Original Research Article

Lipase Production using *Aspergillus japonicus* MF-1 through Biotransformation of Agro-Waste and Medicinal Oil Effluent

Nathan Vinod Kumar¹,²*, Mary Esther Rani¹, R. Rathinasamy Gunaseeli³ and Narayanan Dhiraviam Kannan⁴

¹Research Centre, Department of Botany and Microbiology, Lady Doak College, Madurai - 625002, Tamil Nadu, India
²National Institute of Oceanography-CSIR, Regional Centre, Cochin 682018, Kerala, India
³Center for Environmental Studies, Lady Doak College, Madurai -625002, India
⁴Department Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India
*Corresponding author

Abstract

Oil rich effluents are always a menace for many industries in the process of effluent treatment. The process usually requires more complex methods to resolve the issue to reach to disposable effluent standards. Enzymatic degradation was proved to be promising for the efficient treatment of oil rich effluents. Among the hydrolytic enzymes, lipases are the second most widely-used enzymes in industrial applications. A potential lipolytic fungus obtained from a marine soil sample exposed to oil spillage was identified as *Aspergillus japonicus* MF-1. A maximum activity of 266 U/g was observed using solid state fermentation (SSF) utilizing groundnut oil cake. Lipase activity was found to be enhanced by oxidizing and reducing agents. Medicinal oil effluent was biotransformed to produce lipase under submerged fermentation to achieve a maximum activity of 153.4 U/ml. For lipase production using *A. japonicus* MF-1, solid state fermentation was found to be a cost effective and better strategy. Moreover, the usage of medicinal oil like effluents for lipase production is quite promising for bio-remediation of oil rich effluents.

Keywords

Lipase, Solid-state fermentation, Enzyme activity, Oil cakes, Oil effluent, Optimization.

Article Info

Accepted: 15 March 2017
Available Online: 10 April 2017

Introduction

Lipases (EC 3.1.1.3) the most versatile enzyme class are enzyme that hydrolyzes triacyl glycerides liberating fatty acids. They possess unique characteristics like substrate specificity, region-specificity and chiral selectivity (Castro-Ochoa *et al.*, 2005). The use of this enzyme has enormous potential to reduce energy requirements and solve many environmental problems especially related to industrial effluents (Pereira *et al.*, 2013). The lipase enzyme is widely used in many industries including textile, food, pulp and paper, fat and oleo chemical, pharmaceutical and more recently in biofuel industries (Singh and Mukhopadhyay, 2012). Lipases could be used for removal of hydrophobic components of wood consisting mainly of triglycerides and waxes, which cause severe problems in paper manufacturing process. There are many fungi utilized for the application of lipase production. Among them, *Aspergillus*, *Penicillium* and *Rhizopus* are the most
common and potential genera for lipase production. *Aspergillus sp.* is widely used for the production of hydrolytic enzymes such as amylase and lipase on commercial scale (Perrone *et al.*, 2008). *A. japonicus* isolated from olive oil mill waste exhibited lipolytic as well as cellulolytic activity (Gopinath *et al.*, 2005).

Submerged fermentation has its own advantages in the consideration of scaling up in industrial level. There are reports on utilization of oil mill and winery waste for the lipase production (Salgado *et al.*, 2014). However the factors to achieve the maximum enzyme activity may vary from each species and there is a need for optimization of the production medium. Filamentous fungi have the ability to grow on solid substrates and produce many extracellular enzymes (Vishwanatha *et al.*, 2010). Due to the lower production cost, solid state fermentation which usually utilizes the agro-waste as substrates is the best strategy for enzyme production on a commercial scale. Gombert *et al.*, (1999) reported the use of babassu oil cakes for lipase production using *Penicillium restrictum*. Other agro-waste utilized for lipase production includes brans (wheat, rice, soyabean and barley), oil cakes (soy, olive and gingelly) and sugarcane bagasse (Godoy *et al.*, 2011; Salihu *et al.*, 2012).

The present work focuses on achieving maximum lipase activity from *A. japonicus* under submerged and solid state fermentation (SSF) and to make a comparison of submerged and SSF. The oil cakes and effluents rich in oil were also utilized for lipase production using the fungal isolate. A high lipase activity was achieved using submerged as well as under SSF by *A. japonicus* MF-1 isolate. Production optimization and kinetics were studied in detail using suitable statistical models.

Materials and Methods

Isolation and screening of lipolytic fungi

Oil contaminated soil samples from mangrove and coastal environments of Kerala and Tamil Nadu were collected aseptically. Serial dilution was performed up to 10⁶ dilution to isolate the distinct fungal colonies on Potato Dextrose Agar (PDA) plates at 28±2°C after 3-5 days of incubation. Isolated fungal colonies were further stored on PDA slants for screening. Primary screening was performed on PDA plates fortified with 2% olive oil as substrate and supplemented with 0.5% phenol red as pH indicator. Lipolytic fungal strains converted substrate into simpler fatty acids and changed the pH of the medium from pink to yellow (Singh *et al.*, 2006). Change in plate colour was considered positive for lipolytic activity. Secondary screening was performed by quantification of lipase activity using standard method described in the following section.

Molecular characterization of fungal isolate

DNA was isolated from the fungal isolate by using the method reported earlier (Melo *et al.*, 2006). Quality of the DNA was evaluated by spectrometric analysis as well as by performing electrophoresis on 0.8% agarose gel. DNA was further amplified using DR [5'-GGTCCGTTTCAAGACGG-3'] and DF [5'-ACCGCCTGAATTAAGC-3'] universal primers for amplification of LSU 28S rDNA (Kurtzman and Robnett, 1997). The PCR reaction was performed using the method described by Vinod *et al.*, (2014). Resultant PCR amplicon was purified and sequenced using automated DNA sequencing on ABI 3730xl DNA analyzer (Applied Biosystems, USA). The sequencing chromatogram was analyzed to extract the sequence and used for BLASTn analysis against non-redundant
NCBI database which resulted in the identification of ten similar sequences. Clustal W multiple sequence alignment (Thompson et al., 1994) was performed using BioEdit 5.0 and phylogenetic tree was constructed for the aligned sequences in MEGA 5.0 (Tamura et al., 2011) based on neighbour joining method (Saitou and Nei, 1987).

Lipase assay

Lipase assay was performed using standard method which is described as follows. 2.5 ml of water was added into test and blank test tubes followed by 1ml of 100 mM Tris HCl buffer [pH 7.2]. 3 ml of olive oil was added as the substrate and mixed well and incubated for 5 min. 1ml of enzyme was added into test sample and incubated for 30 min at room temperature. After the incubation, 1 ml of 95% ethanol was added to stop the reaction and titrated against 0.1 M NaOH with 0.9% phenolphthalein as an indicator. Appearance of pale pink colour was considered as end point. One unit of lipase is defined as the amount needed to hydrolyze 1.0 microequivalent of fatty acid from a triglyceride in one hour at pH 7.7 at 37°C.

Utilization of ayurvedic oil effluent for lipase production

Ayurvedic pharmaceutical effluent rich in oil and higher forms of hydrocarbon were obtained from commercial ayurvedic drug manufacturer’s in Madurai, Tamil Nadu. It was made into different concentrations of 25, 50 and 100% (v/v) using phosphate buffer [pH 8.2]. *A. japonicus* MF-1 was inoculated into the sterilized effluent which was used as sole production media component and incubated under shaking condition at 120 rpm for 5-7 days at room temperature. Lipase enzyme was extracted using centrifugation of culture at 8000 rpm for 5 min and obtained supernatant was used to perform enzymatic assay during 5th and 7th day of incubation.

Solid state fermentation using oil cakes

The solid state fermentation was considered as a common strategy for reducing the enzyme production cost. For the same, effect of various factors was tested using Plackett-Burman design based on the first order model (Plackett and Burman, 1964). The factors optimized and values coded were enlisted in Table 1. Statistically validation of the model was also done using Design Expert 9.0 software. Significant parameters identified from Plackett-Burman designs were selected for Box-Behnken design to obtain response surface curve for the enzyme production. Each factor was studies at two different levels (-1 and +1) (Table 4). A set of 17 experiments were carried out.

Kinetics of lipase enzyme

Kinetics of Lipase enzyme activity was studied by plotting a Lineweaver- Burk (LB) Plot. K_m and V_{max} of the enzyme was predicted. Effect of different solvents, oxidizing and reducing agents on enzyme activity was also verified and the residual activity was calculated. For understanding the hydrolyzing potential of complex oils, the obtained crude lipase enzyme was used to treat olive oil. The enzyme concentrations were varied and incubated at room temperature and after 1 hr the enzyme was inactivated at 100°C. The release of free fatty acids was quantified using standard method (Kamini et al., 2000).

Results and Discussion

Screening and identification of lipolytic fungi

Among 12 fungal isolates screened for lipolytic activity, MF-1 was found to exhibit maximum activity in plate screening with olive oil as a substrate. Release of fatty acids changed the medium pH towards acidic and
plate to yellow colour indicating lipase producing ability of the isolate. Secondary screening i.e., lipase assay also revealed that MF-1 was the most potent lipolytic fungi. Based on the colony morphology and by microscopic observation of the LCB mount, MF1 was identified as *Aspergillus* sp. MF-1 was identified as *Aspergillus japonicus* through the chromatogram analysis and Blastn analysis of the sequence (D1/D2 region LSU). Further the sequence was submitted in GenBank and an accession number was obtained as KF922321.

Hydrolysis of oil substrates

Hydrolysis of olive oil as a substrate was tested based on the lipase enzyme produced. Varying enzyme dosage (v/v) was used to treat the substrate and free fatty acids released on hydrolysis were estimated. There was an increase in the free fatty acids released with increasing enzyme dosage. The potential of hydrolyzing ability of complex hydrocarbons could be exploited in treatment of oil rich effluent and as well as for the biodiesel production using complex natural oil sources. The decrease of hydrolysis beyond a period of 90 min could be due to fatty acids which could inhibit lipase activity (Goswami *et al*., 2012).

Effluent for lipase production

The utilization of ayurvedic oil effluent for lipase production was evaluated using three different concentrations of effluent (25%, 50% and 100%). The Lipase production was evaluated following 5\(^{th}\) and 7\(^{th}\) day of incubation. In 100% effluent, there was no significant fungal growth and lipase activity was observed. In case of 25 and 50% effluent, there was fungal biomass and lipase production. However, a maximum of 153.2 U/ml of lipase activity was achieved on 5\(^{th}\) day in 25% and on 7\(^{th}\) day in 50% effluent (Figure 3). Hence, the ayurvedic oil effluent could be utilized as a support medium along with production medium to achieve maximum lipase production using the *A. japonicus* MF-1. Salgado *et al*., (2014) utilized two-phase oil mill waste, a major waste of olive mill industry and achieved a maximum lipase activity of 18.67 U/g by *A.ibericus*. However, this was obtained by supplementation of 0.073g urea/g and 25% EGM along with the effluent which stimulated the production.

Solid state fermentation using GOC

Microbial lipases are produced mostly by submerged culture (Ito *et al*., 2001), but solid state fermentation methods can also be used (Chisti, 1999). Rivera-Munoz *et al*., (1991) verified the superiority of SSF over Submerged fermentation using *Penicillium candidum* for lipase production. There were many reports on the lipase production by *Aspergillus* sp. on SSF using oil cakes. The groundnut oil cake (GOC) was used as a substrate for lipase production using *A. japonicus* MF-1. Kamini *et al*., (2000) used gingelly oil cakes for lipase production using *Aspergillus niger*. Similarly, Christen *et al*., (1995) obtained lipase from *Rhizopus delemar* grown on a polymeric resin. Kumar and Ray (2014) used Plackett-Burman design for optimization of lipase production using a *Pseudomonas sp.*AKM-L5. For optimization of the most favourable conditions, Plackett-Burman design was used. The tested variables and coded values were mentioned in table 1. Maximum lipase activity of 266 U/g was achieved during solid state fermentation conditions. The predicted model had R\(^2\) value of 99.05% and predicted response of 90.88%. The model indicated that a high inoculum percentage of 10 with incubation temperature of 55°C for 168 hrs of incubation could achieve maximum lipase activity using GOC as substrate even in lowest moisture percentage of 20. The regression model for the optimized condition was mentioned as Equation 1.
Table 1 Variable used in Plackett-Burman model for optimization of lipase production under SSF with high and lower values of the factors tested

Code	Variables	Units	Low	High
A	Moisture	%	20	60
B	Temperature	°C	28	55
C	pH		5	7
D	Inoculum (%) (v/w)		3	10
E	Incubation	Hours	72	168
F	KH₂PO₄	g/L	2	4
G	Peptone	g/L	5	10
H	Urea	g/L	1	3
I	Olive oil	ml/L	10	50
J	KCl	g/L	2	5

Table 2 Lipase activity at various runs of Plackett-Burman design using A. japonicus MF-1

Run	A	B	C	D	E	F	G	H	I	J	K	Lipase Activity (U/g)
												Experimental
1	-1	-1	1	-1	1	1	-1	1	1	1	-1	106.4
2	-1	1	1	-1	1	1	-1	-1	-1	-1	1	53.2
3	-1	1	-1	1	1	-1	1	1	1	-1	-1	266
4	-1	1	1	1	-1	-1	-1	1	-1	1	1	26.6
5	1	-1	1	1	1	-1	-1	1	-1	1	1	26.6
6	1	-1	1	1	1	-1	1	-1	-1	-1	-1	79.8
7	-1	-1	-1	1	-1	1	1	-1	1	1	1	79.8
8	1	1	1	-1	-1	1	1	-1	1	1	1	79.8
9	1	1	1	-1	-1	1	-1	1	1	-1	1	79.8
10	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	79.8
11	1	-1	-1	-1	1	1	1	-1	-1	-1	1	79.8
12	1	1	-1	1	1	-1	1	1	-1	1	-1	106.4

[A: Moisture (%); B: Incubation temperature (°C); C: pH; D: Inoculation %; E: Incubation time (hours); F: KH₂PO₄ (g/l); G: Peptone (g/l); H: Urea (g/l); I: Olive oil (ml/l); J: KCl (mg/l); K: Dummy variable]
Table 3: Analysis of Variance (ANOVA) for the factorial model on Lipase production by *Aspergillus japonicus* MF-1 through SSF utilizing groundnut oil cake (GOC) as substrate

Source	Sum of Squares	df	Mean Square	F Value	p-value	Prob > F	Status
Model	53774.56	8	6721.82	9.771429	0.043607	significant	
B-Temperature	1474.083	1	1474.083	2.142857	0.239443	-	
C-pH	17040.4	1	17040.4	24.77143	0.015587	*	
D-Inoculum	530.67	1	530.67	0.771429	0.444438	-	
E-Incubation	9964.803	1	9964.803	14.48571	0.031874	*	
F-KH$_2$PO$_4$	58.96333	1	58.96333	0.085714	0.78878	-	
G-Peptone	4776.03	1	4776.03	6.942857	0.077994	-	
H-Urea	17040.4	1	17040.4	24.77143	0.015587	*	
J-Olive oil	2889.203	1	2889.203	4.2	0.132842	-	
Residual	2063.717	3	687.9056				
Total	55838.28	11					

[* Significant factors based on Prob > F values]*

Table 4: Variables used for the Lipase enzyme optimization using *A. japonicus* MF-1 based on Box-Behnken design

Variables	Units	Low	High
		-1	1
pH		3	9
Incubation time	hrs	72	168
Urea	g/l	1	3
Table 5 Lipase activity obtained from different runs of the Box-Behnken experimental design using *A. japonicus* MF-1

Runs	Lipase Activity (U/g)	
	Experimental	Predicted
1	741	740
2	684	684
3	684	683
4	684	682.5
5	627	628
6	684	683
7	570	569
8	684	684
9	513	514
10	570	569
11	741	742
12	627	627
13	684	682
14	627	628
15	513	513
16	231	232
17	721	721

Table 6 Comparison of Lipase production by *Aspergillus* sp.

Organisms	Substrate Used	Maximum Lipase activity	References
Aspergillus japonicus	Production medium	20.6 U/ml	[32]
MTCC 1975 Mutant ANT 4			
Aspergillus niger 11T5	Wheat bran	153.4 U/gdm	[33]
A. japonicus	Malt extract, Wheat mill bran, Soy flour, and Whey	177.5 U/ml	[34]
A. japonicus LAB01	Basal medium	199.5 U/ml	[35]
A. *candidus* URM 5611	Almond bran licuri	395 U/gd/s	[36]
A. japonicus MF-1	Groundnut oil cake	266 U/g	Present Work
Table 7: ANOVA for the influence of the selected variable on xylanase production using *Aspergillus japonicus* MF-1 based on Box-Behnken experimental design

Source	Sum of Squares	df	Mean Square	F Value	p-value Prob > F	Status
Model	1.764E+005	7	25197.17	3.39	0.0462	significant
A-pH	4560.13	1	4560.13	0.61	0.4537	
B-Incubation time	90738.00	1	90738.00	12.20	0.0068	
C-Urea	12720.13	1	12720.13	1.71	0.2233	
BC	19881.00	1	19881.00	2.67	0.1365	
A²	24915.60	1	24915.60	3.35	0.1004	
B²	15069.60	1	15069.60	2.03	0.1883	
C²	10769.81	1	10769.81	1.45	0.2595	
Residual	66925.70	9	7436.19			
Lack of Fit	44832.50	5	8966.50	1.62	0.3296	not significant
Pure Error	22093.20	4	5523.30			
Cor Total	2.433E+005	16				

Table 8: Effect of solvents on activity of lipase from *A. japonicus* MF-1

Organic Solvents	Concentrations (%)	Relative Activity (%)
Control	0	100
	5	100
Acetone	10	56.4
	15	32
	5	96
Ethanol	10	92.4
	15	78
	5	100
Methanol	10	140
	15	173
	5	60
Hexane	10	32
	15	27.5
DMSO	5	80
	10	100
	15	110
Table 9 Effect of oxidizing and reducing agents on activity of lipase produced by *A. japonicus* MF-1

Oxidation/reducing agents	Concentrations (%)	Relative Activity (%)
Control	0	100
H₂O₂	5	94.5
	10	80
	15	40
β-Mercaptoethanol	5	310
	10	290
	15	380

Figure 1 Neighbour Joining tree showing evolutionary relationship among other *Aspergillus sp.* and the present isolate *A. japonicus* MF-1
Figure 2 Kinetics showing hydrolysis of olive oil substrate using *A. japonicus* MF-1 lipase and release of free fatty acids

![Graph showing hydrolysis kinetics](image1)

\[y = 0.723e^{0.004x} \]

\[R^2 = 0.932 \]

Figure 3 Medicinal oil effluent based medium for lipase production using *A. japonicus* MF-1 [MM- Minimal medium; E- Enzyme dosage]

![Graph showing enzyme activity](image2)

Effluent Concentration (%)	Control-MM	MM+ 25% E	MM+ 50% E	MM+ 100% E
Enzyme activity (U/ml)	20	60	160	20
Figure 4 Contour plots showing effect of selected parameters during lipase optimization through SSF using *A. japonicus* MF-1 based on Plackett-Burman method

Figure 5 Contour plots showing effect of significant parameters during lipase optimization through SSF using *A. japonicus* MF-1 based on Box-Behnken method
Figure 6 Kinetics and Physico-chemical property of Lipase from *A. japonicus* MF-1
a) Lineweaver- Burk plot showing kinetics of lipase enzyme
b) Optimum temperature and c) optimum pH
There were variations between actual and predicted model with a difference in R^2 values. The actual response and the predicted values were enlisted in Table 2. Based on the ANOVA results, moisture percentage was identified as the most influential factor from this study (Table 3). Figure 4 depicts the 3D response graphs of the significant factors on lipase activity.

Equation 1

$$\text{Lipase activity (U/ml)} = 192.996 + 20.9205 \cdot A + 35.6078 \cdot E - 38.3412 \cdot F + 43.8505 \cdot H - 64.7281 \cdot J + 46.8505 \cdot K$$

Equation 2

$$\text{Lipase activity (U/ml)} = +861.14375 - 94.60833 \cdot pH + 1.07552 \cdot \text{Incubation time} + 65.92500 \cdot \text{Urea} + 1.46875 \cdot \text{Incubation time} + 8.54722 \cdot \text{pH}^2 - 0.025966 \cdot \text{Incubation time}^2 - 50.57500 \cdot \text{Urea}^2$$

Enzyme kinetics of lipase

The K_m and V_{max} values were determined using LB plot constructed (Figure 6a). The K_m and V_{max} values of the *A. japonicus* MF-1 were found to be 11 mML$^{-1}$ and 1Mmin$^{-1}$ respectively. The effect of various solvents on the residual activity of the lipase enzyme was calculated and tabulated in Table 8. The effect
of various organic solvents on lipase activity was studied earlier. DMSO and methanol could enhance the lipase residual activity which was higher than previous reports. Kamini et al., (2000) achieved a maximum of about 124% residual activity in the presence of 10% DMSO. Similarly, Akkaya and Yenidunya (2012) reported an increase of 260% and 170% of residual activity with some other solvents like 2-3, epoxypropyl methacrylates and hydroxymethyl methacrylate (HEMA). Similarly, the effect of oxidizing and reducing agents were also evaluated (Table 9).

The reducing agent mercaptoethanol could enhance the residual lipolytic activity; however the oxidizing agent lowered the activity. This was contradicting the early reports which might be due to the high concentration of H$_2$O$_2$ used in the present study. Mander et al., (2014) reported the enhancing effect of lipase residual activity of reducing agent like mercaptoethanol and H$_2$O$_2$ an oxidizing agents. The optimum Lipase activity was observed at pH 7 and between temperature ranges of 32-50°C (Figure 6b and c). Mahadik et al., (2002) produced acidic lipase from Aspergillus niger through solid state fermentation.

In conclusion lipase production using A. japonicus MF-1 utilizing ground nut oil cake as a substrate in solid state fermentation was found to be promising and economic. The lipase enzyme obtained exhibited higher residual activity in the presence of oxidizing and reducing agents. Submerged fermentation utilizing medicinal oil effluent for lipase production open up new scope of using the isolate in bio-remediation of oil rich industrial effluents through hydrolysis of such complex oils and further prospected its utility as a bio-fuel.

Acknowledgement: Authors are thankful to Department of Science and Technology, Government of India and TNSCST for providing the grant to facilitate the research [Sanction order no. DST/SSTP/TN/2K 10/126(G) 13-09-2011]. Authors thank Management and Department of Botany and Microbiology, Lady Doak College, Madurai for providing the facilities and supporting the work.

References

Akkaya, B., and Yenidunya, A.F. 2012. Properties of extracellular lipase from a traditional yoghurt yeast, Turkish J. Biochem., 37(1): 62-67.

Castro-Ochoa, L.D., Rodriguez-Gomex, C., Valerio-Alfaro, G., and Oliart, R.R. 2005. Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11, Enzyme Microbial Technol., 37: 648-654.

Chisti, Y. 1999. Solid state fermentations, enzyme production, food enrichment. In: Flickinger, MC, Drew SW, editors. Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseperation Vol.5, New York, Wiley. pp- 2446-2462.

Christen, P., Angeles, N., Corzo, G., Farres, A., and Revah, S. 1995. Microbial lipase production on a polymeric resin, Biotechnol. Techniques, 9: 597-600.

Godoy, M.G., Gutarra, M.L.E., Castro, A.M., Machado, O.L.T, and Freire, D.M.G. 2011. Adding value to a toxic residue from the biodiesel industry: production of two distinct pool of lipases from Penicillium simplicissimum in castor bean waste, J. Industrial Microbiol. Biotechnol., 38(8): 945-953.

Gombert, A.K., Pinto, A.L., Castilho, L.R., and Freire, D.M.G. 1999. Lipase
production by *Penicillium restrictum* in solid-state fermentation using babassu oil cake as substrate, *Process Biochem.*, 35: 85-90.

Gopinath, S.C.B., Anbu, P., and Hilda, A. 2005. Extracellular enzymatic profiles in fungi isolated from oil-rich environments, *Mycosci.*, 46: 119-126.

Goswami, D., De, S., and Basu, J.K. 2012. Effects of process variables and additives on mustard oil hydrolysis by porcine pancreas lipase. *Brazilian J. Chem. Eng.*, 29: 449-460.

Ito, T., Kikuta, H., Nagamori, E., Honda, H., Ogino, H., Ishikawa, H., and Kobayashi, T. 2001. Lipase production in two-step fed batch culture of organic solvent-tolerant *Pseudomonas aeruginosa* LST-03, *J. Biosci. Bioeng.*, 91: 245-250.

Kamini, N.R., Fujii, T., Kurosu, T., and Iefuji, H. 2000. Production, purification and characterization of an extracellular lipase from the yeast, *Cryptococcus sp*, S-2. *Process Biochem.*, 36: 317-324.

Kumar, A.M., and Ray, P. 2014. Application of Plackett-Burman design for improved cold temperature production of lipase by psychrotolerant *Pseudomonas sp.*AKM-L5, *Int. J. Curr. Microbiol. Appl. Sci.*, 3(4): 269-282.

Kurtzman, C.P., and Robnett, C.J. 1997. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5’ end of the large-subunit (26S) ribosomal DNA gene, *J. Clin. Microbiol.*, 35: 1216–1223.

Lanka, S., and Latha, J.N.L. 2015. Response surface methodology as a statistical tool for fermentation media optimization in lipase production by palm oil mill effluent (POME) isolate *Emericella nidulans* NFCCI 3643, *Int. J. Innovative Res. Sci. Engi. Technol.*, 4(4): 2535-2545.

Mahadik, N.D., Puntambekar, U.S., Bastawde, K.B., Khire, J.M., and Gokhale, D.V. 2002. Production of acidic lipase by *Aspergillus niger* in solid state fermentation, *Process Biochem.*, 38(5): 715-721.

Mander, P., Hah-Young, Y., Wook, K.S., Hee, C.Y., Sik, C.S., and Cheol, Y.J. 2014. Transesterification of waste cooking oil by an organic solvent-tolerant alkaline lipase from *Streptomyces* sp. CS273, *Appl. Biochem. Biotechnol.*, 172(3): 1377-1389.

Melo, S.C.O., Pungartnik, C., Cascardo, J.C.M., and Brendel, M. 2006. Rapid and efficient protocol for DNA extraction and molecular identification of the basidiomycetes *Crinipellis perniciosa*, *Genetics and Mol. Res.*, 5(4): 851-855.

Pereira, E.O., Tsang, A., McAllister, T.A., and Menassa, R. 2013. The production and characterization of a new active lipase from *Acremonium alcalophilum* using a plant bioreactor, *Biotechnol. Biofuels*, 6: 111.

Perrone, G., Varga, J., Susca, A., Frisvad, J.C., Stea, G., Kocsube, S., Toth, B., Kozakiewicz, Z., and Samson, R.A. 2008. *Aspergillus uvarum* sp. nov., an uniseriate black *Aspergillus species* isolated from grapes in Europe, *Int. J. Systematics and Evol. Microbiol.*, 58: 1032-1039.

Plackett, R.L., and Burman, J.P. 1964. The design of optimum multi factorial experiments, *Biometrika*, 33(4): 305-325.

Rivera-Munoz, G., Tinoco-Valencia, J.R., Sanchez, S., and Farres, A. 1991. Production of microbial lipases in solid state fermentation system, *Biotechnol. Lett.*, 13: 277-280.

Saitou, N., and Nei, M. 1987. The neighbor-joining method: A new method for
reconstructing phylogenetic trees, Mol. Biol. Evol., 4: 406-425.
Salgado, J.M., Abrunhosa, L., Venancio, A., Dominguez, J.M., and Belo, I. 2014. Integrated use of residues from olive mill and winery for lipase production using solid state fermentation with Aspergillus sp., Appl. Biochem. Biotechnol., 172: 1832-1845.
Salihu, A., Alam, M.Z., Abdul Karim, M.I., and Salleh, H.M. 2012. Lipase production: an insight in the utilization of renewable agricultural residues, Res. Conservation and Recycling, 58: 36-44.
Singh, A., and Mukhopadhyay, M. 2012. Microbial lipases from versatile tools for biotechnology, Trends in Biotechnol., 16: 396-403.
Singh, R., Gupta, N., Goswami, V.K., and Gupta, R. 2006. A simple activity staining protocol for lipases and esterase, Appl. Microbiol. Biotechnol., 70: 679-682.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 28: 2731-2739.
Thompson, J., Higgins, D., and Gibson, T. 1994. CLUSTAL W. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting position specific gap penalties and weight matrix choice, Nucleic Acids Res., 22(22): 4673-4690.
Vinod, K.N., Mary, E.R., Gunaseeli, R., and Kannan, N.D. (2014). Process optimization and production kinetics for cellulase production by Trichoderma viride VKF3, Springer Plus, 3: 92-104.
Vishwanatha, K.S., Apu-Rao, A.G., and Singh, S.A. 2010. Acid protease production by solid-state fermentation using Aspergillus oryzae MTCC 5341: optimization of process parameters, J. Industrial Microbiol. Biotechnol., 37: 129-138.

How to cite this article:
Nathan Vinod Kumar, Mary Esther Rani, R. Rathinasamy Gunaseeli and Narayanan Dhiraviam Kannan. 2017. Lipase Production using Aspergillus japonicus MF-1 through Biotransformation of Agro-Waste and Medicinal Oil Effluent. Int.J.Curr.Microbiol.App.Sci. 6(4): 2005-2020. doi: https://doi.org/10.20546/ijcmas.2017.604.237