Obstructive Sleep Apnea and Associated Factors Among Hypertensive Patients Attending a Tertiary Cardiac Center in Tanzania: a Comparative Cross-sectional Study.

Pedro Pallangyo (pedro.pallangyo@gmail.com)
Jakaya Kikwete Cardiac Institute https://orcid.org/0000-0002-6720-5110

Lucy R. Mgopa
Muhimbili University College of Health Sciences: Muhimbili University of Health and Allied Sciences

Zabella Mkojera
PedPal Research Initiative

Makrina Komba
PedPal Research Initiative

Jalack Millinga
Jakaya Kikwete Cardiac Institute

Nsajigwa Misidai
PedPal Research Initiative

Happiness J. Swai
PedPal Research Initiative

Henry Mayala
Jakaya Kikwete Cardiac Institute

Smita Bhalia
Jakaya Kikwete Cardiac Institute

Salma Wibonela
Jakaya Kikwete Cardiac Institute

Mohamed Janabi
Jakaya Kikwete Cardiac Institute

Research

Keywords: OSA, sleep-related breathing disorders, sleep apnea, obstructive sleep apnea, snoring, hypertension, elevated blood pressure, high blood pressure, developing world, sub Saharan Africa, Dar es Salaam, Tanzania

Posted Date: August 4th, 2021
Abstract

Background: There is mounting evidence for a reciprocal yet bidirectional association between sleep-disordered breathing and hypertension. Obstructive sleep apnea (OSA), a common cause of systemic hypertension is an independent risk factor for hypertension-related cardiovascular morbidity and mortality. In this comparative hospital-based cross-sectional study, we sought to explore the burden of obstructive sleep apnea and its associated risk factors among hypertensive patients attending Jakaya Kikwete Cardiac Institute.

Methodology: A total of 1974 individuals (i.e. 1289 hypertensive and 685 normotensives) were consecutively enrolled in this study. The Berlin questionnaire and Epworth Sleepiness Scale were utilized in the assessment of OSA and excessive daytime sleepiness (EDS) respectively. Logistic regression analyses were employed in the determination of associated factors for OSA.

Results: The mean age was 53.4 years and females constituted the large majority (60.4%) of participants. About three quarters (74.1%) of participants had excess body weight, 11.6% had diabetes, 8.0% had asthma and 18.6% had history of recurrent nasal congestion. Positive family history of snoring was reported by 43.1% of participants and 36.9% had a personal history of snoring. Persons with hypertension displayed a higher frequency (42.1%) of OSA compared to their normotensive counterparts (11.8%), p<0.001. Multivariate logistic regression analyses revealed hypertension (OR 5.1, 95% CI 3.2-8.2, p<0.001), diabetes mellitus (OR 2.2, 95% CI 1.3-3.5, p<0.01), chronic nasal congestion (OR 1.6, 95% CI 1.1-2.5, p = 0.01), obesity (OR 2.4, 95% CI 1.8-3.3, p<0.001), increased neck circumference (OR 2.7, 95% CI 1.2-6.4, p = 0.02), family history of snoring (OR 5.5, 95% CI 4.0-7.5, p<0.001), and working >8hrs/24hr (OR 0.6, 95% CI 0.4-1.0, p = 0.03) to have an independent association for OSA. Furthermore, participants with hypertension displayed superior odds for OSA compared to their normotensive counterparts across all subgroup analyses.

Conclusion: OSA is considerably common among hypertensives in a tertiary health care setting in Tanzania. Positive family history of snoring was the strongest associated factor; however, excess body weight proved to be the strongest modifiable risk factor. In view of its pervasiveness, OSA should be an integral part of the medical evaluation in hypertensive individuals.

Background.

There is mounting evidence for a reciprocal yet bidirectional, and a complex however intriguing association between sleep-disordered breathing and hypertension. Obstructive sleep apnea (OSA), a common cause of systemic hypertension is associated with poor blood pressure control and resistant hypertension. The mechanisms underlying the association between OSA and hypertension have not been well elucidated. Nevertheless, sympathetic nervous system overactivity is considered to be the primary mechanism linking OSA to the development of hypertension. It has been postulated that the intermittent hypoxia (i.e. hypoxemic - apneic episodes) induced by OSA leads to chemoreceptor activation.
and increased sympathetic outflow causing inflammation, neurohormonal dysregulation and endothelial dysfunction that predisposes to increased carotid intima-media thickness and arterial stiffness inevitably leading to the development of hypertension.20–26

Although less than one-tenth of the general adult population is estimated to be affected,27 OSA is known to distress between 30\% – 80\% of hypertensives and 70\% – 90\% of the resistant hypertension subgroup.27–30 Conversely, between 35\% and 80\% of individuals with OSA have elevated blood pressure.29,31–33 Evidence from epidemiological studies strongly implicate OSA as an independent risk factor for hypertension-related cardiovascular morbidity (i.e. arrhythmias, cerebrovascular disease, ischemic heart disease, large vessel disease and heart failure)30,34–43 and mortality.37,44–46 Additionally, OSA is associated with increased incidence of numerous nocturnal cardiovascular events including angina pectoris, myocardial infarction and sudden cardiac death.47,48 Owing to the paucity of data on the association between OSA and hypertension in sub-Saharan Africa (SSA) in general and Tanzania in particular, we conducted this comparative hospital-based cross-sectional study to explore the burden of OSA and its associated factors among hypertensive patients attending Jakaya Kikwete Cardiac Institute (JKCI).

Methods.

Study design, Recruitment process, and Definition of terms.

This comparative cross-sectional hospitalized-based study was conducted at JKCI, a tertiary care public teaching hospital in Dar es Salaam, Tanzania between July 2020 and March 2021. A consecutive sampling method was utilized to recruit consented hypertensive outpatients (cases) and normotensive patient escorts (controls) during their scheduled clinic visit. A structured questionnaire bearing questions pertaining to sociodemographic and clinical characteristics, measurement of key vitals (blood pressure, blood sugar, height, weight, and waist and neck circumference) was used during participants’ interviews. Moreover, standard tools (i.e. the Berlin questionnaire49 and Epworth sleepiness scale50) were utilized in the assessment of OSA and EDS respectively. We defined underweight as BMI < 18.5 kg/m2, normal: BMI 18.5–24.9 kg/m2, overweight: BMI 25.0-29.9 kg/m2 and obese: BMI ≥ 30.0 kg/m2.51 Individuals who smoked at least 1 cigarette in the past 6 months were regarded as current smokers, those who last smoked over 6 months or self-reported quitting smoking were considered past smokers and those who never smoked were regarded as non-smokers. Alcohol drinking was defined as at least a once consumption every week. Hypertension was defined as SBP ≥ 140 mmHg or DBP ≥ 90 mmHg, or use of blood pressure lowering agents.52 Diabetes was diagnosed using a random blood glucose (RBG) ≥ 11.1 mmol/L and/or fasting blood glucose (FBG) ≥ 7 mmol/L or use of glucose-lowering agents.53

Statistical analysis.

All statistical analyses utilized STATA v11.0 software. Summaries of continuous variables are presented as means (± SD) and categorical variables are presented as frequencies (percentages). Pearson Chi
square and Student's T-test were used in comparison of categorical and continuous variables respectively. Logistic regression analyses were used to assess for factors associated with OSA. Stepwise and forward selection procedure was used to add and assess the statistically significant variables in the multivariate regression model. The multivariate model was fitted with baseline covariates associated with OSA by bivariate analysis at the < 0.05 significance level. Furthermore, subgroup analyses to determine the odds for OSA by hypertension status was performed and the findings are presented graphically in a forest plot. Odd ratios with 95% confidence intervals and p-values are reported. All tests were 2-sided and p < 0.05 was used to indicate a statistical significance.

Results.

Study population characteristics.

A total of 1974 individuals (i.e. 1289 hypertensive and 685 normotensives) were enrolled in this study. Table 1 displays the sociodemographic and clinical characteristics of study participants. The mean age was 53.4 years and 63.8% of participants were aged 60 years or less. Females constituted the large majority (60.4%) of participants. 54.0% of participants had attained primary school as their highest level of education and 67.9% were in marriage. Over 80% of participants dwelled in urban areas, 63.3% had a regular income generating activity and 26.4% worked at least 8 hours a day. Over one-sixth (15.9%) had a positive smoking history and 10% were current alcohol consumers. Nearly three quarters (74.1%) of participants had excess body weight, 11.6% had diabetes, 8.0% had asthma and 18.6% had history of recurrent nasal congestion. Positive family history of snoring was reported by 43.1% of participants and 36.9% had a personal history of snoring. Surprisingly, none of the participants in this study was aware of OSA and its potential in causing or worsening CVDs and other chronic conditions.
Table 1
Sociodemographic characteristics of study participants by hypertension status.

Characteristic	ALL N = 1974	Hypertensive n = 1289	Normotensive n = 685	p-value
Age (Mean, SD)				< 0.001
Range (<60)	53.4 (15.0)	59.8 (11.8)	41.3 (13.0)	
Age group				
>60	714 (36.2%)	653 (50.7%)	61 (08.9%)	< 0.001
≤60	1260 (63.8%)	636 (49.3%)	624 (91.1%)	
Sex				< 0.01
Male	782 (39.6%)	483 (37.5%)	299 (43.7%)	
Female	1192 (60.4%)	806 (62.5%)	386 (56.4%)	
Education				< 0.001
No Formal	117 (05.9%)	100 (07.8%)	17 (02.5%)	
Primary	950 (48.1%)	643 (49.9%)	307 (44.8%)	0.03
Secondary	513 (26.0%)	318 (24.6%)	195 (28.5%)	0.06
University	394 (20.0%)	228 (17.7%)	166 (24.2%)	< 0.001
Marital status				
Single	192 (09.7%)	48 (03.7%)	144 (21.0%)	< 0.001
Married	1341 (67.9%)	873 (67.7%)	468 (68.3%)	0.79
Divorced	128 (06.5%)	82 (06.4%)	46 (06.7%)	0.80
Widowed	313 (15.9%)	286 (22.2%)	27 (04.0%)	< 0.001
Occupation				
Jobless	371 (18.8%)	253 (19.6%)	118 (17.2%)	0.19
Self-employed	888 (45.0%)	487 (37.8%)	401 (58.5%)	< 0.001
Employed	362 (18.3%)	219 (17.0%)	143 (20.9%)	0.03
Retired	353 (17.9%)	330 (25.6%)	23 (03.4%)	< 0.001
Work duration (hours)				
Mean (SD)	6.2 (3.8)	5.4 (3.5)	7.7 (3.9)	< 0.001
>8 hours/day	521 (26.4%)	256 (19.9%)	265 (38.7%)	< 0.001
Characteristic	ALL	Hypertensive	Normotensive	p-value
--	--------	--------------	--------------	---------
	N = 1974	n = 1289	n = 685	
Residence				
Urban	1618 (82.0%)	1030 (79.9%)	588 (85.8%)	< 0.01
Rural	356 (18.0%)	259 (20.1%)	97 (14.2%)	
Personal Disease History (%) Yes				
Diabetes	228 (11.6%)	211 (16.4%)	17 (02.5%)	< 0.001
	158 (08.0%)	107 (08.3%)	51 (07.5%)	0.53
Asthma	113 (05.7%)	103 (08.0%)	10 (01.5%)	< 0.001
Stroke	367 (18.6%)	270 (21.0%)	97 (14.2%)	< 0.001
Recurrent nocturnal nasal congestion				
Smoking status				
Ever smoker	313 (15.9%)	284 (14.3%)	129 (18.8%)	< 0.01
Never	1661 (84.1%)	1105 (85.7%)	556 (81.2%)	
Alcohol intake (current)				
Yes	197 (10.0%)	70 (05.4%)	127 (18.5%)	< 0.001
No	1777 (90.0%)	1219 (94.6%)	558 (81.5%)	
Body Mass Index (mean, SD)	29.1 (6.2)	30.3 (6.3)	26.9 (5.5)	< 0.001
BMI categories				
Underweight	34 (01.7%)	11 (0.9%)	23 (03.4%)	< 0.001
Normal	478 (24.2%)	225 (17.4%)	253 (36.9%)	< 0.001
Overweight	680 (34.5%)	447 (34.7%)	233 (34.0%)	0.76
Obese	782 (39.6%)	606 (47.0%)	176 (25.7%)	< 0.001
Waist circumference (mean[cm], SD)	98.1 (14.0)	101.0 (13.4)	92.8 (13.4)	< 0.001
Men > 90cm	486 (62.1%)	357 (73.9%)	129 (43.1%)	< 0.001
Women > 80cm	1089 (91.4%)	766 (95.0%)	323 (83.7%)	< 0.001
Neck circumference (mean[cm], SD)	36.8 (3.5)	37.2 (3.4)	35.9 (3.6)	< 0.001
Men > 37cm	434 (55.5%)	314 (65.0%)	120 (40.1%)	< 0.001
Women > 31cm	1095 (91.9%)	767 (95.2%)	328 (85.0%)	< 0.001
Prevalence and correlates of OSA.

Overall, 624 (31.6%) of all participants were categorized as having high-risk for OSA. Persons with hypertension displayed a higher frequency (42.1%) of OSA compared to their normotensive counterparts (11.8%), p < 0.001. Furthermore, the prevalence of OSA was similar among hypertensives regardless of their BP range i.e. 41.1% in SBP < 140, 43.2% in SBP140-159 and 42.4% in SBP ≥ 160. Moreover, individuals with hypertension had a 6.8% prevalence of EDS compared to 5.6% among controls, p = 0.3, Table 2. During bivariate analyses, participants with high-risk OSA were older (57.9 vs 51.3, p < 0.001) and a positive linear correlation between age and OSA until the age group 60–70 years was observed i.e. <40 years, 13.4%; 41–50 years, 29.0%; 51–60 years, 36.7%; 61–70 years, 42.9%; and > 70 years, 36.3%. Moreover, participants with high-risk for OSA had a higher comorbidity history [hypertension (87.0% vs 55.3%, p < 0.001), diabetes (18.3% vs 8.4%, p < 0.001), stroke (7.2% vs 5.0%, p = 0.05) and recurrent nasal congestion (25.8% vs 15.3%, p < 0.001)], and a higher frequency of known risk factors i.e. positive smoking history (18.3% vs 14.7%, p = 0.04), increased body weight (88.9% vs 67.2%, p < 0.001), increased neck circumference (88.6% vs 72.3%, p < 0.001), post-menopause (83.5% vs 59.8%, p < 0.001), positive family (70.2% vs 30.6%, p < 0.001) and personal history of snoring (99.7% vs 7.9%, p < 0.001), and a higher ESS score (42.8% vs 27.6%, p < 0.001); Table 3. Males and females displayed similar odds of OSA (i.e. 31.7% vs 31.5%, p = 0.9).

Characteristic	ALL	Hypertensive	Normotensive	p-value
	N = 1974	n = 1289	n = 685	
Family history of snoring				
Positive	851 (43.1%)	566 (43.9%)	285 (41.6%)	0.33
Negative	982 (49.8%)	617 (47.9%)	365 (53.3%)	0.02
Don’t Know	141 (07.1%)	106 (08.2%)	35 (05.1%)	0.01
Personal history of snoring				
Positive	729 (36.9%)	564 (43.8%)	165 (24.0%)	< 0.001
Negative	1156 (58.6%)	659 (51.1%)	497 (72.6%)	< 0.001
Don’t Know	89 (04.5%)	66 (05.1%)	23 (03.4%)	0.08
OSA awareness				
Yes	0 (0%)	0 (0%)	0 (0%)	1.0
No	1974 (100%)	1289 (100%)	685 (100%)	1.0
Table 2
Prevalence and pattern of EDS by hypertension status.

EDS	Frequency (%)	p - value	
	Hypertensive	Normotensive	
Unlikely	635 (49.3%)	373 (54.5%)	0.03
Average	210 (16.3%)	116 (16.9%)	0.7
Excessive situational	356 (27.6%)	158 (23.1%)	0.03
Excessively sleepy	88 (06.8%)	38 (05.6%)	0.3
Table 3
Sociodemographic and Clinical characteristics comparison by OSA status.

Characteristic	High-risk OSA n = 624	Low-risk OSA n = 1350	p - value
Age (Mean, SD)			
n			
<40 years ⁶	59 (13.4%)		
41–50	98 (29.0%)		<0.001
51–60	176 (36.7%)		<0.001
61–70	206 (42.9%)		<0.001
>70 years	85 (36.3%)		<0.001
Female sex	376 (60.3%)	816 (60.4%)	1.0
≤ Primary education	346 (55.5%)	721 (53.4%)	0.38
Married	439 (70.4%)	902 (66.8%)	0.11
Work duration > 8hrs/day	135 (21.6%)	386 (28.6%)	0.001
Urban residency	505 (80.9%)	1113 (82.4%)	0.42
Comorbidities history			
Hypertension	543 (87.0%)	746 (55.3%)	<0.001
Diabetes	114 (18.3%)	114 (08.4%)	<0.001
Asthma	48 (07.7%)	110 (08.2%)	0.70
Stroke	45 (07.2%)	68 (05.0%)	0.05
Recurrent nocturnal nasal congestion	161 (25.8%)	206 (15.3%)	<0.001
Menopause*	314 (83.5%)	488 (59.8%)	<0.001
Ever smoker	114 (18.3%)	199 (14.7%)	0.04
Current drinker	43 (06.9%)	154 (11.4%)	0.002
Measures of obesity			
BMI ≥ 25	555 (88.9%)	907 (67.2%)	<0.001
Neck > 37cm M/31cm F	553 (88.6%)	976 (72.3%)	<0.001
Waist > 90cm M/80cm F	572 (91.7%)	1003 (74.3%)	<0.001

#: assessed in women, n = 1192 ; *: assessed in hypertensives, n = 1289 ; β: reference group
In a logistic regression model of 16 characteristics, 7 factors i.e. hypertension (OR 5.1, 95% CI 3.2–8.2, p < 0.001), diabetes mellitus (OR 2.2, 95% CI 1.3–3.5, p < 0.01), chronic nasal congestion (OR 1.6, 95% CI 1.1–2.5, p = 0.01), obesity (OR 2.4, 95% CI 1.8–3.3, p < 0.001), increased neck circumference (OR 2.7, 95% CI 1.2–6.4, p = 0.02), family history of snoring (OR 5.5, 95% CI 4.0-7.5, p < 0.001), and working > 8hrs/24hr (OR 0.6, 95% CI 0.4-1.0, p = 0.03) were found to have an independent association for OSA, Table 4. Furthermore, as displayed in Fig. 1, participants with hypertension had superior odds for OSA compared to their normotensive counterparts across all subgroup analyses. For instance, among individuals with BMI ≥ 25 those with hypertension displayed a 4-fold chance of having OSA compared to normotensive persons, OR 4.0, 95% CI 3.0-5.5, p < 0.001. Similarly, among participants with a positive family history of snoring, those with hypertension had a 7-fold likelihood of having OSA compared to their counterparts with negative history of hypertension, OR 7.1, 95%CI 5.1–10.1, p < 0.001. Nevertheless, participants with diabetes displayed similar odds of OSA regardless of their hypertension status, OR 1.9, 95%CI 0.6–6.6, p = 0.21.
Table 4
Logistic regression analyses for factors associated with OSA.

Characteristic	Comparative	OR	95% CI	p-value	Adj.OR	95% CI	p-value
Age > 60	Age ≤ 60	1.9	1.6–2.3	< 0.001	1.2	0.8–1.7	0.32
Male	Female	1.0	0.8–1.2	0.94	-	-	-
Diabetes	Diabetes-free	2.4	1.8–3.2	< 0.001	2.2	1.3–3.5	< 0.01
Asthmatic	Asthma-free	0.9	0.7–1.3	0.73	-	-	-
History of stroke	Stroke-free	1.5	1.0–2.2	0.05	0.8	0.4–1.6	0.57
Chronic nasal congestion	No congestion	1.9	1.5–2.4	< 0.001	1.6	1.1–2.5	0.01
Ever smoker	Never smoker	1.3	1.0–1.7	0.05	0.8	0.4–1.8	0.63
BMI ≥ 30	BMI < 30	3.7	3.0–4.5	< 0.001	2.4	1.8–3.3	< 0.001
Neck > 37cm M/31cm F	Normal Neck	3.0	2.3–3.9	< 0.001	2.7	1.2–6.4	0.02
Family history of snoring	Negative history	6.1	4.9–7.6	< 0.001	5.5	4.0–7.5	< 0.001
Uncontrolled BP	BP < 140/90	0.9	0.7–1.1	0.33	-	-	-
ESS score ≥ 10	ESS score < 10	2.0	1.6–2.4	< 0.001	1.3	0.9–1.8	0.12
Hypertensive	Negative history	5.4	4.2–7.0	< 0.001	5.1	3.2–8.2	< 0.001
Alcohol intake	Non drinker	0.6	0.4–0.8	0.002	1.4	0.7–3.1	0.34
Post-menopausal	Pre-menopausal	3.4	2.5–4.6	< 0.001	1.2	0.8–1.9	0.36
Works > 8hrs/day	works ≤ 8hrs/day	0.7	0.6–0.9	0.001	0.6	0.4-1.0	0.03

Discussion.
Over the past five decades, OSA, a potentially treatable disorder that is characterized by cyclic intermittent hypoxia and the disruption of sleep architecture has been increasingly recognized as a widespread syndrome causing significant population health burden. Despite its ubiquity and potential to either cause or modify the course of other chronic disorders, OSA continues to be underdiagnosed and undertreated worldwide.54,55 With over two-fifth of hypertensives having OSA, this present study echoes findings from previous studies1–30 that OSA is highly prevalent among hypertensive individuals. In unison with the literature,56–59 this study has revealed critically low awareness regarding OSA and its associated health-related consequences. Amid the rapid rising obesity, hypertension and diabetes rates, it is pivotal to intensify the ongoing health education campaigns to increase awareness so that they coincide with the temporal trends in public knowledge of OSA amongst others.

Moreover, a positive linear correlation between age and OSA until the age group 60–70 years was observed in this present study. Such findings are literally identical to the Sleep Heart Health Study which demonstrated a simple, positive linear correlation between age and OSA until the age of about 65 years.60 Furthermore, this linear trend between OSA and age until about the age 65 then levelling off or even decreasing has been reported by a couple of other recent studies.61–63 We observed similar EDS rates among hypertensives and normotensives. Previous studies have revealed conflicting results with some64,65 showing independent association between EDS and hypertension while others did not.19,66,67 As witnessed in this study, such controversy can largely be explained by a high prevalence of overweight and obesity which independently increases the risk of EDS.68–70

Nonetheless, with a 2-fold likelihood for OSA among obese individuals, our findings are in consonance with numerous other studies which have revealed excessive body weight as a potential factor for the development and progression of OSA.60,71–79 Furthermore, as it was vivid in this study, other anthropometric measurements including neck and waist circumference have revealed a monotonic relationship with OSA similar to previous studies.60,80–83 Moreover, it is postulated that each unit increase in BMI is associated with a 14% increased risk of developing OSA and the odds of moderate-severe OSA increases 6-fold for every 10% weight gain.74 Conversely, a 10–15% reduction in body weight has been shown to reduce OSA severity by 50%.84 Our findings similar to majority of previous studies imply that excessive body weight is the strongest modifiable risk factor for OSA.

Our association analysis furthermore disclosed a 2-fold increase in OSA likelihood among diabetes type 2 patients compared to their diabetes-free counterparts. Several cross-sectional and longitudinal studies have demonstrated an independent association between OSA and incident type 2 diabetes85–91 as well as with insulin resistance but diabetes-free persons.92–95 Furthermore, a positive family history of snoring instigated an over 5-fold increase in OSA likelihood and was found to be the strongest predictor of OSA in this study. Similarly, a Cleveland Family Study, the largest familial study investigating OSA revealed a near 2-fold risk among relatives of OSA compared to their control neighbors.96 Furthermore, studies involving monozygotic twins and siblings/children of persons with OSA have shown an up-to 50% increased odds of developing OSA compared to the general population.97–100 Additionally, numerous
genetic studies101–109 have identified several novel genetic loci associated with a sleep apnea phenotype suggesting around two-fifth110–112 of the OSA variance is attributable to genetic factors.

Strengths and Limitations.

The strengths of this study include (i) a sufficiently large sample to estimate the prevalence of OSA and conduct analyses stratified according to potential effect modifiers, (ii) the use of rigorous and standardized tools for data collection and utilization of qualified and competent personnel in all measurements, and (iii) presence of a comparative group in this study made the demonstration of outcome measure risk more robust. Nonetheless, this study is not short of limitations. The cross-sectional nature and convenience sampling method technique utilized in this study cannot preclude bias and limits both causality exploration and generalizability of findings. Prospective studies on the longitudinal association between OSA and hypertension incidence will help elucidate the true nature and magnitude of this intriguing association. Lastly, the gold standard for the diagnosis of OSA is an overnight polysomnography; however, because of its limited availability, complex technical support, and high cost, this study relied on a self-reported but validated assessment modality.

Conclusion.

In conclusion; OSA, a largely modifiable CVD risk factor is considerably common among hypertensives in a tertiary health care setting in Tanzania. Positive family history of OSA was found to be the strongest associated factor; however, excess body weight proved to be the strongest modifiable risk factor. In view of its pervasiveness, OSA ought to be an integral part of the medical evaluation in hypertensive individuals. Furthermore, a multipronged approach to curb the escalating obesity epidemic is paramount in the battle against sleep-related breathing disorders.

List Of Abbreviations.

- 95% CI, 95% Confidence Interval; BMI, body mass index; BP, blood pressure; CVD, cardiovascular disease; DBP, diastolic blood pressure; EDS, excessive daytime sleepiness; FBG, fasting blood glucose; JKCI, Jakaya Kikwete Cardiac Institute; OR, Odd Ratio; OSA, Obstructive sleep apnea; RBG, random blood glucose; SSA, sub Saharan Africa; SBP, systolic blood pressure.

Declarations.

Ethics approval and consent to participate.

The study protocol was submitted to, and approved by the Ethical Committee, of the Jakaya Kikwete Cardiac Institute. Written informed consent was obtained from all study participants. This research was conducted in accordance with the Declaration of Helsinki.

Availability of data and materials.
The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

Consent to publish.

Not applicable

Competing interest.

The authors have no conflict of interest to declare.

Author contributions.

PP and LRM conceived the study. MK, JM, NM, and HJS conducted all the interviews, as well as anthropometric and blood pressure measurements. ZM entered all the data. HM, SB, SW, and MJ participated in patient management including counseling. PP performed all the data cleaning and analysis. The corresponding author (PP) wrote the first draft of the manuscript, and other authors contributed to and approved it. All authors made the decision to submit the manuscript for publication. All authors undertake responsibility for the accuracy and integrity of the analysis.

Funding.

This study was sponsored by the PedPal Research Initiative.

Acknowledgement.

We extend our gratitude to all participants for their willingness, tolerance and cooperation offered during this study.

References.

1. Kario K. Obstructive sleep apnea syndrome and hypertension: mechanism of the linkage and 24-h blood pressure control. Hypertens Res. 2009; 32(7):537-541.
2. Lavie P, Herer P, Hoffstein V, et al. Obstructive sleep apnoea syndrome as a risk factor for hypertension: population study. BMJ. 2000; 320(7233): 479-482.
3. Calhoun DA, Harding SM. Sleep and hypertension. Chest. 2010; 138(2):434-443.
4. Börgel J, Sanner BM, Keskin F, et al. Obstructive sleep apnea and blood pressure. Interaction between the blood pressure-lowering effects of positive airway pressure therapy and antihypertensive drugs. Am J Hypertens. 2004; 17(12 Pt 1):1081-1087.
5. Logan AG, Perlikowski SM, Mente A, et al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens 2001; 19: 2271–2277.
6. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 2000; 342: 1378–1384.
7. Lavie P, Hoffstein V. Sleep apnea syndrome: a possible contributing factor to resistant. Sleep 2001; 24: 721–725.

8. Bixler EO, Vgontzas AN, Lin HM, et al. Association of hypertension and sleep-disordered breathing. Arch Intern Med 2000; 160:2289–2295.

9. Young T, Peppard P, Palta M, et al. Population-based study of sleep-disordered breathing as a risk factor for hypertension. Arch Intern Med 1997; 157: 1746–1752.

10. Nieto FJ, Young TB, Lind BK, et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. JAMA 2000; 283: 1829–1836.

11. Marin JM, Agustí A, Villar I, et al. Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA 2012; 307: 2169–2176.

12. Pedrosa RP, Drager LF, Gonzaga CC, et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension 2011; 58: 811–817.

13. Gonçalves SC, Martinez D, Gus M, et al. Obstructive sleep apnea and resistant hypertension: a case-control study. Chest 2007; 132: 1858–1862.

14. Hou H, Zhao Y, Yu W, et al. Association of obstructive sleep apnea with hypertension: A systematic review and meta-analysis. J Glob Health. 2018; 8(1):010405.

15. Sapiña-Beltrán E, Torres G, Benitez I, et al. Prevalence, Characteristics, and Association of Obstructive Sleep Apnea with Blood Pressure Control in Patients with Resistant Hypertension. Ann Am Thorac Soc. 2019; 16(11):1414-1421.

16. Patel AR, Patel AR, Singh S, Singh S, Khawaja I. The Association of Obstructive Sleep Apnea and Hypertension. Cureus. 2019; 11(6):e4858.

17. Ahmad M, Makati D, Akbar S. Review of and Updates on Hypertension in Obstructive Sleep Apnea. Int J Hypertens. 2017; 2017: 1848375.

18. Belyavskiy E, Pieske-Kraigher E, Tadic M. Obstructive sleep apnea, hypertension, and obesity: A dangerous triad. J Clin Hypertens (Greenwich). 2019; 21(10):1591-1593.

19. Tam W, Ng SS, To KW, Ko FW, Hui DS. The interaction between hypertension and obstructive sleep apnea on subjective daytime sleepiness. J Clin Hypertens (Greenwich). 2019; 21(3):390-396.

20. Steiropoulos P, Papanas N, Nena E, et al. Inflammatory markers in middle-aged obese subjects: does obstructive sleep apnea syndrome play a role? Mediators Inflamm. 2010; 2010:675320.

21. Zhang W, Si LY. Obstructive sleep apnea syndrome (OSAS) and hypertension: pathogenic mechanisms and possible therapeutic approaches. Ups J Med Sci. 2012; 117(4):370–382.

22. Wolf J, Narkiewicz K. Optimizing the management of uncontrolled/ resistant hypertension: the importance of sleep apnoea syndrome. Curr Vasc Pharmacol. 2017; 16(1):44–53.

23. Jelic S, Bartels MN, Mateika JH, et al. Arterial stiffness increases during obstructive sleep apneas. Sleep. 2002; 25(8):850–855.
24. Minoguchi K, Yokoe T, Tazaki T, et al. Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea. Am J Respir Crit Care Med. 2005; 172(5):625–630.
25. Jehan S, Zizi F, Pandi-Perumal SR, et al. Obstructive sleep apnea, hypertension, resistant hypertension and cardiovascular disease. Sleep Med Disord. 2020; 4(3):67-76.
26. Fava C, Dorigoni S, Dalle Vedove F, et al. Effect of CPAP on blood pressure in patients with OSA/hypopnea a systematic review and meta-analysis. Chest. 2014; 145:762–771.
27. Epstein MD, Kristo D, Strollo PJ, et al. Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med2009; 5:263–276.
28. Parati G, Ochoa JE, Bilo G, et al. Obstructive sleep apnea syndrome as a cause of resistant hypertension. Hypertens Res 2014; 37:601-613.
29. Parati G, Lombardi C, Hedner J, et al. Position paper on the management of patients with obstructive sleep apnea and hypertension: joint recommendations by the European Society of Hypertension, by the European Respiratory Society and by the members of European COST (Cooperation in Scientific and Technological research) ACTION B26 on obstructive sleep apnea. J Hypertension2012; 30:633–646.
30. Somers VK, White DP, Amin R, et al. Sleep apnea and cardiovascular disease: an AHA/ACC Foundation Scientific Statement from the AHA Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. J Am Coll Cardiol2008; 52:686–717.
31. Worsnop CJ , Naughton MT , Barter CE , et al . The prevalence of obstructive sleep apnea in hypertensives . Am J Respir Crit Care Med . 1998 ; 157 (1): 111 - 115 .
32. Durán-Cantolla J, Aizpuru F , Martínez-Null C , Barbé-Illa F . Obstructive sleep apnea_hypopnea and systemic hypertension. Sleep Med Rev . 2009 ; 13 (5): 323 - 331 .
33. Parati G, Lombardi C, Hedner J, et al. Recommendations for the management of patients with obstructive sleep apnoea and hypertension. Eur Respir J 2013; 41:523-538.
34. Leung RS, Bradley TD. Sleep apnea and cardiovascular disease. Am J Respir Crit Care Med 2001; 164: 2147–2165.
35. Pinto JA, Ribeiro DK, Cavallini AF, et al. Comorbidities Associated with Obstructive Sleep Apnea: a Retrospective Study. Int Arch Otorhinolaryngol. 2016 Apr;20(2):145-150
36. Gottlieb DJ, Yenokyan G, Newman AB, et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the sleep heart health study. Circulation 2010; 122: 352–360.
37. Yaggi HK, Concato J, Kernan WN, et al. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med 2005; 353: 2034–2041.
38. Redline S, Yenokyan G, Gottlieb DJ, et al. Obstructive sleep apnea-hypopnea and incident stroke: the sleep heart health study. Am J Respir Crit Care Med 2010; 182: 269–277
39. Shahar E, Whitney CW, Redline S, et al. Sleep disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 2001;163:19 –25
40. Lattimore JD, Celermajer DS, Wilcox I. Obstructive sleep apnea and cardiovascular disease. J Am Coll Cardiol. 2003; 41(9):1429-1437.
41. Peker Y, Kraiczi H, Hedner J, Loth S, Johansson A, Bende M. An independent association between obstructive sleep apnoea and coronary artery disease. Eur Respir J 1999; 14:179–184.
42. Mooe T, Franklin KA, Wiklund U, Rabben T, Holmstrom K. Sleep-disordered breathing and myocardial ischemia in patients with coronary artery disease. Chest 2000; 117:1597–602.
43. Shah NA, Yaggi HK, Concato J, Mohsenin V. Obstructive sleep apnea as a risk factor for coronary events or cardiovascular death. Sleep and Breathing. 2010; 14(2):131-136.
44. Young T, Finn L, Peppard PE, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep 2008; 31: 1071–1078.
45. Marshall NS, Wong KK, Liu PY, et al. Sleep apnea as an independent risk factor for all-cause mortality: the Busselton Health Study. Sleep 2008; 31: 1079–1085.
46. Punjabi NM, Caffo BS, Goodwin JL, et al. Sleep-disordered breathing and mortality: a prospective cohort study. PLoS Med 2009; 6: e1000132.
47. Gami AS, Howard DE, Olson EJ, Somers VK. Day-night pattern of sudden death in obstructive sleep apnea. N Engl J Med. 2005; 352(12):1206-1214.
48. Kuniyoshi FH, Garcia-Touchard A, Gami AS, et al. Day-night variation of acute myocardial infarction in obstructive sleep apnea. J Am Coll Cardiol. 2008; 52(5):343-346.
49. Tan A, Yin JD, Tan LW, et al. Using the Berlin questionnaire to predict obstructive sleep apnea in the general population. J Clin Sleep Med. 2017;13(3):427–432.
50. Drakatos P, Ghiassi R, Jarrold I, Harris J, Abidi A, Douiri A, et al. The use of an online pictorial Epworth Sleepiness Scale in the assessment of age and gender specific differences in excessive daytime sleepiness. J Thorac Dis. 2015;7(5):897–902.
51. Centers for Disease Control and Prevention. Division of Nutrition, Physical Activity, and Obesity. About Adult BMI. http://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/
52. Chobanian AV, Bakris GL, Black HR. seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension. 2003; 42: 1206-1252.
53. American Diabetes Association. Classification and diagnosis of diabetes. Sec. 2. In Standards of Medical Care in Diabetes—2015. Diabetes Care 2015; 38(Suppl. 1):S8–S16.
54. Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5(2):136–143.
55. Young T, Evans L, Finn L, Palta M. Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women. Sleep. 1997;20(9):705–706.
56. Hedner J, Bengtsson-Bostrom K, Peker Y, et al. Hypertension prevalence in obstructive sleep apnoea and sex: a population-based case–control study. Eur Respir J 2006; 27: 564–570.
57. Sia CH, Hong Y, Tan LWL, et al. Awareness and knowledge of obstructive sleep apnea among the general population. Sleep Med. 2017 Aug; 36:10-17.
58. Redline S, Sotres-Alvarez D, Loredo J, et al. Sleep-disordered breathing in Hispanic/Latino individuals of diverse backgrounds. The Hispanic Community Health Study/Study of Latinos. Am J Respir Crit Care Med. 2014; 189(3):335–44.
59. Rezaie L and Khaledi-Paveh B. The Knowledge and Awareness of the General Public About Obstructive Sleep Apnea. J Kermanshah Univ Med Sci. 2018; 22(2):e74025.
60. Young T, Shahar E, Nieto FJ, et al. Predictors of sleep-disordered breathing in community-dwelling adults: the Sleep Heart Health Study. Arch Intern Med. 2002; 162(8):893–900.
61. Huang T, Lin BM, Markt SC, et al. Sex differences in the associations of obstructive sleep apnoea with epidemiological factors. Eur Respir J. 2018 Mar 15;51(3):1702421.
62. Marshall NS, Wong KK, Cullen SR, Knuiman MW, Grunstein RR. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J Clin Sleep Med. 2014 Apr 15;10(4):355-362.
63. Fietze I, Laharnar N, Obst A, et al. Prevalence and association analysis of obstructive sleep apnea with gender and age differences - Results of SHIP-Trend. J Sleep Res. 2019 Oct;28(5):e12770.
64. Goldstein IB, Ancoli-Israel S, Shapiro D. Relationship between daytime sleepiness and blood pressure in healthy older adults. Am J Hypertens. 2004 Sep;17(9):787-792.
65. Mbathou Ngahane BH, Nganda MM, Dzudie A, et al. Prevalence and determinants of excessive daytime sleepiness in hypertensive patients: a cross-sectional study in Douala, Cameroon BMJ Open 2015;5:e008339.
66. Pefura-Yone E, Kamga OJ, Balkissou AD, et al. Excessive Daytime Sleepiness and Hypertension in Cameroonian Adult Population, American Journal of Internal Medicine. 2020; 8 (1):8-13.
67. Martynowicz H, Skomro R, Gać P, et al. The influence of hypertension on daytime sleepiness in obstructive sleep apnea. J Am Soc Hypertens. 2017 May;11(5):295-302.
68. Mokhber S, Ravanbakhsh PZ, Jesmi F, et al. Comparing the Excessive Daytime Sleepiness of Obese and Non-obese Patients. Iran Red Crescent Med J. 2016; 18(7): e21964.
69. Panossian LA; Veasey SC. Daytime sleepiness in obesity: mechanisms beyond obstructive sleep apnea—a review. SLEEP2012;35(5):605-615.
70. Hayley AC, Williams LJ, Kennedy GA, et al. Excessive Daytime Sleepiness and Body Composition: A Population-Based Study of Adults. PLoS ONE 2014; 9(11): e112238.
71. Durán J, Esnaola S, Rubio R, Iztueta A. Obstructive sleep apnea-hypopnea and related clinical features in a population-based sample of subjects aged 30 to 70 yr. Am J Respir Crit Care Med. 2001;163(3 Pt 1):685–689.
72. Resta O, Foschino-Barbaro MP, Legari G, et al. Sleep-related breathing disorders, loud snoring and excessive daytime sleepiness in obese subjects. Int J Obes Relat Metab Disord. 2001;25(5):669–675.
73. Wolk R, Somers VK. Obesity-related cardiovascular disease: implications of obstructive sleep apnea. Diabetes Obes Metab. 2006;8(3):250–260.

74. Peppard PE, Young T, Palta M, Dempsey J, Skatrud J. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000;284(23):3015–3021.

75. Romero-Corral A, Caples SM, Lopez-Jimenez F, and Somers Interactions Between Obesity and Obstructive Sleep Apnea. Chest. 2010 Mar; 137(3): 711–719.

76. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328(17):1230–1235.

77. Bixler EO, Vgontzas AN, Ten Have T, Tyson K, Kales A. Effects of age on sleep apnea in men: I. Prevalence and severity. Am J Respir Crit Care Med. 1998;157(1):144–148.

78. Ip MS, Lam B, Tang LC, Lauder IJ, Ip TY, Lam WK. A community study of sleep-disordered breathing in middle-aged Chinese women in Hong Kong: prevalence and gender differences. Chest. 2004;125(1):127–134.

79. Ip MS, Lam B, Lauder IJ, et al. A community study of sleep-disordered breathing in middle-aged Chinese men in Hong Kong. Chest. 2001;119(1):62–69.

80. Stradling JR, Crosby JH. Predictors and prevalence of obstructive sleep apnea and snoring in 1001 middle aged men. Thorax 1991; 46:85–90.

81. Ferini-Strambi L, Zucconi M, Palazzi S, et al. Snoring and nocturnal oxygen desaturations in an Italian middle-aged male population: epidemiologic study with an ambulatory device. Chest 1994; 105:1759–1764.

82. Davies RJO, Ali NJ, Stradling JR. Neck circumference and other clinical features in the diagnosis of the obstructive sleep apnea syndrome. Thorax 1992; 47:101–105.

83. Grunstein R, Wilcox I, Yang TS, Gould Y, Hedner J. Snoring and sleep apnea in men: association with central obesity and hypertension. Int J Obes 1993; 17:533–540.

84. Nousseir HM. Obesity: the major preventable risk factor of obstructive sleep apnea. J Curr Med Res Pract 2019; 4:1-5.

85. Appleton S.L., Vakulin A., McEvoy R.D. Nocturnal hypoxemia and severe obstructive sleep apnea are associated with incident type 2 diabetes in a population cohort of men. J Clin Sleep Med. 2015; 11(6):609–614.

86. Kendzerska T, Gershon AS, Hawker G. Obstructive sleep apnea and incident diabetes. A historical cohort study. Am J Respir Crit Care Med. 2014; 190(2):218–225.

87. Marshall NS, Wong KK, Phillips CL. Is sleep apnea an independent risk factor for prevalent and incident diabetes in the Busselton Health Study? J Clin Sleep Med. 2009; 5(1):15–20.

88. Nagayoshi M, Punjabi NM, Selvin E. Obstructive sleep apnea and incident type 2 diabetes. Sleep Med. 2016; 25:156–161.

89. Botros N., Concato J., Mohsenin V. Obstructive sleep apnea as a risk factor for type 2 diabetes. Am J Med. 2009; 122(12):1122–1127.
90. Celen YT, Hedner J, Carlson J. Impact of gender on incident diabetes mellitus in obstructive sleep apnea: a 16-year follow-up. J Clin Sleep Med. 2010; 6(3):244–250.

91. Lindberg E, Theorell-Haglow J, Svensson M. Sleep apnea and glucose metabolism: a long-term follow-up in a community-based sample. Chest. 2012; 142(4):935–942.

92. Punjabi N.M., Sorkin J.D., Katzel L.I. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med. 2002;165(5):677–682.

93. Punjabi NM, Beamer BA. Alterations in glucose disposal in sleep-disordered breathing. Am J Respir Crit Care Med. 2009; 179(3):235–240.

94. Iftikhar I.H., Hoyos C.M., Phillips C.L. Meta-analyses of the association of sleep apnea with insulin resistance, and the effects of CPAP on HOMA-IR, adiponectin, and visceral adipose fat. J Clin Sleep Med. 2015; 11(4):475–485.

95. Ip M.S., Lam B., Ng M.M. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med. 2002; 165(5):670–676.

96. Redline S, Tishler PV, Tosteson TD, et al. The familial aggregation of obstructive sleep apnea. Am J Respir Crit Care Med. 1995;151(3 Pt 1):682–687.

97. Ferini-Strambi L, Calori G, Oldani A, et al. Snoring in twins. Respir Med. 1995;89(5):337–340.

98. Friberg D, Sundquist J, Li X, Hemminki K, Sundquist K. Sibling risk of pediatric obstructive sleep apnea syndrome and adenotonsillar hypertrophy. Sleep. 2009 Aug;32(8):1077-1083.

99. Lundkvist, K., Sundquist, K., Li, X., & Friberg, D. (2012). Familial risk of sleep-disordered breathing. Sleep Medicine, 13(6), 668-673.

100. Szily, M., Tarnoki, A.D., Tarnoki, D.L. et al. Genetic influences on the onset of obstructive sleep apnoea and daytime sleepiness: a twin study. Respir Res 2019; **20**: 125.

101. Palmer LJ, Buxbaum SG, Larkin EK, et al. A whole-genome scan for obstructive sleep apnea and obesity. Am J Hum Genet. 2003;72:340–350.

102. Patel SR, Larkin EK, Mignot E, et al. The association of angiotensin converting enzyme (ACE) polymorphisms with sleep apnea and hypertension. Sleep. 2007;30:531–533.

103. Khalyfa A, Capdevila OS, Buazza MO, et al. Genome-wide gene expression profiling in children with non-obese obstructive sleep apnea. Sleep Med. 2008;10:75–86.

104. Gozal D, Capdevila OS, Kheirandish-Gozal L, et al. APOE epsilon 4 allele, cognitive dysfunction, and obstructive sleep apnea in children. Neurology. 2007;69:243–249.

105. Kalra M, Pal P, Kaushal R, et al. Association of ApoE genetic variants with obstructive sleep apnea in children. Sleep Med. 2008;3:260–265.

106. Farias Tempaku P, Leite Santoro M, Bittencourt L, et al. Genome-wide association study reveals two novel risk alleles for incident obstructive sleep apnea in the EPISONO cohort. Sleep Med. 2020 Feb;66:24-32.

107. Maierean AD, Bordea IR, Salagean T, et al. Polymorphism of the Serotonin Transporter Gene and the Peripheral 5-Hydroxytryptamine in Obstructive Sleep Apnea: What Do We Know and What are We
Looking for? A Systematic Review of the Literature. *Nat Sci Sleep*. 2021;13:125-139

108. Kerz, J., Schürmann, P., Rothämel, T. *et al.* Gene variants associated with obstructive sleep apnea (OSA) in relation to sudden infant death syndrome (SIDS). *Int J Legal Med* 2021.

109. Patel SR, Goodloe R, De G, et al. Association of Genetic Loci with Sleep Apnea in European Americans and African-Americans: The Candidate Gene Association Resource (CARe). *PLoS ONE* 2012; 7(11): e48836.

110. Casale M, Pappacena M, Rinaldi V, et al. Obstructive sleep apnea syndrome: from phenotype to genetic basis. *Curr Genomics*. 2009;10(2):119–126.

111. Yue W, Liu H, Zhang J, et al. Association study of serotonin transporter gene polymorphisms with obstructive sleep apnea syndrome in Chinese Han population. *Sleep*. 2008;31(11):1535–1541.

112. Yue W, Liu P, Hao W, et al. Association study of sleep apnea syndrome and polymorphisms in the serotonin transporter gene. *Chin J Med Genet*. 2005;22(5):533–536.

Figures

![Forest Plot](image)

Figure 1

Odd ratios for OSA by hypertension status. This forest plot shows the odd ratios (black squares), 95% CIs (horizontal lines), and p-values for the interaction between OSA and any subgroup variable by...
hypertension status.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- STROBEChecklist.doc