Information Theory and its Relation to Machine Learning

Bao-Gang Hu

National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
{hubg@nlpr.ia.ac.cn}

Abstract. In this position paper, I first describe a new perspective on machine learning (ML) by four basic problems (or levels), namely, “What to learn?”, “How to learn?”, “What to evaluate?”, and “What to adjust?”. The paper stresses more on the first level of “What to learn?”, or “Learning Target Selection”. Towards this primary problem within the four levels, I briefly review the existing studies about the connection between information theoretical learning (ITL [1]) and machine learning. A theorem is given on the relation between the empirically-defined similarity measure and information measures. Finally, a conjecture is proposed for pursuing a unified mathematical interpretation to learning target selection.

Keywords: Machine learning, learning target selection, entropy, information theory, similarity, conjecture

“From the Tao comes one, from one comes two, from two comes three, and from three comes all things.” [2]

- by Lao Tzu (ca. 600-500 BCE)

“Nature is the realization of the simplest conceivable mathematical ideas.” [3]

- by Albert Einstein (1879-1955)

1 Introduction

Machine learning is the study and construction of systems that can learn from data. The systems are called learning machines. When Big Data emerges increasingly, more learning machines are developed and applied in different domains. However, the ultimate goal of machine learning study is insight, not machine itself. By the term insight I mean learning mechanisms in descriptions of mathematical principles. In a loose sense, learning mechanisms can be regarded as the natural entity. As the “Tao (道)” reflects the most fundamental of the universe by Lao Tzu (老子), Einstein suggests that we should pursue the simplest mathematical interpretations to the nature. Although learning mechanisms are related
to the subjects of psychology, cognitive and brain science, this paper stresses on
the exploration of mathematical principles for interpretation of learning mech-
anisms. Up to now, we human beings are still far away from deep understand-
ing ourself on learning mechanisms in terms of mathematical principles. It is
the author’s belief that “mathematical-principle-based machine” might be more
important and critical than “brain-inspired machine” in the study of machine
learning.

The purpose of this position paper is to put forward a new perspective
and a novel conjecture within the study of machine learning. In what follows
I will present four basic problems (or levels) in machine learning. The study
on information theoretical learning is briefly reviewed. A theorem between the
empirically-defined similarity measures and information measures are given. Based
on the existing investigations, a conjecture is proposed in this paper.

2 Four basic problems (or levels) in machine learning

For information processing by a machine, in the 1980’s, Marr [4] proposed a
novel methodology by three distinct yet complementary levels, namely, “Comput-
tational theory”, “Representation and algorithm”, and “Hardware implementa-
tion”, respectively. Although the three levels are “coupled” loosely, the distinction
is of great necessity to isolate and solve problems properly and efficiently. In 2007,
Poggio [5] described another set of three levels on learning, namely, “Learning
theory and algorithms”, “Engineering applications”, and “Neuroscience: models
and experiments”, respectively. In apart from showing a new perspective, one of
important contributions of this methodology is on adding a closed loop between
the levels. These studies are enlightening because they show that complex ob-
jects or systems should be addressed by decompositions with different, yet basic,
problems. The methodology is considered to be reductionism philosophically.

In this paper, I propose a novel perspective on machine learning by four levels
shown in Fig. 1. The levels correspond to four basic problems. The definition of
each level is given below.

![Diagram](image_url)

Fig. 1. Four basic problems (or levels) in machine learning.
Definition 1: “What to learn” is a study on identifying learning target(s) to the given problem(s), which will generally involve two distinct sets of representations (Fig. 2) defined below.

Definition 1a: “Linguistic representation” reflects a high-level description in a natural language about the expected learning information. This study is more related to linguistics, psychology, and cognitive science.

Definition 1b: “Computational representation” is to define the expected learning information based on mathematical notations. It is relatively a low-level representation which generally includes objective functions, constraints, and optimization formations.

Definition 2: “How to learn?” is a study on learning process design and implementations. Probability, statistics, utility, optimization, and computational theories will be the central subjects. The main concerns are generalization performance, robustness, model complexity, computational complexity/cost, etc. The study may include physically realized system(s).

Definition 3: “What to evaluate?” is a study on “evaluation measure selection” where evaluation measure is a mathematical function. This function can be the same or different with the objective function defined in the first level.

Definition 4: “What to adjust?” is a study on dynamic behaviors of a machine from adjusting its component(s). This level will enable a machine with a functionality of “evolution of intelligence”.

![Design flow according to the basic problems in machine learning.](image)

The first level is also called “learning target selection”. The four levels above are neither mutually exclusive, nor collectively exhaustive to every problems in machine learning. We call them basic so that the extra problems can be merged within one of levels. Figs. 1 and 2 illustrate the relations between each level in different contexts, respectively. The problems within four levels are all interrelated, particularly for “What to learn?” and “What to evaluate?” (Fig. 2).
“How to learn?” may influence to “What to learn?”, such as convexity of the objective function or scalability to learning algorithms [6] from a computational cost consideration. Structurally, “What to adjust?” level is applied to provide the multiple closed loops for describing the interrelations (Fig. 1). Artificial intelligence will play a critical role via this level. In the “knowledge driven and data driven” model [7], the benefits of utilizing this level are shown from the given examples by removable singularity hypothesis to “Sinc” function and prior updating to Mackey-Glass dataset, respectively. Philosophically, “What to adjust?” level remedies the intrinsic problems in the methodology of reductionism and offers the functionality power for being holism. However, this level receives even less attention while learning process holds a self organization property.

I expect that the four levels show a novel perspective about the basic problems in machine learning. Take an example shown in Fig. 3 [after Duda, et al., [8], Fig. 5-17] . Even for the linearly separable dataset, the learning function using least mean square (LMS) does not guarantee a “minimum-error” classification. This example demonstrates two points. First, the computational representation of LMS is not compatible with the linguistic representation of “minimum-error” classification. Second, whenever a learning target is wrong in the computational representation, one is unable to reach the goal from Levels 2 and 3. Another example in Fig. 4 shows why we need two sub-levels in learning target selection. For the given character (here is Albert Einstein), one does need a linguistic representation to describe “(un)likeness” [9] between the original image and caricature image. Only when a linguistic representation is well defined, is a computational measure of similarity possibly proper in caricature learning. The meaning of possibly proper is due to the difficulty in the following definition.

![Fig. 3. Learning target selection within linearly separable dataset. (after [8] on Fig. 5-17). Black Circle = Class 1, Ruby Square = Class 2.](image)

Definition 5: “Semantic gap” is a difference between the two sets of representations. The gap can be linked by two ways, namely, a direct way for describing a connection from linguistic representation to computational representation, and an inverse way for a connection opposite to the direct one.

In this paper, I extend the definition of the gap in [10] by distinguishing two ways. The gap reflects one of the critical difficulties in machine learning. For the direct-way study, the difficulty source mostly comes from ambiguity and subjectivity of the linguistic representation (say, on mental entity), which will
lead to an *ill-defined* problem. While sharing the same problem, an inverse-way study will introduce an extra challenge called *ill-posed* problem, in which there is no *unique* solution (say, from a 2D image to 3D objects).

Up to now, we have missed much studies on *learning target selection* if comparing with a study of *feature selection*. When “What to learn?” is the most primary problem in machine learning, we do need a systematic, or comparative, study on this subject. The investigations from [11][12] into *discriminative* and *generative* models confirm the importance of learning target selection in the vein of computational representation. From the investigations, one can identify the advantages and disadvantages of each model for applications. A better machine gaining the benefits from both models is developed [13]. Furthermore, the subject of “What to learn?” will provide a strong driving force to machine learning study in seeking “the fundamental laws that govern all learning processes” [14].

Take a decision rule about “Less costs more”[1] for example. Generally, Chinese people classify object’s values according to this rule. In *Big Data* processing, the useful information, that often belongs to a *minority class*, is extracted from massive datasets. While an English idiom describes it as “*Finding a needle in a haystack*”, the Chinese saying refers to “*Searching a needle in a sea* (大海撈針)”. Users may consider that an error from a *minority class* will cost heavier than that from a *majority class* in their searching practices. This consideration will derive a decision rule like “*Less costs more*”. The rule will be one of the important strategies in Big Data processing. Two questions can be given to the example. What is the *mathematical principle* (or *fundamental law*) for supporting the decision rule of “*Less costs more*”? Is it a Bayesian rule? Machine learning study does need to answer the questions.

[1] This rule is translated from Chinese saying, “物以稀為貴” in Pinyin “Wu Yi Xi Wei Gui”. The translation is modified from the English phase “*Less is more*” which usually describes *simplicity* in design.
3 Information Theoretical Learning

Shannon introduced “entropy” concept as the basis of information theory [15]:

\[
H(Y) = - \sum_y p(y) \log_2 p(y),
\]

where \(Y \) is a discrete random variable with probability mass function \(p(y) \). Entropy is an expression of disorder to the information. From this basic concept, the other information measures (or entropy functions) can be formed (Table 1), where \(p(t, y) \) is the joint distribution for the target random variable \(T \) and prediction random variable \(Y \), and \(p(t) \) and \(p(y) \) are called marginal distributions. We call them measures because some of them do not satisfy the metric properties fully, like KL divergence (asymmetric). More other measures from information theory can be listed as learning criteria, but the measures in Table 1 are more common and sufficiently meaningful for the present discussion.

![Table 1. Some information formulas and their properties as learning measures.](image)

We can divide the learning machines, in view of “mathematical principles”, within two groups. One group is designed based on the empirical formulas, like error rate or bound, cost (or risk), utility, or classification margins. The other is on information theory [1,16]. Therefore, a systematic study seems necessary to answer the two basic questions below [17]:

Q1: When one of the principal tasks in machine learning is to process data, can we apply entropy or information measures as a generic learning target for dealing with uncertainty of data in machine learning?

Q2: What are the relations between information learning criteria and empirical learning criteria, and the advantages and limitations in using information learning criteria?

Regarding to the first question, Watanabe [18,19] proposed that “learning is an entropy-decreasing process” and pattern recognition is “a quest for minimum entropy”. The principle behind entropy criteria is to transform disordered data
into ordered one (or pattern). Watanabe seems to be the first “to cast the problems of learning in terms of minimizing properly defined entropy functions” [20], and throws a brilliant light on the learning target selection in machine learning.

In 1988, Zellner theoretically proved that Bayesian theorem can be derived from the optimal information processing rule [21]. This study presents a novel, yet important, finding that Bayesian theory is rooted on information and optimization concepts. Another significant contribution is given by Principe and his collaborators [22] for the proposal of Information Theoretical Learning (ITL) as a generic learning target in machine learning. We consider ITL will stimulate us to develop new learning machines as well as “theoretical interpretations” of learning mechanisms. Take again the example of the decision rule about “Less costs more”. Hu [23] demonstrates theoretically that Bayesian principle is unable to support the rule. When a minority class approximates to a zero population, Bayesian classifiers will tend to misclassify the minority class completely. The numerical studies [23,24] show that mutual information provides positive examples to the rule. The classifiers based on mutual information are able to protect a minority class and automatically balance the error types and reject types in terms of population ratios of classes. Theses studies reveal a possible mathematical interpretation of learning mechanism behind the rule.

4 (Dis)similarity Measures in Machine Learning

When mutual information describes similarity between two variables, the other information measures in Table 1 are applied in a sense of dissimilarity. For a better understanding of them, their graphic relations are shown in Fig. 5. If we consider the variable T provides a ground truth statistically (that is, $p(t) = (p_1, ..., p_m)$ with the population rate $p_i (i = 1, ..., m)$ is known and fixed), its entropy $H(T)$ will be the baseline in learning. In other words, when the following relations hold,

$$I(T, Y) = H(T; Y) = H(Y; T) = H(Y) = H(T), \quad \text{or}$$

$$KL(T, Y) = KL(Y, T) = H(T|Y) = H(Y|T) = 0,$$

(2)

we call the measures reach the baseline of $H(T)$.

Based on the study in [20], further relations are illustrated in Fig. 6 between exact classifications and the information measures. We apply the notations of E, Rej, A, CR for the error, reject, accuracy, and correct recognition rates, respectively. Their relations are given by:

$$CR + E + \text{Rej} = 1,$$

$$A = \frac{CR}{CR + E}.$$

(3)

The form of $\{y_k\} = \{t_k\}$ in Fig. 6 describes an equality between the label variables in every samples. For a finite dataset, the empirical forms should be
Fig. 5. Graphic relations among joint information, mutual information, marginal information, conditional entropy, cross entropy and KL divergences (modified based on [25] by including cross entropy and KL divergences).

used for representing the distributions and measures [26]. Note that the link using “↔” indicates a two-way connection for equivalent relations, and “→” for a one-way connection. Three important aspects can be observed from Fig. 6:

I. The necessary condition of exact classifications is that all the information measures reach the baseline of $H(T)$.
II. When an information measure reaches the baseline of $H(T)$, it does not sufficiently indicate an exact classification.
III. The different locations of one-way connections result in the interpretations why and where the sufficient condition exists.

Fig. 6. Relations between exact classifications and mutual information, conditional entropy, cross entropy and KL divergences.

Although Fig. 6 only shows the relations to the information measures listed in Table 1 for the classification problems, its observations may extend to other information measures as well as to the other problems, like clustering, feature selection/extraction, image registrations, etc. When we consider machine learning or pattern recognition to be a process of data in a similarity sense (any dissimilarity measure can be transformed into similarity one [26]), one important theorem exists to describe their relations.
Theorem 1. Generally, there is no one-to-one correspondence between the empirically-defined similarity measures and information measures.

The proof is neglected in this paper, but it can be given based on the study of bounds between entropy and error (cf. [27] and references therein). The significance of Theorem 1 implies that an optimization of information measure may not guarantee to achieve an optimization of the empirically-defined similarity measure.

5 Final remarks

Machine learning can be exploited with different perspectives depending on study goals of researchers. For a deep understanding of ourself on the learning mechanisms mathematically, we can take learning machines as human's extended sensory perception. This paper stresses on identifying the primary problem in machine learning from a novel perspective. I define it as “What to learn?” or “learning target selection”. Furthermore, two sets of representations are specified, namely, “linguistic representation” and “computational representation”. While a wide variety of computational representations have been reported in learning targets, we can argue that if there exists a unified, yet fundamental, principle behind them. Towards this purpose, this paper extends the Watanabe’s proposal [18,19] and the studies from Zellner [21] and Principe [1] to a “conjecture of learning target selection” in the following descriptions.

Conjecture 1. In a machine learning study, all computational representations of learning target(s) can be interpreted, or described, by optimization of entropy function(s).

I expect that the proposal of the conjecture above will provide a new driving force not only for seeking fundamental laws governing all learning processes [14] but also for developing improved learning machines [28] in various applications.

Acknowledgment

This work is supported in part by NSFC(No. 61273196).

References

1. Principe JC (2010) Information theoretic learning: Renyi’s entropy and kernel perspectives. Springer, New York.
2. Lao Tzu (ca. 500 BCE) Tao Te Ching《道徳經》.
3. Norton, JD (2000) Nature is the realization of the simplest conceivable mathematical ideas: Einstein and the canon of mathematical simplicity. Studies in History and Philosophy of Modern Physics. 31:135-170.
4. Marr D (2010) Vision. A computational investigation into the human representation and processing of visual information. The MIT Press.
5. Poggio T (2007) How the brain might work: The role of information and learning in understanding and replicating intelligence. In: Jacovitt G, et al. (eds.) Information: Science and technology for the new century. Lateran University Press, 45-61.
6. Bengio Y, LeCun Y (2007) Scaling learning algorithms towards AI. Large-scale kernel machines. 34:1-41.
7. Hu BG, Qu HB, Wang Y, Yang SH (2009) A generalized constraint neural networks model: Associating partially known relationships for nonlinear regressions. Information Sciences. 179:1929-1943.
8. Duda RO, Hart PE, Stork D (2001) Pattern classification, 2nd edn. John Wiley, New York.
9. Brennan SE (1985). Caricature generator: The dynamic exaggeration of faces by computer. Leonardo, 40: 392-400.
10. Smeulders AW, Worring M, Santini S, Gupta A, Jain R (2000). Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell. 22:1349-1380.
11. Rubinstein YD, Hastie T (1997) Discriminative vs informative learning. In: KDD 5:49-53.
12. Ng A, Jordan MI (2002) On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In: NIPS.
13. Bishop CM, Lasserre J (2007) Generative or discriminative? Getting the best of both worlds. In: Bernardo JM, et al. (eds.) Bayesian Statistics 8. Oxford University Press. 3-23.
14. Mitchell TM (2006) The discipline of machine learning. Technical Report CMU-ML-06-108, Carnegie Mellon University.
15. Shannon CE (1948) A mathematical theory of communication. Bell System Technical Journal. 27: 379–423.
16. Yao YY (2003) Information-theoretic measures for knowledge discovery and data mining. In: Karmeshu (ed) Entropy Measures, Maximum Entropy Principle and Emerging Applications. Springer, Berlin. 115-136.
17. Hu BG, Wang Y (2008) Evaluation criteria based on mutual information for classifications including rejected class. Acta Automatica Sinica. 34:1396-1403.
18. Watanabe S (1980) Pattern recognition as a quest for minimum entropy. Pattern Recognition. 13:381-387.
19. Watanabe S (1981) Pattern recognition as conceptual morphogenesis. IEEE Trans Pattern Anal Mach Intell. 2:161-165.
20. Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Sys Man Cyber. 21:660-674.
21. Zellner A (1988) Optimal information processing and Bayes’s theorem. The American Statistician. 42:278-284.
22. Principe JC, Fisher III JW, Xu D (2000) Information theoretic learning. In: Haykin S, (ed.) Unsupervised Adaptive Filtering. Wiley, New York. 265-319.
23. Hu BG (2014) What are the differences between Bayesian classifiers and mutual-information classifiers? IEEE Trans Neural Networks Learning Sys. 25:249-264.
24. Zhang X, Hu, BG (2014) A new strategy of cost-free learning in the class imbalance problem IEEE Trans on Knowledge Data Eng. 26:2872-2885.
25. Mackay DJC (2003) Information theory, inference, and learning algorithms. Cambridge University Press, Cambridge.
26. Hu BG, He R, Yuan, XT (2012) Information-theoretic measures for objective evaluation of classifications. Acta Automatica Sinica. 38:1170-1182.
27. Hu BG, Xing HJ (2013) A new approach of deriving bounds between entropy and error from joint distribution: Case study for binary classifications. arXiv:1205.6602v1[cs.IT].
28. He R, Hu BG, Yuan XT, Wang L (2014) Robust recognition via information theoretic learning. Springer.