Breakdown of hydrodynamics below four dimensions in a fracton fluid

Paolo Glorioso,1,* Jinkang Guo,2 Joaquin F. Rodriguez-Nieva,1 and Andrew Lucas2,†

1Department of Physics, Stanford University, Stanford, CA 94305, USA
2Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, USA
(Dated: May 31, 2021)

We present the nonlinear fluctuating hydrodynamics which governs the late time dynamics of a chaotic many-body system with simultaneous charge/mass, dipole/center of mass, and momentum conservation. This hydrodynamic effective theory is unstable below four spatial dimensions: dipole-conserving fluids at rest become unstable to fluctuations, and are governed not by hydrodynamics, but by a fractonic generalization of the Kardar-Parisi-Zhang universality class. We numerically simulate many-body classical dynamics in one-dimensional models with dipole and momentum conservation, and find evidence for a breakdown of hydrodynamics, along with a new universality class of undriven yet non-equilibrium dynamics.

1. INTRODUCTION

One of the oldest and most applicable theories in physics is hydrodynamics. While hydrodynamics was first understood as a phenomenological set of equations that govern liquids and gases [1], over the past century we have instead recognized that hydrodynamics is best understood as the universal effective field theory that governs thermalization in a chaotic many-body system [2–4]. Due to this universality, the same theories of hydrodynamics can describe diverse phases of classical or quantum matter, including ultracold atoms [5], quark-gluon plasma [6], and electrons and phonons in high-purity solids [7–10].

Novel phases of matter arise when the microscopic degrees of freedom are fractons – excitations which are individually immobile, and can only move in tandem [11–28]. As a simple example, we can consider a phase of matter in which the global charge (or mass) is conserved, together with the global dipole moment (or momentum). In this case, a single particle cannot move without violating the dipole conservation law. If such a phase of matter, realized on a lattice, can thermalize [29–31], it is described by a novel hydrodynamics in which Fick’s law of charge diffusion is replaced by slower subdiffusion [32–37]. The emergence of subdiffusion is not special to peculiar microscopic details of particular lattice models; it is guaranteed by the symmetries of the dynamics. This robustness of hydrodynamics to microscopic peculiarities makes it an experimentally ideal probe for constrained dynamics [38].

Here, we study such a dipole-conserving theory which is also translation-invariant. In this case, charge, dipole and momentum are all conserved quantities. We show that these fluids exhibit a highly unusual hydrodynamics, with magnon-like propagations with subdiffusive decay rates. More importantly, below four spatial dimensions, these fluids are violently unstable to thermal fluctuations. Hydrodynamics thus will not exist in any experimentally-realizable spatial dimension; rather, it will be replaced by a fractonic generalization of the Kardar-Parisi-Zhang (KPZ) universality class [39].

In one spatial dimension, the KPZ fixed point is remarkably generic: it arises in the study of growing surfaces [39], quantum Hall edge states [40], and – most importantly for us – is the endpoint of a fundamental instability of the Navier-Stokes equations in one spatial dimension [41]. Among the many non-equilibrium universality classes that have been discovered in statistical mechanics, ranging from flocking [42] in active matter, to driven-dissipative condensates [43], to fluctuating smectic liquid crystals [44], the KPZ fixed point is unique in that it describes the instability of an ordinary undriven fluid at rest, without any spontaneous symmetry breaking. By studying the curious hydrodynamics arising in matter with fractonic conservation laws, we have discovered that such instabilities of fluids in equilibrium can exist in three dimensions as well.

Just as hydrodynamics is robust against microscopic details, so too is the universality class of non-equilibrium dynamics that emerges out of a hydrodynamic instability. The universality class of a dipole-conserving fluid can be realized in any medium with exact or emergent dipole and momentum conservation. While we are not aware of a current experimental platform exhibiting these conservation laws, we outline possible strategies to building them in what follows. Independently of experiment, it is possible to realize these conservation laws in classical or quantum dynamics which can be simulated numerically. We have numerically simulated one-dimensional chaotic classical dynamics with dipole and momentum conservation, and find evidence for the advertised fractonic generalization of the KPZ fixed point. Our work thus establishes an unexpected and profound connection between non-equilibrium statistical mechanics and unconventional fracton phases of matter.
2. MICROSCOPIC MODELS

Given the seemingly abstract nature of how fluids might simultaneously have both dipole and momentum conservation, before diving into the theoretical framework of fluid dynamics, it is instructive to first describe a microscopic model which would lie in such a universality class. For simplicity in the discussion which follows, we focus on one dimensional systems. Let us begin by considering \(N \) particles with momenta \(p_i \) and displacements \(x_i \) \((i = 1, \ldots, N)\), coupled together by the following Hamiltonian:

\[
H = \sum_{n=1}^{N-1} \frac{(p_n - p_{n+1})^2}{2} + V(x_n - x_{n+1}). \tag{1}
\]

Here \(V(x) = V_2 x^2 + V_3 x^3 + \cdots \) is a generic polynomial. This is qualitatively similar to a simple model of one-dimensional solids with anharmonicity, except for the kinetic energy, which depends on only the difference of momenta. Somewhat similar models have arisen in the “dipole fermion” picture of fractional quantum Hall states [45, 46].

This curious kinetic energy is all that we need to have an emergent dipole conservation. Using the Poisson brackets \(\{x_n, p_m\} = \delta_{nm} \), we find that the dipole moment \(D \), “charge” \(Q \) and momentum \(P \), given by

\[
Q = \sum_{n=1}^{N} x_n, \quad D = \sum_{n=1}^{N} x_i, \quad P = \sum_{n=1}^{N} p_i, \tag{2}
\]

obey the classical multipole algebra [47]

\[
\{Q, D\} = \{Q, P\} = 0, \quad \{D, P\} = Q. \tag{3}
\]

Since \(Q, D \) and \(P \) commute with the Hamiltonian, we have conservation of charge, dipole and momentum all at once, in a spatially local theory. Note that energy is also conserved if the dynamics is Hamiltonian. But it is straightforward to modify the dynamics to no longer conserve energy.

If we assume the dynamics is close to equilibrium (i.e. displacements are small), then we can safely set (without loss of generality) \(V(x) = \frac{1}{2} x^2 \). A simple calculation reveals that the normal modes of this quadratic and integrable system are of the form \((x_n, p_n) \propto e^{i k n - \omega_k t}\), and that when \(k \ll 1, \omega_k \approx \pm k^2 \). As promised in the introduction, we have uncovered a magnon-like dissipationless dispersion relation, which we will show later is universal and follows entirely from simultaneous dipole and momentum conservation, even when we include higher order terms (which destroy integrability) in \(V(x) \).

As we have found a magnon-like dispersion relation, it is tempting to push the analogy between dipole conserving fluids, and isotropic ferromagnets, a little further. Consider the isotropic Heisenberg ferromagnet

\[
H = - \sum_{n=1}^{N-1} S_n \cdot S_{n+1}, \tag{4}
\]

where \(S_n = (S^x_n, S^y_n, S^z_n) \) and \(\{S^i_{n+1}, J^j_n\} = e^{ijk} S^k_{nn} \delta_{ij} \). Imposing the constraint \(S^x_n S^y_n + S^y_n S^z_n + S^z_n S^x_n = 1 \), and perturbing around the minimal energy configuration \(S_n^z = 1 \), we observe that if we identify charge \(Q \), dipole \(D \) and momentum \(P \) with the total \(x \), \(y \) and \(z \) components of spin, the spin algebra is equivalent to (3). Moreover, Taylor expanding \(H \) to leading order in small \(S_n^y \), we observe that up to a global constant, \(H \) is approximately given by (1) with \(V(x) = \frac{1}{2} x^2 \).

Remarkably, we see that the isotropic ferromagnet has an approximate dipole and momentum conservation close to equilibrium. However, nonlinearities in the ferromagnet do not preserve \(S_n^z = 1 \), and so the nonlinear theories differ. Despite this nonlinear discrepancy, we note that nonlinearities are known to be strongly relevant below six dimensions in the Heisenberg ferromagnet [48]. In the exact dipole-conserving theory, we will show that the upper critical dimension is four. And while the Mermin-Wagner theorem destroys order in the ferromagnet in one dimension, there is no destruction of dipole conservation in the model (1). It would be interesting to investigate whether a ferromagnet can be modified by realizable interactions to better stabilize the dipole-conserving hydrodynamics.

3. HYDRODYNAMICS

We now use canonical arguments, based on the second law of thermodynamics, to derive the hydrodynamics of conserved momentum, charge, and dipole. The fundamental assumption of hydrodynamics is that the late time physics is governed locally by the independent quantities of the system, which we write as

\[
P^i = \int d^d x \pi^i, \quad Q = \int d^d x n \tag{5}
\]

where \(\pi^i \) and \(n \) are the momentum and charge density, respectively. \(ij \) indices in what follows run over spatial dimensions \(i = 1, \ldots, d \), and repeated indices are summed over. The dynamics of the densities \(n \) and \(\pi^i \) is given by the local conservation laws:

\[
\partial_t \pi^i + \partial_j T^{ij} = 0, \quad \partial_t n + \partial_{ij} J^i = 0, \tag{6}
\]

where \(T^{ij} \) and \(J^i \) are stress and charge flux, and are assumed to be local expressions of \(\pi^i, n \). Crucially, we also need to demand

\[
J^i = \partial_\pi J^{ji}, \tag{7}
\]

which comes from dipole conservation:

\[
\partial_t \int d^d x x^i n = - \int d^d x x^i \partial_\pi J^i = \int d^d x J^i, \tag{8}
\]

where the right-hand side vanishes only if \(J^i \) satisfies (7). We will also demand that \(J^{ij} \) be local in the densities.

We have not included the dipole density as a separate degree of freedom. Indeed, let us decompose the dipole
charge as: $D^i = D^i_0 + S^i$, where $D^i_0 = \int d^4 x \, x^i n$ is the “orbital” component and S^i a remainder, corresponing to a density of microscopic dipoles. In general, we only expect the sum D^i to be conserved, and not each component separately. Therefore, the S^i charge will typically relax into the local density $x^i n$, and dipole density is not a separate hydrodynamic degree of freedom [49]. This is analogous to the reason why a fluid with angular momentum conservation does not have a new hydrodynamic mode associated to angular momentum density.

Upon specifying the explicit dependence of T^{ij} and J^i on π^i and n, Eqs. (6),(7) will completely specify the time evolution of π^i and n. To find such explicit dependence, we shall write down the most general expressions of T^{ij} and J^i in terms of π^i and n following a derivative expansion, and then impose that the dynamics be consistent with the local second law of thermodynamics. This amounts at finding a vector J^i_\parallel such that

$$\partial_i s + \partial_i J^i_\parallel \geq 0 \quad (9)$$

when evaluated on solutions to hydrodynamics, where s is the thermodynamic entropy density. This basic constraint will uniquely determine the concrete expressions of T^{ij}, J^i in terms of π^i, n, order by order in derivatives, up to phenomenological coefficients that are determined by the specific underlying system.

The thermodynamics and hydrodynamics of dipole-conserving systems are special: contrary to all cases known to us, the homogeneous part of momentum density decouples from the dynamics. Indeed, we begin by first assuming that the entropy density is a function of momentum and charge densities $s = s(\pi^i, n)$, as in conventional thermodynamics. We now show that this breaks (7). Recall the thermodynamic relation

$$T(d s - V_i d \pi^i - \mu d n), \quad (10)$$

where V_i and μ are the velocity and chemical potential of the system. We recall that we are assuming absence of energy conservation, so we will take T to be a constant set by noise in this discussion, and will study hydrodynamics with energy conservation in a technical companion paper [50]. Combining this thermodynamic relation with the fact that, in non-dissipative hydrodynamics, entropy is locally conserved, we arrive at

$$T(\partial_i s + \partial_i J^i_\parallel) = -V^i (\partial_i \pi^i + \partial_i T^{ij}) - \mu (\partial_i n + \partial_i J^i). \quad (11)$$

The most general expressions for the currents are $J^i_\parallel = s_1 V^i \ , \ T^{ij} = \rho \delta^{ij} + h_1 \pi^i V^j , \ J^i = h_2 V^i$, where s_1, p, h_1, h_2 are functions of π^i and n. Plugging these expressions in (11) gives $s_1 = s , \ p = T s + \mu n + V^i \pi^i , \ h_1 V^i = \pi^i$ and $h_2 = n$, which are just the standard constitutive relations of the hydrodynamics of a charged fluid: indeed, we have not used anywhere the fact that we are dealing with a dipole-conserving fluid. In particular, these results together with (7) lead to the relation

$$n V^i = \partial_j J^{ij} , \quad (12)$$

which would naively imply that J^{ij} is non-local in the hydrodynamic variables, thus violating our basic assumptions.

The only way for (12) to be consistent with locality, therefore, is to demand that the velocity V^i is itself a total derivative (divided by n). Since V^i is defined as the chemical potential of π^i, such requirement is only possible if the entropy density has the following dependence on π^i:

$$s = s(\partial_i v_j, n), \quad v_i = \frac{\pi^i}{n} . \quad (13)$$

Again demanding (11), we find

$$T^{ij} = \rho \delta^{ij} + V^i \pi^j - \psi_{ik} \partial_j v_k , \quad (14a)$$

$$J^{ij} = \psi_{ij} , \quad (14b)$$

where the velocity and the thermodynamic pressure are

$$V^i = \frac{1}{n} \partial_j \psi_{ji}, \quad p = T s - n T \frac{\partial s}{\partial n} , \quad (15)$$

and we have defined the quantity

$$\psi_{ij} = T \frac{\partial s}{\partial (\partial_i v_j)}|_n . \quad (16)$$

Unlike ordinary fluids, the velocity is a higher-derivative expression of momentum density. This is the only way to reconcile (12) with locality. In a rotationally invariant theory, we find that T^{ij} is symmetric up to total derivatives, consistent with conservation of angular momentum. An explicit derivation of these facts is provided in Appendix A.

Note that the entropy density s as well as equations of motion are invariant under the shift

$$\pi^i \rightarrow \pi^i + n c^i , \quad T^{ij} \rightarrow T^{ij} + J^{ij} c^i , \quad (17)$$

where c^i is a constant vector. This invariance is a manifsetation of the dipole algebra (3). Indeed, (3) implies, using locality: $\{ D^i, \pi^j \} = n \delta^{ij}$, which is equivalent to the symmetry (17). In fact, using (17) as the only input, one immediately infers (13), which in turn imply (14a)-(16) and in particular (7). Such symmetry-based approach confirms that the hydrodynamics (14a)-(16) is valid for arbitrary strongly-coupled systems and thus universal.

It is straightforward to derive first order dissipative corrections to hydrodynamics. We do this calculation in Appendix B, and now summarize the results. We find that $J^{ij} = J^{ij}_{(0)} + J^{ij}_{(1)}$ and $T^{ij} = T^{ij}_{(0)} + T^{ij}_{(1)}$, where $J^{ij}_{(0)}$ and $T^{ij}_{(0)}$ correspond to the ideal hydrodynamic results derived above, and

$$-T^{ij}_{(1)} = \eta^{ijkl} \partial_k V_l + \alpha^{ijkl} \partial_k \partial_l \mu \quad (18a)$$

$$J^{ij}_{(1)} = \kappa^{ijkl} \partial_k V_l + C^{ijkl} \partial_k \partial_l \mu . \quad (18b)$$

The tensor structures are detailed in Appendix B, and are similar to shear and bulk viscosities of an isotropic fluid.
To complete our hydrodynamic description, we finally add the effect of thermal fluctuations. Generalizing the standard fluctuation-dissipation theorem [1], we add noise to the currents: $T^{ij} \to T^{ij} + \tau^{ij}$ and $J^{ij} \to J^{ij} + \xi^{ij}$, where the variance is determined by the dissipative coefficients of (18):

\[
\begin{align*}
\langle \tau^{ij} \tau^{kl} \rangle &= 2T \eta^{ijkl} \delta(t) \delta^{(d)}(x) \\
\langle \xi^{ij} \xi^{kl} \rangle &= 2TC^{ijkl} \delta(t) \delta^{(d)}(x) \\
\langle \tau^{ij} \xi^{kl} \rangle &= T(\alpha^{ijkl} + \kappa^{ijkl}) \delta(t) \delta^{(d)}(x)
\end{align*}
\]

In Appendix C, we derive the propagating hydrodynamic modes of this theory: namely, we look for solutions to the hydrodynamic equations in which $n, v_i \propto e^{i k x - i \omega t}$. We find a magnon-like “sound” mode with dispersion relation $\omega = \pm c k^2 - i \gamma k^4$, and $d - 1$ subdiffusive modes for transverse momentum with dispersion relation $\omega = -i \gamma' k^4$. Explicit expressions for c, γ, γ' are not illuminating and are provided in the appendix. Note that the qualitative structure of these quasimormal modes matches those of an ordinary fluid, except that each power of wave number k is doubled.

4. INSTABILITY OF HYDRODYNAMICS

In fact, the true dispersion relations differ from those we found from linear response above. Relevant nonlinearities couple to thermal fluctuations and lead to anomalous scaling, severely affecting the long-time behavior of general dipole-conserving hydrodynamics. For simplicity, we shall present the explicit nonlinearities only in one dimension; the higher dimensional counterpart is qualitatively similar and can be found in Appendix D. We consider perturbations of an equilibrium fluid at rest $v_x = 0$ and $n = n_0$ ($\delta n = n - n_0$) – and find

\[
\partial_t v_x + \frac{1}{\chi} \partial_x \delta n + \lambda \partial_x \delta n + \lambda' \partial^2_x \partial_x \delta n \\
+ \frac{\alpha}{n_0} \chi \partial_x v_x \partial^4_x \delta n + \frac{A}{n_0} \partial_x \tau^{xx} + \cdots = 0, \quad (20a)
\]

\[
\partial_t \delta n - A \partial^3_x v_x + C \partial^4_x \delta n + C \partial^2_x \tau^{xx} + \cdots = 0. \quad (20b)
\]

\[
\cdots \text{ denote higher derivative/nonlinear terms which are not important for what follows. We included stochastic fluctuations in the equations. The values of constants } \lambda, \lambda', \chi, \alpha, A, \text{ and } C \text{ do not depend on } v_x \text{ or } \delta n.
\]

Neglecting fluctuations, the dissipative scaling is $\omega \sim k^4$. From (19), the noise scales as $\tau, \eta \sim k^{d-4}$. Starting from the linearized theory and assuming that a, A etc. are scale (k) independent, we find $\tau^{ij} \sim k^{d-4}$ and $n \sim k^4$. As per the usual renormalization group analysis, the coefficient of λ must scale as k^{d-4}, making it relevant when $d < 4$; λ' scales as k^{d-2} and is relevant when $d < 2$. As a consequence, we can anticipate anomalous dissipative scaling: the magnon-like sound mode will have dispersion relation $\omega \sim k^2 - ik^2$, with $z < 4$. We crudely estimate z by assuming that, even after fluctuations are accounted for, the scaling of the densities does not renormalize. Assuming $\lambda \neq 0$ and balancing the time derivative with nonlinearities $\partial_t \pi^{ij} \sim \nabla(\delta n)^2, \nabla(\nabla n)^2$ leads to $k^{2 + \frac{4-2z}{d}} \sim k^{d+1}$, or $z \sim d/2 + 2$. In one dimension, this gives $z \sim 2.5$.

5. NUMERICAL SIMULATIONS

Having predicted both the exotic dissipative hydrodynamics of a dipole-conserving theory, together with its breakdown due to thermal fluctuations, we now describe two models which we have used to numerically test our predictions.

Model A: Our first model starts with Hamiltonian (1), with

\[
V(x) = \frac{1}{2} x^2 + k_3 x^3 + k_4 x^4. \quad (21)
\]

Note that Model A has energy conservation, and strictly speaking our hydrodynamic derivation above does not. Energy conservation changes the universality class and critical exponents of hydrodynamics [50], and so strictly speaking, model A does not lie in the universality class predicted above. In Appendix E, we study a stochastic version of model A with noise and dissipation, which is not energy conserving and is predicted to lie in our universality class. Further simulations, and discussion of the role of energy conservation, are also described there.

Model B: Our second model corresponds to

\[
H = \sum_{i=1}^{N} (-\cos p_i - F x_i) + V(x), \quad (22)
\]

with $V(x)$ given in (21). Note that this model does not have explicit dipole conservation, nor momentum conservation. However, analogous to the emergence of dipole conservation out of energy conservation in systems placed in strong tilt fields [32, 38, 52], we predict the emergence of dipole and momentum conserving hydrodynamics in this model. Indeed, in Appendix F, we explicitly show that the linearized equations in model B exhibit fast Bloch oscillations superimposed on top of magnon-like hydrodynamic modes. Model B is inspired by one possible experimental realization of dipole-conserving hydrodynamics, in which ultracold fermionic atoms are placed in a tilted optical lattice [38]. The $\cos p_i$ kinetic energy arises from the finite bandwidth of a lattice model, and the $F x_i$ force field comes from the tilt. In order for this realization to be appropriate, it is important for umklapp scattering to be suppressed and for momentum to be approximately conserved.

We now present large scale simulations for each model. A “thermodynamic” check for dipole-conserving hydrodynamics is to look at the equilibrium fluctuations of the
momentum density, which are proportional to the momentum susceptibility: using (12) and (15),

$$\chi_{PP} = \frac{\pi_i}{V_i} \propto k^{-2}. \quad (23)$$

As $k \to 0$, we predict a clear divergence in the equal time correlation functions $\langle p_k(t)p_{-k}(t) \rangle$, with $\langle \cdots \rangle$ an average over times and/or initial conditions; here p_k denotes the discrete Fourier transform of p_i. Figure 1 demonstrates this divergence is present in both models.

Next, we study the thermalization time scale of each model. Choosing random initial conditions, higher-momenta modes will thermalize first, so that $\langle p_{-k}(t)p_k(t) \rangle$ will develop a maximum at some momentum k_\ast. For a dispersion relation with $\Im \omega \propto k^z$, the thermalization time of a mode with momentum k scales as k^{-z}, which will yield

$$k_\ast(t) \propto t^{-1/z}; \quad (24)$$

note that $z = 4$ in linearized hydrodynamics. Figure 2 shows numerical simulations in both models, which demonstrate that $z \approx 4$ when $k_3 = 0$, but that $z \approx 2.5$ when $k_3 \neq 0$. Crucially, we observe both (i) a large scale deviation from $z = 4$, which is compatible with our crude estimates for z at the non-equilibrium fixed point, and (ii) much weaker instability (in fact, we did not numerically detect one unambiguously) when $k_3 = 0$. Moreover, our data exhibits the strongest scaling collapse when $z \approx 2.5$ (when $k_3 \neq 0$). This constitutes strong numerical evidence for the existence of the same hydrodynamic fixed point, arising both in Models A and B. Remarkably, the observed value of z is extremely close to our simplistic estimate of 2.5.

In Model A, we have also studied the fate of the magnon-like sound mode by studying the Fourier transform of unequal time correlation functions $\langle p_{-k}(0)p_k(t) \rangle$. Figure 3 shows that this correlation function is sharply peaked near $\omega = ck^2$, with a magnon decay rate consistent with $z \approx 2.5$. This suggests that the real part of the dispersion relation remains quadratic at the dipole-conserving KPZ fixed point, and is consistent with our assumption that the densities do not pick up anomalous exponents at this new fixed point.

We remark that the numerical detection of anomalous transport scaling can be sometimes quite subtle. For example, it has long been known that energy transport in one-dimensional “standard” (non-fractonic) hydrodynamics is anomalous [53]; however, this statement has been subject to relatively recent debates, where certain models were observed to display ordinary diffusion [54, 55]. While the general consensus is now that energy transport in these systems is always anomalous [56], these works instruct us that unambiguous determinations of
of non-equilibrium critical exponents may be quite non-trivial. The relatively weak mixing of energy density with momentum density within these one-dimensional models is consistent with the fact that our model A appears to access the dipole-KPZ fixed point at numerically accessible time scales, even without any noise.

6. OUTLOOK

We have discovered a new phase of matter which is undriven, yet out-of-equilibrium. Our construction was inspired by the physics of fractons, which were originally devised [11] to protect quantum information against thermalization, but have since revealed deep connections between quantum information, condensed matter physics, quantum field theory, and (due to this work) non-equilibrium statistical mechanics. Although we have focused on the hydrodynamics of a dipole-conserving fluid here, we anticipate infinitely many additional non-equilibrium universality classes arising from the consideration of higher multipole conservation laws [32], subsystem symmetries [32, 57, 58], or explicit/spontaneous symmetry breaking. We look forward to the systematic classification of fracton-inspired non-equilibrium universality classes, and hope for their ultimate discovery in experiment.

ACKNOWLEDGEMENTS

We acknowledge useful discussions with Luca Delacrétaz, Bertrand Halperin, Kristan Jensen, Rahul Nandkishore, Leo Radzihovsky and Dam Thanh Son.

This work was supported by the Department of Energy through Award DE-SC0019380 (PG), the Simons Foundation through Award No. 620869 (PG), the Gordon and Betty Moore Foundation’s EPiQS Initiative via Grants GBMF4302 and GBMF8686 (JFRN), and by Research Fellowships from the Alfred P. Sloan Foundation under Grant FG-2020-13615 (PG) and FG-2020-13795 (AL).

Note Added.—While preparing this work, the preprint [59], which discusses non-dissipative response in a fluid with conserved dipole and momentum, was posted.

Appendix A: Zeroth order hydrodynamics

In this appendix, we derive the zeroth order hydrodynamics. Our starting point is (11). First collecting the terms with time derivatives, we find

$$T \partial_t s = -V^i \partial_t \pi^i - \mu \partial_t n$$

$$T \left(\frac{\partial s}{\partial n} \partial_t n + \frac{\partial s}{\partial (\partial_k v^i)} \partial_t \partial_k v^i \right) = -V^i \partial_t (n v^i) - \mu \partial_t n$$

$$\left(T \frac{\partial s}{\partial n} + V^i v^j + \mu \right) \partial_t n + \psi_{kli} \partial_t \partial_k v^i + n V^i \partial_t v^i = 0. \quad (A1)$$

Since the first term must vanish, we conclude that the chemical potential is given by

$$\mu = -T \frac{\partial s}{\partial n} - V^i v^i. \quad (A2)$$

For the second term, we integrate by parts to find

$$\partial_k (\psi_{kli} \partial_t v^i) + (n V^i - \partial_k \psi_{kli}) \partial_t v^i = 0. \quad (A3)$$

Setting the second term to zero implies the first equation in (15).

The remaining divergence term can be absorbed into the entropy current, and indeed we now turn to the evaluation of the entropy current by studying the spatial derivative terms in (11):

$$T \partial_i J^i_S + \partial_k (\psi_{kli} \partial_t v^i) = -V^i \partial_j T^{ji} - \mu \partial_j J^i$$

$$= -V^i \partial_j T^{ji} + \left(T \frac{\partial s}{\partial n} + V^k v^k \right) \partial_j \left(n V^j + J^j \partial_j \right). \quad (A4)$$

In the second line above, we have plugged in the ansatz \(J^i = n V^i + J^{\parallel} \). Ultimately we will show that \(J^{\parallel} = 0 \) at ideal fluid level, so in the equations that follow we will drop this term to avoid clutter. With a bit of hindsight, we claim that

$$J^i_S = n \frac{\partial s}{\partial n} V^i - \psi_{i3j} \partial_j \psi_{k3}. \quad (A5)$$

The latter term clearly cancels out a term in the first line of (A4); as for the former, observe that if we plug (A5) into (A4), we find

$$-V^i \partial_j T^{ji} + V^k v^k \partial_j (n V^i) = T n V^i \partial_j \frac{\partial s}{\partial n}$$

$$= T V^i \partial_j \left(n \frac{\partial s}{\partial n} - s \right) + T V^i \frac{\partial s}{\partial \partial_k v^i} \partial_k v^i$$

$$= T V^i \partial_j \left(n \frac{\partial s}{\partial n} - s \right) + T V^i \frac{\partial s}{\partial \partial_k v^i} \partial_k v^i$$

FIG. 3. (a) Absolute value of the temporal Fourier transform of \(\langle P_{-k} P_k (t) \rangle \) showing the quadratic dispersion of a propagating mode in model A. (b) Linewidth of the quadratic excitations in panel (a) as a function of momentum. Shown with dashed-dotted lines is the \(k^{2.5} \) fit.
where \(\eta_{ij}^{kpl} \) and \(\ldots \) are regarded as constant tensors, and where we only kept terms that are linear in \(v_i \) and \(\mu \) as these are sufficient to capture the anomalous scalings: any nonlinear dissipative term will be irrelevant. The tensor \(\eta_{ij}^{kpl} \) has the general decomposition

\[
\eta_{ij}^{kpl} \equiv b_1 \delta^{ij} \delta^{(kql)} + b_2 \delta^{(ij)} \delta^{(kql)} + b_3 \delta^{ij} \delta^{(kql)},
\]

where \(\Lambda^{(kqr...pq)} \) denotes total symmetrization with respect to the indices \(k, p, q \). From (B8a) and (C2) below, we also have

\[
\eta_{ij}^{[kql]} \equiv (\zeta + \frac{2}{d}) \left[(a_1 + 2 \frac{d-1}{d} a_2) \delta^{ij} \delta^{[kql]} + 2 \eta \left(a_1 + \frac{d-2}{d} a_2 - a_3 \right) \delta^{(ij)} \delta^{(kql)} + \left(\eta + \bar{\eta} \right) (a_2 + a_3) \delta^{ij} \delta^{(kql)} \right],
\]

Eqs. (B4) and (B5) have the same tensor structure. From this and (C3) we conclude that, by a suitable choice of coefficients, the first term in (B3a) can be written as

\[
\eta_{ijklpq} \equiv \eta_{ijkl} \partial_6 \partial_6 \partial_6 v_q = \eta_{ijkl} \partial_6 v_i,
\]

A similar conclusion applies to the first term in (B3b). This allows us to write the currents in terms of \(V^i \):

\[
-T_{ij}^{(1)} = \eta_{ijkl} \partial_6 v_i + \alpha_{ijkl} \partial_6 \partial_6 \mu,
\]

where

\[
\begin{align*}
\eta_{ijkl} & = \zeta \delta^{ij} \delta^{kl} + 2 \eta \delta^{[i<j<kl]} + 2 \eta \delta^{i<k} \delta^{j>l} \delta^{<j<i}, \\
\kappa_{ijkl} & = \kappa_1 \delta^{ij} \delta^{kl} + 2 \kappa_3 \delta^{k<i} \delta^{j>l} + 2 \kappa_3 \delta^{i<j} \delta^{kl}, \\
\alpha_{ijkl} & = \alpha_1 \delta^{ij} \delta^{kl} + 2 \alpha_2 \delta^{k<i} \delta^{j>l}, \\
C_{ijkl} & = C_1 \delta^{ij} \delta^{kl} + 2 C_2 \delta^{k<i} \delta^{j>l},
\end{align*}
\]

where \(A^{<ij>} = \frac{1}{2} (A^{ij} + A^{ji} - \frac{1}{2} \delta^{ij} A^{kl}) \) and \(A^{[ij]} = \frac{1}{2} (A^{ij} - A^{ji}) \) denote traceless symmetrization and anti-symmetrization with respect to indices \(i, j \). The coefficients in (B7) can be regarded as a matrix acting on the vector \(\partial_6 V_i, \partial_6 \partial_6 \mu \). Choosing \(J_{S(1)}^{ij} \) so that the total derivative on the right-hand side of (B2) vanishes then implies positive semi-definiteness of such transport matrix. Moreover, Onsager’s principle implies that this matrix should be symmetric. The last term in (B8b) would contribute to entropy production through rigidly rotating the fluid as \(dS \sim \eta_s (\partial_6 V_i)^2 \); this cannot happen for rotationally invariant fluids, and we shall set it to zero. Similarly, by coupling the system to a suitable background higher-rank gauge field, one can infer that \(\kappa_3 \) also vanishes. We shall explicitly derive these constraints in [50]. Putting all the constraints together, we then find

\[
\zeta, \eta, C_1, C_2 \geq 0, \quad \alpha_1 = \eta_1, \quad \alpha_2 = \kappa_2 \quad \alpha_1^2 \leq \zeta C_1, \quad \alpha_2^2 \leq \eta C_2.
\]
Appendix C: Linearized hydrodynamics

We now analyze the dispersion relations of the linearized hydrodynamics around a homogeneous background charge density \(n_0 \), ignoring the effects of fluctuations. Taking \(n = n_0 + \delta n \), where \(\delta n \) and \(v_i \) are regarded as small, expand

\[
s = -\frac{1}{2} a^{ijkl} \partial_i \delta n \partial_j v_l - \frac{\mu_0}{T} \delta n - \frac{1}{2 \chi} \delta n^2, \tag{C1}
\]

where the tensor \(a^{ijkl} = a^{klji} \) has the following general decomposition:

\[
a^{ijkl} = a_1 \delta^{ij} \delta^{kl} + 2 a_2 \delta^{i<k} \delta^{l>j} + 2 a_3 \delta^{[i[k} \delta^{l]j]} \tag{C2}
\]

In (C1), \(\mu_0 = \mu(n_0) \) is the chemical potential evaluated on the background charge density, and \(\chi = \frac{\partial \mu}{\partial n} \) is charge susceptibility. Thermodynamic stability requires that \(a_1, a_2, a_3, \chi \geq 0 \). The thermodynamic relations in Eqs. (15a)-(15b) then give

\[
V^i = -\frac{T}{n_0} a^{ijkl} \partial_j \partial_k \pi_l, \quad \delta \mu = \chi^{-1} \delta n \tag{C3}
\]

\[
p = \mu_0 n_0 + \chi^{-1} n_0 \delta n
\]

where \(\delta \mu = \mu - \mu_0 \), and the ideal part of the currents read

\[
T^{(ij)}_{(0)} = (\mu_0 n_0 + n_0 \chi^{-1} \delta n) \delta^{ij}, \quad J^{(ij)}_{(0)} = -\frac{T}{n_0} a^{ijkl} \partial_k \pi_l, \tag{C4a}
\]

while the dissipative contributions \(T^{(ij)}_{(1)} \) and \(J^{(ij)}_{(1)} \) are precisely given by (18). Plugging these in the conservation equations (6) yields

\[
\partial_t \delta n - \frac{a T}{n_0} \partial^2 \partial_t \pi_i + \frac{C}{\chi} \partial^4 \delta n - \frac{a T}{n_0^2} K \partial^4 \partial_t \pi_i = 0 \tag{C5a}
\]

\[
\partial_t \pi^i - \frac{n_0}{\chi} \partial_t n + \frac{a T}{n_0^2} \Gamma_1 \partial^2 \pi_i + \frac{a T}{n_0^2} \Gamma_2 \partial^2 \partial_t \pi_j
\]

\[
- \frac{A}{\chi} \partial_t \partial^2 \delta n = 0 \tag{C5b}
\]

where

\[
a = a_1 + \frac{d-1}{d} a_2, \tag{C6a}
\]

\[
C = C_1 + \frac{d-1}{d} C_2, \tag{C6b}
\]

\[
K = \kappa_1 + \frac{d-1}{d} \kappa_2, \tag{C6c}
\]

\[
\Gamma_1 = \frac{a_2 + a_3}{a} \eta, \tag{C6d}
\]

\[
\Gamma_2 = \zeta + \left(\frac{d-1}{d} \frac{a - \frac{1}{d^2} a_2 - a_3}{a} \right) \eta, \tag{C6e}
\]

\[
A = a_1 + \frac{d-1}{d} a_2. \tag{C6f}
\]

These equations lead to the following dispersion relations:

\[
\omega = \pm \sqrt{\frac{a T n_0}{\chi} k^2 - \frac{1}{2} \left(\frac{C}{\chi} + \frac{a T}{n_0^2} (\Gamma_1 + \Gamma_2) \right) k^4} \tag{C7a}
\]

\[
\omega = -\frac{i a T}{n_0^2} \Gamma_1 k^4 \tag{C7b}
\]

where the two modes in the first line arise from the coupling between \(\delta n \) and the longitudinal component of momentum \(\partial_t \pi_i \), while the modes in the second line have multiplicity \(d - 1 \) and are associated to the transverse components of momentum \(\partial^{-2}(\pi_i - \partial_t \partial_j \pi_j) \).

Appendix D: Equations of motion with relevant nonlinearity

Here we give explicit expressions for various quantities, valid beyond linear response. The input is the entropy density

\[
s = -\frac{1}{2} a^{ijkl} \partial_i v_j \partial_k v_l + \tilde{s}(n), \tag{D1}
\]

whose form is sufficient to capture all the relevant nonlinearities, and \(\tilde{s}(n) \) is a generic function of \(n \). Using (14a)-(16) we have

\[
\psi_{ij} = -T a^{ijkl} \partial_j v_l, \quad n V^i = -T a^{ijkl} \partial_j \partial_k v_l \tag{D2}
\]

\[
p = -\frac{T}{2} a^{ijkl} \partial_l v_i \partial_j v_k + \tilde{p}(n)
\]

where \(\tilde{p} = T(\tilde{s} - n \tilde{\partial}_t \tilde{s}) \). The currents are

\[
T^{ij} = \left(\tilde{p} - \frac{T}{2} a^{klpq} \partial_q v_l \partial_p v_k \right) \delta^{ij} - T a^{ijkl} \partial_j \partial_k v_l v^i
\]

\[
+ T a^{klpq} \partial_j v_l \partial_k v_q - n \eta^{ijkl} \partial_k V_l - \alpha^{ijkl} \partial_j \partial_l \mu + \tau^{ij}
\]

\[
J^{ij} = - T a^{ijkl} \partial_k v_l + C^{ijkl} \partial_j \partial_l \mu + \alpha^{ijkl} \partial_k V_l + \zeta^{ij}, \tag{D3}
\]

where we already accounted for the constraints discussed around (B9). It will be convenient to express the conservation equations in terms of \(v_i = \frac{n_\eta}{n} \), for which we have

\[
\partial_t v^i + \frac{1}{n} (\partial_j T^{ji} - v^j \partial_k J^{jk}) = 0. \tag{D4}
\]

Plugging in the above expressions and substituting (C2) for \(a^{ijkl} \), we find

\[
\partial_t v_i + \frac{1}{n} \partial_i \tilde{p} + \frac{2 T}{n} (a - a_2 - a_3) \partial_j \partial_k v_l \partial_j v_i \partial_k v_l
\]

\[
+ \frac{2 T}{n} (a + a_3) \partial^2 v_l \partial_l v_i + \frac{a T}{n^2} \Gamma_1 \partial^2 v_i
\]

\[
+ \frac{a T}{n^2} \Gamma_2 \partial^2 \partial_t \partial_j v_k - \frac{A}{n \chi} \partial_i \partial_t \partial^2 n + \frac{1}{d} \partial_j \tau^{ji} = 0 \tag{D5a}
\]

\[
\partial_t v_i - a T \partial^2 \partial_t \partial_j v_i + C \partial^2 n - \frac{a T}{n} \partial^2 v_i \partial_j \partial_j v_i + \partial_i \partial_k v_l \partial_k v_l
\]

\[
\partial_i n - a T \partial^2 \partial_t \partial_j v_i + \frac{C}{\chi} \partial^2 n - \frac{a T}{n} A \partial^2 v_i + \partial_i \partial_j \zeta^{ij} = 0 \tag{D5b}
\]
where we neglected nonlinear dissipative terms, since they are irrelevant.

Expanding
\[\dot{s}(n) = \frac{\mu_0}{T} \delta n - \frac{1}{2 \chi T} \delta n^2 - \frac{\lambda}{6 T} \delta n^3 - \frac{\lambda_1}{12 T} \delta n^4, \]
we find that the contribution from \(\bar{\rho} \) in (D5a) is
\[\frac{1}{n} \partial_i \bar{\rho} = \frac{1}{\chi} \partial_i \delta n + \lambda \delta n \partial_i \delta n + \lambda' \delta n^2 \partial_i \delta n, \]
where \(\lambda' = \lambda_1 - \frac{1}{2 \chi \delta n^2} \).

The evaluation of the dynamical exponent \(z \) is not amenable to perturbation theory. One can verify this by evaluating the Kubo formula for frequency-dependent transport; for example for the viscosity
\[\eta(\omega) \sim \int dt e^{-i\omega t} \int d^d x \langle T^{xx}(t, \bar{x}) T^{xx}(0, 0) \rangle \]
\[\sim \int dt e^{-i\omega t} \int d^d x \langle (\delta n(t, \bar{x}))^2 (\delta n(0, 0))^2 \rangle \]
\[\sim \int d^d k \int dt e^{-i\omega t} e^{-2\gamma k^4 t} \sim \omega^\frac{d-4}{2}, \]
where we only considered the nonlinearity \(T^{ij} \sim \delta n^2 \delta^{ij} \) and assumed factorization of the 4-point function of \(\delta n \). For simplicity we assumed absence of propagating modes, so that \(\langle n(t, k)n(0, -k) \rangle \sim e^{-\gamma k^4 t} \). We then see that the correction to the mean-field viscosity is divergent as \(\omega \to 0 \), making perturbation theory ill-defined.

Appendix E: Stochastic Model A

We now overview a stochastic version of model A, given by the equations:
\[\partial_t p_n - V'(x_{n-1} - x_n) + V'(x_n - x_{n+1}) + \nu(2\partial_i x_n - \partial_i x_{n-1} - \partial_i x_{n+1}) + \xi_n - \xi_{n-1} = 0 \]
\[\partial_i x_n - (2p_n - p_{n+1} - p_{n-1}) - \nu(2\partial_i p_n - \partial_i p_{n-1} - \partial_i p_{n+1}) + \xi_i - \xi_{i-1} = 0 \]
(El)
where \(\nu \) is a friction coefficient, and the noise correlations are chosen so that the fluctuation-dissipation theorem is satisfied:
\[\langle \xi_n(t) \xi_m(0) \rangle = \langle \xi_n(t) \tilde{\xi}_m(0) \rangle = \nu T \delta_{nm} \delta(t). \]
(E2)
Setting \(\nu = 0 \), one recovers the Hamiltonian model A. The model above can serve to verify that the scaling exponent \(z \) remains smaller than 4 even after energy conservation is broken, which happens, at sufficiently long times, as soon as \(\nu \) is turned on. Figure 4 shows that, for \(\nu \) not too large the scaling exponent is still anomalous, thus corroborating the fact that \(z < 4 \) independently of the existence of a diffusive energy conservation law. We emphasize that in the true thermodynamic limit, theories with any amount of noise are expected to flow to the same fractonic KPZ theory – the fact that our estimate of \(z \) changes with \(\nu \) is a consequence of finite size effects.

Appendix F: Linearized dynamics in model B

Here we show that the linearized equations in model B exhibit fast Bloch oscillations superimposed on top of magnon-like hydrodynamic modes. Consider the Hamiltonian of model B with \(V(x) = \frac{1}{2} x^2 \):
\[H = \sum_{i=1}^{N} \left(-\cos p_i - F x_i \right) + \frac{1}{2} \left(x_i - x_{i-1} \right)^2. \]
(F1)
We observe that the nonlinear equations of motion:
\[\partial_t x_i = \sin p_i \]
\[\partial_t p_i = F + 2x_i - x_{i+1} - x_{i-1}, \]
(F2)
admit the following exact solution corresponding to collective Bloch oscillations:
\[x^0_i(t) = \frac{1 - \cos(F t)}{F}, \]
(F3a)
\[p^0_i(t) = F t. \]
(F3b)
Now consider perturbations around this solution: \(\delta x_i = x_i - x^0_i \) and \(\delta p_i = p_i - p^0_i \). The linearized equations of motion for the perturbations are
\[\partial_t \delta x_k = \cos F t \delta p_k, \]
\[\partial_t \delta p_k = (2 - 2 \cos F) \delta x_k, \]
(F4)
where \(\delta x_k \) and \(\delta p_k \) are the discrete Fourier transform of \(\delta x_i \) and \(\delta p_i \). When \(k \ll 1 \) (the long wavelength limit),
\((F4) \) implies
\[
\partial^2_p \delta p_k = k^2 \cos Ft \delta p_k, \tag{F5}
\]
which is the well-studied Mathieu equation.

The general form of the Mathieu equation is an ordinary differential equation with real coefficients:
\[
u'' + (a - 2q \cos 2\tau) \nu = 0. \tag{F6}
\]
In our case, \(a = 0 \), \(\tau = Ft/2, q = 2k^2/F^2 \ll 1 \). By Floquet’s theorem, \((F6) \) has solutions of the form \(e^{i\nu\tau} \Phi(\tau) \) and \(e^{-i\nu\tau} \Phi(-\tau) \), where \(\Phi(\tau) \) is periodic with period \(\pi \).

Assuming \(\nu \) is not an integer, \(e^{i\nu\tau} \Phi(\tau) \) and \(e^{-i\nu\tau} \Phi(-\tau) \) are linearly independent, so we can expand \(u(\tau) \) as
\[
u(\tau) = A_1 e^{i\nu\tau} \sum_{n=-\infty}^\infty c_{2n} e^{2i\nu n} + A_2 e^{-i\nu\tau} \sum_{n=-\infty}^\infty c_{2n} e^{-2i\nu n}.
\]
Substituting \((F7) \) in \((F6) \) gives a recurrence relationship for \(c_{2n} \):
\[
\gamma_n(\nu) c_{2n-2} + c_{2n} + \gamma_n(\nu) c_{2n+2} = 0 \tag{F8}
\]
where
\[
\gamma_n(\nu) = \frac{q}{(2n-\nu)^2 - a} = \frac{2k^2}{F^2(2n-\nu)^2}.
\tag{F9}
\]
The equations \((F8) \) can be written as a matrix equation \(M_{mn} c_n = 0 \), with repeated indices summed over, and with tridiagonal matrix
\[
M_{mn} = \delta_{mn} + \delta_{m,n-1} \gamma_m + \delta_{m,n+1} \gamma_m. \tag{F10}
\]
The exponent \(\nu \) is fixed by the condition \(\det(M) = 0 \).

Assuming \(\nu \ll 1 \), we have the relations \(\gamma_0(\nu) \gg \gamma_n(\nu) \) and \(\gamma_n(\nu) \ll 1 \) for any \(n \neq 0 \). So \(M \) is now a tridiagonal matrix whose diagonal elements are 1 and all off-diagonal elements other than \(M_{0,1} \) and \(M_{0,-1} \) are perturbatively small. As a result, we can estimate the value of \(\nu \) by only considering the matrix elements \(M_{mn} \) for \(m, n = -1, 0, 1 \):
\[
\det(M) \approx \det \begin{pmatrix} 1 & \frac{q}{2} & 0 \\
\frac{q}{2} & 1 & \frac{q}{2} \\
0 & \frac{q}{2} & 1 \end{pmatrix} = 1 - \frac{q^2}{2\nu^2} = 0 \tag{F10}
\]
We get \(\nu = \frac{q}{\sqrt{2}} = \frac{\sqrt{12}}{\sqrt{2} F^2} \ll 1 \). Since now \(\frac{q}{\sqrt{2} F^2} = \frac{2}{q} \gg 1 \), we have \(|c_0| \gg |c_{\pm 2}| \gg |c_{\pm 2n}| \) for any \(n > 1 \), so approximately \(c_2 = c_{-2} \approx -\frac{q}{\sqrt{2} F^2} c_0 \).

Assuming the initial condition \(\delta p_k(0) = 0 \), we have \(A_1 = -A_2 \), so
\[
\delta p_k(t) \approx (A_1 e^{i\nu \tau} + A_2 e^{-i\nu \tau}) \nu \nu (c_0 + c_{\pm 2} e^{2i\nu \tau} + c_{\pm 2} e^{-2i\nu \tau})
\]
\[
= A \sin \nu \tau \left(1 - \frac{q}{2} \cos 2\tau \right)
\]
\[
= A \sin \frac{k^2 t}{\sqrt{2} F} \left(1 - \frac{k^2}{\sqrt{2} F^2} \cos Ft \right) \tag{F11}
\]
We can also find \(\delta x_k \):
\[
\delta x_k(t) \approx \frac{A \cos \frac{k^2 t}{\sqrt{2} F} + A \sin Ft \sin \frac{k^2 t}{\sqrt{2} F}}{\sqrt{2} F}. \tag{F12}
\]
We observe that a fraction of both \(\delta p_k \) and \(\delta x_k \) oscillate at the frequency \(k^2 \), confirming our claim that this model has hydrodynamic magnon modes propagating on top of fast Bloch oscillations.

[1] L. Landau and E. Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth Heinemann, 1987).
[2] M. Crossley, P. Glorioso, and H. Liu, Effective field theory of dissipative fluids, JHEP 09, 095, arXiv:1511.03646 [hep-th].
[3] F. M. Haehl, R. Loganayagam, and M. Rangamani, The Fluid Manifesto: Emergent symmetries, hydrodynamics, and black holes, JHEP 01, 184.
[4] K. Jensen, N. Pinzani-Fokeeva, and A. Yarom, Dissipative hydrodynamics in superspace, JHEP 09, 127, arXiv:1701.07436 [hep-th].
[5] C. Cao, E. Elliott, J. Joseph, H. Wu, J. Petrichka, T. Schafer, and J. E. Thomas, Universal quantum viscosity in a unitary fermi gas, Science 331, 58 (2010).
[6] E. Shuryak, Physics of strongly coupled quark-gluon plasma, Progress in Particle and Nuclear Physics 62, 48 (2009).
[7] J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, and et al., Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene, Science 351, 1058 (2016).
[8] D. A. B. et al., Negative local resistance caused by viscous electron backflow in graphene, Science 351, 1055 (2016).
[9] M. J. M. de Jong and L. W. Molenkamp, Hydrodynamic electron flow in high-mobility wires, Physical Review B 51, 13389 (1995).
[10] R. K. K. et al, Superballistic flow of viscous electron fluid through graphene constrictions, Nature Physics 13, 1182 (2017).
[11] C. Chamon, Quantum glassiness in strongly correlated clean systems: an example of topological overprotection, Physical review letters 94, 040402 (2005).
[12] S. Vijay, J. Haah, and L. Fu, A new kind of topological quantum order: A dimensional hierarchy of quasiparticles built from stationary excitations, Physical Review B 92, 235136 (2015).
[13] S. Vijay, J. Haah, and L. Fu, Fracton topological order, generalized lattice gauge theory, and duality, Physical Review B 94, 235157 (2016).
[14] M. Pretko, Subdimensional particle structure of higher rank U(1) spin liquids, Physical Review B 95, 115139 (2017).
[15] M. Pretko, Emergent gravity of fractons: Mach's princi-
