Characterization of a Family of IAA-Amino Acid Conjugate Hydrolases from Arabidopsis*

Sherry LeClere‡§¶, Rosie Tellez‡¶, Rebekah A. Rampey‡¶, Seiichi P. T. Matsuda‡¶, and Bonnie Bartel‡¶

From the Departments of ‡Biochemistry and Cell Biology and ¶Chemistry, Rice University, Houston, Texas 77005

The mechanisms by which plants regulate levels of the phytohormone indole-3-acetic acid (IAA) are complex and not fully understood. One level of regulation appears to be the synthesis and hydrolysis of IAA conjugates, which function in both the permanent inactivation and temporary storage of auxin. Similar to free IAA, certain IAA-amino acid conjugates inhibit root elongation. We have tested the ability of 19 IAA-L-amino acid conjugates to inhibit Arabidopsis seedling root growth. We have also determined the ability of purified glutathione S-transferase (GST) fusions of four Arabidopsis IAA-amino acid hydrolases (ILR1, IAR3, ILL1, and ILL2) to release free IAA by cleaving these conjugates. Each hydrolase cleaves a subset of IAA-amino acid conjugates in vitro, and GST-ILR1, GST-IAR3, and GST-ILL2 have \(K_m \) values that suggest physiological relevance. In vivo inhibition of root elongation correlates with in vitro hydrolysis rates for each conjugate, suggesting that the identified hydrolases generate the bioactivity of the conjugates.

Indole-3-acetic acid (IAA)\(^1\) is the most abundant naturally occurring auxin in plants. IAA acts in virtually every aspect of plant development from embryogenesis to senescence (1). IAA can occur either as the hormonally active free acid or in bound forms in which the carboxyl group is conjugated to sugars via ester linkages or to amino acids or peptides via amide linkages (reviewed in Ref. 2). Certain IAA conjugates have auxin activity in bioassays and in tissue culture (reviewed in Ref. 3), but the functions of endogenous auxin conjugates remain poorly understood. Conjugates have been proposed to have roles in storing, transporting, and compartmentalizing auxins, as well as in detoxifying excess IAA and protecting the free acid against peroxidative degradation (2).

Certain IAA conjugates can be enzymatically hydrolyzed, producing free IAA. IAA-Ala is hydrolyzed by extracts of Chinese cabbage (4), by pea stem segments (5), and by purified GST-IAR3 enzyme (6). This hydrolysis correlates with IAA-Ala activity in bioassays. For example, the curvature generated by IAA-Ala applied to bean stem sections is directly related to the measured amount of IAA released from IAA-Ala (7). Similarly, IAA-Leu, IAA-Phe, IAA-glucose, and IAA-myoinositol are active in bioassays and are hydrolyzed by plant extracts and/or purified enzymes (4, 6, 8–10). Hydrolyzable conjugates probably provide a readily accessible storage form of IAA. For example, IAA conjugates stored in seeds are rapidly hydrolyzed following imbibition to yield the IAA necessary for germination (11, 12).

In contrast, other conjugates such as IAA-Asp can be intermediates in the oxidative degradation of IAA and are not hydrolyzed in vivo (13, 14). Although the plant enzymes that synthesize IAA-amino acid conjugates have not been identified, IAA levels apparently regulate which conjugates are formed. For example, the auxin-overproducing mutant sur2 accumulates more IAA-Asp than wild type (15) but synthesizes less of the hydrolyzable IAA-Leu (8) from applied IAA (15). Certain IAA-amino acid conjugates have activities that are only partially explained by hydrolysis (to release IAA), suggesting that conjugates may have hydrolysis-independent functions. For example, pretreating tomato cell cultures with IAA-Ala inhibits IAA-induced shoot growth and root initiation, suggesting that IAA and some conjugates may compete for a binding site(s) (16).

Several conjugates have been identified and quantified in plants, including IAA-myoinositol, IAA-glucose, and a large ester-linked cellulosic glucon conjugate in maize (17); IAA-Asp and IAA-Glu in soybean (18, 19); several IAA-peptide conjugates in bean (20, 21); and IAA-Ala in Picea abies (14). IAA-glucose, IAA-Asp, IAA-Glu (22), IAA-Ala, IAA-Leu (23), and an IAA-peptide (21) are present in Arabidopsis.

Plant genes involved in synthesizing ester-linked IAA conjugates and hydrolyzing amide-linked IAA conjugates have been identified. Iaglu from maize (24) and UGT84B1 from Arabidopsis (25) encode enzymes that esterify IAA to glucose. ILR1 and IAR3 encode IAA-amino acid hydrolases that were identified through mutant screens in Arabidopsis. ilr1 and iar3 mutant plants are less sensitive than wild type to IAA-Leu and IAA-Ala, respectively (6, 8), and the ILR1 and IAR3 proteins are 46% identical to each other. Five additional Arabidopsis amidohydrolase-like genes have been identified based on homology (Fig. 1). ILL1 and ILL2 (8) are 87% identical to each other, ~57% identical to IAR3, and ~44% identical to ILR1. ILL3 is 42–48% identical to other hydrolases, and ILL5 is an apparent pseudogene most similar to IAR3 (6). A genomic sequence recently deposited in GenBank (G1; GenBank accession number CA09330) potentially encodes a protein.
that we refer to as ILL6 (cDNA GenBank™ accession number AY065996) that is 45–48% identical to the other hydrolases. All of the Arabidopsis amidohydrolase-like proteins contain N-terminal sequences predicted to target insertion into the endoplasmic reticulum (ER), and all except ILL3 and ILLE/GRI1 encode C-terminal putative ER retention signals, suggesting that most family members localize to the ER lumen (6, 8). Although these Arabidopsis hydrolases lack close homologs in non-plant eukaryotes, they resemble (19–34% identical) microbial hydrolases (Fig. 1) that accept diverse substrates, including IAA-Asp (26), acetylated amino acids (27), benzoyloxy carbonyl-modified amino acids (28), and benzyloxy glycine (29).

One measure of IAA-amino acid conjugate activity is the ability of certain conjugates to inhibit Arabidopsis root elongation (6, 8, 30, 31). Because the profile of endogenous IAA conjugates is still incomplete for Arabidopsis and most other plants, we wished to determine which IAA-amino acid conjugates display auxin-like activity in this bioassay and to determine whether auxin activity correlates with the ability of purified amidohydrolases to cleave these conjugates. Here we describe the synthesis of 13 IAA-l-amino acid conjugates and compare the activities of 19 IAA-l-amino acid conjugates on wild type and mutant Arabidopsis root elongation. We also describe purification of GST fusions of the amidohydrolases ILR1, IAR3, ILL1, and ILL2 and compare the in vitro enzymatic activity of these hydrolases, including rates of hydrolysis, pH optima, cofactor requirements, and kinetics.

EXPERIMENTAL PROCEDURES

Synthesis of IAA-Amino Acid Conjugates—IAA-Ala, IAA-Asp, IAA-Ile, IAA-Leu, IAA-Phe, and IAA-Val were purchased from Aldrich; other chemicals were purchased from Sigma. The remaining conjugates were synthesized by dicynohexylcarbodiimide (DCCI)-activated condensation (32) of IAA and l-amino acid esters, followed by base saponification to remove ester-protecting groups and yield IAA-amino acid conjugates. Protected l-amino acids used were methyl esters for Gly, His, Met, Pro, Ser, Thr, and Tyr; dimethyl esters for cystine and Glu; t-buty1 esters for Asn and Gln; N-CbZ ester for Lys; and N°,N°-di-CbZ ester for Arg. IAA, the protected amino acid ester, triethylamine, and DCCI were dissolved in methylene chloride and incubated at room temperature with stirring. When TLC monitoring determined that reactions had gone to completion, they were quenched by adding water to a final concentration of 10%. Dicyclohexylurea was removed by gravity filtration, reactions were dried in vacuo, and products were dissolved in 10% methanol in chloroform. The protected IAA conjugates were then purified on a silica gel column using a solvent system of 10% methanol in chloroform. Pure fractions were combined, dried in vacuo, and dissolved in methanol. Conjugates were deprotected by KOH saponification at room temperature, except for IAA-Pro, which was deprotected in formic acid at 37 °C. Because IAA-Arg did not readily deprotect but yielded an array of products, the synthesis of this conjugate was abandoned. Deprotected conjugates were purified on a silica gel column using a solvent system of 50% 2-butanol, 30% ethyl acetate, 10% ethanol, and 10% water (33). Fractions containing the pure amino acid conjugate were combined and dried in vacuo to give a crystalline powder. Conjugates were assayed for purity by TLC and HPLC (model 1100 series binary HPLC, Hewlett Packard, Wilmington, DE) and found to be >99% pure (free of IAA). To obtain purity of 99–99.9% for bioassays, conjugates were further purified by reverse phase HPLC on a Phenomenex Prodigy 10 µm ODS preparative 250 × 21.2-mm column in a solvent system of 50% methanol in 1% acetic acid with a flow rate of 4 mL/min. Pure fractions were collected using a Fox® Jr. fraction collector (ISCO, Lincoln, NE), combined, dried in vacuo, and stored at –20 °C. Before use, conjugates were dissolved in 50 or 100% ethanol to a stock concentration of 20 to 100 µm, depending on solubility.

IAA-Amino Acid Conjugate Bioassay—Conjugates, from 20 to 100 µm stocks in 50 or 100% ethanol, were added to plant nutrient medium including 0.5% sucrose (PNS) (34) solidified with 0.6% agar. Arabidopsiss seeds from the Wassilewskija accession (wild type), ilr1–1 (8), iar3-2 (6), and ilr1–1 iar3–2 were surface-sterilized and plated on PNS medium containing 40 µM IAA-amino acid. Plates were incubated at 22 °C under yellow long-pass filters (35) with constant illumination (25–45 µEm–2 s–1). After 8 days, plants were removed from the agar, primary root lengths were measured, and the average root length was calculated.

Generation and Purification of GST Fusion Proteins—The amidohydrolases (without the predicted N-terminal signal sequences) were expressed in Escherichia coli as fusions to the C terminus of GST. pGEX-IRI was made by introducing an NdeI site at codons 22–23 in the ILR1 cDNA (8) and subcloning the NdeI-EcoRI fragment into pGEX-KTO (6) cut with the same enzymes. pGEX-IAR3 and pGEX-ILL2 encode GST fused to the ILL1 or ILL2 cDNAs (8) at codon 23 or 25, respectively. pGEX-IAR3 was previously described (6).
Aboradiposis Auxin Conjugate Hydrolases

For protein expression, single colonies from freshly transformed E. coli cells were inoculated into 100 ml of LB broth containing 100 µg/ml ampicillin and grown for 6–8 h at 37°C. Cultures were allowed to cool to room temperature, induced by adding isopropyl-
-1-thio-β-D-galactopyranoside to 50 µM and grown overnight with shaking at 16°C. The cultures were harvested when the rate of growth was virtually zero, centrifuged, and stored at –80°C until analysis. Proteins were quantified using SDS-PAGE and Coomassie Blue staining next to bovine serum albumin standards of known concentration.

To assess whether the GST fusion proteins were similarly folded, buffer was exchanged into 10 mM sodium phosphate buffer, pH 7.6, and protein concentrations were determined by Microcoulometric FIA-30 centrifugal filter devices (Millipore, Bedford, MA). Circular dichroism spectra were collected on an AVIV model 62A DS circular dichroism spectrometer. Determination of Hydrolysis Rates—For preliminary activity assays, reactions contained 50 mM Tris, pH 8.0, 1 mM dithiothreitol, 1 mM MnCl₂, 1 mM IAA-amino acid, and between 2 and 20 ng/µl GST fusion protein. Reactions were incubated at room temperature for 16–24 h. To determine whether any IAA was released from the conjugate, reaction protein. Released IAA was quantified by HPLC as described above at 2.5 h. For GST-ILR2, reactions were stopped at 10 min. Released IAA was measured by HPLC as described above.

Metal Cofactor Optimization—For cofactor optimization, reactions contained 1 mM MnCl₂, 1 mM dithiothreitol, and 1 mM IAA-Ala plus either 50 mM Tris-buffered reactions with ZnSO₄, CuSO₄, MnCl₂, MnCl₂, CoCl₂, CaCl₂, MgCl₂, or EDTA. Reactions were stopped as described above at 10 or 20 min for GST-ILL2 and at 2.5 or 4 h for the other proteins. IAA released was quantified by HPLC as described above.

Kinetic Analysis—Purified GST fusions of each amidohydrolase were incubated with varying concentrations of IAA-Ala or IAA-Leu, and the rate of hydrolysis was determined by HPLC quantification of IAA released from the conjugate (see “Experimental Procedures”). As shown in Table I, GST-ILL2, like GST-ILR3 (6), was most active at pH 8, whereas GST-ILR1 and GST-ILL1 were more active at pH 7.5. All the hydrolases preferred Tris buffer to HEPES. For metal ion cofactor analysis, GST-hydrolase fusions were incubated with IAA-Ala or IAA-Leu in Tris-buffered reactions with ZnSO₄, CuSO₄, MnCl₂, CoCl₂, CaCl₂, MgCl₂, or EDTA, and hydrolysis rates were calculated. As shown in Table II, all hydrolases preferred magnesium as a cofactor, and ILR1 could also utilize copper. Cobalt supported some activity with all hydrolases but precipitated out of solution in the presence of dithiothreitol and is therefore not shown.

Determination of Substrate Specificities—To compare the substrate specificities of the enzymes, purified GST fusions of each amidohydrolase were incubated with each of 19 IAA-t-
-aminoo acid conjugates. The amount of IAA liberated from the conjugate (see “Experimental Procedures”). As shown in Table III, IAA-Amino Acid Conjugate Hydrolyses—Extracts from E. coli expressing ILR1 acquire the ability to hydrolyze IAA-Phe and IAA-Leu (8), and a purified GST-ILR3 fusion hydrolyzes IAA-Ala (6). To extend this analysis to include kinetic parameters, additional conjugates, and additional enzymes, we expressed four of the Arabidopsis amidohydrolases as fusions to GST and purified the recombinant proteins (see “Experimental Procedures”). Circular dichroism spectroscopy suggested that all four purified fusion proteins were similarly folded (data not shown). In addition to GST-ILR1 and GST-ILR3, GST-ILL1 and GST-ILL2 hydrolyzed a subset of the IAA-amino acid conjugates. We therefore undertook a systematic comparison of GST-ILR1, GST-ILR3, GST-ILL1, and GST-ILL2 with the 19 IAA-amino acid conjugates.

Analysis of IAA-Amino Acid Conjugate Hydrolysis—For pH optimization, all reactions contained 1 mM MnCl₂, 1 mM dithiothreitol, and 1 mM IAA-amino acid. We therefore undertook a systematic comparison of GST-ILR1, GST-ILR3, GST-ILL1, and GST-ILL2 with the 19 IAA-amino acid conjugates. A system-
found endogenously in *Arabidopsis* seeds (23). Purified GST fusions of ILR1, IAR3, ILL1, and ILL2 were incubated with varying concentrations of IAA-Ala or IAA-Leu, and the reaction rate was determined at each concentration (Fig. 3). V_{\max} and K_m values were calculated from these data (Table IV). GST-ILL2 has the highest V_{\max} on both IAA-Ala and IAA-Leu. GST-ILR1 and GST-IAR3 both show lower but significant V_{\max} values, and GST-ILR1, GST-IAR3, and GST-ILL2 have K_m values within an order of magnitude of each other. It is interesting to note that GST-ILL1 has the lowest K_m values. In contrast, GST-ILL1 shows little activity and has a K_m 3–30 times higher than the other enzymes. Because GST-ILR1, -IAR3, and -ILL2 all have K_m values in the micromolar range, these enzymes are probably physiologically relevant. Calculating the catalytic efficiency (k_{cat}/K_m) reveals that GST-ILL2 is the most efficient enzyme on IAA-Ala, whereas ILR1 is the most efficient on IAA-Leu (Table IV). This is particularly interesting when considering the recent finding that IAA-Ala and IAA-Leu are distributed in different tissues of *Arabidopsis* seedlings (23).

DISCUSSION

ILR1 and IAR3 encode IAA-amino acid hydrolases, and *Arabidopsis* has five additional amidohydrolase-like genes (Fig. 1). ILL5 is apparently a pseudogene (6), and we have not found conditions in which GST fusions of ILL3 or ILL6 hydrolyze IAA-amino acids.2 Here we have shown that the two remaining ILR1-like genes, ILL1 and ILL2, each encode IAA-amino acid hydrolases, and we have determined the substrate specificities and kinetic parameters of all four *Arabidopsis* IAA-amino acid hydrolases. In addition, we have determined the biological activity of 19 IAA-t-amino acid conjugates on wild type *Arabidopsis* root elongation. Conjugates that are highly active in this bioassay are substrates of at least one GST-amidohydrolase fusion (Fig. 2 and Table III). Moreover, the *ilr1 iar3* double mutant lacks two amidohydrolases and is less sensitive than wild type to all biologically active conjugates (Fig. 2), suggesting that ILR1 and IAR3 hydrolyze these conjugates in vivo. In contrast, the conjugates that lack significant activity in root elongation inhibition assays are generally poor substrates of all of the amidohydrolases, consistent with the hypothesis that conjugate bioactivity derives from hydrolysis (Fig. 2 and Table III).

Comparing hydrolysis rates, GST-ILL2 appears more active than the other amidohydrolases, suggesting that ILL2 also may be an important IAA-amino acid hydrolase in vivo. GST-ILL2 also shows the broadest range of substrate specificity (Table III). However, comparing the catalytic efficiencies (k_{cat}/K_m) reveals that whereas ILL2 is the most efficient enzyme for IAA-Ala, ILR1 is the most efficient enzyme for IAA-Leu (Table IV). Although *ill2* mutants have not been isolated through classical genetic screens, the advent of facile reverse genetic methods (37) may allow us to test the importance of ILL2 in *Arabidopsis* development and compare the relative activities of ILR1 and ILL2 in vivo. Although GST-IAR3 is less efficient than GST-ILL2 on IAA-Ala, it clearly can hydrolyze IAA-Ala in vivo, because the *iar3* mutant is less sensitive to root inhibition by this conjugate (Fig. 2). The fact that the overlapping function of ILL2 does not completely mask the *iar3* mutant phenotype suggests that the expression patterns of these two genes may differ.

ILL1 and ILL2 are adjacent genes on chromosome 5 that encode proteins that are 87% identical to one another (6, 8). In contrast to GST-ILL2, kinetic analysis of GST-ILL1 (Fig. 3 and

2 R. A. Rampey, S. LeClere, R. Tellez, and B. Bartel, unpublished data.
Arabidopsis Auxin Conjugate Hydrolases

Table I

PH dependence of Arabidopsis amidohydrolases

Buffer (pH)	Hydrolysis activity				
	GST-ILR1	GST-IAR3	GST-ILL1	GST-ILL2	GST
HEPES (6.5)	4.4	6.9	2.0	290	<1.0
HEPES (7.0)	10	26	5.6	660	<1.0
HEPES (7.5)	13	38	7.9	600	<1.0
Tris (7.5)	14	63	20	1,900	<1.0
Tris (8.0)	<1.0	75	14	2,200	<1.0
Tris (8.5)	<1.0	19	1.8	1,200	<1.0

* The detection limit was 1.0 nmol/min/mg.

Table II

Cofactor dependence of Arabidopsis amidohydrolases

Cofactor	Hydrolysis activity			
	GST-ILR1	GST-IAR3	GST-ILL1	GST-ILL2
none	24 ± 17	<5b	<5	<5
EDTA	12 ± 10	<5	<5	<5
Mn2+	100	100	100	100
Zn2+	8 ± 12	8 ± 7	<5	<5
Cu2+	100 ± 68	22 ± 15	<5	<5
Ca2+	26 ± 19	14 ± 5	<5	<5
Mg2+	28 ± 20	12 ± 5	<5	<5

* Mean ± S.D. of at least three trials.

b The detection limit was 5%.

Table III

Substrate specificity of Arabidopsis amidohydrolases

Conjugate	Hydrolysis activity			
	GST-ILR1	GST-IAR3	GST-ILL1	GST-ILL2
IAA-Ala	21 ± 2	23 ± 5	15 ± 6	1,600 ± 130
IAA-Asn	<1b	2.9 ± 1.5	14 ± 3	25 ± 15
IAA-Asp	13 ± 10	<1	<1	6.5 ± 2.5
IAA-Cys	<1	2.1 ± 1.8	<1	8.1 ± 0.7
IAA-Glu	61 ± 7	<1	<1	56 ± 17
IAA-Gly	21 ± 16	2.5 ± 1.4	<1	14 ± 6
IAA-Gly	9 ± 1	5.3 ± 1.0	<1	46 ± 6
IAA-His	<1	<1	<1	72 ± 15
IAA-Leu	56 ± 18	<1	<1	67.7 ± 6.6
IAA-Lys	<1	<1	<1	120 ± 76
IAA-Met	47 ± 9	7.1 ± 1.7	<1	330 ± 250
IAA-Ph	180 ± 23	<1	<1	170 ± 120
IAA-Pro	<1	<1	<1	150 ± 93
IAA-Ser	<1	4.1 ± 1.5	<1	320 ± 28
IAA-Thr	4 ± 3	<1	<1	3.6 ± 0.9
IAA-Tyr	<1	<1	16 ± 4	150 ± 24
IAA-Val	<1	<1	<1	96 ± 17

Values shown are the means of at least 3 time points ± S.D.

b The detection limit was 1 nmol IAA released/min/mg.

Table IV) suggests that ILL1 is unlikely to contribute to in vivo IAA conjugate hydrolysis. These results, along with the phylogenetic analysis (Fig. 1), suggest that ILL1 and ILL2 result from a recent duplication and that ILL1 may no longer be relevant.

GST-IAR3 hydrolyzes IAA-amino acid conjugates with small side chains (Table III), and preliminary experiments suggest that GST-IAR3 may also hydrolyze amino acid conjugates of the plant defense hormone jasmonic acid. As IAR3 transcripts accumulate in response to methyl jasmonate and wounding (38), IAR3 may provide a link between wound responses and auxin homeostasis.

Although the IAA conjugates present in Arabidopsis seeds and mature plants have not been determined, recent reports indicate that the only IAA-amino acid conjugates present in Arabidopsis seedlings are IAA-Ala, IAA-Leu, IAA-Asp, and IAA-Glu (22, 23). Only GST-ILR1 and GST-ILL2 cleave IAA-Asp to a very slight degree (Table III), and 40 μM IAA-Asp is inactive in root inhibition bioassays (Fig. 2), further supporting previous data indicating that IAA-Asp is a catabolite of IAA rather than a storage form (3, 39). GST-ILR1 and GST-ILL2 can also cleave IAA-Glu, which may account for the slight root elongation inhibition induced by this conjugate. GST-IAR3 and GST-ILL2 both prefer IAA-Ala above other conjugates tested (Table III), and the high bioactivity of this conjugate (Fig. 2) supports a role for IAA-Ala in IAA storage. GST-ILR1 has the highest catalytic efficiency on IAA-Leu (Table IV), and GST-ILR1 is unique in that it hydrolyzes several bulky hydrophobic conjugates (including IAA-Phe, IAA-Tyr, and IAA-Leu) more efficiently than IAA-Ala. Because it has recently been reported that IAA-Ala accumulates in aerial tissues and IAA-Leu accumu-
The Arabidopsis amidohydrolases resemble a class of microbial amidohydrolases (Fig. 1) that includes hippuricases that cleave benzoylglycine (29) and aminoacylases that hydrolyze acetylated amino acids (27). Interestingly, an IAA-Asp hydrolase (IaaspH) purified from \textit{Enterobacter agglomerans} (27) has been suggested that IaaspH might provide a useful tool for the detection of IAA-Ala substrates of this enzyme remain to be identified, but it has been suggested that IaaspH might provide a useful tool for altering auxin homeostasis in transgenic plants (26, 40). In contrast to the Arabidopsis amidohydrolases, which do not efficiently hydrolyze IAA-Asp (Table III), heterologous expression of IaaspH in plants might effectively short-circuit IAA inactivation.

Genome sequencing projects are uncovering amidohydrolase homologs in plants other than Arabidopsis, including both monocots and dicots. In addition, the presence of conserved homologs of \textit{ILL6} in \textit{Medicago} and tomato (Fig. 1B) makes it unlikely that \textit{ILL6} is a pseudogene in Arabidopsis. It will be interesting to identify the substrates and biological roles of the enzymes in the ILL3 and ILL6 branches of the family.

It is becoming increasingly apparent that plants may use conjugates to dictate the tissue and subcellular localization of the attached IAA. Localization and activity of IAA conjugate amidohydrolases may be one of many regulatory points in the web of auxin homeostasis.

Acknowledgments—We thank Bridget Joubert for synthesis of IAA-Lys and degradation and purification of IAA-Tyr and IAA-Met, Rachel Leininger and Jamie Catanese for assistance with circular dichroism spectroscopy, and Rachel Leininger for help with kinetic data analysis. We are grateful to Mónica Magidin, Melanie Monroe-Augustus, and Andrew Woodward for critical comments.

REFERENCES

1. Davies, P. J. (1995) in \textit{Plant Hormones} (Davies, P. J., ed), 2nd Ed., pp. 1–38, Kluwer Academic Publishers, Dordrecht, The Netherlands
2. Cohen, J. D., and Bandurski, R. S. (1982) \textit{Annu. Rev. Plant Physiol.} \textbf{33}, 403–430
3. Bartel, B., LeClere, S., Magidin, M., and Zolman, B. K. (2001) \textit{J. Plant Growth Regul.} \textbf{20}, 198–216
4. Ludwig-Müller, J., Epstein, E., and Hilgenberg, W. (1996) \textit{Physiol. Plant.} \textbf{97}, 627–634
5. Hangarter, R. P., and Good, N. E. (1981) \textit{Plant Physiol.} \textbf{68}, 1424–1427
6. Davies, R. T., Goetz, D. H., Lasswell, J., Anderson, M. N., and Bartel, B. (1999) \textit{Plant Cell} \textbf{11}, 365–376
7. Bialek, K., Meudt, W. J., and Cohen, J. D. (1983) \textit{Plant Physiol.} \textbf{73}, 130–134
8. Bartel, B., and Fink, G. R. (1995) \textit{Science} \textbf{268}, 1745–1748
9. Jakubowska, A., Kowalczyk, S., and Lenzicki, A. J. (1993) \textit{J. Plant Physiol.} \textbf{142}, 61–66
10. Michalczuk, L., Baldi, B. G., and Cohen, J. D. (1999) \textit{Inositol Metabolism in Plants} (Morre, D. J., Boss, W. F., and Loewus, F. A., eds) p. 93–106, Wiley-Liss, Inc., New York
11. Bialek, K., and Cohen, J. D. (1992) \textit{Plant Physiol.} \textbf{100}, 2902–2907
12. Epstein, E., Cohen, J. D., and Bandurski, R. S. (1980) \textit{Plant Physiol.} \textbf{65}, 415–421
13. Östlin, A., Kowalczyk, M., Bhalerao, R., and Sandberg, G. (1998) \textit{Plant Physiol.} \textbf{118}, 285–296
