Contemporary indications for and outcomes of hepatic resection for neuroendocrine liver metastases

Steven D Scoville, Dimitrios Xourafas, Aslam M Ejaz, Allan Tsung, Timothy Pawlik, Jordan M Cloyd

Abstract

BACKGROUND

Although surgical resection is associated with the best long-term outcomes for neuroendocrine liver metastases (NELM), the current indications for and outcomes of surgery for NELM from a population perspective are not well understood.

AIM

To determine the current indications for and outcomes of liver resection (LR) for NELM using a population-based cohort.

METHODS

A retrospective review of the 2014-2017 American College of Surgeons National Surgical Quality Improvement Program and targeted hepatectomy databases was performed to identify patients who underwent LR for NELM. Perioperative characteristics and 30-d morbidity and mortality were analyzed.

RESULTS
Among 669 patients who underwent LR for NELM, the median age was 60 (interquartile range: 51-67) and 51% were male. While the number of metastases resected ranged from 1 to 9, the most common (45%) number of tumors resected was one. The majority (68%) of patients had a largest tumor size of < 5 cm. Most patients underwent partial hepatectomy (71%) while fewer underwent a right or left hepatectomy or trisectionectomy. The majority (68%) of patients had a largest tumor size of < 5 cm. Most patients underwent partial hepatectomy (71%) while fewer underwent a right or left hepatectomy or trisectionectomy. The majority of operations were open (82%) versus laparoscopic (17%) or robotic (1%). In addition, 30% of patients underwent intraoperative ablation while 45% had another concomitant operation including cholecystectomy (28.8%), bowel resection (20.2%), or partial pancreatectomy (3.4%). Overall 30-d morbidity and mortality was 29% and 1.3%, respectively. On multivariate analysis, American Society of Anesthesiologists class ≥ 3 [odds ratios (OR), OR = 2.089, 95% confidence intervals (CI): 1.197-3.645], open approach (OR = 1.867, 95%CI: 1.148-3.036), right hepatectomy (OR = 1.618, 95%CI: 1.014-2.582), and prolonged operative time of > 230 min (OR = 1.731, 95%CI: 1.168-2.565) were associated with higher 30-d morbidity while intraoperative ablation and concomitant procedures were not.

CONCLUSION
LR for NELM was performed with relatively low postoperative morbidity and mortality. Concomitant procedures performed at the time of LR did not increase morbidity.

Key words: Carcinoid; Neuroendocrine tumor; Primary tumor resection; Intraoperative ablation; Cholecystectomy; Small bowel resection

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Surgical resection of neuroendocrine liver metastases is associated with the best long-term outcomes, however the current indications for and outcomes of surgery are not well understood. In this study, we performed a retrospective review of the 2014-2017 American College of Surgeons National Surgical Quality Improvement Program to identify 669 patients who underwent liver resection to define characteristics associated with increased 30-d postoperative morbidity and mortality. Overall morbidity and mortality were relatively low at 29% and 1.3% respectively. Factors associated with increased 30-d morbidity included open and prolonged cases (> 230 min), right hepatectomy, and American Society of Anesthesiologists class ≥ 3 while concomitant procedures including intraoperative ablation did not influence morbidity.

Citation: Scoville SD, Xourafas D, Ejaz AM, Tsung A, Pawlik T, Cloyd JM. Contemporary indications for and outcomes of hepatic resection for neuroendocrine liver metastases. World J Gastrointest Surg 2020; 12(4): 159-170 URL: https://www.wjgnet.com/1948-9366/full/v12/i4/159.htm DOI: https://dx.doi.org/10.4240/wjgs.v12.i4.159

INTRODUCTION
Neuroendocrine tumors (NET) are a heterogeneous group of neoplasms that can occur anywhere in the body but commonly arise from the gastrointestinal tract. While relatively rare, the incidence and prevalence of NETs are steadily increasing, at least in part due to improved imaging and diagnostic techniques[1,2]. Despite their low grade nature, a substantial proportion (60%-80%) of well-differentiated NETs are diagnosed with or will develop neuroendocrine liver metastases (NELM), which is one of the strongest prognostic factors among patients with NETs[3]. For example, the 5-year overall survival of patients with untreated NELM range from 13% to 54%, compared with 61% to 79% among individuals who undergo treatment[4].

Multiple treatments exist for patients with NELM including surgical resection, ablative techniques, transarterial therapies, somatostatin analogs, cytotoxic chemotherapy, targeted therapies, and peptide receptor radionuclide therapy[4]. Other novel systemic and targeted therapies are rapidly emerging[5,6]. Despite the absence of level I evidence, surgical resection is associated with the best long-term outcomes
based on retrospective cohort studies and meta-analyses\(^6,11,12\). Indeed, even
cytoreductive surgery (i.e., surgical debulking) of NELM has been associated with
improved overall survival if residual disease less than 10%-30% can be achieved\(^5,13-15\).
Based on these data, surgical resection of NELM has been recommended as the
preferred initial approach, when feasible, by the European Neuroendocrine Tumors
Society and North American Neuroendocrine Tumors Society\(^16,17\).

Previous studies evaluating the short-term outcomes of surgery for NELM have
frequently been limited by their retrospective, single-institution nature\(^18-22\). Other
more recent multi-institutional studies have been limited to high-volume institutions
and conducted over long study periods\(^6,14,23\). Thus, there is a need for an evaluation of
contemporary practice patterns and outcomes from a population-based perspective.
Such information would inform patient selection and facilitate patient education and
the informed consent process. Therefore, we utilized the American College of
Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) targeted
hepatectomy database to analyze contemporary characteristics of patients with NELM
who underwent liver resection (LR) in the United States and evaluate factors
associated with postoperative morbidity and mortality.

MATERIALS AND METHODS

Data acquisition and study population
The ACS-NSQIP data set is a national validated and risk adjusted outcomes based
database that includes demographic, clinical, perioperative, and 30-d postoperative
details of patients undergoing surgery from 600 eligible hospitals across the United
States. The ACS-NSQIP uses a systemic sampling process to ensure that each case has
an equal chance of selection and it is frequently monitored to minimize sample bias. A
retrospective review of the 2014-2017 ACS-NSQIP and targeted hepatectomy
databases were performed and patients were matched based on case ID numbers. All
adult patients undergoing LR were identified using Current Procedural Terminology
codes 47120, 47122, 47125, and 47130.

Study variables and outcomes
Independent variables included demographic, preoperative health status, relevant
comorbidities, operative, and postoperative outcomes. Demographics included age
and gender. Preoperative health included American Society of Anesthesiologists
(ASA) classification, body mass index, weight loss within 6 mo from surgery,
smoking, chronic steroid use, preoperative sepsis (systemic inflammatory response
syndrome or septic shock) and preoperative transfusion. Comorbidities included
diabetes mellitus, chronic obstructive pulmonary disease, hypertension requiring
medications, bleeding disorders, congestive heart failure. Targeted hepatectomy
variables included neoadjuvant therapy within 90 d of surgery, ascites, viral hepatitis,
and pre-operative biliary stent placement. Operative variables consisted of operative
approach (open, laparoscopic, robotic), type of resection (trisegmentectomy, total
right, or left hemihepatectomy, or partial hepatectomy), concomitant procedures
(cholecystectomy, intestinal resection, partial pancreatectomy), size of metastatic
lesion (< 2, 2-5, or > 5 cm) number of metastatic lesions (1-2, 3-5, or > 5), number of
concurrent partial hepatectomies (0, 1-5, 6-9, or > 10), liver texture (normal, congested,
cirrhotic or fatty), operative time, pringle maneuver during resection, concomitant
intraoperative ablation (IA), and biliary reconstruction.

Overall morbidity included each of the following within 30 d from the date of
surgery: Superficial, deep and organ/space surgical site infection, sepsis, respiratory
complications including pneumonia or reintubation, pulmonary embolism, deep vein
thrombosis, myocardial infarct, cardiac arrest, stroke, renal complications such as
renal insufficiency or urinary tract infection, hemorrhage requiring at least 4 U of
packed red blood cells, bile leak, liver intervention post hepatectomy and pos-
toperative liver failure. Perioperative mortality was also measured and defined as
death within 30 d after LR. Length of stay, discharge disposition, 30-d readmission
and reoperation were also among the postoperative measures assessed.

Statistical analysis
Descriptive statistics were reported as percentages of the total number of patients in
the study. Univariate and multivariate analyses were used to identify factors
associated with the development of overall morbidity and mortality within 30 d of
surgery. Logistic regression analysis was used for univariate analysis. Stepwise
logistic regression analysis was used for multivariable analysis and included all non-
collinear variables. Results are reported as odds ratios (OR) and 95% confidence
intervals (CI). Analyses were performed using SAS 9.2 (SAS Institute, Inc., Cary, NC, United States). P values < 0.05 were considered statistically significant. All statistics were performed by an experienced biostatistician.

RESULTS

Patient characteristics
Between 2014-2017, 669 patients were identified within the ACS-NSQIP database who underwent LR for NELM. Complete demographic and clinicopathologic criteria of the cohort are listed in Table 1. The median age was 60 [interquartile range (IQR): 51-67], 51% were male and the mean body mass index was 27.4 (IQR: 24-32). Most patients underwent partial hepatectomy (71%) while fewer underwent hemihepatectomy (23%) or trisegmentectomy (6%). The majority of operations were open (82%); fewer were laparoscopic (17%) or robotic (1%). The mean number of lesions resected was 3.8 (range 1-9) and the most common size of the largest tumor was 2-5 cm (45%) (Figure 1A and B). Among all patients, 30.6% underwent concomitant IA in conjunction with a LR. In addition, 45.4% of patients underwent a combined resection in addition to the LR. The most common concomitant procedure was a cholecystectomy (28.8%), followed by intestinal resection (20.2%) and pancreatectomy (3.4%) (Figure 1C).

Perioperative outcomes
Table 2 reports the postoperative outcomes of patients undergoing resection of NELM. Median operative time was 232 min (IQR: 179-297) and the mean length of stay was 6 (IQR: 4-8) d. The overall 30-d complication rate was 29% with the most common perioperative complications being perioperative transfusion (15.5%), intraabdominal infection (7.3%), bile leakage (5.9%), sepsis (5.6%), surgical site infection (3.5%), reoperation (3.1%), pneumonia (2.9%), liver failure (2.6%), and pulmonary embolism (2%). Of note, serious adverse events such as stroke, cardiac arrest, and myocardial infarction occurred in less than 1% of all patients undergoing resection for NELM. Postoperative mortality occurred in 1.3%. The vast majority (95%) of patients were able to be discharged home and readmission was required in 11.2% of the patients.

Predictors of postoperative morbidity
Factors associated with 30-d morbidity on univariate analysis are reported in Table 3. ASA class of ≥ 3 (OR = 2.418, 95%CI: 1.422-4.113, P = 0.0011), open approach (OR = 1.943, 95%CI: 1.218-3.102, P = 0.0053), right, left or trisection hepatectomy (OR = 1.660, 95%CI 1.169-2.355, P = 0.0046), and operative time (> 230 min, OR = 2.403, 95%CI: 1.407-2.968, P = 0.0002) were all associated with increased morbidity while IA was associated with a decrease in perioperative morbidity (OR = 0.686, 95%CI: 0.476-0.988, P = 0.0431). Interestingly, the use of concomitant procedures (including bowel resections, cholecystectomy, or pancreatectomy), as well as the size or number of tumors were not associated with postoperative morbidity.

On multivariable logistic regression, ASA class of ≥ 3 (OR = 2.089, 95%CI: 1.197-3.645, P = 0.0095), open approach (OR = 1.867, 95%CI: 1.148-3.036, P = 0.0118), right, left or trisegmental hepatectomy (OR = 1.618, 95%CI: 1.014-2.582, P = 0.0437), and operative time > 230 min (OR = 1.731, 95%CI: 1.168-2.565, P = 0.0062) were independently associated with increased morbidity while normal liver texture was protective of overall morbidity (OR = 0.641, 95%CI: 0.433-0.950, P = 0.0266) (Table 4).

DISCUSSION

The incidence of NETs is increasing worldwide and a majority of patients will present with metastatic disease in their liver[1]. NELM is a strong negative prognostic factor for survival and is associated with significant reductions in patient quality of life[23]. While several systemic and liver-directed therapies are available, surgical resection is typically recommended when feasible[24]. In this paper, we used a contemporary, population-based, prospective database to define the characteristics and outcomes of patients undergoing surgery for NELM in the United States. These results highlight several important findings. First, the majority of operations are being performed for small tumors in the setting of multifocal disease and typically are minor resections. Second, a significant proportion of cases are being performed concomitant with another operation, either liver IA, cholecystectomy, or (presumably) primary tumor resection. Finally, modern surgery for NELM can be performed with relatively minimal postoperative morbidity (29%) and mortality (1.3%). These results are critical
Table 1: Demographic, clinical, and operative characteristics of patients with neuroendocrine liver metastases undergoing resection

Characteristic	NELM (n = 669)
Median age in years, n (IQR)	60 (51-67)
Male gender, n (%)	341 (51)
ASA classification, n (%)	
I	2 (0.3)
II	143 (21)
III	459 (69)
IV	61 (9)
Median BMI (kg/m²), n (IQR)	27.4 (24-32)
Comorbidities/preoperative	
> 10% loss body weight in last 6 mo, n (%)	30 (4.4)
Diabetes mellitus with oral agents or insulin, n (%)	115 (17)
Current smoker within one yr, n (%)	79 (12)
Severe chronic obstructive pulmonary disease, n (%)	9 (0.3)
Congestive heart failure in 30 d before surgery, n (%)	5 (0.7)
Hypertension requiring medications, n (%)	326 (49)
Viral hepatitis, n (%)	13 (1.9)
Preoperative biliary stent, n (%)	13 (1.9)
Ascites within 30 d, n (%)	3 (0.4)
Preoperative sepsis, n (%)	2 (0.3)
Steroid use for a chronic condition, n (%)	20 (3)
Bleeding disorders, n (%)	18 (2.6)
Preoperative transfusion, n (%)	3 (0.4)
Neoadjuvant therapy, n (%)	119 (17.7)
Patients with concomitant procedure (%)	304 (45.4)
Total number of cholecystectomy	193 (28.8)
Total number of small/large bowel resection	135 (20.2)
Total number of partial pancreatectomy	23 (3.4)
Operative approach, n (%)	546 (82)
Open	113 (17)
Laparoscopic	10 (1)
Liver resection type, n (%)	
Trisegmentectomy	42 (6)
Right hepatectomy	99 (15)
Left hepatectomy	52 (8)
Partial lobectomy	476 (71)
Size of metastatic lesion, n (%)	
< 2 cm	152 (23)
2-5 cm	303 (45)
> 5 cm	181 (27)
Unknown	33 (5)
Number of metastatic lesions, n (%)	
< 2	298 (45)
3-5	168 (26)
> 5	166 (27)
Unknown	37 (2)
Concurrent partial liver resections, n (%)	
0	205 (30.6)
1-5	385 (57.5)
6-9	44 (6.6)
> 10	5 (0.7)
Unknown	30 (4.5)
Liver texture, n (%)
- Normal 190 (28)
- Congested 8 (1)
- Cirrhotic 12 (2)
- Fatty 57 (9)
- Unknown 402 (60)

Median optimal in minutes, n (IQR) 232 (179-297)

Pringle maneuver during resection, n (%) 161 (24)

Biliary reconstruction, n (%) 14 (2)

Intraoperative ablation, n (%) 205 (30)

Drain placement 253 (38)

NELM: Neuroendocrine liver metastases; IQR: Interquartile range; BMI: Body mass index; ASA: American Society of Anesthesiology.

for informed preoperative discussions with patients as well as future comparative effectiveness research with other liver-directed treatments.

Recent advances in the perioperative management of patients undergoing LR have improved the safety of hepatectomy and expanded criteria for selecting patients for surgery. Indeed, a recent study by Cloyd et al. evaluated nearly 4000 patients who underwent LR over two decades and noted steady improvements in postoperative morbidity despite increases in case complexity. Improvements in the outcomes of LR are likely multifactorial but improved patient selection, evaluation and optimization, are paramount. Accurate liver volumetry and future liver remnant augmentation have been important strategies for minimizing post hepatectomy and postoperative liver failure. Improved perioperative and anesthetic care, including reduced intravenous fluid administration and less blood loss, have similarly been critical advances in contemporary hepatic surgery. The introduction of enhanced recovery after surgery processes have further contributed to reduced morbidity following surgery and are now commonly routinized at major medical centers. Finally, implementation of laparoscopic and robotic approaches for surgery have led to reduced postoperative pain, blood loss, and length of hospital stay with similar outcomes compared with open approaches.

Prior studies evaluating the role of IA for NELM have demonstrated that this therapeutic approach is generally well tolerated and is indicated for patients whose tumors are not amenable to resection though the safety of IA during surgery for NELM has not been thoroughly evaluated. In this study, we noted that IA was associated with decreased 30-d morbidity in univariate analysis though this association did not persist on multivariate analysis. These findings are consistent with a recent study evaluating IA during resection of colorectal liver metastasis which found lower overall morbidity, hospital length of stay, and readmission rates in patients who underwent LR and IA compared to patients who underwent LR alone. Based on these results and others, IA appears to be a safe and effective strategy to expand the surgical options for patients with multifocal NELM.

While the role of primary tumor resection in the setting of unresectable NELM remains controversial, resection of the primary NET is indicated when liver metastases are resectable. The current study suggests that resection of the primary (e.g., pancreatectomy, intestinal resection) can be performed safely and is not associated with increased postoperative morbidity. These findings are consistent with the large body of literature which suggests that most LRs for colorectal liver metastasis can be performed safely in a combined fashion with standard colorectal resections.

While the ACS-NSQIP targeted hepatectomy database has the advantage of containing hepatectomy-specific perioperative variables, a limitation of the current database was the lack of cancer- and patient-specific information. For example, the database lacked relevant information such as the symptomatic status of patients, functional status of tumors, tumor grade, or presence of extra-hepatic disease. In addition, it lacked information such as the symptomatic status of patients, which the current study was limited to the 30-d postoperative period, we were unable to describe the long-term efficacy of LR for NELM. However, the purpose of the current study was to evaluate the indications for and short-term outcomes of surgery for NELM. Multiple prior studies have found that LR for NELM is associated with good long-term survival. Similarly, the ACS-NSQIP database did not have information on carcinoid crisis, however, previous studies have shown this to be a relatively rare event. This study had several other limitations,
Figure 1 Indications for liver resection for neuroendocrine liver metastases. Overall size (A) and number (B) of neuroendocrine liver metastases and frequency of concomitant procedures including intraoperative ablation (C) among patients undergoing liver resection for neuroendocrine liver metastases.

primarily related to its retrospective nature and the fact that data were limited to the 30-d postoperative period which may be insufficient to capture all complications.

In conclusion, in this contemporary population-based analysis, we demonstrated that LR can be performed for NELM with relatively low postoperative morbidity and mortality. Concomitant operations such as cholecystectomy, bowel resection, pancreatectomy, and IA can safely be performed and do not contribute to increased morbidity. Careful patient selection, minimizing operative time, and utilizing minimally invasive surgical approaches may help reduce postoperative morbidity. While multiple therapeutic options exist for NELM, given the excellent long-term outcomes observed in the literature and the satisfactory short-term outcomes demonstrated herein, surgical resection should remain the standard of care when feasible.
Complication	NELM (n = 669)
Post-hepatectomy	
Bile leakage, n (%)	40 (5.9)
Post hepatectomy invasive intervention, n (%)	65 (9.7)
Post hepatectomy liver failure, n (%)	18 (2.6)
Specific complications	
Superficial surgical site infection, n (%)	24 (3.5)
Deep incisional surgical site infection, n (%)	4 (0.6)
Organ/space surgical site infection, n (%)	49 (7.3)
Bleeding requiring transfusion, n (%)	104 (15.5)
Unplanned re-intubation, n (%)	9 (1.3)
Pneumonia, n (%)	20 (2.9)
Pulmonary embolism, n (%)	14 (2)
Progressive renal insufficiency, n (%)	7 (1.1)
Urinary tract infection, n (%)	14 (2)
Stroke, n (%)	1 (0.1)
Cardiac arrest, n (%)	2 (0.3)
Myocardial infarction, n (%)	3 (0.4)
Deep venous thrombosis/thrombophlebitis, n (%)	9 (1.4)
Sepsis, n (%)	38 (5.6)
Overall	
Median length of hospital stay in days, n (IQR)	6 (4-8)
Discharge destination to home, n (%)	637 (95.2)
30-d readmission, n (%)	75 (11.2)
Reoperation, n (%)	21 (3.1)
30-d overall morbidity, n (%)	194 (29)
Mortality, n (%)	9 (1.3)

NELM: Neuroendocrine liver metastases; IQR: Interquartile range.
Table 3 Significant predictors of 30-d overall morbidity among patients undergoing hepatectomy for neuroendocrine liver metastases based on univariate logistic regression analysis

Predictor	OR	95% CI	P value
Age > 60	0.931	0.658-1.316	0.6835
Male gender	1.232	0.890-1.707	0.2992
ASA class ≥ 3	2.418	1.422-4.113	0.0011
BMI > 27	1.030	0.743-1.428	0.8596
Preop biliary stent	2.562	0.850-7.719	0.0946
Viral hepatitis	2.538	0.841-7.660	0.0983
Concomitant bowel resection	1.278	0.885-1.844	0.1906
Concomitant cholecystectomy	1.094	0.749-1.598	0.6431
Concomitant pancreatectomy	1.579	0.626-3.984	0.3335
Open approach	1.943	1.218-3.102	0.0053
Size < 2 cm (ref)			
Size 2-5 cm	0.989	0.645-1.516	0.9591
Size > 5 cm	1.397	0.882-2.215	0.1546
Number of tumors > 1	0.984	0.681-1.422	0.9317
Right/left/triseg hepatectomy	1.660	1.169-2.355	0.0046
Abnormal liver texture	1.340	0.818-2.193	0.2447
Intraoperative ablation	0.686	0.476-0.988	0.0431
Biliary reconstruction	3.979	1.317-12.023	0.0144
Operative time > 230 min	2.043	1.407-2.968	0.0002
Pringle	1.429	0.986-2.070	0.0593

OR: Odds ratio; CI: Confidence intervals; ASA: American Society of Anesthesiologists; BMI: Body mass index.

Table 4 Significant predictors of 30-d overall morbidity among patients undergoing hepatectomy for neuroendocrine liver metastases based on multivariate stepwise logistic regression analysis

Predictor	OR	95% CI	P value
ASA class ≥ 3	2.089	1.197-3.645	0.0095
Normal liver texture	0.641	0.433-0.950	0.0266
Open approach	1.867	1.148-3.036	0.0118
Right hepatectomy	1.618	1.014-2.582	0.0437
Intraoperative ablation	0.697	0.473-1.029	0.0697
Biliary reconstruction	2.802	0.870-9.021	0.0842
Operative time > 230 min	1.731	1.168-2.565	0.0062

OR: Odds ratio; CI: Confidence intervals; ASA: American Society of Anesthesiologists.

ARTICLE HIGHLIGHTS

Research background
Multiple liver-directed therapies, including hepatic resection, exist for patients with neuroendocrine liver metastases (NELM). While surgical resection is associated with the best long-term outcomes, the current indications for and outcomes of surgery for NELM from a population perspective are not well understood.

Research motivation
A better understanding of the frequency and predictors of postoperative complications will improve shared-decision making for patients with NELM, especially given the expanding number of liver-directed and systemic therapies available.

Research objectives
The purpose of the current study was to define the current indications for surgery for NELM, characterize the short-term outcomes of patients undergoing surgery, and evaluate predictors of complications using a population-based approach.
Research methods
A retrospective review of the 2014-2017 American College of Surgeons National Surgical Quality Improvement Program targeted hepatectomy database was performed to identify patients who underwent hepatic resection for NELM. Perioperative characteristics and 30-d morbidity and mortality were analyzed.

Research results
Among 669 patients who underwent liver resection for NELM, the number of metastases resected ranged from 1 to 9 though the most common (45%) number of tumors resected was one. The majority (68%) of patients had a largest tumor size of < 5 cm and most patients underwent partial hepatectomy (71%). The majority of operations were open (82%) versus laparoscopic (17%) or robotic (1%). In addition, 30% of patients underwent intraoperative ablation while 45% had another concomitant operation including cholecystectomy (28.8%), bowel resection (20.2%), or partial pancreatectomy (3.4%). Overall 30-d morbidity and mortality was 29% and 1.3%, respectively. On multivariate analysis, American Society of Anesthesiologists class ≥ 2, open approach, formal hemi-hepatectomy or trisectionectomy, and prolonged operative time were associated with higher 30-d morbidity. Concomitant procedures including intraoperative ablation, small bowel resection, or pancreatectomy were not independently associated with higher morbidity.

Research conclusions
In this contemporary population-based analysis, we demonstrated that hepatic resection can be performed with relatively low postoperative morbidity and mortality for patients with NELM. Concomitant operations such as cholecystectomy, bowel resection, pancreatectomy, and liver ablation can safely be performed and do not contribute to increased morbidity. Careful patient selection, minimizing operative time, and utilizing minimally invasive approaches may help reduce postoperative morbidity. While multiple therapeutic options exist for NELM, given the excellent long-term outcomes observed in the literature and the satisfactory short-term outcomes demonstrated in the current study, surgical resection should remain the standard of care when feasible.

Research perspectives
This study highlights the current population-based indications for liver resection for patients with neuroendocrine liver metastases and confirms satisfactory short-term outcomes. In light of these findings, future research should focus on expanding the indications for hepatic resection particularly given the increasing number of liver-directed and systemic therapy options available. Future prospective studies should evaluate the optimal sequencing of liver-directed therapies including neoadjuvant and adjuvant strategies to improve long-term outcomes.

REFERENCES
1. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, Shih T, Yao JC. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol 2017; 3: 1335-1342 [PMID: 28486665 DOI: 10.1001/jamaoncol.2017.0539]
2. Lee MK, Harris C, Bagg KJ, Aronson A, Winstead JP, Kim MK. Incidence Trends of Gastroenteropancreatic Neuroendocrine Tumors in the United States. Clin Gastroenterol Hepatol 2019; 17: 2212-2217.e1 [PMID: 30580901 DOI: 10.1016/j.cgh.2018.12.017]
3. Spolverato G, Bagante F, Wagner D, Buettner S, Gupta R, Kim Y, Maqsood H, Pawlik TM. Quality of life after treatment of neuroendocrine liver metastasis. J Surg Res 2015; 198: 155-164 [PMID: 26695419 DOI: 10.1016/j.jss.2015.05.048]
4. Fairweather M, Pommier RF. Treatment of Neuroendocrine Liver Metastases. Surg Oncol Clin N Am 2016; 25: 217-225 [PMID: 26610783 DOI: 10.1016/j.soc.2015.08.010]
5. Sarmiento JM, Heywood G, Rubin J, Istrup DM, Nagorney DM, Que FG. Surgical treatment of neuroendocrine metastases to the liver: a plea for resection to increase survival. J Am Coll Surg 2003; 197: 29-37 [PMID: 12381921 DOI: 10.1016/S1072-7515(03)00236-8]
6. Mayo SC, de Jong MC, Pultitano C, Clary BM, Reddy SK, Gamblin TC, Celinski SA, Kooby DA, Staley CA, Stokes JB, Chiu CK, Ferrore A, Schulick RD, Choti MA, Menha G, Strub J, Bauer TW, Adams RB, Alrighetti L, Capussotti L, Pawlik TM. Surgical management of hepatic neuroendocrine tumor metastasis: results from an international multi-institutional analysis. Ann Surg Oncol 2010; 17: 3112-3136 [PMID: 20585879 DOI: 10.1245/s10434-010-1154-5]
7. Chamberlain RS, Canes D, Brown KT, Saltz L, Jarnagin W, Blumgart LH. Hepatic neuroendocrine metastases: does intervention alter outcomes? J Am Coll Surg 2000; 190: 432-445 [PMID: 10757381 DOI: 10.1016/s1072-7515(00)00222-2]
8. Bacchetti S, Bertozzi S, Londero AP, Uzzeau A, Pasqual EM. Surgical treatment and survival in patients with liver metastases from neuroendocrine tumors: a meta-analysis of observational studies. Int J Surg 2013; 2013: 235040 [PMID: 23509630 DOI: 10.1155/2013/235040]
9. Cloyd JM, Konda B, Shah MH, Pawlik TM. The emerging role of targeted therapies for advanced well-differentiated gastroenteropancreatic neuroendocrine tumors. Expert Rev Clin Pharmacol 2019; 12: 101-108 [PMID: 30582383 DOI: 10.1080/17512433.2019.1561271]
10. Scoville SD, Cloyd JM, Pawlik TM. New and emerging systemic therapy options for well-differentiated gastroenteropancreatic neuroendocrine tumors. Expert Opin Pharmacother 2020; 21: 183-191 [PMID: 31768023 DOI: 10.1080/14656566.2019.1694003]
11. Fairweather M, Swanson R, Wang J, Brais LK, Dutton T, Kulke MH, Clancy TE. Management of Neuroendocrine Tumor Liver Metastases: Long-Term Outcomes and Prognostic Factors from a Large Prospective Database. Ann Surg Oncol 2017; 24: 2319-2325 [PMID: 28303430 DOI: 10.1245/s10434-017-5839-x]
Woltering EA, Voros BA, Beyer DT, Wang YZ, Thiggarajan R, Ryan P, Wright A, Ramirez RA, Ricks MJ, Boudreaux JP.Aggressive Surgical Approach to the Management of Neuroendocrine Tumors: A Report of 1,000 Surgical Cytoreductions by a Single Institution. J Am Coll Surg 2017; 224: 434-447 [PMID: 28038062 DOI: 10.1016/j.jamcollsurg.2016.12.032]

Morgan RE, Pommier SJ, Pommier RF. Expanded criteria for debulking of liver metastasis also apply to pancreatic neuroendocrine tumors. Surgery 2018; 163: 218-225 [PMID: 29103583 DOI: 10.1016/j.surg.2017.05.036]

Ejaz A, Reames BN, Maithel S, Poulsides GA, Bauer TW, Fields RC, Weiss MJ, Marques HP, Alderghetti L, Pawlik TM. Cytoreductive debulking surgery among patients with neuroendocrine liver metastasis: a multi-institutional analysis. HPB (Oxford) 2018; 20: 277-284 [PMID: 28964360 DOI: 10.1016/j.hpb.2017.08.039]

Scott AT, Breheny PJ, Keck KJ, Bellizzi AM, Dillon JS, O'Dorisio TM, Howe JR. Effective cytoreduction can be achieved in patients with numerous neuroendocrine tumor liver metastases (NETLMs). Surgery 2019; 165: 166-175 [PMID: 30343940 DOI: 10.1016/j.surg.2018.04.070]

O'Toole D, Kiammansr E, Caplin M. ENETS 2016 Consensus Guidelines for the Management of Patients with Digestive Neuroendocrine Tumors: An Update. Neuroendocrinology 2016; 103: 117-118 [PMID: 26731186 DOI: 10.1159/000441619]

Howe JR, Cardona K, Fraker DL, Kebebew E, Untch BR, Wang YZ, Law CH, Liu EH, Kim MK, Menda Y, Morse BG, Bergsland EK, Strosberg JR, Nakamura EK, Pommier RF. The Surgical Management of Small Bowel Neuroendocrine Tumors: Consensus Guidelines of the North American Neuroendocrine Tumor Society. Pancreas 2017; 46: 715-731 [PMID: 28609357 DOI: 10.1097/MPA.0000000000000846]

Jensen EH, Kvols L, McLoughlin JM, Lewis JM, Alvarado MD, Yeatman T, Malafa M, Shibata D. Biomarkers predict outcomes following cytoreductive surgery for functional carcinoid tumors. Ann Surg Oncol 2007; 14: 780-785 [PMID: 17146740 DOI: 10.1245/s10434-006-9148-z]

Boudreaux JP, Wang YZ, Diebold AE, Frey DJ, Anthony L, Ullhorn AP, Ryan P, Woltering EA. A single institution's experience with surgical cytoreduction of stage IV, well-differentiated, small bowel neuroendocrine tumors. J Am Coll Surg 2014; 218: 837-844 [PMID: 24655981 DOI: 10.1016/j.jamcollsurg.2013.12.035]

de Mestier L, Neuzillet C, Hentic O, Kiammansr E, Hammel P, Ruszniewski P. Prolonged survival in a patient with neuroendocrine tumor of the cecum and diffuse peritoneal carcinomatosis. Case Rep Gastroenterol 2012; 6: 205-210 [PMID: 22869332 DOI: 10.1159/000357440]

Chambers AJ, Pasieka JL, Dixon E, Rorstad O. The palliative benefit of aggressive surgical intervention for both hepatic and metastatic mesenteric tumors from neuroendocrine tumors. Surgery 2008; 144: 645-51; discussion 651-653 [PMID: 18847650 DOI: 10.1016/j.surg.2008.06.008]

Chung MH, Pisejga J, Spirit M, Giuliano AE, Ye W, Ramming KP, Bilchik AJ. Hepatic cytoreduction followed by a novel long-acting somatostatin analog: a paradigm for intractable neuroendocrine tumors metastatic to the liver. Surgery 2001; 130: 954-962 [PMID: 11742323 DOI: 10.1067/msy.2001.118388]

Sham JG, Ejaz A, Gage MM, Bagante F, Reames BN, Maithel S, Poulsides GA, Bauer TW, Fields RC, Weiss MJ, Marques HP, Alderghetti L, Pawlik TM, He J. The Impact of Extent of Liver Resection Among Patients with Neuroendocrine Liver Metastasis: an International Multi-Institutional Study. J Gastrointest Surg 2019; 23: 484-491 [PMID: 29980977 DOI: 10.1007/s11605-018-3862-2]

Frilling A, Sotropoulos GC, Li J, Kornasiewicz O, Plochinger U. Multimodal management of neuroendocrine liver metastases. HPB (Oxford) 2010; 12: 361-379 [PMID: 20662787 DOI: 10.1111/j.1477-2578.2010.00175.x]

Frilling A, Mudlin IM, Kidd M, Russell C, Breitenstein S, Salem R, Kwokkeboom D, Lau WY, Kleyer C, Viglainer V, Davidson B, Siegert M, Caplin M, Socleia E, Schildk R, Working Group on Neuroendocrine Liver Metastases. Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol 2014; 15: e8-21 [PMID: 24384494 DOI: 10.1016/S1470-2045(13)70362-4]

Cloyd JM, Mizuno T, Kawaguchi Y, Lillenose HA, Karagkiounis G, Omichi K, Chu YS, Tzeng CD, Odisio BC, Huang SY, Hicks M, Wei SH, Aloia TA, Vauthey JN. Comprehensive Complication Index Validates Improved Outcomes Over Time Despite Increased Complexity in 3707 Consecutive Hepatectomies. Ann Surg 2020 Apr; 271(4): 724-731 [PMID: 30339625 DOI: 10.1097/SLA.0000000000004343]

Rassam F, Olthof PB, Bennink JR, van Gulik TM. Current Modalities for the Assessment of Future Remnant Liver Function. Curr Med Res Opin 2017; 33: 442-448 [PMID: 28263835 DOI: 10.1185/03007995.2016.1150183]

Rahmenai-Azar AA, Cloyd JM, Weber SM, Dilhoff M, Schmidt C, Winslow ER, Pawlik TM. Update on Liver Failure Following Hepatic Resection: Strategies for Prevention and Avoidance of Post-operative Liver Insufficiency. J Clin Transl Hepatol 2018; 6: 97-104 [PMID: 29577030 DOI: 10.14218/JCTH.2017.00060]

Wang C, Zhang G, Zhang W, Zhang F, Lv S, Wang A, Fang Z. Enhanced Recovery after Surgery Programs for Liver Resection: A meta-analysis. J Gastrointest Surg 2017; 21: 472-486 [PMID: 28101720 DOI: 10.1007/s11605-017-3360-y]

Jackson NR, Hauch A, Hu T, Buell JF, Slakey DP, Kandi E. The safety and efficacy of approaches to liver resection: a meta-analysis. JSLS 2015; 19: e2014.00186 [PMID: 25848191 DOI: 10.2930/JSLS.2014.00186]

Nguyen KT, Marsh JW, Tsang A, Steel JJ, Gamblin TC, Geller DA. Comparative benefits of laparoscopic vs open hepatic resection: a critical appraisal. Arch Surg 2011; 146: 348-356 [PMID: 21079109 DOI: 10.1001/archsurg.2010.248]

Tsillimigkas DI, Morris D, Vagios S, Merath K, Pawlik TM. Safety and oncologic outcomes of robotic liver resections: A systematic review. J Surg Oncol 2018; 117: 1517-1530 [PMID: 29473968 DOI: 10.1002/jso.25018]

Gani F, Ejaz A, Dilhoffs M, He J, Weiss M, Wolfgang CL, Cloyd J, Tsung A, Johnston FM, Pawlik TM. A national assessment of the utilization, quality and cost of laparoscopic liver resection. HPB (Oxford) 2019; 21: 1327-1335 [PMID: 30801808 DOI: 10.1016/j.hpb.2019.02.007]

Mazzaglia PJ, Berber E, Milas M, Siperstein AE. Laparoscopic radiofrequency ablation of neuroendocrine liver metastases: a 10-year experience evaluating predictors of survival. Surgery 2007; 142: 10-19 [PMID: 17629995 DOI: 10.1016/j.surg.2007.01.036]

Orgera G, Krolikis M, Cappucci M, Gourtsoyianni S, Tipaldi MA, Hatzikadakis A, Rebonato A, Rossi M. Current status of Interventional Radiology in the management of Gastro-Enteral Neuroendocrine Tumours (GEP-NETs). Cardiovasc Intervent Radiol 2015; 38: 13-24 [PMID: 25366807]
36 Kose E, Kahramangil B, Aydin H, Donmez M, Takahashi H, Siperstein A, Berber E. Outcomes of laparoscopic tumor ablation for neuroendocrine liver metastases: a 20-year experience. Surg Endosc 2020; 34: 249-256 [PMID: 30945061 DOI: 10.1007/s00464-019-06759-1]

37 Xourafas D, Pawlik TM, Cloyd JM. Early Morbidity and Mortality after Minimally Invasive Liver Resection for Hepatocellular Carcinoma: a Propensity-Score Matched Comparison with Open Resection. J Gastrointest Surg 2019; 23: 1435-1442 [PMID: 30377911 DOI: 10.1007/s11605-018-4016-2]

38 Hellman P, Lundström T, Ohvall U, Eriksson B, Skogseid B, Oberg K, Tiensuu Janson E, Akerström G. Effect of surgery on the outcome of midgut carcinoid disease with lymph node and liver metastases. World J Surg 2002; 26: 991-997 [PMID: 12016480 DOI: 10.1007/s00268-002-6630-z]

39 Givi B, Pommier SJ, Thompson AK, Diggs BS, Pommier RF. Operative resection of primary carcinoid neoplasms in patients with liver metastases yields significantly better survival. Surgery 2006; 140: 891-897, discussion 897-898 [PMID: 17188135 DOI: 10.1016/j.surg.2006.07.033]

40 Tsilimigras DI, Ntanasis-Stathopoulos I, Kostakis ID, Moris D, Schizas D, Cloyd JM, Pawlik TM. Is Resection of Primary Midgut Neuroendocrine Tumors in Patients with Unresectable Metastatic Liver Disease Justified? A Systematic Review and Meta-Analysis. J Gastrointest Surg 2019; 23: 1044-1054 [PMID: 30671800 DOI: 10.1007/s11605-018-04094-9]

41 Xiang JX, Zhang XF, Beal EW, Weiss M, Aldrighetti L, Poultsides GA, Bauer TW, Fields RC, Maithel SK, Marques HP, Pawlik TM. Hepatic Resection for Non-functional Neuroendocrine Liver Metastasis: Does the Presence of Unresected Primary Tumor or Extrareplicative Metastatic Disease Matter? Ann Surg Oncol 2018; 25: 3928-3935 [PMID: 30218247 DOI: 10.1245/s10434-018-6751-8]

42 Reddy SK, Pawlik TM, Zorzi D, Gleisner AL, Ribero D, Assumption M, Abdalla EK, Choti MA, Vauthey JN, Ludwig KA, Mantyh CR, Morse MA, Clary BM. Simultaneous resections of colorectal cancer and synchronous liver metastases: a multi-institutional analysis. Ann Surg Oncol 2007; 14: 3481-3491 [PMID: 17805933 DOI: 10.1245/s10434-007-9522-5]

43 Idrees JJ, Bagante F, Gani F, Rosinski BF, Chen Q, Merath K, Dillhoff M, Cloyd J, Pawlik TM. Population level outcomes and costs of single stage colon and liver resection versus conventional two-stage approach for the resection of metastatic colorectal cancer. HPB (Oxford) 2019; 21: 456-464 [PMID: 30266492 DOI: 10.1016/j.hpb.2018.08.007]

44 Glazer ES, Tseng JF, Al-Refaie W, Solorzano CC, Liu P, Willborn J, Dillhoff M, Cloyd J, Pawlik TM. Population level outcomes and costs of single stage colon and liver resection versus conventional two-stage approach for the resection of metastatic colorectal cancer. HPB (Oxford) 2019; 21: 456-464 [PMID: 30266492 DOI: 10.1016/j.hpb.2018.08.007]

45 Byrne RM, Pommier RF. Small Bowel and Colorectal Carcinoids. Clin Colon Rectal Surg 2018; 31: 301-308 [PMID: 30186052 DOI: 10.1055/s-0038-1642054]
