Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Research paper

Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia

Audrey Lacroix, Veasna Duong, Vibol Hul, Sorn San, Hull Davun, Keo Omaliss, Sokha Chea, Alexandre Hassanine, Watthana Theppangna, Soubanh Silithammavong, Kongsy Khammavong, Sinpakone Singhalath, Zoe Greatorex, Amanda E. Fine, Tracey Goldstein, Sarah Olson, Damien O. Joly, Lucie Keatts, Philippe Dussart, Aneta Afelt, Roger Frutos, Philippe Buchy

A R T I C L E I N F O

Keywords:
Coronaviruses
Bats
Genetic diversity
Cambodia
Lao PDR

A B S T R A C T

South-East Asia is a hot spot for emerging zoonotic diseases, and bats have been recognized as hosts for a large number of zoonotic viruses such as Severe Acute Respiratory Syndrome (SARS), responsible for acute respiratory syndrome outbreaks. Thus, it is important to expand our knowledge of the presence of viruses in bats which could represent a risk to humans. Coronaviruses (CoVs) have been reported in bat species from Thailand, China, Indonesia, Taiwan and the Philippines. However no such work was conducted in Cambodia or Lao PDR. Between 2010 and 2013, 1965 bats were therefore sampled at interfaces with human populations in these two countries. They were tested for the presence of coronavirus by consensus reverse transcription-PCR assay. A total of 93 samples (4.7%) from 17 genera of bats tested positive. Sequence analysis revealed the presence of potentially 37 and 56 coronavirus belonging to alpha-coronavirus (α-CoV) and beta-CoV (β-CoV), respectively. The β-CoVs group is known to include some coronaviruses highly pathogenic to human, such as SARS-CoV and MERS-CoV. All coronavirus sequences generated from frugivorous bats (family Pteropodidae) (n = 55) clustered with diverse bat α-CoVs previously published. A closely related strain of PEDV, responsible for severe diarrhea in pigs (PEDV-CoV), was detected in 2 Myotis bats. We highlighted the presence and the high diversity of coronaviruses circulating in bats from Cambodia and Lao PDR. Three new bat genera and species were newly identified as host of coronaviruses, namely Macroglossus sp., Megaerops niphanae and Myotis horsfieldii

© 2016 Elsevier B.V. All rights reserved.
(ßCoVs), Gammacoronaviruses, and the recently created group of the Deltacoronaviruses (Woo et al., 2009, 2012). Their host range is very wide and includes both mammalian and avian species. Coronaviruses can cause acute and chronic respiratory, enteric, neurological and hepatic diseases in their hosts (Weiss and Navas-Martin, 2005).

Coronaviruses of animal origin were responsible for the Severe Acute Respiratory Syndrome (SARS) outbreak in 2003–2004, which was associated with deaths in Hong Kong, China, South East Asia and North America (Centers for Disease Control and Prevention (CDC), 2003; Peiris et al., 2003) and the current epidemics of MERS in the Arabian Peninsula (Alsahafi and Cheng, 2016) and Korea (Choi, 2015).

Bats have been identified as natural reservoirs for several zoonotic viruses, such as henipaviruses (Young et al., 1996; Chua et al., 2000; Halpin et al., 2000) lyssaviruses variants (Banyard et al., 2014) and Ebola virus (Leroy et al., 2005, 2009). Bats have been identified as the natural host of the SARS-CoV, (Wang et al., 2006), and recently, the NeoCoV from the clade the Middle Eastern Respiratory Syndrome (MERS-CoV) was detected in a sub-Saharan bat (Neoromicia capensis) besides its camel host (Corman et al., 2014). A growing number of coronaviruses have been detected in bats since the SARS-CoV outbreak (Chu et al., 2006, 2008; Lau et al., 2007, 2010, 2012; Watanabe et al., 2010; Gouilh et al., 2011; Tsuda et al., 2012; Wacharapluesadee et al., 2013, 2015; Anindita et al., 2015; Xu et al., 2016, Chen et al., 2016, Kim et al., 2016) including a high diversity of coronaviruses, recently detected in five Thai provinces neighboring Cambodia (Wacharapluesadee et al., 2013, 2015).

The order Chiroptera represents approximately 20% of all living mammal species (Teeling et al., 2005). Over 25% of the world’s bat diversity is found in South-East Asia, established in many natural, urban and suburban environments (Kingston, 2013). Seventy species of bats have been described so far in Cambodia whereas ninety species are known in Lao PDR, including Yangochiroptera and Vinypterchoptera (Matveev, 2005; Sarak et al., 2013). Apart from Singapore, bats are hunted for food or preparation of traditional medicines and are found in food markets throughout South-East Asia, despite bats are protected by the law in these countries (Lee et al., 2014; Mildenstein et al., 2016). Bat farms, where artificial roosts are erected to facilitate bat guano harvest to serve as agricultural fertilizer, are becoming common in South-East Asia, including in Cambodia (Thi et al., 2014) In Thailand, coronaviruses belonging to the lineages B and C of betacoronaviruses were detected in bat guano (Gouilh et al., 2011; Wacharapluesadee et al., 2013). Moreover, several studies evidenced the presence of coronavirus belonging to the betacoronavirus group in close areas (He et al., 2014; Anindita et al., 2015; Wacharapluesadee et al., 2015).

Due to evolving land-use such as deforestation, infrastructure development, urban development, and agricultural expansion, bat populations are settling in areas closer to human dwellings (Jung and Threlfall, 2016), increasing the likelihood of contact between bats and humans. Socio-economic-driven changes of the environment are also impacting the bats and thus may affect virus biodiversity (Looi and Loo, 2010). stay hunters; in Cambodia the majority of samples were collected at markets, with a small number collected from bats captured by subsistence hunters; in Cambodia the majority of samples were collected at wild meat restaurants where bats were butchered, prepared and served, with additional samples obtained from freshly trapped bats (live and dead) held by hunters and middle-men in rural communities, and at a bat guano farm. In this study, sterile swabs were used to collect freshly voided fecal samples from tarpaulins placed under the guano farm roosts. Rectal and oral swabs and tissue samples were also collected from individual animals that had died of natural causes and were found fresh beneath bat guano farm roosts. Oral and rectal swabs were collected opportunistically from fresh dead and live bats at the market, hunting and restaurant locations. Swab and tissue samples were placed in separate cryovials in VTM and immediately stored on liquid nitrogen in dewars for transport to the laboratory where they were stored in −80 °C freezers until testing.

2.3. RNA extraction and nested-RT-PCR

Viral RNA was extracted using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) according to the supplier’s instructions. Reverse transcription (RT) was performed using SuperScript III

Table 1	Primers used for the detection of CoVs.	Gene	Round	Primer name	Sequence 5′-3′
RdRp	1st	CoV-Fwd1	GGTGCGAYTAYCCHAARTGTA		
RdRp	1st and 2nd	CoV-Rvs2	CACATCAGCAWYAAATCATATA		
RdRp	2nd	CoV-Fwd2	GAYTAYCHAARTGTYAYAGACG		
2.4. Sequence analysis

Sequences were assembled and analyzed using CLC Genomics Workbench version 3.6.1 and BioEdit, version 7.0.9.1. Sequences were aligned with a representative set of CoV sequences retrieved from GenBank using Seaview, version 4.5.4 (Gouy et al., 2010). Phylogenetic trees based on RNA sequences were constructed using the Maximum Likelihood method with the GTR + G + I model and bootstrap values (BP) were calculated after 1000 replicates. The best evolutionary model was determined using MEGA version 6.06. Trees displaying protein sequences were constructed using the neighbor joining method and bootstrap values were calculated after 1000 replicates. Phylogenetic and molecular evolutionary analyses were conducted using Seaview version 4.5.4.

2.5. Geographic data

Land cover data was obtained from GlobeLand30 service operated by the National Geomatics Center of China (NGCC, 2014). Initial data was produced in 2010 with an update in 2014. Images used for GlobeLand30 (GLC30) classification were multispectral images with a 30-meter resolution. Six classes of land cover were considered: crop-land, forest, grassland, wetland, water bodies and human settlement area. Land cover structure for each sampling location of sampling is described in Supplementary Table 3. Data mapping was conducted with Quantum GIS, version 2.8.2.

3. Results

3.1. Sampling location, land cover use and hosts

A total of 1965 bats were sampled in 44 locations from nine provinces in Cambodia and eight provinces in Lao PDR (Supplementary Fig. 1). The characteristics of the environments around sampling site are described in Supplementary Table 3. Bats originating from 5 districts (i.e. Kasi and Vang Vieng districts in Lao PDR and Choom Khshant, Kean Savy, and Moung Russi district in Cambodia) represented 60% of all the bats collected. Sampled bats were wild, live captured during phase 1 (n = 322), where as in phase 2 (n = 1643) they were: hunted by villagers for local consumption (n = 455); for sale in markets (n = 791); being butchered and prepared for sale at wild meat restaurants (n = 392) or on a bat guano farm (n = 5) (Supplementary Table 3). Apart from bats trapped during phase 1 or animals sampled on the guano farm (site reference C6) during phase 2, the exact location where the animals were captured remained imprecise. However, the chiroptera were always captured by hunters in areas close to the location where the animals were sampled, i.e. mostly in areas at the border of deep forests, in mixed agricultural zones with sparse forests, in suburban zones close to sparse forest, in natural protected forest areas, in places close to water surfaces or in limestone karst areas with mountain forests (Supplementary Fig. 1, Supplementary Table 3). Landscape analysis around each sampling location led to a typology comprising four main groups of land cover composition (Supplementary Table 3, Supplementary Fig. 1): 1) Deep forest area, well isolated from human settlements (sites: C3, C25, C29, C30, C32, C33, C34, C41, C42 and C43), 2) Isolated pockets of croplands surrounded by forest, very often forest is under fragmentation (sites: C2, C12, C16, C18, C19, C21, C22, C23, C24, C26, C27, C28, C30, C35, C36, C37, C38, C40 and C44), 3) Forest edge, mixed agricultural zones with sparse forests (sites: C5, C7, C13 and C14) and 4) Typically agricultural zones, villages and suburban zones, often close to highly fragmented forests (sites: C1, C4, C6, C8, C9, C10, C11 and C20). For sites C1, C4, C6, C8 and C9 a key parameters was the presence of wetlands in the immediate vicinity.

3.2. Detection of coronaviruses

Coronavirus RNA was detected in 93 bats (4.7%) out of 1965 animals tested. Coronavirus RNA was detected in 21 of the 44 sites with detection rates varying depending upon sites (Table 2). However, it is not possible to run an in depth statistical analysis owing to the fact that sampling was not developed for that purpose and data are therefore biased. Detailed data are presented in Supplementary Table 3. Nevertheless, in highly transformed areas (mostly croplands and urbanized areas), bat biodiversity was lower while the detection rate of coronaviruses was higher (Table 2, Supplementary Table 3). The phylogenetic analysis based on 320-bp nucleotides of the 93 sample sequences and 34 reference sequences from GenBank indicated that 37 sequences belonged to the αCoV genus while the 56 others fell into the βCoV genus (Fig. 1). Out of the 56 bat-βCoVs, 55 belonged to the lineage D. The remaining strain detected (PREDICT-CoV-34_GT1-3_Pisp) belonged to the lineage C which comprises MERS-CoV and MERS-CoV-related viruses. The 55 lineage D bat-βCoVs clustered into four subclusters (D1, D2, D3 and D4) out of the five subclusters identified in this group D (Fig. 1). The subcluster D1 (BP = 100) comprised 7 different βCoVs, 2 sequences detected in pteropodid bats from Lao PDR and 5 from Cambodia. The subcluster D2 (BP = 80), contained 17 βCoVs detected from the Cambodian provinces of Preah Vihear, Stung Treng and Battambang. The subcluster D3 (BP = 45) contained 24 bat-βCoVs, which were mostly obtained from animals in Lao PDR (n = 22) while only 2 were detected in bats from Cambodia. The subcluster D4 comprised the remaining bat-βCoVs (BP = 78), detected in bats from Lao PDR only. Bat-αCoVs were unevenly distributed within three subclusters (Fig. 1). The αCoV subcluster 1 included 32 sequences from (Invitrogen, San Diego, CA). The PCR mixture (final volume: 25 μl) contained 2 μl of cDNA, PCR buffer (50 mM Tris-HCl (pH 9.0); 50 mM NaCl; 5 mM MgCl2), 200 μM (each) deoxynucleoside triphosphates (dNTPs), 20 pmol of each primer targeting the RdRp gene (adapted from Watanabe et al., 2010) (Table 1), and 1 U of HOT FIREPol® DNA Polymerase (Solis BioDyne, Tartu, Estonia). The PCR mixture was incubated at 95 °C for 12 min, followed by 35 cycles at 95 °C for 30 s, 50 °C for 30 s, and 72 °C for 1 min, and by a final extension at 72 °C for 5 min. A nested PCR amplification using forward primer CoV-Fwd2 and the same reverse primer, was performed on 1 μl of the primary PCR products, using the same amplification conditions. The amplification of sequences specific to CoVs was attested by the visualization of a 440 bp and a 434 bp fragment after the first and second PCR round, respectively. To limit the risk of contamination, RNA extraction, reverse transcription-PCR (RT-PCR), nested-PCR and gel electrophoresis were carried out in separate rooms. In addition, negative controls (water) were included in each run of the nested-RT-PCR assay and results were validated only if these controls tested negative while the positive controls (plasmids prepared by cloning the gene of interest) had to test positive. Amplification of longer fragments of the RdRp gene (i.e. 1370 bp) was performed on cDNA of 38 positive samples, by a nested RT-PCR using gene-specific primers designed by multiple alignments of known CoV sequences from the same clusters. Amplified product were sequenced in both directions by direct Sanger sequencing in commercial facilities (Macrogen, Inc., Seoul, Korea). Sequence data were deposited in GenBank and accession numbers ranging from KX284902 to KX520662 and KY010629 to KY010666 are provided in Supplementary Table 1. Since many coronaviruses from different bat genera were detected, and for the sake of clarity, a short name of the strain, the sample code, and the host classification were abbreviated to be used in the sequence nomenclature (Supplementary Table 2). For example, the sequence “Bat coronavirus 512/2005/PREDICT-KHP1-3-PTR1-0109”, corresponding to the bat coronavirus 512/2005 strain (BatCoV-512), detected in the sample KHP1-3-PTR1-0109 (P109), from a Scotophilus kuhlii (Sku) was abbreviated as: BatCoV-512_P109_Sku. The abbreviations used to code the bat classification, are listed in the Supplementary Table 2.

A. Lacroix et al. / Infection, Genetics and Evolution 48 (2017) 10–18
The α suborder, family Pteropodidae, comprised 78.1% of the bats tested positive for a CoV RNA. The β suborder, family Megadermatidae, had a proportion of 11.3% positive bats.

Cambodian bats. The αCoV subcluster 2 included two αCoVs from Cambodia, while the αCoV subcluster 4 contained one sequence from Cambodia and two from Lao PDR. The same phylogenetic clustering was seen with analyses using the amino acid sequences. A similar topology was obtained when analyzing the protein sequence (Supplementary Fig. 2). The phylogenetic analysis based on 38 longer sequences of 1370 bp (Fig. 2) and the corresponding 454 amino acid sequence (Supplementary Fig. 3) confirmed the tree topology described on shorter sequences in Fig. 1 and Supplementary Fig. 2, respectively. Coronavirus RNA was detected in bats belonging to 10 distinct genera. The proportion of CoVs-positive bats significantly varied depending upon the bat genus (Pearson’s Chi², p < 0.0001). The highest detection rates were found for the long-tongue fruit bats (Macrogrussos sp.: 20%), the nectar cave bat (Eonycteris spelaea: 11.2%) and the lesser Asian bat (Scotophilus sp.: 9.3%). The 37 αCoV-positive bats belonged to five genera of the Yangchiropterida suborder, i.e. Rhinolophus (n = 1), Myotis (n = 2), Scotophilus (n = 3), Pipistrellus (n = 1) and Hipposideros (n = 2). A total of 56 animal tested positive for a βCoV, out of which 55 belonged to five genera of Yinpterochiroptera suborder, family Pteropodidae: i.e. Rousettus (n = 25), Cynopterus (n = 15), Eonycteris (n = 10), Macrogrussos (n = 4), Megaerops (n = 1) whereas the bat infected by the PREDICT-CoV-34 strain was a Yangchiroptera of the genus Pipistrellus (Fig. 2). All αCoV RNA were detected in insectivorous bats while most of the βCoV RNA were detected in fruit bats.

Table 2
Detection rates of coronavirus RNA in bats and geographical origin of the positive animals.

Bat Family	Total no. of samples (percentage (%))	Origin of positive samplesa	Cambodia No. of samples (no. of positive)	Lao PDR No. of samples (no. of positive)		
		H	W	G		
Emballonuridae	148 (0)	118 (0)	30	–	148 (0) C9, C1, C2, C13	0 (0)
Taphozus sp.	148 (0)	0 (0)	0 (0)	0 (0)	0 (0)	
Hipposideridae	62 (3.2)	7 (0)	–	–	4 (0) C31, C33	58 (2) C25
Asellius sp.	7 (0)	0 (0)	0 (0)	0 (0)	0 (0)	
Hipposideros sp.	55 (3.6)	51 (2)	4	–	4 (0) C31, C33	51 (2) C19, C14(+), C21, C23, C24
Megadermatidae	21 (0)	–	21	–	21 (0) C32, C33, C41	0 (0)
Megaderma sp.	21 (0)	0 (0)	0 (0)	0 (0)	0 (0)	
Pteropodidae	1124 (4.9)	341 (4.4)	183	158	318 (15) C51(+), C7, C10(+), C12(+), C11, C29, C30, C32(+), C34, C35, C36, C37(+), C38(+), C39(+), C40, C41, C42, C44	708 (30) C21, C23, C24, C26, C27, C28
Cynopterus sp.	341 (4.4)	183	158	–	318 (15) C51(+), C7, C10(+), C12(+), C11, C29, C30, C32(+), C34, C35, C36, C37(+), C38(+), C39(+), C40, C41, C42, C44	23 (0) C21, C23, C24, C26, C27, C28
Eonycteris sp.	89 (11.2)	61	28	–	28 (4) C37(+), C38(+), C39(+), C40	61 (6) 16, C21(+), C23(+), C24(+)
spelaea	61 (6)	28	4	–	28 (4) C37(+), C38(+), C39(+), C40	61 (6) 16, C21(+), C23(+), C24(+)
Macrogrussos sp.	28 (14.3)	28	–	–	21 (4) C7, C10(+)	7 (0) C21, C24
Megacrops niphanae	130 (0.8)	122	8	–	16 (1) C5, C7, C29, C30, C34, C39	114 (0) C13, C14, C15, C16, C20 C21 C23, C24, C26, C27
Megacrops sp.	12 (0)	–	12	0	12 (0) C36, C37	0 (0)
Pteropus sp.	10 (0)	10	–	–	10 (0) C11	0 (0)
Rousettus sp.	514 (4.9)	506	8	–	11 (1) C10, C11, C33(+), C34, C37	503 (24) C14, C15(+), C16(+), C17, C20, C21(+), C22, C23(+), 24(+)
Rhinolophidae	154 (0.7)	154 (0.7)	102	52	52 (1) C31, C33(+), C37, C41, C42, C43	152 (0) C14, C21, C23, C25
Rhinolophus sp.	154 (0.7)	102	52	–	52 (1) C31, C33(+), C37, C41, C42, C43	102 (0) C14, C21, C23, C25
Vespertilionidae	456 (7.7)	1 (0)	–	1 (0)	0 (0)	0 (0)
Harpiopterus sp.	1 (0)	1 (0)	0 (0)	0 (0)	0 (0)	
Io	32 (0)	32	–	–	0 (0) C4(+)	32 (0) C18
Myotis horsfeldi	50 (4)	50	–	–	50 (2) C4(+)	0 (0)
Myotis ricketti	5 (0)	5 (0)	0 (0)	0 (0)	0 (0)	
Pipistrellus coronandria	29 (6.9)	29	–	–	29 (2) C2(+)	5 (0) C20
Scotophilus sp.	338 (9.3)	333	–	5 (1)	338 (31) C1(+), C6(+), C8, C9(+)	0 (0)
Tylopus sp.	1 (0)	1 (0)	0 (0)	0 (0)	0 (0)	
Total	1965 (4.7)	1638	322	13	51 (5) 1059 (61)	906 (32)

Bat families are shown in bold.
Sites where bats tested positive for coronavirus are in bold and marked with (+).

a H: hunted bats, sold in markets of restaurants; W: wild bats, caught in their natural environment; G: bats collected in bat guano farms.

3.3 Phylogenetic clustering of CoVs according to host and location

1965 bats were from 17 different genera and 5 families. Eighty percent of the samples belonged to two bat families only, Vespertilionidae (n = 456) and Pteropodidae (n = 1124). In Lao PDR, 95.7% of the samples belonged to the Yinpterochiroptera suborder, including families Pteropodidae (78.1%), Hipposideridae (6.3%), and Rhinolophidae (11.3%).
while only 4.3% were Yangochiroptera suborder from the family Vespertilionidae. In Cambodia, 35% of the bats collected belonged to suborder Yinpterochiroptera, and suborder Yangochiroptera accounted for the remainder of the collected samples (75%), including families Emballonuridae and Vespertilionidae. Only sequences from fruit bats from Cambodia and Lao PDR from the genera Rousettus, Eonycteris, Macroglossus, Cynopterus and Megaerops were found in the lineage D of βCoVs. Subcluster D1 contained two sequences from Macroglossus sp. from Cambodia (PREDICT-CoV-22 strains) and five virus sequences from Eonycteris spelaea from Lao PDR and Cambodia (PREDICT-CoV-22, R91, R77, R74, R58). Seventeen sequences were found in Cynopterus (PREDICT-CoV-24 strains, R96, R75, R72, R65, R59, R71), Rousettus sp. and Megaerops niphanae (PREDICT-CoV-24) collected in Preah Vihear and Battambang in 2010 and 2013, respectively. They fell into subcluster βCoV-D2 and displayed 98% to 100% of amino acid similarity with CoV sequences previously detected in Cynopterus sphinx and Hipposideros lekaguli in South East Thailand and China, respectively (Wacharapluesadee et al., 2015; Xu et al., 2016). Similarly, the βCoV-D3 subcluster comprised 24 sequences found in Rousettus, Eonycteris and Macroglossus and CoVs previously identified in pteropodids from Hong Kong, Kenya, Thailand and Indonesia (genera Rousettus and Dobsonia) (Lau et al., 2010; Wacharapluesadee et al., 2015; Anindita et al., 2015). They displayed 96.9% to 100% of amino acid identity. Seven sequences detected in Rousettus bats from Lao PDR and displaying 100% of amino acid identity, formed their own branch in subcluster D4. Additionally, the PREDICT-CoV-34 strain, detected in Pipistrellus coromandra fell into lineage C of βCoV (BP = 100) which contained sequence from MERS-CoV as well as sequences detected in Pipistrellus from Hong Kong, Neoromicia from South Africa and Myotis from China (Annan et al., 2013; Woo et al., 2006; Corman et al., 2015, 2014; Xu et al., 2016). The PREDICT-CoV-34 strain showed the highest similarity to the bat coronavirus isolate JPDB144 recently described in Myotis daubentonii in China (89.5% nucleic acid identity and 95% amino acid identity) (Xu et al., 2016). Sequences from the subcluster 1 displayed similar traits and were only detected in Cambodian Scotophilus (n = 31), with the exception of one sequence detected in Cambodian Scotophilus (BatCoV512_SL2-9_Pisp). The αCoV subcluster 4 contained sequences related to the strain HKU10, detected in various bat genera in Thailand and Hong Kong (Gouilh et al., 2011; Lau et al., 2012; Wacharapluesadee et al., 2015). In this subcluster, two sequences found in Hipposideros larvatus (PREDICT-CoV-53 strains) from Lao PDR formed their own branch (subcluster αCoV_4c), supported by a
sequences. The tree was constructed using a Maximum Likelihood method with the GTR + G + I model. Bootstrap values (BP) were calculated after 1000 replicates. Tree is rooted to an avian coronavirus (FJ376622). The sequences detected in this study are shown with a bullet. Accession numbers related to the sequences are presented in Supplementary Table 1.

Fig. 2. Sequence analysis of 1370 nucleic acid fragments of the RdRp gene of coronavirus sequences. The tree was constructed using a Maximum Likelihood method with the GTR + G + I model. Bootstrap values (BP) were calculated after 1000 replicates. Tree is rooted to an avian coronavirus (FJ376622). The sequences detected in this study are shown with a bullet. Accession numbers related to the sequences are presented in Supplementary Table 1.

Fig. 2. Sequence analysis of 1370 nucleic acid fragments of the RdRp gene of coronavirus sequences. The tree was constructed using a Maximum Likelihood method with the GTR + G + I model. Bootstrap values (BP) were calculated after 1000 replicates. Tree is rooted to an avian coronavirus (FJ376622). The sequences detected in this study are shown with a bullet. Accession numbers related to the sequences are presented in Supplementary Table 1.

4. Discussion

In this study, we report for the first time, the detection and description of coronavirus in chiroptera from Cambodia and Lao PDR. This report is of importance for public health as these countries host a high biodiversity of bats and the interface at which humans and chiroptera are in close proximity. Bats are used for food and reared as a source of guano. Searching for bat-borne viruses known to be potentially pathogenic for humans such as coronaviruses is therefore of high importance. A significant diversity of CoVs was found in pteropodids both in Cambodia and Lao PDR. Overall, CoV detection rates (6.5% in Lao PDR and 4.85% in Cambodia) were in the same range as those found in Thailand (7%) (Wacharapluesadee et al., 2015), but lower than those reported in Hong Kong (12%) or Philippines (29.6%) (Tsuda et al., 2012; Woo et al., 2006). Interestingly, for the first time, coronaviruses were detected in Megaerops niphanae and Myotis horsfieldii.

In this study, αCoVs were mostly associated with Yangochiroptera bats whereas βCoVs were found in Yinpterochiroptera bats, with the exception of three viruses, i.e., 2 CoVs from the subcluster 4 of βCoVs were mostly associated with Hipposideridae, and one βCoV from lineage C, detected in Pipistrellus. In Lao PDR, βCoVs from lineage D were all associated with pteropodids whereas αCoVs were detected from hipposiderids. In Cambodia, an association between host and virus clade was observed between bats from the genus Myotis and the αCoVs genetically related to PEDV strains. These results are in line with conclusions of previous studies: all CoVs detected in bats belonging to the Myotis genus were always αCoVs (Tang et al., 2006; Woo et al., 2006; Dominguez et al., 2007; Gloza-Rausch et al., 2008; Osborne et al., 2011; August et al., 2012; Kemenesi et al., 2014; Fischer et al., 2016). βCoVs from lineage D have frequently been found in frugivorous bat species from Madagascar, Kenya, Thailand, and Hong Kong (Woo et al., 2007; Anindita et al., 2015; Razanajatovo et al., 2015; Wacharapluesadee et al., 2015; Xu et al., 2016). A similar trend was observed in this study, as βCoVs from the lineage D were only affiliated with frugivorous bats.

Although only part of the samples could yield a longer sequence, phylogeny based on these sequences was similar to that based on short sequences. This suggests that the phylogeny based on short sequences is reliable. Unfortunately sequencing of coronavirus can be challenging, due in part, to limited nucleic acid in field samples, as well as the high genetic diversity of the viruses (Drexler et al., 2010; King et al., 2012). Although some findings in this study suggest the possibility of host specificity, in particular for the genera Hipposideros and Myotis (associated to αCoVs from the subclusters 4c and 2 respectively), we also report shared hosts from different families for both αCoV and βCoV. For example, Pipistrellus bats from the same location were found to harbor αCoV from the subcluster 1 and lineage C βCoVs sequences. Coronavirus from the latter lineage, which also includes the highly pathogenic MERS-CoV (Reusken et al., 2016), have been detected in humans, camels, insectivorous bats (Vespertilionidae) and frugivorous bats (Phyllostomidae) (Reusken et al., 2010; Annan et al., 2013; Wacharapluesadee et al., 2013; Corman et al., 2014; Wang et al., 2014, Munster et al., 2016). There have also been found differences in the percentage of seropositive between Rhinolophus ferrumequinum and Myotis myotis in studies of lyssavirus of European bat colonies (Serra-Cobo et al., 2013).

Pipistrellus coromandra is a synanthropic bat and the presence of CoVs in the same clade with pathogenic viruses raises the question of the potential risk for human health resulting from deforestation and
urbanization that creates habitats for these bats. *Pipistrellus* bats, like *Myotis*, comprise species with differing habitats. However, in this work, *Pipistrellus coromandra* was found in deforested and agricultural regions, confirming thus its synanthropic behavior in the study area considered. Further risk-assessment studies should focus on the correlation between landscape change, land use and deforestation that may affect the distribution of human-dwelling bats and therefore the coronaviruses they harbor. This risk in Cambodia might be worsened by the fact that *Pipistrellus* bats are hunted for food. Another related risk might be the development of guano farms, also associated with agriculture by the fact that *Pipistrellus* bats are hunted for food. Another related risk might be the development of guano farms, also associated with ag-
culturing (Stibig et al., 2007; Broadhead and Izquierdo, 2010). Bats reared for guano in Thailand have shown to harbor lineage C coronaviruses they harbor. This risk in Cambodia might be worsened by the fact that *Pipistrellus* bats are hunted for food. Another related risk might be the development of guano farms, also associated with ag-
culturing. Furthermore, hunters and restaurant workers at sampling sites described being bitten by bats and were exposed to urine and feces (and in some cases blood'). Bats on Cambodian guano farms are wild and free-ranging, with farmers constructing artificial roosts adjacent to their homes in order to attract bats. Farmers, who wear no protective equipment or clothing, collect guano voided onto tarpaulins or nets laid beneath the roosts and are regularly urinated and defecated upon and sometimes bitten. The risk of contamination by direct contact through urine and feces, or aerosols must therefore be considered.

The hypothesis of a potential case of horizontal transmission between livestock and bats can be raised with the PEDV-like viruses, detected in *Myotis horsfieldii*. Another aCoV closely related to PEDV-CoV was recently detected in Brazil in Mexican free-tailed bats (*Tadarida brasiliensis*) (Simas et al., 2015). Not only is this first report of the presence of this coronavirus in *Myotis horsfieldii*, but the strain detected seems genetically closely related to PEDV strains that infect swine and cattle (Song and Park, 2012). *Myotis* bats also belong to the *Vespertilionidae* family and dwell in dark places including houses, farms and barns. Investigating the presence of pig farms in areas where coronavirus are detected, and the circulation of Myotis bats in the surroundings, would provide data to explore potential relations between bats and livestock. The hypothesis of a possible origin of PEDV from bats as well as a potential cross-species transmission has been raised by previous studies (Huang et al., 2013; Tang et al., 2006) and would benefit from further investigation. To date, only a limited number of studies have investigated the capacity of bat coronaviruses to be infectious to other mammals, including humans. This is notably due to a lack of data on the spike protein of these bat viruses. Indeed, the spike protein is the primary determinant for the cell tropism and pathogene-
sis (Belouzard et al., 2012).

Our study had some limitations related to sampling procedure that may have affected results. Many of the samples (n = 1838) were collected from dead bats intended for human consumption. If rectal swab is the sample which represents the highest probability for detecting coronaviruses in bats (Watanabe et al., 2010), it is possible that virus survival in dead animals might be affected. The health status of the animals sampled in our study was unknown but previous studies suggest that bats might not develop disease during coronavirus infections. RNA viruses seem to have little pathogenic effect on bat's life cycle (Li et al., 2005) which may explain that bats are excellent reservoirs for zoonotic viruses including CoVs (Omatsu et al., 2007; Brook and Dobson, 2015; Han et al., 2015). Seasonality has been shown for some zoonotic virus infection rates in Chiroptera. Reproduction periods, female status and resource availability have been proven to affect the prevalence in bats infected by other RNA viruses (Middleton et al., 2007; Plowright et al., 2008; Wacharapluesadee et al., 2010; George et al., 2011; Amman et al., 2012; Hayman, 2015; Amengual et al., 2007). Greater shedding over such periods increase the probability of transmission of viruses to humans and the risk of emerging zoonoses (Serra-Cobo et al., 2013). Seasonality was not explored in our study due to the heterogeneity of the sampling session over time, but it would be interesting to include these parameters in further investigations. Another limitation in this work is the lack of molecular identification of bats. The collection of bat samples for barcoding or Cyt identification was not part of the field procedure and thus no bat sample has been collected during the field work. The identification was therefore limited to the genus.

Almost all the bats which tested positive for coronaviruses were meant to be consumed by local human populations. The examples of Ebola or SARS-CoV outbreaks already suggested that wildlife hunting and consumption provided opportunities for human contamination (Bengis et al., 2004; Xu et al., 2004; Leroy et al., 2009). In Cambodia and Lao PDR, bat consumption is widespread (Mickleburgh et al., 2009; Lee et al., 2014; Mildenstein et al., 2016). These practices may increase the risk of human exposure to viruses through hosts that may be reservoirs for pathogens. Practices such as hunting, selling or cooking bats might represent efficient interfaces for virus transfer from bats to humans, and therefore need to be further investigated. It demonstrates the importance to develop guidance for rural communities exposed to bats, on how to deal with them and the potential virus threat.

The diversity of bat coronaviruses found circulating in Cambodia and Lao PDR suggests a correlation may exist between coronaviruses and host diversity which is at least for part the consequence of anthropogenic natural environment change, mostly deforestation. The natural landscapes surrounding the collection points correlated with the known biology and ecology of the bats sampled (Supplementary Table 3). Pteropodids and vesperilionids, known to roost in caves (*Eonycteris* or *Rousettus*, and *Ju* respectively), were collected close to karst areas in Lao PDR. In Cambodia, the *V painstakingly* bats belonged to 5 genera of pteropodids known to mostly live in trees (*Cynopterus*, *Macroglousis*, *Megacops*, *Pteropus*, *Rousettus*). Forest coverage throughout Continental Southeast Asia has drastically evolved between 1990 and 2015 (Supplementary Fig. 4). Cambodia is the country where forest loss has been the most intensive with 20% of the forest surface lost since 1990, while almost 50% of the remaining surface is fragmented and 70% of the forest is in a "perforation" state, associated with agricultural development (WWF, 2013). In Lao PDR, the forest coverage looks stagnant (73% in 1990, 81% in 2015), but the structure of the forest has changed. A typical feature is the fragmentation of the natural forest and its replacement by cultivated areas. However, compared to other countries in the region, the forest coverage remains the highest in Lao PDR and shows signs of resilience. This is mostly due to the geology of the country which is mainly karstic and thus less useful for agriculture. For both countries the demographic growth remains a key point for natural environment evolution, forest loss and dynamic of urban and suburban expansion. This environmental change is affecting the biodiversity of bats and therefore that of their coronaviruses. Continued deforestation, agricultural expansion and suburban growth might facilitate encounters between humans and coronaviruses from human-dwelling bats that could potentially become harmful for humans, specific attention and studies should therefore be devoted to this aspect.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.meegid.2016.11.029.

Conflict of interest

Philippe Buchy is currently an employee of GSK vaccines.

Acknowledgements

This study was made possible by the generous support of the American people through the United States Agency for International Development (USAID) Emerging Pandemic Threats PREDICT project (cooperative agreement number GHN-A-00-09-00010-00). We thank the governments of Cambodia and Laos for permission to conduct this study. We are grateful to the WCS teams and all students who helped collecting field samples. We also extend our gratitude to Dara Kong and Seryoth Long for technical support in laboratory diagnostic. Authors are also grateful to Neil forestry, from the Center for Biodiversity work.
Conservation of the Royal University of Phnom Penh, for his help and advice on species identification. We also thank Ann Dinh for her help with proof reading this document.

References

Alshafai, A.J., Cheng, A.C., 2016. The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012–2015. Int. J. Infect. Dis. 111, 45–44.

Amengual, B., Boughry, H., López-Roig, M., Serra-Cobo, J., 2007. Temporal dynamics of European bat Lyssavirus type 1 and survival of Myotis myotis bats in natural colonies. PLoS One 2, e666.

Amman, B.R., Carroll, S.A., Reed, Z.D., Sealy, T.K., Balinandi, S., Swanepoel, R., Kemp, A., Anum, A., Altimaro, F., Tallo, M., Yuen, K.-Y., 2012. Novel coronavirus in a child with respiratory distress syndrome in the United Kingdom. Vector Borne Zoonotic Dis. 12, 530–533.

Banyard, A.C., Evans, J.S., Luo, T.K., Fooks, A.R., 2014. Lyssavirus and bats: emergence and zoonotic potential. Vet. Med. 23, 172–180.

Centers for Disease Control and Prevention (CDC), 2003. Update: outbreak of severe acute respiratory syndrome-related coronavirus in Hong Kong. MMWR Morb. Mortal. Wkly. Rep. 52, 459–459.

Chu, D.K.W., Poon, L.L.M., Chan, K.H., Chen, H., Guan, Y., Peiris, J.S.M., 2006. A new coronavirus associated with severe respiratory illness. Nature 440, 406–410.

Huang, Y.-W., Dickerson, F.C., Peiris, J.S.M., Poon, L.L.M., Wang, S.Y.H., Chan, K.-H., Zheng, B.-J., Yuen, K.-Y., 2007. Complete genome sequence of coronavirus HKU12 from Chinese horseshoe bats reveals a much smaller spike gene with a different evolutionary lineage from the rest of the vireology. J. Virol. 81, 438–439.

Lau, S.K.P., Woo, P.C.Y., Li, K.S.M., Huang, Y., Wang, M., Lam, C.S.F., Xu, H., Guo, R., Chan, K.-H., Zheng, B.-J., Yuen, K.-Y., 2010. Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU12 belonging to a novel coronavirus betacoronavirus subgroup. J. Virol. 84, 11385–11394.

Lee, T.M., Sigouin, A., Pinedo-Vasquez, M., Nasi, R., 2014. The harvest of wildlife for bushmeat and traditional medicine in East, South and Southeast Asia: current knowledge base, challenges, opportunities and areas for future research. Center for International Forestry Research (CIFOR) (Bogor, Indonesia).

Leroy, E.M., Boinaud, A., Mondevonde, P., Pourrut, X., Gonzalez-Jaen, J.-P., Muyembe-Tamfum, J.-F., Formenty, P., 2009. Human Ebola outbreak resulting from direct exposure to fruit bats. Nature 461, 708–710.

Loo, I.-M., Saphampithak, P., Bittner, R., Lee, J., Koelle, K., 2014. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault’s rousettes to Pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J. Virol. 88, 11900–11918.

Loo, I.-M., Saphampithak, P., Bittner, R., Lee, J., Koelle, K., 2014. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault’s rousettes to Pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J. Virol. 88, 11900–11918.

Loo, I.-M., Saphampithak, P., Bittner, R., Lee, J., Koelle, K., 2014. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault’s rousettes to Pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J. Virol. 88, 11900–11918.

Loo, I.-M., Saphampithak, P., Bittner, R., Lee, J., Koelle, K., 2014. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault’s rousettes to Pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J. Virol. 88, 11900–11918.

Loo, I.-M., Saphampithak, P., Bittner, R., Lee, J., Koelle, K., 2014. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault’s rousettes to Pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J. Virol. 88, 11900–11918.

Loo, I.-M., Saphampithak, P., Bittner, R., Lee, J., Koelle, K., 2014. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault’s rousettes to Pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J. Virol. 88, 11900–11918.
Tang, X.C., Zhang, J.X., Zhang, S.Y., Wang, P., Fan, X.H., Li, L.F., Li, G., Dong, B.Q., Liu, W., A. Lacroix et al. / Infection, Genetics and Evolution 48 (2017) 10

Stibig, H.J., Stolle, F., Dennis, R., Feldkötter, C., 2007. Forest cover change in Southeast Asia. Ecosystems 10, 77.

Reusken, C.B., Raj, V.S., Koopmans, M.P., Haagmans, B.L., 2016. Cross host transmission in placentotropic coronaviruses reveals unique group and subgroup features. J. Virol. 81, 1574–1585.

Woo, P.C.Y., Lau, S.K.P., Lam, C.S.F., Cheung, S., Hu, S.K., Lau, S.K.P., Yuen, K.Y., 2014. Bat origins of MERS-CoV support the hypothesis of Nipah virus in bats from eastern Thailand. Vector Borne Zoonotic Dis. 14, 190–197.

Fan, Q., Feng, J., Zhang, H., Tu, C., 2016. Detection and characterization of diverse alpha- and betacoronaviruses from bats in China. Virol. Sin. 31, 69–77.

Young, P.L., Halpin, K., Selleck, P.W., Field, H., Gravel, J.L., Kelly, M.A., Mackenzie, J.S., 1996. Serologic evidence for the presence in Perupus fruit bats of a paramyxovirus related to equine morbillivirus. Emerg. Infect. Dis. 2, 239–240.