Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Methods for the discovery of emerging pathogens

Emmanouil Angelakis*, Didier Raoult

URMITE CNRS-IRD 198 UMR 6236, Université de la Méditerranée, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille, France

1. Introduction

There has been a recent steady increase in the number of recognized pathogenic microorganisms. The number of officially recognized bacterial species has risen from 1800 in 1980 to over 12,000 in 2013 [1]. In our laboratory, we evaluated approximately 635 different pathogenic bacteria were isolated showed that over the last ten years in a hospital in Marseille, commensal or pathogenic bacteria [2]. In addition, we recently recognized pathogenic microorganisms. The number of of pathogens considering that most pathogenic microorganisms... (this term reflects their recent discovery rather than their recent creation).

2. Repertoire

The repertoire of microorganisms in a given area is based on the need to target diagnostic and therapeutic interventions to existing pathogens in the area. Recent studies have been limited by the technical expertise of the countries that perform them [6]. In Europe or the United States, the strategies for detection of existing pathogens have been based on the circulation of microorganisms that are prevalent in these areas. Therefore, the frequency of pathogens circulating in poor areas has not been examined, and these pathogens are now considered emerging (this term reflects their recent discovery rather than their recent creation).

The repertoire of infectious agents should be evaluated in the environment, including water, soil, pets, livestock, wildlife and arthropods. Using various methods, many known pathogens can be identified in these samples; therefore, their impact on humans can be assessed and microorganisms that are not yet recognized as pathogenic can be identified. Systematic studies should be performed in humans to identify the proportion of related protists, fungi, bacteria and viruses that cause fever as well as acute and chronic infections. Such studies can yield surprising results; for instance, recent studies by different teams in different locations in Africa (Senegal and Kenya) revealed that Rickettsia felis was the second microorganism associated with fever after malaria [7,8]. Furthermore, microorganisms that are not considered agents of fever in Europe, such as Borrelia recurrentis, which causes tick-borne relapsing fever [9], and other infectious agents such as Tropheryma whipplei [10] or Coxiella burnetii [11] have a significant impact on the African population. Notably, studies testing different populations must include negative control samples from patients of the same origin without fever. The predictive value of diagnostic
tests in the establishment of a repertoire of infectious agents depends on the number of asymptomatic carriers (without fever). In malaria-endemic areas, there can be non-febrile carriers of *Plasmodium falciparum* (in a recent unpublished study in Gabon, up to 11% of non-febrile children presenting to the emergency room in local hospitals were carriers of *P. falciparum* in the blood). In addition, *R. felis* and *T. whipplei* can also be observed in non-febrile patients examined for other reasons [7,10]. Therefore, the systematic addition of negative controls is critical to assess the causal microorganisms in the genesis of fever. It is also essential to establish a comprehensive and multiplexed pathogen repertoire, and it is not sufficient to repeatedly test for the most common pathogens. Therefore, the presence of *P. falciparum* in a febrile patient should not deter the search for other pathogens present in combination, such as *Streptococcus pneumoniae* or *Staphylococcus aureus*. Establishment of the microorganism repertoire can facilitate the development of strategies for the diagnosis of infectious agents, especially in local African areas, using the Point of Care laboratories, enabling the implementation of empirical treatment [12] (Fig. 1).

3. Techniques for the detection of emerging pathogens

Techniques for the detection of emerging pathogens are based on several strategies. Culture techniques have evolved considerably, and multiple strategies are used to produce different axenic culture media that can be easily used in local laboratories without the need for expensive equipment [13,14]. New media for the cultivation of anaerobic microorganisms without specific equipment will most likely facilitate the isolation of anaerobic bacteria that are sensitive to oxygenated derivatives [15]. The development of human cell cultures (HEL) [16] and culture in amoebae will enable the cultivation of new pathogenic microorganisms [17]. In our laboratory in Dakar, Oleg Medianikov successfully used cell culture to isolate new species of intractable bacteria such as *Rickettsia* and *Bartonella* spp. from environmental samples [9,18,19]. New bacterial species can be easily identified using MALDI-TOF mass spectrometry [14,20]. This technology can be used to economically and rapidly identify (in a few minutes) all bacteria for which the mass spectra are present in the machine’s database [21]. For bacteria that cannot be identified using MALDI-TOF mass spectrometry, 16S rDNA amplification and sequencing analysis can be used to determine whether the isolates represent novel species (less than 98.7% homology); subsequently, new mass spectra can be created for known species for later use, and the spectra of new species can be filed [14,22,23]. MALDI-TOF mass spectrometry has revolutionized microbial identification and enabled rapid bacterial identification, including in emerging countries [21]. Therefore, in collaboration with IRD and Biomérieux, we installed a MALDI-TOF mass spectrometer in Dakar, which enabled the identification of previously unknown bacteria [24–27]. Furthermore, by MALDI-TOF mass spectrometric analysis of commensal bacteria, we identified more than 90 new species of bacteria, which had not been observed either in the environment or in humans [13]. In our laboratory, we systematically sequence bacterial genomes for species description in association with their MALDI-TOF mass spectra and their main morphological and biochemical characteristics [24–39] (Fig. 2).

In addition to this technique, specific molecular assays based on the universal amplification of bacteria can play an important role [40]. The most commonly used techniques are based on amplification of the universal 16S rDNA gene, which facilitates the identification of unrecognized bacteria, especially in anaerobic and multi-microbial infections [40,41]. Amplification of the rpoB gene.
(encoding the RNA polymerase) has enabled the identification of several bacteria that were unnoticed until recently. The identification of eukaryotic microorganisms is more complex because several molecular assays amplify fungi [42], protists [43] and microscopic arthropods [44]. These techniques have broad specificity, which is reflected in the recent increase in the number of fungi identified as human commensals or pathogens (Fig. 3).

Finally, metagenomics, which is commonly defined as sequenced-based analysis of the entire collection of genomes directly isolated from a sample, can be useful. Metagenomics overcomes the key limitations of classical tools for viral detection [45]. Unlike traditional techniques for microbial and viral identification, metagenomics does not require prior isolation and clonal culturing for species characterization, and it does not rely on prior assumptions on which organisms are present or the genomic sequences to be targeted. Viral metagenomics is particularly suitable for providing a global overview of the diversity of the viral community and has functional significance [45]. The characterization of human-associated viral communities in a non-pathological state and the detection of viral pathogens during infection are essential for medical care and epidemic surveillance. These techniques are limited by the populations tested. However, these techniques have been widely used to study different microbiota and might be important to identify species related to nutritional status in Africa, especially in children suffering from kwashiorkor [46].

4. The case of giant viruses

Due to ongoing global evolution, many new microorganisms are identified in humans and in the environment. Using a combination of different technologies, we have described giant viruses as emerging pathogens [47–51] (Fig. 3). These viruses were discovered when a "Gram-positive" bacterium isolated from an amoeba was later identified as Mimivirus [52,53]. Mimivirus has subsequently been isolated from human respiratory samples and in the stools of patients who developed pneumonia after travelling to Tunisia [54,55]. Furthermore, serological analysis revealed an increase in the prevalence of these viruses in patients with pneumonia in Canada [48]. The virophage isolated from Mimivirus [56] has also been identified by serology in two patients from Laos after consumption of raw fish from the Mekong River, which was also found to be extremely rich in virophages [57]. Finally, Marseillevirus, discovered in amoebal culture [58], was later detected by PCR-based metagenomic assays in the blood of blood donors without clinical manifestations [49,50] and by serology and hybridization analysis in the lymph-node of a child with lymph-node enlargement [51]. The discovery of giant viruses was only possible by culture techniques because viral metagenomics analysis excludes particles larger than 0.2 microns; this discovery highlighted a novel class of emerging viral pathogens [47].

5. Conclusion

In this special issue, we identified potential sources of emerging pathogenic microorganisms. The rapid development of genetic and molecular technologies, MALDI-TOF mass spectrometry and new culturing techniques has facilitated the identification of microorganisms, including those that are pathogenic [59]. It is likely that the development of diagnostic multiplex assays might generate problems in disease interpretation. Therefore, a multidisciplinary
approach involving culture, MALDI-TOF mass spectrometry-based identification and metagenomics analysis of environmental and human samples will generate a comprehensive repertoire of pathogenic microorganisms in humans, many of which remain to be discovered.

Acknowledgements

None.

References

[1] Lagier JC, Million M, Hugon P, Armougom F, Raoult D. Human gut microbiota: repertoire and variations. Front Cell Infect Microbiol 2012;2:136.
[2] Seng P, Abat C, Rolain JM, Colson P, Lagier JC, Gouriet F, et al. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2013;51:2182–94.
[3] McConnell J, Raoult D. Emerging respiratory viruses: is it ‘much ado about nothing’? (Shakespeare). Clin Microbiol Infect 2014;20:187–8.
[4] Dupouey J, Bichaud L, Ninove L, Zandotti C, Thirion-Perrier L, de L X, et al. Toscana virus infections: a case series from France. J Infect 2014;68:290–5.
[5] Khelai S, Drancourt M, Gouriet F, La SB, Fournier PE, Rolain JM, et al. Ongoing Bartonella sp. nov. infection and malaria, Africa. Emerg Infect Dis 2013;19:1775–83.
[6] Maina AN, Knobel DL, Jiang J, Halliday J, Feikin DR, Cleaveland S, et al. Rickettsia felis infection in febrile patients, western Kenya. 2007–2010. Emerg Infect Dis 2012;18:328–31.
[7] Mediannikov O, Abdissa A, Socolovschi C, Diatta G, Trape JF, Raoult D. Detection of a new Borrelia species in ticks taken from cattle in southwest Ethiopia. Vector Borne Zoonotic Dis 2013;13:266–9.
[8] Keita AK, Mediannikov O, Ratmanov P, Diatta G, Bassene H, Roucher C, et al. Looking for Trophephyma whipplei source and reservoir in rural Senegal. Am J Trop Med Hyg 2013;88:339–43.
[9] Mediannikov O, Abdissa A, Socolovschi C, Diatta G, Trape JF, Raoult D. Prevalence of antibodies to Coxiella burnetii, Rickettsia conorii, and Rickettsia typhi in seven African countries. Clin Infect Dis 1994;21:1126–33.
[10] Sokhna C, Mediannikov O, Fenollar F, Bassene H, Diatta G, Tall A, et al. Point-of-care laboratory of pathogen diagnosis in rural Senegal. PLoS Negl Trop Dis 2013;7:e1999.
[11] Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012;18:1185–93.
[12] Seng P, Drancourt M, Gouriet F, La SB, Fournier PE, Rolain JM, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009;49:541–51.
[13] La Scola B, Khelai S, Lagier JC, Raoult D. Aerobic culture of anaerobic bacteria using antioxidants: a preliminary report. Eur J Clin Microbiol Infect Dis 2014 May 13. http://dx.doi.org/10.1007/s10096-014-2137-4 [Epub ahead of print].
[14] Singh S, Kowalczewska S, Edouard S, Eldin C, Perreal C, Weber P, et al. Cell extract-containing medium for culture of intracellular fastidious bacteria. J Clin Microbiol 2013;51:2599–607.
[15] Greub C, Raoult D. Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 2004;17:413–33.
[16] Mediannikov O, El KK, Diatta G, Robert C, Fournier PE, Raoult D. Non-contiguous finished genome sequence and description of Bartonella senegalensis sp. nov. Stand Genomic Sci 2013;8:279–89.
[17] Mediannikov O, El KK, Robert C, Fournier PE, Raoult D. Non-contiguous finished genome sequence and description of Bartonella florentiae sp. nov. Stand Genomic Sci 2013;9:185–96.
[18] Barreau M, Pagnier I, La Scola B. Improving the identification of anaerobes in the clinical microbiology laboratory through MALDI-TOF mass spectrometry. Anaerobe 2013;22:123–5.
[19] Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF mass spectrometry applications in clinical microbiology. Future Microbiol 2010;5:1733–54.
[20] Drancourt M, Bollet C, Carlizoz A, Martelino R, Gayral JP, Raoult D. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 2000;38:3023–30.
[21] Angelakis E, Million M, Henry M, Raoult D. Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry. J Food Sci 2011;76:588–72.

Fig. 3. Giant viruses history. A novel class of emerging viral pathogens was created since the discovery of giant virus.
description of novel bacterial species. Int J Syst Evol Microbiol 2014;64:384–91.

[25] Lagier JC, El KK, Mishra AK, Robert C, Raoult D, Fournier PE. Non-contiguous-finished genome sequence and description of Enterobacter massiliensis sp. nov. Stand Genomic Sci 2013;7:399–412.

[26] Mishra AK, Lagier JC, Nguyen TT, Raoult D, Fournier PE. Non-contiguous-finished genome sequence and description of Peptoniphilus massiliensis sp. nov. Stand Genomic Sci 2013;7:370–81.

[27] Hugon P, Mishra AK, Lagier JC, Nguyen TT, Couderc C, Raoult D, et al. Non-contiguous finished genome sequence and description of Brevibacterium massiliense sp. nov. Stand Genomic Sci 2013;7:370–81.

[28] Hugon P, Ramasamy D, Lagier JC, Rivet R, Couderc C, Raoult D, et al. Non-contiguous-finished genome sequence and description of Alistipes obesi sp. nov. Stand Genomic Sci 2013;7:427–39.

[29] Kokcha S, Mishra AK, Lagier JC, Million M, Leroy Q, Raoult D, et al. Non-contiguous-finished genome sequence and description of Bacillus illimoniensis sp. nov. Stand Genomic Sci 2012;6:346–55.

[30] Lagier JC, Ramasamy D, Rivet R, Raoult D, Fournier PE. Non-contiguous-finished genome sequence and description of Cellulomonas massiliensis sp. nov. Stand Genomic Sci 2012;7:258–70.

[31] Lagier JC, Armougom F, Mishra AK, Nguyen TT, Raoult D, Fournier PE. Non-contiguous-finished genome sequence and description of Alstipes illimoniensis sp. nov. Stand Genomic Sci 2012;6:315–24.

[32] Lagier JC, Gimenez G, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Herbaspirillum massiliense sp. nov. Stand Genomic Sci 2012;7:209–9.

[33] Lagier JC, El Karkouri K, Nguyen TT, Armougom F, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Anaerococcus senegalense sp. nov. Stand Genomic Sci 2012;6:116–25.

[34] Mishra AK, Edouard S, Dangui NP, Lagier JC, Caputo A, Blanc-Tailleur C, et al. Non-contiguous finished genome sequence and description of Nosocomicicoccus massiliensis sp. nov. Stand Genomic Sci 2013;9:205–19.

[35] Mishra AK, Lagier JC, Rivet R, Raoult D, Fournier PE. Non-contiguous-finished genome sequence and description of Pediococcus senegalensis sp. nov. Stand Genomic Sci 2012;7:79–81.

[36] Roux V, El KK, Lagier JC, Robert C, Raoult D. Non-contiguous-finished genome sequence and description of Kurrichia massiliensis sp. nov. Stand Genomic Sci 2012;7:221–32.

[37] Ramasamy D, Lagier JC, Nguyen TT, Raoult D, Fournier PE. Non-contiguous-finished genome sequence and description of Dielma fastidiosa gen. nov., sp. nov., a new member of the Family Eurypheliotrichaceae. Stand Genomic Sci 2013;8:336–51.

[38] Ramasamy D, Lagier JC, Gorlas A, Raoult D, Fournier PE. Non-contiguous-finished genome sequence and description of Bacillus massiliosenegalensis sp. nov. Stand Genomic Sci 2013;8:264–78.

[39] Ramasamy D, Lagier JC, Gorlas A, Raoult D, Fournier PE. Non-contiguous-finished genome sequence and description of Bacillus massiliosenegalensis sp. nov. Stand Genomic Sci 2013;8:264–78.

[40] Angelakis E, Roux V, Raoult D, Rolain JM. Real-time PCR strategy and detection of bacterial agents of lymphadenitis. Eur J Clin Microbiol Infect Dis 2009;28:1361–8.

[41] Safont M, Angelakis E, Richet H, Lepidi H, Fournier PE, Drancourt M, et al. Bacterial lymphadenitis at a major referral hospital in France from 2008 to 2012. J Clin Microbiol 2014;52:1161–7.

[42] Goubau N, Raoult D, Drancourt M. Plant and fungal diversity in gut microbiota as revealed by molecular and culture investigations. PLoS One 2013;8:e59474.

[43] Hamad I, Sokhna C, Raoult D, Bittar F. Molecular detection of eukaryotes in a single human stool sample from Senegal. PLoS One 2012;7:e46888.

[44] Hamad I, Delaporte E, Raoult D, Bittar F. Detection of termites and other insects consumed by African great apes using molecular fecal analysis. Sci Rep 2014;4:4478.

[45] Fasceo L, Raoult D, Desnues C. Computational tools for viral metagenomics and their application in clinical research. Virology 2012;434:162–74.

[46] Smith ML, Yatsunenko T, Manary MJ, Gallian P, Raoult D, et al. Gut microbiomes of Malawian twin pairs discordant for kwashikor. Science 2013;339:544–54.

[47] Colson P, Fancellu L, Gimenez G, Armougom F, Desnues C, Fournous G, et al. Evidence of the megavirome in humans. J Clin Virol 2013;57:191–200.

[48] La SB, Morrie T, Auffray JP, Raoult D. Mimivirus in pneumonia patients. Emerg Infect Dis 2005;11:449–52.

[49] Popgeorgiev N, Boyer M, Fancellu L, Montei S, Robert C, Rivet R, et al. Mar-selleivirus-like virus recovered from blood donated by asymptomatic humans. J Infect Dis 2013;208:1042–50.

[50] Popgeorgiev N, Colson P, Thuert I, Chiariioni J, Gallian P, Raoult D, et al. Mar-selleivirus prevalence in multitransfused patients suggests blood transmission. J Clin Virol 2013;58:722–5.

[51] Popgeorgiev N, Michel C, Lepidi H, Raoult D, Desnues C. Marseillevirus adnitus in an 11-month-old child. J Clin Microbiol 2013;51:4102–5.

[52] La Scola B, Audic S, Robert C, Jungang L, de L X, Drancourt M, et al. A giant virus in amoebae. Science 2003;299:2033.

[53] Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ojata H, et al. The 1.2-megabase genome sequence of mimivirus. Science 2004;19(306):1344–50.

[54] Saadi H, Reteno DG, Colson P, Aherfi S, Minodier P, Pagnier L, et al. Shan virus: a new mimivirus isolated from the stool of a Tunisian patient with pneu-monia. Intervirology 2013;56:424–9.

[55] Pagnier I, Colson P, Aherfi S, Minodier P, Pagnier L, et al. Viral acquisition during digestive tract colonization. Intervirology 2014;57:227–34.

[56] La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, et al. The virophage as a unique parasite of the giant mimivirus. Nature 2008;455:100–4.

[57] La Scola B, Audic S, Robert C, Drancourt M, et al. A novel virus in host cells recovered from blood donated by asymptomatic humans. J Infect Dis 2013;58:722–5.

[58] La Scola B, Audic S, Robert C, Jungang L, de L X, Drancourt M, et al. A giant virus in amoebae. Science 2003;299:2033.

[59] Saadi H, Pagnier I, Colson P, Aherfi S, Minodier P, Pagnier L, et al. Shan virus: a new mimivirus isolated from the stool of a Tunisian patient with pneumonia. Intervirology 2013;56:424–9.

[60] Saadi H, Pagnier I, Colson P, Aherfi S, Minodier P, Pagnier L, et al. First isolation of mimivirus in a patient with pneumonia. Clin Infect Dis 2013;57:127–34.

[61] La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, et al. The virophage as a unique parasite of the giant mimivirus. Nature 2008;455:100–4.

[62] Bonfante P, Ribaupierre S, Botelho-Nevers E, La SB, Desnues C, Raoult D. Acantho-moeba polyphaga mimivirus virophage seroconversion in travelers returning from Laos. Emerg Infect Dis 2012;18:1500–2.

[63] Boyer M, Yatin N, Pagnier I, Barrassi L, Fournous G, Espinosa L, et al. Giant mar-selleivirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci U S A 2009;106:21848–53.

[64] Drancourt M. Microbe discovery: lessons from the past. Clin Microbiol Infect 2014;20:189–90.