Estimation of Fetal-to-Maternal Unbound Steady-State Plasma Concentration Ratio of P-Glycoprotein and/or Breast Cancer Resistance Protein Substrate Drugs Using a Maternal-Fetal Physiologically Based Pharmacokinetic Model

Jinfu Peng, Mayur K. Ladumor, and Jashvant D. Unadkat

Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (J.P., M.K.L., J.D.U.) and Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China (J.P.)

ABSTRACT

Pregnant women are frequently prescribed drugs to treat chronic diseases such as human immunodeficiency virus infection, but little is known about the benefits and risks of these drugs to the fetus that are driven by fetal drug exposure. The latter can be estimated by fetal-to-maternal unbound plasma concentration at steady state (Kp,uu,fetal). For drugs that are substrates of placental efflux transporters [i.e., P-glycoprotein (P-gp) or breast cancer resistance protein (BCRP)], Kp,uu,fetal is expected to be <1. Here, we estimated the in vivo Kp,uu,fetal of selective P-gp and BCRP substrate drugs by maternal-fetal physiologically based pharmacokinetic (m-f-PBPK) modeling of umbilical vein (UV) plasma and maternal plasma (MP) concentrations obtained simultaneously at term from multiple maternal-fetal dyads. To do so, three drugs were selected: nelfinavir (P-gp substrate), efavirenz (BCRP substrate), and imatinib (P-gp/BCRP substrate). An m-f-PBPK model for each drug was developed and validated for the nonpregnant population and pregnant women using the Simcyp simulator (v20). Then, after incorporating placental passive diffusion clearance, the in vivo Kp,uu,fetal of the drug was estimated by adjusting the placental efflux clearance until the predicted UV/MP values best matched the observed data (Kp,uu,fetal) of nelfinavir = 0.41, efavirenz = 0.39, and imatinib = 0.35. Furthermore, Kp,uu,fetal of nelfinavir and efavirenz at gestational weeks (GWs) 25 and 15 were predicted to be 0.34 and 0.23 (GW25) and 0.33 and 0.27 (GW15). These Kp,uu,fetal values can be used to adjust dosing regimens of these drugs to optimize maternal-fetal drug therapy throughout pregnancy, to assess fetal benefits and risks of these dosing regimens, and to determine if these estimated in vivo Kp,uu,fetal values can be predicted from in vitro studies.

SIGNIFICANCE STATEMENT

The in vivo fetal-to-maternal unbound steady-state plasma concentration ratio (Kp,uu,fetal) of nelfinavir [P-glycoprotein (P-gp) substrate], efavirenz [breast cancer resistance protein (BCRP) substrate], and imatinib (P-gp and BCRP substrate) was successfully estimated using maternal-fetal physiologically based pharmacokinetic (m-f-PBPK) modeling. These Kp,uu,fetal values can be used to adjust dosing regimens of these drugs to optimize maternal-fetal drug therapy throughout pregnancy, to assess fetal benefits and risks of these dosing regimens, and to determine if these estimated in vivo Kp,uu,fetal values can be predicted from in vitro studies.

Introduction

Pregnant women frequently take drugs (medication) throughout their pregnancy to treat the mother for conditions such as hypertension or cancer or to treat the maternal-fetal pair for conditions such as human immunodeficiency virus (HIV) infection (McGowan and Shah, 2000; Mitchell et al., 2011; Haas et al., 2018). However, these drugs are often prescribed without knowledge of their fetal benefits and risks that are driven by fetal (and possibly by placental) drug exposure. Fetal drug exposure can be quantified only at delivery when simultaneous sampling of umbilical vein blood and maternal blood is possible. However, because these drug concentrations are time dependent, they need to be collected in multiple maternal-fetal dyads to allow the estimation of

Supported in part by National Institutes of Health National Institute on Drug Abuse [Grant P01-Da032507] and Bill & Melinda Gates Foundation [Grant INV-006678] (to J.D.U.). J.P. was supported by a China Scholarship Council/University of Washington Studentship.

No author has an actual or perceived conflict of interest with the contents of this article.

dx.doi.org/10.1124/dmd.121.000733

This article has supplemental material available at dmd.aspetjournals.org.

ABBREVIATIONS: AAFE, absolute average fold error; AAG, α1-acid glycoprotein; AUC, area under the curve of the total plasma concentration-time profile; AUCfetal, area under the curve of the umbilical vein total plasma concentration-time profile; AUCint, area under the curve of the maternal total plasma concentration-time profile; BCRP, breast cancer resistance protein; CLapp, apparent permeability; CLeff, placental efflux clearance; CLint, intrinsic clearance; CLinf, influx clearance; CLint, efflux; placenta, intrinsic placental efflux clearance; CLint, PD, placenta, intrinsically placental passive diffusion clearance; CLinf, PD, placenta, placental passive diffusion clearance; C-T profile, drug concentration-time profile; CYP450, cytochrome P450; fapp, fraction of drug transported by placental P-gp or BCRP; ff, fraction of drug metabolized; GW, gestational week; HIV, human immunodeficiency virus; HLM, human liver microsome; Kp, uu, fetal, fetal-to-maternal unbound steady-state plasma concentration ratio; m-f-PBPK model, maternal-fetal physiologically based pharmacokinetic model; MP, maternal plasma; Papp, apparent permeability; P-gp, P-glycoprotein; PK, pharmacokinetics; REF, relative expression factor; UV, umbilical vein.
fetal drug exposure (Zhang et al., 2017). From these, fetal drug exposure, which is the fetal-to-maternal unbound steady-state plasma concentration ratio ($K_{uu,fetal}$), can be estimated (Anoshchenko et al., 2021b). For drugs that passively cross the placenta, provided there is no fetal or placental metabolism of the drug, $K_{uu,fetal}$ is easy to predict, as it will be 1.0 (Zhang et al., 2017). However, the placenta is richly endowed with efflux transporters, such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) at the maternal-placenta barrier, which efflux the drug from the placenta to the maternal blood. For drugs that are a substrate of these efflux transporters, $K_{uu,fetal}$ will be <1, and its deviation from unity will depend on the fraction of the drug effluxed by the transporter(s) (f_{efflux}). Estimation of a drug’s $K_{uu,fetal}$ at term and at earlier gestational age, especially for those that are effluxed, is important for several reasons. First, it can be used to adjust dosing regimens of these drugs to optimize maternal-fetal drug therapy throughout pregnancy, provided that the f_{efflux} of the drug at each gestational age can be estimated. Such estimation is now possible given our quantification of placental transporters in the first and second trimesters as well as at term by quantitative targeted proteomics (Anoshchenko et al., 2021b). Second, it can be used to assess fetal benefits and risks of these drug dosing regimens. Third, these $K_{uu,fetal}$ values can be used to determine if they can be predicted from in vitro studies using the proteomics-informed efflux ratio approach, as we have done before (Anoshchenko et al., 2021b). Therefore, to fulfill the above broad goals, we estimated the in vivo $K_{uu,fetal}$ of selective P-gp and/or BCRP substrate drugs by maternal-fetal physiologically based pharmacokinetic (m-f-PBPK) modeling of umbilical vein (UV) plasma and maternal plasma (MP) concentrations obtained simultaneously at term from multiple maternal-fetal dyads. Three drugs were studied: nelfinavir (P-gp substrate), efavirenz (BCRP substrate), and imatinib (P-gp/BCRP substrate). An m-f-PBPK model for each drug was developed and validated for the nonpregnant population and pregnant women using the Simcyp simulator (v20). Then, after incorporating placental passive diffusion clearance, the in vivo $K_{uu,fetal}$ of the drug was estimated by adjusting the placental efflux clearance until the predicted UV/MP values best matched the observed data.

Materials and Methods

Our search criteria for selecting the drug candidates were as follows: 1) candidate drug should be transported only by P-gp or by BCRP or by P-gp/BCRP based on extensive in vitro studies; and 2) in vivo paired UV and MP concentrations data should be available from a large number of maternal-fetal dyads at multiple time points over the dosing interval (or for several half-lives) after the last maternal dose. A total of three candidate drugs fulfilled these criteria: nelfinavir, which is effluxed solely by P-gp and not by BCRP (Gupta et al., 2004; Salama et al., 2005); efavirenz, which is effluxed solely by BCRP but not by P-gp (Diron et al., 2006; Janneh et al., 2009; Peroni et al., 2011); and imatinib, which is effluxed by both BCRP and P-gp (Hamada et al., 2003; Burger et al., 2004; Oostendorp et al., 2009; Zhou et al., 2009).

PBPK Model Simulations and Criteria for Validation. PBPK simulation of the pharmacokinetic (PK) profiles of the above drugs was implemented as summarized in Fig. 1. Briefly (but detailed below), for each step of modeling, the predicted PK profiles and PK parameters (maximum plasma drug concentration [C_{max}] and area under the curve of total plasma concentration-time profile [AUC]) of the drug were compared with the observed data. The observed plasma concentration-time profiles in graphical format were digitized using WebPlotDigitizer (https://automeris.io/wpd/). These values were reported in the publications as geometric mean, arithmetic mean, or median. Therefore, our PBPK-predicted values are also reported in the same format. The PK profiles of the drugs were simulated using 100 virtual subjects (10 trials x 10 subjects). The PBPK model was considered validated if the observed PK profile fell within the 5th and 95th percentiles of predicted data and the simulated PK parameters fell within the range of 0.80- to 1.25-fold of the observed data (Ladumor et al., 2019a,b). All of the PBPK simulations were performed with trial designs (age range, proportion of female, gestational age, and dosing regimens) that matched the corresponding in vivo study (Supplemental Table 1).

Development and Validation of Drug PBPK Models for Nonpregnant Adults. A full PBPK model was constructed for nelfinavir using the Simcyp simulator (v20). Drug-related parameters for nelfinavir were collected from the literature (Table 1). A whole-body PBPK model was applied for the distribution of nelfinavir, and tissue-to-plasma partition coefficient (K_p) values were predicted using Simcyp Method 1 (Poulain and Theil, 2009). Nelfinavir binds extensively to z1-acid glycoprotein (AAG) with a fraction unbound in human plasma (f_u) of 0.014 (Zhang et al., 2001; Motoya et al., 2006). Nelfinavir is metabolized by the cytochrome P450 (CYP450) isoenzymes CYP3A, CYP2C19, CYP2D6, CYP2C9, CYP1A2, and CYP2E1, and the fraction of drug metabolized (f_m) by each isoform was based on the inhibition of nelfinavir metabolism in pooled human liver microsomes (HLMs) in the presence of selective cytochrome P450 inhibitors (https://www.accessdata.fda.gov/drugsatfda_docs/nda/970020778ap.pdf). The intrinsic hepatic clearance (CL_{int}) of nelfinavir by each isoform was back-calculated from the intravenous total systemic clearance (CL_{sys} = 37.7 L/h) using the Simcyp simulator (Sarapa et al., 2005) after correcting for renal clearance (f_{renal} = 2%) and biliary clearance ($f_{biliary}$ = 10%) (https://www.accessdata.fda.gov/drugsatfda_docs/nda/970020778ap.pdf). Our previously reported mechanism-based inhibition and induction of CYP3A by nelfinavir in HLMs and hepatocytes, respectively (Dixit et al., 2007; Kirby et al., 2011), and competitive inhibition of CYP3A, CYP2C9, and CYP1A2 by nelfinavir (Lillibridge et al., 1998) were incorporated into the PBPK model. Then, PK data after intravenous administration were simulated and validated using the observed data. Thereafter, the Advanced Dissolution, Absorption and Metabolism (ADAM) model of Simcyp, with integrated in vitro dissolution profiles in the fed and fasted state, was used to describe nelfinavir absorption (Shono et al., 2011; Chapa et al., 2020). Then, nelfinavir PK after single oral administration in the fed/fasted state, multiple doses, and coadministration with ritonavir (inhibitor of CYP3A and CYP2D6, inducer of CYP3A and CYP2C9, Simcyp default compound file) were predicted and validated. Efavirenz and imatinib PBPK models for the nonpregnant adults were reproduced without modification from previous publications (Atoyebi et al., 2019; Adiwidjaja et al., 2020) and validated with the additional published in vivo data.
Development and Validation of Drug PBPK Models for Pregnant Women. After validating the PK of the drug in the nonpregnant population, drug-specific parameters were fixed, and except for the changes in CYP450 activity, the pregnancy-induced changes in physiologic parameters specified in the Simcyp pregnancy module were implemented. The pregnancy-induced changes in hepatic CYP450 activity were based on our previously published data: CYP3A was induced 2-fold during the second and third trimesters (Ke et al., 2012; Zhang et al., 2015), CYP2D6 was induced 1.9- and 2-fold during the second and third trimesters, CYP1A2 was suppressed by 48% and 65% during the second and third trimesters (Ke et al., 2013), CYP2B6 activity was induced by 1.1- and 1.3-fold during the second and third trimesters, and CYP2C9 activity was induced by 1.5- and 1.6-fold during the second and third trimesters.

Table 1: Nelfinavir drug-related parameters

Parameter	Unit	Value	Reference
Molecular weight	g/mol	567.80	ChEMBL DrugBank
Log P_{ow}		4.07	Longer et al., 1995
Ionization pattern		Diprotic	base
pKa		6.11.06	
B/P		1.00	Zhang et al., 2001
F_a		0.014	
Plasma binding component		AAG	Motoya et al., 2006
Absorption phase			
Model		ADAM	Kim et al., 1998
P_{TP}	10⁻⁶ cm²/s, Caco2	7.11	Longler et al., 1995
Solubility	mg/ml	4.50	
Distribution phase			
Prediction method		Full PBPK model Method 1	Predicted by Simcyp
V_{SS}	l/kg	2.00	for healthy 5.20 for pregnancy
Elimination phase			
CL_{IV}	l/h	37.70	Sarapa et al., 2005
CL_{int}CYP3A (f_{om,CYP3A})	µl/min/pmol CYP450	1.30 (25.19%)	
CL_{int}CYP2D6 (f_{om,CYP2D6})	µl/min/pmol CYP450	29.62 (15.99%)	
CL_{int}CYP1A2 (f_{om,CYP1A2})	µl/min/pmol CYP450	0.90 (8.72%)	
CL_{int}CYP2B6 (f_{om,CYP2B6})	µl/min/pmol CYP450	0.99 (6.30%)	
CL_{int}CYP2E1 (f_{om,CYP2E1})	µl/min/pmol CYP450	1.43 (11.63%)	
Additional HLM CL_{int} (f_{om})	µl/min/mg protein	8.19 (10.17%)	
CL_{int}bile (f_{CLbile})	µl/min/million cells	145.24 (12.00%)	
CL_{int} (f_e)	l/h	0.57 (2.00%)	
Drug interactions			
Kin_{int}CYP3A	µmol/l	0.16	Kirby et al., 2011
K_{app}CYP3A	µmol/l	1.82	Lillibridge et al., 1998
K_iCYP3A	µmol/l	4.80	
K_iCYP2C9	µmol/l	126.00	Kirby et al., 2011
K_iCYP2C9	µmol/l	192.00	
Induction			
E_{max}CYP3A	µmol/l	11.20	Kirby et al., 2011
EC₅₀CYP3A	µmol/l	6.50	

ADAM, Advanced Dissolution, Absorption, and Metabolism model; B/P, blood-to-plasma partition ratio; CL_{int}, intrinsic clearance; CL_{IV}, intravenous clearance; CL_{ex}, renal clearance; EC₅₀, nelfinavir concentration that produces half-maximal induction of CYP3A; f_{om,CYP3A}, maximal fold induction of CYP3A relative to control; f_{CLbile}, fraction of drug excreted in the bile; f_e, fraction of drug excreted in the urine; f_{om,CYP450}, fraction metabolized by CYP450 enzymes; f_u, unbound fractions in plasma; K_i, concentration of inhibitor that produces half-maximal inhibition of CYP450 isozyme; K_{app}, concentration of inhibitor that produces half-maximal inhibition of CYP450 isozyme; K_{app}CYP3A, inhibition constant; K_{app}CYP2C9, inhibition constant.

Fig. 2. Predicted and observed plasma concentration-time (C-T) profiles of nelfinavir, efavirenz, and imatinib in the nonpregnant adults. (A) Observed (geometric mean) and predicted plasma C-T profile after single oral dose of nelfinavir (1250 mg) in nonpregnant adults (Sarapa et al., 2005; Damle et al., 2006); (B) Observed (mean) and predicted plasma C-T profile of 600 mg efavirenz (once daily by mouth) at steady state in nonpregnant adults (Villani et al., 1999); and (C) Observed (median) and predicted plasma C-T profile after single dose of 100 mg imatinib in nonpregnant adults (Ostrowicz et al., 2014). The observed data (open circles) fell within the 5th and 95th percentiles (dashed lines) of the predicted data (continuous black line). The predicted PK endpoints (AUC and C_{max}) also fell within 0.80- to 1.25-fold of the observed data (Tables 2 and 3).
third trimesters (Ke et al., 2014). CYP2C19 activity was suppressed by 62% during the second and third trimesters (Dickmann and Isoherranen, 2013; Ke et al., 2014). CYP2C19 activity was suppressed by 62% during the second and third trimesters (Ke et al., 2014). CYP2C19 activity was suppressed by 62% during the second and third trimesters (Ke et al., 2014). Then, nel

TABLE 2

Parameters	I.V. Infusion (Day 1)*	I.V. Infusion (Day 11)*	Single Oral 1250 mg (Day 1)	Oral 1250 mg 2x Daily (Day 15)									
N	Observed	Predicted	Ratio	Reference									
N	6	23.60	6.74	29.20	31.88	1.09	26.20	26.94	1.03	33.70	35.06	1.04	Sarapa et al., 2005;
Cmax (ng/ml)	24.30	19.33	0.80	24.40	20.19	0.83	4.18	4.25	1.02	5.13	5.55	1.08	Danke et al., 2006;

| N | Observed | Predicted | Ratio | Reference |
| N | 12 | 6160 | 1234 | 3370 | 3544 | 1.06 | 2434 | 2703 | 1.11 | 1966 | 1980 | 1.01 | Ostrowsicz et al., 2014; |

Parameters	Observed	Predicted	Ratio	Reference									
N	37	6104	6449	6449.95	6449.95	1.06	2430	2703	1.11	1966	1980	1.01	Ostrowsicz et al., 2014;
Cmax (mg/l)	370.00	354.69	0.96	1439.00	1446.27	1.01	1213.00	866.52	0.71	Peng et al., 2004;			

TABLE 3

Parameters	400 mg Once Daily	600 mg Once Daily	600 mg Once Daily								
N	Observed	Predicted	Ratio	Observed	Predicted	Ratio	Observed	Predicted	Ratio	Reference	
N	4	7836.00	8098.00	1.03	32640.00	30971.88	0.95	30729.00	30971.88	1.01	Peng et al., 2004;
Cmax (mg/l)	1206.00	1689.60	1.40	1822.00	1560.67	0.86	1848.00	1539.54	0.83	Dureiex et al., 2004;	

Parameters	Oral (100 mg)	Oral (400 mg)	Imatinib (200mg) + Ketoconazole (400mg)										
N	Observed	Predicted	Ratio	Observed	Predicted	Ratio	Observed	Predicted	Ratio	Reference			
N	37	6104	6449	6449.95	6449.95	1.06	2430	2703	1.11	1966	1980	1.01	Ostrowsicz et al., 2014;
Cmax (mg/l)	370.00	354.69	0.96	1439.00	1446.27	1.01	1213.00	866.52	0.71	Peng et al., 2004;			

AUClast, AUC from time 0 extrapolated to infinity; AUCint, AUC from time 0 to time of last measurable concentration; N, number of subjects of observed data; Ratio, Predicted/Observed values of AUCint or Cmax.
Placental volume = \(-1.7646 \times GW + 0.91775 \times (GW^2) - 0.011543 \times GW^3\) (2),

where GW is the gestational age (in weeks). After incorporating \(CL_{\text{int,PD,placenta}}\) we predicted the umbilical vein plasma concentrations and estimated the drug \(K_{p,uu,fetal}\) (eq. 3) by adjusting the intrinsic placental efflux clearance of the drug at the maternal-placenta barrier (\(CL_{\text{int,P-gp,placenta}}\) for nelfinavir, \(CL_{\text{int,BCRP,placenta}}\) for efavirenz, and \(CL_{\text{int,efflux,placenta}}\) for imatinib) until the predicted UV/MP values best matched the observed data (AAFE = 1.0) using the permeability-limited placenta model of Simcyp. The absolute average fold error (AAFE) in the predictions of UV/MP values was calculated as per eq. 4:

\[
K_{p,uu,fetal} = \frac{AUC_{\text{fetal, u}}}{AUC_{\text{m, u}}} (3)
\]

\[
AAFE = 10 \left(\frac{\sum |\text{predicted} - \text{observed}|}{N} \right) (4),
\]

where \(AUC_{\text{fetal, u}}\) is the area under the curve of the unbound umbilical vein plasma concentration-time profile, \(AUC_{\text{m, u}}\) is the area under the curve of the unbound maternal plasma concentration-time profile, and \(N\) is the number of observed and predicted UV/MP values.

PBPK Model Prediction of \(K_{p,uu,fetal}\) of the Drugs at an Earlier Gestational Ages (GW15 and GW25).

To predict the \(K_{p,uu,fetal}\) of nelfinavir and efavirenz at an earlier gestational age, total placental P-gp and BCRP abundance, previously quantified by us using quantitative targeted proteomics (Anoshchenko et al., 2020), was incorporated into the Simcyp pregnancy module “Sim-Pregnancy.” A second-order polynomial model was fitted to the gestational age-dependent relative abundance of placental P-gp and BCRP (relative to term value, which was set as 1.0), respectively (see eq. 5 and 6; R-square values of the fitted polynomials were 1.0; Supplemental Fig. 1).

\[
P - \text{gp relative abundance} = 0.003 \times (GW^2) - 0.228 \times GW + 5.010 \) (5)

\[
BCRP \text{ relative abundance} = 0.001 \times (GW^2) - 0.086 \times GW + 2.899 \) (6)

These equations were used to interpolate the placental abundance of the transporters at GW15 and GW25. Then, these interpolated values were used to scale the above estimated (term) placental efflux clearances of nelfinavir and efavirenz (\(CL_{\text{int,P-gp,placenta}}\) for nelfinavir, \(CL_{\text{int,BCRP,placenta}}\) for efavirenz) and incorporated in the Simcyp pregnancy module. Within this module, the above-estimated term \(CL_{\text{int,P-gp,placenta}}\) and \(CL_{\text{int,efflux,placenta}}\) was scaled based on the mean volume of the placenta for the respective gestational age. Then, the maternal-fetal PK profiles of the drugs were predicted at GW15 and GW25 using the same trial design as
for term. From these profiles, the $K_{\text{p,uu,fetal}}$ of nelfinavir and efavirenz was estimated. Such predictions for imatinib were not possible, as the fraction of imatinib transported by P-gp or BCRP is unknown and will need to be determined, as we have described previously (Kumar et al., 2021).

Results

PBPK Model Predictions and Validation for the Nonpregnant Population. Our predictions of nelfinavir PK were successfully validated after intravenous dose, single oral dose (fed and fasted), multiple oral dose administration, and coadministration with ritonavir. The observed concentration-time (C-T) profiles fell within the 5th and 95th percentiles of predicted data (Fig. 2A; Supplemental Fig. 2), and the predicted PK parameters (AUC and C_{max}) also fell within 0.80- to 1.25-fold of the observed data (Table 2). The PBPK models for efavirenz and imatinib were successfully reproduced, and except for imatinib C_{max} after coadministration with ketoconazole, their simulated PK profiles were consistent with the reported in vivo data (Fig. 2, B and C; Supplemental Fig. 3; Table 3).

Estimated Human $K_{\text{p,uu,fetal}}$ at Term. Using our acceptance criteria, the predicted MP concentration-time profiles agreed well with the observed data of nelfinavir, efavirenz, and imatinib (Fig. 5, A, D, and G). The estimated $CL_{\text{int,PD,placenta}}$ of nelfinavir, efavirenz, and imatinib at term were 240, 1480, and 170 l/min/ml placenta volume, respectively (Table 5). Without incorporating placental efflux clearance ($CL_{\text{efflux,placenta}}$) that is in the presence of only $CL_{\text{int,PD,placenta}}$ of the drug, the UV plasma concentration (Fig. 5, B, E, and H) and UV/MP ratio (Fig. 5, C, F, and I) were considerably overpredicted with AAPE > 1 and, as expected, the estimated $K_{\text{p,uu,fetal}}$ was 1.0 (Table 5).

By adjusting $CL_{\text{int,efflux,placenta}}$ of the drugs (nelfinavir: 350; efavirenz: 2200; imatinib: 320 l/min/ml placenta volume), the majority of the observed UV plasma concentrations and the UV/MP ratios fell within the 5th and 95th percentiles of the model predicted data (Fig. 5). As

Fig. 4. Predicted and observed plasma concentration-time (C-T) profile of efavirenz in pregnant women throughout pregnancy for several studies. Observed (median) (Kreitchmann et al., 2019) and predicted plasma C-T profile of efavirenz (600 mg, once daily by mouth) at steady state in (A) postpartum, (B) second trimester, and (C) third trimester, respectively; observed (geometric mean) (Lamorde et al., 2018) and predicted plasma C-T profile of efavirenz (400 mg, once daily by mouth) at steady state in (D) postpartum and (E) third trimester (second trimester data are not available), respectively; and observed (median) (Cressey et al., 2012) and predicted plasma C-T profile of efavirenz (600 mg, once daily by mouth) in (F) postpartum and (G) third trimester (second trimester data are not available), respectively. The observed data (open circles) fell within the 5th and 95th percentiles (dashed lines) of the predicted data (continuous black line). The predicted PK endpoints (AUC and C_{max}) also fell within 0.80- to 1.25-fold of the observed data (Table 4).
these data are steady-state data, the predicted AUC$_{\text{fetal}}$/AUC$_m$ were close to the mean observed UV/MP ratio and AAFE equaled 1.00. $K_{p,\text{uu,fetal}}$ values at term estimated from the UV/MP data were 0.41, 0.39, and 0.35 for nelfinavir, efavirenz, and imatinib, respectively. These data indicate that the fraction of drug transported by placental P-gp or BCRP at term ($I_{\text{flux}} = 1 - K_{p,\text{uu,fetal}}$) followed the order imatinib (0.65) > efavirenz (0.61) > nelfinavir (0.59).

Prediction of Nelfinavir and Efavirenz $K_{p,\text{uu,fetal}}$ at Earlier Gestational Ages (GW15 and GW25). The MP plasma concentrations of nelfinavir and efavirenz were marginally affected by gestational age, and the UV plasma concentration, UV/MP ratio, and $K_{p,\text{uu,fetal}}$ all decreased with gestational age (Fig. 6; Table 5).

Discussion

Nelfinavir and efavirenz are prescribed to prevent the transmission of HIV from the mother to her fetus (Perry et al., 2005; Vrouenraets et al., 2007). These data indicate that the fraction of drug transported by placental P-gp or BCRP at term ($I_{\text{flux}} = 1 - K_{p,\text{uu,fetal}}$) followed the order imatinib (0.65) > efavirenz (0.61) > nelfinavir (0.59).

Prediction of Nelfinavir and Efavirenz $K_{p,\text{uu,fetal}}$ at Earlier Gestational Ages (GW15 and GW25). The MP plasma concentrations of nelfinavir and efavirenz were marginally affected by gestational age, and the UV plasma concentration, UV/MP ratio, and $K_{p,\text{uu,fetal}}$ all decreased with gestational age (Fig. 6; Table 5).

Table 4

Parameters	Observed Postpartum	Predicted Postpartum	Ratio	Observed Second Trimester	Predicted Second Trimester	Ratio	Observed Third Trimester	Predicted Third Trimester	Ratio	Reference
Nelfinavir										
N	10									
AUC$_{\text{last}}$ (mg h/l)	22	33.84	0.88	22.60	4.32	0.66	4.20	0.93		Van Heeswijk et al., 2004
C$_{\text{max}}$ (mg/l)	4.60	4.24	0.92	4.70	3.62	0.77	3.20	3.37	1.05	
N	11									
AUC$_{\text{last}}$ (mg h/l)	35.50	33.46	1.00							
Efavirenz										
N	40									
AUC$_{\text{last}}$ (mg h/l)	62.70	73.87	1.18	47.5	55.33	1.17	60.02	48.18	0.80	Kreitmann et al., 2019
C$_{\text{max}}$ (mg/l)	4.41	4.41	1.00	3.87	3.61	0.93	5.13	3.26	0.64	
N	26									
AUC$_{\text{last}}$ (mg h/l)	44.11	54.14	1.23							
C$_{\text{max}}$ (mg/l)	2.77	3.18	1.15							
N	25									
AUC$_{\text{last}}$ (mg h/l)	58.30	74.63	1.28							
C$_{\text{max}}$ (mg/l)	5.10	4.48	0.88							

AUC$_{\text{last}}$, AUC from time 0 to time of last measurable concentration; N, number of subjects of observed data; Ratio, Predicted/Observed values of AUC$_{\text{last}}$ or C$_{\text{max}}$.

aNelfinavir dosing regimen: 1500 mg twice daily with food for at least 2 weeks.

bEfavirenz dosing regimen: 400/600 mg once daily for at least 2 weeks.

Estimation of $K_{p,\text{uu,fetal}}$ Using an M-F-PBPK Model

To estimate $K_{p,\text{uu,fetal}}$, we deliberately used the UV/MP values as our endpoint rather than just the UV unbound plasma AUC profile. This is because the latter is determined by maternal unbound plasma concentrations that are highly variable (see Fig. 5), resulting in highly variable UV plasma concentrations (total and unbound). This high variability is
due to pooling UV and MP values from multiple maternal-fetal dyads. Using UV/MP values as an endpoint mitigates the variability observed when using the UV values as endpoints.

In the present study, the PK parameters of three drugs, effluxed by the placental transporters, were successfully predicted and validated after PBPK modeling and simulation of PK data in nonpregnant adults.

TABLE 5

Drug	$\text{CL}_{\text{efflux,placenta}}$ (ml/min/mg)	$\text{CL}_{\text{int,efflux,placenta}}$ (ml/min/mg)	AAFE	$\text{AUC}_{\text{ MPs}}/\text{AUC}_{\text{UV}}$	Average Observed UV/MP Ratio (Range)	$\text{K}_p,\text{uu, fetal}$ (Reference)
Nelfinavir	240.00	0.00	2.39	0.61	0.25 (0.05–0.58)	1.00 at Term
Efavirenz	1480.00	0.00	2.21	0.95	0.49 (0.37–0.74)	0.41 GW25
Imatinib	170.00	0.00	2.91	0.27	0.11 (0.05–0.22)	0.39 GW15

NA, data not available.
Anoshchenko et al., 2020), we were able to predict the K_{p,uu,fetal} of the abundance of placental transporters at various gestational ages as the fetoplacental transport data and REF, as we have done before for other drugs and pregnant women (Tables 2–4). Then, the K_{p,uu,fetal} of these drugs at term was estimated to be 0.41, 0.39, and 0.35 for nelfinavir, efavirenz, and imatinib, respectively. The fraction of these drugs effluxed by the placenta (\(f_{\text{efflux}} = 1 - K_{p,uu,fetal} \)) was 0.59, 0.61, and 0.65, respectively, demonstrating that placental P-gp and BCRP significantly prevent their distribution into the fetal compartment. To our knowledge, this is the first time that the K_{p,uu,fetal} of a placental BCRP substrate as well as that of a dual P-gp/BCRP substrate have been estimated. Furthermore, this is the first study to construct and validate a PBPK model for the disposition of nelfinavir in nonpregnant adults and pregnant women.

Based on the above term pregnancy data, because we have quantified the abundance of placental transporters at various gestational ages (Anoshchenko et al., 2020), we were able to predict the K_{p,uu,fetal} of nelfinavir and efavirenz earlier in gestation (GW15 and GW25). The Simcyp pregnancy module does not allow predictions any earlier (<GW15), as physiologic data at these earlier gestational ages are not currently available. In addition, we could not make these predictions for imatinib, as the \(f_{\text{efflux}} \) of this drug by placental P-gp and BCRP is currently not known. However, these values can be predicted in the future from in vitro transport data and REF, as we have done before for other drugs (Kumar et al., 2021). Consistent with our expectations and previous publication (Anoshchenko et al., 2021a), due to a decrease in placental size, both \(C_{\text{efflux,placenta}} \) and \(C_{\text{placenta}} \) decreased with gestational age, but the decrease in the latter was greater than the former. Therefore, the K_{p,uu,fetal} of both nelfinavir and efavirenz at GW15 (0.23, 0.27) and GW25 (0.34, 0.33) was lower than at term (0.41, 0.39). These data can inform the fetal efficacy and toxicity of these drugs at earlier gestational ages.

There are a few limitations to our study. First, the PBPK model of imatinib was not validated for pregnant women due to a lack of such data. Second, imatinib may be transported by human organic anion transporting polypeptide 1A2 (OATP1A2) and multidrug resistance protein 4 (MRP4) (Hu et al., 2011). However, data on pregnancy-induced changes in OATP1A2 and MRP4 activity are not available and therefore were not included in our model based on Adiwidjaja’s model (Adiwidjaja et al., 2020). Third, for our nelfinavir PBPK model, \(f_{\text{in}} \) by each CYP450 isozyme was based on CYP450 inhibition of nelfinavir metabolism in HLMs, and enzyme cross-inhibition by these inhibitors was not taken into consideration (Patía-Vrana et al., 2019). However, none of the above limitations detracts from correctly estimating K_{p,uu,fetal} provided that the maternal plasma concentrations are predicted well. Fourth, we assumed that nelfinavir solely binds to AAG rather than albumin (I), as the association constant of nelfinavir for AAG (7.25 × 10^7/M) is 70 times higher than that for HSA (1.11 × 10^6/M) (Motoya et al., 2006). Fifth, the fraction unbound of the drugs in fetal plasma was the Simcyp-predicted value (Supplemental Table 2) because the corresponding experimentally measured values are not available in the literature. Any inaccuracy in our estimate of the fraction of drug bound in the maternal and fetal compartments will result in inaccuracy in our K_{p,uu,fetal} estimate. Sixth, the potential effects of HIV or cancer comorbidity on the placental drug permeability or transporters are unknown and were therefore not incorporated in the model. Again, this does not detract from our estimate of K_{p,uu,fetal} as it was based on the observed data from women who had these clinical conditions. Seventh, the Simcyp model does not allow passage of drug from the placenta directly into the amniotic fluid, which can be swallowed by the fetus. Irrespective of the route of drug passage, our K_{p,uu,fetal} values will be unaffected, as they are based on the observed UV/MP values.

In summary, we estimated the in vivo K_{p,uu,fetal} of nelfinavir, efavirenz, and imatinib through PBPK modeling and simulation. Prospectively, the K_{p,uu,fetal} of these drugs could be used to design dosing regimens of these drugs for pregnant women throughout pregnancy to...
maximize their efficacy and minimize their fetal toxicity. Furthermore, in the future, these \(K_{\text{p,nonfetal}} \) could be used to validate their predictions made through in vitro studies using the proteomics-informed REF approach. Once validated, these \(m\)-f-PBPK models, in combination with in vitro studies, could be used in the future to predict fetal exposure throughout pregnancy to any drug that is actively effluxed by placental P-gp or BCRP.

Authorship Contributions

Participated in research design: Peng, Ladumor, Unadkat.
Conducted experiments: Peng, Ladumor.
Performed data analysis: Peng, Ladumor, Unadkat.
Wrote or contributed to the writing of the manuscript: Peng, Ladumor, Unadkat.

References

Adiwidjaja J, Boddy AV, and McLachlan AJ (2020) Implementation of a physiologically based pharmacokinetic modeling approach to guide optimal dosing regimens for imatinib and potential in pregnant subjects. Front Pharmacol 11:1 350.
Ali R, Ozkalemkas F, Knym Y, Koksal N, Ozkocaman V, Gulten T, Yorulmaz H, and Tunali A (2009) Imatinib use during pregnancy and breast feeding: a case report and review of the literature. Arch Gynecol Obstet 280:169–176.
Anishchenko O, Milad MA, and Unadkat JD (2021a) Estimating fetal exposure to the P-g sub- strates, corticosteroids, by PBPK modeling to inform prevention of neonatal respiratory distress syndrome. CPT Pharmacometrics Syst Pharmacol 10:1057–1070.
Anishchenko O, Prasad B, Neradugomma NK, Wang J, Mao Q, and Unadkat JD (2020) Gestational age-dependent abundance of human placental transporters as determined by quantitative targeted proteomics. Drug Metab Dispos 48:735–741.
Anishchenko O, Storelli F, and Unadkat JD (2021b) Successful prediction of human fetal expo- sure to P-glycoprotein substrate drugs using the proteomics-informed relative expression factor approach and PBPK modeling and simulation. Drug Metab Dispos 49:919–928.
Aroyi SA, Rajoli RKR, Adjei-Agyei E, Owen A, Bolaji O, Siccardi M, and Olajumogun A (2019) Using mechanistically-physiologically-based pharmacokinetic models to assess prenatal drug exposure in human placental tissue. CPT Pharmacometrics Syst Pharmacol 8:1 035–1 048.
Breedveld P, Plum D, Cipriani G, Wielinga P, van Tellingen O, Schinkel AH, and Schellens JHM (2005) The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P- glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 65:2577–2582.
Burger H, van Tol H, Boersma AW, Brok M, Wiemer EAC, Stoter G, and Nooter K (2004) Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP/ ABCG2) drug pump. Blood 104:2940–2942.
Chelysheva E, Turkina A, Polushkina E, Shmakov R, Zeifman A, Aleshin S, Shokhin I, Guranda Y, Fang A, Valluri SR, O’Brien GE, et al. (2004) Intracellular accumulation of elavirenz and nevirapine is independent of P-glycoprotein activity in cultured CD4 T cells and primary human lymphocytes. J Antimicrob Chemother 64:1002–1007.
Kaeser B, Charone J, Gerber M, Orsey P, Birmbock H, Saeidabadi N, and Banken L (2005) Assessment of the bioequivalence of two neflivanav tablet formulations under fed and fasted conditions in healthy subjects. J Clin Pharmacol Ther 43:154–162.
Kurowski M, Kaeser B, Sawyer A, Popescu M, and Mozikiewicz A (2002) Low-dose ritonavir moderately enhances neflivanav exposure. Clin Pharmacol Ther 72:123–132.
Kähkönen J, Bhat DK, Gaudziki A, Sharma T, Thakur A, Pearce RE, Leeder JS, Bolger MB, Singh S, and Prasad B (2019a) Ontogeny of human sulfotransferases and prediction of age- dependent fractional contribution of sulfation in acetaminophen metabolism. Drug Metab Dispos 47:818–831.
Kahkonen J, Bhat DK, Gaudziki A, Sharma T, Thakur A, Pearce RE, Leeder JS, Bolger MB, Singh S, and Prasad B (2019b) Ontogeny of human sulfotransferases and prediction of age-dependent fractional contribution of sulfation in acetaminophen metabolism. Drug Metab Dispos 47:818–831.
Kumar V, Yin M, Ishida K, Salphati L, Hop CECA, Rowbottom C, Xiao G, Lai Y, Mathias A, Chu X, et al. (2021) Prediction of transporter-mediated rosuvastatin hepatic uptake clearance and drug interaction in humans using proteins-informed REF approach. Drug Metab Dispos 49:159–168.
Kubrowski M, Kaeser B, Sawyer A, Popescu M, and Mozikiewicz A (2002) Low-dose ritonavir moderately enhances neflivanav exposure. Clin Pharmacol Ther 72:123–132.
Leaffer MD, Boyer D, Anderson G, Gaudziki A, Sharma T, Thakur A, Pearce RE, Leeder JS, Bolger MB, Singh S, and Prasad B (2019a) Ontogeny of human sulfotransferases and prediction of age-dependent fractional contribution of sulfation in acetaminophen metabolism. Drug Metab Dispos 47:818–831.
Leather MD, Thakur A, Sharma A, Rachapally A, Mishra S, Bobe R, Pao VK, Pamm R, Kangne H, Levi D, et al. (2019b) A repository of protein abundance data of drug metabolizing enzymes and transporters for applications in physiologically based pharmacokinetic (PBPK) modeling and simulation. Sci Rep 9:1672.
Lamorde M, Wang X, Neary M, Bisdomini E, Nakalema S, Byakika-Kibwika P, Mukonzo JK, Khan W, Owen A, McClure M, et al. (2018) Pharmacokinetics, pharmacodynamics, and pharmacokinetics of efavirenz 400 mg once daily during pregnancy and post-partum. Clin Infect Dis 67:785–798.
Lillibridge JH, Berk LH, Kerr BM, Webber S, Quart B, Shetty BV, and Lee CA (1998) Characterization of the selectivity and mechanism of human cytochrome P450 2D6 inhibition by the human immunodeficiency virus protease inhibitor ritonavir. Drug Metab Dispos 26:690–696.
Longer M, Shetty B, Zanansky I, and Tyle P (1995) Preformulation studies of a novel HIV protease inhibitor, AG1433. J Pharmacol Exp Ther 294:1090–1093.
Madrakian A, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, Mishra S, and Prasad B (2019a) Ontogeny of human sulfotransferases and prediction of age-dependent fractional contribution of sulfation in acetaminophen metabolism. Drug Metab Dispos 47:818–831.
Madrakian A, Thakur A, Sharma A, Rachapally A, Mishra S, Bobe R, Pao VK, Pamm R, Kangne H, Levi D, et al. (2019b) A repository of protein abundance data of drug metabolizing enzymes and transporters for applications in physiologically based pharmacokinetic (PBPK) modeling and simulation. Sci Rep 9:1672.
Kahkonen J, Bhat DK, Gaudziki A, Sharma T, Thakur A, Pearce RE, Leeder JS, Bolger MB, Singh S, and Prasad B (2019a) Ontogeny of human sulfotransferases and prediction of age-dependent fractional contribution of sulfation in acetaminophen metabolism. Drug Metab Dispos 47:818–831.
Leather MD, Thakur A, Sharma A, Rachapally A, Mishra S, Bobe R, Pao VK, Pamm R, Kangne H, Levi D, et al. (2019b) A repository of protein abundance data of drug metabolizing enzymes and transporters for applications in physiologically based pharmacokinetic (PBPK) modeling and simulation. Sci Rep 9:1672.
Kahkonen J, Bhat DK, Gaudziki A, Sharma T, Thakur A, Pearce RE, Leeder JS, Bolger MB, Singh S, and Prasad B (2019a) Ontogeny of human sulfotransferases and prediction of age-dependent fractional contribution of sulfation in acetaminophen metabolism. Drug Metab Dispos 47:818–831.
Leather MD, Thakur A, Sharma A, Rachapally A, Mishra S, Bobe R, Pao VK, Pamm R, Kangne H, Levi D, et al. (2019b) A repository of protein abundance data of drug metabolizing enzymes and transporters for applications in physiologically based pharmacokinetic (PBPK) modeling and simulation. Sci Rep 9:1672.
Kahkonen J, Bhat DK, Gaudziki A, Sharma T, Thakur A, Pearce RE, Leeder JS, Bolger MB, Singh S, and Prasad B (2019a) Ontogeny of human sulfotransferases and prediction of age-dependent fractional contribution of sulfation in acetaminophen metabolism. Drug Metab Dispos 47:818–831.
Leather MD, Thakur A, Sharma A, Rachapally A, Mishra S, Bobe R, Pao VK, Pamm R, Kangne H, Levi D, et al. (2019b) A repository of protein abundance data of drug metabolizing enzymes and transporters for applications in physiologically based pharmacokinetic (PBPK) modeling and simulation. Sci Rep 9:1672.
Kahkonen J, Bhat DK, Gaudziki A, Sharma T, Thakur A, Pearce RE, Leeder JS, Bolger MB, Singh S, and Prasad B (2019a) Ontogeny of human sulfotransferases and prediction of age-dependent fractional contribution of sulfation in acetaminophen metabolism. Drug Metab Dispos 47:818–831.
Leather MD, Thakur A, Sharma A, Rachapally A, Mishra S, Bobe R, Pao VK, Pamm R, Kangne H, Levi D, et al. (2019b) A repository of protein abundance data of drug metabolizing enzymes and transporters for applications in physiologically based pharmacokinetic (PBPK) modeling and simulation. Sci Rep 9:1672.
