Taxonomic Relationship on Some Chrysophyllum Species based on Anatomical Studies

Inyama CN1*, Mbagwu FN1 and Duru CM2
1Department of Plant Science and Biotechnology, Imo State University, Owerri, Nigeria
2Department of Biology, Federal University of Technology, Owerri, Nigeria

Abstract

Transverse sections of the leaf blade and petiole of three species of the genus Chrysophyllum namely C. albidum, C. subnudum and C. cainito were investigated to establish taxonomic relationship among them. The result obtained revealed that the shape of vascular bundle of the leaf in C. albidum and C. subnudum are semi-circular while in C. cainito, it is V-shaped. The vascular bundle is bicollateral in the three taxa investigated. The shape of petiole is semicircular in C. albidum and C. cainito but rounded in C. subnudum. C. cainito and C. subnudum have well-developed vascular bundle, about 6-7 arranged to form an arc with distinct xylem and phloem cells while in C. albidum, they are 3-7, arranged to form an arc with in the cortex. The result further strengthened the inter-specific relationship existing among them.

Keywords: Taxonomic; Relationship; Chrysophyllum; Anatomy; Leaf; Petiole

Introduction

Chrysophyllum is derived from Greek, meaning “golden leaf” from the color of the hairs of some species. It is a tropical tree growing rapidly to 10-20 m or more in height. Chrysophyllum has about 70-80 species with seven species occurring in Nigeria [1]. The fruits of the genus Chrysophyllum are large berry containing five large flattened seeds or sometimes fewer by abortion [2]. Keay [1], gave a very good account of the Nigeria species.

Chrysophyllum albidum G. Don. and Chrysophyllum subnudum Baker., were among the seven species identified by Keay [1] while the West Indies and Central America. It is frequently planted in the tropics for its edible fruit. All the species in Nigeria are tall or medium sized trees except C. welwitschii Engl. which is a climbing shrub.

Many species of the genus Chrysophyllum are cultivated for their edible fruits and for ornamental purposes. These include C. albidum, C. subnudum, C. cainito and C. giganteum. C. cainito has the potential to improve nutrition and boost food security. Its ripe fruit fresh spoomed can be mixed with that of mango, citrus, pineapple, other fruits and coconut water and serve as Jamaica fruit salad ice. C. cainito is second most valuable timber tree in Asia. Calbidum wood brownish white and soft often is used in houses and hut buildings, though perishable, in contact with ground and is also used for household articles and tools handles. The copious latex found in Chrysophyllum wood has been utilized as an adulterant of gutta-percha and chewing gum. The seeds of C. albidum are strung together and worn as anklets or girdles which also serve as rattles during dancing [3]. Medically, a ripe fruit of C. cainito, because of its mucilaginous character, is eaten to sooth inflammation in laryngitis and pneumonia. It is given as a treatment for diabetes mellitus and as a decoction in gargled to relieve angina. A decoction of the tannin-rich, astringent bark is drunk as a tonic and stimulant, and is taken to halt diarrhea, dysentery and hemorrhages and as a treatment for gonorrhea and “catarrh of the bladder”. Some of these species such as C. cainito and Calbidum are planted for ornamental purposes.

Plant anatomy traditionally focused mainly on the characterization and the mode of development of the various organs of the plant body. The increasing importance of plant anatomy has led to the development of not only numerous techniques but also to more and better equipment for the study. Anatomical characters are now generally believed to be just as valuable as morphological characters. They are also widely used in other aspects of taxonomy and have been applied to the elucidation of “phylogenetic” relationship in determining relationships between different genera, families, orders and other taxonomic categories; where the anatomical characters has been found most useful. Anatomical character such as the type of vascular bundles, rays, type, size, shape, wall sculpture and pattern of wood cells, stelar patterns, ground tissue and parenchyma, epidermal and mesophyll tissue stomata, trichomes, sclereids, node, phloem cells, obtained from various parts of the plant – stem, root, petiole node, leaves, flower, and fruit, has been found taxonomically valuable. In Dioscoreaceae, certain anatomical features were used in characterization of Dioscorea alata L. and D. Smilacifolia L. including other species of Dioscora [4]. Raganna and Ramakrishnan, reported the significance of anatomical features in the genus Camellia. Metcalfe [5] in several genera of cyperaceae has used several characters of leaf anatomy in differentiating species. The distribution pattern of Sclerenchyma in Carex and Festuca has been used in distinguishing species. Metcalfe and Chalk [6] and Howard have suggested that the petiole is also of taxonomic significance. Mbagwu and Nwachukwu used petiolar anatomy of eight Vigna species in Nigeria to establish interspecies relationship among the investigated taxa. Edeoga et al. [4] distinguished between species of the genus Phyllanthus using anatomical features. Nwachukwu and Mbagwu et al. in genus Viscum L. applied the anatomical features of these genera to distinguish between various species they studied.

Due to close morphological resemblance of C. albidum and C. subnudum, some authors have placed C. subnudum as variety of C. albidum. Also owing to limited taxonomical work on this genus in

*Corresponding author: Inyama CN, Department of Plant Science and Biotechnology, Imo State University, Owerri, Nigeria, Tel: 2348063969508; E-mail: chingor01@yahoo.com

Received February 12, 2015; Accepted January 08, 2016; Published January 12, 2016

Citation: Inyama CN, Mbagwu FN, Duru CM (2016) Taxonomic Relationship on Some Chrysophyllum Species based on Anatomical Studies. Med Aromat Plants 5: 227. doi:10.4172/2167-0412.1000227

Copyright: © 2016 Inyama CN, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Nigeria, there is needed to carry out this study in order to agree or disagree with this placement with others around the world. This study is therefore based on the leaf and petiole anatomy of three species of the genus *Chrysophyllum*.

**Materials and Methods**

**Specimen collection**

Specimens of the three *Chrysophyllum* species (namely *C. cainito*, *C. albidum* and *C. subnudum*) were collected from three villages in Aboh Mbaise Local Government Area of Imo State. The villages are Ngali Obibi, Umuayara and Oboama Enyiogugu. *C. cainito* were collected from Oboama Enyiogugu while *C. albidum* and *C. subnudum* were collected from both Ngali Obibi and Umuayara [7].

**Specimen identification**

The specimens were identified by a taxonomist, Professor S.E. Okeke and were confirmed at the Forest Herberum (FHI), Ibadan, Oyo State. Voucher specimens were deposited in Imo State University Herberium (IMSUH) Owerri [8].

**Anatomical studies**

Mature and fresh parts of the leaves and petioles of the three species were collected and sectioned. The cut sections were done at various portions. For the leaves, cutting was done from the middle portion while that of the petiole was at 0.5 cm from the node. Before sectioning commenced, the specimens were made to undergo a pretreatment process referred to as Killing and Fixing. The aim of this process is to terminate suddenly and permanently all life processes within the specimens and preserve the cells composing the materials as close to their original condition as possible [9]. For the pretreatment, the specimens were treated using Formalin-Acetic Alcohol (FAA) for 48 hours and then washed thoroughly in distilled water.

The specimens were washed in two changes of 30% ethanol and are dehydrated in a graded series of ethanol (30%-50%-70%-95%) for at least 15 minutes in each grade.

To infiltrate wax into the specimens, they were covered for 3 hours in each of the following solutions containing a ratio of absolute alcohol to pure chloroform (v/v: 3:1, 1:1, 1:3), then pure chloroform. At the stage of pure chloroform, wax pellets (60°C melting point) were added and the wax is changed periodically. The specimen containers were transferred to an oven for 2-7 days to remove the chloroform. To embed in wax, the contents of the vial were carefully transferred into moulds. The specimens were arranged using a flamed (hot) mounting needle and then transferred to a cold water bath where it remains until the wax is sufficiently solid and was later stored in a refrigerator for two days. A very thin section of 10-20 µ were made using a Leica rotary microtome. Ribbon cut sections obtained from the microtome sectioning were placed on clean slides covered with a thin film of Haupt’s albumen and allowed to dry. Three or four drops of distilled water were added before mounting. The slides were placed on a hot plate at 40°C for few minutes to allow the ribbons to expand and were kept overnight.

The slides were immersed in pure xylene for 2-5 minutes in a solution of xylene and absolute alcohol with a ratio of 1:1 (v/v). They were later transferred to another solution of xylene and alcohol graded series (95%, 90%, 70% and 50%) in the ratio of 3:3 (v/v) for few minutes. Drops of safranin were used to stain the section for 5 minutes, washed off with distilled water and then counter stained with alcian blue for 2 minutes and then dehydrate in 50% alcohol, 70%, 80% and 90% xylene/ alcohol solution respectively and pure xylene at intervals. Mounting medium used is the D.P.X. mountant. Drops of D.P.X. were introduced onto the slides enough to cover the length of the sectioned material and then covered with cover slip. The slides containing the mounted sections were placed on a hot plate at 30°C to dry. Photographs of materials sectioned were taken using a Leitz Wetzler Ortholux digital microscope [10,11].

**Results**

**Leaf Anatomy**

Leaf anatomy features of the three species of *Chrysophyllum* studied are summarized in Table 1 and illustrated in Plates 1a-f. The cuticle are thick on the upper lamina of the three species considered (Plates 1b, d and f). Epidermal cells are uniseriate in *C. cainito* but multiseriate in both *C. albidum* and *C. subnudum* (Plates 1b, d and f). Single layered palisade cell in *C. albidum* while the layer is double-layered in *C. cainito* and *C. subnudum*. The vascular bundle is bicolateral in the three taxa forming a semi-circular shape in *C. albidum* and *C. subnudum* but V-shape in *C. cainito* (Plates 1a, c and e). Number of Vascular bundles for *C. albidum* and *C. subnudum* range from 3-5 while it ranges from 4-5 in *C. cainito* (Table 1). Sclerechyma cells are present the three taxa studied.

**Petiole anatomy**

The results showed that the shape of petiole is semicircular in *C. albidum* and *C. cainito* but rounded in *C. subundum* (Plate 2). Cuticle structure and bundle sheath are all present in the three taxa studied. Epidermal cells are uniseriate in all the taxa considered. Also the vascular bundle arrangements form an arc with invagination that curves inwards at the ends in the three taxa (Plates 2a-c). Trichomes are absent. On the other hand, *C. cainito* and *C. subundum* have well developed

| Character                  | *C. albidum* | *C. cainito* | *C. subnudum* |
|----------------------------|--------------|--------------|---------------|
| Cuticle                    | Thick        | Thick        | Thick         |
| Epidermal cells            | Multiseriate | Uniseriate   | Multi seriate |
| Shape of epidermal cells   | Rectangular-Oval | Rectangular   | Oval-rectangular |
| Palisade layer             | 1            | 2            | 2             |
| Spongy layer               | Present      | Absent       | Absent        |
| Shape of midrib            | Semi-circular | Semi-circular | Semi-circular |
| Shape of Vascular bundle   | Semi-circular | V-shaped     | Semi-circular |
| Number of Vascular Bundle  | 3-5          | 4-5          | 3-5           |
| Nature of vascular Bundle  | Bicollateral | Bicollateral | Bicollateral |
| Sclerechyma cell           | Present      | Present      | Present       |
| Bundle sheath              | Present      | Present      | Present       |

Table 1: Leaf anatomical features of the three species of *Chrysophyllum*. |
Vascular bundle about 6-7 arranged to form an arc with distinct xylem and phloem cells. While in *C. albidum* they are 3-7 arranged to form an arc with in the cortex (Table 2). The shape of epidermal cells is rectangular in *C. albidum* and *C. cainito* while it varies from rectangular to pentagonal in *C. subundum*.

**Discussion**

The leaf anatomical studies revealed the upper and the lower epidermises of the three *Chrysophyllum* investigated is covered with a thick layer of cuticle and can be considered for taxonomic purpose at the genus level. Rejanna and Ramakrishnan observed same thick cuticle in the twelve clones of genus *Cemellia*. The shape of epidermal cells could be used as taxonomic purpose at the species level. The flat epidermal cells in *C. cainito* delimit it from the other two taxa investigated. Also, the double layered epidermal cells observed in the two taxa *C. albidum* and *C. subnudum* separated the two species from *C. cainito* with single layered epidermal cell. Semicircular shape of the mid rib observed in the three taxa is not strange as same feature has been reported by Makbul in genus *Epilobium* L.

The numbers of palisade mesophyll observed in the species of

**Plate 1:** Transverse section of leaf, a and b = *C. albidum*; c and d = *C. cainito*; e and f = *C. subnudum*; ct = cuticle; p = palisade layer; ep = epidermal cells; xy = Xylem; ph = phloem; pc = parenchyma cell.
Chrysophyllum studied are found to be diagnostic. The mesophyll consists of palisade and spongy layers in C. albidum while C. cainito and C. subnudum contained only palisade mesophyll. C. cainito and C. subnudum have double layered palisade mesophyll while C. albidum has single layered palisade mesophyll. The difference in number of palisade mesophyll separated C. albidum from the other two taxa investigated. Also Sponge mesophyll was absent in both C. cainito and C. subnudum but present in C. albidum.

Table 2: Petiole anatomical features of the three Chrysophyllum species.

| Characters                  | C. albidum | C. cainito | C. subnudum |
|-----------------------------|------------|------------|-------------|
| Petiole shape               | Semi-circular | Semi circular | Rounded    |
| Cuticle structure           | Present    | Present    | Present     |
| Epidermal cells             | Uniseriate | Uniseriate | Uniseriated |
| Shape of epidermal cells    | Rectangular | Rectangular | Rectangular - Pentagonal |
| Number of vascular Bundle   | 3-7        | 6-7        | 6-7         |
| Nature of vascular Bundle   | arc with invaginated ends | arc with invaginated ends | arc with invaginated ends |
| Bundle sheath               | Present    | Present    | Present     |
| Trichomes                   | Absent     | Absent     | Absent      |

Plate 2: Transverse section of petiole of a = C. albidum; b = C. cainito and c = C. subnudum; vb = arc vascular bundle; cx = cortex; ct = cuticle; in = invigination and bs = bundle sheath.
intraspecific affinity among the three taxa investigated while differences could explain why the taxa stand as different species.

The leaf and petiole anatomic studies carried out showed strong intraspecific relationship among the three taxa studied, hence reasons for their placement under the same genus *Chrysophyllum*, more so there are numerous variations among the features studied indicating taxonomic reasons for the three taxa to exist as distinct species.

References
1. Keay RW J (1989) Trees of Nigeria. Oxford. Clardon press.
2. Gbile ZO (2009) Taxonomy of *Chrysophyllum abidum* G. Don in Nigeria. University of Ibadan, Uyo.
3. Okigbo BN (1980) Ahiajoku Lecture; Cultural Division Ministry of Information Culture, Youth and Sport. Government Press, Owerri.
4. Edeoga HO, Ogbebor NO (1999) Vegetative anatomy in some Nigerian species of Aneilema (Commelinaceae). Acta Phytotax Geobot 50: 51-58.
5. Metcalfe CR (1960) Anatomy of the dicotyledous. Vol.1 and 11. Oxford University Press, Oxford, London.
6. Metcalfe CR, Chalk L (1950) Anatomy of the Dicotyledons. Crown agents for Overseas Governments and Administrations, London 2.
7. Benson L (1957) Plant classification. D.C Health and Company. Lexington, Massachusetts.
8. Burkitt HM (1995) Useful Plants of West Tropical Africa. 2nd edition. Vol.3, Families J.L. Royal Botanic Gardens, Kew, Richmond UK.
9. Celep F, Dogan M (2010) *Salvia ekimiana* (Lamiaceae). A new species from Turkey. *Ann. Bot. Fennici* 47: 63-66.
10. Davis PH, Heywood VH (1963) Principles of Angiosperm Taxonomy. Oliver and Boyd, London.
11. Dutta AC (2005) Botany for Degree students. Leth Edition, Oxford University Press.
12. Gill LS (1988) Taxonomy of Flowering Plants. Onitsha. Africana Feb. Publishers
13. Hutchinson J, Dalziel JM (1963) Flora of West Tropical Africa. Mill Bank, London. SWI 2.
14. Kahraman A, Dogan M (2010) Comparative study of *Salvia imbata* CA and *S. palestina*. Bentham (Sect. Aethiopis Bentham Labiatae) from East Anatolia, Turkey. *Acta Botanical Croatica* 69: 47 -64.