Description of information support of the automated control system for the technological process of thermal vortex enrichment

S A Nebogin, V V Kondrat’ev, V O Gorovoy, R V Kononenko and T A Oparina
Irkutsk National Research Technical University, 83, Lermontova Str., Irkutsk, 664074, Russia
E-mail: nebogin@ex.istu.edu

Abstract. The information support of the automated control system for the technological process of thermal vortex enrichment is described. Solutions for the organization of information support, collection and transmission of information have been developed. A classification and coding system has been built. The intra-machine information base is organized according to the principle of dividing into high-level and low-level databases. It is possible to maintain an off-machine information base by creating reports for outputting information in the form of logs on paper. The composition of the information base in terms of databases is given.

1. Introduction
The automated control system for the technological process of thermal vortex enrichment is part of a project to create an integrated resource-saving technology and organize high-tech production of nanostructures based on carbon and silicon dioxide to improve the properties of building and structural materials. Information support for the automated control system for the technological process of thermal vortex enrichment consists of high-level and low-level databases. All databases are provided complete and ready to go [1-3]. The database is filled only by software specialists. Changing database fields is provided by the user interface. All DBMS maintenance procedures, including health diagnostics and data backup, must be performed in accordance with the general principles of DBMS administration [4, 5].

The organization of the information base does not provide for integration with external information resources. For the subsystem of integration with external information resources, databases of other subsystems are used [6-8].

Information from the databases is displayed on the screen of the operator's workstation and operator panels in varying degrees of detail. Through visualization systems, changes can be made to a limited number of database fields [9]. High-level databases can be accessed by external information systems.

2. Organization of information support
Low-level data from monitoring and control devices are stored in the energy-dependent memory of the controller on an electronic medium (NFlash micro memory card). Access to data from other AS is closed with the exception of trusted sources and receivers [10-13].
Top-level data to maintain continuous long-term archives of all process parameters, a hard-magnetic disk (HDD) and Microsoft SQL databases are used. Data can be accessed by means of OPC, ODBC, SQL queries.

3. Organization of collection and transmission of information
The information consists of data coming from the following sources:
- sensors and primary converters;
- frequency converters;
- executive mechanisms;
- operator panels;
- automated workstations (AWP);
- personal computers (PC).

According to the intensity of the incoming information, they are divided into:
- continuous (operator panels, sensors and primary converters, frequency converters, PC, AWP);
- frequent (executive mechanisms);
- rare (switches).

By volume, the information is divided into:
- small (sensors and primary converters, frequency converters, etc.);
- medium (operator panels, remote data collection stations);
- large (AWP, PC).

The collection of information is carried out in automatic mode with diagnostics about the state of information quality.

4. Building a classification and coding system
Data classification:
- raw process parameters;
- processed process parameters;
- DB of regulators;
- DB of regulatory bodies (RO);
- discrete variables;
- others.

Class encoding:
- Raw process parameters
 \[\text{RAW}_* ** \]
 where * – measured parameter, ** – short name of the position

- Processed process parameters
 \[* _ ** \]
 where * - measured parameter, ** - short name of the position

- DB of regulators
 \[\text{FROM}_* ** \]
 where * - adjustable parameter, ** - short name of the position

- DB of regulatory bodies (RO)
 \[V _ * ** \]
 where * - location of RO installation, ** - short name of the position

- DB of archive parameters
 \[* _ ** _ SUM \]
 where * - measured parameter, ** - short name of the position

- Discrete variables
 \[* _\text{ALARM} / HI / LO / ON / OFF \]
where * is the measured parameter or the short name of the position, HI / LO / ON / OFF is selected depending on the type of the sensor in the triggered state (logical unit).

- Others.

The rest of the parameters are coded logically for reasons of a clear concept of what information the variable carries [14-16].

5. **Formation of database numbers DB**

DB "Reading and processing analog signals" is as follows.

Primary measuring devices: the position of the primary converter is taken from the automation circuit ABSP.441199.001 C3 (the number before the separator in the form ","); this value is multiplied by 10 and the line number is put at the end (from 1 to 5).

The rotational speed is of the blower, smoke exhauster, feeder auger motors and the position of the actuator. The position of the primary measuring transducer in the circuit of which the regulating device is involved is taken. This value is multiplied by 10, the zero at the end changes to 7 and the line number is put at the end (from 1 to 5) [17-18].

DB "Control of the regulatory body" and DB "PID-regulator" includes the following.

The position of the primary measuring transducer is taken in the loop of which this regulator is located, this value is multiplied by 10, the zero at the end changes to the number 1 and at the end the line number is put (from 1 to 5).

DB "Archive values of process parameters" consists of the following.

Primary measuring devices: the DB number of the DB "Reading and processing analog signals" is taken and the zero before the line number is changed to 8.

The rotational speed of the blower motors, the smoke exhauster, the feeder auger and the position of the actuator: the DB number of the database "Reading and processing analog signals" is taken and the number 5 before the line number is changed to 8.

6. **Organization of the in-machine information base**

The information base is organized according to the following principle:

- Low-level databases:
 - DB "Reading and processing of analog signals";
 - DB "Management of the regulatory body";
 - DB "PID-controller";
 - DB "Archive values of process parameters".

- High-level databases:
 - DB "Long-term archive of process parameters";
 - DB "Alarms and warnings".

The structure of the in-machine information base is shown in Fig. 1.
7. **Organization of the off-machine information base**

The out-of-machine information base is built on the regulatory process indicators, ore and concentrate sampling logs, as well as on the basis of technical data of the applied control, management and regulation devices. In accordance with which information is entered into the in-machine databases through the user man-machine interface of the used SCADA system [19-20].

Keeping logs of process indicators is not provided, since the system, at the user's request, can issue the necessary information on paper. But the process data can be recorded in the journals of shift, daily, monthly or annual work [21-23].

8. **Composition of information support**

The databases of the lower level of the automated system are described in tables 1 - 4.

Figure 1. Algorithm for reading and processing analog signals.
Table 1. DB "Reading and processing of analog signals".

No	Designation	Code	Name
1	T_vozd_in	DB 101	Temperature of the air entering the combustion chamber
2	T_vozd_out	DB 201	Air temperature at the exit of the combustion chamber
3	T_beg_react	DB 301	Air flow temperature at the beginning of the vortex enrichment tube
4	T_end_react	DB 401	Air flow temperature at the end of the vortex enrichment tube
5	T_cool	DB 501	Air flow temperature in the cooling gas duct
6	T_in_cool	DB 601	Air temperature entering the cooling gas duct
7	T_prod_bunk	DB 701	Bag filter bin temperature
8	P_gas	DB 801	Gas pressure entering the burner
9	P_air	DB 901	Compressed air pressure
10	P_out_topk	DB 1001	Pressure at the beginning of the vortex enrichment tube
11	P_cool	DB 1101	Cooling duct pressure
12	P_in_filtr	DB 1201	Pressure in the dirty bag filter chamber
13	P_out_filtr	DB 1301	Pressure in the clean chamber of the bag filter
14	F_gas	DB 1401	Gas consumption entering the combustion chamber
17	FREQ_M1_1	DB 257	Blower M1-1. Rotation frequency.
18	FREQ_M2_1	DB 1157	Smoke exhauster M2-1. Rotation frequency.
19	FREQ_M3_1	DB 1557	Material feed screw drive M3-1. Rotation frequency.
20	Poloz_5_1	DB 557	Gate 5-1s position

Table 2. DB "Management of the regulatory body".

No	Designation	Code	Name
1	V_F_air_cool	DB 551	Regulator of air supply to the cooling flue

Table 3. DB "PID-controller".

No	Designation	Code	Name
1	C_T_vozd_out	DB 251	Combustion chamber temperature controller
2	C_P_cool	DB 1151	Vacuum regulator in the cooling gas duct

Table 4. DB "Reading and processing of analog signals".

No	Designation	Code	Name
1	T_vozd_in_Sum	DB 181	Temperature of the air entering the combustion chamber
2	T_vozd_out_Sum	DB 281	Air temperature at the exit of the combustion chamber
3	T_beg_react_Sum	DB 381	Air flow temperature at the beginning of the vortex enrichment tube
4	T_end_react_Sum	DB 481	Air flow temperature at the end of the vortex enrichment tube
5	T_cool_Sum	DB 581	Air flow temperature in the cooling gas duct
6	T_in_cool_Sum	DB 681	Air temperature entering the cooling gas duct
7	T_prod_bunk_Sum	DB 781	Bag filter bin temperature
8	P_gas_Sum	DB 881	Gas pressure entering the burner
9	P_air_Sum	DB 981	Compressed air pressure
10	P_out_topk_Sum	DB 1081	Pressure at the beginning of the vortex enrichment tube
11	P_cool_Sum	DB 1181	Cooling duct pressure
12	P_in_filtr_Sum	DB 1281	Pressure in the dirty bag filter chamber
13	P_out_filtr_Sum	DB 1381	Pressure in the clean chamber of the bag filter
14	F_gas_Sum	DB 1481	Gas consumption entering the combustion chamber
15	FREQ_M1_1_Sum	DB 1581	Blower M1-1. Rotation frequency.
16	FREQ_M2_1_Sum	DB 1681	Smoke exhauster M2-1. Rotation frequency.

The databases of the lower level of the automated system are described in tables 5, 6.

Table 5. DB "Long-term archive of process parameters".

No	Designation	Name
1	T_vozd_in.PV	Temperature of the air entering the combustion chamber
2	T_vozd_out.PV	Air temperature at the exit of the combustion chamber
3	T_beg_react.PV	Air flow temperature at the beginning of the vortex enrichment tube
4	T_end_react.PV	Air flow temperature at the end of the vortex enrichment tube
5	T_cool.PV	Air flow temperature in the cooling gas duct
6	T_in_cool_PV	Air temperature entering the cooling gas duct
7	T_prod_bunk.PV	Bag filter bin temperature
8	P_gas.PV	Burner gas pressure
9	P_air.PV	Compressed air pressure
10	P_out_topk.PV	Pressure at the beginning of the vortex enrichment tube
11	P_cool.PV	Cooling duct pressure
12	P_in_filtr.PV	Pressure in the clean chamber of the bag filter
13	P_out_filtr.PV	Pressure in the dirty bag filter chamber
14	F_gas.PV	Gas consumption entering the combustion chamber
15	F_air.PV	Combustion air consumption
16	F_air_cool.PV	Air flow entering the cooling gas duct
17	FREQ_M1_1.PV	Blower M1-1. Rotation frequency.
18	FREQ_M2_1.PV	Smoke exhauster M2-1. Rotation frequency.
19	FREQ_M3_1.PV	Material feed screw drive M3-1. Rotation frequency.
20	Poloz_5_1.PV	Gate 5-1s position
21	C_T_vozd_out.PV	Temperature control from the combustion chamber
22	C_P_cool.PV	Regulation of vacuum in the cooling gas duct
23	C_F_air.PV	Combustion air flow control
24	C_F_air_cool.PV	Regulation of air supply to the cooling flue
25	C_FREQ_M3_1	Material feed screw drive M3-1. Speed control.
Table 6. DB "Alarms and warnings".

No	Designation	Name
1	Burner_alarm	Burner. Crash.
2	bunk_1_HL	Feedstock bin. Upper level.
3	bunk_1_LL	Feedstock bin. Lower level.
4	mater_on	Material availability
5	bunk_2_HL	Product hopper. Upper level.
6	bunk_2_LL	Product hopper. Lower level.
7	M1_1_on	Blower M1-1. Work.
8	M1_1_alarm	Blower M1-1. Frequency drive failure
9	M2_1_on	Smoke exhauster M2-1. Work.
10	M2_1_alarm	Smoke exhauster M2-1. Frequency drive failure
11	M3_1_on	Material feed screw drive M3-1. Work
12	M3_1_alarm	Material feed screw drive M3-1. Frequency drive failure
13	P_cool	The lower value of the vacuum in the tube of vortex enrichment
14	P_delta_filtr_	The upper value of the pressure drop in the baghouse filter
15	T_cool	The temperature in the cooling flue is close to the upper limit
16	T_out	Upper combustion chamber temperature
17	T_out	Lower combustion chamber temperature
18	T_out	The temperature in the combustion chamber is close to the upper value
19	T_out	The temperature in the combustion chamber is close to the lower value
20	T_cool	Upper temperature level in the cooling flue

9. Conclusion

Information support of the automated control system for the technological process of thermal vortex enrichment consists of high-level and low-level databases. The collection of information is carried out automatically with diagnostics about the state of the quality of information from sensors, transducers, buttons and switches, automated workstations, operator panels, personal computers.

The developed classification of data and coding of classes makes it possible to fully structure information, which is clearly reflected in the presented composition of the information base. Generation of reports for maintaining an off-machine database is based on the regulatory process indicators, ore and concentrate sampling logs, as well as on the basis of the technical data of the control, management and regulation devices used.

References

[1] Munkhtuvshin D, Balabanov V B and Putsenko K N 2017 Experience of application of additional-wok micro- and nanosilic from waste of silicon production in concrete technologies *Izvestiya vuzov. Investments. Building. The property* 7(3(22)) 107-115

[2] Kondratiev V V, Petrovskiy A A, Ershov V A, Sysoeva T I and Karlina A I 2017 Results of research with revealing technological parameters of processes of recycling and neutralization of the first and second cut of the spent lining of electrolyzers for reception of aluminum fluoride by pyrolytic and hydro chemical method *Int. J. of Applied Engineering Research* 12(23) 13898-13904

[3] Yurovsky V S, Glukhatkina L G, Pankratova G M, Sorokina I E and Maksimova T V 2016 Development of heat-frost-resistant rubbers for sleeves on the basis of siloxane rubber and domestic silica fillers *Industrial production and use of elastomers* 1 28-31

[4] Guseva E A, Konstantinova M V, Kargapoltsiev S K, Gozbenko V E, Sivtsov A V, Karlina A I and Shtyagre M G 2019 Methods of graphitized steels obtaining *J. of Phys.: Conf. Ser.* 1353(1) 012063

[5] Ivanchik N N, Balanovsky A E, Shtyagre M G, Sysoev I A and Karlina A I 2018 Capability enhancement of production of activating fluxes for arc welding using ultradispersed products of
silicon waste processing IOP Conf. Ser.: Mater. Sci. Eng. 012035

[6] Vasin V A, Fatyanova N G, Troshin B A, Vasichev B N and Stepanchikov S V 2012 Problems of creation of nanoproducts using nanotechnology Electrotechnical and information complexes and systems 8(4) 37-43

[7] Gerasimenko N, Volokhovsky A and Zaporozhan O 2017 Features of control of technology of silicon nanostructures Nanoindustry 5(76) 36-51

[8] Kodolov V I, Bondar A Yu and Kuznetsov A P 2007 Technology of production of carbon-herodometal-containing nanostructures in polymeric matrix nanoreactors (on example pva) Nanotechnics 1(9) 38-41

[9] Khokhln A R 2008 Equipment and technologies for production of mems, micro and nanostructures Electronics and electrical equipment of transport 6 36-38

[10] Buryanina N, Korolyuk Y, Koryakina M, Lesnykh E and Suslov K 2019 Algoritm of Current Protection Based on Three Instantaneous-Value Samples Proc. of 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 8905542

[11] Suslov K, Shushpanov I, Buryanina N and Ilyushin P 2020 Flexible power distribution networks: New opportunities and applications SMARTGREENS 2020 – Proc. of the 9th Int. Conf. on Smart Cities and Green ICT Systems

[12] Voropai N, Ukolova E, Gerasimov D, Suslov K, Lombardi P and Komarnicki P A 2019 Study on Cost-Effectiveness of Energy Supply Based on the Energy Hub Concept Proc. of 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2019 8905736

[13] Suslov K, Solonina N and Gerasimov D 2018 Assessment of an impact of power supply participants on power quality Proc. of Int. Conf. on Harmonics and Quality of Power, ICHQP pp 1-5

[14] Ershov V A, Kondratiev V V, Karlina A I, Kolosov A D and Sysoev I A 2018 Selection of control system parameters for production of nanostructures concentrates J. of Phys.: Conf. Ser. 1118(1) 012014

[15] Kuzmin M P, Shestakov S S, Kuzmina M Yu and Zhuravleva A S 2015 Innovative development of the metallurgical complex of the Irkutsk region Bull. of ISTU 5(100) 236-240

[16] Kondrat’ev V V, Nemchinova N V, Ivanov N A, Ershov V A and Sysoev I A 2013 New production solutions for processing silicon and aluminum pro-duction waste Metallurgist 57(5-6) 455-459

[17] Yolkin K S, Yolkin D K, Kolosov A D, Ivanov N A and Shtayger M G 2018 Technologies, which allow to reduce an impact of metal silicon production on the environment IOP Conf. Ser.: Mater. Sci. Eng. 411 012028

[18] Kuzmin M P, Larionov L M, Kondratyev V V, Kuzmina M Yu, Grigoriev V G, Knizhnik A V and Kuzmina A S 2019 Obtaining silumin with the use of silicon waste Proc. of higher educational institutions. Non-ferrous metallurgy 4 4-15

[19] Karlina A I, Kondrat’ev V V, Kolosov A D, Balanovskiy A E and Ivanov N A 2019 Production of new nanostructures for modification of steels and cast irons IOP Conf. Ser.: Mater. Sci. Eng. 012183

[20] Petrovskaya V N and Kondratiev V V 2012 Gas-hydrodynamic nature of the anode effect Metallurgist 56(3-4) 215-221

[21] Konyuhov V Yu, Konstantinova M V and Gladkih A M 2019 Determination of restored units spectrum of equipment and development of the assembly unit repair method at industrial enterprises J. of Phys.: Conf. Ser. 1353 012047

[22] Kondrat’ev V V, Gorovoy V O, Kolosov A D, Kononenko R V and Konyukhov V Yu 2020 Description of the complex of technical means of an automated control system for the technological process of thermal vortex enrichment J. of Phys.: Conf. Ser. 1661 012101

[23] Gorovoy V O, Kondrat’ev V V, Kolosov A D, Kononenko R V and Konyukhov V Yu 2020 Description of software for an automated control system for the technological process of thermal vortex enrichment J. of Phys.: Conf. Ser. 1661 012096