Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

Abstract

Evidence is presented for the electroweak (EW) production of two jets (jj) in association with two Z bosons and constraints on anomalous quartic gauge couplings are set. The analysis is based on a data sample of proton-proton collisions at $\sqrt{s} = 13$ TeV collected with the CMS detector in 2016–2018, and corresponding to an integrated luminosity of 137 fb$^{-1}$. The search is performed in the fully leptonic final state $ZZ \rightarrow \ell\ell\ell'\ell'$, where $\ell, \ell' = e, \mu$. The EW production of two jets in association with two Z bosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The cross sections for the EW production are measured in three fiducial volumes and the result is $\sigma_{\text{EW}}(pp \rightarrow ZZjj \rightarrow \ell\ell\ell'\ell'jj) = 0.33^{+0.11}_{-0.10}$ (stat)$^{+0.04}_{-0.03}$ (syst) fb in the most inclusive volume, in agreement with the standard model prediction of 0.275 ± 0.021 fb. Measurements of total cross sections for jj production in association with two Z bosons are also reported. Limits on anomalous quartic gauge couplings are derived in terms of the effective field theory operators $T_0, T_1, T_2, T_8, \text{and } T_9$.

"Published in Physics Letters B as doi:10.1016/j.physletb.2020.135992."

1 Introduction

In the standard model (SM), the electroweak (EW) vector bosons, like the other fundamental
particles, acquire their masses through the coupling to the Brout-Englert-Higgs field. The pho-
ton remains massless, with only two degrees of polarization (i.e., transverse), whereas the W
and Z bosons acquire an additional degree of freedom (i.e., longitudinal), as a consequence
of the electroweak symmetry breaking (EWSB) [1, 2]. Thus, the scattering of massive vector
bosons is at the heart of the EWSB mechanism and its study can lead to significant insight
into the origin of particle masses. Moreover, if the couplings between the Higgs boson and
vector bosons (HVV) differ from their SM values, the subtle interplay between HVV, triple,
and quartic gauge couplings as predicted in the SM is incomplete, and the cross section for the
longitudinal scattering diverges at large scattering energies, eventually violating the unitarity.

At the CERN LHC, vector boson scattering (VBS) is the interaction of two EW vector bosons
emitted by quarks (q) from the two colliding protons. The VBS process is generally labeled by
the type of outgoing vector bosons. The two jets (jj) originating from the scattered quarks are
typically emitted in the forward-backward region of the detector, giving rise to events whose
signature in the detector is characterized by a region in rapidity (so-called “rapidity gap”) [3, 4],
where no additional hadronic activity is expected from the hard scattering. The decay of the
vector bosons into fermions defines the final signature of the VBS-like event. The pure VBS
contributions, however, are embedded into a wider set of possible two-to-six processes, with
which they interfere (Fig. 1). All processes at the order of α^6_{EW} (tree level) are considered as
EW production (Fig. 1 upper panels and bottom left panel), whereas the processes at the order
$\alpha^4_{\text{EW}}\alpha^2_{S}$ where at tree level the jets are induced by quantum chromodynamics (QCD) (lower right
panel in Fig. 1), constitute a background referred to as QCD-induced background. Kinematic
requirements on the dijet system are used to define fiducial regions enriched in VBS-like events
and where QCD-induced backgrounds are suppressed.

Both the ATLAS and CMS Collaborations have performed searches for the scattering of massive
vector bosons, using data from proton-proton (pp) collisions at the center-of-mass energy of
13 TeV. The ATLAS Collaboration reported the observation of EW production of two jets in
association with a same-sign W boson pair [5], with a WZ boson pair [6], and, recently, with a Z
boson pair [7]. Results were also reported on the measurement of the EW diboson production
(WW, WZ, ZZ) in association with a high-mass dijet system in semileptonic final states [8],
with an observed significance of 2.7 standard deviations. The CMS Collaboration observed
the production of two EW-induced jets with two same-sign W bosons [9, 10] and with WZ
pairs [10], and measured the EW production of jets in association with ZZ [11] with an observed
significance of 2.7 standard deviations.

This paper presents evidence for the EW production of two jets in association with two Z
bosons, where both Z bosons decay into electrons or muons, $ZZ \to \ell\ell\ell\ell'$ ($\ell, \ell' = e, \mu$). Despite
a low cross section, a small $Z \to \ell\ell$ branching fraction, and a large QCD-induced background,
this channel provides a clean leptonic final state with a small experimental background, where
one or more reconstructed lepton candidates originate from the misidentification of jet frag-
ments or from nonprompt leptons.

The search for the EW-induced production of the $\ell\ell\ell\ell'$ final state is carried out using p p col-
lisions at $\sqrt{s} = 13$ TeV recorded with the CMS detector at the LHC. The data set corresponds to
an integrated luminosity of 137 fb$^{-1}$ collected in 2016, 2017, and 2018. A discriminant based on
a matrix element likelihood approach (MELA) [12–16] is used to extract the signal significance
and to measure the cross sections for the EW and the EW+QCD production of the $\ell\ell\ell\ell'$ final
state in a fiducial volume. Finally, the selected $\ell\ell\ell\ell'$ events are used to constrain anomalous
quartic gauge couplings (aQGC) described in the effective field theory approach [17] by the operators T0, T1, and T2, as well as the neutral-current operators T8 and T9 [18].

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The first level of the CMS trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events of interest with a latency of 3.2 μs. The high-level trigger processor farm further decreases the event rate from around 100 kHz to less than 1 kHz, before data storage [19]. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [20].

3 Signal and background simulation

Several Monte Carlo (MC) event generators are used to simulate signal and background contributions. The simulated samples are employed to optimize the event selection, evaluate the
signal efficiency and acceptance, and to model the signal and irreducible background contributions in the signal extraction fit.

The EW production of two Z bosons and two final-state quarks, where the Z bosons decay leptonically, is simulated at leading order (LO) using MadGraph5_aMC@NLO v2.4.6 (abbreviated as MG5 in the following) \[21\]. The leptonic Z boson decays are simulated using MadSpin \[22\]. The contribution of electrons and muons from τ decays to the signal is very small and is therefore neglected. The sample includes triboson processes, where the Z boson pair is accompanied by a third vector boson that decays hadronically, as well as diagrams involving the quartic gauge coupling vertex. The predictions from this sample are cross-checked with those obtained from the LO generator PHANTOM v1.2.8 \[23\] with agreement in the yields and the distributions exploited for the signal extraction.

The leading QCD-induced production of two Z bosons in association with jets, whose contribution with two jets in the final state is referred to as q\(q'\) → ZZjj, is simulated at next-to-leading order (NLO) with MG5 with up to two extra parton emissions, and merged with the parton shower simulation using the FxFx scheme \[24\]. Next-to-next-to-leading order corrections calculated with MATRIX v1.0.0 \[25–27\] are applied as \(K\) factors, differentially as a function of the invariant mass of the ZZ system \(m_{ZZ}\). The resulting corrections range from 9%, at values of \(m_{ZZ}\) close to 180 GeV, to 5%, for high \(m_{ZZ}\) values. Additional NLO EW corrections are applied for \(m_{ZZ} > 2m_Z\), following the calculations from Ref. \[28\]. These corrections become larger with increasing values of \(m_{ZZ}\) and are below 5% for \(m_{ZZ} < 600\) GeV.

The interference between the EW and QCD diagrams is evaluated using dedicated samples produced with MG5 at LO, via the direct generation of the interference term between the two processes.

The loop-induced production of two Z bosons from a gluon-gluon (gg) initial state, whose contribution with two jets in the final state is referred to as gg → ZZjj, is simulated at LO with up to two extra parton emissions using MG5 by explicitly requiring a loop-induced process \[29\]. For the 1- and 2-jet contributions, a pp initial state instead of gg is specified in MG5 to also include initial-state radiation contributions where a gluon involved in the hard process is emitted from an initial quark. Finally, the samples with 0 to 2 extra partons are merged with parton shower simulation using the MLM matching scheme \[30, 31\]. An NLO/LO \(K\) factor, which is extracted from Refs. \[32, 33\], is used to normalize this process.

Background processes that contain four prompt, isolated leptons and additional jets in the final state, namely t\(t\)Z and VVZ \((V = W, Z)\), are simulated with MG5 at NLO.

The simulation of the aQGC processes is performed at LO using MG5 and employs matrix element reweighting to obtain a finely spaced grid for each of the five anomalous couplings probed by the analysis.

The PYTHIA 8.226 and 8.230 \[34\] package versions are used for parton showering, hadronization and the underlying event simulation, with parameters set by the CUETP8M1 tune \[35\] (CP5 tune \[36\]) for the 2016 (2017 and 2018) data-taking period. The NNPDF3.0 (NNPDF3.1) set of parton distribution functions, PDFs \[37\], is used for the 2016 (2017 and 2018) data-taking period. Unless specified otherwise, the simulated samples are normalized to the cross sections obtained from the respective event generator.

The detector response is simulated using a detailed description of the CMS detector implemented in the GEANT4 package \[38, 39\]. The simulated events are reconstructed using the same algorithms used for the data, and include additional interactions in the same and neigh-
boring bunch crossings, referred to as pileup. Simulated events are weighted so that the pileup distribution reproduces that observed in the data, which has an average of about 23 (32) interactions per bunch crossing in 2016 (2017 and 2018).

4 Event reconstruction and selection

The final state consists of at least two pairs of oppositely charged isolated leptons and at least two hadronic jets. The ZZ selection is similar to that used in the CMS $H \rightarrow ZZ \rightarrow \ell\ell\ell\ell'$ measurement [40].

The primary triggers require the presence of a pair of loosely isolated leptons, whose exact requirements depend on the data-taking year. Triggers requiring three leptons with low transverse momentum (p_T), as well as isolated single-electron and single-muon triggers, help to recover efficiency. The overall trigger efficiency for events that satisfy the ZZ selection described below is $>98\%$.

Events are reconstructed using a particle-flow algorithm [41] that identifies each individual particle with an optimized combination of all subdetector information. The candidate vertex with the largest value of summed physics-object p_T^2 is the primary pp interaction vertex. The physics objects are the jets, clustered using the jet finding algorithm [42, 43] with the tracks assigned to candidate vertices as inputs, and the associated missing transverse momentum (p_T^{miss}), taken as the negative vector sum of the p_T of those jets (which include the leptons).

Electrons are identified using a multivariate classifier, which includes observables sensitive to bremsstrahlung along the electron trajectory, the geometrical and energy-momentum compatibility between the electron track and the associated energy cluster in the electromagnetic calorimeter, the shape of the electromagnetic shower, isolation variables, and variables that discriminate against electrons originating from photon conversions [44].

Muons are reconstructed by combining information from the silicon tracker and the muon system [45]. The matching between the muon-system and tracker tracks proceeds either outside-in, starting from a track in the muon system, or inside-out, starting from a track in the silicon tracker. The muons are selected from the reconstructed muon track candidates by applying minimal requirements on the track in both the muon system and silicon tracker.

To further suppress electrons from photon conversions and muons originating from in-flight decays of hadrons, the three-dimensional impact parameter of each lepton track, computed with respect to the primary vertex position, is required to be less than four times the uncertainty in the impact parameter.

Leptons are required to be isolated from other particles in the event. The relative isolation is defined as

$$R_{\text{iso}} = \left[\sum_{\text{charged hadrons}} p_T + \max \left(0, \sum_{\text{neutral hadrons}} p_T + \sum_{\text{photons}} p_T - p_T^{\text{PU}} \right) \right] / p_T^\ell, \quad (1)$$

where the scalar sums run over the charged and neutral hadrons, as well as the photons, in a cone defined by $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.3$ around the lepton trajectory, where η and ϕ denote the azimuthal angle and pseudorapidity of the particle, respectively. To minimize the contribution of charged particles from pileup to the isolation calculation, charged hadrons are included only if they originate from the primary vertex. The contribution of neutral particles from pileup p_T^{PU} is evaluated for electrons with the jet area method described in Ref. [46]. For muons, p_T^{PU} is taken as half the p_T sum of all charged particles in the cone originating from
pileup vertices. The factor of one-half accounts for the expected ratio of charged to neutral particle production in hadronic interactions. Muons with $R_{\text{iso}} < 0.35$ are considered isolated, whereas for electrons, the R_{iso} variable is included in the multivariate classifier.

The lepton reconstruction and selection efficiency is measured in bins of p_T^ℓ and η^ℓ using the tag-and-probe technique \cite{47} on events with single Z bosons. The measured efficiencies are used to correct the simulation. The muon (electron) momentum scales are calibrated in bins of p_T^ℓ and η^ℓ using the J/ψ meson and Z boson (Z boson only) leptonic decays.

Jets are reconstructed from particle-flow candidates using the anti-k_T clustering algorithm \cite{42}, as implemented in the FASTJET package \cite{43}, with a distance parameter of 0.4. To ensure a good reconstruction efficiency and to reduce the instrumental background, as well as the contamination from pileup, loose identification criteria based on the multiplicities and energy fractions carried by charged and neutral hadrons are imposed on jets \cite{48}. Only jets with $|\eta| < 4.7$ are considered.

Jet energy corrections are extracted from data and simulated events to account for the effects of pileup, uniformity of the detector response, and residual differences between the jet energy scale in data and simulation. The jet energy scale calibration \cite{49, 50} relies on corrections parameterized in terms of the uncorrected p_T and η of the jet, and is applied as a multiplicative factor, scaling the four-momentum vector of each jet. To ensure that jets are well measured and to reduce the pileup contamination, all jets must have a corrected $p_T > 30$ GeV. Jets from pileup are further rejected using pileup jet identification criteria based on the compatibility of the associated tracks with the primary vertex inside the tracker acceptance and on the topology of the jet shape in the forward region \cite{51}.

A signal event must contain at least two Z candidates, each formed from pairs of isolated electrons or muons of opposite charges. Only reconstructed electrons (muons) with $p_T > 7$ (5) GeV are considered. At least two leptons are required to have $p_T > 10$ GeV and at least one is required to have $p_T > 20$ GeV. All leptons are required to be separated by $\Delta R (\ell_1, \ell_2) > 0.02$, and electrons are required to be separated from muons by $\Delta R (e, \mu) > 0.05$.

Within each event, all permutations of leptons giving a valid pair of Z candidates are considered. For each ZZ candidate, the lepton pair with the invariant mass closest to the nominal Z boson mass is denoted Z_1. The other dilepton candidate is denoted Z_2. Both m_{Z_1} and m_{Z_2} are required to be in the range 60–120 GeV. All pairs of oppositely charged leptons that can be built from the ZZ candidate, regardless of flavor, are required to satisfy $m_{\ell\ell'} > 4$ GeV to suppress backgrounds from hadron decays. If multiple ZZ candidates in an event pass this selection, the one with the largest scalar p_T sum of the Z_2 leptons is retained. Finally, the invariant mass of the four leptons is required to satisfy $m_{4\ell} > 180$ GeV. This selection is referred to as the ZZ selection.

The search for the EW production of two Z bosons is performed on a subset of events that pass the ZZ selection, namely those with at least two jets. The jets are required to be separated from the leptons of the ZZ candidate by $\Delta R > 0.4$. The two highest p_T jets are referred to as the tagging jets and their invariant mass (m_ℓ) is required to be > 100 GeV. This selection is referred to as the ZZjj inclusive selection and is used to measure the signal significance, the total fiducial cross sections, and to perform the aQGC search. Additionally, two VBS signal subregions are defined for fiducial cross section measurements in signal-enriched regions: a loose VBS signal-enriched region that requires $m_{jj} > 400$ GeV and $|\Delta\eta_{jj}| > 2.4$ and corresponds to a signal purity of $\approx 20\%$, and a tight VBS signal-enriched region that requires $m_{jj} > 1$ TeV and $|\Delta\eta_{jj}| > 2.4$ and corresponds to a signal purity of $\approx 50\%$. Finally, a background control region is defined from
events that satisfy the ZZjj inclusive selection but fail at least one of the criteria that define the loose VBS signal-enriched region.

5 Background estimation

The dominant background arises from the production of two Z bosons in association with QCD-induced jets. The yield and shape of the matrix element discriminant for this irreducible background are taken from simulation, but ultimately constrained by the data in the fit that extracts the EW signal, as described in Section 7. Other irreducible backgrounds arise from processes that produce four genuine high-\(p_T\) isolated leptons, pp → ttZ+jets and pp → VVZ+jets. These small contributions feature kinematic distributions similar to that of the dominant background and are estimated from simulation.

Reducible backgrounds arise from processes in which heavy-flavor jets produce secondary leptons or from processes in which jets are misidentified as leptons. They are referred to as Z+jets and are predominately composed of Z+jets events, with minor contributions from tt+jets and WZ+jets processes. The lepton identification and isolation requirements significantly suppress this background, which is only 2–3% after the ZZjj inclusive selection and is even smaller in the signal region. This reducible contribution is estimated from data by weighting events from a control region by a lepton misidentification rate, which is also determined from data. Events in the control region satisfy the ZZjj inclusive selection, with the exception that the Z_2 is composed of same-sign same-flavor leptons (SS-SF). The SS-SF leptons are required to originate from the primary vertex without any identification or isolation requirement.

The lepton misidentification rate is measured by selecting events that feature one Z boson candidate and a third reconstructed lepton. The fraction of events for which the third lepton satisfies the identification and isolation criteria is the lepton misidentification rate. The misidentification rates are evaluated using the tight requirement |\(m_{Z_1} - m_Z\)| < 7 GeV to reduce the contribution from asymmetric photon conversions, and \(p_T^{\text{miss}} < 25\) GeV to suppress the WZ contribution.

We validate the procedure using a second control region from opposite-sign same-flavor leptons that fail the selection criteria. The procedure is identical to that used in Ref. [40].

6 Systematic uncertainties

The uncertainties in the QCD renormalization and factorization scales for the signal and in the jet energy scale are the two dominant systematic uncertainties in the measurement. The impact of the variation from each source of uncertainty is summarized below. All quoted ranges correspond to variations for the different leptonic final states and fiducial analysis regions.

Renormalization and factorization scale uncertainties are evaluated by varying both scales independently. The following variations from the default scale choice \(\mu_R = \mu_F \equiv \mu_0\) are considered: \([\mu_F, \mu_R] = [\mu_0, 2\mu_0], [\mu_0, 2\mu_0], [\mu_0/2, \mu_0], [\mu_0/2, \mu_0], [2\mu_0, \mu_0], [2\mu_0, \mu_0], [\mu_0/2, \mu_0/2], [2\mu_0, 2\mu_0], [2\mu_0, 2\mu_0]\), taking the largest variation as the systematic uncertainty, which is about 6% for the EW signal, 11% for the interference term, and ranges from 10 to 12% for the q\(\bar{q}\) → ZZjj QCD background, which is described at a higher QCD order.

Since the uncertainty in gg → ZZjj that relates to missing higher order corrections are accounted for using a K factor, an uncertainty in the normalization of 11% is used, as derived from Refs. [32, 33]. The PDF and related \(\alpha_S\) variations are evaluated from the variations of the
respective eigenvalues set following the NNPDF prescription \[37\], and are 3.2\% (6.6\%) for the \(q\overline{q} \to ZZjj\) QCD background (EW signal). Although the PDFs used are different in the various years (see Section \[3\]), the associated uncertainties are very similar. Given the small dependence on the discriminant value, a constant value of 3–6\% is used for these uncertainties, depending on the sample considered.

Although in all simulated samples additional partons are described at the LO in matrix-elements or better, we investigate residual uncertainties from parton-shower modeling. Following the prescription from Ref. \[52\], the renormalization scales are varied independently for the initial- and final-state radiations by factors of 0.5 and 2, and alternative samples are simulated using \textsc{Herwig} 7 \[53\] with the CH3 tune \[54\]. The largest deviation from the nominal value is used as the uncertainty. On average it ranges from 4\%, for the \(gg \to ZZjj\) background and EW signal, to 5\% for \(q\overline{q} \to ZZjj\), and is up to 16\% at the lowest values of \(K_D\).

The impact of the jet energy scale uncertainty ranges from 4.9 to 11.4\% (0.7 to 1.2\%) for the \(q\overline{q} \to ZZjj\) QCD background (EW signal) and the impact of the jet energy resolution uncertainty \[50\] is 2.2–6.3\% (0.2–0.4\%). The uncertainty in the trigger as well as the lepton reconstruction and selection efficiencies ranges from 2.5–9\%. The uncertainty in the integrated luminosity is 2.3–2.5\% depending on the data-taking period \[55–57\]. The uncertainty in the estimate of the reducible background from control samples ranges from 33\% to 45\%, depending on the final state. This uncertainty includes the limited number of events in the control regions as well as differences in background composition between the control regions used to determine the lepton misidentification rates and those used to estimate the yield in the signal region. The uncertainty from the limited size of the MC samples amounts to 2.5–4.2\% for the \(q\overline{q} \to ZZjj\) QCD background, 3.2\% for the \(gg \to ZZjj\) QCD background, and is < 1\% for the EW signal. For \(t\overline{t}Z\) and VVZ, the limited MC sample size is the dominant source of uncertainty, ranging from 19 to 24\%, while theory uncertainties range 9–12\%.

7 Search for the EW production of ZZ with two jets

After the ZZjj inclusive selection, the expected EW signal purity is about 6\% with 85\% of events coming from the QCD-induced production. Additional kinematic selections are therefore necessary to enhance the contribution from EW production. Table \[1\] presents the expected and observed event yields for the ZZjj inclusive selection, as well as for the loose and tight VBS signal-enriched selections.

The determination of the signal strength for the EW production, i.e., the ratio of the measured cross section to the SM expectation \(\mu = \sigma / \sigma_{SM}\), utilizes a matrix element discriminant \((K_D)\) to separate the signal and the QCD background. The discriminant is constructed following the approach described in Refs. \[13–15\]: it utilizes matrix element calculations for the EW ZZjj and \(q\overline{q} \to ZZjj\) processes from \textsc{Mcfm} \[58\] and employs both the kinematical distributions of leptons and jets to separate signal from background.

The performance of the \(K_D\) discriminant was checked against a multivariate discriminant based on a boosted decision tree (BDT) employing seven input variables \((m_{jj}, \Delta \eta_{jj}, m_4, \eta_{Z_1}, \eta_{Z_2}, R(p_T^{\text{hard}}), R(p_T^{\text{jets}}))\) as defined and used in Ref. \[11\]. Furthermore, a BDT using up to 28 input variables, including the above as well as those used in Ref. \[7\], was studied and no significant gain was obtained. This confirms that the \(K_D\) discriminant captures the differences between the kinematical distributions of signal and background events.

Figure \[2\] presents the \(m_{jj}\) and \(\Delta \eta_{jj}\) distributions in the ZZjj inclusive region. The distribution
Table 1: Predicted signal and background yields with total uncertainties, and observed number of events for the ZZjj inclusive selection and for the VBS loose and tight signal-enriched selections. Integrated luminosities per data set are reported in parentheses.

Year	Signal (EW ZZjj)	Z+X	qT → ZZjj	gg → ZZjj	tZ+VVZ	Total predicted	Data
2016 (36 fb⁻¹)	6.3 ± 0.7	2.8 ± 1.1	65.6 ± 9.5	13.5 ± 2.0	8.4 ± 2.2	96 ± 13	95
2017 (41 fb⁻¹)	7.4 ± 0.8	2.4 ± 0.9	77.7 ± 11.2	20.3 ± 3.0	9.6 ± 2.5	117 ± 15	111
2018 (60 fb⁻¹)	10.4 ± 1.1	4.1 ± 1.6	98.3 ± 14.2	29.1 ± 4.3	14.2 ± 3.8	156 ± 20	159
All (137 fb⁻¹)	24.1 ± 2.5	9.4 ± 3.6	241.5 ± 34.9	62.9 ± 9.3	32.2 ± 8.5	370 ± 48	365

VBS signal-enriched (loose)

Year	Signal (EW ZZjj)	Z+X	qT → ZZjj	gg → ZZjj	tZ+VVZ	Total predicted	Data
2016 (36 fb⁻¹)	4.2 ± 0.4	0.4 ± 0.2	9.7 ± 1.4	3.2 ± 0.5	1.1 ± 0.3	18.7 ± 2.3	21
2017 (41 fb⁻¹)	4.9 ± 0.5	0.5 ± 0.2	13.5 ± 1.9	5.5 ± 0.8	1.2 ± 0.3	25.5 ± 3.1	17
2018 (60 fb⁻¹)	6.9 ± 0.7	0.8 ± 0.3	14.9 ± 2.2	8.3 ± 1.2	1.7 ± 0.5	32.6 ± 3.9	30
All (137 fb⁻¹)	16.0 ± 1.7	1.6 ± 0.6	38.1 ± 5.5	17.0 ± 2.5	4.1 ± 1.1	76.8 ± 9.3	68

VBS signal-enriched (tight)

Year	Signal (EW ZZjj)	Z+X	qT → ZZjj	gg → ZZjj	tZ+VVZ	Total predicted	Data
2016 (36 fb⁻¹)	2.4 ± 0.3	0.10 ± 0.04	1.3 ± 0.2	0.7 ± 0.1	0.24 ± 0.06	4.8 ± 0.5	4
2017 (41 fb⁻¹)	2.7 ± 0.3	0.05 ± 0.02	1.9 ± 0.3	1.2 ± 0.2	0.14 ± 0.04	6.0 ± 0.7	3
2018 (60 fb⁻¹)	3.9 ± 0.4	0.17 ± 0.06	2.0 ± 0.3	1.5 ± 0.2	0.30 ± 0.08	7.8 ± 0.9	10
All (137 fb⁻¹)	9.0 ± 1.0	0.32 ± 0.12	5.3 ± 0.8	3.3 ± 0.5	0.68 ± 0.18	18.6 ± 2.1	17

of the K_D discriminant for all events in the ZZjj inclusive selection is shown in Fig. 3. The high signal purity contribution is visible at large discriminant values.

The distribution of the K_D discriminant for the backgrounds is validated in the background control region defined by selecting events with $m_{jj} < 400$ GeV or $|\Delta \eta_{jj}| < 2.4$. A good agreement is observed between the data and the SM expectation.

![Figure 2: Distribution of m_{jj}](image1)

The K_D discriminant distribution for events in the ZZjj inclusive selection is used to extract the significance and signal strength of the EW signal via a maximum-likelihood fit. The expected distributions for the signal and the irreducible backgrounds are taken from the simulation while the reducible background is estimated from the data. The shape and normalization of each distribution are allowed to vary in the fit within the respective uncertainties. This ap-
Figure 3: Postfit distributions of the matrix element discriminant for events satisfying the ZZjj inclusive selection. Points represent the data, filled histograms the fitted signal and background contributions. The gray bands represent the uncertainties obtained from the fit covariance matrix. In the lower panel, points show the ratio of the number of events in the data to the total number of background events, with the red line indicating the ratio of the fitted total distribution to its background-only component. The observed significance is indicated in the lower panel.

approach constrains the yield of the QCD-induced production from the background-dominated region of the discriminant distribution. The signal strength of the EW signal in the ZZjj inclusive selection is also determined from the same fit. Separate fits are used to determine the EW signal strengths in the other two analysis regions. Fits that only use the event counts in the three regions are performed to determine the signal strengths of the EW+QCD ZZjj production.

The systematic uncertainties in shape and normalization are treated as nuisance parameters in the fits and profiled [59]. The size of the interference between the EW and QCD production is very small (9% and 3.5% of the EW signal in the ZZjj inclusive and VBS-enriched tight region, respectively). Its effect is included in the EW signal fits via a square-root scaling of the signal strength, approximated with a linear expansion to simplify the fitting technique, while it is neglected in the EW+QCD fits.

The measured signal strengths from the fits are used to determine the fiducial cross sections for the EW and the EW+QCD production. The fiducial volumes are almost identical to the selections imposed at the reconstruction level, and are detailed in Table 2. The generator-level lepton momenta are corrected by adding the momenta of generator-level photons within $\Delta R(\ell, \gamma) < 0.1$. The kinematic requirements to select Z boson candidates and the final ZZjj candidate are the same as those used for the reconstruction-level analysis.

Table 3 reports the measured cross sections and their SM predictions in the three ZZjj fiducial
Table 2: Particle-level selections used to define the fiducial regions for EW and EW+QCD cross sections.

Particle type	Selection		
ZZjj inclusive	$p_T(\ell_1) > 20\text{ GeV}$		
	$p_T(\ell_2) > 10\text{ GeV}$		
	$p_T(\ell) > 5\text{ GeV}$		
	$	\eta(\ell)	< 2.5$
	$60 < m(\ell\ell) < 120\text{ GeV}$		
	$m(4\ell) > 180\text{ GeV}$		
Leptons	at least 2		
	$p_T(j) > 30\text{ GeV}$		
	$	\eta(j)	< 4.7$
	$m_{jj} > 100\text{ GeV}$		
	$\Delta R(\ell,j) > 0.4$ for each ℓ,j		
ZZ and ZZ	VBS-enriched (loose)		
Jets	ZZjj inclusive +		
	$	\Delta\eta_{jj}	> 2.4$
	$m_{jj} > 400\text{ GeV}$		
	VBS-enriched (tight)		
Jets	ZZjj inclusive +		
	$	\Delta\eta_{jj}	> 2.4$
	$m_{jj} > 1\text{ TeV}$		

regions. For the SM predictions we report those extracted from generated events in MC samples adopted for the analysis, including the relative K factors where applicable. For the EW ZZjj prediction, in addition, we compare to higher-order calculations at NLO in QCD [60, 61] and with a theoretical prediction at LO in QCD, but including NLO EW corrections [62]. Uncertainties in all SM predictions come from variations of the factorization and renormalization scales. PDF+α_S variation uncertainties are summed in quadrature, except from the prediction from Ref. [62] for which only the uncertainty in the scale variation is available.

The measured (expected) EW signal strength in the ZZjj inclusive region is $\mu_{\text{EW}} = 1.22^{+0.47}_{-0.40}$ (1.00$^{+0.44}_{-0.36}$). In the same region the measured (expected) EW+QCD signal strength is $\mu_{\text{EW+QCD}} = 0.99^{+0.13}_{-0.12}$ (1.00$^{+0.13}_{-0.12}$). To quantify the significance of the EW signal, we compute the probability of the background-only hypothesis (p-value) as the tail integral of the test statistic evaluated at $\mu_{\text{EW}} = 0$ under the asymptotic approximation [63]. The background-only hypothesis is excluded with a significance of 4.0 (3.5 expected) standard deviations.

8 Limits on anomalous quartic gauge couplings

In an effective field theory approach to physics beyond the Standard Model, dimension-8 operators stem from covariant derivatives of the Higgs doublet and from charged and neutral field strength tensors associated to gauge bosons. The latter generate eight independent operators, corresponding to couplings of the transverse degrees of freedom (T) of the gauge fields. The ZZjj channel is particularly sensitive to the charged-current operators T0, T1, and T2, as well as the neutral-current operators T8 and T9 [18]. The $m_{4\ell}$ distribution is used to constrain
Figure 4: Postfit distributions of the four-lepton invariant mass for f_{T9}/Λ^4 and for events satisfying the ZZjj inclusive selection. Points represent the data, filled histograms the fitted signal and background contributions, and the gray band the uncertainties derived from the fit covariance matrix. The expected distribution for an example value of $f_{T9}/\Lambda^4 = 2\text{ TeV}^{-4}$ is also shown. The last bin includes all contributions with $m_{4\ell} > 1200\text{ GeV}$.

Table 3: Measured cross sections and corresponding SM predictions in the three fiducial regions. The reported SM predictions include those extracted from generated events in MC samples adopted for the analysis (LO), as well as higher-order calculations at NLO in QCD (NLO QCD).

Perturbative order	SM σ (fb)	Measured σ (fb)
ZZjj inclusive		
LO	0.275 ± 0.021	0.33^{+0.11}_{-0.10} (stat) ^{+0.04}_{-0.03} (syst)
EW	0.278 ± 0.017	0.242^{+0.015}_{-0.013}
NLO QCD	5.35 ± 0.51	5.29^{+0.31}_{-0.30} (stat) ± 0.47 (syst)
NLO EW	0.221 ± 0.014	0.20^{+0.05}_{-0.04} (stat) ± 0.02 (syst)
EW+QCD	0.221 ± 0.014	0.20^{+0.05}_{-0.04} (stat) ± 0.02 (syst)

VBS-enriched (loose)

EW	0.186 ± 0.015	0.197 ± 0.013
NLO QCD	1.21 ± 0.09	1.80^{+0.070}_{-0.060} (stat) ^{+0.021}_{-0.012} (syst)
EW+QCD	0.104 ± 0.008	0.108 ± 0.007

VBS-enriched (tight)

| EW | 0.104 ± 0.008 | 0.09^{+0.04}_{-0.03} (stat) ± 0.02 (syst) |
| NLO QCD | 0.221 ± 0.014 | 0.20^{+0.05}_{-0.04} (stat) ± 0.02 (syst) |
the aQGC parameters f_{T_i}/Λ^4, corresponding to the Wilson coefficients of the aforementioned operators, under the hypothesis of absence of anomalies in triple gauge couplings.

Figure 4 shows the expected $m_{4\ell}$ distributions in the ZZjj inclusive region, with postfit normalizations for the SM and for an example aQGC scenario, as well as the observed distribution in the data. The expected yield enhancement at large values of $m_{4\ell}$ exhibits a quadratic dependence on the anomalous couplings, and a parabolic function is fitted to the per-mass bin yields, allowing for an interpolation between the discrete coupling parameters of the simulated aQGC signals. The statistical analysis employs the same methodology used for the signal strength, including the profiling of the systematic uncertainties. using two different approaches, the distributions of the SM processes, including the EW component, are either normalized to their measured values in the EW signal extraction (as discussed in Section 7) or to their expected values. The Wald Gaussian approximation and Wilks’ theorem are used to derive 2σ confidence level (CL) intervals on the aQGC parameters [63–65]. The measurement is statistically limited.

Table 4: Expected and observed limits of the 2σ CL intervals on the couplings of the quartic operators $T_0, T_1, T_2, T_8,$ and T_9. Observed limits in parentheses are obtained by using the prefit normalization of SM processes. The unitarity bounds are also listed. All coupling parameter limits are in TeV$^{-4}$, while the unitarity bounds are in TeV.

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
f_{T_0}/Λ^4	-0.37	0.35	-0.24 (-0.26)	0.22 (0.24)	2.4
f_{T_1}/Λ^4	-0.49	0.49	-0.31 (-0.34)	0.31 (0.34)	2.6
f_{T_2}/Λ^4	-0.98	0.95	-0.63 (-0.69)	0.59 (0.65)	2.5
f_{T_8}/Λ^4	-0.68	0.68	-0.43 (-0.47)	0.43 (0.48)	1.8
f_{T_9}/Λ^4	-1.5	1.5	-0.92 (-1.02)	0.92 (1.02)	1.8

Table 4 lists the individual lower and upper limits obtained by setting all other anomalous couplings to zero. The unitarity bounds are determined using the results from Ref. [66] as the scattering energy $m_{4\ell}$ at which the aQGC strength set equal to the observed limit would result in a scattering amplitude that violates unitarity.

9 Summary

A search was performed for the electroweak production of two jets in association with two Z bosons in the four-lepton final state in proton-proton collisions at 13 TeV. The data correspond to an integrated luminosity of 137 fb$^{-1}$ collected with the CMS detector at the LHC.

The electroweak production of two jets in association with a pair of Z bosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The measured fiducial cross section is $\sigma_{\text{fid}} = 0.33^{+0.11}_{-0.10} \text{ (stat)}^{+0.04}_{-0.03} \text{ (syst)}$ fb, which is consistent with the standard model prediction of 0.275 ± 0.021 fb.

Limits on anomalous quartic gauge couplings are set at 95% confidence level in terms of effective field theory operators, with units in TeV$^{-4}$:

$$-0.24 < f_{T_0}/\Lambda^4 < 0.22$$
$$-0.31 < f_{T_1}/\Lambda^4 < 0.31$$
$$-0.63 < f_{T_2}/\Lambda^4 < 0.59$$
$$-0.43 < f_{T_8}/\Lambda^4 < 0.43$$
$$-0.92 < f_{T_9}/\Lambda^4 < 0.92$$
These are the most stringent limits to date on the neutral current operators T8 and T9.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences; the New National Excellence Program ÚNKP, the NKFIH research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the Italian and Serbian Ministries for Foreign Affairs and International Cooperation (MAECI/MFA), grant n. RS19MO06 (Italy-Serbia); the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Education, grant no. 14.W03.31.0026 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program and “Nauka” Project PSWW-2020-0008 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia Maria de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University
References

[1] P. W. Higgs, “Spontaneous symmetry breakdown without massless bosons”, Phys. Rev. 145 (1966) 1156, [doi:10.1103/PhysRev.145.1156]

[2] F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Rev. Lett. 13 (1964) 321, [doi:10.1103/PhysRevLett.13.321]

[3] D. Rainwater, R. Szalapski, and D. Zeppenfeld, “Probing color singlet exchange in Z+2-jet events at the CERN LHC”, Phys. Rev. D 54 (1996) 6680, [doi:10.1103/PhysRevD.54.6680 arXiv:hep-ph/9605444]

[4] V. A. Khoze, M. G. Ryskin, W. J. Stirling, and P. H. Williams, “A Z-monitor to calibrate Higgs production via vector boson fusion with rapidity gaps at the LHC”, Eur. Phys. J. C 26 (2003) 429, [doi:10.1140/epjc/s2002-01069-2 arXiv:hep-ph/0207365]

[5] ATLAS Collaboration, “Observation of electroweak production of a same-sign W boson pair in association with two jets in pp collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector”, Phys. Rev. Lett. 123 (2019) 161801, [doi:10.1103/PhysRevLett.123.161801 arXiv:1906.03203]

[6] ATLAS Collaboration, “Observation of electroweak \(W^+Z \) boson pair production in association with two jets in pp collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector”, Phys. Lett. B 793 (2019) 469, [doi:10.1016/j.physletb.2019.05.012 arXiv:1812.09740]

[7] ATLAS Collaboration, “Observation of electroweak production of two jets and a Z-boson pair with the ATLAS detector at the LHC”, (2020). [arXiv:2004.10612 Submitted to Nature Phys.]

[8] ATLAS Collaboration, “Search for the electroweak diboson production in association with a high-mass dijet system in semileptonic final states in pp collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector”, Phys. Rev. D 100 (2019) 032007, [doi:10.1103/PhysRevD.100.032007 arXiv:1905.07714]

[9] CMS Collaboration, “Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at \(\sqrt{s} = 13 \) TeV”, Phys. Rev. Lett. 120 (2018) 081801, [doi:10.1103/PhysRevLett.120.081801 arXiv:1709.05822]

[10] CMS Collaboration, “Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at \(\sqrt{s} = 13 \) TeV”, Phys. Lett. B 809 (2020) 135710, [doi:10.1016/j.physletb.2020.135710 arXiv:2005.01173]

[11] CMS Collaboration, “Measurement of vector boson scattering and constraints on anomalous quartic couplings from events with four leptons and two jets in proton-proton collisions at \(\sqrt{s} = 13 \) TeV”, Phys. Lett. B 774 (2017) 682, [doi:10.1016/j.physletb.2017.10.020 arXiv:1708.02812]
[12] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, *Phys. Lett. B* **716** (2012) 30, doi:10.1016/j.physletb.2012.08.021 arXiv:1207.7235

[13] S. Bolognesi et al., “On the spin and parity of a single-produced resonance at the LHC”, *Phys. Rev. D* **86** (2012) 095031, doi:10.1103/PhysRevD.86.095031 arXiv:1208.4018

[14] Y. Gao et al., “Spin determination of single-produced resonances at hadron colliders”, *Phys. Rev. D* **81** (2010) 075022, doi:10.1103/PhysRevD.81.075022 arXiv:1001.3396 [Erratum: doi:10.1103/PhysRevD.81.079905].

[15] I. Anderson et al., “Constraining anomalous HVV interactions at proton and lepton colliders”, *Phys. Rev. D* **89** (2014) 035007, doi:10.1103/PhysRevD.89.035007 arXiv:1309.4819

[16] A. V. Gritsan, R. Röntsch, M. Schulze, and M. Xiao, “Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques”, *Phys. Rev. D* **94** (2016) 055023, doi:10.1103/PhysRevD.94.055023 arXiv:1606.03107

[17] C. Degrande et al., “Effective field theory: A modern approach to anomalous couplings”, *Annals Phys.* **335** (2013) 21, doi:10.1016/j.aop.2013.04.016 arXiv:1205.4231

[18] O. J. P. Éboli, M. C. Gonzalez-Garcia, and J. K. Mizukoshi, “pp → jje±μ±νν and jje±μ∓νν at $O(\alpha^6)$ and $O(\alpha^4\alpha_s^2)$ for the study of the quartic electroweak gauge boson vertex at CERN LHC”, *Phys. Rev. D* **74** (2006) 073005, doi:10.1103/PhysRevD.74.073005 arXiv:hep-ph/0606118.

[19] CMS Collaboration, “The CMS trigger system”, *JINST* **12** (2017) P01020, doi:10.1088/1748-0221/12/01/P01020 arXiv:1609.02366

[20] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[21] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, *JHEP* **07** (2014) 079, doi:10.1007/JHEP07(2014)079 arXiv:1405.0301

[22] P. Artoisenet, R. Frederix, O. Mattelaer, and R. Rietkerk, “Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations”, *JHEP* **03** (2013) 015, doi:10.1007/JHEP03(2013)015 arXiv:1212.3460

[23] A. Ballestrero et al., “PHANTOM: A Monte Carlo event generator for six parton final states at high energy colliders”, *Comput. Phys. Commun.* **180** (2009) 401, doi:10.1016/j.cpc.2008.10.005 arXiv:0801.3359

[24] R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, *JHEP* **12** (2012) 061, doi:10.1007/JHEP12(2012)061 arXiv:1209.6215

[25] M. Grazzini, S. Kallweit, and D. Rathlev, “ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD”, *Phys. Lett. B* **750** (2015) 407, doi:10.1016/j.physletb.2015.09.055 arXiv:1507.06257
[26] M. Grazzini, S. Kallweit, and M. Wiesemann, “Fully differential NNLO computations with MATRIX”, Eur. Phys. J. C 78 (2018) 537, doi:10.1140/epjc/s10052-018-5771-7, arXiv:1711.06631

[27] S. Kallweit and M. Wiesemann, “ZZ production at the LHC: NNLO predictions for 2ℓ2ν and 4ℓ signatures”, Phys. Lett. B 786 (2018) 382, doi:10.1016/j.physletb.2018.10.016, arXiv:1806.05941

[28] S. Gieseke, T. Kasprzik, and J. H. Kuehn, “Vector-boson pair production and electroweak corrections in HERWIG++”, Eur. Phys. J. C 74 (2014) 2988, doi:10.1140/epjc/s10052-014-2988-y, arXiv:1401.3964

[29] C. Li et al., “Loop-induced ZZ production at the LHC: an improved description by matrix-element matching”, (2020). arXiv:2006.12860

[30] J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, doi:10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569

[31] J. Alwall, S. de Visscher, and F. Maltoni, “QCD radiation in the production of heavy colored particles at the LHC”, JHEP 02 (2009) 017, doi:10.1088/1126-6708/2009/02/017, arXiv:0810.5350

[32] F. Caola, K. Melnikov, R. Röntsch, and L. Tancredi, “QCD corrections to ZZ production in gluon fusion at the LHC”, Phys. Rev. D 92 (2015) 094028, doi:10.1103/PhysRevD.92.094028, arXiv:1509.06734

[33] F. Caola et al., “QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC”, JHEP 07 (2016) 087, doi:10.1007/JHEP07(2016)087, arXiv:1605.04610

[34] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012

[35] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, doi:10.1140/epjc/s10052-016-3989-x, arXiv:1512.00815

[36] CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, doi:10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179

[37] NNPDF Collaboration, “Parton distributions for the LHC run II”, JHEP 04 (2015) 040, doi:10.1007/JHEP04(2015)040, arXiv:1410.8849

[38] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8

[39] J. Allison et al., “GEANT4 developments and applications”, IEEE Trans. Nucl. Sci. 53 (2006) 270, doi:10.1109/TNS.2006.869826

[40] CMS Collaboration, “Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at √s = 13 TeV”, JHEP 11 (2017) 047, doi:10.1007/JHEP11(2017)047, arXiv:1706.09936
[41] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.

[42] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[43] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[44] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, JINST 10 (2015) P06005, doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.

[45] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s} = 13$ TeV”, JINST 13 (2018) P06015, doi:10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.

[46] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, Phys. Lett. B 659 (2008) 119, doi:10.1016/j.physletb.2007.09.077, arXiv:0707.1378.

[47] CMS Collaboration, “Measurements of inclusive W and Z cross sections in pp collisions at $\sqrt{s} = 7$ TeV”, JHEP 01 (2011) 080, doi:10.1007/JHEP01(2011)080, arXiv:1012.2466.

[48] CMS Collaboration, “Jet algorithms performance in 13 TeV data”, CMS Physics Analysis Summary CMS-PAS-JME-16-003, 2017.

[49] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, JINST 6 (2011) P11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.

[50] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.

[51] CMS Collaboration, “Pileup mitigation at CMS in 13 TeV data”, JINST 15 (2020) P09018, doi:10.1088/1748-0221/15/09/P09018, arXiv:2003.00503.

[52] S. Mrenna and P. Skands, “Automated Parton-Shower Variations in Pythia 8”, Phys. Rev. D 94 (2016) 074005, doi:10.1103/PhysRevD.94.074005, arXiv:1605.08352.

[53] J. Bellm et al., “Herwig 7.0/Herwig++ 3.0 release note”, Eur. Phys. J. C 76 (2016) 196, doi:10.1140/epjc/s10052-016-4018-8, arXiv:1512.01178.

[54] CMS Collaboration, “Extraction and validation of a set of HERWIG 7 tunes from CMS underlying-event measurements”, CMS Physics Analysis Summary CMS-PAS-GEN-19-001, 2020.

[55] CMS Collaboration, “CMS luminosity measurements for the 2016 data-taking period”, Technical Report CMS-PAS-LUM-17-001, 2017.

[56] CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at $\sqrt{s} = 13$ TeV”, Technical Report CMS-PAS-LUM-17-004, 2018.
[57] CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at \(\sqrt{s} = 13 \text{ TeV} \)”, Technical Report CMS-PAS-LUM-18-002, 2019.

[58] J. M. Campbell and R. K. Ellis, “MCFM for the Tevatron and the LHC”, *Nucl. Phys. B Proc. Suppl.* **205-206** (2010) 10, \href{https://doi.org/10.1016/j.nuclphysbps.2010.08.011}{doi:10.1016/j.nuclphysbps.2010.08.011}, \href{https://arxiv.org/abs/1007.3492}{arXiv:1007.3492}.

[59] ATLAS and CMS Collaborations, LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, CMS-NOTE-2011-005; ATL-PHYS-PUB-2011-11, 2011.

[60] B. Jaeger, A. Karlberg, and G. Zanderighi, “Electroweak ZZ\(jj\) production in the Standard Model and beyond in the POWHEG-BOX V2”, *JHEP* **03** (2014) 141, \href{https://doi.org/10.1007/JHEP03(2014)141}{doi:10.1007/JHEP03(2014)141}, \href{https://arxiv.org/abs/1312.3252}{arXiv:1312.3252}.

[61] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, *JHEP* **06** (2010) 043, \href{https://doi.org/10.1007/JHEP06(2010)043}{doi:10.1007/JHEP06(2010)043}, \href{https://arxiv.org/abs/1002.2581}{arXiv:1002.2581}.

[62] A. Denner, R. Franken, M. Pellen, and T. Schmidt, “NLO QCD and EW corrections to vector-boson scattering into ZZ at the LHC”, (2020). \href{https://arxiv.org/abs/2009.00411}{arXiv:2009.00411}.

[63] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, *Eur. Phys. J. C* **71** (2011) 1554, \href{https://doi.org/10.1140/epjc/s10052-011-1554-0}{doi:10.1140/epjc/s10052-011-1554-0}, \href{https://arxiv.org/abs/1007.1727}{arXiv:1007.1727} [Erratum: \href{https://doi.org/10.1140/epjc/s10052-013-2501-z}{doi:10.1140/epjc/s10052-013-2501-z}].

[64] T. Junk, “Confidence level computation for combining searches with small statistics”, *Nucl. Instrum. Meth. A* **434** (1999) 435, \href{https://doi.org/10.1016/S0168-9002(99)00498-2}{doi:10.1016/S0168-9002(99)00498-2}, \href{https://arxiv.org/abs/hep-ex/9902006}{arXiv:hep-ex/9902006}.

[65] A. L. Read, “Presentation of search results: the CL\(_s\) technique”, *J. Phys. G* **28** (2002) 2693, \href{https://doi.org/10.1088/0954-3899/28/10/313}{doi:10.1088/0954-3899/28/10/313}.

[66] E. Almeida da Silva, O. J. P. Eboli, and M. C. Gonzalez-Garcia, “Unitarity constraints on anomalous quartic couplings”, *Phys. Rev. D* **101** (2020) 113003, \href{https://doi.org/10.1103/PhysRevD.101.113003}{doi:10.1103/PhysRevD.101.113003}, \href{https://arxiv.org/abs/2004.05174}{arXiv:2004.05174}.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan†, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, T. Bergauer, M. Dragicevic, J. Erö, A. Escalante Del Valle, R. Frühwirth¹, M. Jeitler¹, N. Krammer, L. Lechner, D. Liko, T. Madlener, I. Mikulec, F.M. Pitters, N. Rad, J. Schieck¹, R. Schöfbeck, M. Spanring, S. Templ, W. Waltenberger, C.-E. Wulz¹, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhtovskiy, A. Litomin, V. Makarenko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish², E.A. De Wolf, D. Di Croce, X. Janssen, T. Kello³, A. Lelek, M. Pieters, H. Rejeb Sfar, H. Van Haevermaet, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, S.S. Chhibra, J. De Clercq, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, A. Morton, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, B. Dorney, L. Favart, A. Grebenyuk, A.K. Kalsi, I. Makarenko, L. Moureaux, L. Pétré, A. Popov, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, L. Wezenbeek

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, M. Gruchala, I. Khvastunov⁴, M. Niedziela, C. Roskas, K. Skovpen, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
G. Bruno, F. Bury, C. Caputo, P. David, C. Delaere, M. Delcourt, I.S. Donertas, A. Giammanco, V. Lemaitre, K. Mondal, J. Prisciandaro, A. Taliercio, M. Teklashyn, P. Vischia, S. Wuyckens, J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, G. Correia Silva, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, E. Belchior Batista Das Chagas, H. BRANDAO MALBOUISSON, W. Carvalho, J. Chinellato⁵, E. Coelho, E.M. Da Costa, G.G. Da Silveira⁶, D. De Jesus Damiao, S. Fonseca De Souza, J. Martins⁷, D. Matos Figueiredo, M. Medina Jaime⁸, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, P. Rebelo Teles, L.J. Sanchez Rosas, A. Santoro, S.M. Silva Do Amaral, A. Sznajder, M. Thiel, E.J. Tonelli Manganote⁵, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardes⁹, L. Calligaris⁹, T.R. Fernandez Perez Tomei⁹, E.M. Gregores⁹, D.S. Lemos⁹, P.G. Mercadante⁹, S.F. Novaes⁹, Sandra S. Padula⁹

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, I. Atanasov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov
University of Sofia, Sofia, Bulgaria
M. Bonchev, A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov

Beihang University, Beijing, China
W. Fang, Q. Guo, H. Wang, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, Z. Hu, Y. Wang

Institute of High Energy Physics, Beijing, China
E. Chapon, G.M. Chen, H.S. Chen, M. Chen, A. Kapoor, D. Leggat, H. Liao, Z. Liu, R. Sharma, A. Spiezia, J. Tao, J. Thomas-wilsker, J. Wang, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, C. Chen, Q. Huang, A. Levin, Q. Li, M. Lu, X. Lyu, Y. Mao, S.J. Qian, D. Wang, Q. Wang, J. Xiao

Sun Yat-Sen University, Guangzhou, China
Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao

Zhejiang University, Hangzhou, China
M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga, A. Sarkar, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J. Jaramillo, J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar González, N. Vanegas Arbelaez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, D. Majumder, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, G. Kole, M. Kolosova, S. Konstantinou, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka, D. Tsiakkouri

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim12,13, S. Elgamal14, A. Ellithi Kamel15

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
A. Lotfy, M.A. Mahmoud

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehsataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
E. Brücken, F. Garcia, J. Havukainen, V. Karimäki, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
C. Amendola, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzi, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro16, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
S. Ahuja, F. Beaudette, M. Bonanomi, A. Buchot Perraguin, P. Busson, C. Charlot, O. Davignon, B. Diab, G. Falmagne, R. Granier de Monchenault, A. Hakimi, I. Kucher, A. Lobanov, C. Martin Perez, M. Nguyet, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram17, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, J.-C. Fontaine17, D. Gelé, U. Goerlach, C. Grimault, A.-C. Le Bihan, P. Van Hove

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
E. Asilar, S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, S. Jain, I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, L. Torretotot, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
T. Toriashvili18, Z. Tsamalaidze11

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, J. Schulz, M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
D. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, G. Mocellin, S. Mondal, S. Mukherjee,
D. Noll, A. Novak, T. Pook, A. Pozdnyakov, T. Quast, M. Radziej, Y. Rath, H. Reithler, J. Roemer, A. Schmidt, S.C. Schuler, A. Sharma, S. Wiedenbeck, S. Zaleski

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

C. Dziwok, G. Flügge, W. Haj Ahmad, O. Hlushchenko, T. Kress, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl, T. Ziemons

Deutsches Elektronen-Synchrotron, Hamburg, Germany

H. Aarup Petersen, M. Aldaya Martin, P. Asmuss, I. Babounikau, S. Baxter, O. Behnke, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras, V. Botta, D. Brunner, A. Campbell, A. Cardini, P. Connor, S. Consuegra Rodríguez, V. Danilov, A. De Wit, M.M. Defranchis, L. Didukh, D. Domínguez Damiani, G. Eckerlin, D. Eckstein, T. Eichhorn, I.I. Estevez Banos, E. Gallo, A. Geiser, A. Giraldi, A. Grohsjean, M. Guthoff, A. Harb, A. Jafari, N.Z. Jomhari, H. Jung, A. Kasem, M. Kasemann, H. Kaveh, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, T. Lenz, J. Lidrych, K. Lipka, W. Lohmann, R. Mankel, I.-A. Melzer-Pellmann, J. Metwally, A.B. Meyer, M. Meyer, M. Missiroli, J. Mnich, A. Mussgiller, V. Myronenko, Y. Otarid, D. Pérez Adán, S.K. Pflicht, D. Pitzl, A. Raspereza, A. Saibel, M. Savitskyi, V. Scheurer, F. Schütte, C. Schwanenberger, A. Singh, R.E. Sosa Ricardo, N. Tonon, O. Turko, A. Vagnerini, M. Van De Klundert, R. Walsh, D. Walter, Y. Wen, K. Wichmann, C. Wissing, S. Wuchterl, O. Zenaiev, R. Zlebcik

University of Hamburg, Hamburg, Germany

R. Aggleton, S. Bein, L. Benato, A. Benecke, K. De Leo, T. Dreyer, A. Ebrahimi, M. Eich, F. Feindt, A. Fröhlich, C. Garbers, E. Garutti, P. Gunnellini, J. Haller, A. Hinzmans, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, V. Kutzner, J. Lange, T. Lange, A. Malara, C.E.N. Niemeyer, A. Nigamova, K.J. Pena Rodriguez, O. Rieger, P. Schleper, S. Schumann, J. Schwanndt, D. Schwarz, J. Sonneveld, H. Stadie, G. Steinbrück, B. Vormwald, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, Germany

M. Baselga, S. Baur, J. Bechtel, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, A. Droll, K. El Morabit, N. Faltermann, K. Flöhl, M. Giffels, A. Gottmann, F. Hartmann, C. Heidecker, U. Husemann, M.A. Iqbal, I. Katkov, P. Keicher, R. Koppenhöfer, S. Maier, M. Metzler, S. Mitra, D. Müller, Th. Müller, M. Musich, G. Quast, K. Rabbertz, J. Rauser, D. Savoiu, D. Schäfer, M. Schnepl, M. Schröder, D. Seith, I. Shvetsov, H.J. Simonis, R. Ulrich, M. Wassmer, M. Weber, R. Wolf, S. Wozniewski

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, P. Asenov, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, A. Stakia

National and Kapodistrian University of Athens, Athens, Greece

M. Diamantopoulou, D. Karasavvas, G. Karathanasis, P. Kontaxakis, C.K. Koraka, A. Manousakis-katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Theofilatos, K. Vellidis, E. Vorlriotis

National Technical University of Athens, Athens, Greece

G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsipolitis, A. Zacharopoulou

University of Ioánnina, Ioánnina, Greece

I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, K. Manitara, N. Manthos, I. Papadopoulos, J. Strologas
MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartók, R. Chudasama, M. Csanad, M.M.A. Gadallah, S. Lőkös, P. Major, K. Mandal, A. Mehtå, G. Pasztó, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath, F. Sikler, V. Veszprémi, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
S. Czellar, J. Karancsi, J. Molnár, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Eszterházy Karoly University, Karoly Robert Campus, Gyongyos, Hungary
T. Csorgó, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, D. Kumar, L. Panwar, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati, D. Dash, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan Nair Bindhu, A. Nayak, D.K. Sahoo, N. Sur, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, N. Dhingra, R. Gupta, A. Kaur, S. Kaur, P. Kumari, M. Lohan, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
M. Bharti, R. Bhattacharya, S. Bhattacharya, D. Bhowmik, S. Dutta, S. Ghosh, B. Gomber, M. Maity, S. Nandan, P. Palit, A. Furohit, P.K. Rout, G. Saha, S. Sarkar, M. Sharan, B. Singh, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, A. Muhammad, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Kumar, K. Naskar, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, R. Kumar Verma, G.B. Mohanty, U. Sarkar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee, D. Roy, N. Sahoo

Indian Institute of Science Education and Research (IISER), Pune, India
S. Dube, B. Kansal, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Department of Physics, Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi
INFIN Sezione di Pavia, Università di Pavia, Pavia, Italy
C. Aime, A. Braghieri, S. Calzaferri, D. Fiorina, P. Montagna, S.P. Ratti, V. Re, M. Ressegotti, C. Riccardi, P. Salvini, I. Vai, P. Vitulo

INFIN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, G. Mantovani, V. Marianii, M. Menichelli, F. Moscatelli, A. Piccinelli, A. Rossii, A. Santocchia, D. Spiga, T. Tedeschi

INFIN Sezione di Roma, Università di Roma, Scuola Normale Superiore di Pisa, Pisa, Italy
K. Androsov, P. Azzurri, G. Baglioni, V. Bertacchi, L. Bianchinì, T. Boccalì, R. Castaldi, M.A. Ciocci, R. Dell’Orso, M.R. Di Domenico, S. Donato, L. Giannini, A. Giassi, M.T. Grippo, F. Ligabue, E. Manca, G. Mandorli, A. Messineo, F. Palla, G. Ramirez-Sanchez, A. Rizzi, G. Rolandi, S. Roy Chowdhury, A. Scribanò, N. Shafiei, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini

INFIN Sezione di Torino, Università di Torino, Università del Piemonte Orientale, Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, A. Bellora, C. Biino, A. Cappati, N. Cartiglia, S. Cometti, M. Costa, R. Covarelli, N. Demaria, B. Kiani, F. Legger, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Monteil, M. Monteno, M.M. Obertino, G. Ortona, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, M. Ruspa, R. Salvatico, F. Siviero, V. Sola, A. Solano, D. Soldì, A. Staiano, D. Trocino

INFIN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, A. Da Rold, G. Della Ricca, F. Vazzoler

Kyungpook National University, Daegu, Korea
S. Dogra, C. Huh, B. Kim, D.H. Kim, G.N. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, B.C. Radburn-Smith, S. Sekmen, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon

Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, S. Ha, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Republic of Korea
J. Goh, A. Gurtu

Sejong University, Seoul, Korea
H.S. Kim, Y. Kim
Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, K. Lee, S. Lee, K. Nam, B.H. Oh, M. Oh, S.B. Oh, H. Seo, U.K. Yang, I. Yoon

University of Seoul, Seoul, Korea
D. Jeon, J.H. Kim, B. Ko, J.S.H. Lee, I.C. Park, Y. Roh, D. Song, I.J. Watson

Yonsei University, Department of Physics, Seoul, Korea
H.D. Yoo

Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, Y. Jeong, H. Lee, Y. Lee, I. Yu

Riga Technical University, Riga, Latvia
V. Veckalns

Vilnius University, Vilnius, Lithuania
A. Juodagalvis, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
W.A.T. Wan Abdullah, M.N. Yusuf, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropesa Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguén, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, M.I.M. Awan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Białkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, J. Seixas, K. Shchelina, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, D. Seitova, V. Shalaev, S. Shmatov, S. Shulha, V. Smirnov, O. Teryaev, N. Voytishin, A. Zarubin, I. Zhizhin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Volkov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, G. Pivovarov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, A. Nikitenko, V. Popov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, A. Oskin, P. Parygin, S. Polikarpov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, I. Ovtin, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, V. Kachanov, A. Kalinin, D. Konstantinov, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uznian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, A. Iuzhakov, V. Okhotnikov, L. Sukhikh

Tomsk State University, Tomsk, Russia
V. Borchsh, V. Ivanchenko, E. Tcherniaev
University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, M. Dordevic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, Cristina F. Bedoya, J.A. Brochero Cifuentes, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fozu, A. García Alonso, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, J. León Holgado, D. Moran, A. Navarro Tobar, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, M.S. Soares, A. Triossi, L. Urda Gómez, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, C. Ramón Álvarez, J. Ripoll Sau, V. Rodríguez Bouza, S. Sanchez Cruz, A. Trapote

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieyes, F. Ricci-Tam, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, J.M. Vizan Garcia

University of Colombo, Colombo, Sri Lanka
MK Jayananda, B. Kailasapathy, D.U.J. Sonnadara, DDC Wickramarathna

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
T.K. Aarrestad, D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, J. Baechler, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, N. Beni, M. Bianco, A. Bocci, P. Bortignon, E. Bossini, E. Brondolin, T. Camporesi, G. Cerminara, L. Cristella, D. d’Enterria, A. Dabrowski, N. Daci, V. Diponte, A. David, A. De Roeck, M. Deile, R. Di Maria, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, N. Emriskova, F. Fallavollita, D. Fasanella, S. Fiorendi, A. Florent, G. Franzoni, J. Fulcher, W. Funk, S. Giani, D. Gigi, K. Gill, F. Glege, L. Gouskos, M. Guilbaud, D. Gulhan, M. Haranko, J. Hegeman, Y. Iiyama, V. Innocente, T. James, P. Janot, J. Kaspar, J. Kieseler, M. Komm, N. Kratochwil, C. Lange, P. Lecoq, K. Long, C. Lourenço, L. Malgeri, M. Mannelli, A. Massironi, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, J. Ngadiuba, J. Niedziela, S. Orfanelli, L. Orsini, F. Pantaleo, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfieffer, M. Pierini, D. Rabady, A. Racz, M. Rieger, M. Rovere, H. Sakulin, J. Salfeld-Nebgen, S. Scarfi, C. Schäfer, C. Schwick, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Spichkas, J. Steggemann, S. Summers, V.R. Tavolaro, D. Treille, A. Tsiourou, G.P. Van Onsem, A. Vartak, M. Verzetti, K.A. Wozniak, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe
ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, P. Berger, A. Calandri, N. Chernyavskaya, A. De Cosa, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T. Gadek, T.A. Gómez Espinosa, C. Grab, D. Hits, W. Lustermann, A.-M. Lyon, R.A. Manzoni, M.T. Meinhard, F. Micheli, F. Nessi-Tedaldi, F. Pauss, V. Perovic, G. Perrin, L. Perrozzi, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, M. Schönenberger, V. Stampf, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
C. Amsler

National Central University, Chung-Li, Taiwan
C. Adloff60, C.M. Kuo, W. Lin, A. Roy, T. Sarkar35, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
L. Ceard, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Yy. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, E. Yazgan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Damarseckin61, Z.S. Demiroglu, F. Dolek, C. Dozen62, I. Dumanoglu63, E. Es kut, G. Gokbulut, Y. Guler, E. Gurpinar Guler64, I. Hos65, C. Isik, E.E. Kangal66, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Ozturk67, A. Polatoz, A.E. Simsek, B. Tali68, U.G. Tok, S. Turkapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak69, G. Karapinar70, K. Ocalan71, M. Yalvac72

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya73, O. Kaya74, Ö. Özçelik, S. Tekten75, E.A. Yetkin76

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak63, Y. Komurcu, S. Sen77

Istanbul University, Istanbul, Turkey
F. Aydogmus Sen, S. Cerci68, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci68

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
E. Bhal, S. Bologna, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-Storey, V.J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev78, C. Brew, R.M. Brown, D.J.A. Cockerill, K.V. Ellis, K. Harder,
S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, V. Cepaitis, G.S. Chahal\(^79\), D. Colling, P. Dauncey, G. Davies, M. Della Nega, G. Fedi, G. Hall, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, V. Milosevic, J. Nash\(^80\), V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, M. Stoye, A. Tapper, K. Uchida, T. Virdee\(^21\), N. Wardle, S.N. Webb, D. Winterbottom, A.G. Zecchinelli

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
A. Brinkerhoff, K. Call, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, C. Madrid, B. McMaster, N. Pastika, S. Sawant, C. Smith, J. Wilson

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, O. Charaf, S.I. Cooper, S.V. Gleyzer, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
A. Akpinar, A. Albert, D. Aracno, C. Cosby, Z. Demiragili, D. Gastler, C. Richardson, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, S. Yuan, D. Zou

Brown University, Providence, USA
G. Benelli, B. Burkle, X. Coubez\(^21\), D. Cutts, Y. Duh, M. Hadley, U. Heintz, J.M. Hogan\(^81\), K.H.M. Kwok, E. Laird, G. Landsberg, K.T. Lau, J. Lee, M. Narain, S. Sagir\(^82\), R. Syarif, E. Usai, W.Y. Wong, D. Yu, W. Zhang

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, F. Jensen, W. Ko\(^\dagger\), O. Kukral, R. Lander, M. Mulhearn, D. Pellet, J. Pilot, M. Shi, D. Taylor, K. Tos, M. Tripathi, Y. Yao, F. Zhang

University of California, Los Angeles, USA
M. Bachtis, R. Cousins, A. Dasgupta, D. Hamilton, J. Hauser, M. Ignatenko, T. Lam, N. Mccoll, W.A. Nash, S. Regnard, D. Saltzberg, C. Schnaible, B. Stone, V. Valuev

University of California, Riverside, Riverside, USA
K. Burt, Y. Chen, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, M.I. Paneva, W. Si, S. Wimpenny, Y. Zhang

University of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, M. Derdzinski, J. Duarte, R. Gerosa, D. Gilbert, B. Hashemi, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, S. Padhi, M. Pieri, V. Sharma, M. Tadel, F. Würthwein, A. Yagil

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, C. Campagnari, M. Citron, A. Dorsett, V. Dutta, J. Incandela, B. Marsh, H. Mei, A. Ovcharova, H. Qu, M. Quinnan, J. Richman, U. Sarica, D. Stuart, S. Wang
California Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
J. Alison, M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, Y. Cheng, J. Chu, D.J. Cranshaw, A. Datta, A. Frankenthal, K. Mcdermott, J. Monroy, J.R. Patterson, D. Quach, A. Ryd, W. Sun, S.M. Tan, Z. Tao, J. Thom, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauer, A. Beretvas, D. Berry, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, S. Hasegawa, R. Heller, T.C. Herwig, J. Hirschauer, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, P. Klabbers, T. Klijnsma, B. Klima, M.J. Kortelainen, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, V. Papadimitriou, K. Pedro, C. Pena, O. Prokofyev, F. Ravera, A. Reinsvold Hall, L. Ristori, B. Schneider, E. Sexton-Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strat, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, H.A. Weber, A. Woodard

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, L. Cadamuro, V. Cherepanov, F. Errico, R.D. Field, D. Guerrero, B.M. Joshi, M. Kim, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, D. Rosenzweig, K. Shi, J. Wang, S. Wang, X. Zuo

Florida State University, Tallahassee, USA
T. Adams, A. Askew, D. Diaz, R. Habibullah, S. Hagopian, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, H. Prosper, C. Schiber, R. Yohay, J. Zhang

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, S. Butalla, T. Elkafrawy, M. Hohlmann, D. Noonan, M. Rahmani, M. Saunders, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, H. Becerril Gonzalez, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, C. Mills, G. Oh, T. Roy, M.B. Tonjes, N. Varelas, J. Viinikainen, X. Wang, Z. Wu

The University of Iowa, Iowa City, USA
M. Alhusseini, K. Dilsiz, S. Durgut, R.P. Gandrjula, M. Haytmyradov, V. Khristenko, O.K. Köseyan, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, T. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
O. Amram, B. Blumenfeld, L. Corcodilos, M. Eminizer, A.V. Gritsan, S. Kyriacou, P. Maksimovic, C. Mantilla, J. Roskes, M. Swartz, T.Á. Vámi

The University of Kansas, Lawrence, USA
C. Baldenegro Barrera, P. Baringer, A. Bean, A. Bylinkin, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, C. Lindsey, N. Minafra, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang, J. Williams, G. Wilson

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
E. Adams, A. Baden, O. Baron, A. Belloni, S.C. Enos, Y. Feng, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, T. Koeth, A.C. Mignerey, S. Nabili, M. Seidel, A. Skuja, S.C. Tonwar, L. Wang, K. Wong

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, R. Bi, S. Brandt, W. Busza, I.A. Cali, Y. Chen, M. D’Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, J. Krupa, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. McGinn, C. Mironov, S. Narayananan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephens, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, Z. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
R.M. Chatterjee, A. Evans, S. Guts†, P. Hansen, J. Hiltbrand, Sh. Jain, M. Krohn, Y. Kubota, Z. Lesko, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, J.R. González Fernández, I. Kravchenko, J.E. Siado, G.R. Snow†, B. Stieger, W. Tabb, F. Yan

State University of New York at Buffalo, Buffalo, USA
G. Agarwal, H. Bandyopadhyay, C. Harrington, L. Hay, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, J. Pekkanen, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, J. Li, G. Madigan, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orito, A. Parker, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, Z. Chen, A. Gilbert, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, K. Lannon, W. Li, N. Loukas, N. Marinelli, I. Mcalister, F. Meng, K. Mohrman, Y. Musienko†, R. Ruchti, P. Siddireddy, S. Taroni, M. Wayne, A. Wightman, M. Wolf, L. Zygala
The Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, A. Lefeld, B.L. Winer, B.R. Yates

Princeton University, Princeton, USA
P. Das, G. Dezoort, P. Elmer, B. Greenberg, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, G. Kopp, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, B. Mahakud, G. Negro, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, M. Stojanovic, N. Trevisani, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA
A. Baty, S. Dildick, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, A. Kumar, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, W. Shi, A.G. Stahl Leiton

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan, O. Karacheban, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas, H. Wang

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, H. Kim, S. Luo, S. Malhotra, R. Mueller, D. Överton, L. Perniè, D. Rathjens, A. Safonov, J. Sturdy

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, USA
E. Appelt, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij

University of Virginia, Charlottesville, USA
M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, A. Li, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
P.E. Karchin, N. Poudyal, P. Thapa
University of Wisconsin - Madison, Madison, WI, USA
K. Black, T. Bose, J. Buchanan, C. Caillol, S. Dasu, I. De Bruyn, P. Everaerts, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, D. Pinna, T. Ruggles, A. Savin, V. Shang, V. Sharma, W.H. Smith, D. Teague, S. Trembath-reichert, W. Vetens
†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at Department of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
5: Also at Universidade Estadual de Campinas, Campinas, Brazil
6: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
7: Also at UFMS, Nova Andradina, Brazil
8: Also at Universidade Federal de Pelotas, Pelotas, Brazil
9: Also at University of Chinese Academy of Sciences, Beijing, China
10: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
11: Also at Joint Institute for Nuclear Research, Dubna, Russia
12: Also at Helwan University, Cairo, Egypt
13: Now at Zewail City of Science and Technology, Zewail, Egypt
14: Now at British University in Egypt, Cairo, Egypt
15: Now at Cairo University, Cairo, Egypt
16: Also at Purdue University, West Lafayette, USA
17: Also at Université de Haute Alsace, Mulhouse, France
18: Also at Tbilisi State University, Tbilisi, Georgia
19: Also at Erzincan Binali Yıldırım University, Erzincan, Turkey
20: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
21: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
22: Also at University of Hamburg, Hamburg, Germany
23: Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran, Isfahan, Iran
24: Also at Brandenburg University of Technology, Cottbus, Germany
25: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
26: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen, Hungary
27: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
28: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary, Budapest, Hungary
29: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
30: Also at IIT Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India
31: Also at Institute of Physics, Bhubaneswar, India
32: Also at G.H.G. Khalsa College, Punjab, India
33: Also at Shoolini University, Solan, India
34: Also at University of Hyderabad, Hyderabad, India
35: Also at University of Visva-Bharati, Santiniketan, India
36: Also at Indian Institute of Technology (IIT), Mumbai, India
37: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
38: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
39: Now at INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
40: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
41: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
42: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
43: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
44: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
45: Also at Institute for Nuclear Research, Moscow, Russia
46: Now at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
47: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
48: Also at University of Florida, Gainesville, USA
49: Also at Imperial College, London, United Kingdom
50: Also at Moscow Institute of Physics and Technology, Moscow, Russia, Moscow, Russia
51: Also at P.N. Lebedev Physical Institute, Moscow, Russia
52: Also at California Institute of Technology, Pasadena, USA
53: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
54: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
55: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
56: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy, Pavia, Italy
57: Also at National and Kapodistrian University of Athens, Athens, Greece
58: Also at Universität Zürich, Zurich, Switzerland
59: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
60: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
61: Also at Şırnak University, Şırnak, Turkey
62: Also at Department of Physics, Tsinghua University, Beijing, China, Beijing, China
63: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
64: Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey
65: Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
66: Also at Mersin University, Mersin, Turkey
67: Also at Piri Reis University, Istanbul, Turkey
68: Also at Adiyaman University, Adiyaman, Turkey
69: Also at Ozyegin University, Istanbul, Turkey
70: Also at Izmir Institute of Technology, Izmir, Turkey
71: Also at Necmettin Erbakan University, Konya, Turkey
72: Also at Bozok Universitetesi Rektörlüğü, Yozgat, Turkey
73: Also at Marmara University, Istanbul, Turkey
74: Also at Milli Savunma University, Istanbul, Turkey
75: Also at Kafkas University, Kars, Turkey
76: Also at Istanbul Bilgi University, Istanbul, Turkey
77: Also at Hacettepe University, Ankara, Turkey
78: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
79: Also at IPPP Durham University, Durham, United Kingdom
80: Also at Monash University, Faculty of Science, Clayton, Australia
81: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
82: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
83: Also at Ain Shams University, Cairo, Egypt
84: Also at Bingol University, Bingol, Turkey
85: Also at Georgian Technical University, Tbilisi, Georgia
86: Also at Sinop University, Sinop, Turkey
87: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
88: Also at Nanjing Normal University Department of Physics, Nanjing, China
89: Also at Texas A&M University at Qatar, Doha, Qatar
90: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea