Isolation of 1,4-Diarsinine-1,4-diiide and 1,4-Diarsinine Derivatives
Dennis Rottschäfer, Timo Glodde, Beate Neumann, Hans-Georg Stammler, Diego M. Andrada, and Rajendra S. Ghadwal*

anie_202105835_sm_miscellaneous_information.pdf
Table of Contents

Materials and Method .. S2

- Synthesis of [(ADC\textsubscript{Ph})AsCl\textsubscript{2}]\textsubscript{2} (4) ... S2
- Synthesis of [(ADC\textsubscript{Ph})As\textsubscript{2}] (5) .. S3
- Synthesis of [[(ADC\textsubscript{Ph})As\textsubscript{2}(OTf)\textsubscript{2}] (6) ... S3
- Synthesis of [[(ADC\textsubscript{Ph})AsCl\textsubscript{2}(OTf)\textsubscript{2}] (7) ... S4
- Alternative synthesis of [[(ADC\textsubscript{Ph})AsCl\textsubscript{2}(OTf)\textsubscript{2}] (7) .. S4
- Synthesis of [(ADC\textsubscript{Ph})As\textsubscript{2}Mo(CO)\textsubscript{4}] (8) ... S4
- Synthesis of [(ADC\textsubscript{Ph})AsMe\textsubscript{2}(OTf)\textsubscript{2}] (9) ... S5

Plots of NMR Spectra .. S6

- UV-Visible Spectra ... S17
- Infrared Spectra .. S18
- Crystallographic Details .. S19

Computational Details ... S27

- General information .. S27
- Optimized structures ... S29
- Frontier molecular orbitals (FMOs) ... S30
- Quantum Theory of Atoms in Molecules (QTAIM) .. S34
- Nucleus-Independent Chemical Shift (NICS) analysis ... S35
- ACID plots .. S36
- Induced ring currents .. S38
- TD-DFT calculations .. S40
- CASSCF (12,12) Calculations ... S42
- xyz coordinates ... S52

References .. S56
Materials and Method

All syntheses and manipulations were carried out under an inert gas atmosphere (Ar or N₂) using standard Schlenk techniques or a glove-box (MBrain LABMasterPro). Organic solvents were dried over appropriate drying agents, distilled, and stored over 3 Å molecular sieve. Deuterated solvents were dried over appropriate drying agents, distilled, and stored inside a glove box. NMR spectra were recorded on a Bruker Avance III 500 or a Bruker Avance III 500 HD spectrometer. Chemical shifts (in δ, ppm) are referenced to the residual solvent signal(s): CD₂Cl₂ (δH, 5.30; ¹³C, 54.00), THF-d₈ (δH, 3.58; ¹³C, 67.21 ppm), and CD₂CN (δH, 1.94; ¹³C, 1.32 ppm).[1] UV-vis spectra were recorded on an Agilent 8453 UV-visible spectroscopy system. nBuLi (2.5 M in hexanes, Sigma Aldrich) was used as supplied. (IPr²Ph)Cl (1) and [(ADC³Ph)(SiMe₃)₂]Cl (3) were prepared following the procedures reported earlier by this laboratory.[²] Me₂SiCl was distilled before use and stored under N₂. AsCl₃ was prepared following literature protocols and stored under N₂.[³] Mo(CO)₆ was sublimed before use and stored under an argon atmosphere. MeOTf was distilled before use and stored under N₂. (Me₂S)AuCl was prepared as reported in the literature.[⁴]

Synthesis of [(ADC³Ph)AsCl₂]₂ (4)

To a precooled (−30 °C) THF solution of 1 (5.1 g, 10.2 mmol) was added nBuLi (2.5 M, 9.0 mL, 22.5 mmol). The resulting brown solution of 2 was stirred at room temperature (rt) for 1 h. Me₂SiCl (3.0 mL, 23.8 mmol) was added at −20°C and the resulting colorless solution of 3 was stirred at rt for 1.5 h. To this solution was added AsCl₃ (0.86 mL, 10.2 mmol) at −20 °C and the resulting yellow solution was stirred overnight at rt and then for 2 h at 60 °C, leading to the precipitation of an off-white solid. The precipitate was isolated by filtration, washed with THF, and extracted into dichloromethane (DCM). Removal of the volatiles from the filtrate afforded 4 as a colorless solid in 65% (4.0 g) yield. Single crystals suitable for X-ray diffraction were obtained by storing a saturated DCM solution of 4 at −30°C for three days. ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ = 7.69 (t, J = 7.8 Hz, 4H, p-C₆H₅), 7.43 (d, J = 7.8 Hz, 8H, m-C₆H₅), 7.40 (t, J = 7.4 Hz, 2H, p-C₆H₅), 7.11 (t, J = 8.1 Hz, 4H, m-C₆H₅), 6.99 (d, J = 8.4 Hz, 4H, o-C₆H₅), 2.87 (s, br, 8H, CH(CH₃)₂), 1.32 (d, J = 6.6 Hz, 24H, CH(CH₃)₂), 0.79 (d, J = 6.8 Hz, 24H, CH(CH₃)₂). ¹³C [¹H] NMR (125 MHz, CD₂Cl₂, 298 K): δ = 147.6 (NCN), 145.9 (i-C₆H₅), 144.7 (NCAs), 134.3 (p-C₆H₅), 133.8 (p-C₆H₅), 131.5 (o-C₆H₅), 130.2 (o-C₆H₅), 129.5 (m-C₆H₅), 127.1 (m-C₆H₅), 121.2 (i C₆H₅), 29.7 (CH(CH₃)₂), 24.5, 24.4 (CH(CH₃)₂) ppm.
Synthesis of [(ADCPh)As\textsubscript{2}] (5)

To a pre-cooled (−90 °C) THF (150 mL) suspension of 4 (1.2 g, 1.0 mmol) was added KC\textsubscript{8} (660 mg, 4.9 mmol) in one portion. The suspension was allowed to reach the rt and stirred overnight. Insoluble material was filtered off using a frit containing a plug of Celite. The volatiles from the red filtrate were removed under vacuum to obtain 5 as a red crystalline solid in 96% (1.0 g) yield. Single crystals suitable for X-ray diffraction analysis were obtained by storing a saturated toluene solution of 5 at −30 °C for three days. 1H NMR (500 MHz, THF-\textit{d}_8, 298 K): \(\delta = 7.40 \) (t, \(J = 7.7 \) Hz, 4H, \(p\text{-C}_6H_5 \)), 7.25 (d, \(J = 7.7 \) Hz, 8H, \(m\text{-C}_6H_5 \)), 6.60–6.54 (m, 6H, \(m\text{-p-C}_6H_5 \)), 6.30 (d, \(J = 7.4 \) Hz, 4H, \(o\text{-C}_6H_5 \)), 3.31 (sept, \(J = 6.7 \) Hz, 8H, CH(CH\text{\small{3}}\text{\small{3}})), 1.45 (d, \(J = 6.7 \) Hz, 24H, CH(CH\text{\small{3}}\text{\small{2}})), 0.96 (d, \(J = 6.9 \) Hz, 24H, CH(CH\text{\small{3}}\text{\small{2}})) ppm. 13C[1H] NMR (125 MHz, THF-\textit{d}_8, 298 K): \(\delta = 154.7 \) (CAs), 146.6 (NCN), 135.5 (\(i\text{-C}_6H_5 \)), 131.2 (\(o\text{-C}_6H_5 \)), 128.4 (\(p\text{-C}_6H_5 \)), 126.2 (\(m\text{-C}_6H_5 \)), 124.7 (\(m\text{-p-C}_6H_5 \)), 123.1 (\(o\text{-C}_6H_5 \)), 29.8 (CH(CH\text{\small{3}}\text{\small{2}}), 25.0, 24.1 (CH(CH\text{\small{3}}\text{\small{2}})) ppm. UV/Vis (THF, \(\lambda \) (nm) (\(\varepsilon \) (M−1 cm−1)): 277 (607180), 420 (200320), 890 (398010), 985 (633210).

Synthesis of [[(ADCPh)As\textsubscript{2} OTf\textsubscript{2}] (6)

To a THF (20 mL) solution of 5 (577 mg, 0.54 mmol) was added AgOTf (275 mg, 1.07 mmol). The resulting yellow suspension was stirred for 3 h and filtered through a plug of Celite. Extraction with DCM (3 x 5 mL) and thorough drying afforded compound 6 in 89% yield (660 mg) as a yellow solid. Single crystals suitable for X-ray diffraction analysis were obtained by a slow diffusion of \textit{n}-hexane into a saturated DCM solution of 6. 1H NMR (500 MHz, CD\textsubscript{2}Cl\textsubscript{2}, 298 K): \(\delta = 7.77 \) (t, \(J = 7.9 \) Hz, 4H, \(p\text{-C}_6H_5 \)), 7.58 (t, \(J = 7.5 \) Hz, 2H, \(p\text{-C}_6H_5 \)), 7.51 (d, \(J = 7.9 \) Hz, 8H, \(m\text{-C}_6H_5 \)), 7.34 (t, \(J = 8.0 \) Hz, 4H, \(m\text{-C}_6H_5 \)), 7.28 (d, \(J = 8.6 \) Hz, 4H, \(o\text{-C}_6H_5 \)), 2.44 (sept, \(J = 6.8 \) Hz, 8H, CH(CH\text{\small{3}}\text{\small{2}})), 1.14 (d, \(J = 6.7 \) Hz, 24H, CH(CH\text{\small{3}}\text{\small{2}})), 0.96 (d, \(J = 6.8 \) Hz, 24H, CH(CH\text{\small{3}}\text{\small{2}})) ppm. 13C[1H] NMR (126 MHz, CD\textsubscript{2}Cl\textsubscript{2}, 298 K): \(\delta = 169.6 \) (CAs), 152.5, 146.2 (NCN, \(i\text{-C}_6H_5 \)), 135.7 (\(p\text{-C}_6H_5 \)), 134.5 (\(p\text{-C}_6H_5 \)), 130.9 (\(o\text{-C}_6H_5 \)), 130.3 (\(m\text{-C}_6H_5 \)), 130.0 (\(m\text{-p-C}_6H_5 \)), 127.8 (\(o\text{-C}_6H_5 \)), 119.8 (\(i\text{-C}_6H_5 \)), 29.9 (CH(CH\text{\small{3}}\text{\small{2}}), 26.3, 23.8 (CH(CH\text{\small{3}}\text{\small{2}})) ppm. 19F[1H] NMR (471 MHz, CD\textsubscript{2}Cl\textsubscript{2}, 298 K): \(\delta = −78.7 \) ppm (s). UV/Vis (CH\textsubscript{2}Cl\textsubscript{2}, \(\lambda \) (nm) (\(\varepsilon \) (M−1 cm−1)): 271 (220840), 294 (338640), 414 (26660), 451 (25860).
Synthesis of [(ADC^ph)AsCl]_2(OTf)_2 (7)

To a DCM (20 mL) solution of 6 (244 mg, 0.18 mmol) was added (Me_2S)AuCl (105 mg, 0.36 mmol) in one portion. The resulting pale yellow suspension was stirred for 3 h and then filtered through a plug of Celite. Removal of the volatiles under vacuum gave 7 (247 mg, 95%) as a pale yellow solid. Single crystals suitable for X-ray diffraction analysis were obtained by a slow diffusion of n-hexane into a saturated DCM solution of 7.

^1H NMR (500 MHz, CD_2Cl_2, 298 K): δ = 7.72 (t, J = 7.8 Hz, 4H, p-C_6H_5), 7.51 (d, J = 7.7 Hz, 2H, m-C_6H_5), 7.47–7.39 (m, 6H, m-C_6H_5, p-C_6H_5), 7.16 (t, J = 7.9 Hz, 4H, m-C_6H_5), 7.08 (d, J = 8.3 Hz, 4H, o-C_6H_5), 3.20 (sept, J = 6.4 Hz, 4H, CH(CH_3)_2), 2.47 (sept, J = 6.3 Hz, 4H, CH(CH_3)_2), 1.33 (d, J = 6.4 Hz, 12H, CH(CH_3)_2), 1.31 (d, J = 6.4 Hz, 12H, CH(CH_3)_2), 0.78 (pseudo-triplet, 24H, CH(CH_3)_2).

^13C[^1H] NMR (126 MHz, CD_2Cl_2, 298 K): δ = 150.8 (CAs), 146.9, 146.7, 141.4 (NCN, o-C_6H_5, i-C_6H_5), 134.9, 134.2 (p-C_6H_5), 131.0 (i-C_6H_5), 130.7 (o-C_6H_5), 129.7 (m-C_6H_5), 128.0, 127.4 (m-C_6H_5), 121.0 (i-C_6H_5), 30.0, 29.0 (CH(CH_3)_2), 25.9, 25.8, 24.8, 24.5 (CH(CH_3)_2) ppm. ^19F[^1H] NMR (471 MHz, CD_2Cl_2, 298 K): δ = –78.7 ppm (s).

Alternative synthesis of [(ADC^ph)AsCl]_2(OTf)_2 (7)

To a DCM (20 mL) solution of 4 (1.0 g, 0.87 mmol) was added Me_3SiOTf (0.35 mL, 1.94 mmol) at rt and stirred for 2 h. The solvent was evaporated and the crude product was suspended in toluene, filtered, and dried under vacuum to afford 7 (1.13g, 90%). NMR spectroscopic data of this product were identical to that prepared by using 6 and (Me_2S)AuCl (see above).

Synthesis of [(ADC^ph)As]_2Mo(CO)_4 (8)

A THF solution of 5 (330 mg, 0.3 mmol) and Mo(CO)_6 (320 mg, 1.2 mmol) was irradiated under UV light for 1 h and then stirred overnight at rt. The volatiles were removed in vacuo and the residue was suspended in 5 mL toluene. Filtration afforded complex 8 as a light brown solid in 41% (235 mg) yield. The toluene filtrate was stored at rt overnight to obtain single crystals of 8, which were suitable for X-ray diffraction analysis.

^1H NMR (500 MHz, CD_2Cl_2, 298 K): δ = 7.42 (t, J = 7.5 Hz, 4H, p-C_6H_5), 7.28 (d, J = 7.5 Hz, 4H, m-C_6H_5), 7.24 (m, 6H, m-C_6H_5, p-C_6H_5), 7.00 (t, J = 7.4 Hz, 4H, m-C_6H_5), 6.92 (d, J = 7.8 Hz, 4H, o-C_6H_5), 3.24–3.16 (m, 4H, CH(CH_3)_2), 2.51–2.38 (m, 4H, CH(CH_3)_2), 1.47 (d, J = 6.1 Hz, 12H, CH(CH_3)_2), 0.86 (d, J = 6.2 Hz, 12H, CH(CH_3)_2), 0.77 (d, J = 6.8 Hz, 12H, CH(CH_3)_2), 0.75 (d, J = 6.9 Hz, 12H, CH(CH_3)_2) ppm.

^13C[^1H] NMR (126 MHz, CD_2Cl_2, 298 K): δ = 224.1, 217.1 (MoCO), 165.0 (CAs), 146.9, 144.4,
143.6, 134.3 (NCN, i-C₆H₅, o-C₆H₃), 131.1 (p-C₆H₅), 130.0(m-C₆H₅), 128.8 (o-C₆H₅), 126.3 (p-C₆H₅), 125.7 (i-C₆H₅), 124.6 (m-C₆H₅), 29.4, 29.2 (CH(CH₃)₂), 26.6, 24.9, 24.1, 23.3 (CH(CH₃)₂) ppm. IR (KBr, neat): \(\tilde{\nu} / \text{cm}^{-1} = 1976, 1938, 1850, 1815 (\nu \text{CO}) \).

Synthesis of \([\text{ADC}^\text{Ph})\text{AsMe}(\text{OTf})_2 \) (9)

A toluene (15 mL) solution of 8 (178 mg, 0.14 mmol) was treated with MeOTf (33 \(\mu \)L, 0.30 mmol). The resulting colorless suspension was stirred overnight, filtered, and the precipitate was dried in vacuum, affording compound 9 as an off-white solid (149 mg, 76%). Single crystals suitable for X-ray diffraction analysis were obtained by a slow diffusion of \(n \)-hexane into a saturated DCM solution of 9 at rt. \(^1\)H NMR (500 MHz, CD₃CN, 298 K) \(\delta = 7.74 \) (t, \(J = 7.8 \) Hz, 4H, p-C₆H₅), 7.69 (d, \(J = 7.9 \) Hz, 4H, m-C₆H₅), 7.46 (t, \(J = 7.5 \) Hz, 2H, p-C₆H₅), 7.37 (d, \(J = 7.7 \) Hz, 4H, m-C₆H₅), 7.22 (t, \(J = 8.1 \) Hz, 4H, m-C₆H₅), 7.00 (d, \(J = 8.0 \) Hz, 4H, o-C₆H₅), 3.24 (sept, \(J = 6.7 \) Hz, 4H, CH(CH₃)₂), 2.06 (sept, \(J = 6.7 \) Hz, 4H, CH(CH₃)₂), 1.57 (d, \(J = 6.7 \) Hz, 12H, CH(CH₃)₂), 1.34 (d, \(J = 6.7 \) Hz, 12H, CH(CH₃)₂), 1.12 (d, \(J = 6.6 \) Hz, 12H, CH(CH₃)₂), 0.89 (s, 6H, CH₃), 0.12 (d, \(J = 6.7 \) Hz, 12H, CH(CH₃)₂) ppm. \(^{13}\)C\(^{1}\)H\) NMR (126 MHz, CD₂CN, 298 K) \(\delta = 150.4, 145.7, 145.4 \) (NCN, o-C₆H₅, o-C₆H₅), 138.0 (CAs), 134.9 (p-C₆H₅), 134.5 (p-C₆H₅), 131.4 (m-C₆H₅), 131.1 (o-C₆H₅), 130.3 (m-C₆H₅), 128.4, 128.1 (m-C₆H₅), 30.5, 29.4 (CH(CH₃)₂), 25.2, 24.7, 24.1, 23.8 (CH(CH₃)₂), 12.8 (CH₃) ppm. \(^{19}\)F NMR (471 MHz, CD₂CN, 298 K) \(\delta = -79.3 \) ppm.
Plots of NMR Spectra

Figure S1. 1H NMR (500 MHz, CD$_2$Cl$_2$, 298 K) spectrum of compound 4.

Figure S2. 13C $[^1]$H NMR (125 MHz, CD$_2$Cl$_2$, 298 K) spectrum of compound 4.
Figure S3. 1H-13C HMOC NMR (CD$_2$Cl$_2$, 298 K) spectrum of compound 4.

Figure S4. 1H NMR (500 MHz, THF-d_8, 298 K) spectrum of compound 5.
Figure S5. 13C(1H) NMR (125 MHz, THF-d$_8$, 298 K) spectrum of compound 5.

Figure S6. 1H-13C HMQC NMR (THF-d$_8$, 298 K) spectrum of compound 5.
Figure S7. 1H NMR (500 MHz, CD$_2$Cl$_2$, 298 K) spectrum of compound 6.

Figure S8. 13C(1H) NMR (125 MHz, CD$_2$Cl$_2$, 298 K) spectrum of compound 6.
Figure S9. 1H-13C HMQC NMR (CD$_2$Cl$_2$, 298 K) spectrum of compound 6.

Figure S10. 19F-1H NMR (471 MHz, CD$_2$Cl$_2$, 298 K) spectrum of compound 6.
Figure S11. 1H NMR (500 MHz, CD$_2$Cl$_2$, 298 K) spectrum of compound 7.

Figure S12. 13C(1H) NMR (125 MHz, CD$_2$Cl$_2$, 298 K) spectrum of compound 7.
Figure S13. $^{1}H-^{13}C$ HMQC NMR (CD$_2$Cl$_2$, 298 K) spectrum of compound 7.

Figure S14. $^{19}F-[^{1}H]$ NMR (471 MHz, CD$_2$Cl$_2$, 298 K) spectrum of compound 7.
Figure S15. 1H NMR (500 MHz, CD$_2$Cl$_2$, 298 K) spectrum of compound 8.

Figure S16. 13C(1H) NMR (125 MHz, CD$_2$Cl$_2$, 298 K) spectrum of compound 8.
Figure S17. 1H-13C HMQC NMR (CD$_2$Cl$_2$, 298 K) spectrum of compound 8.

Figure S18. 1H NMR (500 MHz, CD$_3$CN, 298 K) spectrum of compound 9.
Figure S19. 13C\{1H} NMR (125 MHz, CD$_3$CN, 298 K) spectrum of compound 9.

Figure S20. 1H-1C HMQC NMR (CD$_3$CN, 298 K) spectrum of compound 9.
Figure S21. 19F(1H) NMR (471 MHz, CD$_3$CN, 298 K) spectrum of compound 9.
UV-Visible Spectra

Figure S22. UV-visible spectrum of compound 5 (THF, 1.30•10⁻⁶ M).

Figure S23. UV-visible spectrum of compound 6 (CH₂Cl₂, 1.45•10⁻⁶ M).
Infrared Spectra

Figure S24. IR spectrum (500-3500 cm$^{-1}$) of compound 8 (neat, KBr window).

Figure S25. IR spectrum (1750-2050 cm$^{-1}$) of compound 8 (neat, KBr window).
Crystallographic Details

Single crystals were examined on Rigaku Supernova diffractometers. Using Olex2\cite{5}, the structure was solved with the ShelXS\cite{6} (4) or ShelXT\cite{7} (5, 6, 7, 8, trans-9) structure solution programs using Direct Methods (4) or Intrinsic Phasing (5, 6, 7, 8, trans-9) and refined with the ShelXL\cite{8} (4, 5, 6, 7, trans-9) refinement package using CGLS (3) or Least Squares minimization (4, 5, 6, 7, trans-9). The data of 4 were refined as an inversion twin (ratio 65:35). A solvent mask was calculated and 310 electrons were found in a volume of 1580 Å³ in one void. This is consistent with the presence of two dichloromethane molecules per formula unit which account for 336 electrons. The masked solvent molecules were taken into account for sum formula and subsequent items. In the structure of 5, one toluene solvent molecule is disordered over three sites (0.37:0.38:0.25). The structure of 6 shows a disorder of one triflate anion (73:27), influenced by partly occupied CH₂Cl₂ (0.27) with disordered chlorines, and a disorder of the second triflate anion over two sites (55:45). All triflate anions were included by the fragment database of Olex2. Several anisotropic displacement parameters of disordered atoms were additionally constrained with EADP or restrained with RIGU. Disorder of one diisopropylphenyl substituent over two sites (57:43). The moiety formula adds up to C₆₆H₇₈As₂N₄, 2(CF₃O₃S), 0.27(CH₂Cl₂). The structure of 7 exhibits disorder of the phenyl ring (23%) and the As-Cl group (1.5%). The thermal parameters of the disordered atoms were pairwise constrained to be the same. In the structure of 8, disordered toluene was squeezed. A solvent mask was calculated, and 204 electrons were found in a volume of 1238 Å³ in one void. This is consistent with the presence of one toluene per formula unit which accounts for 200.0 electrons. The masked solvent molecules were taken into account for sum formula and subsequent items. In the structure of trans-9, hydrogen atoms were taken into account using a riding model. In the structure of cis-9, one triflate anion is disordered seriously. It can be found at the three-fold axis with an occupancy of 21%, the other 79% additionally show a positional disorder over two positions with a ratio of 1:1, i.e. an occupancy of 40 resp. 39%. One i-propyl group is disordered with a ratio of 69:31. All disordered atoms were restrained to have similar U-values. Additionally, the disorder of n-hexane solvent molecules (one per formula unit) could not be modeled reasonably. Therefore, a solvent mask was calculated and 312 electrons were found in a volume of 812 Å³. The masked solvent molecules were taken into account for sum formula and subsequent items. This is consistent with the presence of one hexane per formula unit which accounts for 300.0 electrons. The structure was refined as a racemic twin (ratio 76:24).
Figure S26. Solid-state molecular structure of 4. Thermal displacement ellipsoids are displayed at the 50% probability level. Hydrogen atoms, as well as dichloromethane solvent molecules, are omitted and aryl substituents are depicted as wire models for clarity. Selected bond lengths (Å) and angles (°): As1–Cl1 2.3553(8), As1–Cl2 2.5916(8), As1–C2 1.953(3), As1–C35 1.957(3), As2–Cl3 2.3363(9), As2–C34 2.6466(9), As2–C3 1.949(3), As2–C36 1.947(3), N1–C1 1.356(4), N1–C2 1.391(4), N1–C4 1.459(4), N2–C1 1.357(4), N2–C3 1.391(4), N2–C63 1.464(4), N3–C34 1.359(4), N3–C35 1.397(3), N3–C37 1.458(4), N4–C34 1.349(4), C2–C35 1.361(4), C36–C35 1.361(4); Cl1–As1–Cl2 177.76(3), Cl3–As2–Cl4 175.63(3), C2–As1–C35 95.08(12), C36–As2–C3 95.17(12), C2–C3–As2 130.2(2), C3–C2–As1 130.5(2), C36–C35–As1 130.8(2), C35–C36–As2 131.5(2).

Figure S27. Solid-state molecular structure of 5 for both molecules in the unit cell. Thermal displacement ellipsoids are displayed at the 50% probability level. Hydrogen atoms, as well as toluene solvent molecules, are omitted and aryl substituents are depicted as wire models for clarity. Selected bond lengths (Å) and angles (°): As1–C3 1.918(2), As1–C36 1.920(2), As2–C2 1.919(2), As2–C35 1.923(2), As3–C68 1.924(2), As3–C69 1.920(2), C2–C3 1.384(3), C35–C36 1.384(3), C68–C69 1.383(2); C2–C3–As1 133.1(2), C3–C2–As2 133.7(2), C35–C36–As1 132.9(2), C36–C35–As2 133.8(2), C68–C69–As3 133.1(2), C69–C68–As3 134.2(2), C3–As1–C36 93.2(1), C2–As2–C35 92.6(1), C69–As3–C68 92.7(1).
Figure S28. Solid-state molecular structure of 6. Thermal displacement ellipsoids are displayed at the 50% probability level. Hydrogen atoms, as well as dichloromethane solvent molecules, are omitted and aryl substituents are depicted as wire models for clarity. Minor occupied disordered atoms are not shown. Selected bond lengths (Å) and angles (°): As1–C2 1.872(5), As1–C35 1.856(5), As2–C3 1.877(5), As2–C36 1.874(5), N1–C2 1.390(6), N2–C3 1.409(6), N3–C35 1.394(6), N4–C36 1.406(7), C2–C3 1.395(7), C35–C36 1.398(7); C35–As1–C2 94.5(2), C36–As2–C3 93.3(2), C3–C2–As1 132.0(4), C2–C3–As2 133.6(4), N3–C35–As1 120.7(3), C36–C35–As1 132.8(4), C35–C36–As2 133.1(4).

Figure S29. Solid-state molecular structure of 7. Thermal displacement ellipsoids are displayed at the 50% probability level. Hydrogen atoms are omitted and aryl substituents are depicted as wire models for clarity. Minor occupied disordered parts are not shown. Selected bond lengths (Å) and angles (°): As1–Cl1 2.186(1), As1–C2 1.942(1), As1–C3’ 1.938(2), N1–C2 1.395(2), N2–C3 1.398(2), C2–C3 1.361(2); C2–As1–C3’ 95.0(1), C2–C3–As1’ 131.4(1), C3–C2–As1 131.9(2); for disordered parts: As1B–Cl1 2.07(3), As1B–C2 2.093(9), As1B–C3’ 2.069(9); C2–As1B–C3’ 86.8(3) C3–C2–As1B 120.3(2), C2–C3–As1B’ 120.3(2).
Figure S30. Solid-state molecular structure of 8. Thermal displacement ellipsoids are displayed at the 50% probability level. Hydrogen atoms are omitted and aryl substituents are depicted as wire models for clarity. Selected bond lengths (Å) and angles (°): Mo1–As1 2.7849(2), Mo1–As2 2.8022(2), Mo1–C67 1.960(2), Mo1–C68 2.018(2), Mo1–C69 1.960(2), Mo1–C70 2.041(2), As1–C2 1.9469(17), As1–C35 1.9740(17), As2–C3 1.9920(17), As2–C36 1.9555(17), O1–C67 1.157(3), O2–C68 1.152(3), O3–C69 1.153(3), O4–C70 1.142(3), C2–C3 1.362(2), C35–C36 1.365(2); As1–Mo1–As2 77.7(1), C67–Mo1–As1 95.9(1), C67–Mo1–As2 173.0(1), C67–Mo1–C68 83.3(1), C67–Mo1–C69 90.0(1), C67–Mo1–C70 91.0(1), C68–Mo1–As2 99.0(1), C68–Mo1–C70 172.4(1), C69–Mo1–As1 172.5(1), C69–Mo1–As2 96.6(1), C69–Mo1–C68 88.9(1), C69–Mo1–C70 86.0(1), C70–Mo1–As1 98.5(1), C70–Mo1–As2 87.3(1), C2–As1–Mo1 88.8(1), C2–As1–C35 92.9(1), C35–As1–Mo1 90.0(1), C3–As2–Mo1 89.5(1), C36–As2–Mo1 88.6(1), C36–As2–C3 93.1(1), O1–C67–Mo1 177.9(2), O2–C68–Mo1 172.4(2), O3–C69–Mo1 179.1(2), O4–C70–Mo1 173.9(2).

Figure S31. Solid-state molecular structure of trans-9. Thermal displacement ellipsoids are displayed at the 50% probability level. Hydrogen atoms are omitted and aryl substituents are depicted as wire models for clarity. Selected bond lengths (Å) and angles (°): As1–C2 1.951(3), As1–C3 1.950(3), As1–C34 1.950(3), N1–C1 1.352(4), N1–C2 1.403(3), N2–C3 1.401(3), N2–C1 1.346(4), C2–C3 1.363(4), C2–As1–C3 94.2(1), C3–C2–As1 131.7(2), C2–C3–As1 133.6(2), C2–As1–C34 97.8(1), C3–As1–C34 97.9(2), As1–As1 103.4(1).
Figure S32. Solid-state molecular structure of cis-9. Thermal displacement ellipsoids are displayed at the 50% probability level. Hydrogen atoms are omitted and aryl substituents are depicted as wire models for clarity. Selected bond lengths (Å) and angles (°): As1–C2 1.971(8), As1–C5 1.966(8), As1–C7 1.893(8), As2–C3 1.955(8), As2–C6 1.939(8), As2–C8 1.908(10), N1–C2 1.373(10), N2–C3 1.395(11), N3–C5 1.398(11), N4–C6 1.438(10), C2–C3 1.362(11), C5–C6 1.349(12), C2–As1–C5 94.1(3), C3–As2–C6 93.8(3), C3–C2–As1 131.5(6), C2–C3–As2 133.4(6), C6–C5–As1 132.0(6), C5–C6–As2 134.1(6), C2–As1–C7 100.5(4), C5–As1–C7 99.5(3), C3–As2–C8 98.2(4), C6–As2–C8 101.8(4), As2···As1–C34 110.9(1), As1–As2–C8 109.4(1).
Table S1. Crystallographic details of 4 and 5.
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
α/°
β/°
γ/°
Volume/Å³
Z
ρ_cal,g/cm³
μ/mm¹
F(000)
Crystal size/mm³
Radiation
2Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with I > 2σ(I)
Completeness / θ full
Data/restraints/parameters
Goodness-of-fit on F²
Final R indexes [I > 2σ(I)]
Final R indexes [all data]
Largest diff. peak/hole / e Å³
CCDC number
Table S2. Crystallographic details of 6, 7, and 8.

	6 (0.27 CH₂Cl₂)	7	8 (toluene)
Empirical formula	C₆₈H₇₈As₂Cl₅Fe₅N₄O₆S₂	C₆₈H₇₈As₂Cl₅Fe₅N₄O₆S₂	C₇₇H₈₅As₂MoN₄O₄
Formula weight	1398.35	1446.20	1377.27
Temperature/K	100.00(10)	100.0(1)	100.00(10)
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	Pna2₁	P2₁/n	P2₁/n
a/Å	36.4012(2)	13.4854(2)	12.2507(2)
b/Å	12.5278(10)	14.8678(2)	38.2656(6)
c/Å	14.95969(11)	16.5910(2)	14.9014(3)
β/°	90	99.9250(10)	94.398(2)
Volume/Å³	36822.04(9)	3276.68(8)	6964.9(2)
Z	4	2	4
ρ_{calc}/g/cm³	1.361	1.466	1.313
μ/mm⁻¹	2.556	1.237	2.990
F(000)	2902.0	1496.0	2864.0
Crystal size/mm³	0.138 × 0.121 × 0.051	0.203 × 0.178 × 0.141	0.164 × 0.056 × 0.046
Radiation	Cu Kα (λ = 1.54184)	Mo Kα (λ = 0.71073)	Cu Kα (λ = 1.54184)
2θ range for data collection	7.462 to 153.08	5.076 to 69.94	4.618 to 153.39
Index ranges	-45 ≤ h ≤ 43	-21 ≤ h ≤ 21	-15 ≤ h ≤ 15
	-15 ≤ k ≤ 15	-23 ≤ k ≤ 23	-45 ≤ k ≤ 48
	-18 ≤ l ≤ 18	-26 ≤ l ≤ 26	-18 ≤ l ≤ 13
Reflections collected	79908	229011	42179
Independent reflections	14179 [R_{int} = 0.0286, R_{sigma} = 0.0183]	14382 [R_{int} = 0.0637, R_{sigma} = 0.0253]	14375 [R_{int} = 0.0254, R_{sigma} = 0.0293]
Reflections with I > 2σ(I)	13814	11765	12766
Completeness / Θ full	0.999	0.999	1.000
Data/restraints/parameters	14179/305/960	14382/0/437	14375/0/746
Goodness-of-fit on F²	1.043	1.029	1.077
Final R indexes [/ > 2σ(I)]	R₁ = 0.0493, wR₂ = 0.1289	R₁ = 0.0353, wR₂ = 0.0851	R₁ = 0.0283, wR₂ = 0.0720
Final R indexes [all data]	R₁ = 0.0505, wR₂ = 0.1302	R₁ = 0.0490, wR₂ = 0.0914	R₁ = 0.0329, wR₂ = 0.0743
Largest diff. peak/hole / e Å⁻³	1.54/-0.59	1.13/-0.49	0.56/-0.72
CCDC number	2070345	2070343	2070346
Table S3. Crystallographic details of *trans*-9 and *cis*-9.

	trans-9(2 CH₂Cl₂)	*cis*-9 (n-hexane)
Empirical formula	C₇₂H₈₈As₂Cl₆N₄O₆S₂	C₇₅H₉₆As₆F₆N₄O₆S₂
Formula weight	1575.22	1477.51
Temperature/K	100.00(10)	100.0(1)
Crystal system	monoclinic	trigonal
Space group	P2₁/n	P3c1
a/Å	13.8485(4)	24.9688(4)
b/Å	17.1331(5)	24.9688(4)
c/Å	15.9130(5)	19.7655(3)
β/°	90	90
Volume/Å³	3677.04(19)	10671.7(4)
Z	2	6
ρcalc/g/cm³	1.423	1.379
μ/mm⁻¹	1.179	1.069
F(000)	1632.0	4644.0
Crystal size/mm³	0.279 × 0.181 × 0.157	0.2 × 0.175 × 0.111
Radiation	Mo Kα (λ = 0.71073)	Mo Kα (λ = 0.71073)
2Θ range for data collection	3.544 to 52.744	3.262 to 52.03
Index ranges	-17 ≤ h ≤ 16	-30 ≤ h ≤ 30
	-21 ≤ k ≤ 21	-30 ≤ k ≤ 30
	-19 ≤ l ≤ 19	-24 ≤ l ≤ 24
Reflections collected	30179	448843
Independent reflections	7531 [Rint = 0.0706, Rsigma = 0.0694]	14048 [Rint = 0.1009, Rsigma = 0.0260]
Reflections with I > 2σ(I)	5782	12542
Completeness / Θ full	1.000	1.000
Data/restraints/parameters	7531/0/442	14048/301/903
Goodness-of-fit on F²	1.047	1.044
Final R indexes [I > 2σ(I)]	R₁ = 0.0457, wR₂ = 0.0821	R₁ = 0.0559, wR₂ = 0.1527
Final R indexes [all data]	R₁ = 0.0670, wR₂ = 0.0937	R₁ = 0.0636, wR₂ = 0.1587
Largest diff. peak/hole / e Å⁻³	0.63/-0.51	0.96/-0.65
CCDC number	2070347	2070348
Computational Details

General information

All geometry optimizations, frontier molecular orbital studies, and nuclear independent chemical shifts (NICS) computations were performed using Gaussian 16 C01 program suite.9 The geometry optimizations were carried out using the BP86-D3BJ/def2-SVP level of theory.10-11 Furthermore, Grimme dispersion correction D3 in combination with Becke-Johnson-Damping was used throughout the DFT calculations.12 The integral accuracy was internally set to $10^{-6} \ E_H$ with an ultrafine grid. Symmetry was used whenever possible and it was always C_i symmetry. The initial guess for the geometry coordinates used for the optimization of compounds 5 and 62+ was obtained from single-crystal X-ray diffraction. Frequency calculations were carried out for all the optimized geometries to characterize the stationary points as minima. The aforementioned DFT functional in combination with the def2-TZVPP and the optimized coordinates were used for performing the Weinhold’s natural bond orbital (NBO) analysis,13 and NICS,14 calculations.12

The Wiberg Bond Indices (WBI)15 and NPA13 atomic partial charges were calculated at the same level of theory using the NBO 3.1 interface of Gaussian.

The quantum theory of atoms in molecules (QTAIM) analysis was performed using AIMAll15 and the interpretation of the results was done according to Popelier.16

The complete active space self-consistent field (CASSCF) calculations17 were performed to understand the mesomeric character of the compounds with the ORCA 4.2.1 software.18 The CASSCF active space is comprised of 12 electrons distributed in 12 orbitals originating from bonding and antibonding combination of the p orbitals of arsenic and carbon atoms of the central C$_4$As$_2$ framework along with the σ and σ^* orbitals of the As atoms. In the case of 5, each of the As atoms has two lone pairs. The first lone-pair is located in the σ-symmetry 3s-orbital and the second lone pair is located in the orthogonal 3p-orbital. For 62+, one lone pair, one free electron, and a formal positive charge are situated at the As. The lone-pair is located in the σ-symmetry 3s-orbital and the free electron (or positive charge) is situated in the orthogonal p-type orbital, which was also included in the active space in both cases. Each of the carbon atoms of the C$_4$As$_2$ moiety has one electron in a p-orbital that is parallel to that of the arsenic p-orbital. The structure has been taken from the prior BP86-D3BJ/def2-SVP calculation. BP86-D3BJ/def2-TZVPP calculations have been performed to generate the starting orbitals employing the resolution of the identity chain of spheres (RIJCOSX) approximation.19 The resulting MOs of the DFT calculations of 5 and 62+ were considered for the active space. Finally, three roots for the singlet and triplet states have been taken into account with equal weights.
The aromatic character of the different rings was computed by Nuclear Independent Chemical Shift (NICS and NICS\textsubscript{zz}) values[17] These calculations were carried out using the gauge-invariant atomic orbitals (GIAO) method[18] at the BP86+D3(BJ)/def2-TZVPP level of theory. The magnetic shielding tensor was calculated for ghost atoms located at the ring critical point (3,+1), the point of lowest density in the ring plane[19] as suggested by Cossio et al.[20] The anisotropy of the induced current density (ACID) method was employed to visualize the induced delocalization[21] Magnetic Induced Current Density (MICD) was computed by integrating the electronic current passing through interatomic surfaces of QTAIM between neighboring atoms by the AIMAll suite of programs[22].

Time-dependent density functional theory (TD-DFT) was employed to calculate excitation energies as implemented in ORCA 4.2.1[18] We used the functional PBE0 in combination the def2-TZVPP basis sets[23] The solvent THF was described in this case by the conductor-like polarizable continuum model, CPCM[24].
Figure S33. Optimized structures of 5 and [6]$^{2+}$ at the BP86-D3BJ/def2-SVP level of theory. The bond lengths are given in Å. Hydrogen atoms are omitted for clarity.
Frontier molecular orbitals (FMOs)

Figure S34. Selected molecular orbitals of 5 calculated at the BP86-D3BJ/def2-TZVPP level of theory. The isovalue was arbitrarily chosen to be 0.04. Hydrogen atoms were omitted for clarity.
HOMO-20 (\(\epsilon = -12.14\ \text{eV}\))
HOMO-13 (\(\epsilon = -11.23\ \text{eV}\))
HOMO-6 (\(\epsilon = -10.71\ \text{eV}\))
HOMO-5 (\(\epsilon = -10.70\ \text{eV}\))

HOMO-4 (\(\epsilon = -10.61\ \text{eV}\))
HOMO-3 (\(\epsilon = -10.59\ \text{eV}\))
HOMO-2 (\(\epsilon = -10.56\ \text{eV}\))
HOMO-1 (\(\epsilon = -10.56\ \text{eV}\))

HOMO (\(\epsilon = -10.56\ \text{eV}\))
LUMO (\(\epsilon = -10.31\ \text{eV}\))
LUMO+1 (\(\epsilon = -8.82\ \text{eV}\))
LUMO+2 (\(\epsilon = -7.51\ \text{eV}\))
Figure S35. Selected molecular orbitals of [6]$_2^{2+}$ calculated at the BP86-D3BJ/def2-TZVPP level of theory. The isovalue was arbitrarily chosen to be 0.03. Hydrogen atoms were omitted for clarity.
Table S4. Summary of the calculated energies of 5 and [6]^{2+} in the gas phase (BP86-D3BJ/def2-SVP).

Energy / E_H	5	[6]^{2+}
E_{el} (BP86-D3BJ/def2-SVP)	−7251.16294090	−7250.74093874
E_{ZPE}	−7249.917367	−7249.492202
G	−7250.035009	−7249.610500
E_{el} (BP86-D3BJ/def2-TZVPP)	−7254.25029695	−7254.67656162

Table S5. Natural population analysis (NPA) atomic charges of 5 and [6]^{2+} calculated at the BP86-D3BJ/def2-TZVPP level of theory.

Atom	5	[6]^{2+}
As1	0.33	0.78
As76	0.33	0.78
C5	−0.16	−0.20
C6	−0.16	−0.20
C80	−0.16	−0.20
C81	−0.16	−0.20

Table S6. Wiberg Bond Indices (WBIs) of 5 and [6]^{2+} calculated at the BP86-D3BJ/def2-TZVPP level of theory.

Bond	5	[6]^{2+}
As1–As76	0.25	-
As1–C5	1.05	1.13
As1–C81	1.05	1.13
As76–C6	1.05	1.13
As76–C80	1.05	1.13
Quantum Theory of Atoms in Molecules (QTAIM)

The interpretation of the obtained parameters was performed according to the literature.[16]

Investigated parameters:

- $G(r)$ = kinetic energy density
- $V(r)$ = potential energy density
- $H(r) = V(r) + G(r)$ = local energy density
- $\rho(r)$ = charge density
- $G(r)/\rho(r)$ = kinetic energy density ratio
- $-\nabla^2 \rho$ = Laplacian
- $2G(r)+V(r) = \nabla^2 \rho$

Figure S36. Laplacian plot of 5. The small green balls represent the BCPs and the small red balls represent RCPs. The dashed red line depicts a depletion of electrons while the blue lines depict an accumulation of electrons.

Figure S37. Laplacian plot of [6][24]. The small green balls represent the BCPs and the small red balls represent RCPs. The dashed red line depicts a depletion of electrons while the blue lines depict an accumulation of electrons.
Table S7. Summary of the QTAIM analysis of 5 and [6]²⁺.

Compound	BCP / RCP	\(\rho / e\text{Å}^3 \)	\(-\nabla^2 \rho / e\text{Å}^5 \)	\(G(r) / \rho(r) \)	\(H(r) / e\text{Å}^3 \)	classification
5	As1, C5	0.93	1.21	1.49	-0.54	polar bond
	As1, C81	0.93	1.17	1.49	-0.54	polar bond
	C5, C6	2.05	-19.85	1.29	-2.11	covalent
	RCP	As1-C5-C6-As76-C80-C81	0.08	1.35	1.03	0.01
[6]²⁺	As1, C5	0.99	1.24	1.43	-0.61	Polar bond
	As1, C81	0.99	1.22	1.43	-0.61	polar bond
	C5, C6	2.04	-19.80	2.94	-2.08	covalent
	RCP	As1-C5-C6-As76-C80-C81	0.09	1.47	1.02	0.02

Nucleus-Independent Chemical Shift (NICS) analysis

Table S8. NICS and NICS\(_{\text{zz}}\) values for the C₄As₂-ring of 5 and [6]²⁺ calculated at the BP86-D3BJ/def2TZVPP level of theory.

distance	5	[6]²⁺		
	NICS	NICS\(_{\text{zz}}\)	NICS	NICS\(_{\text{zz}}\)
0.0	+4.68	+36.94	-6.09	-1.47
0.5	+4.28	+30.08	-6.95	-7.33
1.0	+3.48	+17.49	-7.19	-15.00
1.5	+2.63	+8.64	-5.81	-15.92
2.0	+1.90	+4.43	-4.11	-12.68
2.5	+1.36	+2.77	-2.80	-8.86
3.0	+0.98	+2.11	-1.93	-5.89
3.5	+0.71	+1.66	-1.36	-3.99
4.0	+0.55	+1.13	-0.97	-2.98
ACID plots

Figure S38. ACID plot of 5 at different isosurface values. The side C₃N₂-rings have a clockwise (diatropic) circulation while the middle C₃As₂-ring has a counterclockwise (paratropic) circulation.
Figure S39. ACID plot of [6]^{2+} at different isosurface values. All rings have a clockwise (diatropic) circulation.
Induced ring currents

Figure S40. Magnetically induced current density (MICD) profiles at the ring plane (0.0 Å) as well as at 0.5 Å, and 1 Å of the plane of the ring of 5 at the BP86-D3BJ/def2-TZVPP computational level. Red to dark blue represents weak to strong current density in a range between 0 to 0.001 atomic units. All compounds sustain strong diatropic currents that are almost indistinguishable.
Figure S41. Magnetically induced current density (MICD) profiles at the ring plane as well as at 0.5 Å, and 1 Å of the plane of the ring of $[6]^+$ at the BP86-D3BJ/def2-TZVPP computational level. Red to dark blue represents weak to strong current density in a range between 0 to 0.0005 atomic units. All compounds sustain strong diatropic currents that are almost indistinguishable.
TD-DFT calculations

Figure S42. UV-vis spectrum of 5 calculated at the CPCM(THF)/PBE0/def2-TZVPP level of theory. The standard deviation was arbitrarily set to 0.4 eV.

state no.	\(\lambda \) / nm	\(f \)	Assignment
1	768.8	0.9361	H \(\rightarrow \) L (c= 0.9646)
2	628.7	0.0718	H \(\rightarrow \) L+5 (c= 0.9383)
3	595.5	0.0519	H \(\rightarrow \) L+7 (c= 0.9883)
4	326.6	0.1753	H-1 \(\rightarrow \) L+4 (c= -0.9498)
5	309.2	0.0469	H \(\rightarrow \) L+4 (c= 0.7398)
6	308.0	0.0426	H-1 \(\rightarrow \) L+9 (c= 0.7393)
7	296.5	0.0775	H \(\rightarrow \) L+22 (c= -0.8286)
8	285.2	0.5894	H-2 \(\rightarrow \) L+1 (c= 0.8742)

Table S9. Wavelength (\(\lambda \)), oscillator strength (\(f \)) and main assignment of the CPCM(THF)/PBE0/def2-TZVPP results for 5; threshold for printing excitations was chosen to be \(f \geq 0.04 \).
Figure S43. UV-vis spectrum of [6]^{2+} calculated at the CPCM(CH_2Cl_2)/PBE0/def2-TZVPP level of theory. The standard deviation was arbitrarily set to 0.4 eV.

Table S10. Wavelength (\(\lambda\)), oscillator strength (\(f\)) and main assignment of the CPCM(CH_2Cl_2)/PBE0/def2-TZVPP results for [6]^{2+}; threshold for printing excitations was chosen to be \(f \geq 0.04\).

state no.	\(\lambda\) / nm	\(f\)	Assignment
1	512.1	0.0682	H-3 \(\rightarrow\) L (c= 0.7705)
2	509.3	0.1194	H-1 \(\rightarrow\) L (c= -0.7280)
3	466.8	0.5662	H-5 \(\rightarrow\) L (c= 0.6763)
4	440.6	0.0752	H \(\rightarrow\) L (c= -0.5750)
5	421.7	0.0768	H-9 \(\rightarrow\) L (c= 0.8678)
6	329.8	0.0809	H \(\rightarrow\) L+2 (c= -0.9076)
7	304.5	0.0411	H-6 \(\rightarrow\) L+1 (c= -0.8087)
8	300.2	0.0492	H-13 \(\rightarrow\) L (c= 0.8716)
9	292.1	0.1939	H-8 \(\rightarrow\) L+1 (c= -0.6980)
10	288.3	0.6384	H-1 \(\rightarrow\) L+2 (c= 0.6466)
11	291.2	0.0676	H-15 \(\rightarrow\) L (c= -0.9532)
12	284.7	0.0534	H-5 \(\rightarrow\) L+2 (c= 0.7613)
13	268.8	0.0850	H-25 \(\rightarrow\) L (c= -0.4698)
14	268.8	0.0501	H-7 \(\rightarrow\) L+2 (c= 0.6237)
15	261.9	0.1066	H-25 \(\rightarrow\) L (c= 0.5048)
CASSCF (12,12) Calculations

Compound 5

Table S11. Composition of the investigated active space of 5.

	Singlet		Triplet			
	CI	Symmetry	CI	Symmetry		
GS	0.77759	222222000000	0.83129	222221100000		
	0.08275	222220200000	0.02196	222220101000		
	0.02327	222211100000	0.02025	2112211100110		
	0.01892	211222000110	0.01794	222211111000		
	0.01483	222112011000	0.01029	222201120000		
	0.01443	222121101000	0.00999	222121200000		
	0.01098	222202020000	0.00936	222122001000		
	0.00476	220222000200	0.00835	222112110000		
GS	0.00474	202222000200	0.00726	222212010000		
	0.00472	202222000020	0.0051	220221100200		
	0.00471	220222000020	0.00507	220221100200		
	0.00438	222221001000	0.00505	220221100020		
	0.00252	220222020000	0.00504	220221100020		
			0.00469	222211011000		
			0.00427	222021120000		
			0.00374	222010120000		
			0.00366	222120201000		
			0.00355	222202101000		
ES1	0.59194	222212100000	0.69883	222212100000		
	0.13544	222221010000	0.07554	222221010000		
	0.06597	222211100000	0.06591	222211100000		
	0.06138	222211101000	0.05782	222211110000		
	0.02478	221122000000	0.01703	211221001110		
	0.01442	211212100110	0.00655	222102111000		
	0.00848	222020110000	0.00497	222012120000		
	0.00846	222220011000	0.00428	220212100200		
	0.00687	222210102000	0.00426	220212100200		
ES2	0.00671	222012120000	0.00424	220212100020		
	0.00611	222112020000	0.00424	220212100020		
	0.00463	222021210000	0.00415	222112020000		
	0.00429	222102111000	0.00392	222202011000		
	0.00363	220212100200	0.0039	222210102000		
	0.00361	222212100200	0.00387	122222100000		
	0.00359	202212100020	0.00288	222120111000		
	0.00359	220212100020	0.00288	222120111000		
	0.00359	122222100000	0.00288	222120111000		
	0.00329	211221010110	0.00288	222120111000		
ES2	0.31853	222220200000	0.47382	222122100000		
	0.2993	222122100000	0.21746	222211110000		
	0.09273	222221001000	0.14044	222221001000		
CI	Configuration	Interacti...	CI	Configuration	Interacti...	
------	---------------	--------------	------	---------------	--------------	
0.07436	222211100000	0.04562	222121101000	0.01969	222220000000	0.01164
0.01742	222211010000	0.01154	211122100110	0.01739	222202200000	0.01053
0.01692	222022200000	0.00984	222111210000	0.01366	222210111000	0.00621
0.01357	222111210000	0.00562	222120110000	0.01323	222220002000	0.0053
0.00775	211220200110	0.0053	222120120000	0.0073	211122100110	0.00457
0.00563	222012111000	0.00381	222021201000	0.00389	222102120000	0.00342
0.00375	222201201000	0.0029	220122100200	0.00362	222112011000	0.00289
0.00359	222120120000	0.00288	202122100200	0.00359	222102120000	0.00287
0.00326	222110211000	0.00287	220122100020	0.00326	222220020000	0.00256
0.00271	222220020000	0.00256	222101121000	0.0026	222111012000	

CI = Configurational Interaction coefficient
Table S12. CASSCF density-matrix for 5. Orbitals 1-2 are the lone-pair orbitals, 3-5 are the π orbitals, 6-8 are considered as π*orbitals, and 9-10 are the π* orbitals of the non-central rings. The number represents the occupation.

Orbitals	1	2	3	4	5	6	7	8	9	10	11	12
1	1.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	1.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	1.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	1.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	1.88	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	0.94	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00	0.00	0.94	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.53	0.00	0.00	0.00	0.00
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.00	0.00	0.00
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00
11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00
12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00

Table S13. CASSCF Spin-density-matrix for 5. CASSCF density-matrix. Orbitals 1-2 are the lone-pair orbitals, 3-5 are the π orbitals, 6-8 are considered as π*orbitals, and 9-10 are the π* orbitals of the non-central rings. The number represents the occupation.

Orbitals	1	2	3	4	5	6	7	8	9	10	11	12
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00
4	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.02	0.00	0.00	-0.03
5	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.04	0.00	0.01	0.00
6	0.00	0.00	0.01	0.00	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.32	0.00	0.00	0.00	0.00
8	0.00	0.00	-0.03	0.00	0.00	-0.01	0.00	0.32	0.00	0.00	0.00	0.00
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	0.00	0.00	0.00	-0.03	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00
11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Table S14. CASSCF energies of the different states for 5. The states are ordered ascending towards their energy.

State	Ms	ΔE/a.u.	ΔE/kcal mol$^{-1}$	ΔE/ nm
S_0	1	0	0	0
T_0	3	0.024184	15.2	1884.1
T_1	3	0.041775	26.3	1090.7
S_1	1	0.054785	34.5	833.1
S_2	1	0.058630	36.9	777.2
T_2	3	0.079815	50.2	570.9
Figure S42. Selected molecular orbitals of 5 calculated at the CASSCF/def2-TZVPP level of theory. The isovalue was arbitrarily chosen to be 0.04. Hydrogen atoms were omitted for clarity.
Compound [6]²⁺

Table S15. Composition of the investigated active space of [6]²⁺.

	Singlet		Triplet		
	CI	Symmetry	CI	Symmetry	
GS	0.73821	22222220000000	0.7407	22222110000000	
	0.05244	22222220000000	0.05248	22222201100000	
	0.04749	22222210100000	0.01582	112221100011	
	0.01659	22222111100000	0.1447	22220211100000	
	0.01578	112222000011	0.01007	222212010000	
	0.01188	22222200200000	0.01003	221211101100	
	0.00808	22121200110000	0.00972	222121011000	
	0.00518	22220202002000	0.00789	221111111000	
	0.00454	22211201100000	0.00676	222210210000	
	0.00433	22212110100000	0.00657	222201102000	
GS	0.004	20222220000200	0.00593	222021120000	
	0.00395	222222000020	0.00592	222211200000	
	0.00393	222222000002	0.00555	221221111000	
	0.00392	202222200002	0.00551	222211200000	
	0.00379	221221200000	0.00513	222112101000	
	0.00375	222121111000	0.00502	222112110000	
	0.00359	222121101000	0.00401	202221100002	
	0.00332	22202220200000	0.00395	222211000002	
	0.00278	22112220101000	0.00395	222211000020	
				0.00393	222021110000
				0.00372	222121100100
				0.00301	222211002000
ES1	0.2775	22222220000000	0.80417	222221010000	
	0.25816	22222101000000	0.0229	222221200000	
	0.14364	22222020000000	0.01709	112221010011	
	0.06336	22222220000000	0.01461	222121101000	
	0.02446	22221210000000	0.01246	222211110000	
	0.02099	22220220200000	0.00937	221211011100	
	0.01461	22220220000000	0.00864	222121010100	
	0.01139	22221111100000	0.00543	222212210000	
	0.00848	22121220200000	0.00488	222201102000	
	0.0082	22022121000000	0.00451	221211111000	
	0.00607	22220220200000	0.00434	202221010020	
	0.00588	112222000011	0.00427	22221010002	
	0.00555	112221010011	0.00426	2222101020	
ES2	0.00495	22211102100000	0.00423	202221010002	
	0.00434	22121020110000	0.00394	222211000110	
	0.00423	22121120100000	0.00328	222201210000	
	0.00388	22121111101100	0.00322	222211101000	
	0.00344	22122120000000	0.0032	220221012000	
	0.00344	22112102010000	0.00293	221211002000	
	0.00309	22111121000000	0.00287	222112011000	
	0.00304	112220020011	0.0028	222121110000	
	0.00294	22112011000000	0.00279	221111111000	
	0.00291	22212110100000	0.00256	222212000010	
	0.00285	222210120000	0.00281	221121200100	
	0.00269	222111001100	0.00251	222201012000	
	0.64363	222221100000	0.65427	222220110000	
	0.15606	222220110000	0.06216	222221100000	
	0.01574	222121100100	0.03882	222212010000	
	0.01556	221222100000	0.03062	222022110000	
	0.01365	112221100011	0.01412	222211200000	
CI	Configuration	Value			
----------	--------------------------------	---------			
0.01332	222211020000	0.01387			
0.01183	222121011000	0.00971			
0.00849	221211101100	0.00812			
0.00445	222201102000	0.00811			
0.00443	222112101000	0.00713			
0.00387	222210101100	0.00709			
0.00356	222122001000	0.00695			
0.00347	202221100120	0.00573			
0.00341	22221100002	0.00546			
0.0034	22221100002	0.00541			
0.00338	202221100002	0.00512			
0.00332	112220101011	0.0045			
0.00318	222211100100	0.00427			
0.00294	222220001100	0.00397			
0.00262	202221100200	0.00351			
0.0026	222121020000	0.00346			
0.00252	222211011000	0.00346			

CI = Configurational Interaction coefficient
Table S16. CASSCF density-matrix for [6]$^{2+}$. Orbitals 1-2 are the lone-pair orbitals, 3-5 are the p orbitals, 6-8 are considered as π*orbitals, and 9-10 are the π* orbitals of the non-central rings. The number represents the occupation.

Orbitals	1	2	3	4	5	6	7	8	9	10	11	12
1	1.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	1.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	1.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	1.76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	1.61	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	0.00	0.00	0.00	0.00	0.85	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.19	0.00	0.00	0.00	0.00
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.00	0.00	0.00
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00
11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00
12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00

Table S17. CASSCF Spin-density-matrix of [6]$^{2+}$. CASSCF density-matrix. Orbitals 1-2 are the lone-pair orbitals, 3-5 are the π orbitals, 6-8 are considered as π*orbitals, and 9-10 are the π* orbitals of the non-central rings. The number represents the occupation.

Orbitals	1	2	3	4	5	6	7	8	9	10	11	12
1	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.11	0.00	0.00	0.03	0.00	0.00	0.00	0.00	-0.01
5	0.01	0.00	0.00	0.00	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	0.00	0.23	0.00	0.00	0.04	0.00	0.00
7	0.00	0.00	0.00	0.03	0.00	0.00	0.41	0.00	0.00	0.00	0.00	0.00
8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00
9	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.05	0.00	0.00
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	0.00	0.00	0.00	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Table S18. CASSCF energies of the different states for [6]$_2^*$.

State	Ms	ΔE/a.u.	ΔE / kcal mol$^{-1}$	ΔE / nm
S_0	1	0	0.0	0.0
T_0	3	0.046117	29.0	988.0
S_1	1	0.118943	74.9	383.1
S_2	3	0.120668	76.0	377.6
S_2	1	0.148191	93.3	307.5
T_2	3	0.163051	102.6	358.5
Figure S43. Selected molecular orbitals of $[6]^{2+}$ calculated at the CASSCF/def2-TZVPP level of theory. The isovalue was arbitrarily chosen to be 0.03. Hydrogen atoms were omitted for clarity.
xyz coordinates

Table S19. Optimized coordinates of 5.

\(\mathbf{E}_{\text{BP86-D3BJ/6-31+G(d)}} \)	\(-7251.16294090\)		
As	-1.174793	-1.21668	-1.100371
N	0.682505	0.106127	-2.846474
N	2.026729	1.335725	-1.633848
C	1.772956	0.933322	-2.916204
C	0.253914	-0.046542	-1.519864
C	1.10355	0.77345	-0.739455
C	0.11524	-0.677421	-3.919115
C	0.820164	-1.834411	-4.324995
C	0.269063	-2.568416	-5.394666
C	0.784946	-3.471714	-5.754146
C	-0.927156	-2.164802	-6.001897
C	-1.33795	-2.748769	-6.839621
C	-1.61848	-1.030587	-5.54343
H	-2.565497	-0.747895	-6.023739
C	-1.117833	-0.253183	-4.481842
H	2.105924	-2.291668	-3.645175
C	2.363295	-1.55485	-2.854638
C	1.892213	-3.644906	-2.93712
H	1.058354	-3.588075	-2.266869
C	2.809518	-3.948869	-2.392733
C	1.650835	-4.449325	-3.66192
C	3.289854	-2.331008	-4.630394
H	3.128517	-3.082312	-5.430513
H	4.224652	-2.603536	-4.106054
C	3.444017	-1.346386	-5.115834
C	-1.846603	0.995782	-3.979868
H	-1.717258	1.027314	-2.874459
C	-3.358064	0.949694	-4.252341
C	-3.585763	1.056918	-5.332764
H	-3.863105	1.787774	-3.732237
C	-3.811636	0.002073	-3.896687
C	-1.233383	2.29866	-4.538665
H	-1.707092	2.440616	-4.236235
H	-1.803024	3.175833	-4.170032
H	-1.273546	2.31322	-5.647357
C	3.061614	2.219049	-1.148707
C	4.242601	1.630197	-0.627403
C	5.210931	2.512981	-0.112301
H	6.149184	2.10854	0.297128
C	5.000905	3.901332	-0.122061
C	5.775663	4.571718	0.280279
C	3.814262	4.442692	-0.637822
H	3.667541	5.533329	-0.633768
C	2.80393	3.609373	-1.15861
C	4.480793	0.121457	-0.642388

S52
H	-1.058354	3.588075	2.206369	H	-5.624071	-2.453593	5.069265
H	-2.809518	3.948869	2.392733	C	-4.01295	-1.941695	6.443326
H	-1.650835	4.449325	3.66192	H	-4.589263	-2.1951	7.346198
C	-3.298964	2.331008	4.630394	C	-2.692546	-1.471754	6.555412
H	-3.128517	3.082312	5.430513	H	-2.226702	-1.360134	7.545766
H	-4.224652	2.605356	4.100654	C	-1.956281	-1.14247	5.412659
H	-3.444017	1.346386	5.115834	H	-0.930304	-0.782842	5.535738
C	1.846603	-0.995782	3.979686				
H	1.717258	-1.027314	2.874459				
C	3.358064	-0.949694	4.252341				
H	3.585763	-1.056918	5.332764				
H	3.863105	-1.787774	3.732237				
H	3.811636	-0.002073	3.898661				
C	1.233383	-2.29866	4.538665				
H	0.177092	-2.440616	4.236235				
H	1.803024	-3.175833	4.170032				
H	1.273546	-2.31323	5.647357				
C	-3.061614	-2.219049	1.148707				
C	-4.242601	-1.630197	0.627403				
C	-5.210931	-2.512981	0.112301				
H	-6.149184	-2.10854	-0.297128				
C	-5.000905	-3.901332	0.122061				
H	-5.775663	-4.571718	-0.280279				
C	-3.814262	-4.442692	0.637822				
H	-3.665541	-5.533329	0.633768				
C	-2.80393	-3.609373	1.15861				
C	-4.480793	-0.121457	0.642388				
H	-3.615654	0.355826	1.150429				
C	-4.541518	0.446879	-0.788299				
H	-5.39394	0.022361	-1.357476				
H	-4.664828	1.548824	-0.766949				
H	-3.61434	0.216278	-1.353447				
C	-5.743189	0.253273	1.444779				
H	-5.690563	-0.110779	2.490248				
H	-5.864592	1.355104	1.476481				
H	-6.659575	-0.167934	0.983192				
C	-1.512654	-4.186677	1.725478				
H	-0.82465	-3.339735	1.935648				
C	-0.803078	-5.097993	0.706896				
H	-0.612295	-4.563111	-0.246921				
H	0.17025	-5.444019	1.110006				
H	-1.402909	-6.001417	0.473514				
C	-1.775499	-4.906029	3.064601				
H	-2.44703	-5.778321	2.925677				
H	-0.825474	-5.27778	3.499533				
H	-2.251647	-4.228536	3.802062				
C	-2.5283	-1.285902	4.117633				
C	-3.861432	-1.771838	4.019594				
H	-4.338602	-1.896596	3.042763				
C	-4.59124	-2.08826	5.170349				

S53
Table S20. Optimized coordinates of $[6]^2$.

Element	$E_{\text{BP66-D3}}/\text{kcal/mol}$	$E_{\text{BP66-D3}}/\text{eV}$	$E_{\text{BP66-D3}}/\text{eV}$
As	-1.17734	-1.223722	-1.121998
N	0.69088	0.150884	-2.862068
N	2.027026	1.359789	-1.634044
C	1.797637	0.984275	-2.947238
C	0.258659	-0.013795	-1.5429
C	1.101036	0.796361	-0.753973
C	0.157274	-0.661077	-3.918415
C	0.878176	-1.817668	-4.294583
C	0.343599	-2.598828	-5.338433
C	0.879526	-3.503178	-5.665966
H	-0.860843	-2.240683	-5.957785
H	-1.262556	-2.86187	-6.773966
C	-1.570229	-1.103371	-5.536779
H	-2.523383	-0.851358	-6.023003
H	-1.080841	-0.286958	-4.499777
C	2.169475	-2.21998	-3.592436
H	2.462707	-1.388215	-2.920082
C	1.931273	-3.454331	-2.700553
H	1.123122	-3.253127	-1.966174
H	2.855018	-3.716295	-2.143024
H	1.634291	-4.33806	-3.304476
C	3.327615	-2.41885	-4.585971
H	3.139133	-3.268577	-5.257832
H	4.269125	-2.636637	-4.040837
H	3.486685	-1.507158	-5.197104
C	-1.820002	0.961061	-4.019386
H	-1.732262	0.965336	-2.910015
C	-3.319445	0.928986	-4.345411
H	-3.511391	1.02367	-5.435577
H	-3.833751	1.776419	-3.848545
H	-3.791004	-0.01017	-3.991076
C	-1.169791	2.257498	-4.546781
H	-0.116419	2.361788	-4.221448
H	-1.724666	3.142801	-4.172212
H	-1.184489	2.894242	-5.656729
C	3.067224	2.210261	-1.134067
C	4.22288	1.592448	-0.593901
C	5.23587	2.442398	-0.111199
H	6.157799	2.005235	0.301941
C	5.082786	3.83804	-0.146052
H	5.889039	4.484802	0.234523
C	3.906734	4.414322	-0.647371
C	3.793019	5.509625	-0.65149
C	2.863202	3.608105	-1.144311
H	4.378236	0.074739	-0.583511
C	3.371215	-0.359281	-0.750432
C	4.860389	-0.440304	0.781198
References

[1] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* **2010**, *29*, 2176–2179.

[2] (a) N. Kim T. Ho, B. Neumann, H.-G. Stammler, V. H. Menezes da Silva, D. Watanabe, A. A. C. Braga, R. S. Ghadwal, *Dalton Trans.* **2017**, *46*, 12027–12031; (b) R. S. Ghadwal, S. O. Reichmann, R. Herbst-Irmer, *Chem. Eur. J.* **2015**, *21*, 4247–4251; (c) D. Rottschäfer, B. Neumann, H.-G. Stammler, T. Sergeieva, D. M. Andrada, R. S. Ghadwal, *Chem. Eur. J.* **2021**, *27*, 3055–3064.

[3] (a) S. K. Pandey, A. Steiner, H. W. Roesky, *Inorg. Synth.* **1997**, *31*, 148–150; (b) B. A. Chalmers, M. Bühl, P. S. Nejman, A. M. Z. Slawin, J. D. Woollins, P. Kilian, *J. Organomet. Chem.* **2015**, *799-800*, 70–74.

[4] J. Holz, M. Ayerbe García, W. Frey, F. Krupp, R. Peters, *Dalton Trans.* **2018**, *47*, 3880–3905.

[5] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.* **2009**, *42*, 339–341.

[6] G. M. Sheldrick, *Acta Cryst. A*. **2015**, *71*, 3–8.

[7] G. M. Sheldrick, *Acta Cryst. A*. **2008**, *64*, 112–122.

[8] G. M. Sheldrick, *Acta Cryst. C*. **2015**, *71*, 3–8.

[9] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J., Gaussian 16, Revision A.03. Gaussian, Inc., Wallingford CT, 2016.

[10] (a) A. D. Becke, *Phys. Rev. A*, **1988**, *38* 3098–3100; (b) J. P. Perdew, *Phys. Rev. B*, **1986**, *33* 8822–8824.
[11] (a) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305 b) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8 1057–1065

[12] (a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; (b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem, 2011, 32, 1456–1465.

[13] (a) A. E. Reed, F. Weinhold, J. Chem. Phys. 1985, 83, 1736–1740; (b) A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735–746; (c) E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO Version 3.1.

[14] (a) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842–3888; (b) C. Corminboeuf, T. Heine, G. Seifert, P. v. R. Schleyer, J. Weber, Phys. Chem. Chem. Phys. 2004, 6, 273–276.

[15] K. B. Wiberg, Tetrahedron 1968, 24, 1083–1096.

[16] AIMAll (Version 19.10.12), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2019 (aim.tkgristmill.com)

[17] P. L. A. Popelier, The QTAIM Perspective of Chemical Bonding. In The Chemical Bond (eds G. Frenking and S. Shaik) 2014.

[18] D. Hegarty, M. A. Robb, Mol. Phys. 1979, 38, 1795–1812.

[19] F. Neese, WIREs Comput. Mol. Sci. 2018, 8, e1327.

[20] (a) F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 2009, 356, 98–109; (b) F. Neese, J. Comp. Chem. 2003, 24, 1740–1747.

[21] F. P. Cossío, I. Morao, H. Jiao, P. v. R. Schleyer, J. Am. Chem. Soc. 1999, 121, 6737–6746.

[22] D. Geuenich, K. Hess, F. Kohler, R. Herges, Chem. Rev. 2005, 105, 3758–3772.

[23] D. Sundholm, H. Fliegl, R. J. F. Berger, WIREs Comput. Mol. Sci. 2016, 6, 639–678.

[24] (a) C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170, (b) M. Ernzerhof, G. E. Scuseria, J. Chem. Phys. 1999, 110, 5029–5036.