Qualitative and quantitative analyses of three antimalarial plants of Ivorian floral

Aby Brou Hervé, Kabran Guy Roger Mida, Benié Anoubilé, Mamyrbékova-Békro Janat Akhanovna and Békro Yves-Alain

DOI: https://doi.org/10.22271/phyto.2021.v10.i2b.13963

Abstract

In order to identify new antimalarial plants, phytochemical study was carried out on three plant matrices belonging to Euphorbiaceae family. Phytochemical screening mentioned the co-presence of several phyto compounds, which are involved in observed antioxidant potential. These results were confirmed by different dosages (polyphenols, flavonoids and total condensed tannins). In view of the relative similarity of the molecular fingerprints of Alchornea cordifolia (control plant, recognized as an antimalarial) and the stem bark of Ricinodendron heudelotii, we can be affirmed that the latter could be classified in restricted list of antimalarial plants. Therefore, it would be more recommended in malaria access management.

Keywords: Antimalarial plants, phytochemical, antioxidant activity, Côte d’Ivoire, Ricinodendron heudelotii

1. Introduction

Malaria is the world’s leading parasitic endemic. It mainly affects countries in the intertropical zone [1]. This pathology is most often transmitted to humans by the bite of a female mosquito of the genus Anopheles. It is responsible for the death of a good number of people, especially children under 5 [2]. In Côte d’Ivoire, according to the National Malaria Control Program (PNLP-CI), the number of deaths linked to this disease in 2017 was estimated at 3,222 [3]. Despite the existence of several means of control (impregnated mosquito nets, insecticides, antimalarial drugs, etc.), we are still witnessing a resurgence of this disease. Several factors are at the origin of this situation. One of them is the high cost of antimalarial remedies, and the adverse effects caused by some of them. In addition, we have recently recorded a resistance of parasites to these drugs [4-6]. In this situation, most patients use medicinal plants, particularly those in rural areas [7]. In this framework, investigations carried out with traditional therapists from Agboville Department (Côte d’Ivoire) have led to the inventory a multitude of plants reputed to be antimalarial [8]. Within the present study, we were interested in three plants of Euphorbiaceae family for their accessibility and recurrent use by populations. These are Alchornea cordifolia, Jatropha gossypifolia and Ricinodendron heudelotii. Furthermore, research has revealed the antimalarial properties of Alchornea cordifolia leaves from Côte d’Ivoire. Indeed, the results indicated significant activity on the Fc B1 strain from Colombia (chloroquine resistant) of the genus Plasmodium falciparum with an IC50 of around 4.56 μg / ml [9, 10]. Thus, this work aims to provide a rational response to the use of these plants against malaria. For this purpose, a comparative study of antioxidant potential was carried out between

2. Material and methods

2.1. Selection of plant species

The plant support consists of Alchornea cordifolia (leaves), Jatropha gossypifolia (leaves) and Ricinodendron heudelotii (leaves and stem bark), three plants traditionally used for the care of people who have malaria by the Abbey and Krobou people of Agboville (5°55’41” North, 4º13’01” West) (Côte d’Ivoire) [8]. They were harvested in August 2015 in Grand-Morié (5°59’00” North, 4º08’00” West) (Department of Agboville, Agneby-tiassa Region) and certified at the National Floristic Centre of Félix Houphouët-Boigny University (Abidjan / Côte d’Ivoire), in accordance with existing specimens. The different organs were cleaned, dried in an air-conditioned room at 16°C for 10 days, and then reduced to powder.
2.2. Preparation of extracts
15 g of powder were macerated in 20 ml of methanol (MeOH, 80%, 3 × 24 h) at room temperature (25°C), with constant stirring. After filtration under vacuum, the filtrates were combined and then concentrated using a rotary evaporator (Büchi) at 40°C. The aqueous extracts obtained were kept in the refrigerator (4°C) for 24 h to precipitate the lipophilic compounds. After decantation and filtration, the aqueous extracts were separated into two parts. The first was used on the one hand for quantification of total polyphenols and condensed tannins and on the other hand for evaluation of antioxidant power by spectrophotometry. The second part was exhausted successively with different solvents of increasing polarity: hexane (n-C₆H₁₄), chloroform (CHCl₃), ethyl acetate (AcOEt) and n-butanol (n-BuOH). These were used for phytochemical screening and detection of antioxidant activity by TLC.

2.2.1. Qualitative study
2.2.1.1. Phytochemical screening by TLC
Phytochemical screening was carried out by means of TLC, according to the methodologies described in literature [11-13]. Chromatographic plates used are in silica gel 60 F₂₅₄, with a rigid aluminium support. The developers used composed of a mixture of solvent: n-C₆H₁₄ / AcOEt in proportions 5: 2 (v / v) for hexanic extracts; CHCl₃ / AcOEt / n-C₆H₁₄ 4: 4: 1 (v / v / v) for chloroformic extracts; the combination of AcOEt / MeOH / H₂O / n-C₆H₁₄ in the ratio 4: 1.5: 0.5: 1.5 (v / v / v / v) and 4: 4: 0.5: 1 (v / v / v / v) for the ethyl acetate and n-butanol extracts respectively.

2.2.1.2. Antioxidant power screening
The screening of antioxidant power of selective extracts on TLC was carried out according to the work of Takao et al. [14].

2.2.2. Quantitative study
2.2.2.1. Determination of total polyphenols
Folin-Ciocalteau colorimetric method was used for evaluation of the content of total phenolic compounds [15]. The following equation was used:

\[Q = \left(V \times C \times d \right) / m \] (in μg EAG / g dry matter)

With: V: final extract volume (ml), C: extract concentration (μg / ml), d: dilution, m: mass of dry matter (g).

2.2.2.2. Dosage of condensed tannins
Condensed tannin content was determined using the method of Broadhurst and Jones [16] and modified by Heilm er et al. [17]. To 50 μl of each previously diluted sample, 3 ml of a 4% vanillin solution in methanol (w / v) and 1.5 ml of concentrated hydrochloric acid are added respectively. The mixture is left to stand for 15 min. The absorbance of mixture is then measured at 500 nm with respect to methanol as a control. Condensed tannin contents are expressed in micrograms of catechin equivalent per milligram of dry matter (μg ECAT / mg). They were deduced from a calibration curve performed using a range of catechin concentrations (50 to 600 μg / ml).

2.2.2.3 Determination of total flavonoids
The method described by Swain et al. [18] and taken up by Dif et al. [19] was used for quantification of flavonoids. 1.5 ml of distilled water and 0.15 ml of a 5% (w / v) sodium nitrate solution are added to 0.5 ml of each hydromethanolic extract. The mixture obtained is left to rest for 5 min at room temperature, away from light. To this solution 0.15 ml of a 10% (w / v) aluminium trichloride solution was subsequently added. After resting for 11 min in darkness, 0.5ml of hydroxide sodium (1 M) was added to the reaction mixture. The resulting solution was subjected to vortex. Its optical density was read with UV spectrophotometer at 510 nm. Quantification of flavonoids was obtained from a calibration curve produced with catechin (standard) at different concentrations (0-10-20-30-40-50 mg / l) and prepared under the same operating conditions as those of the samples.

2.2.2.4. Evaluation of antioxidant activity by spectrophotometry
Quantification of antioxidant potential of hydromethanolic extracts was carried out according to Blois’ methodology [20]. Vitamin C was used as a reference antioxidant. The percentage reduction of DPPH radical is estimated according to the following formula:

\[PR = \left(\frac{A_b - A_c}{A_b} \right) \times 100 \]

With: PR: Percentage reduction; Ab: Absorbance of negative control; Ae: Absorbance of sample.

3. Results and discussion
3.1. Phytochemical screening by TLC
Phytochemical screening carried out by means of thin layer chromatography revealed a multitude of phytoconstituents (Table I), which were detected by means of specific developers. This is the case of Liebermann-Büchard’s reagent, which was used for detecting sterols and terpenes [21]. The latter reveals sterols in the visible in brown and green; in yellow and yellow-green under UV / 365 nm. While terpenes appear in blue, purple in the visible and red or yellow-orange at 365 nm UV. In addition, certain developers such as Godin’s reagent and sulfuric vanillin were used to confirm the presence of these compounds. Indeed, under Godin’s reagent, sterols are identified in blue, purple or brown in the visible; in brown under UV / 365 nm. Terpenes appear in purple with the same developer [12]. Sulfuric vanillin also detects sterols in blue spots, under UV visualization at 365 nm. It also mentions the presence of terpenes in the visible and UV / 365 nm in pink, purple and orange [12]. Orange or orange-yellow spots recorded with Dragendorff’s reagent indicate the existence of alkaloids [21]. Then, yellow, green, blue and fluorescent blue molecular fingerprints observed at the visible and at 365 nm with 5% KOH methanolic solution indicate the existence of coumarins. These colorations can intensify or change at 365 nm under action of said developer [22]. Saponins was revealed by means of antimony chloride (SbCl₃) [11]. The latter, reveals them in the visible in yellow for steroid type saponins and in pink-violet for those of triterpene type. Tannins were detected with the 2% methanolic FeCl₃ solution, in gray or brown to the visible [21]. Finally, flavonoids were identified by means of Neu’s reagent, in the visible in yellow and brown; and these colorations can intensify or diversify under UV observation at 365 nm [11]. Moreover, AlCl₃ was used to confirm the existence of certain flavonoids. The latter revealed them in the visible in yellow and under UV at 365 nm, in blue or brown [21] or in yellow-green [11, 23].
Thus, the existence of sterols, terpenes and certain coumarins has been observed in hexanic extract. However, a profusion of sterols was noted in *Ricinodendron heudelotii* (RH) and *Jatropha gossypifolia* (JG) leaf extracts. Chloroform fraction contains, in addition to the compounds detected in the previous extract, flavonoids; alkaloids whose presence has been remarked in *Alchornea cordifolia* (AC) (RF = 0.13; 0.84), *Jatropha gossypifolia* (JG) (RF = 0.67) and *Ricinodendron heudelotii* leaves (RH) (RF = 0.65; 0.81); steroid-type saponins, in AC (RF = 0.08; 0.15), JG (RF = 0.06) and RH (RF = 0.15); and those of triterpene type, also in AC (RF = 0.04; 0.21), JG (RF = 0.02; 0.13; 0.21) and RH (RF = 0.06; 0.21) *Ricinodendron heudelotii* (RHe) stem bark is free from saponins and alkaloids. Finally, in ethyl acetate and n-butanol extracts, we identified flavonoids (Figure 1A and B), *Jatropha gossypifolia* extract, particularly in the leaves of *Jatropha gossypifolia* (JG) leaf extracts. Chloroformic extract, particularly in the leaves of *Jatropha gossypifolia* (JG) leaf extracts.

Table 1: Secondary metabolites identified in the different samples

Excerpts	RF, Color, Identified compounds
Alchornea cordifolia (AC)	n-C_{6}H_{14} 0.21 : jv, St; 0.44 : jo, jv, vi; St^{a,b}; 0.52 : jv, vi, St^{a,c}; 0.67 : jv, St^{a}; 0.73 : jv, jo, jv, Ter^{a,b}, Cou; 0.82 : v; jv, j; Ter^{a,b}, Cou; 0.9 : jv, St
Jatropha gossypifolia (JG)	n-C_{6}H_{14} 0.31 : vi, br, vi, Ter, St; 0.44 : jo, Cou; 0.53 : vi, jv, ve, Ter, St; 0.61 : ve, jo, Ter, St; 0.74 : vi, Ter, St; 0.85 : jo, vi; Ter, Cou; 0.9 : vi, jv, Ter, Cou
Ricinodendron heudelotii (RH)	n-C_{6}H_{14} 0.36 : jv, St; 0.44 : vi, St; 0.61 : jv, jo, St; 0.72 : br, br, Cou; 0.83 : b; Cou
Ricinodendron heudelotii (RHe)	n-C_{6}H_{14} 0.36 : jv, St; 0.44 : vi, jv, Cou; 0.61 : jv, St; 0.72 : br, br, Cou; 0.83 : b; Cou

- bl / blue; blf / fluorescent blue; blv / blue-violet; br / brown; brc / light brown; gr / gray; gv / gray-violet; j / yellow; je / light yellow; jo / yellow-orange; jp / pale yellow; jv / yellow-green; gold / orange; v / green; vi / green-fluorescent; vi / violet; vic / light purple.
- *a / without developer; b / AlCl_{3}; c / Neur reagent; d / Dragendorf's reagent; e / FeCl_{3}; f / KOH; g / Liebermann Bürdtsch's reagent; h / Sulfuric vanillin; i / Godin's reagent; j / SbCl_{3} |

Fluorochrome	Identified compounds
Ter	Stc, jv, Cou; jv, Ter
St	jv, jv, St, Cou
Cou	jv, jv, Cou

Fig 1: Chromatographic profiles of antimalarial plant extracts

Ultimately, phytochemical screening revealed in the different extracts the co-presence of a plethora of compounds, including sterols, terpenes, alkaloids, flavonoids, saponins, coumarins and tannins. An abundance of flavonoids has been detected.
noticed in the leaves of *Alchornea cordifolia*. For other extracts, a non-negligible presence was noticed. These results are conform to those obtained by other researchers. Indeed, some have reported the existence of flavonoids, tannins, sterols, triterpenes and coumarins in leaves of *A. cordifolia* [24, 25]. Concerning tannins, terpenoids, glycosides and alkaloids, their presence has been reported in leaves of *Ricinodendron heudelotii* by Omolara et al. [26]. Finally, some researchers have highlighted alkaloids and flavonoids in *Jatropha gossypiiifolia* leaves [27, 28]. Thus, we can argue that the antimalarial activity of these plant matrices is conditioned by their composition in phytocompounds. Some compounds such as alkaloids are known for their antimalarial potential [29-32]. Also, certain classes of flavonoids (artemetine and casticin) and terpenes (triterpenoids and sesquiterpenes) possess antiplasmodic and antimalarial activities [33, 34].

3.2. Antioxidant power screening

Anti-radical zones are materialized by yellow spots on a purple background on chromatograms (Figure 2), which are subordinated by the coexistence of phytocompounds endowed with antioxidant potential.

![Fig 2: Chromatographic profiles of the antioxidant activity of antimalarial plant extracts](image)

When comparing chromatograms of phytochemical screening (Figure 1 and Table I) and those of antioxidant power (Figure 2), we can deduce that in hexanic extracts, terpenes (RF = 0.01 and 0.52) and coumarins (RF = 0.67) are responsible for antioxidant activity observed in AC. Similarly, terpenes (RF = 0.44) are dependent on antioxidant potential in RHe (Figure 2E). For chloroformic extracts (Figure 2F), the phytocompounds scavenging DPPH radical are sterols (RF = 0.13), coumarins (RF = 0.26 and 0.50) and flavonoids (RF = 0.40) for AC; then, flavonoids (RF = 0.12 and 0.37) and coumarins (RF = 0.40) for JG; flavonoids (RF = 0.16; 0.43 and 0.65) for RHf, at last, flavonoids (RF = 0.14 and 0.20; 0.42 and 0.60) and sterols (RF = 0.50) for RHe. On the other hand, the antioxidant potential observed in ethyl acetate extracts (Figure 2G) of antimalarial plants is due to the co-presence of different phytoconstituents. Thus, zones of antiradical activity were visualized in AC (flavonoids: RF = 0.14; 0.37 and 0.64), JG (flavonoids: RF = 0.34), RHf (flavonoids: RF = 0.32) and RHe (Coumarins: RF = 0.27 and flavonoids: RF = 0.27, 0.36 and 0.66). Finally, for n-butanol extracts (Figure 2H), the molecular fingerprints of flavonoids (RF = 0.40 and 0.71) and tannins (RF = 0.13 and 0.18) would be responsible for AC’s antiradical capacity. This is the case for JG (tannins (RF = 0.12) and flavonoids (RF = 0.31)) and RHf (tannins (RF = 0.20) and flavonoids (RF = 0.35)). For RHe, flavonoids (RF = 0.32) are responsible. In summary, among the extracts analysed, *Alchornea cordifolia* leaves (control plant) appear to be most active against DPPH radical, followed by *Ricinodendron heudelotii* stem bark. This potential detected in these extracts gives them a host of pharmacological properties, particularly antimalarial. Indeed, there is a correlation between oxidative stress and malaria. Once infected, we see hypoglycaemia in patients, caused by the parasites’ use of blood glucose. This situation increases the parasitic level of lipoperoxidation, which is a marker of oxidative stress [35, 36]. Thus, antioxidant compounds in the different plants could contribute to prevent oxidative stress, which is a cause of malaria. Among samples studied, we can deduce that *R. heudelotii* stem bark could have the status of an antimalarial plant.

3.3. Determination of total polyphenols

A. cordifolia leaves had the highest content (14865 ± 624.49 μg EAG / g dry matter), followed by *R. heudelotii* stem bark (6615 ± 835.16 μg EAG / g dry matter). On the other hand, the lowest levels were recorded at the level of the leaves of *J. gossypiiifolia* (2715 ± 600 μg EAG / g dry matter) and those of *R. heudelotii* (915 ± 519.61 μg EAG / g dry matter). Overall, we note that the control plant (*A. cordifolia*) contains more phenolic compounds than other plant matrices. However, *R. heudelotii* stem bark stood out among the rest. In addition, the results obtained for *A. cordifolia* leaves are much better than those recorded by other researchers. In fact, the latter obtained an estimated content of 7011.57 μg EAG / g dry matter [37]. This notable difference could be explained by several factors, including those called biogenetic and environmental [38]. Thus, the high content observed could be justified by the coexistence of several phenophylos (flavonoids, coumarins, and so on.) mentioned above in phytochemical screening.
3.4. Determination of total condensed tannins

The total condensed tannin contents recorded vary from one plant species to another (Figure 4).

A. cordifolia leaves contain more condensed tannins (1183.75 ± 10.89 µg ECT / mg) than other plant species (_J. gossypifolia_ (733.43 ± 12.5 µg ECT / mg) and _R. heudelotii_ (leaves: 533.61 ± 8.66 µg ECT / mg; stem bark: 183.77 ± 10.0 µg ECT / mg)). These results had already been predicted by phytochemical screening. Additionally, we found that leaves are rich in condensed tannins compared to stem bark. This observation would be due to unequal distribution of secondary metabolites in different plant organs, depending on the species, tissues and physiological stages [39].

3.5. Determination of total flavonoids

A. cordifolia leaves (82.77 ± 0.57 mg/g of dry matter) and _R. heudelotii_ stem bark (72.28 ± 0.69% mg/g of dry matter) contain more flavonoids than other plant matrices (Figure 5). The low levels were recorded in leaves of _J. gossypifolia_ (18.78 ± 0.57% mg/g of dry matter) and those of _R. heudelotii_ (24.56 ± 0.99%). These results are in accordance with those obtained during the phytochemical screening. We note that the flavonoid content of _R. heudelotii_ stem bark is close to that of the control plant. Thus, it would be advisable to use these in the management of certain pathologies, in particular malaria.
3.6. Evaluation of antioxidant activity by spectrophotometry

The estimation of antioxidant potential of crude hydromethanolic extracts vis-à-vis DPPH radical was carried out by spectrophotometry, with vitamin C as a reference antioxidant (Figure 6).

Overall, vitamin C exhibited very strong anti-free radical activity at all concentrations. A. cordifolia showed slightly lower percentages of reduction (PR) than vitamin C at certain concentrations (2 mg/ml; 0.5 mg/ml and 0.0625 mg/ml). As a result, A. cordifolia is the most active plant, followed by R. heudelotii bark stem. The leaves of J. gossypiifolia and R. heudelotii exhibited reduction potentials of less than 50% at all concentrations, except at 0.0625 mg/ml where these obtained respectively 61.6199 ± 0.6739% and 52.7725 ± 0.3070% as the percentage reduction of DPPH radical. In addition, J. gossypiifolia presented at 0.5 mg/ml a PR = 57.757 ± 0.571%. In short, we note a similarity in the results of screening and the evaluation of antioxidant power. Thus, the antioxidant power detected in the various plant matrices would justify their use in traditional medicine against many pathologies, in particular malaria. Indeed, several studies have indicated the involvement of antioxidant compounds in preventing malaria. This is the case with vitamin E and trolox, whose use provided partial protection against cerebral malaria \[40\]. Also, the use of radical scavengers such as catalase or SOD enzymes in the mouse model could prevent cerebral malaria \[41\]. In addition, butylated hydroxyanisole, an antioxidant, is thought to have anti-malarial properties. Its use would reduce or even annihilate the symptoms of cerebral malaria \[41\].

4. Conclusion

Qualitative study of three plants traditionally used in the treatment of malaria revealed the presence of several secondary metabolites, including flavonoids, coumarins, sterols, terpenes, tannins, saponins and alkaloids. For quantitative study, the contents obtained ranged from 14865 ± 624.49 to 915 ± 519.61 µg EAG/g dry matter for total polyphenols; 82.77 ± 0.57 and 18.78 ± 0.57 mg/g of dry matter for total flavonoids and 1183.75 ± 10.89 and 183.77 ± 10.00 µg ECT/mg for total condensed tannins. Alchornea cordifolia leaves are the richest in phytophenols, followed by Ricinodendron heudelotii stem bark. These results are in agreement with those of phytochemical screening. Also, we note a notable antioxidant potential of A. cordifolia leaves and R. heudelotii stem bark, which potential is subordinated by the richness in polyphenols, particularly in flavonoids. In
contrast, the leaves of *Jatropha gossypifolia* and *R. heudelotii* showed relatively low antioxidant potentials. Thus, this study provides a rational justification for the use of these plants in treatment of malaria in traditional medicine. In addition, *R. heudelotii* stem bark would be the most appropriate for the treatment of malaria, considering the relative similarity of its antioxidant character to that of *A. cordifolia*, a plant matrix recognized as an antimalarial. Moreover, work on toxicity and evaluation of antimalarial potential of these plants is being carried out with a view to validating the various hypotheses mentioned.

5. References

1. Guerra CA, Gikandi PW, Tatem AJ, Smith DL, Hay SI, Snow RW. The limits and intensity of *Plasmodium falciparum* transmission: Implications for malaria control and elimination worldwide. *PloS Medicine* 2008;5:38.

2. OMS. Organisation mondiale de la santé: Synthèse. Rapport sur le paludisme dans le monde. *World malaria*. 2019, 11

3. PNLP-CI. Programme National de Lutte contre le Paludisme Côte d’Ivoire ; publié le jeudi 12 avril 2018. Portail officiel du gouvernement de Côte d’Ivoire, www.gov.ci. Consulté le 15 janvier 2019

4. Atkinson A. Contribution à l’identification de facteurs de résistance au paludisme à *plasmodium falciparum* chez l’hominé : Analyses d’association familiale et d’interaction génétique de l’IL12B, de *HS3ST3A1*, de *HS3ST3B1* et de l’HBB. Thèse de doctorat de l’Université de la méditerranée Aix-Marseille II 2011:190:37.

5. Doritchamou J. Caractérisation des parasites du paludisme gestationnel et optimisation du potentiel vaccinal de VAR2CSA. Thèse de doctorat de l’université paris Descartes 2014, 146-16.

6. Fakih C. Le paludisme en Côte d’Ivoire : état des lieux et stratégies de lutte. Thèse de doctorat en pharmacie de l’Université de Bordeaux (France) 2014;144:34.

7. Neychev VK, Mitev VI. The aphrodisiac herb *Tribulus terrestris* does not influence the androgen production in young men. *Journal of Ethnopharmacology* 2005;101:319-323.

8. N’Guessan K, Tra Bi FH, Koné MW. Étude ethnopharmacologique de plantes antipaludiques utilisées en médecine traditionnelle chez les Abbey et Krobou d’Agboville (Côte d’Ivoire). *Ethnopharmacologia* 2009;44:42-50.

9. Mustofa, Valentin A, Benoit-Vical F, Pélassier Y, Koné-Bamba D, Mallié M. Antiplasmodial activity of plant extracts used in West African traditional medicine. *Journal of Ethnopharmacology* 2000;73(1, 2):145-51.

10. Bla K, Trebissou J, Bidie A, Assi Y, Zirili G, Djanan A. Étude ethnopharmacologique des plantes antipaludiques utilisées chez les Baoulé-N’Gban de Toumodi dans le Centre de la Côte d’Ivoire. *Journal of Applied Biosciences* 2015;85:7775-7783.

11. Ladygunia EY, Safronitch LN, Otriachenkova VE, Bolandina IA, Grinkevitch NL. Analyse chimique des plantes médicinales ; Edition Moska ; *Vischaya Chkola*. 1983;4:6-347.

12. Benkiki N. Etude phytotechnique des plantes médicinales algériennes : *Ruta montana*, *Marticaria pubecens* et *Hypericum perforiatum*. Thèse de doctorat d'état, Faculté des sciences département de chimie, Université El Hadj Lakhar Batru (Algérie) 2006, 188.

13. Mamyrbékova-Békro JA, Konan MK, Békro Y-A, Djié Bi MG, Zomi Bi TJ, Mambo V et al. Phytocompounds of the extracts of four medicinal plants of Côte d’Ivoire and assessment of their potential antioxidant by thin layer chromatography; *European Journal of scientific Research* 2008;24(2):219-228.

14. Takao T, Kitatami F, Watanabe N, Yagi A, Sakata K. A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shell fish; *Bioscience, Biotechnology and Biochemistry* 1994;58:1780-1783.

15. Touzard et Touzard-Benヌen. *Encyclopédie médicale de l’Afrique*, Librairie Larousse 1986;2:293-574.

16. Broadhurst R, Jones W. Analysis of condensed tannins using acidified vanillin. *Journal of the science of food and Agriculture* 1978;29:788-794.

17. Heilmer D, Vignolini P, Dini MG, Vincieri FF, Romani A. Antiradical activity and polyphenol composition of local Brassicaceae edible varieties. *Food chemistry* 2006;99:464-469.

18. Swain T, Hillis W. The phenolics constituents of *Prunus domestica* -I- the quantitative analysis of phenolics constituents. *J Sci Food Agric* 1959;10:63-81.

19. Dif MM, Benchihia H, Mehdadi Z, Benali-Toumi F, Benyahia M, Bouteflas K. Etude quantitative des polyphénols dans les différents organes de l’espèce *papaver rheas*. *L. phytothérapie*, 2015;13(5):314-319.

20. Blois M. Antioxydant determinations by the use of a stable free radical. *Nature* 181:1199 -1200. *Journal Euro. Food Res. Technol* 1958:225:151-156.

21. Lagnika L. Etude Phytochimique et Activité Antipaludique de Substances Naturelles issues de Plantes Béninoises. *Thèse de Doctorat, Université Louis Pasteur d’Abomey-Calavi (Bénin)* 2005, 268.

22. Dohou N, Yamni K, Tahrouch S, Idrissi Massani LM, Badoc A, Gmira N. Screening phytochimique d’une endémique Libero-Marocaine, *Thymelaea louthroides*. *Bulletin of Pharmaceutical 2003;142:61-78*.

23. Merck E. Révélateurs pour la chromatographie en couche mince et sur papier. *Darmstadt* 1980;12:153.

24. N’Guessan H, Dago D, Mamyrbékova-Békro J, Békro Y-A. CCM d’extraits sélectifs de 10 plantes utilisées dans le traitement traditionnel de l’hypertension artérielle en Côte d’Ivoire. *European Journal of Scientific Research, 2011*a;66(4):575-585.

25. Togola A. Etude de la phytochimie et de l’activité antipaludique de *Alchornea cordifolia* schmah. (*Euphorbiaceae*). Thèse de doctorat, Université de Bamako (Mali), Faculté de Médecine de Pharmacie et d’Odonto-Stomatologie 2002, 80.

26. Omolara FY, Abiodun HA, Titiolpe MD, Ying-Jun Z, Emeka EJ. Cytoxic Effects of Compounds Isolated from *Ricinodendron heudelotii*. Multidisciplinary Digital Publishing Institute 2019, 11.

27. Felix-Silva J, Raquel BG, Arnóbio A, Silvana MZ, Matheus FP. *Jatropha gossypifolia* L. (*Euphorbiaceae*): a review of traditional uses, phytochemistry, pharmacology, and toxicology of this medicinal plant. Evidence-Based *Complementary and Alternative Medicine*, 2014;32. http://dx.doi.org/10.1155/2014/369204.

28. Yerramsetty N, Valluri K, Shaik R, Ramadosskarthyeyan. Anti-inflammatory activity of leaves of *Jatropha gossypifolia* L. by hrbc membrane
stabilization method. Journal of Acute Disease 2013;156-158.

29. Bringmann G, Messer K, Schwöbel B, Brun R, Aké-Assi L, Habropetaline A, an antimalarial naphthylisoquinoline alkaloid from Triphyophyllum peltatum. Phytochemistry 2003;62(3):345-349.

30. Zirihi GN, Grellier P, Guédé-Guina F, Bodo B, Lengo M. Isolation, Characterisation and antiplasmodial activity of steroidal alkaloids from Funtumia elastica (Preuss) Stapf. Biorganic and Medicinal Chemistry Letters, 2005;15:2637-2640.

31. Koffi N, Beugré K, Guédé NZ, Dossahoua T, Aké-Assi L. Screening phytochimique de quelques plantes médicinales ivoiriennes utilisées en pays Krobou (Agboville, Côte-d’Ivoire). Sciences et Nature 2009;6(1):1-15.

32. Kémajou A, Mba L, Bagda AA. Effet du séchage sur les principes actifs des plantes médicinales: cas des alcaloïdes totaux des écorces de Alstonia boonei Wild, plante antipaludéenne. Nature et Technologie 2012, 62-66.

33. Phillipson JD, Wright WC. Antiprotozoal agents from plant sources. PLanta Méd. 1991;57:53-59.

34. Makan ND. Etude phytochimique d’une plante antipaludique utilisée au Mali : Spilanthes oleracea Jacq. (Asteraceae). Thèse de Doctorat en Pharmacie. Université de Bamako (Mali), 2003, 77.

35. Djossou F, Receveur MC, Peuchant E, Monlun E, Clerc M, Longy-Boursier M et al. Stress oxydatif et paludisme : A propos de 24 cas d’observations de paludisme à Plasmodium falciparum. Bull. Soc. Path. Ex 1996;89:17-23.

36. Ashande CM, Djoza RD, Ngambika GK, Aundagba JMP, Amisi CM, Baholy R et al. Profil épidémiologique et clinique du Paludisme et de la drépanocytose à l’hôpital général de référence de gbado-lite (Nord-Ubangi) en république démocratique du Congo. International Journal of Applied Research, 2020;6(2):240-246.

37. N’Guessan H, Dago D, Mamyrbékova-Békro J, Békro Y-A. Teneurs en composés phénoliques de 10 plantes médicinales employées dans la tradithérapie de l’hypertension artérielle, une pathologie émergente en Côte d’Ivoire. Revue de génie industriel 2011b;6:55-61.

38. Rahmani H. Contribution à l’étude phytochimique et valorisation de l’espèce agave americana l. dans l’ouest algérien. Thèse pour l’obtention du diplôme de doctorat 3ème cycle en sciences de l’environnement. Option : gestion, valorisation des ressources naturelles et développement durable. Université Djillali Liabes de Sidi Bel Abbes (Algérie) 2017, 89.

39. Middleton P, Stewart F, Al-Qahtani. Antioxidant, Antibacterial Activities and General Toxicity of Alnus glutinosa, Fraxinus excelsior and Papaver rhoes. Iran J. Pharmaceut. Res 2005;2:81-6.

40. Postma NS, Mommers EC, Eling WM, Zuidema J. Oxidative stress in malaria; implications for prevention and therapy. Pharm World Sci 1996;18:121-129.

41. Thumwood CM, Hunt NH, Cowden WB, Clark lA. Antioxidants can prevent cerebral malaria in Plasmodium berghei-infected mice. British journal of experimental pathology 1989;70:293-303.