Pursuing the Amplitude of Tensor Mode Power Spectrum in Light of BICEP2

Baorong Chang* and Lixin Xu†

Institute of Theoretical Physics, School of Physics & Optoelectronic Technology,
Dalian University of Technology, Dalian, 116024, P. R. China
College of Advanced Science & Technology, Dalian University of Technology, Dalian, 116024, P. R. China and
State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences

In this brief report, we try to constrain general parameterized forms of scalar and tensor mode power spectra, $P_s(k) \equiv A_s(k/k_0)^{n_s+1} \ln(k/k_0)$ and $P_t(k) \equiv A_t(k/k_0)^{n_t+1} \ln(k/k_0)$ by the recently released BICEP2 data set plus Planck 2013, WMAP9 and BAO. We loosen the inflationary consistency relations, and take A_s, n_s, A_t, and n_t as free model parameters, via the Markov chain Monte Carlo method, the interested model parameter space was investigated, we obtained marginalized 68% limits on the interested parameters: $n_s = 0.96339^{+0.00556}_{-0.00554}$, $n_t = 1.70490^{+0.56104}_{-0.56979} \ln(10^{10}A_s) = 3.08682^{+0.02351}_{-0.02641}$, and $\ln(10^{10}A_t) = 3.98376^{+0.86405}_{-0.54885}$. The ratio of the amplitude at the scale $k = 0.002\text{Mpc}^{-1}$ is $r = 0.01655^{+0.00001}_{-0.00065}$ which is consistent with the Planck 2013 result.

I. Introduction

The BICEP2 experiment [1, 2] has detected the B-modes of polarization in the cosmic microwave background. And this observed B-modes power spectrum gives the constraint to the tensor-to-scalar ratio with $r = 0.20^{+0.07}_{-0.05}$ at the 1σ level of the lensed-ΛCDM model [1, 2]. And the tensor spectral tilt n_t can be obtained, when the first order consistency relation, $n_t = -r/8$, was respected. Also, relaxing this consistency relation by taking n_t as a free model parameter [3], $r_{0.002} = 0.21^{+0.04}_{-0.03}$ and $n_t = -0.06^{+0.23}_{-0.26}$ were obtained by using BICEP2 only. By combining Planck, WMAP9 and BAO data, it was already found that a blue tilt is slightly favored, but it is still well consistent with flat or red tilt [4]. However, one can go further by taking generalized parameterized forms of scalar and tensor mode power spectra as

\[P_s(k) \equiv A_s(k/k_0)^{n_s+1} \ln(k/k_0), \]
\[P_t(k) \equiv A_t(k/k_0)^{n_t+1} \ln(k/k_0), \]

without assuming any idea about inflation, in other words throwing away the consistency relations, just considering the possible deviation from the scale invariant power spectra, i.e. the Harrison-Zel’dovich-Peebles spectra. And how to interpret it is another issue. Of course, one can relate it to the so-called inflation, where the consistency relations should be respected. And in this way, one can test the viability of inflation models. But, one can also explain it through the bounce expansion. Here $n_s - 1$ and n_t are tilts of power spectrum of scalar and tensor modes, $k_0 = 0.05\text{Mpc}^{-1}$ is the pivot scale, $\alpha_s = dn_s/d\ln k$ and $\alpha_t = dn_t/d\ln k$ are the running of the scalar and tensor spectral tilts. The primordial tensor-to-scalar ratio is defined by $r \equiv A_t/A_s$ at different pivot scale, here, they are $r_{0.05}$ defined at $k_0 = 0.05\text{Mpc}^{-1}$ and $r_{0.002}$ defined at $k_0 = 0.002\text{Mpc}^{-1}$. In this paper, without any other specification, $r_{0.002}$ will be donated by r. And we also denote A_t/A_s as the amplitude ratio of the tensor and scalar mode power spectrum at $k \equiv k_0$, i.e. the scale independent tensor-to-scalar ratio. In our calculation, adiabatic initial conditions were assumed in this paper. Actually, if one wants to relate the parameterized primordial power spectra, the following relations, the so-called consistency relation should be respected [5]

\[r = -8c_t n_t, \]

By taking these parameters, n_t and A_t as free ones, one can test these consistency relation by the recently released BICEP2 data.

Here, we are mainly focusing on the model parameters which are related to the primordial power spectra. Therefore, in this brief paper, by combing the following data sets, we report the constrained results on the interested parameters:

(i) The newly released BICEP2 CMB B-mode data [1, 2].
(ii) The full information of CMB which include the recently released Planck data sets which include the high-l TT likelihood (CAMSpec) up to a maximum multipole number of $l_{max} = 2500$ from $l = 50$, the low-l TT likelihood (lowl) up to $l = 49$ and the low-l TE, EE, BB likelihood up to $l = 32$ from WMAP9, the data sets are available on line [7].
(iii) For the BAO data points as 'standard ruler', we use the measured ratio of D_V/r_s, where r_s is the co-moving sound horizon scale at the recombination epoch, D_V is the 'volume distance' which is defined as

\[D_V(z) = [(1 + z)^2 D_A^2(z)c^2/H(z)]^{1/3}, \]

where D_A is the angular diameter distance. The BAO data include $D_V(0.106) = 456 \pm 27$ [Mpc] from 6dF Galaxy Redshift Survey [8]; $D_V(0.35)/r_s = 8.88 \pm 0.17$ from SDSS DR7 data [9]; $D_V(0.57)/r_s = 13.62 \pm 0.22$ from BOSS DR9 data [10]. Here the BAO measurements from WiggleZ are not included, as they come from the same galaxy sample as $P(k)$ measurement.

We will present the method and obtained results in the next section II. Section III is the conclusion.

II. Constrained Results

To study the effect of the spectral tilt n_t and the amplitude A_t to the B-mode of CMB power spectrum, we use the newest

* changbaorong@dlut.edu.cn
† Corresponding author: lx xu@dlut.edu.cn
version of CAMB [12] code where the the running α_s, α_t, and amplitude A_r as free model parameters have been included in the forms of the equations (1) and (2). By fixing the other relevant cosmological model parameters but varying n_t or A_r, we show the B-mode of CMB power spectrum in Figure 1 for different values of n_t and A_r, where the other relevant model parameters were fixed to their values obtained by Planck 2013 Collaboration group [6].

One can clearly see that the variation of values of A_r corresponds to move the B-mode power spectrum along the vertical direction and almost keep the shape untouched. And larger values have large amplitude of the B-mode power spectrum as expected. On the contrast, the values of n_t manages the shapes at the low multipoles $l < 150$. Large values of n_t will decrease the amplitude of the B-mode CMB power spectrum. And we should also notice the fact that the effects on the B-mode CMB power spectrum are truly independent on the consistency relations.

n_t	A_r	$\Omega_m h^2$, $\Omega_b h^2$, $100\theta_{MC}$, τ, n_s, n_t, $\ln(10^10A_s)$, $\ln(10^10A_r)$
0.3	0.01	$\Omega_m h^2$, $\Omega_b h^2$, $100\theta_{MC}$, τ, n_s, n_t, $\ln(10^10A_s)$, $\ln(10^10A_r)$

To investigate the model parameter space,

\[P = \{\Omega_m h^2, \Omega_b h^2, 100\theta_{MC}, \tau, n_s, n_t, \ln(10^{10}A_s), \ln(10^{10}A_r)\}, \]

we performing a global fitting on the Computing Cluster for Cosmos by using the publicly available package CosmoMC [13], which includes CAMB [12] to calculate the CMB power spectra that has been used to produce the BB power spectrum in Figure 1. The running was stopped when the Gelman & Rubin $R - 1$ parameter $R - 1 \sim 0.01$ was arrived; that guarantees the accurate confidence limits. We set the inflationconsistency = F in the input params_CMB_defaults.ini file. The obtained results are shown in Table 1. The obtained contour plots are shown in Figure 2.

n_s	σ_8, Ω_m, Ω_b, $\Omega_{ ext{CDM}}$
0.3	$\sigma_8 = 0.76339^{+0.00560}_{-0.00554}$, $\Omega_m = 0.16490^{+0.56104}_{-0.56997}$, $\ln(10^{10}A_s) = 3.08682^{+0.02353}_{-0.02614}$, $\ln(10^{10}A_r) = 3.98376^{+0.38065}_{-0.34885}$

III. Conclusion

In this brief paper, we loosen the inflation consistency relation constraint, and take the spectral tilts n_s, n_t, A_s and A_r as free model parameters. Combining the recently released BICEP2 data, Planck 2013, WMAP9 and BAO via the MCMC method, the model parameter space was scanned. We found that $n_s = 0.96339^{+0.00554}_{-0.00560}$, $n_t = 1.70490^{+0.56104}_{-0.56997}$, $\ln(10^{10}A_s) = 3.08682^{+0.02353}_{-0.02614}$, and $\ln(10^{10}A_r) = 3.98376^{+0.38065}_{-0.34885}$. The ratio of the amplitude at the scale $k = 0.002\text{Mpc}^{-1}$ is $r = 0.01655^{+0.00011}_{-0.01655}$ which is consistent with the Planck 2013 result. And a blue tensor tilt is favored at 1σ C.L. And n_t is positive above 2σ C.L.. It implies the broken of consistency relation $r = -8c_in_t$ at 2σ C.L., when the speed of sound $c_s > 0$.
FIG. 2. The 1D marginalized distribution and 2D contours for interested model parameters with 68% C.L., 95% C.L. by using Planck 2013, WMAP9 and BICEP2.

Acknowledgments

This work is supported in part by NSFC under the Grants No. 11275035 and "the Fundamental Research Funds for the Central Universities" under the Grants No. DUT13LK01.

[1] P. A. R. Ade, et al. (BICEP2 Collaboration) (2014), 1403.4302.
[2] P. A. R. Ade, et al. (BICEP2 Collaboration) (2014), 1403.3985.
[3] C. Cheng, Q.-G. Huang, arXiv:1403.5463; C. Cheng, Q.-G. Huang, arXiv:1403.7173.
[4] F. Wu, Y. Li, Y. Lu, X. Chen, arXiv:1403.6462 [astro-ph.CO].
[5] J. Garriga, V. F. Mukhanov, Phys. Lett. B 458, 219(1999), arXiv:hep-th/9904176.
[6] P. A. R. Ade, et al, (Planck Collaboration), arXiv:1303.5076 [astro-ph.CO].
[7] http://pla.esac.esa.int/pla/aio/planckProducts.html.
[8] F. Beutler, et al., Mon. Not. Roy. Astron. Soc. 416, 3017 (2011), arXiv:1106.3366 [astro-ph.CO].
[9] N. Padmanabhan, et al., Mon. Not. Roy. Astron. Soc. 427, 2132 (2012), arXiv:1202.0090 [astro-ph.CO].
Parameters	Priors	Mean with errors	Best fit
$\Omega_b h^2$	[0.005, 0.1]	$0.02212^{+0.00004}_{-0.00002}$	0.02233
$\Omega_c h^2$	[0.001, 0.99]	$0.1185^{+0.0017}_{-0.0017}$	0.1188
$100\theta_{MC}$	[0.5, 10]	$1.04143^{+0.00357}_{-0.00114}$	1.04158
τ	[0.01, 0.81]	$0.09060^{+0.0141}_{-0.01352}$	0.09739
n_s	[0.9, 1.1]	$0.96339^{+0.0560}_{-0.05544}$	0.96497
n_t	[-5, 5]	$1.70490^{+0.56135}_{-0.56979}$	1.37722
$\ln(10^{10}A_s)$	[2.7, 4]	$3.08682^{+0.02335}_{-0.02614}$	3.10357
$\ln(10^{10}A_l)$	[0.01, 10]	$3.98376^{+0.58435}_{-0.58435}$	3.66014
Ω_Λ	...	$0.69292^{+0.00104}_{-0.00104}$	0.69286
Ω_m	...	$0.30708^{+0.00104}_{-0.00104}$	0.30714
z_{ce}	...	$11.08681^{+1.00672}_{-1.00672}$	11.63177
H_0	...	$67.84886^{+0.76360}_{-0.76360}$	67.95166
τ	...	$0.01655^{+0.00011}_{-0.00011}$	0.01851
A_t/A_s	...	$3.06406^{+0.55488}_{-0.55488}$	1.74468
Age/Gyr	...	$13.80101^{+0.03730}_{-0.03730}$	13.77666

TABLE I. The mean values with 1σ errors and the best fit values of the model parameters and derived cosmological parameters, where the Planck 2013, WMAP9 and BICEP2 data sets were used.