The 1-Yamabe equation on graph

Huabin Ge, Wenfeng Jiang

February 26, 2018

Abstract

We study the following 1-Yamabe equation on a connected finite graph

$$\Delta_1 u + g \text{Sgn}(u) = h |u|^{\alpha - 1} \text{Sgn}(u),$$

where Δ_1 is the discrete 1-Laplacian, $\alpha > 1$ and $g, h > 0$ are known. We show that the above 1-Yamabe equation always has a nontrivial solution $u \geq 0$, $u \neq 0$.

0 Introduction

Let (M^n, g) be a smooth $n \geq 3$ dimensional Riemannian manifold with scalar curvature R. The well known smooth Yamabe problem asks if there exists a smooth Riemannian metric \tilde{g} that conformal to g and has constant scalar curvature \tilde{R}. This leads to the consideration of the following smooth Yamabe equation

$$\Delta u - \frac{n-2}{4(n-1)} R u + \frac{n-2}{4(n-1)} \tilde{R} u^{\frac{n+2}{n-2}} = 0, \quad u > 0.$$

If $u \in C^\infty(M)$ is a solution, then $\tilde{g} = u^{4/(n-2)} g$ has scalar curvature \tilde{R}. Today the Yamabe problem is completely understood thanks to basic contributions by Yamabe, Trudinger, Aubin and Schoen. We refer to [1], [21]-[24], the survey [20] and the references therein.

In case $n = 2$, the Yamabe problem reduces to the famous uniformization theorem, which asks for the consideration of the Kazdan-Warner equation

$$\Delta u = K - \tilde{K} e^{2u}$$

If $u \in C^\infty(M)$ is a solution, then $\tilde{g} = e^{2u} g$ has Gaussian curvature \tilde{K}. We refer to [14]-[16] for the solvability of the smooth Kazdan-Warner equation.

In the series work [11]-[13], Grigor’yan-Lin-Yang observed that one can establish similar results on graphs. In [11], they studied the Kazdan-Warner equation $\Delta u = c - he^n$ on a finite graph G, and gave various conditions such that the equation has a solution. They
characterize the solvability of the equation completely except for the critical case which was finally settled down by the first author Ge [6] of this paper. Ge [8], Zhang-Chang [25] then generalized their results to the p-th Kazdan-Warner equation $\Delta_p u = c - he^u$, where Δ_p is a type of discrete p-Laplace operator, see (1.4) in this paper for a definition. On infinite graphs which are analogues of noncompact manifolds, the absence of compactness indicates the difficulty to give a complete characterization of the solvability of the corresponding equation. Under some additional assumptions on the graphs and functions, Ge-Jiang [10], Keller-Schwarz [17] get some results with totally different techniques and assumptions. In [12], Grigor’yan-Lin-Yang studied the Yamabe type equation $-\Delta u - \alpha u = |u|^{p-2}u$ on a finite domain Ω of an infinite graph, with $u = 0$ outside Ω. Ge [7] studied the p-th Yamabe equation $\Delta_p u + hu^{p-1} = \lambda f u^{\alpha-1}$ on a finite graph under the assumption $\alpha \geq p > 1$, which was generalized to $\alpha < p$ by Zhang-Lin [26]. Ge-Jiang [9] further generalized Ge’s results to get a global positive solution on an infinite graph under suitable assumptions.

In case $p > 1$, the p-Laplace operator Δ_p exhibits more or less similar properties with the standard Laplace operator Δ, both on the smooth manifolds and graphs. However, the 1-Laplace operator Δ_1 looks much different. The solutions for equations involving Δ and Δ_p are smooth, while those for Δ_1 may be discontinuous. Since solutions in many interesting problems, e.g., in the signal processing and in the image processing, etc., may be discontinuous, the 1-Laplace operator Δ_1 has been received much attention in recent years. In this paper, we study the 1-th Yamabe equation on a finite graph. Different with the study of the p-th equations, variational methods can not be used here directly. The main idea of the proof is to take Δ_1 as in some sense the limit of Δ_p as $p \to 1$.

1 Settings and main results

Let $G = (V, E)$ be a finite graph, where V denotes the vertex set and E denotes the edge set. Fix a vertex measure $\mu : V \to (0, +\infty)$ and an edge measure $w : E \to (0, +\infty)$ on G. The edge measure w is assumed to be symmetric, that is, $w_{xy} = w_{yx}$ for each edge $x \sim y$. Let $C(V)$ be the set of all real functions defined on V, then $C(V)$ is a finite dimensional linear space with the usual function additions and scalar multiplications. Professor Chang Kung-Ching (see [3], or [4, 5]) introduced a 1-Laplace operator on graphs as the following

$$\Delta_1 f(x) = \frac{1}{\mu(x)} \sum_{y \sim x} w_{xy} \text{Sgn}(f(y) - f(x)) \quad (1.1)$$
for any $f \in C(V)$ and $x \in V$, in which

$$\text{Sgn}(t) = \begin{cases}
1 & \text{if } t > 0 \\
-1 & \text{if } t < 0 \\
[-1, 1] & \text{if } t = 0
\end{cases}$$

(1.2)
is a set valued function.

Remark 1. The addition of two subsets $A, B \subset \mathbb{R}^n$ is the set $\{x + y|x \in A, y \in B\}$, and for a scalar α, the scalar multiplication αA is the set $\{\alpha x|x \in A\}$.

In this paper, our main task is to study the following 1-th Yamabe equation

$$\Delta_1 u + g \text{Sgn}(u) = h|u|^\alpha \text{Sgn}(u),$$

(1.3)
with $\alpha > 1$, and $g, h \in C(V)$ be positive.

Note at each vertex $x \in V$, $\Delta_1 f(x)$ is a subset of \mathbb{R}. For each function $u \in C(V)$, set

$$A^+(x) = -\Delta_1 u(x) + g(x)\text{Sgn}(u(x))$$

and

$$A^-(x) = h(x)|u(x)|^{\alpha-1}\text{Sgn}(u(x)).$$

We say u is a solution of the 1-th Yamabe equation (1.3) if at each vertex $x \in V$,

$$A^+(x) \cap A^-(x) \neq \emptyset.$$

Obviously, if $u = 0$ everywhere on V, both $A^+(x)$ and $A^-(x)$ contains 0 as an element. Hence $u = 0$ is always a trivial solution of the 1-th Yamabe equation (1.3). We want to know if there is a nontrivial solution to (1.3). Our main result reads as

Theorem 1.1. Let $\alpha > 1$, $g, h \in C(V)$ be positive. The 1-th Yamabe equation (1.3) has a nontrivial solution $u \geq 0$, $u \neq 0$.

For any $p > 1$, the p-th discrete graph Laplace operator $\Delta_p : C(V) \to C(V)$ is

$$\Delta_p f(x) = \frac{1}{\mu(x)} \sum_{y \sim x} w_{xy}|f(y) - f(x)|^{p-2}(f(y) - f(x))$$

(1.4)
for any $f \in C(V)$ and $x \in V$. If $f(y) = f(x)$, we require $|f(y) - f(x)|^{p-2}(f(y) - f(x)) = 0$. Δ_p is a nonlinear operator when $p \neq 2$ (see [8] for more properties about Δ_p).

The main idea of the proof is to take Δ_1 as in some sense the limit of Δ_p as $p \to 1$. Hence we shall first establish an existence result of the positive solution u_p to the following p-th Yamabe equation

$$-\Delta_p u_p + g u_p^{p-1} = h u_p^{\alpha-1}$$

(1.5)
for each $p > 1$. By proving a uniform bound for u_p, and taking limit $p \to 1$, we get a nontrivial solution to the 1-th Yamabe equation (1.3).

It is remarkable that one can see other interesting phenomenons when $p \to 1$. There are many such works on smooth domains (see Kawohl-Fridman [18] and Kawohl-Schuricht [19]) and on graphs (see Chang [34, 41, 5]).

Acknowledgements: Both authors would like to thank Professor Gang Tian for constant encouragement. The research is supported by NNSF of China under Grant No.11501027.

2 Sobolev embedding

For any $f \in C(V)$, define the integral of f over V with respect to the vertex weight μ by

$$\int_V f \, d\mu = \sum_{x \in V} \mu(x) f(x).$$

Set $\text{Vol}(G) = \int_V d\mu$. Similarly, for any function ψ defined on the edge set E, we define the integral of ψ over E with respect to the edge weight w by

$$\int_E \psi \, dw = \sum_{x \sim y} w_{xy} \psi_{xy}.$$

Specially, for any $f \in C(V)$,

$$\int_E |\nabla f|^p \, dw = \sum_{x \sim y} w_{xy} |f(y) - f(x)|^p,$$

where $|\nabla f|$ is defined on the edge set E, and $|\nabla f|_{xy} = |f(y) - f(x)|$ for each edge $x \sim y$.

Next we consider the Sobolev space $W^{1,p}$ on the graph G. Define

$$W^{1,p}(G) = \left\{ f \in C(V) : \int_E |\nabla f|^p \, dw + \int_V |f|^p \, d\mu < +\infty \right\},$$

and

$$\|f\|_{W^{1,p}(G)} = \left(\int_E |\nabla f|^p \, dw + \int_V |f|^p \, d\mu \right)^{\frac{1}{p}}.$$

Since G is a finite graph, then $W^{1,p}(G)$ is exactly $C(V)$, a finite dimensional linear space. This implies the following Sobolev embedding:

Lemma 2.1. (Sobolev embedding) Let $G = (V,E)$ be a finite graph. The Sobolev space $W^{1,p}(G)$ is pre-compact. Namely, if $\{\varphi_n\}$ is bounded in $W^{1,p}(G)$, then there exists some $\varphi \in W^{1,p}(G)$ such that up to a subsequence, $\varphi_n \to \varphi$ in $W^{1,p}(G)$.

Remark 2. The convergence in $W^{1,p}(G)$ is in fact pointwise convergence.
3 The p-th equation has a positive solution u_p

Our first main technical observation is the following.

Theorem 3.1. Let G be a finite connected graph. Assume $\alpha \geq p > 1$, $g, h > 0$. Then the following p-th Yamabe equation

$$-\Delta_p u + g|u|^{p-1} = \lambda h|u|^\alpha - 1 \quad (3.1)$$

on G always has a positive solution u for some constant $\lambda > 0$. Moreover, u satisfies

$$\int_V h\varphi^\alpha d\mu = 1. \quad (3.2)$$

The first part of the theorem was established by Ge [7]. The second part of the theorem is a consequence of the proof of the main theorem of [7]. For completeness, we give a direct and great simplified proof here. It is remarkable that the condition $g > 0$ is not needed so as (3.1) to have a positive solution. $g > 0$ is used here (in fact, $g \geq 0$ and $g \neq 0$ is enough) to guarantee that $\lambda > 0$.

Proof. We minimize the nonnegative functional (note $g \geq 0$)

$$I(\varphi) = \int_E |\nabla \varphi|^p d\nu + \int_V g\varphi^p d\mu$$

in the non-empty set

$$\Gamma = \left\{ \varphi \in W^{1,p}(G) : \int_V h\varphi^\alpha d\mu = 1, \varphi \geq 0 \right\}.$$

Let

$$\beta = \inf_{\varphi \in \Gamma} I(\varphi).$$

Take a sequence of functions $u_n \in \Gamma$ such that $I(u_n) \to \beta$. Obviously, $\{u_n\}$ is bounded in $W^{1,p}(G)$. Therefore by the Sobolev embedding Lemma 2.1, there exists some $u \in C(V)$ such that up to a subsequence, $u_n \to u$ in $W^{1,p}(G)$. We may well denote this subsequence as u_n. Because the set Γ is closed, we see $u \in \Gamma$, that is, $u \geq 0$, and

$$\int_V h\varphi^\alpha d\mu = 1. \quad (3.2)$$

Based on the method of Lagrange multipliers, one can consider the nonrestraint minimization of the following functional

$$J(\varphi) = I(\varphi) + \gamma \left(\int_V h\varphi^\alpha d\mu - 1 \right)$$
and calculate the Euler-Lagrange equation of u as follows:

$$- \Delta p u + gu^{p-1} + \frac{\gamma \alpha}{p} hu^{\alpha-1} \geq 0$$

(3.3)

where γ is a constant. (3.3) implies $u > 0$. In fact, note the graph G is connected, if $u > 0$ is not satisfied, since $u \geq 0$ and not identically zero (this can be seen from (3.2)), there is an edge $x \sim y$, such that $u(x) = 0$, but $u(y) > 0$. Now look at $\Delta p u(x)$,

$$\Delta p u(x) = \frac{1}{\mu(x)} \sum_{z \sim x} w_{xz} |u(z) - u(x)|^{p-2}(u(z) - u(x)) > 0,$$

which contradicts (3.3). Hence $u > 0$ is in the interior of the space $\{ \varphi : \varphi \geq 0 \}$ and hence then (3.3) becomes an equality

$$- \Delta p u + gu^{p-1} = \lambda hu^{\alpha-1},$$

(3.4)

where $\lambda = -\frac{\gamma \alpha}{p}$. Multiplying u at the two sides of (3.4) and integrating, we have

$$\int_E |\nabla u|^p dw + \int_V gu^p d\mu = \int_V (-u \Delta p u d\mu + gu^p) d\mu = \lambda \int_V hu^\alpha d\mu.$$

This leads to

$$\lambda = \frac{\int_E |\nabla u|^p dw + \int_V gu^p d\mu}{\int_V hu^\alpha d\mu},$$

from which we see $\lambda > 0$ and hence the conclusion.

4 The solutions u_p are uniformly bounded

For each $p \in (1, \alpha)$, let $u_p > 0$ be a solution to the p-th Yamabe equation (3.1). Thus

$$- \Delta p u_p + gu_p^{p-1} = \lambda_p hu_p^{\alpha-1},$$

(4.1)

where

$$\lambda_p = \frac{\int_E |\nabla u_p|^p dw + \int_V gu_p^p d\mu}{\int_V hu_p^{\alpha} d\mu} > 0.$$

(4.2)

Moreover,

$$\int_V hu_p^{\alpha} d\mu = 1.$$

(4.3)

In the following, we use $c(\alpha, h, G)$ as a constant depending only on the information of α, h and G, use $c(\alpha, g, h, G)$ as a constant depending only on the information of α, g, h and G. Note that the information of G contains V, E, the vertex measure μ and the edge weight w. For any function $f \in C(V)$, we denote $f_m = \min_{x \in V} f(x)$ and $f_M = \max_{x \in V} f(x)$.

Lemma 4.1. There are positive constants $c_1(\alpha, h, G) \geq 1$ and $c_2(\alpha, h, G) \leq 1$ so that
\[
c_2(\alpha, h, G) \leq \max_{x \in V} u_p(x) \leq c_1(\alpha, h, G). \tag{4.4}
\]

Proof. The above estimates come from (4.3). For all $p \in (1, \alpha)$ and $x \in V$, by
\[
h(x)u_p^\alpha(x)\mu(x) \leq \int_V h u_p^\alpha d\mu = 1,
\]
we see $u_p(x) \leq (h(x)\mu(x))^{-1/\alpha} \leq (h\mu)^{-1/\alpha} \lor 1 = c_1(\alpha, h, G)$. Let $|V|$ be the number of all vertices, then from
\[
1 = \int_V h u_p^\alpha d\mu \leq (h\mu)_M |V| \max_{x \in V} u_p^\alpha(x)
\]
we see $\max_{x \in V} u_p(x) \geq (h\mu)_M |V|^{-1/\alpha} \lor 1 = c_2(\alpha, h, G). \quad \square$

Lemma 4.2. There are positive constants $c_1(\alpha, g, h, G) \geq 1$ and $c_2(\alpha, g, h, G) \leq 1$ so that
\[
c_2(\alpha, g, h, G) \leq \lambda_p \leq c_1(\alpha, g, h, G). \tag{4.5}
\]

Proof. Assume u_p attains its maximum at $x_0 \in V$, then $\Delta_p u_p(x_0) \leq 0$ by the definition of Δ_p. From (4.11), we have $-\Delta_p u_p(x_0) + g(x_0)u_p^{p-1}(x_0) = \lambda_p h(x_0)u_p^{\alpha-1}(x_0)$. Hence
\[
\lambda_p = \frac{-\Delta_p u_p(x_0) + g(x_0)u_p^{p-1}(x_0)}{h(x_0)u_p^{\alpha-1}(x_0)}
\geq g(x_0)h(x_0)^{\alpha-1}u_p^{\alpha-\alpha}(x_0)
\geq (gh^{-1})m c_1(\alpha, h, G)^{1-\alpha} \lor 1
= c_2(\alpha, g, h, G),
\]
where we have used $u_p^{\alpha-\alpha}(x_0) \geq c_1(\alpha, h, G)^{p-\alpha} \geq c_1(\alpha, h, G)^{1-\alpha}$ in the last inequality.

Similarly, from
\[
|\Delta_p u_p(x_0)| \leq \frac{1}{\mu(x_0)} \sum_{y \sim x_0} w_{x_0 y} |u_p(y) - u_p(x_0)|^{p-1}
\leq \frac{1}{\mu(x_0)} \sum_{y \sim x_0} w_{x_0 y} (2u_p(x_0))^{p-1}
\leq c(\alpha, G)u_p^{p-1}(x_0)
\]
we obtain
\[
\lambda_p = \frac{-\Delta_p u_p(x_0) + g(x_0)u_p^{p-1}(x_0)}{h(x_0)u_p^{\alpha-1}(x_0)}
\leq c(\alpha, g, h, G)u_p^{\alpha-\alpha}(x_0)
\leq c(\alpha, g, h, G)c_2(\alpha, h, G)^{1-\alpha} \lor 1
= c_1(\alpha, g, h, G)
\]
\[7\]
where we have used \(u_p^{p-\alpha}(x_0) \leq c_2(\alpha, h, G)^{p-\alpha} \leq c_2(\alpha, h, G)^{1-\alpha} \) in the last inequality. \(\square \)

Lemma 4.3. For every \(p \in (1, \frac{\alpha+1}{2}) \), the following equation

\[
- \Delta_p \hat{u}_p + g\hat{u}_p^{p-1} = h\hat{u}_p^{\alpha-1}
\]

(4.6)

has a positive solution \(\hat{u}_p \) with \(c_4(\alpha, g, h, G) \leq \hat{u}_p \leq c_3(\alpha, g, h, G) \).

Proof. Set \(\hat{u}_p = u_p \lambda_p^{\alpha-1} \), then it is easy to see \(\hat{u}_p \) is a positive solution of (4.6). From the estimates (4.5), we get

\[
c_2^{\alpha+1/2} \leq c_2(\alpha, g, h, G)^{1/p} \leq \lambda_p^{\alpha-1} \leq c_1(\alpha, g, h, G)^{1/p} \leq c_1^{\alpha-1}.
\]

Combining with the estimate (4.4), we get the conclusion. \(\square \)

5 Proof of Theorem 1.1

Since \(G \) is finite graph, we can choose a function \(u \in C(V) \) and a sequence \(p_n \downarrow 1 \), so that \(\hat{u}_{p_n} \to u \). Since \(\max \hat{u}_p \) is uniformly bounded by Lemma 4.1 and Lemma 4.3, we see \(u \geq 0 \) and \(u \neq 0 \). We can always choose a subsequence of \(p_n \), which is still denoted as \(\{p_n\} \) itself, a function \(\xi \in C(V) \) and an edge weight \(\eta \) defined on \(E \), so that at each vertex \(x \in V \),

1. \(\hat{u}_{p_n}(x)^{\alpha-1} \to \hat{u}(x)^{\alpha-1} \).
2. \(\hat{u}_{p_n}(x)^{p_n-1} \to \xi(x) \in [0, 1] \).
3. \(|\hat{u}_{p_n}(y) - \hat{u}_{p_n}(x)|^{p_n-2}(\hat{u}_{p_n}(y) - \hat{u}_{p_n}(x)) \to \eta(x, y) \in [-1, 1] \), for \(y \sim x \).

It is easy to see

\[
- \frac{1}{\mu(x)} \sum_{y \sim x} w_{xy} \eta(x, y) + g(x)\xi(x) \in A^+(x) \quad \text{and} \quad h(x)u(x)^{\alpha-1} \in A^-(x).
\]

Observe the equality

\[
- \Delta_p \hat{u}_p(x) + g(x)\hat{u}_p(x)^{p-1} = h(x)\hat{u}_p(x)^{\alpha-1},
\]

and let \(p_n \to 1 \), we obtain

\[
- \frac{1}{\mu(x)} \sum_{y \sim x} w_{xy} \eta(x, y) + g(x)\xi(x) = h(x)u(x)^{\alpha-1}.
\]

This shows \(A^+(x) \cap A^-(x) \neq \emptyset \) for every vertex \(x \in V \). That is Theorem 1.1
References

[1] T. Aubin, *Some nonlinear problems in Riemannian geometry*, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998.

[2] K. C. Chang, *The spectrum of the 1-Laplace operator*, Commun. Contemp. Math. 11 (2009), no. 5, 865-894.

[3] K. C. Chang, *Spectrum of the 1-Laplacian and Cheeger’s constant on graphs*, J. Graph Theory 81 (2016), no. 2, 167-207.

[4] K. C. Chang, S. H. Shao, D. Zhang, *Dong Nodal domains of eigenvectors for 1-Laplacian on graphs*, Adv. Math. 308 (2017), 529-574.

[5] K. C. Chang, S. H. Shao, D. Zhang, *Dong The 1-Laplacian Cheeger cut: theory and algorithms*, J. Comput. Math. 33 (2015), no. 5, 443-467.

[6] H. B. Ge, *Kazdan-Warner equation on graph in the negative case*, J. Math. Anal. Appl. 453 (2017), no. 2, 1022-1027.

[7] H. B. Ge, *A p-th Yamabe equation on graph*, Proc. Amer. Math. Soc., in press. DOI: https://doi.org/10.1090/proc/13929.

[8] H. B. Ge, *p-th Kazdan Warner equation on graph*, preprint, arXiv:1611.04902.

[9] H. B. Ge, W. F. Jiang, *p-th Yamabe equation on infinite graphs*, submitted to Commun. Contemp. Math..

[10] H. B. Ge, W. F. Jiang, *Kazdan-Warner equation on infinite graphs*, preprint, arXiv:1706.08698.

[11] A. Grigor’yan, Y. Lin, Y. Y. Yang, *Kazdan-Warner equation on graph*, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Paper No. 92, 13 pp.

[12] A. Grigor’yan, Y. Lin, Y. Y. Yang, *Yamabe type equations on graphs*, J. Differential Equations 261 (2016), no. 9, 4924-4943.

[13] A. Grigor’yan, Y. Lin, Y. Y. Yang, *Existence of positive solutions to some nonlinear equations on locally finite graphs*, Sci. China Math. 60 (2017), no. 7, 1311-1324.

[14] J. L. Kazdan, F. W. Warner, *Curvature functions for open 2-manifolds*, Ann. of Math. (2) 99 (1974), 203-219.

[15] J. L. Kazdan, F. W. Warner, *Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures*, Ann. of Math. (2) 101 (1975), 317-331.

[16] J. L. Kazdan, F. W. Warner, *Scalar curvature and conformal deformation of Riemannian structure*, J. Differ. Geom. 10 (1975), 113-134.

[17] M. Keller, M. Schwarz, *The Kazdan-Warner equation on canonically compactifiable graphs*, preprint, arXiv:1707.08318.

[18] Kawohl, B., Fridman, V. *Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant*, Comment. Math. Univ. Carolinae, 44 (2003), 659-667.

[19] Kawohl, B., Schuricht, F., Dirichlet, *Problems for the 1-Laplace operator, including the eigenvalue problem*, Comm. in Contemporary Math. Vol. 9, (2007), 515-544.
[20] J. M. Lee, T. H. Parker, *The Yamabe problem*, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37-91.

[21] P. Mastrolia, M. Rigoli, A. G. Setti, *Yamabe-type equations on complete, noncompact manifolds*, Progress in Mathematics, 302. Birkhäuser/Springer Basel AG, Basel, 2012.

[22] R. Schoen, *Conformal deformation of a Riemannian metric to constant scalar curvature*, J. Differ. Geom. 20 (1984), 479-495.

[23] N. Trudinger, *Remarks concerning the conformal deformation of Riemannian structures on compact manifolds*, Ann. Scuola Norm. Sup. Pisa. 3 (1968), 265-274.

[24] H. Yamabe, *On a deformation of Riemannian structures on compact manifolds*, Osaka Math. J. 12 (1960), 21-37.

[25] X. X. Zhang, Y. X. Chang, *p-th Kazdan-Warner equation on graph in the negative case*, 2017, submitted to J. Math. Anal. Appl..

[26] X. X. Zhang, A. J. Lin, *Positive solutions of p-th Yamabe type equations on graphs*, preprint, arXiv:1708.07092

Huabin Ge: hbge@bjtu.edu.cn
Department of Mathematics, Beijing Jiaotong University, Beijing, China

Wenfeng Jiang: wen_feng1912@outlook.com
School of Mathematics (Zhuhai), Sun Yat-Sen University, Zhuhai, China.