Reduced-Dose Prasugrel versus Clopidogrel for Patients Undergoing Percutaneous Coronary Intervention
A Meta-Analysis of Randomized and Observational Studies

Cheng-Han Lee,¹² MD, Mu-Shiang Huang,¹³ MD, Ting-Hsing Chao,¹ MD, Sheng-Hsiang Lin,¹⁴³ PhD and Yi-Heng Li,¹ MD

Summary
Whether reduced-dose prasugrel has a better efficacy or safety than standard-dose clopidogrel remains unknown in patients undergoing percutaneous coronary intervention (PCI).

A systematic search of PubMed, EMBASE, Google Scholar, and Cochrane Library from database inception to May 1, 2021 was performed to compare the clinical outcomes in patients with acute coronary syndrome or stable coronary artery disease undergoing PCI between those treated with reduced-dose prasugrel and clopidogrel. The pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using the fixed-effect or random-effect model if significant heterogeneity was observed. The primary efficacy endpoint was major adverse cardiovascular events (MACE), including cardiovascular (CV) death, myocardial infarction (MI), or ischemic stroke. The primary safety endpoint was all bleeding events.

Overall, seven studies with 32,951 patients with PCI were included in the analysis. Reduced-dose prasugrel was associated with a lower risk of MACE than clopidogrel (OR 0.80, 95% CI 0.67-0.97). Except for MI (OR 0.74, 95% CI 0.56-0.98), the secondary efficacy endpoints of CV death, ischemic stroke, all-cause death, and stent thrombosis were similar. For the primary safety endpoint of all bleeding events, there was no significant difference between reduced-dose prasugrel and clopidogrel (OR 1.31, 95% CI 0.87-1.98), but the risk of minor bleeding was significantly higher in reduced-dose prasugrel (OR 1.73, 95% CI 1.25-2.41).

In patients undergoing PCI, a lower risk of MACE was found in patients receiving reduced-dose prasugrel than in those with clopidogrel, but a higher risk of minor bleeding events was noted.

Key words: Platelet aggregation inhibitors, Coronary heart disease, Acute coronary syndrome

Dual antiplatelet therapy (DAPT) with aspirin plus P2Y12 inhibitor is the current standard treatment for patients receiving percutaneous coronary intervention (PCI).¹² For patients with stable coronary artery disease (CAD) receiving PCI, the choice of the P2Y12 inhibitor is clopidogrel; however, the European guidelines also suggest that ticagrelor or prasugrel may be considered in patients with high ischemic risk.¹³ In the case of acute coronary syndrome (ACS), ticagrelor or prasugrel are recommended as the first-line treatment. In comparison with clopidogrel, standard-dose prasugrel (loading dose 60 mg, maintenance dose 10 mg QD) was demonstrated to have a lower risk of recurrent ischemic events in the TRITON-TIMI 38 trial; however, the risk of bleeding is a major concern of prasugrel.¹⁴,³ In the European guidelines, reduced-dose prasugrel (5 mg QD) is recommended in patients ≥75 years of age or body weight <60 kg.¹⁵ In Japan, reduced-dose prasugrel (3.75 mg QD) has been approved to be used for PCI in both ACS and stable CAD, based on the findings from the PRASFIT-ACS and PRASFIT-Selective studies.³⁶ In these two studies from Japan, there was a trend toward a better efficacy and the risk of major bleeding was not increased in reduced-dose prasugrel compared to standard-dose clopidogrel, but the sample sizes were not large enough to reach a final conclusion.³⁶ Recently, several observational studies were published to compare the safety and efficacy of reduced-dose prasugrel and standard-dose clopidogrel, with conflicting results. Therefore, there is a strong rationale to prove the efficacy and safety of reduced-dose prasugrel.

From the ¹Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ²Department of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ³Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ⁴Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan and ⁵Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.

*These authors contributed equally to this work.

Address for correspondence: Sheng-Hsiang Lin, PhD, Institute of Clinical Medicine and Biostatistics Consulting Center, National Cheng Kung University Hospital, 138 Sheng Li Road, Tainan, Taiwan. E-mail: shlin922@mail.ncku.edu.tw or Yi-Heng Li, MD, Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, 138 Sheng Li Road, Tainan, Taiwan. E-mail: heng@mail.ncku.edu.tw

Received for publication July 30, 2020. Revised and accepted October 30, 2020.

Released in advance online on J-STAGE March 17, 2021.
doi: 10.1536/ihj.20-508

All rights reserved by the International Heart Journal Association.
The purpose of this study is to conduct a systematic review and meta-analysis of the randomized and non-randomized observational studies to compare the efficacy and safety of reduced-dose prasugrel and standard-dose clopidogrel in patients undergoing PCI.

Methods

Search Strategies: The meta-analysis was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and MOOSE (Meta-Analysis Of Observational Studies in Epidemiology: a proposal for reporting) guidelines for reporting systematic reviews and meta-analyses. A comprehensive search was conducted by two independent authors (CHL and MSH) through PubMed, EMBASE, Google Scholar, and Cochrane Library up to May 1, 2020, to identify studies comparing clinical outcomes of both efficacy and safety between reduced-dose prasugrel and standard-dose clopidogrel among patients undergoing PCI. The following search terms were used: “prasugrel,” “clopidogrel,” “P2Y12 inhibitor,” “acute coronary syndrome,” “myocardial infarction,” “coronary intervention,” and “coronary revascularization” (Supplemental Table). Studies meeting the following criteria were regarded as eligible: (1) randomized controlled trials or observational studies comparing clinical outcomes in those treated with reduced-dose prasugrel and standard-dose clopidogrel among patients undergoing PCI. The following search terms were used: “prasugrel,” “clopidogrel,” “P2Y12 inhibitor,” “acute coronary syndrome,” “myocardial infarction,” “coronary intervention,” and “coronary revascularization” (Supplemental Table). Studies meeting the following criteria were regarded as eligible: (1) randomized controlled trials or observational studies comparing clinical outcomes in those treated with reduced-dose prasugrel (loading dose 30 or 20 mg and maintenance dose 5 or 3.75 mg QD) versus standard-dose clopidogrel (loading dose 300-600 mg and maintenance dose 75 mg QD); (2) study participants including patients with stable CAD or ACS undergoing PCI; (3) reporting at least one of our specified clinical outcomes of interest, including major adverse cardiovascular events (MACE), cardiovascular (CV) death, myocardial infarction (MI), ischemic stroke, all-cause death, and stent thrombosis; and (4) reporting bleeding outcomes. There were no restrictions on the publication date, country, and patient characteristics. However, non-English publications, patient who were not undergoing PCI, review articles, letter to editors, pharmacokinetic or pharmacodynamics studies, or studies investigating different doses of the same agent were excluded. We also performed a search in ClinicalTrials.gov; however, there were no ongoing studies that focused on head-to-head comparisons of the clinical outcomes between reduced-dose prasugrel and clopidogrel after PCI. Two independent reviewers assessed the risk of bias (low, unclear, or high) of the studies included using the Cochrane risk of bias tool (9) or non-randomized studies (Supplemental Figure 1).

Data Extraction: Two independent authors (CHL and MSH) reviewed the publications included and extracted the following data: (1) the country in which the study was performed, (2) the year of publication, (3) the study design, (4) indications for PCI, (5) the prasugrel dose, (6) the total numbers of participants (if propensity-matched analysis was applied, the number of post-matched groups that were used), (7) the follow-up duration, and (8) clinical outcomes. The data were further cross-checked after
Saito, et al.\(^6\) Japan 2014 Multicenter, randomized, clinical trial (PRASFIT–ACS study) PCI for ACS 3.75 mg 685/678 24 weeks

Ishiki, et al.\(^6\) Japan 2014 Multicenter, randomized, clinical trial (PRASFIT-Elective study) PCI for stable CAD 3.75 mg 370/372 24 weeks

Koyabu, et al.\(^6\) Japan 2019 Retrospective, single-center, observational, matched cohort PCI for ACS (43.6%) or stable CAD (56.4%) 3.75 mg 250/250 (balanced between groups) 12 months

Yasuda, et al.\(^6\) Japan 2019 Prospective, multicenter registry (JAMIR study) PCI for AMI 3.75 mg 2607/462 (unmatched) No matching number was reported Median 12 months (range 9–13 months) In-hospital outcome

Akita, et al.\(^6\) Japan 2019 Prospective, multicenter registry (J-PCI study) PCI for ACS 3.75 mg 42735/20002 (unmatched) 12016/12016 (PS matched) In-hospital outcome

Shoji, et al.\(^6\) Japan 2020 Retrospective, multicenter registry (JCD-KiCS study) PCI for ACS 3.75 mg 1297/1262 (unmatched) 901/901 (PS matched) In-hospital outcome

Savonitto, et al.\(^6\) Italy 2018 Multicenter, randomized, clinical trial (Elderly ACS 2 study) PCI for ACS 5 mg 713/730 Median 12.1 months (range 3–13 months) In-hospital outcome

ACS indicates acute coronary syndrome; AMI, acute myocardial infarction; CAD, coronary artery disease; JAMIR, Japan Acute Myocardial Infarction Registry; JCD-KiCS, Japan Cardiovascular Database–Keio Interhospital Cardiovascular Studies; J-PCI, Japanese percutaneous coronary intervention; PCI, percutaneous coronary intervention; PS, propensity score; and PRASFIT, PRASugrel compared with clopidogrel For Japanese patients.

ACS indicates acute coronary syndrome; AMI, acute myocardial infarction; CAD, coronary artery disease; JAMIR, Japan Acute Myocardial Infarction Registry; JCD-KiCS, Japan Cardiovascular Database–Keio Interhospital Cardiovascular Studies; J-PCI, Japanese percutaneous coronary intervention; PCI, percutaneous coronary intervention; PS, propensity score; and PRASFIT, PRASugrel compared with clopidogrel For Japanese patients.

Results

Included studies: Figure 1 shows the flow diagram of the selection process used in this study. Searching in the electronic databases (PubMed, EMBASE, Google Scholar, and
Cochrane Library) retrieved a total of 2836 publications. After the removal of 2820 duplicate or irrelevant studies, we extracted 16 full-text articles for review. After excluding studies that did not fulfill the inclusion criteria of this study, seven publications were selected for qualitative and quantitative analyses.5,6,10-14) The characteristics of the seven studies included are summarized in the Table. There were differences among the studies included with regard to the study design and patient characteristics. Among them, four were observational studies and three were randomized clinical trials. Six studies originated from Japan and used prasugrel 3.75 mg QD. The other one, the Elderly ACS 2 study, was from Italy and evaluated prasugrel 5 mg QD in elderly patients.14 Five studies included only patients with ACS, one study included only those with stable CAD, and the other was a mixed study with patients with both ACS and stable CAD. Overall, by adding the non-matched cohort in the JAMIR study11) and the matched groups in the other six studies, there were a total of 32,951 patients (17,542 in the reduced-dose prasugrel arm and 15,409 in the clopidogrel arm). The follow-up duration in these studies was from in-hospital up to 1-year clinical outcomes.

Outcome analyses: For analysis of the primary efficacy endpoint of MACE, the study by Akita, et al.15) was excluded because only in-hospital mortality and stent throm-
sensitivity analyses revealed no significant differences of the MACE rate between randomized versus observational studies and 3.75 versus 5 mg prasugrel studies (Figure 5). In the subgroup of randomized clinical trials, there was a lower risk of MACE (OR 0.78, 95% CI 0.61-0.98) in the reduced-dose prasugrel group. The subgroup analysis of 3.75 mg prasugrel showed a borderline significantly lower risk of MACE (OR 0.82, 95% CI 0.67-1.01) in the reduced-dose prasugrel group. For sensitivity analyses of the primary safety endpoint, there was a higher bleeding risk of the reduced-dose prasugrel group from the in-hospital outcome studies than in the follow-up studies after discharge. No significant differences of the primary safety endpoint between randomized versus observational studies were found (Supplemental Figure 4).

Discussion

To our knowledge, this is the first meta-analysis to perform a direct head-to-head comparison of reduced-dose prasugrel versus standard-dose clopidogrel in patients undergoing PCI. The main findings of our study were that (1) the risk of MACE with reduced-dose prasugrel was lower than clopidogrel, which was driven mainly by the reduction of MI; (2) there were no differences in CV death, ischemic stroke, all-cause death, and stent thrombosis between the groups; and (3) although there was no increase of major bleeding, the use of reduced-dose prasugrel was associated with a higher risk of minor bleeding than that with clopidogrel.

For patients with ACS undergoing PCI, the TRITON-TIMI 38 study found that the efficacy of standard-dose prasugrel (60 mg loading and 10 mg daily dose) was superior to clopidogrel in improving clinical outcomes. But the bleeding risk of prasugrel was higher in patients with a history of ischemic stroke or transient ischemic attack, elderly patients (aged 75 years or older), and those weighing less than 60 kg. Bleeding complications negatively influence the clinical outcomes after PCI, and especially become a major concern for East Asian patients receiving antiplatelet therapy. After an early dose-finding trial with platelet function tests, reduced-dose prasugrel (20 mg loading and 3.75 mg QD) was developed in Japan. In the phase 3 clinical trial, the PRASFIT-ACS study, reduced-dose prasugrel showed a nonsignificant reduction of MACE (hazard ratio 0.77, 95% CI 0.56-1.07) compared with standard-dose clopidogrel. The risk of TIMI major bleeding was similar between the groups. Currently, reduced-dose prasugrel is recommended as the first-line P2Y12 inhibitor in the Japanese ACS guidelines and is prescribed widely to patients with ACS undergoing PCI in Japan. However, the real-world observational studies published subsequently from Japan that compared reduced-dose prasugrel and standard-dose clopidogrel in patients with ACS undergoing PCI demonstrated conflicting results. The pooled analyses of these studies in our meta-analysis found that the risk of MACE in the reduced-dosed prasugrel group was comparable to the clopidogrel group in ACS. There was a higher risk of all bleeding events of reduced-dose prasugrel in patients with ACS (Figure 4). However, we found trends toward better
Secondary efficacy endpoints

Study or Subgroup	Prasugrel	Clopidogrel	Odds Ratio	Weight	Mat. Reaction	95% CI	Year
Overall mortality	22	23	1.09 (0.33, 3.29)	0.96	Not estimable	2014	
Secondary endpoints							
Atrial fibrillation	22	23	1.09 (0.33, 3.29)	0.96	Not estimable	2014	
Stroke	22	23	1.09 (0.33, 3.29)	0.96	Not estimable	2014	
Bleeding	22	23	1.09 (0.33, 3.29)	0.96	Not estimable	2014	

Figure 3. Forest plot of the secondary efficacy (A) and safety (B) endpoints between reduced-dose prasugrel and clopidogrel.
A Major adverse cardiovascular events

Study or Subgroup	Prasugrel Events	Clopidogrel Events	Odds Ratio M-H, Fixed, 95% CI Year
1.3.1 Acute coronary syndrome studies			
Salto et al. 2014	74 685	84 678	0.68 [0.61, 1.19] 2014
Savonitto et al. 2018	47 713	83 730	0.75 [0.60, 1.11] 2018
Shoji et al. 2020	40 901	32 901	1.26 [0.79, 2.03] 2020
Subtotal (95% CI)	2239 2309	83.8%	0.89 [0.71, 1.12]
Total events	161 179		
Heterogeneity: $\chi^2 = 2.89, \text{df} = 2 (P = 0.24), \text{I}^2 = 31\%$			
Test for overall effect: $Z = 0.99 (P = 0.32)$			

1.3.2 Elective coronary intervention studies

Study or Subgroup	Prasugrel Events	Clopidogrel Events	Odds Ratio M-H, Fixed, 95% CI Year
Ishihaki et al. 2014	15 370	25 372	0.59 [0.30, 1.13] 2014
Koyabu et al. 2019	4 250	8 250	0.49 [0.15, 1.65] 2019
Subtotal (95% CI)	620 622	16.2%	0.56 [0.32, 1.00]
Total events	19 33		
Heterogeneity: $\chi^2 = 0.08, \text{df} = 1 (P = 0.80), \text{I}^2 = 0\%$			
Test for overall effect: $Z = 1.95 (P = 0.05)$			

B All bleeding events

Study or Subgroup	Prasugrel Events	Clopidogrel Events	Odds Ratio M-H, Fixed, 95% CI Year
2.2.1 Acute coronary syndrome studies			
Salto et al. 2014	341 668	247 676	1.73 [1.38, 2.15] 2014
Savonitto et al. 2018	29 713	20 730	1.51 [0.84, 2.69] 2018
Akita et al. 2020	61 12016	37 12016	1.65 [1.10, 2.49] 2020
Shoji et al. 2020	194 901	87 901	2.08 [1.68, 2.45] 2020
Subtotal (95% CI)	14315 14325	98.8%	1.80 [1.55, 2.10]
Total events	595 391		
Heterogeneity: $\chi^2 = 1.72, \text{df} = 3 (P = 0.63), \text{I}^2 = 0\%$			
Test for overall effect: $Z = 7.58 (P < 0.000001)$			

2.2.2 Elective coronary intervention studies

Study or Subgroup	Prasugrel Events	Clopidogrel Events	Odds Ratio M-H, Fixed, 95% CI Year
Ishihaki et al. 2014	20 370	23 372	0.67 [0.47, 1.16] 2014
Koyabu et al. 2019	7 250	4 250	1.77 [0.51, 6.13] 2019
Subtotal (95% CI)	629 622	9.2%	1.00 [0.58, 1.74]
Total events	27 27		
Heterogeneity: $\chi^2 = 1.02, \text{df} = 1 (P = 0.31), \text{I}^2 = 2\%$			
Test for overall effect: $Z = 0.02 (P = 0.98)$			

Figure 4. Forest plot of the primary efficacy (A) and safety (B) endpoints between reduced-dose prasugrel and clopidogrel without the JAMIR study.

Clinical outcomes in prasugrel users who were younger (<75 years), with higher body weight (>50 kg), and without chronic kidney disease (Supplemental Figure 3), most likely because of the reduction of bleeding complications. These study results could be applied to our clinical practice when choosing between reduced-dose prasugrel and clopidogrel for patients with ACS.

For elective PCI in stable CAD, we found a significantly lower risk of MACE of reduced-dose prasugrel than clopidogrel. Platelet activation occurs in patients with stable CAD undergoing PCI, because angioplasty induces the mechanical disruption of the atherosclerotic plaque that exposes the subendothelium to circulating blood. The intensity and persistence of platelet activation determine the recurrent ischemic events after PCI. Our meta-analysis results showed that reduced-dose prasugrel seems to be a better choice than clopidogrel in elective PCI for stable CAD, because reduced-dose prasugrel has a lower risk of MACE than clopidogrel and there is no increased risk of bleeding. Currently, prasugrel is used in elective PCI only in Japan and it is indicated only for PCI in ACS in most other countries in the world. A large-scale clinical trial is necessary to further confirm the benefits of reduced-dose prasugrel for elective PCI that we observed in this meta-analysis.

Although the risk of TIMI major or minor bleeding
was similar between reduced-dose prasugrel and clopidogrel in the PRASFIT-ACS study, the real-world observational studies showed quite conflicting results regarding the bleeding risk of reduced-dose prasugrel. For those studies considering only in-hospital outcomes, there was a higher bleeding risk of reduced-dose prasugrel (Supplemental Figure 4). Akita, et al. showed that bleeding complications, defined as bleeding events requiring blood transfusion, were higher in the reduced-dose prasugrel group than in the clopidogrel group (OR 1.65, 95% CI 1.10-2.51). Shoji, et al. also showed that the primary bleeding events, defined as bleeding complications within 72 hours after PCI requirement for transfusion or procedural intervention or surgery to stop the bleeding, were significantly higher among patients receiving reduced-dose prasugrel (OR 2.91, 95% CI 1.63-5.18). However, if look at the follow-up data after discharge and up to 1 year, the bleeding risk became similar between the reduced-dose prasugrel and clopidogrel groups. By observing the bleeding events in both acute and chronic phases, the data from Koyabu, et al. clearly indicated that the risk of PCI-related bleeding complications was higher in the acute phase in the reduced-dose prasugrel group than in the clopidogrel group. But the incidence of non-PCI-related bleeding complications over 12 months was comparable between the two groups. Pooled analyses of
these studies demonstrated that all bleeding and major bleeding events were similar, but minor bleeding events were increased significantly in the reduced-dose prasugrel group. Our data indicated that the judicious use of prasugrel is necessary even when the dose is decreased, especially during the perioperative period of PCI. Moreover, choosing patients with more benefits of prasugrel, such as those who are younger, with higher body weight, and without chronic kidney disease, is also necessary. Finally, prasugrel should be given to patients with ACS after the coronary anatomy is known and PCI is planned, because there was no ischemic benefit and the bleeding risk was increased with the pretreatment of prasugrel in patients with ACS.26) The recently published ISAR-REACT 5 trial showed that the clinical outcomes were better in patients with ACS with prasugrel loading after the knowledge of coronary anatomy was obtained than in those with the routine pretreatment of ticagrelor.26) Therefore, the new 2020 European guidelines of non-ST elevation ACS do not recommend routine pretreatment with a P2Y12 inhibitor in patients with ACS in whom coronary anatomy is unknown and early invasive management is planned.26)

There are several study limitations of the current meta-analysis. First, as the published studies that specifically compared the clinical outcomes of reduced-dose prasugrel with clopidogrel in patients with PCI were limited, we had to include both randomized and non-randomized observational studies. Although most observational studies that we selected used a matching process to eliminate unbalances between groups, the unmeasured confounding factors could not be ruled out completely. We used those values from propensity score matching in our meta-analysis, except for the JAMIR study that did not report the incidence after matching. Therefore, we removed the JAMIR study and reanalyzed the data that showed similar trends for efficacy and safety outcomes. The two large observational studies from Akita, et al. and Shoji, et al. used propensity-matched scores and reported the incidence of clinical outcomes. Both studies found that the risk of all bleeding events was higher in reduced-dose prasugrel than in clopidogrel, and the efficacy outcomes were similar (mortality and stent thrombosis in the study of Akita, et al. and MACE in the study of Shoji, et al.) between the groups.12,13) However, both studies reported only the in-hospital clinical outcomes. If we consider the longer follow-up results over 12 months, such as in the JAMIR registry, PRASFIT-ACS study, and the study by Koyabu, et al., the bleeding risk of reduced-dose prasugrel became similar to that of clopidogrel. The different follow-up durations probably also influence the clinical outcomes. As the detailed bleeding outcomes were unavailable in most of the studies included, the subgroup analysis of bleeding outcomes between reduced-dose prasugrel and clopidogrel by gender, age, body weight, or renal function could not be performed in our study. Finally, the sensitivity analyses were performed according to randomized versus observational studies and 3.75 versus 5 mg prasugrel. There was no significant heterogeneity in the overall analyses.

Conclusions

Based on the meta-analysis of the observational and randomized studies, reduced-dose prasugrel seems to be superior to standard-dose clopidogrel in patients with PCI, especially in those with stable CAD. The use of reduced-dose prasugrel was associated with a higher risk of minor bleeding events than that of clopidogrel. Larger randomized clinical trials with longer follow-up durations are necessary to determine the superiority of one agent versus the other.

Disclosure

Conflicts of interest: None.

References

1. Valgimigli M, Bueno H, Byrne RA, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2018; 39: 213-60.

2. Levine GN, Bates ER, Bittl JA, et al. 2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients With Coronary Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2016; 68: 1082-115.

3. Jeong YH. “East asian paradox”: challenge for the current antiplatelet strategy of “one-guideline-fits-all races” in acute coronary syndrome. Curr Cardiol Rep 2014; 16: 485.

4. Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007; 357: 2001-15.

5. Isshiki T, Kimura T, Ogawa H, et al. Prasugrel, a third-generation P2Y12 receptor antagonist, in patients with coronary artery disease undergoing elective percutaneous coronary intervention. Circ J 2014; 78: 2926-34.

6. Saito S, Ishihiki T, Kimura T, et al. Efficacy and safety of adjusted-dose prasugrel compared with clopidogrel in Japanese patients with acute coronary syndrome: the PRASFIT-ACS study. Circ J 2014; 78: 1684-92.

7. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283: 2008-12.

8. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009; 339: b2700.

9. Kim SY, Park JE, Lee YJ, et al. Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. J Clin Epidemiol 2013; 66: 408-14.

10. Koyabu Y, Abe S, Sakuma M, et al. Short-term Safety and Mid-term Efficacy of Prasugrel Versus Clopidogrel in Patients Undergoing Percutaneous Coronary Intervention. Intern Med 2019; 58: 2315-22.

11. Yasuda S, Honda S, Takegami M, et al. Contemporary Antiplatelet Therapy and Clinical Outcomes of Japanese Patients With Acute Myocardial Infarction - Results From the Prospective Japan Acute Myocardial Infarction Registry (JAMIR). Circ J 2019; 83: 1633-45.
12. Akita K, Inohara T, Yamaji K, et al. Impact of reduced-dose prasugrel vs. standard-dose clopidogrel on in-hospital outcomes of percutaneous coronary intervention in 62,737 patients with acute coronary syndromes: a nationwide registry study in Japan. Eur Heart J Cardiovasc Pharmacother 2020; 6: 231-8.

13. Shoji S, Sawano M, Sandhu AT, et al. Ischemic and Bleeding Events Among Patients With Acute Coronary Syndrome Associated With Low-Dose Prasugrel vs Standard-Dose Clopidogrel Treatment. JAMA Netw Open 2020; 3: e200204.

14. Savonitto S, Ferri LA, Piatti L, et al. Comparison of Reduced-Dose Prasugrel and Standard-Dose Clopidogrel in Elderly Patients With Acute Coronary Syndromes Undergoing Early Percutaneous Revascularization. Circulation 2018; 137: 2435-45.

15. Redfors B, Généreux P, Witzenbichler B, et al. Bleeding Severity After Percutaneous Coronary Intervention. Circ Cardiovasc Interv 2018; 11: e005542.

16. Costa F, Van Klaveren D, Feres F, et al. Dual Antiplatelet Therapy Duration Based on Ischemic and Bleeding Risks After Coronary Stenting. J Am Coll Cardiol 2019; 73: 741-54.

17. Levine GN, Jeong YH, Goto S, et al. Expert consensus document: World Heart Federation expert consensus statement on antiplatelet therapy in East Asian patients with ACS or undergoing PCI. Nat Rev Cardiol 2014; 11: 597-606.

18. Kang J, Park KW, Palmerini T, et al. Racial Differences in Ischaemia/Bleeding Risk Trade-Off during Anti-Platelet Therapy: Individual Patient Level Landmark Meta-Analysis from Seven RCTs. Thromb Haemost 2019; 119: 149-62.

19. Yokoi H, Kimura T, Isshiki T, Ogawa H, Ikeda Y. Pharmacodynamic assessment of a novel P2Y12 receptor antagonist in Japanese patients with coronary artery disease undergoing elective percutaneous coronary intervention. Thromb Res 2012; 129: 623-8.

20. Kimura K, Kimura T, Ishihara M, et al. JCS 2018 Guideline on Diagnosis and Treatment of Acute Coronary Syndrome. Circ J 2019; 83: 1085-196.

21. Stone GW, Aronow HD. Long-term care after percutaneous coronary intervention: focus on the role of antiplatelet therapy. Mayo Clin Proc 2006; 81: 641-52.

22. Buonomici P, Marcucci R, Migliorini A, et al. Impact of platelet reactivity after clopidogrel administration on drug-eluting stent thrombosis. J Am Coll Cardiol 2007; 49: 2312-7.

23. Brar SS, ten Berg J, Marcucci R, et al. Impact of platelet reactivity on clinical outcomes after percutaneous coronary intervention. A collaborative meta-analysis of individual participant data. J Am Coll Cardiol 2011; 58: 1945-54.

24. Montalescot G, Bolognese L, Dudek D, et al. Pretreatment with prasugrel in non-ST-segment elevation acute coronary syndromes. N Engl J Med 2013; 369: 999-1010.

25. Schüpke S, Neumann FJ, Menichelli M, et al. Ticagrelor or Prasugrel in Patients with Acute Coronary Syndromes. N Engl J Med 2019; 381: 1524-34.

26. Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2020. (in press).

Supplemental Files
Supplemental Table
Supplemental Figures 1-4
Please see supplemental files; https://doi.org/10.1536/ihj.20-508