GLOBAL APPROXIMATION THEOREMS FOR GENERAL GAMMA TYPE OPERATORS

Alok Kumar

Department of Computer Science
Dev Sanskriti Vishwavidyalaya Haridwar
Haridwar-249411, India

alokkpma@gmail.com

Dedicated to Prof. P. N. Agrawal

ABSTRACT. In this paper, we obtained some global approximation results for general Gamma type operators.
Keywords: Gamma type operators, Global approximation, Positive linear operators.
Mathematics Subject Classification(2010): 41A25, 26A15, 40A35.

1. Introduction

For a measurable complex valued and locally bounded function defined on \([0, \infty)\), Lupas and Müller \[12\] defined and studied some approximation properties of linear positive operators \(\{G_n\}\) defined by

\[G_n(f; x) = \int_0^\infty g_n(x, u)f\left(\frac{u}{n}\right)du,\]

where

\[g_n(x, u) = \frac{x^{n+1}}{n!}e^{-xu}u^n, \quad x > 0.\]

In \[13\], Mazhar gives an important modifications of the Gamma operators using the same \(g_n(x, u)\)

\[F_n(f; x) = \int_0^\infty \int_0^\infty g_n(x, u)g_{n-1}(u, t)f(t)dudt = \frac{(2n)!x^{n+1}}{n!(n-1)!} \int_0^\infty \frac{t^{n-1}}{(x+t)^{2n+1}}f(t)dt, \quad n > 1, \quad x > 0.\]

Recently, Karsli \[7\] considered the following Gamma type linear and positive operators

\[L_n(f; x) = \int_0^\infty \int_0^\infty g_{n+2}(x, u)g_n(u, t)f(t)dudt = \frac{(2n+3)!x^{n+3}}{n!(n+2)!} \int_0^\infty \frac{t^n}{(x+t)^{2n+4}}f(t)dt, \quad x > 0,\]
and obtained some approximation results.

In [11], Karsli and Özarslan obtained some local and global approximation results for the operators $L_n(f;x)$.

In 2007, Mao [14] define the following generalised Gamma type linear and positive operators

$$M_{n,k}(f;x) = \int_0^\infty \int_0^\infty g_n(x,u)g_{n-k}(u,t)f(t)dudt$$

$$= \frac{(2n-k+1)!x^{n+1}}{n!(n-k)!} \int_0^\infty \frac{t^{n-k}}{(x+t)^{2n-k+2}}f(t)dt, \quad x > 0,$$

which includes the operators $F_n(f;x)$ for $k = 1$ and $L_{n-2}(f;x)$ for $k = 2$.

Some approximation properties of $M_{n,k}$ were studied in [8] and [9]. Several authors obtain the global approximation results for different operators (see [1], [3] and [4]).

We can rewrite the operators $M_{n,k}(f;x)$ as

$$M_{n,k}(f;x) = \int_0^\infty K_{n,k}(x,t)f(t)dt,$$

where

$$K_{n,k}(x,t) = \frac{(2n-k+1)!x^{n+1}}{n!(n-k)!} \frac{t^{n-k}}{(x+t)^{2n-k+2}}, \quad x, t \in (0, \infty).$$

In this paper, we study some global approximation results of the operators $M_{n,k}$. Let $p \in N_0$(set of non-negative integers), $f \in C_p$, where C_p is a polynomial weighted space with the weight function w_p,

$$w_0(x) = 1, \quad w_p(x) = \frac{1}{1+x^p}, \quad p \geq 1,$$

and C_p is the set of all real valued functions f for which $w_p f$ is bounded and uniformly continuous on $[0, \infty)$.

The norm on C_p is defined by

$$||f||_p = \sup_{x \in [0, \infty)} w_p(x)|f(x)|, \quad f \in C_p[0, \infty).$$

We also consider the following Lipschitz classes:

$$\omega^2_p(f;\delta) = \sup_{h \in [0,\delta]} ||\Delta^2 hf||_p,$$

$$\Delta^2_h f(x) = f(x+2h) - 2f(x+h) + f(x),$$

$$\omega^1_p(f;\delta) = \sup \{w_p(x)|f(t) - f(x)| : |t - x| \leq \delta \text{ and } t, x \geq 0\};$$

$$Lip^2_p \alpha = \{f \in C_p[0, \infty) : \omega^2_p(f;\delta) = O(\delta^\alpha) \text{ as } \delta \to 0^+\},$$

where $h > 0$ and $\alpha \in (0, 2]$.
2. Auxiliary Results

In this section we give some preliminary results which will be used in the proofs of our main theorems.

Let us consider
\[e_m(t) = t^m, \quad \varphi_{x,m}(t) = (t - x)^m, \quad m \in \mathbb{N}_0. \]

Lemma 1. For any \(m \in \mathbb{N}_0 \) (set of non-negative integers), \(m \leq n - k \)
\[
M_{n,k}(t^m; x) = \frac{[n - k + m]_m x^m}{[n]_m} \tag{2.1}
\]
where \(n, k \in \mathbb{N} \) and \([x]_m = x(x - 1)\ldots(x - m + 1), [x]_0 = 1, x \in \mathbb{R}.

In particular for \(m = 0, 1, 2\ldots \) in (2.1) we get

(i) \(M_{n,k}(1; x) = 1 \),

(ii) \(M_{n,k}(t; x) = \frac{n - k + 1}{n} x \),

(iii) \(M_{n,k}(t^2; x) = \frac{(n - k + 2)(n - k + 1)}{n(n - 1)} x^2. \)

Lemma 2. Let \(m \in \mathbb{N}_0 \) and fixed \(x \in (0, \infty) \), then
\[
M_{n,k}(\varphi_{x,m}; x) = \left(\sum_{j=0}^{m} (-1)^j \binom{m}{j} \frac{(n - m + j)!}{n!(n - k)!} \right) x^m.
\]

Lemma 3. For \(m = 0, 1, 2, 3, 4 \), one has

(i) \(M_{n,k}(\varphi_{x,0}; x) = 1 \),

(ii) \(M_{n,k}(\varphi_{x,1}; x) = \frac{1 - k}{n} x \),

(iii) \(M_{n,k}(\varphi_{x,2}; x) = \frac{k^2 - 5k + 2n + 4}{n(n - 1)} x^2 \),

(iv) \(M_{n,k}(\varphi_{x,3}; x) = \frac{-k^3 + 12k^2 - 17k + n(18 - 12k) + 24}{n(n - 1)(n - 2)} x^3 \),

(v) \(M_{n,k}(\varphi_{x,4}; x) = \frac{k^4 - 22k^3 + k^2(143 + 12n) - k(314 + 108n) + 12n^2 + 268n + 192}{n(n - 1)(n - 2)(n - 3)} x^4 \),

(vi) \(M_{n,k}(\varphi_{x,m}; x) = O \left(n^{-\lfloor (m+1)/2 \rfloor} \right). \)

Proof. Using Lemma 2 we get Lemma 3 \[\square \]

Theorem 1. For the operators \(M_{n,k} \) and for fixed \(p \in \mathbb{N}_0 \), there exists a positive constant \(N_{p,k} \) such that
\[
w_p(x)M_{n,k} \left(\frac{1}{w_p}; x \right) \leq N_{p,k}. \tag{2.2}
\]

Furthermore, for all \(f \in C_p[0, \infty) \), we have
\[
\|M_{n,k}(f; \cdot)\|_p \leq N_{p,k}\|f\|_p, \tag{2.3}
\]
which guarantees that \(M_{n,k} \) maps \(C_p[0, \infty) \) into \(C_p[0, \infty) \).
Proof. For \(p = 0 \), (2.2) follows immediately. Using Lemma 1, we get

\[
\begin{align*}
 w_p(x)M_{n,k} \left(\frac{1}{w_p}; x \right) &= w_p(x) \left(M_{n,k}(e_0; x) + M_{n,k}(e_p; x) \right) \\
 &= w_p(x) \left(1 + \frac{(n-p)!(n-k+p)!}{n!(n-k)!} x^p \right) \\
 &\leq N_{p,k}w_p(x)(1 + x^p) = N_{p,k},
\end{align*}
\]

where

\[
N_{p,k} = \max \left\{ \sup_n \frac{(n-p)!(n-k+p)!}{n!(n-k)!}, 1 \right\}.
\]

Observe that for all \(f \in C_p \) and every \(x \in (0, \infty) \), we get

\[
\begin{align*}
 w_p(x) |M_{n,k}(f; x)| &\leq w_p(x) \frac{(2n-k+1)!x^{n+1}}{n!(n-k)!} \int_0^\infty \frac{t^{n-k}}{(x+t)^{2n-k+2}} |f(t)| \frac{w_p(t)}{w_p(t)} dt \\
 &\leq \|f\|_p w_p(x) M_{n,k} \left(\frac{1}{w_p}; x \right) \\
 &\leq N_{p,k}\|f\|_p.
\end{align*}
\]

Taking supremum over \(x \in (0, \infty) \), we get (2.3). \(\square \)

Lemma 4. For the operators \(M_{n,k} \) and fixed \(p \in N_0 \), there exists a positive constant \(N_{p,k} \) such that

\[
 w_p(x)M_{n,k} \left(\frac{\varphi_{x,2}}{w_p(t)}; x \right) \leq N_{p,k} \frac{x^2}{n}.
\]

Proof. Using Lemma (3), we can write

\[
\begin{align*}
 w_0(x)M_{n,k} \left(\frac{\varphi_{x,2}}{w_0(t)}; x \right) &= \frac{k^2 - 5k + 2n + 4}{n(n-1)} x^2 \\
 &\leq N_{p,k} \frac{x^2}{n},
\end{align*}
\]

which gives the result for \(p = 0 \).

Let \(p \geq 1 \). Then using Lemma 1 and Lemma 3, we get

\[
\begin{align*}
 M_{n,k} \left(\frac{\varphi_{x,2}}{w_p(t)}; x \right) &= M_{n,k}(e_{p+2}; x) - 2x M_{n,k}(e_{p+1}; x) + x^2 M_{n,k}(e_p; x) + M_{n,k}(\varphi_{x,2}; x) \\
 &= \frac{(n-p-2)!(n-k+2)!}{n!(n-k)!} x^{p+2} - 2 \frac{(n-p-1)!(n-k+p+1)!}{n!(n-k)!} x^{p+2} \\
 &+ \frac{(n-p)!(n-k+p)!}{n!(n-k)!} x^{p+2} + \frac{k^2 - 5k + 2n + 4}{n(n-1)} x^2 \\
 &\leq N_{p,k} \frac{x^2}{n}(1 + x^p),
\end{align*}
\]

where \(N_{p,k} \) is a positive constant. Hence, the proof is completed. \(\square \)
3. Rate of Convergence

Let \(p \in \mathbb{N}_0 \). By \(C^2_p[0, \infty) \), we denote the space of all functions \(f \in C_p[0, \infty) \) such that \(f', f'' \in C_p[0, \infty) \).

Theorem 2. Let \(p \in \mathbb{N}_0, \ n \in \mathbb{N} \) and \(g \in C^1_p[0, \infty) \), there exists a positive constant \(N_{p,k} \) such that

\[
 w_p(x) |M_{n,k}(f; x) - f(x)| \leq N_{p,k} \|f'\|_p \frac{x}{\sqrt{n}}
\]

for all \(x \in (0, \infty) \).

Proof. We have

\[
f(t) - f(x) = \int_x^t f'(v)dv.
\]

By using linearity of \(M_{n,k} \) we get

\[
M_{n,k}(f; x) - f(x) = M_{n,k} \left(\int_x^t f'(v)dv; x \right).
\]

(3.1)

Remark that

\[
\left| \int_x^t f'(v)dv \right| \leq \|f'\|_p \left| \int_x^t \frac{dv}{w_p(v)} \right| \leq \|f'\|_p |t - x| \left(\frac{1}{w_p(t)} + \frac{1}{w_p(x)} \right).
\]

From (3.1) we obtain

\[
w_p(x) |M_{n,k}(f; x) - f(x)| \leq \|f'\|_p \left\{ M_{n,k}(\mid \varphi_{x,1} \mid ; x) + w_p(x)M_{n,k} \left(\frac{\mid \varphi_{x,1} \mid }{w_p(t)} ; x \right) \right\}.
\]

Using Cauchy-Schwarz inequality, we can write

\[
M_{n,k}(\mid \varphi_{x,1} \mid ; x) \leq (M_{n,k}(\mid \varphi_{x,2} \mid ; x))^{1/2},
\]

\[
M_{n,k} \left(\frac{\mid \varphi_{x,1} \mid }{w_p(t)} ; x \right) \leq \left(M_{n,k} \left(\frac{1}{w_p(t)} ; x \right) \right)^{1/2} \left(M_{n,k} \left(\frac{\mid \varphi_{x,2} \mid }{w_p(t)} ; x \right) \right)^{1/2}.
\]

Using Lemma 3, Theorem 1 and Lemma 4, we obtain

\[
w_p(x) |M_{n,k}(f; x) - f(x)| \leq N_{p,k} \|f'\|_p \frac{x}{\sqrt{n}}.
\]

\[\square\]

Lemma 5. Let \(p \in \mathbb{N}_0, \) If

\[
H_{n,k}(f; x) = M_{n,k}(f; x) - f \left(x + \frac{1 - k}{n} x \right) + f(x),
\]

(3.2)

then there exists a positive constant \(N_{p,k} \) such that for all \(x \in (0, \infty) \) and \(n \in \mathbb{N} \), we have

\[
w_p(x) |H_{n,k}(g; x) - g(x)| \leq N_{p,k} \|g''\|_p \frac{x^2}{n}
\]

for any function \(g \in C^2_p \).
Proof. From Lemma 4 we observe that the operators $H_{n,k}$ are linear and reproduce the linear functions. Hence

$$H_{n,k}(\varphi_{x,1};x) = 0.$$

Let $g \in C^2_p$. By the Taylor formula one can write

$$g(t) - g(x) = (t - x) g'(x) + \int_x^t (t - v) g''(v) dv, \quad t \in (0, \infty).$$

Then,

$$|H_{n,k}(g; x) - g(x)|$$

$$= |H_{n,k}(g(t) - g(x)); x| = \left| H_{n,k} \left(\int_x^t (t - v) g''(v) dv; x \right) \right|$$

$$= \left| M_{n,k} \left(\int_x^t (t - v) g''(v) dv; x \right) - \int_x^{x + \frac{1 - k}{n}} \left(x + \frac{1 - k}{n} x - v \right) g''(v) dv \right|.$$

Since

$$\left| \int_x^t (t - v) g''(v) dv \right| \leq \frac{\|g''\|_p (t - x)^2}{2} \left(\frac{1}{w_p(x)} + \frac{1}{w_p(t)} \right)$$

and

$$\left| \int_x^{x + \frac{1 - k}{n}} \left(x + \frac{1 - k}{n} x - v \right) g''(v) dv \right| \leq \frac{\|g''\|_p}{2 w_p(x)} \left(\frac{1 - k}{n} x \right)^2,$$

we get

$$w_p(x)|H_{n,k}(g; x) - g(x)| \leq \frac{\|g''\|_p}{2} \left[M_{n,k}(\varphi_{x,2}; x) + w_p(x) M_{n,k} \left(\frac{\varphi_{x,2}}{w_p(t)}; x \right) \right] + \frac{\|g''\|_p}{2} \left(\frac{1 - k}{n} x \right)^2.$$

Hence by Lemma 4 we obtain

$$w_p(x)|H_{n,k}(g; x) - g(x)| \leq N_{p,k} \|g''\|_p \frac{x^2}{n}$$

for any function $g \in C^2_p$. The Lemma is proved. \qed

The next theorem is the main result of this section.

Theorem 3. Let $p \in N_0$, $n \in N$ and $f \in C_p[0, \infty)$, then there exists a positive constant $N_{p,k}$ such that

$$w_p(x) |M_{n,k}(f; x) - f(x)| \leq N_{p,k} \omega_p^2 \left(f, \frac{x}{\sqrt{n}} \right) + \omega^1_p \left(f, \frac{1 - k}{n} x \right).$$

Furthermore, if $f \in \text{Lip}_p^\alpha$ for some $\alpha \in (0, 2]$, then

$$w_p(x) |M_{n,k}(f; x) - f(x)| \leq N_{p,k} \left(\frac{x^2}{n} \right)^{\alpha/2} + \omega^1_p \left(f, \frac{1 - k}{n} x \right),$$

holds.
Proof. Let \(p \in \mathbb{N}_0, f \in C_p[0, \infty) \) and \(x \in (0, \infty) \) be fixed. We consider the Steklov means of \(f \) by \(f_h \) and given by the formula
\[
f_h(x) = \frac{4}{h^2} \int_0^{h/2} \int_0^{h/2} \{2f(x + s + t) - f(x + 2(s + t))\} dsdt,
\]
for \(h > 0 \) and \(x \geq 0 \). We have
\[
f(x) - f_h(x) = \frac{4}{h^2} \int_0^{h/2} \int_0^{h/2} \Delta^2_{s+t} f(x) dsdt,
\]
which gives
\[
\|f - f_h\|_p \leq \omega^2_p(f, h). \tag{3.3}
\]
Furthermore, we have
\[
f''_h(x) = \frac{1}{h^2} \left(8 \Delta^2_{h/2} f(x) - \Delta^2_h f(x) \right),
\]
and
\[
\|f''_h\|_p \leq \frac{9}{h^2} \omega^2_p(f, h). \tag{3.4}
\]
From (3.3) and (3.4) we conclude that \(f_h \in C^2_p[0, \infty) \) if \(f \in C_p[0, \infty) \).

Moreover
\[
|M_{n,k}(f; x) - f(x)| \leq H_{n,k}(|f(t) - f_h(t); x|) + |f(x) - f_h(x)|
+ |H_{n,k}(f_h; x) - f_h(x)| + \left| f \left(x + \frac{1 - k}{n} x \right) - f(x) \right|,
\]
where \(H_{n,k} \) is defined in (3.2).

Since \(f_h \in C^2_p[0, \infty) \) by the above, it follows from Theorem 1 and Lemma 5 that
\[
w_p(x) |M_{n,k}(f; x) - f(x)| \leq (N + 1) \|f - f_h\|_p + N_{p,k} \|f''_h\|_p \frac{x^2}{n}
+ w_p(x) \left| f \left(x + \frac{1 - k}{n} x \right) - f(x) \right|.
\]

By (3.3) and (3.4), the last inequality yields that
\[
w_p(x) |M_{n,k}(f; x) - f(x)| \leq N_{p,k} \omega^2_p(f; h) \left(1 + \frac{1}{h^2} \frac{x^2}{n} \right)
+ \omega^1_p \left(f, \frac{1 - k}{n} x \right).
\]

Thus, choosing \(h = \frac{x}{\sqrt{n}} \), the first part of the proof is completed.

The remainder of the proof can be easily obtained from the definition of the space \(\text{Lip}^2_p \).

Acknowledgements The author is extremely grateful to the referee for making valuable suggestions leading to the overall improvements in the paper.
References

[1] Becker M. Global approximation theorems for Szász-Mirakyan and Baskakov operators in polynomial weight spaces. Indiana University Mathematics Journal 1978; 27 (1): 127-142.
[2] DeVore RA, Lorentz GG. Constructive Approximation. Berlin: Springer, 1993.
[3] Felten M. Local and global approximation theorems for positive linear operators. J. Approx. Theory 1998; 94: 396-419.
[4] Finta Z. Direct local and global approximation theorems for some linear positive operators. Analysis in Theory and Applications 2004; 20 (4): 307-322.
[5] İzgi A. Voronovskaya type asymptotic approximation by modified gamma operators. Appl. Math. Comput. 2011; 217: 8061-8067.
[6] İzgi A, Büyükyazıcı I. Approximation and rate of approximation on unbounded intervals. Kastamonu Edu. J. Okt. 2003; 11: 451-460 (in Turkish).
[7] Karsli H. Rate of convergence of a new Gamma type operators for the functions with derivatives of bounded variation. Math. Comput. Modell. 2007; 45 (5-6): 617-624.
[8] Karsli H. On convergence of general Gamma type operators. Anal. Theory Appl. 2011; Vol. 27, No.3: 288-300.
[9] Karsli H, Agrawal PN, Goyal M. General Gamma type operators based on q-integers. Appl. Math. Comput. 2015; 251: 564-575.
[10] Karsli H, Gupta V, Izgi A. Rate of pointwise convergence of a new kind of gamma operators for functions of bounded variation. Appl. Math. Letters 2009; 22: 505-510.
[11] Karsli H, Özarslan MA. Direct local and global approximation results for operators of gamma type. Hacet. J. Math. Stat. 2010; 39: 241-253.
[12] Lupas A, Müller M. Approximationseigenschaften der Gammaoperatoren. Mathematische Zeitschrift 1967; 98: 208-226.
[13] Mazhar SM. Approximation by positive operators on infinite intervals. Math. Balkanica 1991; 5 (2): 99-104.
[14] Mao LC. Rate of convergence of Gamma type operator. J. Shangqiu Teachers Coll. 2007; 12: 49-52.
[15] Rempulska L, Tomczak K. Approximation by certain linear operators preserving x^2. Turkish J. Math. 2009; 33: 273-281.