Vestibular Role of KCNQ4 and KCNQ5 K⁺ Channels Revealed by Mouse Models

Guillermo Spitzmaul, Leonardo Tolosa, Berend H. J. Winkelman, Matthias Heidenreich, Maarten A. Frens, Christian Chabbert, Chris I. de Zeeuw, and Thomas J. Jentsch

From the Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany, the Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands, the Department of Neuroscience, Erasmus MC, 3000 CA Rotterdam, The Netherlands, INSERM U1051 Institut des Neurosciences de Montpellier, 30491 Montpellier cedex 5, France, and the Cluster of Excellence NeuroCure, Charité-Universitätsmedizin, 10117 Berlin, Germany

Received for publication, November 2, 2012, and in revised form, February 1, 2013. Published, JBC Papers in Press, February 13, 2013, DOI 10.1074/jbc.M112.433383

Keywords: Vestibular organ; KCNQ4; KCNQ5; auditory and vestibular function

The function of sensory hair cells of the cochlea and vestibular organs depends on an influx of K⁺ through apical mechanosensitive ion channels and its subsequent removal over their basolateral membrane. The KCNQ4 (K7.4) K⁺ channel, which is mutated in DFNA2 human hearing loss, is expressed in the basal membrane of cochlear outer hair cells where it may mediate K⁺ efflux. Like the related K⁺ channel KCNQ5 (K7.5), KCNQ4 is also found at calyx terminals ensheathing type I vestibular hair cells where it may be localized pre- or postsynaptically. Making use of Kcnq4−/− mice lacking KCNQ4, as well as Kcnq4dn/dn and Kcnq5dn/dn mice expressing dominant negative channel mutants, we now show unambiguously that in adult mice both channels reside in postsynaptic calyx membranes of hair cells, and loss of KCNQ4 impairs vestibular function. Accordingly, whole cell currents of vestibular hair cells did not differ between genotypes. Neither Kcnq4−/−, Kcnq5dn/dn nor Kcnq4−/−/Kcnq5dn/dn double mutant mice displayed circling behavior found with severe vestibular impairment. However, a milder form of vestibular dysfunction was apparent from altered vestibulo-ocular reflexes in Kcnq4−/−/Kcnq5dn/dn and Kcnq4−/− mice. The larger impact of KCNQ4 may result from its preferential expression in central zones of maculae and cristae, which are innervated by phasic neurons that are more sensitive than the tonic neurons present predominantly in the surrounding peripheral zones where KCNQ5 is found. The impact of postsynaptic KCNQ4 on vestibular function may be related to K⁺ removal and modulation of synaptic transmission.

The vestibular organ senses gravitational forces and acceleration and provides essential sensory input for the control of body equilibrium, head orientation, and eye movements. Sensory hair cells (HCs) in oolithic organs (utricle and saccus) respond to gravitational forces and linear acceleration, whereas HCs in the cristae ampullares detect rotational acceleration. Both types of sensory end organ contain different classes of HCs named type I and type II. These classes are not only distinguished by their pattern of innervation, with calyx terminals ensheathing type I cells, but also by other characteristics like the expression of distinctive plasma membrane currents.

The vestibular sensory output depends not only on mechanosensitive ion channels located in the stereocilia of HCs, but also on ion channels present in both the basolateral membrane of HCs and in their cognate afferents. These channels may modulate receptor potentials, synaptic transmission, and neuronal excitability. At least two members of the KCNQ (K7) K⁺ channel family (2, 3), KCNQ4 and KCNQ5, are found in the vestibular organ (4, 5). KCNQ4 is important for hearing (5, 6), is mutated in patients with dominant DFNA2 deafness (6), and modulates touch sensation (7). KCNQ4 displays a highly restricted expression pattern. In the cochlea, it is localized at the basal pole of outer hair cells (OHCs) that depolarize and eventually degenerate upon Kcnq4 disruption (5). KCNQ4 is also found at basal poles of vestibular type I hair cells that are ensheathed by calyx synapses (5). However, its localization to pre- or postsynaptic membranes remains controversial (4, 8–12). Unlike cochlear OHCs, vestibular HCs do not degenerate in Kcnq4−/− mice (5).
but ~30% of patients with KCNQ4 mutations display mild vestibular symptoms (13).

KCNQ5 is more broadly expressed than KCNQ4 (14, 15), yields similar currents, but lacks cochlear expression. In vestibular sensory epithelia (5) it partially overlaps with KCNQ4. Apart from the disappearance of an afterhyperpolarization current in hippocampal neurons (16), no phenotype has been described in Kcnq5dn/dn mice carrying a dominant negative mutation.

Using KCNQ mutant mouse models we now resolve the controversy surrounding the contribution of KCNQ4 and KCNQ5 to vestibular HC currents and determine their physiological relevance for the vestibular system. We found that neither channel is significantly expressed in adult vestibular HCs, but rather postsynaptically in calyx terminals where their expression partially overlaps. Accordingly, currents of vestibular HCs were unchanged upon gene disruption. Vestibulo-ocular reflexes were reduced both in Kcnq4−/− and Kcnq4−/−/ Kcnq5dn/dn double mutant mice, whereas only marginal effects were observed in Kcnq5dn/dn mice. The larger impact of Kcnq4 disruption on vestibular function may be related to its preferential expression in the central zones of vestibular sensory epithelia.

EXPERIMENTAL PROCEDURES

Mouse Models and Genotyping—The generation of Kcnq4−/−, Kcnq4dn/dn, and Kcnq5dn/dn mice and their genotyping has been described previously (5, 16). KCNQ4 mouse models were initially kept in C3H/He and Kcnq5dn/dn mice in C57BL/6 background. Double mutant mice were generated by crossing Kcnq4−/− and Kcnq5dn/dn mice. They were viable, fertile, and had no immediately apparent phenotype. They were kept and investigated in the mixed background. Subsequently, all mutant genotypes were obtained by breeding mice heterozygous for both genes. Mice of either sex were used for experiments.

Immunofluorescence and in Situ Hybridization—Mice (2–52 weeks old) were anesthetized and perfused with 4% paraformaldehyde in PBS. Inner ears were dissected from the temporal bones in PBS and processed for (i) whole mount, (ii) slice immunohistochemistry, or (iii) in situ hybridization. For (i) and 1:500 for (ii); rabbit anti-KCNQ4 (7), 1:100 for (i) and 1:200 for (ii); rabbit anti-KCNQ5 (16), 1:150 for (i); rabbit and guinea pig anti-KCNQ5-C1b (raised against residues 793–808), 1:100 for (i) and 1:200 for (ii); mouse anti-calretinin (Swant), 1:200 for (i) and 1:400 for (ii); mouse and rabbit anti-β-III-tubulin (Covance), 1:500 for (i) and (ii); and mouse anti-calbindin (Swant), 1:400 for (ii). Nuclei were stained with DAPI. Fluorescence-labeled secondary antibodies were obtained from Molecular Probes and used diluted 1:500 for (i) and 1:1000 for (ii). For in situ hybridization (iii), sense and antisense digoxigenin-UTP-labeled riboprobes (DIG RNA labeling Mix; Roche Applied Science) were generated with T7 or SP6 RNA polymerase (Roche Applied Science), respectively, from linearized mouse cDNA clones (bp 1114–1560 for Kcnq4 and 1744–2352 for Kcnq5). In situ hybridization on inner ear cryosections was performed as described (19). Pictures were taken for (ii) by a confocal laser-scanning microscope (LSM510; Zeiss), analyzed off-line with ZEN 2009 light edition software (Zeiss), and assembled using Adobe Photoshop (Adobe Systems). Pictures for (iii) were taken with a Zeiss Axiohot or Zeiss Stemi-2000-c microscope.

Electrophysiology—Whole cell recordings were done on HCs from acutely dissected utricles that were perfused at 0.5 ml/min with oxygenated solution containing 137 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM HEPES, 11 mM glucose, pH 7.4. The epithelium was cut transversally and anchored to the chamber floor with two pieces of glass, exposing the basolateral membrane of hair cells. Central and peripheral hair cells could not be easily distinguished in this semi-intact preparation. However, patches were mostly obtained in the central and adjacent areas of the exposed tissue which may span the whole striola and juxtastriola and a minor portion of extrastriola. Recordings were done with 3–4-megohm electrodes filled with 140 mM KCl, 5 mM NaCl, 10 mM HEPES, 10 mM glucose, 5 mM EGTA, 3 mM MgATP, 1 mM NaGTP, pH 7.3. Type I and type II HCs were characterized (20) by the presence or absence, respectively, of the $g_{K,L}$ conductance (1). Microscopic inspection further helped to identify HC classes.

Whole cell recordings were done using a Multiclamp 700B amplifier (Molecular Devices). After seal formation (~10 GΩ) onto the basolateral membrane of HCs and membrane disruption, we estimated membrane capacitance (C_m) and series resistance (R_s) from the decay of capacitive transients induced by a ±10-mV pulse from a holding potential of ~80 mV. After cancellation of capacitive transients, R_s was compensated up to 85%. The resting potential was measured as the zero current voltage in the current clamp mode. Data analysis used pClamp 10 software (Molecular Devices) and Origin 7.5 (OriginLab). Data were sampled at 10 kHz and filtered at 2 kHz. The voltage clamp protocol started from a holding potential of ~70 (for type II HCs) or ~90 mV (for type I HCs), followed by a 50-ms pulse to ~110 mV for type I HCs and ~100 mV for type II HCs followed by test pulses of 200 ms between ~110 and +40 mV for type I HC and ~100 to +50 mV in type II HC in steps of 10 mV, and a constant step to ~30 mV for tail currents. In statistical analysis, the number of cells is given by n, and number of animals by N.

Channels in Vestibular Organ
Expression in Xenopus Oocytes and Two-electrode Voltage Clamping—Xenopus oocytes were obtained and injected as described (15). A final amount of 20 ng of cRNA/oocyte was injected for each condition. Oocytes were incubated 3–4 days at 17 °C and then examined by two-electrode voltage clamping using a Turbo Tec03 (NPI Electronics) amplifier and pClamp 8.0 software (Molecular Devices). The protocol consisted of 5-s steps from −110 to +50 mV in 10-mV increments from a holding potential of −80 mV.

Vestibulo-ocular Reflexes—The vestibulo-ocular reflex (VOR) was tested in four groups of adult mice including wild-type (WT, n = 15), Kcnq4−/− (n = 13), Kcnq5dn/dn (n = 17), and Kcnq4−/−/Kcnq5dn/dn (n = 13). In each experimental group about half of the mice were male. Mice were prepared for chronic head-restrained experiments, as described (21). The experimental protocol was approved by the Animal Experimentation Committee (DEC) of the Royal Dutch Academy of Sciences (KNAW).

During the experiment the mouse was placed head-fixed in a holder tube on a vestibular motion platform (R2000 Rotopod; Parallel Robotic Systems Corporation). Left eye orientation was measured using video pupil tracking with a table fixed CCD camera (Pulnix TM-6710CL, 120 frames/s) and IR illumination (850-nm LED, 6.5-cm distance from the eye). Pilocarpine (2%) eye drops were applied before the experiment to limit pupil dilatation in darkness. Online image analysis was performed to extract the location of pupil edges and corneal light reflections using custom built software for Labview (National Instruments, Austin, TX). Angular eye velocity was computed offline using custom software written for Matlab (The Mathworks Inc., Natick, MA) using the algorithm outlined elsewhere (22, 23). Saccadic eye movements and nystagmus fast phases were removed using a 50°/s velocity threshold and 200-ms margins at each threshold crossing. Each mouse was accustomed to the setup and experimental paradigm in a period of up to 3 training days before the experimental data were collected.

The horizontal VOR was characterized in darkness and in the light using sinusoidal rotation about the yaw axis, using frequencies ranging between 1/16 and 4 Hz, presented in a sequence of increasing order. Peak velocity was held constant at 25°/s. The number of cycles ranged between 5 (at 1/16 Hz) and 60 at 4 Hz. Eye velocity amplitude and phase shift relative to head movement were calculated using multiple linear regression of eye velocity to in-phase and quadrature components of the stimulus velocity. Gain of the eye movement response was defined as the ratio between the eye velocity amplitude and the stimulus velocity amplitude. Phase shift is expressed in degrees; positive phase shifts indicate phase lead. Error bars represent the S.E. Circular statistics were used to compare phase values. Transfer function profiles were statistically compared using MANOVA for repeated measures (SPSS Statistics 17.0.).

RESULTS

Differential Distribution of KCNQ4 and KCNQ5 in Vestibular End Organs—Previous studies examining the distribution of KCNQ4 and KCNQ5 in vestibular end organs were performed only with WT animals (4, 8, 11). We now used three genetic mouse models to control immunohistochemical labeling and to explore potential cross-talk between the expression of both proteins. Kcnq4−/− mice lack the KCNQ4 protein, whereas Kcnq4dn/dn mice express a dominant negative KCNQ4 variant carrying a point mutation (G286S) in the pore-forming P-looop (5). It corresponds to a mutation of a DFNA2 patient with dominantly inherited hearing loss (6). Kcnq5dn/dn mice carry an equivalent mutation (G278S) in KCNQ5 (16). KCNQ5(G278S) does not yield currents. It exerts strong dominant negative effects on co-expressed KCNQ3 and KCNQ5 WT subunits with which it can form heterotetramers (6, 15, 16).

Labeling vestibular end organs with our antibodies revealed a differential distribution of KCNQ4 and KCNQ5 in both the oolithic organs (Fig. 1) and cristae (supplemental Fig. S1). As displayed for utricles in Fig. 1A, KCNQ4 was most highly expressed in the central striolar and the adjacent juxtastriolar regions. It extended at weaker expression levels to the adjacent extrastriola (Fig. 1, A and J). By contrast, KCNQ5 was found mainly in the extrastriola and extended at lower expression levels into the juxtastriola (Fig. 1, B and K). As described previously (4, 5), both KCNQ4 and KCNQ5 were found in calyx-like structures that ensheathe type I vestibular hair cells (Fig. 1, J and K). Calyces were co-labeled for KCNQ4 and KCNQ5 in the juxtastriolar and extrastriolar regions (Fig. 1L). Likewise, KCNQ4 was found in central, intermediate, and peripheral zones of the cristae ampullares, whereas KCNQ5 was expressed in intermediate and peripheral zones but was almost undetectable in central zones (supplemental Fig. S1, A–C, J–L).

Importantly, labeling for KCNQ4 was abolished in tissue from Kcnq4−/− mice (Fig. 1D and supplemental Fig. S1D), validating the specificity of our staining. Surprisingly, labeling for KCNQ5 was virtually abolished in utricles from Kcnq5dn/dn mice that express a full-length KCNQ5 protein carrying a single point mutation (Fig. 1H). A similar pattern was observed in cristae ampullares (supplemental Fig. S1, H and N). Besides validating our KCNQ5 antibody staining, this finding suggested that the mutant protein was unstable or incorrectly targeted.

The partially overlapping expression patterns of KCNQ4 and KCNQ5 (Fig. 1, C and L, and supplemental Fig. S1, C and L) suggested that they may form heteromeric channels in vivo, as has been reported for co-transfected Chinese hamster ovary cells (24). Using dominant negative mutants, including the one expressed in Kcnq5dn/dn mice, we confirmed these findings in the Xenopus oocyte system that allows a more quantitative control of co-expression levels (supplemental Fig. S2, A and B). Importantly, KCNQ4/5 heterotetramers did not yield higher currents than the respective homotetramers, contrasting with findings for KCNQ3-KCNQ5 (15, 16) and KCNQ2-KCNQ3 channels (25, 26). Hence, the disruption of Kcnq4 should not decrease K+ currents more than expected from a loss of KCNQ4 currents alone. On the other hand, instead of a compensatory up-regulation, we observed a mild, but consistent decrease of KCNQ5 labeling in Kcnq4−/− vestibular organs (Fig. 1E). This finding hints at a role of KCNQ4-KCNQ5 complexes in trafficking, anchoring, or stabilizing KCNQ5 at its target membrane. The loss of KCNQ5 current in Kcnq4−/− mice, however, is expected to be mild. This contrasts with the strong dominant negative effect of the KCNQ5dn mutant which will suppress currents from all KCNQ4 subunits present in
KCNQ4/5 heteromers. Of note, no dominant negative effect is expected in striolae (or central zones of cristae) as they lack appreciable KCNQ5 expression (Fig. 1, B, E, and K, and supplemental Fig. S1, B and K) (11). Hence, the output from the striola, which harbors the more sensitive, phasic HC-neurite complexes (27), will not be affected in Kcnq5dn/dn mice.

Neither KCNQ4 nor KCNQ5 Mediates Significant K⁺ Currents in Adult Vestibular Hair Cells—The presence of KCNQ K⁺ currents in vestibular type I and/or type II HCs was previously proposed based on their pharmacological and electrophysiological properties (5, 9, 28). To unambiguously determine the contributions of KCNQ4 and KCNQ5 to vestibular hair cell currents, we recorded whole cell currents from utricular hair cells from WT, Kcnq4−/−, Kcnq5dn/dn, and Kcnq4−/−/Kcnq5dn/dn double mutant mice using the patch clamp technique. Because it was difficult to distinguish type I from type II HCs only by morphology, we used an established voltage protocol (20) to identify type I HCs by their characteristic gK,L K⁺ current (29–31). This current had been hypothesized previously to be carried by KCNQ4 (4, 9). Contradicting this hypothesis, utricular type I HCs from 4–42-week-old mice of all genotypes under investigation (WT, Kcnq4−/−, Kcnq5dn/dn, and Kcnq4−/−/Kcnq5dn/dn) expressed large gK,L currents (Fig. 2, A and B, left panels). These currents were activated by depolarization, but were already partially active at the holding potential of −80 mV as shown by current deactivation upon an initial voltage step to −110 mV (Fig. 2A). There was no significant difference in those currents between the genotypes (Fig. 2B), and we observed no differences in resting potentials (WT: −76 ± 3 mV, S.E. n = 7; Kcnq4−/−: −78 ± 3, n = 5; Kcnq5dn/dn: −81 ± 3, n = 4; Kcnq4−/−/Kcnq5dn/dn: −80 ± 2, n = 4).

Although KCNQ4 and KCNQ5 are mainly, if not exclusively,
expressed at calyx terminals of type I cells (4, 5), we also investigated type II cells in the same age range. They displayed the typical G_{DRC} current (1) and had a less negative resting voltage (-58 ± 3 mV, $n = 26$). As expected, we detected significant differences between genotypes neither in type II HC currents, nor in resting potentials ($Kcnq4^{-/-}$: -59 ± 2 mV, $n = 13$; $Kcnq5^{dn/dn}$: -57 ± 7 mV, $n = 4$; $Kcnq4^{-/-}/Kcnq5^{dn/dn}$: -59 ± 3 mV, $n = 5$). The half-maximal voltages of current activation ($V_{1/2}$) as determined from tail currents did not differ between the genotypes (supplemental Fig. S3, A–C). Moreover, 10 μm XE991, a potent blocker of KCNQ2, -3, -4, and -5 currents (15, 26, 32), failed to block K^+ currents of utricular type I or type II HCs from WT or $Kcnq4^{-/-}/Kcnq5^{dn/dn}$ mice (Fig. 2C). Hence, neither KCNQ4 nor KCNQ5 mediates significant currents in vestibular hair cells of mice older than 3 weeks.

$KCNQ4$ and $KCNQ5$ Are Not Expressed in Adult Vestibular Hair Cells, but in Afferent Neurons—The lack of KCNQ-mediated currents in >3-week-old type I HCs suggested that $KCNQ4$ and -5 are not expressed in those sensory cells, but rather reside in postsynaptic calyx membranes that ensheathe type I HCs. Confocal light microscopy cannot resolve the postsynaptic inner calyx membrane from the closely apposed basal, presynaptic HC membrane. A postsynaptic localization of $KCNQ4$, however, is strongly suggested by the extension of weaker $KCNQ5$ immunoreactivity along the outer calyx membrane into neurites (4, 11), a finding we now confirmed by $Kcnq4^{-/-}$-controlled immunostaining of striolar calyces (Fig. 3A). By contrast, $KCNQ5$ labeling (controlled by $Kcnq5^{dn/dn}$ HCs) was detected neither in outer calyceal membranes, nor in neurites (Fig. 3B). We correlated these findings with immunodetection of either channel protein in neuronal cell bodies of the vestibular ganglion (Fig. 4). Whereas somata of a neuronal subpopulation showed plasma membrane and intracellular labeling for $KCNQ4$ (Fig. 4A), $KCNQ5$ was not, or barely, detectable (Fig. 4D). Hence, KCNQ5 may be more stringently targeted to the inner calyx membrane than KCNQ4. In $Kcnq5^{dn/dn}$ mice, however, $KCNQ5$ was detected in a punctate pattern in neuronal cell bodies (Fig. 4E), while disappearing from vestibular end organs (Fig. 1G and supplemental Fig. S1, H and N). Such a trafficking defect might also be expected for $KCNQ4$-$KCNQ5$ heteromers containing $KCNQ5$ (G78S) subunits. Indeed, juxtastrial and extrastriarial KCNQ4 labeling was mildly reduced in maculae and cristae of $Kcnq5^{dn/dn}$ mice (Fig. 1, A and G, and supplementary Fig. S1M). This reduction was more evident in the extrastria where the $KCNQ5/KCNQ4$ ratio is larger (insets in Fig. 1, A and G).
Similar mutations in KCNQ4 are known to interfere with plasma membrane expression (7, 33, 34). Indeed, neuronal somata in the vestibular ganglion of \textit{Kcnq4} \textit{dn/dn} mice (5), which express the trafficking-deficient G286S mutant (7), showed intense cytoplasmic KCNQ4 labeling (Fig. 4B) compared with WT somata (Fig. 4A). KCNQ4 labeling of vestibular end organs disappeared in parallel, as shown for \textit{Kcnq4} \textit{dn/dn} crista ampullaris in Fig. 5, A and B. It is instructive to compare these findings with those for the cochlea where KCNQ4 is expressed in outer hair cells (4–6). Unlike vestibular HCs, OHCs displayed detectable levels of the mutant KCNQ4 protein (Fig. 5D). Again consistent with impaired trafficking and ER retention, the mutant protein was no longer detected at the basal OHC plasma membrane (Fig. 5C), but in a punctate intracellular pattern (Fig. 5D).

Our immunohistochemical analysis of mutant mice strongly suggests that KCNQ4 and -5 are expressed in postsynaptic, but not presynaptic membranes of calyx terminals. \textit{In situ} hybridization further strengthened this conclusion. Both \textit{Kcnq4} (Fig. 6, A and B) and \textit{Kcnq5} (Fig. 6, C and D) mRNAs were detected in ganglionar cell bodies, but not in vestibular sensory epithelia as would have been expected with an expression in hair cells. Hence, all of our experiments point to a postsynaptic rather than vestibular hair cell expression of KCNQ4 in mice older than 3 weeks.

\textbf{Consequences of the Loss of KCNQ4 and KCNQ5 for Vestibular Function—\textit{Kcnq4} \textit{dn/dn} mice, \textit{Kcnq5} \textit{dn/dn} mice, and even mice homozygous for both mutations (\textit{Kcnq4} \textit{dn/dn} \textit{Kcnq5} \textit{dn/dn}) lacked shaker/waltzer behavior that is indicative of a strong vestibular deficit phenotype as found, \textit{e.g.} in mice lacking the NaK2Cl co-transporter \textit{Nkcc1} (35) or the K$^+$ \textit{β}-subunit gene \textit{Kcn1} (36). Both gene products are involved in generating the high endocochlear K$^+$ concentration that is required for mechano-transduction currents in cochlear and vestibular hair cells.}

To find out whether more subtle vestibular deficits can result from a loss of KCNQ4 and/or KCNQ5 function we measured the VOR in awake, head-restrained \textit{Kcnq4} \textit{dn/dn}, \textit{Kcnq5} \textit{dn/dn}, and...
DISCUSSION

Whereas KCNQ4 K\(^+\) channels are expressed in basal membranes of mouse cochlear OHCs throughout postnatal life (4, 5), in adult vestibular end organs both KCNQ4 and KCNQ5 were only detectable in calyx terminals that innervate type I hair cells. Changed VORs in mice deficient for these channels suggest that these K\(^+\) channels play significant roles in synaptic transmission of vestibular hair cells and/or in the excitability of their afferent neurons. Our findings are relevant for patients with KCNQ4-related dominant hearing loss. Some of them present mild vestibular symptoms (13, 37), which, however, cannot be directly compared with the present mouse phenotype because of methodological differences.

For the cochlea, *in situ* hybridization (6), immunohistochemistry (4), and the disappearance of XE991-sensitive K\(^+\) currents in *Kcnq4*\(^{-/-}\) mice (5) provide irrefutable evidence for KCNQ4 being expressed in OHCs. As KCNQ4 was previously immunolocalized to basal poles of cochlear OHCs and type I vestibular HCs, it was assumed that KCNQ4 was expressed in both types of hair cells (4). This notion was strengthened by immunogold electron microscopy (4, 12), which suggested additional postsynaptic expression at calyx terminals. Furthermore, overexpression of a dominant negative KCNQ4 mutant...
suppressed $g_{K,L}$ K^+ currents in type I HCs at P6-P10 (9). This effect likely resulted from a suppression of currents carried by KCNQ4 or other KCNQ subunits with which KCNQ4 can associate.

Later work suggested that KCNQ4 (and possibly KCNQ5) are expressed in type I vestibular HCs only during an early postnatal period (8). Single-cell PCR detected $Kcnq4$ and -5 mRNAs in type I HCs at P1, but their levels declined in parallel to XE991-sensitive HC currents at P14 (8). Membranes of calyx terminals concomitantly started to express XE991-sensitive currents and KCNQ4 protein. The detection by RT-PCR of $Kcnq4$ mRNA in P35 maculae (10), however, seems to contradict these findings, but might be caused by small amounts of $Kcnq4$ mRNA in dendrites of vestibular neurons.

Our data now show convincingly that in mice older than P28 KCNQ4 and KCNQ5 are expressed in postsynaptic calyx membranes but are not detectable in HCs. Contrasting with the large effects of $Kcnq4$ disruption on OHC currents (4), neither loss of $Kcnq4$ nor expression of the dominant negative KCNQ5 mutant changed vestibular HC currents of mice older than P28. KCNQ4 and KCNQ5 pore mutant proteins were retained in neuronal somata rather than being trafficked to calyces. In situ hybridization performed at that age found mRNAs for both $Kcnq4$ and -5 in vestibular ganglion neurons, but not in vestib-
KCNQ K⁺ Channels in Vestibular Organ

ular HCs. The apparent discrepancy with earlier work that showed KCNQ4 expression in type I vestibular HCs might be explained by a difference in age and species, with HC expression of KCNQ4 being lost during the 1st week of life in mice, but about 1 week later in rats (1, 8, 38).

Thus the changes of VORs in Kcnq4−/− mice are not caused by a direct, cell-intrinsic effect on sensory HCs. VOR measurements depend on cristae ampullares that detect rotational acceleration, whereas our patch clamp analysis was performed in otholith organs. However, the very similar expression patterns of KCNQ4 and KCNQ5 in both organs strongly suggest similar channel functions in either end organ. In view of the sparse Kcnq4 expression in brain (4) and its robust postsynaptic expression in calyx synapses, VOR impairment likely originates from altered synaptic transmission and spike initiation in afferent neurons. The presence of a large postsynaptic K⁺ conductance that is already active at resting potentials may shunt postsynaptic currents and thereby reduce excitatory postsynaptic potentials (EPSPs). In this scenario, the loss of postsynaptic KCNQ should increase, rather than decrease, the efficiency of synaptic transmission. A decreased electric shunt in the spike initiation zone of afferent neurons will further contribute to a more efficient coupling of HC depolarization to action potential output. Both KCNQ4 and KCNQ5 are partially open at resting voltages and can be further slowly activated by depolarization (5,6,14,15). They may thus contribute to an adaptation of afferent neurons that results in phasic responses (2). Reduced postsynaptic shunting may also decrease the time constant of EPSP decay. The resulting EPSP broadening may affect circuits that compare exactly timed inputs as in the central auditory pathway (39), but is less likely to interfere with the less time-critical signals of vestibular organs.

Synaptic clefts of calyx synapses have extraordinary large areas. Ion concentrations in those clefts must be regulated by transmembrane transport rather than by passive diffusion through the open end of the calyx at the neck of HCs. Both vestibular and cochlear HCs have to cope with apical K⁺ influx through mechanosensitive cation channels that occurs at rest and is modulated by mechanical forces. Apical K⁺ influx, which depends on the high endolymphatic K⁺ concentration, must be balanced by basolateral K⁺ efflux. In cochlear OHCs, KCNQ4 provides a major pathway for the basal efflux of K⁺ (4–6) which is then removed by the KCC4 K-Cl co-transporter of closely apposed Deiters’ cells (40). KCC4 apparently has no role in removing K⁺ from the calyx cleft as our unpublished immunohistochemistry did not detect KCC4 in calyx synapses while robustly labeling Deiters’ cells. Whereas ion channel(s) mediating K⁺ efflux from adult type I vestibular HCs remain to be identified (with a likely contribution of erg channels (8)), we propose that K⁺ is removed from the cleft through postsynaptic KCNQ4, KCNQ5, and possibly Kir6.1 K⁺ channels, which were also found in type I HC calyces (41). Cellular K⁺ uptake through ion channels requires unusual electrochemical K⁺ gradients. For example, glial Kir6.1 K⁺ channels can take up extracellular K⁺ when its concentration rises during neuronal activity (42, 43). Model calculations (44) and experiments (45, 46) suggest a significant activity-dependent rise in the K⁺ concentration in clefts of calyx synapses ([K⁺]cleft). If the postsynaptic membrane is held at sufficiently negative voltages by K⁺ channels at the outer calyceal face, postsynaptic K⁺ uptake through KCNQ channels appears feasible. Assuming a calyx membrane potential similar to that of cultured vestibular neurons (~70 to –60 mV; (47)) and [K⁺]cleft (50 mM) would have to rise to >10–15 mM for entering the calyx through K⁺ channels. This seems realistic as recent measurements suggested an activity-dependent increase of [K⁺]cleft to >50 mM (45).

Hence, loss of KCNQ4 or KCNQ5 may increase [K⁺]cleft and thereby depolarize type I hair cells, which may affect their transduction currents (46) or synaptic vesicle exocytosis. However, unlike cochlear OHCs of Kcnq4−/− (5) or Kcc4−/− (40) mice, vestibular HCs showed no significant degeneration at least up to 10 months of age. Constitutively open K⁺ channels in pre-and postsynaptic membranes may also lead to nonquantal neurotransmission between type I HC hair cells and their cognate afferents (5,44,46,48). Disruption of Kcnq4 and Kcnq5 might interfere with this unconventional type of synaptic communication.

Vestibulo-ocular reflexes were impaired in Kcnq4−/− and Kcnq4−/−/Kcnq5−/−/dn mice, but not in Kcnq4−/−/dn mice. The most conspicuous effect was an overall lower VOR gain that was not significantly increased by the additional loss of KCNQ5 function. Interestingly, Kcnq5−/−/dn mice showed a slight increase in VOR gain in the dark and light. It remains to be shown whether this effect results from the expression of KCNQ5 in the retina (49).

As both KCNQ4 and KCNQ5 channels have roughly similar biophysical properties, the marked difference in their impact on VOR responses in the dark might be caused by differences in global expression levels (that are difficult to determine) or by their differential distribution in vestibular organs. Irregularly firing, phasic afferents innervate type I HCs in the central and striolar regions of cristae and maculae, respectively (27). Exactly these neurons rely predominantly on KCNQ4. By contrast, regularly firing, tonic afferents rather contact peripheral and extrastriolar hair cells (27,50) which rely more on KCNQ5. Hence, the dependence on KCNQ4 rather than KCNQ5 suggests that vestibular-ocular reflexes depend more on hair cells eliciting phasic rather than tonic responses, which may be related to the fact that these adapting, irregularly firing neurons, together with their upstream hair cells, are more sensitive to mechanical stimulation than the tonic ones.

Acknowledgments—We thank R. Pareja, R. Leben, and P. Seidler for technical assistance.

REFERENCES
1. Rüsch, A., Lysakowski, A., and Eatock, R. A. (1998) Postnatal development of type I and type II hair cells in the mouse utricle: acquisition of voltage-gated conductances and differentiated morphology. J. Neurosci. 18, 7487–7501
2. Jentsch, T. J. (2000) Neuronal KCNQ potassium channels: physiology and role in disease. Nat. Rev. Neurosci. 1, 21–30
3. Soldovieri, M. V., Miceli, F., and Taglialetela, M. (2011) Driving with no brakes: molecular pathophysiology of K⁺ channels. Physiology 26, 365–376
4. Kharkovets, T., Hardelin, J. P., Safieddine, S., Schweizer, M., El-Amraoui, A., Petit, C., and Jentsch, T. J. (2000) KCNQ4, a K⁺ channel mutated in a
form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc. Natl. Acad. Sci. U.S.A. 97, 4333–4338
2. Kharkovets, T., Dedek, K., Maier, H., Schweizer, M., Khimich, D., Nouvian, R., Vardanyan, V., Leuwer, R., Moser, T., and Jentsch, T. J. (2006) Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. EMBO J. 25, 642–652
3. Kubisch, C., Schroeder, B. C., Friedrich, T., Lütjohann, B., El-Amraoui, A., Marlin, S., Petit, C., and Jentsch, T. J. (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96, 437–446
4. Heidenreich, M., Lechner, S. G., Vardanyan, V., Wetzl, C., Cremers, C. W., De Leenheer, R. J., Aránguez, G., Moreno-Pelayo, M. A., Jentsch, T. J., and Levin, G. R. (2012) KCNQ4 K+ channels tune mechanoreceptors for normal touch sensation in mouse and man. Nat. Neurosci. 15, 138–145
5. Hurley, K. M., Gaboyard, S., Zhong, M., Price, S. D., Woolorton, J. R., Lysakowski, A., and Eatock, R. A. (2006) M-like K+ currents in type I hair cells and calyx afferent endings of the developing rat utricule. J. Neurosci. 26, 10253–10269
6. Holt, J. R., Stauffer, E. A., Abraham, D., and Géléoc, G. S. (2007) Dominant-negative inhibition of M-like potassium conductances in hair cells of the mouse inner ear. J. Neurosci. 27, 8940–8951
7. Rocha-Sanchez, S. M., Morris, K. A., Karch, B., Nichols, D., Fritzsche, B., and Beisel, K. W. (2007) Developmental expression of KCNQ4 in vestibular neurons and neurosensory epithelia. Brain Res. 1139, 117–125
8. Lysakowski, A., Gaboyard-Niay, S., Calin-Jageman, I., Chatlani, S., Price, S. D., and Eatock, R. A. (2011) Molecular microdomains in a sensory terminal, the vestibular calyx ending. J. Neurosci. 31, 10101–10114
9. Marres, H., van Ewijk, M., Huygen, P., Kunst, H., van Camp, G., Pouwels, W., and Cremers, C. (1997) Inherited nonsyndromic hearing loss: an audiovestibular study in a large family with autosomal dominant profound deafness. Ann. Med. Genet. 31, 106–111
10. Rüsch, A., and Eatock, R. A. (1996) A delayed rectifier conductance in type I hair cells of the mouse utricle. J. Neurophysiol. 76, 995–1004
11. Chen, J. W., and Eatock, R. A. (2000) Major potassium conductance in type I hair cells from rat semicircular canals: characterization and modulation by nitric oxide. J. Neurophysiol. 84, 139–151
12. Segarra, R., Ljungström, T., Pedersen, K. A., Olesen, S. P., and Jensen, B. S. (2001) KCNQ4 channels expressed in mammalian cells: functional characteristics and pharmacology. Am. J. Physiol. Cell Physiol. 280, C859–866
13. Mencia, A., González-Nieto, D., Modamio-Høybjør, S., Exteberria, A., Aránguez, G., Salvador, N., Del Castillo, I., Villarroel, A., Moreno, F., Barrío, L., and Moreno-Pelayo, M. A. (2008) A novel KCNQ4 pore-region mutation (p.G296S) causes deafness by impairing cell-surface channel expression. Hum. Genet. 123, 41–53
14. Kim, H. J., Lv, P., Sihb, C. R., and Yamoa, E. N. (2011) Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2. J. Biol. Chem. 286, 1517–1527
15. Delipire, E., Lu, J., England, R., Dull, C., and Thorne, T. (1999) Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat. Genet. 22, 192–195
16. Vetter, D. E., Mann, J. R., Wangemann, P., Liu, J., McLaughlin, K. J., Lesage, F., Marcus, D. C., Lazdunski, M., Heinemann, S. F., and Barhanin, J. (1996) Inner ear defects induced by null mutation of the isk gene. Neuron 17, 1251–1264
17. DeLeenheer, E. M., Huygen, P. L., Coucke, P. J., Admiraal, R. J., van Camp, G., and Cremers, C. W. (2002) Longitudinal and cross-sectional phenotype analysis in a new, large Dutch DFNA2/KCNQ4 family. Ann. Otol. Rhinol. Laryngol. 111, 267–274
18. Gélécó, P. G., Griner, J. R., and Holt, J. R. (2004) Developmental acquisition of voltage-dependent conductances and sensory signaling in hair cells of the embryonic mouse inner ear. J. Neurosci. 24, 11148–11159
19. Trussell, L. O. (1999) Synaptic mechanisms for coding timing in auditory neurons. Annu. Rev. Physiol. 61, 477–496
20. Boettger, T., Hübner, C. A., Maier, H., Rust, M. B., Beck, F. X., and Jentsch, T. J. (2002) Deafness and renal tubular acidosis in mice lacking the K-Cl cotransporter KCC4. Amino Acids 19, 925–930
21. Udagawa, T., Tatsumi, N., Tachibana, T., Negishi, Y., Saijo, H., Kobayashi, T., Yaguchi, Y., Koijima, H., Moriyama, H., and Oka, M. (2012) Inwardly rectifying potassium channel Kir1.1 is localized at the calyx endings of vestibular afferents. Neuroscience 215, 209–216
22. Neusch, C., Papadopoulos, N., Müller, M., Maletzki, I., Winter, S. M., Hirringer, J., Handschu, M., Bähr, M., Richter, D. W., Kirchhoff, F., and Hülsmann, S. (2006) Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation. J. Neurophysiol. 95, 1843–1852
KCNQ K⁺ Channels in Vestibular Organ

43. Bay, V., and Butt, A. M. (2012) Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels. Glia 60, 651–660
44. Goldberg, J. M. (1996) Theoretical analysis of intercellular communication between the vestibular type I hair cell and its calyx ending. J. Neurophysiol. 76, 1942–1957
45. Lim, R., Kindig, A. E., Donne, S. W., Callister, R. J., and Brichta, A. M. (2011) Potassium accumulation between type I hair cells and calyx terminals in mouse crista. Exp. Brain Res. 210, 607–621
46. Contini, D., Zampini, V., Tavazzani, E., Magistretti, J., Russo, G., Prigioni, I., and Masetto, S. (2012) Intercellular K⁺ accumulation depolarizes type I vestibular hair cells and their associated afferent nerve calyx. Neuroscience 227, 232–246
47. Kalluri, R., Xue, J., and Eatock, R. A. (2010) Ion channels set spike timing regularity of mammalian vestibular afferent neurons. J. Neurophysiol. 104, 2034–2051
48. Goldberg, J. M. (1996) Transmission between the type I hair cell and its calyx ending. Ann. N.Y. Acad. Sci. 781, 474–488
49. Zhang, X., Yang, D., and Hughes, B. A. (2011) KCNQ5/K,7.5 potassium channel expression and subcellular localization in primate retinal pigment epithelium and neural retina. Am. J. Physiol. Cell Physiol. 301, C1017–1026
50. Eatock, R. A., Xue, J., and Kalluri, R. (2008) ion channels in mammalian vestibular afferents may set regularity of firing. J. Exp. Biol. 211, 1764–1774