TO ASSESS THE PREVALENCE, DIAGNOSTIC TOOLS AND PRESCRIPTION TRENDS OF KIDNEY STONE IN SIALKOT

Faiza Naeem *, Nawal Pervaiz, Tassawer-e-Meran, Najam-ul-Hassan, Sumbul Qamar, Umar Farooq, Muhammad Mohsin Iqbal, Zakki Arshad, Muhammad Idrees, Faris Pervaiz

*Islam College of Pharmacy, Sialkot

ABSTRACT

Objective: This study provides a brief description regarding prevalence, diagnostic tools and medical treatment of kidney stones in Sialkot, Pakistan.

Method: The study was carried out in the Department of Urology, Amina Hospital Cantt, Sialkot. Data was recorded on questionnaires by interview of 50 patients of kidney stones involving 30 males, 17 females and 3 child by filling questionnaire after random collection of data in district Sialkot.

Result: The prevalence of kidney stones in Sialkot was 60% in males, 34% in females and 6% in child. The most recommended diagnostic test was ultrasound (96%) and percentages for rest of diagnostic tests were 58% urinalysis, 10% KUB X-Ray and 2% IVP. Renal profile were 92% urea, 56% uric acid, 92% creatinine, 38% sodium, 10% calcium and 30% chloride. From sample size of 50 patients, tamsulosin (80%) was highly recommended along with ciprofloxacin (68%), diclofenac sodium (64%), citro soda (56%), tripsin along with chymotrypsin combination (chymotrip forte) (44%),diclofenac sodium with misoprostol combination (osteotec) (22%), omeprazole(32%), nelbuphine (14%), distalgesic (8%), furosemide (6%), paracetamol (4%).

Conclusion: The kidney stones prevalence is more in male gender as compared to female gender with percentages of 60% in males and 34% in females along with 6% in child. The most prevalent diagnostic test was ultrasound (96%) and most recommended medicine was tamsulosin (80%).

Key words: kidney stones, flank pain, prevalence, diagnostic tools, tamsulosin

INTRODUCTION

The presence of stones in the urinary tract or kidneys from a wide range of underlying disorders is termed as kidney stones [1]. Renal stones affects up to 5% of the whole population among all disorders, with a lifetime risk of passing a kidney stone of about 8-10% of population. The National Health and Nutrition Examination Survey (NHANES) has collected data related to kidney stones. The prevalence of kidney stones was 8.8% according them. In male gender, the prevalence of kidney stones was 10.6% as compared with 7.1% in females. Kidney stones were more prevalent among overweight than normal-weight personel’s [2]. Stones were approximately two fold as prevalent in the Southeast as in the Northwest among men and women [3]. Urinary tract symptoms include pain classic colicky loin radiating to groin area, hematuria, dysuria and systemic symptoms includes restless patient, frequently writhing in distress, nausea, emesis, or both (shared innervation of renal capsule and intestines), fever and chills [4]. Kidney stones are categorized as calcium oxalate CaOX stones, struvite stones, uric acid stones and cystine stones. Calcium oxalate, uric acid, cystine crystals can scour the urinary tract and most probably cause bleeding [5]. The pathophysiological etiology for the calcium stone formation is complex showing diversity of presence and may include low urine volume, hypercalciuria, hyperuricosuria, hypocitraturia, hyperoxaluria, and idiosyncrasiesin pH of patients urine [6].The deposition of hydroxyapatite as sub-epithelial plaques or tubular deposits in the renal papillae also leads to the formation of kidney stone [7]. Bacterial infection also raises the probabilities of stones in which struvite stones have also been referred to as “infection stones” and “triple phosphate” stones. After the chemical analyses of the stones which demonstrated the presence of calcium, magnesium, ammonium, and phosphate (i.e., three cations and one anion), the term triple phosphate was subjected [8]. A series of factors are responsible for
the formation of stones like obesity (related with insulin resistance and compensatory hyper-insulinemia, metabolic derangements) and the larger body size (results in increased urinary excretion of uric acid and oxalate) [9]. Animal protein diet, when its electrolyte composition and quantity of protein were kept the same as for the vegetarian diet, conferred an amplified risk for uric acid stones [10]. Imaging investigations play a vital role in the management of patients with kidney stones and various imaging techniques are used to determine the presence along with location of kidney stones. The available techniques are plain x-ray of the abdomen, kidney ureter bladder x-ray (KUB x-ray), ultrasound scan, intravenous urogram (IVU), computed tomography (CT) and magnetic resonance imaging (MRI) [11]. KUB X-rays is x-ray of the kidneys, ureters, and bladder for detection of renal stones. Some additional methods are used such as percutaneous nephrolithotomy (PCN) and stone extraction using an especially designed ureteroscope (URS) and extracorporeal shock wave lithotripsy (ESWL) are intended for efficient diagnosis [12]. Comorbidity in stone formers as renal insufficiency, diabetes, gross obesity, pulmonary disease increases the risk of complications [13]. Extracorporeal shockwave lithotripsy (ESWL) is a safe and effective method for surgical treatment and removal of most upper urinary tract stones but shows major complications including haemorrhage, septicaemia, steinstrasse formation and cardiac arrhythmias [14]. Patients are instructed to drink six to eight glasses of liquid daily. High sodium intake contribute to hypercalciuria in patients with calcium oxalate stones [15]. Low protein diets are commonly prescribed for patients with idiopathic calcium nephrolithiasis [16]. For stones measuring 10 mm or less, antispasmodics (calcium channel blockers and alpha blockers) relaxes the smooth muscle of ureters and accelerate stone passage by five to seven days [17]. For medical-expulsive therapy (MET), Corticosteroids, hormones, nonsteroidal anti-inflammatory agents (NSAIDs), calcium-channel blockers and α-adrenergic antagonist have been evaluated. The addition of a corticosteroid to tamsulosin in the MET of distal ureterolithiasis produces a more rapid stone expulsion [18]. Stones were significantly better treated with percutaneous nephrolithotomy as compared to extracorporeal shock wave lithotripsy (ESWL) with the largest observed divergence seen in stones >1 cm in diameter [19].

METHODOLOGY
Study Design
A prevalence study was done on sample size of 50 patients suffering from kidney stone which were selected randomly from different hospitals in order to determine the percentage prevalence, percentage for various diagnostic tests and prescription trends within Sialkot or its Tehsils. Those hospitals were Amina hospital Cantt, Sialkot, Islam central Hospital, Sialkot and different private clinics of Sialkot. Similar study was conducted to determine chronic kidney disease (CKD) and kidney stones prevalence and its risk factors in children and adult population [20]. The study design that was followed, is given below:

Study Sample and its Recruitment
The study period was from February 2016 to September 2016. For the completion of our research work, total sample size of 50 patients of single stone or multiple stones including males and females of all age groups have participated. Interviews with patients and guidance from academic and community endourologists were considered. All of the patients have shown the history of kidney stones. Prevalence increases with age for both gender. Some of them were suffering from co-morbidity like acute renal failure, hypertension, diabetes, chronic respiratory infections and chronic kidney disease but apart of these, we have only considered kidney stone patients with or without comorbidity. Different hospitals and clinics were visited for data collection (patient profile, laboratory data etc). The patient consent form was signed by the patient to encourage their participation and willingness in our project.

Patient Selection
The patients of all age groups were selected randomly from any socio-economical society, demographic and regional variations. Limitation of our research work in selection of patients includes that patients were only be eligible if they were either resident of district Sialkot or its Tehsils i.e. Daska, Sambrial and Pasroor. To minimize selection bias within our research work, we report on all patients for whom there are treatment follow-up data, with no other criteria imposed [21]. Total 50 patients of all age groups were involved without differentiation of gender. There is no limitation of religion or ethnicity in our research work. The patients of all age groups were included either children or adults. There is no any age limit for the inclusion of patient in this study. Males and females are also included as they are the major part of the society.

Patient Consent
The selected patients of kidney stones were agreed for their participation in our research project. None of the patient was disagreed with any aspect of our research work. Consent forms were signed by the patient in English and in Urdu for legal approaches.

Family History of Patient
Kidney stones develop more frequently in individuals with a family history of kidney stones than in those without a family history, so patients with family
history was also considered in our research project. Reoccurrence was much more common in men with a personal history of stones at baseline in 1986 than in those without a history of stones [22].

Method of Data Collection
The study was carried out in the Department of Urology, Amina Hospital Cantt, Sialkot. Permission was first obtained from medical superintendent, Nadeem Cheema. The data for questionnaire were derived from the interview of patients of various hospitals and clinics of Sialkot. All of the patients were allowed to answer the questionnaire concerning their previous medical history of kidney stones (PMH), presenting complain (PC), history of presenting complain (HOPi), dietary habits (DH) and past surgical history related kidney stones (PNL, ESWL). In eligible households, all members having kidney stones were asked to complete a self-administered questionnaire on disease history, medication use, dietary habits, occupational exposures and other health-related matters [23]. The lifestyle occurrence of kidney stones can be estimated by questions i.e. “Have you ever been complaint of kidney pain, Does this pain is related to kidney stone, Does the pain radiates toward the groin region, Is there any burning in urination, Is there any blood clot in urine etc [24]. As the lower urinary tract symptoms such as dysuria, urgency, and frequency may occur once a stone enters the ureter [25]. All of these questions were very helpful in accurate diagnosis of disease. A Performa was designed for the questioning of the kidney stone patient (Figure 1A) and (Figure 1B) and also signed along with patient consent form. We have planned three groups, one for male, one for female and other one is for children to calculate the prevalence of kidney stones in Sialkot. Finally we have compared the results of these groups after performing calculations for prevalence. There was not any limitation of age and co-morbidities but the only restriction for selection of patient was to hold the specific disease or have any past history of stones which are cured or present complications of kidney stone. The percentage of medication prescribed, disease prevalence and diagnostic tools used for diagnostic purpose were also determined.

RESULTS
Prevalence Rate of Kidney Stones in Sialkot
This project was conducted to assess prevalence, diagnostic methods and medication prescribed for kidney stones in various hospitals and clinics of Sialkot. Our principle finding was to assess the prevalence rate and medication prescribed for kidney stones in district Sialkot and its tehsil. 50 patients of kidney stones were considered of different sexes and age from wide range of community of Sialkot. Out of these 50 patients, 30 males (60%), 17 females (34%) and 3 children (6%) were suffering from the kidney stone as mentioned in Table 1.

Percentage of Diagnostic Tools for Diagnosis of Kidney Stones
Diagnostic evaluation was conducted on 50 patients with a single episode or multiple episodes of renal stone formation. Table 2 indicates the percentages for various diagnostic tools. In order to assess the diagnostic tools used for diagnosis or investigation of the kidney stones, volunteers in Sialkot having kidney stones enlisted were 30 male, 17 female and 3 child participants. Our results for diagnostic tools were ultrasound (n=48, 96%), KUB X-Ray (n=5, 10%), IVP (n=1, 2%), urinalysis (n=29, 58%), urea (n=46, 92%), uric acid (n=28, 56%), creatinine (n=46, 92%), sodium (n=19, 38%), calcium (n=5,10%) and chloride (n=15, 30%). The abdominal and pelvic ultrasonography (n=48, 96%) was highly recommended by the physician. The lesser recommendations were found for IVP (n=1, 2%).

Percentage of Prescription Trends for Kidney Stones
Prescription trends for the treatment of kidney stone may vary according to the size of stone within kidneys or urinary tract of single stone former or multiple stone former. According Table 3, medicines mostly prescribed in Sialkot for treatment of kidney stone from sample of 50 patients were tamsulosin (n=40, 80%), ciprofloxacin (n=34, 68%), diclofenac sodium (n=32, 64%), citro soda (n=28, 56%), chymotrip forte (n=22, 44%), omeprazole(n=16, 32%), osteotec (n=11, 22%), nebuphine (n=7, 14%), distalgiesic (n=4, 8%), furosemide (n=3, 6%) , paracetamol (n=2, 4%). Tamsulosin was highly recommended for kidney stones.

Table 1: Prevalence of kidney stones in Sialkot

Sr. No	Population	Total no. of patients	Sample size (n)	Prevalence (%)
1	Male	30	50	60%
2	Female	17	50	34%
3	Children	3	50	6%

Table 2: Percentage of diagnostic tests used in Sialkot for Kidney stone patients

Sr. No	Diagnostic test	Frequency (n)	Percentage (%)
1	urea	46	92
2	creatinine	46	92
3	uric acid	28	56
4	sodium	19	38
5	calcium	5	10
6	chloride	15	30
7	ultrasound	48	96
8	KUB X-Ray	5	10
9	IVP	1	2
10	Urinalysis	29	58
Figure 1: Patient profile and compliance form

Table 3: Total percentage of prescribed medicines used in Sialkot for the treatment of kidney stones

Medicine	Frequency (n)	Drug percentage in 50 prescriptions (%)
Tamsulosin	40	80
Ciprofloxacin	34	68
Diclofenac sodium	32	64
Citro soda	28	56
Chymotrup forte	22	44
Omeprazole	16	32
Osteotect	11	22
Nelbuphine	7	14
Distlogesic	4	8
Furomeide	3	6
Paracetamol	2	4

DISCUSSION
Prevalence Rate of Kidney Stone in Sialkot

Figure 2 showed the maximum number of male patients were subjected to kidney stones as compared to females. There was the highest incidence of onset of the kidney stone disease during the fifth decade [26]. The results showed male predominance for calcium oxalate and uric acid, a female preponderance for calcium phosphate and struvite stones, and an increasing prevalence of uric acid stones with age in both genders [27]. Young male and female are more prior to be infected by gram negative bacteria and cause septicemia which leads to formation of infectious stones named struvite stones. As the males are in direct contact with environment and dehydrated so there are more chances for formation of kidney stones. Within individual races, men still have a higher disease burden when compared with women from the same race [28].

Percentage of Diagnostic Tools for Diagnosis of Kidney Stones

Figure 3 indicates that ultrasound was recommended for diagnosis of kidney stones as it provides more accurate evaluation of stone location. The localization system for stones is described in connection with a dry table shock wave lithotripter, and uses a conventional ultrasound imaging system but wherein the ultrasound transducer has been modified to enable its location in space to be readily determined automatically [29]. An ultrasound B-scan
probe has proved to be worthwhile in the intraoperative localization of renal calculi [30]. Comparison of recurrent stone formers with a single stone episode had just as similar mild to severe biochemical abnormalities or laboratory results, such as hypercalciuria and exaggerated calciuric response to oral calcium load in absorptive hypercalciuria, high fasting urinary calcium and cyclic adenosine monophosphate in renal hypercalciuria, hyperuricosuria in hyperuricosuria calcium oxalate nephrolithiasis and low urine volume [23].

Percentage of Prescription Trends for Kidney Stones

Figure 4 showed tamsulosin was highly recommended for kidney stones as it is believed that it is used for benign prostatic hyperplasia (BPH) and to help with the passage of kidney stones. Tamsulosin appears to be effective only for stones over 4 mm and less than 10 mm in size. Tamsulosin therapy, as an adjunctive medical therapy after extracorporeal shock wave lithotripsy (ESWL), is more effective than lithotripsy alone for treatment of patients with large renal stones and equally safe [31].

CONCLUSION

According to our research work during the time duration of year 2016-2017, the prevalence of kidney stones in district Sialkot of Pakistan is more in male gender as compared to female gender. The percentage prevalence is 60% in males and 34% in females along with 6% in child. Our research work indicates that the most prevalent diagnostic test is ultrasound (96%) and most recommended medicine is tamsulosin (80%) for the treatment of kidney stones.

Figure 2: Prevalence of kidney stones in Sialkot

![Percentage of diagnostic tools used in Sialkot for diagnosis of kidney stones](image)

Figure 3: Percentage of diagnostic tools used in Sialkot for diagnosis of kidney stones
Figure 4: Percentage of total medicines prescribed in patients suffering from kidney stones in Sialkot

REFERENCES
1. Moe OW. Kidney stones: pathophysiology and medical management. The lancet, 367(9507), 333-344, 2006.
2. Scales CD, Smith AC, Hanley JM, Saigal CS. Urologic Diseases in America Project. Prevalence of kidney stones in the United States. European urology, 62(1), 160-165, 2012.
3. Soucie JM, Coates RJ, McCellan W, Austin H, Thun M. Relation between geographic variability in kidney stones prevalence and risk factors for stones. American journal of epidemiology, 143(5), 487-495, 1996.
4. Parmar MS. Kidney stones. BMJ, 328(7545), 1420-1424, 2004.
5. Coe FL., Parks JH, Asplin JR. The pathogenesis and treatment of kidney stones. New England Journal of Medicine, 327(16), 1141-1152, 1992.
6. Sakhaee K, Maalouf NM, Sinnott B. Kidney stones 2012: pathogenesis, diagnosis, and management. The Journal of Clinical Endocrinology & Metabolism, 97(6), 1847-1860, 2012.
7. Escobar C, Byer KJ, Khaskheli H, Khan SR. Apatite induced renal epithelial injury: insight into the pathogenesis of kidney stones. The Journal of urology, 180(1), 379-387, 2008.
8. Griffith DP. Struvite stones. Kidney international, 13(5), 372-382, 1978.
9. Taylor EN, Stampfer MJ, & Curhan GC. Obesity, weight gain, and the risk of kidney stones. Jama, 293(4), 455-462, 2005.
10. Breslau NA, Brinkley L, Pak CY. Relationship of Animal Protein-Rich Diet to Kidney Stone Formation and Calcium Metabolism*. The Journal of Clinical Endocrinology & Metabolism, 66(1), 140-146, 1988.
11. Rao PN. Imaging for kidney stones. World journal of urology, 22(5), 323-327, 2004.
12. Eisenberger F, Fuchs G, Miller K., Bub P, Rassweiler J. Extracorporeal shockwave lithotripsy (ESWL) and endourology: an ideal combination for the treatment of kidney stones. World Journal of Urology, 58(6), 578-580, 1986.
13. Burtis WJ, Gay L, Insogna KL, Ellison A, Broadus AE. Dietary hypercalciuria in patients with calcium oxalate kidney stones. The American journal of clinical nutrition, 60(3), 424-429, 1994.
14. Hiatt RA, Ettinger B, Caan B, Quesenberry CP, Duncan D, Citron JT. Randomized controlled trial of a low animal protein, high fiber diet in the prevention of recurrent calcium oxalate kidney stones. American journal of epidemiology, 144(1), 25-33, 1996.
15. Frassetto L, Kohlstadt I. Treatment and prevention of kidney stones: an update. American family physician, 84(11), 1234, 2011.
16. Dellabella M, Milanese G, Muzzonigro G. Medical-expulsive therapy for distal ureterolithiasis: randomized prospective study on role of corticosteroids used in combination with tamsulosin—simplified treatment regimen and health-related quality of life. Urology, 66(4), 712-715, 2005.
17. Shah A, Owen NR, Lu W, Cuntiz BW, Kaczkowski PJ, Harper JD, Crum LA. Novel ultrasound method to reposition kidney stones. Urological research, 38(6), 491-495, 2010.
18. Ingsathit A, Thakkinstian A, Chaiprasert A, Sangthawhan P, Gojaseni P, Kiattiisounthorn K. Mittal B. Prevalence and risk factors of chronic kidney disease in the Thai adult population: Thai SEEK study. Nephrology Dialysis Transplantation, 25(5), 1567-1575, 2010.
19. Parks JH, Coe FL. The final effects of kidney stone prevention. Kidney international, 50(5), 1706-1712, 1996.
20. Curhan GC, Willett WC, Rimm EB, Stamper MJ. Family history and risk of kidney stones. Journal of the American Society of Nephrology, 8(10), 1568-1573, 1997.
21. Soucie JM, Thun MJ, Coates RJ, McCellan W, Austin H. Demographic and geographic variability of kidney stones in the United States. Kidney international, 46(3), 893-899, 1994.
22. Indridason OS, Birgisson S, Edvardsson VO, Sigvaldason H, Sigfusson N, Palsson R. Epidemiology of kidney stones in Iceland - A population-based study. Scandinavian journal of urology and nephrology, 40(3), 215-220, 2006.
23. Miller NL, Lingeman JE. Management of kidney stones. BMJ, 334(7591), 468-472, 2007.
24. Ljunghall S, Hedstrand H. Epidemiology of renal stones in a middle-aged male population. Acta Medica Scandinavica, 197(1-6), 439-445, 1975.
25. Daudon M, Dore JC, Jungers P, Lacour B. Changes in stone composition according to age and gender of patients: a multivariate epidemiological approach. Urological research, 32(3), 241-247, 2004.
26. Romero V, Akpınar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol, 12(2-3), e86-e96, 2010.
27. Rose FH, McGregor CD, Mathur PUS. Patent No. 4,896,673. Washington, DC: U.S. Patent and Trademark Office, 1990.
28. Cook 3rd JH, Lytton B. Intraoperative localization of renal calculi during nephrolithotomy by ultrasound scanning. The Journal of urology, 117(5), 543-546, 1977.
29. Gravina GL, Costa AM, Ronchi P, Galatrito GP, Angelucci A, Castellani D, Vicentini C. Tamsulosin treatment increases clinical success rate of single extracorporeal shock wave lithotripsy of renal stones. Urology, 66(1), 24-28, 2005.