Supporting Information for

A Library of Cationic Organic Dyes for Visible-Light Driven Photoredox Transformations

Spencer P. Pitre, Christopher D. McTiernan, and Juan C. Scaiano*

Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie, Ottawa K1N 6N5, Canada.

Email: scaiano@photo.chem.uottawa.ca

Table of Contents

A. Power spectrum for LedEngin 90 W warm-white LEDs
B. Dehalogenation of meso-1,2-dibromo-1,2-diphenylethane using Methylene Blue
C. Dehalogenation of meso-1,2-dibromo-1,2-diphenylethane control reactions
D. Excited Dye quenching by N,N,N',N'-tetramethylethylenediamine (TMEDA)
E. Quenching of \(^3\)Ru(bpy)\(_3\)Cl\(_2\) by trans-Stilbene
F. trans-Stilbene control reactions with Ru(bpy)\(_3\)Cl\(_2\) and fac-Ir(ppy)\(_3\)
G. Synthesis of 1-phenyl-1,2,3,4-tetrahydroisoquinoline
H. Light mediated Aza-Henry and control reactions using Methylene Blue
I. Kinetic analysis of the Aza-Henry reaction with Methylene Blue
J. Excited Dye quenching by 1-phenyl-1,2,3,4-tetrahydroisoquinoline
K. Excited Dye quenching by molecular oxygen
L. Spectral data of reaction products
M. NMR spectra
N. Determination of triplet energies by laser flash photolysis
O. Electrochemical determination of ground-state reduction potentials
P. Concentration of quencher required to quench 50 % and 90 % of excited photocatalyst
Q. References
A. Power spectrum for LedEngin 90 W warm-white LEDs

![Power spectrum graph](image)

Figure S1. Power spectrum for one LedEngin 90 W warm-white LED used in a typical photochemical reaction recorded with a Luzchem SPR-4001 spectroradiometer.

B. Dehalogenation of *meso*-1,2-dibromo-1,2-diphenylethane using Methylene Blue

![Chemical structure](image)

Irradiation Time	Percent Conversion	E:Z Ratios
18 h	Quantitative	13:1
1 h	96%	99:1
30 min.	92%	99:1
10 min.	83%	99:1
5 min.	66%	99:1

Reaction Conditions: An oven dried 10 mL schlenk tube was charged with *meso*-1,2-dibromo-1,2-diphenylethane (0.3 mmol, 102 mg) and Methylene Blue (0.003 mmol, 1.1 mg). The contents were dissolved in 5 mL of dry DMF, followed by the addition of TMEDA (0.6 mmol, 90 µL). The reaction was purged with argon for 15 minutes, followed by irradiation with 2 warm white LEDs. The reaction mixture was extracted with ether (x3) and washed with brine (x5). The organic phase was dried with MgSO$_4$, and concentrated via rotary evaporation. Percent conversion and selectivity were determined by 1H NMR analysis.
C. Dehalogenation of *meso*-1,2-dibromo-1,2-diphenylethane control reactions

\[
\begin{array}{c}
\text{Br} \quad \text{Br} \\
\text{C}=\text{C} \quad \text{H} \\
\text{phenyl} \quad \text{phenyl}
\end{array}
\quad \overset{\text{DMF, h\textsubscript{(1 h)}}}{\text{h\textsubscript{(1 h)}}}
\quad \begin{array}{c}
\text{C}-\text{C} \\
\text{H} \\
\text{phenyl} \quad \text{phenyl}
\end{array}
\quad +
\begin{array}{c}
\text{phenyl} \\
\text{phenyl}
\end{array}
\]

Irradiation Source	Percent Conversion	E:Z Ratios
Warm-White LEDs	No Reaction	N. A.
UVA	No Reaction	N. A.
UVB	No Reaction	N. A.
UVC	No Reaction	N. A.

Reaction Conditions: An oven dried 10 mL schlenk tube was charged with *meso*-1,2-dibromo-1,2-diphenylethane, which was dissolved in 5 mL of dry DMF. The reaction was purged with argon for 15 minutes, followed by irradiation with 2 warm white LEDs or a Luzchem photoreactor with the corresponding UV-bulbs. The reaction mixture was extracted with ether (x3) and washed with brine (x5). The organic phase was dried with MgSO\textsubscript{4}, and concentrated via rotary evaporation. Percent conversion and E:Z ratios were determined by 1H NMR analysis.

\[
\begin{array}{c}
\text{Br} \quad \text{Br} \\
\text{C}=\text{C} \quad \text{H} \\
\text{phenyl} \quad \text{phenyl}
\end{array}
\quad \overset{2 \text{ equiv. TMEDA}}{\text{DMF, h\textsubscript{(1 h)}}}
\quad \begin{array}{c}
\text{C}-\text{C} \\
\text{H} \\
\text{phenyl} \quad \text{phenyl}
\end{array}
\quad +
\begin{array}{c}
\text{phenyl} \\
\text{phenyl}
\end{array}
\]

Irradiation Source	Percent Conversion	E:Z Ratio
Warm-White LEDs (5 min.)	No Reaction	N. A.
Warm-White LEDs	Trace	N. A.
UVA	96%	5.4:1
UVB	91%	1.5:1

Reaction Conditions: An oven dried 10 mL schlenk tube was charged with *meso*-1,2-dibromo-1,2-diphenylethane (0.3 mmol, 102 mg), which was dissolved in 5 mL of dry DMF, followed by the addition of TMEDA (0.6 mmol, 90 \textmu L). The reaction was purged with argon for 15 minutes, followed by irradiation with 2 warm white LEDs. The reaction mixture was extracted with ether (x3) and washed with brine (x5). The organic phase was dried with MgSO\textsubscript{4}, and concentrated via rotary evaporation. Percent conversion and E:Z ratios were determined by 1H NMR analysis.
D. Excited Dye quenching by \textit{N,N,N',N'-tetramethylethylene diamine (TMEDA)}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figS2}
\caption{Representative kinetic bimolecular quenching plot for 3Methylene Blue and TMEDA.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figS3}
\caption{Representative kinetic bimolecular quenching plot for 3Thionin and TMEDA.}
\end{figure}
Figure S4. Representative kinetic bimolecular quenching plot for 3New Methylene Blue N and TMEDA.

Figure S5. Representative kinetic bimolecular quenching plot for 31,9-dimethyl Methylene Blue and TMEDA.
Figure S6. Representative kinetic bimolecular quenching plot for \(^3 \)Methylene Green and TMEDA.

Figure S7. Representative Stern-Volmer quenching plot for \(^1\)Brilliant Cresyl Blue and TMEDA.
Figure S8. Representative Stern-Volmer quenching plot for 1Nile Blue and TMEDA.

Figure S9. Representative Stern-Volmer quenching plot for 1Pyronin Y and TMEDA.
Figure S10. Representative Stern-Volmer quenching plot for 1Rhodamine 6G and TMEDA.

Figure S11. Representative Stern-Volmer quenching plot for 1Rhodamine B and TMEDA.
Figure S12. Representative kinetic bimolecular quenching plot for 3Phenosafranin and TMEDA.

Figure S13. Representative kinetic bimolecular quenching plot for 3Safranin O and TMEDA.
Figure S14. Representative kinetic bimolecular quenching plot for \(^3\)Methylene Violet 3RAX and TMEDA.

Figure S15. Representative kinetic bimolecular quenching plot for \(^3\)9-mesityl-10-methylacridinium perchlorate and TMEDA.
Figure S16. Representative kinetic bimolecular quenching plot for 3Ru(bpy)$_3$Cl$_2$ and TMEDA.

Figure S17. Representative kinetic bimolecular quenching plot for 3fac-Ir(ppy)$_3$ and TMEDA.
E. Quenching of $^3\text{Ru(bpy)}_3\text{Cl}_2$ by trans-Stilbene

Figure S18. Representative kinetic bimolecular quenching plot for $^3\text{Ru(bpy)}_3\text{Cl}_2$ and trans-stilbene.

F. trans-Stilbene control reactions with $\text{Ru(bpy)}_3\text{Cl}_2$ and fac-Ir(ppy)$_3$

\[
\begin{align*}
\text{trans-Stilbene} & \quad \text{1 mol\% $\text{Ru(bpy)}_3\text{Cl}_2$} \\
& \quad \text{2 equiv. TMEDA} \\
& \quad \text{DMF, h\text{\textregistered} (5 min)} \\
\rightarrow & \quad \text{DMF, h\text{\textregistered} (5 min)} \\
\quad & \quad \text{E:Z = 2.4:1} \\
\end{align*}
\]

\[
\begin{align*}
\text{trans-Stilbene} & \quad \text{1 mol\% fac-Ir(ppy)$_3$} \\
& \quad \text{2 equiv. TMEDA} \\
& \quad \text{DMF, h\text{\textregistered} (5 min)} \\
\rightarrow & \quad \text{DMF, h\text{\textregistered} (5 min)} \\
\quad & \quad \text{E:Z = 11.5:1} \\
\end{align*}
\]

Reaction Conditions: An oven dried 10 mL schlenk tube was charged with meso-1,2-dibromo-1,2-diphenylethane (0.3 mmol, 102 mg) and Ru(bpy)$_3$Cl$_2$ or fac-Ir(ppy)$_3$ (0.003 mmol). The contents were dissolved in 5 mL of dry DMF, followed by the addition of TMEDA (0.6 mmol, 90 µL). The reaction was purged with argon for 15 minutes, followed by irradiation with 2 warm white LEDs. The reaction mixture was extracted with ether (x3) and washed with brine (x5). The organic phase was dried with MgSO$_4$, and concentrated via rotary evaporation. E:Z ratios were determined by 1H NMR analysis.
G. Synthesis of 1-phenyl-1,2,3,4-tetrahydroisoquinoline

A 250 mL three-neck round bottom flask was charged with Cul (600 mg, 3.0 mmol) and K₃PO₄ (12.75 g, 60 mmol), and was evacuated and back-filled with argon. 2-Propanol (30 mL), ethylene glycol (3.33 mL, 30 mmol), 1,2,3,4-tetrahydroisoquinoline (6.0 mL, 45 mmol), and iodobenzene (3.36 mL, 30 mmol) were then added by syringe at room temperature. The reaction mixture was heated to 90 °C for 24 hours and then allowed to cool to room temperature. The reaction mixture was then diluted with diethyl ether (60 mL) and water (60 mL), and the organic layer was extracted with diethyl ether (x2). The organic phase was dried with MgSO₄, and the solvent was removed by rotary evaporation. The crude mixture was purified by flash column chromatography (20:1 Hexanes:EtOAc) to give the final product as an off-white solid (3.66 g, 58% isolated yield).

¹H NMR (400 MHz, CDCl₃): δ 7.34-7.27 (m, 2 H), 7.23-7.15 (m, 4 H), 7.00 (d, J=7.84 Hz, 2 H), 6.84 (t, J=7.25 Hz, 1 H), 4.43 (s, 2 H), 3.58 (t, J=5.88 Hz, 2 H), 3.00 (t, J=5.78 Hz, 2 H)

Reference: Org. Biomol. Chem. 2010, 8, 4077.

H. Light mediated Aza-Henry and control reactions using Methylene Blue

Note: For the following experiments, a 10 W 660 nm LED from LedEngin was used as the irradiation source to avoid any direct excitation of 1,3-diphenylisobenzofuran (DPBF).

Reaction Conditions: An oven dried 10 mL schlenk flask was charged with 2-phenyl-1,2,3,4-tetrahydroisoquinoline (0.3 mmol, 63 mg) and Methylene Blue (0.003 mmol, 1.1 mg). The contents were dissolved in 5 mL of a 4:1 mixture of MeCN:MeNO₂. The reaction was then irradiated for 2 h with a 10 W 660 nm LED. The reaction was then diluted with ether (20 mL) and H₂O (20 mL). The aqueous phase was extracted with ether (x2), and the combined organic phases were washed with brine, dried with MgSO₄, and concentrated by rotary evaporation. Yield reported as isolated yield.
Reaction Conditions: An oven dried 10 mL schlenk flask was charged with 2-phenyl-1,2,3,4-tetrahydrosisoquinoline (0.3 mmol, 63 mg) and Methylene Blue (0.003 mmol, 1.1 mg). The contents were dissolved in 5 mL of a 4:1 mixture of MeCN:MeNO₂, and was purged with argon for roughly 15 minutes. The reaction was then irradiated for 2 h with a 10 W 660 nm LED. The reaction was then diluted with ether (20 mL) and H₂O (20 mL). The aqueous phase was extracted with ether (x2), and the combined organic phases were washed with brine, dried with MgSO₄, and concentrated by rotary evaporation. Yield reported as isolated yield.

I. Kinetic analysis of the Aza-Henry reaction with Methylene Blue

As shown in Section H, addition of 1,3-diphenylisobenzofuran (DPBF) to the reaction mixture results in a decrease in yield of the Aza-Henry product, and formation of 1,2-phenylenebis(phenylmethanone) is observed as a result of the oxidation of DPBF. However, this information alone is not enough to rule out that the decrease in yield of the Aza-Henry product could also stem from DPBF outcompeting 2-phenyl-1,2,3,4-tetrahydrosisoquinoline in the bimolecular quenching of Methylene Blue’s triplet. In order to rule out this possibility, the excited-state kinetics of Methylene Blue and all the reaction substrates were examined, and are summarized in Table S1.
Table S1. Bimolecular quenching data for 3Methylene Blue and the reaction substrates.

Substrate	3MB k_q (M$^{-1}$ s$^{-1}$)
O$_2$	2.49×10^9
2-phenyl-1,2,3,4-tetrahydrosisoquinoline	1.05×10^9
DPBF	$< 10^6$
MeNO$_2$	$< 10^6$

Since we could not detect any bimolecular quenching of 3Methylene Blue by DPBF, we can assume that the observed decrease in reactivity observed is due to DPBF trapping reactive oxygen species, and not from DPBF outcompeting 2-phenyl-1,2,3,4-tetrahydrosisoquinoline for Methylene Blue’s triplet.

Since it is well known that Methylene Blue is an excellent sensitizer of singlet oxygen (1O$_2$), we decided to examine the bimolecular quenching of 1O$_2$ by the reaction substrates to determine the role of 1O$_2$ in the overall reaction mechanism. Moreover, it is well known that 1O$_2$ is capable of oxidizing amines1, an important step in the proposed mechanism for the Aza-Henry reaction.2,3 The results of this kinetic investigation are summarized in Table S2 (see Figures S19 and S20 for the corresponding bimolecular quenching plots).

Table S2. Bimolecular quenching data for 1O$_2$ and the reaction substrates.

Substrate	1O$_2$ k_q (M$^{-1}$ s$^{-1}$)
2-phenyl-1,2,3,4-tetrahydrosisoquinoline	1.13×10^8
DPBF	1.19×10^9
MeNO$_2$	$< 10^6$

Figure S19. Representative kinetic bimolecular quenching plot for 1O$_2$ and 2-phenyl-1,2,3,4-tetrahydrosisoquinoline.
From these data, we can conclude that any $^1\text{O}_2$ produced by Methylene Blue can indeed be trapped by 2-phenyl-1,2,3,4-tetrahydroisoquinoline. In good agreement, we also obtain a value approaching diffusion control for DPBF, a known excellent $^1\text{O}_2$ quencher. Therefore, it is possible that $^1\text{O}_2$ is indeed playing a role in the mechanism, as the addition of another potent $^1\text{O}_2$ quencher (DPBF) significantly impacts the yield. However, DPBF is not solely specific to $^1\text{O}_2$, as it can also trap other reactive oxygen species, such as superoxide (O_2^\cdot). Therefore, we cannot conclude from these data alone that the trapping of $^1\text{O}_2$ is what is responsible for the decrease in the yield, but can only say that the decrease is due to the trapping of reactive oxygen species.

J. Excited Dye quenching by 2-phenyl-1,2,3,4-tetrahydroisoquinoline

Figure S21. Representative kinetic bimolecular quenching plot for $^3\text{Methylene Blue}$ and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.
Figure S22. Representative kinetic bimolecular quenching plot for 3Thionin and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.

Figure S23. Representative kinetic bimolecular quenching plot for 3New Methylene Blue N and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.
Figure S24. Representative kinetic bimolecular quenching plot for 31,9-dimethyl Methylene Blue and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.

Figure S25. Representative kinetic bimolecular quenching plot for 3Methylene Green and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.
Figure S26. Representative Stern-Volmer quenching plot for 1Brilliant Cresyl Blue and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.

Figure S27. Representative Stern-Volmer quenching plot for 1Nile Blue and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.
Figure S28. Representative Stern-Volmer quenching plot for 1Pyronin Y and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.

Figure S29. Representative Stern-Volmer quenching plot for 1Rhodamine 6G and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.
Figure S30. Representative Stern-Volmer quenching plot for 1Rhodamine B and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.

Figure S31. Representative kinetic bimolecular quenching plot for 3Phenosafiran and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.
Figure S32. Representative kinetic bimolecular quenching plot for \(^3\)Safranin O and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.

Figure S33. Representative kinetic bimolecular quenching plot for \(^3\)Methylene Violet 3RAX and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.
Figure S34. Representative kinetic bimolecular quenching plot for 39-mesityl-10-methylacridinium perchlorate and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.

Figure S35. Representative kinetic bimolecular quenching plot for 3Ru(bpy)$_3$Cl$_2$ and 1-phenyl-2,2,3,4-tetrahydroisoquinoline.
Figure S36. Representative kinetic bimolecular quenching plot for 3fac-Ir(ppy)$_3$ and 2-phenyl-1,2,3,4-tetrahydroisoquinoline.

K. Excited Dye quenching by molecular oxygen

General Procedure: Experiments at variable oxygen concentrations were carried out by using mixtures of oxygen and nitrogen prepared with a gas flow controller-mixer system. The concentration of oxygen was calculated using Henry’s law:

$$[O_2] = \frac{\rho}{K_H}$$

where K_H is the Henry’s constant, and its value is 769.23 L•atm/mol for water and 131.25 L•atm/mol for acetonitrile; ρ is the partial pressure of oxygen obtained from the mixer scale readings. Henry’s constant for acetonitrile was calculated under the assumption that acetonitrile under an atmosphere of air (ρ_{O_2} = 0.21 atm) contains 1.6×10^{-3} mol/L O$_2$. In cases where the solutions were comprised of a mixture of acetonitrile and water it was necessary to determine the number of moles of O$_2$ based on each of the components and then take into consideration the total volume of the mixed solution.
Figure S37. Representative kinetic bimolecular quenching plot for 3Methylene Blue and O$_2$.

Figure S38. Representative kinetic bimolecular quenching plot for 3New Methylene Blue N and O$_2$.
Figure S39. Representative kinetic bimolecular quenching plot for 31,9-dimethyl Methylene Blue and O$_2$.

Figure S40. Representative kinetic bimolecular quenching plot for 3Methylene Green and O$_2$.
Figure S41. Representative kinetic bimolecular quenching plot for 3Phenosafarin and O$_2$.

Figure S42. Representative kinetic bimolecular quenching plot for 3Safranin O and O$_2$.
Figure S43. Representative kinetic bimolecular quenching plot for 3Methylene Violet 3RAX and O_2.

Figure S44. Representative kinetic bimolecular quenching plot for 3Ru(bpy)$_3$Cl$_2$ and O_2.

L. Spectral data of reaction products

According to the general procedure, meso-1,2-dibromo-1,2-diphenylethane (102 mg, 0.3 mmol), photosensitizer (0.003 mmol), and DMF (5 mL) were purged with argon and irradiated with two warm-white LEDs for 5 minutes. The reaction mixture was extracted with ether (x3) and washed with brine (x5) and concentrated to afford a crude product containing the title compound. Percent conversion was determined by 1H NMR (10-94% conversion).
\(^1\)H NMR: (400 MHz, CDCl\(_3\)): \(\delta\) 7.55-7.50 (m, 4 H), 7.40-7.34 (m, 4 H), 7.29-7.24 (m, 2 H), 7.12 (s, 2 H)

Reference: *J. Org. Chem.* 2015, 80, 6922.

According to the general procedure, 1-phenyl-1,2,3,4-tetrahydroisoquinoline (63 mg, 0.3 mmol), photosensitizer (0.003 mmol), and a mixture of MeCN:MeNO\(_2\) (4:1, 5 mL) were irradiated for 1 hour with two-warm white LEDs. The reaction was then diluted with ether (20 mL) and H\(_2\)O (20 mL). The aqueous phase was extracted with ether (x2), and the combined organic phases were washed with brine, dried and concentrated. The crude reaction mixture was purified by flash column chromatography (20:1 Hexanes:EtOAc) to afford the title compound as a yellow oil (9-66% isolated yield).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.36-7.09 (m, 5 H), 6.99 (d, \(J=8.03\) Hz, 2 H), 6.89-6.82 (m, 1 H), 5.56 (t, \(J=7.25\) Hz, 1 H), 4.88 (dd, \(J=11.76,7.84\) Hz, 1 H), 4.57 (dd, \(J=11.76, 6.66\) Hz, 1 H), 3.73-3.55 (m, 2H), 3.18-3.01 (m, 1 H), 2.80 (dt, \(J=16.31, 4.97\) Hz, 1 H).

Reference: *J. Am. Chem. Soc.* 2010, 132, 1464.

According to the procedure described in Section H of the ESI, 2-phenyl-1,2,3,4-tetrahydrosisoquinoline (0.3 mmol, 63 mg), 1,3-diphenylisobenzofuran (0.05 mmol, 14 mg), Methylene Blue (0.003 mmol, 1.1 mg), and a mixture of MeCN:MeNO\(_2\) (4:1, 5 mL) was irradiated for 2 h with a 10 W 660 nm LED. The reaction was then diluted with ether (20 mL) and H\(_2\)O (20 mL). The aqueous phase was extracted with ether (x2), and the combined organic phases were washed with brine, dried and concentrated. The crude reaction mixture was purified by Prep TLC (20:1 Hexanes:EtOAc) to afford the final product as a white solid (6.5 mg, 46% isolated yield).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.72-7.68 (m, 4 H), 7.62 (s, 4 H), 7.55-7.49 (m, 2 H), 7.41-7.34 (m, 4 H)

Reference: *Eur. J. Org. Chem.* 2015, 775.
M. NMR spectra

Figure S45. 1H NMR spectrum of a crude reaction mixture containing trans-stilbene used to calculate reaction conversion. (Photosensitizer: Methylene Blue, Conversion: 96%)
Figure S46. 1H NMR spectrum 1-phenyl-1,2,3,4-tetrahydroisoquinoline.
Figure S47. 1H NMR of Aza-Henry product.
Figure S48. 1H NMR of 1,2-dibenzoylbenzene.
N. Determination of triplet energies by laser flash photolysis

In order to determine the triplet energy of the newly characterized dyes, quenchers with known triplet energies were employed, and their bimolecular quenching constants were determined using laser flash photolysis. Once no bimolecular quenching between the dye excited-state and the quencher was observed (<10^6 M^-1 s^-1), the triplet energy was calculated to be the midpoint between the failed quencher and the last quencher employed. The data for the determination of the triplet energies are summarized in Tables S3-S6 followed by their corresponding bimolecular quenching plots. The triplet energies for the following compounds can be found in the appropriate section of the Appendix section. All measurements were performed in acetonitrile, unless otherwise noted, using the same general procedure previously described.

Table S3. Bimolecular quenching values for New Methylene Blue N and a series of quenchers.

Quencher	Quencher E_T (eV)	k_q (M^-1 s^-1)
O_2	0.91	9.9 x 10^8
1,3-diphenylisobenzofuran	1.47	2.9±0.5 x 10^8
Perylene	1.53	2.3±0.3 x 10^8
Azulene	1.69	1.2±0.1 x 10^8
9,10-diphenylantracene	1.77	< 10^6

^1Performed in CH_2Cl_2

Figure S49. Representative kinetic bimolecular quenching plot for ^3New Methylene Blue N and 1,3-diphenylisobenzofuran.
Figure S50. Representative kinetic bimolecular quenching plot for 3New Methylene Blue N and Perylene.

Figure S51. Representative kinetic bimolecular quenching plot for 3New Methylene Blue N and Azulene.
Figure S52. Representative kinetic bimolecular quenching plot for 3New Methylene Blue N and 9,10-diphenylanthracene.

Table S4. Bimolecular quenching values for 1,9-dimethyl Methylene Blue and a series of quenchers.

Quencher	Quencher E_T (eV)	k_q (M$^{-1}$ s$^{-1}$)
O$_2$	0.91	1.2×10^9
1,3-diphenylisobenzofuran	1.47	$1.2 \pm 0.4 \times 10^9$
Perylene1	1.53	$< 10^6$

1Performed in CH$_2$Cl$_2$.

Figure S53. Representative kinetic bimolecular quenching plot for 31,9-dimethyl Methylene Blue and 1,3-diphenylisobenzofuran.
Figure S54. Representative kinetic bimolecular quenching plot for 31,9-dimethyl Methylene Blue and Perylene.

Table S5. Bimolecular quenching values for Methylene Green and a series of quenchers.

Quencher	Quencher E_T (eV)	k_q (M$^{-1}$ s$^{-1}$)
O$_2$	0.91	1.2×10^9
1,3-diphenylisobenzofuran	1.47	$1.6 \pm 0.1 \times 10^9$
Perylene1	1.53	$< 10^6$

1Performed in DMSO.

Figure S55. Representative kinetic bimolecular quenching plot for 3Methylene Green and 1,3-diphenylisobenzofuran.
Figure S56. Representative kinetic bimolecular quenching plot for 3Methylene Green and Perylene.

Table S6. Bimolecular quenching values for Methylene Violet 3RAX and a series of quenchers.

Quencher	Quencher E_T (eV)	k_q ($M^{-1} s^{-1}$)
O_2	0.91	1.2×10^9
Azulene	1.69	$1.8 \pm 0.2 \times 10^9$
9-Anthracenecarboxaldehyde	1.89	$4.1 \pm 0.4 \times 10^8$
Phenazine	1.92	$<10^6$

Figure S57. Representative kinetic bimolecular quenching plot for 3Methylene Violet 3RAX and Azulene.
Figure S58. Representative kinetic bimolecular quenching plot for 3Methylene Violet 3RAX and 9-Anthracenecarboxaldehyde.

Figure S59. Representative kinetic bimolecular quenching plot for 3Methylene Violet 3RAX and Phenazine.

O. Electrochemical determination of ground-state reduction potentials

Conditions for cyclic voltammetry measurements: scan rate = 100 mV s-1; 0.5-2.0 mM Dye in Ar degassed MeCN containing 100 mM Bu\textsubscript{4}NClO\textsubscript{4} supporting electrolyte; Pt wire working electrode; Pt wire counter electrode; Ag wire pseudo-reference electrode; Fc/Fc+ redox couple as internal reference (0.41 V vs. SCE); reduction potential reported as peak cathodic (\textit{E}_{pc}) potentials.
Figure S60. Cyclic voltammogram of New Methylene Blue [Cathodic Scan].

Figure S61. Cyclic voltammogram of 1,9-dimethyl Methylene Blue [Cathodic Scan].
Figure S62. Cyclic voltammogram of Methylene Green [Cathodic Scan].

Figure S63. Cyclic voltammogram of Brilliant Cresyl Blue [Cathodic Scan].
Figure S64. Cyclic voltammogram of Nile Blue [Cathodic Scan].

Figure S65. Cyclic voltammogram of Pyronin Y [Cathodic Scan].
Figure S66. Cyclic voltammogram of Rhodamine 6G [Cathodic Scan].

Figure S67. Cyclic voltammogram of Rhodamine B [Cathodic Scan].
Figure S68. Cyclic voltammogram of Phenosafranin [Cathodic Scan].

Figure S69. Cyclic voltammogram of Safranin O [Cathodic Scan].
Figure S70. Cyclic voltammogram of Methylene Violet 3RAX [Cathodic Scan].

P. Concentration of quencher required to quench 50 % and 90 % of excited photocatalyst

Table S7. Concentration of oxygen required to quench 50 % and 90 % of *PC.

Photocatalyst	50 % quench of *PC	90 % quench of *PC
Methylene Blue	1.3x10^{-2} mM	1.1x10^{-1} mM
Thionin	1.1x10^{-1} mM	1.0 mM
New Methylene Blue N	9.2x10^{-2} mM	8.3x10^{-1} mM
1,9-Dimethyl Methylene Blue	6.9x10^{-2} mM	6.3x10^{-1} mM
Methylene Green	3.6x10^{-2} mM	3.2x10^{-1} mM
Brilliant Cresyl Blue	NA	NA
Nile Blue	NA	NA
Pyronin Y	NA	NA
Rhodamine 6G	NA	NA
Rhodamine B	NA	NA
Phenosafranin	9.3x10^{-3} mM	8.4x10^{-2} mM
Safranin O	8.8x10^{-3} mM	7.9x10^{-2} mM
Methylene Violet 3RAX	1.4x10^{-2} mM	1.3x10^{-1} mM
9-Mesityl-10-methylacridinium	5.4x10^{-2} mM	4.9x10^{-1} mM
Ru(bpy)$_3$Cl$_2$	3.0x10^{-1} mM	2.7 mM
fac-Ir(ppy)$_3$	1.2x10^{-2} mM	1.2x10^{-1} mM

Calculation performed with O$_2$ as sole quencher of *PC
Table S8. Concentration of TMEDA required to quench 50 % and 90 % of *PC.

Photocatalyst	50 % quench of *PC	90 % quench of *PC
Methylene Blue	9.1x10^{-2} mM	8.3x10^{-1} mM
Thionin	6.9x10^{-3} mM	6.3x10^{-2} mM
New Methylene Blue N	2.8x10^{-2} mM	2.5x10^{-1} mM
1,9-Dimethyl Methylene Blue	1.2x10^{-2} mM	1.0x10^{-1} mM
Methylene Green	7.1x10^{-3} mM	6.4x10^{-2} mM
Brilliant Cresyl Blue	2.0x10^{-3} mM	1.7x10^{-2} mM
Nile Blue	7.6x10^{-3} mM	6.8x10^{-4} mM
Pyronin Y	10 mM	93 mM
Rhodamine 6G	27 mM	2.4x10^{2} mM
Rhodamine B	2.5x10^{-2} mM	2.2x10^{-1} mM
Phenosafranin	3.3x10^{-3} mM	3.0x10^{-2} mM
Safranin O	7.5x10^{-3} mM	6.7x10^{-2} mM
Methylene Green	4.6x10^{-2} mM	4.1x10^{-2} mM
9-Mesityl-10-methylacridinium	9.9x10^{-4} mM	8.1x10^{-3} mM
Ru(bpy)_3Cl_2	7.6x10^{-2} mM	6.8x10^{-3} mM
fac-Ir(ppy)_3	2.3x10^{-2} mM	2.0x10^{-1} mM

Calculation performed with TMEDA as sole quencher of *PC

Table S8. Concentration of PhTHIQ required to quench 50 % and 90 % of *PC.

Photocatalyst	50 % quench of *PC	90 % quench of *PC
Methylene Blue	3.8x10^{-3} mM	3.4x10^{-2} mM
Thionin	1.2x10^{-2} mM	1.0x10^{-1} mM
New Methylene Blue N	1.5x10^{-2} mM	1.4x10^{-1} mM
1,9-Dimethyl Methylene Blue	5.5x10^{-1} mM	5.0 mM
Methylene Green	1.2x10^{-2} mM	1.1x10^{-1} mM
Brilliant Cresyl Blue	78 mM	7.1x10^{-2} mM
Nile Blue	41 mM	3.7x10^{-2} mM
Pyronin Y	17 mM	1.5x10^{-2} mM
Rhodamine 6G	13 mM	1.2x10^{-2} mM
Rhodamine B	20 mM	1.8x10^{-2} mM
Phenosafranin	6.3x10^{-3} mM	5.7x10^{-2} mM
Safranin O	5.5x10^{-3} mM	4.9x10^{-2} mM
Methylene Violet 3RAX	1.5x10^{-3} mM	1.4x10^{-2} mM
9-Mesityl-10-methylacridinium	5.2x10^{-3} mM	4.7x10^{-2} mM
Ru(bpy)_3Cl_2	31 mM	2.8x10^{-2} mM
fac-Ir(ppy)_3	19 mM	1.7x10^{-2} mM

Calculation performed with PhTHIQ as sole quencher of *PC
Q. References

1. Lissi, E. A.; Encinas, M. D.; Lemp, E.; Rubio, M. A. Singlet Oxygen (\(^{1}A_g\)) Bimolecular Processes. Solvent and Compartmentalization Effects. *Chem. Rev.* **1993**, *93*, 699-723.

2. Condie, A. G.; González-Gómez, J. C.; Stephenson, C. R. J. Visible-light photoredox catalysis: Aza-Henry reactions via C–H functionalization. *J. Am. Chem. Soc.* **2010**, *132*, 1464-1465.

3. Liu, Q.; Li, Y. –N; Zhang, H. –H.; Chen, B.; Tung, C. –H.; Wu, L. –Z. Reactivity and Mechanistic Insight into Visible-Light-Induced Aerobic Cross-Dehydrogenative Coupling Reactions by Organophotocatalysts. *Chem.-Eur. J.* **2012**, *18*, 620-627.

4. Ohyashiki, T.; Nunomura, M.; Katoh, T. Detection of superoxide anion radical in phospholipid liposomal membrane by fluorescence quenching method using 1,3-diphenylbenzofuran. *Biochim. Biophys. Acta, Biomembr.* **1999**, *1421*, 131-139.

5. González-Béjar, M.; Montes-Navajas, P.; Garcia, H.; Scaiano, J. C. Methylene Blue Encapsulation in Cucurbit[7]uril: Laser Flash Photolysis and Near-IR Luminescence Studies of the Interaction with Oxygen. *Langmuir*. **2009**, *25*, 10490-10494.

6. Coetzee, J. F.; Kolthoff, I. M. Polarography in Acetonitrile. III. Brønsted Acids. Amperometric Titration of Amines with Perchloric Acid. Oxygen. *J. Am. Chem. Soc.* **1957**, *79*, 6110-6115.