The Prognostic Effect of Statin Use on Urologic Cancers
An Updated Meta-Analysis of 35 Observational Studies

You Luo, MD, Dong-Li She, MD, Hu Xiong, MD, Sheng-Jun Fu, BS, and Li Yang, MD, PhD

Abstract: Recent studies suggest that statin may benefit cancer prognosis, especially through its radiosensitization effect. But controversy exists in other studies. Hence, we performed a meta-analysis of results from 35 studies to evaluate the effect of statin use on urologic cancers.

We conducted computerized search from PubMed, Embase, and ISI Web of Knowledge through May 2015, screened the retrieved references, and collected and evaluated relevant information. We extracted and synthesized corresponding hazard ratios (HR) and confidence interval (CI) by using Review Manager 5.3 and STATA 13. This review was registered at PROSPERO with registration No. CRD42015020171.

We selected total 35 retrospective studies and conducted a meta-analysis of results from these studies. The pooled results suggested no benefit of statin use to bladder cancer and renal cell carcinoma, except overall survival [HR = 0.81, 95% CI: 0.69–0.96]. However, significant improvement of prostate cancer prognosis including overall survival [HR = 0.82, 95% CI: 0.70–0.97] and cancer-specific survival [HR = 0.70, 95% CI: 0.59–0.83] was indicated, but not including tumor progression [HR = 0.84, 95% CI: 0.62–1.14]. Statin use improved biochemical recurrence of prostate cancer in radiotherapy patients [HR = 0.68, 95% CI: 0.54–0.85] but not in radical prostatectomy patients [HR = 0.97, 95% CI: 0.82–1.15].

Current evidence suggests no benefit of statin use to bladder cancer and renal cell carcinoma, except in overall survival. While statin use benefited prostate cancer patients in overall survival, cancer-specific survival but not in tumor progression; it also improved biochemical recurrence in radiotherapy but not in radical patients. To verify these results, randomized controlled trials are necessary.

METHODS

Search and Screen Strategy
We performed a systematic literature search of PubMed, Embase, and ISI Web of Knowledge to retrieve urologic cancer clinical studies using statin through May 3, 2015. We used search key words including statin, renal cell carcinoma, bladder cancer, prostate cancer, survival and mortality, etc. The detailed search strategy was described in the supplement 1. The citations in the retrieved articles were also screened for any relevant studies. The initial screen was conducted by reviewing the title and abstract by 2 independent investigators (YL and DLS) to eliminate the irrelevant articles. Then, the full-text articles were reviewed according to eligibility criteria. Any clinical study comprising the evaluation of statin use on urologic cancer prognosis was eligible. In this article, we only include results of renal cell carcinoma (RCC), bladder cancer (BC), and prostate cancer (PCa). Articles that has abstract only, duplicated literature, overlapping patients or duplicated data presented in conferences; or does not study RCC, BC or PCa; or has no data available, were excluded. In this study, all data and analyses were based on the previous published studies, and thus no ethical approval and patient consent are required.
Data Extraction and Quality Assessment

Before data collection, a spreadsheet was designed for the key information. Data extraction was independently performed by 2 researchers (YL and DLS) and cross-checked. Meanwhile, any disagreement or uncertainty was resolved by group discussion. Data extracted from the articles included the name of the first author and publication year, country, cancer type, recruitment period, number of patients, age, main treatment, follow-up, prognostic outcomes, definition of outcomes, and adjusted factors. The data were extracted from the original articles. During data extraction, multivariate outcomes were prior to univariate outcomes when both were provided, while if no multivariate results were presented, univariate outcomes were used instead. If there was no exact time to event survival data, we either estimated HR and 95% CI by the methods that were provided by Tierney et al using the given survival or mortality curve or other available data, or referred previous study outcomes or contacted the corresponding author for the original data. The extracted data from studies which have potential overlapping patients were removed before meta-analysis to avoid over-analysis. The quality assessment was carried out by using Newcastle–Ottawa Scale (NOS) for cohort study that comprised 3 domains with 8 items to evaluate bias risk. Above 5 stars of total 9 stars was deemed as good quality.

Statistical Analysis

Review Manager 5.3 (The Cochrane Collaboration, Copenhagen) was used to perform quantitative synthesis. Hazard ratio (HR) and its 95% confidence interval were used to evaluate the survival outcome. First, Cochran’s Q test and Higgins’ I^2 statistic were calculated for heterogeneity detection. $P \geq 0.1$ and $I^2 \leq 50\%$ were deemed to no significant heterogeneity, and fixed effects model was used. Otherwise, random effects model was used. The inverse variance method was used to calculate the pooled hazard ratio. Sensitivity analysis was conducted by using the method of leave-one-out to test the feasibility of the pooled results. Publication bias was detected with Egger’s regression intercept test and was only performed in outcomes comprised more than 10 studies by using STATA 13 (Stata Corp LP, College Station, TX). $A 2$-tailed $P < 0.05$ was considered statistically significant.

RESULTS

Eligible Studies and Quality Assessment

In total, 526 abstracts were retrieved by the initial search strategy. After screening, 35 studies including a France article were included in the qualitative and quantitative synthesis. The screening diagram was shown in Figure 1. The characteristics of included studies and the Newcastle–Ottawa Scale (NOS) quality assessment were shown in Table 1. Outcomes included overall survival, cancer-specific survival, recurrence-free survival, progression-free survival, and biochemical recurrence.

Survival Outcomes

In renal cell carcinoma, 4 studies were included. Among them, 3 reported overall survival, 2 reported cancer-specific survival, and 3 reported tumor progression status. As shown in Figure 2, the pooled results of statin use in overall survival, cancer-specific survival, and tumor progression of renal cell carcinoma were $HR = 0.81$ (95% CI: 0.69–0.96), 0.72 (0.35–1.50), and 0.91 (0.54–1.55), respectively.

Three bladder cancer studies reported oncological prognosis. One study reported overall survival with $HR = 1.14$ (0.89–1.44). Two studies reported cancer-specific survival and the pooled result was $HR = 1.06$ (0.87–1.29). Three studies reported recurrence-free survival with pooled $HR = 1.05$ (0.94–1.18). Two studies reported tumor progression and the pooled HR was 0.87 (0.65–1.15). All results were calculated by applying fixed effect model and shown in Figure 3.

Among prostate cancer studies, 5 reported overall survival outcomes and the pooled HR of statin use versus nonstatin use was 0.82 (0.70–0.97). Accordingly, 6 studies presented cancer-specific survival outcomes, the pooled result was $HR = 0.70$ (0.59–0.83). Tumor progression was reported in 5 studies and the pooled risk was 0.84 (0.62–1.14). All the above 3 clinical outcomes were analyzed by using the randomized effect model shown in Figure 4. Additionally, biochemical recurrence of prostate cancer became important in statin anticancer research. All prostate cancer studies subgroup were stratified by major treatment method and a subgroup analysis was conducted considering its radiosensitization effect. In radical prostatectomy subgroup, 13 studies presented biochemical result and the pooled hazard ratio of statin use versus nonstatin use was 0.97 (0.82–1.15), $P = 0.73$. However, in radiotherapy subgroup, 7 references reported biochemical recurrence, the pooled HR was 0.68 (0.54–0.85), $P = 0.0009$. Figure 5 shows the forest plot of biochemical recurrence of prostate cancer.

Publication Bias and Sensitivity Analysis

Publication bias detection was conducted by Egger’s asymmetric test only in biochemical recurrence. P value of the linear regression was 0.803 for radical prostatectomy subgroup, 0.977 for radiotherapy subgroup, and 0.463 for the entire group of prostate cancer. The results show that no significant publication bias was observed and the funnel plot is shown in Figure 6. A sensitivity analysis was conducted in prostate cancer. There is no significant change observed in cancer-specific survival, tumor progression, and biochemical recurrence after removing any included study (results were omitted).

DISCUSSION

Among medical studies, there is a great controversy on the effect of statin. Antitumor and tumor promotion effect are both
TABLE 1. Characteristics of Included Studies

Study	Country	Cancer	Duration	N of pts (Statin/Non-statin)	Age (yr)	Treatment	Follow-up (month)	Outcomes	Definition of outcomes	Adjusted factors	NOS
Berglund 2008	USA	BC	1978.7–2006.11	245/707	66	BCG	NA	RFS, PFS	Recurrence: visual/or biopsy proven at cystoscopy or positive repeat cytology	T stage, Grade	5
Cirveli 2013	Multinational	NMIBC	1996–2007	341/776	67	TURB	62.7	RFS, PFS, OS, CSS	Recurrence: first tumor relapse in bladder regardless of stage	Univariable COX regression	5
da Silva 2013	Multinational	MBBC	1992–2008	642/800	67	RC	62.7	RFS, CSS	Recurrence: tumor relapse in operative field, regional lymph node and/or metastasis	Age, Sex, BMI, Smoking, pT stage, Grade, STS, LVI, Concomitant CIB, Lymph node, AC	7
Chao 2013	Korea	RCC	2006.1–2012.6	2194	64.1	RN or PN	NA	PFS	Progression and progression of RCC	Age, Sex, BMI	5
Hamilton 2014	USA	RCC	1995–2010	708/1900	66	RN or PN	36	PFS, OS, CSS	Progression: metastases or death from RCC	Age, Sex, Race, symptoms, smoking, ECOG PS, Charlson comorbidity score, pT stage, Grade, lymph node, metastases, hypercalcemia, anemia, blood type	6
Kaffenberger 2015	USA	RCC	2000–2010	2706/46	60	RN or PN	42.5	OS, CSS	—	—	7
Vies 2015	USA	RCC	1995–2009	6301727	63	RN or PN	7.8 yrs (IQR: 5.3–11.2)	PFS, OS, CSS	Progression: distant metastases or death from RCC	Age, Sex, Race, symptoms, smoking, ECOG PS, Charlson comorbidity score, histology, BMI, tumor size, pT stage, Grade, coagulative tumor necrosis, Sarcomatoid differentiation	6
Caon 2014	Canada	PCa (localized)	2000.1–2007.12	9142937	70.3	EBRT	8.4 yrs	CSS	—	—	7
Chao 2013-RP	USA	PCa	2004–2005	446738	60 ± 6.8	RP	4.3 ± 1.3 yrs	PFS, BCR	Progression: metastases or prostate cancer related death	Age, Race, stage, GS, pre-RT PSA, interval from diagnosis to surgery, obesity	7
Chao 2013-RT	USA	PCa	2004–2006	401373	68.4 ± 7.0	EBRT	4 ± 1.4 yrs	BCR	A single PSA: ≥0.2ng/ml after undetectable PSA measurement after surgery	Race, stage, GS, pT stage, adenocarcinoma, lymph node, metastases, hormone therapy, obesity	7
Curran 2015	USA	PCa (localized)	1998–2010	273481	NA	BT	48 (R: 1–156)	BCR	A rise in PSA by 2 ng/ml or greater above nadir PSA after RT (Phoenix nadir + 2)	Race, stage, GS, pT stage, adenocarcinoma, lymph node, metastases, hormone therapy, obesity	7
Geybels 2013	USA	PCa	2002.1–2005.12	289712	61.5 ± 7.8	RP or RT or ADT, etc	NA	PFS, CSS	Progression: CSS, metastatic cancer, received secondary treatment, rise in PSA	Age, GS, stage, PSA level, primary treatment, Race, family history, BMI, smoking, alcohol consumption, aspirin, non-aspirin NSAID use, DM, PCa screening history	8
Grytdal 2014	Norway	PCa (high risk or metastatic)	2004–2009	10042205	76.3 ± 8.1	NA	39	CSS	—	—	7
Gutt 2010	USA	PCa	1988–2006	149502	69 (R: 42–83)	EBRT or BT	50 (R: 64–276)	PFS, BCR	Progression: BCR, metastases, alive ADT, OS	pT stage, GS, log PSA, RT dose, hormone therapy	7
Study	Country	Cancer	Duration	N of pts (Statin/Non-statin)	Age (yr)	Treatment	Follow-up (month)	Outcomes	Definition of outcomes	Adjusted factors	NOS
------------------	-------------	----------------------	----------	-----------------------------	----------	-----------	-------------------	----------	---	----------------------------------	------
Hamilton 2010	USA	PCa	1988–2008	236/1083	Mn =60.96 ± 6.48	RP	Md =24/38 (R: 11–68)	BCR	a single PSA >0.2 ng/ml, 2 concentrations at 0.2 ng/ml, or secondary treatment postop detectable PSA	Age, Race, medical center, biopsy GS, clinical stage, BMI, log PSA, percentage of positive cores, year of surgery, pathologic GS, extracapsular extension, seminal vesicle invasion, positive margin, lymph node	7
Ishak-Howard 2014	USA	PCa	1999–2009	258/281	Mn =56.5 ± 7.6	RP	Mn=949 ±56.6	BCR	a single PSA >0.4 ng/ml after an undetectable PSA, after surgery	Age, BMI, NSAID use, pathologic GS, pre-diagnostic PSA, clinical stage, year of surgery	7
Katz 2010	USA	PCa	1990–2003	182/45218	Mn =64.4 ± 7.8	RP or RT	Md =4 ± 0–166 yrs	OS	—	NSAIDs use, mean office visits, Age, cardiovascular disease, year of diagnosis, pt stage, DM, biopsy GS, smoking	6
Kollmeier 2011	USA	PCa	1995.1–2007.8	382/1299	NA	TDCRT or IMRT	Md = 5.9 (R: 0–146 yrs)	BCR	BCR: Phoenix nadir + 2 standard	D’Amico risk group, ADT, RT dose	8
Kastrinos 2013	Greece	PCa	1999.1–2010.4	107/481	Mn =65.2 ± 5.7	RP	Md = 3.4 (IQR: 1.5–50)	BCR	BCR: Phoenix nadir + 2 standard	D’Amico risk group, ADT, RT dose	8
Ku 2011	Korea	PCa	1997.5–2009.4	876/600	Mn =65.2 ± 6.7	RP	Md = 38 (R: 3–143)	BCR	BCR: Phoenix nadir + 2 standard	D’Amico risk group, ADT, RT dose	8
Misrai 2012	France	PCa	2004–2008	972/80	Mn =64 (R: 40–76)	RP	Mn =33 ± 10	BCR	BCR: consecutive twice PSA >0.2 ng/ml after surgery	D’Amico risk group, obesity, DM, marginal positive	6
Miyad 2006	USA	PCa (localized)	1995.4–2002.6	191/747	Mn =66.1 ± 7.2	BT	Mn = 5.6 ± 2.1 yrs	OS, CSS, BCR	BCR: PSA >0.4 ng/ml after nadir	D’Amico risk group, obesity, DM, marginal positive	7
Oh 2015	USA	PCa	1999.1–2009.2	174/73	Md =62 (R: 45.6–81.9)	BT	Md = 51 (R: 9.4–140.31)	BCR	T stage, PSA, radiation dose	BCR: Phoenix nadir + 2 standard	7
Riskum 2013	Multinational	PCa (localized)	2000–2011	227/5467	Mn =613 ± 6.7	RP	Md = 25 (IQR: 8.9–42)	BCR	BCR: PSA >0.2 ng/ml on two consecutive visits	Age, proop PSA, RP GS, lymph node, surgical margin, pt stage	6
Ritch 2011	USA	PCa	1990–2008	281/940	Md =60	RP	Md = 36	BCR	BCR: PSA >0.2 ng/ml after a previously undetectable PSA 3 months postoperatively	Age, Race, log PSA, pt stage, pathologic GS, margin status, year of surgery	6
Song 2015	Korea	PCa	1998–2011	452/1685	Md =67 (IQR: 63–71)	RP	Md=394 (R: 8–183)	BCR	Progression BCR (Phoenix PSA nadir +2 ng/ml or salvage ADT) or clinical failure or death	Age, DM, PSA, pathologic GS, pt stage, surgical margin	7
Soto 2009	USA	PCa (localized)	1987.1–2006.7	220/748	Mn =68.2 ± 7.3	TDCRT or IMRT	Md = 3.2 (R: 0.2–16.5)	PFS	BCR: Phoenix PSA nadir + 2 ng/ml or salvage ADT or clinical failure or death	Age, T stage, pro-RT PSA, GS, RT dose, pelvic RT, ADT, year of treatment	6
Study	Country	Cancer	Duration	N of pts (Statin/Non-statin)	Age (yr)	Treatment	Follow-up (month)	Outcomes	Definition of outcomes	Adjusted factors	
---------------	---------	-------------------------------	----------	-----------------------------	----------	---------------------------------	-------------------	----------	----------------------	--	
Yu 2014	UK	PCa (nonmetastatic)	1998.4–2009.12	30478/365	Mn = 71.3 ± 8.8	RP or RT or ADT or Chemotherapy	Mn = 4.4 ± 2.9 yrs	OS, CSS	—	Age, year of diagnosis, Race, alcohol use, smoking, obesity, chronic kidney disease, myocardial infarction, ischemic stroke, transient ischemic attack, peripheral artery disease, previous cancers, PSA level, GS, metformin, sulfonylureas, thiazolidinediones, insulin, other oral antihyperglycemic agents, ACEI, ARB, CCB, β-blockers, diuretics, other antihypertensive drugs, aspirin, other NSAIDs, 5α-reductase inhibitors, prediagnostic statin use, PSA testing activity, prostatectomy, RT, chemotherapy, ADT	
Zaorsky 2012	USA	PCa (localized)	1989–2006	691/1360	Mn = 69 (R: 36–86)	TDCRT or IMRT	Mn = 75 (R: 18–27y)	BCR, CSS	BCR: PSA nadir > 2 ng/ml	NA, Aspirin, non-aspirin coagulant, log PSA, OS, clinical T stage, treatment type	
Mass 2012	USA	PCa (localized)	2000.10–2008.6	437/1009	Mn = 58.4 ± 6.9	RP	Mn = 57	BCR	BCR: PSA greater than 0.2 ng/ml with a confirmatory reading above this threshold	Age, preop PSA, pT stage, pathological GS, Race	
Krame 2010	USA	PCa	2001.1–2008.8	1031/2797	Mn = 59.9 ± 7.3	RP	Mn = 26	BCR	BCR: a single PSA of 0.2 ng/ml or greater with another increasing value	Log PSA, pathologic grade, pT stage, surgical margin	
Mondol 2011	USA	PCa (localized)	1993.1–2006.3	386/2012	Mn = 56.3	RP	Md = 7 yrs	PFS, BCR	Progression metastases or death	Age, Race, PCa family history, aspirin use, ACEI, BMI, pT stage, pathological GS, preop PSA, year of surgery	
Niraula 2013	Multinational (TAX 327)	mCRPC	2000.3–2002.6	82924	Md ≥68 (R: 36–92)	Docetaxel	NA	OS	OS	Treatment group, baseline pain, baseline Karnofsky performance status	
Cattarino 2015	France	PCa (localized)	2009–2014	156/435	Md = 62.8 (IQR: 49.1–69.2)	RP	Md = 42.3 (IQR: 25.8–59.3)	BCR	BCR: two consecutive PSA > 0.2 ng/ml with 3 month delay	—	

AC = adjuvant chemotherapy; ACEI = angiotensin-converting enzyme inhibitors; ADT = androgen deprivation therapy; ARB = angiotensin receptor blockers; ASA = American Society of Anesthesiology physical status; BC = bladder cancer; BCG = bacille Calmette–Guérin; BCR = biochemical recurrence; BMI = body mass index; BT = brachytherapy; CCB = calcium channel blockers; CSS = cancer-specific survival; DM = diabetes mellitus; EBRT = external beam radiation therapy; ECOG PS = The Eastern Cooperative Oncology Group Performance Status; GS = Gleason score; IMRT = intensity-modulated radiotherapy; IQR = interquartile range; LVI = lymphovascular invasion; mCRPC = metastatic castration refractory prostate cancer; Md = median; MIBC = non-muscle invasive bladder cancer; NMIBC = non-muscle invasive bladder cancer; OSS = Newcastle–Ottawa Scale; NSAID = nonsteroidal anti-inflammatory drug; OS = overall survival; PCa = prostate cancer; PFS = progression-free survival; PN = partial nephrectomy; R = range; RC = radical cystectomy; RCC = renal cell carcinoma; RFS = recurrence-free survival; RN = radical nephrectomy; RP = radical prostatectomy; RT = radiation therapy; TDCRT = three-dimensional conformal radiotherapy; TURB = transurethral resection of bladder; yrs = years.

N of pts could not be exactly equal to patients who analyzed in survival analysis. OS and CSS were recognized definition. Any n/m meant statin user content/non-statin user content. Any n ± m meant mean ± standard deviation.
presented in variant studies. However, the mechanism of antitumor or tumor promotion effect of statin has not yet been clearly elucidated. Hindler et al summarized the role of statin in cancer therapy as 4 aspects: First, statin inhibits tumor cell growth by inhibiting dolichol, geranylpyrophosphate, and farnesylpyrophosphate that are regulators of cell cycle, by inhibiting Ras and Rho that mediate cell proliferation, and by stabilizing the cell cycle kinase inhibitors p21 and p27. Second, inhibition of angiogenesis: statin has pros and cons for angiogenesis. High dose statin has an antiangiogenesis effect by inhibiting capillary tube formation and reducing vascular endothelial growth factor release. However, low-dose statin has a proangiogenesis effect by stimulating protein kinase B and activating endothelial nitric oxide synthase. Third, statin induces cell apoptosis by upregulating proapoptotic proteins and reducing antiapoptotic proteins. Fourth, statin suppresses tumor metastasis by reducing the expression of endothelial leukocyte adhesion molecule E-selectin and matrix metalloproteinase, inhibiting epithelial growth factor induced tumor cell invasion. Sun et al demonstrated that cholesterol increases Ca$^{2+}$ entry via the TRPM7 channel, which promotes proliferation of prostate cells by inducing the activation of the AKT and/or the ERK pathway. Additionally, cholesterol-mediated Ca$^{2+}$ entry induces an increase of calpain activity that represses E-cadherin expression, which could lead to migration of prostate cancer cells. Banez et al reported that statin use significantly reduced the risk of inflammatory infiltration in prostate cancer, which was proved to be associated with cancer development and prognosis. All the above studies attend to elucidate the possible anti-cancer mechanism of statin. While in clinical studies, there is also a great controversy on the effect of statin use for cancer patients’ prognosis. Hoffmann et al reported that non-muscle-invasive bladder cancer patients, who were treated with bacille CalmetteGuérin (BCG)
immunotherapy and were exposed to statin use, had worsening prognosis. This study was subsequently questioned by Kamat et al. They reported no significant difference in the tumor recurrence, progression, or deaths in their cohort with 156 patients treated with BCG. A large cross-sectional study reported that statin use was associated with a reduction in the probability that older men would have an abnormal screening PSA result regardless of the PSA threshold (PSA > 2.5, > 4.0, or > 6.5 ng/mL). This reduction is more pronounced with higher statin dose, longer statin duration, and higher statin potency. It revealed the anti-cancer effect of statin. Additionally, statin has a radiosensitization effect for prostate cancer both in vitro and in vivo. However, some studies do not support this synergism. In our study, we investigated 4 clinical outcomes and 1 biochemical outcome in 3 major urologic cancers. In renal cell carcinoma treatment, statin use was associated with improvement of overall survival but not in cancer-specific survival and tumor progression. The improvement of overall survival in
The results are unclear because the inherent poor prognosis of bladder cancer overcomes the anticancer effect of statin use, or because of its intracavity. The biological behavior of bladder cancer could also be a risk for drug resistance in chemotherapy, numerous drug resistant or insensitive bladder cancer existed. In prostate cancer, significant improvements of overall survival and cancer-specific survival, not tumor progression, were observed. Meanwhile, biochemical recurrence of PSA was intensively analyzed. Referred to previous study, stratification by major treatment methods was performed. In radical prostatectomy subgroup, no difference was observed between statin use and non-use. However, statin use significantly improved biochemical recurrence in prostate cancer patients treated with radiotherapy. Sensitivity analysis described as above did not alter the results. It is compatible with the radiosensitization effect of statin use. There seemed to be a paradox that statin use did not improve biochemical recurrence in radical prostatectomy patients but improve overall survival and cancer-specific survival. A hypothesis was that these benefits derived from radiation therapy patients. But it has not been verified. Additionally, as to clinical outcomes, small study effect was an obvious risk for the pooled results. Generally, statin use seemed to benefit prostate cancer, especially prostate cancer patients underwent radiotherapy.

Additionally, all studies included or excluded were obviously biased. Statin, unlike chemotherapeutic drugs, is a gentle medication for cancer, if it has the anticancer effect. However, the accumulative effect of statin use is unclear yet. On the other hand, the definition of statin use has not been clearly elaborated. The statin category is also different from each type. Additionally, statin use was a time-dependent covariate in these survival cohorts. Stratifying statin users by records of pre or at cancer diagnosis or treatment is not appropriate. First, the duration of statin use is volatile. A man consumed statin for 5 years is different from the man with 5-month statin consumption. Second, the statin use status of included patients was also volatile during the follow-up. For example, a statin use patient could discontinue statin consumption. Mostly, those nonstatin users could consume statin after diagnosis or treatment of cancer. This would obviously confound the survival analysis. Based on thus, randomized controlled trials would help verify this benefit. Additionally, it is too early to apply statin medication to urologic cancer patients. Adverse effect, dose, and economic factors were important obstacles that must be overcome before application though significant benefit was verified by randomized controlled trials in the future.

CONCLUSION

Our meta-analysis summarized the published literature with statin use exposure and the pooled results suggested no benefit of statin use to bladder cancer and renal cell carcinoma, except in overall survival. However, significant improvement of prostate cancer prognosis including overall survival and cancer-specific survival was indicated, but not including tumor progression. Statin use improved biochemical recurrence of prostate cancer in radiotherapy patients but not in radical prostatectomy patients. Randomized controlled trials would help verify these results.
13. Crivelli JJ, Xylinas E, Kluth LA, et al. Effect of statin use on outcomes of non-muscle-invasive bladder cancer. BJU Int. 2013;112:E4–E12.

14. Da Silva RD, Xylinas E, Kluth L, et al. Impact of statin use on oncological outcomes in patients with urothelial carcinoma of the bladder treated with radical cystectomy. J Urol. 2013;190:1427.

15. Choi SK, Min GE, Jeon SH, et al. Effects of statins on the prognosis of local and locally advanced renal cell carcinoma following nephrectomy. Mol Clin Oncol. 2013;1:365–368.

16. Hamilton RJ, Morilla D, Cabrera F, et al. The association between statin medication and progression after surgery for localized renal cell carcinoma. J Urol. 2014;191:914–919.

17. Kaffenberger SD, Lin-Tsai O, Stratton KL, et al. Statin use is associated with improved survival in patients undergoing surgery for renal cell carcinoma. Urol Oncol. 2015;33:21.e11–21.e7.

18. Viets BR, Houston Thompson R, Puttka SP, et al. The association of statin therapy with clinicopathological outcomes and survival among patients with localized renal cell carcinoma undergoing nephrectomy. Urol Oncol Semin Orig Invest. 2015;33:388.e11-18. doi:10.1016/j.urolonc.2015.01.009.

19. Caon J, Paquette M, Hamm J, et al. Does statin or ASA affect survival when prostate cancer is treated with external beam radiation therapy? Prostate Cancer. 2014;2014:184297.

20. Chao C, Jacobsen SJ, Xu L, et al. Use of statins and prostate cancer recurrence among patients treated with radical prostatectomy. BJU Int. 2013;111:954–962.

21. Chao C, Williams SG, Xu L, et al. Statin therapy is not associated with prostate cancer recurrence among patients who underwent radiation therapy. Cancer Lett. 2013;335:214–218.

22. Cuaron J, Pei X, Cohen GN, et al. Statin use not associated with improved outcomes in patients treated with brachytherapy for prostate cancer. Brachytherapy. 2015;14:179–184.

23. Geybels MS, Wright JL, Holt SK, et al. Statin use in relation to prostate cancer outcomes in a population-based patient cohort study. Prostate. 2013;73:1214–1222.

24. Grylii HH, Fagerland MW, Fossa SD, et al. Association between use of beta-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur Urol. 2014;65:635–641.

25. Gutt R, Tonlaar N, Kunnavakkam R, et al. Statin use and risk of prostate cancer recurrence in men treated with radiation therapy. J Clin Oncol. 2010;28:2653–2659.

26. Ishak-Howard MB, Okoth LA, Cooney KA. Statin use and the risk of recurrence after radical prostatectomy in a cohort of men with inherited and/or early-onset forms of prostate cancer. Urology. 2014;83:1356–1361.

27. Katz MS, Carroll PR, Cowan JE, et al. Association of statin and nonsteroidal anti-inflammatory drug use with prostate cancer outcomes: results from CaPSURE. BJU Int. 2010;106:627–632.

28. Kollmeier MA, Katz MS, Mak K, et al. Improved biochemical outcomes with statin use in patients with high-risk localized prostate cancer treated with radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79:713–718.

29. Kontrasor M, Varkarakis I, Ntoumas K, et al. Pathological characteristics, biochemical recurrence and functional outcome in radical prostatectomy patients on statin therapy. Urol Oncol. 2013;90:263–269.

30. Ku BH, Jeong CW, Park YH, et al. Relationship of statins to clinical presentation and biochemical outcomes after radical prostatectomy in Korean patients. Prostate Cancer Prostatic Dis. 2011;14:63–68.

31. Misrai V, Do C, Lhez I-MM, et al. Is statin use associated with D’Amico risk groups and biochemical recurrence after radical prostatectomy? Prog Urol. 2012;22:273–278.

32. Moyad MA, Merrick GS, Butler WM, et al. Statins, especially atorvastatin, may improve survival following brachytherapy for clinically localized prostate cancer. Urol Nurs. 2006;26:298–305.

33. Oh DS, Koontz B, Freedland SJ, et al. Statin use is associated with decreased prostate cancer recurrence in men treated with brachytherapy. World J Urol. 2014;33:93–97.

34. Rieken M, Kluth LA, Xylinas E, et al. Impact of statin use on biochemical recurrence in patients treated with radical prostatectomy. Prostate Cancer Prostatic Dis. 2013;16:367–371.

35. Song C, Park S, Park J, et al. Statin use after radical prostatectomy reduces biochemical recurrence in men with prostate cancer. Prostate. 2015;75:211–217.

36. Soto DE, Daignault S, Sandler HM, et al. No effect of statins on biochemical outcomes after radiotherapy for localized prostate cancer. Urology. 2009;73:158–162.

37. Yu O, Eberg M, Benayoun S, et al. Use of statins and the risk of death in patients with prostate cancer. J Clin Oncol. 2014;32:5–11.

38. Zaorsky NG, Buyyounouski MK, Li T, et al. Aspirin and statin nonuse associated with early biochemical failure after prostate radiation therapy. Int J Radiat Oncol Biol Phys. 2012;84:e13–e17.

39. Mass AY, Agulliu I, Laze J, et al. Preoperative statin therapy is not associated with biochemical recurrence after radical prostatectomy: our experience and meta-analysis. J Urol. 2012;188:786–791.

40. Krane LS, Kaul SA, Stricker HJ, et al. Men presenting for radical prostatectomy on preoperative statin therapy have reduced serum prostate specific antigen. J Urol. 2010;183:118–125.

41. Mondul AM, Han M, Humphreys EB, et al. Association of statin use with pathological tumor characteristics and prostate cancer recurrence after surgery. J Urol. 2011;185:1268–1273.

42. Choe KS, Cowan JE, Chan JM, et al. Aspirin use and the risk of prostate cancer mortality in men treated with prostatectomy or radiotherapy. J Clin Oncol. 2012;30:3540–3544.

43. Niraula S, Pond G, de Wit R, et al. Influence of concurrent medications on outcomes of men with prostate cancer included in the TAX 327 study. Can Urol Assoc J. 2013;7:E74–81.

44. Cattarino S, Seisen T, Drouin SJ, et al. Influence of statin use on clinicopathological characteristics of localized prostate cancer and outcomes obtained after radical prostatectomy: a single center study. Can J Urol. 2015;22:7703–7708.

45. Kureishi Y, Luo Z, Shihjima I, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med. 2000;6:1004–1010.

46. Holash J, Maisonnepierre PC, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284:1994–1998.

47. Hindler K, Cleeland CS, Rivera E, et al. The role of statins in cancer therapy. Oncologist. 2006;11:306–315.

48. Sun Y, Sukumaran P, Varma A, et al. Cholesterol-induced activation of TRPM7 regulate cell proliferation, migration, and viability of human prostate cells. Biochim Biophys Acta. 2014;1843:1839–1850.

49. Bahé LK, Klink JC, Jayachandran J, et al. Association between statins and prostate tumor inflammatory infiltrate in men undergoing radical prostatectomy. Cancer Epidemiol Biomarkers Prev. 2010;19:722–728.

50. Mantovani A, Mantovani A, Allavena P, et al. Cancer-related inflammation. Nature. 2008;454:436–444.

51. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–867.
52. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. *Cancer Cell.* 2005;7:211–217.

53. Baniyash M, Sade-Feldman M, Kanterman J. Chronic inflammation and cancer: suppressing the suppressors. *Cancer Immunol Immunother.* 2014;63:11–20.

54. Hoffmann P, Roumeguère T, Schulman C, van Velthoven R. Use of statins and outcome of BCG treatment for bladder cancer. vol. 355. United States: 2006. doi:10.1056/NEJMct062714.

55. Orsola A, Cecchini L, Bellmunt J. Statins and the effect of BCG on bladder cancer. *N Engl J Med.* 2007;356:1276.

56. Shi Y, Fung KZ, Freedland SJ, et al. Statin medications are associated with a lower probability of having an abnormal screening prostate-specific antigen result. *Urology.* 2014;84:1058–1065.

57. He Z, Mangala LS, Theriot CA, et al. Cell killing and radiosensitizing effects of atorvastatin in PC3 prostate cancer cells. *J Radiat Res.* 2012;53:225–233.

58. Bruckert E, Ferrieres J. Evidence supporting primary prevention of cardiovascular diseases with statins: gaps between updated clinical results and actual practice. *Arch Cardiovasc Dis.* 2014;107:188–200.

59. Hayden A, Douglas J, Sommerlad M, et al. The Nrf2 transcription factor contributes to resistance to cisplatin in bladder cancer. *Urol Oncol.* 2014;32:806–814.