Role of the Gonococcal Neisserial Heparin Binding Antigen in Microcolony Formation, and Serum Resistance and Adherence to Epithelial Cells

Evgeny A. Semchenko,1 Tsitsi D. Mubaiwa,1,4 Christopher J. Day,1 and Kate L. Seib1,6

1Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia

The sexually transmitted infection gonorrhoea is on the rise worldwide and an increased understanding of the mechanisms of colonization and pathogenesis of Neisseria gonorrhoeae is required to aid development of new treatment and prevention strategies. In the current study, we investigate the neisserial heparin-binding antigen (NHBA) of N. gonorrhoeae and confirm its role in binding to several glycans, including heparin, and identify interactions of NHBA with both gonococcal and host cells. Furthermore, we report that a gonococcal nhba mutant displays decreased cell aggregation and microcolony formation, as well as reduced survival in human serum and reduced adherence to human cervical and urethral epithelial cells, relative to the wild-type strain. These data indicate that the gonococcal NHBA contributes to several aspects of the colonization and survival of N. gonorrhoeae and may be a target for new antimicrobial or vaccines.

Keywords. NHBA; neisserial heparin-binding Antigen; glycan; heparin; aggregation; microcolony; Neisseria gonorrhoeae; gonococcus; vaccine antigen; adherence; serum resistance.

Neisseria gonorrhoeae is an obligate human pathogen that causes approximately 106 million cases of the sexually transmitted infection gonorrhoea worldwide each year [1]. N. gonorrhoeae infects human mucosal surfaces, resulting in various clinical outcomes including local symptomatic disease (e.g., cervicitis, urethritis, conjunctivitis), and occasionally disseminated disease [2]. Asymptomatic infections of the genital tract, rectum, or pharynx are common, and untreated genital tract infections can lead to severe sequelae, such as pelvic inflammatory disease, adverse pregnancy outcomes, neonatal complications, infertility, and increased risk of human immunodeficiency virus acquisition (reviewed in [3]).

The control of N. gonorrhoeae is a major public health challenge owing to the emergence of multidrug-resistant strains [4, 5]. Gonococcal strains with high-level resistance to expanded-spectrum cefalosporins, ceftriaxone and cefixime, as well as azithromycin and all other antibiotics routinely used to treat gonorrhoea, have been identified globally [6, 7]. This highlights the need for investigation of gonococcal pathogenesis to aid development of novel therapeutics and a vaccine.

The neisserial heparin-binding antigen (NHBA) is present in the 4 component meningococcal serogroup B vaccine (4CMenB; Bexsero) licensed to protect against invasive disease caused by Neisseria meningitidis [8], which is closely related to N. gonorrhoeae. The gonococcal homologue of NHBA is surface exposed and highly conserved in N. gonorrhoeae strains (>93% identity), shares 67% identity [9] with the 4CMenB NHBA, and is recognized by human serum samples from people vaccinated with 4CMenB [10].

The meningococcal NHBA has most extensively been studied in strain MC58 (expresses NHBA-3) and was named based on its ability to bind the glycosaminoglycan (GAG) heparin via an arginine-rich region (Arg region), and NHBA binding to heparin increases meningococcal resistance to serum [11] and interactions with heparan sulfate mediates binding to epithelial cells [12]. NHBA binds several other glycans, with the highest affinity binding to chondroitin sulfate [13]. The meningococcal NHBA is the target of several proteases, including human lactoferrin [11], kallikrein [14] and C3-convertase [15], as well as meningococcal NalP [11]. NalP cleaves NHBA after the arginine-rich region, and it has been speculated that hypervirulent strains of N. meningitidis that express NalP release a NHBA fragment that increases vascular permeability [16]. NHBA-2 also has increased expression at lower temperatures (32°C vs 37°C) [17] and plays a role in biofilm formation [18]. The gonococcal NHBA has not yet been characterized;
however, *N. gonorrhoeae* does not express NalP [19], and its NHBA has a truncated Arg region [9] indicating that it may play a different role in *N. gonorrhoeae* than in *N. meningitidis*. In the current study, we examined the function of the gonococcal NHBA in order to describe its role in pathogenesis and support its potential use as a gonococcal therapeutic target or vaccine candidate.

METHODS

N. Gonorrhoeae Growth and Recombinant Techniques

N. gonorrhoeae 1291 was cultured on GC agar (Oxoid) or GC broth with 1% (vol/vol) IsoVitaleX (Becton Dickinson) at 32°C or 37°C, 5% carbon dioxide [20]. The *nhba::kan* mutant (ΔNHBA) and complemented (ΔNHBA_C) strains were generated as described in Supplementary Table 1. Expression of pilin, opacity (Opa) protein, porin, and lipooligosaccharide (LOS) was similar in the wild-type (WT), ΔNHBA, and ΔNHBA_C strains (Supplementary Figure 1). Recombinant His-tagged NHBA was expressed and purified as described elsewhere [10].

Western Blot Analysis, Enzyme-Linked Immunosorbent Assay, and Flow Cytometry

Western blot analysis of *N. gonorrhoeae* whole-cell lysates was performed as described elsewhere [21], with mouse anti-NHBA (see Supplementary Methods) and rabbit anti-NGAG_01228 [21]. Enzyme-linked immunosorbent assay (ELISA) of recombinant NHBA binding to whole-cell *N. gonorrhoeae* was performed after 30-minute incubation at room temperature, using horseradish peroxidase–conjugated His-tag antibody (Thermo) and following standard protocols [10, 22]. Flow cytometry was performed using a CyAn ADP cytometer (Beckman Coulter), as described elsewhere [21, 23], with bacteria (approximately 10⁸ colony-forming units [CFUs]), anti-NHBA (1:200, 30 minutes), and Alexa Fluor 488–conjugated anti-mouse immunoglobulin G (1:200, 1 hour; Thermo). Binding of fluorescein isothiocyanate–labeled NHBA (100 µg/mL) to *N. gonorrhoeae* (approximately 10⁷ CFUs) or to E6/E7-transformed primary human cervical epithelial (tCX) and urethral epithelial (tUEC) cells (approximately 5 × 10⁶ cells) was measured after incubation for 20 minutes at 37°C.

Microscopy

Fluorescent microscopy was used to measure the interaction of NHBA (100 µg/mL) incubated with tCX cells (cultured on glass coverslips to full confluence) at 37°C for 20 minutes. Cells were washed 3 times to remove unbound proteins and fixed in formaldehyde (2.5% for 15 minutes). NHBA-542 (referred to herein as NHBA₅₄₂) was detected using anti-NHBA (1:1000) [10] and Alexa Fluor 488–conjugated anti-mouse immunoglobulin G (1:200; Thermo). Cells were counterstained with Alexa Fluor 568 Phalloidin (Thermo) and DAPI. Glass coverslips were mounted on microscope slides using ProLong Gold Antifade Mountant (Thermo), images were captured on a Nikon A1R confocal microscope, and data were analyzed using NIS-Elements software version 1.2.3 (Nikon).

Gonococcal microcolony formation was investigated using tUEC cells incubated with approximately 1 × 10⁶ CFUs at 37°C for 5 hours. Cell monolayers were washed 3 times (with Hanks’ balanced salt solution) to remove nonadherent bacteria and fixed for 30 minutes, and scanning electron microscopy (JCM-5000 NeoScope; JEOL) was performed as described elsewhere [24].

Glycan Binding

Glycan array experiments were performed with recombinant NHBA (1 µg), as described elsewhere [13, 25]. Surface plasmon resonance (BIAcore T200) was performed with NHBA (100 µg/mL) immobilized on flow cells 2–4 by amine coupling on series S CMS sensor chips (GE Healthcare), as described elsewhere [13, 22]. Single-cycle kinetics was used to calculate the affinity (dissociation constant [Kₘ]) of interactions with glycans run in 1:5 dilution series at concentrations between 100 µmol/L and 1 nmol/L.

Functional Assays

Resistance of *N. gonorrhoeae* to serum-mediated killing was tested as described elsewhere [21], with approximately 10⁴ CFUs incubated in 10% normal human serum for 60 minutes. Bacteria were preincubated with 6 µmol/L heparin for 30 minutes where indicated.

Gonococcal adherence to tCX and tUEC cells was assayed with approximately 10⁵ CFUs for 1 hour as described elsewhere [23]. For adherence-blocking assays, cells were pretreated with recombinant gonococcal NHBA (1–100 µg/mL) or peanut agglutinin (PNA; 100 µg/mL; negative control that does not bind tCX [23]), before being infected with *N. gonorrhoeae* for 10 minutes. Adherence and serum survival assays were performed in triplicate on 3 occasions, and statistical analysis performed with analysis of variance and Student t tests.

RESULTS

Sequence Features and Expression of Gonococcal NHBA

The main NHBA variant expressed by *N. gonorrhoeae* strains is NHBA-542, which is present in >40% of gonococcal isolates in the PubMLST database, including strain 1291 [10]. NHBA₅₄₂ is 426 amino acids and contains sequence features similar to those described for the well-characterized NHBA-3 from *N. meningitidis* strain MC58 (referred to herein as NHBA₅₄₂, including a lipobox motif and a polyglycine stretch in the N-terminal and an arginine-rich region in the central region of the protein (Figure 1A). However, there are several differences between NHBA₅₄₂ and NHBA₅₄₂ owing to insertions and deletions (Figure 1B). The N-terminal half of the gonococcal *nhba* gene has a 63-amino acid deletion compared with NHBA-3, and this is consistent in
the major gonococcal variants (Supplementary Figure 2). The Arg region of NHBA_{Ng} is truncated compared with NHBA_{Nm}. This region is highly conserved between N. meningitidis strains [11] and between the major N. gonorrhoeae NHBA variants (Supplementary Figure 2; the variants shown are present in 94% of 3068 isolates [10]).

To characterize NHBA_{Ng}, a recombinant His-tagged protein NHBA_{Ng} was generated in E. coli and polyclonal anti-NHBA antibodies raised in mice. In addition, an isogenic mutant of NHBA was generated by insertion of a kanamycin resistance cassette into the nhba gene in N. gonorrhoeae strain 1291 (ΔNHBA), and this mutant was complemented by reintroducing a single copy of nhba into the genome in trans (ΔNHBA_C). Western blot analysis of whole-cell lysates confirmed expression of NHBA in the WT strain, with a single band detected between 58 and 80 kDa by anti-NHBA sera. The complemented strain expressed levels of NHBA similar to those in the WT, whereas no NHBA expression was detected in ΔNHBA (Figure 1C and Supplementary Figure 1). NHBA was also detected on the surface of whole-cell N. gonorrhoeae WT and ΔNHBA_C strains by flow cytometry (Figure 1D). Growth of N. gonorrhoeae strains to midlog phase at 32°C and 37°C revealed that NHBA_{Ng} expression is temperature regulated, with higher expression at lower temperatures (Figure 1C and 1D and Supplementary Figure 3).

Involvement of Gonococcal NHBA in Cell Aggregation and Microcolony Formation

To investigate the role of NHBA_{Ng} in growth in vitro, the N. gonorrhoeae 1291 WT, ΔNHBA, and ΔNHBA_C strains
were grown with gonococcal broth and agar. All strains had equivalent growth rates and maximal growth levels in terms of optical density (OD); however, the ΔNHBA mutant strain had significantly reduced settling rates compared with the WT and ΔNHBA_C strains (Figure 2A). Furthermore, when OD-equalized samples (OD at 600 nm [OD 600], 1) were plated onto gonococcal agar, the ΔNHBA strain had approximately 3-fold higher viable CFU counts compared with the WT or ΔNHBA_C strains (Figure 2B). Treatment of these samples with trypsin resulted in equalized CFU counts for all 3 strains (WT and ΔNHBA_C countable CFUs increased 2.6- and 2.4-fold, respectively, whereas the ΔNHBA CFU count was not affected) (Figure 2B), indicating that the phenotype was due to cell aggregation rather than a defect in cell separation. Gram stain analysis of the 3 stains with or without trypsin treatment confirmed the presence of cell aggregates in the untreated WT and ΔNHBA_C strains (Supplementary Figure 4A). Furthermore, Western blot analysis indicated that trypsin treatment digested NHBA from the bacteria surface but did not alter a periplasmic control protein (Supplementary Figure 4B).

After this finding, the volume of ΔNHBA sample used in subsequent experiments was adjusted to equalize the CFU counts. Gonococcal pili and Opa proteins have been previously implicated in formation of bacterial aggregates, and phase-contrast microscopy confirmed that the WT, ΔNHBA, and ΔNHBA_C colonies were morphologically identical, in terms of piliation and opacity. To determine whether NHBANg directly interacts with the gonococcal surface to facilitate aggregation, we used flow cytometry and ELISA with recombinant NHBANg. Flow cytometric analysis showed binding of the fluorescein isothiocyanate–labeled recombinant NHBANg to whole-cell N. gonorrhoeae (Figure 2C). This was confirmed using whole-cell ELISA, in which recombinant NHBANg bound N. gonorrhoeae in a concentration-dependent manner (Figure 2D).

To further study the role of NHBA in bacteria-bacteria interactions and in the formation of gonococcal aggregates, we
examined the ability of ΔNHBA to form microcolonies. Unlike the WT or ΔNHBA_C strains, ΔNHBA was unable to form microcolonies on the surface of glass coverslip slides or uUEC monolayers after 5-hour growth (Figure 3). Biofilm assays were also performed to investigate whether the self-association properties of NHBANg play a role in the establishment of gonococcal biofilm. However, under static conditions over 24–26 hours, no difference in biofilm formation was observed for the WT, ΔNHBA, and ΔNHBA_C strains (data not shown).

NHBANg Binding to Glycans With High Affinity

The glycan-binding profile of the gonococcal NHBA was determined using glycan array analysis with arrays that display 368 structures representative of glycans found on human cells (including isomers and/or glycans that have similar structure but differ in chain length, chemical linkage or spacer size). NHBANg bound to 39 glycan structures on the array (Supplementary Figure 5 and Supplementary Table 2), including the GAGs heparin, heparan sulfate, and chondroitin sulfate. NHBANg also bound multiple structures that contain a lacto-N-biose and N-acetylactosamine core structure (ie, lacto-N-neotetraose [LNnT]) including their sialylated and fucosylated variants (ie, sLeX), as well as a limited set of N-acetylglucosamine, N-acetylgalactosamine, glucosyl, and mannosyl glycans.

To characterize the affinity of NHBANg–glycan interactions, surface plasmon resonance analysis was performed using selected GAGs (Figure 4A) and non-GAG glycans (Figure 4B) that were bound on the array. The highest calculated affinity of all tested interactions was with heparin (K_D, 4.4 nmol/L), followed by chondroitin sulfate (K_D, 73 nmol/L). GAG structures are highly heterogeneous, comprising repeating polysaccharides with various sulfation patterns. To determine whether NHBANg preferentially binds glycans with specific sulfation configuration, we performed experiments with 3 types of chondroitin sulfate (A, B, and C). NHBANg bound only chondroitin sulfate C (chondroitin 6-sulfate) and no concentration-dependent binding was observed for chondroitin sulfate A (chondroitin 4-sulfate) or chondroitin sulfate B (dermatan sulfate).

We also show that NHBANg binds heparan sulfate, but with lower affinity (K_D, 2.79 µmol/L). In terms of non-GAG glycans, NHBANg binds α2–6 sialylated pentasaccharide—LSTc (K_D, 0.24 µmol/L)—with higher affinity than its isomer LSTb (K_D, 2.26 µmol/L), and a nonsialylated variant of LNnT (K_D, 4.89 µmol/L). Furthermore, NHBANg has 5-fold greater affinity for Lewis X (K_D, 0.68 µmol/L) than for sialyl Lewis X (K_D, 3.65 µmol/L). No concentration-dependent binding was observed for hyaluronan (a nonsulfated GAG) or H-disaccharide, which were not bound by NHBANg on the glycan array and were used as negative controls.

Gonococcal NHBA Binding to Epithelial Cells

NHBANg binds to epithelial cells through its Arg region via interactions with heparan sulfate proteoglycans [12]. To
investigate whether NHBA₉₉ also interacts with epithelial cells, confocal microscopy and flow cytometric analysis were performed with recombinant NHBA₉₉ and tCX and tUEC cells. For confocal microscopy, recombinant NHBA₉₉ was incubated with tCX cells and detected using mouse anti-NHBA primary antibody to tCX cells was observed (Figure 5A, top left) with the protein signal localized to the surface of cells (Figure 5A, bottom left). No nonspecific binding of the primary (Figure 5A, top right) or secondary (Figure 5A, bottom right) antibody to tCX cells was observed. Flow cytometric analysis further confirmed that NHBA₉₉ binds both tCX and tUEC cells (Figure 5B).

Figure 4. Gonococcal neisserial heparin-binding antigen (NHBA) binds to several glycans with high affinity. Surface plasmon resonance analysis of recombinant N. gonorrhoeae recombinant N. gonorrhoeae NHBA (NHBA₉₉) binding to glycosaminoglycans (GAGs) (A) and non-GAG glycans (B). The name, structure and sulfation patterns (S) of each glycan is shown, along with the dissociation constant (KD) of NHBA₉₉ binding to each glycan reported as mean (standard deviation). KD values are also shown for recombinant N. meningitidis NHBA (NHBA₉₉) interactions [13], to enable comparison. NHBA₉₉ has higher affinity for β-Glc6P (KD, 0.056 [0.025] μmol/L). Results were analyzed using BIACore T200 software 2.0.2. Abbreviations: NB, no concentration-dependent binding; NS, non sulfated.

Contribution of NHBA to Gonococcal Serum Survival and Adherence to Epithelial Cells

To investigate the functional role of NHBA₉₉ interactions with glycans, gonococcal cells and human epithelial cells, we conducted serum survival and epithelial cell adherence assays. Serum survival assays performed with the WT, ΔNHBA, and ΔNHBA_C strains in 10% normal human serum (sublethal serum concentration for the WT strain) indicated that the ΔNHBA strain had approximately 3-fold reduced survival relative to the WT and ΔNHBA_C strains (Figure 6A). Pretreatment of gonococci with heparin increased survival of the ΔNHBA mutant strain to a level comparable to those of the WT and ΔNHBA_C strains.
To investigate the role of NHBA\textsubscript{Ng} in \textit{N. gonorrhoeae} infection, we conducted in vitro infection assays with tCX and tUEC cells and the WT, ΔNHBA, and ΔNHBA\textsubscript{C} strains. For infection assays with epithelial cells, the ΔNHBA mutant had 11-fold and 12-fold reduced adherence of tCX and tUEC cells, respectively, relative to the WT strain (Figure 6B). We also conducted adherence assays with cells that were pretreated with either recombinant NHBANg or negative control protein PNA. Gonococcal adherence to NHBANg-treated cells was reduced in a concentration-dependent manner (2.5- and 1.7-fold with 100 and 10 µg/mL of NHBANg, respectively), whereas treatment of cells with 100 µg/mL PNA, a negative control that does not bind cells, had no effect on adherence (Figure 6C).

DISCUSSION

The sexually transmitted infection gonorrhoea is a growing public health concern owing to rising rates of infection and increasing antimicrobial resistance. \textit{N. gonorrhoeae} transmission, colonization, and pathogenesis are complex, multifactorial processes (reviewed in [26]), and an increased understanding of all stages of gonococcal infection is required to aid development of new treatment and prevention strategies. In the current study, we characterized the interactions of gonococcal NHBA with glycans, \textit{N. gonorrhoeae}, and human epithelial cells, highlighting its involvement in microcolony formation, resistance to human serum, and adherence to epithelial cells.

NHBA was first identified in \textit{N. meningitidis} during development of the meningococcal serogroup B vaccine 4CMenB [8, 11–15]. Despite a relatively high level of sequence identity between the gonococcal and meningococcal NHBA proteins (approximately 67% [10]), several differences between the NHBA sequences and the conditions encountered by the pathogenic \textit{Neisseria} species prompted a detailed analysis of NHBA in \textit{N. gonorrhoeae}. NHBA is more conserved in \textit{N. gonorrhoeae} than in \textit{N. meningitidis} [10], and in the current study we confirmed that the 63–amino acid deletion in the N-terminus and the truncated Arg region in \textit{N. gonorrhoeae} are conserved in all major gonococcal NHBA variants.

In our glycan array analysis, recombinant NHBA\textsubscript{Ng} bound to 39 glycans, including GAGs, such as heparin, heparan sulfate, and chondroitin sulfate. Our group previously showed that NHBA\textsubscript{Nm} interacts with 28 glycans [13], and our surface plasmon resonance analysis confirmed that NHBA\textsubscript{Ng} and NHBA\textsubscript{Nm} bind ≥4 glycans in common (heparin, heparan sulfate, chondroitin sulfate, Glc-6P). However, a key difference between the proteins is that NHBA\textsubscript{Ng} has higher binding affinity for heparin, and lower affinity for chondroitin sulfate and glucose 6-phosphate than NHBA\textsubscript{Nm}. This is probably due to differences

A Survival in normal human serum

Treatment	Adherence to tCX (%)	Adherence to tUEC (%)
WT	100 ± 2.3	90 ± 1.5
ΔNHBA	80 ± 2.1	70 ± 1.3
ΔNHBA_C	60 ± 2.0	50 ± 1.2

† Survival of normal human serum. Data represent the average percent survival for triplicate samples as a percentage of that for the inoculum and are shown relative to the WT; *P < .05; †P < .01; ‡P < .001 (relative to untreated WT strain; 2-tailed Student t test).

B Adherence to epithelial cells

Treatment	Adherence to tCX (%)	Adherence to tUEC (%)
WT	100 ± 2.3	90 ± 1.5
ΔNHBA	80 ± 2.1	70 ± 1.3
ΔNHBA_C	60 ± 2.0	50 ± 1.2

+ Heparin indicates that bacteria were preincubated with heparin prior to addition to the assay.

C Adherence of N. gonorrhoeae 1291 WT, ΔNHBA, and ΔNHBA_C strains to tCX and tUEC cells.

Treatment	Adherence to tCX (%)	Adherence to tUEC (%)
No	100 ± 2.3	90 ± 1.5
PNA	80 ± 2.1	70 ± 1.3
Recombinant NHBA, 100 µg/mL	60 ± 2.0	50 ± 1.2

Data represent the average percent adherence for triplicate samples as a percentage of that for the inoculum and are shown relative to the WT; the results for the WT, set at 100%, are 1.1 × 10⁵ (tCX) and 1.7 × 10⁵ (tUEC) CFUs (Δ). Error bars represent standard deviations. Experiments were performed ≥3 times, and representative results are shown. *P < .05; †P < .01; ‡P < .001 (relative to untreated WT strain; 2-tailed Student t test).

Figure 6. Gonococcal neisserial heparin-binding antigen (NHBA) contributes to survival in human serum and adherence to human epithelial cells. **A,** Survival of *Neisseria gonorrhoeae* 1291 wild-type (WT), NHBA knockout (ΔNHBA), and complemented (ΔNHBA_C) strains after 60 minutes in 10% (vol/vol) normal human serum. ‘+ Heparin’ indicates that bacteria were preincubated with heparin prior to addition to the assay. There was no significant difference in survival of the WT in serum according to the absence or presence of heparin. **B,** Adherence of *N. gonorrhoeae* to cervical epithelia (tCX) and human urethral epithelial (tUEC) cells with and without heparin. **C,** Adherence of *N. gonorrhoeae* 1291 WT with tCX cells that were either untreated (no treatment) or preincubated with recombinant *N. gonorrhoeae* NHBA (ΔNHBA_C) (100 µg/mL) or peanut agglutinin (PNA) as a negative control (100 µg/mL). Data represent the average percent adherence for triplicate samples as a percentage of that for the inoculum and are shown relative to the WT; the results for the WT, set at 100%, are 1.1 × 10⁵ (tCX) and 1.7 × 10⁵ (tUEC) CFUs (Δ). Error bars represent standard deviations. Experiments were performed ≥3 times, and representative results are shown. *P < .05; †P < .01; ‡P < .001 (relative to untreated WT strain; 2-tailed Student t test).
of robust bacterial aggregates and microcolonies on the epithelial cell surface (reviewed in [26]). Both initial adherence and microcolony formation are mediated by gonococcal factors, including type IV pili, Opa proteins, and LOS [36–39]. However, *N. gonorrhoeae* also form aggregates even in the absence of pili or Opa protein, suggesting the presence of unknown host factors that facilitate gonococcal aggregation [40].

We show that NHBA$_{Ng}$ plays a key role in establishing gonococcal infection, because the ΔNHBA mutant displayed decreased adherence to tCX and tUEC cells, as well as decreased aggregation and microcolony formation relative to the WT strain. Furthermore, recombinant NHBA$_{Ng}$ directly interacts with both epithelial cells and gonococcal cells, and NHBA$_{Ng}$ can block adherence to epithelial cells in a concentration-dependent manner. This is likely a result of NHBA interactions with host glycans on the epithelial cells, which mediate NHBA$_{nom}$ interactions with Hec-1B and CHO-K1 cells [12]. The gonococcal NHBA is up-regulated at 32°C versus 37°C, consistent with NHBA regulation in *N. meningitidis* [17], which may be particularly relevant during adherence in the pharynx by these organisms, owing to the lower temperature of this niche.

The NHBA$_{Ng}$-mediated interbacterium interactions, and the role of NHBA$_{Ng}$ in microcolony formation, may be facilitated by its interactions with LNnT, which is present on the surface of gonococcal cells as part of LOS [41]. Gonococcal microcolonies interact with host microvilli and lead to rearrangement of the host cytoskeleton and cortical plaque formation [42–46]. Microcolonies have also been implicated in increasing gonococcal resistance to antibiotics [40], and formation of bacterial aggregates is enhanced after exposure to seminal plasma, which influences bacterial transmission [47]. The formation of *N. meningitidis* aggregates is also important for resisting shear forces on the cell surface [48], which may also be important for *N. gonorrhoeae*. However, it is interesting to note that meningococcal NHBA has not been reported to be involved in aggregation to date [11, 12, 20].

In summary, we highlight the role of NHBA during several stages of gonococcal infection and pathogenesis. Our findings suggest that targeting NHBA-self and NHBA-host interactions may be a useful therapeutic and vaccine approach.

Notes

Acknowledgments. This publication made use of the *Neisseria* Multi Locus Sequence Typing website (https://pubmlst.org/neisseria/), developed by Keith Jolley and hosted at the University of Oxford; the development of this site has been funded by the Wellcome Trust and European Union.

Financial support. This work was supported by the Australian National Health and Medical Research Council (career development fellowship 1045235 to K. L. S. and project grants 1028326 to K. L. S. and 1099278 to C. J. D. and K. L. S.).

Potential conflicts of interest. All authors: No reported conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. World Health Organization. Global incidence and prevalence of selected curable sexually transmitted infections—2008. Geneva, Switzerland: World Health Organization, 2012.

2. Hook EW, Handsfield HH. Gonococcal infection in the adult. In: Holmes KK, ed. Sexually transmitted diseases. New York, NY: McGraw-Hill, 2008:627–45.

3. Edwards JL, Jennings MP, Apicella MA, Seib KL. Is gonococcal disease preventable? the importance of understanding immunity and pathogenesis in vaccine development. Crit Rev Microbiol 2016; 42:928–41.

4. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed 8 April 2018.

5. World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/. Accessed 8 April 2018.

6. Unemo M, Bradshaw CS, Hocking JS, et al. Sexually transmitted infections: challenges ahead. Lancet Infect Dis 2017; 17:e235–e79.

7. Public Health England. UK case of *Neisseria gonorrhoeae* with high-level resistance to azithromycin and resistance to ceftriaxone acquired abroad. 2018. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/694655/hpr1118_MDRGC.pdf. Accessed 8 April 2018.

8. Serruto D, Bottomley MJ, Ram S, Giuliani MM, Rappuoli R. The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: immunological, functional and structural characterization of the antigens. Vaccine 2012; 30 (suppl 2):B87–97.

9. Hadad R, Jacobsson S, Pizza M, et al. Novel meningococcal 4CMenB vaccine antigens—prevalence and polymorphisms of the encoding genes in *Neisseria gonorrhoeae*. APMIS 2012; 120:750–60.

10. Semchenko EA, Tan A, Borrow R, Seib KL. The serogroup B meningococcal vaccine Bexsero elicits antibodies to *Neisseria gonorrhoeae*. Clin Infect Dis 2019; 69:1101–11.

11. Serruto D, Spadafina T, Ciucchi L, et al. *Neisseria meningitidis* GNA2132, a heparin-binding protein that induces protective immunity in humans. Proc Natl Acad Sci U S A 2010; 107:3770–5.
12. Vacca I, Del Tordello E, Gasperini G, et al. Neisserial heparin-binding antigen (NHBA) contributes to the adhesion of Neisseria meningitidis to human epithelial cells. PLoS One 2016; 11:e0162878.

13. Mubaiwa TD, Hartley-Tassell LE, Semchenko EA, Day CJ, Jennings MP, Seib KL. The Bexsero Neisseria meningitidis serogroup B vaccine antigen NHBA is a high-affinity chondroitin sulfate binding protein. Sci Rep 2018; 8:6512.

14. Pantano E, Cartocci E, Marchi S, et al. NHBA is processed by kallikrein from human saliva. PLoS One 2018; 14:e0203234.

15. Di Fede M, Biagini M, Cartocci E, et al. Neisseria heparin binding antigen targeted by the human alternative pathway C3-convertase. PLoS One 2018; 13:e0194662.

16. Casellato A, Rossi Paccani S, Barrile R, et al. The C2 fragment from Neisseria meningitidis antigen NHBA increases endothelial permeability by destabilizing adherens junctions. Cell Microbiol 2014; 16:925–37.

17. Lappann M, Otto A, Brauer M, Becher D, Vogel U, Johswick K. Impact of moderate temperature changes on Neisseria meningitidis adhesion phenotypes and proteome. Infect Immun 2016; 84:3484–95.

18. Arenas J, Nijland R, Rodriguez FJ, Bosma TN, Tommassen J. Involvement of three meningococcal surface-exposed proteins, the heparin-binding protein Nhba, the alpha-peptide of IgA protease and the autotransporter protease Nalp, in initiation of biofilm formation. Mol Microbiol 2013; 87:254–68.

19. Del Tordello E, Vacca I, Ram S, Rappuoli R, Serruto D. Neisseria meningitidis Nalp cleaves human complement C3, facilitating degradation of C3b and survival in human serum. Proc Natl Acad Sci U S A 2014; 111:427–32.

20. Seib KL, Oriente F, Adu-Bobie J, et al. Influence of serogroup B meningococcal vaccine antigens on growth and survival of the meningococcus in vitro and in ex vivo and in vivo models of infection. Vaccine 2010; 28:2416–27.

21. Semchenko EA, Day CJ, Seib KL. MetQ of Neisseria gonorrhoeae is a surface-expressed antigen that elicits bactericidal and functional blocking antibodies. Infect Immun 2017; 85:e00898-16.

22. Jen FEC, Semchenko EA, Day CJ, Seib KL, Jennings MP. The Neisseria gonorrhoeae methionine sulfoxide reductase (MsrA/B) is a surface exposed, immunogenic, vaccine candidate. Front Immunol 2019; 10:137.

23. Semchenko EA, Everest-Dass AV, Jen FE, Mubaiwa TD, Day CJ, Seib KL. Glycointeractome of Neisseria gonorrhoeae: identification of host glycans targeted by the gonococcus to facilitate adherence to cervical and urethral epithelial cells. MBio 2019; 10:e01668-19.

24. Seib KL, Haag AF, Oriente F, et al. The meningococcal vaccine antigen GNA2091 is an analogue of YraP and plays key roles in outer membrane stability and virulence. FASEB J 2019; 33:12343–5.

25. Hartley-Tassell LE, Day CJ, Semchenko EA, et al. A peculiar case of Campylobacter jejuni attenuated aspartate chemosensory mutant, able to cause pathology and inflammation in avian and murine model animals. Sci Rep 2018; 8:12594.

26. Quillin SJ, Seifert HS. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol 2018; 16:226–40.

27. Ram S, Cullinane M, Blom AM, et al. Binding of C4b-binding protein to porin: a molecular mechanism of serum resistance of Neisseria gonorrhoeae. J Exp Med 2001; 193:281–95.

28. Ram S, McQuillen DP, Gulati S, Elkins C, Pangburn MK, Rice PA. Binding of complement factor H to loop 5 of porin protein 1A: a molecular mechanism of serum resistance of nonsialylated Neisseria gonorrhoeae. J Exp Med 1998; 188:671–80.

29. Nogamutsadol J, Ram S, Gulati S, et al. Human factor H interacts selectively with Neisseria gonorrhoeae and results in species-specific complement evasion. J Immunol 2008; 180:3426–35.

30. Gulati S, Cox A, Lewis LA, et al. Enhanced factor H binding to sialylated Gonococci is restricted to the sialylated lecto-N-neotetraose lipooligosaccharide species: implications for serum resistance and evidence for a bifunctional lipooligosaccharide sialyltransferase in Gonococci. Infect Immun 2005; 73:7390–7.

31. Chen T, Swanson J, Wilson J, Belland RJ. Heparin protects Opa+ Neisseria gonorrhoeae from the bactericidal action of normal human serum. Infect Immun 1995; 63:1790–5.

32. McQuillen DP, Gulati S, Ram S, et al. Complement processing and immunoglobulin binding to Neisseria gonorrhoeae determined in vitro simulates in vivo effects. J Infect Dis 1999; 179:124–35.

33. Bischof P, Planas-Basset D, Meisser A, Campana A. Investigations on the cell type responsible for the endometrial secretion of complement component 3 (C3). Hum Reprod 1994; 9:1652–9.

34. Price RJ, Boettcher B. The presence of complement in human cervical mucus and its possible relevance to infertility in women with complement-dependent sperm-immobilizing antibodies. Fertil Steril 1979; 32:61–6.

35. Yu H, Munoz EM, Edens RE, Linhardt RJ. Kinetic studies on the interactions of heparin and complement proteins immobilizing antibodies. Fertil Steril 1979; 32:61–6.

36. Price RJ, Boettcher B. The presence of complement in human cervical mucus and its possible relevance to infertility in women with complement-dependent sperm-immobilizing antibodies. Fertil Steril 1979; 32:61–6.

37. Zollner R, Oldewurtel ER, Kouzel N, Maier B. Phase and antigenic variation govern competition dynamics through positioning in bacterial colonies. Sci Rep 2017; 7:12151.
38. Stein DC, LeVan A, Hardy B, Wang LC, Zimmerman L, Song W. Expression of opacity proteins interferes with the transmigration of Neisseria gonorrhoeae across polarized epithelial cells. PLoS One 2015; 10:e0134342.

39. LeVan A, Zimmerman LI, Mahle AC, et al. Construction and characterization of a derivative of Neisseria gonorrhoeae strain MS11 devoid of all opa genes. J Bacteriol 2012; 194:6468–78.

40. Wang LC, Litwin M, Sahiholnasab Z, Song W, Stein DC. Neisseria gonorrhoeae aggregation reduces its ceftriaxone susceptibility. Antibiotics 2018; 7:E48.

41. Mandrell RE, Griffiss JM, Macher BA. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens: carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes. J Exp Med 1988; 168:107–26.

42. Lee SW, Higashi DL, Snyder A, Merz AJ, Potter L, So M. PilT is required for PI(3,4,5)P3-mediated crosstalk between Neisseria gonorrhoeae and epithelial cells. Cell Microbiol 2005; 7:1271–84.

43. Higashi DL, Lee SW, Snyder A, Weyand NJ, Bakke A, So M. Dynamics of Neisseria gonorrhoeae attachment: microcolony development, cortical plaque formation, and cytoprotection. Infect Immun 2007; 75:4743–53.

44. Merz AJ, So M. Attachment of piliated, Opa- and Opc-gonococci and meningococci to epithelial cells elicits cortical actin rearrangements and clustering of tyrosine-phosphorylated proteins. Infect Immun 1997; 65:4341–9.

45. Merz AJ, Enns CA, So M. Type IV pili of pathogenic Neisseriae elicit cortical plaque formation in epithelial cells. Mol Microbiol 1999; 32:1316–32.

46. Dietrich M, Bartfeld S, Munke R, et al. Activation of NF-kappaB by Neisseria gonorrhoeae is associated with microcolony formation and type IV pilus retraction. Cell Microbiol 2011; 13:1168–82.

47. Anderson MT, Dewenter L, Maier B, Seifert HS. Seminal plasma initiates a Neisseria gonorrhoeae transmission state. MBio 2014; 5:e01004–13.

48. Mikaty G, Soyer M, Mairey E, et al. Extracellular bacterial pathogen induces host cell surface reorganization to resist shear stress. PLoS Pathog 2009; 5:e1000314.