Cryptococcal antigen carriage among HIV infected children aged 6 months to 15 years at Laquintinie Hospital in Douala

Ginette Claude Mireille Kalla1,2, Josette Farida Mbonumyb1, Jules Clément Nguedia Assob3, Marcelle Nina Ehuzou Mandeng1,2, Nelly Kamgaing Noubi1,2, Marie Claire Okomo Assoumou4, Francois-Xavier Mbopi-Keou4*, Francisca Monebenimp1,2

1 Department of Pediatrics, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon, 2 Yaoundé University Teaching Hospital, Yaoundé, Cameroon, 3 Department of Laboratory Medicine, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon, 4 Department of Microbiology, Parasitology, Haematology and Infectious Diseases, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaoundé, Cameroon

*fxmkeou@hotmail.com

Abstract

Background
Up to 15% of deaths of people living with HIV is attributable to meningeal cryptococcosis, with nearly 75% occurring in sub-Saharan Africa. Although rare in children, it is a major cause of morbidity and mortality in people living with HIV. A strong association between cryptococcal antigenemia and the development of meningeal cryptococcosis has been shown in adults. Thus, in 2018, the World Health Organization published an updated version of its guidelines for the diagnosis, prevention and management of cryptococcal infection in adults, adolescents and the HIV-infected child.

Goal
To determine the prevalence of cryptococcal antigenemia and to identify its determinants in children infected with HIV.

Methods
An analytical cross-sectional study was carried out at the approved treatment center of Laquintinie hospital in Douala over a period of 4 months. Children were recruited consecutively after informed parental consent. Cryptococcal antigenemia and CD4 assay were performed using a Cryptops® immunochromatographic rapid diagnostic test and flow cytometry, respectively. The data collected included the socio-demographic, clinical and paraclinical variables of the children, as well as their antecedents. Data analysis was performed using Epiinfo software version 3.1 and SPSS 21.0. The significance threshold was set at 5%.
Results

A total of 147 children were enrolled. The mean age was 9.8 ± 4.09 years. The majority were on antiretroviral therapy (142, 96.60%). Only 13 (8.80%) were in severe immunosuppression. No child showed signs of meningeal cryptococcosis. The prevalence of cryptococcal antigenemia was 6.12%. Severe immunosuppression [OR: 10.03 (1.52–65.91), p = 0.016] and contact with pigeons [OR: 9.76 (1.14–83.65), p = 0.037] were independent factors significantly associated with the carriage of the cryptococcal antigen.

Conclusion

We recommend screening for cryptococcal antigenemia and routine treatment with fluconazole of all HIV positive children with cryptococcal antigen whether symptomatic or not.

Introduction

Cryptococcal meningitis is a serious opportunistic infection; it specifically occurs after *Cryptococcus* has spread from the lungs to the brain causing headache, fever, neck pain, nausea and vomiting, sensitivity to light, altered mental status (ranging from confusion to coma). Globally, it is estimated to be responsible for 15% of deaths of HIV-positive patients worldwide, with three quarter occurring in sub-Saharan Africa [1]. In 2014, cryptococcal meningitis, together with tuberculosis were by far the most common presentation associated with HIV/AIDS [2]. It was responsible for about 223,100 cases and 181,100 deaths among people living with HIV [2]. The literature reports that cryptococcal antigenemia is a strong predictor of subsequent cryptococcal meningitis in adults infected with Human Immunodeficiency Virus (HIV) with CD4 T cell counts <100/μl [3]. This is because cryptococcal antigen can be detected in the blood weeks or months before the development of clinical disease [1, 4, 5]. World Health Organisation guidelines for the diagnosis and prevention of HIV-associated cryptococcal meningitis recommends empirical treatment for any patient with persistent positive cryptococcal antigenemia, to avoid the development of a potentially fatal infection [6]. Screening for cryptococcal antigenemia coupled with preventive antifungal therapy has been shown to be a cost-effective strategy with survival benefits and has been incorporated into national HIV guidelines in several countries [6]. However, for some countries with a high HIV burden, this has not been implemented [6]. Many studies in Subsaharan Africa done among adults reported that the mortality rate of cases of cryptococcal meningitis was estimated at 35 to 65% in African patients infected with HIV, against 14 to 26% in HIV-infected patients living in industrialized countries [7, 8].

With the aim of reducing this morbidity and mortality associated with cryptococcal meningitis, in March 2018, WHO published an updated version of its guidelines for the diagnosis, prevention and management of cryptococcal infection in adults, adolescents and children infected with HIV [6]. Indeed, cryptococcal antigen screening is the preferred approach to identify the risk of cryptococcal meningitis development during the management of people with advanced HIV infection [2]. The implementation of the new WHO guidelines will help improve the diagnosis, prevention and treatment of one of the most common opportunistic infection in people with advanced HIV infection, thereby helping to reduce HIV-related mortality globally and, in particular, in Africa [9].
Many studies have looked at cryptococcal antigenemia, for instance, in 2017, Oladele et al. reported an average global prevalence of 6% cryptococcal antigenemia among HIV-infected patients with CD4 < 100 cells/μl [1, 10].

In Cameroon, several studies have been carried out in adults, including that of Temfack et al. in 2018, which found a prevalence of cryptococcal antigenemia of 7.5%. In these patients with positive cryptococcal antigenemia, 45.5% of them developed meningeal cryptococcosis [10].

Although the literature is not very extensive, a few authors have focused on cryptococcosis in HIV positive children. All of these studies are unanimous in saying that meningeal cryptococcosis is rare in children [2]. Indeed, the incidence of cryptococcal meningitis in children varies between 0.85 and 2.97% [11]. In Colombia, Lizarazo et al. found in 2014, an average annual incidence rate of the country of 0.017 cases/100,000 children under 16 years [12]. A study done in China by Guo et al. in 2016, found an incidence of cryptococcosis of 0.016 to 100 cases /100,000 children [13].

For this reason, WHO has limited this recommendation to adolescents and not to smaller children. According to WHO, screening and primary prophylaxis are not recommended for children, due to the low incidence of cryptococcal meningitis in this age group [13]. And yet, although the disease is not common in children, it remains a significant cause of morbidity and mortality, especially in those with weakened immune systems [10, 14, 15].

Thus, some authors have recommended screening for cryptococcal antigenemia in young children [12, 16].

In Cameroon, we did not find any studies on cryptococcosis in children, much less on the carriage of the cryptococcal antigenemia, hence our interest in the subject. Indeed, the early detection of the carriage of the cryptococcal antigenemia in Cameroonian HIV positive children, especially those with low CD4 count, would not only make it possible to assess the extent of cryptococcal antigenemia in the latter, but above all, to detect and treat early those likely to develop meningeal cryptococcosis which can be fatal.

Materials and methods

A cross-sectional, analytical study was carried out in the pediatric department of Laquintinie hospital in Douala over a period of 4 months. The approved treatment center for people living with HIV in the said hospital has a cohort actively on treatment with more than 3,126 patients, including more than 800 children infected with HIV. The study population consisted of HIV positive children aged 6 months to 15 years of age whose parents had given written informed consent, they were enrolled consecutively.

Data collection procedures

After having obtained the approval of the Ethics and Research Committee of the Faculty of Medicine and Biomedical Sciences of the University of Yaoundé I and the research authorization of the Director of the Laquintinie hospital in Douala, the children fulfilling our inclusion criteria were selected from the consultation registers. Parents were contacted by phone, invited to the hospital where information about the study was given to them followed by signature of an informed consent form for their child to participate in the study. Subsequently, all the children selected underwent a complete physical examination and the socio-demographic, clinical, paraclinical variables as well as the children’s history were filled in using a pre-established questionnaire. At the end of this examination, a blood sample was taken in dry and EDTA tubes respectively for the determination of the cryptococcal antigen and that of CD4. The testing of cryptococcal antigenemia was done once a week for logistic reasons, however, for
children who were symptomatic, this was done immediately and all those who had a positive result were referred to a specialist consultation for management.

Biological analysis procedures

After blood sample collection, tubes were stored in cooler boxes and transported to the laboratory within 24 hours where they were centrifuged for 5 minutes, separated and stored at -20 degrees Celsius.

We used the semi-quantitative CryptoPS immunochromatographic test from Biosynex laboratories, Strasbourg, France. It is a rapid immunochromatographic test for the semi-quantitative detection and titration of Cryptococcus sp capsular antigen in serum, plasma, whole blood, and cerebrospinal fluid to guide the diagnosis of cryptococcosis [17]. With a sensitivity of 95% and a specificity of 100%. The T1 band is qualitative and the T2 band semi-quantitative [17]. The test was considered positive in the presence of two colored lines (T1 and control C) and strong positive in the presence of three colored lines (T1, T2 and C) (Fig 1).

During CrAg testing, the stored sera are brought to room temperature.

For the CD4 count, blood was taken in EDTA tubes and analysis was done by flow cytometry in a reference laboratory in the city of Douala. The classification of immunosuppression was made taking into account the number of CD4/mm3 according to age groups as proposed by the WHO in 2006, classifying HIV immunosuppression in children into 4 classes (no significant, moderate, advanced and severe) [18].

Data analysis

Data were entered into EPI data version 3.1 software and analyzed using Microsoft Excel 2016 and SPSS version 21.0 software. A simple calculation of proportions, means and standard deviation was performed. For comparison of proportions, chi-square and Fischer tests were used. The strength of association was estimated by Odds ratio and the 95% confidence interval. In order to exclude the effect of confounding factors, multivariable analysis was performed using the logistic regression model, including all variables with a p-value less than 0.05. The p value <0.05 was considered to be statistically significant.

Ethical considerations

Confidentiality and anonymity were strictly observed. Parents did not pay any fees for the tests and were advised that their child may experience mild pain at the blood sample collection site. The samples were taken by qualified nursing staff, in accordance with the rules of asepsis. Positive cases of cryptococcosis were referred for treatment.

Results

From January 22, 2018 to May 22, 2018, 147 children meeting our inclusion criteria were selected for the study. The mean age was 9 years 9 months ± 4.09 years with extremes ranging from 7 months to 15 years 8 months. The most represented age group was that of 10 to 15 years old with a frequency of 74 (50.30%). Seventy-four (74, 50.30%) were male for a sex ratio of 1.01. The majority of children lived in urban areas, ie 134/147 (91.2%). The majority had at least a primary school level (126, 85.7%) (Table 1).

Peri and post-natal history of children

The majority 140 (95.20%) were born at term with a eutrophic birth weight (140, 70.70%). Slightly more than half benefited from exclusive breastfeeding (78, 53.10%) and 72 (49%) of
them were weaned before the age of 6 months. HIV status was unknown for 100 (68%) mothers during pregnancy and the most common mode of delivery was vaginally (145/147, 98.60%). The majority, 99 of the children had a history of previous hospitalization (67.40%) and 118 (80.30%) of them had no history of opportunistic illnesses. For those who did, pulmonary tuberculosis was the most common opportunistic disease (22/147, 15%). Most of the children were not in contact with domestic birds (129, 87.80%). However, 11 children were in contact with chickens (7.50%), 5 children with pigeons (3.40%) and finally, 2 children with ducks (1.40%) (Table 2).

Fig 1. Interpretation of the results of Cryptops® test. Cryptococcal antigen carriage among children aged 6 months to 15 years infected with HIV at Laquintinie Hospital in Douala.

https://doi.org/10.1371/journal.pone.0253781.g001
Clinical and paraclinical characteristics of pediatric HIV

Seventy-nine children had been known to be HIV positive for more than 59 months (53.70%) and 74 (50.30%) had been on ARVs for more than 5 years. Only 22 (15%) benefited from a change in treatment protocol following treatment failure for 9 (6.10%) of them. An adherence problem was identified in 73 children (49.70%), but the majority of children did not interrupt their treatment 143 (97.30%).

The majority of children at the time of the study were asymptomatic (138, 94.60%). However, we found 3 children with otorrhea, 2 children with signs of malnutrition, 2 children with fever, 1 with headache and 1 other who presented with vomiting. The viral load was undetectable for 84 children (57.10%) and the immune deficiency was moderate, advanced and severe for 24 (16.30%), 17 (11.60%) and 13 (8.80%) respectively (Table 3).

Cryptococcal antigen carriage

Of the 147 children selected for the study, 9 children were carriers of the cryptococcal antigen, giving a prevalence of 6.12%. The antigenic titers were very high (> 2.5 μg / ml) for 2 (22.22%) children and between moderate (2.5 ng-2.5 μg/ml) for 7 (77.78%) children (Table 4).

Factors associated with the carriage of cryptococcal antigen

Discovery of HIV status less than 2 months [OR = 9.57; IC95% (1.03–61.96); (p = 0.040)], discontinuation of ARVs [OR = 19.43, IC 95% (1.7–198.07)] (p = 0.020), ARVs taking less than 2 months [OR = 21.28, IC95% (3.79–107.34)] (p = 0.000), regular contact with pigeons [OR = 12.86, IC 95% (1.29–95.96)] (p = 0.030), the presence of clinical manifestations [OR = 36, IC 95% (5.55–223.64)] (p = 0.000) and severe immunosuppression [OR = 12.86, IC 95% (1.29–95.96)] (p = 0.000) were significantly associated with the carriage of the cryptococcal antigen.
Variables	Frequency (n)	Percentage (%)
Gestational age (WA)		
<37	6	4.10
[37–42]	140	95.20
>42	1	0.70
Weight at Birth (Gr)		
Not Known	37	25.20
<2500	3	2.00
[2500–4000]	104	70.70
>4000	3	2.00
Feeding method at birth		
Not known	12	8.20
Exclusive breastfeeding	78	53.10
Artificial feeding	18	12.20
Mixed feed	39	26.50
Age at weaning (months)		
Not known	12	8.20
<6	72	49.00
[6–9]	33	22.40
>9	30	20.40
HIV status of the mother during pregnancy		
Not known	100	68.00
Positive	13	8.80
Negative	34	23.10
Mode of delivery		
Per vaginal	145	98.60
Caesarean	2	1.40
Total	147	100
Postnatal		
Variables	Frequency (n)	Percentage (%)
Previous hospitalizations		
Any	48	32.60
≥ 1	99	67.40
History of opportunistic diseases		
No history	118	80.30
Pulmonary tuberculosis	22	15.00
Kaposi sarcoma	1	0.70
Shingles	1	0.70
Toxoplasmosis	1	0.70
Oropharyngeal candidiasis	4	2.70
Contact with pets		
No contact	129	87.80
Chickens	11	7.50
Pigeons	5	3.40
Ducks	2	1.40
Total	147	100

WA: weeks of amenorrhea, Gr: Grams.

https://doi.org/10.1371/journal.pone.0253781.t002
Multivariable analysis

Regular contact with pigeons [OR = 9.76, IC95% (1.14–83.65) (p = 0.037)] and severe immunosuppression (OR: 10.03 [1.52–65.91], p = 0.016) [OR = 10.03, IC95% (1.52–65.91) (p = 0.016)] were found to be independent factors significantly associated with the carriage of the cryptococcal antigen in HIV positive children (Table 5).

Table 3. Clinical and paraclinical characteristics of pediatric HIV.

Variables	Frequency (n)	Percentage (%)
Duration of HIV discovery (months)		
<2	6	4.10
[2–3]	7	4.80
[4–12]	16	10.90
[13–59]	39	26.50
> 59	79	53.70
Duration of ARV intake (months)		
Naive	5	3.40
<2	5	3.40
[2–59]	63	42.90
> 59	74	50.30
Changing ARV treatment		
Yes	22	15.00
No	125	75.00
Therapeutic failure		
Yes	9	6.10
No	138	93.90
Compliance issues		
Yes	73	49.70
No	74	50.30
Discontinuation of treatment		
Yes	4	2.70
No	143	97.30
Clinical manifestations		
Yes	9	5.40
No	138	94.60
Viral load (copies / ml)		
Not carried out	20	12.90
Undetectable (less than 50)	84	57.10
[51–199]	5	3.40
[200–299]	2	1.40
[300–500]	2	1.40
> 500	35	23.80
Immune deficiency		
Not significant	93	63.30
Moderate	24	16.30
Advanced	17	11.60
Strict	13	8.80
Total	147	100

ARVs: antiretrovirals; ml: milliliter.

https://doi.org/10.1371/journal.pone.0253781.t003
Discussion

Most participants had history of previous hospitalization (67.40%), although 118 (80.30%) presented no history of opportunistic illnesses (118 (80.30%) in this series. For those who did, pulmonary tuberculosis was the most common opportunistic disease (22/147, 15%). However, 11 children were in contact with chickens (7.50%), 5 children with pigeons (3.40%) and 2 children with ducks (1.40%). Liu et al. in his pediatric cohort population study carried out in China in 2017, found that 19 children (35.8%) had history of exposure to poultry including 11 children exposed to pigeons and 8 exposed to chickens [14]. Numerous other studies have suggested that Cryptococcus neoformans is found worldwide in association with the feces of certain birds such as pigeons [19, 20].

The majority of children in our series were on ARVs (142, 96.60%). This was also the case in the study by Somdipa et al. in India [5]. Most children at the time of the study were

Table 4. Distribution of the population according to prevalence of cryptococcal antigenemia and to antigenic titre.

Variables	Frequency (n)	Percentage (%)
Presence of cryptococcal antigen in serum		
Positive	9	6.12
Negative	138	93.88
Total	147	100
Antigenic titre in serum		
[25ng-2.5μg]	7	77.78
> 2.5μg	2	22.22
Total	9	100

https://doi.org/10.1371/journal.pone.0253781.t004

Table 5. Multivariable analysis of factors associated with carriage of cryptococcal antigen.

Variables	Cryptococcal antigen	OR (IC 95%)	P value	
	Positive (n = 9)	Negative (n = 138)		
Duration of HIV discovery	<2 months			
Yes	2 (33.3)	4 (66.7)	9.57(1.03–61.96)	0.040
No	7 (5)	134 (95)		
Duration of ARV intake	<2 months			
Yes	4 (44.4)	5 (55.6)	21.28(3.79–107.34)	0.000
No	5 (3.6)	133 (96.4)		
Not taking ARVs				
Yes	2 (50)	2 (50)	19.43(1.7–198.07)	0.020
No	7 (4.9)	136 (95.1)		
Regular contact with pigeons				
Yes	2 (40)	3 (60)	9.7(1.29–95.96)	0.037
No	7 (4.9)	135 (95.1)		
Clinical manifestations				
Yes	4 (57.1)	3 (42.9)	36(5.55–223.64)	0.000
No	5 (3.6)	135 (96.4)		
Immunodepression strict				
Yes	4 (30.8)	9 (69.2)	10.03(2.29–51.64)	0.016
No	5 (3.7)	129 (96.3)		

https://doi.org/10.1371/journal.pone.0253781.t005
asymptomatic (138, 94.60%). However, few children presented signs of otorrhea (03), signs of malnutrition (02), with fever (02), headache (01) and vomiting (01). In the literature, although reported in adults, headache seems to be a predictor of cryptococcal meningitis in patients with cryptococcal antigen (p <0.001). Regarding malnutrition, Goni et al., in 2017 in Nigeria in a study carried out in adults reported that low body mass index was an independent predictor of positive serum cryptococcal antigenemia (p = 0.037) [21].

We found a prevalence of cryptococcal antigenemia of 6.12%. Anigilaje et al. in 2013 in Nigeria and Somdipa et al. in 2019 in India found that no child was carrying a cryptococcal antigen [5, 22]. The prevalence found in our series is much closer to that found in studies carried out in HIV-positive adults, in particular Oladele et al. in Nigeria in 2016 and Temfack et al. in 2018 in Cameroon who found a prevalence of cryptococcal antigenemia respectively of 8.9% and 7.5% [7, 9]. If the results of Anigilaje et al. [22], as well as Somdipa et al. [5] are in line with the WHO recommendations excluding adolescents and children from routine screening for cryptococcal antigenemia, our results on the other hand suggests that systematic screening is recommended for children.

Significant factors associated with the carriage of the cryptococcal antigen such as discovery of HIV status less than 2 months (p = 0.040), discontinuation of ARVs (p = 0.020), ARVs taking less than 2 months (p = 0.000), regular contact with pigeons (p = 0.030), the presence of clinical manifestations (p = 0.000) and severe immunosuppression (p = 0.000) were revealed in this study. However other similar studies in children did not find any factors associated with the carriage of the cryptococcal antigen [5, 22].

However, many studies carried out in adults, in particular the study by Ogouyèmi-Hounto et al. in Benin in 2016, found as a factor associated with the carriage of the cryptococcal antigen, the body mass index <18.5 kg/m² and an altered general condition with a CD4 lymphocyte count <50 cells / μL [23]. Hailu et al. in Ethiopia in 2019 found that male sex, rural life and being hospitalized were associated with cryptococcal antigenemia [24].

Conclusion

The prevalence of carriage of the cryptococcal antigen was 6.12%. Severe immunosuppression and contact with pigeons were independent factors significantly associated with this carriage. At the end of this study, we recommend screening for cryptococcal antigenemia and routine treatment of all HIV positive children with cryptococcal antigen, whether symptomatic or not. Currently, no study on neuromeningeal cryptococcosis and the carriage of the cryptococcal antigen in children in Cameroon. Very little data on the carriage of the cryptococcal antigen in children worldwide.

This study shows that the carriage of the cryptococcal antigen is a reality in HIV positive children in Cameroon. Screening for cryptococcal antigenemia and preemptive treatment with fluconazole should also be routine in advanced HIV positive children, contrary to the 2018 WHO recommendations on the prevention, diagnosis and management of cryptococcosis in HIV positive subjects.

Supporting information

S1 Dataset.
(XLSM)

S2 Dataset.
(XLSM)
Acknowledgments
Our thanks go to all the patients and parents for their participation in the study, as well as to Prof. Penda Ida and the staff of Laquintinie Hospital in Douala.

Author Contributions
Conceptualization: Ginette Claude Mireille Kalla.
Formal analysis: Ginette Claude Mireille Kalla, Josette Farida Mboumnyemb, Jules Clément Nguedia Assob, Marcelle Nina Ehouzou Mandeng, Nelly Kamgaing Noubi, Marie Claire Okomo Assoumou.
Investigation: Josette Farida Mboumnyemb.
Project administration: Ginette Claude Mireille Kalla.
Resources: Francisca Monebenimp.
Supervision: Francisca Monebenimp.
Validation: Jules Clément Nguedia Assob.
Writing – original draft: Josette Farida Mboumnyemb, Jules Clément Nguedia Assob, Marcelle Nina Ehouzou Mandeng, Nelly Kamgaing Noubi, Marie Claire Okomo Assoumou.
Writing – review & editing: Francois-Xavier Mbopi-Keou, Francisca Monebenimp.

References
1. Oladele R, Bongomin F, Gago S, Denning D. HIV-Associated Cryptococcal Disease in Resource-Limited Settings: A Case for “Prevention Is Better Than Cure”? J Fungi. 2 déc 2017; 3(4):67. https://doi.org/10.3390/jof3040067 PMID: 29371581
2. World Health Organization. Guidelines for the diagnosis, prevention and management of cryptococcal disease in HIV-Infected adults, adolescents and children: supplement to the 2016 Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. [Internet]. 2018 [cité 17 nov 2019]. Disponible sur: http://www.ncbi.nlm.nih.gov/books/NBK531449/
3. Wake R, van Schaikwyk E, Sirruttan C, Rukasha I, Omar T, Spencer D, et al. High Cryptococcal Antigen Titers in Blood are Predictive of Subclinical Cryptococcal Meningitis Among HIV-Infected Patients. Clin Infect Dis. 2018; 66(5):686–692. https://doi.org/10.1093/cid/cix872 PMID: 29028998
4. Molloy SF, Chiller T, Greene GS, Burry J, Govender NP, Kanyama C, et al. Cryptococcal meningitis: A neglected NTD? PLoS Negl Trop Dis. 29 juin 2017; 11(6):e0005575. https://doi.org/10.1371/journal.pntd.0005575 PMID: 28662028
5. Somdipa P, Sheetal A, Shalini M, Alok H. Occurrence Of Cryptococcal Antigenemia In HIV Positive Children: A Cross-sectional Study. Int J Sci Res. 2019; 8(9):31–4.
6. Dromer F. L’antigène cryptococcique est un élément-clé du diagnostic des méningites à cryptococoque. Transcriptases [Internet]. 1996 [cité 16 juin 2021];(52). Disponible sur: https://www.pistes.fr/transcriptases/52_497.htm
7. Oladele RO, Akanmu AS, Nwosu AO, Ogunsola FT, Richardson MD, Denning DW. Cryptococcal Antigenemia in Nigerian Patients With Advanced Human Immunodeficiency Virus: Influence of Antiretroviral Therapy Adherence. Open Forum Infect Dis. 2016; 3(2):ofw055. https://doi.org/10.1093/ofid/ofw055 PMID: 27186581
8. OMS. Infection à cryptococcoce et VIH: ce qui est nouveau et qu’il faut savoir [Internet]. 2018 [cité 15 nov 2020]. Disponible sur: https://www.who.int/hiv/mediacentre/news/cryptococcal-disease-key-messages/fr/
9. Temfack E, Kouanfack C, Mossiang L, Loyse A, Fonkoua MC, Molloy SF, et al. Cryptococcal Antigen Screening in Asymptomatic HIV-Infected Antiretroviral Naïve Patients in Cameroon and Evaluation of the New Semi-Quantitative Biosynex CryptoPS Test. Front Microbiol. 2018; 9:409. https://doi.org/10.3389/fmicb.2018.00409 PMID: 29593675
10. Kramarow S, Zakordonetsy L, lytushenko V. Fatal case of cryptococcal meningitis and pneumonia in HIV-infected child-case report. J Microbiol Exp. 3 août 2018; 6(4):199–200.
11. Lizarazo J, Escándon P, Agudelo CI, Castañeda E. Cryptococcosis in Colombian children and literature review. Mem Inst Oswaldo Cruz. sept 2014; 109(6):797–804. https://doi.org/10.1590/0074-0276130537 PMID: 25317708

12. Guo X, Bu H, He J, Zou Y, Zhao Y, Li Y, et al. Current diagnosis and treatment of cryptococcal meningitis without acquired immunodeficiency syndrome. Neuroimmunol Neuroinflamm. 2016; 3:249–56.

13. World Health Organization. Rapid advice: diagnosis, prevention and management of cryptococcal disease in HIV-infected adults, adolescents and children: December 2011 [Internet]. World Health Organization; 2011 [cité 16 juin 2021]. Disponible sur: https://apps.who.int/iris/handle/10665/44786

14. Liu L, Guo L, Liu Y, Chen T, Li S, Yang Y, et al. Clinical characteristics and prognosis of pediatric cryptococcosis in Beijing Children’s Hospital, 2002–2014. Eur J Pediatr. sept 2017; 176(9):1235–44. https://doi.org/10.1007/s00431-017-2974-0 PMID: 28776195

15. King J, Pana Z-D, Lehrnbec her T, Steinbach WJ, Warris A. Recognition and Clinical Presentation of Invasive Fungal Disease in Neonates and Children. J Pediatr Infect Dis Soc. 1 sept 2017; 6(suppl_1): S12–21. https://doi.org/10.1093/jpids/pix053 PMID: 28927201

16. Nyakiza T, Tatue J, Kenfak-Foguena A, Verweij P, Meis J, Robertson V, et al. Epidemiology and aetiologies of cryptococcal meningitis in Africa, 1950–2017: protocol for a systematic review. BMJ Open. 2018; 8(7):e020654–e020654. https://doi.org/10.1136/bmjopen-2017-020654 PMID: 30061436

17. Laboratoire Biosynex. BIOSYNEX® CryptoPS For the semi-quantitative detection of Cryptococcus sp. antigens in whole blood, serum, plasma and CSF [Internet]. [cité 5 sept 2020]. Disponible sur: https://webcache.googleusercontent.com/search?q=cache:O1i_rfzLUvcJ:https://www.biosynex.com/flyers/pro/mycologie/en/crypto.ps.pdf+&cd=16&hl=fr&ct=clnk&gl=cm

18. WHO case definitions of HIV for surveillance and revised clinical staging and immunological classification of HIV-related disease in adults and children. 2016. [cited 5 sept 2020]. https://www.who.int/hiv/pub/guidelines/HIVstaging150307.pdf

19. Maziarz EK, Perfect JR. Cryptococcosis. Infect Dis Clin North Am. mars 2016; 30(1):179–206. https://doi.org/10.1016/j.idc.2015.10.006 PMID: 26897067

20. Derbie A, Mekonnen D, Woldeamanuel Y, Abebe T. Cryptococcal antigenemia and its predictors among HIV infected patients in resource limited settings: a systematic review. BMC Infect Dis. 11 juin 2020; 20(1):407. https://doi.org/10.1186/s12879-020-05129-w PMID: 32527231

21. Goni B, Kida I, Saidu I, Yusuph H, Brown M, Bakki B, et al. Cryptococcal neoformans Antigenemia among HIV-Infected Patients in North Eastern Nigeria. J Transm Dis Immun. 2017; 1(1):1–8.

22. Anigilaje EA, Olutola A, Dabit O, Adeoti AO, Emebolu AJ, Abah J. There is No Cryptococcal Antigenemia among A Cohort of Children with Advanced HIV Infection in an Antiretroviral Therapy Programme in Makurdi, Nigeria. J AIDS Clin Res. 2013; 4(261):2.

23. Ogouyém-Hounto A, Zannou D, Ayihounton G, Ahouada C, Azon-Kouanou A, Acakpo J, et al. Prévalence de l’antigénémie cryptocoque et les facteurs associés chez les patients infectés par le VIH à Cotonou au Bénin. J Mycol Médicale. déc 2016; 26(4):391–7.

24. Halliu K, Niguse S, Hagos K, Abdulkader M. Cryptococcal antigenemia and associated risk factors among ART-naïve and ART-experienced HIV-infected peoples at selected health institutions of Mekelle, Northern Ethiopia. Microbiology Open. 2019; 8(6):e00746. https://doi.org/10.1002/mbo3.746 PMID: 30277315