Network pharmacology-based prediction of potential targets of ethnic medicine Blumea balsamifera (L.) DC acting on anti-inflammatory effect

Juan Kong, Xulong Huang, Xiaosong Yang, Lingling Zhang, Xiaomei He, Qin Liu, Hongmei Wu *, Xiangpei Wang *

Department of Pharmacognosy, Guizhou University of Traditional Chinese Medicine, 50, Nanming District, Guiyang City, Guizhou Province, Guiyang 550002, PR China

*Corresponding author’s e-mail: wxp0123@126.com (Xiangpei Wang), whm0425@126.com (Hongmei Wu)

Abstract. Blumea balsamifera (L.) DC is an ethnic medicine with a significant anti-inflammatory effect. At present, there were many reports on the anti-inflammatory efficacy of B. balsamifera, but the mechanism of its is rarely reported. Therefore, the method of network pharmacology has been adopted in this paper to predict the molecular mechanism of the anti-inflammatory effect of B. balsamifera. The active chemical constituents of B. balsamifera were screened by reference to the literature, TCMSP and TCMID. A target data set of active chemical components was established by traditional chinese medicine target, TCMSP and BATMAN-TCM database. The target of the active ingredients were introduced into the HIT and TTD to establish a potential target data set of the B. balsamifera active ingredients. A OMIM was used to screen for inflammation-related genes and protein targets to establish an inflammatory target dataset. The complex network map of “active ingredient-target-disease” was constructed using Cytoscape3.6.1 software. A PPI analysis database was used to construct a protein interaction network of B. balsamifera component targets and inflammatory targets. GO functional and KEGG pathway enrichment analysis were performed by the biological information annotation database. As a result, 12 active chemical components in B. balsamifera were screened. The corresponding target of 724 active compounds were retrieved. There are 33 signaling pathways and 28 biological processes that were directly or indirectly related to the anti-inflammatory effects of B. balsamifera. Through enrichment analysis, the main signaling pathways of B. balsamifera include TNF signaling pathway, Hepatitis B, Toll-like receptor signaling pathway, NF-kappa B signaling pathway, etc. Finally, Network pharmacology provides new ideas and methods for the study of the anti-inflammatory mechanism of B. balsamifera.

1. Introduction
Blumea balsamifera (L.) DC belongs to the compositae family and is one of the ten famous miao national herbs in Guizhou Province, China. It has the functions of eliminating wind and dampness, detumescence and analgesic, antibacterial and insecticidal. Clinically, it is mainly used to treat rheumatoid arthritis, eczema dermatitis and pruritus [1-3]. B.alsamifera has a long medicinal history, which has been recorded in the “supplement to medicina” ancient books [4]. At present, B.alsamifera is also the only source of raw medicine for L-borneolum in pharmacopoeia of the People’s Republic of China in 2015. It contains flavonoids, phenolic acids, volatile oils and alkaloids, these chemical...
components were screened for activity [5-7]. Modern research shows the total flavonoids in *B. balsamifera* have obvious therapeutic effects on skin injury. *B. balsamifera* oil 1/5 and 1/10 reduced the number of inflammatory cells, increased wound-healing rates, and significantly increased the hydroxyproline content [8,9]. In addition, studies have shown that *B. balsamifera* has anti-acute and chronic inflammation effects [10]. Although most studies have shown that *B. balsamifera* has anti-inflammatory activity, no one has studied a complex interrelationship between its anti-inflammatory effects and cellular proteins.

The core idea of network pharmacology has a lot in common with the concept of holism and syndrome differentiation of TCM, and the characteristics of TCM with “multi-component, multi-channel, multi-target”. Network pharmacology provides a new method for the study of complex systems of TCM [11]. Therefore, in this paper, network pharmacology was adopted to collect the active components of *B. balsamifera* in the literature, find the target of active chemical components, establish a target dataset and a complex network diagram of “active component-target-disease”. Pathway enrichment analysis was performed based on GO conditions and KEGG. Finally, the anti-inflammatory mechanism of *B. balsamifera* was predicted. In order to provide reference for further study on anti-inflammatory effect of *B. balsamifera*.

2. Methods

2.1 The chemical structures and target screening

All the chemical components of *B. balsamifera* were collected from (1) literature (likely CNKI and PubMed database), (2) PubChem database (https://pubchem.ncbi.nlm.nih.gov), (3) Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, http://lsp.nwu.edu.cn/tcmsp.php), Screening the active chemical constituents of *B. balsamifera* by ADME parameters (OB ≥ 30% and DL ≥ 0.15) or pharmacodynamic activity. In this paper, the target data set of *B. balsamifera* active chemical constituents was established by TCMSP database, comprehensive analysis of traditional chinese medicine target database, BATMAN-TCM and SwissADME databases. The target of the active ingredients were introduced into the Chinese herbal active ingredient database (HIT, http://lifecenter.sgst.cn/hit/) and the therapeutic target database (TTD, http://bidd.nus.edu.sg/group/cjttd/) to screen the potential targets of the active ingredients, to establish a potential target data set of the *B. balsamifera* active ingredients. A comprehensive database of human genes and gene phenotypes (OMIM, http://www.omim.org/) was used to screen for inflammation-related genes and protein targets to establish an inflammatory target dataset. Then, the human target connexins were obtained from an interactive protein database (http://dip.doe-mbi.ucla.edu). Finally, all potential targets were transformed into the UniProt ID format by the UniProt database.

2.2 Network construction

The target of the active ingredient of *B. balsamifera*, the target of inflammation, and the target of the interacting protein were linked by PPI (http://www.genome.jp/kegg/) analysis into a “component-target-disease” network. Cytoscape 3.6.1 software was used to visually analyze this network to obtain three topological parameters of Betweenness Centrality, Closeness Centrality and Degree for each node, and select the target of the median larger than the three topological parameters as the target of anti-inflammatory effects of *B. balsamifera*.

2.3 Biological process analysis

The target was introduced into the DAVID (https://david.ncifcrf.gov/) database for KEGG pathway analysis and GO (Gene Ontology) biological process analysis. Protein interaction relationship analysis was performed on the final selected target points by using STRING (https://string-db.org/).

3. Result
3.1 Screening of active ingredients
Quercetin, Taxifolin, Stigmasterol, Catechin, Luteolin, Tamarixetin, and β-sitosterol were screened for 7 active compounds based on ADME parameters (OB ≥ 30% and DL ≥ 0.15). By consulting related literature, five active compounds of Bloomatin, Grasshopper ketone, Daucosterol, 7-hydroxycoumarin and sterubin were obtained on account of the pharmacodynamic activity of B. balsamifera. In the end, a total of 12 active compounds were selected.

3.2 Network construction of component-target-disease
A total of 683 target sites belonging to B. balsamifera active chemistry were screened by TCMSP, BATMAN-TCM and SwissADME databases and comprehensive analysis of traditional chinese medicine target database. Through the OMIM database, 778 inflammation-related targets were obtained. An interactive network of B. balsamifera to prevent inflammation was constructed by network pharmacology to obtain 724 interacting proteins. Through Cytoscape 3.6.1 software, it performed interactive network analysis and visual analysis on B. balsamifera. Different color and shape graphics were used to visualize it, and the network relationship between active chemical components and disease targets could be visually seen. The results were shown in figure 1. The yellow squares represented the target of drugs and diseases. It had 87 targets and were the most important target protein for anti-inflammatory of B. balsamifera. The yellow dots refer to the direct target of inflammation, which had 134 targets. The red triangles was the active chemical component predicted in B. balsamifera, there are 12. Blue dots represented the direct target of active chemical constituents of B. balsamifera, with 329. These purple dots were interactive proteins that link the active chemical constituents of B. balsamifera to disease targets, and there were 724.

3.3 B. balsamifera anti-inflammatory direct target analysis of topological parameters
An interactive network analysis of B. balsamifera was performed by Cytoscape 3.6.1 software, and 221 target proteins associated with inflammation were obtained, and topological parameters were calculated for these target proteins. The median values of the topological parameters Betweenness centrality, Closeness centrality, and Degree were obtained to be 0.0016, 0.2309, and 3.0. Targets with topological parameters greater than 0.0016, 0.2309, and 6.0 were used as potential target proteins for B. balsamifera anti-inflammatory, resulting in a total of 37 eligible targets. The results are shown in Table 1. 37 potential target proteins were used for protein interaction analysis. As shown in Figure 2.

Table. 1 Topological parameters related to the direct anti-inflammatory target of B. balsamifera
Uniprot ID	Protein names	Closeness Centrality	Degree	Betweeness Centrality
P41182	B cell lymphoma 6 protein	0.2322	8	0.0044
Q86WV6	Stimulator of interferon gene protein	0.2308	8	0.0040
P04150	Glucocorticoid receptor	0.2430	8	0.0130
O14920	Inhibitor of nuclear factor kappa-B kinase subunit β	0.2764	15	0.0046
Q9Y6K9	NF-κB essential regulator	0.2822	23	0.0171
Q99558	Mitogen-activated protein kinase 14	0.2634	13	0.0109
Q9Y4K3	TNF receptor related factor 6	0.2560	22	0.0219
Q99759	Mitogen-activated protein kinase 3	0.2439	10	0.0101
Q13158	FAS-associated death domain protein	0.2338	7	0.0041
Q13546	Receptor-interacting serine/threonine protein kinase 1	0.2514	7	0.0062
P25445	Tumor necrosis factor receptor superfamily member 6	0.2674	11	0.0143
P23219	Prostaglandin G / H synthetase 1	0.2957	9	0.0123
P37231	Peroxisome proliferators activate receptors γ	0.2953	12	0.0118
P35554	Prostaglandin G / H synthetase 2	0.3001	8	0.0099
Q04206	Transcription factor p65	0.2888	22	0.0174
P31749	RAC-α serine/threonine-protein kinase	0.3287	17	0.0348
P15692	Vascular endothelial growth factor A	0.3133	15	0.0166
P24385	G1 / S specific cyclin-D1	0.3136	13	0.0203
P14780	Matrix metalloproteinase-9	0.2907	7	0.0047
P01375	Tumor necrosis factor	0.2733	9	0.0169
P05412	Transcription factor AP-1	0.2875	15	0.0148
P05231	Interleukin-6	0.2722	8	0.0058
P04637	Cellular tumor antigen p53	0.3198	62	0.0739
P25963	NF-kappa-B inhibitor alpha	0.2920	20	0.0184
Q14790	Caspase-8	0.2756	7	0.0095
Q16665	Hypoxia-inducible factor 1-alpha	0.2686	13	0.0167
P13500	C-C motif chemokine 2	0.2701	6	0.0229
P01137	Transforming growth factor beta-1 proprotein	0.2663	9	0.0109
P09874	Poly[ADP-ribose] polymerase 1	0.3150	15	0.0282
O15111	Inhibitor of nuclear factor kappa-B kinase subunit alpha	0.3036	19	0.0187
P00533	Epidermal growth factor receptor	0.2849	21	0.0220
P05067	Amyloid-beta precursor protein	0.2688	14	0.0200
P35968	Vascular endothelial growth factor receptor 2	0.2851	13	0.0075
O15379	Histone deacetylase 3	0.2795	10	0.0089
P49682	C-X-C chemokine receptor type 3	0.2625	8	0.0334
P19838	Nuclear factor NF-kappa-B p105 subunit	0.2683	22	0.0135
3.4 Biological function analysis of GO

Thirty-seven potential targets were mapped to the DAVID database for GO biological function enrichment analysis. A total of 279 biological processes were enriched, and 28 biological processes with \(P \leq 0.00001 \) were obtained. The results were shown in Table 2.

Category	Term	Count	Count (%)	P-Value
\textsc{GOTERM_BP_DIRECT}	positive regulation of transcription from RNA polymerase II promoter	25	69.4	4.20E-22
\textsc{GOTERM_BP_DIRECT}	inflammatory response	15	41.7	1.10E-14
\textsc{GOTERM_BP_DIRECT}	positive regulation of NF-kappaB transcription factor activity	11	30.6	1.10E-13
\textsc{GOTERM_BP_DIRECT}	positive regulation of I-kappaB kinase/NF-kappaB signaling	11	30.6	7.40E-13
\textsc{GOTERM_BP_DIRECT}	cellular response to mechanical stimulus	9	25	1.50E-12
\textsc{GOTERM_BP_DIRECT}	negative regulation of apoptotic process	14	38.9	3.10E-12
\textsc{GOTERM_BP_DIRECT}	positive regulation of protein phosphorylation	10	27.8	3.60E-12
\textsc{GOTERM_BP_DIRECT}	I-kappaB kinase/NF-kappaB signaling	8	22.2	3.20E-11
\textsc{GOTERM_BP_DIRECT}	positive regulation of apoptotic process	11	30.6	3.50E-10
\textsc{GOTERM_BP_DIRECT}	cellular response to organic cyclic compound	7	19.4	2.20E-09
\textsc{GOTERM_BP_DIRECT}	positive regulation of smooth muscle cell proliferation	7	19.4	2.40E-09
\textsc{GOTERM_BP_DIRECT}	TRIF-dependent toll-like receptor signaling pathway	6	16.7	2.80E-09
\textsc{GOTERM_BP_DIRECT}	regulation of tumor necrosis factor-mediated signaling pathway	6	16.7	4.00E-09
3.5 Enrichment analysis of KEGG pathway

37 potential targets were mapped into the DAVID database for KEGG pathway enrichment analysis. A total of 81 signal pathways were obtained, including 33 signal pathways (P ≤ 0.00001). As shown in Table 3.

Category	Term	Count	Count (%)	P-Value
KEGG_PATHWAY	TNF signaling pathway	18	50	1.70E-22
KEGG_PATHWAY	Chagas disease (American trypanosomiasis)	16	44.4	4.30E-19
KEGG_PATHWAY	Apoptosis	14	38.9	8.50E-19
KEGG_PATHWAY	Hepatitis B	17	47.2	1.90E-18
KEGG_PATHWAY	Pathways in cancer	22	61.1	5.00E-18
KEGG_PATHWAY	Toll-like receptor signaling pathway	14	38.9	1.40E-15
KEGG_PATHWAY	RIG-I-like receptor signaling pathway	12	33.3	1.80E-14
KEGG_PATHWAY	Herpes simplex infection	15	41.7	7.70E-14
KEGG_PATHWAY	NOD-like receptor signaling pathway	11	30.6	8.60E-14
KEGG_PATHWAY	Pancreatic cancer	11	30.6	4.20E-13
KEGG_PATHWAY	Osteoclast differentiation	13	36.1	7.90E-13
KEGG_PATHWAY	MAPK signaling pathway	15	41.7	6.70E-12
KEGG_PATHWAY	Small cell lung cancer	11	30.6	6.90E-12
4. Discuss

B. balsamifera is one of the ten major miao medicines in guizhou province. Domestic and foreign studies have shown that it has obvious anti-inflammatory effect, but it is unclear about the mechanism of anti-inflammatory effects of *B. balsamifera*. Therefore, the network pharmacology research method was adopted in this paper, screening 12 active chemical constituents in *B. balsamifera* by this method. Targets for the action of 724 active compounds were searched and a “component-target-disease” interaction network map was constructed. There are 33 signaling pathways and 28 biological processes that are directly or indirectly related to the anti-inflammatory effects of *B. balsamifera*. By KEGG enrichment analysis, the main signaling pathway of *B. balsamifera* anti-inflammatory includes TNF signaling pathway, Hepatitis B, Toll-like receptor signaling pathway, NF-kappa B signaling pathway, and MAPK signaling pathway. According to the predicted results, the NF-kappaB signaling pathway is the closest, and this signaling pathway is involved in the pathogenesis of inflammation. The purpose of this work is to provide a reference for the study of the anti-inflammatory mechanism of the national medicine *B. balsamifera*.

Acknowledgements

This work was supported by special Project for Research and Development of Traditional Chinese Medicine Modernization Technology Industry in Guizhou Province (2014, NO. 3034-15), and Miao Medical Research Collaborative Innovation Center Project (2015, NO. 5). The authors thank the government of China for their financial support.

References

[1] Quality standards for traditional Chinese medicine and ethnic medicine in Guizhou Province. [M].
Guizhou: Guizhou Science and Technology Press, 2003.

[2] Mou, Z., Yang, X Y., Wu, H M., et al. Investigation on Plant Resources of Blumea balsamifera (L.) DC. in Beipanjiang River Basin and other places[J]. Lishizhen Medicine and Materia Medica Research, 2017, 28(4):981-983.

[3] Yuan, Y., Pang, Y X., Yuan, C. Antibacterial Constituents of Ethyl Acetate Extract from Blumea balsamifera (L.) DC[J]. Chinese Journal of Tropical Crops, 2018, 39(6):1195-1199.

[4] Pang, Y X., Xie, X L., Chen, Zh X., et al. Textual research of Blumea balsamifera[J]. Guizhou Agricultural Sciences, 2014, 42(6):10-13.

[5] Nessa, F., Ismail, Z., & Mohamed, N. Xanthine oxidase inhibitory activities of extracts and flavonoids of the leaves of Blumea balsamifera. Pharmaceutical Biology, 2010, 48(12), 1405–1412.

[6] Yuan, Y., Huang, M., Pang, Y.-X., et al. Variations in Essential Oil Yield, Composition, and Antioxidant Activity of Different Plant Organs from Blumea balsamifera (L.) DC. at Different Growth Times. Molecules, 2016, 21(8), 1024.

[7] Yan, M., Wang, Y F., Tang, H M. Extraction and determination of total alkaloids in guizhou Blumea balsamifera[J]. Hubei Agricultural Sciences, 2014, 53(10):2236-2239.

[8] Pang, Y., Zhang, Y., Huang, L., et al. Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L.) DC. on Skin Wound in Rats. International Journal of Molecular Sciences, 2017, 18(12), 2766.

[9] Yu, X P., Dan, W., Xuan, H., et al. Effect of volatile oil from Blumea Balsamifera (L.) DC. leaves on wound healing in mice[J]. Journal of Traditional Chinese Medicine, 2014, 34(6):716-724.

[10] Li, X F., Wu, H M., Yang, Y., et al. Comparison of anti-inflammatory effects of Blumea balsamifera from different areas of Guizhou[J]. Lishizhen Medicine and Materia Medica Research, 2018, 29(1):200-201.

[11] Li, S., Zhang, B. Traditional Chinese medicine network pharmacology: theory, methodology and application [J]. Chinese Journal of Natural Medicines, 2013, 11(2):110-120.