HELIOSEISMOLOGICAL IMPLICATIONS OF RECENT SOLAR ABUNDANCE DETERMINATIONS

JOHN N. BAHCALL
Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540
SARBANI BASU
Department of Astronomy, Yale University, New Haven, CT 06520-8101
MARC PINSONNEAULT
Department of Astronomy, Ohio State University, Columbus, OH 43210

AND

ALDO M. SERENELLI
Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540
Received 2004 July 7; accepted 2004 September 16

ABSTRACT

We show that standard solar models are in good agreement with the helioseismologically determined sound speed and density as a function of solar radius, the depth of the convective zone, and the surface helium abundance, as long as those models do not incorporate the most recent heavy-element abundance determinations. However, sophisticated new analyses of the solar atmosphere infer lower abundances of the lighter metals (like C, N, O, Ne, and Ar) than the previously widely used surface abundances. We show that solar models that include the lower heavy-element abundances disagree with the solar profiles of sound speed and density as well as the depth of the convective zone and the helium abundance. The disagreements for models with the new abundances range from factors of several to many times the quoted uncertainties in the helioseismological measurements. The disagreements are at temperatures that are too low to affect significantly solar neutrino emission. If errors in the calculated OPAL opacities are solely responsible for the disagreements, then the corrections in the opacity must extend from \(2 \times 10^6 \text{ K} (R = 0.7 \ R_\odot) \) to \(5 \times 10^6 \text{ K} (R = 0.4 \ R_\odot) \), with opacity increases of the order of 10%.

Subject headings: Sun: abundances — Sun: helioseismology — Sun: interior — Sun: oscillations

Online material: color figures

1. INTRODUCTION

Why are precision tests of solar models important? The Sun is a laboratory in which the predictions of stellar evolution theory can be compared with uniquely accurate and detailed measurements. Stellar evolution calculations are used throughout astronomy to classify, date, and interpret the spectra of individual stars and of galaxies. Comparisons, discussed in this paper, between helioseismological measurements and solar model calculations suggest that at least one of the ingredients of stellar evolution calculations is not known as precisely as previously believed. We shall see that there are reasons for questioning the accuracy of the most sophisticated and detailed determinations of stellar abundances, the recent measurements of the solar heavy-element abundances. Alternatively, unexpectedly large changes could be required in the radiative opacity. However, we shall also see that the disagreement between helioseismological measurements and solar model predictions (with the new metal abundances) occurs at relatively low temperatures and therefore do not affect significantly the predicted solar neutrino fluxes.

Helioseismology provides sensitive and powerful tests of the theory of stellar evolution. In addition to measuring the depth of the solar surface convection zone and the surface helium abundance, inversions of seismic data are used to measure to high precision the speed of sound as a function of depth in the star for almost the entire solar interior. The density distribution can also be determined, although with an order of magnitude less precision than for the sound speed.

A number of investigators have made comparisons of seismic data with solar models and have confirmed that the standard solar mixture of Grevesse & Noels (1993) and the updated mixture of Grevesse & Sauval (1998) yield solar models in good agreement with the data (e.g., Bahcall & Pinsonneault 1995; Christensen-Dalsgaard et al. 1996; Bahcall et al. 2001; Christensen-Dalsgaard 2002; Couvidat et al. 2003; Sackmann & Boothroyd 2003; Richard et al. 2004, and references therein.) As early as 1988, Bahcall & Ulrich (1988) showed that detailed solar models computed with the accurate physics and the numerical precision required for solar neutrino predictions yielded results in good agreement with the then-available helioseismological data.

In a series of papers that preceded the epochal and definitive measurements of the Sudbury Neutrino Observatory (SNO) and Super-Kamiokande solar neutrino experiments (Ahmad et al. 2001; Fukuda et al. 2001), we showed that the excellent agreement between the computed sound speeds in precise standard solar models and the precise helioseismological inversions (differences $<0.1\%$ rms throughout the solar interior) implied that new physics was required to solve the solar neutrino problem (Bahcall et al. 1997, 1998, 2001; Bahcall 2001).

New and more powerful analyses of the surface chemical composition of the Sun have recently become available. These new analyses use three-dimensional atmospheric models, take account of hydrodynamic effects, and pay special attention to uncertainties in the atomic data and the observed spectra. Lower mass fractions have been obtained in this way for C, N, O, Ne, and Ar (Asplund et al. 2000, 2004; Asplund 2000; Allende
Pриемущества новых эмпирических и теоретических подходов, а также измененных параметров моделирования для других составляющих

```math
\begin{align*}
\frac{Z}{X} = 0.0176 - \text{much less than the previous value of } \frac{Z}{X} = 0.0229 \text{ (Grevesse & Sauval 1998)}. \\
\text{In fact, the recent estimates for the C, N, and O mass fractions are lower than all the abundance measurements we have used in the precision solar models in this series going back to 1971 (see, e.g., Table II of Bahcall & Pinsonneault 1995).}
\end{align*}
```

Despite the great improvement in the techniques now used to determine the new element abundances, the new abundances cause the depth calculated for the solar convective zone with the aid of a standard solar model, \(R_{CZ} = 0.726 R_\odot \) (Bahcall & Pinsonneault 2004; Bahcall et al. 2004; Basu & Antia 2004), to be in strong disagreement with the measured depth,

```math
R_{CZ} = 0.713 \pm 0.001 R_\odot, \quad (1)
```

which is determined by helioseismological techniques (Kosovichev & Fedorova 1991; Christensen-Dalsgaard et al. 1991; Guzik & Cox 1993; Basu & Antia 1997, 2004; Basu 1998). Paradoxically, the calculated depth of the convective zone obtained using the older element abundances, \(R_{CZ} = 0.714 R_\odot \), agrees with the helioseismological value (Bahcall et al. 2001). This situation has been described as the “convective zone problem” (Bahcall et al. 2004).

Our goal here is to determine the helioseismological implications of the recent abundance determinations. We compare the helioseismologically measured depth of the solar convective zone, the sound speed and density as a function of radius, and the initial helium abundance; none of these values are obtained using a series of precise solar models. The solar models considered here incorporate the most recent and accurate nuclear and stellar data, including the equation of state and radiative opacity.

We describe in § 2 the solar models whose properties are investigated in the present paper. We then discuss in § 3 the helioseismological data and the inversion technique that we have used to obtain the measured depth of the convective zone, the sound speeds and density as a function of radius, and the initial helium abundance. We compare in § 4 the properties of our set of solar models with the solar parameters that are determined by helioseismology. We summarize and discuss our conclusions in § 5.

2. DESCRIPTION OF SOLAR MODELS

We describe in this section the basic ingredients of six solar models that we use to assess the helioseismological implications of the recent heavy-element abundance determinations. The six solar models considered in detail in this paper are listed below. Models BP04 and BP04+ were originally computed by Bahcall & Pinsonneault (2004); model BP04+21% was computed by Bahcall et al. (2004).

BP04. Older element abundances from Grevesse & Sauval (1998) and best available values for all other input parameters (including improved nuclear rates and equation of state).

BP04+. The same as BP04, except that recent lower estimates for heavy-element abundances are incorporated.

BP04-EOS96. The same as BP04 but with the OPAL 1996 equation of state (Rogers et al. 1996) instead of the OPAL 2001 equation of state (Rogers 2001; Rogers & Nayfonov 2002).

BP04+21%. The same as BP04+, except that the OPAL radiative opacity is increased by 21% near the base of the convective zone.

BP04+11%. The same as BP04+, except that the OPAL radiative opacity is increased by 11% for temperatures ranging from \(2 \times 10^6 \) to \(5 \times 10^6 \) K.

BP00. Our best previous-generation standard solar model, obtained by Bahcall et al. (2001) with older values of nuclear reaction data, an older equation of state (OPAL 1996), and the Grevesse & Sauval (1998) element abundances.

The code and techniques used in these calculations have been described in Bahcall & Pinsonneault (1992, 1995), Bahcall & Ulrich (1988), and Bahcall et al. (2001).

The reader may wonder why we include in this paper the results from the model BP00, when BP04 has superseded BP00 by incorporating more accurate nuclear reaction data and an improved equation of state. We include results from BP00 as well as BP04 in order to have some indication of the kind of differences that can be expected, independent of solar abundance determinations, as further improvements are made in the input data to solar models. The differences between values obtained with the BP00 and the BP04 models may be regarded as within the expected range. We shall see in what follows that the differences in solar model results caused by adopting the new heavy-element abundance determinations are much larger than the differences between the results obtained with BP00 and BP04.

We want our investigations to be as precise as possible and our inferences to be as free as possible from dependence on the idiosyncrasies of a particular stellar evolution code. Therefore, we have recalculated the BP04, BP04+ and BP04+21% solar models using the Garching stellar evolution code (see, e.g., Schlattl et al. 1997 and Schlattl 2002 for details of the code), to which the nuclear energy generation routine exportenergy,\(^1\) has been coupled. The nuclear cross sections adopted are those used in Bahcall & Pinsonneault (2004). The models were calculated using the latest version of the OPAL equation of state (Rogers 2001), OPAL radiative opacities (see below for the composition adopted), and element diffusion for helium and metals (Thoul et al. 1994; code available at the URL given in footnote 1). The mixing-length theory for convection has been used in all the models. The Schwarzschild criterion was used to determine the location of the convective boundaries.

We have verified that the Garching stellar evolution code and the Bahcall-Pinsonneault code (which has its origins in the Caltech, UCLA, and Yale codes; see Bahcall & Ulrich 1988; Bahcall & Pinsonneault 1992, 1995; Prather 1976; Pinsonneault et al. 1989) yield identical results to the accuracy of interest in all of the investigations considered in this paper.

The model BP04, which was calculated assuming the older Grevesse & Sauval (1998) solar surface composition, has a present surface ratio of heavy element to hydrogen mass fractions of \(Z/X = 0.0229 \). The model BP04+, which incorporates the new determinations of the solar heavy-element composition, has a much lower ratio of heavy elements to hydrogen, \(Z/X = 0.0176 \). Since new solar abundance determinations are being reported as they become available, Table 1 of Bahcall et al. (2004) lists the specific element abundances adopted in computing both BP04 and BP04+.

The model BP04+21% was designed to bring into agreement the calculated and the helioseismologically measured depths of the convective zone using a solar model that incorporates the recent heavy-element abundance determinations. Bahcall et al. (2004) showed that a local 21% increase in the tabulated OPAL

\(^1\) The routine is publicly available at http://www.sns.ias.edu/~jnb.
radiative opacity near the base of the convective envelope will produce a model with the base of its convective zone at $R_z = 0.713 \, R_\odot$, in essentially perfect agreement with the measured value for the depth of the convective zone. The factor by which the opacity was increased is similar to the factor needed by Basu & Antia (2004) to construct solar envelope models with the new heavy-element abundances that have the same convective zone depth, helium abundance, and density profile as the Sun. Very recently, Seaton & Badnell (2004) have shown that a detailed calculation using the methods of the Opacity Project (OP; see Seaton et al. 1994) for a six-element mixture yields a Rosseland mean opacity in the region of interest of the order of 5% larger than the OPAL opacity for the same mixture.

All the models assume a solar age of \(4.57 \times 10^9\) yr, a present solar luminosity of \(L_0 = 3.8418 \times 10^{33} \text{ ergs s}^{-1}\), and a present solar radius of \(R_0 = 6.9598 \times 10^{10} \text{ cm}\). For each model, we used OPAL opacity tables that correspond to the detailed composition that was adopted.

3. HELIOSEISMOLOGICAL INVERSIONS

We summarize in this section the largely standard techniques that we use to determine the differences between the solar model characteristics and the properties of the Sun as determined by helioseismological measurements.

Helioseismological inversions generally proceed through a linearization of the equations of stellar oscillation, using their variational property, around a known reference model (see, e.g., Dziembowski et al. 1990, 1994; Däppen et al. 1991; Antia & Basu 1994; Elliott 1995; Tripathy & Christensen-Dalsgaard 1998). The differences between the structure of the Sun and the reference model are then related to the differences in the measured oscillation frequencies of the Sun and the model by known kernels. Nonadiabatic effects and other errors in modeling the surface layers give rise to frequency shifts that are not accounted for by the variational principle (Cox & Kidman 1984; Balmforth 1992). Since the eigenfunctions of low- and medium-degree modes are essentially independent of degree in the near-surface layers, the frequency shifts are just a function of mode frequency, divided by the mode inertia (Christensen-Dalsgaard & Berthomieu 1991; Christensen-Dalsgaard & Thompson 1997). The frequency of a deeply penetrating mode is shifted less by near-surface perturbations than that of a shallowly penetrating mode of the same frequency. In the absence of any first-principle formulation, these effects are usually taken into account in an ad hoc manner by including an arbitrary function of frequency in the variational formulation (Dziembowski et al. 1990). Thus, the fractional change in the frequency of a mode can be expressed in terms of the fractional changes in the structure of the model, which can be characterized, for example, by the adiabatic sound speed \(c\) and the density \(\rho\), as well as a surface term. After linearization, one obtains (e.g., Dziembowski et al. 1990)

\[
\frac{\delta \nu_i}{\nu_i} = \int_0^{R_i} \frac{K_{i,c}^2(r)}{c^2(r)} \frac{\delta c^2(r)}{c^2(r)} \, dr + \int_0^{R_i} K_{i,\rho,c}^2(r) \frac{\delta \rho(r)}{\rho(r)} \, dr + \frac{F_{\text{surf}}(\nu_i)}{I_i}.
\]

(2)

Here \(\delta \nu_i\) is the difference in the frequency \(\nu_i\) of the \(i\)th mode between the solar data and a reference model, \(i\) representing the pair \((n,l)\), where \(n\) is the radial order and \(l\) is the degree of the model. The kernels \(K_{i,c}^2\) and \(K_{i,\rho,c}^2\) are known functions of the reference model that relate the changes in frequency to the changes in \(c^2\) and \(\rho\), respectively. The term involving \(F_{\text{surf}}\) takes into account the near-surface errors in modeling the structure and the modes, and \(I_i\) is the mode inertia of the \(i\)th mode.

Equation (2) constitutes the inverse problem that must be solved to infer the differences in structure between the Sun and the reference model. The inversions shown in this paper have been carried out using the subtractive optimally localized averages (SOLA) technique (Pijpers & Thompson 1992, 1994). Details of how SOLA inversions are carried out and how various parameters of the inversion are selected are given by Rabello-Soares et al. (1999).

In this paper, we use helioseismic inversions to determine how similar the different solar models discussed in §2 are to the real Sun. Each of the models described in §2 is used as a reference model. For the helioseismological data, we use solar oscillation frequencies obtained by the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO). In particular, we use frequencies obtained from MDI data that were collected for the first 360 days of its observation (Schou et al. 1998). This data set was chosen because it was derived from a long time series when solar activity was low. The length of the time series results in reduced noise and hence a larger number of modes for which the frequencies can be determined reliably. Mode sets derived from longer data sets are available, but they only consist of low-degree modes (e.g., Bertello et al. 2000). In addition, a longer time series would have meant adding observations from periods of increasing solar activity, which would have changed the frequencies. It is a well-established fact that solar frequencies increase with solar activity. However, it is also known that the increase occurs as an increase in the surface term in equation (2) and hence does not change inversion results (Basu 2002). We invert for both the sound-speed differences and the density differences between the solar models and the Sun.

4. COMPARISONS BETWEEN SOLAR MODELS AND OBSERVATIONS

In this section, we compare solar parameters determined from helioseismological measurements with the values obtained from the six solar models that are discussed in §2. Table 1 summarizes the principal results.

Figure 1 shows the fractional differences between the sound speeds as a function of solar radius that are computed for each of the solar models and the sound speeds determined from helioseismology. Figure 2 shows for the density profiles a similar trend to the one Figure 1 shows for the sound speeds. Since it is well known that sound-speed determinations are more accurate and more robust than density determinations, we do not discuss further the density profiles other than to remark that they are consistent with all of the other comparisons we make between solar model predictions and helioseismological measurements.

4.1. Comparisons for Models BP00 and BP04: 1998 Element Abundances

Column (3) of Table 1 presents the fractional rms differences between each solar model (used as a reference model; see § 3) and the helioseismologically determined sound speeds. We see that the BP00 and the BP04 solar models, both of which are computed using the older Grevesse & Sauval (1998) heavy-element abundances, are in good agreement with the solar sound speeds. The rms agreement with the solar sound speeds is about 0.1% for both BP00 and BP04. Figure 1 shows the agreement between the sound speeds predicted by the BP00 solar model (dark line) and the BP04 solar model (dashed line).
Column (5) of Table 1 shows that the calculated depth of the convective zone for the BP00 and the BP04 models is in satisfactory agreement with the measured value of the depth of the convective zone given in equation (1), 0.713 R_\odot.

The surface helium abundance of the Sun has recently been redetermined by Basu & Antia (2004). They find

$$Y_{\text{helioseismology}} = 0.2485 \pm 0.0034.$$ (3)

The interpretation of the error given in equation (3) is not simple, since systematic uncertainties are dominant. Column (5) of Table 1 shows that the present-day surface helium abundance obtained from models BP00 and BP04 may be slightly lower than that obtained from helioseismology, but the statistical significance of this difference is uncertain.

For completeness, we have computed a model that is identical to BP04 except that instead of using the 2001 OPAL equation of state, we use the older 1996 OPAL equation of state. The results are given in row (3) of Table 1.

Improvements in the equation of state between 1996 and 2001 are reflected in Table 1 by the slightly different values that are found for BP04 (row [2]) and BP04-EOS96 (row [3]). We see that the improvement in the equation of state does not affect significantly the agreement of the solar model results with the measured helioseismological values. We conclude that plausible changes in the equation of state are unlikely to explain the discrepancy between solar model predictions and helioseismological measurements when the lower metal abundances are used.

As discussed in Basu et al. (2000), the effect of mixing in the radiative zone of the Sun would be in the direction to reconcile the meteoritic and solar photospheric lithium abundances and to bring the computed surface helium slightly closer to the measured value. Such models have a somewhat shallower solar surface convection zone, and the overall agreement with the sound-speed data is comparable, or slightly less good, than for models without extra mixing.

4.2. Comparisons for Model BP04+: New Heavy-Element Abundances

Figure 1 shows the dramatic lack of agreement between the helioseismological sound speeds and the values predicted by...
the BP04+ solar model, which uses the new heavy-element abundance determinations that lead to $Z/X = 0.0176$. The biggest discrepancy is in the vicinity of the base of the convective zone, near $0.7 \, R_\odot$. However, there is a significant discrepancy between BP04+ and the helioseismological values all the way in to about $0.3 \, R_\odot$.

Table 1 summarizes the magnitude of this discrepancy. For the solar model BP04+, the rms discrepancy in the sound speeds is more than a factor of 3 worse than for the BP04 model (and more than a factor of 5 worse than for the BP00 model). Furthermore, the depth of the convective zone, $0.726 \, R_\odot$, given in column (6) of Table 1 is inconsistent with the measured value of $0.713 \, R_\odot$. Finally, the surface helium abundance given in column (6), $Y = 0.238$, is lower than the measured value given in equation (3).

We conclude that the solar model BP04+, which is constructed using the most recent heavy-element abundance estimates, is inconsistent with helioseismological measurements.

4.3. Comparisons for BP04+ 21%

Enhanced Opacity, New Abundances

The comparison between the predictions of the model BP04+21% and the helioseismological data is very instructive. This 21% increase in the radiative opacity relative to the standard OPAL opacity was found to be sufficient to resolve the discrepancy in the calculated depth of the convective zone that was obtained with BP04+ model (with no enhanced opacity). For a related discussion, see the paper by Tripathy et al. (1998).

The BP04+21% model was constructed with exactly the same input data as the BP04+ model, including the recent heavy-element abundance determinations, but in addition BP04+21% has the radiative opacity increased artificially by 21% near the base of the convective zone. The precise form of the opacity increase was postulated to be of the form obtained by multiplying the OPAL opacity in the vicinity of the convective envelope boundary by a Lorentzian function $f(T)$. Specifically, the multiplicative factor $f(T)$ was taken to be

$$f(T) = 1 + \frac{\alpha \gamma^2}{(T - T_0)^2 + \gamma^2}, \quad (4)$$

Here T is the temperature in the solar model. The perturbed opacity is $\kappa_{\text{pert}} = \kappa_0 f(T)$, where κ_0 is the unperturbed radiative opacity, α is the amplitude of the perturbation, and γ is the width of the perturbation (defined as the point at which the perturbation drops to $\alpha/2$). The temperature at the base of the convective zone is $T \approx 2.18 \times 10^6 \, K$, which was used for T_0 in equation (4). The BP04+21% solar model was calculated for a width of the opacity perturbation $\gamma = 0.2 \times 10^6 \, K \approx 0.17 T_0$. This value of γ corresponds to a width in the solar radius of only $\Delta R = 0.02 \, R_\odot$.

Figure 1 shows two things about the BP04+21% solar model. First, the 21% increase in the opacity near the base of the solar convective zone indeed improves significantly the agreement with the measured sound speeds over what is obtained with the model BP04+. Second, the improved agreement is limited to the region near the base of the convective zone, and there remains a significant disagreement down to radii of the order of 0.4 R_\odot ($T = 5 \times 10^6 \, K$). Of course, different assumed forms of the factor $f(T)$ lead to different estimates of how much opacity change is required to construct a model with the correct depth of the convection zone (see, e.g., Basu & Antia 2004).

In summary, Figure 1 indicates that the radiative opacity would have to be changed in a broad range of temperatures (radii) in order to resolve the discrepancies between helioseismological measurements and solar model predictions made using the new heavy-element abundances. The relatively low value for the surface helium abundance, $Y = 0.239$ obtained with BP04+21% (see Table 1), may also reflect the need for an opacity correction that extends down to $\sim 5 \times 10^6 \, K$.

4.4. Comparisons for BP04+ 11%

Motivated by the results of § 4.3, we have computed a variety of solar models assuming the correctness of the recently determined low metal abundances but with different assumed opacity changes. We have studied the helioseismological properties of these models. The reader will immediately recognize that one can in principle consider an infinite number of such “low-metal, higher opacity” models, with prescriptions for changing the opacity of varying complexity and artificiality. We acknowledge that there is limited utility in computing such models without a physical basis for the assumed opacity changes.

However, we have found a relatively simple prescription for changing the opacity, while adopting the low metal abundances, that yields reasonable agreement with the observed helioseismological properties. We present the results for this model here not out of any conviction that the assumed opacity law is correct, but rather to illustrate the general quality of the fit to the helioseismological data that is possible and to indicate approximately how much the opacity would have to be shifted in order to obtain reasonably good agreement with the helioseismological measurements.

The results of § 4.3 indicate that the opacity must be changed over a relatively broad range of temperatures if we adopt the lower metal abundances. For simplicity, we assumed a constant 11% increase above the OPAL opacity from $2 \times 10^6 \, K (R = 0.7 \, R_\odot)$ down to $5 \times 10^6 \, K (R = 0.4 \, R_\odot)$, where the opacity increase was smoothly turned off (half-width of turnoff is $2 \times 10^6 \, K$). We denote this model by BP04+11%

We are sure that the prescription of a constant opacity increase that is implemented in BP04+11% is too simple to represent the improvements in the radiative opacity that are likely to result from detailed quantum mechanical calculations of the solar mixture of hydrogen, helium, and heavy elements. However, we shall see that this model with a constant opacity increase fits the data reasonably well and is a crude approximation to what one might guess is required by comparing (see Fig. 4 below) the opacities in the BP04 model (successful in describing the helioseismological data) and the BP04+ model (unsuccessful in describing the helioseismological data).

Figure 3 and Table 1 show that the BP04+11% solar model fits the helioseismological data with an accuracy that is comparable to our best-fitting solar models, BP00 and BP04. We conclude that an increase in the opacity of the order of 10% in the range $(2 - 5) \times 10^6 \, K$ would resolve the discrepancy between the predictions of solar models computed with the new lower metal abundances and the helioseismological measurements.

Figure 4 shows how the OPAL radiative opacity changes because of the adoption of the new solar composition. We have evaluated the opacity at the same temperatures and densities for two solar models, BP04 and BP04+, that differ only in their assumed composition. To correct for the small effect that at the
same temperature the density differs slightly in the two models, we use the equation
\[
\left(\frac{\delta \kappa}{\kappa} \right)_{T,\rho} \equiv \frac{\kappa_{04}(T, \rho) - \kappa_{04+}(T, \rho)}{\kappa_{04+}(T, \rho)},
\]
where
\[
\kappa_{04+}(T, \rho) \approx \kappa_{04+}(T, \rho') + \left(\frac{\partial \kappa_{04+}}{\partial \rho'} \right)_{T} (\rho - \rho').
\]

Here \(\kappa_{04}\) and \(\kappa_{04+}\) are the opacities corresponding to the BP04 and BP04+ solar models, respectively, \(T\) and \(\rho\) are temperatures and densities at a given point in the BP04 model, and \(\rho'\) is the density in the BP04+ model at the temperature \(T\). Including the density dependence makes very little difference near the base of the convective zone but increases the fractional opacity difference by about 40% of its value at the highest temperature \((T = 5 \times 10^{6} \text{ K})\) at which an opacity perturbation was introduced into the solar model BP04+11%. The fractional difference is small (<3%) in the regions in which solar neutrinos are produced \((R < 0.2 \, R_{\odot} \text{ and } T < 9 \times 10^{6} \text{ K})\). However, for \(T < 5 \times 10^{6} \text{ K}\) the difference increases and reaches about 15% close to the base of the convective zone. Figure 4 shows why the BP04+11% model approximately restores the agreement with helioseismological measurements.

We have evolved solar models with larger opacity increases near the base of the convective zone and smaller increases farther in, but we have not obtained by this procedure a substantial improvement in the agreement with helioseismological data over what is achieved with the BP04+11% model.

Basu & Antia (2004) discussed the characteristics of a solar envelope model that invoked, in order to satisfy helioseismic constraints, a 19% increase in radiative opacity relative to the tabulated OPAL opacities. We have evolved a full solar model with the same opacity increase and heavy-element abundance as the Basu & Antia (2004) model (i.e., a 19% increase in opacity from the base of the convection zone to a temperature of \(5 \times 10^{6} \text{ K}\) and a heavy element to hydrogen mass ratio of \(Z/X = 0.0171\)). We find, as expected from the previous discussion of BP04+11% and from Figure 3, that the 19% increase in opacity is too large to provide a good fit to the helioseismological data. The depth of the convection zone for the evolved model is \(R = 0.708 \, R_{\odot}\), and the rms fractional sound speed discrepancy is \(\delta C/c = 0.0033\). The reason for the difference between our conclusion and the Basu & Antia (2004) result almost certainly lies in the fact that the Basu & Antia envelope model was forced to have abundance profiles near the base of the convective zone that are different from what we find in our stellar evolution models, while at the same time being silent about the helioseismological properties in the radiative interior. The Basu & Antia envelope model was forced to have heavy-element and helium profiles in agreement with the helioseismological determinations near the base of the convective zone. For standard solar models, the heavy-element and helium profiles are different from those of the Sun near the base of the convective zone (Basu & Antia 1994; Bahcall et al. 1997; Antia & Chitre 1998), probably because of turbulent mixing not included in the standard models (Elliott & Gough 1999). Over the radiative interior of the Sun, \(R = 0.0 - 0.7 \, R_{\odot}\), standard solar models like BP00 or BP04 are, as we have seen, in excellent agreement with the helioseismological data.

5. CONCLUSIONS

We summarize and discuss in this section our five principal conclusions. The main quantitative results of our studies are given in Table 1 and in Figures 1 and 3.

1. Larger heavy-element abundances yield satisfactory solar models. Standard solar models constructed with the older (i.e., higher) heavy-element abundances (models BP00, BP04, and BP04-EOS96) are in good agreement with the helioseismological

![Figure 3](https://example.com/figure3.png)

Fig. 3.—Model with an 11% opacity increase. The figure shows the relative sound speed and density differences (left and right panels, respectively) between solar models and helioseismological results from MDI data. The BP04+11% model has the same characteristics as BP04+ (i.e., low metal abundances) except that the radiative opacities have been increased by a constant 11% factor from the base of the convective zone down to \(5 \times 10^{6} \text{ K} (R = 0.4 \, R_{\odot})\). [See the electronic edition of the Journal for a color version of this figure.]

![Figure 4](https://example.com/figure4.png)

Fig. 4.—Opacity difference between BP04 and BP04+ solar models. The figure shows the fractional opacity difference between the two solar models BP04 (higher metal abundances) and BP04+ (lower metal abundances) as a function of the temperature in the BP04 solar model.
newer heavy-element abundances are in conflict with helio-
to explain the reason why solar models constructed with the
Suppose that a change in the OPAL radiative opacity is required
helps, but is not enough. We calculate a solar model using the
newer heavy-element abundances and also increase the radiative
opacity near the base of the solar convective zone by just the
amount required to make the convective zone depth calculated
with new heavy-element abundances agree with the measured
depth. The improved agreement between the solar model and the
helioseismologically measured sound speeds, the depth of the
convective zone, and the surface helium abundance.

3. Increasing the opacity near the base of the convective zone
helps, but is not enough. We calculate a solar model using the
newer heavy-element abundances and also increase the radiative
opacity near the base of the solar convective zone by just the
amount required to make the convective zone depth calculated
with new heavy-element abundances agree with the measured
depth. The improved agreement between the solar model and the
helioseismological determinations is limited, like the assumed
change in the radiative opacity, to regions near the base of the
convective zone.

4. An 11% increase in opacity over a broader range is okay.
Suppose that a change in the OPAL radiative opacity is required
to explain the reason why solar models constructed with the
newer heavy-element abundances are in conflict with helio-
seismology measurements. Then, the OPAL opacity must be in-
creased by about 11% from about 2.2 \times 10^6 \text{ K} at the base of the
convective zone (R = 0.71 R_\odot) all the way down to about
5 \times 10^6 \text{ K} (R = 0.4 R_\odot). It would be very useful to study whether
such a change in opacities is consistent with other astronomical
data. The required 11% increase is larger than the difference
reported by Seaton & Badnell (2004) between the radiative
opacities calculated independently by the Opacity Project and by
the OPAL project.

5. The predicted solar neutrino fluxes are not significantly
affected. The differences in the predicted solar neutrino fluxes for
the most different solar models considered in this paper, BP04
and BP04+, are all within the 1 \sigma quoted theoretical errors (see
Table 1 of Bahcall & Pinsonneault 2004). If we compare mod-
els that differ only in whether or not an 11% increase in opacity
has been included, the differences in predicted neutrino fluxes
are slightly smaller, especially for the most important neu-
trino sources: 1\%(p-p neutrinos), 2\% (7Be neutrinos), and 6%
(8B neutrinos).

There are, in addition to the opacity, other sources of po-
tential change in the solar model input data, most importantly
the uncertainties in the measurements of the heavy-element
abundance and the uncertainties in the calculation of the heavy-
element diffusion coefficients. The recent heavy-element abun-
dance determinations have quoted uncertainties of the order of
0.05 dex (12%; see Asplund et al. 2000, 2004; M. Asplund
2004, private communication; Asplund 2000; Allende Prieto
2001, 2002). The heavy-element diffusion coefficients are uncertain by about 15% (see Thoul et al. 1994).

It may well be that the correct reconciliation of abundance
determinations will involve modest adjustments relative to the
present standard values of all of the factors mentioned above,
namely, the abundances themselves, the diffusion coefficients,
and the radiative opacity. The increase of the radiative opacity
by 11% obtained in this paper with the help of the model
BP04+11% may be regarded as a plausible upper limit to the
opacity correction that is required, since it assumes no change in
any of the other input parameters.

Why have we not constructed and explored even more solar
models with a variety of hypothetical changes in the radiative
opacity, diffusion coefficients, and heavy-element abundances?
The reason is that for the opacity changes by themselves there is
an infinity of conceivable corrections, with different amplitudes
and shapes. Moreover, one can assume whatever changes one
wants, within the quoted uncertainties, for the diffusion co-
efficients and the heavy-element abundances. Improved calcu-
lations of the radiative opacity (see, e.g., Seaton and Badnell
2004 for recent refinements) will determine what, if any, sig-
nificant refinements are implied by more accurate calculations.
Once those calculations are available it will be appropriate to
make new solar models to incorporate the newly calculated
opacities.

J. N. B. is supported in part by NSF grant PHY-0070928.
S. B. was partially supported by NSF grants ATM 0206130 and
ATM 0348837. A. M. S. is supported in part by the W. M. Keck
Foundation through a grant to the Institute for Advanced Study.
We are grateful to M. Seaton for stimulating comments.
This work uses data from the Solar Oscillations Investigation/
Michelson Doppler Imager (SOI/MDI) on the Solar and Helio-
spheric Observatory (SOHO). SOHO is a project of international
cooperation between ESA and NASA. MDI is supported by
NASA contract NAG5-13261 to Stanford University.

REFERENCES

Ahmad, Q. R., et al. 2001, Phys. Rev. Lett., 87, 071301
Allende Prieto, C., Lambert, D. L., & Asplund, M. 2001, ApJ, 556, L63
———. 2002, ApJ, 573, L137
Antia, H. M., & Basu, S. 1994, A&A, 107, 421
Antia, H. M., & Chitre, S. M. 1998, A&A, 339, 239
Asplund, M. 2000, A&A, 359, 755
Asplund, M., Grevesse, N., Sauval, A. J., Allende Prieto, C., & Kiselman, D.
2004, A&A, 417, 751
Asplund, M., Nordlund, A., Trampedach, R., & Stein, R. F. 2000, A&A,
359, 743
Bahcall, J. N. 2001, Nucl. Phys. B, 91, 9
Bahcall, J. N., Basu, S., & Pinsonneault, M. H. 1998, Phys. Lett. B, 433, 1
Bahcall, J. N., & Pinsonneault M. H. 1992, Rev. Mod. Phys., 64, 885
———. 1995, Rev. Mod. Phys., 67, 781
———. 2004, Phys. Rev. Lett., 92, 121301
Bahcall, J. N., Pinsonneault, M. H., & Basu, S. 2001, ApJ, 555, 990
Bahcall, J. N., Pinsonneault, M. H., Basu, S., & Christensen-Dalsgaard, J.
1997, Phys. Rev. Lett., 78, 171
Bahcall, J. N., Serenelli, A. M., & Pinsonneault, M. H. 2004, ApJ, 614, 464

Bahcall, J. N., & Ulrich, R. K. 1988, Rev. Mod. Phys., 60, 297
Balmforth, N. J. 1992, MNRAS, 255, 632
Basu, S. 1998, MNRAS, 298, 719
———. 2002, in Proc. SOHO 11 Symp., From Solar Min to Solar Max: Half a
Solar Cycle with SOHO, ed. A. Wilson (ESA SP-908; Noordwijk: ESA), 7
Basu, S., & Antia, H. M. 1994, MNRAS, 269, 1137
———. 1997, MNRAS, 287, 189
———. 2004, ApJ, 606, L85
Basu, S., Pinsonneault, M. H., & Bahcall, J. N. 2000, ApJ, 529, 1084
Bertello, L., et al., 2000, ApJ, 535, 1066
Christensen-Dalsgaard, J. 2002, Rev. Mod. Phys., 74, 1073
Christensen-Dalsgaard, J., & Berthomieu, G. 1991, in Solar Interior and At-
tmosphere, ed. A. N. Cox, W. C. Livingston, & M. Matthews (Tucson: Un-
iv. Arizona Press), 401
Christensen-Dalsgaard, J., Gough, D. O., & Thompson, M. J. 1991, ApJ,
387, 413
Christensen-Dalsgaard, J., & Thompson, M. J. 1997, MNRAS, 284, 527
Christensen-Dalsgaard, J., et al. 1996, Science, 272, 1286
Couvidat, S., Turck-Chieze, S., & Kosovichev, A. G. 2003, ApJ, 599, 1434
