Abstract

In this research article, the authors present the oscillation theory of the q-difference equation

\[k(t)y(qt) + k \left(\frac{t}{q} \right) y \left(\frac{t}{q} \right) = r(t)y(t), \]

where \(r(t) = k(t) + k \left(\frac{t}{q} \right) - q(t) \). In particular we prove that this q-difference equation is oscillatory or non-oscillatory for different conditions.

Key words: Oscillation, Non-oscillation, q-Difference equation.

AMS classification: 39A10, 39A21, 39A13, 26A33.

1 Introduction

The numerical and analytical solutions of q-difference operator has an important role in different fields such as science and engineering, whose solution has a better understanding of the physical features of the problem [6, 5]. The authors in [1] introduced a \(\Delta_q \) operator and then derived many results using the generalized q-difference equation \(\Delta_q v(k) = u(k), \ q \neq 1 \) and for any real \(k \).

The authors in [2, 3] developed the q-alpha multi-series formula for finite and higher order q-alpha formula for infinite series.

The branch of differential equation theory is widely used in oscillation theory [4, 9]. The existence or non-existence of oscillatory solutions to a given equation or system are contained in the basic problem of classical theory of oscillation [7, 8]. Till recently no special importance was given to the study of oscillations using q-difference equation. Hence in this article, we are primarily interested in the oscillation theory of q-difference equation.
2 Preliminaries

Here, we present some preliminaries which will be used for further discussion.

Definition 2.1 Let \(f(k) \) be the real valued function on \([0, \infty)\) and \(q \neq 1 \) be a fixed real number. Then the \(q \)-difference operator, denoted by \(\Delta_q \), on \(f(k) \) is defined as

\[
\Delta_q f(k) = f(qk) - f(k), \quad q \neq 1.
\] (1)

Definition 2.2 Let \(1 \neq q \) and \(m \) be any positive integers and

\[
y(qt) - y(t) + k(t)y\left(\frac{t}{q^m}\right) = 0,
\] (2)

where \(k(t) \) is a sequence defined for \(t \in \mathbb{Z}^+ \). Then \(y(t) \) is called an oscillatory solution of (2) if \(y(t)y(qt) \leq 0 \). Otherwise it is called non oscillatory solution.

Result 2.3 If \(\lim_{t \to \infty} \inf p(t) = p > \frac{m^m}{(qm)^m} \), then every solution of (2) oscillates.

2 \(q \)-self adjoint second order \(q \)-difference equation

Here, we developed the \(q \)-self adjoint second order \(q \)-difference equation

\[
\Delta_q \left[k \left(\frac{t}{q} \right) \Delta_q y \left(\frac{t}{q} \right) \right] + q(t)y(t) = 0,
\] (3)

where \(k(t) > 0, \ t \in \mathbb{Z}^+ \). By Definition 2.1 the above equation becomes

\[
k(t)y(qt) + k \left(\frac{t}{q} \right) y \left(\frac{t}{q} \right) = \left[k(t) + k \left(\frac{t}{q} \right) - q(t) \right] y(t),
\] which implies

\[
k(t)y(qt) + k \left(\frac{t}{q} \right) y \left(\frac{t}{q} \right) = r(t)y(t),
\] (4)

where \(r(t) = k(t) + k \left(\frac{t}{q} \right) - q(t) \). (5)

Hence any equation of the form

\[
k_0y(qt) + k_1(t)y(t) + k_2(t)y \left(\frac{t}{q} \right) = 0,
\] (6)
with $k_0(t) > 0$ and $k_2(t) > 0$, can be put in the q-self adjoint form (3) or (4). Now multiplying both sides of (6) by a positive sequence $h(t)$ yields

$$k_0(t)h(t)y(qt) + k_1(t)h(t)y(t) + k_2(t)h(t)y\left(\frac{t}{q}\right) = 0. \quad (7)$$

Comparing (4) and (7), we get $k(t) = k_0(t)h(t), k\left(\frac{t}{q}\right) = k_2(t)h(t)$ and $r(t) = -k_1(t)h(t). \quad (8)$

Then $k_2(qt)h(qt) = k_0(t)h(t)$, which gives

$$h(t) = \frac{k_0\left(\frac{t}{q}\right) h\left(\frac{t}{q}\right)}{k_2(t)}.$$

Putting the value of $h(t/q)$ by replacing t by t/q in the above equation repeatedly, we obtain

$$h(t) = \left(\frac{k_0\left(\frac{t}{q}\right)}{k_2\left(\frac{t}{q}\right)}\right) \left(\frac{k_0\left(\frac{t}{q^2}\right)}{k_2\left(\frac{t}{q^2}\right)}\right) \ldots \left(\frac{k_0\left(\frac{t}{q^{s+1}}\right)}{k_2\left(\frac{t}{q^{s+1}}\right)}\right) h\left(\frac{t}{q^{s+1}}\right),$$

and hence

$$h(t) = \prod_{j=0}^{s} \frac{k_0\left(\frac{t}{q^{j+1}}\right)}{k_2\left(\frac{t}{q^j}\right)} h\left(\frac{t}{q^{s+1}}\right)$$
is a solution of (6).

Using the above equation, we get $k(t) = k_0(t) \prod_{j=0}^{s} \frac{k_0\left(\frac{t}{q^{j+1}}\right)}{k_2\left(\frac{t}{q^j}\right)} h\left(\frac{t}{q^{s+1}}\right).$

Also from (5) and (8), we get $q(t) = k_1(t)h(t) + k(t) + k\left(\frac{t}{q}\right).$
Result 3.1 Consider \(z(t) = \frac{r(qt)y(qt)}{k(t)y(t)} \). Then (4) gives
\[
\frac{k^2(t)}{r(t)r(qt)} z(t) + \frac{1}{z\left(\frac{t}{q}\right)} = 1,
\]
which implies
\[
c(t)z(t) + \frac{1}{z\left(\frac{t}{q}\right)} = 1, \tag{9}
\]
where
\[
c(t) = \frac{k^2(t)}{r(t)r(qt)}. \tag{10}
\]

Result 3.2 If \(c(t) \geq b(t) > 0 \) for all \(t > 0 \) and \(z(t) > 0 \) is a solution of \(c(t)z(t) + \frac{1}{z\left(\frac{t}{q}\right)} = 1 \), then the q-difference equation \(b(t)x(t) + \frac{1}{x\left(\frac{t}{q}\right)} = 1 \), has a solution \(x(t) \geq z(t) > 1 \) for all \(t \in \mathbb{Z}^+ \).

3 Main Results

This section deals with the oscillatory and nonoscillatory solution of the q-difference equation \(k(t)y(qt) + k\left(\frac{t}{q}\right)y\left(\frac{t}{q}\right) = r(t)y(t) \), where \(r(t) = k(t) + k\left(\frac{t}{q}\right) - q(t) \) based on the given conditions.

Lemma 4.1 If there exists a subsequence \(r(t_m) \leq 0 \) with \(t_m \to \infty \) as \(m \to \infty \), then every solution of \(4 \) is oscillatory. proof On contrary, suppose there exists a non oscillatory solution \(y(t) > 0 \) for \(t \geq N \) of \(4 \). Then we obtain
\[
k(t_m)y(qt_m) + k\left(\frac{t_m}{q}\right)y\left(\frac{t_m}{q}\right) - r(t_m)y(t_m) > 0 \quad \text{for} \quad t_m > N,
\]
which is a contradiction and hence the proof.

Lemma 4.2 Suppose that \(r(t) > 0 \) for \(t \in \mathbb{Z}^+ \). Then every solution \(y(t) \) of \(4 \) is non oscillatory if and only if every solution \(z(t) \) of \(9 \) is positive for \(t \geq N \), for some \(N > 0 \). proof Suppose that \(4 \) has a non oscillatory solution \(y(t) \), which yields \(y(t)y(qt) > 0 \) for \(t \geq N \).

Also from \(4 \), \(z(t) > 0 \) for \(t > N \). Conversely assuming \(z(t) \) is a positive solution of
Then we construct inductively $y(t)$ as $y(N) = 1$ and $y(qt) = \left(\frac{k(t)}{r(qt)} \right)^t z(0) y(t)$ with $t \geq N$, which gives $y(qN) = \left(\frac{k(N)}{r(qN)} \right)^N z(N) y(N) > 0$. Similarly, we can prove $y(qN) > 0$ for $n \geq 2$ and so $y(t) > 0$ for $n \geq N$. Thus $y(t)$ is a non-oscillatory solution of equation (4).

Theorem 4.3 If $r(t) r(qt) \leq (4 - \epsilon) k^2(t)$ for some $\epsilon > 0$ and for all $t \geq N$, then every solution of (4) oscillates.

proof If $r(t) r\left(\frac{t}{q}\right) \leq (4 - \epsilon) k^2(t)$ for some $\epsilon \geq 4$, then $r(t) r\left(\frac{t}{q}\right) \leq 0$.

By lemma 4.1, every solution of (4) is oscillatory. Hence we may assume that $0 < \epsilon < 4$.

Now let us assume the contrary. Then by lemma 4.2, (9) has a positive solution $z(t)$ for $t \geq N$.

Using the assumption in (10) yields $c(t) \geq \frac{1}{(4-\epsilon)}$. Again using result 3.2, $s(t), s(t) \geq z(t) > 1$ for all $t \geq N$, is a solution of

$$\frac{1}{4-\epsilon} s(t) + \frac{1}{s\left(\frac{t}{q}\right)} = 1 \quad (11)$$

Now, we define a positive sequence $y(t)$ inductively as follows:

$$y(N) = 1, \quad y(qt) = \frac{1}{\sqrt{4-\epsilon}} s(t) y(t), \quad t \geq N.$$

Then $s(t) = \sqrt{4-\epsilon} \frac{y(qt)}{y(t)}$.

Substituting $s(t)$ in (11), we get

$$\frac{1}{\sqrt{4-\epsilon}} \frac{y(qt)}{y(t)} + \frac{1}{\sqrt{4-\epsilon}} \frac{y\\left(\frac{t}{q}\right)}{y(t)} = 1,$$

which yields $y(qt) - \sqrt{4-\epsilon} y(t) + y\left(\frac{t}{q}\right) = 0, \quad t \geq N,$
whose characteristic roots are \(\frac{\sqrt{4-\epsilon} \pm i\sqrt{\epsilon}}{2}\).

Hence the solutions are non oscillatory, which is a contradiction.

Theorem 4.4 Let \(r(t)r(qt) \geq 4k^2(t)\) for \(t \geq N\). Then every solution of (4) is nonoscillatory. proof From the given assumption, \(\frac{1}{r(t)r(qt)} \leq 4k^2(t)\).

Hence \[(10)\] gives \(c(t) \leq \frac{1}{4}\).

We shall construct inductively a solution \(z(t)\) of \[(9)\] as follows: Put \(z(t) = 2\) and \(z(t) = \frac{1}{c(t)} \left[1 - \frac{1}{z(t)}\right]\).

Now, \(z(qN) = \frac{1}{c(qN)} \left[1 - \frac{1}{z(N)}\right] \geq 4(1 - \frac{1}{2}) = 2\).

Similarly, we can prove that \(z(t) \geq 2\) for \(t \geq N\).

Hence by lemma \(4.2\), every solution of \[(4)\] is nonoscillatory.

Example 4.5 Let \(m\) be a positive integer. Then \(\left(\frac{1}{q}\right)^{t-1}, t > 1\) is a nonoscillatory solution of \(y(qt) - y(t) + \frac{mm}{(qm)^mqm}y\left(\frac{t}{qm}\right) = 0\).

Theorem 4.6 If \(k(t) \geq 0\) and \(\sup k(t) < \frac{mm}{(qm)^mqm}, q > 1\), then \[(2)\] has a non oscillatory solution. proof We have

\[y(qt) - y(t) + k(t)y\left(\frac{t}{qm}\right) = 0\] (12)

Dividing both sides by \(y(t)\), we get

\[\frac{y(qt)}{y(t)} = 1 - \frac{k(t)y\left(\frac{t}{qm}\right)}{y(t)}\] (13)
Let \(z(t) = \frac{y(t)}{y(qt)} \). Then we have

\[
y\left(\frac{t}{q^m}\right) = z\left(\frac{t}{q^m}\right) z\left(\frac{t}{q^{m-1}}\right) \cdots z\left(\frac{t}{q}\right).
\]

So (13) becomes

\[
\frac{1}{z(t)} = 1 - k(t)z\left(\frac{t}{q^m}\right) z\left(\frac{t}{q^{m-1}}\right) \cdots z\left(\frac{t}{q}\right).
\]

To complete the proof, it is enough to show that equation (14) has a positive solution. Now, we define

\[
z\left(\frac{1}{q^m}\right) = z\left(\frac{1}{q^{m-1}}\right) = \cdots = z\left(\frac{1}{q}\right) = b = \frac{mq}{m} (= q) > 1, \tag{15}
\]

and from (13), we get

\[
z(1) = \left[1 - k(1)z\left(\frac{1}{q^m}\right) z\left(\frac{1}{q^{m-1}}\right) \cdots z\left(\frac{1}{q}\right)\right]^{-1}, \tag{16}
\]

which implies \(z(1) > 1 \).

Now we claim that \(z(1) < b \). From (16), we write

\[
\frac{z(1)}{b} = \frac{1}{b} \left[1 - k(1)z\left(\frac{1}{q^m}\right) z\left(\frac{1}{q^{m-1}}\right) \cdots z\left(\frac{1}{q}\right) \right].
\]

Using the given assumption and (15), the above equation becomes

\[
\frac{z(1)}{b} \leq \frac{1}{q} \left[1 - \frac{m^m}{(qm)^mq^m} \right]^{-1},
\]

which yields \(z(1) < b \). Thus \(1 < z(1) < b \). Hence by induction, \(1 < z(t) < b \), \(t = 1, 2, 3, \cdots \). Also \(z(t) \) is a solution of (14) and \(y(qt) = \frac{y(t)}{z(t)} \).
Hence \(y(t) \) is a nonoscillatory solution of \([12]\).

Theorem 4.7 Every solution of \(y(qt) - y(t) + ky \left(\frac{t}{q^m} \right) = 0 \), where \(m \) is a positive integer and \(k \) is a non negative real number, is oscillatory if and only if \(k > \frac{m^m}{(qm)^qm} \).

proof The proof completes by using the result \([2.3][4.5]\) and the Theorem \([4.6]\).

4 Conclusion

In our research work, we discussed about the oscillation theory of the \(q \)-difference equation \(k(t)y(qt)+y \left(\frac{t}{q} \right) = r(t)y(t) \), where \(r(t) = k(t)+k \left(\frac{t}{q} \right) - q(t) \). Some theorems are also proved using the concept of oscillation theory.

References

[1] G.Britto Antony Xavier, T.G.Gerly and H.Nasira Begum, Finite series of polynomials and polynomial factorials arising from generalised \(q \),difference operator, Far East Journal of Mathematical Sciences, 94(1) 2014, 47-63.

[2] G.Britto Antony Xavier, T.G.Gerly and S.U.Vasantha Kumar, Multi-Series Solution of Generalized \(q \)-alpha Difference Equation, International Journal of Applied Engineering Research, 10(72) (2015), 97-101.

[3] G.Britto Antony Xavier and T.G.Gerly, Sum of finite and infinite series derived by generalized \(q \)-alpha derivative operator, International journal of mathematics trends and technology, 24(1) (2015), 67-72.

[4] N. N. Bogoliuboy and Y. A. Mitropolsky, Asymptotic methods in the theory of Non-linear Oscillations, Hindustan Publishing Corporation (India), Delhi, Gordon and Breach Science Publishers, Inc., 1985.

[5] E. Frenkel, A. Szenes, Dilogarithm identities, \(q \)-difference equations and the Virasoro algebra, Duke Mathematical Journal 69 (1993) 53–60.

[6] M. Hay, Hierarchies of nonlinear integrable \(q \)-difference equations from series of Lax pairs, Journal of Physics A: Mathematical and Theoretical 40 (2007) 10457–10471.

[7] Jia Baoguoab, Lynn Erbea and Allan Peterson, Oscillation of a Family of \(q \)-difference equations, Applied Mathematics Letters, 22(6) (2009), 871-875.
[8] Saber N. Elaydi, An Introduction to Difference Equations, Third Edition, Springer Verlag, New York, 2005 (First Indian Reprint 2008).

[9] Yuri V. Rogovchenko, Leonid Berezansky, Elena Braverman and Josef Diblik, Recent Advances in Oscillation Theory, Hindawi Publishing Corporation, International Journal of Differential Equations, 2010, DOI:10.1155/2010/634238.