Case study: Analysis of the correlation between casing deformation and fracture zone in Changning Block, Sichuan

Chen Zhaowei1,4, Cao Hu1,2, Zhou Xiaojin3, Gou Qiyong3, Zhang Haozhe1,2

1 CNPC Engineering Technology R&D Company Limited, Beijing, China
2 China University of Petroleum (Beijing), Beijing, China
3 PetroChina Southwest Oil & Gas Field Shale Gas Research Institute, Chengdu, China
*Corresponding author: chenzwdri@cnpc.com.cn

Abstract: Casing deformation is an engineering problem that restricts the efficient development of shale gas in the Sichuan Basin. This paper analyzed the correlation between 67 casing deformation points and 256 fracture zones in the N201 wellfield, and conducted a statistical analysis of the distribution of the orientation of fracture zones, which may have/have not caused casing deformation. The Mohr–Coulomb criterion was used to analyze the stress state and the slip risk of these fracture zones. The results show indicate the following. (1) Fracture zone is the main factor leading to casing deformation. (2) Fracture zones with 60º–90º and 110º–120º orientations are likely to cause casing deformation, whereas fracture zones with 50º–70º orientation are relatively less likely to cause casing deformation. (3) The analysis of stress state shows that the orientations of high-risk fractures range from 74º–100º and 130º–160º, the orientations of medium-risk fractures range from 64º–74º, 100º–130º, and 160º–170 º, and the orientations of low-risk fractures are in the range of 0º–64º and 170º–180º. The theoretical results are basically consistent with the field statistical results. These results provide an explanation for the field statistical results in theory. This work not only demonstrates that a fracture zone is the major geological factor that causes casing deformation, but also provides a feasible method for us to predict the casing deformation in the future.

1. Introduction
Since 2009, China has begun to develop shale gas in the Changning and Weiyuan Clocks of Sichuan Province mainly using horizontal well and hydraulic fracturing technologies. Notably, casing deformation occurred in more than 30% of the horizontal wells during hydraulic fracturing. This not only led to a decreases in the number of viable fracturing stages, but also reduced the overall life cycle of the well. These phenomena can seriously restrict the efficient development of shale gas.

Many scholars have conducted studies on the problem of casing deformation in different aspects. For example, Hu et al. established a finite element model for two cases of cementing and non-cementing. Their results showed that under the condition of cementing, the deformation of the casing was greater, and the deformation was more concentrated near the fault. When the cementing was not strengthened, the deformation of the casing was smaller, and the deformation degree became more moderate \cite{1}. In two separate works, Chen et al. analyzed the regularity of field data and proposed that fault slip and hydraulic fracturing are the main geological (internal cause) and engineering (external cause) factors that lead to casing deformation, respectively \cite{2,3}. According to Li et al., the slippage of natural fracture surface is the ultimate cause of extremely serious casing deformation, whereas a cement sheath plays an auxiliary role in casing deformation \cite{4}. Wang et al. simulated the process of casing shear damage using finite element method and reported that the mechanism of
casing damage can be attributed to the slippage of shale reservoirs \[5\]. In separate studies, Guo et al. reported that fault slip can lead to casing deformation at the heel; moreover, there is a higher risk of casing deformation under the conditions of high external stress and internal pressure \[6-7\]. Meanwhile, Yin et al. established a three-dimensional (3D) finite element model with different casing wall thicknesses and angles between the casing and the fault. They described casing deformation with curvature and concluded that the maximum curvature of the casing decreased by only 8% when the casing wall thickness doubled; moreover, the maximum curvature of the casing decreased significantly with the decrease of the angle \[8\]. Xi et al. analyzed the multi-arm caliper data of shale gas wells in Western Canada and found that the proportion of shear deformation in this area is 52.2% \[9\]. In summary, most experts believe that casing deformation is caused by fault (fracture zone) slip induced by hydraulic fracturing. Furthermore, field engineers have also realized that fracture zones may be the major geological factor causing the occurrence of casing deformation. However, which fracture zones are more likely to cause casing deformation among so many fractured zones have yet to be investigated. Although finding a solution to this problem is important in solving the casing problem, only a few studies are available at present.

Thus, the current paper took the fracture zones of the N201 well field in Changning Block as the research object and studied the correlation between casing deformation and fracture zone. First, we investigated the correlation between the fracture zones by ant-tracking and microseismic signals, after which the location of casing deformation was statistically analyzed. Preliminary results indicated that the fracture zone is the main controlling factor of casing deformation. Second, 256 fracture zones were divided into two types according to whether or not they were correlated with casing deformation. Statistical data of the strikes of the two types of fracture zones were generated, and their distribution patterns were observed using rose charts. Finally, based on the Mohr–Coulomb criterion, the mechanical activities of the fracture zones were analyzed along with the slipping risks of the fracture zones in different directions. Comparing the field statistical results, we found that the strikes of fracture zones can easily slide in this block, thus providing a basis for predicting casing deformations in the future.

2. Statistics of correlation between fracture zone and casing deformation

The Changning shale gas area is located in Southwest part of Sichuan Basin, across Changning County, Gongxian County, Xingwen County, and Junlian County in Yibin, Sichuan Province. In the regional structure, this part belongs to the South Sichuan low steep bend belt and the Lou mountain fold belt. The Changning anticline structure is mainly developed in the area, the structure is relatively simple, and the overall direction is NWW-SEE. The N201 well field is located in the Southwest wing of the Changning anticline structure.

By September 6, 2019, 161 wells have been fractured in Changning Block, Sichuan Province. As there are 55 wells with casing deformation, the casing deformation ratio is 34.2%. The total effective abandoned length is 6737.5 m. The casing deformation statistics in Changning over the past years can be seen in Table 1. The table shows that the casing deformations before 2014 and in 2018 are the most serious, with deformation rates of as high as 60.0% and 53.3%, respectively.

Time (year)	Number of fractured wells (number)	Casing change well number (number)	Casing deformation rate	Well Length abandoned (m)
2014 before	10	6	60.0%	1400.5
2015	21	4	19.1%	1024.0
2016	21	3	14.3%	0.0
2017	16	2	12.5%	334.0
2018	45	24	53.3%	2160.4
In view of the problem of casing deformation in shale gas fracturing, some papers [1-9] reported that faults can be considered as the major geological factor leading to casing deformation. In recent years, some techniques have been developed for small-scale fault recognition [10], including edge detection [11], intrinsic coherence [12], curvature body [13-14], ant-tracking faults [15-16], likelihood body [17-18], and azimuthal anisotropy inversion [19-20]. Ant-tracking faults technology has been applied to identify small faults scattered throughout the N201 well field and to compare the location correlation between small faults and casing deformation points. Taking platform M as an example, casing deformation occurred in 4 wells of platform M, comprising a total of 9 casing deformation points. Figure 1 presents the distribution of fracture zones identified by ant-tracking faults tracking technology on platform M. As can be seen, the red lines represent fracture zones associated with the casing deformation point. The blue lines indicate fracture zones that cross or pass the wellbore but do not cause casing deformation. The pink dots indicate casing deformation points. Out of 9 casing deformation points of platform M, 6 appeared around the fracture zone, accounting for 66.7% of the total. According to the statistics of the whole N201 well field, which we obtained using the same method (Table 2), there are 16 platforms and 67 casing deformation points in total. Among these, 57 are directly through or close to the fracture zone, accounting for 85.1% of the total.

```
| Year | Count | Percentage | Total |
|------|-------|------------|-------|
| 2019 | 48    | 33.3%      | 1818.6|
| Total| 161   | 34.2%      | 6737.5|
```

Figure 1. Distribution of fracture zones and casing deformation points on platform M
Table 2. Casing deformation points in the N201 well field

Number	Well number	Casing deformation depth (m)	Is there any crack zone?	Number	Well number	Casing deformation depth (m)	Is there any crack zone?	Number	Well number	Casing deformation depth (m)	Is there any crack zone?
1	A-1	3274.6	yes	24	G-1	2795.0	yes	47	J-6	3094.0	yes
2	A-1	2789.5	yes	25	G-3	2973.0	yes	48	J-6	2615.0	no
3	A-3	2974.0	yes	26	H-3	3246.0	no	49	K-4	3100.0	yes
4	A-3	2587.7	yes	27	H-4	4026.0	yes	50	K-6	3816.1	yes
5	A-6	3488.7	yes	28	H-4	3815.0	yes	51	K-6	3638.0	yes
6	A-6	3412.9	yes	29	H-4	3761.0	yes	52	K-7	3394.5	yes
7	A-6	3277.7	yes	30	I-1	2829.0	yes	53	L-8	4158.4	yes
8	A-7	3623.0	yes	31	I-2	4208.0	yes	54	L-9	3722.8	yes
9	B-5	3930.0	yes	32	I-4	3910.0	yes	55	M-3	4222.0	yes
10	B-6	3509.8	yes	33	I-5	3399.0	yes	56	M-5	4885.8	no
11	B-6	2937.1	yes	34	I-5	3029.4	yes	57	M-5	4702.0	no
12	C-2	2560.0	yes	35	I-6	2000.0	yes	58	M-6	3818.0	no
13	C-6	3180.0	yes	36	I-6	3570.0	yes	59	M-7	4198.2	yes
14	D-1	3255.0	yes	37	J-4	3303.0	no	60	M-7	3931.0	yes
15	D-5	3004.0	yes	38	J-4	4331.0	yes	61	M-7	3734.6	yes
16	D-6	2860.0	yes	39	J-4	3839.7	yes	62	M-7	3694.0	yes
17	E-6	4121.8	yes	40	J-4	3772.0	no	63	M-7	3484.0	yes
18	F-1	3892.0	no	41	J-4	3610.2	yes	64	N-5	2320.0	yes
19	F-1	3853.0	no	42	J-5	3810.0	yes	65	N-7	2824.6	yes
20	F-1	3820.0	yes	43	J-5	3471.7	yes	66	O-4	4266.2	yes
21	F-2	3887.0	yes	44	J-5	2925.0	no	67	P-4	4355.0	yes
22	F-2	3741.7	yes	45	J-6	3352.0	yes				
23	F-2	3613.0	yes	46	J-6	3195.1	yes				
Microseismic data can also be used to describe the fracture zones. We have established the following criteria for identifying fractures with microseismic signals: (1) most of the microseismic signals overlap, (2) the microseismic signals are linear, (3) microseismic signals with larger magnitudes appear, and (4) the microseismic signals are asymmetrical and far apart from the hydraulic fracturing sections. Due to the cost problem, not all wells have undergone microseismic monitoring. The collected microseismic data of 9 wells in 3 platforms (platforms I, J, and K) in the N201 well field are shown in Figure 2. As can be seen, the blue points represent the microseismic events (the size represents the magnitude), the gray line represents the well trajectory, the ellipses represent the fracture zones identified with microseismic data, the red dots represent the casing deformation points associated with the fracture zones, and the green dots represent the casing deformation points that are independent of the fracture zones. A total of 20 casing deformation points can be found in platforms I, J, and K. Of these, 15 deformation points associated with the fracture zone, accounting for 75.0%. Meanwhile, there are 5 deformation points that are independent of the fracture zone, accounting for 25.0% of the total.

According to the statistics above, the correlation between small faults and casing deformation is relatively strong. From the field statistical data, we can verify that the small faults and hydraulic fracturing are the main geological and engineering factors that lead to casing deformation, respectively [1-6].

3. Relationship between the strikes of fracture zones and casing deformation

The geological factor causing casing deformation is the fracture zone. Therefore, in order to prevent casing deformation, it is necessary to further explore the relationship between fracture zones and casing deformation. The main properties of fracture zones include the strike, dip, length, and density. This paper focuses on the statistical relationship between the strikes of fracture zones and casing deformation.

The tangent line of the fracture zone close to the wellbore is taken as the direction line of the fracture zone, as shown by the green line in Figure 1. The strikes of fracture zones related to the casing deformation data in the N201 well field are statistically analyzed. We identified a total of 16 platforms and 58 fractured zones, as shown in Table 3.

![Figure 2. Microseismic events and casing deformation points of platforms I, J, and K in the N201 well field](image)

Table 3. The strikes of fractures zones related to the casing deformation in the N201 well field

Fracture zone number	Strike						
1	0°	16	86°	31	68°	46	75°
2	72°	17	33°	32	60°	47	114°
3	72°	18	45°	33	44°	48	27°
4	123°	19	26°	34	70°	49	26°
5	67°	20	87°	35	107°	50	33°
6	70°	21	116°	36	107°	51	36°
7	82°	22	68°	37	34°	52	111°
The distribution of fracture zones in the strike range is shown in a rose diagram. As indicated in Figure 3, the strikes of fracture zones associated with casing deformation in the N201 well field are mainly concentrated within the ranges of 60°–90° and 110°–120°.

The strikes of fracture zones crossing or passing the wellbore but not causing casing deformation in the N201 well field were also analyzed statistically. We counted a total of 198 fracture zones. Table 4 presents the statistical data.

Strike Range	Number
48°–53°	8
0°–10°	9
67°–120°	10
120°–180°	11
72°–124°	12
77°–119°	13
113°–124°	14
82°–125°	15

Figure 3. The strikes of fracture zones related to the casing deformation in the N201 well field.

The strikes of fracture zones crossing or passing the wellbore but not causing casing deformation in the N201 well field were also analyzed statistically. We counted a total of 198 fracture zones. Table 4 presents the statistical data.
Table 4. Strikes of fracture zones crossing or passing the wellbore without causing casing deformation in the N201 well field

Fracture zone number	Strike														
1	100°	26	70°	51	57°	76	118°	101	68°	126	117°	151	86°	176	71°
2	75°	27	43°	52	85°	77	148°	102	52°	127	53°	152	97°	177	154°
3	56°	28	121°	53	72°	78	105°	103	52°	128	61°	153	97°	178	110°
4	31°	29	64°	54	83°	79	51°	104	34°	129	114°	154	71°	179	112°
5	64°	30	49°	55	95°	80	39°	105	67°	130	59°	155	68°	180	98°
6	30°	31	30°	56	114°	81	36°	106	70°	131	30°	156	31°	181	116°
7	146°	32	84°	57	108°	82	56°	107	87°	132	69°	157	105°	182	102°
8	69°	33	51°	58	62°	83	61°	108	87°	133	68°	158	97°	183	81°
9	162°	34	90°	59	65°	84	67°	109	87°	134	35°	159	127°	184	119°
10	89°	35	90°	60	27°	85	51°	110	79°	135	80°	160	107°	185	102°
11	82°	36	0°	61	63°	86	57°	111	66°	136	10°	161	90°	186	116°
12	70°	37	118°	62	90°	87	94°	112	70°	137	38°	162	75°	187	125°
13	128°	38	34°	63	58°	88	114°	113	66°	138	45°	163	60°	188	127°
14	119°	39	68°	64	109°	89	88°	114	79°	139	56°	164	78°	189	108°
15	127°	40	28°	65	80°	90	109°	115	54°	140	100°	165	96°	190	153°
16	99°	41	164°	66	52°	91	77°	116	59°	141	114°	166	89°	191	52°
17	135°	42	67°	67	49°	92	63°	117	64°	142	93°	167	111°	192	88°
18	147°	43	78°	68	177°	93	162°	118	156°	143	90°	168	96°	193	59°
19	45°	44	76°	69	93°	94	69°	119	57°	144	100°	169	156°	194	46°
20	143°	45	49°	70	81°	95	72°	120	89°	145	19°	170	132°	195	54°
21	169°	46	76°	71	80°	96	66°	121	142°	146	63°	171	108°	196	69°
22	109°	47	73°	72	62°	97	37°	122	101°	147	111°	172	104°	197	72°
23	116°	48	60°	73	50°	98	112°	123	124°	148	20°	173	55°	198	108°
24	117°	49	38°	74	56°	99	96°	124	52°	149	66°	174	37°		
25	108°	50	51°	75	47°	100	62°	125	89°	150	75°	175	94°		
Similarly, a rose diagram is presented in Figure 4, which indicates that the strikes of fracture zones crossing or passing the wellbore without casing deformation in the N201 well field are distributed in the range of 0°–180° and are mainly concentrated within the range of 50°–70°.

Figure 4. The strikes of fracture zones crossing or passing the wellbore without causing casing deformation in the N201 well field

According to the statistical results, the fracture zones related to the casing deformation in the N201 well field are mostly concentrated in the range of 60°–90° and 110°–120°. The fracture zones crossing or passing the wellbore without causing casing deformation are mostly concentrated within 50°–70°. However, we have yet to determine why some fracture zones cause casing deformation while others do not.

4 Mechanical activity analysis of fracture zones

In this section, we use the fault slip hypothesis \cite{21} to analyze the mechanical activity of fracture zones in different strikes and to explain the statistics presented above.

The sliding phenomenon of the fault surface is essentially a friction effect. The classical friction law was originally called the Amontons theorem. However, because of the thorough study of friction conducted by Coulomb, the friction law later became known as the Coulomb criterion. This is expressed as

$$\tau = S_n + \mu \sigma_n,$$

where τ is the shear stress on the fault surface, σ_n is an effective normal stress on the fault surface, and S_n is the internal cohesion of the fault surface. Given that the cohesion of natural fracture is very small compared with the shear stress and normal stress acting on the fault surface, it can be neglected. In addition, μ represents the friction coefficient. For different types of rocks, under high effective normal stress (greater than 10 MPa), the friction coefficient of the fracture surface is independent of sliding speed, surface roughness, and normal stress. The friction coefficient varies in a smaller range of 0.6–1.0 \cite{22}. According to the Coulomb criterion, when the shear stress of fault surface is smaller than the sliding resistance ($\mu \sigma_n$), the fault remains stable, and when the shear stress approaches or exceeds the sliding resistance, the fault slips. The effective normal stress is defined as $\sigma_n = S_n - p_p$. If pore pressure (e.g., hydraulic fracturing) is increased, the effective normal stress is reduced, which may lead to the sliding of natural fractures.

Therefore, in order to determine whether or not the fault slips, we need to calculate the normal stress and shear stress on the fault plane. An intuitive calculation method is to use the three-dimensional (3D) Mohr circle, as shown in the figure below. Three main stresses, σ_1, σ_2, and σ_3, define the three Mohr circles, respectively. The point P between two small and large Mohr circles corresponds to the normal stress and shear stress in a plane in any direction. The specific method is to set the angle between the normal of fault plane and the S_1 and S_3 axes of the main stress as β_1 and β_3,:

$$\tau = S_n + \mu \sigma_n,$$
respectively. Then, we use $2\beta_1$ and $2\beta_3$ to first determine the points with two small circles, after which we draw the arc from the center of these two small Mohr circles. The intersection of these two arc lines is point P. When point P is on the Coulomb line, it is called the critical stress fracture \cite{23}, whereas when it is below the Coulomb line, the shear stress is smaller than the sliding resistance, and the fault is stable. When the point P is above the Coulomb line, the shear stress is larger than the sliding resistance, and the fault slips.

Figure 5. The shear stress and normal stress in any direction based on the 3D Mohr circle \cite{21}.

Next, logging and testing data are used to determine the magnitude and direction of in situ stress \cite{24}. In situ stress direction is mainly determined by electrical imaging logging data. Continuous borehole breakout can be observed from the imaging logging data of the N201 well field. According to the observed borehole breakout, we can infer the maximum in situ stress orientation, $S_{H\text{max}}$, which is 115°N. The direction of the in situ stress interpreted by several wells in the N201 well field is close to that of well N201 (the first well in N201 well field). The change of stress direction in this well field is small, as shown in Figure 6.

Figure 6. Distribution of geostress from the Wufeng Formation to the Longmaxi Formation in the horizontal well area of the Changning shale gas field

The vertical stress S_{vertical} is determined based on density logging, and the equivalent density is about 2.6 SG. The original formation pressure P_{pore} is 31.6 MPa, and the equivalent gradient is 1.4 SG. The minimum in situ stress S_{min} is constrained by small-scale fracturing test data. The fracture closure pressure range is within 45.1–45.5 MPa, and the calculated equivalent density of S_{min} is about 1.9 SG. Here, $S_{H\text{max}}$ is constrained by the observed borehole breakout. The uniaxial compressive strength of rock is between 65.0–75.0 MPa, and a caving width of about 60° is found at 2445.0 mTVD. The equivalent density of $S_{H\text{max}}$ is 3.5±0.15 SG.

The 3D Mohr circle and Coulomb failure line in the well area before fracturing can be established.
based on the fracture zone strike and in situ stress, as shown in Figure 7. According to the fault slip hypothesis \cite{21}, ΔP is the pressure difference required by the fracture to be activated. Under actual conditions, the pressure difference is equal to the difference between the actual fracturing pressure and the formation pore pressure. With a smaller ΔP, the sliding risk is higher, and the pressure difference required for the slip of the fault is smaller. For the N201 well field, if the ΔP is about 0–800.0 psi (0–5.5 MPa), the fracture is of high risk, which is displayed in red; if the ΔP is about 800.0–1700.0 psi (5.5–11.7 MPa), the fracture is medium-risk, which is displayed in yellow; and if the ΔP is about 1700.0–2500.0 psi (11.7–17.2 MPa), the fracture is low risk, which is displayed in green.

Figure 7. Mohr circle diagram of the fracture zone in the N201 well field

In fact, the required ΔP is related to the angle between the fracture zone and $S_{H\text{max}}$. Therefore, this relationship should be described in the lower hemisphere stereonet. Figure 8 presents the strike diagram corresponding to the fracture zones in the mechanical analysis of the Mohr circle. As can be seen, the black solid line indicates the direction of $S_{H\text{max}}$. The point in the figure is the polar point of the fracture surface. The polar points are shown in three colors of green, yellow, and red according to intensity of the risks, namely, low, medium, and high sliding risks, respectively. The corresponding fracture zone strike lines are also presented using the green, yellow, and red colors. As shown in Figure 8(a), the strike of group I high-risk faults is about 87º±13º, with an angle of 28º±13º with the maximum in situ stress direction, whereas the strike of group II high-risk faults is about 145º±15º, with an angle of 30º ± 15º with the maximum in situ stress direction. As shown in Figure 8(b), the strike of group I medium-risk faults is about 69º±5º, with an angle of 46º ± 5º with the maximum in situ stress direction; the strike of group II medium-risk faults is about 115º±15º, with an angle of 0º–15º with the maximum in situ stress direction; and the strike of group III medium-risk faults is 165º±5º, with an angle of 50º±5º with the maximum in situ stress direction. As shown in Figure 8(c), among the low-risk faults, the strike of group I low-risk faults is about 32º±32º, with an angle of 83º±32º with the maximum in situ stress direction, whereas the strike of group II low-risk faults is about 175º±5º, with an angle of 60º±5º with the maximum in situ stress direction.
Comparing Figure 8 and Figure 3, we can see that the strikes of fracture zones associated with the casing deformation shown in Figure 4 are in the high-risk and medium-risk areas shown in Figure 8. Moreover, the strikes of fracture zones without casing deformation shown in Figure 4 are in the medium-risk and low-risk areas shown in Figure 8. The theoretical analysis results are consistent with the field statistical results, which we also explained. Notably, the in situ stress of the well area is relatively uniform, and the maximum horizontal stress direction slightly changes. This is the reason why all the well areas can be analyzed by using the Mohr–Coulomb criterion. In fact, there are some changes in the stress field in the well area, which can also explain why the local coincidence is not good. Alternatively, the fracture zones are more distributed within 60°–70°, which may be another reason for such a phenomenon.

This result not only proves that the casing deformation is caused by the sliding of fracture zones induced by hydraulic fracturing, but also provides a feasible method for predicting casing deformation. This method involves using the fault sliding hypothesis to analyze the pressure difference needed for the activation of fault, observing the fracture risks according to the lower hemisphere stereonet, and dividing the strikes into three risk levels: low, medium, and high. For the high-risk fracture zone, various measures can be taken, such as optimizing well trajectories, avoiding fracture zones, or optimizing perforations, using locations away from fracture zones, and so on.

5. Conclusion
(1) The correlation between the location of the fracture zones identified by ant-tracking faults and microseismic signals and the casing deformation points in the N201 well field is statistically analyzed. The results show that the fracture zone is the main controlling factor of casing deformation.
(2) The fracture zones identified by ant-tracking faults in the N201 well field can be divided into two groups based on the correlation between the fracture zones and the casing deformation points. The results show that the fracture zones within 60°–90° and 110°–120° are more likely to cause casing deformation, whereas the fracture zones within 50°–70° are less likely to cause casing deformation.
(3) The geomechanical model of the N201 well field is built to analyze the mechanical activity of fracture zones. The results indicate that the strikes of high-risk fracture zones are within 74°–100° and 130°–160°; the strikes of medium-risk fracture zones are within 64°–74°, 100°–130, and 160°–170°; and the strikes of low-risk fracture zones are within 0°–64° and 170°–180°. The theoretical analysis results are basically consistent with the field statistical results. Furthermore, the interpretation of the field statistical results is given in the corresponding theory.
References

[1] Hu, C Y, Ai C, Tao F Y, Wang F J and Yan M S 2016 Optimization of well completion method and casing design parameters to delay casing impairment caused by formation slippage. Conf. (SPE/IADC Abu Dhabi: Middle East Drilling Technology Conference and Exhibition)

[2] Chen Z W, Shi L and Xiang D G 2016 Mechanism of casing deformation in the Changning-Weiyuan national shale gas project demonstration area and countermeasures. China. J. Natural Gas Industry. 36 70-75

[3] Chen Z W, Wang P F and Xiang D G 2017 Analysis of casing deformation in the Changning-Weiyuan Block based on focal0 mechanism. China. J. Petroleum Drilling Techniques. 45 110-114

[4] Li L W, Wang G C, Lian Z H, Zhang L, Mei Y and He Y L 2017 Deformation mechanism of horizontal shale gas well production casing and its engineering solution: A case study on the Huangjinba Block of the Zhaotong National Shale Gas Demonstration Zone. China. J. Natural Gas Industry. 37 91-99

[5] Wang S L and Yang L 2018 Numerical simulation and influencing factors analysis on casing shear damage in shale layer. China. J. China Petroleum Machinery. 46 100-105

[6] Guo X L, Li J, Liu G H, Chen Z W, Ren K and Lai D F 2018 Research on casing deformation for shale gas wells based on focal mechanism. China. J. Fault-Block Oil & Gas Field. 25 665-669

[7] Guo X L, Li J, Liu G H, Xi Y, Zeng Y J, He M A and Yan Hui 2019 Numerical simulation of casing deformation during volume fracturing of horizontal shale gas wells. Netherlands. J. Journal of Petroleum Science and Engineering. 172 731-742

[8] YIN F, HAN L H, YANG S Y, Deng Y, He Y M and Wu X R 2018 Casing deformation from fracture slip in hydraulic fracturing. Netherlands. J. Journal of Petroleum Science and Engineering. 166 235-241

[9] Xi Y, Li J, Liu G H, Li J P and Jiang J W 2019 Mechanisms and influence of casing shear near the casing shoe, based on MFC surveys during multistage fracturing in shale gas wells in Canada. Switzerland. J. Energies. 12 372

[10] Liang Z Q 2019 Poststack seismic prediction techniques for fractures of different scales. China. J. Geophysical Prospecting for Petroleum. 58 766-772

[11] Gou L and Peng Z M 2005 Multi-scale edge detection of wavelet and application in fracture prediction. China. J. Oil Geophysical Prospecting. 40 309-313

[12] Liu C H 2001 Application of seismic coherent analysis technology to prediction of fractured reservoir. China. J. Oil Geophysical Prospecting. 36 238-244

[13] Wang S X 2012 High-precision calculation of seismic volumetric curvature attributes and its applications. China. J. Oil Geophysical Prospecting. 47 965-972

[14] Sheng X L 2018 Minor fault identification based on 3D seismic curvature. China. J. Coal Geology of China. 30 109-112+117

[15] Long X and Wu L F 2011 Parameter comparative experiments on ant tracking attribute extraction and its application in fracture modeling in region 4 of Tahe Oilfield. China. J. Journal of Oil and Gas Technology. 33 76-81.

[16] Li H W, Bai X L, Cui J B, Wan Z H, Yuan S H and Chu W C 2019 Fault identification technology of ant attribute optimization. China. J. Coal Geology & Exploration. 47 174-179

[17] Ma D B, Zhao Y M, Zhang Y T, Yang P F, Yang M and Li L 2018 Application of maximum likelihood attribute to fault identification: A case study of Rewapu block in Halahatang area, Tarim Basin, NW China. China. J. Natural Gas Geoscience. 29 817-825

[18] Yu P, Peng X H and Zeng W W 2018 Fine identification of small fault structures based on fault likelihood. China. J. Coal and Chemical Industry. 41 59-63+66

[19] Qu S L, Ji Y X, Wang X, Wang X L, Chen X R and Shen G Q 2001 Seismic method for using full-azimuth P wave attribute to detect fracture. China. J. Oil Geophysical Prospecting. 36 390-397
[20] Liang Z Q, Wang S X and Hao Q 2013 Simulating validation of fracture prediction technique using P-wave residual time-difference based on TTI model. China. J. Geophysical Prospecting for Petroleum. 52 347-353
[21] Zoback M D 2007 RESERVOIR GEOMECHANICS. America. M. false. Cambridge University Press
[22] Jaeger J C 1959 The frictional properties of joints in rock. Switzerland. J. Pure and Applied Geophysics. 43 148-158
[23] Mogi K 1974 On the pressure dependence of strength of rocks and the coulomb fracture criterion. Netherlands. J. Tectonophysics. 21 273-285
[24] Zhang J Y, Cui Z D, Zhou J, et al. Han W G, Yu H and Wang Y Z 2018 Risk assessment methods for fault reactivation induced by fluid injection. China. J. Natural Gas Industry. 38 33-40