Triangle singularities in the $T^+_{cc} \to D^+ D^0 \to \pi^+ D^0 D^0$ decay width

N.N. Achasov * and G.N. Shestakov †
Laboratory of Theoretical Physics, S.L. Sobolev Institute for Mathematics, 630090, Novosibirsk, Russia

The values of the masses of the particles involved in the decay of $T^+_{cc} \to D^+ D^0 \to \pi^+ D^0 D^0$ suggest that due to the final state interactions in the transition vertex $T^+_{cc} \to D^+ D^0$ there may be triangle logarithmic singularities. We discuss their possible role and show that the tree approximation for calculating the decay widths $T^+_{cc} \to (D^+ D^0 + D^{*0} D^+) \to \pi^+ D^0 D^0, \pi^0 D^0 D^+, \gamma D^0 D^+$ is quite sufficient at the current level of measurement accuracy.

I. INTRODUCTION

At the end of July 2021, the LHCb Collaboration announced the discovery of the doubly charmed tetraquark T^+_{cc} \cite{ref1, ref2} and then published detailed measurement results along with their theoretical processing and interpretation \cite{ref3, ref4}. Over the next days, weeks and months, a very interesting discussion is going on in the literature about the possible internal structure of the T^+_{cc} state, about the mechanisms of its production and decay through intermediate states $D^+ D^0$ and $D^{*0} D^+$, on the possible values of its total decay width and partial decay widths into coupled channels $\pi^+ D^0 D^0, \pi^0 D^0 D^+, \gamma D^0 D^+$, about its line shape and the shapes of the two-particle mass spectra DD and πD, as well as about the possible existence of other similar states. A detailed discussion of all these issues can be found in \cite{ref5, ref6}; see also the references cited therein.

In Sec. II of this article, we discuss the possible role of triangle singularities in the width of the decay $T^+_{cc}[3.875; I(J^P) = 0(1^+)] \to D^+(J^P = 1^-)D^0(J^P = 0^-) \to \pi^+ D^0 D^0$. In so doing, we proceed within the framework of a scalar model, i.e., we treat all particles in this decay as spinless and scalar. Such a simplification, however, seems quite reasonable. First, the decay of $T^+_{cc} \to D^+ D^0$ occurs in the near-threshold region and therefore is mainly S wave. Second, the ratio of the $D^+ \to (D \pi)$ decay width (it is ≈ 83 keV \cite{ref18}) to the distance to the $(D \pi)^+$ threshold is $\approx 1/70$ and, consequently, the change of this width on the energy interval of the order of itself is small (i.e., in the D^+(2010) region, it is almost constant). The formulas [see below Eqs. \cite{ref13} and \cite{ref14}], which we use to estimate the possible role of interactions of $D^* D$ pairs in the final state, are in fact expansions of the Omn`es functions (solutions) for form factors \cite{ref15} in case of weak coupling (i.e., smallness of $D^* D$ scattering at low energies). Discussions of a number of dynamic approximations of the Omn`es functions can be found, for example, in Refs. \cite{ref20, ref21}. The performed analysis allows us to conclude that the tree approximation used in Refs. \cite{ref3, ref4} for calculating the decay widths $T^+_{cc} \to (D^+ D^0 + D^{*0} D^+) \to \pi^+ D^0 D^0, \pi^0 D^0 D^+, \gamma D^0 D^+$ is quite sufficient at the current level of measurement accuracy.

The LHCb Collaboration results \cite{ref3, ref4} obtained from the fit to the $\pi^+ D^0 D^0$ mass spectrum indicates that the Breit-Wigner mass of the T^+_{cc} relative to the $D^+ D^0$ mass threshold $\delta m_{BW} = -273 \pm 61$ keV and its Breit-Wigner width $\Gamma_{BW} = 410 \pm 165$ keV (only statistical uncertainties are indicated here). The measured δm_{BW} value corresponds to a mass of approximately 3875 MeV.

II. $T^+_{cc} \to D^+ D^0 \to \pi^+ D^0 D^0$ DECAY IN THE SCALAR MODEL

In the tree approximation, the $T^+_{cc} \to D^+ D^0 \to \pi^+ D^0 D^0$ decay is described by two diagrams shown in Fig. II which differ in the permutation of identical D^0 mesons. The corresponding decay width is given by

$$
\Gamma_{T^+_{cc} \to D^+ D^0 \to \pi^+ D^0 D^0}(s_1) = \frac{g^2_{T^+_{cc} D^+ D^0} g^2_{D^+ D^0 \pi^+ D^0}}{16 \pi} \frac{1}{16 \pi} \frac{1}{2 \pi s_1^{3/2}} \int ds \int dt \frac{1}{m_{D^0}^2 + m_{s_1}^2} \left(\frac{1}{D(s)} + \frac{1}{D(t)} \right)^2,
$$

where s_1 is the invariant mass squared of the virtual T^+_{cc} state, s and t are the $\pi^+ D^0(1)$ and $\pi^+ D^0(2)$ invariant mass squared, respectively, and $t_{\pm}(s_1, s)$ denote the boundaries of the physical region for the variable t for fixed values

* achasov@math.nsc.ru
† shestako@math.nsc.ru
a similar growth of the real part of the self-energy function under the sharp increase of Γ_T calculated in the tree approximation using Eqs. (1) and (2) is shown in Fig. 2. Note that for large values of T a sharp suppression of the right and left wings of the resonance peak. A similar phenomenon takes place for the four-quark $a_0(980)$ resonance [22].
The values of the masses of the particles involved in the decay of $T_{cc}^+ \to D^{*+}D^0 \to \pi^+D^0D^0$ suggest that due to the final state interactions in the vertex transition $T_{cc}^+ \to D^{*+}D^0$ there may be triangle logarithmic singularities. Examples of corresponding “dangerous” diagrams are shown in Fig. 3. Take into account their contribution to the decay width $\Gamma_{T_{cc}^+\to D^{*+}D^0\to \pi^+D^0D^0}(s_1)$ can be done by the following substitutions in Eq. (1):

$$\frac{1}{D(s)} \to \frac{1}{D(s)} \left[1 + \frac{g_{D^*+D^0}^2}{16\pi} \left(F_{D^*+D^0}(s_1,s) + \frac{1}{2} F_{D^*oD^+}(s_1,s) \right) \right], \quad (3)$$

$$\frac{1}{D(t)} \to \frac{1}{D(t)} \left[1 + \frac{g_{D^*+D^0}^2}{16\pi} \left(F_{D^*+D^0}(s_1,t) + \frac{1}{2} F_{D^*oD^+}(s_1,t) \right) \right], \quad (4)$$

where $F_{D^*+D^0}$ and $F_{D^*oD^+}$ are the amplitudes of the triangle loops included in the diagrams in Fig. 3, the factor 1/2 at $F_{D^*oD^+}$ follows from isotopic symmetry. In our normalization

$$F_{D^*+D^0}(s_1,s) = \frac{i}{\pi^2} \int \frac{d^4k}{D_1D_2D_3}, \quad (5)$$

where $D_1 = k^2 - m^2_{D^*+} + i\varepsilon$, $D_2 = (p_1 - k)^2 - m^2_{D^0} + i\varepsilon$, and $D_3 = (k - p_3)^2 - m^2_{D^+} + i\varepsilon$ are the inverse propagators of the particles in the loop. Here and in Fig. 3, p_1, p_2, p_3 denote the momenta of the particles in the reaction; $p_1 = p_2 + p_3$, $p_1^2 = s_1$, $p_2^2 = s$, and $p_3^2 = m^2_{D^0}$. The amplitude $F_{D^*oD^+}(s_1,s)$ has a similar form.

If the values of the variables \sqrt{s} and $\sqrt{s_1}$ are simultaneously in the intervals

$$m_1 + m_2 < \sqrt{s_1} < \sqrt{m_1^2 + m_2^2 + m_2m_3 + (m_2/m_3)(m_1^2 - m_2^2_D)}, \quad (6)$$

$$m_2 + m_3 < \sqrt{s} < \sqrt{(m_1 + m_2)(m_2m_3 + m_2^2_D)} / m_1, \quad (7)$$

where $m_1, m_2,$ and m_3 are the particle masses in the inverse propagators $D_1, D_2, \text{ and } D_3$, respectively [see Eq. (5)], then for each value of s_1 there is a unique value s_1 (and vice versa) for which the imaginary part of the amplitude $F_{D^*+D^0}(s_1,s)$ [and similarly that of $F_{D^*oD^+}(s_1,s)$] has a logarithmic singularity (see, for example, Refs. [24][27] and references herein). Note that the minimum value of s_1 in (6) herewith corresponds to the maximum value of s in (7) (and vice versa). In the amplitude $F_{D^*+D^0}(s_1,s)$ (see the left diagram in Fig. 3) $m_1 = m_{D^{**}}, m_2 = m_{D^0}, m_3 = m_{\pi^+}$ and for it the numerical values of the intervals in Eqs. (6) and (7) are as follows:

$$3.8751 \text{ GeV} < \sqrt{s_1} < 3.91259 \text{ GeV} \quad (0 < \sqrt{s_1} - (m_{D^{**}} + m_{D^0}) < 37.49 \text{ MeV}), \quad (8)$$

$$2.00441 \text{ GeV} < \sqrt{s} < 2.00946 \text{ GeV} \quad (0 < \sqrt{s} - (m_{D^0} + m_{\pi^+}) < 5.05 \text{ MeV}). \quad (9)$$

Here in parentheses are the corresponding intervals in units of MeV into which the invariant masses $\sqrt{s_1}$ and \sqrt{s} with the subtracted threshold values should fall. In the amplitude $F_{D^*oD^+}(s_1,s)$ (see the right diagram in Fig. 3) $m_1 = m_{D^{*o}}, m_2 = m_{D^+}, m_3 = m_{\pi^0}$ and for it, respectively, we have

$$3.8765 \text{ GeV} < \sqrt{s_1} < 3.92318 \text{ GeV} \quad (0 < \sqrt{s_1} - (m_{D^{*o}} + m_{D^+}) < 46.67 \text{ MeV}), \quad (10)$$

$$2.00464 \text{ GeV} < \sqrt{s} < 2.01073 \text{ GeV} \quad (0 < \sqrt{s} - (m_{D^+} + m_{\pi^0}) < 6.05 \text{ MeV}). \quad (11)$$

Since $m_{D^{**}} = 2.01026 \text{ GeV}$ is greater than $(\sqrt{s})_{\text{max}} = 2.00946 \text{ GeV}$ in Eq. (8), then due to the contribution of the amplitude $F_{D^*+D^0}(s_1,s) \approx m^2_{D^{*+}}$ in the vertex $T_{cc}^+D^{*+}D^0$ no triangle singularity arises. At the same time, $m_{D^{**}} =
compared to its values in the tree approximation (see Fig. 2) by about 5%, 6%, 2%, and 0.6% at $\sqrt{s} = m_{D^{*+}}$.

We hope to consider spin effects somewhere else.

The work was carried out within the framework of the state contract of the Sobolev Institute of Mathematics, Project No. FWNF-2022-0021.
[1] F. Muheim, Highlights from the LHCb Experiment, the European Physical Society Conference on High Energy Physics 2021, https://indico.desy.de/event/28202/contributions/102717/.

[2] I. Polyakov, Recent LHCb results on exotic meson candidates, the European Physical Society Conference on High Energy Physics 2021, https://indico.desy.de/event/28202/contributions/105627/.

[3] R. Aaij et al. (LHCb Collaboration), Observation of an exotic narrow doubly charmed tetraquark, arXiv:2109.01038.

[4] R. Aaij et al. (LHCb Collaboration), Study of the doubly charmed tetraquark T_{cc}^+, arXiv:2109.01056.

[5] N. Li, Z. F. Sun, X. Liu, and S. L. Zhu, Perfect $D^0D^0\pi^+$ molecular prediction matching the T_{cc} observation at LHCb, Chin. Phys. Lett. 38, 092001 (2021).

[6] L. Meng, G. J. Wang, B. Wang, and S. L. Zhu, Probing the long-range structure of the T_{cc} with the strong and electromagnetic decays, Phys. Rev. D 104, L051502 (2021).

[7] A. Feijoo, W. H. Liang, and E. Oset, $D^0D^0\pi^+$ mass distribution in the production of the T_{cc} exotic state, Phys. Rev. D 104, 114015 (2021).

[8] Q. Qin, Y. F. Shen, and F. S. Yu, Discovery potentials of double-charm tetraquarks, Chin. Phys. C 45, 103106 (2021).

[9] M. Albaladejo, T_{cc} coupled channel analysis and predictions, Phys. Lett. B 829, 137052 (2022).

[10] M. J. Yan and M. P. Valderrama, Subleading contributions to the decay width of the T_{cc}^+ tetraquark, Phys. Rev. D 105, 014007 (2022).

[11] M. L. Du, V. Baru, X. K. Dong, A. Filin, F. K. Guo, C. Hanhart, A. Nefediev, J. Nieves, and Q. Wang, Coupled-channel approach to T_{cc}^+ including three-body effects, Phys. Rev. D 105, 014024 (2022).

[12] E. Braaten, L. P. He, K. Ingles, and J. Jiang, Triangle singularity in the production of T_{cc}^+ (3875) and a soft pion, arXiv:2202.03900.

[13] J. He and X. Liu, The quasi-fission phenomenon of double charm T_{cc}^+ induced by nucleon, Eur. Phys. J. C 82, 387 (2022).

[14] X. Z. Ling, M. Z. Liu, L. S. Geng, E. Wang, and J. J. Xie, Can we understand the decay width of the T_{cc}^+ state?, Phys. Lett. B 826, 136897 (2022).

[15] M. Mikhaylov, Effective-range expansion of the T_{cc}^+ state at the complex D^0D^0 threshold, arXiv:2203.04622.

[16] L. Meng, B. Wang, G. J. Wang, and S. L. Zhu, Chiral perturbation theory for heavy hadrons and chiral effective field theory for heavy hadronic molecules, arXiv:2204.08716.

[17] P. A. Zyla et al. (Particle Data Group), Review of particle physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update.

[18] R. O'Connell, On the solution of certain singular integral equations of quantum field theory, Nuovo Cimento 8, 316 (1958).

[19] Gabriel Barton, Introduction to Dispersion Techniques in Field Theory (W. A. Benjamin, Inc., New York, Amsterdam, 1965).

[20] C. Roiesnel and T. N. Truong, Resolution of the $\eta \rightarrow 3\pi$ problem, Nucl. Phys. B187, 293 (1981).

[21] D. J. Miller and D. R. Tovey, Kinematics, minireview in Ref. [18].

[22] N. N. Achasov, S. A. Devyainin, and G. N. Shhestakov, Is there a "signature" of the $\delta(980)$ meson four-quark nature?, Phys. Lett. 96B, 168 (1980).

[23] C. Fronsdal and R. E. Norton, Integral representations for vertex functions, J. Math. Phys. (N.Y.) 5, 100 (1964).

[24] M. Bayar, F. Aceti, F. K. Guo, and E. Oset, A discussion on triangle singularities in the $\Lambda_b \rightarrow J/\psi K^- p$ reaction, Phys. Rev. D 94, 074039 (2016).

[25] N. N. Achasov and G. N. Shhestakov, Decay $X(3872) \rightarrow \pi^0\pi^+\pi^-$ and S-wave $D^0\bar{D}^0 \rightarrow \pi^+\pi^-$ scattering length, Phys. Rev. D 99, 116023 (2019).

[26] F. K. Guo, X. H. Liu, and S. Sakai, Threshold cusp and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112, 103757 (2020).

[27] G. ’t Hooft and M. Veltman, Scalar one-loop integrals, Nucl. Phys. B 153, 365 (1979).

[28] A. Denner, Techniques for the calculation of electroweak radiative corrections at the one-loop level and results for W physics at LEP200, Fortschr. Phys. 41, 307 (1993).

[29] C. Schmid, Final-state interactions and the simulation of resonances, Phys. Rev. 154, 1363 (1967).

[30] V. R. Debastiani, S. Sakai, and E. Oset, Considerations on the Schmid theorem for triangle singularities, Eur. Phys. J. C 79, 69 (2019).