First-principles study of Zr–N crystalline phases: phase stability, electronic and mechanical properties†

Shuyin Yu,*a,b Qingfeng Zeng,a,b Artem R. Oganov,bcde Gilles Frapper,f Bowen Huang,f Haiyang Niuc and Litong Zhangg

Using a variable-composition ab initio evolutionary algorithm, we investigate stability of various Zr–N compounds. Besides the known ZrN and Zr3N4, new candidate structures with Zr : N ratios of 2 : 1, 4 : 3, 6 : 5, 8 : 7, 15 : 16, 7 : 8 and 4 : 5 are found to be ground-state configurations, while Zr2N3 has a very slightly higher energy. Besides Zr2N, the newly discovered Zr3N4 compounds adopt rocksalt structures with ordered nitrogen or zirconium vacancies. The electronic and mechanical properties of the zirconium nitrides are further studied in order to understand their composition–structure–property relationships. Our results show that bulk and shear moduli monotonically increase with decreasing vacancy content. The mechanical enhancement can be attributed to the occurrence of more Zr–N covalent bonds and weakening of the ductile Zr–Zr metallic bonds. These simulations could provide additional insight into the vacancy-ordered rocksalt phases that are not readily apparent from experiments.

1 Introduction

Group IVB transition metal (TM = Ti, Zr and Hf) nitrides have been widely used in cutting tools and as wear-resistant coatings, because of their excellent properties such as high hardness and strength, high melting points, excellent thermal conductivity, and good chemical stability.1–4 Formally, their mononitrides adopt the rocksalt structure, but may show significant variation in composition, both towards cation and anion enrichment.1 Such nonstoichiometry widely exists in group IV/V transition metal oxides, nitrides and carbides, due to the formation of structural vacancies.5 The concentration of vacancies can be up to 50 at%. Their microstructures are usually controlled by the co-precipitation of nonstoichiometric phases, and the mechanical behavior is dependent on the vacancy concentration.

Unlike carbides, not only nonmetal vacancies exist, but structure can also tolerate metal atom vacancies since metal atom oxidation state can reach +4.6 Experimental investigations of nonstoichiometric TM nitrides (TM = Ti, Zr, Hf, V, Nb and Ta) have been conducted intensely for more than thirty years.7–10 About twenty ordered carbides and nitrides have been found.7 However, it has not yet been possible to construct a single phase diagram of TM–C or TM–N systems at low temperatures (most of the available phase diagrams have been constructed above 1300–1500 K). In this paper, we explore stable compounds in the Zr–N system at ambient pressure and finite temperatures. To date, there is no comprehensive and inclusive computational investigation of phase stability in the Zr–N system.

Zirconium nitrides represent a rich family of phases where the stability and microstructures are still not completely understood. According to the phase diagram provided by Gribaudo et al.,11 ZrN and Zr3N4 can be stable at ambient conditions. In 2003, c-Zr3N4 with a Th3P4 structure was synthesized by Zerr et al. using diamond-anvil cell experiments at 16 GPa and 2500 K.12 This compound was expected to exhibit a very high Vickers hardness around 30 GPa, similar to that of γ-Si3N4. However, Kroll showed that hardness is just slightly harder than 14 GPa.13 Besides c-Zr3N4, an orthorhombic Pnma modification of Zr3N4 has been proposed.14 First-principles calculations show that o-Zr3N4 is energetically more stable than c-Zr3N4.15 However, both structures are metastable considering decomposition into ZrN and N2.16 Besides, two nitrogen-rich phases ZrN6 (1.06 < x < 1.23) with NaCl-type structures have been claimed by Juza et al. in 1964.18 However, precise stoichiometries and crystal structures are not known for their synthesized samples.
Here, we apply recently developed evolutionary algorithm USPEX to extensively explore the crystal structures and stoichiometries in the Zr–N system at ambient conditions, and then their phase stability at finite temperatures are evaluated. Furthermore, the electronic and mechanical properties of stable ZrₓNᵧ compounds are studied using density functional theory. Our work should provide guidance for experimental groups aiming to synthesize these new technologically useful materials.

2 Computational details

Searches for low-energy crystalline Zr–N structures were performed using evolutionary algorithm (EA) methodology implemented in the USPEX code in its variable-composition mode. The energies and structural optimizations (including lattice shape, volume and atomic positions) were calculated by VASP package based on density-functional theory. The first generation contained 80 randomly produced candidate structures, which were produced under the following constraints: (1) all possible stoichiometries were allowed, (2) the maximum number of atoms is 30 in the primitive cell. In the subsequent generations, each generation contained 60 structures, which were produced by applying heredity (50%), atom transmutation (20%), lattice mutation (15%) operators, while some structures were still randomly (15%). These are typical parameters for USPEX calculations, with which efficiency is known to be very high. Besides, we also performed a fixed-composition search for Zr₁₅N₁₆ which has 31 atoms in its primitive cell.

First-principles electronic structure calculations were carried out within the generalized gradient approximation (GGA) in the Perdew–Burke–Ernzerhof form. The interactions between ions and electrons were described by the projector-augmented wave method with a cutoff energy of 600 eV. Uniform \(k \)-point meshes with a resolution of \(2 \pi \times 0.03 \) Å\(^{-1} \) and Methfessel–Paxton electronic smearing were adopted for the integration in the Brillouin zone. These settings ensure convergence of the total energies to within 1 meV per atom. Structure relaxation proceeded until all forces on atoms were less than 1 meV Å\(^{-1} \) and the total stress tensor was within 0.01 GPa of the target value.

Theoretical phonon spectra were calculated with the supercell method using the PHONOPY package. Hellmann–Feynman forces exerted on all atoms in supercells (2 x 2 x 2 of the unit cell) were calculated by finite atomic displacements of each symmetrically nonequivalent atom. Phonon dispersion relations were then obtained by the diagonalization of the dynamical matrix. We used the quasiharmonic approximation to calculate the free energy of zirconium nitrides at finite temperatures. Free energy of a crystal was obtained as a sum of the static total energy, vibrational energy and configurational energy. Computational details are described in ESI.

3 Results and discussion

3.1 Phase stability of the Zr–N system at finite temperatures

Thermodynamic stability of zirconium nitrides in the temperature range of 0–2000 K was quantified by constructing the thermodynamic convex hull, which is defined as the Gibbs free energy of formation of the most stable phases at each composition:

\[
\Delta G(Zr, N, x, y) = [\Delta G(Zr, N, x) - x \Delta G(Zr, x) - y \Delta G(N, y)](x + y)
\]

Any phase located on the convex hull is considered to be thermodynamically stable (at \(T = 0 \) K, \(G = H \)) and at least in principle synthesizable. In the case of zirconium nitrides, a series of stable compounds at various Zr : N ratios, i.e. 2 : 1, 4 : 3, 6 : 5, 8 : 7, 1 : 1, 15 : 16, 7 : 8, 4 : 5 have been discovered by our evolutionary searches at 0 K, shown in Fig. 1. The rocksalt ZrN with space group (SG) \(Pm\bar{3}m \) was found to have the lowest enthalpy of formation. Besides ZrN, substoichiometric ZrₓNᵧ (SG: \(P4_2/mnm \)), ZrₓN₄ (SG: \(C2/m \)), ZrₓN₅ (SG: \(C2/m \)) and ZrₓNₓ (SG: \(C2/m \)) have also been found to be thermodynamically stable. For the missing composition ZrₓNₓ, the lowest-energy structure is \(Immm \) with the enthalpy of formation lying very close to the convex hull at only 0.005 eV per atom, i.e. ZrₓNₓ is a metastable phase at 0 K.

Additionally, Juza et al. in 1964 have discovered two nitrogen-rich phases ZrₓNᵧ (1.06 < \(x < 1.23 \)) with rocksalt structures. The synthesized sample had a dark blue color and turned into metallic ZrN upon heating. Unfortunately, detailed stoichiometries and crystallographic information were not determined. Subsequent studies even questioned the existence of these two compounds. From our evolutionary searches, we found these two compounds could be Zr₁₅N₁₆ (\(x = 1.07 \), SG: \(P1 \)) and ZrₓNₓ (\(x = 1.25 \), SG: \(C2/m \)). Their structures are composed of edge-sharing ZrN₆ and \(\square N₆ \) (\(\square \) means Zr vacancy) octahedra, similar to the rocksalt ZrN structure. To the best of our knowledge, such nitrogen-rich nitrides have never been reported in other TM–N systems. For ZrₓNₓ, the most stable structure has the orthorhombic \(Pnma \) symmetry, which is

![Convex Hulls of Zr–N System](image.png)

Fig. 1 Convex hulls of the Zr–N system in the temperature range of 0–2000 K at ambient pressure. The solid squares represent stable structures, while open ones denote metastable structures. The solid \(P6_3/mmc \) phase of Zr, \(\alpha-N₂ \) (\(T = 0 \) K) and \(N₂ \) gas (\(T \geq 300 \) K) were adopted as reference states.
energetically more favorable than the Th$_3$P$_4$-type structure by \sim0.019 eV per atom at 0 GPa and 0 K. We found it is thermodynamic metastable considering decomposition into ZrN and N$_2$ at ambient conditions. First-principles calculation shows that o-Zr$_7$N$_4$ will transform into c-Zr$_7$N$_4$ at \sim2 GPa (Fig. S2†).

We have carefully calculated the temperature contribution to the phase stability of the new discovered zirconium nitrides from 0 K to 2000 K within the quasiharmonic approximation, as shown in Fig. 1. Note that for each stoichiometry, the space group/structure found at 0 K is kept for higher temperatures. The free energies of formation increase with increasing temperatures for all phases but at different rates, yielding a convex hull which changes with temperature. Our results show that Zr$_2$N, Zr$_8$N$_7$, ZrN and Zr$_{13}$N$_{16}$ will not lose their stability in the whole studied temperature range. The unstable Zr$_3$N$_2$ at 0 K will become stable at temperatures higher than \sim900 K, while for Zr$_{28}$N$_{15}$, Zr$_2$N$_3$, Zr$_7$N$_8$ and Zr$_{28}$N$_{15}$, the temperature contributions have negative effect on their structural stability. For example, the formation enthalpy of reaction 2Zr$_4$N$_5$ (s) \rightarrow 8ZrN (s) + N$_2$ (g) will become negative above 300 K, which means Zr$_7$N$_4$ should decompose into ZrN and N$_2$ gas at roughly room temperature if associated kinetic barrier allows.

In the structures of Zr-rich phases, the metal atoms form hexagonal close-packed (hcp) sublattices with N atoms filled in the octahedral voids, thus each N atom is coordinated by six Zr atoms, forming N$_2$Zr$_6$ octahedra. However, the concentration of filled octahedral voids in various Zr$_{m+1}$N$_n$ structures is different. Two thirds of them are filled in Zr$_2$N$_3$ while seven eighths in Zr$_3$N$_4$. Similar nitrogen vacancy-ordered structures were also reported earlier to be stable for transition metal carbides M$_{n+1}$C$_n$ (M = Hf and $n = 2, 5$; 28M = Zr and $n = 1, 2, 3, 6$; 28M = Ti and $n = 1, 2, 5$ (ref. 30)) and nitrides M$_{n+1}$N$_n$ (M = Ti and $n = 1, 2, 3, 5$ (ref. 31)). For N-rich phases, one eighth of the metal atoms are replaced with vacancies in Zr$_7$N$_{16}$, while one fifth in ZrN$_5$.

The formation of such N-rich phases could be attributed to the enhanced stability of the +4 oxidation state of Zr and Hf compared to Ti due to the relativistic effects, leading to the coexistence of +3 in MN and +4 in M$_2$N$_4$, while in the Ti–N system, TiN has the highest nitrogen content under normal conditions. In the structures of Zr$_2$N$_3$, the hcp metal framework of the rocksalt structure is significantly distorted. For o-Zr$_7$N$_4$, there are three nonequivalent types of Zr atoms, one of them is octahedrally coordinated to six N atoms, one resides at the center of a trigonal prism, and the last one is located inside of a heavily distorted octahedron (Fig. S3†). Thus, the second and third nonequivalent Zr atoms are sevenfold coordinated, while in c-Zr$_7$N$_4$, each Zr atom is coordinated to eight N atoms.

3.2 Electronic properties and chemical bonding
We calculated the electronic properties (density of states, DOS, see Fig. 3) of zirconium nitrides at ambient conditions in order to study their chemical bonding. Let us start first with Zr$_2$N$_4$ and then discuss the effect of zirconium or nitrogen vacancies on the electronic properties of rocksalt based-structures. In DOS of

![Fig. 2](image)

Fig. 2 Crystal structures of the representative (a) Zr$_6$N$_5$ and (b) Zr$_3$N$_5$ compounds.

![Fig. 3](image)

Fig. 3 The calculated electronic density of states of (a) o-Zr$_7$N$_4$, (b) ZrN and (c) Zr$_2$N. (d) Crystal orbital Hamilton population (COHP) curves of Zr$_3$N.
o-Zr3N4 displayed in Fig. 3a, three main regions may be described with three kinds of molecular orbital overlaps: nonbonding, bonding and antibonding.\(^{23}\) Firstly, a rather sharp peak at roughly \(-13\) eV appears and it is mainly of N(2s) character although with some Zr(4d) character. This sharp peak reflects the localized character of the nonbonding N(2s)-based levels; secondly, from \(-6\) eV to \(4\) eV, a very broad structure with two well-defined main peaks originates from mixing of Zr(4d) and N(2p) orbitals. The lower peak corresponds to the bonding states, and the antibonding counterparts appear just above the Fermi level. These bonding and antibonding peaks exhibit a clear mixing of metal 4d and nitrogen 2p states, although the latter has a stronger Zr(4d) character. In o-Zr3N\(_4\), the gap separates bonding and antibonding states, thus ZrN is a semiconductor and possesses a remarkable stability. Its calculated band gap (0.68 eV) is consistent with previous theoretical results.\(^{6,11}\) These findings are understandable if one considers the following Zintl picture: Zr is in a formal oxidation state of +4 (Zr4+, d\(_0\)), and N3\(^-\) and Zr(4d)–N(2p) orbitals. The lower peak corresponds to the nonbonding, bonding and antibonding states of Zr3N\(_4\). As the number of nitrogen vacancies increases, going from Zr3+ d\(_1\) in ZrN to Zr1.5+ d\(_{2.5}\) in Zr2N. Therefore, one may expect the occupation of the Zr 4d levels in substoichiometric Zr\(_{n+1}\)N\(_n\) compounds. This is what happens: Zr–Zr bonding and nonbonding (slightly antibonding) Zr–N levels appear just below the Fermi level, mainly metal 4d in character (see Fig. 3d and S6†). In Zr\(_{n+1}\)N\(_n\), Zr atoms are no longer all in the MN\(_6\) octahedral environment; some of them are in MN\(_5\) square pyramidal configurations. Therefore, one may expect the stabilization of antibonding Zr–N levels when going from formally octahedral ZrN\(_6\) to square pyramidal ZrN\(_5\) environment due to the lack of a Zr(4d)-N(2p) antibonding component. The occupation of these Zr–N nonbonding levels may explain the mechanical properties of these substoichiometric Zr\(_{n+1}\)N\(_n\) compounds.

For the well-known stoichiometric rocksalt ZrN\(_{15}\), we will first briefly discuss their electronic properties, then analyze the electronic perturbation due to the creation of nitrogen or zirconium vacancies — empty octahedral sites in the fcc network — leading to symmetry-broken Zr\(_{n+1}\)N\(_n\) and Zr\(_{n}\)N\(_{n+1}\) structures. Similarly to o-Zr3N\(_4\), DOS of Zr\(_{n}\)N\(_{n+1}\) phases can be decomposed into three well-separated energy regions as shown in Fig. 3 and S5† but here no gap separates the valence and conducting bands: (1) a deep lowest valence band, s\(_N\); (2) hybridized Zr(4d)/S\(_5\), \(\bar{\text{D}}\) band, d\(_{\text{M}}\); (3) a partially filled higher-energy Zr(4d) band, d\(_{\text{M}}\). The s\(_N\) band is dominated by the 2s orbitals of the Zr atoms.

The calculated bulk modulus \(B\), shear modulus \(G\), Young’s modulus \(E\), Poisson’s ratio \(\nu\), anisotropy index \(A\)\(^{11}\), Šimůnek’s hardness \(H_s\) and Chen’s hardness \(H_c\) of Zr\(_n\)N\(_n\) compounds at 0 GPa (B, G, E and H, GPa).

Phase	\(C_1\)	\(C_{12}\)	\(C_{13}\)	\(C_{15}\)	\(C_{22}\)	\(C_{23}\)	\(C_{25}\)	\(C_{33}\)	\(C_{44}\)	\(C_{46}\)	\(C_{55}\)	\(C_{56}\)	\(B\)	\(G\)	\(E\)	\(\nu\)	\(B/G\)	\(A\) \(^{11}\)	\(H_s\)	\(H_c\)	
ZrN\(_4\)	305	142	108																		
Zr3N\(_4\)	293	132	130	325	93								117								
Zr4N\(_4\)	336	147	140	8	349	127		2	371	131	127	114	187	109	274	0.256	1.721	0.116	14.8	13.5	
Zr5N\(_4\)	376	135	159	25	384	153	29	364	2	118	25	134	145	224	122	309	0.276	1.845	0.233	15.3	13.2
Zr6N\(_4\)	394	137	171	28	396	162	31	385	2	131	35	154	147	235	129	328	0.267	1.815	0.301	13.3	14.1

\(^{11}\) B = 249, \(^{14}\) G = 157, \(^{15}\) \(H_s = 16, \(^{16}\) \(H_c = 203, \(^{17}\) 238, \(^{18}\) \(H_s = 12.4, \(^{19}\) \(e = 224, \(^{20}\) \(H_c = 11.7, \(^{21}\) 11.4. \(^{22}\)
Fig. 4 Calculated bulk and shear moduli of the rocksalt structures as a function of vacancy concentration; also rutile-like Zr_3N_2 is shown (its structure can also be represented as a close-packed metal sublattice with 1/2 octahedral voids occupied by nitrogen atoms).

Fig. 5 Directional dependence of Young’s moduli (in GPa) of the Zr$_n$N$_p$ compounds.

comparable with many other transition metal carbides, nitrides and borides, such as Fe_2C (224 GPa (ref. 42)), TiN (294 GPa (ref. 31)) and TiB$_2$ (213 GPa (ref. 43)), but much lower than diamond (437 GPa (ref. 44)). Among these Zr$_n$N$_p$ compounds, ZrN has the largest bulk and shear moduli, although Zr$_4$N$_5$ has a practically identical shear modulus (see Table 1).

The effect of vacancy concentration on bulk and shear moduli of the rocksalt Zr$_n$N$_p$ structures is shown in Fig. 4. It can be seen that bulk and shear moduli monotonically decrease with increasing vacancy concentration. When N vacancies increase in a rocksalt structures, the number of Zr–N bonds obviously decreases. Moreover, the computed Zr–N separations are increasing when N vacancies increase, i.e. from 2.24 to 2.27 Å in Zr$_4$N$_3$ and Zr$_2$N, reflecting the weakening of the Zr–N bonding. Therefore, one may understand our findings, i.e. the loss of B and G is mainly attributed to the disappearance of some strong covalent Zr–N bonds.

For brittle materials, B/G ratio is smaller than 1.75 (ref. 45) (for example, for diamond $B/G = 0.8$). From Table 1, we can find that B/G values decreases in the following sequence: o-Zr$_3$N$_4$ > ZrN > Zr$_{12}$N$_{16}$ > Zr$_8$N$_7$ > Zr$_6$N$_8$ > Zr$_4$N$_5$ > Zr$_2$N$_2$ > Zr$_2$N > Zr$_{15}$N$_{16}$ > c-Zr$_3$N$_4$. This result is consistent with previous theoretical calculations. The reported Vickers hardness of zirconium nitrides was estimated by using Chen’s model, as follows:

$$H_C = 2(\frac{x^2}{G})^{0.55} - 3$$

(3)

where κ is the Pugh ratio, $\kappa = G/B$. The computed hardness values are given in Table 1. The estimated hardness of ZrN is 15.4 GPa, which is consistent with the experimental value of 16 GPa of Levy et al. Among these Zr$_n$N$_p$ compounds, Zr$_8$N$_7$ has the highest hardness of 18.2 GPa. Given that Chen’s model is based solely on the computed elastic constants, here we also used the Šimůnek method to estimate their hardness, which is mainly based on bond density and bond strength. The corresponding expression is given as follows:

$$H_S = \frac{C}{\Omega} n \left[\prod_{i=1}^{n} b_{ij} s_{ij} \right]^{1/6} e^{-\sigma s_{ij}}$$

(4)

where s_{ij} is the bond strength between atom i and j, b_{ij} is the bond number, Ω is the volume of the cell. The semi-empirical constants C and σ equal to 1450 and 2.8, respectively. The calculated hardness values are also given in Table 1. For the substoichiometric phases, the estimated hardness values are around 15 GPa. For Zr$_{15}$N$_{16}$, we found hardness values of 12.4 and 11.0 GPa for o-Zr$_3$N$_4$ and c-Zr$_3$N$_4$, respectively, which is consistent with previous theoretical calculations. The reported Vickers hardness of c-Zr$_3$N$_4$ film is 36 GPa, making it nearly a superhard material. It is possible that hardness could be much higher in a thin film compared to a bulk crystal. Certainly, more extensive hardness experiments for the Zr$_n$N$_p$ structures should be performed.
4 Conclusions

By using the variable-composition ab initio evolutionary algorithm USPEX, we explored stable and metastable compounds in the Zr–N system at ambient pressure. Our calculations revealed that ZrN, Zr2N, Zr3N4, Zr6N5, Zr15N16, Zr17N8, and Zr2N6 are thermodynamically stable compounds at low temperatures, while Zr3N2 is marginally metastable and could be stable at high temperatures. Particularly, we found the two controversial compounds discovered by Juza et al. could be Zr15N16 and Zr2N5. The newly discovered compounds have defective rocksalt structures with ordered nitrogen or zirconium vacancies. The calculated elastic constants of zirconium nitrates are in good agreement with available experimental values. Our results show that bulk and shear moduli monotonically increase with decreasing vacancy content. This can be attributed to the occurrence of more Zr–N covalent bonds and weakening of the ductile Zr–Zr metallic bonds. Besides, we found hardness of bulk Zr3N4 is below ~15 GPa.

Acknowledgements

We thank the National Natural Science Foundation of China (No. 51372203 and 51332004), the Foreign Talents Introduction and Academic Exchange Program (No. B08040), the GDRI RFCCT CNRS (DNN-evol program) and the Hubert Curien Partnerships PHC XU GUANGQI 2015 (No. 34455P) part of the French Ministry of Foreign Affairs, the Région Poitou-Charentes (France) for a PhD fellowship, and the Government of the Russian Federation (No. 14.A12.31.0003) for financial support. We also acknowledge the High Performance Computing Center of NWPU (China), and TGGC/Curie GNCI (France) under project no. 2016087539 for allocation of computing time on their machines. We would like to thank an anonymous referee to point out Zr15N16 as a potential candidate.

References

1. H. O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications, Noyes Publication, New York, 1996, pp. 163–180.
2. H. Holleck, J. Vac. Sci. Technol., A, 1986, 4, 2661–2669.
3. K. Inumaru, T. Ohara, K. Tanaka and S. Yamanaka, Appl. Surf. Sci., 2004, 235, 460–464.
4. D. J. Kim, Y. R. Cho, M. J. Lee, J. M. Hong, Y. K. Kim and K. H. Lee, Surf. Coat. Technol., 1999, 116, 906–910.
5. A. I. Gusev and A. A. Rempel, Phys. Status Solidi A, 1997, 163, 273–304.
6. D. I. Bazhanov, A. A. Knizhnik, A. A. Saffenov, A. A. Bagatiryants, M. W. Stoker and A. A. Korkin, J. Appl. Phys., 2005, 97, 044108.
7. R. Niewa and F. J. DiSalvo, Chem. Mater., 1998, 10, 2733–2752.
8. A. Kaifizas, C. J. Carmalt and I. P. Parkin, Coord. Chem. Rev., 2013, 257, 207–2119.
9. A. Salamat, A. L. Hector, P. Kroll and P. F. McMillan, Coord. Chem. Rev., 2013, 257, 2063–2072.
10. S. V. Didziulis and K. D. Butcher, Coord. Chem. Rev., 2013, 257, 93–109.
11. L. Gribaudo, D. Arias and J. Abriata, J. Phase Equilib., 1994, 15, 441–449.
12. A. Zerr, G. Miehe and R. Riedel, Nat. Mater., 2003, 2, 185–189.
13. P. Kroll, Phys. Rev. Lett., 2003, 90, 125501.
14. M. Chhowalla and H. E. Unalan, Nat. Mater., 2005, 4, 317–322.
15. W. H. Baur and M. Lerch, Z. Anorg. Allg. Chem., 1996, 622, 1729–1730.
16. R. Juza, A. Gabel, H. Rabenau and W. Klose, Z. Anorg. Allg. Chem., 1964, 329, 136–145.
17. A. R. Oganov and C. W. Glass, J. Chem. Phys., 2006, 124, 244704.
18. A. R. Oganov, A. O. Lyakhov, M. Valle, C. Gatti and Y. Ma, Rev. Mineral. Geochem., 2010, 71, 271–298.
19. A. R. Oganov, A. O. Lyakhov and M. Valle, Acc. Chem. Res., 2011, 44, 227–237.
20. A. O. Lyakhov, A. R. Oganov, H. T. Stokes and Q. Zhu, Comput. Phys. Commun., 2012, 184, 1172–1182.
21. G. Kresse and J. Furthmiller, Phys. Rev. B: Condens. Matter, 1996, 54, 11169–11186.
22. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
23. P. E. Blöchl, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, 50, 17953.
24. M. Methfessel and A. T. Paxton, Phys. Rev. B: Condens. Matter Mater. Phys., 1989, 40, 3616–3621.
25. A. Togo, F. Oba and I. Tanaka, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 78, 134106.
26. H. Tang, A. Van der Ven and B. L. Trout, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, 70, 045420.
27. M. Lerch, E. Füglein and J. Wrb, Z. Anorg. Allg. Chem., 1996, 622, 367–372.
28. Q. F. Zeng, J. H. Peng, A. R. Oganov, Q. Zhu, C. W. Xie, X. D. Zhang, D. Dong, L. T. Zhang and L. F. Cheng, Phys. Rev. B: Condens. Matter Mater. Phys., 2013, 88, 4269–4275.
29. X. X. Yu, C. R. Weinberger and G. B. Thompson, Comput. Mater. Sci., 2016, 112, 318–326.
30. C. Jiang and W. S. Jiang, Phys. Status Solidi B, 2014, 251, 533–536.
31. S. Y. Yu, Q. F. Zeng, A. R. Oganov, G. Frapper and L. T. Zhang, Phys. Chem. Chem. Phys., 2014, 17, 11763–11769.
32. J. E. Huheey, Inorganic chemistry: principles of structure and reactivity, Harpar & Row, 1993, vol. 156, pp. 907–914.
33. R. Hoffmann, Solids and surfaces: a chemist’s view of bonding in extended structures, Wiley-VCH, New York, 1988, pp. 18–21.
34. Z. Q. Chen, J. Wang and C. M. Li, J. Alloys Compd., 2013, 575, 137–144.
35. C. Sarioglu, Surf. Coat. Technol., 2006, 201, 707–717.
36. F. Lévy, P. Hones, P. Schmid, R. Sanjínés, M. Diserens and C. Wiemer, Surf. Coat. Technol., 1999, 120, 284–290.
37. F. M. Gao, Chin. Phys. Lett., 2011, 28, 076102.
38. W. Y. Ching, Y. N. Xu and L. Z. Ouyang, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, 66, 126–130.
39 F. M. Gao, R. Xu and K. Liu, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, 71, 2103.
40 F. Mouhat and F. X. Coudert, Phys. Rev. B: Condens. Matter Mater. Phys., 2014, 90, 224104.
41 W. Zhou, L. J. Liu, B. L. Li, P. Wu and Q. G. Song, Comput. Mater. Sci., 2009, 46, 921–931.
42 C. Jiang, S. G. Srinivasan, A. Caro and S. A. Maloy, J. Appl. Phys., 2007, 103, 3654–3660.
43 V. Milman and M. Warren, J. Phys.: Condens. Matter, 2001, 13, 5585.
44 Y. C. Liang, W. L. Guo and Z. Fang, Acta Phys. Sin., 2007, 56, 4847–4855.
45 S. F. Pugh, Philos. Mag., 1954, 45, 823–843.
46 S. I. Ranganathan and M. Ostoja-Starzewski, Phys. Rev. Lett., 2008, 101, 055504.
47 X. Q. Chen, H. Y. Niu, D. Z. Li and Y. Y. Li, Intermetallics, 2011, 19, 1275–1281.
48 A. Šimúnek, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, 75, 172108.
49 A. Zerr, G. Miehe and R. Riedel, Nat. Mater., 2003, 2, 185–189.