Effects of Somatostatin on Muscarinic Acetylcholine Receptor Binding in the Rat Hippocampus

Rie MIYOSHI, Shozo KITO, Kumiko MIZUNO and Hiroaki MATSUBAYASHI
Third Department of Internal Medicine, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734, Japan

Accepted October 31, 1985

Abstract—The authors noticed effects of somatostatin on muscarinic acetylcholine receptors (mAChR) in the rat hippocampus from binding experiments. Saturation experiments of 3H-oxotremorine-M-acetate (3H-oxo-M) buffered with Krebs-Henseleit solution revealed that there were two binding sites with very high and low affinities whose K_d values were 1.2 nM and 445.8 nM, respectively. Adding somatostatin in this incubation medium caused an increase in the K_d value of the high affinity binding site with no change in the B_{max} value. As for the low affinity binding site, K_d and B_{max} values were too large to determine the effect of somatostatin. The oxotremorine/3H-N-methyl-scopolamine competition experiments indicated the presence of two components of agonist binding sites. The inhibition curve after adding somatostatin fitted best to a single homogenous binding site whose K_i value was consistent with the dissociation constant of the oxotremorine low affinity binding site. Therefore, it seems that somatostatin accelerates conformational changes of the oxotremorine high affinity binding site to the low affinity binding state. A single binding site with a K_d value of 30.9 nM was obtained by switching the buffer to Na-K phosphate solution. The affinity of this binding site was likewise inhibited by somatostatin. The inhibitory effect of somatostatin-28 was more marked than that of [D-trp8] somatostatin. The above-mentioned effects of somatostatin was limited to mAChR agonist binding.

Recently, the cholinergic theory of senile dementia has been advocated, whereas complex networks within the hippocampus is considered to be related to the memory mechanism. These days, much attention has been focused on coexistence of neurotransmitters chiefly from histochemical viewpoints. There have been several papers which suggest that some of the neuropeptides affect the turnover rate of acetylcholine in the hippocampus, and a possible regulatory mechanism of neuropeptides on the synaptic transmission of conventional neurotransmitters is assumed (1).

In this paper, the authors studied effects of somatostatin on cholinergic muscarinic receptors in the hippocampus using the binding technique.

Materials and Methods

Male rats of the Wistar strain, weighing 200 g, were decapitated. After rapid removal of the hippocampus, the P2 fraction of the tissue was prepared by the method of De Robertis et al. (2). The tissue was homogenized in 10 volumes (w/v) of ice-cold 0.32 M sucrose, and the homogenate was centrifuged at 900 g for 10 min. The supernatant was then centrifuged at 11500 g for 20 min. The resulting pellet was resuspended in Krebs-Henseleit buffer. Protein concentrations were determined by the method of Lowry et al. Muscarinic acetylcholine receptor (mAChR) agonist binding experiments were performed using 3H-oxotremorine-M-acetate (3H-oxo-M) as the radioactive ligand and 10^{-4} M
acetylcholine as the non-radioactive ligand. Aliquots of the tissue preparation (0.3 mg wet weight/ml) were incubated in Krebs-Henseleit buffer (pH 7.4) at 30°C for 8 min with and without 1 μM [D-trp8]somatostatin. To prevent degradation of somatostatin, pepstatin, bacitracin and bovine serum albumin were added. In addition, the effect of somatostatin on oxotremorine binding was observed through oxotremorine/3H-N-methyl-scopolamine (3H-NMS) competition experiments. The assay buffer was Krebs-Henseleit solution, and the tissue homogenate (0.03 mg wet weight/mg) was incubated at 30°C for 15 min. Non-specific binding was determined by 1 μM atropine.

Membrane bound 3H-ligand was trapped at the end of the incubation period by rapid vacuum filtration of the incubation mixture over Whatman glass fiber filters (GF/B). The filters were rinsed with three aliquots (5 ml) of Krebs Henseleit solution, and trapped radioactivity was measured subsequently by liquid scintillation spectrophotometry.

Furthermore, we studied using either 3H-QNB or 3H-NMS whether such effects of somatostatin occurred in the case of antagonistic muscarinic receptor binding. A one-site model with a Hill coefficient and a two-site model were fitted to experimental data by nonlinear least square regression using a computer program (SIMPLEX) from the program library of the Computation Center, Osaka University, Japan. The Kd and Bmax values of two binding sites were calculated with a program which fitted a hyperbola to the Scatchard plots and gave two asymptotes of the hyperbola. A microcomputer (NEC PC 9801) was used for these analyses. For a single binding site, the Kd and Bmax values were determined by least square regression analysis of Scatchard plots.

Results

Saturation curves for 3H-oxo-M are shown in Fig. 1. Scatchard analysis of saturation experiments of 3H-oxo-M binding revealed two types of binding sites, a very high affinity binding site whose Kd and Bmax values were 1.2 nM and 53.6 fmol/mg protein, respectively, and a low affinity binding site with a Kd value of 445.8 nM and a Bmax value of 1,337.5 fmol/mg protein. By adding 1 μM [D-trp8] somatostatin, the Kd value of the high affinity binding site increased to 6.7 nM with a Bmax value that was unchanged (65.1 fmol/mg protein). Kd and Bmax values of the low affinity binding site were too large to determine how somatostatin influenced this binding site. We confirmed that pepstatin and bacitracin did not influence the 3H-oxo-M binding. These values were the means in three repeated experiments.

An oxotremorine/3H-NMS curve exhibits heterogeneous characteristics with a Hill coefficient much less than 1 as shown in Fig. 2. These values were means in four repeated experiments. The binding data in the rat hippocampus were fitted best by a two-site model, characterized by two dissociation constants: a Kd value of 6.6×10^-9 M and a Kd value of 2.6×10^-6 M. Percentages of high and low affinity binding sites to the total binding capacity are shown in Fig. 2. The inhibition curve after adding somatostatin in the incubation medium exhibited a Hill slope factor close to 1, and the curve fitted best to a binding model consisting of a single homogenous binding site whose Kd value was consistent with KL.

The association rate of 3H-oxo-M binding was very rapid, reaching equilibrium in 60 seconds (Fig. 3). These values were the means of five separate determinations. The specific binding at any prior time to equilibrium (B) is related to the one at equilibrium, Be, by the following equation: In Be/(Be-B)= Kd ln t. Plots of In Be/(Be-B) vs. t will have a slope of Kd vs. ln t. The inhibitory effect of somatostatin-28 was more potent than that of [D-trp8]somatostatin as shown in Fig. 4.

The authors performed the same experiments using Na-K phosphate solution as buffer instead of Krebs-Henseleit solution. The obtained saturation analysis revealed one binding site of simple mass action behavior with a Kd value of 30.9 nM and a Bmax value of 1.345 fmol/mg protein. The affinity of this binding site was inhibited by somatostatin from 30.9 nM to 60.1 nM in a
pattern identical to the case of the high affinity binding site of the preceeding experiments in which Krebs-Henseleit solution was used as buffer (Fig. 5).

The above-mentioned inhibitory effects of somatostatin on mAchR in the rat hippocampus seemed to be limited to agonist binding and there was no such phenomenon on antagonist binding, since somatostatin had no effect on both 3H-QNB and 3H-NMS binding (Fig. 6).
Fig. 3. Association kinetics of 3H-oxo-M binding. P_2 fraction of the rat hippocampus was incubated with 0.4 nM 3H-oxo-M at 0°C in the absence (○) and presence (□) of somatostatin. The right figure is a pseudo-first order kinetic plot of this data, where B represents the amount bound at time t and B_e represents the amount bound at equilibrium. The slope of the linear regression line describes a K_{ob} of 0.097 sec$^{-1}$ and 0.051 sec$^{-1}$ with (□) and without (○) somatostatin, respectively.

Fig. 4. The effect of various concentrations of somatostatin on 3H-oxo-M binding. The effect of somatostatin-28 (○) was more marked than that of $[D$-trp$^8]$ somatostatin (●).

Discussion
Recently, an increasing number of neuroscientific studies have focused on the interactions among various neurotransmitters and neuromodulators (3). There have been several papers suggesting that somatostatin interacts with conventional neurotransmitters such as GABA, serotonin (4) and acetylcholine (5, 6). On the other hand, decrease of somatostatin-containing neurons in the central nervous system of Alzheimer's disease has been recently documented (7), whereas the cholinergic theory of this disease in connection with neuronal loss of the nucleus basalis of Meynert is popularly advocated (8). These are the reasons why we directed our attentions toward the relationship between mAChR and somatostatin in the hippocampus which is associated with memory functions.

The idea that there are two or three subtypes of mAChR agonist binding sites,
while a useful antagonist binds to all types of mAChR in equal affinity, is accepted among not all, but many pharmacologists (9, 10). In our experiments, the presence of two components of agonist binding site was observed through saturation and inhibition experiments. Dissociation constants of agonist binding sites obtained from inhibition experiments are inconsistent with those from saturation experiments. It may be due to the difference between oxotremorine and oxotremorine-M. The oxotremorine/3H-NMS competition curve fitted a single site model by adding somatostatin, otherwise it fitted a two binding site model. In contrast, two binding sites were preserved after adding somatostatin in the case of the saturation experiments. The mechanism for these phenomena is difficult to explain. Nevertheless, it is assumed that somatostatin accelerates conformational changes of oxotremorine high affinity binding sites to the low affinity binding state, since the Kd value with somatostatin is close to the Kd value without somatostatin.

From our experiments, no influence of somatostatin on mAChR antagonist binding was confirmed. It has been reported that M1 muscarinic receptors are dominant in the hippocampus (80% of the total receptors) (11) and the activation of these postsynaptic receptors modifies membrane phosphoinosi-

tides (12, 13) and ion fluxes, resulting in cellular excitation. Cockcroft and Gomperts suggest that GTP binding protein may be involved in these membrane transduction mechanisms (14). On the other hand, the activation of these kind of receptors causes an increase of cGMP. It is advocated that arachidonic acid, prostaglandin and other metabolites are associated with this transduction in presence of Ca ion (15). Therefore, somatostatin may have some influence on interaction among these molecules which exist in the synaptic membrane and change the functional state of the receptor protein. Taking these facts into consideration, the mechanisms of the regulatory process of somatostatin on mAChR should be elucidated.

Acknowledgement: The authors express their sincere gratitude to Dr. H. Yoshida, Dr. S. Uchida and Mr. A. Mizushima of the Department of Pharmacology, Osaka University School of Medicine, for assistance in computer analysis. This study was supported in part by a Grant-in-aid for Science Research, No. 58370023, from the Ministry of Education, Science and Culture, Japan.

References

1 Wood, P.L., Cheney, D.L. and Costa, E.: Interaction of neuropeptides with cholinergic septo-hippocampal pathway: indication for a possible trans-synaptic regulation. In Cholinergic Mechanisms, Edited by Perpru, G. and Ladinsky, H., p. 715–722, Plenum Press, New York (1981)

2 De Robertis, E., Pellegrino De Iraldi, A., Rodoriguez De Lores Arnaiz, G. and Saloganicoff, L.: Cholinergic and non-cholinergic nerve endings in rat brain. I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J. Neurochem. 9, 23–35 (1962)

3 Lundberg, J.M., Hedlund, B. and Bartfai, T.: Vasoactive intestinal polypeptide enhances muscarinic ligand binding in cat submandibular salivary gland. Nature 295, 147–149 (1982)

4 Tanaka, S. and Tsujimoto, A.: Somatostatin facilitates the serotonin release from rat cerebral cortex, hippocampus and hypothalamus slices. Brain Res. 208, 219–222 (1981)

5 Malthe-Sorensen, D., Wood, P.L., Cheney, D.L. and Costa, E.: Modulation of the turnover rate of acetylcholine in rat brain by intraventricular injections of thyrotropin-releasing hormone, somatostatin, neurotensin and angiotensin II. J. Neurochem. 31, 685–691 (1978)

6 Peterfreund, R.A. and Vale, W.W.: Muscarinic
cholinergic stimulation of somatostatin secretion from long-term dispersed cell cultures of fetal rat hypothalamus: inhibition by gamma-amino-butyric acid and serotonin. Endocrinology 112, 526–534 (1983)

7 Morrison, J.H., Rogers, J.B., Scherr, S., Benoit, R. and DeGirolami, U.: Neuropathology of the somatostatin system in neocortex of patients with senile dementia of the Alzheimer's type (SDAT). Abstract, Society for Neuroscience, 14th Annual Meeting 2, 894 (1984)

8 McGeer, P.L., McGeer, E.G., Suzuki, J. and Norman, M.: Cholinergic and noradrenergic systems in aging, Alzheimer's disease and Down's syndrome. Abstract, Society for Neuroscience, 14th Annual Meeting 2, 995 (1984)

9 Ehlert, F.J., Dumont, Y., Roeske, W.R. and Yamamura, H.I.: Muscarinic receptor binding in rat brain using the agonist, [3H] cis-methyl-dioxolane. Life Sci. 26, 961–967 (1980)

10 Birdsall, N.J.M., Hulme, E.C., Stockton, J., Burgen, A.S.V., Berrie, C.P., Hammer, R., Wong, E.H.F. and Zigmond, M.J.: Muscarinic receptor subclasses: Evidence from binding studies. In CNS Receptors—From Molecular Pharmacology to Behavior, Edited by Mandel, P. and DeFeudis, F.V., p. 323–329. Raven Press, New York (1983)

11 Flynn, D.D. and Potter, L.T.: Different effects of N-ethylmaleimide on M1 and M2 muscarinic receptors in rat brain. Proc. Natl. Acad. Sci. U.S.A. 82, 580–583 (1985)

12 Weiss, S.J., Mckinney, J.S. and Putney, J.W.: Receptor-mediated net breakdown of phosphatidylinositol 4,5-biphosphate in parotid acinar cells. Biochem. J. 206, 555–560 (1982)

13 Jones, L.M., Kirk, C.J. and Michell, R.H.: Molecular events following activation of muscarinic receptors: the role of inositol phospholipids. Scand. J. Gastroenterol. Supp. 17, 33–41 (1982)

14 Cockcroft, S. and Gomperts, D.: Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314, 534–536 (1985)

15 Berridge, M.J.: The role of membrane phospholipids in receptor transducing mechanisms. In Cell Surface Receptors, Edited by Strange, P.G., p. 207–226, Ellis Horwood, New York (1983)