Distance domination of generalized de Bruijn and Kautz digraphs

Yanxia DONG\(^1,3\), Erfang SHAN\(^1,2\), Xiao MIN\(^4\)

1 Department of Mathematics, Shanghai University, Shanghai 200444, China
2 School of Management, Shanghai University, Shanghai 200444, China
3 School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai 201620, China
4 College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Abstract Let \(G = (V, A)\) be a digraph and \(k \geq 1\) an integer. For \(u, v \in V\), we say that the vertex \(u\) distance \(k\)-dominate \(v\) if the distance from \(u\) to \(v\) at most \(k\). A set \(D\) of vertices in \(G\) is a distance \(k\)-dominating set if each vertex of \(V \setminus D\) is distance \(k\)-dominated by some vertex of \(D\). The distance \(k\)-domination number of \(G\), denoted by \(\gamma_k(G)\), is the minimum cardinality of a distance \(k\)-dominating set of \(G\). Generalized de Bruijn digraphs \(G_B(n, d)\) and generalized Kautz digraphs \(G_K(n, d)\) are good candidates for interconnection networks. Denote \(\Delta_k := (\sum_{j=0}^{k} d^j)^{-1}\). F. Tian and J. Xu showed that \([n\Delta_k] \leq \gamma_k(G_B(n, d)) \leq [n/d^k]\) and \([n\Delta_k] \leq \gamma_k(G_K(n, d)) \leq [n/d^k]\). In this paper, we prove that every generalized de Bruijn digraph \(G_B(n, d)\) has the distance \(k\)-domination number \([n\Delta_k]\) or \([n\Delta_k] + 1\), and the distance \(k\)-domination number of every generalized Kautz digraph \(G_K(n, d)\) bounded above by \([n/(d^k-1+d^k)]\). Additionally, we present various sufficient conditions for \(\gamma_k(G_B(n, d)) = [n\Delta_k]\) and \(\gamma_k(G_K(n, d)) = [n\Delta_k]\).

Keywords Combinatorial problems, dominating set, distance dominating set, generalized de Bruijn digraph, generalized Kautz digraph

MSC 05C69, 05C20

1 Introduction

In this paper, we deal with directed graphs (or digraphs) which admit self-loops but no multiple arcs. Unless otherwise defined, we follow [3,9] for terminology and definitions. Let \(G\) be a digraph with vertex set \(V(G)\) and arc set \(A(G)\). If
there is an arc from \(u \) to \(v \), i.e., \((u, v) \in A(G)\), then \(v \) is called an *out-neighbor* of \(u \); we also say that \(u \) *dominates* \(v \). The *out-neighborhood* \(O(u) \) of a vertex \(u \) is the set \(\{v : (u, v) \in A(G)\} \). For \(S \subseteq V(G) \), its *out-neighborhood* \(O(S) \) is the set \(\cup_{u \in S} O(u) \). Set

\[
O_0(u) = \{u\}, \quad O_1(u) = O(u).
\]

We define \(O_i(u) \) recursively, called *i-th out-neighborhood* of \(u \), by \(\{O(O_{i-1}(u))\} \) for \(i \geq 1 \). The *i-th out-neighborhood* of \(S \) is the set

\[
O_i(S) = \bigcup_{u \in S} O_i(u).
\]

The *closed out-neighborhood* \(O[u] \) of \(u \) is the set \(O(u) \cup \{u\} \), and \(O[S] \) and \(O_i[S] \) are defined analogously.

For \(x, y \in V(G) \), the *distance* \(d_G(x, y) \) from \(x \) to \(y \) is the length of an shortest \((x, y)\)-directed path in \(G \). Let \(k \) be a positive integer. A subset \(D \subseteq V(G) \) is called a *distance k-dominating set* of \(G \) if for every vertex \(v \) of \(V(G) \setminus D \), there is a vertex \(u \in D \) such that \(d_G(u, v) \leq k \), i.e.,

\[
\bigcup_{i=0}^{k} O_i(D) = V(G).
\]

The *distance k-domination number* of \(G \), denoted by \(\gamma_k(G) \), is the minimum cardinality of a distance \(k \)-dominating set of \(G \). In particular, the distance 1-dominating set is the ordinary dominating set, which has been well studied [11].

Slater [11] termed a distance \(k \)-dominating set as a \(k \)-basis and also gave an interpretation for \(k \)-basis in terms of communication networks. Since then many researchers paid much attention to this subject, for example, [8,23,24]. The concept of distance domination in graphs has been found applications in many structures and situations which give rise to graphs. A minimum distance \(k \)-dominating set of \(G \) may be used to locate a minimum number of facilities (such as utilities, police stations, hospitals, transmission towers, blood banks, waste disposal dump) such that every intersection is within \(k \) city blocks of a facility. Barkauskas and Host [1] showed that the problem of determining \(\gamma(G) \) is NP-hard for a general graph.

The network topology has a great impact on the system performance and reliability [27]. There are some well-known networks with good properties such as de Bruijn networks, Kautz networks, and their generalizations (see, for example, [2,4,12,27]). Generalized de Bruijn and Kautz networks, denoted by \(G_B(n, d) \) and \(G_K(n, d) \), respectively, were introduced by Imase and Itoh [13]. The generalization removes the restriction on the cardinality of vertex set and make the network more general and valuable as a network model. A lot of features make it suitable for implementation of reliable networks, the most important feature such as small diameter [13], high connectivity [14], easy routing, and high reliability.
The generalized de Bruijn digraph $G_B(n, d)$ is defined by congruence equations as follows:

\[
\begin{align*}
V(G_B(n, d)) &= \{0, 1, \ldots, n-1\}, \\
A(G_B(n, d)) &= \{(x, y) \mid y \equiv dx + i \pmod{n}, 0 \leq i \leq d - 1\}.
\end{align*}
\]

In particular, if $n = d^m$, then $G_B(n, d)$ is the de Bruijn digraph $B(d, m)$. The generalized Kautz digraph $G_K(n, d)$ is defined by following congruence equations:

\[
\begin{align*}
V(G_K(n, d)) &= \{0, 1, \ldots, n-1\}, \\
A(G_K(n, d)) &= \{(x, y) \mid y \equiv -dx - i \pmod{n}, 1 \leq i \leq d\}.
\end{align*}
\]

In particular, if $n = d^m + d^{m-1}$, then $G_K(n, d)$ is the Kautz digraph $K(d, m)$. The graphs $G_B(6, 3)$ and $G_K(9, 2)$ are exhibited in Fig. 1.

The structure properties of generalized de Bruijn and Kautz digraphs receive more attention. Du et al. [6] studied the Hamiltonian property of generalized de Bruijn and Kautz networks. Also, several structural objects such as spanning trees, Eulerian tours [16], closed walks [22], and small cycles [10] have been counted. Shan et al. [19–21] studied the absorbants and twin domination of generalized de Bruijn digraphs. Recently, Ducoffe [7] determined when the large generalized de Bruijn cycles, which are Kronecker products of generalized de Bruijn digraphs and decycles, are Hamiltonian. Lien et al. [17] obtained an upper bound on the decycling number of a generalized Kautz digraph. Wang [26] showed that there is an efficient twin dominating set in a generalized de Bruijn digraph $G_B(n, d)$ with $n = c(d + 1)$ if and only if d is even and relatively prime to c. Dong et al. [5] completely determined the domination number of generalized de Bruijn digraphs. More studied progress on the generalized de Bruijn and Kautz networks can be found in [27].

In order to make our arguments easier to follow, we introduce the modulo interval so as to represent the out-neighborhood of each vertex in $G_B(n, d)$.*
and $G_K(n, d)$. Let $I = \{0, 1, \ldots, n-1\}$ denote the vertex set of $G_B(n, d)$ and $G_K(n, d)$. For any integers i, j satisfying $i \not\equiv j \pmod{n}$, a modulo interval $[i, j]$ $(\mod n)$, with respect to modulo n, is defined by

$$[i, j] \pmod{n} = \begin{cases} \{i, i+1, \ldots, j\} \pmod{n}, & i \pmod{n} < j \pmod{n}, \\ \{i, \ldots, n-1, 0, \ldots, j\} \pmod{n}, & i \pmod{n} > j \pmod{n}. \end{cases}$$

By the definitions, $I = [0, n-1]$, and for each $j \in [0, n-1]$, clearly,

$$O(j) = \begin{cases} [jd, jd + (d-1)] \pmod{n}, & \text{in } G_B(n, d), \\ [-jd - d, -jd - 1] \pmod{n}, & \text{in } G_K(n, d). \end{cases}$$

Notice that if $d = 1$, then the graph $G_B(n, 1)$ (resp., $G_K(n, 1)$) has n self-loops. Throughout this paper, we always assume $n \geq d \geq 2$, and denote

$$\Delta_k := \left(\sum_{j=0}^{k} d^j \right)^{-1}.$$

If the set $D = \{x, x + 1, \ldots, x + k\} \pmod{n}$ is a dominating set or a distance k-dominating set of $G_B(n, d)$ (resp., $G_K(n, d)$), then D is called a consecutive dominating set or a consecutive distance k-dominating set of $G_B(n, d)$ (resp., $G_K(n, d)$). A consecutive minimum dominating set of $G_B(n, d)$ (resp., $G_K(n, d)$) is a consecutive dominating set with cardinality $\gamma(G_B(n, d))$ (resp., $\gamma(G_K(n, d))$) and a consecutive distance k-dominating set of $G_B(n, d)$ (resp., $G_K(n, d)$) is a consecutive distance k-dominating set with cardinality $\gamma_k(G_B(n, d))$ (resp., $\gamma_k(G_K(n, d))$).

Tian and Xu [25] established the upper and lower bounds on the distance k-domination number of $G_B(n, d)$ and $G_K(n, d)$. This paper continues to study distance k-domination in generalized de Bruijn and Kautz digraphs. In Subsection 2.1, we show that every generalized de Bruijn digraph $G_B(n, d)$ has the distance k-domination number either $\lceil n\Delta_k \rceil$ or $\lceil n\Delta_k \rceil + 1$. In Subsection 2.2, we derive various sufficient conditions for $\gamma_k(G_B(n, d)) = \lceil n\Delta_k \rceil$. In Section 3, we give a sharp upper bound of $\gamma_k(G_K(n, d))$, which improves the previous upper bound of $\gamma_k(G_K(n, d))$ due to Tian and Xu [25]. In closing section, we pose two open problems.

2 Minimum distance k-dominating sets in $G_B(n, d)$

In the first subsection of this section, by constructing a distance k-dominating set of an arbitrary generalized de Bruijn digraph $G_B(n, d)$, we show that the distance k-domination number of $G_B(n, d)$ has exactly two values. In next subsection, we describe various sufficient conditions for the distance k-domination number of $G_B(n, d)$ equal to one of two values.
2.1 Distance k-domination number of $G_B(n,d)$

Tian and Xu [25] obtained the upper and lower bounds on $\gamma_k(G_B(n,d))$.

Lemma 1 [25] *For every generalized de Bruijn digraph $G_B(n,d)$,*

\[
\lceil n \Delta_k \rceil \leq \gamma_k(G_B(n,d)) \leq \lceil \frac{n}{d^k} \rceil.
\]

We are ready to improve the above upper bound on $\gamma_k(G_B(n,d))$ by directly constructing a (consecutive) distance k-dominating set of $G_B(n,d)$ with cardinality $\lceil n \Delta_k \rceil + 1$. The following lemma plays a key role in constructing such a distance k-dominating set of $G_B(n,d)$.

Lemma 2 *Every generalized de Bruijn digraph $G_B(n,d)$ contains a vertex x satisfying the following inequality:

\[
x + \lceil n \Delta_k \rceil - (d - 2) \leq dx \leq x + \lceil n \Delta_k \rceil \pmod{n}.
\]

Proof We choose an arbitrary vertex $x \in V(G_B(n,d))$. If x satisfies (1), we are done. Otherwise, the vertex x clearly satisfies either

\[
0 \leq dx \leq x + \lceil n \Delta_k \rceil - (d - 1) \pmod{n}
\]

or

\[
x + \lceil n \Delta_k \rceil + 1 \leq dx \leq n - 1 \pmod{n}.
\]

We find the desired vertex by distinguishing the following two cases.

Case 1 $0 \leq dx \leq x + \lceil n \Delta_k \rceil - (d - 1) \pmod{n}$.

Note that if x increases by integer i, then the value of dx is increased to $d(x + i) = dx + di$. In this case, we find the desired vertex by increasing the value of x. Since $dx \leq x + \lceil n \Delta_k \rceil - (d - 1) \pmod{n}$, there exists an integer i (≥ 0) such that x and i satisfy the following inequality:

\[
d(x + i) \leq (x + i) + \lceil n \Delta_k \rceil - 2(d - 2) \pmod{n},
\]

since $i = 0$ satisfies the inequality. Let i be the maximal integer satisfying (2). We claim that

\[
d(x + i) \geq (x + i) + \lceil n \Delta_k \rceil - 2(d - 2) \pmod{n}.
\]

Indeed, if

\[
d(x + i) \leq (x + i) + \lceil n \Delta_k \rceil - 2(d - 2) - 1 \pmod{n},
\]

then

\[
d(x + i + 1) \leq (x + i + 1) + \lceil n \Delta_k \rceil - (d - 2) \pmod{n}.
\]

So $i + 1$ also satisfies (2), which contradicts the maximality of i. Hence, (3) follows. If the equality holds in (2), that is,

\[
d(x + i) \equiv x + \lceil n \Delta_k \rceil - (d - 2) \pmod{n},
\]
then \(x + i \) satisfies (1). So we replace \(x \) by \(x + i \), and obtain the desired vertex. Otherwise, by (3), we have

\[
(x + i) + \lceil n\Delta_k \rceil - 2(d - 2) \leq d(x + i) \leq (x + i) + \lceil n\Delta_k \rceil - (d - 1) \quad (\text{mod } n).
\]

Hence,

\[
(x + i + 1) + \lceil n\Delta_k \rceil - (d - 3) \leq d(x + i + 1) \leq (x + i + 1) + \lceil n\Delta_k \rceil \quad (\text{mod } n).
\]

Clearly, \(x + i + 1 \) satisfies (1). Thus, we replace \(x \) by \(x + i + 1 \) and obtain the desired vertex.

Case 2 \(x + \lceil n\Delta_k \rceil + 1 \leq dx \leq n - 1 \text{ (mod } n) \).

We can obtain the desired vertex by decreasing the value of \(x \). Clearly, there exists an integer \(i \) \((\geq 0)\) such that \(x \) and \(i \) satisfy the following inequality:

\[
d(x - i) \geq (x - i) + \lceil n\Delta_k \rceil \quad (\text{mod } n),
\]

(4) since the inequality \(dx \geq x + \lceil n\Delta_k \rceil + 1 \) implies that \(i = 0 \) satisfies (4). Let \(i \) be the maximal integer satisfying (4). We claim that

\[
d(x - i) \leq (x - i) + \lceil n\Delta_k \rceil + d - 2 \quad (\text{mod } n).
\]

(5) Suppose, to the contrary, that

\[
d(x - i) \geq (x - i) + \lceil n\Delta_k \rceil + d - 1 \quad (\text{mod } n).
\]

Equivalently,

\[
d(x - (i + 1)) \geq (x - (i + 1)) + \lceil n\Delta_k \rceil \quad (\text{mod } n).
\]

But then \(i + 1 \) satisfies (4). This contradicts the maximality of \(i \). Thus, (5) holds. If the equality holds in (4), then the vertex \(x - i \) satisfies (1). So we obtain the desired vertex by replacing \(x \) by \(x - i \). Otherwise, by (5), we have

\[
(x - i) + \lceil n\Delta_k \rceil + 1 \leq d(x - i) \leq (x - i) + \lceil n\Delta_k \rceil + d - 2 \quad (\text{mod } n).
\]

Hence,

\[
(x - (i + 1)) + \lceil n\Delta_k \rceil - (d - 2) \leq d(x - (i + 1))
\]

\[
\leq (x - (i + 1)) + \lceil n\Delta_k \rceil - 1 \quad (\text{mod } n).
\]

Hence, \(x - (i + 1) \) satisfies (1). We obtain the desired vertex by replacing \(x \) by \(x - (i + 1) \). \(\square \)

Theorem 1 For every generalized de Bruijn digraph \(G_B(n, d) \),

\[
\gamma_k(G_B(n, d)) = \lceil n\Delta_k \rceil \text{ or } \lceil n\Delta_k \rceil + 1.
\]
Proof. By Lemma 1, it suffices to show that
\[\gamma(G_B(n,d)) \leq \lceil n \Delta_k \rceil + 1. \]
The proof is obtained by directly constructing a (consecutive) distance \(k\)-dominating set of \(G_B(n,d)\) with cardinality \(\lceil n \Delta_k \rceil + 1\). By Lemma 2, there is a vertex \(x\) in \(G_B(n,d)\) satisfying (1). Let
\[D = \{x, x + 1, \ldots, x + \lceil n \Delta_k \rceil\}. \]
We show that \(D\) is a distance \(k\)-dominating set of \(G_B(n,d)\). By the definition, we need to prove that
\[\bigcup_{i=0}^{k} O_i(D) = V(G_B(n,d)). \]
First, we show that the vertices of \(O_{i-1}(D) \cup O_i(D)\) are consecutive for all \(i, 1 \leq i \leq k\). The out-neighborhoods of vertices in \(D\) are given as follows:
\[O(x) = \{dx, dx + 1, \ldots, dx + d-1\} \pmod{n}, \]
\[O(x + 1) = \{d(x + 1), d(x + 1) + 1, \ldots, d(x + 1) + d-1\} \pmod{n}, \]
\[\cdots, \]
\[O(x + \lceil n \Delta_k \rceil) = \{d(x + \lceil n \Delta_k \rceil), d(x + \lceil n \Delta_k \rceil) + 1, \ldots, d(x + \lceil n \Delta_k \rceil) + d-1\} \pmod{n}. \]
Then
\[O(D) = \left[dx, d(x + \lceil n \Delta_k \rceil) + d - 1\right] \pmod{n}. \]
Similarly, the \(i\)-th out-neighborhoods
\[O_i(D) = \left[d^{i}x, d^{i}(x + \lceil n \Delta_k \rceil) + (d - 1) \sum_{j=0}^{i} d^{j}\right] \pmod{n}, \quad i = 1, 2, \ldots, k. \]
Since \(x\) satisfying inequality (1), there exists an integer \(h, 0 \leq h \leq d - 2\), such that
\[dx \equiv x + \lceil n \Delta_k \rceil - h \pmod{n}, \]
and so we have
\[d^{2}x \equiv d(x + \lceil n \Delta_k \rceil) - dh \pmod{n}, \]
\[d^{3}x \equiv d^{2}(x + \lceil n \Delta_k \rceil) - d^{2}h \pmod{n}, \]
\[\cdots, \]
\[d^{k}x \equiv d^{k-1}(x + \lceil n \Delta_k \rceil) - d^{k-1}h \pmod{n}. \]
Thus,
\[O_{i-1}(D) \cap O_i(D) \neq \emptyset, \quad i = 1, 2, \ldots, k. \]
This implies that the vertices of $O_{i-1}(D) \cup O_i(D)$ are consecutive, since the vertices of $O_i(D)$ are consecutive for each i, $0 \leq i \leq k$. Therefore, the vertices of $\bigcup_{i=0}^{k} O_i(D)$ are consecutive.

Next, we show that $\bigcup_{i=0}^{k} O_i(D)$ contains all the vertices of $G_B(n,d)$. Note that $O_1(D) \cap D \neq \emptyset$. Thus, it suffices to show that $O_k(D) \cap D \neq \emptyset$. For the last vertex in $O_k(D)$, since x satisfies (1), we have

\[d^k(x + \lceil n\Delta_k \rceil) + (d - 1)\Delta_k^{-1} = d^{k-1}(x + \lceil n\Delta_k \rceil - h) + d^k \lceil n\Delta_k \rceil + (d - 1)\Delta_k^{-1} = d^{k-1}x + (d^k + d^{k-1}) \lceil n\Delta_k \rceil + (d - 1)d^k - hd^{k-1} + (d - 1)\Delta_k^{-1} = \ldots = x + \lceil n\Delta_k \rceil \Delta_k^{-1} - h\Delta_{k-1}^{-1} + (d - 1)\Delta_k^{-1} = x + (d - 1) + \lceil n\Delta_k \rceil \Delta_k^{-1} + (d(d - 1) - h)\Delta_{k-1}^{-1} \geq x \pmod{n}. \]

The last inequality holds, since $d \geq 2$ and $0 \leq h \leq d - 2$. Hence, $O_k(D) \cap D \neq \emptyset$, and so

\[\bigcup_{i=1}^{k} O_i(D) \supseteq \{ x + \lceil n\Delta_k \rceil, x + \lceil n\Delta_k \rceil + 1, \ldots, n - 1, 0, 1, \ldots, x \}. \]

This implies that

\[\bigcup_{i=0}^{k} O_i(D) = V(G_B(n,d)), \]

that is, D is a (consecutive) distance k-dominating set of $G_B(n,d)$. Consequently,

\[\gamma_k(G_B(n,d)) \leq |D| = \lceil n\Delta_k \rceil + 1. \]

For distance $k = 1$, we obtain the following result.

Corollary 1 [5] For every generalized de Bruijn digraph $G_B(n,d)$, either

\[\gamma(G_B(n,d)) = \left\lfloor \frac{n}{d+1} \right\rfloor \]

or

\[\gamma(G_B(n,d)) = \left\lfloor \frac{n}{d+1} \right\rfloor + 1. \]

2.2 Generalized de Bruijn digraphs $G_B(n,d)$ with $\gamma(G_B(n,d)) = \left\lfloor \frac{n}{d+1} \right\rfloor$

In this subsection, we derive various sufficient conditions for the distance k-domination number to achieve the value $\lceil n\Delta_k \rceil$ in a generalized de Bruijn digraph $G_B(n,d)$.

Theorem 2 If there exists a vertex $x \in V(G_B(n,d))$ satisfying the congruence equation

\[(d - 1)x \equiv \lceil n\Delta_k \rceil - h \pmod{n} \] (6)
for some \(h \), where

\[
0 \leq \Delta_k^{-1} h \leq \Delta_k^{-1} \lfloor n \Delta_k \rfloor - n, \tag{7}
\]

then

\[
\gamma_k(G_B(n, d)) = \lfloor n \Delta_k \rfloor,
\]

and

\[
D = \{ x, x + 1, \ldots, x + \lfloor n \Delta_k \rfloor - 1 \}
\]

is a consecutive minimum distance \(k \)-dominating set of \(G_B(n, d) \).

Proof Let \(x \) be a vertex of \(G_B(n, d) \) satisfying (6). Note that \(|D| = \lfloor n \Delta_k \rfloor \).

By Theorem 1, it is sufficient to show that

\[
D = \{ x, x + 1, \ldots, x + \lfloor n \Delta_k \rfloor - 1 \}
\]

is a distance \(k \)-dominating set of \(G_B(n, d) \). For this purpose, we show that

\[
\bigcup_{i=1}^{k} O_i(D) = V(G_B(n, d)).
\]

We first prove that the vertices of \(O_{i-1}(D) \cup O_i(D) \) are consecutive for all \(i, 1 \leq i \leq k \). By the definition of \(G_B(n, d) \), the out-neighborhoods \(O(D) \) of \(D \) are given as follows:

\[
O(x) = \{ dx, dx + 1, \ldots, dx + d - 1 \} \pmod{n},
\]

\[
O(x + 1) = \{ d(x + 1), d(x + 1) + 1, \ldots, d(x + 1) + d - 1 \} \pmod{n},
\]

\[
\ldots,
\]

\[
O(x + \lfloor n \Delta_k \rfloor - 1) = \{ d(x + \lfloor n \Delta_k \rfloor) - d, d(x + \lfloor n \Delta_k \rfloor) - d + 1, \ldots, d(x + \lfloor n \Delta_k \rfloor) - 1 \} \pmod{n}.
\]

Then

\[
O(D) = \lfloor dx, dx + d \lfloor n \Delta_k \rfloor - 1 \rfloor \pmod{n}.
\]

Similarly, we have

\[
O_i(D) = \lfloor d^i x, d^i (x + \lfloor n \Delta_k \rfloor) - 1 \rfloor \pmod{n}.
\]

Clearly,

\[
|O_i(D)| = d^i \lfloor n \Delta_k \rfloor, \quad i = 0, 1, \ldots, k.
\]

Since \(x \) satisfies (6), we have

\[
O(D) = \lfloor x + \lfloor n \Delta_k \rfloor - h, d(x + \lfloor n \Delta_k \rfloor) - 1 \rfloor \pmod{n},
\]

\[
O_2(D) = \lfloor d(x + \lfloor n \Delta_k \rfloor) - dh, d^2(x + \lfloor n \Delta_k \rfloor) - 1 \rfloor \pmod{n},
\]

\[
\ldots,
\]

\[
O_k(D) = \lfloor d^{k-1}(x + \lfloor n \Delta_k \rfloor) - dh, d^k(x + \lfloor n \Delta_k \rfloor) - 1 \rfloor \pmod{n}.
\]

Hence, it can be seen that

\[
|O_{i-1}(D) \cap O_i(D)| = d^{i-1}h, \quad i = 1, 2, \ldots, k.
\]
Note that the vertices of each \(O_i(D) \) \((i \geq 0)\) are consecutive. By the above observations, if \(h = 0 \), then the last vertex of \(O_{i-1}(D) \) and the first vertex of \(O_i(D) \) are consecutive; while if \(h > 0 \), then
\[
O_{i-1}(D) \cap O_i(D) \neq \emptyset.
\]
Thus, the vertices of \(O_{i-1}(D) \cup O_i(D) \) are consecutive for all \(i, 1 \leq i \leq k \).

We next show that
\[
\bigcup_{i=0}^{k} O_i(D) = V(G_B(n,d)).
\]
As observed above, we see that the vertices of \(\bigcup_{i=0}^{k} O_i(D) \) are consecutive. In particular, the vertices of \(D \cup O_1(D) \) are consecutive. Thus, it suffices to show that the vertices \(O_k(D) \cup D \) are consecutive. For the last vertex in \(O_k(D) \), since
\[
0 \leq \Delta_{k-1}^{-1} h \leq \Delta_{k}^{-1}[n\Delta_k] - n,
\]
we have
\[
d^k(x + [n\Delta_k]) - 1 \equiv x + \Delta_{k}^{-1}[n\Delta_k] - \Delta_{k-1}^{-1} h - 1 \pmod{n} \quad (\text{by } (6))
\]
\[
\geq x - 1 \pmod{n}.
\]
This implies that the vertices of \(O_k(D) \cup D \) are consecutive, so
\[
\bigcup_{i=1}^{k} O_i(D) \supseteq \{x + [n\Delta_k], x + [n\Delta_k] + 1, \ldots, n - 1, 0, 1, \ldots, x - 1\}.
\]
This implies that
\[
\bigcup_{i=0}^{k} O_i(D) = V(G_B(n,d)),
\]
and hence, \(D \) is a distance \(k \)-dominating set of \(G_B(n,d) \). This completes the proof of Theorem 2.

As a special case of Theorem 2, we immediately have the following corollary.

Corollary 2 Let \(\Delta_{k}^{-1} \mid n \). If there is a vertex \(x \in V(G_B(n,d)) \) satisfying congruence equation
\[
(d - 1)x \equiv n\Delta_k \pmod{n},
\]
then
\[
\gamma_k(G_B(n,d)) = n\Delta_k
\]
and
\[
D = \{x, x + 1, \ldots, x + n\Delta_k - 1\}
\]
is a consecutive minimum distance \(k \)-dominating set of \(G_B(n,d) \).
Remark 1 When $G_B(n, d)$ contains no vertex x satisfying (6) in Theorem 2, it is possible to encounter

$$\gamma_k(G_B(n, d)) = [n\Delta_k] + 1.$$

For example, let $G_B(40, 3)$ and $k = 3$. The congruence equation

$$(d - 1)x \equiv [n\Delta_k] - h \pmod{n}$$

is

$$2x \equiv 1 \pmod{40},$$

where $h = 0$, since $40/\sum_{j=0}^{3} 3^j = 1$. Clearly, there is no vertex satisfying (9). We can deduce that

$$\gamma_3(G_B(40, 3)) = \left\lfloor \frac{40}{\sum_{j=0}^{3} 3^j} \right\rfloor + 1 = 2.$$

Indeed, for each x of $G_B(40, 3)$, it can be verified that $\{x\}$ is not a distance 3-dominating set of $G_B(40, 3)$ by simple enumeration.

Recall that $G_B(d^m, d) = B(d, m)$ when $n = d^m$. For cases $k = 1$ and $k = 2$, the distance k-domination numbers of a de Bruijn digraph $B(d, m)$ were proved by Araki [1] and Tian [25], respectively. As an application of Theorem 2, we can determine the distance k-domination number of a de Bruijn digraph for all $k \geq 1$.

Corollary 3 For $d \geq 2$, $\gamma_k(B(d, m)) = [d^m\Delta_k]$.

Proof If $m \leq k$, then, by Theorem 2, clearly,

$$\gamma_k(B(d, m)) = \gamma_k(G_B(d^m, d)) = 1 = [d^m\Delta_k],$$

and so the assertion holds. We may therefore assume $m > k$. Let $m = ik + l$, where $i \geq 1$ and $0 \leq l \leq k - 1$. Note that

$$d^m = \Delta_k^{-1}(d^{m-k} - d^{m-k-1}) + d^{m-k-1},$$

$$d^{m-k-1} = \Delta_k^{-1}(d^{m-2k-1} - d^{m-2k-2}) + d^{m-2k-2}, \ldots.$$

Then we have

$$d^m = \begin{cases}
\Delta_k^{-1}(d^{m-k} - d^{m-k-1}) + (d^{m-2k-1} - d^{m-2k-2}) + \ldots \\
+ (d^{m-(i-1)k-(i-2)} - d^{m-(i-1)k-(i-1)}) + d^{m-(i-1)k-(i-1)}, & l < i, \\
\Delta_k^{-1}(d^{m-k} - d^{m-k-1}) + (d^{m-2k-1} - d^{m-2k-2}) + \ldots \\
+ (d^{m-ik-(i-1)} - d^{m-ik-i}) + d^{m-ik-i}, & l \geq i.
\end{cases}$$

Because $m = ik + l$ and $0 \leq l \leq k - 1$, if $l < i$, then

$$d^{m-(i-1)k-(i-1)} = d^{l+k-(i-1)} \leq d^{k}.$$
and if \(l \geq i \), then
\[
d^{m-ik-i} = d^{l-i} < d^k.
\]
Thus,
\[
[d^m \Delta_k] = 1 + (d - 1) \begin{cases}
d^{m-k-1} + d^{m-2k-2} + \cdots + d^{m-(i-1)k-(i-1)}, & l < i, \\
d^{m-k-1} + d^{m-2k-2} + \cdots + d^{m-ik-i}, & l \geq i.
\end{cases}
\]
Hence, either
\[
x = d^{m-k-1} + d^{m-2k-2} + \cdots + d^{m-(i-1)k-(i-1)}
\]
or
\[
x = d^{m-k-1} + d^{m-2k-2} + \cdots + d^{m-ik-i}
\]
in \(B(d, m) \) satisfies the congruence equation
\[
(d - 1)x \equiv [d^m \Delta_k] - h \pmod{n},
\]
where \(h = 1 \) and
\[
0 \leq h \Delta_k^{-1} - \Delta_k^{-1} [d^m \Delta_k] - d^m.
\]
Therefore,
\[
\gamma_k(B(d, m)) = [d^m \Delta_k]
\]
by Theorem 2.

As an application of Corollary 2, we provide a new sufficient condition for \(\gamma_k(G_B(n, d)) \) equal to \([n \Delta_k] \). For this purpose, we need the following result in elementary number theory.

For notational convenience, \(m \parallel n \) means that \(m \) divides \(n \) and \(m \nmid n \) means that \(m \) does not divide \(n \), where \(m, n \) are integers. For integers \(a_1, a_2, \ldots, a_n \), the greatest common divisor of \(a_1, a_2, \ldots, a_n \) is denoted by \((a_1, a_2, \ldots, a_n) \).

Lemma 3 [18] For integers \(a_1, a_2, \ldots, a_m \ (m \geq 1), b, \) and \(n, \) the congruence equation
\[
\sum_{i=1}^{m} a_i x_i \equiv b \pmod{n}
\]
has at least a solution if and only if \((a_1, a_2, \ldots, a_m, n) \mid b\).

Theorem 3 For every generalized de Bruijn digraph \(G_B(n, d) \), if both \(n \) and \(d \) satisfy one of the following conditions:
\begin{enumerate}
 \item \(\Delta_k^{-1} \mid n \) and \((d - 1, n) \mid n \Delta_k;\)
 \item \([n \Delta_k] \equiv q \pmod{(d - 1, n)},\) where \(q \) satisfies the inequality
 \[
 0 \leq q \Delta_k^{-1} - \Delta_k^{-1} [n \Delta_k] - n,
 \]
\end{enumerate}
then \(\gamma_k(G_B(n, d)) = [n \Delta_k] \) and there is a vertex \(x \in V(G_B(n, d)) \) such that \(D = \{x, x + 1, \ldots, x + [n \Delta_k] - 1\} \) is a consecutive minimum distance \(k \)-dominating set of \(G_B(n, d) \).
Proof Let n and d satisfy one of conditions (i) and (ii). We show that $G_B(n, d)$ contains a vertex x such that $D = \{x, x+1, \ldots, x+\lceil n\Delta_k \rceil - 1\}$ is a consecutive minimum distance k-dominating set of $G_B(n, d)$. By Theorem 2, it suffices to show that there exists a vertex $x \in V(G_B(n, d))$ satisfies (6) for some h satisfying (7).

For n and d satisfying (i), by Lemma 3, there is a vertex $x \in V(G_B(n, d))$ satisfying

$$(d-1)x \equiv n\Delta_k \pmod{n},$$

and so the assertion follows directly from Corollary 2.

For n and d satisfying (ii), let

$$(d-1,n)=r, \quad [n\Delta_k]=pr+q,$$

where

$$p \geq 0, \quad 0 \leq q \leq r-1.$$

Set $q = h$. Since $(d-1,n) \mid pr$, the equation

$$(d-1)x \equiv pr \pmod{n}$$

has a solution by Lemma 3. Hence, there exists a vertex $x \in V(G_B(n, d))$ satisfying

$$(d-1)x \equiv [n\Delta_k] - h \pmod{n},$$

as desired. \square

By applying Theorems 1 and 2, we obtain the following sufficient condition for $\gamma_k(G_B(n, d))$ equal to $[n\Delta_k]$.

Theorem 4 If $n = p\Delta_k^{-1} + q$, where

$$p \geq 1, \quad 1 \leq q \leq \min\{1 + 2\Delta_{k-1}^{-1}, \Delta_k^{-1} - 1\},$$

then $\gamma_k(G_B(n, d)) = [n\Delta_k]$.

Proof By Theorem 1, we have known that $G_B(n, d)$ contains a vertex satisfying (1). Let x be such a vertex and let $D = \{x, x+1, \ldots, x+\lceil n\Delta_k \rceil - 1\}$. We claim that D is a distance k-dominating set of $G_B(n, d)$. By the definition, it suffices to show that $\bigcup_{i=0}^k O_i(D) = V(G_B(n, d))$.

As before, we first show the vertices of $O_{i-1}(D) \cup O_i(D)$ are consecutive for all $i, 1 \leq i \leq k$. As already observed in Theorem 2, for $i = 0, 1, \ldots, k$, we have

$$O_i(D) = [d^i x, d^i (x+\lceil n\Delta_k \rceil) - 1] \pmod{n}, \quad |O_i(D)| = d^i [n\Delta_k].$$

Since x satisfies inequality (1), there exists an integer $h, 0 \leq h \leq d-2$, such that

$$d x \equiv x + [n\Delta_k] - h \pmod{n},$$

$$d^2 x \equiv d(x + \lceil n\Delta_k \rceil) - dh \pmod{n},$$

$$d^3 x \equiv d^2(x + \lceil n\Delta_k \rceil) - d^2h \pmod{n},$$

$$\ldots,$$

$$d^k x \equiv d^{k-1}(x + \lceil n\Delta_k \rceil) - d^{k-1}h \pmod{n}.$$
Since
\[O_i(D) = [d^i x, d^i (x + \lfloor n \Delta_k \rfloor) - 1] \pmod{n}, \quad i = 0, 1, \ldots, k, \]
the vertices of \(O_{i-1}(D) \cap O_i(D) \neq \emptyset \) are consecutive for all \(i, 1 \leq i \leq k \).

By the above fact, we show that \(\bigcup_{i=1}^{k} O_i(D) \) contains all the vertices of \(G_{B}(n,d) \setminus D \) by showing the vertices of \(O_k(D) \cup D \) are consecutive. We consider the last vertex in \(O_k(D) \).

Since \(n = p \Delta_{k}^{-1} + q \), we have
\[\lfloor n \Delta_k \rfloor \Delta_k^{-1} = n - q + \Delta_k^{-1}. \]
Hence, by
\[dx \equiv x + \lfloor n \Delta_k \rfloor - h \pmod{n}, \quad 0 \leq h \leq d - 2, \]
we have
\[
\begin{align*}
d^k x + d^k \lfloor n \Delta_k \rfloor - 1 &= d^{k-1} (x + \lfloor n \Delta_k \rfloor - h) + d^k \lfloor n \Delta_k \rfloor - 1 \\
&= d^{k-1} x + (d^k + d^{k-1}) \lfloor n \Delta_k \rfloor - d^{k-1} h - 1 \\
&= \cdots \\
&\equiv (x - 1) + \lfloor n \Delta_k \rfloor \Delta_k^{-1} - h \Delta_k^{-1} \pmod{n} \\
&\equiv (x - 1) + 1 + (d - h) \Delta_k^{-1} - q \pmod{n} \\
&\geq (x - 1) + 1 + 2 \Delta_k^{-1} - q \pmod{n} \\
&\geq x - 1.
\end{align*}
\]
The last inequality holds, since
\[1 \leq q \leq \min\{1 + 2 \Delta_{k-1}^{-1}, \Delta_k^{-1} - 1\}. \]
Note that the vertices of \(O_i(D) \) are consecutive for all \(i, 0 \leq i \leq k \). Then
\[\bigcup_{i=1}^{k} O_i(D) \supseteq \{ x + \lfloor n \Delta_k \rfloor, x + \lfloor n \Delta_k \rfloor + 1, \ldots, n - 1, 0, 1, \ldots, x - 1 \}. \]
This implies that
\[\bigcup_{i=1}^{k} O_i(D) \supseteq V(G_{B}(n,d)) \setminus D, \]
and hence, \(D = \{ x, x + 1, \ldots, x + \lfloor n \Delta_k \rfloor - 1 \} \) is a distance \(k \)-dominating set of \(G_{B}(n,d) \). Thus,
\[\gamma_k(G_{B}(n,d)) \leq |D| = \lfloor n \Delta_k \rfloor. \]
By Theorem 1,
\[\gamma_k(G_{B}(n,d)) = \lfloor n \Delta_k \rfloor. \]
3 Minimum distance \(k \)-dominating sets in \(G_K(n, d) \)

Tian and Xu [25] observed the following upper and lower bounds on \(\gamma_k(G_K(n, d)) \).

Lemma 4 [25] *For any generalized Kautz digraph* \(G_K(n, d) \),

\[
\lceil n\Delta_k \rceil \leq \gamma_k(G_K(n, d)) \leq \left\lfloor \frac{n}{d^k} \right\rfloor.
\]

In this section, we shall improve the above upper bound on \(\gamma_k(G_K(n, d)) \) by constructing a consecutive distance \(k \)-dominating set of \(G_K(n, d) \).

Theorem 5 Let \(G_K(n, d) \) be a generalized Kautz digraph. Then

\[
D = \left\{ 0, 1, \ldots, \left\lfloor \frac{n}{d^k + d^{k-1}} \right\rfloor - 1 \right\}
\]

is a distance \(k \)-dominating set of \(G_K(n, d) \), and

\[
\gamma_k(G_K(n, d)) \leq \left\lfloor \frac{n}{d^k + d^{k-1}} \right\rfloor.
\]

Proof We show that \(D \) is a distance \(k \)-dominating set of \(G_K(n, d) \). By the definitions of \(G_K(n, d) \) and \(i \)-th out-neighborhood, we have

\[
O_1(D) = \left\{ n - 1, n - 2, \ldots, n - d \left\lfloor \frac{n}{d^k + d^{k-1}} \right\rfloor \right\};
\]

\[
O_2(D) = \left\{ 0, 1, \ldots, d^2 \left\lfloor \frac{n}{d^k + d^{k-1}} \right\rfloor - 1 \right\},
\]

\[
O_3(D) = \left\{ n - 1, n - 2, \ldots, n - d^3 \left\lfloor \frac{n}{d^k + d^{k-1}} \right\rfloor \right\},
\]

\[
O_4(D) = \left\{ 0, 1, \ldots, d^3 \left\lfloor \frac{n}{d^k + d^{k-1}} \right\rfloor - 1 \right\},
\]

\[
\ldots,
\]

If \(k \) is odd, then we obtain

\[
O_{k-1}(D) = \left\{ 0, 1, \ldots, d^{k-1} \left\lfloor \frac{n}{d^k + d^{k-1}} \right\rfloor - 1 \right\},
\]

\[
O_k(D) = \left\{ n - 1, n - 2, \ldots, n - d^k \left\lfloor \frac{n}{d^k + d^{k-1}} \right\rfloor \right\};
\]

and if \(k \) is even, then

\[
O_{k-1}(D) = \left\{ n - 1, n - 2, \ldots, n - d^{k-1} \left\lfloor \frac{n}{d^k + d^{k-1}} \right\rfloor \right\},
\]

\[
O_k(D) = \left\{ 0, 1, \ldots, d^k \left\lfloor \frac{n}{d^k + d^{k-1}} \right\rfloor - 1 \right\}.
\]
In both cases, we have
\[|O_{k-1}(D)| = d^{k-1} \left\lfloor \frac{n}{d^k + d^{k-1}} \right\rfloor, \quad |O_k(D)| = d^k \left\lfloor \frac{n}{d^k + d^{k-1}} \right\rfloor. \]
Note that the vertices of \(O_{k-1}(D) \) and \(O_k(D) \) are consecutive, and
\[(d^k + d^{k-1}) \left\lfloor \frac{n}{d^k + d^{k-1}} \right\rfloor \geq n. \]
Then
\[O_{k-1}(D) \cup O_k(D) = V(G_K(n, d)). \]
Hence, \(D \) is a distance \(k \)-dominating set for \(G_K(n, d) \). Therefore,
\[\gamma_k(G_K(n, d)) \leq |D| = \left\lfloor \frac{n}{d^k + d^{k-1}} \right\rfloor. \]
\(\square \)

Remark 2 The upper bound on the distance \(k \)-domination number given in Theorem 5 is sharp. For example, we consider the digraph \(G_K(7, 2) \). We claim that
\[\gamma_2(G_K(7, 2)) = 2 = \left\lfloor \frac{7}{2 + 4} \right\rfloor. \]
Suppose not, we have \(\gamma_2(G_K(7, 2)) = 1 \) by Lemma 4. Let \(\{x_0\} \) be a minimum distance 2-dominating set of \(G_K(7, 2) \). Since \(|O_i(x)| = d = 2 \) for each \(x \in V(G_K(7, 2)) \), we have \(O_i(x_0) \cap O_j(x_0) = \emptyset \) for all \(0 \leq i \neq j \leq 2 \). On the other hand, it can be verified that for each \(x \in V(G_K(7, 2)) \), there exist integers \(i, j, \) \(0 \leq i \neq j \leq 2 \), such that \(O_i(x) \cap O_j(x) \neq \emptyset \) by the simple enumeration. Thus, each vertex \(x \) of \(G_K(7, 2) \) cannot form a distance 2-dominating set of \(G_K(7, 2) \), as claimed. By Theorem 5, \(D = \{0, 1\} \) must be a minimum distance 2-dominating set of \(G_K(7, 2) \).

The following result on the domination number of \(G_K(n, d) \), due to Kikuchi and Shibata [15], is an immediate consequence of Lemma 4 and Theorem 5.

Corollary 4 [15] For every generalized Kautz digraph \(G_K(n, d) \), \(\gamma(G_K(n, d)) = \lceil n/(d + 1) \rceil \).

It seems difficult to determine the minimum distance \(k \)-dominating set for general generalized Kautz digraphs \(G_K(n, d) \). Now, we present a sufficient condition for the distance \(k \)-domination number of \(G_K(n, d) \) to be the lower bound \(\lceil n\Delta_k \rceil \) in Theorem 5.

Theorem 6 For every generalized Kautz digraph \(G_K(n, d) \), if
\[(d^{k-1} + d^k)\lceil n\Delta_k \rceil \geq n \quad \text{or} \quad d^k \lceil n\Delta_k \rceil \geq \left\lceil \frac{n}{d + 1} \right\rceil, \]
then \(\gamma_k(G_K(n, d)) = \lceil n\Delta_k \rceil \).

Proof The proof is by directly constructing a (consecutive) distance \(k \)-dominating set of \(G_K(n, d) \) with cardinality \(\lceil n\Delta_k \rceil \). Let \(D = \{0, 1, \ldots, \lceil n\Delta_k \rceil \} - \{0\} \) and...
1). We claim that D is a distance k-dominating set of $G_K(n,d)$. As we have observed, if k is odd, then
\[
O_{k-1}(D) = \{0,1,\ldots,d^{k-1}[n\Delta_k] - 1\},
\]
\[
O_k(D) = \{n-1,n-2,\ldots,n - d^k[n\Delta_k]\};
\]
and if k is even, then
\[
O_{k-1}(D) = \{n-1,n-2,\ldots,n - d^{k-1}[n\Delta_k]\},
\]
\[
O_k(D) = \{0,1,\ldots,d^k[n\Delta_k] - 1\}.
\]
Clearly,
\[
|O_{k-1}(D)| = d^{k-1}[n\Delta_k], \quad |O_k(D)| = d^k[n\Delta_k].
\]
Suppose that
\[
(d^{k-1} + d^k)[n\Delta_k] \geq n.
\]
Note that the vertices of $O_{k-1}(D)$ and $O_k(D)$ are consecutive. Then
\[
O_{k-1}(D) \cup O_k(D) = V(G_K(n,d)).
\]
Thus, $D = \{0,1,\ldots,[n\Delta_k] - 1\}$ is a distance k-dominating set of $G_K(n,d)$.

Suppose that
\[
d^{k-1}[n\Delta_k] \geq \left\lceil \frac{n}{d+1} \right\rceil.
\]
By Lemma 4 and Theorem 5, $D_1 = \{0,1,\ldots,\lceil n/(d+1) \rceil - 1\}$ is a minimum dominating set of $G_K(n,d)$. Let $D'_1 = \{n-1,n-2,\ldots,n - \lceil n/(d+1) \rceil\}$. By the definition of $G_K(n,d)$, we have $O(D'_1) = \{0,1,\ldots,d\lceil n/(d+1) \rceil - 1\}$. Since
\[
|D'_1 \cup O(D'_1)| = (d+1)\left\lceil \frac{n}{d+1} \right\rceil \geq n,
\]
D'_1 is also a minimum dominating set of $G_K(n,d)$. Since the vertices of D are consecutive and $d^{k-1}[n\Delta_k] \geq \lceil n/(d+1) \rceil$, we have either $O_{k-1}(D) \supseteq D_1$ or $O_{k-1}(D) \supseteq D'_1$. Hence, $D = \{0,1,\ldots,[n\Delta_k] - 1\}$ is a distance k-dominating set of $G_K(n,d)$.

\section{Closing remarks}

In this paper, we prove that the distance k-domination number of $G_B(n,d)$ takes on exactly one of two values $\lceil n\Delta_k \rceil$ and $\lceil n\Delta_k \rceil + 1$. In Theorems 2–4, we provide various sufficient conditions for $\gamma_k(G_B(n,d))$ equal to $\lceil n\Delta_k \rceil$. It is of interest to determine the necessary and sufficient condition for $\gamma_k(G_B(n,d))$ equal to $\lceil n\Delta_k \rceil$. In Theorem 5, we establish the sharp upper bound on $\gamma_k(G_B(n,d))$. Furthermore, we provide a sufficient conditions for $\gamma_k(G_K(n,d))$ equal to $\lceil n\Delta_k \rceil$ in Theorem 6. We propose the following open problems.
Problem 1 Determine whether the sufficient condition in Theorem 3 is also necessary for $\gamma_k(G_B(n, d))$ equal to $\lceil n\Delta_k \rceil$.

For Problem 1, Dong et al. [5] proved that the assertion is true for the case when $k = 1$.

Problem 2 For any generalized Kautz digraph $G_K(n, d)$, $\gamma_k(G_K(n, d)) = \lceil n/(d^{k-1} + d^k) \rceil$.

For Problem 2, if $k = 1$, Corollary 4, due to Kikuchi and Shibata [15], implies that the assertion is true.

Acknowledgements This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11471210, 11571222, 11601262).

References

1. Araki T. On the k-tuple domination in de Bruijn and Kautz digraphs. Inform Process Lett, 2007, 104: 86–90
2. Bermond J C, Peyrat C. De Bruijn and Kautz networks: a competitor for the hyper-cube? In: André F, Verjus J P, eds. Hypercube and Distributed Computers. North-Holland: Elsevier Science Publishers, 1989, 279–293
3. Caro Y, Henning M A. Directed domination in oriented graphs. Discrete Appl Math, 2012, 160: 1053–1063
4. Deng A, Wu Y K. De Bruijn digraphs and affine transformations. European J Combin, 2005, 26: 1191–1206
5. Dong Y X, Shan E F, Kang L Y. Constructing the minimum dominating sets of generalized de Bruijn digraphs. Discrete Math, 2015, 338: 1501–1508
6. Du D Z, Hsu D F, Hwang F K, Zhang X M. The Hamiltonian property of generalized de Bruijn digraphs. J Combin Theory Ser B, 1991, 52: 1–8
7. Ducoffe G. Hamiltonicity of large generalized de Bruijn cycles. Discrete Appl Math, 2013, 161: 2200–2204
8. Fischermann M, Volkmann L. Graphs having distance n-domination number half their order. Discrete Appl Math, 2002, 120: 97–107
9. Ghoshal J, Laskar R, Pillone D. Topics on domination in directed graphs, In: Haynes T W, Hedetniemi S T, Slater P J, eds. Domination in Graphs: Advanced Topics. New York: Marcel Dekker, 1998, 401–437
10. Hasunuma T, Shibata Y. Counting small cycles in generalized de Bruijn digraphs. Networks, 1997, 29: 39–47
11. Haynes T W, Hedetniemi S T, Slater P J. Fundamentals of Domination in Graphs. New York: Marcel Dekker, 1998
12. Hosseinabady M, Kakoe M R, Mathew J, Pradhan D K. Low latency and energy efficient scalable architecture for massive NoCs using generalized de Bruijn graph. IEEE Trans on Very Large Scale Integration Systems, 2011, 19: 1469–1480
13. Imase M, Itoh M. Design to minimize diameter on building-block networks. IEEE Trans Comput, 1981, C-30: 439–442
14. Imase M, Soneoka T, Okada K. Connectivity of regular directed graphs with small diameters. IEEE Trans Comput, 1985, 34: 267–273
15. Kikuchi Y, Shibata Y. On the domination numbers of generalized de Bruijn digraphs and generalized Kautz digraphs. Inform Process Lett, 2003, 86: 79–85
16. Li X, Zhang F. On the numbers of spanning trees and Eulerian tours in generalized de Bruijn graphs. Discrete Math, 1991, 94: 189–197
17. Lien M Y, Kuo J, Fu H L. On the decycling number of generalized Kautz digraphs. Inform Process Lett, 2015, 115: 209–211
18. Pan C D, Pan C B. Elementary Number Theory. 2nd ed. Beijing: Beijing Univ Press, 2004 (in Chinese)
19. Shan E F, Cheng T C E, Kang L Y. Absorbant of generalized de Bruijn digraphs. Inform Process Lett, 2007, 105: 6–11
20. Shan E F, Dong Y X. The k-tuple twin domination in generalized de Bruijn and Kautz networks. Comput Math Appl, 2012, 63: 222–227
21. Shan E F, Dong Y X, Cheng Y K. The twin domination number in generalized de Bruijn digraphs. Inform Process Lett, 2009, 109: 856–860
22. Shibata Y, Shirahata M, Osawa S. Counting closed walks in generalized de Bruijn graphs. Inform Process Lett, 1994, 49: 135–138
23. Slater P J. R-dominations in graphs. J Assoc Comput Mach, 1976, 23: 446–460
24. Sridharan N, Subramanian V S A, Elias M D. Bounds on the distance two-domination number of a graph. Graphs Combin, 2002, 18: 667–675
25. Tian F, Xu J. Distance domination numbers of generalized de Bruijn and Kautz digraphs. OR Trans, 2006, 10: 88–94
26. Wang Y L. Efficient twin domination in generalized de Bruijn digraphs. Discrete Math, 2015, 338: 36–40
27. Xu J M. Combinatorial Network Theory. Beijing: Science Press, 2007, 112–131 (in Chinese)