Environmental Research Letters

LETTER

Chronic historical drought legacy exacerbates tree mortality and crown dieback during acute heatwave-compounded drought

George Matusick1, Katinka X Ruthrof2–, Jatin Kala1, Niels C Brouwers1, David D Breshears3,4 and Giles E St J Hardy1

1 School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Western Australia, 6150, Australia
2 Kings Park Science, Department of Biodiversity, Conservation and Attractions, 1 Kattidj Close, Kings Park, Western Australia, 6005, Australia
3 School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States of America
4 Department of Ecology and Evolutionary Biology via joint appointment, University of Arizona, Tucson, AZ, United States of America

E-mail: G.Matusick@murdoch.edu.au

Keywords: global-change-type drought, compound events, heatwave, warming, die-off, Eucalyptus, Mediterranean

Supplementary material for this article is available online

Abstract

Globally, combinations of drought and warming are driving widespread tree mortality and crown dieback. Yet thresholds triggering either tree mortality or crown dieback remain uncertain, particularly with respect to two issues: (i) the degree to which heat waves, as an acute stress, can trigger mortality, and (ii) the degree to which chronic historical drought can have legacy effects on these processes. Using forest study sites in southwestern Australia that experienced dieback associated with a short-term drought with a heatwave (heatwave-compounded drought) in 2011 and span a gradient in long-term precipitation (LTP) change, we examined the potential for chronic historical drought to amplify tree mortality or crown dieback during a heatwave-compounded drought event for the dominant overstory species Eucalyptus marginata and Corymbia calophylla. We show pronounced legacy effects associated with chronically reduced LTP (1951–1980 versus 1981–2010) at the tree level in both study species. When comparing areas experiencing 7.0% and 11.5% decline in LTP, the probability of tree mortality increased from low (<0.10) to high (>0.55) in both species, and probability of crown dieback increased from high (0.74) to nearly complete (0.96) in E. marginata. Results from beta regression analysis at the stand-level confirmed tree-level results, illustrating a significant inverse relationship between LTP reduction and either tree mortality ($F = 10.39$, $P = 0.0073$) or dieback ($F = 54.72, P < 0.0001$). Our findings quantify chronic climate legacy effects during a well-documented tree mortality and crown dieback event that is specifically associated with an heatwave-compounded drought. Our results highlight how insights into both acute heatwave-compounded drought effects and chronic drought legacies need to be integrated into assessments of how drought and warming together trigger broad-scale tree mortality and crown dieback events.

Introduction

Compound climate events, including the combination of drought and atmospheric warming, are recognized as an important driver of widespread tree mortality events worldwide (Breshears et al 2013, Mitchell et al 2014, Allen et al 2015), and have implications for tree species distributions, forest composition, structure, and functioning (Mathys et al 2016). Severe droughts, with and without warming, have resulted in several high-profile tree mortality events worldwide (Allen et al 2010), highlighting the need to understand the climate conditions and thresholds necessary to trigger such events.

Climatological drought and warming events are categorized in a variety of ways based on their duration, frequency, and intensity, and these have varying effects on trees and forests (McDowell et al 2008, Barbeta and Peñuelas 2016). Chronic water stress commonly increases background mortality rates in
tree populations (Pangle et al. 2015, Berdanier and Clark 2016), and incites tree decline (Bigler et al. 2006), especially when opportunistic pests and pathogens are present (Hart et al. 2014). In contrast, short-term drying and heating events, such as acute drought and heat waves, cause severe acute water stress in trees, typified by rapid loss of stem conductivity and leaf turgor (Anderegg et al. 2014, Bader et al. 2014), leading to tree crown dieback, tree mortality, and widespread forest mortality in severe cases (Anderegg et al. 2015). Of particular interest, however, are the interacting and compounded effects of chronic and acute drought and heat events on trees and forests, since both climatic averages and extreme events are predicted to change for many areas of the world over the coming decades (Collins et al. 2013).

Under future climate scenarios, increasing average atmospheric temperatures (chronic warming) are expected to produce more intense, and more frequent acute heatwave events (Meehl and Tebaldi 2004), and are predicted to drive widespread tree mortality (McDowell et al. 2015). To date, most research has focused on the effects of individual drought events on tree mortality. More recently, the important interaction between drought and heat has been identified as a driver of forest change (Adams et al. 2009, Breshears et al. 2013, Allen et al. 2015). Efforts to distinguish between different types of warming, including chronic and acute warming, and their respective effects on trees and forests, are largely missing from the literature. A steady increase in anthropogenic warming (chronic warming) is now expected to amplify water stress, even in the absence of significant changes to precipitation, and lead to forest die-off (Williams et al. 2012, McDowell et al. 2015). Research investigating the effects of heat waves (i.e. acute warming) on trees is at its infancy. Heat waves have been shown to negatively affect the growth of trees (Pichler and Oberhuber 2007), and have sometimes occurred concurrently with observations tracking tree mortality (Matusick et al. 2012, Bader et al. 2014, Mitchell et al. 2014). The resilience of trees to the primary and secondary effects of heat waves is not well understood, especially when combined with drought (Teskey et al. 2015).

Several studies have shown the combined effects of chronic and acute drought conditions on trees, and that the response of trees to an acute drought, is partially determined by historical precipitation (Heres et al. 2014, Macalady and Bugmann 2014, Barbeta et al. 2015, Young et al. 2017, Liu et al. 2018). It remains unclear, however, whether the magnitude of chronic drought affects tree and forest responses to acute heatwave and drought events. Shifts in precipitation patterns with climate change are likely to be highly variable within a region, and therefore the magnitude of chronic drought experienced by trees is likely to vary. To examine the interactions between chronic drought and acute heatwave-compounded drought on trees, we used a series of forest sites that experienced significant dieback triggered by a heatwave-compounded drought event and fall across a gradient of chronic drought in the Mediterranean-climate region of southwestern Australia. This region has experienced a significant reduction in precipitation in the past 40 years and experienced an acute heatwave-compounded drought event in 2011, making it an ideal location for examining the effects of compounded forest stress. A variety of previous studies in the region have examined sites affected and unaffected by drought in order to determine which factors predispose trees and forest patches to mortality and dieback (Matusick et al. 2012, Brouwers et al. 2013, Matusick et al. 2013, and Challis et al. 2016). Forest sites prone to dieback during drought included those that are watershedding (Matusick et al. 2012), at high landscape positions (Challis et al. 2016), with shallow, rocky soils close to rock outcrops, on steep slopes (Brouwers et al. 2013), and more densely stocked (Matusick et al. 2013). In this work, we use only areas that experienced high mortality from drought to examine whether long-term drought and heat stress contributed to canopy loss during the 2011 heatwave-compounded drought event. Specifically, we sought to answer the following questions: (1) does chronic drought exacerbate tree mortality (i.e. death of aboveground structures) and crown dieback (i.e. partial death of tree crown) when triggered by an acute heatwave-compounded drought event, and (2) how does heatwave-triggered tree mortality and crown dieback vary along a gradient of chronic drought?

Methods

The Mediterranean-type climate of southwestern Australia is characterized by long, dry summer periods followed by cool, wet winters, with nearly 80% of rainfall occurring from April to October (southern hemisphere autumn to spring) (Bates et al. 2008). The region has experienced a significant shift in annual rainfall since the 1970s. The greatest precipitation reduction has occurred during the winter months, with winter declines ranging from 30% to 50% from 1969 to 2012 for most of the region (Indian Ocean Climate Initiative 2012). Regional climate projections for the southwest region show a continued, consistent reduction in winter rainfall and overall warming over the coming decades (Andrys et al. 2017). In 2010, southwestern Australia experienced its driest winter in recorded history (42% below the long-term average, Cai et al. 2011), which was followed by the hottest year on record in 2011, driven by a series of intense heat waves (Bureau of Meteorology 2012).

The study takes place on twenty study sites in the Northern Jarrah Forest, southwestern Australia, which were severely affected (>70% canopy dieback) by heatwave-compounded drought in 2011 and
randomly selected for field sampling (Figure 1) from a population of sites identified during an aerial survey in May 2011 (~three months following the onset of damage) (see Matusick et al. 2013 for methods pertaining to the aerial survey, site selection, and site delineation) (see supplemental material for detailed description of the disturbance event is available online at stacks.iop.org/ERL/13/095002/mmedia). Within this severely affected forest, three points were randomly selected on a 20 m × 20 m grid using fGIS forestry cruise software (Wisconsin DNR-Division of Forestry), and were used as centers of 6 m fixed radius plots (0.011 ha). The network of study sites is considered a representative sample of drought-susceptible forest, and sites are generally located at similar elevations, landscape positions, and have similar edaphic properties (supplemental material, table S1).

During May/June 2011, each site and plot was visited and all trees greater than 1 cm diameter at breast height (DBH) were identified to species level, and measured for height and DBH using standard forestry methods. Each tree was also categorized by its crown condition into one of four classes, including healthy, dying, recently killed, and long dead (see Matusick et al. 2013 for a more detailed description). Study sites were re-measured in April 2015 (49 months following the onset of damage) using identical methods to the first survey with the exception that only trees greater than 10 cm DBH in 2011 were re-identified, since many of the smaller diameter stems affected by the drought had fallen. Tree mortality was defined as those trees considered dead (no living tissue above 1.3 m) in the second survey that were alive pre-drought. Crown dieback was defined as those trees showing crown effects in 2011 and having living foliage during the second survey.

Potential climate predictors of tree mortality and crown dieback were either extracted directly or derived from the Australian Water Availability Project (AWAP), 5 km × 5 km resolution gridded spatial dataset, which was developed by interpolating historical empirical data from climate stations throughout the Australian continent (Jones et al. 2009, Raupach et al. 2009). The AWAP dataset includes daily maximum and minimum temperature, daily precipitation available from the 1910s to present, and 0900 local standard time daily vapor pressure, available from the 1970s to present. It is one of the most widely used gridded observational climate products in Australia, and has been used for numerous studies concerning heat waves, drought (e.g. Gallant et al. 2013, Lewis and Karoly 2013), and the evaluation of regional climate models (e.g. Andrys et al. 2015, Kala et al. 2015).

Potential climate predictors derived from the AWAP dataset examined in this study included precipitation, average annual temperature, average austral summer temperature (December–February), the 12 month Standardized Precipitation Index (SPI) (derived from daily precipitation), and the 12 month Standardized Precipitation Evapotranspiration Index (SPEI) (derived from daily precipitation and temperature) (see supplemental material for additional
The climate variables were selected to represent water supply (precipitation, SPI) and atmospheric water demand (temperature, SPEI); the two drivers of widespread tree mortality and crown dieback (Bre-shears et al 2013). For each potential predictor variable (e.g. precipitation, temperature, SPI, SPEI), long- and short-term changes were calculated. The long-term change for each predictor variable was defined as the difference in the 30 year mean prior to, and following 1980 (1951–1980 versus 1981–2010) and placed on a percent scale (see supplemental material for rationale). To represent the short-term climate conditions, the proportional change in 2010 versus the long-term average (1951–2010) was calculated for each predictor.

To assess which climate variables were suitable predictors of tree mortality and crown dieback, we performed analyses at both the tree- and stand (population)-levels. Since a previous tree-level analysis, 16 months following the event, showed the two dominant overstory species, *E. marginata* and *C. calophylla* responded differently shortly following the 2011 heatwave-compounded drought event (Ruthrof et al 2015), the species were analyzed separately for tree-level analysis here. However, the species were combined for stand-level analyses since (1) stand-level results reported after 49 months showed that species composition did not change (Matusick et al 2016), and (2) *C. calophylla* represented <20% of the overstory trees, and was found on only ~60% of the plots (Matusick et al 2013). At the tree-level, we assessed the ability for independent variables (table 1) to predict tree mortality and tree crown dieback using a multilevel, binary logistic regression modeling approach. Since the climate predictor variables included in the final logistic models were predominately restricted to long-term changes, the influence of short-term climate change variables (the effect of 2010) on tree mortality and dieback was examined separately using univariate binary logistic models. At the stand-level, independent variables were assessed using beta regression analyses for proportional data (see supplementary material for additional statistical methods).

Results

Climate trends

A long-term reduction in precipitation since 1950 is evident across the study sites in the Northern Jarrah Forest, with the first, second, and third driest years on record occurring in 2010, 2006, and 2015, respectively (figure 2(a)). Corresponding with the drying trend, the Northern Jarrah Forest has experienced a steady decline in SPEI since 1950, including three of the four lowest values being observed since 2010 (figure 2(b)). In a shorter chronology (since 1972), the study sites have also experienced an increase in VPD since 2009, with the highest values occurring during the heat waves of 2011 (figure 2(c)).

Tree-level

A total of 875 *E. marginata* and *C. calophylla* trees were tracked over the study. From the hierarchical cluster analysis, DBH (tree-level), DEN (plot-level), LTSPEI, STST, and LTP (site-level) had the highest correlations within and lowest correlations between clusters (table S2). Each of the selected site-level variables was independent from one another at *P* < 0.05 from subsequent correlation analyses and therefore were eligible for inclusion in the logistic regression models (table S3). Additionally, results of correlation analysis of variables across measurement levels found each of the variables of interest are independent of one another (table S4).

Three hierarchical models (tree-level, tree-level + plot-level, tree-level + plot-level + stand-level) were

Variable	Level	Range	Mean	Median
Pre-drought diameter (DBH) (cm)	Tree	10.0–105.1	22.0	17.0
Plot density (DEN) (trees ha⁻¹)	Plot	91–1273	636	636
Plot basal area (BA) (m² ha⁻¹)	Plot	6.0–154.6	37.2	31.6
LT SPI change (LTSPI) (%)	Site	−170.3 to −153.9	−162.7	−163.5
ST SPI change (STSPI) (%)	Site	−2502.2 to −4973.3	−3217.2	−3119.0
LT SPEI change (LTSPEI) (%)	Site	−160.9 to −148.4	−153.8	−153.3
ST SPEI change (STSPI) (%)	Site	−2729.9 to −1778.1	−2068.5	−2049.4
LT precipitation change (LTP) (%)	Site	−10.9 to −7.2	−9.2	−9.7
ST precipitation change (STP) (%)	Site	−49.9 to −46.6	−48.5	−48.7
LT summer temperature change (LTST) (%)	Site	0.1–0.5	0.8	0.8
ST summer temperature change (STST) (%)	Site	5.3–5.7	5.6	5.5
LT annual temperature change (LTAT) (%)	Site	2.6–3.2	2.9	2.9
ST annual temperature change (STAT) (%)	Site	3.5–4.4	4.1	4.2

Long-term change (1951–1980 versus 1981–2010).

Standardized Precipitation Index.

Short-term change (2010 versus 1951–2010).

Standardized Precipitation Evapotranspiration Index.
produced for each of the two dependent variables (tree mortality and crown dieback) and tree species. For species and dependent variables, the full model (tree-level + plot-level + stand-level) was selected, since each of the three nested models were significantly different from one another from Chi-square deviance tests ($P < 0.05$).

Of the five predictor variables included in the logistic models, long-term precipitation change (LTP), representative of long-term drought and chronic water stress, was the only one found to be very significant at $P < 0.05$ for *E. marginata* trees killed ($T = -3.15$, $P = 0.0018$) and those experiencing dieback ($T = -2.04$, $P = 0.0424$), and for *C. calophylla* trees killed ($T = -2.45$, $P = 0.0189$). However, this was not the case for *C. calophylla* experiencing dieback ($T = -1.35$, $P = 0.1857$). No other variables included in the models significantly explained trees killed or affected. Each of the final models has adequate discrimination based on the ROC area under the curve value (table S5). Additionally, each model passed the Standard Pearson goodness-of-fit test, which is a conservative goodness-of-fit test (Kuss 2001). The probability of tree mortality increased with declining LTP (increasing chronic water stress) in both species, and crown dieback increased with declining LTP in *E. marginata* (figure 3). High variability was observed with respect to the mean proportion of *E. marginata* stems killed and affected by dieback, and *C. calophylla* stems experiencing dieback (figure 4). However, plot-level trends match findings from the probabilities calculated at the tree-level. Pre-drought tree density (DEN) was also moderately significant ($P < 0.1$) for *C. calophylla* trees killed ($T = 1.69$, $P = 0.0981$), with a higher probability of mortality occurring on denser plots (figure 5).

Results from univariate binary logistic models suggests that the magnitude of the drought in 2010 (STP) had limited influence on the pattern of mortality and dieback observed 49 months post-drought in *E. marginata* and *C. calophylla* (table 2). The only short-term climate predictor that may have contributed to pattern explanation was the change in 2010 annual
temperature compared to the long-term mean (STAT) for *C. calophylla* mortality and dieback, but not for *E. marginata*. In this case, *C. calophylla* tree mortality and dieback increased with the magnitude of 2010 annual temperature (figure 6).

Stand-level

From the beta regression, LTP was the only variable included in the model to contribute significantly to the pattern of stand mortality (table 3). Stand mortality increased with decreasing LTP (figure 7). Concerning stand dieback, STST, and LTP were found significant in the regression model (table 3). The proportion of canopy experiencing dieback was inversely related to LTP, and very weakly related to STST (figure 8).

Discussion

Our findings provide evidence that chronic drought conditions exacerbate tree mortality and crown dieback during an acute heatwave-compounded drought. A small but increasing list of studies are highlighting the important link between temperature (atmospheric moisture demand) and drought (water availability) on tree health, with most studies focusing on tree mortality occurring during drought with either no warming or an increasing temperature trend (table 4). However, climate change is also expected to cause more frequent and intense heat waves, which have largely not been considered in studies of tree mortality under drought. One explanation is that, aside from

Figure 3. Observed and predicted probabilities for tree mortality (a), (b), and crown dieback (c) in *Eucalyptus marginata* (a), (c) and *Corymbia calophylla* (b) following heatwave-compounded drought in 2011 in relation to long-term precipitation change (%) in the Northern Jarrah Forest of southwestern Australia. Long-term precipitation change was found to be very significant ($P < 0.05$) from logistic regression analyses. Shaded areas represent the 95% confidence interval for the probability distribution.
observations of rapid tree mortality associated with temperature spikes in Australia (Mitchell et al 2014), there has been limited evidence that heat waves have contributed to mortality events on a large-scale to date. In southwestern Australia, a heatwave-compounded drought triggered loss of stem conductivity and rapid tree mortality in multiple forest and woodland ecosystems (Matusick et al 2012, Matusick et al 2013, Bader et al 2015, Challis et al 2016). This current study uses observational data to document chronic legacy effects during one of the best-documented tree mortality events that was triggered, in part, by a heatwave. Recently, Liu et al (2018) documented similar amplifying effects of chronic drought on tree mortality in a field experiment, where multiple heatwave-compounded droughts impacted their LTP exclusion experiment site. Collectively, these studies highlight the important interacting effects of chronic drought and acute heat events, both of which are expected to increase in Mediterranean and other climate regions in the coming decades (Andrys et al 2017).

Figure 4. Mean proportion of Eucalyptus marginata killed (a) and experiencing dieback (b), and Corymbia calophylla killed (c) in the Northern Jarrah Forest of southwestern Australia. Error bars represent the standard error of the mean. Values in parentheses represent the mean number of stems measured per plot.
A growing body of recent climatological studies examining compound climate events have shown that (1) extreme drought and heat events are correlated worldwide, and (2) their dependence gets stronger with increased atmospheric warming (Zheischler and Seneviratne 2017), (3) the frequency of heatwave-compounded drought events are increasing (Mazdiyasni and AghaKouchak 2015), and (4) climate models predict heatwave-compounded drought events to become common by 2050 in certain regions (Sedlmeier et al. 2018). Given these findings, even in the absence of change to precipitation patterns, atmospheric warming alone will drive more frequent and severe heatwave-compounded drought events, with significant impacts to trees ecosystems (Williams et al. 2012). All characteristics of heat waves, including their magnitude, frequency, and duration are highly sensitive to global warming (Horton et al. 2016). Therefore, it is very likely that forests will experience additional future changes as concurrent heat waves and droughts drive interacting acute and chronic stress effects.

While studies highlighting the interacting effects of drought and heat waves on forests are more recent, the importance of climate legacy, including the pattern of past drought, has been recognized as an important factor regulating tree response to future drought (Anderegg et al. 2013, Anderegg et al. 2015, Peltier et al. 2016). For example, experiments from a groundwater dependent Mediterranean-type forest have shown that isohydric species experience increased crown defoliation and synergistic mortality effects during acute drought if they have experienced chronic drought (Barbeta et al. 2015, Liu et al. 2018). Prospective dendrochronological studies have consistently detected legacy impacts from drought on subsequent growth and mortality patterns (Heres et al. 2014, Macalady and Bugmann 2014, Berdanier...
Observational field studies are also showing that trees historically experiencing dryer conditions experience higher mortality rates during extreme drought (Anderegg et al. 2013, Young et al. 2017). This study adds to the growing body of literature on the topic by highlighting the magnitude of chronic drought as a significant factor at the landscape-scale. This factor may be particularly important in regions where strong climate change gradients are occurring, such as southwestern Australia, or regions where a single ecosystem or forest type occurs across a wide geographical area.

Although the climate legacy explanation is one that seems representative in light of our analysis, there are some possible alternative explanations for the patterns of tree mortality and crown dieback reported in this study. First, the response of highly resilient tree species to disturbance may also be dictated by the duration of stress events (van der Bolt et al. 2018) and the post-disturbance climate, which may have varied across the sites. However, these climate factors were not considered here since the primary objective was to more broadly examine chronic and acute climate indicators. Second, land-use and land management history may influence tree mortality and crown dieback during heatwave-compounded drought. However, generally there is limited detailed information at the scale of our sites. In the absence of a comprehensive understanding of site history, the contribution of land-use and management history to forest effects from drought remains unclear. In order to explore these alternate explanations, and to make broader generalizations about drought legacies, a greater number of events and sites need to be examined.

Environmental stress periods leading to forest disturbance, acting singly, or in combination (e.g. Miao et al. 2009), can reduce the resilience of ecosystems (Buma and Wessman 2011) and are expected to push ecosystems past critical tipping points in the future.

Table 3. Results of beta regression model examining the effects of independent variables on stand-level mortality and canopy dieback patterns 49 months following heatwave-compounded drought in the Northern Jarrah Forest, southwestern Australia.

Independent variable	Stand mortality		Canopy dieback	
	F-value	P-value	F-value	P-value
DBH	2.61	0.1322	1.42	0.2552
DEN	0.14	0.7157	0.14	0.7108
LTP	10.39	0.0073	54.72	<0.0001
LTSPEI	3.35	0.0921	1.67	0.2192
STST	1.71	0.2150	14.33	0.0023

Figure 6. Observed and predicted probability for Corymbia calophylla mortality (a) and dieback (b) following heatwave-compounded drought in relation to short-term temperature change (2010 versus 1951–2010) in the Northern Jarrah Forest, southwestern Australia.
Ecosystems may change most rapidly and profoundly in regions experiencing compound events or multiple stress periods, occurring concurrently, or in quick succession (Allen et al. 2015). In the Northern Jarrah Forest, and elsewhere, the combination of drought and warming has corresponded with beetle outbreaks (Seaton et al. 2015), forest fires (Gouveia et al. 2016), and associated widespread terrestrial carbon losses (Berner et al. 2017). Not only do these processes have an impact on forest structure and functioning, but also the potential to profoundly alter our future atmosphere and climate (Zemp et al. 2017).

Conclusions

This study highlights the important interacting effects of chronic historical drought legacies and acute heatwave-compounded drought on forest trees. Long-term precipitation change was the most significant climate predictor of tree mortality and crown dieback triggered by an acute heatwave-compounded drought.
in the Northern Jarrah Forest. This study also illustrates a relationship between the magnitude of chronic drought and tree mortality and crown dieback. Forest experiencing a greater magnitude of chronic drought had lower resistance (crown dieback) and resilience (tree mortality) to the acute heatwave-compounded drought than forest experiencing less severe chronic drought. The relationships between interacting chronic and acute drought stress periods and their combined impacts on forests, such as those reported here, will, firstly, need to be integrated into assessments of how drought and warming together trigger broad-scale tree mortality and crown dieback events, and secondly, need to be incorporated into process-based and empirical models to improve predictions of how forest ecosystems will be altered with climate change into the future.

Acknowledgments

This research was conducted as part of the Western Australian State Centre of Excellence for Climate Change Woodland and Forest Health. D D Breshears was supported by a Sir Walter Murdoch Distinguished Collaborator award from Murdoch University, the US National Science Foundation (EF-1340649 and EF-1550756), the Consortium for Arizona-Mexico Arid Environments, and the Arizona Agriculture Experiment Station. We thank the Western Australia Department of Parks and Wildlife for providing permission to conduct the work, P Biggs (CSIRO) and M Raupach (CSIRO) for access to the Australian Water Availability Project (AWAP) datasets, and C Marbus, S Seaton, T Paap (Murdoch University), L Samuelson and J O’Donnell (Auburn University) for technical support, field assistance, and helpful comments on previous versions. The authors have no conflict of interest.

ORCID iDs

George Matusick @ https://orcid.org/0000-0003-3198-4113
Katinka X Ruthrof @ https://orcid.org/0000-0003-2038-2264

Table 4. Selection of example observational, experimental, and review studies that investigate the interacting effects of multiple types of warming as a catalyst for drought-induced tree mortality or dieback resulting shortly following drought (current) or from drought legacy.

Warming	Current	Legacy
Nonea	Observational:	Observational:
	Allen and Breshears (1998)	Anderegg et al (2013)
		Macalady and Bugmann (2014)
		Anderegg et al (2015)
		Berdanier and Clark (2016)
Chronicb	Observational:	Observational:
	Breshears et al (2005)	Heres et al (2014)
	Michaelian et al (2011)	Pelletier et al (2016)
	Herguido et al (2016)	
	Experimental:	
	Plaut et al (2013)	
	Pangio et al (2015)	
	Reviews:	
	Allen et al (2010)	
Acute Heatwavec	Observational:	Observational:
	Matusick et al (2013)	This study
	Bader et al (2014)	
	Mitchell et al (2014)	
	Experimental:	
	Zhao et al (2013)	
	Liu et al (2018)	

a Minimal or no significant warming associated with drought.
b Long-term warming trends combined with drought.
c Short-term extreme heat event.
References

Abdott I and Loneragan O 1986 Ecology of Jarrah (Eucalyptus marginata) in the Northern Jarrah Forest of Western Australia (Perth: Western Australia Department of Conservation and Land Management) pp 1–118 I-XVI

Adams H D, Guardiola-Claramonte M, Barron-Gafford G A, Villagés I C, Breshears D D, Zou C B, Troch P A and Huxman T E 2009 Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought Proc. Natl. Acad. Sci. 106 7063–6

Allen C D and Breshears D D 1998 Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation Proc. Natl Acad. Sci. 95 14839–42

Allen M, Berdean A B and McDowell N G 2015 On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene Ecosphere 6 1–55

Allen C D et al 2010 A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests Forest Ecol. Manage. 259 660–84

Allison P 2014 Measures of fit for logistic regression Proc. SAS Global Forum 2014 Conf. Paper 1485–2014

Anderegg W R L, Anderegg L D L, Berry J A and Field C B 2014 Loss of whole-tree hydraulic conductivity during severe drought and multi-year forest die-off Oecologia 175 11–23

Anderegg W R L, Flint A, Huang C Y, Flint L, Berry J A, Davis F W, Sperry S J and Field C B 2015 Tree mortality predicted from drought-induced vascular damage Nat. Geosci. 8 367–71

Anderegg W R L, Plavcova L, Anderegg L D L, Hake U G, Berry J A and Field C B 2013 Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk Glob. Change Biol. 19 1138–46

Anderson-Teixeira K J, Miller A D, Mohan J E, Hudiberg T W, Duval B D and DeLucia E H 2013 Altered dynamics of forest recovery under a changing climate Glob. Change Biol. 19 2001–21

Andrew M E, Rothfus K X, Matusick G and Hardy G E 2016 Spatial configuration of drought disturbance and forest gap creation across environmental gradients PLoS One 11 e0157154

Andrys J, Kala J and Lyons T J 2017 Regional climate projections of mean and extreme climate for the southwest of Western Australia (1970–1999 compared to 2030–2059) Clim. Dyn. 48 1723–47

Andrys J, Lyons T J and Kala J 2015 Multi-decadal evaluation of WRF downscaling capabilities over Western Australia in simulating rain-fall and temperature extremes J. Appl. Meteorol. Climatol. 54 370–94

Bader M K F et al 2014 Spatio-temporal water dynamics in mature Bankia menziesii trees during drought Physiologia Plantarum 152 301–15

Barbosa A, Meija-Chang M, Ogaya R, Voltas J, Dawson T E and Peñuelas J 2015 The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest Glob. Change Biol. 21 1213–25

Barbosa A and Peñuelas J 2016 Sequence of plant responses to droughts of different timescales: lessons from holm oak (Quercus ilex) forests Plant Ecol. Diversity 9 321–38

Bates B, Hope P, Ryan B, Smith I and Charles S 2008 Key findings from the Indian ocean climate initiative and their impact on policy development in Australia Clim. Change 89 339–54

Bennett A C, McDowell N G, Allen C G and Anderson-Teixeira K J 2015 Larger trees suffer most during drought in forests worldwide Nat. Plants 13 1391–13

Berdanier A B and Clark J S 2016 Multiscale drought-induced mortality preceding tree death in southeastern US forests Ecol. Appl. 26 17–23

Berner L T, Law B E, Meddens A J H and Hicke J A 2017 Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003–2012) Environ. Res. Lett. 12 065005

Bigler C, Bräker O U, Bugmann H, Dobbertin M and Rigling A 2006 Drought as an inciting mortality factor in Scots pine stands of Valais, Switzerland Ecosystems 9 330–43

Breshears D D et al 2005 Regional vegetation die-off in response to global-change-type drought Proc. Nat. Acad. Sci. 102 15144–8

Breshears D D, Adams H D, Eamus D, McDowell N G, Law D J, Will R E, Williams A P and Zou C B 2013 The critical amplifying role of increased atmospheric moisture demand on tree mortality and associated regional die-off Frontiers Plant Sci. 4 1–4

Brouwers N, Matusick G, Rothfus K X, Lyons T and Hardy G 2013 Landscape-scale assessment of tree crown dieback following extreme drought and heat in a Mediterranean eucalypt forest ecosystem Landscape Ecol. 28 69–80

Brown A E, Zhang L, McMahan T A, Western A W and Vertessy R A 2005 A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation J. Hydrol. 310 28–61

Buma B and Wessman C A 2011 Disturbance interactions can impact resilience mechanisms of forests Ecosphere 2 1–13

Bureau of Meteorology 2011 Australia in February 2011. Product code IDGKCD1A00, Australian Government Bureau of Meteorology http://bom.gov.au/climate/current/month/ archive/201102.summary.shtml

Bureau of Meteorology 2012 Perth in 2011: hottest year on record for Perth Metro. Australian Government Bureau of Meteorology http://bom.gov.au/climate/current/annual/wa/archive/2011.perth.shtml

Cai W, van Rensch P, Borlace S and Cowan T 2011 Does the Southern Annular Mode contribute to the persistence of multidecadal-long drought over southwest Western Australia Geophys. Res. Lett. 38 L14172

Challis A, Stevens J C, McGrath G and Miller B P 2016 Plant and environmental factors associated with drought-induced mortality in two facultative phreatophytic trees Plant Soil 404 157–72

Collins M et al 2013 Long-term climate change: projections, commitments and irreversibility Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ed T F Stocker et al (Cambridge: Cambridge University Press)

D’Amato A W, Bradford J B, Fraver S and Palik B J 2011 Forest management for mitigation and adaptation to climate change: insights from long-term silviculture experiments Forest Ecol. Manage. 262 803–16

Dell B, Bartle J R and Tracey W H 1983 Root occupation and root channels of Jarrah Forest subsoils Aust. J. Bot. 31 615–27

Difffenbaugh N S, Swain D L and Touma D 2015 Anthropogenic warming has increased drought risk in California Proc. Natl Acad. Sci. 112 3931–6

Duan H, Duursma R A, Huang G, Smith R A, Chaot B, O’Grady A P and Tissue D T 2014 Elevated [CO₂] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings Plant, Cell Environ. 37 599–613

Duan H, O’Grady A P, Duursma R A, Chaot B, Huang G, Smith R A, Jiang Y and Tissue D T 2015 Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO₂] and temperature Tree Physiol. 35 756–70

Ene M, Lightoan E A, Blue G L and Bell B A 2014 Multilevel Models for Categorical Data Using SAS® PROC GLIMMIX: The Basics (Dallas: SAS Global Forum)

Gallant A E J, Reeder M J, Risy J S and Hemnessey K J 2013 The characteristics of season-scale droughts in Australia 1911–2009 Int. J. Climatol. 33 1658–72

Gouveia C M, Bistinas I, Liberato M L R, Bastos A, Koutsias N and Trigo R 2016 The outstanding synergy between drought, heatwaves and fuel on the 2007 Southern Greece exceptional fire season Agric. Forest Meteorol. 218–219 135–45
Hart S J, Veblen T T, Eisenhart K S, Jarvis D and Kulakovski D 2014 Drought induces spruce beetle (Dendrocopos rufipennis) outbreaks across northwestern Colorado Ecology 95 930–9
Herres A-M, Camarero J J, Lopez B C and Martinez-Vilalta J 2014 Declining hydraulic performances and low carbon investments in tree rings predate Scots pine drought-induced mortality Trees 28 1757–50
Herguido E, Granada E, Benavides R, García-Cervigón A L, Camarero J J and Valladares F 2016 Contrasting growth and mortality responses to climate warming of two species in a continental Mediterranean ecosystem Forest Ecol. Manage. 363 149–58
Horton R M, Mankin J S, Lesk C, Coffel E and Raymond C 2016 A review of recent advanced in research on extreme heat events Curr. Clim. Change Rep. 2 242–59
Hosmer D W and Lemeshow S 1980 Goodness of fit tests for multiple logistic regression model Commun. Stat.-Theory Methods 16 695–80
Indian Ocean Climate Initiative 2012 Western Australia’s Weather and Climate: A Synthesis of Indian Ocean Climate Initiative Stage 3 Research (Australia: CSIRO and BoM)
Jones D A, Wang W and Fawcett R 2009 High-quality spatial climate data-sets for Australia Aust. Meteorol. Oceanogr. J. 58 233–48
Kala J, Andrys J, Lyons T J, Foster I J and Evans B J 2015 Sensitivity of Indian Ocean Climate Initiative 2012
Lindenmayer D B, Laurance W F and Franklin J F 2012 Global forest in southwestern Australia Curr. Clim. Change Rep. 6 295–300
Limousin J-M, Longepierre D, Huc R and Rambal S 2010 Change in Mediterranean-type woodland species Forest Ecol. Manage. 233 151–11
Macalady A K and Bugmann H 2014 Growth mortality relationships in Píton de la Quinta (Pinus edulis) during severe droughts of the past century: shifting processes in space and time PLoS One 9 e92770
Mathys A S, Coops N C and Waring R H 2016 An ecoregion assessment of projected tree species vulnerabilities in western North America through the 21st century Glob. Change Biol. 23 92–30
Matusick G, Ruthof K X, Brouwers N C, Dell B and Hardy G E S J 2013 Sudden forest canopy collapse corresponding with extreme drought and heat in a Mediterranean-type Eucalypt forest in southwestern Australia Eur. J. Forest Res. 132 497–510
Matusick G, Ruthof K X and Hardy G E S J 2012 Drought and heat triggers sudden and severe dieback in a dominant Mediterranean-type woodland species Open J. Forestry 2 183–6
Matusick G, Ruthof K X, Fontaine J B and Hardy G E S J 2016 Eucalyptus forest shows low structural resistance and resilience to climate change-type drought J. Vegetation Sci. 27 493–503
Mazidjiani O and AghaKouchak A 2015 Substantial increase in concurrent droughts and heatwaves in the United States Proc. Natl. Acad. Sci. 12 11484–9
McCallagh P 1985 On the asymptotic distribution of Pearson’s statistic in linear exponential-family models Int. Stat. Rev. 53 61–7
McDowell N and Allen C D 2015 Darcy’s law predicts widespread forest mortality under climate warming Nat. Clim. Change 5 669–72
McDowell N et al 2008 Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Physiologist 178 719–39
McDowell N G et al 2015 Multi-scale predictions of massive conifer mortality due to chronic temperature rise Nat. Clim. Change 6 295–300
Meegh A G and Tcholadi 2004 More intense, more frequent, and longer lasting heat waves in the 21st century Science 305 994–7
Miao S, Zou C B and Breshears D D 2009 Vegetation responses to extreme hydrological events: sequence matters Am. Naturalist 173 113–8
Michaelian M, Hogg E H, Hall R J and Arsenault E 2011 Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest Glob. Change Biol. 17 2084–94
Mitchell P J, O’Grady A P, Hayes K R and Pinkard E A 2014 Exposure of trees to drought-induced die-off is defined by a common climatic threshold across different vegetation types Ecol. Evol. 4 1088–101
Osiau G and Rojkj D 1992 Normal goodness-of-fit tests for multimomial models with large degrees of freedom J. Am. Stat. Assoc. 87 1145–52
Paa P, Brouwers N C, Burgess T and Hardy G 2017 Importance of climate, anthropogenic disturbance and pathogens (Quambalaria coreyae and Phytophthora spp.) on marri (Corymbia calophylla) tree health in southwestern Western Australia Ann. Forest Sci. 74 62
Pangle R E, Limousin J-M, Plaut J A, Yepez E A, Hudson P J, Boutou A L, Gehres N, Pockman W T and McDowell N G 2015 Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon-juniper woodland Ecol. Evol. 5 1618–38
Peltier D M P, Foll M and Ogle K 2016 Legacy effects of drought in the southwestern United States: a multi-species synthesis Ecol. Monogr. 86 312–26
Pichler P and Oberhuber W 2007 Radial growth responses of coniferous forest trees in an inner Alpine environment to heat-wave in 2003 Forest Ecol. Manage. 242 688–99
Plaut J A, Wadsworth W D, Pangle R, Yepez E A, McDowell N G and Pockman W T 2013 Prolonged drought-induced transpiration response to precipitation pulses precedes mortality in a piñon-juniper woodland subject to prolonged drought New Physiologist 200 375–87
Poot P and Veneklaas E J 2013 Species distribution and crown decline are associated with contrasting water relations in four common sympatric eucalypt species in southwestern Australia Plant Soil 364 609–23
Raupach M R, Briggs P R, Haverd V, King E A, Pagent M and Trudinger C M 2009 Australian water availability project (AWAP): CSIRO marine and atmospheric research component: final report for phase 3 CAWCR Technical Report No. 013 Australian Government, Bureau of Meteorology
Reyer C P O et al 2015 Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges J. Ecol. 103 5–15
Ruthof K X, Fontaine J, Matusick G, Breshears D, Law D, Powell S and Hardy G 2016 How drought-induced forest die-off alters microclimate and increases fuel loadings and fire potentials Int. J. Wildland Fire 25 819–30
Ruthof K X, Matusick G and Hardy G 2015 Early differential responses of co-dominant canopy species to drought-induced forest dieback in Mediterranean southwestern Australia Forests 6 2082–91
Seaton S, Matusick G, Ruthof K X and Hardy G E S J 2015 Outbreak of Phoracantha semipunctata in response to severe drought in a Mediterranean Eucalyptus forest Forests 6 3868–81
Sedlmeyer K, Feldmann H and Schädler G 2018 Compound summer temperature and precipitation extremes over central Europe Theor. Appl. Climatol. 131 1493–501
Sergent A-S, Rozenberg P and Bréda N 2014 Douglas-fir is vulnerable to exceptional and recurrent drought episodes and recovers less well on less fertile sites Ann. Forest Sci. 71 697–708

Smith S E, Mendoza M G, Zúñiga G, Hallbrook K, Hayes J L and Byrne D N 2013 Predicting the distribution of a novel bark beetle and its pine hosts under future climate conditions Agric. Forest Entomol. 15 212–26

Specht R L, Roe M E and Boughton V H 1974 Conservation of major plant communities in Australia and Papua New Guinea Aust. J. Bot. 4 (Suppl. 7) 667

Teskey R, Werten T, Bauweraerts I, Ameye M, McGuire M A and Steppe K 2015 Responses of tree species to heat waves and extreme heat events Plant, Cell Environ. 38 1699–712

van der Bolt B, van Nes E H, Bathiany S, Vollebregt M E and Scheffer M 2018 Climate reddening increases the chance of critical transitions Nat. Clim. Change 8 478–84

Vincente-Serrano S M, Beguería S and López-Moreno J I 2010 A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index J. Clim. 23 1696–718

Warton D J and Hui F K C 2011 The arc sine in asinine: the analysis of proportions in ecology Ecology 92 3–10

Williams A P, Seager R, Abatzoglou J T, Cool B I, Smerdon J E and Cool E R 2015 Contribution of anthropogenic warming to California drought during 2012–2014 Geophys. Res. Lett. 42 6819–28

Williams A P et al 2012 Temperature as a potent driver of regional forest drought stress and tree mortality Nat. Clim. Change 3 292–7

Wu H, Hayes M J, Wilhite D A and Svoboda M D 2005 The effect of the length of record on the standardized precipitation index calculation Int. J. Climatol. 25 503–20

Wu H, Svoboda M D, Hayes M J, Wilhite D A and Wen F 2007 Appropriate application of the standardized precipitation index in arid locations and dry seasons Int. J. Climatol. 27 65–79

Young D J N, Stevens J T, Earles J M, Moore J, Ellis A, Jirka A L and Latimer A M 2017 Long-term climate and competition explain forest mortality patterns under extreme drought Ecol. Lett. 20 78–86

Zcheischler J and Seneviratne S I 2017 Dependence of drivers affects risks associated with compound events Sci. Adv. 3 e1700263

Zemp D C, Schleussner C-F, Barbosa H M J, Hirota M, Montade V, Sampaio G, Staal A, Wang-Erlandsson L and Rammig A 2017 Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks Nature Comm. 8 14681

Zhao J, Hatmann H, Trumbore S, Ziegler W and Zhang Y 2013 High temperature causes negative whole-plant carbon balance under mild drought New Phytologist 200 330–9