Sgk1 Sensitive Pendrin Expression in Murine Platelets

Lisann Pelzla,b Hajar Fakhria Anja T. Umbacha Meinrad Gawazc Markus Paulmichld Florian Langa

aDepartment of Physiology, University of Tübingen, bDepartment of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, and Interfaculty Centre of Pharmacogenomics and Pharmaceutical Research, University of Tübingen, cDepartment of Cardiology \& Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; dInstitute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria

Key Words
Slc26a4 • Mineralocorticoids • Deoxycorticosterone (DOCA) • Anion exchanger • Platelets • Serum and glucocorticoid inducible kinase 1 (SGK1)

Abstract
Background: The anion exchanger pendrin (SLC26A4) is required for proper development of the inner ear, and contributes to iodide organification in thyroid glands as well as anion transport in various epithelia, such as airways and renal tubules. SLC26A4 deficiency leads to Pendred syndrome, which is characterized by hearing loss with enlarged vestibular aqueducts and variable hypothyroidism and goiter. Pendrin expression in kidney, heart, lung and thyroid is up-regulated by the mineralocorticoid deoxycorticosterone (DOCA). Platelets express anion exchangers but virtually nothing is known about the molecular identity and regulation of those carriers. Other carriers such as the \(\text{Na}^+ / \text{H}^+ \) exchanger are regulated by the mineralocorticoid-sensitive serum and glucocorticoid inducible kinase SGK1.

Methods: The present study utilized i) quantitative reverse transcription polymerase chain reaction (RT-qPCR) to quantify the transcript levels of \(\text{Slc26a4} \) as compared to \(\text{Gapdh} \) and ii) western blotting to assess \(\text{Slc26a4} \) protein abundance in murine platelets from gene-targeted mice lacking Sgk1 (\(\text{sgk1}^{-/-} \)) and respective wild type animals (\(\text{sgk1}^{+/+} \)) treated without or with a subcutaneous injection of 2.5 mg DOCA for 3 h, or in \(\text{sgk1}^{+/+} \) platelets with or without \textit{in vitro} treatment for 1 h with 10 \(\mu \)g/ml DOCA. Results: \(\text{Slc26a4} \) was expressed in platelets, and \textit{in vitro} DOCA treatment increased \(\text{Slc26a4} \) mRNA levels in platelets isolated from \(\text{sgk1}^{-/-} \) mice. Moreover, \textit{in vivo} DOCA treatment significantly up-regulated \(\text{Slc26a4} \) mRNA levels in platelets isolated from the molecular identity and regulation of those carriers. Other carriers such as the \(\text{Na}^+ / \text{H}^+ \) exchanger are regulated by the mineralocorticoid-sensitive serum and glucocorticoid inducible kinase SGK1.

Conclusions: Pendrin is expressed in platelets and is presumably regulated by SGK1 and mineralocorticoids.
Introduction

Pendrin (SLC26A4), an exchanger transporting anions, such as chloride, bicarbonate and iodide [1-3], is expressed in a wide variety of tissues, including thyroid gland, inner ear, kidney, lung, liver and heart [4-6]. SLC26A4 is required for adequate development of the inner ear [7, 8] and it has been suggested that the carrier is involved in thyroid iodide transport [5, 9, 10]. Pendrin mediates anion transport in airways [11, 12] and contributes to renal tubular anion transport [6, 13, 14]. In the kidney, SLC26A4 influences expression and activity of the epithelial Na+ channel ENaC, thus influencing blood pressure regulation [14-18]. Moreover, SLC26A4 has been proposed to participate in cell volume homeostasis [19].

Loss or decrease of function mutations in the pendrin protein [20-25] result in autosomal-recessive Pendred syndrome (PS), a rare disorder invariably leading to sensorineural hearing loss with enlarged vestibular aqueducts [3]. Lack of functional pendrin further compromises iodide organification thus enhancing the risk of developing goiter and hypothyroidism [3, 26]. The development of clinically relevant goiter and hypothyroidism in PS may depend on nutritional iodide intake or other individual factors [5, 26].

Stimulators of SLC26A4 expression and function include acidification, aldosterone, intestinal natriuretic hormone, angiotensin II, interleukin-4 and interleukin-13 [27]. Mineralocorticoids have been shown to upregulate pendrin expression not only in kidney [14, 18], but in heart, lung and thyroid as well [28]. Mineralocorticoid receptors are expressed in many tissues [29], such as kidney, colon, heart, lung, blood vessels, adipose tissue, thyroid and hippocampus [30-35], and mineralocorticoids participate in the regulation of diverse functions, such as renal and colonic Na+ and K+ transport [34], salt appetite [36], blood pressure [37], cardiac remodelling and fibrosis [38-41], endothelial stiffness [42, 43], vascular stiffness [44], tissue calcification [45, 46], as well as apoptosis in hippocampal neurons [47]. Along those lines, aldosterone influences expression of a wide variety of genes [38, 39, 44, 46, 48-50].

Cells known to express anion exchangers include platelets [51-55], which are critically important for primary haemostasis [56] and decisively contribute to acute thrombotic occlusion in myocardial infarction [57-60] and ischemic stroke [61].

However, nothing is known about pendrin expression in platelets. The present study thus explored whether platelets express pendrin and, if so, whether the pendrin expression in platelets is sensitive to the mineralocorticoid deoxycorticosterone (DOCA).

Materials and Methods

Animal experimentation and isolation of mouse platelets

Experiments were performed with platelets isolated from 10-12 week old gene-targeted mice lacking functional serum and glucocorticoid inducible kinase Sgk1 (sgk1+/−) and age- and sex-matched wild type mice (sgk1+/-). Generation, breeding and genotyping of the mice have been described earlier [62]. All animal experiments were conducted according to German law for the welfare of animals and were approved by local authorities. The animals had free access to food (C1310, Altromin, Heidenau, Germany) and tap water. Where indicated, the animals were treated with a single subcutaneous injection (2.5 mg) of deoxycorticosterone (DOCA, Sigma, Taufkirchen, Germany), dissolved in soy bean oil and ethanol (1:1), 3 hours prior to isolation of platelets and subsequent determination of Slc26a4 transcript and protein levels. Platelets have been isolated as described previously [63, 64]. The mice were anesthetized and blood was drawn from the retroorbital plexus into heparinized tubes. Platelet rich plasma (PRP) was obtained by centrifugation at 260 g for 5 minutes. Afterwards, PRP was centrifuged at 640 g for 5 minutes to pellet the platelets. In order to prevent platelet aggregation, apyrase (0.02 U/ml, Sigma-Aldrich) and prostaglandin I2 (0.5 µM, Calbiochem) were added to the PRP. After two washing steps, the pellet of washed platelets was resuspended in modified Tyrode-HEPES buffer (pH 7.4, supplemented with 1 mM CaCl2). In a separate series, platelets were isolated from untreated wild type mice and exposed for 1 h to 10 µg/ml DOCA or solvent prior to the measurements.
RT-PCR analysis

To determine Slc26a4 mRNA abundance, total RNA was extracted using Trifast Reagent (Peqlab, Erlangen, Germany) according to the manufacturer’s instructions. Reverse transcription of 1 µg RNA was performed using oligo(dT)$_{12-18}$ Primers (Invitrogen, Karlsruhe, Germany) and SuperScript III Reverse Transcriptase (Invitrogen, Karlsruhe, Germany). cDNA samples were treated with RNase H (Invitrogen, Karlsruhe, Germany). Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was performed with the iCycler iQ™ RT-PCR Detection System (Bio-Rad Laboratories, Hercules, CA) and iTaq™ SYBR Green Supermix with ROX passive reference dye (Bio-Rad Laboratories, Hercules, CA) according to the manufacturer’s instructions.

The following primers were used (5’–3’ orientation): Slc26a4 s: TTCGGTCTCTACTCTGCCTTT; Slc26a4 as: CCCACCATTAAACTGACCACG; Gapdh s: AGGTCGGTGTGAACGGATTTG; Gapdh as: TGTAGACCATGTAGTTGAGGTCA. The specificity of the PCR products was confirmed by analysis of the melting curves and in addition by agarose gel electrophoresis. All PCRs were performed in duplicate, and mRNA fold changes were calculated by the ∆∆ Ct method [65] using Gapdh as an internal reference.

Membrane preparation and western blot analysis

For determination of Slc26a4 protein abundance, platelets were homogenized in an ice-cold K-HEPES buffer (200 mM mannitol, 80 mM HEPES, 41 mM KOH, pH 7.5) containing a protease inhibitor mix (Complete Mini, Roche Diagnostics, Germany; 1 tablet in a volume of 10 ml solution). Samples were centrifuged at 1500 g for 10 min at 4 °C. Subsequently, the supernatant was transferred to a new tube and centrifuged at 12000 g for 1 h at 4 °C. The resultant pellet was resuspended in K-HEPES buffer containing protease inhibitors. After measurement of the total protein concentration (Bio-Rad DC Protein Assay; Bio-Rad, Hercules, CA, USA), 100 µg of crude membrane proteins were solubilized in Laemmli sample buffer, and SDS-PAGE was performed on 8% polyacrylamide gels. For immunoblotting, proteins were transferred electrophoretically to polyvinylidene difluoride membranes (Immobilon-P; Millipore, Bedford, MA, USA). After blocking with 5% milk powder in Tris-buffered saline/0.1% Tween-20 (TBS-T) for 60 min, the blots were incubated with the respective primary antibodies (rabbit anti-pendrin 1:1000 [66] and rabbit monoclonal anti-Gapdh antibody (37 kDa; Cell Signaling Technology) 1:2000, diluted in 1% milk/TBS-T) either for 2 h at room temperature or overnight at 4 °C. After washing and subsequent blocking, the membranes were incubated for 1 h at room temperature with the secondary antibody conjugated with horseradish peroxidase (HRP) (1:2000, Cell Signaling). After washing, antibody binding was detected with the ECL detection reagent (Amersham). All bands were analyzed with Quantity One Software (Biorad).

Statistical analysis

As indicated, data are provided as means ± SEM; n represents the number of animals studied. In each animal, RT-PCR has been performed in duplicate. All data were tested for significance using Student’s unpaired two-tailed t-test where applicable. Only differences with p<0.05 were considered statistically significant.

Results

Platelets were isolated from either untreated mice or mice treated 3 h prior to isolation of the platelets with a single subcutaneous administration of 2.5 mg DOCA. In one series of experiments, platelets from untreated mice were treated in vitro for 1 h prior to measurements with either 10 µg/ml DOCA or solvent. Slc26a4 transcript levels were determined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) as well as Slc26a4 protein abundance by Western blotting. As illustrated in Fig. 1A, Slc26a4 transcripts were detected in both untreated and DOCA-treated platelets. In vitro treatment with DOCA significantly increased the Slc26a4 transcript levels (Fig. 1B).

In order to determine whether mineralocorticoids similarly regulate the expression of the serum and glucocorticoid inducible kinase SGK1, the Sgk1 mRNA levels were determined in platelets isolated from untreated mice or from mice treated by a single subcutaneous
The administration of 2.5 mg DOCA. As shown in Fig. 2, DOCA treatment significantly increased Sgk1 mRNA levels.
In order to define the role of Sgk1 in the regulation of Slc26a4 expression, experiments were performed in gene targeted mice lacking Sgk1 (sgk1\(^{-/-}\)) and their respective wild type littermates (sgk1\(^{+/+}\)). As illustrated in Fig. 3, DOCA treatment significantly increased Slc26a4 mRNA levels in platelets from sgk1\(^{+/+}\) mice but not in platelets from sgk1\(^{-/-}\) mice.

Further experiments were performed to elucidate whether DOCA influences Slc26a4 protein abundance. As illustrated in Fig. 4A and B, Slc26a4 protein was detected in platelets from sgk1\(^{+/+}\) mice. DOCA treatment was followed by a significant increase of Slc26a4 protein abundance in platelets from sgk1\(^{+/+}\) mice (Fig. 4B).

Discussion

The present study demonstrates for the first time that platelets harbor pendrin mRNA and express pendrin protein. Moreover, the present observations reveal that both pendrin transcript levels and pendrin protein abundance are increased by treatment with the mineralocorticoid deoxycorticosterone (DOCA). DOCA is effective following in vitro treatment of platelets, indicating that DOCA has a direct influence on platelets. The present observations reveal that the effect of DOCA treatment on pendrin mRNA levels is paralleled by an increase and dependent on the presence of serum and glucocorticoid inducible kinase SGK1.

SGK1 has previously been shown to be strongly upregulated by mineralocorticoids in a variety of tissues [67]. Importantly, SGK1 is a powerful regulator of a variety of channels and transporters [67]. SGK1 regulates the expression of channels partially by up-regulating the transcription factor NFκB [68], which is up-regulated by mineralocorticoids and participates in the signaling of inflammation and fibrosis [69]. As recently shown, SGK1 is expressed in platelets and critically involved in platelet function by regulating NFκB-dependent transcription of Ca\(^{2+}\) channel moiety Orai1 in megakaryocytes [60, 63].

The observed upregulation of pendrin protein may be surprising in view of the lack of nuclei in blood platelets. However, blood platelets harbor pre-mRNA and mRNA and are capable to splice the intron-rich pre-mRNA into mature mRNA with subsequent translation into protein [70-72]. Previously, platelets have been shown to express interleukin-1\(\beta\) (IL-1\(\beta\)),
tissue factor [74] and Orai1 [75]. Translation is stimulated by phosphatidylinositol 3 kinase (PI3K) [72] and by cytoskeletal reorganization [76]. PI3K dependent signaling includes SGK1 [67]. In the absence of stimulators of translation, mRNA is bound by the cytoskeletal core. The eukaryotic initiating factor eIF-4E localizes to the membrane skeleton [73] and interacts with the inhibitory 4E-BP1 molecule, which prevents initiation of translation [77]. Upon stimulation of translation, PI3K associates with the membrane skeleton [76] and triggers phosphorylation of 4E-BP1 [72, 77] with subsequent dissociation of the inhibitory binding molecules, redistribution of the translation initiation factors close to mRNA [73] and translation of mRNA [75]. Mineralocorticoids may thus influence platelet protein expression by nongenomic mechanisms [78, 79, 79-89], including PI3K [90, 91].

The present paper did not address the putative impact of pendrin on platelet function. In theory, Cl-/HCO3- exchangers such as SLC26A4 may contribute to cell volume regulation. Osmotic cell shrinkage is followed by parallel activation of Na+/H+ exchangers and Cl-/HCO3- exchangers leading to cellular NaCl uptake [92, 93]. The parallel extrusion of H+ by the Na+/H+ exchanger and of HCO3- by the Cl-/HCO3- exchanger is osmotically not relevant, as H+ and HCO3- are replenished in the cell from CO2 via H2CO3 [92, 94]. Aldosterone is known to upregulate the Na+/H+ exchanger in the kidney [95, 96], heart [97-99], and several additional tissues [100-110]. Whether or not pendrin participates in platelet cell volume regulation, remains, however, to be shown.

In platelets, anion exchangers participate in the regulation of cytosolic pH [52, 54]. By mediating the extrusion of HCO3- in exchange of Cl-, the carriers acidify the cells [52, 53]. The carriers are stimulated by thrombin [53]. They are inhibited by the stilbene derivatives 4-acetamido-4'-isothiocyanato stilbene-2,2'- disulfonic acid (SITS) [53] and 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) [55]. Inhibition of the carriers with DIDS blunts the stimulation of platelet aggregation by the thromboxane A2 agonist U-46619, collagen, ADP or thrombin [55]. However, whether the DIDS sensitive anion exchanger in platelets reflects pendrin remains uncertain and additional experiments are required to test whether those functions are mediated by pendrin.

The DIDS and SITS sensitive anion exchangers mediate the transport of peroxynitrite (ONOO-), a reactive oxidant resulting from the reaction between nitric oxide and superoxide [51]. Prior treatment with ONOO- inhibits the formation of cyclooxygenase (COX) products thromboxane A(2) and 12-hydroxyeptadecatrienoic acid, and arachidonic acid-induced platelet aggregation [51]. ONOO- is presumably effective by tyrosine nitration [51]. Additional experiments are warranted on the contribution of pendrin to regulation of ONOO- formation in platelets.

Given the role of platelets in vascular inflammation and thrombosis [111], the regulation of pendrin in platelets may contribute to the cardiovascular complications of mineralocorticoid excess such as thrombosis or inflammation [112]. However, additional experimental effort is needed to define the role of pendrin in the physiology and pathophysiology of blood platelets.

In conclusion, Slc26a4 mRNA and protein were observed in platelets, where they were upregulated by DOCA, an effect requiring the presence of the serum and glucocorticoid inducible kinase SGK1.

Acknowledgements

This study has been supported by the Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Tuebingen University to F. Lang and M. Gawaz. This work was further supported by the FWF and the FP-7 to M.P. (P18608; PIRSES-GA-2008-230661).

Conflict of Interests

No conflict of interest.
References

1. Dossena S, Nofziger C, Lang F, Valent G, Paulmichl M: THE ESF Meeting on "The Proteomics, Epigenetics, and Pharmacogenomics of Pendrin". Cell Physiol Biochem 2011;28:377-384.

2. Reimold FR, Heneghan JF, Steward AK, Zelikovic I, Vandorpe DH, Shmuukler BE, Alper SL: Pendrin function and regulation in Xenopus oocytes. Cell Physiol Biochem 2011;28:435-450.

3. Choi BY, Muskett J, King KA, Zalewski CK, Shawker T, Reynolds JC, Butman JA, Brewer CC, Stewart AK, Alper SL, Griffith AJ: Hereditary hearing loss with thyroid abnormalities. Adv Otorhinolaryngol 2011;70:43-49.

4. Alesutan I, Daryadel A., Mohebbi N, Pelzl L, Leibrock C, Voelkl J, Bourgeois S, Dossena S, Nofziger C, Paulmichl M, Wagner CA, Lang F: Impact of bicarbonate, ammonium chloride and acetazolamide on hepatic and renal SLC26A4 expression. Cell Physiol Biochem 2011;28:553-558.

5. Bizhanova A, Kopp P: Genetics and phenomics of Pendred syndrome. Mol Cell Endocrinol 2010;322:83-90.

6. Wagner CA, Mohebbi N, Capasso G, Geibel JP: The anion exchange pendrin (SLC26A4) and renal-acid-base homeostasis. Cell Physiol Biochem 2011;28:497-504.

7. Dror AA, Brownstein ZN, Avraham KB: Integration of Human and Mouse Genetics Reveals Pendrin Function in Hearing and Deafness. Cell Physiol Biochem 2011;28:535-544.

8. Choi BY, Muskett J, King KA, Zalewski CK, Shawker T, Reynolds JC, Butman JA, Brewer CC, Wangemann P, Alper SL: SLC26A4 genotypes and phenotypes associated with enlargement of the vestibular aqueduct. Cell Physiol Biochem 2011;28:545-552.

9. Bizhanova A, Kopp P: Controversies concerning the role of pendrin as apical iodide transporter in thyroid follicular cells. Cell Physiol Biochem 2011;28:485-490.

10. Twyffels L, Massart C, Golstein PE, Raspe E, Van Sande J, Duomnt JE, Beauwens R, Kruys V: Pendrin: the thyrocyte apical membrane iodide transporter? Cell Physiol Biochem 2011;28:491-496.

11. Izuohara K, Ohta S, Shiraishi H, Suzuki S, Taniguchi K, Toda S, Tanabe T, Yasuo M, Kubo K, Hoshino T, Aizawa H: The mechanism of mucus production in bronchial asthma. Curr Med Chem 2009;16:2867-2875.

12. Nofziger C, Dossena S, Suzuki S, Izuohara K, Paulmichl M: Pendrin function in Airway Epithelia. Cell Physiol Biochem 2011;28:571-578.

13. Carraro-Lacroix LR, Malnic G: Acid-base transport by the renal distal nephron. J Nephrol 2010;23 Suppl 16:S19-S27.

14. Wall SM, Pech V: Pendrin and sodium channels: relevance to hypertension. J Nephrol 2010;23:S118-S123.

15. Amlal H, Soleimani M: Pendrin as a novel target for diuretic therapy. Cell Physiol Biochem 2011;28:521-526.

16. Eladari D, Chambrey R, Frische S, Vallet M, Edwards A: Pendrin as a regulator of ECF and blood pressure. Curr Opin Nephrol Hypertens 2009;18:356-362.

17. Hadchouel J, Buesst C, Procino G, Valent G, Chambrey R, Eladari D: Regulation of the extracellular fluid volume and blood pressure by pendrin. Cell Physiol Biochem 2011;28:505-512.

18. Verlander JW, Hassell KA, Royaux IE, Glapion DM, Wang ME, Everett LA, Green ED, Wall SM: Deoxycorticosterone upregulates PDS (SLC26A4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension. Hypertension 2003;42:356-362.

19. Rodighiero S, Botta G, Bazzini C, Meyer G: Pendrin overexpression affects cell volume recovery, intracellular pH and chloride concentration after hypotonicity-induced cell swelling. Cell Physiol Biochem 2011;28:559-570.

20. Bizhanova A, Chew TL, Khuon S, Kopp P: Analysis of cellular localization and function of carboxy-terminal truncations mutants of pendrin. Cell Physiol Biochem 2011;28:423-434.

21. Dossena S, Nofziger C, Brownstein ZN, Kanaan M, Avraham KB, Paulmichl M: Functional characterization of Pendrin mutations found in Israeli and Palestinian populations. Cell Physiol Biochem 2011;28:477-484.

22. Dossena S, Bizhanova A, Nofziger C, Bernardinelli E, Ramsauer J, Kopp P, Paulmichl M: Identification of allelic variants of pendrin (SLC26A4) with loss and gain of function. Cell Physiol Biochem 2011;28:467-476.

23. Dossena S, Nofziger C, Tamma G, Bernardinelli E, Vanoni S, Nowak C, Grabmayer E, Koessler S, Stephan S, Patsch W, Paulmichl M: Molecular and functional characterization of human pendrin and its allelic variants. Cell Physiol Biochem 2011;28:451-466.

24. Sharma AK, Righy AC, Alper SL: STAS domain structure and function. Cell Physiol Biochem 2011;28:407-422.
25 Dossena S, Rodighiero S, Vezzoli V, Nozifzer C, Salvioni E, Boccazzi M, Grabmayer E, Botta G, Meyer G, Fugazzola L, Beck-Peccoz P, Paulmichl M: Functional characterization of wild-type and mutated pendrin (SLC26A4), the anion transporter involved in Pendred syndrome. J Mol Endocrinol 2009;43:93-103.

26 Calebiro D, Porazzi P, Bonomi M, Lisi S, Grindati A, De Nittis D, Fugazzola L, Marino M, Botta G, Persani L: Absence of primary hypothyroidism and goiter in Sk26a4-/- Mice Fed on a Low Iodine Diet. J Endocrinol Invest 2010;34:93-8.

27 Rozenfeld J, Efreti E, Adler L, Tal O, Carrithers S, Alper SL, Zelikovic I: Transcriptional Regulation of the Pendrin Gene. Cell Physiol Biochem 2011;28:385-396.

28 Pelzl L, Pakladok T, Pathare G, Fakhri H, Michael D, Wagner CA, Paulmichl M, Lang F: DOCA sensitive pendrin expression in kidney, heart, lung and thyroid tissues. Cell Physiol Biochem 2012;30:1491-1501.

29 Yang J, Young MJ: The mineralocorticoid receptor and its coregulators. J Mol Endocrinol 2009;43:53-64.

30 Shigaev A, Asher C, Latter H, Garty H, Reuveny E: Regulation of sgk by aldosterone and its effects on the epithelial Na+ channel. Am J Physiol Renal Physiol 2000;278:F613-F619.

31 Caprio M, Feve B, Claes A, Viengchareun S, Lombes M, Zennaro MC: Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adi genesis. FASEB J 2007;21:2185-2194.

32 Lombes M, Oblin ME, Gasc JM, Baulieu EE, Farman N, Bonvalet JP: Immunohistochemical and biochemical evidence for a cardiovasc u lar mineralocorticoid receptor. Circ Res 1992;71:503-510.

33 Meijer OC: Coregulator proteins and corticosteroid action in the brain. J Neuroendocrinol 2002;14:499-505.

34 Pearce D, Bhargava A, Cole TJ: Aldosterone: its receptor, target genes, and actions. Vitam Horm 2003;6:6:29-76.

35 Lombes M, Farman N, Bonvalet JP, Zennaro MC: Identification and role of aldosterone receptors in the cardiovascular system. Ann Endocrinol (Paris) 2000;61:41-46.

36 Vallon V, Huang DY, Grahamer F, Wyatt AW, Osswald H, Wulff P, Kuhl D, Lang F: SGK1 as a determinant of kidney function and salt intake in response to mineralocorticoid excess. Am J Physiol Regul Integr Comp Physiol 2005;289:R395-R401.

37 Funder JW: Aldosterone, hypertension and heart failure: insights from clinical trials. Hypertens Res 2010;33:872-875.

38 Latouche C, Sainte-Marie Y, Steenman M, Castro CP, Naray-Fejes-Toth A, Fejes-Toth G, Farman N, Jaisser F: Molecular signature of mineralocorticoid receptor signaling in cardiomyocytes: from cultured cells to mouse heart. Endocrinology 2010;151:4467-4476.

39 Fejes-Toth G, Naray-Fejes-Toth A: Early aldosterone-regulated genes in cardiomyocytes: clues to cardiac remodeling? Endocrinology 2007;148:1502-1510.

40 Fagart J, Huyet J, Pinon GM, Rohel M, Mayer C, Rafaelin-Oblin ME: Crystal structure of a mutant mineralocorticoid receptor responsible for hypertension. Nat Struct Mol Biol 2005;12:554-555.

41 Young M, Funder JW: Aldosterone and the heart. Trends Endocrinol Metab 2000;11:224-226.

42 Oberleithner H: Is the vascular endothelium under the control of aldosterone? Facts and hypothesis. Pflugers Arch 2007;454:187-193.

43 Lang F: Stiff endothelial cell syndrome in vascular inflammation and mineralocorticoid excess. Hypertension 2011;57:146-147.

44 Lacolley P, Challande P, Osborne-Pellegrin M, Regnault V: Genetics and pathophysiology of arterial stiffness. Cardiovasc Res 2009;81:637-648.

45 Jaffe IZ, Tintut Y, Newfell BG, Demer LL, Mendelsohn ME: Mineralocorticoid receptor activation promotes vascular cell calcification. Arterioscler Thromb Vasc Biol 2007;27:799-805.

46 Voelld J, Alesutan I, Leibrock CB, Quintanilla-Martinez L, Kuhn V, Feger M, Mia S, Ahmed MS, Rosenblatt KP, Kuro O, Lang F: Spironolactone ameliorates PIT1-dependent vascular osteoinduction in klotho-hypomorphic mice. J Clin Invest 2013;123:812-22.

47 de Kloet ER, Joels M, Holsboer F: Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005;6:463-475.

48 Firsov D: Revisiting sodium and water reabsorption with functional genomics tools. Curr Opin Nephrol Hypertens 2004;13:59-65.

49 Kellner M, Peiter A, Hafner M, Feuring M, Christ M, Wehling M, Falkenstein E, Losel R: Early aldosterone up-regulated genes: new pathways for renal disease? Kidney Int 2003;64:1199-1207.
50 Sekizawa N, Yoshimoto T, Hayakawa E, Suzuki N, Sugiyama T, Hirata Y: Transcriptome analysis of aldosterone-regulated genes in human vascular endothelial cell lines stably expressing mineralocorticoid receptor. Mol Cell Endocrinol 2011;341:78-88.

51 Boulos C, Jiang H, Balazy M: Diffusion of peroxynitrite into the human platelet inhibits cyclooxygenase via nitration of tyrosine residues. J Pharmacol Exp Ther 2000;293:222-229.

52 Gende OA: Functional interaction of carbonic anhydrase and chloride/bicarbonate exchange in human platelets. Platelets 2005;16:392-397.

53 Gende OA: Thrombin stimulation of Cl-/HCO3- exchange contributes to cytoplasmic pH regulation in the human platelet. Platelets 1995;6:221-232.

54 Yokoyama K, Kudo I, Nakamura H, Inoue K: A possible role for extracellular bicarbonate in U-46619-induced rat platelet aggregation. Thromb Res 1994;74:369-376.

55 Ruggeri ZM: Platelets in atherothrombosis. Nat Med 2002;8:1227-1234.

56 Gende OA: Functional interaction of carbonic anhydrase and chloride/bicarbonate exchange in human platelets. Platelets 2005;16:392-397.

57 Valant PA, Haynes DH: Na+-independent Active H+ Extrusion and HCO3-/Cl- Exchange Contribute to Cytoplasmic pH Regulation in the Human Platelet. Platelets 1995;6:221-232.

58 Boulos C, Jiang H, Balazy M: Diffusion of peroxynitrite into the human platelet inhibits cyclooxygenase via nitration of tyrosine residues. J Pharmacol Exp Ther 2000;293:222-229.

59 Gende OA: Functional interaction of carbonic anhydrase and chloride/bicarbonate exchange in human platelets. Platelets 2005;16:392-397.

60 Gende OA: Thrombin stimulation of Cl-/HCO3- exchange contributes to cytoplasmic pH regulation in the human platelet. Platelets 1995;6:221-232.

61 Gende OA: Functional interaction of carbonic anhydrase and chloride/bicarbonate exchange in human platelets. Platelets 2005;16:392-397.

62 Gende OA: Functional interaction of carbonic anhydrase and chloride/bicarbonate exchange in human platelets. Platelets 2005;16:392-397.

63 Gende OA: Functional interaction of carbonic anhydrase and chloride/bicarbonate exchange in human platelets. Platelets 2005;16:392-397.

64 Gende OA: Functional interaction of carbonic anhydrase and chloride/bicarbonate exchange in human platelets. Platelets 2005;16:392-397.

65 Gende OA: Functional interaction of carbonic anhydrase and chloride/bicarbonate exchange in human platelets. Platelets 2005;16:392-397.

66 Gende OA: Functional interaction of carbonic anhydrase and chloride/bicarbonate exchange in human platelets. Platelets 2005;16:392-397.

67 Gende OA: Functional interaction of carbonic anhydrase and chloride/bicarbonate exchange in human platelets. Platelets 2005;16:392-397.

68 Gende OA: Functional interaction of carbonic anhydrase and chloride/bicarbonate exchange in human platelets. Platelets 2005;16:392-397.

69 Gende OA: Functional interaction of carbonic anhydrase and chloride/bicarbonate exchange in human platelets. Platelets 2005;16:392-397.

70 Gende OA: Functional interaction of carbonic anhydrase and chloride/bicarbonate exchange in human platelets. Platelets 2005;16:392-397.
Pelzl et al.: Pendrin Expression in Platelets

71 Pabla R, Weyrich AS, Dixon DA, Bray PE McIntyre TM, Prescott SM, Zimmerman GA: Integrin-dependent control of translation: engagement of integrin alphabeta3 regulates synthesis of proteins in activated platelets. J Cell Biol 1999;144:175-184.

72 Weyrich AS, Schwertz H, Kraiss LW, Zimmerman GA: Protein synthesis by platelets: historical and new perspectives. J Thromb Haemost 2009;7:241-246.

73 Lindemann S, Tolley ND, Eyre JR, Kraiss LW, Mahoney TM, Weyrich AS: Integrins regulate the intracellular distribution of eukaryotic initiation factor 4E in platelets. A checkpoint for translational control. J Biol Chem 2001;276:33947-33951.

74 Schwertz H, Tolley ND, Fouls JM, Denis MM, Risenmay BW, Buerke M, Tilley RE, Rondina MT, Harris EM, Kraiss LW, Mackman N, Zimmerman GA, Weyrich AS: Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med 2006;203:2433-2440.

75 Munzer P, Tolios A, Pelzl L, Schmid E, Schmidt EM, Walker B, Frohlich H, Borst O, Gawaz M, Lang F: Thrombin-sensitive expression of the store operated Ca\(^{2+}\) channel Orai1 in platelets. Biochem Biophys Res Commun 2013;436:25-30.

76 Zhang J, Fry MJ, Waterfield MD, Saksen S, Luo L, Fox JE, Rittenhouse SE: Activated phosphoinositide 3-kinase associates with membrane skeleton in thrombin-exposed platelets. J Biol Chem 1999;264:4686-4692.

77 Weyrich AS, Dixon DA, Pabla R, Elstad MR, McIntrye TM, Prescott SM, Zimmerman GA: Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proc Natl Acad Sci U S A 1998;95:5556-5561.

78 Briet M, Schiffrin EL: Vascular actions of aldosterone. J Vasc Res 2013;50:89-99.

79 Deutsch SI, Mastropaolo J: Discriminative stimulus properties of midazolam are shared by a GABA-receptor positive steroid. Pharmacol Biochem Behav 1993;46:963-965.

80 Mohammed SF, Ohtani T, Korinek J, Larsen K, Simari RD, Valencik ML, Ridenour JC, Jr., Redfield MM: Mineralocorticoid accelerates transition to heart failure with preserved ejection fraction via "nongenomic effects". Circulation 2010;122:370-378.

81 Pietranera L, Saravia FE, McEwen BS, Lucas LL, Johnson AK, De Nicola AF: Changes in Fos expression in various brain regions during deoxycorticosterone acetate treatment: relation to salt appetite, vasopressin mRNA and the mineralocorticoid receptor. Neuroendocrinology 2001;74:396-406.

82 Roy JW, Hill E, Ruan YC, Vedovelli L, Paunescu TG, Brown D, Breton S: Circulating aldosterone induces the apical accumulation of the proton pumping V-ATPase and increases proton secretion in clear cells in the caput epididymis. Am J Physiol Cell Physiol 2013;305:C436-C446.

83 Rupprecht R, Holsboer F: Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci 1999;22:410-416.

84 Sakai RR, McEwen BS, Fuhart SY, Ma LY: The amygdala: site of genomic and nongenomic arousal of aldosterone-induced sodium intake. Kidney Int 2000;57:1337-1345.

85 Wehling M, Christ M, Theisen K: Membrane receptors for aldosterone: a novel pathway for mineralocorticoid action. Am J Physiol 1999;263:E974-E979.

86 Wendler A, Allbrecht C, Wehling M: Nongenomic actions of aldosterone and progesterone revisited. Steroids 2012;77:1002-1006.

87 Young M, Funder J: Mineralocorticoid action and sodium-hydrogen exchange: studies in experimental cardiac fibrosis. Endocrinology 2003;144:3848-3851.

88 Williams JS: Evolving research in nongenomic actions of aldosterone. Curr Opin Endocrinol Diabetes Obes 2013;20:198-203.

89 Liu SL, Schmuck S, Chorazcyzewski JZ, Gros R, Feldman RD: Aldosterone regulates vascular reactivity: short-term effects mediated by phosphatidylinositol 3-kinase-dependent nitric oxide synthase activation. Circulation 2003;108:2400-2406.

90 Mutoh A, Ishikawa M, Fujita T: Aldosterone enhances ligand-stimulated nitric oxide production in endothelial cells. Hypertens Res 2008;31:1811-1820.

91 Hoffmann EK, Lambert IH, Pedersen SF: Physiology of cell volume regulation in vertebrates. Physiol Rev 2009;89:193-277.

92 Lang M, Busch GL, Ritter M, volkel H, Waldegger S, Gulbins E, Haussinger D: Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998;78:247-306.
220

94 Lang F, Foller M, Lang K, Lang P, Ritter M, Vereninov A, Szabo I, Huber SM, Gulbins E: Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol 2007;428:209-225.

95 Weigt M, Dietl P, Silberman H, Oberléitner H: Activation of luminal Na’/H’ exchange in distal nephron of frog kidney. An early response to aldosterone. Pfugers Arch 1987;408:609-614.

96 Zhang M, Chen J, Lai L, You L, Lin S, Hao C, Gu Y: Aldosterone promotes fibronectin synthesis in rat mesangial cells via ERK1/2-stimulated Na-H+ exchanger isofrom 1. Am J Nephrol 2010;31:75-82.

97 De Giusti VC, Nolly MB, Yves AMS, Caldzic CI, Villa-Abrielle MC, Chiappe de Cingolani GE, Ennis IL, Cingolani HE, Aiello EA: Aldosterone stimulates the cardiac Na’/H’ exchanger via transactivation of the epidermal growth factor receptor. Hypertension 2011;58:912-919.

98 Korichneva I, Puceat M, Millanvoye-Van Brussel E, Geraud G, Vassort G: Aldosterone modulates both the Na/H antiport and Cl/HCO3 exchanger in cultured neonatal rat cardiac cells. J Mol Cell Cardiol 1995;27:2521-2528.

99 Young M, Funder J: Mineralocorticoid action and sodium-hydrogen exchange: studies in experimental cardiac fibrosis. Endocrinology 2003;144:3848-3851.

100 Caligiuri A, De Franco RM, Romanelli RG, Gentilini A, Meucci M, Failli P, Mazzetti L, Rombouts K, Geerts A, Vanasia M, Gentilini P, Marra F, Pinzani M: Antifibrogenic effects of canrenone, an antialdosteronic drug, on human hepatic stellate cells. Gastroenterology 2003;124:504-520.

101 Cho JH, Musch MW, Boonstein CM, McSwine RL, Rabenau K, Chang EB: Aldosterone stimulates intestinal Na+ absorption in rats by increasing NHE3 expression of the proximal colon. Am J Physiol 1998;274:C586-C594.

102 Christ M, Douwes K, Eisen C, Bechtrer G, Theisen K, Wehling M: Rapid effects of aldosterone on sodium transport in vascular smooth muscle cells. Hypertension 1995;25:117-123.

103 Delva P, Pastori C, Degan M, Montesi G, Bassi A, Lechi A: Erythrocyte Na’/H’ exchanger and Na’-Li’ countertransport activity in primary aldosteronism. Eur J Clin Invest 1994;24:794-798.

104 Eiken C, Meyer C, Christ M, Theisen K, Wehling M: Novel membrane receptors for aldosterone in human lymphocytes: a 50 kDa protein on SDS-PAGE. Cell Mol Biol (Noisy-le-grand) 1994;40:351-358.

105 Ivanova L, Bernhardt R, Bernhardt I: Nongenomic effect of aldosterone on ion transport pathways of red blood cells. Cell Physiol Biochem 2008;22:269-278.

106 Michea I, Delpiano AM, Hitschfeld C, Lobos L, Lavandero S, Marusic ET: Eplerenone blocks nongenomic effects of aldosterone on the Na’/H’ exchanger, intracellular Ca’’ levels, and vasoconstriction in mesenteric resistance vessels. Endocrinology 2004;146:973-980.

107 Musch MW, Lucioni A, Chang EB: Aldosterone regulation of intestinal Na absorption involves SGK-mediated changes in NHE3 and Na+ pump activity. Am J Physiol Gastrointest Liver Physiol 2008;295:G909-G919.

108 Schifferlin EL: The many targets of aldosterone. Hypertension 2004;43:938-940.

109 Speake PF, Glazier JD, Greenwood SL, Sibley CP: Aldosterone and cortisol acutely stimulate Na’/H’ exchanger activity in the syncytiotrophoblast of the human placenta: effect of fetal sex. Placenta 2010;31:289-294.

110 Wehling M, Kasmayr J, Theisen K: Fast effects of aldosterone on electrolytes in human lymphocytes are mediated by the sodium-proton-exchanger of the cell membrane. Biochem Biophys Res Commun 1989;164:961-967.

111 Rondina MT, Weyrich AS, Zimmerman GA: Platelets as cellular effectors of inflammation in vascular diseases. Circ Res 2013;112:1506-1519.

112 Meier DJ, Pitt B, Rajagopalan S: Eplerenone: will it have a role in the treatment of acute coronary syndromes? Curr Cardiol Rep 2004;6:259-263.