Original Article

Multi-method determination of Antioxidant Capacity, phytochemical and biological investigation of four different solvent extractives of *Leucophyllum frutescens* (cenizo)

Imtiaz Ahmad¹*, Saeed Ahmad¹, Huma Rao¹, Umer Shaukat², Muhammad Nadeem Shahzad¹, M. Sajid-ur-Rehman¹, Abdul Basit¹, M. Adeel Arshad³, Bilal Ahmad¹

¹Department of Pharmaceutical Chemistry-Faculty of Pharmacy, The Islamia University of Bahawalpur Pakistan
²National Center for Natural Products Research, The University of Mississippi-USA
³Quaid-e-Azam College of Pharmacy-Sahiwal Pakistan

*Correspondence:

1. Prof. Dr. Saeed Ahmad
Email: rsahmed_iub@yahoo.com
2. Imtiaz Ahmad
Email: imtiaz.pharmacist2011@gmail.com
Abstract

The Four solvent extractives obtained from aerial parts of *Leucophyllum frutescens* were evaluated for their Total Antioxidant Activity (TAA) by ammonium molybdate method, scavenging potential by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Trolox-Equivalent Antioxidant Capacity (TEAC) assays, metal-reducing potential by Cupric Reducing Antioxidant Capacity (CUPRAC) and Ferric Reducing Antioxidant Power (FRAP) assays, Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and their biological activities. The study concluded that BULE exhibited total antioxidant activity (226.235±1.222 mg AA.Eq.gm⁻¹ DE±S.D) by molybdate method, CHLE exhibited more scavenging potential (DPPH 209.589±8.500 mg trolox Eq.gm⁻¹ DE±S.D and TEAC 210.166±7.954 mg trolox Eq.gm⁻¹ DE±S.D) and reducing potential (CUPRAC 646.889±16.889 mg trolox Eq.gm⁻¹ DE±S.D & FRAP 472.981±15.625 mg trolox Eq.gm⁻¹ DE±S.D). Phytochemical quantification concluded high TPC by BULE (189.369±1.393 mg GA.Eq.gm⁻¹ DE±S.D) and high TFC by CHLE (232.458±1.589 mg Qu.Eq.gm⁻¹ DE±S.D). Strong inhibition of α-glucosidase and urease enzymes was observed by HELE (IC₅₀ 0.3321±0.007 mg.ml⁻¹±SD) and BULE (IC₅₀ 4.09±0.357 mg.ml⁻¹±SD) extractives, respectively. The hemolytic effect shown by hexane extract (HELE) was higher with HA₅₀ 25.545±0.927 μg.ml⁻¹±SD whereas methanol (MELE), chloroform (CHLE), and butanol (BULE) exhibited hemolytic effects at higher concentration with HA₅₀ 400.067±1.364, 321.394±1.332, and 332.957±0.465 μg.ml⁻¹±SD, respectively. GC-MS profiling of HELE of *L. frutescens* was performed for qualitative analysis. The principal phytochemicals tentatively identified by GC-MS analysis of HELE accounts for fatty acids (60.221%), lignans (17.687%), ketones (3.358%), phenols (2.584%), sesquiterpenes (1.265%), and aldehydes (0.345%).

Keywords:

Leucophyllum frutescens, Total Phenolic Contents (TPC), Total Flavonoid Content (TFC), Total Antioxidant Activity (TAA), DPPH, CUPRAC, FRAP, gas chromatography-mass spectrometry (GC-MS)
1 INTRODUCTION

Natural drug molecules are sourced from plant, animal, micro-organism, and inorganic material. The primitive treatment approach was based on witchcraft, astrology, religion, and mysticism but the theme behind the success of treatment was the use of crude drugs mostly obtained from medicinal plants. Subsequently, successful treatment was recorded, documented, leading to the knowledge of drugs i.e. basis of pharmacognosy [1]. In the back 1980s, natural products have been the main source for the discovery of new molecule entities (NMEs) [2].

Leucophyllum frutescens is an autotrophic, open shape; perennial shrub with a height range of 1.2 to 2.4 meters. It is distributed in Rio Grande Valley Texas, New and North Mexico, and Asia. Ethnobotanically leaves decoction has been used with mild sedative effects for treating lung congestion, bronchitis, chills, fever associated with the common cold [3], dysentery, cough, cataract, asthma, and liver injury [4]. It also has been used for treating diseases caused by S. aureus [5]. The literature review revealed 90 percent methanolic extract of leaves of L. frutescens exhibited moderate inhibition of acetylcholine esterase inhibition (IC₅₀ 25.27±0.102 µg.ml⁻¹) [3]. In another study out of the 20 medicinal plants, the aqueous extract of L. frutescens reduced 80% TEAC radical formation, 50% reduction in lipid oxidation, <8% alpha-amylase inhibition and was declared one of the best aqueous extracts to inhibit maltase enzyme by 32% [3]. Phytotoxicity of lignans isolated from leave extract presented with phytotoxic effects on seed germination of Agrostis stolonifera cv. Penncross [6]. Another study reported, methanolic extract of leaves exhibited significant hepatoprotective activity on Wistar albino rats [7].

This study aims to prepare different solvent extractives from the aerial part of L.frutescens for investigation of total antioxidant activity, scavenging potential (TEAC, DPPH), and reducing antioxidant capacity (CUPRAC, FRAP) along with TPC, TFC, and their biological activities. HELE presented with significant inhibition of alpha-glucosidase enzyme and hemolytic activity. Therefore HELE was subjected to tentative identification of phytochemicals by GC-MS analysis.

2 Materials and Methods

2.1 Chemicals

Ammonium acetate (NH₄CH₂CO₂), ferric chloride (FeCl₃), methanol (CH₃OH), absolute ethanol (C₂H₅OH), hexane (C₆H₁₂), chloroform (CHCl₃), DMSO (C₂H₅OS), de-ionized water (H₂O), hydrogen peroxide (H₂O₂) purchased from Merck®-Germany. 2,2-diphenyl-1-picrylhydrazyl (DPPH), alpha-glucosidase, urease, quercetin, ascorbic acid, 2,2-azinobis(3-ethylbenothiazoline) 6-sulfonic acid, 2,4,6-tris(2-pyridyl)-s-triazine (TPTZ), potassium persulphate, neocuproine, aluminum chloride (AlCl₃), sodium nitrite (NaNO₂), gallic acid (C₇H₆O₅), sodium hydroxide (NaOH), sodium phosphate buffer (NaH₂PO₄), ammonium molybdate (NH₄)₂MoO₄, sodium carbonate (Na₂CO₃), sulphuric acid (H₂SO₄) were purchased from Sigma Aldrich®.

2.2 Study approval and plant specimen identification

The present study was approved by the Advanced Studies & Research Board-the Islamia University of Bahawalpur via letter No.673/AS&RB dated Bahawalpur 16th December 2019. The
plant as a specimen was purchased from a local nursery for identification by a taxonomist of the Herbarium Department of Botany, Faculty of the Life Sciences-The Islamia University of Bahawalpur, and its voucher number was obtained (60/botany; dated 25th September 2018).

2.3 Plant Collection and Preparation of different solvent extractives
200 intact plants of *L. frutescens* were purchased from the local nursery city Bahawalpur-Pakistan and grown in the private land. The aerial parts were collected during the flowering season, shade dried, and pulverized. The Ten kilograms powder was macerated with 80 percent aqueous methanol for 15 days with occasional shaking. The methanol extract was separated from marc, filtered and condensed at 40 °C using a rotary evaporator yielding MELE 270 gm dry extract (2.7 % of powdered aerial parts). The dry extract was suspended in de-ionized water and successively extracted with hexane, chloroform, and butanol yielding HELE (5.56%), CHLE (44.44%), and BULE (35.18%) of methanol dry extract (Figure 1). All the extracts were stored in hermetically sealed containers in the refrigerator for further evaluation.

2.4 Determination of Plant extracts Yield
The percent yield of methanol extract was calculated as:

\[
\text{% Percent yield} = \frac{\text{weight of extractive}}{\text{weight of powder or main extract}} \times 100
\]

2.5 Multi-method Estimation of antioxidant Activity
The antioxidant potential was estimated by phosphomolybdenum, DPPH, TEAC, CUPRAC, and FRAP methods.

2.5.1 Total Antioxidant activity by phosphomolybdenum method
Total antioxidant activity was determined by adopting the method described in the literature with some modifications [8]. 200 µl of the extract solution (1 mg.ml⁻¹) was added to 2 ml eppendorf tube and mixed with 1.8 ml reagent [0.6M H₂SO₄ (sulphuric acid), 28 mM NaH₂PO₄ (sodium phosphate), 4mM (NH₄)₆MO₇O₂₄ (ammonium molybdate)], the tube was capped and incubated in the water bath at temperature 95°C for about 90 minutes. The absorbance of the resulting solution was measured at λ 695 nm using the IRMECO U2020 UV-visible spectrophotometer. A
calibration curve was drawn between 20-200 µg.ml\(^{-1}\), and the total antioxidant activity of extracts was expressed as mg ascorbic acid equivalent per gram of dry weight of extract (mg AA.Eq.gm\(^{-1}\) DE).

2.5.2 SCAVENGING POTENTIAL
Scavenging potential was determined by DPPH and TEAC assay (expressed in mg. trolox equivalent per gram of dried extract). Experimental procedure for DPPH [9] and TEAC [10] adopted from literature but with some modification are described below.

2.5.2.1 2,2-diphenyl-1-picrylhydrazyl (DPPH)
0.3127 mg.ml\(^{-1}\) extract solution was prepared in methanol. 150 µl of 200 mM DPPH solution was added to the microtiter plate well followed by the addition of 50 µl extract solution. The mixture was incubated at room temperature for 30 minutes. A similar procedure was adopted for the positive control (trolox). For blank instead of extract or trolox solution, 50 µl of methanol was used. Absorbance was measured at 517nm by Biotek-Synergy HT. A calibration curve of trolox was plotted between 5-100 µg.ml\(^{-1}\) for estimation of scavenging potential as mg trolox equivalent per gram of dried extract (mg trolox Eq.gm\(^{-1}\) DE).

2.5.2.2 Trolox Equivalent Antioxidant Capacity (TEAC)
1 ml extract solution (0.3127 mg.ml\(^{-1}\)) was added to a test tube containing 2 ml mixture of an equal volume of 2.5 mM 2,2-azinobis(3-ethylbenothiazoline) 6-sulfonic acid and 2.45 mM potassium persulfate, incubating test tube in the dark for 30 minutes, and measured absorbance at 734 nm. The calibration curve of trolox was plotted between 5-80 µg.ml\(^{-1}\). Results were expressed in mg trolox equivalent per gram of dried extract (mg trolox Eq.gm\(^{-1}\) DE).

2.5.3 Reducing Antioxidant Potential
Reducing antioxidant potential was determined by CUPRAC (expressed mg. trolox equivalent per gram of dried extract) and FRAP (expressed mg. trolox equivalent per gram of dried extract). The procedures adopted are described below with minor modifications [10].

2.5.3.1 Cupric Reducing Antioxidant Capacity (CUPRAC)
0.5 ml of extract solution (0.3127 mg.ml\(^{-1}\)) was mixed with a 3 ml reaction mixture of equal volumes of 10 mM CuCl\(_2\), 7.5 mM neocuprion, 1M ammonium acetate buffer pH 7 incubated for 30 minutes at room temperature and measured absorbance at 450nm. A blank was prepared with methanol instead of the extract solution. The calibration curve of trolox was plotted between 2.5-100 µg.ml\(^{-1}\). Results were expressed as mg trolox equivalent per gram of dried extract (mg.trolox Eq.gm\(^{-1}\) of DE).

2.5.3.2 Ferric Reducing Antioxidant Power (FRAP)
30 µl extract solution (0.3127 mg.ml\(^{-1}\)) was mixed with 2 ml reaction mixture with volume ratio 10:1:1 of 0.3 M acetate buffer pH 3.6, 20 mM ferric chloride and 10 mM 2,4,6-tris(2-pyridyl)-s-triazine (TPTZ) in 40 mM HCl, respectively. The resultant reaction mixture was incubated for 30 minutes at room temperature. Similarly, blank was prepared without sample extract. The calibration curve for trolox was plotted between 2.5-100 µg.ml\(^{-1}\). Results were presented in mg trolox equivalent per gram of dry extract (mg.trolox Eq.gm\(^{-1}\) DE).
2.6 Determination of Polyphenolic content

2.6.1 Total Phenolic Content (TPC)
Total phenolic content (TPC) of four extracts was estimated using Folin-ciocalteu (F-C) method described in the literature [11], with minor modification. Dried extract dissolved in methanol to get a stock solution 1 mg.ml$^{-1}$ and gallic acid dissolved in methanol to get its aliquots 10, 20, 40, 60, 80, 100, 200 ug.ml$^{-1}$ and calibration curve was drawn. 200 µl of extract solution or calibrators was added to 2 ml Eppendorf, 200 µl of Folin-ciocalteu reagent was added to it. The mixture was subjected to a vortex mixer followed by the addition of 0.8 ml of 700 µM sodium carbonate (Na$_2$CO$_3$) solution incubating at ambient temperature for 2 hours. Transferred 200µl of each assay mixture in 96 microtiter plate well and measured the absorbance at λ 765nm using Biotek-Synergy HT. Total phenolic content (TPC) of MELE, CHLE, and BULE was expressed as mg gallic acid equivalent per gram of dried extract (mg GA.Eq.gm$^{-1}$ DE).

Note: F-C reagent should be added before the addition of 700 µM sodium carbonate solution to avoid air oxidation of phenols.

2.6.2 Total Flavonoid Content (TFC)
The total flavonoid content of MELE, HELE, CHLE, and BULE was determined by adopting a method available in the literature with minor modification [12]. A mixture of 1ml extract solution (1mg.ml$^{-1}$), 4 ml deionized water, 300 µl of 5% sodium nitrite solution, and 300 µl of 10% AlCl$_3$ solution added to glass test tube followed by the addition of 2 ml 1M sodium hydroxide solution. The mixture was incubated for 6 minutes. 2.4 ml deionized water was added to the final mixture and measured the absorbance at λ 510 nm using IRMECO U2020 UV-visible spectrophotometer. The calibration curve was plotted between 50-1000 µg.ml$^{-1}$. Total flavonoid content (TFC) of dried plant extract was expressed as milligram quercetin equivalent per gram of dried extract (mg Qu.Eq.gm$^{-1}$ DE)

2.7 Biological investigation

2.7.1 Alpha-glucosidase inhibition assay
α-glucosidase inhibition assay was performed according to method described in the literature with some modification [13]. A mixture of 10 µl of enzyme solution (1U/ml), 50µl of 50 mM phosphate buffer pH 6.8, and 20 µl of aliquots of the extract was added to 96 microtiter plate well and incubated for 15 minutes at 37 ˚C. The absorbance of the mixture was measured at λ 405 nm (pre-read). 20 µl of 0.5 mM solution of p-nitro-α-D-glucopyranoside was added to the mixture as substrate followed by incubation for 30 minutes at 37˚C. The absorbance was measured again at 405 nm (after-read). The same procedure was adopted for the positive control (quercetin) and negative control (methanol). The percent inhibition of α-glucosidase was calculated by using the following formula. (net absorbance = after read – pre-read)

$$\text{Percent Alpha-glucosidase inhibition} = \frac{(1-\text{abs.of sample})}{\text{abs.of control}} \times 100$$

Where Abs stands for absorbance recorded
2.7.2 Urease inhibition assay (UIA)

The anti-urease activity of different solvent extractives was estimated by the method described in the literature [14]. A mixture of 20 µl of 0.025 % urease solution prepared in 1M phosphate buffer pH 7.0 and 20 µl of extract aliquot was added to the microtiter well followed by incubation for 15 minutes at 37 C. 60 µl of 2.25 % aqueous urea added to the reaction mixture and kept in an incubator for 15 minutes at 37 C. Measured the absorbance at λ 630 nm (pre-read). 60 µl of phenol reagent followed by 100 µl of sodium hypochlorite solution in alkali added to the above reaction mixture, again incubated for half an hour at 37 °C and measured the absorbance at λ 630nm (after-read). The same procedure was adopted for all aliquots of each extractive as well as hydroxyurea as a positive control. Note (net absorbance = after read – pre-read). Percent enzyme inhibition was estimated by the following equation

\[
\text{Percent urease inhibition} = \left(1 - \frac{\text{Abs of sample}}{\text{Abs of control}}\right) \times 100
\]

2.7.3 Hemolytic activity

The study protocol was in agreement with the Helsinki Declaration. The study approval was obtained from the Pharmacy Research & Ethics committee (PREC), The Islamia University of Bahawalpur. The written informed consent was obtained from the volunteer who participated in the study.

Hemolytic activity of MELE, HELE, CHLE, and BULE was estimated by the literature method [15]. The blood was withdrawn from a healthy volunteer and added to ethylenediaminetetraacetic acid (EDTA) tube. The EDTA tube containing blood was centrifuged. The plasma portion was discarded and the red portion was subjected to three times washing with phosphate buffer pH 7.4 and suspended in phosphate buffer (50:50). Stock solutions of MELE, HELE, CHLE, and BULE were prepared by dissolving 10 mg of each dry extract in dimethyl sulfoxide (DMSO). Different aliquots of these extracts were prepared by diluting the stock solution. Then, 975 µl of each aliquot of MELE, HELE, CHLE, and BULE was added to different test tubes with successive addition of 25 µl of red blood cell (RBC) solution mixed and centrifuged at 1000 rpm at ambient temperature. 200 µl of clear supernatant was separately added to wells of 96 microtiter plate. For negative and positive control 975 µl of phosphate buffer with sodium chloride and water were added respectively. Absorbance was recorded by Biotek Synergy plate reader at λ 575nm. Percent hemolytic activity of different solvent extractives was calculated as

\[
\text{Percent hemolytic activity} (\%) = \frac{\text{Abs}_{\text{sample}} - \text{Abs}_{\text{negative control}}}{\text{Abs}_{\text{positive control}}} \times 100
\]

Where Abs stands for absorbance recorded.

2.8 GC-MS analysis

2.8.1 Instrument and chromatographic conditions

Molecular metabolomics study of HELE was performed by GC-MS analysis using the J&W HP-5MS GC capillary column with dimension 30 m x 0.25 mm with particle size 0.25 µm. Helium was used as the carrier gas in constant flow mode with a flow rate of 1 ml.min⁻¹. The inlet
temperature was set to 280 °C. The oven temperature ramped to 280 °C at a rate of 5 °C.min⁻¹ starting from 60°C and then isothermal at 280 °C for 20 min. One micro-liter of HELE extract solution was injected and the split ratio was 20:1. The MS was set to scan mode from 40-550 amu and the EI voltage was 70 eV. The transfer line temperature kept at 280 °C and the ion source and quadrupole temperature were kept at 230°C and 150 °C, respectively.

2.8.2 Identification of components
The mass spectrum of each separated phytochemical on specific retention time was compared with the mass spectrum stored in the database of the National Institute Standard and Technology (NIST14). The name of each phytochemical with its retention time, molecular weight, and relative percent peak area was tabulated (Table 4).

2.9 Statistical analysis of data
For each experimental assay, three replicate values were expressed as the mean±standard deviation (n = 3). The quantification data was subjected to one-way ANOVA by Microsoft excel version 2016 using a data analysis tool, for determination of significant difference (p<0.05). The linear regression equation was used for calculation of TAA, TPC, TFC, scavenging potential by DPPH and TEAC, and reducing antioxidant potential by FRAP and CUPRAC. IC₅₀ was also calculated through a linear regression equation using Microsoft office 2016 through a data analysis tool.

3 Results and Discussion

3.1 Multi-Method Antioxidant activities
Reactive oxygen species such as OH’, HO2’–, and OONO’ , but not O2’ are normally produced during metabolic processes, and excessive accumulation of these ROS badly affects fatty acids, DNA, and proteins causing tissue injury and inflammation [16]. Therefore to enhance the defense system, these ROS need to get detoxified or scavenged by consuming antioxidants. To the best of our knowledge, the scientific literature review does not report the antioxidant activity of different solvent extracts of L. frutescens from Pakistan. A Mexican study reported the antioxidant activity of ethanolic extract on red blood cells using oxidant 2,2-azo-bis-(2-amidinopropane) dihydrochloride (AAPH). According to this study ethanol sub-fraction obtained from methanol extract of roots of L. frutescens (HF4) showed antioxidant activity at 100 µg.ml⁻¹ [17]. In another study, the scavenging potential of the methanolic extract by DPPH and TEAC method was reported 280.43±4.97 µM QE/g FW and 266.20 ±5.63 µM TE/g FW) respectively.

In this study, the antioxidant potential has been estimated by total antioxidant activity using phosphomolybdenum, scavenging activity (DPPH and TEAC), and reducing potentials (CUPRAC and FRAP) methods (Figure 2). The antioxidant activity of each extract has been different from each other which is found in accordance with TPC and TFC.

Antioxidant activity by all the above-mentioned methods has been presented in Table 1. The total antioxidant activity of CHLE (226.235±1.222 mg AA.Eq.gm⁻¹ DE ± S.D) was recorded significantly higher (p < 0.05) than the total antioxidant activity of HELE (166.625±2.133 mg AA.Eq.gm⁻¹ DE ± S.D). Scavenging potential determined by DPPH and TEAC was found in order
of CHLE>MELE>BULE>HELE. The results of the scavenging potential observed by DPPH and TEAC methods for each extract were not significantly different (p > 0.05) from each other but found significantly different (p < 0.05) between the extracts. CHLE reported higher scavenging potential by DPPH and TEAC (209.589 ± 8.500 and 210.166 ± 7.954 mg trolox Eq.gm$^{-1}$ DE ± S.D) compared to MELE (169.817 ± 2.935 and 178.109 ± 5.179 mg trolox Eq.gm$^{-1}$ DE ± S.D), CHLF (209.589 ± 8.500 and 210.166 ± 7.954 mg trolox Eq.gm$^{-1}$ DE ± S.D), and HELE (86.628 ± 9.614 and 66.941 ± 5.364 mg trolox Eq.gm$^{-1}$ DE ± S.D). High CUPRAC and FRAP were recorded by CHLE (646.889 ± 16.889 and 472.981 ± 15.625 mg trolox Eq.gm$^{-1}$ DE ± S.D) contrary to MELE, CHLE and HELE. [18]. The results of reducing potential observed by CUPRAC and FRAP for each extract was not significantly different (p > 0.05) from each other but found significantly different (p < 0.05) between the extracts. It has been observed that scavenging and reducing potential observed by any of the extracts is directly proportional to polyphenolic content [19]. Hence the author concludes that for achieving maximum benefits CHLE should be utilized alternative to methanolic or ethanolic leave extract.

Table 1. Determination of the antioxidant activity of four solvent extractives of Leucophyllum frutescens (aerial) through TAA, DPPH, TEAC, CUPRAC AND FRAP methods

Solvent Extract	TAA (mg AA.Eq.gm$^{-1}$ DE ± S.D)	DPPH (mg trolox Eq.gm$^{-1}$ DE ± S.D)	TEAC (mg trolox Eq.gm$^{-1}$ DE ± S.D)	CUPRAC (mg trolox Eq.gm$^{-1}$ DE ± S.D)	FRAP (mg trolox Eq.gm$^{-1}$ DE ± S.D)
MELE	152.603 ± 1.506^a	169.817 ± 2.935^b	178.109 ± 5.179^b	466.222 ± 13.556^c	343.219 ± 20.202^d
HELE	166.625 ± 2.133^a	86.628 ± 9.614^c	66.941 ± 5.364^c	235.111 ± 3.778^c	184.891 ± 0.488^d
CHLE	226.235 ± 1.222^b	209.589 ± 8.500^c	210.166 ± 7.954^e	640.889 ± 16.889^e	472.981 ± 15.625^d
BULE	194.046 ± 1.150^b	155.243 ± 1.518^e	160.166 ± 0.925^e	436.445 ± 3.333^a	358.113 ± 20.142^a

All values are mean of triplicates vaules; AA.Eq means Ascorbic acid equivalent; IC50 means 50% inhibitory concentration; S.D = standard deviation, TAA means total Antioxidant activity; DPPH means 2,2-diphenyl-1-picrylhydrazyl; TEAC means trolox equivalent antioxidant capacity; CUPRAC means cupric reducing antioxidant capacity; FRAP means ferric reducing antioxidant power; a-d Means with the different lowercase letters in the same column are significantly different (p < 0.05)

Figure 2. Graphical representation of (a) Total Antioxidant Activity (b) Antioxidant activity by DPPH, TEAC, CUPRAC, FRAP

3.2 Poly-phenolic contents

Polyphenols are biologically active compounds comprising chlorogenic acids, tannins, hydrolyzable tannins, and flavonoids mostly found in conjugation with sugar moieties.
Polyphenols are considered as nutraceuticals having a variety of pharmacological effects on the body after their consumption e.g. antibacterial, antiviral, antiparasitic, antidiabetic, anticancer, and antioxidant [20].

Table 2 revealed TPC range from 2.372±0.129 to 189.369±1.393 mg GA.Eq.gm⁻¹ DE ± S.D. TPC values for MELE, HELE, CHLE, and BULE were calculated as 117.213±1.204, 2.372±0.129, 59.193 ± 1.122, and 189.369±1.393 mg GA.Eq.gm⁻¹ DE ± S.D, respectively. BULE showed the highest amount (189.369±1.393 mg GA.Eq.gm⁻¹ DE) of phenolic contents and HELE showed the lowest amount (2.372±0.129 GA.Eq.gm⁻¹ DE ± S.D) of phenolic contents. Only a single study has reported TPC of methanolic extract of stem of *L. frutescens* collected from different regions.

According to this study, Sabinas Hidalgo and Apodaca stem extracts showed total phenolic contents 120.22 and 78.78 µg.mL⁻¹ of Gallic acid equivalent, respectively. TFC of MELE, HELE, CHLE, and BULE was determined as 135.259±1.102, 107.560±0.862, 232.458±1.589, 162.459 mg Qu.Eq.gm⁻¹ DE ± S.D respectively (Table 2). The highest amount of TFC was observed in CHLE and the lowest TFC was observed in HELE (Figure 3). It is concluded that the TPC of aerial parts of *L. frutescens* from the Pakistan region is not significantly different from the TPC of the stem of Spanish Sabinas Hidalgo. According to an extensive literature study, no scientific literature found reporting TPC and TFC of different solvent extractives of aerial parts of *L. frutescens* from Pakistan and rest of the Asian countries. In the present study, the results of TPC revealed that high polar solvents have more potential to extract phenolic compounds from *L. frutescens* compared to chloroform, hexane, and methanol [21].

Table 2. Estimation of TPC AND TFC through regression equation, of four solvent extractives of *L. frutescens*

Description	Fraction	Absorbance	B	A	r²	V	m (gm)	Amount (mg GA.Eq.gm⁻¹ DE ± S.D)	Amount (mg Qu.Eq.gm⁻¹ DE ± S.D)
TPC	MELE	1.863	0.0113	0.2078	0.9991	0.2	0.00025	117.213±1.204	-
	HELE	0.246						2.372±0.129	-
	CHLE	1.041						59.193±1.122	-
	BULE	2.863						189.369±1.393	-
TFC	MELE	0.125	0.0014	0.0293	0.9892	1	0.0005	-	135.259±1.102
	HELE	0.103						-	107.560±0.862
	CHLE	0.203						-	232.458±1.589
	BULE	0.147						-	162.459±2.638

GA.Eq means gallic acid equivalent; Qu.Eq means Quercetin equivalent; S.D means standard deviation, TPC means Total Phenolic Content, TFC means Total Flavonoid Content; a,b,c,d Means with the different lowercase letters in the same column are significantly different (p < 0.05)
3.3 Biological Investigation

3.3.1 Hemolytic activity

Hemolytic activity of different concentrations of methanol (MELE), hexane (HELE), chloroform (CHLE), and butanol (BULE) extracts was determined (Table 3). Results revealed HELE showed significant (p < 0.05) hemolytic activity for human erythrocytes in comparison to BULE (HA50 332.957 µg.ml⁻¹) and MELE (HA50 400.067 µg.ml⁻¹), and CHLE (HA50 321.394 µg.ml⁻¹). Hemolytic effects of these polar extracts might be due to the presence of high amount of phytotoxic lignans, such as diayangambin and epiashantin [6]. GC-MS analysis of HELE validated presence of hemolytic compounds in high proportion such as methyl stearate and di-isoctyl phthalate [22].

3.3.2 Alpha-glucosidase inhibition

Diabetes is a chronic metabolic disorder both in low and high-income countries and is one of the leading causes of death. Among the two types of diabetes, Diabetes II is most commonly found due to insulin resistance or less amount of insulin secretion. According to an estimate by WHO about 442 million people are suffering from diabetes irrespective of the fact whether they are inhabiting low or high-income countries and about 1.6 million diabetic deaths are reported each year. Hence, for the survival of patients suffering from diabetes affordable medications including insulin is necessary. Different solvent extractives MELE, HELE, CHLE, and BULE obtained from aerial parts of *L. frutescens* were found to possess a significant amount of phenolic and flavonoid contents and therefore subjected to in-vitro anti-diabetic activity. HELE showed promising anti-diabetic activity with IC₅₀ 332.1±0.007µg.ml⁻¹ in contrast to quercetin IC₅₀ 8.625±0.002 µg.ml⁻¹ (Table 3 & Figure 4). The alpha-glucosidase inhibition activity of HELE is correlated with the presence of phytol, 9-octadecenoic acid, methyl ester, (E)-, eicosanoic acid, methyl ester, and gamma-sitosterol. The presence of these phytochemicals is validated by GC-MS analysis of HELE (Table 4).

3.3.3 Urease inhibition assay

In the US approximately 4.6 million people suffer peptic ulcers with 10% evidence of patients suffering from duodenal ulcers. About 70-90% of peptic ulcer and 90% duodenal ulcer is caused by helicobacter pylori. The helicobacter pylori can secrete urease extracellular, producing toxic effects on the epithelial lining of the gastric mucosa [23]. Urease converts transuded urea into
ammonia which increases the pH of the surrounding environment resulting in a feasible environment for helicobacter pylori to grow and colonize. Four extractives obtained from the aerial part of *L. frutescens* were subjected to evaluation of anti-urease activity and it was observed that BULE exhibited maximum anti-urease activity with IC₅₀ 4.709 mg.ml⁻¹. The hydroxy urea was used as positive control and its IC₅₀ value was calculated as 0.960 mg.ml⁻¹ (Table 3).

Table 3 Alpha-glucosidase and urease inhibition assays of four solvent extractives of *L. frutescens* (aerial)

Extract	Hemolytic activity	Alpha-glucosidase	Urease
	HA 50 µg.ml⁻¹	IC₅₀ mg.ml⁻¹	IC₅₀ mg.ml⁻¹
MELE	400.067±1.364a	-	-
HELE	25.545±0.927a	0.332±0.007	-
CHLE	321.394±1.332a	-	4.711±0.143a
BULE	332.957±0.465a	-	4.709±0.357a
Quercetin	N/A	0.00863±0.002	-
Hydroxy urea	N/A	-	0.960±0.118

All values expressed are mean of triplicate. SD means standard deviation; IC₅₀ means amount which causes 50% enzyme inhibition; HA₅₀ means amount which causes 50% hemolytic effects; N/A means not applicable; a,b,c,d Means with the different lowercase letters in the same column are significantly different (p < 0.05)

Figure 4. (a) alpha-glucosidase inhibition (b) urease enzyme inhibition (c) calibration curve of quercetin (d) calibration curve of thiourea

3.4 GC-MS analysis

HELE was subjected to gas-chromatography mass spectrometry (GC-MS) analysis (Figure 5) and tentatively identifying 39 different phytochemicals (Table 4). A phytochemical study revealed the presence of fatty acids, coumarin, sesquiterpenes, flavonoids, alcohols, lignans, phenols, aldehyde, and ketone, etc (Table 5). The principal leading compounds identified were 9-octadecenoic acid (Z) -, methyl ester (14.909 %), pentadecanoic acid, 14-methyl-, methyl ester (11.537 %), 2,6-
Table 4. Identification of bioactive phytochemicals by GC-MS screening of hexane extract of Leucophyllum frutescens

Sr. No.	Retention time	Name of compound	Quality	Molecular weight	Molecular formula	Relative % peak area
1	4.139	Cyclohexanone	94	98.073	C6H12O	2.037
2	11.074	Dodecane	95	170.203	C12H26	0.253
3	13.704	Tridecane	97	184.219	C13H28	0.316
4	16.271	Tetradecane	97	198.235	C14H30	0.426
5	18.734	Pentadecane	97	212.250	C15H32	0.233
6	22.147	Benzene, (1-propyloctyl)-	95	232.219	C17H38	0.216
7	22.641	aR-Turmerone	97	216.151	C19H30O	1.102
8	23.186	2-Propenoic acid, tridecyl ester	91	254.225	C19H30O2	1.013
9	23.873	Methyl tetradecanoate	95	242.225	C20H30O	0.289
10	23.955	Benzene, (1-pentylheptyl)-	97	246.235	C19H30	0.259
11	26.266	Neophytadiene	89	278.297	C20H38	0.163
12	26.394	2-Pentadecanone, 6,10,14-trimethyl-	99	268.277	C19H30O	0.219

bis(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo(3.3.0) octane (9.279 %), (+)-sesamin (7.126 %), 9,12-octadecadienoic acid, methyl ester (7.848 %), 9,12,15-octadecatrienoic acid, ethyl ester, (Z,Z,Z)- (6.506 %), n-hexadecanoic acid (4.529 %), hexadecanoic acid, ethyl ester (3.745 %), phytol (2.584 %), methyl stearate (2.251 %), cyclohexanone (2.036 %), 1H,3H-Furo[3,4-c]furan, 1,4-bis(3,4-dimethoxy phenyl)tetrahydro- [1R-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.)]- (1.283 %), and squalene (1.040 %). n-hexadecanoic acid has strong antioxidant, hypocholesterolemic, nematicide, pesticide, lubricant, hemolytic inhibitor, anti-androgenic activity. [24]. Gamma-sitosterol has been reported to possess anti-diabetic and anticancerous properties [25]. Di-isooctyl phthalate showed toxic effects [22] and was experienced during shade drying, individuals living in that area suffered from a severe cough and sneezing due to the volatile components of L. frutescens. Alpha-amyrin and beta-amyrin exhibited an anti-inflammatory effect [26]. Methyl or ethyl ester of fatty acids also have been identified e.g. pentadecanoic acid 14-methyl-, methyl ester, 9-octadecenoic acid, methyl ester, (E)-octadecanoic acid, n-hexadecanoic acid, and tetradeconoic acid belongs to the class of fatty acids and they have been reported to possess antibacterial, antymycobacterial and low antioxidant activity [27-29]. Butanaldehyde has also been identified and scientific literature reported its antymycobacterial activity [30]. Another study conducted on roots of L. frutescenc confirmed antymycobacterial effects against resistant strains of mycobacterium tuberculosis [31]. Leading phenolic compound such as catechol was also identified which have been reported to have antifungal activity [32]. L. frutescens also possess cyttotoxic activity due to furofuran lignans [6] but cytotoxic fatty acid methyl stearate is also found in GC-MS analysis [29]. Vitamin E and vitamin A precursor phytol part of the chlorophyll side chain which belongs to a class of acyclic diterpene unsaturated alcohol, has been identified as a major compound with strong anti diabetic effects [33]. GC-MS analysis confirmed the presence of various pharmacologically active compounds and ascertained in Table 5.
No.	Compound name	Class	Biological activities
13	Pentadecanoic acid, 14-methyl-, methyl ester	C_{15}H_{29}O_2	99 270.256 11.537
14	n-Hexadecanoic acid	C_{16}H_{32}O_2	99 256.24 4.529
15	Heptacosane	C_{27}H_{56}	90 380.438 0.689
16	Hexadecanoic acid, ethyl ester	C_{16}H_{30}O_2	99 284.272 3.745
17	9,12-Octadecadienoic acid, methyl ester	C_{12}H_{23}O_2	99 294.256 7.848
18	9-Octadecenoic acid (Z)-, methyl ester	C_{12}H_{22}O_2	99 296.272 14.908
19	Phytol	C_{20}H_{40}O	99 296.308 2.584
20	Methyl stearate	C_{18}H_{38}O	99 298.287 2.252
21	9,12-Octadecadienoic acid (Z,Z)-	C_{12}H_{24}O_2	99 280.24 1.505
22	9,12-Octadecadienoic acid, ethyl ester	C_{12}H_{24}O_2	99 308.272 3.037
23	9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z)-	C_{12}H_{24}O_2	99 306.256 6.506
24	Octadecanoic acid, ethyl ester	C_{20}H_{40}O_2	99 312.303 0.469
25	Heneicosane	C_{20}H_{44}	98 296.344 0.719
26	11-Eicosenoic acid, methyl ester	C_{20}H_{42}O_2	99 324.303 0.348
27	Methyl 18-methylnonadecanoate	C_{21}H_{44}O_2	98 326.318 0.849
28	Docosanoic acid, methyl ester	C_{22}H_{46}O_2	99 354.35 0.469
29	Phthalic acid, d(2-propylpentyl) ester	C_{18}H_{34}O_4	91 390.277 0.853
30	Tricosane	C_{22}H_{48}	97 324.376 0.433
31	Tetracosanoic acid, methyl ester	C_{23}H_{50}O_2	99 382.381 0.461
32	Squalene	C_{30}H_{60}	99 410.391 1.041
33	Tetracosane	C_{24}H_{50}	99 338.391 0.411
34	Hexacosanoic acid, methyl ester	C_{26}H_{52}O_2	99 410.412 0.397
35	2-Methyltriacontane	C_{31}H_{64}	95 436.501 0.738
36	Stigmasta-3,5-diene	C_{26}H_{48}	93 396.376 0.495
37	2,6-Bis(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo(3.3.0)octane (asarin or D-seasamin)	C_{35}H_{60}O_6	96 354.11 9.279
38	(+)-Sesamin	C_{26}H_{50}O_4	99 354.11 7.126
39	1H,3H-Furo[3,4-c]Furan, 1,4-bis(3,4-dimethoxyphenyl)tetrahydro-, [1R-(1.alpha,3a.alpha,4.alpha,6a,alpha)-Eudesmin	C_{24}H_{36}O_4	96 386.173 1.282

Table 5. Description of class and biological activities of bioactive phytochemicals identified in GC-MS analysis of *Leucophyllum frutescens*
	Chemical Structure	Type	Properties
2.	2,3-dihydro-3,5-dihydroxy-6-methyl-4H-Pyran-4-one	Pyrans	Strong antioxidant [35], anti-proliferative and pro-apoptotic acid [36]
3.	Thymol	Monoterpene	Antibacterial, antifungal, and antioxidant, anti-inflammatory, anti-nociceptive activity, vasorelaxant, anticancer [37]
4.	2-Naphthalenemethanol, decahydro-alpha, alpha, 4a-trimethyl-8-methylene-	Cyclic Alcohol	Hypotensive [38]
	[2R (2.alpha,4a.alpha,8a.beta,)]		
5.	Methyl tetradecanoate	Fatty acid methyl ester	Antioxidant, Cancer-preventive, Hypercholesterolemic, Nematicide activities. [28]
6.	4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol	Methoxy- phenol	Antioxidant, antimicrobial, and anti inflammatory [39]
7.	(1R,4aR,7R,8aR)-7-(2-Hydropyroppan-2-yl)-1,4a-dimethyldecahydronaphthalen-1-ol	Cyclic alcohol	Antispasmodic [40]
8.	7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione	Spirolactone	Diuretic and antihypertensive, anti-hirsutism, acne in female [41]
9.	Pentadecanoic acid, 14-methyl-, methyl ester	Fatty acid methyl ester	Antioxidant, Antifungal, Antimicrobial activities [28]
10.	9,12-Octadecadienoic acid, methyl ester, (E,E)-	Fatty acid methyl ester	Antiinflammatory, Nematicide, Insectifuge, Hypercholesterolemic [29]
11.	9-Octadecenoic acid, methyl ester, (E)-	Fatty acid methyl ester	Inhibitor α-glucosidase [33]
12.	Phytol	Acyclic diterpenoids	Antidiabetic [33]
13.	Ethyl 9,12,15-octadecatrienoate	Fatty acid ethyl ester	Cell viability [42]
14.	2-Butenedioic acid (E)-, bis(2-ethylhexyl) ester	Fatty acid Ethylhexyl ester	Antidermatitc, antioxidant, anti-hepatocarcinogenic, antioxidant, antitumor, flavor [43]
15.	Eicosanoic acid, methyl ester	Fatty acid methyl ester	Alpha-glucosidase inhibitor activity [28]
16.	Cyclohexane, 1-(1,5-dimethylhexyl)-4-(4-methylpentyl)-	Cyclic hydrocarbons	Antibacterial and Anticancer activity [44]
17.	Diisooctyl phthalate	Benzene derivative	Toxic [22]
18.	alpha-Tocosphiro A and alpha-Tocosphiro B	Tocopherol	Antioxidant [25]
19.	gamma-Sitosterol	Phytosterol	Antidiabetic, anticancerous properties [25]
20.	beta-Amyrone	Triterpene	Moderate anti-acetylcholinesterase activity, Antifungal [45]
21.	alpha-Amyrin and beta-Amyrin	Triterpene	Anti-inflammatory [26]
22.	Betulinaldehyde		Antimycobacterial [30]
23.	aR-Turmerone	Sesquiterpene	(acetylcholinesterase) inhibitor Antivenom, Antidepresser, Anti- inflammatory, Neuroprotective activities. [46] [47]
---	---	---	---
24.	2-Propenoic acid, tridecyl ester	Carboxylic acid	No activity reported 3-Eicosene, (E)-Antimicrobial, Antihyperglycemic, Cytotoxic activity, Antioxidant, Insecticidal activity [48]
25.	Neophytadiene	Sesquiterpenes	analgesic, antipyretic, anti-inflammatory, antimicrobial, and antioxidant [49]
26.	9-Octadecenoic acid (Z)-, methyl ester	Fatty acid	Antimycobacterial [50]
27.	Methyl stearate	Fatty acid	Cytotoxic [29]
28.	9,12-Octadecadienoic acid (Z,Z)-	Fatty acid	Anti-inflammatory, Nematicide, Insectifuge, Hypocholesterolemic, Cancer preventive, Hepato-protective, Antihistaminic, Antiacne, Antiarthritic, Antieczemic, [29]
29.	Octadecanoic acid, ethyl ester	Fatty acid ethyl ester	Antimycobacterial [50]
30.	Phthalic acid, di(2-propylpentyl) ester	Flavonoids	oral toxicity during pregnancy and sucking in the Long-Evans Rats [24]
31.	Squalene	Triterpene	Antibacterial, antioxidant, antitumor, anticancer, immunostimulant, lipooxygenase inhibitor, [51]
32.	(+)-Sesamin	Lignan	Larvicidal, anti-cholestermic, antihypertensive, antioxidant [52-54]
33.	1,2-Cyclopentanediione	Cyclic ketone	Antioxidant [55]
34.	Catechol	Phenol	Antifungal [32]
35.	Phenol, 2,6-dimethoxy-	Phenol	Anti-termite [56]
36.	Benzoic acid	Aromatic carboxylic acid	Antifungal, antimicrobial, and preservative [57]
37.	2-Methoxy-4-vinylphenol	Methoxy phenols	Antioxidant, antimicrobial, and anti-inflammatory [58]
38.	3-Methoxy-4,5-methylenedioxybenzaldehyde	Myristin aldehyde	Anti-neoplastic activity [59]
39.	(E)-4-(3-Hydroxyprop-1-en-1-yl)-2-methoxyphenol	Methoxy phenol	Antioxidant, antimicrobial, and anti-inflammatory [39]
40.	6-Hydroxy-4,4,7a-trimethyl-5,6,7a-tetrahydrobenzofuran-2(4H)-one	Essential oil	Anti-diabetes [33]
41.	Oxacyclopentadecan-2-one	Macrocyclic lactone	Flavoring agent [60]
4 Conclusion

GC-MS analysis concluded that principal phytochemicals tentatively identified in HELE by GC-MS analysis belong to the class of fatty acid-ester (60.221%), lignans (17.687%), sesquiterpenes (1.265%), ketone (3.358%), aldehyde (0.345%), and phenols (2.584%). The study also concluded that different solvent extractives obtained from aerial parts of *L. frutescens* demonstrated promising enzyme inhibitory activity (HELE strongly inhibited alpha-glucosidase and CHLE inhibited urease) with a strong antioxidant activity validated by multi-method approach. Conclusively, the results obtained provide the rationale for further extensive studies on biochemical analysis as well as the pivotal therapeutic potential of *L. frutescens* through in-vivo studies essentially focusing on isolation of antioxidants, antidiabetic, antibacterial, and phytotoxic compounds.

5 References

1. Dewick, P.M., *Medicinal natural products: a biosynthetic approach*. 2002: John Wiley & Sons.
2. Harvey, A.L., *Natural products in drug discovery*. Drug discovery today, 2008. 13(19-20): p. 894-901.
3. Sripriya, D. and T. Suvarna, *In Vitro Screening of 20 Indian Medicinal Plants for their Anti-Cholinesterase Effects*.
4. Menchaca, M.d.C.V., et al., *Antimicrobial activity of five plants from Northern Mexico on medically important bacteria*. African Journal of Microbiology Research, 2013. 7(43): p. 5011-5017.
5. de Gante, C.R., J.A. Rocha, and C.P.S. Collins, *Using Native Plants of the Northeast of Mexico for Developing Active Antimicrobial Food Packaging Films*, in Active Antimicrobial Food Packaging. 2018, IntechOpen.
6. Rimando, A.M., et al., *Phytotoxic lignans of Leucophyllum frutescens*. Natural Toxins, 1999. 7(1): p. 39-43.
7. Balderas-Renteria, I., et al., *Hepatoprotective effect of Leucophyllum frutescens on Wistar albino rats intoxicated with carbon tetrachloride*. Annals of hepatology, 2007. 6(4): p. 251-254.
8. Govindarajan, R., et al., *Studies on the antioxidant activities of Desmodium gangeticum*. Biological and pharmaceutical Bulletin, 2003. **26**(10): p. 1424-1427.

9. Bhuiyan, M., M. Hoque, and S. Hossain, *Free radical scavenging activities of Zizyphus mauritiana*. World journal of agricultural sciences, 2009. **5**(3): p. 318-322.

10. Grochowski, D.M., et al., *In vitro antioxidant and enzyme inhibitory properties of Rubus caesius L.* International Journal of Environmental Health Research, 2019. **29**(3): p. 237-245.

11. Ainsworth, E.A. and K.M. Gillespie, *Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent*. Nature protocols, 2007. **2**(4): p. 875-877.

12. Kumar, P.P., S. Kumaravel, and C. Lalitha, *Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo*. Afr J Biochem Res, 2010. **4**(7): p. 191-195.

13. Qaisar, M.N., et al., *Evaluation of α-glucosidase inhibitory activity of dichloromethane and methanol extracts of Croton bonplandianum Baill.* Tropical Journal of Pharmaceutical Research, 2014. **13**(11): p. 1833-1836.

14. Khan, K.M., et al., *Synthesis and in vitro urease inhibitory activity of N,N′-disubstituted thioureas*. European Journal of Medicinal Chemistry, 2014. **74**: p. 313-324.

15. Zohra, M. and A. Fawzia, *Hemolytic activity of different herbal extracts used in Algeria*. Int J Pharm Sci Research, 2014. **5**: p. 8495-4.

16. Magder, S., *Reactive oxygen species: toxic molecules or spark of life?* Critical care, 2006. **10**(1): p. 1-8.

17. Martínez Rivas, C.J., *Formulación y evaluación biológica de nanomedicinas con extracto del centzo Leucophyllum frutescens (BERL.) IM Johnston (Scrophulariaceae) contra Mycobacterium tuberculosis*. 2018, Universidad Autónoma de Nuevo León.

18. Granados-Guzmán, G., et al., *Optimization and validation of two high-throughput methods indicating antiradical activity*. Current Analytical Chemistry, 2017. **13**(6): p. 499-507.

19. Sethi, S., et al., *Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts*. European Food Research and Technology, 2020. **246**(3): p. 591-598.

20. Marín, L., et al., *Bioavailability of Dietary Polyphenols and Gut Microbiota Metabolism: Antimicrobial Properties*. BioMed Research International, 2015. **2015**: p. 905215.

21. Espinosa-Leal, C., et al., *Total phenols and anti-radical activity of methanolic extracts from wild and in vitro conditions of Leucophyllum frutescens*. Rev Mex Cienc Farm, 2015. **46**: p. 52-56.

22. Adams, W.J., et al., *A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms*. Environmental Toxicology and Chemistry: An International Journal, 1995. **14**(9): p. 1569-1574.

23. Evans Jr, D.J., et al., *Characterization of the Helicobacter pylori urease and purification of its subunits*. Microbial pathogenesis, 1991. **10**(1): p. 15-26.

24. Krishnamoorthy, K. and P. Subramaniam, *Phytochemical Profiling of Leaf, Stem, and Tuber Parts of Solena amplexicaulis (Lam.) Gandhi Using GC-MS*. International Scholarly Research Notices, 2014. **2014**: p. 567409.

25. Deora, G. and I. Bano, *Preliminary phytochemical screening and GC-MS analysis of methanolic leaf extract of Abutilon pannosum (Forst. F.) Schlect. from Indian Thar desert*. J Pharmacogn Phytochem, 2019. **8**(1): p. 894-99.

26. Okoye, N.N., et al., *Beta-Amiryn and alpha-amyrin acetate isolated from the stem bark of Alstonia boonie display profound anti-inflammatory activity*. Pharmaceutical biology, 2014. **52**(11): p. 1478-1486.
27. Yang, D., et al., *The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes*. Biomaterials, 2009. 30(30): p. 6035-6040.
28. Elaiyaraja, A. and G. Chandramohan, *Comparative phytochemical profile of Indoneesiella echoides (L.) Nees leaves using GC-MS*. Journal of Pharmacognosy and Phytochemistry, 2016. 5(6): p. 158.
29. Sermakkan, M. and V. Thangapandian, *GC-MS analysis of Cassia italica leaf methanol extract*. Asian J Pharm Clin Res, 2012. 5(2): p. 90-94.
30. Morrison, S.A., et al., *Antimycobacterial triterpenes from the Canadian medicinal plant Sarracenia purpurea*. Journal of ethnopharmacology, 2016. 188: p. 200-203.
31. Molina-Salinas, G.M., et al., *Evaluation of the flora of Northern Mexico for in vitro antimicrobial and antituberculosis activity*. Journal of Ethnopharmacology, 2007. 109(3): p. 435-441.
32. Hubbes, M., *Inhibition of Hypoxylon pruinatum by pyrocatechol isolated from bark of aspen*. Science, 1962. 136(3511): p. 156-156.
33. Azizah, R.N., A. Husni, and S.A. Budhiyanti, *Inhibitory activity of Sargassum hystrix extract and its chloroform fractions on inhibiting the α-glucosidase activity*. in *IOP Conference Series: Earth and Environmental Science*. 2019. IOP Publishing.
34. Picton, S.F., P.R. Flatt, and N.H. McCLENAGHAN, *Differential acute and long term actions of succinic acid monomethyl ester exposure on insulin-secreting BRIN-BD11 cells*. Journal of Diabetes Research, 2001. 2(1): p. 19-27.
35. Silva, C.L. and J.S. Câmara, *Profiling of volatiles in the leaves of Lamiaceae species based on headspace solid phase microextraction and mass spectrometry*. Food Research International, 2013. 51(1): p. 378-387.
36. Ban, J.O., et al., *Anti-proliferate and pro-apoptotic effects of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-4H-pyranone through inactivation of NF-κB in human colon cancer cells*. Archives of Pharmacal Research, 2007. 30(11): p. 1455.
37. Marchese, A., et al., *Antibacterial and antifungal activities of thymol: A brief review of the literature*. Food chemistry, 2016. 210: p. 402-414.
38. Arora, C., et al., *Hypotensive activity of beta-eudesmol and some related sesquiterpenes*. The Indian journal of medical research, 1967. 55(5): p. 463.
39. Vadivel, E. and S. Gopalakrishnan, *GC-MS analysis of some bioactive constituents of Mussaenda frondosa Linn*. Inter J Pharm Bio Sci, 2011. 2: p. 313-320.
40. El-Askary, H., et al., *Phytochemical and biological investigation of the ethyl acetate fraction of Cymbopogon Proximus Stapf.(Halfabar) herb*. Egypt. J. Biomed. Sci, 2008. 26: p. 149-157.
41. Rao, M.R.K., et al., *Antioxidant study and GC MS analysis of an ayurvedic medicine ‘Talisapradri choornam’*. Int J Pharm Sci Rev Res, 2016. 36(1): p. 158-166.
42. Yamuna, P., et al., *GC-MS analysis of bioactive compounds in the entire plant parts of ethanolic extract of Gomphrena decumbens Jacq*. Journal of Medicinal Plants Studies, 2017. 5(3): p. 31-37.
43. Pratiwi, P., et al., *Antioxidant, Antibacterial Activity and GC-MS Analysis of Extract of Giant Forest Ant Dinomynnx gigas* (Latreville, 1802). Jurnal Biodjati, 2019. 4(2): p. 263-277.
44. Esmat, A.U., S. Mittapally, and S. Begum, *GC-MS Analysis of Bioactive Compounds and Phytochemical Evaluation of the Ethanolic Extract of Gomphrena globosa L. Flowers*. Journal of Drug Delivery and Therapeutics, 2020. 10(2): p. 53-58.
45. Elfadil, H., et al., *The in vitro antifungal activity of sudanese medicinal plants against Madurella mycetomatis, the eumycetoma major causative agent*. PLoS neglected tropical diseases, 2015. 9(3).
46. Fujiwara, M., N. Yagi, and M. Miyazawa, Acetylcholinesterase Inhibitory Activity of Volatile Oil from Peltophorum dasyrachis Kurz ex Bakar (Yellow Batai) and Bisabolane-Type Sesquiterpenoids. Journal of Agricultural and Food Chemistry, 2010. 58(5): p. 2824-2829.

47. Elaiyaraja, A. and G. Chandramohan, Comparative phytochemical profile of Indoneesiella echoides (L) nees leaves. J Pharmacogn Phytochem, 2016. 5(9): p. 383-389.

48. Banakar, P., GC-MS ANALYSIS OF BIOACTIVE COMPOUNDS FROM ETHANOLIC LEAF EXTRACT OF WALTHERIA INDICA LINN. AND THEIR PHARMACOLOGICAL ACTIVITIES. 2018. 9.

49. Swamy, M.K., et al., GC-MS Based Metabolite Profiling, Antioxidant and Antimicrobial Properties of Different Solvent Extracts of Malaysian Plectranthus amboinicus Leaves. Evidence-Based Complementary and Alternative Medicine, 2017. 2017: p. 1517683.

50. Machan, T., et al., Free fatty acids from the crude hexane extract of the aerial parts of Heliotropium indicum Linn. Growing in Phitsanulok, Thailand. 2007.

51. Zayed, M.Z., A. Wu, and S.M. Sallam, Comparative Phytochemical Constituents of Leucaena leucocephala (Lam.) Leaves, Fruits, Stem Barks, and Wood Branches Grown in Egypt using GC-MS Method Coupled with Multivariate Statistical Approaches. BioResources, 2019. 14(1): p. 996-1013.

52. Kim, S.-l. and Y.-J. Ahn, Larvicidal activity of lignans and alkaloid identified in Zanthoxyllum piperitiun bark toward insecticide-susceptible and wild Calex pipiens pallen and Aedes aegypti. Parasites & Vectors, 2017. 10(1): p. 221.

53. Nakai, M., et al., Novel Antioxidative Metabolites in Rat Liver with Ingested Sesamin. Journal of Agricultural and Food Chemistry, 2003. 51(6): p. 1666-1670.

54. MATSUMURA, Y., et al., Antihypertensive effect of sesamin. I. Protection against deoxycorticosterone acetate-salt-induced hypertension and cardiovascular hypertrophy. Biological and Pharmaceutical Bulletin, 1995. 18(7): p. 1016-1019.

55. Alghamdi, S., et al., Phytochemical Profiling of Soybean (Glycine max (L.) Merr.) Genotypes Using GC-MS Analysis. Phytochemicals-Source of Antioxidants and Role in Disease Prevention, 2018.

56. Oramahi, H.A. and F. Diba, New bio preservatives from lignocelluloses biomass bio-oil for anti termites Coptotermes curvignathus holmgren. Procedia Environmental Sciences, 2014. 20: p. 778-784.

57. del Olmo, A., J. Calzada, and M. Nuñez, Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: Uses, exposure, and controversy. Critical Reviews in Food Science and Nutrition, 2017. 57(14): p. 3084-3103.

58. Al-Marzoqi, A.H., M.Y. Hadi, and I.H. Hameed, Determination of metabolites products by Cassia angustifolia and evaluate antimicrobial activity. Journal of Pharmacognosy and Phytotherapy, 2016. 8(2): p. 25-48.

59. Chen, H., et al., Antitumor constituents from Anthriscus sylvestris (L.) Hoffm. Asian Pac. J. Cancer Prev, 2014. 15: p. 2803-2807.

60. Huang, M., et al., Isolation and identification of oxacyclopentadecan-2-one from the dried fruiting body of Dictyophora echinovolvata Zang, Zheng et Hu. Flavour and fragrance journal, 2012. 27(1): p. 75-76.

6 Conflict of interest
Authors declare that they have no competing financial, professional, or personal interests that might have influenced the performance or presentation of work described in the manuscript.
7 Acknowledgment
The present study was academically supported by the Pharmacy department, The Islamia University of Bahawalpur Pakistan, for conducting doctor of philosophy (Ph.D.) research work. The study is not sponsored by any private or government organization.

8 Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data Availability statement
All relevant data are within the manuscript.