高 Mn オーステナイト鋼の多層溶接金属における
高温割れのキャラクタリゼーション*

植田 幸治**, 山下正太郎***, 高田 充志**, 佐原 直樹***, 小椋 智***, 才田 一幸***

Characterization of Hot Cracking in Multi-Pass Weld Metal of High Manganese Austenitic Steel*

by UEDA Keiji**, YAMASHITA Shotaro***, TAKADA Atsushi**, SAHARA Naoki***, OGURA Tomo*** and SAIDA Kazuyoshi***

In multi-pass welding of high manganese austenitic steel, weld metal is solidified in austenite single phase and hot cracking may occur depending on residual stress. In order to identify the cracking morphology, a fracture surface of the cracking of weld metal in multi-pass welding test was observed. The fracture surface indicated a dendritic morphology and a bunching pattern, therefore it is considered that the crack in the multi-pass weld metal is caused by residual liquid film or remelting liquid film.

Varestraint test was carried out in order to clarify the characterization of the crack, and then the fracture surface of cracks obtained by the test was observed. Transverse-type and longitudinal Varestraint test were used for getting typical fracture surfaces of solidification cracking in weld metal, and weld metal cracking in reheat weld metal and heat affected zone of base metal respectively. Comparing the fracture surfaces of cracks of Varestraint test and crack in practice, the fracture surface of the solidification cracking was similar to the crack in multi-pass weld metal in this study. Thus, it is considered from comparing the fracture surfaces that solidification cracking might mainly occur in the multi-pass welding of the high manganese steel.

Key Words: manganese; austenite; steel; hot cracking; multi-pass weld metal

1. 結 言

発電所、自動車等の内燃機関におけるエネルギー創出において二酸化炭素排出を避けられない一方で、地球温暖化対策から二酸化炭素などの温室効果ガスの排出量削減に対する規制が国際的に進められている。温室効果ガス排出量を抑制するための手段としては、天然ガス、水素等の活用等が提案されているが、天然ガス、水素を燃料として使用する場合には、燃料としての使用方法の問題のみならず、輸送および貯蔵手段の選択が課題となる。

天然ガス、水素は、極低温での液体による貯蔵が検討される例が多く、貯蔵容器には気密性が求められることから溶接施工の適用が必要である。加えって安全性確保のために溶接部に対して極めて高い健全性が要求される。また、極低温での貯蔵となることから材料には低温靭性に優れる材料、特にへき開破壊が生じない面心立方構造の材料が使用される場合が多い。面心立方構造の極低温用材料として AI合金、オーステナイト系ステンレス鋼 SUS304等があげられる。強度特性に関しては、AI合金が高強度であることは言うまでもなく、SUS304も通常のフェライト鋼に対して強度重量比で劣る。またフェライトが残留すると起因した靭性低下等の問題も挙げられている。一方で、フェライト鋼であるにも関わらずその冶金的特性から優れた低温靭性を示す9%Ni鋼も使用されている。9%Ni鋼は、体心立方構造主体であるがNi添加によるマトリクス自体の靭性向上に加え、残留オーステナイトに起因した微細組織により低温靭性に優れる。現在では、Ni含有量を抑えた7%Ni鋼の開発・適用が進んでいる。なお、これらの高Ni鋼を共金系溶接材料で溶接を行うと、溶接部にマルテンサイトが形成し低温靭性が低下することから、オーステナイト単相組織となるハステロイ系などのNi基溶接材料を用いることが一般的である。このような低温用材料は多く提案・適用されているものの、いずれも経済性の観点に加え、通常のフェライト鋼に対して溶接部の強度が低いことや線膨張係数の違いなど、実用構造材料としての更なる性能向上に対する要望がある。

上述の材料の他に面心立方構造を持つ鋼として、高Mnオーステナイト鋼（以降、高Mn鋼）が期待されている。高Mn鋼の歴史は古く研究成果は膨大であるが、Hadfield鋼をベースとした18%Mn系の非磁性鋼の研究は、リニアモーターやヒーターの製作に必要な溶接性を兼ね備えた高Mn鋼の開発、超電導に関する1970年代頃から盛んに行われた。非磁性系の抵抗用鋼が極低温環境にさらされることから、高Mn鋼にも高強度・高靭性の特性が要求された。その合金設計は様々なであり、18～30%Mnに対してCr、Al、Ni等を添加することで極低温における耐力向上、さらなる靭性の改善が図られている。したがって、
高 Mn 鋼は極低温において高強度・高靭性の特性を有する材
料であり、Mn の経済性が優れることからも、次世代エネルギ
ー活用時の構造材料の候補として期待されている。
各種低温用材料の実構造物の適用にあたっては母材の機
械的特性は言うまでもなく、溶接施工による建造工事が欠
かせない。その溶接性に関して、面心立方構造を有する Al
合金は溶接時の凝固割れの発生が問題となる場合がある。
また、初晶オーステナイトで凝固するオーステナイト系ス
テンレス鋼の溶接金属部では高い高温割れ感受性を示す。
高 Mn 鋼はオーステナイト組織を有することから、高割れ
発生の可能性が高いことが容易に推察できる。しかしなが
ら、高 Mn 鋼における割れの形態やその要因に関する研究事
例は、オーステナイト系ステンレス鋼等と比較すると非常
に少なく、必ずしも十分に解明されていない。高 Mn 鋼の溶
接性に関しては、S、P、Si の含有量増加に伴い高温割れ感受
性が高まることが指摘されている。

2. 多層盛溶接試験

実施を想定した高温割れを把握するための多層盛溶接
試験に使用した試験体の模式図を Fig. 1 に示す。板厚 30 mm
の高 Mn 鋼板に対して開先角度 50°の V 開先を施した。ルー
トギャップは 5 mm とし、溶接する際には裏当てを使用した。
試験体は拘束梁に溶接することで固定され、開先内の
多層溶接金属部には Table 1 に示す多層溶接条件に起因し
て拘束力が生じることとなる。溶接方法には、MAG溶接を
の熱間圧延を実施し、板厚 8 mm の鋼板とした後、室温まで
水冷による加速冷却を実施した。熱間圧延鋼板より、100(l)
×50(w)×5(t) mm のパレストレス試験片を採取した。いずれ
の鋼板も母材のミクロ組織は、炭化物の無い平均結晶粒
径約 20μm の γ 単相組織である。

Material	C	Si	Mn	P	S	Cr	Fe
Filter wire	0.051	0.040	25.4	0.005	0.005	5.56	Bal.
Base material	0.48	0.45	25.3	0.011	0.002	5.06	Bal.

Table 1. Chemical compositions of materials (mass%).

(a) Specimen for multi-pass welding.

(b) Specimen for Varestraint test.

Table 2. Welding conditions of GMA welding.

Welding speed, mm/s | 2.33
Arc current, A | 240
Arc voltage, V | 30
Shielding gas | 80% Ar + 20% CO₂

Fig. 1 Schematic illustration of the mock-up for multi-pass welding test.
用いて240 A, 30 V, 溶接速度2.33 mm/sの溶接入熱3.0 kJ/mmの条件で溶接した。バス間温度は423 K以下とし、溶接ガスには80%Ar-20%CO₂を用いた。

多層盛溶接終了後は、溶接方向に対して垂直方向の溶接断面を5断面切り出し、溶接割れ発生の有無を確認した。割れ確認の確認方法には三点曲げを実施し、開先中央が曲げ中心となるように溶接断面に出げと付与した。付与された曲げにより拡大された割れの観察を行った。

2.3 バレストレイン試験

多層盛溶接部での発生が想定される高温割れの種類を特定する目的で、バレストレイン試験を実施した。本研究では、トランスバレストレイン試験とスポットバレストレイン試験を用いた。トランスバレストレイン試験の概略をFig.2に模式的に示す。バレストレイン試験には100×50×5 mmの試験片を使用した。試験片の中心と曲げブロック中心を揃え、ヨークと曲げブロックの間に試験片を固定した後、試験片面端にTIG溶接を実施した。TIG溶接条件をTable 3に示す。溶融池後端が試験片中央に到達すると同時に溶接を終了し、ヨークを落とすことで試験片の溶接金属中央にひずみを付与した。バレストレイン試験条件をTable 4に示す。本検討では、各割れの破面形態を特定することを目的としたため、5.9%の比較的高いひずみを溶接金属に付与し、溶接金属部に高温割れを強制的に発生させた。

スポットバレストレイン試験装置構成はトランスバレストレイン試験と同様でFig.2に示す通りである。実溶接施工のように多層盛溶接される場合には、液化割れ発生は、母材溶接熱影響部と溶接金属再熱部、2種が想定される。本研究では、母材、再熱溶接金属のそれぞれに生じた液化割れを区別するため、2種類のスポットバレストレイン試験を実施した。スポットバレストレイン試験の模式図をFig.3に示しているが、Type Aは供試材料にそのままアークを点弧する方法。Type BはTable 3のトランスバレストレイン試験の溶接条件と同様の溶接を施した後、その溶接金属部にアーク点弧を実施する方法である。Type Aは母材溶接熱影響部に発生する液化割れ、延性低下割れ、Type Bでは再熱溶接金属中に生じる液化割れ、延性低下割れを再現した。スポットバレストレイン試験における溶接条件はTable 5に示した。

2.4 割れ破面観察

多層盛溶接金属断面に生じた割れ、各バレストレイン試験によって生じた割れはSEMにより破面観察した。各割れの近傍まで切断機を用いて切り込みを入れた後、強制的に破断させることで割れ破面を開口した。各割れ破面に対してFE-SEMを用いて割れの様相ならびに表面状態を観察した。割れ破面表面の化合物に対しては、EDSによる同定を行った。

Table 3 Welding condition of transverse Varestraint test.

Welding speed, mm/s	1.67
Arc current, A	110
Arc length, mm	2
Shielding gas(Ar), L/min	15

Table 4 Augmented strain of Varestraint test.

Bending block radius, mm	40
Augmented strain, %	5.9
Stroke length, mm	9.5

Table 5 Welding condition of spot Varestraint test.

Arc current, A	80
Time, s	10
Arc length, mm	2
Shielding gas(Ar), L/min	15
Fig. 4 Observation result of weld metal cracks in multi-pass welding test.

(a) Cross-section of multi-pass weld metal.
(b) Enlarged image of crack.

Fig. 5 Fractographic features of a crack occurred at multi-pass welding test.

(a) Crack in multi-pass weld metal.
(b) Fracture surface of high temperature side (Point A).
(c) High magnification view of fracture surface (Point A).
(d) Fracture surface of low temperature side (Point B).
3. 多層盛溶接金属部の高温割れ

多層盛溶接金属部断面の観察結果をFig.4に示す。多層盛溶接金属中に生じた割れを矢印で示しているが、それぞれの割れは後続溶接金属溶融境界近傍に生じていた。また、割れ発生部を拡大すると割れが2つの異なる成長方向を持つ一次晶間に発生していた。なお、溶接最終層の溶接金属部および母材溶接熱影響部では割れは確認されなかった。また、割れは多層溶接完了後に観察されため、割れ発生時期については特定できない。

多層溶接金属中に生じた割れの破面をFig.5に示す。Fig.5 (a) は割れ破面全体を示している。割れ破面を破線で囲んでいるが、割れ長さは板厚方向に約1mmと比較的大きな割れであった。

破面全体写真のPoint A, B のそれぞれの位置の拡大写真をFig.5 (b), (d) に示している。 (b) は高温側（Point A）、(d) が低温側（Point B）のそれぞれの割れ様相である。破面写真より、(b) の破面がアンドライト形態を呈していることがわかる。また、(b) における割れ破面表層を拡大観察すると、Fig.5 (c) のように液膜の痕跡を示すバンチング模様が観察された。一方で、低温側の破面 (d) からはアンドライト形態は確認されず、比較的滑らかな破面形態であることがわかる。さらに、(b) ではみられなかった凝固期間のアンドライトアーム間に観察される小さな窪み（hollow）がみられた。

Fig.5 に示した割れ破面観察結果には、延性低下割れのような滑らかな粒界破面を確認することができず、割れ破面の大部分は高温、低温ともに液膜関与によって発生した割れであると断定できるものであった。このことから、高Mn鋼多層盛溶接金属中に生じた割れが、高温割れの中でも凝固割れ、もしくは液化割れであることが示唆された。

4. 高温割れ再現試験

4.1 バレストレイン試験後の割れ分布

付加ひずみ値5.9%のひずみ条件においてトランス式、スポット式のそれぞれのバレストレイン試験において得られた割れ観察結果をFig.6に示す。図中の破線はひずみ負荷時

![Fig.6 SEM observation result of surface of test specimen after each Varestraint test at augmented strain 5.9%](image)
の固液界面を示している。各試験において発生した割れは固液界面もしくはその近傍から生じていたことがわかる。
Fig.6(a)より、トランスバレストレイン試験では、溶接金属上に溶融境界線に対して法線方向に割れが生じていることがわかる。Fig.6(b)(c)の母材および再熱溶接金属のスポットバレストレイン試験においても溶融境界線に対して法線方向に割れが放射状に生じているのが、ひずみ荷重方向に対して垂直方向に割れが多く認められた。特にFig.6(c)の再熱溶接金属のスポットバレストレイン試験Type Bにおいては、溶接金属上に比較的大きな割れが集中していた。

各試験で発生した最大割れ長さの比較をFig.7に示す。割れ発生温度範囲に換算していないため各バレストレイン試験結果を比較することは困難であるが、母材のスポットバレストレイン試験Type Aと溶接金属のスポットバレストレイン試験Type Bの結果からは、発生した割れ長さがほぼ同程度であった。スポットバレストレイン試験条件はいずれも同じ溶接条件であることを鑑みると、本研究で用いた高Mn鋼の再熱溶接金属部と母材熱影響部における液化割れ感受性は同程度であることが類推される。

4.2 バレストレイン試験の割れ破面形態

Fig.6に示したバレストレイン試験において溶融境界線近傍に生じた割れの破面観察結果をFig.8に示す。Fig.5と同様、図中には破線で割れ破面を囲んでいる。Fig.8(a), (b), (c)はそれぞれ、トランスバレストレイン試験、鋼板のスポットバレストレイン試験Type Aおよび溶接金属のスポットバレストレイン試験Type Bで得られた破面である。Fig.8(a)はデンドライトの様相に似た凝固組織がみられることから凝固割れ破面である。Fig.8(b), (c)は粒界破面の様相を呈していることから凝固割れではないことがわかる。

Fig.8の各割れ破面を詳細に把握するため、Fig.9に割れ破面の拡大画像を示している。Fig.9(a)はトランスバレストレイン試験、(b)は鋼板のスポットバレストレイン試験Type A、(c)は溶接金属のスポットバレストレイン試験Type Bの割れから得られた破面表層画像である。Fig.9(a)の破面Iは、溶融境界線近傍で見られる比較的高温側の破面である。デンドライト形態に似た丸み帯びた組織を呈しており、その表面からはパンチング模様が確認された。また、比較的低温側の破面IIでは凝固末端期の破面に観察される小さな窪みが観察された。Fig.9(b)の鋼板のスポットバレストレイン試験により得られた割れ破面から、破面形態は粒界破壊破面（ロックキャンディーパターン）に類似しているが、破面IIのように結晶粒間において粒界液化の痕跡がみられた。さらに、帯びた粒界破面の表面からは粒界IIIに示すパンチング模様が観察された。Fig.9(c)の溶接金属のスポットバレストレイン試験で、再熱溶接金属部に発生した割れ破面Iに関しても粒界破面を呈していることがわかるが、破面表層においてパンチング模様が確認できている。また溶接金属のスポットバレストレイン試験Type Bの場合は、粒界破面の

Fig.7 Comparison of maximum crack length at each Varestraint test.

Fig.8 Fracture surface at each Varestraint test.
高 Mn 鋼のバレストレイン試験後の破面観察結果からは延性低下割れは確認できなかった。Fig.9 の破面観察結果によると、各バレストレイン試験で生じた割れは、Fig.9 (a) トランスバレストレイン試験では凝固割れ、Fig.9 (b) 鋼板のスポットバレストレイン試験では供試材料の母材溶接熱影響部に生じる液化割れ、Fig.9 (c) 溶接金属のスポットバレストレイン試験では供試材料の溶接金属部に生じる液化割れであると判断できる。Fig.9 と Fig.5 の破面形態を比較すると、多層盛溶接金属で生じた破面形態が Fig.9 (a) と類似していることを考慮すると大部分が凝固割れであると推察され、一部に液化割れを含む可能性がある。

5. 多層盛溶接継手に発生した高温割れの特定

多層盛溶接継手において、母材熱影響部における高温割れはみられなかった。一方、溶接金属中に生じた割れは、溶融境界から前層の溶接金属部内で生じていたことから、一見再熱溶接金属部に生じた液化割れのように推測される。ただし、多層盛溶接継手に生じた割れ破面の様相は、その大部分をアンドライト凝固組織が占めることから凝固割れであると推定できるが、多層盛溶接における割れの発生時期までを特定することができず液化割れ、凝固割れの双方の可能性がある。延性低下割れについては、多層盛溶接
部ならびにパレストレスト良試験結果からも観察されていなかったことから、本研究で使用した高Mn鋼で延性低下割れが生じる可能性は低いと考えられる。

高温割れ感受性を高める元素として、不純物元素P、Sが挙げられるが、中川らによるとSは共晶点の高いMnS、Pは共晶点の低いMnPを凝固中に形成する可能性があると示唆している(19)。本研究で使用した高Mn鋼には、26%近いMnが添加されていることから、溶接時の凝固開始および終了温度が低合金鋼と比べて低いうえ、MnSの晶出温度が高くなることから、凝固過程でのMnSの晶出が予想される。Fig.10は割れ破面に観察された生成相に対してEDS分析を実施した結果の一例である。Fig.10は母材液化割れ破面に対してEDS分析を実施した結果の一例であるが、Mn、Sのピークが高いことから、MnSの晶出であることが示唆される。同様に破面上にMnSが確認された。

これら結果を踏まえると、高Mn鋼の溶接金属部では主に凝固割れが生じるものと推測され、その凝固過程においてはMnSの晶出が考えられるから、高Mn鋼の凝固割れ性に及ぼすMnS生成を考慮した際のS量の影響についても興味が持たれるところである。

6. 結言

Mn添加量が26%の高Mn鋼に対して多層盛溶接接続試験を実施し、高Mn鋼の溶接割れを再現した。トランスパレスストポイント試験、スポットパレストポイント試験において得られた割れ破面ならびに多層溶接金属に生じた割れ破面を比較することで割れを特定した。以下に本研究で得られた知見を示す。

(1) 高Mn鋼の多層盛溶接を実施したところ、溶接金属中に約1mmの割れが観察された。破面観察からは、凝固割れもしくは液化割れであると判断された。一方、母材溶接熱影響部には割れは認められなかった。

(2) 高Mn鋼に対してトランスパレストポイント試験ならびにスポットパレストポイント試験を実施した。5.9%のひずみを付与したが、延性低下割れは確認されなかった。

(3) トランスパレストポイント試験によって再現された凝固割れはデンドライト形態を示し、スポットパレストポイント試験により母材溶接熱影響部において生じた液化割れは破面表層にベンチング模様がみられる粒界破面を呈していた。また、スポットパレストポイント試験により再熱溶接金属部における液化割れの破面形態は、粒界破面ならびにアンドライト形態に近い破面が混在していた。

(4) パレストポイント試験により再現された割れ破面形態に
よると、多層溶接金属に発生した割れの大部分が凝固割れであることが明らかとなり、一部に液化割れを含む可能性があることが示唆された。

(5) いずれの試験においても、割れ破面上にはMnとSの濃化した生成相が確認されたことから、高Mn鋼溶接金属の凝固過程では、MnSが晶出している可能性が高いことが示唆された。

参考文献
1) S. Kamiya: Development of a LH2 container –advantages and disadvantages of LH2, Journal of High Pressure Institute of Japan, 42(2004), 146-153. (in Japanese)
2) K. Minoda: Problems on Welding for Aluminum Alloy Plate in LNG Carrier, Bulletin of the Society of Naval Architects of Japan, 530(1973), 414-424. (in Japanese)
3) Y. Nagata, A. Tanoue, T. Kida and T. Kawai: IHI-SPB Tank for LNG Fueled Ship, Journal of IHI Technologies, 52(2012), 36-41. (in Japanese)
4) O. Kamiya, K. Kumagai and Y. Kikuchi: The Effects of .DELTA.-Ferrite Morphology on Low Temperature Fracture Toughness of Austenitic Stainless Steel Weld Metal, Quarterly Journal of JWS, 9(1991), 525-531. (in Japanese)
5) T. Ooka and K. Sugino: The Study on 9%Nickel Low Carbon Steels, The journal of the Japan Institute of Metals and Materials, 30(1966), 435-441. (in Japanese)
6) M. Kariyazaki: Properties of 7%Ni TMCP Steel for LNG Storage Tanks, Kobe Steel Engineering Reports, 64(2014), 54-57. (in Japanese)
7) T. Sasaki, K. Watanabe, K. Nohara, Y. Ono, N. Kondo and S. Sato: Physical and Mechanical Properties of High Manganese Non-magnetic Steel and Its Application to Various Products for Commercial Use”, Transactions of the Iron and Steel Institute of Japan, 22 (1982), 1010-1020. (in Japanese)
8) K. Nohara and Y. Habu: Cryogenic Non-magnetic High Mn Steel for Accelerator Superconducting Magnet, Kawasaki Steel Giho, 21 (1989), 245-249. (in Japanese)
9) C. Ouchi, T. Sampei, T. Osuka, Y. Kohsaka, T. Kitada and Y. Kunisada: Workability of Non Magnetic Low Carbon High Manganese Steels, Nippon Kokan Giho, 88 (1981), 15-26. (in Japanese)
10) H. Ohtani, M. Miura, Y. Okada, T. Matsuoka, H. Egashira, S. Nagata, Y. Watanabe, and K. Sato: Various Properties and Products of High Manganese Non-magnetic Steels, Sumitomo Metal Technical Report, 33(1981), 1, 1-14. (in Japanese)
11) H. Masumoto, K. Suemune, H. Yoshimura, T. Inoue, T. Akasaka, T. Ogawa, Ohba, S. Hida, Y. and Harada, T: Development of a High-Manganese Steels, Seitetsu Kenkyu, 309 (1981), 67 (1981) A89-A92. (in Japanese)
12) Y. Ohtani, Y. Okada, M. Miura and H. Miyuki: Carbide precipitation of high Mn non-magnetic steel for toughness and corrosion resistance, Tetsu-to-Hagane, 67 (1981) A89-A92. (in Japanese)
13) K. Ueda, D. Izumi, K. Nakashima and S. Igi: Technical Review on the Welding Technology and Properties of High Manganese Steels, Proceedings of the 29th International Ocean and Polar Engineering Conference (ISOPE), (2019), 528-532.
14) S. Sawa: Recent Non Magnetic High Manganese Steels, Bulletin of Japan Institute of Metals, 18 (1979), 573-581. (in Japanese)
15) T. Kato, M. Fujikura, Y. Takeuchi and S. Kawasaki: Influence of Alloving Elements on Weldability of High Manganese Non-Magnetic Steel, No. 51(1980), Electric Furnace Steel, 287-295 (in Japanese)
16) N. Kimata and S. Ando: Hot Cracking Susceptibility of Austenitic Manganese Steel Welds, Journal of JWS, No. 41(1972), 215-224 (in Japanese)
17) Tetsuo Kato, “Effect of Chemical Compositions on the Properties of Austenitic Manganese Steels for Nonmagnetic Applications”, Transactions of the Iron and Steel Institute of Japan, Vol. 21, No. 12 (1981), pp. 852-861.
18) L. Yu, K. Saida, K. Nishimoto, Y. Sakata: Quantitative Evaluation Reheat Cracking Susceptibility by in-situ observation and measurement using laser confocal microscope, Quarterly Journal of JWS, 32(2014), p.251-257. (in Japanese)
19) H. Nakagawa and F. Matsuda: Fractography of Hot Crack in Weld Metal, Journal of JWS, 47(1978), 474-479.