Supplementary Materials for

An asymmetric mechanical code ciphers curvature-dependent proprioceptor activity

Ravi Das, Li-Chun Lin, Frederic Català-Castro, Nawaphat Malaiwong Neus Sanfeliu-Cerdán, Montserrat Porta-de-la-Riva, Aleksandra Pidde, Michael Krieg*

*Corresponding author. Email: michael.krieg@icfo.eu

Published 17 September 2021, Sci. Adv. 7, eabg4617 (2021)
DOI: 10.1126/sciadv.abg4617

The PDF file includes:

Supplementary Methods
Figs. S1 to S9
Tables S1 to S4
Legends for videos S1 to S10
References

Other Supplementary Material for this manuscript includes the following:

Videos S1 to S10
1 Supplementary Methods

1.1 Monte Carlo simulation of force-gated ion channel ensembles and assumptions

To capture the dynamics and the statistical behavior resulting from the stochastic activation of an ensemble of mechanosensitive ion channels, subjected to a mechanical force, we set up a continuous time Markov chain Monte Carlo simulation [88]. We choose to model a pair of mechanosensitive ion channels, which we conceptualize as an excitatory, sodium or calcium conductive in channel and an inhibitory, potassium or chloride conductive ion channel. Our model is agnostic of the force transmission pathway and does not differentiate between membrane and cytoskeletal force delivery. To simulate the behavior in absence of external noise, we assumed that each channel acts independent, activities are uncoupled, and each channel is characterized by an open and a closed state that is separated by a potential barrier with height ΔG (Fig. S7E). The lifetime of each state dependents on the height of the energy barrier separating the closed from the open states and the loading conditions. Opening is driven by thermal fluctuations, and, as a result, is a stochastic process. Application of force to the channel tilts the energy landscape, thus reducing the energy barrier that separates the closed from the open state by an amount $F \cdot \gamma$, in which γ is the distance to the transition state [42]. If a load is applied to the channel for durations that are much shorter than the intrinsic lifetime of the closed state, the channel resists opening. Importantly, channels do not confer resistance to force on timescales that are larger than the intrinsic lifetime of the particular closed state [89]. In agreement with previous data on whole cell recordings from TRP-4 [43], we assumed that the excitatory channel activates at the onset and the offset of the force. Such behavior is consistent with a strain-rate sensitivity of common mechanoreceptors [10], thus, we model the channel sensitive to the first derivative of the force, $\frac{\partial F}{\partial t}$. The forward transition rate was model using the modified Evans-Bell model of time-dependent bond-strength, as determined by the force-rate or loading rate r_f [89]. Loading rate was calculated from the stiffness of the ankyrin domain [90] multiplied by the pulling velocity in the experiment. We start the simulation with all states closed, and are interested in the evolution of the ensemble to the open state.

\[
[C] \xrightarrow{k_o} [O]
\]

The lifetime of the closed state is governed by the spontaneous opening constant k^0_o according to

\[
p(t) = \exp \left(-k^0_o \cdot t \right)
\]

For an open channel, the probability of finding the channel open after time t decays exponentially and will spontaneously revert back to the closed state stochastically if the random sampling parameter ($r \in \mathbb{R}_{>0}$) is smaller than $p(t)$. Thus, if a channel is in the open state at time t, the probability of finding it in the open state $t+1$ decreases e-fold:

\[
p(t) = \exp \left(-k^0_C \cdot t \right)
\]
Force sensitivity is achieved by applying Bell’s model to the forward rate constant. We likewise assume that the channel cannot sustain the open state as long as force is acting. This assumption has the physical manifestation in a force-transmission pathway through a weak protein-ligand interaction (slip bond). After time t, we apply a force to the channels. Thus, the probability of a closed channel responding to the external forces changes to

$$p(t, F) = p_0 \cdot \exp \left(-k_o(F) \cdot t \right)$$

in which

$$k_o(F) = k^0_o \cdot \exp \left(-\frac{F\gamma}{k_BT} \right)$$

Evan’s modification for a finite loading rates was implemented to capture the strain-rate dependence of the Calcium channel (TRP-4), known to respond to the change in force.

$$k_o(F) = \frac{r_f}{\exp \left(\frac{F}{f_0} \right) \cdot f_\beta}$$

with $\frac{\gamma}{k_BT}$ as the force scale.

We implemented the simulation in R, with a timestep of 1e-5 s and the following kinetic constant.

Inhibitory Channel: $\gamma=2.93$, $k^0_o=120$, $k^0_C=600$, $k^F_C=700$

Excitatory channel: $\gamma=2.10$, $k^0_o=100$, $k^0_C=300$, $k^F_C=100$

The physical representation of the values k^0_o, k^0_C correspond to the spontaneous opening constants. For $k^0_o > k^0_C$, ion channel remain statistically open, otherwise they spent more time in the closed state on average. Without a lack of generality, the concept can be applied for lipid bilayer tension-gated ion channels in which the free energy profile of the energy landscape is altered by an external tension σ according to $\Delta \Delta G = -\Delta G - \sigma \cdot \Delta A$, in which ΔA equals to the increase in cross sectional area of the gated ion channel, e.g. $\Delta A=4.7nm^2$ for TREK2 [18]. Thus, the tension dependent k_o conforms to

$$k_o(\sigma) = k^0_o \cdot \exp \left(-\frac{\sigma \cdot A}{k_BT} \right)$$

It can be readily seen that without an increase in cross-sectional area, the open state is not preferred. Finally, the average current was calculated by $I = cNP_o$, where c is the single-channel current taken from the literature (TRP-4, 18pA; 140pS [91]; K2P, 13pA; 90pS [92]), N the number of channels, and P_o the average probability of finding the channel open derived from the simulations. The K current was then subtracted from the Ca signal. Under assumption of a high input resistance typical for C. elegans neurons [66], the simulated current is representative for a macroscopic ‘observable’, related to a Calcium signal. The picture that is emerging from this simulation is that ventral DVA activity emerges in part from TRP-4 activation under compression and the suppression of ‘stretch’ currents under dorsal side. Whereas this describes a plausible explanation for our findings, two other possible scenarios could give rise to the observed ventral activity in vivo: 1) TWK-16 and TRP-4 both activate under tension, and close with different rates such that a remaining Ca$^{2+}$ activity is visible during ventral bouts (Fig. S7F); and 2) TRP-4 is constitutively active and only modulated by TWK-16 leading to Ca$^{2+}$ suppression during tension (Fig. S7G). The combined results from our in-vitro (Fig. 6), in vivo (Fig. 7) experiments on twk-16 mutations and the in-silico (Fig. S7E-G) experiments favor a scenario in which mechanosensitive TWK-16 activity suppresses stretch-induced depolarization. Because TRP-4 is a pore-forming sub-unit of a mechanosensitive ion channel that activates at the force onset and offset [43] we should expect DVA activity during dorsal...
AND ventral bends, but we exclusively recorded Ca$^{2+}$ increases during force relaxation/offset in vitro and compressed axons during ventral bends in vivo. In absence of TWK-16, however, the biphasic TRP-4 activity is unveiled.

2 Supplementary Videos

Video S1: Locomotion behavior in wt and unc-70 mutants Representative video of wildtype (N2) and unc-70(e524) (CB524) mutant animal. Acquired at 25Hz.

Video S2: Crawling behavior of conditional unc-70 alleles. Representative video of conditional CRE/loxP mutant strains shown in Fig. 2 and S2. Scale bar = 300µm, acquired at 25Hz. unc-70(floxed) is the control animal without CRE expression denoting the background for all other genotypes. Pan-neuronal, rgef-4p::CRE; BWM, body wall muscle restricted myo-3p::CRE; D-type MN, GABAergic motorneuron directed unc-25p::CRE; B-type MN, cholinergic forward motorneurons directed acr-5p::CRE; A-type MN, cholinergic backwards motorneurons directed unc-4p::CRE; TRN, touch receptor neuron specific mec-17p::CRE; SMD, SMD-directing flp-22Δ4p::CRE; PVD, PVD-directing F49H12.4p::CRE; DVA, DVA-specific nlp-12p::CRE in the unc-70(floxed) background. DVA::UNC-70 is DVA specific rescue with unc-70 (cDNA).

Video S3A-C: DVA Calcium activity depends on UNC-70 Representative video of DVA calcium activity in (A) wildtype, (B) DVA-specific CRE/loxP mutant strains and (C) DVA-specific CRE/loxP mutant expressing an nlp-12::unc-70 rescue construct in DVA. Upper panel shows the calcium sensitive GCaMP6s, lower panel a calcium-insensitive mKate. Playback speed, 23 frames/s.

Video S4: Calcium imaging of DVA under imposed bending in a microfluidic device Calcium imaging sequence of an animal being pushed tail first through a channel, creating a single ventral (upper panel) and dorsal (lower panel) curvature close to the tail.

Video S5: UNC-70 stabilizes DVA axons against mechanical compression Live imaging of DVA axons in semi-restraint animals in 1.5% agar pads undergoing dorso-ventral body swings. Wildtype left, unc-70(e524) middle and DVA-specific CRE/loxP mutant (right). Scale bar = 200µm.

Video S6: Locomotion behavior of trp-4(sy695) mutant Representative video of a phenotypic trp-4(sy695) mutant animal (TQ296, left) and trp-4(sy695) animals expressing a TRP-4 rescue construct in DVA (MSB757, right).
Video S7: DVA responds to substrate deformation False color labeling of a GCaMP6s expressing DVA neuron cultured on PDMS, subjected to a mechanical deformation. Yellow shows the calcium sensitive GCaMP6s, magenta a calcium-insensitive mKate as a movement and defocussing control. Scale bar = 5µm. Acquired at 10Hz.

Video S8: Calcium activity in DVA during dynamic membrane tether extrusion Representative video of DVA neuron in the dynamic optical trapping assay. Scale bar = 5µm. Acquired at 10Hz.

Video S9: Locomotion behavior of conditional twk-16 mutant animals Representative video of a TWK-16::AID animal in presence of 1mM auxin; left animal without (MSB555) and right with (MSB526) DVA::TIR expression. Scale bar = 300µm. Acquired at 25Hz.

Video S10: Compression induced proprioceptor current coordinates locomotion behavior Left: Animation derived from the results of the neuromechanical model for input parameters giving rise to wildtype-like animal locomotion pattern implementing DVA as a compression sensitive proprioceptor. Right: Same model with lower sensitivity to curvature induced compression current in DVA, representing *trp-4* and *unc-70* mutations.
Figure S1

A

loxP
mCherry
rps-18p
3'

B

CRE
Promoter

I

DVA

J

rgef
p

myo-3p

Des-2p

F49H12.4p

K

TRNs

L

PVD (FLP)

unc-4p
acr-5p
unc-25p
A,B,D-type

unc-4p
acr-5p
unc-25p

DVA

rgef
p

myo-3p

Des-2p

F49H12.4p

PVD (FLP)
3 Supplementary Figures

Supplementary Fig. S1. Reporting CRE recombination efficiency

A Strategy of the CRE recombination reporter. A floxed tagBFP with a nuclear localization signal (NLS) under the control of the ubiquitous rps-18 promoter is visible before recombination. After CRE expression in specific cells and tissues, the tagBFP gets excised and brings an NLS::mCherry construct under the control of the rps-18p, enabling the identification of targeted cells. For details and number of animals investigated see Table S2. B Schematic of the predicted pattern and representative picture of a reporter animal without CRE expression showing only BFP expressing cells. C Schematic of the predicted pattern and representative picture of a panneuronal CRE activity under rgef-1p. D Schematic of the predicted pattern and representative picture of a CRE activity in body wall muscles under myo-3p. E Expected pattern for motoneurons. F Representative picture of a CRE activity in A-type motoneurons under unc-4p. The red dot in the tail is due to lin-44::DsRed coinjection marker. G Representative picture of a CRE activity in B-type motoneurons under acr-5p. The pharyngeal signal is due to myo-2p::Cherry coinjection reporter. H Representative picture of a CRE activity in D-type motoneurons under unc-25p. The pharyngeal signal is due to myo-2p::Cherry coinjection reporter. I Schematic of the predicted pattern and representative picture of a CRE activity in DVA neuron under nlp-12p. The pharyngeal signal is due to myo-2p::Cherry coinjection reporter. J Schematic of the predicted pattern and representative picture of a CRE activity in SMD under flp-22/4p. The six red spots belong to unc-122p::RFP coinjection reporter. K Expected recombination pattern for touch receptor neurons (TRNs). Representative picture of a CRE activity in TRNs visible in four (on the left side) out of the six neurons. The right side is not imaged. L Schematic of the predicted pattern and representative picture of a CRE activity in PVD under the control of the des-2p and F48H12.2p.
Figure S2

A unc-70(loxP)

B rgef-1p:CRE forward 1

C nip-12p:CRE forward 1

D flp-22Δ4p:CRE forward 1

E B-type

F A-type

G D-type

H TRN forward 1

I PVD forward 1

J SMD forward 1

K CRE only

L CRE+unc-70(loxP)

Condition	unip-12p	rgef-1p	flp-22Δ4p	nip-12p:CRE	rgef-1p:CRE	flp-22Δ4p:CRE
vs N2						

Condition	D-MN	A-MN	B-MN	TRN	SMD	PVD	PVD
vs unc-70(loxP)							
Supplementary Fig. S2. DVA-specific mutation of the spectrin network causes aberrant body postures

A-D Still image and the corresponding 3D eigenworm orbit for (A) unc-70(loxP), (B) pan-neuronal CRE, (C) nlp-12p::CRE and (D) flp-22Δ4p::CRE expressing animals. Only CRE drivers are shown that showed a phenotype in combination with the unc-70(loxP) allele. E-J Representative still image and the corresponding 3D eigenworm orbit for conditional knockdown of unc-70 after CRE expression with specific promotors for (E) B-type, (F) A-type, (G) D-type motorneurons, (H) TRNs, (I) SMD, and (J) PVD using the promoters indicated in Table S2 and panel (L). K,L Distribution of p-values after 1000 independent tests between bootstrapped distribution for the combinations of genotypes indicated in the figure. Orange line indicates $\alpha=0.05$ level of significance, black diamond represents the mean and horizontal line the median p-value of the distribution.
Figure S3

SPC-1::AID::mKate

- **A**: SPC-1::AID::mKate
- **B**: mec-4p::TIR; SPC-1::AID
- **C**: mec-4p::TIR; SPC-1::AID + 1mM auxin

nlp-12p::TIR

- **I**: nlp-12p::TIR
- **J**: nlp-12p::TIR
- **K**: nlp-12p::TIR + SPC-1::AID::mKate

Data Analysis

- **E**: SPC-1::AID::mKate
- **F**: SPC-1::AID::mKate
- **G**: SPC-1::AID::mKate
- **H**: SPC-1::AID::mKate

- **I**: nlp-12p::TIR
- **J**: nlp-12p::TIR
- **K**: nlp-12p::TIR + SPC-1::AID::mKate
- **L**: nlp-12p::TIR + SPC-1::AID::mKate

Log(p-value)

- **H**: Log(p-value) for SPC-1::AID::mKate
- **L**: Log(p-value) for nlp-12p::TIR + SPC-1::AID::mKate

Scale Bars

- **E**: Scale bar for auxin
- **I**: Scale bar for auxin
- **M**: Scale bar for auxin
Supplementary Fig. S3. SPC-1 shares function during locomotion in DVA with UNC-70

A-C Representative images of an (A) UN1823 (SPC-1::AID::mKate) expressing control animal (without TIR ligase) and (B) MSB453 (mec-4p::TIR->SPC-1::AID::mKate) with nuclear mCherry localization indicating TIR expression in TRNs in absence and (C) presence of 1mM auxin. Due to the overlap of DVA axons with other neurites in the ventral nerve chord, we choose to estimate the effect in TRNs. D Quantification of the neurite intensity of TRNs without TIR (ctrl, N=17 animals) and with TIR ligase in absence (N=19) and presence of auxin (N=20) in the SPC-1::AID::mKate background, normalized by the intensity of motorneuron commissure (that do not express the TIR ligase). E-G Representative snapshot of a (E) SPC-1::AID::mKate animal without TIR ligase and the corresponding quantification of its behavior in (F) absence and (G) presence of auxin. H Distribution of p-values as described above for the combinations indicated in the figure. I-K Representative snapshot of a (I) MSB503 animal expressing TIR exclusively in DVA (nlp-12p::TIR::F2A::H2B-mKate) and the corresponding quantification of its behavior in (J) absence and (K) presence of auxin. L Distribution of p-values for the combinations indicated in the figure M-O Representative snapshot of a (M) MSB464 animal expressing TIR exclusively in DVA together with the SPC-1::AID::mKate degron and the corresponding quantification of its behavior in (N) absence and (O) presence of auxin. P Distribution of p-values for the combinations indicated in the figure. Note, due to the auxin-independent TIR activity, the addition of 1 mM auxin does not further increase the auxin-independent loss of coordination.
Figure S4

A

DVA

control

Curvature
Calcium

R/R

Time (s)

B

unc-70(e524)

i)

ii)

iii)

Time (s)

C

trp-4(sy695)

N=17

D

TRN

i)

control

ii)

Time (s)

unc-70(e524)

N=12

trp-4(sy695)

N=17
Supplementary Fig. S4. Cell autonomous calcium activity in immobilized animals and TRNs

A Single still images of a tail from control animal and the quantification of curvature and spontaneous calcium activity displayed as normalized GCaMP6s/mKate ratio on the left. Scale bar = 50 \mu m. Images and traces representative for 12 animals, respectively. Green=Ca2+ activity; black=curvature

B Calcium activity in DVA of unc-70(e524) mutant animal. i) Representative images of the calcium-sensitive GCaMP6s expressing in DVA cell body under ventral, neutral and dorsal body bends. False colored Vik palette. ii) Curvature and ratiometric calcium signal plotted against experimental time. Green=Ca2+ activity; black=curvature. iii) Quantification of the average GCaMP6s/mKate ratio as a function of the phase angle of the dorso-ventral body curvature.

C Single still images of a tail from trp-4 mutant animal and the quantification of curvature and spontaneous calcium activity displayed as normalized GCaMP6s/mKate ratio on the left. Scale bar = 50 \mu m. Images and traces representative for 11 animals, respectively.

D Calcium activity in control PLM touch receptor neuron (without ectopic TRP-4 expression). i) Representative images of the calcium-sensitive GCaMP6s expressing in PLM cell body under ventral, neutral and dorsal body bends. False colored Vik palette. ii) Curvature and ratiometric calcium signal plotted against experimental time, showing little to no modulation of calcium transients under modest curvatures. Green=Ca activity; black=curvature. iii) Quantification of the average GCaMP6s/tagRFPt ratio as a function of the phase angle of the dorso-ventral body curvature.
Figure S5
Supplementary Fig. S5. DVA is under compression during ventral bends

A-C Normalized length change in DVA vs body curvature in (A) wildtype, (B) unc-70(e524) and (C) DVA::unc-70(0) animals. Black line indicates the running average of the individual datapoints shown in colored circles with the slope corresponding to the compliance of the neuron. Representative morphologies corresponding to DVA under compressive and tensile body curvatures are depicted in the inset epifluorescence micrograph of a DVA::mKate expressing animal.
Supplementary Fig. S6. β-spectrin organization and mechanics

A Maximum intensity projection of high resolution confocal images of N-terminal β-spectrin fusion under the control of the endogenous 2kB unc-70 promoter used for TSMod expression (for details about construction, see Ref. [20]), showing predominant expression in neurons and faint expression in muscles. Scalebar = 20 µm. B Posterior image of the same animals as in (A). C Representative ROIs of different neurons (of untracked identity) expressing the tension sensor module embedded into wildtype and E2008K mutant β-spectrin compared to the N-terminal no force control. D Swarm plot of the average FRET efficiency per neuronal ROI analyzed for the three transgenes. The Cummings plot on the right indicates the bootstrapped distribution of the Cohen’s d as calculated from the mean difference taken from 5000 trials divided by the combined standard deviation comparing control vs E2008K and control vs N-term. The vertical black bar indicates the 95% confidence interval. E,F FRET measurement in a transgenic line expressing a constitutive high FRET construct (mTFP-5aa-mVenus) embedded between repeats 8 and 9. G,H FRET measurement in a transgenic line expressing a constitutive low FRET construct (mTFP-TRAF-mVenus) embedded between repeats 8 and 9. I,J Representative STED images and autocorrelation of (I) SPC-1::GFP expressing neurons and unc-70(e524) mutant animals expressing SPC-1::GFP [34]. Scalebar=1 µm
Supplementary Fig. S7. Dynamic tether force spectroscopy of isolated proprioceptor neurons

A Schematic of the set-up combining spinning-disk confocal microscopy and optical trapping. (ILE, integrated laser engine; BI, Borealis Illuminator; D, dichroic mirror; F, filter; IR-F, IR filter; CL, optical tweezers collecting lens; PSD, position-sensing detector; TL, transmitted light source; L, lens; AOD, acousto-optic deflector; LS, trapping laser source; AUX, eyepiece camera). **B** Membrane tension ($\Delta T = T_{\text{peak}} - T_{\text{base}}$) gradient measured for each extrusion event as a function of velocity. Tension was derived from the different between the peak force and the plateau force of the tether extrusion experiments according to $\frac{F_{\text{peak}}^2 - F_{\text{base}}^2}{8\pi\kappa}$ with $\kappa = 2.7\,\text{e}^{-19}\text{Nm}$ as the bending rigidity of the axonal membrane [40]. **C** Representative displacement, force and bleach-corrected calcium trace for the tether-free no-force control. **D** GCaMP variation versus tension gradient bubble plot for the tether-free negative control. N=108 events on n=36 cells. **E** Schematic of how force tilts the hypothetical 1-D energy landscape, with the location of the transition state γ separating the closed and open conformation of the mechanosensitive ion channel. **F** Simulation of a cation (purple) and K+ selective (orange), mechananosensitive ion channel that solely respond to the force onset and close with different kinetics ($k_{K\text{close}} > k_{Ca\text{close}}$). The green trace resembles the Calcium dynamics under the assumption of an unchanged input resistance and single channel conductance. **G** Simulation of a constitutively active cation selective ion channel (purple) and a mechanosensitive K+ ion channel (orange). The forced activity of the K+ channel modulates the observable (combined open probability, green trace).
Figure S8

twk-16(mir31)

- **A** forward 1
- **B** forward 1
- **C** forward 1
- **D** forward 1

TwK-16::AID:wScrlt ONLY

- **E** forward 1
- **F** forward 1
- **G** forward 1

TwK-16::AID:wScrlt + auxin

- **H** forward 1
- **I** forward 1
- **J** forward 1
Supplementary Fig. S8. Suppression of DVA activity through TWK-16 modulated locomotion behavior

A-C 3D density estimate for joint probability distribution of the two forward and turning modes in the eigenworm space for (A) control and (B) twk-16(mir31) mutant animals and (C) the statistically significant differences in the local density functions ρ_{ctrl} and $\rho_{\text{twk-16}}$. Blue voxels indicate higher local density for ctrl, beige voxels indicate higher density for twk-16 on the $\alpha=0.01$ level. D Micrograph of a DVA neuron expressing TWK-16::AID::wScarlet, representative for >20 animals. E-G Corresponding 3D density functions for TWK-16::AID control animals in (E) absence and (F) presence of auxin, and (G) the statistically significant differences in the local density functions on the $\alpha=0.01$ level. Note, the discontinuity in the distribution of the p-values, indicates high similarity of the 3D probability functions. H,I 3D density functions for TWK-16::AID::wScarlet animals (H) WITHOUT TIR expression and (I) WITH DVA restricted TIR expression. Both distribution were recorded in presence of auxin. J Statistically significant differences between the local density functions ρ_H and ρ_I displayed in panel (H) and (I).
A Ctrl vs trp-4(sy695)
B trp-4(sy695) + DVA:TRP-4 vs trp-4(sy695)
C Ctrl vs trp-4(sy695) + DVA:TRP-4
D Ctrl vs DVA:unc-70(0)
E DVA:unc-70(0) + UNC-70 vs DVA:unc-70(0)
F Ctrl vs DVA:unc-70(0) + UNC-70
G TRN::AnkTRP-4 vs TRN:TRP-4
H Ctrl vs twk-16(mir31)
Supplementary Fig. S9. Statistical summary of the normalized calcium intensity changes during body bending Polar graphs showing the p-value as a function of the phase angle of the body bending cycle. The $\alpha=0.05$ level of significance is indicated as an orange dotted line. p-values lower than this value indicate that the Ca intensity of the test group is different to the control group. Test combinations are indicated inside the graph.
4 Supplementary Tables
Strain	genotype	condition	Fig.	Neuron	worms	frames
N2	unc-70(e524)	1	41	1	75985	
CB524	unc-70(mir6mir16) V; tmls1070	CRElox S2	a-type MN	21	35933	
MSB187	mirls37; unc-70(mir6mir16) V;	CRElox S2	b-type MN	20	44077	
MSB239	tmls1087; unc-70(mir6mir16) V	CRElox S2	BWM	19	38600	
MSB186	unc-70(mir6mir16) V; tmls1072	CRElox S2	D-type MN	19	25702	
MSB160	tmls777; unc-70(mir6mir16) V	CRElox S2	PAN	20	20078	
MSB536	mirls42; unc-70(mi6mir16)	CRElox S2	PVD	20	42268	
MSB450	heSi208; hrtSi27 V; unc-70(mi6mir16)V	CRElox S2	PVD	11	19941	
MSB295	mirEx98; unc-70(mi6mir16) V	CRElox S2	SMD	19	31331	
MSB424	heSi317; hrtSi99; unc-70(mi6mir16) V	CRElox S2	TRN	10	21125	
MSB188	mirEx13; unc-70(mi6mir16)	CRElox ns	DVA	38	62307	
MSB765	mirls71; unc-70(mi6mir16)	CRElox 2	DVA	15	17602	
MSB225	trp-4(sy695); unc-70(e524)	4		20	6694	
MSB250	trp-4(sy695); unc-70(DVA)	4	6	11049		
TQ296	trp-4(sy695)	4	23	28577		
MSB115	unc-70(mi6mir16)	no CRE S2		10	35646	
GN716	trp-4(ok1605)	ns		21	39086	
MSB778	mirls71	CRE only S2		20	32597	
MSB66	mirEx13	no loxP ns		5	11447	
FX14125	tmls777	no loxP S2		12	25008	
MSB340	mirEx98	no loxP S2		17	23700	
MSB464	mirEx194; spc-1::degron::mKate2	TIR+AID+auxin	S3		15	
MSB464	mirEx194; spc-1::degron::mKate2	ctrl	S3		15	
UN1823	spc-1::degron::mKate2	AID + auxin	S3		15	
UN1823	spc-1::degron::mKate2	AID ctrl	S3		15	
MSB503	mirEx197	TIR ctrl	S3		15	
MSB503	mirEx197	TIR + auxin	S3		15	
MSB555	twk-16(syb2541)	AID ctrl	S8		10	
MSB555	twk-16(syb2541)	AID + auxin	S8		16	
MSB526	twk-16(mir31); mirls19; syls423	6, S8		20	40856	
MSB526	mirEx197; syb2541	ctrl S8		10	20154	
MSB526	mirEx197; syb2541	auxin S8		19	36135	
MSB757	mirls69; trp-4(sy695)	TRP-4 rescue	4		16	
MSB750	mirls71; unc-70(mi6mir16) V;	UNC-70 rescue	2		17	

Table S1. Locomotion data
Strains used for the data acquisition of animal locomotion behavior
Strain	Promoter	Ref.	Neuron	# cells/Animal	# expected cells	% Animal	comments	
MSB205	rgef-1p	[27]	PanNeuro	20	many	300	100	individual cells cannot be counted reliably
MSB211	unc-4p	[27]	A-type	10	10-25	12+9	100	visible in the ventral nerve chord
MSB495	acr-5p	this study	B-type	24	18-22	11+7	100	visible in the ventral nerve chord, recombination also visible in a few cells in the tail.
MSB213	unc-25p	[27]	D-type	10	16-19	13+6	100	visible in the ventral nerve chord
MSB214	myo-3p	[27]	BWM	20	all?	95	100	individual cells cannot be counted reliably
MSB282	flp-22Δ4p	this study	SMD	20	4-8	2+2	100	In the majority of the animals the recombination is happening in the head neurons, SMD with a few other false positive in the other head neurons and a few animals with a false positive with 1-2 tail neurons.
STR335	des-2p	[93]	PVD	10	6	2+2	100	additional recombination observed in FLP; m4; tail neurons
STR655	mec-17p	[93]	TRN	10	6-8	6	100	false positive presumably due to transient expression of CRE in PVD in the mec-17 promoter
MSB215	nlp-12p	this study	DVA	10	1-2	1	100	possible recombination in AQR, but cannot be seen in these animals because of the myo-2::mCherry markers
MSB500	F49H12.4p	this study	PVD	28	3	4	100	

Table S2. CRE activity reporter

Strains and their properties used as recombination reporter to study the efficiency and specificity of the cell-type specific CRE recombination.
Strains	Genotype	Source	Used in Fig.
N2 Bristol	N2	CGC (*)	Fig 1
CB524	unc-70[HSLP]mir[6[loxP]]mir[16[loxP]]V	CGC (*)	Fig 1
MSB115	unc-70 [mir[6[loxP]]mir[16[loxP]]V	This study	Fig 2
FX14215	tmls777[rgef-1p::CRE; unc-119::VENUS] (?)	Mitani lab, [27]	Fig. 2
FX16634	tmls1087 [myo-3p::CRE; Pgcy-10::DsRed] (?)	Mitani lab, [27]	Marker
FX16658	tmls1072[unc-25p::CRE; myo-2::dsRED] (?)	Mitani lab, [27]	Marker
MSB510	mirs37[acr-5p::CRE; myo2p::mCherry] (?)	This study	Fig S2
FX16655	tmls1068[unc-4p::CRE; lin-44::dsRED] (?)	Mitani lab, [27]	Marker
MSB340	mirEx96[flip-22p::CRE; unc-122::mCherry]	This study	Fig S2
MSB513	mirs42[F49H12.4p::CRE; myo2p::mCherry] (?)	This study	Marker
MSB66	mirEx13[nlp-12p::CRE; myo-2p::mCherry]	This study	Methods, not shown
MSB160	tmls777[rgef-1p::CRE; [mir[6[loxP]]mir[16[loxP]]V; unc-70] V	This study	Fig 2
MSB239	tmls1087 [myo-3p::CRE; [mir[6[loxP]]mir[16[loxP]]V; Pgcy-10::DsRed] V	This Study	Fig 2
MSB186	tmls1072[unc-25p::CRE; [mir[6[loxP]]mir[16[loxP]]V; myo-2::dsRED] V	This study	Fig S2
MSB535	mirs37[acr-5p::CRE; [mir[6[loxP]]mir[16[loxP]]V; myo-2p::mCherry] V	This study	Fig. S2
MSB187	tmls1070[unc-4p::CRE; [mir[6[loxP]]mir[16[loxP]]V; lin-44::dsRED] V	This study	Fig S2
MSB424	hrtSi99[mec-17p::CRE]; heSi317[Peft-3p::Lox2272-BFP-Lox2272::mCherry; unc-70 [mir[6[loxP]]mir[16[loxP]]V V	This study	Fig S2
MSB295	mirEx96[flip-22p::CRE; unc-122::mCherry]; [mir[6[loxP]]mir[16[loxP]]V V	This study	Fig S2
STR335	heSi208[Peft-3::LoxP::egl-13NLS::tagBFP2::tbb-2UTR::LoxP::egl-13NLS::mCherry::tbb-2UTR LGV]; hrtSi27[Pdes-2::CRE LGII]	M. Harterink [93]	Fig S2
MSB336	mirs42[F49H12.4p::CRE; myo-2p::mCherry]; [mir[6[loxP]]mir[16[loxP]]V V	This study	Fig S2
MSB188	mirEx13[nlp-12p::CRE; myo-2p::mCherry]; [mir[6[loxP]]mir[16[loxP]]V V	This study	not shown
EG7944	oxTi553[eff-3p::tdTomato::H2B::unc-54 3’UTR + Cbr-unc-119(+)]	vdHeuvel lab, [26]	Fig S1
SV2049	heSi317[Peft-3p::Lox2272-BFP-Lox2272::mCherry]	vdHeuvel lab, [26]	Fig S1
MSB205	tmls777[rgef-1p::CRE; unc-119::VENUS]; heSi317[eff-3p::Lox2272-BFP-Lox2272::mCherry]	This study	Fig S1
MSB214	tmls1087 [myo-3p::CRE; gcy-10p::DsRed]; heSi317[eff-3p::Lox2272-BFP-Lox2272::mCherry]	This study	Fig S1
MSB213	tmls1072[unc-25p::CRE; myo-2::dsRED]; heSi317[eff-3p::Lox2272-BFP-Lox2272::mCherry]	This study	Fig S1
MSB495	mirs37[acr-5p::CRE; myo2p::mCherry]; heSi317[eff-3p::Lox2272-BFP-Lox2272::mCherry]	This study	Fig S1
MSB211	tmls1068[unc-4p::CRE; lin-44p::dsRED]; heSi317[eff-3p::Lox2272-BFP-Lox2272::mCherry]	This study	Fig S1
STR655	hrtSi99[mec-17p::Cre]; heSi317[Peft-3::Lox2272-BFP-Lox2272::mCherry]	M Harterink, [93]	Fig S1
Strains	Genotype	Source	Used in Fig.
----------	---	----------------	--------------
MSB282	mirEx91[fp-22p::CRE; unc-122p::mCherry]; heSi317[eft-3::Lox2272-BFP-Lox2272::mCherry]	This study	Fig S1
MSB500	mirls42[F49H12.4p::CRE; myo2p::mCherry]; heSi317[eft-3::Lox2272-BFP-Lox2272::mCherry]	This study	Fig S1
MSB210	mirEx72[nlp-12p::CRE; myo-2p::mCherry]; heSi317[eft-3::Lox2272-BFP-Lox2272::mCherry]	This study	Fig S1
TQ296	trp-4[sy695] I	CGC(*) [4]	Fig 5
MSB225	trp-4[sy695] I; unc-70[e524] V; mirEx13	This study	not shown
MSB273	mirls19[nlp-12p::GAL-4; unc-122p::mCherry]; syls423 [15xUAS::Δpes-10::GCaMP6s::SL2::mKate2::let-858 3'UTR]; [myo-2p::NLS::mCherry + 1kb DNA ladder(NEB)]; unc-70[e524] V	This study	Fig 2, 6, S4A
MSB306	mirls19[nlp-12p::GAL-4; unc-122p::mCherry]; syls423 [15xUAS::Δpes-10::GCaMP6s::SL2::mKate2::let-858 3'UTR]; [myo-2p::NLS::mCherry + 1kb DNA ladder(NEB)]; unc-70[e524] V	This study	Fig S4B
MSB328	mirEx13[nlp-12p::CRE; myo-2p::mCherry] + mirls19[nlp-12p::GAL-4; unc-122p::mCherry]; syls423 [15xUAS::Δpes-10::GCaMP6s::SL2::mKate2::let-858 3'UTR]; [myo-2p::NLS::mCherry + 1kb DNA ladder(NEB)]; unc-70[e524] V	This study	Fig 2
MSB387	mirls19[nlp-12p::GAL-4; unc-122p::mCherry]; syls423 [15xUAS::Δpes-10::GCaMP6s::SL2::mKate2::let-858 3'UTR]; [myo-2p::NLS::mCherry + 1kb DNA ladder(NEB)]; unc-70[e524] V	This study	Fig 5, 6, S4
GN692	ls[123[mec-7p:GCaMP6s::SL2::tagRFP];lite-1(ce314)	Goodman lab.	Fig. S4D
MSB382	ls[123[mec-7p:GCaMP6s::SL2::tagRFP];lite-1[ce314] + mirEx144[4ec-4p::TRP-4(full-length) + [myo-2p::mCherry]	This study	Fig 4
MSB379	ls[123[mec-7p:GCaMP6s::SL2::tagRFP];lite-1[ce314] + mirEx141[4ec-4p::Δank:TRP-4]; [myo-2p::mCherry]	This study	Fig 5
GN716	trp-4(ok1605)	gift from Miriam Goodman lab	not shown
GN517	pgEx116 [unc-70p::UNC-70(1-1166)::TsMod::UNC-70(1167-2267); Pmyo-3::mCherry]	Goodman lab.	Fig. 4, S6
GN519	pgEx131 [UNC-70(1-1166)::mTFP-5aa-Venus::UNC-70(1167-2267) unc-122p::RFP]	Goodman lab.	Fig. 6
GN600	pgls22; oxls95[pdi-2::unc-70(fly), myo-2::GFP, lin-15] IV	Goodman lab.	Fig. 4, S6
MSB233	mirEx77 [unc-70p::UNC-70(1-1166)::TsMod::UNC-70(1167-2267) E2008K, myo-2p::mCherry]	This study	Fig 4, S6
MSB339	mirls23 [unc-70p::UNC-70(1-1166)::mTFP-TRAF-Venus::UNC-70(1167-2267); unc-70(s1502); oxls95 pdi-2::unc-70(fly), myo-2::GFP, lin-15(+)	This study	Fig 4
PHX2541	syb2541[wrmScarlet::DEGRON::twk-16]	Sunny biotech	
MSB555	syb2541[WrmScarlet::DEGRON::twk-16], outcrossed 2x	This study	Fig S8
MSB526	mirEx197[nlp-12p::TIR,unc-122p::GFP]; syb2541[wrmScarlet::DEGRON::twk-16]	This study	Fig 6, S8
UN1823	spc-1::degron::mKate2	Cram lab. [31]	Fig. S3
MSB453	spc-1::degron::mKate2; mirls34[mec4p::at-TIR1::F2A::mCherry::H2B + Punc -122::GFP]	This study	Fig S3
Table S3. Strains used in this study

Strains	Genotype	Source	Used in Fig.
MSB464	mirEx194[nlp-12p::TIR::P2A::mCherry, unc-122p::GFP] ; spc-1::degron::mKate2	This study	Fig. S3
MSB503	mirEx194[nlp-12p::TIR::P2A::mCherry, unc-122p::GFP]	This study	Fig S3
MSB521	twk-16(mir31); mirls19[nlp-12p::GAL-4; unc-122p::mCherry]; syls423[15xUAS::Δpes-10::GCaMP6s::SL2::mKate2::let-858 3’UTR + myo-2p::NLS::mCherry + 1kb DNA ladder(NEB)]	This study	Fig 7,S8
MSB591	trp-4 (mir53mir36[GFP::TRP-4]) I	This study	Fig 5
MSB539	mirls43[nlp-12p::CRE; unc-122p::GFP] ; unc-70 (mir6mir16) V	This study	Fig 2
MSB516	mirls43[nlp-12p::CRE; unc-122p::GFP] ; he317[eft-3::Lox2272-BFP-Lox2272::mCherry]	This study	
MSB601	trp-4(mir35mir36) I; unc-70(e524) V;	This study	Fig 5
MSB706	mirEx280[nlp-12p::TRP-4cDNA; myo-2p::mCherry]; mirls19[nlp-12p::GAL-4; unc-122p::mCherry]; syls423[15xUAS::Δpes-10::GCaMP6s::SL2::mKate2::let-858 3’UTR + myo-2p::NLS::mCherry + 1kb DNA ladder(NEB)]; trp-4(sy695)]	This study	Methods, not shown
MSB750	mirls71[nlp-12p::CRE; myo-2p::mCherry] I (?) ; mirEx283[nlp-12p::unc-70cDNA; unc-122p::GFP] ; unc-70(mir6mir16) V	This study	Fig 2
MSB765	mirls71[nlp-12p::CRE; myo-2p::mCherry] I (?) ; unc-70(mir6mir16) V outcrossed 1x	This study	Fig 2
MSB728	mirls69[nlp-12p::TRP-4cDNA; myo-2p::mCherry]; mirls19[nlp-12p::GAL-4; unc-122p::mCherry]; syls423[15xUAS::Δpes-10::GCaMP6s::SL2::mKate2::let-858 3’UTR + myo-2p::NLS::mCherry + 1kb DNA ladder(NEB)]; trp-4(sy695)]	This study	Fig 5, Fig 6
MSB756	mirEx283[nlp-12p::unc-70cDNA; unc-122p::GFP]; unc-70(mir6mir16) V; mirEx13[nlp-12::CRE; myo-2p::mCherry]; mirls19[nlp-12p::GAL-4; unc-122p::mCherry]; syls423[15xUAS::Δpes-10::GCaMP6s::SL2::mKate2::let-858 3’UTR + myo-2p::NLS::mCherry + 1kb DNA ladder(NEB)]	This study	Fig 2
MSB757	mirls69[nlp-12p::TRP-4cDNA; myo-2p::mCherry]; trp-4(sy695): outcrossed 2x	This study	Fig 5
MSB778	mirls71[nlp-12p::CRE; myo-2::mCherry] I (?) ; outcrossed 2x	This study	Fig S2
MSB450	heSi208[eft-3p::LoxP::egl-13NLS::tagBFP2::tbb-2UTR::LoxP::egl-13NLS::mCherry::tbb-2UTR::LGV]; hrtSi27[jdes-2p::CRE LGII] V;II; unc-70(mir6mir16)V	This study	Fig S2
No	Gene	Sequence	Comment
----	------	----------	---------
1	unc-70	gRNA-1(GCAACGGCGGAAACGTCGT) gRNA-2(GCGAAACGTCGTCGGCAATA) gRNA-3(CGTCGTCGGCAATATGGCTA)	5’ edit
2	unc-70	gRNA(GCTACCAGGTAACTGATTAA)	3’ edit
3	twk-16	gRNA-1(TTGCAGAATAAAACATCATTG) gRNA-2(TTATATGTAGCACACTTTTG)	deletion exon 1+2
4	trp-4	gRNA (ACGTGGCGAATCCCAAACCG)	GFP tag
5	GFP universal	gRNA: CGTCGAGCTCGACGGAGTCA	GFP KI
6	nlp-12p	FWD:CTGACCTtaaatcaggtttgatcgcagaagccggaggtttgtaagctcgtg REV:TTTTGATGAACAGTGAACGGAGATTTTACATtttctccgagctgcaatttgc	minimal promoter in DVA
7	F49H12.4	FWD: caggtttttgaaaaatattgagcttacatcagaataaatcagtgcctagacttgtaaatt REV:CAGTGAGAAGATTTGACATctagctatatgtctattttctttttgaggtagtgaatgaagta	PVD driver
8	acr-5p	FWD:CTGACCTtaaatcaggtgttggccaatggaattggcaattgt REV:GAACAGTGAAGATTTTACATtgcaagcttagatgta	B-type MN driver
9	flp-22Δ4p	FWD: CCTtaaatcaggtgtgccccaaaaatatttaac REV:CAGTGAGAAGATTTTACATtgcaagcttagata	SMD driver

Table S4: CRISPR reagents and primers for isolation of promoter sequences from genomic DNA
REFERENCES AND NOTES

1. J. Gjorgjieva, D. Biron, G. Haspel, Neurobiology of *Caenorhabditis elegans* locomotion: Where do we stand? *Bioscience* 64, 476–486 (2014).

2. N. A. Croll, Behavioural analyses of nematode movement. *Adv. Parasitol.* 13, 71–122 (1975).

3. U. Proske, S. C. Gandevia, The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. *Physiol. Rev.* 92, 1651–1697 (2012).

4. W. Li, Z. Feng, P. W. Sternberg, X. Z. Shawn Xu, A *C. elegans* stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. *Nature* 440, 684–687 (2006).

5. L. Tao, D. Porto, Z. Li, S. Fechner, S. A. Le, M. B. Goodman, X. Z. S. Xu, H. Lu, K. Shen, Parallel processing of two mechanosensory modalities by a single neuron in *C. elegans*. *Dev. Cell* 51, 617–631.e3 (2019).

6. J. Yeon, J. Kim, D.-Y. Kim, H. Kim, J. Kim, E. J. du, K.-J. Kang, H.-H. Lim, D. Moon, K. Kim, A sensory-motor neuron type mediates proprioceptive coordination of steering in *C. elegans* via two TRPC channels. *PLOS Biol.* 16, e2004929 (2018).

7. Q. Wen, M. D. Po, E. Hulme, S. Chen, X. Liu, S. W. Kwok, M. Gershow, A. M. Leifer, V. Butler, C. Fang-Yen, T. Kawano, W. R. Schafer, G. Whitesides, M. Wyart, D. B. Chklovskii, M. Zhen, A. D. T. Samuel, Proprioceptive coupling within motor neurons drives *C. elegans* forward locomotion. *Neuron* 76, 750–761 (2012).

8. P. Liu, B. Chen, Z.-W. Wang, GABAergic motor neurons bias locomotor decision-making in *C. elegans*. *Nat. Commun.* 11, 5076 (2020).

9. W. R. Schafer, Mechanosensory molecules and circuits in *C. elegans*. *Pflugers Arch.* 467, 39–48 (2014).

10. R. Das, S. Wieser, M. Krieg, Neuronal stretch reception – Making sense of the mechanosense. *Exp. Cell Res.* 378, 104–112 (2019).
11. B. D. Umans, S. D. Liberles, Neural sensing of organ volume. *Trends Neurosci.* **41**, 911–924 (2018).

12. S.-H. Woo, V. Lukacs, J. C. de Nooij, D. Zaytseva, C. R. Criddle, A. Francisco, T. M. Jessell, K. A. Wilkinson, A. Patapoutian, Piezo2 is the principal mechanotransduction channel for proprioception. *Nat. Neurosci.* **18**, 1756–1762 (2015).

13. S. H. Lin, Y. R. Cheng, R. W. Banks, M. Y. Min, G. S. Bewick, C. C. Chen. Evidence for the involvement of ASIC3 in sensory mechanotransduction in proprioceptors. *Nat. Commun.* **7**, 11460 (2016).

14. P. Jin, D. Bulkley, Y. Guo, W. Zhang, Z. Guo, W. Huynh, S. Wu, S. Meltzer, T. Cheng, L. Y. Jan, Y.-N. Jan, Y. Cheng, Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. *Nature* **547**, 118–122 (2017).

15. P. Jin, L. Y. Jan, Y.-N. Jan, Mechanosensitive ion channels: Structural features relevant to mechanotransduction mechanisms. *Annu. Rev. Neurosci.* **43**, 207–229 (2020).

16. D. Argudo, S. Capponi, N. P. Bethel, M. Grabe, A multiscale model of mechanotransduction by the ankyrin chains of the NOMPC channel. *J. Gen. Physiol.* **151**, 316–327 (2019).

17. Y. Wang, Y. Guo, G. Li, C. Liu, L. Wang, A. Zhang, Z. Yan, C. Song. The push-to-open mechanism of the tethered mechanosensitive ion channel NOMPC. *eLife* **10**, e58388 (2021).

18. S. G. Brohawn, How ion channels sense mechanical force: Insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. *Ann. N. Y. Acad. Sci.* **1352**, 20–32 (2015).

19. J. M. Kefauver, A. B. Ward, A. Patapoutian, Discoveries in structure and physiology of mechanically activated ion channels. *Nature* **587**, 567–576 (2020).

20. M. Krieg, A. R. Dunn, M. B. Goodman, Mechanical control of the sense of touch by β-spectrin. *Nat. Cell Biol.* **16**, 224–233 (2014).

21. G. J. Stephens, B. Johnson-Kerner, W. Bialek, W. S. Ryu, Dimensionality and dynamics in the behavior of *C. elegans*. *PLOS Comput. Biol.* **4**, e1000028 (2008).
22. O. D. Broekmans, J. B. Rodgers, W. S. Ryu, G. J. Stephens, Resolving coiled shapes reveals new reorientation behaviors in *C. elegans. eLife* 5, e17227 (2016).

23. I. Hums, J. Riedl, F. Mende, S. Kato, H. S. Kaplan, R. Latham, M. Sonntag, L. Traunmüller, M. Zimmer, Regulation of two motor patterns enables the gradual adjustment of locomotion strategy in *Caenorhabditis elegans. eLife* 5, e14116 (2016).

24. S. Moorthy, L. Chen, V. Bennett, *Caenorhabditis elegans* β-G spectrin is dispensable for establishment of epithelial polarity, but essential for muscular and neuronal function. *J. Cell Biol.* 149, 915–930 (2000).

25. M. Hammarlund, W. S. Davis, E. M. Jorgensen, Mutations in β-spectrin disrupt axon outgrowth and sarcomere structure. *J. Cell Biol.* 149, 931–942 (2000).

26. S. Ruijtenberg, S. Van Den Heuvel, G1/S inhibitors and the SWI/SNF complex control cell-cycle exit during muscle differentiation. *Cell* 162, 300–313 (2015).

27. E. Kage-Nakadai, R. Imae, Y. Suehiro, S. Yoshina, S. Hori, S. Mitani, A conditional knockout toolkit for *Caenorhabditis elegans* based on the Cre/loxP recombination. *PLOS ONE* 9, e114680 (2014).

28. Z. Hu, E. C. G. Pym, K. Babu, A. B. Vashlishan Murray, J. M. Kaplan, A neuropeptide-mediated stretch response links muscle contraction to changes in neurotransmitter release. *Neuron* 71, 92–102 (2011).

29. L. Zhang, J. D. Ward, Z. Cheng, A. F. Dernburg, The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in *C. elegans. Development (Cambridge)* 142, 4374–4384 (2015).

30. M. A. Q. Martinez, B. A. Kinney, T. N. Medwig-Kinney, G. Ashley, J. M. Ragle, L. Johnson, J. Aguilera, C. M. Hammell, J. D. Ward, D. Q. Matus, Rapid degradation of *Caenorhabditis elegans* proteins at single-cell resolution with a synthetic auxin. *G3 (Bethesda)* 10, 267–280 (2019).
31. A. C. E. Wirshing, E. J. Cram, Spectrin regulates cell contractility through production and maintenance of actin bundles in the *Caenorhabditis elegans* spermatheca. *Mol. Biol. Cell* **29**, 2433–2449 (2018).

32. H. Wang, J. Liu, S. Gharib, C. M. Chai, E. M. Schwarz, N. Pokala, P. W. Sternberg, cGAL, a temperature-robust GAL4-UAS system for *Caenorhabditis elegans*. *Nat. Methods* **14**, 145–148 (2016).

33. S. R. Lockery, K. J. Lawton, J. C. Doll, S. Faumont, S. M. Coulthard, T. R. Thiele, N. Chronis, K. E. McCormick, M. B. Goodman, B. L. Pruitt, Artificial dirt: Microfluidic substrates for nematode neurobiology and behavior. *J. Neurophysiol.* **99**, 3136–3143 (2008).

34. M. Krieg, J. Stühmer, J. G. Cueva, R. Fetter, K. Spilker, D. Cremers, K. Shen, A. R. Dunn, M. B. Goodman, Genetic defects in β-spectrin and tau sensitize *C. elegans* axons to movement-induced damage via torque-tension coupling. *eLife* **6**, e20172 (2017).

35. M. Krieg, A. R. Dunn, M. B. Goodman, Mechanical systems biology of *C. elegans* touch sensation. *Bioessays* **37**, 335–344 (2015).

36. O. A. Bauchau, J. I. Craig, Euler-Bernoulli beam theory, in *Structural Analysis*, O. A. Bauchau, J. I. Craig, Eds. (Springer, 2009), pp. 173–221.

37. C. Grashoff, B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, M. A. Schwartz, Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. *Nature* **466**, 263–266 (2010).

38. J. Vicencio, C. Martínez-Fernández, X. Serrat, J. Cerón, Efficient generation of endogenous fluorescent reporters by nested CRISPR in *Caenorhabditis elegans*. *Genetics* **211**, 1143–1154 (2019).

39. D. Lockhead, E. M. Schwarz, R. O’Hagan, S. Bellotti, M. Krieg, M. M. Barr, A. R. Dunn, P. W. Sternberg, M. B. Goodman, The tubulin repertoire of *Caenorhabditis elegans* sensory neurons and its context-dependent role in process outgrowth. *Mol. Biol. Cell* **27**, 3717–3728 (2016).
40. F. M. Hochmuth, J. Y. Shao, J. Dai, M. P. Sheetz, Deformation and flow of membrane into tethers extracted from neuronal growth cones. *Biophys. J.* **70**, 358–369 (1996).

41. A. Nekouzadeh, Y. Rudy, Statistical properties of ion channel records. Part I: Relationship to the macroscopic current. *Math. Biosci.* **210**, 291–314 (2007).

42. G. I. Bell, Models for the specific adhesion of cells to cells. *Science* **200**, 618–627 (1978).

43. L. Kang, J. Gao, W. R. Schafer, Z. Xie, X. Z. S. Xu, *C. elegans* TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. *Neuron* **67**, 381–391 (2010).

44. L. Salkoff, A. Butler, G. Fawcett, M. Kunkel, C. McArdle, G. Paz-y-Mino, M. Nonet, N. Walton, Z. W. Wang, A. Yuan, A. Wei, Evolution tunes the excitability of individual neurons. *Neuroscience* **103**, 853–859 (2001).

45. C. Puckett Robinson, E. M. Schwarz, P. W. Sternberg, Identification of DVA interneuron regulatory sequences in *Caenorhabditis elegans*. *PLOS ONE* **8**, e54971 (2013).

46. S. G. Brohawn, Z. Su, R. MacKinnon, Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K⁺ channels. *Proc. Natl. Acad. Sci. U.S.A.* **111**, 3614–3619 (2014).

47. E. Schiksnis, A. L. Nicholson, M. S. Modena, M. N. Pule, J. A. Arribere, A. E. Pasquinelli, Auxin-independent depletion of degron-tagged proteins by TIR1. *microPublication Biol.* **2020**, 3 (2020).

48. J. H. Boyle, S. Berri, N. Cohen, Gait modulation in *C. elegans*: An integrated neuromechanical model. *Front. Comput. Neurosci.* **6**, 10 (2012).

49. L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall, D. B. Chklovskii, Structural properties of the *Caenorhabditis elegans* neuronal network. *PLoS Comput. Biol.* **7**, e1001066 (2011).

50. D. Witvliet, B. Mulcahy, J. K. Mitchell, Y. Meirovitch, D. R. Berger, Y. Wu, Y. Liu, W. X. Koh, R. Parvathala, D. Holmyard, R. L. Schalek, N. Shavit, A. D. Chisholm, J. W. Lichtman, A. D. T.
Samuel, M. Zhen, Connectomes across development reveal principles of brain maturation. *Nature* **596**, 257–261 (2020).

51. M. Kelley, J. Yochem, M. Krieg, A. Calixto, M. G. Heiman, A. Kuzmanov, V. Meli, M. Chalfie, M. B. Goodman, S. Shaham, A. Frand, D. S. Fay, FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during *C. elegans* embryogenesis. *eLife* **4**, e06565 (2015).

52. L. He, S. Gulyanon, M. Mihovilovic Skanata, D. Karagyozov, E. S. Heckscher, M. Krieg, G. Tsechpenakis, M. Gershow, W. D. Tracey Jr. Direction selectivity in drosophila proprioceptors requires the mechanosensory channel Tmc. *Curr. Biol.* **29**, 945–956.e3 (2019).

53. M. Prager-Khoutorsky, A. Khoutorsky, C. Bourque, Unique interweaved microtubule scaffold mediates osmosensory transduction via physical interaction with TRPV1. *Neuron* **83**, 866–878 (2014).

54. A. Hassan, L. Sapir, I. Nitsan, R. T. Greenblatt Ben-el, N. Halachmi, A. Salzberg, S. Tzlil, A change in ECM composition affects sensory organ mechanics and function. *Cell Rep.* **27**, 2272–2280.e4 (2019).

55. X. Liang, J. Madrid, R. Gärtnert, J.-M. Verbavatz, C. Schiklenk, M. Wilsch-Bräuninger, A. Bogdanova, F. Stenger, A. Voigt, J. Howard, A NOMPC-dependent membrane-microtubule connector is a candidate for the gating spring in fly mechanoreceptors. *Curr. Biol.* **23**, 755–763 (2013).

56. W. Zhang, L. E. Cheng, M. Kittelmann, J. Li, M. Petkovic, T. Cheng, P. Jin, Z. Guo, M. C. Göpfert, L. Y. Jan, Y. N. Jan, Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. *Cell* **162**, 1391–1403 (2015).

57. J. Howard, S. Bechstedt, Hypothesis: A helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. *Curr. Biol.* **14**, R224–R226 (2004).
58. Y. A. Nikolaev, C. D. Cox, P. Ridone, P. R. Rohde, J. F. Cordero-Morales, V. Vásquez, D. R. Laver, B. Martinac, Mammalian TRP ion channels are insensitive to membrane stretch. *J. Cell Sci.* **132**, jcs238360 (2019).

59. Y.-C. Lin, Y. R. Guo, A. Miyagi, J. Levring, R. M. Kinnon, S. Scheuring, Force-induced conformational changes in PIEZO1. *Nature* **573**, 230–234 (2019).

60. J. M.-J. Romac, R. A. Shahid, S. M. Swain, S. R. Vigna, R. A. Liddle, Piezo1 is a mechanically activated ion channel and mediates pressure induced pancreatitis. *Nat. Commun.* **9**, 1715 (2018).

61. N. Srivastava, D. Traynor, M. Piel, A. J. Kabla, R. R. Kay, Pressure sensing through Piezo channels controls whether cells migrate with blebs or pseudopods. *Proc. Natl. Acad. Sci. U.S.A.* **117**, 2506–2512 (2020).

62. S. R. Taylor, G. Santpere, A. Weinreb, A. Barrett, M. B. Reilly, C. Xu, E. Varol, P. Oikonomou, L. Glenwinkel, R. McWhirter, A. Poff, M. Basavaraju, I. Rafi, E. Yemini, S. J. Cook, A. Abrams, B. Vidal, C. Cros, S. Tavazoie, N. Sestan, M. Hammarlund, O. Hobert, D. M. Miller 3rd. Molecular topography of an entire nervous system. *Cell* **184**, 4329–4347.e23 (2021).

63. C. M. Waterman-Storer, E. D. Salmon, Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. *J. Cell Biol.* **139**, 417–434 (1997).

64. T. Wu, J. J. Feng, A biomechanical model for fluidization of cells under dynamic strain. *Biophys. J.* **108**, 43–52 (2015).

65. M. Schenk, S. D. Guest, On zero stiffness. *Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.* **228**, 1701–1714 (2014).

66. M. B. Goodman, D. H. Hall, L. Avery, S. R. Lockery, Active currents regulate sensitivity and dynamic range in *C. elegans* neurons. *Neuron* **20**, 763–772 (1998).
67. J. G. White, E. Southgate, J. N. Thomson, S. Brenner, Touch-induced mechanical strain in somatosensory neurons is independent of extracellular matrix mutations in *Caenorhabditis elegans*. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **314**, 1–340 (1986).

68. T. B. Crapse, M. A. Sommer, Corollary discharge across the animal kingdom. *Nat. Rev. Neurosci.* **9**, 587–600 (2008).

69. H. Fehlauer, A. L. Nekimken, A. A. Kim, B. L. Pruitt, M. B. Goodman, M. Krieg, Using a microfluidics device for mechanical stimulation and high resolution imaging of *C. elegans*. *J. Vis. Exp.* **2018**, 56530 (2018).

70. T. Boothe, L. Hilbert, M. Heide, L. Berninger, W. B. Huttner, V. Zaburdaev, N. L. Vastenhouw, E. W. Myers, D. N. Drechsel, J. C. Rink, A tunable refractive index matching medium for live imaging cells, tissues and model organisms. *eLife* **6**, e27240 (2017).

71. A. L. Nekimken, B. L. Pruitt, M. B. Goodman, Touch-induced mechanical strain in somatosensory neurons is independent of extracellular matrix mutations in *Caenorhabditis elegans*, *Mol. Biol. Cell* **31**, 1735–1743 (2020).

72. M. Porta-de-la Riva, L. Fontrodona, A. Villanueva, J. Cerón, Basic *Caenorhabditis elegans* methods: Synchronization and observation. *J. Vis. Exp.* e4019 (2012).

73. T. Stiernagle, in *WormBook: The Online Review of C. elegans Biology* (WormBook, 2006), pp. 1–11.

74. B. Sands, N. Burnaevskiy, S. R. Yun, M. M. Crane, M. Kaeberlein, A. Mendenhall, A toolkit for DNA assembly, genome engineering and multicolor imaging for *C. elegans*. *Transl. Med. Aging* **2**, 1–10 (2018).

75. A. Albeg, C. J. Smith, M. Chatzigeorgiou, D. G. Feitelson, D. H. Hall, W. R. Schafer, D. M. Miller III, M. Treinin, *C. elegans* multi-dendritic sensory neurons: Morphology and function. *Mol. Cell. Neurosci.* **46**, 308–317 (2011).
76. S. Redemann, S. Schloissnig, S. Ernst, A. Pozniakowsky, S. Ayloo, A. A. Hyman, H. Bringmann, Codon adaptation–based control of protein expression in *C. elegans*. *Nat. Methods* **8**, 250–252 (2011).

77. A. Paix, A. Folkmann, G. Seydoux, Precision genome editing using CRISPR-Cas9 and linear repair templates in *C. elegans*. *Methods* **121-122**, 86–93 (2017).

78. C. Frøkjær-Jensen, M. Wayne Davis, M. Sarov, J. Taylor, S. Flibotte, M. L. Bella, A. Pozniakovsky, D. G. Moerman, E. M. Jorgensen, Random and targeted transgene insertion in *Caenorhabditis elegans* using a modified *Mos1* transposon. *Nat. Methods* **11**, 529–534 (2014).

79. M. Harterink, P. van Bergeijk, C. Allier, B. de Haan, S. van den Heuvel, C. C. Hoogenraad, L. C. Kapitein, Light-controlled intracellular transport in *Caenorhabditis elegans*. *Curr. Biol.* **26**, R153-R154 (2016).

80. A. L. Nekimken, H. Fehlauer, A. A. Kim, S. N. Manosalvas-Kjono, P. Ladpli, F. Memon, D. Gopisetty, V. Sanchez, M. B. Goodman, B. L. Pruitt, M. Krieg, Pneumatic stimulation of *C. elegans* mechanoreceptor neurons in a microfluidic trap. *Lab Chip* **17**, 1116–1127 (2017).

81. J. H. Koschwanez, R. H. Carlson, D. R. Meldrum, Thin PDMS films using long spin times or tert-butyl alcohol as a solvent. *PLOS ONE* **4**, e4572 (2009).

82. A. Farré, F. Marsà, M. Montes-Usategui, Optimized back-focal-plane interferometry directly measures forces of optically trapped particles. *Opt. Express* **20**, 12270–12291 (2012).

83. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: An open-source platform for biological-image analysis. *Nat. Methods* **9**, 676–682 (2012).

84. K. C. Johnson, W. E. Thomas, How do we know when single-molecule force spectroscopy really tests single bonds? *Biophys. J.* **114**, 2032–2039 (2018).
85. T. Duong, ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. *J. Stat. Softw.* 21, 1–16 (2007).

86. J. Chacon, T. Duong, *Monographs on Statistics and Applied Probability 160: Multivariate Kernel Smoothing and its Application* (Taylor & Francis, 2018).

87. J. Ho, T. Tumkaya, S. Aryal, H. Choi, A. Claridge-Chang, Moving beyond P values: Data analysis with estimation graphics. *Nat. Methods* 16, 565–566 (2019).

88. A. Nekouzadeh, Y. Rudy, Statistical properties of ion channel records. Part II: Estimation from the macroscopic current. *Math. Biosci.* 210, 315–334 (2007).

89. E. A. Evans, D. A. Calderwood, Forces and bond dynamics in cell adhesion. *Science* 316, 1148–1153 (2007).

90. S. Bechstedt, J. Howard, in *Current Topics in Membranes* (Elsevier, 2007), vol. 59, pp. 399–424.

91. Z. Yan, W. Zhang, Y. He, D. Gorczyca, Y. Xiang, L. E. Cheng, S. Meltzer, L. Y. Jan, Y. N. Jan, *Drosophila* NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. *Nature* 493, 221–225 (2013).

92. J. T. Brennecke, B. L. de Groot, Mechanism of mechanosensitive gating of the TREK-2 potassium channel. *Biophys. J.* 114, 1336–1343 (2018).

93. M. Harterink, S. L. Edwards, B. de Haan, K. W. Yau, S. van den Heuvel, L. C. Kapitein, K. G. Miller, C. C. Hoogenraad, Local microtubule organization promotes cargo transport in *C. elegans* dendrites. *J. Cell Sci.* 131, jcs223107 (2018).