Crossover from isotropic to directed percolation

Zongzheng Zhou

School of Mathematical Sciences
Monash University

Australian Government
Australian Research Council
Outline

1. Percolation

2. Directed Percolation

3. Biased Directed Percolation
Outline

1. Percolation

2. Directed Percolation

3. Biased Directed Percolation
Outline

1. Percolation
2. Directed Percolation
3. Biased Directed Percolation
Outline

1. Percolation
2. Directed Percolation
3. Biased Directed Percolation
Figure 1: A typical percolation configuration, with four clusters.
Figure 1: A typical percolation configuration, with four clusters.

- Site percolation on square lattice
- Occupation probability p
- Cluster consists of nearest-neighboring occupied sites
Percolation

Figure 1: A typical percolation configuration, with four clusters.

- Site percolation on square lattice
- Occupation probability p
- Cluster consists of nearest-neighboring occupied sites

Figure 1: A typical percolation configuration, with four clusters.
Percolation

Figure 1: A typical percolation configuration, with four clusters.

- Site percolation on square lattice
- Occupation probability p
- *Cluster* consists of nearest-neighboring occupied sites

Figure 1: A typical percolation configuration, with four clusters.
For infinite system ($L \to \infty$), there is a critical p value (p_c),

- when $p \leq p_c$, no infinite cluster exists
- when $p > p_c$, an infinite cluster exists with non-zero probability.

Define the order parameter P_∞, which is the probability for the existence of an infinite cluster and

$$P_\infty = \begin{cases}
0 & \text{for } p \leq p_c \\
(p - p_c)^{\beta_P} & \text{for } p \to p_c^+.
\end{cases}$$ \hspace{1cm} (1)

β_P is a critical exponent, and $\beta_P = 5/36$ for 2D.
For infinite system \((L \to \infty)\), there is a critical \(p\) value \((p_c)\),

- when \(p \leq p_c\), no infinite cluster exists
- when \(p > p_c\), an infinite cluster exists with non-zero probability.

Define the order parameter \(P_\infty\), which is the probability for the existence of an infinite cluster and

\[
P_\infty = \begin{cases}
0 & \text{for } p \leq p_c \\
(p - p_c)^{\beta_P} & \text{for } p \to p_c^+
\end{cases}
\]

\(\beta_P\) is a critical exponent, and \(\beta_P = 5/36\) for 2D.
For infinite system ($L \to \infty$), there is a critical p value (p_c),

- when $p \leq p_c$, no infinite cluster exists
- when $p > p_c$, an infinite cluster exists with non-zero probability.

Define the order parameter P_∞, which is the probability for the existence of an infinite cluster and

\[
P_\infty = \begin{cases}
0 & \text{for } p \leq p_c \\
(p - p_c)^{\beta_P} & \text{for } p \to p_c^+.
\end{cases}
\]

(1)

β_P is a critical exponent, and $\beta_P = 5/36$ for 2D.
For infinite system \((L \rightarrow \infty)\), there is a critical \(p\) value \((p_c)\),
- when \(p \leq p_c\), no infinite cluster exists
- when \(p > p_c\), an infinite cluster exists with non-zero probability.

Define the order parameter \(P_\infty\), which is the probability for the existence of an infinite cluster and

\[
P_\infty = \begin{cases}
0 & \text{for } p \leq p_c \\
(p - p_c)^{\beta_P} & \text{for } p \rightarrow p_c^+
\end{cases}
\]

\[\beta_P\] is a critical exponent, and \(\beta_P = 5/36\) for 2D.
For infinite system ($L \rightarrow \infty$), there is a critical p value (p_c),

- when $p \leq p_c$, no infinite cluster exists
- when $p > p_c$, an infinite cluster exists with non-zero probability.

Define the order parameter P_∞, which is the probability for the existence of an infinite cluster and

$$P_\infty = \begin{cases}
0 & \text{for } p \leq p_c \\
(p - p_c)^{\beta_P} & \text{for } p \rightarrow p_c^+ .
\end{cases} \tag{1}$$

β_P is a critical exponent, and $\beta_P = 5/36$ for 2D.
For infinite system ($L \to \infty$), there is a critical p value (p_c),

- when $p \leq p_c$, no infinite cluster exists
- when $p > p_c$, an infinite cluster exists with non-zero probability.

Define the order parameter P_∞, which is the probability for the existence of an infinite cluster and

$$P_\infty = \begin{cases}
0 & \text{for } p \leq p_c \\
(p - p_c)^{\beta_p} & \text{for } p \to p_c^+
\end{cases}$$

(1)

β_p is a critical exponent, and $\beta_p = 5/36$ for 2D.
Around p_c, the correlation length ξ diverges as

$$\xi \sim |p - p_c|^{-\nu},$$

(2)

- ξ can be intuitively viewed as the averaged cluster radius
- ν is another critical exponent and $\nu = 4/3$ for 2D

Critical exponents β_p and ν label percolation universality class. Above two dimensions, no exact results for the thresholds and the critical exponents.
Around p_c, the correlation length ξ diverges as

$$\xi \sim |p - p_c|^{-\nu},$$

(2)

- ξ can be intuitively viewed as the averaged cluster radius
- ν is another critical exponent and $\nu = 4/3$ for 2D

Critical exponents β_p and ν label percolation universality class. Above two dimensions, no exact results for the thresholds and the critical exponents.
Around p_c, the correlation length ξ diverges as

$$\xi \sim |p - p_c|^{-\nu},$$

(2)

- ξ can be intuitively viewed as the averaged cluster radius
- ν is another critical exponent and $\nu = 4/3$ for 2D

Critical exponents β_P and ν label percolation universality class. Above two dimensions, no exact results for the thresholds and the critical exponents.
Percolation

Around p_c, the correlation length ξ diverges as

$$\xi \sim |p - p_c|^{-\nu},$$

(2)

- ξ can be intuitively viewed as the averaged cluster radius
- ν is another critical exponent and $\nu = 4/3$ for 2D

Critical exponents β_P and ν label percolation universality class. Above two dimensions, no exact results for the thresholds and the critical exponents.
Around p_c, the correlation length ξ diverges as

$$\xi \sim |p - p_c|^{-\nu},$$

(2)

- ξ can be intuitively viewed as the averaged cluster radius
- ν is another critical exponent and $\nu = 4/3$ for 2D

Critical exponents β_P and ν label percolation universality class.

Above two dimensions, no exact results for the thresholds and the critical exponents.
Around p_c, the correlation length ξ diverges as

$$\xi \sim |p - p_c|^{-\nu},$$

(2)

- ξ can be intuitively viewed as the averaged cluster radius
- ν is another critical exponent and $\nu = 4/3$ for 2D

Critical exponents β_P and ν label percolation universality class. Above two dimensions, no exact results for the thresholds and the critical exponents.
Reformulate percolation as a stochastic process.

Use an algorithm to generate the cluster from the origin.

Let an active seed affect its nearest neighbors with probability p.

Distinguish different shells (time) by colors.

Figure 2: Percolation illustrated as a stochastic process.
Reformulate percolation as a stochastic process.

- Use an algorithm to generate the cluster from the origin.
- Let an active seed affect its nearest neighbors with probability p.
- Distinguish different shells (time) by colors.

Figure 2: Percolation illustrated as a stochastic process.
Percolation

- Reformulate percolation as a stochastic process.
- Use an algorithm to generate the cluster from the origin.
- Let an active seed affect its nearest neighbors with probability p.
- Distinguish different shells (time) by colors.

Figure 2: Percolation illustrated as a stochastic process.
Reformulate percolation as a stochastic process.

Use an algorithm to generate the cluster from the origin.

Let an active seed affect its nearest neighbors with probability p.

Distinguish different shells (time) by colors.

Figure 2: Percolation illustrated as a stochastic process.
Reformulate percolation as a stochastic process.

Use an algorithm to generate the cluster from the origin.

Let an active seed affect its nearest neighbors with probability p.

Distinguish different shells (time) by colors.

Figure 2: Percolation illustrated as a stochastic process.
Percolation

When growing a cluster from an active seed using breadth first scheme, the shortest-path between an occupied site and the seed is ℓ, one has

$$\langle \ell \rangle \propto r^{d_{\text{min}}}.$$ \hfill (3)

At p_c, one expects:

- $P(r) \sim r^{-\beta/\nu}$.
- $P(\ell) \sim \ell^{-\beta/(\nu d_{\text{min}})}$.

Around p_c ($\epsilon = p - p_c$), according to scaling theory, one has:

- $P(r, p) = r^{-\beta/\nu} f(\epsilon L^{1/\nu})$.
- $P(\ell, p) = \ell^{-\beta/(\nu d_{\text{min}})} f(\epsilon L^{1/(\nu d_{\text{min}})})$.

Percolation

When growing a cluster from an active seed using breadth first scheme, the shortest-path between an occupied site and the seed is ℓ, one has

$$\langle \ell \rangle \propto r^{d_{\min}}.$$ \hfill (3)

At p_c, one expects:

- $P(r) \sim r^{-\beta/\nu}$.
- $P(\ell) \sim \ell^{-\beta/(\nu d_{\min})}$

Around p_c ($\epsilon = p - p_c$), according to scaling theory, one has:

- $P(r, p) = r^{-\beta/\nu} f(\epsilon L^{1/\nu})$.
- $P(\ell, p) = \ell^{-\beta/\nu(d_{\min})} f(\epsilon L^{1/(\nu d_{\min})})$
When growing a cluster from an active seed using breadth first scheme, the shortest-path between an occupied site and the seed is ℓ, one has

$$\langle \ell \rangle \propto r^{d_{\text{min}}}.$$ \hfill (3)

At p_c, one expects:

- $P(r) \sim r^{-\beta/\nu}$.
- $P(\ell) \sim \ell^{-\beta/(\nu d_{\text{min}})}$

Around p_c ($\epsilon = p - p_c$), according to scaling theory, one has:

- $P(r, p) = r^{-\beta/\nu} f(\epsilon L^{1/\nu})$.
- $P(\ell, p) = \ell^{-\beta/(\nu d_{\text{min}})} f(\epsilon L^{1/(\nu d_{\text{min}})})$
When growing a cluster from an active seed using breadth first scheme, the shortest-path between an occupied site and the seed is ℓ, one has

$$\langle \ell \rangle \propto r^{d_{\text{min}}}.$$ \hfill (3)

At p_c, one expects:

- $P(r) \sim r^{-\beta/\nu}$.
- $P(\ell) \sim \ell^{-\beta/(\nu d_{\text{min}})}$

Around p_c ($\epsilon = p - p_c$), according to scaling theory, one has:

- $P(r, p) = r^{-\beta/\nu} f(\epsilon L^{1/\nu})$.
- $P(\ell, p) = \ell^{-\beta/(\nu d_{\text{min}})} f(\epsilon L^{1/(\nu d_{\text{min}})})$
Percolation

When growing a cluster from an active seed using breadth first scheme, the shortest-path between an occupied site and the seed is \(\ell \), one has

\[
\langle \ell \rangle \propto r^{d_{\min}}.
\]

At \(p_c \), one expects:

- \(P(r) \sim r^{-\beta/\nu} \).
- \(P(\ell) \sim \ell^{-\beta/(\nu d_{\min})} \)

Around \(p_c \) (\(\epsilon = p - p_c \)), according to scaling theory, one has:

- \(P(r, p) = r^{-\beta/\nu} f(\epsilon L^{1/\nu}) \).
- \(P(\ell, p) = \ell^{-\beta/(\nu d_{\min})} f(\epsilon L^{1/(\nu d_{\min})}) \)
Percolation

When growing a cluster from an active seed using breadth first scheme, the shortest-path between an occupied site and the seed is ℓ, one has

$$\langle \ell \rangle \propto r^{d_{\text{min}}}.$$ \hspace{1cm} (3)

At p_c, one expects:

- $P(r) \sim r^{-\beta/\nu}$.
- $P(\ell) \sim \ell^{-\beta/(\nu d_{\text{min}})}$

Around p_c ($\epsilon = p - p_c$), according to scaling theory, one has:

- $P(r, p) = r^{-\beta/\nu} f(\epsilon L^{1/\nu})$.
- $P(\ell, p) = \ell^{-\beta/(\nu d_{\text{min}})} f(\epsilon L^{1/(\nu d_{\text{min}})})$
Outline

1. Percolation

2. Directed Percolation

3. Biased Directed Percolation
Directed Percolation

Figure 3: two-dimensional directed percolation

- Rotate the square lattice
- Infection probability p
- Only along the time axis
- Use the same order parameter P_∞
- With an exponent β_{DP}.
Figure 3: two-dimensional directed percolation

- **Rotate the square lattice**
- Infection probability p
- Only along the time axis
- Use the same order parameter P_∞
- With an exponent β_{DP}.
Directed Percolation

Figure 3: two-dimensional directed percolation

- Rotate the square lattice
- Infection probability p
- Only along the time axis
- Use the same order parameter P_∞
- With an exponent β_{DP}

Zongzheng Zhou (Monash Uni.)
Directed Percolation

Figure 3: two-dimensional directed percolation

- Rotate the square lattice
- Infection probability p
- Only along the time axis
- Use the same order parameter P_∞
- With an exponent β_{DP}.

Zongzheng Zhou (Monash Uni.)
Directed Percolation

Figure 3: two-dimensional directed percolation

- Rotate the square lattice
- Infection probability p
- Only along the time axis
- Use the same order parameter P_∞
- With a exponent β_{DP}.
Directed Percolation

Figure 3: two-dimensional directed percolation

- Rotate the square lattice
- Infection probability p
- Only along the time axis
- Use the same order parameter P_∞
- With a exponent β_{DP}.

Zongzheng Zhou (Monash Uni.)
Directed Percolation

Compared with Percolation,

- DP is a non-equilibrium statistical mechanics model
- have anisotropic correlation

\[\xi_\parallel \sim |p - p_c|^{-\nu_\parallel}, \xi_\perp \sim |p - p_c|^{-\nu_\perp}. \] \hspace{1cm} (4)

- Independent exponents \((\beta_{\text{DP}}, \nu_\parallel, \nu_\perp)\) label the DP universality class.
- DP class is a fundamental class in non-equilibrium statistical mechanics.
- No exact results even for \((1+1)\) dimensions.
Directed Percolation

Compared with Percolation,

- **DP is a non-equilibrium statistical mechanics model**
- have anisotropic correlation

\[
\xi_\parallel \sim |p - p_c|^{-\nu_\parallel}, \quad \xi_\perp \sim |p - p_c|^{-\nu_\perp}. \tag{4}
\]

- Independent exponents \((\beta_{\text{DP}}, \nu_\parallel, \nu_\perp)\) label the DP universality class.
- **DP class is a fundamental class in non-equilibrium statistical mechanics.**
- No exact results even for \((1+1)\) dimensions.
Directed Percolation

Compared with Percolation,

- DP is a non-equilibrium statistical mechanics model
- have anisotropic correlation

\[\xi_\parallel \sim |p - p_c|^{-\nu_\parallel}, \xi_\perp \sim |p - p_c|^{-\nu_\perp}. \]

- Independent exponents \((\beta_{\text{DP}}, \nu_\parallel, \nu_\perp)\) label the DP universality class.
- DP class is a fundamental class in non-equilibrium statistical mechanics.
- No exact results even for \((1+1)\) dimensions.
Directed Percolation

Compared with Percolation,

- DP is a non-equilibrium statistical mechanics model
- have anisotropic correlation

\[\xi_\parallel \sim |p - p_c|^{-\nu_\parallel}, \xi_\perp \sim |p - p_c|^{-\nu_\perp}. \] (4)

- Independent exponents \((\beta_{\text{DP}}, \nu_\parallel, \nu_\perp) \) label the DP universality class.
- DP class is a fundamental class in non-equilibrium statistical mechanics.
- No exact results even for (1+1) dimensions.
Directed Percolation

Compared with Percolation,

- DP is a non-equilibrium statistical mechanics model
- have anisotropic correlation

\[\xi_\parallel \sim |p - p_c|^{-\nu_\parallel}, \xi_\perp \sim |p - p_c|^{-\nu_\perp}. \]

- Independent exponents \((\beta_{\text{DP}}, \nu_\parallel, \nu_\perp)\) label the DP universality class.
- DP class is a fundamental class in non-equilibrium statistical mechanics.
- No exact results even for \((1+1)\) dimensions.
Directed Percolation

Compared with Percolation,

- DP is a non-equilibrium statistical mechanics model
- have anisotropic correlation

\[\xi_\parallel \sim |p - p_c|^{-\nu_\parallel}, \xi_\perp \sim |p - p_c|^{-\nu_\perp}. \]

- Independent exponents \((\beta_{\text{DP}}, \nu_\parallel, \nu_\perp)\) label the DP universality class.
- DP class is a fundamental class in non-equilibrium statistical mechanics.
- No exact results even for \((1+1)\) dimensions.
Outline

1. Percolation
2. Directed Percolation
3. Biased Directed Percolation
Biased Directed Percolation

Compared with DP,

- **no direction limit**
- but with anisotropic infection probabilities
 - Along time axis: \(p_{\downarrow} = pp_d \)
 - Against time axis: \(p_{\uparrow} = p(1 - p_d) \)

- When \(p_d = 1/2 \), BDP = Percolation
- When \(p_d = 0, 1 \), BDP = DP

Figure 4: Rules for BDP
Biased Directed Percolation

Compared with DP,

- no direction limit
- but with anisotropic infection probabilities

Along time axis:
\[p_\downarrow = pp_d \]

Against time axis:
\[p_\uparrow = p(1 - p_d) \]

- When \(p_d = 1/2 \), BDP = Percolation
- When \(p_d = 0,1 \), BDP = DP

Figure 4: Rules for BDP
Biased Directed Percolation

Compared with DP,
- no direction limit
- but with anisotropic infection probabilities
 Along time axis:
 \[p_{\downarrow} = pp_d \]
 Against time axis:
 \[p_{\uparrow} = p(1 - p_d) \]
- When \(p_d = 1/2 \), BDP = Percolation
- When \(p_d = 0, 1 \), BDP = DP

Figure 4: Rules for BDP
Compared with DP,

- no direction limit
- but with anisotropic infection probabilities

Along time axis:

\[p_\downarrow = pp_d \]

Against time axis:

\[p_\uparrow = p(1 - p_d) \]

- When \(p_d = 1/2 \), BDP = Percolation
- When \(p_d = 0, 1 \), BDP = DP
Consider a new region $1/2 < p_d < 1$,

- we still use order parameter P_∞, what is β characterizing P_∞?
- Correlation length

$$\xi_\parallel \sim |p - p_c|^{-\nu_\parallel}, \quad \xi_\perp \sim |p - p_c|^{-\nu_\perp}.$$ \hspace{1cm} (5)

what are the values of ν_\parallel and ν_\perp?
Consider a new region $1/2 < p_d < 1$,

- we still use order parameter P_∞, what is β characterizing P_∞?
- Correlation length

$$
\xi'_{\parallel} \sim |p - p_c|^{-\nu_{\parallel}}, \quad \xi'_{\perp} \sim |p - p_c|^{-\nu_{\perp}}.
$$

what are the values of ν_{\parallel} and ν_{\perp}?
Consider a new region $1/2 < p_d < 1$,

- we still use order parameter P_∞, what is β characterizing P_∞?
- Correlation length

\[
\xi'_\parallel \sim |p - p_c|^{-\nu_\parallel}, \quad \xi'_\perp \sim |p - p_c|^{-\nu_\perp}.
\]

what are the values of ν_\parallel and ν_\perp?
Biased Directed Percolation

With some fixed $1/2 < p_d < 1$ values, we sample quantities

- Percolation probability $P(t, p)$,
- $N(t)$, number of sites becoming active at time t,
- A revised radius of gyration $R(t) = \langle \sqrt{\sum_i r_i^2/N(t)} \rangle$.
- A ratio $Q = N(2t)/N(t)$.

Scaling behaviors

\[
P(t, \epsilon) = t^{-\delta} f_P(t^{1/\nu_{\parallel}}), \tag{6}
\]
\[
N(t, \epsilon) = t^{\eta} f_N(\epsilon t^{1/\nu_{\parallel}}), \tag{7}
\]
\[
R(t, \epsilon) = t^{-\delta + 1/z} f_N(\epsilon t^{1/\nu_{\parallel}}), \tag{8}
\]
\[
Q = 2^{\eta} f_Q(t^{1/\nu_{\parallel}}). \tag{9}
\]

\[
\epsilon = p - p_c.
\]

Scaling relation

\[
\delta = \beta/\nu_{\parallel}, \eta = (d\nu_{\perp} - 2\beta)/\nu_{\parallel}, z = \nu_{\parallel}/\nu_{\perp}. \tag{11}
\]
Biased Directed Percolation

With some fixed $1/2 < p_d < 1$ values, we sample quantities

- **Percolation probability** $P(t, p)$,
- $N(t)$, number of sites becoming active at time t,
- A revised radius of gyration $R(t) = \langle \sqrt{\sum_i r_i^2/N(t)} \rangle$.
- A ratio $Q = N(2t)/N(t)$.

Scaling behaviors

$$P(t, \epsilon) = t^{-\delta} f_P(t^{1/\nu_\parallel}) ,$$
$$N(t, \epsilon) = t^{\eta} f_N(\epsilon t^{1/\nu_\parallel}) ,$$
$$R(t, \epsilon) = t^{-\delta+1/z} f_N(\epsilon t^{1/\nu_\parallel}) ,$$
$$Q = 2^{\eta} f_Q(t^{1/\nu_\parallel}) .$$

$$\epsilon = p - p_c .$$

Scaling relation

$$\delta = \beta/\nu_\parallel , \eta = (d\nu_\perp - 2\beta)/\nu_\parallel , z = \nu_\parallel/\nu_\perp .$$
Biased Directed Percolation

With some fixed $1/2 < p_d < 1$ values, we sample quantities

- Percolation probability $P(t,p)$,
- $N(t)$, number of sites becoming active at time t,
- A revised radius of gyration $R(t) = \langle \sqrt{\sum_i r_i^2 / N(t)} \rangle$.
- A ratio $Q = N(2t)/N(t)$.

Scaling behaviors

$$P(t,\epsilon) = t^{-\delta} f_P(t^{1/\nu_{||}}),$$
$$N(t,\epsilon) = t^\eta f_N(\epsilon t^{1/\nu_{||}}),$$
$$R(t,\epsilon) = t^{-\delta+1/z} f_N(\epsilon t^{1/\nu_{||}}),$$
$$Q = 2^\eta f_Q(t^{1/\nu_{||}}).$$

(10)

$\epsilon = p - p_c$.

Scaling relation

$$\delta = \beta/\nu_{||}, \eta = (d\nu_\perp - 2\beta)/\nu_{||}, z = \nu_{||}/\nu_\perp.$$

(11)
Biased Directed Percolation

With some fixed $1/2 < p_d < 1$ values, we sample quantities

- Percolation probability $P(t, p)$,
- $N(t)$, number of sites becoming active at time t,
- A revised radius of gyration $R(t) = \langle \sqrt{\sum_i r_i^2 / N(t)} \rangle$.
- A ratio $Q = N(2t)/N(t)$.

Scaling behaviors

$$P(t, \epsilon) = t^{-\delta} f_P(t^{1/\nu}) ,$$
$$N(t, \epsilon) = t^{\eta} f_N(\epsilon t^{1/\nu}) ,$$
$$R(t, \epsilon) = t^{-\delta + 1/z} f_N(\epsilon t^{1/\nu}) ,$$
$$Q = 2^{\eta} f_Q(t^{1/\nu}) .$$

(6) \hspace{1cm} (7) \hspace{1cm} (8) \hspace{1cm} (9)

$$\epsilon = p - p_c.$$

Scaling relation

$$\delta = \beta / \nu , \eta = (d \nu_\perp - 2 \beta) / \nu , z = \nu / \nu_\perp .$$

(11)
Biased Directed Percolation

With some fixed $1/2 < p_d < 1$ values, we sample quantities

- Percolation probability $P(t, p)$,
- $N(t)$, number of sites becoming active at time t,
- A revised radius of gyration $R(t) = \langle \sqrt{\sum_i r_i^2 / N(t)} \rangle$.
- A ratio $Q = N(2t)/N(t)$.

Scaling behaviors

\begin{align*}
P(t, \epsilon) &= t^{-\delta} f_P(t^{1/\nu_\parallel}) , & (6) \\
N(t, \epsilon) &= t^{\eta} f_N(\epsilon t^{1/\nu_\parallel}) , & (7) \\
R(t, \epsilon) &= t^{-\delta+1/z} f_N(\epsilon t^{1/\nu_\parallel}) , & (8) \\
Q &= 2^{\eta} f_Q(t^{1/\nu_\parallel}) . & (9) \\
\end{align*}

$\epsilon = p - p_c$.

Scaling relation

\begin{align*}
\delta &= \beta/\nu_\parallel , \\
\eta &= (d\nu_\perp - 2\beta)/\nu_\parallel , \\
z &= \nu_\parallel/\nu_\perp . & (11)
\end{align*}
Biased Directed Percolation

With some fixed $1/2 < p_d < 1$ values, we sample quantities

- Percolation probability $P(t, p)$,
- $N(t)$, number of sites becoming active at time t,
- A revised radius of gyration $R(t) = \langle \sqrt{\sum_i r_i^2} / N(t) \rangle$.
- A ratio $Q = N(2t)/N(t)$.

Scaling behaviors

$$
P(t, \epsilon) = t^{-\delta} f_P(t^{1/\nu}) \ , \quad (6)$$
$$
N(t, \epsilon) = t^\eta f_N(\epsilon t^{1/\nu}) \ , \quad (7)$$
$$
R(t, \epsilon) = t^{-\delta+1/z} f_N(\epsilon t^{1/\nu}) \ , \quad (8)$$
$$
Q = 2^\eta f_Q(t^{1/\nu}) \ . \quad (9)$$

(10)

$\epsilon = p - p_c$.

Scaling relation

$$
\delta = \beta / \nu \ , \eta = (d\nu - 2\beta) / \nu \ , \ z = \nu / \nu . \quad (11)
$$
Biased Directed Percolation

With some fixed $1/2 < p_d < 1$ values, we sample quantities
- Percolation probability $P(t, p)$,
- $N(t)$, number of sites becoming active at time t,
- A revised radius of gyration $R(t) = \langle \sqrt{\sum_i r_i^2/N(t)} \rangle$.
- A ratio $Q = N(2t)/N(t)$.

Scaling behaviors

$$P(t, \epsilon) = t^{-\delta} f_P(t^{1/\nu_\parallel}) ,$$
(6)

$$N(t, \epsilon) = t^\eta f_N(\epsilon t^{1/\nu_\parallel}) ,$$
(7)

$$R(t, \epsilon) = t^{-\delta+1/\nu_\parallel} f_N(\epsilon t^{1/\nu_\parallel}) ,$$
(8)

$$Q = 2^\eta f_Q(t^{1/\nu_\parallel}) .$$
(9)

$$\epsilon = p - p_c .$$

Scaling relation

$$\delta = \beta/\nu_\parallel , \eta = (d\nu_\parallel - 2\beta)/\nu_\parallel , z = \nu_\parallel/\nu_\perp .$$
(11)
Biased Directed Percolation

With some fixed $1/2 < p_d < 1$ values, we sample quantities

- Percolation probability $P(t, p)$,
- $N(t)$, number of sites becoming active at time t,
- A revised radius of gyration $R(t) = \langle \sqrt{\sum_i r_i^2 / N(t)} \rangle$.
- A ratio $Q = N(2t)/N(t)$.

Scaling behaviors

$$P(t, \epsilon) = t^{-\delta} f_P(t^{1/\nu_{\parallel}}),$$
$$N(t, \epsilon) = t^{\eta} f_N(\epsilon t^{1/\nu_{\parallel}}),$$
$$R(t, \epsilon) = t^{-\delta+1/z} f_N(\epsilon t^{1/\nu_{\parallel}}),$$
$$Q = 2^\eta f_Q(t^{1/\nu_{\parallel}}).$$

(6) \hspace{2cm} (7) \hspace{2cm} (8) \hspace{2cm} (9) \hspace{2cm} (10)

$\epsilon = p - p_c$.

Scaling relation

$$\delta = \beta/\nu_{\parallel}, \eta = (d\nu_{\perp} - 2\beta)/\nu_{\parallel}, z = \nu_{\parallel}/\nu_{\perp}.$$

(11)
$N(t) \sim t^\eta$

Log-log plot $N(t)$ versus t. The slope corresponds to η.

Figure 5: Exponent η with various p_d values.
Biased Directed Percolation

Phase Diagram

Figure 6: Phase diagram of BDP on two (left) and three (right) dimensions.

Arrows represent the flow direction of Renormalization Group
Consider the critical region around percolation point \((p_d = 1/2, p = 1) \).

- For \(p_d = 1/2, p \to 1 \), the percolation probability \(P(t) \) scales as

\[
P(t, \epsilon) \sim t^{-\delta} f_P(\epsilon t^{1/(\nu d_{\text{min}})}) \quad , \epsilon = p - p_c .
\]

The exponent \(\nu = 4/3 \) for 2D.

- For \(p = 1, p_d \to 1/2 \),

\[
P(t, \epsilon_d) \sim t^{-\delta} f'_P(\epsilon_d t^{1/(\nu' d_{\text{min}})}) \quad , \epsilon_d = p_d - 1/2 .
\]

We estimate \(1/(\nu' d_{\text{min}}) = 0.500(5) \). With the known estimate \(d_{\text{min}} = 1.13077(2) \), we estimate \(\nu' = 1.77(1) \).
Consider the critical region around percolation point \((p_d = 1/2, p = 1)\).

- For \(p_d = 1/2, p \to 1\), the percolation probability \(P(t)\) scales as
 \[
P(t, \epsilon) \sim t^{-\delta} f_P(\epsilon t^{1/(\nu d_{\text{min}})}) , \epsilon = p - p_c .
 \] (12)

 The exponent \(\nu = 4/3\) for 2D.

- For \(p = 1, p_d \to 1/2\),
 \[
P(t, \epsilon_d) \sim t^{-\delta} f'_P(\epsilon_d t^{1/(\nu' d_{\text{min}})}) , \epsilon_d = p_d - 1/2 .
 \] (13)

 We estimate \(1/(\nu' d_{\text{min}}) = 0.500(5)\). With the known estimate \(d_{\text{min}} = 1.13077(2)\), we estimate \(\nu' = 1.77(1)\).
Consider the critical region around percolation point \((p_d = 1/2, p = 1)\).

- For \(p_d = 1/2, p \to 1\), the percolation probability \(P(t)\) scales as
 \[
P(t, \epsilon) \sim t^{-\delta} f_P(\epsilon t^{1/(\nu d_{\text{min}})}) \quad , \epsilon = p - p_c .
 \]
 \(12\)

 The exponent \(\nu = 4/3\) for 2D.

- For \(p = 1, p_d \to 1/2\),
 \[
P(t, \epsilon_d) \sim t^{-\delta} f'_P(\epsilon_d t^{1/(\nu' d_{\text{min}})}) \quad , \epsilon_d = p_d - 1/2 .
 \]
 \(13\)

 We estimate \(1/(\nu' d_{\text{min}}) = 0.500(5)\). With the known estimate \(d_{\text{min}} = 1.130\ 77(2)\), we estimate \(\nu' = 1.77(1)\).
Biased Directed Percolation

Crossover exponent ϕ is defined as

$$(1 - p_c) \propto (p_{d,c} - 1/2)^{1/\phi}$$

(14)

- Scaling theory gives $\phi = \nu/\nu' = 0.754(6)$.

![Graph showing the crossover from IP to DP with a slope of 0.754](image)
Biased Directed Percolation

Crossover exponent ϕ is defined as

$$(1 - p_c) \propto (p_{d,c} - 1/2)^{1/\phi}$$

(14)

- Scaling theory gives $\phi = \nu / \nu' = 0.754(6)$.

![Graph showing the crossover exponent for BDP, d=2 with a slope of 0.754.](image)
Crossover exponent ϕ is defined as

$$(1 - p_c) \propto (p_{d,c} - 1/2)^{1/\phi}$$

(14)

- Scaling theory gives $\phi = \nu / \nu' = 0.754(6)$.

![Figure 7: Crossover exponent](image)
Biased Directed Percolation

- Use a simple BDP model to generalize Percolation and DP models
- Study the crossover effect from Percolation to DP
- Is ν' new or related to β, ν, d_{min}?
- Is $1/((\nu'd_{\text{min}})$ exactly equal to $1/2$?
- Can ν' be derived by Stochastic Loewner Evolution (SLE), conformal field theory or Coulomb gas theory?

Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E 86, 021102 (2012).
Biased Directed Percolation

- Use a simple BDP model to generalize Percolation and DP models
- Study the crossover effect from Percolation to DP
 - Is ν' new or related to $\beta, \nu, d_{\text{min}}$?
 - Is $1/(\nu'd_{\text{min}})$ exactly equal to $1/2$?
 - Can ν' be derived by Stochastic Loewner Evolution (SLE), conformal field theory or Coulomb gas theory?

Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E 86, 021102 (2012).
Biased Directed Percolation

- Use a simple BDP model to generalize Percolation and DP models
- Study the crossover effect from Percolation to DP
- Is ν' new or related to β, ν, d_{min}?
- Is $1/(\nu' d_{\text{min}})$ exactly equal to $1/2$?
- Can ν' be derived by Stochastic Loewner Evolution (SLE), conformal field theory or Coulomb gas theory?

Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E 86, 021102 (2012).
Biased Directed Percolation

- Use a simple BDP model to generalize Percolation and DP models
- Study the crossover effect from Percolation to DP
- Is ν' new or related to β, ν, d_{min}?
- Is $1/(\nu'd_{\text{min}})$ exactly equal to $1/2$?
- Can ν' be derived by Stochastic Loewner Evolution (SLE), conformal field theory or Coulomb gas theory?

Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E 86, 021102 (2012).
Biased Directed Percolation

- Use a simple BDP model to generalize Percolation and DP models
- Study the crossover effect from Percolation to DP
- Is ν' new or related to β, ν, d_{min}?
- Is $1/(\nu'd_{\text{min}})$ exactly equal to $1/2$?
- Can ν' be derived by Stochastic Loewner Evolution (SLE), conformal field theory or Coulomb gas theory?

Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E 86, 021102 (2012).
Biased Directed Percolation

- Use a simple BDP model to generalize Percolation and DP models
- Study the crossover effect from Percolation to DP
- Is ν' new or related to β, ν, d_{\min}?
- Is $1/(\nu'd_{\min})$ exactly equal to $1/2$?
- Can ν' be derived by Stochastic Loewner Evolution (SLE), conformal field theory or Coulomb gas theory?

Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E 86, 021102 (2012).
Use a simple BDP model to generalize Percolation and DP models

Study the crossover effect from Percolation to DP

Is ν' new or related to β, ν, d_{min}?

Is $1/(\nu'd_{\text{min}})$ exactly equal to $1/2$?

Can ν' be derived by Stochastic Loewner Evolution (SLE), conformal field theory or Coulomb gas theory?

Zongzheng Zhou, Ji Yang, Robert M. Ziff and Youjin Deng, Phys. Rev. E 86, 021102 (2012).
Many thanks for your attention!