Basic Data Analysis and more
(A guided tour using python)

O. Melchert

Institut für Physik, Universität Oldenburg
Motivation

Data is comparatively cheap, insight is hard to come by!

Data analysis based on three pillars:

(1) **Statistics:**
 - craft of using data samples to understand “phenomena”

(2) **Probability:**
 - study of random events

(3) **Computation:**
 - tool for quantitative analysis
 - instrument to generate data

Here:
- approach (1) and (2) from a computational point of view
- numerical experiments: consider 1D random walk

Aim:
- perform analysis as careful as possible
- arrive at maximally “justifiable” conclusions
Outline

Basic python

Assembling data (1D random walk)

Descriptive statistics
- summarizing data
- visualizing data

More aspects covered in the lecture notes
- hypothesis testing
- parameter estimation
- object-oriented programming via python
- “speed issues”
Two basic data structures:

- Lists:
  ```python
  >>> a=[4,2]; a.append(5); print a
  [4, 2, 5]
  ```

- Dictionaries:
  ```python
  >>> d={'n0':[1,2]}; d['n1']=[5,6]; print d
  {'n0': [1, 2], 'n1': [5, 6]}
  >>> for key,val in d.items(): print key,val
  n0  [1, 2]
  n1  [5, 6]
  ```

Facilitate data analysis and small-scale simulations:

Many open-source libraries for scientific computing

- SciPy: statistics, optimization, linear algebra, etc.
- Networks: implements graphs and graph algorithms
Assembling data

Random experiment:
- outcome is not predictable
- e.g.: 1D random walk:

Sample space \(\Omega \):
- set of elementary events
- e.g.: 1D random walk: \(\Omega = \{ \circ \circ \circ \circ \circ \, \circ \circ \circ \circ \circ \} \)

Random variable (RV):
- function \(X : \Omega \to \mathbb{R} \) that relates a numerical value \(x = X(\omega) \) to each elementary event \(\omega \in \Omega \)
- e.g.: 1D random walk: \(X(\circ \circ \circ \circ \circ) = -1 \), \(X(\circ \circ \circ \circ \circ) = 1 \)
Assembling data

Combination of several RVs

- new RV \(Y = f(X^{(0)}, \ldots, X^{(k)}) \)
- use outcomes \(x^{(i)} \) to yield \(y = f(x^{(0)}, \ldots, x^{(k)}) \)

Example: symmetric 1D random walk starting at \(x_0 = 0 \)

- probability to step right: \(p = 0.5 \)
- determine endposition \(x_N \) after \(N \) steps
- random experiment: take one step, repeat \(N \)-times
- new random variable \(Y = \sum_{i=0}^{N-1} X^{(i)} \) yields endposition \(x_N = \sum_{i=0}^{N-1} x^{(i)} \)

Relevance of the random walk model:

- continuum limit yields diffusion equation
- simplified model for polymers
1D random walk – a computer scientists view:

```python
from random import seed, choice

N=100    # nbr of steps in single walk
n=10     # nbr independent walks

print '# (seed) (endPos)'
for s in range(n):
    seed(s)
    # construct single walk
    endPos = 0
    for i in range(N):
        # implement single step, update RV
        endPos += choice([-1,1])
    # dump data to stdout
    print s,endPos
```

Listing 1: EX_1DrandWalk/1_randWalk.py
Assembling data

calling the script yields the raw data:

```
$ python 1D_randWalk.py
# (seed) (endPos)
0 26
1 6
2 18
3 14
4  -8
```

Listing 2: Output of EX_1D_randWalk/1_randWalk.py

more pictographic account of 1D random walks:
Distributions of RVs

Probability function P:
- $P(X = x)$ signifies probability to observe RV with value x

Probability mass function (PMF):
- $p_x : \mathbb{R} \rightarrow [0, 1]$, where $p_x(x) = P(X = x)$
- description of discrete RV:
 - map numerical values to probabilities
 - discrete state space: $p_x(x) = 0$ except for finite set $\{x_i\}$
 - normalized: $\sum_{x_i} p_x(x_i) = 1$

Cumulative distribution function (CDF):
- $F_X : \mathbb{R} \rightarrow [0, 1]$, where $F_X(x) = P(X \leq x)$
- properties:
 - non-decreasing: if $x_1 < x_2$, then $F_X(x_1) \leq F_X(x_2)$
 - normalized: $\lim_{x \to -\infty} F_X(x) = 0$, $\lim_{x \to \infty} F_X(x) = 1$
 - relation to PMF: $F_X(x) = \sum_{x_i < x} p_x(x_i)$
Represent raw data (i.e. a finite dataset) as PMF:

def getPmf(myList):
 """construct prob mass fct"""
 # step 1: compute frequencies
 fHist = {}
 for x in myList:
 fHist.setdefault(x,0)
 fHist[x] += 1

 # step 2: normalization
 N = len(myList)
 myPmf = {}
 for x,freq in fHist.items():
 myPmf[x] = float(freq)/N

 return myPmf

Listing 3: Variant of function `getPmf` in `MCS2012_lib.py`
Postprocess raw data to yield PMF and CDF:

```python
import sys
from MCS2012_lib import *

# parse command line arguments
fileName = sys.argv[1]
col = int(sys.argv[2])

# construct approximate pmf from data
rawData = fetchData(fileName, col)
pmf = getPmf(rawData)

# dump pmf and cdf to standard outstream
FX=0.
for endpos in sorted(pmf):
    FX+=pmf[endpos]
    print endpos, pmf[endpos], FX
```

Listing 4: Script EX_1D_randWalk/pmf.py
Distributions of RVs

Monte Carlo simulation (discussed by HGK):

- $n = 10^5$ independent $N = 100$-step walks
- hint: store raw data in file, e.g. $N100_n100000_dat$
- determine distribution of endpoints x_N as


  ```
  python pmf.py N100_n100000.dat > N100_n100000.pmf
  ```

- (a) PMF (enclosing curve = Gaussian with $\mu = 0$ and $\sigma = \sqrt{N}$),
- (b) CDF (figures prepared using gnuplot)

![Graphs of PMF and CDF](image)
Summary statistics

Features of a distribution function:

- moments of the distribution

\[
E[X^k] = \begin{cases}
\sum_i x_i^k \ p_X(x_i), & \text{for } X \text{ discrete,} \\
\int_{-\infty}^{\infty} x^k \ p_X(x) \ dx, & \text{for } X \text{ continuous.}
\end{cases}
\]

\(E[\cdot]\) signifies the \textit{expectation operator}.

Here:

- sample of \(N\) iid values \(x = \{x_0, \ldots, x_{N-1}\}\)
- summary statistics: reduce full dataset to single number
Summary statistics

Basic parameters related to a finite dataset:
\[\text{av}(x) = \frac{1}{N} \sum_{i=0}^{N-1} x_i \] (average/mean value)
- central tendency of sample

\[\text{Var}(x) = \frac{1}{N-1} \sum_{i=0}^{N-1} [x_i - \text{av}(x)]^2 \] (corrected variance)
- unbiased estimator for the spread of the \(x_i \in x \)
- proper implementation: corrected two-pass algorithm

\[\text{sDev}(x) = \sqrt{\text{Var}(x)} \] (standard deviation)

\[\text{sErr}(x) = \frac{1}{\sqrt{N}} \text{sDev}(x) \] (standard error)
- signifies how accurate sample mean approximates the true mean

Convergence properties of the above observables might be poor, if distribution has a broad tail!

→ more robust estimation of deviations in the sample:
\[\text{aDev}(x) = \frac{1}{N} \sum_{i=0}^{N-1} |x_i - \text{av}(x)| \] (absolute deviation)
Summary statistics

Summary statistics based on $av(x)$:

```python
def basicStatistics(myList):
    """compute summary statistics""
    av=var=tiny=0.
    N=len(myList)

    for x in myList:  # 1st pass
        av += x
    av /= N

    for x in myList:  # 2nd pass
        dum = x - av
        tiny += dum
        var += dum*dum

    var = (var - tiny*tiny/N)/(N-1)
    sDev = sqrt(var)
    sErr = sDev/sqrt(N)

    return av, sDev, sErr
```

Listing 5: Function `basicStatistics` in `MCS2012_lib.py`
Example 1: good convergence

Script to compute summary statistics:

```python
import sys
from MCS2012_lib import *

## parse command line arguments
fileName = sys.argv[1]
col = int(sys.argv[2])

## construct approximate pmf from data
rawData = fetchData(fileName, col)
av, sDev, sErr = basicStatistics(rawData)

print "av = %4.3lf" %av
print "sErr = %4.3lf" %sErr
print "sDev = %4.3lf" %sDev
```

Listing 6: Script EX_1DrandWalk/basicStats.py
Example 1: good convergence

Obtain summary of the raw data:

```
$ python basicStats.py N100_n100000.dat 1
av     = 0.008
sErr   = 0.032
sDev   = 10.022
```

Listing 7: Summary statistics for 1D random walk

Central limit theorem:
- independently drawn values
- values drawn from the same distribution with mean μ and standard deviation σ
- sum up n values

\rightarrow distribution of summed up values tends to be normal with mean $n\mu$ and variance $n\sigma^2$
Example 2: Poor convergence

Poor convergence:

- power-law distributed data: \(p_X(x) \propto x^{-\alpha} \ (N = 10^5, \alpha = 2.2) \)

 \[x = x_0(1 - r)^{-1/(\alpha - 1)} \ (r \in [0, 1), x \in [x_0, \infty)) \]

- robust estimators less affected by “outliers”
 (consider also summary measures based on median → see exercises)

- (a) mean value, (b) standard deviation (inset: absolute deviation)
Estimators with(out) bias

Unbiased estimator:
- consider estimator $\hat{\phi}(x)$ for parameter ϕ
- estimator unbiased if $E[\hat{\phi}(x)] = \phi$
 $\rightarrow E[\cdot]$ with respect to all possible data sets

Example:
- sample $x = \{x_0, \ldots, x_{N-1}\}$, true mean μ, true variance σ^2
- estimate mean $\phi = \mu$ using $\hat{\phi}(x) = \text{av}(x)$:
 \rightarrow unbiased since $E[\text{av}(x)] = \mu$
- associated mean square error (MSE) $E[(\hat{\phi}(x) - \phi)^2]$
 \rightarrow measures variance + bias
- **uncorrected variance** $u\text{Var}(x) = \frac{1}{N} \sum_{i=0}^{N-1} [x_i - \text{av}(x)]^2$:
 \rightarrow biased since $E[u\text{Var}(x)] = \frac{N-1}{N} \sigma^2$
Histogram:

- consider sample \(x = \{x_0, \ldots, x_{N-1}\} \)
- discrete approximation of underlying prob dens fct requires:
 1. \(n \) distinct intervals \(C_i = [c_i, c_{i+1}) \), \(i = 0 \ldots n - 1 \) (bins)
 - bin-width: \(\Delta c_i = c_{i+1} - c_i \)
 2. frequency density \(h_i = n_i / [N \times \Delta c_i] \)
 \((n_i = \text{number of elements in bin } C_i) \)

Histogram = set of tuples

\[
H = \{(C_i, h_i)\}_{i=0}^{n-1}
\]

→ normalized: \(\sum_i h_i \times \Delta c_i = 1 \)
→ data binning = information loss

Graphical representation of data
Example 3(a): linear binning

Linear binning:

- n bins of equal width $\Delta c = (x_+ - x_-)/n$
- interval bounds $c_i = x_- + i\Delta c$, $i = 0 \ldots n$
- element x_j belongs to bin C_i with $i = \lfloor x_j/\Delta c \rfloor$

Example:

- **python** example 3(a)
- power-law PDF: $p_x(x) \propto x^{-\alpha}$, $\alpha = 2.5$, $N = 10^6$
- linear binning, $n = 2 \times 10^4$ bins
Example 3(a): linear binning

Implementation of linear binning:

```python
def hist_linBinning(rawData, xMin, xMax, nBins=10):
    """construct histogram using linear binning"""
    h = [0] * nBins  # ini freqs for each bin
    dx = (xMax - xMin) / nBins  # uniform bin width

    # bin id corresponding to value
    def binId(val):
        return int(floor((val - xMin) / dx))  # lower + upper boundary for binId i
    def bdry(i):
        return xMin + i * dx, xMin + (i + 1) * dx

    for value in rawData:  # data binning
        if 0 <= binId(value) < nBins:
            h[binId(value)] += 1

    N = sum(h)
    for bin in range(nBins):  # dump histogram
        hRel = float(h[bin]) / N
        low, up = bdry(bin)
        print low, up, hRel / (up - low)
```

Listing 8: Function `hist_linBinning` in `MCS2012_lib.py`
Example 3(b): logarithmic binning

Logarithmic binning:

- interval bounds $c_i = c_0 \times \exp\{i \Delta c'\}$
- “growth factor” for bin width $\Delta c' = \log(x_+/x_-)/n$
- element x_j belongs to bin C_i with $i = \lceil \log(x_j/x_-)/\Delta c' \rceil$

```python
1 dx = log(xMax/xMin)/nBins
2 def binId(val): return int(floor(log(val/xMin)/dx))
3 def bdry(i): return xMin*exp(i*dx), xMin*exp((i+1)*dx)
```

Example:
- python example 3(b)
- power-law PDF: $p_X(x) \propto x^{-\alpha}$, $\alpha = 2.5$, $N = 10^6$
- log-binning, $n = 55$ bins
Error estimation via bootstrap resampling

- given: sample $x = \{x_0, \ldots, x_{N-1}\}$ of statistically independent numbers
- aim: measure $q = f(x)$ and provide unbiased error estimate
- three-step procedure:
 1. generate M auxiliary bootstrap data sets $\tilde{x}^{(k)}$, $k = 0 \ldots M - 1$
 2. compute $\tilde{q}_k = f(\tilde{x}^{(k)})$ to yield set of estimates $\tilde{q} = \{\tilde{q}_k\}_{k=0}^{M-1}$
 3. obtain bootstrap error estimate

$$s_{Dev}(\tilde{q}) = \left(\frac{1}{M-1} \sum_{k=0}^{M-1}[\tilde{q}_k - \text{av}(\tilde{q})]^2\right)^{1/2}$$

→ basic assumption: \tilde{q}_k are distributed around q similar to the way, independent estimates of q are distributed around the true quantity q^*
Bootstrap resampling

function to perform empirical bootstrap resampling of data:

```python
def bootstrap(array, estimFunc, nBootSamp=128):
    
    # bootstrap resampling of dataset
    
    # estimate mean value from original array
    origEstim = estimFunc(array)
    
    # resample data from original array
    nMax = len(array)
    h = [0.0] * nBootSamp
    bootSamp = [0.0] * nMax
    for sample in range(nBootSamp):
        for val in range(nMax):
            bootSamp[val] = array[randint(0, nMax-1)]
            h[sample] = estimFunc(bootSamp)
    
    # estimate error as std deviation of
    # resampled values
    resError = basicStatistics(h)[1]
    return origEstim, resError

Listing 9: Function bootstrap in MCS2012_lib.py
Example 4: bootstrap resampling

Example:

- revisit endpoint data for 1D random walk
- $M = 1024$ bootstrap data sets
- result: $av = 0.008 \pm 0.032$, $sDev = 10.022 \pm 0.022$ PDF (histogram using 18 bins) of (a) resampled $av$, (b) resampled $sDev$
Descriptive statistics
- summarizing data
- visualizing data

How to accomplish things using python

More aspects covered in the lecture notes

Tutorial: “Statistical data analysis”
- 16:00-17:15 (today)
- W1 0-008

Thank you!