Genome size variation and karyotype diversity in eight taxa of Sorbus sensu stricto (Rosaceae) from China

Jiabao Li¹, Kailin Zhu¹, Qin Wang¹, Xin Chen¹

¹ Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China

Corresponding author: Xin Chen (chenxinzhou@hotmail.com)

Academic editor: Marina Iovene | Received 3 September 2020 | Accepted 28 April 2021 | Published 20 May 2021

http://zoobank.org/70BE5D9B-8E92-468B-8567-3F1B4199A535

Citation: Li J, Zhu K, Wang Q, Chen X (2021) Genome size variation and karyotype diversity in eight taxa of Sorbus sensu stricto (Rosaceae) from China. CompCytogen 15(2): 137–148. https://doi.org/10.3897/compcytogen.v15.i2.58278

Abstract
Eight taxa of Sorbus Linnaeus, 1753 sensu stricto (Rosaceae) from China have been studied karyologically through chromosome counting, chromosomal measurement and karyotype symmetry. Genome size was also estimated by flow cytometry. Six taxa, S. amabilis Cheng ex T.T. Yu et K.C. Kuan, 1963, S. hupehensis var. paucijuga (D.K. Zang et P.C. Huang, 1992) L.T. Lu, 2000, S. koehneana C.K. Schneider, 1906, S. po-huashanensis (Hance, 1875) Hedlund, 1901, S. scalaris Koehne, 1913 and S. wilsoniana C.K. Schneider, 1906 are diploids with 2n = 34, whereas two taxa, S. filipes Handel-Mazzetti, 1933 and S. ovalis McAlister, 2005 are tetraploid with 2n = 68. In general, the chromosome size is mainly small, and karyotypes are symmetrical with predominance of metacentric chromosomes. Genome size variation of diploids and tetraploids is 1.401 pg – 1.676 pg and 2.674 pg – 2.684 pg, respectively. Chromosome numbers of S. amabilis and S. hupehensis var. paucijuga, and karyotype and genome size of eight taxa studied are reported for the first time. This study emphasised the reliability of flow cytometry in genome size determination to infer ploidy levels in Chinese native Sorbus species.

Keywords
DNA content, flow cytometry, polyploid, Sorbus evolution
Introduction

Sorbus Linnaeus, 1753 (sensu stricto, except as noted hereafter) (Maleae, Rosaceae) is distributed mainly in northern temperate regions with its greatest diversity in the mountains of south-western China and adjacent areas of Upper Burma and the Eastern Himalaya. It comprises about 90 species all over the world, with more than 60 species occurring in China (Phipps et al. 1990; Lu and Spongberg 2003; McAllister 2005). Species of *Sorbus* are valuable ornamental plants due to their pinnately compound leaves, attractive white or red flowers and colourful crimson, scarlet, orange, pink, yellow or pure white fruits. *Sorbus* is one of the most challenging groups in taxonomy and systematic for the widespread interspecific hybridisation and genome multiplication (polyploidy) (McAllister 2005; Robertson et al. 2010; Li et al. 2017). Polyploidy is a very common phenomenon in the genus. Tetraploids account for more than half of the species richness and are distributed mainly in the mountains of south-western China, especially the Qinghai-Tibet Plateau (McAllister 2005). Thus, data of chromosome number and ploidy levels in Chinese native *Sorbus* species are valuable in the taxonomy of the genus and in understanding the species’ relationships and origins.

Features of chromosomes play an important role in plant taxonomy to elucidate the origin, speciation and phylogenetic relationships of plants (Stebbins 1971; Peruzzi and Altnordu 2014; Sassone et al. 2017; Winterfeld et al. 2020). Chromosome counts were proven to be most valuable in the taxonomy of *Sorbus* long before the era of molecular phylogenetics because they are helpful in understanding the species’ relationships and origins (Liljefors 1934, 1953, 1955; Sennikov and Kurtto 2017). The chromosome base number in *Sorbus* is *x* = 17 and it is common to all members of Maleae. Chromosome counts have been reported for 43 Chinese native *Sorbus* species. Only two ploidies occur in the genus, i.e. diploid (2n = 34) and tetraploid (2n = 68), although four ploidies have been reported in *Sorbus* sensu lato (McAllister 2005; Bailey et al. 2008; Pellicer et al. 2012). Most species occur at one ploidy level, and two Chinese native species, *S. koehneana* C.K. Schneider, 1906 and *S. vilmorinii* C.K. Schneider, 1906, have been reported to have diploids and tetraploids (McAllister 2005).

Genome size estimation (plant genome C-value) by flow cytometry (FCM) (Greilhuber et al. 2005) is a rapid cytogenetic method that has contributed to our understanding of the evolutionary relationships amongst *Sorbus* species (Hajrudinović et al. 2015a, b). FCM profiles revealed the presence of two ploidy levels (cytotypes) in the genus, 2n = 2x (*S. cibagouensis* H. Peng et Z. J. Yin, 2017: 1.480 ± 0.039 pg, *S. hypoglauca* (Cardot, 1918) Handel-Mazzetti, 1933: 1.513 ± 0.041 pg) and 2n = 4x (*S. vilmorinii*: 2.675 ± 0.065 pg) (Xi et al. 2020), consistent with the results of chromosome counts (Pellicer et al. 2012).

The present study aims to (1) determine the chromosome number, karyotype, idiogram and other chromosome morphology and genome size of eight taxa in *Sorbus*; and (2) evaluate the reliability of flow cytometry in genome size determination to infer ploidy levels in Chinese *Sorbus* species.
Materials and methods

Plant material

Eight taxa from two subgenera in Sorbus, S. filipes Handel-Mazzetti, 1933, S. hupehensis var. paucijuga (D.K. Zang et P.C. Huang, 1992) L.T. Lu, 2000, S. koehneana, S. ovalis McAllister, 2005 from subgenus Albocarmesinae McAllister, 2005 and S. amabilis Cheng ex T.T.Yu et K.C.Kuan, 1963, S. pohuashanensis (Hance, 1875) Hedlund, 1901, S. scalaris Koehne, 1913, S. wilsoniana C.K. Schneider, 1906 from subgenus Sorbus, were collected in China (Figure 1) between 2015 and 2016. Three individuals for each taxon were selected for chromosome numbers counting, karyotype analysis and genome size estimation. Voucher specimens are deposited at the Herbarium of Nanjing Forestry University (NF).

Chromosome preparations and karyotype analysis

Mature fruits of each plant were harvested separately, then plump seeds were extracted from fruits and washed with tap water. Seeds were stored in sand for 40–120 days at 0–4 °C until germination. Root tip meristems were pre-treated with a mixed solution of 0.1% colchicine and 0.002 mol/l 8-hydroxyquinoline (1:1) at 0–4 °C for 2 h and then fixed in absolute ethanol: glacial acetic acid (2:1) mixture for 24 h at 0–4 °C. The root tips were hydrolysed in 1 mol/l HCl at 60 °C for 10 min and then rinsed with tap water for 2–3 min. The fixed roots were stained in Carbol fuchsin for 3–4 h, ground and placed on glass slides for observation. Five metaphase cells per individual were examined. Photos were taken under an optical microscopic Nikon Eclipse Ci-S. A mean haploid idiogram was drawn using KaryoType 2.0 (http://mnh.scu.edu.cn/soft/blog/karyotype/, Altinordu et al. 2016), based on the length of chromosome.

For the numerical characterisation of the karyotypes, the following parameters were calculated: long arm length (LA) and short arm length (SA) of each chromosome, ratio of the longest/shortest chromosomes(L/S), total haploid (monoploid) length of chromosome set (THL), arm ratio of each chromosome (AR) [LA/SA], centromeric index of each chromosome (CI) [SA/ (LA + SA) × 100] and chromosome length of each chromosome (CL) [LA + SA]. Karyotype asymmetry has been determined using the coefficient of variation of centromeric index (CV_{CI}) [(S_{CI} / X_{CI}) × 100], where S_{CI}: standard deviation; X_{CI}: mean centromeric index (Paszkow 2006), coefficient of variation of chromosome length (CV_{CL}) [(S_{CL} / X_{CL}) × 100], where S_{CL}: standard deviation; X_{CL}: mean chromosome length (Paszkow 2006) and Stebbins’ classification (Stebbins 1971). The karyotype formula was determined by chromosome morphology based on centromere position according to Levan et al. (1964): median point (M, AR = 1.00), median region (m, AR = 1.01–1.70), submedian (sm, AR = 1.71–3.00), subterminal (st, AR = 3.01–7.00) and terminal region (t, AR > 7.00). Satellite chromosomes were abbreviated as ‘sat’ (Levan et al. 1964). In terms
of length, chromosomes were classified according to Lima de Faria (1980) as very small (≤ 1 µm), small (> 1 µm and = ≤ 4 µm), intermediate (> 4 µm and = < 12 µm) and large (> 12 µm and ≤ 60 µm).

Genome size estimation

Fully expanded leaf tissue from each sample collected in the field was dried in silica gel. Approximately 1 cm2 of the sample was chopped along with the internal standard [Oryza sativa subsp. japonica S. Kato, 1930 ‘Nipponbare’, 2C = 0.91 pg, (Uozu et al. 1997)] using a sharp razor blade in a Petri dish containing 1 ml of ‘woody plant buffer’ (WPB, Loureiro et al. 2007), following the one-step procedure proposed by Doležel et al. (2007). The nuclear suspension was then filtered through a nylon mesh (400 µm) to remove debris and stained with 50 µl PI. After incubation for 10 min on ice, the relative nuclear DNA content was estimated by recording at least 3000 particles using a BD Influx flow cytometer fitted with a blue laser (488 nm, 200 mW) and analysing three replicates of each individual. The resulting histograms were analysed with the BD FACS software 1.0.0.650. The 2C-value was calculated using the linear relationship between fluorescence signals from stained nuclei of the unknown sample and the internal standard. 1Cx was calculated dividing the 2C-value by the ploidy.
Statistical analysis

Data were analysed with SPSS Statistics 22.0 (IBM, USA). Correlations between chromosome counts and 1Cx, 2C-value were assessed using the Pearson correlation coefficient.

Results and discussion

The chromosome numbers of eight Chinese taxa of Sorbus in two subgenera have been determined (Table 1). All taxa have the same base chromosome number (x = 17). Four taxa, S. amabilis (Fig. 2A), S. pohuashanensis (Fig. 2F), S. scalaris (Fig. 2G) and S. wilsoniana (Fig. 2H) belonging to subg. Sorbus, are all diploids with 2n = 2x = 34. Amongst the taxa studied in subgen. Albocarmesinae, two taxa, S. hupehensis var. paucijuga (Fig. 2C) and S. koehneana (Fig. 2D), are diploids, while two other taxa, S. filipes (Fig. 2B) and S. ovalis (Fig. 2E), are tetraploids with 2n = 4x = 68. Chromosome numbers of two taxa, S. amabilis and S. hupehensis var. paucijuga, are reported for the first time. The chromosome numbers of six other taxa are consistent with the results of previous studies (Lu and Spongberg 2003; McAllister 2005).

Morphometric parameters of chromosomes in eight taxa are also presented in Table 1. The karyotypes differed for the haploid chromosome length, the position of centromeres and satellite, and the karyotype asymmetry. Individual chromosome sizes varied from 0.89 to 4.08 µm. The shortest are observed in S. koehneana (0.89–1.79 µm) and S. wilsoniana (0.89–1.72 µm) while the longest is observed in S. pohuashanensis (2.05–4.08 µm). The total haploid length varies from 20.68 µm (S. wilsoniana) to 50.06 µm (S. pohuashanensis). Three taxa, S. filipes, S. koehneana and S. wilsoniana, have both very small and small chromosomes. Four taxa, S. amabilis, S. hupehensis var. paucijuga, S. ovalis and S. scalaris, have only small chromosomes. One taxon, S. pohuashanensis has both small and intermediate chromosomes.

With respect to the position of the centromere, the chromosomes of the six taxa are metacentric or submetacentric. S. amabilis presents 9 metacentric (5, 8, 10–12, 14–17), 7 submetacentric (1, 3, 4, 6, 7, 9, 13) and 1 subtelocentric (2) chromosome pairs, and S. ovalis displays only metacentric chromosome pairs. A pair of satellites was observed in S. amabilis, S. filipes, S. hupehensis var. paucijuga, S. pohuashanensis and S. scalaris, with the satellites being located at the short arms of the fourth, fifth, twelfth, sixth and ninth chromosome pairs, respectively (Fig. 3).

According to the classification of Stebbins (Stebbins 1971), karyotypes of eight taxa are symmetrical and are classified as 1B (S. koehneana and S. ovalis), 2A (S. wilsoniana) or 2B (S. amabilis, S. filipes, S. hupehensis var. paucijuga, S. pohuashanensis and S. scalaris). CVCI and CVCL values of eight taxa ranged from 4.86 to 21.54 and 14.03 to 24.70, respectively (Table 1). CVCI is a parameter indicative of the intrachromosomal symmetry. S. ovalis has the most symmetrical karyotype (CVCI = 4.86), whereas
S. amabilis has the least symmetrical karyotype (CV_{CI} = 21.54). CV_{CL} revealed that all taxa have little variations in chromosome size of the karyotypes. S. hupehensis var. paucijuga has the smallest CV_{CL} value (14.03) and S. amabilis presents the highest CV_{CL} value (24.70).

Genome size estimates of all the taxa from silica-dried leaves are shown in Table 1 and Figure 4. The flow cytometric measurements of all taxa and the internal standards exhibit clear and sharp peaks. The coefficients of variation are lower than 5%, supporting the reliability of the flow cytometric assessments. The 2C-values range from 1.401 pg to 1.676 pg for diploid taxa. Two tetraploid taxa, S. filipes and S. ovalis, have 2C-values of 2.674 pg and 2.684 pg, respectively. 2C-values of tetraploids are approximately twice those of their diploid congeners and the relative DNA content correlate positively with the chromosome number (r = 0.982, P ≤ 0.0001). The 1Cx-values, which indicate the DNA content per genome, range from 0.700 pg to 0.838 pg in diploids and 0.669 pg to 0.671 pg in tetraploids. The correlation between values of 1Cx and chromosome number is negative (r = -0.687, P < 0.05).
Table 1. Collecting information of materials and cytogenetics data of studied Sorbus taxa.

Subgenera	Taxon	2n	L/S	THL (µm)	VCL (µm)	MAR	CVCI (%)	CVCL (%)	Haploid karyotype formula	Stebbins’ classification	2C (pg, mean ± s.d.)	1Cx (pg)
Subgenus Albocarmesinae	S. filipes	68	2.49	26.63	0.98–2.12	1.63	38.68	12.98	21.11 10m (1sat) + 7sm	2B	2.68 ± 0.042	0.671
	S. hupehensis var. paucijuga	34	2.13	31.50	1.15–2.41	1.68	37.61	9.75	14.05 10m (1sat) + 7sm	2B	1.407 ± 0.007	0.704
	S. koehneana	34	2.27	22.18	0.89–1.79	1.33	43.36	9.47	19.20 15m + 2sm	1B	1.571 ± 0.029	0.785
	S. ovalis	68	2.29	31.84	1.19–2.52	1.19	45.85	4.86	18.12 17m	1B	2.674 ± 0.015	0.669
Subgenus Sorbus	S. amabilis	34	2.49	37.38	1.54–3.73	1.71	38.87	21.54	24.70 9m +7sm (1sat) + 1st	2B	1.401 ± 0.026	0.700
	S. pohuashanensis	34	2.08	50.06	2.05–4.08	1.46	41.35	13.25	16.66 15m (1sat) + 4sm	2B	1.664 ± 0.052	0.832
	S. scalaris	34	2.10	29.03	1.14–2.39	1.58	39.47	14.44	19.39 13m (1sat) + 4sm	2B	1.676 ± 0.044	0.838
	S. wilsoniana	34	1.95	20.68	0.89–1.72	1.25	44.84	9.57	18.37 16m + 1sm	2A	1.556 ± 0.089	0.778

L/S: Ratio of the longest/shortest chromosomes; THL: Total haploid (monoploid) length of chromosome set; VCL: Variation in chromosome length; MAR: Mean arm ratio; CVCI: Mean centromeric index; CVCL: Coefficient of Variation of Chromosome Length; m: metacentric chromosome; sm: submetacentric chromosome; st: subtelocentric chromosome; sat: satellite chromosomes; s.d.: standard deviation.

Figure 3. The mean haploid idiogram of the eight Sorbus taxa, based on median chromosome values. Arrows indicate secondary constrictions and satellites. Scale bars: 5 µm.
Genome sizes of the eight taxa studied are reported for the first time. Our results are consistent with the chromosome counts and the variation reported for the genus in previous studies (Pellicer et al. 2012; Xi et al. 2020). Combining the results of previous findings with the results of this study, the total range of 2C-value for the genus for diploids and tetraploids is 1.401 pg - 1.631 pg and 2.674 pg - 3.226 pg, respectively. In addition, our data reflect that tetraploids (mean of 1Cx = 0.670 pg) have lesser values of monoploid genome size than diploids (mean of 1Cx = 0.773 pg), indicating a genome downsizing trend in the genus. The decrease in monoploid genomes after polyploidization is usually associated with the loss of repetitive DNA, such as retroelements or retrotransposons (Leitch and Bennett 2004; Bennetzen et al. 2005; Simonin and Roddy 2018).
In *Sorbus*, ploidy levels are closely related to the reproductive strategies: diploids are considered to propagate sexually while polyploids to propagate asexually (Jankun 1993; Aldasoro et al. 1998; Dickinson 2018). Although Lu and Spongberg (2003) recorded tetraploids *S. koehneana*, we have not found any polyploid specimen for the taxon in our sampling, so additional individuals of the taxon are required in future studies and the origin for tetraploids recorded should be considered. In Europe, modern taxonomic studies (Rich et al. 2010; Robertson et al. 2010; Sennikov and Kurtto 2017) and descriptions of new species (Lepší et al. 2009; Vit et al. 2012; Németh et al. 2016; Somlyay et al. 2017) are accompanied by counts of chromosome numbers or DNA ploidy levels, based on flow cytometry. New species also have been discovered constantly from China in recent years (Li and Gao 2015; Guo et al. 2016; Yin et al. 2017) and the difficulty in taxonomy of this genus will continue to increase. Thus, diversity in ploidy levels in Chinese native species needs further analysis of additional species and individuals.

Conclusions

In this work, the first karyotype description and data about genome size are reported for eight *Sorbus* taxa. Consistent with previous studies, FCM has been found to be highly effective in estimating the relative DNA content of *Sorbus* species to infer ploidy. Further investigation on karyotype characteristics and ploidy levels of Chinese native *Sorbus* species is needed for a better understanding of the species’ relationships and origins.

Acknowledgements

We are grateful to Yun Chen, Jing Qiu, Zhongren Xiong, Wenwen Wang and Yang Zhao for collecting samples; to Dan Chen, Haiying Peng and Weiqi Liu for their help during chromosome preparations. We also acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions, Jiangsu Province, China (PAPD) for financial support. Many thanks go to Prof. Li-Bing Zhang (MO), Prof. Yunfei Deng (IBSC), Chen Chen and Mingyue Zang for the valuable comments and suggestions on the manuscript.

References

Aldasoro JJ, Aedo C, Navarro C, Garmendia FM (1998) The Genus *Sorbus* (Maloideae, Rosaceae) in Europe and in North Africa: Morphological Analysis and Systematics. Systematic Botany 23: 189–212. https://doi.org/10.2307/2419588

Altunordu F, Peruzzi L, Yu Y, He X (2016) A tool for the analysis of chromosomes: KaryoType. Taxon 65(3): 586–592. https://doi.org/10.12705/653.9
Bailey JP, Kay QON, McAllister H, Rich TCG (2008) Chromosome numbers in Sorbus L. (Rosaceae) in the British Isles. Watsonia 27: 69–72. http://refhub.elsevier.com/S1055-7903(17)30243-9/h0025

Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Annals of Botany 95: 127–132. https://doi.org/10.1093/aob/mci008

Dickinson TA (2018) Sex and Rosaceae apomicts. Taxon 67(6): 1093–1107. https://doi.org/10.12705/676.7

Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2(9): 2233–2244. https://doi.org/10.1038/nprot.2007.310

Gabrielian E (1978) Rjabiny (Sorbus L.) Zapadnoj Azii Gimalaev. Yerevan. [In Russian]

Greilhuber J, Doležel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘c-value’ to describe nuclear DNA contents. Annals of Botany 95: 255–260. https://doi.org/10.1093/aob/mci019

Guo W, Fan Q, Jing HJ, Hui X, Liao WB (2016) Sorbus calcicola (Rosaceae), a new species from Guangxi Province in China. Phytotaxa 261: 260–266. https://doi.org/10.11646/phytotaxa.261.3.5

Hajrudinović A, Frajman B, Schönswetter P, Siljadžić E, Siljak-Yakovlev S, Bogunić F (2015a) Towards a better understanding of polyploid Sorbus (Rosaceae) from Bosnia and Herzegovina (Balkan Peninsula), including description of a novel, tetraploid apomictic species. Botanical Journal of the Linnean Society 178(4): 670–685. https://doi.org/10.1111/boj.12289

Hajrudinović A, Siljak-Yakovlev S, Brown SC, Pustahija F, Bourge M, Ballian D, Bogunić F (2015b) When sexual meets apomict: genome size, ploidy level and reproductive mode variation of Sorbus aria s.l. and S. austriaca (Rosaceae) in Bosnia and Herzegovina. Annals of Botany 116: 301–312. https://doi.org/10.1093/aob/mcv093

Jankun A (1993) Evolutional significance of apomixis in the genus Sorbus (Rosaceae). Fragmenta Floristica et Geobotanica 38(2): 627–686. https://www.mendeley.com/catalogue/38148480-55a1-3cd9-91e2-2db6814b9814/

Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biological Journal of the Linnean Society. 82: 651–663. https://doi.org/10.1111/j.1095-8312.2004.00349.x

Lepši M, Vit P, Lepši P, Boublík K, Kolář F (2009) Sorbus portae-bohemicae and Sorbus albensis, two new endemic apomictic species recognized based on a revision of Sorbus bohemia. Preslia 81: 63–89.

Levan A, Fredga L, Sandberg A (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x

Liljefors A (1934) Über normale und apospore Embryosackentwicklung in der Gattung Sorbus, nebst einigen Bemerkungen über die Chromosomenzahlen. Svensk Botanisk Tidskrift 28: 290–299.

Liljefors A (1953) Studies on propagation, embryology, and pollination in Sorbus. Acta Horti Bergiani 16(10): 277–329.

Lima de Faria A (1980) Classification of genes, rearrangements and chromosomes according to the chromosome field. Hereditas 93: 1–46. https://doi.org/10.1111/j.1601-5223.1980.tb01043.x
Li M, Gao XF (2015) Sorbus dolichofoliolatus (Rosaceae), a new species from Yunnan, China. Phytotaxa 227: 189–195. https://doi.org/10.11646/phytotaxa.227.2.9

Li M, Ohi-Toma T, Gao YD, Xu B, Zhu ZM, Ju WB, Gao XF (2017) Molecular phylogenetics and historical biogeography of Sorbus sensu stricto (Rosaceae). Molecular Phylogenetics & Evolution 111: 76–86. https://doi.org/10.1016/j.ympev.2017.03.018

Loureno J, Rodriguez E, Doležel J, Santos C (2007) Two New Nuclear Isolation Buffers for Plant DNA Flow Cytometry: A Test with 37 Species. Annals of Botany 100(4): 875–888. https://doi.org/10.1093/aob/mcm152

Lu LD, Spongberg SA (2003) Sorbus L. In: Wu ZY, Raven PH, Hong DY (Eds) Flora of China (Vol. 9). Science Press, Beijing & Missouri Botanical Garden Press, Saint Louis, 144–170.

McAllister H (2005) The Genus Sorbus-Mountain Ash and Other Rowans. Royal Botanical Gardens, Kew.

Németh C, Barabits E, Bílá J (2016) New Sorbus subg. Tormaria (S. latifolia agg.) species from the southwestern part of the Transdanubian Mountain Range (Keszthely Mts, Hungary). Studia Botanica Hungarica 47(2): 297–318. https://doi.org/10.17110/Stud-Bot.2016.47.2.297

Paszko A (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Systematics and Evolution 258: 39–48. https://doi.org/10.1007/s00606-005-0389-2

Pellicer J, Clermont S, Houston L, Rich TCG, Fay MF (2012) Cytotype diversity in the Sorbus complex (Rosaceae) in Britain: sorting out the puzzle. Annals of Botany 110(6): 1185–1193. https://doi.org/10.1093/aob/mcs185

Peruzzi L, Altınordu F (2014) A proposal for a multivariate quantitative approach to infer karyological relationships among taxa. Comparative Cytogenetics 8(4): 337–349. https://doi.org/10.3897/CompCytogen.v8i4.8564

Phipps JB, Robertson KR, Smith PG, Rohrer JR (1990) A checklist of the subfamily Maloideae (Rosaceae). Canadian Journal of Botany 68: 2209–2269. https://doi.org/10.1139/b90-288

Rich TCG, Houston L, Robertson A, Proctor MCF (2010) Whitebeams, Rowans and Service Trees of Britain and Ireland. A monograph of British and Irish Sorbus L. London: Botanical Society of the British Isles in association with National Museum Wales, 223 pp.

Robertson A, Rich TCG, Allen AM, Houston L, Roberts C, Bridle JR, Harris SA, Hiscock SJ (2010) Hybridization and polyploidy as drivers of continuing evolution and speciation in Sorbus. Molecular Ecology 19: 1675–1690. https://doi.org/10.1111/j.1365-294X.2010.04585.x

Sassone AB, López A, Hojsgaard DH, Giussani LM (2017) A novel indicator of karyotype evolution in the tribe Leucocoryneae (Allioideae, Amaryllidaceae). Journal of Plant Research 131(2): 1–13. https://doi.org/10.1007/s10265-017-0987-4

Sennikov AN, Kurtto A (2017) A phylogenetic checklist of Sorbus s.l. (Rosaceae) in Europe. Memoranda Societatis pro Fauna et Flora Fennica 93: 1–78. https://journal.fi/msff/article/view/64741

Simonin KA, Roddy AB (2018) Genome downsizing, physiological novelty, and the global dominance of flowering plants. Plos Biology 16(1): 1–15. https://doi.org/10.1371/journal.pbio.2003706
Somlyay L, Lisztes-Szabo Z, Vojtkó A, Sennikov A (2017) Atlas Florae Europaeae Notes 31. Sorbus javorkana (Rosaceae), a Redescribed Apomictic Species from the Gömör–Torna (Gemer–Turňa) Karst in Hungary and Slovakia A. Annales Botanici Fennici 54: 229–237. https://doi.org/10.5735/085.054.0605

Stebbins GL (1971) Chromosomal evolution in higher plants. New York, 216 pp.

Uozu S, Ikehashi H, Ohmido N, Ohtsubo H, Ohtsubo E, Fukui K (1997) Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Molecular Biology 35(6): 791–799. https://doi.org/10.1023/A:1005823124989

Vít P, Lepší M, Lepší P (2012) There is no diploid apomict among Czech Sorbus species: a biosystematic revision of S. eximia, and the discovery of S. barrandienica. Preslia 84: 71–96.

Winterfeld G, Ley A, Hoffmann MH, Paule J, Röser M (2020) Dysploidy and polyploidy trigger strong variation of chromosome numbers in the prayer-plant family (Marantaceae). Plant Systematics and Evolution 306(2): 1–17. https://doi.org/10.1007/s00606-020-01663-x

Xi LL, Li JB, Zhu KL, Qi Q, Chen X (2020) Variation in genome size and stomatal traits among three Sorbus L. species. Plant Science Journal 38(1): 32–38.

Yin ZJ, Zhao MX, Tang FL, Sun HY, Peng H (2017) Sorbus cibagouensis sp. nov. (Rosaceae) from Zayü County, southeastern Xizang, China. Nordic Journal of Botany 35(1): 58–62. https://doi.org/10.1111/njb.01253