STOCK PRICES AND MACROECONOMIC INDICATORS: INVESTIGATING A CORRELATION IN INDIAN CONTEXT

Dhruv Rawat, Sujay Patni, Ram Mehta
Department of Economics and Finance
Birla Institute of Technology and Science, Pilani Campus
Pilani, Rajasthan
{f20190537, f20190575, f20190510}@pilani.bits-pilani.ac.in

ABSTRACT
The objective of this paper is to find the existence of a relationship between stock market prices and the fundamental macroeconomic indicators. We build a Vector Auto Regression (VAR) model comprising of nine major macroeconomic indicators (interest rate, inflation, exchange rate, money supply, gdp, fdi, trade-gdp ratio, oil prices, gold prices) and then try to forecast them for next 5 years. Finally we calculate cross-correlation of these forecasted values with the BSE Sensex closing price for each of those years. We find very high correlation of the closing price with exchange rate and money supply of Indian economy.

Keywords BSE Sensex · Macroeconomics · VAR Model

1 Introduction
The world has witnessed a never-before-seen circumstance in the last two years: a global epidemic. The Coronavirus pandemic has had a negative impact on the entire world. As a result, it goes to reason that the global economy has been severely harmed, with protracted lockdowns and a direct impact on trade. The Indian economy hasn’t been spared either. In 2021, India’s GDP growth rate was negative for the first time in more than four decades (-8.0 percent). [1]

Despite these dire circumstances, the BSE SENSEX hit a new high of 62245.43 in October 2021. The excellent market performance contrasts sharply with real economic development, which has been hampered by most states’ localized lockdowns throughout the outbreak. As a result, the Reserve Bank of India issued a statement on May 31, 2021, warning the public that India could be experiencing a stock market bubble. A bubble is defined as a situation in which the price of a stock, financial asset, asset class, or entire sector significantly exceeds its underlying value. A stock market bubble is characterized by inflated share prices that are often far greater than a company’s basic value, which includes earnings and assets. The central bank noted in its FY21 annual report that the price surge in some companies is greater than their intrinsic value. Thus, in this paper, we will examine the daily value of the BSE SENSEX for the past ten years, as well as nine fundamental macroeconomic variables: interest rate, inflation, exchange rate, money supply, GDP, FDI, trade to GDP ratio, oil prices, and gold prices, from 1971 to 2020 [2], to determine whether India is currently in a stock market bubble.

The Real Interest Rate (percent) is a crucial macroeconomic variable since it is set by the Central Bank after thorough consideration of the country’s position and analysis of other factors such as supply and demand, inflation rate, government policies, and so on. The interest rate in 1971 was around 7.5 percent. India’s annual real interest rate was 4.38 percent in 2020. [3] The Reserve Bank of India’s Central Board of Directors makes interest rate decisions in India. The benchmark repurchase rate is the official interest rate. In 2014, the RBI’s principal monetary policy goal was price stability, with the government’s borrowing, rupee exchange rate stability, and the need to protect exports receiving less attention. The government and the central bank agreed in February 2015 to set a consumer inflation target of 4%, with a 2-percentage-point range, for the fiscal year ending in March 2017. From 2000 to 2021, India’s interest rate averaged 6.43 percent, with an all-time high of 14.50 percent in August 2000 and a record low of 4 percent in May 2020.
Inflation is described as a gradual increase in the price of products and services. Inflation is a key measure of a country’s economic health. The inflation rate is the rate at which prices, products, and services in an economy rise in general, and how this impacts the cost of living of those who live in that country. It has an impact on interest rates paid on savings and mortgages, as well as the number of state pensions and benefits received. Changes in the CPI are used to calculate India’s inflation rate. Over the previous ten years, India’s inflation rate has risen. Since 2010, however, it has been decreasing somewhat. From 2012 to 2021, India’s inflation rate averaged 5.97 percent, reaching an all-time high of 12.17 percent in November 2013 and a record low of 1.54 percent in June 2017. India’s inflation rate was 6.62 percent in 2020.

The value of a country’s currency (Indian Rupee) versus that of another country (US Dollar) or economic zone is known as the exchange rate. From 2012 to 2021, India’s inflation rate averaged 5.97 percent, reaching an all-time high of 12.17 percent in November 2013 and a record low of 1.54 percent in June 2017. Exchange rates are free-floating and fluctuate according to market supply and demand. The currency rate in 1971 was just Rs 7.52/$. The exchange rate will reach Rs 74.1/$ in 2020. The amount of cash or currency circulating in an economy is referred to as the money supply. From 1971 through 2020, the value has been steadily increasing. Since 1993, the Indian rupee (INR) has followed a market-driven exchange rate — the price is set by the demand for and supply of foreign exchange – with occasional intervention by the Reserve Bank of India. This was part of the early 1990s liberalization and deregulation initiatives. The demand for and supply of foreign exchange determine the price of the INR (forex).

In 1971, India’s GDP was at $67 billion. In the year 2020, the value was greater than $2.6 trillion. However, due to the epidemic, the country’s GDP has fallen by 8% in the last 40 years. From 2003 to 2007, India witnessed significant growth rates, averaging 9%. Due to the global financial crisis in 2008, growth slowed. India entered a phase of slower growth in 2012, with growth slowing to 5.6 percent. Other economic issues emerged, such as the Indian rupee’s deprecation, the country’s persistently high current account deficit, and weak industrial growth. India began to recover in 2013–14 when the GDP growth rate increased to 6.4 percent from 5.5 percent the previous year. With growth rates of 7.5 percent and 8.0 percent in 2014–15 and 2015–16, respectively, the acceleration persisted. However, due to the disruptive effects of the 2016 Indian banknote demonetization and the Goods and Services Tax, the growth rate slowed to 7.1 percent in 2016–17 and 6.6 percent in 2017–18, respectively. India’s GDP growth has slowed dramatically, from an all-time high of 8.3% in 2016 to barely 4.2 percent in 2019.

A foreign direct investment(FDI) is an investment in the form of controlling ownership in a business in one country by an entity based in another country. FDI net inflows (as a percentage of GDP) are currently greater than 2%. In 1971, however, it was less than 0.07 percent. The main reason for this was that, until 1991, India was essentially a closed economy. In 1991, the Narasimha Rao government, which included Finance Minister Manmohan Singh, began economic reforms. The reforms abolished the license raj, lowered tariffs and interest rates, and dissolved several state monopolies, enabling for automatic acceptance of foreign direct investment in a variety of areas. India has evolved toward a free-market economy by the turn of the century, with a significant reduction in state control of the economy and growing financial deregulation. The impact of the reforms is visible in the macroeconomic variables: FDI increased from 0.01% in 1984 to more than 0.6% in 1996.

Trade as a percentage of GDP was 36% in 2020, a little decrease from previous years, owing primarily to government policy, international relations, and, to some extent, the pandemic. However, it is still far more than it was in 1971 when it was less than 7.7% of GDP. India was largely and purposely isolated from the world markets until 1991, to defend its economy and develop self-reliance. Import tariffs, export taxes, and quantitative limits all applied to international trade. For the first 15 years after independence, India’s exports remained stagnant due to the government’s widespread disregard for trade policy. Due to the embryonic state of industrialization at the time, imports primarily comprised machinery, raw materials, and consumer products. The value of India’s international commerce has expanded dramatically since liberalization, with overall trade in commodities and services contributing 47% of GDP in 2008–10, up from 16% in 1990–91. In the merchandise trade, India accounts for 1.44 percent of exports and 2.12 percent of imports, while in the commercial services sector, India accounts for 3.34 percent of exports and 3.31 percent of imports. The European Union, China, the United States of America, and the United Arab Emirates are India’s key trading partners. Engineering items, petroleum products, chemicals and pharmaceuticals, gems and jewelry, textiles and garments, agricultural products, iron ore, and other minerals were among the top export commodities in 2006–07. Crude oil and allied items, machinery, electrical goods, gold, and silver were all major imports. The oil and gold prices are also very important macroeconomic indicators as they are very closely related to Stock prices. Oil and gold are arguably the most important commodities on the planet. Any sudden change in any of the macroeconomic variables can be analyzed using their prices.

Thus, using this set of varying and fundamental macroeconomic variables, we build a VAR model to forecast their future values. Then we use these forecasted values to find a cross-correlation with BSE Sensex Closing Price for the past 5 years and try to identify the variables which have a maximum correlation.
2 Literature Review

Sirucek, Martin (2012) [7] was one of the researchers to study the relationship between the change in money supply and the impact it created on the Dow Jones Industrial Average (DJIA) in the US markets. He had chosen this index because of the long history, stable construction and global sense. He was trying to examine if the impact of M2 and MZM (Money with zero maturity) is nearly the same or not and what role they play in the creation of a bubble. He found out that the effect of the money supply assessed through money aggregate M2 on the DJIA stock index was confirmed when imposing a delay of up to 6 months, but the effect of the MZM money aggregate on stock prices can only be proved with a delay of 6 or more months.

Richard J. Rogalski and Joseph D. Vinso (1997) [8] found out in their study that the claim made by numerous monetary portfolio theorists that information about the actual rate of expansion of the money supply is absorbed into stock returns. It also supports the idea that the stock market is efficient in terms of monetary information, as suggested by the efficient market hypothesis. Specifically, causality appears to travel from stock prices to money supply and possibly back again, rather than from money supply to stock prices. Based on their findings, they have suggested a bi-directional hypothesis of causality between money supply and stock returns. They also went further to show that there is a monetary policy implication since changes in the money supply, as a result of changes in Federal Reserve policies, will have a direct impact on common stock returns. While the stock market’s impact on monetary policy should not be used to guide policy, such influences should not be ignored due to the stock market's impact on economic activity.

Picha Vladimir (2017) [9] tried to find out the short term and long term relationship of money supply on stock market prices through portfolio balance channels as a transmission mechanism of monetary policy. The results show that with a 6 month lag, the money supply has an impact on the S&P 500 index valuation. In the long run, the impact is also discernible, as all identified asset classes can favourably influence the price of the S&P 500. The findings are then contextualised using a monetary policy framework in the latter section of the research.

Matiur Rahman (2008) [10] studied the long run and short run dynamic effects of broad money (M2) and oil price on the US Stock Market (S&P 500). The results suggest a cointegrating relationship in the above three variables. Although short-run interaction feedback links exist, the vector error-correction models do not disclose any converging long-run causal flows. The current volatility of the stock market in the United States is fueled by previous volatility. The stock market in the United States was originally depressed by negative monetary and oil shocks.

Mahfoudh Hussein Hussein Mgammal (2012) [11] had taken two hypotheses that there exists a positive relationship between the stock market price index and exchange rate in the short term and a negative relationship between the stock market price index and exchange rate in the long term. He considered two gulf countries; Kingdom Saudi Arabia (KSA) and United Arab Emirate (UAE) for this study. He found that there exists a positive relationship in the short run between exchange rate and stock market price index for UAE and a negative relationship in the long run between exchange rate and stock market price index. As far as KSA is concerned, no conclusive remarks can be made about the long term relationship between the addressed variables. Meanwhile a not so statistically significant positive short term relationship between the said variables was found out by him.

Prashanta K. Banerjee and Bishnu Kumar Adhikary (2009) [12] studied the relationship of interest rate and exchange rate with the stock market prices in Bangladesh and found that these variables have a long-run equilibrium relationship, and that a unidirectional long-term causal flow extends from changes in the interest rate and exchange rate to Bangladesh’s stock market, with no discernible interactive feedback relationships. However, due to the statistic’s low numeric value, the variables are nearly independent of one another. Investigation of the exchange rate reveals a short term net negative feedback from the exchange rate to stock market with insignificant values of contemporaneous and lagged variables.

Nozar Hashemzadeh & Philip Taylor (1998) [13] tried to examine the statistical relationship between the supply of money and stock price levels and between the level of interest rates and stock prices. Using the Granger Sims test for determining the unidirectional causality, they got inconclusive results. However in a particular instance they were able to capture the causality from interest rate to stock prices and not the other way around.

Shawkat Hammoudeha and Ramazan Sarib (2011) [14] wanted to examine the short term and long term dynamics of US Financial CDS index spreads at sector level and observe its relationship with the stock market and the short- and long-run government securities. They had deployed the Autoregressive Distributed Lag approach for achieving the said goals. In conclusion they stated that the short- and long-run results do not link changes in the bank and insurance CDS spread risks to changes in the long-run interest rates. They do not show a transmission of risk from banks or insurance firms to the long-run Treasury rate. They were also able to affirmatively say that the 2008 financial crisis has weakened the long-run equilibrium relationships among the five financial variables and strengthened the work of the common stochastic shocks.
Mohammed Omran (2003) examines the impact of real interest rates, which are a significant component of the programme, on the performance of the Egyptian stock market in terms of market activity and liquidity. The main purpose was to create a strong stock market. By applying the Engel Granger and ECM, he was able to reach to the finalised statement that there are strong long-run and short-run connections between the variables, implying that real interest rates affect stock market performance.

Trust Kganyago and Victor Gumbo (2015) examined the long run relationship between money market interest rates and stock market returns in Zimbabwe from April 2009 to December 2013. They used the OLS regression model to determine the relationship between stock market returns and interest rates. It has been empirically proved that there exists a negative relationship between them. In the short run, it was discovered that stock market returns granger causes money market returns, which can be explained by passive money caused by non functionality of the Reserve Bank of Zimbabwe.

Oliver Blanchard (1981) tried to derive a link between output, stock market and term structure of interest rates. He used the famous IS-LM Model to explain his theories. He showed that A discrete shift in the stock market results from a change in the expected sequence of profits and real interest rates as a result of a change in existing or projected policy. This, combined with the policy change, affects expenditure and output over time, supporting the initial profit and interest rate expectations. The stock market is not the "cause" of increased output, any more than the initial stock market range is the reason for increased output. They’re both the result of policy changes.

Alberto Giovannini and Philippe Jorion (1987) have tried to document the common empirical regularities in the foreign exchange market and in the US Stock market. They show that increases in interest rates are associated with increases in the volatility of returns in both the stock market and the foreign exchange market. They also proved that not taking into account the time variation of second moments may seriously affect tests of asset pricing models, and over-identify restrictions of the latent variable capital asset pricing model.

M Nezky (2013) analysed the impact of the financial crisis in the United States in 2008 on the Indonesian economy. It is examined using a Structural Vector Autoregressive (SVAR) model with five variables: the Dow Jones Industrial Average, the exchange rate, the composite stock price index (IHSG), the production index, and trade tax income. The findings suggest that the US financial crisis has an impact on the Indonesian capital market, with the Dow Jones Industrial Average playing a larger role in explaining the IHSG than the Rupiah rate, production index, or trade income tax.

Bakri Abdul Karim and M. Shabri Abd. Majid (2010) had the objective to re-examine the stock market integration and short-run dynamic interactions between the Malaysian stock market and the stock markets of its major trading partners (the USA, Japan, Singapore, China and Thailand). They used the ARDL approach and reached the following results. They stated that there exists a long-run equilibrium relationship among the stock markets. In addition, these markets are moving towards more integration, especially following the 1997 financial crisis. This might be due to a remarkable rise in the proportion of bilateral trade among the countries in the region from the pre- to post-crisis periods.

Udoka Bernard Alajekwu, Vincent N. Ezebasili and Samuel M. Nzotta (2013) investigated the effect of trade openness on the impact of stock market development on economic growth of Nigeria. According to their findings, exposure to foreign economies (trade openness) has little bearing on the growth of the Nigerian stock market in particular or the economy in general.

Chun-Da Chen, Chiao-Ming Cheng and Rza Demirer (2017) tried to capture the significance of oil and stock market momentum. They tried to scrutinize the predictive ability of oil return and volatility on stock market momentum in China, providing a fresh perspective on the oil-stock market nexus. Even after adjusting for stock market status, volatility, and important macroeconomic factors, we show that oil return volatility is a powerful predictor of industrial momentum. They conclude that market dynamics can contribute to stock market inefficiencies in such a way that these inefficiencies create significant abnormal profits for active managers.

K.P. Prabheesh, Rakesh Padhan and Bhavesh Garg (2020) tried to study the relationship between oil price returns and stock market prices during the COVID-19 era. They fitted a DCC–GARCH model which indicated a positive co-movement between the said variables. Thus, they believe that a decline in oil price returns is a bad signal for the stock market prices to also drop.

In an attempt to extract information entangled in both markets for risk prediction, the multivariate stochastic volatility structure was used by Minh Vo (2011) to model the volatility of stock and oil futures markets. The major findings of the study was firstly that stock and oil futures prices are interrelated. Their correlation is based on a time-varying dynamic mechanism that tends to strengthen as markets become more volatile. Secondly, in terms of volatility, there is inter-market dependence. Innovations in one market can have an impact on the volatility in the other. In other words,
the past volatility of the stock (oil futures) market has predictive potential over the future volatility of the oil futures (stock) market, conditioned on the persistence and historical volatility in their respective markets.

Caroline Geetha, Rosle Mohidin, Vivin Vincent Chandran and Victoria Chong (2011) [25] aimed to find a relationship between inflation and stock returns. They used the cointegration test to determine the long term relationship between the said variables. While for the short term relationship, they used Vector Error Correction Modeling (VECM). They had tested this on China, Malaysia and the US. The results of VEC show no short run relationship between the stock market, expected inflation, exchange rate, unexpected inflation, interest rate and GDP for Malaysia and the US. However, China’s VEC result show there is a short run relationship between expected inflation rates with China’s stock market.

3 Methodology

3.1 Theoretical Framework

With the advent of globalization, privatization and liberalization of global economies, the process of integration of world financial markets has accelerated. Not only price movements but various other factors and events can cause spill-over effects instantly to other markets. Hence it becomes ever more important to understand the dynamic structure by studying all the effects jointly to have a better understanding. For the same purpose, we create a vector autoregression model. [26]

The vector autoregression (VAR) model is one of the most popular, adaptable, and straightforward methods for multivariate time series analysis. It is a natural extension of the univariate autoregressive model and has proven to be particularly beneficial for forecasting and understanding the dynamic behaviour of economic and financial time series. It frequently outperforms univariate time series models and sophisticated theory-based simultaneous equations models in forecasting. Forecasts from VAR models can be generated conditional on the likely future courses of specified variables in the model, giving them a lot of flexibility.

The VAR model is often utilised for structural inference and policy analysis in addition to data description and forecasting. Certain assumptions regarding the causal structure of the data under examination are enforced in structural analysis, and the consequent causal implications of unexpected shocks or innovations to specified variables on the model variables are described. Impulse response functions and forecast error variance decompositions are commonly used to summarise these causal effects.

Let $Y_t = (y_{1t}, y_{2t}, \ldots, y_{nt})'$ denote an $(n \times 1)$ vector of time series variables. The basic p-lag vector autoregressive (VAR(p)) model has the form

$$Y_t = c + \Pi_1 Y_{t-1} + \Pi_2 Y_{t-2} + \ldots + \Pi_p Y_{t-p} + \varepsilon_t, \quad t = 1, \ldots, T \tag{1}$$

where Π_i are $(n \times n)$ coefficient matrices and ε_t is an $(n \times 1)$ unobservable zero mean white noise vector process (serially uncorrelated or independent) with time invariant covariance matrix Σ.

VAR models do not require as much knowledge about the forces influencing a variable. The only prior knowledge required is a list of variables hypothesized to affect each other over time.

For all the analyses, we have made use of Python. All the statistical calculations have been done using the statsmodels library, and figures have been plotted with the matplotlib library’s help.

3.2 Data

In the empirical analysis, the study uses annual time series data for a period of 50 years, i.e. 1971-2020. All data has been collected concerning India. A detailed account of all the variables considered and the source of information on the same is presented below:

The paper also includes usage of definitions and explanations from a large number of financial institutions all over the world including the World Bank, International Monetary Fund, Reserve Bank of India to name a few.

3.2.1 Methodology

The basis behind VAR is that each of the time series in the system influences each other. So, the first task was to check for the time series’s causation, i.e. whether the series could be predicted with past values of itself along with other series in the system. This was done using Granger’s Causality Test [27]. This test is easy to implement and is based upon the foundations of statistics, thus very reliable. It tests the following:
Table 1: Data and their Sources

Indicator	Proxy	Source
1. Interest Rate	Real interest rate (%)	World Bank
2. Inflation	Inflation, consumer prices (annual %)	World Bank
3. Exchange Rate	US$ vs INR exchange rate	World Bank
4. Money Supply	M3 money supply	Reserve Bank of India
5. GDP	GDP (current US$)	World Bank
6. FDI	FDI (inflows)	World Bank
7. Trade	Import+Export/GDP (%)	World Bank
8. Oil	Crude Oil Price (current US$)	inflationdata.com
9. Gold	Gold Price (current US$)	World Gold Council
10. Stock Prices	BSE SENSEX	BSE India

Null Hypothesis: The past values of time series (X) do not Granger cause the other time series (Y)

Alternate Hypothesis: The past values of time series (X) Granger cause the other time series (Y)

Next, a co-integration test was used to establish the presence of a statistically significant connection between two or more time series. Soren Johannsen [28] devised a procedure to implement the cointegration test, making it possible to estimate all co-integrating variables even if there are more than two variables. When two or more time series are co-integrated, it means they have a long run, statistically significant relationship.

The data was then divided into two sets - train and test. Our VAR model will be fitted on train dataset and then will be used to forecast the next 4 observations. These forecasts will be compared against the actual observations present in test dataset using multiple forecast accuracy metrics.

Before beginning data analysis, stationarity checking is a requirement to ensure that the collected data doesn’t change itself when shifted in time. Granger and Newbold (1974) [29] have shown that spurious results could be obtained if the time-series data is non-stationary.

Out of many unit root tests available, the augmented Dickey-Fuller Test [30] was chosen. It tests the null hypothesis that a unit-root is present in the time series sample. In simpler terms,

Null Hypothesis: The data is not stationary

Alternate Hypothesis: The data is stationary

The ADF test helps eliminate the problem of autocorrelation by including the lagged values of the independent variable.

We then employ a model selection criterion to identify the lag length for the $VAR(p)$ model. The general approach is to fit $VAR(p)$ models with orders $p = 0, \ldots, p_{\text{max}}$ and choose the value of p which minimizes some model selection criteria. Model selection criteria for $VAR(p)$ models have the form

$$IC(p) = \ln |\tilde{\Sigma}(p)| + c_T \cdot \phi(n, p)$$

where $\ln |\tilde{\Sigma}(p)| = T^{-1} \sum_{t=1}^{T} \hat{\epsilon}_t \hat{\epsilon}_t'$ is the residual covariance matrix without a degrees of freedom correction from a $VAR(p)$ model, c_T is a sequence indexed by the sample size T, and $\phi(n, p)$ is a penalty function which penalizes large $VAR(p)$ models. [26]

Some general criteria which were available were: information criterion of Akaike [31], known as AIC; Bayesian information criterion by Akaike [32] and Schwarz [33], known as BIC; Hannan and Quinn’s HQIE [34] and Akaike’s Final Prediction Error [35] called FPE. For simplicity, we only consider AIC in our study.

$$AIC(p) = \ln |\tilde{\Sigma}(p)| + \frac{2}{T}pn^2$$

$$BIC(p) = \ln |\tilde{\Sigma}(p)| + \frac{\ln T}{T}pn^2$$

$$HQ(p) = \ln |\tilde{\Sigma}(p)| + \frac{2\ln\ln T}{T}pn^2$$

The AIC criterion asymptotically overestimates the order with positive probability, whereas the BIC and HQ criteria estimate the order consistently under fairly general conditions if the true order p is less than or equal to p_{max}.

Stock prices and Macroeconomic indicators: Investigating a correlation in Indian context

Serial correlation of errors can be assessed using the Durbin Watson’s statistic [36] after the model has been trained to ensure that it can adequately explain the variations and patterns in the time series. This statistic’s value might range between 0 and 4. There is no substantial serial association the closer it gets to the number 2. Closer to 0, there is a positive serial correlation, and the closer it is to 4 implies negative serial correlation.

In the end, we forecast the data and analyze using some metrics, namely, the MAPE, ME, MAE, MPE, RMSE and correlation.

Mean absolute percentage error,

\[MAPE = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right| \]

Mean Error,

\[ME = \frac{1}{n} \sum_{t=1}^{n} (A_t - F_t) \]

Mean Absolute Error,

\[MAE = \frac{1}{n} \sum_{t=1}^{n} |A_t - F_t| \]

Mean Percentage Error,

\[MPE = \frac{100\%}{n} \sum_{t=1}^{n} |A_t - F_t| \]

Root Mean Squared Error,

\[RMSE = \sqrt{\frac{\sum_{t=1}^{n} (A_t - F_t)^2}{n}} \]

Correlation,

\[Corr = \frac{\sum_{t=1}^{n} (A_t - \bar{A})(F_t - \bar{F})}{\sqrt{\sum_{t=1}^{n} (A_t - \bar{A})^2 \sum_{t=1}^{n} (F_t - \bar{F})^2}} \]

where \(A_t \) represents Actual values, \(F_t \) represents Forecasted values and \(n \) represents the total number of observations.

Finally in the end, we try to find a cross-correlation between the forecasted values by our simple VAR model and the BSE Sensex Closing Price of a year to try and see which variables according to our model have highest comovement with the stock price.

When assessing information between two separate time series, cross-correlation is commonly used. The correlation coefficient of time series data might be anything between -1.0 and +1.0. The closer the cross-correlation value is to 1, the more closely the series are identical.

4 Result Analysis

4.1 Descriptive Statistics

All series have 50 data points each. The descriptive statistics are listed in Table 2.

4.2 Result Analysis

We first conducted Granger’s Causality Test, and its’ findings have been encapsulated in the table below. If a given p-value is less than the significance level (0.05), then the null hypothesis that the corresponding X series does not cause the Y (row) is rejected.

Hence, we can conclude that most of the variables (time series) in the system are interchangeably causing each other, thus ensuring that this multi-time series system can be forecasted using the VAR model.

After performing the Co-integration tests, we concluded that all variables except gold depict a long-term statistically significant connection.
Stock prices and Macroeconomic indicators: Investigating a correlation in Indian context

Table 2: Descriptive Statistics

Variable	Statistics						
Name	Mean	Std Dev	Max	Min	25%	50%	75%
Interest Rate	6.0397	2.4739	10.7746	-1.9838	4.8688	6.6276	7.5463
Inflation	7.7698	4.9397	28.5987	-7.6339	4.72910	7.1193	10.01453
Exchange Rate	32.73	21.2548	74.0996	7.5244	10.445	33.9263	46.6497
Money Supply	52.2	19.2366	88.8760	22.83545	36.7160	45.4524	73.6782
GDP	7.9 × 10^{11}	8.4 × 10^{11}	28.7 × 10^{11}	0.67 × 10^{11}	2.1 × 10^{11}	3.8 × 10^{11}	12.1 × 10^{11}
FDI	0.7834	0.8918	3.6205	-0.0296	0.0446	0.5338	1.5140
Trade	26.6923	15.0506	55.7937	7.6696	13.7703	22.27443	40.5775
Oil	33.5058	24.2194	91.48	3.6	16.6075	26.0100	43.4400
Gold	597.1235	466.8005	1773.73	43.455	298.423	399.634	815.8595

Table 3: Granger Causality Test Results

Variable	intr_x	infl_x	exrate_x	msupply_x	gdpx	fdi_x	trade_x	oil_x	gold_x
intr_y	1.0000	0.0004	0.0525	0.0081	0.0026	0.0014	0.0126	0.0393	0.0003
infl_y	0.0012	0.9999	0.0097	0.0854	0.0166	0.2291	0.1873	0.2832	0.0453
exrate_y	0.0183	0.0721	1.0000	0.0022	0.00002	0.0152	0.0788	0.0007	0.0026
msupply_y	0.00129	0.0114	0.0000033	1.00000	0.0030	0.4678	0.0078	0.00013	0.0200
gdpx	0.2565	0.8064	0.00026	0.00074	0.9999	0.0000	0.0000	0.00082	0.0394
fdi_y	0.4965	0.3113	0.0000	0.0025	0.0000	1.0000	0.0000	0.0084	0.3326
trade_y	0.0027	0.5176	0.0000	0.0004	0.0000	1.0000	0.0000	0.0000	0.0000
oil_y	0.0017	0.3954	0.0001	0.0016	0.0000	0.0000	1.0000	0.0000	0.0000
gold_y	0.0745	0.02561	0.0034	0.00099	0.0000	0.0000	0.0007	0.0000	1.0000

After dividing the data into train and test, stationarity checking of variables was done for the train dataset before any modelling. The results of the Augmented Dickey – Fuller Test (ADF) have been presented in the Table 5. The test revealed that all the original time series were non-stationary. So the series was differenced and tested repeatedly until stationary.

Then, we then try to find the optimal lag order for our VAR model. To do this, we iteratively fit the VAR model’s orders and pick the order that gives a model with the least AIC.

As we can see in Table 6, the AIC drops to lowest at lag 6. Finally, we fit the model with lag order 6, and summary of Regression Results is available in the Appendix.

If there is any correlation left in the residuals, then there is some pattern in the time series that is still left to be explained by the model. So, checking for serial correlation ensures that the model is sufficiently able to explain the variances and patterns in the time series. So we check for serial correlation of errors, using Durbin Watson’s Statistic.

As we can see in Table 7, the value of the statistic for all variables is reasonably close to 2 thus implying there is no significant serial correlation.

Finally, we forecast the values, but the forecasts are generated on the scale of the model’s training data. So, we bring it back up to its original scale by de-differencing twice.

Finally we evaluate our predicted values by using some metrics.

As we can see, the lowest Mean Absolute Percentage Error is for the variable GDP.

Finally we calculate the cross correlation of each of the variables with the BSE Sensex Index. Cross correlation is basically a way to measure the degree of similarity between a time series and a lagged version of another time series.

As seen in Table 9, we can see very high correlation of closing price of BSE Sensex with our forecasted Exchange rate and also a very high negative correlation with the money supply in the economy.
Stock prices and Macroeconomic indicators: Investigating a correlation in Indian context

Figure 1: Correlation Matrix of Residuals

Figure 2: Forecast v/s Actual Values
Stock prices and Macroeconomic indicators: Investigating a correlation in Indian context

Table 4: Co-integration tests

Variable	Test Stat	C(95%)	Signif
interest_rate	2314.45	179.5199	True
inflation	1699.95	143.6691	True
exchange_rate	1252.52	111.7797	True
money_supply	878.0	83.9383	True
gdp	524.72	60.0627	True
fdi	327.18	40.1749	True
trade_gdp	136.65	24.2761	True
oil	13.29	12.3212	True
gold	2.96	4.1296	False

Table 5: Augmented Dickey-Fuller Test Results

intrate	infl	exchrate	msupply	gdp	fdi	trade	oil	gold
Original	Stat.	Stat.	Non-Stat.	Non-Stat.	Non-Stat.	Non-Stat.	Non-Stat.	Non-Stat.
1 Diff.	Stat.	Stat.	Stat.	Stat.	Stat.	Stat.	Stat.	Stat.
2 Diff.	Stat.	Stat.	Stat.	Stat.	Stat.	Stat.	Stat.	Stat.

Table 6: Finding optimal order of VAR Model

Lag	AIC	BIC	FPE	HQIC
1	71.6636	75.3872	1.44e+31	73.0284
2	70.2192	77.3661	0.62e+31	72.8217
3	61.8216	72.4616	1.43e+28	65.6687
4	-83.7014	-69.4971	2.82e-30	-78.605
5	-135.839	-117.998	-5.41e-60	-129.49
6	-138.587	-117.035	-3.70e-66	-130.98
7	-128.346	-103.01	-2.17e-65	-119.503
8	-129.305	-100.11	-4.18e-69	-119.226

Table 7: Durbin-Watson’s Statistic

intrate	infl	exchrate	msupply	gdp	fdi	trade	oil	gold	
DW-Statistic	2.29	1.54	2.04	1.88	2.37	2.26	1.87	1.89	2.29

Table 8: Forecast Accuracy

Variable	MAPE	ME	MAE	MPE	RMSE	Corr
Interest	4.9088	-26.489	26.489	-4.9088	27.406	-0.1613
Inflation	4.7579	11.9666	22.3888	2.0928	25.9987	0.7175
Exchange Rate	0.541	38.0589	38.0589	0.541	43.6972	0.885
Money supply	0.5724	-45.5798	45.5798	-0.5724	53.0154	-0.6675
GDP	0.2295	-4.5e11	5.9e11	-0.1764	6.4e11	0.6008
FDI	2.1177	-1.5415	3.4943	-1.0873	3.9586	0.7758
Trade	0.3922	15.8482	15.8482	0.3922	21.3357	0.3672
Oil Price	2.0576	-81.6239	81.6239	-2.0576	97.2881	0.5737
Gold	0.3511	-143.9981	538.1676	-0.035	799.0659	-0.8961

5 Conclusion

Thus we can conclude that exchange rate and money supply in the economy has the highest correlation with the stock price according to our macroeconomic VAR model of Indian Economy for the period 2016-2020.
Stock prices and Macroeconomic indicators: Investigating a correlation in Indian context

Table 9: Cross correlation Analysis

Variable	Lag 0	Lag 1	Lag 2	Lag 3	Lag 4
Interest Rate	-0.3004222	-0.42945014	0.29787696	0.36007481	-0.00163329
Inflation	0.27767763	0.2200911	0.44715304	0.07745795	-0.43940031
Exchange Rate	0.84163439	0.44541292	0.17535062	-0.1844046	-0.56882276
Money supply	-0.95955797	-0.22346008	0.19206048	0.23868043	-0.56882276
GDP	-0.01482224	-0.33866955	-0.472503	0.00854506	0.30269995
FDI	0.59155563	0.58269897	0.0791308	-0.42699511	-0.30877878
Trade	0.08044143	0.06655474	-0.32441759	-0.38734856	0.28026067
Oil Price	-0.13386997	0.12290279	-0.23555443	-0.35581185	0.32172806
Gold	-0.68531379	-0.52501217	-0.19410922	0.09670092	0.57442169

These results give us insights into the importance of spot exchange rate and money supply in influencing stock prices in India. Thus an investor should keep a close eye on these indicators as well, while making financial decisions.

Acknowledgments

We would like to thank our instructor Dr. AK Giri and Department of Economics and Finance, BITS Pilani for providing all necessary guidance and access to resources needed to complete this paper.

References

[1] https://tradingeconomics.com/. Trading economics | 20 million indicators from 196 countries. 2021.
[2] https://databank.worldbank.org/source/worldwide-governance-indicators. Worldwide governance indicator. 2021.
[3] https://rbi.org.in/scripts/BS_ViewBulletin.aspx?Id=21. Reserve bank of india - rbi bulletin. 2021.
[4] https://www.statista.com/statistics/271322/inflation-rate-in-india/. Inflation rate in india 1984-2024. 2021.
[5] https://www.focus-economics.com/country-indicator/india/exchange-rate. Indian rupee exchange rate (usd to inr) - news & forecasts. 2021.
[6] https://datatopics.worldbank.org/world-development-indicators/. World development indicators. 2021.
[7] Martin Sirucek. Impact of money supply on stock bubbles. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 7:2835–, 03 2014.
[8] Gautam Kaul. Stock returns and inflation: The role of the monetary sector. Journal of Financial Economics, 18(2):253–276, 1987.
[9] Vladimír Pícha. Effect of money supply on the stock market. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65:465–472, 04 2017.
[10] Matiur Rahman and Muhammad Mustafa. Influences of money supply and oil price on u.s. stock market. 12 2008.
[11] Shawkat Hammoudeh and Ramazan Sari. Financial cds, stock market and interest rates: Which drives which? The North American Journal of Economics and Finance, 22(3):257–276, 2011.
[12] Prashanta K Banerjee and Bishnu Kumar Adhikary. Dynamic effects of changes in interest rates and exchange rates on the stock market return in bangladesh. Ritsumeikan Journal of Asia Pacific Studies, 25(1):119–133, 2009.
[13] Nozor Hashemzadeh and Philip Taylor. Stock prices, money supply, and interest rates: the question of causality. Applied Economics, 20(12):1603–1611, 1988.
[14] Hasan Ertegrul and Huseyin Ozturk. The drivers of credit default swap prices: Evidence from selected emerging market countries. Emerging Markets Finance and Trade, 49:228–249, 11 2013.
[15] Mohammed Omran. Time series analysis of the impact of real interest rates on stock market activity and liquidity in egypt: Co-integration and error correction model approach. Available at SSRN 420248, 2003.
[16] Trust Kganyago and Victor Gumbo. An empirical study of the relationship between money market interest rates and stock market performance: Evidence from zimbabwe (2009-2013). International Journal of Economics and Financial Issues, 5(3), 2015.
Stock prices and Macroeconomic indicators: Investigating a correlation in Indian context

[17] Olivier J Blanchard. Output, the stock market, and interest rates. *The American Economic Review*, 71(1):132–143, 1981.

[18] Alberto Giovannini and Philippe Jorion. Interest rates and risk premia in the stock market and in the foreign exchange market. *Journal of International Money and Finance*, 6(1):107–123, 1987.

[19] Mita Nezky. The impact of us crisis on trade and stock market in indonesia. *Buletin Ekonomi Moneter Dan Perbankan*, 15(3):83–96, 2013.

[20] Bakri Abdul Karim and M Shabri Abd Majid. Does trade matter for stock market integration? *Studies in Economics and Finance*, 2010.

[21] Udoka Bernard Ajokekuw, Vincent N Ezeabasili, and Samuel M Nzotta. Trade openness, stock market development and economic growth of nigeria: Empirical evidence. *Research Journal of Finance and Accounting*, 4(3):120–127, 2013.

[22] Chun-Da Chen, Chiao-Ming Cheng, and Riza Demirer. Oil and stock market momentum. *Energy Economics*, 68:151–159, 2017.

[23] KP Prabheesh, Rakesh Padhan, and Bhavesh Garg. Covid-19 and the oil price–stock market nexus: Evidence from net oil-importing countries. *Energy Research Letters*, 1(2):13745, 2020.

[24] Minh Vo. Oil and stock market volatility: A multivariate stochastic volatility perspective. *Energy Economics*, 33(5):956–965, 2011.

[25] Caroline Geetha, Rosle Mohidin, Vivin Vincent Chandran, and Victoria Chong. The relationship between inflation and stock market: Evidence from malaysia, united states and china. *International journal of economics and management sciences*, 1(2):1–16, 2011.

[26] https://faculty.washington.edu/ezivot/econ584/notes/varModels.pdf. Vector autoregressive models for multivariate time series. 2018.

[27] C. W. J. Granger. Investigating causal relations by econometric models and cross-spectral methods. *Econometrica*, 37(3):424–438, 1969.

[28] Søren Johansen. Estimation and hypothesis testing of cointegration vectors in gaussian vector autoregressive models. *Econometrica*, 59(6):1551–1580, 1991.

[29] C.W.J. Granger and P. Newbold. Spurious regressions in econometrics. *Journal of Econometrics*, 2(2):111–120, 1974.

[30] Said E. Said and David A. Dickey. Testing for unit roots in autoregressive-moving average models of unknown order. *Biometrika*, 71(3):599–607, 1984.

[31] H. Akaike. Information theory and an extension of maximum likelihood principle. *Proc. 2nd Int. Symp. on Information Theory*, pages 267–281, 1973.

[32] Hirotugu Akaike. A bayesian extension of the minimum aic procedure of autoregressive model fitting. *Biometrika*, 66(3):237–242, 1979.

[33] Gideon Schwarz. Estimating the dimension of a model. *The Annals of Statistics*, 6(2):461–464, 1978.

[34] E. J. Hannan and B. G. Quinn. The determination of the order of an autoregression. *Journal of the Royal Statistical Society. Series B (Methodological)*, 41(2):190–195, 1979.

[35] Hirotugu Akaike. Fitting autoregressive models for prediction. *Annals of the Institute of Statistical Mathematics*, 21(1):243–247, 1969.

[36] J. Durbin. Testing for serial correlation in least-squares regression when some of the regressors are lagged dependent variables. *Econometrica*, 38(3):410–421, 1970.

6 Appendix
Stock prices and Macroeconomic indicators: Investigating a correlation in Indian context

Figure 3: Trends
Results for equation interest_rate

	coefficient	std. error	t-stat	prob
const	-0.23319	NAN	NAN	NAN
L1.interest_rate	-0.284635	NAN	NAN	NAN
L1.inflation	0.226275	8.457636	0.027	0.979
L1.exchange_rate	0.562518	NAN	NAN	NAN
L1.money_supply	0.308042	20.641894	0.015	0.988
L1.gdp	0.000000	NAN	NAN	NAN
L1.fdi	-0.021129	NAN	NAN	NAN
L1.trade_gdp	-0.537611	NAN	NAN	NAN
L1.oil	0.359864	4.006895	0.090	0.928
L1.gold	0.000834	NAN	NAN	NAN
L2.interest_rate	-0.702900	NAN	NAN	NAN
L2.inflation	-0.241780	NAN	NAN	NAN
L2.exchange_rate	-0.194578	NAN	NAN	NAN
L2.money_supply	-0.525270	NAN	NAN	NAN
L2.gdp	0.000000	0.000000	0.003	0.998
L2.fdi	-0.430571	NAN	NAN	NAN
L2.trade_gdp	-0.072731	NAN	NAN	NAN
L2.oil	0.056889	NAN	NAN	NAN
L2.gold	-0.019298	0.672091	-0.029	0.977
L3.interest_rate	-0.063917	NAN	NAN	NAN
L3.inflation	0.401605	NAN	NAN	NAN
L3.exchange_rate	0.080207	NAN	NAN	NAN
L3.money_supply	0.490812	NAN	NAN	NAN
L3.gdp	0.000000	NAN	NAN	NAN
L3.fdi	-0.463571	140.939997	-0.003	0.997
L3.trade_gdp	-0.216786	29.823469	-0.007	0.994
L3.oil	0.328096	2.284541	0.144	0.886
L3.gold	0.032701	NAN	NAN	NAN
L4.interest_rate	0.595324	NAN	NAN	NAN
L4.inflation	0.446932	NAN	NAN	NAN
L4.exchange_rate	0.951425	NAN	NAN	NAN
L4.money_supply	-0.303263	NAN	NAN	NAN
L4.gdp	0.000000	0.000000	0.038	0.970
L4.fdi	-0.160988	75.955216	-0.002	0.998
L4.trade_gdp	-1.087531	NAN	NAN	NAN
L4.oil	0.421400	4.009961	0.105	0.916
L4.gold	-0.040524	0.428476	-0.095	0.925
L5.interest_rate	-0.304453	13.106586	-0.023	0.981
L5.inflation	0.233324	NAN	NAN	NAN
L5.exchange_rate	-0.640186	NAN	NAN	NAN
L5.money_supply	-0.047940	NAN	NAN	NAN
L5.gdp	0.000000	NAN	NAN	NAN
L5.fdi	0.381768	NAN	NAN	NAN
L5.trade_gdp	-0.173662	12.692847	-0.014	0.989
L5.oil	-0.105078	NAN	NAN	NAN
L5.gold	0.084945	NAN	NAN	NAN
L6.interest_rate	0.424178	NAN	NAN	NAN
L6.inflation	0.325731	4.742912	0.069	0.945
L6.exchange_rate	1.129787	18.575799	0.061	0.952
L6.money_supply	-0.490681	NAN	NAN	NAN
L6.gdp	0.000000	NAN	NAN	NAN
L6.fdi	0.469469	145.055940	0.003	0.997
L6.trade_gdp	-0.306968	NAN	NAN	NAN
L6.oil	-0.075969	NAN	NAN	NAN
L6.gold	0.000472	0.571871	0.001	0.999

Figure 4: Equation for Interest Rate
Results for equation inflation

coefficient	std. error	t-stat	prob
0.133588	NAN	NAN	NAN
-0.439772	NAN	NAN	NAN
-0.616923	27.577661	-0.022	0.982
-0.995454	NAN	NAN	NAN
-0.413137	67.550713	-0.006	0.995
-0.000000	NAN	NAN	NAN
0.083348	NAN	NAN	NAN
-0.144485	NAN	NAN	NAN
-0.269640	13.112588	-0.021	0.984
0.016861	NAN	NAN	NAN
0.188887	NAN	NAN	NAN
-0.010861	NAN	NAN	NAN
0.533112	NAN	NAN	NAN
0.348507	NAN	NAN	NAN
0.000900	0.000000	0.004	0.997
0.461912	NAN	NAN	NAN
0.012176	NAN	NAN	NAN
0.204419	NAN	NAN	NAN
0.009596	2.199423	0.004	0.997
0.391851	NAN	NAN	NAN
-0.188892	NAN	NAN	NAN
0.307192	NAN	NAN	NAN
-0.131089	NAN	NAN	NAN
0.000000	NAN	NAN	NAN
0.532194	401.226925	0.001	0.999
0.712093	97.597467	0.007	0.994
-0.185561	7.476500	-0.002	0.980
0.016044	NAN	NAN	NAN
-0.110123	NAN	NAN	NAN
0.217596	NAN	NAN	NAN
-0.638656	NAN	NAN	NAN
0.218955	NAN	NAN	NAN
-0.000000	0.000000	-0.014	0.989
0.083453	248.563866	0.000	1.000
0.688965	NAN	NAN	NAN
-0.316143	13.122619	-0.024	0.981
0.040737	1.402190	0.029	0.977
0.554682	42.891377	0.013	0.996
-0.224800	NAN	NAN	NAN
0.535410	NAN	NAN	NAN
-0.623429	NAN	NAN	NAN
0.000000	NAN	NAN	NAN
0.488563	NAN	NAN	NAN
0.119043	41.537414	0.003	0.998
0.179726	NAN	NAN	NAN
0.005476	NAN	NAN	NAN
0.134257	NAN	NAN	NAN
-0.294400	15.521260	-0.019	0.985
-1.179485	60.789484	-0.019	0.985
0.577883	NAN	NAN	NAN
-0.000000	NAN	NAN	NAN
-0.972456	474.689324	-0.001	0.999
0.330286	NAN	NAN	NAN
-0.093445	NAN	NAN	NAN
0.021645	1.871450	0.012	0.991

Figure 5: Equation for Inflation
Results for equation exchange_rate

	coefficient	std. error	t-stat	prob
const	0.085972	NAN	NAN	NAN
L1.interest_rate	0.152416	NAN	NAN	NAN
L1.inflation	0.307779	10.815983	0.028	0.977
L1.exchange_rate	0.192318	NAN	NAN	NAN
L1.money_supply	0.026057	26.397749	0.001	0.999
L1.gdp	0.000000	NAN	NAN	NAN
L1.fdi	-0.119312	NAN	NAN	NAN
L1.trade_gdp	0.075081	NAN	NAN	NAN
L1.oil	-0.000225	5.124199	-0.000	1.000
L1.gold	-0.012054	NAN	NAN	NAN
L2.interest_rate	0.285717	NAN	NAN	NAN
L2.inflation	0.345353	NAN	NAN	NAN
L2.exchange_rate	0.029588	NAN	NAN	NAN
L2.money_supply	0.154733	NAN	NAN	NAN
L2.gdp	0.000000	0.000000	0.007	0.994
L2.fdi	0.146425	NAN	NAN	NAN
L2.trade_gdp	-0.438077	NAN	NAN	NAN
L2.oil	0.029932	NAN	NAN	NAN
L2.gold	0.004257	0.859499	0.005	0.996
L3.interest_rate	-0.164516	NAN	NAN	NAN
L3.inflation	0.086697	NAN	NAN	NAN
L3.exchange_rate	-0.150667	NAN	NAN	NAN
L3.money_supply	-0.184039	NAN	NAN	NAN
L3.gdp	-0.000000	NAN	NAN	NAN
L3.fdi	0.109269	100.240113	0.001	0.999
L3.trade_gdp	-0.258110	38.139532	-0.007	0.995
L3.oil	-0.155808	2.921697	-0.053	0.957
L3.gold	-0.018088	NAN	NAN	NAN
L4.interest_rate	-0.370784	NAN	NAN	NAN
L4.inflation	0.132488	NAN	NAN	NAN
L4.exchange_rate	-0.056836	NAN	NAN	NAN
L4.money_supply	0.122289	NAN	NAN	NAN
L4.gdp	-0.000000	0.000000	-0.040	0.968
L4.fdi	0.232875	97.134791	0.002	0.998
L4.trade_gdp	0.643561	NAN	NAN	NAN
L4.oil	-0.272105	5.128110	-0.053	0.958
L4.gold	0.007580	0.547954	0.014	0.989
L5.interest_rate	-0.167501	16.761265	-0.010	0.992
L5.inflation	-0.111723	NAN	NAN	NAN
L5.exchange_rate	-0.121416	NAN	NAN	NAN
L5.money_supply	-0.261186	NAN	NAN	NAN
L5.gdp	-0.000000	NAN	NAN	NAN
L5.fdi	0.640649	NAN	NAN	NAN
L5.trade_gdp	0.270724	16.232158	0.017	0.987
L5.oil	-0.306634	NAN	NAN	NAN
L5.gold	0.007900	NAN	NAN	NAN
L6.interest_rate	-0.167561	NAN	NAN	NAN
L6.inflation	-0.035440	6.865439	-0.006	0.995
L6.exchange_rate	-0.256064	23.755529	-0.011	0.991
L6.money_supply	-0.212558	NAN	NAN	NAN
L6.gdp	0.000000	NAN	NAN	NAN
L6.fdi	-0.125070	185.502612	-0.001	0.999
L6.trade_gdp	0.508614	NAN	NAN	NAN
L6.oil	-0.071415	NAN	NAN	NAN
L6.gold	0.012656	0.731333	0.017	0.986

Figure 6: Equation for Exchange Rate
Results for equation money_supply

	coefficient	std. error	t-stat	prob
const	-0.085424	NAN	NAN	NAN
L1.interest_rate	0.144962	NAN	NAN	NAN
L1.inflation	-0.058515	9.844696	-0.006	0.995
L1.exchange_rate	0.472058	NAN	NAN	NAN
L1.money_supply	0.472649	24.027184	0.020	0.984
L1.gdp	0.060800	NAN	NAN	NAN
L1.fdi	-0.077548	NAN	NAN	NAN
L1.trade_gdp	-0.262966	NAN	NAN	NAN
L1.oil	0.241790	4.664030	0.052	0.959
L1.gold	-0.062721	NAN	NAN	NAN
L2.interest_rate	0.067385	NAN	NAN	NAN
L2.inflation	0.013765	NAN	NAN	NAN
L2.exchange_rate	-0.238750	NAN	NAN	NAN
L2.money_supply	-0.061335	NAN	NAN	NAN
L2.gdp	-0.060000	0.000000	-0.062	0.998
L2.fdi	-0.109097	NAN	NAN	NAN
L2.trade_gdp	-0.160399	NAN	NAN	NAN
L2.oil	0.147677	NAN	NAN	NAN
L2.gold	-0.065318	0.782315	-0.087	0.995
L3.interest_rate	-0.165713	NAN	NAN	NAN
L3.inflation	0.040508	NAN	NAN	NAN
L3.exchange_rate	-0.194678	NAN	NAN	NAN
L3.money_supply	0.208376	NAN	NAN	NAN
L3.gdp	0.060000	NAN	NAN	NAN
L3.fdi	-0.241064	164.054200	-0.001	0.999
L3.trade_gdp	-0.466394	34.714545	-0.014	0.989
L3.oil	0.118849	2.659324	0.045	0.964
L3.gold	-0.064364	NAN	NAN	NAN
L4.interest_rate	0.041753	NAN	NAN	NAN
L4.inflation	0.226924	NAN	NAN	NAN
L4.exchange_rate	0.376096	NAN	NAN	NAN
L4.money_supply	-0.079170	NAN	NAN	NAN
L4.gdp	0.060000	0.000000	0.040	0.968
L4.fdi	0.061757	88.411942	0.000	1.000
L4.trade_gdp	-0.348112	NAN	NAN	NAN
L4.oil	0.065036	4.667598	0.017	0.986
L4.gold	-0.016465	0.498747	-0.033	0.974
L5.interest_rate	-0.214700	15.256079	-0.014	0.989
L5.inflation	0.155150	NAN	NAN	NAN
L5.exchange_rate	-0.455397	NAN	NAN	NAN
L5.money_supply	0.122893	NAN	NAN	NAN
L5.gdp	-0.060000	NAN	NAN	NAN
L5.fdi	0.275608	NAN	NAN	NAN
L5.trade_gdp	-0.059468	14.774466	-0.004	0.997
L5.oil	-0.072446	NAN	NAN	NAN
L5.gold	0.000003	NAN	NAN	NAN
L6.interest_rate	0.076967	NAN	NAN	NAN
L6.inflation	0.197836	5.520754	0.036	0.971
L6.exchange_rate	0.766220	21.622927	0.033	0.974
L6.money_supply	-0.282569	NAN	NAN	NAN
L6.gdp	0.060000	NAN	NAN	NAN
L6.fdi	0.249688	168.844201	0.001	0.999
L6.trade_gdp	0.030144	NAN	NAN	NAN
L6.oil	-0.021314	NAN	NAN	NAN
L6.gold	-0.062398	0.665658	-0.004	0.997

Figure 7: Equation for Money Supply
Results for equation gdp

coefficient	std. error	t-stat	prob	
const	118583492.99, 110308	NAN	NAN	NAN
L1.interest_rate	-708695180.494527	NAN	NAN	NAN
L1.inflation	-416718517.229955	17527989402.936615	-0.002	0.998
L1.exchange_rate	-6276927561.162581	NAN	NAN	NAN
L1.money_supply	-10508276494.284945	427791997030.464966	-0.025	0.980
L1.gdp	-0.825997	NAN	NAN	NAN
L1.fdi	5866098950.755015	NAN	NAN	NAN
L1.trade_gdp	5059523121.626891	NAN	NAN	NAN
L1.oil	-92295550.563979	8340722988.329269	-0.011	0.991
L1.gold	277379041.679279	NAN	NAN	NAN
L2.interest_rate	-3669331157.852364	NAN	NAN	NAN
L2.inflation	556704260.098745	NAN	NAN	NAN
L2.exchange_rate	346087446.046876	NAN	NAN	NAN
L2.money_supply	-6201226628.572609	NAN	NAN	NAN
L2.gdp	-0.550328	24.381438	-0.023	0.982
L2.fdi	-4178513376.591919	NAN	NAN	NAN
L2.trade_gdp	10446815260.778844	NAN	NAN	NAN
L2.oil	7765242232.323683	NAN	NAN	NAN
L2.gold	-164060510.241228	13928726243.558262	-0.012	0.991
L3.interest_rate	1095722845.826894	NAN	NAN	NAN
L3.inflation	1767088681.815888	NAN	NAN	NAN
L3.exchange_rate	-985499717.110599	NAN	NAN	NAN
L3.money_supply	-5396719884.736495	NAN	NAN	NAN
L3.gdp	0.958658	NAN	NAN	NAN
L3.fdi	-1587013434.385668	2929904607886.257812	-0.001	1.000
L3.trade_gdp	12897728160.63431	61897512897.450806	0.021	0.983
L3.oil	1501816879.961464	47347934860.728470	0.032	0.975
L3.gold	16301453.535722	NAN	NAN	NAN
L4.interest_rate	4705512095.301861	NAN	NAN	NAN
L4.inflation	-551876125.790607	NAN	NAN	NAN
L4.exchange_rate	-5807264184.776396	NAN	NAN	NAN
L4.money_supply	6804122964.365443	NAN	NAN	NAN
L4.gdp	0.441102	10.364104	0.001	0.935
L4.fdi	-4398440557.995688	1574130437142.816650	-0.003	0.998
L4.trade_gdp	-11687115777.810457	NAN	NAN	NAN
L4.oil	7117840252.346230	83104248768.337448	0.086	0.932
L4.gold	-324626218.448193	8879932163.608112	-0.037	0.971
L5.interest_rate	1037338360.845517	271626857612.484114	0.004	0.997
L5.inflation	3612769519.683293	NAN	NAN	NAN
L5.exchange_rate	13296098918.876871	NAN	NAN	NAN
L5.money_supply	12315851165.670496	NAN	NAN	NAN
L5.gdp	1.373623	NAN	NAN	NAN
L5.fdi	-88756240.375844	NAN	NAN	NAN
L5.trade_gdp	5605122608.390803	263052342516.097107	0.002	0.998
L5.oil	8764132626.437925	NAN	NAN	NAN
L5.gold	-416404908.184592	NAN	NAN	NAN
L6.interest_rate	463683463.995586	NAN	NAN	NAN
L6.inflation	1492207889.101734	98294264283.012436	0.015	0.988
L6.exchange_rate	994775889.224476	384973298169.810486	0.003	0.998
L6.money_supply	-351261529.106602	NAN	NAN	NAN
L6.gdp	1.275879	NAN	NAN	NAN
L6.fdi	1042141517.835778	3006186613999.894531	0.000	1.000
L6.trade_gdp	-16972312362.702223	NAN	NAN	NAN
L6.oil	4402213569.071266	NAN	NAN	NAN
L6.gold	424028427.647013	11851706974.312450	-0.036	0.971

Figure 8: Equation for GDP
Stock prices and Macroeconomic indicators: Investigating a correlation in Indian context

Equation for FDI	Coefficient	Std. Error	t-Stat	Prob
const	-0.058882	NAN	NAN	NAN
L1.interest_rate	0.018833	NAN	NAN	NAN
L1.inflation	0.014166	1.206491	0.012	0.991
L1.exchange_rate	0.079964	NAN	NAN	NAN
L1.money_supply	-0.029428	2.929945	-0.007	0.994
L1.gdp	0.006000	NAN	NAN	NAN
L1.fdi	-0.013352	NAN	NAN	NAN
L1.trade_gdp	-0.044275	NAN	NAN	NAN
L1.oil	0.051922	0.568745	0.091	0.927
L1.gold	0.002784	NAN	NAN	NAN
L2.interest_rate	-0.053619	NAN	NAN	NAN
L2.inflation	-0.028054	NAN	NAN	NAN
L2.exchange_rate	-0.013202	NAN	NAN	NAN
L2.money_supply	-0.044996	NAN	NAN	NAN
L2.gdp	0.096000	0.006000	0.010	0.992
L2.fdi	0.077437	NAN	NAN	NAN
L2.trade_gdp	0.157937	NAN	NAN	NAN
L2.oil	-0.009476	NAN	NAN	NAN
L2.gold	-0.002949	0.095398	-0.031	0.975
L3.interest_rate	0.017879	NAN	NAN	NAN
L3.inflation	0.029497	NAN	NAN	NAN
L3.exchange_rate	-0.023549	NAN	NAN	NAN
L3.money_supply	0.021803	NAN	NAN	NAN
L3.gdp	0.000000	NAN	NAN	NAN
L3.fdi	0.072013	20.005269	-0.064	0.997
L3.trade_gdp	-0.101556	4.233193	-0.024	0.981
L3.oil	0.047991	0.324286	0.148	0.882
L3.gold	0.000503	NAN	NAN	NAN
L4.interest_rate	-0.024500	NAN	NAN	NAN
L4.inflation	-0.013708	NAN	NAN	NAN
L4.exchange_rate	0.095011	NAN	NAN	NAN
L4.money_supply	-0.017239	NAN	NAN	NAN
L4.gdp	0.060000	0.006000	0.090	0.929
L4.fdi	-0.031793	10.761211	-0.003	0.998
L4.trade_gdp	-0.026510	NAN	NAN	NAN
L4.oil	0.020390	0.569181	0.036	0.971
L4.gold	-0.062811	0.066819	-0.103	0.918
L5.interest_rate	-0.044363	1.868371	-0.024	0.981
L5.inflation	0.067792	NAN	NAN	NAN
L5.exchange_rate	-0.044155	NAN	NAN	NAN
L5.money_supply	-0.026321	NAN	NAN	NAN
L5.gdp	0.000800	NAN	NAN	NAN
L5.fdi	0.030591	NAN	NAN	NAN
L5.trade_gdp	-0.102164	1.801644	-0.557	0.955
L5.oil	0.031352	NAN	NAN	NAN
L5.gold	-0.00144	NAN	NAN	NAN
L6.interest_rate	0.027682	NAN	NAN	NAN
L6.inflation	0.019999	0.673217	0.030	0.976
L6.exchange_rate	0.081635	2.636680	0.031	0.975
L6.money_supply	0.028604	NAN	NAN	NAN
L6.gdp	0.000000	NAN	NAN	NAN
L6.fdi	0.036315	20.589356	0.002	0.999
L6.trade_gdp	-0.017292	NAN	NAN	NAN
L6.oil	0.060739	NAN	NAN	NAN
L6.gold	-0.004382	0.081172	-0.054	0.957

Figure 9: Equation for FDI
Stock prices and Macroeconomic indicators: Investigating a correlation in Indian context

![Results for equation trade_gdp](image)

Figure 10: Equation for Trade/GDP Ratio
Results for equation oil

coefficient	std. error	t-stat	prob	
const	0.159591	NAN	NAN	
L1.interest_rate	-0.303649	NAN	NAN	
L1.inflation	-0.130351	32.276845	-0.004	6.997
L1.exchange_rate	1.986143	NAN	NAN	
L1.money_supply	1.967132	78.775585	0.025	6.980
L1.gdp	0.000000	NAN	NAN	
L1.fdi	-0.766985	NAN	NAN	
L1.trade_gdp	0.673172	NAN	NAN	
L1.oil	0.436490	15.291500	0.029	6.977
L2.gold	0.012962	NAN	NAN	
L2.interest_rate	-0.097633	NAN	NAN	
L2.inflation	-0.065681	NAN	NAN	
L2.exchange_rate	-0.012349	NAN	NAN	
L2.money_supply	0.414852	NAN	NAN	
L2.gdp	-0.000000	0.000000	-0.026	6.979
L2.fdi	-0.566746	NAN	NAN	
L2.trade_gdp	-0.293817	NAN	NAN	
L2.oil	0.028412	NAN	NAN	
L2.gold	0.000013	2.569400	0.000	1.000
L3.interest_rate	-0.920523	NAN	NAN	
L3.inflation	0.127986	NAN	NAN	
L3.exchange_rate	-0.009179	NAN	NAN	
L3.money_supply	1.783360	NAN	NAN	
L3.gdp	0.000000	NAN	NAN	
L3.fdi	-0.664371	537.868891	-0.001	6.999
L3.trade_gdp	-1.595758	113.815195	-0.014	6.989
L3.oil	0.093924	8.718866	0.011	6.991
L3.gold	0.066449	NAN	NAN	
L4.interest_rate	0.495353	NAN	NAN	
L4.inflation	0.270247	NAN	NAN	
L4.exchange_rate	0.149982	NAN	NAN	
L4.money_supply	-1.841740	NAN	NAN	
L4.gdp	-0.000000	0.000000	-0.036	0.971
L4.fdi	0.186876	289.867614	0.001	6.999
L4.trade_gdp	-1.205935	NAN	NAN	
L4.oil	0.160261	15.303198	0.010	6.992
L4.gold	-0.018356	1.635192	-0.011	6.991
L5.interest_rate	-0.443897	90.018618	-0.009	6.993
L5.inflation	0.642534	NAN	NAN	
L5.exchange_rate	-3.457421	NAN	NAN	
L5.money_supply	-0.743220	NAN	NAN	
L5.gdp	0.000000	NAN	NAN	
L5.fdi	0.795202	NAN	NAN	
L5.trade_gdp	-0.726985	48.439667	-0.015	6.988
L5.oil	-0.311576	NAN	NAN	
L5.gold	0.091387	NAN	NAN	
L6.interest_rate	0.753844	NAN	NAN	
L6.inflation	0.934076	18.106358	0.052	6.959
L6.exchange_rate	2.362557	70.890753	0.033	6.973
L6.money_supply	0.159123	NAN	NAN	
L6.gdp	0.000000	NAN	NAN	
L6.fdi	0.840651	553.573021	0.002	6.999
L6.trade_gdp	1.541680	NAN	NAN	
L6.oil	-0.013034	NAN	NAN	
L6.gold	-0.030858	2.182428	-0.014	6.989

Figure 11: Equation for Crude Oil Prices
Results for equation gold

Parameter	Coefficient	Std. Error	t-stat	Prob
const	3.157898	NaN	NaN	NaN
L1.interest_rate	-12.68172	NaN	NaN	NaN
L1.inflation	7.158862	269.390832	0.027	0.979
L1.exchange_rate	-8.027117	NaN	NaN	NaN
L1.money_supply	-6.886191	657.479287	-0.010	0.992
L1.gdp	-6.000000	NaN	NaN	NaN
L1.fdi	3.961574	NaN	NaN	NaN
L1.trade_gdp	17.595521	NaN	NaN	NaN
L1.oil	-4.512351	127.626407	-0.035	0.972
L1.gold	-4.072823	NaN	NaN	NaN
L2.interest_rate	9.710609	NaN	NaN	NaN
L2.inflation	14.432982	NaN	NaN	NaN
L2.exchange_rate	2.699224	NaN	NaN	NaN
L2.money_supply	6.195685	NaN	NaN	NaN
L2.gdp	-6.000000	0.000000	-0.010	0.992
L2.fdi	1.014437	NaN	NaN	NaN
L2.trade_gdp	-7.698629	NaN	NaN	NaN
L2.oil	5.778311	NaN	NaN	NaN
L2.gold	0.879055	21.407247	0.004	0.997
L3.interest_rate	-4.220243	NaN	NaN	NaN
L3.inflation	-3.406817	NaN	NaN	NaN
L3.exchange_rate	-11.664318	NaN	NaN	NaN
L3.money_supply	-9.060694	NaN	NaN	NaN
L3.gdp	-0.000000	NaN	NaN	NaN
L3.fdi	9.241320	4489.1776	0.002	0.998
L3.trade_gdp	13.853092	949.927998	0.015	0.988
L3.oil	-1.817363	72.769679	-0.025	0.980
L3.gold	-0.819558	NaN	NaN	NaN
L4.interest_rate	-3.792883	NaN	NaN	NaN
L4.inflation	-6.558392	NaN	NaN	NaN
L4.exchange_rate	-24.358961	NaN	NaN	NaN
L4.money_supply	15.623148	NaN	NaN	NaN
L4.gdp	-0.000000	0.000000	-0.031	0.975
L4.fdi	4.272921	2419.382290	0.002	0.999
L4.trade_gdp	6.835022	NaN	NaN	NaN
L4.oil	-1.421828	127.724040	-0.011	0.991
L4.gold	0.066031	13.647687	0.004	0.996
L5.interest_rate	3.028091	417.466979	-0.007	0.994
L5.inflation	2.348386	NaN	NaN	NaN
L5.exchange_rate	9.826497	NaN	NaN	NaN
L5.money_supply	8.837885	NaN	NaN	NaN
L5.gdp	0.000000	NaN	NaN	NaN
L5.fdi	1.158491	NaN	NaN	NaN
L5.trade_gdp	15.670654	464.288692	0.039	0.969
L5.oil	2.613895	NaN	NaN	NaN
L5.gold	-0.630155	NaN	NaN	NaN
L6.interest_rate	-9.436771	NaN	NaN	NaN
L6.inflation	5.414153	151.069780	0.036	0.971
L6.exchange_rate	-12.826781	591.670652	-0.022	0.983
L6.money_supply	-16.122420	NaN	NaN	NaN
L6.gdp	-0.000000	NaN	NaN	NaN
L6.fdi	-4.986392	4620.248735	-0.001	0.999
L6.trade_gdp	-1.051623	NaN	NaN	NaN
L6.oil	9.354370	NaN	NaN	NaN
L6.gold	-0.517907	18.215048	-0.028	0.977

Figure 12: Equation for Gold Prices