Essential closed surfaces and finite coverings of negatively curved cusped 3-manifolds

Charalampos Charitos

September 3, 2021

Abstract

The existence of essential closed surfaces is proven for finite coverings of 3-manifolds that are triangulated by finitely many topological ideal tetrahedra and admit a regular, negatively curved, ideal structure.

Keywords Incompressible surfaces - Ideal tetrahedra - $CAT(0)$-spaces
Mathematics Subject Classification 57M50 - 57M10

1 Introduction

In his pioneering work [17], Thurston constructed complete hyperbolic structures of constant negative curvature equal to -1 on the complement of certain knots and links of S^3, by realizing them as a finite union of regular, hyperbolic ideal tetrahedra. Subsequently, it was proven that the interior of compact hyperbolic 3-manifolds with geodesic boundary can be triangulated by hyperbolic ideal polyhedra and in some cases, by hyperbolic ideal tetrahedra [10], [14]. Inspired by these works, as well as from other relative works (see for example [8], [9] and the references in them), in the present paper a special class of non-compact, triangulated 3-manifolds M is defined. The manifolds M are obtained by gluing along their faces a finite family of topological ideal tetrahedra $(D_i)_{i \in I}$, where each D_i is homeomorphic to a 3-simplex in \mathbb{R}^3 with its vertices removed. On M a unique metric $d : M \times M \to \mathbb{R}$ is defined such that, each tetrahedron D_i equipped with the induced metric is isometric to the regular, hyperbolic ideal tetrahedron of \mathbb{H}^3. The metric d will be referred to as regular, ideal structure of M while M equipped with such a structure d will be called regular, cusped 3-manifold. Furthermore, if the sum of the dihedral angles around each edge of a regular, cusped manifold M is $\geq 2\pi$ the structure d will be referred to as regular, negatively curved, ideal structure. A linking surface is a closed normal surface contained in a neighborhood of some cusp of M, see Definition 7 below.

Considering 3-manifolds M which admit an ideal triangulation, that is, a triangulation by topological ideal tetrahedra, our goal is to find in M essential
closed surfaces, i.e. orientable incompressible surfaces which are not parallel to a linking surface of M. This will be done using in an essential way the geometry of negatively curved, ideal structures. Let us recall here that Thurston, who had constructed a hyperbolic structure on the figure-8 knot complement M_8, by considering a triangulation by regular ideal hyperbolic tetrahedra on it, had also proved in Theorem 4.11 of his notes [18] that all incompressible surfaces on M_8 are linking surfaces. Therefore, in order to find essential closed surfaces in a cusped 3-manifold, or more generally, in a closed 3-manifold M with infinite fundamental group, we are obliged to pass to a finite covering of M.

Recall also that if M is a compact, connected irreducible 3-manifold with non-empty incompressible boundary and if M is not covered by a product $F \times I$, where F is a closed orientable surface, then there exists a finite covering of M containing an essential closed surface i.e. a closed, incompressible non-boundary parallel surface [6]. This result, as well as our main theorem in the present work, can be considered as seminal results of the famous virtual Haken conjecture which is attributed to Waldhausen [19] and which was proven by I. Agol [1] using significant works of many mathematicians. Corollary 1.1 of [6] is a more general result than Theorem 1 below. However, the proofs of [6] are based on Thurston’s hyperbolization theorem while the proof of our result is direct, constructive and rather elementary.

Now, we assume that M is triangulated by finitely many topological ideal tetrahedra and obviously any finite covering space \tilde{M} of M is naturally equipped with such an ideal triangulation. Hence the normal surfaces in M or in \tilde{M} considered below refer to these ideal triangulations.

The main theorem of this paper is the following.

Theorem 1 Let M be an orientable 3-manifold triangulated by finitely many topological ideal tetrahedra. If M admits a regular, negatively curved, ideal structure, then there exists a finite covering space \tilde{M} of M containing an essential closed surface.

The proof of this theorem is obtained by combining two basic results. The first one says that there exists a finite covering space \tilde{M} of M containing a closed normal surface which is not isotopic to a linking surface, see Theorem 10. The second one says that if M admits a regular, negatively curved, ideal structure then any normal closed surface in M is essential, see Theorem 14.

2 Definitions and Preliminaries

Let \overline{D} be a topological tetrahedron, that is, a topological space homeomorphic to the standard 3-simplex Δ^3 in \mathbb{R}^4, via a homeomorphism $f : \overline{D} \to \Delta^3$. The images of the vertices, edges and faces of Δ^3, under f^{-1}, will be called vertices, edges and faces respectively of \overline{D}. A topological ideal tetrahedron D is a topological tetrahedron \overline{D} with its vertices removed. Thus, the edges and the faces of D are the edges and the faces of \overline{D} without its vertices.
Definition 2 A triangulated ideal 3-manifold M is a non-compact, orientable, topological 3-manifold equipped with two finite sets D and F such that:

(1) Each element $D_i \in D$ is a topological ideal tetrahedron.

(2) Each element $f \in F$ is a homeomorphism $f : A \rightarrow B$, where A and B are distinct faces of disjoint tetrahedra D_i, D_j belonging to D and for each face A of a tetrahedron $D_i \in D$, there exists an $f \in F$ and a face B of some tetrahedron $D_j \in D$, with f sending A to B. The elements of F are called the gluing maps of M.

(3) As a topological space, M is the quotient space of the disjoint union of all tetrahedra $(D_i)_{i \in I}$ in D by the equivalence relation which identifies two faces A, B of tetrahedra D_i, D_j respectively of D, whenever these faces are related by a map $f : A \rightarrow B$ belonging to the collection F.

The subdivision of M into tetrahedra of D will be called a topological ideal triangulation of M and will also be denoted by D. An edge (resp. face) of some $D_i \in D$ will be called an edge (resp. face) of the triangulation D. The deleted vertices of the tetrahedra $D_i \in D$ will be called ideal vertices of M.

Thus, the 3-simplexes of D are the tetrahedra D_i, the 2-simplexes of D are their faces while the 1-simplexes of D are the edges of D_i which are also called edges of D. Let us denote by $D^{(i)}$, $i = 1, 2, 3$ the i-skeleton of D.

An edge e of D is said to have index k, $k \geq 2$, if for each point $x \in e$ there exists a closed neighborhood of x in $D^{(2)}$ which is homeomorphic to k closed half discs glued together along their diameter.

The index of e with respect to the triangulation D will be denoted by $i_D(e)$.

Subsequently, we assume that the topological ideal triangulation D is fixed. A length metric d can be defined on M as follows:

Let T_0 be a regular hyperbolic ideal tetrahedron of the hyperbolic space \mathbb{H}^3. T_0 has all his dihedral angles equal to $\pi/3$. As each tetrahedron D_i of D is homeomorphic to T_0 via an homeomorphism h_i, we may equip D_i with a metric so that h_i is an isometry. Now, by assuming that the gluing maps of F are isometries between hyperbolic ideal triangles a unique length metric d can be defined naturally on the whole manifold M. The triangulation of (M, d) by regular hyperbolic ideal tetrahedra will be also denoted by D and will be called a regular, ideal triangulation; the structure d defined on M will be referred to as regular, ideal structure.

Notation Henceforth, it will be assumed that M has a fixed topological ideal triangulation D which gives rise to a unique regular, ideal structure d. The manifold M equipped with the regular, ideal structure d will be denoted by M_d.

Gluing the hyperbolic ideal tetrahedra D_i in order to build M_d, the ideal vertices of D_i are separated into finite classes so that the ideal vertices of each class match together and form the cusps of M_d. Thus, M_d equipped with the structure d will be called regular, cusped 3-manifolds. The manifold M_d, or generally a metric space, is called geodesic metric space if for any two points $p, q \in M_d$ there is a path, say $[p, q]$, joining these points and whose length is equal to the distance $d(p, q)$.

The manifold M_d has the following basic properties:
Figure 1: The seven disc types.
\bullet M_d is a complete, geodesic metric space.

In fact, since all tetrahedra are regular, for each cusp v of M_d, all horospherical sections in a neighborhood of v of each tetrahedron D_i which has v as an ideal vertex, fit together forming a closed surface S_v which is the geometrical link of v in M_d. Lemma 3.1 of [3] or Theorem 3.4.23 of [17] implies that M_d is a complete space. On the other hand, the manifold M_d is a locally compact, complete length space and this implies that M_d is a geodesic space (see Hopf–Rinow Theorem in Proposition 3.7, p. 35 of [2]).

Now, let e be an edge of the regular ideal triangulation \mathcal{D} of M_d. If $\theta(e, D_i)$ is the dihedral angle of D_i around e then $\theta(e, D_i) = \pi/3$. Let us denote by $\theta_D(e)$ the sum of all dihedral angles $\theta(e, D_i)$ over all tetrahedra D_i which share e as a common edge. Thus, $\theta_D(e) \geq 2\pi$ if and only if $i_D(e) \geq 6$.

\bullet M_d has curvature less than or equal to -1 i.e. M_d satisfies locally the $\text{CAT}(-1)$ inequality provided that $i_D(e) \geq 6$.

In fact, since $\theta_D(e) \geq 2\pi$ for each edge e of M_d, it follows from [15], Theorem 3.13, that M_d has curvature less than or equal to -1. For this reason M_d will be called a regular, negatively curved cusped manifold. The universal covering \tilde{M}_d of M_d satisfies globally the $\text{CAT}(-1)$ inequality, as it follows from a theorem of Cartan–Hadamard–Aleksandrov–Gromov (see Theorem 2.21 in [15]). Furthermore, the manifold \tilde{M}_d is homeomorphic to \mathbb{R}^3 and its visual boundary $\partial \tilde{M}_d$, which is defined via geodesic rays emanating from a base point, is homeomorphic to the 2-sphere S^2 (see for example [2], Example (3), p. 266).

For a regular, negatively curved, cusped manifold M_d, if e is an edge of \mathcal{D} and if $\theta_D(e) > 2\pi$ then e will be called a singular edge of \mathcal{D}. If $\theta_D(e) = 2\pi$ for each $e \in \mathcal{D}^{(1)}$ then M_d has everywhere constant curvature -1. In [17], [10], [14], there are examples of cusped 3-manifolds of constant curvature -1 which admit an ideal triangulation. Allowing some edges e to have $\theta_D(e) > 2\pi$ we may enrich the class of negatively curved cusped manifolds. For instance in example 6.3 of [3], such a manifold is constructed. Also Proposition 11 below shows that the class of these manifolds is really rich. We recall now basic facts about normal surface theory which is mainly due to Haken. A detailed exposition can be found in [12] or [11] and similar definitions can be given for the triangulated ideal manifold M. Usually, standard definitions are given either in the PL or in the smooth category since the sense of transversality is needed. In our context, and without loss of generality we may assume that each tetrahedron of \mathcal{D} is hyperbolic and ideal and hence smooth. Thus, for the existence of normal surfaces below, it is more convenient to work with M_d which is triangulated by hyperbolic ideal tetrahedra.

There are seven kinds of special discs properly embedded in a tetrahedron $D_i \in \mathcal{D}$ which are transverse to the faces of D_i and which are shown in Figure 1. These discs will be generally referred to as disc types. Thus, for each tetrahedron we have four triangular disc types and three quadrilateral disc types.
Figure 2: Normal exchange of disc types.
Now, let S be a closed surface equipped with a smooth structure. The term \textit{smooth} for a map $f : S \rightarrow M_d$ will be used below in the following sense: For each $x \in S$ with $f(x) \in \sigma$, where $\sigma \in D^{(i)}$, $i = 1, 2, 3$, there exists a neighborhood U_σ of $f(x)$ in σ such that the restriction $f_{f^{-1}(U_\sigma) \cap S} : f^{-1}(U_\sigma) \cap S \rightarrow \sigma$ is a smooth embedding.

A \textit{singular normal surface} in M_d is a smooth map $f : S \rightarrow M_d$ such that:

1. f is transverse to each simplex $\sigma \in D^{(i)}$ and the intersection of $f(S)$ with each tetrahedron Δ_i of D is a finite collection of discs types.

If f is $1 = 1$ then the map $f : S \rightarrow M_d$ will be called \textit{normal surface} and in this case S will be identified with $f(S)$.

\textbf{Definition 3} An \textit{essential closed surface} in M_d is an orientable normal incompressible surface in M_d which is not parallel to a linking surface.

A well-known result, which is obviously valid for hyperbolic, ideal triangulations, confirms that an incompressible surface S in M_d can be isotoped to a normal surface with respect to D (see for example Theorem 5.2.14 in [10]). The converse is not generally true for compact triangulated 3-manifolds. However, from Theorem [1] it results that any normal closed surface in M_d is essential provided that $i_D(e) \geq 6$ for each edge e of D.

The following definitions are recalled from [13]. Let S be a closed orientable surface. A \textit{normal homotopy} is defined to be a smooth map $\xi : S \times [0, 1] \rightarrow M_d$ so that for each fixed $t \in [0, 1]$ the surface S_t given by $\xi|_{S \times \{t\}}$ is a singular normal surface. ξ is a \textit{normal isotopy} if in addition, each S_t is embedded. The \textit{normal homotopy class} $N(f)$ of a normal or singular normal surface $f : S \rightarrow M_d$ is defined as the set of all normal or singular normal surfaces $g : S \rightarrow M_d$ which are normally homotopic to f.

\section{Properties of ideal triangulations}

In order to state our results we need some terminology.

\textbf{Definition 4} Let X be a triangulated ideal 3-manifold equipped with a topological ideal triangulation \mathcal{X}.

We will say that \mathcal{X} has the property of the unique common simplex if for every two tetrahedra D, D' of \mathcal{X} one of the following three cases can happen:

1. $D \cap D' = \emptyset$;
2. $D \cap D' = e$, where e is an edge of \mathcal{X};
3. $D \cap D' = F$, where F is an entire face of \mathcal{X}.

If $\partial X \neq \emptyset$ then each face of \mathcal{X} which belongs to two hyperbolic tetrahedra will be called interior face of \mathcal{X}, otherwise will be called exterior face of \mathcal{X} or boundary face of \mathcal{X}. Also, each edge of an exterior face of \mathcal{X} will be called exterior edge of \mathcal{X}, otherwise it will be called interior edge of \mathcal{X}.

Following Definition [2] all the faces of the manifold M in Theorem [1] are interior faces. Thus, M will always be a triangulated ideal 3-manifold equipped with a fixed topological ideal triangulation \mathcal{D} such that all faces of \mathcal{D} are interior.
faces i.e. \(\partial M = \emptyset \). In Definition 2 we have also assumed that two disjoint faces of the same tetrahedron of \(D \) are not glued together. Actually, this assumption is redundant when we consider negatively curved, ideal structures on \(M \).

We will start this section with some topological results which concern the covering and branched covering spaces of a triangulated ideal 3-manifold \(M \). In order to state our results we need some additional terminology.

First we need the following lemma.

Lemma 5 There exists a triangulated ideal manifold \(B \) equipped with a topological ideal triangulation \(B \) consisting of the ideal tetrahedra \(D_i \) of \(D \), such that:

1. \(B \) is homeomorphic to the closed unit 3-ball \(D^3 \) with finitely many points removed from \(\partial D^3 \).
2. \(M \) is obtained from \(B \) by gluing pairwise, via gluing maps of \(M \), the boundary faces of \(B \).
3. All the edges of \(B \) are exterior edges.
4. \(B \) has the property of the unique common simplex.

Proof. Let \(D_1 \) be an arbitrary ideal tetrahedron of \(D \). There is a tetrahedron \(D_2 \) of \(D \) which is glued to \(D_1 \), via a gluing map of \(M \), and we set \(B_2 = D_1 \cup D_2 \).

To the topological ideal polyhedron \(B_2 \) we glue a third ideal tetrahedron \(D_3 \) of \(D \), disjoint from the previous ones \(D_1, D_2 \), along a boundary face of \(B_2 \). Note that the gluing of \(B_2 \) with \(D_3 \), as well as, all the gluings below, are always performed via the gluing maps of \(M \).

By induction, to the triangulated ideal polyhedron \(B_{k-1} = B_k \cup D_{k-1} \), where \(D_{k-1} \) is a tetrahedron of \(D \), we glue a new tetrahedron \(D_k \) of \(D \) which is disjoint from \(D_1, \ldots, D_{k-1} \).

From our construction it follows that each \(B_k \) is homeomorphic to the closed unit 3-ball \(D^3 \) with finitely many points removed from \(\partial D^3 \) and that the ideal triangulation of \(B_k \) has the property of the unique common simplex. On the other hand, since \(M \) consists of finitely many ideal tetrahedra, there is some \(n \) such that \(B = B_n \) satisfies all properties (1)-(4) of our lemma.

Proposition 6 There is a finite covering space \(N \) of \(M \) and a topological ideal triangulation \(E \) of \(N \) such that \(E \) has the property of the unique common simplex.

Proof. From Lemma 5 we may cut and open \(M \) along appropriate faces of \(D \) and obtain a manifold \(M_1 \) with boundary faces \(A'_i, A''_i \), \(i = 1, \ldots, m \), such that:

1. \(M_1 \) is connected and if we denote by \(D_1 \) the ideal triangulation induced on \(M_1 \) by \(D \) then \(D_1 \) has the property of the unique common simplex.
2. The faces \(A'_i, A''_i \) result by cutting \(M \) along the face \(A_i \) of \(D \) thus, when \(A'_i \) is glued back to \(A''_i \) for each \(i \) (following the same gluing map) we obtain \(M \).

Obviously, the faces \(A'_i, A''_i \) belong to different tetrahedra of \(D_1 \).

Actually, we may assume that \(M_1 \) is homeomorphic to a 3-ball with finitely many points removed from its boundary but this information does not matter here.
Now, we consider two copies $M_1^{(1)}$ and $M_1^{(2)}$ of M_1 and let us denote by $A_1^{(1)}$, $A_1^{(n)}$ (resp. $A_1^{(2)}$, $A_1^{(n)(2)}$) the faces of $M_1^{(1)}$ (resp. of $M_1^{(2)}$), corresponding to A_1' and A_1''. Then we glue $M_1^{(1)}$ and $M_1^{(2)}$ by identifying the pair ($A_1^{(1)}$, $A_1^{(n)}$) with the pair ($A_1^{(2)}$, $A_1^{(n)(2)}$). This means that $A_1^{(1)}$ is identified with $A_1^{(n)(2)}$ and $A_1^{(n)}$ is identified with $A_1^{(2)}$, via the gluing map of M which identifies A_1' and A_1''. This rule will be always applied when two pairs of faces are identified below.

Gluing $M_1^{(1)}$ and $M_1^{(2)}$ as before we obtain a connected manifold M_2 with an ideal triangulation D_2. Since A_1' and A_1'' belong to different tetrahedra of D_1 we may easily verify that:

(i) D_2 has the property of the unique common simplex.

(ii) M_2 does not have boundary faces corresponding to the faces A_1' and A_1'' of M_1.

On the contrary, M_2 has boundary faces $A_2', k = 1, \ldots, n_2 = 2^{2-1}$, corresponding to the boundary faces A_2' and A_2'' of M_1. We consider again two copies $M_2^{(1)}$ and $M_2^{(2)}$ of M_2 and for $j = 1, 2$, let $A_2^{(j)}$, $A_2^{(n)(j)}$ be the faces of $M_2^{(j)}$ corresponding to A_2', A_2''. Our goal is to glue these faces in pairs and obtain a new manifold M_3. For this, we glue $M_2^{(1)}$ with $M_2^{(2)}$ by identifying the pair of faces ($A_2^{(1)}$, $A_2^{(n)(1)}$) with ($A_2^{(2)}$, $A_2^{(n)(2)}$), $k = 1, 2, \ldots, n_2$.

Remark that all the faces A_2', A_2'', $k = 1, \ldots, n_2$ belong to different tetrahedra of D_2. Therefore, exactly as before we get a connected manifold M_3 equipped with an ideal triangulation D_3 such that:

(i) D_3 has the property of the unique common face.

(ii) M_3 does not have boundary faces corresponding to the boundary faces A_1', A_1'' and A_2', A_2'' of M_1.

On the contrary, there are boundary faces $A_3', k = 1, \ldots, n_3 = 2^{3-1}$ of M_3 corresponding to the faces A_3' and A_3'' of M_1.

Figure 3: Pseudo-triangular and tunnel disc types.
By repeating our procedure, we consider two copies $M_3^{(1)}$ with $M_3^{(2)}$ of M_3 and gluing them appropriately we obtain a manifold M_4 equipped with an ideal triangulation \mathcal{D}_4. Then, we can easily verify that (M_4, \mathcal{D}_4) verify the analogous properties (i), (ii) above and so on. Thus, after finitely many steps, we end with a manifold N without boundary faces. From our construction follows that a finite covering space $p : N \to M$ is obtained. Obviously N is equipped with a topological ideal triangulation \mathcal{E} which has the property of the unique common simplex.

Now we will prove two basic existence statements. The first concerns the existence of normal surfaces and the second the existence of a branched covering M' of M equipped with an ideal triangulation \mathcal{D}' such that: the branch locus consists of edges of \mathcal{D} and the index of each edge of \mathcal{D}' is ≥ 6.

In order to deal with the problem of existence of normal surfaces we may work, without loss of generality, with the manifold M_d instead of M. Part of the following definition is borrowed from [13].

Definition 7 To each cusp c_i of M_d corresponds a normal surface C_i consisting of triangular disc types. The surface C_i is contained in a neighborhood U_i of c_i in M_d which is homeomorphic to $C_i \times [0, \infty)$. The neighborhood U_i will be called a trivial neighborhood of c_i.

Each normal surface in U_i, modulo normal isotopy, will be parallel to C_i and will be referred to as a linking surface, following [13]. A singular normal surface lying in U_i will be called a multiple linking surface.

A closed curve a in U_i which is non-contractible in U_i will be called an essential cuspidal curve. Obviously a is freely homotopic with a curve a' belonging to a linking surface C_i.

Lemma 8 If M_d is a regular, negatively curved cusped manifold then each linking surface C in a trivial neighborhood U of a cusp c of M_d is incompressible.

Proof. The cusp c is an ideal vertex of some hyperbolic ideal tetrahedron D of the triangulation \mathcal{D} of M_d. Obviously there is a point \bar{c} in the boundary ∂M_d of M_d which is an ideal vertex of some hyperbolic ideal tetrahedron $\bar{D} \subset \bar{M}_d$, where \bar{D} is a lifting of $D \subset M_d$. Since ∂M_d is homeomorphic to S^2 it is not hard to prove the the horosphere H corresponding to \bar{c} is homeomorphic to \mathbb{R}^2. In fact, the geodesic which joins \bar{c} with a point of $\partial M_d - \{\bar{c}\}$ intersects H in a single point. Thus a bijection between $\partial M_d - \{\bar{c}\}$ and H is established which proves that H is homeomorphic to \mathbb{R}^2. Finally, $H \subset \bar{M}_d$ is a lifting of C and this implies that C is incompressible in M_d.

Now let D_i be a tetrahedron of \mathcal{D} and let two disjoint quadrilateral disc types E_1, E_2 in D_i. The disc types E_1, E_2 cross over each other transversely as in Figure 2(a), and we may perform a surgery to construct disjoint triangular disc types within D_i. Indeed, by cutting E_1 and E_2 along the line of intersection and reassembling the pieces properly we take within D_i the properly embedded discs E_1, E_2 of Figure 2(b) or the properly embedded discs E_1'', E_2'' of Figure 2(c). After performing an isotopy, via properly embedded discs in D_i, the discs
E_1', E_2, E_1'', E_2'' are either triangular disc types or they have the form of Figure 3(a). This latter disc will be abusively called a pseudo-triangular disc type of D_i. The previous procedure, which leads the intersected disc types E_1, E_2 to disjoint discs E_1', E_2' (or $(E_1'', E_2''$) will be referred to as surgery of quadrilateral disc types within D_i.

We assume now that the discs types E_1, E_2 are intersected transversely in D_i but that only one of them is triangular. Then, as before, by cutting E_1, E_2 along the line of intersection and reassembling the pieces properly we take within D_i disc types either of triangular or of quadrilateral form or, we take a disc having the form of Figure 3(b) and which will be called disc of tunnel type or abusively a tunnel disc type. The tunnel disc type is parallel to a disc contained in ∂D_i. This procedure, which leads the intersected disc types E_1, E_2 to disjoint triangular disc types, quadrilateral disc types or tunnel types will be referred to as surgery of triangular disc types within D_i.

Finally, we consider triangular discs types E_1, E_2 in D_i. If E_1, E_2 are intersected transversely, choosing one of them arbitrary, we move it sufficiently close to an ideal vertex of D_i, via an isotopy by parallel disc types. In this way we obtain disjoint triangular disc types. This procedure, which leads the intersected triangular disc types E_1, E_2 to disjoint triangular disc types will be referred to as trivial isotopy of disc types within D_i.

Definition 9 A generalized normal surface in M is an embedded surface S in M_d such that for each hyperbolic ideal tetrahedron D of D the intersection $S \cap D$ can be, apart from the seven disc types defined in Paragraph 2, a pseudo-triangular disc type or tunnel disc type.

Let S be generalized normal surface. We will say that S contains a cyclic tunnel if there is a subsurface T of S homeomorphic to $S^1 \times [0,1]$ such that T is a finite union of tunnel disc types $T_1, ..., T_k$ with $\text{Int}(T_i) \cap \text{Int}(T_j) = \emptyset$ for $i \neq j$.

Now, let $D_i, i = 1, ..., n$ be all the ideal tetrahedra of D. As we have seen, in each tetrahedron D_i there are seven disc types. The number of all considered disc types is $7n$; we denote them by E_i and to each one we correspond a variable $x_i, i = 1, ..., a$ with $a = 7n$.

There are also $4n/2 = 2n$ 2-simplices σ in $D^{(2)}$ since by hypothesis we have n tetrahedra and each face belongs exactly to two tetrahedra. In a 2-simplex σ of $D^{(2)}$ there are three possible classes of arcs which belong to the boundary of disc types. Let $\{l_1, ..., l_m\}, m = 6n$ be these classes of arcs. Each l_j has two sides, looking into the one or into the other of the tetrahedra of M_d which share the face σ containing l_j. In a purely abstract way, we can go through and label the sides with the words “left” and “right”.

For all numbers i between 1 and a, and j between 1 and m, we may define the numbers b_{ij} as follows:

$$b_{ij} = \begin{cases} 0 & \text{if } l_j \text{ is not in } E_i \\ 1 & \text{if } E_i \text{ is on the left side of } l_j \\ -1 & \text{if } E_i \text{ is on the right side of } l_j \end{cases}.$$
With this definition, the adjacency restriction can be formulated as a system of linear equations:

\[
\sum_{j=1}^{a} b_{ij} x_i = 0 \iff BX = 0, \quad \text{where } B = [b_{ij}]. \tag{1}
\]

The problem is to prove that the linear system (1) has positive solutions, since to each positive solution of integer numbers corresponds a singular normal surface \(f : S \to M_d \) and furthermore that \(f : S \to M_d \) is not a multiple linking surface. Therefore the whole problem is reduced to a classical problem of linear algebra which seeks for conditions which guarantee the existence of positive solutions of a linear system, see for example [11] and [7]. Generally, this is not an easy problem to deal with. For this reason we give below a geometric construction of normal surfaces for triangulated ideal 3-manifolds.

Let \(e \) be an arbitrary edge of \(D \) and let \(\text{Star}(e) \) be the subset of \(M_d \) consisting of all tetrahedra of \(D \) having \(e \) as a common edge. Since \(M_d \) has the property of the unique common simplex \(\text{Star}(e) \) is a particular simple set consisting of \(n \) hyperbolic ideal tetrahedra \(D_1, \ldots, D_n \) such that \(e \subset D_i \) for each \(i \) and \(D_i \cap D_{i+1(\text{mod} \ n)} \) is a face of \(D \). The form of \(\text{Star}(e) \) plays a key role in what follows.

Now, we are able to prove the following.

Theorem 10 We assume that the ideal triangulation \(D \) of \(M \) has the property of the unique common simplex. Then,

(a) There exists a singular normal surface \(f : S \to M_d \) such that \(S \) is orientable and \(f \) is an immersion.

(b) There exists an orientable normal surface \(S_0 \) in \(M_d \).

Proof. From Lemma 5 and using \(M_d \) instead of \(M \), we may find a manifold \(B \) equipped with a hyperbolic ideal triangulation \(B \) consisting of the hyperbolic ideal tetrahedra \(D_i \) of \(D \) and such that the properties (1)-(4) of Lemma 5 are satisfied. The only difference here, with respect to Lemma 5, is that the gluing maps of \(M_d \) are isometries.

Let \(E_1 \) be a square disc type in a tetrahedron, say \(D_1 \) of \(B \). The disc \(E_1 \) can be extended to a disc \(C_1 \) in \(B \) with \(\partial C_1 \subset \partial B \). The extension of \(E_1 \) is done by adding successively triangular disc types. Notice here that this extension of \(E_1 \) to the disc \(C_1 \) (by gluing only triangular disc types) is unique and hence \(C_1 \) will be referred to as the extension of \(E_1 \). If \(c_1 = \partial C_1 \) we remark that \(c_1 \) determines uniquely, up to isotopy, the disc \(C_1 \) in \(B \). Also, \(c_1 \) intersects each boundary face at most in a single arc. The latter follows easily since \(c_1 \) separates \(\partial B \).

Similarly, starting from the other two quadrilateral disc types \(E_2, E_3 \) in \(D_1 \) we denote their extensions in \(B \) by \(C_2, C_3 \) respectively and let \(c_2 = \partial C_2, c_3 = \partial C_3 \).

The curve \(c_1 \) consists of simple arcs, say \(a_1, \ldots, a_n \), i.e. \(c_1 = a_1 \cup \ldots \cup a_n \) with \(a_i \subset F_i \), where \(F_i \) is a boundary face of \(B \). Let \(F'_i \) be the face of \(B \) which is glued to \(F_i \) to form \(M_d \). Assuming that \(f_i \) is the gluing map between \(F_i \) and \(F'_i \) let \(c'_i = a'_1 \cup \ldots \cup a'_n \) where \(a'_i = f(a_i) \). Generally \(F'_1 \cup \ldots \cup F'_n \) is not connected.
and hence \(c'_1 \) is not connected too. Thus, we set \(c'_1 = b'_1 \cup \ldots \cup b'_k \) where each \(b_i \) is a connected arc.

From the form of the set \(\text{Star}(e) \subset M_d \), where \(e \in D^{(1)} \), we may find simple arcs \(x_i, y_i \) arcs in \(\partial B \), \(i = 1, \ldots, k - 1 \) such that:

1. the curve \(d'_1 = b'_1 \cup x_1 \cup y_1 \cup b'_2 \cup \ldots \cup b'_{k-1} \cup x_{k-1} \cup y_{k-1} \cup b'_k \) is connected i.e. \(d'_i \) is a simple closed curve in \(\partial B \);

2. the arcs \(x_i \) and \(y_i \) are identified in \(M_d \), that is, the curve \(c'_1 = b'_1 \cup \ldots \cup b'_k \) in \(M_d \) is connected.

Now let \(C''_1 \) be the disc in \(B \) bounded by \(d'_1 \). From the previous property (2) there exists a disc \(C'_1 \) in \(M_d \) with \(\partial C'_1 = c'_1 \). In fact, identifying for each \(i \) the arcs \(x_i \) and \(y_i \) in \(M_d \) the disc \(C'_i \) results from \(C''_1 \).

Now \(S_1 = C_1 \cup c_1 \equiv c'_1 \) \(C'_1 \) is the image of a singular normal surface in \(M_d \).

Below we need \(C'_1 \) to be different from \(C_2 \) and \(C_3 \). Actually, \(C'_1 \) can coincide with \(C_2 \) or \(C_3 \) only if \(c'_1 \) is connected and coincides with \(c_2 \) or \(c_3 \). In this special case, if for example \(c'_1 = c_2 \), we work with \(c_3 \) in the place of \(c_1 \). Then the image \(c'_3 \) of the curve \(c_3 \) obtained in the place of \(c'_1 \) cannot coincide neither with \(c_1 \) nor \(c_2 \). Therefore, we may always assume that \(C'_1 \neq C_2 \) and \(C'_1 \neq C_3 \).

Furthermore, \(S_1 \) is not a multiple linking surface since it contains the disc type \(E_1 \). Thus, we may construct a singular normal surface \(f : S \to M_d \), where \(S \) is a closed surface with \(f(S) = S_1 \).

We will show that \(S \) is orientable and that \(f \) is an immersion. Indeed, from the triangulation \(D \) and by means of \(f \), a cell decomposition \(T \) is induced on \(S \). Each cell \(T \in T \) is either a triangle or a quadrilateral in the sense that, a triangle (resp. quadrilateral) \(T \in T \) is mapped by \(f \) to a triangular (resp. quadrilateral) disc type in some tetrahedron of \(D \). As \(f \) is \(1-1 \) on each cell \(T \in T \) we may assume that the images \(f(T) \), intersect each other in \(M_d \). From our construction \(S_1 \) induces at most two disc types in each tetrahedron of \(D \). Therefore, all intersection points of \(f(T) \), \(T \in T \) are generically double points and since \(f \) is assumed to be smooth, we deduce that \(f \) is an immersion. Finally, since \(M_d \) is orientable all tetrahedra \(D_i \) can be oriented compatibly and thus all \(T \in T \) inherit orientations from \(D_i \) which are also compatible. Therefore \(S \) is an orientable surface.

Now we will derive the existence of a normal surface \(S_0 \) in \(M_d \) from the existence of \(f : S \to M_d \). For this, we perform within each tetrahedron isotopies and surgeries following the next rules:

1. By trivial isotopies of disc types in the appropriate ideal tetrahedra, we may assume that any pair of triangular disc types \(E, E' \subset f(S) \) which are contained in the same \(D \) they do not intersect between them.

Assumption (I) implies that a triangular disc type and a quadrilateral one belonging to \(f(S) \), may intersect in some tetrahedra. Recall also that, by the construction of \(f(S) \), on each tetrahedron of \(D \) they are induced at most two disc types. These disc types are possibly of quadrilateral type only within \(D_1 \).

(II) We fix a tetrahedron, say \(D_{i_0} \) in which a triangular disc type \(P \) and a quadrilateral disc type \(Q \) appear. In \(D_{i_0} \) we perform a surgery of triangular disc type between \(P \) and \(Q \) so that we obtain two disjoint disc types of quadrilateral and triangular type, denoted by \(P_{i_0} \) and \(Q_{i_0} \) respectively. The surgeries
performed to all the others tetrahedra D_i are performed in a way compatible with the surgery in D_{i_0}. This means that we take finitely many components $K_1, K_2, ..., K_n$ which are orientable, connected, closed surfaces and which are in general, generalized normal surfaces.

We remark here that the tetrahedron D_{i_0} exists because of our construction of S_1. More precisely, C_1 has only one quadrilateral disc type in D_1 and since we have assumed that C_1' is different from C_2 and C_3 our remark follows.

We remark also that at most one pseudo-triangular disc type can appear after performing the previous isotopy and surgery operations. Indeed, this follows from the fact that only in D_1 can exist two quadrilateral disc types whose surgery gives a pseudo-triangular disc type.

Now we consider the component K_{i_0} which contains P_{i_0} and we distinguish two cases. In the first case K_{i_0} is a normal surface and there is nothing to do. In the second case, K_{i_0} must have necessarily a cyclic tunnel. If we denote by $i(D^{(1)}, K_{i_0})$ the number of points that K_{i_0} intersects the 1-skeleton $D^{(1)}$, then it is possible, by performing an isotopy in order to minimize $i(D^{(1)}, K_{i_0})$, to remove the quadrilateral disc type P_{i_0} and thus K_{i_0} can be reduced to a linking surface. Remark also that in this second case K_{i_0} cannot contain a pseudo-triangular disc type.

To deal with the second case, we consider a tetrahedron D_{j_1} which contains a tunnel disc type T with $T \subset K_{i_0}$. Let t (resp. t') be the arc in ∂T whose end-points belong to the same edge of D_{j_1} and let us call tunnel face of D_{j_1} the face R_{j_1} (resp. R'_{j_1}) of D_{j_1} which contains t (resp. t'). Now, within D_{j_1} we perform a surgery of triangular type which does not produce a tunnel disc type; this surgery will be referred to below as non-trivial surgery in D_{j_1}. Here we need the following claim.

Claim 2: The non-trivial surgery in D_{j_1} can be extended to a compatible surgery in all the tetrahedra $D_{j_1}, ..., D_{j_k}$ of \mathcal{D} whose union contains K_{i_0}, and also this non-trivial surgery is compatible with the initial surgery in D_{i_0}, that is, it respects the existence of P_{i_0}.

Proof of Claim 2. For each $i = 1, ..., k$, the tunnel faces R_{j_1}, R'_{j_1} of D_{j_1} are only glued with tunnel faces of tetrahedra adjacent to D_{j_1} along these faces. Hence, we perform non-trivial surgeries in the tetrahedra $D_{j_1}, ..., D_{j_k}$ in order to avoid tunnel components in them. The new disc types in each D_{j_i} induce in its faces which are different from R_{j_i} and R'_{j_i} exactly the same arcs, as the surgery in D_{j_1} which produces tunnel disc type. Therefore the non-trivial surgery in each D_{j_i} does not affect the disc types in D_{i_0} and thus it is compatible with the initial surgery in D_{i_0}.

From Claim 2 we may assume that K_{i_0} does not contain a cyclic tunnel and we set $S_0 = K_{i_0}$. This surface S_0 is not a linking surface since it contains a quadrilateral disc type. Finally, considering if necessary a finite covering of M_d we may assume that S_0 is orientable. ■

The following proposition is rather technical but not difficult. Nevertheless, we give a proof for the reader’s convenience.
Proposition 11 There is a branched covering M' of M with branch locus the edges of D and a topological ideal triangulation D' of M' such that $i_{D'}(e') \geq 6$ for each edge e' of D'.

Proof. Let e_i, $i = 1, \ldots, n$ be the edges of D. A cycle of faces around e_i in M consists of faces $F^i_1, \ldots, F^i_{k_i}$ of D such that:

(i) For each i, e_i is a common edge of all $F^i_1, \ldots, F^i_{k_i}$.

(ii) For each i, F^i_j and $F^i_{j+1 \mod k_i}$ belong to the same ideal tetrahedron of D.

We consider the triangulated ideal polyhedron B of Lemma 5.

Now, for every $e \in D^{(1)}$ there exist pairs of boundary faces $(F^e_1, F^e_{r_e})$, $(F^e_2, F^e_{s_e}), \ldots,$ $(F^e_{m_e}, F^e_{n_e})$ of B such that:

1. F^e_1 and $F^e_{r_e}$ have a common edge, say $e^B_i \in B^{(1)}$, $i = 1, \ldots, m_e$.

2. If we glue F^e_1 with F^e_2, $F^e_{r_e}$ with $F^e_{s_e}, \ldots, F^e_{m_e}$ with $F^e_{n_e}$, via gluing homeomorphisms of M, we obtain a manifold M_e with boundary such that all the edges e^B_i are matched together to a common edge, say \mathfrak{e}, and the cycles of faces around \mathfrak{e} in M_e and around e in M are the same.

The positive integer m_e will be referred to as the weight of e on the boundary of B.

Considering k copies of B, say B_1, \ldots, B_k, we denote by $(F^e_{j,1}, F^e_{j,1'})$, $(F^e_{j,2}, F^e_{j,2'})$, \ldots, $(F^e_{j,m_e}, F^e_{j,n_e})$ the boundary faces of B_j corresponding to the boundary faces $(F^e_1, F^e_{r_e}), (F^e_2, F^e_{s_e}), \ldots, (F^e_{m_e}, F^e_{n_e})$ of B. Then, for each $j = 1, \ldots, k$, we glue $F^e_{j,1'}$ with $F^e_{j,2}$, $F^e_{j,2'}$ with $F^e_{j,3}$, \ldots, F^e_{j,s_e} with F^e_{j,r_e+1}, \ldots, F^e_{j,m_e} with $F^e_{j,(j+1) \mod k,1}$, via gluing homeomorphisms of M. Thus, we obtain a manifold M'_e with boundary which is a k branched cover of M_e with branch locus the edge \mathfrak{e}. If we denote by \mathfrak{e}' the preimage of \mathfrak{e} in M'_e we have that the index $i_{D'_e}(\mathfrak{e'}) \geq km_e$, where D'_e denotes the ideal triangulation of M'_e and therefore $i_{D'_e}(\mathfrak{e'}) \geq 6$ for a suitable k.

Now, let $m_0 = m_{e_1} \cdot m_{e_2} \cdot \ldots \cdot m_{e_n}$, where m_{e_i} is a weight of e_i on the boundary of B and let $k_0 = k \cdot m_0$, where k is a positive integer. Considering k_0 copies of B, we may apply our previous method for the construction of M'_{e_i}, simultaneously for all e_i. We take in this way a triangulated ideal manifold M' without boundary, equipped with an ideal triangulation D', such that, M' is a branched cover of M with branched locus the edges e_i of D. Obviously we may choose the integer k above so that $i_{D'}(e') \geq 6$ for each edge e' of D'.

Remark Proposition 11 proves just the existence of branched coverings and does not deal with the problem of finding the "best" branched coverings i.e. branched coverings which have minimal number of sheets around the edges or which have some other specific properties. A similar remark is also valid for Proposition 6.

4 Proof of the main theorem

In order to prove Theorem 11, we need two auxiliary lemmata. Assuming that Δ_0 is a regular, hyperbolic, ideal tetrahedron we have the following:
Lemma 12. (a) A triangular disc type in Δ_0 can be isotoped, via disc types, to an equilateral Euclidean triangle P.

(b) A quadrilateral disc type in Δ_0 can be isotoped, via disc types, to a square Q which is a geodesic surface in Δ_0 and which has all its angles equal to $\pi/3$.

Proof. (a) A triangular disc type in Δ_0 can be isotoped to a horospherical section P in the neighborhood of an ideal vertex of Δ_0. Obviously, P is an equilateral Euclidean triangle.

(b) We consider the regular, hyperbolic, ideal tetrahedron Δ_0 in the hyperbolic ball model $B^3 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 1\}$. Considering the geodesic plane Π passing trough the origin O and perpendicular to an edge e of Δ_0 the intersection $\Delta_0 \cap \Pi$ defines a disc type Q. The symmetry of B^3 permits to prove that Q intersects perpendicularly each edge e' of Δ_0 with $e' \cap Q \neq \emptyset$. Therefore all the angles of Q are equal to $\pi/3$. Also, it is easily verified that all the sides of Q are equal, so Q is a hyperbolic square. ■

Now, let T be an ideal, hyperbolic triangle in \mathbb{H}^2 and let p, q, r be the points in the sides of T where the inscribed circle C in T intersects the sides. The following lemma can be proven easily, by elementary computations.

Lemma 13. If h_0 is the length of the greatest horospherical arc in T centered at an ideal vertex of T, and if l_0 is the distance between p, q then $l_0 < h_0$.

Proof. In the hyperbolic half-plane we consider the ideal triangle T with vertices the points $(-1, 0), (1, 0)$ and ∞. Obviously $h_0 = 2$, while $l_0 < \log 3$. This proves the lemma. ■

Now, we are able to prove the following theorem.

Theorem 14. Let M be a triangulated ideal manifold equipped with a topological ideal triangulation \mathcal{D}. We assume that $i_{\mathcal{D}}(e) \geq 6$ for each edge e of \mathcal{D} and that M contains a closed normal surface S which is not a linking surface. Then S is incompressible.

Proof. The manifold M equipped with the regular, ideal structure d defined in Section 2, becomes a regular, negatively curved cusped manifold and is denoted by M_d. Thus, each tetrahedron of the triangulation \mathcal{D} of M_d is a regular, hyperbolic ideal tetrahedron.

The closed normal surface S of M_d can be isotoped to a surface, always denoted by S, which is of non-positive curvature. In fact, from Lemma 12 each quadrilateral disc type can be isotoped to a hyperbolic square with all its angles equal to $\pi/3$ and every triangular disc type can be isotoped to an equilateral Euclidean triangle. Furthermore, from Lemma 13 all these geometric disc types can be chosen to have sides of equal length and therefore they can be matched together. Thus, the surface S is equipped with a cell decomposition T induced on S from the ideal triangulation \mathcal{D} of M_d. The angle around each vertex of S is greater than 2π since $i_{\mathcal{D}}(e) \geq 6$ for each edge e of \mathcal{D}. On the other hand, each geometric disc type is either Euclidean or hyperbolic. Therefore, we deduce that
Figure 4: A local image of a geodesic in the neighborhood of a vertex of S.

S is of non-positive curvature i.e. S satisfies locally the $CAT(0)$ inequality (see for example Theorem 3.13 in [13]).

Let $G \subset S$ be the graph formed by all the edges of T. Each $v \in T^{(0)}$ is a vertex of G and let us denote by $i_T(v)$ the index of v in the graph G. Obviously we have $i_T(v) \geq 6$. In order to prove that S is incompressible we will use in a meaningful way that S has non-positive curvature and that M_d has negative curvature.

Let a be a simple, closed, essential curve in S; we will show that a is non-contractible in M_d. First we remark that we may replace a by a closed geodesic c_0 of S which is freely homotopic to a. Indeed, it is well known that $S = \tilde{S}/\Gamma$, where \tilde{S} is the universal covering of S and Γ a discrete group of isometries of S acting freely on \tilde{S}. Furthermore, Γ is isomorphic to the fundamental group $\pi_1(S)$. Since S is a $CAT(0)$ space, the curve a defines an element ϕ of Γ which is a hyperbolic isometry of \tilde{S}. Therefore the geodesic of \tilde{S} joining the points $\phi(-\infty)$ and $\phi(\infty)$ projects to a closed geodesic c_0 of S and it is easy to see that c_0 is freely homotopic to a (see for example Lemma 8 of [4]).

Claim 1: If c_0 does not contain any vertex of T then c_0 cannot intersect more than three consecutive edges of T abutting to the same vertex, see Figure 4.

Indeed, if Claim 1 is not true then a geodesic triangle would be formed in S whose sum of angles would be strictly greater than π. But this is impossible since S has non-positive curvature.

We assume now that c_0 contains some vertices of T and we distinguish the following cases:

- (1) $c_0 \subset T^{(1)}$ i.e. c_0 consists of edges of T.
- (2) There are edges e, e' of T having a common vertex v such that c_0 contains e but c_0 does not contain e'.

17
Claim 2: Let v be a vertex of T with $v \in c_0$ and let $c_0(t)$, $t \in [0,1]$ be a parametrization of c_0 with $c_0(t_0) = v$. Then, we may find an open neighborhood U of v in S and an $\varepsilon > 0$ such that $c_0((t_0 - \varepsilon, t_0 + \varepsilon))$ separates U in two half-discs, say U^+, U^- such that:

- In the case (1) there are at least two edges in the interior of U^+ (respectively in U^-) emanating from v.
- In the cases (2) and (3) there are at least three edges in the interior of U^+ (respectively in U^-) emanating from v.

Indeed, Claim 2 follows easily from the fact that c_0 is a geodesic of S and thus the angle formed at v in S by the geodesic segments $[c_0(t_0 - \varepsilon), c_0(t_0)]$ and $[c_0(t_0), c_0(t_0 + \varepsilon)]$ must be $\geq \pi$ at each side of c_0.

Furthermore, in case (3) the following particular situation can happen: in U^+ (or in U^-) there are exactly three edges emanating from v, see Figure 5(a). In this case the vertex v will be referred to as a specific vertex of c_0 and we claim that:

Claim 3: In case (3), we may isotope locally the geodesic c_0 in U and take a curve c'_0 which traverses U through U^+ and intersects the three edges lying in U^+ in interior points; furthermore c'_0 does not intersect more than three consecutive edges of T abutting at v; see Figure 5(b).

In case (1), $c_0 \subset D^{(2)}$ and c_0 in not homotopic to a cusp of the 2-dimensional ideal polyhedron $D^{(2)}$ (for the definition of cusps in 2-dimensional ideal polyhedra, see Definition 1.8 in [5]). Therefore c_0 can be isotoped in $D^{(2)}$ to a geodesic.
\(\gamma_0 \) of \(D^{(2)} \). Let \(e \) be an edge of \(D \) and let \(p \in \gamma_0 \cap e \). Then, there are at least six elements of \(D \) i.e. regular hyperbolic tetrahedra of \(D \), which have \(e \) as a common side and furthermore, locally in a neighborhood of \(p \) in \(M \), there are at least three elements of \(D \) at each side of \(\gamma_0 \). This implies that \(\gamma_0 \) is a geodesic of \(M \) and hence \(\gamma_0 \) is non-contractible in \(M \).

In the following we will also show that \(c_0 \) is non-contractible in \(M \) in cases (2) and (3). Whether \(c_0 \) contains specific vertices the curve \(c_0 \) will be used instead of \(c_0 \). Our goal is to construct a surface \(T_0 \) with the following properties:

(i) \(T_0 \) is homeomorphic to an annulus \(S^1 \times [0, 1] \) and consists of geometric disc types of the triangulation \(T \).

(ii) If we denote by \(T_0 \) the triangulation of \(T_0 \), then all the vertices of \(T_0 \) belong to \(\partial T_0 \).

(iii) If \(v \) is a vertex of \(T_0 \) then the number of edges of \(T_0 \) in the interior of \(T_0 \) abutting at \(v \) is less than or equal to \(i_T(v) - 4 \).

In fact, such an annulus \(T_0 \) with the above properties can be built by gluing successively all disc types of \(T \) that \(c_0 \) transverses. Observe here that a disc type can be used several times in the construction of \(T_0 \). Obviously \(T_0 \) satisfies properties (i) and (ii) above. Property (iii) follows from Claims (1) - (3).

The following claim describes the relation of \(T_0 \) with \(S \).

Claim 4: There exists a map \(f : T_0 \to S \) such that:

(i) If \(\Delta \) is a 2-cell of \(T_0 \) then \(f_\Delta : \Delta \to S \) is an isometry.

(ii) \(f \) is a local isometry.

Proof of Claim 4.

From the construction of \(T_0 \) statement (i) is clear. To prove statement (ii) we remark first that \(T_0 \) is a geodesic space. Now, let \(U \subset T_0 \) be an open convex neighborhood such that \(f_\bigcup \) is an embedding. Let \(p, q \in U \) and let \([p, q]\) be the unique geodesic segment connecting \(p \) and \(q \) in \(U \). If \([p, q]\) belongs to the interior of \(T_0 \) then \([p, q]\) is obviously a geodesic segment of \(S \). If \([p, q] \cap \partial T_0 \neq \emptyset \), then using the property (iii) of \(T_0 \) above, we will show that \([p, q]\) is also a geodesic segment in \(S \). In fact, if \(w \) is a vertex of \(T_0 \) belonging to \([p, q]\) then the geodesic segments \([w, p]\) and \([w, q]\) form at \(w \) an angle \(\geq \pi \) from each side of \([p, q]\) in \(S \). Therefore \([p, q]\) is also a geodesic segment in \(S \) and thus the distance \(d_{T_0}(p, q) \) of \(p, q \) in \(T_0 \) is equal to the distance \(d_S(p, q) \) of \(p, q \) in \(S \). This implies that \(f \) is a local isometry and Claim 4 is proved.

The construction of \(T_0 \) permits to construct a 3-dimensional manifold \(N_0 \) containing \(c_0 \) such that:

(1') \(N_0 \) consists of regular, hyperbolic ideal tetrahedra of \(D \) and \(T_0 \subset N_0 \).

(2') \(N_0 \) is homeomorphic to the solid torus \(R = [0, 1] \times [0, 1] \times S^1 \) minus finitely many points removed from \(\partial R \).

(3') Each edge \(e \) of \(D_0 \) is lying in \(\partial N_0 \).

(4') For each edge \(e \) of \(D_0 \) there is an open neighborhood \(U_{N_0}(e) \) of \(e \) in \(N_0 \) which is isometrically embedded in \(M \).

The construction of \(N_0 \) with the previous features follows from the construction of \(T_0 \). In fact, since every 2-cell of \(T_0 \) is a disc type in some hyperbolic ideal tetrahedron of \(D \) the construction of \(T_0 \) leads naturally to the construction of
N_0 having properties $(1')-(4')$. More precisely, two disc types of T_0 which share a common edge, say d, determine the two hyperbolic ideal tetrahedra of D which are glued along a common face containing d. Furthermore, N_0 has negative curvature. In fact, this follows from Proposition 11.6 of [2], since N_0 is constructed by gluing successively hyperbolic ideal tetrahedra along convex subsets.

Let us denote by D_0 the ideal triangulation of N_0 and let $\phi(e, N_0)$ be the angle around e in N_0, which is defined as the sum of all dihedral angles at e of tetrahedra of D_0 which share e as a common edge. Property $(4')$ above allows us to define the complement of this angle $\phi^c(e, N_0)$ in M_d. Then, Property (iii) of the surface T_0 implies that $\phi^c(e, N_0) \geq \pi$. Therefore, exactly as in Claim 4, we may prove that there exists a local isometry $h : N_0 \to M_d$.

Now, if c_0 is a cuspidal curve in N_0 it follows that c_0 will be also a cuspidal curve in M. Therefore, from Lemma c_0 is non-contractible in M. If c_0 is not cuspidal then in the free homotopy class of c_0 there is a closed geodesic $\gamma_0 \subset N_0$. In fact, the lift of c_0 in the universal covering \tilde{N}_0 of N_0 defines two different points ξ, η in the boundary $\partial \tilde{N}_0$, Then the geodesic of \tilde{N}_0 which joins ξ and η projects to γ_0. Finally, since $\phi^c(e, N_0) \geq \pi$ for each edge e of D_0, using the same arguments as in Claim 4, we deduce that γ_0 is also a geodesic of M_d. Therefore c_0 is not contractible in M_d and thus S is incompressible.

Now we are able to prove our main theorem restated below.

Theorem 15 Let M be an orientable 3-manifold triangulated by finitely many topological ideal tetrahedra. If M admits a regular, negatively curved, ideal structure, there exists a finite covering space \tilde{M} of M containing an essential closed surface.

Proof. From Proposition [3] and Theorem [12] there exists a finite covering space \tilde{M} of M equipped with a topological ideal triangulation such that \tilde{M} contains a closed normal surface S which is not a linking surface. The covering \tilde{M} admits a regular, ideal structure d and becomes a regular, negatively curved cusped manifold having an embedded normal surface S. Hence, from Theorem [14] S is essential.

References

[1] I. Agol, The virtual Haken Conjecture, Doc. Math. 18 (2013) 1045-1087.

[2] M. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Series of comprehensive studies in Mathematics, Springer, 319 (1999).

[3] C. Charitos, I. Papadoperakis, Generalized Teichmüller space of non-compact 3-manifolds and Mostow rigidity, Quarterly J. Math. 62 (2011) 871-889.

[4] C. Charitos, I. Papadoperakis, G. Tsapogas, The geometry of Euclidean surfaces with conical singularities, Math. Zeitschrift, 284 (2016) 1073–1087.
[5] C. Charitos, G. Tsapogas, Complexity of geodesics on 2-dimensional ideal polyhedra and isotopies, Math. Proc. Camb. Phil. Soc., 121 (1997) 343-358.

[6] D. Cooper, D. Long, A. Reid, Essential closed surfaces in bounded 3-manifolds, JAMS 10 (1997), 553-563.

[7] L. Dines, On Positive Solutions of a System of Linear Equations, Annals of Mathematics, Second Series, 28 (1927) 386-392.

[8] R. Frigerio, On deformations of hyperbolic 3–manifolds with geodesic boundary, Algebraic & Geometric Topology 6 (2006) 435-457.

[9] R. Frigerio, C. Petronio, Constructions and recognition of hyperbolic 3-manifolds with geodesic manifolds, TAMS 356 (2004) 3243-3282.

[10] M. Fujii, Hyperbolic 3-manifolds with totally geodesic boundary which are decomposed into hyperbolic truncated tetrahedra, Tokyo J. Math. 13 (1990) 353-373.

[11] G. Hemion, Classification of knots and 3-dimensional spaces, Oxford Univ. Press (1992).

[12] W. Jaco, J. H. Rubinstein, PL Equivariant Surgery and Invariant Decompositions of 3-Manifolds, Adv. in Math. 73 (1989) 149-191.

[13] W. Jaco, J. H. Rubinstein, PL minimal surfaces in 3-manifolds, J. Diff. Geometry 27 (1988) 493-524.

[14] S. Kojima, Polyhedral Decompositions of Hyperbolic 3-Manifolds with Totally Geodesic Boundary, Advanced Studies in Pure Mathematics, Aspects of Low Dimensional Manifolds, 20 (1992) 93-112.

[15] F. Paulin, Constructions of hyperbolic groups via hyperbolizations of polyhedra, Group Theory from a Geometrical Viewpoint (Eds. E. Ghys, A. Haefliger, A. Verjovsky), ICTP, Trieste, Italy, World Scientific, (1991) 313-372.

[16] J. Shultens, Introduction to 3-Manifolds, Graduate Studies in Math. AMS 151, (2014).

[17] W. Thurston, Three-Dimensional Geometry and Topology, edited by Silvio Levy, Princeton University Press (1997).

[18] W. Thurston, The geometry and topology of three manifolds, http://library.msri.org/books/gt3m/PDF/4.pdf, Electronic version 1.1 (2002).

[19] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math, 87 (1968) 56-88.