Glutamate plasticity woven through the progression to alcohol use disorder: a multi-circuit perspective [version 1; peer review: 2 approved]

Lara Hwa¹, Joyce Besheer², Thomas Kash¹

¹Department of Pharmacology, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
²Department of Psychiatry, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA

Abstract
Glutamate signaling in the brain is one of the most studied targets in the alcohol research field. Here, we report the current understanding of how the excitatory neurotransmitter glutamate, its receptors, and its transporters are involved in low, episodic, and heavy alcohol use. Specific animal behavior protocols can be used to assess these different drinking levels, including two-bottle choice, operant self-administration, drinking in the dark, the alcohol deprivation effect, intermittent access to alcohol, and chronic intermittent ethanol vapor inhalation. Importantly, these methods are not limited to a specific category, since they can be interchanged to assess different states in the development from low to heavy drinking. We encourage a circuit-based perspective beyond the classic mesolimbic-centric view, as multiple structures are dynamically engaged during the transition from positive- to negative-related reinforcement to drive alcohol drinking. During this shift from lower-level alcohol drinking to heavy alcohol use, there appears to be a shift from metabotropic glutamate receptor-dependent behaviors to N-methyl-D-aspartate receptor-related processes. Despite high efficacy of the glutamate-related pharmaceutical acamprosate in animal models of drinking, it is ineffective as treatment in the clinic. Therefore, research needs to focus on other promising glutamatergic compounds to reduce heavy drinking or mediate withdrawal symptoms or both.

Keywords
glutamate, alcohol, addiction, two-bottle choice, self-administration, drinking in the dark, intermittent access to alcohol, chronic intermittent ethanol vapor

Open Peer Review
Approval Status

Version 1

1

2

 Approval Status

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. William McBride, Indiana University School of Medicine, Indianapolis, USA
2. William Griffin, Medical University of South Carolina, Charleston, USA

Any comments on the article can be found at the end of the article.
Introduction
Glutamate, the most prevalent excitatory neurotransmitter in the central nervous system, has long been associated with the excitotoxicity of alcohol withdrawal. Repeated episodes of alcohol withdrawal can generate aberrant behaviors such as hypermotility and increased seizures, which are classically thought to be related to an excitotoxic state caused by increased glutamate action in the brain. These hyperglutamatergic periods of alcohol deprivation between heavy drinking events may be kindled across time, in a process like electrophysiological kindling. Since this hypothesis is generally well accepted in the field, many have explored glutamatergic targets for new alcohol use disorder medications. However, since an acute injection of ethanol also increases glutamate in the nucleus accumbens (NAc), a site heavily associated with both reward and stress, it suggests that there is a continuum of engagement through the transition from low to heavy drinking regulated by glutamate signaling. We focus on circuits that become recruited among subcortical structures beyond the classic mesolimbic-centric perspective.

There are distinct pharmacological classes of glutamate receptors, including ionotropic (iGluRs) and metabotropic (mGluRs) glutamate receptors and glutamate transporters that have been linked to a wide variety of alcohol-related phenotypes. In brief, iGluRs encompass α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors with 1–4 subunits (GluA1–4), N-methyl-D-aspartate (NMDA) receptors with two obligatory GluN1 subunits and combinations of GluN2(A–D) assemblies, and kainite receptors (GluK1–5). GluN receptors are more sensitive to alcohol than GluA and GluK. Also, allosteric modulation of the GluN2B binding site can produce changes in alcohol-related behaviors. In contrast to the ligand-gated cation-selective ion channel iGluRs, mGluRs are G-protein-coupled and form three distinct classes: group I (mGluR1 and mGluR5), group II (mGluR2 and mGluR3), and group III (mGluR4, mGluR6, mGluR7, and mGluR8). Glutamate clearance in the synapse can be controlled by reuptake through transporters like excitatory amino acid transporters (EAATs) and adenosine transporters (equilibribative nucleoside transporter, or ENT) into glia and vesicular glutamate transporters into neurons. This review synthesizes the extant behavioral pharmacological findings for the role of glutamate, its receptors, and its circuitry throughout the brain in several stages of the transition to alcohol use disorder. In light of clinical literature, three general phases within alcohol use disorders are discussed: low-level drinking, binge drinking, and heavy drinking with withdrawal. We highlight specific animal behavior protocols in these three categories, but importantly these methods can be applied among all phases in the development of alcohol dependence.

Low-level drinking
Ethanol consumption that causes less than 0.08 g/dL (or 80 mg/dL) blood alcohol concentrations (BACs), less than 17 mM in the brain, is considered a low dose. Typical low-alcohol doses would be equivalent to a social drinker with BACs in the range of 0.015–0.025 g/dL (15–25 mg/dL). However, a BAC of 0.04 g/dL is classified as driving under the influence (DUI) for commercial drivers or previous DUI offenders (http://www.dmv.org/). With rodents that can readily metabolize alcohol, higher gram per kilogram (g/kg) alcohol concentrations may lead to BACs under 80 mg/dL. Acute sub-intoxication doses of alcohol ingestion in humans can cause reduced strength of evoked field potentials in the prefrontal cortex (PFC), suggesting reduced excitability and functional connections. This is concordant with a 0.375 g/kg ethanol injection inhibiting PFC firing rate by approximately 20% versus baseline in anesthetized rats. In general, there is a paucity of clinical data for low-level alcohol consumption and glutamate activity because low-level drinkers are compared with heavy drinkers instead of abstinent people in clinical research.

Two-bottle choice
Two-bottle choice (2BC) involves offering the option to drink either a diluted ethanol-containing solution (concentrations range from 3 to 30%) or water for a fixed amount of time (Table 1). 2BC allows for the measurement of both voluntary consumption and ethanol preference over water and can be used as a single protocol or be combined with others to generate the desired level of drinking. In other words, first-day BACs may indicate low-level drinking, but weeks of 2BC could produce intoxicating BACs. This section focuses on 2BC studies that assess baseline ethanol preference, but daily limited-access studies that generate more binge-like drinking are discussed in the next section.

The studies are unequivocal that NMDA and AMPA regulate 2BC drinking, and both competitive and non-competitive GluN antagonists reduce 2BC intake. For example, AMPA and NMDA infused into the lateral hypothalamus can both increase 2BC consumption. However, GluN antagonists and glycine B site blockade can importantly reduce motor coordination to achieve these effects. Similarly, GluN2A knockout mice show alcohol-induced impairments in motor coordination from wild-types (WTs) but do not show differences in consumption. Other glutamate-related knockout lines also do not differ in 2BC drinking compared with WTs (for example, AMPA GluR1, GluN1 glycine, and mGluR5). Pharmacological manipulations of mGluRs, specifically mGluR5 antagonists and mGluR7 agonists, are effective at reducing 2BC intake in rats. In complementary experiments, blockade with mGluR7 antagonist MMP1 or shRNA in the NAc can increase low-dose alcohol intake and preference. Since Homer2 knockout mice drink less than WTs in 2BC, it suggests that downstream signaling molecules are also important beyond glutamate receptor binding and clearance. It is worth mentioning that the US Food and Drug Administration (FDA)-approved medication for alcohol dependence, acamprose, for which the glutamatergic mechanism of action is controversial, reduces 2BC drinking in rats. There is a glaring gap in the literature for which glutamatergic circuits in the brain may govern low-dose ethanol drinking. We need this critical information for insight into higher-dose plasticity.

Another important variable on the outcome of 2BC drinking and potential neuroadaptations is strain. Classic comparisons contrast drinking behavior of C57BL/6J mice and DBA/2J mice, yet many inbred strains have been assessed for 2BC. Although specific sucrose-fading procedures can be used to induce ethanol drinking in DBA/2J mice (for example, 29), bypassing ethanol taste altogether (for example, 30), this mouse strain drinks much less than C57BL/6J mice. 2BC preference may be related to strain...
Table 1. Descriptions of alcohol-related protocols.

Method	Details	Ethanol g/kg achieved	Key references
Two-bottle choice (2BC)	3–20% ethanol given in one bottle with a secondary bottle of water usually for 24 hours	≤10 g/kg per 24 hours (mice)	McClearn and Rodgers183; Belknap, Crabbe, and Young194
Operant self-administration	9–15% ethanol (some add 2% sucrose) reinforcements are self-administered with cue for 30–60 minutes	≤90 mg/dL BAC (rats); ≤200 mg/dL BAC (mice); ≤1.5 g/kg per 30 minutes (rats); ≤3 g/kg per 1 hour (mice)	Elmer, Meisch, and George185; Melendez et al.196; Faccidomo et al.17
Cue-induced or stress-induced reinstatement	10–15% ethanol reinforcements are self-administered with cue, then extinction after cue is no longer paired with delivery of ethanol, finally reinstatement of ethanol-seeking behavior (lever pressing) occurs after ethanol-related cue or stressor is given	≤90 mg/dL BAC (rats); ≤200 mg/dL BAC (mice); ≤1.5 g/kg per 30 minutes (rats); ≤3 g/kg per 1 hour (mice)	Lê et al.187; Chaudhri et al.186; Shaham et al.81
Alcohol discrimination	Sucrose or food pellet reinforcement given upon pressing the correct response lever after ethanol or vehicle injection; test sessions involve injecting a novel drug and measuring lever selection	0.5–2 g/kg injection; intraperitoneally or per os	Grant64; Kostowski and Bienkowski20
Drinking in the dark	3 hours into the dark photoperiod, one bottle of 20% ethanol is given for 2–4 hours (mice)	≤3 g/kg per 2 hours; ≤7 g/kg per 4 hours (mice)	Rhodes et al.195; Thiele, Crabbe, Boehm19
Scheduled high alcohol consumption	Water restriction for all but 90 minutes—10 hours, and every 3rd/4th day 5, 7, or 10% ethanol is substituted for 10–30 minutes followed by water	≤2 g/kg per 30 minutes; ≤100 mg/dL BAC (mice)	Finn et al.194; Tanchuk et al.144
Multiple scheduled access	Four 1-hour access periods to 15% and 30% ethanol separated by 2 hours starting 1 hour into dark cycle, 5 consecutive days/week	≤2 g/kg per 1 hour; ≤130 mg/dL BAC (rats)	Murphy et al.196; Bell et al.197; McBride et al.139
Alcohol deprivation effect	5–20% ethanol given every day for 6–8 weeks with a 3- to 6-day deprivation then resumption of drinking	Additional 2 g/kg per 24 hours over baseline (rats); additional 4 g/kg per 24 hours over baseline (mice)	Sinclair et al.198; Spanagel et al.199; Melendez et al.190
Intermittent access to alcohol	Every other day, 2BC of 20% ethanol and water is given for 24 hours, repeated for 4+ weeks	≤250 mg/dL BAC (rats); ≤200 mg/dL BAC (mice); ≤10 g/kg per 24 hours (rats); ≤25 g/kg per 24 hours (mice)	Wise191; Simms et al.130; Hwa et al.131; Carnicella, Ron, and Barak193
Chronic intermittent ethanol vapor	14-hour ethanol vapor and 10-hour air (rats) or 16-hour/8-hour (mice), repeated for 4+ weeks	150–250 mg/dL BAC during exposure; post-exposure, 6 g/kg per 24 hours (rats); ≤4 g/kg per 2 hours (mice)	Goldstein et al.191; O’Dell et al.192; Lopez and Becker193

Listed are popular animal protocols for alcohol drinking and the amount of alcohol given to the animal. These methods produce relevant blood alcohol concentrations (BACs) in rodents and are not restricted to a low, episodic, or heavy drinking category. Protocols can be repeated to generate the intended level of drinking or be combined for more exploration of the drinking behavior.
differences in the effect of glutamate and NMDA on the brain in vitro and differences in gene expression in response to acute ethanol. Also, alcohol-prefering (P) rats, genetically selected for high alcohol drinking, have a loss of the mGluR2 receptors that may contribute to escalated alcohol intake. Comparing high-drinking and low-drinking strains caused from trait selection or from inbred lines would increase the understanding of how glutamate-related genes influence drinking behavior.

Operant self-administration of alcohol

Operant self-administration is a powerful method for mice, rats, and monkeys to assess ethanol reinforcement. Via these methods, rodents will typically self-administer amounts ranging from 0.5 to 2 g/kg depending on factors such as session length, reinforcement schedule, and alcohol concentration by pressing a lever, spinning a wheel, or poking the nose into a receptacle (Table 1). Uncompetitive GluN antagonists ketamine and memantine reduce operant responding for ethanol with mechanistic target of rapamycin signaling, likely regulating the anti-alcohol effects of ketamine. Both mGluR5 and mGluR1 blockade and mGluR7-positive allosteric modulation decrease alcohol self-administration in rats and mice, particularly in the NAc. As in 2BC studies, some have seen ethanol-induced sedation and hypnosis with mGluR5 antagonist MPEP and mGluR2/3 antagonist LY341495 and non-specific reductions in sucrose self-administration. This may be due in part to mGluR5 influencing D1 receptors in seeking behavior.

Self-administration training techniques are also useful to investigate cue-induced reinstatement, or seeking behavior, following extinction of the alcohol-paired cues (Table 1). In operant self-administration protocols, cue-induced reinstatement or stress-induced reinstatement of alcohol seeking after a period of extinction training is also interpreted to be a form of relapse (Table 1). We discuss the literature here instead of the relapse section, as no alcohol is consumed during reinstatement tests. There have been mixed reports for the ability of competitive GluN antagonists to affect reinstatement. For mGluRs, it is not surprising that mGluR5 antagonism and mGluR2/3 agonism reduce cue-induced reinstatement, alcohol seeking in Pavlovian spontaneous recovery, and enhanced sensitivity to the attenuation of conditioned reinstatement, but there are varying reports for whether these compounds affect baseline self-administration. Gass et al. found evidence for increased glutamate transmission from the basolateral amygdala (BLA) to NAc core during cue-induced reinstatement of alcohol seeking. Glutamate transmission and transport may be mediated through adenosine ENT1 since N-acetylcysteine and ceftriaxone, which alter glial uptake and release of glutamate, also alter alcohol self-administration. Downstream signaling molecules such as PKC, ERK, and CaMKII/AMP in the PFC and amygdala have been well established in alcohol self-administration and cue-induced reinstatement. Specifically, amygdalar CaMKII/AMP activation promotes self-administration and drinking, whereas inhibition of CaMKII in the PFC increases the positive reinforcing effects of alcohol. Others have explored the activation of mGluR2 amygdala to hippocampus pathway in cue-induced alcohol seeking, where mGluR-mediated synaptic depression is impaired in the hippocampus. It seems that subregions of the amygdala and also the PFC are recruited during this low-level drinking.

Alcohol-discriminative stimulus effects

Alcohol discrimination tasks are useful to assess the neurobiological mechanisms underlying the discriminative stimulus effects (for example, interoceptive effects) of low and high alcohol doses (Table 1). However, it is important to note that these tasks do not involve alcohol drinking but rather experimenter-administered alcohol. We have known for decades that the discriminative stimulus properties of ethanol are mediated by GluNs and GABAergic ligands, showing that they have partial alcohol-like effects. This is different from the discrimination of acamprosate, where acamprosate fails to substitute for an alcohol cue, suggesting that it is not a substitution drug. Besheer et al. have shown that alcohol discrimination is co-regulated by mGluR5 in the NAc and the mGluR2/3 in the amygdala and that inhibition of MEK/ERK(1/2) in the amygdala, but not NAc, potentiates the effects of a low alcohol dose. Recent work with stress hormone corticosterone links both mGluR5 and mGluR2/3 in the sensitivity to alcohol, suggesting a role for neuropsyched modulation of glutamatergic circuits. Furthermore, in addition to the NAc, a functional role for the medial PFC (mPFC) in modulating sensitivity to low alcohol doses has been shown. An interesting contribution from the Holmes lab shows that GluN2B in corticostrial circuits governs choice learning and choice shifting. Although this learning is not in the presence of alcohol, they show a dissociation between OFC GluN2B in choice shifting and dorsal striatum GluN2B in choice learning. These findings suggest it is possible that learning about alcohol through discrimination tasks recruits distinct populations of both iGluRs and mGluR in subcortical sites, although more research is required to confirm how this contrasts from habitual learning in the striatum.

Overall, there is ample evidence demonstrating PFC plasticity in alcohol-seeking behavior and low-dose alcohol drinking at a stage engaging positive reinforcement and the euphoric effects of the drug. Although 2BC studies have tested several facets of the glutamate system using knockout mice, there is a gap of knowledge in iGluRs in alcohol self-administration studies. This may be confounded by the fact that competitive GluRN antagonists mimic the interoceptive properties of alcohol. More recent studies have implicated GluRA in the rostromedial tegmental nucleus of alcohol seeking. Another behavioral outcome of low-dose acute, self-administered alcohol (1 g/kg) is an increase in inter-male aggression in a subset of mice. Memantine, neramexane, and mGluR5 antagonist MTEP interacted with alcohol to further increase alcohol-heightened aggression in mice, whereas mGluR2/3 agonist LY379268 did not. CRF type-1 receptors regulate serotonin function from the dorsal raphe nuclei (DRN)-mPFC to alter alcohol-heightened aggression, so glutamate may influence the mPFC for the expression of low-dose alcohol-related behavior.

Episodic drinking through binges and relapse

Binge drinking, defined as BACs greater than 0.08 g/dL or 80 mg/dL within 2 hours, is common among most strata of US adults and leads to an increased susceptibility for developing chronic alcoholism. This section focuses on hazardous, episodic,
binge drinking. However, epidemiological reports have found that there are almost as many binge-drinking episodes among moderate drinkers as among heavy drinkers in the US3, so binge and relapse behavior represents the hazardous transition between moderate and heavy drinking. We focus on changes in glutamate plasticity to inform us on dramatic neurobiological events across species.

Binge alcohol drinkers have increased glutamate-to-creatine ratios and lower GABA concentrations in the anterior cingulate cortex (ACC) than do low alcohol drinkers26,27, presumably with glutamatergic perturbations. Repeated 2–3.4 g/kg alcohol injections increase accumbal and hippocampal glutamate compared with water-injected animals24,28. This confirms a study in which young adults with depression had a positive correlation between the level of alcohol use and glutamate in the hippocampus29.

Drinking in the dark

The prototypical procedure in mice to induce binge-like drinking is giving one bottle of alcohol, offered 3 hours into the active dark photoperiod for 2–4 hours, termed drinking in the dark (DID) (Table 1)1,91. C57BL/6J mice typically drink 2–5 g/kg in a session. Even two alcohol “binges” in adolescent rats are sufficient to abolish long-term synaptic depression in hippocampal slices and to evoke cognitive deficits via a short-lasting, repeated blockade of GluN, inducing a change in the receptor subunit composition32. An earlier DID study showed that both acamprosate and MPEP decreased DID intake without affecting sugar or water drinking33. Others have gone on to show that mGluR5 signaling affects PKCe in the NAc or central amygdala (CeA) to regulate DID34,35. Specifically, repeated DID for 30 days elevates CeA levels of glutamate-associated proteins of Homer2a/b, mGluR1a, GluN2B, and PLC\textsubscript{ε} 24 hours after withdrawal from binge drinking36,37. Intra-CeA and intra-NAc mGluR1 negative allosteric modulator JNJ-16259685 also reduces DID intake38,39. More recent studies have isolated downstream factors after DID such as mGluRs affecting AMPA receptor trafficking proteins like eukaryotic elongation factor 2 or decreased amygdalar CaMKII\textsubscript{β}T286 phosphorylation40,41. Importantly, this effect was isolated to the amygdala but not NAc or dorsal striatum. This may be related to the lack of difference in frequency and amplitude of spontaneous excitatory post-synaptic current (sEPSC) in dorsolateral striatum and dorsomedial striatum medium spiny neurons between 6 weeks’ DID and water-drinking mice42. Also, moving away from the classic mesolimbic pathway, others have identified a novel ventral tegmental area (VTA)–bed nucleus of the stria terminalis (BNST) CRF circuit in DID43. CRF-R1 antagonists can reduce DID through intact CRF-R2 signaling, and inhibiting VTA-projecting BNST CRF neurons reduces DID44. Repeated 2 g/kg alcohol injections result in enhanced GluN-mediated LTP in VTA dopamine neurons45, so it is likely that this VTA-BNST glutamate pathway is altered during binge drinking in DID in a similar fashion.

Beyond DID, there are other daily limited-access procedures that lead to binge drinking in rodents. Permutations of DID exist, such as 2-hour daily access for 14 days in C57BL/6J mice, to study other facets of binge-like drinking, such as tolerance46. The scheduled high alcohol consumption (SHAC) protocol involves water restriction for all but 90 minutes of water access, and every fourth day alcohol replaces water for 10–30 minutes47. Systemic administration of mGluR5 antagonist MPEP decreases SHAC intake but also succrose self-administration48. Further studies have found a role for mGluR5-Homer2-PI3K signaling in the NAc in SHAC intake49, which can be replicated in the DID protocol44. Another limited-access protocol is multiple scheduled access (MSA), in which P rats are offered four 1-hour 2BC sessions separated by 2 hours across the dark cycle 5 days per week50. Changes in gene expression in the NAc and amygdala after weeks of MSA drinking in P rats have been extensively studied51–53. What is needed is targeting how glutamate interacts between the sites through mGluRs and iGluRs54,55. MSA can lead to a transient increase in alcohol drinking after a weekend of deprivation56, an alcohol deprivation effect (ADE), so it incorporates episodic drinking in both limited-access binge drinking and relapse-like drinking.

Alcohol deprivation effect

Relapse is also episodic in nature, both in the clinic and modeled with animals. Relapse, a hallmark of alcohol use disorders, is the resumption of drinking following a prolonged period of abstinence. With animals, experimenters can model relapse through the expression of the ADE. In this method, alcohol-drinking animals are deprived of alcohol for a period of time (for example, days to weeks), and then following this deprivation period, an escalation in alcohol drinking is observed following re-exposure to alcohol (Table 1). Intra-PFC glutamate and acamprosate separately reduce the ADE11,12. However, many other glutamatergic compounds—GluN/glycine receptor antagonist L-701,324, GluN2B selective antagonist ifenprodil, GluN channel blocker neramexane, GluA/GluK antagonist CNQX, and Na+ channel blocker lamotrigine—attenuate the ADE similar to alcohol seeking during cue-induced reinstatement17,48. To the best of our knowledge, there are no reports for the involvement of iGluR or mGluR circuitry in the ADE, but we hypothesize that it would be similar to plastic changes in DID or operant self-administration circuitry.

It appears that episodic drinking, the amorphous transition between low-dose and high-dose intake, engages both reward-related and stress-related glutamate brain processes. A single DID protocol is mGluR5 antagonist-responsive, whereas repeated DID for a month alters changes in downstream glutamate proteins. Multiple glutamatergic compounds reduce the ADE and cue-induced reinstatement, so perhaps these protocols in combination with others would be more apt for screening medications for the clinic.

Heavy drinking and withdrawal

Heavy drinking is defined as consuming five or more drinks on the same occasion on each of five or more days in the past month13. People who exhibit heavy drinking may or may not fall into the category of mild, moderate, or severe alcohol use disorder on the basis of the accompanying psychological symptoms14. As mentioned earlier, heavy drinking can be different across species. Most clinical literature focuses on alcoholics, whereas rodent studies do not have the commodity of an overarching term. For example, heavy drinking in outbred rats can be 6 g/kg per day, whereas in mice it may be 15 g/kg per day. The subsequent analysis considers heavy drinking and withdrawal for the particular species.

Tsai et al.15 originally reported that alcohol-dependent patients have increased glutamate and glycine in the cerebrosplinal fluid.
during withdrawal, with accompanying reduced GABA concentrations. With proton magnetic resonance spectroscopy, increased glutamate levels have been associated with more years spent drinking, loss-of-control alcohol use, and craving during detoxification in heavy drinkers or non-treatment-seeking alcoholics. This glutamate dysfunction is localized to the NAc and the ACC with a positive correlation between craving and glutamate and glutamine in these regions. GluN compounds like ketamine, memantine, and d-cycloserine mimic the subjective effects of alcohol in recovering alcoholics. However, it is unfortunate that clinical trials with memantine or FDA-approved acamprosate did not prevent relapse compared with placebo in alcohol-dependent patients in large-scale double-blind experiments. In a massive genetics study, Schumann et al. reported that genetic variations in GluN2A have the greatest relevance for human alcohol dependence among 10 glutamatergic probe genes, yet increased GluN2B expression and GluN2C in the ACC and dorsolateral PFC during withdrawal can indicate likelihood of alcohol craving and risk for relapse. It appears that the ACC is a distinct site for glutamate plasticity in heavy drinking.

Intermittent access to alcohol

Cycles of binging and withdrawal occur in the transition to developing an alcohol use disorder. We can model voluntary alcohol drinking in between periods of abstinence, or alcohol deprivation, with 24-hour intermittent access to 2BC alcohol. Weeks of intermittent alcohol access can lead to drinking despite adverse consequences and signs of withdrawal such as handling-induced convulsions and decreased social interactions. Giving access to alcohol for a 24-hour period may cause variability in when animals choose to drink, so researchers can also measure fluid consumption 8–12 hours after the last ingestion. To counteract excitotoxicity, acamprosate and GluN antagonists have been used to decrease alcohol drinking and to alleviate symptoms of alcohol withdrawal, including increased glutamate tone and convulsive effects. It is important to note that pharmacologically increasing glutamate transmission in the NAc with TBOA, a glutamate reuptake inhibitor, can increase drinking in both non-dependent and CIE-dependent mice. Alternatively, decreasing glutamate transmission in the NAc by activating group II mGluRs reduces drinking, although the effect was stronger in dependent mice. These results comparing glutamate in non-dependent and dependent animals have similar directionality with different magnitudes, so there may be separate but overlapping actions in the NAc for treating drinking versus withdrawal symptoms with glutamatergic compounds.

In accordance with clinical studies, the PFC is a large target of glutamate plasticity in alcohol dependence. CIE results in increased GluN-mediated activity in the mPFC and increased GluN1 and GluN2B subunit expression. Mice that show “compulsive-like” behaviors after CIE exhibit increased NMDA currents in the orbitofrontal cortex compared with air-exposed controls. Rescue of infralimbic PFC mGluR2 deficit restores control over alcohol-seeking behavior. It appears that mGluR2 and mGluR5 can target symptoms of withdrawal (but see). Acamprosate improved attention set-shifting of alcohol-exposed animals but did not alter the concurrent changes in synaptic transmission or membrane excitability of mPFC neurons, indicating that the changes are not the pharmacological targets of acamprosate in the recovery of mPFC.
functions163. Abulseoud et al.164 showed that attenuation of alcohol withdrawal by ceftriaxone induced upregulation of glutamate transporter EAAT2. Reduction of EAAT2 likely contributes to a hyperglutamatergic state in the ENT1 knockout mice54,165,166. Some have suggested that increasing glutamate uptake through transporters has a potential therapeutic role in the treatment of alcohol dependence167 (but see168). Aberrations in PFC function entail reduced executive control and poor decision making in alcoholics169.

The extended amygdala—composed of the BNST, BLA, and CeA—is particularly vulnerable to glutamate plasticity caused by CIE treatment. Chronic alcohol exposure produces neuroadaptations in glutamatergic transmission in the CeA170,171, and GluN2B-containing GluNs are most sensitive to CIE170,172,173. CIE, but not continuous vapor exposure, increases BNST GluN-mediated EPSCs, not from altered glutamate release but from an increase in GluN2-containing GluNs174, suggesting that repeated cycles of exposure and withdrawal are necessary for these adaptations to occur. CIE enhances long-term potentiation formation in the BNST in GluN2B knockout mice through extrasynaptic GluN175. Stress-induced alterations in anxiety-like behavior were absent following bilateral infusion of GluK1 agonist ATPA into the BLA, which augmented BLA GABAergic neurotransmission, and stress increased the amplitude of sEPSC and miniature inhibitory post-synaptic current176. A regulatory stress neuropeptide could be nociceptin, since nociceptin application decreases glutamate transmission and blocks alcohol-induced effects in the CeA of naive and CIE rats, but nociceptin antagonist revealed tonic inhibitory activity of nociceptin on evoked CeA glutamatergic transmission only in alcohol-dependent rats177. Changes in the extended amygdala indicate a transition from positive reinforcement to negative reinforcement as stress neuropeptides like nociceptin, CRF, and dynorphin are more engaged178.

Together, chronic forced or voluntary access to alcohol affects glutamate in multiple subcortical sites like the PFC and extended amygdala, and this agrees with the clinical literature. In addition to these sites, many others have examined the hippocampus as a crux of CIE-induced glutamatergic changes. Group I mGluRs and GluN2B-containing GluNs in CA1 and cortex impair LTD, reduce spine density, and disrupt learning179,180 (but see138). This may be related to the enhanced stress systems recruited during repeated exposure to and withdrawal from alcohol. In line with this hypothesis, corticohippocampal GluN2B is engaged during repeated swim stress181. This circuitry is also recruited in other addictive disorders. Glutamate homeostasis is a mediator of long-term drug-seeking behavior, especially through disruptions of the cysteine/glutamate exchanger and EAAT2/GLT1182. Alterations in glutamate transmission after chronic alcohol exposure and withdrawal are evident, but some effects are also likely to be unique to withdrawal alone. Future research can tease apart these dynamic distinctions or suggest that they are interconnected.

Discussion

Across all phases of alcohol drinking, glutamate is a critical regulator of subcortical plasticity in the brain. We have mapped some relevant regions of interest according to their involvement in low, moderate, or heavy drinking (Figure 1), but more work can be done to study how these sites work on a circuit level. Downstream signaling factors like CaMKII are important in the PFC and amygdala in operant self-administration. Binge drinking in the DID protocol also affects mGluR5 in the CeA and CRF in the BNST.

![Figure 1. A sagittal representation of subcortical structures and their circuitry related to different stages during the transition from low-level drinking to heavy alcohol use. Regions of interest in red indicate involvement in heavy drinking, yellow in episodic drinking, and green in lower-level drinking. Known connections start with the black circle and finish with the black arrowhead. Animal drinking protocols are depicted in blue italics. ACC, anterior cingulate cortex; BLA, basolateral amygdala; BNST, bed nucleus of the stria terminalis; CeA, central amygdala; HIPP, hippocampus; NAc, nucleus accumbens; PFC, prefrontal cortex; VTA, ventral tegmental area.](image-url)
in connection with mesolimbic targets. Glutamate in the ACC and PFC is heavily disrupted in alcoholics, which is supported by preclinical research using intermittent access to alcohol or CIE. Electrophysiological studies also reveal a role for GluN2 in the extended amygdala in alcohol withdrawal, related to negative affect. Furthermore, glutamate transmission in circuits stemming from the NAc represents an overlap in circuitry from light to episodic to heavy drinking in a limited-access model. The roles of glutamate transporters and the interaction with glia are better understood at both ends of the drinking spectrum (2BC and CIE), but more can be learned through intermediate protocols that reveal the transition to heavy drinking. Overall, there appears to be a shift from mGluR-dependent behaviors to GluN-related processes transitioning from lower-level alcohol drinking to heavy alcohol drinking. The efficacy of acamprosate in animal models of drinking is high, in sharp contrast to its ineffective treatment in the clinic. Therefore, research needs to focus on other promising glutamatergic compounds to reduce heavy drinking or mediate withdrawal symptoms or both.

Author contributions
LSH conceptualized the review, wrote the first draft of the manuscript, edited the writing, and agreed to the final content. TLK conceptualized the review, edited the writing, and agreed to the final content. JB edited the writing and agreed to the final content.

Competing interests
The authors declare that they have no competing interests.

Grant information
This work was funded in part by National Institutes of Health grants R01AA025582 (to TLK and JB), R01AA019454 and U01AA017668 (to TLK), and R01AA019682 (to JB) and the NARSAD Independent Award (to TLK) and T32AA007573 (to LSH).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Chefer V, Meis J, Wang G, et al.: Repeated exposure to moderate doses of ethanol augments hippocampal glutamate neurotransmission by increasing release. Addict Biol. 2011; 16(2): 229–37. PubMed Abstract | Publisher Full Text | Free Full Text

2. Rossetti ZL, Carboni S, Fadda F: Glutamate-induced increase of extracellular glutamate through N-methyl-D-aspartate receptors in ethanol withdrawal. Neurosci. 1999; 93(3): 1135–40. PubMed Abstract | Publisher Full Text

3. Poldrugo F, Snead OC 3rd: Electroencephalographic and behavioral correlates in rats during repeated ethanol withdrawal syndrome. Psychopharmacology (Berl). 1984; 82(2): 140–6. PubMed Abstract | Publisher Full Text

4. Becker HC, Hale RL: Repeated episodes of ethanol withdrawal potentiate the severity of subsequent withdrawal seizures: an animal model of alcohol withdrawal ‘kindling’. Alcohol Clin Exp Res. 1995; 19(1): 94–8. PubMed Abstract | Publisher Full Text

5. Ballenger JC, Post RM: Kindling as a model for alcohol withdrawal syndromes. Br J Psychiatry. 1978; 133(1): 1–14. PubMed Abstract | Publisher Full Text

6. Holmes A, Spanagel R, Krystal JH: Glutamatergic targets for new alcohol medications. Psychopharmacology (Berl). 2013; 229(3): 539–54. PubMed Abstract | Publisher Full Text | Free Full Text

7. Selim M, Bradberry CW: Effect of ethanol on extracellular 5-HT and glutamate in the nucleus accumbens and prefrontal cortex: comparison between the Lewis and Fischer 344 rat strains. Brain Res. 1996; 718(1–2): 157–64. PubMed Abstract | Publisher Full Text

8. Algalia C: Ethanol sensitivity of NMDA receptors. Neurochem Int. 2002; 41(6): 377–82. PubMed Abstract | Publisher Full Text

9. Lovinger DM, White G, Water FF: Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science. 1989; 243(4898): 1721–4. PubMed Abstract | Publisher Full Text

10. Mirshahi T, Woodward JJ: Ethanol sensitivity of heteromeric NMDA receptors: effects of subunit assembly, glycine and NMDA1 Mg2+-insensitive mutants. Neuropharmacology. 1995; 34(3): 347–55. PubMed Abstract | Publisher Full Text

11. Kährönen S, Wilenius J, Nikulin VV, et al.: Alcohol reduces prefrontal cortical excitability in humans: a combined TMS and EEG study. Neuropsychopharmacology. 2003; 28(4): 747–54. PubMed Abstract | Publisher Full Text

12. Tu Y, Kroener S, Abernathy K, et al.: Ethanol inhibits persistent activity in prefrontal cortical neurons. J Neurosci. 2007; 27(17): 4765–75. PubMed Abstract | Publisher Full Text | Free Full Text

13. McMillen BA, Joyner PW, Parmar CA, et al.: Effects of NMDA glutamate receptor antagonist drugs on the volitional consumption of ethanol by a genetic drinking rat. Brain Res Bull. 2004; 64(3): 279–84. PubMed Abstract | Publisher Full Text

14. Chen YW, Baron JR, Chen A, et al.: Glutamatergic input to the lateral hypothalamus stimulates ethanol intake: role of orexin and melanin-concentrating hormone. Alcohol Clin Exp Res. 2013; 37(1): 123–31. PubMed Abstract | Publisher Full Text | Free Full Text

15. Lockridge A, Romero G, Harrington J, et al.: Timing-dependent reduction in ethanol sedation and drinking preference by NMDA receptor co-agonist d-serine. Alcohol. 2012; 46(4): 389–400. PubMed Abstract | Publisher Full Text

16. Debrouse L, Hurd B, Kiselycznyk C, et al.: Probing the modulation of acute ethanol intoxication by pharmacological manipulation of the NMDAR glycine co-agonist site. Alcohol Clin Exp Res. 2013; 37(2): 223–33. PubMed Abstract | Publisher Full Text

17. Boyce-Rustay JM, Holmes A: Ethanol-related behaviors in mice lacking the NMDA receptor NR2A subunit. Psychopharmacology (Berl). 2006; 187(4): 455–66. PubMed Abstract | Publisher Full Text

18. Cowen MS, Schroff KC, Gass P, et al.: Neurobehavioural effects of alcohol in AMPA receptor subunit (Glur1) deficient mice. Neuropharmacology. 2003; 45(3): 325–33. PubMed Abstract | Publisher Full Text

19. Kemper-Franz J, Jahn H, Koester A, et al.: Involvement of NMDA receptors in alcohol-mediated behavior: mice with reduced affinity of the NMDA R1 glycine binding site display an attenuated sensitivity to ethanol. Biol Psychiatry. 2003; 53(4): 245–51. PubMed Abstract | Publisher Full Text

20. Blednov YA, Harris RA: Metabotropic glutamate receptor 5 (mGlur5) regulation of ethanol sedation, dependence and consumption: relationship to acamprosate actions. Int J Neuropsychopharmacol. 2008; 11(6): 775–93. PubMed Abstract | Publisher Full Text | Free Full Text

21. Bird MK, Kirchhoff J, Djouma E, et al.: Metabotropic glutamate 5 receptors regulate sensitivity to ethanol in mice. Int J Neuropsychopharmacol. 2008; 11(6): 765–74. PubMed Abstract | Publisher Full Text

22. McMillen BA, Crawford MS, Kuiers CM, et al.: Effects of a metabotropic, mglu5, glutamate receptor antagonist on ethanol consumption by genetic drinking rats. Alcohol. Alcohol. 2005; 40(4): 494–7. PubMed Abstract | Publisher Full Text

23. Cowen MS, Djouma E, Lawrence AJ: The metabotropic glutamate 5 receptor antagonist 3-[2-(methyl-1,3-thiazol-4-yl)ethynyl]-pyridine reduces ethanol self-administration in multiple strains of alcohol-prefering rats and regulates olfactory glutamatergic systems. J Pharmacol Exp Ther. 2005; 315(2): 590–600. PubMed Abstract | Publisher Full Text

24. Babi A, Fiza K, Dietz M, et al.: Pharmacological modulation of mGlur7 with AMN082 and MMPiP exerts specific influences on alcohol consumption and preference in rats. Addict Biol. 2012; 17(2): 235–47. PubMed Abstract | Publisher Full Text

25. Babi A: Viral-mediated knockdown of mGlur7 in the nucleus accumbens mediates excessive alcohol drinking and increased ethanol-elicted

Page 9 of 14
conditioned place preference in rats. Neuropharmacology. 2013; 63(1): 2109–19.
PubMed Abstract | Publisher Full Text | Free Full Text

26. Szuminskii KK, Lominac KD, Oleson EB, et al. Homer2 is necessary for EIH-
induced neuroplasticity. J Neurosci. 2005; 25(30): 7054–61.
PubMed Abstract | Publisher Full Text

27. Boismare F, Daoust M, Moore N, et al. A homotaurine derivative reduces the
voluntary intake of ethanol by rats: are cerebral GABA receptors involved?
Pharmacol Biochem Behav. 1984; 21(5): 787–9.
PubMed Abstract | Publisher Full Text

28. Yoneyama N, Crabbe JC, Ford MM, et al. Voluntary ethanol consumption in 22
indred mouse strains. Alcohol. 2008; 42(3): 149–60.
PubMed Abstract | Publisher Full Text | Free Full Text

29. McCool BA, Chappell AM. Persistent enhancement of ethanol drinking following a
monoosodium glutamate-substitution procedure in C57BL/6J and DBA/2J mice. Alcohol. 2014; 48(1): 55–61.
PubMed Abstract | Publisher Full Text | Free Full Text

30. Fidor TL, Dion AM, Powers MS, et al. Intragastric self-infusion of ethanol in high-
and low-drinking mouse genotypes after passive ethanol exposure. Genes Brain Behav. 2011; 10(3): 264–75.
PubMed Abstract | Publisher Full Text | Free Full Text

31. Wang Z, Chou SY. Effects of glutamate, N-methyl-D-aspartate, high potassium,
and hypoxia on unit discharges in CA1 area of hippocampal slices of DBA and
C57 mice. Epilepsia. 1995; 36(2): 196–206.
PubMed Abstract | Publisher Full Text | Free Full Text

32. Wanat MJ, Sparta DR, Hopf FW, et al. Strain-specific synaptic modifications
on ventral tegmental area dopamine neurons after ethanol exposure. Biol Psychiatry. 2009; 66(5): 464–53.
PubMed Abstract | Publisher Full Text | Free Full Text

33. Kems RT, Ravindranathan A, Hassan S, et al. Ethanol-responsive brain region
expression networks: implications for behavioral responses to acute ethanol
in DBA/2J versus C57BL/6J mice. J Neurosci. 2005; 25(9): 2255–66.
PubMed Abstract | Publisher Full Text | Free Full Text

34. Zhu Z, Karlsson C, Liang T, et al. Loss of metabotropic glutamate receptor
2 escalates alcohol consumption. Proc Natl Acad Sci U S A. 2013; 110(42):
16603–8.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

35. Sabino V, Narayan AR, Zeric T, et al. mTOR activation is required for the anti-
effect of alcohol, but not ketamine, in alcohol-prefering rats. Behav Brain Res. 2013; 247: 9–16.
PubMed Abstract | Publisher Full Text | Free Full Text

36. Hodge CW, Miles MF, Sharko AC, et al. The mGluR5 antagonist MPEP selectively
inhibits the onset and maintenance of ethanol self-administration in
C57BL/6J mice. Psychopharmacology (Berl). 2006; 183(4): 429–38.
PubMed Abstract | Publisher Full Text | Free Full Text

37. Schroeder JP, Overstreet OH, Hodge CW. The mGluR5 antagonist MPEP decreases
operant ethanol self-administration during maintenance and after repeated
alcohol deprivations in alcohol-prefering (P) rats. Psychopharmacology (Berl). 2005; 178(1): 262–70.
PubMed Abstract | Publisher Full Text | Free Full Text

38. Cowen MS, Krstew E, Lawrence AJ. Assessment of GABA-B,
and after repeated alcohol deprivations in alcohol-preferring (P) rats. Behav Brain Res. 2006; 171(2): 207–15.
PubMed Abstract | Publisher Full Text | Free Full Text

39. Kufahl PR, Martin-Fardon R, Weiss F. Enhanced sensitivity to attenuation of
centered reinstatement by the mGluR2 agonist LY379268 and increased
factivity of mGluR5 receptors in rats with a history of ethanol dependence.
Neuropsychopharmacology. 2011; 36(13): 2762–73.
PubMed Abstract | Publisher Full Text | Free Full Text

40. Gass JT, Sinclair CM, Cleva RM, et al. Alcohol-seeking behavior is associated
with increased glutamate transmission in basolateral amygdala and nucleus
accumbens as measured by glutamate-oxidase-coated biosensors. Addict Biol. 2011; 16(2): 215–28.
PubMed Abstract | Publisher Full Text | Free Full Text

41. Chen J, Nam HW, Lee MR, et al. Altered glutamatergic neurotransmission in the
striatum regulates ethanol sensitivity and intake in mice lacking ENT1.
Behav Brain Res. 2010; 208(2): 636–42.
PubMed Abstract | Publisher Full Text | Free Full Text

42. Weiland A, Garcia S, Knackstedt LA. Ceftiraxone and cefazolin attenuate the
cue-prime-induced reinstatement of alcohol-seeking. Front Pharmacol. 2015; 6: 44.
PubMed Abstract | Publisher Full Text | Free Full Text

43. Olive MF, McGeehan AJ, Kinder JR, et al. The mGluR5 antagonist 6-methyl-2-
(phenylethynyl)pyridine decreases ethanol consumption via a protein kinase
C epsilon-dependent mechanism. Mol Pharmacol. 2005; 67(2): 349–55.
PubMed Abstract | Publisher Full Text | Free Full Text

44. Faccidomo S, Beshear J, Stanley PC, et al. Increased operant responding for
ethanol in male C57BL/6J mice: specific regulation by the ERk, but not JNK,
MAP kinase pathway. Psychopharmacology (Berl). 2009; 204(1): 135–47.
PubMed Abstract | Publisher Full Text | Free Full Text

45. Faccidomo S, Salling MC, Galunas C, et al. Operant ethanol self-
administration increases extracellular-signal-regulated protein kinase
(ERK) phosphorylation in reward-related brain regions: selective regulation of
positive reinforcement in the prelimbic cortex of C57BL/6J mice.
Psychopharmacology (Berl). 2015; 232(18): 3471–30.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

46. Schroeder JP, Saporos M, Stevenson JR, et al. Cue-induced reinstatement of
alcohol-seeking behavior is associated with increased ERK5 phosphorylation
in specific limbic brain regions: blockade by the mGluR5 antagonist MPEP.
Neuropharmacology. 2008; 54(4): 546–54.
PubMed Abstract | Publisher Full Text | Free Full Text

47. Cannady R, Fisher KR, Durant B, et al. Enhanced AMPA receptor activity
increases operant alcohol self-administration and cue-induced reinstatement.
Addict Biol. 2013; 18(2): 54–65.
PubMed Abstract | Publisher Full Text | Free Full Text

48. Cannady R, Fisher KR, Graham C, et al. Potentiation of amygdala AMPA
receptor activity selectively promotes escalated alcohol self-administration in a
CaMKII-dependent manner. Addict Biol. 2016.
PubMed Abstract | Publisher Full Text | Free Full Text

49. Salling MC, Faccidomo SP, Li C, et al. Moderate Alcohol Drinking and the
Amygdala Proteome: Identification and Validation of Calcium/CaM-
Dependent Kinase II and AMPA Receptor Activity as Novel Molecular
Mechanisms of the Positive Reinforcing Effects of Alcohol. Biol Psychiatry. 2016; 79(6): 430–40.
PubMed Abstract | Publisher Full Text | Free Full Text

50. Faccidomo S, Reid GT, Agoglia AE, et al. CaMKII inhibition in the
prefrontal cortex specifically increases the positive reinforcing effects of
attenuated alcohol in C57BL/6J mice. Biol Brain Res. 2016; 298(Pt 8): 286–90.
PubMed Abstract | Publisher Full Text | Free Full Text

51. Grant KA: Strategies for understanding the pharmacological effects of ethanol
with drug discrimination procedures. Pharmacol Biochem Behav. 1999; 64(2): 261–7.
PubMed Abstract | Publisher Full Text | Free Full Text
Silveri MM, Cohen-Gilbert J, Crowley DJ, Bates ME, Labouvie EW, Quadros IM, Hwa LS, Shimamoto A, Newman EL, Chu A, Bahamon B, Jaramillo AA, Randall PA, Frisbee S, Besheer J, Fisher KR, Cannady R, Cannady R, Grondin JJ, Fisher KR, Besheer J, Grondin JJ, Salling MC, Spanagel R, Zieglgänsberger W, Hundt W, Vivian JA, Waters CA, Szeliga KT, Kostowski W, Binek A, Alter V, Szymanski J, Hodge CW: Neurochemistry in emerging adult binge drinkers with a history of alcoholics without structural changes. J Neurochem. 2009;111(5):1191–28. PubMed Abstract | Publisher Full Text

Hersman DF, Chitty KM, Lee RS: Hippocampal glutamate is increased and associated with risky drinking in young adults with major depression. J Affect Disord. 2015; 186: 95–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Rhodes JS, Best K, Belknap JK, et al.: Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiol Behav. 2005; 84(1): 53–63. PubMed Abstract | Publisher Full Text

Thiele TE, Crabbøe JC, Boehm SL: “Drinking in the Dark” (DID): a simple mouse model of binge-like alcohol intake. Curr Protec Neurosci. 2014; 68: 9.491–9. PubMed Abstract | Publisher Full Text | Free Full Text

Silvestre de Ferron B, Bennour KE, Kefford E et al.: Two Binges of Ethanol a Day Keep the Memory Away in Adolescent Rats: Key Role for GLUN2B Subunit. Int J Neuropsychopharmacol. 2015; 19(1): pii: pyv087. PubMed Abstract | Publisher Full Text | Free Full Text

Gupta T, Syed YM, Revis AA, et al.: Acute effects of acomaprase and MPEP on ethanol Drinking-in-the-Dark in male C57BL/6J mice. Alcohol Clin Exp Res. 2008; 32(11): 1992–8. PubMed Abstract | Publisher Full Text | Free Full Text

Corkin S, Dean ML, et al.: Loss of Hippocampal Neurons Is Not Essential for Amnesia after Temporal Lobe Seizures. Ann Neurol. 1985; 17(6): 601–5. PubMed Abstract | Publisher Full Text | Free Full Text

O’Dowd TC, Mathers DC, et al.: Reduced Cerebrospinal Fluid Dopamine Levels Following 3-Day Continuous or Scheduled Access to Ethanol. Alcohol Clin Exp Res. 2006; 30(6): 943–50. PubMed Abstract | Publisher Full Text | Free Full Text

Spanagel R, Zieglgänsberger W, Hodge CW: The discriminative stimulus effects of ethanol: neurochemical and pharmacological characterization. Alcohol. 1999; 17(1): 63–80. PubMed Abstract | Publisher Full Text | Free Full Text

Hodge CW, Cox AA: The discriminative stimulus effects of ethanol are mediated by NMDA and GABA(A) receptors in specific limbic brain regions. Psychopharmacology (Berl). 1998; 139(1–2): 95–107. PubMed Abstract | Publisher Full Text | Free Full Text

Hunt W, Danysz W, Höller SM, et al.: Ethanol and N-methyl-D-aspartate receptor complex interactions: a detailed drug discrimination study in the rat. Psychopharmacology (Berl). 1998; 139(1): 44–51. PubMed Abstract | Publisher Full Text | Free Full Text

Vivian JA, Waters CA, Széliga KT, et al.: Characterization of the discriminative stimulus effects of N-methyl-D-aspartate ligands under different ethanol training conditions in the cynomolgus monkey (Macaca fascicularis). Psychopharmacology (Berl). 2000; 152(3): 273–81. PubMed Abstract | Publisher Full Text | Free Full Text

Spanagel R, Zieglaendersberger W, Hunt W: Acamprosate and alcohol: III. Effects on alcohol discrimination in the rat. Eur J Pharmacol. 1996; 305(1–3): 51–6. PubMed Abstract | Publisher Full Text | Free Full Text

Besheer J, Cox AA, Hodge CW: Coregulation of ethanol discrimination by the nucleus accumbens and amygdala. Alcohol Clin Exp Res. 2003; 27(3): 450–6. PubMed Abstract | Publisher Full Text | Free Full Text

Besheer J, Stevenson RA, Hodge CW: mGlu5 receptors are involved in the discriminative stimulus effects of self-administered ethanol in rats. Eur J Pharmacol. 2006; 551(1–3): 71–7. PubMed Abstract | Publisher Full Text | Free Full Text

Besheer J, Grondin JJ, Salting MC, et al.: Interoceptive effects of alcohol require mGlu5 receptor activity in the nucleus accumbens. J Neurosci. 2008; 29(30): 9682–91. PubMed Abstract | Publisher Full Text | Free Full Text

Cannady R, Grondin JJ, Fisher KR, et al.: Activation of group II metabotropic glutamate receptors inhibits the discriminative stimulus effects of alcohol via selective activity within the amygdala. Neuropsychopharmacology. 2011; 36(11): 2392–38. PubMed Abstract | Publisher Full Text | Free Full Text

Besheer J, Fisher KR, Salting MC, et al.: Intra-amygdala inhibition of ERK potentiates the discriminative stimulus effects of alcohol. Behav Brain Res. 2012; 228(2): 398–405. PubMed Abstract | Publisher Full Text | Free Full Text

Besheer J, Fisher KR, Cannady R, et al.: Stress hormone exposure reduces mGluR5 expression in the nucleus accumbens: functional implications for interoceptive sensitivity to alcohol. Neuropsychopharmacology. 2014; 39(10): 2376–86. PubMed Abstract | Publisher Full Text | Free Full Text

Jaramillo AA, Randall PA, Frisbee S, et al.: Activation of mGluR2/3 following stress hormone exposure restores sensitivity to alcohol in rats. Alcohol. 2015; 48(6): 525–32. PubMed Abstract | Publisher Full Text | Free Full Text

Jaramillo AA, Randall PA, Frisbee S, et al.: Modulation of sensitivity to alcohol by cortical and thalamic brain regions. Eur J Neurosci. 2014; 44(6): 2569–80. PubMed Abstract | Publisher Full Text | Free Full Text

Bernier BE, Whitaker LR, Morikawa H: Effect of Coregulation of Ethanol Discrimination by the NMDA Receptor Complex Interactions: A Detailed Drug Discrimination Study in the Rat. Psychopharmacology. 2015; 232(1): 67–81. PubMed Abstract | Publisher Full Text | Free Full Text

F1000 Recommendation

Meyer JS, Totten AM, et al.: Frequency of alcohol consumption in humans: the role of metabotropic glutamate receptors and downstream signaling pathways. Transl Psychiatry. 2015; 5(6): e508. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Agoglia AE, Hofstein SE, Reid G, et al.: CalmKilipasha-GluA1 Activity Underlies Vulnerability to Adolescent Binge Alcohol Drinking. Alcohol Clin Exp Res. 2015; 39(9): 1680–90. PubMed Abstract | Publisher Full Text | Free Full Text

Wilcox MV, Cuizon Carlson VC, Shenaze N, et al.: Repeated binge-like ethanol drinking alters ethanol drinking patterns and decreases gastric GABAergic transmission. Neuropsychopharmacology. 2014; 39(3): 579–94. PubMed Abstract | Publisher Full Text | Free Full Text

Feringa JA, Marshall SA, Mazzone CM, et al.: Extended Amygdala to Ventral Temporal Area Corticostriatal-Releasing Factor Circuit Controls Binge Alcohol Intake. Biol Psychiatry. 2016; pii: S0006-3223(16)30006-3. PubMed Abstract | Publisher Full Text | Free Full Text

Bermier BE, Whitaker LR, Monikawa H: Previous ethanol experience enhances synaptic plasticity of NMDA receptors in the ventral temporal area. J Neurosci. 2011; 31(14): 5205–12. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Linsenbardt DN, Moore EM, Griffin KD, et al.: Tolerance to ethanol’s ataxic effects and alterations in ethanol-induced locomotion following repeated binge-like ethanol intake using the DID model. Alcohol Clin Exp Res. 2011; 35(7): 1246–55. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Finn DA, Belknap JK, Cronise K, et al.: A procedure to produce high alcohol intake in mice. Psychopharmacology (Berl). 2005; 178(4): 471–80. PubMed Abstract | Publisher Full Text | Free Full Text

Feringa JA, Gouding SP, Zhang P, et al.: Binge drinking upregulates accumbens mGluR5-Homer2-P3K3 signaling: functional implications for alcoholism. J Neurosci. 2009; 29(27): 6655–68. PubMed Abstract | Publisher Full Text | Free Full Text

Murphy JM, Gatto GJ, Walker MB, et al.: Effects of scheduled access on ethanol intake by the alcohol-prefering (P) line of rats. Alcohol. 1986; 3(5): 331–6. PubMed Abstract | Publisher Full Text | Free Full Text

Bell RL, Kimpel MW, Ridd ZA, et al.: Protein expression changes in the nucleus accumbens and amygdala of forced alcohol-prefering rats given either continuous or scheduled access to ethanol. Alcohol. 2006; 40(1): 3–17. PubMed Abstract | Publisher Full Text | Free Full Text

Bell RL, Kimpel MW, McClellin JN, et al.: Gene expression changes in the...
nucleus accumbens of alcohol-prefering rats following chronic ethanol consumption.
171. Dahourou A, De Witte P, Bolo N, et al.: Central effects of acamprosate: part 1. Acamprosate blocks the glutamate increase in the nucleus accumbens microdialysate in ethanol withdrawn rats. Psychiatry Res. 1998; 82(2): 107–14. Published Abstract | Publisher Full Text

172. Heinrichs-Ri, Hicke SP, Cagie SS, et al.: Ethanol exposure decreases glutamate uptake in the nucleus accumbens. Alcohol Clin Exp Res. 2005; 29(3): 326–33. Published Abstract | Publisher Full Text

173. Grant KA, Valverius P, Hudspith M, et al.: Loss of GluN2B-containing NMDA receptor: a novel repeated swim stress paradigm. Front Pharmacol. 2015; 6: 27. Published Abstract | Publisher Full Text | Free Full Text

174. George O, Koo M: Individual differences in prefrontal cortex function and the transition from drug use to drug dependence. Neuron Behav Rev. 2010; 36(2): 232–47. Published Abstract | Publisher Full Text | Free Full Text

175. Holmes RR, Hinton DJ, Wu J, et al.: Characterization of ethanol drinking behaviors and their modulation by the neuroactive peptide nociceptin/orphanin FQ in mice. Alcohol. 2008; 42(3): 191–7. Published Abstract | Publisher Full Text | Free Full Text

176. Hu W, Morris B, Carrasco A, et al.: Effects of acamprosate on attentional set-shifting and cellular function in the prefrontal cortex of chronic alcohol-exposed mice. Alcohol Clin Exp Res. 2016; 39(9): 953–61. Published Abstract | Publisher Full Text

177. Abou-seoud OA, Camsari UM, Ruby CL, et al.: Potential therapeutic role of glutamate transporter 1 for the treatment of alcohol-dependent mice. J Pharmacol Exp Ther. 2013; 347(2): 164–51. Published Abstract | Publisher Full Text | Free Full Text

178. Carpenter-Hyland EP, Woodward JJ, Chandler LJ: Chronic ethanol induces synaptic but not extrasynaptic targeting of NMDA receptors. J Neurosci. 2004; 24(36): 7859–68. PubMed Abstract | Publisher Full Text

179. Kauth TL, Baucum AJ 3rd, Conrad KL, et al.: Alcohol exposure alters NMDAR function in the bed nucleus of the stria terminalis. Neuropsychopharmacology. 2005; 34(11): 2420–9. PubMed Abstract | Publisher Full Text | Free Full Text

180. Wills TA, Klig JR, Silberman Y, et al.: GluN2B subunit deletion reveals key roles in acute and chronic effects of alcohol on sensitivity of glutamate synapses in bed nucleus of the stria terminalis. Proc Natl Acad Sci U S A. 2012; 109(5): E278–87. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

181. Musmeur S, Lowery-Gionta E, Colacicco G, et al.: Glutamatergic mechanisms associated with stress-induced amygdala excitability and anxiety-related behavior. Neuropsychopharmacology. 2014; 39(1): 85–90. PubMed Abstract | Publisher Full Text | Free Full Text

182. Kallupi M, Varodayan FP, Oleata CS, et al.: Nociceptin/orphanin FQ decreases glutamate transmission and blocks ethanol-induced effects in the central amygdala of naive and ethanol-dependent rats. Neuropsychopharmacology. 2014; 39(1): 1081–92. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

183. Koob GF: A role for brain stress systems in addiction. Neuron. 2008; 59(1): 11–34. PubMed Abstract | Publisher Full Text | Free Full Text

184. Reynolds AR, Berry JN, Sharrett-Field L, et al.: Ethanol withdrawal is required to produce lasting N-methyl-D-aspartate receptor-dependent hippocampal cytotoxicity during chronic intermittent ethanol exposure. Alcohol. 2015; 49(3): 219–27. PubMed Abstract | Publisher Full Text | Free Full Text

185. Bigman JL, Wright T, Talar G, et al.: Loss of GluN2B-containing NMDA receptors in C1 animal hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci. 2010; 30(13): 4590–600. PubMed Abstract | Publisher Full Text | Free Full Text

186. Kiselyczyn C, Svenningssson P, Deloire E, et al.: Genetic, pharmacological and lesion analyses reveal a selective role of corticohippocampal GLU2B in a novel repeated swim stress paradigm. Neuroscience. 2011; 193: 259–68. PubMed Abstract | Publisher Full Text | Free Full Text

187. Reissner KJ, Kalivas PW: Using glutamate homeostasis as a target for treating addictive disorders. J Neurosci. 2010; 30(15): 514–22. PubMed Abstract | Publisher Full Text | Free Full Text

188. McClearn GE, Rodgers DA: Genetic factors in alcohol preference of laboratory mice. J Comp Physiol Psychol. 1961; 54: 116–9. PubMed Abstract

189. Belknap JK, Crabbe JC, Young ER: Voluntary consumption of ethanol in inbred mouse strains. Psychopharmacology (Berl). 1993; 112(4): 503–10. PubMed Abstract | Publisher Full Text

190. Elmer GI, Meisch RA, George FR: Mouse strain differences in operant self-administration of ethanol. Behav Genet. 1987; 17(5): 439–51. PubMed Abstract | Publisher Full Text | Free Full Text

191. Melendez R, Rood-Hendricks ZA, Engleman EA, et al.: Microdialysis of dopamine in the nucleus accumbens of alcohol-prefering (P) rats during anticipation and operant self-administration of ethanol. Alcohol Clin Exp Res. 2002; 26(3): 318–25. PubMed Abstract | Publisher Full Text | Free Full Text

192. Li AD, Quan B, Jurczyk W, et al.: Reinstatement of alcohol-seeking by priming injections of alcohol and exposure to stress in rats. Psychopharmacology (Berl). 1999; 135(2): 169–74. PubMed Abstract | Publisher Full Text | Free Full Text

193. Chaundhri N, Sahuque LL, Schairer WW, et al.: Behavioral and physiological changes associated with various durations of alcohol deprivation in rats. Alcohol. 1999; 13(1): 6. PubMed Abstract | Publisher Full Text | Free Full Text

194. Sinclair JD, Walker S, Jordan W: Behavioral and physiological changes associated with various durations of alcohol deprivation in rats. Q J Stud Alcohol. 1973; 34(3): 744–57. PubMed Abstract

195. Melendez RI, Middaugh LD, Kalivas PW: Development of an alcohol deprivation and escalation effect in C57BL/6J mice. Alcohol Clin Exp Res. 2003; 27(12): 2017–25. PubMed Abstract | Publisher Full Text | Free Full Text

196. Goldstein DB: Relationship of alcohol dose to intensity of withdrawal signs in mice. J Pharmacol Exp Ther. 1972; 180(2): 203–15. PubMed Abstract

197. O’Dell LE, Roberts AJ, Smith RT, et al.: Enhanced alcohol self-administration after intermittent versus continuous alcohol vapor exposure. Alcohol Clin Exp Res. 2004; 28(11): 1676–82. PubMed Abstract | Publisher Full Text | Free Full Text

198. Laposka MF, Becker HC: Effect of pattern and number of chronic ethanol exposures on subsequent voluntary ethanol intake in C57BL/6J mice. Psychopharmacology (Berl). 2005; 181(4): 688–96. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. William Griffin
 Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
 Competing Interests: No competing interests were disclosed.

2. William McBride
 Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com