Euler System with a Polytropic Equation of State as a Vanishing Viscosity Limit

Eduard Feireisl, Christian Klingenberg and Simon Markfelder

Communicated by T. Ozawa

Abstract. We consider the Euler system of gas dynamics endowed with the incomplete \((e - \rho - p)\) equation of state relating the internal energy \(e\) to the mass density \(\rho\) and the pressure \(p\). We show that any sufficiently smooth solution can be recovered as a vanishing viscosity-heat conductivity limit of the Navier–Stokes–Fourier system with a properly defined temperature. The result is unconditional in the case of the Navier type (slip) boundary conditions and extends to the no-slip condition for the velocity under some extra hypotheses of Kato’s type concerning the behavior of the fluid in the boundary layer.

Keywords. Polytropic equation of state, Compressible Euler system, Navier–Stokes–Fourier system, Vanishing dissipation limit.

1. Introduction

The Euler system describing the evolution of the density \(\rho = \rho(t, x)\), the velocity \(\mathbf{u} = \mathbf{u}(t, x)\), and the internal energy \(e = e(t, x)\) of a compressible inviscid fluid reads

\[
\begin{align*}
\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) &= 0, \\
\partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p &= 0, \\
\partial_t \left[\frac{1}{2} \rho |\mathbf{u}|^2 + e \right] + \nabla \cdot \left(\left(\frac{1}{2} \rho |\mathbf{u}|^2 + e \right) \mathbf{u} \right) &= 0.
\end{align*}
\] (1.1)

The fluid is confined to a bounded domain \(\Omega \subset \mathbb{R}^3\), with impermeable boundary,

\[
\mathbf{u} \cdot \mathbf{n}_{|\partial \Omega} = 0.
\] (1.2)

The system (1.1) rewritten in terms of the phase variables \((\rho, \mathbf{u}, e)\) is symmetric hyperbolic, see e.g. Benzoni-Gavage and Serre [4, Chapter 13, Section 13.2.2]. The problem is formally closed by prescribing a suitable equation of state (EOS). We consider a polytropic EOS

\[
p = (\gamma - 1)\rho e \text{ with the adiabatic exponent } \gamma > 1.
\] (1.3)

The equation of state (1.3) is incomplete, in particular, the (absolute) temperature \(\vartheta\) is not uniquely determined. Indeed Gibbs’ law asserts

\[
\vartheta Ds = De + p D \left(\frac{1}{\vartheta} \right),
\] (1.4)

This article is part of the topical collection “Yoshihiro Shibata” edited by Tohru Ozawa.

The research of Eduard Feireisl leading to these results has received funding from the Czech Sciences Foundation (GACR), Grant Agreement 21-02411S. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by RVO:67985840.

Simon Markfelder acknowledges financial support by the Alexander von Humboldt Foundation.
where \(s \) is a new thermodynamic variable called *entropy*. Here \(D = \left(\frac{\partial}{\partial \varrho}, \frac{\partial}{\partial \vartheta} \right) \). Plugging (1.3) in (1.4) we obtain a first order system that can be integrated yielding

\[
p(\varrho, \vartheta) = \gamma \frac{\vartheta}{p(\varrho, \vartheta)},
\]

and, in accordance with (1.3), (1.4),

\[
e(\varrho, \vartheta) = \gamma \frac{\vartheta}{p(\varrho, \vartheta)},
\]

\[
s(\varrho, \vartheta) = \frac{S(\varrho, \vartheta)}{\gamma \vartheta},
\]

for an arbitrary function \(P \). Thus the absolute temperature \(\vartheta \) is determined by \(\varrho \) and \(e \) modulo the function \(P \), see Cowperthwaite [6], Müller and Ruggeri [17], or [11, Chapters 2,3].

The Navier–Stokes–Fourier system describing the motion of a real viscous and heat conductive gas can be viewed as a viscous regularization of (1.1):

\[
\begin{aligned}
\partial_t \varrho + \text{div}_x (\varrho u) &= 0, \\
\partial_t (\varrho u) + \text{div}_x (\varrho u \otimes u) + \nabla_x p &= \text{div}_x S,
\end{aligned}
\]

\[
\begin{aligned}
\partial_t (\varrho s) + \text{div}_x (\varrho s u) + \text{div}_x \left(\frac{q}{\vartheta} \right) &= \frac{1}{\vartheta} \left(S : \nabla_x u - \frac{q}{\vartheta} \cdot \nabla_x \vartheta \right), \\
\nabla_x u &= \frac{\nabla_x u + \nabla_{x}^{t} u}{2},
\end{aligned}
\]

with the viscous stress \(S \) given by *Newton’s rheological law*

\[
\frac{2}{\vartheta} \left(\varrho \nabla_x u - \frac{q}{\vartheta} \cdot \nabla_x \vartheta \right)
\]

and the heat flux given by *Fourier’s law*

\[
q = -\kappa \nabla_x \vartheta.
\]

The second law of thermodynamics requires the entropy production rate

\[
\frac{1}{\vartheta} \left(S : \nabla_x u - \frac{q}{\vartheta} \cdot \nabla_x \vartheta \right)
\]

to be non-negative; whence the diffusion transport coefficients \(\tilde{\mu}, \tilde{\eta}, \) and \(\tilde{\kappa} \) must be non-negative. Note that, unlike in the Euler system (1.1), the knowledge of the temperature \(\vartheta \) is necessary to determine the entropy as well as the heat flux in (1.7). The internal energy \(e \) can be evaluated in terms of \(\varrho, \vartheta \) through (1.6). Thus solutions of the associated Navier–Stokes–Fourier system (1.7), that may be seen as a viscous regularization of the Euler system (1.1), depend on the choice of \(P \) in (1.5).

We consider the vanishing dissipation limit of the Navier–Stokes–Fourier system, specifically, we rescale

\[
S_n \approx \mu_n S, \quad q_n \approx \kappa_n q, \quad \mu_n \downarrow 0, \quad \kappa_n \downarrow 0.
\]

Moreover, the existing mathematical theory of the Navier–Stokes–Fourier system (see [11]) is based on the augmentation of the pressure, and, accordingly, the internal energy and entropy, by the radiation component

\[
p_R = \frac{a}{3} \vartheta^4, \quad e_R = \frac{a}{\vartheta} \vartheta^4, \quad s_R = \frac{4a}{3} \vartheta^3, \quad a > 0.
\]

The parameter \(a \) is very small and usually neglected in the real world applications. Consistently with (1.10), we therefore consider

\[
a = a_n, \quad a_n \downarrow 0.
\]

Suppose that \(\gamma > 1 \) is given and that the Euler system (1.1)–(1.3) admits a smooth \((C^1) \) solution on a time interval \([0, T]\). Our goal is to identify the function \(P \) in (1.5) in such a way that any sequence of weak
solutions to the Navier–Stokes–Fourier system (1.7)–(1.9) converges in the vanishing viscosity/radiation limit (1.10)–(1.12) to the solution of the Euler system in \((0,T) \times \Omega\). Moreover, we show that the convergence is unconditional, if the boundary layer is eliminated by the choice of the complete slip boundary conditions

\[
\mathbf{u} \cdot \mathbf{n}|_{\partial \Omega} = 0, \quad (\mathbf{S} \cdot \mathbf{n}) \times \mathbf{n}|_{\partial \Omega} = 0,
\]

where \(\mathbf{n}\) denotes the outer normal vector to \(\partial \Omega\). In the case of the no-slip boundary conditions

\[
\mathbf{u}|_{\partial \Omega} = 0,
\]

the convergence is conditioned by extra hypotheses of Kato’s type \([15], [16]\) identified in the compressible setting by Sueur \([21]\) and Wang and Zhu \([22]\).

In comparison with the existing literature, notably \([22]\), our result covers all admissible values of the adiabatic coefficient \(\gamma\) in (1.3) as well as general dependence of the transport coefficients on the temperature in the spirit of the existence theory developed in \([11]\).

The paper is organized as follows. In Sect. 2, we recall the necessary preliminary material concerning the weak solutions to the Navier–Stokes–Fourier system including the relative energy inequality that represents a crucial tool in the analysis. Section 3 contains the main results. In Sect. 4 we show consistency of the vanishing viscosity approximation. Specifically, the viscous stress, the heat flux as well as the radiation components of the pressure, internal energy, and entropy along with the associated fluxes disappear in the regime specified in (1.10), (1.12). This process is “path dependent”, specifically certain relations concerning the asymptotic behaviour of \((\mu_n, \kappa_n, \sigma_n)\) must be imposed in the spirit of \([8]\). The convergence towards the strong solution of the Euler system is shown in Sect. 5.

2. Preliminary Material

We recall the existing theory of weak solutions to the Navier–Stokes–Fourier system.

2.1. Mathematical Theory of the Closed System

We suppose the fluid is mechanically insulated as we stipulate either the complete slip (1.13) or the no-slip boundary condition (1.14). In view of our final objective, we require the fluid to be energetically isolated, specifically

\[
\mathbf{q} \cdot \mathbf{n}|_{\partial \Omega} = 0.
\]

The mathematical theory for closed systems relevant for future analysis was developed in \([11]\). Note that the extension to open systems is also available in the recent works \([5,12]\), see also the forthcoming monograph \([9]\).

A suitable weak formulation of the Navier–Stokes–Fourier system augmented by the radiative terms proposed in \([11]\) reads

\[
\begin{align*}
\partial_t \varrho + \text{div}_x (\varrho \mathbf{u}) & = 0, \\
\partial_t (\varrho \mathbf{u}) + \text{div}_x (\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla_x (p + p_R) & = \mu \text{div}_x \mathbf{S}, \\
\partial_t (\varrho (\mathbf{s} + s_R)) + \text{div}_x (\varrho (\mathbf{s} + s_R) \mathbf{u}) + \kappa \nabla_x \left(\frac{\mathbf{q}}{\varrho} \right) & \geq \frac{1}{\varrho} \left(\mu \mathbf{S} : \nabla_x \mathbf{u} - \kappa \frac{\mathbf{q} \cdot \nabla_x \varrho}{\varrho} \right), \\
\frac{d}{dt} \int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho (\mathbf{e} + e_R) \right) \, dx & = 0,
\end{align*}
\]

see \([11, \text{Chapter 3}]\). Note that we anticipate the influence of thermal radiation represented by the extra terms \(p_R, e_R, \) and \(s_R\) in (2.2). In accordance with (1.12), these terms will vanish in the asymptotic limit. The energy balance appearing in the Euler system in (1.1) is replaced by the entropy inequality supplemented with the total energy balance in (2.2).
2.2. Transport Coefficients

In accordance with the molecular theory of gases (see e.g. Becker [1]), the transport coefficients depend on the temperature. Specifically, we assume that $\tilde{\mu}$, $\tilde{\eta}$, $\tilde{\kappa}$ are continuously differentiable functions of ϑ satisfying

$$0 < \mu (1 + \vartheta^\alpha) \leq \tilde{\mu}(\vartheta) \leq \bar{\mu}(1 + \vartheta^\alpha), \quad \alpha \geq 0,$$

$$\sup_{\vartheta \in [0, \infty)} |\tilde{\mu}'(\vartheta)| < \infty,$$

$$0 \leq \tilde{\eta}(\vartheta) \leq \eta (1 + \vartheta^\alpha), \quad 0 < \kappa (1 + \vartheta^3) \leq \tilde{\kappa}(\vartheta) \leq \kappa (1 + \vartheta^3)$$

(2.3)

for any $\vartheta \geq 0$. Note that the cubic growth of κ is motivated by the presence of the radiation terms, see Oxenius [18].

2.3. Equation of State

A proper choice of the equation of state for the Navier–Stokes–Fourier system plays of course a crucial role in the present paper. Given $\gamma > 1$, we have to identify the function P in (1.5). For $p = p(\varrho, \vartheta)$, $e = e(\varrho, \vartheta)$, we recall the hypothesis of thermodynamic stability

$$\frac{\partial p(\varrho, \vartheta)}{\partial \vartheta} > 0, \quad \frac{\partial e(\varrho, \vartheta)}{\partial \vartheta} > 0.$$

(2.4)

This imposes the following restrictions on P:

$$P'(Z) > 0 \text{ for all } Z > 0,$$

$$\gamma P(Z) - P'(Z)Z > 0 \text{ for all } Z > 0.$$

(2.5)

The following lemma shows existence of a suitable P.

Lemma 2.1. For all $Z > 0$ there exist functions $P, S \in C^1[0, \infty)$ with properties (1.6), (2.5) and such that

$$P(Z) = Z \quad \text{for all } Z \in [0, Z].$$

(2.6)

Moreover P, S satisfy

$$P(0) = 0,$$

$$\frac{\gamma P(Z) - P'(Z)Z}{Z} \leq C \quad \text{for all } Z > 0,$$

$$\lim_{Z \to \infty} \frac{P(Z)}{Z^\gamma} > 0,$$

$$\lim_{Z \to \infty} S(Z) = 0.$$

(2.7)

(2.8)

(2.9)

(2.10)

Note that according to (2.10), S from Lemma 2.1 is in accordance with the Third law of thermodynamics, namely

$$s(\varrho, \vartheta) \to 0 \text{ as } \vartheta \to 0^+ \text{ for any fixed } \varrho > 0,$$

cf. Belgiorno [2,3].

Proof. Let us first consider the case $Z = 1$. Set $P, S \in C^1[0, \infty)$

$$P(Z) := \begin{cases}
Z & \text{if } Z \leq 1, \\
\frac{\gamma - 1}{\gamma} + \frac{1}{\gamma}Z^\gamma & \text{if } Z > 1,
\end{cases}$$

and

$$S(Z) := \begin{cases}
- \log(Z) + 1 & \text{if } Z \leq 1, \\
\frac{1}{Z} & \text{if } Z > 1.
\end{cases}$$
It is then straightforward to check (1.6), (2.5), (2.6)–(2.10).

Let us now look at $Z \neq 1$. We define the P, S constructed above as P_1, S_1 and set

$$P(Z) := P_1 \left(\frac{Z}{Z} \right), \quad S(Z) := \frac{1}{Z} S_1 \left(\frac{Z}{Z} \right).$$

Again straightforward computations show that the properties (1.6), (2.5), (2.6)–(2.10) follow from the corresponding property of P_1, S_1.

\[\square\]

Note that for $Z \in [0, Z]$, according to (2.6) and (1.5) we simply obtain the Boyle-Mariotte law

$$p(\rho, \vartheta) = \rho \vartheta.$$

Hence the temperature for the Euler system (1.1) endowed with the incomplete EOS (1.3) can be recovered by choosing Z in Lemma 2.1 appropriately, see Sect. 4.1 for details.

2.4. Relative Energy

The relative energy for the Navier–Stokes–Fourier system may be seen as a counterpart of Dafermos’ relative entropy for the (hyperbolic) Euler system, see [7]. Given a trio of “test functions”

$$r > 0, \ \Theta > 0, \ U,$$

the relative energy reads

$$E \left(\rho, \vartheta, \mathbf{u} \bigg| r, \Theta, \mathbf{U} \right) = \frac{1}{2} \rho |\mathbf{u} - \mathbf{U}|^2 + H_\Theta(\rho, \vartheta) - \frac{\partial H_\Theta(r, \Theta)}{\partial \rho}(\rho - r) - H_\Theta(r, \Theta),$$

where

$$H_\Theta(\rho, \vartheta) = \rho(e(\rho, \vartheta) - \Theta s(\rho, \vartheta))$$

is the ballistic free energy. In the context of the system (2.2) perturbed by the radiation terms, we have

$$H_\Theta(\rho, \vartheta) = \rho((e + e_R)(\rho, \vartheta) - \Theta(s + s_R)(\rho, \vartheta)).$$

The relative energy augmented by the radiation component will be denoted E_a. We also introduce the standard energy

$$E(\rho, \vartheta, \mathbf{u}) = \frac{1}{2} \rho |\mathbf{u}|^2 + \rho e(\rho, \vartheta).$$

The following result was proved in [10]: Suppose that:

- $(\rho, \vartheta, \mathbf{u})$ is a weak solution to the Navier–Stokes–Fourier system (2.2) in $(0, T) \times \Omega$ with the no-flux boundary conditions (2.1) and either the complete slip boundary conditions (1.13) or the no-slip boundary condition (1.14).
- (r, Θ, \mathbf{U}) is a trio of continuously differentiable test functions,

$$r > 0, \ \Theta > 0 \text{ in } [0, T] \times \Omega,$$

where \mathbf{U} satisfies either the impermeability boundary condition

$$\mathbf{U} \cdot \mathbf{n}|_{\partial \Omega} = 0,$$

or the no-slip boundary condition

$$\mathbf{U}|_{\partial \Omega} = 0.$$
Then the relative energy inequality

\[
\begin{align*}
\left[\int_0^\tau \int \Omega E_a \left(\varrho, \vartheta, \mathbf{u} | r, \Theta, \mathbf{U} \right) \, dx \right]_{t=0}^{t=\tau} + \int_0^\tau \int \Omega \frac{\Theta}{\vartheta} \left(\mu \mathcal{S}(\vartheta, \nabla_x \mathbf{u}) : \nabla_x \mathbf{u} - \kappa \frac{\mathbf{q}(\vartheta, \nabla_x \vartheta) \cdot \nabla_x \vartheta}{\vartheta} \right) \, dx \, dt \\
\leq \int_0^\tau \int \Omega \varrho (\mathbf{u} - \mathbf{U}) \cdot \nabla_x \mathbf{U} \cdot (\mathbf{U} - \mathbf{u}) \, dx \, dt \\
+ \mu \int_0^\tau \int \Omega \mathcal{S}(\vartheta, \nabla_x \mathbf{u}) : \nabla_x \mathbf{U} \, dx \, dt - \kappa \int_0^\tau \int \Omega \frac{\mathbf{q}(\vartheta, \nabla_x \vartheta) \cdot \nabla_x \Theta}{\vartheta} \, dx \, dt \\
+ \int_0^\tau \int \Omega \varrho ((s + s_R)(\varrho, \vartheta) - (s + s_R)(r, \Theta)) (\mathbf{U} - \mathbf{u}) \cdot \nabla_x \Theta \, dx \, dt \\
+ \int_0^\tau \int \Omega \varrho (\partial_t \mathbf{U} + \mathbf{U} \cdot \nabla_x \mathbf{U}) \cdot (\mathbf{U} - \mathbf{u}) \, dx \, dt - \int_0^\tau \int \Omega (p + p_R)(\varrho, \vartheta) \text{div}_x \mathbf{U} \, dx \, dt \\
- \int_0^\tau \int \Omega \varrho ((s + s_R)(\varrho, \vartheta) - (s + s_R)(r, \Theta)) (\partial_t \Theta + \mathbf{U} \cdot \nabla_x \Theta) \, dx \, dt \\
+ \int_0^\tau \int \Omega \left((1 - \frac{\varrho}{r}) \partial_t (p + p_R)(r, \Theta) - \frac{\varrho}{r} \mathbf{u} \cdot \nabla_x (p + p_R)(r, \Theta) \right) \, dx \, dt
\end{align*}
\]

(2.13) holds for a.a. \(\tau \in (0, T) \).

Finally, we recall the fundamental properties of the relative energy that follow from the hypothesis of thermodynamic stability (2.4). In accordance with hypothesis (2.11), fix

\[
0 < \varrho < \inf_{[0,T] \times \Omega} r \leq \sup_{[0,T] \times \Omega} r < \overline{\varrho},
\]

\[
0 < \varrho < \inf_{[0,T] \times \Omega} \Theta \leq \sup_{[0,T] \times \Omega} \Theta < \overline{\varrho},
\]

and define

\[
[F]_{\text{ess}} = \Phi(\varrho, \vartheta) F, \quad [F]_{\text{res}} = F - [F]_{\text{ess}},
\]

where

\[
\Phi \in C^1_c(0, \infty)^2, \quad 0 \leq \Phi \leq 1, \quad \Phi(\varrho, \vartheta) = 1 \text{ whenever } \varrho \leq \varrho \leq \overline{\varrho} \text{ and } \vartheta \leq \vartheta \leq \overline{\vartheta}.
\]

Then

\[
E_a \left(\varrho, \vartheta, \mathbf{u} | r, \Theta, \mathbf{u} \right) \geq E \left(\varrho, \vartheta, \mathbf{u} | r, \Theta, \mathbf{u} \right) \geq c \left([\varrho - r]_{\text{ess}}^2 + [\vartheta - \Theta]_{\text{ess}}^2 + [\mathbf{u} - \mathbf{U}]_{\text{ess}}^2 \right)
\]

\[
E_a \left(\varrho, \vartheta, \mathbf{u} | r, \Theta, \mathbf{u} \right) \geq c \left([\varrho]_{\text{res}} + [\vartheta + c^R(\vartheta, \vartheta)]_{\text{res}} + [\varrho]_{\text{res}} (s + s_R)(\varrho, \vartheta) \right),
\]

\[
E \left(\varrho, \vartheta, \mathbf{u} | r, \Theta, \mathbf{u} \right) \geq c \left([\varrho]_{\text{res}} + [\vartheta]_{\text{res}} + [\varrho]_{\text{res}} (s + s_R)(\varrho, \vartheta) \right),
\]

(2.14)

where the constants depend on \(\varrho, \overline{\varrho}, \overline{\vartheta}, \) and \(\overline{\vartheta}, \) see e.g. [11] for details. As a consequence of the hypothesis of thermodynamic stability (2.4), the relative energy expressed in terms of the conservative entropy variables \((\varrho, \mathbf{m} = \varrho \mathbf{u}, \mathbf{S} = \varrho \mathbf{s}) \) is a strictly convex function and represents the so-called Bregman distance between \((\varrho, \mathbf{m}, \mathbf{S}) \) and \((r, r \mathbf{U}, rs(r, \Theta)) \), see e.g. [12]. Note carefully that the relative energy \(E_a \) associated to the Navier–Stokes–Fourier system (2.2) is augmented by the radiation component

\[
a(\vartheta^4 - \Theta^4) + \frac{4a}{3} \Theta(\Theta^3 - \vartheta^3) \geq 0.
\]
3. Main Results

We state the main results in the physically relevant case $\Omega \subset \mathbb{R}^3$. We consider three vanishing parameters in the asymptotic limit: the viscosity coefficient μ_n, the heat conductivity coefficient κ_n, and the radiation parameter a_n, cf. (1.10), (1.12).

3.1. Unconditional Convergence in the Absence of Boundary Layer

We start with the Navier–Stokes–Fourier system (2.2), with the complete slip boundary conditions (1.13), and the no-flux boundary condition (2.1).

Theorem 3.1 (Unconditional convergence). Let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain. Suppose that the Euler system (1.1)–(1.3), with $\gamma > 1$, admits a strong solution

$$\varrho_E, \ e_E \in C^1([0, T] \times \overline{\Omega}), \ u_E \in C^1([0, T] \times \Omega; \mathbb{R}^3)$$

satisfying

$$\inf_{[0, T] \times \overline{\Omega}} \varrho_E > 0, \ \inf_{[0, T] \times \overline{\Omega}} e_E > 0.$$

Then there exists a (p, ϱ, ϑ) EOS $p = p(\varrho, \vartheta)$ that complies with Gibbs’ relation (1.4) as well as the hypothesis of thermodynamic stability (2.4), with the associated internal energy EOS $e = e(\varrho, \vartheta)$ and entropy $s = s(\varrho, \vartheta)$ determined through (1.6), such that the following holds:

Let $(\varrho_n, \vartheta_n, u_n)_{n=1}^{\infty}$ be a sequence of weak solutions to the Navier–Stokes–Fourier system (2.2), with the complete slip boundary condition (1.13), and the no-flux boundary conditions (2.1), in the vanishing dissipation/radiation regime:

$$\mu_n \to 0, \ a_n \approx \frac{\mu_n^{\frac{1}{\alpha}}}{\kappa_n^{\frac{2}{\alpha}}} \to 0, \ (3.1)$$

where $\alpha \in [\frac{1}{3}, 1]$ is the exponent in hypothesis (2.3). In addition, suppose that the initial data

$$\varrho_{n, 0} = \varrho_n(0, \cdot), \ \vartheta_{n, 0} = \vartheta_n(0, \cdot), \ u_{n, 0} = u_n(0, \cdot)$$

converge strongly to those of the Euler system, specifically,

$$0 < \varrho < \inf_{(0,T) \times \Omega} \varrho_n, 0 \leq \sup_{(0,T) \times \Omega} \varrho_n, 0 < \overline{\varrho} \ \text{uniformly in} \ n, \ \varrho_n, 0 \to \varrho_E(0, \cdot) \ \text{in} \ L^1(\Omega),$$

$$0 < \vartheta < \inf_{(0,T) \times \Omega} \vartheta_n, 0 \leq \sup_{(0,T) \times \Omega} \vartheta_n, 0 < \overline{\vartheta} \ \text{uniformly in} \ n, \ \vartheta_n(0, \cdot), 0 \to \vartheta_E(0, \cdot) \ \text{in} \ L^1(\Omega),$$

$$|u_{n, 0}| \leq \overline{u} \ \text{uniformly in} \ n, \ u_n, 0 \to u_E(0, \cdot) \ \text{in} \ L^1(\Omega; \mathbb{R}^3). \ (3.2)$$

Then

$$\varrho_n \to \varrho_E, \ \varrho_n e(\varrho_n, \vartheta_n) \to \varrho_E e_E \ \text{in} \ L^1((0, T) \times \Omega), \ \varrho_n u_n \to \varrho_E u_E \ \text{in} \ L^1((0, T) \times \Omega; \mathbb{R}^3). \ (3.3)$$

Remark 3.2. The reader may consult [11, Chapter 3] for the exact definition of a weak solution of the Navier–Stokes–Fourier system emanating from the initial data $(\varrho_{n, 0}, \vartheta_{n, 0}, u_{n, 0})$.

Remark 3.3. We strongly point out that Theorem 3.1 does not contain any claim concerning the existence of weak solutions for the Navier–Stokes–Fourier system. The existence is known only in some particular cases: $\gamma \geq \frac{5}{3}, \ \alpha \in [\frac{3}{2}, 1]$, see [11, Chapter 3, Theorem 3.1], and $\gamma > \frac{3}{2}, \ \alpha = 1$, see Jesslé, Jin, and Novotný [14, Theorem 2.1]. The best known results for the planar flows were obtained recently by Pokorný and Skříšovský [19].

Local in time existence of smooth solutions to the Euler system was established by Schochet [20].
3.2. Conditional Result: Viscous Boundary Layer

The no-slip boundary condition (1.14) imposed on the viscous flow cannot be retained for the limit Euler system and the well known problem of viscous boundary layer appears. We report conditional results à la Kato in the spirit of Sueur [21] and Wang, Zhu [22]. Let
\[\Omega_\delta = \left\{ x \in \Omega \mid \text{dist}[x, \partial \Omega] < \delta \right\}. \]

Any vector field \(\mathbf{w} \) can be decomposed into its normal and tangential component with respect to \(\partial \Omega \):
\[\mathbf{w}(t, x) = \mathbf{w}_n(t, x) + \mathbf{w}_\tau(t, x), \]
\[\mathbf{w}_n(t, x) = (\mathbf{w} \cdot \nabla \text{dist}[x, \partial \Omega]) \nabla \text{dist}[x, \partial \Omega], \quad \mathbf{w}_\tau(t, x) = \mathbf{w}(t, x) - \mathbf{w}_n(t, x). \]

Note that \(|\nabla \text{dist}[x, \partial \Omega]| = 1 \), see Sect. 5.1.

We start with a result inspired by Sueur [21].

Theorem 3.4 (Conditional convergence, gradient criterion). Let \(\Omega \subset \mathbb{R}^3 \) be a bounded domain of class \(C^{2+\nu} \). Suppose that the Euler system (1.1)–(1.3), with \(\gamma > 1 \), admits a strong solution \(\rho_\varepsilon, \varepsilon_\varepsilon \in C^1([0, T] \times \overline{\Omega}), \mathbf{u}_\varepsilon \in C^1([0, T] \times \Omega; \mathbb{R}^3) \) satisfying
\[\inf_{[0, T] \times \overline{\Omega}} \rho_\varepsilon > 0, \quad \inf_{[0, T] \times \overline{\Omega}} \varepsilon_\varepsilon > 0. \]

Then there exists a \((\rho, \rho, \varepsilon)\) EOS \(p = p(\rho, \varepsilon) \) that complies with Gibbs’ relation (1.4) as well as the hypothesis of thermodynamic stability (2.4), with the associated internal energy \(\varepsilon = \varepsilon(\rho, \varepsilon) \) and entropy \(s = s(\rho, \varepsilon) \) determined through (1.6), such that the following holds:

Let \((\rho_n, \rho_n, \mathbf{u}_n)_{n=1}^\infty \) be a sequence of weak solutions to the Navier–Stokes–Fourier system (2.2), with the no-slip boundary condition (1.14), and the no-flux boundary conditions (2.1), in the vanishing dissipation/radiation regime:
\[\mu_n \to 0, \quad a_n \approx \frac{1}{\mu_n}, \quad \frac{\kappa_n}{a_n^2} \to 0, \]
where \(\alpha \in [\frac{1}{3}, 1] \) is the exponent in hypothesis (2.3). In addition, suppose that the initial data
\[\rho_n(0, \cdot), \quad \rho_n(0, \cdot), \quad \mathbf{u}_n(0, \cdot), \quad \mathbf{u}_n(0, \cdot) \]
converge strongly to those of the Euler system, specifically,
\[0 < \rho < \inf_{(0, T) \times \Omega} \rho_0 \leq \sup_{(0, T) \times \Omega} \rho_0 < \overline{\rho} \text{ uniformly in } n, \quad \rho_n(0, \cdot) \to \rho_0(0, \cdot) \text{ in } L^1(\Omega), \]
\[0 < \rho < \inf_{(0, T) \times \Omega} \rho_0 \leq \sup_{(0, T) \times \Omega} \rho_0 < \overline{\rho} \text{ uniformly in } n, \quad \rho(\rho_0, \rho_0)(0, \cdot) \to \rho_0(0, \cdot) \text{ in } L^1(\Omega), \]
\[|\mathbf{u}_n(0, \cdot)| \leq \overline{\mathbf{u}} \text{ uniformly in } n, \quad \mathbf{u}_n(0, \cdot) \to \mathbf{u}_0(0, \cdot) \text{ in } L^1(\Omega; \mathbb{R}^3). \]

Finally, suppose\(^1\)
\[\mu_n \int_0^T \int_{\Omega_{\mu_n}} |S(\partial_n, \nabla \mathbf{u}_n)|^2 \, dx \, dt \to 0, \]
\[\mu_n \int_0^T \int_{\Omega_{\mu_n}} \left(\frac{\rho_n |\mathbf{u}_n|^2}{\text{dist}^2 [x, \partial \Omega]} + \frac{\rho_n^2 |(\mathbf{u}_n)_{n+2}|^2}{\text{dist}^2 [x, \partial \Omega]} \right) \, dx \, dt \to 0 \quad (3.4) \]
as \(n \to \infty. \)

\(^1\)Note, that we use the index \(n \) both for the sequence and the normal component. Throughout this paper \(\mathbf{u}_n \) denotes the \(n \)th element of the sequence \((\mathbf{u}_n)_{n=1}^\infty \) and \((\mathbf{u}_n)_{n} \) its normal component.
Then
\[\varrho_n \to \varrho_E, \varrho_n e(\varrho_n, \vartheta_n) \to \varrho_E e_E \text{ in } L^1((0, T) \times \Omega), \quad \varrho_n \mathbf{u}_n \to \varrho_E \mathbf{u}_E \text{ in } L^1((0, T) \times \Omega; \mathbb{R}^3). \]

Finally, we state a conditional result inspired by Wang and Zhu [22].

Theorem 3.5 (Conditional convergence). Let \(\Omega \subset \mathbb{R}^3 \) be a bounded domain of class \(C^{2+\nu} \). Suppose that the Euler system (1.1)–(1.3), with \(\gamma > 1 \), admits a strong solution
\[\varrho_E, e_E \in C^1([0, T] \times \overline{\Omega}), \quad \mathbf{u}_E \in C^1([0, T] \times \Omega; \mathbb{R}^3) \]
satisfying
\[\inf_{[0, T] \times \overline{\Omega}} \varrho_E > 0, \quad \inf_{[0, T] \times \overline{\Omega}} e_E > 0. \]

Then there exists a \((p, \varrho, \vartheta)\) EOS \(p = p(\varrho, \vartheta) \) that complies with Gibbs’ relation (1.4) as well as the hypothesis of thermodynamic stability (2.4), with the associated internal energy EOS \(e = e(\varrho, \vartheta) \) and entropy \(s = s(\varrho, \vartheta) \) determined through (1.6), such that the following holds:

Let \((\varrho_n, \vartheta_n, \mathbf{u}_n)_{n=1}^{\infty} \) be a sequence of weak solutions to the Navier–Stokes–Fourier system (2.2), with the no-slip boundary condition (1.14), and the no-flux boundary conditions (2.1), in the vanishing dissipation/radiation regime:
\[\mu_n \to 0, \quad a_n \approx \frac{\mu_n}{\alpha_n}, \quad \frac{\kappa_n}{\alpha_n} \to 0, \]
where \(\alpha \in [\frac{1}{3}, 1] \) is the exponent in hypothesis (2.3). In addition, suppose that the initial data
\[\varrho_{n,0} = \varrho_n(0, \cdot), \quad \vartheta_{n,0} = \vartheta_n(0, \cdot), \quad \mathbf{u}_{n,0} = \mathbf{u}_n(0, \cdot) \]
converge strongly to those of the Euler system, specifically,
\[0 < \bar{\varrho} \leq \inf_{(0,T) \times \Omega} \varrho_{n,0} \leq \sup_{(0,T) \times \Omega} \varrho_{n,0} < \bar{\varrho} \text{ uniformly in } n, \quad \varrho_{n,0} \to \varrho_E(0, \cdot) \text{ in } L^1(\Omega), \]
\[0 < \bar{\vartheta} \leq \inf_{(0,T) \times \Omega} \vartheta_{n,0} \leq \sup_{(0,T) \times \Omega} \vartheta_{n,0} < \bar{\vartheta} \text{ uniformly in } n, \quad e(\varrho_{n,0}, \vartheta_{n,0})(0, \cdot) \to e_E(0, \cdot) \text{ in } L^1(\Omega), \]
\[|\mathbf{u}_{n,0}| \leq \bar{\mathbf{u}} \text{ uniformly in } n, \quad \mathbf{u}_{n,0} \to \mathbf{u}_E(0, \cdot) \text{ in } L^1(\Omega; \mathbb{R}^3). \]

Finally, suppose there is a sequence \(\delta_n \to 0 \) such that
\[\frac{\mu_n}{\delta_n} \to 0 \text{ as } n \to \infty, \]
\[\frac{1}{\delta_n} \int_0^T \int_{\Omega_n} \vartheta_n^{1+\alpha} \, dx \, dt \leq c, \]
\[\int_0^T \left(\frac{1}{\delta_n} \| \varrho_n(\mathbf{u}_n)_n \|_{L^{24/17+\alpha}(\Omega_n; \mathbb{R}^3)} + \frac{1}{\delta_n^2 \mu_n} \| \varrho_n(\mathbf{u}_n)_n \|_{L^{24/17+\alpha}(\Omega_n; \mathbb{R}^3)} \right)^2 \, dt \to 0 \quad (3.5) \]
uniformly for \(n \to \infty. \)

Then
\[\varrho_n \to \varrho_E, \quad \varrho_n e(\varrho_n, \vartheta_n) \to \varrho_E e_E \text{ in } L^1((0, T) \times \Omega), \quad \varrho_n \mathbf{u}_n \to \varrho_E \mathbf{u}_E \text{ in } L^1((0, T) \times \Omega; \mathbb{R}^3). \]

Hypothesis (3.5) may seem awkward and much stronger than its counterpart by Wang and Zhu [22], where only the case \(\alpha = 1 \) is studied. In order to compare our result with [22], we are able to modify Theorem 3.5 for \(\alpha = 1 \) and obtain the following.

Theorem 3.6 (Conditional convergence, \(\alpha = 1 \)). Let \(\Omega \subset \mathbb{R}^3 \) be a bounded domain of class \(C^{2+\nu} \). Suppose that the Euler system (1.1)–(1.3), with \(\gamma > 1 \), admits a strong solution
\[\varrho_E, e_E \in C^1([0, T] \times \overline{\Omega}), \quad \mathbf{u}_E \in C^1([0, T] \times \Omega; \mathbb{R}^3) \]
Then there exists a \((p,q,\vartheta) \) EOS \(p = p(q, \vartheta) \) that complies with Gibbs’ relation (1.4) as well as the hypothesis of thermodynamic stability (2.4), with the associated internal energy EOS \(e = e(q, \vartheta) \) and entropy \(s = s(q, \vartheta) \) determined through (1.6), such that the following holds:

Let \((\varrho_n, \vartheta_n, u_n)_{n=1}^\infty \) be a sequence of weak solutions to the Navier–Stokes–Fourier system (2.2), with the no-slip boundary condition (1.14), and the no-flux boundary conditions (2.1), in the vanishing dissipation/radiation regime with \(\alpha = 1 \):

\[
\mu_n \downarrow 0, \ a_n \approx \mu_n^2, \ \frac{\kappa_n}{a_n^3} \to 0.
\]

In addition, suppose that the initial data

\[
\varrho_{n,0} = \varrho_n(0, \cdot), \ \vartheta_{n,0} = \vartheta_n(0, \cdot), \ u_{n,0} = u_n(0, \cdot)
\]

converge strongly to those of the Euler system, specifically,

\[
0 < \varrho < \inf_{(0,T) \times \Omega} \varrho_{n,0} \leq \sup_{(0,T) \times \Omega} \varrho_{n,0} < \overline{\varrho} \text{ uniformly in } n, \ \varrho_{n,0} \to \varrho_E(0, \cdot) \text{ in } L^1(\Omega),
\]

\[
0 < \vartheta < \inf_{(0,T) \times \Omega} \vartheta_{n,0} \leq \sup_{(0,T) \times \Omega} \vartheta_{n,0} < \overline{\vartheta} \text{ uniformly in } n, \ e(\varrho_{n,0}, \vartheta_{n,0})(0, \cdot) \to e_E(0, \cdot) \text{ in } L^1(\Omega),
\]

\[
|u_{n,0}| \leq \overline{u} \text{ uniformly in } n, \ u_{n,0} \to u_E(0, \cdot) \text{ in } L^1(\Omega; \mathbb{R}^3).
\]

Finally, suppose there is a sequence \(\delta_n \to 0 \) such that

\[
\frac{\mu_n}{\delta_n} \to 0 \text{ as } n \to \infty,
\]

\[
\frac{1}{\delta_n} \int_0^T \int_{\Omega_{\delta_n}} \vartheta_n^2 \, dx \, dt \leq c,
\]

\[
\frac{1}{\mu_n} \int_0^T \|\varrho_n(u_n)\|_{L^2(\Omega_{\delta_n}; \mathbb{R}^3)}^2 \, dt \to 0
\]

as \(n \to \infty \).

Then

\[
\varrho_n \to \varrho_E, \ \varrho_n e(\varrho_n, \vartheta_n) \to \varrho_E e_E \text{ in } L^1((0,T) \times \Omega), \ \varrho_n u_n \to \varrho_E u_E \text{ in } L^1((0,T) \times \Omega; \mathbb{R}^3).
\]

Remark 3.7. Indeed hypothesis (3.6) and the assumptions in Wang and Zhu [22] are similar, though not equivalent. Note furthermore, that Wang and Zhu alternatively consider an analogous assumption on the tangential component of \(u_n \) instead of the normal component. In this paper we do not pursue anything of that kind.

The rest of the paper is devoted to the proof of the above results.

4. Consistency of the Vanishing Dissipation/Radiation Approximation

As a preliminary step, we show consistency of the vanishing dissipation/radiation approximation.
4.1. Temperature for the Euler System

First we introduce the temperature ϑ_E associated to the limit system. Without loss of generality, we may fix the constants ϱ, $\bar{\varrho}$ in (3.2) so that
\[0 < \varrho < \inf_{[0,T] \times \Omega} \varrho_E \leq \sup_{[0,T] \times \Omega} \varrho_E < \bar{\varrho}. \] (4.1)

Next, in accordance with the hypotheses of Theorem 3.1,
\[0 < e < \inf_{[0,T] \times \Omega} e_E \leq \sup_{[0,T] \times \Omega} e_E < \bar{e}. \] (4.2)

for certain constants ϱ, e. Let us set
\[Z > \frac{\bar{\varrho}}{((\gamma - 1)e)^{\gamma - 1}} \]
and apply Lemma 2.1 to obtain suitable functions P, S. Furthermore we define
\[\vartheta_E := (\gamma - 1)e_E. \]

Note that $\vartheta_E > (\gamma - 1)e$ and hence
\[\frac{\varrho_E}{(\vartheta_E)^{\gamma - 1}} < Z. \]

By virtue of (2.6), we have
\[e(\varrho_E, \vartheta_E) = e_E \text{ in } [0,T] \times \Omega. \]

Moreover, without loss of generality, we may suppose
\[0 < \vartheta < \inf_{[0,T] \times \Omega} \vartheta_E \leq \sup_{[0,T] \times \Omega} \vartheta_E < \bar{\vartheta}, \] (4.3)

with the same constants ϑ, $\bar{\vartheta}$ as in (3.2). From this moment on, the pressure law is fixed.

As p, e, and s comply with Gibbs’ relation, the smooth solution of the Euler system conserves the entropy:
\[\partial_t (\varrho Es(\varrho_E, \vartheta_E)) + \text{div}_x (\varrho Es(\varrho_E, \vartheta_E)u_E) = 0, \] (4.4)
where s is given by (1.6).

4.2. Consistency

The Navier–Stokes–Fourier system (2.2) may be viewed as a singular perturbation of the Euler system with the extra “error” terms
\[E_1^1 = p_R = \frac{a_n}{3} \theta_n^4, \]
\[E_2^n = \mu_n S(\vartheta_n, \nabla_x u_n) = \mu_n \left(\tilde{\mu}(\vartheta_n) \left(\nabla_x u_n + \nabla_x^T u_n - \frac{2}{3} \text{div}_x u_n I \right) + \tilde{\eta}(\vartheta_n) \text{div}_x u_n I \right), \]
\[E_3^n = \varrho s_R = \frac{4a_n}{3} \theta_n^3, \quad E_4^n = \varrho s_R u = \frac{4a_n}{3} \theta_n^3 u_n, \quad E_5^n = \kappa_n \frac{q}{\vartheta} = \kappa_n \tilde{\kappa} \frac{\nabla_x \vartheta_n}{\varrho_n}, \quad E_6^n = \varrho e_R = a_n \theta_n^4. \] (4.5)

We say that the approximation of the Euler system by the Navier–Stokes–Fourier system is consistent, if the above “error” terms vanish in the asymptotic limit $n \to 0$. As a matter of fact, we need a milder form of consistency compatible with the relative energy inequality. More specifically, it is sufficient to control the “errors” by the dissipation term
By virtue of hypothesis (2.3),
\[\mathcal{D}_n \equiv \mu_n \int_\Omega \tilde{\mu}(\vartheta_n) \left(\nabla_x u_n + \nabla_t^t u_n - \frac{2}{3} \nabla_x u_n \right) \| \right\|^2 dx + \mu_n \int_\Omega \tilde{\eta}(\vartheta_n) \| \nabla_x u_n \|^2 dx \\
+ \kappa_n \int_\Omega \tilde{\kappa}(\vartheta_n) \left(\nabla_x \vartheta_n \right)^2 dx, \]
and the total energy
\[\mathcal{E}_n \equiv \int_\Omega \left(\frac{1}{2} \vartheta_n \| u_n \|^2 + \varrho_n e(\varrho_n, \vartheta_n) + a_n \vartheta_n^4 \right) dx. \]

For each error term \(E_i^n \), \(i = 1, \ldots, 6 \) specified in (4.5) and \(\varepsilon > 0 \), we have to find \(c(\varepsilon) \) such that
\[\| E_i^n \|_{L^1(\Omega)} \leq \varepsilon \mathcal{D}_n + c(\varepsilon) \mathcal{E}_n + c(\varepsilon) \omega_n \text{ uniformly for } n \to \infty, \omega_n \to 0. \] (4.6)

Obviously, \(E_i^1 = p_R, E_i^6 = q_c, \) and \(E_i^3 = \rho s_R \) satisfy (4.6) (with \(\varepsilon = 0 \)), it remains to handle the viscous stress, the heat flux and the entropy convective flux term.

Moreover, we recall some basic estimates that follow directly from the hypotheses (1.6), (2.5), (2.7)–(2.10):
\[\varrho^\gamma + \varrho \vartheta \lesssim \rho e(\varrho, \vartheta), \]
\[0 \leq \omega(\varrho, \vartheta) \lesssim \rho \left(1 + |\log(\varrho)| + |\log(\vartheta)|^+ \right). \] (4.7)

4.2.1. Viscous Stress Consistency
By virtue of hypothesis (2.3),
\[\int_\Omega \mu_n \tilde{\mu}(\vartheta_n) \left(\nabla_x u_n + \nabla_t^t u_n - \frac{2}{3} \nabla_x u_n \right) \| \right\| dx \\
\leq \varepsilon \mu_n \int_\Omega \tilde{\mu}(\vartheta_n) \left(\nabla_x u_n + \nabla_t^t u_n - \frac{2}{3} \nabla_x u_n \right) \| \right\|^2 dx + c(\varepsilon) \mu_n \int_\Omega (1 + \vartheta_n^{1+\alpha}) \right\| dx \\
\leq \varepsilon \mathcal{D}_n + c(\varepsilon) \mu_n + c(\varepsilon) \mu_n \int_\Omega \left[\vartheta_n^{1+\alpha} \right]_{\text{res}} dx \\
\leq \varepsilon \mathcal{D}_n + c(\varepsilon) \mu_n + c(\varepsilon) \frac{\mu_n}{a_n^{1+\alpha}} \int_\Omega \left[\vartheta_n^{1+\alpha} \right]_{\text{res}} dx \\
\leq \varepsilon \mathcal{D}_n + c(\varepsilon) \mu_n + c(\varepsilon) \int_\Omega \left[a_n \vartheta_n^4 + 1 \right]_{\text{res}} dx, \]
where the last inequality follows from hypothesis (3.1) and the simple fact that \(x^{1+\alpha} \leq c(x^4 + 1) \). Thus we obtain the desired estimate (4.6). The bulk viscosity term can be handled in a similar fashion.

4.2.2. Heat Flux Consistency
Similarly to the preceding part,
\[\int_\Omega \kappa_n \tilde{\kappa}(\vartheta_n) \left(\nabla_x \vartheta_n \right) dx \leq \varepsilon \kappa_n \int_\Omega \tilde{\kappa}(\vartheta_n) \left(\nabla_x \vartheta_n \right)^2 dx + c(\varepsilon) \kappa_n \int_\Omega \tilde{\kappa}(\vartheta_n) dx \\
\leq \varepsilon \mathcal{D}_n + c(\varepsilon) \kappa_n + c(\varepsilon) \kappa_n \int_\Omega \vartheta_n^3 dx \leq \varepsilon \mathcal{D}_n + c(\varepsilon) \kappa_n + c(\varepsilon) \frac{\kappa_n}{a_n^3} \left(\int_\Omega a_n \vartheta_n^4 dx \right)^{\frac{3}{4}} \\
\leq \varepsilon \mathcal{D}_n + c(\varepsilon) \kappa_n + c(\varepsilon) \frac{\kappa_n}{a_n^4} + c(\varepsilon) \mathcal{E}_n, \] (4.8)

whence (4.6) follows from hypothesis (3.1).
4.2.3. Radiation Entropy Convective Flux Consistency. To close the circle of consistency estimates, we have to handle the integral

\[a_n \int_{\Omega} \vartheta_n^3 |u_n| \, dx \leq a_n \| \vartheta_n^3 \|_{L^2(\Omega)} \| u_n \|_{L^4(\Omega; \mathbb{R}^3)}, \]

that corresponds to the radiation entropy convective flux.

By virtue of Sobolev embedding theorem,

\[\| u_n \|_{L^4(\Omega; \mathbb{R}^3)} \lesssim \| u_n \|_{W^{1, \frac{s}{s-\pi}(\Omega; \mathbb{R}^3)}}, \]

as long as \(\alpha \geq \frac{1}{3} \), and, by a generalized Korn–Poincaré inequality [11, Theorem 11.23],

\[\| u_n \|_{W^{1, \frac{s}{s-\pi}(\Omega; \mathbb{R}^3)}} \lesssim \left(\| \nabla_x u_n + \nabla^t_x u_n - \frac{2}{3} \div_x u_n \|_{L^{\frac{s}{s-\pi}}(\Omega; \mathbb{R}^3)} + \int_{\Omega} \vartheta_n |u_n| \, dx \right). \]

Another application of Hölder’s inequality yields

\[\left\| \nabla_x u_n + \nabla^t_x u_n - \frac{2}{3} \div_x u_n \right\|_{L^{\frac{s}{s-\pi}}(\Omega; \mathbb{R}^3)} \leq \vartheta_n^{\frac{1-\alpha}{\mu_n}} \| \vartheta_n^{\frac{\alpha-1}{\mu_n}} \left(\nabla_x u_n + \nabla^t_x u_n - \frac{2}{3} \div_x u_n \right) \|_{L^2(\Omega; \mathbb{R}^3)}. \]

Consequently,

\[a_n \int_{\Omega} \vartheta_n^3 |u_n| \, dx \leq a_n \| \vartheta_n^3 \|_{L^2(\Omega)} \| u_n \|_{L^4(\Omega; \mathbb{R}^3)} \lesssim a_n \| \vartheta_n^3 \|_{L^2(\Omega)} \int_{\Omega} \vartheta_n |u_n| \, dx \]

\[+ a_n \| \vartheta_n^3 \|_{L^4(\Omega)} \| \vartheta_n^{\frac{1-\alpha}{\mu_n}} \|_{L^2(\Omega)} \| \vartheta_n^{\frac{\alpha-1}{\mu_n}} \left(\nabla_x u_n + \nabla^t_x u_n - \frac{2}{3} \div_x u_n \right) \|_{L^2(\Omega; \mathbb{R}^3)}. \]

Finally, by virtue of hypothesis (3.1)

\[\frac{a_n^2}{\mu_n} \| \vartheta_n^3 \|_{L^2(\Omega)}^{\frac{1-\alpha}{\mu_n}} \| \vartheta_n^{\frac{\alpha}{\mu_n}} \|_{L^2(\Omega)}^{\frac{1-\alpha}{\mu_n}} = \frac{a_n^2}{\mu_n} \left(\int_{\Omega} \vartheta_n^3 \, dx \right)^{\frac{1-\alpha}{\mu_n}} \left(\int_{\Omega} \vartheta_n^{\alpha} \, dx \right)^{\frac{1-\alpha}{\mu_n}} \lesssim \mathcal{E}_n^{\frac{1-\alpha}{\mu_n}}. \]

The rightmost integral in (4.9) can be handled in a similar fashion. Since \(\alpha \in \left[\frac{1}{3}, 1 \right] \), we have in particular \(0 \leq \alpha \leq 3 \) and the desired conclusion (4.6) follows from the boundedness of the total energy.

5. Convergence

The proof of convergence consists of using the strong solution \((\vartheta_E, \varrho_E, U_E)\) of the Euler system as the test functions \(r = \varrho_E, \Theta = \vartheta_E, U = U_E \) in the relative energy inequality (2.13). This can be done in a direct manner in the case of the complete slip boundary conditions (1.13), whereas the velocity \(U_E \) must be modified to comply with the homogeneous Dirichlet boundary conditions in the case of no-slip (1.14). We focus on the latter case as the proof in the case of the complete slip boundary conditions can be performed in a way similar to [8].
5.1. Velocity Regularization

If the solutions of the Navier–Stokes–Fourier system satisfy the no-slip boundary conditions, the velocity u_E is not eligible for the relative energy inequality (2.13) as its tangential component may not vanish on $\partial\Omega$. Instead we consider

$$U = u_E - v_\delta,$$

where the perturbation v_δ is given as

$$v_\delta(t, x) = \xi \left(\frac{\text{dist}[x, \partial\Omega]}{\delta} \right) u_E(t, \Pi(x)), \; \delta > 0,$$

where

$$\xi \in C^\infty(R), \; \xi' \leq 0, \; \xi(d) = 1 \text{ if } d \leq 0, \; \xi(d) = 0 \text{ if } d \geq 1,$$

and

$$\Pi(x) \in \partial\Omega \text{ is the nearest point to } x \text{ in } \partial\Omega.$$

If $\partial\Omega$ is of class C^k, $k \geq 2$, then $\text{dist}[x, \partial\Omega] \in C^k(\Omega_\delta)$ for any $0 < \delta < \delta_0$, and

$$\nabla_x \text{dist}[x, \partial\Omega] = \frac{x - \Pi(x)}{|x - \Pi(x)|} = -n(\Pi(x)) \text{ for any } x \in \Omega_\delta,$$

see Foote [13].

5.2. Application of the Relative Energy Inequality

As $U = u_E - v_\delta$ vanishes on $\partial\Omega$, the trio $(r = \varrho E, U = u_E - v_\delta, \Theta = \vartheta E)$ can be used as test functions in the relative energy inequality (2.13). Recall that at this stage we have the following vanishing parameters: μ_n, κ_n, a_n, and $\delta = \delta_n$.

We have

$$\left| E \left(\varrho_n, \vartheta_n, u_n \right| \varrho E, \vartheta E, u_E \right) - E \left(\varrho, \vartheta, u \right| \varrho E, \vartheta E, u_E - v_\delta \right) \leq \left| \varrho_n(u_n - u_E) \cdot v_\delta \right| + \varrho_n |v_\delta|^2.$$

Seeing that

$$\text{ess sup}_{t \in (0, T)} \| \varrho_n \|_{L^\infty(\Omega)} + \text{ess sup}_{t \in (0, T)} \| \varrho_n u_n \|_{L^\infty(\Omega; (0, T))} \leq 1,$$

we may infer that

$$\int_\Omega \left| E \left(\varrho_n, \vartheta_n, u_n \right| \varrho E, \vartheta E, u_E \right) - E \left(\varrho, \vartheta, u \right| \varrho E, \vartheta E, u_E - v_\delta \right) \; dx \rightarrow 0 \text{ as } \delta \rightarrow 0.$$

Consequently, we can write (2.13) in the form

$$\int_{\Omega} E_{a_n} \left(\varrho_0, \vartheta_0, u_0 \right| \varrho E(0, \cdot), \vartheta E(0, \cdot), u_E(0, \cdot) - v_\delta(0, \cdot) \right) \; dx \rightarrow 0 \text{ for } n \rightarrow \infty, \; \delta \rightarrow 0.$$

The first rather straightforward observation is that, under hypothesis (3.2) concerning the initial data,

$$\int_{\Omega} E_{a_n} \left(\varrho_0, \vartheta_0, u_0 \right| \varrho E(0, \cdot), \vartheta E(0, \cdot), u_E(0, \cdot) - v_\delta(0, \cdot) \right) \; dx \rightarrow 0 \text{ for } n \rightarrow \infty, \; \delta \rightarrow 0.$$
where, by virtue of (4.8),

\[5.3. \text{Integrals Controlled by the Consistency Estimates} \]

by means of a Gronwall type argument.

\[\text{which holds for a.a. } \tau \in (0, T), \text{ where } h \text{ denotes a generic sequence,} \]

\[h(n, \delta) \to 0 \text{ as } n \to \infty, \delta \to 0. \]

Our goal is to show

\[\int \Omega E_{\alpha_n} \left(\varrho_n, \vartheta_n, \mu_n \varphi_E, \vartheta_E, \mu_E - \varphi_\delta \right) (\tau, \cdot) \ dx = h(n, \delta) \text{ uniformly for a.a. } \tau \in (0, T), \]

by means of a Gronwall type argument.

5.3. Integrals Controlled by the Consistency Estimates

Evoking the bounds obtained in Sect. 4.2 we get

\[\kappa_n \left| \int \Omega \left(\varphi_n \cdot \nabla (\nabla \vartheta_n) \cdot \nabla \vartheta_E \right) \ dx \right| = \kappa_n \left| \int \Omega \left(\frac{\nabla \vartheta_n}{\vartheta_n} \right) \nabla \vartheta_n \cdot \nabla \vartheta_E \ dx \right| \]

\[\leq \kappa_n \left| \int \Omega \left[\frac{\nabla \vartheta_n}{\vartheta_n} \right] \nabla \vartheta_n \cdot \nabla \vartheta_E \ dx \right| + \kappa_n \left| \int \Omega \left[\frac{\nabla \vartheta_n}{\vartheta_n} \right] \nabla \vartheta_n \cdot \nabla \vartheta_E \ dx \right| \]

where, by virtue of (4.8),

\[\kappa_n \int \Omega \left[\frac{\nabla \vartheta_n}{\vartheta_n} \right] \nabla \vartheta_n \ dx \leq \varepsilon D_n + c(\varepsilon) \int \Omega \left[\varphi_n \right] \nabla \vartheta_n \ dx \]

Using the consistency estimates of Sect. 4.2, we can handle other integrals containing vanishing parameters. Accordingly, the inequality (5.6) simplifies to

\[\int \Omega E_{\alpha_n} \left(\varrho_n, \vartheta_n, \mu_n \varphi_E, \vartheta_E, \mu_E - \varphi_\delta \right) (\tau, \cdot) \ dx \]

\[+ \int_0^\tau \int \Omega \left(\frac{1}{\vartheta_n} \mu_n S(\vartheta_n, \nabla \vartheta_n) : \nabla \vartheta_n - \kappa_n \varphi_n \left(\frac{\nabla \vartheta_n}{\vartheta_n} \right) \nabla \vartheta_n \right) \ dx \ dt \]

\[\leq - \int_0^\tau \int \Omega \varphi_n \left(\mu_n \varphi_n - \right. \ n \left. (\varphi_E - \varphi_\delta) \cdot \nabla \vartheta_n \right) \ dx \ dt \]

\[- \mu_n \int_0^\tau \int \Omega S(\vartheta_n, \nabla \vartheta_n) : \nabla \vartheta_n \ dx \ dt \]

\[+ \int_0^\tau \int \Omega \varphi_n \left(\frac{\nabla \vartheta_n}{\vartheta_n} \right) \left(\varphi_E - \varphi_\delta \right) \ n \left. (\varphi_E - \varphi_\delta) \cdot \nabla \vartheta_n \right) \ dx \ dt \]
\[+ \int_0^T \int_\Omega g_n \left(\partial_t (u_E - v_\delta) + (u_E - v_\delta) \cdot \nabla_x (u_E - v_\delta) \right) \cdot ((u_E - v_\delta) - u_n) \, dx \, dt \]
\[- \int_0^T \int_\Omega (p + p_R)(\varrho_n, \vartheta_n) \text{div}_x (u_E - v_\delta) \, dx \, dt \]
\[- \int_0^T \int_\Omega g_n (s(\varrho_n, \vartheta_n) - s(q_E, \vartheta_E)) \left(\partial_t \vartheta_E + (u_E - v_\delta) \cdot \nabla_x \vartheta_E \right) \, dx \, dt \]
\[+ \int_0^T \int_\Omega \left(1 - \frac{\varrho_n}{q_E} \right) \partial_t p(q_E, \vartheta_E) - \frac{\varrho_n}{q_E} u_n \cdot \nabla_x p(q_E, \vartheta_E) \right) \, dx \, dt \]
\[+ c \int_0^T \int_\Omega E_{a_n} \left(\varrho_n, \vartheta_n, u_n \bigg| q_E, \vartheta_E, u_E - v_\delta \right) \, dx \, dt + h(n, \delta). \] (5.7)

Moreover, as \(u_E \cdot n \big|_{\partial \Omega} = 0 \),
\[\| \text{div}_x v_\delta \|_L^\infty \lesssim 1 \text{ independently of } \delta, \] (5.8)
and, consequently,
\[
\int_\Omega E_{a_n} \left(\varrho_n, \vartheta_n, u_n \bigg| q_E, \vartheta_E, u_E - v_\delta \right) (\tau, \cdot) \, dx
\]
\[+ \int_0^T \int_\Omega \frac{1}{\varrho_n} \left(\mu_n s(\varrho_n, \nabla_x u_n) : \nabla_x u_n - \kappa_n q \left(\varrho_n, \nabla_x \vartheta_n \right) \cdot \nabla_x \vartheta_n \right) \, dx \, dt \]
\[\leq - \int_0^T \int_\Omega \varrho_n u_n \cdot \nabla_x v_\delta \cdot (u_n - (u_E - v_\delta)) \, dx \, dt \]
\[- \mu_n \int_0^T \int_\Omega S(\varrho_n, \nabla_x u_n) : \nabla_x v_\delta \, dx \, dt \]
\[+ \int_0^T \int_\Omega \varrho_n [s(\varrho_n, \vartheta_n) + 1]_{\text{res}} |u_n| |\nabla_x \vartheta_E| \, dx \, dt \]
\[+ \int_0^T \int_\Omega \varrho_n \left(\partial_t u_E + u_E \cdot \nabla_x u_E + \frac{1}{q_E} \nabla_x p(q_E, \vartheta_E) \right) \cdot (u_E - u_n) \, dx \, dt \]
\[- \int_0^T \int_\Omega \varrho_n \left(\partial_t v_\delta + v_\delta \cdot \nabla_x u_E \right) \cdot ((u_E - v_\delta) - u_n) \, dx \, dt \]
\[+ \int_0^T \int_\Omega \left(p(q_E, \vartheta_E) - p(\varrho_n, \vartheta_n) \right) \text{div}_x u_E \, dx \, dt \]
\[- \int_0^T \int_\Omega \varrho_n (s(\varrho_n, \vartheta_n) - s(q_E, \vartheta_E)) \left(\partial_t \vartheta_E + u_E \cdot \nabla_x \vartheta_E \right) \, dx \, dt \]
\[+ \int_0^T \int_\Omega \left(1 - \frac{\varrho_n}{q_E} \right) \left(\partial_t p(q_E, \vartheta_E) + u_E \cdot \nabla_x p(q_E, \vartheta_E) \right) \, dx \, dt \]
\[+ c \int_0^T \int_\Omega E_{a_n} \left(\varrho_n, \vartheta_n, u_n \bigg| q_E, \vartheta_E, u_E - v_\delta \right) \, dx \, dt + h(n, \delta). \] (5.9)

Finally, as \((q_E, \vartheta_E, u_E)\) solves the Euler system,
\[\partial_t u_E + u_E \cdot \nabla_x u_E + \frac{1}{q_E} \nabla_x p(q_E, \vartheta_E) = 0. \]

In addition, it is easy to check that
\[\| \partial_t v_\delta \|_L^\infty + \| v_\delta \|_L^\infty \lesssim 1 \text{ independently of } \delta. \] (5.10)

Consequently,
\[\int_0^T \int_{\Omega} q_n \left(\partial_t v_\delta + v_\delta \cdot \nabla_x u_E \right) \cdot \left((u_E - v_\delta) - u_n \right) \, dx \, dt \]
\[= \int_0^T \int_{\Omega} q_n \left(\partial_t v_\delta + v_\delta \cdot \nabla_x u_E \right) \cdot \left((u_E - v_\delta) - u_n \right) \, dx \, dt \to 0 \quad \text{as} \quad \delta \to 0 \]
as both \((q_n)_{n \geq 0}\) and \((q_n u_n)_{n \geq 0}\) are equi-integrable in \((0, T) \times \Omega\). Thus (5.9) reduces to
\[\int_{\Omega} E_{a_n} \left(q_n, \vartheta_n, u_n \big| q_{E}, \vartheta_E, u_E - v_\delta \right) \, (\tau, \cdot) \, dx \]
\[+ \int_0^T \int_{\partial \Omega} \left[\frac{1}{\gamma_n} \left(\mu_n \mathcal{S}(\vartheta_n, \nabla_x u_n) : \nabla_x \vartheta_n - \kappa_n q \frac{\partial}{\partial_n} (\nabla_x v_\delta) \cdot \nabla_x \vartheta_n \right) \right] \, dx \, dt \]
\[\leq - \int_0^T \int_{\Omega} q_n \left[\nabla_x v_\delta \cdot (u_n - (u_E - v_\delta)) \right] \, dx \, dt \]
\[- \int_0^T \int_{\Omega} q_n s(\vartheta_n, \vartheta_n) \left| u_n \right| \nabla_x \vartheta_n \left| \left| \partial_t \vartheta_E + u_E \cdot \nabla_x \vartheta_E \right| \right| \, dx \, dt \]
\[+ \int_0^T \int_{\Omega} \left[\left(p(q_{E}, \vartheta_E) - p(q_n, \vartheta_n) \right) \right] \, dx \, dt \]
\[- \int_0^T \int_{\Omega} q_n \left(s(\vartheta_n, \vartheta_n) - s(q_{E}, \vartheta_E) \right) \left[\partial_t \vartheta_E + u_E \cdot \nabla_x \vartheta_E \right] \, dx \, dt \]
\[+ \int_0^T \int_{\Omega} \left(\left(1 - \frac{\vartheta_n}{\vartheta_E} \right) \right) \left[\partial_t p(q_{E}, \vartheta_E) + u_E \cdot \nabla_x p(q_{E}, \vartheta_E) \right] \, dx \, dt \]
\[+ c \int_0^T \int_{\Omega} E_{a_n} \left(q_n, \vartheta_n, u_n \big| q_{E}, \vartheta_E, u_E - v_\delta \right) \, dx \, dt + h(n, \delta). \, \text{ (5.11)} \]

5.4. Integrals Independent of the Boundary Layer

Now, we estimate the integrals on the right-hand side of (5.11) that are independent of \(v_\delta\). First, by virtue of (4.7),
\[\left| \int_{\Omega} q_n \left[s(\vartheta_n, \vartheta_n) + 1 \right]_{\text{res}} \left| u_n \right| \nabla_x \vartheta_E \right| \, dx \right| \leq \int_{\Omega} \left[q_n \right]_{\text{res}} \left| u_n \right|^2 \, dx + \int_{\Omega} \left[q_n \right]_{\text{res}} s^2(\vartheta_n, \vartheta_n) \, dx \]
\[\leq \int_{\Omega} \left[E_{a_n} \left(q_n, \vartheta_n, u_n \right) \right]_{\text{res}} \, dx \]
\[\leq \int_{\Omega} E_{a_n} \left(q_n, \vartheta_n, u_n \big| q_{E}, \vartheta_E, u_E - v_\delta \right) \, dx + h(\delta). \, \text{ (5.12)} \]

We point out that this step depends in an essential way on the fact that \(s\) satisfies the Third law of thermodynamics.

Next, we recall two identities that follow from the specific form of EOS (1.3), (1.4), namely
\[\partial_t \vartheta_E + u_E \cdot \nabla x \vartheta_E = -(\gamma - 1) \vartheta_E \text{div}_x u_E, \]
\[\partial_t p(q_{E}, \vartheta_E) + u_E \cdot \nabla_x p(q_{E}, \vartheta_E) = -\gamma p(q_{E}, \vartheta_E) \text{div}_x u_E. \]

Consequently, we get
\[\int_{\Omega} \left(p(q_{E}, \vartheta_E) - p(q_n, \vartheta_n) \right) \, dx \]
\[- \int_{\partial \Omega} \left[\frac{1}{\gamma_n} \left(\mu_n \mathcal{S}(\vartheta_n, \nabla_x u_n) : \nabla_x \vartheta_n - \kappa_n q \frac{\partial}{\partial_n} (\nabla_x v_\delta) \cdot \nabla_x \vartheta_n \right) \right] \cdot \mathbf{n} \, ds \]
\[+ \int_{\Omega} \left(1 - \vartheta_n \right) \left[\partial_t p(q_{E}, \vartheta_E) + u_E \cdot \nabla_x p(q_{E}, \vartheta_E) \right] \, dx \]
5.5.1. Viscous Stress. Similarly to Sect. 4.2, we have

\[= \int_{\Omega} \text{div}_x u_E \left[p(\varrho_E, \vartheta_E) - p(\varrho_n, \vartheta_n) + (\gamma - 1)\varrho_E \vartheta_E \left(s(\varrho_n, \vartheta_n) - s(\varrho_E, \vartheta_E) \right) \right] \, dx \]

\[- \gamma \int_{\Omega} \text{div}_x u_E \left(1 - \frac{\varrho_n}{\varrho_E} \right) p(\varrho_E, \vartheta_E) \, dx \]

\[+ (\gamma - 1) \int_{\Omega} \vartheta_E (\varrho_n - \varrho_E) (s(\varrho_n, \vartheta_n) - s(\varrho_E, \vartheta_E)) \text{div}_x u_E \, dx. \]

Finally, we use the identity

\[
\left(\frac{\varrho_n}{\varrho_E} - 1 \right) \gamma p(\varrho_E, \vartheta_E) + \left(\frac{\partial p(\varrho_E, \vartheta_E)}{\partial \varrho} \right) (\varrho_E - \varrho_n) + \frac{\partial p(\varrho_E, \vartheta_E)}{\partial \varrho} (\vartheta_E - \vartheta_n)
\]

\[- (\gamma - 1) \varrho_E \vartheta_E \left(\frac{\partial s(\varrho_E, \vartheta_E)}{\partial \varrho} \right) (\varrho_E - \varrho_n) + \frac{\partial s(\varrho_E, \vartheta_E)}{\partial \varrho} (\vartheta_E - \vartheta_n) \right) = 0. \]

Plugging (5.14) into (5.13) yields the desired estimate. Thus (5.11) reduces to

\[
\int_{\Omega} E_{an} \left(\varrho_n, \vartheta_n, u_n \big| \varrho_E, \vartheta_E, u_E - \nu_{\delta} \right) (\tau, \cdot) \, dx
\]

\[+ \frac{1}{\varrho_n} \int_{\Omega} \left(\mu_n \mathcal{S}(\varrho_n, \nabla_x u_n) \cdot \nabla_x u_n - \kappa_n \varrho_n \nabla_x \varrho_n \vartheta_n \right) \, dx \right) \, dt
\]

\[\leq - \int_{\Omega} \varrho_n u_n \cdot \nabla_x \nu_{\delta} \cdot (u_n - (u_E - \nu_{\delta})) \, dx \right) \, dt
\]

\[- \mu_n \int_{\Omega} \mathcal{S}(\varrho_n, \nabla_x u_n) \cdot \nabla_x \nu_{\delta} \, dx \right) \, dt
\]

\[+ c \int_{\Omega} E_{an} \left(\varrho_n, \vartheta_n, u_n \big| \varrho_E, \vartheta_E, u_E - \nu_{\delta} \right) \, dx \right) \, dt + h(n, \delta). \]

Note that inequality (5.15) almost completes the proof of Theorem 3.1, where we may take \(\nu_{\delta} = 0 \). It only remains to show the desired strong convergence claimed in (3.3). This will be done in Sect. 5.6.

However, in order to prove Theorems 3.4–3.6, where \(\nu_{\delta} \neq 0 \), one has to estimate the first two integrals on the right-hand side of (5.15), which is carried out in the following Sect. 5.5.

5.5. Boundary Layer

It remains to control the first two integrals on the right-hand side of (5.15) that represent the effect of the boundary layer.

5.5.1. Viscous Stress. Similarly to Sect. 4.2, we have

\[\mu_n \left| \int_{\Omega} \mathcal{S}(\varrho_n, \nabla_x u_n) \cdot \nabla_x \nu_{\delta} \, dx \right| \leq \varepsilon \mathcal{D}_n + c(\varepsilon) \mu_n \int_{\Omega} \vartheta_n (1 + \varrho_n) |\nabla_x \nu_{\delta}|^2 \, dx, \]

where

\[\mu_n \int_{\Omega} \varrho_n (1 + \varrho_n^\alpha) |\nabla_x \nu_{\delta}|^2 \, dx \leq \frac{\mu_n}{\delta^2} \int_{\Omega} (1 + \varrho_n^1 + \varrho_n^\alpha) \, dx \leq \frac{\mu_n}{\delta} \left(1 + \frac{1}{\delta} \int_{\Omega} \varrho_n^{1+\alpha} \, dx \right). \]

Consequently, when proving Theorems 3.5 and 3.6, the desired estimate follows from hypothesis (3.5) and (3.6), respectively. Note that this type of estimates forces us to consider the thickness \(\delta \) of the boundary layer asymptotically larger than \(\mu_n \)

\[\frac{\mu_n}{\delta_n} \to 0. \]

Alternatively, in order to show Theorem 3.4 and following Sueur [21], we have (3.4), meaning

\[\sqrt{\mu_n} \mathcal{S}(\varrho_n, \nabla_x u_n)|L^2((0,T) \times \Omega, R^3) \to 0. \]
Setting $\mu_\alpha \approx \delta_\alpha$, we get
\[
\mu_\alpha \left| \int_0^T \int_\Omega \mathcal{G}(\vartheta_\alpha, \nabla_x u_\alpha) : \nabla_x v_\delta \ dx \ dt \right| \leq \sqrt{\mu_\alpha \| \mathcal{G}(\vartheta_\alpha, \nabla_x u_\alpha) \|_{L^2((0,T) \times \Omega_{\mu_\alpha}; R^3)}} \| \sqrt{\mu_\alpha \nabla_x v_\mu} \|_{L^2((0,T) \times \Omega_{\mu_\alpha}; R^3)} \to 0. \tag{5.16}
\]

5.5.2. Convective Term. Finally, we consider
\[
\int \varrho_\delta u_\alpha \cdot \nabla_x v_\delta \cdot (u_\alpha - (u_E - v_\delta)) \ dx = \int \varrho_\delta u_\alpha \cdot \nabla_x v_\delta \cdot (u_\alpha - (u_E - v_\delta)) \ dx \text{ in } \Omega_\delta.
\]
Recall that
\[w(t, x) = w_n(t, x) + w_\tau(t, x), \] \[w_n(t, x) = (w \cdot \nabla \text{dist}[x, \partial \Omega]) \nabla \text{dist}[x, \partial \Omega], \] \[w_\tau(t, x) = w(t, x) - w_n(t, x).
\]
Similarly, for a scalar function F, we decompose
\[
\nabla_x F = \nabla_n F + \nabla_\tau F, \nabla_n F = (\nabla \text{dist}[x, \partial \Omega] \cdot \nabla_x F) \nabla \text{dist}[x, \partial \Omega].
\]
In accordance with the definition of v_δ, we get
\[
(v_\delta)_n = 0, \| \nabla_\tau v_\delta \|_{L^\infty} \leq 1, \| \nabla_n v_\delta \|_{L^\infty} \lesssim \frac{1}{\delta}. \tag{5.17}
\]
Now,
\[
\int_{\Omega_\delta} \varrho_n u_\alpha \cdot \nabla_x v_\delta \cdot (u_\alpha - (u_E - v_\delta)) \ dx = \int_{\Omega_\delta} \varrho_n(u_\alpha)_n \cdot \nabla_x v_\delta \cdot (u_\alpha - (u_E - v_\delta)) \ dx + \int_{\Omega_\delta} \varrho_n(u_\alpha)_\tau \cdot \nabla_x v_\delta \cdot (u_\alpha - (u_E - v_\delta)) \ dx = \int_{\Omega_\delta} \varrho_n(u_\alpha)_n \cdot \nabla_n(v_\delta)_\tau \cdot (u_\alpha - (u_E - v_\delta)) \ dx + \int_{\Omega_\delta} \varrho_n(u_\alpha)_\tau \cdot \nabla_\tau v_\delta \cdot (u_\alpha - (u_E - v_\delta)) \ dx,
\]
where, by virtue of (5.17),
\[
\left| \int_{\Omega_\delta} \varrho_n(u_\alpha)_\tau \cdot \nabla_\tau v_\delta \cdot (u_\alpha - (u_E - v_\delta)) \ dx \right| \lesssim \int_{\Omega_\delta} E \left(\varrho_n, \vartheta_n, u_n, |\varrho_E, \vartheta_E, u_E - v_\delta| \right) \ dx + \int_{\Omega_\delta} \varrho_n |u_E - v_\delta| |u_n - (u_E - v_\delta)| \ dx.
\]
In view of (5.4), $(\varrho_n)_{n \geq 0}, (\varrho_n u_n)_{n \geq 0}$ are equi-integrable; whence
\[
\int_0^T \int_{\Omega_\delta} \varrho_n |u_E - v_\delta| |u_n - (u_E - v_\delta)| \ dx \ dt \to 0 \text{ as } \delta \to 0
\]
uniformly in n.

Thus it remains to handle the integral
\[
\int_{\Omega_\delta} \varrho_n(u_\alpha)_n \cdot \nabla_n v_\delta \cdot (u_\alpha - (u_E - v_\delta)) \ dx.
\]
Let us first look at Theorem 3.5. By Hölder’s inequality and (5.17),
\[
\left| \int_{\Omega_\delta} \varrho_n(u_\alpha)_n \cdot \nabla_n v_\delta \cdot (u_\alpha - (u_E - v_\delta)) \ dx \right| \leq \frac{1}{\delta} \| \varrho_n(u_\alpha)_n \|_{L^{\frac{24}{7-3\alpha}}(\Omega_\delta; R^3)} \| u_n - (u_E - v_\delta) \|_{L^{\frac{24}{7-3\alpha}}(\Omega_\delta; R^3)}, \tag{5.18}
\]
where $\frac{24}{7-3\alpha}$ is the critical exponent in the Sobolev–Poincaré inequality
\[
\| u_n \|_{L^{\frac{24}{7-3\alpha}}(\Omega_\delta; R^3)} \lesssim \| \nabla_x u_n \|_{L^{\frac{6}{5-3\alpha}}(\Omega_\delta; R^3)}. \tag{5.19}
\]
As $u_n|_{\partial \Omega} = 0$, Korn’s inequality yields
\[
\|u_n\|_{L^{\frac{24}{17+3\alpha}}(\Omega_3; R^3)} \lesssim \|\nabla u_n\|_{L^{\frac{8}{\alpha}}(\Omega_3; R^3)} \lesssim \left\| \nabla_x u_n + \nabla_x u_n^t - \frac{2}{3} \text{div} u_n \right\|_{L^{\frac{8}{\alpha}}(\Omega_3; R^3)}
\]
\[
\lesssim \left\| \nabla u_n \right\|_{L^{\frac{8}{\alpha}}(\Omega_3)} \left\| \nabla u_n + \nabla u_n^t \right\|_{L^{\frac{8}{\alpha}}(\Omega_3)} \cdot \left\| \text{div} u_n \right\|_{L^{\frac{8}{\alpha}}(\Omega_3)}.
\]

Note that the constants are independent of \(\delta\) as \(u_n\) can be extended to be zero outside \(\Omega\).

Thus going back to (5.18) we deduce
\[
\left| \int_{\Omega_3} \varrho_n(\mathbf{u}_n) \cdot \nabla (\varphi \cdot (\mathbf{u}_n - (\mathbf{u}_E - \mathbf{v}_\delta))) \, dx \right|
\leq \frac{c(\varepsilon)}{\delta} \|\varrho_n(\mathbf{u}_n)\|_{L^{\frac{24}{17+3\alpha}}(\Omega_3; R^3)} \|\mathbf{u}_n - (\mathbf{u}_E - \mathbf{v}_\delta)\|_{L^{2}(\Omega_3; R^3)}
\leq \frac{1}{\alpha} \|\varrho_n(\mathbf{u}_n)\|_{L^{2}(\Omega_3; R^3)} \|\mathbf{u}_n\|_{L^{2}(\Omega_3; R^3)} + \frac{1}{\delta} \|\varrho_n(\mathbf{u}_n)\|_{L^{2}(\Omega_3; R^3)}
\leq \frac{1}{\alpha} \|\varrho_n(\mathbf{u}_n)\|_{L^{2}(\Omega_3; R^3)} \|\mathbf{u}_n\|_{L^{2}(\Omega_3; R^3)} + \sqrt{\frac{\mu_n}{\delta}} \left(1 + \frac{1}{\mu_n} \|\varrho_n(\mathbf{u}_n)\|_{L^{2}(\Omega_3; R^3)}^2 \right).
\]

Now, replacing (5.19) by Hardy–Sobolev inequality, we gain the multiplicative factor \(\delta\),
\[
\|u_n\|_{L^{2}(\Omega_3; R^3)} \lesssim \delta \|\nabla u_n\|_{L^{2}(\Omega_3; R^3)}.
\]

Thus the final inequality reads
\[
\left| \int_{\Omega_3} \varrho_n(\mathbf{u}_n) \cdot \nabla (\varphi \cdot (\mathbf{u}_n - (\mathbf{u}_E - \mathbf{v}_\delta))) \, dx \right|
\leq c(\varepsilon) \left(\sqrt{\frac{\mu_n}{\delta}} \left(1 + \frac{1}{\mu_n} \|\varrho_n(\mathbf{u}_n)\|_{L^{2}(\Omega_3; R^3)}^2 \right) + \frac{1}{\mu_n} \|\varrho_n(\mathbf{u}_n)\|_{L^{2}(\Omega_3; R^3)}^2 \right)
+ \varepsilon D_n
\]
in accordance with (3.6).

Finally, in order to show Theorem 3.4, one has to estimate the left-hand side of (5.18) using hypothesis (3.4). This works exactly as in Sueur [21].

5.6. Strong Convergence

We have established the convergence
\[
\int_{\Omega} E_{\alpha_n} \left(\varrho_n, \theta_n, \mathbf{u}_n, \varphi, \theta_E, \mathbf{u}_E - \mathbf{v}_\delta \right) (\tau, \cdot) \, dx \rightarrow 0 \quad \text{as } n \rightarrow \infty
\]
uniformly for a.a. \(\tau \in (0, T)\). This obviously yields
\[
\int_{\Omega} E \left(\varrho_n, \theta_n, \mathbf{u}_n \Big| \varphi, \theta_E, \mathbf{u}_E \right) (\tau, \cdot) \, dx \rightarrow 0 \quad \text{as } n \rightarrow \infty.
\]

In addition, as the energy of the initial data converges and both Euler and the Navier–Stokes–Fourier system conserve energy, we get
\[
\int_{\Omega} \left(\frac{1}{2} \rho_n |u_n|^2 + \rho_n e(g_n, \vartheta_n) \right) \, dx \to \int_{\Omega} \left(\frac{1}{2} \rho_E |u_E|^2 + \rho_E e(\varrho_E, \vartheta_E) \right) \, dx \text{ in } L^1(0,T).
\]

This yields the desired strong convergence claimed in (3.3).

Declarations
Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References
[1] Becker, E.: Gasdynamik. Teubner-Verlag, Stuttgart (1966)
[2] Belgiorno, F.: Notes on the third law of thermodynamics, i. J. Phys. A 36, 8165–8193 (2003)
[3] Belgiorno, F.: Notes on the third law of thermodynamics, ii. J. Phys. A 36, 8195–8221 (2003)
[4] Benzoni-Gavage, S., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations. First Order Systems and Applications. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2007)
[5] Chaudhuri, N., Feireisl, E.: Navier–Stokes–Fourier system with Dirichlet boundary conditions. arxiv preprint No. arXiv:2106.05315 (2021)
[6] Cowperthwaite, M.: Relations between incomplete equations of state. J. Frank. Inst. 287, 379–387 (1969)
[7] Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70, 167–179 (1979)
[8] Feireisl, E.: Vanishing dissipation limit for the Navier–Stokes–Fourier system. Commun. Math. Sci. 14(6), 1535–1551 (2016)
[9] Feireisl, E., Novotný, A.: Mathematics of Open Fluid Systems. Birkhäuser-Verlag, Basel (2020)
[10] Feireisl, E., Novotný, A.: Weak-strong uniqueness property for the full Navier–Stokes–Fourier system. Arch. Rational Mech. Anal. 204, 683–706 (2012)
[11] Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics, 2nd ed. Birkhäuser/Springer, Cham (2017)
[12] Feireisl, E., Novotný, A.: Navier–Stokes–Fourier system with general boundary conditions. Commun. Math. Phys. 386(2), 975–1010 (2021)
[13] Foote, R.L.: Regularity of the distance function. Proc. Am. Math. Soc. 92, 153–155 (1984)
[14] Jesslé, D., Jin, B.J., Novotný, A.: Navier–Stokes–Fourier system on unbounded domains: weak solutions, relative entropies, weak-strong uniqueness. SIAM J. Math. Anal. 45(3), 1907–1951 (2013)
[15] Kato, T.: Remarks on the zero viscosity limit for nonstationary Navier–Stokes flows with boundary. In: Chern, S.S. (Ed.) Seminar on PDE’s. Springer, New York (1984)
[16] Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary. In: Seminar on Nonlinear Partial Differential Equations (Berkeley, California, 1983), volume 2 of Mathematical Sciences Research Institute Publications, pp. 85–98. Springer, New York (1984)
[17] Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer Tracts in Natural Philosophy vol. 37. Springer, Heidelberg (1998)
[18] Ozenius, J.: Kinetic Theory of Particles and Photons. Springer, Berlin (1986)
[19] Pokorný, M., Skříšovský, E.: Weak solutions for compressible Navier–Stokes–Fourier system in two space dimensions with adiabatic exponent almost one. Acta Appl. Math. 172:Paper No. 1, 31 (2021)
[20] Schochet, S.: The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Commun. Math. Phys. 104, 49–75 (1986)
[21] Sueur, F.: On the inviscid limit for the compressible Navier–Stokes system in an impermeable bounded domain. J. Math. Fluid Mech. 16(1), 163–178 (2014)
[22] Wang, Y.-G., Zhu, S.-Y.: On the vanishing dissipation limit for the full Navier–Stokes–Fourier system with non-slip condition. J. Math. Fluid Mech. 20(2), 393–419 (2018)

Eduard Feireisl
Institute of Mathematics of the Academy of Sciences of the Czech Republic
Zižná 25
115 67 Praha 1
Czech Republic
e-mail, feireisl@math.cas.cz:

Christian Klingenberg
Institute of Mathematics
Würzburg University
Emil-Fischer-Str. 40
97074 Würzburg
Germany
Simon Markfelder
Department of Applied Mathematics and Theoretical Physics
University of Cambridge
Wilberforce Road
Cambridge CB3 0WA
UK

(accepted: April 7, 2022; published online: June 2, 2022)