ON THE TRANSVERSE KHOVANOV-ROZANSKY HOMOLOGIES: GRADED MODULE STRUCTURE AND STABILIZATION

HAO WU

Abstract. In [9], the author proved that the Khovanov-Rozansky homology H_N with potential ax^{N+1} is an invariant for transverse links in the standard contact 3-sphere. In the current paper, we study the $\mathbb{Z}_2 \oplus \mathbb{Z}^3$-graded $\mathbb{Q}[a]$-module structure of H_N, which leads to better understanding of the effect of stabilization on H_N. As an application, we compute H_N for all transverse unknots.

1. Introduction

1.1. The transverse Khovanov-Rozansky homology H_N. A contact structure ξ on an oriented 3-manifold M is an oriented tangent plane distribution such that there is a 1-form α on M satisfying $\xi = \ker \alpha$, $d\alpha|_\xi > 0$ and $\alpha \wedge d\alpha > 0$. Such a 1-form is called a contact form for ξ. The standard contact structure ξ_{st} on S^3 is given by the contact form $\alpha_{st} = dz - ydx + xdy = dz + r^2 d\theta$.

We say that an oriented smooth link L in S^3 is transverse if $\alpha_{st}|_L > 0$. Two transverse links are said to be transverse isotopic if there is an isotopy from one to the other through transverse links.

Theorem 1.1. [1, 6, 7]

(1) Every transverse link is transverse isotopic to a counterclockwise transverse closed braid around the z-axis.
(2) Any smooth counterclockwise closed braid around the z-axis can be smoothly isotoped into a counterclockwise transverse closed braid around the z-axis without changing the braid word.
(3) Two counterclockwise transverse closed braids around the z-axis are transverse isotopic if and only if the braid word of one of them can be changed into that of the other by a finite sequence of transverse Markov moves. Here, by “transverse Markov moves”, we mean the following braid moves:
- Braid group relations generated by
 - $\sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = \emptyset$,
 - $\sigma_i \sigma_j = \sigma_j \sigma_i$, when $|i - j| > 1$,
 - $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_i$.
- Conjugation: $\mu \leftrightarrow \eta^{-1} \mu \eta$, where $\mu, \eta \in B_m$.
- Positive stabilization and destabilization: $\mu \in B_m$ \leftrightarrow $\mu \sigma_m^{-1} \in (B_m)$.
In other words, all Markov moves are transverse Markov moves except the negative stabilization and destabilization $\mu \in B_m$ \leftrightarrow $\mu \sigma_m \in (B_m)$.

Part (1) of Theorem 1.1 was established by Bennequin in [1], part (2) is a simple observation and part (3) was proved by Orevkov, Shevchishin in [6] and independently by Wrinkle in [7]. Theorem 1.1 means that there is a one-to-one correspondence

$\{\text{Transverse isotopy classes of transverse links}\} \longleftrightarrow \{\text{Closed braids modulo transverse Markov moves}\}$.

So, constructing invariants for transverse links is equivalent to constructing invariants for equivalence classes of closed braids modulo transverse Markov moves. For example, for a closed braid B with writhe w of m strands, its self linking number $sl(B) = w_m$ is invariant under transverse Markov moves. So the self linking number is a transverse link invariant. See [1] for the original definition of the self linking number.

For more about transverse links, see, for example, [9].
Using the above correspondence, the author introduced in [9] a new homological invariant \(\mathcal{H}_N \) for transverse links. \(\mathcal{H}_N \) is a variant of the Khovanov-Rozansky homology defined in [4, 5]. We call \(\mathcal{H}_N \) the \(N \)th transverse Khovanov-Rozansky homology. The following is the main result of [9].

Theorem 1.2. [9] Theorem 1.2] Suppose \(N \geq 1 \). Let \(B \) be a closed braid and \(\mathcal{C}_N(B) \) the chain complex defined in Definition 2.13. Then the homotopy type of \(\mathcal{C}_N(B) \) does not change under transverse Markov moves. Moreover, the homotopy equivalences induced by transverse Markov moves preserve the \(\mathbb{Z}_2 \oplus \mathbb{Z}^{\oplus 3} \)-grading of \(\mathcal{C}_N(B) \), where the \(\mathbb{Z}_2 \)-grading is the \(\mathbb{Z}_2 \)-grading of the underlying matrix factorization and the three \(\mathbb{Z} \)-gradings are the homological, \(a \)- and \(x \)-gradings of \(\mathcal{C}_N(B) \).

Consequently, for the homology \(\mathcal{H}_N(B) = H(H(\mathcal{C}_N(B), d_{mf}), d_\chi) \) of \(\mathcal{C}_N(B) \) defined in Definition 2.13, every transverse Markov move on \(B \) induces an isomorphism of \(\mathcal{H}_N(B) \) preserving the \(\mathbb{Z}_2 \oplus \mathbb{Z}^{\oplus 3} \)-graded \(\mathbb{Q}[a] \)-module structure of \(\mathcal{H}_N(B) \).

1.2. Module structure of \(\mathcal{H}_N(B) \). The first part of the current paper is a more careful study of the \(\mathbb{Z}_2 \oplus \mathbb{Z}^{\oplus 3} \)-graded \(\mathbb{Q}[a] \)-module structure of \(\mathcal{H}_N(B) \), which refines [9] Theorem 1.11] and leads to Theorem 1.4 below.

Before stating Theorem 1.4, we introduce the following notations.

Definition 1.3. Let \(B \) be a closed braid. For \((\varepsilon, i, j, k) \in \mathbb{Z}_2 \oplus \mathbb{Z}^{\oplus 3} \), denote by \(\mathcal{H}_N^{\varepsilon,i,j,k}(B) \) the subspace of \(\mathcal{H}_N(B) \) of homogeneous elements of \(\mathbb{Z}_2 \)-degree \(\varepsilon \), homological degree \(i \), \(a \)-degree \(j \) and \(x \)-degree \(k \). Replacing one of these indices by a “\(^*\)” means direct summing over all possible values of this index. For example:

\[
\mathcal{H}_N^{\varepsilon,i,*}(B) = \bigoplus_{j \in \mathbb{Z}} \mathcal{H}_N^{\varepsilon,i,j,k}(B),
\]

\[
\mathcal{H}_N^{\varepsilon,i,*,*}(B) = \bigoplus_{(j,k) \in \mathbb{Z}^{\oplus 2}} \mathcal{H}_N^{\varepsilon,i,j,k}(B).
\]

Similarly, for the \(\mathfrak{sl}(N) \) Khovanov-Rozansky homology \(H_N(B) \) defined in [4, 5], we denote by \(H_N^{\varepsilon,i,k}(B) \) the subspace of \(H_N(B) \) of homogeneous elements of \(\mathbb{Z}_2 \)-degree \(\varepsilon \), homological degree \(i \) and \(x \)-degree \(k \). Again, replacing one of these indices by a “\(^*\)” means direct summing over all possible values of this index.

Theorem 1.4. Let \(B \) be a closed braid, and \((\varepsilon, i, k) \in \mathbb{Z}_2 \oplus \mathbb{Z}^{\oplus 2} \). As a \(\mathbb{Z} \)-graded \(\mathbb{Q}[a] \)-module,

\[
\mathcal{H}_N^{\varepsilon,i,k}(B) \cong (\mathbb{Q}[a]\{ s(B) \})_a^{\oplus l} \oplus (\mathbb{Q}[a]\{ s(B) + 2 \})_a^{\oplus (\dim \mathcal{H}_N^{\varepsilon,i,k}(B) - l)} \oplus \bigoplus_{q=1}^{n} \mathbb{Q}[a]/(a)\{s_q\},
\]

where

- \(\{s\}_a \) means shifting the \(a \)-grading by \(s \),
- \(l \) and \(n \) are finite non-negative integers determined by \(B \) and the triple \((\varepsilon, i, k) \),
- \(\{s_1, \ldots, s_n\} \subseteq \mathbb{Z} \) is a sequence determined up to permutation by \(B \) and the triple \((\varepsilon, i, k) \),
- \(s(B) \leq s_q \leq c_+ - c_- - 1 \) and \((N - 1)s_q \leq k - 2N + 2c_- \) for \(1 \leq q \leq n \), where \(c_\pm \) is the number of \(\pm \) crossings in \(B \).

Remark 1.5. Note that \(s(B) \) and the number of components of \(B \) have the same parity. So, from [4], we know that \(H_N^{\varepsilon,i,k}(B) \cong 0 \) and, by Theorem 1.4, \(H_N^{\varepsilon,i,k}(B) \) is a torsion \(\mathbb{Q}[a] \)-module.

1.3. Stabilization. Applying a negative stabilization to a transverse closed braid \(B \), we get a new transverse closed braid \(B_- \). In contact geometry, this procedure is called a stabilization of the transverse link. In [9] Theorem 1.5], the author established that the chain complex \(\mathcal{C}_N(B_-) \) is isomorphic to \(\text{cone}(\pi_0)[-2,0] \), where

- \(\pi_0 : \mathcal{C}_N(B) \to \mathcal{C}_N(B)/a\mathcal{C}_N(B) \) is the standard quotient map,
- \(\text{cone}(\pi_0) \) is the mapping cone of \(\pi_0 \),
- \(\{j,k\} \) means shifting the \(a \)-grading by \(j \) and the \(x \)-grading by \(k \).

\(^2\)See Subsection 2.3 for our normalization of \(H_N(B) \).
 Therefore, there is a long exact sequence
\[\cdots \to \mathcal{H}_N^{s-i,1,*,k}(B)[-2,0] \to \mathcal{H}_N^{s-i,1,*,k}(B)[-2,0] \to \mathcal{H}_N^{s-i,1,*,k}(B)[-2,0] \to \cdots \]

preserving the \(a\)- and \(x\)-gradings, where \(\mathcal{H}_N(B) := H(H(C_N(B)/aC_N(B), d_m), d_k) \).

Generally, it is not very easy to compute \(\mathcal{H}_N(B) \) even if \(\mathcal{H}_N(B) \) is known. So the above long exact sequence is not very useful when computing the homology of a stabilization of a transverse link. Using Theorem 1.4, we will take a closer look at the chain complex \(C \)

Theorem 1.6. Let \(B \) be a closed braid and \(B_- \) a stabilization of \(B \). Set \(s = sl(B) \). Then for any \((i, k) \in \mathbb{Z}^{\geq 2} \), there are a long exact sequence of \(\mathbb{Z} \)-graded \(Q[a]\)-modules

\[(1.1) \cdots \to \mathcal{H}_N^{s-i,1,*,k}(B_-) \to \mathcal{H}_N^{s-i,1,*,k+N+1}(B_-)[1] \to \cdots \]

and a short exact sequence of \(\mathbb{Z} \)-graded \(Q[a]\)-modules

\[(1.2) \quad 0 \to \mathcal{H}_N^{s-i,1,*,k}(B) \to \mathcal{H}_N^{s-i,1,*,k+N+1}(B_-) \to 0, \]

where \(\mathcal{H}_N(B) \) is the \(\mathfrak{sl}(N) \) Khovanov-Rozansky homology of \(B \) defined in [4].

In [2], Eliashberg and Fraser showed that two transverse unknots are transverse isotopic if and only if their self linking numbers are equal. Bennequin’s inequality [1] implies that the highest self linking number of a transverse unknot is \(-1\), which is attained by the 1-strand transverse closed braid. Denote by \(U_0 \) the transverse unknot with self linking \(-1\) and by \(U_m \) the transverse unknot obtained from \(U_0 \) by \(m \) stabilizations. Then every transverse unknot is transverse isotopic to \(U_m \) for some \(m \geq 0 \).

As an application of Theorem 1.6, we compute \(\mathcal{H}_N \) for all the transverse unknots. Before stating the result, let us recall that the \(\mathbb{Z} \)-grading of \(Q[a] \) is given by \(\deg_a = 2 \). We make \(Q[a] \) a \(\mathbb{Z}_2 \oplus \mathbb{Z}^{\geq 3} \)-graded \(Q[a]\)-module by making the \(\mathbb{Z}_2 \)-, homological and \(x \)-gradings all \(0 \) on \(Q[a] \).

Corollary 1.7. Let \(\mathcal{F} \) and \(\mathcal{T} \) be the \(\mathbb{Z}_2 \oplus \mathbb{Z}^{\geq 3} \)-graded \(Q[a]\)-modules

\[\mathcal{F} := \bigoplus_{l=0}^{\infty} Q[a]/(a)(1) \{ -1, N+1+2l \}, \]

\[\mathcal{T} := \bigoplus_{l=0}^{\infty} Q[a]/(a)(1) \{ -1, N+1+2l \}, \]

where \(\langle \varepsilon \rangle \) means shifting the \(\mathbb{Z}_2 \)-grading by \(\varepsilon \) and \(\langle j,k \rangle \) means shifting the \(a \)-grading by \(j \) and the \(x \)-gradings by \(k \). Then,

\[\mathcal{H}_N(U_0) \cong \mathcal{F} \oplus \mathcal{T}, \]

\[\mathcal{H}_N(U_1) \cong \mathcal{F} \oplus \mathcal{T} \langle 1 \rangle \{ -1, N-1 \} \{ \| l \| \}, \]

and, for \(m \geq 2 \),

\[\mathcal{H}_N(U_m) \cong \mathcal{F} \langle -2(m-1), 0 \rangle \oplus \mathcal{T} \langle m \rangle \{ -m, -m(N+1) \} \{ \| m \| \} \oplus \bigoplus_{l=1}^{m-1} \mathcal{F}/a \mathcal{F} \langle l \rangle \{ -2m+l, -(N+1) \} \{ l+1 \}, \]

where \(\| l \| \) means shifting the homological grading by \(l \).

1.4. **Organization of this paper.** In Section 2, we review the definition of \(\mathcal{H}_N \). Then we study the \(Q[a]\)-module structure of \(\mathcal{H}_N \) and prove Theorem 1.4 in Section 3. Finally, we prove Theorem 1.6 and Corollary 1.7 in Section 4.

This paper is self-contained for the most part. Of course, some prior knowledge of the Khovanov-Rozansky homology, especially of [1 2], will be helpful.

2. Definition of \(\mathcal{H}_N \)

In this section, we quickly review the definition of the transverse Khovanov-Rozansky homology \(\mathcal{H}_N \) in [2], which is every similar to the definition of the Khovanov-Rozansky homology in [3 4].
2.1. \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorizations over \(\mathbb{Q}[a, x_1, \ldots, x_k] \).

Definition 2.1. We define a \(\mathbb{Z}_2^{\oplus 2} \)-grading on \(R = \mathbb{Q}[a, x_1, \ldots, x_k] \) by letting \(\deg a = (2, 0) \) and \(\deg x_i = (0, 2) \) for \(i = 1, \ldots, k \). We call the first component of this \(\mathbb{Z}_2^{\oplus 2} \)-grading the \(a \)-grading and denote its degree function by \(\deg a \). We call the second component of this \(\mathbb{Z}_2^{\oplus 2} \)-grading the \(x \)-grading and denote its degree function by \(\deg x \). An element of \(R \) is said to be homogeneous if it is homogeneous with respect to both the \(a \)-grading and the \(x \)-grading.

A \(\mathbb{Z}_2^{\oplus 2} \)-graded \(R \)-module \(M \) is a \(R \)-module \(M \) equipped with a \(\mathbb{Z}_2^{\oplus 2} \)-grading such that, for any homogeneous element \(m \) of \(M \), \(\deg(am) = \deg m + (2, 0) \) and \(\deg(x_i m) = \deg m + (0, 2) \) for \(i = 1, \ldots, k \). Again, we call the first component of this \(\mathbb{Z}_2^{\oplus 2} \)-grading of \(M \) the \(a \)-grading and denote its degree function by \(\deg a \). We call the second component of this \(\mathbb{Z}_2^{\oplus 2} \)-grading of \(M \) the \(x \)-grading and denote its degree function by \(\deg x \).

We say that the \(\mathbb{Z}_2^{\oplus 2} \)-grading on \(M \) is bounded below if both the \(a \)-grading and the \(x \)-grading are bounded below.

For a \(\mathbb{Z}_2^{\oplus 2} \)-graded \(R \)-module \(M \), we denote by \(M\{j,k\} \) the \(\mathbb{Z}_2^{\oplus 2} \)-graded \(R \)-module obtained by shifting the \(\mathbb{Z}_2^{\oplus 2} \)-grading of \(M \) by \((j,k) \). That is, for any homogeneous element \(m \) of \(M \), \(\deg_M\{j,k\} m = \deg_M m + (j,k) \).

Definition 2.2. Let \(w \) be a homogeneous element with bidegree \((2,2N+2) \) of \(R = \mathbb{Q}[a, x_1, \ldots, x_k] \). A \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorization \(M \) of \(w \) over \(R \) is a collection of two \(\mathbb{Z}_2^{\oplus 2} \)-graded free \(R \)-modules \(M_0 \), \(M_1 \) and two homogeneous \(R \)-module maps \(d_0 : M_0 \to M_1 \), \(d_1 : M_1 \to M_0 \) of bidegree \((1,N+1) \), called differential maps, such that
\[
d_1 \circ d_0 = w \cdot \text{id}_{M_0}, \quad d_0 \circ d_1 = w \cdot \text{id}_{M_1}.
\]
The \(\mathbb{Z}_2 \)-grading of \(M \) takes value \(\epsilon \) on \(M_\epsilon \). The \(a \)- and \(x \)-gradings of \(M \) are the \(a \)- and \(x \)-gradings of the underlying \(\mathbb{Z}_2^{\oplus 2} \)-graded \(R \)-module \(M_0 \oplus M_1 \).

We usually write \(M \) as \(M_0 \xrightarrow{d_0} M_1 \xrightarrow{d_1} M_0 \). Following [3], we denote by \(M\{1\} \) the matrix factorization \(M_1 \xrightarrow{d_1} M_0 \xrightarrow{d_0} M_1 \) and write \(M\{j\} \)
\[
\text{the } j \text{ times}
\]
For any \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorization \(M \) of \(w \) over \(R \) and \(j,k \in \mathbb{Z} \), \(M\{j,k\} \) is naturally a \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorization of \(w \) over \(R \).

For any two \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorizations \(M \) and \(M' \) of \(w \) over \(R \), \(M \oplus M' \) is naturally a \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorization of \(w \) over \(R \).

Let \(w \) and \(w' \) be two homogeneous elements of \(R \) with bidegree \((2,2N+2) \). For \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorizations \(M \) of \(w \) and \(M' \) of \(w' \) over \(R \), the tensor product \(M \otimes_R M' \) is the \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorization of \(w + w' \) over \(R \) such that:

- \((M \otimes M')_0 = (M_0 \otimes M'_0) \oplus (M_1 \otimes M'_1) \), \((M \otimes M')_1 = (M_1 \otimes M'_0) \oplus (M_1 \otimes M'_1) \);
- The differential is given by the signed Leibniz rule. That is, \(d(m \otimes m') = (dm) \otimes m' + (-1)^{\epsilon m} m \otimes (dm') \)

for \(m \in M_\epsilon \) and \(m' \in M'_\epsilon \).

Definition 2.3. Let \(w \) be a homogeneous element of \(R \) with bidegree \((2,2N+2) \), and \(M \), \(M' \) any two \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorizations of \(w \) over \(R \).

1. A morphism of \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorizations from \(M \) to \(M' \) is a homogeneous \(R \)-module homomorphism \(f : M \to M' \) preserving the \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-grading satisfying \(d_M' f = f d_M \). We denote by \(\text{Hom}_{\text{mf}}(M,M') \) the \(\mathbb{Q} \)-space of all morphisms of \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorizations from \(M \) to \(M' \).

2. An isomorphism of \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorizations from \(M \) to \(M' \) is a morphism of \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorizations that is also an isomorphism of the underlying \(R \)-modules. We say that \(M \) and \(M' \) are isomorphic, or \(M \cong M' \), if there is an isomorphism from \(M \) to \(M' \).

3. Two morphisms \(f \) and \(g \) of \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorizations from \(M \) to \(M' \) are called homotopic if there is an \(R \)-module homomorphism \(h : M \to M' \) shifting the \(\mathbb{Z}_2 \)-grading by 1 such that \(f - g = d_M h + h d_M \). In this case, we write \(f \simeq g \). We denote by \(\text{Hom}_{\text{hmf}}(M,M') \) the \(\mathbb{Q} \)-space of all homotopy classes of morphisms of \(\mathbb{Z}_2 \oplus \mathbb{Z}_2^{\oplus 2} \)-graded matrix factorizations from \(M \) to \(M' \). That is, \(\text{Hom}_{\text{hmf}}(M,M') = \text{Hom}_{\text{mf}}(M,M')/ \simeq \).

\(^3\)An element of \(M \) is said to be homogeneous if it is homogeneous with respect to both \(\mathbb{Z} \)-gradings.
(4) M and M' are called homotopic, or $M \simeq M'$, if there are morphisms $f : M \to M'$ and $g : M' \to M$ such that $g \circ f \simeq \id_M$ and $f \circ g \simeq \id_{M'}$. f and g are called homotopy equivalences between M and M'.

(5) We say that M is homotopically finite if it is homotopic to a finitely generated graded matrix factorization of w over R.

We define categories $\text{mf}^{\text{all}}_{R,w}$, $\text{mf}_{R,w}$, $\text{hmf}^{\text{all}}_{R,w}$, and $\text{hmf}_{R,w}$ by the following table.

Category	Objects	Morphisms
$\text{mf}^{\text{all}}_{R,w}$	all $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^2}$-graded matrix factorizations of w over R with the $\mathbb{Z}^{\mathbb{Z}^2}$-grading bounded below	Hom_{mf}
$\text{mf}_{R,w}$	all homotopically finite $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^2}$-graded matrix factorizations of w over R with the $\mathbb{Z}^{\mathbb{Z}^2}$-grading bounded below	Hom_{mf}
$\text{hmf}^{\text{all}}_{R,w}$	all $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^2}$-graded matrix factorizations of w over R with the $\mathbb{Z}^{\mathbb{Z}^2}$-grading bounded below	Hom_{hmf}
$\text{hmf}_{R,w}$	all homotopically finite $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^2}$-graded matrix factorizations of w over R with the $\mathbb{Z}^{\mathbb{Z}^2}$-grading bounded below	Hom_{hmf}

Definition 2.4. If $a_0, a_1 \in R$ are homogeneous elements with $\deg a_0 + \deg a_1 = (2, 2N + 2)$, then denote by $(a_0, a_1)_R$ the $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^2}$-graded matrix factorization $R \overset{a_0}{\twoheadrightarrow} R(1 - \deg a_0, N + 1 - \deg a_0) \overset{a_1}{\twoheadrightarrow} R$ of a_0a_1 over R. More generally, if $a_{1,0}, a_{1,1}, \ldots, a_{0,0}, a_{1,1} \in R$ are homogeneous with $\deg a_{j,0} + \deg a_{j,1} = (2, 2N + 2)$, then denote by

$$
\begin{pmatrix}
 a_{1,0} & a_{1,1} \\
 a_{2,0} & a_{2,1} \\
 \vdots & \vdots \\
 a_{0,0} & a_{1,1}
\end{pmatrix}_R
$$

the tensor product $(a_{1,0}, a_{1,1})_R \otimes_R (a_{2,0}, a_{2,1})_R \otimes_R \cdots \otimes_R (a_{0,0}, a_{1,1})_R$, which is a $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^2}$-graded matrix factorization of $\sum_{j=1}^t a_{j,0}a_{j,1}$ over R, and is call the Koszul matrix factorization associated to the above matrix. We drop “R” from the notation when it is clear from the context.

Note that the above Koszul matrix factorization is finitely generated over R.

The following proposition from [1] is useful in computing the homology of some MOY graphs.

Proposition 2.5. [1] Proposition 10] Let I be an ideal of R generated by homogeneous elements. Assume w, a_0 and a_1 are homogeneous elements of R such that $\deg w = \deg a_0 + \deg a_1 = (2, 2N + 2)$ and $w + a_0a_1 \in I$. Then $w \in I + (a_0)$ and $w \in I + (a_1)$.

Let M be a $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^2}$-graded matrix factorization of w over R, and $\tilde{M} = M \otimes_R (a_0, a_1)_R$. Then $\tilde{M}/I\tilde{M}$, $M/(I + (a_0))M$ and $M/(I + (a_1))M$ are all $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^2}$-graded chain complexes of R-modules.

(1) If a_0 is not a zero-divisor in R/I, then there is an R-linear quasi-isomorphism $f : \tilde{M}/I\tilde{M} \to (M/(I + (a_0))M) (1) \{1 - \deg a_0, N + 1 - \deg a_0\}$ that preserves the $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^2}$-grading.

(2) If a_1 is not a zero-divisor in R/I, then there is an R-linear quasi-isomorphism $g : \tilde{M}/I\tilde{M} \to M/(I + (a_1))M$ that preserves the $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^2}$-grading.

2.2. The matrix factorization associated to a MOY graph.

Definition 2.6. A MOY graph Γ is an oriented graph embedded in the plane satisfying:

(1) Every edge of Γ is colored by 1 or 2.
(2) Every vertex of Γ is 1-, 2-, or 3-valent.
(3) Every 1-valent vertex of Γ is either the initial point of a 1-colored edge or the terminal point of a 1-colored edge. We call 1-valent vertices of Γ endpoints of Γ.
(4) Every 2-valent vertex of Γ is the initial point of a 1-colored edge and the terminal point of a 1-colored edge.
(5) Every 3-valent vertex of Γ is

- either the initial point of two 1-colored edges and the terminal point of a 2-colored edge,
- or the terminal point of two 1-colored edges and the initial point of a 2-colored edge.
In particular, Definition 2.6 means that every 2-colored edge of Γ has a neighborhood that looks like the local configuration in Figure 1.

Definition 2.7. Let Γ be a MOY graph. A marking of Γ consists of:

1. A finite collection of marked points on Γ such that
 - all endpoints are marked,
 - none of the 2- or 3-valent vertices are marked,
 - every 1-colored edge contains a marked point,
 - none of the 2-colored edges contain marked points.

2. An assignment that assigns to each marked point a single variable such that no two marked points are assigned the same variable.

Now suppose Γ is a MOY graph with a marking. Let x_1, \ldots, x_m be all the variables assigned to marked points on Γ and x_{i_1}, \ldots, x_{i_n} all the variables assigned to 1-valent vertices of Γ. We define R to be the \mathbb{Z}^2-graded ring $R = \mathbb{Q}[a, x_1, \ldots, x_m]$ with the \mathbb{Z}^2-grading given by $\text{deg } a = (2, 0)$ and $\text{deg } x_i = (0, 2)$. Denote by R_0 the \mathbb{Z}^2-graded sub-ring $R_0 = \mathbb{Q}[a, x_{i_1}, \ldots, x_{i_n}]$ of R. We call R_0 the boundary ring of the marked MOY graph Γ.

Next, cut Γ at all of its marked points. This breaks Γ into simple marked MOY graphs $\Gamma_1, \cdots, \Gamma_p$, each of which is of one of the two types in Figure 2. Note that each Γ_q is marked only at its endpoints. Denote by R_q the \mathbb{Z}^2-graded polynomial ring over \mathbb{Q} generated by a and the variables marking Γ_q.

- If $\Gamma_q = \Gamma_{i:k}$ in Figure 2 then $R_q = \mathbb{Q}[a, x_i, x_k]$ and
 \[
 C_N(\Gamma_q) = (a \cdot \frac{x_{k}^{N+1} - x_i^{N+1}}{x_k - x_i}, x_k - x_i) R_q.
 \]

- If $\Gamma_q = \Gamma_{i,j:k,l}$ in Figure 2 then $R_q = \mathbb{Q}[a, x_i, x_j, x_k, x_l]$ and
 \[
 C_N(\Gamma_q) = \left(a \cdot \frac{g(x_k+x_i, x_kx_l)-g(x_i+x_j, x_kx_l)}{x_k+x_i, x_kx_l}, \frac{x_k + x_l - x_i - x_j}{x_kx_l - x_i, x_l} \right)_{R_q} \{0, -1\},
 \]
 where g is the unique 2-variable polynomial satisfying $g(x + y, xy) = x^{N+1} + y^{N+1}$.

Definition 2.8.

\[
C_N(\Gamma) = \bigotimes_{q=1}^p (C_N(\Gamma_q) \otimes_{R_q} R),
\]

where the big tensor product “$\bigotimes_{q=1}^p$” is taken over the ring $R = \mathbb{Q}[a, x_1, \ldots, x_m]$.

Note that $C_N(\Gamma)$ is a $\mathbb{Z}_2 \oplus \mathbb{Z}^2$-graded matrix factorization of $w = \sum_{k=1}^n \pm a x_k^{N+1}$, where the sign is positive if Γ points outward at the corresponding endpoint and negative if Γ points inward at the corresponding endpoint.

4We consider the initial and terminal points of an edge part of that edge.
We view $C_N(\Gamma)$ as an object of the category $\text{hmf}^\text{all}_{R_0,w}$.

Definition 2.9. A MOY graph is called closed if it has no endpoints. If Γ is a closed MOY graph, then $C_N(\Gamma)$ is a $\mathbb{Z}_2 \oplus \mathbb{Z}^2$-graded matrix factorization of 0. So it is a homologically \mathbb{Z}_2-graded chain complex of \mathbb{Z}^2-graded $\mathbb{Q}[a]$-modules with a homogeneous differential map. We denote by $\mathcal{H}_N(\Gamma)$ the homology of this chain complex. Note that $\mathcal{H}_N(\Gamma)$ is a $\mathbb{Z}_2 \oplus \mathbb{Z}^2$-graded $\mathbb{Q}[a]$-module by inheriting the gradings of $C_N(\Gamma)$.

The following two lemmas are slight generalizations of the corresponding results in [4, 5].

Lemma 2.10. [9 Corollary 5.6, Lemma 3.11 and Proposition 7.1] As matrix factorizations over the respective boundary rings, we have:

\begin{equation}
(2.3) \quad C_N \begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 1
\end{pmatrix} \simeq C_N \begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 1
\end{pmatrix} \oplus C_N \begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 1
\end{pmatrix} \oplus \{0, 1\} \oplus C_N \begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 1
\end{pmatrix} \{0, 1\},
\end{equation}

\begin{equation}
(2.4) \quad C_N \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix} \simeq C_N \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix} \oplus C_N \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix} \{0, 1\},
\end{equation}

\begin{equation}
(2.5) \quad C_N \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix} \oplus C_N \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix} \oplus \{0, 1\} \oplus C_N \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix} \{0, 1\}.
\end{equation}

![Figure 3](image-url)
2.3. Definition of H_N. We first define the chain complex associated to a tangle diagram.

Definition 2.12. Let T be an oriented tangle diagram. We call a segment of T between two adjacent crossings/end points an arc. We color all arcs of T by 1. A marking of T consists of:

1. A collection of marked points on T such that
 - none of the crossings of T are marked,
 - all end points are marked,
 - every arc of T contains at least one marked point,
2. An assignment of pairwise distinct homogeneous variables of bidegree $(0, 2)$ to the marked points such that every marked point is assigned a unique variable.

Let T be an oriented tangle with a marking. Recall that a is homogeneous of bidegree $(2, 0)$. Denote by

- R the polynomial ring over \mathbb{Q} generated by a and all the variables associated to marked points of T,
- R_∂ the polynomial ring over \mathbb{Q} generated by a and all the variables associated to end points of T.

Again, we call R_∂ the boundary ring of T.

Cut T at all of its marked points. This cuts T into a collection \(\{T_1, \ldots, T_l\}\) of simple tangles, each of which is one of the three types in Figure 5 and is marked only at its end points. Denote by R_i the polynomial ring over \mathbb{Q} generated by a and the variables marking end points of T_i.

![Tangle Diagram](image)

Figure 4.

If $T_i = A$, then $R_i = \mathbb{Q}[a, x_1, x_2]$ and $C_N(T_i)$ is the chain complex over $\text{hmf}_{R_i, a(x_1^{N+1} - x_2^{N+1})}$ given by

\[
C_N(T_i) = 0 \rightarrow C_N(A) \rightarrow 0,
\]

where the $C_N(A)$ on the right hand side is the matrix factorization associated to the MOY graph A, and the under-brace indicates the homological grading.

If $T_i = C_\pm$, then $R_i = \mathbb{Q}[a, x_1, x_2, y_1, y_2]$ and $C_N(T_i)$ is the chain complex over $\text{hmf}_{R_i, a(x_1^{N+1} + y_1^{N+1} - x_2^{N+1} - y_2^{N+1})}$ given by

\[
\begin{align*}
C_N(C_+) &= 0 \rightarrow C_N(\Gamma_1) \langle 1 \rangle \{1, N\} \xrightarrow{\chi^+} C_N(\Gamma_0) \langle 1 \rangle \{1, N - 1\} \rightarrow 0, \\
C_N(C_-) &= 0 \rightarrow C_N(\Gamma_0) \langle 1 \rangle \{-1, -N + 1\} \xrightarrow{\chi^0} C_N(\Gamma_1) \langle 1 \rangle \{-1, -N\} \rightarrow 0,
\end{align*}
\]

where Γ_0 and Γ_1 are the resolutions of C_\pm given in Figure 5, the morphisms χ^0 and χ^1 are defined in Lemma 2.11 and the under-braces indicate the homological gradings.

Note that, in all three cases, the differential map of $C_N(T_i)$ consists of homogeneous morphisms of matrix factorizations preserving the $\mathbb{Z}_2 \oplus \mathbb{Z}^{\oplus 2}$-grading. Of course, this differential map raises the homological grading by 1.

Definition 2.13. We define the chain complex $C_N(T)$ associated to T to be

\[
C_N(T) := \bigotimes_{i=1}^l (C_N(T_i) \otimes_{R_i} R),
\]

where the big tensor product “\(\bigotimes_{i=1}^l\)” is taken over R. We view $C_N(T)$ as a chain complex of $\mathbb{Z}_2 \oplus \mathbb{Z}^{\oplus 2}$-graded matrix factorizations over the ring R_∂.

8
$C_N(T)$ is equipped with a $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^3}$-grading, where the $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^2}$-grading comes from the underlying matrix factorization and the additional \mathbb{Z}-grading is the homological grading.

Note that, if T is an oriented link diagram, then $C_N(T)$ is a chain complex over the category $\text{hmf}_{\mathbb{Q}[a],0}$.

Lemma 2.14. [3] Lemma 4.5, and Propositions 5.5, 6.1, 7.5] The homotopy type of $C_N(T)$ is independent of the marking of T and invariant under positive Reidemeister move I and braid-like Reidemeister moves II and III.

Now let L be a link diagram with a marking. Note $C_N(L)$ has two differential maps:

1. The differential d_{mf} of the underlying matrix factorization structure of $C_N(L)$.
2. The differential d_{χ} from the crossing information given in equations (2.6), (2.7) and (2.8).

As a matrix factorization, $C_N(L)$ is a matrix factorization of 0. So $d_{mf}^2 = 0$. Thus, the homology $H(C_N(L), d_{mf})$ is well defined. In fact, $H(C_N(L), d_{mf})$ inherits the $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^3}$-grading of $C_N(L)$ and $(H(C_N(L), d_{mf}), d_{\chi})$ is a chain complex with a homological \mathbb{Z}-grading of $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^2}$-graded $\mathbb{Q}[a]$-modules.

Definition 2.15. $\mathcal{H}_N(L) := H(H(C_N(L), d_{mf}), d_{\chi})$. It is a $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^3}$-graded $\mathbb{Q}[a]$-module.

As a simple corollary of Lemma 2.14, we have:

Corollary 2.16. The $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^3}$-graded $\mathbb{Q}[a]$-module $\mathcal{H}_N(L)$ is independent of the marking of L and invariant under positive Reidemeister move I and braid-like Reidemeister moves II and III.

Clearly, Theorem 1.1 follows from Lemma 2.14 and Corollary 2.16.

2.4. **The $\mathfrak{sl}(N)$ Khovanov-Rozansky homology** H_N. If we set $a = 1$ in the above construction, then we get the $\mathfrak{sl}(N)$ Khovanov-Rozansky homology H_N define in [4]. More precisely, for any tangle T, let

$$C_N(T) = C_N(T)/(a - 1)C_N(T).$$

Then $C_N(T)$ is the $\mathfrak{sl}(N)$ Khovanov-Rozansky chain complex defined in [4]. Note that $C_N(T)$ inherits the \mathbb{Z}_2, homological and x-gradings of $C_N(T)$. It also inherits the differentials d_{mf} and d_{χ}. For a link diagram L,

$$H_N(L) = H((C_N(L), d_{mf}), d_{\chi})$$

is the $\mathfrak{sl}(N)$ Khovanov-Rozansky homology defined in [4]. $H_N(L)$ inherits the gradings of $C_N(L)$ and is a $\mathbb{Z}_2 \oplus \mathbb{Z}^{\mathbb{Z}^2}$-graded \mathbb{Q}-linear space.
The $\mathbb{Z}_2 \oplus \mathbb{Z}$-graded matrix factorization $C_N(\Gamma) = C_N(\Gamma)/(a-1)C_N(\Gamma)$ of a MOY graph Γ satisfies decompositions similar to those in Lemma 2.10.

Lemma 2.17. [4] As matrix factorizations over the respective boundary rings, we have:

\begin{align}
(2.11) \quad & C_N\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix} \cong C_N\begin{pmatrix}
1 & 2 \\
1 & 1
\end{pmatrix} \{1\}_x \oplus C_N\begin{pmatrix}
1 \\
1
\end{pmatrix} \{1\} \{1-N\}_x, \\
(2.12) \quad & C_N\begin{pmatrix}
1 & 3 \\
1 & 1
\end{pmatrix} \cong C_N\begin{pmatrix}
1 & 2 \\
1 & 1
\end{pmatrix} \{-1\}_x \oplus C_N\begin{pmatrix}
2 \\
1
\end{pmatrix} \{1\}_x, \\
(2.13) \quad & C_N\begin{pmatrix}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 1
\end{pmatrix} \oplus C_N\begin{pmatrix}
1 & 2 \\
1 & 1
\end{pmatrix} \cong C_N\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 2 \\
1 & 1 & 1
\end{pmatrix} \oplus C_N\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix}.
\end{align}

In the above, $\{\ast\}_x$ means shifting the x-grading by \ast.

The following invariance theorem for H_N is established in [4].

Theorem 2.18. [4] The homotopy type of $C_N(T)$, including its $\mathbb{Z}_2 \oplus \mathbb{Z}^2$-grading, is independent of markings and invariant under all Reidemeister moves. Consequently, every Reidemeister move on L induces an isomorphism of $H_N(L)$ preserving its $\mathbb{Z}_2 \oplus \mathbb{Z}^2$-graded \mathbb{Q}-linear space structure.

3. Graded Module Structure of \mathcal{H}_N

In this section, we study the $\mathbb{Z}_2 \oplus \mathbb{Z}^3$-graded $\mathbb{Q}[a]$-module of \mathcal{H}_N. The goal is to prove Theorem 1.4.

3.1. Resolved braids. In this subsection, we review some basic properties of resolved braids introduced in [8].

![Figure 6](image-url)

Figure 6.

Definition 3.1. For positive integers b, i with $1 \leq i \leq b-1$, let τ_i be the MOY graph depicted in Figure 6. That is, from left to right, τ_i consists of $i-1$ downward 1-colored edges, then a downward 2-colored edge with two 1-colored edges entering through the top and two 1-colored edges exiting through the bottom, and then $b-i$ more downward 1-colored edges.

We use $(\tau_{i_1}, \ldots, \tau_{i_m})$ to represent the MOY graph formed by stacking the graphs $\tau_{i_1}, \ldots, \tau_{i_m}$ together vertically from top to bottom with the bottom end points of τ_{i_1} identified with the corresponding top end...
points of $\tau_{i_{i+1}}$. We call $(\tau_{i_1} \cdots \tau_{i_m})_b$ a resolved braid of b-strands. If the number of strands is clear from the context, then we drop the lower index b and simply write $\tau_{i_1} \cdots \tau_{i_m}$.

Denote by $(\tau_{i_1} \cdots \tau_{i_m})_b$ the closed MOY graph obtained from $(\tau_{i_1} \cdots \tau_{i_m})_b$ by attaching a 1-colored edge from each end point at the bottom to the corresponding end point at the top. We call $(\tau_{i_1} \cdots \tau_{i_m})_b$ a closed resolved braid of b-strands. Again, if the number of strands is clear from the context, then we drop the lower index b and simply write $\tau_{i_1} \cdots \tau_{i_m}$.

We use $(\emptyset)_b$ to represent b vertical downward 1-colored edges, and, therefore, $(\emptyset)_b$ represents b concentric 1-colored circles. Again, if the number of strands is clear from the context, then we drop the lower index b.

Remark 3.2.
(1) Comparing Definition 3.1 to the resolutions in Figure 5, one can see that, if we choose a resolution for every crossing in a (closed) braid, then we get a (closed) resolved braid as defined in Definition 3.1.

(2) There are two obvious types of isotopies of resolved braids and closed resolved braids:
- I_1: If $|i - j| > 1$, then $\tau_i \tau_j$ is isotopic to $\tau_j \tau_i$;
- I_2: If μ and ν are two words in $\tau_1, \ldots, \tau_{b-1}$, then $\mu \nu$ is isotopic to $\nu \mu$.

Definition 3.3. We define the weight of the closed resolved braid $\tau_{i_1} \cdots \tau_{i_m}$ to be $w(\tau_{i_1} \cdots \tau_{i_m}) = i_1 + \cdots + i_m$.

In [8], the author introduced a scheme to perform inductive arguments on the weights of closed resolved braids using the decompositions in Lemma 2.17. The key to this scheme is Corollary 3.5 below, which is a simple consequence of Lemma 3.4.

Lemma 3.4. [8 Lemma 3.5] Let $\mu = \tau_{i_1} \cdots \tau_{i_m}$ be a resolved braid with b strands satisfying:
- $m \geq 2$,
- $i_1 = i_m = i$,
- $i_l < i$ for $1 < l < m$.

Then, via a finite sequence of isotopies of type I_1, μ is isotopic to a resolved braid μ' that contains a segment of the form $\tau_j \tau_j$ or $\tau_j \tau_{j-1} \tau_j$ for some $j \leq i$.

Corollary 3.5. Let $\overline{\mu}$ be a closed resolved braids with b strands. Then, via a finite sequence of isotopies of types I_1 and I_2, $\overline{\mu}$ is isotopic to a closed resolved braid of one of the following three types:

(a) $\tau_{i_1} \cdots \tau_{i_m} \tau_i$, where $i > i_1, \ldots, i_m$;
(b) $\tau_{i_1} \cdots \tau_{i_m} \tau_j \tau_j$;
(c) $\tau_{i_1} \cdots \tau_{i_m} \tau_j \tau_{j-1} \tau_j$.

Figure 7.
3.2. Homology of closed resolve braids. In this subsection, we study the \(Q[a]\)-module structure of the homology of closed resolved braids. The goal is to establish Lemma 3.9 below.

Lemma 3.6. Let \(\emptyset_b\) be the closed resolved braid with \(b\)-strands corresponding to the empty word, that is, the MOY graph consisting of \(b\) concentric 1-colored circles. Define the \(\mathbb{Z}_2 \oplus \mathbb{Z}^{\oplus 2}\)-graded \(Q[a]\)-modules \(\mathcal{M}_0\), \(\mathcal{M}_1\) and \(\mathcal{M}_\infty\) by

\[
\mathcal{M}_0 := \bigoplus_{N=1}^{\infty} Q[a] \langle 1 \rangle \{-1,1-N\} \oplus Q[a],
\]
\[
\mathcal{M}_1 := \bigoplus_{l=0}^{\infty} Q[a] \langle 1 \rangle \{-1,1-N+2l\},
\]
\[
\mathcal{M}_\infty := \bigoplus_{l=N}^{\infty} Q[a]/(a) \langle 1 \rangle \{-1,1-N+2l\}.
\]

Then, as a \(\mathbb{Z}_2 \oplus \mathbb{Z}^{\oplus 2}\)-graded \(Q[a]\)-module,

\[
\mathcal{H}_N(\emptyset_b) \cong \mathcal{M}_1^{\oplus b} \oplus \left(\bigoplus_{j=0}^{b-1} \mathcal{M}_0^{\oplus j} \otimes \mathcal{M}_1^{\oplus (b-1-j)} \right) \otimes \mathcal{M}_\infty,
\]

where all the tensor products are over \(Q[a]\).

Proof. We prove this lemma by an induction on \(b\). Mark \((\emptyset)_1\) by a single variable \(x\). Then

\[
\mathcal{C}_N((\emptyset)_1) = ((N+1)ax_1^N,0)_{Q[a,x]} = Q[a,x] \rightarrow Q[a,x]\{−1,1−N\} \rightarrow Q[a,x].
\]

So \(\mathcal{H}_N((\emptyset)_1) \cong Q[a,x]/(ax^N) (1) \{−1,1−N\} \cong \mathcal{M}_1 \oplus \mathcal{M}_\infty\). This proves the lemma for \(b=1\).

Now assume the lemma is true for \((\emptyset)_{b−1}\). Consider \((\emptyset)_b\). Mark the \(j\)th circle in \((\emptyset)_b\) by a single variable \(x_j\). Then

\[
\mathcal{C}_N((\emptyset)_b) = \begin{pmatrix}
(N+1)ax_1^N & 0 \\
(N+1)ax_2^N & 0 \\
\vdots & \vdots \\
(N+1)ax_b^N & 0
\end{pmatrix} \otimes_{Q[a]} Q[a,x_b]/(ax_b^N) \langle 1 \rangle \{-1,1-N\}.
\]

Thus, by Proposition 2.25 \(\mathcal{C}_N((\emptyset)_b)\) is quasi-isomorphic to

\[
\left(\begin{array}{c}
(N+1)ax_1^N \\
(N+1)ax_2^N \\
\vdots \\
(N+1)ax_b^N
\end{array}\right)_{Q[a,x_1,x_2,\ldots,x_b-1]} \otimes_{Q[a]} Q[a,x_b]/(ax_b^N) \langle 1 \rangle \{-1,1-N\}.
\]

Note that:

1. \(\mathcal{C}_N((\emptyset)_{b-1}) \cong \begin{pmatrix}
(N+1)ax_1^N & 0 \\
(N+1)ax_2^N & 0 \\
\vdots & \vdots \\
(N+1)ax_{b-1}^N & 0
\end{pmatrix} \otimes_{Q[a]} Q[a,x_1,x_2,\ldots,x_{b-1}]\]
2. \(Q[a,x_b]/(ax_b^N) (1) \{-1,1−N\} \cong \mathcal{M}_1 \oplus \mathcal{M}_\infty\).
3. \(\mathcal{M}_1\) is a free \(Q[a]\)-module.
4. The homology of \(\begin{pmatrix}
(N+1)ax_1^N & 0 \\
(N+1)ax_2^N & 0 \\
\vdots & \vdots \\
(N+1)ax_{b-1}^N & 0
\end{pmatrix} \otimes_{Q[a]} \mathcal{M}_\infty\) is isomorphic to \(\mathcal{M}_0^{\oplus (b-1)} \otimes \mathcal{M}_\infty\).

Putting the above together, we get

\[
\mathcal{H}_N((\emptyset)_b) \cong \mathcal{H}_N((\emptyset)_{b-1}) \otimes_{Q[a]} \mathcal{M}_1 \oplus \mathcal{M}_0^{\oplus (b-1)} \otimes \mathcal{M}_\infty.
\]

This isomorphism and the assumption that the lemma is true for \((\emptyset)_{b-1}\) imply that the lemma is true for \((\emptyset)_b\). \(\Box\)
To discuss the homology of a general closed resolved braid, we need the following lemma, which is a slight refinement of the usual structure theorem of modules over a principal deal domain.

Lemma 3.7. [9] Lemma 9.2] Suppose that M is a finitely generated \mathbb{Z}-graded $\mathbb{Q}[a]$-module. Then, as a \mathbb{Z}-graded $\mathbb{Q}[a]$-module, $M \cong \bigoplus_{i=1}^{\infty} \mathbb{Q}[a]\{s_i\}_a \oplus \bigoplus_{i=1}^{\infty} \mathbb{Q}[a]\{(a)^k\}_a \{t_k\}_a$, where $\{\ast\}_a$ means shifting the a-grading by \ast, and the sequences $\{s_i\} \subset \mathbb{Z}$, $\{(l_1, t_1), \ldots, (l_n, t_n)\} \subset \mathbb{Z}^{\geq 2}$ are uniquely determined by M up to permutation. We call this decomposition the standard decomposition of M.

Definition 3.8. For a closed resolved braid τ, we denote by $H_N^{\epsilon,k}(\tau)$ (resp. $C_N^{\epsilon,k}(\tau)$) the homogeneous component of $H_N(\tau)$ (resp. $C_N(\tau)$) of \mathbb{Z}_2-degree ϵ, a-degree j and x-degree k. If we replace one of these indices by \ast, it means we direct sum the components over all possible values of that index. For example, $H_N^{\epsilon,k}(\tau) = \bigoplus_{j \in \mathbb{Z}} H_N^{\epsilon,k}(\tau)$.

Similarly, we denote by $H_N^{\epsilon,k}(\tau)$ (resp. $C_N^{\epsilon,k}(\tau)$) the homogeneous component of \mathbb{Z}_2-degree ϵ and x-degree k of the $\mathfrak{sl}(N)$ Khovanov-Rozansky homology $H_N(\tau)$ (resp. $C_N(\tau)$) of τ.

Lemma 3.9. For a closed resolved braid τ_{i_1, \ldots, i_m} of b strands, we have that, as a \mathbb{Z}-graded $\mathbb{Q}[a]$-module,

$$H_N^{\epsilon,k}(\tau_{i_1, \ldots, i_m}) \cong H_N^{\epsilon,k}(\tau_{i_1, \ldots, i_m}) \otimes_{\mathbb{Q}[a]} \mathbb{Q}[a]\{-b\}_a \oplus \bigoplus_{i=1}^{l} \mathbb{Q}[a]/(a)\{s_i\}_a,$$

where
- we give $H_N^{\epsilon,k}(\tau_{i_1, \ldots, i_m})$ the a-grading 0, and $\{\ast\}_a$ means shifting the a-grading by \ast,
- up to permutation, the sequence $\{s_1, \ldots, s_l\}$ is uniquely determined by $(\tau_{i_1, \ldots, i_m})$, N, k and ϵ,
- $-b \leq s_i \leq -1$ and $(N-1)s_i \leq k - 2N + m$ for $i = 1, \ldots, l$.

Proof. From the construction of $C_N((\tau_{i_1, \ldots, i_m})$, one can see that $C_N^{\epsilon,k}(\tau_{i_1, \ldots, i_m})$ is a finitely generated free $\mathbb{Q}[a]$-module. This implies that $H_N^{\epsilon,k}(\tau_{i_1, \ldots, i_m})$ is a finitely generated \mathbb{Z}-graded $\mathbb{Q}[a]$-module. So, by Lemma 3.7, $H_N^{\epsilon,k}(\tau_{i_1, \ldots, i_m})$ has a unique standard decomposition. Now, to prove the lemma, we only need to verify that:

(I) The free part of $H_N^{\epsilon,k}(\tau_{i_1, \ldots, i_m})$ is isomorphic to $H_N^{\epsilon,k}(\tau_{i_1, \ldots, i_m}) \otimes_{\mathbb{Q}[a]} \mathbb{Q}[a]\{-b\}_a$.

(II) All torsion components of $H_N^{\epsilon,k}(\tau_{i_1, \ldots, i_m})$ are of the form $\mathbb{Q}[a]/(a)\{s\}_a$.

(III) If $H_N^{\epsilon,k}(\tau_{i_1, \ldots, i_m})$ contains a torsion component $\mathbb{Q}[a]/(a)\{s\}_a$, then $-b \leq s \leq -1$ and $(N-1)s \leq k - 2N + m$.

These three conclusions can be easily proved by an induction on the weight of $(\tau_{i_1, \ldots, i_m})$ using Lemmas 2.10 and 2.17 and Corollary 3.5.

If the weight of a closed resolved braid is 0, then it is $(0)_b$. By Lemma 3.6 (I-III) is true for $(0)_b$ for all $b \geq 0$.

Now assume that (I-III) is true for all closed resolved braids (on any number of strands) with weight less than the weight of $(\tau_{i_1, \ldots, i_m})$. By Corollary 3.5 via a finite sequence of isotopies of types I_1 and I_2, $(\tau_{i_1, \ldots, i_m})$ is isotopic to a closed resolved braid of one of the following three types:

(a) $(\tau_{j_1, \ldots, j_{m-1}, i})_b$, where $i > j_1, \ldots, j_m$;
(b) $(\tau_{j_1, \ldots, j_{m-1}, i, j})_b$;
(c) $(\tau_{j_1, \ldots, j_{m-1}, -1, i, j})_b$.

Of course, isotopies of types I_1 and I_2 do not change the weight of a closed resolved braid.

In Case (a), we have

\[
\begin{align*}
H_N((\tau_{i_1, \ldots, i_m}) & \cong H_N((\tau_{j_1, \ldots, j_{m-1}, i})_b), \\
H_N((\tau_{j_1, \ldots, j_{m-1}, i})_b & \cong H_N((\tau_{j_1, \ldots, j_{m-1}, i})_b)\{0, 1\} \oplus H_N((\tau_{j_1, \ldots, j_{m-1}, i})_b-1)\{1-N\}, \\
H_N((\tau_{j_1, \ldots, j_{m-1}, i})_b & \cong H_N((\tau_{j_1, \ldots, j_{m-1}, i})_b)\{1\} \oplus H_N((\tau_{j_1, \ldots, j_{m-1}, i})_b-1)\{1-N\}x,
\end{align*}
\]

where the second and third isomorphisms follow from Lemmas 2.10 and 2.17. The weights of both $(\tau_{j_1, \ldots, j_{m-1}, i})_b$ and $(\tau_{j_1, \ldots, j_{m-1}, i})_b-1$ are less than that of $(\tau_{i_1, \ldots, i_m})_b$. So (I-III) are true for $(\tau_{j_1, \ldots, j_{m-1}, i})_b$ and $(\tau_{j_1, \ldots, j_{m-1}, i})_b-1.$
Moreover, by Lemma 3.7, the standard decomposition of $H_{N}^{*,k}(⟨τ_{j_1}⋯τ_{j_{m-1}}⟩_b)$ is unique. It then follows from the above isomorphisms that (I-III) are true for $⟨τ_{i_1}⋯τ_{i_m}⟩_b$ too.

In Case (b), we have

\[
H_N(⟨τ_{i_1}⋯τ_{i_m}⟩) \cong H_N(⟨τ_{j_1}⋯τ_{j_{m-2}}τ_j⟩) \cong H_N(⟨τ_{j_1}⋯τ_{j_{m-2}}⟩_b) \oplus H_N(⟨0,1⟩_b) \oplus H_N(⟨τ_{j_1}⋯τ_{j_{m-2}}⟩_b) \{0,-1\},
\]

where the second and third isomorphisms follow from Lemmas 2.10 and 2.17. The weight of $⟨τ_{j_1}⋯τ_{j_{m-2}}⟩_b$ is less than that of $⟨τ_{i_1}⋯τ_{i_m}⟩_b$. So (I-III) are true for $⟨τ_{j_1}⋯τ_{j_{m-2}}⟩_b$. It then follows from the above isomorphisms that (I-III) are true for $⟨τ_{i_1}⋯τ_{i_m}⟩_b$ too.

In Case (c), we have

\[
H_N(⟨τ_{i_1}⋯τ_{i_m}⟩) \cong H_N(⟨τ_{j_1}⋯τ_{j_{m-3}}τ_j⟩) \cong H_N(⟨τ_{j_1}⋯τ_{j_{m-3}}⟩_b) \oplus H_N(⟨0,1⟩_b) \oplus H_N(⟨τ_{j_1}⋯τ_{j_{m-3}}⟩_b) \{0,-1\},
\]

where the second and third isomorphisms follow from Lemmas 2.10 and 2.17. The weights of $⟨τ_{j_1}⋯τ_{j_{m-3}}⟩_b$, $⟨τ_{j_1}⋯τ_{j_{m-3}}⟩_b$ and $⟨τ_{j_1}⋯τ_{j_{m-3}}⟩_b$ are less than that of $⟨τ_{i_1}⋯τ_{i_m}⟩_b$. So (I-III) are true for these three resolved closed braids. It then follows from the above isomorphisms that (I-III) are true for $⟨τ_{i_1}⋯τ_{i_m}⟩_b$ too.

Corollary 3.10. $H^{b+1,*}(⟨τ_{i_1}⋯τ_{i_m}⟩_b)$ is a direct sum of components of the form $Q[a]/(a)\{s,k\}$

Proof. From [4], we know that $H^{b+1,*}(⟨τ_{i_1}⋯τ_{i_m}⟩_b) = 0$. So the corollary follows from Lemma 3.9. □

3.3. Homology of a closed braid

We are now ready to prove Theorem 1.4.

Let B be a closed braid of b strands. Recall that $H_{N}(B) = H(H(C_{N}(B), d_{mf}), d_{a})$. Denote by $H_{\varepsilon,i,j,k}(C_{N}(B), d_{mf})$ the homogeneous component of $H(C_{N}(B), d_{mf})$ of \mathbb{Z}_2-degree ε, homological degree i, a-degree j and x-degree k. We use the \ast-notation as introduced in Definition 1.3. Then, for every $(\varepsilon, k) \in \mathbb{Z}_2 \oplus \mathbb{Z}$, $(H_{\varepsilon,*,*}(C_{N}(B), d_{mf}), d_{a})$ is a bounded chain complex of finitely generated \mathbb{Z}-graded $Q[a]$-modules. Denote by $F_{\varepsilon,*,*}(C_{N}(B), d_{mf})$ and by $T_{\varepsilon,*,*}(C_{N}(B), d_{mf})$ the torsion part of $H_{\varepsilon,*,*}(C_{N}(B), d_{mf})$. Note that $s(l)(B) = c_+ - c_- - b$, where c_{\pm} is the number of \pm crossings in B. Then, by Lemma 3.9

- $F_{\varepsilon,*,*}(C_{N}(B), d_{mf}) = 0$ if and only if $s(l)(B) = c_+ - c_- - b$, where c_{\pm} is the number of \pm crossings in B. Then, by Lemma 3.9
- $T_{\varepsilon,*,*}(C_{N}(B), d_{mf})$ is a direct sum of finitely many components of the form $Q[a]/(a)\{s\}$. Then, differential map $H_{\varepsilon,*,*}(C_{N}(B), d_{mf}) \xrightarrow{d^\varepsilon} H_{\varepsilon+1,*,*}(C_{N}(B), d_{mf})$ takes the form

\[
\begin{pmatrix}
F_{\varepsilon,*,*} & 0 \\
T_{\varepsilon,*,*} & d^\varepsilon_{\varepsilon+1,*,*}
\end{pmatrix}_{\varepsilon+1,*,*},
\]

where $d^\varepsilon_{\varepsilon+1,*,*}$ are homogeneous homomorphisms of \mathbb{Z}-graded $Q[a]$-modules preserving the a-grading. This gives rise to two chain complexes $(F_{\varepsilon,*,*}, d_{\varepsilon,FF})$ and $(T_{\varepsilon,*,*}, d_{\varepsilon,TT})$. Moreover, $(H_{\varepsilon,*,*}(C_{N}(B), d_{mf}), d_{a})$ is isomorphic to the mapping cone of the chain map $F_{\varepsilon,*,*}||1|| \xrightarrow{d_{\varepsilon,TT}} T_{\varepsilon,*,*}$, where $||*|\|$ means shifting the homological grading up by $. Thus, we get the following lemma.

Lemma 3.11. There is a short exact sequence

\[
0 \rightarrow T_{\varepsilon,*,*} \rightarrow C_{N}^{\varepsilon,*,*}(B) \rightarrow F_{\varepsilon,*,*} \rightarrow 0,
\]
which induces a long exact sequence

$$\ldots \rightarrow H^i(T^{\varepsilon,*,k}) \rightarrow H_{\mathbb{N}}^{\varepsilon,i,k}(B) \rightarrow H^i(F^{\varepsilon,*,k}) \xrightarrow{d_{\varepsilon,F,T}} H^{i+1}(T^{\varepsilon,*,k}) \rightarrow \ldots$$

of \mathbb{Z}-graded $\mathbb{Q}[a]$-modules, where the arrows preserve the $\mathbb{Q}[a]$-grading.

Proof. This lemma follows from the standard construction of a long exact sequence from a mapping cone. \square

Lemma 3.12. $H^i(F^{\varepsilon,*,k}) \cong H_{\mathbb{N}}^{\varepsilon,i,k}(B) \otimes_{\mathbb{Q}} \mathbb{Q}[a]\{\text{sl}(B)\}_a$ for every $(\varepsilon, i, k) \in \mathbb{Z}_2 \oplus \mathbb{Z}^{\oplus 2}$.

Proof. Recall that $C_N(B) := \mathcal{C}(B)/(a-1)\mathcal{C}(B)$ and $C_N(B)$ is a free $\mathbb{Q}[a]$-module. So there is a short exact sequence

$$0 \rightarrow C_N(B) \xrightarrow{a-1} C_N(B) \rightarrow C_N(B) \rightarrow 0.$$

This induces a long exact sequence

$$\ldots \rightarrow H^{\varepsilon,i,k}(C_N(B), d_{mf}) \xrightarrow{a-1} H^{\varepsilon,i,k}(C_N(B), d_{mf}) \rightarrow H^{\varepsilon,i,*}(C_N(B), d_{mf}) \rightarrow H^{\varepsilon+i,*}(C_N(B), d_{mf}) \xrightarrow{a-1} \ldots$$

preserving the x-grading. By [5], Lemma 9.1, the multiplication by $a-1$ is an injective endomorphism of $H^{\varepsilon,i,k}(C_N(B), d_{mf})$. So this long exact sequence breaks into a short exact sequence

$$0 \rightarrow (H^{\varepsilon,i,k}(C_N(B), d_{mf}), d_{\chi}) \xrightarrow{a-1} (H^{\varepsilon,i,k}(C_N(B), d_{mf}), d_{\chi}) \rightarrow (H^{\varepsilon,i,k}(C_N(B), d_{mf}), d_{\chi}) \rightarrow 0.$$

This shows that the chain complexes $(H(C_N(B), d_{mf}), d_{\chi})$ and $(H(C_N(B), d_{mf}),(a-1)H(C_N(B), d_{mf}), d_{\chi})$ are isomorphic to each other, and the isomorphism preserves the \mathbb{Z}_2, homological and x-gradings.

From the decomposition $H^{\varepsilon,i,*}(C_N(B), d_{mf}) = \bigoplus_{T^{\varepsilon,i,k}}$, it is clear that

$$(H^{\varepsilon,i,k}(C_N(B), d_{mf}))/((a-1)H^{\varepsilon,i,k}(C_N(B), d_{mf}), d_{\chi}) \cong (F^{\varepsilon,*,k}/(a-1)F^{\varepsilon,*,k}, d_{\chi,FF}).$$

So there is an isomorphism of chain complexes

$$(F^{\varepsilon,*,k}/(a-1)F^{\varepsilon,*,k}, d_{\chi,FF}) \cong (H^{\varepsilon,i,k}(C_N(B), d_{mf}), d_{\chi}).$$

Recall that $d_{\chi,FF}$ preserves the a-grading and $F^{\varepsilon,i,k} \cong H^{\varepsilon,i,k}(C_N(B), d_{mf}) \otimes_{\mathbb{Q}} \mathbb{Q}[a]\{\text{sl}(B)\}_a$, where the shift of the a-grading is independent of the homological grading i. Now let $n_i = \dim_{\mathbb{Q}} H^{\varepsilon,i,k}(C_N(B), d_{mf})$ and fix a basis for $H^{\varepsilon,i,k}(C_N(B), d_{mf})$. This basis induces a \mathbb{Q}-basis for $F^{\varepsilon,i,k}$ and allows us to identify $F^{\varepsilon,i,k}$ with $\mathbb{Q}[a]^{\oplus n_i}$. Thus, $(F^{\varepsilon,*,k}, d_{\chi,FF})$ is isomorphic to the chain complex

$$C = \ldots \rightarrow \mathbb{Q}[a]^{\oplus n_i} \{\text{sl}(B)\}_a \rightarrow \mathbb{Q}[a]^{\oplus n_{i+1}} \{\text{sl}(B)\}_a \rightarrow \ldots$$

where D_i is the matrix of $d_{\chi,FF}$ relative to the bases of $F^{\varepsilon,i,k}$ and $F^{\varepsilon,i+1,k}$. Since $d_{\chi,FF}$ preserves the a-grading, all entries of D_i are elements of \mathbb{Q}. Consider the chain complex

$$\mathcal{C} = \ldots \rightarrow \mathbb{Q}[a]^{\oplus n_i} \mathcal{D}_i \rightarrow \mathbb{Q}[a]^{\oplus n_{i+1}} \mathcal{D}_{i+1} \rightarrow \ldots$$

One can see that $(F^{\varepsilon,*,k}, d_{\chi,FF}) \cong C \cong \mathcal{C} \otimes_{\mathbb{Q}} \mathbb{Q}[a]\{\text{sl}(B)\}_a$ and, by isomorphism (3.1), $\mathcal{C} \cong C/(a-1)C \cong (H^{\varepsilon,i,k}(C_N(B), d_{mf}), d_{\chi})$. Combining these, we get

$$(F^{\varepsilon,*,k}, d_{\chi,FF}) \cong (H^{\varepsilon,i,k}(C_N(B), d_{mf}) \otimes_{\mathbb{Q}} \mathbb{Q}[a]\{\text{sl}(B)\}_a, d_{\chi}).$$

This implies that $H^i(F^{\varepsilon,*,k}) \cong H_{\mathbb{N}}^{\varepsilon,i,k}(B) \otimes_{\mathbb{Q}} \mathbb{Q}[a]\{\text{sl}(B)\}_a$. \square

Proof of Theorem 4.4. From Lemmas 3.11 and 3.12 we get a long exact sequence

$$\ldots \rightarrow H^i(T^{\varepsilon,*,k}) \rightarrow H_{\mathbb{N}}^{\varepsilon,i,k}(B) \rightarrow H^i(F^{\varepsilon,*,k}) \xrightarrow{d_{\varepsilon,F,T}} H^{i+1}(T^{\varepsilon,*,k}) \rightarrow \ldots$$

Denote by $F\mathcal{H}_{\mathbb{N}}^{\varepsilon,i,k}(B)$ the free part of the \mathbb{Z}-graded $\mathbb{Q}[a]$-module $\mathcal{H}_{\mathbb{N}}^{\varepsilon,i,k}(B)$ and by $T\mathcal{H}_{\mathbb{N}}^{\varepsilon,i,k}(B)$ the torsion part of $\mathcal{H}_{\mathbb{N}}^{\varepsilon,i,k}(B)$. Then the long exact sequence (3.2) splits into two exact sequences:

$$\ldots \rightarrow H^i(T^{\varepsilon,*,k}) \rightarrow T\mathcal{H}_{\mathbb{N}}^{\varepsilon,i,k}(B) \rightarrow 0,$$

$$0 \rightarrow F\mathcal{H}_{\mathbb{N}}^{\varepsilon,i,k}(B) \xrightarrow{J} H_{\mathbb{N}}^{\varepsilon,i,k}(B) \otimes_{\mathbb{Q}} \mathbb{Q}[a]\{\text{sl}(B)\}_a \xrightarrow{d_{\varepsilon,F,T}} H^{i+1}(T^{\varepsilon,*,k}) \rightarrow \ldots$$

15
Since $T^{ε,i,*}k$ is a direct sum of finitely many components of the form $Q[a]/(a)\{s\}_a$, so is $H^i(T^{ε,*}k)$. From the exact sequence (3.3), one can see that $TH^{ε,i,*}k(B)$ is a quotient module of $H^i(T^{ε,*}k)$. Thus, $TH^{ε,i,*}k(B)$ is also a direct sum of finitely many components of the form $Q[a]/(a)\{s\}_a$. That is,

$$\text{(3.5)} \quad TH^{ε,i,*}k(N)_a \cong \bigoplus_{q=1}^{n} Q[a]/(a)\{s_q\}_a,$$

for some finite sequence $\{s_1, \ldots, s_n\}$ of integers.

Next we prove that the Q-linear map

$$FH^{ε,i,*}k(N)/a \to H^{ε,i,k}(B) \otimes Q[a]/(a)\{s\}_a$$

is an isomorphism. First, note that $H^{i+1}(T^{ε,*}k)$ is a direct sum of components of the form $Q[a]/(a)\{s\}_a$. So any multiple of a in $H^{ε,i,k}(B) \otimes Q[a]\{s\}_a$ is in $\ker d_{N,e}^{FT} = \text{Im} f$. For any $u \in FH^{ε,i,*}k(B)$ such that $f(u) = (a - 1)v$ for some $v \in H^{ε,i,k}(B) \otimes Q[a]\{s\}_a$, there exist an $u' \in FH^{ε,i,*}k(B)$ satisfying $f(u') = av$. Thus,

$$f(-(a - 1)(u - u')) = -(a - 1)(f(u) - f(u')) = (a - 1)v = f(u).$$

But $FH^{ε,i,*}k(B) \to H^{ε,i,k}(B) \otimes Q[a]\{s\}_a$ is injective. So $u = -(a - 1)(u - u')$. This shows that the above Q-linear map is injective. Second, for every $v \in H^{ε,i,k}(B) \otimes Q[a]\{s\}_a$, there is a $u \in FH^{ε,i,*}k(B)$ such that $f(u) = av$. So $v = f(u) - (a - 1)v$. This shows that the above Q-linear map is surjective. Thus, it is an isomorphism.

The above Q-linear isomorphism implies that the rank of the Z-graded free $Q[a]$-module $FH^{ε,i,*}k(B)$ is equal to $\dim Q H^{ε,i,k}(B)$. Hence, by Lemma 3.7,

$$\text{(3.6)} \quad FH^{ε,i,*}k(N)_a \cong \bigoplus_{p=1}^{\dim Q H^{ε,i,k}(B)} Q[a]\{t_p\}_a.$$

From [1], we know that $H^{s(B)}_{a+1,i,k}(B) \cong 0$ for any i, k. So, for any i, k,

$$\text{(3.7)} \quad FH^{s(B)-1,i,*}k(N)_a \cong 0.$$

From the construction of $H(N)$, one can see that, when $\varepsilon = s(B)$, the parity of t_p in (3.6) must be the same as that of $s(B)$. Since $FH^{s(B)}_{N,i,*}k(B) \to H^{s(B)}_{N,i,k}(B) \otimes Q[a]/(a)\{s\}_a$ is injective and preserves the a-grading, we know that $t_p \geq s(B)$ if $\varepsilon = s(B)$. Assume that $FH^{s(B)}_{N,i,*}k(B)$ contains a component $Q[a]\{t_p\}_a$ such that $t_p \geq s(B) + 4$. Denote by 1_p the 1 in $Q[a]\{t_p\}_a$. Then $f(1_p) = a^2v$ for some $v \in H^{s(B)}_{N,i,k}(B) \otimes Q[a]/(a)\{s\}_a$. Consider the exact sequence (3.4). Again, since $H^{i+1}(T^{s(B)},*)$ is a direct sum of finitely many components of the form $Q[a]/(a)\{s\}_a$, one can see that $av \in \ker d_{N,e}^{FT} = \text{Im} f$. So there exists a $u \in FH^{s(B)}_{N,i,*}k(B)$ such that $f(u) = av$. Therefore, $f(1_p) = f(au)$. But f is injective. This means $1_p = au$, which is a contradiction. Thus, when $\varepsilon = s(B)$, we have $t_p = s(B)$ or $s(B) + 2$ for every p and

$$\text{(3.8)} \quad FH^{s(B)-1,i,*}k(N)_a \cong (Q[a]/(a)\{s\}_a)^{\oplus l} \oplus (Q[a]/(a)\{s\}_a + 2)^{\oplus (\dim Q H^{s(B)}_{N,i,k}(B) - l)}$$

for some non-negative integer l.

By decompositions (3.5), (3.7) and (3.8), one can see that $H^{ε,i,*}k(N)_a$ admits a decomposition of the form given in Theorem 3.4. The uniqueness of this decomposition follows from Lemma 5.1. The only things left to prove are the bounds for s_q. In the remainder of this proof, we show that the bound for s_q in Theorem 1.4 follows from the corresponding bounds in Lemma 5.1.

If we choose a resolution as in Figure 5 for each crossing of B, we get a closed resolved braid. We call such a closed resolved braid a resolution of B and denote by $R(B)$ the set of all resolutions of B. As suggested in Figure 5, we call the resolution $C_0 \sim \Gamma_0 \sim 0$-resolution and $C_0 \sim \Gamma_1 \sim 1$ a ± 1-resolution. For $\mathbf{w} \in R(B)$, assume it contains $m_{\mathbf{w},+} + m_{\mathbf{w},-}$ 2-colored edges, where $m_{\mathbf{w},\pm}$ is the number of 2-colored edges in \mathbf{w} coming
from ±1-resolutions. From the construction of $C_N(B)$, especially local chain complexes \([2.7]\) and \([2.8]\), one can see that
\[
(3.9) \quad C_N(B) = \bigoplus_{\pi \in R(B)} C_N(\pi) \langle w \rangle \{ w, (N-1)w + m_{\pi,+} - m_{\pi,-} \} \| m_{\pi,-} - m_{\pi,+} \},
\]
where $w = c_+ - c_-$ is the writhe of B and “$\| \|$” means shifting the homological grading by *. From Lemma \([3.9]\) we know that, if $H^{ε,ε,k}(N-1)w - \bar{m}_{\pi,+} + \bar{m}_{\pi,-}(\pi)\{w\}a$ contains a torsion component $\mathbb{Q}[a]/(a)\{s\}a$, then $w - b \leq s \leq w - 1$ and $(N-1)s \leq k - 2N + 2m_{\pi,-}$. Note that $w - b = s(B)$ and $m_{\pi,-} \leq c_-$. So, by decomposition \([3.9]\), we have that, if $T^{ε,ε,k}$ contains a component $\mathbb{Q}[a]/(a)\{s\}a$, then
\[
(3.10) \quad s(B) \leq s \leq w - 1 \text{ and } (N-1)s \leq k - 2N + 2c_-.
\]
Therefore, if $H^i(T^{ε,ε,k})$ contains a component $\mathbb{Q}[a]/(a)\{s\}a$, then s satisfies the two bounds in \([3.10]\). Finally, by the exact sequence \([3.9]\), $T\mathcal{H}_N^{ε,ε,k}(B)$ is a quotient module of $H^i(T^{ε,ε,k})$. So, if $\mathcal{H}_N^{ε,ε,k}(B)$ contains a component $\mathbb{Q}[a]/(a)\{s\}a$, then s satisfies the two bounds in \([3.10]\). This completes the proof of Theorem \([1.3]\). \(\square\)

4. Stabilization

In this section, we study how \mathcal{H}_N changes under stabilization. The goal is to prove Theorem \([1.6]\).

4.1. Mapping cones. We now review some basic properties of mapping cones.

Definition 4.1. Let A, B be two chain complexes of \mathbb{Z}-graded $\mathbb{Q}[a]$-modules and $f : A \rightarrow B$ a chain map preserving both the homological grading and the a-grading. Then the mapping cone $cone(f)$ is defined to be the chain complex given by:

- $cone^i(f) = \frac{A^i}{B^{i-1}}$, where $B^i = \bigoplus_{B^{i-1}}$
- the differential $cone^i(f) \xrightarrow{d} cone^{i+1}(f)$ is the map $\frac{A^i}{B^{i-1}} \xrightarrow{\begin{pmatrix} d_A & 0 \\ f & d_B \end{pmatrix}} \frac{A^{i+1}}{B^i}$, where d_A and d_B are the differential maps of A and B.

Lemma 4.2. Suppose that $0 \rightarrow A \xrightarrow{\theta} B \xrightarrow{\varphi} C \rightarrow 0$ is a short exact sequence of chain complexes of \mathbb{Z}-graded $\mathbb{Q}[a]$-modules, where f and g preserve both the homological grading and the a-grading. Then, as \mathbb{Z}-graded $\mathbb{Q}[a]$-modules, $H^i(cone(f)) \cong H^{i-1}(C)$ and $H^i(cone(g)) \cong H^i(A)$.

Proof. Denote by id_A the identity map from A to itself. Define $\alpha : cone(id_A) \rightarrow cone(f)$ by $\frac{A^i}{A^{i-1}} \xrightarrow{\begin{pmatrix} id_A & 0 \\ 0 & f \end{pmatrix}} \frac{A^i}{A^{i-1}}$, and $\beta : cone(f) \rightarrow C \| 1 \|$ by $\frac{A^i}{B^{i-1}} \xrightarrow{(0, g)} C^{i-1}$. Then α, β are chain maps and

$0 \rightarrow cone(id_A) \xrightarrow{\alpha} cone(f) \xrightarrow{\beta} C \| 1 \| \rightarrow 0$

is a short exact sequence. It induces a long exact sequence

$\cdots \rightarrow H^i(cone(id_A)) \rightarrow H^i(cone(f)) \rightarrow H^{i-1}(C) \rightarrow H^{i+1}(cone(id_A)) \rightarrow \cdots$

Since $H(cone(id_A)) \cong 0$. This long exact sequence implies that $H^i(cone(f)) \cong H^{i-1}(C)$.\[17\]
Now define $\phi : A \to \text{cone}(g)$ by $A^i \left(\begin{array}{c} f \\ 0 \end{array} \right) \oplus B^i_{C^i-1}$ and $\psi : \text{cone}(g) \to \text{cone}(\text{id}_C)$ by $B^i_{C^i-1} \left(\begin{array}{c} g \\ 0 \end{array} \right) \oplus \text{id}_C$. Then ϕ, ψ are chain maps and

$$0 \to A \overset{\phi}{\to} \text{cone}(g) \overset{\psi}{\to} \text{cone}((\text{id}_C) \to 0$$

is a short exact sequence. It induces a long exact sequence

$$\cdots \to H^{i-1}(\text{cone}(\text{id}_C)) \to H^i(A) \to H^i(\text{cone}(g)) \to H^i(\text{cone}(\text{id}_C)) \to \cdots$$

Since $H(\text{cone}(\text{id}_C)) \cong 0$, this long exact sequence implies that $H^i(\text{cone}(g)) \cong H^i(A)$. □

Lemma 4.43. Suppose that $0 \to A \overset{f}{\to} B \overset{g}{\to} C \overset{h}{\to} D \to 0$ is an exact sequence of chain complexes of \mathbb{Z}-graded $\mathbb{Q}[a]$-modules, where f, g and h preserve both the homological grading and the a-grading. Then there is a long exact sequence of \mathbb{Z}-graded $\mathbb{Q}[a]$-modules

$$\cdots \to H^i(A) \to H^i(\text{cone}(g)) \to H^i(D) \to H^{i+1}(A) \to \cdots$$

Proof. Denote by $\pi : B \to B/f(A)$ the standard quotient map. Define $\alpha : \text{cone}(\pi) \to \text{cone}(g)$ by

$$B^i \oplus B^i/f(A^{i-1}) \to B^i \oplus C^i-1$$

which is well defined since $\text{ker} g = \text{Im} f$. Also, define $\beta : \text{cone}(g) \to D\|1\|$ by

$$D\|1\| \to B^i \oplus C^i-1 \to D^i-1.$$ Then α, β are chain maps and

$$0 \to \text{cone}(\pi) \overset{\alpha}{\to} \text{cone}(g) \overset{\beta}{\to} D\|1\| \to 0$$

is a short exact sequence. It induces a long exact sequence

$$\cdots \to H^i(\text{cone}(\pi)) \to H^i(\text{cone}(g)) \to H^i(D) \to H^{i+1}(\text{cone}(\pi)) \to \cdots$$

But $0 \to A \overset{f}{\to} B \overset{g}{\to} B/f(A) \to 0$ is a short exact sequence of complexes. So, by Lemma 4.2, we know that $H^i(\text{cone}(\pi)) \cong H^i(A)$. Thus, we have a long exact sequence

$$\cdots \to H^i(A) \to H^i(\text{cone}(g)) \to H^i(D) \to H^{i+1}(A) \to \cdots$$

□

4.2. **Stabilization and \mathcal{H}_N.** Next, we prove Theorem 1.6

Proof of Theorem 1.6. Let B be a closed braid. Set $\mathcal{C}_N(B) = C_N(B)/a\mathcal{C}_N(B)$. Recall that π_0 is the standard quotient map $C_N(B) \overset{\pi_0}{\to} C_N(B)/a\mathcal{C}_N(B) = \mathcal{C}_N(B)$. Then there is a short exact sequence

$$0 \to C_N(B) \overset{\pi_0}{\to} \mathcal{C}_N(B) \{-2, 0\} \overset{\pi_0}{\to} \mathcal{C}_N(B) \{-2, 0\} \to 0.$$ Note that d_{mf} is homogeneous with \mathbb{Z}_2-degree 1, homological degree 0, a-degree 1 and x-degree $N + 1$. Set $s = sl(B)$. Taking the homology with respect to d_{mf}, the above short exact sequence gives the following
long exact sequence.

\[
\cdots \rightarrow H^{s-1,i,*+N-1}(C(B), d_m)\{1\}_a \xrightarrow{\pi_0} H^{s-1,i,*+N-1}(\mathcal{E}(B), d_m)\{-1\}_a \xrightarrow{\pi_0} H^{s-1,i,*+N-1}(\mathcal{E}(B), d_m)\{-1\}_a \rightarrow \cdots
\]

Following the notations in Subsection 5.3, we denote by \(F^{*,i,*+k}\) the free part of \(H^{*,i,*+k}(C(B), d_m)\) and by \(T^{*,i,*+k}\) the torsion part of \(H^{*,i,*+k}(C(B), d_m)\). By Corollary 3.10 and the normalization of the local chain complexes (2.7) and (2.8), we know that \(F^{s-1,i,*+k}\) and \(T^{*,i,*+k}\) are direct sums of components of the form \(\mathbb{Q}[a]/(a)\{s\}_a\). So the above long exact sequence breaks into two exact sequences:

\[
\begin{align*}
\text{(4.1)} & \quad 0 \rightarrow H^{s-1,i,*+N-1}(C(B), d_m)\{-1\}_a \xrightarrow{\pi_0} H^{s-1,i,*+N-1}(\mathcal{E}(B), d_m)\{-1\}_a \rightarrow T^{*,i,*+k} \rightarrow 0 \\
\text{(4.2)} & \quad 0 \rightarrow F^{s-1,i,*+k}(C(B), d_m)\{-2\}_a \xrightarrow{\pi_0} H^{s-1,i,*+k}(\mathcal{E}(B), d_m)\{-2\}_a \rightarrow H^{s-1,i,*+N+1}(C(B), d_m)\{-1\}_a \rightarrow 0.
\end{align*}
\]

Applying Lemma 1.2 to the exact sequence (4.1), we get that

\[
H^{s-1,i,*+k}(cone(H(C(B), d_m) \xrightarrow{\pi_0} H(\mathcal{E}(B), d_m)), d_h)\{-1\}_a \cong H^{i-1}(T^{*,i,*+N+1}, d_h).
\]

By [9] Theorem 1.5, we have

\[
H^{s-1,i,*+k}(B_-) \cong H^{s-1,i,*+k}(cone(H(C(B), d_m) \xrightarrow{\pi_0} H(\mathcal{E}(B), d_m)), d_h)\{-2\}_a.
\]

So

\[
H^{s-1,i,*+k}(B_-) \cong H^{i-1}(T^{*,i,*+N+1}, d_h)\{-1\}_a.
\]

By Lemmas 3.11 and 3.12, there is a long exact sequence

\[
\cdots \rightarrow H^i(T^{*,i,*+k}) \rightarrow H_C^{*,i,*+k}(B) \rightarrow H_C^{*,i,*+k}(B) \otimes \mathbb{Q}[a]\{s\}_a \rightarrow H^{i+1}(T^{*,i,*+k}) \rightarrow \cdots
\]

Thus, we have a long exact sequence

\[
\cdots \rightarrow H^{s-1,i,*+k}(B_-) \rightarrow H^{s-1,i,*+k+1}(B)\{-1\}_a \rightarrow H^{s-1,i-1,k+1}(B)\otimes \mathbb{Q}[a]\{s-1\}_a \rightarrow H^{s-1,i+1,*+k}(B_-) \rightarrow \cdots
\]

This establishes the long exact sequence (4.1).

Now apply Lemma 1.2 to the exact sequence (4.2). Using also the fact that

\[
H^{s-1,i,*+k}(B_-) \cong H^{s-1,i,*+k}(cone(H(C(B), d_m) \xrightarrow{\pi_0} H(\mathcal{E}(B), d_m)), d_h)\{-2\}_a,
\]

we get a long exact sequence

\[
\cdots \rightarrow H^i(F^{*,i,*+k}) \rightarrow H^i(F^{*,i,*+k})(B_-) \rightarrow H_c^{s-1,i-1,k+1}(B)\{-1\}_a \rightarrow H^{i+1}(F^{*,i,*+k}) \rightarrow \cdots
\]

By Lemma 3.12 \(H^i(F^{*,i,*+k}) \cong H^{s-1,i,*+k}(B) \otimes \mathbb{Q}[a]\{s\}_a\), which is a free \(\mathbb{Q}[a]\)-module. From [4], we know that \(H^{s-1,i,*+k}(B) \cong 0\). So, by Theorem 1.4 \(H^{s-1,i-1,k+1}(B)\) is a torsion \(\mathbb{Q}[a]\)-module. Thus, the above long exact sequence breaks into the following short exact sequence:

\[
0 \rightarrow H^{s-1,i,*+k}(B) \otimes \mathbb{Q}[a]\{s\}_a \rightarrow H^{s-1,i,*+k}(B_-) \rightarrow H^{s-1,i-1,k+1}(B)\{-1\}_a \rightarrow 0.
\]

This establishes the short exact sequence (1.2).
4.3. Transverse unknots. We are now ready to prove Corollary 4.7. We start by a simple algebraic observation.

Lemma 4.4. Let \(\mathcal{F} = \bigoplus_{l=0}^{N-1} \mathbb{Q}[a] \langle 1 \rangle \{ -1, -N + 1 + 2l \} \) be as defined in Lemma 4.7.

(1) Assume \(f: \mathcal{F} \to \mathcal{F} \) is an injective homogeneous homomorphism of \(a \)-degree 2 and preserving other gradings. Then \(\text{coker} f \cong \mathcal{F}/a\mathcal{F} \).

(2) Assume \(g: \mathcal{F} \to \mathcal{F} \) is an injective homogeneous homomorphism preserving all gradings. Then \(g \) is an isomorphism.

Proof. The proofs for the two parts are very similar. We only include here the proof for Part (1) and leave Part (2) for the reader.

Denote by \(1_t \) the “1” in \(\mathbb{Q}[a] \langle 1 \rangle \{ -1, -N + 1 + 2l \} \). Then, since \(f \) is an injective homogeneous homomorphism of \(a \)-degree 2 and preserves the \(x \)-grading, we know that \(f(1_t) = \lambda_t a 1_t \) for some \(\lambda_t \in \mathbb{Q} \setminus \{0\} \). The lemma follows from this. \(\square \)

Proof of Corollary 4.7. Setting \(b = 1 \) in Lemma 6.4, we get that \(\mathcal{H}_N(U_0) \cong \mathcal{F} \oplus \mathcal{T} \).

For \(m = 1 \), the exact sequences in Theorem 4.6 are non-vanishing at only two locations:

(4.3) \(0 \to \mathcal{H}_N^{0,1,*}(U_1) \to \mathcal{H}_N^{1,0,*}(U_0) \{ -1, -N - 1 \} \to \mathcal{H}_N^{1,0,*}(U_1) \to 0 \),

(4.4) \(0 \to \mathcal{H}_N^{1,0,*}(U_0) \otimes \mathbb{Q}[a] \{ -1 \} a \to \mathcal{H}_N^{1,0,*}(U_1) \to 0 \).

Recall that, from [1], we know that \(\mathcal{H}_N(U_m) \cong \mathcal{H}_N(U_0) \cong \bigoplus_{l=0}^{N-1} \mathbb{Q}[\langle 1 \rangle \{ -N + 1 + 2l \} \). So

(4.5) \(\mathcal{H}_N(U_m) \otimes \mathbb{Q}[a] \cong \mathcal{H}_N(U_0) \otimes \mathbb{Q}[a] \cong \bigoplus_{l=0}^{N-1} \mathbb{Q}[\langle 1 \rangle \{ 0, -N + 1 + 2l \} \cong \mathcal{F} \{ 1 \} a \).

Also, by Remark 1.5, \(\mathcal{H}_N^{0,1,*}(U_1) \) is a torsion \(\mathbb{Q}[a] \)-module. So exact sequence (4.3) breaks into

(4.6) \(0 \to \mathcal{H}_N^{0,1,*}(U_1) \to \mathcal{T} \{ -1, -N - 1 \} \to 0 \),

(4.7) \(0 \to \mathcal{F} \{ -1, -N - 1 \} \to \mathcal{F} \{ -1, -N - 1 \} \to \mathcal{H}_N^{0,2,*}(U_1) \to 0 \).

Thus, we have \(\mathcal{H}_N^{0,1,*}(U_1) \cong \mathcal{T} \{ -1, -N - 1 \} \) and, by Part (2) of Lemma 4.4, \(\mathcal{H}_N^{0,2,*}(U_1) \cong 0 \). Also, using exact sequence (4.3), we have \(\mathcal{H}_N^{1,0,*}(U_1) \cong \mathcal{F} \). Putting everything together, we have \(\mathcal{H}_N(U_1) \cong \mathcal{F} \oplus \mathcal{T} \{ 1 \} \{ -1, -N - 1 \} \).

Next, assume the corollary is true for \(U_m \) for some \(m \geq 1 \). We prove that the corollary is true for \(U_{m+1} \).

By (4.5), \(\mathcal{H}_N^{\varepsilon,i,*}(U_m) \otimes \mathbb{Q}[a] \cong \begin{cases} \mathcal{F} \{ 1 \} a & \text{if } \varepsilon = 1 \text{ and } i = 0, \\ 0 & \text{otherwise.} \end{cases} \)

So the exact sequences in Theorem 4.6 break into

(4.8) \(0 \to \mathcal{F} \{ -2m \} a \to \mathcal{H}_N^{1,0,*}(U_{m+1}) \to 0 \),

(4.9) \(0 \to \mathcal{H}_N^{0,1,*}(U_{m+1}) \to \mathcal{F} \{ -2m + 1, -N - 1 \} \to \mathcal{F} \{ -2m + 1, -N + 1 \} \to \mathcal{H}_N^{0,2,*}(U_{m+1}) \to 0 \),

(4.10) \(0 \to \mathcal{H}_N^{1,1,2,*}(U_{m+1}) \to \mathcal{F} / a \mathcal{F} \{ -2m + l - 1, -(l + 1)(N + 1) \} \to 0 \),

(4.11) \(0 \to \mathcal{H}_N^{m-1,m+1,*}(U_{m+1}) \to \mathcal{T} \{ -m - 1, -(m + 1)(N + 1) \} \to 0 \).

Exactness of (4.8) gives us

\(\mathcal{H}_N^{1,0,*}(U_{m+1}) \cong \mathcal{F} \{ -2m \} a. \)

Exactness of (4.10) and (4.11) give us

\(\mathcal{H}_N^{1,1,2,*}(U_{m+1}) \cong \mathcal{F} / a \mathcal{F} \{ -2m + l - 1, -(l + 1)(N + 1) \} \),

\(\mathcal{H}_N^{m-1,m+1,*}(U_{m+1}) \cong \mathcal{T} \{ -m - 1, -(m + 1)(N + 1) \}. \)

Finally, we look at exact sequence (4.9). By Remark 1.5, \(\mathcal{H}_N^{0,1,*}(U_{m+1}) \) is a torsion \(\mathbb{Q}[a] \)-module. This implies that \(\mathcal{H}_N^{0,1,*}(U_{m+1}) \cong 0 \) and we have a short exact sequence

\(0 \to \mathcal{F} \{ -2m + 1, -N - 1 \} \to \mathcal{F} \{ -2m + 1, -N - 1 \} \to \mathcal{H}_N^{0,2,*}(U_{m+1}) \to 0. \)
Applying Part (1) of Lemma [4.4] to the above short exact sequence, we get
\[H^{0,2,\ast,\ast}_N(U_{m+1}) \cong \mathcal{F}/a\mathcal{F}\{-2m - 1, -N - 1\}. \]

Now putting everything together, we have that
\[H_N(U_{m+1}) \cong \mathcal{F}\{-2((m + 1) - 1), 0\} \oplus T\langle m + 1 \rangle\{-(m + 1), -(m + 1)(N + 1)\}\|m + 1\|
\oplus \bigoplus_{l=1}^{(m+1)-1} \mathcal{F}/a\mathcal{F}\langle l \rangle\{-2(m + 1) + l, -l(N + 1)\}\|l + 1\|. \]

This shows that the corollary is true for \(U_{m+1} \) too. \(\square \)

References
[1] D. Bennequin, Entrelacements et équations de Pfaff, Astérisque, 107-108 (1983), 87–161.
[2] Y. Eliashberg, M. Fraser, Classification of topologically trivial Legendrian knots, Geometry, topology, and dynamics (Montréal, PQ, 1995), 17–51, CRM Proc. Lecture Notes, 15, Amer. Math. Soc., Providence, RI, 1998.
[3] J. Etnyre, Introductory Lectures on Contact Geometry, arXiv:math/0111118v2.
[4] M. Khovanov, L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008), no. 1, 1–91.
[5] M. Khovanov, L. Rozansky, Matrix factorizations and link homology II, Geom. Topol. 12 (2008), no. 3, 1387–1425.
[6] S. Orevkov, V. Shevchishin, Markov theorem for transversal links, J. Knot Theory Ramifications 12 (2003), no. 7, 905–913.
[7] N. Wrinkle, The Markov Theorem for transverse knots, arXiv:math.GT/0202055.
[8] H. Wu, Braids, transversal links and the Khovanov-Rozansky cohomology, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3365–3389.
[9] H. Wu, A Family of Transverse Link Homologies, arXiv:1308.3152.