Effect of Foliar Liquid Organic Fertilizer on Neera Production

DOI: 10.18196/pl.2017.070.106-109

Purwanto*, Mujiono, Tarjoko
Department of Agrotechnology, Faculty of Agriculture, Jenderal Soedirman University,
Jl. Dr. Suparno KP 125 Purwokerto Central Java Indonesia 53122,
*Corresponding author, email: purwanto.unsoed@gmail.com

INTRODUCTION

Coconut is one of plantation crop that have high economic value. More than 90% of coconut plantation is cultivated as smallholder plantation, and most of the plant is tapped for collecting neera. Neera is sweet, translucent in color, which sap is extracted from the inflorescence of coconut as a material for producing the brown sugar (Muralidharan and Deepthi, 2013). Diversification of coconut sugar into crystal sugar has a very broad economic opportunity. The demand of crystalline sugar is high because of healthy reason. Crystalline sugar made from pure neera has low glycemic index (GI), and it is good for diabetic due to have very low amount of sugar which is absorbed into blood (Misra, 2016).

Recently, neera production is very low. Konan et. al., (2013) reported that neera production is varied from 0.5 to 1.5 L/spathe/day depend on the cultivar type. The quality of neera is influenced by both genotype and environment such as soil fertility, and climate (Hebbar et. al., 2015). On the other hand, most of farmers do not apply a good agriculture practices for fertilizer application. Tennakoon et. al., (1995) reported...
that the application of organic manure anorganic fertilizer was increased the biological activity, N mineralization rate, and nitrification.

Organic manure contains low nutrient which released slowly. In dry season, coconut plant produced high quality of neera but low amount of neera volume. Application of soil inorganic fertilizer is not effective for increasing the neera production. Application of foliar liquid organic fertilizer is one choice to serve the plant nutrient. Purwanto et al., (2015) reported that application of foliar liquid organic fertilizer in dry season can increase for 10% of neera production, and sucrose content. This research was aimed to study the effect of dose of foliar liquid organic fertilizer and time application on neera production in Kebumen Regency.

MATERIALS AND METHODS

This research was conducted in Coconut Plantations in Karanggadung Village, Petanahan Sub district, Kebumen Regency, Central Java Indonesia from June to October 2016. Soil type on the study area is sandy soil. The research was arranged in Randomized Block Design with three replications. The treatments were the dose and the interval of application of the liquid organic fertilizer. The varied doses of foliar organic fertilizer were d0: without application of liquid organic fertilizer, d1: 250 ml plant\(^{-1}\), d2: 500 ml plant\(^{-1}\), d3: 750 ml plant\(^{-1}\), and d4: 1000 ml plant\(^{-1}\). The intervals of application were f1: once a week, f2: once every two weeks, f3: once every three weeks, and f4: once every four weeks. Each experimental unit consists of two coconut plant.

The nutrient contents of liquid organic fertilizer were N: 9856 ppm, P: 124,81 ppm, K: 1904.492 ppm, Ca: 8318.643 ppm, Mg: 94,715 ppm and S: 5683.400 ppm. The concentration of foliar liquid organic fertilizer was adjusted at 24 ml L\(^{-1}\). The foliar liquid organic fertilizer was sprayed at the shoot tip of coconut plant. The observed variables were the volume of neera, sucrose content (measured by using hand refractometer), and leaf chlorophyll content (measured by Konica Minolta SPAD-502 Plus). The data was analysed using analysis of variance (ANOVA). Data showing significant effect among treatments were tested using Duncan’s Multiple Range Test (DMRT) with \(\alpha = 5\%\).

RESULTS AND DISCUSSIONS

Leaves chlorophyll content indicated the interaction between the dose and application frequency of liquid organic fertilizer (Table 1). The results showed that dose of 750 ml plant\(^{-1}\) under three weeks interval of application provide the highest level of leaf chlorophyll content on 80.5 SPAD units (Table 1). However, three weeks interval of application was not significantly different from other treatment of application interval. Leaf SPAD value associated with leaf chlorophyll content and leaf nitrogen content. Purwanto (2009) reported that SPAD value in rice plants correlated with the levels of chlorophyll a and b. Effendi et al., (2012) also showed that the SPAD value of maize plants closely related to levels of leaf N. The value of leaf chlorophyll content affects the photosynthesis rate, in which chlorophyll is the main photosynthetic apparatus in leaves.

Adequacy of N in the leaves will sustain the synthesis of proteins and amino acids. N leaf contents can be formed ion NO\(_3^-\), before further assimilated into protein or amino acid ions NO\(_3^-\) will be reduced to nitrite by nitrate reductase enzyme with an electron donor NADH or NADPH2 supplied from the process of photosynthesis. Puspitasari (2009) states that ammonium or ammonia will react with the acid...
2-oxo-glutaric or glutaric acid or glutamic acid to form glutamic acids by the reaction of amination or transamination, and glutamine provide amino groups to keto-compound for the biosynthesis of amino acids and proteins, nucleic acids and other organic nitrogen compounds for growth of vegetative and generative.

Table 1. Interaction Effect of Dose and Interval of Application of Foliar Liquid Organic Fertilizer on Leaf Chlorophyll Content

Interval of Application	Dose of Foliar Liquid Organic Fertilizer	Neera Production (mL)			
	250 ml plant⁻¹	500 ml plant⁻¹	750 ml plant⁻¹	1000 ml plant⁻¹	Average
1 week					
	74.53 a	76.60 a	72.88 a	64.50 b	72.13
2 weeks					
	61.35 b	63.08 b	76.80 a	72.28 a	68.38
3 weeks					
	68.03 c	74.20 b	80.55 a	32.70 d	63.87
4 weeks					
	65.98 b	76.38 a	76.68 a	75.03 a	73.51
Average	67.47	72.56	76.73	61.13	

Note: The number followed by same lower letter in same row, and the number followed by same big letter in same column is not significant different according to DMRT at 95% confidence level.

The dose of foliar liquid organic fertilizer showed a significant effect on neera volume, although there was no interaction effect between dose and interval of application (Table 2). Increasing 750 ml plant⁻¹ of foliar liquid organic fertilizer affects on volume of neera, but 1000 ml plant⁻¹ dose tends to decline the neera production. A dose of 750 ml plant⁻¹ was the best dose compared to other treatments.

Fertilization of coconut plants using foliar liquid organic fertilizer increased the yield of neera daily (Figure 1). Fertilization increases the average of neera volume to 15.32% compared to control. The highest neera production was observed at five weeks after the application of fertilizer which amounted at 366.67 ml plant⁻¹ or increase of 26.83%.

Figure 1. Comparison of neera production between control and fertilized plant

Table 2. Effect of Dose and Interval of Application of Foliar Liquid Organic Fertilizer on Neera Production

Treatments	Neera Production (mL)				
	4 WAA	5 WAA	6 WAA	7 WAA	8 WAA
250 ml plant⁻¹	1445.8 a	1395.8 a	1470.8 a	1687.5 a	1175.0 a
500 ml plant⁻¹	1520.8 a	1458.3 a	1429.2 a	1554.2 a	1341.7 a
750 ml plant⁻¹	1604.2 a	1529.2 a	1354.2 a	1741.7 a	1387.5 a
1000 ml plant⁻¹	1100.0 b	1083.3 b	1025.0 b	1445.8 a	1164.7 a
1 week	1545.8 a	1541.7 a	1475.0 a	1770.8 a	1279.2 a
2 weeks	1400.0 a	1404.2 a	1316.7 a	1508.3 a	1104.2 a
3 weeks	1416.7 a	1270.8 a	1245.8 a	1616.7 a	1370.8 a
4 weeks	1308.3 a	1250.0 a	1241.7 a	1533.3 a	1316.7 a

Note: The number followe by same letter in the same column is not significant different according to DMRT at 95% confidence level. WAA: week after application.
ml plant⁻¹ showed any significant different on the levels of value of neera brix, as well as the frequency of fertilization from one week to four weeks (Table 3).

![Figure 2. Brix Value of Neera](image)

Table 3. Effect of Dose and Interval of Application of Foliar Liquid Organic Fertilizer on Brix Value of Neera

Treatments	Brix Value of Neera
250 ml plant⁻¹	13.91 a
500 ml plant⁻¹	15.07 a
750 ml plant⁻¹	14.31 a
1000 ml plant⁻¹	14.73 a
1 week	14.32 a
2 weeks	13.87 a
3 weeks	15.10 a
4 weeks	14.72 a

Note: The number followed by same letter in the same column is not significant different according DMRT at 99% confidence level.

CONCLUSION

Application of foliar liquid organic fertilizer increase the leaf chlorophyll content to 80.55 SPAD unit under three weeks interval of application. Fertilization of coconut plant with foliar liquid organic fertilizer increased the neera production about 15.32 %, and the highest volume of neera was observed at 750 ml plant⁻¹ dose of foliar liquid organic fertilizer and three weeks interval of application.

ACKNOWLEDGEMENTS

The authors wish to express gratitude to the coconut farmers in Karanggadung village Petanahan, Kebumen. We are also grateful to The Government of Kebumen Regency for funding this work on scheme of Riset Unggulan Daerah 2016.

REFERENCES

Efendi, R., Suwardi, Syafruddin, and Zubachtirodin. 2012. Determination Of Nitrogen Fertilizer On Corn Hybrids Based On Chlorophyll Meter And Leaf Color Chart. *Penelitian Pertanian Tanaman Pangan* 31(1): 27-34.

Hebbar, K.B., M. Arivalagan, M. R. Manikantan, A. C. Mathew, C. Thamban, G.V. Thomas and P. Chowdappa. 2015. Coconut Inflorescence Sap and Its Value Addition as Sugar – Collection Techniques, Yield, Properties and Market Perspective. *Current Science* 109(8): 1411-1417. doi: 10.18520/v109/i8/1411-1417.

Konan, Y.N., J.L.K. Konan, Rebecca R. Assa, B.R. Konan, J.M.D. Okoma, K. Allou, and H.M.G. Biego. 2013. Assessment of Sap Production Parameters From Spathes of Four Coconut (Cocos nucifera L.) Cultivars in Côte D’Ivoire. *Sustainable Agriculture Research* 2(4): 87-94.

Misra, B. 2016. Neera: The Coconut Sap: A Review. *International Journal of Food Science and Nutrition* 1(4): 35-38.

Muralidharan, K. and N.S. Deepthi. 2013. Neera - The Hidden Unexplored Treasure. *Indian Coconut Journal* 2013: 4-8.

Purwanto. 2009. Growth and Yield Of Rice In Organic, Semiorganic, And Conventional Farming. *Thesis. Faculty of Agriculture UGM, Yogyakarta.*

Purwanto, Mujiono, Tarjoko and T.B. Pramono. 2015. Increasing neera production through application of foliar liquid organic fertilizer in dry season. *Proceeding Seminar Nasional Pengembangan Sumber Daya Pedesaan dan Kearifan Lokal Berkelanjutan V: 24-29 pp.*

Puspitasari, A. 2012 Nitrate reductase and catechins as a selection criteria for the production and quality of tea (*Camellia sinensis* (L.) Kuntze). *Faculty of Agriculture UGM, Yogyakarta.*

Taiz, L., and E. Zeiger. 1991. *Plant Physiology*. The Benjamin Cummings Publishing Company, Inc. Sunderland. 690 p.

Tennakoon, N.A., R. Mahindapala, and Widanapathirana. 1995. Effect of organic manure on the quality of coconut soils. *J. Natn. Sci. Sri Lanka* 23(4): 171-182.