The etiology of uterine sarcomas: a pooled analysis of the epidemiology of endometrial cancer consortium

A S Felix *,1,2, L S Cook 3, M M Gaudet 4, T E Rohan 5, L J Schouten 6, V W Setiawan 7, L A Wise 8, K E Anderson 9, L Bernstein 10, I De Vivo 11,12, C M Friedenreich 13, S M Gapstur 4, R A Goldbohm 14, B Henderson 7, P L Horn-Ross 15, L Kolonel 16, J V Lacey 10, X Liang 17, J Lissowska 18, A Magliocco 19, M L McCullough 4, A B Miller 20, S H Olson 17, J R Palmer 8, Y Park 2, A V Patel 4, J Prescott 11,12, R Rastogi 17, K Robien 9, L Rosenberg 8, C Schairer 2, X Ou Shu 21, P A van den Brandt 6, R A Virkus 8, N Wentzensen 2, Y-B Xiang 22, W-H Xu 22, H P Yang 2 and L A Brinton 2

1Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; 2Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; 3Division of Epidemiology and Biostatistics, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA; 4Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA; 5Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; 6GROW-School for Oncology and Developmental Biology, Maastrict University, Maastrict, The Netherlands; 7Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA; 8Slone Epidemiology Center at Boston University, Boston, MA, USA; 9Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA; 10Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA; 11Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA; 12Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA; 13Division of Cancer Care, Alberta Health Services-Cancer Care, Edmonton, Alberta, Canada; 14Department of Prevention and Health, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands; 15Cancer Prevention Institute of California, Fremont, CA, USA; 16Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA; 17Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; 18M Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; 19Department of Anatomical Pathology, H. Lee Moffitt Cancer Center, Tampa, FL, USA; 20Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; 21Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA and 22Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China

Background: Uterine sarcomas are characterised by early age at diagnosis, poor prognosis, and higher incidence among Black compared with White women, but their aetiology is poorly understood. Therefore, we performed a pooled analysis of data collected in the Epidemiology of Endometrial Cancer Consortium. We also examined risk factor associations for malignant mixed mullerian tumours (MMMTs) and endometrioid endometrial carcinomas (EECs) for comparison purposes.

Methods: We pooled data on 229 uterine sarcomas, 244 MMMTs, 7623 EEC cases, and 28 829 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) for risk factors associated with uterine sarcoma, MMMT, and EEC were estimated with polytomous logistic regression. We also examined associations between epidemiological factors and histological subtypes of uterine sarcoma.

Results: Significant risk factors for uterine sarcoma included obesity (body mass index (BMI) ≥ 30 vs BMI < 25 kg m⁻²) (OR: 1.73, 95% CI: 1.22–2.46), P-trend = 0.008 and history of diabetes (OR: 2.33, 95% CI: 1.41–3.83). Older age at menarche was inversely associated with uterine sarcoma risk (≥ 15 years vs < 11 years (OR: 0.70, 95% CI: 0.34–1.44), P-trend: 0.04). BMI was significantly, but less strongly related to uterine sarcomas compared with EECs (OR: 3.03, 95% CI: 2.82–3.26) or MMMTs (OR: 2.25, 95% CI: 1.60–3.15, P-heterogeneity = 0.01).

Conclusion: In the largest aetiological study of uterine sarcomas, associations between menstrual, hormonal, and anthropometric risk factors and uterine sarcoma were similar to those identified for EEC. Further exploration of factors that might explain patterns of age- and race-specific incidence rates for uterine sarcoma are needed.
Uterine sarcoma is a rare form of uterine cancer that arises from the myometrium or connective tissue of the uterus and accounts for 3–7% of all uterine cancer diagnoses in the United States (D’Angelo and Prat, 2010). Unlike the common uterine cancer histological type, endometrioid endometrial carcinoma (EEC), uterine sarcomas are highly aggressive, with 5-year overall survival rates ranging between 17 and 55% (Prat, 2009). The peak incidence of uterine sarcoma occurs at a younger age than EEC and several studies reported higher incidence rates of uterine sarcoma among Black compared with White women (Harlow et al., 1986; Schwartz et al., 1996; Brooks et al., 2004), the opposite of overall endometrial carcinoma trends (Sherman and Devesa, 2003).

Owing to the low incidence of this disease, the aetiology of uterine sarcomas has been investigated in only a few small case–control studies (Kvale et al., 1988; Schwartz and Thomas, 1989; Schwartz and Weiss, 1990; Schwartz et al., 1991, 1996; Lavie et al., 2008; Jaakkola et al., 2011). Obesity, menopausal use of oestrogen plus progesterin, oral contraceptives (OC), and tamoxifen use are associated with increased risks of uterine sarcoma, whereas cigarette smoking and parity are associated with a reduced risk. Recently, there was an important change in the classification of uterine sarcoma; malignant mixed Mullerian tumours (MMMTs), which previously accounted for 40% of all uterine sarcomas, are now classified as metastatic endometrial carcinomas given their similarities in aetiology and metastatic patterns (McCluggage, 2002; Prat, 2009). Consequently, previous risk factor associations may have been affected by the inclusion of the MMMT subtype. Here, we examine relationships between epidemiological risk factors and uterine sarcoma, overall and by histological subtype, in a large pooled analysis using the updated histological classification for uterine sarcoma. Furthermore, we examine risk factor associations for MMMTs and EECs to evaluate potential aetiological heterogeneity across a spectrum of uterine cancer diagnoses.

MATERIALS AND METHODS

Study population. The Epidemiology of Endometrial Cancer Consortium (E2C2), sponsored in part by the National Cancer Institute, was designed to combine data from cohort and case–control studies to elucidate the aetiology of uterine cancer (Olson et al., 2009). Any study that included at least one uterine sarcoma case was eligible for the current analysis. The 10 cohort and five case–control studies that contributed data to this analysis are summarised in Table 1. For the cohort studies that contributed data to E2C2 (other than the California Teachers Study (CTS)), a nested case–control study design was employed, with inclusion of up to four controls (women with an intact uterus and no uterine cancer diagnosis) randomly selected from the risk set and matched to the corresponding uterine cancer case on year of birth, date of entry (within 6 months), and any additional matching criteria as appropriate in the individual study. For the CTS, data came from a previous nested case–control study in which two controls per case were identified and matching was based on 5-year age group, race/ethnicity, and broad geographic area within California. Cases in the cohort studies were identified through annual linkage to state or national cancer registries (Multiethnic Cohort Study, NIH-AARP Diet and Health Study (NIH-AARP), Iowa Women’s Health Study (IWHS), Netherlands Cohort Study (NLCS), Canadian National Breast Screening Study (NBSS), and CTS) or by self-report on follow-up questionnaires and confirmed through medical record review, linkage to cancer registries, or the National Death Index (Cancer Prevention Study II Nutrition Cohort, Breast Cancer Detection Demonstration Project (BCDDP), Nurses’ Health Study (NHS), and Black Women’s Health Study (BWHS)).

In the case–control studies, population-based controls were frequency-matched to cases except in the US Case–Control Study (US) where individual 1:1 matching was employed. Eligible controls were those women with an intact uterus and no history of uterine cancer. Methods to select controls within each source population included random digit dialling (US, Bay Area Womens Health Study (BAWHS), Endometrial Cancer and Physical Activity Study (ECPA)) and random selection from data registrars of all citizens (Polish Endometrial Cancer Study (PECS) and Shanghai Endometrial Cancer Study (SEC)). All studies were approved by the institutional review boards (IRBs) of their parent institutions, and written informed consent was obtained from all participants. In addition, Memorial Sloan–Kettering Cancer Centre has IRB approval as the data co-ordinating centre for E2C2.

Data collection. De-identified data from the participating studies were centrally collected and harmonised at Memorial Sloan–Kettering Cancer Centre. We made an effort to collect a core set of standardized variables, but not all variables were collected by each study. Some studies did not provide information on menopausal oestrogen plus progesterin use (NBSS, ECPA, NLCS, IWHS, BCDDP), menopausal oestrogen-alone use (NBSS, ECPA, IWHS), diabetes (BAWHS and NBSS), parity (NLCS), or smoking status (BAWHS). As the number of live births was not reported by the NLCS, we used the number of pregnancies lasting ≥ 7 months as a surrogate for parity among NLCS cases and controls.

Case definitions. Women with an incident, histologically confirmed diagnosis of uterine sarcoma, MMMT, or EEC were included as case patients in the current study. Although the emphasis of this study is on uterine sarcomas, women with MMMTs or EECs were included for comparison purposes. Uterine sarcoma cases with the following International Classification of Diseases for Oncology (ICD)-O-3 morphology codes were included: sarcoma, not otherwise specified (NOS) 8800–8806, fibromatous neoplasms 8810–8815, myomatous neoplasms 8890–8896 (includes leiomyosarcoma), rhabdomyosarcoma 8900–8902, embryonal rhabdomyosarcoma 8910–8912, and endometrial stromal sarcoma 8930–8934. Four studies (PECS, SECS, BWHS, and NHS) did not have ICD-O-3 codes and instead supplied a summary histology variable for each case (i.e., sarcoma, EEC, MMMT, etc). The ICD-O-3 codes 8950–8982 or summary variable ‘MMMT’ were used to define MMMT, while ICD-O-3 codes 8380–8383 and summary variable ‘endometrioid’ identified EECs. EEC cases from the NHS could not be distinguished from adenosarcoma, NOS cases and were excluded from analysis.

Statistical methods. Categories for exposure variables were created including age (≤ 54, $55–59$, $60–64$, $65–69$, ≥ 70 years), race (White, Black, Asian, other), BMI (<25, $25–30$, $\geq 30 \text{ kg m}^{-2}$), age at menarche ($\leq 11$, $11–12$, $13–14$, ≥ 15 years), menopausal status (premenopausal, peri-menopausal, postmenopausal), parity (no live births, 1 or more live births), number of live births among parous women (1, 2, 3–4, ≥ 5 live births), smoking status (never, former, current), menopausal hormone use (never, ever), menopausal oestrogen use (never, ever), menopausal oestrogen plus progesterin use (never, ever), OC use (never, ever), and history of diabetes (no, yes). Given the importance of these variables in the aetiology of common endometrial carcinoma subtypes, we included all exposure variables simultaneously in an unconditional polytomous logistic regression model to estimate the magnitude of association (odds ratios (ORs) and 95% confidence intervals (CIs)) between risk factors and case groups. Polytomous logistic regression was used when the outcome variable is nominal with more than two levels (Hosmer, 2000). When a study did not report values for a particular variable, that study was excluded from the specific risk factor analysis. Missing values were coded as a separate category for each variable; when excluding subjects with missing values the results did not appreciably change.
All models were adjusted for age and race; however, we do not present effect estimates for these variables given their use as matching criteria in all studies. Tests for linear trend were performed for BMI, age at menarche, and number of live births among parous women by including the ordinal form of each variable in the model. We also examined risk factors for endometrial stromal sarcoma and leiomyosarcoma, the two main histological subtypes of uterine sarcoma, compared with controls. Differences in ORs between case groups were quantified using case-only logistic regression models. A P-heterogeneity of effect estimates was examined by creating a multiplicative interaction term between study site (fixed effect covariate) and each risk factor and performing a likelihood ratio test comparing models with and without the risk factor-study site interaction terms.

Using the distribution of risk factors in our sample, a binary outcome (control vs uterine sarcoma), power of 80% and a two-sided z of 0.05, we calculated minimum detectable ORs for each risk factor, which ranged from 1.45–1.89 for factors associated with increased risk and 0.35–0.67 for protective factors. All tests of statistical significance were two-sided. Analyses were performed using SAS version 9.3 (SAS Institute Inc., Cary, NC, USA).

Table 1. Description of the 15 observational studies included in the pooled analysis of uterine sarcoma risk factors, E2C2

Study	Uterine sarcoma ($n = 229$)	Malignant mixed mullerian tumour ($n = 244$)	Endometrioid endometrial carcinoma ($n = 7623$)	Controls ($n = 28 829$)	Recruitment period	Matching factors
Cohort*						
Multiethnic Cohort Study (MEC)	35	34	515	2623	1993–1996	Birth year, cohort entry, race, area
Cancer Prevention Study II Nutrition Cohort (CPS-II)	11	20	573	2664	1992–1993	Birth year, cohort entry, race, area
NIH-AARP Diet and Health Study (NIH-AARP)	49	71	1508	7400	1995–1996	Birth year, cohort entry, race, area
Breast Cancer Detection Demonstration Project (BCDDP)	5	7	424	2418	1979–1980	Birth year, cohort entry, clinic
Nurses’ Health Study (NHS)*	15	6	—	1641	1976	Birth year, cohort entry, race, area
Iowa Women’s Health Study (IWHS)	10	22	466	2212	1986	Birth year, cohort entry, race, area
Black Women’s Health Study (BWHR5)*	7	6	—	52	1995	Birth year, cohort entry, race, area
Netherlands Cohort Study (NLCS)	6	10	402	896	1986	Birth year, cohort entry
Canadian National Breast Screening Study (NBSS)	29	11	643	3072	1980–1985	Birth year, cohort entry, race, area
California Teachers Study (CTS)*	3	6	351	686	1996–2004	Five-year age categories, race/ethnicity, area
Case–control*						
US Case–Control Study (US)	23	22	332	526	1987–1990	Age (± 5 years), race, telephone area code
Bay Area Women’s Health Study (BAWHS)	12	12	429	470	1996–1999	Five-year age categories, race/ethnicity
Polish Endometrial Cancer Study (PECS)	8	0	435	1925	2000–2003	Age (± 5 years), site
Shanghai Endometrial Cancer Study (SECS)	15	0	1071	1212	1997–2004	Age (± 5 years)
Endometrial Cancer and Physical Activity Study (ECPA)	1	17	474	1032	2002–2006	Age (± 5 years)

Abbreviation: E2C2 = Epidemiology of Endometrial Cancer Consortium (E2C2).

*The NHS combined endometrioid endometrial carcinoma and adenocarcinoma cases in one group.

**The BWHS only submitted patients with uterine sarcoma, malignant mixed mullerian tumours and matched controls to the Epidemiology of Endometrial Cancer Consortium (E2C2).

†The CTS data include only participants in a nested case–control study of endometrial cancer.

www.bjcancer.com | DOI:10.1038/bjc.2013.2
A total of 229 uterine sarcomas, 244 MMMTs, 7623 EECs, and 28829 controls were available for this pooled analysis. Black race was more prevalent among MMMTs compared with uterine sarcoma and EEC cases (17.2%, 11.3%, and 2.6%, respectively, data not tabulated), and median age at diagnosis was oldest among MMMT cases compared with uterine sarcoma and EEC cases (67.0, 61.4, and 64.3 years, respectively, data not tabulated). Distributions of risk factors, ORs, and 95% CIs are shown in Table 2. Significantly increased risk of uterine sarcoma was observed for obese compared to normal BMI (OR: 1.73, 95% CI: 1.22–2.46) and a history of diabetes compared with no diabetes (OR: 2.33, 95% CI: 1.41–3.83), whereas older age at menarche (age at menarche \geq 15 compared with age at menarche <11 years OR: 0.70, 95% CI: 0.34–1.44, p-trend = 0.04) was associated with a lower risk of uterine sarcoma. Any live births, postmenopausal status, OC use, and current or former smoking were inversely but not statistically significantly associated with uterine sarcoma risk. BMI was significantly, but less strongly related to uterine sarcoma than to EECs (OR: 3.03, 95% CI: 2.82–3.26) or MMMTs (OR: 2.25, 95% CI: 1.60–3.15) for the heaviest compared with the leanest women (P-heterogeneity = 0.01).

In exploratory analyses, we examined risks associated with the most prevalent histological subtypes of uterine sarcoma: endometrial stromal sarcoma (n = 98) and leiomyosarcoma (n = 82) (Table 3). Black race was more prevalent among leiomyosarcoma compared with endometrial stromal sarcoma cases (20.7% vs 6.1%, data not tabulated), whereas median age at diagnosis was similar (61.8 and 63.6 years, respectively, data not tabulated). The direction of most associations for the histological subtypes was similar to patterns observed for uterine sarcoma overall. Obesity (OR: 1.74, 95% CI: 1.03–2.93) and a history of diabetes (OR: 2.28, 95% CI: 1.02–5.12) were associated with significantly higher risks of endometrial stromal sarcoma, whereas reduced risk of leiomyosarcoma was observed for postmenopausal compared with premenopausal women (OR: 0.35, 95% CI: 0.16–0.75). Compared with the overall associations, less consistency in histological subtype associations was noted for age at menarche and former or current smoking. However, no significant heterogeneity of effects between these two histological subtypes was observed (P-heterogeneity > 0.10).

In contrast to prior reports, we observed statistically non-significant inverse associations between OC use and uterine sarcoma risk overall, as well as risk of both histological subtypes, whereas Schwartz et al. (1996) reported positive, albeit, statistically non-significant associations. Given the absence of statistical significance and information on the formulation and duration of OC use in ours and the previous study, these findings should be interpreted cautiously. Furthermore, we did not observe an association between menopausal oestrogen plus progestin use and uterine sarcoma risk, which has been observed previously. In a recent Finnish cohort study, menopausal estradiol and progestin treatment was associated with increased risks of leiomyosarcoma and endometrial stromal sarcoma, especially among women with longer exposures (Jaakkola et al., 2011). Finally, the relationship between a history of diabetes and uterine sarcoma risk has been explored in one previous study (Brinton et al., 2005). Of 137 uterine sarcoma cases, only 2 had a history of diabetes resulting in a null association. We noted strong risks associated with a history of diabetes for uterine sarcoma overall and both histological subtypes, which is consistent with aetiological studies of endometrial carcinoma (Weiderpass et al., 2000; Rosato et al., 2011). Obesity and diabetes are associated with metabolic disturbances and our finding of a stronger association with diabetes for uterine sarcoma compared with EEC raises questions about the possibility of a more central role of insulin in their aetiology.

Similarities in risk factor associations for uterine sarcoma and EECs suggest overlap in the biological mechanisms associated with development of these tumours. Commonly described mechanisms relating menstrual, reproductive, and anthropometric factors to EEC risk include imbalances in multiple pathways, including sex hormones (oestrogen and progesterone), insulin and insulin-like growth factors (IGFs), and inflammatory markers such as interleukins. Higher expression of oestrogen, IGFs, and interleukins is associated with increased risk of EECs (Calle and Kaaks, 2004; Oh et al, 2004; Dossus et al, 2010; Audet-Walsh et al, 2011; Wang et al, 2011). Key cytogenetic and molecular events observed in endometrial stromal sarcomas include chromosomal rearrangements, loss of heterozygosity of tumour suppressor genes, and
Characteristics	Controls	n = 28,829	n (%)	OR (95% CI)	P-heterogeneity	P-trend		
Age at menarche	<11	1,252	43	13	5	0.01	0.44	
	11–12	10,408	246	4.3	37	5.3	0.01	0.80
	13–14	12,808	384	6.2	33	5.1	0.01	0.79
	>15	4,932	88	1.8	0.5	0.01	0.98	
Body mass index	<25 kg/m²	1,449	244	17.1	60	26.2	2.25 (1.20, 4.24)	0.001
	25–30 kg/m²	9,044	2,408	34.4	84	2.17 (1.17, 3.99)	0.001	
	>30 kg/m²	9,944	2,408	34.4	84	2.17 (1.17, 3.99)	0.001	
Number of live births (among parous women)	1	2,346	12	14.0	1.00	0.43	0.001	
	2	5,040	180	36.0	1.00	0.43	0.001	
	3–4	10,040	180	36.0	1.00	0.43	0.001	
	5	3,446	180	36.0	1.00	0.43	0.001	
Menopausal status	Premenopausal	15,194	14,922	81	1.00	0.43	0.001	
	Perimenopausal	5,040	180	36.0	1.00	0.43	0.001	
	Postmenopausal	4,944	180	36.0	1.00	0.43	0.001	
Menopausal hormone use	Never	15,019	14,922	81	1.00	0.43	0.001	
	Ever	3,935	180	36.0	1.00	0.43	0.001	
Menopausal oestrogen use	Never	15,019	14,922	81	1.00	0.43	0.001	
	Ever	3,935	180	36.0	1.00	0.43	0.001	

Table 2. Adjusted ORs and 95% CIs of risk factors for uterine sarcomas and endometrioid endometrial carcinomas, based on a pooled analysis of 15 observational studies in the E2C2.
Table 2. (Continued)

Characteristicsa	Controls \(n = 28829 \)	Uterine sarcoma \(n = 229 \)	Malignant mixed mullerian tumour \(n = 244 \)	Endometrioid endometrial carcinoma \(n = 7623 \)								
	\(n \)	%	\(n \)	%	OR (95% CI)b	\(n \)	%	OR (95% CI)b	\(n \)	%	OR (95% CI)b	\(P \)-heterogeneityc
Menopausal oestrogen plus progestin\(g \)	11 390	69.7	70	55.1	1.00	115	71.9	1.00	2975	70.1	1.00	
Never	3424	20.9	40	31.5	1.07 (0.52, 2.20)	28	17.5	0.85 (0.38, 1.90)	852	20.1	0.84 (0.70, 1.00)	
Ever												0.40
Oral contraceptive use	17 894	62.1	127	55.5	1.00	85	34.8	1.00	5201	71.6	1.00	
Never	10 670	37.0	94	41.0	0.85 (0.63, 1.16)	153	62.7	0.95 (0.70, 1.28)	2357	32.5	0.74 (0.70, 0.79)	
Ever												0.37
Smoking statusb\(h \)	14 926	52.6	122	56.2	1.00	128	55.2	1.00	4599	63.4	1.00	
Never	8504	30.0	58	26.7	0.84 (0.60, 1.16)	75	32.3	0.92 (0.69, 1.24)	1915	26.6	0.89 (0.84, 0.95)	
Former	4133	14.6	30	13.8	0.88 (0.58, 1.33)	20	8.6	0.63 (0.39, 1.03)	618	8.6	0.62 (0.56, 0.68)	
Current												0.50
History of diabetesi\(i \)	15 889	62.8	108	57.4	1.00	128	57.9	1.00	4288	65.5	1.00	
No	1583	6.3	22	11.7	2.33 (1.41, 3.83)	29	13.1	1.38 (0.84, 2.26)	747	11.4	1.50 (1.34, 1.67)	
Yes												0.09

Abbreviations: CI = confidence interval; ECC2 = Epidemiology of Endometrial Cancer Consortium; OR = odds ratio.

a Missing values were excluded from presentation, but included as a separate category in logistic regression analysis.
b Polytomous logistic regression models adjusted for age, race, BMI, age at menarche, parity, menopausal status, menopausal oestrogen plus progestin, menopausal oestrogen use, oral contraceptive use, smoking status, history of diabetes, and site.
c \(P \)-values for tumour heterogeneity are based on case-only multivariable-adjusted logistic regression models using endometrioid endometrial carcinoma cases as the ‘controls’.
d \(P \)-values for trend calculated with the variable modelled ordinally.
e Among postmenopausal women.
f Among postmenopausal women in 12 studies with menopausal oestrogen use data.
g Among postmenopausal women in 10 studies with menopausal oestrogen plus progestin use data.
h Among 14 studies with smoking data.
i Among 13 studies with diabetes data.
Table 3. Adjusted ORs and 95% CIs of risk factors for histological subtypes of uterine sarcoma, based on a pooled analysis of 15 observational studies in the E2C2

Characteristics	Controls	Endometrial stromal sarcoma	Leiomyosarcoma	P-heterogeneity
	n = 28829	n = 98	n = 82	
Body mass index				
Normal weight (<25 kg·m⁻²)	14244	49.4 42 42.9 1.00	33 40.2 1.00	0.39
Overweight (25–30 kg·m⁻²)	9044	31.4 26 26.5 1.02 (0.62, 1.68)	20 24.4 0.90 (0.51, 1.60)	0.26
Obese (>30 kg·m⁻²)	4932	17.1 27 27.6 1.74 (1.03, 2.93)	23 28.0 1.56 (0.88, 2.77)	
Age at menarche				
<11	1252	4.3 7 7.1 1.00	6 7.3 1.00	0.10
11–12	10408	36.1 39 39.8 0.88 (0.39, 2.01)	38 46.3 1.10 (0.44, 2.73)	
13–14	12808	44.4 42 42.9 0.88 (0.38, 2.01)	27 32.9 0.75 (0.29, 1.91)	
>15	4103	14.2 8 8.2 0.60 (0.21, 1.71)	9 11.0 1.01 (0.34, 2.98)	
Parity				
Nulliparous	3234	11.2 11 11.2 1.00	12 14.6 1.00	0.40
Parous	24912	86.4 81 82.6 0.97 (0.51, 1.83)	65 79.3 0.76 (0.40, 1.44)	
Number of live births (among parous women)				0.17
1	3621	14.5 8 9.9 1.00	13 20.0 1.00	
2	7805	31.3 26 32.1 1.59 (0.71, 3.56)	19 29.2 0.71 (0.35, 1.46)	
3–4	10040	40.3 38 46.9 2.02 (0.91, 4.45)	28 43.1 0.78 (0.39, 1.54)	
≥5	3446	13.8 9 11.1 1.36 (0.50, 3.67)	5 7.7 0.35 (0.12, 1.03)	
Menopausal status				0.22
Premenopausal	4015	13.9 23 23.5 1.00	25 30.5 1.00	
Peri-menopausal	281	1.0 0 0.0 NE	2 2.4 0.73 (0.12, 4.41)	
Postmenopausal	23826	82.6 70 71.4 0.85 (0.42, 1.72)	50 61.0 0.35 (0.16, 0.75)	
Menopausal hormone use				0.98
Never	13412	58.5 26 40.6 1.00	27 54.0 1.00	
Ever	9287	40.5 37 57.8 1.53 (0.54, 4.31)	23 46.0 0.80 (0.22, 2.98)	
Menopausal oestrogen-alone use				0.97
Never	15019	76.9 40 63.5 1.00	32 78.0 1.00	
Ever	2878	14.7 12 19.0 1.02 (0.29, 3.61)	6 14.6 1.43 (0.18, 14.95)	
Menopausal oestrogen plus progestin use				0.72
Never	11390	69.7 26 47.3 1.00	21 55.3 1.00	
Ever	3424	20.9 17 30.9 1.43 (0.35, 5.76)	13 34.2 0.79 (0.08, 7.90)	
Oral contraceptive use				0.54
Never	17894	62.1 52 53.1 1.00	44 53.7 1.00	
Ever	10670	37.0 44 56.4 0.85 (0.53, 1.34)	36 43.9 0.72 (0.44, 1.19)	
Smoking status				0.22
Never	14926	52.6 50 56.2 1.00	41 50.6 1.00	
Former	8504	30.0 21 23.6 0.66 (0.39, 1.11)	28 34.6 1.15 (0.70, 1.90)	
Current	4133	14.6 16 18.0 1.09 (0.61, 1.94)	9 11.1 0.75 (0.36, 1.56)	
History of diabetes				0.65
No	15889	62.8 47 64.4 1.00	33 48.5 1.00	
Yes	1583	3.6 11 15.1 2.28 (1.02, 5.12)	10 14.7 1.91 (0.77, 4.77)	

Abbreviations: CI = confidence interval; E2C2 = Epidemiology of Endometrial Cancer Consortium; NE = not estimable (due to zero cells); OR = odds ratio.

*Missing values were excluded from presentation, but included as a separate category in logistic regression analysis.

**Polytomous logistic regression models adjusted for age, race, BMI, age at menarche, menopausal status, menopausal oestrogen plus progestin, menopausal oestrogen use, oral contraceptive use, smoking status, history of diabetes, and site.

***P-values for tumour heterogeneity are based on case-only multivariable-adjusted logistic regression models using endometrial stromal sarcoma cases as the ‘controls’.

****P-values for trend calculated with the variable modelled ordinally.

*****Among postmenopausal women.

******Among postmenopausal women in 12 studies with menopausal oestrogen use data.

*******Among postmenopausal women in 10 studies with menopausal oestrogen plus progestin use data.

********Among 14 studies with smoking data.

*********Among 13 studies with diabetes data.
deregulation of the Wnt signalling pathway (Chiang and Oliva, 2011), while leiomyosarcomas are characterised by chromosome 1 deletion. The relationship between aetiologic risk factors and these molecular data is lacking, but this information would allow for a better understanding of uterine sarcoma tumour biology.

Our pooled analysis has several strengths, including the largest sample size of uterine sarcomas examined in the literature to date and availability of data on important risk factors and confounders. Several limitations of the current analysis should be noted. Although our sample size was large relative to previous studies, the histological subtype analyses were affected by small numbers as evidenced by large CIs. The ascertainment of exposure variables differed across studies, potentially introducing misclassification bias. Because of these differences, some variables were classified using crude categories to harmonise across studies. Importantly, we did not observe between-study statistical heterogeneity for any variable under consideration. We had insufficient data from the studies in the pooled analysis on other risk factors of interest, including infertility history, tamoxifen use, history of uterine fibroids, and previous cancer diagnoses. Other novel risk factors, including occupational exposures (Koivisto-Korander et al, 2012) and in vitro fertilisation (Venn et al, 2001), have been examined infrequently and should be studied in appropriate epidemiological settings. Disease misclassification is another possible bias given the potential for differential diagnosis of uterine cancer across diagnosis years, regions, and countries represented by the individual studies. Although MMMTs have recently been excluded from the uterine sarcoma classification, we expect a small proportion of these tumours to be misclassified as primary uterine sarcomas. Finally, this pooled analysis included cases and controls from diverse geographic regions, potentially introducing clinical heterogeneity in our study design. In conclusion, we provide evidence of common aetiologic pathways for EEC and uterine sarcoma. Further exploration of factors that might explain patterns of age- and race-specific incidence rates for uterine sarcoma are needed.

ACKNOWLEDGEMENTS

This research was supported by the Intramural Research Program of the National Cancer Institute, National Institutes of Health.

REFERENCES

Audet-Walsh E, Lepine J, Grégoire J, Plante M, Caron P, Tébou B, Ayotte P, Brisson J, Villeneuve L, Bélanger A, Guillemette C (2011) Profiling of endogenous estrogen, their precursors, and metabolites in endometrial cancer patients: association with risk and relationship to clinical characteristics. J Clin Endocrinol Metab 96(2): E330–E339.

Brinton LA, Sakoda LC, Sherman ME, Frederiksen K, Kjaer SK, Graubard BI, Olsen JH, Mellemkjaer L (2005) Relationship of benign gynecologic diseases to subsequent risk of ovarian and uterine tumors. Cancer Epidemiol Biomarkers Prev 14(12): 2929–2935.

Brooks SE, Zhan M, Cote T, Baquet CR (2004) Surveillance, epidemiology, and end results analysis of 2677 cases of uterine sarcoma 1989–1999. Gynecol Oncol 93(1): 204–208.

Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4(8): 579–591.

Chiang S, Oliva E (2011) Cytogenetic and molecular aberrations in endometrial stromal tumors. Hum Pathol 42(5): 609–617.

Chu PG, Arber DA, Weiss LM, Chang KL (2001) Utility of CD10 in distinguishing between endometrial stromal sarcoma and uterine smooth muscle tumors: an immunohistochemical comparison of 34 cases. Mod Pathol 14(5): 465–471.

D’Angelo E, Prat J (2010) Uterine sarcomas: a review. Gynecol Oncol 116(1): 131–139.

Dossus L, Rinaldi S, Becker J, Ganz A, IARC. (2011) Uterine sarcomas: a review. Gynecol Oncol 122(2): 260–263.

Koivisto-Korander R, Martinsen JI, Weidpass E, Lemenina A, Pukkala E (2012) Incidence of uterine leiomyosarcoma and endometrial stromal sarcoma in Nordic countries: results from NORDCAN and NOCCA databases. Maturitas 72(1): 56–60.

Kvala G, Heuch I, Ursin G (1988) Reproductive factors and risk of cancer of the uterine corpus: a prospective study. Cancer Res 48(21): 6217–6221.

Lavie O, Barnett-Griess O, Narod SA, Rennert G (2008) The risk of developing uterine sarcoma after tamoxifen use. Int J Gynecol Cancer 18(2): 352–356.

McCluggage WG (2002) Uterine carcinosarcomas (malignant mixed Mullerian tumours) are metaficial carcinomas. Int J Gynecol Cancer 12(6): 687–690.

Oh JC, Wu W, Tortolero-Luna G, Broaddus R, Gershenson DM, Burke TW, Schmandt R, Lu KH (2004) Increased plasma levels of insulin-like growth factor 2 and insulin-like growth factor binding protein 3 are associated with endometrial cancer risk. Cancer Epidemiol Biomarkers Prev 13(5): 748–752.

Olson SH, Chen C, De Vivo I, Doherty JA, Hartmuller V, Horn-Ross PL, Lacey Jr Jv, Lynch SM, Sansbury L, Setiawan VW, Shu XO (2009) Maximizing resources to study an uncommon cancer: E2C2–Epidemiology of Endometrial Cancer Consortium. Cancer Causes Control 20(4): 491–496.

Schwartz SM, Thomas DB (1989) A case-control study of risk factors for sarcomas of the uterus. The World Health Organization Collaborative Study of Neoplasia and Steroid Contraceptives. Cancer 64(12): 2487–2492.

Schwartz SM, Weiss NS (1990) Marital status and the incidence of sarcomas of the uterus. Cancer Prev 15(6): 1886–1897.

Schwartz SM, Weiss NS, Daling JR, Gammon MD, Liff JM, Watt J, Lynch CF, Newcomb PA, Armstrong BK, Thompson WD (1996) Exogenous sex hormone use, correlates of endogenous hormone levels, and the incidence of histologic types of sarcoma of the uterus. Cancer 77(4): 717–724.

Schwartz SM, Weiss NS, Daling JR, Newcomb PA, Liff JM, Gammon MD, Thompson WD, Watt JD, Armstrong BK, Weyer P (1991) Incidence of histologic types of uterine sarcoma in relation to menstrual and reproductive history. Int J Cancer 49(3): 362–367.

Sherman ME, Devesa SS (2003) Analysis of racial differences in incidence, survival, and mortality for malignant tumors of the uterine corpus. Cancer 98(1): 176–186.

Skubitz KM, D’Adamo DR (2007) Sarcoma. Mayo Clin Proc 82(1): 64–68.

Wang T, Rohan TE, Gunter MJ, Xue X, Wactawski-Wende J, Rajpathak SN, Cushman M, Strickler HD, Kaplan RC, Weyertheall-Smoller S, Scherer PE, Ho GY (2011) A prospective study of inflammation markers and endometrial cancer risk after tamoxifen use. Int J Gynecol Cancer 21(4): 1007–1019.

Harlow BL, Weiss NS, Lofton S (1986) The epidemiology of sarcomas of the uterus. J Natl Cancer Inst 76(3): 399–402.

Hosmer Dal. Stanley (2000) Applied Logistic Regression. John Wiley & Sons, INC.: New York.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.