Prophage Induction in Lysogenic *Escherichia coli* with Simple Hydroxylamine and Hydrazine Compounds

BERNARD HEINEMANN

Research Division, Bristol Laboratories, Division of Bristol-Myers Co., Syracuse, New York 13201

Received for publication 4 December 1970

The prophage-inducing capability of hydroxylamine sulfate and 36 of its derivatives, and of hydrazine dihydrochloride and dihydrazine sulfate and 43 of their derivatives, was determined in *Escherichia coli* W1709 (λ). Maximal nontoxic concentrations up to 1 mg/ml were tested. Hydroxylamine sulfate was active at 2.5 μg/ml and the following 17 derivatives were active at concentrations ranging up to 500 μg/ml: α-naphthylhydroxylamine, N-hydroxy-2-aminofluorene, oxamyl hydroxamic acid, O-carbamoyl hydroxylamine (isohydroxyurea), N-hydroxyurethane, N-methylhydroxylamine HCl, salicylhydroxamic acid, oxalohydroxamic acid, methoxylamine HCl, ethoxylamine HCl, N,N-diethylhydroxylamine oxalate, formaldoxime, formamidoxime, acetoxyhydroxamic acid, acetaldoxime, acetone oxide, and hydroxyguanidine sulfate. Hydrazine dihydrochloride and dihydrazine sulfate were effective inducers at 5.0 and 2.5 μg/ml, respectively, and the following nine derivatives of them were active at concentrations ranging up to 500 μg/ml: phthalic acid hydrazide, phenyldihydrazine HCl, p-nitrophenylhydrazine, p-chloro phenylhydrazine HCl, formylhydrazine, carbohydrazide, semicarbazide HCl, 1-methyl-1-phenylhydrazine sulfate, and acetic acid hydrazide. Nineteen hydroxylamine and 34 hydrazine derivatives were ineffective as inducers. Application of the prophage-induction system as a tool for detection of responsive hydroxylamino and hydrazino compounds which may be potential toxicological hazards in the environment is discussed.

There appears to be a clearly positive association (20) between a compound's ability to induce prophage in lysogenic bacteria and its ability to inhibit development of transplanted tumors in rodents. An ever-increasing list of compounds (20) capable of mutagenic, carcinogenic, and teratogenic effects in various experimental systems are also capable of prophage induction. Hydroxylamine has been shown to be mutagenic (17), chromosome-damaging (37), and teratogenic (38), and to possess weak carcinostatic (39) activities; hydrazine has been shown to be carcinogenic (6), mutagenic (26), and teratogenic (38). These properties suggest that both compounds and their analogues might also be capable of prophage induction and, if so, that this simple, in vitro test system might prove useful for detecting responsive hydroxylamino and hydrazino compounds found to be potential hazards in the environment.

Hydroxylamino and hydrazino compounds may be encountered by man and animals in the environment. Hydroxylamine is generally accepted as a logical intermediate in nitrogen fixation, nitrification, and denitrification reactions. A number of acyl derivatives of N-hydroxyamino acids commonly found as end products of microbial fermentations (31) and cyclic hydroxamic acids present in food plant sources (42) may represent unsuspected environmental, toxicological hazards. Pyridine-2-aldoxime is a hydroxylamine-derived medicinal. There has been interest recently in the potential therapeutic application (10) of acetoxyhydroxamic acid and in its use for improving animal nutrition (16). Evidence (29) that N-hydroxylation of carcinogenic, aromatic amines and amides may be a relatively general reaction by which these compounds are converted to proximal carcinogenic metabolites in vivo has focused attention on the hydroxyamino moiety as a potential carcinogen.

Hydrazine may occur as a primary product of nitrogen fixation by *Azotobacter agile* (15). Agaritine, characterized as β-N-(γ-L-(+)-glutamyl-p-hyroxymethylphenylhydrazine, has been isolated (24) from aqueous extracts of basidiomycetes of the family *Agaricaceae*. A steadily increasing array of hydrazine-derived medicinals include hydralazine, phenelzine, nialamid, iso-
carboxazid, isoniazid, several sulfa drugs, pyralazons, and hydrazones of 5-nitro-2-furaldehyde.

The number of industrial and agricultural applications of agents containing hydroxylamine (2) and hydrazine (35) moieties appears to be growing rapidly.

Recently there has been increasing interest in the possibility that various N-nitrosamines may have etiological significance in human cancer (25). Many of these same N-nitrosamines are also potent mutagens (27). Although much evidence has demonstrated (27) that carcinogenic N-nitrosamines alkylate cellular constituents of the tissues of treated animals, no direct evidence of the production of a diazoalkane or carbonium ion has been presented. The possible formation of other biologically active metabolites, including hydroxylamines and hydrazines which are reactive with nucleic acids, has not been excluded.

In this report, the results of testing 37 hydroxylamine and 45 hydrazine derivatives for prophage-inducing capability are presented. The minimal inducing concentrations for the effective agents, as well as a listing of the inactive compounds, are reported. Positive findings in this test system are considered in relation to a limited number of published results obtained in experimental systems demonstrating mutagenic, chromosome-damaging, carcinogenic, carcinostatic, and teratogenic effects.

MATERIALS AND METHODS

Minimal concentrations of test agent required to induce bacteriophage in streptomycin-dependent Escherichia coli W1709 (λ) were determined by use of the technique described in detail by Price et al. (33). Test sample activity is reported in terms of the ratio of the number of plaque-forming λ phage in the test sample (T) to that in a control (C). All phage present in the control sample are produced spontaneously. An analysis of test results indicates that the minimal concentration of compound having a T/C value of 3.0 (three times the spontaneous phage count), or greater, could be considered with some assurance (P < 0.05) to be effectively inducing the lytic cycle in E. coli W1709 (λ) cells.

To minimize changes in the test agent resulting from bacterial metabolism, induction was carried out in the absence of streptomycin, resulting in a transitory starving of the cells during the 1.5-hr induction period at 37 C. Similarly, to minimize chemical reactions, induction was carried out in a synthetic medium at pH 7.2.

Preparation of test materials. Compounds were dissolved in deionized water or, when necessary, in solvents just before use in the test to minimize activity losses. The highest final concentrations of solvents that could be employed without effect in the induction test were as follows: ethyl alcohol, 8%; acetone, 8%; and dimethylacetamide, 2%. Agents were tested at final concentrations up to 1.0 mg/ml when they proved to be sufficiently soluble and without toxicity for the bacterial cells.

Isohydroxyurea was provided by H. S. Rosenkranz, Columbia University; N-hydroxycyclohexylamine, by Abbott Laboratories, North Chicago, Ill.; acetyhydroxamic acid, 3-phenyl-1-hydroxyurea, 1-acetyl-2-picolinoyl hydrazine, and 1-methyl-2-(p-isopropylcarbamoyl)benzyl hydrazine HCl, by Cancer Chemotherapy National Service Center, Washington, D.C.; N-hydroxy-2-aminofluorene, N-acyetoxy-2-acylamino fluorene, and 4- and β-naphthylhydroxylamine, by J. A. Miller, University of Wisconsin; N-hydroxy-2-acetylamino fluorene, by H. L. Falk, National Institute of Environmental Health Sciences; oxamyl hydroxamic acid, by G. R. Gale, Medical University of South Carolina; phenelzine sulfate, by the Warner-Lambert Research Institute, Morris Plains, N.J.; N-acetyl-N-hydroxyl-1-naphthylamine, by S. Belman, New York University; and L-aspartic acid β-hydroxyamine, and L-β- aspartohydroxamic acid, by I. Chibata, Tanabe Seiyaku Co., Ltd., Osaka, Japan. The remaining test compounds were purchased from commercial sources.

RESULTS

The relative capabilities of the 37 hydroxylamines tested to induce lambda bacteriophage formation in a lysogenic strain, E. coli W 1709, are shown in Table 1. The inducing activities of these compounds fell into three groups. Ten compounds were classified as active (minimal inducing concentration, <100 μg/ml): α-naphthylhydroxylamine, N-hydroxy-2-aminofluorene, hydroxylamine sulfate, oxamyl hydroxamic acid, O-carbamoyl hydroxylamine (isohydroxyurea), N-hydroxurethane, N-methylhydroxylamine HCl, salicylhydroxamic acid, oxalohydroxamic acid, and methoxymine HCl. Eight were weakly active (minimal inducing concentration, 100 to 500 μg/ml): ethoxymine HCl, N,N-diethylhydroxylamine oxalate, formaldoxime HCl, formamidoxime, acetoxyhydroxamic acid, acetaldoxime, hydroxyguanidine sulfate, and acetone oxime. Nineteen derivatives were inactive at their highest nontoxic concentration up to 1,000 μg/ml.

Inducing activity was observed with hydroxylamine sulfate, with all 3 of the O-substituted hydroxylamines, with 4 of 7 N-substituted hydroxylamines, with 1 of 4 N,N-disubstituted hydroxylamines, with 4 of 9 monoximes, with 4 of 10 monohydroxamic acids, and with the single dihydroxamic acid tested. Neither of the single members of the O,N-disubstituted hydroxylamines or dioximes which were tested exhibited activity.

The observation that N-hydroxyurethane, which may be formed in vivo from urethane (30), induced prophage at 25 μg/ml is of interest in that urethane failed to induce prophage (34) at 1,000 μg/ml.
Table 1. Prophage induction in Escherichia coli W1709 (λ) by hydroxylamine and its derivatives

Compound tested	Minimal inducing concn (μg/ml)	No induction at highest concn tested (μg/ml)
Hydroxylamine sulfate H₂NOH		
O-substituted R—ONH₂ Methoxyamine HCl	100	—
Ethoxyamine HCl	200	—
O-carbamyl hydroxylamine (isohydroxyurea)	15	—
N-substituted R—HNOH N-methylhydroxylamine HCl	50	—
Hydroxyguanidine sulfate	500	—
N-hydroxycyclohexylamine	—	1,00
N-phenylhydroxylamine	—	0.8
a-Naphthylhydroxylamine	0.5	—
β-Naphthylhydroxylamine	—	3.1
N-hydroxy-2-amino-fluorene	0.5	—
N,N-N-substituted R—NOH N-formyl-N-hydroxyglycine (Hadamidin)	—	1,00
N,N-diethylhydroxylamine oxalate	200	—
N-hydroxy-2-acetylaminofluorene	—	62
N-hydroxy-N-acetyl-1-naphthylamine	—	100
O,N-N-substituted R—NHO—R N,N-dimethylhydroxylamine HCl	—	1,00
Oximes		
Monoximes R=NOH		
Formaldoxime HCl	250	—
Acetaldoxime	500	—
Formamidoxime	250	—
Acetamidoxime	—	1,00
Acetone oxime	500	—
Cyclohexanone oxime	—	500
Benzaldoxime	—	100
2,3-Butanedione monoxide	—	1,00
Pyridine-2-aldoxime methiodide	—	1,00
Dioximes		
HON=R—NOH	—	1,00
Glyoxime	—	1,00
Hydroxamic acids		
Monohydroxamic acids R—CONHOH	1,000	
Acetohydroxamic acid	250	—

It is also of interest that the hydroxylamine derivative hydroxyurea failed to induce prophage in the test at 1,000 μg/ml, whereas isohydroxyurea (O-carbamoyl hydroxylamine), its possible isomeric metabolite (36), was active at 15 μg/ml. Hydroxyurea induced prophage at a concentration of 0.005 m when tested in a complete medium with an actively metabolizing strain of E. coli λ-28 (19).

The relative capabilities of the 45 hydrazines to induce bacteriophage are shown in Table 2. The inducing activities of these compounds also fell into three groups. Active compounds (minimal inducing concentration, <100 μg/ml) were hydrazine dihydrochloride, dihydrazine sulfate, phthalic acid hydrazide, phenylhydrazine HCl, p-nitrophenylhydrazine, p-chlorophenylhydrazine HCl, formylhydrazine, and carboxyhydrazide; weakly active (minimal inducing concentration, 100 to 500 μg/ml) compounds were semicarbazide HCl, 1-methyl-1-phenylhydrazine sulfate, and acetic acid hydrazide; and 34 compounds were inactive at their highest nontoxic concentration, up to 1,000 μg/ml.

Dihydrazine sulfate, hydrazine dihydrochloride, and phthalic acid hydrazide, with minimal inducing concentrations of 2.5, 5.0, and 5.0 μg/ml, respectively, proved to be the most active agents in this series of compounds. Inducing activity was also observed with 3 of 14 1-substituted hydrazines, with 1 of 3 1,1-disubstituted hydrazines, with 3 of 10 monohydrazides, and with 2 of the 5 dihydrazides tested. None of the eight 1,2-disubstituted hydrazines or the single representatives in each of the dihydrazine, cyclic hydrazide, or hydrazone categories was active.
Table 2. Prophage induction in *Escherichia coli* W1709 (X) by hydrazine and its derivatives

Compound tested	Minimal inducing concn (µg/ml)	No induction at highest concn tested (µg/ml)
Hydrazine dihydrochloride	5.0	—
Dihydrazine sulfate	2.5	—
Hydrazines		
1-Substituted		
R—NHNH₂		
Methyl hydrazine sulfate		
β-Hydroxyethyl hydrazine		
Cyclohexylhydrazine		
Phenylhydrazine HCl		
p-Nitrophenyldihydrazine		
p-Chlorophenyldihydrazine HCl		
2,4-Dinitrophenyldihydrazine		
2,5-Dichlorophenyldihydrazine		
Phenelzine sulfate		
p-Hydrazinobenzoic acid HCl		
p-Hydrazinobenzene-sulfonic acid HCl		
1-Naphthyldihydrazine HCl		
2-Hydrazinopyridine		
Aminoguanidine sulfate		
1,1-Disubstituted		
R N—NH₂		
1,1-Dimethylhydrazine		
1-Methyl-1-phenylhydrazine sulfate		
1,1-Diphenylhydrazine HCl		
1,2-Disubstituted		
R—NHNH₂—R symmetry		
1,2-Diformylhydrazine		
1,2-Dicarboxyldihydrazine		
sym-Dibenzyol hydrazine		
Iproniazid		
Isatin β-thiosemicarbazone		
1-Methyl-2-(p-isopropyl-carbamoyl)ben-		
zyl hydrazine HCl		
1-Acetyl-2-picolinoyl hydrazine		
Dihydrazines		
H₂NHN=C—(R)—		
sym—Dihydrazine HCl		
Hydrazones		
Carbohydrazide		
Oxalyl dihydrazide		
Adipic acid dihydrazide		
Phthalic acid dihydrazide		
Sebacic dihydrazide		
Cyclic		
Maleic acid hydrazide		
Hydrazonaledehyde hydrazone		

It is conceivable in those cases where inducing activity was observed only at 100 µg/ml, or greater, that induction could be the result of small amounts of undetermined impurities present in the test compound or of conversions produced during preparation of test solution or during the induction period.

DISCUSSION

Biological activities of interest both from the view of environmental toxicology and human pathology have been observed so far in experimental systems with a number of prophage-inducing hydroxylamine and hydrazine derivatives. Chromosome-damaging properties have been demonstrated with oxalohydroxamic acid (9) and with both *N*-hydroxyurethane and *N*-methylhydroxylamine (8); mutagenic activities (18), with *N*-methylhydroxylamine and methoxyamine; teratogenic activities (11), with acetoxyhydroxamic acid and *N*-hydroxyurethane; carcinogenic (4) activity, with *N*-hydroxyurethane;...
and carcinostatic activity, with N-hydroxyurethane (1) and with acetohydroxamic acid (39).

The potent carcinogen (28) N-hydroxy-2-acetylaminofluorene failed to induce prophase at a concentration of 62 μg/ml. Similarly, its ester, N-acetoxy-2-acetylaminofluorene, an even stronger carcinogen (29) at sites of application, failed to induce at 125 μg/ml, its highest nontoxic concentration (unpublished results). It has been postulated (22) that biotransformation of N-hydroxy-2-acetylaminofluorene to N-hydroxy-2-aminofluorene, which induces prophase at 0.5 μg/ml and which may be the ultimate carcinogen, occurs.

α-Naphthylhydroxylamine was capable of inducing E. coli prophase at a concentration of 0.5 μg/ml and has exhibited both greater carcinogenicity (3) and mutagenicity (32) than its β-isomer which failed to induce at 3.1 μg/ml, its highest nontoxic concentration.

Carcinogenic properties have been demonstrated with phenylhydrazine (12), and teratogenic activity, with semicarbazide (38).

The possibility that hydroxylamine and hydrazine compounds which are potential toxicological hazards may be transformed in vivo to prophase-inducing derivatives must be considered. Hydroxamates may be directly hydrolyzed (5), releasing hydroxylamine which induces prophase at 2.5 μg/ml and which has been shown to be mutagenic (17), chromosome-damaging (37), and teratogenic (38), and to possess weak carcinostatic (39) activities. Formation of hydrazine, or its derivatives, upon breakdown of isonicotinic acid hydrazide by liver (40) and bacterial (41) enzymes has been reported. It has been suggested that the carcinogenic action of isoniazid in mice is mediated through liberation of free hydrazine (7), which induces prophase at 5.0 μg/ml and for which carcinogenicity (6), mutagenicity (26), and teratogenicity (38) have been observed. The possible role of the hydrazine function has been considered (13) in the carcinogenesis of five 2-hydrazinothiazole compounds.

The prophase-induction system has already shown utility (23) when employed to select potential carcinostatic agents present in complex fermentation broths and as an assay procedure for following the extraction and isolation of active agents from such broths. A bioautographic technique that has proven useful for identification of purified prophase-inducing agents has also been developed (21).

Unfortunately, sufficient test data regarding mutagenicity, carcinogenicity, and teratogenicity, in experimental systems, are not yet available to establish a clearly positive association of these effects with the prophase-inducing capability of hydroxylamino and hydrazino compounds. Additional testing will determine whether such associations exist. Evidence supporting a relationship between an agent’s prophase-inducing capability and its mutagenic and carcinogenic activities has already been obtained (14) in a series of 16 nitroquinolines and hydroxyminoquinolines. It is hoped that the simple, in vitro, prophase-induction system may prove useful for detecting responsive hydroxylamino and hydrazino compounds which may be potential hazards in the environment.

ACKNOWLEDGMENTS

This investigation was supported by contracts PH 43-64-1159 and NIH 69-35 with Chemotherapy, National Cancer Institute, National Institutes of Health.

I am indebted to Alma J. Howard and Sally Lyon for excellent technical assistance and to W. T. Bradner and K. E. Price for their helpful comments in preparation of the manuscript.

LITERATURE CITED

1. Adamson, R. H. 1965. Activity of congeners of hydroxyurea against advanced leukemia L1210. Proc. Soc. Exp. Biol. Med. 119:456-458.
2. Baker, P. J. 1966. Hydroxylamine and hydroxylamine salts, p. 493–508. In Kirk-Othmer encyclopedia of chemical technology, 2nd ed., vol. 11. John Wiley & Sons, Inc., New York.
3. Belman, S., W. Troll, G. Teobor, R. Reinhold, B. Fishbein, and F. Mukai. 1966. The carcinogenicity and mutagenicity of arylhydroxylamines. Proc. Amer. Cancer Ass. 7:6.
4. Bernblum, I., D. Ben-Jahal, N. Haran-Chara, A. Lapidot, E. Simon, and N. Trainin. 1959. Skin initiating action and lung carcinogenesis by derivatives of urethane (ethyl carbamate) and related compounds. Biochem. Pharmacol. 2:168-176.
5. Bernheim, M. L. C. 1964. The enzymic hydrolysis of certain hydroxamic acids. Arch. Biochem. Biophys. 107:313–318.
6. Bianciflori, C., E. Bucciarette, D. B. Clayson, and F. E. Santillil. 1964. Induction of hepatomas in CBA/cb/Se mice by hydrazide-sulfate and the lack of effect of croton oil on tumor induction in BALB/Cb/Se mice. Brit. J. Cancer 18:543–550.
7. Bianciflori, C., and R. Ribachi. 1962. Pulmonary tumors in mice induced by oral isoniazid and its metabolites. Nature (London) 194:488.
8. Borenfreund, E., M. Krim, and A. Bendich. 1964. Chromosomal aberrations induced by hyponitrite and hydroxylamine derivatives. J. Nat. Cancer Inst. 31:667-672.
9. Boyland, E., R. Nery, and K. S. Peggie. 1965. The induction of chromosome aberrations in Vicia faba root meristems by N-hydroxurethane and related compounds. Brit. J. Cancer 19:878-882.
10. Brent, B. E., and A. Adepoju. 1967. Effect of scotohydroxamic acid on rumen urease. J. Anim. Sci. 26:1482.
11. Chasse, S., and M. L. Murphy. 1966. The effects of hydroxyurea and related compounds on the rat fetus. Cancer Res. 26:1448-1454.
12. Clayson, D. B., C. Bianciflori, U. Mills, and F. E. Giornell. 1965. The Induction of pulmonary tumors in BALB/c/Cb/Se mice by derivatives of hydrazine. Lung Tumors Anim., Proc. Quadrennial Conf. Cancer, 3rd, Perugia, Italy, p. 869-877.
13. Cohen, S. M., E. Ertürk, J. M. Price, and G. T. Bryan. 1970. Comparative carcinogenicity in the rat of 2-hydrazinoto-

14. HEINEMANN

15. APPL. MICROBIOL.

16. 730
zoles with nitrofuryl, nitrophenyl, or aminophenyl substituents in the 4-position. Cancer Res. 36:897-901.
14. Epstein, S. S., and I. B. Saporochoetz. 1968. On the association between lysogeny and carcinogenicity in nitroquinolines and related compounds. Experientia 24:1245-1248.
15. Fedorov, M. V. 1952. Partial removal of nitrogen fixation products from Azotobacter cells in nutrient media. Mikrobiologiya 21:395-402.
16. Flahwein, W. N., P. P. Carbone, and H. D. Hochstein. 1965. Acetohydroxamate: bacterial urease inhibitor with therapeutic potential in hyperammonemic states. Nature (London) 208:46-48.
17. Freese, E. 1964. Hydrolamins as a mutagen and inactivating agent. J. Mol. Biol. 3:133-143.
18. Freese, E. B., and E. Freese. 1964. Two separable effects of hydroxylamine on transforming DNA. Proc. Nat. Acad. Sci. U.S.A. 52:1289-1297.
19. Gado, I., and I. Horvath. 1968. Induction of lambda phage by hydroxyurea. Biochem. Pharmacol. 17:332-334.
20. Heinemann, B. 1971. Prophage induction in lysogenic bacteria as a method of detecting potential mutagenic, carcinogenic, carcinostatic, and teratogenic agents, p. 235-266. In A. Hollander (ed.), Chemical mutagens: principles and methods for their detection, vol. 1. Plenum Press, New York.
21. Heinemann, B., A. J. Howard, and Z. Hollister. 1967. Application of paper chromatograms to the study of inducers of the bacteriophage in Escherichia coli. Appl. Microbiol. 15:723-725.
22. Krieb, E. 1965. On the interaction of N-2-fluorenylhydroxylamine with nucleic acids in vitro. Biochem. Biophys. Res. Commun. 26:793-799.
23. Lein, J., B. Heinemann, and A. Gourevitch. 1962. Induction of lysogenic bacteria as a method of detecting potential antin tumor agents. Nature (London) 196:783-784.
24. Levenberg, B. 1964. Isolation and structure of agarnitine, a y-glutamyl-substituted arylhydrazine derivative from Agaricus. J. Biol. Chem. 239:2267-2273.
25. Lijinsky, W., and S. S. Epstein. 1970. Nitrosamines as environmental carcinogens. Nature (London) 225:21-23.
26. Lingens, F. 1964. Formation of biochemically deficient mutants of Escherichia coli with hydrazine and hydrazine derivatives. Z. Naturforsch. 19b:151-156.
27. Magee, P. N., and J. M. Barnes. 1967. Carcinogenic nitroso compounds. Advan. Cancer Res. 10:163-245.
28. Miller, E. C., J. A. Miller, and H. A. Hartman. 1961. N-hydroxy-2 acetylaminofluorene: A metabolite of 2-acetylaminofluorene with increased carcinogenic activity in the rat. Cancer Res. 21:815-824.
29. Miller, J. A., and E. C. Miller. 1969. The metabolic activation of carcinogenic aromatic amines and amidies. Progr. Exp. Tumor Res. 11:273-301.
30. Mivibh, S. S. 1968. The carcinogenic action and metabolism of urethan and N-hydroxyurethan. Advan. Cancer Res. 11:1-42.
31. Nellands, J. B. 1967. Hydroxamic acids in nature. Science 156:1443-1447.
32. Perez, G., and J. L. Radomski. 1965. The mutagenicity of the N-hydroxynaphthylamines in relation to their carcinogenicity. Ind. Med. Surg. 34:714-716.
33. Price, K. E., R. E. Buck, and J. Lein. 1964. System for detecting inducers of lysogenic Escherichia coli W1709 (lambda) and its applicability as a screen for antineoplastic antibiotics. Appl. Microbiol. 12:428-435.
34. Price, K. E., R. E. Buck, and J. Lein. 1965. Incidence of antineoplastic activity among antibiotics found to be inducers of lysogenic bacteria. Antimicrob. Ag. Chemother. 1964, p. 505-517.
35. Raphaelian, L. A. 1966. Hydrazine and its derivatives, p. 164-196. In Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed., vol. 11. John Wiley & Sons, Inc., New York.
36. Rosenkranz, H. S., R. D. Pollak, and R. M. Schmidt. 1969. Biologic effects of iso hydroxyurea. Cancer Res. 29:209-218.
37. Somers, C. E., and T. C. Hsu. 1962. Chromosome damage induced by hydroxylamine in mammalian cells. Proc. Nat. Acad. Sci. U.S.A. 48:937-943.
38. Stoll, R., F. Bodit, and R. Maraud. 1967. Effect on the chick embryo of various antimitotic agents related to hydroxymethyl and semicarbazide. C. R. Seances Soc. Biol. Filiale 161:1967.
39. Tarnowski, G. S., W. Kreis, F. A. Schmid, J. G. Cappuccino, and J. H. Burchenal. 1966. Effect of hydroxylamine (NSC-26250) and related compounds on growth of transplanted animal tumors. Cancer Res. (Pt. 2) 26:1279-1301.
40. Toida, I. 1960. Breakdown of isoniazid by liver preparations. Enzymic hydroxyl-derivative transfer. Jap. J. Tuberc. 8:111-129.
41. Toida, I. 1962. Isoniazid-hydroxylizing enzyme of mycobacteria. Amer. Rev. Respirat. Dis. 85:720-726.
42. Wahlroos, O., and A. I. Virtanen. 1959. Precursors of 6-methoxybenzoazoxoline in maize and wheat plants, and their isolation and properties. Acta Chem. Scand. 13:1906-1908.