Coordinating ERK signaling via the molecular scaffold Kinase Suppressor of Ras [version 1; referees: 2 approved]

Danielle Frodyma¹, Beth Neilsen¹, Diane Costanzo-Garvey¹, Kurt Fisher², Robert Lewis¹,³

¹Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
²Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
³Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA

Abstract
Many cancers, including those of the colon, lung, and pancreas, depend upon the signaling pathways induced by mutated and constitutively active Ras. The molecular scaffolds Kinase Suppressor of Ras 1 and 2 (KSR1 and KSR2) play potent roles in promoting Ras-mediated signaling through the Raf/MEK/ERK kinase cascade. Here we summarize the canonical role of KSR in cells, including its central role as a scaffold protein for the Raf/MEK/ERK kinase cascade, its regulation of various cellular pathways mediated through different binding partners, and the phenotypic consequences of KSR1 or KSR2 genetic inactivation. Mammalian KSR proteins have a demonstrated role in cellular and organismal energy balance with implications for cancer and obesity. Targeting KSR1 in cancer using small molecule inhibitors has potential for therapy with reduced toxicity to the patient. RNAi and small molecule screens using KSR1 as a reference standard have the potential to expose and target vulnerabilities in cancer. Interestingly, although KSR1 and KSR2 are similar in structure, KSR2 has a distinct physiological role in regulating energy balance. Although KSR proteins have been studied for two decades, additional analysis is required to elucidate both the regulation of these molecular scaffolds and their potent effect on the spatial and temporal control of ERK activation in health and disease.
Corresponding author: Robert Lewis (rlewis@unmc.edu)

Author roles: Frodyma D: Conceptualization, Formal Analysis, Writing – Original Draft Preparation, Writing – Review & Editing; Neilsen B: Formal Analysis, Writing – Original Draft Preparation, Writing – Review & Editing; Costanzo-Garvey D: Formal Analysis, Writing – Review & Editing; Fisher K: Writing – Original Draft Preparation, Writing – Review & Editing; Lewis R: Conceptualization, Formal Analysis, Funding Acquisition, Project Administration, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: The authors declare that they have no competing interests.

How to cite this article: Frodyma D, Neilsen B, Costanzo-Garvey D et al. Coordinating ERK signaling via the molecular scaffold Kinase Suppressor of Ras [version 1; referees: 2 approved] F1000Research 2017, 6(F1000 Faculty Rev):1621 (doi: 10.12688/f1000research.11895.1)

Copyright: © 2017 Frodyma D et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: Our research is supported by National Cancer Institute (P30 CA036727, R01 CA157774) and National Institute of General Medical Sciences (P20 GM104320)
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

First published: 31 Aug 2017, 6(F1000 Faculty Rev):1621 (doi: 10.12688/f1000research.11895.1)
Introduction

The three Ras genes (K-Ras, H-Ras, and N-Ras) regulate diverse cellular functions through multiple pathways and are also commonly mutated in human cancer to yield constitutively active small GTPases. Activating Ras mutations are found in approximately 25% of human tumors, though these three small GTPases are not mutated at equivalent frequencies in cancer. A total of 85% of Ras-driven cancers have activating mutations in K-Ras, while N-Ras and H-Ras are mutated in 12% and 3%, respectively, of these cancers (http://cancer.sanger.ac.uk/cosmic). Ras mutations are most common in pancreatic ductal adenocarcinomas (95%), colorectal adenocarcinomas (52%), and lung adenocarcinomas (31%). Intensive analysis revealed that multiple effectors with Ras-binding domains (or Ras association domains) were capable of interacting with the Ras effector loop and mediating its biological effects. Observations that activating Ras and Raf mutations are typically mutually exclusive, and that only components of the Raf/MEK/ERK pathway rescue growth in “Rasless” mouse embryo fibroblasts (MEFs) suggest that the interaction of Ras with Raf, and the activation of MEK1/2 and ERK1/2, may be most critical to Ras-driven cancers.

Kinase Suppressor of Ras 1 (KSR1) interacts with Raf, MEK, and ERK, mediating ERK activation and signaling in a dose-dependent fashion (discussed in greater detail below), and is essential for the transformation of MEFs by oncogenic Ras. These discoveries revealed a critical role played by this molecular scaffold in transformation and tumorigenesis. However, KSR1 mice are fertile and show inconsequential developmental alterations. These observations suggest that KSR1 may play a prominent role in cancers that are dependent upon Ras and ERK signaling and that it might be exploited therapeutically with minimal toxicity to the patient. Here we review the biochemistry and biology of KSR1 and its paralog, KSR2, and discuss their potential as therapeutic targets.

The role of KSR proteins in the Raf/MEK/ERK cascade

A single ksr gene was identified as necessary for the rough-eye phenotype of activated Ras in Drosophila. Two ksr genes (ksr1 and ksr2) are expressed in Caenorhabditis elegans and mammalians. KSR1 and KSR2 proteins facilitate Raf phosphorylation of MEK, leading to increased ERK activation in response to Ras activation or calcium influx. KSR proteins have properties expected of molecular scaffolds. As expected of true scaffolds, increasing KSR1 allows for increased ERK activation until KSR1 reaches an optimal level. Surprisingly, in MEFs the level of KSR1 that maximizes ERK activation and signaling is approximately 12 times the endogenous level of expression. Further increasing KSR1 causes a decrease in ERK activation because the cellular concentration of KSR1 exceeds the amount of scaffold that can coordinate signaling with Raf, MEK, and ERK. This suggests that overexpression of KSR1 sequesters individual components of the MAPK cascade such that they are unable to interact, which reduces MAPK signaling. However, overexpressing additional individual components of the MAPK pathway can suppress the inhibitory effects of scaffold excess. This observation likely explains why early studies in which ectopic KSR1 was overexpressed suggested that KSR1 inhibited Ras-driven transformation. Importantly, the level of KSR1 expression that optimizes ERK activation is the same level that maximizes the transforming activity of oncogenic Ras and the proliferative effects of growth factors.

Phosphorylation sites and determinants of protein–protein interaction have been mapped extensively on KSR1 and KSR2 and have been shown to regulate KSR1 in part through subcellular localization. Analysis of these phosphorylation sites and interactions with effectors and modifiers suggest dynamic regulation of KSR1 and its scaffold function. Interaction with the E3 ligase IMP promotes the redistribution of KSR1 to Triton-resistant punctate structures that sequester KSR1 and impair ERK activation. Phosphorylation of KSR1 on Ser297 and Ser392 (Ser310 and Ser469 in KSR2) by the kinase C-TAK1 (MARK3) creates a 14-3-3 binding site that anchors KSR1 within this subcellular compartment. Ras activation catalyzes IMP autopolyubiquitylation and proteasomal destruction. Stimuli that promote IMP degradation also promote the dephosphorylation of KSR1 at Ser392 by PP2A, which eliminates 14-3-3 binding. Calcium dephosphorylates 14-3-3 binding sites on KSR2. These events promote the redistribution of KSR1 to the plasma membrane, facilitating the activation of MEK by Raf. MEK is bound to KSR1 in the absence of Ras activation. Though identified as a loss-of-function mutation on KSR1 in C. elegans, the mutation of KSR1 at Cys809 to tyrosine (C809Y) enhances the activation of ERK in mammalian cells. These observations suggest that KSR proteins may sequester MEK in an inactivated state and present MEK for phosphorylation by Raf. In this model, MEK does not need to be in complex with KSR1 to phosphorylate and activate ERK. However, KSR1 encodes a DEF domain, which is essential to KSR1-mediated ERK interaction and critical for competent signal transduction. KSR1 (but not KSR2) also encodes a caveolin-binding domain, which is required for binding to caveolin-1, localization to the plasma membrane, and ERK activation. Another level of KSR1 regulation exists in its degradation. Recently, it has been shown that KSR1 is polyubiquitinated by praja2, which promotes KSR1 degradation, causing a decrease in ERK signaling. Reconciling these observations implies that KSR1 coordinates a dynamic mechanism that provides spatial and temporal control of signaling through the Raf/MEK/ERK kinase cascade.

Regulation of MEK and ERK by KSR and Raf heterodimers

The dimerization of Raf proteins is an essential step in wild-type Raf activation. KSR and Raf proteins share homology within the region required for Raf dimerization, and KSR has been shown to form heterodimers with Raf, particularly B-Raf. Based on modeling, KSR dimerization with Raf induces a conformational change in KSR that induces the exposure of the MEK activation loop and facilitates its phosphorylation. However, the dimerization of KSR and Raf orients the Raf protein such that the catalytic site of Raf is not in close proximity to its phosphorylation target site on MEK. Therefore, MEK phosphorylation must be
completed by another Raf protein. KSR2 also forms homodimers through a side-to-side interface that is specifically dependent upon Arg718. Mutations at this site suppress Ras signaling, suggesting that the dimerization of KSR proteins is required to promote Ras signaling. This observation is consistent with results showing that mutations inhibiting the KSR-Raf heterodimerization decrease Raf activity. Additionally, there is potential for KSR1 to directly activate ERK or BRAF and CRAF if Y552 is phosphorylated, as the KSR1Y552D mutant demonstrated this ability. The functional role of KSR homodimers is still incompletely understood, but the ability of IMP to inhibit MEK activation by Raf has been suggested to result from IMP-mediated disruption of KSR1 homodimers and B-Raf/c-Raf heterodimers.

Phenotypic effects of KSR1/2 genetic inactivation

Genetic studies in model organisms demonstrate that KSR proteins promote Ras signaling. Heterozygous loss of ksr in Drosophila suppresses Ras signaling and prevents the rough-eye phenotype caused by constitutive Ras signaling. Similarly, loss-of-function mutations in ksr1 suppressed the multiple vulva phenotype of activated Ras in C. elegans. KSR1 plays a similar role in mammals. Apart from minor deficits, ksr1−/− knockout mice are fertile and developmentally normal. Ksr1−/− mice have hair follicle defects similar to the phenotype of egfr−/− mice, supporting the suggestion that these proteins function within the same pathway. As a result of reduced ERK signaling, ksr1−/− mice have a marginally impaired immunological response. The most profound and translationally significant phenotype of ksr1−/− mice is resistance to Ras-dependent tumor formation. Skin tumor induction by v-Ha-Ras is lost in ksr1−/− mice, and mammary tumor burden is markedly reduced by KSR1 disruption in mice expressing transgenic polyomavirus Middle T-Antigen. These observations demonstrate that KSR modulates Ras signaling in vivo, but it is largely dispensable for normal cell survival. The requirement for KSR1 in Ras-driven tumor formation, but not normal development, reveals KSR1 as a potential target for therapeutic intervention.

In contrast to the mild phenotype of ksr1−/− mice, ksr2−/− mice have reduced fertility and become spontaneously obese. Pathways regulating adaptive thermogenesis, metabolic rate, and leptin-sensitive food consumption are implicated in KSR2-dependent energy balance. Consistent with observations in the knockout mice, humans with ksr2 mutations show severe early onset
obesity65. Ksr2 variants in humans that impair Ras signaling or inhibit KSR2 interaction with AMPK also disrupt glucose metabolism and fatty acid oxidation66. Interestingly, KSR2 is almost exclusively expressed in the brain and pituitary19,58. Brain-specific disruption of KSR2 is sufficient to cause obesity and glucose intolerance in mice, though it does not perfectly recapitulate the phenotype of ksr2-/- mice15. These observations show that KSR2 function in the brain plays a potent role in the regulation of energy balance.

Structural properties of KSR proteins

KSR1 and KSR2 proteins are highly conserved in invertebrates and mammals15,65. KSR proteins are structurally related to Raf proteins in five conserved areas, CA1–CA513,34,44,61. CA1 is located on the N-terminus end. It contains 40 amino acids that contribute to B-Raf binding by KSR1 and encode coiled-coil and sterile-\(\alpha\)-motif (SAM) structures that promote KSR1 membrane association13,34,44,61. CA2 is a proline-rich region without known function. A region in KSR2 between CA2 and CA3 is required for KSR interaction with AMPK, and mutations in this region inhibit this interaction15,13,58. CA3 is a cysteine-rich region containing an atypical C1 motif homologous to the cysteine-rich CR1 region in Raf that also contributes to KSR1 membrane localization15,62. CA3 mediates the membrane localization of KSR by recruiting phospholipids but does not react to phorbol esters or ceramide or interact directly with Ras63. CA4 is a serine/threonine-rich region that mediates interactions with ERK through an FXFP motif63. This interaction is not constitutive but requires Ras activation21,24,37,64. The CA5 domain in KSR proteins encodes a kinase (or pseudokinase) domain highly homologous to Raf family CR3 kinase domains15,17. Mammalian KSR proteins contain multiple alterations in amino acids typically required for catalytic activity including arginine in place of the lysine that coordinates the gamma phosphate of ATP15,62. Substantial effort has been exerted to clarify if KSR can or does phosphorylate cellular substrates and, if so, whether or not this activity contributes to the downstream effects of KSR15,12,4,7,64. KSR1 substrates and the biological relevance of any residual phosphotransferase activity have yet to be validated.

The CA5 region contributes to KSR interaction with MEK in both quiescent and growth factor-activated cells11,4,65. Amino acid substitutions within the CA5 region that diminish interaction with MEK also reduce ERK signaling15-17,1,4,64. However, these alterations are within or near the ATP-binding domain and may disrupt ATP binding, potentially affecting interaction with MEK secondarily. The CA5 domain also interacts with Raf, but the mechanism is incompletely understood44. Thus, there may be unidentified dynamic interactions between the CA1 and CA5 domains of KSR proteins and B-Raf that regulate Raf kinase activation, MEK phosphorylation, and signal transduction through the kinase cascade.

KSR proteins as targets for therapy

Given the importance of KSR1 in modulating signaling through the Raf/MEK/ERK kinase cascade in tumor cells and observations that ksr1-/- mice develop with only inconsequential phenotypic differences, targeting KSR1 or KSR1-dependent signaling pathways in Ras-driven cancers may selectively target cancer cells with reduced toxicity to patients. Supporting this strategy, RNAi approaches depleting cancer cells of KSR1 \textit{in vitro} and \textit{in vivo} caused a decrease in tumor growth. Continuous infusion of phosphorothioate antisense oligonucleotides targeting KSR1 mRNA also caused regression of established tumors and inhibited metastases without overt toxicity in Ras-driven PANC-1 pancreatic and A549 non-small-cell lung cancer xenografts66.

Mutations in KSR that suppress signaling by activated Ras are often adjacent to the ATP-binding pocket16-17. Furthermore, KSR1 binds ATP65, and mutations that prevent that binding impair ERK activation67. These observations suggest that manipulation of the ATP-binding cleft in KSR1 may be therapeutically effective. The recently discovered small molecule APS-2-79 binds and stabilizes KSR kinase domains in an inactive conformation observed when the KSR2 kinase domain is bound to MEK1 and ATP4, interferes with KSR:Raf heterodimerization, and inhibits onco- genic Ras signaling65. The effect of APS-2-79 was also lost when KSR was mutated within the active site (A690F) such that KSR can promote MEK phosphorylation even in the absence of ATP binding. APS-2-79 modestly decreased cell viability in two Ras-mutated cancer cell lines (HCT116 and A549) and did not affect Raf-mutated cancer cells (A375 and SK-MEL-293) but did demonstrate substantial synergy in Ras-mutated cancer cells with MEK inhibitors, suggesting the potential to target both kinase and scaffolding components of the Ras signaling pathway in Ras-dependent cancers65.

The observation that KSR1 expression was required for tumor-dependent ERK signaling, but not normal development, suggested the possibility that effectors of KSR1-dependent signaling pathways in tumor cells might reveal additional putative targets for cancer therapy that preferentially support tumor cell growth and viability. A gene expression high-throughput screen termed Functional Signature Ontology (FUSION) was developed to detect effectors of KSR1-dependent signaling in Ras-driven tumors and identify small molecules that can target those effectors68. Recent results from FUSION detected hits that mediate KSR1-dependent signals and promote the viability of human colon tumor cells but have no similar role on non-transformed human colon epithelial cells69,70. These observations suggest the existence of multiple effectors that may be used to support the survival in tumor cells in a manner distinct from their role in normal tissue. Careful validation of these potential targets may yield additional therapeutic strategies.

Conclusions

KSR proteins are established as scaffolds for the Raf/MEK/ERK kinase cascade, though a detailed understanding of KSR-dependent temporal and spatial control of ERK signaling is still lacking. The physiology regulated by KSR1 and KSR2 is also incompletely understood, though disruption of KSR2 in mice and its mutation in humans show that it plays an important role in mammalian energy balance. Given the minimal phenotype of ksr1-/- mice, the normal function of KSR1 is unclear.
However, KSR1 is demonstrably physiologically important as ksr1^{−/−} ksr2^{−/−} mice do not survive beyond 21 days of age (Costanzo-Garvey and Lewis, unpublished results), while the single gene knockouts survive into adulthood. KSR1 and KSR2 are primarily expressed in brain, though KSR1 is expressed at lower levels throughout the body. Thus, the most profound function of KSR proteins is likely found in the central nervous system. The obesity phenotype caused by brain-specific knockout of KSR2 demonstrates its potent role in cell non-autonomous regulation of energy balance. However, the role of KSR2 as a scaffold and its regulation of ERK signaling in support of brain-regulated development and maintenance of metabolism are unknown. Relevant in vitro cell models that express both KSR1 and KSR2 will be crucial to further our understanding of the cell biology controlled by these molecular scaffolds.

Competing interests
The authors declare that they have no competing interests.

Grant information
Our research is supported by National Cancer Institute (P30 CA036727, R01 CA157774) and National Institute of General Medical Sciences (P20 GM104320).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Cox AD, Der CJ: *Ras history: The saga continues*. Small GTPases. 2010; 1(1): 2–27. [PubMed Abstract](#) [Publisher Full Text](#) [Free Full Text](#)

2. Wiktwiecz AK, Balaji U, Esinger C, et al.: *Integrated Patient-Derived Models Delineate Individualized Therapeutic Vulnerabilities of Pancreatic Cancer*. Cell Rep. 2016; 16(7): 2017–31. [PubMed Abstract](#) [Publisher Full Text](#) [Free Full Text](#) [F1000 Recommendation](#)

3. Foster SA, Whalen DM, Ozen A, et al.: *Activation Mechanism of Oncogenic Deletion Mutations in BRAF, EGFR, and HER2*. Cancer Cell. 2016; 29(4): 477–93. [PubMed Abstract](#) [Publisher Full Text](#) [F1000 Recommendation](#)

4. Chen SH, Zhang Y, Van Horn RD, et al.: *Oncogenic BRAF Deletions That Function as Homodimers and Are Sensitive to Inhibition by RAF Dimer Inhibitor LY309120*. Cancer Discov. 2016; 6(3): 300–15. [PubMed Abstract](#) [Publisher Full Text](#) [F1000 Recommendation](#)

5. Drostem M, Dhawahir A, Sum EY, et al.: *Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival*. EMBO J. 2015; 34(6): 1091–104. [PubMed Abstract](#) [Publisher Full Text](#) [F1000 Recommendation](#)

6. Liu L, Chansangajha PL, Rao VR, et al.: *Proteomic characterization of the dynamic KSR-2 interactome, a signaling scaffold complex in MAPK pathway*. Biochim Biophys Acta. 2009; 1794(10): 1485–95. [PubMed Abstract](#) [Publisher Full Text](#)

7. Kortum RL, Costanzo DL, Hafnerbier J, et al.: *The molecular scaffold kinase suppressor of Ras 1 (KSR1) regulates adipogenesis*. Mol Cell Biol. 2005; 25(17): 7592–604. [PubMed Abstract](#) [Publisher Full Text](#) [Free Full Text](#)

8. Kortum RL, Lewis RE: *The molecular scaffold KSR1 regulates the proliferative and oncogenic potential of cells*. Mol Cell Biol. 2004; 24(10): 4407–16. [PubMed Abstract](#) [Publisher Full Text](#) [Free Full Text](#)

9. Roy F, Laberge G, Douziech M, et al.: *KSR is a scaffold required for activation of the ERK/MAPK module*. Genes Dev. 2002; 16(4): 427–38. [PubMed Abstract](#) [Publisher Full Text](#) [Free Full Text](#)

10. Raabe T, Rapp UR: *KSR—a regulator and scaffold protein of the MAPK pathway*. Sci STKE. 2002; 2002(136): pe28. [PubMed Abstract](#) [Publisher Full Text](#)

11. Clapéron A, Thérien M: *KSR and CNK: two scaffolds regulating Ras-mediated RAF activation*. Oncogene. 2007; 26(22): 3143–58. [PubMed Abstract](#) [Publisher Full Text](#)

12. Nguyen A, Burack WR, Stock JL, et al.: *Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo*. Mol Cell Biol. 2002; 22(9): 3035–45. [PubMed Abstract](#) [Publisher Full Text](#) [Free Full Text](#)

13. Kortum RL, Johnson HJ, Costanzo DL, et al.: *The molecular scaffold kinase suppressor of Ras 1 is a modifier of Ras-induced and replicative senescence*. Mol Cell Biol. 2006; 26(2): 2022–14. [PubMed Abstract](#) [Publisher Full Text](#) [Free Full Text](#) [F1000 Recommendation](#)

14. Lozanno J, Xing R, Cai Z, et al.: *Deficiency of kinase suppressor of Ras1 prevents oncogenic ras signaling in mice*. Cancer Res. 2003; 63(14): 4232–8. [PubMed Abstract](#) [Publisher Full Text](#)

15. Thérien M, Chang HC, Solomon NM, et al.: *KSR, a novel protein kinase required for Ras signal transduction*. Cell. 1995; 83(5): 873–88. [PubMed Abstract](#) [Publisher Full Text](#)

16. Komfeld K, Hom DB, Horvitz HR: *The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans*. Cell. 1995; 83(6): 903–13. [PubMed Abstract](#) [Publisher Full Text](#)

17. Sundaram M, Han M: *The elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction*. Cell. 1995; 83(6): 889–901. [PubMed Abstract](#) [Publisher Full Text](#)

18. Guo L, Volle DJ, Lewis RE: *Identification of a truncated kinase suppressor of Ras 2 mRNA in sperm*. FEBS Open Biol. 2014; 4(1): 420–5. [PubMed Abstract](#) [Publisher Full Text](#) [Free Full Text](#)

19. Guo L, Costanzo-Garvey DL, Smith DR, et al.: *Kinase Suppressor of Ras 2 (KSR2) expression in the brain regulates energy balance and glucose homeostasis*. Mol Metab. 2017; 6(2): 194–205. [PubMed Abstract](#) [Publisher Full Text](#) [Free Full Text](#)

20. Downward J: *KSR: a novel player in the RAS pathway*. Cell. 1995; 83(6): 831–4. [PubMed Abstract](#) [Publisher Full Text](#)

21. Michaud NR, Thérien M, Cacace A, et al.: *KSR stimulates Raf-1 activity in a kinase-independent manner*. Proc Natl Acad Sci U S A. 1997; 94(24): 12792–8. [PubMed Abstract](#) [Publisher Full Text](#) [Free Full Text](#)

22. Udell CM, Rajakulendran T, Sicheni F, et al.: *Mechanistic principles of RAF kinase signaling*. Cell Mol Life Sci. 2011; 68(4): 553–65. [PubMed Abstract](#) [Publisher Full Text](#)

23. Razidlo GL, Kortum RL, Haferbier JL, et al.: *Phosphorylation regulates KSR1 stability, ERK activation, and cell proliferation*. J Biol Chem. 2004; 279(46): 47808–14. [PubMed Abstract](#) [Publisher Full Text](#)

24. Brennan DF, Dar AC, Hertz NT, et al.: *A Raf-induced allosteric transition of KSR regulates phosphorylation of MEK*. Nature. 2011; 472(7343): 366–9. [PubMed Abstract](#) [Publisher Full Text](#) [F1000 Recommendation](#)

25. Dougherty MK, Ritt DA, Zhou M, et al.: *KSR2 is a calciuminur substrate that promotes ERK cascade activation in response to calcium signals*. Mol Cell. 2009; 34(6): 562–62. [PubMed Abstract](#) [Publisher Full Text](#) [F1000 Recommendation](#)

26. Levchenko A, Brock J, Stampen PW: *Scaffold proteins may bifacially affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties*. Proc Natl Acad Sci U S A. 2000; 97(11): 5818–23. [PubMed Abstract](#) [Publisher Full Text](#) [Free Full Text](#)

27. Sugimoto T, Stewart S, Han M, et al.: *The kinase suppressor of Ras (KSR) modulates growth factor and Ras signaling by uncoupling Elk-1 phosphorylation from MAP kinase activation*. EMBO J. 1998; 17(6): 1717–27. [PubMed Abstract](#) [Publisher Full Text](#) [Free Full Text](#)

28. Joneson T, Fulton JA, Volle DJ, et al.: *Kinase suppressor of Ras inhibits the activation of extracellular ligand-regulated (ERK) mitogen-activated protein (MAP) kinase by growth factors, activated Ras, and Ras effectors*. J Biol Chem. 1998; 273(13): 7743–8. [PubMed Abstract](#) [Publisher Full Text](#)

29. Yu W, Fantl WJ, Harrowe G, et al.: *Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK*. Curr Biol. 1998; 8(1): 56–64. [PubMed Abstract](#) [Publisher Full Text](#)

30. Demouel-Galy A, Douzieh EM, Warne PH, et al.: *Murine Ksr interacts with MEK and inhibits Ras-induced transformation*. Curr Biol. 1998; 8(1): 46–55. [PubMed Abstract](#) [Publisher Full Text](#)
31. Carcace AM, Michaud NR, Therrin M, et al. Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol Cell Biol. 1999; 19(1): 229–40. Published Abstract | Publisher Full Text | Free Full Text

32. Fazta D, Jacobs D, Glossip D, et al. Docking sites on substrate proteins direct extracellular signal-regulated kinase to phosphorylate specific residues. J Biol Chem. 2001; 276(29): 27256–65. Published Abstract | Publisher Full Text | Free Full Text

33. Jacobs D, Glossip D, Xing H, et al. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev. 1999; 13(2): 163–75. Published Abstract | Publisher Full Text | Free Full Text

34. McKay MM, Ritt DA, Morrison DK, et al. Proteinase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol. 2003; 13(16): 1359–66. Published Abstract | Publisher Full Text | Free Full Text

35. Orly S, Zhou M, Conrads TP, et al. Protein phosphatase 2A ceramide-dependent regulation of mitogen-activated protein kinase binding, and KSR overexpression. J Biol Chem. 2012; 287(1): 229–40. Published Abstract | Publisher Full Text | Free Full Text

36. Rajakulendran T, Samhi M, Lefrançois M, et al. A dimerization-dependent mechanism drives RAF catalytic activation. Nature. 2009; 461(7263): 542–5. Published Abstract | Publisher Full Text | Free Full Text

37. Müller J, Orly S, Copeland T, et al. C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell. 2001; 8(5): 963–93. Published Abstract | Publisher Full Text | Free Full Text

38. Voile DJ, Fulton JA, Chaika OV, et al. Phosphorylation of the kinase suppressor of ras by associated kinases. Biochemistry. 1999; 38(16): 5130–7. Published Abstract | Publisher Full Text | Free Full Text

39. Morrison DK, Davis RJ. Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol. 2003; 19: 91–118. Published Abstract | Publisher Full Text | Free Full Text

40. Matheny SA, Chen C, Kortum RL, et al. Ras regulates assembly of mitogenic signaling complexes through the effector protein IMP. Nature. 2004; 427(6971): 256–60. Published Abstract | Publisher Full Text | Free Full Text

41. Xing H, Kornfeld K, Muslin AJ. The protein kinase KSR interacts with 14-3-3 protein and Raf. Curr Biol. 1997; 7(6): 294–300. Published Abstract | Publisher Full Text | Free Full Text

42. Stewart S, Sundaram M, Zhang Y, et al. Kinase suppressor of Ras forms a multiprotein scaffolding complex and modulates MEK localization. Mol Cell Biol. 1999; 19(8): 5522–34. Published Abstract | Publisher Full Text | Free Full Text

43. Kowal D, Schuh-Nuher N, Ritt D, et al. A CC-SAM, for coated coiled-stereu motif, domain targets the scaffold KSR-1 to specific sites in the plasma membrane. Sci Signal. 2012; 5(265): r48. Published Abstract | Publisher Full Text | Free Full Text

44. Shin S, Dimitri CA, Yoon SO, et al. ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell. 2010; 38(1): 114–27. Published Abstract | Publisher Full Text | Free Full Text | Free Full Text

45. Kortum RL, Fernandez MR, Costanzo-Garvey DL, et al. Caveolin-1 is required for kinase suppressor of Ras 1 (KSR1)-mediated extracellular signal-regulated kinase 2 activation, H-Ras-mediated senescence, and transformation. Mol Cell Biol. 2014; 34(18): 3461–72. Published Abstract | Publisher Full Text | Free Full Text

46. Fernandez MR, Henry MD, Lewis RE. Kinase suppressor of Ras 2 (KSR2) regulates tumor cell transformation via AMPK. Mol Cell Biol. 2012; 32(18): 3718–31. Published Abstract | Publisher Full Text | Free Full Text

47. Rinaldi L, Delle Donne R, Sepe M, et al. IkappaB regulates KSR1 stability and mitogenic signaling. Cell Death Dis. 2016; 7(5): e2230. Published Abstract | Publisher Full Text | Free Full Text | Free Full Text

48. Ghawam NS, Scopron AP, Dar AC. Small molecule stabilization of the KSR inactive state antagonizes oncogenic Ras signaling. Nature. 2016; 537(7618): 112–6. Published Abstract | Publisher Full Text | Free Full Text | Free Full Text

49. Hu J, Stites EC, Yu H, et al. Allosteric activation of functionally asymmetric RAF kinase dimers. Cell. 2013; 154(5): 1036–46. Published Abstract | Publisher Full Text | Free Full Text | Free Full Text

50. Chen C, Lewis RE, White MA. IMP modulates KSR1-dependent multifavalent complex formation to specify ERK1/2 pathway activation and response thresholds. J Biol Chem. 2008; 283(19): 12789–96. Published Abstract | Publisher Full Text | Free Full Text

51. Hansen LA, Alexander N, Hogan ME, et al. Genetically null mice reveal a central role for epidermal growth factor receptor in the differentiation of the hair follicle and normal hair development. Am J Pathol. 1997; 150(6): 1959–75. Published Abstract | Publisher Full Text | Free Full Text

52. Fusello AM, Mandik-Nayak L, Shih F, et al. The MAPK scaffold kinase suppressor of Ras is involved in ERK activation by stress and proinflammatory cytokines and induction of arthritis. J Immunol. 2006; 177(13): 6152–8. Published Abstract | Publisher Full Text | Free Full Text

53. Le Borgne M, Fisht EL, Shaw AS. Kinase suppressor of Ras 1 is not required for the generation of regulatory and memory T cells. PLoS One. 2013; 8(2): e51737. Published Abstract | Publisher Full Text | Free Full Text

54. Revelli J, Smith D, Allen J, et al. Profound obesity secondary to hyperphagia in mice lacking kinase suppressor of ras 2. Obesity (Silver Spring). 2011; 19(3): 1010–8. Published Abstract | Publisher Full Text | Free Full Text

55. Henry MD, Costanzo-Garvey DL, Klotho P, et al. Obesity-dependent dysregulation of glucose homoeostasis in kinase suppressor of ras 2 mice. Physiol Rep. 2014; 2(7): pii: e12053. Published Abstract | Publisher Full Text | Free Full Text

56. Costanzo-Garvey DL, Plugger PT, Dougherty MK, et al. KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab. 2009; 10(5): 366–78. Published Abstract | Publisher Full Text | Free Full Text

57. Guo L, Costanzo-Garvey DL, Smith DR, et al. Cell non-autonomous regulation of hepatic IGF-1 and neonatal growth by Kinase Suppressor of Ras 2 (KSR2). Sci Rep. 2016; 6: 32003. Published Abstract | Publisher Full Text | Free Full Text

58. Pearce LR, Atanassova N, Bantock MC, et al. KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation. Cell. 2013; 155(4): 765–77. Published Abstract | Publisher Full Text | Free Full Text | Free Full Text

59. Koichi W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 2005; 6(1): 827–37. Published Abstract | Publisher Full Text | Free Full Text

60. Karthik D, Majumder P, Palanisamy S, et al. Targeting cysteine-rich C1 domain of Scaffold protein Kinase Suppressor of Ras (KSR) with anthocyanidins and flavonoids - a binding affinity characterization study. Bioinformation. 2014; 10(9): 580–5. Published Abstract | Publisher Full Text | Free Full Text | Free Full Text

61. Zhou M, Horita DA, Waugh DS, et al. Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR). J Mol Biol. 2002; 319(3): 435–46. Published Abstract | Publisher Full Text | Free Full Text

62. Zhang Y, Yao B, Deliktas S, et al. Kinase suppressor of Ras is ceramide-activated protein kinase. Cell. 1997; 89(1): 63–72. Published Abstract | Publisher Full Text | Free Full Text

63. Müller J, Carcace AM, Lyons WE, et al. Identification of B-KSR1, a novel brain-specific isoform of KSR1 that functions in neuronal signaling. Mol Cell Biol. 2000; 20(15): 5529–39. Published Abstract | Publisher Full Text | Free Full Text | Free Full Text

64. Zhang J, Zafunlah M, Yang X, et al. Downregulation of KSR1 in pancreatic cancer xenografts by antisense oligonucleotide correlates with tumor drug uptake. Cancer Biol Ther. 2008; 7(9): 1490–5. Published Abstract | Publisher Full Text | Free Full Text

65. Hu J, Yu H, Kornev AP, et al. Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, BRAF and CRAF. Proc Natl Acad Sci U S A. 2011; 108(15): 6067–72. Published Abstract | Publisher Full Text | Free Full Text | Free Full Text

66. Potts MB, Kim KS, Fisher KW, et al. Using functional signature ontology (FUSION) to identify mechanisms of action for natural products. Sci Signal. 2013; 6(297): ra90. Published Abstract | Publisher Full Text | Free Full Text

67. Fisher KW, Das B, Kim HS, et al. AMPK Promotes Aberrant PGC1α Expression To Support Human Colon Tumor Cell Survival. Mol Cell Biol. 2015; 35(22): 3866–79. Published Abstract | Publisher Full Text | Free Full Text | Free Full Text

68. McCall JL, Gehring D, Clymer BK, et al. KSR1 and EPHB4 Regulate Myc and PGC1α To Promote Survival of Human Colon Tumors. Mol Cell Biol. 2016; 36(17): 2246–61. Published Abstract | Publisher Full Text | Free Full Text | Free Full Text
Open Peer Review

Current Referee Status: ✔️ ✔️

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1. **Andrey Shaw** Department of Research Biology, Genentech, South San Francisco, USA
 Competing Interests: No competing interests were disclosed.

1. **Melanie H. Cobb** 1, **Aroon Karra** 2, **Courtney Powell** 2 1 Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
 2 Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
 Competing Interests: No competing interests were disclosed.