Serum Amylase, Lipase and Urine Amylase as Predictor Factors for Outcomes of the Children with Blunt Abdominal Trauma

Dionysis T1, Mouskou S1*, Petropoulos P1 and Theodorou D2

1Department of Pediatric Neurology, "P. & A. Kyriakou", Children's Hospital, Athens, Greece
2Department of Propaedeutic Surgery, Athens Medical School, Hippocratio General Hospital, University of Athens, Greece

Corresponding author: Stella Mouskou, MD, Msc, PhD, Registrar, Department of Pediatric Neurology, P.@A.Kiriakou Children’s Hospital, Athens, Greece, Tel: 003021065513967; E-mail: stelli_m@yahoo.com

Received date: June 12, 2016; Accepted date: June 16, 2016; Published date: June 23, 2016

Copyright: © 2016 Dionysis T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Introduction: Severity of injury and serum amylase and lipase concentrations are parameters used to assess the grade of pancreatic injury. It is still unclear in what way amylase and lipase are related to the grade of injury or the injury outcome. We thus hypothesize that the serum amylase and lipase concentrations as well the urine amylase one maybe prediction biomarkers in blunt pancreatic trauma cases.

Methods: The study took place in a Tertiary Pediatric Hospital of Athens-Greece. The initial elevation of the serum amylase and lipase concentrations as well as the urine amylase ones were analyzed and related to age, ISS score and outcomes.

Results: Fifteen patients were included (eight males and seven females). The mean age was nine years old (3-15 years old) and the mean ISS score was 5 (2-9). Four patients developed post-traumatic pancreatic pseudocyst (P.P.C). Patients with increased serum amylase, lipase and urine amylase concentrations and ISS score more than 8 developed P.P.C.

Conclusion: The increased serum amylase and lipase values as well as the urine amylase ones, combined with a high ISS score grade may have prediction value in blunt pancreatic trauma cases.

Keywords: Serum amylase; Lipase; Abdominal trauma

Introduction

Blunt abdominal trauma is a frequent reason for hospital admission and a significant cause of death in children older than 1 year of age. Mechanisms causing abdominal injuries are predominantly motor vehicle accidents, falls, and intentional injuries [1]. Blunt upper abdominal trauma is the primary mechanism for pancreatic injury [2].

Pancreatic trauma is uncommon, having been reported to account for only 0.2%-6% across all abdominal trauma cases [2]. However, associated injuries are responsible for the high mortality rate of 13.8%-31% [3]. Furthermore, pancreatic injuries management remains challenging. Areas of uncertainty and controversy exist with respect to diagnosis, relevant prognostic factors and treatment. Thus, there has been an ongoing debate on the optimal approach to treating pancreatic injuries. Blood amylase and lipase are frequent and repetitive laboratory tests used to identify and manage traumatic pancreatic injury [4-8]. The utility and cost-effectiveness of serum amylase and lipase test as a screening tool for pediatric pancreatic trauma have been questioned by Adamson et al. [4], arguing for their low sensitivity and specificity. On the other hand, Matsuno et al. [6] and Tsunemasa et al. [9] accessed the sensitivity and specificity of delayed amylase and lipase levels and suggested that they may be of some utility in identifying pancreatic injury cases.

The aim of our study is to access the possible prognostic value of the serum amylase, lipase and urine amylase concentrations in the outcome of patients suffering from pediatric blunt abdominal traumas.

Materials and Methods

All children, between 3 and 15 years old, with a suspected blunt abdominal trauma in their admission in our hospital during the period 2007–2013, were recorded. Patients that initially had elevated serum amylase and/or lipase concentrations were included in the study. Patients with viral infection and elevated enzymes were excluded. Gender, immunization status, medications, injury severity score (ISS) score and other coexisting epidemiological indicators were recorded. After the documentation all the patients with elevated enzymes and any complication from the trauma were included in the study. The American Association for the Surgery of Trauma guidelines were used. The study had conducted under the approval of the Hospital's Board of Ethics.

Results

Fourteen patients (n=14) were studied, eight males and seven females (53 % males versus 46% females). Mean age was 9 years old (min: 3 years old, max: 15 years old) with peak age 4-5, 5 years old (Table 1). The participants were fully immunized and only 3 of the patients had coexisting health problems.
major trauma, with isolated injury to the spleen occurring most frequently [11]. Injuries to the liver, spleen, and pancreas occur in two typical scenarios: isolated injury caused by a direct blow to the upper abdomen, or multi-system trauma caused by high-energy mechanisms (eg, motor vehicle or all-terrain vehicle crash, fall from a great height) [10]. Isolated injuries to these organs are more common, but those associated with multi-system injury are more life-threatening with reported mortality as high as 12 percent [12].

Major pancreatic injuries are much less common than liver or spleen injuries. The clinical features include a history of a direct blow to the epigastrium with local pain and tenderness. The serum amylase and lipase are usually elevated [13]. The most useful test for suspected pancreatic trauma is computed tomography (CT) with fine cuts through the pancreas. Endoscopic retrograde cholangiopancreatography (ERCP) or magnetic resonance cholangiopancreatography (MRCP) does have a role when a major duct disruption is suspected based upon clinical findings and imaging [14,15]. Pancreatic injuries fall into three main groups (Table 3).

Table 3: Pancreas injury scale, *Advance one grade for multiple injuries up to grade III.*

Grade	Description	AIS-90
I	Hematoma Minor contusion without duct injury	2
II	Laceration Superficial laceration without duct injury	2
III	Hematoma Major contusion without duct injury or tissue loss	3
IV	Laceration Distal transsection or parenchymal / duct injury	3
V	Laceration Proximal transsection or parenchymal injury involving ampulla	4
	Laceration Massive disruption of pancreatic head	5

Table 2: Enzyme measurements and ISS score related with trauma.

Blood amylase (mg/dl)	Urine amylase (mg/dl)	Blood lipase (mg/dl)	ISS score
1993	5900	6543	8
145	752	80	4
211	618	515	4
109	69	69	2
125		2	
397	3065	2621	4
995	17482	9489	4
3340	25430	12690	9
255	1269	383	4
1194	12870	5954	9
265	2459	730	4
1547	27340	14496	9
177	1898	303	4
165	474	858	4

Table 1: Age and sex related with trauma, *Mean age 9 years old.*

Four patients suffered from posttraumatic pancreatic pseudocyst (P.P.C), two males and two females. One male was treated with endoscopic transgastric drainage, one female with percutaneous drainage while the other two were treated conservatively with total parenteral nutrition and somatostatin administration. Patients with pancreatic pseudocyst had in their admission elevated blood amylase (higher than 1194 mg/dl), elevated blood lipase (higher than 5954 mg/dl) and elevated urine amylase (higher than 5900 mg/dl) concentrations. I.S.S. score among these patients was more than 8. The rest of the patients didn’t suffered from any complication (Table 2).

All of our patients underwent a follow up examination with abdominal ultrasound after their discharge. None of them develop any complication. As for the I.S.S. score, all patients that developed P.P.C had I.S.S. score more than 8 while patients that not developed P.P.C had I.S.S. score less than 8 (Table 2).

Discussion

Blunt abdominal trauma occurs in 10 to 15 percent of injured children [10]. Solid organ injuries are common in children who sustain major trauma, with isolated injury to the spleen occurring most frequently [11]. Injuries to the liver, spleen, and pancreas occur in two typical scenarios: isolated injury caused by a direct blow to the upper abdomen, or multi-system trauma caused by high-energy mechanisms (eg, motor vehicle or all-terrain vehicle crash, fall from a great height) [10]. Isolated injuries to these organs are more common, but those associated with multi-system injury are more life-threatening with reported mortality as high as 12 percent [12].

Major pancreatic injuries are much less common than liver or spleen injuries. The clinical features include a history of a direct blow to the epigastrium with local pain and tenderness. The serum amylase and lipase are usually elevated [13]. The most useful test for suspected pancreatic trauma is computed tomography (CT) with fine cuts through the pancreas. Endoscopic retrograde cholangiopancreatography (ERCP) or magnetic resonance cholangiopancreatography (MRCP) does have a role when a major duct disruption is suspected based upon clinical findings and imaging [14,15]. Pancreatic injuries fall into three main groups (Table 3).

Grade	Description	AIS-90
I	Hematoma Minor contusion without duct injury	2
II	Laceration Superficial laceration without duct injury	2
III	Hematoma Major contusion without duct injury or tissue loss	3
IV	Laceration Distal transsection or parenchymal / duct injury	3
V	Laceration Proximal transsection or parenchymal injury involving ampulla	4
	Laceration Massive disruption of pancreatic head	5

Table 3: Pancreas injury scale, *Advance one grade for multiple injuries up to grade III.*

Injury without major ductal disruption

This injury type comprises the largest group of patients with pancreatic trauma. Most cases have simple contusions or hematomas, although some probably have parenchymal disruption. The diagnosis is usually suspected on the basis of elevated serum amylase and lipase levels and is confirmed by CT, which shows swelling and hemorrhage in and around the pancreas, but no evidence of transection or other major parenchymal or ductal disruption. The treatment is non-operative, including restriction of oral intake initially, intravenous hydration, and parenteral nutrition. For example, in a case series of 43 children with pancreatic injury after blunt trauma, the 18 children with grade I injuries were all managed non-operatively without complications [8].

Injury with major ductal disruption

Pancreatic trauma with ductal disruption is difficult to be suspected/diagnosed/identified, although it is often suggested by CT. Reports argued the use of ERCP or MRCP to confirm the diagnosis [8,16]. Once it is accurately recognized (or in the early stages), distal duct disruption can be treated by distal pancreatectomy; proximal injuries can usually be managed with gut rest and observation [17], although some experts have recommended proximal ductal stenting [16]. Even if missed at an early stage, these injuries almost always resolve with gut

Table 2: Enzyme measurements and ISS score related with trauma.

Blood amylase (mg/dl)	Urine amylase (mg/dl)	Blood lipase (mg/dl)	ISS score
1993	5900	6543	8
145	752	81	4
211	618	515	4
109	69	69	2
125		2	
397	3065	2621	4
995	17482	9489	4
3340	25430	12690	9
255	1269	383	4
1194	12870	5954	9
265	2459	730	4
1547	27340	14496	9
177	1898	303	4
165	474	858	4
rest and total parenteral nutrition, although the course may be prolonged over many weeks. Pseudocysts develop in up to 50 percent of children with ductal disruption who are initially treated non-operatively and up to 10 percent subsequently require surgery [18].

Pseudocyst

These patients mainly present anorexia, vomiting, weight loss, abdominal pain and tenderness, and a palpable upper abdominal mass, days to weeks after the injury. CT or ultrasound can be used to confirm the diagnosis. It is thought that these patients most likely suffered a major duct disruption at the time of the original injury, which had either been unsuspected or missed on the original diagnostic images. The treatment is conservative with gut rest, parenteral nutrition, and observed by serial ultrasound. Some resolve spontaneously, while the rest usually respond to external or internal drainage prolonged over many weeks. Pseudocysts develop in up to 50 percent grade more than 9, are correlated to post traumatic pancreatic cyst complication/formation. However multicenter analyses are more consistent with major duct disruptions [7].

Matsuno and colleagues [21] suggested that a delayed (N2 hours) serum amylase and lipase level was predictive of pancreatic injury and correlated with the severity of the injury. Nadler et al reported that high (peak) amylase (N200 U/L) and lipase levels (N1800 U/L) were more consistent with major duct disruptions [7].

In our study, we found that initial values of serum amylase higher than 1194 mg/dl, and lipase higher than 5900 mg/dl, combined with urine amylase concentration higher than 5954 mg/dl and a L.S.S. score grade more than 9, are correlated to post traumatic pancreatic pseudocyst presentation.

The limitations of this study are inherent based on its limited patient number. We argue/advocate that these initial blood laboratory tests may be proved to be very useful to the prediction of posttraumatic pancreatic cyst complication/formation. However multicenter analyses are still needed, in order to confirm the utility of these tests for other pancreatic injuries in childhood as well.

References

1. Karam O, Sanchez O, Chardot C, La Scala G (2009) Blunt abdominal trauma in children: A score to predict the absence of organ injury. J Pediatr 154: 912-917.

2. Okada N (2013) Letton-Wilson procedure for blunt traumatic transaction in a 9-year-old child. J Pediatric Surgery Cases Reports 1: 160-163

3. Leppäniemi A, Haapianen R, Kiviluoto T, Lempiinen M (1988) Pancreatic trauma: acute and late manifestations. Br J Surg 75: 165-167.

4. Adamson WT, Hebra A, Thomas PB, Wagstaff T, Tagge EP, et al. (2003) Serum amylase and lipase alone are not cost-effective screening methods for pediatric pancreatic trauma. J Pediatr Surg 38: 354-357.

5. Bradley EL, Young PR, Chang M, Allen JE, Baker CC, et al. (1998) Diagnosis and initial management of blunt pancreatic trauma: guidelines from a multiinstitutional review. Ann Surg 227: 861-869.

6. Matsuno WC, Huang CJ, Garcia NM, Roy LC, Davis J (2009) Amylase and lipase measurements in paediatric patients with traumatic pancreatic injuries. Injury 40: 66-71.

7. Nadler EP, Gardner M, Schall LC, Lynch JM, Ford HR (1999) Management of blunt pancreatic injury in children. J Trauma 47: 1098-1103.

8. Wood JH, Partrick DA, Bruny JL, Saulia M, Moulton SL (2010) Operative vs nonoperative management of blunt pancreatic trauma in children. J Pediatr Surg 45: 401-406.

9. Takishima T, Sugimoto K, Hirata M, Asari Y, Ohwada T, et al. (1997) Serum amylase level on admission in the diagnosis of blunt injury to the pancreas: its significance and limitations. Ann Surg 226: 70-76.

10. Gaines BA (2009) Intra-abdominal solid organ injury in children: diagnosis and treatment. J Trauma 67: S135-139.

11. Wilson RH, Moorehead RJ (1992) Management of splenic trauma. Injury 23: 5-9.

12. Pariset JM, Feldman KW, Paris C (2010) The pace of signs and symptoms of blunt abdominal trauma to children. Clin Pediatr (Phila) 49: 24-28.

13. Herman R, Guire KE, Burd RS, Mooney DP, Ehrlich PF (2011) Utility of amylase and lipase as predictors of grade of injury or outcomes in pediatric patients with pancreatic trauma. J Pediatr Surg 46: 923-926.

14. Hall R, Lavelle MI, Venables CW (1986) Use of ERCP to identify the site of traumatic injuries of the main pancreatic duct in children. Br J Surg 73: 411-412.

15. Houben CH, Ade-Ajayi N, Patel S, Kane P, Karani J, et al. (2007) Traumatic pancreatic duct injury in children: minimally invasive approach to management. J Pediatr Surg 42: 629-635.

16. Canty TG Sr, Weinman D (2001) Treatment of pancreatic duct disruption in children by an endoscopically placed stent. J Pediatr Surg 36: 345-348.

17. Wales PW, Shuckett B, Kin PC (2001) Long-term outcome after nonoperative management of complete traumatic pancreatic transaction in children. J Pediatr Surg 36: 823-827.

18. de Blauw I, Winkelhorst JT, Rieu PN, van der StaaK FH, Wijnen MH, et al. (2008) Pancreatic injury in children: good outcome of nonoperative treatment. J Pediatr Surg 43: 1640-1643.

19. Burnweit C, Wesson D, Stringer D, Filler R (1990) Percutaneous drainage of traumatic pancreatic pseudocysts in children. J Trauma 30: 1273-1277.

20. Theodoros D, Nikolaidis P, Petousis G (2010) Ultrasound-guided endoscopic transgastric drainage of a post-traumatic pancreatic pseudocyst in a child. Afr J Paediatr Surg 7: 194-196.

21. Matsuno WC, Huang CJ, Garcia NM, Roy LC, Davis J (2009) Amylase and lipase measurements in paediatric patients with traumatic pancreatic injuries. Injury 40: 66-71.