Mitotic Spindle Integrity and Kinetochore Function Linked by the Duo1p/Dam1p Complex

Iain M. Cheeseman, Maria Enquist-Newman, Thomas Müller-Reichert, David G. Drubin, and Georjana Barnes
Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720

Abstract. Duo1p and Dam1p were previously identified as spindle proteins in the budding yeast, *Saccharomyces cerevisiae*. Here, analyses of a diverse collection of *duo1* and *dam1* alleles were used to develop a deeper understanding of the functions and interactions of Duo1p and Dam1p. Based on the similarity of mutant phenotypes, genetic interactions between *duo1* and *dam1* alleles, interdependent localization to the mitotic spindle, and Duo1p/Dam1p coimmunoprecipitation from yeast protein extracts, these analyses indicated that Duo1p and Dam1p perform a shared function in vivo as components of a protein complex. Duo1p and Dam1p are not required to assemble bipolar spindles, but they are required to maintain metaphase and anaphase spindle integrity. Immunofluorescence and electron microscopy of *duo1* and *dam1* mutant spindles revealed a diverse variety of spindle defects. Our results also indicate a second, previously unidentified, role for the Duo1p/Dam1p complex. *duo1* and *dam1* mutants show high rates of chromosome missegregation, premature anaphase events while arrested in metaphase, and genetic interactions with a subset of kinetochore components consistent with a role in kinetochore function. In addition, Duo1p and Dam1p localize to kinetochores in chromosome spreads, suggesting that this complex may serve as a link between the kinetochore and the mitotic spindle.

Key words: microtubule • spindle • mitosis • kinetochore • *Saccharomyces cerevisiae*

Introduction

To carry out chromosome segregation faithfully during mitosis, the mitotic spindle must undergo precise changes at appropriate cell cycle stages (for a review see Botstein et al., 1997). In budding yeast, the microtubule organizing center, or spindle pole body (SPB), duplicates after passage through G1. A bipolar spindle then assembles and establishes attachments to each pair of sister chromatin. At this stage, cohesion between sister chromatids prevents the spindle from elongating past a metaphase length of ~1–2 μm (Michaelis et al., 1997). At the onset of anaphase, chromatin cohesion is eliminated by action of the anaphase promoting complex (APC), a ubiquitin ligase that targets several proteins for degradation during mitosis (King et al., 1995). With the loss of cohesion, sister chromatin separation and spindle elongation can occur to segregate the chromosomes. Finally, after spindle elongation, the spindle breaks down as the cells exit mitosis.

The mitotic spindle is primarily composed of microtubules. However, several other proteins are required for spindle assembly, function, and regulation (for a review see Sobel, 1997; Winsor and Schiebel, 1997). In yeast, spindle proteins include the kinesin-related motors Cin8p, Kip1p, and Kar3p (Roof et al., 1992; Saunders and Hoyt, 1992; Saunders et al., 1997), which provide the forces and structure required to assemble a bipolar spindle and to facilitate spindle elongation. There are also nonmotor microtubule-associated proteins such as Stu1p (Pasqualone and Huffaker, 1994), Ase1p, and Bim1p that are associated with mitotic spindles. Ase1p plays a structural role by cross-linking microtubules in the spindle midzone (Pellman et al., 1995). Bim1p has an incompletely understood role in spindle function (Schwartz et al., 1997; Tirnauer et al., 1999), as well as a role in cytoplasmic microtubule–mediated spindle migration and orientation (Korinek et al., 2000; Lee et al., 2000).

In addition to the structural and mechanical components required to form a functional spindle, other factors are needed to attach the chromosomes to spindle microtubules. This attachment occurs at kinetochores, multiprotein complexes associated with centromeric DNA. Although the organization of the DNA-binding components of the yeast kinetochore has been characterized (Sorger et al., 1994; Espelin et
al., 1997; Meluh and Koshland, 1997), complete elucidation of kinetochore activities requires the identification of all of the proteins involved. In addition, the mechanism by which the kinetochore attaches to spindle microtubules, and how this attachment is regulated, remain to be determined.

Changes in the mitotic spindle, particularly the transition to anaphase spindle elongation, are under tight cell cycle control. In addition to the regulation by the APC and the cyclin-dependent kinase, Cdc28p, spindle function is also monitored by the spindle assembly checkpoint. This checkpoint regulation is mediated by at least seven proteins: Mad1p, Mad2p, Mad3p, Bub1p, Bub2p, Bub3p, and Mps1p (Hoyt et al., 1991; Li and Murray, 1991; Weiss and Winey, 1996). In response to spindle damage or an unattached kinetochore, the spindle assembly checkpoint directly inhibits the Cdc20p-bound form of the APC resulting in a metaphase arrest (Hwang et al., 1998). In yeast, this arrest results in a large-budded cell with a short mitotic spindle and undivided DNA.

Previous work suggested that the S. cerevisiae proteins Duo1p and Dam1p are required for spindle function (Hofmann et al., 1998; Jones et al., 1999). Two-hybrid analysis and in vitro binding studies indicated that these proteins interact with each other physically. Both Duo1p and Dam1p localize along the length of the mitotic spindle, and Dam1p binds directly to microtubules in vitro. Moreover, temperature-sensitive mutants of both genes show spindle defects. Here, we characterize a collection of novel temperature-sensitive alleles of duo1 and dam1. Our analyses show that Duo1p and Dam1p form a conserved protein complex in vivo that is required for diverse aspects of spindle integrity and for kinetochore function.

Materials and Methods

Strains and Growth Conditions

Yeast strains used in this study are listed in Table I. mda24 (pRC4) and mda25 (pKH502) deletions (Chen et al., 1999; Hardwick et al., 2000), Pdi1-myc18 fusion (Ciosk et al., 1998), Lac-GFP/LacO System (pSB16 and pAFS59) (Straight et al., 1996; Biggins et al., 1999), and Ndc10-GFP fusion (Zeng et al., 1999) were generated in our strain background. Yeast were grown on either yeast extract/peptone or synthetic medium supplemented with the appropriate nutrients and 2% glucose, or 2% galactose medium containing 15–20 μg/ml benomyl. Geneticin (G418; GIBCO BRL) was used at an effective concentration of 25 μg/ml benomyl to induce expression of the LacI-GFP fusion and an additional 0.02% adenine to induce expression of the LacI-GFP fusion.

Generation of Temperature-sensitive duo1 and dam1 Mutants

The DAM1 open reading frame was subcloned into the BamHI and XbaI sites of pRS315 or pRS316 (Sikorski and Hieter, 1989) to generate pDD883 and pDD882, respectively, using primers oIC16 (CGC GCG GAT CCA CGA GCA CGT CTT AAA CCG) and oIC17 (CGC GCT CTA GAC CGT TGT CAA GTT TGT TGT C). duo1 mutants were generated by random mutagenesis using two separate methods. duo1-24 (subsequent sequencing revealed that this allele contained the same mutation as dam1-1; our data and Jones, M., and M. Winey, personal communication) and dam1-19 were generated by mutagenesis of pDD883 (DAM1, CEN, LEU2) in vitro with hydroxylamine as described previously (Hofmann et al., 1998). dam1-5, dam1-9, dam1-10, and dam1-11 were generated by PCR amplification of the DAM1 open reading frame with Taq DNA polymerase and then by gap repair in vivo with pDD883 cut with Eco47III and NheI to remove the majority of the DAM1 open reading frame. Mutagenized plasmids were transformed into haploid duo1 deletion strain carrying pDD882 (DAM1, CEN, URA3) and were replica plated to 5-fluoroorotic acid to select against the wild-type plasmid. A total of 5,000 colonies were screened for the hydroxylamine mutants, and 4,000 colonies were screened for the PCR-based mutants. Two isolates of dam1-5 and seven isolates of sequence.stanford.edu/group/candida), Aspergillus nidulans (http://www.genome.ou.edu/fungal.html), and Schizosaccharomyces pombe (http://www.sanger.ac.uk/Projects/P_s pombe), using the S. cerevisiae or C. albicans Duo1p or Dam1p amino acid sequence. Sequences were aligned using ClustalW from European Bioinformatics Institute (http://www.ebi.ac.uk/clustalw/) and formatted using the Seqeu 1.0 software (Garvan Institute of Medical Research). Coiled coil regions were predicted using the COILS program (http://www.ch.embnet.org/software/COILS_form.html), and the leucine zipper motif was identified using PROSITE (http://www.expasy.ch/prosite/). All programs were used with standard settings.

Immunofluorescence Microscopy

Chromosome spreads were prepared as described (Loidl et al., 1998). Lipidic sol was obtained from Lip Ltd. To depolymerize microtubules for these chromosome spreads, 20 μg/ml nocodazole was added to the growing cells for 1 h. In addition, 20 μg/ml nocodazole was included in the sorbitol buffer during yozmolyase treatment. Indirect immunofluorescence microscopy on intact yeast cells was performed as described (Ayscough and Drubin, 1998). The YOL134 antitubulin antibody (Accurate Chemical and Scientific Corporation) was used at a dilution of 1:200, rabbit anti-GFP antibody (a generous gift from Pam Silver, Harvard Medical School, Boston, MA) at 1:4,000, mouse anti-GFP antibody (Roche), rabbit anti-Tub4p antibody (a generous gift from Tim Stearns, Stanford University, Stanford) at 1:1,000, affinity-purified rabbit anti-Duo1p antibody (Hofmann et al., 1998) at 1:2,000, and affinity-purified guinea pig anti-Dam1p antibody (pilot preparation described below) at 1:100. Formaldehyde- or rhodamine-conjugated anti-IgG heavy chain secondary antibodies (Cappel/Organon Technika Inc. or Jackson ImmunoResearch Laboratories) were used at 1:500, and Cy3-conjugated goat anti-rabbit secondary antibody (Sigma-Aldrich) at 1:2,000. Light microscopy was performed using an Axiovert microscope equipped with a 100×/1.3 Plan-Neofar oil immersion objective (ZEISS) and a Sensys charge-coupled device camera (Photometrics) controlled by Phase-3 software (Phase-3 Imaging Systems), or a Nikon TE300 microscope equipped with a 100×/1.4 Plan-Apo objective and an Orca-100 cooled charge-coupled device camera (Hamamatsu) controlled by Phase-3 software.

Electron Microscopy

Yeast cells were cryoimmobilized using an HPM 010 high pressure freezer (BALT-EC). Samples were processed for freeze substitution as described previously (Winey et al., 1995). In brief, samples were freeze substituted at −90°C for 3 d in acetone containing either 0.2% glutaraldehyde and 0.1% uranyl acetate or 2% osmium tetroxide and 0.1% uranyl acetate. The temperature of the samples was raised progressively to room temperature over 48 h in an automatic freeze substitution machine (Leica). Samples were embedded in LR white epoxy or in epon/araldite. Thin sections (50 nm) were cut using a Ventanra MVC-MT-X and a Reichert-Jung ULTRACUT E microtome. Sections were collected on Formvar-coated copper grids and poststained with 2% uranyl acetate in 70% methanol for 4 min followed by aqueous Reynolds’ lead citrate for 2 min. Samples were imaged using either a JEOL 100 CX or a Philips Tecnai 12 transmission electron microscope operated at 80 or 100 kV, respectively.

Sequence Analysis

Homologues of Duo1p and Dam1p were identified using a basic local alignment search tool (BLAST) of the Candida albicans (http://www-
Table 1. Yeast Strains Used in this Study

Name	Genotype	Source
DDY1900	MATa/MATa, his3Δ200/his3Δ200,	This study
	len2-3,112/len2-3,112, ura3-52/	
	ura3-52/ura3-52, ade2-1/+	
DDY1902	MATa, his3Δ200, len2-3,112, ura3-52,	Drubin lab*
DDY1904	MATa, his3Δ200, len2-3,112, ura3-52,	Drubin lab*
DDY1901	MATa, his3Δ200, len2-3,112, ura3-52,	Drubin lab*
DDY1912	MATa, his3Δ200, len2-3,112, ura3-52,	Drubin lab*
DDY1907	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1905	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1906	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1909	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1910	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1911	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1912	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1913	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1914	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1915	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1826	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1916	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1917	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1918	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1919	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1920	MATa, his3Δ200, len2-3,112, ura3-52,	This study
DDY1921	MATa, his7, ura1, cdc15-1	Drubin lab*
DDY1922	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1923	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1924	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1925	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1926	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1927	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1928	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1929	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1930	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1931	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1932	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1933	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1934	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1935	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1936	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1937	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1938	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1939	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1940	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1941	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1942	MATa, ade2-1, his, ura1, cdc15-1	This study
DDY1943	MATa, ade2-1, his, ura1, cdc15-1	This study

*aAll Drubin lab strains are derived from strain S288C.

dam1-11 were obtained from both PCR and hydroxylamine methods based on sequencing of the alleles. Sequencing revealed that the DAM1 sequence in our lab strain background (S288C) differed from the Saccharomyces Database sequence by a frameshift 874 bp into the open reading frame. A similar sequence has also been observed in strains from the W303 background (Jones, M., and M. Winey, personal communication). This modified sequence (sequence data are available from GenBank/EMBL/DDBJ under accession no. AF285042) is shown in Fig. 1A. Sequencing also revealed that dam1-5 differs from dam1-11 by a single additional point mutation. Since these two alleles have a similar growth range and spindle phenotype, they were considered similar for the purposes of this paper.

The dam1 alleles were subsequently integrated into the genome. A NotI site was inserted ~150 bp downstream of the DAM1 stop codon using the Transformer™ Site-Directed Mutagenesis Kit (CLONTECH Laboratories, Inc.) with the mutagenesis oligo oIC18 (CAG CAG TGC ATG GGC AGC GGC CGC ATT ACA ACG AAA C). The G418 resistance gene (KanMX) from pUG6 was cloned into the NotI site in the same orientation as the DAM1 gene. dam1 mutants were then swapped into this vector using the Nhel and SacII sites and were

Cheeseman et al. Roles for the Duo1p/Dam1p Spindle Complex 199
subsequently linearized for integration using SmaI and SacII. These fragments were then transformed into DTY1900, and G418 "His" diploids were selected. These diploids were then sporulated, and haploid integrants were recovered.

The degron-tagged allele of duo1 (duo1^{td}) was generated by cloning DUO1 into the HindIII sites of pPF66R (Dohmen et al., 1994). The DUO1 open reading frame was amplified using the primers oIC31 (GGG CGA AGC TTC CGG AGA GAT GAG TGA GCC AAG CCA ATT) and oIC32 (GGG CGA AGC TTC TAG ATC CAT CAT CG), and the resulting plasmid was then cut with NcoI and integrated into the URA3 locus of a heterozygous duo1 deletion strain. This strain was sporulated, and duo1^{td}::URA3 duo1^Δ haploids were recovered.

Protein and Immunological Techniques

For protein immunoprecipitation from yeast extracts, 50 ml of yeast culture were grown to OD₆₀₀ 1.2 in YPD, washed with sorbitol buffer (1.3 M sorbitol, 0.1 M potassium phosphate, pH 7.5), and incubated for 30 min with lyticase (Rothblatt and Schekman, 1989). Cells were pelleted gently and resuspended in lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% NP-40) with protease inhibitors and 1 mM PMSF. The resuspended cells were then sonicated three times for 15 s and pelleted at maximum speed in a microfuge. Approximately 6 μl of anti-Duo1p or anti-Dam1p antibody (see below) precoupled to 7 μl of Protein A Affi-gel beads (Bio-Rad Laboratories) was added to extract from 20 OD₆₀₀ U of yeast. Samples were incubated overnight at 4°C, washed three times with lysis buffer, and sample buffer was added.

Yeast whole cells lysates were prepared as described (Belmont and Drubin, 1998). A total 0.17 OD₆₀₀ U were loaded per lane of a 12% polyacrylamide gel prepared for SDS-PAGE (Laemmli, 1970) and were electrophoresed to BA83 Protran membrane (Schleicher & Schuell). Anti-Duo1p antibody was used at a dilution of 1:2,000, anti-Dam1p antibody at 1:1,000, B206 anti-tubulin antibody at 1:20,000 (a gift from Frank Solomon, University of California at Santa Cruz, Santa Cruz, CA), 9E10 anti-myc antibody (Santa Cruz Biotechnology, Inc.) at 1:2,000, anti-CIB2 antibody (a generous gift of Doug Kellogg, Massachusetts Institute of Technology, Cambridge, MA) at 1:2,000, and anti-OIP antibody at 1:10,000. HRP-conjugated secondary antibodies against rabbit, mouse (Amersham Life Sciences), and guinea pig (Alpha Diagnostic, Inc.) were used at 1:10,000.

Generation of Anti-Dam1p Antibody

The DAM1 coding sequence was amplified from genomic DNA using the primers oCH52 (GGG CGA AGC TTC AGG AAT AAA TTA GGG) and oIC24 (GGG CGC CAT GGA ACT CAC GCA AAA TTA GGG) and the product was cloned into pRSETa (Invitrogen) in frame with a six-histidine tag to create pDD884. The construct was transformed into BL21 (DE3) cells, and expression of the fusion protein was induced with a mixture of 0.4 mM IPTG for 35 hr at 37°C. Cells were lysed by sonication and spun for 15 min at 25,000 g. The denatured fusion protein was purified using a QIAGEN nickel-nitrilotriacetic acid column according to the manufacturer’s guidelines and then dialyzed into 1 M urea in PBS with a total of 0.5 M NaCl and 5% glycerol. The purified fusion protein (100 μg/injection, five injections at 3-wk intervals), using RIBI adjuvant (RIBI Immunocohesive Research, Inc.). An affinity matrix was created by immobilizing the fusion protein on Affi-gel 10 resin (BioRad Laboratories) using the procedure described in the product manual. Clari-

Results

Mutagenesis of DUO1 and DAM1

Previous analyses of DUO1 and DAM1 were limited to only a few alleles: dam1-1 (Jones et al., 1999), duo1-1, and duo1-2 (Hofmann et al., 1998). dam1-1 arrests with discontinuous spindles (Jones et al., 1999), a phenotype that is distinct from that described for alleles of duo1, which arrest with short spindles (Hofmann et al., 1998). Here, we used random mutagenesis of DAM1 to generate six temperature-sensitive alleles (see Materials and Methods): dam1-5, dam1-9, dam1-10, dam1-11, dam1-19, and dam1-24. dam1-24 was isolated by random mutagenesis, and we later found it to contain the same mutation as dam1-1 (our data and Jones, M., and M. Winey, personal communication). Therefore, throughout the rest of this paper we will refer to dam1-24 as dam1-1. To determine the null phenotype of duo1, we also generated a DHFR^ტ-Duo1p fusion protein (referred to as duo1^ฝ, for temperature degron [Dohmen et al., 1994]). This fusion protein is targeted for proteolysis at the restrictive temperature (not shown). Initial characterization of these novel dam1 and duo1 alleles showed a broad range of growth phenotypes, including a range of restrictive temperatures and sensitivities to the microtubule depolymerizing drug benomyl (Table II). Although we describe analyses of all these alleles here, we chose to focus primarily on duo1-2, dam1-1, dam1-9, and dam1-11, which all behave well at the permissive temperature and show a range of phenotypes at nonpermissive temperatures.

To identify the mutations present in each dam1 allele, the mutants were sequenced. The complete results are summarized in Table II. To provide a better context for interpreting the mutations in the dam1 and duo1 alleles, we conducted BLAST searches for homologues of Dam1p and Duo1p in other organisms. Although we were not able to identify definitive metazoan homologues, homologues

Table II. Analysis of duo1 and dam1 Mutant Alleles

Allele	Class	Benomy⁸	25° Growth range	30° Growth range	34° Growth range	37° Growth range	Mutations
duo1-2	1	No	Viable	Viable	Viable	Dead	A117T, M124I
duo1-1	2	No	Viable	Viable	Dead	Dead	“Degron tag”
dam1-1	3	Yes	Viable	Viable	Dead	Dead	C111Y
dam1-5	4	Yes	Viable	Medium growth defect	Dead	Dead	T58L, L98P, N139S, T332A
dam1-9	5	Yes	Viable	Medium growth defect	Dead	Dead	S97F, N139S, K170E, S328 P, T332A
dam1-10	6	Yes	Mild growth defect	Dead	Dead	L1025S, C111R, N139S, T249I, N302D, T332A, T336Stop	
dam1-11	7	No	Viable	Medium growth defect	Dead	Dead	L98P, N139S, T332A
dam1-12	8	No	Mild growth defect	Medium growth defect	Dead		

Class corresponds to the phenotype observed by immunofluorescence: 1, Short spindle arrest; 2, abnormal spindles; 3, hyperelongated spindles; and 4, collapsed spindles. dam1-1 data are from Jones et al., 1999.
Figure 1. Dam1p and Duo1p mutations and C. albicans homologues. Identical residues are boxed and conserved residues are highlighted. Residues that are mutated in duo1 or dam1 mutants are indicated with an asterisk, with the exception of dam1-1*. (A) Dam1p C. albicans homologue (orf5.6651). Both the leucine zipper region (residues 63-98) and the putative coiled coil region (residues 123-161) of Dam1p are conserved. These two proteins are 25% identical and the predicted leucine zipper region (residues 123-161) of (orf5.6651). Both the leucine zipper region (residues 63–98) and the putative coiled coil region (residues 123–161) of Dam1p are conserved. These two proteins are 25% identical and the putative coiled coil region (residues 123–161) of Dam1p are conserved in C. albicans (Fig. 1 A). Many of the mutations in the dam1 and duo1 alleles were in residues that were conserved with the C. albicans homologues (Figs. 1, A and B).

To understand the functional relationship between Duo1p and Dam1p, and their relationship to other mitotic spindle proteins, we performed crosses between the alleles of duo1 and dam1, and crosses between these alleles and other mutants that affect spindle function. Although our isolate of dam1-1 has the same mutation as the previously published allele (Jones et al., 1999), we found some differences in its genetic interactions (see Table III). No intragenic complementation was observed for the collection of dam1 alleles, suggesting that these alleles are defective in similar or overlapping functions. However, all six dam1 alleles showed a strong genetic interaction with both duo1 and dam1 (Table III). To gain new insights into the spindle functions of Duo1p and Dam1p, we crossed duo1 and dam1 alleles to mutants with spindle defects (see Table III). dam1-1 showed genetic interactions with cin8Δ and stu1-5 consistent with previous reports for this allele (Jones et al., 1999). However, the other duo1 and dam1 mutants showed very weak, if any, interactions with these mutants. An additional allele-specific interaction was observed with the microtubule-associated protein, bim1Δ. Crosses were also made to mutants defective in kinetochore function. No genetic interactions were observed with mutants of centromere DNA binding components ndc10-1, were identified in several fungal species. The closest homologues for Dam1p (Fig. 1 A) and Duo1p (Fig. 1 B) were found in Candida albicans, although a Duo1p homologue was also identified in Schizosaccharomyces pombe (SPBC32F12.08c), and homologues for both proteins were found in Aspergillus nidulans (incomplete cDNA sequences n2d02a1.r1 for Duo1p, and r5a07a1.r1 for Dam1p). The predicted leucine zipper motif and coiled coil regions of Dam1p are conserved in C. albicans (Fig. 1 A). Many of the mutations in the dam1 and duo1 alleles were in residues that were conserved with the C. albicans homologues (Figs. 1, A and B).

Allele	duo1-2	duo1-1	cin8Δ	stat1-5	bim1Δ	mps1-1	mad2Δ	mad1Δ	bub1Δ	bub3Δ	bir1Δ	cfj19Δ
dam1-1	Lethal	Lethal	Viable	Viable	Viable	Viable	Viable	Viable	Viable	Viable	Viable	Viable
dam1-1*	Lethal	Lethal	Sick	Lethal	Lethal	Lethal	Lethal	Lethal	Lethal	Lethal	Lethal	Lethal
dam1-5	Lethal	Lethal	Viable	Viable	Viable	Viable	Viable	Viable	Viable	Viable	Viable	Viable
dam1-9	Lethal	Lethal	~Sick	Viable	Viable	Viable	Viable	Viable	Viable	Viable	Viable	Viable
dam1-10	Lethal	Lethal	Viable	Viable	Viable	Viable	Viable	Viable	Viable	Viable	Viable	Viable
dam1-11	Lethal	Lethal	Viable	Viable	Viable	Viable	Viable	Viable	Viable	Viable	Viable	Viable

For these genetic interactions, lethal is defined as the inability to recover viable double mutants at 25°C. Sick indicates a dramatic reduction in permissive temperature range for a double mutant compared with the individual single mutants. ~Sick indicates a slight reduction in the permissive temperature range for the double mutant compared with the individual single mutants.

*Data are from Jones et al., 1999.
ctf13-30, cep3-1, cep3-2, or mif2-3 for dam1-1 and dam1-11. However, dam1-1 showed specific genetic interactions with bir1Δ and ctf19Δ. In total, these results suggest that the functions of Duo1p and Dam1p are closely interrelated and functionally linked to a specific subset of other proteins with diverse roles in mitotic spindle function.

Duo1p and Dam1p Are Required for Spindle Integrity

At the restrictive temperature, both duo1 and dam1 mutants arrested with a high percentage of large-budded cells (Fig. 2 A), suggesting a mitotic arrest. Double mutants between a duo1 or dam1 allele and a gene encoding a component of the spindle assembly checkpoint (mad2Δ or mad3Δ) did not arrest with large buds (Fig. 2 B), indicating that the large-budded arrest was dependent on the spindle assembly checkpoint.

Activation of the spindle assembly checkpoint by duo1 and dam1 mutants suggests that these mutants are sustaining spindle damage. Indeed, four classes of spindle defects were observed by immunofluorescence microscopy (Fig. 3). The first class of mutants (duo1-2 and dam1-9; Fig. 3, A and C) arrested with a short spindle \(1-2\mu m\) in length (see also Hofmann et al., 1998). However, when the spindle assembly checkpoint was eliminated, these mutants progressed through mitosis but showed slightly defective spindle structures, including bent and broken spindles (Fig. 3 B, arrow and Hofmann et al., 1998). The second class of mutants (duo1Δ and dam1-5, not shown; dam1-11, and dam1-1, Fig. 3, G–J) showed a range of spindle defects including broken-down spindles (Fig. 3 G), elongated spindles with faintly staining microtubules in the middle of the spindle (Fig. 3 I), and spindles in which the spindle poles were separated but not connected by microtubules (Fig. 3, H and I). Some of
these phenotypes are similar to those previously described for dam1-1 (Jones et al., 1999). The third class (dam1-10; Fig. 3 O) showed ~5–10% hyperelongated spindles (≥10 μm), in addition to showing spindle phenotypes similar to the second mutant class. A similar phenotype was also observed for double mutants between duo1-1 and dam1-1 (Fig. 3 P). Although a slightly hyperelongated spindle phenotype has been described for mutations in KIP3 (Straight et al., 1998), the hyperelongated spindles in the dam1 mutants are much more dramatic and often wind around the cell. Colocalization with Tub4p, an SPB component, demonstrated that each end of these abnormal spindles contains an SPB (not shown). The final class of mutants (dam1-19; Fig. 3 Q) showed extremely short spindles (<1 μm). Even though these spindles were much shorter than a typical bipolar spindle, colocalization with Tub4p demonstrated that two separated SPBs were present in each spindle (not shown). A similar phenotype has also been observed for slk19Δ and kar3Δ mutants (Zeng et al., 1999), which show defects in stabilizing spindle microtubules.

Figure 3. duo1 and dam1 mutants display diverse spindle defects. (A–C, G–J, and O–Q) Tubulin immunofluorescence of duo1 and dam1 mutants. (D–F, K–N, and R–T) The corresponding DNA (DAPI) staining. (A and D) duo1-2; (B and E) duo1-2 mad2Δ, arrow shows broken spindle; (C and F) dam1-9; (G, K and H, L) duo1td; (I and M) dam1-11; (J and N) dam1-1; (O and R) dam1-10; (P and S) duo1-1 dam1-1; and (Q and T) dam1-19. Cells (A–N) were grown to log phase at 25°C, shifted to 37°C for 1.5 h. dam1-10 is shown at 25°C. duo1-1 dam1-1 is shown after 6 h at 37°C, though similar phenotypes are present at 25°C. dam1-19 is shown after 4.5 h at 37°C. Bar, 5 μm.
Because duo1 and dam1 mutants show a checkpoint-dependent arrest, the phenotypes shown in Fig. 3 are representative of spindle morphology during metaphase. To test for spindle phenotypes at later time points in mitosis (Fig. 4), we eliminated the mitotic checkpoint (mad2Δ or mad3Δ) and blocked exit from mitosis using a cdc15-1 mutant. cdc15-1 (Duo1Δ Dam1Δ) cells arrested with an evenly stained, elongated mitotic spindle. Although duo1-2 mutants showed relatively evenly stained spindle structures in late mitosis, some broken spindles were observed (Fig. 4, arrow). dam1-9 mutants looked similar to duo1-2 mutants during a metaphase arrest; however, dam1-9 mutants arrested in late mitosis showed a broken-down spindle that stained faintly in the middle compared with wild-type spindles. dam1-11 mutants showed an even more severe spindle breakdown phenotype in late mitosis in which the majority of cells had well-separated SPBs that were not connected by interpolar microtubules. The loss of interpolar microtubules in late mitosis has also been reported for ase1Δ mutants (Juang et al., 1997). These distinct phenotypes observed during both metaphase and late mitosis demonstrate important roles for Duo1p and Dam1p in different aspects of spindle integrity.

Electron Microscopy of duo1 and dam1 Mutants Reveals Splayed, Bent, and Broken Spindles

The budding yeast spindle has been characterized extensively by transmission electron microscopy of serial sections (Winey et al., 1995; O’Toole et al., 1997, 1999). Using this approach, we observed a range of ultrastructural defects in duo1 and dam1 mutants (Fig. 5). At the short spindle stage, duo1-2 mutants showed a relatively normal bipolar spindle. However, compared with wild-type spindles in which the microtubules are packed closely together, duo1-2 mutants showed some microtubules that splayed slightly outwards (Fig. 5 A, arrow), suggesting a defect in microtubule bundling. This lack of connection may underlie the bending or breaking of spindles in duo1-2 mad2Δ mutants (Fig. 5 B). We have observed this phenotype in multiple duo1-2 mad2Δ spindles. In some cases, elongated duo1-2 mad2Δ spindles were broken such that the half spindles made a 90° angle with each other. To further examine the spindles in mutants that have progressed past the short spindle stage, we examined the dam1-9 mad2Δ cdc15-1 mutant discussed above (Fig. 5 C). Although the spindles in these mutants have elongated past 2 μm, there are still a large number of long microtubules that are very tightly bundled (Fig. 5 C, inset). In contrast, elongated spindles in wild-type cells show only a few microtubules which connect the two poles (Winey et al., 1995; O’Toole et al., 1999). In addition, some late mitotic dam1-9 spindles were bent dramatically. By immunofluorescence, dam1-10 mutants showed a variety of spindle defects even at the permissive temperature. Although electron microscopy of thin sections did not allow observation of the hyperelongated spindles, other spindle defects were observed. Many spindles showed one SPB that had invaginated into the nucleus (Fig. 5 D), suggesting a net decrease in outward spindle forces. In addition, as we also observed for other duo1 and dam1 mutants, the two halves of the bipolar spindle often failed to completely connect with each other. In such cases, although some microtubules ran between the SPBs (Fig. 5 D), a large number of microtubules extended beyond the opposite SPB (Fig. 5 E).

Duo1p and Dam1p Function Is Required during Mitosis

Although Duo1p and Dam1p contribute to spindle function, it is unclear when in the cell cycle their functions are required. The spindle assembly checkpoint is activated in duo1 and dam1 mutants, but a variety of defects can be sensed by this checkpoint. One possibility is that spindle damage is generated early in the cell cycle during spindle assembly. For example, cdc31-2 and mps2-1 mutants are defective in SPB duplication and arrest in mitosis due to the mitotic checkpoint (Weiss and Winey, 1996). A second possibility is that a defect, such as the inability to capture all of the kinetochores, occurs after the spindle has assembled. To determine when the activities of Duo1p and Dam1p are required for spindle function, duo1 and dam1 mutants were synchronized at 25°C with HU, which arrests cells in S phase with a short spindle structure. Mutants were released from this arrest to the restrictive temperature and scored for the percentage of large-budded cells. Wild-type and duo1-2 mutant cells divided 60–80 min after...
HU release (Fig. 2 C). In contrast, \textit{duo1}at and most \textit{dam1} mutants remained arrested at the large-budded stage, indicating a requirement for Duo1p and Dam1p function after spindle assembly has occurred. This arrest was also dependent on the spindle assembly checkpoint (Fig. 2 D).

To test the importance of Duo1p and Dam1p during spindle assembly, cells were first synchronized in G\textsubscript{1} using alpha factor and then allowed to form a spindle in HU at the restrictive temperature. Cells were then released into fresh medium lacking HU at the permissive temperature. Wild-type cells divided after \textasciitilde120 min under these conditions. Although the majority of \textit{duo1} and \textit{dam1} mutants were able to divide when released to the permissive temperature, some mutants showed a delay in division compared with wild-type (Fig. 2 E). These results suggest either that these spindles are defective and must be repaired before the cells are able to progress through mitosis, or that after being lost at the restrictive temperature, Duo1p and Dam1p function is restored gradually after a shift back to the permissive temperature. To test more directly for the importance of Duo1p and Dam1p during spindle assembly, \textit{duo1} and \textit{dam1} mutants were synchronized in G\textsubscript{1} with alpha factor, then released to the restrictive temperature in the presence of 0.2 M HU. Treatment with HU, a DNA synthesis inhibitor, arrests yeast cells with large buds and short mitotic spindles. In contrast to the abnormal spindle phenotypes observed in the metaphase arrest (see Fig. 3, and below), \textit{duo1-2}, \textit{dam1-9}, \textit{dam1-10}, \textit{dam1-11}, and \textit{dam1-19} all arrested with normal-looking short spindles, even after 4 h at the restrictive temperature (see Fig. 9 C). Similar results were also observed when 0.1 M HU was used (not shown). This result indicates that

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image}
\caption{Electron microscopy of \textit{duo1-2} and \textit{duo1-2 mad2\Delta} mutants. Thin sections (50 nm) of high pressure frozen yeast were viewed using transmission electron microscopy. (A) \textit{duo1-2} mutant after 2 h at the restrictive temperature, showing a slightly splayed spindle and corresponding diagram showing positions of the microtubules. The arrow points to microtubules that splay outwards. (B) \textit{duo1-2 mad2\Delta} mutant after 2 h at the restrictive temperature, showing a slightly broken spindle and corresponding diagram showing positions of the microtubules. (C) \textit{dam1-9 mad2\Delta cdc15-1} mutant grown as in the legend to Fig. 4 showing a bent spindle. (C, inset) Cross section of this mutant showing a tight bundle of microtubules. (D and E) Two serial sections of \textit{dam1-30} at the permissive temperature and corresponding diagrams showing one invaginated SPB and microtubules that fail to connect with the opposite pole.}
\end{figure}
Duo1p and Dam1p function is not required to assemble a bipolar spindle, and that the function in spindle integrity is restricted to cells that have completed DNA synthesis.

Interdependence of Duo1p and Dam1p Function

Duo1p and Dam1p show a direct binding interaction in vitro and by two-hybrid analysis (Hofmann et al., 1998), suggesting that they might associate physically for their in vivo activity. To obtain evidence for this association, we generated an affinity-purified polyclonal antibody against Dam1p (see Materials and Methods). This antibody specifically recognized several protein bands 39.5–42 kD in immunoblots of yeast extracts (Fig. 6 A), near the predicted size of 38.4 kD for Dam1p. Using this antibody, Dam1p was immunoprecipitated from yeast protein extracts. As shown in Fig. 6 B, both Duo1p and Dam1p were specifically immunoprecipitated from yeast protein extracts. Similarly, Duo1p and Dam1p were specifically immunoprecipitated from yeast extracts when antibodies against either Dam1p or Duo1p. Duo1p and Dam1p are specifically immunoprecipitated when antibodies against either Duo1p or Dam1p are used but not with preimmune serum.

![Figure 6. Dam1p and Duo1p physically associate in vivo.](image)

Table IV. Frequency of Chromosome Missegregation in duo1 and dam1 Mutants

Percent of cells with chromosome segregation defects	t = 0	t = 1.5	t = 3
Wild-type			
% (n)			
duo1-2	0	1 (106)	0
dam1-1	3 (100)	99 (67)	81 (67)
dam1-11	0 (109)	88 (67)	84 (67)
duo1-2 mad2Δ	0 (47)	22 (67)	62 (50)

Cells were shifted to the restrictive temperature at t = 0 and chromosome missegregation was scored using LacI-GFP marked chromosomes. Only large budded cells with a divided mass of DNA (as revealed by DAPI staining) were counted. A cell was scored as showing missegregation if two dots of LacI-GFP fluorescence were observed at the same pole, or if only one dot of LacI-GFP fluorescence was observed (corresponding to two chromatids that are too close to be resolved by light microscopy).
would be expected that the viability would drop more quickly. As shown in Fig. 8 B, dam1-1 and dam1-11 showed a dramatic drop in viability after only 3 h at 37°C. Eliminating the spindle assembly checkpoint in these mutants does have a small effect on viability at earlier time points, but overall the kinetics of cell death remain the same.

These results suggest that the decrease in viability observed in duo1 and dam1 mutants occurs as a result of spindle elongation and chromosome segregation. One possibility is that chromosome segregation is abnormal in these mutants, resulting in inviable aneuploid cells. To test this possibility, we monitored chromosome segregation by expressing LacI-GFP in a strain with 256 tandem copies of Lac operator sequence integrated on chromosome III (Straight et al., 1996). As shown in Fig. 8 C, duo1 and dam1 mutants missegregate chromosomes at the restrictive temperature. The frequencies of chromosome missegregation are reported in Table IV. Most notably, at 25°C, wild-type, duo1 and dam1, and duo1-2 mutant cells did not show any chromosome missegregation, whereas dam1-9 showed only a very small frequency of missegregation. However, soon after any of these mutants was shifted to the restrictive temperature, the majority of cells showed chromosome missegregation. duo1 and dam1-11 mutants showed a level of chromosome missegregation that approached 100% in some cases, whereas duo1-2 mutants showed a lower percent of missegregation.

Some dam1 Mutants Carry Out Anaphase-like Events While Arrested in Metaphase
dam1-1, dam1-5, dam1-10, dam1-11, and duo1td mutants elongate their spindles and aberrantly segregate chromosomes despite the fact that these mutants activate the spindle assembly checkpoint (see Figs. 3 and 8 C). Because this checkpoint functions to inhibit the Cdc20p-bound form of the APC (Hwang et al., 1998), checkpoint activation should prevent degradation of the APC targets Pds1p and Clb2p (Cohen-Fix et al., 1996; Visintin et al., 1997) and arrest the cells in metaphase before sister chromatid separation and spindle elongation. Despite the fact that duo1 and dam1 mutants do not exhibit a spindle morphological arrest characteristic of metaphase, Pds1p and Clb2p are stabilized in these mutants at the restrictive temperature. After release from a permissive temperature HU block to 37°C, wild-type cells showed a 30-fold drop in Pds1p levels as they progressed through anaphase (Fig. 9 A). In contrast, dam1-9 and dam1-11 showed only a twofold decrease in Pds1p levels over the entire 150-min time course (Fig. 9 A). Immunofluorescence of these mutants showed that the vast majority of dam1-9 and dam1-11 nuclei stain for Pds1p even in cases where the DNA has separated (not shown). Similarly, although wild-type cells showed Clb2p degradation 60 min after release from HU, dam1 mutants
actually showed a slight increase in Clb2p levels, demonstrating Clb2p stabilization (Fig. 9 B). These results indicate that the spindle assembly checkpoint inhibits the APC in dam1 mutants.

It remained possible that some other aspect of APC function was not completely inhibited by the spindle assembly checkpoint in duo1 and dam1 mutants. Therefore, we sought to inhibit APC function directly through the use of temperature-sensitive mutations in subunits of the APC (cdc16-1 or cdc26Δ) or a glucose-repressible CDC20 that quickly arrests in metaphase in the presence of glucose. cdc16-1 and cdc26Δ mutants arrest with virtually all cells having a large bud, a short metaphase length spindle, and a single mass of DNA (Fig. 9 D). Similar results were seen for double mutants between cdc16-1 and dam1-9, which typically arrests with short spindles (not shown). However, in contrast to dam1 mutants arrested in S phase with HU at the restrictive temperature (Fig. 9 C), double mutants between cdc16-1 or cdc26Δ and dam1-1, dam1-10, or dam1-11 had broken-down spindles, many with no microtubules connecting the SPBs (Fig. 9 D). Moreover, these spindles appeared to have elongated past the length of a normal metaphase short spindle, and two masses of DNA were segregated to the poles of these spindles. Thus, even when APC function was completely inhibited, some anaphase events, such as spindle elongation and chromosome segregation, occurred in a subset of dam1 mutants. In contrast, if dam1 mutants were allowed to form a metaphase spindle by arresting cells at the permissive temperature using a glucose-repressible Gal-CDC20, and were subsequently shifted to the restrictive temperature, no premature spindle elongation or chromosome segregation was observed (Fig. 9 E).

Premature anaphase events similar to those observed in the dam1 APCα double mutants have been previously reported for double mutants between APC mutants and either cohesin mutants (Michaelis et al., 1997) or ipl1 mutants (Biggins et al., 1999). In these cases, the authors suggested that spindle elongation occurred due to an inability to generate tension through the paired sister chromatids, either due to the absence of pairing or the inability of spindle microtubules to attach to both kinetochores. To
test whether a cohesion defect was responsible for this effect in the duo1 and dam1 mutants, we examined sister chromatid separation in the presence of nocodazole, using the LacI-GFP system. In the absence of microtubules, sister chromatids remained paired (not shown), indicating that cohesion was not defective in these mutants.

Duo1p and Dam1p Localize to Kinetochores in Chromosome Spreads

Together with the high rate of chromosome missegregation, the premature anaphase events observed during a metaphase arrest suggested that kinetochore function might be defective in duo1 and dam1 mutants. To determine whether Duo1p and Dam1p are associated with kinetochores, we performed immunofluorescence on spreads of yeast chromosomes prepared as described (Loidl et al., 1998). This procedure removes the majority of the yeast cell, leaving the intact chromatin. Duo1p (Fig. 10 A) and Dam1p (Fig. 10 B) localized to punctate spots (usually one to four distinct loci) on the chromatin. Such a staining pattern is consistent localization to centromeric regions since it has been shown that centromeric regions are clustered in vivo (Jin et al., 1998). In addition, these punctate loci exactly colocalized with Ndc10p (Fig. 10, A and B), a well established kinetochore component (Goh and Kilmartin, 1993; Espelin et al., 1997; Meluh and Koshland, 1997). Identical results were also obtained using Mtw1-GFP (Goshima and Yanagida, 2000) as a marker for kinetochores (not shown). This localization was not dependent on microtubules, because antibodies against tubulin did not stain these chromosome spreads, and because Duo1p localized to chromosomes even when the cells were treated with 20 μg/ml nocodazole for 1 h before preparation of the chromosomes (not shown). Antibodies against the SPB component, Tub4p, do stain these chromosome spreads, with the Tub4p signal does overlap with some of the Ndc10p or Dam1p staining, there are multiple additional foci that do not colocalize with Tub4p (Fig. 10, C and D). In fact, some colocalization with kinetochores and SPBs is expected based on the clustering of centromeres around SPBs (Jin et al., 2000). These data suggest that, in addition to associating with intranuclear microtubules, Duo1p and Dam1p also associate with kinetochores. Duo1p and Dam1p are likely to be associated with kinetochores throughout the cell cycle because they...
were associated with every DNA mass in chromosome spreads prepared from logarithmically growing cells.

Discussion

Duo1p/Dam1p Form a Spindle-associated Protein Complex

Previous work demonstrated that Duo1p and Dam1p were able to associate physically (Hofmann et al., 1998). Here, we provide evidence that Duo1p and Dam1p functions as a complex in vivo. Duo1p and Dam1p coimmunoprecipitate from yeast protein extract and colocalize along the entire length of the mitotic spindle in a mutually dependent manner throughout the cell cycle. It would also be expected that mutations in any subunit of a complex would give rise to a similar range of phenotypes. We showed this to be the case for Duo1p and Dam1p with the short spindle arrest of duo1-2 and dam1-9 mutants, and with the similar range of abnormal spindle phenotypes associated with dam1-1, dam1-5, dam1-11, and duo1td. In addition, genetic interactions between duo1 and dam1 alleles indicate that mutations in DUO1 or in DAM1 cause the cells to be specifically sensitive to mutations in the other gene, again supporting the conclusion that these proteins function as a complex.

Duo1p and Dam1p Function in Mitotic Spindle Integrity

Temperature-sensitive mutants of duo1 and dam1 display diverse defects that suggest a role in spindle integrity. Although some of these phenotypes have been observed individually in other yeast mutants, this striking range of very different phenotypes suggests that Duo1p and Dam1p may have multiple roles in maintaining spindle integrity. One possibility is that these defects reflect an inability to form cross-links between spindle microtubules. Such a role has been suggested for Ase1p, which localizes to the spindle midzone (Pellman et al., 1995). Dam1p has been shown to bind directly to microtubules (Hofmann et al., 1998), and it can interact with itself in the two-hybrid assay and in vitro (our unpublished results), suggesting that it can dimerize. Therefore, it is possible that the Duo1p/Dam1p complex binds to two separate spindle microtubules to provide spindle integrity. Although such an activity may explain some of the observed phenotypes, ase1Δ mutants do not show the dramatic hyperelongated spindles or very short spindles that we observed for dam1 and duo1 mutants. Therefore, the Duo1p/Dam1p complex appears to have additional spindle functions. Duo1p has recently been reported to interact physically with the microtubule-associated protein Bim1p in the two-hybrid system (Uetz et al., 2000). The allele-specific genetic interaction that we have identified between dam1-1 and bim1Δ suggests that Bim1p may associate with the Duo1p/Dam1p complex for some aspect of spindle function.

Strikingly, the requirement for Duo1p and Dam1p function in spindle integrity appears to be restricted to cells that have completed DNA synthesis. Although the mitotic spindle assembles during S phase, additional changes must occur to the spindle before anaphase. During metaphase,

Figure 10. Duo1p and Dam1p localize to kinetochores. Cells expressing an Ndc10-GFP fusion protein were prepared for chromosome spreads as described (Loidl et al., 1998). They were then processed for immunofluorescence and stained with (A) anti-GFP antibodies to localize Ndc10-GFP (green) and antibodies against Duo1p (red), (B) anti-GFP (green) and anti-Dam1p (red) antibodies, (C) anti-GFP (green) and anti-Tub4p (red) antibodies, and (D) anti-Dam1p (red) and anti-Tub4p (green) antibodies. Bar, 5 μm.
sister chromatids are subject to strong forces pulling towards the poles, such that anaphase initiation causes a fast separation of sister chromatids (Straight et al., 1997). Since sister chromatids are not present until DNA replication has been completed, these forces and the bipolar attachment of chromatids to the spindle must be established after spindle assembly. Although Duo1p and Dam1p are localized to the spindle throughout the cell cycle, SPB duplication and spindle assembly appear normal by immunofluorescence in duo1 and dam1 mutants. In fact, all of the duo1 and dam1 mutants were able to form normal-looking short spindles at the restrictive temperature when DNA replication was inhibited by HU. In contrast, abnormal spindle structures were observed when a subset of these mutants was arrested in metaphase using a temperature-sensitive APC mutant. These observations suggest that a change in spindle structure or forces occurs after DNA replication and that a requirement for Duo1p and Dam1p in the integrity of the mitotic spindle develops as a result of this transition.

A Role in Kinetochore Function

In addition to an important role for Duo1p and Dam1p in spindle integrity, we have also identified a novel role for this complex in kinetochore function. For all duo1 and dam1 alleles examined, a high level of chromosome missegregation occurred shortly after the shift to the restrictive temperature. One possibility is that the chromosome segregation defects are a result of the defects in spindle integrity. For example, a certain percentage of spindle microtubules might be destabilized in duo1 or dam1 mutants, leading to attachment of each pair of sister chromatids to a single spindle pole. However, due to the high frequency of missegregation and the fact that chromosome missegregation is observed regardless of the associated spindle phenotype, we favor an alternate model in which the Duo1p/Dam1p complex plays a more active role in chromosome segregation, possibly by serving as a link between the kinetochore and spindle microtubules. dam1-1 and dam1-11 mutants show 80–99% chromosome missegregation, a value that is consistent with mutants that affect kinetochore function: ipl1 mutants show 70–85% missegregation (Biggins et al., 1999; Kim et al., 1999) and ndc10-1 mutants show a complete failure to segregate chromosomes (Goh and Kilmartin, 1993).

A direct role in chromosome segregation is also suggested by the fact that some dam1 mutants undergo spindle elongation and chromosome missegregation even when arrested in metaphase. Although it is possible that this effect is an indirect consequence of spindle integrity defects or abnormal spindle forces, other mutants that exhibit similar aberrant metaphase spindle elongation have been shown to affect kinetochore or cohesin function (Michaelis et al., 1997; Biggins et al., 1999). In these cases, since the spindle is unable to make bipolar attachments to paired sister chromatids, there is no tension to prevent the spindle from elongating. In fact, alleles of dam1 that show spindle elongation during a metaphase arrest also show an extremely high frequency of chromosome missegregation. In contrast, duo1 and dam1 alleles that are able to arrest with a short spindle undergo a slightly lower frequency of chromosome missegregation, suggesting that enough bipolar attachments are correctly established to provide the tension required to maintain a short spindle.

Not only do duo1 and dam1 mutants have in vivo phenotypes indicative of a role in kinetochore function, but we have also found that Duo1p and Dam1p localize to kinetochores in spreads of mitotic chromosomes. Since Dam1p has been shown to bind directly to microtubules in vitro, these data raise the possibility that the Duo1p/Dam1p complex might serve as a structural or functional link between the kinetochore and the spindle microtubules. One possibility is that Duo1p and Dam1p play a role in establishing the connection between a new kinetochore and the mitotic spindle. Some dam1 mutants show a frequency of chromosome missegregation that approaches 100%, and yet these mutants still show segregation of bulk DNA to each pole of the spindle. This suggests that one attachment to each pair of chromatids is functional. In contrast, ndc10-1 mutants, which lack a functional kinetochore, show a complete failure to segregate chromosomes (Goh and Kilmartin, 1993). Some dam1 mutants undergo premature chromosome segregation when arrested at metaphase at the restrictive temperature, suggesting a defect in attachments to the chromosomes (see above). In contrast, if these mutants are allowed to form a metaphase spindle at 25°C and are subsequently shifted to the restrictive temperature, no premature chromosome segregation occurs. This suggests that once bipolar attachments are made to each pair of sister chromatids, Dam1p function may no longer be required to maintain this attachment.

Although duo1 and dam1 mutants do not interact genetically with components of the CBF3 complex, we have observed genetic interactions with bir1Δ and ctf19Δ. Bir1p physically interacts with Ndc10p and also shows genetic interactions with mutants of other genes encoding kinetochore proteins (Yoon and Carbon, 1999). Ctf19p has been well established as a kinetochore protein (Hyland et al., 1999) and appears to act in a complex, together with Mmc21p and Okp1p, that may link to the CBF3 complex to other kinetochore proteins (Ortiz et al., 1999). In addition, we have observed genetic and physical interactions with Ipl1 (Cheeseman, I., J. Kang, and C. Chan, unpublished results), a protein kinase that regulates aspects of kinetochore function (Biggins et al., 1999). This last observation, in addition to observations by others showing that Dam1p interacts with Mps1p (Jones et al., 1999), a kinase with roles in SPB duplication and the mitotic checkpoint (Weiss and Winey, 1996), suggests that the activities that we have shown for the Duo1p/Dam1p complex in spindle integrity and kinetochore function may be regulated by protein phosphorylation during mitosis. Future studies will also address the mechanism by which Duo1p and Dam1p localize to kinetochores. One possibility is that these proteins associate with DNA directly through the putative leucine zipper domain of Dam1p (see Fig. 1).

The authors thank B. Goode, K. Kozinski, A. Rodal, C. Shang, J. Wong, E. Weiss, and S. Schuyler for discussions and advice. We also wish to thank Kent McDonald and the University of California at Berkeley Electron Microscope Laboratory for help and advice; Michele (Shelly) Jones and Mark Winey for sharing results, reagents, helpful discussions, and critical reading of the manuscript; Sue Biggins, Lena Hwang, and Andrew Murray for strains, advice, and helpful discussions; Doug Kellogg for the anti-Clb2 antibody, Pam Silver for the anti-GFP antibody; and Tim
Stearns for the anti-Tub4 antibody.

This work was supported by a grant from the National Institute of General Medical Sciences (GM-47842) to G. Barnes and a National Science Foundation Graduate Research fellowship to I.M. Cheeseman.

Submitted: 2 August 2000
Revised: 15 November 2000
Accepted: 17 November 2000

References

Ayscough, K.R., and D.G. Drubin. 1998. Immunoﬂuorescence microscopy of yeast cells. In Cell Biology: A Laboratory Handbook. Vol. 2. J.L. Celis, editor. Academic Press, New York. 477–485.

Belmont, L.D., and D.G. Drubin. 1998. The yeast Vt5N9 actin mutant reveals roles for actin dynamics in vivo. J. Cell Biol. 142:1289–1299.

Biggins, S., F.F. Severin, N. Bhalla, I. Sassoon, A.A. Hyman, and A.W. Murray. 1999. The conserved protein kinase Ippl1 regulates mitotic microtubule binding to kinetochore in budding yeast. Genes Dev. 13:532–544.

Bottsein, D., D. Amberger, J. Mulholland, T. Hufferfer, A. Adams, D. Drubin, and T. Stearns. 1997. The yeast cytoskeleton. In The Molecular and Cellular Biology of the Yeast Saccharomyces. J.R. Pringle, J.R. Broach, and E.W. Jones, editors. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 1–30.

Chen, R.-H., D.M. Brady, D. Smith, A.W. Murray, and K.G. Hardwick. 1999. The spindle checkpoint of budding yeast depends on a tight complex between the Mad3 and Mad2 proteins. Mol. Biol. Cell. 10:2607–2618.

Cook, R. W., C. Michaelis, A. Shevchenko, M. Mann, and K. Nasmyth. 1998. An ESP1/PSI1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell. 93:1067–1076.

Cohen-Fix, O., J.M. Peters, M.W. Kirschner, and D. Koshland. 1996. Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev. 10:3081–3093.

Dohmen, R.J., P. Wu, and A. Varshavsky. 1994. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science. 263:1275–1276.

Espein, C.W., K.B. Kaplan, and P.K. Sorger. 1997. Probing the architecture of a simple kinetochores using DNA-protein crosslinking. J. Cell Biol. 139:1383–1396.

Goh, P.-Y., and J.V. Kilmyrt. 1993. NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol. 121:503–512.

Goshima, G., and M. Yanagida. 2000. Establishing biorientation occurs with the Mps1p kinase. Mol. Biol. Cell. 11:3538–3550.

Jones, M.H., J.B. Bachant, A.R. Castillo, T.H. Giddings, and M. Winey. 1999. The spindle checkpoint of budding yeast depends on a tight complex between the kinetochore and mitotic spindle. J. Cell Biol. 148:337–345.

Jin, Q., E. Trelles-Sticken, H. Scherthan, and J. Loidl. 1998. Yeast nuclei dis-assembly and reassembly as revealed by in vivo cross-linking. Genes Dev. 12:1338–1350.

Korobova, Y., S. Capdevila, M. Capobianco, A. Chabey, J. Asali, and J. Chant. 2000. Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science. 287:2257–2259.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680–685.

Lee, L.-S. Tornour, J. Li, S.C. Schuyler, J.V. Liu, and D. Pellman. 2000. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science. 287:2260–2262.

Li, R., and A.W. Murray. 1991. Feedback control of mitosis in budding yeast. Cell. 68:539–531.

Loudi, J., F. Klein, and J. Engebrecht. 1998. Genetic and morphological approaches for the analysis of meiotic chromosomes in yeast. Methods Cell Biol. 53:257–265.

Meluh, P.B., and D. Koshland. 1997. Budding yeast centromere composition and assembly as revealed by in vivo cross-linking. Genes Dev. 11:3401–3412.

Michaels, C., R. Ciosk, and K. Nasmyth. 1997. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell. 91:35–45.

O’Toole, T.T., D.N. Mastronarde, T.H. Giddings, Jr., M. Winey, D.J. Burke, and J.R. McIntosh. 1997. Three-dimensional analysis and ultrastructural de- sign of mitotic spindles from the cdc20 mutant of Saccharomyces cerevisiae. Mol. Biol. Cell. 8:1–11.

O’Toole, E.T., M. Winey, and J.R. McIntosh. 1999. High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell. 10:2017–2031.

Ortiz, J., O. Stemmann, S. Rank, and J. Lechner. 1999. A putative protein complex consisting of Cdc19, Mcm21, and Opk1 represents a missing link in the budding yeast kinetochore. Genes Dev. 13:1140–1155.

Pasquaione, D., and T.C. Huffaker. 1994. STU1, a suppressor of a beta-tubulin mutation, encodes a novel and essential component of the yeast mitotic spindle. J. Cell Biol. 127:1973–1984.

Pellman, D., M. Bagget, Y.H. Tu, G.R. Fink, and H. Tu. 1995. Two microtu- bulate-associated proteins required for anaphase spindle movement in Saccha- romyces cerevisiae [published erratum in J. Cell Biol. 131:561]. J. Cell Biol. 127:1995–2005.

Roof, D.M., P.B. Meluh, and M.D. Rose. 1992. Kinesin-related proteins re- quired for assembly of the mitotic spindle. J. Cell Biol. 118:95–108.

Rose, M.D., F.M. Winston, and P. Hieter. 1990. Methods in Yeast Genetics: A Laboratory Course Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 198 pp.

Rothblatt, J., and R. Schekman. 1989. A hitchhiker’s guide to analysis of the secretory pathway in yeast. Methods Cell Biol. 32:3–36.

Sakowski, R.S., and P. Hieter. 1989. A system of shuttle vectors and host yeast strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 122:19–27.

Sobel, S.G. 1997. Mini review: mitosis and the spindle pole body in Saccharo- myces cerevisiae. J. Exp. Zool. 287:120–138.

Sorger, P.K., F.F. Severin, and A.A. Hyman. 1994. Factors required for the binding of reassembled yeast kinetochores to microtubules in vitro. J. Cell Biol. 127:995–1008.

Straight, A.F., J.S. Belmont, C.C. Robinet, and A.W. Murray. 1996. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6:1599–1608.

Stark, A., W.F. Marshall, and P.K. Sorger. 1997. Mitosis in living budding yeast: anaphase A but no metaphase plate. Science. 277:574–578.

Straight, A.E., J.W. Sedat, and A.W. Murray. 1998. Time-lapse microscopy re-veals unique roles for kinetotheques in anaphase during budding yeast. J. Cell Biol. 143:687–694.

Tirnauer, J.S., E.O’Toole, L. Berreau, B.E. Bierer, and D. Pellman. 1999. Yeast Bim1p promotes the G1-specific dynamics of microtubules. J. Cell Biol. 145:993–1007.

Uetz, P., L. Giot, G. Cagney, T.A. Mansfield, R.S. Judson, J.R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, et al. 2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cere- visiae. J. Cell Biol. 145:1319–1340.

Wincent, B., and E. Schiebel. 1997. Review: an overview of the microtubule and microfilament cytoskeleton. J. Cell Biol. 131:1903–1912.

Winson, B., and E. Schiebel. 1997. Review: an overview of the micro- tubule and microfilament cytoskeleton. Yeast. 13:399–434.

Yoon, H.J., and J. Carbon. 1999. Participation of Brl1p, a member of the inhibit- or of apoptosis family, in yeast chromosome segregation events. Proc. Natl. Acad. Sci. U.S.A. 96:13200–13205.

Zeng, X., J.A. Kahana, P.A. Silver, M.K. Morinew, J.R. McIntosh, I.T. Fitch, J. Carbon, and W.S. Saunders. 1999. Skl1p is a centromere protein that functions to stabilize mitotic spindles. J. Cell Biol. 146:415–425.