TRIANGLE INEQUALITIES IN PATH METRIC SPACES

MICHAEL KAPOVICH

Abstract. We study side-lengths of triangles in path metric spaces. We prove that unless such a space X is bounded, or quasi-isometric to \mathbb{R}_+ or to \mathbb{R}, every triple of real numbers satisfying the strict triangle inequalities, is realized by the side-lengths of a triangle in X. We construct an example of a complete path metric space quasi-isometric to \mathbb{R}^2 for which every degenerate triangle has one side which is shorter than a certain uniform constant.

Given a metric space X define
\[
K_3(X) := \{(a, b, c) \in \mathbb{R}^3_+ : \exists \text{ points } x, y, z \text{ so that } d(x, y) = a, d(y, z) = b, d(z, x) = c\}.
\]

Note that $K_3(\mathbb{R}^2)$ is the closed convex cone K in \mathbb{R}^3_+ given by the usual triangle inequalities. On the other hand, if $X = \mathbb{R}$ then $K_3(X)$ is the boundary of K since all triangles in X are degenerate. If X has finite diameter, $K_3(X)$ is a bounded set.

In [3, Page 18] Gromov raised the following

Question 1. Find reasonable conditions on path metric spaces X, under which $K_3(X) = K$.

It is not so difficult to see that for a path metric space X quasi-isometric to \mathbb{R}_+ or \mathbb{R}, the set $K_3(X)$ does not contain the interior of K, see Section 3. Moreover, every triangle in such X is D-degenerate for some $D < \infty$ and therefore $K_3(X)$ is contained in the D-neighborhood of ∂K.

Our main result is essentially the converse to the above observation:

Theorem 2. Suppose that X is an unbounded path metric space not quasi-isometric to \mathbb{R}_+ or \mathbb{R}. Then:
1. $K_3(X)$ contains the interior of the cone K.
2. If, in addition, X contains arbitrary long geodesic segments, then $K_3(X) = K$.

In particular, we obtain a complete answer to Gromov’s question for geodesic metric spaces, since an unbounded geodesic metric space clearly contains arbitrarily long geodesic segments. In Section 5 we give an example of a (complete) path metric space X quasi-isometric to \mathbb{R}^2, for which
\[
K_3(X) \neq K.
\]

Therefore, Theorem 2 is the optimal result.

The proof of Theorem 2 is easier under the assumption that X is a proper metric space: In this case X is necessarily complete, geodesic metric space. Moreover, every unbounded sequence of geodesic segments \overline{ox} in X yields a geodesic ray. The reader
who does not care about the general path metric spaces can therefore assume that X

is proper. The arguments using the ultralimits are then replaced by the Arcela–Ascoli

theorem.

Below is a sketch of the proof of Theorem 2 under the extra assumption that X

is proper. Since the second assertion of Theorem 2 is clear, we have to prove only the

first statement. We define R-tripods $T \subset X$, as unions $\gamma \cup \mu$ of two geodesic segments

$\gamma, \mu \subset X$, having the lengths $\geq R$ and $\geq 2R$ respectively, so that:

1. $\gamma \cap \mu = o$ is the end-point of γ.
2. o is distance $\geq R$ from the ends of μ.
3. o is a nearest-point projection of γ to μ.

The space X is called R-compressed if it contains no R-tripods. The space X is
called uncompressed if it is not R-compressed for any $R < \infty$.

We break the proof of Theorem 2 in two parts:

Part 1.

Theorem 3. If X is uncompressed then $K_3(X)$ contains the interior of $K_3(\mathbb{R}^2)$.

The proof of this theorem is mostly topological. The side-lengths of triangles in X
determine a continuous map

$L: X^3 \to K$

Then $K_3(X) = L(X^3)$. Given a point κ in the interior of K, we consider an R-tripod

$T \subset X$ for sufficiently large R. We then restrict to triangles in X with vertices

in T. We construct a 2-cycle $\Sigma \in Z_2(T, \mathbb{Z}_2)$ whose image under L_* determines a

nontrivial element of $H_2(K \setminus \kappa, \mathbb{Z}_2)$. Since T^3 is contractible, there exists a 3-chain

$\Gamma \in C_3(T^3, \mathbb{Z}_2)$ with the boundary Σ. Therefore the support of $L_*(\Gamma)$ contains the

point κ, which implies that κ belongs to the image of L.

Remark 4. Gromov observed in [3] that uniformly contractible metric spaces X have

large $K_3(X)$. Although uniform contractibility is not relevant to our proof, the key

argument here indeed has the coarse topology flavor.

Part 2.

Theorem 5. If X is a compressed unbounded path metric space, then X is quasi-
isometric to \mathbb{R} or \mathbb{R}_+.

Assuming that X is compressed, unbounded and is not quasi-isometric to \mathbb{R} and
to \mathbb{R}_+, we construct three diverging geodesic rays ρ_i in X, $i = 1, 2, 3$. Define $\mu_i \subset X$
to be the geodesic segment connecting $\rho_1(i)$ and $\rho_2(i)$. Take γ_i to be the shortest
segment connecting $\rho_3(i)$ to μ_i. Then $\gamma_i \cup \mu_i$ is an R_i-tripod with $\lim_i R_i = \infty$, which
contradicts the assumption that X is compressed.

Acknowledgements. During this work the author was partially supported by the

NSF grants DMS-04-05180 and DMS-05-54349. Most of this work was done when the

author was visiting the Max Plank Institute for Mathematics in Bonn.
1. Preliminaries

Convention 6. All homology will be taken with the \mathbb{Z}_2-coefficients.

In the paper we will talk about ends of a metric space X. Instead of looking at the noncompact complementary components of relatively compact open subsets of X as it is usually done for topological spaces, we will define ends of X by considering unbounded complementary components of bounded subsets of X. With this modification, the usual definition goes through.

If x, y are points in a topological space X, we let $P(x, y)$ denote the set of continuous paths in X connecting x to y. For $\alpha \in P(x, y)$, $\beta \in P(y, z)$ we let $\alpha \ast \beta \in P(x, z)$ denote the concatenation of α and β. Given a path $\alpha : [0, a] \to X$ we let $\bar{\alpha}$ denote the reverse path $\bar{\alpha}(t) = \alpha(a - t)$.

1.1. Triangles and their side-lengths. We set $K := K_3(\mathbb{R}^2)$; it is the cone in \mathbb{R}^3 given by

$$\{ (a, b, c) : a \leq b + c, b \leq a + c, c \leq a + b \}.$$ We metrize K by using the maximum-norm on \mathbb{R}^3.

By a triangle in a metric space X we will mean an ordered triple $\Delta = (x, y, z) \in X^3$. We will refer to the numbers $d(x, y), d(y, z), d(z, x)$ as the side-lengths of Δ, even though these points are not necessarily connected by geodesic segments. The sum of the side-lengths of Δ will be called the perimeter of Δ.

We have the continuous map

$$L : X^3 \to K$$

which sends the triple (x, y, z) of points in X to the triple of side-lengths

$$(d(x, y), d(y, z), d(z, x)).$$

Then $K_3(X)$ is the image of L.

Let $\epsilon \geq 0$. We say that a triple $(a, b, c) \in K$ is ϵ-degenerate if, after reordering if necessary the coordinates a, b, c, we obtain

$$a + \epsilon \geq b + c.$$ Therefore every ϵ-degenerate triple is within distance $\leq \epsilon$ from the boundary of K. A triple which is not ϵ-degenerate is called ϵ-nondegenerate. A triangle in a metric space X whose side-lengths form an ϵ-degenerate triple, is called ϵ-degenerate. A 0-degenerate triangle is called degenerate.

1.2. Basic notions of metric geometry. For a subset E in a metric space X and $R < \infty$ we let $N_R(E)$ denote the metric R-neighborhood of E in X:

$$N_R(E) = \{ x \in X : d(x, E) \leq R \}.$$

Definition 7. Given a subset E in a metric space X and $\epsilon > 0$, we define the ϵ-nearest-point projection $p = p_{E, \epsilon}$ as the map which sends X to the set 2^E of subsets in E:

$$y \in p(x) \iff d(x, y) \leq d(x, z) + \epsilon, \quad \forall z \in E.$$ If $\epsilon = 0$, we will abbreviate $p_{E,0}$ to p_E.

3
Quasi-isometries. Let X, Y be metric spaces. A map $f : X \to Y$ is called an (L, A)-quasi-isometric embedding (for $L \geq 1$ and $A \in \mathbb{R}$) if for every pair of points $x_1, x_2 \in X$ we have
\[
L^{-1}d(x_1, x_2) - A \leq d(f(x_1), f(x_2)) \leq Ld(x_1, x_2) + A.
\]

A map f is called an (L, A)-quasi-isometry if it is an (L, A)-quasi-isometric embedding so that $N_A(f(X)) = Y$. Given an (L, A)-quasi-isometry, we have the quasi-inverse map $\bar{f} : Y \to X$ which is defined by choosing for each $y \in Y$ a point $x \in X$ so that $d(f(x), y) \leq A$. The quasi-inverse map \bar{f} is an $(L, 3A)$-quasi-isometry. An (L, A)-quasi-isometric embedding f of an interval $I \subset \mathbb{R}$ into a metric space X is called an (L, A)-quasi-geodesic in X. If $I = \mathbb{R}$, then f is called a complete quasi-geodesic.

Every quasi-isometric embedding $\mathbb{R}^n \to \mathbb{R}^n$ is a quasi-isometry, see for instance [5].

Geodesics and path metric spaces.

A geodesic in a metric space is an isometric embedding of an interval into X. By abusing the notation, we will identify geodesics and their images. A metric space is called geodesic if any two points in X can be connected by a geodesic. By abusing the notation we let xy denote a geodesic connecting x to y, even though this geodesic is not necessarily unique.

The length of a continuous curve $\gamma : [a, b] \to X$ in a metric space, is defined as
\[
\text{length}(\gamma) = \sup \left\{ \sum_{i=1}^{n} d(\gamma(t_{i-1}), \gamma(t_i)) : a = t_0 < t_1 < ... < t_n = b \right\}.
\]

A path γ is called rectifiable if $\text{length}(\gamma) < \infty$.

A metric space X is called a path metric space if for every pair of points $x, y \in X$ we have
\[
d(x, y) = \inf \{ \text{length}(\gamma) : \gamma \in P(x, y) \}.
\]

We say that a curve $\gamma : [a, b] \to X$ is ϵ-geodesic if
\[
\text{length}(\gamma) \leq d(\gamma(a), \gamma(b)) + \epsilon.
\]

It follows that every ϵ-geodesic is $(1, \epsilon)$-quasi-geodesic. We refer the reader to [3, 2] for the further details on path metric spaces.

1.3. Ultralimits. Our discussion of ultralimits of sequences of metric space will be somewhat brief, we refer the reader to [5, 3, 4, 2, 6] for the detailed definitions and discussion.

Choose a nonprincipal ultrafilter ω on \mathbb{N}. Suppose that we are given a sequence of pointed metric spaces (X_i, o_i), where $o_i \in X_i$. The ultralimit

\[
(X_\omega, o_\omega) = \omega\text{-lim}(X_i, o_i)
\]
is a pointed metric space whose elements are equivalence classes of sequences $x_i \in X_i$. The distance in X_ω is the ω-limit:

$$\omega\text{-}\lim d(x_i, y_i).$$

One of the key properties of ultralimits which we will use repeatedly is the following. Suppose that (Y_i, p_i) is a sequence of pointed metric spaces. Assume that we are given a sequence of (L_i, A_i)-quasi-isometric embeddings

$$f_i : X_i \to Y_i$$

so that $\omega\text{-}\lim d(f(o_i), p_i)) < \infty$ and

$$\omega\text{-}\lim L_i = L < \infty, \quad \omega\text{-}\lim A_i = 0.$$

Then there exists the ultralimit f_ω of the maps f_i, which is an $(L, 0)$-quasi-isometric embedding

$$f_\omega : X_\omega \to Y_\omega.$$

In particular, if $L = 1$, then f_ω is an isometric embedding.

Ultralimits of constant sequences of metric spaces. Suppose that X is a path metric space. Consider the constant sequence $X_i = X$ for all i. If X is a proper metric space and o_i is a bounded sequence, the ultralimit X_ω is nothing but X itself. In general, however, it could be much larger. The point of taking the ultralimit is that some properties of X improve after passing to X_ω.

Lemma 8. X_ω is a geodesic metric space.

Proof. Points x_ω, y_ω in X_ω are represented by sequences $(x_i), (y_i)$ in X. For each i choose a $1/i$-geodesic curve γ_i in X connecting x_i to y_i. Then

$$\gamma_\omega := \omega\text{-}\lim \gamma_i$$

is a geodesic connecting x_ω to y_ω. \hfill \Box

Similarly, every sequence of $1/i$-geodesic segments $\overline{yx_i}$ in X satisfying

$$\omega\text{-}\lim d(y, x_i) = \infty,$$

yields a geodesic ray γ_ω in X_ω emanating from $y_\omega = (y)$.

If $o_i \in X$ is a bounded sequence, then we have a natural (diagonal) isometric embedding $X \to X_\omega$, given by the map which sends $x \in X$ to the constant sequence (x).

Lemma 9. For every geodesic segment $\gamma_\omega = \overline{x_\omega y_\omega}$ in X_ω there exists a sequence of $1/i$-geodesics $\gamma_i \subset X_\omega$, so that

$$\omega\text{-}\lim \gamma_i = \gamma_\omega.$$

Proof. Subdivide the segment γ_ω into n equal subsegments

$$\overline{z_{\omega,j} z_{\omega,j+1}}, \quad j = 1, ..., n,$$

where $x_\omega = z_{\omega,1}, y_\omega = z_{\omega,n+1}$. Then the points $z_{\omega,j}$ are represented by sequences $(z_{k,j}) \in X$. It follows that for ω-all k, we have

$$\left| \sum_{j=1}^{n} d(z_{k,j}, z_{k,j+1}) - d(x_k, y_k) \right| < \frac{1}{2i}.$$
Connect the points $z_{k,j}, z_{k,j+1}$ by $\frac{1}{2^n}$-geodesic segments $\alpha_{k,j}$. Then the concatenation

$$\alpha_n = \alpha_{k,1} \ast \ldots \ast \alpha_{k,n}$$

is an $\frac{1}{i}$-geodesic connecting x_k and y_k, where

$$x_\omega = (x_k), \quad y_\omega = (y_k).$$

It is clear from the construction, that, if given i we choose sufficiently large $n = n(i)$, then

$$\omega \text{-lim } \alpha_{n(i)} = \gamma.$$

Therefore we take $\gamma_i := \alpha_{n(i)}$. \hfill \Box

1.4. **Tripods.** Our next goal is to define *tripods* in X, which will be our main technical tool. Suppose that x, y, z, o are points in X and μ is an ϵ-geodesic segment connecting x to y, so that $o \in \mu$ and

$$o \in p_{\mu, \epsilon}(z).$$

Then the path μ is the concatenation $\alpha \cup \beta$, where α, β are ϵ-geodesics connecting x, y to o. Let γ be an ϵ-geodesic connecting z to o.

Definition 10. 1. We refer to $\alpha \cup \beta \cup \gamma$ as a *tripod* T with the vertices x, y, z, legs α, β, γ, and the center o.

2. Suppose that the length of α, β, γ is at least R. Then we refer to the tripod T as (R, ϵ)-tripod. An $(R, 0)$-tripod will be called simply an R-tripod.

The reader who prefers to work with proper geodesic metric spaces can safely assume that $\epsilon = 0$ in the above definition and thus T is a geodesic tripod.

![Figure 1. A tripod.](image)

Definition 11. Let $R \in [0, \infty), \epsilon \in [0, \infty)$. We say that a space X is (R, ϵ)-compressed if it contains no (R, ϵ)-tripods. We will refer to $(R, 0)$-compressed spaces as R-compressed. A space X which is not (R, ϵ)-compressed for any $R < \infty$, $\epsilon > 0$ is called uncompressed.

Therefore X is uncompressed if and only if there exists a sequence of (R_i, ϵ_i)-tripods in X with

$$\lim_i R_i = \infty, \quad \lim_i \epsilon_i = 0.$$
1.5. **Tripods and ultralimits.** Suppose that X is uncompressed and thus there exists a sequence of (R_i, ϵ_i)-tripods T_i in X with

$$\lim_i R_i = \infty, \quad \lim_i \epsilon_i = 0,$$

so that the center of T_i is o_i and the legs are $\alpha_i, \beta_i, \gamma_i$. Then the tripods T_i clearly yield a geodesic $(\infty, 0)$-tripod T_ω in $(X_\omega, o_\omega) = \omega\text{-lim}(X, o_i)$. The tripod T_ω is the union of three geodesic rays $\alpha_\omega, \beta_\omega, \gamma_\omega$ emanating from o_ω, so that

$$o_\omega = p_{\mu_\omega}(\gamma_\omega).$$

Here $\mu_\omega = \alpha_\omega \cup \beta_\omega$. In particular, X_ω is uncompressed.

Conversely, in view of Lemma 9, we have:

Lemma 12. If X is (R, ϵ)-compressed for $\epsilon > 0$ and $R < \infty$, then X_ω is R'-compressed for every $R' > R$.

Proof. Suppose that X_ω contains an R'-tripod T_ω. Then T_ω appears as the ultra-limit of $(R' - \frac{1}{i}, \frac{1}{i})$-tripods in X. This contradicts the assumption that X is (R, ϵ)-compressed. \(\Box\)

Let $\sigma : [a, b] \to X$ be a rectifiable curve in X parameterized by its arc-length. We let d_σ denote the path metric on $[a, b]$ which is the pull-back of the path metric on $[a, b]$. By abusing the notation we denote by d the restriction to σ of the metric d. Note that, in general, d is only a pseudo-metric on $[a, b]$ since σ need not be injective. However, if σ is injective then d is a metric.

We repeat this construction with respect to the tripods: Given a tripod $T \subset X$, define an abstract tripod T_{mod} whose legs have the same length as the legs of T. We have a natural map

$$\tau : T_{mod} \to X$$

which sends the legs of T_{mod} to the respective legs of T, parameterizing them by the arc-length. Then T_{mod} has the path metric d_{mod} obtained by pull-back of the path metric from X via τ. We also have the restriction pseudo-metric d on T_{mod}:

$$d(A, B) = d(\tau(A), \tau(B)).$$

Observe that if $\epsilon = 0$ and X is a tree then the metrics d_{mod} and d on T agree.

Lemma 13.

$$d \leq d_{mod} \leq 3d + 6\epsilon.$$

Proof. The inequality $d \leq d_{mod}$ is clear. We will prove the second inequality. If $A, B \in \alpha \cup \beta$ or $A, B \in \gamma$ then, clearly,

$$d_{mod}(A, B) \leq d(A, B) + \epsilon,$$

since these curves are ϵ-geodesics.

Therefore consider the case when $A \in \gamma$ and $B \in \beta$. Then

$$D := d_{mod}(A, B) = t + s,$$

where $t = d_o(A, o), s = d_B(o, B)$.

Case 1: $t \geq D/3$. Then, since $o \in \alpha \cup \beta$ is ϵ-nearest to A, it follows that

$$D/3 \leq t \leq d(A, o) + \epsilon \leq d(A, B) + 2\epsilon.$$
Hence
\[d_{\text{mod}}(A, B) = \frac{3D}{3} \leq 3(d(A, B) + 2\epsilon) = 3d(A, B) + 6\epsilon, \]
and the assertion follows in this case.

Case 2: \(t < D/3 \). By the triangle inequality,
\[D - t = s \leq d(o, B) + \epsilon \leq d(o, A) + d(A, B) + \epsilon \leq t + 2\epsilon + d(A, B). \]
Hence
\[\frac{D}{3} = D - \frac{2}{3}D \leq D - 2t \leq 2\epsilon + d(A, B), \]
and
\[d_{\text{mod}}(A, B) = \frac{3D}{3} \leq 3d(A, B) + 6\epsilon. \]
\[\square \]

2. **Topology of configuration spaces of tripods**

We begin with the model tripod \(T \) with the legs \(\alpha_i, i = 1, 2, 3 \), and the center \(o \). Consider the configuration space \(Z := T^3 \setminus \text{diag} \), where \(\text{diag} \) is the small diagonal
\[\{(x_1, x_2, x_3) \in T^3 : x_1 = x_2 = x_3\}. \]
We recall that the homology is taken with the \(\mathbb{Z}_2 \)-coefficients.

Proposition 14. \(H_1(Z) = 0 \).

Proof. \(T^3 \) is the union of cubes
\[Q_{ijk} = \alpha_i \times \alpha_j \times \alpha_k, \]
where \(i, j, k \in \{1, 2, 3\} \). Identify each cube \(Q_{ijk} \) with the unit cube in the positive octant in \(\mathbb{R}^3 \). Then in the cube \(Q_{ijk} \) we choose the equilateral triangle \(\sigma_{ijk} \) given by the intersection of \(Q_{ijk} \) with the hyperplane
\[x + y + z = 1 \]
in \(\mathbb{R}^3 \). Define the 2-dimensional complex
\[S := \bigcup_{ijk} \sigma_{ijk}. \]
This complex is homeomorphic to the link of \((o, o, o)\) in \(T^3 \). Therefore \(Z \) is homotopy-equivalent to
\[W := S \setminus (\sigma_{111} \cup \sigma_{222} \cup \sigma_{333}). \]
Consider the loops \(\gamma_i := \partial \sigma_{iii}, i = 1, 2, 3 \).

Lemma 15. 1. The homology classes \([\gamma_i], i = 1, 2, 3 \) generate \(H_1(W) \).

2. \([\gamma_1] = [\gamma_2] = [\gamma_3] \) in \(H_1(W) \).

Proof. 1. We first observe that \(S \) is a 2-dimensional spherical building. Therefore \(L \) is homotopy-equivalent to a bouquet of 2-spheres (see \[\text{[1, Theorem 2, page 93]}\]), which implies that \(H_1(S) = 0 \). Now the first assertion follows from the long exact sequence of the pair \((S, W)\).

2. Let us verify that \([\gamma_1] = [\gamma_2] \). The subcomplex
\[S_{12} = S \cap (\alpha_1 \cup \alpha_2)^3 \]
is homeomorphic to the 2-sphere. Therefore \(S_{12} \cap W \) is the annulus bounded by the circles \(\gamma_1 \) and \(\gamma_2 \). Hence \([\gamma_1] = [\gamma_2]\). □

Lemma 16. \[[\gamma_1] + [\gamma_2] + [\gamma_3] = 0 \]
in \(H_1(W) \).

Proof. Let \(B' \) denote the chain
\[
\sum_{\{ijk\} \in A} \sigma_{ijk},
\]
where \(A \) is the set of triples of distinct indices. Let
\[
B'' := \sum_{i=1}^{3} (\sigma_{ii(i+1)} + \sigma_{i(i+1)i} + \sigma_{(i+1)ii})
\]
where we set \(3+1 := 1 \). We leave it to the reader to verify that
\[
\partial(B' + B'') = \gamma_1 + \gamma_2 + \gamma_3
\]
in \(C_1(W) \). □

By combining these lemmata we obtain the assertion of the proposition. □

Application to tripods in metric spaces. Consider an \((R, \varepsilon)\)-tripod \(T \) in a metric space \(X \) and its standard parametrization \(\tau : T_{mod} \to T \).

There is an obvious scaling operation
\[
u \mapsto r \cdot u
\]
on the space \((T_{mod}, d_{mod})\) which sends each leg to itself and scales all distances by \(r \in \mathbb{R} \). It induces the map \(T_{mod}^3 \to T_{mod}^3 \), denoted \(t \mapsto r \cdot t \), \(t \in T_{mod}^3 \).

We have the functions
\[
L_{mod} : T_{mod}^3 \to K, \quad L : T_{mod}^3 \to K,
\]
\[
L_{mod}(x, y, z) = (d_{mod}(x, y), d_{mod}(y, z), d_{mod}(z, x)),
\]
\[
L(x, y, z) = (d(x, y), d(y, z), d(z, x))
\]
computing side-lengths of triangles with respect to the metrics \(d_{mod} \) and \(d \).

For \(\rho \geq 0 \) set
\[
K_\rho := \{(a, b, c) \in K : a + b + c > \rho \}.
\]

Define
\[
T^3(\rho) := L^{-1}(K_\rho), \quad T_{mod}^3(\rho) := L_{mod}^{-1}(K_\rho).
\]

Thus
\[
T_{mod}^3(0) = T^3(0) = T^3 \setminus \text{diag}.
\]

Lemma 17. For every \(\rho \geq 0 \), the space \(T_{mod}^3(\rho) \) is homeomorphic to \(T_{mod}^3(0) \).

Proof. Recall that \(S \) is the link of \((o, o, o)\) in \(T^3 \). Then scaling determines homeomorphisms
\[
T_{mod}(\rho) \to S \times \mathbb{R} \to T_{mod}(0). \quad \square
\]

Corollary 18. For every \(\rho \geq 0 \), \(H_1(T_{mod}(\rho), \mathbb{Z}_2) = 0 \).
Corollary 19. The map induced by inclusion
\[H_1(T^3(3\rho + 18\epsilon)) \to H_1(T^3(\rho)) \]
is zero.

Proof. Recall that
\[d \leq d_{\text{mod}} \leq 3d + 6\epsilon. \]
Therefore
\[T^3(3\rho + 18\epsilon) \subset T^3_{\text{mod}}(\rho) \subset T^3(\rho). \]
Now the assertion follows from the previous corollary. \(\square\)

3. Proof of Theorem 5

Suppose that \(X\) is uncompressed. Then for every \(R < \infty, \epsilon > 0\) there exists an \((R, \epsilon)\)-tripod \(T\) with the legs \(\alpha, \beta, \gamma\). Without loss of generality we may assume that the legs of \(T\) have length \(R\). Let \(\tau : T_{\text{mod}} \to T\) denote the standard map from the model tripod onto \(T\). We will continue with the notation of the previous section.

Given a map \(f : E \to T^3_{\text{mod}}\) (or a chain \(\sigma \in C_*(T^3_{\text{mod}})\)) let \(\hat{f}\) (resp. \(\hat{\sigma}\)) denote the map \(L \circ f\) from \(E\) to \(K\) (resp. the chain \(L_*(\sigma) \in C_*(K)\)). Similarly, we define \(\hat{f}_{\text{mod}}\) and \(\hat{\sigma}_{\text{mod}}\) using the map \(L_{\text{mod}}\) instead of \(L\).

Every loop \(\lambda : S^1 \to T^3_{\text{mod}}\), determines the map of the 2-disk
\[\Lambda : D^2 \to T^3_{\text{mod}}, \]
given by
\[\Lambda(r, \theta) = r \cdot \lambda(\theta) \]
where we are using the polar coordinates \((r, \theta)\) on the unit disk \(D^2\). Triangulating both \(S^1\) and \(D^2\) and assigning the coefficient \(1 \in \mathbb{Z}_2\) to each simplex, we regard both \(\lambda\) and \(\Lambda\) as singular chains in \(C_*(T^3_{\text{mod}})\).

We let \(a, b, c\) denote the coordinates on the space \(\mathbb{R}^3\) containing the cone \(K\). Let \(\kappa = (a_0, b_0, c_0)\) be a \(\delta\)-nondegenerate point in the interior of \(K\) for some \(\delta > 0\); set \(r := a_0 + b_0 + c_0\).

Suppose that there exists a loop \(\lambda\) in \(T^3_{\text{mod}}\) such that:
1. \(\hat{\lambda}(\theta)\) is \(\epsilon\)-degenerate for each \(\theta\). Moreover, each triangle \(\lambda(\theta)\) is either contained in \(\alpha_{\text{mod}} \cup \beta_{\text{mod}}\) or has only two distinct vertices.

In particular, the image of \(\hat{\lambda}\) is contained in
\[K \setminus \mathbb{R}_+ \cdot \kappa. \]

2. The image of \(\hat{\lambda}\) is contained in \(K_\rho\), where \(\rho = 3r + 18\epsilon\).

3. The homology class \([\hat{\lambda}]\) is nontrivial in \(H_1(K \setminus \mathbb{R}_+ \cdot \kappa)\).

Lemma 20. If there exists a loop \(\lambda\) satisfying the assumptions 1—3, and \(\epsilon < \delta/2\), then \(\kappa\) belongs to \(K_3(X)\).
Figure 2. Chains $\hat{\Lambda}$ and \hat{B}.

Proof. We have the 2-chains

$$\hat{\Lambda}, \hat{\Lambda}_{\text{mod}} \in C_2(K \setminus \kappa),$$

with

$$\hat{\lambda} = \partial \hat{\Lambda}, \hat{\lambda}_{\text{mod}} = \partial \hat{\Lambda}_{\text{mod}} \in C_1(K_\rho).$$

Note that the support of $\hat{\lambda}_{\text{mod}}$ is contained in ∂K and the 2-chain $\hat{\Lambda}_{\text{mod}}$ is obtained by coning off $\hat{\lambda}_{\text{mod}}$ from the origin. Then, by Assumption 1, for every $w \in D^2$:

i. Either $d(\hat{\Lambda}(w), \hat{\Lambda}_{\text{mod}}(w)) \leq \epsilon$.

ii. Or $\hat{\Lambda}(w), \hat{\Lambda}_{\text{mod}}(w)$ belong to the common ray in ∂K.

Since $d(\kappa, \partial K) > \delta \geq 2\epsilon$, it follows that the straight-line homotopy H_t between the maps

$$\hat{\Lambda}, \hat{\Lambda}_{\text{mod}} : D^2 \to K$$

misses κ. Since K_ρ is convex, $H_t(S^1) \subset K_\rho$ for each $t \in [0, 1]$, and we obtain

$$[\hat{\Lambda}_{\text{mod}}] = [\hat{\Lambda}] \in H_2(K \setminus \kappa, K_\rho).$$

Assumptions 2 and 3 imply that the relative homology class

$$[\hat{\Lambda}_{\text{mod}}] \in H_2(K \setminus \kappa, K_\rho)$$

is nontrivial. Hence

$$[\hat{\Lambda}] \in H_2(K \setminus \kappa, K_\rho)$$

is nontrivial as well. Since $\rho = 3r + 18\epsilon$, according to Corollary 19, λ bounds a 2-chain

$$B \in C_2(T^3(r)).$$
Set $\Sigma := B + \Lambda$. Then the absolute class
\[
[\hat{\Sigma}] = [\hat{\Lambda} + \hat{B}] \in H_2(K \setminus \kappa)
\]
is also nontrivial. Since T^3_{mod} is contractible, there exists a 3-chain $\Gamma \in C_3(T^3_{\text{mod}})$ such that
\[
\partial \Gamma = \Sigma.
\]
Therefore the support of $\hat{\Gamma}$ contains the point κ. Since the map
\[
L : T^3 \rightarrow K
\]
is the composition of the continuous map $\tau^3 : T^3 \rightarrow X^3$ with the continuous map $L : X^3 \rightarrow K$, it follows that κ belongs to the image of the map $L : X^3 \rightarrow K$ and hence $\kappa \in K_3(X)$. \hfill \Box

Our goal therefore is to construct a loop λ, satisfying Assumptions 1—3.

Let $T \subset X$ be an (R, ϵ)-tripod with the legs α, β, γ of the length R, where $\epsilon \leq \delta/2$. We let $\tau : T_{\text{mod}} \rightarrow T$ denote the standard parametrization of T. Let x, y, z, o denote the vertices and the center of T_{mod}. We let $\alpha_{\text{mod}}(s), \beta_{\text{mod}}(s), \gamma_{\text{mod}}(s) : [0, R] \rightarrow T_{\text{mod}}$ denote the arc-length parameterizations of the legs of T_{mod}, so that $\alpha(R) = \beta(R) = \gamma(R) = o$.

We will describe the loop λ as the concatenation of seven paths
\[
p_i(s) = (x_1(s), x_2(s), x_3(s)), i = 1, \ldots, 7.
\]
We let $a = d(x_2, x_3), b = d(x_3, x_1), c = d(x_1, x_2)$.

1. $p_1(s)$ is the path starting at (x, x, o) and ending at (o, x, o), given by
\[
p_1(s) = (\alpha_{\text{mod}}(s), x, o).
\]

Note that for $p_1(0)$ and $p_1(R)$ we have $c = 0$ and $b = 0$ respectively.

2. $p_2(s)$ is the path starting at (o, x, o) and ending at (y, x, o), given by
\[
p_2(s) = (\beta_{\text{mod}}(s), x, o).
\]

3. $p_3(s)$ is the path starting at (y, x, o) and ending at (y, o, o), given by
\[
p_3(s) = (y, \alpha_{\text{mod}}(s), o).
\]

Note that for $p_3(R)$ we have $a = 0$.

4. $p_4(s)$ is the path starting at (y, o, o) and ending at (y, y, o), given by
\[
p_4(s) = (y, \beta_{\text{mod}}(s), o).
\]

Note that for $p_4(R)$ we have $c = 0$. Moreover, if $\alpha * \beta$ is a geodesic, then
\[
d(\tau(x), \tau(o)) = d(\tau(y), \tau(o)) \Rightarrow \hat{p}_4(R) = \hat{p}_1(0)
\]
and therefore $\hat{p}_1 * \ldots * \hat{p}_4$ is a loop.

5. $p_5(s)$ is the path starting at (y, y, o) and ending at (y, y, z) given by
\[
(y, y, \gamma_{\text{mod}}(s)).
\]

6. $p_6(s)$ is the path starting at (y, y, z) and ending at (x, x, z) given by
\[
(\beta_{\text{mod}} * \alpha_{\text{mod}}, \beta_{\text{mod}} * \alpha_{\text{mod}}, z).
\]
7. \(p_\ell(s) \) is the path starting at \((x, x, z)\) and ending at \((x, x, o)\) given by
\[(x, x, \gamma_{mod}(s)). \]

Thus
\[\lambda := p_1 \ast \ldots \ast p_\ell \]
is a loop.

Since \(\alpha \ast \beta \) and \(\gamma \) are \(\epsilon \)-geodesics in \(X \), each path \(p_i(s) \) determines a family of \(\epsilon \)-degenerate triangles in \((T_{mod}, d)\). It is clear that Assumption 1 is satisfied.

The class \([\hat{\lambda}_{mod}]\) is clearly nontrivial in \(H_1(\partial K \setminus 0)\). See Figure 3. Therefore, since \(\epsilon \leq \delta/2 \),
\[[\hat{\lambda}] = [\hat{\lambda}_{mod}] \in H_1(K \setminus \mathbb{R}^+ \cdot \kappa) \setminus \{0\}, \]
see the proof of Lemma 20. Thus Assumption 2 holds.

![Figure 3. The loop \(\hat{\lambda}_{mod} \).](image)

Lemma 21. The image of \(\hat{\lambda} \) is contained in the closure of \(K_{\rho'} \), where
\[\rho' = \frac{2}{3}R - 4\epsilon. \]

Proof. We have to verify that for each \(i = 1, ..., 6 \) and every \(s \in [0, R] \), the perimeter (with respect to the metric \(d \)) of each triangle \(p_i(s) \in T_{mod}^3 \) is at least \(\rho' \). These inequalities follow directly from Lemma 13 and the description of the paths \(p_i \). \(\square \)
Therefore, if we take
\[R > \frac{9}{2}r - 33\epsilon \]
then the image of \(\hat{\lambda} \) is contained in
\[K_{3r+18\epsilon} \]
and Assumption 3 is satisfied. Theorem 3 follows. \(\square \)

4. Quasi-isometric characterization of compressed spaces

The goal of this section is to prove Theorem 5. Suppose that \(X \) is compressed. The proof is easier if \(X \) is a proper geodesic metric space, in which case there is no need considering the ultralimits. Therefore, we recommend the reader uncomfortable with this technique to assume that \(X \) is a proper geodesic metric space.

Pick a base-point \(o \in X \), a nonprincipal ultrafilter \(\omega \) and consider the ultralimit
\[X_\omega = \omega\text{-lim}(X, o) \]
of the constant sequence of pointed metric spaces. If \(X \) is a proper geodesic metric space then, of course, \(X_\omega = X \). In view of Lemma 12, the space \(X_\omega \) is \(R \)-compressed for some \(R \).

Assume that \(X \) is unbounded. Then \(X \) contains a sequence of \(1/i \)-geodesic paths \(\gamma_i = \overline{ox_i} \) with
\[\omega\text{-lim} d(o, x_i) = \infty, \]
which yields a geodesic ray \(\rho_1 \) in \(X_\omega \) emanating from the point \(o_\omega \).

Lemma 22. Let \(\rho \) be a geodesic ray in \(X_\omega \) emanating from the point \(O \). Then the neighborhood \(E = N_R(\rho) \) is an end \(E(\rho) \) of \(X_\omega \).

Proof. Suppose that \(\alpha \) is a path in \(X_\omega \setminus B_{2R}(O) \) connecting a point \(y \in X_\omega \setminus E \) to a point \(x \in E \). Then there exists a point \(z \in \alpha \) such that \(d(z, \rho) = R \). Since \(X_\omega \) contains no \(R \)-tripods,
\[d(p_{\rho}(z), O) < R. \]
Therefore \(d(z, O) < 2R \). Contradiction. \(\square \)

Set \(E_1 := E(\rho_1) \). If the image of the natural embedding \(\iota : X \to X_\omega \) is contained in a finite metric neighborhood of \(\rho_1 \), then we are done, as \(X \) is quasi-isometric to \(\mathbb{R}_+ \). Otherwise, there exists a sequence \(y_n \in X \) such that:
\[\omega\text{-lim} d(\iota(y_n), \rho_1) = \infty. \]
Consider the \(\frac{1}{n} \)-geodesic paths \(\alpha_n \in P(o, y_n) \). The sequence \((\alpha_n) \) determines a geodesic ray \(\rho_2 \subset X_\omega \) emanating from \(o_\omega \). Then there exists \(s \geq 4R \) such that
\[d(\alpha_n(s), \gamma_i) \geq 2R \]
for \(\omega \)-all \(n \) and \(\omega \)-all \(i \). Therefore, for \(t \geq s \), \(\rho_2(t) \notin E(\rho_1) \). By applying Lemma 22 to \(\rho_2 \) we conclude that \(X_\omega \) has an end \(E_2 = E(\rho_2) = N_R(\rho_2) \). Since \(E_1, E_2 \) are distinct ends of \(X_\omega \), \(E_1 \cap E_2 \) is a bounded subset. Let \(D \) denote the diameter of this intersection.
Lemma 23. 1. For every pair of points \(x_i = \rho_i(t_i), \ i = 1, 2, \) we have

\[
\overline{x_1x_2} \subset N_{D/2+2R}(\rho_1 \cup \rho_2).
\]

2. \(\rho_1 \cup \rho_2 \) is a quasi-geodesic.

Proof. Consider the points \(x_i \) as in Part 1. Our goal is to get a lower bound on \(d(x_1, x_2) \). A geodesic segment \(\overline{x_1x_2} \) has to pass through the ball \(B(o_\omega, 2R), i = 1, 2, \) since this ball separates the ends \(E_1, E_2 \). Let \(y_i \in \overline{x_1x_2} \cap B(o_\omega, 2R) \) be such that

\[
\overline{x_iy_i} \subset E_i, \ i = 1, 2.
\]

Then

\[
d(y_1, y_2) \leq D + 4R,
\]

\[
d(x_i, y_i) \geq t_i - 2R,
\]

and

\[
\overline{x_iy_i} \subset N_R(\rho_i), \ i = 1, 2.
\]

This implies the first assertion of Lemma. Moreover,

\[
d(x_1, x_2) \geq d(x_1, y_1) + d(x_2, y_2) \geq t_1 + t_2 - 4R = d(x_1, x_2) - 4R.
\]

Therefore \(\rho_1 \cup \rho_2 \) is a \((1, 4R)\)-quasi-geodesic. \(\square \)

If \(\iota(X) \) is contained in a finite metric neighborhood of \(\rho_1 \cup \rho_2 \), then, by Lemma 23, \(X \) is quasi-isometric to \(\mathbb{R} \). Otherwise, there exists a sequence \(z_k \in X \) such that

\[
\omega\text{-lim } d(\iota(z_k), \rho_1 \cup \rho_2) = \infty.
\]

By repeating the construction of the ray \(\rho_2 \), we obtain a geodesic ray \(\rho_3 \subset X_\omega \) emanating from the point \(o_\omega \), so that \(\rho_3 \) is not contained in a finite metric neighborhood of \(\rho_1 \cup \rho_2 \). For every \(t_3 \), the nearest-point projection of \(\rho_3(t_3) \) to

\[
N_{D/2+2R}(\rho_1 \cup \rho_2)
\]

is contained in

\[
B_{2R}(o_\omega).
\]

Therefore, in view of Lemma 23 for every pair of points \(\rho_i(t_i) \) as in that lemma, the nearest-point projection of \(\rho_3(t_3) \) to \(\rho_1(t_1) \rho_2(t_2) \) is contained in

\[
B_{4R+D}(o_\omega).
\]

Hence, for sufficiently large \(t_1, t_2, t_3 \), the points \(\rho_i(t_i), \ i = 1, 2, 3 \) are vertices of an \(R \)-tripod in \(X \). This contradicts the assumption that \(X_\omega \) is \(R \)-compressed.

Therefore \(X \) is either bounded, or is quasi-isometric to a \(\mathbb{R}_+ \) or to \(\mathbb{R} \). \(\square \)
5. Examples

Theorem 24. There exist an (incomplete) 2-dimensional Riemannian manifold M quasi-isometric to \mathbb{R}, so that:

a. $K_3(M)$ does not contain $\partial K_3(\mathbb{R}^2)$.

b. For the Riemannian product $M^2 = M \times M$, $K_3(M^2)$ does not contain $\partial K_3(\mathbb{R}^2)$ either.

Moreover, there exists $D < \infty$ such that for every degenerate triangle in M and M^2, at least one side is $\leq D$.

Proof. a. We start with the open concentric annulus $A \subset \mathbb{R}^2$, which has the inner radius $R_1 > 0$ and the outer radius $R_2 < \infty$. We give A the flat Riemannian metric induced from \mathbb{R}^2. Let M be the universal cover of A, with the pull-back Riemannian metric. Since M admits a properly discontinuous isometric action of \mathbb{Z} with the quotient of finite diameter, it follows that M is quasi-isometric to \mathbb{R}. The metric completion \bar{M} of M is diffeomorphic to the closed bi-infinite flat strip. Let $\partial_1 M$ denote the component of the boundary of \bar{M} which covers the inner boundary of A under the map of metric completions $\bar{M} \to \bar{A}$.

As a metric space, \bar{M} is $CAT(0)$, therefore it contains a unique geodesic between any pair of points. However, for any pair of points $x, y \in M$, the geodesic $\gamma = \overline{xy} \subset \bar{M}$ is the union of subsegments

$$\gamma_1 \cup \gamma_2 \cup \gamma_3$$

where $\gamma_1, \gamma_3 \subset M$, $\gamma_2 \subset \partial_1 M$, and the lengths of γ_1, γ_3 are at most $D_0 = \sqrt{R_2^2 - R_1^2}$.

Hence, for every degenerate triangle (x, y, z) in M, at least one side is $\leq D_0$.

b. We observe that the metric completion of M^2 is $\bar{M} \times \bar{M}$; in particular, it is again a $CAT(0)$ space. Therefore it has a unique geodesic between any pair of points. Moreover, geodesics in $\bar{M} \times \bar{M}$ are of the form

$$\left(\gamma_1(t), \gamma_2(t)\right)$$

where $\gamma_i, i = 1, 2$ are geodesics in \bar{M}. Hence for every geodesic segment $\gamma \subset \bar{M} \times \bar{M}$, the complement $\gamma \setminus \partial M^2$ is the union of two subsegments of length $\leq \sqrt{2}D_0$ each. Therefore for every degenerate triangle in M^2, at least one side is $\leq \sqrt{2}D_0$. \square

Remark 25. The manifold M^2 is, of course, quasi-isometric to \mathbb{R}^2.

Our second example is a graph-theoretic analogue of the Riemannian manifold M.

Theorem 26. There exists a complete path metric space X (a metric graph) quasi-isometric to \mathbb{R} so that:

a. $K_3(X)$ does not contain $\partial K_3(\mathbb{R}^2)$.

b. $K_3(X^2)$ does not contain $\partial K_3(\mathbb{R}^2)$.

Moreover, there exists $D < \infty$ such that for every degenerate triangle in X and X^2, at least one side is $\leq D$.

16
Proof. a. We start with the disjoint union of oriented circles α_i of the length $1 + \frac{1}{i}$, $i \in I = \mathbb{N} \setminus \{2\}$. We regard each α_i as a path metric space. For each i pick a point $a_i \in \alpha_i$ and its antipodal point $b_i \in \alpha_i$. We let α_i^+ be the positively oriented arc of α_i connecting a_i to b_i. Let α_i^- be the complementary arc.

Consider the bouquet Z of α_i’s by gluing them all at the points o_i. Let $o \in Z$ be the image of the points o_i. Next, for every pair $i, j \in I$ attach to Z the oriented arc β_{ij} of the length

$$\frac{1}{2} + \frac{1}{4}(\frac{1}{i} + \frac{1}{j})$$

connecting b_i and b_j and oriented from b_i to b_j if $i < j$. Let Y denote the resulting graph. We give Y the path metric. Then Y is a complete metric space, since it is a metric graph where the length of every edge is at least $1/2 > 0$. Note also that the length of every edge in Y is at most 1.

The space X is the infinite cyclic regular cover over Y defined as follows. Take the maximal subtree

$$T = \bigcup_{i \in I} \alpha_i^+ \subset Y.$$

Every oriented edge of $Y \setminus T$ determines a free generator of $G = \pi_1(Y, o)$. Define the homomorphism $\rho : G \to \mathbb{Z}$ by sending every free generator to 1. Then the covering $X \to Y$ is associated with the kernel of ρ. (This covering exists since Y is locally contractible.)
We lift the path metric from Y to X, thereby making X a complete metric graph. We label vertices and edges of X as follows.

1. Vertices a_n which project to o. The cyclic group \mathbb{Z} acts simply transitively on the set of these vertices thereby giving them the indices $n \in \mathbb{Z}$.

2. The edges α_i^\pm lift to the edges α_i^+, α_i^- incident to the vertices a_n and a_{n+1} respectively.

3. The intersection $\alpha_i^+ \cap \alpha_i^-(n+1)$ is the vertex b_{in} which projects to the vertex $b_i \in \alpha_i$.

4. The edge β_{ijn} connecting b_{in} to $b_{j(n+1)}$ which projects to the edge $\beta_{ij} \subset Y$.

Figure 5. The metric space Y.

Figure 6. The metric space X.

Lemma 27. X contains no degenerate triangles (x,y,v), so that v is a vertex,

$$d(x,v) + d(v,y) = d(x,y)$$
and \(\min(d(x, v), d(v, y)) > 2 \).

Proof. Suppose that such degenerate triangles exist.

Case 1: \(v = b_n \). Since the triangle \((x, y, v)\) is degenerate, for all sufficiently small \(\epsilon > 0 \) there exist \(\epsilon \)-geodesics \(\sigma \) connecting \(x \) to \(y \) and passing through \(v \).

Since \(d(x, v), d(v, y) > 2 \), it follows that for sufficiently small \(\epsilon > 0 \), \(\sigma = \sigma(\epsilon) \) also passes through \(b_{j(n-1)} \) and \(b_{k(n+1)} \) for some \(j, k \) depending on \(\sigma \). We will assume that as \(\epsilon \to 0 \), both \(j \) and \(k \) diverge to infinity, leaving the other cases to the reader.

Therefore
\[
\begin{align*}
d(x, v) &= \lim_{j \to \infty} (d(x, b_{j(n-1)}) + d(b_{j(n-1)}, v)), \\
d(v, y) &= \lim_{k \to \infty} (d(y, b_{k(n+1)}) + d(b_{k(n+1)}, v)).
\end{align*}
\]

Then
\[
\lim_{j \to \infty} d(b_{j(n-1)}, v) + \lim_{k \to \infty} d(b_{k(n+1)}, v) = 1 + \frac{1}{2i}.
\]

On the other hand, clearly,
\[
\lim_{j, k \to \infty} d(b_{j(n-1)}, b_{k(n+1)}) = 1.
\]

Hence
\[
d(x, y) = \lim_{j \to \infty} d(x, b_{j(n-1)}) + \lim_{k \to \infty} d(y, b_{k(n+1)}) + 1 < d(x, v) + d(v, y).
\]

Contradiction.

Case 2: \(v = a_n \). Since the triangle \((x, y, v)\) is degenerate, for all sufficiently small \(\epsilon > 0 \) there exist \(\epsilon \)-geodesics \(\sigma \) connecting \(x \) to \(y \) and passing through \(v \). Then for sufficiently small \(\epsilon > 0 \), every \(\sigma \) also passes through \(b_{j(n-1)} \) and \(b_{kn} \) for some \(j, k \) depending on \(\sigma \). However, since \(j, k \geq 2 \),
\[
d(b_{j(n-1)}, b_{kn}) = \frac{1}{2} + \frac{1}{4j} + \frac{1}{4k} \leq \frac{3}{4} < 1 = \inf_{j,k} d(b_{j(n-1)}, v) + d(v, b_{kn}).
\]

Therefore \(d(x, y) < d(x, v) + d(v, y) \). Contradiction. \(\square \)

Corollary 28. \(X \) contains no degenerate triangles \((x, y, z)\), such that
\[
d(x, z) + d(z, y) = d(x, y)
\]
and \(\min(d(x, z), d(z, y)) \geq 3 \).

Proof. Suppose that such degenerate triangles exist. We can assume that \(z \) is not a vertex. The point \(z \) belongs to an edge \(e \subset X \). Since \(\text{length}(e) \leq 1 \), for one of the vertices \(v \) of \(e \)
\[
d(z, v) \leq 1/2.
\]

Since the triangle \((x, y, z)\) is degenerate, for all \(\epsilon \)-geodesics \(\sigma \in P(x, z) \), \(\eta \in P(z, y) \) we have:
\[
e \subset \sigma \cup \eta,
\]
provided that \(\epsilon > 0 \) is sufficiently small. Therefore the triangle \((x, y, v)\) is also degenerate. Clearly,
\[
\min(d(x, v), d(y, v)) \geq \min(d(x, z), d(y, z)) - 1/2 \geq 2.5.
\]

This contradicts Lemma \([27] \). \(\square \)
Hence part (a) of Theorem 26 follows.

b. We consider $X^2 = X \times X$ with the product metric

$$d^2((x_1, y_1), (x_2, y_2)) = d^2(x_1, x_2) + d^2(y_1, y_2).$$

Then X^2 is a complete path-metric space. Every degenerate triangle in X^2 projects to degenerate triangles in both factors. It therefore follows from part (a) that X contains no degenerate triangles with all sides ≥ 18. We leave the details to the reader. \square

6. Exceptional cases

Theorem 29. Suppose that X is a path metric space quasi-isometric to a metric space X', which is either \mathbb{R} or \mathbb{R}_+. Then there exists a $(1, A)$-quasi-isometry $X' \to X$.

Proof. We first consider the case $X' = \mathbb{R}$. The proof is simpler if X is proper, therefore we sketch it first under this assumption. Since X is quasi-isometric to \mathbb{R}, it is 2-ended with the ends E_+, E_-. Pick two divergent sequences $x_i \in E_+, y_i \in E_-$. Then there exists a compact subset $C \subset X$ so that all geodesic segments $\gamma_i := \frac{x_i y_i}{d(x_i, y_i)}$ intersect C. It then follows from the Arcela-Ascoli theorem that the sequence of segments γ_i subconverges to a complete geodesic $\gamma \subset X$. Since X is quasi-isometric to \mathbb{R}, there exists $R < \infty$ such that $X = N_R(\gamma)$. We define the $(1, R)$-quasi-isometry $f: \gamma \to X$ to be the identity (isometric) embedding.

We now give a proof in the general case. Pick a non-principal ultrafilter ω on \mathbb{N} and a base-point $o \in X$. Define X_ω as the ω-limit of (X, o). The quasi-isometry $f: \mathbb{R} \to X$ yields a quasi-isometry $f_\omega: \mathbb{R} = \mathbb{R}_\omega \to X_\omega$. Therefore X_ω is also quasi-isometric to \mathbb{R}.

We have the natural isometric embedding $\iota: X \to X_\omega$. As above, let E_+, E_- denote the ends of X and choose divergent sequences $x_i \in E_+, y_i \in E_-$. Let γ_i denote an $\frac{1}{i}$-geodesic segment in X connecting x_i to y_i. Then each γ_i intersects a bounded subset $B \subset X$. Therefore, by taking the ultralimit of γ_i’s, we obtain a complete geodesic $\gamma \subset X_\omega$. Since X_ω is quasi-isometric to \mathbb{R}, the embedding $\eta: \gamma \to X_\omega$ is a quasi-isometry. Hence $X_\omega = N_R(\gamma)$ for some $R < \infty$.

For the same reason,

$$X_\omega = N_D(\iota(X))$$

for some $D < \infty$. Therefore the isometric embeddings

$$\eta: \gamma \to X_\omega, \iota: X \to X_\omega$$

are $(1, R)$ and $(1, D)$-quasi-isometries respectively. By composing η with the quasi-inverse to ι, we obtain a $(1, R + 3D)$-quasi-isometry $\mathbb{R} \to X$.

The case when X is quasi-isometric to \mathbb{R}_+ can be treated as follows. Pick a point $o \in X$ and glue two copies of X at o. Let Y be the resulting path metric space. It is easy to see that Y is quasi-isometric to \mathbb{R} and the inclusion $X \to Y$ is an isometric embedding. Therefore, there exists a $(1, A)$-quasi-isometry $h: Y \to \mathbb{R}$ and the restriction of h to X yields the $(1, A)$-quasi-isometry from X to the half-line. \square

Corollary 30. Suppose that X is a path metric space quasi-isometric to \mathbb{R} or \mathbb{R}_+. Then $K_3(X)$ is contained in the D-neighborhood of ∂K for some $D < \infty$. In particular, $K_3(X)$ does not contain the interior of $K = K_3(\mathbb{R}^2)$.
Proof. Suppose that $f: X \to X'$ is an (L, A)-quasi-isometry, where X' is either \mathbb{R} or \mathbb{R}_+. According to Theorem 29, we can assume that $L = 1$. For every triple of points $x, y, z \in X$, after relabelling, we obtain

$$d(x, y) + d(y, z) \leq d(x, z) + D,$$

where $D = 3A$. Then every triangle in X is D-degenerate. Hence $K_3(X)$ is contained in the D-neighborhood of ∂K.

Remark 31. One can construct a metric space X quasi-isometric to \mathbb{R} such that $K_3(X) = K$. Moreover, X is isometric to a curve in \mathbb{R}^2 (with the metric obtained by the restriction of the metric on \mathbb{R}^2). Of course, the metric on X is not a path metric.

Corollary 32. Suppose that X is a path metric space. Then the following are equivalent:

1. $K_3(X)$ contains the interior of $K = K_3(\mathbb{R}^2)$.
2. X is not quasi-isometric to the point, \mathbb{R}_+ and \mathbb{R}.
3. X is uncompressed.

Proof. 1\Rightarrow2 by Corollary 30. 2\Rightarrow3 by Theorem 5. 3\Rightarrow1 by Theorem 3.

Remark 33. The above corollary remains valid under the following assumption on the metric on X, which is weaker than being a path metric:

For every pair of points $x, y \in X$ and every $\epsilon > 0$, there exists a $(1, \epsilon)$-quasi-geodesic path $\alpha \in P(x, y)$.

References

[1] K. Brown, *Buildings*, Springer, 1989.
[2] D. Burago, Y. Burago, and S. Ivanov, *A course in metric geometry*, vol. 33 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001.
[3] M. Gromov, *Metric structures for Riemannian and non-Riemannian spaces*, Birkhäuser Boston, 1999.
[4] M. Kapovich, *Hyperbolic manifolds and discrete groups*, Birkhäuser Boston Inc., Boston, MA, 2001.
[5] M. Kapovich and B. Leeb, *On asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds*, Journal of Geometric and Functional Analysis, 5 (1995), pp. 582–603.
[6] J. Roe, *Lectures on coarse geometry*, vol. 31 of University Lecture Series, American Mathematical Society, 2003.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, DAVIS, CA 95616

E-mail address: kapovich@math.ucdavis.edu

21