Competing Endogenous RNA Networks in Glioma

Liang Cen¹,², Ruochen Liu¹,², Wei Liu¹,², Qianqian Li³* and Hongjuan Cui¹,²,4*

¹ State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China, ² Cancer Center, Medical Research Institute, Southwest University, Chongqing, China, ³ Department of Psychology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China, ⁴ Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China

Gliomas are the most common and malignant primary brain tumors. Various hallmarks of glioma, including sustained proliferation, migration, invasion, heterogeneity, radio- and chemo-resistance, contribute to the dismal prognosis of patients with high-grade glioma. Dysregulation of cancer driver genes is a leading cause for these glioma hallmarks. In recent years, a new mechanism of post-transcriptional gene regulation was proposed, i.e., "competing endogenous RNA (ceRNA)." Long non-coding RNAs, circular RNAs, and transcribed pseudogenes act as ceRNAs to regulate the expression of related genes by sponging the shared microRNAs. Moreover, coding RNA can also exert a regulatory role, independent of its protein coding function, through the ceRNA mechanism. In the latest glioma research, various studies have reported that dysregulation of certain ceRNA regulatory networks (ceRNETs) accounts for the abnormal expression of cancer driver genes and the establishment of glioma hallmarks. These achievements open up new avenues to better understand the hidden aspects of gliomas and provide new biomarkers and potential efficient targets for glioma treatment. In this review, we summarize the existing knowledge about the concept and logic of ceRNET and highlight the emerging roles of some recently found ceRNETs in glioma progression.

Keywords: ceRNET, ceRNA, glioma, ncRNA, cancer driver dysregulation, glioblastoma

INTRODUCTION

Gliomas are the most common and malignant primary brain tumors, accounting for about 30% of all primary brain tumors and 80% of malignant ones (Weller et al., 2015). The origin of gliomas is thought to be from neuroglial stem or progenitor cells. Based on morphological similarities to the neuroglial cells of normal brain, the World Health Organization (WHO) 2007 classification system categorizes gliomas into astrocytomas, oligodendrogliomas, mixed oligoastrocytic gliomas, or ependymomas and into I–IV grades with grades I and II and grades III and IV considered low-and high-grade gliomas, respectively (Louis et al., 2007). Patients with high-grade glioma, such as glioblastoma (GBM, a grade IV astrocytoma), have a median survival time of only 15 months after initial diagnosis (Jemal et al., 2010; Rynkeviciene et al., 2019). Research over the past decade using advanced sequencing technologies has unraveled molecular alterations or biomarkers underlying gliomas, which updated our understanding of glioma's biology and resulted in a new classification system (Louis et al., 2016) with more precision for gliomas. This system integrated histology and molecular biomarkers, including IDH (encoding isocitrate dehydrogenase) mutation and 1p/19q-codeletion status (Louis et al., 2016). Despite these progresses, as well as progress in surgical
miRNAs are small single-stranded RNAs (approximately 22 nucleotides) that play key roles in ceRNA crosstalk. They bind to miRNA response elements (MREs) on target RNAs through sequence complementarity, which reduces the stability of targets or restricts their translation. MREs can be found in 5' untranslated regions (5' UTRs), coding sequences, and especially 3' untranslated regions (3' UTRs) of various types of RNA transcripts, such as mRNAs, lncRNAs, transcribed pseudogenes, and circRNAs. Most miRNAs pair imperfectly with their targets, and pairing between miRNA (two to eight nucleotides, especially six or seven nucleotides from the 5' end of miRNA) and 3' UTR of target mRNA is often crucial. Each miRNA can regulate up to thousands of target RNAs, and miRNAs can act in a combinatorial manner if a target RNA has multiple different MREs. miRNA-mediated regulation is estimated to affect a large proportion of human transcriptome, which makes miRNA an important modulator in numerous diseases, including various types of cancers.

The above-mentioned miRNA→RNAs regulation model has been updated by introducing the concept of ceRNAs. As shown in Figure 1, RNA transcripts that share the same MREs can regulate each other’s expression by competing for the same pool of miRNAs and thus modulating the availability of miRNAs. A new miRNA-mediated regulation model is RNAs↔miRNAs↔RNAs based on the concept of ceRNA. This means that miRNAs no longer act only as active regulators but that they are also passively regulated by their target RNAs. In addition, even a few miRNAs and related target RNAs can generate a complex ceRNET. Studying the larger interconnected ceRNET, rather than isolated ceRNA pair interactions, may generate deeper insight into ceRNA-mediated gene regulation in a setting that is closer to physiological conditions.

mRNAs, lncRNAs, circRNAs, and Transcribed Pseudogenes

The central dogma of molecular biology is that information on the DNA is transcribed into mRNAs that, in turn, are used as templates for protein synthesis. There are approximately 20,000 protein-coding genes in the human genome (Baltimore, 2001). Many of them, including cancer driver genes, harbor MREs, making their expression profoundly affected by the cognate miRNAs (Friedman et al., 2009). The finding of ceRNA implies that mRNAs possess a regulatory function independent of protein coding function. As a result, the ceRNA activity of mRNAs may confer them independent and even opposite roles to their encoded protein in a process such as tumorigenesis (Salmena et al., 2011). In this scenario, gross genomic losses or amplifications that commonly happened in cancers could potentially affect the function of ceRNAs in these regions and interrupt the related ceRNET. In addition, gene loss events should be distinguished with point mutations, as the former lose both protein-coding sequence and MREs, while the latter lose protein function but retain ceRNA function. The potential role of mRNA-mediated ceRNET has been confirmed in glioma (Sumazin et al., 2011).

lncRNAs are a large variety of RNA transcripts longer than 200 nucleotides without protein-coding capacity but with a similar structure to mRNAs since they typically have a 5'
Established driver genes of gliomagenesis constitute a complex ceRNA network; especially the ceRNAs for PTEN are shown (Sumazin et al., 2011). Through shared miRNA, the six cancer driver genes including PTEN, RB1, STAT3, PDGFRA, RUNX1, and VEGFA regulate each other. At the same time, other genes constitute a subnetwork and interact with PTEN. The dotted arrows represent activation, and the lines with blunt ends indicate inhibition.

m7G cap and 3′ poly (A) tail (Ulitsky and Bartel, 2013). The expression of lncRNAs is more tissue specific and dynamic, suggesting that they have distinct biological roles (Deveson et al., 2017). Dysregulation of cancer-related lncRNAs plays important roles in tumorigenesis, and an increasing amount of lncRNAs has been linked to gliomagenesis (Kiang et al., 2015; Peng et al., 2018; Rynkeviciene et al., 2019). lncRNAs perform their regulatory function through interacting with DNA, mRNAs, other non-coding RNAs, and proteins, covering almost all aspects of gene expression regulation including chromatin modification, transcription, post-transcription, and translation (Wang and Chang, 2011). Functionally, lncRNAs can act as signals, decoys, guides, scaffolds, and sponges. Particularly, the miRNA sponging function of lncRNAs that inhibits miRNAs makes lncRNA an important active player in the ceRNA network (Xia et al., 2014; Greco et al., 2019; Wang L. et al., 2019; Ebrahimpour et al., 2021).

CircRNAs are a class of endogenous non-coding RNA without a 5′ m7G cap and 3′ poly (A) tail structure and are formed by the circularization of pre-RNAs via back splicing (Li X. et al., 2018; Kristensen et al., 2019). They are widely present in a variety of human cells. Because of lack of exposed 5′ and 3′ ends, circRNAs are more stable than linear RNAs in terms of resistance to degradation by exonucleases or RNase R (Suzuki et al., 2006). Thus, circRNAs are stable in human body fluids, including blood and saliva, making them suitable biomarkers for diagnosis of cancer (Bahn et al., 2015; Memczak et al., 2015). CircRNAs carry out their function through a variety of mechanisms, such as acting as ceRNAs, interacting with RNA-binding proteins, alternative splicing, and translation (Li X. et al., 2018; Kristensen et al., 2019). Due to the high stability of circRNAs, the sponge effect of circRNAs on miRNAs has been appreciated. Rybak-Wolf et al. (2015) revealed that circRNAs are highly abundant in the mammalian brain, dynamically expressed, and conserved among human, mouse, and Drosophila. Furthermore, Song et al. (2016) developed a computational tool called UROBORUS to detect circRNAs in total RNA-seq data and found that more than 476 circRNAs were differentially expressed in control brain tissues and gliomas. Increasing recent reports have illustrated the crucial role of dysregulated circRNAs in gliomagenesis, showing great potential as valuable diagnostic and therapeutic biomarkers (Jin et al., 2018; Ding et al., 2020; Long et al., 2020).

Pseudogenes are genomic loci similar to the known genes but lost their protein coding ability as a result of premature stop codons, deletions, insertions, or frameshift mutations (D’Errico et al., 2004). Therefore, they were considered as “non-functional,” “junk,” or “genomic fossils,” until recently their roles in various biological processes have been illustrated. Genomic sequencing analyses showed a huge number of pseudogenes (~19,000) in humans, and many of them are transcribed and well-conserved (Pink et al., 2011). The ENCODE project further revealed that the transcription of some pseudogenes is tissue specific or constitutive (Pei et al., 2012). Mechanically, transcribed pseudogenes regulate the expression of target genes by the generation of endogenous small interference RNAs (siRNAs) (Watanabe et al., 2008) and antisense transcripts (Zhou et al., 1992) or acting as ceRNAs (Poliseno et al., 2010). Since pseudogenes are highly similar to their ancestral protein-coding genes, they can actively compete for the same pool of miRNAs through shared MREs (An et al., 2017). Poliseno et al. (2010) firstly reported that pseudogene PTENP1 derepresses the expression of tumor-suppressor gene PTEN through competing for PTEN-targeting miRNAs in prostate cancer cells and colon carcinoma cells, therefore exerting a tumor-suppressive role. Furthermore, they extended their analysis to other cancer driver genes with pseudogenes, such as oncogene KRAS and its pseudogene KRAS1P. Thereafter, the ceRNA function of more pseudogenes is revealed in various cancers, including breast cancer and gliomas (Shi X. et al., 2016; Li et al., 2017b; Wang Y. et al., 2019).
Logic for Effective ceRNA Crosstalk

The effectiveness and result of crosstalk between ceRNAs are regulated by multiple factors, including relative concentration and subcellular localization of the ceRNAs and miRNAs, number of shared MREs, and miRNA-ceRNA binding affinity (Salmena et al., 2011; Sanchez-Mejias and Tay, 2015). Both mathematical models and experimental models support that ceRNA crosstalk conforms to a titration mechanism that is sensitive to the relative abundance of miRNA/target RNAs and often exhibit a threshold-like manner (Buchler and Louis, 2008). Alterations of the ceRNA levels should be large enough to overcome or relieve suppression on competing ceRNAs by the miRNAs. Similarly, absent expression or overexpression of shared miRNAs will abolish ceRNA competition. When the levels of miRNA and ceRNAs are near equimolar, optimal ceRNA crosstalk is expected to happen, in which one ceRNA has the biggest effect on its ceRNA partners (Mulllokandov et al., 2012; Bosia et al., 2013). Subcellular localization influences ceRNAs accessibility to miRNAs. Not all miRNAs are present everywhere and at all times, and many RNA-binding proteins can profoundly affect the localization or compartmentation of RNA transcripts through mechanisms including phase separation (Venables et al., 2009; Fox et al., 2018; Ries et al., 2019). The number of shared miRNAs among ceRNAs is important for effective ceRNA crosstalk; the more shared, the deeper the communication (Ala et al., 2013; Figliuzzi et al., 2013). MREs on ceRNAs are not equal. Although two MREs can bind the same miRNA, their partially different nucleotide composition contributes to the distinct binding affinity between miRNAs and ceRNAs (Salmena et al., 2011). The nonreciprocal competing effect between partially and perfectly complementary ceRNAs was predicted computationally and validated experimentally in cultured human cells using synthetic gene circuits (Yuan et al., 2015). Collectively, the above-mentioned factors should be considered when studying ceRNAs and especially assigning their contribution to specific human diseases, which may facilitate the translation of research results to clinical application.

EXTENSIVE mRNA CROSSTALK IN GLIOMA THROUGH ceRNA MECHANISM

Sumazin et al. (2011) presented a pioneer and comprehensive study of miRNA–mRNA crosstalk through shared miRNAs in GBM. Using computational tools, an extensive ceRNET, consisting of about 7,000 genes and more than 248,000 miRNAs, is constructed. Further biochemical assays in cell lines confirmed that established drivers of tumor initiation and subtype implementation are indeed regulated by this ceRNET, including PTEN, RB1, STAT3, PDGFRA, RUNX1, and VEGFA (Figure 1). Specifically, they focused on 13 genes, including ABHD13, CCDC6, CTBP2, NRAS, and RB1, and confirmed that these genes can act through ceRNA mechanism to regulate the expression of PTEN and vice versa (Figure 1). The overexpression of PETN 3’ UTR increases the expression of 13 ceRNAs, elevates PTEN protein level, and decreases the growth rates of glioma cells, while knockdown of each of the 13 genes can reduce PTEN 3’ UTR luciferase expression and significantly promote glioma cell growth. The silencing effect mediated by the ceRNA mechanism is comparable to that of siRNA-mediated PTEN silencing. Moreover, PTEN composes a subnetwork with the known drivers of glioma tumorigenesis and GBM subtypes, i.e., RB1, STAT3, PDGFRA, RUNX1, and VEGFA. The ectopic expression of the 3’ UTRs of genes in this subnetwork can upregulate the expression of the other genes. Therefore, the ceRNA mechanism provides a way for these cancer drivers to be coordinately expressed through a shared miRNA pool, which is implicated in high-grade gliomagenesis (Chow et al., 2011).

EXAMPLES OF lncRNA–miRNA–mRNA ceRNETs IN GLIOMA

The ceRNET concept is one of the hot research topics in recent years, and reports of IncRNA- or circRNA-mediated ceRNETs in glioma research are increasing fast using computational or experimental methods (Wu and Qian, 2019; Zhu et al., 2020c). For example, Zhu et al. (2020c) constructed a comprehensive IncRNA–miRNA–mRNA ceRNET consisting of 61 lncRNAs, 12 miRNAs, and 92 mRNAs through a computational method. Here we will discuss and highlight several lately discovered ceRNETs that affect multiple hallmarks of glioma progression, including proliferation, apoptosis, migration, EMT, and angiogenesis (Figure 2 and Table 1).

IncRNA XIST/Multiple miRNAs/Multiple mRNAs

IncRNA X-inactive specific transcript (XIST), located on chromosome Xq13.2, is frequently diagnosed in various cancers, including gastric cancer, lung cancer, and glioma (Wang Y.P. et al., 2020). Acting as a ceRNA, at least five miRNAs (e.g., miR-133a, miR-126, miR-137, miR-204-5p, and miR-329-3p) have been identified in the XIST-mediated ceRNETs that affect multiple hallmarks of glioma progression, including proliferation, apoptosis, migration, EMT, and angiogenesis (Figure 2 and Table 1).

Wang et al. (2017) reported that XIST promotes gliomagenesis through the XIST/miR-137/Rac1 regulatory axis. Specifically, the expression of XIST and miR-137 is significantly up- and down-regulated in glioma tissues, respectively. Overexpression of XIST promotes the proliferation of glioma cells, which can be reversed by miR-137 overexpression (Wang et al., 2017). Rac1 (Ras-related C3 botulinum toxin substrate1) is a member of the Rho family that belongs to the Ras superfamily of GTPases (Coso et al., 1995). It plays a crucial role in the regulation of proliferation, differentiation, and apoptosis of tumor cells and is abnormally expressed in several cancer types, including non-small cell lung cancer (Zhou et al., 2016), breast cancer (Algayadh et al., 2016), and sarcoma (Manara et al., 2016). Interestingly, through sponging mir-137, XIST regulates glioma angiogenesis by regulating FOXC1 (forkhead box C1) expression (Yu et al., 2017). Yu et al. (2017) found that XIST is upregulated in endothelial cells in a blood–tumor–barrier model in vitro. FOXC is a transcription factor of the forkhead box family, and it promotes glioma angiogenesis by activating the
expression of CXCR7 [chemokine (C–X–C motif) receptor 7b] (Yu et al., 2017).

In 2020, four groups reported novel XIST-mediated ceRNETs that promote glioma progression, i.e., XIST/miR-133a/SOX4 (Luo et al., 2020), XIST/miR-126/IRS1 (Cheng et al., 2020), XIST/miR-204-5p/Bcl-2 (Shen et al., 2020), and XIST/miR-329-3p/CREB1 (Wang Y.P. et al., 2020). Luo et al. (2020) reported that XIST/miR-133a/SOX4 ceRNET regulates the proliferation, invasion, and EMT of glioma. Sox4 is a member of the Sox (SRY-related HMG-box) family of transcription factors and is involved...
TABLE 1 | Representative lncRNA-mediated ceRNETs in glioma.

lncRNA	Competitor (mRNA)	Shared miRNA(s)	ceRNA role	Related glioma hallmark	References
BCYRN1	CUEDC2	miR-619-5p	Tumor suppressive	Proliferation and migration	Mu et al., 2020
	TAZ	miR-125a-5p	Oncogenic	Proliferation, migration, and invasion	Yu et al., 2020
CCAT2	VEGFA	miR-424	Oncogenic	Proliferation, apoptosis, and angiogenesis	Sun S.L. et al., 2020
SNHG16	EGRF	miR-373-3p	Oncogenic	Proliferation, migration, and invasion	Zhou Y.X. et al., 2020
DDCR5	Smad7	miR-21	Tumor suppressive	Proliferation, migration, invasion, and apoptosis	He et al., 2020
	PTEN	miR-23a			
NNT-AS1	PRMT1	miR-494-3p	Oncogenic	Cell viability, proliferation, migration, and invasion	Zheng et al., 2020
GASS-AS1	TUSC2	miR-106b-5p	Tumor suppressive	Proliferation, migration, and invasion	Hu et al., 2020
LINCO1116	VEGFA	miR-31-5p	Oncogenic	Proliferation, migration, invasion, and angiogenesis	Ye et al., 2020
MALAT1	Rapt1B	miR-101	Oncogenic	Proliferation and apoptosis	Li et al., 2017c
LINCO0152	AKT2	miR-612	Oncogenic	Proliferation, migration, invasion, and colony formation	Cai et al., 2018
	BMI1	miR-16		Proliferation, migration, and invasion	Chen et al., 2018
DANCER	RAB1A	miR-634	Oncogenic	Proliferation and colony formation	Xu D. et al., 2018
DLEU1	MEF2D	miR-421	Oncogenic	Proliferation, migration, and apoptosis	Feng et al., 2019
LOC730100	FOXA1	miR-760	Oncogenic	Proliferation, migration, and apoptosis	Li Q. et al., 2019
XIST	SOX4	miR-133a	Oncogenic	Proliferation, invasion, and EMT	Luo et al., 2020
	IRS1	miR-126	Cell viability, migration, invasion, and apoptosis	Cheng et al., 2020	
	Rac1	miR-137		Proliferation	Wang et al., 2017
	FOXC1	miR-204-5p		Angiogenesis	Yu et al., 2017
	Bcl-2	miR-329-3p	Proliferation, invasion, apoptosis, and radiosensitivity	Wang Y.P. et al., 2020	
	CREB1	miR-204-5p	Proliferation, invasion, apoptosis, and radiosensitivity	Wang Y.P. et al., 2020	
		miR-181a	Tumor suppressive	Proliferation, migration, EMT, and apoptosis	Cui et al., 20177
CASC2	PTEN	miR-181b	Oncogenic	Proliferation, migration, EMT, and apoptosis	Liao et al., 2017
CCAT1	FGFR3 and	miR-181b	Oncogenic	Proliferation, migration, invasion, and apoptosis	Cui et al., 2017
	PDGFRa	miR-181b	Oncogenic	Proliferation, migration, EMT, and apoptosis	Liao et al., 2017
DLEU2	PKD3	miR-186-5p	Oncogenic	Colony formation, migration, and invasion	Xie et al., 2019
PSMB8-AS1	DDIT4	miR-22-3p	Oncogenic	Proliferation, apoptosis, and radiosensitivity	Hu et al., 2020
MATN1–AS1	CHD1	miR-200b, miR-200c, and miR-429	Oncogenic	Proliferation and apoptosis	Zhu et al., 2020b
NEAT1	DNMT1 and mTOR	miR-185-5p	Oncogenic	Proliferation, migration, EMT, and apoptosis	Zhu et al., 2020b

Collectively, these results clearly indicate that lncRNA XIST plays key roles in gliomagenesis by targeting multiple miRNAs and, in turn, de-represses the expression of multiple cancer driver genes. Therefore, XIST-mediated ceRNETs could be potential diagnostic and prognostic biomarkers and therapeutic targets.

In summary, IncRNA XIST regulates cell viability, migration, invasion, and apoptosis in glioma cells. Using a ceRNA mechanism, XIST can regulate a variety of apoptosis-related genes, including Bax, caspase 3, caspase 9, and Bcl-2. However, only Bcl-2 had been shown to be a direct target of miR-204-5p and was only tested in their study (Shen et al., 2020). Wang Y.P. et al. (2020) reported that XIST/miR-329-3p/CREB1 ceRNET regulates proliferation, invasion, apoptosis, and radiosensitivity in glioma. CREB1 (cAMP response element binding protein 1) is a member of the leucine zipper with a basic domain (bZip) family of transcription factors and regulates responses to a variety of growth factors and stress signals (Wang et al., 2016). In addition to the above-mentioned studies with known competing endogenous miRNAs for XIST, XIST can also sponge other miRNAs to affect glioma progression, such as miR-152 (Yao et al., 2015), yet the downstream mRNA targets remain unknown.
Representative circRNA-mediated ceRNETs in glioma.

circRNA	Competitor (mRNA)	Shared miRNA(s)	ceRNA role	Related glioma hallmark	References
circPOSTN	TPX2	miR-361-5p	Oncogenic	Proliferation, cell growth, and apoptosis	Long et al., 2020
circCPA4	CPA4	miR-let-7	Oncogenic	Cell growth, migration, invasion, and apoptosis	Yang Y. et al., 2019
	MEF2D	miR-760	Oncogenic	Proliferation and invasion	Peng et al., 2019
circ_0001946	CDR1	miR-671-5p	Tumor suppressive	Proliferation, migration, and apoptosis	Li and Diaz, 2019
circMMP9	CDK4 and AURKA	miR-124	Oncogenic	Proliferation, migration, and invasion	Wang et al., 2018
circASAP1	NRS	miR-502-5p	Oncogenic	Proliferation, apoptosis, and chemoresistance	Wei et al., 2020
circPTX1	ERB3	miR-1304	Oncogenic	Proliferation, migration, invasion, and apoptosis	Zhan et al., 2019
	MAP3K2	miR-379-5p	Oncogenic	Proliferation and apoptosis	Chen M. et al., 2020
	NEK2	miR-329-3p	Oncogenic	Cell growth, colony formation, and radiosensitivity	Lv et al., 2019
circPCMTD1	mTOR	miR-224-5p	Oncogenic	Cell viability, proliferation, migration, and invasion	Guan et al., 2020
circSCAF11	SP1	miR-421	Oncogenic	Proliferation and invasion	Meng et al., 2019
circEZH2	DDAH1 and CBX3	miR-1265	Oncogenic	Cell growth, migration, invasion, and apoptosis	Gao et al., 2020
hsa_circ_000177	FZD7	miR-638	Oncogenic	Proliferation and invasion	Chen and Duan, 2018
circTCH	ITCH	miR-214	Tumor suppressive	Proliferation, migration, and invasion	Li F. et al., 2018
circNFIX	NOTCH1	miR-34a-5p	Oncogenic	Proliferation, migration, and apoptosis	Xu H. et al., 2018
hsa_circ_0007534	ZIC5	miR-761	Oncogenic	Proliferation and migration	Li G.F. et al., 2018
hsa_circ_0046701	ITGB8	miR-142-3p	Oncogenic	Proliferation and invasion	Li G. et al., 2018
circTTBK2	miR-761	Oncogenic	Proliferation, invasion, and ferroptosis	Zhang H.Y. et al., 2020	
circCFH	AKT1	miR-149	Oncogenic	Proliferation and colony formation	Bian et al., 2018
circHIPK3	IGF2BP3	miR-654	Oncogenic	Proliferation and invasion	Jin et al., 2018
	CCND2	miR-124	Oncogenic	Proliferation, migration, and invasion	Liu Z. et al., 2020
	WEE1	miR-124-3p	Oncogenic	Proliferation, invasion, and EMT	Xia et al., 2020
	KIF2A	microRNA-524-5p	Oncogenic	Proliferation, invasion, apoptosis, and chemoresistance	Yin and Cui, 2020
circTTBK2	HNF1β	miR-217	Oncogenic	Proliferation, migration, and apoptosis	Zheng et al., 2017
circSHKB1	FOXP1	miR-544a	Oncogenic	Migration, proliferation, and angiogenesis	He et al., 2018
	FOXP2	miR-379	Oncogenic	Proliferation, migration, and angiogenesis	He et al., 2018
hsa_circ_0088732	RAB3D	miR-661	Oncogenic	Migration, invasion, EMT, and apoptosis	Chen et al., 2020
circPTN	SOX6	miR-122	Oncogenic	Proliferation and apoptosis	Chen C. et al., 2020
circHECTD1	SLC10A7	miR-296-3p	Oncogenic	Proliferation and invasion	Li et al., 2021
circSFMTB2	MTSS1	miR-182-5p	Oncogenic	Proliferation, migration, and invasion	Zhang S. et al., 2020
circFANCL	HMGB1	miR-337-3p	Oncogenic	Proliferation and apoptosis	Tao et al., 2020
has_circ_0012129	TGFβ2	miR-761	Oncogenic	Cell viability, proliferation, colony formation, migration, invasion, and apoptosis	Xu et al., 2020
circ_0079593	KPNA2	miR-499a-5p	Oncogenic	Proliferation, migration, and apoptosis	Yang et al., 2020
circ_0000215	CXCR2	miR-495-5p	Oncogenic	Proliferation, invasion, EMT, and apoptosis	Mutalifu et al., 2020
circABC10	FABP5	miR-620	Oncogenic	Proliferation, migration, invasion, and apoptosis	Sun W.Y. et al., 2020
hsa_circ_0076248	SIRT1	miR-181a	Oncogenic	Proliferation, invasion, and chemoresistance	Lei and Huang, 2019
circ_0034642	BAT3F	miR-1205	Oncogenic	Proliferation, migratory, invasion, and apoptosis	Yang M. et al., 2019
circJ2AF1	NOVA2	miR-7-5p	Oncogenic	Proliferation migration, invasion, and apoptosis	Li G. et al., 2019
circ_002136	SOX13	miR-138-5p	Oncogenic	Migration, invasion, and angiogenesis	He Z. et al., 2019
circDICER1	ZIC4	miR-103a-3p and miR-382-5p	Oncogenic	Proliferation, migration, and angiogenesis	He Q. et al., 2019
has_circ_0074362	HOXB7	miR-1236-3p	Oncogenic	Proliferation, migration, and invasion	Duan et al., 2018
circELF2	MUC15	miR-510-5p	Oncogenic	Cell growth, migration, invasion, and apoptosis	Zhang and Xu, 2020
hsa_circ_0000337	MAT2A	miR-502-5p	Oncogenic	Proliferation, migration, and invasion	Liu N.Z. et al., 2020
circ_0079586	MDM4	miR-183-5p	Oncogenic	Cell growth, migration, invasion, and apoptosis	Chen J. et al., 2020
circENTPD7	ROS1	miR-101-3p	Oncogenic	Proliferation, migration, and invasion	Zhu et al., 2020a
circEPHB4	SOX10	miR-637	Oncogenic	Stemness, proliferation, and glycosynthesis	Jin et al., 2021
circTOP2A	SUSD2	miR-346	Oncogenic	Cell viability, migration, invasion, and apoptosis	Sang et al., 2021
circ_101064	PWIL1	miR-154-5p	Oncogenic	Proliferation, invasion, and migration	Zhou H. et al., 2020
circ_0000020	PIK3CA	miR-142-5p	Oncogenic	Proliferation, migration, and invasion	Wang and Zhu, 2021

^Undefined.
CUEDC2 is an adapter protein with a CUE domain that is involved in regulating protein stability via ubiquitination of specific substrates (Shih et al., 2003). The PTEN/AKT/p21 pathway acts on downstream targets of CUEDC2 to mediate the anti-tumor effect of BCYRN1 (Mu et al., 2020).

In contrast, Liu et al. (2015) showed that BCYRN1 is significantly downregulated during genotoxic stress-induced necrosis in human glioma cell lines, implying an oncogenic function of lncRNA. In 2020, the same group reported that BCYRN1 functions as an oncogene and promotes proliferation, invasion, and migration (Yu et al., 2020). Mechanically, BCYRN1 sponges endogenous tumor suppressor miR-125a-5p to de-suppress the expression of TAZ (transcriptional coactivator with PDZ-binding motif). TAZ has been shown to regulate mesenchymal differentiation in GBM, i.e., TAZ is required for self-renewal, invasion, and tumor formation of mesenchymal glioma stem cells (Bhat et al., 2011). Future studies could reconcile the difference between these studies and shed light on the exact role of BCYRN1-mediated ceRNAs in glioma progression.

EXAMPLES OF circRNA–miRNA–mRNA CeRNA Networks in Glioma

CircPOSTN/miR-361-5p/mRNA TPX2

Long et al. (2020) demonstrated in glioma cells that circPOSTN (has_circ_0030018), as a ceRNA, is involved in the stimulation of cell growth and aerobic glycolysis and inhibition of apoptosis by upregulating the mRNA TPX2 (targeting protein for Xenopus kinesin-like protein 2) through sponging miR-361-5p (Figure 3 and Table 2). CircPOSTN (has_circ_0030018), located at chr13:38136718–38161065 (2,656 nucleotides), was screened by high-throughput circRNA microarray to be upregulated in glioma tissues compared with normal tissues. A high level of circPOSTN was significantly associated with larger tumor size, higher WHO grades, and shorter overall survival (Yang Y. et al., 2019). In the study of Long et al. (2020), the effect of circPOSTN on apoptosis, proliferation, and aerobic glycolysis is mitigated by silencing miR-361-5p. miR-361-5p is a tumor suppressor in multiple types of cancers, including prostate cancer (Liu et al., 2014), cutaneous squamous cell carcinoma (Kanitz et al., 2012), hepatocellular carcinoma (Sun et al., 2016a), non-small cell lung cancer (Chen et al., 2016), and breast cancer (Han et al., 2016). Zhang et al. (2016b) found that TPX2 acts as a downstream target of miR-361-5p/circPOSTN in glioma cells. Depletion of circPOSTN or TPX2 significantly suppresses cell proliferation and aerobic glycolysis while promoting the apoptosis of glioma cells (Long et al., 2020). TPX2 is a cell cycle-regulated nuclear protein that functions in proliferation and mitotic spindle assembly (Heidebrecht et al., 1997; Kufer et al., 2002). As an oncogene, TPX2 is involved in multiple cancers, including gastric cancer (Tomii et al., 2017), colon cancer (Wei et al., 2013), lung squamous cell carcinoma (Ma et al., 2006), pancreatic cancer (Ludwig et al., 2017), and prostate cancer (Zou et al., 2018). In glioma cells, TPX2 promotes cell proliferation and invasion by activating the AKT signaling pathway (Gu et al., 2016). On the other hand, Yang Y. et al. (2019) showed that CircPOSTN promotes cell growth and invasion by sponging miR-1205, yet the targets of miR-1205 have not been explored. Therefore, these results illustrate that CircPOSTN play a crucial role in the progression and invasion of gliomas as a miRNA sponge and may be a useful new prognostic biomarker and therapeutic target for gliomas.

circCPA4/miR-let-7/mRNA CPA4, circCPA4/miR-760/mRNA MEF2D

Hsa_circ_0082374 was screened by Peng et al. (2019) in a circRNA microarray analysis of glioma and matched normal brain tissues as the most up-regulated one among the top 20 up-regulated circRNAs. It locates at chr7:129948146–129964020 and is named circCPA4 as it was assumed to be derived from carboxypeptidaseA4 (CPA4) according to the human reference genome (GRCh47/hg19). A high level of circCPA4 correlates with a poor prognosis of glioma, and the knockdown of it impedes cell proliferation and invasion in glioma. Mechanically, circCPA4 acts as a ceRNA and sponges miR-let-7 to de-suppress the expression of CPA4 (Peng et al., 2019). CPA4 is a member of the metallo-carboxypeptidase family and may be involved in the regulation of peptide hormone activity and hormone-regulated cell proliferation and differentiation (Huang et al., 1999; Tanco et al., 2010). The expression of CPA4 is elevated in multiple types of cancer tissues of patients, such as gastric cancer (Sun et al., 2016b), pancreatic cancer (Sun et al., 2015), breast cancer (Handa et al., 2019), lung cancer (Sun et al., 2016c), and esophageal squamous cell carcinoma (Sun L. et al., 2017), and can be used as a potential diagnostic and prognostic biomarker as well as a therapeutic target.

Zhang Y. et al. (2020) further explored the circCPA4 function in glioma cells and found that suppression of the circRNA inhibits tumor cell proliferation, migration, and invasion while promoting cell apoptosis and radiosensitivity in vitro and repressing tumor growth in vivo. They pointed out that a higher expression of circCPA4 is positively correlated with tumor size, WHO grade, and poor prognosis in patients. Differently from Peng et al. (2019) in the mechanism, Zhang Y. et al. (2020) revealed that circCPA4 sponges MEF2D (myocyte enhancer factor 2D)-targeting miR-760 to promote glioma progression. Knockdown of miR-760 can reverse the antitumor effects mediated by the suppression of circCPA4. MiR-760 is a well-identified tumor-suppressive miRNA that functions in many types of cancers, including hepatocellular carcinoma (Tian et al., 2018), breast cancer (Han et al., 2016), and non-small cell lung cancer (Zhu et al., 2019), via regulating the malignant properties of tumor, such as cell proliferation, apoptosis, migration, and drug resistance. Then, Zhang Y. et al. (2020) confirmed that MEF2D is targeted by miR-760 glioma cells. MEF2D is a transcription factor of the myocyte-specific enhancer factor 2 (MEF2) family involved in the regulation of the differentiation...
and development of muscle and neuronal cells (McKinsey et al., 2002). Interestingly, miR-760 and MEF2D are also involved in lncRNA LOC730100- and lncRNA DLEU1-mediated ceRNAs in glioma cells, respectively (Feng et al., 2019; Li Q. et al., 2019), implying the potential crosstalk between the circPITX1 and the lncRNAs. These results indicate the importance and complexity of circPITX1-mediated ceRNAs in gliomagenesis, providing potential biomarkers and targets for glioma treatment.

circ_0001946/miR-671-5p/mRNA CDR1

Circular RNA circ_0001946 (also known as CDR1as and CiRS-7) that derives from chrX:139865339–139866824 is involved in the progression of multiple cancer types, such as esophageal squamous cell cancer (Fan et al., 2019), colorectal cancer (Deng et al., 2020), lung adenocarcinoma (Yao et al., 2019), and glioblastoma (GBM) (Li and Diao, 2019). Li and Diao (2019) revealed that circ_0001946 suppresses GBM progression by activating the expression of CDR1 through sponging miR-671-5p. Circ_0001946 and its competing mRNA CDR1 can inhibit the proliferation, migration, and invasion and promote the apoptosis of GBM cells, while miR-671-5p has the opposite effect. Microarray analyses showed that circ_0001946 and CDR1 were down-regulated in GBM, while miR-671-5p was up-regulated. The genomic region containing miR-671-5p gene is frequently amplified in GBM (Barbagallo et al., 2016), and its regulatory role on circ_0001946 and CDR1 expression was proven by Hansen et al. (2011) earlier using HEK293 cells derived from human embryonic kidney cells. CDR1 (cerebellar degeneration-related autoantigen 1) is encoded by the CDR3 gene and is required for neuronal–glial functions. Inhibition of CDR1 expression leads to the loss of differentiation of neural cells and neoplastic transformation (Chen et al., 1990; Satoh and Yamamura, 2004). These results suggest that stimulating the circ_0001946/miR-671-5p/CDR1 axis may be a potential therapeutic strategy for GBM treatment.

circMMP9/miR-124/mRNAs CDK4 and AURKA

CircMMP9 (hsa_circ_0001162) was screened as the circRNA with the greatest differential expression in the GBM tissues compared with the adjacent normal brain tissues in a microarray analysis performed by Wang et al. (2018). It is derived from exons 12 and 13 of MMP9 (matrix metalloproteinase-9), with 328 nucleotides in length. Overexpression of circMMP9 promotes the proliferation, migration, and invasion of GBM cells through sponging miR-124 (Wang et al., 2018). Thereafter, the oncogenic effect of circMMP9 was demonstrated in osteosarcoma (Pan et al., 2019) and oral squamous cell carcinoma (Xia et al., 2019). Cyclin-dependent kinase 4 (CDK4) and aurora kinase A (AURKA) are two downstream targets of miR-124/circMMP9 in GBM cells (Wang et al., 2018). Furthermore, Wang et al. (2018) found that eukaryotic initiation factor 4A3 (EIF4A3) binds to the MMP9 mRNA transcript to induce circMMP9 cyclization, which improves the circMMP9 level in GBM. EIF4A3 is a component of the exon junction complex involved in exon splicing (Chan et al., 2004). The expression of EIF4A3 shows prognostic significance in Chinese Glioma Genome Atlas but not The Cancer Genome Atlas (TCGA) database, which may be caused by the difference in sample size and ethnicity between the two data sets (Wei et al., 2020).

circPITX1/Multiple miRNAs/Multiple mRNAs

circPITX1 (hsa-circ-0074026) is another circRNA found to be up-regulated in GBM tissues compared with the noncancerous controls in the microarray analysis performed by Wang et al. (2018). It locates in chr5:134363423–134365011, with 2,383 bp in length. Recently, four groups reported different circPITX1-mediated ceRNAs in glioma cells, i.e., circPITX1/miR-518a-5p/IL17RD (Zhan et al., 2019), circPITX1/miR-1304/ERBB4 (Chen M. et al., 2020), circPITX1/miR-379-5p/mitogen-activated protein kinase 2 (MAP3K2) (Lv et al., 2019), and circPITX1/miR-329-3p/NIMA-related kinase 2 (NEK2) (Guan et al., 2020).

Zhan et al. (2019) further confirmed that circPITX1 is upregulated in cancerous tissues of 52 patients and four glioma cell lines, which is correlated with the patient's tumor size and WHO grade. Through gain- and loss-of-function assays, they demonstrated that circPITX1 can promote the growth, migration, invasion, and survival of glioma cells. Mechanically, Zhan et al. (2019) proposed that circPITX1 promotes IL17RD (interleukin 17 receptor D) expression by sponging miR-518a-5p. miR-518a-5p also plays a tumor-suppressive role in colorectal cancer (Rubie et al., 2014), diffuse large B cell lymphoma (Huang et al., 2021), and gastrointestinal stromal tumor (Shi Y. et al., 2016) but an oncogenic role in ovarian cancer (Zhang N. et al., 2020). IL17RD can interact with the IL-17 receptor and mediates IL-17 signaling (Rong et al., 2009). The oncogenic role of IL17RD has been shown in colon cancer (Pekow et al., 2017) and colorectal cancer (Yu et al., 2019).

Similar to the study of Zhan et al. (2019); Chen M. et al. (2020) observed a clinical significance of circPITX1 in larger tumor size and higher WHO grade of patients and an inhibitory effect of circPITX1 knockdown on the proliferation, migration, invasion, and survival of glioma cells. Mechanically, they proposed that circPITX1 regulates ERBB4 expression to promote glioma progression by sponging miR-379-5p. ERBB4 (HER4) belongs to the epidermal growth factor (EGF)/ERBB family of receptor tyrosine kinases, which also includes the EGF receptor (EGFR/HER1/ERBB1), ERBB2 (HER2/Neu), and ERBB3 (HER3) (Qiu et al., 2008). The abnormal expression of each ERBB is associated with many human cancers (Hynes and Lane, 2005).

Lv et al. (2019) performed circPITX1 knockdown experiments and observed reduced proliferation and increased apoptosis of GBM cells. Mechanically, they proposed that circPITX1 promotes GBM progression by sponging miR-379-5p to increase the expression of MAP3K2 (Lv et al., 2019). The effects of circPITX1 knockdown on the proliferation and apoptosis of GBM cells can be rescued partly by upregulating MAP3K2. MAP3K2 is a member of the serine/threonine protein kinase family (Mazur et al., 2014). It preferentially activates other kinases of the MAP kinase signaling pathway and is frequently overexpressed in multiple human cancers including non-small
cell lung cancer (Yu et al., 2015), hepatocellular carcinoma (Shi et al., 2020), cutaneous melanoma (Chen et al., 2019), and breast cancer (Wu et al., 2017).

Guan et al. (2020) reported that the down-regulation of circPITX1 leads to reduced viability, glycolysis, colony formation, and radioresistance of glioma cells in vitro and suppresses tumor growth in vivo. Mechanically, Guan et al. (2020) proposed that circPITX1 promotes NEK2 expression by sponging miR-329-3p. Depletion of miR-329-3p reverses the inhibitory effects of circPITX1 knockdown on glycolysis and radioresistance. It has been shown that miR-329-3p plays a tumor-suppressive role in multiple cancers, including non-small cell lung cancer, osteosarcoma, cervical cancer, and hepatocellular carcinoma, through regulating the proliferation and migration of tumor cells (Chang et al., 2017). Furthermore, Guan et al. (2020) demonstrate that NEK2 acts downstream of miR-329-3p/circPITX1 to affect the glycolysis and radiosensitivity of glioma cells. NEK2 is a conserved centrosome kinase of the NIMA-related kinase family, with abnormal expression in a wide variety of human cancers (Hayward and Fry, 2006). NEK2 is widely upregulated in gliomas and associated with WHO grades, proliferation, and prognosis in malignant gliomas (Liu et al., 2017). An earlier study by Ye et al. (2018) showed that NEK2 is overexpressed in the glioma tissues and is targeted by miR-128 involved in regulating the apoptosis of glioma cells.

Collectively, these studies solidly confirmed the crucial roles of circPITX1-mediated ceRNETs in the regulation of multiple hallmarks of gliomas, including proliferation, migration, invasion, apoptosis, and treatment resistance. Considering that circPITX1 knockdown or overexpression has no side effect on the cell proliferation and apoptosis of normal human astrocytes (Chen M. et al., 2020), targeting circPITX1 may be a valuable and promising strategy for glioma treatment.

PSEUDOGENE-MEDIATED ceRNETs IN GLIOMA

The finding of pseudogene-mediated ceRNETs laid the foundation for the establishment of the ceRNA hypothesis (Poliseno et al., 2010; Salmena et al., 2011), yet the description of this type of ceRNETs in glioma is less than that of IncRNA- and circRNA-mediated ceRNETs. PTEN pseudogene-1 (PTENP1), the pseudogene of PTEN, acts through ceRNA mechanism to inhibit cancer progression in prostate cancer (Poliseno et al., 2010) and breast cancer (Gao et al., 2019). Although PTENP1 is also found to be involved in regulating the proliferation and invasion of glioma cells, whether its anti-tumor effect is mediated by ceRNA mechanism has not been reported (Hu et al., 2019).

ANXA2P1

Three annexin A2 pseudogenes, including ANXA2P1, ANXA2P2, and ANXA2P3, are significantly upregulated, along with their parent gene annexin A2 (ANXA2), which is correlated with poor survival outcome of glioma patients (Li et al., 2017b). Whether the co-expression of the pseudogenes (ANXA2P1, ANXA2P2, and ANXA2P) and parent gene (ANXA2) is caused by shared miRNA(s) or ceRNET(s) remain unknown. Yu et al. (2019) identified five pseudogenes correlating with glioma survival from the TCGA dataset and established a complex ceRNET consisting of three pseudogenes (ANXA2P2, EEF1A1P9, and FER1L4), 72 microRNAs, and 322 targeted genes (Wang Y. et al., 2019). However, the computational ceRNET and each ceRNA pair need further experimental validation. Du et al. (2020) reported an experimentally validated ceRNET involving ANXA2P2, in which ANXA2P2 functions as a ceRNA to regulate the expression of lactate dehydrogenase A (LDHA) by sponging miR-9 in GBM (Du et al., 2020). The ANXA2P2/miR-9/LDHA ceRNET regulates glucose metabolism, proliferation, and apoptosis of GBM (Du et al., 2020). LDHA catalyzes the final step of aerobic glycolysis and is abnormally expressed in many human cancers (Li et al., 2017a).

PDIA3P1

Wang S. et al. (2020) reported a new pseudogene-mediated ceRNET in glioma, protein disulfide isomerase family A member 3 pseudogene 1 (PDIA3P1)/miR-124-3p/RELA. PDIA3P1 is a 2,099-bp fragment mapped to chromosome 1q21.1. High PDIA3P1 expression is correlated with EMT, extracellular matrix disassembly, and angiogenesis and can promote the migration and invasion of glioma cells (Wang S. et al., 2020). Mechanically, PDIA3P1 sponges miR-124-3p to upregulate RELA expression and, in turn, activates the downstream NF-κB pathway, which promotes a highly invasive mesenchymal (MES) transition of glioma cells (Wang S. et al., 2020). RELA (v-rel avian reticuloendotheliosis viral oncogene homolog A) gene encodes the major component of the NF-κB complex (Hashimoto et al., 2011). Intriguingly, hypoxia inducible factor 1 (HIF1) upregulates the transcription of PDIA3P1 by directly binding its promoter, linking hypoxia to MES transition (Wang S. et al., 2020). In addition, the ceRNA function of PDIA3P1 has also been reported in oral squamous cell carcinoma (Sun C.C. et al., 2017) as well as its oncogenic effect in hepatocellular carcinoma (Kong et al., 2017). These results underscore the importance of PDIA3P1-mediated ceRNET in cancer progression and suggest it as a promising prognostic biomarker and therapeutic target in glioma treatment.

CONCLUSION

Despite the improved surgical resection, radiotherapy, and chemotherapy, the prognosis for patients with high-grade gliomas is still poor. Understanding the molecular mechanisms underlying gliomagenesis is urgently needed to “break the ice.” Formally proposed in 2011 (Salmena et al., 2011), the ceRNA hypothesis opens up new avenues for basic cancer research, including glioma (Di Palo et al., 2020; Liu Z. et al., 2020; Wang S. et al., 2020). Research in the past decade have shed light on the dysregulated ceRNETs consisting of coding and non-coding RNAs (miRNAs, IncRNAs, circRNAs, and transcribed pseudogenes) in gliomas. As we have discussed here, various hallmarks of gliomas, such as cell proliferation, growth, invasion,
EMT, apoptosis, angiogenesis, chemo-resistance, and radioresistance, are associated with dysregulated ceRNets. Illustration of the different nature of the RNA interaction within the ceRNets will provide new insights into the initiation and progression of gliomas and therefore novel biomarkers for the diagnosis, prognosis, and targets for glioma treatment.

AUTHOR CONTRIBUTIONS

LC wrote the manuscript. RL drew the cartoon figures. WL collected the articles. HC and QL provided the idea and revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This research was supported by the National Natural Science Foundation of China (81872071), the Natural Science Foundation of Chongqing (cstc2019jcyj-zdxmX0033), the Fundamental Research Funds for the Central Universities (XYD201912), and the Chongqing University Innovation Team Building Program (CXTDX201601010).

REFERENCES

Abdollahzadeh, R., Daraei, A., Mansoori, Y., Sepahvand, M., Amoli, M. M., and Tavakoly-Bazzaz, J. (2019). Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: a new look at hallmarks of breast cancer. *J. Cell. Physiol.* 234, 10800–10100. doi: 10.1002/jcp.27941

Ala, U., Karreth, F. A., Bosia, C., Pagnani, A., Taulli, R., Léopold, V., et al. (2013). Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. *Proc. Natl. Acad. Sci. U.S.A.* 110, 7154–7159. doi: 10.1073/pnas.1222509110

Algaydah, I. G., Dronamraju, V., and Sylvester, P. W. (2016). Role of Rac1/WAVE2 signaling in mediating the inhibitory effects of γ-tocotrienol on mammary cancer cell migration and invasion. *Biol. Pharmaceutical Bull.* 39, 1974–1982. doi: 10.1248/bpb.b16-00461

An, Y., Furber, K. L., and Ji, S. (2017). Pseudogenes regulate parental gene expression via ceRNA network. *J. Cell. Mol. Med.* 21, 185–192. doi: 10.1111/jcm.12992

Bahn, J. H., Zhang, Q., Li, F., Chan, T.-M., Lin, X., Kim, Y., et al. (2015). The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. *Clin. Chem.* 61, 221–230. doi: 10.1373/clinchem.2014.230433

Ballestar, E., and Esteller, M. (2008). Chapter 9 epigenetic gene regulation in cancer. *Adv. Genet.* 225–236. doi: 10.1007/s11060-018-2951-0

Baltimore, D. (2001). Our genome unveiled. *Nature* 409, 815–816. doi: 10.1038/35057267

Barbagallo, D., Condorelli, A., Ragusa, M., Salito, L., Sammisto, M., Banelli, B., et al. (2016). Dysregulated miR-671-5p / CDR1-AS / CDR1 / VSN1li axis is involved in glioblastoma multiforme. *Onco target.* 7, 4746–4759. doi: 10.18632/oncotarget.6621

Bhat, K. P. L., Salazar, K. L., Balasubramaniyan, V., Wani, K., Heathcock, L., Hollingsworth, F., et al. (2011). The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. *Genes Dev.* 25, 2594–2609. doi: 10.1101/gad.178801.111

Bian, A., Wang, Y., Liu, J., Wang, X., Liu, D., Jiang, J., et al. (2018). Circular RNA complement factor H (CFH) promotes glioma progression by sponging miR-181b. *Front. Genet.* 9, 410. doi: 10.3389/fgene.2018.00048

Biswas, C., Pagnani, A., and Zecchina, R. (2013). Modelling competing endogenous RNA networks. *Rev. Med. Pharmacol. Sci.* 21, 185–192. doi: 10.1111/j.1100-0015.2012.00469.x

Chang, Y. H., Yin, F., Fan, G. F., and Zhao, M. (2017). Down-regulation of miR-329-3p is associated with worse prognosis in patients with cervical cancer. *Eur. Rev. Med. Pharmacol. Sci.* 21, 4045–4049.

Chen, C., Deng, L., Nie, D.-K., Jia, F., Fu, L.-S., Wan, Z.-Q., et al. (2020). Circular RNA Pleiotrophin promotes carcinogenesis in glioma via regulation of microRNA-122-SRY-box transcription factor 6 axis. *Eur. J. Cancer Prevent.* 29, 165–173. doi: 10.1097/cej.0000000000000535

Chen, J., Liu, T., Wang, H., Wang, Z., Lv, Y., Zhao, Y., et al. (2020). Elevation in the expression of circ_0079586 predicts poor prognosis and accelerates progression in glioma via interactions with the miR-183-5p/MDM4 signaling pathway. *Onco. Targets Ther.* 13, 5135–5143. doi: 10.2147/ott.s34758

Chen, M., Liu, X., Xie, P., Wang, P., Liu, M., Zhan, Y., et al. (2020). Circular RNA circ_0074026 indicates unfavorable prognosis for patients with glioma and facilitates oncogenesis of tumor cells by targeting miR-1304 to modulate ERBB4 expression. *J. Cell. Physiol.* 235, 4688–4697. doi: 10.1002/jcp.29347

Cheng, Z., Luo, J., Liu, S., Wang, S., Cheng, Y., Zhou, W., et al. (2016). MicroRNA-361-3p suppresses tumor cell proliferation and metastasis by directly targeting SH2B1 in NSCLC. *J. Exp. Clin. Cancer Res.* 35:76.

Chen, X., Gao, J., Yu, Y., Zhao, Z., and Pan, Y. (2019). LncRNA FOXD3-AS1 promotes proliferation, invasion and migration of cutaneous malignant melanoma via regulating miR-325/MAP3K2. *Biomed. Pharmacother.* 120:109438. doi: 10.1016/j.biopha.2019.109438

Cheng, X., Li, D., Gao, Y., Wang, T., Iw, L., Cao, Y., et al. (2018). Long intergenic non-coding RNA 00152 promotes glioma cell proliferation and invasion by interacting with MiR-16. *Cell. Physiol. Biochem.* 46, 1055–1064. doi: 10.1159/000488836

Chen, Y. T., Rettig, W. J., Yenamandra, A. K., Kozak, C. A., Chaganti, R. S., Posner, J. B., et al. (1990). Cerebellar degeneration-related antigen: a highly conserved neuroectodermal marker mapped to chromosomes X in human and mouse. *Proc. Natl. Acad. Sci. U.S.A.* 87, 3077–3081. doi: 10.1073/pnas.87.8.3077

Chen, Z., and Duan, X. (2018). LncRNA circ_000177 promotes glioma cell proliferation and invasion by sponging miR-16. *Cell. Physiol. Biochem.* 46, 1055–1064. doi: 10.1159/000488836

Choi, B. H., Kim, K., Jung, M., and Ko, Y. (2020). Blocking LINC00152 suppresses glioblastoma malignancy by impairing mesenchymal phenotype through the miR-612/AKT2/NF-kB pathway. *J. Neuro Oncol.* 140, 225–236. doi: 10.1007/s00016-018-2951-0

Cui, B., Li, B., Liu, Q., and Cui, Y. (2017). lncRNA CCAT1 promotes glioma cell proliferation and invasion by sponging miR-21. *Front. Genet.* 8:e66609. doi: 10.1371/journal.pone.0066609

Deng, Z., Li, X., Wang, H., Geng, Y., Cai, Y., Tang, Y., et al. (2020). Dysregulation of CircRNA_0001946 contributes to the proliferation and metastasis of colorectal cancer cells by targeting microRNA-135a-5p. *Front. Genet.* 11:357. doi: 10.3389/fgene.2020.00357

Frontiers in Genetics | www.frontiersin.org 11 April 2021 | Volume 12 | Article 675498
D’Errico, I., Gadaleta, G., and Saccone, C. (2004). Pseudogenes in metazoan: origin and features. Br. Funct. Genet. Proteomics 3, 157–167. doi: 10.1093/bfgp/3.2.157

Deveson, I. W., Hardwick, S. A., Mercer, T. R., and Mattick, J. S. (2017). The dimensions, dynamics, and relevance of the mammalian noncoding transcriptome. Trends Genet. 33, 464–478. doi: 10.1016/j.tig.2017.04.004

Di Paolo, A., Smisceglia, C., Mosca, N., Russo, A., and Potenza, N. (2020). A novel ceRNA regulatory network involving the long non-coding antisense RNA SPAC6A5–AS, miR-125a and its mRNA targets in hepatocarcinoma cells. Int. J. Mol. Sci. 21:5068. doi: 10.3390/ijms21145068

Ding, X., Yang, L., Zou, Y., Wang, Z., Li, Y., et al. (2020). CircRNAs as potential biomarkers for the clinicopathology and prognosis of glioma patients: a meta-analysis. BMC Cancer 20:1005. doi: 10.1186/s12885-020-07446-4

Dong, Z., and Cui, H. (2020). The emerging roles of RNA modifications in glioblastoma. Cancers 12:736. doi: 10.3390/cancers12030736

Du, P., Liao, Y., Zhao, H., Liu, J., Muyiti, K., and Mu, K. (2020). ANXA2P2/miR-12a/miR-125a and its mRNA targets in hepatocarcinoma cells. Cell. Signal. 34:107918. doi: 10.1016/j.cellsig.2020.107918

Duan, X., Liu, D., Wang, Y., and Chen, Z. (2018). Circular RNA hsa_circ_0074362 mediated ZIC4 expression change. J. Exp. Clin. Cancer Res. CR 38:9.

He, Q., Zhao, L., Liu, Y., Zheng, J., Liu, Y., Liu, L., et al. (2019). MOV10 binding circular Dicer1 regulates the angiogenesis of glioma via miR-103a-3p/miR-382-5p mediated ZIC4 expression change. J. Exp. Clin. Cancer Res. CR 38:9.

Hashimoto, R., Ohi, K., Yasuda, Y., Fukushima, M., Yamamori, H., Takahashi, H., et al. (2011). Variants of the RELA gene are associated with schizophrenia and their startle responses. Neuropsychopharmacology 36, 1921–1931. doi: 10.1038/npp.2011.78

Hayward, D. G., and Fry, A. M. (2006). Ne2k kinase in chromosome instability and cancer. Cancer Lett. 237, 155–166. doi: 10.1016/j.canlet.2005.06.017

He, Q., Zhao, L., Liu, X., Zheng, J., Liu, Y., Liu, L., et al. (2019). MOV10 binding circular Dicer1 regulates the angiogenesis of glioma via miR-103a-3p/miR-382-5p mediated ZIC4 expression change. J. Exp. Clin. Cancer Res. CR 38:9.

Hangauer, M. J., Vaughn, I. W., and McManus, M. T. (2013). Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet. 9:e1003569. doi: 10.1371/journal.pgen.1003569

Hansen, T. B., Wiklund, E. D., Bramsen, J. B., Villadsen, S. B., Statham, A. L., Clark, S. J., et al. (2011). miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422. doi: 10.1038/emboj.2011.359

Hashimoto, R., Ohi, K., Yasuda, Y., Fukushima, M., Yamamori, H., Takahashi, H., et al. (2011). Variants of the RELA gene are associated with schizophrenia and their startle responses. Neuropsychopharmacology 36, 1921–1931. doi: 10.1038/npp.2011.78

Hayward, D. G., and Fry, A. M. (2006). Ne2k kinase in chromosome instability and cancer. Cancer Lett. 237, 155–166. doi: 10.1016/j.canlet.2005.06.017

He, Q., Zhao, L., Liu, X., Zheng, J., Liu, Y., Liu, L., et al. (2019). MOV10 binding circular Dicer1 regulates the angiogenesis of glioma via miR-103a-3p/miR-382-5p mediated ZIC4 expression change. J. Exp. Clin. Cancer Res. CR 38:9.

He, Z., Long, J., Yang, C., Gong, B., Cheng, M., Wang, Q., et al. (2020). LncRNA DGC5 plays a tumor-suppressive role in glioma via the miR-21/Smad7 and miR-23a/PAX5 axes. Aging (Albany NY) 12, 20285–20307. doi: 10.18632/aging.103800

He, Z., Ruan, X., Liu, X., Zheng, J., Liu, Y., Liu, L., et al. (2019). FUS/circ_002136/miR-138-5p/SOX13 feedback loop regulates angiogenesis in Glioma. J. Exp. Clin. Cancer Res. CR 38:65.

Heidebrecht, H. J., Buck, F., Steinmann, J., Sprenger, R., Wacker, H. H., and Parwaresch, R. (1997). p100: a novel proliferation-associated nuclear protein specifically restricted to cell cycle phases S, G2, and M. Blood 90, 226–233. doi: 10.1182/blood.v90.1.226

Hu, S., Xu, L., Li, L., Luo, D., Zhao, H., Li, D., et al. (2019). Overexpression of IncRNA PTENP1 suppresses glioma cell proliferation and metastasis in vitro. Oncos. Targets Ther. 12, 147–156. doi: 10.2147/ott.s182357

Hu, T., Wang, F., and Han, G. (2020). LncRNA FSHB-AS1 acts as ceRNA of miR-22-3p to regulate DDIT4 expression in glioblastoma. Neurosci. Lett. 728, 134896. doi: 10.1016/j.neurolet.2020.134896

Huang, R., He, C., Zang, J. S., Shridhar, V., Wang, L., and Smith, D. I. (1999). Carboxypeptidase A3 (CPA3): a novel gene highly induced by histone deacetylase inhibitors during differentiation of prostate epithelial cancer cells. Cancer Res. 59, 2981–2988.

Huang, Q., Zhang, F., Fu, H., and Shen, J. (2021). Epigenetic regulation of miR-518a-5p-CCRE6 feedback loop promotes both proliferation and invasion in diffuse large B cell lymphoma. Epigenetics. 16, 28–44. doi: 10.1080/15592294.2020.1786317

Huang, W., Shi, Y., Han, B., Wang, Q., Zhang, B., Qi, C., et al. (2020). LncRNA GASS-AS1 inhibits glioma proliferation, migration, and invasion via mi-R-106b-5p/TUSC2 axis. Hum. Cell 33, 416–426. doi: 10.1016/j.ssc.2020.01.0331-z

Hyne, N. E., and Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 5, 341–354. doi: 10.1038/nrc1609

Jemal, A., Siegel, R., Xu, J., and Ward, E. (2010). Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300. doi: 10.3322/caac.20073

Jin, C., Zhao, J., Zhang, Z. P., Wu, M., Li, J., Liu, B., et al. (2021). CircRNA EPHB4 modulates stem properties and proliferation of gliomas via sponging miR-637 and up-regulating SOX10. Mol. Oncol. 15, 596–622. doi: 10.1016/j.molonc.2017.08.026. 12830

Jin, P., Huang, Y., Zhu, P., Zou, Y., Shao, T., and Wang, O. (2018). CircRNA circHIPK3 serves as a prognostic marker to promote glioma proliferation by regulating miR-654/IFG2BP3 signaling. Biochem. Biophys. Res. Commun. 503, 1570–1574. doi: 10.1016/j.bbrc.2018.07.081

Jin, T., Liu, M., Liu, Y., Li, Y., Xu, Z., He, H., et al. (2020). Lcn2-derived circular RNA (hsa_circ_0008732) inhibits cell apoptosis and promotes EMT in Glioma via the miR-661-RAB3D Axis. Front. Oncol. 10:170. doi: 10.3389/fonc.2020.001170

Kanitz, A., Imig, J., Dziuńycz, P. J., Primorac, A., Galgano, A., Hofbauer, G. F. L., et al. (2012). The expression levels of microRNA-361-5p and its target VEGFA are inversely correlated in human cutaneous squamous cell carcinoma. PLoS One 7:e49568. doi: 10.1371/journal.pone.0049568
Kiang, K. M.-Y., Zhang, X.-Q., and Leung, G. K.-K. (2015). Long non-coding RNAs: the key players in glioma pathogenesis. *Cancers* 7, 1406–1424. doi: 10.3390/cancers7030843

Kong, Y., Zhang, L., Huang, Y., He, T., Zhang, L., Zhao, X., et al. (2017). Pseudogene PDIA3P1 promotes cell proliferation, migration and invasion, and suppresses apoptosis in hepatocellular carcinoma by regulating the p53 pathway. *Cancer Lett.* 407, 76–83. doi: 10.1016/j.canlet.2017.07.031

Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., Hansen, T. B., and Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. *Nat. Rev. Genet.* 20, 675–691.

Kufer, T. A., Silljé, H. H., Körner, R., Gruss, O. J., Meraldi, P., and Nigg, E. A. (2002). Human TPX2 is required for targeting aurora-a kinase to the spindle. *J. Cell Biol.* 158, 617–623. doi: 10.1038/jcb.20020415

Li, B., and Huang, Y. (2019). Circular RNA hsa_circ_0076248 promotes oncogenesis of glioma by sponging miR-181a to modulate SIRT1 expression. *Acta Neuropathol.* 114, 97–109. doi: 10.1007/978-94-007-1399-4_10

Li, D., Tao, T., Xu, B., Chen, S., Liu, C., Zhang, L., et al. (2014). MiR-361-5p promotes proliferation, migration and invasion in glioma by competitively binding miRNA-942-5p and thus upregulates MAT2A. *Eur. Rev. Med. Pharmacol. Sci.* 24, 12251–12257.

Li, Q., Sun, S., Yu, W., Jiang, J., Zhao, F., Qiu, G., et al. (2015). Altered expression of long non-coding RNAs during genotoxic stress-induced cell death in human glioma cells. *J. Neurooncol.* 122, 283–292. doi: 10.1007/s11060-015-1718-0

Li, R., Shi, P., Wang, Z., Yuan, C., and Cui, H. (2021). Molecular mechanisms of MYCN dysregulation in cancers. *Front. Oncol.* 11:625332. doi: 10.3389/onco.2020.625332

Liu, Z., Guo, S., Sun, H., Bai, Y., Song, Z., and Liu, X. (2020). Circular RNA CircHPPK3 elevates CCND2 expression and promotes cell proliferation and invasion through miR-124 in Glioma. *Front. Genet.* 11:1013. doi: 10.3389/fgene.2020.01013

Long, N., Chu, L., Jia, J., Peng, S., Gao, Y., Yang, H., et al. (2020). CircPOSTN/miR-361-3p/TPX2 axis regulates cell growth, apoptosis and aerobic glycolysis in glioma cells. *Cancer Cell Int.* 20:374.

Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., et al. (2007). The 2007 WHO classification of tumours of the central nervous system. *Acta Neuropathol.* 114, 97–109. doi: 10.1007/978-94-007-1399-4_10

Ludwig, R., Teran, F. J., Teichgraeber, U., and Hilger, I. (2017). Nanoparticle-based hyperthermia distinctly impacts production of ROS, expression of Ki-67, TOP2A, and TPX2, and induction of apoptosis in pancreatic cancer. *Int. J. Nanomed.* 12:1009–1018. doi: 10.2174/ijn.110857

Luo, C., Quan, Z., Zhong, B., Zhang, M., Zhou, B., Wang, S., et al. (2020). lncRNA XIST promotes glioma proliferation and metastasis through miR-133a/SOX4. *Exp. Ther. Med.* 19, 1641–1648.

Lv, X., Wang, M., Qiang, J., and Guo, S. (2019). Circular RNA circ-PITX1 promotes the progression of glioblastoma by acting as a competing endogenous RNA to regulate miR-379–5p/MAP3K3 axis. *Eur. J. Pharmacol.* 863, 172643. doi: 10.1016/j.ejphar.2019.172643

Ma, Y., Lin, D., Sun, W., Xiao, T., Yuan, J., Han, N., et al. (2006). Expression of targeting protein for xklp2 associated with both malignant transformation of respiratory epithelium and progression of squamous cell lung cancer. *Clin. Cancer Res.* 12, 1121–1127. doi: 10.1158/1078-0432.ccr-05-1766

Manara, M. C., Terracciano, M., Mancarella, C., Sciandra, M., Guerzoni, C., Pasello, M., et al. (2016). CD99 triggering induces methuosis of Ewing sarcoma cells through IGF-IR/RAS/Rac1 signaling. *Oncotarget* 7, 79925–79942. doi: 10.18632/oncotarget.13160

Mazur, P. K., Reynoard, N., Khati, P., Jansen, P. W. T. C., Wilkinson, A. W., Liu, S., et al. (2014). SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. *Nature* 510, 283–287. doi: 10.1038/nature13320

McKinsey, T. A., Zhang, C. L., and Olson, E. N. (2002). MEF2: a calcium-dependent regulator of cell division, differentiation and death. *Trends Biochem. Sci.* 27, 40–47. doi: 10.1016/s0968-0004(01)02031-x

Mencszak, S., Papavasileiou, P., Peters, O., and Rajewsky, N. (2015). Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. *PLoS One* 10:e0141214. doi: 10.1371/journal.pone.0141214

Meng, Q., Li, S., Liu, Y., Zhang, S., Jin, J., Zhang, Y., et al. (2019). Circular RNA circSCAF11 accelerates the glioma tumorigenesis through the miR-421-5p/EGFR Axis. *Mol. Ther. Nucleic Acids.* 17, 669–677. doi: 10.1016/j.omtn.2019.06.022

Mu, M., Niu, W., Zhang, X., Hu, S., and Niu, C. (2020). LncRNA BCYRN1 inhibits glioma tumorigenesis by competitively binding with miR-619-5p to regulate CUEDC2 expression and the PTEN/PI3K/AKT/p21 pathway. *Oncogene* 39, 6879–6892. doi: 10.1038/s41388-020-01466-x

Mullokandov, G., Baccarin, A., Ruvo, A., Jayaprakash, A. D., Tung, N., Israelow, B., et al. (2012). High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. *Front. Oncol.* 2:625332. doi: 10.3389/fofn.2012.00625

Mutafili, N., Du, P., Zhang, J., Akbar, H., Yan, B., Alimu, S., et al. (2020). Circ_000215 increases the expression of CXC2 and promoted the progression of glioma cells by sponging miR-495-3p. *Technol. Cancer Res. Treatment* 19:333833292697026.

Pan, G., Hu, T., Chen, X., and Zhang, C. (2019). Upregulation of CircMMP9 promotes osteosarcoma progression via targeting miR-1265/CH3L1 Axis. *Cancer Manag. Res.* 11:9225–9231. doi: 10.2147/cmar.s22624
Sang, J., Li, X., Lv, L., Zhang, C., Zhang, X., and Li, G. (2021). Circ-TOP2A acts as a Satoh, J.-i, and Yamamura, T. (2004). Gene expression profile following stable RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res. 44:e87. doi: 10.1093/nar/gkw075 Sunazumi, P., Yang, X., Chiu, H.-S., Chung, W.-J., Iyer, A., Llobet-Navas, D., et al. (2016). Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res. 44:e87. doi: 10.1093/nar/gkw075 Sun, C., Zhang, L., Li, G., Li, S. J., Chen, Z. L., Fu, Y. F., et al. (2017). The lncRNA PDAIP3 interacts with miR-185-5p to modulate oral squamous cell carcinoma progression by targeting cyclin D2. Mol. Ther. Nucleic Acids 9, 100–110. doi: 10.1016/j.omtn.2017.08.015 Sun, J. J., Chen, G. Y., and Xie, Z. T. (2016a). MicroRNA-361-5p inhibits cancer cell growth by targeting CXCR6 in hepatocellular carcinoma. Cell. Physiol. Biochem. 38, 777–785. doi: 10.1159/000443033 Sun, L., Burnett, J., Guo, C., Xie, Y., Pan, J., Yang, Z., et al. (2015). CPA4 is a promising diagnostic serum biomarker for pancreatic cancer. Am. J. Cancer Res. 6, 91–96. Sun, L., Cao, J., Guo, C., Burnett, J., Yang, Z., Ran, Y., et al. (2017). Associations of carboxypeptidase 4 with ALDH1A1 expression and their roles in glioma. Mol. Cancer 16, 460–467. doi: 10.1016/j.str.2007.12.016 Sanchez-Mejias, A., and Tay, Y. (2015). Competing endogenous RNA networks: tying the essential knots for cancer biology and therapeutics. J. Hematol. Oncol. 8. Sanchez, J., Li, X., Xu, L., Zhang, C., Zhang, X., and Li, G. (2021). Circ-TOP2A acts as a causal factor for glucose metabolism by downregulating MAGEA8 in glioblastoma. Cell. Physiol. Biochem. 47, 793–814. doi: 10.1159/000516677 Santhyamurthy, A., Bose, R., Banjade, S., et al. (2015). Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 58, 870–885. doi: 10.1016/j.molcel.2015.03.027 Rynkevičienė, R., Šimienė, J., Strainienė, E., Stankevicius, V., Usinskienė, J., Miseikytė Kaubriene, E., et al. (2019). Non-coding RNAs in Glioma. Tumor Biol. 40, 1471–1478. doi: 10.1007/s13277-015-4482-z Shih, S. C., Prag, G., Francis, S. A., Sutanto, M. A., Hurley, J. H., and Hicke, L. (2003). A ubiquitin-binding motif required for intramolecular monoubiquitylation, the CUE domain. Embo. J. 22, 1273–1281. doi: 10.1093/ emboj/cdg140 Singh, D., Febo, P. G., Ross, K., Jackson, D. G., Manola, J., Ladd, C., et al. (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209. doi: 10.1016/s1535-6108(02)00030-2 Song, X., Zhang, N., Han, P., Moon, B. S., Lai, R. K., Wang, K., et al. (2016). Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res. 44:e87. doi: 10.1093/nar/gkw075 Sun, L., Zhang, X., and Wang, H. (2018). A microRNA-93-5p/MAP3K2/c-Jun positive feedback circuit. Cancer Cell 15, 792–798. doi: 10.1261/rna.2658311 Sun, L., Zhou, Y., and Yu, J. (2018). MicroRNA-93 promotes hepatocellular carcinoma progression via targeting SOCS3 and regulating the JAK/STAT pathway. J. Cell. Mol. Med. 22, 1273–1281. doi: 10.1080/17496638.2017.1362846 Tiano, F., Xu, L., Lu, X., Zeng, L., Li, Y., et al. (2018). Role of microRNA-155 in epithelial mesenchymal transition. J. Cell. Physiol. 233, 6040–6051. doi: 10.1002/jcp.26646 Tiana, E., Pasquali, G., and Llovet, J. M. (2013). Circular RNAs and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 10, 483–493. doi: 10.1038/nrgastro.2013.15 Shao, X., Li, K., Sun, H., Zhang, W., Wei, Y., et al. (2018). LncRNA H19 in combination with miRNA-145-5p is a promising diagnostic serum biomarker for pancreatic cancer. Cancer Cell. Mol. Med. 15, 154. Ulitiski, I., Bartel, D. P. (2013). lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26–46. doi: 10.1016/j.cell.2013.06.020 van Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A. M., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536. Venables, J. P., Klinkc, R., Koh, C., Gervais-Bird, J., Bramard, A., Inkel, L., et al. (2009). Cancer-associated regulation of alternative splicing. Nat. Struct. Mol. Biol. 16, 670–676.
Xu, D., Yu, J., Gao, G., Lu, G., Zhang, Y., and Ma, P. (2019). LncRNA DANCR promotes cell growth and invasion through miR-124-3p in glioma. *Cell Death Dis.* 10, 5534–5548.

Yang, M., Li, G., Fan, L., Zhang, G., Xu, J., and Zhang, J. (2019). Circular RNA circ_0034642 elevates BATE3 expression and promotes cell proliferation and invasion through miR-1205 in glioma. *Biochem. Biophys. Res. Commun.* 508, 980–985. doi: 10.1016/j.bbrc.2018.12.052

Yang, Z., Yang, Y., Chen, B., Ding, L., Mu, Z., and Li, Y. (2019). Elevation of circular RNA circ-POSTN facilitates cell growth and invasion by sponging miR-1205 in glioma. *J. Cell. Biochem.* 120, 16567–16574. doi: 10.1002/jcb.28916

Yang, Z., Li, C., Fan, X. Y., and Liu, L. J. (2020). Circular RNA circ_0079593 promotes glioma development through regulating KPNAA2 expression by sponging miR-499a-5p. *Eur. Rev. Med. Pharmacol. Sci.* 24, 1288–1301.

Yao, Y., Hua, Q., Zhou, Y., and Shen, H. (2019). circRNA has_circ_001946 promotes cell growth in lung adenocarcinoma by regulating miR-135a-5p/SIRT1 axis and activating Wnt/β-catenin signaling pathway. *Biomed. Pharmacother.* 116, 1367–1375. doi: 10.1016/j.biopha.2018.12.120

Yao, Y., Ma, J., Xue, Y., Wang, P., Li, Z., Liu, J., et al. (2015). Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152. *Cancer Lett.* 359, 75–86. doi: 10.1016/j.canlet.2014.12.031

Ye, J., Zhu, J., Chen, H., Qian, J., Zhang, L., Wan, Z., et al. (2020). A novel circRNA-LINC01116 regulates tumorigenesis of glioma by targeting VEGFA. *Int. J. Cancer* 146, 248–261. doi: 10.1002/ijc.32483

Ye, X. Zhi, F., Peng, Y., and Yang, C. C. (2018). MiR-128 promotes the apoptosis of glioma cells via binding to NEK2. *Eur. Rev. Med. Pharmacol. Sci.* 22, 8718–8788.

Yin, H., and Cui, X. (2020). Knockdown of circHIPK3 facilitates telomerase sensitivity in glioma by regulating cellular behaviors through miR-524-3p/KIF2A-mediated PI3K/AKT pathway. *Cancer Biother. Radiopharm.*

Yu, H., Xue, Y., Wang, P., Liu, X., Ma, J., Zheng, J., et al. (2017). Knockdown of long non-coding RNA XIST increases blood–tumor barrier permeability and inhibits glioma angiogenesis by targeting miR-137. *Oncogene* 6, e303–e303.

Yu, H.-M., Wang, C., Yuan, Z., Chen, G.-L., Ye, T., and Yang, B.-W. (2019). LncRNA NEAT1 promotes the tumorigenesis of colorectal cancer by sponging miR-193a-3p. *Cell Prolif.* 52, e12526. doi: 10.1111/cpr.12526

Yu, J., Tian, Q., Deng, B., Fang, C., Qi, D., and Wang, R. (2015). The microRNA-520a-3p inhibits proliferation, apoptosis and metastasis by targeting MAP3K2 in non-small cell lung cancer. *Am. J. Cancer Res.* 5, 802–811.

Yu, W., Xiang, D., Jia, H., He, X., Sheng, J., Long, Y., et al. (2020). The IncRNA BCYRN1 functions as an oncogene in human glioma by downregulating miR-125a-5p in vitro. *Cancer Manag. Res.* 12, 1151–1161. doi: 10.2147/cmr.s227327

Yuan, Y., Liu, B., Xie, P., Zhang, M. Q., Li, Y., Xie, Z., et al. (2015). Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. *Proc. Natl. Acad. Sci.U.S.A.* 112, 3158–3163. doi: 10.1073/pnas.1431896112

Zhan, L., Mu, Z., Yang, M., Zhang, T., Li, H., and Qian, L. (2019). Elevation of circ-PITX1 upregulates interleukin 17 receptor D expression via sponging miR-518a-5p and facilitates cell progression in glioma. *J. Cell. Biochem.* 120, 1649–16502. doi: 10.1002/jcb.28868

Zhang, H. Y., Zhang, B. W., Zhang, Z. B., and Deng, Q. J. (2020). Circular RNA TTBK2 regulates cell proliferation, invasion and ferroptosis via miR-761/ITGB8 axis in glioma. *Eur. Rev. Med. Pharmacol. Sci.* 24, 2585–2600.

Zhang, N., Jin, Y., Hu, Q., Cheng, S., Wang, C., Yang, Z., et al. (2020). Circular RNA has_circ_0078607 suppresses ovarian cancer progression by regulating miR-518a-5p/Fas signaling pathway. 13:64.

Zhang, S., Qin, W., Yang, S., Guan, N., Shi, X., and Guo, W. (2020). Circular RNA SFI-M2 inhibits the proliferation and metastasis of glioma cells through miR-182-5p/Mtss1 pathway. *Technol. Cancer Res. Treatment* 19:1533033820945799.

Zhang, W., and Xu, C. (2020). Circ-ELF2 acts as a competing endogenous RNA to facilitate glioma cell proliferation and aggressiveness by targeting miR-510-5p/MUC15 signaling. 13, 10007–10096. doi: 10.2147/ott.5272

Zhang, X., Wei, C., Li, J., Liu, J., and Qu, J. (2017). MicroRNA-361-5p inhibits epithelial-to-mesenchymal transition of glioma cells through targeting Twist1. *Onco. Rep.* 37, 1849–1856. doi: 10.3892/or.2017.5406
Zhang, Y., Cai, Z., Liang, J., Chai, E., Lu, A., and Shang, Y. (2020). CircCPA4 promotes the malignant phenotypes in glioma via miR-760/MEF2D Axis. *Neurochem. Res.* 45, 2903–2913. doi: 10.1007/s11064-020-03159-3

Zheng, D., Chen, D., Lin, F., Wang, X., Lu, L., Luo, S., et al. (2020). LncRNA NNT-AS1 promote glioma cell proliferation and metastases through miR-494-3p/PRMT1 axis. *Cell Cycle* 19, 1621–1631. doi: 10.1080/15384101.2020.1762037

Zheng, J., Liu, X., Xue, Y., Gong, W., Ma, J., Xi, Z., et al. (2017). TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. *J. Hematol. Oncol.* 10:52.

Zheng, S.-Q., Qi, Y., Wu, J., Zhou, F.-L., Yu, H., Li, L., et al. (2019). CircPCMTD1 acts as the sponge of miR-224-5p to promote glioma progression. *Front. Oncol.* 9:398. doi: 10.3389/fonc.2019.00398

Zhou, B.-S., Beidler, D. R., and Cheng, Y.-C. (1992). Identification of antisense RNA transcripts from a human DNA Topoisomerase I pseudogene. *Cancer Res.* 52, 4280–4285.

Zhou, H., Zhang, Y., Lai, Y., Xu, C., and Cheng, Y. (2020). Circ_101064 regulates the proliferation, invasion and migration of glioma cells through miR-154–5p/PIWIL1 axis. *Biochem. Biophys. Res. Commun.* 523, 608–614.

Zhou, X.-Y., Liu, H., Ding, Z.-B., Xi, H.-P., and Wang, G.-W. (2020). lncRNA SNHG16 promotes glioma tumorigenicity through miR-373/EGFR axis by activating PI3K/AKT pathway. *Genomics* 112, 1021–1029.

Zhu, F., Cheng, C., Qin, H., Wang, H., and Yu, H. (2020a). A novel circular RNA circENTPD7 contributes to glioblastoma progression by targeting ROS1. *Cancer Cell Int.* 20:118.

Zhu, J., Gu, W., and Yu, C. (2020b). MATN1-AS1 promotes glioma progression by functioning as ceRNA of miR-200b/c/429 to regulate CHD1 expression. *Cell Prolif.* 53:e12700.

Zhu, J., Wang, H., Huang, Y. Q., Song, W., Li, Y. F., Wang, W. J., et al. (2020c). Comprehensive analysis of a long non-coding RNA-associated competing endogenous RNA network in glioma. *Oncol. Lett.* 20:63.

Zou, J., Huang, R. Y., Jiang, F. N., Chen, D. X., Wang, C., Han, Z. D., et al. (2018). Overexpression of TPX2 is associated with progression and prognosis of prostate cancer. *Oncol. Lett.* 16, 2823–2832.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Cen, Liu, Li and Cui. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.