Molecular epidemiology of SARS-CoV-2 isolated from COVID-19 family clusters

Gunadi1†, Hendra Wibawa2†, Mohamad Saifudin Hakim3, Marcellus4, Ika Trisnawati5, Riat El Khair6, Rina Triasih7, Irene8, Afiahayati9, Kristy Iskandar10, Siwarno11, Nungki Anggorowati12, Edwin Widyanto Daniwijaya13, Endah Supriyati14, Dwi Aris Agung Nugrahaningsih15, Eko Budiono5, Heni Retnowulan5, Yunika Puspadewi6, Ira Puspitawati6, Osman Sianipar6, Dwiki Afandy4, Susan Simanjaya4, William Widijiarso4, Dyah Ayu Puspitarani4, Fadil Fahri4, Untung Riawan4, Aditya Rifqi Fauzi4, Alvin Santoso Kalim4, Nur Rahmi Ananda5, Amalia Setyati7, Dwikisworo Setyowireni7, Ida Safitri Laksanawati7, Eggi Arguni7, Titik Nuryastut3 and Tri Wibawa3 on behalf of the Yogyakarta-Central Java COVID-19 study group

Abstract

Background: Transmission within families and multiple spike protein mutations have been associated with the rapid transmission of SARS-CoV-2. We aimed to: (1) describe full genome characterization of SARS-CoV-2 and correlate the sequences with epidemiological data within family clusters, and (2) conduct phylogenetic analysis of all samples from Yogyakarta and Central Java, Indonesia and other countries.

Methods: The study involved 17 patients with COVID-19, including two family clusters. We determined the full-genome sequences of SARS-CoV-2 using the Illumina MiSeq next-generation sequencer. Phylogenetic analysis was performed using a dataset of 142 full-genomes of SARS-CoV-2 from different regions.

Results: Ninety-four SNPs were detected throughout the open reading frame (ORF) of SARS-CoV-2 samples with 58% (54/94) of the nucleic acid changes resulting in amino acid mutations. About 94% (16/17) of the virus samples showed D614G on spike protein and 56% of these (9/16) showed other various amino acid mutations on this protein, including L5F, V83L, V213A, W258R, Q677H, and N811I. The virus samples from family cluster-1 (n = 3) belong to the same clade GH, in which two were collected from deceased patients, and the other from the survived patient. All samples from this family cluster revealed a combination of spike protein mutations of D614G and V213A. Virus samples from family cluster-2 (n = 3) also belonged to the clade GH and showed other spike protein mutations of D614G alongside the V213A mutation.

Conclusions: Our study is the first comprehensive report associating the full-genome sequences of SARS-CoV-2 with the epidemiological data within family clusters. Phylogenetic analysis revealed that the three viruses from family cluster-1 formed a monophyletic group, whereas viruses from family cluster-2 formed a polyphyletic group indicating...
Introduction
Many countries are still struggling to control the COVID-19 pandemic, including Indonesia [1, 2]. On April 15, 2021, Indonesia recorded 1,583,182 confirmed COVID-19 cases with 42,906 deaths and infection rate of approximately 6000 cases/day [3].

One of the most important factors affecting the rapid spreading of COVID-19 is transmission within families [4, 5]. Genomic epidemiology has been suggested to be important to fill the gaps in identifying the SARS-CoV-2 infection sources [6]. However, to our best knowledge, no reports have described the genomic epidemiology within family clusters [6–8]. Moreover, multiple spike protein mutations have been associated with a higher transmissibility of SARS-CoV-2 [9]. In this study, we aimed to: (1) perform full genome characterization of SARS-CoV-2 and correlate the sequences with the epidemiological data within family clusters in Indonesia, and (2) conduct phylogenetic analysis of all samples from Yogyakarta and Central Java, Indonesia, involving the family clusters, and virus data from other regions in Indonesia.

Methods
SARS-CoV-2 samples
We collected all virus samples of confirmed COVID-19 patients from Yogyakarta and Central Java provinces from June to November 2020. All nasopharyngeal samples were collected in viral transport media (DNA/RNA Shield™ Collection Tube with Swab, Zymo Research, CA, United States) and transported to four COVID-19 diagnostic laboratories in Yogyakarta province: (1) Molecular Diagnostic Laboratory, Integrated Laboratory Unit, Dr. Sardjito Hospital; (2) Department of Microbiology and Laboratorium Diagnostik Yayasan Tahija World Mosquito Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada; (3) Balai Besar Teknik Kesehatan Lingkungan dan Pengendalian Penyakit (BBTKLPP), Yogyakarta; and (4) Disease Investigation Center, Wates, Yogyakarta. SARS-CoV-2 was detected by RealQ 2019-nCoV Detection Kit (BioSewoom, Seoul, South Korea) with LightCycler® 480 Instrument II (Roche Diagnostics, Mannheim, Germany).

Full-genome sequencing
First, we performed RNA extraction of 19 nasopharyngeal swab samples by a QiAMP Viral RNA mini kit (Qiagen, Hilden, Germany), synthesized the double-stranded cDNA by Maxima H Minus Double-Stranded cDNA Synthesis (Thermo Fisher Scientific, MA, United States), and purified the cDNA using a GeneJet PCR Purification Kit (Thermo Fisher Scientific, MA, United States). For library preparations, we utilized the Nextera DNA Flex for Enrichment using Respiratory Virus Oligos Panel, whereas for full-genome sequencing, we used next generation sequencing (NGS) applied in the Illumina MiSeq instrument (Illumina, San Diego, CA, United States) with Illumina MiSeq reagents v3 150 cycles (2 × 75 cycles). We excluded two samples for further bioinformatics analysis because of low coverages. Our sample genomes were assembled by mapping to the reference genome from Wuhan, China (hCoV-19/Wuhan/Hu-1/2019, GenBank accession number: NC_045512.2) using Burrow-Wheeler Aligner (BWA) algorithm embedded in UGENE v. 1.30 [10]. Identification of single nucleotide polymorphisms (SNPs) was performed using the number of high confidence base calls (consensus sequence variations of the assembly) that disagree with the reference bases for the genome position of interest, then all SNPs were exported to a vcf. file and visualized in MS Excel. The following accession IDs for the 17 samples are: EPI_ISL_516800, EPI_ISL_516806, EPI_ISL_516829, EPI_ISL_525492, EPI_ISL_576383, EPI_ISL_632936, EPI_ISL_610161, EPI_ISL_610162, EPI_ISL_576145, EPI_ISL_632937, EPI_ISL_576131, EPI_ISL_576113, EPI_ISL_576114, EPI_ISL_576115, EPI_ISL_576116, EPI_ISL_576128, and EPI_ISL_576130 [11]. The first four IDs have been reported in our previous study [12].

Phylogenetic analysis
We used the reference genome of hCoV-19/Wuhan/Hu-1/2019 (NC_045512.2) for annotation of our sequences. A dataset of 142 available SARS-CoV-2 genomes (89 sequences from Indonesia and 53 from other countries) was retrieved from GISAID to conduct a phylogenetic analysis (Acknowledgment Table is provided in Additional file 2: Table S2). We only used the full-genome sequences of several strains representing SARS-CoV-2 clades from some countries that had complete genome data and no long stretches of ‘NNNN’ for the phylogenetic analysis. The MAFFT program server was utilized for multiple nucleotide sequence alignment (https://mafft.cbrc.jp/alignment/server/). A phylogenetic
tree was constructed from 29.409 nt length of the open reading frame (ORF) of 142 SARS-CoV-2 virus sequences using Neighbor Joining statistical method with 2000 bootstrap replications. The evolutionary distances were computed using the Kimura 2-parameter method and the rate variation among sites was modelled with a gamma distribution (estimated $\alpha = 0.14566$). SARS-CoV-2 virus sequences from Indonesia (N=89) followed by the date of collection are indicated in closed circles, while viruses for the study are indicated in red and viruses from the family clusters are color-shaded in yellow. The tree is rooted to Wuhan/Hu-1/2019 with the bootstrap percentage values less than 70% hidden and it is drawn to scale (0.0001) with branch lengths measured in the number of substitutions per site.

Results

Phylogenetic analysis

Phylogenetic analysis revealed that thirteen virus samples were situated within clade GH (GISAID classification), while two viruses were grouped with other viruses which belonged to clade GR, and one virus each that belonged to clade O and clade L (Fig. 1). Three viruses from family cluster case-1 (YO-UGM-10001|EPI_ISL_576113, YO-UGM-10002|EPI_ISL_576114, and YO-UGM-10003|EPI_ISL_576115) formed a single group within clade GH, whereas viruses from family cluster-2 (YO-UGM-1004|EPI_ISL_576116, YO-UGM-1005|EPI_ISL_576128, and YO-UGM-1006|EPI_ISL_576130,) were separated into two different nodes within clade GH (Fig. 1, top-right).

Molecular analysis

Ninety-four SNPs were detected throughout the ORF of the SARS-CoV-2 virus samples with 60% (54/94) of the nucleic acid changes resulting in amino acid substitutions (missense mutations) (Table 1, detailed in Additional file 1: Table S1). The types of nucleic acid base changes were more often detected as transitions (70%) compared to transversions (30%). Higher entropy values were observed more from nucleic acids that carried more frequent base changes; however, nucleic acid changes that caused missense mutation could have lower entropy values than those that resulted in synonymous mutation.

The majority of the virus samples (16/17) possessed D614G substitution on spike protein and 56% of these (9/16) showed other amino acid substitutions on this protein, including L5F, V83L, V213A, W258R, Q677H, and N811I. Second amino acid mutations that were frequently detected were P232L substitution on NSP12 (RdRp) protein (15x), followed by Q57H substitution on NS3 (14x) and P822L substitution on NSP3 protein (13x). Furthermore, various amino acid mutations were also found in the other proteins of virus samples, including on NSP2 (A205V, V247A, T256I, Q321K), NSP3 (P679S, T1022I, A1179V, T1198K, F1354C, P1665L), NSP4 (A231V), NSP5 (K12R, M49I, P184S), NSP6 (L37F), NSP8 (A21T), NSP9 (L42F), NSP12/RdRp (A97V, P227L, T248I, A656S, H892Y, M906V), NSP13 (T127I, T153L, V169F, M576I, P203L), NSP15 (H337Y, NSP16 (Y222C), NS3 (A54V, A99S, T151I, D222Y), NS7a (H73Y), and N (P13L, A119S, Q160R, S193I, R195S, P199S, R203K, G204R, M234I).

COVID-19 severity classifications

COVID-19 severity was determined based on the WHO classifications: (1) mild, without evidence of hypoxia or pneumonia; (2) moderate, pneumonia but not severe; (3) severe, pneumonia plus one of the following signs: respiratory rate > 30 breaths/minute (or based on age for children), severe respiratory distress, or SpO2 < 90% in room air; and (4) critical, Acute Respiratory Distress Syndrome (ARDS), sepsis, or septic shock, or other complications [12, 15].

Our study was approved by the Medical and Health Research Ethics Committee of the Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital (KE/FK/0563/EC/2020). All participants or guardians signed a written informed consent for participating in this study.
Table 1
Nucleic acid and amino acid mutations observed in seventeen SARS-CoV-2 virus genomes collected from Yogyakarta and Central Java provinces between June and September 2020

No.	NA position¹	Gene/Region	Number of SNP	NA change (SNP)	Type of base change	Entropy values	Frequency	Type of mutation	AA changes (position)ª
1	1154	NSP2	7	C → T	Transition	0.21456	2	Missense	A205V
2	1280	NSP2		C → T	Transition	0.34883	2	Missense	V247A
3	1307	NSP2		C → T	Transition	0.45056	3	Missense	T256I
4	1501	NSP2		C → A	Transversion	0.34688	2	Missense	Q321K
5	1845	NSP3		C → T	Transition	0.21456	1	Synonymous	N435N
6	1998	NSP3		C → T	Transition	0.21456	1	Synonymous	T486T
7	2247	NSP3		A → G	Transition	0.21456	1	Synonymous	R569R
8	2772	NSP3	13	C → T	Transition	0.45056	15	Synonymous	F106F
9	3264	NSP3		T → C	Transition	0.21456	1	Synonymous	D270D
10	3350	NSP3		T → C	Transition	0.21456	1	Synonymous	V299A
11	3819	NSP3		C → T	Transition	0.52971	4	Synonymous	G443G
12	4489	NSP3		C → T	Transition	0.21456	1	Missense	P679S
13	4919	NSP3		C → T	Transition	0.66825	13	Missense	P822L
14	5519	NSP3		C → T	Transition	0.21456	1	Missense	T1022I
15	5541	NSP3		C → T	Transition	0.34883	2	Synonymous	C1029C
16	5990	NSP3		C → T	Transition	0.21456	1	Missense	A1179V
17	6047	NSP3		C → A	Transversion	0.21456	1	Missense	T1198K
18	6515	NSP3		T → G	Transition	0.21456	1	Missense	F1354C
19	7374	NSP3		C → T	Transition	0.21456	1	Synonymous	F1640I
20	7448	NSP3		C → T	Transition	0.21456	1	Missense	P1665L
21	8981	NSP3	1	C → T	Transition	0.21456	1	Missense	A231V
22	9824	NSP3	4	A → G	Transition	0.52971	4	Missense	K12R
23	9936	NSP3		G → T	Transition	0.21456	1	Missense	M49I
24	10242	NSP3		C → T	Transition	0.68696	8	Synonymous	N151N
25	10339	NSP3		C → T	Transition	0.21456	1	Missense	P1845S
26	10818	NSP3	1	G → T	Transversion	0.21456	1	Missense	L37F
27	11887	NSP3	2	G → A	Transition	0.21456	1	Missense	A21T
28	12174	NSP3		C → T	Transition	0.21456	1	Synonymous	P116P
29	12544	NSP3	1	C → T	Transition	0.21456	1	Missense	L42F
30	13465	NSP3		C → T	Transition	0.21456	1	Missense	A97V
31	13790	NSP3		G → T	Transition	0.21456	1	Missense	L205L
32	13855	NSP3		C → T	Transition	0.21456	1	Missense	P227L
33	13918	NSP3		C → T	Transition	0.52971	3	Missese	T248I
34	14027	NSP3		C → T	Transition	0.21456	1	Synonymous	D284D
35	14143	NSP3		C → T	Transition	0.45056	15	Missense	P323L
36	14429	NSP3		C → T	Transition	0.21456	1	Synonymous	D418D
37	15141	NSP3		G → T	Transversion	0.21456	1	Missense	A656S
38	15278	NSP3		G → T	Transversion	0.21456	1	Synonymous	T701T
39	15300	NSP3		A → G	Transition	0.21456	1	Synonymous	L775L
40	15849	NSP3		C → T	Transition	0.34688	2	Missense	H892Y
41	15891	NSP3		A → G	Transition	0.21456	1	Missense	M906V
42	16130	NSP3	8	A → T	Transversion	0.45056	3	Synonymous	P53P
43	16196	NSP3		C → T	Transition	0.21456	1	Synonymous	H75H
44	16351	NSP3		C → T	Transition	0.21456	1	Missense	T127I
45	16382	NSP3		G → T	Transversion	0.52971	4	Synonymous	T137T
46	16429	NSP3		C → T	Transition	0.21456	1	Missense	T153I
47	16476	NSP3		G → T	Transversion	0.21456	1	Missense	V169F
48	16745	NSP3		C → T	Transition	0.21456	1	Synonymous	I258I
49	17699	NSP3		G → T	Transversion	0.21456	1	Missense	M576I

¹ Position number
² Gene/Region
³ Number of SNP
⁴ NA change (SNP)
⁵ Type of base change
⁶ Entropy values
⁷ Frequency
⁸ Type of mutation
⁹ AA changes (position)
No.	NA position*	Gene/ Region	Number of SNP	NA change (SNP)	Type of base change	Entropy values	Frequency	Type of mutation	AA changes (position)*
50	18382	NSP14	4	C → T	Transition	0.21456	1	Missense	P203L
51	18479			C → T	Transition	0.68696	8	Synonymous	Y235Y
52	18612			C → T	Transition	0.59084	14	Synonymous	L280L
53	18737			A → G	Transition	0.21456	1	Synonymous	L321L
54	19859	NSP15	2	T → C	Transition	0.21456	1	Synonymous	I1681
55	20364			C → T	Transition	0.21456	1	Missense	H337Y
56	20843	NSP16	2	C → T	Transition	0.21456	2	Missense	F150F
57	21058			A → G	Transition	0.21456	1	Missense	Y222C
58	21310	Spike (S)	12	C → T	Transition	0.34883	2	Missense	L5F
59	21387			T → C	Transition	0.21456	1	Synonymous	N30N
60	21477			C → T	Transition	0.52971	4	Synonymous	S60S
61	21483			T → C	Transition	0.21456	1	Synonymous	V62V
62	21544			G → C	Transition	0.21456	1	Missense	V83L
63	21935			T → C	Transition	0.52971	4	Missense	V213A
64	22069			T → C	Transition	0.21456	1	Missense	W258R
65	23138			A → G	Transition	0.34883	16	Missense	D614G
66	23328			G → T	Transition	0.21456	1	Missense	Q677H
67	23564			C → T	Transition	0.21456	1	Missense	Y789Y
68	23729			A → T	Transition	0.21456	1	Missense	N811I
69	23928			G → T	Transition	0.21456	1	Missense	L877L
70	25288	NS3	6	C → T	Transition	0.21456	1	Missense	A54V
71	25298			G → T	Transition	0.59084	14	Missense	Q57H
72	25349			C → T	Transition	0.34883	2	Synonymous	S74S
73	25422			G → T	Transition	0.21456	1	Missense	A99S
74	25579			C → T	Transition	0.21456	1	Missense	T151I
75	25791			G → T	Transition	0.21456	1	Missense	D222Y
76	26470	M	3	C → T	Transition	0.59084	14	Synonymous	Y71Y
77	26536			C → A	Transition	0.34883	2	Synonymous	L93L
78	26602			A → G	Transition	0.66825	7	Synonymous	E115E
79	27345	NS7a	1	C → T	Transition	0.21456	1	Missense	H73Y
80	27808	NS8	1	G → A	Transition	0.21456	1	Synonymous	L60L
81	28046	N	14	C → T	Transition	0.21456	1	Missense	P133L
82	28363			G → T	Transition	0.52971	4	Missense	A119S
83	28470			T → C	Transition	0.21456	1	Synonymous	N154N
84	28479			C → T	Transition	0.21456	1	Synonymous	I157I
85	28487			A → G	Transition	0.21456	1	Missense	Q160R
86	28586			G → T	Transition	0.52971	4	Missense	S193I
87	28593			A → T	Transition	0.21456	1	Missense	R195S
88	28603			C → T	Transition	0.21456	1	Missense	P199S
89	28616			G → A	Transition	0.34883	2	Missense	R203K
90	28617			G → A	Transition	0.34883	2	Missense	G204R
91	28618			G → C	Transition	0.34883	2	Missense	M234I
92	28710			G → T	Transition	0.21456	1	Missense	S312S
93	28944			A → G	Transition	0.21456	1	Synonymous	T362T

Bold indicates non-synonymous substitutions

* Nucleic acid numbering starting from ORF1ab start codon (ATG)

* Amino acid numbering starting from start codon of each gene
Table 2 Severity and genetic data associated with SARS-CoV-2 viruses collected from seventeen COVID-19 patients in Yogyakarta and Central Java provinces, Indonesia from June–September 2020

Patient no.	Sex	Age (yo)	COVID-19 severity	C_t value	Virus name (GISAID Accession ID)	Average coverage	Collection date	Lineage (GISAID clade)	Spike mutations
1	Male	30	Mild	27.9	hCoV-19/Indonesia/YO-UGM-209927/2020 (EPI_ISL_516806)	102x	16/05/2020	L	-
2	Female	49	Asymptomatic	22.31	hCoV-19/Indonesia/YO-UGM-0006/2020 (EPI_ISL_575331)	465x	16/06/2020	GH	D614G
3	Male	77	Moderate	19.7	hCoV-19/Indonesia/YO-UGM-202449/2020 (EPI_ISL_516800)	2088x	22/06/2020	GH	D614G
4	Female	55	Moderate	24.7	hCoV-19/Indonesia/YO-UGM-202538/2020 (EPI_ISL_525492)	347x	26/06/2020	GH	D614G
5	Male	28	Asymptomatic	21.05	hCoV-19/Indonesia/YO-UGM-107727/2020 (EPI_ISL_576145)	104x	30/07/2020	GR	D614G
6	Female	83	Moderate	16.9	hCoV-19/Indonesia/YO-UGM-781481/2020 (EPI_ISL_516829)	3748x	10/08/2020	GH	D614G
7	Male	28	Critical	20	hCoV-19/Indonesia/YO-UGM-10002/2020 (EPI_ISL_576114)*	13x	13/08/2020	GH	V213A, D614G
8	Male	58	Critical (Died)	23	hCoV-19/Indonesia/YO-UGM-10003/2020 (EPI_ISL_576115)*	505x	16/08/2020	GH	V213A, D614G
9	Male	88	Critical (Died)	18.1	hCoV-19/Indonesia/YO-UGM-10001/2020 (EPI_ISL_576113)*	4288x	18/08/2020	GH	V213A, D614G
10	Male	8	Moderate	19.5	hCoV-19/Indonesia/YO-UGM-10006/2020 (EPI_ISL_576130)**	26x	18/08/2020	GH	L5F, D614G
11	Male	35	Mild	32	hCoV-19/Indonesia/YO-UGM-10004/2020 (EPI_ISL_576116)**	45x	20/08/2020	GH	D614G
12	Female	33	Mild	22	hCoV-19/Indonesia/YO-UGM-10005/2020 (EPI_ISL_576128)**	106x	21/08/2020	GH	L5F, D614G
13	Female	52	Asymptomatic	18	hCoV-19/Indonesia/YO-UGM-10007/2020 (EPI_ISL_632936)	2207x	22/08/2020	GH	D614G, N811I
14	Male	48	Moderate	19.64	hCoV-19/Indonesia/JT-UGM-47964/2020 (EPI_ISL_610162)	6291x	31/08/2020	O	W258R, D614G
15	Male	36	Mild	17.53	hCoV-19/Indonesia/JT-UGM-4796/2020 (EPI_ISL_576383)	65x	01/09/2020	GR	D614G
16	Female	64	Moderate	19.44	hCoV-19/Indonesia/JT-UGM-48660/2020 (EPI_ISL_610161)	22x	01/09/2020	GH	V213A, D614G
17	Male	41	Mild	21.24	hCoV-19/Indonesia/YO-UGM-4865/2020 (EPI_ISL_632937)	2867x	09/09/2020	GH	V83L, D614G, Q677H

Virus samples collected from family cluster-1 *) and from family cluster-2 **)
CT, cycle threshold; Ref. sequence: hCoV-19/Wuhan/Hu-1/2019 (NC_045512.2)
(clade GH, GR, and O, Ct range 16.9–24.7) than those with no mutation in this position (clade L, Ct 27.9). Dual mutations of V213A and D614G on spike protein were detected in four patients, and two of these eventually died after a period of hospitalization.

Disease outcomes of COVID-19’s family clusters

The epidemiological and clinical data of COVID-19’s family clusters, including clinical symptoms, date of first symptoms appeared, diagnostic results, abnormal findings, comorbidity background are provided by timeline and tabulation in Fig. 2 and Table 3, respectively.

In family cluster-1, all three patients showed critical COVID-19 and eventually, two died (YO-UGM-10001|EPI_ISL_576113 and YO-UGM-10003|EPI_ISL_576115) and one survived (YO-UGM-10002|EPI_ISL_576114). The disease began from patient-1.1, a 28-year-old male, who had a history of
traveling from the local COVID-19 transmission area. He complained of fever, sore throat, cough and malaise on August 8th, 2020, and was tested for PCR three days afterward with the result of COVID-19 positive. His father (patient-1.2, 58-yo), who was living in the same house, showed fever, dyspnea and diarrhea on August 13th, then was followed by his grandfather (patient-1.3, 88-yo) who showed fever and dyspnea on August 18th. The PCR tests for both patients showed positive for COVID-19. All patients developed severe disease outcomes including bilateral pneumonia, cardiomegaly and ARDS. Several comorbidities were recorded from patient-1.1 (obesity), patient-1.2 (diabetes mellitus, and obesity), and patient-1.3 (type 2 diabetes mellitus, geriatric syndrome, history of infarction stroke). Patient-1.1 was uneventfully discharged from the hospital on day 29 of hospitalization, but sadly, patient-1.2 and patient-1.3 passed away in the hospital after 7 and 12 days of hospitalization, respectively.

Family cluster-2 involved three patients which were comprised of a son, 8-yo (patient-2.1), father, 35-yo (patient-2.2) and mother, 33-yo, with the following virus samples: YO-UGM-10006 (EPI_ISL_576130), YO-UGM-10004/2020 (EPI_ISL_576116), and

| Table 3 Characteristics of patients with COVID-19 from family cluster cases in Yogyakarta and Central Java |
| --- | --- | --- | --- | --- | --- | --- | --- |
Patient no.	Sex	Age (yo)	COVID-19 severity	Symptoms	Date of first symptoms appeared	Abnormal findings	Comorbidity	Virus name (GISAID Accession ID)
1.1	Male	28	Critical	Fever, sore throat, nausea, cough, malaise	08/08/2020	CXR: typical COVID-19 bilateral pneumonia, ARDS PaO2/FIO2 260	Obesity	hCoV-19/Indonesia/YOGM-10002/2020 (EPI_ISL_576114)
1.2	Male	58	Critical (Died)	Fever, dyspnea, diarrhea	13/08/2020	Crackles in both lungs, NLR 8.2, 5th days ARDS PaO2/FIO2 68 (intubated)	DM, Hypertension and obesity	hCoV-19/Indonesia/YOGM-10003/2020 (EPI_ISL_576115)
1.3	Male	88	Critical (Died)	Fever, dyspnea	19/08/2020	Crackles in both lungs, CXR: bilateral pneumonia and cardiomegaly, Electrolyte imbalance, PaO2/FIO2 123.3 (worsening ARDS), Intubated on 7th day	Type 2 DM, Geriatric syndrome, History of infarction stroke	hCoV-19/Indonesia/YOGM-10001/2020 (EPI_ISL_576113)
2.1	Male	8	Moderate	Fever, cough, runny nose	16/08/2020	CXR: bilateral paracardial infiltrate	Autoimmune disorders (Henoch-Schönlein purpura)	hCoV-19/Indonesia/YOGM-10006/2020 (EPI_ISL_576130)
2.2	Male	35	Mild	Cold, headache, dry cough	20/08/2020	Eosinophilia (6.4%), pH (7.45), PaO2 (83.2), PaCO2 (39.2), SaO2 (96.8), PaO2/FIO2 (416)	Hypertension	hCoV-19/Indonesia/YOGM-10004/2020 (EPI_ISL_576116)
2.3	Female	33	Mild	Cough, sore throat, runny nose	20/08/2020	No abnormality	None	hCoV-19/Indonesia/YOGM-10005/2020 (EPI_ISL_576128)

CXR chest X-ray, ARDS acute respiratory distress syndrome, NLR neutrophil to lymphocyte ratio, DM diabetes mellitus
YO-UGM-10005/2020 (EPI_ISL_576128), respectively. Prior to the index case, this family travelled from West Nusa Tenggara to Yogyakarta on August 2nd, 2020, in order to obtain medical treatment for patient-2.1 who had an autoimmune disorder in a hospital in Yogyakarta. Patient-2.1 had firstly exhibited symptoms of fever, cough, and runny nose on August 11th, 2020 and he was diagnosed COVID-19 positive on August 18th. His parents showed clinical signs of cold, headache and dry cough (patient-2.2) and cough, sore throat, and runny nose (patient-2.3) at the same day on August 20th and the PCR results of both patients were positive on August 21st. Patient-2.1 developed moderate severity with bilateral paracardial infiltrate, whereas patient-2.2 and patient-2.3 developed mild disease without any abnormalities in their chest X-rays and other laboratory findings, except eosinophilia (6.4%), increased levels in pH of the blood (7.45), PaO₂ (83.2), PaCO₂ (39.2) with SaO₂ 96.8% and PaO₂/FiO₂ value was 416 from the arterial blood gas analysis of patient-2.2. All three patients uneventfully recovered and were discharged from the hospital on September 2nd, 2020.

Molecular characterizations of virus samples collected from family clusters

Phylogenetic analysis revealed that the three viruses from family cluster-1 were grouped together from a single node. A matrix of nucleic acid difference showed that YO-UGM-10001|EPI_ISL_576113 and YO-UGM-10003|EPI_ISL_576115 were identical on their ORF (nucleic acid and protein levels) and both virus strains had differences of 2 nucleic acids and 1 amino acid in the NSP2 protein which correspond with V247A substitution in YO-UGM-10001|EPI_ISL_576113 and YO-UGM-10003|EPI_ISL_576115 and T256I substitution in YO-UGM-10001|EPI_ISL_576113 and YO-UGM-10003|EPI_ISL_576115 and T256I substitution in YO-UGM-10002|EPI_ISL_576114, respectively (Table 4). Other unique mutations in the other viral proteins were detected in these three virus strains which were not shown in the other study viruses, including V213A (Spike), K12R (NSP5), T248I (NSP12/RdRp), A119S and S193I (N). The virus samples from family cluster-2 were separated in different nodes in the phylogenetic tree (Fig. 3). The tree and the matrix sequence showed that YO-UGM-10005/2020|EPI_ISL_576128 and YO-UGM-10006|EPI_ISL_576130 were genetically identical. Both virus strains had 15 nucleic acid differences compared to YO-UGM-10004|EPI_ISL_576114 which resulted in amino acid variations detected in several viral proteins (Table 4).

Discussion

Our study provides evidence of SARS-CoV-2 transmission within families, in which the same mutation of the spike protein in each family cluster was identified. It is important to understand the transmission routes of SARS-CoV-2 to prevent and control its spreading [4]. Families have been reported as the most dominant infection cluster of COVID-19 [16]. Family clusters have a higher risk of cross-infection because of frequent and close contact among each family member [4]. Our study also documented that although all family members showed the same multiple S protein mutations, however, they revealed different outcomes. While multiple S protein mutations, i.e. B.1.1.7 variant, have been associated with the severity of COVID-19 [17, 18], this is not the case for our patients. Our samples did not consist of B.1.1.7 variant. In addition, several prognostic factors have been associated with increased risk of severity and mortality of COVID-19, including increasing age, obesity, and comorbidities such as hypertension, diabetes and cerebrovascular disease [15]. Our patients who eventually died (YO-UGM-10001|EPI_ISL_576113 and YO-UGM-10003|EPI_ISL_576115) have more prognostic factors than the patient who survived (YO-UGM-10002|EPI_ISL_576114) (Table 3). Besides the SARS-CoV-2 variants and prognostic factors, a recent GWAS identified rs11385942 at locus 3p21.31 and rs657152 at locus 9q34.2 as a genetic risk factor for severe COVID-19 [19]. Further study is necessary to confirm whether these polymorphisms might be as susceptible factors in our patients.

Double mutations of V213A and D614G on spike protein were detected in four patients, but three of them (75%) developed severe diseases causing critical conditions and two (50%) with fatal outcome. Another interesting finding was documented from family cluster-1, in which all the virus samples in this family cluster belong to the same clade GH, but two patients died and one survived (Table 2). All samples from family cluster-1 revealed another spike protein mutation, V213A, besides D614G. However, virus samples isolated from fatal disease outcomes carried V247A mutation in the NSP2 protein, while those from the recovered patient did not. In conjunction with D614G mutation, substitution of valine (V) to alanine (A) in position 247 and 213 of NSP2 and spike protein, respectively, were detected in the patients with fatal disease outcomes. While both V and A, as well as G are in the non-polar hydrophobic amino acid group and no evidence shows that the double mutations of V213A and D614G affect the severity and lethality of COVID-19 patients, further investigations are necessary to determine whether these dual mutations (V213A and D614G in spike protein) or even triple mutations (V213A and D614G in spike protein and V47A in NS2) associated with increased risk of mortality in COVID-19 patients. Moreover, due to limited number of sample size in this study, it is very difficult to associate between the number of mutations on
the spike protein or other proteins or SNPs and severity of COVID-19.

Phylogenetic analysis revealed that three viruses from family cluster-1 formed a monophyletic group. The epidemiological and genetic data indicated that local transmission occurred in family cluster-1 in which patient-1.1 (YO-UGM-10002[EPI_ISL_576114]) was initially infected and then transmitted the virus
to patient-1.2 (YO-UGM-10003|EPI_ISL_576115) and patient-1.3 (YO-UGM-10001|EPI_ISL_576113). Interestingly, the virus that infected patient 2.2 in family cluster-2 was genetically different from that which infected both two counterparts: patient 2.1 (YO-UGM-10006/2020 (EPI_ISL_576130) and patient 2.3 (YO-UGM-10005/2020 (EPI_ISL_576128). These viruses formed a polyphyletic group indicating there is the possibility of different sources of infection (two convergent descendants, but not their common ancestors).

Recently, more than 50% of the viral genome sequences in the UK were reported to have a new single phylogenetic cluster, i.e. B.1.1.7 variant (multiple spike protein mutations: deletion 69–70, deletion 144, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H) [9]. These new variants have been associated with a higher transmissibility of SARS-CoV-2 up to 70% [9]. Until the submission date of April 2021 in GISAID, these variants were also detected in Asia, including Indonesia [11]. Interestingly, we detected other spike protein mutations in our collected virus strains, including those from the family clusters, i.e. L5F, V213A, W258R, Q677H, and K811I. Noteworthy, the V213A variant was identified in all patients from family cluster-1. V213A was detected in 4/17 (23.5%) of our samples. This variant is only found in only 0.01% of samples in four countries, including Indonesia [11]. Whether this variant is due to a founder effect needs further study.

Currently, besides the D614G variant, several mutations within the receptor binding domains (RBD) of the S protein have attracted most scientists’ attention due to their increased frequency in certain countries, including S477N (Australia and some Central European), N439K (UK and European), and N501Y (part of the new UK variant B.1.1.7, the new South Africa variant 501.V2 and the new Brazil variant P.1) [11]. These variants might be associated with some potential advantages for these viruses. While the B.1.1.7 variant has been associated with COVID-19 clinical severity [17, 18], the 501.V2 and P1 variants have not [20].

In addition, among eight clades in the GISAID classification, we only detected five clades, i.e. L, G, GH, GR, and O, in the SARS-CoV-2 samples from Indonesia and most of them (~60%) contained D614G. Globally, D614G has been detected in ~97% samples in 182 countries [11]. While a recent study showed that D614G mutation is significantly associated with the increase of SARS-CoV-2 infectivity, competitive fitness, and transmission in primary human airway epithelial cells and hamsters [21], it does not associate with the clinical severity of COVID-19 patients [22]. Moreover, it is difficult to assess the convergent evolution of D614G mutation in our samples since all samples were from Yogyakarta and Central Java and D614G has been already found in most samples (97%) from all over the world [11]. These findings were compatible with previous studies [22, 23]. The hypothesis of convergent evolution for D614G mutation is not supported by the sequence data since almost all 614G variants derived
from the same ancestor [23]. Volz et al. [22] proposed a more complex selective landscape in the spike protein for the co-occurring variants between D614G and the neighbouring sites (615 and 613).

Phylogenetic analysis showed that the full-genome sequences of SARS-CoV-2 identified within these family clusters are identical, which strongly indicates a direct transmission within these families. Moreover, our study is also able to determine the virus clades of COVID-19 cases with unknown contact history with a confirmed COVID-19 case. Our findings support a previous suggestion regarding the importance of genomic epidemiology in filling the gaps of identifying SARS-CoV-2 infection sources [6]. Therefore, a full-genome surveillance of SARS-CoV-2 in Indonesia is essential to prevent further transmission of SARS-CoV-2 and to identify any established or new variant that might affect the SARS-CoV-2 transmission and severity.

Notably, our study only included a limited number of family clusters from Yogyakarta and Central Java, Indonesia. These limitations should be considered for interpretations of our findings.

Conclusions
This is the first molecular epidemiology study associating the full-genome sequences of SARS-CoV-2 with the epidemiological and clinical data within family clusters. Phylogenetic analysis revealed that the three viruses from family cluster-1 formed a monophyletic group, whereas viruses from family cluster-2 formed a polyphyletic group indicating there is the possibility of different sources of infection. This study highlights how the same spike protein mutations among members of the same family might show different disease outcomes. Moreover, we also detected multiple spike protein mutations in our samples. Further studies are necessary to clarify the impact of these multiple spike protein mutations in the transmission and severity of SARS-CoV-2 infection, especially in Indonesia.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12920-021-00990-3.

Additional file 1: Table S1. Ninety-four SNPs were detected throughout the ORF of the SARS-CoV-2 virus samples with 60% (54/94) of the nucleic acid changes resulting in amino acid substitutions (missense mutations).

Additional file 2: Table S2. The Acknowledgments Table for GISAID is report.
Academic Hospital, Yogyakarta, Indonesia. Centre of Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia. Department of Pharmacology and Therapy/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Received: 9 February 2021 Accepted: 18 May 2021
Published online: 01 June 2021

References
1. World Health Organization. https://www.who.int/news-room/detail/27-04-2020-time-line---covid-19. Accessed 9 Feb 2021.
2. Phelan AL, Katz R, Gostin LO. The novel coronavirus originating in Wuhan, China: challenges for global health governance. JAMA. 2020;323:709–10. https://doi.org/10.1001/jama.2020.1097.
3. World Health Organization. https://covid19.who.int/table. Accessed 9 Feb 2021.
4. Liu T, Gong D, Xiao J, Hu J, He G, Rong Z, Ma W. Cluster infections play important roles in the rapid evolution of COVID-19 transmission: a systematic review. Int J Infect Dis. 2020;99:374–80.
5. Zhang H, Hong C, Zheng Q, Zhou P, Zhi G, Bi Q, Ma T. A multi-family cluster of COVID-19 associated with asymptomatic and presymptomatic transmission in Jixi City, Heilongjiang, China. 2020. Emerg Microbes Infect. 2020;9:2509–14.
6. Pattabiraman C, Habib F, Harsha PK, Rasheed R, Prasad P, Reddy V, Dinesh P, Damodar T, Hosallimath K, George AK, Kiran Reddy NV, John B, Pattanaik A, Kumar N, Mani RS, Venkataswamy MM, Shahul Hameed SK, Kumar BGP, Desai A, Vasanthapuram R. Genomic epidemiology reveals multiple introductions and spread of SARS-CoV-2 in the Indian state of Karnataka. PLoS ONE. 2020;15:e0243412.
7. Lu J, du Plessis L, Liu Z, Hill V, Kang M, Lin H, Sun J, François S, Kraemer MUG, Faria NR, McClure JT, Peng J, Xiong Q, Yuan R, Zeng L, Zhou P, Liang C, Yi L, Liu J, Xiao J, Hu J, Liu T, Ma W, Li W, Su J, Zheng H, Peng B, Fang S, Su W, Li K, Sun R, Bai R, Tang X, Liang M, Quick J, Song T, Rambaut A, Loman N, Raghwani J, Pybus OG, Ke C. Genomic epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell. 2020;181:e1997-1003.e9.
8. MacLean OA, Orton RJ, Singer JB, Robertson DL. No evidence for distinct types in the evolution of SARS-CoV-2. Virus Evol. 2020;6:voea034.
9. European Centre for Disease Prevention and Control. Rapid increase of a SARS-CoV-2 variant with multiple spike mutations in poultry in the United Kingdom—20 December 2020. Stockholm: ECDC; 2020.
10. About UGENE - Unipro UGENE Online User Manual v. 1.30 - WKI [Internet]. Ugene.net. 2020 [cited 22 December 2020]. https://ugene.net/wiki/display/UOUM30/About+UGENE.
11. GISAID. 2020. Pandemic coronavirus causing COVID-19. https://platform.gisaid.org/epi3/cf/contend/#/bc3e. Accessed 21 Dec 2020.
12. Gunadi WH, Marcellus HM5, Daniwijaya EW, Riski LP, Supriyati E, Nugrahaningsih DAA, Affahayati S, Iskandar K, Anggorowati N, Kalim AS, Puspitarani DA, Athollah K, Arguni E, Niuyastuti T, Wibawa T. Fulllength genome characterization and phylogenetic analysis of SARS-CoV-2 virus strains from Yogyakarta and Central Java, Indonesia PeerJ. 2020;8:e10575. https://doi.org/10.7717/peerj.10575.
13. Xia X. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Mol Biol Evol. 2018;35:1550–2.
14. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.
15. Beeching NJ, Fletcher TE, Fowler R. BMJ best practice: Coronavirus Disease 2019 (COVID-19). https://bestpractice.bmj.com/topics/en-us/3000168/epidemiology. Accessed 10 Oct 2020.
16. Mission J. Report of the WHO-China joint mission on coronavirus Disease 2019 (COVID-19). WHO; 2020.
17. Davies NG, Jarvis CI, CMMID COVID-19 Working Group, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Koeogh RH. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature. 2021. https://doi.org/10.1038/s41586-021-03426-1.
18. Horby P, Huttley C, Davies N, et al. NEVETAG note on B.1.1.7 severity. SAGE meeting report. January 21, 2021.
19. Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Alibols A, et al. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020;383(16):1522–34.
20. CDC. Science Brief: Emerging SARS-CoV-2 Variants https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/scientific-brief-emerging-variants.html#ref2. Accessed 14 Apr 2021.
21. Hou YJ, Chiba S, Halfmann P, Ehre C, Kuroda M, Dinnon KH 3rd, et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science. 2020;370:1464–8.
22. Volz E, Hill V, McCrone JT, Price A, Jorgensen D, O’Toole Á, et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell. 2021;184(1):64-75.e11.
23. van Dorp L, Richard D, Tan CCS, Shaw LP, Acman M, Bolloux F. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. Nat Commun. 2020;11:5986.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions