Classical synchronization indicates persistent entanglement in isolated quantum systems

Dirk Witthaut 1,2,3, Sandro Wimberger 4,5, Raffaella Burioni 4,5 & Marc Timme 3,6,7

Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.
Understanding collective dynamical phenomena constitutes a topical challenge across physics and beyond, with distinct implications for the classical and quantum realms. How collective phenomena in classical and quantum worlds are linked is largely unknown. Synchronization constitutes one of the most basic cooperative dynamics in classical systems. It indicates the locking of states of coupled classical units and governs the dynamics of physical, chemical, and biological systems.\(^1\)\(^{–}\)\(^8\) Entanglement constitutes the most fundamental phenomenon in many-body quantum systems and indicates correlations that are genuinely quantum mechanical. Two quantum particles are entangled if they cannot be described by independent single-particle states. Such entanglement thereby determines that are genuinely quantum mechanical. Two quantum particles in many-body quantum systems and indicates correlations that exceed a critical value, correlations emerge to a classical synchronization process.

In this article, we present a direct link between classical synchronization and quantum entanglement. We investigate a paradigmatic class of isolated nonlinearly coupled quantum systems combining the classical theory of synchronization with simulations of quantum dynamics and mean-field as well as higher-order analysis. We reveal that and how synchronization phenomena impact entanglement. Intriguingly, transient squeezing and number fluctuations indicating genuine entanglement emerge through and exactly at the transition to classical synchronization. Moreover, the dynamics of classical phase locking quantitatively predicts the growth of quantum number fluctuations, and for large system sizes becomes an exact indicator of the growth. As the quantum system is isolated, synchronization is not externally induced but emerges through self-organized dynamics. We demonstrate how this quantum-classical link on the level of collective phenomena may be experimentally verified, for example with ultracold atoms.\(^13\)\(^{–}\)\(^17\). For a paradigmatic and experimentally relevant class of systems, these results thus indicate that the substantial parts of the emergence of entanglement—a genuine quantum feature—can be traced back to a classical synchronization process.

Results

Signatures of synchronization. Consider the dynamics of a quantum many-body system described by Schrödinger’s equation i\(\partial\Psi(t)/\partial t=\hat{H}\Psi(t)\) with the Hamiltonian

\[
\hat{H}=\sum_{j=1}^{L} \omega_j \hat{a}_j^\dagger \hat{a}_j + \frac{U}{2} \hat{a}_j^\dagger \hat{a}_j^\dagger \hat{a}_j \hat{a}_j + \hat{H}_s,
\]

\[
\hat{H}_s=\sum_{j=1}^{L} \sum_{j'=1}^{L} \frac{\tilde{K}_{jj'}}{8} \left[i(\hat{a}_j^\dagger \hat{a}_{j'} - \hat{a}_{j'}^\dagger \hat{a}_j) (\hat{a}_{j'}^\dagger \hat{a}_j - \hat{a}_j^\dagger \hat{a}_{j'}) + \text{h.c.} \right],
\]
describing \(L\) spatially localized modes \(j \in \{1, \ldots, L\}\) (ref. 18) with on-site two-body interactions of energy scale \(U\). \(\hat{a}_j\) denotes the annihilation and \(\hat{a}_j^\dagger\) the creation operator for the \(j\)th mode and \(n_j=\hat{a}_j^\dagger \hat{a}_j\) is the number operator.

The quantum many-body system (1) exhibits a sharp transition from a weakly to a strongly correlated regime. When the coupling strengths \(\tilde{K}_{jj'}\) exceed a critical value, correlations emerge dynamically and persist independent of the initial state. This transition (Fig. 1) becomes apparent already for systems with just two modes, which arise in the longitudinal Lipkin-Meshkov-Glick model (see Supplementary Note 1). Figure 1a, b illustrate the different dynamical regimes for a coherent initial state \(\Psi(0)=|z, \Delta \phi\rangle\), that is, a state which is maximally localized in phase space (see Methods section).

For small coupling strengths \(\tilde{K}_{12}=\tilde{K}_{21}=\tilde{K}\), correlations remain negligible and the modes gradually dephase, so the phase coherence \(\varphi_{12}(t)\) defined by \(\langle \Psi(t) | \hat{a}_1^\dagger \hat{a}_2 | \Psi(t) \rangle \equiv N z_{12}(t) e^{i \Delta \phi_{12}(t)} / L\) decays rapidly. The Husimi function \(Q(t)\), representing the quantum phase space density (see Methods section), spreads in the phase direction, such that the relative phase of the two modes becomes undefined.

In contrast, for sufficiently large coupling strengths \(\tilde{K}\), we observe transient squeezing of the quantum state (Fig. 1c): The phase space density \(Q(t)\) is compressed in the phase direction and the uncertainty of the relative phase decreases below the standard

![Figure 1](image-url)
uncertainty limit, indicating many-body entanglement13,19. Moreover, a strong phase coherence prevails in the long term (Fig. 1d). The reduction of phase fluctuations is accompanied by the emergence of number entanglement: The number fluctuations exceed the maximum possible for any separable (non-entangled) quantum state, indicated by the entanglement parameter $W_{12}>0$ in Fig. 1e (see Methods section). Strikingly, this type of entanglement is persistent.

Squeezing and entanglement systematically emerge for coupling strengths above some critical value, whereas they are absent below, see Fig. 2. The observed transition indicates a quantum analogue of the classical synchronization transition1–4. To see this, consider the mean-field limit and derive the equations of motion for the amplitudes c_i from Heisenberg’s equation, neglecting quantum fluctuations and approximating $\langle \hat{a}_j \hat{a}_k \hat{a}_l \rangle \approx c_j c_k c_l$. We obtain

$$i \frac{d c_i}{d t} = \omega_i c_i + U |c_i|^2 c_i + \sum_{j=1}^{L} \frac{K_{ij}}{2} \left(|c_j|^2 c_i + |c_i|^2 c_j - 2 |c_i|^2 c_j \right)$$

(2)

(see Supplementary Note 3 for more details). Given a total number N of excitations, the manifold of the phase configuration C^L defined by $|c_i|^2=N/L$ for all $\ell \in \{1, \ldots, L\}$ is invariant under the dynamics such that $|c_i|=const$ in time (see Supplementary Note 3 and ref. 20). With initial conditions on this manifold denoted by $c_i = \sqrt{N/L} e^{-i \psi_i}$, the dynamics (2) reduces to

$$\frac{d \phi_i}{d t} = \omega_i + U \frac{N}{L} + \sum_{j=1}^{L} K_{ij} \sin \left(\phi_j - \phi_i \right).$$

(3)

The intrinsic frequencies and rescaled coupling strengths become $\omega_i + UN/L$ and $K_{ij} \equiv K_{ij} N/L$, respectively.

This mean field limit constitutes a system of Kuramoto oscillators—a paradigmatic model of classical nonlinear dynamics characterizing synchronization and other collective phenomena3,4. For two modes, the dynamics is fully characterized by the phase difference $\Delta \phi = \phi_1 - \phi_2$ and the population imbalance $z = (|c_1|^2 - |c_2|^2) / (|c_1|^2 + |c_2|^2)$ as the total number of excitations is conserved. The phase dynamics on the invariant manifold $z = 0$ becomes

$$\frac{d}{d t} \Delta \phi = \omega - 2K \sin (\Delta \phi).$$

(4)

with $\omega = \omega_2 - \omega_1$. This Kuramoto system bifurcates at $K_c = |\omega|/2$, precisely indicating the quantum transition point, see Fig. 2. Below K_c no steady states exist and the phases are unlocked.

For $K > K_c$ phase locking emerges such that $\Delta \phi(t)$ tends to the fixed point $\Delta \phi^* = \arcsin(\omega/2K)$, which shapes the corresponding quantum dynamics (Fig. 1a versus b): The Husimi function is contracted at the fixed point such that phase squeezing emerges. Simultaneously, the dynamics is unstable in the z-direction, indicating the growth of number fluctuations. The classical Kuramoto dynamics can thus be seen as a skeleton of the full quantum dynamics21 and the onset of classical synchronization as a skeleton for the emergence of quantum correlations.

The correspondence of classical phase locking and the growth of quantum fluctuations becomes analytically exact for large populations of globally coupled oscillators, that is, $K_{ij} = K/L$ with large $L \gg 1$ (Fig. 3a–d). We define the Kuramoto order parameter1,3,4

$$Re^{ij} = L^{-1} \sum_{\ell=1}^{L} e^{i\phi_{\ell}}.$$

(5)

In the generic case, the magnitude r relaxes to a fixed value measuring the degree of phase order and γ oscillates with the mean frequency $\tilde{\omega} + UV, v = N/L$ being the density of atoms or excitations per mode. Transforming to a co-rotating frame of reference, γ becomes constant and the classical equations of motion (3) simplify to

$$\frac{d \phi_{\ell}}{d t} = (\omega_{\ell} - \tilde{\omega}) + K_{r} \sin(\gamma - \phi_{\ell}).$$

(6)

A bifurcation occurs when the coupling K increases: For $K \leq K_c$ all oscillators drift independently such that $r = 0$. For $K > K_c$ the oscillators with $|\omega_{\ell} - \tilde{\omega}| \leq K_r$ get phase-locked, $d \phi_{\ell}/dt \equiv 0$ such that $r > 0$.

To describe quantum fluctuations beyond mean-field, we decompose the annihilation operators into the condensed state c_i and the quantum fluctuations $\hat{b}_i, \hat{a}_i = c_i + \hat{b}_i$ and insert this ansatz into the Heisenberg equations of motion (see Supplementary Note 4 and Supplementary Fig. 4 for more details). To linear order in \hat{b}_i this yields the Bogoliubov-de Gennes equations22,23

$$i \frac{d}{d t} \begin{pmatrix} \hat{b}_i \\ \hat{b}_i^\dagger \end{pmatrix} = \sum_{j=1}^{L} \mathcal{L}_{ij} \begin{pmatrix} \hat{b}_j \\ \hat{b}_j^\dagger \end{pmatrix}.$$

(7)

On the Kuramoto manifold the Bogoliubov-de Gennes operator is given by

$$\mathcal{L}_{ij} = \begin{pmatrix} \zeta_{ij} & \eta_{ij} \\ -\eta_{ij}^* & \zeta_{ij}^* \end{pmatrix}.$$

(8)
Figure 3 | Classical phase locking indicates growth of quantum number fluctuations. (a) The classical synchronization order parameter r measures the degree of locking emerging for $K > K_c$. (b) Synchronization implies an exponential growth of quantum fluctuations. The maximum growth rate $\max_t \text{Im}(\lambda_{\pm})$ in the limit of large systems becomes proportional to the classical synchronization order parameter r as predicted by equation (11). (c) The average phase velocity $\bar{\phi}_v/dt$ in the Kuramoto model as a function of natural frequency ω_i. Oscillators in the grey region are phase locked, that is, the average phase velocity is identical. (d) Quantum number fluctuations grow rapidly for the oscillators in the region of classical phase locking (grey), indicated by non-zero values of the growth rate $\text{Im}(\lambda_{\pm}) \neq 0$. Results are shown for globally coupled oscillators, that is, $K_{ij} = K/L$ in the limit $L \to \infty$. Natural frequencies are drawn from a Lorentzian distribution $g(\omega)$, for which $r(K) = N - K_c/K$ near $K_c = 2/(zag(0))$ (refs 2,3).

where the coefficients are given by

$$\zeta_{ij} = \delta_{ij} (\omega_i - \bar{\omega} + UV + 2Kr \sin(\gamma - \phi_i))$$

$$\eta_{ij} = \delta_{ij} \left\{ U e^{-2i\phi_i} + iKre^{-i(\phi_i + \gamma)} \right\}$$

$$- \frac{iK}{2L} \left(e^{-2i\phi_i} + e^{-2i\phi_j} \right)$$

in the rotating frame. In the limit $N, L \to \infty$ with fixed $v = N/L$, all terms with $\ell \neq j$ vanish as L^{-1} such that the operator $\hat{L}_{\ell\ell}$ describes whether quantum fluctuations grow. For $r = 0$ all eigenvalues $\lambda_{\ell \pm}$ of $\hat{L}_{\ell\ell}$ are real, implying that fluctuations do not grow. Once synchronization sets in and $r > 0$, the eigenvalues of the phase-locked oscillators are purely imaginary,

$$\lambda_{\ell \pm} = \pm i \sqrt{(Kr)^2 - (\omega_i - \bar{\omega})^2}$$

such that quantum fluctuations grow exponentially as $e^{\text{Im}(\lambda_{\ell \pm})t}$. The maximum growth rate becomes

$$\lim_{N, L \to \infty} \max_t \text{Im}(\lambda_{\ell \pm}) = Kr.$$

Potential experimental realizations. Our predictions are observable in experiments, for example, with Bose-Einstein condensates (BECs) in optical lattices$^{13-17}$ or modulated photonic lattices23,24. In a tilted or accelerated lattice, the eigenmodes are localized (Fig. 4a) and the energies are arranged in a ladder, $\omega_\ell = \omega_0 \times \ell$ (ref. 25). The atomic interactions induce the nonlinear coupling H_m of the neighbouring modes with $K_{\ell,m+1} = K_{\ell+1,m} = K$ and $K_{\ell,m} = 0$ otherwise. A detailed discussion of how these parameters depend on the experimental setting is provided in the Supplementary Note 2 and the Supplementary Figs 1–3.

Synchronization is detected from the momentum density $\rho(k, t)$ measured in a time-of-flight image (Fig. 4b). For weak coupling K, the modes dephase28 such that the coherences $|a_i^+ a_i^\dagger|$ vanish. No relative phase is defined and $\rho(k, t)$ delocalizes over the Brillouin zone (Fig. 4b,c). Strong coupling induces synchronization such that the coherences are partly preserved and $\rho(k, t)$ shows a localized peak which does not blur (Fig. 4e,f). The peak remains steady in the center of the Brillouin zone as the phases are locked at a constant value (Fig. 4d). Momentum space localization thus provides a robust experimental quantum signature of synchronization. Synchronization implies number fluctuations signalling entanglement (Fig. 4g), as above for two modes. This entanglement is persistent and emerges for all pure BECs and Fock states with homogeneous density.

Another possibility to experimentally realize our predictions is given by Floquet engineered optical lattices16,17.

Robustness to dissipation. In many models studied so far, quantum signatures of synchronization are induced externally, via dissipation or a common driving$^{26-35}$. In contrast, the coupling to the environment is not the cause of synchronization in the quantum many-body system (1), which directly bears the Kuramoto model in the mean-field limit. Indeed, this classical synchronization model qualitatively predicts that the quantum system relaxes to different states depending on the coupling strength. The phase coherence $\gamma_{\ell}(t)$, which is most easily accessible in experiments, converges to a non-zero value up to some small residual fluctuations (Figs 1 and 4). But how robust is this intrinsic form of quantum synchronization to perturbations from the environment?

We are reporting a particular destructive case of quantum dissipation, where independent phase noise couples to all modes of the system. Such a noise source arises in experiments with ultracold atoms in optical lattices due to incoherent scattering of photons from the lattice beams36 or collisions with the background gas37. The noisy dynamics can be well captured using a quantum master equation in Lindblad form

$$\frac{d}{dt} \hat{\rho} = -i [\hat{H}, \hat{\rho}] - \kappa \sum_{\ell, t} n_\ell^2 \hat{\rho} + \hat{\rho} n_\ell^2 - 2n_\ell \hat{\rho} n_\ell^*$, $$

where $\hat{\rho}$ is the density operator and κ the noise rate. Numerical simulations of the master equation (12) for two modes indicate the influence of phase noise on the evolution of phase coherence. Without the synchronization coupling (for $K = 0$), already weak noise completely destroys the phase coherence $\gamma_{\ell}(t)$ within a few periods T as shown in Fig. 5. In contrast, the decay of $\gamma_{\ell}(t)$ is slower by orders of magnitude in the presence of the coupling (for $K > 0$). Hence, the effects described in the present paper should be experimentally observable also in the presence of noise.

The robustness of the phase coherence depends crucially on the coupling strength K. For supercritical coupling $K > K_c$ the quantum state tends to a highly entangled superposition of atoms being localized in one of the wells, making it more susceptible to noise. Phase coherence decays in time, but the
Figure 4 | Quantum synchronization manifests in momentum space localization for ultracold atoms. (a) In a tilted or accelerated optical lattice, the single-particle eigenstates (blue lines) are localized in a few wells of the lattice potential (bold black line). The overlap with other wells induces a nonlinear coupling between the states described by \(\hat{H}_t \) (b,c) Without coupling \((\tilde{K}=0)\), the modes dephase due to the on-site interaction \(\sim U \). The coherences \(\gamma_{j,j+1} \) decay to zero and the momentum density distribution \(\rho(k,t) \) spreads over the entire Brillouin zone. (d) For \(\tilde{K}=0 \) there is no entanglement, \(W_{2,3} = 0 \). (e,f) For \(\tilde{K}=0.3/2\pi \), the nonlinear coupling leads to phase locking at \(\phi_{j+1,j} = \pi/2 \) at intermediate values of the coherence \(\gamma_{j,j+1} \). This leads to a localization of the momentum space density \(\rho(k,t) \) around \(k=0 \), which can be readily detected in a time-of-flight image. (g) Synchronization implies strong persistent many-body entanglement quantified by the entanglement parameter \(W_{2,3} > 0 \) (see ref. 50 and Methods). Parameters are \(L = 4, N = 12 \) and \(U = 1.2/2\pi \) in units of \(\omega_0 \). The initial state \((N!)^{-1/2}\sum_c c_i \psi_i^{\dagger}|0\rangle\) is a pure Bose-Einstein Condensate (BEC) with zero momentum.

Figure 5 | Synchronization-induced phase coherence is robust to noise. (a) Without coupling \((\tilde{K}=0\), thin black line), the coherence \(\gamma_{12}(t) \) of two coupled modes decays rapidly in the presence of phase noise. The synchronization coupling \(\tilde{H}_t \) slows down this decay by orders of magnitude \((\tilde{K}=0.8\) dash-dotted blue line, \(K = 0.4 \) solid turquoise line). For a weak but non-zero coupling, the phase coherence becomes almost constant in time at a value of \(\gamma_{12}(t) \approx 10^{-1} \) after a transient decrease \((\tilde{K}=0.1 \) dashed red line). The noise strength is \(\kappa = 0.02 \). (b) Phase coherence is remarkably robust especially in the subcritical regime \(0 < \tilde{K} \leq K_c \). For \(K_c = 0.1 \) the coherence \(\gamma_{12}(t) \) at time \(t = 20T \) is almost independent of the noise strength \(\kappa \). The remaining parameters are as in Fig. 1.

Discussion

In summary, we have unearthed the manifestation of classical synchronization in a class of quantum many-body systems, providing a direct link between collective classical and quantum dynamics. So far, synchronization and entanglement have been mostly studied as two separate phenomena in the classical and quantum worlds, respectively. Recent previous works considered aspects of synchronization in open quantum model systems, where the coupling to the environment is crucial. The interaction with a common thermal bath can induce synchronization of qubits\(^{26}\) or harmonic oscillators\(^{27}\), as well as a common classical driving field\(^{28}\). Synchronization has also been studied for quantum van der Pol oscillators\(^{29–32}\) and other driven dissipative oscillators\(^{33,34}\). In all these cases, dissipation and external driving play a crucial role, for instance the self-sustained oscillations of the van der Pol oscillators are entirely driven by the exchange of excitations with the bath. It has also been shown that quantum effects can prevent the occurrence of synchronization of coupled spins\(^{38}\). The Kuramoto model itself has been recovered in the semiclassical limit of different quantum system, in particular particles moving in tilted washboard potential\(^{35}\), coupled optomechanical oscillators\(^{39}\) or Josephson junction arrays\(^{40}\). In contrast, we here analysed a class of isolated quantum systems, demonstrating that synchronization emerges as an intrinsic system feature. We recover the celebrated Kuramoto model in
the mean-field limit, which can be seen as a skeleton for the full-
quantum many-body dynamics.

Indeed, the transition to synchronization clearly
indicates squeezing, long-term coherence and persistent entanglement.
Moreover, the dynamics of phase locking in the synchronization
process indicates the growth of number fluctuations, becoming
exact in the limit of large system sizes. Our findings can be directly
verified by state-of-the-art experiments, for instance with ultracold atoms
in accelerated or driven optical lattices25–27 or modulated
photonic lattices28,29. These experiments are facilitated by
the control over the system parameters such that various distributions
of natural frequencies can be realized which can give rise to different
types of synchronization phase transitions30–32. Advanced imaging
techniques allow to observe the global phase coherence as well as
number distributions with single site resolution. These results thus
offer a novel perspective on a correspondence between classical and
quantum dynamics, on the level of collective phenomena.

\textbf{Methods}

\textbf{Coherent states.} Spin coherent states are defined as
\[|\psi(\Theta)\rangle = \sum_{\alpha} \alpha^\dagger |\alpha\rangle e^{i\alpha^\dagger \alpha^\dagger} \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha^\dagger \rho | \Psi(k) \]
\[\psi(x) = \sum_{\alpha} \alpha^\dagger \Psi(k) |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\psi \propto \sum_{\alpha} \alpha^\dagger \Psi \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha^\dagger \alpha^\dagger \alpha \rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha^\dagger \alpha^\dagger \alpha \rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
\[\rho(k) = \sum_{\alpha} \Psi(k) |\alpha\rangle \rho |\alpha\rangle \]
38. Liu, Y., Piechon, F. & Fuchs, J. N. Quantum loss of synchronization in the dynamics of two spins. *Europhys. Lett.* **103**, 17007 (2013).
39. Heinrich, G., Ludwig, M., Qian, J., Kubala, B. & Marquardt, F. Collective dynamics in optomechanical arrays. *Phys. Rev. Lett.* **107**, 043603 (2011).
40. Wiesenfeld, K., Colet, P. & Strogatz, S. H. Frequency locking in Josephson arrays: Connection with the Kuramoto model. *Phys. Rev. E* **57**, 1563–1569 (1998).
41. Pazó, D. Thermodynamic limit of the first-order phase transition in the Kuramoto model. *Phys. Rev. E* **72**, 046211 (2005).
42. Gupta, S., Campa, A. & Rufüo, S. Kuramoto model of synchronization: Equilibrium and nonequilibrium aspects. *J. Stat. Mech.* **2014**, R08001 (2014).
43. Schleich, W. P. *Quantum Optics in Phase Space* (Wiley-VCH, 2001).
44. Tóth, G., Knapp, C., Gühne, O. & Briegel, H. J. Optimal spin squeezing inequalities detect bound entanglement in spin models. *Phys. Rev. Lett.* **99**, 250405 (2007).
45. Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. *Phys. Rev. A* **54**, R4649 (1996).
46. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: Beating the standard quantum limit. *Science* **306**, 1330–1336 (2004).
47. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. *Nat. Photon.* **5**, 222–229 (2011).
48. Dahan, M. B., Peik, E., Reichel, J., Castin, Y. & Salomon, C. Bloch oscillations of atoms in an optical potential. *Phys. Rev. Lett.* **76**, 4508–4511 (1996).
49. Buchleitner, A. & Kolovsky, A. R. Interaction-induced decoherence of atomic Bloch oscillations. *Phys. Rev. Lett.* **91**, 253002 (2003).
50. Kordas, G., Wimberger, S. & Witthaut, D. Dissipation induced macroscopic entanglement in an open optical lattice. *Europhys. Lett.* **100**, 30007 (2012).

Acknowledgements

We thank Matteo di Volo and Alessandro Vezzani for helpful discussions and gratefully acknowledge support from the Helmholtz association (grant no. VH-NG-1025 to D.W.), the FIL 2014 program of Parma University, and the Max Planck Society (grant to M.T).

Author contributions

D.W. and M.T. designed and conceived the research. D.W. worked out the theory and carried out the numerical experiments. D.W. and S.W. worked out the possible experimental realizations. All authors contributed ideas, analysis tools and to the writing of the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Witthaut, D. et al. Classical synchronization indicates persistent entanglement in isolated quantum systems. *Nat. Commun.* **8**, 14829 doi: 10.1038/ncomms14829 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017