An open-source software ecosystem for the interactive exploration of ultrafast electron scattering data

Laurent P. René de Cotret1*, Martin R. Otto1, Mark J. Stern1 and Bradley J. Siwick1,2

Abstract
This paper details a software ecosystem comprising three free and open-source Python packages for processing raw ultrafast electron scattering (UES) data and interactively exploring the processed data. The first package, *iris*, is a graphical user-interface program and library for interactive exploration of UES data. Under the hood, *iris* makes use of *npstreams*, an extension of *numpy* to streaming array-processing, for high-throughput parallel data reduction. Finally, we present *scikit-ued*, a library of reusable routines and data structures for analysis of UES data, including specialized image processing algorithms, simulation routines, and crystal structure manipulation operations. In this paper, some of the features or all three packages are highlighted, such as parallel data reduction, image registration, interactive exploration. The packages are fully tested and documented and are released under permissive licenses.

Keywords: Ultrafast electron scattering, Visualization, Data processing, Open-source

Background
The advent of ultrafast electron diffraction (UES) has expanded crystallography into the temporal dimension. Combining the spatial resolution of electron microscopy and femtosecond time-resolution, this laboratory-scale technique has shed light on a broad spectrum of phenomena, from photoinduced structural phase transitions in inorganic [21, 32] and organic materials [8], to coherent nuclear motion in dilute molecular gas [36]. Beyond probing structure through elastic interactions, UES has provided a direct observation of electron–phonon couplings and phonon relaxation pathways in layered materials [26, 31].

Ultrafast electron scattering is a stroboscopic technique. Electron scattering patterns are acquired a fixed time-delay after photoexcitation with an ultrafast laser. A full view of the scattering dynamics can be assembled by acquiring electron scattering patterns for sufficient time-delays. To maximize the signal-to-noise ratio, equivalent experiments—hereafter referred to as *scans*—are acquired sequentially. This set of equivalent sub-experiments forms the raw experimental data. In order to extract time-dynamics, the data must be distilled, or *reduced*; the data reduction might involve scattering intensity normalization or alignment, and ends in averaging. A physical picture of dynamics in a sample is built by looking at in scattering intensity over time, in a fixed region of reciprocal space. A conceptual view of the flow from raw data to dynamics is presented in Fig. 1.

The path from data acquisition to scientific insights can never be fully standardized and streamlined. However, one step common to all workflows is data exploration. This is especially important for time-resolved techniques such as UES due to the breadth and depth of information contained in a dataset. This emerging field would benefit greatly from an aggregation of efforts towards free and open-source tools that standardize and simplify analysis and interpretation of complex dynamics. In this work, we present a program built specifically for interactive data exploration, *iris*. We also introduce a software package of reusable routines and data structures related to ultrafast electron scattering (*scikit-ued*) and a streaming array operations package (*npstreams*), establishing a software ecosystem for the interactive exploration of ultrafast electron scattering data.
Fig. 1 Ultrafast electron scattering data exploration workflow. To maximize signals, ultrafast electron scattering experiments consist in many identical sub-experiments (or scans), as shown on the top right. Data reduction consists in combining these sub-experiments, which usually involve image-alignment, intensity normalization, and other corrections. Each individual time-delay can be reduced in parallel. The resulting reduced data are a stack of scattering patterns, similar to a video. Scattering intensity time-series can be extracted from either a single pixel or integrated over a group of pixels (lower right).
foundation on which the community can build. Iris is the first integrated solution for interacting with UES data.

Methods
The software ecosystem presented in this work is written in Python; the language is accessible to non-programmers, with a simple syntax and dynamic nature. The scientific Python community’s dedication to good documentation and focus on free and open-source packages are attractive features that played heavily in the decision to write Iris in Python. While pure Python code typically results in poor performance, bottlenecks can easily be rewritten in a more efficient, compiled language, and seamlessly integrated with existing Python code [5]. It should be stressed that performance-critical parts of our software ecosystem are, in fact, thin layers of Python code on top of fast C libraries. The Python scientific stack is built on the de facto standard Numpy package [29] that exports array operations rooted in compiled code, bypassing the slow nature of Python in most situations. Therefore, Python provides an ideal mix of performance and ease of development.

Results and discussion
Interactive data exploration
The primary tool presented in this work is Iris, first and foremost a graphical user-interface (GUI) program that allows for interactive exploration of ultrafast electron scattering data. From its GUI, users can interact with raw data, process this raw data into a reduced dataset, enabling interactive data exploration. Iris’ second role consists of a library of data structures for handling ultrafast scattering data in external Python scripts and programs. Everything that can be done in the GUI can also be done programmatically.

The first step in the typical Iris workflow involves interacting with raw scattering patterns from a variety of possible unique formats. For this purpose, Iris supports plug-ins that act as bridges between arbitrary data formats for raw data and Iris’s internal representation.

The second step in the typical Iris workflow consists of data reduction. During this phase, equivalent scattering patterns acquired with the same time-delay are reduced in parallel. This reduction operation can involve image-alignment, intensity normalization, or any operation specified by a plug-in. Scattering patterns are then concatenated into a three-dimensional array, similar to a video. Experimental metadata, such as sample temperature, photoexcitation conditions, electron energy, and more, are also preserved. Arbitrary metadata can be defined by users through the use of plug-ins. The performance optimization of the data reduction pipeline is discussed in depth in “Streaming operations on arrays” section.

Iris handles large reduced datasets by storing them using the Hierarchical Data Format version 5 (HDF5), an archival format designed for large n-dimensional numerical datasets [3, 13]. HDF5 supports transparent compression and data-corruption detection mechanisms. Most importantly, HDF5 supports data slicing, which allows to read specific portions of an HDF5 file without having to load the entire file—which can require tens of gigabytes of memory in the case of fully reduced UES datasets.

The final stage of the exploration workflow—time-series extraction—is specific to time-resolved techniques. Thanks to HDF5’s data slicing feature and careful performance optimizations within Iris, dynamics in scattering patterns can be explored interactively, in real-time. Further data transformations are also possible, most importantly azimuthal averaging of scattering patterns from polycrystalline samples. Time-series extraction in the GUI is shown in Fig. 2 for two types of samples, single-crystal and polycrystal.

Iris was designed with compatibility in mind. For input compatibility, Iris’s plug-in architecture allows to interface with arbitrary data formats. Writing a plug-in requires writing some Python code: users can then use the full power of the scientific Python stack to introduce extra processing in Iris’s data reduction pipeline. In terms of output compatibility, Iris datasets can be inspected and manipulated by a large variety of programs, thanks to HDF5’s official and unofficial bindings to programming languages such as C/C++, Fortran77/Fortran90, LabVIEW, MATLAB, Mathematica, R, Julia, Python, and many more. The HDF5 layout is described in the online documentation.

Streaming operations on arrays
Raw scattering datasets can reach sizes up to hundreds of gigabytes. The reduction operation of concatenating images into dense Numpy arrays, and then reducing—which usually involves scattering pattern alignment, intensity normalization, and finally a weighted average—is a slow process.

To effectively reduce the raw data, the package Npstreams was created. Npstreams extends the core components of the array-oriented Numpy package (called universal functions) to work on streams of arrays rather than dense, in-memory arrays. Npstreams can automagically generate streaming functions from Numpy universal functions. The streams of arrays can be generated on-demand (such as images being progressively loaded from disk). Stream operations require much less memory, which in turns allows for
parallelization. In fact, in the special case of stream operations on arrays of the same size (e.g., on images), data reduction can operate in constant-memory.

In the case of data reduction in *iris*, a stream of arrays is formed by progressively loading scattering patterns at same time-delay (but from different scans). Therefore, the reduction of a dataset of many time-delays and many scans to a dataset of many time-delays and a single scan can be done in parallel. In the limiting case where data processing performance is not bound by data loading time, the performance increase due to *npstreams* alone is linear in the number of processing units. Thus, an 8-core computer would experience an 8x performance increase by using *npstreams* in parallel.

Single-core performance is also improved. To measure single-core performance, benchmarks set up a sequence of $n \times n$ arrays of random floating-point numbers representing scattering patterns. Then, arrays are either directly averaged using *npstreams*, or concatenated into a dense *ndarray* which is in turns averaged using *numpy*. The results of running this benchmark on sequence of varying lengths and arrays of varying sizes is presented in Fig. 3.

While the core of *npstreams* is concerned with autogenerating streaming functions from basic universal *numpy* functions, some more complex streaming functions are implemented, with the aim of providing real-world examples. For instance, a streaming weighted average and streaming weighted standard deviation routines are included, based on West [33].

Npstreams also includes benchmarking functionality, where users can generate benchmark results on their machine with a simple command, as shown in Fig. 4.

The functionality of *npstreams* extends beyond the requirements of *iris* and *scikit-ued*. Streaming array operations can deal with an infinite stream of arrays. For example, an operation can be applied until certain criteria are met, or a pipeline can be assembled which can run forever, in constant (low) memory.
Reusable routines and data structures for ultrafast electron scattering data analysis

The scientific Python community has access to over 50 research-oriented packages called scikits, extensions of the general-purpose SciPy package [17]. These software packages provide routines and algorithms for handling image processing (scikit-image [30]), performing machine-learning tasks (scikit-learn [24]), interacting with spectroscopy data (scikit-spectra), bio-informatics (scikit-bio), and much more. In the tradition of these scikits, we introduce scikit-ued, a collection of algorithms, routines, and data structures commonly needed for ultrafast electron scattering data interactions. Most operations iris performs on datasets are offloaded to scikit-ued.

Scikit-ued provides a repository of reusable components in many domains, such as image analysis, crystal structure manipulation, baseline-removal, simulation, common utilities, and more. Some of its features are described in the following sections.

Baseline-removal

The baseline-removal functionality provided by scikit-ued is the evolution of the approach previously published by the authors. Readers interested in the details are referred to [6]. Some extensions have been made, such as the ability to compute a background for 2D images using the iterative algorithm based on the discrete wavelet transform presented in [7]. This approach can be used to remove blemishes on images: by treating hot spots or defects as foreground, the baseline of the original image will show no hotspots. An example of this is shown in Fig. 5.

Image analysis

Scattering patterns analysis intersects with general image processing in many ways. In most cases, other libraries such as scikit-image can be used. Specific tasks not widely available elsewhere have been included in scikit-ued.

A common data processing task, implemented in the data reduction pipeline of iris, is scattering pattern alignment to a reference. During the course of data acquisition, scattering patterns can drift across the detector due to fluctuations in the electron beam alignment, while other image components (e.g., beam-stop, hard edges, detector defects) will appear static. Therefore, cross-correlation techniques used in image registration generally fail at scattering pattern alignment. Scikit-ued includes an advanced image-alignment algorithm, known as the masked normalized cross-correlation image registration [22]. By masking static components of scattering data, the image registration algorithm will only compare misaligned sections, greatly enhancing registration accuracy. An example of this algorithm is presented in Fig. 6.

Symmetry-based operations are also implemented in scikit-ued. One such operation is azimuthal averaging, a procedure during which polycrystalline scattering patterns are reduced to one radial dimension. Scikit-ued includes discrete symmetry-based operations as well, most importantly discrete rotational averaging. Scattering patterns exhibiting \(n \)-fold rotational symmetry can be transformed to yield a higher signal-to-noise ratio. This approach has recently been used to extract small ultrafast diffuse scattering signals from graphite [26]. An example of such symmetrization is presented in Fig. 7.
type involving the ubiquitous Crystal Information File (CIF) format [2, 15]. Structures can also be pulled from entries in the Crystallography Open Database [9, 10], as well as generated from Protein Data Bank entries [1, 14]. A number of structures (mostly simple elemental crystals) are included with the package. Finally, Crystal instances can be generated from (and converted to) the Atomic Simulation Environment Atoms format [20]. An example of structure manipulation is presented in Fig. 8.

Once a Crystal instance has been created, space-group information and symmetry operations can be determined through the library spglib [12, 27]. Using this information, crystals can also be reduced to their primitive cells.

Simulation
Scikit-ued has built-in support for calculation of crystal potentials, based on the parametrization of Kirkland [18]. The example of real-space, projected electrostatic potential of orthorhombic barium titanate (BaTiO₃) is shown in Fig. 9. These calculations are required in the implementation of multislice simulations [4, 19].

From the parametrization of atomic potentials, the atomic form factors can also be calculated—and from them static structure factors. Scikit-ued exports a routine for simulating electron diffraction patterns for polycrystalline samples based on the atomic positions of Crystal objects. Examples of simulated diffraction patterns from built-in scikit-ued structures are presented in Fig. 10.
Input and output

Scikit-ued provides routines to read exotic image file formats. Scikit-ued can read Merlin Image Binary files (*.mib)—both single image and multi-images files—as well as Gatan’s proprietary DM3 and DM4 formats (*.dm3, *.dm4). Scikit-ued can also read all images supported by scikit-image, notably images encoded in the Tagged Image File Format (*.tiff).

Miscellaneous

Many small utilities are included in scikit-ued. Fast computation of pseudo-voigt profiles is included and integrated with the polycrystalline diffraction simulation routine, based on the work by Ida et al. [16]. Calculation of thin film optical properties is also implemented, based on Tomlin [28]. Finally, a preliminary version of the non-uniform Fast Fourier Transform (NFFT) is available [11]. Additional functionality is presented in the documentation.

Common features

All three libraries presented herein benefit from some common features and development tools.

First and foremost, all three packages are documented online (offline documentation is also available). Reference documentation is automatically generated from the source code, which limits the possibility of documentation being out-of-date with respect to the source code [23]. The documentation for all three packages also includes hand-written tutorials. The documentation for each package is hosted online by Read the Docs and links are specified in see “Availability of data and materials” section.

The repositories are hosted on GitHub, a web-based code hosting service with built-in version control through Git. As the packages are free and open-source, GitHub can be used to browse source code. It also provides features not available through Git itself, most importantly an issue tracker. This issue tracker is also directly accessible from the iris GUI through a help menu. Bugs and issues raised through GitHub are publicly visible and provide a place to discuss potential solutions.

After changes are committed to one of the repositories, the updated package is automatically installed and tested in a remote environment—a practice known as continuous integration. Committed changes also trigger the automatic generation of a new documentation version, which is then posted online within minutes.

(See figure on next page.)

Fig. 5 Removing image hotspots using an iterative baseline-removal algorithm based on the discrete wavelet transform. a Original scattering pattern shows hotspots due to laser light hitting the detector. b Baseline of a. The hotspots are treated as the foreground by the iterative algorithm.

Fig. 6 Scattering pattern alignment based on the masked normalized cross-correlation algorithm. a Reference scattering patterns of polycrystalline chromium. b Misaligned scattering pattern. c Difference between the patterns in a and b shows structure indicative of a sideways shift. Note that the beam block has not moved. d Pixel mask of the beam block. Black pixels represent zones to be ignored by the alignment procedure. e Aligned image, registered without the mask in d. f Difference between a and e shows residual misalignment. g Aligned image, registered with the mask in d. f Difference between a and g shows successful alignment.
Fig. 7 Example of symmetrization of single-crystal scattering patterns.

- **a** Raw single-crystal scattering pattern. Inset shows the pixel mask indicating where the beam-block is located. Pixels under the mask are ignored during the symmetrization routine.
- **b** Sixfold rotational symmetrization of scattering pattern in **a** with beam-block masked reduces noise and enhances dynamics.

```python
>>> from skued import Crystal
>>> c = Crystal.from_cod(9009089) # Latest revision by default
>>> print(c)
< Crystal object with following unit cell:
   Atom O @ (0.90, 0.79, 0.80)
   Atom O @ (0.10, 0.21, 0.20)
   Atom O @ (0.10, 0.29, 0.70)
   Atom O @ (0.90, 0.71, 0.30)
   Atom O @ (0.39, 0.69, 0.29)
   Atom O @ (0.39, 0.81, 0.79)
   Atom O @ (0.61, 0.19, 0.21)
   Atom O @ (0.61, 0.31, 0.71)
   Atom V @ (0.24, 0.53, 0.53)
   Atom V @ (0.76, 0.48, 0.47)
   Atom V @ (0.24, 0.97, 0.03)
   Atom V @ (0.76, 0.03, 0.97)

Lattice parameters:
   5.743Å, 4.517Å, 5.375Å, 90.00°, 122.60°, 90.00°
Source:
   COD num:9009089 rev:latest>
>>> print(c.spacegroup_info())
{'hall_number': 81,
 'hall_symbol': '-P 2ybc',
 'international_full': 'P 1 2_1/c 1',
 'international_number': 14,
 'international_symbol': 'P2_1/c',
 'pointgroup': 'C2h'}

>>> print(c.chemical_composition)
{'O': 0.666,
 'V': 0.333}
```

Fig. 8 Generating a `Crystal` instance for vanadium dioxide from the Crystallography Open Database entry 9009089 [34], inside the interactive Python interpreter.
Finally, stable versions of all three packages are uploaded to the Python Packaging Index (PyPI), where they can be inspected and downloaded. For users of the Anaconda Python distribution, the three packages are also available for install within the conda environment, which provides pre-compiled packages.

Roadmap
The natural progression for *iris* involves data exploration along different dimensions beyond time: diffracted intensity along dimensions of fluence, temperature, doping concentration, and more.

The target functionality of *npstreams* has largely been implemented. The obvious key improvement concerns performance, which could be increased by rewriting the core functionality in C, while exploiting *numpy*'s C interface.

Future developments of *scikit-ued* concern the simulation subpackage. Simulation of polycrystalline scattering pattern is indispensable as a tool to test methods and validate hypotheses; simulation of single-crystal scattering patterns is a natural evolution of *scikit-ued*'s capabilities. While the basic parametrizations of atomic properties are already implemented, as well as the computation of real-space electrostatic potential of arbitrary crystal structures (see Fig. 9), wave-propagation calculations—e.g., the multislice algorithm—remain to be implemented. See [25] for a summary of available electron scattering and microscopy simulation tools to which *scikit-ued* could bind.

Conclusion
An ecosystem of three free and open-source Python packages for exploring ultrafast electron scattering data was presented. This ecosystem, governed by permissive licenses, was created with collaboration in mind, while adhering to sane software development practice. We introduced *npstreams*, a streaming array-processing library that allows for constant-memory data reduction. *Scikit-ued*, a *scipy* extension that contains algorithms and data structures for the analysis of UES data, was also presented. Finally, the ecosystem culminates in the *iris* package, the first integrated data exploration interface specifically tailored to the data-rich nature of UES. *Iris*’ plug-in functionality as well as real-time, interactive capabilities pushes the limits of what is possible in field of ultrafast electron scattering.

Abbreviations
UES: ultrafast electron scattering; GUI: graphical user-interface; HDF5: hierarchical data format version 5; CIF: crystal information file; COD: crystallography open database; PyPI: Python packaging index.

Authors’ contributions
LPRDC designed and implemented the software packages. LPRDC prepared the manuscript. MRO and MJS contributed data to showcase features of the software ecosystem. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank Samuel Palato and Hélène Seiler for their guidance concerning software design principles. The authors are also grateful to the contributors and maintainers of the several free and open-source packages on top of which this software ecosystem is built.
Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The data presented in this manuscript are publicly available in the skicit-ued repository. The software packages' repositories are linked on the authors' homepage (http://www.physics.mcgill.ca/siwicklab/software.html). All packages are multi-platform and require the CPython interpreter version 3.6 or later. The ins and skicit-ued are licensed under the Massachusetts Institute of Technology (MIT) license, while npstreams is licensed under the Berkeley Software Distribution (BSD) 3-clause license (same as numpy). The documentation for each package is hosted online by Read the Docs at the addresses located below: Ins: https://ins-ued.readthedocs.io/, Skicit-ued: https://skicit-ued.readthedocs.io/, Npstreams: https://npstreams.readthedocs.io/.

Funding
This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds de Recherche du Québec-Nature et Technologies (FRQNT), and Canada Research Chairs (CRC) program.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 June 2018 Accepted: 11 September 2018

References
1. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)
2. Björkman, T.: Cif2cell: generating geometries for electronic structure programs. Comput. Phys. Commun. 182(S), 1183–1186 (2011)
3. Collette, A.: Python and HDF5. O'Reilly, Sebastopol (2013)
4. Cowley, J.M.: Chapter 11—multi-slice approaches. In: Cowley, J.M. (ed.) Diffraction physics (Third Edition), North-Holland Personal Library, 3rd edn, pp. 231–254. North-Holland, Amsterdam (1995)
5. Dalcin, L., Bradshaw, R., Smith, K., Citro, C., Behnel, S., Seljebotn, D.S.: Cython: the best of both worlds. Comput. Sci. Eng. 13(4), 231–254 (2011)
6. de Cotret, L.P.R., Siwick, B.J.: A general method for baseline-removal in ultrafast electron powder diffraction data using the dual-tree complex wavelet transform. Struct. Dyn. 4(4), 044004 (2017)
7. Galloway, C.M., Le Ru, E.C., Etchegoin, P.G.: An iterative algorithm for background removal in spectroscopy by wavelet transforms. Appl. Spectr. 63(12), 1370–1376 (2009)
8. Gao, M., Lu, C., Jean-Ruel, H., Liu, L.C., Marx, A., Onda, K., Kohishiara, S.-Y., Nakano, Y., Shao, X., Hiratsuka, T., Saigo, Y., Yamochi, H., Cooney, R.R., Moriena, G., Sciaini, G., Miller, R.J.D.: Mapping molecular motions leading to charge delocalization with ultrabright electrons. Nature 496(7445), 343–6 (2013)
9. Graulis, S., Dakevi, A., Merkys, A., Chateigner, D., Lutterotti, L., Blondel, M., Prettenhofer, P., Weiss, R., Duboug, V., Vanderplas, J., Passios, A., Counapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
10. Hester, J.R.: A validating CIF parser. PyCIFRW. J. Appl. Crystallogr. 39(4), 621–625 (2006)
11. Ida, T., Ando, M., Toraya, H.: Extended pseudo voigt function for approximating the voigt profile. J. Appl. Crystallogr. 33(6), 1311–1316 (2000)
12. Jones, E., Oliphant, T., Peterson, P. et al.: Scipy: open source scientific tools for Python, (2001) [Online; accessed <today>]
13. Kirkland, E.J.: Advanced computing in electron microscopy, 2nd edn. Springer, New York (2010)
14. Kirkland, E.J., Loane, R.F., Silcox, J.: Simulation of annular dark field stem images using a modified multislice method. Ultramicroscopy 23(1), 77–96 (1987)
15. Lanese, A.H., Mortensen, J.J., Blomqvist, J., Castelli, E., Christensen, R., Duax, M., Friis, J., Groves, M.N., Hammer, B., Hargus, C., Hermes, E.D., Jennings, P.C., Jensen, P.B., Kermode, J., Kitchin, J.R., Kolbsjerg, E.L., Kubal, J., Kaasbjerg, K., Lygaard, S., Maronsson, J.B., Maxson, T., Olsen, T., Pastewka, L., Peterson, A., Rostgaard, C., Schitt, J., Schütz, O., Strange, M., Thygesen, K.S., Vegge, T., Vilhelmsen, L., Walter, M., Zeng, Z., Jacobsen, K.W.: The atomic simulation environment: a python library for working with atoms. J. Phys. Condensed Matter 29(27), 273002 (2017)
16. Lennartsson, R., Thurn, B.: Cif2cell: generating geometries for electronic structure programs. Comput. Phys. Commun. 182(S), 1183–1186 (2011)
17. Lutterotti, L., Mancini, E., Butkus, J., Moeck, P., Le Bail, A.: Crystallography open database—an open-access collection of crystal structures. J. Appl. Crystallogr. 42(4), 726–729 (2009)
18. Lutterotti, L., Mancini, E., Butkus, J., Moeck, P., Le Bail, A.: Crystallography open database—an open-access collection of crystal structures. J. Appl. Crystallogr. 42(4), 726–729 (2009)
19. Martino, S., Dakevi, A., Merkys, A., Chateigner, D., Lutterotti, L., Quirós, M., Serebryanyova, N.R., Moeck, P., Downs, R.T., Le Bail, A.: Crystallography open database (codb) — an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 40(D1), D420–D427 (2012)
20. Mejia, P., Sivropoulos, D., Mulder, R., Plavšič, M., Zupan, L.: Characterizing the VO2+ structure of VO2+ nanotubes using in-situ XAFS. Phys. Rev. Lett. 119, 166401 (2017)
21. Mornstedt, M., Schütz, O., Strange, M.: The crystallography open database—an open-access collection of crystal structures. J. Appl. Crystallogr. 42(4), 726–729 (2009)
22. Müller, R., Crublet, M., Dahan, P., Lutterotti, L., Moeck, P., Le Bail, A.: Crystallography open database—an open-access collection of crystal structures. J. Appl. Crystallogr. 42(4), 726–729 (2009)
23. Nieuwenhuyzen, P.C., Jensen, P.B., Kermode, J., Kitchin, J.R., Kolbsjerg, E.L., Kubal, J., Kaasbjerg, K., Lygaard, S., Maronsson, J.B., Maxson, T., Olsen, T., Pastewka, L., Peterson, A., Rostgaard, C., Schitt, J., Schütz, O., Strange, M., Thygesen, K.S., Vegge, T., Vilhelmsen, L., Walter, M., Zeng, Z., Jacobsen, K.W.: The atomic simulation environment: a python library for working with atoms. J. Phys. Condensed Matter 29(27), 273002 (2017)
24. O'Reilly, J., O'Brien, T., O'Horo, R., Philipose, M., Abad, A., Pacheco, J., Yenlei, F., Liu, J., Young, R., Walkowiak, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
25. Pawlik, A., Segal, J., Sharp, H., Petre, M.: Crowdsourcing scientific software documentation: a case study of the numpypackage documentation project. Comput. Sci. Eng. 17(1), 28–36 (2015)
26. Przyborowski, K., Ophus, C., Bhat, M., Siwick, B.J.: A photoinduced metallic phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 341(6180), 19 (2014)
27. Pryor, A., Ophus, C., Miao, J.: A streaming multi-gpu implementation of image simulation algorithms for scanning transmission electron microcopy. Adv. Struct. Chem. Imaging 3(1), 15 (2017)
28. Quarteroni, A.: Numerical mathematics. Springer, New York (2008)
29. Quarteroni, A.: Numerical mathematics. Springer, New York (2008)
30. van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T.A.: scikit-image: image processing in python. Peer J. 2, e453 (2014)
31. West, D.H.: Updating mean and variance estimates: an improved method for method. Commun. ACM 22(3), 532–535 (1979)
32. Wyckoff, R.W.G.: Crystal structure, vol. 1. Interscience Publishers, New York (1963)