Evolutionary trends in improving radio interfaces on GERAN/UTRAN/E-UTRAN networks

A T Alpeisov¹, B S Malsagov²

¹Satbayev University, 22 Satbaev str., Almaty, Kazakhstan
²Chechen State University named after A.H. Kadyrov, 364015, 17a Dudaev Boulevard, Groznyy, Russian Federation

E-mail: alpeisov73@mail.ru

Abstract. Mobile communications are the modern drivers of the rapid development of information communication technologies. This development is provided by the expansion of the range of user services and an increase in the volume of transmitted traffic. Mobile radio-access technologies, services, standards with different types of radio interfaces are used worldwide nowadays. The article discusses the important features of the functioning of such interfaces, presents data on functional characteristics. This research also shows the main directions of development of radio interfaces intended for use in mobile communication systems.

1. Introduction
Domestic operators and their communication networks presently involve radio access networks conditioned by using mobile communication standards UTRAN–UMTS, GERAN–GSM, LTE E-UTRAN demonstrated in Figure 1 below. The diagram shown in Figure 1 demonstrates the interaction of different generations of mobile communication networks [1, 5].

With the GSM voice traffic symmetry, the frequency duplex method is the basis of the radio access network and increasing system users force leaders in the communication equipment market to use the Circuit Switching (CS) method in switching channels and SS7 protocols responsible for signalling [6, 7] when communication services require background, interactive communication because users need additional asymmetric traffic types [8, 9].

2. Materials and methods
Physical and channel layers differ in Open Systems Interconnection – OSI model by radio interface protocols. This is specifying the communication channel peculiarities.
Improving the radio channel characteristics upgrades certain technologies, varying the modulation types and converting analogue (primary) into digital information, when encoders and vocoders are used.

Significant peculiarities exist in GSM with application of a narrowband signal with MSK modulation, cascade error-correcting coding. The 200 kHz bandwidth is an ordinary mode for MSK modulation [3].

The throughput and information transfer rates, using the General Packet Radio Service (GPRS) technology, accelerated up to 171 kbps thanks to telecom operators with modernized components and devices of cellular networks by GPRS technology. Subscribers browse small web-pages (small information volume) at the high speed small files exchange quickly in the mobile network with a several-second delay in sending requests to the chosen web-site and data receiving. As result this reducing delays in transmission of data [15-18].

The GSM Evolution technology Enhanced Data rates belong to the new generation of more advanced mobile communication technologies in the manufacturing line, when its use increased data transfer rate 2 times as compared to the GPRS rate up to 384 Kbps [2]. The new signal modulation method (8-PSK) for the radio interface made system radio resources more effective and attractive. However it decreasing transmitted signals sensitivity. Also it decreasing immunity of noise where the information transfer rate depends on the communication channel quality [19-23].

The EDGE technology improved cheaply the services quality provided, decreasing the latency and speed increasing. This is being decisive for 94% of GERAN networks mobile operators. The listed protocols could be used in a various applications, including indoor positioning [24-25] and industrial IoT applications [26-29].

3. Results and Discussion

3.1. The radio access network UTRAN is a Universal Mobile Telecommunications System network.
It belongs to third generation communications networks developed to change GSM standard networks. Network UTRAN is part of UMTS being a worldwide popular network access domain. UTRAN has appropriate software and hardware.

The third-generation networks differ by the signal bandwidth expansion, complex modulation application, code division multiplexing multiple access (CDMA). In addition, third-generation networks have a higher data transfer rate.

UTRAN has a high power sensitivity of the received signals. UTRAN requires adaptive control of radio-signal emission power in the radio access network. But frequency redundancy increases the UMTS spectral efficiency resulted in multipath propagation resistance and noise immunity.

Table 1. Rates of Information transfer.
Standard

Gsm
UMTS
LTE

The data transfer rate has been increased and information transfer delays have also been minimized. This is done through the following things:

- UMTS radio technologies using complex 16 QAM and 64 QAM modulation options
- changing GSM to UMTS
- bandwidth increase from 0.2 to 10 MHz
- increase in channel capacity.

In Table 1 shows a comparative description of mobile communication standards [2] and technologies that reduce the cost of Internet traffic [1, 6–8].

3.2. The E-UTRAN radio access network (Long Term Evolution - LTE) is a fourth generation network.

This network develops data transmission technology by providing access via IP protocol (4G standard). Data transmission between the mobile terminal - UE and the base station - BS is carried out due to the algorithms of this 4G standard. Data transmission between the mobile terminal and the base station is carried out in frequency (FDD) and time (TDD) options. This is done when 15 paired frequency bands (from 0.8 to 3.5 GHz) are defined for FDD and 8 for TDD with a radio channel width reaching 1.4/3/5/10/15/20 MHz [3].
Single carrier frequency division multiple access - SC-FDMA in the uplink and orthogonal frequency division multiple access - OFDMA in the downlink are applied in the UMTS radio network of the terrestrial radio access network (E-UTRAN). The spectrum of this network has several subcarriers orthogonal to each other, varying within 72, 180, 300, 600, 900 or 1200, using channels with different bandwidths and modulation types QPSK, 16QAM, 64QAM [1].

Subscribers can be assigned different subcarriers by the base station, where categories of mobile terminals UE are defined according to 3GPP TS 36.306 [4], but specific categories have particular maximum transmission rates in downstream and upstream channels, whose values and modulation types for Multiple Input Multiple Output (MIMO) are in Table 2, allowing calculating a maximum transmission speed for various categories of subscribers in the Downlink of 10, 50, 100, 150, 300 Mbps, and 3Gbps and in the Uplink of 5, 25, 50, 75, 100 Mbps and 1.5 Gbps [2].

The 20 MHz channel support all categories of mobile terminals used in the E-UTRAN network excluding very low-power devices using category 0. The MIMO transmission technology of the fourth generation networks increases spectral efficiency and data transmission speed, when channel widths contribute to supporting all categories of mobile terminals in the E-UTRAN network and four pairs of BS and UE antennas anticipates the maximum supported 4x4 MIMO scheme in LTE. The transmission rate, excluding pilot signals, can increase 4 times and 20 MHz frequency band signals, MIMO technology provide data exchange rates of up to 300 Mbps in Downlink and 170 Mbps in Uplink [2].

Using the OFDMA technology in E-UTRAN networks suppresses negative effects from multipath propagation. Large harmonic distortions of an operating amplifier in a mobile terminal result in a high crest factor, increasing the UE power consumption and decreasing its operation resource without battery recharging, whereas the upstream channel employs the SC-FDMA multiple access technology differing from OFDMA technology by the fast Fourier transform method reducing PAPR.

Table 2. Radio resources distribution in E-UTRAN networks with subscriber terminals (UE) of different categories in DL and UL modes.

UE Category	Downlink	Uplink				
	Maximum of bits in TTI	Maximum of bits in the transport block	MIMO Support 64QAM	Maximum of bits in the transport block		
0	1000	1000	-	-	1000	
1	10296	10296	-	-	5160	
2	51024	51024	2x2	-	25456	
3	102048	75376	2x2	-	51024	
4	150752	75376	2x2	-	51024	
5	2x2	149776	4x4	+	75376	
6	149776 (4x4)	2x2	4x4	+	102048	
7	75376 (2x2)	149776 (4x4)	2x2	4x4		
8	301504	301504	75376 (2x2)	4x4	+	1497760
	2998560	299856	8x8	+	1497760	
Table 2 Continuation.

UE Category	Downlink Maximum of bits in TTI	Maximum of bits in the transport block	MIMO	Uplink Support 64QAM	Maximum of bits in the transport block
11	603008	149776 (4x4)	4x4	-	51024
		(4x4.64QAM),			
12	603008	149776 (4x4)	2x2		102048
		(4x4.64QAM), 95816 (4x4, 256QAM)			
		75376 (2x2, 64QAM), 97896 (2x2, 256QAM)			
13	391632	195816 (4x4)	2x2	+	150752
		97896 (2x2)	4x4		
14	3916560	97896 (2x2.256QAM)	2x2	+	1497760
		(2x2.256QAM)			
15	749856–798800	149776 (4x4.64QAM), 95816 (4x4, 256QAM)	2x2	n/a	n/a
		75376 (2x2, 64QAM), 97896 (2x2.256QAM)	4x4		
16	978960–1051360	149776 (4x4.64QAM), 95816 (4x4, 256QAM)	2x2	n/a	n/a
		97896 (2x2, 256QAM)			

The requirements for E-UTRAN [4] spectral efficiency parameters are 5 bit/s/Hz for the Downlink channel and 2.5 bit/s/Hz for the Uplink channel providing service for subscriber terminals moving at 300 km/h, whereas the LTE Advanced (LTE-A) technology networks enhance LTE networks differing by frequency aggregation.
The data transmission speed increases with simultaneous use of separate frequency bands (frequency aggregation) where the subscriber terminal receives and combines up to 5 carriers 20 MHz wide each, forming a wide channel with a 100 MHz bandwidth.
4. Conclusion
The MIMO technology increases the data transmission speed and efficiency, available antennas and multi-stream information transmission improving mobile communication technologies along with modernized generations of radio access networks. New technological capabilities characterize every subsequent generation by expanding the transmitted information speed and volume, the range of services etc.

References
[1] Gipko I A, Oleynik V F, Chayka Yu D and Bondarenko A V 2010 Modern Wireless Networks: State and Development Prospects ed V F Oleinik (Kiev: ECMO)
[2] Skrenikov V G 2012 Radio Systems UMTS / LTE. Theory and Practice (Moscow: Sports and Culture)
[3] Mazurkevich D O and Orlov V G 2011 The evolution of security systems for cellular networks of different generations T-Comm. 5 (1) 38–40
[4] Tihvinisky O V, Terentiev S V and Visochn V P 2014 Mobile Networks LTE / LTE Advance 4G Technologies, Applications and architecture (Moscow: Media publisher)
[5] Gitlits M V, Orlov V G and Panaryin V D Digital Recorder-reproduction of speech information Copyright certificate SU 1272355 A1 23.11.1986 Application No. 3911920 dated 06/14/1985
[6] Mazurkevich D O and Orlov V G 2011 Encryption algorithms in public wireless networks T-Comm. 5 (1) 62–64
[7] Pushkarev A V and Orlov V G 2015 Evolution of technical means of formation and delivery HDTV to mobile terminals of users T-Comm. 9 (1) 11–16
[8] Orlov V G and Fadeev A N 2012 Routing protocols in mobile ad-hoc networks Fundamental problems of electronic instrument making 12 (6) 208–212
[9] Pushkarev A V and Orlov V G 2013 Prospects for the development of mobile video T-Comm. 7 (9) 115–117
[10] Korionov I P and Orlov V G 2017 Custom aspects of network security LTE Telecommunications and information technology 4 (2) 16–21
[11] Gurov V V and Orlov V G 2015 Review and comparison of protocols MPTCP and CMT-SCTP Proc. of the North Caucasus Branch of the Moscow Technical University of Communications and Informatics 1 115–119
[12] Fadeev A N and Orlov V G 2016 Basic standard for wireless sensor networks T-Comm. 3 (2) 65–68
[13] Vidayev I G, Martyushev N V, Ivashutenko A S, Bogdan A M 2014 The resource efficiency assessment technique for the foundry production. Advanced Materials Research 880 141–145
[14] Pashkov E N, Martyushev N V, Masson, I A 2014 Vessel ellipticity and eccentricity effect on automatic balancing accuracy. IOP Conference Series: Materials Science and Engineering 66(1) 012011
[15] Balanovskiy A E, Astafyeva N A, Kondratyev V V, Karlina A I 2021 Study of mechanical properties of C-Mn-Si composition metal after wire-arc additive manufacturing (WAAM). CIS Iron and Steel Review 22 66–71
[16] Yudaev I V 2019 Analysis of Variation in Circuit Parameters for Substitution of Weed Plant Tissue under Electric Impulse Action. Surface Engineering and Applied Electrochemistry 55(2) 219-224
[17] Konyukhov V Yu, Permyakova D N, Oparina T A 2021 Numerical simulation of the size, quantity and shape of non-metallic inclusions in rails. Journal of Physics: Conference Series 2032 012071
[18] Suslov K, Piskunova V, Gerasimov D, Akhmetshin A, Lombardi P, Komarnicki P 2019 Development of the methodological basis of the simulation modelling of the multi-energy systems. E3S Web of Conferences 124 01049
[19] Konstantinova M V, Olentsevich A A, Konyukhov V Y, Guseva E A, Olentsevich V A 2021 Automation of failure forecasting on the subsystems of the railway transport complex in order to optimize the transportation process as a whole. *IOP Conference Series: Materials Science and Engineering* **1064** 012020

[20] Kondrat'ev V V, Gorovoy V O, Kolosov A D, Kononenko R V, Konyukhov V Y 2020 Description of the complex of technical means of an automated control system for the technological process of thermal vortex enrichment. *Journal of Physics: Conference Series* **1661** 012101

[21] Suslov K, Shushpanov I, Buryanina N, Ilyushin P 2020 *Flexible power distribution networks: New opportunities and applications.* SMARTGREENS 2020 - Proceedings of the 9th International Conference on Smart Cities and Green ICT Systems, pp. 57–64

[22] Konyukhov V Y, Pervyakova D N, Oparina T A 2021 Perspective for the use of industrial waste in lubricating compositions to reduce wear in friction pairs. *Journal of Physics: Conference Series* **2061** 012046

[23] Voropai N, Ukolova E, Gerasimov D, Suslov K, Lombardi P, Komarnicki P. 2019 *A Study on Cost-Effectiveness of Energy Supply Based on the Energy Hub Concept.* Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2019, 2019, 8905736

[24] Faerman V, Avramchuk V, Voevodin K, Sidorov I, Kostyuchenko E 2022 Study of Generalized Phase Spectrum Time Delay Estimation Method for Source Positioning in Small Room Acoustic Environment. *Sensors.* **22**(3) 965. https://doi.org/10.3390/s22030965

[25] Faerman V, Kostyuchenko E, Bragin D, Sidorov I, Kobzev A 2021 Comparison of Technologies of Local Patient Positioning *International Journal of Advanced Research In Engineering & Technology* **12**(1) 362-386

[26] Nguyen T L, Tonkykh M E, Rapatskaya L A, Tokareva O V 2019 Synthetic simulation of NTEM-sounding signals on the target horizon of the White Tiger oilfield. *IOP Conference Series: Earth and Environmental Science* **229** 012008

[27] Tsavlin A, Efimov S, Zamyatin S 2020 Overshoot Elimination for Control Systems with Parametric Uncertainty via a PID Controller. *Symmetry* **12**(7) 1092 https://doi.org/10.3390/sym12071092

[28] Sudarikov S M, Yungmeister D A, Korolev R I, Petrov V A 2022 On the possibility of reducing man-made burden on benthic biotic communities when mining solid minerals using technical means of various designs. *Journal of Mining Institute* **253** 82-96 https://doi.org/10.31897/PMI.2022.14

[29] Iungmeister D A, Isaev A I, Korolev R I, Yacheikin A I 2020 Choice of materials and justification of the parameters for the over-bit hammer. *Journal of Physics Conference Series.* **1582** 012097 doi:10.1088/1742-6596/1582/1/012097