Improved upper bounds for partial spreads

Sascha Kurz

Abstract A partial \((k-1)\)-spread in \(PG(n-1,q)\) is a collection of \((k-1)\)-dimensional subspaces with trivial intersection. So far, the maximum size of a partial \((k-1)\)-spread in \(PG(n-1,q)\) was known for the cases \(n \equiv 0 \pmod{k}\), \(n \equiv 1 \pmod{k}\), and \(n \equiv 2 \pmod{k}\) with the additional requirements \(q = 2\) and \(k = 3\). We completely resolve the case \(n \equiv 2 \pmod{k}\) for the binary case \(q = 2\).

Keywords Galois geometry · Partial spreads · Constant dimension codes · Vector space partitions · Orthogonal arrays · \((s, r, \mu)\)-nets

Mathematics Subject Classification 51E23 · 05B15 · 05B40 · 11T71 · 94B25

1 Introduction

For a prime power \(q > 1\), let \(\mathbb{F}_q\) be the finite field with \(q\) elements, and \(\mathbb{F}_q^n\) the standard vector space of dimension \(n \geq 1\) over \(\mathbb{F}_q\). The set of all subspaces of \(\mathbb{F}_q^n\), ordered by the incidence relation \(\subseteq\), is called \((n-1)\)-dimensional projective geometry over \(\mathbb{F}_q\) and commonly denoted by \(PG(n-1,q)\). Let \(G_q(n,k)\) denote the set of all \(k\)-dimensional subspaces in \(\mathbb{F}_q^n\). The so-called Gaussian binomial coefficient \(\left[\begin{array}{c} n \\ k \end{array} \right]_q\), where \(\left[\begin{array}{c} n \\ k \end{array} \right]_q = \prod_{i=n-k+1}^{n} (1-q^i) / \prod_{i=1}^{k} (1-q^i)\) for \(0 \leq k \leq n\) and \(\left[\begin{array}{c} n \\ k \end{array} \right]_q = 0\) otherwise, gives the respective cardinality \(|G_q(n,k)|\). A partial \(k\)-spread in \(\mathbb{F}_q^n\) is a collection of \(k\)-dimensional subspaces with trivial intersection.

1 Instead of \(PG(n-1,q)\) we will mainly use the notation \(\mathbb{F}_q^n\) in the following.
such that each point, i.e., each element of \(G_q(n, 1) \), is covered at most once. A point that is not covered by any of the \(k \)-dimensional subspaces of the partial \(k \)-spread is called a hole.

We call the number of \(k \)-dimensional subspaces of a given partial \(k \)-spread its size and we call it maximum if it has the largest possible size. Bounds for the sizes of maximum partial \(k \)-preads were heavily studied in the past. Here, we are able to determine the exact value for an infinite series of cases of parameters \(n \) and \(k \).

Besides the geometric interest in maximum partial \(k \)-preads, they also can be seen as a special case of subspace codes in (network) coding theory. Here, the codewords are elements of \(\text{PG}(n - 1, q) \). Two widely used distance measures for subspace codes (motivated by an information-theoretic analysis of the Koetter–Kschischang–Silva model, see e.g., [16]) are the so-called subspace distance \(d_S(U, V) := \dim(U + V) - \dim(U \cap V) = 2 \cdot \dim(U + V) - \dim(U) - \dim(V) \), and the so-called injection distance \(d_I(U, V) := \max\{\dim(U), \dim(V)\} - \dim(U \cap V) \). For \(D \subseteq \{0, \ldots, n\} \) we denote by \(A_q(n, d; D) \) the maximum cardinality of a subspace code over \(\mathbb{F}_q^n \) with minimum subspace distance at least \(d \), where we additionally assume that the dimensions of the codewords are contained in \(D \). The most unrestricted case is given by \(D = \{0, \ldots, n\} \). The other extreme, \(D = \{k\} \) is called constant dimension case and the corresponding codes are called constant dimension codes. As an abbreviation we use the notation \(A_q(n, d; k) := A_q(n, d; \{k\}) \). Note that \(d_S(U, V) = 2 \cdot d_I(U, V) \in 2 \cdot \mathbb{N} \) in the constant dimension case. Bounds on \(A_q(n, d; D) \) have been intensively studied in the last years, see e.g., [7]. With this notation, the size of a maximum partial \(k \)-pread in \(\mathbb{F}_q^n \) is given by \(A_q(n, 2k; k) \).

The remaining part of the paper is structured as follows. We will briefly review some known results on \(A_q(n, 2k; k) \) and discuss their relation with our main result in Sect. 2. In Sect. 3, we will provide the technical tools that are then used to prove the main result in Sect. 4. We close with a conclusion listing some further implications and future lines of research in Sect. 5.

2 Known bounds for partialpreads

Counting the points in \(\mathbb{P}_q^n \) and \(\mathbb{P}_q^k \) gives the obvious upper bound \(A_q(n, 2k; k) \leq \binom{n}{k}_q = \frac{q^n - 1}{q^k - 1} \).

If equality is attained, then one speaks of a \(k \)-pread.

Theorem 1 ([11]; see also [3, p. 29], [2, Result 2.1]) \(\mathbb{P}_q^n \) contains a \(k \)-pread if and only if \(k \) divides \(n \), where we assume \(1 \leq k \leq n \) and \(k, n \in \mathbb{N} \).

If \(k \) does not divide \(n \), then we can improve the previous upper bound by rounding down to \(A_q(n, 2k; k) \leq \left\lfloor \frac{q^n - 1}{q^k - 1} \right\rfloor \). Here a specific parametrization is useful: If one writes the size of a partial \(k \)-pread in \(\mathbb{P}_q^n \), where \(n = kt + r \), \(1 \leq r \leq k - 1 \), as \(A_q(n, 2k; k) = q^r \cdot \frac{q^{kt} - 1}{q^s - 1} - s = \frac{q^n - q^r}{q^s - 1} - s \), then \(s \geq q - 1 \) and \(s > \frac{q^r - 1}{2} - \frac{q^s - q^r}{2} \) is known, see e.g., [5, p. 29] or Theorem 3. Furthermore, there exists an example with \(s = q^r - 1 \) in each case, see e.g., Observation 9, leading to the conjecture that the sharp bound is \(s \geq q^r - 1 \). Assuming \(q = 2 \) and \(k \geq 4 \), our main result in Theorem 5 verifies this conjecture for \(r = 2 \), i.e., \(s \geq 3 \). Note that \(n \equiv r \pmod{k} \), so that the residue class \(r \) seems to play a major role. Besides the case of \(r = 0 \), see Theorem 1, the next case \(r = 1 \) is solved in full generality:
Theorem 2 ([2]; see also [14] for the special case \(q = 2 \)) For integers \(1 \leq k \leq n \) with \(n \equiv 1 \) (mod \(k \)), we have

\[
A_q(n, 2k; k) = q^n - q \equiv q^{k-1} \cdot \frac{q^{n-1} - 1}{q^k - 1} - q + 1 = \frac{q^n - q^{k+1} + q^k - 1}{q^k - 1}.
\]

So far, the best upper bound on \(A_q(n, 2k; k) \), i.e., lower bound on \(s \), is based on the following theorem.

Theorem 3 ([4, Corollary 8]) If \(n = kt + r \) with \(0 < r < k \), then

\[
A_q(n, 2k; k) \leq \sum_{i=0}^{t-1} q^{ik\cdot r} - [\theta] - 1 = q^r \cdot \frac{q^{k\cdot r} - 1}{q^k - 1} - [\theta] - 1 = \frac{q^n - q^r}{q^k - 1} - [\theta] - 1,
\]

where \(2\theta = \sqrt{1 + 4q^k(q^k - q^r)} - (2q^k - 2q^r + 1) \).

We remark that this theorem is also restated as Theorem 13 in [7, p. 39] and as Theorem 44 in [9], with the small typo of not rounding down \(\theta \) (\(\Omega \) in their notation). And indeed, the resulting lower bound \(s \geq \lceil \theta(q, k, r) \rceil + 1 \) is independent of \(n \). For the binary case \(q = 2 \), we can use the previous two results to state exact formulas for \(A_2(n, 2k; k) \) for small values of \(k \geq 2 \). From Theorems 1 and 2, we conclude:

Corollary 1 For each integer \(m \geq 2 \), we have

(a) \(A_2(2m, 4; 2) = \frac{2^{2m-2} - 1}{3} \);
(b) \(A_2(2m + 1, 4; 2) = \frac{2^{2m+1} - 5}{3} \).

Using the results of Theorems 1, 2, and 3, the case \(k = 3 \) was completely settled in [6]:

Theorem 4 For each integer \(m \geq 2 \), we have

(a) \(A_2(3m, 6; 3) = \frac{2^{3m-2} - 1}{7} \);
(b) \(A_2(3m + 1, 6; 3) = \frac{2^{3m+1} - 9}{7} \);
(c) \(A_2(3m + 2, 6; 3) = \frac{2^{3m+2} - 18}{7} \).

In our main theorem, we completely settle the case \(n \equiv 2 \) (mod \(k \)) for \(q = 2 \), \(k \geq 4 \), and \(n \geq 2k + 2 \).\(^4\)

Theorem 5 For integers \(t \geq 2 \) and \(k \geq 4 \), we have \(A_2(kt + 2, 2k; k) = \frac{2^{kt+2} - 3.2^k - 1}{2^{k-1}} \).

Using the results of Theorems 1, 2, 3, 5 and Observation 9, we can state:

Corollary 2 For each integer \(m \geq 2 \), we have

(a) \(A_2(4m, 8; 4) = \frac{2^{4m-2} - 1}{15} \);
(b) \(A_2(4m + 1, 8; 4) = \frac{2^{4m+1} - 17}{15} \);
(c) \(A_2(4m + 2, 8; 4) = \frac{2^{4m+2} - 49}{15} \);
(d) \(\frac{2^{4m+3} - 113}{15} \leq A_2(4m + 3, 8; 4) \leq \frac{2^{4m+3} - 53}{15} \).

\(^3\) Obviously, we have \(A_q(n, 2; 1) = \lceil \frac{n}{q} \rceil \).

\(^4\) As \(A_q(k + 2, 2k; k) = 1 \) for \(k \geq 2 \), the assumption \(n \geq 2k + 2 \) is no restriction. The case \(k = 3 \) is covered by [6], see Theorem 4. For \(k = 1, 2 \) the remainder of \(n \) is strictly smaller than 2. So, in other words, the binary case \(n \equiv 2 \) (mod \(k \)) is completely resolved.
In [7] Etzion listed 100 open problems on q-analogs in coding theory. Our main theorem resolves several of them:

- Research problem 45 asks for a characterization of parameter cases for which the construction in Observation 9 matches the exact value of $A_q(n, 2k; k)$. Assuming $q = 2$ and $k \geq 4$, this is the case for $n \equiv 2 \pmod{k}$.
- Research problem 46 asks for improvements of the upper bound from Theorem 3, which are achieved for the same parameters as specified above. The same is true for Research problem 47 asking for exact values.
- The special case of determining $A_2(n, 8; 4)$ in Research problem 49 is completely resolved for $n \equiv 2 \pmod{4}$, see Corollary 2.

3 Constructions and vector space partitions

For matrices $A, B \in \mathbb{F}_q^{m \times n}$ the rank distance is defined via $d_R(A, B) := \text{rk}(A - B)$. It is indeed a metric, as observed in [10].

Theorem 6 (see [10]) Let $m, n \geq d$ be positive integers, q a prime power, and $C \subseteq \mathbb{F}_q^{m \times n}$ be a code with minimum rank distance d. Then, $|C| \leq q^{\max(n, m) \cdot (\min(n, m) - d + 1)}$. Codes attaining this upper bound are called maximum rank distance (MRD) codes. They exist for all (suitable) choices of parameters.

If $m < d$ or $n < d$, then only $|C| = 1$ is possible, which may be summarized to the single upper bound $|C| \leq \lceil q^{\max(n, m) \cdot (\min(n, m) - d + 1)} \rceil$. Using an $m \times m$ identity matrix as a prefix one obtains the so-called lifted MRD codes.

Theorem 7 (see [16]) For positive integers k, d, n with $k \leq n$, $d \leq 2 \min(k, n - k)$, and d even, the size of a lifted MRD code in $G_q(n, k)$ with subspace distance d is given by

$$M(q, k, n, d) := q^{\max(k, n-k) \cdot (\min(k, n-k) - d + 1)}.$$

If $d > 2 \min(k, n - k)$, then we have $M(q, k, n, d) = 1$.

In [8], a generalization, the so-called multi-level construction, was presented. To this end, let k and n be positive integers and $v \in \mathbb{F}_2^n$ a binary vector of weight k. By $\text{EF}_q(v)$ we denote the set of all $k \times n$ matrices over \mathbb{F}_2 that are in row-reduced echelon form, i.e., the Gaussian algorithm had been applied, and the pivot columns coincide with the positions where v has a 1-entry.

Theorem 8 (see [8]) For integers k, n, d with $1 \leq k \leq n$ and $1 \leq d \leq \min(k, n - k)$, let B be a binary constant weight code of length n, weight k, and minimum Hamming distance $2d$. For each $b \in B$ let C_b be a code in $\text{EF}_q(b)$ with minimum rank distance at least d. Then, $\cup_{b \in B} C_b$ is a constant dimension code of dimension k having a subspace distance of at least $2d$.

The authors of [8] also came up with a conjecture for the size of an MRD code in $\text{EF}_q(v)$, which is still open. Taking binary vectors with k consecutive ones we are in the classical MRD case. So, taking binary vectors v_i, where the ones are located in positions $(i - 1)k + 1$ to ik, for all $1 \leq i \leq \lfloor n/k \rfloor$, clearly gives a binary constant weight code of length n, weight k, and minimum Hamming distance $2k$.

лице Springer
We remark that a generalization, among similar lines and including explicit formulas for the respective cardinalities, has been presented in [17].

A vector space partition \mathcal{P} of \mathbb{F}_q^n is a collection of subspaces with the property that every nonzero vector of \mathbb{F}_q^n is contained in a unique member of \mathcal{P}. Let m_d denote the number of subspaces of dimension d contained in \mathcal{P}. If $m_k > 0$ and $m_i = 0$ for $i > k$, then $(m_k, m_{k-1}, \ldots, m_1)$ is called the type of \mathcal{P}. We will also use the notation $k^{m_k} \ldots 1^{m_1}$, where we may leave out cases with $m_d = 0$. The tail of \mathcal{P} is the set of subspaces, in \mathcal{P}, having the smallest dimension. If the dimension of the corresponding subspaces is given by d, then the length of the tail is the number m_d, i.e., the cardinality of the tail.

Theorem 10 ([11, Theorem 1]) Let \mathcal{P} be a vector space partition of \mathbb{F}_q^n, let n_1 denote the length of the tail of \mathcal{P}, let d_1 denote the dimension of the vector spaces in the tail of \mathcal{P}, and let d_2 denote the dimension of the vector spaces of the second lowest dimension.

(i) if $q^{d_2-d_1}$ does not divide n_1 and if $d_2 < 2d_1$, then $n_1 \geq q^{d_1} + 1$;
(ii) if $q^{d_2-d_1}$ does not divide n_1 and if $d_2 \geq 2d_1$, then either $n_1 > 2q^{d_2-d_1}$ or d_1 divides d_2 and $n_1 = (q^{d_2} - 1) / (q^{d_1} - 1)$;
(iii) if $q^{d_2-d_1}$ divides n_1 and $d_2 < 2d_1$, then $n_1 \geq q^{d_2} - q^{d_1} + q^{d_2-d_1}$;
(iv) if $q^{d_2-d_1}$ divides n_1 and $d_2 \geq 2d_1$, then $n_1 \geq q^{d_2}$.

So, in any (nontrivial) case, we have $n_1 \geq q + 1 \geq 3$, which will be sufficient in many situations.

4 Main theorem

For a vector space partition \mathcal{P} of \mathbb{F}_q^n and a hyperplane H, let $\mathcal{P}_H := \{ U \cap H : U \in \mathcal{P} \}$ be the vector space partition of \mathbb{F}_q^{n-1}, i.e., \mathcal{P}_H is obtained from \mathcal{P} by the intersection with hyperplane H.

Lemma 1 For two integers $t \geq 2$ and $k \geq 4$, no vector space partition of type $k^{n_k}(k-1)^{n_k-1}1^{1+2^k-1}$ exists in \mathbb{F}_2^{kt+1}, where $n_k = \frac{2(k^{t-1})+2^k-5}{2^{t-1}}$ and $n_{k-1} = 2^{(t-1)+2} - 3$.

Proof Assume the existence of a vector space partition \mathcal{P} of the specified type. Let H be an arbitrary hyperplane. Since the $m = \frac{2k^{t+2} - 2^k + 2}{2^t - 1}$ non-holes of \mathcal{P}_H have dimensions in $\{k, k-1, k-2\}$ and the total number of points in H is given by $\binom{n}{t} = 2^{kt} - 1$, the number of holes L_H has to satisfy $L_H = 1 \pmod{2^{k-2}}$. Using $L_H \leq 1 + 2^{k-1}$, we conclude $L_H \in \{1, 1 + 2^{k-2}, 1 + 2^{k-1}\}$. Due to the tail condition in Theorem 10, the case $L_H = 1$ is impossible. Now, let x be the number of hyperplanes with $1 + 2^{k-1}$ holes and

5 We have to exclude the trivial subspace partition $\mathcal{P} = \{ \mathbb{F}_q^n \}$, where $d_1 = n$ and d_2 does not exist.

6 Theorem 10(ii,iv) yields $n_1 = 2^{k-1} - 1$ or $n_1 > 2^{k-1}$, if we set $d_2 = k - 1$ and $d_1 = 1$. The improvement of Theorem 10, i.e., see [12, Theorem 2], is not sufficient to exclude the case of Lemma 1.
\[\binom{kt+1}{kt} - x = 2^{kt+1} - 1 - x \] the number of hyperplanes with 1 + 2^{k-2} holes. Since each hole is contained in \(\binom{kt}{kt-1} = 2^{kt} - 1 \) hyperplanes, the total number of holes is

\[
\frac{(1 + 2^{k-1}) x + (1 + 2^{k-2}) \cdot (2^{kt+1} - 1 - x)}{2^{kt} - 1}
\]

\[
= \frac{(1 + 2^{k-2}) \cdot 2^{kt+1} - (1 + 2^{k-2}) + 2^{k-2} \cdot x}{2^{kt} - 1}
\]

\[
\geq \frac{(1 + 2^{k-2}) \cdot 2^{kt+1} - (1 + 2^{k-2})}{2^{kt} - 1}
\]

\[
> 2 \cdot (1 + 2^{k-2}) = 2^{k-1} + 2 > 1 + 2^{k-1},
\]
a contradiction. \(\square \)

Lemma 2 Using the notation from Theorem 3, we have \(\lfloor \theta \rfloor = \lfloor \frac{q^r - 2}{2} \rfloor \) for \(r \geq 1 \) and \(k \geq 2r \).\(^7\)

Proof We have

\[2\theta = \sqrt{1 + 4q^k(q^k - q^r) - (2q^k - 2q^r + 1)} \]

\[= \sqrt{(2q^k - q^r)^2 - q^{2r} + 1 - (2q^k - 2q^r + 1)} < q^r - 1. \]

Since \(1 + 4q^k(q^k - q^r) = 1 + 4q^{2k} - 4q^{k+r} > (2q^k - (q^r + 1))^2 = 4q^{2k} - 4q^{k+r} - 4q^k + q^{2r} + 2q^r + 1 \) for \(k \geq 2r \) and \(q \geq 2 \), we have \(2\theta > q^r - 2 \). Thus, we have \(\lfloor \theta \rfloor = (q^r - 2)/2 \) for \(q \) even and \(\lfloor \theta \rfloor = (q^r - 3)/2 \) for \(q \) odd. \(\square \)

We remark that the formula for \(\lfloor \theta \rfloor \) in Lemma 2 does not depend on \(k \) (supposing that \(k \) is sufficiently large).

Proof of Theorem 5 Applying Lemma 2 and Theorem 3 yields

\[A_2(kt + 2, 2k; k) \leq \frac{2^{kt+2} - 2^{k+1} - 2}{2^k - 1}. \]

Assuming that the upper bound \(m := \frac{2^{kt+2} - 2^{k+1} - 2}{2^k - 1} \) is attained, we obtain a vector space partition \(\mathcal{P} \) of type \(k^m 1^{2^{k+1}+1} \), i.e., the \(m \) \(k \)-dimensional codewords leave over \(\binom{kt+2}{1} \) \(- m \cdot 1 \) \(\binom{1}{1} = 2^{kt+2} - 1 - \frac{2^{kt+2} - 2^{k+2} - 2}{2^k - 1} = 2^{k+1} + 1 \) holes. Now, we consider the intersection of \(\mathcal{P} \) with a hyperplane \(\mathcal{H} \). Since the codewords end up as \(k \)- or \((k-1) \)-dimensional subspaces summing up to \(m \), the number of holes is at most \(2^{k+1} + 1 \), and the total number of points is given by \(\binom{kt+1}{1} = 2^{kt+1} - 1 \), we obtain the following list of possible types of \(\mathcal{P}_H \):

1. \(k^{n_k+1}(k-1)^{n_k-1}11 \)
2. \(k^{n_k}(k-1)^{n_k-1}11+2^{k-1} \)
3. \(k^{n_k-1}(k-1)^{n_k-1}11+2^k \)

\(^7\) The result is also valid for \(k = 2r - 1, r \geq 2, \) and \(q \in \{2, 3\} \).
4. \(k^{n_k-2}(k - 1)^{n_k-1+2}1^{1+3\cdot2^{k-1}}\)
5. \(k^{n_k-3}(k - 1)^{n_k-1+3}1^{1+2^{k+1}}\),

where \(n_k = \frac{2^{k(t-1)+2}+2^k-5}{2^t-1}\) and \(n_{k-1} = 2^{k(t-1)+2} - 3\).

Due to Theorem 10, case (1) is impossible. The case (2) is ruled out by Lemma 1. Thus, each of the \([2^{k(t-1)+2}]_{k(t-1)+1}\) hyperplanes contains at most \(n_k - 1\) subspaces of dimension \(k\).

Since each \(k\)-dimensional subspace is contained in \(\mathbb{H}_{k(t-1)+1}\), the total number of \(k\)-dimensional subspaces in \(\mathcal{H}\) can be at most

\[
\frac{(2^{kt+2} - 1) \cdot (n_k - 1)}{2^{k(t-1)+2} - 1} = \frac{2^{kt+2} - 1}{2^k - 1} - 3 \cdot \frac{2^{kt+2} - 1}{(2^k - 1) \cdot (2^{k(t-1)+2} - 1)}
\]

\[k > 0\]

a contradiction. Thus, we have \(A_2(kt + 2, 2k; k) \leq \frac{2^{kt+2} - 3\cdot2^k-1}{2^t-1}\). A construction for \(A_2(kt + 2, 2k; k) \geq \frac{2^{kt+2} - 3\cdot2^k-1}{2^t-1}\) is given by Observation 9.

\[\square\]

Corollary 3 For each integer \(k \geq 4\) we have \(A_2(2k + 2, 2k; k) = 2^{k+2} + 1\).

We remark that Corollary 3 would be wrong for \(k = 3\), since \(A_2(8, 6; 3) = 34 > 33\), see [6]. And indeed, each extremal code has to contain a hyperplane which is a subspace partition of type \(3^52^{29}1^5\). Next we try to get a bit more information about these extremal codes. To this end, let \(2 \leq i \leq 5\) and let \(a_i\) denote the number of hyperplanes containing exactly \(i\) three-dimensional codewords and \(17 \geq 25 - 4i > 1\) holes. Double-counting the incidences of the tuples \((B_1, H)\) and \((\{B_1, B_2\}, H)\), where \(H\) is a hyperplane and \(B_1 \neq B_2\) are codewords contained in \(H\), gives

\[
a_2 + a_3 + a_4 + a_5 = \begin{bmatrix} 8 \\ 2 \end{bmatrix} = 255,
\]

\[
a_2 + 3a_3 + 4a_4 + 5a_5 = \begin{bmatrix} 5 \\ 1 \end{bmatrix} \cdot A_2(8, 6; 3) = 1054,
\]

\[
a_2 + 3a_3 + 6a_4 + 10a_5 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdot \left(A_2(8, 6; 3) \right) = 1683.
\]

Solving the equation system in terms of \(a_5\) yields \(a_2 = 51 - a_5\), \(a_3 = 3a_5 - 136\), and \(a_4 = 340 - 3a_5\). Since the \(a_i\) have to be non-negative, we obtain \(46 \leq a_5 \leq 51\), i.e., there are at least 46 hyperplanes of type \(3^52^{29}1^5\).

We remark that Lemma 1 can be generalized to arbitrary odd\(^9\) prime powers \(q\) along the same lines:

Lemma 3 For integers \(t \geq 2\), \(k \geq 4\), and odd \(q\), no vector space partition of type \(k^{p-1}(k - 1)^{m-p+1}\) exists in \(\mathbb{F}_q^{kt+1}\), where \(p = \frac{q^{k(t-1)+2} - a_2^2}{q^2 - 1} + \frac{a_4 + 1}{2}\) and \(m = \frac{q^{k(t-1)+2} - a_2^2}{q^2 - 1} - \frac{a_2^2 - 1}{2}\).

Proof Assume the existence of a vector space partition \(\mathcal{P}\) of the specified type. Now, we consider the intersection with an arbitrary hyperplane \(H\). Since the non-holes of \(\mathcal{P}\) end up as \(m\) subspaces, with dimensions in \([k, k - 1, k - 2]\), in \(\mathcal{P}_H\) and the total number of points in \(H\) is given by \(\binom{k+1}{1}q\), the number of holes \(L_H\) in \(\mathcal{P}_H\) has to satisfy \(L_H \equiv \frac{q+1}{2} \pmod{q^{k+2}}\).

\(^8\) By a more refined analysis, one can classify the possible hole configurations up to isomorphism.

\(^9\) For even \(q > 2\) the tail condition of Theorem 10 cannot be applied directly in the proof of Lemma 3.
Using $L_H \leq \frac{q+1}{2} + q^{k-1}$, we conclude $L_H \in \left\{ \frac{q+1}{2} + iq^{k-2} : 0 \leq i \leq q \right\}$. Due to the tail condition in Theorem 10, the case $L_H = \frac{q+1}{2}$ is impossible. Thus, each hyperplane contains at least $\frac{q+1}{2} + q^{k-2}$ holes. Since each hole is contained in $\left[\frac{k}{k+1} \right]_q$ hyperplanes, the total number of holes is at least

$$\left(\frac{q+1}{2} + q^{k-2} \right) \cdot \frac{q^{kt+1} - 1}{q^{kt} - 1} > \left(\frac{q+1}{2} + q^{k-2} \right) \cdot q > \frac{q+1}{2} + q^{k-1},$$

a contradiction. □

It turns out that repeating the proof of Theorem 5 for odd q just works for $q = 3$, and additionally, the lower bound by the construction of Observation 9 does not match the improved upper bound. At the very least, an improvement of the upper bound of Theorem 3 by one is possible, which we show in the following lemma.

Lemma 4 For integers $t \geq 2$ and $k \geq 4$, we have $A_3(kt + 2, 2k; k) \leq \frac{2k^2 - 3^2}{3^1 - 1} - \frac{3^2+1}{2}$.

Proof Applying Lemma 2 and Theorem 3 for odd q yields

$$A_q(kt + 2, 2k; k) \leq \frac{q^{kt+2} - q^2}{q^k - 1} - \frac{q^2 - 1}{2} =: m.$$

Assuming that the upper bound is attained by a code C, which corresponds to a vector space partition \mathcal{P}, the m k-dimensional codewords leave at least

$$\left[\frac{kt + 2}{1} \right]_q - m \cdot \left[\frac{k}{1} \right]_q = \frac{q(q + 1)}{2} \cdot q^{k-1} + \frac{q + 1}{2} =: h$$

holes. Now, we consider the intersection of \mathcal{P} with a hyperplane. Since the codewords end up as k- or $(k-1)$-dimensional subspaces summing up to m, the number of holes is at most h, and the total number of points is given by $\left[\frac{kt+1}{1} \right]_q = \frac{q^{kt+1} - 1}{q-1}$, we obtain the types

$$k^{p-i}(k-1)^{m-p+i} \cdot \frac{q^{k+1} + q^{k-1}}{2}$$

for $0 \leq i \leq \frac{q(q+1)}{2}$, where $p := \frac{q^{k(t-1)+2} - q^2}{q^k - 1} + \frac{q+1}{2}$.

Due to Theorem 10, case $i = 0$ is impossible. The case $i = 1$ is ruled out by Lemma 3. Thus, each of the $\left[\frac{kt+2}{kt+1} \right]_q$ hyperplanes contains at most $p - 2$ subspaces of dimension k. Since each k-dimensional subspace is contained in $\left[\frac{kt+2}{kt+1} \right]_q$ hyperplanes, the total number of k-dimensional subspaces in \mathcal{P} can be at most

$$\frac{(p - 2) \cdot \left[\frac{kt+2}{kt+1} \right]_q}{\left[\frac{kt+2}{kt+1} \right]_q} = \frac{\left(\frac{q^{k(t-1)+2} - q^2}{q^k - 1} + \frac{q^3}{2} \right) \cdot \left(q^k (q^{k(t-1)+2} - 1) + q^k - 1 \right)}{\frac{q^{k(t-1)+2} - 1}{q^k - 1}}
\begin{align*}
&= \frac{q^{kt+2} - q^2 + q^{k+2} + q^2}{q^k - 1} + \frac{q - 3}{2} \cdot q^k \\
&\quad + \frac{q^{k(t-1)+2} - q^2 + \frac{q^3}{2} \cdot (q^k - 1)}{q^{k(t-1)+2} - 1} \\
&\leq \frac{q^{kt+2} - q^2}{q^k - 1} - q^2 + \frac{q^{k(t-1)+2} - q^2}{q^{k(t-1)+2} - 1} \\
&\quad + \frac{q^{kt+2} - q^2}{q^k - 1} - q^2 + \frac{q^{k(t-1)+2} - q^2}{q^{k(t-1)+2} - 1} \\
&\leq \frac{q^{kt+2} - q^2}{q^k - 1} - q^2 + \frac{q^{k(t-1)+2} - q^2}{q^{k(t-1)+2} - 1} \\
&\quad + \frac{q^{kt+2} - q^2}{q^k - 1} - q^2 + \frac{q^{k(t-1)+2} - q^2}{q^{k(t-1)+2} - 1} \\
&\quad + \frac{q^{kt+2} - q^2}{q^k - 1} - q^2 + \frac{q^{k(t-1)+2} - q^2}{q^{k(t-1)+2} - 1} = m.
\end{align*}
a contradiction. Thus, we have $A_3(kt + 2, 2k; k) \leq \frac{3^{kt+2-3^2}}{3^{k-1}} - \frac{3^2+1}{2}$. □

5 Conclusion

For the size of a maximum partial k-spread in \mathbb{F}_q^n, the exact formula $A_q(kt + r, 2k; k) = q^r \cdot \frac{q^{kt} - 1}{q^k - 1} - q^r + 1$ was conjectured for some time, where $n = kt + r$ and $1 \leq r \leq k - 1$. Codes with these parameters can easily be obtained via combining some MRD codes, see Observation 9. However, the conjecture is false for $q = 2, k = 3, n \equiv 2 \pmod{3}$, and $n \geq 8$, as we know since [6]. In this paper, we have shown that the conjecture is true for $q = 2, k = 4, n \equiv 2 \pmod{k}$, and $n \geq 2k + 2$. With respect to upper bounds, Theorem 3 is one of the most general and sweeping theoretical tools. For the spread case, i.e., $n \equiv 0 \pmod{k}$, it was sufficient to consider the (empty) set of holes. The main idea of Beutelspacher for the case $n \equiv 1 \pmod{k}$, may roughly be described as the consideration of holes in the intersection of a partial k-spread with a hyperplane. In this sense, our work is just the continuation of intersecting two times.10 If $k \geq 4$, the intersected codewords can be distinguished from the holes by the attained dimensions. So, we naturally ask whether our result can be generalized to arbitrary q. In Lemma 4, we were able to reduce the previously best known upper bound by 1 for the special field size $q = 3$. Looking closer at our arguments shows that for further progress additional ideas are needed.

In general, one may intersect $k - 2$ times without being confronted with an interference between the intersected codewords and the set of holes contained in the $(n - k + 2)$-dimensional subspaces. Can this rough idea be used to obtain improved upper bounds for $r \geq 3$ and $k \geq r + 2$?11

Our main result suggests that the code attaining $A_2(8, 6; 3) = 34$ is somehow specific. As mentioned before, it cannot be obtained by the construction from Observation 9. Even more, it cannot be obtained by the more general, so-called, Echelon-Ferrers (or multi-level) construction from [8]. So, a better understanding of the corresponding codes might be the key for possibly better constructions beating the currently best known lower bounds for e.g., $A_2(11, 8; 4)$ or $A_2(14, 10; 5)$.

We would like to mention a new on-line table for upper and lower bounds for subspace codes at http://subspacecodes.uni-bayreuth.de, see also [13] for a brief manual and description of the methods implemented so far. Actually, our research was initiated by looking for the smallest set of parameters, in the binary partial spread case, where the currently known lower and the upper bounds differ by exactly 1: $65 \leq A_2(10, 8; 4) \leq 66$. The other cases with a difference of one are exactly those that we finally covered by Theorem 5. Now, the smallest unknown maximal cardinality of a partial k-spread over \mathbb{F}_2^n is given by $129 \leq A_2(11, 8; 4) \leq 133$ and also the other cases, where the upper and the lower bound are exactly 4 apart, show an obvious pattern. At least for us, the mentioned database was very valuable. As it commonly happens that formerly known results were rediscovered by different authors, we would appreciate any comments on existing results, that are not yet included in the database, very much.

10 The specific use of Theorem 10 is just a shortcut, resting on the same rough idea. However, it points to an area where even more theoretic results are available, that possibly can be used in more involved cases.

11 In this context, we would like to mention the very recent preprint [15].
Partial k-spreads have applications in the construction of orthogonal arrays and (\bar{s}, \bar{r}, μ)-nets, see [4]. Thus, Theorem 5 also implies restrictions for these objects. The derivation of the explicit corollaries goes along the same lines as presented in [6].

Acknowledgements The author thanks the referees for carefully reading a preliminary version of this article and giving very useful comments on its presentation. The work of the author was supported by the ICT COST Action IC1104 and Grant KU 2430/3-1—Integer Linear Programming Models for Subspace Codes and Finite Geometry from the German Research Foundation.

References

1. André J.: Über nicht-desarguessche Ebenen mit transitiver Translationsgruppe. Math. Z. 60(1), 156–186 (1954).
2. Beutelspacher A.: Partial spreads in finite projective spaces and partial designs. Math. Z. 145(3), 211–229 (1975).
3. Dembowski P.: Finite Geometries: Reprint of the 1968 Edition. Springer, Berlin (2012).
4. Drake D.A., Freeman J.W.: Partial t-spreads and group constructible (s, r, μ)-nets. J. Geom. 13(2), 210–216 (1979).
5. Eisfeld J., Storme L.: t-Spreads and Minimal t-Covers in Finite Projective Spaces. Lecture NotesUniversiteit Gent, Gent (2000).
6. El-Zanati S., Jordon H., Seelinger G., Sissokho P., Spence L.: The maximum size of a partial 3-spread in a finite vector space over $GF(2)$. Des. Codes Cryptogr. 54(2), 101–107 (2010).
7. Etzion T.: Problems on q-Analogs in Coding Theory. arXiv preprint: arXiv:1305.6126 (2013).
8. Etzion T., Silberstein N.: Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams. IEEE Trans. Inf. Theory 55(7), 2909–2919 (2009).
9. Etzion T., Storme L.: Galois geometries and coding theory. Des. Codes Cryptogr. 78(1), 311–350 (2016).
10. Gabidulin E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985).
11. Heden O.: On the length of the tail of a vector space partition. Discret. Math. 309(21), 6169–6180 (2009).
12. Heden O., Lehmann J., Nástase E., Sissokho P.: The supertail of a subspace partition. Des. Codes Cryptogr. 69(3), 305–316 (2013).
13. Heinlein D., Kiermaier M., Kurz S., Wassermann A.: Tables of Subspace Codes. University of Bayreuth (2015). Available at http://subspacecodes.uni-bayreuth.de.
14. Hong S.J., Patel A.M.: A general class of maximal codes for computer applications. IEEE Trans. Comput. 100(12), 1322–1331 (1972).
15. Nástase E., Sissokho P.: The Maximum Size of a Partial Spread in a Finite Projective Space. arXiv preprint: arXiv:1605.04824 (2016).
16. Silva D., Kschischang F.R., Koetter R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008).
17. Skachek V.: Recursive code construction for random networks. IEEE Trans. Inf. Theory 56(3), 1378–1382 (2010).

Using the notation from this paper, we have $\bar{s} = q^k$, $\bar{r} = A_q(n, 2k; k)$, and $\mu = q^{n-2k}$.