Probing cluster formation under extreme conditions: massive star clusters in blue compact galaxies

A. Adamo,* G. Östlin and E. Zackrisson
Department of Astronomy, Stockholm University, Oscar Klein Center, AlbaNova, Stockholm SE-106 91, Sweden

Accepted 2011 July 4. Received 2011 July 4; in original form 2011 April 19

ABSTRACT
The numerous and massive young star clusters in blue compact galaxies (BCGs) are used to investigate the properties of their hosts. We test whether BCGs follow claimed relations between cluster populations and their hosts, such as the fraction of the total luminosity contributed by the clusters as function of the mean star formation rate (SFR) density, the V-band luminosity of the brightest youngest cluster as related to the mean host SFR and the cluster formation efficiency (i.e. the fraction of star formation happening in star clusters) versus the density of the SFR. We find that BCGs follow the trends, supporting a scenario where cluster formation and environmental properties of the host are correlated. They occupy, in all the diagrams, the regions of higher SFRs, as expected by the extreme nature of the starbursts operating in these systems. We find that the star clusters contribute almost to the 20 per cent of the UV luminosity of the hosts. We suggest that the BCG starburst environment has most likely favoured the compression and collapse of the giant molecular clouds, enhancing the local star formation efficiency, so that massive clusters have been formed. The estimated cluster formation efficiency supports this scenario. BCGs have a cluster formation efficiency comparable to luminous IR galaxies and spiral starburst nuclei (the averaged value is ~35 per cent) which is much higher than the 8–10 per cent reported for quiescent spirals and dwarf star-forming galaxies.

Key words: galaxies: irregular – galaxies: starburst – galaxies: star clusters: general – galaxies: star formation.

1 INTRODUCTION
Luminous blue compact galaxies (BCGs) are star-forming systems with high specific star formation rate (SFR; Östlin et al. 2001; Sollerman et al. 2005). It has been suggested that BCGs may have accounted for \sim40 per cent of the total SFR density at redshift $0.4 < z < 1.0$, playing an important role in the star formation history of the Universe (Guzman et al. 1997). However, in the local Universe, their contribution has dropped drastically and luminous BCGs with high SFR have become rare objects (Guzman et al. 1997; Werk, Jangren & Salzer 2004). At a distance of 100 Mpc ($z \sim 0.03$), we count only a handful number of BCGs with a SFR higher or close to $5 \, M_\odot \, yr^{-1}$.

Among the systems included in this work, Haro 11 (Adamo et al. 2010a), ESO 185-IG13 (Adamo et al. 2011a) and Mrk 930 (Adamo et al. 2011b) are starburst BCGs with SFRs exceptionally high for local irregular galaxies. Local luminous BCGs display physical conditions (low metallicity and dust content), morphologies (compactness of the starburst regions) and feedback mechanisms (e.g. Östlin et al. 2009) similar to their high-redshift counterparts.

Numerical simulations and theoretical arguments based on the Lambda Cold Dark Matter model of the Universe predict that smaller galaxies formed first and were then accreted into more massive systems (hierarchical growth; Cole et al. 2000; Papovich et al. 2005; Springel et al. 2005). Therefore, it is expected that the primordial galaxies were chemically unevolved dwarf galaxies, the so-called ‘building-blocks’ systems, which accrete and merge into more massive units. Recent observations of galaxies at very high redshifts ($z \sim 7$; i.e. at the reionization epoch) have revealed compact single or double nuclei systems with extended nebular features (Oesch et al. 2010). Some of these $z \sim 7$ objects have also been detected at longer IR wavelengths. These data have been used to constrain and study the spectral energy distributions (SEDs) of these high-z systems. The inferred SFRs are between 5 and $20 \, M_\odot \, yr^{-1}$ (González et al. 2010). In general, they have estimated stellar masses of 10^8–$10^9 \, M_\odot$ and fainter UV luminosities than lower redshift Lyman break galaxies (Finkelstein et al. 2010), i.e. their properties resemble those of the luminous BCGs.

The studies of BCGs can, therefore, give important insights in understanding how star formation proceeds in dwarf starburst galaxies and possibly in high-redshift systems, with spatial and spectral resolution impossible to achieve for the latter with the current facilities.

*E-mail: adamo@astro.su.se
High-resolution imaging data of BCGs revealed that the starburst regions in these galaxies are formed by massive and young star cluster (YSC) complexes (e.g. Östlin et al. 2003; Adamo et al. 2010a, 2011a,b). The peak age of the star cluster distributions and the estimated ages of the starbursts in these systems are in good agreement. The host morphologies suggest that the galaxies have recently undergone a merger or interaction event, which has likely refurbished the galaxy with metal-poor gas, and triggered a vigorous starburst episode.

Star clusters are a natural outcome of the star formation process (see Lada & Lada 2003, for a review). However, for very young stellar systems (e.g. a few Myr or less), it is not trivial to make a clear definition of a cluster (Bressert et al. 2010). Usually, it is assumed that stars form in a clustered fashion and that, after roughly 10 Myr, 90 per cent of clusters are destroyed due to gas expulsion. Bressert et al. (2010) suggest that all the stars form in a continuous hierarchy, even the dense regions and estimate that, in the solar neighbourhood, only ~26 per cent of young stellar objects (newborn stars) are located in denser regions, i.e. embedded star clusters. The remaining stars form in associations and agglomerates following a hierarchical continuum distribution with clusters at the bottom of the process. Portegies Zwart, McMillan & Gieles (2010) and Gieles & Portegies Zwart (2010) defined an empirical relation to separate clusters from loose associations. For the latter, the crossing time is much larger than the age of the stars, i.e. they are dynamically unbound systems. They observed that the division between bound and unbound systems becomes more clear once the gas-expulsion phase is over (~10–20 Myr).

Cluster formation at high redshift is almost unknown. In the local Universe, we observe the evolved counterparts, i.e. the globular clusters (GCs). However, there is no direct evidence that the YSCs we observe locally will eventually evolve into GCs (de Grijs & Parmentier 2007). If one looks at the number of GCs per mass (luminosity) bins (i.e. \(dN(M)/dM = \text{CMF} \)), the distribution can be fitted by two power laws with a slope of \(\sim -2.0\) at the massive (luminous) ends, a break corresponding to the \(M_c \sim 2 \times 10^6 M_\odot\), and a flattening \((\eta \sim -0.2\) which varies from system to system\) at lower masses. Several possible scenarios are addressed by theoretical studies to explain the origin of the GC mass (luminosity) function: dynamical evolution, i.e. due to preferential disruption of the low-mass systems; or a primordial origin, i.e. the GC mass function has been established at the time when the GCs formed (de Grijs & Parmentier 2007). Cosmological simulations seem to suggest that GCs may have formed in dark matter haloes (e.g. Kravtsov & Gnedin 2005; Mashchenko & Sills 2005). If this is the case, there is no connection between the YSCs forming at the present time and the ancient GCs. However, some recent works (see Brodie & Strader 2006, for a review on GCs) suggest that cluster formation in dwarf galaxies may be the key to explain observed properties of the ancient GCs (blue versus red, i.e. metal-poor versus metal-rich). Muratov & Gnedin (2010) recovered a bimodal metallicity distribution as a product of cluster formation in different phases of galaxy evolution. Cluster formation in dwarf galaxies produced the blue, metal-poor GCs. Dwarf systems were successively accreted to form more massive systems. During the merger and formation of these massive galaxies the more metal-rich clusters were formed. Accretion of dwarf galaxies together with their GC systems is also one of the proposed scenarios by Chies-Santos et al. (2011) to explain why the younger GCs in S0-type of galaxies appear blue instead of the expected metal-rich populations (Brodie & Strader 2006).

In the present work, we will investigate how cluster formation has proceeded in BCGs. We will test whether BCGs follow the cluster–host relations available in the literature and constrained using local star-forming galaxies, like spirals and dwarfs. These results will be used to constrain the environmental properties of BCGs and whether star formation operates on similar modes even under extreme conditions.

The paper is organized as follows. In Section 2, we present the five BCG targets used in this work. In Section 3, we first discuss (in the first part) the uncertainties which affect the analysis. In the second part of this section, we show the three cluster–host relations including the BCG sample. A discussion of the results is presented in Section 4. Here, we also discuss possible similarities between BCGs and high-redshift galaxies. Conclusions are summarized in the Section 4.

2 THE DATA

In this section we shortly introduce the BCGs included in the analysis. Some of these BCGs have been studied in a series of three papers: Haro 11 analysis is presented in Adamo et al. (2010a); ESO 185-IG13 (ESO 185) in Adamo et al. (2011a) and Mrk 930 in Adamo et al. (2011b). We refer to those papers for details on the analysis of the data used in this work.

2.1 ESO 338-IG04

The analysis of the star cluster population in ESO 338-IG04 (ESO 338) has been presented in Östlin et al. (2003). The masses have been obtained from models that assume a Salpeter initial mass function (IMF; Salpeter 1955). We show, in Fig. 1, the cluster formation history during the last 40 Myr of galaxy evolution. Using the age and mass estimates from Östlin et al. (2003), we assumed that the analysis is complete in detecting clusters more massive than \(5 \times 10^5 M_\odot\) formed during the last 40 Myr. A power-law cluster mass function (CMF) with index \(-2.0\) has then been used to extrapolate the total fraction of mass in clusters including objects...
with masses between $10^2 < M < 5 \times 10^3 M_{\odot}$. Following Weidner, Kroupa & Larsen (2004), we assume for simplicity that a cluster population forms every 10 Myr and estimate the cluster formation rate (CFR) in the galaxy. In agreement with Östlin et al. (2003), we observe a cluster formation enhancement between 20 and 30 Myr ago. However, the peak of cluster formation is younger than 10 Myr, similarly to what is found in Haro 11, ESO 185 and Mrk 930. ESO 338 is forming roughly $1.6 M_{\odot}$ yr$^{-1}$ of stars in clusters.

We defined the cluster formation efficiency (CFE, indicated hereafter also as Γ) as that the fraction of stars formed in star clusters. If we compare the CFR to the mean SFR happening in the galaxy, we obtain the CFE = CFR/SFR (see Goddard et al. 2010, hereafter G10, and Bastian 2008, hereafter B08). Using a SFR of $3.2 M_{\odot}$ yr$^{-1}$ (Östlin et al. 2001), we find that $\Gamma \sim 50 \pm 10$ per cent, i.e. 50 per cent of the ESO 338 stars are formed in clusters.

2.2 SBS 0335−052E

The nuclear region of this extreme metal-poor galaxy is dominated by six massive YSCs which have been referred to in the literature as super star clusters (SSCs). These SSCs have been extensively studied before (e.g. Reines, Johnson & Hunt 2008; Thompson et al. 2009; Adamo et al. 2010b, among the most recent published works on this subject).

In the present work, we explore the lower mass cluster population of the galaxy. Part of this underlying cluster population has already been revealed by Papaderos et al. (1998). We have access to far-UV (FUV) (SBC/F140LP from GO 9470, PI: Kuntz) and optical images (ACS F220W, F330W, F435W, F550M from GO 10575, PI: Ostlin) for the galaxy. The reduction of the science frames is described in Östlin et al. (2009). The extraction of the cluster candidates has been done using the PYRAF package DAOFIND on the B-band frame (F435W). The catalogue has been cleaned by eye of all the detections which did not show a clear visual counterpart. With this first catalogue, we have done photometry on all the frames from the FUV to the V (F550M) bands. Applying the same method (see Adamo et al. 2010a, 2011a,b), we have included in the final catalogue only cluster candidates with detection in at least three filters and a photometric error $\sigma_m < 0.2$ mag. The photometric properties of the final cluster population are shown in the colour–colour diagram in Fig. 2. The filter combination corresponds to a $U - B$ (F330W − F435W) versus a $B - V$ (F435W − F550M) colour. The colours are not dereddened but clearly suggest that the cluster candidates are not older than ~ 100 Myr.

The SED fitting procedure is described in Adano et al. (2010a). The used models are presented in Adano et al. (2010b). The output age and mass of the clusters are shown in the mass–age diagram in Fig. 2. In blue dots, we show the six SSCs previously analysed. The underlying black dots represent the low-mass cluster population that is present in the galaxy, detectable at the detection limits imposed by the data. The masses are smaller than $\sim 5 \times 10^5 M_{\odot}$ and the ages are younger than 50 Myr. It is still under debate whether an old stellar population (older than 100 Myr) exists in SBS 0335−052E (Östlin & Kuntz 2001) or if this galaxy has recently formed (Papaderos et al. 1998). In previous star cluster analyses of other BCGs (ESO 338, Haro 11, ESO 185 and Mrk 930), we have found a trace of some old GCs, supporting the evidence of an old underlying stellar population in those galaxies. In the case of SBS 0335−052E, however, the non-detection of massive GCs cannot prove/disprove either of the two proposed scenarios. We observe that, because of the detection limits (see inset in Fig. 2), our analysis is limited to GCs with masses higher than $5 \times 10^5 M_{\odot}$ between 100 Myr and 1 Gyr and even more massive at older ages. Therefore, we cannot exclude that this galaxy has low-mass GCs.

Using the same method as in the case of ESO 338, we infer the mass in clusters formed during the last 10 Myr in SBS 335. We observe that the total mass contained in detected clusters younger than 10 Myr is $1.95 \times 10^7 M_{\odot}$. The mass contained in the five SSCs (one of them is much older, e.g. from Hα equivalent width, the age is constrained to ~ 13 Myr is constrained; see Adano et al. 2010b) is roughly 73 per cent of this total mass ($1.42 \times 10^6 M_{\odot}$). Assuming a power-law CMF and that we are complete in detecting clusters...
more massive than $5 \times 10^3 M_\odot$, we estimate a total mass in clusters younger than 10 Myr of $6.4 \times 10^6 M_\odot$. The observed CFR in systems more massive than $M > 5 \times 10^2 M_\odot$ is $0.2 M_\odot$ yr$^{-1}$, while the extrapolated CFR ($M > 10^2 M_\odot$) is $0.64 M_\odot$ yr$^{-1}$. The Γ value of SBS 0335 is 49 ± 12 per cent, using a SFR of $1.3 M_\odot$ yr$^{-1}$. These values have been estimated after a correction for Salpeter IMF has been applied (see Section 3.1.1).

3 RELATIONS BETWEEN CLUSTER AND STAR FORMATION RATE

The formation of a cluster appears to be correlated with the properties of the host galaxy. A common observation is that galaxy mergers produce more numerous and more massive clusters than quiescent spirals (see Larsen 2009, and references therein). Sampling statistics, known also as size-of-sample effect (i.e. galaxies with a more numerous cluster population have higher chances to sample the CMF at higher masses) is a possible explanation for this trend (Whitmore 2000; Larsen 2002, hereafter L02). On the other hand, the host environment can play its role in determining the mass of the forming clusters (Gieles et al. 2006). Numerical simulations of different host environments suggest that the shear in rotationally supported galaxies (i.e. spirals) acts on the collapse of the giant molecular clouds, causing fragmentation and favouring the formation of the less clustered OB associations and low-mass clusters (Weidner, Bonnell & Zinnecker 2010). The lack of rotation in dwarf galaxies and high external pressures in merging systems favour the collapse of massive and gravitationally bound cluster. These two scenarios were also addressed by Billett, Hunter & Elmegreen (2002) to understand cluster formation in dwarf galaxies. They studied the star cluster populations of nearby dwarf galaxies and observed that not all the systems had bound and luminous clusters. However, some of them hosted one or a few very massive ones. They suggested that, with respect to spiral galaxies which form more clusters and can, therefore, sample the CMF homogeneously up to high-mass bins, the cluster formation in dwarf galaxies is possibly dominated by stochasticity together with favourable physical conditions to form single massive clusters.

Observed empirical relations between the properties of the YSCs and the SFR in the host support the size-of-sample effect scenario. Larsen & Richtler (2000, hereafter LR00) first noticed that the fraction of luminosity contained in the YSCs and the SFR of the host galaxy are correlated [$T_\Lambda(U)–\Sigma_{SFR}$ relation], i.e. higher SFRs correspond to a more numerous cluster population (higher CFE).

In a follow-up work, L02 found evidence of a positive correlation between the visual luminosity of the brightest star cluster and the SFR in the host ($M_{\text{brightest}}–\text{SFR}$ relation). The relation between the two quantities can be understood if higher SFRs enabled the formation of more massive clusters. B08 enlarged the sample of L02, including resolved close-by star-forming regions and luminous IR galaxies (LIRGs) and ultraluminous IR galaxies. He noticed that the $M_{\text{brightest}}–\text{SFR}$ relation holds over several orders of magnitude in SFR values, suggesting that the youngest brightest cluster is a fairly good indicator of the present SFR in the galaxy. These observed relations clearly point towards a scenario where the cluster formation is intimately correlated with the star formation process, or in other words, the birth of a cluster is a product of an universal star formation process which operates on many scales of efficiency.

In a recent work by G10, it has been inferred that the present CFE (clusters formed in the last 10 Myr) is higher for a higher current SFR in the host, the so-called $\Gamma–\log(\Sigma_{SFR})$ relation. Silva-Villa & Larsen (2011) used a sample of five nearby spiral galaxies to test the G10 relation using two different methods to estimate the CFRs. They observed that the recovered data points, in spite of the method used, scattered around the expected values and were impossible to reconcile with the Goddard et al. relation (see Fig. 7). Despite the discrepancy between the two results, we will include the $\Gamma–\log(\Sigma_{SFR})$ relation in the tests we will perform for the BCGs. A discussion of the uncertainties affecting this relation will be presented in the next section. They may explain the disagreement between Goddard et al. and Silva-Villa & Larsen results.

To investigate whether BCGs follow these cluster–host relations, we use the quantities listed in Tables 1 and 2. Before we test the relation and compare our data to the ones published in the literature,

Table 2. From the left to the right column: name of the target; extended radius, R_{G1}, values in arcsec are in brackets; the specific luminosity, $T_\Lambda (U)$ of the cluster population with respect the host in FUV (central wavelengths of the filter ~ 0.14 μm), U and B. In the case of SBS 0335–052E, we include between brackets the recovered T_Λ if only the six SSCs are considered.

Target	R_{G1} (Kpc)	$T_\Lambda(U)$	$T_\Lambda(U)$	$T_\Lambda(B)$
ESO 338	1.4 (7.9 arcsec)	–	34.6	20.9
Haro 11	4.9 (12.5 arcsec)	20.3	11.8	16.4
ESO 185	4.9 (13.5 arcsec)	14.3	9.8	7.1
Mrk 930	4.5 (12.5 arcsec)	19.2	22.3	12.1
SBS 0335	2.6 (10.0 arcsec)	29.4(21.3)	32.8(24.0)	38.4(26.3)

Table 1. For each BCG, several quantities are listed in the table. From the left to the right column: name of the target; distance; absolute magnitude $M_{\text{brightest}}$ of the brightest young cluster in the galaxy; radius containing 80 per cent of the total B luminosity of the galaxy, $R_{\text{80per cent}}$; mean SFR; surface density of SFR; CFR and Γ. The SFR and CFR are estimated assuming a Salpeter IMF (see Section 3.1.1).

Target	Distancea	$M_{\text{brightest}}$	$R_{\text{80per cent}}$	SFR	Σ_{SFR}	CFR	Γ
ESO 338-IG04	37.5	-15.5^a	0.8	3.2b	1.55	1.6	50 ± 10
Haro 11	82.3	-16.16^c	1.8	22.0e	2.16	11.2	50 ± 13
ESO 185-IG13	76.3	-14.55^d	1.98	6.4d	0.52	1.7d	26 ± 5d
Mrk 930	71.4	-15.17^e	1.7	5.3e	0.59	1.33e	25 ± 10e
SBS 0335–052Ef	54e	-14.8	0.66	1.3	0.95	0.64(0.14)y	49 (10)y ± 15

aÖstlin et al. (2003); bÖstlin et al. (2001); cAdamo et al. (2010a); dAdamo et al. (2011a); eAdamo et al. (2011b); fReines et al. (2008). yThe values indicated between brackets are estimated for the five SSCs with ages ≤ 10 Myr (see Fig. 2 and Adamo et al. 2010b). However, in the analysis we use the values obtained including the whole cluster population. xData from NED, http://ned.ipac.caltech.edu/
we discuss, briefly, the main source of uncertainties associated with the derived parameters and the used methods.

3.1 Uncertainties

3.1.1 The estimate of Σ_{SFR}

The estimate of Σ_{SFR} depends on the SFR in the galaxy and the size of the host. The SFR is an averaged value of the star formation happening in the system. Many tracers are used in the literature to estimate the SFR, and they do not always produce the same results. Moreover, in a galaxy there are regions which are quiescent and others starbursting. To estimate a meaningful Σ_{SFR} value, it is hence necessary to determine the size of the region which is currently producing stars. Since there is not a standard way to estimate the areas, the Σ_{SFR} can be diluted or overestimated. When SFR or Σ_{SFR} are used to compare properties of sample of galaxies, it is necessary to keep in mind that some of the scatter is due to the different methods applied to estimate these quantities. In the present analysis, we will compare our sample of BCGs with other literature data. For the BCGs, the SFRs are obtained from measurements of the Hα fluxes [applying the Kennicutt (1998) law], and the sizes are estimated in a homogeneous way.

Finally, as already pointed out by G10, the Kennicutt law for SFR has been calibrated assuming a Salpeter IMF. However, when Γ is estimated, we compare CFR and SFR in the same host. Since in our star cluster analysis we have assumed a Kroupa IMF (Kroupa 2001), we have, for sake of consistency, applied a conversion factor in order to obtain cluster masses for a Salpeter IMF. The CFR and Γ values listed in Table 1 are for cluster masses derived assuming a Salpeter IMF.

3.1.2 The area of the starburst

The outskirts of BCGs are quite extended, while the starburst regions are confined to the central areas of the galaxies. In the current analysis, we use two different sizes (radii): one which includes the starburst and outskirts (R_G, radius of the galaxy); the other to delimit the area where the star-forming regions are contained ($R_{80\text{per cent}}$, radius of the star-forming region). The R_G is the most extended radius we can infer from our data and is used to estimate the luminosity of the targets, L_{host}, in a few bands (see below). The $R_{80\text{per cent}}$ is used for constraining the density of SFR in the galaxy, Σ_{SFR}. The latter is a measure of the rate at which the star-forming regions are producing stars. Therefore, it is important to use a homogeneous method to estimate the area of these active regions when different galaxies are compared.

To obtain an estimate of $R_{80\text{per cent}}$, we looked at the fraction of galactic flux contained in growing aperture radii as function of the total flux contained inside R_G. A direct check on the frames shows that the $R_{80\text{per cent}}$ encloses generously the starburst regions in all the BCGs here studied. As a further check we have compared (Fig. 3) the fraction of flux in the B band and in Hα for three of the five BCGs (we refer to Östlin et al. 2009 for the reduction and analysis). Hα emission is usually considered a standard tracer of the SFR (Kennicutt 1998). On the other hand, the B-band flux is dominated by the light produced by young stars and can also be considered a reliable indicator of the location of the starburst regions. We compare the fraction of growing flux in the two tracers to check whether $R_{80\text{per cent}}$ can be considered a good estimate of the size of the starburst regions in the galaxy (see Fig. 3).

Figure 3. The fraction of galactic luminosity contained inside increasing radii as function of the total luminosity at the most extended galactic radius, R_G. In the inset we show which target is analysed. The fraction of flux in B band, $f(B)$ is showed as a black solid line, whereas the $F(\text{H}\alpha)$ is the green (grey) dotted line.

In the central regions, where the starburst dominate, the Hα luminosity distribution varies in the three galaxies. In ESO 338 (top panel, Fig. 3), we observe that the Hα luminosity is less centrally concentrated than the B-band luminosity. However, at $R_{80\text{per cent}}$, we observe an opposite behaviour and roughly 90 per cent of the Hα flux is enclosed. This effect is caused by the presence of a very massive and young cluster in the centre of ESO 338 (Östlin, Cumming & Bergvall 2007), which has cleaned the surrounding regions of the nebular gas (see image of the galaxy in Östlin et al. 2009), causing a dearth of Hα emission. In Haro 11 (central panel, Fig. 3), the situation is inverted. The Hα luminosity is contained in a much smaller region than the B band one and, at $R_{80\text{per cent}}$, we detected almost 100 per cent of Hα flux produced by the galaxy. Finally, in the case of SBS 0335−052E (bottom panel), we see that Hα and B-band luminosities grow in a similar way.

In all the cases within the uncertainties, $R_{80\text{per cent}}$, estimated from the B band, incorporates or is in a fairly good agreement with Hα luminosity distribution. Therefore, we use $R_{80\text{per cent}}$ to estimate the area of the star-forming regions in the galaxies and, thus, the Σ_{SFR}.

3.1.3 The distinction between bound clusters and associations

The distinction between clusters and associations has not been applied to our BCGs sample, neither to the data used to obtain the three relations discussed in this paper. Two of these relations,
\(T_L(U) - \Sigma_{SFR} \) and \(\Gamma - \log(\Sigma_{SFR}) \), can be drastically affected. If the real number of clusters is overestimated (e.g. stars in unbound systems are counted as clusters and not as field stars), it will alter both quantities, \(T_L(U) \) and \(\Gamma \). B08 refers to the \(M_{\text{brightest}} \)-SFR relation as an evidence of an universal CFE, \(\Gamma \) of 8 per cent if clusters form with a Schechter CMF. This relation also implies that galaxies with higher SFR form more massive clusters due to a statistical sampling effect. However, if the CFE is constant for increasing SFR, the \(\Gamma \) and the \(T_L(U) \) should also be constant. Therefore, the positive relations of \(T_L(U) \) and \(\Gamma \) versus SFR could be caused by a contamination of unbound systems. There is no other evidence, which proves a universally constant CFE, nor is there an accessible way to estimate whether the \(T_L(U) - \Sigma_{SFR} \) and the \(\Gamma - \log(\Sigma_{SFR}) \) relations still hold after a re-analysis including only bound objects. In this paper, we assume that clusters and associations are a product of the same star formation process, happening under different physical conditions and at different scales. This assumption is also supported by the distribution presented in Gieles & Portegies Zwart (2010). They see no clear distinction between associations and clusters during the first 10 Myr of their formation but a continuous distribution. Only when these systems age is there a clear distinction with only clusters remaining tightly bound (see fig. 2 in Gieles & Portegies Zwart 2010). We refer to a cluster or association as a clustered structure, knowing that only bound clusters will survive longer (Bastian & Goodwin 2006) and, eventually, become GCs. Since we are not able – with the current data – to disentangle these uncertainties, we will limit our analysis to compare the properties of the BCGs with these known relations and discuss possible implications, assuming that the estimated \(\Gamma \) and \(T_L(U) \) are, indeed, upper limits to the real values.

3.1.4 Distance of the targets

In general, the distance of the host system can affect the quality of the cluster analysis. For increasing distance, our ability to resolve single clusters diminishes rapidly. Blending and crowding (clusters usually form in complexes) can significantly produce overestimates of the quantities we are interested in, \(T_L(U) \), \(M_{\text{brightest}} \), CFR and, thus, \(\Gamma \). The cluster analysis of three of the five BCGs are likely affected by blending, i.e. the most distant ones (distances are listed in Table 1): Haro 11, ESO 185 and Mrk 930. The other two BCGs are close enough to resolve most of the clusters. Since derived cluster properties can be overestimated because of blending, we tried to look for any positive correlation between distance and \(\Gamma \). In Fig. 4, the distance of the hosts of the G10 sample and of the BCGs are plotted as function of \(\Gamma \). The three diamonds at 1 Mpc are the two Magellanic Clouds and the Milky Way. Their distances have been plotted at 1 Mpc to make the plot more clear. A dashed line separates systems with CFE above 20 per cent.

3.2 The fraction of light in star clusters

LR00 introduced the specific luminosity for YSCs defined as \(T_L = 100L_{\text{cluster}}/L_{\text{host}} \). \(T_L \) gives an estimate of the fraction of the total galaxy light that is produced by stars in clustered regions. Using a sample of galaxies which includes quiescent spirals and star-forming dwarf systems, LR00 found that the specific luminosity in the U band, \(T_L(U) \) and the SFR of the hosts were positively correlated. We present the same sample in Fig. 5, including the BCG data points. We estimate \(L_{\text{cluster}} \) using only clusters for which a SED fit has been performed. The values of \(T_L(U) \) and for two other filters, FUV and B, are listed in Table 2. \(T_L(U) \) and \(\Sigma_{SFR} \) are higher in BCGs. In general, the trend suggests that the fraction of star formation happening in clusters is important and increases as function of the SFR.

\[T_L(U) - \Sigma_{SFR} \]

Figure 4. The distance of the G10 sample (diamonds) and of the BCGs (dots) are plotted as function of \(\Gamma \). The three diamonds at 1 Mpc are the two Magellanic Clouds and the Milky Way. Their distances have been plotted at 1 Mpc to make the plot more clear. A dashed line separates systems with CFE above 20 per cent.

Figure 5. \(T_L(U) - \Sigma_{SFR} \) relation by LR00. The sample used by LR00 is shown with black triangles. The BCGs are added as purple dots.
To understand why we observe a much higher fraction of $T_1(U)$ in BCGs than in spiral galaxies, we need to look at the different star formation histories in these two classes of hosts and not only at the SFRs. In general, we observe that the YSCs in BCGs are preferentially clustered in clumps, in agreement with observations of high correlations in position as function of the age among young systems. Studies of spatial correlation among field stars, associations and clusters show a higher clustering for younger samples and a clear smoothing of the older structures (Gieles, Bastian & Ercolano 2008; Bastian et al. 2009, 2011). The star formation in spiral systems has proceeded more or less constantly for a long lapse of time. Therefore, cluster disruption has worked in favour of populating the stellar fields which form the bulk of the optical luminosity in these systems. In BCGs, the starburst has been acting for rather short time-scales (~ 40 Myr), suggesting that cluster disruption (mostly infant mortality) has not been effective.

Looking at the values listed in Table 2, we see that the fraction of light produced by the star clusters increases at shorter wavelengths and contributes significantly to the UV and U luminosities of the BCGs. Therefore, it suggests that clustered regions in galaxies at redshift $\sim 2–3$, with metallicities similar to the BCGs, contribute to a considerable fraction of the UV rest-frame light. In studies of Lyman break galaxy analogues at redshift between ~ 0.1 and 0.2, Overzier et al. (2008) observed super starburst compact regions which dominate the UV light of these targets. Similarly compact clumps are also observed at redshift > 1 galaxies (Elmegreen et al. 2009; Förster Schreiber et al. 2011). In our analysis, we find some evidence that those bright areas are probably unresolved star cluster knots recently formed and not dispersed yet by the interaction with the galactic environment, e.g. similarly to what is observed in BCGs and in spiral arms (Bastian et al. 2005; Elmegreen et al. 2006).

3.3 Do BCGs follow the $M^\text{brightest}_V$–SFR relation?

The $M^\text{brightest}_V$–SFR relation was first noted by L02, who suggested that the visual magnitude of the most luminous cluster and the total galaxy SFR were correlated. By means of numerical modelling, Weidner et al. (2004) investigated the cluster physical conditions required to reproduce the relation, assuming that the brightest cluster would be also the most massive. They reproduced the observed relation under the assumption that a cluster population is formed within a time-scale of ~ 10 Myr, following a CMF with index steeper (~ -2.3) than is normally observed in cluster populations (e.g. ~ -2.0; Zhang & Fall 1999; Bik et al. 2003). B08, releasing the condition of the brightest cluster also being the most massive, observed that the relation showed less scatter if the brightest youngest (< 10 Myr) cluster was used instead. Monte Carlo simulations of cluster populations with a CMF of power law -2.0 or a Schechter CMF with power law -2.0 and a characteristic mass of a few times $10^5 M_\odot$ were used to test different scenarios of CFE. Using the plot shown here in Fig. 6, B08 ruled out a scenario where 100 per cent of the stars form in clusters with a CMF power law of index -2.0. The L02 relation appeared to be in better agreement if clusters form with a Schechter CMF and only $\sim 8–10$ per cent of the stars reside in bound clusters ($\Gamma \sim 0.1$). We include the BCG sample in the $M^\text{brightest}_V$–SFR relation, using the corresponding youngest brightest clusters. The five targets are located above the relation. The most nearby BCG in our sample, ESO 338, is the one with the largest scatter. In agreement with the $M^\text{brightest}_V$–SFR relation, a higher SFR in BCGs enables the formation of more massive (luminous) clusters than quiescent spiral galaxies. Moreover, the position of the targets suggests that the Γ in BCGs is higher than the $\sim 8–10$ per cent found by B08.

A higher CFE in BCGs has already been observed using the G10 relation (Adamo et al. 2010a; Adamo et al. 2011a,b). In Fig. 7, we show the relation including also SBS 0335 and ESO 338. The position of Haro 11 and ESO 185 has slightly changed compared to the previous publications (Adamo et al. 2010a; Adamo et al. 2011a), because of the different IMF (Salpeter instead of Kroupa) and the different method used to estimated the area of normalization of the SFR (Section 3.1). The data by Silva-Villa & Larsen are clearly scattered around the relation. BCGs follow the trend predicted by the relation, even if we notice that three of the five targets sit above the expected values. The mean value of the CFE in BCGs is $\Gamma_{\text{BCGs}} = 40 \pm 10$ per cent.

4 CLUSTER FORMATION IN BCGS: A CLOSE LOOK AT HIGH CLUSTER FORMATION EFFICIENCIES

We have used the cluster–host relations to investigate in more detail difference/analogies between BCGs and other star-forming galaxies. Due the uncertainties affecting the data, we consider the derived quantities as upper limits to the real values.

A difference of the sample of dwarf galaxies studied by Billett et al. (2002), luminous BCGs are more efficient in forming star clusters. There are a few possibilities why this may be true. The Billet et al. galaxies do not show any clear signature of merging events. Most likely cluster formation in these dwarf systems has been triggered by internal instabilities, low shear and inflows of gas. Moreover, the gravitational potential in these systems is not deep enough to retain the gas which is clearly observed in outflows. Luminous BCGs have recently experienced a merger event or accreted a considerable amount of gas (see Östlin et al. 2001; Adamo et al. 2010a, 2011a,b). This may have favoured the
in high-redshift galaxies. However, it is difficult to extend its validity to galaxies with an extreme environment (merging systems). Numerical simulations have shown that GCs may have formed in strongly shocked media and high pressure fields, which have enhanced the gas compression and favoured the formation of more tightly bound structures (Elmegreen & Efremov 1997; Bournaud, Duc & Emsellem 2008). Such conditions are usually reached in galaxy mergers, where massive YSCs are observed (Antennae system, Mengel et al. 2005; 220, Wilson et al. 2006; the Bird galaxy, Väisänen et al. 2008). An increase of the CFE as function of redshift has also been found in simulations by Muratov & Gnedin (2010). They observed that the CFE (e.g. the mass in cluster versus the total mass of the host) at redshift \(z \approx 3 \) was much higher (about 20 per cent) than in the local Universe. For this reason it is possible that the formation and survival of young and massive clusters formed in extreme environments such as BCGs or LIRGs could help to trace the formation of the old GCs, if they have formed under similar conditions.

However, only better data in terms of number statistics and quality (high resolution is required in order to distinguish clusters from associations) are needed to reach more stringent conclusions.

5 CONCLUSIONS

To understand the role of BCGs in the galaxy formation scenario, we have tried to constrain how the star and cluster formation is operating in these systems.

We have looked into the efficiency of the formation of massive star clusters. It is known that some properties of the cluster population and the mean star formation in the host system are correlated, suggesting that the formation of a cluster is not a local event but intrinsically connected to the mean properties of the galaxy. In general, we find that BCGs follow fairly well these relations, even if their SFRs and cluster properties are more extreme.

We discuss possible uncertainties affecting our results. The relation which is least affected is the \(SFR_{\text{max}}-\text{SFR} \) relation, presented in the previous section, suggests that BCGs are, in the local universe, among the systems which form very massive (bright) clusters. Although they follow the trend it is also clear that they are slightly offset from the prediction made by B08 of a constant CFE. The systematic scatter observed in the position of the BCGs in the \(SFR_{\text{max}}-\text{SFR} \) relation suggests that a higher CFE is operating in these systems, which are not dynamically relaxed, e.g. in a merging/interaction phase. The trends observed in the other two relations, \(\Gamma - \log (\Sigma_{\text{SFR}}) \) and \(T_{\text{L}}(U)-\Sigma_{\text{SFR}} \), even if uncertain, support this scenario. A close look at the Goddard et al. relation reveals an interesting point. In the diagram of Fig. 7, two different groups can be delineated by the distributions of the data points. Using the values listed in table 4 of G10, we estimate that the mean CFE of the group with lower values (the Silva-Villa & Larsen sample) has been excluded by \(\Sigma_{\text{SFR}} \) at \(\Gamma = 8.7 \pm 4.3 \) per cent, close to the value found by B08. The more efficient sample includes two targets from G10 (the starburst nucleus of the spiral Mr8 and the LIRG NCG 3256) and the BCGs. Their mean CFE is \(\Gamma = 35.6 \pm 10 \) per cent, roughly a factor of 4 higher. The two subsamples suggest that CFE is not constant at all scales of SFR. We see that in star-forming systems where star formation has proceeded more or less constantly without any significant burst, the CFE has a mean value of \(\sim 8 \) per cent. Starburst systems, on the other hand, are very active in producing star clusters. Possibly, the difference in CFEs reflects a difference in the conditions of the interstellar medium in the hosts (Elmegreen 2008).

The universal CFE discussed by B08 could be valid in the local universe assuming that the interstellar medium density is lower than that of the local universe assuming that the interstellar medium density is lower than that the total mass of the host) is redshift \(z \approx 3 \) was much higher (about 20 per cent) than in the local Universe. For this reason it is possible that the formation and survival of young and massive clusters formed in extreme environments such as BCGs or LIRGs could help to trace the formation of the old GCs, if they have formed under similar conditions.

However, only better data in terms of number statistics and quality (high resolution is required in order to distinguish clusters from associations) are needed to reach more stringent conclusions.

5 CONCLUSIONS

To understand the role of BCGs in the galaxy formation scenario, we have tried to constrain how the star and cluster formation is operating in these systems.

We have looked into the efficiency of the formation of massive star clusters. It is known that some properties of the cluster population and the mean star formation in the host system are correlated, suggesting that the formation of a cluster is not a local event but intrinsically connected to the mean properties of the galaxy. In general, we find that BCGs follow fairly well these relations, even if their SFRs and cluster properties are more extreme.

We discuss possible uncertainties affecting our results. The relation which is least affected is the \(SFR_{\text{max}}-\text{SFR} \) one, which suggests that the CFE is higher in BCGs than in quiescent spiral and dwarf starburst galaxies. The same evidence is also suggested by the other two relations, \(\Gamma - \log (\Sigma_{\text{SFR}}) \) and \(T_{\text{L}}(U)-\Sigma_{\text{SFR}} \), which appear to be consistent with the general picture despite the uncertainties of the data.

In particular, we observe that the inclusion of the BCG sample separates the \(\Gamma - \log (\Sigma_{\text{SFR}}) \) plane into two regions. Local spiral galaxies and dwarf starbursts as the Magellanic Clouds occupy the area around a mean CFE of \(8 \pm 5 \) per cent in agreement with the prediction made by B08. The BCGs, together with a LIRG and a nuclear starburst region (included in the G10 sample), are in a region with a mean CFE of \(35.6 \pm 10 \) per cent. This indicates that the merger event has enhanced the cluster formation in these systems.

We observe that the fraction of light produced by star clusters in BCGs increases at shorter wavelengths and contributes significantly to the UV and \(U \) luminosities. This suggests that clustered regions contribute a substantial fraction to the rest-frame UV light of \(z \approx 1-3 \) galaxies with metallicities similar to the BCGs. In studies of Lyman break galaxy analogues at redshift between \(\sim 0.1 \) and 0.2, Overzier et al. (2008) observed super starburst compact regions which dominate the UV light of these targets. In our analysis, we find some evidence that those bright clumps are probably unresolved star cluster knots, similarly to the ones observed in BCGs.
ACKNOWLEDGMENTS

AA thanks Ana Chies-Santos for reading the manuscript and interesting discussions on globular cluster formation scenarios, and Esteban Silva-Villa for useful inputs on the interpretation of the current host–cluster relations. The referee, Nate Bastian, is thanked for the numerous suggestions and valuable comments which have improved this work. GO is, a Royal Swedish Academy of Sciences research fellow, supported from a grant from the Knut and Alice Wallenberg foundation. AA, GO and EZ also acknowledge support from the Swedish Research council and the Swedish National Space Board. This research has made use of the NASA/IPAC Extragalactic Data base (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

Adamo A., Östlin G., Zackrisson E., Hayes M., Cumming R. J., Micheva G., 2010a, MNRAS, 407, 870
Adamo A., Zackrisson E., Östlin G., Hayes M., 2010b, ApJ, 725, 1620
Adamo A., Östlin G., Zackrisson E., Hayes M., 2011a, MNRAS, 414, 1793
Adamo A., Östlin G., Zackrisson E., Papaderos P., Bergvall N., Rich R. M., Micheva G., 2011b, MNRAS, 415, 2388
Bastian N., 2008, MNRAS, 390, 799 (B08)
Bastian N., Goodwin S. P., 2006, MNRAS, 369, L9
Bastian N., Gieles M., Efremov Y. N., Lamers H. J. G. L. M., 2005, A&A, 443, 79
Bastian N., Gieles M., Ercolano B., Gutermuth R., 2009, MNRAS, 392, 868
Bastian N. et al., 2011, MNRAS, 412, 1539
Bik A., Lamers H. J. G. L. M., Bastian N., Panagia N., Romaniello M., 2003, A&A, 397, 473
Billett O. H., Hunter D. A., Elmegreen B. G., 2002, AJ, 123, 1454
Bournaud F., Duc P.-A., Emsellem E., 2008, MNRAS, 389, L8
Bressert E. et al., 2010, MNRAS, 409, L54
Brodie J. P., Strader J., 2006, ARA&A, 44, 193
Chies-Santos A. L., Larsen S. S., Kuntschner H., Anders P., Wehner E. M., Strader J., Brodie J. P., Santos J. F. C., 2011, A&A, 525, A20
Cole S., Lacey C. G., Baugh C. M., Frenk C. S., 2000, MNRAS, 319, 168
de Grijs R., Parmentier G., 2007, Chinese J. Astron. Astrophys., 7, 155
Elmegreen B. G., 2008, ApJ, 672, 1006
Elmegreen B. G., Efremov Y. N., 1997, ApJ, 480, 235
Elmegreen B. G., Elmegreen D. M., Chandar R., Whitmore B., Regan M., 2006, ApJ, 644, 879
Elmegreen B. G., Elmegreen D. M., Fernandez M. X., Lemonias J. J., 2009, ApJ, 692, 12
Finkelstein S. L., Papovich C., Giavalisco M., Reddy N. A., Ferguson H. C., Koekemoer A. M., Dickinson M., 2010, ApJ, 719, 1250
Fürster Schreiber N. M. et al., 2011, MNRAS, 410, L6
Gieles M., Portegies Zwart S. F., 2010, MNRAS, L168

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.