Bounds on \(Z'\) from 3-3-1 model at the LHC energies

Y. A. Coutinho and V. Salustino Guimarães

Instituto de Física - Universidade Federal do Rio de Janeiro

Avenida Athos da Silveira Ramos, 149 Rio de Janeiro - Rio de Janeiro, 21941-972, Brazil

A. A. Nepomuceno

RFM - PUCRJ - Universidade Federal Fluminense

Rua Recife, s/n, Rio das Ostras, Rio de Janeiro, 28890-000, Brazil

(Dated: May 11, 2014)

The Large Hadron Collider will restart with higher energy and luminosity in 2015. This achievement opens the possibility of discovering new phenomena hardly described by the standard model, that is based on two neutral gauge bosons: the photon and the \(Z\). This perspective imposes a deep and systematic study of models that predicts the existence of new neutral gauge bosons. One of these models is based on the gauge group \(SU(3)C \times SU(3)_L \times U(1)_N\) called the 3-3-1 model for short.

In this paper we perform a study with \(Z'\) predicted in two versions of the 3-3-1 model and compare the signature of this resonance in each model version. By considering the present and future LHC energy regimes, we obtain some distributions and the total cross section for the process \(p + p \rightarrow t^+ + t^- + X\). Additionally, we derive lower bounds on \(Z'\) mass from the latest LHC results. Finally we analyze the LHC potential for discovering this neutral gauge boson at 14 TeV center-of-mass energy.

PACS numbers: 12.60.-i, 14.70.Pw

I. INTRODUCTION

The search for new physics is one of the top priorities after a particle consistent with the Higgs boson has been found at the Large Hadron Collider (LHC) \([1, 2]\). Although this discovery can elucidate the mass-generation mechanism, it is still believed that the standard model (SM) is not the ultimate truth, and that physics beyond it must exist at the TeV scale. New phenomena are predicted in various alternative models and theoretical extensions from SM. The existence of a new neutral current, called \(Z'\), is a common feature of most of these models.

Among the models that have new physics content, the 3-3-1 model is the one that provides an elegant answer to one of the modern intriguing questions, the problem of fermion families in nature. The model is built so that anomalies cancel out when all families are summed over, so the family number must be a multiple of the color number.

The phenomenological consequences of the 3-3-1 model depend on its version. The different versions of this model are a consequence of the characteristics of the \(SU(3)\) matrices. It is well known that two representations of the group generators can be simultaneously diagonalized. This makes the charge operator dependent on the ratio between \(\lambda_3\) to \(\lambda_8\) matrix representations leading to different model versions. There is a version with an extra neutral \(Z'\) and charged \(V^{\pm}\) and \(U^{\pm\pm}\) gauge bosons carrying double leptonic charge, called bileptons. Moreover, in this version the \(Z'\) width can be large, and it is usually called the minimal version of the model \([3, 4]\).

There are two versions of the model where there are no exotic charged quarks, one is called the right-handed neutrino version \([5–9]\) and the other we call the Özer version \([10, 11]\). For both, the \(Z'\) is a narrow resonance. As we will discuss in the next section, the properties of the new neutral boson depend on the model version, which is determined by the charge operator. Consequently, one needs to establish phenomenological criteria to disentangle these versions by analyzing the production cross section and some angular distributions that follow from each of them.

Several studies have been performed in order to derive bounds on the mass of new gauge bosons. These bounds come from either direct experimental searches or from phenomenological analysis using the available experimental data. In the universe of the 3-3-1 model, bounds on \(M_{Z'}\) were obtained from different analyses, such as the contribution from exotics to the oblique electroweak correction parameters \((S, T, U)\) \([12–14]\), corrections to the \(Z\)-pole observables for arbitrary values of \(\beta\) \([15, 17]\), the study of the energy region where perturbative treatment is still valid \([18]\), \(Z'\) and exotic boson mass contributions to the muon decay parameters \([19, 20]\), the decay \(\mu \rightarrow 3 e\) \([21]\), and the contribution from neutral bosons to the flavor changing neutral current (FCNC) \([22, 23]\).

In the original work from F. Pisano and V. Pleitez \([3]\), a very restrictive bound on \(Z'\) mass was obtained \((M_{Z'} > 40\) TeV\) by considering the contribution from the \(Z'\) to the \(K^0_L - K^0_S\) mass difference. More recently, a work from V. Pleitez et al. \([33]\), based on additional

*Now at CERN, Switzerland
*Electronic address: yara.amaral.coutinho@cern.ch
*Electronic address: andre.asvedo@cern.ch
contributions from a light scalar boson to FCNC, lowered the strong previous limit on the new neutral gauge boson for the minimal version of the 3-3-1 model. This new result allows the minimal 3-3-1 model predictions to be probed at LHC.

Direct experimental searches performed by DØ [34] and CDF [35, 36] Collaborations derived bounds on Z′ mass based on analyses with dilepton and dimuon final states at $\sqrt{s} = 1.96$ TeV. They established lower bounds for different models and had excluded a Z′ with mass in the range from 963 to 1030 GeV.

Recently, the ATLAS and CMS Collaborations presented results on narrow resonances with dilepton final states (e^+e^-) and $\mu^+\mu^-$ [37, 40] and excluded a sequential standard model Z′ with mass smaller than 2.49 TeV (ATLAS) and 2.59 TeV (CMS). Although their data have been interpreted in terms of different scenarios for physics beyond the SM, no limits on the Z′ from the 3-3-1 model were derived from the latest LHC results. The purpose of this article is to derive these unknown limits.

In this paper we consider the production and decay of the 3-3-1 Z′ in the process $p + p \rightarrow \ell^+ + \ell^- + X$ ($\ell = e, \mu$) for different LHC energy regimes, when Z′ is a narrow resonance as predicted in two versions of the model, namely, the right-handed neutrino model (RHN) [38] and the Özer model [10, 11].

Studies using CDF results have excluded a Z′ from the RHN model with mass below 920 GeV [11]. For the Özer model, no limit on Z′ mass has been derived so far. A previous study on Z′ at the ILC energies was made by one of the authors, where it was possible to disentangle versions from the 3-3-1 model, considering the process $e^+ + e^- \rightarrow \mu^+ + \mu^-$ and establishing from hadronic final states lower bounds on $M_{Z'}$ with 95% C. L. [42]. The possibility to see signals from these models will considerably increased at the LHC running at 14 TeV, a scenario that we also explore in this work.

This paper is organized as follows: in Sec. II we describe the right-handed neutrinos and Özer versions, highlighting the differences between them. In Sec. III we present the Z′ width and the total cross section for the process investigated and for different Z′ masses. In Secs. IV and V, we derive lower bounds on the Z′ mass at $\sqrt{s} = 8$ and $\sqrt{s} = 14$ TeV and explore the LHC potential to find this new state at 14 TeV. The conclusions are presented in Sec. VI.

II. TWO VERSIONS OF THE 3-3-1 MODEL

The 3-3-1 model has many attractive features: among them, it is free from anomalies considering the number of fermion families equal to the quantum number of color. The beginning is the electric charge operator that defines the version of the model,

$$Q = T_3 - \beta T_8 + XI$$ \hspace{1cm} (1)

where the two generators T_3 and T_8 satisfy the $SU(3)$ algebra, I is the unit matrix, and finally, X is the $U(1)$ charge.

Depending upon the β value, the charge operator determines the arrangement of the fields for the minimal version $\beta = \sqrt{3}$; $\beta = 1/\sqrt{3}$ leads to a model with right-handed neutrinos (RHN) and quarks with ordinary charges. Also another choice, $\beta = -1/\sqrt{3}$ leads to a model without exotic charges.

We are interested in the two following versions: the right-handed neutrino version with $\beta = 1/\sqrt{3}$ called here version I [38], and the version with $\beta = -1/\sqrt{3}$ [10, 11], called version II.

Both versions present, besides the ordinary gauge bosons ($\gamma, Z, W^{±}$), neutral extra gauge bosons Z' and single charged dileptons $V^{±}$ and neutral one X^0, which carry a double lepton number. The heavy exotic quarks carry ordinary charges, 2/3 for u-type and −1/3 for d-type.

Each lepton family is arranged in triplets; the first two elements are the charged and the neutral lepton and the third element is a conjugate of the charged lepton or neutral lepton, depending on the β factor. In order to cancel anomalies, the quarks are arranged in triplets and antitriples (one family must be different from the other two).

The Higgs structure to give mass to all particles is composed of three triplets (χ, ρ, η), whose neutral fields develop nonzero vacuum expectation values, respectively, v_χ, v_ρ, and v_η. To reproduce the SM phenomenology, a large scale is associated to the vacuum expectation value v_χ, which gives mass to the exotic quarks and extra gauge bosons. Thus we have the conditions $v_\chi \gg v_\rho, v_\eta$, with $v_\rho^2 + v_\eta^2 = v_\eta^2 = (246)^2$ GeV². The general Lagrangian for the neutral current involving only the Z' contribution is

$$\mathcal{L}^{NC} = -\frac{g}{2\cos\theta_W} \sum_f \left[f \gamma^\mu (g^L V + g^A A^5) f Z'_\mu \right], \hspace{1cm} (2)$$

where f are leptons and quarks, the couplings g^L and g^A are shown in Tables II and III for RHN and Özer versions, g is the $SU_L(3)$ coupling, and θ_W is the Weinberg angle.

RHN - version I		
g^L	g^A	
$Z'\ell\ell$	$-1 + 4\sin^2\theta_W$	$2\sqrt{3} - 4\sin^2\theta_W$
$Z'\mu\mu$	$2\sqrt{3} - 4\sin^2\theta_W$	$2\sqrt{3} - 4\sin^2\theta_W$
$Z'\ell\mu$	$6\sqrt{3} - 4\sin^2\theta_W$	$2\sqrt{3} - 4\sin^2\theta_W$
$Z'\ell\mu$	$6\sqrt{3} - 4\sin^2\theta_W$	$6\sqrt{3} - 4\sin^2\theta_W$

TABLE I: The vector and axial couplings of Z' with leptons (e, μ, and τ) and quarks (u and d) in the RHN (version I). θ_W is the Weinberg angle.
Table II: The vector and axial couplings of Z' with leptons (e, μ, and τ) and quarks (u and d) in the Özer (version II). θ_W is the Weinberg angle.

$Z'\ell\ell$	g_ℓ^V	g_ℓ^A
	$1 + 2\sin^2 \theta_W$	$1 - 2\sin^2 \theta_W$
	$2\sqrt{3} - 4\sin^2 \theta_W$	$2\sqrt{3} - 4\sin^2 \theta_W$
$Z'uu$	$3 + 2\sin^2 \theta_W$	$1 - 2\sin^2 \theta_W$
	$6\sqrt{3} + 4\sin^2 \theta_W$	$2\sqrt{3} - 4\sin^2 \theta_W$
$Z'dd$	$-3 + 4\sin^2 \theta_W$	1
	$6\sqrt{3} - 4\sin^2 \theta_W$	$2\sqrt{3} - 4\sin^2 \theta_W$

Figure 1: Z' width as a function of $M_{Z'}$ for versions I and II of the 3-3-1 model.

III. NUMERICAL IMPLEMENTATION

The two versions of 3-3-1 models discussed above were implemented in the COMPHEP package \[13\], which was used for cross-section calculation and event generation. The parton distribution functions (PDF) CTEx6L were used and the QCD factorization scale was set as the dilepton invariant mass of the event. Concerning the particle parameters, we considered heavy quarks, heavy leptons, and bileptons masses to be 1 TeV, and we took the Z' mass in the range from 500 to 4000 GeV.

In Fig. 1 we present the total Z' width as a function of its mass for the two versions studied here. As we can see, the resonance is narrow in both versions, varying from 2% to 4% of $M_{Z'}$ in the mass range considered. At $M_{Z'} = 2$ TeV the slope of the curve increases because, from this point, the decay of Z' into exotic quarks becomes kinematically allowed. In both versions, the new neutral gauge boson can also decay into exotic fermions with branching ratios of order of 2%.

Figure 2 shows the total cross section calculated at tree level for the process $p + p \rightarrow Z' \rightarrow \ell^+ + \ell^-$ in versions I and II of the 3-3-1 model at $\sqrt{s} = 8$ TeV, where ℓ is either an electron or a muon. Figure 3 shows the same cross section calculated for 14 TeV. Both versions foresee cross sections that can to be probed at the LHC. Version II is the most optimistic since the Z' coupling to leptons is stronger than in version I. Note that depending on $M_{Z'}$, the cross sections increase by a factor of 10 to 10^2 at 14 TeV in comparison with their value at 8 TeV.

Figure 2: Total cross section as a function of $M_{Z'}$ for the process $p + p \rightarrow Z' \rightarrow \ell^+ + \ell^-$ in versions I and II of the 3-3-1 model at $\sqrt{s} = 8$ TeV. A cut on the dilepton invariant mass of $M_{Z'}/2$ was applied for this calculation.

Figure 3: Total cross section as a function of $M_{Z'}$ for the process $p + p \rightarrow Z' \rightarrow \ell^+ + \ell^-$ in versions I and II of the 3-3-1 model at $\sqrt{s} = 14$ TeV with the same cut as Fig. 2.

IV. EXCLUSION LIMITS AT $\sqrt{s} = 8$ TEV

The LHC experiments have performed many analyses searching for signals of new spin 1 gauge bosons in different final states, but so far no deviation of SM has been found. These analyses are usually model dependent, where a set of benchmark model predictions are compared to data.

In the absence of any signal, ATLAS and CMS Collaborations have extended the E_6 superstring-inspired Z' exclusion mass to above 2 TeV with 6 fb$^{-1}$ and 4 fb$^{-1}$ of collision data, respectively, at $\sqrt{s} = 8$ TeV \[38\] [40]. In particular, the CMS Collaboration has combined the results from 7 and 8 TeV to set 95% C. L. limits on the ratio R_{M_Z} of the cross section times branching fraction for Z' to that of the SM.
We use the CMS results to set lower limits on the \(Z' \) mass from 3-3-1 models. Following what was done by CMS, the \(Z' \) cross-sections for both versions are calculated in a range of 40\% about the \(Z' \) pole mass and the \(Z \) cross-section is calculated in the interval 60 GeV \(< m_{\ell\ell} < 120 \) GeV. The ratio \(R_\sigma \) is evaluated for \(Z' \) masses in the range between 500 and 3000 GeV.

Figure 4 shows the CMS observed limits and the theoretical ratio \(R_\sigma \) curve for both versions. The \(Z' \) lower mass limit is obtained from the point where the theoretical ratio curve crosses the observed limit. From the plot, we can conclude that the current data exclude with 95\% C. L. the version I new neutral gauge boson with mass below 2200 GeV and the version II new resonance lighter than 2519 GeV. This result does not change significantly if the value of exotic quark mass is changed.

\[
R_\sigma = \frac{\sigma(p+p \rightarrow Z' \rightarrow \ell^+\ell^-)}{\sigma(p+p \rightarrow Z \rightarrow \ell^+\ell^-)}.
\] (3)

We use the CMS results to set lower limits on the \(Z' \) mass from 3-3-1 models. Following what was done by CMS, the \(Z' \) cross-sections for both versions are calculated in a range of 40\% about the \(Z' \) pole mass and the \(Z \) cross-section is calculated in the interval 60 GeV \(< m_{\ell\ell} < 120 \) GeV. The ratio \(R_\sigma \) is evaluated for \(Z' \) masses in the range between 500 and 3000 GeV.

Figure 4 shows the CMS observed limits and the theoretical ratio \(R_\sigma \) curve for both versions. The \(Z' \) lower mass limit is obtained from the point where the theoretical ratio curve crosses the observed limit. From the plot, we can conclude that the current data exclude with 95\% C. L. the version I new neutral gauge boson with mass below 2200 GeV and the version II new resonance lighter than 2519 GeV. This result does not change significantly if the value of exotic quark mass is changed.

\[
R_\sigma = \frac{\sigma(p+p \rightarrow Z' \rightarrow \ell^+\ell^-)}{\sigma(p+p \rightarrow Z \rightarrow \ell^+\ell^-)}.
\] (3)

We use the CMS results to set lower limits on the \(Z' \) mass from 3-3-1 models. Following what was done by CMS, the \(Z' \) cross-sections for both versions are calculated in a range of 40\% about the \(Z' \) pole mass and the \(Z \) cross-section is calculated in the interval 60 GeV \(< m_{\ell\ell} < 120 \) GeV. The ratio \(R_\sigma \) is evaluated for \(Z' \) masses in the range between 500 and 3000 GeV.

Figure 4 shows the CMS observed limits and the theoretical ratio \(R_\sigma \) curve for both versions. The \(Z' \) lower mass limit is obtained from the point where the theoretical ratio curve crosses the observed limit. From the plot, we can conclude that the current data exclude with 95\% C. L. the version I new neutral gauge boson with mass below 2200 GeV and the version II new resonance lighter than 2519 GeV. This result does not change significantly if the value of exotic quark mass is changed.

\[
R_\sigma = \frac{\sigma(p+p \rightarrow Z' \rightarrow \ell^+\ell^-)}{\sigma(p+p \rightarrow Z \rightarrow \ell^+\ell^-)}.
\] (3)

We use the CMS results to set lower limits on the \(Z' \) mass from 3-3-1 models. Following what was done by CMS, the \(Z' \) cross-sections for both versions are calculated in a range of 40\% about the \(Z' \) pole mass and the \(Z \) cross-section is calculated in the interval 60 GeV \(< m_{\ell\ell} < 120 \) GeV. The ratio \(R_\sigma \) is evaluated for \(Z' \) masses in the range between 500 and 3000 GeV.

Figure 4 shows the CMS observed limits and the theoretical ratio \(R_\sigma \) curve for both versions. The \(Z' \) lower mass limit is obtained from the point where the theoretical ratio curve crosses the observed limit. From the plot, we can conclude that the current data exclude with 95\% C. L. the version I new neutral gauge boson with mass below 2200 GeV and the version II new resonance lighter than 2519 GeV. This result does not change significantly if the value of exotic quark mass is changed.

\[
R_\sigma = \frac{\sigma(p+p \rightarrow Z' \rightarrow \ell^+\ell^-)}{\sigma(p+p \rightarrow Z \rightarrow \ell^+\ell^-)}.
\] (3)

We use the CMS results to set lower limits on the \(Z' \) mass from 3-3-1 models. Following what was done by CMS, the \(Z' \) cross-sections for both versions are calculated in a range of 40\% about the \(Z' \) pole mass and the \(Z \) cross-section is calculated in the interval 60 GeV \(< m_{\ell\ell} < 120 \) GeV. The ratio \(R_\sigma \) is evaluated for \(Z' \) masses in the range between 500 and 3000 GeV.

Figure 4 shows the CMS observed limits and the theoretical ratio \(R_\sigma \) curve for both versions. The \(Z' \) lower mass limit is obtained from the point where the theoretical ratio curve crosses the observed limit. From the plot, we can conclude that the current data exclude with 95\% C. L. the version I new neutral gauge boson with mass below 2200 GeV and the version II new resonance lighter than 2519 GeV. This result does not change significantly if the value of exotic quark mass is changed.

\[
R_\sigma = \frac{\sigma(p+p \rightarrow Z' \rightarrow \ell^+\ell^-)}{\sigma(p+p \rightarrow Z \rightarrow \ell^+\ell^-)}.
\] (3)

We use the CMS results to set lower limits on the \(Z' \) mass from 3-3-1 models. Following what was done by CMS, the \(Z' \) cross-sections for both versions are calculated in a range of 40\% about the \(Z' \) pole mass and the \(Z \) cross-section is calculated in the interval 60 GeV \(< m_{\ell\ell} < 120 \) GeV. The ratio \(R_\sigma \) is evaluated for \(Z' \) masses in the range between 500 and 3000 GeV.
FIG. 6: Invariant mass distribution in the electron channel for $M_{Z'} = 3000$ GeV for version II. The vertical lines represent the mass window used for selecting signal events.

Figures 7 and 8 show the amount of integrated luminosity required to have a 5σ Z' discovery in the electron and muon channels for both versions. As we can see, a 3-3-1 Z' with mass just above the exclusion limit (2519 GeV) can be reached with an amount of data of order of 1 fb$^{-1}$ to 10 fb$^{-1}$, depending on the channel and model. This scenario can be achieved in the first year of LHC operation at 14 TeV. For $M_{Z'} \sim 4$ TeV in version II, the amount of data required to discover this new heavy state would be less than 10 fb$^{-1}$, while for version I, at least 250 fb$^{-1}$ of data would be needed to observe a boson with that mass.

FIG. 7: Discovery potential for versions I and II as a function of $M_{Z'}$ at 14 TeV in electron channel.

If no resonance is found in the data, the current Z' limits can be considerably extended in the next years. Assuming the presence of only background in the data, we can calculate the expected limits on various Z' mass hypotheses considering different integrated luminosities. This is done by performing a single-bin likelihood analysis, using the estimated number of signal and background events and the algorithm described in [45]. It adopts a frequentist approach to compute the confidence level for exclusion of small signals by combining different searches. The electron and muon channels are combined to set 95% C. L. exclusion on $\sigma \times Br(Z' \rightarrow \ell^+ \ell^-)$, and these limits are translated to limits on $M_{Z'}$.

Figure 9 shows the minimal integrated luminosity needed to exclude the new gauge boson as a function of $M_{Z'}$. With ~ 23 fb$^{-1}$ of data, the version II Z' can be excluded up to masses of 4000 GeV, but for version I, it would need at least 3 times more luminosity to exclude a Z' with mass of 4000 GeV. Note that for $M_{Z'} \sim 3000$ GeV, less than 10 fb$^{-1}$ of data is enough for exclusion. This is important to point out because, although we have not considered in this work the 3-3-1 version that has theoretical upper bounds on Z', our results suggest that such a version can be completely excluded in the very early stages of LHC running at 14 TeV, since these upper bounds are usually below 3500 GeV.

FIG. 8: Discovery potential for versions I and II as a function of $M_{Z'}$ at 14 TeV in muon channel.

FIG. 9: Minimal integrated luminosity needed to exclude a Z' from version I and version II as a function of $M_{Z'}$ at 14 TeV.

VI. CONCLUSIONS

New resonances are expected to manifest at LHC in the next years, and among them, the neutral heavy gauge boson Z' has a special role since it appears in different beyond-SM scenarios. In this paper we have presented a
study involving the 3-3-1 model predictions, considering the process \(p + p \rightarrow \ell^{+} + \ell^{-} + X \). Lower limits on \(Z' \) mass from two versions of the 3-3-1 model were derived using the latest CMS published results. For the RHN model, a \(Z' \) with mass below 2200 GeV is excluded. This limit is a considerable improvement of the bounds obtained with CDF results. On the other hand, we derived a first limit for the Özer version: a \(Z' \) lighter than 2519 GeV is excluded.

Considering the LHC running at the design center-of-mass energy of 14 TeV, we have shown that a new resonance with mass of 4000 GeV can be reached at LHC with integrated luminosities of order of 100 fb\(^{-1}\). On the other hand, if no signal is found, the LHC can already exclude \(M_{Z'} = 4000 \) GeV in the first year of operation at the high-energy regime. This is the first investigation of this kind performed for the 3-3-1 models considering the LHC upgraded energy. As the 3-3-1 model predicts a number of new particles, the observation of a \(Z' \) in combination with other exotic searches like bileptons and leptoquarks would provide a powerful way of discriminating between 3-3-1 versions and other BSM scenarios with new neutral heavy states.

[1] “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”. The ATLAS Collaboration, Phys. Lett. B 716, (2012) 1.

[2] “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”. The CMS Collaboration, Phys. Lett. B 716, (2012) 30.

[3] “An SU(3) × U(1) model for electroweak interactions”. F. Pisano and V. Pleitez, Phys. Rev. D 46, (1992) 410.

[4] “Chiral dilepton model and the flavor question”. P. H. Frampton, Phys. Rev. Lett. 69, (1992) 2889.

[5] “Neutral currents and GIM mechanism in SU(3)_L × U(1)_N models for electroweak interactions”. J. C. Montero, F. Pisano and V. Pleitez, Phys. Rev. D 47, (1993) 2918.

[6] “SU(3)_L × U(1)_N and SU(4)_F × U(1)_N gauge models with right-handed neutrinos”. R. Foot, H. N. Long and T. A. Tran, Phys. Rev. D 50, (1994) 34.

[7] “The 3-3-1 model with right handed neutrinos”. Hoang Ngoc Long, Phys. Rev. D 53, (1996) 437.

[8] “SU(3)_L × U(1)_N model for right-handed neutrino neutral currents”. Hoang Ngoc Long, Phys. Rev. D 54, (1996) 4601.

[9] “New fermions and a vectorlike third generation in SU(3)_C × SU(3)_L × U(1)_N models”. V. Pleitez, Phys. Rev. D 53, (1996) 514.

[10] “The electromagnetic gauge invariance in the SU(3)_L × U(1)_X models of electroweak unification”. M. Özer, Phys. Lett. B 337, (1994) 324.

[11] “SU(3)_L × U(1)_X model of electroweak interactions without exotic quarks”. Murat Özer, Phys. Rev. D 54, (1996) 1143.

[12] “Z - Z-prime mixing and oblique corrections in an SU(3) x U(1) model”, J. T. Liu and D. Ng, Z. Phys. C 62, (1994) 693.

[13] “Effects of dilepton gauge bosons on electroweak parameters S, T and U”, K. Sasaki, Phys. Lett. B 308, (1993) 297.

[14] “Heavy quark signals from radiative corrections to the Z-prime boson decay in 3-3-1 models”, F. Ochoa and R. Martinez, Phys. Rev. D 80, (2009) 075020.

[15] “Z and Z' decays with and without FCNC in 331 models”, A. E. C. Hernandez, R. Martinez, and F. Ochoa, Phys. Rev. D 73, (2006) 035007.

[16] “Z-Z' mixing in SU(3)_C × SU(3)_L × U(1)_X models with beta arbitrary”, F. Ochoa and R. Martinez, arXiv:0508082 [hep-ph].

[17] “Phenomenology of the SU(3)_C × SU(3)_L × U(1)_X model with right-handed neutrinos”, D. A. Gutierrez, W. A. Ponce and L. A. Sanchez, Eur. Phys. J. C 46, (2006) 497.

[18] “Concerning the Landau pole in 3-3-1 models”, A. G. Dias, R. Martinez, V. Pleitez, Eur. Phys. J. C 39, (2005) 101.

[19] “The Electroweak theory of SU(3) × U(1)”, Daniel Ng, Phys. Rev. D 49, (1994) 4805.

[20] “Muon Decay: Measurement Of The Integral Asymmetry Parameter”, I. Beltrami, H. Burkard, R. D. Von Dincklage, W. Fetscher, H. J. Gerber, K. F. Johnson, E. Pedroni, M. Salzmann, and F. Schenk, Phys. Lett. B 194, (1987) 326.

[21] “3-3-1 models with unique lepton generations”, D. L. Anderson and M. Sher, Phys. Rev. D 72, (2005) 095014.

[22] “Quark family discrimination and flavor changing neutral currents in the SU(3)_C × SU(3)_L × U(1)_X model with right-handed neutrinos”, H. N. Long and V. T. Van, J. Phys. G 25, (1999) 2319.

[23] “Flavor changing neutral currents in SU(3)_L × U(1)_Y models”, D. Gomez Dunn, F. Pisano and V. Pleitez, Mod. Phys. Lett. A 09, (1994) 1609.

[24] “CP violation in SU(3) × U(1) electroweak model”, T. H. Lee and D. S. Hwang, Int. J. Mod. Phys. A 12, (1997) 4411.

[25] “Generation nonuniversality and flavor changing neutral currents in the 331 model”, J. T. Liu, Phys. Rev. D 50, (1994) 542.

[26] “Lepton-Flavor-changing processes and CP violation in the SU(3)_C × SU(3)_L × U(1)_X model”, J. T. Liu and D. Ng, Phys. Rev. D 50, (1994) 548.

[27] “Z' in the 3-3-1 model”, P. Jain, Satish D. Joglekar, Phys. Lett. B 407, (1997) 151.

[28] “Flavor-changing neutral currents and rare B decays in 3-3-1 models”, J.-Alexis Rodriguez, Marc Sher, Phys. Rev. D 70, (2004) 117702.

[29] “FCNC in the 3-3-1 model with right-handed neutrinos”, R. H. Benavides, Y. Giraldo and W. A. Ponce, Phys. Rev. D 80, (2009) 113009.

[30] “Flavor changing neutral currents in 331 models”, J. M. Cabarcas, D. Gomez Dunn and R. Martinez, J. Phys. G 37, (2010) 045001.

[31] “Sources of FCNC in SU(3)_C × SU(3)_L × U(1)_X Models”, J. M. Cabarcas, J. Duarte and J-A. Rodriguez, Adv. High
Energy Phys. 2012, (2012) 657582. Adv. High Energy Phys. 2012, 657582 (2012)

[32] “Novel sources of Flavor Changed Neutral Currents in the 331RHN model”, D. Cogollo, A. V. de Andrade, F. S. Queiroz and P. Rebello Teles, Eur. Phys. J. C 72, (2012) 2029.

[33] “FCNC in the minimal 3-3-1 model revisited”, A. C. B. Machado, J. C. Montero and V. Pleitez, arXiv:1305.1921 [hep-ph].

[34] “Search for a heavy neutral gauge boson in the dielectron channel with 5.4 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV”. DØ Collaboration. Phys. Lett. B 695, (2011) 88.

[35] “Search for $Z' \rightarrow e^+ e^-$ Using Dielectron Mass and Angular Distribution”. CDF Collaboration. Phys. Rev. Lett. 96, (2006) 211801.

[36] “Search for High-Mass Resonances Decaying to Dimuons at CDF”. CDF Collaboration. Phys. Rev. Lett. 102, (2009) 091805.

[37] “Search for high-mass resonances decaying to dilepton final states in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector”. The ATLAS Collaboration, G. Aad et al., JHEP 1211, (2012) 138.

[38] “Search for high-mass dilepton resonances in 6.1 fb$^{-1}$ of pp collisions at $\sqrt{s} = 8$ TeV”. The ATLAS Collaboration, ATLAS Conference Note, ATLAS-CONF-2012-129 (2012).

[39] “Search for narrow resonances in dilepton mass spectra in pp collisions at $\sqrt{s} = 7$ TeV”. CMS Collaboration, Phys. Lett. B 714, (2012) 158.

[40] “Search for heavy narrow dilepton resonances in pp collisions at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV”. CMS Collaboration, Phys. Lett. B 720, (2013) 63.

[41] “Z' boson signal at Fermilab-Tevatron and CERN LHC in a 331 model”. J. G. Duenas, N. Gutierrez, R. Martinez and F. Ochoa, Eur. Phys. J. C 60, (2009) 653.

[42] “Extra neutral gauge boson from two versions of the 3-3-1 model in future linear colliders”. E. Ramirez Barreto, Y. A. Coutinho, J. Sá Borges, Eur. Phys. J. C 50, (2007) 909.

[43] “CompHEP 4.4 - Automatic Computation from Lagrangians to Events”. E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Edneral, V. Ilyin, A. Kryukov, V. Savrin, A. Semenov, and A. Sherstnev, Nucl. Instrum. Meth. A 534, (2004) 250.

[44] “Asymptotic formulae for likelihood-based tests of new physics”. G. Cowan, K. Cranmer, E. Gross and O. Vitells, Eur. Phys. J. C 71, (2011) 1554.

[45] “Confidence Level Computation for Combining Searches with Small Statistics”. T. Junk, Nucl. Instrum. Meth. A 434, (1999) 435.

Acknowledgments

The authors would like to thank Prof. José de Sá Borges from UERJ (RJ - Brazil) for helpful suggestions.

Y. A. Coutinho thanks CNPq and FAPERJ, V. S. Guimarães thanks CAPES and A. A. Nepomuceno thanks FAPERJ for financial support.