Researches on the Fast Determination of Cell Type of Cartesian Grid

Xueliang Li
Central South University https://orcid.org/0000-0002-5057-3937

Lin Bi (✉ bzbaby1010@163.com)
China Aerodynamics Research and Development Center

Shuang Meng
Central South University

Hongkang Liu
Central South University

Tiantian Wang
Central South University

Xianxu Yuan
China Aerodynamics Research and Development Center

Research Article

Keywords: Cartesian grid, Grid generation, Painting algorithm, K-dimensional tree, Axis-aligned bounding box

DOI: https://doi.org/10.21203/rs.3.rs-725468/v1

License: ☁ ☀ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Researches on the fast determination of cell type of Cartesian grid

Xueliang Li¹,³, Lin Bi*, Shuang Meng³, Hongkang Liu³, Tiantian Wang⁴ and Xianxu Yuan²

*Correspondence: bzbaby1010@163.com
¹ Stat Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang, China
Full list of author information is available at the end of the article

Abstract
The relationship between the spatial cell and the object is unknown for the Cartesian grid using the immersed boundary method. For the researches about complex geometry or multi-body relative motion, grid generation is a very time-consuming work, and the consumption is mainly concentrated in the position determination of the Cartesian cells, which we called the cell type determination. In this study, based on the axis-aligned bounding box method and the ray casting method, we employed the dot product method and the painting algorithm to investigate the acceleration method for Cartesian grid generation. The octree structure is used to store the Cartesian cells, and the k-dimensional tree is used to store the object surface. These data management strategy can minimize the CPU's resource while have a small memory usage. The grid generation results show that the strategy we proposed has a high efficiency and well robustness, and the time consume can reduce more than 50% compare with the original method. When dealing with a enough complex problem, the time consume can even reaches several orders of magnitude difference compared with the original method.

Keywords: Cartesian grid; Grid generation; Painting algorithm; K-dimensional tree; Axis-aligned bounding box

1 Introduction
The traditional body-fit structured/unstructured meshes have great advantages in solving problems using complex geometries. However, the mesh generation for those meshes may cost a lot of manual time to get a enough good quality to ensure the stabilization of simulation [1, 2]. In particular for the relative motion simulations using multi-geometrics, the meshes have to be deformed or regenerated at each time step [3–5].

Cartesian grid can neglect those problems due to the non-body-fitted characteristic. The hexahedral cells in domain intersect with solid walls, change the problem of generating a body-fitted mesh to a more general problem of computing and characterizing intersections between hexahedral cells and the geometry [6–9]. Thus, all difficulties associated with the flow field solving using Cartesian grid are restricted to the problem of flux reconstruction near solid walls. The immersed boundary technique [10, 11] is one of the most common approaches for this problem. To apply the immersed boundary technique, the position relationship between Cartesian cells and the objects should be determined into 4 types: non-intersecting outside cell, intersecting outside cell, non-intersecting inside cell, and intersecting inside cell.

The conventional cell type determination is based on the ray casting method [12, 13]. The intersection relationship can be determined by the relative position...
between the eight vertices of cell and the objects. The inside/outside relationship

22 can be determined by the relative position between the cell center and the objects.

However, due to the special cases that the ray might tangent to the object surface

23 [14], multiple rays or other auxiliary methods [15] should be used to improve the

robustness. As the result, this method will usually facing the problem of a huge

24 computational consumption [16]. Axis-aligned bounding box (AABB) method [17]

25 is a robust and efficient method for intersection determinations between cells and

26 objects, but it cannot be used to determine whether the cell is inside or outside the

27 object.

On the basis of the two methods above, the focus of this paper is to find a more

31 efficient and robust cell type determination method for Cartesian grid generation.

32 By using the dot product method, the intersecting object surface obtained by AABB

33 method is used for a quick inside/outside determination for intersecting cells. At

34 the same time, the painting algorithm is adopted to mark the non-intersecting cells.

35 The k-dimensional tree (KDT) is used to store the object surface for higher query

36 efficiency.

This paper is organized as follows. First, represent the purpose of this article and

39 discuss the relevant research status, Sect.1. Second, introduce the original Carte-

39 sian grid generation strategy, Sect.2. The basic cell type determination methods,

41 including the AABB method and ray casting method are described in Sect.3. Then,

42 analyze the efficiency of original methods and propose the improvement grid gen-

43 eration strategy, Sect.4. The accelerating method developed in this paper including

44 DP method, painting algorithm, and KDT data structure are introduced in Sect.5.

45 Finally, we compared the accelerating performance between new methods and orig-

46 inal methods, Sect.6.1. Robustness and efficiency of the new method is examined

47 by different complex models in Sect.6.2. Also the comparison of grid generation ef-

48 ficiency with other literatures is performed in Sect.6.2. The conclusions and future

49 work are presented in Sect.7.

2 Grid generation strategy
The data structure for Cartesian grid has two typical types: unstructured [18, 19]

52 and octree [20–22]. The octree structure has minimum memory requirement as well

53 as a straightforward grid hierarchy [23]. In this paper, the octree data structure is

54 used for the Cartesian grid storage. The general strategy of the process of Cartesian

55 grid generation with octree is given as follow.

a. Generate the computational domain specified by user, see Fig. 1(a).

b. Generate the background Cartesian grid, divide the computational domain by

58 equal space, see Fig. 1(b).

c. Determine intersection by the AABB method for all Cartesian cells, mark the

59 intersecting cells and continuously refine them, until the intersecting cells reaches

60 the maximum layer level, see Fig. 1(c-d).

d. Uses the ray casting method to traverse and determine the inside/outside re-

62 lationship for all cells, mark the cell as non-intersecting outside cell, intersecting

63 outside cell, non-intersecting inside cell, and intersecting inside cell, see Fig. 1(e-f).
e. Blank the inside cells, release the memory, see Fig. 1(g).

f. Perform grid smoothing on all non-intersecting outside cells, make sure the level differences for all adjacent cells are not more than 1, and eliminate the hole cell, see Fig. 1(h).

3 Cell type determination

3.1 Intersecting determination

Since the Cartesian cell has a axis-aligned bounding box (AABB) form, a quick intersecting determination method can be employed based on the separating axis theorem [17]. This theorem needs to test 13 axes in the implementation process. The first three axes are the normal axes of the AABB (e_x, e_y, e_z in Fig. 2), which are used to determine whether the triangle overlaps with the AABB. The fourth axis is the normal direction of the triangle (n in Fig. 2) used to determine whether the AABB has intersected with the plane of the triangle. The last nine axes are the cross product of e_x, e_y, e_z with the sides of the triangle (l_1, l_2, l_3 in Fig. 2). If all the tests for the 13 axes above have passed, it indicates that there is no separation axis, the AABB does not intersected with the triangle. Otherwise, if any separation axis presents, the test ends and the cell is intersected with the triangle.

However, this method can only used to identify whether the cell is or is not intersected with the object. Other method is needed for the determination of the inside/outside relationship of cells.

3.2 Inside/outside determination

To determine the inside/outside relationship of the Cartesian cells, the ray casting method [24] and the winding number approach [25] are the usually methods in most Cartesian grid generation programs. While both approaches conceptually straightforward, they are considerably different computationally. Computation of the winding number involves a lot of floating-point computations which are prone to rounding error. Thus, the ray casting method is used in this paper.
The basic principle of the ray casting method is shown in Fig. 3(a). A ray D in any selected direction is emitted from the cell center O. To determine the inside/outside relationship, only a simply count for the number of intersections of D with objects surface is needed. If point O lies outside the object, the number of intersections is even. If point O lies inside, the number of intersections results odd. However, this method have a special case as shown in Fig. 3(b). While ray D is just passing the inflection point of the object, the count of intersections will lead to a opposite situation. In order to avoid this problem, at least two different rays are needed in application. If the results of two rays are consistent, the results credible. Otherwise, make a third determination is needed.

Fig. 3 only gives a illustration in 2-dimesions. In the situation of 3-dimensions, the determinations between ray and triangular elements of the object are needed. Moller [26] presented a fast, minimum storage algorithm for the determination of ray-triangle intersections. In the Moller’s algorithm only three vertices of the triangle are stored and two times of cross product, four times of dot product are computed. In this paper the Moller’s algorithm is used to saving the memory and speed up the ray casting progress.

4 Efficiency analysis and process improvement

Combine with the AABB method and the ray casting method in Sect.3, we can get an accurately program to determine the cell type of Cartesian cells. However, these methods are not efficiency enough. For N_{cells} Cartesian cells and N_{tri} triangle elements, the number of determinations for two methods above are of order $O(N_{\text{cells}} \cdot N_{\text{tri}})$. Which means the computational time will increasing sharply with the increasing of the count of triangle elements and Cartesian cells. Especially the
ray casting method, at least twice determinations for each cell is needed. And each
determination needs a traversal for all triangle elements to get the total number of
intersections.
To saving the consumption of computational resources, we make the improvement
in two aspects: reduce the times of determinations, and reduce the time complexity
of the algorithm. We divide the inside/outside determination process into two parts
to avoid the use of ray casting method: the determination for the intersecting cells
by a simply dot product, and a quick painting process for the non-intersecting cells.
Also a efficient data structure is used to order the elements of object surface.
By using those measures, the Cartesian grid generation strategy changes. Based
on the original method (Fig. 1), the divergence started from step (c) in Sect. 2:

\begin{enumerate}
\item Intersecting determination and refinement. If a cell is intersected with a triangle
surface, the dot product method is used for the inside/outside determination. Then
refine this intersecting cell. The process above will keep repeating until reaches the
maximum layer level. See Fig. 4(a-b).
\item Find a outside cell as the painting source by the ray casting method, then paint
all non-intersecting outside cells. See Fig. 4(c-d).
\item Blank the inside cells, perform the grid smoothing, same with the step (e-f) in
Sect. 2.
\end{enumerate}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4}
\caption{The improved Cartesian grid generation process, start from Fig. 1(b). (a-b) Intersection
determination, inside/outside determination and refinement for the intersecting cells; (c-d) Find a
outside painting source, paint all non-intersecting outside cells.}
\end{figure}

\section{Accelerating method}
\subsection{Dot product method}
The dot product method is used to determine the position of cell center under the
situation that any intersecting triangle is known. The position is determined by
the dot product result obtained from two vectors. One vector L is defined from the
intersecting triangle to the cell center, and the other vector n is defined as the outer
normal of the intersecting triangle (as shown in Fig. 5). The determination process
is as follow:

The outer normal of the intersecting triangle is given by:

$$
n = (V2 - V1) \times (V3 - V2)$$ \hfill (1)
Here V_1, V_2, V_3 are three vertices of the triangle. And the vector from triangle to the cell center can be defined as:

$$L = P - O$$

(2)

Here O is any point both inside the cell and the triangle.

Finally, the dot product result can get as follow:

$$d = n \cdot L$$

(3)

According to the definition of dot product ($a \cdot b = |a||b|\cos\theta$), we know that if $d > 0$, the cell center is outside the object. If $d = 0$, the cell center is on the object surface. If $d < 0$, the cell center is inside the object.

In this method, the intersecting triangle returned by the AABB method are used to avoid the traversal operation of the ray casting method. The total computational requirement are only 9 multiplications and 9 subtractions for one cell. The complexity of this method is $O(1)$ for each interesting cell. Fig. 6 shows the grid generation result for a level 2 Cartesian grid tagged by the dot product method.

5.2 Painting algorithm

The principle of painting algorithm is shown as Fig. 7. The initial background grid is divided into two categories after the intersecting determination: non-interesting cells (white and green cells in Fig. 7) and interesting cells (golden cells in Fig. 7). Firstly, the painting algorithm needs to find a non-intersecting outside cell as the painting...
source. Here the ray casting method is used for querying the non-intersecting cells. Once a outside cell occurs, stop the query. Then the painting process started from this cell. Examine the neighbors of this cell, if the neighbor cell is not intersected, mark the neighbor cell as an outside cell, then check the neighbor cell’s neighbors. If the neighbor cell is interested, return. By recurring the steps above, all outside cells in the computational domain will be found out and marked. By choosing a most possible cell to start the painting source querying in the implementation process of the painting algorithm, the determination of ray casting method can be reduced to nearly once in most cases.

Algorithm 1 Painting algorithm

1. for a cell of painting source cell,$_i$ {
2. if ($cell_i$%position == non-interesting) then {
 cell,$_i$%position = outside
3. for each neighbor of $cell_i$ {
 $cell_i$ => $cell_i$%neighbor
 go to step 1. (recur the painting algorithm)
}
}

Figure 7 Illustration of the painting algorithm.

5.3 Data structure of object surface

According to the algorithms complexity analysis in Sect.4, the number of object surface elements will greatly affect the efficiency of mesh generation. A sufficiently detailed model generally has a large number of surface elements. The scattered points (see Fig. 8(a)) are arranged in a disorderly way, which has a low efficiency for directly application. The alternating digital tree (ADT) structure [27] realizes the orderly storage of all elements by storing the scattered points in an ordered binary-tree according to the spatial relationship. K-dimensional tree (KDT) structure [28] is an improved form of ADT, which solves the problem of unbalanced binary-tree of ADT. By using the KDT structure, the query efficiency of the surface elements can be stabilized at the optimal solution [29]. In this paper, a quick KDT building method [30, 31] is used to divide the triangle elements of the object according to the median point in each dimension (Fig. 8(b)). Finally, a balanced binary-tree with the depth of $\log_2 N_{tri}$ + 1 is obtained for the object with N_{tri} triangle elements (Fig. 8(c)).
In the intersecting determination process, the AABB method does determinations for each KDT node. Once intersected, the intersecting process terminates. If does not intersected, only one branch of the KDT will entered according to the division position of this KDT node. By applying the KDT structure, even in the worst situation, only $\log_2 N_{\text{tri}} + 1$ times of AABB determinations are needed to find out the intersecting triangle. Also for the ray casting method, disjoint branch of the KDT can be quickly eliminated by the bounding box $[32]$ generated in the KDT division process. In general, after applying the KDT structure, the algorithm complexity is simplified from $O(N_{\text{cells}} \cdot N_{\text{tri}})$ to $O(N_{\text{cells}} \cdot \log N_{\text{tri}})$.

![KDT building process for the elements of object surface.](image)

Figure 8 KDT building process for the elements of object surface.

6 Applications

6.1 Accelerating Performance

In order to investigate the grid generation efficiency of the accelerating method used in this paper, we test the time consuming on generating Cartesian grids using different methods. As shown in Fig. 9, the test object is a sphere with the diameter of 100. The computational domain is set to a $300 \times 300 \times 300$ cube, the scale of initial grid is $15 \times 15 \times 15$. All scales above are dimensionless. In order to ensure the consistency of the test results, all computations are performed as a single-core test on the laptop with *Inter(R) Core(TM) i7-10875H CPU 2.3GHz*. The program is compiled by *ifortran -O3* option and runs under the Windows system. For each case, 10 times of tests are carried out, and the averaged running time of the program is exhibited.

Fig. 10 gives the grid generation efficiency compared by different methods. AABB+KDT is the original method, AABB+KDT+DP is the original method optimized by the dot product method, and the AABB+KDT+DP+PA method is the final refinement method proposed in this paper. Due to the inconsistency of the number of Cartesian cells under different cases, the ordinate in Fig. 10 is set to the total grid generation time T_{total} divided by the number of cells N_{cells}, and the abscissa is set in logarithmic.

Fig. 10(a) gives out the grid generation efficiency under different refinement levels for a sphere consisted by 1016 triangles. With the increasing of refinement levels, N_{cells} increases exponentially, while the $T_{\text{total}}/N_{\text{cells}}$ of the three methods are all
increasing approximately exponential ratio (linearly in the logarithmic coordinates).

Among them, the AABB+KDT+DP+PA method have a 50% efficiency increasing compared with the original AABB+KDT method. Fig. 10(b) gives out the grid generation efficiency for different numbers of triangles (N_{tri}) of the sphere, and the refinement level is set as 5. With the increasing of the surface elements of object, the original method exhibits as an approximately exponential growth in the logarithmic coordinate. While the AABB+KDT+DP+PA method grows inconspicuous. This means the new method applied in this paper can achieve at least 50% optimization when applied a simple model. And for a complex model, much higher optimization effect will realized.

![Test model for the grid generation test.](image)

Figure 9 Test model for the grid generation test.

![CPU time consumption. (a)The relationship between time consumption and the number of refinement layers; (b)The relationship between time consumption and the number of elements of object surface.](image)

Figure 10 CPU time consumption. (a)The relationship between time consumption and the number of refinement layers; (b)The relationship between time consumption and the number of elements of object surface.

6.2 Examination

In order to examine the robustness and the stability of the grid generation method developed in this paper, different geometrics including a simple sphere, a medium-complex bogie, and a complex pantographs are used for the test, as shown in Fig. 11. The bogie and the pantograph are constructed by many slits and component with
large slenderness ratio. All other settings and the environment are consistent with Sect.6.1.

Fig. 12 shows the Cartesian grid generated by the new method applied in this paper. It proved that the new method can be applied in complex geometrics with good robustness and fast grid generation speed. Table 1 shows the result of examination. All three cases are used a 7-level geometric adaptive refinement. The T_1 is the intersecting determination time and the T_2 is the inside/outside determination time in table 1. It can be seen that the T_1 increases slightly with the increasing of N_{cells}, while the T_2 almost unchanged. The total efficiency will decreases slightly with the increasing of N_{tri}. Compared with the original method, the speed-up ratio ($T_{\text{AABB}+KDT}/T_{\text{AABB}+KDT+DP+PA}$) increases significantly with the increase of N_{tri}. Also the grid generation time in table 1 has compared with various literatures [19, 33, 34]. Although the CPU used in this paper is more advanced, it still has great advantages compared with other literatures. Here the T_{total}=43.6 sec. of the automobile in [33] is the cube generation time 6.21 sec. multiplied by the parallel efficiency 7.02.

![Figure 11](image1.png)
Figure 11 Objects discretized by triangle elements.

![Figure 12](image2.png)
Figure 12 Adaptive Cartesian grid generated by the painting algorithm.

Geometry	N_{tri}	N_{cells} ($\times 10^6$)	T_1 (sec.)	T_2 (sec.)	T_{total} (sec.)	$T_{\text{total}}/N_{\text{cells}}$ (sec.)	speed-up ratio
Sphere	1,016	35.0	15.8	3.8	60.0	1.71×10^{-6}	1.78
Bogie	82,744	26.0	15.5	3.4	50.7	1.94×10^{-6}	4.77
Pantograph	2,254,812	26.5	22.3	3.6	57.6	2.17×10^{-6}	25.41
Launcher [19]	113,772	1.64	/	/	150.0	9.15×10^{-7}	/
Automobile [33] (cube)	744,404	0.037	/	/	43.6	1.17×10^{-3}	/
Sphere [34]	9,096	0.17	/	/	24.9	1.47×10^{-4}	/

Table 1 Performance test
7 Conclusions and future work

In the present paper, the dot product method, the painting algorithm, and the k-dimensional tree is employed to accelerate the process of Cartesian grid generation. The optimized program uses the octree to store Cartesian cells and the k-dimensional tree to store surface elements of objects. Through the test, the algorithm developed in this paper can greatly reduce the time consuming of grid generation under different situations. Finally, the robust and efficient grid generation results are obtained through three geometric configurations of different complexity. It is proved that the proposed methods in this paper can suitable for the complex models in engineering.

Ongoing and future efforts will concentrate on several topics. For the present research, the focus of optimization is on the cell type determination. However, the neighbor query of cells takes a lot of time during the grid smoothing process. The following work will consider to use some new data structure instead the octree to store Cartesian cells to optimize the neighbor founding process and the memory consumption. A further subject of great interest is the adaptability of dirty geometry. Here a central question is to find a robust method to handling the multi-body intersecting and slit surface problems.

Abbreviations

AABB: Axis-aligned bounding box; ADT: Alternating digital tree; DP: Dot product; KDT: K-dimensional tree; PA: Painting algorithm.

Acknowledgements

The authors would like to thank Dr. Peng Ji, Ms. Zhe Wang, Ms. Fang Hu, and Mr. Snowdog Lee for their helpful work. The authors are thankful to the reviewers for their valuable comments to improve the quality of the manuscript.

Authors’ contributions

The research output comes from joint effort. All authors read and approved the final manuscript.

Funding

This work is supported by the National Natural Science Foundation of China (Grant number 51905547 & 52078199) and the National Numerical Wind-Tunnel Project (NNW2019ZT5-A11).

Availability of data and materials

The datasets used during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Stat Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang, China.
2 Computational Aerodynamics Institute, China Aerodynamic Research and Development Center, Mianyang, China.
3 Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha, China. 4 Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha, China.

References

1. Park S, Jeong B, Lee JG, Shin H (2013) Hybrid grid generation for viscous flow analysis. International Journal for Numerical Methods in Fluids 71(7):891–909,
2. Work D, Yanagita Y, Giblette T, Katz AJ, Hunsaker DF (2017) Validation of flux correction on three-dimensional strand grids with an overset cartesian grid. In: 55th AIAA Aerospace Sciences Meeting,
3. Zhang LP, Chang XH, Duan XP, Wang ZY, Zhang HX (2009) A block lu-sgs implicit unsteady incompressible flow solver on hybrid dynamic grids for 2d external bio-fluid simulations. Computers & Fluids 38(2):290–308,
4. Zhang X, Lai KL (2012) Simulation of transonic aeroservoelasticity using cartesian-grid based flow solver. In: 42nd AIAA Fluid Dynamics Conference and Exhibit, p 3266
5. Zhang L, Zhao Z, Ma R, Chang X, Li Y, Wang N, Li H (2020) Validation of numerical virtual flight system with wind-tunnel virtual flight testing. AIAA Journal 58(4):1566–1579.
6. Melton J, Enomoto F, Berger M (1993) 3d automatic cartesian grid generation for euler flows. In: 11th Computational Fluid Dynamics Conference,
7. Zeeuw DD, Powell KG (1993) An adaptively refined cartesian mesh solver for the euler equations. Journal of Computational Physics 104:56–68
8. Aftosmis MJ (1997) Solution adaptive cartesian grid methods for aerodynamic flows with complex geometries. In: 28th Computational Fluid Dynamics

9. Nakahashi K (2013) Aeronautical cfd in the age of petal-flops-scale computing: From unstructured to cartesian meshes. European Journal of Mechanics - B/Fluids 40:75–86.

10. Chaudhuri A, Hadjadj A, Chimnya A (2011) On the use of immersed boundary methods for shock/obstacle interactions. Journal of Computational Physics 230(9):1731–1748.

11. Yousefzadeh M, Battista I (2019) High order ghost-cell immersed boundary method for generalized boundary conditions. International Journal of Heat and Mass Transfer 137:585–598.

12. Sang W, Li F (2003) Omni-tree and adaptive cartesian hybrid grid method in steady and unsteady flows. In: 21st AIAA Applied Aerodynamics Conference, p 4078

13. Kim LS, Nakahashi K, Xu ZZ, Xiao H, Lyu SK (2015) Three-dimensional building-cube method for inviscid compressible flow computations. International Journal of Precision Engineering and Manufacturing 16(13):2673–2681.

14. O’Rourke J (1998) Computational Geometry in C. Cambridge University Press

15. Chen H, Bi L, Hua R, Zhou Q, Tang Z, Yuan X (2021) An efficient cartesian mesh generation method based on fully threaded tree data structure. Acta Aeronautica et Astronautica Sinica 42(12):125,170.

16. Meakin RL (2001) Object x-rays for cutting holes in composite overset structured meshes. In: 15th AIAA Computational Fluid Dynamics Conference, p 2537

17. Melton JE, Berger MJ, Aftosmis MJ, Wong MD (1995) 3d applications of a cartesian grid euler method. In: 3rd Aerospace Sciences Meeting and Exhibit

18. Delanaye M, Aftosmis MJ, Berger MJ, Liu Y, Pulliam TH (1999) Automatic hybrid-cartesian grid generation for high-reynolds number flows around complex geometries. In: 37th AIAA Aerospace Sciences Meeting and Exhibit, vol 99

19. Capizzano F (2018) Automatic generation of locally refined cartesian meshes: Data management and algorithms. International Journal for Numerical Methods in Engineering 113(5):789–813.

20. Coirier WJ, Powell KG (1996) Solution-adaptive cartesian cell approach for viscous and inviscid flows. AIAA Journal 34(5):938–945.

21. Kamatsuchi T (2007) Turbulent flow simulation around complex geometries with cartesian grid method. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, p 1459

22. Pérón S, Benoit C (2011) Automatic off-body overset adaptive cartesian mesh method based on an octree approach. In: 20th AIAA Computational Fluid Dynamics Conference, p 3050

23. Ham FE, Lien FS, Strong AB (2002) A cartesian grid method with transient anisotropic adaptation. Journal of Computational Physics 179(2):469–494.

24. Ma T, Li P, Ma T (2020) A three-dimensional cartesian mesh generation algorithm based on the gpu parallel ray casting method. Applied Sciences 10(1):58

25. Foley J, Dam VA, Feiner S, Hughes J (2013) Computer graphics: principles and practices, 3rd edn. Addison-Wesley Professional

26. Müller T, Trumbore B (1997) Fast, minimum storage ray-triangle intersection. Journal of Graphics Tools 2(1):21–28.

27. Bonet J, Peraire J (1991) An alternating digital tree (adt) algorithm for 3d geometric searching and intersection problems. International Journal for Numerical Methods in Engineering 31(1):1–17

28. Bentley JL (1975) Multidimensional binary search trees used for associative searching. Communications of the ACM 18(9):509–517.

29. Shevtsov M, Soupikov A, Kapustin A (2007) Highly parallel fast kd-tree construction for interactive ray tracing of dynamic scenes. Computer Graphics Forum 26(3):395–404.

30. Popov S, Gunther J, Seidel HP, Slusallek P (2006) Experiences with streaming construction of sah kd-trees. In: 2006 IEEE Symposium on Interactive Ray Tracing, IEEE, pp 89–94

31. Wald I, Havran V (2006) On building fast kd-trees for ray tracing, and on doing that in o (n log n). In: 2006 IEEE Symposium on Interactive Ray Tracing, IEEE, pp 61–69

32. Meakin RL (2001) Automatic off-body grid generation for domains of arbitrary size. In: 15th AIAA Computational Fluid Dynamics Conference, p 2536

33. Ishida T, Takahashi S, Nakahashi K (2008) Fast cartesian mesh generation for building-cube method using multi-core pc. In: 46th AIAA Aerospace Sciences Meeting and Exhibit

34. Hu O (2013) Development of cartesian grid method for complex compressible flows and its applications. Thesis, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics