Three Novel Entomopathogenic Fungi From China and Thailand

De-Ping Wei1,2,3, Dhanushka N. Wanasinghe4,5, Jian-Chu Xu1,4,5, Chaiwat To-anun2, Peter E. Mortimer1,5,6, Kevin D. Hyde5,7,8,9, Abdallah M. Elgorban10, Sumedha Madawala11, Nakarin Suwannarach12,13, Samantha C. Karunarathna1,5,6,12,13,*, Saowaluck Tibpromma1,5,6,12,13,*, and Saisamorn Lumyong12,13,14*

Entomopathogenic fungi are ubiquitous in tropical rainforests and feature a high level of diversity. This group of fungi not only has important ecological value but also medicinal value. Nevertheless, they are often ignored, and many unknown species have yet to be discovered and described. The present study aims to contribute to the taxonomical and phylogenetic understanding of the genus Paraisaria by describing three new species collected from Guizhou and Yunnan Provinces in China and Krabi Province in Thailand. The three novel species named Paraisaria alba, P. arcta, and P. rosea share similar morphologies as those in the genus Paraisaria, containing solitary, simple, fleshy stroma, completely immersed perithecia and cylindrical asci with thickened caps and filiform ascospores that often disarticulate at maturity. Phylogenetic analyses of combined LSU, SSU, TEF1-α, RPB1, RPB2, and ITS sequence data confirm their placement in the genus Paraisaria. In this study, the three entomopathogenic taxa are comprehensively described with color photographs and phylogenetic analyses. A synopsis table and a key to all treated species of Paraisaria are also included.

Keywords: Insect fungi, Ophiocordycipitaceae, Paraisaria alba, Paraisaria arcta, Paraisaria rosea, taxonomy, Yunnan Province

INTRODUCTION

Entomopathogenic fungi are a group of unicellular or multicellular, heterotrophic, eukaryotic microorganisms that can enter into a parasitic relationship with parasitized insects, killing or otherwise disabling their hosts (Samson et al., 1988). They reproduce via sexual or asexual spores, or both (Mora et al., 2017). It is of global importance to survey and describe insect pathogens (Hyde et al., 2019). Entomopathogenic fungi can act as natural enemies of agricultural pests and
play an important role in maintaining ecological balance (Fernández-Grandon et al., 2020; Sobczak et al., 2020). For example, fungal pathogens such as, *Coeolomomyces*, *Culicinomyces*, and *Lagenidium* have the capacity to kill larvae and adult mosquitoes, reducing their host population (Scholte et al., 2004). Some entomopathogenic fungi, e.g., *Beauveria bassiana*, *Beauveria brongniartii*, *Metarhizium anisopliae*, and *Verticillium lecanii*, have been developed as biocontrol agents usable against agricultural pests like aphids, locusts, grasshoppers and cockchafer in Africa and Europe (Roberts and Hajek, 1992; Shah and Pell, 2003). *Beauveria bassiana* and *B. brongniartii* were found to be especially safe bioinsecticides (Zimmermann, 2007). Additionally, some insect pathogens with pharmacological activities are frequently studied, such as *Cordyceps militaris* extract, which exhibits antitumor properties (Li et al., 2020). *Cordyceps* spp. have been utilized as therapeutic agents for metabolic-related disorders (Cao et al., 2020). *Cordyceps cicadae* has renoprotective effects on hypertensive renal injuries (Huang et al., 2020). Entomopathogenic fungi have important biotechnological applications (Hyde et al., 2019) and *Paraisaria* is no exception. Several studies have explored the importance of *Paraisaria* species, such as their antioxidative activity (Ma et al., 2012), nucleoside components (Suo et al., 2013), intracellular polysaccharide composition (Wang et al., 2019) and AGS gastric cancer cells anti-proliferation effects (Ye et al., 2015). Additionally, *P. heteropoda* reportedly produces anti-bacterial and anti-fungal compounds (Krasnoff et al., 2005). Experiments into optimal cultural conditions and nutritional sources were conducted by Sung et al. (2011). Applications of other species in this genus have been poorly studied.

Entomopathogenic fungi are phylogenetically diverse and taxonomically distributed in Ascomycota, Basidiomycota, Chytridiomycota, Entomophthoromycota, Microsporidia, Oomycota and Zygomycota (Vega et al., 2012; Araújo and Hughes, 2016; Mora et al., 2017). Different groups of entomopathogens usually develop respectively unique strategy to colonize their hosts (Mora et al., 2017). It is worth to mention that entomopathogenic taxa in Entomophthorales (Entomophthoromycota) enter into biotrophic relationships with their insect hosts, while those in Hypocreales (Ascomycota) can be hemibiotrophic at earlier stages and transform into saprophytism (Shah and Pell, 2003). The diversity, taxonomy and phylogeny of entomopathogenic fungi have been extensively studied recently (Aung et al., 2008; Mora et al., 2017; Hyde et al., 2018). Most insect pathogens are known from three families: Clavicipitaceae, Cordycipitaceae, and Ophiocordyptaceae. They are found in the Hypocreales, Hypocreomycetidae, Sordariomycetes, Ascomycota (Sung et al., 2007a; Maharachchikumbura et al., 2016; Wijayarwadene et al., 2018). The generic composition of Ophiocordyptaceae underwent several changes over time (Sung et al., 2007a; Quandt et al., 2014; Maharachchikumbura et al., 2016; Shrestha et al., 2017; Wijayarwadene et al., 2018), and currently ten genera are accepted (Hyde et al., 2020). New combinations of these genera were proposed for *Polystephalomycetes* by Kepler et al. (2013), *Tolypocladium* by Quandt et al. (2014), *Perennicordyceps* by Matočec et al. (2014) and *Drechmeria, Harposporium, Ophiocordyceps*, and *Purpureocillium* by Spatafora et al. (2015). The genus *Paraisaria* was recently recovered in Ophiocordyptaceae (Mongkolsamrit et al., 2019).

The genus *Paraisaria* was established by Samson and Brady (1983), with *P. dubia* as the type species, whose sexual morph was known as *Ophiocordyceps gracilis* (syn. *Cordyceps gracilis*). The sexual morph of this genus is characterized by solitary stromata with a stipe terminating in a globose or ellipsoid fertile head, completely immersed, ostiolate, gregarious perithecia, cylindrical asci and hyaline, filiform, multi-septate ascospores, which break into aseptate fragments when mature. Its asexual morphs are characterized by verticillate branched conidiophores, phalidic, flask-shaped, usually sympodially proliferating conidigenous cells, which terminate in 1–4 necks, and aseptate, hyaline, smooth-walled conidia, which usually aggregate in slimy heads (Samson and Brady, 1983). Li et al. (2004) synonymized *Isaria gracilioides* under *P. gracilioides* and linked its sexual morph to *Ophiocordyceps gracilioides*. Evans et al. (2010) found the asexual morph of *P. myrmicarum* from a red ant host (*Myrmica rubra*) in a natural environment in the United Kingdom. Quandt et al. (2014) have dropped the genus *Paraisaria* and used its sexual genus *Ophiocordyceps* according to the ‘one fungus one name’ principle. Mongkolsamrit et al. (2019) resurrected *Paraisaria* on the basis of three new species, e.g., *P. orthopterorum*, *P. phuwiangensis*, and *P. yodhathaii* as well as eight new combinations, e.g. *P. amazonica* (Sanjuan et al., 2015), *P. biattarioides* (Sanjuan et al., 2015), *P. coenomyiae* (Ban et al., 2015), *P. gracilioides* (Kobayasi, 1941; Pérez-Villamares et al., 2017), *P. gracilis* (Samson and Brady, 1983; Pérez-Villamares et al., 2017), *P. heteropoda* (Sung et al., 2011; Mongkolsamrit et al., 2019), *P. paramyrmicarum* (= *P. myrmicarum*) (Evans et al., 2010) and *P. tettigonia* (Wen et al., 2016). So far, together with the three new species in this study, 14 species are accepted in *Paraisaria*.

This study is part of a larger survey of fungi in the Greater Mekong Subregion where we came across numerous new taxa (Hyde et al., 2018). In this study, three species of entomopathogenic fungi were collected from disturbed forests in China and Thailand, and the typical macro- and micro-morphological characteristics indicate that they are of the *Paraisaria* species. The multigene phylogenetic analysis of LSU, SSU, TEF1-α, RPB1, RPB2, and ITS confirmed their placement within *Paraisaria* as three distinct new species.

MATERIALS AND METHODS

Sample Collection, Isolation, and Morphological Studies

In this study, a total of four fungal specimens were collected. One specimen (HKAS 102484) was collected from Krabi Province in Thailand on an adult cricket. Two specimens (HKAS 102553 and HKAS 102552) on dead larvae of *Lepidoptera sp.* were collected from Guizhou Province of China. One specimen (HKAS 102546) was collected from Yunnan Province in China on *Coleoptera sp.* larva. Among them, the hosts of specimens...
HKAS 102484, HKAS 102553 and HKAS 102552 were found completely immersed into soil with the stroma protruding from the ground in a forest. Specimen HKAS 102546 was found in a similar condition, but differed in that it was found under a karst stone formation. Macro-morphological characteristics of fresh collections were recorded with a camera (iPhone XS Max) in the field and then the specimens were transported to the laboratory in plastic boxes for subsequent studies. The culture of the specimen HKAS 102546 was created by transferring a small mass of mycelium inside the body of the host into potato dextrose agar (PDA, 1% w/v peptone) using a burned needle and incubated at room temperature (25°C). The pure culture was stored in twice-sterilized water, 15% glycerinum solution and PDA medium, and deposited in the KUMCC culture collection of the Kunming Institute of Botany (KIB), Chinese Academy of Sciences (CAS). The fruiting bodies were dried with allochroic silica gel and deposited in KUN herbarium of KIB. Facesoffungi numbers were registered as outlined in Jayasiri et al. (2015).

The fresh fruiting bodies were examined and hand-sectioned under an Optec SZ660 stereo dissecting microscope. The key fungal structures viz. ascomata, perithecia, peridium, asci and ascospores were mounted in sterilized water or cotton blue solution slides and observed and photographed using a compound microscope (Nikon ECLIPSE Ni) with a digital camera (Canon EOS 600D) fitted on to the top of the microscope. The important fungal structures were measured with the Tarosoft (R) Image Frame Work program and the images used were processed with Adobe Photoshop CS3 Extended v. 10.0 (Adobe®, San Jose, CA, United States).

DNA Extraction, PCR Amplification, and Sequencing

The total DNA was extracted from stromal tissue of specimens HKAS 102552, HKAS 102553, HKAS 102484 and from fresh mycelium of KUMCC 20-0001 (ex-type culture of isolate HKAS 102546) using DNA extraction kit (Omega Fungus Genomic DNA Extraction Kit, China), following the protocol of the manufacturer. The obtained DNA was stored at −20°C in a refrigerator. The PCR amplification was performed in 25 µL volumes consisting 12.5 µL PCR mixture (2 × Taq PCR Master Mix, red dye) which contains Taq DNA polymerase, dNTPs, MgCl₂, a reaction buffer, a PCR reaction enhancer, an optimizer and stabilizer, 8.5 µL of twice-sterilized water, 1 µL of each primer and 2 µL of 30 µg/µL DNA template. The internal transcribed spacer (ITS1-5.8S-ITS2, ITS), large subunit ribosomal RNA (LSU rRNA), small subunit ribosomal RNA (SSU rRNA), translation elongation factor 1-alpha gene (TEF1-α) and RNA polymerase II largest subunit (RPB1) and RNA polymerase II second largest subunit (RPB2) were amplified with the primers and procedures mentioned in Table 1. The PCR products were sent to Tsingke company, Yunnan Province, China, for sequencing the above genes. The generated sequences were submitted to GenBank, and the accession numbers have been shown in Table 2.

TABLE 1 | Gene and primers used in the phylogenetic analyses.

Gene (reference)	Primer	Sequences	PCR condition						
LSU (Vigalys and Hester, 1990)	LROR	ACCGCCTGAACTTAAGC	(1) Initialization at 94°C for 3 min. (2) 40 cycles of denaturation at 94°C for 45 s, annealing at 56°C for 50 s, and extension at 72°C for 1 min. (3) Final elongation at 72°C for 10 min. (4) Storage at 4°C.						
SSU (White et al., 1990)	NS1	GTAGTCATATGGCTTGTC							
	NS4	CTCCGTCATATCTCGTAA							
ITS (White et al., 1990)	ITS4	TCCTCGCCTATTGATAGC							
	ITS5	GGAAGTAAAAGTCGTAACAAGG							
RPB1 (Castlebury et al., 2004)	CPRB1Af	CAYCCWGGYTYATCAAGAA							
TEF1-α (Rehner and Buckley, 2005)	983F	GCYCCYGGHCAVCGTGAAYT							
	2218R	ATGACACCRACRGCRACRGTYTG							
RPB2 (Liu et al., 1999; Sung et al., 2007b)	RPB2-5F	GAYGAYMGWAGATAYTGYGG							
	RPB2-7cR	CCCATRGGCTTGYRCCCAT							
Species	Specimen number	SSU	LSU	TEF1-α	RPB1	RPB2	ITS	References	
------------------------	-----------------	----------	----------	----------	-----------	-----------	----------	-------------------------------	
Ophiocordyces highlandensis	HKAS 83206	KMS81282	–	–	KMS81274	KMS81278	–	Yang et al., 2015	
Ophiocordyces highlandensis	HKAS 83207	KMS81284	–	–	KMS81276	KMS81280	–	Yang et al., 2015	
Ophiocordyces konnoana	EFCC 7295	EF468958	–	–	EF468862	EF468915	–	Araújo et al., 2018	
Ophiocordyces konnoana	EFCC 7315	EF468969	–	EF468753	EF468861	EF468916	–	Araújo et al., 2018	
Ophiocordyces melolonthae	OSC 110993	DQ522548	DQ518762	DQ522331	DQ522376	–	–	Sung et al., 2007a	
Ophiocordyces melolonthae	Ophgrc679	–	KC610768	K610744	K658666	–	–	Araújo et al., 2018	
Ophiocordyces nigrella	EFCC 9247	EF468963	EF468818	EF468758	EF468866	EF468920	–	Araújo et al., 2018	
Ophiocordyces ravenelli	OSC 110995	DQ522550	DQ518764	DQ522334	DQ522379	DQ522430	–	Araújo et al., 2018	
Ophiocordyces ravenelli	OSC 151914	KJ878932	–	KJ878978	KJ879012	KJ878950	–	Araújo et al., 2018	
Ophiocordyces superficialis	MICH 36253	EF468983	–	–	EF468883	–	–	Sung et al., 2007a	
Ophiocordyces variabilis	ARSEF 5365	DQ522555	DQ518769	DQ522340	DQ522386	DQ522437	–	Araújo et al., 2018	
Ophiocordyces variabilis	OSC 110003	EF468985	EF468839	EF468779	EF468885	EF468933	–	Araújo et al., 2018	
Paraisaria alba	HKAS 102484	MN943843	MN943839	MN92085	MN92078	MN92082	MN947219	This study	
Paraisaria amazonica	HUA 186143	KJ917562	KJ917571	KM411989	KP212902	KM411982	–	Ban et al., 2015	
Paraisaria amazonica	HUA 186113	KJ917566	KJ917572	–	KP212903	KM411980	–	Ban et al., 2015	
Paraisaria arctica	HKAS 102553	MN943845	MN943841	MN92087	MN92080	MN92083	MN947221	This study	
Paraisaria arctica	HKAS 102552	MN943844	MN943840	MN92086	MN92079	MN92083	MN947220	This study	
Paraisaria blattariae	HUA186093	KJ917559	KJ917570	KM411992	KP212910	–	–	Ban et al., 2015	
Paraisaria blattariae	HUA 186108	KJ917558	KJ917569	–	KP212912	KM411984	–	Ban et al., 2015	
Paraisaria coenomyiae	NBRC 106964	AB968385	AB968413	A968571	–	AB968533	AB968397	Ban et al., 2015	
Paraisaria coenomyiae	NBRC 108903	AB968384	AB968412	AB968570	–	AB968532	AB968396	Ban et al., 2015	
Paraisaria gracilioides	HUA 186095	KJ917556	–	KM411994	KP212914	–	–	Li et al., 2004	
Paraisaria gracilioides	HUA 186092	KJ917555	KJ130992	–	KP212915	–	–	Mongkolsamrit et al., 2019	
Paraisaria gracillus	EFCC 3101	EF468955	EF468810	EF468750	EF468858	EF468913	–	Araújo et al., 2018	
Paraisaria gracillus	EFCC 8572	EF468956	EF468811	EF468751	EF468859	EF468912	–	Araújo et al., 2018	
Paraisaria heteropoda	OSC 106404	AY489690	AY489722	AY489617	AY489651	–	–	Araújo et al., 2018	
Paraisaria heteropoda	EFCC 10125	EF468957	EF468812	EF468752	EF468860	EF468914	J0049852	Araújo et al., 2018	
Paraisaria orthopteronum	BBC 88305	–	MK332583	MK214080	MK214084	–	MH754742	Mongkolsamrit et al., 2019	
Paraisaria orthopteronum	TBRC 9710	–	MK332582	MK214081	MK214085	–	MH754743	Mongkolsamrit et al., 2019	
Paraisaria phuwiangensis	BBH 43491	–	MK192058	–	MH211351	–	MH188542	Mongkolsamrit et al., 2019	
Paraisaria phuwiangensis	TBRC 9709	–	MK192057	MK214082	MK214086	–	MK192015	Mongkolsamrit et al., 2019	
Species	Specimen number	SSU	LSU	TEF1-α	RPB1	RPB2	ITS	References	
-------------------------	-----------------	-------	-------	--------	----------	----------	---------------	---------------------------------	
Paraisaria phuwiangensis	BBH 43492	–	MH201169	MH211355	MH211352	–	MH188541	Mongkolsamrit et al., 2019	
Paraisaria rosea	HKAS 102546	MN943846	MH290088	MH290081	MH290084	MN947222	This study		
Paraisaria tettigonia	GZUH CS14062709	KT345955	–	KT375440	KT375441	–	KT345954	Wen et al., 2016	
Paraisaria yodhatrai	BBH 43163	–	MH211353	MH211349	–	MH188539	Mongkolsamrit et al., 2019		
Paraisaria yodhatrai	TBRC 8502	–	MH211354	MH211350	–	MH188540	Mongkolsamrit et al., 2019		
Polycyphalomyces formosus	ARSEF 1424	KF049615	KF049634	KF049689	KF049651	KF049671	KF049661	Xiao et al., 2018	
Polycyphalomyces nipponicus	BCC 2325	KF049622	KF049640	KF049696	KF049655	KF049677	KF049665	Xiao et al., 2018	
Polycyphalomyces ramosopulvinatus	FCC 5566	KF049627	KF049640	KF049696	KF049655	KF049677	KF049665	Xiao et al., 2018	
Polycephalomyces ramosus	MFLU 18-0162	MK863043	MK863050	–	–	–	MK863250	Xiao et al., 2018	
Purpureocillium lilacinum	CBS 284.36	–	–	–	EF468792	EF468898	–	AY624189	Mongkolsamrit et al., 2019
Purpureocillium lilacinum	CBS 431.87	–	EF468844	EF468791	EF468897	–	AY624188	Mongkolsamrit et al., 2019	
Purpureocillium takamizusanensis	NHJ 3497	EU369096	EU369033	EU369014	EU369053	EU369074	–	Sung et al., 2007a	
Tolypocladium capitatum	NBRC 106327	JN941737	JN941404	–	JN992471	–	JN943317	Mongkolsamrit et al., 2019	
Tolypocladium inflatum	CBS 567.84	–	MH873477	–	–	–	MH861779	Mongkolsamrit et al., 2019	
Tolypocladium inflatum	CBS 127142	–	MH875875	–	–	–	MH864435	Mongkolsamrit et al., 2019	
Tolypocladium japonicum	OSC 110991	DQ522547	DQ518761	DQ522330	DQ522375	DQ522428	JN049824	Mongkolsamrit et al., 2019	
Tolypocladium ophioglossoides	NBRC 106331	JN941733	JN941408	–	JN992467	–	JN943320	Mongkolsamrit et al., 2019	
Drechmeria gunni	OSC 76404	AF339572	AF339522	AY489616	AY489650	DQ522426	JN049822	Mongkolsamrit et al., 2019	
Drechmeria balanoides	CBS 250.82	AF339588	AF339539	DQ522342	DQ522388	DQ522442	MH861495	Mongkolsamrit et al., 2019	
Harposporium anguillae	ARSEF 5407	–	AY636080	–	–	–	–	Mongkolsamrit et al., 2019	
Harposporium anguillae	ARSEF 5593	–	AY636081	–	–	–	–	Mongkolsamrit et al., 2019	
Harposporium helicoides	ARSEF 5354	AF339577	AF339527	–	–	–	–	Mongkolsamrit et al., 2019	
Perennicordyceps prolifica	NBRC 100744	JN941709	JN941432	–	JN992443	–	–	Mongkolsamrit et al., 2019	
Perennicordyceps prolifica	NBRC 101750	JN941708	JN941433	–	JN992442	–	JN943340	Ban et al., 2009	
Perennicordyceps prolifica	NBRC 103838	JN941707	JN941434	–	JN992441	–	JN943339	Ban et al., 2009	
Perennicordyceps cuboides	NBRC 100941	–	AB378646	–	–	–	AB378666	Ban et al., 2009	
Perennicordyceps cuboides	NBRC 101742	–	AB378648	–	–	–	AB378667	Ban et al., 2009	
Cordyceps militaris	OSC 93623	AY184977	AY184966	DQ522332	DQ522377	–	JN049825	Kepler et al., 2013	
Cordyceps kyusensis	EFCC 5886	EF468960	EF468813	EF468754	EF468863	EF468917	–	Kepler et al., 2013	

The new species generated in this study are in black bold.
Sequence Alignment and Phylogenetic Analyses

The generated sequences were assembled with Sequencing Project Management (SeqMan) (Clewley, 1995). The sequences for the combined alignment were selected based on the blast results of LSU, SSU, ITS, TEF, RPB1, and RPB2 as well as the recent references listed in Table 2. The individual gene alignment was aligned in MAFFT v. 7 web server1 (Kuraku et al., 2013; Katoh et al., 2019). The alignments of each locus were improved by manually removing uninformative gaps and ambiguous regions using BioEdit v. 7.0.9.1 (Hall, 1999) and were concatenated in Sequence Matrix v. 1.7.8 (Vaidya et al., 2011). The final combined alignment was converted to a NEXUS file (.nex) with ClustalX2 v. 1.83 (Thompson et al., 1997) and was used for Bayesian inference (BI) analysis and Maximum parsimony analysis (MP). The optimum nucleotide substitution model of each gene was selected by MrModeltest v.2.3 (Nylander, 2004) using the Akaike information criterion (AIC) method and was applied to Bayesian inference (BI) analysis that was performed using MrBayes on XSEDE (2.2.7a) (Ronquist and Huelsenbeck, 2003) on CIPRES Science Gateway2. The Bayesian posterior probability (BYP) was estimated by the Markov Chain Monte Carlo (MCMC) technique. Six simultaneous Markov Chains were run for 2,000,000 generations with sampling every 1,000 generation. The first 25% of sampled trees were discarded during the burn-in period. Maximum likelihood analysis was carried out using RAxML-HPC2 on XSEDE (8.2.10) in CIPRES Science Gateway2. The Bayesian posterior probability (BYP) was estimated by the Markov Chain Monte Carlo (MCMC) technique. Six simultaneous Markov Chains were run for 2,000,000 generations with sampling every 1,000 generation. The first 25% of sampled trees were discarded during the burn-in period. Maximum likelihood analysis was carried out using RAxML-HPC2 on XSEDE (8.2.10) in CIPRES Science Gateway V. 3.3 (Miller et al., 2010), with default algorithm and bootstrap iterations were set to 1,000 and substitution model was set to GTRGAMMA + I. Maximum parsimony analysis was implemented in PAUP v. 4.0b10 (Swofford, 2002) through heuristic search with 1,000 random replicates of stepwise addition and tree-bisection-reconnection (TBR) of branch-swapping algorithm. Gaps were treated as missing data and max trees was set to 1,000. Branches collapsed when minimum branch length was zero. The consistency index (CI), retention index (RI), rescaled consistency index (RC) and homoplasy index (HI) were calculated for the maximum parsimony tree. For the delimitation of new species based on nucleotide comparison, we follow the suggestion of Jeewon and Hyde (2016).

The tree topologies were visualized in FigTree v1.4.0 (Rambaut, 2006) and edited in Microsoft power point (2016) and Adobe Photoshop CS3 Extended v. 10.0 (Adobe3, San Jose, CA, United States). The final alignment and trees were submitted to TreeBASE with submission number 256644.

RESULTS

Phylogenetic Analyses

Phylogenetic analyses were constructed with combined LSU, SSU, TEF1-α, RPB1, RPB2, and ITS sequences data of 58 representative taxa in Ophiocordycepipitaceae. Trees were rooted to Cordyceps militaris (OSC 93623) and C. kyusyuensis (EFCC5886) in Cordycipitaceae. The alignment contains 5239 characters, including gaps (LSU: 918, SSU: 1027, TEF1-α: 906, RPB1: 664, RPB2: 1024, ITS: 700). Parsimony analysis of this dataset produced the 20 most parsimonious trees of 4833 steps in length, of which 3436 characters were constant, 380 variable characters parsimony-uninformative and 1423 characters parsimony-informative. The first parsimonious tree was represented as the best tree, with CI = 0.549, RI = 0.777, RC = 0.426 and HI = 0.451. The RAxML analysis of the combined dataset yielded a best scoring tree with a final ML optimization likelihood value of −30766.070218. The matrix had 2305 distinct alignment patterns, with 41.28% undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.236752, C = 0.277080, G = 0.283017, T = 0.203151; substitution rates AC = 1.485223, AG = 3.851975, AT = 0.915108, CG = 1.456245, TC = 0.277080, GC = 0.283017, TG = 0.203151; substitution rates AC = 1.485223, AG = 3.851975, AT = 0.915108, CG = 1.456245, CT = 6.890167, GT = 1.000000; gamma distribution shape parameter α = 0.465094.

In the phylogenetic analyses (Figure 1), eight genera are included in Ophiocordycipitaceae labeled on the tree. With the exception of Ophiocordyceps, the other remaining genera are monophyletic and individually they received strong statistical support. The three novel entomopathogenic fungi grouped with the taxa in Paraisaria with significant statistical support (1.00 PP/100% ML/98% MP). Paraisaria alba (HKAS 102484) constitutes a sister phylogenetic affiliation to P. yodhathaii with 0.96 PP/98% MP statistical support. Paraisaria rosea (HKAS 102546) is closely related to P. amazonica and P. blattariaoides, but this is statistically not supported in all three formats. Two strains of P. arcta grouped as an intermediate clade with close phylogenetic connection to P. coenomyiae, P. gracilioides, and P. heteropoda.

Taxonomy

Paraisaria alba D. P. Wei and K. D. Hyde, sp. nov.

Figure 2

Etymology: alba refers to the white fertile head.

MycoBank number: MB 833999

Facesoffungi number: FoF 07239

Parasitic on an adult cricket (Orthoptera). Sexual morph: Stroma up to 26 mm in tall, single, unbranched, growing from the flank of the host. Fertile head 3.5 mm in diam., globose, white when fresh, yellow brown when dry. Stipe 22.5 × 1.2 mm, slightly flexuous, fleshy, white, glossy, not hollow. Perithecia 200–500 × 100–220 (X̄ = 325 × 145, n = 20) μm, immersed, ovoid. Ascii 160–250 × 2.5–5 (X̄ = 200 × 3.5, n = 10) μm, unitunicate, hyaline, narrow cylindrical, attenuated toward the base, with thickened cap. Peridium 10–40 (X̄ = 20, n = 30) μm in thick, comprising hyaline, thick-walled cell of textura angularis. Apical cap 4.6–7.4 × 3.2–4.9 (X̄ = 6 × 3.8, n = 30) μm, with a narrow tunnel throughout the center. Ascospores filiform, equal to the asci in length, when mature, breaking into numerous secondary ascospores. Secondary ascospores 3–5 × 0.5–1.5 (X̄ = 4 × 1, n = 30) μm, cylindrical, hyaline, smooth, one-celled, straight, with truncated ends.
Figure 1 | Phyllogram generated from maximum likelihood analysis based on combined LSU, SSU, TEF1-α, RPB1, RPB2, and ITS sequence data. Bootstrap values for BI equal to or higher than 95%, ML and MP equal to or greater than 60% are placed on the notes. The newly generated sequences are indicated in blue bold. The host order of Parasaria species and the generic names are labeled in the right side.
Material examined

Thailand, Krabi, Plai Phraya (N: 8°24′410″, E: 98°45′34″). On an adult cricket, 20 December 2018, Deping Wei, 211-1 (HKAS 102484–holotype). We tried to culture *P. alba* by transferring a small piece of inner stroma tissue into a PDA medium using a sterilized needle, but growth was not observed.

Notes

The multigene phylogenetic analysis showed that *P. alba* groups with *P. yodhathaii* with fairly good statistical support (0.96 PP/98% MP, Figure 1). This relationship is, however, not supported by the ML analysis. *Paraisaria alba* differs from *P. yodhathaii* in having solitary stroma, a white fertile head, and smaller perithecia, asci and secondary ascospores, whereas *P. yodhathaii* has paired stromata, grayish yellow fertile head, larger perithecia and larger asci and secondary ascospores (Table 3). The comparison of the nucleotide sequences between *P. alba* and *P. yodhathaii* show 10 (including 6 gaps) out of 410 bp (2.4%), 6 out of 746 bp (0.8%), 5 out of 881 bp (0.56%) and 8 out of 534 bp differences (1.5%) in ITS, LSU, TEF-1α,
TABLE 3 | Synopsis of *Pараисария* species discussed in this study.

Species	Host	Distribution	Stroma (mm)	Fertile part (mm)	Perithecia (µm)	Asci (µm)	Part-ascospores (µm)	Asexual morphs
P. alba	Adult cricket	Thailand: Krabi Province	Solitary, 26 long	Globose, white, 3.5 in diam.	Ovoid, 200–500 × 100–220	160–250 × 2.5–5	3–5 × 0.5–1.5	Absent
	Adult or imago of	Colombia and Ecuador	Gregarious, 20–45 long	Subglobose to spherical, reddish brown, 2.5–5	Ovoid-ellipsoidal, 760–1100 × 220–400	325–450 × 5	9–17 × 0.5–2	Absent
P. amazonica	*P.* alba	Colombia and Ecuador	Gregarious, 20–45 long	Subglobose to spherical, reddish brown, 2.5–5	Ovoid-ellipsoidal, 760–1100 × 220–400	325–450 × 5	9–17 × 0.5–2	Absent
P. arcta	Larva of Lepidoptera	China: Guizhou Province	Solitary, 16 long	Subglobose with constriction at center, white, 2 × 3	Ampulliform to ellipsoidal, 230–530 × 70–180	100–180 × 2–4	2.6– 4.2 × 0.5–1.3	Absent
P. blattioides	Adult of Blattaria	Belize, Colombia and Ecuador	Gregarious, 14–20 long	Ovoid, subglobose, chestnut brown, 2–3 × 1.5–2.5	Ellipsoidal, 650–800 × 220–300	180–250(–300) × 4–5	6–16 × 1.5	Absent
P. coenomyiae	Larva of Coenomyia	Japan	Solitary, 30–35 long	Ovoid, subglobose, chestnut brown, 8 × 10	Lanceolate, 700–750 × 200–220	500–750 × 7.8–8.0	8–15 × 1.8–2.5	Absent
P. graciloides	Larva of Elateridae	Bolivia, China,	Usually solitary, 20–90 long	Spherical, pale rufous, 4–5.5	Ellipsoidal to naviform, 680–900 × 200–280	450–700 × 5 × 6.5	7–12 × 1–2	Present
		Colombia, Japan and Mexico						
P. gracilis	Larva of Hespaliae	Africa, America, Asia,	Usually solitary, 40– 90 long	Globose to ellipsoidal, red ochreous to pale orange, 4–9 × 4–7	Elongate to oviform, (320–)560–840 × 200–360	(200–)400–528 × 5–8	5–9 × 1.5–2	Present
		Europe, and Oceania						
P. heteropoda	Nymph of Cicadidae	Australia, Japan	Solitary, 120 long	Ovoid, cinnamon buff, 7–9 × 6–7	Ellipsoidal, 610–660 × 210	250–300 × 5.2–7	6–7.7 × 0.9–1	Present
P. myrmicarum	Myrmica rubra	United Kingdom	–	–	–	–	–	Present
P. orthopterorum	Nymph of Orthoptera	Thailand: Trat Province	Solitary, 10–45 long	Globose, gray orange, 2–4 × 3	Obclavate, 520–650 × 150–250	400 × 5	5–10 × 1–1.5	Present
P. phuwiangensis	Larva of Elateridae	Thailand: Khon Kaen Province	Solitary, 30–50 long	Globose to subglobose, light brown, 4–8 × 4–7	Oleniglycose, 800–1200 × 300–380	500 × 3–5	5–10 × 1–2	Present
P. rosea	Larva of Coleoptera	China: Yunnan Province	Solitary, 14.5 long	Subglobose, pale pink, 4.5 × 4	Ampulliform, 500–900 × 150–350	230–390 × 3.5–6	4–11 × 1.5–2.5	Present
P. tettigonia	Adult of Tettigonia	China: Guizhou Province	Paired, 32.5–37.5 long	Globose, white, 2–2.5	Elongated to ampulliform, 520–680 × 205–275	530–615 × 6.5–9.3	6.7–9.4 × 1.5–2.3	Absent
P. yodhathai	Larva of Elateridae	Thailand: Khon Kaen	Gregarious, 20–35 long	Globose to subglobose, grayish yellow, 2–4 × 2–5	Obclavate, 650–800 × 160–250	480 × 5–6	5–10 × 1–2	Present

The new species generated in this study are in **bold**.'
Paraisaria arcta D. P. Wei and K. D. Hyde, sp. nov.

Etymology: *arcta* refers to the constricted fertile head.

Paraisaria arcta (HKAS 102553, holotype).

Parasitic on larva of Lepidopteran larva. **Sexual morph:**

Stroma 16 mm long, single, arising from the mouth of host larva. *Fertile head* 2 mm long, 3 mm wide, white, nearly globose, constricted at the center, with sticky and crystal-like substance on the surface. *Stipe* 14 mm long, 2 mm wide, straight, fleshy, white, glossy. *Perithecia* 230–530 × 70–180 (\(\bar{x} = 387 \times 113, n = 20 \)) \(\mu \)m, completely immersed, ampulliform to ellipsoid. *Peridium* 14–20 (\(\bar{x} = 17, n = 30 \)) \(\mu \)m wide, composed of hyaline, thick-walled, smooth-walled cells of *textura angularis*. *Asci* 100–180 × 2–4 \(\mu \)m (\(\bar{x} = 137 \times 2.9, n = 15 \)), unitunicate, hyaline, narrow cylindrical,
tapering toward the base, 8-spored, with thickened cap. Apical cap 3.5–4.5 × 2–3.6 μm thick (X = 4 × 2.8, n = 20), with a narrow tunnel throughout the center. Ascospores hyaline, narrow filiform, equal to the asci in length, when mature, breaking into numerous secondary ascospores. Secondary ascospores 2.6–4.2 × 0.5–1.3 μm (X = 3.3 × 0.9, n = 60), cylindrical, with truncated ends, hyaline, smooth, one-celled, straight.

Material examined
China, Guizhou Province, Qianxinan Buyei and Miao Autonomous Prefecture, Ceheng County, Gaofeng Village (N: 24°57′33″, E: 105°50′1″), on dead larva of Lepidoptera sp., 6 August 2018, Deping Wei, GFC604 (HKAS 102553 – holotype); GFC603 (HKAS 102552 – paratype). The culturing of P. arcta was tried by transferring a mass of mycelium found inside body of the larva host to a PDA medium using a sterilized needle. However, mycelium growth was not observed.

Notes
Parasaria arcta resembles P. alba found in Krabi Province, Thailand and P. tettigonia discovered in Guizhou Province, China in having white fertile heads but differs from P. alba in its associated host and number of stromata are distinct from P. tettigonia (Wen et al., 2016). Parasaria arcta can also be distinguished from the other species in Parasaria by the color and shape of its fertile head. A conspicuous ravine throughout the center of the fertile head is present in P. arcta, which is lacking in the other species in this genus. The detailed comparisons are shown in Table 3. Multigene phylogenetic analysis showed P. arcta constitutes a distant clade from other species in Parasaria, with strong statistical support (100% ML, 100% MP, 1.00 PP, Figure 1). Herein, we introduce this collection as a new species of Parasaria.

Parasaria rosea D. P. Wei and K. D. Hyde, sp. nov. Figures 4, 5
Etymology: rosea refers to its pink fertile head.
MycoBank number: MB834001
Facesoffungi number: FoF 07241
Parasitic on a larva of Coleoptera. Host buried in the soil, with the stroma erumpent from the ground. Sexual morph: Stroma up to 14.5 mm long, laterally emerging from the middle part of the larva body, simple, erect. Fertile head 4.5 × 4 mm, subglobose, pale pink at top and paler toward the base when fresh, pale yellow-brown when dry. Stipe 10 × 1.5 mm, white, straight, unbranched, glossy, cylindrical, inside not hollow. Perithecia 500–900 × 150–350 (X = 762 × 256, n = 30) μm, completely immersed, ampulliform, ostiolate. Peridium 9–15 (X = 12, n = 30) μm wide, composed of hyaline, thick-walled cells of textura angularis to textura globulosa to textura prismatica. Asci 230–390 × 3.5–6 (X = 280 × 5, n = 15) μm, hyaline, cylindrical, unistinate, eight-spored, possessing a prominent apical cap. Apical cap 5–7 × 2–6 (X = 6 × 4, n = 20) μm, with a conspicuous tunnel throughout the center. Ascospores filiform, hyaline, breaking into secondary ascospores when mature. Secondary ascospores 4–11 × 1.5–2.5 (X = 7.5 × 2, n = 30) μm, hyaline, cylindrical with truncate ends, smooth-walled, asceptate. Asexual morph: Hyphomycetous.

Synnemata producing from the center of culture after 16 months incubation in dark environment, composed of loose, septate hyphae, white, filamentous, aerial, straight, branched, fasciculate, bearing shining droplets and conidiophores. Mycelium 2.4–3.7 (X = 3, n = 10) μm in wide, septate, hyaline, smooth-walled. Conidiophores 33–48 (X = 41, n = 10) μm in height, irregularly differentiate from the synnemata, sparse, gregarious, branched. Phialides 5.8–11.5 × 3–5.5 (X = 8.6 × 4, n = 30) μm, ampulliform, 1-necked, hyaline, asceptate, enteroblastic, phialidic, monophialidic. Conidia 8–12 × 2–2.6 (X = 9.8 × 2.3, n = 50) μm, hyaline, cylindrical, smooth-walled, asceptate, with round ends.

Culture characteristics
Culture was made from mycelium inside body of the host larva, slowly growing on PDA, reaching 1.3 cm in diam after incubated at room temperature (25°C) for 50 days, convex, dense, with undulate edges, smooth surface become filamentous after forming aerial synnemata. The shooting conidia land on the surrounding culture and develop new colonies.

Material examined
China, Yunnan Province, Kunming, Western hill Park (N: 24°57′28″, E: 102°38′17″), on larva of Coleoptera sp. buried in soil, 27 July 2018, Deping Wei, XS2712 (HKAS 102546 – Holotype); (KUMCC 20-0001 – ex-type living culture).

Notes
Parasaria rosea is closely related to P. amazonica and P. blattarioides, without any statistical support (Figure 1). However, P. rosea can be distinguished from these related species based on the number of stromata, the color of the fertile head and the size of asci and secondary ascospores (Table 3). The ITS sequence of P. amazonica and P. blattarioides are not available in GenBank database; the nucleotide differences in the TEF1-α, RPB1 and RPB2 region between P. rosea and the two above species are greater than 1.5% (Table 4). Thereby, we introduced P. rosea as a new species in this genus based on the distinctive morphology and molecular support.

DISCUSSION
The sexual morph of Parasaria species phenotypically share an erect or slightly flexuous, cylindrical, colorless, fleshy stipe that terminates in a subglobose to globose fertile head and completely immersed perithecium. Asci are cylindrical with a thickened apical cap. Ascospores are hyaline, multi-septate and usually break into numerous cylindrical, truncated fragments at maturity. However, they can be distinguished according to their associated host, the number of stroma and the color of the fertile head. Species in this genus usually infect several stages of insects, such as larvae of Coleoptera, Diptera, and Lepidoptera; nymphs of Hemiptera and Orthoptera; or adults of Dictyoptera, Hymenoptera (ant) and Orthoptera (Evans et al., 2010; Sanjuan et al., 2015; Mongkolsamrit et al., 2019). According to the number of stromata, species of Parasaria can be divided into three groups: solitary stroma, paired stromata and multiple stromata (see the key below). The shape of their fertile head features little variation,
though differing in color, ranging from white, pale pink, pale rufous, red ochreous to pale orange, chestnut, cinnamon buff, grayish, reddish brown to dark brown (see Table 3).

The asexual morphs of this genus are known in eight species, viz. *P. myrmicarum* (Evans et al., 2010), *P. gracilis* (Samson and Brady, 1983), *P. gracioloides* (Li et al., 2004), *P. rosea* (this study), *P. heteropoda*, *P. orthopterorum*, *P. phuwiangensis*, and *P. yodhathaii* (Mongkolsamrit et al., 2019). Their conidiophores are irregularly branched and generally develop from white, rope-like synnemata. Their phialides are flask-shaped, with a swollen base and narrow neck. Most species produce only one neck from the terminal phialides. Some species, e.g., *P. gracilis*, *P. gracioloides*, *P. myrmicarum* and *P. orthopterorum* produce 1–4 necks per phialides. Their conidia are cylindrical or ellipsoid or fusiform. Some species, e.g., *P. orthopterorum* and *P. yodhathaii* have both cylindrical and fusiform forms of conidia (Mongkolsamrit et al., 2019).

Sung et al. (2007a) have concluded that multi-gene phylogeny gave more deeper understanding of phylogenetic relationships of *Cordyceps* and Clavicipitaceae than that of single gene. Recently,
FIGURE 5 | Asexual morph of Paraisaria rosea (KUMCC 20-0001, ex-type). (a,d) Upper and lower views of cultures on PDA after 50 days. (b,e) Upper and lower views of cultures on PDA after 16 months incubation in dark environments. (c,f) Enlargement of aerial synnemata produced on culture. (g) Synnema bearing conidiophores. (h–l) Phialides. (m) Conidia. (n,o) Irregularly aggregated conidia. Scale bars: (g) 100 µm, (h–l) 30 µm, (m–o) 5 µm. (h–k,m mounted in cotton blue reagent.).

However, individual gene phylogenies are rarely utilized for identification of species in Paraisaria.

TABLE 4 | The comparison of nucleotide sequences between Paraisaria rosea and two close species.

Species	TEF1-α (bp)	RPB1 (bp)	RPB2 (bp)
Paraisaria amazonica	4.4% (38/862)	5.7% (37/642)	4.3% (31/711)
Paraisaria blattarioides	1.6% (14/862)	2.5% (16/629)	–

Key to the Accepted Species in Paraisaria

1. Host belong to Hymenoptera..............................P. myrmicarum
2. Fertile part colorless....................................3
 3. Fertile part pigmented.....................................4
 4. Fertile part constrict at the center....................P. arcta
 5. Fertile part is not constricted at the center...........5
5. Stromata gregarious...6

the combined LSU-TEF1-α-RPB1 datasets (Mongkolsamrit et al., 2019), combined SSU-LSU-TEF-RPB2 datasets (Ban et al., 2015), and combined SSU-LSU-TEF1-α-RPB1-RPB2 datasets (Quandt et al., 2014; Sanjuan et al., 2015) were allowed for intraspecific and intergeneric identification within Ophiocordycipitaceae.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/genbank/, MN943843, MN943839, MN929085, MN929078, MN929082, and MN947219; https://www.ncbi.nlm.nih.gov/genbank/, MN943845, MN943841, MN929087, MN929080, and MN947221; https://www.ncbi.nlm.nih.gov/genbank/, MN943844, MN943840, MN929086, MN929079, MN929083, and MN947220.

AUTHOR CONTRIBUTIONS

D-PW, DW, and SK: conceptualization. D-PW: data curation. D-PW and DW: formal analysis, methodology, and writing – original draft. SL, ST, and SK: funding acquisition. D-PW and DW: investigation. ST and SK: project administration. KH, J-CX, and PM: supervision. CT-a, AE, SM, ST, SK, KH, J-CX, PM, NS, and SL: writing – review and editing. All authors: contributed to the article and approved the submitted version.

FUNDING

We appreciate Thailand Research Fund (TRF) grant no. DBG6080013 entitled “The future of specialist fungi in a changing climate: baseline data for generalist and specialist fungi associated with ants, Rhododendron species and Dracaena species” for its financial support. We are grateful for the National Science Foundation of China (NSFC) project code 31750110478 for funding the sequencing cost. DW would like to thank CAS President’s International Fellowship Initiative (PIFI) for funding his postdoctoral research (number 2019PC0008) and the 64th batch of China Postdoctoral Science Foundation (grant no. Y913083271). PM and DW thank the National Science Foundation of China for financial support under the following grants: 4176114055 and 41771063. SK thanks CAS President’s International Fellowship Initiative (PIFI) young staff under the grant number: 2020FYC0002 and the National Science Foundation of China (NSFC) for funding this work under the project code 3185110759. ST would like to thank the International Postdoctoral Exchange Fellowship Program (number Y9180822S1), CAS President’s International Fellowship Initiative (PIFI) (number 2020PC0009), China Postdoctoral Science Foundation and the Yunnan Human Resources, and Social Security Department Foundation for funding her postdoctoral research. The authors extend their appreciation to the researchers supporting project number (RSP-2021/56) King Saud University, Riyadh, Saudi Arabia. This work was partly supported by Chiang Mai University.

ACKNOWLEDGMENTS

We acknowledge Kunming Institute of Botany, Chinese Academy of Sciences for providing the laboratories and instruments for molecular work. We appreciate the Centre of Excellence in Fungal Research (Mae Fah Luang University) for providing funding for collecting trips and Dr. Shaun Pennycook is thanked for help in naming the new fungal species. Austin Smith at World Agroforestry (ICRAF), Kunming Institute of Botany, China, is thanked for English editing.

REFERENCES

Araújo, J. P., Evans, H. C., Kepler, R., and Hughes, D. P. (2018). Zombie-ant fungi across continents: 15 new species and new combinations within Ophiocordyceps. I. Myrmecophilous hirsutelloid species. Stud. Mycol. 90, 119–160. doi: 10.1016/j.simyco.2017.12.002

Araújo, J. P., and Hughes, D. P. (2016). Diversity of entomopathogenic fungi: which groups conquered the insect body? Adv. Genet. 94, 1-39. doi: 10.1016/bs.adgen.2016.01.001

Aung, O., Soytong, K., and Hyde, K. D. (2008). Diversity of entomopathogenic fungi in rainforests of Chiang Mai Province, Thailand. Fungal Divers. 30, 15–22.
Clewley, J. P. (1995). Macintosh sequence analysis software. *Mol. Biotechnol.* 3, 221–224. doi: 10.1007/bf02789332

Evans, H. C., Groden, E., and Bischoff, J. F. (2010). New fungal pathogens of the red ant, *Myrmica rubra*, from the UK and implications for ant invasions in the USA. *Fungal Biol.* 114, 451–466. doi: 10.1016/j.funbio.2010.03.007

Fernández-Grandon, G. M., Ewany, J. E., Bray, D., and Stevenson, P. C. (2020). Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. *Plants* 9:173. doi: 10.3390/plants9020173

Hall, T. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. *Nucleic Acids Symp. Ser.* 41, 95–98.

Hennings, P. (1904). Fungi amazonici II. a cl. Ernesto Ule collecti. *Hedwigia* 84, 246–249.

Huang, Y. S., Wang, X., Feng, Z., Cui, H., Zhu, Z., Xia, C., et al. (2020). *Cordyceps* heteropoda: a new entomopathogenic fungus from the Amazon and evolution of Neotropical *Cordyceps* with a new segregate genus *Periconiicordyceps*. *Ascomyce 6*, 125–133.

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). "Creating the CIPRES sciences gateway for inference of large phylogenetic trees," in *Proceedings of the Gateway Computing Environments Workshop (GCE)*, New Orleans LA. 1–8.

Mongkolsumrit, S., Noisripoom, W., Arnamnart, N., Lamlertthon, S., Himaman, W., Jangsantee, P., et al. (2019). Resurrection of *Paraisaria* in the *Ophiocordycipitaceae* with three new species from Thailand. *Mycol. Prog.* 18, 1213–1230. doi: 10.1007/s11557-019-01518-x

Mora, M. A. E., Castilho, A. M. C., and Fraga, M. E. (2017). Classification and infection mechanism of entomopathogenic fungi. *Arch. Inst. Biol.* 84, 1–10. doi: 10.1590/1808-1657000552015

Nylander, J. A. A. (2004). *MrModeltest* v2. *Program Distributed by the Author.* Uppsala: Uppsala University.

Pérez-Villamaría, I., Burrola-Aguilar, C., Aguilar-Míguel, X., Sanjuán, T., and Jiménez-Sánchez, E. (2017). Nuevos registros de hongos entomopatógenos del género *Cordyceps* s. l. (Ascomycota: Hypocreales). del Estado de México. *Rev. Mex. Biodivers.* 88, 773–783. doi: 10.1590/rmb.2017.10.013

Quandt, C. A., Kepler, R. M., Gams, W., Araújo, J. P., Ban, S., Evans, H. C., et al. (2014). Phylogenetic-based nomenclatural proposals for *Ophiocordycipitaceae* (Hypocreales) with new combinations in *Tolypocladium*. *IMA Fungus* 5, 121–134. doi: 10.5398/imafungus.2014.05.12

Rambaut, A. (2006). *FigTree. Tree Figure Drawing Tool Version 1.3.1.* Edinburgh: University of Edinburgh.

Rehner, S. A., and Buckley, E. P. A. (2005). *Beauveria* phylogeny inferred from nuclear ITS and EF-1a sequences: evidence for cryptic diversification and links to *Cordyceps* teleomorphs. *Mycolgia* 97, 84–98. doi: 10.3852/mycologia.97.1.84

Roberts, D. W., and Hajek, A. E. (1992). "Entomopathogenic fungi as biopesticides," in *Frontiers in Industrial Mycology*, ed. G. F. Leatham (Boston, MA: Springer), 144–159. doi: 10.1007/978-1-4684-7112-0_10

Ronquist, F., and Huelsenbeck, J. P. (2003). *MrBayes*: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19, 1572–1574. doi: 10.1093/bioinformatics/btg180

Samson, R. A., and Brady, B. L. (1983). *Parasaria*, a new genus for *Isaria dubia*, the anamorph of *Cordyceps gracilis*. *Trans. Br. Mycol. Soc.* 81, 285–290. doi: 10.1016/s0007-1536(83)80081-3

Samson, R. A., Evans, H. C., and Latgé, J. P. (eds.)(1988). "Taxonomy of entomopathogenic fungi," in *Atlas of Entomopathogenic Fungi*, (Berlin: Springer), 5–16. doi: 10.1007/978-3-662-05890-9_2

Sanjuán, T. J., Franco-Molano, A. E., Kepler, R. M., Spatafora, J. W., Tabima, J., Vasco-Palacios, A. M., et al. (2015). Five new species of entomopathogenic fungi from the Amazon and evolution of Neotropical *Cordyceps*. *Fungal Biol.* 119, 901–916. doi: 10.1016/j.fbiol.2015.06.010

Scholte, E. J., Knols, B. G., Samson, R. A., and Takken, W. (2004). Entomopathogenic fungi for mosquito control: a review. *J. Insect Sci.* 4:19. doi: 10.1093/jis/4.1.19

Shah, P., and Pell, J. (2003). Entomopathogenic fungi as biological control agents. *Appl. Microbiol. Biotechnol.* 61, 413–423. doi: 10.1007/s00253-002-0990-5

Shrestha, B., Sung, G. H., and Sung, J. M. (2017). Current nomenclatural changes in *Cordyceps* sensu lato and its multidisciplinary impacts. *Mycology* 8, 293–302. doi: 10.1080/21501203.2017.1386242

Sobczak, J. F., Arruda, J. D. P., Fonseca, E. O., Rabelo, P. I. Q., de Sousa Nóbbrega, F. A., Pires, J. C., et al. (2020). Manipulation of wasp (*Hymenoptera: Vespidae*) behavior by the entomopathogenic fungus *Ophiocordyceps humbertii* in the Atlantic forest in Ceara, Brazil. *Entomol. News* 129, 98–104. doi: 10.31570/entn.129.0115

Spatafora, J. W., Quandt, C. A., Kepler, R. M., Sung, G. H., Shrestha, B., Hywel-Jones, N. L., et al. (2015). New 1F1N species combinations in *Cordyceps*: phylogeny inferred from *Cs-HK1* in cell and animal models. *Int. J. Biol. Macromol.* 69, 1402–1408. doi: 10.1016/j.ijbiomac.2020.02.022

Spatafora, J. W., Quandt, C. A., Kepler, R. M., Sung, G. H., Shrestha, B., Hywel-Jones, N. L., et al. (2015). New 1F1N species combinations in *Cordyceps*: phylogeny inferred from *Cs-HK1* in cell and animal models. *Int. J. Biol. Macromol.* 69, 1402–1408. doi: 10.1016/j.ijbiomac.2020.02.022

Sung, G. H., Hywel-Jones, N. L., Sung, G. H., Luangsaard, J. J., Shrestha, B., and Spatafora, J. W. (2007a). Phylogenetic classification of *Cordyceps* and the clavicipitaceous fungi. *Stud. Mycol.* 57, 5–59. doi: 10.3114/ism.2007.57.01

Sung, G. H., Sung, J. M., Hywel-Jones, N. L., and Spatafora, J. W. (2007). A multi-genotype of *Clavicipitaceae* (*Ascomycota, Fungi*): identification...
of localized incongruence using a combinational bootstrap approach. Mol. Phylogenet. Evol. 44, 1204–1223. doi: 10.1016/j.ympev.2007.03.011
Sung, G. H., Shrestha, B., Han, S. K., and Sung, J. M. (2011). Cultural characteristics of Ophiocordyceps heteropoda collected from Korea. Mycobiology 39, 1–6. doi: 10.4489/myco.2011.39.1.001
Suo, F., Guo, R., Yu, H., Zeng, W., and Yang, J. (2013). Nucleoside/nucleotide components of Ophiocordyceps gracilis and O. sinensis strains from Xinjiang and Tibet. Acta Edulis Fungi 20, 55–60.
Swofford, D. L. (2002). PAUP: Phylogenetic analysis using Parsimony, Version 4.0 b10. Sunderland, MA: Sinauer Associates.
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882. doi: 10.1093/nar/25.24.4876
Vaidya, G., Lohman, D. J., and Meier, R. (2011). Sequence matrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180. doi: 10.1111/j.1096-0031.2010.00329.x
Vega, F. E., Meyling, N. V., Luangsa-ard, J. J., and Blackwell, M. (2012). Fungal entomopathogens. Insect Pathol. 2, 171–220. doi: 10.1016/B978-0-12-384984-7.00006-3
Vilgalys, R., and Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 172, 4238–4246. doi: 10.1128/jb.172.8.4238–4246.1990
Wang, Y., Li, Z. L., Suo, F. Y., and Sun, D. P. (2019). Study of mycelial polysaccharide from Paraisaria dubia of Ophiocordyceps gracilis asexual. China J. Chin. Mater. 44, 1704–1709. doi: 10.19540/j.cnki.cjcmm.20190318.201
Wen, T. C., Xiao, Y. P., Zha, L. S., Hyde, K. D., and Kang, J. C. (2016). Multigene phylogeny and morphology reveal a new species, Ophiocordyceps tettigonia, from Guizhou Province, China. Phytotaxa 280, 141–151. doi: 10.11646/phytotaxa.280.2.4
White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990). "Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics," in PCR Protocols. A Guide to Methods and Applications, eds M. A. Innis, D. H. Gelfaud, J. J. Sninsky, and T. J. White (San Diego, CA: Academic Press), 315–322. doi: 10.1016/B978-0-12-372180-8.50042-1
Wijayawardene, N. N., Hyde, K. D., Lumbsch, H. T., Liu, J. K., Maharachchikumbura, S. S. N., Ekanayaka, A. H., et al. (2018). Outline of Ascomycota: 2017. Fungal Divers. 88, 167–263. doi: 10.1007/s13223-018-0394-8
Xiao, Y. P., Wen, T. C., Hongsanan, S., Jeewon, R., Luangsa-ard, J. J., Brooks, S., et al. (2018). Multigene phylogenetics of Polyccephalomyces (Ophiocordycipitaceae, Hypocreales), with two new species from Thailand. Sci. Rep. 8:18087.
Yang, Z. L., Qin, J., Xia, C., Hu, Q., and Li, Q. Q. (2015). Ophiocordyceps highlandensis, a new species of a medicinal fungus from Yunnan, China. Phytotaxa 204, 287–295. doi: 10.11646/phytotaxa.204.4.5
Ye, X., Suo, F., Lu, S., and Wang, Z. (2015). Effect of Ophiocordyceps gracilis extract on the proliferation of AGS gastric cancer cells. Acta Edulis Fungi 22, 51–54.
Zimmermann, G. (2007). Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci. Technol. 17, 553–596. doi: 10.1080/09583150701309006
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2021 Wei, Wanasinghe, Xu, To-anan, Mortimer, Hyde, Elgorban, Madawala, Suwanarach, Karunarathna, Tiplpromma and Luangyong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.