The temnospondyls are a diverse group of Palaeozoic-Mesozoic amphibians with a fossil record that begins in the Mississippian and extends through the Early Cretaceous (e.g., Schoch and Milner, 2000; Schoch, 2014). The youngest time interval of substantial temnospondyl diversity was the Late Triassic (Lucas, 2018). As part of this Late Triassic diversity, metoposaurids were a significant temnospondyl family with a fossil record known from across much of Late Triassic Pangea (Fig. 1). This record has long been applied to the correlation of Late Triassic tetrapod assemblages. Their fossil record extends across much of Late Triassic Pangea, including important metoposaurid fossils from the USA, Canada, Portugal, Germany, Poland, Morocco, India and Madagascar. Six genera of metoposaurids are recognized: 1) Adamanian-Apachean *Apachesaurus*, endemic to the western USA, 2) Otischalkian *Arganasaurus* and *Dutuitosaurus*, endemic to Morocco, 3) Otischalkian-Revueltian *Koskinonodon*, endemic to the western USA, 4) *Panthasaurus* from the Otischalkian of India, and 5) Otischalkian-Adamanian *Metoposaurus*, known from the western USA, eastern Canada, Portugal, Italy, Germany, and Poland. Of the metoposaurid genera, only *Metoposaurus* has a broad enough palaeogeographic distribution and relatively restricted temporal range to be of biochronological value; its biochron identifies the Otischalkian–Adamanian (middle–late Carnian). The oldest metoposaurids are of middle Carnian age, the age of the Carnian pluvial episode of global climate. The middle Carnian broad palaeogeographic distribution, diversity and cosmopolitanism of the metoposaurids, followed by reduced diversity and relative endemism, likely indicates that climate changes were an important factor in their evolution.

Key words: Land-vertebrate faunachron, Krasiejów level, Otischalkian, Adamanian, Revueltian, Apachesian, Carnian wet episode.

Lucas, S. G., 2020. Biochronology of Late Triassic Metoposauridae (Amphibia, Temnospondyli) and the Carnian pluvial episode. *Annales Societatis Geologorum Poloniae*, 90: 409–418.
Use of a tetrapod biochronology that assigns ages and correlates on the basis of the tetrapods, themselves, frees vertebrate biostratigraphers from attempting to correlate tetrapods directly to the standard global chronostratigraphic scale (SGCS), the “marine timescale” (Lucas, 2015). The correlation to the SGCS is a separate cross-correlation between vertebrate biochronology and marine biochronology that usually relies on other data (palynostratigraphy, magnetostratigraphy, radioisotopic ages) to be completed. Sometimes, a Triassic terrestrial/freshwater fossil vertebrate is found displaced in marine deposits, which allows some direct cross-correlation of vertebrate taxa to the SGCS (Lucas and Heckert, 2000), but typically that cross-correlation relies wholly on non-vertebrate-fossil data.

TAXONOMY

Metoposaurids were 2–5-m-long, aquatic predators that can simply be described as looking like giant salamanders with very large and flattened, shovel-shaped skulls (Fig. 3). Their extensive fossil record owes much to mass death assemblages in Portugal, Poland, Morocco and the western USA that provide relatively large samples of metoposaurid crania and postcrania, which can be used to interpret morphological variation to an extent rare among Triassic tetrapods (Dutuit, 1976; Sulej, 2002, 2007; Lucas et al., 2010, 2016; Brusatte et al., 2015).

Metoposauridae are a very distinctive and clearly monophyletic family of temnospondyls. They are characterized by many features, including a very short preorbital region, small and laterally located orbits, large and closely spaced external nares that open anteriorly, and a broad and flat cultriform process of the parasphenoid (Schoch and Milner, 2000).

Colbert and Imbrie (1956) and Hunt (1993) provided comprehensive revisions of metoposaurid taxonomy. Schoch and Milner’s (2000) review employed the taxonomy of Hunt (1993). The purpose of the present author is not to revise taxonomy here, but there is a need to comment briefly on some taxonomic decisions made since the revision of Hunt (1993), pending a more complete treatment of metoposaurid taxonomy underway by L. F. Rinehart and the present author. These comments are:

1. Gee and Parker (2017, 2018) and Gee et al. (2017) suggested that *Apachesaurus* may be a juvenile *Koskinonodon*, though they retained *Apachesaurus* as a valid genus. However, Rinehart and Lucas (2018) described a juvenile skull and definitively associated partial postcranium of *Apachesaurus* that establishes that *Apachesaurus* is not a juvenile of a larger taxon. Thus, *Apachesaurus* has its own growth trajectory, different from that of the larger metoposaurids. The present author thus recognizes *Apachesaurus* as a valid genus. It should be noted also that Buffa et al. (2019) recovered *Apachesaurus* as a distinct genus in their phylogenetic analysis of metoposaurids.

2. Gee et al. (2019) redescribed the holotype skull of *Anaschisma browni* from the Otischalkian of Wyoming, claiming it has diagnostic morphology (contra Hunt, 1993 and Schoch and Milner, 2000, who considered *A. browni* a nomen dubium), and concluding that *Kosinonodon* is a junior subjective synonym of *Anaschisma*. However, the present author also has studied the type skull of
411

A. browni firsthand, which is damaged and partly restored in plaster, and cannot verify the bone map of that skull published by Gee et al. (2019), particularly the configuration of the lacrimal. Therefore, the present author regards Anaschsima as a nomen dubium and uses the name Koskinonodon for the large Chinle Group metoposaurid, long called by the preoccupied name Buettneria.

3. Chakravatari and Sengupta (2019) proposed the new generic name Panhasaurus for the Indian species, originally known as Metoposaurus maleriensis (see Roychowdhury, 1965). Their diagnosis indicates that this species shares many features with Metoposaurus, and to the present author their claims of distinctiveness are better dealt with at the species than the genus level. However, the present author identifies the Indian metoposaurid as Panhasaurus here, pending more detailed study.

GEOGRAPHIC, STRATIGRAPHIC AND TEMPORAL DISTRIBUTION

Europe

In Europe, metoposaurid fossils that can be assigned to genus- and species-level taxa have been documented from Portugal, Italy, Germany and Poland. Fragmentary specimens from France and Switzerland can only be assigned to Metoposauridae.

Portugal

Earlier reports of fragmentary material of metoposaurids from southern Portugal (e.g., Witzmann and Gassner, 2008) were followed by Brusatte et al. (2015), who described more complete metoposaurid fossils from a bonebed (their “Penina Bonebed”) in the Grés de Silves Formation. They assigned these fossils to Metoposaurus as a new species, M. alarvensis.

The Penina bonebed also contains fragmentary, indeterminate phytosaur fossils. Mateus et al. (2014) described these fossils and assigned the bonebed a late Carnian–early Norian age, because they considered that to be the temporal range of Metoposaurus. However, the genus has a middle–late Carnian temporal range (see below), so that is the most precise age that can now be assigned to the Penina Bonebed.

Germany

Metoposaurid fossils were first described from Germany, by Meyer (1842), when he coined the name Metopias diagnosticus. Subsequent German records have been documented by various workers (e.g., Fraas, 1889, 1896, 1913; Kuhn, 1932, 1936; Werneburg, 1990). These fossils are all assigned to Metoposaurus diagnosticus and come from the Schilfsandstein (Stuttgart Formation) and overlying Lehrberg Schichten (Steigerwald Formation), with the highest stratigraphic occurrences in the Kieselsandstein (Hasberg Formation) (e.g., Lucas, 1999; Schoch and Wild, 1999). These are records of Otischalkian-Adamanian age (Kozur and Weems, 2005, 2007, 2010; Lucas, 2010, 2018).

Milner and Schoch (2004) claimed the presence of Metoposaurus in the Revueltean Stubensandstein of Germany. However, that claim met a detailed refutation from Lucas et al. (2007b) and Lucas (2015). Thus, the present author considers the youngest records of Metoposaurus in Germany to be Adamanian.

Poland

The Krasiejów bonebed in Silesia, Poland, has yielded an extensive assemblage of metoposaurid fossils assigned to Metoposaurus that has been the subject of diverse
publications (e.g., Sulej, 2002, 2007; Dzik and Sulej, 2007; Konietzko-Meier et al., 2013, 2018; Gruntmejer et al., 2016; Antczak and Bodzioch, 2018). The Krasiejów tetrapod assemblage includes the amphibians Cyclotosaurus and Metoposaurus, the phytosaur Parasuchus, the aetosaur Stagonolepis, the rauisuchian Teratosaurus and the dinosauriform Silesaurus (Lucas, 2015). This assemblage is from strata ~ 80 m above the Reed Sandstone (a Schilfsandstein equivalent) that are homotaxial to the German Lehrberg Schichten and is of Adamanian age (Lucas, 2015).

Some published direct correlations to the SGCS have assigned the Krasiejów level to the Carnian (e.g., Dzik and Sulej, 2007) and Sulej (2007) correlated Krasiejów to the German Lehrberg Schichten. However, Szulc et al. (2015a, b; also see Szulc, 2005), largely on the basis of palynostratigraphy, assigned it to the Norian, an age assignment contradicted by the vertebrate biostratigraphy (Lucas et al., 2007a; Lucas, 2015).

Other European localities

Fragmentary metoposaurid fossils have been reported from France and Switzerland and a diagnostic skull is known from Italy. Corroy (1928) reported but did not illustrate fragmentary specimens he identified as metoposaur from the lower Keuper at Gemmalaincourt in the Vosges Mountains of France. Cuny and Ramboer (1991) illustrated a fragment of a right clavicle and mentioned other fragmentary metoposaurid fossils from the Rhaetian Saint-Nicholas-de-Port locality in France (see Debuysschere et al., 2015) that they assigned to Metoposaurus. However, the clavicle fragment they illustrate (Cuny and Ramboer, 1991, fig. 1b) is more likely cyclosaurus than metoposaur: note the very thin and widely spaced ridges characteristic of cyclosaurs (see Sulej and Majer, 2005, text-fig. 6), unlike the thicker and more closely spaced ridges of Metoposaurus (compare Sulej, 2007, figs 43–44). Therefore, the present author rejects the identification of Metoposaurus at Saint-Nicholas-de-Port and refer to the specimens Cuny and Ramboer (1991) recorded as Metoposauridae.

Leonardi (1952) reported fragmentary metoposaurid specimens from the Raibl Beds in Switzerland. Koken (1913) described a skull he named Metoposaurus santaeccricis from the Raibl Beds in northern Italy. The shallow-marine/deltaic Raibl Beds are of middle Carnian age, correlative to the German Schilfsandstein (e.g., Hornung et al., 2007).

North America

In North America, metoposaurid fossils come from the Chinle Group in the western USA and the Newark Supergroup of the eastern USA and Canada. Long and Murry (1995) reviewed in some detail the Chinle Group metoposaurid record, which comes from the states of Wyoming, Colorado, Utah, Arizona, New Mexico, Oklahoma and Texas. It includes three mass death assemblages of metoposaurids – Lamy in New Mexico (Lucas et al., 2010) and Rotten Hill and Elkins, both in Texas (Case, 1932; Lucas et al., 2016). Records in Wyoming, Arizona, New Mexico and Texas have been the source of specimens that became the bases of new taxa (e.g., Lucas, 1904; Branson, 1905; Case, 1922, 1932; Branson and Mehl, 1929; Sawin, 1945; Hunt, 1993; Long and Murry, 1995; Spielmann and Lucas, 2012). Three genera are recognized: Otischalkian Metoposaurus, Otischalkian-Revueltian Koskinonodon and Adamanian-Apachean Apachesaurus. The large metoposaur Koskinonodon is more common than Apachesaurus in Adamanian strata, whereas Apachesaurus is more common in Revueltian strata (Hunt, 1993; Hunt and Lucas, 1993).
The Newark Supergroup in eastern North America has produced generally fragmentary metoposaurid material that has received taxonomic names now regarded as nomen dubium (e.g., Leidy, 1856; Cope, 1868; Huene, 1921; Baird, 1987; Huber et al., 1993; Hunt, 1993; Schoch and Milner, 2000; Sues and Olsen, 2015). The metoposaurid fossils come from various localities, ranging geographically from North Carolina to Nova Scotia. An important record is a skull roof from the Evangeleine Formation in Nova Scotia (cf. Weems et al., 2016) that has been assigned to Metoposaurus bakeri, a species known elsewhere only from the Otishalkian of Texas (Sues and Olsen, 2015). Huber et al. (1993) showed the total range of metoposaurids in the Newark Supergroup as Adamanian–Apachean (Sanfordian–Cliftonian). They considered the Evangeleine Formation record to be Adamanian, but it is more likely Otishalkian (Lucas, 2018).

India

Metoposaurid fossils have long been known from the Maleri Formation in the Pranhita-Godavari Valley (Lydekker, 1882, 1885; Huene, 1940; Roychowdhury, 1965; Sengupta, 1992, 2002) and are also known in the correlative Tiki Formation of the Son-Mahandari Valley (Sengupta, 1992). These specimens were originally assigned to Metoposaurus maleriensis Roychowdhury, 1965, but have also been assigned to Buetterneria (Sengupta, 2002) and Panthasaurus (Chakravatari and Sengupta, 2019), and the latter assignment is tentatively followed here. The Maleri and Tiki vertebrate faunas are of Otishalkian age (Lucas, 2010, 2018).

Africa

Morocco

Dutuit (1976) published a monograph on the extensive metoposaur assemblages from the t5 interval of the Timesgadouine Formation in the Argana basin of Morocco. Hunt (1993) revised the taxonomy of these metoposaurids to recognize three genera, Metoposaurus, Arganasaurus and Dutuitosaurus (the latter two named by Hunt). Buffa et al. (2019) have reassigned the Moroccan Metoposaurus specimens to Arganasaurus as a distinct species, A. ouazzi, different from A. lyazidi, the type species of Arganasaurus. The t5 interval of the Timesgadouine Formation is of Otishalkian age (Lucas, 2010, 2018).

Algeria

Lehman (1971, pl. 5f) documented what may be fragmentary metoposaurid fossils from the Zarzaîtine Series in Algeria. This is likely an Adamanian-age record (Jalil et al., 1995).

Madagascar

Dutuit (1978) documented fragmentary metoposaurid specimens from the Isalo Group in Madagascar, for which he proposed the name Metoposaurus hoffmani. Fortuny et al. (2019) recently reviewed this taxon and concluded that M. hoffmani is a nomen dubium. They stated that the type material of that taxon as well as undescribed fragmentary metoposaurid specimens they documented are from either the Isalo II or Isalo III stratigraphic intervals of the Isalo Group, and that the provenance of the fossils is too vague to determine which. However, in so doing, they erroneously stated that the vertebrate-fossil assemblage from the Poomay site in Madagascar documented by Burmeister et al. (2006) is from the Isalo III interval. But, according to Burmeister et al. (2006), that assemblage, which they regarded as tentatively of Norian age, is from the upper part of the Isalo II interval. Furthermore, even though that assemblage includes fragmentary remains of phytosaurs and aetosaurs, it lacks metoposaurids, an absence, to which Burmeister et al. (2006) drew attention.

This suggests to the present author that the Isalo metoposaurid fossils are likely from the lower part of the Isalo II interval, which produces a vertebrate fossil assemblage that includes the rhynchosaur Hyperodapedon and thus is of Otishalkian or Adamanian age (Lucas and Heckert, 2002; Lucas, 2010, 2018). Thus, it seems likely, though not certain, that the Malagasy metoposaurid fossils, which are generally indeterminate, are of Otishalkian or Adamanian age.

BIOCHRONOLOGY

Metoposaurids are a strictly Late Triassic taxonomic group, known from Otishalkian-Apachean strata (Hunt, 1993; Schoch and Milner, 2000; Lucas, 2018). There are no Middle Triassic, nor are there any Early Jurassic metoposaurids (Hunt, 1993; Schoch and Milner, 2000). Various workers have previously delineated the biostratigraphic distribution of the metoposaurids (e.g., Roychowdhury, 1965; Hunt, 1993; Sengupta, 2002; Chakravorti and Sengupta, 2019).

The metoposaurid record as just reviewed can be placed into the framework of Late Triassic correlations (Fig. 4) presented most recently by Lucas (2018; for a very different correlation, based largely on the “long Norian” concept, see Buffa et al., 2019, fig. 9). This framework is based on vertebrate biostratigraphy, largely using phytosaurs and aetosaurs as index taxa, as well as other data, including palynostratigraphy, conchostracan biostratigraphy, a few radiotopic ages, magnetostratigraphy and sequence stratigraphy.

Placed into that framework, the metoposaurid genera fall into three groups: (1) relatively endemic genera, limited to North America (Apachesaurus, Koskinodon), India (Panthasaurus) and Morocco (Arganasaurus, Dutuitosaurus); (2) temporally long-ranging genera, Apachesaurus and Koskinodon; and (3) a temporally more restricted genus (Metoposaurus), with a broad geographic distribution. Thus, the most biochronologically significant metoposaur is Metoposaurus, which has a biochron equivalent to Otishalkian–Adamanian (middle–late Carnian) time and is widely distributed across Late Triassic Pangea. The other metoposaurid taxa have limited biochronological significance because of their endemism and/or long temporal ranges.
Identification of a “pluvial episode,” an interval of unusually high humidity/rainfall during the Carnian, has gained broad support as a Pangaea-wide interval of humid climate (e.g., Ruffell et al., 2016; Dal Corso et al., 2020). The age of the Carnian pluvial episode (CPE) is well established in marine sections in Western Europe as late early Carnian (late Julian) to early late Carnian (early Tuvalian), sometimes referred to as “middle Carnian” (e.g., Hornung et al., 2007; Rigo et al., 2007; Kozur and Bachmann, 2010; Dal Corso et al., 2015). The beginning of the Otischalkian essentially corresponds to or overlaps the onset of the CPE (e.g., Kozur and Bachmann, 2010; Lucas, 2018; Lucas and Tanner, 2018). Two groups of dominantly amphibious/aquatic tetrapods are abundant at this time, the metoposaurs and the phytosaurs. This may be a real acme as a response to wetter climates, but that conclusion may, in part, be confounded by taphonomy – preferential preservation of aquatic tetrapods by widespread river systems of the Carnian “pluvial.” That caveat aside, metoposaurs and phytosaurs are among the dominant components of almost all Otischalkian and younger Late Triassic tetrapod assemblages.

Metoposaurids first appeared during the CPE (Lucas, 2018; Buffa et al., 2019; Fortuny et al., 2019). Dal Corso et al. (2020) reviewed the many biotic events associated with the CPE but neglected to mention the metoposaurs. During the CPE metoposaurids were widespread, relatively diverse (their highest generic diversity: Fig. 4) and cosmopolitan. After the CPE, metoposaurid diversity declined and they became more endemic in their distribution. Furthermore, the relatively terrestrially adapted metoposaurid *Apachesaurus* (Rinehart and Lucas, 2018) did not appear until after the CPE.

As aquatic predators, metoposaurids would no doubt have been favored by the wet environments of the CPE. After, the CPE, climates across Pangea are thought to have been (seasonally) drier, and this climate change may explain the diminishment of metoposaurid diversity and cosmopolitanism, particularly during the Norian. Indeed, recent palaeohistological studies demonstrate that metoposaurs were climate sensitive in terms of their ontogeny (Konietzko-Meier and Klein, 2013; Teschner et al., 2018, 2020). There thus seems to be a direct correlation between major climate events of the Late Triassic and major aspects of metoposaurid evolution. This correlation indicates that climate was an important factor that drove metoposaurid evolution during the CPE and its aftermath.

CONCLUSIONS

This article supports the following conclusions:

1. The fossil record of metoposaurid amphibians is found across much of Late Triassic Pangea, including important
records from the USA, Canada, Portugal, Germany, Poland, Morocco, India and Madagascar.

2. There are six metoposaurid genera: Adamanian–Apachean *Apachesaurus*, endemic to the western USA; Otischalkian *Arganasaurus* and *Dutuitosaurus*, endemic to Morocco; Otischalkian–Apachean *Kosakinodon*, endemic to the western USA; Otischalkian–Adamanian *Metoposaurus*, known from the western USA, eastern Canada, Portugal, Italy, Germany and Poland; Otischalkian *Panthasaurus* from India.

3. Only *Metoposaurus* has a broad enough palaeogeographic distribution and relatively restricted temporal range to be of biochronological value, with a biochron that identifies the Otischalkian–Adamanian (middle–late Carnian).

4. Metoposaurids appeared during the Carnian pluvial episode of global climate, during which they achieved their highest diversity, broadest palaeogeographic distribution and highest degree of cosmopolitanism. After the CPE, metoposaurids experienced reduced diversity and relative endemism.

5. The correlation between the CPE and metoposaurid diversity, distribution and cosmopolitanism indicates that climate changes were an important factor in their evolution.

Acknowledgments

I thank Gregorz Racki for originally inviting this contribution, and Larry Rinehart for discussion and his continued collaboration on metoposaur systematics and palaeobiology. Numerous collection managers in Europe and North America facilitated my studies of metoposaurid fossils. The comments of the reviewers and editor improved the content and clarity of the manuscript. It is a pleasure to dedicate this article to the memory of Joachim Szulc to honour his many important contributions to Triassic geology and palaeontology.

REFERENCES

Antczak, M. & Bodzioch, A., 2018. Ornamentation of dermal bones of *Metoposaurus krasielowensis* and its ecological implications. *PeerJ*, 6:e5267; doi:7.7177/peerj.5267

Baird, D., 1987. Some Upper Triassic reptiles, footprints and an amphibian from New Jersey. *The Mosasaur*, 3: 125–153.

Branson, E. B., 1905. Structure and relationships of American amphibians. *Journal of Geology*, 13: 568–610.

Branson, E. B. & Melh, M. G., 1929. Triassic amphibians from the Rocky Mountain region. *University of Missouri Studies*, 4: 155–255.

Brusatte, S. L., Butler, R. J., Mateus, O. & Steyer, J. S., 2015. A new species of *Metoposaurus* from the Late Triassic of Portugal and comments on the systematics and biogeography of metoposaurid temnospondyls. *Journal of Vertebrate Paleontology*, e912988: 1–23.

Buffa, V., Jall, N. & Steyer, J. S., 2019. Redescription of *Arganasaurus* (Metoposauridae) *azeronauli* (Dutuit) comb. nov. from the Upper Triassic of the Argana basin (Morocco), and the first phylogenetic analysis of the Metoposauridae (Amphibia, Temnospondyli). *Papers in Palaeontology*, 2019: 1–19.

Burmeister, K. C., Flynn, J. J., Parrish, J. M. & Wyss, A. R., 2006. Palaeogeographic and biostatigraphic implications oft he new early Mesozoic vertebrates from Poamay, central Morondova basin, Madagascar. *New Mexico Museum of Natural History and Science Bulletin*, 37: 457–475.

Case, E. C., 1922. New reptiles and stegocephalians from the Upper Triassic of western Texas. *Carnegie Institution of Washington Publication*, 321: 1–84.

Case, E. C., 1932. A collection of stegocephalians from Scurry County, Texas. *Contributions from the Museum of Paleontology University of Michigan*, 4: 1–56.

Chakravorty, S. & Sengupta, D. P., 2019. Taxonomy, morphometry and morphospace of cranial bones of *Panthasaurus* gen. nov. *maleriensis* from the Late Triassic of India. *Journal of Iberian Geology*, 45: 317–340.

Colbert, E. H. & Imbrie, J., 1956. Triassic metoposaurid amphibians. *Bulletin of the American Museum of Natural History*, 110: 399–452.

Cope, E. D., 1868. Synopsis of the extinct Batrachia of North America. *Proceedings of the Academy of Natural Sciences Philadelphia*, 1868: 208–221.

Corroy, G., 1928. Les vertébrés du Trias de Lorraine et le Trias Lorrain. *Annales de Paléontologie*, 17: 83–126.

Cuny, G. & Ramboer, G., 1991. Nouvelles données sur la faune et l’âge de Saint Nicolas de Port. *Revue de Paléobiologie*, 10: 69–78.

Dal Corso, J., Bernardi, M., Sun, Y., Song, H., Seyfullah, L. J., Preto, N., Gianolla, P., Ruffell, A., Kustatscher, E., Roghi, G., Merico, A., Hohn, S., Schmidt, A. R., Marzoli, A., Newton, R. J., Wignall, P. B. & Benton, M. J., 2020. Extinction and dawn of the modern world in the Carnian (Late Triassic). *Science Advances*, 6; eaba0099.

Dal Corso, J., Gianolla, P., Newton, R. J., Franceschi, M., Roghi, G., Caggia, M., Racusik, B., Budai, T., Haas, J. & Preto, N., 2015. Carbon isotope records reveal synchronicity between carbon cycle perturbation and the “Carnian pluvial event” in the Tethys realm (Late Triassic). *Global and Planetary Change*, 127: 79–90.

Debuyschere, M., Gheerbrant, E. & Ailian, R., 2015. Earliest known European mammals. A review of Morganucodon from Saint-Nicolas-de-Port (Upper Triassic, France). *Journal of Systematic Palaeontology*, 13: 825–855.

Dutuit, J. M., 1976. Introduction a l’étude paléontologique du Trias Continental Marocain. Descriptions des Premiers StegocephalesRecceillis Dans le Couloir d’Argana (Atlas Occidental). *Memoires du Muséum National d’Histoire Naturelle* 36: 1–253.

Dutuit, J. M., 1978. Description de quelques fragments osseux provenant de la région de Folakara (Trias supérieur malgache). *Bulletin du Muséum National d’Histoire Naturelle Paris, 3e Série, Science de la Terre*, 69: 79–89.

Dzik, J. & Sulej, T., 2007. A review of the Late Triassic Krasiejów biota from Silesia, Poland. *Palaeontologia Polonica*, 64: 1–27.

Fortuny, J., Arbez, T., Mujal, E. & Steyer, J. S., 2019. Reappraisal of ‘Metoposaurus hoffmani’ Dutuit, 1978, and description of new temnospondyl specimens from the Middle–Late Triassic of Madagascar (Morondova Basin). *Journal of Vertebrate Palaeontology*, e1576701.

Fraas, E., 1889. Die Labyrinthodonten der Schwabischen Trias. *Palaeontographica*, 36: 1–158.
Szulc, J., Racki G. & Jewuła, K., 2015b. Key aspects of the stratigraphy of the Upper Silesian middle Keuper, southern Poland. Annales Societatis Geologorum Poloniae, 85: 557–586.

Szulc, J., Racki, G., Jewula, K. & Środoń, J., 2015a. How many Upper Triassic bonebearing levels are there in Upper Silesia (southern Poland)? A critical overview of stratigraphy and facies. Annales Societatis Geologorum Poloniae, 85: 587–626.

Teschner, E. M., Chakravorti, S., Sengupta, D. P. & Konietzko-Meier, D., 2020. Climatic influence on the growth pattern of Panthasaurus maleriensis from the Late Triassic of India deduced from paleohistology. PeerJ, 8: e9868; doi.org/10.7717/peerj.9868

Weems, R. E., Tanner, L. H. & Lucas, S. G., 2016. Synthesis and revision of the lithostratigraphic groups and formations in the upper Permian–Lower Jurassic Newark Supergroup of eastern North America. Stratigraphy, 13: 111–153.

Werneburg, R., 1990. Metoposaurier (Amphibia) aus dem Unteren Keuper (Obertrias) Thuringens. Naturwissenschaftliche Veröffentlichungen NHM Schleusingen, 5: 31–38.

Witzmann, F. & Gassner, T., 2008. Metoposaurid and mastodontosaurid stereospondyls from the Triassic-Jurassic boundary of Portugal. Alcheringa, 32: 37–51.