To Investigate Musculoskeletal Status and Mental State of Female Recruits During Training

Qingbo Wang
Shandong First Medical University https://orcid.org/0000-0002-5446-1991

Zhonghui Lu
Chinese People’s Liberation Army Unit 32128

Guodong Sun
Tianjin University

Shuai Liu
Mingyuan Health Technology (Shandong) Group Co.LTD

Zheng Zhou
Chinese People’s Liberation Army Unit 32128

Ziwen Sun
Shandong First Medical University Third Affiliated Hospital

Qingjian Ding (dingclick@sdu.edu.cn)
Shandong University

Research

Keywords: recruits, military training, female soldiers, anxiety, depression, musculoskeletal injury

Posted Date: October 15th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-966638/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
To investigate musculoskeletal status and mental state of female recruits during training

Qingbo Wang, Zhonghui Lu, Guodong Sun, Shuai Liu, Zheng Zhou, Ziwen Sun,

Qingjian Ding

Abstract:

Objective: To investigate the musculoskeletal status and psychological status of female recruits during military boot enlistment training. Methods: The musculoskeletal status and psychological status of 110 boot training patients were assessed by scale, the psychological status of the subjects was assessed by Zung Anxiety Self-Rating Scale and Zung Depression Self-Evaluation Scale, the musculoskeletal status was assessed by visual analogue scale, Neck disability index, JOA low back pain evaluation form, Knee injury and Osteoarthritis Outcome Score scale, the medical document data during boot training were collated, and the risk factors affecting physical and mental health were analyzed. Thus, interventions are taken to reduce the injury rate and improve training performance. Results: Logistic regression analysis showed that neck dysfunction was a risk factor for depressive state and lumbar dysfunction; lumbar dysfunction was a risk factor for anxiety state, neck dysfunction and pain symptoms around the knee joint; pain around the knee joint was a risk factor for lumbar dysfunction and a protective factor for neck dysfunction; anxiety state was a risk factor for depressive state; depression state was a risk factor for anxiety state; and young age was a protective factor for anxiety state.

* Correspondence: Winnie1986518@163.com; dingclick@sdu.edu.cn
†Qingbo Wang, Zhonghui Lu and Guodong Sun contributed equally to this work.
1 Shandong First Medical University, Jinan, Shandong 250117, China. 6 School of Physical Education, Shandong University, Jinan 250061, China. Full list of author information is available at the end of the article.
Conclusion: In 10 weeks of military training, the site with the highest musculoskeletal injury is around the knee joint, followed by the neck and waist. Knee injury and Osteoarthritis Outcome Score scale scores were significantly associated with mental health status, with neck dysfunction increasing the risk of depression and lumbar dysfunction increasing the risk of anxiety in recruits. Prevention and treatment need to pay attention to these parts, gradually improve the balance, flexibility, strength of the body, while paying close attention to the mental health of recruits, so as to reduce the rate of injury.

Keywords: recruits; military training; female soldiers; anxiety; depression; musculoskeletal injury

1 Introduction

After enlistment, regular training includes team training, military training, political education and mental health education. Basic military training is physically and psychologically demanding, leaving recruits at high risk of injury. Musculoskeletal conditions are the largest contributor to the overall disease burden, accounting for 39.1% of all diagnoses, followed by mental health (10.4%)(1). Musculoskeletal injury (MSI) in military populations is a serious problem. This type of injury is typically characterized by pain, mobility difficulties, dexterity, and functional capacity limitations. Low back pain, in particular, reduces work ability and training efficiency and increases the burden on related health services(2). Studies have shown that recruits are more likely to experience MSI than veterans. This may be caused by the low physical performance of recruits at the beginning of basic training and the excessive and too rapid increase in training load(3, 4). Compared with men, female soldiers are more likely to get injured in their lower limbs(5). It may be that their smaller size puts them at a higher risk of serious personal injury during weight training(6). Due to the shift in social roles and maladjustment to the training life, recruits may
produce some psychological changes. Studies have shown that recruits have a high prevalence of depressive symptoms, depression is associated with length of service, smoking, alcohol consumption, family structure, parental relationship, family income, family history of depression, military stress, love relationship, finance, worrying about the future(7), poor coping skills and insufficient social support, special attention should be paid to people from low socioeconomic background, lack of social support, worrying about the future, high education level, and health problems during the training process, psychological strength can provide the greatest protection against depression, and individualized recovery training can help army recruits cope with challenges in life, military training, and combat to avoid depressive symptoms(8, 9).

Currently, there are few studies on MSI during training of female soldiers. In this study, we quantified the MSI of female recruits during training and analyzed the relationship between physical parts, causes, and psychological states (i.e., depression, anxiety) that predispose to MSI. Thus, effective injury prevention programs are developed to reduce MSI, improve physical and mental health status, and reduce health care costs while enhancing morale.

2 Methods

2.1 Study subjects

A total of 110 female recruits in an army unit were followed up for 10 weeks. All subjects were female. All participants lived in the same military base and received three meals a day from the cycling menu, and they all participated in the same military training, combining daily physical training and military skills training.

2.2 Data collection

Participants recorded basic personal information such as name, age, height, and weight in
Medical clerical records. Military training injury, basic personal information, and mental health status were investigated, and the mental health status of the subjects was assessed using the Zung Anxiety Self-Rating Scale and Zung Depression Self-Evaluation Scale during the study; the severity of injury was assessed using the Visual Analogue Scale (VAS), Neck disability index (NDI), JOA low back pain evaluation form, Knee injury and Osteoarthritis Outcome Score (KOOS) scale. The evaluation scale and medical document data during training were collated, classified and counted according to the injured site. The common sites and risk factors of boot training injury were statistically analyzed, so as to take intervention measures to reduce the injury rate and improve the training performance.

The study variables included Body mass index (BMI), age, Zung Anxiety Self-Rating Scale, Zung Depression Self-Evaluation Scale, VAS, NDI, JOA low back pain evaluation scale, KOOS scale, etc. All participants were asked to complete an assessment during a 10-week period of military training. Investigators were trained to assess prior to the assessment. The assessment is as follows:

2.2.1. Body mass index

Body mass index (BMI) was calculated by dividing weight (kg) by height (m) squared. According to the Chinese reference standard, BMI < 18.5 kg/m² is considered lean, between 18.5 and 23.9 kg/m² is normal, BMI \geq 24 kg/m² is overweight, between 24 and 26.9 kg/m² is obese, and between 27 and 29.9 kg/m² is obesity.

2.2.2. Psychological status

The psychological symptoms of the subjects were assessed using the Zung Self-Rating Anxiety Scale and the Zung Self-Rating Depression Scale, and the score indicated the severity of
symptoms. Add the scores of 20 questions as the crude score, multiply the crude score by 1.25, round to integer, and obtain the standard score. The cut-off values for anxiety ratings were less than 46 for normal; 46 – 50 for mild anxiety; and greater than 50 for severe anxiety. The cut-off values for depression rating were 25 – 49 points for normal, 50 – 59 points for mild depression, 60 – 69 points for moderate depression; and 70 points and above for severe depression.

2.2.3 Visual Analogue Scale (VAS)

Recruits chose a score based on their self-perception, which was used to indicate the degree of pain, with a higher score indicating more severe pain. 0 points: no pain; 1-3 points: Mild pain, tolerable; 4-6 points: Moderate pain, sleep disturbance, tolerable; 7-10 points: Severe pain, unbearable, affecting appetite and sleep.

2.2.4. Neck disability index (NDI)

Scores from the Neck Dysfunction Assessment program were added to the final score. Each item has a minimum score of 0 and a maximum score of 5. The higher the score is, the more serious the dysfunction is. The degree of cervical function impairment of the subjects was calculated according to the following formula: cervical function impairment index (%) = (sum of the scores of each item/number of items completed by the subjects × 5) × 100%. Judgment of NDI results: 0-20% indicates mild dysfunction; 20-40% indicates moderate dysfunction; 40-60% indicates severe dysfunction; 60-80% indicates very severe dysfunction; 80-100% indicates complete dysfunction or subjects should be examined in detail for exaggerated symptoms.

2.2.5. JOA Low Back Pain Evaluation Form

The full score of this scale is 29 points; 16-24 points are good; 25-29 points are excellent; 10-15 points are moderate; and less than 10 points are poor; it is clinically used to quantitatively
evaluate the severity and improvement of low back pain.

2.2.6. Knee injury and Osteoarthritis Outcome Score (KOOS)

This scale is a subjective instrument to evaluate sports injury. This score mainly includes five aspects: pain (9 items), symptoms (7 items), daily activities (17 items), sports and recreational functions (7 items) and knee-related quality of life (4 items). Each question is divided into five levels: 0-4, and the summary score of each aspect is converted into a standard score (minimum score 0-maximum score 100). The scores of all five parts of the KOOS score were analyzed separately without adding a total score analysis(10).

2.4. Statistical analysis

All data was statistically analyzed using SPSS 20.0 statistical software. Descriptive analysis was performed on the data of basic information age, BMI, Zung Anxiety Self-Rating Scale, Zung Depression Self-Evaluation Scale, NDI, JOA low back pain evaluation form, KOOS, and VAS score of the subjects and Spearman correlation analysis was performed between each variable. Continuous variables were converted into categories, and binary logistic regression analysis was performed to calculate the odds ratio (OR) and 95% confidence interval (95% CI) of the variables and assess the association between the variables and the risk of injury.

3. Results

3.1 Descriptive analysis

Statistical descriptive analysis of the basic information of the subjects showed that the age of the subjects was 20.37 ± 1.42 years, BMI 21.15 ± 1.47 kg/m². There were 24 patients (21.8%) with mild depressive state, 6 patients (5.5%) with moderate depressive state, 6 patients (5.5%) with mild dysfunction assessed by neck dysfunction, and 4 patients (3.6%) with moderate dysfunction. A
total of 34 patients (30.9%) had varying degrees of lumbar dysfunction, of whom 31 (28.2%) were
good and 3 (2.7%) were moderate. Knee injury and Osteoarthritis Outcome Score (KOOS) scale:
79.45 ± 15.565 points, 73.24 ± 17.267 points, 89.66 ± 11.771 points, 79.95 ± 18.28 points and
76.26 ± 19.063 points respectively (See Figure 1). Among the VAS scores, 22 (20%) were painless,
62 (56.4%) had mild pain, 24 (21.9%) had moderate pain, and 2 (1.8%) had severe pain.

Figure 1 Mean of Knee injury and Osteoarthritis Outcome Score (KOOS)

The duration of the military training was 10 weeks, with 110 subjects, corresponding to 7700
days of exposure of recruits. A total of 201 cases were recorded according to the site of injury.
Figure 2 shows the number of cases of discomfort per unit body area, with a total of 88 cases of
discomfort around the knee, 34 cases of lumbar discomfort, 30 cases of neck discomfort, and 21
cases of discomfort around the ankle. In addition, there were some sudden injuries included:
tinnitus after shooting, fainting during physical training, infected cellulitis of the knee, and foot
infection after road marching.

Figure 2 The number of cases of discomfort per unit body area
3.2 Correlation analysis

The correlation analysis of each variable showed that the JOA low back pain evaluation form score was significantly negatively correlated with the neck dysfunction assessment score. There was a significant negative correlation between anxiety self-rating scale scores and JOA low back pain evaluation scale scores, and a significant positive correlation between anxiety self-rating scale scores and depression self-evaluation scale scores. The KOOS Pain score was significantly positively correlated with the JOA low back pain evaluation scale score, and significantly negatively correlated with the depression self-evaluation scale and anxiety self-rating scale scores. KOOS Symptom score was significantly negatively correlated with neck dysfunction assessment, depression self-evaluation scale, and anxiety self-rating scale scores, and significantly positively correlated with JOA low back pain evaluation scale total score and KOOS Pain score. There was a significant positive correlation between the KOOS ADL score and the JOA low back pain evaluation form, KOOS Pain, and KOOS Symptom scores. There was
a significant negative correlation with depression self-evaluation scale and anxiety self-rating scale scores. KOOS Sport/Rec scores were significantly positively correlated with JOA low back pain evaluation form, KOOS Pain, KOOS Symptom, and KOOS ADL scores. There was a significant negative correlation with depression self-evaluation scale and anxiety self-rating scale scores. There was a significant positive correlation between the KOOS QOL score and the JOA low back pain evaluation form, KOOS Pain, KOOS Symptom, KOOS ADL, and KOOS Sport/Rec scores. There was a significant negative correlation with depression self-evaluation scale and anxiety self-rating scale scores. VAS scores were significantly positively correlated with depression self-evaluation scale, anxiety self-rating scale, and JOA low back pain assessment scores, and significantly negatively correlated with KOOS Pain, KOOS Symptom, KOOS ADL, KOOS Sport/Rec, and KOOS QOL scores.

3.3 Regression analysis

Converts continuous variables into categories, performs binary logistic regression analysis, calculates the OR and 95%CI of variables, and assesses the association between variables and injury risk.

In the binary logistic regression model of risk factors for depressive state, the risk of developing depression was increased during neck dysfunction (OR = 4.076, 95% CI: 1.23 – 13.50 P < 0.01). Anxiety status increased the risk of developing depression (OR = 14.66, 95% CI: 3.25 – 66.19 P < 0.01). In the binary logistic regression model of risk factors for anxiety state, depressive state increased the risk of developing anxiety (OR = 32.883, 95% CI: 4.88 – 221.579 P < 0.01), lumbar dysfunction increased the risk of developing
anxiety (OR = 8.677, 95% CI: 1.005 – 74.905 P < 0.05), and age decreased the risk of developing anxiety. (OR = 0.428, 95% CI: 0.206 – 0.89 P < 0.05). In a binary logistic regression model of risk factors for lumbar dysfunction, pain around the knee increased the risk of lumbar dysfunction (OR = 15.758, 95% CI: 1.276 – 194.602 P < 0.05), and neck dysfunction increased the risk of lumbar dysfunction (OR = 8.465, 95% CI: 2.445 – 29.305 P < 0.01). In a binary logistic regression model of risk factors for neck dysfunction, lumbar dysfunction increased the risk of neck dysfunction (OR = 9.17, 95% CI: 2.522 – 33.348 P < 0.01), and depressive status increased the risk of neck dysfunction (OR = 5.647, 95% CI: 1.432 – 22.259 P < 0.05), pain around the knee was a protective factor for neck dysfunction (OR = 0.098, 95% CI: 0.012 – 0.811 P < 0.05). In a binary logistic regression model of risk factors for pain around the knee, lumbar dysfunction increased the risk of pain around the knee (OR = 7.089, 95% CI: 1.147 – 20.386 P < 0.05).

During 10 weeks of military training, soldiers with neck dysfunction were more likely to have depressive state, lumbar dysfunction than soldiers without neck dysfunction. Soldiers with lumbar dysfunction were more likely to have anxiety state, neck dysfunction, and pain symptoms around the knee than soldiers without lumbar dysfunction. Soldiers with pain around the knee are more likely to have lumbar dysfunction and less likely to have neck dysfunction than soldiers with pain around the knee. Soldiers with an anxious state were more likely to have a depressive state than soldiers without an anxious state. Soldiers with depressive state were more likely to have anxiety state, neck dysfunction than soldiers without depressive state. Older soldiers were more likely to experience anxiety than younger soldiers.
That means, neck dysfunction is a risk factor for depressive state and lumbar dysfunction; lumbar dysfunction is a risk factor for anxiety state, neck dysfunction and pain symptoms around the knee joint; pain around the knee joint is a risk factor for lumbar dysfunction and a protective factor for neck dysfunction; anxiety state is a risk factor for depressive state; depressive state is a risk factor for anxiety state and neck dysfunction; and young age is a protective factor for anxiety state.

4 Discuss

At the time of enlistment, better physical examination policies should be planned and implemented, with physical performance testing and basic musculoskeletal injury questionnaires as screening tools to reduce MSI rates during training(11). Studies have shown that an increase in training volume of more than 10% per week is associated with an increased risk of injury, while a smaller training volume increases the risk of injury will be greatly reduced, a rapid increase in training workload is the problem, overload can lead to fatigue, fatigue in turn can affect muscle coordination and movement sensation, and labeling the injuries with "overuse" may encourage soldiers to reduce training, so the use of "training load errors" is more appropriate(12). The training protocol was changed to gradually increase the training load of the initial training program and progressively increase the duration, frequency, and intensity(13). In order that their physical capacity is sufficient to overcome intense fatigue and establish resilience to training loads, thereby improving the physical fitness of soldiers(14). It may improve the mental health of soldiers(15). Training programs for recruits' physical abilities should be incorporated into injury prevention strategies, with active cooperation between exercise coaches and
training commands, and active participation of trainers, researchers, and health care providers to institutionalize MSI prevention practices(16).

Preventive strategies should target the main factors leading to the risk of musculoskeletal injury, such as training duration, frequency, intensity, physical performance level and equipment (such as ankle protection, knee protection, wrist protection, footwear, shock absorbing insoles(14). Health education is appropriate training sessions to reduce injuries. Develop a prevention plan, conduct personalized training according to specific risk factors, and arrange appropriate training intervals and recovery time(17);Running is associated with most physical training impairments during basic training and therefore reduces running mileage in basic training(18), i.e. In physical training, the use of boots with ankle support or increased proprioceptive training of the lower extremities can reduce the number of injuries due to trips or falls(19).Because of the frequent occurrence of lower limb injuries, examination of postural stability is necessary for injury prevention and movement optimization studies. Postural stability training is the core component of physical training, which can not only improve physical performance, but also prevent injuries(20).Both prevention and treatment programs should take into account the importance of functional core stability and psychological factors(21).Proproprioception, strength training(15), balance and flexibility(22) training are incorporated into military physical training to improve neuromuscular control, thereby reducing the risk of knee and ankle injuries, ligament injuries, and lower limb injuries. Considering the high prevalence of depressive symptoms in soldiers at combat training grounds, they should be carefully evaluated and recommended to receive appropriate
This study has limitations: a descriptive and cross-sectional study, the causal relationship between exposure and outcome cannot be properly assessed. Bias in data collection, scale assessment, and subjectivity cannot be ruled out, and this nonuniformity may reduce the quality of data and pose difficulties in data collection and analysis. The participants in this study are representative of the population engaged in vigorous physical activity, and most of the subjects are under 25 years of age. Therefore, the clinical significance of these results should be recognized before they can be applied to other populations. Despite these limitations, the main advantage of this study is that the rehabilitation therapist lives with the recruits and can report and describe the mental and physical health of the recruits in detail. There is no drawback of the lack of uniformity between physicians and medical staff in terms of medical records and diagnostic records. Before the scale assessment, rehabilitation therapists and patients were trained to answer and more objectively assess their health status. The physical and psychological factors associated with pain in enlisted soldiers were analyzed. The significant predictors identified in this study can be used to prevent the occurrence of psychological disorders and injuries. This study determined the relationship between mental health status and military training injury.

5 Conclusion

Similar to the results of previous studies, the knee joint is the most common injury site, and anatomical and physiological factors are considered to be the cause of the higher rate of female knee injury(19). Therefore, a prevention plan needs to be developed.
In 10 weeks of military training, the most injured site was around the knee joint, followed by the neck and waist. Knee injury and Osteoarthritis Outcome Score (KOOS) scores were significantly associated with mental health status, with neck dysfunction increasing the risk of depression and lumbar dysfunction increasing the risk of anxiety in recruits. Prevention and treatment require attention to these sites to progressively improve the balance, flexibility, strength of the body, while paying close attention to psychological factors, thereby improving the effectiveness of physical therapy.

Abbreviations

MSI: Musculoskeletal injury; BMI: Body mass index; VAS: Visual Analogue Scale; KOOS: Knee injury and Osteoarthritis Outcome Score; OR: Odds Ratio; 95% CI: 95% confidence interval.

Supplementary Information

Additional file 1. Figure 1: Mean of Knee injury and Osteoarthritis Outcome Score (KOOS).

Figure 2: The number of cases of discomfort per unit body area.

Declarations

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the Affiliated Hospital of Shandong Academy of Medical Sciences (FY2021034). All individuals provided their informed consent for inclusion before they participated in the study.

Consent for publication

Not applicable.

Availability of data and materials
The datasets supporting the conclusions of this article are included within the article and its additional files.

Competing interests

The authors declare that they have no competing interests.

Funding

Not applicable.

Authors’ contributions

GDS, QBW, ZWS, ZHL, SL, ZZ and QJD designed the study. QBW, ZHL, SL, ZZ and GDS collected the data. QBW and GDS were responsible for statistical analysis. GDS and QBW wrote the draft. ZWS, ZHL, SL, ZZ and QJD revised the draft; QBW and GDS finalized the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

Author details

1 Shandong First Medical University, Jinan, Shandong 250117, China. 2 Department of Rehabilitation Medicine, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, China. 3 Chinese People's Liberation Army Unit 32128, Jinan, Shandong 250029, China. 4 Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China. 5 Ming yuan Health Technology (Shandong) Group Co. LTD, Jinan, Shandong 250014, China. 6 School of Physical Education, Shandong University, Jinan 250061, China.

Contributor Information
References

1. Webber BJ, Flower AM, Pathak SR, Burganowski RP, Pawlak MT, Gottfredson RC, et al. Physical and Mental Health of US Air Force Military Training Instructors. Military medicine. 2019;184(5-6):e248-e54.

2. Roy TC, Knapik JJ, Ritland BM, Murphy N, Sharp MA. Risk factors for musculoskeletal injuries for soldiers deployed to Afghanistan. Aviation, space, and environmental medicine. 2012;83(11):1060-6.

3. Robinson M, Siddall A, Bilzon J, Thompson D, Greeves J, Izard R, et al. Low fitness, low body mass and prior injury predict injury risk during military recruit training: a prospective cohort study in the British Army. BMJ open sport & exercise medicine. 2016;2(1):e000100.

4. Jones BH, Canham-Chervak M, Sleet DA. An evidence-based public health approach to injury priorities and prevention recommendations for the u.s. Military. American journal of preventive medicine. 2010;38(1 Suppl):S1-10.

5. Holsteen KK, Choi YS, Bedno SA, Nelson DA, Kurina LM. Gender differences in limited duty time for lower limb injury. Occupational medicine (Oxford, England). 2018;68(1):18-25.

6. Orr RM, Pope R. Gender differences in load carriage injuries of Australian army soldiers. BMC musculoskeletal disorders. 2016;17(1):488.

7. Bin Zubair U, Mansoor S, Rana MH. Prevalence of depressive symptoms and associated socio-demographic factors among recruits during military training. Journal of the Royal Army Medical Corps. 2015;161(2):127-31.

8. Shrestha A, Cornum BGR, Vie LL, Scheier LM, Lester M, Seligman MEP. Protective Effects of Psychological Strengths Against Psychiatric Disorders Among Soldiers. Military medicine. 2018;183(suppl_1):386-95.

9. Xiong H, Zhang X, Zhang Y, Ma F, Li Y, Li L. An investigation of the prevalence of depressive symptoms in soldiers during military training. Preventive medicine. 2005;41(2):642-5.

10. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee Injury and
Osteoarthritis Outcome Score (KOOS)--development of a self-administered outcome measure. The Journal of orthopaedic and sports physical therapy. 1998;28(2):88-96.

11. Schwartz O, Kanever B, Kutikov S, Olsen CH, Dudkiewicz I. Medical Attrition from Commanders Training in the Israeli Defense Forces (IDF): A Cross-sectional Study on 23,841 Soldiers. Military medicine. 2018;183(9-10):e363-e9.

12. Drew MK, Purdam C. Time to bin the term 'overuse' injury: is 'training load error' a more accurate term? British journal of sports medicine. 2016;50(22):1423-4.

13. Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? British journal of sports medicine. 2016;50(5):273-80.

14. Gabbett TJ. Debunking the myths about training load, injury and performance: empirical evidence, hot topics and recommendations for practitioners. British journal of sports medicine. 2020;54(1):58-66.

15. Crowley SK, Wilkinson LL, Wigfall LT, Reynolds AM, Muraca ST, Glover SH, et al. Physical fitness and depressive symptoms during army basic combat training. Medicine and science in sports and exercise. 2015;47(1):151-8.

16. Psaila M, Ranson C. Risk factors for lower leg, ankle and foot injuries during basic military training in the Maltese Armed Forces. Physical therapy in sport : official journal of the Association of Chartered Physiotherapists in Sports Medicine. 2017;24:7-12.

17. Dijksma I, Arslan IG, van Etten-Jamaludin FS, Elbers RG, Lucas C, Stuiver MM. Exercise Programs to Reduce the Risk of Musculoskeletal Injuries in Military Personnel: A Systematic Review and Meta-Analysis. PM & R : the journal of injury, function, and rehabilitation. 2020;12(10):1028-37.

18. Kaufman KR, Brodine S, Shaffer R. Military training-related injuries: surveillance, research, and prevention. American journal of preventive medicine. 2000;18(3 Suppl):54-63.

19. Roy TC, Piva SR, Christiansen BC, Lesher JD, Doyle PM, Waring RM, et al. Description of musculoskeletal injuries occurring in female soldiers deployed to Afghanistan. Military medicine. 2015;180(3):269-75.

20. Sell TC, Lovalekar MT, Nagai T, Wirt MD, Abt JP, Lephart SM. Gender Differences in Static and Dynamic Postural Stability of Soldiers in the Army's 101st Airborne Division (Air Assault). Journal of sport rehabilitation. 2018;27(2):126-31.

21. Harutaichun P, Pensri P, Boonyong S. Physical and psychological predictors on pain intensity in conscripts with plantar fasciitis. Brazilian journal of physical therapy. 2020;24(3):249-55.

22. Goodall RL, Pope RP, Coyle JA, Neumayer R. Balance and agility training does not always decrease lower limb injury risks: a cluster-randomised controlled trial. International journal of injury control and safety promotion. 2013;20(3):271-81.