Spanning trees with at most 5 leaves and branch vertices in total of $K_{1,5}$-free graphs

Pham Hoang Ha
Department of Mathematics
Hanoi National University of Education
136 XuanThuy Street, Hanoi, Vietnam

Nguyen Hoang Trang
Foreign Language Speacialized School
University of Languages and International Studies
Vietnam National University, HaNoi

Abstract
In this paper, we prove that every n-vertex connected $K_{1,5}$-free graph G with $\sigma_4(G) \geq n-1$ contains a spanning tree with at most 5 leaves and branch vertices in total. Moreover, the degree sum condition $\sigma_4(G) \geq n-1$ is best possible.

Keywords: spanning tree; $K_{1,5}$-free; degree sum
AMS Subject Classification: 05C05, 05C07, 05C69

*E-mail address: ha.ph@hnue.edu.vn (Corresponding author).
†E-mail address: trang153@gmail.com
1 Introduction

In this paper, we only consider finite simple graphs. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For any vertex $v \in V(G)$, we use $N_G(v)$ and $d_G(v)$ (or $N(v)$ and $d(v)$ if there is no ambiguity) to denote the set of neighbors of v and the degree of v in G, respectively. For any $X \subseteq V(G)$, we denote by $|X|$ the cardinality of X. We define $N(X) = \bigcup_{x \in X} N(x)$ and $d(X) = \sum_{x \in X} d(x)$. For an integer $k \geq 1$, we let $N_k(X) = \{x \in V(G) \mid |N(x) \cap X| = k\}$. We use $G - X$ to denote the graph obtained from G by deleting the vertices in X together with their incident edges. The subgraph of G induced by X is denoted by $G[X]$. We define $G - uv$ to be the graph obtained from G by deleting the edge $uv \in E(G)$, and $G + uv$ to be the graph obtained from G by adding an edge uv between two non-adjacent vertices u and v of G. We write $A := B$ to rename B as A.

A subset $X \subseteq V(G)$ is called an independent set of G if no two vertices of X are adjacent in G. The maximum size of an independent set in G is denoted by $\alpha(G)$. For $k \geq 1$, we define $\sigma_k(G) = \min\{\sum_{i=1}^{k} d(v_i) \mid \{v_1, \ldots, v_k\} \text{ is an independent set in } G\}$. For $r \geq 1$, a graph is said to be $K_{1,r}$-free if it does not contain $K_{1,r}$ as an induced subgraph. A $K_{1,3}$-free graph is also called a claw-free graph.

Let T be a tree. A vertex of degree one is a leaf of T and a vertex of degree at least three is a branch vertex of T. The set of leaves of T is denoted by $L(T)$ and the set of branch vertices of T is denoted by $B(T)$. For two distinct vertices u, v of T, we denote by $P_T[u, v]$ the unique path in T connecting u and v and denote by $d_T[u, v]$ the distance between u and v in T. We define the orientation of $P_T[u, v]$ is from u to v.

There are many known results on the independence number conditions and the degree sum conditions to ensure that a connected graph G contains a spanning tree with a bounded number of leaves or branch vertices. Win [20] obtained a sufficient condition related to the independence number for k-connected graphs having a few leaves, which confirms a conjecture of Las Vergnas [14]. On the other hand, Broersma and Tuinstra [1] gave a degree sum condition for a connected graph to contain a spanning tree with a bounded number of leaves. Beside that, recently, the first named author [7] stated an improvement of Win’s result by giving an independence number condition for a graph having a spanning tree which covers a certain subset of $V(G)$ and has at most l leaves.

In 2012, Kano et al. [11] presented a degree sum condition for a connected claw-free graph to have a spanning tree with at most l leaves, which generalizes a result of Matthews and Sumner [17] and a result of Gargano et al. [5]. Later, Chen et al. [2], Matsuda et al. [16] and Gould and Shull [6] also considered the sufficient conditions for a connected claw-free graph to have a spanning tree with few leaves or few branch vertices, respectively.

On the other hand, Kyaw [12, 13] obtained the sharp sufficient conditions for connected $K_{1,4}$-free graphs to have a spanning tree with few leaves. After that, many researchers also studied sufficient conditions for existence of spanning trees with few leaves or few branch vertices in connected $K_{1,4}$-free graphs (see Chen et al. [8] and Ha [8] for examples).

For the $K_{1,5}$-free graphs, some results were obtained as follows.

Theorem 1.1 (Chen et al.) Let G be a connected $K_{1,5}$-free graph with n vertices. If $\sigma_5(G) \geq n - 1$, then G contains a spanning tree with at most 4 leaves.
Theorem 1.2 ([10, Hu and Sun]) Let G be a connected $K_{1,5}$-free graph with n vertices. If $\sigma_6(G) \geq n - 1$, then G contains a spanning tree with at most 5 leaves.

Moreover, many researchers have also studied the degree sum conditions for graphs to have spanning trees with a bounded number of branch vertices and leaves.

Theorem 1.3 ([18, Nikoghosyan], [19, Saito and Sano]) Let $k \geq 2$ be an integer. If a connected graph G satisfies $\deg_G(x) + \deg_G(y) \geq |G| - k + 1$ for every two non-adjacent vertices $x, y \in V(G)$, then G has a spanning tree T with $|L(T)| + |B(T)| \leq k + 1$.

In 2019, Maezawa et al. improved the previous result by proving the following theorem.

Theorem 1.4 ([15, Maezawa et al.,]) Let $k \geq 2$ be an integer. Suppose that a connected graph G satisfies $\max\{\deg_G(x), \deg_G(y)\} \geq \frac{|G| - k + 1}{2}$ for every two non-adjacent vertices $x, y \in V(G)$, then G has a spanning tree T with $|L(T)| + |B(T)| \leq k + 1$.

Recently, Hanh and the first named author also gave sharp results for the case of claw-free graphs and $K_{1,4}$-free graphs, respectively.

Theorem 1.5 ([9, Hanh]) Suppose that a connected claw-free graph G of order n satisfies $\sigma_5(G) \geq n - 2$. Then G has a spanning tree T with $|B(T)| + |L(T)| \leq 5$.

Theorem 1.6 ([8, Ha]) Let k, m be two non-negative integers ($m \leq k + 1$) and let G be a connected $K_{1,4}$-free graph of order n. If $\sigma_{m+2}(G) \geq n - k$, then G has a spanning tree with at most $m + k + 2$ leaves and branch vertices.

In this paper, we further consider connected $K_{1,5}$-free graphs. We give a sufficient condition for a connected $K_{1,5}$-free graph to have a spanning tree with few leaves and branch vertices in total. More precisely, we prove the following.

Theorem 1.7 Let G be a connected $K_{1,5}$-free graph with n vertices. If $\sigma_4(G) \geq n - 1$, then G contains a spanning tree with at most 5 leaves and branch vertices in total.

It is easy to see that if a tree has at least 2 branch vertices then it has at least 4 leaves. Therefore, we immediately obtain the following corollary from Theorem 1.7.

Corollary 1.8 Let G be a connected $K_{1,5}$-free graph with n vertices. If $\sigma_4(G) \geq n - 1$, then G contains a spanning tree with at most 1 branch vertices.

We end this section by constructing an example to show that the degree sum condition “$\sigma_4(G) \geq n - 1$” in Theorems 1.7 is sharp. For an integer $m \geq 1$, let D_1, D_2, D_3, D_4 be vertex-disjoint copies of the complete graph K_m with m vertices. Let xy be an edge such that neither x nor y is contained in $\bigcup_{i=1}^{4} V(D_i)$. Join x to all the vertices in $V(D_1) \cup V(D_2)$ and join y to all the vertices in $V(D_3) \cup V(D_4)$. The resulting graph is denoted by G. Then it is easy to check that G is a connected $K_{1,5}$-free graph with $n = 4m + 2$ vertices and $\sigma_4(G) = 4m = n - 2$. However, every spanning tree of G contains at least 6 leaves and branch vertices in total.
2 Proof of the main result

In this section, we extend the idea of Chen-Ha-Hanh in [4] to prove Theorem 1.7. For this purpose, we need the following lemma.

Lemma 2.1 Let G be a connected graph such that G does not have a spanning tree with at most 5 leaves and branch vertices in total, and let T be a maximal tree of G with $|L(T)| + |B(T)| \in \{6,7\}$. Then there does not exist a tree T' in G such that $|L(T')| + |B(T')| \leq 5$ and $V(T') = V(T)$.

Proof. Suppose for a contradiction that there exists a tree T' in G with at most 5 leaves and branch vertices in total and $V(T') = V(T).$ Since G has no spanning tree with at most 5 leaves and branch vertices in total, we see that $V(G) - V(T') \neq \emptyset$. Hence there must exist two vertices v and w in G such that $v \in V(T')$ and $w \in N(v) \cap (V(G) - V(T'))).$ Let T_1 be the tree obtained from T' by adding the vertex w and the edge vw. Then $|L(T_1)| + |B(T_1)| - |L(T')| - |B(T')| \in \{0,1,2\}.$

If $|L(T_1)| + |B(T_1)| \in \{6,7\}$, then T_1 contradicts the maximality of T (since $|V(T_1)| = |V(T)| + 1 > |V(T)|$). So we may assume that $|L(T_1)| + |B(T_1)| \leq 5$. By repeating this process, we can recursively construct a set of trees $\{T_i \mid i \geq 1\}$ in G such that $|L(T_i)| + |B(T_i)| \leq 5$ and $|V(T_i+1)| = |V(T_i)| + 1$ for each $i \geq 1$. Since G has no spanning tree with at most 5 leaves and branch vertices in total and $|V(G)|$ is finite, the process must terminate after a finite number of steps, i.e., there exists some $k \geq 1$ such that T_{k+1} is a tree in G such that $|L(T_{k+1})| + |B(T_{k+1})| \in \{6,7\}$. But this contradicts the maximality of T. So the lemma holds.

Proof of Theorem 1.7. We prove the theorem by contradiction. Suppose to the contrary that G contains no spanning tree with at most 5 leaves and branch vertices in total. Then every spanning tree of G contains at least 6 leaves and branch vertices in total. We choose a maximal tree T of G with $|L(T)| + |B(T)| \in \{6,7\}$.

We consider four cases according to the number of branch vertices in T. (Note that T contains at most two branch vertices.)

Case 1. T contains two branch vertices and four leaves.

Let s and t be the two branch vertices in T and let $U = \{u_1; u_2; u_3; u_4\}$ be the set of leaves of T. Then $d_T(s) = d_T(t) = 3$. Moreover, by the maximality of T, we have $N(U) \subset V(T)$. For simplifying notation, let $[k]$ be the set of $\{1, 2, \ldots, k\}$ for some positive integer k.

For each $i \in [4]$, let B_i be the vertex set of the connected component of $T - \{s,t\}$ containing u_i and let v_i be the unique vertex $B_i \cap N_T(\{s,t\})$. Without loss of generality, we may assume that $\{v_1,v_2\} \subset N_T(s)$ and $\{v_3,v_4\} \subset N_T(t)$. For each $1 \leq i \leq 4$ and $x \in B_i$, we use x^- and x^+ to denote the predecessor and the successor of x on $P_T[s,u_i]$ or $P_T[t,u_i]$, respectively (if such a vertex exists). Let s^+ be the successor of s on $P_T[s,t]$. Define $P := V(P_T[s,t]) - \{s,t\}$.

For this case, we further choose T such that

(C1) $d_T[s,t]$ is as small as possible.

Claim 2.2 For all $1 \leq i,j \leq 4$ and $i \neq j$, if $x \in N(u_j) \cap B_i$, then $x \neq u_i$, $x \neq v_i$ and $x^- \notin N(U - \{u_j\})$.

Lemma 2.1. By applying Claim 2.2, we have that this contradicts the condition (C1). So the claim holds.

By Claim 2.2, we know that U is an independent set in G.

Claim 2.3 $N(u_i) \cap P = \emptyset$ for each $i \in \{2\}$.

Proof. Suppose the assertion of the claim is false. Then there exists some vertex $x \in P$ such that $xu_i \in E(G)$ for some $i \in \{2\}$. Let $T' := T - v_i v_i^- + xu_i$, then T' is a tree in G such that $V(T') = V(T)$, T' has 4 leaves and 1 branch vertex such that $d_T[s', t'] < d_T[s, t]$. But this contradicts the condition (C1). So the claim holds.

Claim 2.4 $N(u_i) \cap \{t\} = \emptyset$ for each $i \in \{2\}$.

Proof. Suppose $su_i \in E(G)$ for some $i \in \{2\}$. Consider the tree $T' := T - v_i v_i^- + tu_i$ is a tree in G with 4 leaves and 1 branch vertex such that $V(T') = V(T)$, contradicting Lemma 2.1. This proves Claim 2.4

Similarly, we also have

Claim 2.5 $N(u_i) \cap \{s\} = \emptyset$ for each $3 \leq i \leq 4$.

Claim 2.6 $N_2(U - u_i) \cap B_i = \emptyset$ for each $i \in \{4\}$. In particular, $N_3(U) = (N_2(U) - N(u_i)) \cap B_i = \emptyset$ for each $i \in \{4\}$.

Proof. For the sake of convenience, we may assume by symmetry that $i \in \{2\}$.

Suppose this is false. Then there exists some vertex $x \in (N_2(U - u_i)) \cap B_i$ for some $i \in \{2\}$. By applying Claim 2.2, we have $x \neq u_i$ and $x \neq v_i$.

Since $x \in N_2(U - u_i) \cap B_i$ there must exist two distinct indices $j, k \in \{4\} - \{i\}, j < k$, such that $xu_j, xu_k \in E(G)$. Set

$$T' := \begin{cases} T - \{v_j v_j^-, v_k v_k^-\} + \{xu_j, xu_k\}, & \text{if } j = 3 - i, \\ T - \{ss^+, v_k v_k^-\} + \{xu_j, xu_k\}, & \text{if } 3 \leq j < k \leq 4, \end{cases}$$

Then T' is a tree in G with 1 branch vertex and 4 leaves such that $V(T') = V(T)$, contradicting Lemma 2.1.

By Claims 2.2 and 2.6, $\{u_i\}, N(u_i) \cap B_i$, and $(N(U - \{u_i\}) \cap B_i)^-$ are pairwise disjoint subsets in B_i for each $i \in \{4\}$ (where $(N(U - \{u_i\}) \cap B_i)^- = \{x^- | x \in N(U - \{u_i\}) \cap B_i\}$) and $N_3(U) = (N_2(U) - N(u_i)) \cap B_i = \emptyset$ for each $i \in \{4\}$. Then for each $i \in \{4\}$, we conclude that

$$|B_i| \geq 1 + |N(u_i) \cap B_i| + |(N(U - \{u_i\}) \cap B_i)^-|$$

$$= 1 + |N(u_i) \cap B_i| + |N(U - \{u_i\}) \cap B_i|$$

$$= 1 + \sum_{j=1}^{4} |N(u_j) \cap B_i|.$$
By applying Claim 2.3, we obtain

$$
\sum_{i=1}^{4} |N(u_i) \cap P| = 0.
$$

On the other hand, by Claims 2.4, 2.5 we obtain that

$$
\sum_{i=1}^{4} |N(u_i) \cap \{s\}| \leq 2, \sum_{i=1}^{4} |N(u_i) \cap \{t\}| \leq 2.
$$

Note that $N(U) \subseteq V(T)$. Now, we conclude that

$$
|V(T)| = \sum_{i=1}^{4} |B_i| + |V(P_T[s, t])| \geq \sum_{i=1}^{4} \left(\sum_{j=1}^{4} |N(u_j) \cap B_i| + 1 \right) + \left(\sum_{i=1}^{4} |N(u_i) \cap \{s\}| + \sum_{i=1}^{4} |N(u_i) \cap \{t\}| - 2 + \sum_{i=1}^{4} |N(u_i) \cap P| \right) = 2 + \sum_{i=1}^{4} \sum_{j=1}^{4} |N(u_j) \cap B_i| + \sum_{i=1}^{4} |N(u_i) \cap \{s\}| + \sum_{i=1}^{4} |N(u_i) \cap \{t\}| + \sum_{i=1}^{4} |N(u_i) \cap P| = \sum_{j=1}^{4} |N(u_j) \cap V(T)| + 2 = \sum_{j=1}^{4} d(u_j) + 2 = d(U) + 2.
$$

Since U is an independent set in G, we have

$$
n - 1 \leq \sigma_4(G) \leq d(U) \leq |V(T)| - 2 \leq n - 2,
$$

a contradiction.

Case 2. T contains two branch vertices and five leaves.

Let s and t be the two branch vertices in T such that $d_T(s) = 4$ and $d_T(t) = 3$. Let $U = \{u_1; u_2; u_3; u_4; u_5\}$ be the set of leaves of T. For each $i \in [5]$, let B_i be the vertex set of the connected component of $T - \{s, t\}$ containing u_i and let v_i be the unique vertex in $B_i \cap N_T(\{s, t\})$. Without loss of generality, we may assume that $\{v_1, v_2, v_3\} \subseteq N_T(s)$ and $\{v_4, v_5\} \subseteq N_T(t)$. For each $i \in [5]$ and $x \in B_i$, we use x^- and x^+ to denote the predecessor and the successor of x on $P_T[s, u_i]$ or $P_T[t, u_i]$, respectively (if such a vertex exists). Let s^+ and t^+ be the successor of s and the predecessor of t on $P_T[s, t]$, respectively. Define $P := V(P_T[s, t]) - \{s, t\}$.

For this case, we choose T such that

(D1) $d_T[s, t]$ is as small as possible, and
(D2) $\sum_{i=1}^{3} |B_i|$ is as large as possible, subject to (D1).

Claim 2.7 For all $1 \leq i, j \leq 5$ and $i \neq j$, if $x \in N(u_j) \cap B_i$, then $x \neq u_i, x \neq v_i$ and $x^- \notin N(U - \{u_j\})$.

Proof. Suppose $x = u_i$ or $x = v_i$. Then $T' := T - v_i v_i^- + x u_j$ is a tree in G with 4 leaves and at most 2 branch vertices such that $V(T') = V(T)$. Then this contradicts either Lemma 2.1 or the proof of Case 1. So we have $x \neq u_i, x \neq v_i$.

Next, assume $x^- \in N(U - \{u_j\})$. Then there exists some $k \in [5] - \{j\}$ such that $x^- u_k \in E(G)$. Now, $T' := T - \{v_i v_i^-, x x^-\} + \{x u_j, x^- u_k\}$ is a tree in G with 4 leaves and at most 2 branch vertices such that $V(T') = V(T)$, also contradicting either Lemma 2.1 or the proof of Case 1. This proves Claim 2.7.

By Claim 2.7 we know that U is an independent set in G. Since G is $K_{1,5}$-free, we have $N_5(U) = \emptyset$.

Claim 2.8 $N(u_i) \cap P = \emptyset$ for each $4 \leq i \leq 5$.

Proof. Suppose the assertion of the claim is false. Then there exists some vertex $x \in P$ such that $x u_j \in E(G)$ for some $i \in \{4, 5\}$. Let $T' := T - tv_i + xu_j$, then T' is a tree in G with 5 leaves such that $V(T') = V(T)$, T' has two branch vertices s and x, $d_T(s) = 4, d_T(x) = 3$ and $d_T[x, s] < d_T[s, t]$. But this contradicts the condition (D1). So the claim holds.

Claim 2.9 If $P \neq \emptyset$, then $\sum_{i=1}^{3} |N(u_i) \cap \{x\}| \leq 1$ for each $x \in P$.

Proof. Suppose to the contrary that there exists some vertex $x \in P$ such that $\sum_{i=1}^{3} |N(u_i) \cap \{x\}| \geq 2$. Then there exist two distinct indices $j, k \in [3]$ such that $x u_j, x u_k \in E(G)$. Let $T' := T - \{x u_j, x u_k\} + \{x u_j, x u_k\}$, then T' is a tree in G with 5 leaves such that $V(T') = V(T)$, T' has two branch vertices x and t, $d_T(s) = 4, d_T(t) = 3$ and $d_T[x, t] < d_T[s, t]$, contradicting the condition (D1). This completes the proof of Claim 2.9.

Claim 2.10 $N(u_i) \cap \{s\} = \emptyset$ for each $4 \leq i \leq 5$.

Proof. Suppose $s u_i \in E(G)$ for some $i \in \{4, 5\}$. If $P = \emptyset$, then we have $s t \in E(T)$ and $T' := T - st + s u_i$ is a tree in G with $|L(T')| + |B(T')| = 5$ and $V(T') = V(T)$, contradicting Lemma 2.1. So we may assume that $P \neq \emptyset$ and hence $s^+ \neq t$. By applying Claims 2.7 and 2.8 we deduce that $N(u_i) \cap \{s^+, v_1, v_2, v_3\} = \emptyset$.

Suppose that $s^+ v_j \in E(G)$ for some $j \in [3]$. Then $T' := T - \{ss^+, s u_j\} + \{s u_i, s^+ v_j\}$ is a tree in G with 4 leaves and 2 branch vertices such that $V(T') = V(T)$. By the same argument as in the proof of Case 1, we can derive a contradiction. So we conclude that $N(s^+) \cap \{v_1, v_2, v_3\} = \emptyset$.

Now, assume there exits two distinct $j, k \in [3]$ such that $v_j v_k \in E(G)$. Then by Claim 2.7 we see that $u_k \neq v_k$. Let $T'' := T - \{s v_j, t v_i\} + \{s u_i, v_j v_k\}$, then T'' is a tree in G with 2 branch vertices and 5 leaves such that $V(T'') = V(T)$, T'' has two branch vertices s and $v_k, d_T(s) = 4,$
Proof. Suppose for a contradiction that \(\sum_{i=1}^{5} |N(u_i) \cap \{t\}| \geq 4 \).

If \(P = \emptyset \) then we have \(st \in E(G) \). Since \(\sum_{i=1}^{5} |N(u_i) \cap \{t\}| \geq 4 \), there exists some \(j \in [3] \) such that \(tu_j \in E(G) \). Let \(T' := T - st + tu_j \), then \(T' \) is a tree in \(G \) with 4 leaves and 2 branch vertices such that \(V(T') = V(T) \). Repeating the same argument as in the proof of Case 1, we can deduce a contradiction.

Otherwise, \(P \neq \emptyset \), then \(t^- \neq s \). It follows from Claim 2.8 that \(N(u_i) \cap \{t^-\} = \emptyset \) for each \(4 \leq i \leq 5 \). Suppose that \(t^- u_j \in E(G) \) for some \(j \in [3] \). Since \(t \in N_4(U) \), there exists some \(k \in [3] - \{j\} \) such that \(tu_k \in E(G) \). Let \(T' := T - \{sv_j, tt^-\} + \{tu_k, t^- u_j\} \), then \(T' \) is a tree in \(G \) with 4 leaves and 2 branch vertices such that \(V(T') = V(T) \), contradicting the proof of Case 1. Therefore, we deduce that \(N(U) \cap \{t^-\} = \emptyset \). But then, \((N(t) \cap U) \cup \{t^-\} \) is an independent set and \(G[(N(t) \cap U) \cup \{t, t^-\}] \) is an induced \(K_{1,5} \) of \(G \), again a contradiction. So the claim holds.

Claim 2.12 We have \(N_3(U - \{u_i\}) \cap B_i = \emptyset \) for every \(i \in [5] \). In particular, we obtain \(N_4(U) = \emptyset \).

Proof. Suppose to the contrary that there exists some vertex \(x \in N_3(U - \{u_i\}) \) for some \(i \in [5] \). By Claim 2.7, we know that \(x^-, x^+ \notin N_3(U - \{u_i\}) \).

Suppose that \(x^- x^+ \in E(G) \). Since \(x \in N_3(U - \{u_i\}) \), there must exist two distinct \(j, k \in [5] - \{i\} \) such that \(xu_j, xu_k \in E(G) \). Then \(T' := T - \{v_j v_j^-, xx^-, xx^+\} + \{xu_j, xu_k, x^- x^+\} \) is a tree in \(G \) with 4 leaves and at least 2 branch vertices such that \(V(T') = V(T) \), contradicting either Lemma 2.1 or the proof of Case 1. Hence \(x^- x^+ \notin E(G) \).

Then \((N(x) \cap (U - \{u_i\})) \cup \{x^-, x^+\} \) is an independent set and \(G[(N(x) \cap (U - \{u_i\})) \cup \{x, x^-, x^+\}] \) is an induced \(K_{1,5} \) of \(G \), contradicting the assumption that \(G \) is \(K_{1,5} \)-free. This completes the proof of Claim 2.12.

Claim 2.13 We have \((N_3(U) - N(u_i)) \cap B_i = \emptyset \) for each \(1 \leq i \leq 5 \).

Proof. Suppose this is false. Then there exists some vertex \(x \in (N_3(U) - N(u_i)) \cap B_i \) for some \(1 \leq i \leq 5 \). By applying Claim 2.7, we have \(x \neq u_i, x \neq v_i \) and \(x^-, x^+ \notin N(U - \{u_i\}) \).

Suppose that \(x^- x^+ \in E(G) \). Since \(x \in N_3(U) - N(u_i) \), there must exist two distinct indices \(j, k \in [5] - \{i\} \) such that \(xu_j, xu_k \in E(G) \). Then \(T' := T - \{v_j v_j^-, xx^-, xx^+\} + \{xu_j, xu_k, x^- x^+\} \) is a tree in \(G \) with 4 leaves and at least 2 branch vertices such that \(V(T') = V(T) \), contradicting either Lemma 2.1 or the proof of Case 1. Hence \(x^- x^+ \notin E(G) \).

Now, \((N(x) \cap U) \cup \{x^-, x^+\} \) is an independent set and \(G[(N(x) \cap U) \cup \{x, x^-, x^+\}] \) is an induced \(K_{1,5} \) of \(G \), giving a contradiction. So the assertion of the claim holds.
Claim 2.14 \(N(u_j) \cap B_i = \emptyset \) for all \(4 \leq i \leq 5 \) and \(1 \leq j \leq 3 \). In particular, \(N_3(U) \cap N(u_i) \cap B_i = \emptyset \) for each \(4 \leq i \leq 5 \).

Proof. Suppose the assertion of the claim is false. Then there exists some vertex \(x \in B_i \) such that \(xu_j \in E(G) \) for some \(i \in \{4, 5\} \) and \(j \in [3] \). By Claim 2.7, we have \(x \neq u_i \) and \(x \neq v_i \). Let \(T' := T - xx^- + xu_j \), and let \(B_k \) be the vertex set of the connected component of \(T' - \{s, t\} \) containing \(u_k \) for each \(1 \leq k \leq 3 \). It is easy to check that \(T' \) is a tree in \(G \) with 5 leaves such that \(V(T') = V(T) \), \(T' \) has two branch vertices \(s \) and \(t \), \(d_T'(s) = 4 \), \(d_T'(t) = 3 \), \(d_T'[s, t] = d_T[s, t] \) and \(\sum_{k=1}^{3} |B_k'| = \sum_{k=1}^{3} |B_k| + |V(P_T[x, u_i])| > \sum_{k=1}^{3} |B_k| \). But this contradicts the condition (D2). This proves Claim 2.14.

Claim 2.15 \(|N_3(U) \cap N(u_i) \cap B_i| \leq 1 \) for each \(1 \leq i \leq 3 \).

Proof. Suppose for a contradiction that there exist two distinct vertices \(x, y \in N_3(U) \cap N(u_i) \cap B_i \) for some \(i \in [3] \). Without loss of generality, we may assume that \(x \in V(P_T[s, y]) \). By Claim 2.7, we have \(x \neq u_i, x \neq v_i, y \neq u_i, y \neq v_i, x^- \notin N(U) \) and \(x^+ \notin N(U - \{u_i\}) \). In particular, \(x^+ \neq y \). Since \(x, y \in N_3(U) \cap N(u_i) \), there exist two distinct \(j, k \in [5] - \{i\} \) such that \(xu_j, yu_k \in E(G) \). We may assume that \(x^-x^+, x^-u_i \notin E(G) \); for otherwise,

\[
T' := \begin{cases}
T - \{sv_i, xx^-, xx^+, yy^+\} + \{xu_i, xu_j, x^-x^+, yu_k\}, & \text{if } x^-x^+ \in E(G), \\
T - \{sv_i, xx^+, yy^-\} + \{xu_j, x^-u_i, yu_k\}, & \text{if } x^-u_i \in E(G),
\end{cases}
\]

is a tree in \(G \) with 4 leaves and 2 branch vertices such that \(V(T') = V(T) \). By the same argument as in the proof of Case 1, we can deduce a contradiction. But then, \((N(x) \cap U) \cup \{x^-, x^+\} \) is an independent set and \(G[(N(x) \cap U) \cup \{x^-, x^+\}] \) is an induced \(K_1, 5 \) of \(G \), again a contradiction. So the claim holds.

Claim 2.16 For each \(1 \leq i \leq 3 \), if \(u_iv_i \in E(G) \), then \(N_3(U) \cap N(u_i) \cap B_i = \emptyset \).

Proof. Suppose to the contrary that \(u_iv_i \in E(G) \) and there exists some vertex \(x \in N_3(U) \cap N(u_i) \cap B_i \) for some \(i \in [3] \). By Claim 2.7, we have \(x \neq v_i \). Since \(x \in N_3(U) \cap N(u_i) \), there exists some \(j \in [5] - \{i\} \) such that \(xu_j \in E(G) \). Let \(T' := T - \{sv_i, xx^-\} + \{u_iv_i, xu_j\} \), then \(T' \) is a tree in \(G \) with 4 leaves and two branch vertices such that \(V(T') = V(T) \). By the same argument as in the proof of Case 1, we give a contradiction. This completes the proof of Claim 2.16.

Claim 2.17 For each \(1 \leq i \leq 3 \), if \(sv_i \in E(G) \), then \(N_3(U) \cap N(u_i) \cap B_i = \emptyset \).

Proof. For the sake of convenience, we may assume by symmetry that \(i = 1 \). Suppose the assertion of the claim is false. Then there exists some vertex \(x \in N_3(U) \cap N(u_1) \cap B_1 \). By applying Claims 2.7 and 2.16, we know that \(x \notin \{u_1, v_1\} \) and \(N(u_1) \cap \{v_1, v_2, v_3\} = \emptyset \).

Suppose \(v_1v_j \in E(G) \) for some \(j \in \{2, 3\} \). Then \(T' := T - \{sv_1, sv_j\} + \{sv_4, v_1v_j\} \) is a tree in \(G \) with 4 leaves and 2 branch vertices such that \(V(T') = V(T) \). By the same argument as in the proof of Case 1, we can deduce a contradiction. So we have \(v_1v_2, v_1v_3 \notin E(G) \).

Next, assume that \(v_2v_3 \in E(G) \). Then \(u_2 \neq v_2 \) and \(u_3 \neq v_3 \) by Claim 2.7. If there exists some \(j \in \{2, 3\} \) such that \(xu_j \in E(G) \), then \(T' := T - \{sv_2, sv_3\} + \{v_2v_3, xu_j\} \) is a tree in \(G \) with 4 leaves and 2 branch vertices such that \(V(T') = V(T) \), contradicting Case 1. Hence
Therefore, we have\(xu_2, xu_3 \notin E(G) \). Then, since \(x \in N_3(U) \cap N(u_1) \), we conclude that \(xu_4, xu_5 \in E(G) \). Let \(T' := T - \{ sv_2, tv_-, xx^- \} + \{ su_1, tv_2, xu_4 \} \). If \(P = \emptyset \), then \(t^- = s \), and \(T' \) is a tree in \(G \) with 4 leaves and 2 branch vertices such that \(V(T') = V(T) \), giving a contradiction with the proof of Case 1. So we deduce that \(P \neq \emptyset \). But then, \(T' \) is a tree in \(G \) with 5 leaves such that \(V(T') = V(T) \), \(T' \) has two branch vertices \(s \) and \(v_3 \), \(d_{T'}(s) = 4 \), \(d_{T'}(v_3) = 3 \) and \(d_{T'}[s, v_3] = 1 < d_{T}[s, t] \), contradicting the condition (D1). Therefore, \(v_1, v_2 \) and \(v_3 \) are pairwise non-adjacent in \(G \).

We now consider the vertex \(s^+ \). We will show that \(N(s^+) \cap \{ u_1, v_1, v_2, v_3 \} = \emptyset \).

We first prove that \(s^+ u_1 \notin E(G) \). Suppose this is false. Let \(T' := T - \{ ss^+, \{ s^+ u_1 \} \} \), then \(T' \) is a tree in \(G \) with 4 leaves and 2 branch vertices such that \(V(T') = V(T) \). By the same argument as in the proof of Case 1, we can deduce a contradiction.

Finally, we show that \(s^+ v_2, s^+ v_3 \notin E(G) \). Suppose not, and let \(s^+ v_j \in E(G) \) for some \(j \in \{ 2, 3 \} \). If there exists some \(k \in \{ 4, 5 \} \) such that \(xu_k \in E(G) \), then \(T' := T - \{ ss^+, sv_j \} + \{ s^+ v_j, xu_k \} \) is a tree in \(G \) with 4 leaves and 2 branch vertices such that \(V(T') = V(T) \). Repeating the same argument as in the proof of Case 1, we can deduce a contradiction. Therefore, we have \(xu_4, xu_5 \notin E(G) \). Since \(x \in N_3(U) \cap N(u_1) \), we deduce that \(xu_2, xu_3 \in E(G) \). Let \(T' := T - \{ ss^+, sv_j, xx^-, xx^+ \} + \{ su_1, s^+ v_j, xu_2, xu_3 \} \), then \(T' \) is a tree in \(G \) with 4 leaves and 2 branch vertices such that \(V(T') = V(T) \), again a contradiction. Hence \(N(s^+) \cap \{ u_1, v_1, v_2, v_3 \} = \emptyset \).

Now, \(\{ s^+, u_1, v_1, v_2, v_3 \} \) is an independent set and \(G[\{ s, s^+, \{ u_1, v_1, v_2, v_3 \} \} \) is an induced \(K_{1, 5} \) of \(G \), giving a contradiction. So the assertion of the claim holds.

By Claim 2.7, \(\{ u_i \}, N(u_i) \cap B_i, (N(U - \{ u_i \}) \cap B_i) \) and \((N_3(U) - N(u_i)) \cap B_i \) are pairwise disjoint subsets in \(B_i \) for each \(i \in \{ 5 \} \), where \((N(U - \{ u_i \}) \cap B_i) = \{ x^- \mid x \in N(U - \{ u_i \}) \cap B_i \} \). Recall that \(N_5(U) = N_4(U) = N_3(U) - N(u_i) \cap B_i = \emptyset \) (for each \(1 \leq i \leq 5 \)) by Claims 2.12 and 2.13.

Then for each \(i \in \{ 3 \} \), we conclude that

\[
|B_i| \geq 1 + |N(u_i) \cap B_i| + |(N(U - \{ u_i \}) \cap B_i) - |(N_3(U) - N(u_i)) \cap B_i|
\]

\[
= 1 + |N(u_i) \cap B_i| + |N(U - \{ u_i \}) \cap B_i| + |(N_3(U) - N(u_i)) \cap B_i|
\]

\[
= 1 + \sum_{j=1}^{5} |N(u_j) \cap B_i| - |N_3(U) \cap N(u_i) \cap B_i|
\]

\[
\geq \sum_{j=1}^{5} |N(u_j) \cap B_i| + |N(u_i) \cap \{ s \}|,
\]

(1)

where the last inequality follows from Claims 2.17 and 2.19. Similarly, for each \(4 \leq i \leq 5 \), we have

\[
|B_i| \geq 1 + |N(u_i) \cap B_i| + |(N(U - \{ u_i \}) \cap B_i) - |(N_3(U) - N(u_i)) \cap B_i|
\]

\[
= 1 + |N(u_i) \cap B_i| + |N(U - \{ u_i \}) \cap B_i| + |(N_3(U) - N(u_i)) \cap B_i|
\]

\[
= 1 + \sum_{j=1}^{5} |N(u_j) \cap B_i| - |N_3(U) \cap N(u_i) \cap B_i|
\]

\[
= 1 + \sum_{j=1}^{5} |N(u_j) \cap B_i| + |N(u_i) \cap \{ s \}|,
\]

(2)
where the last equality follows from Claims 2.10 and 2.14.

For each $1 \leq i \leq 5$, we define $d_i = |N(u_i) \cap P|$. Then $d_4 = d_5 = 0$ by Claim 2.3. By applying Claim 2.9 we know that $N(u_1) \cap P, N(u_2) \cap P$ and $N(u_3) \cap P$ are pairwise disjoint. Therefore,

$$|P| \geq \sum_{i=1}^{5} d_i = \sum_{i=1}^{5} |N(u_i) \cap P|.$$

By combining Claim 2.11 we have

$$|V(P_T[s, t])| = 2 + |P| \geq \sum_{i=1}^{5} |N(u_i) \cap \{t\}| + \sum_{i=1}^{5} |N(u_i) \cap P| - 1. \quad (3)$$

Note that $N(U) \subseteq V(T)$. By (1), (2) and (3), we conclude that

$$|V(T)| = \sum_{i=1}^{3} |B_i| + \sum_{i=4}^{5} |B_i| + |V(P_T[s, t])|$$

$$\geq \sum_{i=1}^{3} \left(\sum_{j=1}^{5} |N(u_j) \cap B_i| + |N(u_i) \cap \{s\}| \right) + \sum_{i=4}^{5} \left(1 + \sum_{j=1}^{5} |N(u_j) \cap B_i| + |N(u_i) \cap \{s\}| \right)$$

$$+ \left(\sum_{i=1}^{5} |N(u_i) \cap \{t\}| + \sum_{i=1}^{5} |N(u_i) \cap P| - 1 \right)$$

$$= 2 + \sum_{i=1}^{5} \sum_{j=1}^{5} |N(u_j) \cap B_i| + \sum_{i=1}^{5} |N(u_i) \cap \{s, t\}| + \sum_{i=1}^{5} |N(u_i) \cap P|$$

$$= \sum_{j=1}^{5} |N(u_j) \cap V(T)| + 1$$

$$= \sum_{j=1}^{5} d(u_j) + 1$$

$$= d(U) + 1.$$

Since U is an independent set in G, we have

$$n - 1 \leq \sigma_4(G) \leq \sigma_5(G) - 1 \leq d(U) - 1 \leq |V(T)| - 2 \leq n - 2,$$

a contradiction.

Case 3. T contains one branch vertex and five leaves.

Let r be the unique branch vertex in T with $d_T(r) = 5$ and let $N_T(r) = \{v_1, v_2, v_3, v_4, v_5\}$. For each $i \in [5]$, let B_i be the vertex set of the connected component of $T - \{r\}$ containing u_i and let v_i be the unique vertex in $B_i \cap N_T(\{r\})$. For each $i \in [5]$ and $x \in B_i$, we use $x^−$ and x^+ to denote the predecessor and the successor of x on $P_T[r, u_i]$, respectively (if such a vertex exists).
Since G is $K_{1,5}$-free, there exist two distinct indices $i, j \in [5]$ such that $u_iv_j \in E(G)$. Let $T' := T - rv_i + v_iv_j$. If v_j is a leaf of T, then T' is a tree in G with 4 leaves and 1 branch vertex such that $V(T') = V(T)$, which contradicts Lemma 2.1. So we may assume that v_j has degree two in T. Then T' is a tree in G with 5 leaves such that $V(T') = V(T), T'$ has two branch vertices r and v_j, $d_{T'}(r) = 4$ and $d_{T'}(v_j) = 3$. By the same argument as in the proof of Case 2, we can also derive a contradiction.

Case 4. T contains one branch vertex and six leaves.

Let r be the unique branch vertex in T with $d_T(r) = 6$ and let $U = \{u_i\}_{i=1}^6$ be the set of leaves of T. For each $i \in [6]$, let B_i be the vertex set of the connected component of $T - \{r\}$ containing u_i and let v_i be the unique vertex in $B_i \cap N_T(\{r\})$. For each $i \in [6]$ and $x \in B_i$, we use x^- and x^+ to denote the predecessor and the successor of x on $P_T[r, u_i]$, respectively (if such a vertex exists).

Claim 2.18 For all $1 \leq i, j \leq 6$ and $i \neq j$, if $x \in N(u_j) \cap B_i$, then $x \neq u_i, x \neq v_i$ and $x^- \notin N(U - \{u_j\})$.

Proof. Suppose $x = u_i$ or $x = v_i$. Then $T' := T - v_i v_j^- + xu_j$ is a tree in G with 5 leaves and 1 branch vertex such that $V(T') = V(T)$. By the same argument as in the proof of Case 3, we can derive a contradiction. So we have $x \neq u_i, x \neq v_i$.

Next, assume $x^- \in N(U - \{u_j\})$. Then there exists some $k \in [6] - \{j\}$ such that $x^- u_k \in E(G)$. Now, $T' := T - \{v_i v_j^-, x^-\} + \{xu_j, x^- u_k\}$ is a tree in G with 5 leaves and 1 branch vertex such that $V(T') = V(T)$. By the same argument as in the proof of Case 3, we can deduce a contradiction. This proves Claim 2.18.

By applying Claims 2.18 we deduce that U is an independent set in G.

Claim 2.19 For every $1 \leq i, j \leq 6$ and $i \neq j$, if $v_i v_j \in E(G)$ then $N(u_i) \cap B_k = \emptyset$ and $N(u_k) \cap B_i = \emptyset$ for each $k \in [6] - \{i, j\}$.

Proof. Suppose to the contrary that there exists some vertex $x \in B_k$ such that $xu_i \in E(G)$. By Claim 2.18 we have $x \neq u_k$. Let $T' := T - \{v_i v_j^-, x^-\} + \{xu_j, v_i v_j\}$. Then T' is a tree in G with 5 leaves such that $V(T') = V(T), T'$ has two branch vertices x, r. This implies a contradiction by using the proof of Case 2.

Now, suppose that there exists some vertex $x \in B_i$ such that $xu_k \in E(G)$. By Claim 2.18 we have $x \neq u_i$. Let $T' := T - \{v_i v_j^-, v_j v_j^-\} + \{xu_k, v_i v_j\}$. Then T' is a tree in G with 5 leaves such that $V(T') = V(T), T'$ has two branch vertices x, r. This also gives a contradiction by using the same arguments as in the proof of Case 2.

The proof of Claim 2.19 is completed.

Since G is $K_{1,5}$-free, there exist two distinct indices $i, j \in [5]$ such that $v_i v_j \in E(G)$. Without loss of generality, we may assume that $v_1 v_2 \in E(G)$.

Set $U_1 = \{u_1, u_2, u_3, u_4\}$. By Claim 2.19 we obtain that

$$N(U_1) \cap B_j = N(\{u_i\}_{i=1}^2) \cap B_j \text{ for all } j \in \{1, 2\},$$

and

$$N(U_1) \cap B_j = N(\{u_i\}_{i=3}^4) \cap B_j \text{ for all } j \in \{3, 4, 5, 6\}.$$

By Claim 2.18, $\{u_i\}, N(u_i) \cap B_i$ and $(N(U_1 - \{u_i\}) \cap B_i)^-$ are pairwise disjoint subsets in B_i for each $i \in [4]$, where $(N(U_1 - \{u_i\}) \cap B_i)^- = \{x^- \mid x \in N(U_1 - \{u_i\}) \cap B_i\}$. Recall that
$N_4(U_1) = (N_3(U_1) - N(u_i)) \cap B_i = (N_2(U_1) - N(u_i)) \cap B_i = \emptyset$ (for each $1 \leq i \leq 4$). Then for each $i \in \{4\}$, we conclude that

$$|B_i| \geq 1 + |N(u_i) \cap B_i| + |(N(U_1 - \{u_i\}) \cap B_i)|$$

$$= 1 + |N(u_i) \cap B_i| + |N(U_1 - \{u_i\}) \cap B_i| + |(N_2(U_1) - N(u_i)) \cap B_i|$$

$$= 1 + \sum_{j=1}^{4} |N(u_j) \cap B_i|.$$ \hspace{1cm} (6)

On the other hand, by Claim 2.18, $\{u_i\}$, $N(u_3) \cap B_i$, and $(N(u_4) \cap B_i)^-$ are pairwise disjoint subsets in B_i for each $i \in \{5, 6\}$. Then for each $i \in \{5, 6\}$, we conclude that

$$|B_i| \geq 1 + |N(u_3) \cap B_i| + |(N(u_4) \cap B_i)^-|$$

$$= 1 + |N(u_3) \cap B_i| + |N(u_4) \cap B_i|$$

$$= 1 + \sum_{j=1}^{4} |N(u_j) \cap B_i|.$$ \hspace{1cm} (7)

By (6) and (7), we conclude that

$$|V(T)| = 1 + \sum_{i=1}^{6} |B_i|$$

$$\geq 1 + \sum_{i=1}^{6} \left(1 + \sum_{j=1}^{6} |N(u_j) \cap B_i| \right)$$

$$= 7 + \sum_{i=1}^{6} \sum_{j=1}^{4} |N(u_j) \cap B_i|$$

$$\geq 3 + \sum_{i=1}^{6} \sum_{j=1}^{4} |N(u_j) \cap B_i| + \sum_{j=1}^{4} |N(u_j) \cap \{r\}|$$

$$= \sum_{j=1}^{4} |N(u_j) \cap V(T)| + 3$$

$$= \sum_{j=1}^{4} d(u_j) + 3$$

$$= d(U_1) + 3.$$

Since U_1 is an independent set in G, we have

$$n - 1 \leq \sigma_4(G) \leq d(U_1) \leq |V(T)| - 3 \leq n - 3.$$

This also gives a contradiction.

This completes the proof of Theorem 1.7.
References

[1] H. Broersma and H. Tuinstra, Independence trees and Hamilton cycles, *J. Graph Theory* **29** (1998) 227–237.

[2] X. Chen, M. Li and M. Xu, Spanning 3-ended trees in k-connected claw-free graphs, *Ars Combin.* **131** (2017) 161–168.

[3] Y. Chen, G. Chen and Z. Hu, Spanning 3-ended trees in k-connected $K_{1,4}$-free graphs, *Sci. China Math.* **57** (2014) 1579–1586.

[4] Y. Chen, P. H. Ha, D. D. Hanh: Spanning trees with at most 4 leaves in $K_{1,5}$-free graphs, *Discrete Math.* **342** (2019), 2342-2349.

[5] L. Gargano, M. Hammar, P. Hell, L. Stacho and U. Vaccaro, Spanning spiders and light-splitting switches, *Discrete Math.* **285** (2004) 83–95.

[6] R. Gould and W. Shull, On spanning trees with few branch vertices, *Discrete Math.* **343**, Issue 1 (2020), 111581.

[7] P. H. Ha, A note on the independence number, connectivity and k-ended tree, *Discrete Appl. Math.* **305** (2021), 142-144.

[8] P. H. Ha, Spanning trees of $K_{1,4}$-free graphs with a bounded number of leaves and branch vertices, preprint, [arXiv:2201.01043](https://arxiv.org/abs/2201.01043).

[9] D. D. Hanh, Degree conditions for Claw-Free graphs to have spanning trees with at most five branch vertices and leaves in total, *Studia Sci. Math. Hungar.*, **59** (2022), 58-66.

[10] Z. Hu and P. Sun, Spanning 5-ended trees in $K_{1,5}$-free graphs, *Bull. Malays. Math. Sci. Soc.* **43** (2020), 2565-2586.

[11] M. Kano, A. Kyaw, H. Matsuda, K. Ozeki, A. Saito and T. Yamashita, Spanning trees with a bounded number of leaves in a claw-free graph, *Ars Combin.* **103** (2012) 137–154.

[12] A. Kyaw, Spanning trees with at most 3 leaves in $K_{1,4}$-free graphs, *Discrete Math.* **309** (2009) 6146–6148.

[13] A. Kyaw, Spanning trees with at most k leaves in $K_{1,4}$-free graphs, *Discrete Math.* **311** (2011) 2135–2142.

[14] Las Vergnas, M.: Sur une propriét é des arbres maximaux dans un graphe, *C. R. Acad. Sci. Paris Ser. A* **272** (1971), 1297–1300.

[15] S. Maezawa, R. Matsubara and H. Matsuda, Degree conditions for graphs to have spanning trees with few branch vertices and leaves, *Graphs Combin.* **35** (2019), 231–238.

[16] H. Matsuda, K. Ozeki and T. Yamashita, Spanning trees with a bounded number of branch vertices in a claw-free graph, *Graphs Combin* **30** (2014), 429–437.

[17] M. M. Matthews and D. P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, *J. Graph Theory* **8** (1984) 139–146.

[18] Zh. G. Nikoghosyan, Spanning trees with few branch and end vertices, *Math. Probl. Comput. Sci.* **46** (2016), 18-25.

[19] A. Saito and K. Sano, Spanning trees homeomorphic to a small tree, *Discrete Math.* **339** (2016), 677–681.
[20] S. Win, On a conjecture of Las Vergnas concerning certain spanning trees in graphs,
Results Math. 2 (1979) 215–224.