Accelerations As(MM) and Aco(MM) To Find Double Integrals Numerically

1Athraa Mohammed Dheyaa and 2Ali Hassan Mohammed
1College of Pharmacy, University of Alkafeel, Iraq.
athraa.mohammed@alkafeel.edu.iq
2Faculty of Education for Girls, Department of Mathematics, University of Kufa, Iraq.
Prof.ali57hassan@gmail.com

Abstract:
The main objective of this research is to use methods of accelerating the first type of Al Tememe Acceleration, specifically triangular acceleration sine rule and triangular acceleration cosine rule which has the main error of the second level to find the continuous double integrations specified numerically with using the midpoint rule on both internal dimension \(t \) and exterior dimension \(z \) by both methods and we will code the first method with the symbol As(MM) and the second method the symbol Aco(MM) ; we assumed that the number of divisions on the internal dimension \(t \) was equal to the number of divisions on the external dimension \(z \), where we got in both methods a high accuracy in the results with relatively few partial periods and a short time with the use of the Matlab 2017 program.

1-Introduction:
There are many who don't know how much important calculus is in our life and this why Isaac Newton invented this complementary part of mathematics because he had found that algebra and geometry didn't solve many mathematical problems. At that time mathematicians could calculate the velocity of ships for example but failed to figure out the rate at which the ship was accelerating, so they needed a new mathematical method to solve the problems that involved changing variables; Newton spent about 18 months to form new theories in the science he called (the science of fluxions), which has evolved now for what we call (calculus) and which helped the engineer Apollo to chart the path between the earth and the moon [1,2].

In this days Medical Science Biologists use differential calculus to determine the exact rate of growth in a bacterial

in statistic Statisticians use calculus to evaluate survey data to help develop business plans for different companies, in Research Analysis it helps a company improve operating efficiency, increase production, and raise profits.[3]

Newton has helped many scientists in the development of the science of integration which interested in finding the function of the rate of its change that has extended to double integrations and finding its values for its importance in finding surface area for non-geometric shapes and unknown rules of its area, it can also calculate the inertial torque of flat surfaces and find the volume under the surface of double integrals [4].

and for the importance of double integrations the main objective in this research is to use a method that improves the results of numerical double integrations and increases velocity to reach the real value of integration by using the correction limits associated with the Newton-cotes rules. In 2009, Dheyaa used four composite methods of accelerating Romberg with the Simpsons rule and accelerating Romberg with the midpoint rule to give methods for calculating the values of double integral with continuous integrands, and
these methods are (RM(RS)), (RM(RM)), (RS(RS)) and (RS(RM)) and gave good results in terms of accuracy and number of partial periods used as well as the time spent calculating the integrations presented has shown that the four methods that adopted have given the same accuracy and the same number of partial periods for the integrations with continuous integrands into the integration intervals [5].

In 2019, Mohammed and Yasser used a series of new accelerated methods (AL-Tememe accelerations) to find specific unilateral integrations and the results were very good[1].

As for the numerical integration, it is defined as the study of how to find the approximate value of specific integration, and the history of applying numerical integration dating back to finding a circle area by (Greek Quadrature) method by dividing the circle into regular polygons, by this method (Archimedes) can find the upper and lower limits of pi (π).

In this research we will use the acceleration of AL-Tememe to find the approximate values of double integrations with continuous integrands and the limits of its correction $E(h)$, and this method is summarized by applying the rule of the mid point to both internal integration t and external z and where the number of divisions on the internal dimension h_1 is equal to the number of divisions on the external h_2 and then we improved the results using acceleration $As(MM)$ and $Aco(MM)$ then we got accurate results, and we will compare these methods in terms of accuracy and speed of approach to the analytical value of integration before and after using this acceleration.

Consider the integral I defined as:

$$I = \int_{z_0}^{z_n} g(z)\,dz \quad \ldots (1)$$

$g(z)$ is a continuous function defined on $[z_0, z_n]$.

To compute the integral I approximately, we can write Newton-cotes formula as:

$$I = \int_{z_0}^{z_n} g(z)\,dz = G(k) + E(k) + R_G \quad \ldots (2)$$

Whereas, $G(k)$ is (Lagrangian- approximation) to the real value of the integral I, the letter (G) refers to the rule type, $E(k)$ is the correction terms that can be added to $G(k)$, $k=\frac{z_n-z_0}{n}$; n is the number of sub intervals we used and (R_G) is the remainder.

The general formula of $G(k)$ is:

$$G(k) = k(w_0g_0 + w_1g_1 + w_2g_2 + \ldots + w_2g_n-2 + w_1g_n-1 + w_0g_n) \quad \ldots (3)$$

Where $g_m = g(z_m)$ and $z_m = z_0 + mk$; $m = 0,1,2,\ldots,n$ and weight coefficients w_m take the sequence: $(w_0, w_1, w_2, \ldots, w_2, w_1, w_0)$.

In order to simplify the formula (3), we can write the weights by w_0 such that:

$$w_1 = 2(1-w_0) \quad \text{and} \quad w_2 = 2w_0,$$

we know that when $w_0 = 0$, we get midpoint rule and we symbolized by $M(k)$ where $M(k) = k(g_1 + g_3 + \ldots + g_{2j-1}); j=1,2,\ldots,n$.

The general form of $E(k)$ in the case of $M(k)$ is the following:

$$E(k) = \frac{1}{6} k^2(g_0' - g_0) + \frac{7}{360} k^4(g_0^{(3)} - g_0^{(3)}) + \frac{31}{15120} k^6(g_n^{(5)} - g_0^{(5)}) + \ldots \quad \ldots (4)$$

When the function of integrals and its derivatives are continuous in every point of integrations’ interval $[z_0, z_n]$.

The correction terms of $E(k)$ can be written as:

$$E(k) = I - M(k) = D_1k^2 + D_2k^4 + D_3k^6 + \ldots \quad \ldots (5)$$

Where D_1, D_2, D_3, \ldots are constants that don’t depend on k but on the values of integrands derivatives at the end point of interval $[z_0, z_n]$ [6].

Either in a case of double integral $I = \int_{z_0}^{z_n} \int_{t_0}^{t_n} f(t, z)\,dtdz \quad \ldots (6)$

The method MM (midpoint rule in both of external and internal dimension of integrals) is:

$$I = k\bar{k} \sum_{j=1}^{n} \sum_{i=1}^{m} f(t_0 + \frac{2i-1}{2}k, z_0 + \frac{2j-1}{2}k) \quad \ldots (7)$$
By division both of intervals \([z_0, z_n]\) and \([t_0, t_n]\) to the same number of subintervals
i.e. \(m=n\) then:
\[
k = k = n, \quad m = m = n, \quad n = 1, 2, 3, \ldots
\]
Therefore the integral I would be in the form:
\[
I = k^2 \sum_{j=1}^{n} \sum_{i=1}^{n} \int \left(t_0 + \frac{2i-1}{2} k, z_0 + \frac{2j-1}{2} k \right)
\]
\[
\ldots(8)[6]
\]
2- Accelerations As(MM) and Aco(MM):
To calculate the approximate value to the double integral (6) we will use (MM) method by using the formula
(8) we set \(n=1, 2, 3, \ldots\) to find the values of the second column after that we will implement “Triangular acceleration sine rule for Al-Tememe of the first kind”
\[
A_{\text{sin}}^\text{c}\approx \frac{k_1 \sin(k_2) M_1(k_1) - k_1 \sin(k_2) M_2(k_2)}{k_2 \sin(k_2) - k_1 \sin(k_1)} \quad \ldots(9)[1]
\]
Such that \(M_1(k_1)\) represents the value of the integration (6) numerically when \(k=k_1\), also, \(M_2(k_2)\) represents the value of same integration numerically when \(k=k_2\)
until we get a value with an error rate which is equal to or less than number named
Eps (the absolute error of the difference between two consecutive values) this values representing the values of the third column.
As for the acceleration Aco(MM) we can get by the following:
We know that:
\[
E(k) = J - M(k) = A_1 k^2 + A_2 k^4 + A_3 k^6 + \ldots \approx \cos(k) - 1
\]
\[
J - M_1(k_1) \approx \cos(k_1) - 1 \quad \ldots(10)
\]
\[
J - M_2(k_2) \approx \cos(k_2) - 1 \quad \ldots(11)
\]
such that \(M_1(k_1)\) represents the value of the integration (6) numerically when \(k=k_1\), also, \(M_2(k_2)\) represents the value of same integration numerically when \(k=k_2\)
From the equations (10) and (11) we get:
\[
A_{\text{cos}}^\text{c} \approx \frac{M_2(k_2)(\cos(k_2) - 1) - M_1(k_1)(\cos(k_1) - 1)}{\cos(k_1) - \cos(k_2)} \quad \ldots(12)
\]
This acceleration get the same results of the triangular acceleration square sine law.
\[
A_{\text{sin}}^\text{c} \approx \frac{\sin^2(\frac{k_2}{2}) T_1(k_1) - \sin^2(\frac{k_2}{2}) T_2(k_2)}{\sin^2(\frac{k_2}{2}) - \sin^2(\frac{k_1}{2})} \quad [1]
\]
We implement the formula (12) on the values of (MM) method in the second column to get the values of fourth column until we get value with an error rate which is equal to or less than Eps.
3- Examples:
We will introduce some integrals which have continuous integrands on the internal and external integrals in the intervals \([t_0, t_n]\) and \([z_0, z_n]\) respectively and their numerical results by using (MM) method and their numerical results by using acceleration As(MM) and Aco(MM), and after that we will compare between the results before and after using acceleration.
3.1: \(\int_1^2 \int_0^1 te^{-(t+z)} dt dz\)
Its analytical value is 0.061447728197 and its rounded to 12 decimal.
3.2: \(\int_1^2 \int_0^1 \sqrt{t + zd} dt dz\)
Its analytical value is 1.40659671769 and its rounded to 12 decimal.
3.3: \(\int_1^2 \int_1^e z^2 dz dt\)
Its unknown analytical value.
4- The results:
In the example 3.1: \(\int_1^2 \int_0^1 te^{-(t+z)} dt dz\) the integrand is continuous with the intervals \([1,2] \times [0,1]\) and the
formula of the correction terms for the midpoint rules is similar to the formula in the equation (5).

We can notice from Table 1 when n=25 the values are correct for 9 decimal when we use As(MM) method
We can also notice when we use Aco(MM) method and when n=34 the values are correct for 9 decimal where
Eps=10^-12, but we observed that the value by using (MM) method only without acceleration was correct for 3
decimal when n=25, and it was correct for 5 decimal when n=34.

In the example 3.2: \(\int_1^2 \int_0^1 \sqrt{1 + zdz} \) the integrand is continuous with the intervals \([1,2][0,1]\) and the formula of the correction terms for the midpoint rules is similar to the formula in the equation (5).

We notice from Table 2 when n=20 the values are correct for 8 decimal when we use As(MM) method, and we can also notice when we use Aco(MM) method when n=14 the values are correct for 8 decimal where Eps=10^-12, but we observed that the value by using (MM) method only without acceleration was correct for 4 decimal when n=16, 20 was correct for 4 decimal.

In the example 3.3: \(\int_1^2 \int_1^2 e^{zdz} \) the integrand is continuous with the intervals \([1,2][1,2]\) and the formula of the correction terms for the midpoint rules is similar to the formula in the equation (5).

We notice from Table 3 when we use As(MM) method, when n=61 the values are correct for 8 decimal, and we notice when we use Aco(MM) method when n=64 the values are correct for 8 decimal, and where Eps=10^-12, but we notice that the value by using (MM) method only without acceleration was correct for 4 decimal when n=61, 64.

5- Tables:

n	MM	As(MM)	Aco(MM)
1	0.06166764416183	0.0613788962794	0.0615380957730
2	0.0631703930604	0.0614412252253	0.0614580262937
3	0.0622279647708	0.0614461569037	0.0614503173773
4	0.0618895221926	0.0614471697958	0.0614486623417
5	0.0617313426277	0.0614474815807	0.06144381888
6	0.0616450101815	0.0614476028200	0.0614479403780
7	0.0615928153372	0.0614476578283	0.06144785941
8	0.061558827852	0.0614476856908	0.061447800431
9	0.061535932012	0.0614477010210	0.061447744427
10	0.0615189215457	0.0614477100184	0.0614477591589
11	0.061365795566	0.0614477155801	0.0614477497005
12	0.0614971188560	0.0614477191675	0.0614477435942
13	0.0614899877832	0.0614477215654	0.0614477395100
14	0.0614840755239	0.0614477232174	0.0614477366948
15	0.0614793935874	0.0614477243854	0.061447734704
16	0.0614756611425	0.0614477252301	0.061447732628
17	0.0614723844809	0.0614477258532	0.0614477321998
18	0.0614697221108	0.0614477263209	0.0614477314016
19	0.0614674873572	0.0614477266776	0.0614477307928
20	0.0614655446872	0.06144772666776	0.0614477303220
21	0.0614638878989	0.0614477269534	0.0614477299533
22	0.0614624534375	0.0614477271694	0.0614477296612
23	0.0614612011397	0.0614477273404	0.0614477294274
24	0.0614601020444	0.0614477274774	0.0614477292385
25	0.0614591321458	0.0614477275880	0.06144772980845
26	0.0614582719617	0.06144772980845	0.0614477289579
27	0.061457055484	0.0614477288531	
28	0.0614568197562	0.0614477287658	
Table (1) for calculating integration $\int_1^2 \int_0^1 e^{-z^2} dtdz = 0.061447728197$ by using (MM) method, As(MM) acceleration and Aco(MM) acceleration

n	MM	As(MM)	Aco(MM)
1	1.4142135623731	1.4065321464658	1.406596181816
2	1.4085777065555	1.4065745915453	1.4065940534395
3	1.4079996768585	1.4065983975163	1.406592342730
4	1.406921254332	1.4065975381690	1.406599234730
5	1.4068223777579	1.4065987311177	1.4065994809196
6	1.4067336760497	1.4065991940552	1.406599756897
7	1.406725038311	1.4065994038301	1.4065996181816
8	1.406697475473	1.4065995099947	1.4065996395370
9	1.4066799349045	1.406599683732	1.4065996512237
10	1.406660121861	1.4065996026217	1.406599680562
11	1.406654207637	1.4065996237855	1.4065996622675
12	1.4066471709340	1.4065996374336	1.406599649779
13	1.406640649517	1.4065996465543	1.4065996667864
14	1.4066353567266	1.4065996528368	1.4065996697686
15	1.4066310365619	1.4065996572783	1.406599691816
16	1.4066274558938	1.406599604901	1.4065996604901
17	1.4066244510461	1.406599628591	1.4065996628591
18	1.4066219154267	1.406599646374	1.4065996646374
19	1.4066197470110	1.406599659933	1.4065996697686

Table (2) for calculating integration $\int_1^2 \int_0^1 \sqrt{t + z^2} dtdz = 1.406599671769$ by using (MM) method, As(MM) acceleration and Aco(MM) acceleration

n	MM	As(MM)	Aco(MM)
1	2.7182818284590	2.9494868542097	2.9436339024608
2	2.8836226730752	2.9570835130932	2.9563697474505
3	2.9236601828792	2.958711642191	2.958521141437
4	2.938833866972	2.959154934483	2.9590863689145
5	2.946104221533	2.9593096617864	2.9592788504710
6	2.9501178329543	2.959374052926	2.9593582175696
7	2.9525651913401	2.95940466621	2.959395256116
8	2.9541639654405	2.959420827077	2.9594148628278
9	2.955248714273	2.9594291505842	2.9594256719035
10	2.956054765372	2.959434420293	2.9594320881171
11	2.956640578316	2.95943770690636	2.9594360876697
12	2.9570867656082	2.9594398459188	2.959438640295
13	2.9574345109520	2.9594412823300	2.959440281119
14	2.9577107187750	2.959442763612	2.9594416343958
15	2.957933719292	2.9594429817489	2.9594424900241
16	2.9581163736263	2.9594434930424	2.9594431104303
17	2.9582678258369	2.9594434930424	2.9594431104303
---	---	---	
18	2.9583948024678	2.9594438717621	
19	2.9585023043118	2.959443737893	
20	2.9585941178067	2.95944421483	
21	2.9586731523152	2.959446741532	
22	2.9587416730035	2.95944680200	
23	2.9588014646710	2.95944762816	
24	2.9588539486866	2.95944795624	
25	2.9589002695633	2.95944851674	
26	2.9589413548867	2.959448985107	
27	2.9589779649632	2.959450312925	
28	2.9590107767721	2.959450689649	
29	2.9590416124131	2.959450103829	
30	2.9590667040637	2.959451267515	
31	2.9590907181972	2.959451490139	
32	2.9591255085021	2.959451679141	
33	2.9591327772303	2.959451840430	
34	2.9591505056885	2.959451978742	
35	2.9591671030895	2.959452097893	
36	2.9591823374785	2.959452200986	
37	2.9591963540954	2.959452290542	
38	2.9592092793399	2.959452368645	
39	2.9592212362977	2.959452437008	
40	2.9592322837649	2.959452497046	
41	2.9592425448947	2.959452549953	
42	2.9592520821604	2.959452596719	
43	2.9592690620743	2.959452638180	
44	2.9592692436817	2.959452675042	
45	2.9592769795450	2.959452707903	
46	2.9592842165792	2.959452737274	
47	2.959290996645	2.959452763590	
48	2.9592973577656	2.959452787222	
49	2.959303334100	2.959452808497	
50	2.9593089542299	2.9594528270825	
51	2.9593142477613	2.9594528731414	
52	2.9593192389279	2.959452880369	
53	2.9593239503251	2.959452881355	
54	2.9593284024769	2.9594528860750	
55	2.9593326140589	2.9594528979788	
56	2.9593366020953	2.959452910555	
57	2.959340821303	2.959452920404	
58	2.9593439638048	2.95945292418	
59	2.9593473736681	2.959452937679	
60	2.9593506105401	2.959452945266	
61	2.9593536893720	2.959452952239	
62	2.9593566204620	2.959452931033	
63	2.9593594113136	2.959452938799	
64	2.9593620759091	2.959452952571	

Table (3) for calculating integration $\int_1^2 \int_1^2 e^{ztdz} = \text{unknown analytical value}$ by using (MM) method, $A_{\text{st}}(\text{MM})$ acceleration and $A_{\text{co}}(\text{MM})$ acceleration

6-Conclusion:
The result of this study showing that, when calculating continuous double integrals by using the methods As(MM) and Aco(MM) (depending on the triangular functions of Al-Tememe acceleration methods of first kind) [1], was obtained accuracy in results with a speed of approaching the analytical value as well as with a few partial periods.

7-References:
[1] Ali Hassan Mohammed and Asmahan Abed Yasir, "Triangular functions of Al-Tememe acceleration methods of first kind for improving the values of integrals numerically", volume 3, Issue 4, April 2019.
[2] "Top 10 Isaac Newton Inventions", https://science.howstuffworks.com, Robert Lamb & Tristin Hopper, 12 January 2011.
[3] How is Calculus Used in Everyday Life?, https://www.toppr.com, Rahul Monet, December 30th 2016.
[4] FRANK AYRES, JR., Ph.D. and ELLIOTT MENDELSON, Ph.D. SCHAUM’S OUTLINE OF THEORY AND PROBLEMS OF DIFFERENTIAL AND INTEGRAL, CALCULUS, Third Edition, book, McGraw-Hill,1990, p:435-455.
[5] Athraa Mohammed Dheyaa. 2009, "Numerical Methods to Find Single, Double and Triple Integrals by Using a Matlab Language". Master Thesis. University of Kufa.
[6] Fox L., "Romberg Integration for a Class of Singular Integrands", comput. J. 10, pp. 87-93, 1967.
[7] Akkar, Batoul Hatem, “Some Numerical Methods for Calculating Double and Triple Integrals,” Master Thesis submitted to the University of Kufa, 2010.