Decomposition theorem on matchable distributive lattices*

Heping Zhang1, Dewu Yang1,2 and Haiyuan Yao1

1School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P. R. China, zhanghp@lzu.edu.cn, hyyao@lzu.edu.cn.
2School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. China, dewuyang0930@163.com

Abstract

A distributive lattice structure $M(G)$ has been established on the set of perfect matchings of a plane bipartite graph G. We call a lattice \textit{matchable distributive lattice} (simply MDL) if it is isomorphic to such a distributive lattice. It is natural to ask which lattices are MDLs. We show that if a plane bipartite graph G is elementary, then $M(G)$ is irreducible. Based on this result, a decomposition theorem on MDLs is obtained: a finite distributive lattice L is an MDL if and only if each factor in any cartesian product decomposition of L is an MDL. Two types of MDLs are presented: $J(m \times n)$ and $J(T)$, where $m \times n$ denotes the cartesian product between m-element chain and n-element chain, and T is a poset implied by any orientation of a tree.

\textbf{Key words:} Perfect matching, Plane bipartite graph, Z-transformation graph, Distributive lattice, Decomposition theorem.

\textbf{AMS 2010 Subject Classifications:} 05C70, 05C90, 06D05, 92E10.

1 Introduction

Perfect matching of graphs is significant for theoretical chemistry and theoretical physics. This graph-theoretical concept coincides with that of the Kekulé structure of organic molecules. The Kekulé structure count can be used to predict the stability of benzenoid hydrocarbons. The carbon-skeleton of a benzenoid hydrocarbon is a hexagonal system, i.e. 2-connected plane graph every interior face of which is a regular hexagon of side length

\footnote{This work was supported by NSFC (grant no. 10831001).}
unit. Since 1980’s there have been developed a combinatorial object, the Z-transformation graph (or resonance graph) \cite{23, 24} on the set perfect matchings of a hexagonal system, late extended to a general plane bipartite graph \cite{27, 33, 34, 35}; see a recent survey \cite{29}. Randić \cite{15, 16} showed that the leading eigenvalue of the resonance graphs has a quite satisfactory correlation with the resonance energy of benzenoid hydrocarbons.

A domino tiling of a polygon in the plane corresponds to a perfect matching of a related graph. In theoretical physics, a domino is seen as a dimer, a diatomic molecule (as the molecule of hydrogen), and each tiling is seen as a possible state of a solid or a fluid. In 2003 Fournier \cite{5} reintroduced Z-transformation graph under name “perfect matching graph” in investigating domino tiling spaces of Saldanha et al. \cite{19}. E. Rémiña \cite{17, 18} established the distributive lattice structure on the set of domino tilings of a polygon by using Thurston’s height function. In general, a distributive lattice on the set of perfect matchings of a plane bipartite graph was presented in terms of Z-transformation digraph and the unit decomposition of alternating cycle systems with respect to a perfect matching \cite{10}.

Let G be a finite and simple graph with vertex-set $V(G)$ and edge-set $E(G)$. A perfect matching or 1-factor of G is a set of independent edges which saturate all vertices of G. Let $\mathcal{M}(G)$ denote the set of 1-factors of G. A plane bipartite graph G is elementary \cite{11} if G is connected and every edge is contained in some 1-factor; further weakly elementary \cite{34, 20} if every alternating cycle with respect to some 1-factor together with its interior form an elementary subgraph.

For a plane bipartite graph G, the Z-transformation graph $Z(G)$ is defined as a graph on $\mathcal{M}(G)$: $M, M' \in \mathcal{M}(G)$ are joined by an edge if and only if they differ only in one cycle that is the boundary of an inner face of G.

To give an acyclic orientation of $Z(G)$ \cite{33}, a proper 2-coloring (white-black) of bipartite graph G is specified. For $M \in \mathcal{M}(G)$, a cycle C is said to be M-alternating if the edges of C appear alternately in and off M; further proper (improper) \cite{32} if every edge of C belonging to M goes from white (black) end-vertex to black (white) end-vertex along the clockwise orientation of C. Now Z-transformation digraph $\vec{Z}(G)$ is the orientation of $Z(G)$: an edge M_1M_2 of $Z(G)$ is oriented from M_1 to M_2 if the symmetric difference $M_1 \oplus M_2$ form a proper M_1- and improper M_2-alternating cycle (the boundary of an inner face).

Since $\vec{Z}(G)$ has no directed cycles \cite{33}, it naturally implies a partial ordering on $\mathcal{M}(G)$. This poset is denoted by $\mathcal{M}(G)$. Then its Hasse diagram is isomorphic to $\vec{Z}(G)$. Lam and Zhang \cite{10} showed that $\mathcal{M}(G)$ is a finite distributive lattice (FDL) if G is weakly elementary. Further the first author of the present paper showed \cite{28} that $\mathcal{M}(G)$ is direct
sum of at least two distributive lattices if G is non-weakly elementary. By applying such a lattice structure, Zhang et al. showed [30] that every connected resonance graph of plane bipartite graphs is a median graph, and extended Klavžar et al.’s result [9] in the case of cata-condensed benzenoid systems.

In different ways, Propp [14] established a distributive lattice structure on the set of c-orientations of a plane bipartite graph G; Pretzel [13] provided a new proof to Propp’s result. Similar structures were also given on the set of reachable configurations of an edge firing game [12], α-orientations of a planar graph [4], and flows of a planar graph [7].

In this paper we propose a problem: which distributive lattices are isomorphic to distributive lattice $M(G)$ on the set of 1-factors of a plane bipartite graphs G? A lattice is called matchable distributive lattice (simply MDL) if it is isomorphic to such a distributive lattice $M(G)$. Non-matchable distributive lattices exist. We show that if a plane bipartite graph G is elementary, then $M(G)$ is irreducible. Based on this result, a decomposition theorem on MDL is obtained (Theorem 3.8): a finite distributive lattice L is an MDL if and only if each factor in any cartesian product decomposition of L is an MDL. Finally, we present two types of irreducible MDLs by applying the fundamental theorem for finite distributive lattices (FTFDL): $J(m \times n)$ and $J(T)$, where $m \times n$ denotes the cartesian product between m-element chain and n-element chain, and T is a poset implied by any orientation of a tree. Meantime, we also show that for any order ideal W of $m \times n$, $J(W)$ is an MDL.

2 Preliminaries

Terms on poset and distributive lattice used in this paper can be found in [1, 6, 21]. If P and Q are posets, then the direct (cartesian) product of P and Q is the poset $P \times Q$ on the set $\{(x, y) : x \in P$ and $y \in Q\}$ such that $(x, y) \leq (x', y')$ in $P \times Q$ if $x \leq x'$ in P and $y \leq y'$ in Q.

Let L be an FDL with the greatest element $\hat{1}$ and the least element $\hat{0}$. If L can be expressed as the direct product of a series of FDLs $L_j (j \in J)$, i.e. $L = \prod_{j \in J} L_j$, then we say that L has a (direct product) decomposition $\prod_{j \in J} L_j$. A lattice with exactly one element is viewed as a trivial lattice. An FDL is irreducible if it cannot be expressed as direct product of at least two non-trivial FDLs. A decomposition $L = \prod_{j \in J} L_j$ is called irreducible if each $L_j (j \in J)$ is non-trivial and irreducible.

For a decomposition $L = \prod_{i=1}^n L_i$, let $\hat{1}_i$ and $\hat{0}_i$ denote the greatest element and the least element of L_i, respectively. Then $\hat{0} = (\hat{0}_1, \hat{0}_2, \cdots, \hat{0}_n)$ and $\hat{1} = (\hat{1}_1, \hat{1}_2, \cdots, \hat{1}_n)$. If each L_i
is non-trivial and \(n \geq 2 \), \(e_i = (\hat{0}_1, \cdots, \hat{0}_{i-1}, \hat{1}_i, \hat{0}_{i+1}, \cdots, \hat{0}_n) \) is called a central element of \(L \). For \(x, y \in L \), \(x \) is called a complement of \(y \) if \(x \lor y = \hat{1} \) and \(x \land y = \hat{0} \). The complement of \(x \), when it exists, is unique. For example, two central elements \((2,1)\) and \((1,3)\) of \(L = 2 \times 3 \) are complementary each other (see Fig. 1). For a positive integer \(n \), \(\{1, 2, \ldots, n\} \) with its usual order forms an \(n \)-element chain, denoted by \(n \).

Lemma 2.1. \([1]\) Any central element of an FDL has a unique complement.

Lemma 2.2. \([1]\) Any FDL has a unique irreducible decomposition, i.e. if both \(\prod_{i=1}^{n} L_i \) and \(\prod_{j=1}^{m} L'_j \) are irreducible decompositions of \(L \), then \(m = n \) and there exists a permutation \(\pi \) of \([n]\) such that \(L_i = L'_{\pi(i)}(i = 1, 2, \cdots, n) \).

For an FDL \(L \), its rank function \([21]\) satisfies

\[
\rho(x) + \rho(y) = \rho(x \land y) + \rho(x \lor y),
\]

for any \(x, y \in L \). For a pair of complementary elements \(x \) and \(y \) of \(L \), we have

\[
\rho(x) + \rho(y) = \rho(\hat{0}) + \rho(\hat{1}) = \rho(\hat{1}) = \rho(L).
\]

Lemma 2.3. Let \(L \) be an FDL of rank \(k \) and \(y \) the complement of \(x \in L \). If \(\rho(x) = r \geq 1 \) and \(\rho(y) = k - r \geq 1 \), then \(L \) has a sublattice \((r + 1) \times (k - r + 1)\) containing \(x \) and \(y \).

Proof. \(L \) has at least two saturated chains between \(\hat{0} \) with \(x \) and \(y \), respectively:

\[
P_1 : \hat{0} = x_0 \ll x_1 \ll x_2 \ll \cdots \ll x_r = x,
\]

and

\[
P_2 : \hat{0} = y_0 \ll y_1 \ll y_2 \ll \cdots \ll y_{k-r} = y.
\]

Then \(x_i \land y_j = \hat{0} \), for any \(0 \leq i \leq r, 0 \leq j \leq k - r \), since \(x_i \land y_j \leq x \land y = \hat{0} \). Hence \(P_1 \) and \(P_2 \) have no common elements except for \(\hat{0} \).
Let $L' = \{a_{ij} : a_{ij} = x_i \lor y_j, 0 \leq i \leq r, 0 \leq j \leq k - r\}$. Then L' satisfies the following three properties:

1. $a_{ij} = a_{i'j'}$ if and only if $i = i'$ and $j = j'$. If $a_{i'j'} \leq a_{ij}$, i.e. $x_i \lor y_{j'} \leq x_i \lor y_j$, then $(x_i \lor y_{j'}) \land y_{j'} \leq (x_i \lor y_j) \land y_{j'}$. By distributive laws and $x_i \land y_j = 0$, we have that $y_{j'} \leq y_j \land y_{j'}$ and $j' \leq j$. Similarly we have $i' \leq i$. So the property holds.

2. L' forms a sublattice of L and $L' = \langle x_1, \ldots, x_r, y_1, \ldots, y_{k-r} ; \land, \lor \rangle$. It suffices to show that L' is closed under meet and join operations \land and \lor of L.

 (i) $a_{ij} \lor a_{i'j'} = (x_i \lor y_j) \lor (x_{i'} \lor y_{j'}) = (x_i \lor x_{i'}) \lor (y_j \lor y_{j'}) = x_{i''} \lor y_{j''} = a_{i''j''} \in L'$, where $i'' = \max\{i, i'\}, j'' = \max\{j, j'\}$;

 (ii) $a_{ij} \land a_{i'j'} = a_{ij} \land (x_i \lor y_{j'}) = (a_{ij} \land x_i) \lor (a_{ij} \land y_{j'})$

 $= ((x_i \lor y_j) \land x_i) \lor ((x_i \lor y_j) \land y_{j'})$

 $= ((x_i \land x_{i'}) \lor (y_j \land x_i)) \lor ((x_i \land y_{j'}) \lor (y_j \land y_{j'}))$

 $= (x_{i''} \lor 0) \lor (0 \lor y_j \land y_{j'})$

 $= x_{i''} \lor y_{j''} = a_{i''j''} \in L'$,

where $i'' = \min\{i, i'\}, j'' = \min\{j, j'\}$.

3. L' is isomorphic to $(r + 1) \times (k - r + 1)$. Let $\phi : L' \to (r + 1) \times (k - r + 1)$ be a bijection as $\phi(a_{ij}) = (i, j)$ for any $a_{ij} \in L'$. Then by Property 2(i) and (ii), we have that

 $\phi(a_{ij} \lor a_{i'j'}) = \phi(a_{i''j''}) = (i'', j'') = (i, j) \lor (i', j') = \phi(a_{ij}) \lor \phi(a_{i'j'})$,

and

 $\phi(a_{ij} \land a_{i'j'}) = \phi(a_{i''j''}) = (i'', j'') = (i, j) \land (i', j') = \phi(a_{ij}) \land \phi(a_{i'j'})$.

Hence $L' \cong (r + 1) \times (k - r + 1)$.

3 Some fundamental results on MDL

Let G be a plane bipartite graph with a specific proper black-white coloring to vertices. An edge e of a cycle (or an inner face) C is proper if e goes from the white end-vertex to the black endvertex along the clockwise direction of C. Let $\mathcal{F}(G)$ denote the set of all inner faces of G. Recall that $\mathcal{M}(G)$ denotes the set of all 1-factors of G.
Definition 1. A binary relation \preceq on $\mathcal{M}(G)$ is defined as: $M_1 \preceq M_2$, $M_1, M_2 \in \mathcal{M}(G)$, if and only if $\vec{Z}(G)$ has a directed path from M_2 to M_1.

It is known that $\mathcal{M}(G) = (\mathcal{M}(G), \preceq)$ is a poset and a lattice structure on $\mathcal{M}(G)$ is revealed in the following two theorems.

Theorem 3.1. \cite{10} Let G be a plane (weakly) elementary bipartite graph. Then $\mathcal{M}(G)$ is a finite distributive lattice, and its Hasse diagram is isomorphic to $\vec{Z}(G)$.

Theorem 3.2. \cite{28} Let G be a plane bipartite graph with 1-factor. Then $\mathcal{M}(G)$ is direct sum of distributive lattices and the Hasse diagram is isomorphic to $\vec{Z}(G)$.

Definition 2. An FDL L is called an matchable distributive lattice (MDL) if there exist a plane bipartite graph G such that $L \cong \mathcal{M}(G)$.

Let M^1 and M^0 denote 1-factors of G such that G has neither improper M^1- nor proper M^0-alternating cycles, called source and root 1-factors of G respectively. If $\mathcal{M}(G)$ is an FDL, then M^1 and M^0 are the greatest element and the least element, respectively.

Lemma 3.3. Let G be a plane elementary bipartite graph with more than two vertices. Then the boundary of G is proper M^1- and improper M^0-alternating cycle.

Proof. It is known that G is 2-connected and the boundary is a cycle. For every proper edge $e = uv$ on the boundary of G, it suffices to show that $e \in M^1$. Otherwise, an edge e' different from e and incident to u belongs to M^1. Since G is elementary, it has a 1-factor M such that $e \in M$. Then $M \oplus M^1$ has a cycle containing e and e', which is both improper M^1- and proper M-alternating cycle, a contradiction. Hence the boundary of G is proper M^1-alternating cycle. Similarly, we can show that the boundary of G is improper M^0-alternating cycle. \hfill \square

Let G be a plane elementary bipartite graph with $M' \preceq M$ in $\mathcal{M}(G)$. For any $f \in \mathcal{F}(G)$, let $\Delta_\mathcal{C}(f)$ denote the number of proper M-alternating cycles in $\mathcal{C} := \mathcal{C}(M, M') = M \oplus M'$ with f in their interiors minus the number of improper M-alternating cycles in \mathcal{C} with f in their interiors. Then $M' \preceq M$ implies that $\Delta_\mathcal{C}(f) \geq 0$ by Lemma 3.1 in \cite{28}. For any directed path $\vec{P} = M_0 (= M)M_1...M_t (= M')$ from M to M' of $\vec{Z}(G)$, let $s_i := M_{i-1} \oplus M_i$, $i = 1, ..., t-1$. Let $\delta_\mathcal{P}(f)$ denote the times of f appearing in the face sequence corresponding to $s_1, ..., s_t$. Lemma 3.5 in Ref. \cite{28} implies the following result.

Lemma 3.4. Let G be a plane elementary bipartite graph with $M' \preceq M$ in $\mathcal{M}(G)$. If \vec{P} is a directed path from M to M' of $\vec{Z}(G)$ and $\mathcal{C} = M \oplus M'$, then $\delta_\mathcal{P}(f) = \Delta_\mathcal{C}(f)$ for each $f \in \mathcal{F}(G)$.
From Lemmas 2.3 and 3.3 we can derive the following critical result.

Lemma 3.5. For a plane elementary bipartite graph G with more than two vertices, each element of $\mathcal{M}(G)$ has no complement except the greatest element M^1 and the least element M^0.

![Figure 2. Sublattice $(r + 1) \times (k - r + 1)$](image)

Proof. Suppose to the contrary that $\mathcal{M}(G)$ has a pair of mutually complementary elements M and M' except M^1 and M^0. Let $\rho(\mathcal{M}(G)) = k$ and $\rho(M) = r$. Then $\rho(M') = k - r$, and $k - 1 \geq r \geq 1$. By Lemma 2.3, $\mathcal{M}(G)$ has a sublattice $(r + 1) \times (k - r + 1)$ as shown in Fig. 2 containing the following two maximal chains:

$$M_0(= M^0) \prec M_1 \prec \cdots \prec M_r(= M) \prec \cdots \prec M_{k-1} \prec M_k(= M^1),$$

$$M'_0(= M^0) \prec M'_1 \prec \cdots \prec M'_{k-r}(= M') \prec \cdots \prec M'_{k-1} \prec M'_k(= M^1).$$

Put $M_{ij} := M_i \lor M'_j$, $i = 0, 1, \ldots, r$, $j = 0, 1, \ldots, k - r$, $s_i := M_i \oplus M_{i-1}(1 \leq i \leq r)$ and $s'_j := M'_j \oplus M'_{j-1}(1 \leq j \leq k - r)$. Since each maximal chain of $(r + 1) \times (k - r + 1)$ is a saturated chain of $\mathcal{M}(G)$, the s_i and s'_j are the boundaries of inner faces of G.

Claim 1. $M_{i,j} = M_{i-1,j} \oplus s_i = M_{i,j-1} \oplus s'_j$, and s_i and s'_j are disjoint, for $i = 1, 2, \ldots, r$, and $j = 1, 2, \ldots, k - r$.

Proof. We prove that $M_{i,j} = M_{i-1,j} \oplus s_i = M_{i,j-1} \oplus s'_j$ such that s_i and s'_j are proper $M_{i,j}$-alternating by induction on $(i,j) \geq (1,1)$. For $i = j = 1$, s_1 and s'_1 are improper M^0-alternating facial cycles, and are thus disjoint. Hence we have that $M_{1,1} = M_1 \oplus s'_1 = M'_1 \oplus s_1$.
by Lemma 2.3 and the required holds. Let $i \geq 2$ or $j \geq 2$. For the induction step, suppose that the assertion holds for smaller i or j. By induction hypothesis, $M_{i,j-1} = M_{i-1,j-1} \oplus s_i$ and $M_{i-1,j} = M_{i-1,j-1} \oplus s'_j$, and s_i and s'_j are distinct and improper $M_{i-1,j-1}$-alternating facial cycles, and are disjoint. Hence s_i and s'_j are improper $M_{i,j-1}$-alternating and improper $M_{i-1,j}$-alternating, respectively, and $M_{i,j-1} \oplus s'_j$ and $M_{i-1,j} \oplus s_i$ cover $M_{i,j-1}$ and $M_{i-1,j}$, respectively. Obviously, $M_{i,j-1} \oplus s'_j = M_{i-1,j-1} \oplus s_j \oplus s'_j = M_{i-1,j-1} \oplus s'_j \oplus s_i = M_{i-1,j} \oplus s_i$. Hence $M_{i,j} = M_{i-1,j} \oplus s_i = M_{i,j-1} \oplus s'_j$ since $M_{i,j} = M_{i-1,j} \vee M_{i,j-1}$ by Lemma 2.3. The assertion holds for any (i, j).

Claim 2. Let f_i and h_j denote the inner faces of G bounded by s_i and s'_j, respectively. Then $F(G) = \{f_1, f_2, \ldots, f_r, h_1, h_2, \ldots, h_{k-r}\}$.

Proof. Let $F_1 := \{f_1, f_2, \ldots, f_r\}$ and $F_2 := \{h_1, h_2, \ldots, h_{k-r}\}$. So we want to prove that $F(G) = F_1 \cup F_2$.

Let $C := M^1 \oplus M^0$. Then each cycle in C is proper M^1 and improper M^0-alternating cycle, one being the boundary of G by Lemma 3.3. Hence $\Delta_C(f) \geq 1$ for any $f \in F$.

Let $P := M_{r,k-r}(= M^1)M_{r,k-r-1} \cdots M_{r,0}M_{r-1,0} \cdots M_{0,0}(= M^0)$ be a directed path of $Z(G)$, corresponding to a maximal chain of $M(G)$. For any $f \in F$, by Lemma 3.4 we have that $\delta_P(f) = \Delta_C(f) \geq 1$. Hence $F(G) = \{f_1, f_2, \ldots, f_r, h_1, h_2, \ldots, h_{k-r}\}$.

Since G is 2-connected, inner dual graph $G^\#$ of G is connected. Let f^* be a vertex of $G^\#$ corresponding to $f \in F$. Then there must exist a vertex f^*_i in $\{f^*_1, \ldots, f^*_r\}$ being adjacent to a vertex h^*_j in $V(G^*) \setminus \{f^*_1, \ldots, f^*_r\} = \{h^*_1, \ldots, h^*_{k-r}\}$. That means that f_i and h_j are adjacent, contradicting Claim 1.

From the above arguments, we have the following main results of this paper.

Theorem 3.6. For a plane elementary bipartite graph G, $M(G)$ is irreducible.

Proof. If $G = K_2$, it is trivial. Otherwise, $M(G)$ is a non-trivial FDL. By Lemma 3.5 every element of $M(G)$ has no complement except for M^1 and M^0. By Lemma 2.1 $M(G)$ has no central elements. Hence, $M(G)$ is irreducible.

Elementary components of a plane bipartite graph G with 1-factor mean components other than K_2 of the subgraph obtained from G by the removal of all forbidden edges (those edges not contained in any 1-factors).

Corollary 3.7. Let G be a weakly elementary plane bipartite graph with elementary components G_1, G_2, \ldots, G_k. Then $M(G) = M(G_1) \times M(G_2) \times \cdots \times M(G_k)$ is an irreducible decomposition.
Theorem 3.8. \textit{(Decomposition Theorem)} Let L be an FDL with a decomposition $L = \prod_{i=1}^{n} L_i$. Then L is an MDL if and only if each $L_i (1 \leq i \leq n)$ is an MDL.

Proof. If each factor L_i is an MDL, $1 \leq i \leq n$, then there exists a weakly elementary plane bipartite graph G_i such that $M(G_i) \cong L_i$. We construct a weakly elementary plane bipartite graph G by connecting G_i to G_{i+1} with a new edge in their exteriors for each $1 \leq i \leq n-1$. Then such new edges are forbidden edges of G. It follows that $M(G) \cong M(G_1) \times M(G_2) \times \cdots \times M(G_n) \cong L_1 \times L_2 \times \cdots \times L_n = L$. Hence L is an MDL.

Conversely, suppose that L is an MDL. Then there exists a plane weakly elementary bipartite graph G such that $M(G) \cong L$. Let G_1, \cdots, G_m be the non-trivial elementary components of G ($m \geq 1$). By Corollary 3.7 $L \cong \prod_{j=1}^{m} M(G_j)$ is an irreducible decomposition. If $L = \prod_{i=1}^{n} L_i$ is irreducible, then by Lemma 2.2 $m = n$ and there exists a permutation π of $[n]$ such that $L_i = M(G_{\pi(i)}) i = 1, 2, \cdots, n$. So each $L_i (1 \leq i \leq n)$ is an MDL. If $\prod_{i=1}^{n} L_i$ is not irreducible, then each factor L_i is a direct product of some $M(G_j)$’s. So each factor L_i is still an MDL. \hfill \Box

4 MDL $J(m \times n)$

From now on we will present two typical irreducible MDLs by the \textit{fundamental theorem for finite distributive lattice} (FTFDL).

Let P be a finite poset. An order ideal (semi-ideal or down-set) I of P is a subset of P if for every $x \in I$, $y \preceq x$ implies $y \in I$. The set $J(P)$ of order ideals of P, ordered by the set-inclusion, forms a poset $J(P)$. It is well known that $J(P)$ is indeed a distributive lattice. The FTFDL states that the converse is true.

Theorem 4.1 (FTFDL). \textit{([27])} Let L be an FDL. Then there is a unique (up to isomorphism) finite poset P for which $L \cong J(P)$.

In fact the above P can be viewed as a subposet of L consisting of all join-irreducible elements of L: an element x of L is said to be \textit{join-irreducible} if one cannot write $x = y \vee z$ where $y \prec x$ and $z \prec x$.

In this section we show that $J(W)$ are MDLs for any order ideal W of $m \times n$. Let us introduce a type of hexagonal systems called truncated parallelogram \cite{2,3}: A \textit{truncated parallelogram}, simply denoted by $H := L(r_1, r_2, \cdots, r_m)$, consists of m condensed linear chains (rows) of the length r_1, \cdots, r_m, $r_1 \geq r_2 \geq \cdots \geq r_m > 0$ and the first hexagons (conventionally drawn to the left) from all chains also form a linear chain, the first column;
In particular, \(L(m; n) = L(n, n, ..., n) \) is a parallelogram, and \(T_m := L(m, m-1, \cdots , 1) \) is a prolate triangle. For example, see Fig. 3. For convenience, all hexagonal systems considered in this section are drawn such that an edge-direction is vertical and the valleys are colored white.

Let \(L \) and \(B \) be the left and bottom perimeters of \(H \), respectively, which have a black vertex in common. The root 1-factor \(M^0 \) of \(H \) has all vertical edges in \(L \), and a series of parallel edges of \(B \) from left-low to right-up, and a series of parallel edges of \(H - L - B \) from left-up to right-lower. We can see that the boundary of \(H \) is an improper \(M^0 \)-alternating cycle. Hence \(H \) is elementary [34].

Since \(H \) has a forcing edge \(e \) (an edge contained in a unique 1-factor), each \(M^0 \)-alternating cycle must pass through \(e \); see [25] for details. For each 1-factor \(M \) of \(H \) other than \(M^0 \), \(C_M := M \oplus M^0 \) is an \(M^0 \)-alternating cycle of \(H \). Thus we have a bijection [26] between the 1-factors other than \(M^0 \) of \(H \) and the \(M^0 \)-alternating cycles of \(H \). Hence the subhexagonal system of \(H \) formed by \(C_M \) together with its interior is also a truncated parallelogram. Conversely, the perimeter of any sub-truncated parallelogram of \(H \) with edge \(e \) is an \(M^0 \)-alternating cycle. Hence each 1-factor \(M \) of \(H \) corresponds exactly to a sub-truncated parallelogram of \(H \) with edge \(e \), denoted by \(H_M \). However, \(H_{M^0} \) corresponds to the empty graph (without vertex), the degenerated sub-truncated parallelogram of \(H \).

Let \(P_M := (L \cup B) \oplus C_M \). Then \(P_M \) is an \(M \)-alternating path with both end-edges in \(M \) (see Fig. 4(a)). Note that \(C_{M^0} = \emptyset \) and \(P_{M^0} = L \cup B \). From \(M = M^0 \oplus C_M \), we have the following structure of \(M \).

Proposition 4.2. For each \(M \in \mathcal{M}(H) \), the edges in \(M \setminus E(P_M) \) have the same edge-direction from left-up to right-low. \(\square \)
Lemma 4.3. Let $M \in \mathcal{M}(H)$ and h an M-alternating hexagon of H. Then h intersects at three consecutive edges of P_M; Moreover, h is proper if and only if $h \subseteq H_M$.

Proof. If h is disjoint with P_M, then h is not M-alternating by Proposition 4.2. Otherwise, $1 \leq |E(h \cap P_M)| \leq 3$. Since h is M-alternating, h intersects at three consecutive edges of P_M. So h is proper M-alternating if and only if $e_2, e_4, e_6 \in M$. This holds if and only if $e_2, e_6 \in M \cap E(P_M)$. Thus h and P_M have exactly three common edges e_1, e_2, e_6 and $h \in H_M$. Similarly, h is improper M-alternating if and only if h and P_M have exactly three common edges e_3, e_4, e_5 and $h \notin H_M$ (see Fig. 4(b) and(c)).

Lemma 4.4. Let $M, M' \in \mathcal{M}(H)$. Then $M' \preceq M$ in $\mathcal{M}(H)$ if and only if $H_{M'}$ is a sub-truncated parallelogram of H_M, namely $H_{M'} \subseteq H_M$.

Proof. We first show that M covers M' if and only if H_M can be obtained from $H_{M'}$ by adding a hexagon. If M covers M', then there is a proper M-alternating hexagon h such that $M' = M \oplus h$ by Theorem 3.1, and $C_M = M' \oplus M^0 = (M' \oplus M) \oplus (M \oplus M^0) = h \oplus C_M$. By Lemma 4.3 we have that $h \in H_M$ has exactly three edges of P_M. If $h = C_M$, the result is trivial. Otherwise, $C_{M'}$ is an improper M^0-alternating cycle, and the sub-truncated parallelogram $H_{M'}$ of H bounded by $C_{M'}$ can be obtained by removing h from H_M.

Conversely, assume that $H_{M'}$ can be obtained from H_M by removing a hexagon h of H. Since both H_M and $H_{M'}$ are sub-truncated parallelograms of H, $h \in H_M$ must have exactly three edges of P_M. By Lemma 4.3 h is proper M-alternating. Then $M' = M^0 \oplus C_{M'} = M^0 \oplus (C_M \oplus h) = M \oplus h$. Hence M covers M' in $\mathcal{M}(H)$.

We now show the lemma. If $M' \preceq M$ in $\mathcal{M}(H)$, we can show that that $H_{M'} \subseteq H_M$ by choosing a saturated chain between M and M' and applying repeatedly the above fact proved. If $H_{M'} \subseteq H_M$, there are a series of sub-truncated parallelograms of H: $H_1(= H_{M'})$, H_2, ..., $H_\ell(= H_M)$, such that each H_i is obtained from H_{i+1} by adding a hexagon.
Each H_i corresponds to a 1-factor M_i of H, $i = 1, 2, ..., t$. By the above fact we have M_{i+1} covers M_i, $i = 1, 2, ..., t - 1$. Hence $M' \preceq M$.

Now, we define a poset on $\mathcal{F}(H)$, the set of hexagons of H. $h \in H$ is labeled with h_{ij} if h lies in the i-th row and j-th column, $1 \leq j \leq r_i, 1 \leq i \leq m$. For two hexagons h_{ij} and h_{kl}, $h_{ij} \preceq h_{kl}$ if and only if $i \leq k$ and $j \leq l$. Then $\mathbf{F}(H) := (\mathcal{F}(H), \preceq)$ is a poset. If H is a parallelogram, then $\mathbf{F}(H)$ is $m \times n$. In general, $\mathbf{F}(H)$ is an order ideal of $m \times n$. For example, see Fig. 5.

![Figure 5](image)

(a) $\mathbf{F}(L(r_1, r_2, \cdots, r_m))$, (b) $\mathbf{F}(L(m; n))$, and (c) $\mathbf{F}(T_m)$.

By Lemma 4.4, we can see that $M \in \mathbf{M}(H)$ is join-irreducible if and only if H has a unique proper M-alternating hexagon lying in H_M, which is a sub-parallelogram of H. Let $\mathcal{I}(\mathbf{M}(H))$ denote the subposet of $\mathbf{M}(G)$ consisting of all join-irreducible elements.

Lemma 4.5. $\mathcal{I}(\mathbf{M}(H)) \cong \mathbf{F}(H)$.

Proof. A bijection $\psi : \mathcal{I}(\mathbf{M}(H)) \to \mathbf{F}(H)$ is defined as follows. For each $M \in \mathcal{I}(\mathbf{M}(H))$, let $\psi(M)$ denote the unique proper M-alternating hexagon of H_M, i.e. the right-up-most hexagon of H_M. Moreover, both ψ is an isomorphism: for any $M, M' \in \mathcal{I}(\mathbf{M}(H))$, by Lemma 4.4 we have that $M' \preceq M$ in $\mathbf{M}(H) \Leftrightarrow H_{M'} \subseteq H_M \Leftrightarrow \psi(M') \preceq \psi(M)$ in $\mathbf{F}(H)$. □

By Theorem 4.1 and Lemma 4.5 we have a main theorem as follows.

Theorem 4.6. $\mathbf{M}(H) \cong \mathbf{J}(\mathbf{F}(H))$. □

When H takes all over the truncated parallelograms for fixed m and n, $\mathbf{F}(H)$ goes all order ideals of $m \times n$. From the above theorem we have an immediate consequence as follows.

12
Corollary 4.7. Let \(W \) be any order ideal of \(m \times n \). Then \(J(W) \) is an irreducible MDL. \(\square \)

We can obtain a series of MDLs by applying the above theorem to the special truncated parallelograms, such as parallelogram, prolate triangle, etc. Let \(R_m := F(T_m) \). Here we give two special ones:

Corollary 4.8. \(J(m \times n) \) and \(J(R_m) \) are irreducible MDLs. Moreover

(1) \(J(m \times n) \cong M(L(m; n)) \), and

(2) \(J(R_m) \cong M(T_m) \). \(\square \)

Note that \([2, 3]\) the number of 1-factors of parallelogram \(L(m; n) \) and prolate triangle \(T_m \) are \(\binom{m+n}{m} \) and \(\frac{1}{m+2} \binom{2m+2}{m+1} \) (Catalan number), respectively.

5 MDL \(J(T) \)

In this section we will show that \(J(T) \) is an irreducible MDL with outerplane bipartite graphs for a poset \(T \) implied by any orientation of a tree. A connected plane graph \(G \) is outerplane if all vertices lie on the boundary of the outer face of \(G \). Let \(G \) be the set of all 2-connected outerplane bipartite graphs. Catacondensed hexagonal systems are typical members of \(G \) \([8]\).

An edge set \(T \) of a connected graph \(G \) is called a minimal edge-cut if \(G - T \) is not connected but \(G - T' \) remains connected for any proper subset \(T' \) of \(T \). For a plane graph \(G \), let \(e^* \) and \(f^* \) denote the edge and vertex of dual graph \(G^* \) corresponding to edge \(e \) and face \(f \) of \(G \), respectively; For \(T \subseteq E(G) \), put \(T^* := \{ e^* : e \in T \} \). Some edges in a plane graph \(G \) form a minimal edge-cut in \(G \) if and only if the corresponding dual edges form a cycle in \(G^* \) \([22]\). A minimal edge-cut \(T \) of a plane bipartite graph \(G \) is called elementary edge cut (e-cut for short) \([34]\) if all edges of \(T \) are incident with white vertices of one component of \(G - T \), called the white bank of \(T \), and the other component is the black bank of \(T \).

Lemma 5.1. \([31]\) Let \(T \) be a minimal edge-cut of \(G \in G \). Then \(T \) is an e-cut of \(G \) if and only if for any 1-factor \(M \) of \(G \), \(| M \cap T | = 1 \).

We now give an orientation \(\vec{G}^* \) of the dual \(G^* \): an edge \(e^* \) is oriented as an arc from \(f^*_1 \) to \(f^*_2 \) if one goes along \(e^* \) from \(f^*_1 \) to \(f^*_2 \) the white end-vertex of \(e \) lies right side. For example, see Figs. 6 and 7. We can see that a minimal edge-cut \(T \) is an e-cut of \(G \) if and only if \(T^* \) forms a directed cycle of \(\vec{G}^* \).
For $G \in \mathcal{G}$, we now give a poset on $\mathcal{F}(G)$. Let $\vec{G}^\#$ be the orientation of inner dual graph $G^\#$, obtained from directed dual graph \vec{G}^* by deleting the vertex f_0^* corresponding to the outer face of G. For $f_1, f_2 \in \mathcal{F}(G)$, we define “$f_1 \preceq f_2$” if $\vec{G}^\#$ has a directed path from f_2^* to f_1^*. Since $\vec{G}^\#$ contains no directed cycles, $\mathcal{F}(G) := (\mathcal{F}(G), \preceq)$ is a poset.

For a plane elementary bipartite graph G with $M, M' \in \mathcal{M}(G)$, if $M' \preceq M$, then there exists a saturated chain $M_0 (= M)M_1 \cdots M_k (= M')$ in $\mathcal{M}(G)$ between M and M'. Then M_{i-1} covers M_i, and $f_i := M_{i-1} \oplus M_i$ is a proper M_{i-1}-alternating face, $i = 1, 2, \ldots, k$. Then we say that M_i is obtained from M_{i-1} by a Z-transformation on the (proper M_{i-1}-alternating) face f_i, or simply by transforming f_i. Further, we also say that M' is obtained from M by a Z-transformation sequence on inner faces f_1, f_2, \ldots, f_k, and f_1, f_2, \ldots, f_k is a face sequence of G by a Z-transformations sequence from M to M'. The Z-transformation of G is simple if every inner face of G is transformed at most once during any Z-transformation sequence of G.

Lemma 5.2. Let $G \in \mathcal{G}$. If $f' \preceq f$ in $\mathcal{F}(G)$, then f' always appears after f in any Z-transformation sequence of G from M^1 to M^0. Hence Z-transformation of G is simple.

Proof. Without loss of generality, suppose that f covers f' in $\mathcal{F}(G)$. That is, (f, f') is an arc of directed inner dual $\vec{G}^\#$. Then (f, f') can be extended to a maximal directed path of $\vec{G}^\#$, which can be further extended to a directed cycle of \vec{G}^*, denoted by $\vec{C} := f_0^*e_0^*f_1^*e_1^*\cdots f_t^*e_t^*f_0^*$; see Fig. 6. Then $T = \{e_0, e_1, \ldots, e_t\}$ is an e-cut of G, each edge e_j is a common edge of f_j and f_{j+1} (script module $t + 1$), and each e_j is a proper edge of f_{j+1} and improper edge of f_j, $0 \leq j \leq t - 1$. For any $M \in \mathcal{M}(G)$, by Lemma 5.1, $| M \cap T | = 1$.

Let $P := M_1M_2\cdots M_s$ be a directed path in $\vec{Z}(G)$ from M^1 to M^0. Then $\delta_P(f) = 1$ for all $f \in \mathcal{F}(G)$ by Lemmas 3.3 and 3.4. Suppose that M_{i+1} is obtained from M_i by a Z-transformation on f_j. It is sufficient to show that $f_j, f_{j+1}, \ldots, f_t$ do not appear in Z-transformations from M^1 to M_i. We proceed by induction on j. If $j = 1$, then $e_0 \in M_1, M_2, \ldots, M_i$. Hence proper edge e_{k-1} of each f_k, $k \geq 2$, does not belong to M_1, M_2, \ldots, M_i. Hence, the required holds. By induction hypothesis we have that f_{j+1}, \ldots, f_t do not appear in Z-transformations from M^1 to M_{i+1} through M_i. Suppose that $M_{i' + 1}$ is obtained from $M_{i'}$ by a Z-transformation on f_{j+1}. Then $i + 1 \leq i'$, and proper edge e_j of f_{j+1} belong to all $M_{i+1}, \ldots, M_{i'}$. That implies that proper edge e_k of f_{k+1} does not belong to $M_{i+1}, \ldots, M_{i'}$ for all $k > j$. Hence f_{j+1}, \ldots, f_t do not appear in Z-transformations from M^1 to $M_{i'}$; that is, f_{j+2}, \ldots, f_t do dot appear in Z-transformations from M^1 to M_{i+1} through $M_{i'}$, as expected.

For $G \in \mathcal{G}$, we now define a mapping from $\mathcal{M}(G)$ to $J(\mathcal{F}(G))$. For any $M \in \mathcal{M}(G)$, let
Figure 6. An outerplane bipartite graph with e-cuts (the set of edges intersecting a dashed line).

$\sigma(M)$ denote the set of faces in the face sequence by a Z-transformation sequence from M to M^0. By Lemma 3.4 we have

$$\sigma(M) = \{ f \in \mathcal{F}(G) \mid f \text{ is contained in the interior of some cycle in } M \oplus M^0 \}.$$

In particular, $\sigma(M^0) = \emptyset$, and $\sigma(M^1) = \mathcal{F}(G)$ since $M^1 \oplus M^0$ is just the boundary of G by Lemma 3.3.

Lemma 5.3. $\sigma : \mathcal{M}(G) \to J(\mathcal{F}(G))$ is an injective mapping.

Proof. For $M \in \mathcal{M}(G)$, let $f \in \sigma(M)$. If $f' \prec f$ in $\mathcal{F}(G)$, then by Lemma 5.2, f' always appears after f in any Z-transformation sequence of G from M^1 to M^0 passing through M. So $f' \in \sigma(M)$, and $\sigma(M)$ is an order ideal of $\mathcal{F}(G)$. That is, σ is a mapping from $\mathcal{M}(G)$ to $J(\mathcal{F}(G))$. Further it is clear that σ is injective. \hfill \square

Further, we will show that σ is an isomorphism between $\mathcal{M}(G)$ and $J(\mathcal{F}(G))$ in the following theorem.

Theorem 5.4. For each $G \in \mathcal{G}$, $\mathcal{M}(G) \cong J(\mathcal{F}(G))$.

Proof. We first show that, for each $M \in \mathcal{M}(G)$, if M_1, M_2, \cdots, M_k are the 1-factors covered by M, then the order ideals $\sigma(M_1), \sigma(M_2), \cdots, \sigma(M_k)$ in $\mathcal{M}(G)$ are exactly the ones covered by $\sigma(M)$. By the fact that the order ideals in a finite poset \mathcal{P} covered in $J(\mathcal{P})$ by an order ideal Y are exactly the sets $Y \setminus \{ x \}$ for all maximal elements x of Y, it is sufficient to prove that the faces which can be properly transformed in 1-factor M are exactly the maximal elements of $\sigma(M)$.

Let f_i denote properly M-alternating facial cycle such that $f_i = M \oplus M_i, i = 1, 2, \ldots, k$. For convenience, we also use f_i to denote the corresponding inner face. Hence $\sigma(M_i) =$
σ(M) \ {f_i}. By Lemma 5.2, all faces which greater than \(f_i \) must be transformed during any transforming sequence from \(M^1 \) to \(M \). So each \(f_i \) is an maximal element in \(\sigma(M) \), and \(\sigma(M_i) = \sigma(M) \setminus \{f_i\} \) is covered by \(\sigma(M) \).

If \(f \) is a maximal element of \(\sigma(M) \), then by Lemma 5.2, all elements which greater than \(f \) in \(F(G) \) have been transformed from \(M^1 \) to \(M \). Let \(e \) be any proper edge of \(f \). Let \(f' \) be the face of \(G \) that has a common edge \(e \) with \(f \). If \(f' \) is the outer face of \(G \), by Lemma 5.3 \(e \) remains unchanged in any \(Z \)-transformation from \(M^1 \) to \(M \). Otherwise, \(f' \in F(G) \setminus \sigma(M) \). Then \(e \in M \) since \(f' \) has been transformed but \(f \) not from \(M^1 \) to \(M \) and \(e \) is an improper edge of \(f' \). Hence, all proper edges of \(f \) belong to \(M \); that is, \(f \) is proper \(M \)-alternating, as expected.

Further, \(\sigma \) is surjective since \(F(G) = \sigma(M^1) \) is the maximum element of \(J(F(G)) \). Therefore \(\sigma \) is an isomorphism between \(M(G) \) and \(J(F(G)) \).

Given an undirected tree \(T = (V,E) \), \(\vec{T} \) is any orientation of \(T \). Of course, directed tree \(\vec{T} \) has no (directed) cycles. Similar to \(F(G) \), we could consider \(\vec{T} \) as the Hasse diagram of a poset \(T \). As a consequence, we obtain another irreducible MDL described in the following result.

Theorem 5.5. Let \(T \) be a poset derived from any orientation \(\vec{T} \) of a tree \(T \). Then \(J(T) \) is an irreducible MDL.

Proof. By Theorem 5.4, it is sufficient to show that there is a \(G \in \mathcal{G} \) such that \(\vec{G}^\# \cong \vec{T} \). If \(|V(T)| \leq 2 \), it is obvious. So let \(|V(T)| \geq 3 \). Let \(\Delta \) denote the maximum degree of \(T \). We now construct such a graph \(G \) as follows. For any vertex \(v \) of \(T \), we gave an inner face \(f_v \) bounded by a cycle of length \(2\Delta \). If a vertex \(u \) of \(T \) is adjacent to \(v \), then we place the corresponding inner face \(f_u \) outside \(f_v \) by overlapping their edges \(e' \in f_u \) and \(e'' \in f_v \) to a new edge \(e \in G \), satisfying the orientation rule of \(F(G) \): \((u,v)\) is an arc from \(u \) to \(v \) if and only if \(e \) goes from the black end-vertex to the white one along the clockwise orientation of \(f_u \). Since \(f_v \) has \(2\Delta \) edges and \(v \) has at most \(\Delta \) going-out (going-in) arcs in the directed \(\vec{T} \), for all other neighbors of \(v \) we can proceed similarly. By repeating the above process, one can construct an outerplane bipartite graph \(G \in \mathcal{G} \) such that \(\vec{G}^\# \cong \vec{T} \). For example, see Fig. 7.

In fact, in the above construction the face degree of \(f_v \) may be smaller than \(2\Delta \). The least value of face degree of \(f_v \) may reach \(2 \max\{\Delta^-_v, \Delta^+_v, 2\} \), where \(\Delta^-_v, \Delta^+_v \) are in- or out-degree of \(v \) in \(\vec{T} \). During the process, we may need to exchange the order of in- and
out-edges such that the edges surrounded by f_v are alternately in- and out-edges as many as possible; See Fig. 7(b).

References

[1] G. Birkhoff, Lattice Theory, 3rd ed., American Math. Soc, Providence, 1979.

[2] S.J. Cyvin, I. Gutman, Kekulé Structures in Benzenoid Hydrocarbons, Lecture Notes in Chemistry 46, Springer-Verlag, Berlin, 1988.

[3] S.J. Cyvin, I. Gutman, Topological properties of benzenoid systems - part XXXVI - Algorithm for the number of Kekulé structures in some peri-condensed benzenoids, MATCH-Commun. Math. Comput. Chem. 19 (1986) 229.

[4] S. Felsner, Lattice structures from planar graphs, Elec. J. Combin. 11 (2004) #R15.

[5] J.C. Fournier, Combinatorics of perfect matchings in plane bipartite graphs and application to tilings, Theoret. Comput. Sci. 303 (2003) 333–351.

[6] G. Grätzer, Lattice Theory, First Concepts and Distributive Lattice, W. H. Freeman and Company, San Francisco, 1971.

[7] S. Khuller, J. Naor, P. Klein, The lattice structure of flow in planar graphs, SIAM J. Discrete Math. 6 (1993) 477–490.

[8] S. Klavžar, P. Žigert, A min-max result on catacondensed benzenoid graphs, Appl. Math. Lett. 15 (2002) 279–283.

[9] S. Klavžar, P. Žigert and G. Brinkmann, Resonance graphs of catacondensed even ring systems are median, Discrete Math. 253 (2002) 35–43.

[10] P.C.B. Lam and H. Zhang, A distributive lattice on the set of perfect matchings of a plane bipartite graph, Order 20 (2003) 13–29.
[11] L. Lovász, M. D. Plummer, Matching Theory, Annals of Discrete Mathematics, Vol. 29, North-Holland, Amsterdam, 1986.

[12] M. Latapy, C. Magnien, Coding distributive lattices with edge firing games, Inf. Process. Lett. 83 (2002) 125–128.

[13] O. Pretzel, On reorienting graphs by pushing down maximal vertices—II, Discrete Math. 270 (2003) 227–240.

[14] J. Propp, Lattice structure for orientations of graphs, Manuscript 1993. http://www.math.wisc.edu/~propp/orient.html.

[15] M. Randić, Aromaticity of polycyclic conjugated hydrocarbons, Chem. Rev. 103 (2003) 3449–3605.

[16] M. Randić, Resonance in catacondensed benzenoid hydrocarbons, Int. J. Quantum Chem. 63(2) (1997) 585–600.

[17] E. Rémiša, The lattice structure of the set of domino tilings of a polygon, Theoret. Comput. Sci. 322 (2004) 409–422.

[18] E. Rémiša, On the structure of some spaces of tilings, SIAM J. Discrete Math. 16 (2002) 1–19.

[19] N.C. Saldanha, C. Tomei, M.A. Casarin Jr., D. Romualdo, Space of domino tilings, Discrete Comput. Geom. 14 (1995) 207–233.

[20] W.C. Shiu, P.C.B. Lam, F. Zhang and H. Zhang, Normal components, Kekulé patterns and Clar patterns in plane bipartite graphs, J. Math. Chem. 31 (2002) 405–420.

[21] P.R. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth, Belmont, CA, 1986.

[22] R.J. Wilson, Introduction to Graph Theory, 3rd ed., Longman, New York, 1995.

[23] F. Zhang, X. Guo and R. Chen, Z-transformation graph of perfect matching of hexagonal systems, Discrete Math. 72 (1988) 405–415.

[24] F. Zhang, X. Guo and R. Chen, The connectivity of Z-transformation graph of perfect matching of hexagonal systems, Acta Math. Appl. Sinica. 4(2) (1988) 131–135.

[25] F. Zhang, X. Li, Hexagonal systems with forcing edges, Discrete Math. 140 (1995) 253–263.

[26] F. Zhang and H. Zhang, A new enumeration method for Kekulé stuctures of hexagonal system with forcing edges, J. Mol. Struct. (Theochem) 331 (1995) 255–260.

[27] H. Zhang, The connectivity of Z-transformation graph of perfect matchings of polyominoes, Discrete Math. 158 (1996) 257–272.
[28] H. Zhang, Direct sum of distributive lattices on the perfect matchings of a plane bipartite graph, Order 27 (2) (2010) 101-113.

[29] H. Zhang, Z-transformation graphs of perfect matchings of plane bipartite graphs: a survey, MATCH Commun. Math. Comput. Chem. 56 (2006) 457-476.

[30] H. Zhang, P.C.B. Lam and W.C. Shiu, Resonance graphs and a binary coding for the 1-factors of benzenoid systems, SIAM J. Discrete Math. 22 (2008) 971–984.

[31] H. Zhang, H. Yao, D. Yang, A min-max result on outerplane bipartite graphs, Appl. Math. Lett. 20(2) (2007) 199–205.

[32] H. Zhang and F. Zhang, The rotation graphs of perfect matchings of plane bipartite graphs, Discrete Appl. Math. 73 (1997) 5–12.

[33] H. Zhang and F. Zhang, Block graphs of Z-transformation graphs of perfect matchings of plane elementary bipartite graphs, Ars Combin. 53 (1999) 309–314.

[34] H. Zhang and F. Zhang, Plane elementary bipartite graphs, Discrete Appl. Math. 105 (2000) 291–311.

[35] H. Zhang, F. Zhang and H. Yao, Z-transformation graphs of perfect matchings of plane bipartite graphs, Discrete Math. 276 (2004) 393–404.