Research Note

A Tool for Automatic Scoring of Spelling Performance

Charalambos Themistocleous,a Kyriaki Neophytou,b Brenda Rapp,b,c,d and Kyrana Tsapkinia,b

Purpose: The evaluation of spelling performance in aphasia reveals deficits in written language and can facilitate the design of targeted writing treatments. Nevertheless, manual scoring of spelling performance is time-consuming, laborious, and error prone. We propose a novel method based on the use of distance metrics to automatically score spelling. This study compares six automatic distance metrics to identify the metric that best corresponds to the gold standard—manual scoring—using data from manually obtained spelling scores from individuals with primary progressive aphasia.

Method: Three thousand five hundred forty word and nonword spelling productions from 42 individuals with primary progressive aphasia were scored manually. The gold standard—the manual scores—were compared to scores from six automated distance metrics: sequence matcher ratio, Damerau–Levenshtein distance, normalized Damerau–Levenshtein distance, Jaccard distance, Masi distance, and Jaro–Winkler similarity distance. We evaluated each distance metric based on its correlation with the manual spelling score.

Results: All automatic distance scores had high correlation with the manual method for both words and nonwords. The normalized Damerau–Levenshtein distance provided the highest correlation with the manual scoring for both words ($r_s = .99$) and nonwords ($r_s = .95$).

Conclusions: The high correlation between the automated and manual methods suggests that automatic spelling scoring constitutes a quick and objective approach that can reliably substitute the existing manual and time-consuming spelling scoring process, an important asset for both researchers and clinicians.

The evaluation and remediation of spelling (written language production) plays an important role in language therapy. Research on poststroke dysgraphia (Buchwald & Rapp, 2004; Caramazza & Miceli, 1990) and on neurodegenerative conditions, such as primary progressive aphasia (PPA), has shown effects of brain damage on underlying cognitive processes related to spelling (Rapp & Fischer-Baum, 2015). For example, spelling data have been shown to facilitate reliable subtyping of PPA into its variants (Neophytou et al., 2019), identify underlying language/cognitive deficits (Neophytou et al., 2019; Sepelyak et al., 2011), monitor the progression of the neurodegenerative condition over time, inform treatment decisions (Fenner et al., 2019), and reliably quantify the effect of spelling treatments (Rapp & Kane, 2002; Tsapkin et al., 2014; Tsapkin & Hillis, 2013).

For spelling treatment and evaluation, spelling-to-dictation tasks are included in language batteries, such as the Johns Hopkins University Dysgraphia Battery (Goodman & Caramazza, 1985) and the Arizona Battery for Reading and Spelling (Beeson et al., 2010). These evaluations can identify the cognitive processes involved in the spelling of both real words and nonwords (pseudowords). Spelling of real words involves access to the speech sounds and to lexicosemantic/orthographic representations stored in long-term memory, whereas nonword spelling requires only the learned knowledge about the relationship between sounds and letters to generate plausible spellings (phonology-to-orthography conversion; Tainturier & Rapp, 2001).

However, the task of scoring spelling errors manually is exceptionally time-consuming, laborious, and error prone. In this research note, we propose to apply automated distance metrics commonly employed in string comparison.
for the scoring of spelling of both regular words (i.e., words with existing orthography) and nonwords (i.e., words without existing orthography). We used manually scored spelling data for individuals with PPA to evaluate the distance metrics as a tool for assessing spelling performance. The ultimate goal of this work is to provide a tool to clinicians and researchers for automatic spelling evaluation of individuals with spelling disorders, such as PPA and stroke dysgraphia.

Spelling Performance Evaluation: Current Practices

Manual scoring of spelling responses is currently a time-consuming process. The spelling evaluation proposal by Caramazza and Miceli (1990) involves the comparison of an individual’s spelling response with the standard spelling of that word, letter by letter. The comparison is based on a set of rules, which consider the addition of new letters that do not exist in the target word, the substitution of letters with others, the deletion of letters, and the movement of letters to incorrect positions within words. There is also a set of rules that account for double letters, such as deleting, moving, substituting, or simplifying a double letter, or doubling what should be a single letter. According to this scoring approach, each letter in the target word is worth 1 point. If the individual’s response includes changes such as those listed above, a specified number of points are subtracted from the overall score of the word. For example, if the target word is “cat,” the maximum number of points is 3. If the patient’s response is CAP, the word will be scored with 2 out of 3 points because of the substitution of “T” with “P.”

The process applies slightly differently in words and nonwords, given that for nonwords there are multiple possible correct spellings. For instance, for “foit,” both PHOAT and FOIT are plausible spellings and, therefore, should be considered correct. In one approach to scoring nonword spelling, the scorer considers each response separately and selects as the “target” response the option that would maximize the points for that response as long as there is adherence to the phoneme-to-grapheme correspondence rules. Following the example above, if a participant is asked to spell “foit” and they write PHOAT, PHOIT would be chosen as the “intended” target and not FOIT, because PHOIT would assign 4 out of 5 points (i.e., substitute “T” with “A”), while assuming FOIT as the target would only assign 2 out of 4 points (i.e., substitute “T” with “A” and “PH” with “F”). This process assumes that even if two participants get the same nonwords, the target orthographic forms might be different across participants (depending on their responses), and therefore, the total possible points for each nonword might be different across participants. Clearly, when there is more than one error in a response, nonword scoring depends on the clinician’s assumptions about the assumed target word, making the process extremely complex. The manual spelling evaluation of spelling performance is currently the gold standard of spelling evaluation, but it is often error prone, takes a lot of time, and requires high interrater reliability scores from at least two clinicians to ensure consistency.

Attempts to automatically evaluate spelling performance have been proposed before. For instance, McCloskey et al. (1994) developed a computer program to identify the different types of letter errors, namely, deletions, insertions, substitutions, transpositions, and nonidentifiable errors. The study has mostly focused on identifying error types rather than error scores. More recently, Ross et al. (2019) devised a hierarchical scoring system that simultaneously evaluates both lexical and sublexical processing. More specifically, this system identifies both lexical and sublexical parameters that are believed to have shaped a given response, and these parameters are matched to certain scores. Scores are coded as S0–S9 and L0–L9 for the sublexical and lexical systems, respectively. Each response gets an S and an L score. This system was first constructed manually and was then automated with a set of scripts. Undoubtedly, both of these studies provide valuable tools in qualitatively assessing the cognitive measures that underly spelling but rely on complex rules and do not offer a single spelling score for every response, which is the measure that most clinicians need in their everyday practice.

Other studies have used computational connectionist models to describe the underlying cognitive processes of spelling production (Brown & Loosmore, 1994; Bullinaria, 1997; Houghton & Zorzi, 1998, 2003; Olson & Caramazza, 1994), which are often inspired by related research on reading (Seidenberg et al., 1984; Sejnowski & Rosenberg, 1987). These approaches aim to model the functioning of the human brain through the representation of spelling by interconnected networks of simple units and their connections. Although some of this work involves modeling acquired dysgraphia, the aim of these models is not to score spelling errors but rather to determine the cognitive processes that underlie spelling. To the best of our knowledge, there have been no attempts to provide automated single response accuracy values.

Alternative Approaches Using “Distance Functions”

The comparison of different strings and the evaluation of their corresponding differences are commonly carried out using distance metrics, also known as “string similarity metrics” or “string distance functions” (Jurafsky & Martin, 2009). A distance is a metric that measures how close two elements are, where elements can be letters, characters, numbers, and more complex structures such as tables. Such metrics measure the minimum number of alternations, such as insertions, deletions, substitutions, and so on, required to make the two strings identical. For example, to make a string of letters such as “grapheme” and “graphemes” identical, you need to delete the last “s” from “graphemes,” so their distance is 1; to make “grapheme” and “krapheme” identical, you need to substitute “k” with “g”; again, the distance is 1. In many ways, the automatic approach described above is very similar to the manual approach currently being employed for the calculation of spelling, making automatic distance metrics exceptionally suitable for automating spelling evaluation. Commonly employed measures are as
follows: sequence matcher ratio, Damerau–Levenshtein distance, normalized Damerau–Levenshtein distance, Jaccard distance, Masi distance, and Jaro–Winkler similarity distance. These measures have many applications in language research, biology (such as in DNA and RNA analysis), and data mining (Bisani & Ney, 2008; Damper & Eastmond, 1997; Ferragene & Pellegrino, 2010; Gillot et al., 2010; Hathout, 2014; Heerina et al., 2009; Hixon et al., 2011; Jelinek, 1996; Kaiser et al., 2002; Navarro, 2001; Peng et al., 2011; Riches et al., 2011; Schlippe et al., 2010; Schlüter et al., 2010; Spruit et al., 2009; Tang & van Heuven, 2009; Wieling et al., 2012). In a study by Smith et al. (2019), the phonemic edit distance ratio, which is an automatic distance function, was employed to estimate error frequency analysis for evaluating the speech production of individuals with acquired language disorders, such as apraxia of speech and aphasia with phonemic paraphasia, highlighting the efficacy of distance metrics in automating manual measures in the context of language pathology.

The Current Study

The aim of this research note is to propose an automatic spelling scoring methodology that employs distance metrics to generate spelling scores for both real-word and nonword spellings. Therefore, we compared scoring based on the manual spelling scoring method to six established distance metrics: (a) sequence matcher ratio, (b) Damerau–Levenshtein distance, (c) normalized Damerau–Levenshtein distance, (d) Jaccard distance, (e) Masi distance, and (f) Jaro–Winkler similarity distance (see Appendix A for more details). We have selected these methods because they have the potential to provide results that can automate the manual method for scoring of spelling errors using conceptually different approaches. We selected two types of distance metrics in this research note: those that treat words as sets of letters and those that treat words as strings of letters. The sequence matcher ratio (a.k.a. gestalt pattern matching), the Jaccard distance, and the Masi distance compare sets and employ set theory to calculate distance; in a set, a letter can appear only once. On the other hand, the Damerau–Levenshtein distance and the normalized Damerau–Levenshtein distance treat words as strings and are estimating the movements of letters, namely, the insertions, deletions, and substitutions required to make two strings equal. The only difference between these two metrics is that the normalized Damerau–Levenshtein distance calculates transpositions as well. Finally, the Jaro–Winkler similarity distance is a method similar to the Levenshtein distance, but it gives more favorable scores to strings that match from the beginning of the word (see Appendix A for details).

By comparing the outcomes of these metrics to the manual spelling scoring, this study aims to identify the metric that best matches the manual scoring and can therefore be employed to automatically evaluate the spelling of both real words and nonwords. The automated metrics can be employed in the clinic to facilitate spelling evaluation and provide a quantitative approach to spelling scoring that would greatly improve not only speed and efficiency but also consistency relative to current practice.

Method

Participants

Forty-two patients with PPA were administered a test of spelling-to-dictation with both words and nonwords. The patients were recruited over a period of 5 years as part of a clinical trial on the effects of transcranial direct current stimulation in PPA (ClinicalTrials.gov Identifier: NCT02606422). The data evaluated here were obtained from the evaluation phase preceding any treatment. All patients are subtype into the three PPA variants following the consensus criteria by Gorno-Tempini et al. (2011; see Appendix B).

Data Collection and Scoring

Spelling-to-dictation tasks were administered to 42 patients with PPA to assess patients’ spelling performance. Twenty-five patients received a 92-item set (73 words and 19 nonwords), 11 patients received a 138-item set (104 words and 34 nonwords), three patients received a 184-item set (146 words and 38 nonwords), two patients received a 168-item set (134 words and 34 nonwords), and one patient received a 62-item set (54 words and eight nonwords; 4,768 words in total, 3,729 words and 1,039 nonwords). See also Appendix C for the words included in the five sets of words and nonwords.

Manual Scoring

For the manual scoring, we followed the schema proposed by Caramazza and Miceli (1990; see also Tainturier & Rapp, 2003), as summarized in Appendix D. Clinicians identify letter errors (i.e., additions, doublings, movements, substitutions, and deletions), and on that basis, they calculate a final score for each word. The outcome of this scoring is a percentage of correct letters for each word, ranging between 0 and 1, where 0 indicates a completely incorrect response and 1 indicates a correct response. The mean score for words was 0.84 (0.26), and for nonwords, it was 0.78 (0.27). To manually score all the data reported here, the clinician, who was moderately experienced, required approximately 120 hr (about 1–2 min per word), but this time can differ, depending on the experience of clinicians.

To evaluate reliability across scorers (a PhD researcher, a research coordinator, and a clinician), 100 words and 100 nonwords were selected from different patients, and the Spearman correlations of the scorers were calculated. From these 200 selected items, 90% had incorrect spellings, and 10% had correct spellings. As shown in Table 1, real words exhibited higher interscorer correlations compared to nonwords, underscoring the need for a more reliable nonword scoring system.

Automated Scoring

The automated scoring consisted of several steps. Both the targets and the responses were transformed into
lowercase, and all leading and following spaces were removed. Once the data were processed, we calculated the distance between the target and the response for every individual item. Different approaches were taken for words and nonwords.

- The spelling scoring of words was obtained by comparing the spelling of the target word to that of the written response provided by the participant.
- The spelling scoring of nonwords was estimated by comparing the phonemic transcriptions of the target and the response. To do this, both the target and the response were transcribed into the International Phonetic Alphabet (IPA). To convert words into IPA, we employed espeak, which is an open-source software text-to-speech engine for English and other languages, operating on Linux, MacOS, and Windows. The reason we decided to compare the phonetic transcriptions of target and response instead of the spelling directly is that, as indicated in the introduction, nonwords (in English) can potentially have multiple correct orthographic transcriptions yet only one correct phonetic transcription (see example in the Spelling Performance Evaluation: Current Practices section).

To simplify string comparison, we removed two symbols from the phonetic transcriptions: the stress symbol /ˈ/ and the length symbol /ː/. For example, using the automated transcription system, a target nonword “feen” is converted to a matching phonemic presentation /fɪn/ (instead of /fiːn/).

The string comparison process was repeated for each of the six distance metrics described in the introduction, namely, (a) the sequence matcher ratio, (b) the Damerau–Levenshtein distance, (c) the normalized Damerau–Levenshtein distance, (d) the Jaccard distance, (e) the Masi distance, and (f) the Jaro–Winkler similarity distance (see Appendix A). The distance values for each of these metrics are values ranging between 0 and 1. For the sequence matcher ratio, a perfect response is equal to 1, while for the normalized Damerau–Levenshtein distance, the Jaccard distance, the Masi distance, and the Jaro–Winkler similarity distance, a perfect response is equal to 0. The only distance metric that does not have values ranging between 0 and 1 is the Damerau–Levenshtein distance, which provides a count of the changes (e.g., deletions, insertions) required to make two strings equal. The algorithm required less than 1 s to calculate spelling scores for the whole database of words and nonwords.

Table 1. Correlation statistics between the three manual raters (N = 100).

	Real words	Nonwords		
	rs	p	rs	p
Rater A Rater B	.93	.0001	.77	.0001
Rater A Rater C	.95	.0001	.78	.0001
Rater B Rater C	.97	.0001	.88	.0001

Method Comparison

Once all the distance metrics were calculated for the entire data set, we estimated their correlation to manual scoring. The output of the comparison was a Spearman’s rank correlation coefficient, indicating the extent to which the word accuracy scores correlate. All distance metrics were calculated in Python 3. To calculate correlations and their corresponding significance tests (significance tests for correlations and the resulting p values are calculated using t tests from 0), we employed the Python packages, namely, SciPy (Jones et al., 2001), Pingouin (Vallat, 2018), and pandas (McKinney, 2010).

Results

The results of the Spearman correlations between manual and automatic scorings for words and nonwords are shown in Figures 1 and 2 and in Tables 2 and 3, respectively. The first column of the correlation matrix shows the correlations of the manual evaluation with each of the estimated distance metrics. The other columns show the correlations of the automatic distance metrics with one another. For words, the manual scoring and the automated metric scoring provided correlations over .95, which are high correlations. Specifically, there was a high correlation of the normalized Damerau–Levenshtein distance, the Damerau–Levenshtein distance, and the sequence matcher with the manual scoring of spelling productions, rs(3538) = .99, p = .001, which indicates that distance metrics provide almost identical results to the manual evaluation. There was a slightly lower correlation of the Jaro–Winkler similarity distance with the manual scores, rs(3538) = .96, p = .001. The Jaccard distance and the Masi distance had the lowest correlations with the manual scoring, rs(3538) = .95, p = .001.

The normalized Damerau–Levenshtein distance outperformed all other distance metrics on nonwords with rs(985) = .95, p < .001, followed by the Damerau–Levenshtein distance and sequence matcher ratio that correlated with the manual estimate of spelling with rs(985) = .94, p < .001, for both. The Jaccard distance and the Masi distance had correlations of rs(985) = .93, p < .001, and finally, the Jaro–Winkler similarity distance had the lowest correlation for nonwords, with a value of rs(985) = .91, p < .001. Importantly, for the normalized Damerau–Levenshtein distance, which outperforms the other distance metrics, if we remove the correct cases from the data set (the items on which participants scored 100%), the correlation remains very high with rs(3538) = .92 (see Table 2) for words and rs(985) = .82 for nonwords (see Table 3).

Discussion

This study aimed to provide a tool for scoring spelling performance automatically by identifying a measure that corresponds closely to the current gold standard for spelling evaluation, the manual letter-by-letter scoring of spelling performance (Caramazza & Miceli, 1990). We...
Figure 1. Correlation matrix for words. JaccardD = Jaccard distance; JWSD = Jaro–Winkler similarity distance; Manual = manual spelling estimation; MasiD = Masi distance; Norm. RDLD = normalized Damerau–Levenshtein distance; RDLD = Damerau–Levenshtein distance; SM = sequence matcher ratio.

Figure 2. Correlation matrix for nonwords. JaccardD = Jaccard distance; JWSD = Jaro–Winkler similarity distance; Manual = manual spelling estimation; MasiD = Masi distance; Norm. RDLD = normalized Damerau–Levenshtein distance; RDLD = Damerau–Levenshtein distance; SM = sequence matcher ratio.
compared six distance functions that measure the similarity of strings of letters previously used in other scientific fields for estimating distances of different types of sequences (e.g., sequencing DNA and in computational linguistics). The results showed that all six automated measures had very high correlations with the manual scoring for both words and nonwords. However, the normalized Damerau–Levenshtein distance, which had a .99 correlation with the manual scores for words and .95 correlation with the manual scores for nonwords, outperformed the other distance metrics. An important reason for the high correlation between the normalized Damerau–Levenshtein distance and the manual method is the fact that it considers all four types of errors, namely, deletions, insertions, substitutions, and transpositions, whereas the simple Damerau–Levenshtein distance calculates only deletions, insertions, and substitutions (see Appendix A for more details on the two methods). Therefore, the findings provide good support for using the normalized Damerau–Levenshtein distance as a substitute for the manual process for scoring spelling performance.

An important advantage of this method over the manual methods is that it provides objective measures of spelling errors. The present tool will facilitate the evaluation of written language impairments and their treatment in PPA and in other patient populations.

A key characteristic of the approach employed for the scoring of words and nonwords is that both types of items are treated as sequences of strings. The evaluation algorithm provides a generic distance that can be employed to score both words and nonwords. The only difference in evaluating spelling performance in words and nonwords is that, as nonwords do not have a standard orthographic representation, rather, they can be transcribed in multiple different ways that are all considered to be correct. As discussed earlier, this is because, in English orthography, different characters and sequences of characters may be used to represent the same sound (e.g., /s/ can be represented as (ps) in psychology, (s) in seen, and (sc) in scene). Also, as shown by the interrater reliability check, for real words, the correlations were high between the three manual scorers.

Table 2. Correlation statistics between the manual method and the automatic distance metrics for real words (N = 3,540).

Distance metric	Correct and incorrect spellings	Incorrect spellings		
	rs	95% CI	rs	95% CI
SM	.994*	[.99, .99]	.92*	[.91, .92]
RDLD	−.990*	[−.99, −.99]	−.86*	[−.87, −.84]
Norm. RDLD	−.995*	[−.99, −.99]	−.92*	[−.93, −.91]
JaccardD	−.952*	[−.96, −.95]	−.86*	[−.88, −.86]
MasID	−.950*	[−.96, −.95]	−.83*	[−.84, −.81]

Note. The table provides correlations of the manual approach with the automated distance metrics on all stimuli (Correct and incorrect spellings; N = 3,540) and correlations of the manual approach and the automated distance metrics based only on spellings that were spelled incorrectly (Incorrect spellings; N = 1,327). Shown in the table are the correlation coefficient (rs) and the parametric 95% confidence intervals (CIs) of the coefficient, while the asterisk signifies that p < .0001. In bold is the distance metric with the highest score overall. SM = sequence matcher ratio; RDLD = Damerau–Levenshtein distance; Norm. RDLD = normalized Damerau–Levenshtein distance; JaccardD = Jaccard distance; MasID = Masi distance.

Table 3. Correlation statistics between the manual method and the automatic distance metrics of nonwords (N = 987).

Distance metric	Correct and incorrect spellings	Incorrect spellings		
	rs	95% CI	rs	95% CI
SM	.945*	[.94, .95]	.799*	[.77, .81]
RDLD	−.936*	[−.94, −.93]	−.780*	[−.79, −.76]
Norm. RDLD	−.947*	[−.95, −.94]	−.821*	[−.86, −.78]
JaccardD	−.935*	[−.94, −.93]	−.786*	[−.79, −.76]
MasID	−.933*	[−.94, −.92]	−.778*	[−.78, −.74]

Note. The table provides correlations of the manual approach with the automated distance metrics on all stimuli (Correct and incorrect spellings; N = 987) and correlations of the manual approach and of the automated distance metrics on spellings that were spelled incorrectly (Incorrect spellings; N = 520). Shown in the table are the correlation coefficient (rs) and the parametric 95% confidence intervals (CIs) of the coefficient, while the asterisk signifies that p < .0001. In bold is the distance metric with the highest score overall. SM = sequence matcher ratio; RDLD = Damerau–Levenshtein distance; Norm. RDLD = normalized Damerau–Levenshtein distance; JaccardD = Jaccard distance; MasID = Masi distance.
but for nonwords, the correlations were lower. This further highlights the need for a more efficient and consistent way of scoring nonwords.

With the innovative inclusion of IPA transcription to represent nonwords phonemically, we have provided a unitary algorithm that can handle both words and nonwords. For nonwords, once the targets and responses were phonemically transcribed, we estimated their distance in the same fashion as we estimated the distance between targets and responses for real words. For example, if the target word is KANTREE, eSpeak will provide the IPA form /kæntɹi/. If the patient transcribed the word as KINTRA, the proposed approach will compare /kæntɹi/ to /kæntɹəi/. An advantage of using IPA is that it provides consistent phonemic representations of nonwords. This approach contrasts with the challenges faced in manual scoring to estimate the errors for nonwords that can be orthographically represented in multiple ways. In these cases, clinicians have to identify the target representation that the patient probably had in mind so that the scoring is “fair.” For instance, in the manual approach, if the target word is FLOPE and the patient wrote PHLOAP, a clinician may not compare the word to the target word FLOPE but to a presumed target PHLOAP, as this is orthographically closer to the response. This would give a score of 5/6. However, a different clinician may compare this response to PHLOPE and provide a different score, specifically, 4/6 (see also the Alternative Approaches Using “Distance Functions” section for discussion). As a result, each scorer’s selection of a specific intended target can influence the scoring by enabling a different set of available options for the spelling of the targets. This clearly poses additional challenges for manual scoring of nonword spelling responses.

The phonemic transcription of nonwords generates a single pronunciation of a spelled word that was produced using grapheme to pronunciation rules of English, without accessing the lexicon. The pronunciation rules prioritize the most probable pronunciation given the context in which a letter appears (i.e., what letters precede and follow a given letter). What is novel about the proposed approach is that it does not require generating an “intended target.” Instead, the patients’ actual response is converted to IPA and compared to the IPA of the target. If the IPA transcription of the target nonword and the transcription of the response match on their pronunciation, the response is considered correct. Since the IPA transcription always provides the same representation for a given item, without having to infer a participant’s intended target, the algorithm produces a consistent score, which we consider a valuable benefit of the proposed approach.

The pronunciation rules convert an orthographic item to the most probable pronunciation transcription. For example, the nonwords KANTREE, KANTRY, or KANTRI will all be transcribed by the program into /kæntɹi/, and all of these spellings would be scored as correct. However, a less straightforward example is when, for instance, for the stimulus /fæntɹi/, a patient writes RINT. A clinician might choose to score this as correct based on the writing of the existing word PINT /pæInt/. On the other hand, the automated algorithm will transcribe RINT into /rInt/ and mark this as an error. However, because such cases are ambiguous, they could also create discrepancies between clinicians.

A problem that might arise is the generalizability of the algorithm for patients with different English accents, which may lead to different spellings. Some of these cases can be addressed by selecting the corresponding eSpeak pronunciation when using the algorithm. For example, the system already includes pronunciations for Scottish English, Standard British English (received pronunciation), and so on, and further pronunciation dictionaries can be added. However, in future work and especially when this automated method is used in areas of the world with distinct dialects, the target items can be provided in IPA format as well, especially for the nonwords.

Lastly, it is important to note that, for the purpose of demonstrating this new methodology, this study used the spelling data from individuals with PPA. However, tests evaluating spelling performance are currently being employed across a broad variety of patient populations, including children with language disorders, as well as adults with stroke-induced aphasia and acquired neurogenic language disorders. Therefore, the proposed method can be employed to estimate spelling performance across a range of different populations, for a variety of different purposes.

A limitation of the automated method described here is that it provides item-specific scores, but it does not identify error types, for example, it does not identify semantic and phonologically plausible errors. For instance, if the target is “lion” but the response is TIGER, then this is a semantic substitution error. On the other hand, if the target is “lion” but the response is LAION, then this is a phonologically plausible error. Although this labeling is not provided by the scoring algorithm as currently configured, it can be a useful feature to implement both in clinical and research work (Rapp & Fischer-Baum, 2015). Error type labeling such as this can extend this work even further, adding to the value of this new tool, and it thus constitutes important direction for future research.

Conclusions

The aim of this study has been to provide an objective method for scoring spelling performance that can be used both in clinical and research settings to replace the current manual spelling scoring process, which is both time-consuming and laborious. We obtained spelling scorings using several automatic distance metrics and evaluated their efficiency by calculating their correlations with manual scoring. Our findings showed that the normalized Damerau–Levenshtein distance provides scores very similar to manual scoring for both words and nonwords, with .99 and
.95 correlations, respectively, and can thus be employed to automate the scoring of spelling. For words, this distance is estimated by comparing the orthographic representation of the target and the response, while for nonwords, the distance is calculated by comparing the phonemic, IPA-transcribed representation of both the target and response. Finally, it is important to note that, while the manual scoring for a data set of the size discussed here can take many hours to complete, the automated scoring can be completed in less than 1 s. These results provide the basis for developing a useful tool for the clinicians and the researchers to evaluate spelling performance accurately and efficiently.

Acknowledgments

This study was supported by the Science of Learning Institute at Johns Hopkins University and National Institute on Deafness and Other Communication Disorders Grant R01 DC014475 (to Kyraa Tsapkini).

References

Beeeson, P. M., Rising, K., Kim, E. S., & Rapcsak, S. Z. (2010). A treatment sequence for phonological alexia/agraphia. *Journal of Speech, Language, and Hearing Research, 53*(2), 450–468. https://doi.org/10.1044/1092-4388(2009/08-0229)

Bisani, M., & Ney, H. (2008). Joint-sequence models for grapheme-to-phoneme conversion. *Speech Communication, 50*(5), 434–451. https://doi.org/10.1016/j.specom.2008.01.002

Brown, G. D. A., & Loosemore, R. P. W. (1994). Computational approaches to normal and impaired spelling. In G. D. A. Brown & N. C. Ellis (Eds.), *Handbook of spelling: Theory, process and intervention* (pp. 319–335), Wiley.

Buchwald, A., & Rapp, B. (2004). Rethinking the graphemic buffer? *Brain and Language, 91*(1), 100–101. https://doi.org/10.1016/j.bandl.2004.06.052

Bullinaria, J. A. (1997). Modeling reading, spelling, and past tense learning with artificial neural networks. *Brain and Language, 59*(2), 236–266. https://doi.org/10.1006/brain.1997.1818

Caramazza, A., & Miceli, G. (1990). The structure of graphematic representations. *Cognition, 37*(3), 243–297. https://doi.org/10.1016/0010-0277(90)90047-n

Damper, R. I., & Eastmond, J. F. G. (1997). Pronunciation by analogy: Impact of implementational choices on performance. *Language and Speech, 40*(1), 1–23. https://doi.org/10.1177/002383099704000101

Fenner, A. S., Webster, K. T., Ficek, B. N., Frangakis, C. E., & Tsapkini, K. (2019). Written verb naming improves after tDCS to Kyrana Tsapkini.

Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., Ogar, J. M., Rohrer, J. D., Black, S., Boeve, B. F., Manes, F., Drönkers, N. F., Vandenberghue, R., Rasovsky, K., Patterson, K., Miller, B. L., Knopman, D. S., Hodges, J. R., . . . Grossman, M. (2011). Classification of primary progressive aphasia and its variants. *Neurology, 76*(11), 1006–1014. https://doi.org/10.1212/WNL.0b013e31821103e6

Hathout, N. (2014). Phonotactics in morphological similarity metrics. *Language Sciences, 46*(A), 71–83. https://doi.org/10.1016/j.langsci.2014.06.008

Heeringa, W., Johnson, K., & Gooskens, C. (2009). Measuring Norwegian dialect distances using acoustic features. *Speech Communication, 51*(2), 167–183. https://doi.org/10.1016/j.specom.2008.07.006

Hixon, B., Schneider, E., & Epstein, S. L. (2011). Phonemic similarity metrics to compare pronunciation methods [Paper presentation]. 12th Annual Conference of the International Speech Communication Association, Florence, Italy.

Houghton, G., & Zorzi, M. (1998). A model of the sound-spelling mapping in English and its role in word and nonword spelling. In M. A. Gernsbacher (Ed.), *Proceedings of the 28th Annual Conference of the Cognitive Science Society* (pp. 490–495), Erlbaum.

Houghton, G., & Zorzi, M. (2003). Normal and impaired spelling in a connectionist dual-route architecture. *Cognitive Neuropsychology, 20*(2), 115–162. https://doi.org/10.1080/0264329024000871

Jelinek, F. (1996). Five speculations (and a divertimento) on the themes of H. Bourlard, H. Hermansky, and N. Morgan. *Speech Communication, 18*(3), 242–246. https://doi.org/10.1016/1067-6399(96)00009-x

Jones, E., Oliphant, T., & Peterson, P. (2001). ScPy: Open source scientific tools for Python. http://www.scipy.org/

Jurafsky, D., & Martin, J. H. (2009). *Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition* (2nd ed.). Prentice Hall.

Kaiser, J., Horvat, B., & Kacic, Z. (2002). Overall risk criterion estimation of hidden Markov model parameters. *Speech Communication, 38*(3–4), 383–398. https://doi.org/10.1016/S0167-6393(02)00009-2

Knopman, D. S., Kramer, J. H., Boeve, B. F., Caselli, R. J., Graff-Radford, N. R., Mendez, M. F., Miller, B. L., & Mercaldo, N. (2008). Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. *Brain, 131*(11), 2957–2968. https://doi.org/10.1093/brain/awn234

McCloskey, M., Badecker, W., Goodmanschulman, R. A., & Aliminoa, D. (1994). The structure of graphematic representations in spelling: Evidence from a case of acquired dysgraphia. *Cognitive Neuropsychology, 11*(3), 341–392. https://doi.org/10.1080/02643294908251979

McKinney, W. (2010). Data structures for statistical computing in Python. In S. E. van der Walt & J. Millman (Eds.), *Proceedings of the 9th Python in Science Conference* (pp. 56–61). SciPy.

Navarro, G. (2001). A guided tour to approximate string matching. *ACM Computing Surveys, 33*(1), 31–88. https://doi.org/10.1145/375360.375365

Neophytou, K., Wiley, R. W., Rapp, B., & Tsapkini, K. (2019). The use of spelling for variant classification in primary progressive aphasia: Theoretical and practical implications. *Neuropsychologia, 133*, 107157. https://doi.org/10.1016/j.neuropsychologia.2019.107157

Olson, A., & Caramazza, A. (1994). Representation and connectionist models: The NETspell experience. In N. C. Ellis & G. D. A. Brown (Eds.), *Handbook of spelling: Theory, process and intervention* (pp. 337–363), Wiley.
Passonneau, R. J. (2006). Measuring agreement on set-valued items (MASI) for semantic and pragmatic annotation. *Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC)*, Genoa, Italy.

Peng, B., Qian, Y., Soong, F., & Zhang, B. (2011). A new phonetic candidate generator for improving search query efficiency [Paper presentation]. 12th Annual Conference of the International Speech Communication Association, Florence, Italy.

Rapp, B., & Fischer-Baum, S. (2015). Uncovering the cognitive architecture of spelling. In A. E. Hills (Ed.), *The handbook of adult language disorders* (2nd ed., pp. 59–86). Psychology Press.

Rapp, B., & Kane, A. (2002). Remediation of deficits affecting different components of the spelling process. *Aphasiology, 16*(4–6), 439–454. https://doi.org/10.1080/02687030244000301

Ratcliff, J. W., & Metzener, D. E. (1988). Pattern-matching—The Gestalt approach. *Dr. Dobbs’s Journal, 13*(7), 46. https://www.drdoths.com/database/pattern-matching-the-gestalt-approach/184407970?pgno=5

Riches, N. G., Loucas, T., Baird, G., Charman, T., & Simonoff, E. (2011). Non-word repetition in adolescents with specific language impairment and autism plus language impairments: A qualitative analysis. *Journal of Communication Disorders, 44*(1), 23–36. https://doi.org/10.1016/j.jcomdis.2010.06.003

Ross, K., Johnson, J. P., & Kiran, S. (2019). Multi-step treatment for acquired alexia and agraphia (Part II): A dual-route error scoring system. *Neuropsychological Rehabilitation, 29*(4), 565–604. https://doi.org/10.1080/09602011.2017.1311796

Schlippe, T., Zhu, C., Jan, G., & Schultz, T. (2010). Text normalization based on statistical machine translation and Internet user support [Paper presentation]. 11th Annual Conference of the International Speech Communication Association: Spoken Language Processing for All, Chiba, Japan.

Schütze, R., Nussbaum-Thom, M., & Ney, H. (2010). On the relation of Bayes risk, word error, and word posteriors in ASR [Paper presentation]. 11th Annual Conference of the International Speech Communication Association: Spoken Language Processing for All, Chiba, Japan.

Seidenberg, M. S., Waters, G. S., Barnes, M. A., & Tanenhaus, M. K. (1984). When does irregular spelling or pronunciation influence word recognition? *Journal of Verbal Learning and Verbal Behavior, 23*(3), 383–404. https://doi.org/10.1016/0022-5371(84)90270-6

Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that learn to pronounce English text. *Complex Systems, 1*(1), 145–168.

Sepelyak, K., Crinion, J., Moltitidis, J., Epstein-Peterson, Z., Bann, M., Davis, C., Newhart, M., Heidler-Gary, J., Tsapkini, K., & Hillis, A. E. (2011). Patterns of breakdown in spelling in primary progressive aphasia. *Cortex, 47*(3), 342–352. https://doi.org/10.1016/j.cortex.2009.12.001

Smith, M., Cunningham, K. T., & Haley, K. L. (2019). Automating error frequency analysis via the phonemic edit distance ratio. *Journal of Speech, Language, and Hearing Research, 62*(6), 1719–1723. https://doi.org/10.1044/2019_JSLHR-S-18-0423

Sprat, M. R., Heeringa, W., & Nerboune, J. (2009). Associations among linguistic levels. *Lingua, 119*(11), 1624–1642. https://doi.org/10.1016/j.lingua.2009.02.001

Tainturier, M.-J., & Rapp, B. (2001). The spelling process. In B. Rapp (Ed.), *What deficits reveal about the human mind/brain: A handbook of cognitive neuropsychology* (pp. 263–289). Psychology Press.

Tainturier, M.-J., & Rapp, B. (2003). Is a single graphemic buffer used in reading and spelling? *Aphasiology, 17*(6–7), 537–562. https://doi.org/10.1080/02687030344000021

Tang, C., & van Heuven, V. J. (2009). Mutual intelligibility of Chinese dialects experimentally tested. *Lingua, 119*(5), 709–732. https://doi.org/10.1016/j.lingua.2008.10.001

Tsapkini, K., Frangakis, C., Gomez, Y., Davis, C., & Hillis, A. E. (2014). Augmentation of spelling therapy with transcranial direct current stimulation in primary progressive aphasia: Preliminary results and challenges. *Aphasiology, 28*(8–9), 1112–1130. https://doi.org/10.1080/026870308.2014.930410

Tsapkini, K., & Hillis, A. E. (2013). Spelling intervention in post-stroke aphasia and primary progressive aphasia. *Behavioural Neurology, 20*(1–2), 55–66. https://doi.org/10.3233/DEN-2012-110240

Vallat, R. (2018). Pingouin: Statistics in Python. *The Journal of Open Source Software, 3*(1), 1026. https://doi.org/10.21105/joss.01026

Wieling, M., Margaretha, E., & Nerboune, J. (2012). Inducing a measure of phonetic similarity from pronunciation variation. *Journal of Phonetics, 40*(2), 307–314. https://doi.org/10.1016/j.wocn.2011.12.004

Appendix A (p. 1 of 2)

Distance Metrics

1. The sequence matcher ratio provided by Ratcliff and Metzener (1988) provides the similarity of two strings as the number of matching characters divided by the total number of characters in the two strings. It recursively identifies common characters in the longest common substring (a.k.a. longest common subsequence) and the characters in the string without matched characters preceding or following the longest common subsequence.

2. The Damerau–Levenshtein distance calculates the minimal number of insertions, deletions, and substitutions required to make two strings equal. The Levenshtein function \(\text{lev}_{a,b}(i,j) \) between two strings \(a \) and \(b \) is the distance between an \(i \)-symbol prefix (initial substring) of string \(a \) and a \(j \)-symbol prefix of \(b \). Levenshtein distance is symmetric so that \(0 \leq \text{lev}(a, b) \leq \text{max}(|a|, |b|) \). Therefore, the Levenshtein distance between two strings \(a, b \) (of length \(|a| \) and \(|b| \), respectively) is given by \(\text{lev}_{a,b}(i,j) \), where

\[
\text{lev}_{a,b}(i,j) = \begin{cases}
\max(i,j) & \text{if } \min(i,j) = 0, \\
\min(\text{lev}_{a,b}(i-1,j) + 1, \text{lev}_{a,b}(i,j-1) + 1, \text{lev}_{a,b}(i-1,j-1) + 1) & \text{otherwise},
\end{cases}
\]

(1)
Appendix A (p. 2 of 2)

Distance Metrics

where \(1_{(a \neq b)} \) is the indicator function equal to 0 when \(a_i = b_j \) and equal to 1 otherwise and \(\text{lev}_{a, b}(i, j) \) is the distance between the first \(i \) characters of \(a \) and the first \(j \) characters of \(b \). The first element (\(\text{lev}_{a, b}(j - 1, j) + 1 \)) in the minimum corresponds to deletion (from \(a \) to \(b \)), the second (\(\text{lev}_{a, b}(j - 1) + 1 \)) corresponds to insertion, and the third to match (\(\text{lev}_{a, b}(j - 1, j - 1) + 1 \)) or mismatch, depending on whether the respective symbols are the same.

3. **Normalized Damerau–Levenshtein distance** extends the basic Levenshtein distance described above by adding transposition as an operation in addition to insertions, deletions, and substitutions. The normalized Damerau–Levenshtein distance provides the Damerau–Levenshtein function \(\text{dlev}_{a, b}(i, j) \) between two strings \(a \) and \(b \) is the distance between an \(i \)-symbol prefix (initial substring) of string \(a \) and a \(j \)-symbol prefix of \(b \). The “restricted distance” function is defined recursively as follows:

\[
\text{dlev}_{a, b}(i, j) = \min \begin{cases}
0 & \text{if } i = j = 0 \\
\text{dlev}_{a, b}(i-1, j) + 1 & \text{if } i > 0 \\
\text{dlev}_{a, b}(i, j-1) + 1 & \text{if } j > 0 \\
\text{dlev}_{a, b}(i-1, j-1) + 1_{(a \neq b)} & \text{if } i, j > 0 \\
\text{dlev}_{a, b}(i-2, j-2) + 1 & \text{if } i, j > 1 \text{ and } a[i] = b[j+1] \text{ and } a[j-1] = b[i]
\end{cases}
\]

(2)

where \(1_{(a \neq b)} \) is equal to 0 when \(a_i = b_j \) and equal to 1 otherwise.

As in the Damerau–Levenshtein distance, the elements in the minimum match one of the following processes:

1. A deletion (from \(a \) to \(b \)) is denoted by \(\text{dlev}_{a, b}(i-1, j) + 1 \).
2. An insertion (from \(a \) to \(b \)) is denoted by \(\text{dlev}_{a, b}(i, j-1) + 1 \).
3. A (mis)match is denoted by \(\text{dlev}_{a, b}(i-1, j-1) + 1_{(a \neq b)} \).
4. A transposition is denoted by \(\text{dlev}_{a, b}(i-2, j-2) + 1 \).

4. **The Jaccard distance** is defined as the ratio of the size of the symmetric difference \((A \cup B) - (A \cap B)\); the symmetric difference is the set of elements that are in either of the sets and not in the intersection of the two sets. The Jaccard distance calculates the dissimilarity between sets, and it is estimated by calculating the intersection over the union (a.k.a. Jaccard similarity coefficient), which is the division of the difference of the sizes of the union and the intersection of two sets by the size of the union and then subtracting the intersection over the union from 1.

\[
d_J(A, B) = 1 - J(A, B) = \frac{|A \cup B| - |A \cap B|}{|A \cup B|}
\]

(3)

5. **The Masi distance** is measuring the agreement on items of sets (Passonneau, 2006). Like the Jaccard distance, the Masi distance compares sets, rather than a string of characters. To estimate the Masi distance, the length of the intersection of strings \(a \) and \(b \) \((a \cap b)\) and the length of the union of string \(a \) and \(b \) \((a \cup b)\) are estimated.

\[
d_{\text{masi}}(a, b) = 1 - \frac{\text{length of } a \cap b}{\text{length of } a \cup b} \times \text{score}
\]

(4)

The score value is estimated as follows:

- If the length of string \(a \) is equal to string \(b \) and to the length of \(a \cap b \), then the score is equal to 1.
- If the length of \(a \cap b \) is equal to the smallest string \((a \text{ or } b)\), then the score is 0.67.
- Else if the length of the intersection is greater than 0, then the score is 0.33.
- If nothing holds, then the score is 0.
Appendix B
Demographic and Neuropsychological Data on the Participants

Variant	Gender	Education (years)	Age	Years from disease onset	Language severity^a	Overall severity^b
nfvPPA	10	13.4 (SD = 7)	67.1 (SD = 6.9)	4.4 (SD = 2.9)	1.8 (SD = 0.9)	6.6 (SD = 4.9)
lvPPA	17	16	74 (SD = 12)	13 (SD = 3)	2.1 (SD = 0.9)	16.9 (SD = 5.3)
svPPA	6	19	71 (SD = 7)	5.3 (SD = 3)	1.5 (SD = 1.2)	6.5 (SD = 4.2)
Mixed	9	15	73 (SD = 13)	6.9 (SD = 4)	1.8 (SD = 1.2)	8.7 (SD = 5.1)

Note. nfvPPA = nonfluent variant primary progressive aphasia; lvPPA = logopenic variant primary progressive aphasia; svPPA = semantic variant primary progressive aphasia.

^aLanguage severity was measured with the Frontotemporal Dementia Clinical Dementia Rating (FTD-CDR Language subscale; see Knopman et al., 2008; range: 0–3). ^bOverall severity was measured with the FTD-CDR Language subscale (see Knopman et al., 2008)—rating (FTD-CDR “sum of boxes”; see Knopman et al., 2008; range: 0–24).

Appendix C (p. 1 of 4)
Five Sets of Words and Nonwords Evaluated in the Study

184-set	168-set	138-set	92-set	62-set	
target	**type**				
REMMUN nonword	MURNEE nonword	MURNEE nonword	REMMUN nonword	MURNEE nonword	REMMUN nonword
MUSHRAIME nonword	HERM nonword	DONSEPT nonword	MUSHRAIME nonword	HERM nonword	MUSHRAIME nonword
SARCLE nonword	DONSEPT nonword	DONSEPT nonword	SARCLE nonword	DONSEPT nonword	SARCLE nonword
TEABULL nonword	MERBER nonword	MERBER nonword	TEABULL nonword	MERBER nonword	TEABULL nonword
HAYGRID nonword	troe nonword	troe nonword	HAYGRID nonword	troe nonword	HAYGRID nonword
CHENCH nonword	PYTES nonword	PYTES nonword	CHENCH nonword	PYTES nonword	CHENCH nonword
MURNEE nonword	FOYS nonword	FOYS nonword	MURNEE nonword	FOYS nonword	MURNEE nonword
REESHE nonword	WESEL nonword	WESEL nonword	REESHE nonword	WESEL nonword	REESHE nonword
BOKE nonword	FEEN nonword	FEEN nonword	BOKE nonword	FEEN nonword	BOKE nonword
HERM nonword	SNOY nonword	SNOY nonword	HERM nonword	SNOY nonword	HERM nonword
HANNEE nonword	PHOLEKE nonword	PHOLEKE nonword	HANNEE nonword	PHOLEKE nonword	HANNEE nonword
DEWT nonword					
KWINE nonword	GHURB nonword	GHURB nonword	KWINE nonword	GHURB nonword	KWINE nonword
DONSEPT nonword	PHOIT nonword	PHOIT nonword	DONSEPT nonword	PHOIT nonword	DONSEPT nonword
PHOIT nonword	HAYGRID nonword	HAYGRID nonword	PHOIT nonword	HAYGRID nonword	PHOIT nonword
KANTREE nonword	KROID nonword	KROID nonword	KANTREE nonword	KROID nonword	KANTREE nonword
LORN nonword	KITTUL nonword	KITTUL nonword	LORN nonword	KITTUL nonword	LORN nonword
FEEN nonword	BRUTH nonword	BRUTH nonword	FEEN nonword	BRUTH nonword	FEEN nonword
SKART nonword	KANTTREE nonword	KANTTREE nonword	SKART nonword	KANTTREE nonword	SKART nonword
REMMUN nonword	BERK nonword	BERK nonword	REMMUN nonword	BERK nonword	REMMUN nonword
MUSHRAIME nonword	WUNDOE nonword	WUNDOE nonword	MUSHRAIME nonword	WUNDOE nonword	MUSHRAIME nonword
SARCLE nonword					
TEABULL nonword	SORTAIN nonword	SORTAIN nonword	TEABULL nonword	SORTAIN nonword	TEABULL nonword
HAYGRID nonword	LORN nonword	LORN nonword	HAYGRID nonword	LORN nonword	HAYGRID nonword
CHENCH nonword	BOKE nonword	BOKE nonword	CHENCH nonword	BOKE nonword	CHENCH nonword
MURNEE nonword	TEABULL nonword	TEABULL nonword	MURNEE nonword	TEABULL nonword	MURNEE nonword
REESE nonword	HANNEE nonword	HANNEE nonword	REESE nonword	HANNEE nonword	REESE nonword
BOKE nonword	KWINE nonword	KWINE nonword	BOKE nonword	KWINE nonword	BOKE nonword
HERM nonword	REMMUN nonword	REMMUN nonword	HERM nonword	REMMUN nonword	HERM nonword
HANNEE nonword	SUME nonword	SUME nonword	HANNEE nonword	SUME nonword	HANNEE nonword
DEWT nonword	SKART nonword	SKART nonword	DEWT nonword	SKART nonword	DEWT nonword
KWINE nonword	REESEH nonword	REESEH nonword	KWINE nonword	REESEH nonword	KWINE nonword
DONSEPT nonword	MUSHRAIME nonword	MUSHRAIME nonword	DONSEPT nonword	MUSHRAIME nonword	DONSEPT nonword
PHOIT nonword	CHENCH nonword	CHENCH nonword	PHOIT nonword	CHENCH nonword	PHOIT nonword
KANTREE nonword	SHOOT word	DECIDE word	KANTREE nonword	SHOOT word	KANTREE nonword
LORN nonword	HANG word	GRIEF word	LORN nonword	HANG word	LORN nonword
FEEN nonword	PRAY word	SPEND word	FEEN nonword	PRAY word	FEEN nonword
SKART nonword	SHAPE word	LOYAL word	SKART nonword	SHAPE word	SKART nonword
SHOOT word	KICK word	RATHER word	SHOOT word	KICK word	SHOOT word
HANG word	CUT word	PREACH word	HANG word	CUT word	HANG word
PRAY word	SPEAK word	FRESH word	PRAY word	SPEAK word	PRAY word
SHAVE word	ROPE word	CONQUER word	SHAVE word	ROPE word	SHAVE word

(table continues)
Five Sets of Words and Nonwords Evaluated in the Study

target	type								
KICK	word	DEER	word	SHALL	word	AISLE	word	CARRY	word
CUT	word	CANE	word	SPOKEN	word	LIMB	word	AFRAID	word
SPEAK	word	LEAF	word	SOUGHT	word	HEIR	word	WHAT	word
ROPE	word	DOOR	word	ABSENT	word	TONGUE	word	STARVE	word
DEER	word	ROAD	word	SPEAK	word	SWORD	word	MEMBER	word
CANE	word	BOOK	word	ENOUGH	word	GHOST	word	TALENT	word
LEAF	word	BALL	word	CAREER	word	EARTH	word	UNDER	word
DOOR	word	SEW	word	CHURCH	word	ENOUGH	word	LENGTH	word
ROAD	word	KNOCK	word	BRIGHT	word	FRESH	word	BORROW	word
BOOK	word	SIEVE	word	ADOPT	word	QUAINT	word	SPEAK	word
BALL	word	SEIZE	word	STRIKE	word	FABRIC	word	FAITH	word
SEW	word	GAUGE	word	LEARN	word	CRISP	word	STRICT	word
KNOCK	word	SIGH	word	QUAIN	word	PURSUIT	word	HAPPY	word
SIEVE	word	LAUGH	word	BECOME	word	STREET	word	GRIEF	word
SEIZE	word	CHOIR	word	STRONG	word	PRIEST	word	ABSENT	word
GAUGE	word	AISLE	word	BUGLE	word	SUSPEND	word	POEM	word
SIGH	word	LIMB	word	STARVE	word	BRISK	word	THOUGH	word
LAUGH	word	HEIR	word	DENY	word	SPOIL	word	GREET	word
CHOIR	word	TONGUE	word	LENGTH	word	RIGID	word	PROVIDE	word
AISLE	word	SWORD	word	PILLOW	word	RATHER	word	WINDOW	word
LIMB	word	GHOST	word	CAUGHT	word	HUNGRY	word	HUNGRY	word
HEIR	word	EARTH	word	BEFORE	word	PIERCE	word		
TONGUE	word	DECIDE	word	AFRAID	word	EARTH	word	EARTH	word
SWORD	word	GRIEF	word	BODY	word	LISTEN	word		
GHOST	word	SPEND	word	HUNGRY	word	GLOVE	word		
EARTH	word	LOYAL	word	COLUMN	word	SINCE	word		
ENOUGH	word	RATHER	word	THESE	word	BRING	word		
FRESH	word	PREACH	word	STRIPE	word	ARGUE	word		
QUANT	word	FRESH	word	MUSIC	word	BRIGHT	word		
FABRIC	word	CONQUER	word	CRISP	word	SEVERE	word		
CRISP	word	SHALL	word	HURRY	word	CARRY	word		
PURSUIT	word	SOUGHT	word	PIERCE	word	AFRAID	word		
STREET	word	THREAT	word	TINY	word	WHAT	word		
PRIEST	word	ABSENT	word	ARGUE	word	STARVE	word		
SUSPEND	word	SPEAK	word	DIGIT	word	MEMBER	word		
BRISK	word	ENOUGH	word	COMMON	word	TALENT	word		
SPOIL	word	CAREER	word	ANNOY	word	UNDER	word		
RIGID	word	CHURCH	word	STREET	word	LENGTH	word		
RATHER	word	BRIGHT	word	COULD	word	BORROW	word		
MOMENT	word	ADOPT	word	RIGID	word	SPEAK	word		
HUNGRY	word	STRICT	word	OFTEN	word	FAITH	word		
PIERCE	word	LEARN	word	BRING	word	STRICT	word		
LISTEN	word	QUAINT	word	LISTEN	word	HAPPY	word		
GLOVE	word	BECOME	word	FIERCE	word	GRIEF	word		
SINCE	word	STRONG	word	NATURE	word	ABSENT	word		
BRING	word	BUGLE	word	UNDER	word	POEM	word		
ARGUE	word	STARVE	word	MOTEL	word	THOUGH	word		
BRIGHT	word	DENY	word	SHOULD	word	GREET	word		
SEVERE	word	LENGTH	word	VULGAR	word	PROVIDE	word		
CARRY	word	PILLOW	word	CHEAP	word	WINDOW	word		

(Continued)
Appendix C (p. 3 of 4)

Five Sets of Words and Nonwords Evaluated in the Study

target	type								
GRIEF	word	TINY	word	SOLVE	word	PROVE	word	PROVIDE	word
ABSENT	word	ARGUE	word	OCEAN	word	SHOOT	word	SHOOT	word
POEM	word	DIGIT	word	DECENT	word	HANG	word	HANG	word
THOUGH	word	COMMON	word	THOUGH	word	WINDOW	word	WINDOW	word
GREET	word	ANNOY	word	SHORT	word	PRAY	word	PRAY	word
PROVIDE	word	STREET	word	ABOUT	word	SHAVE	word	SHAVE	word
WINDOW	word	COULD	word	BOTTOM	word	KICK	word	KICK	word
SHOOT	word	RIGID	word	FRIEND	word	PRAY	word	PRAY	word
HANG	word	OFTEN	word	LOBSTER	word	SHRINE	word	SHRINE	word
PRAY	word	BRING	word	VIVID	word	TICK	word	TICK	word
SHAVE	word	LISTEN	word	BROAD	word	CUT	word	CUT	word
KICK	word	FIERCE	word	WHILE	word	SPEAK	word	SPEAK	word
CUT	word	NATURE	word	CHILD	word	ROPE	word	ROPE	word
SPEAK	word	UNDER	word	HAPPEN	word	DEER	word	DEER	word
ROPE	word	MOTEL	word	SEVERE	word	CANE	word	CANE	word
DEER	word	SHOULD	word	AFTER	word	LEAF	word	LEAF	word
CANE	word	VULGAR	word	PRIEST	word	DOOR	word	DOOR	word
LEAF	word	CHEAP	word	MERGE	word	ROAD	word	ROAD	word
DOOR	word	SPOIL	word	GLOVE	word	BOOK	word	BOOK	word
ROAD	word	CERTAIN	word	ONLY	word	BALL	word	BALL	word
BOOK	word	ABOVE	word	GREET	word	SEW	word	SEW	word
BALL	word	LOUD	word	MEMBER	word	SEW	word	SEW	word
SEW	word	SINCE	word	BEGIN	word	KNOCK	word	KNOCK	word
KNOCK	word	SLEEP	word	BRISK	word	SIEVE	word	SIEVE	word
SIEVE	word	REVEAL	word	WHAT	word	SEIZE	word	SEIZE	word
SEIZE	word	BOTH	word	BORROW	word	GAUGE	word	GAUGE	word
GAUGE	word	NOISE	word	JURY	word	SIGH	word	SIGH	word
SIGH	word	INTO	word	SLEEVE	word	LAUGH	word	LAUGH	word
LAUGH	word	STRANGE	word	BOUGHT	word	CHOIR	word	CHOIR	word
CHOIR	word	CARRY	word	HAPPY	word	AISLE	word	AISLE	word
AISLE	word	SOLVE	word	SPACE	word	LIMB	word	LIMB	word
LIMB	word	OCEAN	word	ANGRY	word	HEIR	word	HEIR	word
HEIR	word	DECENT	word	THOSE	word	TONGUE	word	TONGUE	word
TONGUE	word	THOUGH	word	FAITH	word	WORD	word	WORD	word
WORD	word	SHORT	word	THOSE	word	GHOST	word	GHOST	word
GHOST	word	ABOUT	word	OTHER	word	EARTH	word	EARTH	word
EARTH	word	BOTTOM	word	OTHER	word	ENOUGH	word	ENOUGH	word
ENOUGH	word	GHOST	word	FRIEND	word	FRESH	word	FRESH	word
FRESH	word	LOBSTER	word	FRESH	word	QUAIN	word	QUAIN	word
QUAIN	word	VIVID	word	FABRIC	word	FABRIC	word	FABRIC	word
FABRIC	word	BROAD	word	FABRIC	word	CRISP	word	CRISP	word
CRISP	word	WHILE	word	CRISP	word	STREET	word	STREET	word
STREET	word	HAPPEN	word	STREET	word	PRIEST	word	PRIEST	word
PRIEST	word	SEVERE	word	PRIEST	word	SUSPEND	word	SUSPEND	word
SUSPEND	word	AFTER	word	SUSPEND	word	BRISK	word	BRISK	word
BRISK	word	PRIEST	word	BRISK	word	SPOIL	word	SPOIL	word
SPOIL	word	MERGE	word	SPOIL	word	RIGID	word	RIGID	word
RIGID	word	GLOVE	word	RIGID	word	RATHER	word	RATHER	word
RATHER	word	ONLY	word	RATHER	word	MOMENT	word	MOMENT	word
MOMENT	word	GREET	word	MOMENT	word	HUNGRY	word	HUNGRY	word
HUNGRY	word	MEMBER	word	HUNGRY	word	PIERCE	word	PIERCE	word
PIERCE	word	BEGIN	word	PIERCE	word	LISTEN	word	LISTEN	word
LISTEN	word	BRISK	word	LISTEN	word	GLOVE	word	GLOVE	word
GLOVE	word	WHAT	word	GLOVE	word	SINCE	word	SINCE	word
SINCE	word	BORROW	word	SINCE	word	BRING	word	BRING	word
BRING	word	JURY	word	BRING	word	Argue	word	ARGUE	word
ARGUE	word	SLEEVE	word	ARGUE	word	BRIGHT	word	BRIGHT	word
BRIGHT	word	BOUGHT	word	BRIGHT	word	SEVERE	word	SEVERE	word
SEVERE	word	HAPPY	word	SEVERE	word	CARRY	word	CARRY	word
CARRY	word	SPACE	word	CARRY	word	AFRAID	word	AFRAID	word

(table continues)

Themistocleous et al.: A Tool for Automatic Scoring of Spelling 4191
Appendix C (p. 4 of 4)

Five Sets of Words and Nonwords Evaluated in the Study

184-set target	type	168-set target	type	138-set target	type	92-set target	type	62-set target	type
WHAT	word	THOSE	word						
STARVE	word	FAITH	word						
MEMBER	word								
TALENT	word								
UNDER	word								
LENGTH	word								
BORROW	word								
SPEAK	word								
FAITH	word								
STRICT	word								
HAPPY	word								
GRIEF	word								
ABSENT	word								
POEM	word								
THOUGH	word								
GREET	word								
PROVIDE	word								
WINDOW	word								

Note. Set 1: 184 items, Set 2: 168 items, Set 3: 138 items, Set 4: 92 items, and Set 5: 62 items.

Appendix D

Instructions for Manual Scoring

Values are assigned to letters in the target, not the response. For nonwords, use the target spelling that maximizes points for given response.

Each letter of the target word is assigned a value between 0 and 1, with the general guidelines being:

- any letter that is present and in the correct position (relative, not absolute) gets 1 point;
- any letter that is present but in the incorrect position gets 0.5 points;
- any letter that is not present gets 0 points.

To determine the value:

1. Maximally align the target item and the response.
2. If the response is correct, give each target letter a value of 1.
3. If the response is incorrect, score depending upon error type:
 a. ADDITION: give each of the letters that allow the addition (i.e., the letters adjacent to the added letter) a value of 0.5.
 b. SUBSTITUTION: give the letter that is substituted a value of 0.
 c. DELETION: give the letter that is deleted a value of 0.
 d. TRANSPOSITION: give a value of 0.5 to each transposed letter.
 e. MOVEMENT: give value of 0.5 to the moved letter.
 f. DOUBLING: give a value of 0.5 to doubled letter.
 g. DELETION OF DOUBLE LETTER: give a value of 0.5 to both letters of double.
 h. MOVEMENT OF GEMINATE: give a value of 0.75 to both letters of geminate and a value of 0.5 to the letter the geminate moved to.
 i. SUBSTITUTION/DELETION COMBINATION: give a value of 0 to missing letters.
 j. SUBSTITUTION/ADDITION COMBINATION: give 0 to incorrect letter and 0.75 to surrounding letters.