Review

Vitamin D Incorporation in Foods: Formulation Strategies, Stability, and Bioaccessibility as Affected by the Food Matrix

Vera Lavelli *, Paolo D’Incecco † and Luisa Pellegrino ‡

Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; paolo.dincecco@unimi.it (P.D.); luisa.pellegrino@unimi.it (L.P)
* Correspondence: vera.lavelli@unimi.it; Tel.: +39-02-50319172

Abstract: Inadequate intake of vitamin D is a global health issue related to severe diseases, mainly involving subjects with dark skin pigmentation, patients affected by malnutrition, malabsorption syndromes, or obesity, and elderly people. Some foods fortified with vitamin D have been tested in vivo, but fortification strategies with a global outreach are still lacking. This review is focused on food fortification with vitamin D, with the aim to collect information on (a) formulation strategies; (b) stability during processing and storage; and (c) in vitro bioaccessibility. Approaches to add vitamin D to various foods were analyzed, including the use of free vitamin D, vitamin D loaded in simple and double nanoemulsions, liposomes, casein micelles, and protein nanocapsules. Numerous studies were reviewed to elucidate the impact of food technologies on vitamin D’s stability, and mechanisms that lead to degradation were identified—namely, acid-catalyzed isomerization, radical-induced oxidation, and photo-oxidation. There is, however, a lack of kinetic data that allow for the prediction of vitamin D’s stability under industrial processing conditions. The roles that lipids, proteins, fibers, and antioxidants play in vitamin bioaccessibility have been clarified in various studies, while future needs include the design of specific food matrices that simultaneously achieve a balance between the long-term stability, bioaccessibility and, ultimately, in vivo functionality of vitamin D.

Keywords: vitamin D; nanoemulsions; liposomes; casein micelles; protein nanocapsules; fortification; stability; bioaccessibility

1. Introduction

Vitamin D performs essential functions for human health, and concerns about its inadequate dietary intake have been expressed worldwide [1,2]. Vitamin D has two prevalent forms, i.e., cholecalciferol (vitamin D₃) and ergocalciferol (vitamin D₂). These vitamers are formed through the UV conversion of precursor compounds—namely, 7-dehydrocholesterol present in vertebrates for vitamin D₃, and ergosterol present in fungi and some invertebrates for vitamin D₂. The equivalence of the in vivo effectiveness of vitamin D₂ and vitamin D₃ has not been fully elucidated. In fact, some studies showed the same biological activity for both vitamers [3,4], while other studies suggested a higher bioavailability for vitamin D₃ than for vitamin D₂ [5–7]. Upon ingestion, both vitamin D₂ and vitamin D₃ are converted into the same biologically active form, i.e., 1,25-dihydroxyvitamin D (1,25(OH)₂D). This latter compound binds to a nuclear receptor and modulates gene expression. Interestingly, the vitamin D receptor was found to be present in most cells in the body, and this finding supports the involvement of vitamin D in the prevention of multiple diseases [8,9]. In fact, vitamin D performs a fundamental role in the maintenance of skeletal calcium and phosphate balance, thus preventing rickets in children and osteomalacia, osteoporosis, and bone fractures in adults. Moreover, it has been associated with protection from the risk of common cancers, autoimmune diseases, hypertension, and infectious diseases [2]. The recommended dietary intake of vitamin D is 10, 15, and 20 μg/d for
infants (<1 year), subjects aged 1–70 years, and subjects aged >70 years, respectively [10]. Observational studies led to the conclusion that vitamin D supplementation should be 2–3 times higher for obese subjects and 1.5 times higher for overweight subjects, relative to normal-weight subjects [11]. Moreover, for people at risk of vitamin D deficiency, the recommended daily dose of vitamin D is 50 µg/d or higher, depending on age [10]. The recognized biomarker for vitamin D status is serum 25-hydroxyvitamin D (25(OH)D) level. Some panels of experts indicate that vitamin D deficiency corresponds to a (25(OH)D) level below 50 nmol/L, vitamin D insufficiency to a level between 50 and 75 nmol/L, and vitamin D toxicity to levels above 500 nmol/L [10]. However, other panels of experts indicated that the cutoff below which the risk of clinical vitamin D deficiency increases corresponds to a serum level of 25(OH)D < 30 nmol/L [12]. Populations at risk of vitamin D deficiency include subjects with dark skin pigmentation, subjects affected by malnutrition, malabsorption syndromes, or obesity, and elderly people [9]. Vitamin D insufficiency is also common. In fact, a survey throughout Europe has shown that the intake of vitamin D is inadequate for 77–100% of adults (19–64 years old) and for 55–100% of elderly adults (>64 years old) [13]. Compared to the USA, Vitamin D intake from food in Europe is lower [14], which can be attributed to the higher availability of foods fortified with vitamin D in the USA than in Europe [1]. Indeed, food fortification with vitamin D is considered a fundamental strategy to fight vitamin D malnutrition and its associated diseases [1,3,15].

Foods fortified with vitamin D—especially bread and dairy products—have been assessed in vivo for their efficacy in raising the level of 25(OH)D and improving health in different target populations (Table 1). In both low-fiber white bread and high-fiber sourdough rye bread, fortification with a water-dispersible form of vitamin D₃ providing approximately 10 µg/d was as effective as vitamin D₃ supplements in increasing serum 25(OH)D concentration in healthy women aged 25–45 years [16]. The production of bread with UV-irradiated yeast as a source of 25 µg/d of vitamin D₂ did not affect serum 25(OH)D concentration in healthy women aged 20–37 years, while supplements of both vitamin D₂ and vitamin D₃ resulted in a positive effect [17]. Conversely, vitamin D₂ from UV-irradiated mushroom formulated in a soup was as effective as vitamin D₂ supplements in increasing serum 25(OH)D concentration in healthy subjects younger than 45 years, but the amount provided was high, equal to 700 µg/d [18]. In Ca++-enriched orange juice, water-dispersible forms of either vitamin D₂ or vitamin D₃ in a dose of 25 µg/d were equally bioavailable as the respective supplements in adult subjects aged 18–84 years [4]. The impact of Ca++ enrichment along with vitamin D₂ was not investigated, because a control without Ca++ addition was not included [4].

Reduced-fat milk enriched with Ca++ was an effective matrix for vitamin D₃ fortification, when administered at a level of 20 µg/d to healthy male subjects aged 50–87 years, causing increased serum 25(OH)D concentration and reduced bone loss, but no information was provided on the incorporated form of vitamin D₃ [19]. In a subsequent study, fortification of Ca++-enriched milk with a non-specified form of vitamin D₃, as well as fortification of Ca++-enriched orange juice, were designed for healthy children aged 9–12 years, and were found to be effective in increasing serum 25(OH) concentration, while serum osteocalcin and intact parathyroid hormone were not affected [20]. However, in these latter two studies, foods enriched in Ca++ and vitamin D were also considered, but the impact of Ca++ enrichment was not investigated [19,20].

Contradictory results were obtained by applying a water-dispersible form of vitamin D₃ in cheese, but the supplied amounts were different [21,22]. In fact, in one study involving healthy, ≥60-year-old subjects, no effects on 25(OH)D, parathyroid hormone, or osteocalcin serum concentrations were observed upon the consumption of vitamin-D₃-fortified cheese supplying 15 µg/d [21], while in another study involving healthy subjects aged 18–60 years, an increase in serum 25(OH)D concentration was observed along with a decreased serum parathyroid hormone upon consumption of either regular Cheddar cheese (obtained from milk having 3.8% fat content) or reduced-fat cheese (obtained from skim milk having 0.8% fat content), both supplying 100 µg/d of vitamin D₃ [22].
Table 1. In vivo studies on the effects of vitamin-D-fortified foods.

Fortified Food	Subjects and Duration	Dose (µg/d)	Outcome	Ref.
Water-dispersible vitamin D₃ in low-fiber wheat bread	25–45 years, healthy women \(n = 41, 1 \) month	10.8	Both vitamin-D₃-fortified breads increased serum 25(OH)D as effectively as vitamin D₃ supplement.	[16]
Water-dispersible vitamin D₃ in high-fiber sourdough rye bread		12.3		
Vitamin D₂ from UV-irradiated yeast in bread	20–37 years, healthy women \(n = 33, 2 \) months	25	Vitamin D₂ from UV-irradiated yeast in bread did not raise serum 25(OH)D.	[17]
Vitamin D₂ from UV-irradiated yeast in bread	<45 years, healthy \(n = 26, 1 \) month	700	Vitamin-D₂-fortified soup increased serum 25(OH)D as effectively as vitamin D₂ supplement.	[18]
Water-dispersible vitamin D₃ in Ca⁺⁺-enriched orange juice (Ca⁺⁺ dose: 350 mg/d)	18–84 years, healthy \(n = 105, 3 \) months	25	Vitamin D₂ and vitamin D₃ were equally bioavailable in Ca⁺⁺-enriched orange juice and capsules.	[4]
Water-dispersible vitamin D₂ in Ca⁺⁺-enriched orange juice (Ca⁺⁺ dose: 350 mg/d)	50–87 years, healthy \(n = 149, 2 \) years	20	Vitamin-D₂ and Ca⁺⁺-fortified milk increased serum 25(OH)D and reduced bone loss.	[19]
Vitamin D₃ non-specified in Ca⁺⁺-enriched reduced-fat milk (Ca⁺⁺ dose: 1000 mg/d)	9–12 years, healthy \(n = 410, 3 \) months	2.5		
Water-dispersible vitamin D₃ in cheese	≥60 years, healthy \(n = 110, 2 \) months	15	Vitamin-D₃-fortified cheese had no effect on serum 25(OH)D, OC and PHT.	[21]
Water-dispersible vitamin D₃ in Cheddar cheese	18–60 years, healthy \(n = 30, 2 \) months	100 *	Both vitamin-D₃-fortified cheeses increased serum 25(OH)D and decreased serum PHT as vitamin D₃ supplement	[22]
Water-dispersible vitamin D₃ in regular yogurt (Ca⁺⁺ dose: 150 mg/d)	30–60 years, diabetic \(n = 90, 3 \) months	25		
Vitamin D₃ non-specified in Ca⁺⁺-enriched yogurt (Ca⁺⁺ dose: 250 mg/d)	≥65 years, healthy women \(n = 20, 3 \) months	10	Vitamin-D₃-fortified yogurt increased serum 25(OH)D, and maintained cognitive performance.	[24]
Vitamin D₃ in casein micelles in low-fat yogurt	37–47 years, pre-diabetic \(n = 60, 3 \) months	25		
Vitamin D₃ in emulsion in low-fat yogurt	18–61 years, healthy \(n = 87, \) single intake	1250	Both vitamin D₃ carriers in yogurt increased serum 25(OH)D.	[26]

*: Equivalent to a daily dose (fortified food was ingested in one weekly dose); PHT: parathyroid hormone; OC: osteocalcin.

Various approaches have been applied for yogurt fortification with vitamin D₃. In one study, a non-specified form of vitamin D₃ was added alone or in combination with Ca⁺⁺ in yogurt, and both formulations supplying 25µg/d were effective in raising serum 25(OH)D levels and improving the glycemic status of diabetic subjects aged 30–60 years.
Hence, the combined effect of Ca\(^{++}\) and vitamin D enrichment of the food matrix seemed not to be relevant [23]. Positive effects on serum 25(OH)D level and in the maintenance of cognitive performance were also observed upon consumption of yogurt enriched with Ca\(^{++}\) and 10 \(\mu\)g/d of a non-specified form of vitamin D\(_3\) by a population of healthy elderly women (\(\geq 65\) years), while vitamin D enrichment of yogurt with regular Ca\(^{++}\) content was not considered [24]. In another approach, the water-dispersible form of vitamin D\(_3\) was used to fortify yogurt, and proved to be effective in increasing serum 25(OH)D levels and improving the serum lipid profiles of pre-diabetic subjects aged 37–47 years [25], when administered at a dose of 25 \(\mu\)g/d. Casein micelles or polysorbate/Tween-80 emulsions were designed as carriers to formulate vitamin D\(_3\) in low-fat yogurt, and both formulations were found to be effective in raising serum 25(OH)D in healthy subjects aged 18–61 years, but the dose administered was equal to 1250 \(\mu\)g/d [26]—well above the recommended daily dose.

The above-reported in vivo studies cannot be compared because of the different target populations involved, daily doses administered, and durations of the interventions. However, in general they support the efficacy of fortification of various food matrices as a strategy to manage inadequate vitamin D intake. Nevertheless, in order to apply a vitamin D fortification strategy, further issues need to be considered. Firstly, the form in which vitamin D was administered is generally unknown or lacks relevant information, and the dosage applied was higher than the recommended daily dose. Hence, no information on the cost-effectiveness of the fortification strategy can be derived. Moreover, in most in vivo studies, food fortification was performed by adding vitamin D to the processed product just before the administration, while no information is provided on vitamin D stability when addition is carried out prior to food processing, packaging, and long-term storage. In vitro modelling studies can provide in-depth information on vitamin D’s stability and bioaccessibility. Hence, this review article is focused on food fortification with vitamin D, with the aim to collect information on (a) the formulation strategies of vitamin D in foods; (b) the stability of vitamin D in fortified foods during processing and storage; and (c) the in vitro bioaccessibility of vitamin D from the fortified foods. The ultimate aim of this study is to support the design of an efficient technology for the vitamin D fortification of foods.

2. Vitamin D Fortified Foods: Formulation Strategies

Vitamin D\(_3\) obtained at the industrial level is generally used for food fortification. The free form of vitamin D\(_3\) has likely been incorporated in the food matrices evaluated in some in vivo studies, although this is not specifically indicated [19,20,23,24]. Free vitamin D\(_3\) has also been used in various in vitro studies [27–33], while free vitamin D\(_2\) has been considered in only a few in vitro studies [31].

Irradiated yeasts and mushrooms have been used directly as a source of vitamin D\(_2\) in fortified foods for in vivo [17,18] and in vitro studies [30]. The application of the unprotected compound in food formulation has the major drawbacks of non-homogeneous dispersion in the matrix, uncontrolled stability, and fast release. Moreover, the application of vitamin D\(_2\) entrapped in yeast cells was not effective in vivo [17], while that entrapped in mushrooms was effective in vivo only at very high dosages [18].

Vitamin D is a large sterol molecule. Considering its low water solubility and susceptibility to oxidative or heat degradation, suitable delivery systems have been studied for food fortification (Table 2). In brief, water-dispersible vitamin premixes—often containing an emulsifier—and oil-based systems have been proposed, depending on the characteristics of the target food. A commercial water-soluble form of vitamin D containing propylene glycol and polysorbate 80 (Vitex-D, Kingsway Chocolate Co. Ltd., Bunge Foods, Mississauga, ON, Canada) was used in one in vivo [22] and in some in vitro studies [34,35], but no information was provided on the formulation characteristics, such as its particle size distribution, which affects its bioaccessibility [36]. Other in vivo [4,16,20,25] or in vitro [37–39] studies
reported the use of water-dispersible forms of vitamin D3 or vitamin D2, but no details were provided on composition or particle size distribution.

A strategy to develop value-added fortified foods is the design of specific nano- or micro-structures (Table 2) that enable the homogeneous distribution of bioactive compounds in the food matrix and improve stability and bioavailability [40]. It is worth noting that nano- and micro-structures can potentially be affected by pH, ionic strength, and heat treatments; hence, it is fundamental to test their stability during food processing [41].

It must be underlined that many of the carrier systems developed for vitamin D delivery look promising, but have not found application at the industrial level so far. This review only focuses on studies including a food product application—namely, lipid-based encapsulation systems [42–50], which were considered in vitro studies, and protein complexes, which were considered in studies performed both in vivo [26] and in vitro [51,52].

Lipid-based encapsulation systems used for food fortification with vitamin D include oil-in-water (O/W) nanoemulsions [36,43,45–47]; double water-in-oil-in-water (W1/O/W2) emulsions [48], and liposomes [50]. All of these structures can be affected by chemical instability due to lipid oxidation and physical instability due to their tendency to phase separation.

O/W emulsions are structures with a lipophilic core where a lipophilic bioactive compound is entrapped, a hydrophilic shell (aqueous phase), and an amphiphilic interface consisting of the emulsifier/surfactant [53]. Emulsion particles move randomly in the presence of gravitational and Brownian motion forces acting on the droplets in the medium. The main instability processes are flocculation, coalescence, and creaming (or sedimentation), which ultimately lead to complete separation of the two constituting phases. In nanoemulsions, small particle size (d < 200 nm) creates low susceptibility to gravitational separation due to the dominant Brownian forces [53]. The zeta potential (ζ-potential) of dispersed oil droplets is also related to emulsion stability, because levels close to zero promote aggregation due to the absence of charge repulsions [54]. In one approach, vitamin D2 emulsions were prepared using corn oil, Tween® 80, and phosphate buffer; the amount of vitamin D2 in the oil phase was 50 mg/100 g of oil. By blending these components at a high speed (10,000 rpm), a large emulsion was obtained with a volume-weighted mean diameter of 14.5 µm and ζ-potential of −13.8 mV; by passing the large emulsion through a Microfluidizer operating at 6000 psi, a medium emulsion was obtained with a volume-weighted mean diameter of 0.53 µm, and further processing at 15,000 psi resulted in a small emulsion with a volume-weighted mean diameter of 0.11 µm, with little variation in the ζ-potential [36]. Hence, it was possible to modulate emulsions’ nanostructure by varying the energy input of the process. The droplets should have had a low net charge because they were stabilized by a non-ionic surfactant; however, a negative surface charge was observed and attributed to the presence of anionic impurities such as free fatty acids in either the surfactant or the oil phase [36]. The negative charge is expected to inhibit particle aggregation, but the emulsions were not tested in food matrices [36]. In other studies, emulsions were prepared using vitamin D3, flaxseed oil, calcium caseinate, and distilled water, +/− soy lecithin, but the amount of vitamin D3 was not specified. No information was provided on the particle size distribution and zeta-potential; however, physical stability was proven up to 6 d of storage in the absence of soy lecithin and 15 d of storage in the presence of soy lecithin; afterwards, the appearance of serum indicated that casein–casein interactions occurred. The adsorption of lecithin to the oil–water interface reduced the interactions between proteins and led to a slow gelation of the emulsion, which was then added to cheese [43]. In another approach, a nanoemulsion of vitamin D3 was created by combining vitamin D3 in corn oil and the surfactant (quillaja saponin) into phosphate buffer solution (5 mM, pH 7); the amount of vitamin D3 was 4 g/100 g of the oil phase. The mean particle diameter of the vitamin-enriched nanoemulsions was 0.14 µm, the pH was 4.74, and the surface charge was negative (−74.1 mV). Due to the strong repulsions between the negative charges on the surface, the nanoemulsion was stable for 7 d of storage, and was found to be suitable for the fortification of almond milk [47].
The W₁/O/W₂ double emulsions have a water-continuous system containing oil droplets with smaller water droplets dispersed within. Double emulsions can simultaneously encapsulate both hydrophobic and hydrophilic compounds. Moreover, double emulsions can have a reduced fat content compared to O/W emulsions. As with the single emulsions, double emulsions can undergo flocculation, coalescence, and creaming (or sedimentation); additional instability processes include swelling and rupture of the inner droplets induced by osmotic transport between the two aqueous phases. Hence, there should be a balance between the osmotic pressure of the inner and outer aqueous regions [54]. In one study, W₁/O/W₂ double emulsions containing vitamin D₃ were considered; the W₁ phase was prepared by adding black chokeberry phenolic extract, folic acid, vitamin B₁₂, and vitamin C; the O phase consisted of polyglycerol polyricinoleate dispersed in rapeseed oil containing vitamin D₃ and vitamin A; and the W₂ phase was a milk protein solution. The emulsification process included the preparation of the primary emulsion at a high speed (15,000 rpm) and the preparation of the secondary emulsion at a low speed (11,000 rpm). The amount of vitamin D₃ was 7 mg/100 g of oil, and encapsulation efficiency was 98.52%. The resulting W₁/O/W₂ emulsion had a monomodal particle size distribution with a volume moment-weighted mean diameter of 37.65 µm, and was physically stable for 30 d [48]. This W₁/O/W₂ double emulsion was then added to yogurt [49].

Liposomes are vesicles with an aqueous core surrounded by one or more amphiphilic molecules—such as polar lipids—that produce a bilayer structure. Hydrophobic substances can be entrapped within the hydrophobic bilayer [55]. Phospholipids are often used as amphiphilic molecules for lipidosome preparation. The small radius of the curvature of the vesicles generates instability because it disrupts the regular packing of the phospholipid bilayer and imposes constraints on the phospholipid molecules [56]. One of the key parameters for the liposome structure is the transition temperature, where the liposomes lose their ordered packing structure due to melting of the hydrocarbon chains, i.e., they undergo a phase transition from gel to liquid-crystalline. Since natural phospholipids contain hydrocarbon chains that differ in length, physical instability of liposomes may arise from merging, which results in increased particle size. Cholesterol is generally added to the phospholipid structure at a volume of over 20% because it decreases the transition temperature and increases stability [55]. Lipophilic bioactive compounds that are positioned in the lipid bilayer of liposomes, such as vitamin D, can alter the interactions between hydrocarbon chains and, hence, affect bilayer stability. In one study, liposomes loaded with vitamin D₃ were added to milk intended for producing fortified cheese; a commercial liposome premix was used and no information was provided on liposome structure [57]. In another study, liposomes loaded with vitamin D₃ were applied in chocolate. Phospholipids, cholesterol, and vitamin D₃ were used in a 3:1:1 ratio; hence, vitamin D₃ constituted 20 g/100 g of the liposome phase. Liposomes were obtained by film dispersion–homogenization. Loading efficiency for vitamin D₃ was 68.2%. The resulting liposomes had a monomodal distribution, with an equivalent volume diameter at 50% cumulative volume of 354.91 nm and a ζ-potential of −27.62 mV; however, no information on stability was provided [50].

Hydrophobic molecules can also bind to proteins via hydrophobic interactions. A consensus exists on the role of some well-structured proteins, such as milk and soy proteins, as natural nanocarriers of hydrophobic bioactive compounds [58–63]. However, the loading capacity of these structures is likely low, being targeted at the naturally occurring levels of bioactive compounds. Thus, protein-based nanocarriers have been developed as vehicles of vitamin D at the target levels of fortification in food, with casein being the most frequently involved protein. Complexation of vitamin D with whey proteins proved to increase the stability of the vitamin under light and prolonged storage, compared to the free form, but no data obtained on real foods were given [59,60]. Compared to native casein micelles, sodium or calcium caseinates are more water soluble, and single casein molecules still maintain the capacity for self-assembly due to their amphiphilic nature. On this basis, the so-
called reassembled casein micelles (rCMs) have been studied and shown to represent microencapsulation structures that potentially guarantee enhanced stability of vitamin D during subsequent food processing. The vitamin-loading capacity of rCMs essentially depends on the content of calcium, phosphate, and citrate added in the formulation. By optimizing these parameters, a loading of 1.38–1.46 mg/100 mg casein was achieved for vitamin D, with particles of rCMs showing a monomodal distribution and average volume-weighted particle sizes of 16–19 µm, depending on phosphate concentration [61]. However, aqueous suspensions of the rCMs showed D(0.5) (diameter where 50% of the particle size distribution is above and 50% is below) values around 12–13 µm, i.e., much larger than those of native casein micelles (50–700 nm), indicating that rCMs may merge into large particles due to the high phosphate content (4.9 mM). Other authors [26], who prepared vitamin-D-loaded rCMs with the same approach, achieving a loading of 1.6 mg vitamin D/100 mg casein, adopted a homogenization step of the mixture, and obtained a bimodal volume-weighted particle size distribution, with a large population that had an average volume moment-weighted diameter of 89 nm, and a smaller population around 277 nm in diameter. The efficacy of casein complexes and rCMs in protecting the associated vitamin D2 from degradation was compared in fluid milk processed at the laboratory scale [51]. Disruption and subsequent reassembly of casein micelles with increased affinity for vitamin D was also attained using high-pressure (> 400 MPa) treatments at selected temperatures [62]. Large rCMs (278 nm average hydrodynamic diameter) with a vitamin D2 loading of 10.4 µg/mg casein were obtained by treating a dispersion of native micelles at 600 MPa at 50 °C. These structures were claimed to be suitable for the enrichment of low-fat dairy products, since they maintain the original properties [62].

Table 2. Formulation of vitamin D for food fortification.

Structures and Vitamin D Loading	Components	PSD and Average Size	ζ-Potential	Ref.	
O/W emulsions	Vitamin D2, corn oil, Tween® 80, phosphate buffer	Monomodal: S: 0.11 µm, M: 0.53 µm, L: 14.5 µm (volume moment-weighted mean diameter)	S: −12.4 mV, M: −14.1 mV, L: −13.8 mV	[36]	
4 g vitamin D2 /100 g oil	Vitamin D2, corn oil, quillaja saponin, phosphate buffer	Monomodal (mean particle diameter)	−36.4 mV	[47]	
W1/O/W2 double emulsion 7 mg vitamin D2 /100 g oil	Vitamin D2, vitamin A, vitamin B12, vitamin C, chokeberry extract, folic acid, rapeseed oil, polyglycerol polyricinoleate, milk protein, sodium chloride, water	Monomodal (mean particle diameter)	37.65 µm (volume moment-weighted mean diameter)	[48]	
Liposomes 20 g vitamin D2/100 g lipid phase	Vitamin D2, phospholipids, cholesterol in ethanol, distilled water	Monomodal	354.91 nm (equivalent volume diameter at 50% cumulative volume)	−27.62 mV	[50]
rCMs: reassembled casein micelles 1.38–1.46 mg vitamin D2/100 mg casein	Vitamin D3 in ethanol, sodium caseinate in water, dipotassium hydrogen phosphate, potassium citrate, calcium chloride	Monomodal from 16.10 to 19.04 µm (average volume-weighted particle sizes)	from −17.3 to −17.8 mV	[61]	
rCMs: reassembled casein micelles 1.6 mg vitamin D2/100 mg casein	Vitamin D3 in ethanol, sodium caseinate in water, dipotassium hydrogen phosphate, tripotassium citrate, calcium chloride	Bimodal	89 nm and 277 nm (volume moment-weighted mean diameter)	[26]	
rCMs: reassembled casein micelles 1 µg vitamin D2/100 mg casein	Vitamin D2 in ethanol, micellar casein in sweet whey permeate	Monomodal	from 145 to 303 nm (mean hydrodynamic diameter)	[62]	
β-conglycinin nanoparticles 10 µg vitamin D2/100 mg	Vitamin D3 in ethanol, β-conglycinin, phosphate buffer	Bimodal	31 nm and 120 nm (volume weighted average particle diameter)	[63]	
Zein nanocapsules vitamin D3 loading not specified	Vitamin D3 in ethanol, zein, Tween® 80	Monomodal	185.7 ± 2.10 nm (Z-average size)	24.5 mV	[52]

PSD: particle size distribution.
Due to their wider consumer acceptance and lower costs compared to animal proteins, plant proteins were also studied as vehicles for numerous bioactive compounds. Vitamin D$_3$ was encapsulated in soybean β-conglycinin nanoparticles, leading to a bimodal distribution: a large population (90% of the particle volume) with an average volume moment-weighted diameter of 31 nm, and the remaining 10% with a diameter around 120 nm [63]. These nanoparticles were claimed to be suitable for the fortification of both foods and clear beverages [63]. Zein—a major protein from corn—was successfully used to produce nanoparticles that were loaded with vitamin D$_3$, attaining a 97.27% encapsulation efficiency [52]. In this case, nanoparticles had a Z-average size of 185.7 nm and, upon observation via transmission electron microscopy (TEM), showed a smooth surface. The ζ-potential of 24.5 mV was attributed to the cationic character of zein, because the value was similar (21.2 mV) in the unloaded zein nanoparticles. A jelly based on the pulp of *Acca sellowiana*, xylitol, and pectin was then fortified with the nanoparticles [52].

The formulations described in Table 2 were generally tested in model foods: the O/W emulsions were added to cheese [43] and almond milk [47], the W$_1$/O/W$_2$ double emulsions were added to yogurt [49], liposomes were added to cheese [56] and chocolate [50], the rCMs were added to milk [51], and the zein nanocapsules were assessed in a model jelly food [52]. Although these model foods were prepared at the laboratory scale, they proved that the designed formulations could persist after processing and, thus, pave the way for applications in real food systems.

3. Vitamin D in Fortified Foods: Yield and Stability

The cis-triene configuration of vitamin D makes it potentially sensitive to isomerization and oxidation. Nevertheless, purified vitamin D$_3$ was found to be stable at neutral pH, in air, at ambient temperature [64]. Accordingly, a differential calorimetric study performed on the purified vitamins D$_2$ and D$_3$ revealed that the onset temperatures for their thermal decomposition are about 166 and 156 °C, respectively, and their activation energy values are 141 and 131 kJ mol$^{-1}$, respectively [65]. However, vitamin D's stability can be affected by the food matrix components (Table 3).

In the presence of acids, vitamin D$_3$ isomerizes, and its acid-catalyzed isomerization product—i.e., isotachysterol—is very oxygen-sensitive [63,66]. Moreover, vitamin D$_3$ degradation is triggered by unsaturated lipid oxidation [29,67]. The reaction pattern for isomerization and oxidation of vitamin D$_3$ does not involve the side chain that differs between vitamin D$_2$ and D$_3$; hence, these reactions most likely occur in vitamin D$_2$ as well. Considering that vitamin D is often formulated as an oil phase before being used in food processing, some studies have investigated vitamin D's stability in bulk oils. Soybean oil packed in polyethylene terephthalate bottles was used as a model matrix to study the effects of oxidative status, antioxidant content (α-tocopherol), and exposure to light and oxygen on vitamin D$_3$ degradation at 30 °C. This approach confirmed that the degradation of vitamin D$_3$ occurs via oxidation, and the factors affecting degradation were, in decreasing order: storage time, exposure to light, and initial oxidative status of the oil, whereas α-tocopherol content played a protective role. As a result, vitamin D$_3$ retention after storage at 30 °C for 50 d varied in the range 32–76% [29]. Sunflower oil was also used as a medium to study both vitamin D$_3$ and vitamin D$_2$ degradation at 100 and 210 °C, and both isomers were found to degrade at a similar rate upon heating [31].

Formulation of vitamin D$_3$ in lipids with a low degree of unsaturation led to higher stability. In fact, both free vitamin D$_3$ and liposomes made with vitamin D$_3$, phospholipids, and cholesterol added to white chocolate after conching resulted in total recovery of the vitamin in chocolate upon 120 d of storage at 25 °C [30]. In contrast, a short-term stability of liposomes was observed in cheese upon ripening, leading to a progressive degradation of the loaded vitamin D [57].

Whole wheat flour was also considered for vitamin D$_3$ incorporation, which is a strategy to develop various fortified bakery products [68]. In dry and intermediate-moisture foods, chemical stability is critically dependent on water activity (a_w). For oxygen-sensitive
compounds, stability decreases with increasing a_w above the monomolecular moisture content, due to a decrease in the viscosity of the food matrix and increase in the molecular mobility, accelerating oxidation [69]. Accordingly, the half-times for vitamin D$_3$ added to whole wheat flour at 25 °C were found to be 173, 169, and 116 d at a_w levels of 0.33, 0.63, and 0.93, respectively. The stability of vitamin D$_3$ greatly decreases with increasing temperature to 45 °C, with half-times for degradation of 87, 77, and 63 d at a_w of 0.33, 0.63, and 0.93, respectively [68].

Dry irradiated mushroom powder could represent a source of vitamin D$_2$ for a variety of foods [70]; in this matrix, vitamin D$_2$ stability was also found to decrease with increasing a_w from 0.11 to 0.75 [71]. The activation energy found for vitamin D$_2$ degradation in mushroom powder at a_w 0.33 was 36.7 kJ/mol, which is close to the activation energy for oxygen diffusion in unsaturated lipids—i.e., 24 kJ/mol—and to the activation energies found for the free radical chain reactions in triglycerides—i.e., 34.0–37.3 kJ/mol [72]; hence, autoxidation was assumed to be the mechanism by which vitamin D$_2$ was lost [71]. The half-life of vitamin D$_2$ at a_w 0.33, calculated on the basis of the activation energy provided by this latter study, was 175 d at 25 °C, which is the same as that found for vitamin D$_3$ in whole wheat flour under the same temperature and a_w conditions [68]. Conversely, in fresh irradiated mushrooms, vitamin D$_2$’s half-life was approximately 7 d at both 4 °C and −14 °C [73]; hence, storage at −20 °C is necessary to preserve vitamin D$_2$ in fresh mushroom [74].

Table 3. Recovery of vitamin D in fortified foods after processing and storage.

Fortified Food	Vitamin D Content (µg/100 g)	Main Processing Steps	Vitamin D Yield (%)	Ref.
Free vitamin D$_3$ in soybean oil	700	Storage in PET bottles at 30 °C for 50 d in the dark	56–76 (S)	[29]
Free vitamin D$_3$ in sunflower oil	14.5	Heating at 110 °C for 30 min	85 (P)	[31]
Free vitamin D$_2$ in sunflower oil	11.2	Heating at 110 °C for 30 min	89 (P)	
Vitamin D$_3$ in liposomes in white chocolate	30	Three-step tempering process (35 °C–35 °C, 24 °C–25 °C, and 25 °C–26 °C); storage at 25 °C for 120 d	100 (S)	[50]
Free vitamin D$_3$ in white chocolate			99 (S)	
Free vitamin D$_3$ in whole wheat flour	nd	Storage at a_w 0.33 at 25 °C for 173 d	50 (S)	[68]
Vitamin D$_2$ in dry mushroom powder	4420	Storage at a_w 0.33 at 25 °C for 175 d	50 (S)	[71]
Free vitamin D$_3$ in wheat bread	10.8	Storage at a_w 0.33 at 25 °C for 136 d	50 (S)	
Free vitamin D$_3$ in rye bread	8.7	Storage at a_w 0.33 at 25 °C for 55 d	50 (S)	
Vitamin D$_2$ yeast in wheat bread	9.5	Storage at a_w 0.33 at 25 °C for 55 d	50 (S)	
Vitamin D$_2$ yeast in rye bread	8.5	Storage at a_w 0.33 at 25 °C for 55 d	50 (S)	
Free vitamin D$_3$ in wheat bread	40.2	Baking at 200 °C for 20 min	40.2 (P)	[68]
Free vitamin D$_3$ in cookies	64	Baking at 200–205 °C for 12 min	65.3 (P)	
Fortified Food	Vitamin D Content (µg/100 g)	Main Processing Steps	Vitamin D Yield (%)	Ref.
---------------	-----------------------------	-----------------------	---------------------	------
Free vitamin D₃ in milk	12	Steam injection (95 °C), spray-drying at 149 °C, fluid-bed finish at 107 °C	100 (P)	[27]
Water-dispersible vitamin D₃ in milk	100	Pasteurization at 73 °C for 15 s, homogenization at 13.8/3.4 MPa, storage at 4 °C for 21 d	100 (P, S)	[37]
Water-dispersible vitamin D₂ in milk	2	Pasteurization at 63 °C for 30 min, storage in glass bottles at 4 °C for 7 d in the dark	100 (P, S)	[39]
Vitamin D₂ in casein complexes in cow and buffalo milk (1:1)	1.25	Pasteurization at 63 °C for 30 min, storage in glass bottles at 4 °C for 7 d under light	~ 90 (P, S)	[34]
Free vitamin D₃ in cow and buffalo milk (1:1)	1.25	Pasteurization at 63 °C for 30 min, storage in glass bottles at 4 °C for 7 d under light	~ 90 (P, S)	[34]
Water-dispersible vitamin D₃ in Cheddar (milk fat 3.9%)	nd	Starter addition, rennet addition, salting, pressing, vacuum packaging, storage at 4 °C for 84 d	90.4 (P)	[34]
Water-dispersible vitamin D₃ in Cheddar (milk fat 3.8%)	2085	Milk pasteurization 72°C for 16 s, starter addition, rennet addition, salting, pressing, vacuum packaging, storage at 4 °C for 365 d	91 (P)	[35]
Water-dispersible vitamin D₃ in low-fat cheese (milk fat 0.8%)	1690	Milk acidification with lactic acid, rennet addition, cutting, centrifugation, storage at 4 °C for 90 d	91 (P)	[43]
Vitamin D₃ in nanoemulsion in cheese (milk fat 2%)	1	Skimmed milk powder added with anhydrous milk fat and water at specific protein/fat (P/F) ratio, homogenization at 17–150 MPa, calcium chloride addition, coagulation at 85 °C, salting, pressing	52 (P)	[32]
Water-dispersible vitamin D₃ in yogurt (milk fat 3.9%)	nd	Starter inoculation, fermentation, storage at 4 °C for 21 d	97.8 (P)	[34]
Vitamin D₃ in W/O emulsion in yogurt	12.5	Addition to fresh yogurt, storage at 4 °C for 20 d	15.97 (S)	[45]
Water-dispersible vitamin D₃ in yogurt + goji berry extract	2.25	Starter inoculation, fermentation, storage in opaque containers at 4 °C for 21 d	99 (S)	[38]
Vitamin D₃ in W/O/W₂ emulsion in yogurt (milk fat 1.5%)	2.25	Starter inoculation, fermentation, storage in transparent containers at 4 °C for 21 d	86 (S)	[46]
Free vitamin D₃ in yogurt (milk fat 6.1%)	10	Starter inoculation, fermentation, storage at 4 °C for 20 d	94 (S)	[49]

(P, S): recovery after processing and storage; (P): recovery after processing; (S): recovery after storage; nd: not reported.
A bread model provided evidence of the effects of acid compounds on vitamin D$_2$ degradation. In fact, in rye and wheat bread fortified with vitamin D$_2$ from dry yeast, the retention after baking at 170 °C for 60 min was 73% and 85%, respectively. The same retention percentages were observed when free vitamin D$_3$ was applied to fortify rye and wheat bread. Rye bread has a lower pH than wheat bread, which was the explanation for the lower retention of vitamin D$_3$ due to the acid-catalyzed isomerization to isotachysterol [28]. In another fortification study of bread fortified with free vitamin D$_3$, retention was only 40%, but baking was carried out at a higher temperature, i.e., 200 °C for 20 min [68]. For cookies baked at 200–205 °C for a shorter time (12 min), the retention of vitamin D$_3$ was 65% [68].

Milk intended for direct use or further processing in dairy products was also considered as a matrix to incorporate either vitamin D$_3$ or vitamin D$_2$. Nevertheless, contradictory results have been reported in literature regarding vitamin D’s stability in milk upon processing and storage. Natural vitamin D$_3$ present in milk was reported to be unstable upon pasteurization and sterilization [57]. Conversely, free vitamin D$_3$ added directly to milk before steam injection at 95 °C, spray-drying at 149 °C, and fluid-bed finishing at 107 °C was completely recovered in the dried milk powder [27]. In another study, the percentages of recovery for free vitamin D$_2$ in milk after pasteurization at 63 °C for 30 min and sterilization at 121 °C for 15 min were 90 and 67%, respectively [51]. In some applications, both vitamin D$_3$ and vitamin D$_2$ were previously formulated in water-dispersible forms before addition to milk [37,39]. Pasteurization at 73 °C for 15 s, homogenization at 13.8/3.4 MPa, and storage in opaque plastic containers (with no further specifications) at 4 °C for 21 d did not affect the content of water-dispersible vitamin D$_3$ added to milk [37]. Complete retention of vitamin D$_3$ was also observed upon UHT processing (138 °C for 2 s) of chocolate milk with 2% added fat [37]. Similarly, water-dispersible vitamin D$_2$ was found to be stable in milk upon pasteurization at 63 °C for 30 min and storage at 4 °C for 7 d in glass bottles in the dark, or for 32 h under light (1485–4455 lux), while vitamin D$_2$ retention was ~90% when polyethylene pouches were used as a packaging material, regardless of light exposure during storage. This phenomenon was attributed to absorption of vitamin D$_2$ by the polymer [39]. Sterilization at 121 °C for 15 min also resulted in total recovery of water-dispersible vitamin D$_2$, while the retention during the storage of sterilized milk was not investigated [39].

In another approach, vitamin D$_2$ complexed with casein in rCMs was added to milk and found to have improved stability with respect to the free vitamin D$_2$ after pasteurization and sterilization, with recovery percentages up to 95 and 76%, respectively [51]. This latter study also reported the effect of storage on vitamin D$_2$’s stability in milk packed in glass bottles or low-density polyethylene pouches, which was 70 and 65%, respectively, for vitamin D$_2$ in casein complexes, and approximately 45% for free vitamin D$_2$ regardless of the packaging material used [51]. Loss of vitamin D$_2$ in milk packed in polyethylene pouches was attributed to the porous and hydrophobic nature of this material, which promotes absorption of vitamin D$_2$ [39,51]. Moreover, during exposure of milk to light, singlet oxygen is produced, which causes degradation of vitamin D. It is worth noting that, in milk, riboflavin acts as a photosensitizer, thus accelerating the formation of singlet oxygen and leading to the photo-oxidation of vitamin D [75,76].

In cheese, the retention of vitamin D is a key aspect to optimize. In fact, during cheese-making, the fat-soluble vitamin D$_3$ could be entrapped in the fat fraction that mostly precipitates in the curd. However, vitamin D$_3$ possesses high affinity towards both β-lactoglobulin [77] and α-lactalbumin [78]; hence, it could also be lost in whey [34]. Cheddar cheese obtained from vitamin-D$_3$-fortified full-fat milk (3.9% fat, w/w) showed approximately 90% recovery, regardless of the form in which vitamin D$_3$ (free or water-dispersible) was added. The addition of vitamin D$_3$ nanoemulsion to partially defatted milk (2.0% fat, w/w) also resulted in 91% recovery in cheese [43]. Conversely, when water-dispersible vitamin D$_3$ was added to reduced-fat milk (0.78%, w/w), and further processed to Cheddar cheese, the recovery yield was only 55% [35]. Low recovery of vitamin D$_3$,
equal to 50%, was also observed upon the application of a model cheese-making process, based on heat-induced coagulation at 82 °C in the presence of calcium chloride, regardless of the pressure applied (17–150 MPa) or the protein-to-fat ratio (0.9–2) [32]. During storage, vitamin D₃’s stability was high for up to 1 year in both full-fat and reduced-fat cheese [35].

Full-fat yogurt was fortified with both free and water-dispersible vitamin D₃ and stored at 4 °C for 21 d, achieving almost complete recovery with both approaches [34]. Low-fat yogurt was also fortified with both water-dispersible vitamin D₃ and oil-dispersible vitamin D₃, and vitamin recovery was found to be complete after 21 d of storage at 4 °C when opaque packaging material was used, while approximately 80% recovery was observed when transparent packaging material was used [38]. However, in another fortification study, a O/W nanoemulsion of vitamin D₃ made with coconut oil, soybean lecithin, Tween 80, and NaCl was added to yogurt before packaging (packaging material was not specified), and only 15.97% of vitamin D₃ was recovered after storage at 4 °C for 20 d, unless goji berry antioxidants were added, which allowed 74.90% of vitamin D₃ to be recovered [45]. Similarly, in a subsequent study, the addition of free vitamin D₃ to yogurt led to a recovery of 50% after storage (packaging material was not specified), while the addition of a W₁/O/W₂ double emulsion made of refined rapeseed oil, polyglycerol polyricinoleate, milk protein concentrate, sodium chloride, and sucrose led to 94% recovery [49]. One possible mechanism for free vitamin D₃ degradation in yogurt observed in this latter study could be oxidation, triggered by the high fat content (6.5%), whereas the emulsion protected vitamin D₃ from oxidation.

4. Vitamin D in Fortified Foods: Bioaccessibility

Vitamin D is dissolved within the hydrophobic domains of the food matrices—such as bulk oils, fat droplets, or liposomes—or it is associated with proteins [79,80]. The metabolism of vitamin D begins in the stomach, where pepsin plays a role by releasing the fraction of vitamin D associated with proteins, and the gastric lipase hydrolyses vitamin D esters at least partially.

The fundamental step of vitamin D metabolism occurs in the duodenum, where proteases and lipases carry on its release from the food matrix and allow its solubilization in the mixed micelles formed from lipid digestion products, such as free fatty acids, monoglycerides, bile salts, and phospholipids. Then, vitamin D absorption by the epithelial cells takes place, which is mainly protein-mediated at low dietary concentrations and passive at high, pharmacological concentrations of vitamin D [79].

Hence, as for the other fat-soluble vitamins, the bioavailability of vitamin D depends on three phenomena: bioaccessibility (release from the lipid phase of the food matrix and solubilization within mixed micelles); transformation (chemical and biochemical conversion); and transport and uptake (migration through the mucus layer to the surfaces of the intestinal lumen and absorption by epithelial cells) [80]. Among these phenomena, bioaccessibility is the most critical in terms of governing bioavailability [81].

The effect of the food matrix on vitamin D bioavailability is not fully understood. The presence of lipids could improve vitamin D bioavailability by several mechanisms: providing a hydrophobic phase where it can be solubilized; stimulating biliary secretion and, consequently, micelle production; and contributing to micelle formation with their lipid digestion products, inducing chylomicron synthesis, which enhances vitamin D transport outside the enterocytes [79]. Nevertheless, in vivo studies available to date neglect the hypothesis that high amounts of fat in meals improve vitamin D’s bioavailability [44,79]. Dietary fiber seems to impair vitamin D’s bioavailability by affecting micelle formation and by increasing the viscosity of the chime, thus limiting the diffusion of vitamin-D-containing micelles to the brush border [79]. However, in vivo studies do not provide enough data to conclude on the effects of dietary components on vitamin D’s bioavailability.

As discussed previously, data on vitamin D’s bioavailability from food matrices obtained in various studies are difficult to compare because of the different study plans, including subjects involved, amount of vitamin D administered, and duration of the
In particular, vitamin D’s bioavailability is thought to depend on human-associated factors (age, disease, surgery, obesity, genetic variation, etc.) [45]. In vitro studies can provide insights on the effect of the food matrix on vitamin D’s release in the gastrointestinal tract and, hence, support the design of fortified foods (Table 4).

Bread was studied as a food matrix for vitamin D incorporation. Vitamin D2 from UV-treated yeast was used for both white and whole bread production, and the resulting bioaccessibility percentages were 15 and 9.9%, respectively. However, the bioaccessibility of free vitamin D2 in bread was higher (38%). It was concluded that the yeast cells entrapped vitamin D2 and hindered its incorporation into the mixed micelles [30]. As reported above, an in vivo study also led to the conclusion that bread made with UV-irradiated yeast as a source of vitamin D2 did not raise serum levels of 25(OH) D, while supplements of both vitamin D2 and vitamin D3 resulted in a positive effect [18].

Various milk and dairy matrices were used for vitamin D3 incorporation. Skimmed milk, partially defatted milk (2% fat), whole milk (3.25% fat), and a standard infant formula powder (4% fat) were fortified with vitamin D3 and studied for vitamin D3 bioaccessibility [30]. Results showed that, with respect to the initial content, the recovery of vitamin D3 in the intestinal digesta was only 40% for skimmed milk, 88% for partially defatted milk, 75% for whole milk, and 77% for infant formula. In general, only a part of vitamin D3 found in the digesta was effectively incorporated in the mixed micelles, equal to 70% for whole milk and infant formula and 80% for partially defatted milk and skimmed milk. Hence, considering bioaccessibility as the percentage of vitamin D3 recovered in the micellar phase after in vitro digestion compared to the amount of vitamin D3 in food, it can be calculated that bioaccessibility was 32, 70, 53, and 54% for skimmed milk, partially defatted milk, whole milk, and infant formula, respectively. It was concluded that bovine milk is an efficient delivery vehicle for vitamin D3’s bioaccessibility, even if the optimal amount of lipid for in vivo bioavailability of vitamin D3 requires further investigation [30], as observed in vivo [79].

Digestion models have also been tailored to specific populations, because the functioning of the gastrointestinal tract is known to depend on factors such as age and health status [80]. Three in vitro elderly models—namely, oral altered conditions; oral and gastric altered conditions; and oral, gastric, and intestinal altered conditions—were applied in parallel with a healthy adult model to investigate the digestibility of dairy products [82]. Interestingly, vitamin D3 naturally present in milk, yogurt, fresh cheese, and aged cheese was equally bioavailable for both the healthy and unhealthy gastrointestinal tract models considered, suggesting that age does not alter vitamin D3’s bioaccessibility. On the other hand, vitamin D3’s bioaccessibility from milk was found to be 30%, which is lower than that reported previously [30]. Moreover, vitamin D3’s bioaccessibility was reported to be greatly dependent on the dairy matrix, being on average 30, 38, 24, and 21% for milk, yogurt, fresh cheese, and aged cheese, respectively [82].

Despite model cheeses not being optimal for vitamin D3 supply, gel-like matrices such as cheese can be modulated depending on formulation and processing conditions, leading to different behavior during digestion. In fact, in cheese matrices, aggregated casein micelles create a microstructural network with entrapped solid fat globules and serum, and their digestion is directly related to cheese microstructure [83]. Detailed information on the impact of gel structure on vitamin D3’s bioaccessibility was obtained by comparing model acid-coagulated fresh cheeses varying in protein-to-fat ratios (0.9, 1.3, 1.7, and 2) and in the particle size of the cheese milk emulsion due to different homogenization pressures applied (17–150 MPa) [32]. To prepare these model cheeses, milk was fortified by adding free vitamin D3 previously dissolved in ethanol and then in melted anhydrous milk fat. Interestingly, vitamin D3’s bioaccessibility decreased from 64.51 to 41.56% when the protein-to-fat ratio was increased from 0.9 to 2. An increase in milk homogenization pressure from 17 to 150 MPa also caused a decrease in vitamin D3’s bioaccessibility from 64.51 to 27.17%. Both increase in protein content and increase in homogenization pressure caused the formation of a stronger protein network that entrapped smaller fat particles,
leading to the hypothesis that changes in the gel microstructure were responsible for the lower release of fat-soluble components during digestion.

Table 4. Bioaccessibility of vitamin D from various fortified foods.

Fortified Food	Vitamin D Content (µg/100 g)	Bioaccessibility (%)	Ref
Yeast vitamin D₂ in white wheat bread	4.67	15	[30]
Yeast vitamin D₂ in whole wheat bread	4.87	9.9	
Free vitamin D₃ (control) in whole wheat bread	3.9	38	
Free vitamin D₃ in skimmed milk	1.12	32	
Free vitamin D₃ in partially defatted milk (2% fat)	1.02	70	[30]
Free vitamin D₃ in whole milk (3.25% fat)	1.28	53	
Free vitamin D₃ in infant powder formula (4% fat)	10.94	54	
Natural vitamin D₁ in whole milk	3.97	30	[82]
Natural vitamin D₁ in yogurt	3.1	38	
Natural vitamin D₁ in fresh cheese	13.8	24	
Natural vitamin D₁ in aged cheese	21.7	21	
Free vitamin D₃ in cheese (17 MPa, protein/fat ratio 0.9),	488	64	[32]
Free vitamin D₃ in cheese (17 MPa, protein/fat ratio 2),	498	51	
Free vitamin D₃ in cheese (150 MPa, protein/fat ratio 2)	499	27	
Vitamin D₃ in W₁/O/W₂ emulsion in high-protein yogurt	10	100	[49]
Vitamin D₃ in W₁/O/W₂ emulsion in high-protein yogurt	10	100	
Vitamin D₃ nanoemulsion in oat milk or almond milk	400	20	[46]
Vitamin D₃ W/O nanoemulsion in almond milk + CaCl₂ or CaCO₃	nd	<20	[47]
Vitamin D₃ in refined olive oil in beef	16.7	5	[33]
Vitamin D₃ in refined olive oil in semolina or in chickpeas	3.0	25	
Vitamin D₃ in canola oil in brownies	nd	65.2	[84]
Oily vitamin D₃ in canola oil + tert-butylhydroquinone in brownies	nd	98	
Vitamin D₃ in zein nanocapsules in a fruit (Acca sellowiana) jelly	159	81	[52]

nd: not reported.

The concept of combining vitamin D₃ fortification of food with increase in protein content is particularly relevant to address the nutritional demands of older people [85]. Consistent with this aim, a high-protein (10%) yogurt fortified with a W₁/O/W₂ double emulsion containing berry polyphenols and water-soluble vitamins (C, B₉ and B₁₂) in the inner water phase and lipid-soluble vitamins (A and D) in the oil phase was devel-
The ingredients used to formulate the double emulsion were refined rapeseed oil, polyglycerol polyricinoleate, milk protein concentrate, sodium chloride, and sucrose. Free vitamin D₃ was also added directly to the oil as a control. The results showed that the fortification of yogurt with vitamins loaded into the double emulsion did not hinder the release of vitamins during digestion, which was 100% for both the encapsulated vitamin D₃ and the free oily vitamin D₃ at the end of the intestinal phase. However, the kinetics of digestion were different since the release of oily vitamin D₃ at the end of the gastric phase was considerably higher compared to the release of encapsulated vitamin D₃.

Plant-based “milk” types were investigated as matrices to incorporate various forms of vitamin D₃—namely, vitamin D₃ in O/W nanoemulsion made with corn oil, and vitamin D₃ nanoemulsion with added TiO₂ or nanocellulose powders [46]. The vitamin bioaccessibility was around 20% in all of the fortified plant-based milks, indicating that neither type of nanoparticle (inorganic or organic) had a major impact on the bioaccessibility of vitamin D. The reasons for the observed low bioaccessibility were hypothesized to be either a saturation of the mixed micelles or the aggregation and precipitation of the majority of vitamin-loaded mixed micelles due to some of the constituents in the plant-based milks. In a subsequent study, vitamin D₃ was encapsulated in a nanoemulsion made with corn oil quillaja saponin before addition to almond milk, but this approach also resulted in only 20% vitamin bioaccessibility [47]. Moreover, since plant-based milks are deficient in calcium, either soluble (CaCl₂) or insoluble (CaCO₃) calcium salts were added to vitamin-D₃-fortified almond milk, but the addition of calcium further reduced vitamin D’s bioaccessibility [47]. A negative effect of Ca²⁺ on vitamin D₃’s bioaccessibility had also been observed in a previous study, in which Ca²⁺ and vitamin D₃ had been co-encapsulated in different W₁/O/W₂ double emulsions. This effect was attributed to insoluble calcium soap formation in the small intestine step of digestion [86].

In meat, semolina, and chickpeas, vitamin D₃ was applied after solubilization in refined olive oil, and the resulting bioaccessibility was 5, 25, and 25%, respectively. Low bioaccessibility in meat was attributed to intense oxidation during digestion [33]. Semolina and chickpea antioxidants protected vitamin D₃ from oxidative degradation; however, despite high vitamin D₃ content being found in the intestinal digesta of these meals, the incorporation of vitamin D₃ into the mixed micelles was hindered by tannins, fibers, and saponins [33]. The decrease in vitamin D₃ bioaccessibility due to the occurrence of oxidation during digestion has also been supported by a previous study, which reported increased bioaccessibility of vitamin D₃ in brownies fortified with both vitamin D₃ and tert-butylhydroquinone, compared to a control fortified with vitamin D₃ alone. On the other hand, α-tocopherol and butylated hydroxytoluene were not efficient [84].

A fruit jelly model proved to be an effective matrix for vitamin D₃ fortification. In fact, vitamin D₃ encapsulated in zein nanoparticles was used as an ingredient in jelly, which presented 81% bioaccessibility for vitamin D₃ [52].

5. Conclusions and Future Perspectives

For the effective delivery of vitamin D through fortified foods, a careful formulation into nano- and micro-structures to be dispersed in the food matrix is a promising strategy. Due to the complexity and diversity of the food structures, the application of different encapsulation strategies could better address the need to develop carrier systems that simultaneously provide long-term chemical and physical stability, bioaccessibility and, ultimately, in vivo functionality of the vitamin.

However, information on vitamin D’s stability during processing is still fairly correlated with the form in which the vitamin was added to the food matrix. Moreover, knowledge concerning vitamin D’s stability during processing is limited to only a few processing steps, while a better understanding of the kinetic parameters of vitamin D₃ and D₂ degradation—i.e., rate constant and activation energy, could allow the prediction of vitamin D content in fortified foods and, thus, enable process optimization under industrial conditions.
Bioaccessibility studies provided insight into the potential efficacy of various vitamin-D-fortified foods, addressing the role of lipids, proteins, fibers, antioxidants, and Ca++ ions. The main challenge in future studies will be to acquire advanced knowledge of the interactions between vitamin D and specific molecules—especially single proteins and fibers—in order to take advantages from possible synergism. Moreover, validated in vitro models to assess vitamin D’s bioaccessibility in various target populations—such as the elderly, obese subjects, and subjects affected by malabsorption diseases—could assist a proper fortified food design, since a large variability in response to vitamin D supplementation has also been observed among individuals.

Author Contributions: Conceptualization, V.L.; methodology, V.L. and P.D.; investigation, data curation, original draft preparation, V.L., P.D. and L.P.; writing—review and editing, V.L., L.P. and P.D.; supervision, V.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to their colleague John A. Hogenboom for kindly revising the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Milešević, J.; Samaniego, L.; Kiely, M.; Glibetić, M.; Roe, M.; Finglas, P. Specialized food composition dataset for vitamin D content in foods based on European standards: Application to dietary intake assessment. Food Chem. 2018, 240, 544–549. [CrossRef] [PubMed]
2. Grant, W.B.; Anouti, F.A.; Moukayed, M. Targeted 25-hydroxyvitamin D concentration measurements and vitamin D3 supplementation can have important patient and public health benefits. Eur. J. Clin. Nutr. 2020, 74, 366–376. [CrossRef] [PubMed]
3. Holick, M.F.; Chen, T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008, 87, 1085–10865. [CrossRef] [PubMed]
4. Biancuzzo, R.M.; Young, A.; Bibuld, D.; Cai, M.H.; Winter, M.R.; Klein, E.K.; Ameri, A.; Reitz, R.; Salameh, W.; Chen, T.C.; et al. Fortification of orange juice with vitamin D2 or vitamin D3 is as effective as an oral supplement in maintaining vitamin D status in adults. Am. J. Clin. Nutr. 2010, 91, 1621–1626. [CrossRef]
5. Khazai, N.B.; Judd, S.E.; Jeng, L.; Wolffen, L.L.; Stecenko, A.; Ziegler, T.R.; Tangpricha, V. Treatment and prevention of vitamin D insufficiency in cystic fibrosis patients: Comparative efficacy of ergocalciferol, cholecalciferol, and UV light. J. Clin. Endocr. Metab. 2009, 94, 2037–2043. [CrossRef]
6. Romagnoli, E.; Mascia, M.L.; Cipriani, C.; Fassino, V.; Mazzei, F.; D’Erasmo, E.; Carnevale, V.; Scillitani, A.; Minisola, S. Short and long-term variations in serum calciotropic hormones after a single very large dose of ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) in the elderly. J. Clin. Endocr. Metab. 2008, 93, 3015–3020. [CrossRef]
7. Jakobsen, J.; Andersen, E.A.W.; Christensen, T.; Andersen, R.; Bügel, S. Vitamin D vitamers affect vitamin D status differently in young healthy males. Nutrients 2018, 10, 12. [CrossRef]
8. Holick, M.F.; Biancuzzo, R.M.; Chen, T.C.; Klein, E.K.; Young, A.; Bibuld, D.; Reitz, R.; Salameh, W.; Ameri, A.; Tannenbaum, A.D. Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J. Clin. Endocr. Metab. 2008, 93, 677–681. [CrossRef]
9. Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [CrossRef]
10. Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [CrossRef]
11. Ekwaru, J.P.; Zwicker, J.D.; Holick, M.F.; Giovannucci, E.; Veugelers, P.J. The importance of body weight for the dose response relationship of oral vitamin D supplementation and serum 25-hydroxyvitamin D in healthy volunteers. PLoS ONE 2014, 9, e111265. [CrossRef]
12. Cashman, K.D.; Kiely, M.E.; Andersen, R.; Grønberg, I.M.; Madsen, K.H.; Nissen, J.; Tetens, I.; Tripkovic, L.; Lanham-New, S.A.; Toxqui, L.; et al. Individual participant data (IPD)-level meta-analysis of randomized controlled trials with vitamin D-fortified foods to estimate Dietary Reference Values for vitamin D. Eur. J. Nutr. 2021, 60, 939–959. [CrossRef]
13. Roman Viñas, B.; Ribas Barba, L.; Ngo, J.; Gurinovic, M.; Novakovic, R.; Cavelaars, A.; de Groot, L.C.P.G.M.; van’t Veer, P.; Matthys, C.; Serra Majem, L. Projected prevalence of inadequate nutrient intakes in Europe. Ann. Nutr. Metab. 2011, 59, 84–95. [CrossRef]
14. Moore, C.E.; Radcliffe, J.D.; Liu, Y. Vitamin D intakes of adults differ by income, gender and race/ethnicity in the USA, 2007 to 2010. Public Health Nutr. 2013, 17, 1–8. [CrossRef]
15. O’Mahony, L.; Steprien, M.; Gibney, M.J.; Nugent, A.P.; Brennan, L. The potential role of vitamin D enhanced foods in improving vitamin D status. *Nutrients* 2011, 3, 1023–1041. [CrossRef]

16. Natri, A.M.; Sapo, P.; Vikstedt, T.; Palssa, A.; Huttunen, M.; Karkkainen, M.U.; Salovaara, H.; Piironen, V.; Jakobsen, J.; Lamberg-Allardt, C.J. Bread fortified with cholecalciferol increases the serum 25-hydroxyvitamin D concentration in women as effectively as a cholecalciferol supplement. *J. Nutr.* 2006, 136, 123–127. [CrossRef]

17. Itkonen, S.T.; Skaffari, E.; Saaristo, P.; Saarmio, E.M.; Erkkola, M.; Jakobsen, J.; Cashman, K.D.; Lamberg-Allardt, C. Effects of vitamin D₂-fortified bread v. supplementation with vitamin D₃ or D₃ on serum 25-hydroxyvitamin D metabolites: An 8-week randomised-controlled trial in young adult Finnish women. *Br. J. Nutr.* 2016, 115, 1232–1239. [CrossRef]

18. Urbain, P.; Singer, F.; Ihorst, G.; Biesalski, H.K.; Bertz, H. Bioavailability of vitamin D₃ from UV-B-irradiated button mushrooms in healthy adults deficient in serum 25 hydroxyvitamin D: A randomized controlled trial. *Eur. J. Clin. Nutr.* 2011, 65, 965–971. [CrossRef]

19. Daly, R.M.; Brown, M.; Bass, S.; Kukuljian, S.; Nowson, C. Calcium- and vitamin D₂-fortified milk reduces bone loss at clinically relevant skeletal sites in older men: A 2-year randomized controlled trial. *J. Bone Miner. Res.* 2006, 21, 397–405. [CrossRef]

20. Neyestani, T.R.; Hajifaraji, M.; Omidvar, N.; Nikooeyeh, B.; Eshraghian, M.R.; Shariatzadeh, N.; Kalayi, A.; Khalaji, N.; Zahedirad, M.; Abtahi, M.; et al. Calcium-vitamin D-fortified milk is as effective on circulating bone markers a fortified juice and supplement but has less acceptance: A randomised controlled school-based trial. *J. Humana Nutr. Diet.* 2014, 27, 606–616. [CrossRef]

21. Johnson, J.L.; Mistry, V.V.; Vukovich, M.D.; Hogie-Lorenzen, T.; Hollis, B.W.; Specker, B.L. Bioavailability of vitamin D from fortified process cheese and effects on vitamin D status in the elderly. *J. Dairy Sci.* 2005, 88, 2295–2301. [CrossRef]

22. Wagner, D.; Sidhom, G.; Whiting, S.J.; Rousseau, B.; Vieth, R. The bioavailability of vitamin D from fortified cheeses and supplements is equivalent in adults. *J. Nutr.* 2008, 138, 1365–1371. [CrossRef][PubMed]

23. Nikooeyeh, B.; Neyestani, T.R.; Farvid, M.; Alavi-Majd, H.; Houshiarrad, A.; Kalayi, A.; Shariatzadeh, N.; Ghavari, A.; Heravifard, S.; Tayebinejad, N.; et al. Daily consumption of vitamin D—or vitamin D+ calcium-fortified yogurt drink improved glycemic control in patients with type 2 diabetes: A randomized clinical trial. *Am. J. Clin. Nutr.* 2011, 93, 764–771. [CrossRef][PubMed]

24. Beauchet, O.; Launay, C.P.; Galery, K.; Vilcocq, C.; Dontot-Payen, F.; Rousseau, B.; Benoit, V.; Allali, G. Effects of vitamin D and Calcium fortified yogurts on gait, cognitive performances, and serum 25-hydroxyvitamin D concentrations in older community-dwelling females: Results from the GAIt, MEmory, Dietary and vitamin D (GAME-D2) randomized controlled trial. *Nutrients* 2019, 11, 2880. [CrossRef]

25. Mostafaia, R.; Nachvakc, S.M.; Mohammadi, R.; Rocha, R.S.; da Silva, M.C.; Esmerinod, E.A.; Nascimento, K.O.; Cruz, A.G.; Mortazavian, A.M. Effects of vitamin D-fortified yogurt in comparison to oral vitamin D supplement on hyperlipidemia in pre-diabetic patients: A randomized controlled trial. *J. Funct. Foods* 2019, 52, 116–120. [CrossRef]

26. Levinson, Y.; Ish-Shalom, S.; Segal, E.; Livney, Y.D. Bioavailability, rheology and sensory evaluation of fat-free yogurt enriched with VD₃ encapsulated in re-assembled casein micelles. *Food Funct.* 2016, 7, 1477–1482. [CrossRef]

27. Indyk, H.; Littlejohn, V.; Woollard, D. Stability of vitamin D₃ during spray-drying of milk. *Food Chem.* 1996, 57, 283–286. [CrossRef]

28. Jakobsen, B.; Knuthsen, P. Stability of vitamin D in foodstuffs during cooking. *Food Chem.* 2014, 148, 170–175. [CrossRef]

29. Hemery, Y.M.; Fontan, L.; Moench-Pfanner, R.; Laillou, A.; Berger, A.; Renaud, J.C.; Avallone, S. Influence of light exposure and oxidative status on the stability of vitamins A and D in foodstuffs during cooking. *Food Chem.* 2011, 136, 1023–1041. [CrossRef][PubMed]

30. Lipkie, T.E.; Ferruzzi, M.G.; Weaver, C.W. Low bioaccessibility of vitamin D₂ from yeast fortified bread compared to crystalline D₂ bread and D₃ from fluid milks. *Food Funct.* 2016, 7, 4589–4596. [CrossRef]

31. Ložnjak, P.; Jakobsen, J. Stability of vitamin D₃ and vitamin D₂ in oil, fish and mushrooms after household cooking. *Food Chem.* 2018, 254, 144–149. [CrossRef]

32. Castaneda, N.; Lee, Y. Microstructure of a model fresh cheese and bioaccessibility of vitamin D₃ using in vitro digestion. *Gels* 2019, 5, 16. [CrossRef]

33. Antoine, T.; Icard-Verniere, C.; Scorrano, G.; Salhi, A.; Halimi, C.; George, S.; Carriere, F.; Mouquet-Rivier, C.; Rebull, E. Evaluation of vitamin D bioaccessibility and mineral solubility from test meals containing meat and/or cereals and/or pulses using in vitro digestion. *Food Chem.* 2021, 347, 128621. [CrossRef]

34. Kazmi, S.A.; Vieth, R.; Rosseau, D. Vitamin D₃ fortification and quantification in processed dairy products. *Int. Dairy J.* 2007, 17, 753–759. [CrossRef]

35. Wagner, D.; Rousseau, E.; Sidhom, G.; Pouliot, M.; Audet, P.; Vieth, R. Vitamin D₃ fortification, quantification, and long-term stability in Cheddar and low-fat cheeses. *J. Agric. Food Chem.* 2008, 56, 7964–7969. [CrossRef]

36. Salvia- Tristanillo, L.; Fumiaki, L.B.; Park, J.; McClements, D.J. The influence of lipid droplet size on the oral bioavailability of vitamin D₃ encapsulated in emulsions: An in vitro and in vivo study. *Food Funct.* 2017, 8, 767–777. [CrossRef]

37. Hanson, A.L.; Metzger, L.E. Evaluation of increased vitamin D fortification in high-temperature, short-time–processed 2% milk, UHT-processed 2% fat chocolate milk, and low-fat strawberry yogurt. *J. Dairy Sci.* 2010, 93, 801–807. [CrossRef]

38. Jafari, T.; Askari, G.; Mirlohi, M.; Javanmard, S.H.; Faghihimani, E.; Fallah, A.A. Stability of Vitamin D₃ in fortified yoghurt and yoghurt drink (Doogh). *Adv. Biomed. Res.* 2016, 5, 52. [CrossRef]
39. Kaushik, R.; Sachdeva, B.; Arora, S. Vitamin D₂ stability in milk during processing, packaging and storage. LWT—Food Sci. Technol. 2014, 56, 421–442. [CrossRef]
40. Lavelli, V. Circular food supply chains—Impact on value addition and safety. Trends Food Sci. Technol. 2021, 114, 323–332. [CrossRef]
41. McClements, D.J.; Decker, E.A.; Park, Y.; Weiss, J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit. Rev. Food Sci. Nutr. 2009, 49, 577–606. [CrossRef] [PubMed]
42. Stratulat, I.; Britten, M.; Salmieri, S.; Fustier, P.; St-Gelas, D.; Champagne, C.P.; Lacroix, M. Enrichment of cheese with bioactive lipophilic compounds. J. Funct. Foods 2014, 6, 48–59. [CrossRef]
43. Stratulat, I.; Britten, M.; Salmieri, S.; Fustier, P.; St-Gelas, D.; Champagne, C.P.; Lacroix, M. Enrichment of cheese with vitamin D₃ and vegetable omega-3. J. Funct. Foods 2015, 13, 300–307. [CrossRef]
44. Maurya, V.K.; Aggarwal, M. Factors influencing the absorption of vitamin D in GIT: An overview. J. Food Sci. Technol. 2017, 54, 3763–3765. [CrossRef]
45. Kersien, M.; Jasutien, I.; Eisinait, V.; Pukalskien, M.; Venskutonis, P.R.; Damulevicien, G.; Knasiene, J.; Lesauskait, D. Designing multiple bioactives loaded emulsions for the development of high-protein yoghurt-type product enriched with bioactive compounds for the elderly. LWT—Food Sci. Technol. 2020, 131, 109820. [CrossRef]
46. Zhou, H.; Liu, J.; Dai, T.; Mundo, J.L.M.; Tan, Y.; Bai, L.; McClements, D.J. The gastrointestinal fate of inorganic and organic nanoparticle-based vitamin D in milk. Food Hydrocolloids 2021, 121, 106310. [CrossRef]
47. Zhou, H.; Zheng, B.; Zhang, Z.; Zhang, R.; He, L.; McClements, D.J. Fortification of plant-based milk with calcium may reduce vitamin D bioaccessibility: An in vitro digestion study. J. Agric. Food Chem. 2021, 69, 4223–4233. [CrossRef]
48. Kersien, M.; Jasutien, I.; Eisinait, V.; Venskutonis, P.R.; Leskauskait, V. Development of a high-protein yoghurt-type product enriched with bioactive compounds for the elderly. J. Food Process. Preserv. 2020, 11, 2195–2207. [CrossRef]
49. Kersien, M.; Jasutien, I.; Eisinait, V.; Pukalskien, M.; Venskutonis, P.R.; Damulevicien, G.; Knaiseiene, J.; Lesauskait, V.; Leskauskait, D. Development of a high-protein yoghurt-type product enriched with bioactive compounds for the elderly. Food Process. Preserv. 2021, 119, 111287. [CrossRef]
50. Didar, Z. Inclusion of vitamin D₃ (free or liposome) into white chocolate and an investigation of its stability during storage. J. Food Process. Preserv. 2021, 45, 15231. [CrossRef]
51. Syama, M.A.; Arora, S.; Gupta, C.; Sharma, A.; Sharma, V. Enhancement of vitamin D₂ stability in fortified milk during light exposure and commercial heat treatments by complexation with milk proteins. Food Biosci. 2019, 29, 17–23. [CrossRef]
52. Zapelini de Melo, A.P.; Gonçalves da Rosa, C.; Montanheiro Noronha, C.; Heck Machado, M.; Sganzerla, W.G.; da Cunha Bellinati, V.N.; Verruck, S.; Schwinden Prudencio, E.; Manique Barreto, P.L. Nanoencapsulation of vitamin D₃ and other bioactives in spray-dried skim milk powders. J. Food Sci. Food Saf. 2019, 3, 289–301. [CrossRef]
53. Ozturk, B. Nanoemulsions for food fortification with lipophilic vitamins: Production challenges, stability, and bioavailability. Eur. J. Lipid Sci. Technol. 2017, 119, 1500539. [CrossRef]
54. Muschiolik, G.; Dickinson, E. Double emulsions relevant to food systems: Preparation, stability, and applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 532–555. [CrossRef]
55. Taylor, T.M.; Weiss, J.; Davidson, P.M.; Bruce, B.D. Liposomal nanocapsules in food science and agriculture. Crit. Rev. Food Sci. Nutr. 2005, 45, 587–605. [CrossRef]
56. Taylor, T.M.; Morris, R.M. Thermal analysis of phase transition behavior in liposomes. Thermochim. Acta 1995, 248, 289–301. [CrossRef]
57. Banville, C.; Vuillermard, J.C.; Lacroix, C. Comparison of different methods for fortifying Cheddar cheese with vitamin D. Int. Dairy J. 2000, 10, 375–382. [CrossRef]
58. Tang, C.H. Assembly of food proteins for nano-encapsulation and delivery of nutraceuticals (a mini-review). Food Hydrocoll. 2021, 117, 106710. [CrossRef]
59. Diarrassouba, F.; Garratt, G.; Rendonetto, G.; Alvarez, P.; Beyssac, E.; Subirade, M. Improved bioavailability of vitamin D₃ using a β-lactoglobulin-based coagulum. Food Chem. 2015, 172, 361–367. [CrossRef]
60. Abbasi, A.; Emam-Djomeh, Z.; Mousavi, M.A.E.; Davoodi, D. Stability of vitamin D₃ encapsulated in nanoparticles of whey protein isolate. Food Chem. 2014, 143, 379–383. [CrossRef]
61. Loewen, A.; Chan, B.; Li-Chan, E.C. Optimization of vitamins A and D₃ loading in re-assembled casein micelles and effect of loading on stability of vitamin D₃ during storage. Food Chem. 2018, 240, 472–481. [CrossRef]
62. Menéndez-Aguirre, O.; Kessler, A.; Stuetz, W.; Grune, T.; Weiss, J.; Hinrichs, J. Increased loading of vitamin D₃ in reassembled casein micelles with temperature-modulated high pressure treatment. Food Res. Int. 2014, 64, 74–80. [CrossRef]
63. Levinson, Y.; Israeli-Lev, G.; Livney, Y.D. Soybean β-caryophyllin nanoparticles for delivery of hydrophobic nutraceuticals. Food Biosci. 2019, 4, 332–340. [CrossRef]
64. Jin, X.; Yang, X.; Yang, L.; Liu, Z.L.; Zhang, F. Autoxidation of isoctachysterol. Tetrahedron 2004, 60, 2881–2888. [CrossRef]
65. Tsai, S.-Y.; Lin, H.-Y.; Hong, W.-P.; Lin, C.-P. Evaluation of preliminary causes for vitamin D series degradation via DSC and HPLC analyses. J. Therm. Anal. Calorim. 2017, 130, 1357–1369. [CrossRef]
66. Mahmoodani, F.; Perera, C.O.; Fedrizzi, B.; Abernethy, G.; Chen, H. Degradation studies of cholecalciferol (vitamin D₃) using HPLC-DAD, UHPLC-MS/MS and chemical derivatization. Food Chem. 2017, 219, 373–381. [CrossRef]
67. Scott, K.; Latshaw, J. Effects of commercial processing on the fat-soluble vitamin content of menhaden fish oil. *J. Am. Oil Chem. Soc.* 1991, 68, 234–236. [CrossRef]
68. Bajaj, S.R.; Singhal, R.S. Fortification of wheat flour and oil with vitamins B₁₂ and D₃: Effect of processing and storage. *J. Food Compos. Anal.* 2021, 96, 103703. [CrossRef]
69. Corey, M.E.; Kerr, W.L.; Mulligan, J.H.; Lavelli, V. Phytochemical stability in dried apple and green tea functional products as related to moisture properties. *LWT—Food Sci. Technol.* 2011, 44, 67–74. [CrossRef]
70. Lavelli, V.; Proserpio, C.; Gallotti, F.; Laureati, M.; Pagliarini, E. Circular reuse of bio-resources: The role of *Pleurotus spp.* in the development of functional foods. *Food Funct.* 2018, 9, 1353–1372. [CrossRef]
71. Pedrali, D.; Gallotti, F.; Proserpio, C.; Pagliarini, E.; Lavelli, V. Kinetic study of vitamin D₂ degradation in mushroom powder to improve its applications in fortified foods. *LWT—Food Sci. Technol.* 2020, 125, 109248. [CrossRef]
72. Zhu, J.; Sevilla, M.D. Kinetic analysis of free-radical reactions in the low temperature autoxidation of triglycerides. *J. Phys. Chem.* 1990, 94, 1447–1452. [CrossRef]
73. Salemi, S.; Saedisomeilia, A.; Azimi, F.; Zolfigol, S.; Mohajerani, E.; Mohammadi, M.; Yaseri, M. Optimizing the production of vitamin D in white button mushrooms (*Agaricus bisporus*) using ultraviolet radiation and measurement of its stability. *LWT—Food Sci. Technol.* 2021, 137, 110401. [CrossRef] [PubMed]
74. Mattila, P.; Ronkainen, R.; Lehikoinen, K.; Piironen, V. Effect of household cooking on the vitamin D content in fish, eggs, and wild mushrooms. *J. Food Compos. Anal.* 1999, 12, 153–160. [CrossRef]
75. Renken, J.D.; Warthesen, J.J. Vitamin D stability in milk. *J. Food Sci.* 1993, 58, 552–556. [CrossRef]
76. Limbo, S.; Pellegrino, L.; D’Incecco, P.; Gobbi, S.; Rosi, V.; Fracassetti, D. Storage of pasteurized milk in clear PET bottles combined with light exposure on a retail display case: A possible strategy to define the shelf life and support a recyclable packaging. *Food Chem.* 2020, 329, 127116. [CrossRef]
77. Forrest, S.A.; Yada, R.Y.; Rousseau, D. Interactions of vitamin D₃ with bovine β-lactoglobulin A and β-casein. *J. Agricul. Food Chem.* 2005, 53, 8003–8009. [CrossRef]
78. Delavari, B.; Saboury, A.A.; Atri, M.S.; Ghasemi, A.; Bigdeli, B.; Khammari, A.; Goliaei, B. Alpha-lactalbumin: A new carrier for vitamin D₃ food enrichment. *Food Hydrocoll.* 2015, 45, 124–131. [CrossRef]
79. Borel, P.; Caillaud, D.; Cano, N. Vitamin D bioavailability: State of the art. *Crit. Rev. Food Sci. Nutr.* 2015, 55, 1193–1205. [CrossRef]
80. Tan, Y.; McClements, D.J. Improving the bioavailability of oil-soluble vitamins by optimizing food matrix effects: A review. *Food Chem.* 2021, 348, 129148. [CrossRef]
81. Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. *Compr. Rev. Food Sci. Food Saf.* 2020, 19, 954–994. [CrossRef] [PubMed]
82. Hernandez-Olivas, E.; Munoz-Pina, S.; Sanchez-Garcia, J.; Andres, A.; Heredia, A. Understanding the role of food matrix on the digestibility of dairy products under elderly gastrointestinal conditions. *Food Res. Int.* 2020, 137, 109454. [CrossRef] [PubMed]
83. Lamothe, S.; Corbeil, M.-M.; Turgeon, S.L.; Britten, M. Influence of cheese matrix on lipid digestion in a simulated gastro-intestinal environment. *Food Funct.* 2012, 3, 724–731. [CrossRef] [PubMed]
84. Goebel, S.; Avallone, S.; Detchewa, P.; Prasajak, P.; Sriwichai, W. Natural and synthetic antioxidants prevent the degradation of vitamin D₃ fortification in canola oil during baking and in vitro digestion. *Appl. Sci. Eng. Prog.* 2021, 14, 247–258. [CrossRef]
85. Nowson, C.; O’Connell, S. Protein requirements and recommendations for older people: A review. *Nutrients* 2015, 7, 6874–6899. [CrossRef]
86. Dima, C.; Dima, S. Bioaccessibility study of calcium and vitamin D₃ co-microencapsulated in water-in-oil-in-water double emulsions. *Food Chem.* 2020, 303, 125416. [CrossRef]