Assisted Problem Solving and Decompositions of Finite Automata*

Peter Gaži Branislav Rovan

Department of Computer Science, Comenius University
Mlynská dolina, 842 48, Bratislava, Slovakia
{gazi,rovan}@dcs.fmph.uniba.sk

Abstract

A study of assisted problem solving formalized via decompositions of deterministic finite automata is initiated. The landscape of new types of decompositions of finite automata this study uncovered is presented. Languages with various degrees of decomposability between undecomposable and perfectly decomposable are shown to exist.

1 Introduction

In the present paper we initiate the study of assisted problem solving. We intend to model and study situations, where solution to the problem can be sought based on some additional a priori information about the inputs. One can expect to obtain simpler solution in such case. There are similar approaches known in the literature, most notably the notions of advice functions [1], where the additional information is based on the length of the input word and the notion of promise problems [2], where the set of inputs is separated into three classes – those with “yes” answer, those with “no” answer and those where we do not care about the outcome. By considering the simplest case where the “problem solving” machinery is the deterministic finite automaton (DFA) we obtain a new motivation for studying new types of finite automata decompositions.

In this paper we shall thus consider the case where solving a problem shall mean constructing an automaton for a given language L. The “assistance” shall be given by additional information about the input, e.g., that we can assume the inputs shall be restricted to words from a particular regular language L'. Thus, instead of looking for an automaton A such that $L = L(A)$ we can look for a (possibly simpler) automaton B such that $L = L(B) \cap L'$. We can then say that B accepts L with the assistance of L'. We shall call L' (or the corresponding automaton A' such that $L' = L(A')$) an advisor to B. In this case the advisor A' provides assistance to the solver B by guaranteeing that A' accepts the given input word. We shall also study a case where the assistance provides more detailed information about the outcome of the computation of A' on the input word (e.g., the state reached). Clearly the advisor can be considered useful only if it enables B to be simpler than A and at the same time A' is not more

*This work was supported in part by the grant VEGA 1/3106/06.
complicated than A. The measure of complexity we shall consider is the number of states of the deterministic finite automaton. This measure of complexity was used quite often recently due to renewed interest in finite automata prompted by applications such as model checking (see e.g. [3] for a recent survey). (Note that results complementary to ours, namely results on complexity of automata for the intersection of regular sets were studied in [4].)

The contribution of our paper is twofold. First, we can interpret the ‘solver’ and the ‘advisor’ as two parallel processes each performing a different task and jointly solving a problem. Since our approach lends itself to a generalisation to k advisors it may stimulate new parallel solutions to problems (the traditional ones usually using parallel processes to perform essentially the same task). Second, the choice of finite automata as the simplest problem solving machinery brought about new types of decompositions motivated by the information the ‘advisor’ can provide to the ‘solver’. Our results provide a complete picture of the landscape of these decompositions.

The problem within this scenario we shall address in this paper is the existence of a useful advisor for a given automaton A. We shall compare the power of several types of advisors, and investigate the effect of the advisor on the complexity of the assisted solver B. We can formulate this also as a problem of decomposition of deterministic finite state automata - given DFA A find DFA A_1 (a solver) and A_2 (an advisor) such that $w \in L(A)$ can be determined from the computations of A_1 and A_2. We shall study several new types of decompositions of DFA, one of them is analogous to the state behavior decomposition of finite state transducers studied in [5]. In Sect. 3 we prove relations among these decompositions. For each type of decomposition there are automata which are undecomposable and automata for which there is a decomposition that is the best possible. In Sect. 4 we consider the space between these extreme points and study the degree of decomposability.

2 Definitions and Notation

We shall use standard notions of the theory of formal languages (see e.g. [6]). Our notation shall be as follows. Σ^* denotes the set of all words over the alphabet Σ, the length of a word w is denoted by $|w|$, ε denotes the empty word, and for a language L we shall denote by Σ_L the minimal alphabet such that $L \subseteq \Sigma^*_L$. The number of occurrences of a given letter a in a word w is denoted by $\#_a(w)$. Throughout this paper we shall consider deterministic finite automata only.

A deterministic finite automaton (DFA) is a quintuple $(K, \Sigma, \delta, q_0, F)$, such that K is a finite set of states, Σ is a finite input alphabet, $q_0 \in K$ is the initial state, $F \subseteq K$ is the set of accepting states and $\delta: K \times \Sigma \rightarrow K$ is a transition function. As usual, we shall denote by δ also the standard extension of δ to words, i.e., $\delta: K \times \Sigma^* \rightarrow K$. We shall denote by $|K|$ the number of states in K.

Formalizing the notions of assisted problem solving from the Introduction we shall now define several types of decompositions of DFA A into two (simpler) DFAs A_1 and A_2 (a solver and an advisor) so that the membership of an input word w in $L(A)$ can be determined based on the information on the computations of A_1 and A_2 on w.

We first introduce an acceptance-identifying decomposition of deterministic
finite automata.

Definition 2.1. A pair of DFAs \((A_1, A_2)\), where \(A_1 = (K_1, \Sigma, \delta_1, q_1, F_1)\) and \(A_2 = (K_2, \Sigma, \delta_2, q_2, F_2)\), forms an acceptance-identifying decomposition (AI-decomposition) of a DFA \(A = (K, \Sigma, \delta, q_0, F)\), if \(L(A) = L(A_1) \cap L(A_2)\). This decomposition is nontrivial if \(|K_1| < |K|\) and \(|K_2| < |K|\).

By decomposing \(A\) in this manner, one of the decomposed automata (say \(A_2\)) can act as an advisor and narrow down the set of input words for the other one (say \(A_1\)), whose task to recognize the words of \(L(A)\) may become easier.

Another requirement we could pose on a decomposition is to identify the final state of any computation of the original automaton by only knowing the final states of both corresponding computations of the automata forming the decomposition. This requirement can be formalized as follows.

Definition 2.2. A pair of DFAs \((A_1, A_2)\), where \(A_1 = (K_1, \Sigma, \delta_1, q_1, F_1)\) and \(A_2 = (K_2, \Sigma, \delta_2, q_2, F_2)\), forms a state-identifying decomposition (SI-decomposition) of a DFA \(A = (K, \Sigma, \delta, q_0, F)\), if there exists a mapping \(\beta: K_1 \times K_2 \rightarrow K\), such that it holds \(\beta(\delta_1(q_1, w), \delta_2(q_2, w)) = \delta(q_0, w)\) for all \(w \in \Sigma^*\). This decomposition is nontrivial if \(|K_1| < |K|\) and \(|K_2| < |K|\).

The third – and the weakest – requirement we pose on a decomposition of a DFA is to require that there must exist a way to determine whether the original automaton would accept some given input word based on knowing the states in which the computations of both decomposition automata have finished.

Definition 2.3. A pair of DFAs \((A_1, A_2)\), where \(A_1 = (K_1, \Sigma, \delta_1, q_1, F_1)\) and \(A_2 = (K_2, \Sigma, \delta_2, q_2, F_2)\), forms a weak acceptance-identifying decomposition (wAI-decomposition) of a DFA \(A = (K, \Sigma, \delta, q_0, F)\), if there exists a relation \(R \subseteq K_1 \times K_2\) such that it holds \(R(\delta_1(q_1, w), \delta_2(q_2, w)) \Leftrightarrow w \in L(A)\) for all \(w \in \Sigma^*\). This decomposition is nontrivial if \(|K_1| < |K|\) and \(|K_2| < |K|\).

Note that in the last two definitions, the sets of accepting states of \(A_1\) and \(A_2\) are irrelevant.

By a decomposability of a regular language \(L\) in some way, we shall mean the decomposability of the corresponding minimal automaton over \(\Sigma_L\).

To be able to compare these new types of decomposition to the parallel decompositions of state behavior introduced for sequential machines in [5], we shall redefine them for DFAs.

Definition 2.4. A DFA \(A' = (K', \Sigma, \delta', q'_0, F')\) is said to realize the state behavior of a DFA \(A = (K, \Sigma, \delta, q_0, F)\) if there exists an injective mapping \(\alpha: K \rightarrow K'\) such that

(i) \((\forall a \in \Sigma)(\forall q \in K); \delta'(\alpha(q), a) = \alpha(\delta(q, a))\),

(ii) \(\alpha(q_0) = q'_0\).

Moreover, \(A'\) is said to realize the state and acceptance behavior of \(A\), if in addition the following property holds:

(iii) \((\forall q \in K); \alpha(q) \in F' \Leftrightarrow q \in F\).
Theorem 3.1. A DFA $A = (K, \Sigma, \delta, q_0, F)$ has a nontrivial SB-decomposition if there exist two nontrivial S.P. partitions π_1 and π_2 on the set of states of A such that $\pi_1 \cdot \pi_2 = 0$. This decomposition is an ASB-decomposition if and only if these partitions separate the final states of A.

Proof. The proof is analogous to that in [5] but had to be extended for the ASB-decomposition. We omit it due to space constraints. □
For the other decompositions, we can derive the following sufficient conditions that exploit the concept of S.P. partitions.

Theorem 3.2. Let $A = (K, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton, let π_1 and π_2 be nontrivial S.P. partitions on the set of states of A, such that they separate the final states of A. Then A has a nontrivial AI-decomposition.

Proof. Since π_1 and π_2 separate the final states of A, there exist blocks B_1, \ldots, B_k and C_1, \ldots, C_l of the partitions π_1 and π_2 respectively, such that $(B_1 \cup \ldots \cup B_k) \cap (C_1 \cup \ldots \cup C_l) = F$. We shall construct two automata A_1 and A_2 having states corresponding to blocks of these partitions and show that (A_1, A_2) is a nontrivial AI-decomposition of A. Let $A_1 = (\pi_1, \Sigma, \delta, \{B_1, \ldots, B_k\})$ and $A_2 = (\pi_2, \Sigma, \delta, \{C_1, \ldots, C_l\})$ be DFAs with δ_i defined by $\delta_i([q]_{\pi_i}, a) = \delta(q, a)|_{\pi_i}$, $i \in \{1, 2\}$ (this definition does not depend on the choice of q since π_i is an S.P. partition). We now need to prove that $L(A_1) \cap L(A_2) = L(A)$.

Let $w \in L(A)$. Suppose that the computation of A on the word w ends in some accepting state $q_f \in F$. Then, from the construction of A_1 and A_2 it follows that the computation of A_1 on the word w ends in the state corresponding to the block $[q_f]_{\pi_1}$ of the partition π_i. Since $q_f \in F$, it must hold $[q_f]_{\pi_1} \in \{B_1, \ldots, B_k\}$ and $[q_f]_{\pi_2} \in \{C_1, \ldots, C_l\}$, hence from the construction of A_1, these blocks correspond to the accepting states in the respective automata. Thus $w \in L(A_i)$ for $i \in \{1, 2\}$, therefore $L(A) \subseteq L(A_1) \cap L(A_2)$.

Now suppose $w \in L(A_1) \cap L(A_2)$. Thus the computation of A_1 on w ends in one of the states B_1, \ldots, B_k, which means that the computation of A on w would end in a state from the union of blocks $B_1 \cup \ldots \cup B_k$. Using the same argument for A_2, we get that the computation of A on w would end in a state from $C_1 \cup \ldots \cup C_l$. Since $(B_1 \cup \ldots \cup B_k) \cap (C_1 \cup \ldots \cup C_l) = F$ we obtain that the computation of A ends in an accepting state, hence $w \in L(A)$ and $L(A_1) \cap L(A_2) \subseteq L(A)$.

Since both partitions are nontrivial, so is the AI-decomposition obtained. □

Theorem 3.3. Let $A = (K, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton, let π_1 and π_2 be nontrivial S.P. partitions on the set of states of A, such that $\pi_1 \cdot \pi_2 \preceq \{F, K \setminus F\}$. Then A has a nontrivial wAI-decomposition.

Proof. We shall construct A_1 and A_2 corresponding to the S.P. partitions π_1 and π_2 as follows: $A_1 = (\pi_1, \Sigma, \delta_i, \{[q]_{\pi_1}\}, \emptyset)$, where $\delta_i([q]_{\pi_1}, a) = \delta(q, a)|_{\pi_1}$, and $i \in \{1, 2\}$. To show that (A_1, A_2) is a wAI-decomposition of A, we define the relation $R \subseteq \pi_1 \times \pi_2$ by the equivalence $R(D_1, D_2) \iff (D_1 \cap D_2) \subseteq F$, where D_i is some block of the partition π_i. Now we need to prove that $\forall w \in \Sigma^*; w \in L(A) \iff R(\delta_1([q_0]_{\pi_1}, w), \delta_2([q_0]_{\pi_2}, w))$.

Let the computation of A on w end in some state $p \in K$. It follows that the computation of A_1 on the word w ends in the state corresponding to the block $[p]_{\pi_1}$, $i \in \{1, 2\}$. Thus $R(\delta_1([q_0]_{\pi_1}, w), \delta_2([q_0]_{\pi_2}, w)) \iff R([p]_{\pi_1}, [p]_{\pi_2})$ by the definition of R, we have $R(\delta_1([q_0]_{\pi_1}, w), \delta_2([q_0]_{\pi_2}, w)) \iff [p]_{\pi_1} \cap [p]_{\pi_2} \subseteq F$. Since $p \in [p]_{\pi_1} \cap [p]_{\pi_2}$, $[p]_{\pi_1} \cap [p]_{\pi_2}$ is a block of the partition $\pi_1 \cdot \pi_2$ and $\pi_1 \cdot \pi_2 \preceq \{F, K \setminus F\}$, it must hold that either $[p]_{\pi_1} \cap [p]_{\pi_2} \subseteq F$ or $[p]_{\pi_1} \cap [p]_{\pi_2} \subseteq K \setminus F$. Therefore $R(\delta_1([q_0]_{\pi_1}, w), \delta_2([q_0]_{\pi_2}, w)) \iff p \in F$ and the proof is complete. □

It follows directly from the definitions, that each SI-decomposition is also a wAI-decomposition, and so is each AI-decomposition. Also, each ASB-decomposition is an AI-decomposition, which is a consequence of the definition of acceptance.
and state behavior realization. For minimal automata, a relationship between AI- and SI-decompositions can be obtained.

Theorem 3.4. Let $A = (K, \Sigma, \delta, q_0, F)$ be a minimal DFA, let (A_1, A_2) be its AI-decomposition. Then (A_1, A_2) is also an SI-decomposition of A.

Proof. Since (A_1, A_2) is an AI-decomposition of A, $L(A) = L(A_1) \cap L(A_2)$. Therefore if we use the well-known Cartesian product construction, we obtain the automaton $A_1 \times A_2$ such that $L(A_1 \times A_2) = L(A)$. Since A is the minimal automaton accepting the language $L(A)$, there exists a mapping $\beta: K' \to K$ such that it holds $(\forall w \in \Sigma^*: \beta(\delta'(q_0, w)) = \delta(\beta'(q_0, w)))$, where δ' is the transition function of $A_1||A_2$, K' is its set of states and q_0' is its initial state. Since $A_1||A_2$ is a parallel connection (i.e., $K' = K_1 \times K_2$, q_0' is the pair of initial states of A_1 and A_2), it is easy to see that β is in fact exactly the mapping required by the definition of the SI-decomposition.

The ASB-decomposition is a combination of the SB-decomposition and the AI-decomposition, as the next theorem shows.

Theorem 3.5. Let A be a DFA without unreachable states. (A_1, A_2) is an ASB-decomposition of A iff (A_1, A_2) is both an SB-decomposition and an AI-decomposition of A.

Proof. The first implication clearly follows from the definitions, Theorem 3.2 and Theorem 3.4. Now let (A_1, A_2) be an SB- and AI-decomposition of $A = (K, \Sigma, \delta, q_0, F)$. Let α be the mapping given by the definition of SB-decomposition. We need to prove that for all states q of A, $q \in F$ iff $\alpha(q) \in F_1 \times F_2$, where F_i is the set of accepting states of A_i, $i \in \{1, 2\}$. Let $q \in K$ and let w be a word such that $\delta(q_0, w) = q$. Then $q \in F \iff w \in L(A) \iff w \in L(A_1) \cap L(A_2) \iff \alpha(q) \in F_1 \times F_2$, where the first equivalence is implied by the choice of w, the second holds because (A_1, A_2) is an AI-decomposition and the third is a consequence of the properties of α guaranteed by the SB-decomposition definition.

There is also a relationship between SB- and SI-decompositions, in fact SB-is a stronger version of the state-identifying decomposition, as the following two theorems show. We need the notion of reachability on pairs of states.

Definition 3.1. Let $A_1 = (K_1, \Sigma, \delta_1, p_1, F_1)$ and $A_2 = (K_2, \Sigma, \delta_2, p_2, F_2)$ be DFAs. We shall call a pair of states $(q, r) \in K_1 \times K_2$ reachable, if there exists a word $w \in \Sigma^*$ such that $\delta_1(p_1, w) = q$ and $\delta_2(p_2, w) = r$.

Theorem 3.6. Let $A = (K, \Sigma, \delta, q_0, F)$ be a DFA and let (A_1, A_2) be its SB-decomposition. Then (A_1, A_2) also forms an SI-decomposition of A.

Proof. Let $A_i = (K_i, \Sigma, \delta_i, q_i, F_i)$, $i \in \{1, 2\}$. Since (A_1, A_2) is an SB-decomposition of A, there exists an injective mapping $\alpha: K \to K_1 \times K_2$ such that it holds $\alpha(q_0) = (q_1, q_2)$ and $(\forall a \in \Sigma)(\forall p \in K): \alpha(\delta(p, a)) = (\delta_1(p_1, a), \delta_2(p_2, a))$, where $\alpha(p) = (p_1, p_2)$. Let us define a new mapping $\beta: K_1 \times K_2 \to K$ by

$$\beta(p_1, p_2) = \begin{cases} p & \text{if } \exists p \in K, \alpha(p) = (p_1, p_2) \\ q_0 & \text{otherwise}. \end{cases}$$

(1)

Since α is injective, there exists at most one such p and this definition is correct.
We now need to prove that β satisfies the condition from the definition of SI-decomposition, i.e., that $(\forall w \in \Sigma^*)$: $\beta(\delta_1(q_1, w), \delta_2(q_2, w)) = \delta(q_0, w)$. Since $\alpha(q_0) = (q_1, q_2)$ and all the pairs of states we encounter in the computation of $A_1 \| A_2$ are thus reachable, this follows from the definition of α and by an easy induction.

\[\square \]

Lemma 3.7. Let A be a DFA without unreachable states and let (A_1, A_2) be its SI-decomposition, with β being the corresponding mapping. Then (A_1, A_2) is an SB-decomposition of A if and only if β is injective on all reachable pairs of states.

Proof. Let (A_1, A_2) be an SB-decomposition of A. It clearly follows from Definition 2.2, that the corresponding β satisfies the equation (I) in the proof of Theorem 3.6 on all reachable pairs of states. Since the mapping α is a bijection between the set of states of A and the set of all reachable pairs of states of A_1 and A_2, β defined as its inverse on the set of reachable pairs of states will be injective on this set.

For the other implication, let (A_1, A_2) be an SI-decomposition of A and let β be injective on the set of reachable pairs of states, let β_r denote the mapping β restricted onto the set of all reachable pairs of states of A_1, A_2. Since A has no unreachable states, β_r is also surjective, thus we can define a new mapping $\alpha: K \to K_1 \times K_2$ by the equation $\alpha(q) = \beta_r^{-1}(q)$. Since β maps the initial state onto the initial state, so does α, and since β satisfies the condition from the Definition 2.2, it implies that also α satisfies the condition (i) from the definition of realization of state behavior. Therefore (A_1, A_2) is an SB-decomposition of A, with the corresponding mapping α.

\[\square \]

The converse of Theorem 3.6 does not hold. The minimal automaton for the language $L = \{a^k b^l | k \geq 0, l \geq 1\}$ gives a counterexample. Inspecting its S.P. partitions shows that it has no nontrivial SB-decomposition, but it can be AI-decomposed into minimal automata for languages $L_1 = \{a^k b^l | k \geq 0, l \geq 1\}$ and $L_2 = \{w | \#_b(w) = 4l; l \geq 0\}$. According to Theorem 3.4, this AI-decomposition is also state-identifying.

Each ASB-decomposition is obviously also an SB-decomposition. On the other hand, there exist SB-decomposable automata, that are ASB-undecomposable.

For example, the minimal automaton for the language

$$L_1 = \{ w \in \{a, b, c\}^* | \#_a(w) \mod 3 = 0 \land \#_b(w) \mod 5 = 0 \} \cup \{ w \in \{a, b, c\}^* | \#_a(w) \mod 3 = 2 \land \#_b(w) \mod 5 = 4 \}$$

has this property, because the corresponding S.P. partitions on the set of its states do not separate the final states in the sense of Definition 2.7.

It is also not so difficult to see that for any non-minimal automaton A without unreachable states, there exists a nontrivial AI- and wAI-decomposition (A_1, A_2) such that A_1 is the minimal automaton equivalent to A and A_2 has only one state. This decomposition is obviously not state-identifying.

Figure 1 summarizes all the relationships among the decomposition types that we have shown so far.

Now we show that for the case of so-called perfect decompositions, some of the types of decomposition mentioned coincide.
Definition 3.2. Let t be a type of decomposition, $t \in \{\text{ASB, SB, AI, SI, wAI}\}$. Let A be a DFA having n states, let A_1 and A_2 be DFAs having k and l states, respectively. We shall call the pair (A_1, A_2) a perfect t-decomposition of A, if it forms a t-decomposition of A and $n = k \cdot l$.

Theorem 3.8. Let A be a DFA with no unreachable states and let (A_1, A_2) be a pair of DFAs. Then (A_1, A_2) forms a perfect SI-decomposition of A iff (A_1, A_2) forms a perfect SB-decomposition of A.

Proof. One of the implications is a consequence of Theorem 3.6. As to the second one, since (A_1, A_2) forms a perfect SI-decomposition of A, each of the pairs of states of A_1 and A_2 is reachable and each pair has to correspond to a different state of A in the mapping β, therefore β is bijective and the theorem follows from Theorem 3.7. \qed

Corollary 3.9. Let A be a minimal DFA and let (A_1, A_2) be a pair of DFAs. Then (A_1, A_2) forms a perfect AI-decomposition of A iff (A_1, A_2) forms a perfect ASB-decomposition of A.

Proof. The claim follows from Theorem 3.6, Theorem 3.7 and Theorem 3.8. \qed

As a consequence of these facts, we can use the necessary and sufficient conditions stated in Theorem 3.10 to look for perfect AI- and SI-decompositions.

Now, let us inspect the relationship between decompositions of an automaton and the decompositions of the corresponding minimal automaton.

Theorem 3.10. Let $A = (K, \Sigma, \delta, q_0, F)$ be a DFA and let A_{min} be a minimal DFA such that $L(A) = L(A_{\text{min}})$. Let (A_1, A_2) be an SI-decomposition (AI-decomposition, wAI-decomposition) of A, then (A_1, A_2) also forms a decomposition of A_{min} of the same type.

Proof. First, note that this theorem does not state that any of the decompositions is nontrivial. To prove the statement for SI-decompositions, suppose that (A_1, A_2) is an SI-decomposition of A, thus there exists a mapping $\alpha: K_1 \times K_2 \rightarrow K$ such that it holds ($\forall w \in \Sigma^*$): $\alpha(\delta_1(q_1, w), \delta_2(q_2, w)) = \delta(q_0, w)$, where δ_1 and δ_2 are the transition functions and the initial state of the automaton A_i. Since A_{min} is the minimal automaton corresponding to A, there exists some mapping $\beta: K \rightarrow K_{\text{min}}$ such that ($\forall w \in \Sigma^*$): $\beta(\delta(q_0, w)) = \delta_{\text{min}}(\beta(q_0), w)$, where δ_{min} is
the transition function of A_{min} and K_{min} is the set of states of A_{min}. By the composition of these mappings we obtain the mapping $\beta \circ \alpha : K_1 \times K_2 \rightarrow K_{\text{min}}$, which combines A_1 and A_2 into A_{min} in the way that the definition of SI-decomposition requires. For both the AI- and the wAI-decomposition, this statement is trivial, since $L(A) = L(A_{\text{min}})$. \qed

Based on the above theorem it thus suffices to inspect the SI- (AI-, wAI-) decomposability of the minimal automaton accepting a given language, and if we show its undecomposability, we know that the recognition of this language cannot be simplified using an advisor of the respective type. However, this does not hold for SB- and ASB-decompositions, as exhibited by the following example.

Example 3.1. Let us consider the language $L = \{a^{2k}b^l | k \geq 0, l \geq 1\}$. The minimal automaton $A_{\text{min}} = (K, \Sigma_L, \delta, q_0, \{a_0, b_0\})$ has its transition function defined by the first transition diagram in Fig.2. We can easily show that this automaton does not have any nontrivial SB- (and thus neither ASB-) decomposition by enumerating its S.P. partitions.

Now let us examine the automaton $A' = (K', \Sigma_L, \delta', a_0, \{a_0, b_0\})$ with the transition function δ' defined by the second transition diagram in Fig.2. Clearly, $L(A') = L(A_{\text{min}})$, but by inspecting the lattice of S.P. partitions of A', we can find the pair $\pi_1 = \{\{a_0\}, \{a_1\}, \{b_0, b_1\}, \{R_0, R_1\}\}$ and $\pi_2 = \{\{a_0, a_1, b_0, R_0\}, \{b_1, R_1\}\}$ such that $\pi_1 \cdot \pi_2 = 0$ and they separate the final states of A'. By Theorem 3.1 we can use these partitions to construct a nontrivial ASB- (and thus also SB-) decomposition of A' formed by the automata A_1 and A_2 having two and four states, respectively. Note that both A_1 and A_2 have less states than A_{min}.

In the following theorem (inspired by a similar theorem in [5]) we state a condition, under which the situation from the last example cannot occur, i.e., under which any SB-decomposition of a DFA implies a (maybe simpler) SB-decomposition of the equivalent minimal DFA.

Theorem 3.11. Let $A = (K, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton and let $A_{\text{min}} = (K_{\text{min}}, \Sigma, \delta_{\text{min}}, q_{\text{min}}, F_{\text{min}})$ be the minimal DFA such that $L(A) = L(A_{\text{min}})$. Let (A_1, A_2) be a nontrivial SB-decomposition of A consisting of automata having k and l states. If the lattice of S.P. partitions of A is distributive, then there exists an SB-decomposition of A_{min} consisting of automata having k' and l' states, such that $k' \leq k$ and $l' \leq l$.

Proof. Since A_{min} is the minimal DFA such that $L(A) = L(A_{\text{min}})$, there exists a mapping $f : K \rightarrow K_{\text{min}}$ such that $(\forall w \in \Sigma^*) : f(\delta(q_0, w)) = \delta_{\text{min}}(q_{\text{min}}, w)$. Using the mapping f, let us define a partition ρ on the set of states of A by $p \equiv_\rho q \Leftrightarrow f(p) = f(q)$. Clearly, ρ is an S.P. partition.
Since \((A_1, A_2)\) is a nontrivial SB-decomposition of \(A\), we can use it to obtain S.P. partitions \(\pi_1\) and \(\pi_2\) on the set of states of \(A\) such that \(\pi_1 \cdot \pi_2 = 0\). Let us define new partitions \(\pi'_1\) and \(\pi'_2\) on the set of states of \(A_{\text{min}}\) by \(f(p) \equiv_{\pi'_1} f(q) \iff p \equiv_{\rho_1} q\). Since it holds that \(\rho + \pi_1 \leq \rho\), this definition does not depend on the choice of the states \(p\) and \(q\). It holds that \(|\pi'_1| = |\rho + \pi_1| \leq |\pi_1|\), therefore if we prove that \(\pi'_1\) and \(\pi'_2\) are S.P. partitions and \(\pi'_1 \cdot \pi'_2 = 0\), we can use them to construct the desired decomposition.

The fact that \(\pi'_1\) is an S.P. partition on the set of states of \(A_{\text{min}}\) is a trivial consequence of the fact that \(\rho + \pi_1\) is an S.P. partition on the set of states of \(A\). We need to prove that \(\pi'_1 \cdot \pi'_2 = 0\). Let us assume that \(p'\) and \(q'\) are states of \(A_{\text{min}}\) such that \(p' \equiv_{\pi'_1} q'\) and \(p, q\) are some states of \(A\) such that \(f(p) = p'\) and \(f(q) = q'\). Then \(p' \equiv_{\pi'_1} q'\) and \(p' \equiv_{\pi'_2} q'\), and by definition of \(\pi'_1\) we get \(p \equiv_{\rho + \pi_1} q\) and \(p \equiv_{\rho + \pi_2} q\), which is equivalent to \(p \equiv_{(\rho + \pi_1) \cdot (\rho + \pi_2)} q\). Since the lattice of all S.P. partitions of \(A\) is distributive, we have \((\rho + \pi_1) \cdot (\rho + \pi_2) = \rho + (\pi_1 \cdot \pi_2) = \rho + 0 = \rho\), therefore \(p \equiv_{\rho} q\), which by definition of \(\rho\) implies that \(f(p) = f(q)\), in other words \(p' = q'\). Hence \(\pi'_1 \cdot \pi'_2 = 0\). \(\square\)

4 Degrees of Decomposability

It is easy to see that for each type of decomposition, there exist undecomposable regular languages (e.g. \(L^{(n)} = \{a^k|k \geq n-1\}\) is wAI-undecomposable for each \(n \in \mathbb{N}\)). There also exist regular languages, that are perfectly decomposable in each way (e.g. \(L^{(k,l)} = \{w \in \{a, b\}^*|\#_a(w) \mod k = 0 \land \#_b(w) \mod l = 0\}\) has a perfect ASB-decomposition for all \(k, l \geq 2\)). We shall now investigate whether all values between these two limits can be achieved.

Definition 4.1. Let \(A\) be a DFA, let \((A_1, A_2)\) be its nontrivial SB- (ASB-) decomposition with the corresponding S.P. partitions \(\pi_1\) and \(\pi_2\). We shall call this decomposition redundant, if there exist S.P. partitions \(\pi'_1 \succeq \pi_1\) and \(\pi'_2 \succeq \pi_2\) such that at least one of these inequalities is strict, but it still holds \(\pi'_1 \cdot \pi'_2 = 0\) (and \(\pi'_1\) and \(\pi'_2\) separate the final states of \(A\)).

Lemma 4.1. For each \(r, s \in \mathbb{N}, r, s \geq 2\), there exists a minimal DFA \(A\) consisting of \(r, s\) states and having only one nontrivial nonredundant SB-decomposition (ASB-decomposition) up to the order of automata, consisting of automata having \(r\) and \(s\) states.

Proof. Let us study the minimal automaton \(A_{r,s} = (K, \Sigma, \delta, q_0, 0, F)\) defined by \(K = \{q_{i,j}|i \in \{0, \ldots, r-1\}, j \in \{0, \ldots, s-1\}\}, F = \{q_{r-1,s-1}\}\) and the transition function \(\delta\) defined by

\[
\begin{align*}
\delta(q_{i,j}, a) &= q_{i+1,j} &\text{for } i \in \{0, \ldots, r-2\}, j \in \{0, \ldots, s-1\} \\
\delta(q_{r-1,j}, a) &= q_{r-1,j} &\text{for } j \in \{0, \ldots, s-1\} \\
\delta(q_{i,j}, b) &= q_{i,j+1} &\text{for } i \in \{0, \ldots, r-1\}, j \in \{0, \ldots, s-2\} \\
\delta(q_{i,s-1}, b) &= q_{i,s-1} &\text{for } i \in \{0, \ldots, r-1\}.
\end{align*}
\]

To inspect the SB-decompositions of \(A_{r,s}\), let us study the S.P. partitions on the set of its states. From the method for generating all S.P. partitions of an automaton that is described in [5], we know that each nontrivial S.P. partition can be obtained as a sum of some partitions \(\pi_{p,t}^m\), where \(\pi_{p,t}^m\) denotes the minimal
discussed type can distinguish between any of the states q_i,j and both inequalities $i < i'$ and $j < j'$ hold. Since $q_{i,j} \equiv_{\pi} q_{i',j'}$, $\delta(q_{i,j}, a^{r-1}b^{s-1}j') = q_{i',j'}$, and $\delta(q_{i',j'}, a^{r-1}b^{s-1}j') = q_{2r-1,2s-1}j'$ (if $2i' < r$ and $2j' < s$), as a consequence of the substitution property of π, we obtain $q_{i,j} \equiv_{\pi} q_{2r-1,2s-1}j'$. By applying this argument a finite number of times (keeping in mind the construction of $A_{r,s}$), we obtain $q_{i,j} \equiv_{\pi} q_{r-1,s-1}$. Now let $k \in \{1, \ldots, r-1\}$ and let $l \in \{1, \ldots, s-1\}$. Then $\delta(q_{i,j}, a^{r-1}b^{s-1}j') = q_{k,l}$ and $\delta(q_{i',j'}, a^{r-1}b^{s-1}j') = q_{k+l, s+l}j'$. Since $k+l < r$, we have $q_{k+l, s+l}j' \equiv_{\pi} \{q_{r-1,s-1}j'\}$. Exploiting the substitution property again on this equivalence, using the words $a^{r-1}b^{s-1}i$, $b^{s-1}j$ and $b^{s-1}j'$, we obtain $q_{k+l, s+l}j' \equiv_{\pi} \{q_{r-1,s-1}j'\}$. Therefore in this case, no such $\pi_{p,t}$ partition can distinguish between states $q_{r-2,s-1}$, $q_{r-1,s-1}$ and $q_{r-2,s-2}$.

The last case to consider is the case of $\pi_{p,t}$ such that $p = q_{i,j}$, $t = q_{i',j'}$ and it holds $i > i'$ and $j < j'$. Since $q_{i,j} \equiv_{\pi} q_{i',j'}$, $\delta(q_{i,j}, a^{r-1}b^{s-1}j') = q_{r-1,s-1}(j'-j)$ and $\delta(q_{i',j'}, a^{r-1}b^{s-1}j') = q_{r-1-}(i'-i), s-1$, as a consequence of the substitution property of π, we have $q_{r-1,s-1}(j'-j) \equiv_{\pi} q_{r-1-}(i'-i), s-1$. By exploiting the substitution property again on this equivalence, using the words $a^{r-1}b^{s-1}i$, $b^{s-1}j$ and $b^{s-1}j'$, we obtain $q_{r-2,s-1} \equiv_{\pi} q_{r-2,s-2}$. Therefore in this case, no such $\pi_{p,t}$ partition can distinguish between states $q_{r-2,s-1}$, $q_{r-1,s-1}$ and $q_{r-2,s-2}$.

It is easy to verify that one nontrivial ASB-decomposition of $A_{r,s}$ is given by the S.P. partitions

$$\pi_1 = \{\{q_0,0, \ldots, q_0, s-1\}, \{q_1,0, \ldots, q_1, s-1\}, \ldots, \{q_{r-1,0}, \ldots, q_{r-1, s-1}\}\}$$

and

$$\pi_2 = \{\{0,0, \ldots, q_{r-1,0}\}, \{q_0,1, \ldots, q_{r-1,1}\}, \ldots, \{q_{0,s-1}, \ldots, q_{r-1,s-1}\}\}$$

Now we show that any other SB-decomposition of $A_{r,s}$ is given by S.P. partitions preceding to π_1 and π_2 in the partial order \preceq and therefore is redundant.

Indeed, notice that none of the $\pi_{p,t}$ partitions of the first and the second discussed type can distinguish between any of the states $q_{r-2,s-1}$, $q_{r-1,s-1}$ and $q_{r-2,s-2}$, therefore no sum of them can, either. For the partitions of the third type, it holds either $q_{r-2,s-1} \equiv_{\pi} q_{r-1,s-1}$ or $q_{r-1,s-1} \equiv_{\pi} q_{r-2,s-2}$, therefore it will take two partitions to distinguish between these three states. Hence any nontrivial SB-decomposition is determined by two S.P. partitions, both of which must be of the third type. But it is easy to see that for any partition π of this type it holds either $\pi \preceq \pi_1$ or $\pi \preceq \pi_2$.

Definition 4.2. Let $A = (K, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton, let $K \cap \{p_0, p_1, \ldots, p_{k-1}\} = \emptyset$ and let c be a new symbol not included in Σ. We shall define a k-extension A' of the automaton A by the following construction: $A' = (K \cup \{p_0, p_1, \ldots, p_{k-1}\}, \Sigma \cup \{c\}, \delta', p_0, F)$, where the transition function δ'
is defined as follows:

\[(\forall q \in K) (\forall a \in \Sigma); \quad \delta'(q, a) = \delta(q, a)\]

\[(\forall q \in K); \quad \delta'(q, c) = q\]

\[(\forall p \in \{p_0, p_1, \ldots, p_{k-1}\}) (\forall a \in \Sigma); \quad \delta'(p, a) = p\]

\[(\forall i \in \{0, 1, \ldots, k-2\}); \quad \delta'(p_i, c) = p_{i+1}\]

\[\delta'(p_{k-1}, c) = q_0.\]

Lemma 4.2. Let \(A \) be a DFA consisting of \(n \) states, all of which are reachable. Let \(A' \) be its \(k \)-extension. Then \(A \) has a nontrivial nonredundant SB-decomposition (ASB-decomposition) consisting of automata having \(r \) and \(s \) states iff \(A' \) has a nontrivial nonredundant decomposition of the same type, consisting of automata having \(k + r \) and \(k + s \) states.

Proof. We will try to inspect S.P. partitions on the set of states of \(A' \), using the notation from Definition 4.2. Let us assume that \(\pi' \) is an S.P. partition on the set of states of \(A' \) such that \(p_i \) and \(p_j \) are in the same block of \(\pi' \); \(i, j \in \{0, 1, \ldots, k-1\} \). As a consequence of the S.P. property, if \(i, j < k - 1 \) then also \(p_{i+1} \) and \(p_{j+1} \) are in the same block of \(\pi' \), because \(\delta'(p_i, c) = p_{i+1} \) and \(\delta'(p_j, c) = p_{j+1} \). By applying this argument a finite number of times, we can show that there exists some \(l \in \{0, 1, \ldots, k-2\} \) such that \(p_l \equiv_{\pi'} p_{k-1} \), and using the argument once more, we obtain \(p_{l+1} \equiv_{\pi'} q_0 \). However, it holds \(\delta'(p_i, a) = p_i \) for all \(a \in \Sigma \), hence \(p_l \equiv_{\pi'} \delta'(q_0, w) \) for all \(w \in \Sigma^* \). Since all of the states of \(A' \) are reachable, we have \(p_l \equiv_{\pi'} q \) for all \(q \in K \). Thus such a partition cannot distinguish between the original states of the automaton \(A \).

Now let us suppose that \(\pi' \) is an S.P. partition on the set of states of \(A' \) such that for some \(i \in \{0, 1, \ldots, k-1\} \), \(p_i \equiv_{\pi'} q \) for some \(q \) in \(K \). Then it also holds that \(p_i \equiv_{\pi'} p_{i+1} \), because \(\delta(p_i, c) = p_{i+1} \) and \(\delta(q, c) = q \). But we have already shown that \(p_i \equiv_{\pi'} p_{i+1} \) implies that all of the states in \(K \) are equivalent modulo \(\pi' \), thus this S.P. partition cannot distinguish between the states of \(A \), either.

From these observations it follows that if \(\pi' \) is any S.P. partition on the set of states of \(A' \) such that the states of \(A \) are not all equivalent modulo \(\pi' \), then \(\pi' \) must also contain \(k \) blocks, each of which contains only one state \(p_i \), where \(i \in \{0, 1, \ldots, k-1\} \). Now we can prove the equivalence stated in the theorem.

Let \(A \) have an SB-decomposition consisting of \(r \) and \(s \) states. Then there exist S.P. partitions \(\pi_1 \) and \(\pi_2 \) on the set of states of \(A \) having \(r \) and \(s \) blocks, such that \(\pi_1 \cdot \pi_2 = 0 \). Let us now construct new partitions \(\pi'_1 \) and \(\pi'_2 \) on the set of states of \(A' \) by \(\pi'_1 = \pi_1 \cup \{p_0, p_1, \ldots, p_{k-1}\} \) and \(\pi'_2 = \pi_2 \cup \{p_0, p_1, \ldots, p_{k-1}\} \). Obviously, \(\pi'_1 \) and \(\pi'_2 \) have substitution property, because for the states in \(K \) this property is inherited from \(\pi_1 \) and \(\pi_2 \), and the new states \(p_0, p_1, \ldots, p_{k-1} \) cannot violate this property either, because each of these states belongs to a separate block in \(\pi'_1 \) and \(\pi'_2 \), making the substitution property hold trivially. Neither do the new \(c \)-moves defined on the states from \(K \) violate the substitution property. Finally, it holds that \(\pi'_1 \cdot \pi'_2 = 0 \). To see this, note that for a state \(q \in K \), it holds \([q]_{\pi'_1} [q]_{\pi'_2} = [q]_{\pi_1} [q]_{\pi_2} = [q] \), since \(\pi_1 \cdot \pi_2 = 0 \). For a state \(q \in K' - K \), \([q]_{\pi'_1} = [q] \) for \(i \in \{1, 2\} \) thus \([q]_{\pi'_1} [q]_{\pi'_2} = [q] \), too. Hence each state of \(A' \) belongs to a separate block of \(\pi'_1 \cdot \pi'_2 \), which implies \(\pi'_1 \cdot \pi'_2 = 0 \). Therefore \(\pi'_1 \) and \(\pi'_2 \) induce an SB-decomposition of \(A' \). It is also easy to see that if \(\pi_1 \) and \(\pi_2 \) separate the final states of \(A \), then also \(\pi'_1 \) and \(\pi'_2 \) separate the final states of \(A' \), making the induced decomposition an ASB-decomposition.
On the other hand, let us now assume that \(A' \) has an SB-decomposition and \(\pi_1' \) and \(\pi_2' \) are the S.P. partitions on \(K' \) that induce this decomposition, thus \(\pi_1' \cdot \pi_2' = 0 \). From the observations made in the beginning of this proof, we know that any S.P. partition that can distinguish between the states in \(K \) in any way, must contain each of the states \(p_0, p_1, \ldots, p_k-1 \) in a separate block containing only this state. As \(\pi_1' \cdot \pi_2' = 0 \), for all \(q_1, q_2 \in K \), at least one of these partitions must distinguish between these states, i.e., \([q_1]_{\pi_1'} \neq [q_2]_{\pi_2'}\). If one of the partitions distinguished between all such pairs, it would imply that this partition must contain a separate block for each one of the states in \(K' \), thus becoming a trivial partition 0, resulting in a trivial decomposition. Therefore both \(\pi_1' \) and \(\pi_2' \) have to distinguish between some pair of states from \(K \), which implies that they both contain a separate block for each of the states \(p_0, p_1, \ldots, p_k-1 \) containing no other state. By removing these \(k \) blocks from \(\pi_1' \) and \(\pi_2' \), we obtain new partitions \(\pi_1 \) and \(\pi_2 \) on the set \(K \), such that \(\pi_1 = \pi_1' - \{\{p_0\}, \{p_1\}, \ldots, \{p_k-1\}\} \) and \(\pi_2 = \pi_2' - \{\{p_0\}, \{p_1\}, \ldots, \{p_k-1\}\} \). These partitions preserve the substitution property, since \((\forall a \in \Sigma)(\forall q \in K): \delta(q, a) \in K \) and \(\pi_1' \) and \(\pi_2' \) were S.P. partitions. It also holds \(\pi_1 \cdot \pi_2 = 0 \), as for all \(q_1, q_2 \in K \), \(q_1 \equiv_{\pi_1} q_2 \) implies \(q_1 \equiv_{\pi_1'} q_2 \) and that implies \(q_1 = q_2 \). So \(\pi_1 \) and \(\pi_2 \) induce an SB-decomposition of \(A \). As \(\pi_1' \) and \(\pi_2' \) were nontrivial, so are \(\pi_1 \) and \(\pi_2 \) and the obtained decomposition. It is again easy to see that if \(\pi_1' \) and \(\pi_2' \) separate the final states of \(A' \), then also \(\pi_1 \) and \(\pi_2 \) must separate the final states of \(A \).

The described relationship between the S.P. partitions on the set of states of \(A \) and the corresponding S.P. partitions on \(A' \) also implies, that each decomposition of \(A \) is nonredundant if the corresponding decomposition of \(A' \) is nonredundant, too.

Since a \(k \)-extension of a minimal DFA is again a minimal DFA, we can combine the lemmas to obtain the following theorem.

Theorem 4.3. Let \(n \in \mathbb{N} \) be such that \(n = k + r + s \), where \(r, s, k \in \mathbb{N} \), \(r, s \geq 2 \). Then there exists a minimal DFA \(A \) consisting of \(n \) states, such that it has only one nontrivial nonredundant SB-decomposition (ASB-decomposition) up to the order of the automata in the decomposition, and this decomposition consists of automata with \(k + r \) and \(k + s \) states.

References

[1] J. L. Balcázar, J. Diaz, J. Gabarro, *Structural Complexity I.*, Springer-Verlag New York, 1988

[2] S. Even, A. L. Selman, Y. Yacobi, *The Complexity of Promise Problems with Applications to Public-Key Cryptography*, Information and Control 61(2): 159-173 (1984)

[3] S. Yu, *State Complexity: Recent Results and Open Problems*, Fundamenta Informaticae 64: 471-480 (2005)

[4] J. C. Birget, *Intersection and Union of Regular Languages and State Complexity*, Information Processing Letters 43: 185-190 (1992)

[5] J. Hartmanis and R. E. Stearns, *Algebraic Structure Theory of Sequential Machines*, Prentice-Hall, 1966
[6] J. E. Hopcroft and J. D. Ullman, *Introduction to Automata Theory, Languages, and Computation*, Addison-Wesley, 1979