Involvement of $\beta_3$-Adrenoceptor in the Relaxation Response in Guinea Pig Taenia Caecum

Katsuo Koike, Issei Takayanagi*, Midori Muramatsu, Shin-ichi Ohki and Takahiro Horinouchi

Department of Chemical Pharmacology, Toho University School of Pharmaceutical Sciences, 2-2-1, Miyama, Funabashi, Chiba 274, Japan

Received May 12, 1994 Accepted July 1, 1994

ABSTRACT—$\beta$-Adrenoceptors in the guinea pig taenia caecum were investigated by measuring relaxation responses to agonists and by a radioligand binding assay using $[3H]$CGP 12177. The rightward shift of the isoprenaline concentration-response curve was observed by butoxamine, a $\beta_2$-selective antagonist, and the $pA_2$ value for butoxamine was 6.46. In control preparations, catecholamines caused relaxation with the following rank order of potency: isoprenaline $> \text{adrenaline} > \text{noradrenaline}$. However, in the presence of $10^{-6}$ M phentolamine, $3 \times 10^{-4}$ M atenolol and $10^{-4}$ M butoxamine, the rank order of potency of the agonists was: isoprenaline $> \text{noradrenaline} > \text{adrenaline}$. CGP 12177 caused graded relaxation of the guinea pig taenia caecum, and this response was not influenced by $10^{-6}$ M phentolamine, $3 \times 10^{-4}$ M atenolol, $10^{-4}$ M butoxamine or $10^{-6}$ M propranolol. The Scatchard plot of the specific $[3H]$CGP 12177 binding to microsomal fractions from the guinea pig taenia caecum showed two affinity sites of the receptor: high affinity ($K_D = 0.64$ nM) and low affinity ($K_D = 142.21$ nM) sites. The $pK_D$ value of the high affinity site of $[3H]$CGP 12177 was in agreement with its $pA_2$ value, and that of the low affinity site was in agreement with its $pD_2$ value. These results suggest that isoprenaline-, noradrenaline- and adrenaline-induced relaxations of the guinea pig taenia caecum predominantly involve $\beta_2$ and $\beta_3$-adrenoceptors, whereas CGP 12177-induced relaxation is mediated solely through $\beta_3$-adrenoceptors.

Keywords: Taenia caecum (guinea pig), $\beta$-Adrenoceptor, $\beta_2$-Adrenoceptor, $\beta_3$-Adrenoceptor, CGP 12177

$\beta$-Adrenoceptors are integral plasma membrane proteins that mediate a wide variety of tissue-specific responses. The multiple effects of catecholamines were thought to be mediated by two receptor subtypes, called $\beta_1$- and $\beta_2$-adrenoceptors (1). However, this early classification is insufficient to account for the thermogenic and lipolytic responses of rat brown and white adipose tissues (2–4).

In addition to adipose tissue, atypical $\beta$-adrenoceptors have been shown to exist in a number of gastrointestinal smooth muscle preparations: for example, guinea pig ileum (5), rat proximal colon (6), rat distal colon (7), rat jejunum (8), rat gastric fundus (9), and rat oesophageal muscularis mucosae (10). Also, the presence of atypical $\beta$-adrenoceptors has been indicated in other non-gastrointestinal tissues: for example, in skeletal muscle (11, 12) and in tracheal epithelium (13).

Recently, Emorine et al. (14) have successfully cloned a $\beta_3$-adrenoceptor from human tissue. The three predominant pharmacological characteristics of the $\beta_3$-adrenoceptor are: (i) the high potency of the lipolytic agonist BRL 37344 and related compounds or CGP 12177, (ii) the relatively low affinity of some $\beta$-adrenoceptor antagonists and (iii) the higher sensitivity to noradrenaline than to adrenaline (5–8, 14–19).

The aim of this study was to study the $\beta$-adrenoceptor-mediated relaxation of the guinea pig taenia caecum in detail by comparing the potencies of isoprenaline, noradrenaline, adrenaline and CGP 12177, the selective $\beta_3$-adrenergic agonist, and by a radioligand binding assay using $[3H]$CGP 12177.

MATERIALS AND METHODS

Mechanical responses

Male guinea pigs weighing 300 to 500 g were killed by a blow on the head. A 2- to 3-cm piece of the taenia caecum was isolated and suspended in a 20-ml organ bath filled with a Ringer-Locke solution (154 mM NaCl, 5.6 mM KCl, 2.2 mM CaCl$_2$, 2.1 mM MgCl$_2$, 5.9 mM
NaHCO₃ and 2.8 mM glucose) kept at 32°C and bubbled with a mixture of 95% O₂ and 5% CO₂. The mechanical responses of the smooth muscle preparations were recorded isotonically under a tension of 0.7 g. The experiments were started after the preparations had been allowed to develop their spontaneous tone for 2 hr. The concentration-response curves of the test drugs were obtained cumulatively, and the relaxation induced by these drugs was expressed as a percentage of the maximal relaxation produced by isoprenaline. To test the antagonism, one of the antagonists was added to the bath 30 min before the addition of the agonist. The concentration-response curves to isoprenaline were then obtained in the presence of an antagonist. The time interval between two consecutive curves was usually set at 60 min. In our previous experiments, after the control concentration-response curves were determined, two or three successive cumulative concentration-response curves of isoprenaline were determined. Curves were nearly superimposable, and the changes in sensitivity (sensitization or desensitization) were small (data not shown). In some experiments, atenolol (3 x 10⁻⁴ M), butoxamine (10⁻⁴ M) and phentolamine (10⁻⁶ M) were present to inhibit β₁, β₂ and α-adrenoceptors, respectively. The agonistic potency was expressed as the pD₂ value, and the intrinsic activity was expressed as the ratio between the maximum response to a test drug and that to isoprenaline, a reference drug (20). The competitive antagonistic potency was expressed as the pA₂ value. It was calculated according to the method of Tallarida et al. (21), which was originally reported by Arunlakshana and Schild (22).

Data analyses
Numerical results are expressed as means±S.E. and statistical analyses were performed by Student’s t-test and Duncan’s new multiple range test as appropriate. A P value of less than 0.05 was considered a significant difference.

Preparation of microsomal fractions
Taenia caeci were washed with an ice-cold medium containing 0.25 M sucrose and 10 mM Tris-HCl (pH 7.4 at 4°C). The isolated tissues were minced with scissors and homogenized with a Polytron homogenizer (Kinematica, Lucerne, Switzerland) in 20 vol. of 0.25 M sucrose containing 10 mM Tris-HCl (pH 7.4 at 4°C) with the rheostat set at 9 for 5 sec. The homogenate was centrifuged at 2,500 x g for 10 min. The supernatant was again centrifuged at 15,000 x g for 20 min. Centrifugation of this supernatant at 100,000 x g for 60 min resulted in a pellet that was used as the microsomal fraction (23).

Binding assay
Microsomal fractions were incubated with various concentrations of [³H]CGP 12177 in a total volume of 150 µl of incubation buffer (50 mM Tris-HCl, pH 7.4 at 35°C) for 60 min. The incubation mixture was rapidly filtered by vacuum through Whatman GF/C glass-fiber filters using the Cell Harvester (Brandel, Geithersburg, MD, USA). The filters were washed 3 times with 3 ml of ice-cold 50 mM Tris-HCl (pH 7.4). The filters were then dried, and the radioactivity was determined in a toluene-based scintillator with a liquid scintillation spectrometer (Aloka LSC-3100, Tokyo).

The nonspecific binding was determined as the radioactivity bound to the microsomal fractions, which was not displaced by isoprenaline (100 µM). The specific binding was determined as the difference between the total binding and the nonspecific binding.

Protein assay
Protein concentrations were determined by the method of Lowry et al. (24) using bovine serum albumin as a standard.

Data analyses
Saturation binding experiments were analyzed by iterative nonlinear regression analysis using a PC-9801 VX (NEC, Tokyo) and the “WBSIKK” programme (25).

Drugs and chemicals
The drugs used were obtained from the following sources: (−)-isoprenaline hydrochloride, (−)-noradrenaline bitartrate, (-)-adrenaline bitartrate, butoxamine hydrochloride, (±)-atenolol, (±)-CGP 12177 (4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one) hydrochloride (Research Biochemicals Inc., Natick, MA, USA); phentolamine (Ciba Geigy, Basel, Switzerland); and [³H]CGP 12177 (9.25 MBq; New England Nuclear, Boston, MA, USA). All the drugs were used as solutions in distilled water. The other chemicals used were of analytical grade.

RESULTS
Effects of β₁- and β₂-selective antagonists
Isoprenaline caused graded relaxation of the guinea pig taenia caecum where tone had been raised spontaneously. Atenolol (3 x 10⁻⁶–3 x 10⁻⁵ M) competitively antagonized the relaxation responses to isoprenaline (Fig. 1a); The Schild plot of the data gave the pA₂ value of 5.56 ±0.06, the slope of the regression line (1.01 ±0.15) not being significantly different from unity (Fig. 1b). Butox-
amine (10⁻⁶–10⁻⁵ M) caused competitive antagonism of the relaxant responses (Fig. 2a); The Schild plot of the data gave the pA₂ value of 6.46±0.06, the slope of the regression line (0.99±0.13) not being significantly different from unity (Fig. 2b).

**Fig. 1.** Determination of the pA₂ value for atenolol. a: Antagonism of isoprenaline-induced relaxation by atenolol. Control (○); atenolol at 3×10⁻⁶ M (●), 10⁻⁵ M (■) or 3×10⁻⁵ M (▲). Ordinate: Relaxation (%), expressed as a percentage of the maximal relaxation induced by isoprenaline (3×10⁻⁷ M). Abscissa: Concentration (M) of isoprenaline. Each point is presented as a mean±S.E. of 6 experiments. b: Schild plot for antagonism of isoprenaline by atenolol. The data are taken from experiments shown in a.

**Fig. 2.** Determination of the pA₂ value for butoxamine. a: Antagonism of isoprenaline-induced relaxation by butoxamine. Control (○); butoxamine at 10⁻⁶ M (●), 3×10⁻⁶ M (■) or 10⁻⁵ M (▲). Ordinate: Relaxation (%), expressed as a percentage of the maximal relaxation induced by isoprenaline (3×10⁻⁷ M). Abscissa: Concentration (M) of isoprenaline. Each point is presented as a mean±S.E. of 6 experiments. b: Schild plot for antagonism of isoprenaline by butoxamine. The data are taken from experiments shown in a.

Effects of isoprenaline, noradrenaline and adrenaline

Isoprenaline, noradrenaline and adrenaline all caused graded relaxation of the guinea pig taenia caecum (Fig. 3). The order of potency was isoprenaline > adrenaline > noradrenaline (Table I). However, in the presence of 10⁻⁶ M phentolamine, 3×10⁻⁴ M atenolol and 10⁻⁴ M butoxamine to block α-, β₁- and β₂-adrenoceptor effects, respectively, the rank order of potency was isoprenaline > noradrenaline > adrenaline in the presence of blockers (Fig. 3, Table I). The pD₂ value for noradrenaline was significantly larger than that for adrenaline in the presence of blockers (Table I). Propranolol (~10⁻⁶ M) did not significantly affect the relaxant responses to isoprenaline, noradrenaline and noradrenaline (10⁻⁶–10⁻⁵ M) caused competitive antagonism of the relaxant responses (Fig. 2a); The Schild plot of the data gave the pA₂ value of 6.46±0.06, the slope of the regression line (0.99±0.13) not being significantly different from unity (Fig. 2b).

**Fig. 3.** Concentration-response curves to catecholamines in the presence or absence of 10⁻⁶ M phentolamine, 3×10⁻⁴ M atenolol and 10⁻⁴ M butoxamine. Isoprenaline (●), adrenaline (■) and noradrenaline (▼) in the absence of blockers. Isoprenaline (○), noradrenaline (▲) and adrenaline (□) in the presence of blockers. Ordinate: Relaxation (%), expressed as a percentage of the maximal relaxation induced by isoprenaline. Abscissa: Concentration (M) of the test drugs. Each point is presented as a mean±S.E. of 6 experiments.
adrenaline in the presence of blockers (data not shown).

**Effect of CGP 12177**

CGP 12177, a selective β1-adrenergic partial agonist, caused graded relaxation of the guinea pig taenia caecum (Fig. 4), and the intrinsic activity and the pD2 value were 0.74±0.06 and 7.24±0.21, respectively. In the presence of 10^{-6} M phentolamine, 3×10^{-4} M atenolol and 10^{-4} M butoxamine, the pD2 value was 7.00±0.17 for CGP 12177 (Fig. 4, Table 2). Propranolol (10^{-6} M) did not significantly affect the relaxant responses to CGP 12177 in the absence and the presence of blockers (data not shown).

CGP 12177 competitively antagonized the relaxation responses to isoprenaline. The pA2 value for CGP 12177 was 9.24±0.07 (Table 3).

**Radioligand binding experiments**

Figure 5a shows the typical specific binding of [3H]-CGP 12177 to microsomal fractions from the guinea pig taenia caecum. The binding of [3H]CGP 12177 to microsomal fractions showed an initial plateau of saturation between 6.25 and 12.5 nM of the radioligand (Fig. 5a), but revealed a second stereospecific and saturable binding component at higher concentrations. The curvilinear Scatchard plot (26) was fitted with a two-binding site model, corresponding to a high (KD=0.64±0.06 nM) and a low (KD=142.21±11.41 nM) affinity component with respective Bmax (the maximum binding site) values of 3.11±0.73 and 104.82±15.34 femoles/mg protein (Fig. 5b).

The intrinsic activity, pD2, pA2, pKD and Bmax values of CGP 12177 are summarized in Table 3. The negative log of the dissociation constant of the high affinity site, pKD (high) value of CGP 12177, was in agreement with its pA2 value obtained in the mechanical response and that of the low affinity site, pKD (low) value of CGP 12177, was in agreement with its pD2 value obtained in the mechanical response.

**DISCUSSION**

It is highly probable that the adrenoceptors involved in the responses to the agents used in the current study were...
of the atypical or $\beta_3$-subtype (27–31). For example, the affinity of propranolol (i.e., $pA_2$ value of 6.5–7.5 versus isoprenaline) was significantly lower than would be expected for effects at classical $\beta$-adrenoceptors (i.e., $pA_2$ typically 8.6–9.0) in guinea pig ileum, rat jejenum and rat colon (7, 8, 19). A possible explanation for these apparent discrepancies could be that a heterogenous population of $\beta$-adrenoceptors (i.e., $\beta_3$-subtype) exists. The present study was undertaken to characterize the $\beta$-adrenoceptors mediating relaxation of the guinea pig taenia caecum.

The rightward shift of the isoprenaline concentration-response curve was observed by $10^{-6} - 10^{-5}$ M butoxamine, a $\beta_2$-selective antagonist. The $pA_2$ value for butoxamine calculated from the Schild plot (6.46) is in good agreement with the generally accepted value (6.20) (32), indicating a predominance of $\beta_2$-adrenoceptors. As the $pA_2$ value of butoxamine is eight times greater than that of atenolol, $\beta$-adrenoceptors in the guinea pig taenia caecum are predominantly of the $\beta_2$-subtype. In addition, it was shown that catecholamines caused relaxation of the guinea pig taenia caecum with the following order of potency: isoprenaline $>$ adrenaline $>$ noradrenaline. This fact also supports that $\beta_3$-adrenoceptor subtype predominates in the guinea pig taenia caecum.

The existence of atypical $\beta$-adrenoceptors or $\beta_3$-adrenoceptors has now been generally accepted (27, 31). Unfortunately, high affinity $\beta_3$-antagonists do not exist at present, but the higher sensitivity to noradrenaline than to adrenaline (14), the high potency of a novel class of $\beta$-adrenoceptor agonists (15) and the low potencies and stereoselectivities of classical $\beta$-adrenoceptor antagonists (16) have provided strong support for the occurrence of $\beta_3$-adrenoceptors.

In control preparations, isoprenaline, noradrenaline and adrenaline caused relaxation with a rank order of potency suggestive of $\beta_2$-adrenoceptors. However, addition of $10^{-6}$ M phentolamine, $3 \times 10^{-4}$ M atenolol and $10^{-4}$ M butoxamine to these preparations caused only 4-, 45- and 90-fold decrease in potency for noradrenaline, adrenaline and isoprenaline, respectively, instead of the 500-fold shift expected if the agonists were acting solely at the $\beta_2$-adrenoceptors. Thus, the 500-fold shift in the presence of $10^{-4}$ M butoxamine should be seen, because the fivefold shift of the concentration-response curve for isoprenaline was caused in the presence of $10^{-6}$ M butoxamine. Esbenshade et al. (33) suggested that in SK-N-MC human neuroblastoma cells, catecholamines still maximally activated cAMP accumulation with only small decreases in potency when $\beta_1$-adrenoceptors were blocked with CGP 20712A and that two populations of $\beta$-adrenergic receptors ($\beta_1$-adrenoceptors and $\beta_3$-adrenoceptors) exist in this cells. Moreover, in our study, the rank order of potency of the agonists in the presence of $10^{-6}$ M phentolamine, $3 \times 10^{-4}$ M atenolol and $10^{-4}$ M butoxamine was isoprenaline $>$ noradrenaline $>$ adrenaline, suggesting the presence of an atypical $\beta$-receptor (or $\beta_3$) in the guinea pig taenia caecum. The rank order of potency for catecholamines was the same for various tissues containing $\beta_3$-adrenoceptors (isoprenaline $>$ noradrenaline $>$ adrenaline) (34).

CGP 12177 is generally considered to be a hydrophilic $\beta$-adrenergic antagonist (35, 36). $[^3H]$CGP 12177 has proved to be superior in studies with intact cells, and particularly in studies of the agonist-induced internalization of $\beta$-adrenergic receptors (owing to its hydrophilicity; $[^3H]$CGP 12177 only labels cell-surface receptors) (37). Recently, CGP 12177, a $\beta_1$ and $\beta_2$-adrenoceptor antagonist, behaves as a partial agonist at $\beta_3$-adrenoceptors (27, 31). For example, CGP 12177 distinguishes between brown
adipocyte $\beta_3$-adrenoceptors and classical $\beta$-adrenoceptors in that while at low concentrations it is an antagonist at $\beta_1$-or $\beta_2$-adrenoceptors, at higher concentrations, it stimulates oxygen consumption in hamster brown adipocytes and both oxygen consumption and adenylate cyclase in rat brown adipocytes (38–41). The CGP 12177-induced relaxation was not influenced by addition of $10^{-6}$ M phentolamine, $3 \times 10^{-4}$ M atenolol and $10^{-4}$ M butoxamine, which were used at concentrations occupying >95% of $\alpha_\alpha$, $\beta_1$- and $\beta_2$-receptors, respectively, while the isoprenaline concentration–response curves were markedly shifted to the right by addition of blockers. Propranolol, a non-selective antagonist, did not affect the relaxant response to CGP 12177 in the absence or presence of blockers. These results suggest that CGP 12177-induced relaxation in the guinea pig taenia caecum is mediated through $\beta_3$-adrenoceptors.

The discovery of the novel selective agonists has led to further attempts to identify atypical $\beta$-adrenoceptors (or $\beta_3$-adrenoceptors) by ligand binding techniques. Apparently by using higher concentrations of $[^3H]$CGP 12177, Blum-Kaelin et al. (39) were able to detect an atypical (or $\beta_3$) binding site. Moreover, the affinity of CGP 12177 for the receptor ($pK_D = 7.4$) was consistent with its $EC_{50}$ value as a respiratory stimulant ($pD_2 = 7.1$). In the present study, the specific $[^3H]$CGP 12177 binding to microsomal fractions from the guinea pig taenia caecum showed two affinity sites of the receptor by the iterative nonlinear regression analysis: high affinity and low affinity sites. The $pK_D$ value of the high affinity site of $[^3H]$CGP 12177 was in agreement with its $pA_2$ value, and that of the low affinity site was in agreement with its $pD_2$ value. These results suggest that the low affinity site of $[^3H]$CGP 12177 may be the $\beta_3$-adrenergic binding site and the high affinity site of $[^3H]$CGP 12177, the $\beta_2$-adrenergic binding site.

We have previously demonstrated (42–46) that $\beta$-adrenoceptors contain two different affinity sites: high and low, for which some partial agonists but not isoprenaline (a full agonist) or propranolol (a competitive antagonist) show selectivity. The mechanical response to isoprenaline results from an interaction with the high affinity site. The competitive antagonism shown by propranolol and most partial agonists is due to their ability to compete with isoprenaline for the high affinity site. The mechanical response to the partial agonists results from the interaction with the low affinity site. Moreover, we have showed that the concentration-response curves of the partial agonists (e.g.: carteolol or alprenolol)-induced relaxation of the guinea pig taenia caecum were markedly shifted to the right by propranolol (45). However, CGP 12177-induced relaxation was not affected by propranolol. Emorine et al. (31) have described that the partial agonistic property of several antagonists of $\beta_1$- and $\beta_2$-adrenoceptors, reflecting intrinsic sympathomimetic activities in certain tissues, is one of pharmacological properties of atypical $\beta$-adrenoceptors. Therefore, these observations suggest that atypical $\beta$-adrenoceptors or $\beta_3$-adrenoceptors may contain an additional atypical subtype. Further experiments are necessary to clarify the closely related receptor subtypes and the mechanisms of the interactions of the $\beta$-adrenergic partial agonists with its receptors.

In conclusion, it is evident from the mechanical responses and the radioligand binding experiments that predominantly $\beta_2$- and partly $\beta_3$-adrenoceptors (atypical $\beta$-adrenoceptors) are involved in the $\beta$-adrenoceptor-mediated relaxation of the guinea pig taenia caecum. The CGP 12177-induced relaxation of the guinea pig taenia caecum was shown to be mediated solely by $\beta_3$-adrenoceptors.

Acknowledgment

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan (No. 04304030).

REFERENCES

1 Lands AM, Arnold A, McAuliff JP, Luduena FP and Brown G: Differentiation of receptor systems activated by sympathomimetic amines. Nature 214, 597–598 (1967)
2 Harms HH, Zaagsma J and van der Waal B: $\beta$-Adrenoceptor studies. III. On the $\beta$-adrenoceptors in rat adipose tissue. Eur J Pharmacol 25, 87–91 (1974)
3 Arch JRS: The brown adipocyte beta-adrenoceptor. Proc Nutr Soc 48, 215–223 (1989)
4 Zaagsma J and Nahorski SR: Is the adipocyte beta-adrenoceptor a prototype for the recently cloned atypical $'\beta_3'$-adrenoceptor? Trends Pharmacol Sci 11, 3–7 (1990)
5 Bond RA and Clarke DE: Agonist and antagonist characterization of a putative adrenoceptor with distinct pharmacological properties from the $\alpha$- and $\beta$-subtypes. Br J Pharmacol 95, 723–734 (1988)
6 Croci T, Cecchi R, Tarantino A, Aureggi G, Bianchetti A, Boigegrain R and Manara L: Inhibition of rat colon motility by stimulation of atypical $\beta_3$-adrenoceptors with new gut-specific agents. Pharmacol Res Commun 20, 147–151 (1988)
7 McLaughlin DP and MacDonald A: Evidence for the existence of 'atypical' $\beta$-adrenoceptors ($\beta_3$-adrenoceptors) mediating relaxation in the rat distal colon in vitro. Br J Pharmacol 101, 569–574 (1990)
8 van der Vliet A, Rademaker B and Bast A: A beta adrenoceptor with atypical characteristics is involved in the relaxation of the rat small intestine. J Pharmacol Exp Ther 255, 218–226 (1990)
9 McLaughlin DP and MacDonald A: Characterization of catecholamine-mediated relaxations in rat isolated gastric fundus: evidence for an atypical $\beta$-adrenoceptor. Br J Pharmacol 103, 1351–1356 (1991)
10 de Boer REP, Brouwer F and Zaagsma J: The $\beta$-adrenoceptors mediating relaxation of rat oesophageal muscularis mucosae are predominantly of the $\beta_3$-type, but also of the $\beta_2$-subtype. Br J
11 Challiss RAJ, Leighton B, Wilson S, Thurlby PL and Arch JRS: An investigation of the β-adrenoceptor that mediates metabolic responses to the novel agonist BRL 28410 in rat soleus muscle. Biochem Pharmacol 37, 947–950 (1988)

12 Roberts SJ, Molenaar P and Summers RJ: Characterization of propranolol-resistant (−)[3H]-cyanopindolol binding sites in rat soleus muscle. Br J Pharmacol 109, 344–352 (1993)

13 Webber SE and Stock MJ: Evidence for an atypical, or β3, adrenoceptor in ferret tracheal epithelium. Br J Pharmacol 105, 857–862 (1992)

14 Emorine LJ, Marullo S, Briend-Sutre M-M, Patye G, Tate K, Delavier-Klutshko C and Strosberg AD: Molecular characterization of the human β3-adrenergic receptor. Science 245, 1118–1121 (1989)

15 Arch JRS, Ainsworth AT, Cawthorn MA, Piercy V, Sennitt MV, Thody VE, Wilson C and Wilson S: Atypical β-adrenoceptor on brown adipocytes as targets for antiobesity drugs. Nature 309, 163–165 (1984)

16 Bojanic D, Jansen J, Nahorski SR and Zaagasma J: Atypical characteristics of the β-adrenoceptor mediating cyclic AMP generation and lipolysis in the rat adipocyte. Br J Pharmacol 84, 131–137 (1985)

17 Coleman RA, Denyer LH and Sheldrick KE: β1-Adrenoceptors in guinea pig gastric fundus—are they the same as the atypical β-adrenoceptors in rat adipocytes? Br J Pharmacol 90, 40P (1987)

18 Bond RA and Clarke DE: A response to isoprenaline unrelated to α- and β-adrenoceptor agonism. Br J Pharmacol 91, 683–686 (1987)

19 Blue DR, Bond RA, Adham N, Delmendo R, Michel AD, Eglen RM, Whiting RL and Clarke DE: Antagonist characterization of atypical beta-adrenoceptors in guinea pig ileum: blockade by alprenolol and diphydralprenol. J Pharmacol Exp Ther 252, 1034–1252 (1990)

20 Van Rossum JM: Cumulative dose-response curve II. Techniques of making of dose-response curves in isolated organs and evaluation of drug parameters. Arch Int Pharmacodyn Ther 143, 299–330 (1963)

21 Tallarida RJ, Cowan A and Adler MW: pA2 and receptor differentiation: a statistical analysis of competitive antagonism. Life Sci 25, 637–654 (1979)

22 Arunlakshana O and Schild HO: Some quantitative uses of drug antagonists. Br J Pharmacol Chemother 14, 48–58 (1959)

23 Hisayama T and Takayanagi I: Effects of cyclic AMP and protein kinase on calcium uptake in a microsomal fraction from guinea pig taenia caecum. Biochem Pharmacol 32, 3197–3203 (1983)

24 Lowry OH, Rosebrough NJ, Farr AL and Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265–275 (1951)

25 Takayanagi I, Koike K and Ogishima M: Interactions of R(+) and S(−) isomers of befunolol, a partial agonist with high and low affinity sites of β-adrenoceptors in guinea pig taenia caecum. Arch Int Pharmacol Ther 300, 76–84 (1989)

26 Scatchard G: The attraction of proteins for small molecules and ions. Ann NY Acad Sci 51, 660–672 (1949)

27 Arch JRS and Kaumann AJ: β2 and atypical β-adrenoceptors. Med Res Rev 13, 663–729 (1993)

28 Krief S, Lönqvist F, Raimbault S, Baude B, van Spronsen A, Arner P, Strosberg AD, Ricquier D and Emorine LJ: Tissue distribution of β3-adrenergic receptor mRNA in man. J Clin Invest 91, 344–349 (1993)

29 Leflas JM, Kaghad M, Rodriguez M, Chalon P, Bonnin J, Dupre I, Delpech B, Bensaid M, Le Fur G, Ferrara P and Caput D: Molecular cloning of a human β3-adrenergic receptor cDNA. FEBS Lett 324, 127–130 (1993)

30 Lönqvist F, Krief S, Strosberg AD, Nyberg P, Emorine LJ and Arner P: Evidence for a functional β3-adrenoceptor in man. Br J Pharmacol 110, 929–936 (1993)

31 Emorine LJ, Blin N and Strosberg AD: The human β3-adrenoceptor: the search for a physiological function. Trends Pharmacol Sci 15, 3–7 (1994)

32 Kimura I, Katoh H and Kimura M: Difference between adrenergic β1- and β2-blocking effects on isoproteinenol-induced Ca spike suppression in guinea pig taenia coli. Jpn J Pharmacol 33, 1271–1278 (1983)

33 Esbenshade TA, Han C, Theroux TL, Graneman JG and Minneman KP: Coexisting β1- and atypical β3-adrenergic receptors cause redundant increases in cyclic AMP in human neuroblastoma cells. Mol Pharmacol 42, 753–759 (1992)

34 Liggett SB: Functional properties of the rat and human β3-adrenergic receptors: Differential agonist activation of recombinant receptors in Chinese hamster ovary cells. Mol Pharmacol 42, 634–637 (1992)

35 Lacasa D, Agli B and Giudicelli Y: Direct assessment β-adrenergic receptors in intact rat adipocytes by binding of [3H]-CGP 12177. Evidence for agonist high-affinity binding complex for β1 and β2 receptor subtypes. Eur J Biochem 146, 339–346 (1985)

36 Lacasa D, Maurige F, Lafoutan M, Berlan M and Giudicelli Y: A reliable assay for beta-adrenoeceptor in intact isolated human fat cells with a hydrophilic radioligand, [3H]-CGP-12177. J Lipid Res 27, 368–376 (1986)

37 Staehelin M, Simons P, Jaeggi K and Wigger N: A hydrophilic β3-adrenergic receptor radioligand reveals high affinity binding of agonists to intact cells. J Biol Chem 258, 3496–3502 (1983)

38 Mohell N and Dicker A: The β-adrenergic radioligand [3H]-CGP-12177, generally classified as an antagonist, is a thermogenic agonist in brown adipose tissue. Biochem J 261, 401–405 (1989)

39 Blum-Kaelin D, Isler D, Moeglen Ch, Strohm G and Meier MK: Atypical β3-adrenoceptors mediating thermogenesis in rat brown adipocytes: Consistency of binding and functional data using CGP 12177. In Adrenoceptors: Structure, Mechanisms, Function, Edited by Szabadi E and Bradshaw CM, pp 315, Birkhäuser Verlag, Basel (1991)

40 Graneman JG and Whitty CJ: CGP 12177A modulates brown fat adenylate cyclase activity by interacting with two distinct receptor sites. J Pharmacol Exp Ther 256, 421–425 (1991)

41 Scarpese PJ and Matheny M: Adenylate cyclase agonist properties of CGP-12177A in brown fat: evidence for atypical β-adrenergic receptors. Am J Physiol 260, E226–E231 (1991)

42 Takayanagi I and Koike K: A possible mechanism of action of a beta-adrenergic partial agonist (carteolol) in guinea pig taenia caecum. J Pharmacobiodyn 14, 63–69 (1991)

43 Koike K and Takayanagi I: A possible mechanism in interaction of a partial agonist with β3-adrenoceptor in guinea pig taenia caecum: Effect of Gpp(NH)p on its different binding site. Jpn J Pharmacol 38, 169–176 (1985)

44 Takayanagi I, Koike K and Sato T: Interactions of some partial
agonists with beta-adrenoceptor in the isolated taenia caecum and tracheal smooth muscle of guinea pig. Jpn J Pharmacol 35, 301-305 (1984)

45 Takayanagi I, Koike K and Nakagoshi A: Beta-adrenergic partial agonists and two different affinity sites in beta-adrenoceptors. In Recent Research on Neurotransmitter Receptors, Edited by Yoshida H, pp 41-52, Excerpta Medica, Amsterdam and Tokyo (1986)

46 Takayanagi I, Koike K and Nakagoshi A: Interactions of some partial agonists with high and low affinity binding sites in β-adrenoceptors. Can J Physiol Pharmacol 65, 18-22 (1987)