PARTIAL CONNECTION FOR \(p \)-TORSION LINE BUNDLES IN CHARACTERISTIC \(p > 0 \)

HÉLÈNE ESNAULT

To S. S. Chern, in memoriam

Abstract. The aim of this brief note is to give a construction for \(p \)-torsion line bundles in characteristic \(p > 0 \) which plays a similar rôle as the standard connection on an \(n \)-torsion line bundle in characteristic 0.

1. Introduction

In [3] (see also [4]) we gave an algebraic construction of characteristic classes of vector bundles with a flat connection \((E, \nabla)\) on a smooth algebraic variety \(X \) defined over a field \(k \) of characteristic 0. Their value at the generic point \(\text{Spec}(k(X)) \) was studied and redefined in [1], and then applied in [2] to establish a Riemann-Roch formula. One way to understand Chern classes of vector bundles (without connection) is via the Grothendieck splitting principle: if the receiving groups \(\bigoplus_n H^{2n}(X, n) \) of the classes form a cohomology theory which is a ring and is functorial in \(X \), then via the Whitney product formula it is enough to define the first Chern class. Indeed, on the flag bundle \(\pi : \text{Flag}(E) \to X \), \(\pi^*(E) \) acquires a complete flag \(E_i \subset E_{i+1} \subset \pi^*(E) \) with \(E_{i+1}/E_i \) a line bundle, and \(\pi^*: H^{2n}(X, n) \to H^{2n}(\text{Flag}(E), n) \) is injective, so it is enough to construct the classes on \(\text{Flag}(E) \). However, if \(\nabla \) is a connection on \(E \), \(\pi^*(\nabla) \) does not stabilize the flag \(E_i \). So the point of [3] is to show that there is a differential graded algebra \(A^* \) on \(\text{Flag}(E) \), together with a morphism of differential graded algebras \(\Omega^*_{\text{Flag}(E)} \to A^* \), so that \(R\pi_* A^* \cong \Omega^*_{X} \) and so that the operator defined by the composition \(\pi^*(E) \xrightarrow{\pi^*(\nabla)} \Omega^1_{\text{Flag}(E)} \otimes \mathcal{O}_{\text{Flag}(E)} \xrightarrow{\tau \otimes 1} A^1 \otimes \mathcal{O}_{\text{Flag}(E)} \xrightarrow{\pi^*(E)} \) stabilizes \(E_i \). We call the induced operator \(\nabla_i : E_i \to A^1 \otimes \mathcal{O}_{\text{Flag}(E)} E_i \) a (flat) \(\tau \)-connection. So it is a \(k \)-linear map which fulfills the \(\tau \)-Leibniz
for \(\lambda \) a local section of \(\mathcal{O}_{\text{Flag}(E)} \) and \(e \) a local section of \(E_i \). It is flat when \(0 = \nabla_i \circ \nabla_i \in H^0(X, A^2 \otimes_{\mathcal{O}_X} \text{End}(E)) \), with the appropriate standard sign for the derivation of forms with values in \(E_i \). The last point is then to find the correct cohomology which does not get lost under \(\pi^* \). It is a generalization of the classically defined group \(H^1(X, \mathcal{O}_X \rightarrow \Omega^1_X \rightarrow \Omega^2_X \rightarrow \cdots) \) of isomorphism classes of rank one line bundles on \(X \) with a flat connection.

A typical example of such a connection is provided by a torsion line bundle: if \(L \) is a line bundle on \(X \) which is \(n \)-torsion, that is which is endowed with an isomorphism \(L^n \cong \mathcal{O}_X \), then the isomorphism yields an \(\mathcal{O}_X \)-étale algebra structure on \(A = \oplus_{i=0}^{n-1} L^i \), hence a finite étale covering \(Y = \text{Spec}_{\mathcal{O}_X} A \rightarrow X \), which is a principal bundle under the group scheme \(\mu_n \) of \(n \)-th roots of unity, thus is Galois cyclic as soon as \(\mu_n \subset k^\times \). Since the \(\mu_n \)-action commutes with the differential \(d_Y : \mathcal{O}_Y \rightarrow \Omega^1_Y = \sigma^* \Omega^1_X \), it defines a flat connection \(\nabla_L : L \rightarrow \Omega^1_X \otimes_{\mathcal{O}_X} L \). Concretely, if \(g_{\alpha,\beta} \in \mathcal{O}_X^\times \) are local algebraic transition functions for \(L \), with trivialization

\[
(1.3) \quad g_{\alpha,\beta}^n = u_{\beta} u_\alpha^{-1}, u_\alpha \in \mathcal{O}_X^\times,
\]

then

\[
(1.4) \quad \left(g_{\alpha,\beta}, \frac{1}{n} \frac{du_\alpha}{u_\alpha} \right) \in \left(\mathcal{C}^1(\mathcal{O}_X^\times) \times \mathcal{C}^0((\Omega^1_X)_{\text{clsd}}) \right)_{\delta \log - \delta}, \quad \frac{dg}{g} = \delta \left(\frac{du}{u} \right)
\]

is a Cech cocyle for the class

\[
(1.5) \quad (L, \nabla_L) \in \mathbb{H}^1(X, \mathcal{O}_X^\times \xrightarrow{\delta \log} \Omega^1_X \xrightarrow{d} \Omega^2_X \xrightarrow{d} \cdots).
\]

Clearly (1.4) is meaningless if the characteristic \(p \) of \(k \) is positive and divides \(n \). The purpose of this short note is to give an Ersatz of this canonical construction in the spirit of the \(\tau \)-connections explained above when \(p \) divides \(n \).

2. A partial connection for \(p \)-torsion line bundles

Let \(X \) be a scheme of finite type over a perfect field \(k \) of characteristic \(p > 0 \). Let \(L \) be a \(n \)-torsion line bundle on \(X \), thus endowed with an
isomorphism
\begin{equation}
\theta : L^n \cong \mathcal{O}_X.
\end{equation}

Then \(\theta \) defines an \(\mathcal{O}_X \)-algebra structure on \(\mathcal{A} = \bigoplus_{i=0}^{n-1} L_i \) which is étale if and only if \((p, n) = 1\). It defines the principal \(\mu_n \)-covering
\begin{equation}
\sigma : Y = \text{Spec}_{\mathcal{O}_X} \mathcal{A} \to X
\end{equation}
which is étale if and only if \((p, n) = 1\), else decomposes into
\begin{equation}
\sigma : Y \twoheadrightarrow Z \xrightarrow{\sigma'} X
\end{equation}
with \(\sigma' \) étale and \(\iota \) purely inseparable. More precisely, if \(n = m \cdot p^r, (m, p) = 1, \) and \(M = L^{p^r} \), \(\theta \) defines an \(\mathcal{O}_X \)-étale algebra structure on \(\mathcal{B} = \bigoplus_{i=0}^{m-1} M_i \), which defines \(\sigma' : Z = \text{Spec}_{\mathcal{O}_X} \mathcal{B} \to X \) as an (étale) \(\mu_m \)-principal bundle. The isomorphism \(\theta \) also defines an isomorphism \((L')^{p^r} \cong \mathcal{O}_Z \) as it defines the isomorphism \((\sigma')^*(M) \cong \mathcal{O}_Z \), where \(L' = (\sigma')^*(L) \). So \(\mathcal{C} = \bigoplus_{i=0}^{p^r-1} (L')^i \) becomes a finite purely inseparable \(\mathcal{O}_Z \)-algebra defining the principal \(\mu_{p^r} \)-bundle \(\iota : Y = \text{Spec}_{\mathcal{O}_Z} \mathcal{C} \to Z \).

If \((n, p) = 1\), that is if \(r = 0 \), the formulae (1.3), (1.4) define \((L, \nabla) \) as in (1.5). We assume from now on that \((n, p) = p\). Then, as is well known, as a consequence of (1.3) one sees that the form
\begin{equation}
\omega_L := \frac{du_\alpha}{u_\alpha} \in \Gamma(X, \Omega^1_X)_{\text{Cartier}} = 1
\end{equation}
is globally defined and Cartier invariant. Let \(e_\alpha \) be local generators of \(L \), with transition functions \(g_{\alpha, \beta} \) with \(e_\alpha = g_{\alpha, \beta} e_\beta \). The isomorphism \(\theta \) yields a trivialization
\begin{equation}
\sigma^* L \cong \mathcal{O}_Y
\end{equation}
thus local units \(v_\alpha \) on \(Y \) with
\begin{equation}
v_\alpha \in \mathcal{O}_Y^*, \quad g_{\alpha, \beta} = v_\beta v_\alpha^{-1}
\end{equation}
so that \(1 = v_\alpha \sigma^*(e_\alpha) = v_\beta \sigma^*(e_\beta) \).

Definition 2.1. One defines the \(\mathcal{O}_X \)-coherent sheaf \(\Omega^1_L \) as the subsheaf of \(\sigma_* \Omega^1_Y \) spanned by \(\text{Im}(\Omega^1_Y) \) and \(\frac{dv_\alpha}{v_\alpha} \).

Lemma 2.2. \(\Omega^1_L \) is well defined and one has the exact sequence
\begin{equation}
0 \to \mathcal{O}_X \xrightarrow{\omega_L} \Omega^1_X \xrightarrow{\sigma^*} \Omega^1_L \xrightarrow{s} \mathcal{O}_X \to 0
\end{equation}
where \(s(\frac{dv_\alpha}{v_\alpha}) = 1 \).
Proof. The relation (2.6) implies

\[\frac{dg_{\alpha,\beta}}{g_{\alpha,\beta}} = \frac{dv_{\beta}}{v_{\beta}} - \frac{dv_{\alpha}}{v_{\alpha}} \]

(2.8)

so \(\frac{dv_{\beta}}{v_{\beta}} \equiv \frac{dv_{\alpha}}{v_{\alpha}} \in \sigma_{*}\Omega^{1}_{Y}/\text{Im}(\Omega^{1}_{X}) \).

Hence the sheaf \(\Omega^{1}_{L} \) is well defined. If \(e'_{\alpha} \) is another basis, then one has \(e_{\alpha} = w_{\alpha}e'_{\alpha} \) for local units \(w_{\alpha} \in \mathcal{O}^{\times}_{X} \). The new \(v_{\alpha} \) are then multiplied by local units in \(\mathcal{O}^{\times}_{X} \), so the surjection \(s \) is well defined. It remains to see that \(\text{Ker}(\sigma^{*}) = \text{Im}(\omega_{L}) \). By definition, on the open of \(X \) on which \(L \) has basis \(e_{\alpha} \), one has

\[Y = \text{Spec} \mathcal{O}_{X}[v_{\alpha}]/(v_{\alpha}^{n} - u_{\alpha}) \].

This implies \(\Omega^{1}_{Y} = \langle \text{Im}(\Omega^{1}_{X}), dv_{\alpha}\rangle_{\mathcal{O}_{Y}}/\langle du_{\alpha}\rangle_{\mathcal{O}_{Y}} \) on this open and finishes the proof.

\[\square \]

Remarks 2.3.
1) Assume for example that \(X \) is a smooth projective curve of genus \(g \), and \(n = p \). Recall that \(0 \neq \omega_{L} \in \Gamma(X, \Omega^{1}_{X}) \). In particular, if \(g \geq 2 \), necessarily \(0 \neq \Omega^{1}_{X}/\mathcal{O}_{X} \cdot \omega_{L} \) is supported in codimension 1. So \(\Omega^{1}_{L} \) contains a non-trivial torsion subsheaf.

2) The sheaf \(\Omega^{1}_{L} \) lies in \(\sigma_{*}\Omega^{1}_{Y} \) but is not equal to it. Indeed, on the smooth locus of \(X \) (assuming \(X \) is reduced) the torsion free quotient of \(\Omega^{1}_{L} \) has rank equal to the dimension of \(X \), while \(\sigma_{*}\Omega^{1}_{Y} \) has rank \(n \cdot \text{dim}(X) \) on the étale locus of \(\sigma \) (which is non-empty if \(L \) itself is not a \(p \)-power line bundle).

3) The class in \(\text{Ext}^{2}_{\mathcal{O}_{X}}(\mathcal{O}_{X}, \mathcal{O}_{X}) = H^{2}(X, \mathcal{O}_{X}) \) defined by (2.7) vanishes. Indeed, let us decompose (2.7) as an extension of \(\mathcal{O}_{X} \) by \(\Omega^{1}_{X}/\mathcal{O}_{X} \cdot \omega_{L} \), followed by an extension of \(\Omega^{1}_{X}/\mathcal{O}_{X} \cdot \omega_{L} \) by \(\mathcal{O}_{X} \cdot \omega_{L} \). The first extension class in \(H^{1}(X, \Omega^{1}_{X}/\mathcal{O}_{X} \cdot \omega_{L}) \) has cocycle \(\frac{dv_{\beta}}{v_{\beta}} - \frac{dv_{\alpha}}{v_{\alpha}} = \frac{du_{\alpha}}{g_{\alpha,\beta}} \) (see (2.8)), thus is the image of the Atiyah class of \(L \) in \(H^{1}(X, \Omega^{1}_{X}) \). Thus the second boundary to \(H^{2}(X, \mathcal{O}_{X}) \) dies.

Definition 2.4. We set \(\Omega^{0}_{L} := \mathcal{O}_{X} \) and for \(i \geq 1 \) we define the \(\mathcal{O}_{X} \)-coherent sheaf \(\Omega^{i}_{L} \) as the subsheaf of \(\sigma_{*}\Omega^{i}_{Y} \) spanned by \(\text{Im}(\Omega^{i}_{X}) \) and \(\frac{dv_{\alpha}}{v_{\alpha}} \wedge \text{Im}(\Omega^{i-1}_{X}) \).
Proposition 2.5. The sheaf Ω^i_L is well defined. One has an exact sequence
\begin{equation}
0 \to \omega_L \wedge \Omega^i_{X^{-1}} \to \Omega^i_X \overset{\sigma^*}{\to} \Omega^i_L \overset{s}{\to} \Omega^i_{X^{-1}} \to 0 \tag{2.10}
\end{equation}
Furthermore, the differential $\sigma_*(d_Y)$ on $\sigma_*\Omega^i_Y$ induces on $\bigoplus_{i \geq 0} \Omega^i_L$ the structure of a differential graded algebra $(\Omega^*_{\text{crist}}, d_L)$ so that $\sigma^*: (\Omega^*_{X}, d_X) \to (\Omega^*_{\text{crist}}, d_L)$ is a morphism of differential graded algebras.

Proof. One proves (2.10) as one does (2.7). One has to see that $\sigma^* (d_Y)$ stabilizes Ω^*_{crist}. As $0 = d_X (\omega_L) \in \Omega^2_X$, $0 = d_Y (\frac{dv_{\alpha}}{v_{\alpha}}) \in \sigma_* \Omega^2_Y$, (2.10) extends to an exact sequence of complexes
\begin{equation}
0 \to (\omega_L \wedge \Omega^*_{X^{-1}}, -1 \wedge d_X) \to (\Omega^*_{X}, d_X) \overset{\sigma^*}{\to} (\Omega^*_{\text{crist}}, d_L) \overset{s}{\to} (\Omega^*_{X^{-1}}, -d_X) \to 0. \tag{2.11}
\end{equation}
This finishes the proof.

Remark 2.6. As $\frac{dg_{\alpha, \beta}}{g_{\alpha, \beta}} \in (\Omega^1_X)_\text{crist}$ the same proof as in Remark 2.3, 3) shows that the extension class $\text{Ext}^2(\Omega^*_{X^{-1}}, \omega_L \wedge \Omega^*_{X^{-1}})$ defined by (2.11) dies.

In order to tie up with the notations of the Introduction, we set
\begin{equation}
\tau = \sigma^*: \Omega^*_{X} \to \Omega^*_{\text{crist}}. \tag{2.12}
\end{equation}

Proposition 2.7. The formula $\nabla (e_\alpha) = -\frac{dv_{\alpha}}{v_{\alpha}} \otimes e_\alpha \in \Omega^1_L \otimes_{\mathcal{O}_X} L$ defines a flat τ-connection ∇_L on L. So (L, ∇_L) is a class in $\text{H}^1(X, \mathcal{O}_X \xrightarrow{\tau_{\text{log}}} \Omega^1_L \xrightarrow{d_L} \Omega^2_L \xrightarrow{d_L} \cdots)$, the group of isomorphism classes of line bundles with a flat τ-connection.

Proof. Formula (2.6) implies that this defines a τ-connection. Flatness is obvious. A Cech cocycle for (L, ∇_L) is $(g_{\alpha, \beta}, \frac{dv_{\alpha}}{v_{\alpha}})$. \qed

Remarks 2.8. 1) The same formal definitions 2.1 and 2.4 of Ω^*_{crist} when $(n, p) = 1$ yield $(\Omega^*_{\text{crist}}, d_L) = (\Omega^*_{X}, d_X)$, and the flat τ-connection becomes the flat connection defined in 1.3 and 1.5. So Proposition 2.7 is a direct generalization of it.

2) Let X be proper reduced over a perfect field k, irreducible in the sense that $H^0(X, \mathcal{O}_X) = k$, and admitting a rational point $x \in X(k)$. A generalization of torsion line bundles to higher rank bundles is the notion of Nori finite bundles, that is bundles E which are trivialized over principal bundle $\sigma: Y \to X$.
under a finite flat group scheme G (see [6] for the original definition and also [5] for a study of those bundles). So for the n-torsion line bundles considered in this section, $G \cong \mu_n$. If the characteristic of k is 0, then again σ is étale, the differential $d_Y : \mathcal{O}_Y \to \sigma^* \Omega_X^1 = \Omega^1_Y$ commutes with the action of G, inducing a connection $\nabla_E : E \to \Omega^1_X \otimes \mathcal{O}_X E$ and characteristic classes in our groups $\mathbb{H}^i(X, \mathcal{K}_i^m \xrightarrow{d_{\log}} \Omega^i_X \xrightarrow{d} \Omega^{i+1}_X \cdots)$ (see [3]). If the characteristic of k is $p > 0$, then σ is étale if and only if G is smooth (which here means étale), in which case one can also construct those classes. If G is not étale, thus contains a non-trivial local subschemes, then one should construct as in Proposition 2.5 a differential graded algebra (Ω^*_E, d_E) with a map $(\Omega^*_X, d_X) \xrightarrow{\tau} (\Omega^*_E, d_E)$, so that E is endowed naturally with a flat τ-connection $\nabla_E : E \to \Omega^1_E \otimes \mathcal{O}_X E$. The techniques developed in [3] should then yield classes in the groups $\mathbb{H}^i(X, \mathcal{K}_i^m \xrightarrow{\tau d_{\log}} \Omega^i_E \xrightarrow{d_E} \Omega^{i+1}_E \cdots)$.

REFERENCES

[1] Bloch, S., Esnault, H.: Algebraic Chern-Simons theory, Am. J. of Mathematics 119 (1997), 903-952.
[2] Bloch, S., Esnault, H.: A Riemann-Roch theorem for flat bundles, with values in the algebraic Chern-Simons theory, Annals of Mathematics 151 (2000), 1-46.
[3] Esnault, H.: Algebraic Differential Characters, in Regulators in Analysis, Geometry and Number Theory, Progress in Mathematics, Birkhäuser Verlag, 171 (2000), 89-117.
[4] Esnault, H.: Characteristic classes of flat bundles and determinant of the Gauss-Manin connection, Proceedings of the International Congress of Mathematicians, Beijing 2002, Higher Education Press, 471-483.
[5] Esnault, H., Hai P. H., Sun, X.: On Nori’s Fundamental Group Scheme, preprint 2006, 29 pages.
[6] Nori, M.: The fundamental group scheme, Proc. Indian Acad. Sci. 91 (1982), 73-122.

Universität Duisburg-Essen, Mathematik, 45117 Essen, Germany
E-mail address: esnault@uni-due.de