General Rule and Materials Design of Negative Effective U System for High-T_c Superconductivity

Hiroshi Katayama-Yoshida*, Koichi Kusakabe, Hidetoshi Kizaki, and Akitaka Nakanishi

Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

Received May 30, 2008; accepted July 23, 2008; published online August 8, 2008

Based on the microscopic mechanisms of (1) charge-excitation-induced negative effective U in s^1 or d^9 electronic configurations, and (2) exchange-correlation-induced negative effective U in d^3 or d^5 electronic configurations, we propose a general rule and materials design of negative effective U system in itinerant (ionic and metallic) system for the realization of high-T_c superconductors. We design a T_c-enhancing layer (or clusters) of charge-excitation-induced negative effective U connecting the superconducting layers for the realistic systems.

n order to realize a new-class of high-T_c superconductors, we need to design and realize an itinerant (ionic and metallic) system carrying a large negative effective-correlation energy U (NEU) with $U = E(N + 1) + E(N) - 2E(N) < 0$, where $E(N)$ is a total energy of an N electron system. In addition to both Anderson’s mechanism\(^1\) induced by Jahn–Teller lattice distortion and the exchange-correlation-induced negative effective U (ECI-NEU) mechanism,\(^2\) here, we propose a new microscopic mechanism of NEU caused by charge-excitation-induced NEU (CEI-NEU) from s- to p-orbital, or, d- to s-orbital in an ionic metal. NEU generally leads to a charge-density wave (CDW) by charge disproportionation, or superconductivity (SC) by attractive pairing-interaction, or a spin-density wave (SDW) by an exchange-correlation interaction. In this paper, we propose a general rule on chemical trends for NEU system in order to design a new-class of high-T_c superconductor, which is always competing with a CDW or SDW state.

The total energy $E(N)$ shows normally a convexity due to the repulsive correlation energy ($U > 0$), guaranteeing stability of the N electron system in the thermal equilibrium. If $(N - 1)$ electron system in s^1 (or d^8, or d^9) electronic configuration or $(N + 1)$ electron system in s^2 (or d^{10}, or d^9) electronic configuration becomes more stable than N electron system in s^1 (or d^8, or d^9) electronic configuration by lowering $E(N + 1)$ through mixing of s^2 electronic configuration and charge excited states with p electrons (or d^{10} electronic configuration and charge excited states with s electrons), or through the exchange-energy gain of d^5 electronic configuration,\(^3\) the N electron system in s^1 (or d^8, or d^9) becomes NEU system due to the concavity of $E(N)$.

In \textit{ab initio} calculation, ECI-NEU mechanism is predicted in Si:Cr system\(^4\) and in (Ga,Mn)As system\(^5\) quantitatively. In the reaction of $2s^1 \rightarrow s^0 + s^2$ (or $2d^9 \rightarrow d^8 + d^{10}$, or $2d^8 \rightarrow d^7 + d^9$), we can expect a charge disproportionation and insulating CDW. However, if we can realize an itinerant NEU system upon p- or n-type doping or under the applied ultra-high pressures by destabilizing CDW or SDW, we can stabilize a superconducting state caused by electron pairing through attractive-carrier dynamics.

Indication of NEU system appears as the missing oxidation states in experiments. When we look at a Cr\(^0\) atom, we see the missing state in the $3d^4$ electronic configuration, where $3d^4s^1$ becomes more stable than $3d^4s^2$ due to the exchange-correlation energy gain in d^3. When a free atom is placed in polarizable host materials such as oxides or semiconductors, the Coulomb interaction, responding to long-wave length (mono-pole) screening, is reduced far more than the exchange-correlation interaction (multi-pole screening).\(^4\) This has been demonstrated theoretically and experimentally,\(^5,6\) as is called the Haldane and Anderson mechanism.\(^6\)

Katayama-Yoshida and Zunger\(^7\) proposed that localized centers sustaining local magnetic moment can show NEU behavior, when the exchange (or, in general, many-electron correlation) interactions outweigh the strongly reduced Coulomb repulsions in the covalent materials such as oxides or covalent semiconductors. This NEU mechanism can explain missing oxidation states in chemistry,\(^8,9\) e.g., while both Mn\(^{3+}(d^7)\) and Mn\(^{4+}(d^8)\) are observed in MgO:Mn and CaO:Mn, the Mn\(^{3+}(d^7)\) center is missing;\(^10\) also in (Ga,Mn)As system, the Mn\(^{3+}(d^7)\) center is missing.\(^11\) If we can realize itinerant ECI-NEU system with destabilizing the ferromagnetic SDW, we have a possibility to stabilize the superconducting state in d^4 (or d^9) by ECI-NEU. However, SDW is generally more stable than a superconducting state in Mn\(^{3+}(d^7)\) with large exchange-correlation energy gain in (Ga,Mn)As or perovskite manganites.

Therefore, for $3d$ transition atoms in the condensed matter, we can expect the ECI-NEU in d^4 (or d^9).\(^2\) ECI-NEU causes the missing oxidation state in d^4 (or d^9) through the charge disproportionations or dynamical charge fluctuation mediating even a superconducting state in the reaction of $2d^4 \rightarrow d^3 + d^5$ ($U < 0$) [or, $2d^6 \rightarrow d^5 + d^7$ ($U < 0$)]. The candidates of ECI-NEU system are listed in Table I.

We have another microscopic mechanism of NEU system in s^1 or d^3. Here we may refer to the observed chemical trends of first ($A^0 \rightarrow A^+ + e^-$), second ($A^+ \rightarrow A^{2+} + e^-$), and third ($A^{2+} \rightarrow A^{3+} + e^-$) ionization energies of free atoms in the second, third, fourth, and fifth period in the periodic table. We find that the ionization energy of s^1 for $2s$, $3s$, $4s$, and $5s$-orbitals shows the minimum suggesting instability of s^1, and that s^2 show always the peak suggesting stability of the closed-shell s^2 electronic configuration.\(^12\)

In experiment, the existence of the missing oxidation states of ions such as Ti$^{2+}$($6s^1$), Pb$^{3+}$($6s^1$), Hg$^{2+}$($6s^1$), and Bi$^{4+}$($6s^1$) in the periodic table is well-known.\(^13,14\) These atoms indicate NEU nature, where following charge disproportionation occurs in the insulating compounds;

\(^*\)E-mail address: hiroshi@mp.es.osaka-u.ac.jp

DOI: 10.1143/APEX.1.081703
Table I. (a) Exchange-correlation-induced negative effective \(U \) ions for \(d^4 \) and \(d^6 \) electronic configuration, and (b) charge-excitation-induced negative effective \(U \) ions for \(d^2 \) electronic configuration.

Charge	Negative effective U center	Materials
+2	Zn\(^{2+}\) (4s\(^2\)), Ca\(^{2+}\) (4s\(^2\))	n-type doped ZnO, CaO, MgO, BeO, CdO, BaO, SrO, HgO
+2	In\(^{3+}\) (5s\(^1\)), Al\(^{3+}\) (3s\(^1\)), B\(^{3+}\) (2s\(^1\)), Y\(^{3+}\) (5s\(^1\))	n-type doped In\(_2\)O\(_3\), Al\(_2\)O\(_3\), Be\(_2\)O\(_3\)
+3	C\(^{3+}\) (2s\(^2\)), Si\(^{3+}\) (3s\(^2\)), Ti\(^{3+}\) (4s\(^1\)), Zr\(^{3+}\) (5s\(^1\))	n-type doped CO\(_2\), SiO\(_2\), TiO\(_2\), ZrO\(_2\), GeO\(_2\), SnO\(_2\), PbO\(_2\), p-type doped GeO, SnO, PbO
+4	N\(^{4+}\) (2s\(^1\)), P\(^{4+}\) (3s\(^1\)), V\(^{4+}\) (4s\(^1\)), Nb\(^{4+}\) (5s\(^1\)), As\(^{4+}\) (4s\(^1\)), Sb\(^{4+}\) (5s\(^1\))	n-type doped VO\(_2\), NbO\(_2\), AsO\(_3\)O\(_2\), NaAsO\(_3\), SnO\(_2\)O\(_10\), B\(_2\)O\(_5\), Na\(_2\)O, As\(_2\)O\(_3\), SnO, PbO
+5	O\(^{5+}\) (2s\(^1\)), S\(^{5+}\) (3s\(^1\)), Cr\(^{5+}\) (4s\(^1\)), Mo\(^{5+}\) (5s\(^1\)), Se\(^{5+}\) (4s\(^1\)), Te\(^{5+}\) (5s\(^1\)), Po\(^{5+}\) (6s\(^1\))	n-type doped MoO\(_3\), SeO\(_2\), TeO\(_2\), p-type doped MoO\(_2\), H\(_2\)SeO\(_4\), TeO\(_2\)
+6	F\(^{6+}\) (2s\(^1\)), Cl\(^{6+}\) (3s\(^1\)), Mn\(^{6+}\) (4s\(^1\)), Tc\(^{6+}\) (5s\(^1\)), Br\(^{6+}\) (4s\(^1\)), I\(^{6+}\) (5s\(^1\)), At\(^{6+}\) (6s\(^1\))	n-type doped H\(_2\)O\(_2\), HIO\(_2\), KBrO\(_3\), MnO\(_2\), HClO\(_4\), p-type doped I\(_2\)O\(_5\), HIO\(_3\), NaBrO, HClO\(_3\)
avoid anti-ferromagnetic SDW upon p- or n-type doping with the itinerant system. For cuprate high-\(T_c \) superconductors, such as \(\text{La}_{2-x} \text{Sr}_x \text{CuO}_4 \) or \(\text{YBa}_2 \text{Cu}_3 \text{O}_7 \), the ground state of undoped system is anti-ferromagnetic and charge-transfer insulator caused by the super-exchange interactions in the CuO\(_2\) layer. It may be possible that the superconductivity is caused (or enhanced) by CEI-NEU in the Cu\(^{2+}(3d^9)\) in the itinerant system by destabilizing the anti-ferromagnetic SDW ordering upon p-type doping such as C\(_{\text{in}}\) in the conducting-covalent large molecules or clusters, such as \(\text{C}_{25}\). Table II with partial ionization caused by the super-exchange interaction and the superconductivity caused by CEI-NEU in Cu\(^{2+}(3d^9)\) system. The possibility of NEU-induced superconductivity caused by charge-fluctuation-induced NEU is proposed and discussed by Varma, combined with the missing oxidation states in BaPb\(_{1-x}\)Bi\(_x\)O\(_3\) and BK\(_{1-x}\)Bi\(_x\)O\(_3\). \(^{17}\)

For the cuprate high-\(T_c \) superconductors such as \(\text{La}_{2-x} \text{Sr}_x \text{CuO}_4\), \(\text{YBa}_2 \text{Cu}_3 \text{O}_7\), \(\text{Bi}_2 \text{Sr}_2 \text{Ca}_x \text{Cu}_2 \text{O}_{10}\), (Hg,Re)-Ba\(_x\)Ca\(_{1-x}\)Cu\(_2\)O\(_y\), HgBa\(_2\)Ca\(_2\)Cu\(_2\)O\(_y\), Tl\(_2\)Ba\(_2\)Ca\(_2\)Cu\(_2\)O\(_y\), we may have an additional-pairing mechanism in the \(T_c \)-enhancing layers which is caused by the CEI-NEU in the electron-doped BaO, SrO, BiO, TIO, Y\(_2\)O\(_3\), PbO or HgO layers upon the oxygen-vacancy doping. For new-type superconductors such as MgB\(_2\) \(^{18}\) and CaSi\(_2\), it is also possible to expect an additional pairing mechanism for \(T_c \)-enhancement caused by the CEI-NEU in the \(s^\pm \) electronic configurations of atoms or ions listed in Table II with partial ionization caused by the \(\pi \)-orbital hybridization perpendicular to the sphere or cluster surfaces in the conducting-covalent large molecules or clusters, such as C\(_{60}\), zeolite, or, [Ca\(_{24}\)Al\(_{20}\)O\(_{64}\)]\(^{4+}(4e^-)\).

Recently, it was discovered a new-type high-\(T_c \) superconductors in the Ni- and Fe-based oxypnictides, such as \(\text{La}(\text{O}_{1-x} \text{F}_x)\)FeP (\(T_c = 5 \) K), \(^{19}\) LaONiP (\(T_c = 3 \) K), \(^{19}\) La\(_{(1-x)}\)Fe\(_x\)As (\(T_c = 26 \) K), \(\text{Gd}(\text{O}_{1-x} \text{F}_x)\)FeAs (\(T_c = 53.5 \) K), \(\text{Nd}(\text{O}_{1-x} \text{F}_x)\)FeAs (\(T_c = 55 \) K), \(\text{Sm}(\text{O}_{1-x} \text{F}_x)\)FeAs (\(T_c = 43 \) K), \(\text{LaO}_{0.85}\text{Sr}_{0.15}\)FeAs (\(T_c = 25 \) K), \(\text{La}(\text{O}_{1-x} \text{F}_x)\)FeAs (\(T_c = 46 \) K at \(P = 4 \) GPa), and \(\text{Ba}_{1-x} \text{K}_x\)Fe\(_2\)As\(_2\) (\(T_c = 38 \) K). These new-type superconductors also contain CEI-NEU ions, such as La\(^{2+}(6s^1)\), Nd\(^{2+}(6s^1)\), Gd\(^{2+}(6s^1)\), and Sm\(^{2+}(6s^1)\), with the electron-doped LaO, GdO, NdO, and SmO-layers by F-donor doping or oxygen-vacancy-donor doping. Based upon our materials design as discussed above, we have a possibility to enhance the \(T_c \) by using another layers of NEU ions as listed in Table II. These are all promising candidates for \(T_c \)-enhancing layers by CEI-NEU. The oxypnictides contain Fe\(^{2+}(3d^6)\) which is ECI-NEU system as was discussed above. We should also try the candidates of ECI-NEU system such as listed in Table I.

We design a new-class of NEU system for the realization of new-class of high-\(T_c \) superconducting materials by controlling (i) CEI-NEU in \(s^\pm \) (or \(d^\pm \)) electronic configurations, and (ii) ECI-NEU in \(d^\pm \) (or \(d^\pm \)) electronic configurations. Here, we have proposed the general rules and chemical trends of NEU system for the realization of high-\(T_c \) superconductivity in real materials. We also proposed the materials design for the realization of high-\(T_c \) superconductivity based on the general rules and chemical trends comparing with the available experimental data.

Acknowledgement This work was partially supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Global Center of Excellence Program by MEXT, New Energy and Industrial Technology Development Organization Program and Japan Science and Technology Agency Program.

1. P. W. Anderson: Phys. Rev. Lett. 34 (1975) 953.
2. H. Katayama-Yoshida and A. Zunger: Phys. Rev. Lett. 55 (1985) 1618.
3. M. Caldas, A. Fazzio, and A. Zunger: J. Electron. Matter 14a (1985) 1035.
4. C. Herring: in *Magnetism IV*, ed. G. T. Rado and H. Shul (Academic Press, New York, 1966).
5. H. Katayama-Yoshida and A. Zunger: Phys. Rev. Lett. 53 (1985) 1246.
6. H. Katayama-Yoshida and A. Zunger: Phys. Rev. B 31 (1985) 7877.
7. H. Katayama-Yoshida and A. Zunger: Phys. Rev. B 31 (1985) 8317.
8. F. D. M. Haldane and P. W. Anderson: Phys. Rev. B 13 (1976) 2553.
9. J. E. Huheey: *Inorganic Chemistry* (Harper & Row, New York, 1983) p. 326.
10. F. A. Cotton and G. Wilkinson: *Advanced Inorganic Chemistry* (Interscience, New York, 1980).
11. A. M. Stoneham and M. J. L. Sangster: *Philos. Mag. B* 43 (1981) 609.
12. W. Martiensen and H. Warlimont: *Handbook of Condensed Matter and Materials Data* (Springer, Heiderberg, 2005).
13. In *Periodic Table in Materials Science*, ed. T. Inoue, S. Chikazumi, S. Nagasaki, and S. Tanuma (AGNE Technology Center, Tokyo, 2001) [in Japanese].
14. H. Sakurai: *Genso 111 no Shin-Chishiki* (New Knowledge of 111 Elements) (Kodansha, Tokyo, 2005) [in Japanese].
15. K. Shimizu, H. Ishikawa, T. Yagi, and K. Amaya: *Nature* 419 (2002) 597.
16. T. Yabuuchi, T. Matsuoka, Y. Nakamoto, and K. Shimizu: *J. Phys. Soc. Jpn.* 75 (2006) 083703.
17. C. M. Varma: Phys. Rev. Lett. 61 (1988) 2713.
18. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu: *Nature* 410 (2001) 63.
19. Y. Kamihara, H. Hiramat, M. Hirano, M. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono: *J. Am. Chem. Soc.* 128 (2006) 10012.