold TM, Pullmann B, Sartorius S, Geiger EV, Marzl I, Zacharowski K, et al. Soluble triggering receptor on myeloid cells-1 is expressed in the course of non-infectious inflammation after traumatic lung contusion: a prospective cohort study. Crit Care. 2011;15:R115. Medline:21496225 doi:10.1186/cc10141

Scherpereel A, Depontieu F, Grigoriu B, Cavestri B, Tsicopoulos A, Gentina T, et al. Endocan, a new endothelial marker in human sepsis. Crit Care Med. 2006;34:532-7. Medline:16424738 doi:10.1097/01.CCM.0000198525.82124.74

Xing K, Murthy S, Liles WC, Singh JM. Clinical utility of biomarkers of endothelial activation in sepsis – a systematic review. Crit Care. 2012;16:R7. Medline:22248019 doi:10.1186/cc11145

Delehedde M, Devenyns L, Maurage CA, Vives IR. Endocan in cancers: a lesson from a circulating dermatan sulfate proteoglycan. Int J Cell Biol. 2013;2013:705027. Medline:23606845 doi:10.1155/2013/705027

Filep JG. Endocan or endothelial cell-specific molecule-1: a novel prognostic marker of sepsis? Crit Care Med. 2006;34:574-5. Medline:16424758 doi:10.1097/01.CCM.0000199054.13823.A7

Roudnicki F, Poyet C, Wild P. Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis. Cancer Res. 2013;73:1097-106. Medline:23243026 doi:10.1158/0008-5472.CAn-12-1855

Chen LY, Liu X, Wang SL, Qin CY. Over-expression of the endocan gene in endothelial cells from hepatocellular carcinoma is associated with angiogenesis and tumor invasion. J Int Med Res. 2010;38:498-510. Medline:20515564 doi:10.1177/030887461003800213

Abid MR, Yi X, Yano K, Shih SC, Aird WC. Vascular endocan is preferentially expressed in tumor endothelium. Microvasc Res. 2006;72:136-45. Medline:16956626 doi:10.1016/j.mvr.2006.05.010

Grigoriu BD, Depontieu F, Scherpereel A, Gourcerol D, Devos P, Ouatas T, et al. Endocan expression and relationship with survival in human non-small cell lung cancer. Clin Cancer Res. 2006;12:4575-82. Medline:16899604 doi:10.1158/1078-0432.CCR-06-0185

Abid MR, Yi X, Yano K, Shih SC, Aird WC. Vascular endocan is preferentially expressed in tumor endothelium. Microvasc Res. 2006;72:136-45. Medline:16956626 doi:10.1016/j.mvr.2006.05.010

Grigoriu BD, Deponitieu F, Scherpereel A, Gourcerol D, Devos P, Ouatas T, et al. Endocan expression and relationship with survival in human non-small cell lung cancer. Clin Cancer Res. 2006;12:4575-82. Medline:16899604 doi:10.1158/1078-0432.CCR-06-0185

Scherpereel A, Gentina T, Grigoriu B, Sénéchal S, Janin A, Tsicopoulos A, et al. Overexpression of endocan induces tumor formation. Cancer Res. 2003;63:6084-9. Medline:14522939

Zuo L, Zhang SM, Hu RL, Zhu HQ, Zhou Q, Gui SY, et al. Correlation of expression and differentiation of endocan in colorectal cancer. World J Gastroenterol. 2008;14:4562-8. Medline:18680240 doi:10.3748/wjg.14.4562

Huang GW, Tao YM, Ding X. Endocan expression correlated with poor survival in human hepatocellular carcinoma. Dig Dis Sci. 2009;54:389-94. Medline:18592377 doi:10.1007/s10620-008-
LeRoy X, Aubert S, Zini L, Franquet H, Kervoaze G, Villers A, et al. Vascular endocan (ESM-1) is markedly overexpressed in clear cell renal cell carcinoma. Histopathology. 2010;56:180-7. Medline:20102396 doi:10.1111/j.1365-2559.2009.03458.x

Zhang SM, Zuo L, Zhou Q, Gui SY, Shi R, Wu Q, et al. Expression and distribution of endocan in human tissues. Biotech Histochem. 2012;87:172-8. Medline:21526908 doi:10.3109/10520295.2011.577754

Sarrazin S, Adam E, Lyon M, Depontieu F, Motte V, Landolfi C, et al. Endocan or endothelial cell specific molecule-1 (ESM-1): a potential novel endothelial cell marker and a new target for cancer therapy. Biochim Biophys Acta. 2006;1765:25-37. Medline:16168566

Maurage CA, Adam E, Minéo JF, Sarrazin S, Debuinne M, Siminski RM, et al. Endocan expression and localization in human glioblastomas. J Neuropathol Exp Neurol. 2009;68:633-41. Medline:19458546 doi:10.1097/NEN.0b013e3181a52a7f

Bechard D, Meignin V, Scherpereel A, Oudin S, Kervoaze G, Bertheau P, et al. Characterisation of the secreted form of endothelial-cell-specific molecule 1 by specific monoclonal antibodies. J Vasc Res. 2000;37:417-25. Medline:11025405 doi:10.1159/000025758

Palmieri C, Augsburger M. Endocan measurement for the postmortem diagnosis of sepsis. Leg Med (Tokyo). 2014;16:1-7. Medline:24262651 doi:10.1016/j.legalmed.2013.09.007

Hoffmann G, Wirleitner B, Fuchs D. Potential role of immune system activation-associated production of neopterin derivatives in humans. Inflamm Res. 2003;52:313-21. Medline:14504469 doi:10.1007/s00011-003-1181-9

Hagberg L, Cinque P, Gisslen M, Brew BJ, Spudich S, Bestetti A, et al. Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection. AIDS Res Ther. 2010;7:13. Medline:20525234 doi:10.1186/1742-6405-7-15

Pourakbari B, Mamishi S, Zafari J, Khairkhah H, Ashtiani MH, Abedini M, et al. Evaluation of procalcitonin and neopterin level in serum of patients with acute bacterial infection. Braz J Infect Dis. 2010;14:252-5. Medline:20835508 doi:10.1016/S1413-8670(10)70052-0

Tasdelen Fisgin N, Aliyazicioglu Y, Tanyel E, Coban AY, Ulger F, Zivalioglu M, et al. The value of neopterin and procalcitonin in patients with sepsis. South Med J. 2010;103:216-9. Medline:20134373 doi:10.1097/SMJ.0b013e3181cf11a1

De Rosa S, Cirillo P, Pacileo M, Petriello G, D’Ascoli G, Maresca F, et al. Neopterin: from forgotten biomarker to leading actor in cardiovascular pathophysiology. Curr Vasc Pharmacol. 2011;9:188-99. Medline:21134176 doi:10.2174/157016111794519372

Ambach E, Tributsch W, Fuchs D, Reibnegger G, Henn R, Wachter H. Postmortem evaluation of serum and urine neopterin concentrations. J Forensic Sci. 1991;36:1089-93. Medline:1919470

Ambach E, Tributsch W, Rabl W, Fuchs D, Reibnegger G, Henn R, et al. Postmortem neopterin concentrations: comparison of diagnoses with and without cellular immunological background. Int J Legal Med. 1991;104:259-62. Medline:1782146 doi:10.1007/BF01369581

Sankar V, Webster NR. Clinical application of sepsis biomarkers. J Anesth. 2013;27:269-83. Medline:23108494 doi:10.1007/s00540-012-1502-7

Mussap M, Noto A, Fravega M, Fanos V. Soluble CD14 subtype presespin (sCD14-ST) and lipopolysaccharide binding protein (LBP) in neonatal sepsis: new clinical and analytical perspectives for two old biomarkers. J Matern Fetal Neonatal Med. 2011;24 Suppl 2:12-4. Medline:21740312 doi:10.3109/14767058.2011.601923