The nutritional status of young children, adolescents and young adults has always been of interest to public health nutritionists. In the middle of the previous century the interest mostly focused on undernutrition and micronutrient deficiencies in under-resourced, often war-stricken countries of the world, where the environment was lacking in both quantity and quality of food\(^1\,2\). Since then, industrialization and globalization have changed the food environment beyond anything that nutrition scientists could have foreseen. With the uprising of the obesity epidemic in both children and adults, the interest has shifted to food environments characterized by excessive availability of highly processed foods often high in energy and low in nutrient density. The taste and cost of these foods make them accessible and acceptable to both under- and well-resourced populations\(^3\).

The complexity of this highly evolved food environment is captured by the description of Swinburn and co-workers who describe these environments as ‘the collective physical, economic, policy and sociocultural surroundings, opportunities and conditions that influence people’s food and beverage choices and nutritional status’\(^4\). Nutrition researchers are trying to make sense of what changes are necessary and possible in this multifaceted environment to ensure better health for young people through their lifespan and into the next generation.

A socio-ecological framework, recognizing intrapersonal, interpersonal, organizational setting, community, environment and political influences, has often been used to study the factors that influence young people’s food-related behaviour. In 2012, Moore and colleagues presented an argument in this journal that ‘policy makers and health promotion practitioners are encouraged to identify complementary or, ideally synergistic policy components at multiple levels, rather than adopting an exclusive focus on intervening at any of the levels of influence on dietary behaviour’\(^5\). More specific to young people, following a study in Ecuador, Verstraeten et al.\(^6\) proposed a multi-level interactive framework that conceptualizes eating behaviour in adolescents as a function of both individual and environmental influences. They further highlighted the importance of context- and culture-specific key factors that mediate food choices. A recent *Lancet* report on obesity proposes an ‘inside out’ version of the socio-ecological model that is more suitable for explaining, according to the authors, ‘epidemics sweeping across entire populations’\(^7\). According to this model, individuals populate all levels of the human systems and continuously interact with natural ecosystems. This allows for three parts of the individual–environment interaction to become apparent: (i) the personal agency individuals have in making choices from the environments available; (ii) the influences of the environment on individuals’ choices; and (iii) the influence individuals have on changing environments and systems around them. Findings by Vogel *et al.*\(^8\), that high-agency interventions targeting individual psychological resources (e.g. self-efficacy, perceptions of healthy food affordability) combined with environmental interventions may be more effective in changing dietary behaviours than either intervention alone, provide support for the usefulness of this model in relation to the food environment. The model furthermore seems to be relevant to explain the interaction of young people with the food environment in and around schools.

Five articles\(^9\)-\(^13\) in this issue of *Public Health Nutrition* highlight a range of issues related to the food environment and educational settings, and it is worthwhile to consider how the results of the different studies could contribute to the ongoing discourse about the food environment in and around schools and how individuals act in and interact with this environment.

An adequate intake of fruits and vegetables is considered essential for good nutritional health while a low intake of fruits and vegetables is associated with various health-related consequences including non-communicable diseases\(^14\). The intake of fruits and vegetables is therefore often used as an outcome measure when studying the relationship between the food environment and diet\(^15\). Van den Bogerd *et al.*\(^9\) did not collect any information on actual availability and cost of fruits and vegetables within the university environment but chose to focus on the perception of students. Although a large proportion of students perceived that enough fruits and vegetables were available in their university environment, intake thereof was low. Students felt that more affordable fruits and vegetables in the university canteen or supermarket would increase their fruit and vegetable intake. A study conducted in a web-based supermarket in the Netherlands provides some evidence that lower prices will stimulate purchases of fruits and vegetables\(^16\), pointing to a possibility that cost of food may support personal agency in healthy food selection.

An often-discussed aspect of the school food environment is the implementation of school policies as a vehicle to modify the school food environment to facilitate
The articles presented in this issue emphasize the multiple dimensions of the food environment and provide some insight into how these may influence young peoples' choices and vice versa, as well as the personal power of young people to execute healthy food choices. The articles furthermore point to the need for public health nutritionists to engage with all the complexities of the school food environment and ensure that standardized and validated measures are available to capture these dimensions.

Acknowledgements

Financial support: This work received no specific grant from any funding agency in the public, commercial for not-for-profit sectors. Conflict of interest: None. Authorship: A.d.V. and M.F. contributed equally to the manuscript. Ethics of human subject participation: Not applicable.

Anniza de Villiers1 and Mieke Faber2
1Division of Research Capacity Development
South African Medical Research Council
PO Box 19070, 7505 Tygerberg, South Africa
Email: Anniza.deVilliers@mrc.ac.za

2Non-Communicable Diseases Research Unit
South African Medical Research Council
Tygerberg, South Africa

References

1. Anderson W, French C, Scrimshaw NS et al. (1999) Meeting the challenge of feeding the world. Am J Public Health 49, 1364–1372.
2. Schaefer AE (1966) Observations from exploring needs in national nutrition programs. Am J Public Health 56, 1088–1096.
3. Popkin BM & Reardon T (2018) Obesity and the food system transformation in Latin America. Obes Rev 19, 1028–1064.
4. Swinburn B, Vandevijvere S, Kraak V et al. (2013) Monitoring and benchmarking government policies and actions to improve the healthiness of food environments: a proposed Government Healthy Food Environment Policy Index. Obes Rev 14, Suppl. 1, 24–37.
5. Moore L, de Silva-Sanigorski A & Moore SN (2013) A socio-ecological perspective on behavioural interventions to influence food choice in schools: alternative, complementary or synergistic? Public Health Nutr 16, 1000–1005.
6. Verstraeten R, Van Royen K, Ochoa-Avilés A et al. (2014) A conceptual framework for healthy eating behavior in Ecuadorian adolescents: a qualitative study. PLoS One 9, e97183.
7. Swinburn BA, Kraak VI, Allender S et al. (2019) The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission report. Lancet 393, 791–846.
8. Vogel C, Abbott G, Ntani G et al. (2019) Examination of how environment and psychological factors interact in their...
relationship with dietary behaviours: test of a cross-sectional model. *Int J Behav Nutr Phys Act* **16**, 12.

9. Van den Bogerd N, Maas J, Seidell JC *et al.* (2019) Fruit and vegetable intakes, associated characteristics and perceptions of current and future availability in Dutch university students. *Public Health Nutr* **22**, 000–000.

10. Godin KM, Chaurasia A, Hammond D *et al.* (2019) Examining associations between school food environment characteristics and sugar-sweetened beverage consumption among Canadian secondary-school students in the COMPASS study. *Public Health Nutr* **22**, 000–000.

11. Assis MM, Leite MA, Carmo AS *et al.* (2019) Food environment, social deprivation and obesity among students from Brazilian public schools. *Public Health Nutr* **22**, 000–000.

12. Schermbeck RM, Leider J, Piekarz-Porter E *et al.* (2019) Artificial sweeteners in food and beverage products at school. *Public Health Nutr* **22**, 000–000.

13. Rida Z, Hall E, Hasnin S *et al.* (2019) The perception of school foodservice professionals on the implementation of the Healthy Hunger-Free Kids Act of 2010: a mixed-methods study. *Public Health Nutr* **22**, 000–000.

14. Aune D, Giovannucci E, Boffetta P *et al.* (2017) Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality – a systematic review and dose–response meta-analysis of prospective studies. *Int J Epidemiol* **46**, 1029–1056.

15. Caspi CE, Sorensen G, Subramanian SV *et al.* (2012) The local food environment and diet: a systematic review. *Health Place* **18**, 1172–1187.

16. Waterlander WE, Steenhuis IH, de Boer MR *et al.* (2012) The effects of a 25% discount on fruits and vegetables: results of a randomized trial in a three-dimensional web-based supermarket. *Int J Behav Nutr Phys Act* **9**, 11.

17. Centers for Disease Control and Prevention (2011) School health guidelines to promote healthy eating and physical activity. *MMWR Recomm Rep* **60**, 1–76.

18. Hermans RCJ, de Bruin H, Lassen JK *et al.* (2017) Adolescents’ responses to a school-based intervention program promoting healthy eating at school. *Front Public Health* **5**, 309.