Vedolizumab-Induced Acute Interstitial Nephritis in Ulcerative Colitis

Deloshaan Subhaharan, MD1, Pradeep K. Ramaswamy, MBBS1, Sewwandi Francisco, MBBS2, and Naveed Ishaq, MBBS1

1Department of Digestive Diseases, Gold Coast University Hospital, Gold Coast, Australia
2Pathology Queensland, Gold Coast University Hospital, Gold Coast, Australia

ABSTRACT

Vedolizumab is used in the treatment of inflammatory bowel disease and is generally well tolerated. We report a 20-year-old man who presented with right flank pain on a background of ulcerative colitis. He was on vedolizumab with his last dose 1 week before the onset of symptoms. Kidney function tests revealed a serum creatinine of 171 μmol/L and a C-reactive protein of 74 mg/L. Kidney biopsy demonstrated focal acute interstitial nephritis. He was prescribed oral prednisolone and achieved complete recovery of renal function within 3 weeks. At the follow-up after 4 months, his renal function remains normal.

INTRODUCTION

Vedolizumab is a gut-selective humanized monoclonal antibody that binds to α4β7 integrin used in the treatment of ulcerative colitis and Crohn’s disease. The efficacy and safety of vedolizumab in inflammatory bowel disease (IBD) were demonstrated in the GEMINI trials. It is generally well tolerated, and the common adverse effects include nausea, fatigue, and arthralgia with no reports of kidney injury. There has only been 1 previous case report of acute interstitial nephritis (AIN) secondary to vedolizumab. In this article, we report a case of late-onset AIN while on vedolizumab.

CASE REPORT

A 20-year-old White man presented to the emergency department in August 2020 with 3 weeks of right flank pain. He was diagnosed with ulcerative colitis 15 months earlier and was intolerant to several therapies including mesalazine, azathioprine, and infliximab because of the development of side effects. Ten months before his current presentation, he was commenced on vedolizumab and was receiving maintenance therapy with vedolizumab every 8 weeks. His last colonoscopy 3 months before admission was graded as Mayo Score 0 and fecal calprotectin 83 μg/g. His last dose of vedolizumab was 1 week before the onset of symptoms. He was not on any other medications including nonsteroidal anti-inflammatory drugs or over-the-counter or herbal supplements. He had no associated nausea, vomiting, urinary symptoms, hyperesthesia, trauma, rash, or fevers.

His vital signs revealed a blood pressure of 128/77 mm Hg, heart rate of 97 bpm, respiratory rate of 21 breaths per minute, oxygen saturation of 97% on room air, and a temperature of 37.0°C. Physical examination revealed tenderness over the right flank with no associated peritonism. There was no evidence of any rash, erythema, or signs of infection, and there was no periorbital or pedal edema.

His baseline kidney function before the commencement of vedolizumab was 73 μmol/L, and the estimated glomerular filtration rate (eGFR) was > 90 mL/min/1.73 m2. On admission, his kidney function revealed an elevated serum creatinine of 171 μmol/L with an eGFR of 49 mL/min/1.73 m2, which did not improve with intravenous fluids. Laboratory findings also revealed albumin 45 g/L, hemoglobin 166 g/L, white blood cell count 10.3 × 10⁹/L (neutrophils 7.22 × 10⁹/L, eosinophils 0.05 × 10⁹/L, and lymphocytes 2.01 × 10⁹/L), C-reactive protein 74 mg/L (normal 0–5 mg/L), and negative blood cultures. Urinalysis revealed no leukocyturia (<10 × 10⁶/L), eosinophiluria (<1%), hematuria (<10 × 10⁶/L), or proteinuria (<20 mg/L), and urine culture was negative. Hepatitis B virus...
Vedolizumab is an α4β7 integrin antagonist that has been approved for the treatment of Crohn’s disease and ulcerative colitis. The α4β7 integrin, a cell surface glycoprotein, is expressed on T cells and binds to mucosal addressin cell adhesion molecule-1. By blocking α4β7, vedolizumab inhibits migration of memory and effector T cells as well as subsequent leukocyte extravasation to the affected gastrointestinal mucosa. There are multiple integrins that play a critical role in the kidney; however, the role of α4β7 in kidney disease is unknown.

Renal manifestations of IBD, such as nephrolithiasis, have been increasingly reported with the suggestion that they may be considered as an extraintestinal manifestation of the disease. However, only a few case reports have described rare complications such as glomerulopathy and AIN. The most common diagnosis found on kidney biopsy is immunoglobulin A nephropathy, followed by interstitial nephritis and arteriomegaloglomerulosclerosis, suggesting a shared pathophysiology between intestinal and kidney diseases.

Interstitial nephritis is an immune-mediated form of tubulointerstitial kidney injury that may occur secondary to drugs, autoimmune disease, infections, or hematological disorders. The symptoms are often nonspecific, and hence, the diagnosis is made by kidney biopsy. AIN is characterized by interstitial inflammation, edema, and tubulitis with a predominance of CD4+ T lymphocytes and mononuclear cells with variable numbers of eosinophils. Early recognition is crucial because AIN can progress to a chronic kidney disease triggered by fibroblast activation leading to interstitial fibrosis and tubular atrophy. Extrarenal symptoms are often absent with no albuminuria.

The mainstay of therapy is removal of the causative agent and frequently requires corticosteroid therapy. Drug-induced AIN can occur in up to 27% of all biopsies performed for an acute kidney injury and is characteristic because of a delayed hypersensitivity reaction. Antibiotics are the most implicated class of drugs associated, followed by the use of proton pump inhibitors, nonsteroidal anti-inflammatory agents, 5-aminosalicylates, antiepileptic drugs, and allopurinol. After administration, the drug can act as a tubulointerstitial antigen, deposit in the interstitium, or form a hapten. The inflammatory reaction that occurs is associated with leukocyte recruitment, activation of complement, and secretion of chemokines and cytokines. Tubulointerstitial nephritis in IBD can occur while on 5-aminosalicylates; hence, it is often believed to be drug-induced. There are a number of reports that demonstrate the recovery of renal function once the offending drug is removed. Our patient was not on any other drug which may have caused interstitial nephritis. He was also in clinical and biochemical remission at the time of presentation, and extraintestinal manifestation of disease was believed to be unlikely. Although the patient was not rechallenged to confirm the diagnosis, based on our evaluation, we think that AIN secondary to vedolizumab was the most likely diagnosis.
responsible for the patient’s management as well as the analysis and, drafting of the submission. S. Francisco was responsible for pathology analysis and contributed to the drafting of the submission. All authors approved the final submission.

Financial disclosure: None to report.

Informed consent was obtained for this case report.

Received September 4, 2021; Accepted February 2, 2022

REFERENCES

1. Colombel JF, Sands BE, Rutgeerts P, et al. The safety of vedolizumab for ulcerative colitis and Crohn’s disease. Gut. 2017;66:839–51.
2. Feagan BG, Rutgeerts P, Sands BE, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369:699–710.
3. Sandborn WJ, Feagan BG, Rutgeerts P, et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369:711–21.
4. Sands BE, Feagan BG, Rutgeerts P, et al. Effects of vedolizumab induction therapy for patients with Crohn’s disease in whom tumor necrosis factor antagonist treatment failed. Gastroenterology. 2014;147:618–27.e3.
5. Cross RK, Chiorean M, Vekeman F, et al. Assessment of the real-world safety profile of vedolizumab using the United States Food and Drug Administration adverse event reporting system. PLoS One. 2019;14:e0225572.
6. Bailly E, Von Tokarski F, Beau-Salinas F, et al. Interstitial nephritis secondary to vedolizumab treatment in Crohn disease and safe rechallenge using steroids: A case report. Am J Kidney Dis. 2018;71:142–5.
7. McLean LP, Cross RK. Pharmacodynamic assessment of vedolizumab for the treatment of ulcerative colitis. Expert Opin Drug Metab Toxicol. 2016;12:833–42.
8. Pozzi A, Zent R. Integrins in kidney disease. J Am Soc Nephrol. 2013;24:1034–9.
9. Ambruzs JM, Larsen CP. Renal manifestations of inflammatory bowel disease. Rheum Dis Clin North Am. 2018;44:699–714.
10. Shield DE, Lytton B, Weiss RM, Schiff M. Urologic complications of inflammatory bowel disease. J Urol. 1976;115:701–6.
11. Pardi DS, Tremaine WJ, Sandborn WJ, McCarthy JT. Renal and urologic complications of inflammatory bowel disease. Am J Gastroenterol. 1998;93:504–14.
12. Ambruzs JM, Walker PD, Larsen CP. The histopathologic spectrum of kidney biopsies in patients with inflammatory bowel disease. Clin J Am Soc Nephrol. 2014;9:265–70.
13. Karras A. Acute interstitial nephritis. Rev Prat. 2018;68:170–4.
14. Nast CC. Medication-induced interstitial nephritis in the 21st century. Adv Chronic Kidney Dis. 2017;24:72–9.
15. Perazella MA, Markowitz GS. Drug-induced acute interstitial nephritis. Nat Rev Nephrol. 2010;6:461–70.
16. Krishnan N, Perazella MA. Drug-induced acute interstitial nephritis: Pathology, pathogenesis, and treatment. Iran J Kidney Dis. 2015;9:3–13.
17. Heap GA, So K, Weedon M, et al. Clinical features and HLA association of 5-aminosalicylate (5-ASA)-induced nephrotoxicity in inflammatory bowel disease. J Crohns Colitis. 2016;10:149–58.
18. Witte T, Olbricht CJ, Koch KM. Interstitial nephritis associated with 5-aminosalicylic acid. Nephron. 1994;67:481–2.