Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Molecular Testing for Respiratory Viruses

K.A. Stellrecht

Department of Pathology and Laboratory Medicine, Albany Medical College; Albany Medical Center Hospital, Albany, NY, United States

INTRODUCTION

Respiratory tract infections (RTIs) are common and are associated with significant health burden. For example, pneumonia is the fourth leading cause of death globally and the leading infectious cause [1]. Despite being generally mild and self-limiting, the common cold is associated with an enormous economic burden, both in lost productivity and in expenditures for treatment [2]. The major viral agents of RTIs include influenza viruses A and B, respiratory syncytial virus (RSV), human metapneumovirus (HMPV), parainfluenza virus (PIV), adenovirus (AdV), rhinoviruses (RVs), enteroviruses (EVs), and human coronavirus (HCoV). Common to these viruses are their ability to infect airway epithelial cells, co-opt host cell proteins to facilitate infection, modulate both innate and adaptive immune responses, and to mediate proinflammatory responses which contribute to disease pathogenesis (Table 11.1). Yet, some of the unique features of these viruses can lead to diagnostic limitations.

MOLECULAR TARGETS

Influenza

Influenza viruses are some of the most important human pathogens, infecting hundreds of millions of people annually with 250,000–500,000 deaths worldwide [3]. As members of the Orthomyxoviridae family, these viruses are classified into three distinct types, A, B, and C viruses based on major antigenic differences, subdivisions based on antigenic characterization of the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Currently, among the type A viruses, there are 16 HA subtypes and 9 NA subtypes.

Influenza infections are usually acute, self-limited, febrile illness which manifest clinically as fever, malaise, and cough with attack rates as high as 10–40% [4]. Their occurrence is generally seasonal with outbreaks of varying severity observed almost every winter. Pandemics have occurred in 1918, 1957, 1968, and 2009 and were caused by different antigenic subtypes of influenza A: H1N1, H2N2, H3N2, and again H1N1 (Fig. 11.1).

Historically, H3N2 is associated with higher mortality [4]. Alternately, other stains are associated with more severe infection among individuals with certain high-risk factors such as obesity, pregnancy, and other comorbidities [5,6]. Furthermore, specific viral mutations are associated with higher virulence and cell receptor binding, which affects their predilection for the upper (URTI) or lower respiratory tract infection (LRTI). The Glu222Gly substitution in the HA gene can be found in strains of avian influenza, and to a lesser extent, in some strains of 2009 H1N1 [7,8]. Whereas most strains of influenza replicate in the URT where α-2,6-linked sialic acid receptors predominate on cell surfaces, this amino acid substitution is associated with a greater affinity for α-2,3-linked receptors which are more abundant in the LRT, resulting in a greater risk for viral pneumonia [9–12]. Despite the greater number of influenza A hospitalizations, there appears to be no significant difference between influenza A and B in rates of high-risk conditions, median length of stay, intensive care unit (ICU) admissions, or deaths [13].

Human infection with zoonotic strains is more concerning as these strains have the potential to be more pathogenic, as seen with the avian H5N1 strains, and...
Seasonality in temperate climates	Incubation period	Duration of illness	Period of shedding	Replication site	Cell receptor	Mechanism of pathogenesis	Presentation	Respiratory disease syndrome(s)	Extrapulmonary manifestation	Optimal specimen
Flu	1–4 days	3–7 days Cough, malaise more than 2 weeks	Day −1 to day 10 1′ ciliated columnar, also alveolar and dendritic	Predominately α-2,6-linked sialic acids	H5N1 and to a lesser extent 2009 H1N1, predominately LRT where α-2,3-linked sialic acids predominate on cuboidal bronchiolar cells	Abrupt onset of flu symptoms (fever, myalgia, headache, malaise, dry cough, pharyngitis, and rhinitis). Otitis media, nausea, and vomiting may also be observed	Flu Pneumonia	Cytokine related encephalitis	Usually NP aspirate, washes, and swabs	Influenza pneumonia: include BAL, sputum, or throat
RSV	3–8 days	7–14 days	Day −3 to day 14 1′ ciliated columnar, also alveolar and dendritic	Heparan sulfate and nucleolin	Accessory proteins interfere with IFN pathways. Rapid inhibition of Na + transport, resulting in apical fluid accumulation	Begins with rhinorrhea, pharyngitis, cough, headache, fatigue, and fever. Bronchiolitis ≤	URI with or without LRI Bronchiolitis Pneumonia Tracheobronchitis Croup	Rare encephalitis, myocarditis	NP aspirate, washes, swabs	
HMPV	4–6 days	1–2 days	Day −2 to day 14 1′ ciliated columnar, also alveolar	Heparan sulfate	Accessory proteins interfere with IFN pathways. Rapid inhibition of Na + transport, resulting in apical fluid accumulation	Begins with rhinorrhea, pharyngitis, cough, headache, fatigue, and fever. Bronchiolitis	URI with or without LRI Bronchiolitis Pneumonia Tracheobronchitis Croup	Rare encephalitis	NP aspirate, washes, swabs	
PIV	2–7 days	7–10 days	Day −3 to day 20 Ciliated columnar	PIV1: sialic acids with terminal NeuAco2-3Gal PIV3: sialic acids with terminal NeuAco2-6Gal or NeuGco2-3Gal	Accessory proteins interfere with IFN pathways. Rapid inhibition of Na + transport, resulting in apical fluid accumulation	Begins with rhinitis, pharyngitis, cough (croupy), and hoarseness, usually with fever PIV1 and PIV2: Croup PIV3: Bronchiolitis	PIV1 and PIV2: URI with or without LRI Croup Pneumonia Bronchiolitis PIV3: URI with or without LRI Bronchiolitis Pneumonia Croup	Rare meningitis, hepatic infection	NP aspirate, washes, swabs	
Virus	Season and Periodicity	Duration	Symptoms	Affected Sites						
-------	------------------------	----------	----------	----------------						
AdV	Winter or early spring	2–14 days	Fever, pharyngitis, exudative tonsillitis, and cough with or without diarrhea, vomiting and abdominal pain and/or with or without conjunctivitis	URI with or without GI, Conjunctivitis, Pneumonia, Croup, Bronchiolitis	Conjunctivitis, GI, cystitis, rare meningitis, myocarditis, myositis, Affected sites: NP aspirate, washes, swabs, throat, BAL, urine stool, blood					
RV	Fall (Aug–Sep) and spring (Apr–May)	1–7 days (average = 2 days)	Rhinorrhea, pharyngitis, cough, headache, malaise, mild fever	URI, Asthma exacerbation, Bronchiolitis, Pneumonia	Rare meningitis, myocarditis, NP aspirate, washes, swabs, tracheal or bronchial aspirate, BAL					
HCoV	Typical: endemic with peaks in winter to early spring, Peaks in 2–4 years SARS & MERS: zoonotic	2–5 days (average = 3 days)	URI, Pneumonia, Bronchiolitis	None	None					

Shedding in children is generally longer than adults. Immunocompromised can shed virus for weeks to months.
they have the potential to be the source of the next pandemic due to low levels of immunity in the population. Human infection with many of these strains is associated with unique presentations, such as conjunctivitis with H7 stains, and atypical symptoms like nausea, vomiting, encephalopathy, and bleeding gums and nose with H5 strains [4], which may delay clinical diagnosis and recognition of zoonotic transmission. Interesting, single amino acid changes appear to be responsible for changes in host range [14].

Typically, influenza infections present with systemic symptoms, fever and myalgia, along with upper airway symptoms, such as pharyngitis and dry cough. They usually begin with an abrupt onset of symptoms after an incubation period of 1–2 days and last 4–5 days. However, prolonged infection with or without disease has been reported to last weeks to months in immunocompromised individuals. Less commonly, the virus infects the lung, either via contiguous spread from the URT or via inhalation, causing primary viral pneumonia. Influenza pneumonia frequently requires ICU admission and mortality is high [4]. Secondary bacterial pneumonia is a well-recognized complication of viral pneumonia and accounts for a large proportion of the morbidity and mortality of viral LRT disease, especially in adults. Bronchiolitis and croup may also occur with influenza infection, albeit much less frequently than RSV and PIV. Influenza can be associated with exacerbation of chronic pulmonary diseases such as chronic bronchitis, asthma and worsening pulmonary function in children with cystic fibrosis.

Nonpulmonary complications include myocarditis and pericarditis, as well as exacerbations of other underlying disease such as chronic heart failure and chronic renal disease [15]. Myocarditis is not highly uncommon during influenza infection and may present as asymptomatic myocardial involvement to fulminating myocarditis resulting in cardiogenic shock and death [16]. Central nervous system involvements include the rare occurrence of transverse myelitis and encephalitis which appear to be immune rather than viral mediated [17]. Guillain-Barré syndrome is also associated with immune mechanisms following influenza infection [18].

Paramyxoviruses

RSV and HMPV are from the Pneumovirinae subfamily of the Paramyxoviridae family. RSV is the major cause of LRT illness in young children and is associated with an estimated 132,000–172,000 pediatric hospitalizations in the United States annually [19] and globally it is an important cause of death [20]. Most infants (50–69%) are infected during the first year of life and virtually all are infected by age 2 [21]. HMPV also causes a broad range of URTI/LRTI, which are clinically indistinguishable from RSV. It accounts for about 1–5% of childhood URTI and 10–15% of hospitalizations for LRTI, depending on age group and year of study [22–24]. Primary infection with HMPV tends to occur at a slightly older age than RSV and by age 5 most children have been infected [25,26].

PIVs also belong to the Paramyxoviridae family and are classified as four types and two subtypes (PIV1, 2, 3, 4a, and 4b). PIV1 and to a lesser extent PIV2 are the most significant cause of croup while PIV3 is a significant cause of bronchiolitis, bronchitis, and pneumonia. Indeed these viruses accounted for 6–8% of all hospitalizations for fever or acute respiratory illnesses in children less than 5 years of age [27]. By 5 years of age most children have antibodies against PIV3 and approximately 75% have antibodies against PIV1 and PIV2.

Primary infections with paramyxoviruses are usually symptomatic and present as URTI beginning 2–8 days after infection through the nose or eyes. Although all these viruses replicate in the ciliated columnar cells of the nasopharyngeal (NP) tract [28–30], it is believed that varying cell receptor usage,
including sialic acid containing molecules usage by different PIV strains, likely contributes to the differences in pathogenesis [31,32]. The viruses may then spread to the LRT within 1–3 days as the result of viral impairment of the ciliary epithelium [33]. Paramyxovirus pathogenesis is then associated with necrosis and sloughing of the ciliated epithelial cells which along with edema and increased mucus secretion, obstructs airway, and leads to airway hyperresponsiveness [34,35].

LRTI with RSV and HMPV occurs in 25–40% of cases and manifests most commonly as bronchiolitis, followed by pneumonia and tracheobronchitis, and lastly croup [21,26,36]. Risk factors for bronchiolitis requiring hospitalization include young age, prematurity, male sex for RSV and female sex for HMPV, chronic illness, lower socioeconomic status, smoke exposure, and asthma [21,37–39]. PIV develops into LRTI in 15–25% of cases [40]. There is a tendency for PIV1 and PIV2 to involve the larynx and upper trachea, resulting in the croup syndrome, while PIV3 spreads to the small air passages with the development of bronchopneumonia, bronchiolitis, and/or bronchitis when it is associated with severe disease [27]. There is compelling evidence that the level of virus replication correlates to the disease severity, but innate immune responses also appear to be important [41–43]. HMPV infection appears somewhat milder than that of RSV, but dual HMPV and RSV infections have been reported as more severe than with either virus alone [44,45]. Among the two antigenic subgroups, RSV A is associated with more severe disease than subgroup B [46,47], while the severity of illness associated with HMPV A is similar to HMPV B infection [48].

Reinfecion with paramyxoviruses occurs throughout life and is usually present as mild URTI in children and adults with RSV, HMPV, and PIV causing about 7%, 2%, and 5% of acute respiratory illnesses in adults, respectively [49,50]. Reinfection in immunocompromised individuals has a higher risk of more serious disease. Extrapulmonary manifestations from paramyxoviruses are rare and controversial. However, there have been a few reports of paramyxoviruses in CSF in cases of encephalitis or meningitis, as well as in myocardium and liver [43,51–53].

Adenovirus

Human AdVs, belonging to the genera *Mastadenovirus*, are further divided into seven species (A through G) and 57 types [54]. These viruses cause a broad range of clinical syndromes, with groups A, B, C, and E causing 5–10% of pediatric and 1–7% of adult URTI and LRTI [55]. Several group B AdVs, including serotypes 3, 7, 14, and 21, have caused outbreaks of acute respiratory disease (ARD). Although fatal AdV infections in immunocompetent adults are rare, ARD outbreaks due to a virulent strain of serotype 14 in 2006 and 2007 was associated with a significant number of ICU admissions and deaths in previously healthy young adults [56].

Approximately 50% of all AdV infections result in subclinical disease, and most symptomatic infections are mild and self-resolving within 2 weeks [57]. AdV infection begins with replication in nonciliated respiratory epithelium of the tonsils and adenoids [54]. A brief period of viremia ensues. URTI symptoms in children and young adults include fever, pharyngitis, tonsillitis, and cough, with or without GI symptoms or conjunctivitis [55]. Disruption of the integrity of cell–cell contact enables infection of other cells of the respiratory tract [54]. Worldwide, pneumonia occurs in up to 20% of young children with fatality rates for severe AdV pneumonia exceeding 50% [55]. AdVs utilize cell receptors that are abundantly expressed in epithelial cells in multiple organs or tissues (CAR for groups A, C, E, and F, and CD46 for groups B and D) [58,59]. Hence, extrapulmonary manifestations are common in normal host and include conjunctivitis, GI illness, and cystitis, as well as the more rare occurrences of meningitis, myocarditis, and myositis. AdV can persist as a latent infection for years after an acute initial infection and may reside in lymphoid tissue, renal parenchyma, or other tissues [55]. Reactivation may occur in severely immunosuppressed patients.

AdV causes considerable destruction of respiratory epithelial cells due to inhibition of cellular DNA, mRNA, and protein synthesis resulting in the formation of characteristic smudge cells with enlarged nuclei containing basophilic inclusion bodies surrounded by thin rims of cytoplasm [54]. The penton base structural protein, which causes cells to detachment in vitro, may be involved in pathogenesis in vivo.

EVs—Including RVs and Human Parechoviruses

EVs and human parechoviruses (HPeVs) of the *Picornaviridae* family are associated with RTI in addition to a wide array of other disease. In fact, EVs are responsible for up to approximately 19% of LRTI in hospitalized children [60]. Human infections are associated with four species of EV (EV A–D), three species of RVs (RV A–C) from the EV genus and one species from the HPeV genus (HPeV A). Although strains from all species may infect the respiratory tract, EV C (C104, C109, C117), EV D (D68), RV A, and RV C are associated with more serious respiratory disease.

RV is undoubtedly the most commonly detected respiratory virus in all age groups, accounting for 25% of all respiratory infections, with asymptomatic infection occurring in at least 20% of healthy individuals
RV preferentially infects the URT, primarily the paranasal sinuses and nasopharynx. One to three days after infection, URTI frequently begins as a sore or scratchy throat followed by nasal obstruction and rhinorrhea with cough, headache, malaise, and sometimes fever. Large- and medium-sized airways also maintain high-level RV replication [62]. As a result, RV is associated with bronchiolitis in infants and exacerbations in patients with chronic asthma. LRTI such as pneumonia, croup, and bronchitis also occur and result in a significant number of hospitalizations [63]. Cytopathogenicity of this virus is low and pathology is primarily due to nonspecific host inflammatory responses.

Coronaviruses

Most members of Coronaviridae family infecting humans (229E and OC43 from the alpha-CoV genus, NL63 and HKU1 from the beta-CoV genus) cause mild URT diseases. In fact, these typical HCoV cause up to 30% of all URTIs [64]. However, two novel beta-CoV, severe acute respiratory syndrome associated CoV (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV) cause serious viral pneumonitis, leading to hospitalization and death with overall mortality rates of 10% and 30%, respectively [65].

Infection with the typical HCoV, of which 30% are asymptomatic, begins with replication in the ciliated epithelial cells of the nasopharynx. Direct destruction of ciliated epithelial cells in conjunction with innate immune responses produces rhinorrhea, pharyngitis, cough, headache, malaise, and mild fever 2–5 days after infection. These viruses have also been associated with severe pneumonia and bronchiolitis in neonates and the elderly, especially those with underlying illnesses. In addition, HCoV-NL63 is also an important cause of croup [66]. Infection frequently occurs in young children with seropositivity in 50% of school-age children [64]. Reinfection as well as coinfection is common.

SARS begins with fever, headache, malaise, or myalgia, followed by nonproductive cough and dyspnea in a few days to a week after onset of symptoms. Although the upper airway is also infected, there is little epithelial cell damage and URT disease is lacking. Virus rapidly spreads to the alveoli, causing diffuse alveolar damage leading to pneumonia and ARDS in 25% of cases [67]. Diarrhea is common. MERS is also associated with a biphasic illness strikingly similar to SARS except for more frequent renal failure [68]. Most patients who are hospitalized with SARS and MERS have chronic comorbidities. Interestingly, asymptomatic infections with both viruses have been reported [69,70].

CLINICAL UTILITY OF MOLECULAR DIAGNOSTICS FOR RESPIRATORY VIRUS INFECTION

Respiratory viruses can infect both the URT and the LRT (Fig. 11.2) and tend to cause distinct clinical syndromes based on their tropism for different sites of the respiratory tract. Most commonly these viruses only
Infect the URT, and when LRT infection does occur, it is most often due to contiguous spread.

Upper Respiratory Tract Infections

The Common Cold

The common cold refers to a syndrome of upper respiratory symptoms that may be caused by a variety of viral pathogens. These symptoms include nasal blockage, runny nose, sneezing, cough, and sore throat, sometimes with headache or other body aches, and typically begin 1–3 days after infection. Fever and other constitutional symptoms are more often seen in URTIs associated with influenza, RSV, HMPV, and AdV. Colds usually last about 1 week, but virus shedding can persist for 2–3 weeks. Otitis media can develop from URTI with any of these viruses and can due to secondary bacterial infection or direct viral infection. Indeed, virus can be detected in middle ear fluids with RSV, influenza, HCoV, and RV being the most common [71].

The pathogens most frequently associated with common cold symptoms are the EV/RV, which cause approximately half of all colds in children and almost three-quarters of colds in adults, and HCoV (Table 11.2). It is often forgotten that influenza viruses can present with only mild URTI symptoms and is in fact a common cause of the cold. Other important pathogens that are also associated with cold symptoms include AdV, RSV, HMPV, and PIV. Coinfections are common.

Although generally mild and self-limited, these illnesses are associated with an enormous economic burden both in lost productivity and in expenditures for treatment. Hence, attempts have been made to create and market antiviral agents targeting causes of the common cold, particularly EV/RV [72]. Due to the lack of success in therapeutic interventions, diagnostic testing outside of epidemiological investigations is not warranted.

Influenza-Like Illness

Influenza-like illness (ILI) is on the other end of the spectrum of URTIs and is defined as the presence of fever of greater than or equal to 100°F, in addition to cough or sore throat, in the absence of an alternative cause. After an incubation period of 1–4 days, there is an abrupt onset of constitutional and respiratory signs and symptoms which generally lasts 5–7 days. The constitutional symptoms can include malaise, body aches, headache, loss of appetite, and nausea and are generally due to cytokines released by immune system activation. Interestingly, influenza only causes 35–45% of ILI cases during peak seasons. But many other viral infections can present as flu-like, particularly RV/EV and RSV (Table 11.2).

Appropriate treatment of patients with respiratory illness depends on accurate and timely diagnosis. Early diagnosis of influenza can reduce the inappropriate use of antibiotics, provide the option of using antiviral therapy and is an important infection prevention measure. The causative agent of ILI is difficult to determine on the basis of signs and symptoms alone. Sensitivity and predictive value of clinical definitions vary, depending on the prevalence of other respiratory pathogens and the level of influenza activity. Among generally healthy adults living in areas during the peak of influenza activity, the positive predictive value (PPV) of a simple clinical definition of influenza (acute onset of cough and fever) can be over 80%. However, the presentation in children, the elderly, and individuals with comorbidities is less likely to be typical, in

| Table 11.2 Relative Rates of Respiratory Viruses Among Respiratory Tract Syndromes |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Virus | Common cold (pediatric/adult) | ILI* (all ages) | Croup (pediatric) | Bronchiolitis (pediatric) | Pneumonia (pediatric/adult) |
| AdV | 5–10/1 | 0.4–9 | 1 | 1–8 | 1–10/3–13 |
| HCoV | 10–15/11 | 0.2–10 | 2b | 1–8 | 3–7/6–13 |
| Influenza | 25–30/8 | 8–52 | 9 | 1–10 | 4–22/21–31 |
| HMPV | 1–5/1 | 0.2–10 | <1 | 3–12 | 1–13/3–22 |
| PIV | 1–5/5 | 0.4–11 | 42c | 1–3 | 8–28/6–14 |
| RSV | 1–5/3 | 0.4–19 | 15 | 70–80 | 3–45/13–24 |
| RV/EV | 40–50/71 | 4–29 | 21 | 15–35 | 3–45/13–24 |

*Influenza-like illness = fever, malaise, pharyngitis, and dry cough.

bFrequencies not yet well established.

cPIV1 = 31%, PIV2 = 5%, PIV3 = 6%.

II. MOLECULAR TESTING IN INFECTIOUS DISEASE
which case the PPV of clinical impression can be as low as 17–30% in these populations [73].

Diagnostic testing is not needed for all patients with ILI to make antiviral treatment decisions once high levels of influenza activity have been identified in the region. For most outpatient and emergency room settings, results for molecular assays are generally not available to assist in clinical decision making. Fortunately, that paradigm is changing with advent of rapid tests which provide a wide panel of results in approximately 1 h, or 20-min point-of-care devices for influenza. But generally, molecular testing has been considered to be most appropriate for hospitalized patients if a positive test would result in a change in clinical management, including infection control practices.

Lower Respiratory Tract Infections

Croup

Croup is a common childhood disease characterized by sudden onset of a distinctive barky cough that is usually accompanied by inhalation stridor, hoarse voice, and respiratory distress resulting from upper airway obstruction that worsens at night. Although the illness is generally mild and short-lived, the presentation in a child is alarming. In fact 85% of cases typically present mild croup and fewer than 5% are hospitalized [74].

Typically, this disease affects children between 3 months and 3 years of age. Frequently it begins with a nonspecific URTI 12–48 h prior to the development of classic symptoms. The barky cough resolves within 3–4 days for 60% of cases, but some patients will continue to have symptoms for up to 1 week [74].

Although present year-round, croup often presents with biannual peaks in late autumn and again in spring, particularly in odd-numbered years, correlating with the prevalence of PIV (Fig. 11.3). Of the PIV strains, type 1 is the primary cause of croup, followed by type 3, and then 2 [74]. This finding appears contradictory since type 3 is usually associated with bronchiolitis. However, this observation is easily explained by the greater prevalence of type 3 virus over type 2 virus. Other viruses implicated in the disorder include influenza, AdV, RSV, HMPV, and HCoV-NL63. In addition, measles remains an important cause of croup in nonimmunized children. RV coinfection is frequent.

Croup is a clinical diagnosis. Laboratory tests are not needed to confirm the diagnosis. Laboratory analysis generally should be limited to tests necessary for management of a more severely ill child. Viral identification may be warranted when specific antiviral therapy is being considered, such as for severely ill or high-risk children with influenza.

FIGURE 11.3 The seasonal occurrence of croup cases is shown in relation to the epidemiologic activity of the respiratory viruses associated with croup. Source: Reprinted from Hall and McBride (Bower J, McBride JT. Croup in children (acute laryngotracheobronchitis). In: Bennett JE, Dolin R, and Blaser MJ, Editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 8th ed. Philadelphia, PA: Saunders/Elsevier; 2015, pp. 762–766).

Bronchiolitis

Bronchiolitis is the most common acute viral LRT illness in children less than 2 years of age. Clinical signs and symptoms of bronchiolitis include rhinorrhea, cough, tachypnea, wheezing, rales, and increased respiratory effort which typically lasts 3–7 days. There is commonly a prodromal URTI (coryza, cough, and mild fever) which lasts for several days. Complications with bronchiolitis, such as apnea and aspiration, occur most frequently in infants within the first several months of life, in premature infants, and in children with chronic conditions. Indeed, it is the most common cause of hospitalization among infants during the first 12 months of life. Although the hospitalization rates for bronchiolitis have been increasing, mortality rates have declined [75].

Peak occurrence of bronchiolitis is during the winter to early spring, and usually correlates with the prevalence of RSV, which causes of about 70–80% of cases. RV/EV and HMPV are other leading cause of bronchiolitis, but all respiratory viruses have been associated with bronchiolitis (Table 11.2), and a considerable fraction of cases (30%) involve multiviral infections. Again, bronchiolitis is a clinical diagnosis and laboratory tests are not needed to confirm the diagnosis. In fact, the American Academy of Pediatrics recommends against radiographic or laboratory studies routinely [76].
Pneumonia

Pneumonia is a common illness with high morbidity and mortality, particularly in children less than 5 years old and in adults over 75. Viruses are more commonly associated with pneumonia in children, particularly influenza, RSV, RV, HMPV, and PIV (Table 11.2) [77]. The prevalence of the causative agents is age-dependent, with RSV and PIV being more common causes of pneumonia in children less than 2 years old than in older children. Dual viral infections are common, and a third of children have evidence of viral–bacterial coinfection, particularly with *Streptococcus pneumoniae* and *Staphylococcus aureus*. In adults, viral agents are an important cause of pneumonia in the elderly, although historically their role has been underestimated given the insensitivity of antigen assays and viral culture in this population. As the result of nucleic acid amplification testing, it is now evident that viruses, in particular influenza viruses, RVs, and coronaviruses, are the putative causal agents in a third of cases of community-acquired pneumonia [78,79].

Viral infection of the lung can be the result of either contiguous spread from the URT or by direct inhalation, with the former beginning with typical URTI symptoms followed by a rapid progression of fever, cough, dyspnea, and cyanosis. Nonrespiratory symptoms include fatigue, sweats, headache, nausea, and myalgia. With increasing age, both respiratory and nonrespiratory symptoms of pneumonia become less frequent. Primary viral pneumonia frequently requires ICU admission and mortality is high. The diagnosis of pneumonia is determined clinically and confirmed by radiographic imaging, but identification of the etiological agent is important and recommended by the Infectious Diseases Society of America and the American Thoracic Society [80]. Indeed, viral pneumonia cannot be differentiated from bacterial pneumonia clinically, particularly in the elderly. Furthermore, secondary bacterial infection with certain bacteria may be virus-specific, increasing the need to know the causative agent [81].

MOLECULAR TECHNOLOGIES AND LIMITATIONS OF TESTING

Since most cases of viral respiratory infection (VRI) are associated with mild, self-limiting illness, laboratory testing is not necessary. However, for more serious cases, such as those requiring hospitalization or therapy, rapid laboratory diagnosis of the etiological agent can be important. Viral diagnostics can guide therapy, potentially eliminating unnecessary use of antibiotics and enabling the use of antivirals when appropriate. In addition, knowledge of the causative agent is important for infection control interventions to minimize the risk of nosocomial spread. Nucleic acid amplification tests (NAATs) have become the test of choice for VRI because rapid antigen tests have low sensitivities [82–86] and viral culture, which can take 3–10 days, lacks utility for patient management. Furthermore, NAATs have superior sensitivity and specificity in both pediatrics and adults, and results can be obtained within minutes to hours [87–89]. Not only has NAAT revolutionized the detection of traditional respiratory viruses with its exquisite sensitivity, but it enabled the discovery of new respiratory viruses, such as HMPV, many HCoV, and RV C group.

More recently, multiplexed molecular assays have been developed in order to diagnose a large number of respiratory viruses in single assays. As an added benefit, viruses that could not be detected by conventional virology have been included which further increases the diagnostic yield. Refer to the review by Gaydos [90] for details regarding the performance and workflow of many of these systems. The principle differences among NAATs are the throughput, turnaround time, ease of use, automation, versatility, use of a closed system to reduce contamination and cost.

Early problems with NAAT included lack of sensitivity for specific subtypes of AdV, the inability to differentiate RV from EV, and contamination issues with open platforms [91]. As expected manufacturers made or are working to make improvements, such as enhancing the range of AdV strain detection and reducing to eliminating postamplification processing [92]. In addition, point-of-care tests are now available, some with 20-min turnaround times.

The advantage of NAAT for VRI in terms of cost reduction is still unclear. Whereas rapid antigen tests have been shown to reduce length of stay, performance of ancillary diagnostic tests, and antibiotic consumption, the same cannot be said for multiplex assays, despite their higher sensitivity and specificity, and capacity to detect an extended range of viruses [91,93]. Initially, available multiplex systems were geared toward batched workflow usually performed once or twice per day. Subsequently, on-demand amplification methods, with potential turnaround time of 1–2 h, have come to market and are replacing batched test systems. Small studies have begun to show that identifying viral pathogens within a few hours does impact antibiotic or antiviral use and reduces labor cost in the Emergency Department [94,95]. More studies are needed to see if these results hold true.

Specimen Collection

The general rule for optimal specimens for the diagnosis of viral infection dictates that the specimens
originates from the site of viral replication. Respiratory viruses are no different and since site of replication for these viruses is primarily the URT, in particular the NP region, it is best to sample that region for diagnostic testing. Of the URT samples, NP aspirates have traditionally been considered the most sensitive specimen for the detection of respiratory viruses [96,97]. However, a recent review by Jarrett et al. [98] indicates that at least in children all NP samples, aspirates, washes, swabs, or brushings, have statistically equal sensitivity for NAAT, particularly when Flocked swabs are used [99]. Historically, virus recovery in adults is much more difficult than in children because virus titers tend to be much lower in adults. The analytical sensitivity of NAAT appears to negate this concern [100]. Similarly, when Flocked nasal swabs are used the sensitivity is similar to NP specimens in both pediatric and adult patients [100,101]. In addition, self-collected (in adult patients) or parent-collected Flocked nasal swabs specimens also show equivalency, opening the door for point-of-care devices [102–104].

Respiratory viruses can also be isolated from throat swabs or washes. Although the viral yield is typically lower than that seen with NP specimens, combining a throat swab and an NP swab may improve virus detection [87,105,106], and the general consensus is that throat swab alone is not recommended for most viruses. Exceptions include AdV, which replicates in the tonsils, and avian influenza, which primarily replicates in the LRT.

Calcium alginate swabs and swabs with wood shafts should not be used for respiratory specimen collection because they may interfere with NAATs. Specimens should be placed in sterile viral transport medium and refrigerated until transported to the laboratory for testing as soon as possible. However, some NAAT assays are approved for room temperature transport provided it occurs within a few hours. Clinicians should be aware of the approved clinical specimens, as well as specimen storage and transport, for the molecular assay being ordered. Freezing and thawing should be avoided or minimized to avoid degradation of virus particles, exposing the viral RNA to nucleases. Also viral integrity is needed if viral culture is to be performed, for example, for influenza resistance testing.

For cases of LRTI, sputum, endotracheal aspirates, or bronchoalveolar lavage specimens can increase the PCR diagnostic yield and should certainly be considered when URT specimens yield negative results but the suspicion is high. This is particularly true for viral pneumonia due to influenza, especially for cases of LRTI due to inhalation rather than spread from the URT. In fact, false-negative NP test occur in 10–35% of patients with viral pneumonia [107,108]. However, LRT specimens are not recommended for routine use as the diagnostic yield will not significantly improve. Furthermore, specificity is not necessarily improved with LRT specimens, particularly with the use of NAAT, as virus can be detected in LRT samples from asymptomatic children [98]. Lastly, none of the commercially-available tests have been validated for use with LRT specimens.

Although some respiratory viruses are shed from other sites such as urine or stool, as seen with AdV, these specimen types are not recommended for the diagnosis of respiratory illness. The only exceptions are SARS- and MERS-CoV where stool specimens may provide additional diagnostic yield. Rare occurrences of extrapulmonary manifestations have been reported with some respiratory viruses. Indeed, there have been anecdotal reports of respiratory virus detected in the CNS, myocardium, liver, and other sites [109]. Most often extrapulmonary syndromes are not due to a direct viral effect, but rather due to cytokine release as seen with influenza-associated encephalitis or myocarditis. In such cases, influenza RNA is almost never detected in CSF or myocardium. Likewise, rare cases of HMPV-associated encephalitis have been reported, but viral RNA has not been detected in CSF [53]. In contrast, AdV replicates in multiple organs and tissues. For example, AdV is often detected in urine, CSF, or myocardium in cases of AdV-associated hemorrhagic cystitis, meningitis or encephalitis, and myocarditis [55,110]. AdV DNA can even be found in serum during respiratory illness [55].

Timing of Disease/Virus Shedding

Generally peak respiratory virus shedding occurs on the first or second day of acute illness and generally declines substantially after 4 days [111–115]. However, duration varies with virus, patient age, severity of illness, comorbidities, and immune status. Often hospitalized patients, particularly those with LRTI, have higher viral titers and shed virus longer [111–114,116,117]. NAATs detect viral targets for a longer duration than other test methods and it is not unusual to detect viral nucleic acid a couple of weeks after infection, albeit the mean duration is generally 6–14 days [111–114,118,119]. Of the Paramyxoviruses, the duration of shedding for HMPV may be relatively shorter while PIV3 maybe longer [115,120]. Some viruses, particularly AdVs and picornaviruses, exhibit prolonged shedding in both asymptomatic and symptomatic patients, which can be a diagnostic conundrum [119,121].
Prolonged shedding of all respiratory viruses is not uncommon in severely immunocompromised patients and viral nucleic acids have been detected months after infection [109,118,119,122]. Prolonged shedding of influenza can be observed in this population even in the presence of treatment with antiviral agents. This then has been associated with the development of drug resistance mutations and subsequent community spread of resistant strains [118].

The literature has been inconsistent about the correlation between viral loads and disease severity [91,93]. Part of this discrepancy may be due in part to variances in the viruses themselves. More studies are needed to interpret the significance of viral loads. Likewise, there are mixed reports concerning the associations between infections with multiple viruses and more severe disease [91,93]. Indeed, asymptomatic, prolonged shedding associated with AdVs and picornaviruses complicates the interpretation.

Seasonality

In regions with temperate climates, the seasonal incidence of respiratory viruses is as diverse as the number of species associated with RTI, but the majority of infections occur between fall and early spring. In tropical climates, infections occur year-round or with increased incidence during the rainy season. The seasonal diversity of respiratory viruses is most evident with epidemiologic patterns of respiratory viruses associated with croup (Fig. 11.3) [123]. Influenza tends to produce a sharp annual peak lasting 6–8 weeks, while RSV tends to have a longer duration on the order of 15–20 weeks [109]. HMPV typically appears in late winter through early spring with a biennial pattern of epidemics [24]. Classically, PIV1 causes autumn epidemics in odd-numbered years and is sometimes accompanied by PIV2. PIV3 is more endemic with peaks in spring to early summer. Seasonality of PIV4 has not been as well characterized [109]. AdV infections occur throughout the year, but most epidemics occur in the winter or early spring [55]. EV infections usually occur in late summer to early fall, but those associated with respiratory disease also tend to be associated with sporadic outbreaks which can occur year-round. RV infections also occur throughout the year, but distinct peaks of illness are seen in the fall and spring [124]. HCoV are more endemic, but a bit more common in the cooler months [109]. Factors affecting seasonality in temperate climates are most likely due to environmental factors such as low temperatures and humidity, as well as social factors associated with colder months such as crowding indoors [125,126].

Interpretation of NAAT Results

Despite the high sensitivities and specificities of NAAT for respiratory virus detection, false-negative results can occur due to improper specimen collection or handling. A negative result can also occur when the patient is no longer shedding detectable virus, or at least at the site of collection. For hospitalized patients with LRT disease, if no other etiology is identified and viral pneumonia is still clinically suspected, the CDC recommends collecting LRT specimens. Sequence deviations or mutations at the site of primer or probe binding are also a potential source of false-negative results. In 2015, the majority of circulating influenza virus in the United States was characterized as A/Switzerland-like H3N2 viruses with significant genetic drift, loss of vaccine protection, and reduced ability to culture in many cell lines. Indeed, matrix gene primer or probe mismatches affect the performance of some commercial NAATs [127]. On the other hand, sequence deviations in the H1 gene affected typing of A(H1N1)pdm09, leading to the serendipitous discovery of a strain of influenza A that cannot be typed. Similarly, pan-detection NAATs may not adequately detect all subtypes within a family of virus as commonly seen with commercial assays for the detection of AdV [128–130].

False-positive results, although rare, can occur (eg, due to lab contamination or other factors). A positive result indicates detection of viral nucleic acid, confirming virus infection, but does not necessarily mean the virus is the causative agent. Furthermore, patients vaccinated by intranasal administration of live attenuated influenza virus will likely test positive for 7–10 days [131].

Antiviral Resistance Testing

Antiviral resistance among influenza strains is a public health concern because resistant strains have spread rapidly in the community, quickly becoming the predominant virus [132,133]. Currently, circulating influenza A (H3N2) and 2009 H1N1 viruses are primarily susceptible to oseltamivir and zanamivir, but are resistant to the adamantanes (amantadine and rimantadine) [133]. However, prior to the 2009 pandemic the seasonal H1N1 virus developed into a predominantly oseltamivir-resistant strain [132]. Luckily this virus was susceptible to the adamantanes. Although only sporadic cases of oseltamivir resistance have been observed in isolates of A(H1N1)pdm09, this virus does have the sample potential as the seasonal H1 strain to become universally resistant.

Phenotypic susceptibility testing remains the gold standard for the assessment of viral resistance, but
some of the more common resistance mutations have been identified which are useful for more rapid identification. For example, a histidine to tyrosine amino acid substitution at residue 275 of the NA protein (H274Y in N2 numbering; H275Y in N1 numbering) is associated with oseltamivir resistance [132]. Similarly, a change in amino acid 31 in the M2 gene product is associated with resistance to adamantanines [134]. Other potentially important mutations include a D199E mutation which is associated with reduced susceptibility to oseltamivir in seasonal H1N1 [135], a D198G (universal numbering, equivalent to site 199) mutation in H5N1 is associated with reduced susceptibility to oseltamivir and zanamivir [136], and a D198N mutation in influenza B virus is associated with high oseltamivir resistance [137].

It is important to point out that such testing is not available in most clinical laboratories and is generally performed by some public health laboratories or at the CDC for epidemiological purposes. Detection of the H275Y mutation is usually determined by a pyrosequencing assay developed by the CDC, while Sanger sequencing is used to assess mutations in the NA and M2 genes.

CONCLUSIONS

Molecular diagnostics has revolutionized our ability to detect RTIs by increasing sensitivity of virus detection, broadening the array of viruses detected, and enabling the detection of multiple infections. Furthermore, test results are available in a timeframe that can better impact patient management. These tools have also advanced our understanding of the epidemiology and pathogenesis of respiratory virus disease.

References

[1] Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2095–128.
[2] Fendrick AM, Monto AS, Nigh tengale B, Sarnes M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch Intern Med 2003;163:487–94.
[3] WHO. Influenza (seasonal), <http://www.who.int/mediacentre/factsheets/fs211/en/>; 2014 [accessed 23.11.14].
[4] Treanor JJ. Influenza (including avian influenza and swine influenza). In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia, PA: Saunders/Elsevier; 2015. p. 2008–24.
[5] Jain S, Kamimoto L, Bramley AM, et al. Hospitalized patients with 2009 H1N1 influenza in the United States. N Engl J Med 2009;361:1935–44.
[6] Sistin AM, Rasmussen SA, Honein MA, et al. Pandemic 2009 influenza A(H1N1) virus illness among pregnant women in the United States. JAMA 2010;303:1517–25.
[7] Chen H, Wen X, To KK, et al. Quasispecies of the D225G substitution in the hemagglutinin of pandemic influenza A(H1N1) 2009 virus from patients with severe disease in Hong Kong, China. J Infect Dis 2010;201:1517–21.
[8] Melidou A, Gioula G, Exindari M, Chatzidimitriou D, Diza E, Malisios N. Molecular and phylogenetic analysis of the haemagglutinin gene of pandemic influenza H1N1 2009 viruses associated with severe and fatal infections. Virus Res 2010;151(2):192–9.
[9] Shi hya K, Ebina M, Yamada S, Oho M, Kasai N, Kawaoya Y. Avian flu: influenza virus receptors in the human airway. Nature 2006;440:435–6.
[10] van Riel D, Munster VJ, de Wit E, et al. H5N1 virus attachment to lower respiratory tract. Science 2006;312:399.
[11] Itoh Y, Shinya K, Kiso M, et al. In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 2009;460:1021–5.
[12] Maines TR, Jayaraman A, Belser JA, et al. Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. Science 2009;325:484–7.
[13] Su S, Chaves SS, Perez A, et al. Comparing clinical characteristics between hospitalized adults with laboratory-confirmed influenza A and B virus infection. Clin Infect Dis 2014;59:252–5.
[14] Song W, Wang P, Mok BW-Y, et al. The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication. Nat Commun 2014;5:5509.
[15] Craver RD, Sorrells K, Gohd R. Myocarditis with influenza B infection. Pediatr Infect Dis J 1997;16:629–30.
[16] Estabhragh ZR, Mamas MA. The cardiovascular manifestations of influenza: a systematic review. Int J Cardiol 2013;167:2397–403.
[17] Steininger C, Popow-Kraupp T, Laferl H, et al. Acute encephalopathy associated with influenza A virus infection. Clin Infect Dis 2003;36:567–74.
[18] Sivadon-Tardy V, Orlikowski D, Porcher R, et al. Guillain-Barre syndrome and influenza virus infection. Clin Infect Dis 2009;48:48–56.
[19] Stockman LJ, Curns AT, Anderson LJ, Fischer- Langley G. Respiratory syncytial virus-associated hospitalizations among infants and young children in the United States, 1997–2006. Pediatr Infect Dis J 2012;31:5–9.
[20] Nair H, Nokes DJ, Gessner BD, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 2010;375:1545–55.
[21] Glezen WP, Taber LH, Frank AL, Kasel JA. Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child 1986;140:543–6.
[22] Gray GC, Capuano AW, Setterquist SF, et al. Multi-year study of human metapneumovirus infection at a large US Midwestern Medical Referral Center. J Clin Virol 2006;37:269–76.
[23] Edwards KM, Zhu Y, Griffin MR, et al. Burden of human metapneumovirus infection in young children. N Engl J Med 2013;368:633–43.
[24] Reiche J, Jacobsen S, Neubauer K, et al. Human metapneumovirus: insights from a ten-year molecular and epidemiological analysis in Germany. PLoS One 2014;9:e88342.
[25] van den Hoogen BG, de Jong JC, Groen J, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 2001;7:19–24.
[26] Boivin G, De Serres G, Cote S, et al. Human metapneumovirus infections in hospitalized children. Emerg Infect Dis 2003;9:634–40.
11. MOLECULAR TESTING FOR RESPIRATORY VIRUSES

[68] Assiri A, McGeer A, Perl TM, et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med 2013;369:407–16.

[69] Wilder-Smith A, Telean MD, Heng BH, Earnest A, Ling AE, Leo YS. Asymptomatic SARS coronavirus infection among healthcare workers, Singapore. Emerg Infect Dis 2005;11:1142–5.

[70] Centers for Disease Control and Prevention. MERS clinical features, http://www.cdc.gov/coronavirus/mers clinical-features.html; 2015 [accessed 13.02.15].

[71] Chomnaitree T, Revai K, Grady JJ, et al. Viral upper respiratory tract infection and otitis media complication in young children. Clin Infect Dis 2008;46:815–23.

[72] Chen T-C, Weng K-F, Chang S-C, Lin J-Y, Huang P-N, Shih S-R. Development of antiviral agents for enteroviruses. J Antimicrob Chemother 2008;62:1169–73.

[73] Fiore AE, Shay DK, Broder K, et al. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2008;57:1–60.

[74] Bjorhnson CL, Johnson DW. Croup. Lancet 2008;371:329–39.

[75] Borchers AT, Chang C, Gershwin ME, Gershwin LJ. Respiratory syncytial virus—a comprehensive review. Clin Rev Allergy Immunol 2013;45:331–79.

[76] Ralston SL, Lieberth AS, Meissner HC, et al. Clinical practice guideline: the diagnosis, management, and prevention of bronchiolitis. Pediatrics 2014;134:e1474–502.

[77] Ruuskanen O, Lahti E, Jennings LC, Murdoch DR. Viral pneumonia. Lancet 2011;377:1264–75.

[78] Cesario TC. Viruses associated with pneumonia in adults. Clin Infect Dis 2012;55:107–13.

[79] Falsey AR, McElhaney JE, Beran J, et al. Respiratory syncytial virus and other respiratory viral infections in older adults with moderate to severe influenza-like illness. J Infect Dis 2014;209:1873–81.

[80] Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44:S27–72.

[81] Hohenthal U, Vainionpaa R, Nikoskelainen J, Kotilainen P. The role of rhinoviruses and enteroviruses in community-acquired pneumonia in adults. Thorax 2008;63:658–9.

[82] Ginocchio CC, Lotlikar M, Falk L, et al. Clinical performance of the 3M Rapid Detection Flu A + B Test compared to R-Mix culture, DFA and BinaxNOW Influenza A&B Test. J Clin Virol 2010;45:146–9.

[83] Miernyk K, Bulkowski L, DeBylce C, et al. Performance of a rapid antigen test (Binax NOW(r) RSV) for diagnosis of respiratory syncytial virus compared with real-time polymerase chain reaction in a pediatric population. J Clin Virol 2011;50:240–3.

[84] Lucas PM, Morgan OW, Gibbons TF, et al. Diagnosis of 2009 pandemic influenza A (pH1N1) and seasonal influenza using rapid influenza antigen tests, San Antonio, Texas, April-June 2009. Clin Infect Dis 2011;52:5116–22.

[85] Uyeki TM, Prasad R, Yukotch C, et al. Low sensitivity of rapid diagnostic test for influenza. Clin Infect Dis 2009;48: e89–92.

[86] Charttrand C, Leeﬂang MM, Minion J, Brewer T, Pai M. Accuracy of rapid influenza diagnostic tests: a meta-analysis. Ann Intern Med 2012;156:900–11.

[87] Weinberg GA, Erdman DD, Edwards KM, et al. Superiority of reverse-transcription polymerase chain reaction to conventional viral culture in the diagnosis of acute respiratory tract infections in children. J Infect Dis 2004;189:706–10.

[88] She RC, Polage CR, Caram LB, et al. Performance of diagnostic tests to detect respiratory viruses in older adults. Diagn Microbiol Infect Dis 2010;67:246–50.

[89] Talbot HK, Falsey AR. The diagnosis of viral respiratory disease in older adults. Clin Infect Dis 2010;50:747–51.

[90] Gaydos CA. What is the role of newer molecular tests in the management of CAP? Infect Dis North Am 2013;27:49–69.

[91] Vallieres E, Renaud C. Clinical and economical impact of multiplex respiratory virus assays. Diagn Microbiol Infect Dis 2013;76:255–61.

[92] Doern CD, Lacey D, Huang R, Haag C. Evaluation and implementation of FilmArray version 1.7 for improved detection of adenovirus respiratory tract infection. J Clin Microbiol 2013;51:4036–9.

[93] Wispahuert JO, Versteegh FG, Hartwig NG. PCR testing for paediatric acute respiratory tract infections. Paediatr Respir Rev 2015;16:43–8.

[94] Rogers BB, Shankar P, Jerris RC, et al. Impact of a rapid respiratory panel test on patient outcomes. Arch Pathol Lab Med 2015;139:636–41.

[95] Xu M, Qin X, Astion ML, et al. Implementation of FilmArray respiratory viral panel in a core laboratory improves testing turnaround time and patient care. Am J Clin Pathol 2013;139:118–23.

[96] Ahluwalia G, Embree J, Mc Nicol P, Law B, Hammond GW. Comparison of nasopharyngeal aspirate and nasopharyngeal swab specimens for respiratory syncytial virus diagnosis by cell culture, indirect immunofluorescence assay, and enzyme-linked immunosorbent assay. J Clin Microbiol 1987;25:763–7.

[97] Macfarlane P, Denham J, Assous J, Hughes C. RSV testing in bronchiolitis: which nasal sampling method is best? Arch Dis Child 2005;90:634–5.

[98] Jartti T, Soderlund-Venermo M, Hedman K, Ruuskanen O, Makela MJ. New molecular virus detection methods and their clinical value in lower respiratory tract infections in children. Paediatr Respir Rev 2013;14:38–45.

[99] Chan KH, Peris JS, Lim W, Nicholls JM, Chiu SS. Comparison of nasopharyngeal flocked swabs and aspirates for rapid diagnosis of respiratory viruses in children. J Clin Virol 2008;42:65–9.

[100] Irving SA, Vandermause MF, Shay DK, Belongia EA. Comparison of nasal and nasopharyngeal swabs for influenza detection in adults. Clin Med Res 2012;10:215–18.

[101] Abu-Deab A, Azzez M, Ghneim R, et al. Comparison between pernasal flocked swabs and nasopharyngeal aspirates for detection of common respiratory viruses in samples from children. J Clin Microbiol 2008;46:2414–17.

[102] Smieja M, Castriciano S, Carruthers S, et al. Development and evaluation of a flocked nasal mid turbinate swab for self-collection in respiratory virus infection diagnostic testing. J Clin Microbiol 2010;48:3340–2.

[103] Larios OE, Coleman BL, Drews SJ, et al. Self-collected mid turbinate swabs for the detection of respiratory viruses in adults with acute respiratory illnesses. PLoS One 2011;6:e21335.

[104] Esposito S, Moleni CG, Daleno C, et al. Collection by trained pediatricians or parents of mid turbinate nasal flocked swabs for the detection of influenza viruses in childhood. Virol J 2010;7:85.

[105] Lambert SB, Whiley DM, O’Neill NT, et al. Comparing nose throat swabs and nasopharyngeal aspirates collected from children with symptoms for respiratory virus identification using real-time polymerase chain reaction. Pediatrics 2008;122:e615–20.

[106] Spencer S, Gagliani M, Naleway A, et al. Consistency of influenza A virus detection test results across respiratory specimen
collection methods using real-time reverse transcription-PCR. J Clin Microbiol 2013;51:3880–2.

[107] Writing Committee of the WHOCoCAoPI, Bautista E, Chotpitayasunondh T, et al. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N Engl J Med 2010;362:1708–19.

[108] Lopez Roa P, Rodriguez-Sanchez B, Catalan P, et al. Diagnosis of influenza in intensive care units: lower respiratory tract samples are better than nose-throat swabs. Am J Respir Crit Care Med 2012;186:929–30.

[109] Robinson CC. Respiratory viruses. In: Specter S, Hodinka RL, Young SA, Wiedbrauk DL, editors. Clinical virology manual. 4th ed. Washington, DC: ASM Press; 2009. p. 203–48.

[110] Pankuweit S, Klingel K. Viral myocarditis: from experimental models to molecular diagnosis in patients. Heart Fail Rev 2013;18:683–702.

[111] Lee N, Chan PK, Hui DS, et al. Viral loads and duration of viral shedding in adult patients hospitalized with influenza. J Infect Dis 2009;200:492–500.

[112] To KK, Chan KH, Li JW, et al. Viral load in patients infected with pandemic H1N1 2009 influenza A virus. J Med Virol 2010;82:1–7.

[113] DeVincenzo JP, Wilkinson T, Vaishnav A, et al. Viral load drives disease in humans experimentally infected with respiratory syncytial virus. Am J Respir Crit Care Med 2010;182:1305–14.

[114] Walsh EE, Peterson DR, Kalkanoglu AE, Lee FE, Falsey AR. Viral shedding and immune responses to respiratory syncytial virus infection in older adults. J Infect Dis 2013;207:1424–32.

[115] von Linstow ML, Eugen-Olsen J, Koch A, Winther TN, Westh H, Hogh B. Excretion patterns of human metapneumovirus and respiratory syncytial virus among young children. Eur J Pediatr Res 2006;11:329–35.

[116] Kaiser L, Fritz RS, Straus SE, Gebretsadik T, et al. Duration of rhinovirus shedding in the upper respiratory tract in the first year of life. Pediatrics 2014;134:1144–50.

[117] Frank AL, Taber LH, Wells CR, Wells JM, Glezen WP, Paredes A. Patterns of shedding of myxoviruses and paramyxoviruses in children. J Infect Dis 1981;144:431–43.

[118] Kalu SU, Lofeffelholz M, Beck E, et al. Persistence of adenovirus nucleic acids in nasopharyngeal secretions: a diagnostic conundrum. Pediatr Infect Dis J 2010;29:746–50.

[119] de Lima CR, Miranda TB, Carneiro LC, et al. Prolonged respiratory viral shedding in transplant patients. Transpl Infect Dis 2014;16:165–9.

[120] Bower J, McBride JT. Croup in children (acute laryngotracheobronchitis). In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia, PA: Saunders/Elsevier; 2015. p. 762–6.

[121] Turner RB. Rhinovirus. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia, PA: Saunders/ Elsevier; 2015. p. 2113–23.

[122] Paynter S. Humidity and respiratory virus transmission in tropical and temperate settings. Epidemiol Infect 2015;143:1110–18.

REFERENCES

[123] Axelsen JB, Yaari R, Grenfell BT, Stone L. Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers. Proc Natl Acad Sci USA 2014;111:9538–42.

[124] Nattanmai SM, Butt SA, Butt J, et al. Comparison of the Cobas® Influenza A and B Test with the FilmArray Respiratory Panel and the Prodesse ProFlu/ProFAST Assays for the detection of H3 influenza viruses circulating in 2015. 31st clinical virology symposium. Daytona Beach, FL; 2015.

[125] Mahony JB. Detection of respiratory viruses by molecular methods. Clin Microbiol Rev 2008;21:716–47.

[126] Lofeffelholz MJ, Pong DL, Pyles RB, et al. Comparison of the FilmArray Respiratory Panel and Prodesse real-time PCR assays for detection of respiratory pathogens. J Clin Microbiol 2011;49:4083–8.

[127] Paynter S. Humidity and respiratory virus transmission in children. N Engl J Med 2005;353:2633–6.

[128] Centers for Disease Control and Prevention. Antiviral drug resistance among influenza viruses, <http://www.cdc.gov/flu/professionals/antivirals/antiviral-drug-resistance.htm/>; 2015 [accessed 24.05.15].

[129] Bright RA, Shav DK, Shu B, Cox NJ, Klimov Al. Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States. JAMA 2006;295:891–4.

[130] Thomas RE. Is influenza-like illness a useful concept and an appropriate test of influenza vaccine effectiveness? Vaccine 2014;32:2143–9.

[131] Tompkins RL, Mawson JL, et al. Surfer viruses. New viruses, and the role of diagnosis. Clin Infect Dis 2001;32:2143–9.

[132] Ison MG, Gumbari LV, Atmar RL, Trenor J, Hayden FG. Recovery of drug-resistant influenza virus from immunocompromised patients: a case series. J Infect Dis 2006;193:760–4.

[133] Fowlkes A, Giorgi A, Erdman D, et al. Viruses associated with acute respiratory infections and influenza-like illness among outpatients from the Influenza Incidence Surveillance Project, 2010–2011. J Infect Dis 2014;209:1715–25.

[134] Kaiser L, Fritz RS, Straus SE, Gebretsadik T, et al. Duration of rhinovirus shedding in the upper respiratory tract in the first year of life. Pediatrics 2014;134:1144–50.

[135] Frank AL, Taber LH, Wells CR, Wells JM, Glezen WP, Paredes A. Patterns of shedding of myxoviruses and paramyxoviruses in children. J Infect Dis 1981;144:431–43.

[136] Kalu SU, Lofeffelholz M, Beck E, et al. Persistence of adenovirus nucleic acids in nasopharyngeal secretions: a diagnostic conundrum. Pediatr Infect Dis J 2010;29:746–50.

[137] de Lima CR, Miranda TB, Carneiro LC, et al. Prolonged respiratory viral shedding in transplant patients. Transpl Infect Dis 2014;16:165–9.

[138] Bower J, McBride JT. Croup in children (acute laryngotracheobronchitis). In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia, PA: Saunders/Elsevier; 2015. p. 762–6.

[139] Turner RB. Rhinovirus. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia, PA: Saunders/ Elsevier; 2015. p. 2113–23.

[140] Paynter S. Humidity and respiratory virus transmission in tropical and temperate settings. Epidemiol Infect 2015;143:1110–18.

II. MOLECULAR TESTING IN INFECTIOUS DISEASE