

BOUNDEDNESS IN A QUASILINEAR PARABOLIC-PARABOLIC KELLER-SEGEL SYSTEM WITH THE SENSITIVITY \(v^{-1}S(u) \)

Kentarou Fujie, Chihiro Nishiyama and Tomomi Yokota

Department of Mathematics
Tokyo University of Science
1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Abstract. This paper is concerned with global existence and boundedness of classical solutions to the quasilinear fully parabolic Keller-Segel system

\[
\begin{align*}
 \frac{\partial u}{\partial t} &= \nabla \cdot (D(u)\nabla u) - \nabla \cdot \left(\frac{S(u)}{v} \nabla v \right), & x \in \Omega, \ t > 0, \\
 \frac{\partial v}{\partial t} &= \Delta v - v + u, & x \in \Omega, \ t > 0, \\
 \frac{\partial u}{\partial \nu} &= \frac{\partial v}{\partial \nu} = 0, & x \in \partial \Omega, \ t > 0, \\
 u(x,0) &= u_0(x), \ v(x,0) = v_0(x), & x \in \Omega,
\end{align*}
\]

(1.1)

where \(\Omega \) is a bounded domain in \(\mathbb{R}^N \) with smooth boundary, \(N \in \mathbb{N} \) and \(\frac{\partial}{\partial \nu} \) denotes differentiation with respect to the outward normal of \(\partial \Omega \). The initial data \((u_0, v_0)\) is assumed to be a pair of functions fulfilling

\[
u_0 \geq 0, \ u_0 \in C^2(\Omega) \quad \text{and} \quad v_0 > 0, \ v_0 \in C^1(\Omega). \label{initial_conditions}
\]

Moreover we suppose that \(D \) and \(S \) satisfy the following conditions:

\[
\begin{align*}
 D, S &\in C^2([0, \infty)) \quad \text{with} \ S(0) = 0 \quad \text{and} \ S \geq 0, \label{regularity_s}
 \\
 D(u) &\geq K_0(u + 1)^{m-1} \quad \text{with} \ m \in \mathbb{R} \quad \text{and} \ K_0 > 0 \quad \text{for all} \ u \geq 0, \\
 D(u) &\leq K_1(u + 1)^{M-1} \quad \text{with} \ M \in \mathbb{R} \quad \text{and} \ K_1 > 0 \quad \text{for all} \ u \geq 0, \\
 \frac{S(u)}{D(u)} &\leq K(u + 1)^\alpha \quad \text{with} \ \alpha < \frac{2}{N} \quad \text{and} \ K > 0 \quad \text{for all} \ u \geq 0.
\end{align*}
\]

(1.3) (1.4) (1.5) (1.6)

1. **Introduction.** The Keller-Segel system, which was proposed by Keller and Segel [5] in 1970, describes a motion of cellular slime molds with chemotaxis. The system has been widely studied (see e.g., Hillen and Painter [3]).

In the present paper we consider the following quasilinear fully parabolic Keller-Segel system:

From a mathematical point of view it is important to study whether solutions remain bounded or blow up. As to the problem (1.1) without \(\frac{1}{v} \), i.e., in the case that the chemotaxis term in the first equation in (1.1) is replaced with \(-\nabla \cdot (S(u)\nabla v) \), Tao and Winkler [7] proved...
boundedness of solutions, provided that D and S satisfy (1.3), (1.4), (1.5) and (1.6) and Ω is convex. Recently this convexity condition of Ω was removed in [4]. As to blow-up of solutions to the problem (1.1) without $\frac{1}{N}$, Winkler [10, 8] and Cieślak and Stinner [1] established that the solutions blow up in finite time under the conditions that $\frac{S(u)}{D(u)} \geq K u^{\frac{N}{2}} + \eta$ for $u > 1$ with $K > 0$, $\eta > 0$ and that $S(u) \geq cu$ for some $c > 0$. Therefore the optimal exponent is known as $\frac{2}{N}$.

In the last decade, a growing literature has been concerned with signal-dependent sensitivity. The case that the chemotaxis term is $-\chi_0 \nabla \cdot (\frac{u}{v} \nabla v)$ was already proposed in the original model by Keller and Segel from a biological point of view such as the Weber-Fechner law. In [9, 2] it has been shown that (1.1) with $\chi_0 > 0$ small enough has a globally bounded solution, provided that the first equation has the linear diffusion Δu, i.e., $D(u) \equiv 1$. However, to the best of our knowledge, no results are available for the system with both nonlinear diffusion and signal-dependent sensitivity. As opposed to the case without $\frac{1}{N}$, we find that all solutions of (1.1) are global and bounded in the case $D(u) \equiv 1$ and $S(u) \equiv \chi_0 u$ with sufficiently small $\chi_0 > 0$ in [9, 2]. This means that the case $\alpha = 1$ and sufficiently small $K > 0$ admits global existence and boundedness. As $1 > \frac{2}{N}$ for $N \geq 3$, this fact indicates that the constant $\frac{2}{N}$ is not optimal in the condition (1.6). The question of optimality of (1.6) remains an open problem.

The purpose of the present paper is to establish a globally bounded solution of the Keller-Segel system with not only the nonlinear diffusion $\nabla \cdot (D(u) \nabla u)$ but also the singular sensitivity function $\frac{S(u)}{v}$. Our main result reads as follows.

Theorem 1.1. Assume that (u_0, v_0) fulfills (1.2). Let D and S satisfy (1.3), (1.4), (1.5) and (1.6) with some $m \in \mathbb{R}$, $M \in \mathbb{R}$, $\alpha < \frac{2}{N}$, $K_0 > 0$, $K_1 > 0$ and $K > 0$. Then there exists a couple (u, v) of nonnegative functions such that

\[
\begin{align*}
 u &\in C^0(\overline{\Omega} \times [0, \infty)) \cap C^{2,1}(\overline{\Omega} \times (0, \infty)), \\
 v &\in C^0(\overline{\Omega} \times [0, \infty)) \cap C^{2,1}(\overline{\Omega} \times (0, \infty))
\end{align*}
\]

which solves (1.1) classically and moreover there exists $C > 0$ such that

$$\|u(\cdot, t)\|_{L^\infty(\Omega)} \leq C \quad \text{for all } t > 0.$$

The difficulty in the proof of Theorem 1.1 lies in the singularity of $\frac{1}{N}$. In the present paper, a uniform-in-time lower bound for v ([2]) builds a “bridge” between the regular case ([7, 4]) and the singular case. We will consider approximate problems in Section 2 and prepare some estimates. Section 3 is devoted to discussing convergence of approximate solutions and completing the proof of Theorem 1.1.

2. **Approximate problem.** We consider the following regularization of (1.1):

\[
\begin{align*}
 \frac{\partial u_\varepsilon}{\partial t} &= \nabla \cdot (D(u_\varepsilon) \nabla u_\varepsilon) - \nabla \cdot \left(\frac{S(u_\varepsilon)}{v_\varepsilon + \varepsilon} \nabla v_\varepsilon \right), \quad x \in \Omega, \quad t > 0, \\
 \frac{\partial v_\varepsilon}{\partial t} &= \Delta v_\varepsilon - v_\varepsilon + u_\varepsilon, \quad x \in \Omega, \quad t > 0, \\
 \frac{\partial u_\varepsilon}{\partial \nu} &= \frac{\partial v_\varepsilon}{\partial \nu} = 0, \quad x \in \partial \Omega, \quad t > 0, \\
 (u_\varepsilon(x, 0) &= u_0(x), \quad v_\varepsilon(x, 0) = v_0(x), \quad x \in \Omega,
\end{align*}
\]

where $\varepsilon > 0$. For all (u_0, v_0) satisfying (1.2) we may invoke [7, Lemmas 1.1 and 1.2] to establish local existence of solutions to (2.1) as the following lemma.

Lemma 2.1. Let $\varepsilon > 0$. Suppose that (u_0, v_0) fulfills (1.2). Assume that D and S satisfy (1.3), (1.4) and (1.5). Then there exist $T_{\text{max}} \in (0, \infty]$ and a pair $(u_\varepsilon, v_\varepsilon)$ of nonnegative
functions from \(C^0(\Omega \times [0, T_{\text{max}}]) \cap C^{2,1}(\Omega \times (0, T_{\text{max}}))\) solving (2.1) classically in \(\Omega \times (0, T_{\text{max}})\). Moreover,

\[
\text{either } T_{\text{max}} = \infty \text{ or } \lim_{t \to T_{\text{max}}} \| u_{\varepsilon}(t) \|_{L^\infty(\Omega)} + \| v_{\varepsilon}(t) \|_{L^\infty(\Omega)} = \infty;
\]

furthermore, \(u_{\varepsilon}\) has the following mass conservation:

\[
\| u_{\varepsilon}(t) \|_{L^1(\Omega)} = \| u_0 \|_{L^1(\Omega)} \quad \text{for all } t \in (0, T_{\text{max}}).
\]

The following lemma is a cornerstone of this work, which was essentially established in [2, Lemma 2.2]. Mass conservation property plays a key role in the proof of the lemma. In view of the lemma we can ensure a uniform-in-time estimate for \(v_{\varepsilon}\).

Lemma 2.2. Let \(\varepsilon > 0\) and \(T > 0\). Suppose that \((u_0, v_0)\) fulfills (1.2). Assume that \(D\) and \(S\) satisfy (1.3), (1.4) and (1.5). Let \((u_{\varepsilon}, v_{\varepsilon})\) be a solution of (2.1) on \([0, T]\). Then there exists \(\delta > 0\) such that

\[
\inf_{x \in \Omega} v_{\varepsilon}(x, t) \geq \delta > 0 \quad \text{for all } t \in (0, T), \quad \varepsilon > 0,
\]

where \(\delta\) does not depend on \(\varepsilon\) and \(T\).

As a preparation for the passage to the limit, we present three lemmas.

Lemma 2.3. Let \(\varepsilon > 0\) and \(T > 0\). Suppose that \((u_0, v_0)\) fulfills (1.2). Assume that \(D\) and \(S\) satisfy (1.3), (1.4), (1.5) and (1.6). Let \((u_{\varepsilon}, v_{\varepsilon})\) be a solution of (2.1) on \([0, T]\). Then for all \(p \in [1, \infty)\) and each \(q \in [1, \infty)\) there exist \(C_p > 0\) and \(C_{2q} > 0\) such that

\[
\| u_{\varepsilon}(t) \|_{L^p(\Omega)} \leq C_p \quad \text{for all } t \in (0, T),
\]

\[
\| \nabla v_{\varepsilon}(t) \|_{L^{2q}(\Omega)} \leq C_{2q} \quad \text{for all } t \in (0, T),
\]

where \(C_p\) and \(C_{2q}\) do not depend on \(\varepsilon\) and \(T\).

Proof. Proceeding similarly as in [7, Lemma 3.3] and [4, Proposition 3.2], we define \(\phi\) as

\[
\phi(r) := \int_0^r \frac{(\sigma + 1)^{m+p-3}}{D(\sigma)} d\sigma d\rho.
\]

Thus we can calculate

\[
\frac{d}{dt} \int_\Omega \phi(u_{\varepsilon}) = \int_\Omega \phi'(u_{\varepsilon}) \nabla \cdot (D(u_{\varepsilon}) \nabla u_{\varepsilon}) - \int_\Omega \phi(u_{\varepsilon}) \nabla \cdot \left(\frac{S(u_{\varepsilon})}{v_{\varepsilon} + \varepsilon} \nabla v_{\varepsilon} \right)
\]

\[
= - \int_\Omega \phi''(u_{\varepsilon}) D(u_{\varepsilon}) |\nabla u_{\varepsilon}|^2 + \int_\Omega \phi''(u_{\varepsilon}) \frac{S(u_{\varepsilon})}{v_{\varepsilon} + \varepsilon} \nabla u_{\varepsilon} \cdot \nabla v_{\varepsilon}
\]

\[
= - \int_\Omega (u_{\varepsilon} + 1)^{m+p-3} |\nabla u_{\varepsilon}|^2
\]

\[
+ \int_\Omega (u_{\varepsilon} + 1)^{m+p-3} \frac{S(u_{\varepsilon})}{D(u_{\varepsilon}) v_{\varepsilon} + \varepsilon} \nabla u_{\varepsilon} \cdot \nabla v_{\varepsilon}.
\]

Now in virtue of Lemma 2.2 we have the following independent-in-\(\varepsilon\) bound:

\[
\frac{1}{v_{\varepsilon} + \varepsilon} \leq \frac{1}{\delta},
\]

and we are in the same position as [7, (3.10)]. The rest of this proof is the same procedure as in the proofs of [7, Lemma 3.3] and [4, Proposition 3.2].

Lemma 2.4. Let \(\varepsilon > 0\) and \(T > 0\). Suppose that \((u_0, v_0)\) fulfills (1.2). Assume that \(D\) and \(S\) satisfy (1.3), (1.4), (1.5) and (1.6). Let \((u_{\varepsilon}, v_{\varepsilon})\) be a solution of (2.1) on \([0, T]\). Then there exist \(C_\infty > 0\) and \(C'_\infty > 0\) such that

\[
\| u_{\varepsilon}(t) \|_{L^\infty(\Omega)} \leq C_\infty \quad \text{for all } t \in (0, T),
\]

\[
\| \nabla v_{\varepsilon}(t) \|_{L^\infty(\Omega)} \leq C'_\infty \quad \text{for all } t \in (0, T),
\]
where \(C_\infty \) and \(C'_\infty \) do not depend on \(\varepsilon \) and \(T \).

Proof. In light of (2.2), we can proceed as in [7, Lemma A.1] and so Lemma 2.3 implies (2.3). As to (2.4), using the representation formula for \(v_\varepsilon \) and standard smoothing estimates, we see that

\[
\| \nabla v_\varepsilon(t) \|_{L^\infty(\Omega)} \leq \| \nabla e^{(\Delta-1)} v_0 \|_{L^\infty(\Omega)} + \int_0^t \| \nabla e^{(t-s)(\Delta-1)} u_\varepsilon(s) \|_{L^\infty(\Omega)} \, ds
\]

\[
\leq c \left(\| v_0 \|_{L^\infty(\Omega)} + \int_0^t (t-s)^{-\frac{1}{2}} - \frac{\varepsilon}{\varepsilon + \theta} c^{\eta(t-s)} \| u_\varepsilon(s) \|_{L^\infty(\Omega)} \, ds \right)
\]

with constants \(c > 0, \eta > 0 \) and \(\theta > 1 \). Now we can choose \(\theta > 1 \) large enough satisfying \(\frac{1}{2} + \frac{N}{2} \cdot \frac{1}{\theta} < 1 \) and (2.3) ensures boundedness of the right-hand side of the above inequality which leads to the conclusion. \(\square \)

Lemma 2.5. Let \(\varepsilon > 0 \) and \(T > 0 \). Suppose that \((u_0, v_0)\) fulfills (1.2). Assume that \(D \) and \(S \) satisfy (1.3), (1.4), (1.5) and (1.6). Let \((u_\varepsilon, v_\varepsilon)\) be a solution of (2.1) on \([0, T]\). Then there exists \(C''_\infty > 0 \) such that

\[
\| \nabla u_\varepsilon(t) \|_{L^\infty(\Omega)} \leq C''_\infty \quad \text{for all} \; t \in (0, T),
\]

where \(C''_\infty \) does not depend on \(\varepsilon \) and \(T \).

Proof. We can calculate the first equation in (2.1) as

\[
\frac{\partial u_\varepsilon}{\partial t} = \nabla \cdot (D(u_\varepsilon) \nabla u_\varepsilon) - \nabla \left(\frac{S(u_\varepsilon)}{v_\varepsilon + \varepsilon} \right) \cdot \nabla v_\varepsilon - S(u_\varepsilon) v_\varepsilon \Delta v_\varepsilon
\]

\[
= \nabla \cdot (D(u_\varepsilon) \nabla u_\varepsilon) + \frac{S(u_\varepsilon)}{v_\varepsilon + \varepsilon} \nabla v_\varepsilon \cdot \nabla v_\varepsilon - \frac{S'(u_\varepsilon)}{v_\varepsilon + \varepsilon} \nabla u_\varepsilon \cdot \nabla v_\varepsilon - \frac{S(u_\varepsilon)}{v_\varepsilon + \varepsilon} \Delta v_\varepsilon.
\]

From (2.2) we have the following upper estimates:

\[
\left| \frac{S(u_\varepsilon)}{v_\varepsilon + \varepsilon} \nabla v_\varepsilon \right|^2 \leq \frac{S(u_\varepsilon)}{\delta^2} \nabla v_\varepsilon^2,
\]

\[
\left| \frac{S'(u_\varepsilon)}{v_\varepsilon + \varepsilon} \nabla u_\varepsilon \cdot \nabla v_\varepsilon \right| \leq \frac{|S(u_\varepsilon)|}{\delta} \nabla u_\varepsilon \| \nabla v_\varepsilon \|
\]

\[
\left| \frac{S(u_\varepsilon)}{v_\varepsilon + \varepsilon} \Delta v_\varepsilon \right| \leq \frac{S(u_\varepsilon)}{\delta} |\Delta v_\varepsilon|.
\]

By noting that \(u_0 \in C^2(\overline{\Omega}) \), these estimates allow us to apply standard parabolic theory [6, Theorem V.7.2] and to complete the proof. \(\square \)

3. **Proof of the main theorem.** We start by showing that \(\{u_\varepsilon\} \) and \(\{v_\varepsilon\} \) satisfy the Cauchy condition.

Lemma 3.1. Let \(\varepsilon > 0 \) and \(T > 0 \). Suppose that \((u_0, v_0)\) fulfills (1.2). Assume that \(D \) and \(S \) satisfy (1.3), (1.4), (1.5) and (1.6). Let \((u_\varepsilon, v_\varepsilon)\) be a solution of (2.1) on \([0, T]\). Then there exist \(c_1 > 0, c_2 > 0, c_3 > 0, c_4 > 0 \) and \(c_5 > 0 \) such that for all \(\mu > 0, \nu > 0 \) and \(t \in [0, T] \),

\[
|u_\mu(t) - u_\nu(t)|^2_{L^2(\Omega)} + c_1 \| v_\mu(t) - v_\nu(t) \|^2_{L^2(\Omega)}
\]

\[
+ c_2 \int_0^t \| \nabla (u_\mu(s) - u_\nu(s)) \|^2_{L^2(\Omega)} \, ds + c_3 \int_0^t \| \nabla (v_\mu(s) - v_\nu(s)) \|^2_{L^2(\Omega)} \, ds
\]

\[
\leq c_4 |\mu - \nu|^2 e^{c_5 T}.
\]
Proof. Let $\mu > 0$ and $\nu > 0$. Multiplying the difference of the first equations in (2.1) by $(u_\mu - u_\nu)$, we see that
\[
\frac{1}{2} \frac{d}{dt} \|u_\mu - u_\nu\|_{L^2(\Omega)}^2 = \int_\Omega \nabla \cdot (D(u_\mu) \nabla u_\mu - D(u_\nu) \nabla u_\nu)(u_\mu - u_\nu) \\
- \int_\Omega \nabla \cdot \left(\frac{S(u_\mu)}{v_\mu + \mu} \nabla v_\mu - \frac{S(u_\nu)}{v_\nu + \nu} \nabla v_\nu \right)(u_\mu - u_\nu) \\
= - \int_\Omega (D(u_\mu) \nabla u_\mu - D(u_\nu) \nabla u_\nu) \cdot \nabla (u_\mu - u_\nu) \\
+ \int_\Omega \left(\frac{S(u_\mu)}{v_\mu + \mu} \nabla v_\mu - \frac{S(u_\nu)}{v_\nu + \nu} \nabla v_\nu \right) \cdot \nabla (u_\mu - u_\nu) \\
=: I_1 + I_2. \tag{3.2}
\]
As to the first term I_1, it follows from (1.3), (1.4), (2.3) and (2.5) that
\[
I_1 = - \int_\Omega (D(u_\mu) \nabla u_\mu - D(u_\nu) \nabla u_\nu) \cdot \nabla (u_\mu - u_\nu) \\
= - \int_\Omega (D(u_\mu) |\nabla (u_\mu - u_\nu)|^2 - \int_\Omega (D(u_\mu) - D(u_\nu)) \nabla u_\nu \cdot \nabla (u_\mu - u_\nu) \\
\leq -\tilde{K}_0 \int_\Omega |\nabla (u_\mu - u_\nu)|^2 + C_{\max} \int_\Omega |\nabla u_\nu| |u_\mu - u_\nu| |\nabla (u_\mu - u_\nu)| \\
\leq -\tilde{K}_0 \|\nabla (u_\mu - u_\nu)\|^2_{L^2(\Omega)} + C_{\max} \int_\Omega |u_\mu - u_\nu||\nabla (u_\mu - u_\nu)|,
\]
where $\tilde{K}_0 := K_0 \min\{1, (C_\infty + 1)^{m-1}\}$ and $C_{\max} := \max_{\sigma \in [0, C_\infty]} D'(\sigma)$. In light of Young’s inequality we deduce that
\[
I_1 \leq -\tilde{K}_0 \|\nabla (u_\mu - u_\nu)\|^2_{L^2(\Omega)} \\
+ \frac{5C_{\max}^2 C_{\infty}^2}{2K_0} \|u_\mu - u_\nu\|^2_{L^2(\Omega)} + \frac{\tilde{K}_0}{10} \|\nabla (u_\mu - u_\nu)\|^2_{L^2(\Omega)}. \tag{3.3}
\]
As to the second term I_2 in (3.2), we write it as follows:
\[
I_2 = \int_\Omega \left(\frac{S(u_\mu)}{v_\mu + \mu} \nabla v_\mu - \frac{S(u_\nu)}{v_\nu + \nu} \nabla v_\nu \right) \cdot \nabla (u_\mu - u_\nu) \\
= \int_\Omega \frac{S(u_\mu)}{v_\mu + \mu} \nabla v_\mu \cdot \nabla (u_\mu - u_\nu) \\
+ \int_\Omega \frac{S(u_\nu)}{v_\nu + \nu} \nabla v_\nu \cdot \nabla (u_\mu - u_\nu).
\]
Then (1.3) and (2.3) entail that
\[
I_2 \leq \tilde{C}_{\max} \int_\Omega |u_\mu - u_\nu| |\nabla v_\mu||\nabla (u_\mu - u_\nu)| \\
+ \tilde{C}_{\max} \int_\Omega |H(v_\mu, v_\nu, \mu, \nu)||\nabla (u_\mu - u_\nu)|,
\]
where $\tilde{C}_{\max} := \max_{\sigma \in [0, C_\infty]} S'(\sigma)$, $\tilde{C}_{\max} := \max_{\sigma \in [0, C_\infty]} S(\sigma)$ and
\[
H(v_\mu, v_\nu, \mu, \nu) := \left(\frac{1}{v_\mu + \mu} - \frac{1}{v_\nu + \nu} \right) \nabla v_\mu + \frac{1}{v_\nu + \nu} \nabla (v_\mu - v_\nu).
\]
From Lemma 2.2 we find that

\[
|H(\mu, \nu, \mu, \nu)| \leq \frac{1}{(\mu + \nu)\nu + \nu} |\nu - \mu| |\nabla v_\mu| + \frac{1}{\nu} |\nabla (v_\mu - v_\nu)| \leq \frac{1}{\delta^2} |\nu - \mu| |\nabla v_\mu| + \frac{1}{\delta^2} |\nu - \mu| |\nabla (v_\mu - v_\nu)|.
\]

Thus applying (2.4) and Lemma 2.2, we infer

\[
I_2 \leq \frac{C_{\max}C'}{\delta} \int_\Omega |u_\mu - u_\nu| |\nabla (u_\mu - u_\nu)| + \frac{C_{\max}C'}{\delta^2} \int_\Omega |v_\nu - v_\mu| |\nabla (u_\mu - u_\nu)| + \frac{C_{\max}C'}{\delta^2} \int_\Omega |\nu - \mu| |\nabla (u_\mu - u_\nu)| + \frac{C_{\max}}{\delta} \int_\Omega |\nabla (v_\mu - v_\nu)| |\nabla (u_\mu - u_\nu)|.
\]

Hence Young’s inequality says that

\[
I_2 \leq \frac{5 \hat{C}_{\max} C_{\max} C'}{2\delta^2 K_0} \|u_\mu - u_\nu\|_{L^2(\Omega)}^2 + \frac{\hat{K}_0}{10} \|\nabla (u_\mu - u_\nu)\|_{L^2(\Omega)}^2 + \frac{5 \hat{C}_{\max} C_{\max} C'}{2\delta^2 K_0} \|v_\nu - v_\mu\|_{L^2(\Omega)}^2 + \frac{\hat{K}_0}{10} \|\nabla (u_\mu - u_\nu)\|_{L^2(\Omega)}^2 + |\Omega| \frac{5 \hat{C}_{\max} C_{\max} C'}{2\delta^2 K_0} |\nu - \mu|^2 + \frac{\hat{K}_0}{10} \|\nabla (u_\mu - u_\nu)\|_{L^2(\Omega)}^2 + \frac{5 \hat{C}_{\max} C_{\max} C'}{2\delta^2 K_0} \|\nabla (v_\mu - v_\nu)\|_{L^2(\Omega)}^2 + \frac{\hat{K}_0}{10} \|\nabla (u_\mu - u_\nu)\|_{L^2(\Omega)}^2.
\]

Consequently, combining (3.2) with (3.3) and (3.4), we see that

\[
\frac{1}{2} \frac{d}{dt} \|u_\mu - u_\nu\|_{L^2(\Omega)}^2 + \frac{\hat{K}_0}{2} \|\nabla (u_\mu - u_\nu)\|_{L^2(\Omega)}^2 \leq C_1 \|u_\mu - u_\nu\|_{L^2(\Omega)}^2 + C_2 \|v_\nu - v_\mu\|_{L^2(\Omega)}^2 + C_3 |\nu - \mu|^2 + C_4 \|\nabla (v_\mu - v_\nu)\|_{L^2(\Omega)}^2.
\]

where \(C_1, C_2, C_3\) and \(C_4\) are given by

\[
C_1 := \frac{5 \hat{C}_{\max} C_{\max} C'}{2K_0} + \frac{5 \hat{C}_{\max} C_{\max} C'}{2\delta^2 K_0}, \quad C_2 := \frac{5 \hat{C}_{\max} C_{\max} C'}{2\delta^4 K_0},
\]

\[
C_3 := |\Omega| \frac{5 \hat{C}_{\max} C_{\max} C'}{2\delta^4 K_0}, \quad C_4 := \frac{5 \hat{C}_{\max} C_{\max} C'}{2\delta^2 K_0}.
\]

Similarly, Young’s inequality yields

\[
\frac{1}{2} \frac{d}{dt} \|v_\mu - v_\nu\|_{L^2(\Omega)}^2 \leq -\|\nabla (v_\mu - v_\nu)\|_{L^2(\Omega)}^2 + \frac{1}{4} \|u_\mu - u_\nu\|_{L^2(\Omega)}^2.
\]
Multiplying (3.6) by $2C_4$ and adding (3.5), we have
\[\frac{1}{2} \frac{d}{dt}(\|u_\mu - u_\nu\|_{L^2(\Omega)}^2 + 2C_4\|v_\mu - v_\nu\|_{L^2(\Omega)}^2) \]
\[+ \frac{K_0}{2} \|\nabla(u_\mu - u_\nu)\|_{L^2(\Omega)}^2 + C_4 \|\nabla(v_\mu - v_\nu)\|_{L^2(\Omega)}^2 \]
\[\leq \left(C_1 + \frac{C_4}{2} \right) \|u_\mu - u_\nu\|_{L^2(\Omega)}^2 + C_4 \|v_\mu - v_\nu\|_{L^2(\Omega)}^2 + C_3|\mu - \nu|^2 \]
\[\leq C_5(\|u_\mu - u_\nu\|_{L^2(\Omega)}^2 + 2C_4\|v_\mu - v_\nu\|_{L^2(\Omega)}^2) + C_3|\mu - \nu|^2, \]

where $C_5 := \max\{C_1 + \frac{C_4}{2}, \frac{C_4^2}{2C_5}\}$, and thus Gronwall’s lemma yields
\[\|u_\mu(t) - u_\nu(t)\|_{L^2(\Omega)}^2 + 2C_4\|v_\mu(t) - v_\nu(t)\|_{L^2(\Omega)}^2 \]
\[+ \int_0^t e^{2C_5(t-s)} \left(K_0 \|\nabla(u_\mu(s) - u_\nu(s))\|_{L^2(\Omega)}^2 + 2C_4 \|\nabla(v_\mu(s) - v_\nu(s))\|_{L^2(\Omega)}^2 \right) \, ds \]
\[\leq \frac{C_4}{C_5} |\mu - \nu|^2 e^{2C_5t} \]
for all $t \in [0, T]$. Since $e^{2C_5(t-s)} \geq 1 (s \in [0, t])$, we obtain the desired inequality.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We have $T_{\text{max}} = \infty$ from Lemma 2.4. For all $T > 0$, in view of Lemma 3.1 we find u and v from $L^\infty(0, T; L^2(\Omega)) \cap L^2(0, T; H^1(\Omega))$ such that
\[u_\varepsilon \to u \quad \text{in } L^\infty(0, T; L^2(\Omega)) \quad \text{as } \varepsilon \to 0, \]
\[v_\varepsilon \to v \quad \text{in } L^\infty(0, T; L^2(\Omega)) \quad \text{as } \varepsilon \to 0, \]
\[\nabla u_\varepsilon \to \nabla u \quad \text{in } L^2(0, T; L^2(\Omega)) \quad \text{as } \varepsilon \to 0, \]
\[\nabla v_\varepsilon \to \nabla v \quad \text{in } L^2(0, T; L^2(\Omega)) \quad \text{as } \varepsilon \to 0. \quad (3.7) \]
\[(3.8) \]

We will prove that (u, v) is a classical solution of (1.1) and bounded. The proof is divided into two steps.

Step 1. In this step we prove that (u, v) is a weak solution of (1.1). Let $\varphi \in C^\infty(\Omega \times [0, \infty))$. We can fix $T > 0$ such that $\text{supp } \varphi \subset \Omega \times [0, T)$. Multiplying the first equation in (2.1) by φ and integrating it over $\Omega \times (0, T)$, we can see
\[-\int_0^T \int_\Omega u_\varepsilon \frac{d\varphi}{dt} \, dx = -\int_0^T \int_\Omega D(u_\varepsilon) \nabla u_\varepsilon \cdot \nabla \varphi \]
\[+ \int_0^T \int_\Omega \frac{S(u_\varepsilon)}{v_\varepsilon + \varepsilon} \nabla v_\varepsilon \cdot \nabla \varphi + \int_\Omega u_0 \varphi(\cdot, 0). \quad (3.9) \]

To accomplish the passage to the limit of approximate solutions we will confirm convergence of each term. Firstly from the convergence $u_\varepsilon \to u$ in $L^2(0, T; L^2(\Omega))$ as $\varepsilon \to 0$ due to (3.1), we easily check
\[-\int_0^T \int_\Omega u_\varepsilon \frac{d\varphi}{dt} \to -\int_0^T \int_\Omega u \frac{d\varphi}{dt} \quad \text{as } \varepsilon \to 0. \]

Next we consider convergence of the first term on the right-hand side of (3.9). We observe that
\[|D(u_\varepsilon) \nabla \varphi| \leq \max_{\sigma \in [0, C_\infty]} D(\sigma) \cdot |\nabla \varphi| \in L^2(0, T; L^2(\Omega)) \]
due to (1.3) and $D(u_\varepsilon) \to D(u)$ pointwisely as $\varepsilon \to 0$. Thus it follows that
\[D(u_\varepsilon) \nabla \varphi \to D(u) \nabla \varphi \quad \text{in } L^2(0, T; L^2(\Omega)) \quad \text{as } \varepsilon \to 0. \quad (3.10) \]
Therefore invoking (3.7) and (3.10), we can show the following convergence:

\[-\int_0^T \int_\Omega D(u_\varepsilon) \nabla u_\varepsilon \cdot \nabla \varphi \, dt \rightarrow -\int_0^T \int_\Omega D(u) \nabla u \cdot \nabla \varphi \quad \text{as } \varepsilon \to 0.\]

As to the second term, (1.3) and Lemma 2.2 yield

\[|\frac{S(u_\varepsilon)}{v_\varepsilon + \varepsilon} \nabla \varphi| \leq \frac{\tilde{C}_{\text{max}}}{\delta} |\nabla \varphi| \in L^2(0, T; L^2(\Omega))\]

and

\[\frac{S(u_\varepsilon)}{v_\varepsilon + \varepsilon} \nabla \varphi \rightarrow \frac{S(u)}{v} \nabla \varphi \quad \text{pointwisely as } \varepsilon \to 0, \quad \text{and hence we can establish}\]

\[\frac{S(u_\varepsilon)}{v_\varepsilon + \varepsilon} \nabla \varphi \rightarrow \frac{S(u)}{v} \nabla \varphi \quad \text{in } L^2(0, T; L^2(\Omega)) \quad \text{as } \varepsilon \to 0.\]

In the same fashion as before (3.8) implies

\[\int_0^T \int_\Omega \frac{S(u_\varepsilon)}{v_\varepsilon + \varepsilon} \nabla v_\varepsilon \cdot \nabla \varphi \rightarrow \int_0^T \int_\Omega \frac{S(u)}{v} \nabla v \cdot \nabla \varphi \quad \text{as } \varepsilon \to 0.\]

Therefore we can accomplish the passage of the limit and hence

\[-\int_0^T \int_\Omega \frac{d}{dt} \varphi \, \frac{d}{dt} + \int_0^T \int_\Omega D(u) \nabla u \cdot \nabla \varphi + \int_0^T \int_\Omega \frac{S(u)}{v} \nabla v \cdot \nabla \varphi + \int_\Omega u_0 \varphi(\cdot, 0).\]

As to the second equation in (1.1), we can similarly deduce the following identity:

\[-\int_0^T \int_\Omega \frac{d}{dt} \varphi \, \frac{d}{dt} + \int_0^T \int_\Omega \nabla v \cdot \nabla \varphi - \int_0^T \int_\Omega v \varphi - \int_\Omega v_0 \varphi(\cdot, 0).\]

Thus we conclude that \((u, v)\) is a weak solution of (1.1).

Step 2. Using standard semigroup techniques and parabolic Schauder estimates, we deduce from straightforward regularity arguments that \((u, v)\) is a global classical solution of (1.1). Consequently, we have a globally bounded classical solution \((u, v)\) of (1.1) such that \(u\) belongs to \(L^\infty(\overline{\Omega} \times [0, \infty))\) in light of boundedness of \(\{u_\varepsilon\}_{\varepsilon > 0}\) in \(L^\infty(\overline{\Omega} \times [0, \infty))\) (Lemma 2.4).

Acknowledgments. Firstly, the authors would like to express their heartfelt gratitude to Mr. Kiyotaka Seki for his incisive advice. The authors also wish to express their sincere gratitude to Mr. Noriaki Yoshino for his kind advice. Finally, the authors would like to thank the anonymous referee for the remarkable comment on the class of the initial data and suggestions which improve the paper.

REFERENCES

[1] T. Cieślak, C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, *J. Differential Equations*, **252** (2012), 5832–5851.

[2] K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, *J. Math. Anal. Appl.*, **424** (2015), 675–684.

[3] T. Hillen, K. J. Painter, A user’s guide to PDE models for chemotaxis, *J. Math. Biol.*, **58** (2009), 183–217.

[4] S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, *J. Differential Equations*, **256** (2014), 2993–3010.

[5] E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, *J. Theor. Biol.*, **26** (1970), 399–415.

[6] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’ceva, *Linear and Quasi-Linear Equations of Parabolic Type*, Amer. Math. Soc. Transl., Vol. 23, Providence, RI, 1968.

[7] Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with sub-critical sensitivity, *J. Differential Equations*, **252** (2012), 692–715.

[8] M. Winkler, Does a ‘volume-filling effect’ always prevent chemotactic collapse?, *Math. Methods Appl. Sci.*, **33** (2010), 12–24.
[9] M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, *Math. Methods Appl. Sci.*, **34** (2011), 176–190.

[10] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, *J. Math. Pures Appl.*, **100** (2013), 748–767.

Received July 2014; revised November 2014.

E-mail address: kentarou.fujie@gmail.com
E-mail address: n.chihiro0415@gmail.com
E-mail address: yokota@rs.kagu.tus.ac.jp