DETECTABILITY OF LOCAL GROUP DWARF GALAXY ANALOGUES AT HIGH REDSHIFTS

ANNA PATEJ1 AND ABRAHAM LOEB2

1Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA; apatej@physics.harvard.edu
2Department of Astronomy, Harvard University, 60 Garden St., Cambridge, MA 02138, USA; aloeb@cfa.harvard.edu

Received 2015 October 10; accepted 2015 November 30; published 2015 December 18

ABSTRACT

The dwarf galaxies of the Local Group are believed to be similar to the most abundant galaxies during the epoch of reionization ($z \gtrsim 6$). As a result of their proximity, there is a wealth of information that can be obtained about these galaxies; however, due to their low surface brightnesses, detecting their progenitors at high redshifts is challenging. We compare the physical properties of these dwarf galaxies to those of galaxies detected at high redshifts using Hubble Space Telescope and Spitzer observations and consider the promise of the upcoming James Webb Space Telescope on the prospects for detecting high-redshift analogues of these galaxies.

Key words: galaxies: dwarf – galaxies: high-redshift

1. INTRODUCTION

Local Group dwarf galaxies allow investigation into a wide range of astrophysical and cosmological processes; in addition to being representative of the most populous type of galaxy in the universe, their nearness enables detailed investigations of their stellar populations (for a recent overview, see McConnachie 2012). Due to their low masses and typically old stellar populations, many of these dwarfs are believed to have had the majority of their stars produced at early cosmic times and then had further star formation suppressed by reionization at redshifts $z \sim 6–10$ (e.g., Bullock et al. 2000; Ricotti & Gnedin 2005; Loeb & Furlanetto 2013). Observational arguments in favor of this interpretation for some of the dwarfs have been based on their statistical properties (Bovill & Ricotti 2009) and star formation histories (SFHs; Brown et al. 2014; Weisz et al. 2014, 2014). In this scenario, wherein some of these galaxies formed most of their stars at early cosmic times and are accordingly “fossils” of those times, some of the present-day dwarfs should be similar to their progenitors at higher redshifts.

The advent of optical and infrared space-based telescopes—the Hubble Space Telescope (HST) and the Spitzer Space Telescope—has allowed for the identification of numerous high-redshift ($z \gtrsim 6$) galaxies, whose properties, including their sizes, star formation rates, and masses, have now been examined in detail (e.g., Stark et al. 2009; Labbé et al. 2010; Oesch et al. 2010; Bouwens et al. 2011; Ellis et al. 2013; Ono et al. 2013). However, current observations are missing a population of fainter galaxies that are needed to reionize the universe at these high redshifts (e.g., Alvarez et al. 2012; Finkelstein et al. 2012; Bouwens et al. 2015; Robertson et al. 2015). Discovering some of these fainter galaxies will be within the purview of future observatories like the James Webb Space Telescope (JWST).

Part of this population of fainter galaxies is likely to consist of the progenitors of galaxies like the Local Group dwarfs. Boylan-Kolchin et al. (2015) used an analysis of the UV luminosities of the dwarfs to determine that JWST should be able to detect progenitors of galaxies like the Large Magellanic Cloud. Here, we compare the physical properties of the local dwarfs and the high-redshift galaxies that have already been detected, and place them in the context of the predicted detection limits for JWST to examine the fraction of dwarf progenitors—and thus the fraction of missing light—that may be observable in the near future. Throughout our discussion, we use the standard cosmological parameters $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.7$, and $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$.

2. DATA

We obtain data for over 100 local galaxies from McConnachie (2012), including their V band Vega magnitude m_V, half-light radius r_h, ellipticity ϵ, and average metallicity ([Fe/H]). To provide direct comparison with the high-redshift data, we convert r_h to the circularized half-light radius, $r_n = r_h \sqrt{1 - \epsilon}$, that is commonly employed. We select only the 87 galaxies that have all these quantities measured in McConnachie (2012), and note in particular that this excludes the Large and Small Magellanic Clouds (LMC and SMC).

We use metallicity as an input to the Flexible Stellar Population Synthesis (FSPS) code (Conroy et al. 2009; Conroy & Gunn 2010) to scale the galaxies back to $z = 6, 7$. Following the results of Weisz et al. (2014), who analyzed the SFHs of a subsample of 38 of these dwarfs, we remove those galaxies whose SFHs indicate that the majority of their stellar populations were formed later than these redshifts. We keep those whose SFHs are consistent with at least 50% (within errors) of the stars having been formed prior to $z = 6, 7$, as well as all the remaining galaxies from McConnachie (2012) whose SFHs have not yet been measured, for a total of 73 galaxies. We use a delayed tau-model with $\tau = 0.2$ Gyr, which assumes an early starburst such that nearly all the stars we see today were already present at those high redshifts. The code also calculates the evolution to $z = 0$, from which we take the predicted V band magnitude and compare it to m_V from McConnachie (2012) to obtain a correction for the stellar mass of each galaxy; we then use these values to correct the $z = 6, 7$ magnitudes since we assume that all the stars we see today were already present at those high redshifts.

The corresponding parameters for observed $z = 6$ and $z = 7$ galaxies are obtained from several sources. The Spitzer IRAC $3.6\,\mu$m fluxes of a sample of $z \sim 6$ galaxies are based on Gonzalez et al. (2012), and the $4.5\,\mu$m fluxes of $z \sim 7$ galaxies are taken from Labbé et al. (2010). We adopt the 2σ lower and upper limits on the fluxes, corrected to $S/N = 5$, which gives $F_{3.6} = [38.9, 667.0]$ nJy and $F_{4.5} = [13.3, 637.5]$ nJy. Oesch et al. (2010) provides a value of $r_n = 0.7 \pm 0.3$ kpc for...
detected galaxies at these redshifts, measured from near-infrared observations using HST. We again adopt the 2σ bounds on this quantity; accordingly, the range of observed sizes that we use is 0.1–1.3 kpc.

The future JWST mission’s NIRCam imager will have two filters, F356W and F444W, which will cover the bandwidth of the Spitzer filters above. For the purposes of this comparison, we will assume that the Spitzer 3.6 μm filter is identical to F356W and the 4.5 μm filter is identical to F444W.

3. COMPARISON OF PHYSICAL PARAMETERS

We use the FSPS-derived fluxes and the sizes \(r_\text{h} \) to calculate the surface brightness in Jy/arcsec\(^2\) for the dwarfs at \(z = 6 \) and \(z = 7 \). We selected those galaxies with cumulative SFHs \(\gtrsim 0.5 \) (within the error profile) at early times from Weisz et al. (2014) and used \(\tau = 0.2 \) Gyr to scale them, as discussed in Section 2, as well as all the remaining galaxies that do not have measured SFHs. We additionally plot the region bounded by the 2σ limits on the surface brightness and half-light radius for galaxies detected at \(z \sim 6 \) and \(z \sim 7 \), using Spitzer 3.6 and 4.5 μm fluxes, respectively. Figure 1 shows these regions alongside the scaled galaxies selected from Weisz et al. (2014) and the remaining galaxies from McConnachie (2012). From this, we see that virtually none of the local dwarf analogues have been detected yet.

Nevertheless, the sizes of the dwarfs and the high-redshift galaxies agree extremely well, excluding the extreme smallest and faintest objects. However, we do not include in our comparison a scaling of \(r_\text{h} \) with redshift. Luminous galaxies at higher redshifts have been observed to have their sizes scaled by a factor of \((1 + z)^{-s} \), where \(s \) is in the range of 1.0–1.5 (e.g., Oesch et al. 2010; Mosleh et al. 2012). There is some indication, however, that at the lowest luminosities yet studied, the half-light radius remains approximately constant with redshift (see Figure 12 of Ono et al. 2013). Our results are consistent with the notion that the Local Group galaxies had roughly the same size at high redshifts as they have at present.

4. PREDICTIONS FOR JWST

JWST will rely on the NIRCam imager (Rieke et al. 2005; Beichman et al. 2012) to obtain photometry of high-redshift galaxies. We use the prototype exposure time calculator (ETC) for NIRCam\(^3\) to compute the signal-to-noise ratio for the dwarf galaxies scaled back to high redshifts. We assume a total of 100 hours of exposure time; with such a set-up, the ETC predicts that a point source flux of 1.0 nJy can be detected in F356W and 2.0 nJy in F444W.

We can then calculate the minimum surface brightness for the local galaxy analogues in each band. We assume that, as is currently done with HST/Spitzer observations of high-redshift galaxies, the size of the galaxies is measured from bands at shorter wavelengths. Accordingly, in Figure 1, we also plot a shaded region bounded by the diffraction-limited radius in the 2.0 μm filter at these redshifts and by the surface brightness corresponding to the S/N = 5 fluxes calculated by the ETC. We caution, however, that when comparing the sizes care must be taken, as the data for the galaxies use the half-light radius, whereas the minimum size prediction for JWST is given by the radius of a high-redshift object in the diffraction limit.

From Figure 1, we can see that JWST can be expected to discover some of the local dwarfs if their stars had already formed at early cosmic times. In particular, we predict that roughly 60%–65% of the combined light of this subsample of dwarfs (corresponding to a detection of 9/73 dwarfs at 4.5 μm and 13/73 dwarfs at 3.6 μm) will be accessible to JWST. However, due to the selection criteria we imposed in Section 2, some of the brightest dwarf galaxies in the Local Volume were omitted from our analysis, including the Magellanic Clouds and Fornax; if such galaxies were able to be captured by our

\(^3\) http://jwstetc.stsci.edu/etc/input/nircam/imaging/
procedure, these fractions could be higher. This differs from Boylan-Kolchin et al. (2015) primarily due to our uniform assumption that the galaxies we analyze formed most of their stars at very early times. If it is the case that significant star formation occurs late in the galaxy’s evolution, then there will not be enough light emitted to render the galaxy detectable even by JWST. Accordingly, the predicted fluxes will need to be scaled by the fraction of stars formed by $z \approx 6, 7$ once more of the galaxies have their SFHs analyzed.

We can compare some of our results for individual galaxies directly to the predictions of Boylan-Kolchin et al. (2015) in their Figure 4, which shows the predicted detectability at $z \sim 7$ of a few Local Group dwarfs from the UV luminosity function. None of the galaxies from McConnachie (2012) whose progenitors we predict to be detectable at $z \sim 7$ are included in the sample of Boylan-Kolchin et al. (2015). Of the dwarfs that Boylan-Kolchin et al. (2015) studied, our analysis includes Canes Venatici I, Draco, Leo T, Sculptor, and Ursa Minor; the remainder of their dwarfs were excluded in our analysis due to their incompatible SFHs or lack of required r_h or m_V data. We find that the progenitors of these galaxies are not expected to be detectable at high redshifts by JWST, which agrees with the predictions of Boylan-Kolchin et al. (2015).

5. ADDITIONAL PROSPECTS

Our calculated fluxes are predicated upon the assumption that the stellar populations of the $z = 0$ dwarfs are the modern analogues of the stars at $z \sim 6-7$. However, these stars may be supplemented by PopIII-like stars, which are predicted to have masses in the range $10-1000 M_\odot$ and short lifetimes (Abel et al. 2002; Prescott et al. 2009; Cassata et al. 2013; Loeb & Furlanetto 2013; Sobral et al. 2015). Accordingly, in Figure 2 we consider the scenario in which the dwarf galaxies are 10 times more luminous at high redshifts due to an ancient population of stars that no longer exists, which would represent extremely optimistic prospects for detectability.

In this case, we find that some of the dwarf progenitors could be among the galaxies already found with HST and Spitzer. The fraction of the light of the sample of dwarfs considered here that would potentially be detectable by JWST would increase to $\sim 67\%$. This scenario can be distinguished from the fiducial one based on spectroscopy; several theoretical works have indicated that such a massive stars would have strong helium line emission, which would distinguish these stellar populations (Bromm et al. 2001; Tumlinson et al. 2001; Schaerer 2003). However, this is a highly optimistic estimate, considering that it would require dominance of Population III stars at these redshifts.

An alternative source of an increase in surface brightness at early times may be provided by tidal stripping. The simulations of Peña-Rubio et al. (2008) illustrate the effect of tidal stripping on dwarf galaxies by massive halos. This effect decreases both the sizes and surface brightnesses of the dwarf galaxies. If tidal stripping has affected some of the dwarfs, then it is likely that at higher redshifts they were both brighter and larger, which would make the analogues of these galaxies more likely to be detectable, although observations suggest that that the population of dwarfs significantly affected is small (e.g., Kirby et al. 2013).

In addition to the enhanced capabilities of JWST relative to HST and Spitzer, we note that further gains in sensitivity can be made using gravitational lensing (Mashian & Loeb 2013; Atek et al. 2015). Lensing has already permitted the discovery of high-redshift galaxies even smaller than the sizes considered here (e.g., Kawamata et al. 2015); this technique using JWST is likely to be able to probe a larger sample of dwarf progenitors.

6. CONCLUSIONS

We have compared the physical properties of Local Group dwarf galaxies to high-redshift galaxies. We find that the sizes of the two populations agree very well, but when translated to higher redshifts, these dwarfs are too faint to be detected at present. However, in a deep field, the upcoming JWST mission should be able to detect analogues of the brightest of these objects, assuming that their stars formed early. The number of detectable galaxies increases if we assume a population of ancient, massive stars in these galaxies at high redshifts;
spectroscopy and number counts will enable us to distinguish these two scenarios. Additionally, gravitational lensing and the effects of tidal stripping can amplify the potential for analogues of these galaxies to be detected at high redshifts.

We would like to thank Charlie Conroy and Matt Walker for helpful comments on a draft of this paper. We are also grateful to Charlie Conroy for useful discussions regarding the FSPS code.

This work was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144152 and by NSF grant No. AST-1312034.

This analysis made use of NumPy (van der Walt et al. 2011) and Matplotlib (Hunter 2007).

REFERENCES

Abel, T., Bryan, G. L., & Norman, M. L. 2002, Sci, 295, 93
Alvarez, M. A., Finlator, K., & Trenti, M. 2012, ApJL, 759, L38
Atek, H., Richard, J., Jauzac, M., et al. 2015, ApJ, 814, 69
Beichmann, C. A., Rieke, M., Eisenstein, D., et al. 2012, Proc. SPIE, 8442, 84422N
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2011, ApJ, 737, 90
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2015, arXiv:1503.08228
Bovill, M. S., & Ricotti, M. 2009, ApJ, 693, 1859
Boylan-Kolchin, M., Weisz, D. R., Johnson, B. D., et al. 2015, MNRAS, 453, 1503
Bromm, V., Kudritzki, R. P., & Loeb, A. 2001, ApJ, 552, 464
Brown, T. M., Tumlinson, J., Geha, M., et al. 2014, ApJ, 796, 91
Bullock, J. S., Kravtsov, A. V., & Weinberg, D. H. 2000, ApJ, 539, 517
Cassata, P., Le Fèvre, O., Charlot, S., et al. 2013, A&A, 556, 68
Conroy, C., & Gunn, J. 2010, ApJ, 712, 833
Conroy, C., Gunn, J., & White, M. 2009, ApJ, 699, 486
Ellis, R. S., McLure, R. J., Dunlop, J. S., et al. 2013, ApJ, 763, 7
Finkelstein, S. L., Papovich, C., Ryan, R. E., et al. 2012, ApJ, 758, 93
González, V., Bouwens, R. J., Labbé, I., et al. 2012, ApJ, 755, 148
Hunter, J. D. 2007, CSE, 9, 90
Kawamata, R., Ishigaki, M., Shimasaku, K., Oguri, M., & Ouchi, M. 2015, ApJ, 804, 103
Kirby, E. N., Cohen, J. G., Guhathakurta, P., et al. 2013, ApJ, 779, 102
Labbé, I., González, V., Bouwens, R. J., et al. 2010, ApJ, 716, 103
Loeb, A., & Furlanetto, S. R. 2013, The First Galaxies in the Universe (Princeton, NJ: Princeton Univ. Press)
Mashian, N., & Loeb, A. 2013, JCAP, 12, 017
McConnachie, A. W. 2012, AJ, 144, 4
Mosleh, M., Williams, R. J., Fransx, M., et al. 2012, ApJ, 756, 12
Oesch, P. A., Bouwens, R. J., Carollo, C. M., et al. 2010, ApJ, 709, 21
Ono, Y., Ouchi, M., Curtis-Lake, E., et al. 2013, ApJ, 777, 155
Peñarrubia, J., Navarro, J. F., & McConnachie, A. W. 2008, ApJ, 673, 226
Prescott, M. K. M., Dey, A., & Jannuzi, B. T. 2009, ApJ, 702, 554
Ricotti, M., & Gnedin, N. Y. 2005, ApJ, 629, 259
Rieke, M. J., Kelly, D., & Horner, S. 2005, Proc. SPIE, 5904, 1
Robertson, B. E., Ellis, R. S., Furlanetto, S. R., & Dunlop, J. S. 2015, ApJL, 802, L19
Schaerer, D. 2003, A&A, 397, 527
 Sobral, D., Matthee, J., Darvish, B., et al. 2015, ApJ, 808, 139
Stark, D. P., Ellis, R. S., Bunker, A., et al. 2009, ApJ, 697, 1493
Tumlinson, J., Giroux, M. L., & Shull, J. M. 2001, ApJ, 550, 1
van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, CSE, 13, 22
Weisz, D. R., Dolphin, A. E., Skillman, E. D., et al. 2014, ApJ, 789, 148
Weisz, D. R., Johnson, B. D., & Conroy, C. 2014, ApJL, 794, L3