Unique Genomic Landscape of High-Grade Neuroendocrine Cervical Carcinoma: Implications for Rethinking Current Treatment Paradigms

Ramez N. Eskander, MD1,2; Julia Elvin, MD, PhD3; Laurie Gay, PhD3; Jeffrey S. Ross, MD3,4; Vincent A. Miller, MD3; and Razelle Kurzrock, MD2,5

PURPOSE High-grade neuroendocrine cervical cancer (HGNECC) is an uncommon malignancy with limited therapeutic options; treatment is patterned after the histologically similar small-cell lung cancer (SCLC). To better understand HGNECC biology, we report its genomic landscape.

PATIENTS AND METHODS Ninety-seven patients with HGNECC underwent comprehensive genomic profiling (182-315 genes). These results were subsequently compared with a cohort of 1,800 SCLCs.

RESULTS The median age of patients with HGNECC was 40.5 years; 83 patients (85.6%) harbored high-risk human papillomavirus (HPV). Overall, 294 genomic alterations (GAs) were identified (median, 2 GAs/sample; average, 3.0 GAs/sample, range, 0-25 GAs/sample) in 109 distinct genes. The most frequently altered genes were PIK3CA (19.6% of cohort), MYC (15.5%), TP53 (15.5%), and PTEN (14.4%). RB1 GAs occurred in 4% versus 32% of HPV-positive versus HPV-negative tumors (P < .0001). GAs in HGNECC involved the following pathways: PI3K/AKT/mTOR (41.2%); RAS/MEK (11.3%); homologous recombination (9.3%); and ERBB (7.2%). Two tumors (2.1%) had high tumor mutational burden (TMB; both with MSH2 alterations); 16 (16.5%) had intermediate TMB. Seventy-one patients (73%) had ≥ 1 alteration that was theoretically druggable.

Comparing HGNECC with SCLC, significant differences in TMB, microsatellite instability, HPV-positive status, and in PIK3CA, MYC, PTEN, TP53, ARID1A, and RB1 alteration rates were found.

CONCLUSION This large cohort of patients with HGNECC demonstrated a genomic landscape distinct from SCLC, calling into question the biologic and therapeutic relevance of the histologic similarities between the entities. Furthermore, 73% of HGNECC tumors had potentially actionable alterations, suggesting novel treatment strategies for this aggressive malignancy.

JCO Precis Oncol 4:972-987. © 2020 by American Society of Clinical Oncology
Licensed under the Creative Commons Attribution 4.0 License

INTRODUCTION

The treatment of solid malignancies has evolved and is perhaps best exemplified by the approach to non–small-cell lung cancer, for which molecular characterization and use of targeted agents have emerged as standard therapeutic paradigms. Recently, The Cancer Genome Atlas (TCGA) completed and published the integrated genomic and molecular characterization of cervical cancer.1 In addition to data previously released for both ovarian (high-grade serous) and endometrial (endometrioid and serous) cancers, this publication completed the molecular and genomic evaluation of the most common gynecologic malignancies.2,3

Traditionally, cervical cancer clinical trials have excluded less common histologies such as high-grade neuroendocrine cervical carcinoma (HGNECC). Despite the low incidence of HGNECC (< 2% of all cervical cancers) the oncologic impact is significant because these tumors exhibit more aggressive clinical characteristics.4,5 Unfortunately, the 5-year overall survival rate for patients with early-stage disease is only 36%, and those with metastatic spread face an even more dismal prognosis. Given these poor outcomes, patients with HGNECC represent an area of unmet clinical need.

Developing therapeutic options for patients with rare tumors is challenging, relying on international collaboration, as well as small case series or retrospective reports rather than prospective clinical trials. The current therapeutic paradigm for the treatment of HGNECC was adopted from the more common, morphologically similar, small-cell lung cancer (SCLC) and includes surgical resection if feasible, followed by platinum plus etoposide-based combination chemotherapy, and possibly radiation.6,7 There are few studies informing treatment of recurrent disease, and there are no drugs
High-grade neuroendocrine cervical cancer appears molecularly distinct from the histologically similar small-cell lung cancer. Up to 73% of patients’ samples harbored potentially actionable alterations, informing novel treatment strategies.

Relevance
Continued understanding of the molecular underpinnings of high-grade neuroendocrine cervical carcinoma will be critical to driving drug discovery for this disease.

CONTEXT
Key Objective
To define the molecular landscape of high-grade neuroendocrine cervical cancer in a large cohort of patients.

Knowledge Generated
High-grade neuroendocrine cervical cancer appears molecularly distinct from the histologically similar small-cell lung cancer.

Relevance
Continued understanding of the molecular underpinnings of high-grade neuroendocrine cervical carcinoma will be critical to driving drug discovery for this disease.

PATIENTS AND METHODS
We evaluated a fully informative genomic profile of patients diagnosed with poorly differentiated (G3) neuroendocrine cervical carcinomas inclusive of both small- or large-cell subtypes (HGNECCs) whose cancers were submitted for hybrid capture–based next-generation sequencing (NGS) testing from March 2013 to December 2017 (N = 97). A cohort of 1,800 similarly tested cases of SCLC from the same period were subsequently evaluated to allow for comparison of genomic alterations (GAs). The submitting physicians provided specification of a poorly differentiated, neuroendocrine tumor type of cervical origin, which was then independently reviewed by a gynecologic pathologist (J.E.) to confirm high-grade neuroendocrine pathologic features in the pathology report and/or the representative sample of tumor submitted for sequencing (grade 3 cytomorphic features, some component of small-cell or large-cell carcinoma histology, and/or positivity for neuroendocrine markers). The database was de-identified with only the diagnosis available. NGS data were generated by FoundationOne (Foundation Medicine; Cambridge, MA). The study was performed in accordance with University of California, San Diego, Institutional Review Board guidelines for a de-identified database. Approval for this study, including a waiver of informed consent and a Health Insurance Portability and Accountability Act waiver of authorization, were also obtained from the Western Institutional Review Board (Protocol No. 20152817).

Tissue Samples and Mutational Analysis
Available tissue from diagnostic or therapeutic procedures was used to determine oncogenic molecular alterations. Sequencing information was collected on 97 patients with HGNECC and 1,800 with SCLC, whose formalin-fixed, paraffin-embedded tumor samples were submitted to Foundation Medicine for genomic profiling. The test sequences the entire coding region of 182 or, more recently, 236 or 315 cancer-related genes plus up to 47 introns of up to 19 genes often rearranged or altered in cancer to an average depth of coverage of > 500x. The pathologic diagnosis of each case was confirmed on routine hematoxylin- and eosin-stained slides and all samples forwarded for DNA extraction contained a minimum of 20% tumor nuclear area. Microsatellite instability (MSI) status was evaluable in 75 HGNECC and 1,573 SCLC cases.

The sequencing methods used for comprehensive genomic profiling have been validated and reported previously (Appendix). The optimized loci used to evaluate MSI status were selected from a total set of 1,897 that have adequate coverage on all versions of the assay. Each locus is intrinsic and has a reference repeat length of 10-20 bp, which allows for analysis with the read length used by FoundationOne testing. Principal components analysis is used to produce an NGS-based MSI score. There was no need to extend beyond the first principal component, because it explained approximately 50% of the total data variance, whereas none of the other principal components explained > 4% each. Ranges of the MSI score were assigned MSI-High (MSI-H), MSI ambiguous, or microsatellite stable (MSS). MSI-Low calls are not made because there was no gold-standard test set, but we presume such samples would significantly overlap with the MSI-ambiguous category reported here. For samples in which MSI-specific quality control criteria were not met (n = 22 HGNECC; n = 227 SCLC), a status of MSI unknown was assigned, and these cases were excluded from additional MSI analysis.

Tumor Mutational Burden
The number of somatic mutations detected on NGS (interrogating up to 1.2 Mb of the genome) were quantified
and that value extrapolated to the whole exome, using a validated algorithm. Alterations likely or known to be germline polymorphisms or bona fide oncogenic drivers were excluded. Tumor mutational burden (TMB) was measured in mutations per megabase. TMB levels were grouped into 3 bins: TMB-low (TMB-L; 1-5 mutations/Mb), intermediate (TMB-I; 6-19 mutations/Mb), and high (TMB-H; ≥ 20 mutations/Mb). The cutoff of 20 coding mutations/Mb is approximately equal to 400 nonsynonymous mutations per exome.

Human Papillomavirus Detection

In addition, the presence of high-risk human papilloma-virus (HPV) was examined in submitted specimens, as previously reported. Hybrid-capture reagents included baits designed to capture unique regions of select viral genomes including HPV-16 and -18. Sequence read pairs were aligned to the reference genome of the respective viral genomes, and the number of pairs mapping to each viral genome was counted. A total HPV-16/18 aligned read count of ≥ 5 reads per million was considered a positive HPV status, and < 5 reads per million was considered HPV not detected.

End Points and Statistical Methods

Descriptive statistics were used to summarize the baseline patient characteristics. Fisher exact test was used to determine the association between categorical variables in univariate analysis and the Z-test was used to assess population differences, where appropriate. All tests were 2 sided. All statistical tests were carried out using GraphPad Prism, version 6.0 (GraphPad Software, San Diego, CA).

RESULTS

Characterization of GAs in HGNECC

The median age of the cohort was 40.5 years (range, 25-77 years). Of the 97 patients, 83 were high-risk HPV positive (85.6%) and 14 were negative (14.4%). All samples were reflective of HGNECC, including both small-cell and large-cell HGNECC cases. Among the HGNECC cohort (N = 97), the most frequently identified GAs (discerned in > 10% of the cohort) involved PIK3CA (19.6% of patients), MYC (15.5%), TP53 (15.5%), and PTEN (14.4%) (Fig 1; a detailed list of all GAs can be found in Appendix Table A1). A total of 109 different genes were mutated in the 97 patient samples evaluated (variants of unknown significance were excluded from all analyses). The most frequently reported number of GAs per sample was 2, with a range of 0-25 (average, 3.0 GAs/sample; Fig 2). When evaluating TMB, 2 cases (2.1%) were TMB-H and 16 cases (16.5%) were TMB-I. Most patients’ tumors (n = 79; 81.4%) were TMB-L (Table 1). Nine patient samples had no known or likely GAs on comprehensive genomic profiling. Of the 88 patients who had an alteration, 72 had at least 1 alteration for which there currently existed an agent potentially targeting that alteration.
cases of HGNECC with evaluable microsatellite status (2.7%).

Less Frequent GAs

Additional genomic characterization was performed in which we specifically explored the homologous recombination deficiency (HRD), RAS, PI3K/AKT/mTOR, and ERBB pathways. Nine cases (9.3%) were had GAs in HRD-related genes, with the most frequent alterations noted in BRCA2 (n = 6 of 9; 66.7%).17,19 Three additional patient samples had BRCA1, ATM, and PALB2 mutations (n = 1 in each case) case (n = 3 of 9; 33.3%).

Eleven patient samples (11.3%) had alterations in the RAS pathway, with KRAS and BRAF mutations being the most frequent (72.7% [n = 8 of 11] and 27.3% [n = 3 of 11], respectively). Of the identified BRAF mutations, only 1 was a V600E alteration. Furthermore, a total of 40 patient samples (41.2%) harbored mutations in the PI3K/AKT/mTOR pathway; mutations in PIK3CA were identified in 47.5% of these samples (n = 19), and PTEN mutations were reported in 35% (n = 14). Last, 7 patients (7.2%) had mutations in the ERBB pathway, with ERBB2 mutations occurring in tumors of 4 individuals (57.1%).

Comparison of HGNECC and SCLC

Given the histologic similarity between SCLC and HGNECC, tumor samples from a cohort of 1,800 patients with SCLC were compared with the HGNECC samples (Table 2). The SCLC samples featured significantly lower frequencies of GAs in PIK3CA, MYC, and ARID1A. In contrast, the HGNECC samples featured significantly lower frequencies of GAs in TP53 and RB1. High-risk HPV was identified in much less than 1% of SCLC tumor samples compared with 85.6% of HGNECC tumor samples. There was a single MSI-H SCLC case (n = 1 of 1,449; 0.001%), whereas MSI-H status was found in 2 HGNECC cases (2.7%). Last, TMB was significantly higher in the SCLC samples compared with the HGNECC samples with respect to both intermediate and high TMB levels. The small-cell subset of HGNECC samples showed analogous gene mutation differences from SCLC.

DISCUSSION

Neuroendocrine carcinoma is an uncommon but aggressive variant accounting for approximately 1.5% of all newly diagnosed cervical cancers.20 The great majority of these lesions are high-grade large- or small-cell subtypes, with only rare reports of well-differentiated cervical carcinoid tumors.20 The treatment of patients with HGNECC remains an evolving field, with the identification and validation of therapeutic targets becoming increasingly important.

TABLE 1. Molecular Features of High-Grade Neuroendocrine Cervical Cancers

Altered Gene	Total HPV Positive (n = 83)	HPV Negative (n = 14)	P	
PIK3CA	19.6	17	36	.0037
MYC	15.5	17	7	.0484
TP53	15.5	11	43	.0001
PTEN	14.4	8	50	.0001
ARID1A	9.3	5	36	.0001
RB1	8.2	4	36	.0001

NOTE. The No. (%) of low (1-5 mutations/Mb), intermediate (6-19 mutations/Mb), and high (≥20 mutations/Mb) tumor mutational burdens were as follows: patients with ≥1 HPV-positive oncogenic alteration: 70 (84), 12 (14.4), and 1 (1.2), respectively; and for patients with ≥1 HPV-negative oncogenic alteration: 9 (63.3), 4 (28.6), and 1 (7.1), respectively (P = .13).

TABLE 2. Comparison of Clinical and Molecular Features of HGNECC, Cervical Small-Cell Carcinoma, and SCLC

Feature	HGNECC (N = 97)	Cervical Small Cell (n = 79)*	SCLC (n = 1,800)	Cervical Small Cell v SCLC, P	HGNECC v SCLC, P
Median age, years (range)	40.5 (25-77)	40.5 (24-73)	64 (10-89)	.001	.0001
Genomic alterations/case	3.0	3.0	4.6	NS	NS
PIK3CA	19.6	24.0	5.1	.0001	.0001
MYC	15.5	12.7	6.3	.0001	.0001
TP53	15.5	12.7	90.1	.0001	.0001
PTEN	14.4	13.9	8.9	NS	NS
ARID1A	9.3	10.1	4.2	.012	.01778
RB1	8.2	6.3	70.9	.0001	.0001
MSI-Highb	2.7	3.1	0.004	.0001	.0001
TMB ≥ 6-19 mutations/Mb	16.5	15.2	62.3	.0001	.0001
TMB ≥ 20 mutations/Mb	2.1	2.5	8.2	.0767	.030
HPV-16/18 positive	85.6	87.0	0.01	.0001	.0001

NOTE. Data reported as % unless otherwise indicated.

Abbreviations: HGNECC, high-grade neuroendocrine cervical cancer; HPV, human papillomavirus; MSI, microsatellite instability; NS, not significant; SCLC, small-cell lung cancer; TMB, tumor mutational burden.

*The 79 patients with cervical small-cell cancers were a subset of the 97 patients with HGNECC.

DISCUSSION

Neuroendocrine carcinoma is an uncommon but aggressive variant accounting for approximately 1.5% of all newly diagnosed cervical cancers.20 The great majority of these lesions are high-grade large- or small-cell subtypes, with only rare reports of well-differentiated cervical carcinoid tumors.20 The treatment of patients with HGNECC remains an evolving field, with the identification and validation of therapeutic targets becoming increasingly important.
clinically challenging, with limited response rates to chemotherapy; however, anecdotal reports of exceptional responders have been described.9,10

The paradigm for management of HGNECC has been informed by the treatment of the more commonly diagnosed (and histologically similar) SCLC, which accounts for approximately 15% of all lung cancer cases. In prior studies, whole-genome sequencing of 110 SCLC specimens identified essentially ubiquitous *TP53* and *RB1* inactivating mutations, with biallelic losses of each gene respectively in 100% and 93% of cases without chromothripsis.21

In an effort to better define the molecular landscape of HGNECC, we evaluated the comprehensive genomic profiling of 97 patient samples. The most frequently identified GA was *PIK3CA* mutation, occurring in 19.6% of submitted samples (n = 19). At least 1 characterized alteration was identified in 88 patient samples (90.7%) and of these, 72 had a potentially pharmacologically tractable alteration.

Interestingly, the frequency and distribution of GAs identified in this cohort of patients are similar and distinct from mutational patterns described in the more common HPV-related cervical cancer histologies.1 As detailed in TCGA’s integrated genomic characterization of cervical cancer (ie, squamous, adenocarcinoma, and adenosquamous histologies), mutations in the *PIK3CA* gene were the most frequently identified aberration, occurring in 26% of samples, approximating the nearly 20% rate in our cohort. In addition, significantly mutated genes reported by the TCGA, identified in similar proportions in this patient cohort, included *ARID1A* (7% in TCGA and 9.3% in our cohort) and *KRAS* (6% in TCGA and 8.2% in our cohort). Conversely, the examined neuroendocrine cohort had a greater frequency of *PTEN* mutations (8% in TCGA v 14.4% in our cohort). These molecular differences may be reflective of the varying histologies or, potentially, the differential high-risk HPV detection rates (85.6% in our cohort v 95% in the TCGA).1

Importantly, the high-risk HPV rate in our cohort should be interpreted with caution because the assay used has not undergone formal concordance study with gold standard tests such as hybrid capture and can detect only HPV 16/18.

Our own, much larger cohort of SCLC samples (n = 1,800) recapitulates prior studies and had a strikingly different molecular portfolio when compared with HGNECC samples. The frequency of *TP53* and *RB1* alterations in the SCLC cohort significantly exceeded that seen in our HGNECC cohort (15.5% and 8.2%, respectively), the HPV16/18 positive subset (11% and 4%, respectively), and the subset where HPV16/18 was not detected (43% and 36%, respectively; Table 2). Furthermore, mutations affecting the *NOTCH* pathway were identified in 25% of the examined SCLC samples; the *NOTCH* pathway is hypothesized to function as a regulator of neuroendocrine differentiation. In our examined HGNECC cohort, only 7 patients (7.2%) had *NOTCH* alterations. Alterations in *PIK3CA*, *MYC*, and *PTEN* were significantly more common in HGNECC when compared with SCLC (Table 2). MSI-H status was also more common in the HGNECC cohort whereas TMB-H was more common in SCLC (despite the lack of MSI-H status). Finally, HPV positivity was discerned in 85.6% of our HGNECC samples, but in only 0.01% of our SCLC samples (P < .0001). No parallels in molecular alterations were identified when comparing our findings for HGNECC with those of prior SCLC studies, supporting our premise that the similarity between these entities is largely morphologic and the treatment approaches for HGNECC can likely be improved through improved molecular granularity.

Despite the infrequency of HGNECC, the identification of potentially actionable GAs may inform treatment of a subset of patients with historically limited therapeutic options.18,22–25

In this cohort of patients, alterations in the PI3K/AKT/mTOR pathway were commonly seen (*PIK3CA* [19.6%]; *PTEN* [14.4%]). The use of everolimus, or an alternate mTOR or *PIK3CA* inhibitor, may be considered in such circumstances, although the utility of a *PIK3CA* mutation in predicting response to single-agent everolimus in the presence of multiple GAs remains limited.26,27

Although less frequently identified, alterations in the HRD pathway were detected in 9.3% of patient samples, potentially supporting use of a poly-ADP ribose polymerase inhibitor. The identification of both TMB-H (n = 2) and GAs in mismatch repair genes (n = 3) may also inform the use of immune checkpoint inhibition.28 In May 2017, the FDA approved pembrolizumab for the treatment of mismatch repair–deficient or MSI-H solid tumors that progressed after prior therapy. This disease site–agnostic approval allows for a promising therapeutic option for patients with a previously unmet clinical need. More recently, the FDA accepted and granted priority review to a supplemental Biologics License Application for pembrolizumab for the treatment of adult and pediatric patients with unresectable or metastatic solid tumors with tissue TMB-H whose disease has progressed after prior treatment and who have no satisfactory alternative treatment options, supported by data from the phase II Keynote-158 trial. Notably, there are 2 published case reports of patients with recurrent, treatment-refractory HGNECC with exceptional and durable responses to checkpoint inhibition; 1 of these tumors was from our current HGNECC cohort and had a mismatch repair defect and the other lacked correlative genomic testing.9,10

Last, the identification of *ARID1A* (9.3%) and *SMARCA4* (4.1%) mutations may predict sensitivity to an alternate therapeutic strategy.29 Homeostasis requires balanced *ARID1A* and *EZH2* activity, facilitated via chromatin-mediated gene expression. Loss of *ARID1A* expression results in imbalanced *EZH2* activity, and use of an *EZH2* inhibitor such as tazemetostat may capitalize on this oncogene addiction. Importantly, 2 of the 4 SMARCA4
aberrations were identified in patients with MSI-H lesions, possibly reflecting that the SMARCA4 may be a passenger mutation resulting from the underlying MSI. Furthermore, of the 4 cases with SMARCA4 alterations, 1 was HPV-18 positive and another was p16 positive by immunohistochemical assessment.

Despite the large sample size and robust genomic data, this study has limitations. The retrospective design and use of archival tumor tissues from various time points during therapy may make interpretation of GAs difficult. In addition, the lack of demographic and clinical data, as well as treatment history, precludes exploratory assessments of response to a selected targeted agent. Last, HPV status was determined using molecular surrogates that differ from the assays used in clinical practice. It remains unclear if HPV infection is a prerequisite for neuroendocrine cervical carcinoma, although recent publications suggest > 85% of neuroendocrine cervical carcinomas are HPV positive, with HPV-16 and HPV-18 accounting for > 95% of the identified high-risk HPV strains.30

This report highlights the potential therapeutic utility of genomic testing in patients with this uncommon disease.27 Of interest, despite the histologic similarity between HGNECC and SCLC, which has led to the latter being used as a model for treating the former, the molecular portfolio of these 2 entities is strikingly different. Therefore, it is plausible that patients with HGNECC may benefit from alternative therapeutic strategies.

It is not anticipated that traditional prospective trials will accrue sufficient patient numbers in this disease setting, and novel study designs, including umbrella, basket, and platform trials, should be considered given the presence of actionable targets. Interestingly, the first reported cohort of the DART trial (ClinicalTrials.gov identifier: NCT02834013)31 was the neuroendocrine cohort, with a 44% overall response rate in those with high-grade disease. Ultimately, comprehensive genomic characterization may catalyze the investigation and identification of effective therapies, allowing us to improve oncologic outcomes in this aggressive disease.

AFFILIATIONS
1Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of California San Diego, La Jolla, CA
2Center for Personalized Cancer Therapy, University of California San Diego, La Jolla, CA
3Foundation Medicine, Cambridge, MA
4Upstate Medical University, Syracuse, NY
5Department of Medicine, Division of Hematology/Oncology, University of California San Diego, La Jolla, CA

CORRESPONDING AUTHOR
Ramez N. Eskander, MD, Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of California San Diego Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA, 92039; Twitter: @rne_md; e-mail: reskander@ucsd.edu.

EQUAL CONTRIBUTION
R.N.E. and J.E. contributed equally to this work.

SUPPORT
Supported in part by National Cancer Institute (Grant No. P30 CA023100 [R.N.E.]) and the Joan and Irwin Jacobs Fund philanthropic fund.

AUTHOR CONTRIBUTIONS
Conception and design: Ramez N. Eskander, Julia Elvin, Jeffrey S. Ross, Vincent A. Miller
Collection and assembly of data: Ramez N. Eskander, Julia Elvin, Laurie Gay, Jeffrey S. Ross
Data analysis and interpretation: All authors
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/po/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Ramez N. Eskander
Consulting or Advisory Role: Pfizer, Clovis Oncology, AstraZeneca/MedImmune, Tesaro, Merck
Speakers’ Bureau: Clovis Oncology, AstraZeneca/MedImmune, Roche
Travel, Accommodations, Expenses: Clovis Oncology, AstraZeneca/MedImmune, Roche, Merck, Pfizer

Julia Elvin
Employment: Foundation Medicine
Stock and Other Ownership Interests: Hoffman-LaRoche

Laurie Gay
Employment: Foundation Medicine, Invitae
Stock and Other Ownership Interests: Foundation Medicine, Naveris, Invitae
Consulting or Advisory Role: Invitae, Naveris

Jeffrey S. Ross
Employment: Foundation Medicine
Leadership: Foundation Medicine
Stock and Other Ownership Interests: Foundation Medicine
Consulting or Advisory Role: Celsius Therapeutics
Research Funding: Foundation Medicine

Vincent A. Miller
Employment: Foundation Medicine
REFERENCES

1. Cancer Genome Atlas Research Network: Integrated genomic and molecular characterization of cervical cancer. Nature 543:378-384, 2017
2. Kandoth C, Schultz N, Cherniack AD, et al: Integrated genomic characterization of endometrial carcinoma. Nature 497:67-73, 2013 [Erratum: Nature 500:242, 2013]
3. Cancer Genome Atlas Research Network: Integrated genomic analyses of ovarian carcinoma. Nature 474:609-615, 2011 [Erratum: Nature 490:298, 2012]
4. Gardner GJ, Reidy-Lagunes D, Gehrig PA: Neuroendocrine tumors of the gynecologic tract: A Society of Gynecologic Oncology (SGO) clinical document. Gynecol Oncol 122:190-198, 2011
5. Satoh T, Takey Y, et al: Gynecologic Cancer InterGroup (GCIG) consensus review for small cell carcinoma of the cervix. Int J Gynecol Cancer 24:S102-S108, 2014 (9 Suppl 3)
6. Fukuzuka M, Masuda N, Furuse K, et al: A randomized trial in inoperable non-small-cell lung cancer: Vindesine and cisplatin versus mitomycin, vincristine, and cisplatin versus etoposide and cisplatin alternating with vindesine and etoposide. J Clin Oncol 9:606-613, 1991
7. Kubota K, Hida T, Ishikura S, et al: Etoposide and cisplatin versus irinotecan and cisplatin in patients with limited-stage small-cell lung cancer treated with etoposide and cisplatin plus concurrent accelerated hyperfractionated thoracic radiotherapy (JCOG0202): A randomised phase 3 study. Lancet Oncol 15:106-113, 2014
8. Ishikawa M, Kasamatsu T, Tsuda H, et al: Prognostic factors and optimal therapy for stages I-II neuroendocrine carcinomas of the uterine cervix: A multi-center retrospective study. Gynecol Oncol 148:134-146, 2018
9. Paraghamian SE, Longoria TC, Eskander RN: Metastatic small cell neuroendocrine carcinoma of the cervix treated with the PD-1 inhibitor, nivolumab: A case report. Gynecol Oncol Res Pract 4:3, 2017
10. Sharabi A, Kim SS, Kato S, et al: Exceptional response to nivolumab and stereotactic body radiation therapy (SBRT) in neuroendocrine cervical carcinoma with high tumor mutational burden: Management considerations from the Center for Personalized Cancer Therapy at UC San Diego Moores Cancer Center. Oncologist 22:631-637, 2017
11. Foundation Medicine: FoundationOne CDx. http://foundationone.com/docs/FoundationOne_tech-info-and-overview.pdf
12. Frampton GM, Fichtenholtz A, Otto GA, et al: Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31:1023-1031, 2013
13. Ross JS, Fakh M, Ali SM, et al: Targeting HER2 in colorectal cancer: The landscape of amplification and short variant mutations in ERBB2 and ERBB3. Cancer 124:1358-1373, 2018
14. Chalmers ZR, Connelly CF, Fabrizio D, et al: Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:34, 2017
15. Johnson DB, Frampton GM, Rieth MJ, et al: Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol Res 4:995-967, 2016
16. Lechner M, Frampton GM, Fenton T, et al: Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV- tumors. Genome Med 5:49, 2013
17. Walsh CS: Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecol Oncol 122:190-198, 2011
18. Lehnert M, Frampton GM, Fenton T, et al: Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV- tumors. Genome Med 5:49, 2013
19. Walsh CS: Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecol Oncol 122:190-198, 2011
20. Carey JPW, Keyomarsi K: Leveraging MYC as a therapeutic treatment option for TNBC. Oncoscience 5:137-139, 2018
21. Chae YK, Pan AP, Davis AA, et al: Path toward precision oncology: Review of targeted therapy studies and tools to aid in defining “actionability” of a molecular lesion and patient management support. Mol Cancer Ther 16:2645-2655, 2017
22. Johnson DB, Frampton GM, Rieth MJ, et al: Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol Res 4:995-967, 2016
23. Lechner M, Frampton GM, Fenton T, et al: Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV- tumors. Genome Med 5:49, 2013
24. Lehnert M, Frampton GM, Fenton T, et al: Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV- tumors. Genome Med 5:49, 2013
25. Walsh CS: Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecol Oncol 122:190-198, 2011
26. Lehnert M, Frampton GM, Fenton T, et al: Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV- tumors. Genome Med 5:49, 2013
27. Lehnert M, Frampton GM, Fenton T, et al: Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV- tumors. Genome Med 5:49, 2013
28. Goodman MA, Kato S, Bzhenova L, et al: Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16:2598-2608, 2017
29. Alldredge JK, Eskander RN: EZH2 inhibition in ARID1A mutated clear cell and endometrioid ovarian and endometrioid endometrial cancers. Gynecol Oncol Res Pract 4:17, 2017

30. Alejo M, Alemany L, Clavero O, et al: Contribution of human papillomavirus in neuroendocrine tumors from a series of 10,575 invasive cervical cancer cases. Papillomavirus Res 5:134-142, 2018

31. Patel SP, Othus M, Chae YK, et al: A phase II basket trial of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART) S1609: The neuroendocrine cohort. Presented at the American Association for Cancer Research Annual Meeting, Atlanta, GA, March 29-April 3, 2019 (abstr CT039). doi: 10.1158/1538-7445. AM2019-CT039
APPENDIX

Sequencing Methods Used for Comprehensive Genomic Profiling

Sample processing and sequencing were performed in a Clinical Laboratory Improvement Amendments– and College of American Pathologists–accredited laboratory. Briefly, after pathologic review to confirm sufficient tumor nuclei (minimum, 20%) and mitigate pathologic inconsistencies, at least 50 ng of DNA was extracted from 40 microns of tumor samples provided as formalin-fixed, paraffin-embedded tissue blocks. The samples were assayed using adaptoligation and hybrid-capture next-generation sequencing (FoundationOne) for all coding exons from 182 (version 1), 287 (version 2), or 315 (version 3) cancer-related genes plus selected introns from 14 (version 1), 19 (version 2), or 28 (version 3) genes frequently rearranged in cancer.

Sequencing of captured libraries was performed using HiSeq2500/4000 (Illumina, San Diego, CA) to a mean exon coverage depth of > 500×, and resultant sequences were analyzed using both an algorithmic pipeline and manual curation for base substitutions, small insertions or deletions (indels), copy number alterations (focal amplifications and homozygous deletions), and selected gene fusions, as previously described. Clinically relevant genomic alterations were defined as alterations targetable by anticancer drugs currently available on the market or in registered clinical trials. Germline variants documented in the dbSNP database (dbSNP142; http://www.ncbi.nlm.nih.gov/SNP/), with ≥ 2 counts in the ExAC database (http://exac.broadinstitute.org/), or recurrent variants of unknown significance that were predicted by an internally developed algorithm to be germline were removed, with the exception of known driver germline events.

Known, confirmed somatic alterations deposited in the Catalog of Somatic Mutations in Cancer (version 62) were highlighted as biologically significant, as were inactivating events in tumor suppressor genes. To maximize mutation-detection accuracy (sensitivity and specificity) in impure clinical specimens, the test was previously optimized and validated to detect base substitutions at a ≥ 5% mutant allele frequency (MAF), indels with a ≥ 10% MAF with ≥ 99% accuracy, and fusions occurring within baited introns/exons with > 99% sensitivity. Each tumor sample was analyzed alongside an internally validated mixture of 10 heterozygous diploid HapMap control samples, which custom algorithms used to normalize the sequence coverage distribution across baited targets.
TABLE A1. Detailed Genomic Assessment of High Grade Neuroendocrine Cervical Cancer Samples

Case No.	No. of Genes Assessed	Gene	Age (years)	Functional Status	Alteration Type	Description
HGNECC_1	236	AKT3	42	Known	CN	Amplification
HGNECC_1	236	KDM6A	42	Known	SV	V607M
HGNECC_1	236	MCL1	42	Known	CN	Amplification
HGNECC_10	236	ALK	40	Known	SV	L560F
HGNECC_11	315	FGFR2	44	Known	SV	S252W
HGNECC_11	315	MED12	44	Known	SV	D23Y
HGNECC_11	315	PTEN	44	Known	SV	R130P
HGNECC_11	315	RB1	44	Known	SV	G442fs*15
HGNECC_11	315	TP53	44	Known	SV	R175H
HGNECC_12	315	ARID1A	66	Likely	RE	Truncation
HGNECC_12	315	TET2	66	Known	SV	R1516*
HGNECC_13	315	LRP1B	58	Likely	RE	Deletion
HGNECC_13	315	PTEN	58	Known	SV	T319fs*1
HGNECC_14	315	ARID1A	59	Likely	SV	N104fs*6
HGNECC_14	315	ERBB2	59	Known	CN	Amplification
HGNECC_14	315	PIK3CA	59	Known	SV	E545A
HGNECC_14	315	RB1	59	Known	SV	R255*
HGNECC_14	315	TOP2A	59	Known	CN	Amplification
HGNECC_14	315	TP53	59	Known	SV	R158L
HGNECC_15	315	BRCA1	58	Likely	SV	Q780*
HGNECC_15	315	IGF1	58	Known	CN	Amplification
HGNECC_15	315	MYC	58	Known	CN	Amplification
HGNECC_15	315	NOTCH2	58	Known	SV	P66fs*27
HGNECC_15	315	TP53	58	Likely	SV	L330fs*15
HGNECC_16	236	TP53	46	Known	SV	D281N
HGNECC_17	315	BRAF	40	Known	SV	V600E
HGNECC_17	315	CDK12	40	Known	SV	G909R
HGNECC_17	315	GRIN2A	40	Known	SV	R1318W
HGNECC_18	315	MED12	34	Known	SV	G44A
HGNECC_19	315	CDH1	45	Known	SV	W20*
HGNECC_19	315	NFE2L2	45	Known	SV	D29H
HGNECC_19	315	NFE2L2	45	Known	SV	R34Q
HGNECC_19	315	PIK3CA	45	Known	SV	E545K
HGNECC_2	236	IRS2	35	Known	CN	Amplification
HGNECC_2	236	MYCN	35	Known	CN	Amplification
HGNECC_20	315	MYC	33	Known	CN	Amplification
HGNECC_21	182	MYC	27	Known	CN	Amplification
HGNECC_22	236	TP53	27	Known	SV	R273C
HGNECC_22	236	MLL2	55	Known	SV	R1702*
HGNECC_23	236	TP53	55	Known	SV	R280T
HGNECC_23	236	BRCA2	61	Known	SV	I2627F
HGNECC_23	236	PIK3R1	61	Likely	RE	Truncation
HGNECC_23	236	PPP2R1A	61	Known	SV	P179R
HGNECC_23	236	PTEN	61	Known	CN	Deletion

(Continued on following page)
Case No.	No. of Genes Assessed	Gene	Age (years)	Functional Status	Alteration Type	Description
HGNECC_23	236	RB1	61	Known	CN	Deletion
HGNECC_23	236	TP53	61	Known	SV	R248Q
HGNECC_24	236	ARID1A	38	Likely	SV	A141fs*42
HGNECC_24	236	ARID1A	38	Likely	SV	Q1397fs*46
HGNECC_24	236	CTNNB1	38	Known	SV	S37C
HGNECC_24	236	PIK3CA	38	Known	SV	H1047R
HGNECC_24	236	PTEN	38	Known	SV	D92E
HGNECC_24	236	PTEN	38	Known	SV	Y180*
HGNECC_25	315	MYC	25	Known	CN	Amplification
HGNECC_26	315	KRAS	25	Known	SV	G13D
HGNECC_26	315	MYC	25	Known	CN	Amplification
HGNECC_27	315	ABL2	49	Known	SV	P497fs*7
HGNECC_27	315	ATRX	49	Likely	SV	D1940fs*15
HGNECC_27	315	BLM	49	Known	SV	N515fs*16
HGNECC_27	315	ERBB3	49	Known	SV	R475W
HGNECC_27	315	FBXW7	49	Known	SV	R465H
HGNECC_27	315	FGFR1	49	Known	SV	V127M
HGNECC_27	315	JAK1	49	Known	SV	K886fs*16
HGNECC_27	315	JAK1	49	Known	SV	P430fs*2
HGNECC_27	315	MEN1	49	Likely	SV	R521fs*43
HGNECC_27	315	MLL2	49	Likely	SV	P2302fs*20
HGNECC_27	315	MLL3	49	Known	SV	K2797fs*26
HGNECC_27	315	MSH2	49	Likely	SV	E48*
HGNECC_27	315	MSH2	49	Likely	SV	Q324*
HGNECC_27	315	NOTCH1	49	Known	SV	R1586H
HGNECC_27	315	PIK3CA	49	Known	SV	E545D
HGNECC_27	315	PREX2	49	Known	SV	S565fs*3
HGNECC_27	315	PTEN	49	Known	SV	K267fs*9
HGNECC_27	315	PTEN	49	Known	SV	R130Q
HGNECC_27	315	QKI	49	Known	SV	A338T
HGNECC_27	315	SETD2	49	Likely	SV	F636fs*6
HGNECC_27	315	SMARCA4	49	Likely	SV	Q214*
HGNECC_27	315	SMARCA4	49	Likely	SV	T296fs*7
HGNECC_27	315	STK11	49	Likely	SV	W332*
HGNECC_27	315	TET2	49	Known	SV	R550*
HGNECC_27	315	TET2	49	Likely	SV	R1440fs*38
HGNECC_28	315	MLL2	60	Likely	SV	L951fs*7
HGNECC_28	315	PTCH1	60	Known	SV	G682C
HGNECC_28	315	PTEN - ANKRD22	60	Likely	RE truncation	
HGNECC_29	315	CREBBP	38	Likely	SV	S2377*
HGNECC_29	315	KRAS	38	Known	CN	Amplification
HGNECC_29	315	KRAS	38	Known	SV	G12D
HGNECC_3	315	ARFRP1	29	Known	CN	Amplification
HGNECC_3	315	AURKA	29	Known	CN	Amplification

(Continued on following page)
Case No.	No. of Genes Assessed	Gene	Age (years)	Functional Status	Alteration Type	Description
HGNECC_3	315	GNAS	29	Known	CN	Amplification
HGNECC_30	315	PTEN	24	Likely	SV	M205Fs*14
HGNECC_32	315	BRD4	67	Likely	SV	F656Fs*4
HGNECC_32	315	ERBB3	67	Known	SV	V104L
HGNECC_32	315	FBXW7	67	Known	SV	R505C
HGNECC_32	315	KRAS	67	Known	SV	G12V
HGNECC_33	315	MLL3	42	Known	SV	R380C
HGNECC_33	315	PIK3CA	42	Known	CN	Amplification
HGNECC_33	315	PIK3CA	42	Known	SV	E545K
HGNECC_33	315	SOX2	42	Known	CN	Amplification
HGNECC_34	315	ARID1A	52	Likely	SV	D1850Fs*33
HGNECC_34	315	CIC	52	Known	SV	D473N
HGNECC_34	315	CTCF	52	Likely	SV	T204Fs*26
HGNECC_34	315	GRM3	52	Known	SV	G621V
HGNECC_34	315	MSH2	52	Likely	SV	C199Fs*15
HGNECC_34	315	MSH2	52	Likely	SV	Q846*
HGNECC_34	315	PIK3CA	52	Known	SV	Q546H
HGNECC_34	315	PIK3CA	52	Known	SV	R38H
HGNECC_34	315	PTEN	52	Known	SV	N323Fs*2
HGNECC_34	315	PTEN	52	Known	SV	T468M
HGNECC_34	315	RANBP2	52	Known	SV	L811R
HGNECC_34	315	RBM10	52	Likely	SV	R98*
HGNECC_34	315	RNF43	52	Likely	SV	G659Fs*41
HGNECC_34	315	SMARCA4	52	Likely	SV	L1161Fs*3
HGNECC_34	315	SMARCA4	52	Likely	SV	P305Fs*21
HGNECC_34	315	SPEN	52	Known	SV	R75H
HGNECC_35	315	PPP2R1A	77	Known	SV	P179R
HGNECC_35	315	PTEN	77	Known	SV	D92E
HGNECC_35	315	PTEN	77	Known	SV	L325R
HGNECC_35	315	RB1	77	Likely	SV	G89*
HGNECC_35	315	SMARCA4	77	Known	CN	Deletion
HGNECC_35	315	TP53	77	Known	SV	R306*
HGNECC_37	315	FGFI4	50	Known	CN	Amplification
HGNECC_37	315	IRS2	50	Known	CN	Amplification
HGNECC_37	315	KRAS	50	Known	SV	K182_T183del
HGNECC_37	315	PBRM1	50	Likely	SV	Q1346*
HGNECC_38	315	MSH2	49	Likely	SV	R929*
HGNECC_38	315	MYC	49	Known	CN	Amplification
HGNECC_38	315	PIK3R1	49	Known	SV	T576del
HGNECC_38	315	PTEN	49	Known	SV	A126T
HGNECC_38	315	RB1	49	Known	CN	Deletion
HGNECC_38	315	TP53	49	Known	SV	K321Fs*24
HGNECC_4	315	EP300	26	Likely	SV	A1437Fs*65
HGNECC_4	315	GNAS	26	Known	SV	R201H
Case No.	No. of Genes Assessed	Gene	Age (years)	Functional Status	Alteration Type	Description
----------	-----------------------	--------	-------------	-------------------	------------------------	------------------------------
HGNECC_4	315	MYC	26	Known	CN	Amplification
HGNECC_4	315	PTPRD	26	Likely	SV	N1023fs*7
HGNECC_40	315	AKT1	35	Known	SV	W80R
HGNECC_40	315	ARID1A	35	Known	SV	R1276*
HGNECC_40	315	ARID1B	35	Likely	SV	Q1331*
HGNECC_40	315	BRAF	35	Known	SV	I326V
HGNECC_40	315	CTNNB1	35	Known	SV	D32Y
HGNECC_40	315	PIK3CA	35	Known	SV	C420, P421del
HGNECC_40	315	PIK3R1	35	Likely	SV	Splice site 1746-2A>G
HGNECC_41	236	JAK2	26	Known	CN	Amplification
HGNECC_42	236	ARFRP1	36	Known	CN	Amplification
HGNECC_42	236	ERBB2	36	Known	SV	S310F
HGNECC_42	236	SRC	36	Known	CN	Amplification
HGNECC_42	236	TOP1	36	Known	CN	Amplification
HGNECC_42	236	TP53	36	Known	SV	R248Q
HGNECC_42	236	ZNF217	36	Known	CN	Amplification
HGNECC_44	315	FANCC	72	Likely	RE	Truncation
HGNECC_44	315	KRAS	72	Known	SV	G12D
HGNECC_44	315	NOTCH1	72	Likely	SV	A305fs*27
HGNECC_44	315	NOTCH1	72	Likely	SV	Splice site 2354-1G>A
HGNECC_44	315	PIK3CA	72	Known	SV	R88Q
HGNECC_44	315	RICTOR	72	Known	CN	Amplification
HGNECC_45	315	ARID2	33	Likely	SV	S1157*
HGNECC_45	315	CCNE1	33	Known	CN	Amplification
HGNECC_45	315	EPHA5	33	Known	SV	S964Y
HGNECC_46	315	CCNE1	41	Known	CN	Amplification
HGNECC_46	315	GRIN2A	41	Known	SV	R19C
HGNECC_46	315	NCO1	41	Likely	SV	Y1617*
HGNECC_47	315	BCL2	51	Known	CN	Amplification
HGNECC_47	315	GATA6	51	Known	CN	Amplification
HGNECC_47	315	NX2-1	51	Known	CN	Amplification
HGNECC_49	315	ARID1A	59	Likely	SV	Splice site 4923, 4993, 259del330
HGNECC_49	315	ARID1A-ARID1A	59	Likely	RE	Deletion
HGNECC_49	315	PALB2	59	Likely	SV	Q141fs*27
HGNECC_5	315	RB1	40	Likely	SV	E629fs*12
HGNECC_5	315	KRAS	46	Known	SV	G13D
HGNECC_50	315	MAGI2	46	Known	SV	R564Q
HGNECC_51	315	BRCA2	38	Likely	RE	Truncation
HGNECC_52	315	NOTCH2	73	Likely	SV	S1270fs*11
HGNECC_52	315	PIK3R1	73	Likely	SV	D330fs*15
HGNECC_53	315	AKT1	54	Known	SV	E17K
HGNECC_53	315	ARID1A	54	Likely	SV	Y1260fs*9
HGNECC_53	315	BRCA2	54	Likely	SV	N3124I
HGNECC_53	315	GNAS	54	Known	SV	R201C
Case No.	No. of Genes Assessed	Gene	Age (years)	Functional Status	Alteration Type	Description
---------	-----------------------	----------	-------------	------------------	----------------	-------------
HGNECC_53	315	PIK3CA	54	Known	SV	E542K
HGNECC_53	315	RUNX1T1	54	Known	SV	R395W
HGNECC_54	315	PIK3CA	34	Known	CN	Amplification
HGNECC_54	315	SOX2	34	Known	CN	Amplification
HGNECC_55	315	EP300	34	Known	SV	D1399N
HGNECC_55	315	MYC	45	Likely	SV	E1571fs*3
HGNECC_56	315	MYC	45	Known	CN	Amplification
HGNECC_56	315	NCOR1	45	Known	SV	R1794Q
HGNECC_56	315	PIK3CA	45	Known	SV	C420R
HGNECC_56	315	SOX2	45	Likely	SV	S397*
HGNECC_57	315	TP53	28	Known	CN	R248W
HGNECC_57	315	KRAS	28	Known	SV	G13C
HGNECC_57	315	MLL3	28	Likely	SV	Q419*
HGNECC_58	315	MYC	30	Known	SV	E14K
HGNECC_58	315	SMARCA4	30	Likely	SV	Y820*
HGNECC_59	315	CIC	35	Likely	SV	Q427*
HGNECC_59	315	MYC	35	Known	CN	Amplification
HGNECC_6	315	CRLF2 - DHRSX	44	Likely	RE	Fusion
HGNECC_6	315	IRS2	44	Known	CN	Amplification
HGNECC_60	315	NUP93	27	Known	SV	E14K
HGNECC_61	315	MYC	36	Known	CN	Amplification
HGNECC_61	315	NOTCH2	36	Known	SV	P6fs*27
HGNECC_61	315	NOTCH4 - NOTCH4	36	Likely	RE	Deletion
HGNECC_63	315	BRC2	38	Known	SV	F1192C
HGNECC_63	315	MYC	38	Known	CN	Amplification
HGNECC_65	315	ARID1A	50	Likely	SV	E1060*
HGNECC_65	315	CTNNB1	50	Known	SV	S33C
HGNECC_65	315	MLL2	50	Likely	SV	Y1514fs*2
HGNECC_65	315	PIK3CA	50	Known	SV	V344G
HGNECC_65	315	PTEN	50	Known	SV	N184fs*6
HGNECC_65	315	PTEN	50	Likely	SV	E285*
HGNECC_66	315	CCND2	39	Known	CN	Amplification
HGNECC_66	315	FGF23	39	Known	CN	Amplification
HGNECC_66	315	FGF6	39	Known	CN	Amplification
HGNECC_66	315	KDM5A	39	Known	CN	Amplification
HGNECC_66	315	KRAS	39	Known	SV	G12S
HGNECC_66	315	LRP1B	39	Likely	SV	M1882fs*22
HGNECC_66	315	MYC	39	Known	CN	Amplification

(Continued on following page)
Case No.	No. of Genes Assessed	Gene	Age (years)	Functional Status	Alteration Type	Description
HGNECC_67	315	BRF - N/A	27	Likely	RE	Rearrangement
HGNECC_68	315	EGFR	60	Likely	SV	T145M
HGNECC_69	315	BRD4	49	Likely	SV	E1249*
HGNECC_69	315	PIK3CA	49	Known	SV	R88Q
HGNECC_7	315	MYCN	47	Known	CN	Amplification
HGNECC_71	315	FGFR1	43	Known	CN	Amplification
HGNECC_71	315	NOTCH1	43	Known	SV	V1575L
HGNECC_72	236	PTEN	35	Known	CN	Deletion
HGNECC_72	236	TP53	35	Known	SV	Splice site 375G>A
HGNECC_73	315	MYC	28	Known	CN	Amplification
HGNECC_73	315	TP53	28	Known	SV	R283C
HGNECC_74	315	ERBB2	65	Known	CN	Amplification
HGNECC_74	315	IGF2R	65	Known	SV	R1325H
HGNECC_74	315	PTEN	65	Known	SV	R130G
HGNECC_74	315	PTEN	65	Likely	SV	C250fs*4
HGNECC_74	315	TP53	65	Likely	SV	Splice site 783-1G>T
HGNECC_76	315	ATRX	35	Likely	SV	R1504*
HGNECC_78	315	NUP93	52	Known	SV	E14K
HGNECC_78	315	SOX2	52	Known	CN	Amplification
HGNECC_79	315	MTR	38	Known	SV	TI834_T1837del
HGNECC_8	236	LRPIB	37	Known	SV	D3472N
HGNECC_8	236	MCL1	37	Known	CN	Amplification
HGNECC_8	236	ATM	28	Likely	SV	K468fs*18
HGNECC_8	315	BRD4 - KIAA0319	28	Likely	RE	Fusion
HGNECC_8	315	MLL3	28	Likely	SV	Y306*
HGNECC_82	236	ARID1A	48	Likely	SV	G1848fs*6
HGNECC_82	236	CTNNB1	48	Known	SV	G34V
HGNECC_82	236	PIK3CA	48	Known	SV	H1047R
HGNECC_83	315	CCNE1	37	Known	CN	Amplification
HGNECC_83	315	IGF1R	37	Known	CN	Amplification
HGNECC_83	315	MYCN	37	Known	CN	Amplification
HGNECC_84	236	MCL1	40	Known	CN	Amplification
HGNECC_84	236	PIK3CA	40	Known	SV	E545K
HGNECC_85	315	AKT1	45	Known	CN	Amplification
HGNECC_85	315	CDKN1B - N/A	45	Likely	RE	Rearrangement
HGNECC_86	315	ERBB2	52	Known	SV	S310Y
HGNECC_86	315	RB1	52	Likely	SV	Splice site 2490-1G>A
HGNECC_87	315	MLL3	38	Likely	SV	Y1348*
HGNECC_87	315	PIK3CA	38	Known	CN	Amplification
HGNECC_87	315	PIK3CA	38	Known	SV	E542K
HGNECC_87	315	SOX9	38	Likely	SV	Y503*
HGNECC_88	315	BRCA2	54	Likely	SV	E1608*
HGNECC_88	315	MAGI2	54	Known	SV	R1220*

(Continued on following page)
TABLE A1. Detailed Genomic Assessment of High Grade Neuroendocrine Cervical Cancer Samples (Continued)

Case No.	No. of Genes Assessed	Gene	Age (years)	Functional Status	Alteration Type	Description
HGNECC_89	315	FGF10	29	Known	CN	Amplification
HGNECC_89	315	RICTOR	29	Known	CN	Amplification
HGNECC_9	236	FGF10	27	Known	CN	Amplification
HGNECC_9	236	MYC	27	Known	CN	Amplification
HGNECC_9	236	RICTOR	27	Known	CN	Amplification
HGNECC_90	315	DNMT3A	73	Known	SV	R882H
HGNECC_90	315	MLL2	73	Likely	SV	Q5446*
HGNECC_90	315	SOX2	73	Known	CN	Amplification
HGNECC_91	315	PIK3R1	59	Known	SV	D560Y
HGNECC_92	315	CDKN1B	48	Likely	SV	P137fs*8
HGNECC_92	315	GNAS	48	Known	SV	R201H
HGNECC_92	315	KIT	48	Known	SV	D816V
HGNECC_92	315	TP53	48	Known	SV	R248Q
HGNECC_93	315	DDR2	46	Known	SV	T836M
HGNECC_93	315	MUTYH	46	Known	SV	G382D
HGNECC_94	315	MERTK	35	Known	SV	R865Q
HGNECC_94	315	PIK3CA	35	Known	SV	N345K
HGNECC_95	315	MUTYH	58	Known	SV	Y165C
HGNECC_95	315	PIK3CA	58	Known	SV	E726K
HGNECC_96	315	CDKN1B	67	Likely	SV	S27*
HGNECC_96	315	CUL4B	67	Known	SV	S110F
HGNECC_96	315	PIK3CA	67	Known	SV	D350G
HGNECC_96	315	TP53BP1	67	Known	SV	E1165K
HGNECC_97	315	FGF10	63	Known	CN	Amplification
HGNECC_97	315	RICTOR	63	Known	CN	Amplification

Abbreviations: CN, copy number; N/A, not applicable; RE, rearrangement; SV, structural variation.