Thermal conductivity of amorphous carbon thin films

Andrew J. Bullen, Keith E. O’Hara, and David G. Cahill
Department of Materials Science and Engineering, Coordinated Science Laboratory, and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801
Othon Monteiro
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
Achim von Keudell
Max-Planck-Institut für Plasmaphysik, D-85740 Garching bei München, Germany

(Received 30 May 2000; accepted for publication 5 August 2000)

Thermal conductivities Λ of amorphous carbon thin films are measured in the temperatures range 80–400 K using the 3ω method. Sample films range from soft a-C:H prepared by remote-plasma deposition ($\Lambda = 0.20$ W m$^{-1}$ K$^{-1}$ at room temperature) to amorphous diamond with a large fraction of sp^3 bonded carbon deposited from a filtered-arc source ($\Lambda = 2.2$ W m$^{-1}$ K$^{-1}$). Effective-medium theory provides a phenomenological description of the variation of conductivity with mass density. The thermal conductivities are in good agreement with the minimum thermal conductivity calculated from the measured atomic density and longitudinal speed of sound. © 2000 American Institute of Physics. [S0021-8979(00)07221-2]

I. INTRODUCTION

Amorphous carbon (a-C) exists in an amazing variety of forms with microstructures and physical properties that depend sensitively on preparation method.1 Because a-C thin films are often used as protective coatings, the most thoroughly studied of these structure-property relationships are the dependence of the mechanical properties, e.g., elastic constants and hardness, on deposition conditions, atomic density, and hydrogen content. The focus of our experimental study, thermal conductivity, like the mechanical properties, derives from the bonding and geometry of the atomic lattice. The large variability of microstructures within this single class of materials provides a unique opportunity for exploring heat transport in disordered solids2,3 and the applicability of the minimum thermal conductivity4,5 to materials with heterogeneous microstructures that are common in thin films.5,7 But we also anticipate that these new data will provide valuable insights on the high and low conductivities that can be produced in thin film a-C for applications in the thermal engineering of microdevices.8,9

The concept of a “minimum thermal conductivity” Λ_{min} is based on a theory of heat transport originally proposed by Einstein:10 the atomic vibrations are assumed to be incoherent and therefore heat diffuses between the Einstein oscillators on a time scale of 1/2 the period of vibration. Einstein’s theory could not explain the large thermal conductivities of most crystalline dielectrics but his and related models4,5,11 are useful for understanding the thermal conductivity of amorphous materials and crystals with certain types of strong disorder.

We include larger oscillating entities than the single atoms considered by Einstein by borrowing from the Debye model of lattice vibrations and dividing the sample into regions of size $\lambda/2$, where λ is an acoustic wavelength, and whose frequencies of oscillation are given by the low frequency speed of sound $\omega = 2\pi v/\lambda$.5,7

$$\Lambda_{\text{min}} = \left(\frac{\pi}{6}\right)^{1/3} k_B n^{2/3} \sum_{i=1}^{3} \frac{v_i}{\Theta_i} \int_0^{\Theta_i/T} x^3 \frac{e^x}{(e^x-1)^2} dx. \quad (1)$$

The index i labels the three sound modes (two transverse and one longitudinal) with speeds of sound v_i; Θ_i is the cutoff frequency for each polarization expressed in Kelvin, $\Theta_i = v_i (\hbar/k_B)(6\pi^2 n)^{1/3}$, and n is the number density of atoms. This model has no free parameters and is in good agreement with data for a wide variety of bulk disordered materials near room temperature.5

Since diamond has the largest values of n and $v_{i,12}$ of any material, the high temperature limit of Λ_{min} also has the largest possible value. Figure 1 shows the calculated Λ_{min} for diamond with comparisons to previously published data for amorphous carbon.7,13–15 Data for bulk samples of high-dose neutron-irradiated diamond13 and disordered carbon produced by high-pressure conversion of C$_{60}$15 were measured by traditional steady-state methods; the conductivities of thin film samples were measured using the mirage effect14 and picosecond thermoreflectance.7 The thin film data were measured only for room temperature, and therefore the unusual temperature of the two bulk samples cannot be confirmed in the thin film samples. Furthermore, while picosecond reflectance is a powerful probe of elastic properties and interfacial transport of acoustic and thermal energy, measurements of thermal conductivity using this method are relatively indirect and require assumptions about the heat capacity of the films.7

II. EXPERIMENTAL DETAILS

Thin film samples of a-C:H were prepared at the Max-Planck-Institut für Plasmaphysik by remote-plasma chemical vapor deposition (RPCVD) — chosen to produce a soft, low-
Additional samples of DLC films were obtained from Delphi Automotive Systems and Surmet Corporation. At Lawrence Berkeley Laboratory, a-C films were deposited by filtered-arc deposition (FAD); the PACVD samples have mechanical properties that are typical for protective coatings of ‘‘diamond-like-carbon’’ (DLC).\(^\text{16}\) Carbon-to-hydrogen ratios measured on similar samples are 1:1 for RPCVD and 2:1 for PACVD. Additional samples of DLC films were obtained from Delphi Automotive Systems and Surmet Corporation. At Lawrence Berkeley Laboratory, a-C films were deposited by filtered-arc deposition (FAD)\(^\text{17–19}\) using two acceleration voltages: 100 and 2000 V. The fractions of \(sp^3\) bonded carbon measured by EELS\(^\text{18}\) on similar samples are 80% at 100 V bias and 30% at 2000 V bias; a-C films with low concentrations of hydrogen and carbon bonding dominated by \(sp^2\) hybridization are often referred to as ‘‘amorphous diamond’’ (a-D) or ‘‘tetrahedrally-bonded’’ amorphous carbon (ta-C).

We use the 3\(\omega\) method\(^\text{20,21}\) to measure the thermal conductivity of a-C films in the temperature range 80<T<400 K. A 10 \(\mu\)m wide Al line—sputter deposited on the surface of the sample and patterned by photolithography—serves as both the heater and the thermometer in the measurement. If the film thickness \(h\) is small compared to the width of the metal line, heat flow is one dimensional in the thin film and two dimensional (radial) in the substrate.\(^\text{21}\) Also, as long as \(h\) is small compared to the penetration depth of the thermal waves, the thin film simply adds a frequency-independent temperature oscillation to the known thermal response of the substrate. Most of our a-C samples were deposited on Si substrates with a 100 nm thick layer of thermally grown \(\text{SiO}_2\), which is needed to improve the electrical isolation between the Si substrates and the Al metallization. The added thermal resistance of the \(\text{SiO}_2\) layer is measured separately and subtracted from the raw data.\(^\text{21}\)

Conversion of the measured thermal resistance to thermal conductivity requires accurate measurements of film thickness \(h\). We measure \(h\) using spectroscopic variable-angle ellipsometry; the optical properties of the a-C films are modeled using a fit to the resonant frequency, oscillator strength, and damping of two Lorentz-oscillators. Alternatively, e.g., if the optical modeling produced a poor fit to the ellipsometry data, we use scanning electron microscopy of a fracture cross section to measure \(h\). Areal densities of carbon are measured using Rutherford backscattering spectrometry of the stopping power of the a-C film. The combination of areal density and \(h\) gives the film density, see (Table I). We measure longitudinal speeds of sound \(v_l\) by ‘‘picosecond ultrasonics’’;\(^\text{17}\) an Al thin-film transducer produces and detects acoustic waves generated by a mode-locked Ti:sapphire laser operating at 780 nm; values for \(v_l\) are listed in Table I.

III. RESULTS AND DISCUSSION

Figure 2 shows the results of our thermal conductivity measurements. In all cases, the thermal conductivity has the temperature dependence expected for an amorphous solid in this temperature range.\(^\text{5}\) In four cases, we measured the same type of film for two values of the thickness \(h\) to determine the effects of the finite thermal conductance of interfaces on our measurements.\(^\text{21}\) For the relatively low conductivities of the RPCVD and PACVD films [see Fig. 2(a)], the interface effects have little effect on the measured conductivity of films with \(h\sim100\) nm. Interface effects are more pronounced in the FAD films [see Fig. 2(b)]. Using the assumption that the true conductivity of the film is independent of film thickness, we can separate the true conductivity of the film from the interface thermal conductance;\(^\text{21}\) for both sets of FAD films shown in Fig. 2(b), the true conductivity is \(\sim15\%\) larger than the measured conductivity of the thicker film.

We have discovered that effective medium theory\(^\text{22}\) provides a surprisingly good description of the variation of conductivity with mass density.\(^\text{23}\) The conductivity of a composite structure made of a matrix material and spherical inclusions of a second phase is given by\(^\text{22}\)

Sample	Film thickness (nm)	Density (g cm\(^{-3}\))	\(v_l\) (km s\(^{-1}\))	Method	Bias (V)
A,B	94,313	1.8	8.7	RPCVD	200
C,D	108,325	0.9	3.4	RPCVD	15
E	3800	2.1	—	PACVD	450
F	120	1.2	—	PACVD	0
G	280	1.7	—	PACVD	0
H,I	47,592	2.8	14.0	FAD	100
L,M	19,565	2.3	12.7	FAD	2000

TABLE I. Deposition parameters and physical properties of a-C films. Films are deposited by plasma-assisted CVD, remote-plasma CVD, and filtered-arc deposition. Films were deposited at the Max-Planck-Institut für Plasmaphysik (A,B,C,D), and Lawrence Berkeley Laboratory (H,I,L,M). Additional samples were obtained from the Surmet Corporation (F,G) and Delphi Automotive Systems (E).
where L_1 is the conductivity of the matrix, L_2 is the conductivity of the second phase, and f_1, f_2 are the volume fractions of the matrix and second phase, respectively. Figure 3 compares the predictions of this theory to the room temperature conductivity of a-C films. The theory fits the data reasonably well and enables us to extrapolate the conductivity to the full density of diamond, $L_5 = 4.0 \text{ W m}^{-1} \text{ K}^{-1}$.

Experiments on a-C have often been interpreted in terms of heterogeneous microstructures, but the accuracy and generality of these various microstructural models remains controversial. Our two-component model, see Eq. (2) and Fig. 3, for the thermal conductivity is probably an oversimplification of the true complexity of a-C microstructures. Nevertheless, we believe this phenomenological model will be a useful engineering guide for predicting the conductivity of a-C films when only the density is known.
pare the high temperature limit of Λ_{min} to the data at 400 K, the highest temperature of our measurements. (Data for sample L are restricted to $T<300$ K because of stray electrical conductance at higher temperatures. In this case, we have extrapolated the data to 400 K using the temperature dependence of sample H.) The calculations reproduce the trend in the data well; we note, however, that the calculated conductivities are consistently greater than the measured values. The fact that the thermal conductivities are increasing with temperature contributes to this discrepancy; measurements at higher temperatures would show better agreement with the model. For the lowest conductivity films, however, the temperature dependence of the data is relatively weak and the calculated conductivity exceeds the measured value at 400 K by a factor of ≈ 2. This relatively large difference between measured and calculated conductivity is also observed in amorphous Se.\(^5\) But given the simplifying assumptions of the model,\(^5\) disagreements of this magnitude are expected and we conclude that the minimum thermal conductivity calculated from the mean atomic densities and speeds of sound provides an adequate description of heat transport in a wide variety of α-C thin film materials.

ACKNOWLEDGMENTS

The authors thank Don Morelli and the Surmet Corp. for providing additional samples of DLC. This work was supported by NSF Grant No. CTS 99-78822. Sample characterization by RBS, SEM, ellipsometry, and picosecond ultrasonics used the facilities of the Center for Microanalysis of Materials, supported by U.S. DOE Grant No. DEFG02-96-ER45439.

\(^{1}\)J. Robertson, Adv. Phys. 35, 317 (1986); Prog. Solid State Chem. 21, 199 (1991).
\(^{2}\)R. Orbach, Philos. Mag. B 65, 289 (1992).
\(^{3}\)J. L. Feldman, P. B. Allen, and S. R. Bickham, Phys. Rev. B 59, 3551 (1999).
\(^{4}\)G. A. Slack, in Solid State Physics: Advances in Research and Applications, edited by F. Seitz and A. G. Turnball (Academic, New York, 1979), Vol. 34, p. 1.
\(^{5}\)D. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B 46, 6131 (1992).
\(^{6}\)S.-M. Lee, D. G. Cahill, and T. H. Allen, Phys. Rev. B 52, 253 (1995).
\(^{7}\)C. J. Morath, H. J. Maris, J. J. Cuomo, D. L. Pappas, A. Grill, V. V. Patel, J. P. Doyle, and K. L. Saenger, J. Appl. Phys. 76, 2636 (1994).
\(^{8}\)K. E. Goodson, Y.-S. Ju, and M. Asheghi, in Microscale Energy Transport, edited by C. L. Tien, A. Majumdar, and F. M. Gerner (Taylor & Francis, New York, 1998), pp. 229–293.
\(^{9}\)K. E. Goodson and Y. Sugataek Ju, Annu. Rev. Mater. Sci. 29, 261 (1999).
\(^{10}\)A. Einstein, Ann. Phys. (Leipzig) 35, 679 (1911).
\(^{11}\)C. Kittel, Phys. Rev. 75, 972 (1948).
\(^{12}\)H. J. McSkimin and W. L. Bond, Phys. Rev. 105, 116 (1957).
\(^{13}\)D. T. Morelli, T. A. Perry, J. W. Vandersande, and C. Uher, Phys. Rev. B 48, 3037 (1993).
\(^{14}\)W. Hurler, M. Pietralla, and A. Hammerschmidt, Diamond Relat. Mater. 4, 954 (1995).
\(^{15}\)A. Smontara, K. Biljakovic, D. Staresinic, D. Pajic, M. E. Kozlov, M. Hirabayashi, M. Tokumoto, and H. Ihara, Physica B 219&220, 160 (1996).
\(^{16}\)J. W. Zou, K. Reichelt, K. Schmidt, and B. Dischler, J. Appl. Phys. 65, 3914 (1989).
\(^{17}\)S. Aisenberg and R. Chabot, J. Appl. Phys. 42, 2953 (1971).
\(^{18}\)G. M. Pharr et al., Appl. Phys. Lett. 68, 779 (1996).
\(^{19}\)P. J. Fallon, V. S. Veerarasy, C. A. Davis, J. Robertson, G. A. J. Amaratunga, W. I. Milne, and J. Koskinen, Phys. Rev. B 48, 4777 (1993).
\(^{20}\)D. G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).
\(^{21}\)S.-M. Lee and D. G. Cahill, J. Appl. Phys. 81, 2590 (1997).
\(^{22}\)R. Landauer, J. Appl. Phys. 23, 779 (1952).
\(^{23}\)Effective medium theories have often been used for modeling the optical properties of α-C; see, for an early example, F. W. Smith, J. Appl. Phys. 55, 764 (1984).
\(^{24}\)J. Robertson and E. P. O’Reilly, Phys. Rev. B 35, 2946 (1987).
\(^{25}\)C. Jäger, J. Gottwald, H. W. Spiess, and R. J. Newport, Phys. Rev. B 50, 846 (1994).