Quality control of cooked sausages

T. A. Velesyk, R. M. Sachuk, B. V. Gutyi, Z. O. Pasichnyk, O. A. Katsaraba, G. V. Sus, S. V. Zhyhaluk

1Rivne State University for the Humanities, Plastova Str., 29-a, Rivne, 33028, Ukraine
2Stepan Gzhynsksy National University of Veterinary Medicine and Biotechnologies Lviv, Pekarska Str., 50, Lviv, 79010, Ukraine
3Rivne Gymnasium “Harmony”, 26 General Bezruchko Avenue, Rivne, 33004, Ukraine

Abstract

Despite the increased interest in the quality and safety of cooked sausages, the situation in the field of food is becoming more complicated and more threatening every year. As a result of research, it should be noted that the consumer market of the Rivne region is saturated with products of good quality, which are made mainly by mini-shops or private enterprises. When inspecting sausages, it was found that the city's stores in 2020 sold more than 50 tons of high-quality products in a wide range. These include boiled sausages, hot dogs and sausages, semi-smoked, boiled-smoked, raw-smoked, beef, pork and chicken delicacies, pâtés, loaves of bread, ham, and skewers. Experimental studies have shown that their name and manufacturer influence the evaluation of cooked sausages. The highest score was given to the sausage “Molochna” and “Teliacha z vershkkamy”, which has become an authentic brand. Buyers of our country should prefer it.

According to organoleptic and physical studies, further examination of five samples of cooked sausages from different manufacturers showed that the samples meet the requirements of DSTU 4436: 2005. Microbiological tests revealed that the samples of cooked sausages met the requirements of regulatory indicators. Sausage “Likarska”, Yalovycha “Liuki” and “Z vershkkamy” on two physical indicators: the content of mass fraction of moisture and mass fraction of salt, did not meet the requirements of DSTU 4436: 2005, this product is a counterfei.

Keywords: boiled sausage, quality, humidity, salt, starch, nitrates, microbiological indicators.

1. Introduction

Currently, Ukraine produces a significant number of sausages that may pose a risk to consumer health (Kudriashova et al., 2000; Taran & Ushakov, 2016). Issues of ecological and veterinary-sanitary control of sausages are especially relevant if produced at meat processing enterprises and individual businesses, where the system of quality self-control following the requirements of HACCP is not implemented (Akyemenko, 2008; Taran & Ushakov, 2016).

For many centuries, a product such as a sausage has come a long way; its recipes have been improved over time. Modern sausage producers, tiny businesses, are often tempted to forge or increase their sales by diluting the sausage with unconventional raw materials, offal, low-value additives, soy texture, etc. (Kotsiubnas et al., 2012).

The use of world best practices, standards, equipment, compliance with sanitary norms, food safety rules, and food safety in the production of cooked sausages will provide the consumer with a quality, safe and valuable product (De Sme & Vossen, 2016; Fursik et al., 2019; Halukh et al., 2020; Peshuk & Simonova, 2020).

Analysis of recent research and publications. Despite the increased interest in the quality and safety of cooked sausages, the situation in the field of food is becoming more complicated and more threatening every year. According to scientific data, a person can do without complete proteins, including meat, only four months a year. In addition, B vitamins, Calcium, phosphorus, Zinc, Iron, and other necessary mineral and biologically active substances enter the human body from meat and meat products (Kotsiubnas et al., 2012; Taran & Ushakov, 2016; Drachuk et al., 2018).

The nutritional and biological value of meat and meat products in sausages is influenced by the quantitative content and qualitative composition of nutrients, the presence of specific organoleptic characteristics, consumer and techno-
logical characteristics. At the same time, the selected components of the recipe must meet the second, no less essential, requirement: to have acceptable functional and technological properties, their maximum compatibility or mutual compensation, which provides in the process of processing raw materials to obtain stable meat systems (Shevchenko et al., 2017). In modern conditions of sausage production, compliance with the content of such indicators as protein and starch is of concern. The mass fraction of protein in cooked sausage should be up to 12.0 % (DSTU 4436:2005), and starch may be added in the manufacture of only certain types of sausages according to the recipe. Its amount is strictly regulated and ranges from 3 to 7 %, depending on the type of sausage (Lashko & Dudarieva, 2012). Its content is not allowed in the “Children’s” sausage. Sausages also contain water, flour, and other plant components that do not taste. Moreover, some of the components can not be recognized after processing.

Cooked sausage must be free of soy and GMOs, which must be indicated on the label with the label “GMO-free”, meet the standards, and have a certificate of quality and all accompanying documents provided by the current legislation of Ukraine (conclusions, certificates, certificates, etc.). Therefore, now there is a need to control the production of cooked sausages and their clear labeling (Zhuravskaiia & Alekhyna, 1985; Rohov, 1988; DSTU 4436:2005).

In Ukraine, the meat industry, abandoning virtually the production of products according to DSTU, allowed companies to develop and approve their range in technical conditions, which often allows you to produce meat products with quality indicators that do not meet state standards, in particular, on the content not specified in the regulations and labeling of components (Kopilevych et al., 2003; Kundieieva, 2010). Falsification of sausages can be achieved in the following ways: high water content; replacement of fresh meat with stale; replacement of natural meat with vegetable protein; introduction of non-traditional raw materials; coloring of sausages with beet juice and other dyes; violation of the recipe; introduction of foreign additives. They were also used to produce low-value additives not provided by the

Organoleptic evaluation of sausage samples was performed according to (Zhuravskaiia & Alekhyna, 1985) chemical analysis according to the methods described in (Rohov, 1988). The moisture content in the sausage was characterized by the mass fraction of moisture (W) – is the percentage of the difference between the masses of the product sample before and after drying to the mass of the sample before drying:

\[W = \frac{m_2 - m_1}{m_1} \times 100\% \]

Table 1

№	Name of cooked sausages	ND on which sausages are made	Manufacturer, address
1	“Molochna”	DSTU 4436: 2005	TM “Stovpinsky sausages”, village Stovypyn, Rivne region
2	“Teliacha z vershkamy”	DSTU 4436:2005	LLC “Inus-LTD”, village Tuchyn, Rivne region
3	“Likarska”	DSTU 4436:2005	LLC “Meat Factory” “Favorite Plus”, village Slobuzhanske,
			Dnipropetrovsk region
4	Yalovycha “Liux”	TU U 15.1-37373551-001:2011	LLC “Meat Factory” “Favorite Plus”, village Slobuzhanske,
			Dnipropetrovsk region
5	“Z vershkamy”	TU U 15.1-24615640-022:2008	LLC “Meat Factory” “Yuvileynyi”, village Slobuzhanske,
			Dnipropetrovsk region

Where \(m_1 \) is the sample weight before drying, \(g \); \(m_2 \) – the weight of the sample after drying, \(g \). Study of Sodium Chloride in sausage – by the Moore method (neutral medium). The method is based on the deposition of chloride ions by silver ion in a neutral medium in the presence of potassium chromate as an indicator. When the chlorine ion interacts with the silver ion, a white precipitate of Silver Chloride is formed:

\[\text{NaCl} + \text{AgNO}_3 = \text{AgCl} + \text{NaNO}_3 \]
When the deposition of Chlorine ions ends, the excess silver nitrate reacts with the indicator, forming a precipitate of Silver chromate orange-red color:

\[2\text{AgNO}_3 + \text{K}_2\text{CrO}_4 = \text{Ag}_2\text{CrO}_4 + 2\text{KNO}_3 \]

The order of execution. Weigh 5 g of the crushed medium sample in a beaker to the nearest 0.01 g and add 100 cm\(^3\) of distilled water. After 40 minutes of infusion (with periodic stirring with a glass rod), the aqueous extract is filtered through a paper filter. Transfer 5–10 cm\(^3\) of the filtrate with a pipette into a conical flask and titrate from the burette with 0.05 mol/dm\(^3\) of silver nitrate solution in the presence of 0.5 cm\(^3\) of 10 % potassium chromium solution until an orange color appears. A portion of cooked sausages is heated in a glass on a water bath to 40 °C, kept at this temperature for 45 minutes (with periodic stirring with a glass rod).

Furthermore, it is filtered through a paper filter. After cooling to room temperature, the titration is carried out the same way as in the previous case. The mass fraction of Sodium Chloride (X) is calculated as a percentage. Study of starch – titration of the test solution of 0.05 n solution of Sodium Thiosulfate, nitrites – reaction with diphenylamine.

Place 5 to 6 drops of a solution of diphenylamine in concentrated H\(_2\)SO\(_4\) on a thoroughly washed and dry laboratory glass. There, on the tip of a clean glass rod, add a few drops of the nitrate test solution and mix. In the presence of NO\(_3\), an intense blue color appears due to the oxidation of diphenylamine to form nitric acid (Kopilevych et al., 2003).

Microbiological analysis of sausages was performed according to regulatory and technical documentation (DSTU 21237-75 “Meat. Methods of bacteriological analysis”) in the microbiological sector of the laboratory for quality control, safety and registration of veterinary drugs and feed additives LLC “DEVIE” (Rivne) (Byletova et al., 1980; Kostenko et al., 1989; Semaniuk et al., 2007).

Statistical processing of the results was performed according to the generally accepted method (Rokytskyi, 1973).

3. Results and discussion

The sale of sausages in Rivne is mainly carried out by small grocery stores (more than 150). The largest of them in terms of sales: “Tuchyn sausages”, “Stovpinsky sausages”, “Hoshchanskyi gifts”, “Kopeyka”, “Taste”, and more.

Using its many years of sales experience, based on the best Ukrainian traditions, the city’s stores in 2020 sold more than 50 tons of high-quality products in a wide range. These include boiled sausages, frankfurters, and sausages, semi-smoked, boiled-smoked, raw-smoked, beef, pork and chicken delicacies, pâtés, loaves of bread, ham, and skewers (Fig. 1).

![Fig. 1. Assortment of meat products sold by grocery stores in Rivne](source: Calculated by the author based on data from grocery stores in Rivne)

Given the volume of cooked sausages sold and the constant changes in the external competitive environment, there is a need to provide a quality control system that would help achieve the primary goal of the business – to make a profit, increase it, maintain a stable level and meet consumer needs.

One of the first stages of research was the organoleptic evaluation of the studied sausages. All tested samples of cooked sausages were made following DSTU 4436: 2005, TU U 15.1-37373551-001: 2011, and TU U 15.1-24615640-022: 2008. At organoleptic research of all grades of sausages, it is established that the surface of loaves is clean dry.

The consistency is elastic; in section, sausages are evenly colored in light pink. The shell of sausages is artificial, easily separated from the product. The studied sausage differed only in taste and smell (Table 2).

We used a measuring method to determine the quality of sausages, carried out based on technical measuring instruments and reagents. The measuring method determined the physical quality and safety indicators of the studied cooked sausages. According to physical indicators, cooked sausages were compared with the data given in table 3.
Table 2
Organoleptic characteristics of the studied samples of sausages

Name of cooked sausages	Color	Consistence	Scent
Sausage “Molochna”	Light pink, close to the body	Homogeneous	Natural, noticeable excess of spices
Sausage “Telyacha z vershkamy”	Light pink, close to the body	Homogeneous	Natural, typical of beef
Sausage “Likarska”	Light pink, close to the body	Relatively homogeneous with a splash of broth	Natural, noticeable excess of spices
Sausage Yalovycha “Lyuks”	Uniform, pink, light pink, without gray spots	Homogeneous	Natural, typical of beef
Sausage “Z vershkamy”	Uniform, pink, light pink, without gray spots	Relatively homogeneous with a splash of broth	Natural, typical of beef and pork
Requirements according to DSTU 4436: 2005	Uniform, pink, light pink, without gray spots	Elastic, dense, unbreakable	Pleasant, with the aroma of spices, without signs of mustiness and acidity

Table 3
Physical indicators of quality assessment of cooked sausages

Kind of sausage	Fillers, number of sausages (pcs.)	mass fraction of protein	mass fraction of fat	mass fraction of hyaline cartilage	mass fraction of unidentified impurities			
	number of samples	%						
“Molochna”	3	14.2	3	22.0	3	9.2	3	3.7
“Telyacha z vershkamy”	3	13.7	3	20.0	3	8.7	3	2.9
“Likarska”	3	13.9	3	21.0	3	4.3	3	3.0
Yalovycha “Lyuks”	3	15.3	3	26.0	3	9.9	3	4.7
“Z vershkamy”	3	14.8	3	24.0	3	9.1	3	3.1
Requirements according to DSTU 4436: 2005	not less than	not more than	not more than	not more than				
	13.0	28.0	10.0	5.0				

The laboratory method determined the mass fraction of moisture, mass fraction of table salt, mass fraction of fat and protein, starch content, and sodium nitrite content. The results of the chemical analysis of the studied samples of cooked sausage are presented in table 4.

Table 4
Chemical analysis of the studied samples of sausage

Kind of sausage	The contents of the sausage, %	moisture	NaCl	starch
“Molochna”	66.9 ± 0.02	1.95 ± 0.04	1.9 ± 0.01	
“Telyacha z vershkamy”	65.8 ± 0.04	1.85 ± 0.01	3.9 ± 0.03	
“Likarska”	70.9 ± 0.03	3.95 ± 0.01	3.4 ± 0.01	
Yalovycha “Lyuks”	74.8 ± 0.05	2.97 ± 0.09	1.9 ± 0.01	
“Z vershkamy”	69.4 ± 0.01	2.62 ± 0.02	2.0 ± 0.05	
Requirements according to DSTU 4436: 2005	67	2	-	

According to regulations, the amount of starch is strictly regulated by the recipe and ranges from 3 to 7 %, depending on the type of sausage (Lashko & Dudarieva, 2012). Its content is not allowed in the “Children’s” sausage.

The reaction with diphenylamine was used to study the concentration of nitrates in the studied cooked sausages. The sensitivity of the reaction is 0.001 mg per 1 ml of solution. The nitrate content was determined by comparing the color of the test extract solution with a standard scale. The results of the study are presented in the table 5.

As can be seen from the table 5 in the selected samples of sausages of domestic producers, the content of nitrates does not exceed one mg/l. This corresponds to the normative values regulated by GOST 8558.2-78 “Meat products. Method for determination of nitrate”.

Microbiological indicators characterizing the product's safety and the right to use it are given in the regulatory and technological documentation for cooked sausages and are a mandatory criterion for assessing the quality of the product during sanitary and microbiological control. The results of microbiological studies of cooked sausages are given in the table 6.
The results of laboratory tests

Trademark	Kind of sausage	Staining of the solution	Nitrate concentration	Staining of the solution	Nitrate concentration
TM “Stovpinsky sausages.”	“Molochna”	Light blue	> 0.001 mg/l	Light blue	> 0.001 mg/l
LLC “Inus-LTD”	“Telicha z vershkamy”	Light blue	> 0.001 mg/l	Light blue	> 0.001 mg/l
LLC “Meat Factory Favor-	“Likarska”	Light blue	> 0.001 mg/l	Light blue	> 1 mg/l
11te Plus”	“Yalovycha”	Light blue	> 0.001 mg/l	Light blue	> 1 mg/l
LLC “Meat Factory”	“Z vershkamy”	Light blue	> 0.001 mg/l	Light blue	> 0.001 mg/l
“Yuvileyny”	-	-	-	-	-

Standard scale

The results of the study of nitrate content in sausages

Table 6
Microbiological indicators of cooked sausages

Kind of sausage	KMAFANM, COU/g	Bacteria of the Escherichia coli group (BGKP), in 1.0 g of product	Staphylococcus aureus in 1.0 g of product	Pathogenic microorganisms, mainly bacteria of the genus Salmonella, in 30 g of product
“Molochna”	-	-	-	-
“Telicha z vershkamy”	-	-	-	-
“Likarska”	-	-	-	-
“Telicha z vershkamy”	-	-	-	-
“Z vershkamy”	-	-	-	-

So, based on the definition of five indicators, we can conclude the quality of cooked sausages.

4. Conclusions

In the study, it was found that their name and manufacturer influenced the evaluation of cooked sausages. The highest score was given to the sausage “Molochna” and “Telicha z vershkamy”, which became an authentic brand. Buyers of our country should prefer it. Further Examination of five samples of cooked sausages from different manufacturers by organoleptic, physical, and microbiological studies showed that the tested samples meet the requirements of DSTU 4436:2005. However, sausage “Likarska”, “Yalovycha “Liaks” and “Z vershkamy” on two physical indicators: the content of mass fraction of moisture and mass fraction of salt, does not meet the requirements of DSTU 4436: 2005, i.e., this product is a counterfeit.

Prospects for further research. Based on the results, some cooked sausages do not meet sanitary standards. This may be due to non-compliance with the storage conditions, transportation of the product, low quality of raw meat, falsification, and high level of physical wear of equipment of meat processing plants. These problems can be solved only with the active participation of the state in the process of regulation and control of quality characteristics of cooked sausages on the market of Ukraine. Bacteriological laboratories of meat processing enterprises can use the research results to improve product quality.

Conflict of interest

The authors declare that there is no conflict of interest.

References

Akymenko, E. A. (2008). Vnedrenye systemy upravleniya bezopasnosti pyschevoi produktsii. [Implementation of a food safety management system]. Standarty i kachestvo, 2, 90–92 (in Russian).

Byletova, N. V., Kornelava, R. P., & Kostrykyna, L. H. (1980). Sanytarnaia mykrobyolohyia. [Sanitary Microbiology]. M.: Pyschevevaia promyshlennost (in Russian).

De Sme, S., & Vossen, E. (2016). Meat: The balance between nutrition and health. A review. Meat Science, 120, 145–156. DOI: 10.1016/j.meatsci.2016.04.008.

Drachuk, U., Simonova, I., Halukh, B., Basarab, I., & Romashko, I. (2018). The study of lentil flour as a raw material for production of semi-smoked sausages. Eastern-European journal of enterprise technologies, 6(11(96)), 44–50. DOI: 10.15587/1729-4061.2018.148319.

DSTU 4436:2005. Kovbasy vareni, sosysky, sardelky, khliby miasni (33977) (in Ukrainian).

Fursik, O., Strashynskyt, I., Pasichny, V., & Svyatenko, R. (2019). Biological efficiently of cooked sausages protein. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies, 21(91), 48–53. DOI: 10.32718/nvlvet-f9109.

Halukh, B., Drachuk, U., Simonova, I., Basarab, I., & Romashko, I. (2020). Expanding the range of sausage products of special purpose. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies, 22(94), 37–43. DOI: 10.32718/nvlvet-f9048.

Kopilevych, V. A., Kosmaty, V. Ie., Voitenko, L. V. ta in. (2003). Analitychna khimia dlia ahrarnykh spetsialnostei (khimichnyi analiz). [Analytical chemistry for agricultural specialties (chemical analysis)]. K.: Vydavnychyi tsent NAU (in Ukrainian).

Kostenko, T. S., Skarshevskaia, E. Y., & Hytelson, S. S. (1989). Praktykum po veterynarnoi mykrobyolohyia i ymmunolohy. [Workshop on veterinary microbiology and immunology]. M.: Ahrpromyzydat (in Russian).

Kotsiumbas, H. I., Shchebentovska, O. M., & Kotsiumbas, I. Ia. (2012). Ekspertyza kovbasnykh vyrobiv histolohichnym metodom [Examination of sausages by histological method]. Lviv (in Ukrainian).

Kudriashova, A. A., Lebedev, E. Y., & Aryas Depre, Kh. Kh. (2000). Vtorechnye resury s ykh yspolzovanyye dlia resheniya prodolovostvennykh, ekologicheskykh y enerhetycheskykh problem [Secondary resources and their use to solve food, en-

Ukrainian Journal of Veterinary and Agricultural Sciences, 2021, Vol. 4, N 3
environmental and energy problems]. Khranenye y pererobotka selkhozsyria, 12, 45–46 (in Russian).
Kundieieva, H. O. (2010). Suchasniy stan ta perspektyvy rozvytku miasni promyslovosti. [Current state and prospects of meat industry development]. Teoretychni ta praktichni aspekty ekonomiky, 23, 201–207 (in Ukrainian).
Lashko, N. P., & Dudarieva, H. F. (2012). Khimiia i fizyka moloka ta miaso-molochnykh produktiv [Chemistry and physics of milk and meat and dairy products]: navchalno-metodychnyi posibnyk dla studentiv osvitno-kvalifikatsiinogo rивnia “baka lure” napriamiv pidhotoveny ”Khimiia” i “Ekolohiia”, “okhorona navolokshnogo seredovyschcha ta zbalansovane pryrodokorystuvannia” demoho viddilennia. Zaporizhzhia: ZNU (in Ukrainian).
Peshuk, L., & Simonova, I. (2020). Influence of different methods of heat treatment on the technology of special purpose meat delicacies. Modern engineering problems, challenges and modernity: Collectivmonograf. Riga: Baltija Publishing, 351–369. DOI: 10.30525/978-9934-588-47-1.16.
Rohov, A. Y. (1988). Tekhnologiya miasa i miasoproduktov [Technology of meat and meat products]. M.: Ahropromyzdat (in Russian).
Rokytskyi, P. F. (1973). Biologiccheskaia statistika. [Biological statistics] Minsk: Vysheishaia shkola (in Russian).
Semanik, V. I., Krushelnitytsyi, Z. V., & Kozak, M. V. (2007). Miaso i miasni produkty. Dovidiakh u zapytnychia i vidpovidakh. [Meat and meat products. Handbook of questions and answers]. Lviv (in Ukrainian).
Shevchenko, I. I., Kryzhova, Yu. P., & Zhuk, V. O. (2017). Osoblyvosti vykorystannia molochnykh bilkov u skladi kovbas varenoi hrup. [Features of the use of milk proteins in the composition of cooked sausages]. SWorld, 14(3), 73–77 (in Ukrainian).
Taran, T. V., & Ushakov, O. F. (2016). Mikrostrukturnyi analiz kovbasnykh vyrobiv. [Microstructural analysis of sausages]. Naukovi dopovidi Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy, 6. URL: http://nbuv.gov.ua/ UJRN/Nd_2016_6_24 (in Ukrainian).
Vinskyi, V. V. (2015). Vykorystannia yakisnykh i kilkisnykh metodiv analitychnoi khimii dla vyznachennia vmi-trat vit i kovbasnych vyrobakh. [The use of qualitative and quantitative methods of analytical chemistry to determine the content of nitrates in sausages]. Tezy Vseukrainskoi naukovo-praktychnoi on-line konferentsii aspirantiv, molodoykh uchenykoy ta studentiv, prysviachenoi Dniu nauky. URL: http://eztuir.ztu.edu.ua/bitstream/handle/123456789/1413/190.pdf (in Ukrainian).
Zhuravskaya, N. K., & Alekhyna, L. T. (1985). Tekhnolohycheskyi kontrol proyvodstva miasa y miasoproduktov. [Technological control of the production of meat and meat products]. M.: Ahropromyzda (in Russian).