Research Article

Predicting Nonlinear Stiffness, Motion Range, and Load-Bearing Capability of Leaf-Type Isosceles-Trapezoidal Flexural Pivot Using Comprehensive Elliptic Integral Solution

Aimei Zhanga, Yanjie Gou, and Xihui Yang

School of Electro-Mechanical Engineering, Xidian University, Xi’an, Shaanxi 710071, China

Correspondence should be addressed to Aimei Zhang; aimeizh@126.com

Received 19 November 2019; Accepted 16 January 2020; Published 12 February 2020

Academic Editor: Hervé Laurent

Copyright © 2020 Aimei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A leaf-type isosceles-trapezoidal flexural (LITF) pivot consists of two leaf springs located in the same plane [1]. The two leaf springs are arranged symmetrically and intersect at a virtual center of motion outside the pivot, as shown in Figure 1. The parallelogram flexure is a special type in which the two leaf springs intersect at infinity. LITF pivots have been utilized in many accurate mechanisms [2–4] due to their obvious advantages such as low cost, monolithic manufacturing, reduced weight, and smooth motion [5–7].

When delivering movement, the leaf springs of a LITF pivot undergo nonlinear large deflection that may carry one or two inflection points (where the resultant moment is equal to zero [8]), which complicates the accurate modeling of LITF pivots. The remote center location and stiffness of a LITF pivot are presented by the model of screw theory based on the small-deflection assumption [9], which limits the application range of the model. The two pseudorigid-body models with small-deflection assumption [10], i.e., a four-bar model and a pin-joint model, were proposed for the analysis of the moment-angle characteristics of LITF pivots subject to horizontal force and moment. However, the influence of vertical force to LITF pivots was neglected. The analytic models for stiffness and center shift were presented by using the beam constraint model (BCM) method [11], which can be used to solve the nonlinear characteristics of LITF pivots, i.e., the rotation angle is in the range of \(\pm 15^\circ\).

The efficiency of uniform-strength composite leaf springs under various loading conditions [12] was analyzed. Therefore, the accurate nonlinear analysis and load-bearing capability solution within the entire stress range are indispensable for the application of LITF pivots.

Because the leaf spring is so thin and flexible that the effects on axial elongation and shear are negligible, the elliptic integral solution is often considered to be the most accurate model for large deflection beams. Howell [13] presented the elliptic integral solutions for the large deflection beam with no inflection point. An elliptic integral solution for the beam with an inflection

1. Introduction

A leaf-type isosceles-trapezoidal flexural (LITF) pivot consists of two leaf springs located in the same plane [1]. The two leaf springs are arranged symmetrically and intersect at a virtual center of motion outside the pivot, as shown in Figure 1. The parallelogram flexure is a special type in which the two leaf springs intersect at infinity. LITF pivots have been utilized in many accurate mechanisms [2–4] due to their obvious advantages such as low cost, monolithic manufacturing, reduced weight, and smooth motion [5–7].

When delivering movement, the leaf springs of a LITF pivot undergo nonlinear large deflection that may carry one or two inflection points (where the resultant moment is equal to zero [8]), which complicates the accurate modeling of LITF pivots. The remote center location and stiffness of a LITF pivot are presented by the model of screw theory based on the small-deflection assumption [9], which limits the application range of the model. The two pseudorigid-body models with small-deflection assumption [10], i.e., a four-bar model and a pin-joint model, were proposed for the analysis of the moment-angle characteristics of LITF pivots subject to horizontal force and moment. However, the influence of vertical force to LITF pivots was neglected. The analytic models for stiffness and center shift were presented by using the beam constraint model (BCM) method [11], which can be used to solve the nonlinear characteristics of LITF pivots, i.e., the rotation angle is in the range of \(\pm 15^\circ\). The efficiency of uniform-strength composite leaf springs under various loading conditions [12] was analyzed. Therefore, the accurate nonlinear analysis and load-bearing capability solution within the entire stress range are indispensable for the application of LITF pivots.

Because the leaf spring is so thin and flexible that the effects on axial elongation and shear are negligible, the elliptic integral solution is often considered to be the most accurate model for large deflection beams. Howell [13] presented the elliptic integral solutions for the large deflection beam with no inflection point. An elliptic integral solution for the beam with an inflection
point was derived by Kimball and Tsai [14]. In our previous research [15], we developed the comprehensive elliptic integral solution to solve the large deflections of beams with multiple inflection points and subject to any kinds of load cases. Because each of the deflected leaf spring carry one or two inflection points, LITF pivots can be modeled by the comprehensive elliptic integral solution. The model can be used to solve the exact deflected shapes and nonlinear stiffness of LITF pivots subject to different loads. Through the stress analysis for deflected leaf springs, the maximum motion range and allowable loads of LITF pivots are solved.

The rest of this paper is organized as follows. In Section 2, the accurate kinetostatic model and stress check for LITF pivots are proposed. In Section 3, two examples are calculated to demonstrate the accuracy of the model for LITF pivots. The nonlinear stiffness and workspace evaluation of the two examples are then discussed. In Section 4, concluding remarks are presented.

2. Modeling

2.1. LITF Pivot. As shown in Figure 2, two springs (O1A and O2A, length L) of a LITF pivot intersect at point O and the angle between two leaf springs is 2β. The lengths of O1O2 and AB are w1 and w2, respectively. Letting N = w2/w1, when N ≠ 1, we then have

\[
\begin{align*}
\frac{w_1}{N-1} &= \frac{2L \sin \beta}{N-1}, \\
\frac{w_2}{N-1} &= \frac{2NL \sin \beta}{N-1}.
\end{align*}
\]

When N = 1, the LITF pivot becomes a parallelogram flexure, as shown in Figure 2(c), β = 0° and w1 = w2.

The global coordinate system OXY is established for the LITF pivot with the X axis oriented along O2O1 and the origin located at the midpoint of O2O1, as shown in Figure 2. The initial angle between leaf spring O1A and the X axis is θ1, and the angle between leaf spring O2B and the X axis is θ2. For N < 1, θ1 = 90° - β and θ2 = 90° + β. For N > 1, θ1 = 90° - β and θ2 = 90° + β.

The local coordinate systems O1X1Y1 and O2X2Y2 for leaf springs O1A and O2B are established with the origins placed at the fixed end and the X1 and X2 axes oriented along the leaf springs, respectively. The deflected end coordinates and the end angle of spring O1A with respect to the local coordinate O1X1Y1 are a1, b1, and θ1o, respectively. Similarly, the corresponding end coordinates and angle of O2B with respect to the local coordinate O2X2Y2 are denoted a2, b2, and θ2o, respectively. The horizontal displacement ΔX, vertical displacement ΔY, and rotation angle Δθ of the freedom for the LITF pivot in the global coordinate system are expressed as

\[
\begin{align*}
\Delta X &= \frac{1}{2}[(a_1 \cos \theta_1 + a_2 \cos \theta_2) - (b_1 \sin \theta_1 + b_2 \sin \theta_2)] \\
\Delta Y &= \frac{1}{2}[(a_1 \sin \theta_1 + a_2 \sin \theta_2) + (b_1 \cos \theta_1 + b_2 \cos \theta_2)] - L \cos \beta \\
\end{align*}
\]

The loop closure equations are given as

\[
\begin{align*}
\cos \theta_1 &- \sin \theta_1 \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} = \cos \theta_2 &- \sin \theta_2 \begin{bmatrix} a_2 \\ b_2 \end{bmatrix} - \begin{bmatrix} w_1 \\ 0 \end{bmatrix} \\
\sin \theta_1 &\cos \theta_1 \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} + w_2 \begin{bmatrix} \cos \Delta \theta \\ \sin \Delta \theta \end{bmatrix}.
\end{align*}
\]

Figure 3 shows the free-body diagrams for link AB and leaf springs O1A and O2B. When the pivot is subject to horizontal force Fx, vertical force Fy, and moment M at the midpoint C of link AB, the horizontal and vertical components of the end force and moment loaded at the O1A and O2B are F1x, F1y, M1o, and F2x, F2y, M2o, respectively. Applying the static equilibrium for link AB yields

\[
\begin{align*}
F_{1x} + F_{2x} + F_x &= 0 \\
-F_{1y} - F_{2y} + F_y &= 0 \\
-M_{1o} - M_{2o} + M - F_{1x}w_2 \sin \Delta \theta - F_{1y}w_2 \cos \Delta \theta &= 0
\end{align*}
\]

P1 and n1P1 are the components of F1x and F1y along O1Y1 and X1O1 and have

\[
\begin{bmatrix} F_{1x} \\ F_{1y} \end{bmatrix} = \begin{bmatrix} \cos \theta_1 & \sin \theta_1 \\ -\sin \theta_1 & \cos \theta_1 \end{bmatrix} \begin{bmatrix} n_1P_1 \\ P_1 \end{bmatrix}.
\]

Similarly, for O2B,

\[
\begin{align*}
\Delta X &= \frac{1}{2}[(a_1 \cos \theta_1 + a_2 \cos \theta_2) - (b_1 \sin \theta_1 + b_2 \sin \theta_2)] \\
\Delta Y &= \frac{1}{2}[(a_1 \sin \theta_1 + a_2 \sin \theta_2) + (b_1 \cos \theta_1 + b_2 \cos \theta_2)] - L \cos \beta \\
\Delta \theta &= \theta_{1o} - \theta_{2o}
\end{align*}
\]
2.2. **Comprehensive Elliptic Integral Solution.** Each of the two springs of a LITF pivot can be viewed as a cantilever beam subject to an end vertical force \(P \), an end horizontal force \(nP \), and an end moment \(M_2 \), as shown in Figure 4. The tip coordinates and tip angle of the deflected beam are denoted as \(a \), \(b \), and \(\theta_o \), respectively. Each deflected spring may carry \(m \) inflection points \((m = 1 \text{ or } 2) \). The comprehensive solution [15] for the beam with inflection points, as summarized in the following, formulates the load parameters \((\kappa, n, \text{ and } P)\) and deflection parameters \((a, b, \text{ and } \theta_o)\) by introducing \(m \) as the shape parameter:

\[
\begin{align*}
\begin{cases}
F_{2x} = \cos \theta_2 \sin \theta_2 \\
F_{2y} = -\sin \theta_2 \cos \theta_2
\end{cases}
\begin{bmatrix}
m_2 P_2 \\
P_2
\end{bmatrix}.
\end{align*}
\]

The deflection of each leaf spring can be modeled using the comprehensive elliptic integral solution summarized in the following section. The comprehensive elliptic integral solution for each leaf spring, together with the loop closure equation (3) and the static equilibrium equation (4), constitute the kinetostatic model for LITF pivots.

![Figure 2: Deformation diagram of LITF pivot. (a) \(N < 1 \). (b) \(N > 1 \). (c) \(N = 1 \).](image)

![Figure 3: Force analysis of the LITF pivot. (a) \(N \leq 1 \) and (b) \(N > 1 \).](image)

![Figure 4: Cantilever beam subject to combined force and moment loads.](image)

\[
\begin{align*}
\alpha &= \frac{S_a}{\sqrt{\eta}} f \\
\frac{a}{L} &= \frac{S_a}{a \eta^{3/2}} \left[- mf + 2me + \sqrt{2\eta} c \right] \\
\frac{b}{L} &= \frac{S_r}{a \eta^{3/2}} \left[\eta f - 2mn + n \sqrt{2\eta} c \right]
\end{align*}
\]

where α is defined as the force index (EI is the flexural rigidity of the beam),

$$\alpha = \sqrt{\frac{Pl^2}{EI}},$$

k is the load ratio,

$$k = \frac{M^2}{2P EI},$$

and S_r is the sign of the resulting moment at the fixed end of the beam,

$$S_r = \begin{cases} (−1)^m, & M_o ≥ 0, \\ (−1)^{m+1}, & M_o < 0. \end{cases}$$

Moreover,

$$\lambda = \sin \theta_o - n \cos \theta_o + k,$$
$$\eta = \sqrt{1 + n^2},$$
$$f = (−1)^mF(\gamma, t) - F(\gamma, t) + 2msF(t),$$
$$e = (−1)^mE(\gamma, t) - E(\gamma, t) + 2msE(t),$$
$$y_1 = \sin^{-1} \left[\frac{\eta - \eta}{\sqrt{\lambda + \eta}} \right],$$
$$y_2 = \begin{cases} \sin^{-1} \left[\frac{\eta + \sin \theta_o - n \cos \theta_o}{\lambda + \eta} \right] - \pi + \phi < \theta_o \leq \phi, \\ -\sin^{-1} \left[\frac{\eta + \sin \theta_o - n \cos \theta_o}{\lambda + \eta} \right] - 2\pi + \phi < \theta_o \leq -\pi + \phi, \end{cases}$$

$$t = \frac{\lambda + \eta}{2\eta},$$
$$c = \sqrt{\lambda + n} - (−1)^m\sqrt{\lambda - \sin \theta_o + n \cos \theta_o}. $$

$$F(\gamma, t) = \int_0^\gamma \sqrt[3]{1 - \sin \frac{\delta}{t}} d\delta$$

The coordinates (x, y) of an arbitrary point A on the beam (shown in Figure 4) can be written as

$$x = \frac{S_r}{\alpha n^{1/2}} \left[-m \eta f(\theta) + 2m \eta e(\theta) + \sqrt{2\eta} c(\theta) \right],$$
$$y = \frac{S_r}{\alpha n^{1/2}} \left[\eta f(\theta) - 2\eta e(\theta) + n \sqrt{2\eta} c(\theta) \right],$$

where θ is the deflected angle at point A and

$$f(\theta) = (−1)^m(\theta) F(\gamma, t) - F(\gamma, t) + 2m(\theta)S_rF(t),$$
$$e(\theta) = (−1)^m(\theta) E(\gamma, t) - E(\gamma, t) + 2m(\theta)S_rE(t),$$
$$y = \begin{cases} \sin^{-1} \left[\frac{\eta + \sin \theta - n \cos \theta}{\lambda + \eta} \right] - \pi + \phi < \theta \leq \phi, \\ -\sin^{-1} \left[\frac{\eta + \sin \theta - n \cos \theta}{\lambda + \eta} \right] - 2\pi + \phi < \theta \leq -\pi + \phi, \end{cases}$$

$$c(\theta) = \sqrt{\lambda + n} - (−1)^m(\theta) \sqrt{\lambda - \sin \theta + n \cos \theta}.$$
3. Case Studies

In this section, a LITF pivot and a parallelogram flexure are employed as two cases to demonstrate the effectiveness of the comprehensive elliptic integral model. The parameters of the two pivots are given in Table 1, and the materials are polypropylene in which $E = 1.4 \text{ GPa}$ and $S_y = 34 \text{ MPa}$ [13].

3.1. Solution for LITF Pivot. The parameters of the LITF pivot are shown in Table 1. The lengths of link $O_1 O_2$ and AB solved by equation (1) are $w_1 = 0.1167 \text{ m}$ and $w_2 = 0.0467 \text{ m}$, respectively. The deflected shapes of the pivot subject to different loads, the load-bearing capacity, and the corresponding motion range of the pivot will be discussed here.

3.1.1. Deflected Shapes under Different Loads. The deflected results of the pivot subject to different loads are obtained separately by using the comprehensive elliptic integral solution and a nonlinear finite element analysis (NFEA) model, as shown in Figures 6–10. For the NFEA model built with the ANSYS software, springs $O_1 A$ and $O_2 B$ are meshed into 100 elements with BEAM188, respectively, and the large displacement analysis option is turned on. BEAM188 is suitable for analyzing slender to moderately stubby beam structures. This element is based on the Timoshenko beam theory. Shear deformation is included. The results of the comprehensive elliptic integral solution agree well with NFEA.

For the LITF pivot subject to pure moment loaded at point C, the relationship between the rotation angle $\Delta \theta$ and the moment M is shown in Figure 6. The LITF pivot reveals fine linearity for $\Delta \theta$ less than 10° (the dashed line in Figure 6 expresses the linear approximation of the LITF pivot with small deformation). However, when $\Delta \theta$ is larger than 10°, the nonlinearity of the stiffness for this kind of pivot becomes remarkable. For $M = 0.49 \text{ N-m}$, the maximum curvature of the pivot occurring at point A is equal to 48.5519 m^{-1}, which is substituted into equation (16) to obtain the maximum stress, $\sigma_{\text{max}} = 33.986 \text{ MPa}$, close to the yield strength. Meanwhile, $\Delta \theta$ attains 27.04°, for which the deflected shape of the pivot is shown in Figure 7.

If $F_x = 5 \text{ N}$ and M are loaded at point C simultaneously, the relationships of ΔX, ΔY, and $\Delta \theta$ with M before yield failure have slight nonlinearities, as shown in Figures 8–10. Otherwise, for $F_x = -5 \text{ N}$, $F_y = 0 \text{ N}$, and different M, the nonlinearities of the pivot become obvious. For M from 0 to...
shown in Figures 8–10. The curve of $F_x = -5\, \text{N}$ and $F_y = 0\, \text{N}$ is intersected at $M = 0.2$ with that of $F_x = -5$ and $F_y = -5$, where the resultant moments for the rotation center O are equal to zero, so that the pivot returns to the original position. The corresponding deflected shapes of the pivot for $F_x = -5\, \text{N}$, $F_y = 0\, \text{N}$, and $M = 0.5 \sim 0.5\, \text{N} \cdot \text{m}$, as shown in Figure 11, incline to the left and then to the right.

3.1.2. Workspace Evaluation. The stress of the deflected pivot solved by the kinetostatic model is checked by equation (16), and then the load-bearing capacity in different load cases and the motion range of the pivot are obtained.

(1) Horizontal Force and Moment. Figure 12 shows that the pivot subject to different M and F_x can bear a range of horizontal force. The arrows drawn in Figure 12 roughly mark the descending direction of the stress, and the covered area is the safe working region.

The pivot only subjected to horizontal force, i.e., $M = 0$, can bear the maximum horizontal force reaching $F_x = \pm 13.6\, \text{N}$, for which the corresponding rotation angles are $\Delta \theta = \pm 16.9^\circ$, as shown in Figure 13. With the incremental moment, the maximum positive horizontal force of the pivot gradually decreases and the anticlockwise rotation angle of link AB shows the increasing tendency.

For $M = 0.49\, \text{N} \cdot \text{m}$, the maximum stress of the pivot without horizontal force reaches the yield strength. When negative horizontal force and moment act on the pivot, the negative allowable horizontal force increases gradually and the corresponding angle decreases slightly with the increasing moment, as shown in Figures 12 and 13. For $M = 0.5\, \text{N} \cdot \text{m}$, the allowable negative force is $F_x = -24.12\, \text{N}$ and $\Delta \theta = -13.06^\circ$, as shown in Figure 14, and the maximum curvature also happens at point A.

The relative errors of the rotation angles between the comprehensive solution ($\Delta \theta_{\text{CS}}$) and the nonlinear finite element ($\Delta \theta_{\text{FEA}}$) results are expressed as

$$\text{Error} = \frac{\Delta \theta_{\text{CS}}}{\Delta \theta_{\text{FEA}}} - 1. \quad (17)$$

The errors of the positive rotation angles depicted in Figure 13 between the comprehensive solution and the nonlinear finite element results are less than 1.5%, which is shown in Figure 15.

(2) Vertical Force and Moment. For the pivot subject to M and F_y, Figure 16 draws the maximum vertical force that the pivot subject to different moments can bear. Similarly, the declining direction of the stress is masked roughly by the arrows in Figure 16. Positive vertical force can counteract the rotation angle of the pivot caused by the moment. It should be noted that the tensile stress might lead to the failure of the pivot when positive vertical force reaches a certain value because the Bernoulli–Euler beam theory neglects the effect of axial elongation and the maximum positive vertical force cannot be predicted, the discussion of which is outside the scope of this paper.
The corresponding rotation angles subject to different moments and the maximum vertical forces depicted in Figure 16 are shown in Figure 17. The rotation angle slightly increases for $M < 0.2$ N·m and then decreases for $M > 0.2$ N·m. When $M = 0.2$ N·m, the allowable negative vertical force attains $F_y = -11.42$ N and the rotation angle is $\Delta \theta = 31.86^\circ$, for which the deflected shape agrees well with the result calculated by NFEA, as shown in Figure 18. The maximum stress of the pivot subject to $F_y = -11.42$ N and $M = 0.2$ N·m is $\sigma_{\text{max}} = 33.995$ MPa and occurs in the deflected spring $O_2 B$ shown by the diamond shape in Figure 18. When M is greater than 0.49 N·m, the pivot subject to the negative force directly leads to the failure of the spring, so in this case, the pivot can only withstand the positive vertical force.

For $M = 0$ N·m, the pivot only subject to vertical force and the buckling of the spring may take place. For the buckled LITF pivot, the maximum bending stress σ_{max} may be less than the yield strength of the material used, but the LITF pivot has been invalidated, so the maximum negative vertical force for $M = 0$ N·m is equal to the critical buckling force.

The buckled springs can be seemed as the fixed-guided beams with two inflection points ($m = 2$) that perhaps have two deformed shapes (I) and (II), as shown in Figure 19. The vertical displacement of the freedom is δ, and the end slope of the buckled spring remains constant, i.e., $\theta_o = 0$.
For the buckled springs, the coordinates of the free end are given as
\[
\begin{align*}
a &= L - \delta \cos \beta \\
b &= -\delta \sin \beta
\end{align*}
\] (18)

The vertical force \(F_y\) can be solved as
\[F_y = 2P(\sin \beta - n \cos \beta).\] (19)

Substituting \(m = 2, \theta_o \equiv 0,\) and equation (8) into equation (9) yields
\[
P = \frac{16EI}{L \sqrt{1 + n^2}} F^2(t),
\] (20)

\[
\begin{align*}
a &= \frac{n}{L} \left[1 - \frac{2E(t)}{F(t)} \right] \\
b &= \frac{1}{L} \left[1 - \frac{2E(t)}{F(t)} \right]
\end{align*}
\] (21, 22)

From equations (18), (21), and (22), \(n\) is
\[n = \frac{a}{b} = \frac{L - \delta \cos \beta}{\delta \sin \beta}.
\] (23)

Substituting equations (20) and (23) into equation (19) yields
\[
F_y = \frac{32EI}{L^2} \frac{\delta - L \cos \beta}{\sqrt{\delta^2 + L^2 - 2L\delta \cos \beta}} F^2(t).
\] (24)

When \(F_y\) reaches the critical buckling force, we have \(n \to \infty\) and \((a/L) \to 0,\) and then equation (21) reduces to \((F(t)/E(t)) \to 1\) and has
\[t = 0.\] (25)

We have \(F(t) = \pi/2;\) then, the critical buckling force \(F_{cr}\) from equation (24) is
\[
F_{cr} = -\frac{32EI \cos \beta}{L^2} F^2(0) = -\frac{8\pi^2EI \cos \beta}{L^2}.
\] (26)

Thus, for \(M = 0,\) the maximum negative vertical force of the pivot \(F_y\) is determined by the critical buckling force solved by equation (26) and equal to \(-41.0272\) N, as shown in Figure 16. When the pivot is loaded only by the vertical force, the leaf with two inflection points includes two deflection paths, which are shown in the left-hand leaf and right-hand leaf of Figure 19. The choice of the two solutions is decided by the processing factor of the leaf.

3.2. Parallelogram Flexure. A parallelogram flexure is a one-degree-of-freedom device that obtains accurate motion by the bending of the springs. Many authors have contributed to this problem; for example, Awtar et al. [18] proposed a beam constraint model and Dibiasio et al. [19] presented a pseudorigid-body model to simplify the derivation and
calculation. In the paper, the kinetostatic model is also suitable to analyze the parallelogram flexure.

For the parameters of the mechanism given in Table 1, the leaf springs O_1A and O_2B with one inflection point guide the motion of link AB with minimal rotation. When F_x is applied at point C, the horizontal displacement ΔX is obtained to arrive at a static equilibrium state, as shown in Figure 20. With increasing horizontal force, the nonlinear characteristics of the curve are gradually obvious and the rotation angle $\Delta \theta$ is slowly increasing, as shown in Figure 21. When $F_x = 8.5$ N is loaded at point C, $\Delta X = 0.032$ m and $\Delta \theta = -0.145^\circ$, for which the maximum curvature occurring at point O_2 is $K_{max} = 46.9396$ m$^{-1}$ and the maximum bending stress σ_{max} solved by equation (16) is slightly less than S_y.

The rotation angle $\Delta \theta$ of link AB is a parasitic error motion that is undesirable in response to the horizontal force F_x, which may be eliminated by an appropriate combination of moment M or vertical force F_y [18]. When F_x and M are loaded simultaneously at point C to ensure $\Delta \theta = 0$, we have, from equations (4)–(6),

$$
\frac{M}{F_x} = \frac{M_{10}}{P_1}.
$$

(27)

For a parallelogram flexure because each deflected leaf spring carries one inflection point, where the resultant moment is equal to zero and the rotation angles at the fixed and free ends of each deflected leaf spring are both equal to zero, the inflection point occurs at the middle of the deflected spring, i.e., $x = a_1/2$. The moment at the inflection point is

$$
\frac{a_1}{2} P_1 + M_{10} = 0.
$$

(28)

Substituting equation (28) into equation (27) yields

$$
\frac{M}{F_x} = \frac{a_1}{2} = \frac{a_2}{2} = \frac{L + \Delta Y}{2}.
$$

(29)

For $F_y = 0$, the ratios in equation (29) during the intermediate stage are approximately constant, which agree well with the results of Ref. [18] equal to 0.5L, as shown in Figures 22 and 23. Then, the ratios between M and F_x are less than 0.5L with increasing horizontal force F_x and the corresponding transverse stiffness gradually increases for protecting $\Delta \theta = 0$. As listed in Table 2, the corresponding moments and displacements for $F_x = 2 \sim 10$ N solved by the elliptic integral solution agrees well with the load-deflection relationship expressed in equation (29) and the deflected shapes of the pivot subject to F_x and M are shown in Figure 24.

When F_x and F_y are loaded at point C simultaneously, M is needed to ensure that $\Delta \theta = 0$. In this case, the inflection points also appear in the middle of the deflected leaf springs. However, if F_y is a tensile force, the ratios between M and F_x are less than $a_1/2$ because of n being less than zero. On the contrary, for F_y as a pressure, the ratios between M and F_x are greater than $a_1/2$. The more obvious nonlinearity of the

Figure 19: Buckling deformation of the LITF pivot.

Figure 20: Plots of horizontal force F_x vs horizontal displacement ΔX.

Figure 21: Plots of rotation angle $\Delta \theta$ of parallelogram flexure subject to horizontal force F_x.
pivot appears with increasing pressure F_y, as shown in Figure 23. Until the pressure reaches the critical buckling force calculated by equation (26) ($F_y = -47.3741\text{ N}$), the buckling of the pivot leads directly to failure.

4. Conclusions

The comprehensive elliptic integral solution was used for building the generalized model of LITF pivots and solving nonlinear deflection problems. For the LITF pivot, the accurate deflected shapes are described subject to different horizontal forces, vertical forces, and moments. Furthermore, based on the strength check and the analysis of the critical buckling force, motion range and load-bearing capability for the pivot are evaluated. For the parallelogram flexure, two cases for free rotation angle and constant rotation angle are discussed. The more accurate ratio between horizontal force and moment is proposed to ensure that the rotation angle remains constant. The analytical results for the maximum rotation angle of the LITF pivot subject to horizontal force and moment solved by the comprehensive elliptic integral solution are within 1.5 percent error compared to the finite element analysis results.

Data Availability

The calculation data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China under Grant nos. 51605359 and 51805396.

References

[1] S. T. Smith, *Flexures: Elements of Elastic Mechanisms*, CRC Press, Boca Raton, FL, USA, 2000.

[2] B. P. Trease, Y.-M. Moon, and S. Kota, “Design of large-displacement compliant joints,” *Journal of Mechanical Design*, vol. 127, no. 4, pp. 788–798, 2005.

[3] L. J. Lai, G. Y. Gu, H. Zhou et al., “Design and analysis of a spatial Remote center of compliance mechanism,” in *Intelligent Robotics and Applications*, pp. 385–396, Springer, Berlin, Germany, 2013.

[4] S. Henein, P. Spanoudakis, S. Droz et al., “Flexure pivot for aerospace mechanisms,” in *Proceedings of the 10th European Space Mechanisms and Tribology Symposium*, San Sebastian, Spain, 2003.
[5] G. Chen, X. Liu, H. Gao, and J. Jia, "A generalized model for conic flexure hinges," *Review of Scientific Instruments*, vol. 80, no. 5, Article ID 055106, 2009.

[6] G. Chen, X. Liu, and Y. Du, "Elliptical-arc-fillet flexure hinges: towards a generalized model for most commonly used flexure hinges," *Journal of Mechanical Design*, vol. 133, no. 8, Article ID 081002, 2011.

[7] N. Lobontiu, *Compliant Mechanisms: Design of Flexure Hinges*, CRC Press, Boca Raton, FL, USA, 2010.

[8] A. Midha, S. G. Bapat, A. Mavanthoor, and V. Chinta, "Analysis of a fixed-guided compliant beam with an inflection point using the pseudo-rigid-body model (PRMB) concept," in *Proceedings of the ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference*, Chicago, IL, USA, August 2012.

[9] N. Ciblak and H. Lipkin, "Design and analysis of remote center of compliance structures," *Journal of Robotic Systems*, vol. 20, no. 8, pp. 415–427, 2003.

[10] X. Pei, J. Yu, G. Zong, and S. Bi, "The stiffness model of leaf-type isosceles trapezoidal flexural pivots," *ASME Journal of Mechanical Design*, vol. 130, no. 8, Article ID 082303, 2008.

[11] H. Zhao, S. Bi, and J. Yu, "Nonlinear deformation behavior of a beam-BASED flexural pivot with monolithic arrangement," *Precision Engineering*, vol. 35, no. 2, pp. 369–382, 2011.

[12] A. N. Polilov, N. A. Tatus’, and X. Tian, "Analysis of efficiency of uniform-strength composite leaf springs under various loading conditions," *Journal of Machinery Manufacture and Reliability*, vol. 48, no. 5, pp. 431–439, 2019.

[13] L. L. Howell, *Compliant Mechanisms*, Wiley-Interscience, New York, NY, USA, 2001.

[14] C. Kimball and L.-W. Tsai, "Modeling of flexural beams subjected to arbitrary end loads," *Journal of Mechanical Design*, vol. 124, no. 2, pp. 223–235, 2002.

[15] A. Zhang and G. Chen, "A comprehensive elliptic integral solution to the large deflection problems of thin beams in compliant mechanisms," *Journal of Mechanism and Robotics*, vol. 5, no. 2, Article ID 021006, 2013.

[16] P. F. Byrd and M. D. Friedman, *Handbook of Elliptic Integrals for Engineers and Physicists*, Springer-Verlag, Berlin, Germany, 1954.

[17] F. P. Beer, E. R. Johnston Jr., J. DeWolf, and D. Mazurek, *Mechanics of Materials*, McGraw-Hill, New York, NY, USA, 2012.

[18] S. Awtar, A. H. Slocum, and E. Sevincer, "Characteristics of beam-based flexure modules," *Journal of Mechanical Design*, vol. 129, no. 6, pp. 625–639, 2007.

[19] C. M. Dibiasio, L. L. Howell, S. P. Magleby et al., "Comparison of molecular simulation and pseudo-rigid-body model predictions for a carbon nanotube-based compliant parallel-guiding mechanism," *Journal of Mechanical Design*, vol. 130, no. 4, Article ID 042308, 2008.