EVERY TRANSFORMATION IS DISJOINT FROM ALMOST EVERY NON-CLASSICAL EXCHANGE.

JON CHAIKA AND VAIBHAV GADRE

ABSTRACT. A natural generalization of interval exchange maps are linear involutions, first introduced by Danthony and Nogueira [3]. Recurrent train tracks with a single switch which we call non-classical interval exchanges [5], form a subclass of linear involutions without flips. They are analogs of classical interval exchanges, and are first return maps for non-orientable measured foliations associated to quadratic differentials on Riemann surfaces. We show that every transformation is disjoint from almost every irreducible non-classical interval exchange.

1. INTRODUCTION

Here, we are interested in a dynamical property called disjointness for irreducible non-classical exchanges, a subclass of linear involutions without flips [3]. Classical interval exchange maps arise as first return maps to intervals transverse to vertical foliations of abelian differentials on Riemann surfaces. Analogously, non-classical exchanges are first return maps to pairs of disjoint parallel transverse intervals to non-orientable foliations associated to quadratic differentials. Briefly, non-classical exchange are invertible piecewise isometries of a pair of disjoint interval decomposed into finitely many pieces, and satisfying some additional assumptions ([1, Definition 2.1]). Equivalently, non-classical exchanges can be pictorially defined as recurrent train tracks with a single switch on a Riemann surface. The definitions are presented in detail in Section 2.

Two measure preserving transformations \((T, X, \mu)\) and \((S, Y, \nu)\) are said to be disjoint if the product measure \(\mu \times \nu\) is the only invariant measure for the product transformation \(T \times S\) with marginals \(\mu\) and \(\nu\). It is a way of saying that two measure preserving transformations are different and in particular, implies that they are not isomorphic. It was shown in [2] that every ergodic transformation is disjoint from almost every classical exchange. Here, we prove the analogous result for non-classical exchanges under a mild technical condition.

Theorem 1.1. Let \(T : X \to X\) be \(\mu\)-ergodic. Then \(T\) is disjoint with respect to almost every irreducible non-classical exchange with an orientation preserving band.

Almost every irreducible non-classical interval exchange is uniquely ergodic [7]. See also [5] for a proof with techniques similar to this paper. As a result of this we obtain the following corollary:

Corollary 1.2. For any uniquely ergodic non-classical exchange \(S_1\) and almost every irreducible non-classical exchange \(S_2\) with an orientation preserving band, the product transformation \(S_1 \times S_2\) is uniquely ergodic.

Remark 1.3. The results above are false if there are no orientation preserving bands. From the definitions, if a non-classical exchange \(x\) has no orientation preserving bands then \(x^2\) is not even minimal.

In classical interval exchanges, an interval \(I\) is partitioned into \(d\) subintervals, these subintervals are permuted and re-glued preserving orientation to get an invertible, piecewise order preserving, piecewise isometry of \(I\). The widths of the subintervals and the permutation used for gluing completely determine a classical interval exchange. There is a way to draw these maps pictorially:

We draw the original interval \(I\) horizontally and then thicken it vertically to get two copies \(I_+\) and \(I_-\), the top and the bottom intervals. Let \(\iota : I_+ \sqcup I_- \to I_+ \sqcup I_-\) be the map that switches the intervals i.e.,
\[\varepsilon(I_+) = I_- \text{ and } \varepsilon(I_-) = I_+. \]
Divide \(I_+ \) into \(d \) subintervals with the prescribed widths. Divide \(I_- \) also into \(d \) subintervals but incorporate the permutation to decide the widths. Thus, each subinterval of \(I_+ \) pairs off with a subinterval of \(I_- \) with the same width whose placement is determined by the permutation. We join the pair of subintervals by a band of uniform width. As an example, Figure\ref{fig:1.4} shows a classical exchange with 2 bands, which is a rotation.

The composition of the map from \(I_+ \) to \(I_- \) given by the vertical flow up from \(I_+ \) along the bands, followed by \(\varepsilon \), exhibits the classical exchange, as a map from \(I_+ \) to \(I_- \). The inverse of this exchange is then the map from \(I_- \) to \(I_+ \) given by flowing the other way. Thus, we have an equivalent formulation of the interval exchange as a Lebesgue measure preserving transformation on the disjoint union \(I_+ \sqcup I_- \). We shall use this formulation since non-classical exchanges are defined in a similar way: the intervals \(I_+ \) and \(I_- \) are partitioned into subintervals such that paired off intervals are joined by bands of uniform width, but now we allow bands to go from \(I_+ \) to \(I_+ \) and also from \(I_- \) to \(I_- \). The non-classical exchange as a map from \(I_+ \sqcup I_- \) to itself is defined by flow along the bands followed by \(\varepsilon \). We shall call the bands that go from \(I_+ \) to \(I_+ \) and from \(I_- \) to \(I_- \) orientation reversing, since the exchange restricted to the subintervals given by the ends of such a band is orientation reversing.

A classical exchange is said to be irreducible, if the permutation \(\pi \) used in the gluing is irreducible: for all subsets \(\{1, \ldots, k\} \), \(k < d \), we have \(\pi(\{1, \ldots, k\}) \neq \{1, \ldots, k\} \). Pictorially, a reducible classical exchange is a concatenation of two classical exchanges side by side for all widths of the bands, and the dynamics can be studied by restricting to each piece. For technical reasons, the appropriate notion of irreducibility for non-classical exchanges is subtler than the straightforward irreducibility notion above. This was done by Boissy and Lanneau in \cite{BoissyLanneau}. Here, we consider only those non-classical exchanges that satisfy the Boissy and Lanneau definition of irreducibility. The precise definitions and details will be provided in Section\ref{sec:2}.

For a fixed permutation of a classical exchange, the set of widths normalized to have sum 1, is the standard simplex in \(\mathbb{R}^d \), and carries a natural Lebesgue measure. Thus, the full parameter space is a disjoint union of simplices over irreducible permutations of \(d \) letters. For non-classical exchanges, after fixing the combinatorics, the set of normalized widths satisfies an additional switch condition that the sum of the widths of orientation reversing bands of \(I_+ \) is equal to the sum of widths of orientation reversing bands of \(I_- \). Thus, it has codimension 1 in the standard simplex, and inherits a natural Lebesgue measure. We shall call it the configuration space associated to the combinatorics. The full parameter space is the disjoint union of the configuration spaces.

A key step in the proof in \cite{BoissyLanneau} are rigidity sequences for classical exchanges. The existence of these sequences follows from a cyclic approximation theorem of Veech \cite{Veech}. We prove a similar cyclic approximation theorem for non-classical exchanges, and the existence of rigidity sequences follows from it.

1.5. Outline of the paper: In Section 2, we define non-classical exchanges and explain irreducibility for them. In Section 3, we define Rauzy induction for non-classical exchanges, and state the key result of Boissy and Lanneau \cite{BoissyLanneau} for attractors of the Rauzy diagram. In Section 4, we summarize the results from \cite{BoissyLanneau} for expansions of non-classical exchanges by iterated Rauzy induction. In Section 5, we state and prove the cyclic approximation theorem for non-classical exchanges. In Section 6, we establish the existence of rigidity sequences. In Section 7, we prove total ergodicity for almost every non-classical exchange with an orientation preserving band present. In Section 8, we assemble the ingredients to conclude the proof of the main theorem verbatim from \cite{BoissyLanneau}.
2. Non-Classical Interval Exchanges

Let \mathcal{A} denote an alphabet over d letters. In the definition that follows, the set \mathcal{A} labels the bands. A classical exchange is determined by the widths $(\lambda_\alpha, \alpha \in \mathcal{A})$ of the subintervals and bijections p_0 and p_1 from \mathcal{A} to the set $\{1,\ldots,d\}$ as follows: In the plane, draw two vertically aligned horizontal copies I_+ and I_- of the interval $I = [0, \Sigma_\alpha \lambda_\alpha]$. Call them the top interval and the bottom interval respectively. Let $\epsilon : I_+ \sqcup I_- \rightarrow I_+ \sqcup I_-$ be the map that switches the intervals i.e., $\epsilon(I_+) = I_-$ and $\epsilon(I_-) = I_+$. Subdivide I_+ into d subintervals with widths $\lambda p_0^{-1}(1), \ldots, \lambda p_0^{-1}(d)$ from left to right. Subdivide I_- into d subintervals with widths $\lambda p_1^{-1}(1), \ldots, \lambda p_1^{-1}(d)$ from left to right. For each $\alpha \in \mathcal{A}$, join the $p_0(\alpha)$ subinterval of I_+ to the $p_1(\alpha)$ subinterval of I_- by a band of uniform width λ_α. The vertical flow along the bands from I_+ to I_-, followed by ϵ exhibits the classical exchange as a map from I_+ to I_-. Similarly, the inverse of the interval exchange is realized as a map from I_- to itself by flowing reverse along the bands, followed by ϵ. For classical exchanges, every band has one end on I_+ and the other on I_-. To define non-classical exchanges, the intervals I_+ and I_- are partitioned into subintervals that come in pairs, so that they can be joined by bands with uniform width. In this case however, we require bands that have both ends in I_+, and bands that have both ends in I_-. Such a band shall be called orientation reversing because the non-classical exchange restricted to the subintervals given by the ends of the band is orientation reversing. As before, the exchange as a map $T : I_+ \sqcup I_- \rightarrow I_+ \sqcup I_-$ is given by flowing along the band away from the subinterval in question, followed by ϵ. The Lebesgue measure l on $I_+ \sqcup I_-$ is obviously invariant under T.

We shall work with labelled non-classical exchanges i.e., there is a bijection from \mathcal{A} to the set of bands. As defined by [1], the labeling can be thought of as given by a generalized permutation which is a 2-1 map from the set $\{1, \ldots, 2d\}$ to \mathcal{A}. Thus, $\pi^{-1} \alpha$ denote the ends of the band α. A generalized permutation π is of type (l, m) where $l + m = 2d$ if the set $\{1, \ldots, l\}$ enumerates the subintervals of I_+ from left to right and the set $\{l + 1, \ldots, l + m = 2d\}$ enumerates the subintervals of I_- from left to right. A generalized permutation defines a fixed point free involution σ of $\{1, \ldots, 2d\}$ by:

$$\pi^{-1}(\pi(i)) = (i, \sigma(i))$$

The equivalence classes under σ can be indexed with the elements of \mathcal{A} and correspond to the bands in our picture. The generalized permutations encoding a non-classical exchange do not arise from a true permutation $p = p_1 p_0^{-1}$ i.e., it has a positive integer i with $i, \sigma(i) \leq l$ and a positive integer j with $l + 1 \leq j, \sigma(j)$. This means that there are orientation reversing bands for I_+ and I_-. Following Kerckhoff, we shall call the positions that are rightmost on the intervals I_+ and I_-, the critical positions. We let $I(\alpha)$ be the union of subintervals at the ends of band α.

After a horizontal isotopy collapsing I_+ to points, the spine of the picture can be thought of as an abstract train track τ. In particular, if τ admits an embedding into an orientable surface S as a large train track i.e., with complementary regions that are polygons or once-punctured polygons, then the non-classical exchanges associated to the combinatorics, give measured foliations on S belonging to the stratum of quadratic differentials indicated by the complementary regions. For example, Figure 2.1 shows a non-classical exchange on a 4-punctured sphere, in the principle stratum.

2.2. Irreducibility: A classical exchange is called irreducible if there is no $k < d$ such that $p_0^{-1}\{1, \ldots, k\} = p_1^{-1}\{1, \ldots, k\}$. In other words, a reducible classical exchange is a concatenation of two classical exchanges over the subsets $\{1, \ldots, k\}$ and $\{k + 1, \ldots, d\}$. In terms of our picture, for all widths of the subintervals, the intervals I_+ partition into two subintervals $I_+(1)$ and $I_+(2)$, and the set of bands partition into two sets \mathcal{A}_1 and \mathcal{A}_2 such that all bands in \mathcal{A}_1 have both ends in $I_+(1)$, and all bands in \mathcal{A}_2 have both ends in $I_+(2)$.

\[\text{Figure 2.1. A non-classical exchange on a 4-punctured sphere.}\]
For non-classical exchanges, a straightforward combinatorial reduction as above can be considered. However, for technical reasons described in [1], a broader notion of reducibility becomes necessary. From now on, we shall assume that the non-classical exchanges considered are irreducible in this sense of Boissy and Lanneau.

3. RAUZY INDUCTION

A key technical tool is Rauzy induction, which is simply the first return map to an appropriate pair of subintervals \(I'_{\pm} \). A precise definition is also given in Section 2.2 of [1]. Here, we describe it in terms of the picture, and focus on the coding of iterations by products of elementary matrices. These matrices describe the induced map on the parameter space.

Iterations of Rauzy induction are analogous to continued fraction expansions. In fact, when a classical exchange has two bands, the expansion is equivalent to the continued fraction expansion of the ratio of their widths.

\[
\begin{align*}
\lambda_{\alpha_0} &= 3/7 \\
\lambda_{\alpha_1} &= 1/7
\end{align*}
\]

Figure 3.1. Rauzy Induction

Let \(T \) be a non-classical exchange. Let \(\alpha_0 \) and \(\alpha_1 \) be the bands in the critical positions with \(\alpha_0 \) on \(I_+ \). First, suppose that \(\lambda_{\alpha_0} > \lambda_{\alpha_1} \). Then we slice as shown in Figure 3.1 till we hit \(I_+ \sqcup I_- \) for the first time. The \(\alpha_0 \) band remains in its critical position, but typically a different band \(\alpha'_0 \) moves into the other critical position. Furthermore, the new width of \(\alpha_0 \) is \(\lambda_{\alpha_0} - \lambda_{\alpha_1} \). All other widths remain unchanged. If instead \(\lambda_{\alpha_1} < \lambda_{\alpha_0} \), then we slice in the opposite direction. In either case, we get a new non-classical exchange with combinatorics and widths as described above. This operation is called Rauzy induction. Since Rauzy induction is represented pictorially by one band splitting another, we shall simply call it a split. In fact, this is consistent with the notion of a split in the context of the underlying train-tracks. Iterations of Rauzy induction are therefore called splitting sequences.

In the first instance above, let \(I' = [0, \sum_{\alpha \neq \alpha_1} \lambda_\alpha] \), and in the second, let \(I' = [0, \sum_{\alpha \neq \alpha_0} \lambda_\alpha] \). Let \(I_+(1) \) and \(I_-(1) \) denote the copies of \(I' \) in \(I_+ \) and \(I_- \) respectively. Rauzy induction is then the first return map to \(I_+(1) \sqcup I_-(1) \). Let \(\mathcal{R}(T) \) denote the non-classical exchange induced on \(I_+(1) \sqcup I_-(1) \). Iteratively, let \(I_{\pm}(n) \) be the (nested) subintervals of \(I_{\pm} \) to which \(n \) splits give the first return map. Let \(\mathcal{R}^n(T) \) be the non-classical exchange induced on \(I_+(n) \sqcup I_-(n) \).

In general, not all instances of Rauzy induction are defined. To enumerate:

1. When \(\alpha_0 = \alpha_1 \) neither of the splits are defined.
2. When \(\lambda_{\alpha_0} = \lambda_{\alpha_1} \), then neither of the splits is defined.
3. When \(\alpha_0 \) is an orientation reversing band on \(I_+ \) and \(\alpha_1 \) is the only orientation reversing band on \(I_- \), then \(\alpha_0 \) can split \(\alpha_1 \) but not the other way round i.e., only one of the splits is defined.

Case (1) is ruled out when the non-classical exchange is irreducible and Case (2) represents a set of measure zero. In fact, as shown in Section of [5], almost surely, iterations of Rauzy induction continue ad infinitum.
3.2. **Encoding expansions by matrices:**

3.2.1. **Description of the parameter space:** Consider the vector space \mathbb{R}^d and let \mathbb{R}_+^d be the set of points with non-negative coordinates. Let Δ denote the standard $(d-1)$-simplex in \mathbb{R}^d with sum of the coordinates equal to 1. An assignment of widths to the bands is a point in \mathbb{R}_+^d. Normalizing the widths so that their sum is 1 restricts us to Δ.

To be consistent with a generalized permutation π, any assignment of widths must satisfy the switch condition defined by π. We denote the set of such widths normalized to sum 1 by $W(\pi)$, and un-normalized widths by $\mathbb{R}^+ W(\pi)$. Let \mathcal{A}_+ and \mathcal{A}_- be the set of orientation reversing bands incident on I_+ and I_- respectively. The points in $W(\pi)$ satisfy the additional constraint:

$$\sum_{\alpha \in \mathcal{A}_+} \lambda_\alpha = \sum_{\alpha \in \mathcal{A}_-} \lambda_\alpha$$

Thus $W(\pi)$ is the intersection with Δ of a codimension 1 subspace of \mathbb{R}^d. For $\alpha \in \mathcal{A}_+$ and $\beta \in \mathcal{A}_-$, let $e_{\alpha \beta}$ be the midpoint of the edge $[e_\alpha, e_\beta]$ of Δ joining the vertices e_α and e_β. The subset $W(\pi)$ is the convex hull of the points $e_{\alpha \beta}$ and e_ρ for $\rho \in \mathcal{A}_+ \cup \mathcal{A}_-$. There are finitely many generalized permutations π of an alphabet \mathcal{A} over d letters, and hence finitely many convex codimension 1 subsets of Δ that could be $W(\pi)$. We call the $W(\pi)$ configuration spaces. The full parameter space is a disjoint union of the configuration spaces $W(\pi)$.

3.2.2. **Matrices:** Let I denote the $d \times d$ identity matrix on \mathbb{R}^d. For $\alpha, \beta \in \mathcal{A}$, let $M_{\alpha \beta}$ be the $d \times d$-matrix with the (α, β) entry 1 and all other entries 0. After Rauzy induction, the relationship between the old and new width data is expressed by

$$\lambda = E \lambda'$$

where the matrix E has the form $E = I + M$. In the first instance of the split, when $\lambda_{a_0} > \lambda_{a_1}$, the matrix $M = M_{a_0 a_1}$; in the second instance of the split, when $\lambda_{a_1} > \lambda_{a_0}$, the matrix $M = M_{a_1 a_0}$. Thus, in either case the matrix E is an elementary matrix, in particular $E \in SL(d; \mathbb{Z})$. If B is any $d \times d$ matrix then in the instance when $\lambda_{a_0} > \lambda_{a_1}$, the action on B by right multiplication by E has the effect that the α_1-th column of B is replaced by the sum of the α_0-th column and α_1-th column of B. We phrase this as: in the split, the α_0-th column adds to the α_1-th column. A similar statement holds when $\lambda_{a_0} > \lambda_{a_1}$.

3.3. **Rauzy diagram.** For non-classical exchanges, one constructs an oriented graph similar to the Rauzy diagram for a classical exchange. However, there are some key differences in this context.

Construct an oriented graph G as follows: the nodes of the graph are generalized permutations π of an alphabet \mathcal{A} over d letters satisfying the conditions in the third paragraph at the beginning of Section 3. We draw an arrow from π to π', if π' results from splitting π. For each node π, there are at most two arrows coming out of it. A splitting sequence gives us a directed path in G.

For irreducible classical exchanges, each connected component of the Rauzy diagram is an attractor i.e., any node can be joined to any other node by a directed path. Each component is called a Rauzy class.

The Rauzy diagram for non-classical exchanges is more complicated and need not have such strong recurrence properties. See the examples in the Appendix of [I] or see Section 10 of [4]. In particular, the straightforward definition of reducibility does not work from the point of view of the Rauzy diagram: there are generalized permutations that are not obviously reducible that can split to an obviously reducible one with positive probability. Hence, the broader definition of reducibility defined by Boissy and Lanneau [I], becomes necessary. In [I], they prove that

Theorem 3.4 ([I] Theorem C). Let G_{irr} be the subset of nodes of G corresponding to the strongly irreducible generalized permutations. Then G_{irr} is closed under forward iterations of Rauzy induction. Moreover, each connected component of G_{irr} is strongly connected i.e., any node π in a connected component of G_{irr} can be connected to any other node π' in the same component of G_{irr} by a sequence of splits.
For the rest of the paper, the generalized permutations considered will be irreducible in the stronger sense, and in a single attractor \mathcal{G} of G.

4. DYNAMICS

In this section, we analyze the expansion by splitting sequences on the parameter space.

4.0.1. Preliminary notation: Given a matrix A with non-negative entries, we define the projectivization TA as a map from Δ to itself by

$$TA(y) = \frac{Ay}{|Ay|}$$

where if $y = (y_1, y_2, \cdots, y_d)$ in coordinates then $|y| = \sum |y_i|$. This shall be the norm used throughout. The norm is additive on $\mathbb{R}_{\geq 0}^d$, i.e. for y, y' in $\mathbb{R}_{\geq 0}^d$, $|y + y'| = |y| + |y'|$.

4.1. Iterations of Rauzy Induction: Let $\pi_0 \in \mathcal{G}$. The non-classical exchanges with generalized permutation π_0 are points in the configuration space $W(\pi_0)$. Let $x = (\lambda_\alpha) \in W(\pi_0)$. As shown in [5], almost every π has an infinite expansion. An infinite expansion determines an infinite directed path in \mathcal{G}.

A finite directed path $\pi_0 \to \pi_1 \to \cdots \to \pi_n$ in \mathcal{G} shall be called a stage in the expansion. Let E_i denote the elementary matrix associated to the split $\pi_{i-1} \to \pi_i$. The image of $W(\pi_i)$ under the projective linear map ΓE_i lies in $W(\pi_{i-1})$. The matrix Q_j associated to the stage is given by

$$Q_n = E_1 E_2 \cdots E_n$$

The set $TQ_j(W(\pi_n))$ is the set of all $x \in W(\pi_0)$ whose expansion begins with $\pi_0 \to \pi_1 \cdots \pi_n$.

In the expansion of x, whenever it is necessary to emphasize the dependence on x, we shall denote the nodes by $\pi_{x,i}$, the configuration spaces defined by $\pi_{x,i}$ by $W(\pi_{x,i})$, and the elementary matrices associated to $\pi_{x,i-1} \to \pi_{x,i}$ by $E_{x,i}$. Thus, given a stage $\pi_0 \to \pi_1 \to \cdots \to \pi_n$, the set $TQ_n(W(\pi_n))$ is precisely the set of all $x \in W(\pi_0)$ for which $\pi_{x,i} = \pi_i$ for all $i \leq n$.

The actual (or un-normalized) widths $\lambda^{(n)}(x)$ are given by

$$x = Q_n \lambda^{(n)}$$

The projectivization $x^{(n)} = \lambda^{(n)}/|\lambda^{(n)}|$ belongs to $W(\pi_n)$. Recall that $\mathcal{R}^n(\lambda)$ is the non-classical exchange on subintervals $I_\lambda(n)$ induced by λ. The widths of the bands in $\mathcal{R}^n(\lambda)$ are exactly $\lambda^{(n)}$. Let $I(\alpha, n)$ denote the union of subintervals of $I_\alpha(n)$ given by the ends of band α.

For a point $t \in I(\alpha, n) \cup I_\lambda(n)$, let $m_\alpha(t)$ be the first return time to $I(\alpha, n) \cup I_\lambda(n)$ under the transformation x. It follows immediately that $m_\alpha(t)$ is constant on each $I(\alpha, n)$. So for any $t \in I(\alpha, n)$, we will denote the return time by $m_\alpha(a)$. For $t \in I(\alpha, n)$, consider the finite set

$$S_\alpha(n) = \{ t, x(t), x^2(t), \cdots, x^{m_\alpha(t)}(t) \}$$

Lemma 4.2. The (β, α) entry of Q_n counts the number of points in $S_\alpha(n)$ that lie in $I(\beta)$. In other words, the (β, α) entry of Q_n counts the number of times a point in $I(\alpha, n)$ visits $I(\beta)$ under the exchange x, before the first return to $I(\alpha, n) \cup I_\lambda(n)$.

Proof. The proof proceeds by induction. For $n = 1$, if α does not split some other band in $x \to \mathcal{R}(x)$, then $m_\alpha(1) = 1$. In the same situation, all (β, α) entries of Q_1 are zero and the (α, α) entry is 1, verifying the lemma. If α splits β in $x \to \mathcal{R}(x)$, then $m_\alpha(1) = 2$ on $I(\alpha, 1)$ and in fact $\#S_\alpha(1) \cap I(\beta) = 1$ which is the same as the (β, α) entry of Q_1, again verifying the lemma.

Now suppose that the lemma is true for $n - 1$. If α does not split some other band in $\mathcal{R}^{n-1}(x) \to \mathcal{R}^n(x)$ then $m_\alpha(n) = m_{\alpha-1}(n)$ and in fact $\#S_\alpha(n) \cap I(\beta) = \#S_\alpha(n-1) \cap I(\beta)$ for all β. By induction $\#S_\alpha(n-1) \cap I(\beta)$ is the same as the (β, α) entry of Q_{n-1}, which is the same as the (β, α) entry of Q_n, verifying the lemma in this case.

On the other hand, if α splits β in $\mathcal{R}^{n-1}(x) \to \mathcal{R}^n(x)$, then $m_\alpha(n) = m_{\alpha-1}(n) + m_{\alpha-1}(\beta)$ and in fact $\#S_\alpha(n) \cap I(\beta) = \#S_\alpha(n-1) \cap I(\beta) + \#S_\beta(n-1) \cap I(\gamma)$. By induction, the right hand side is the sum of the
(γ, α) and (γ, β) entry of Q_{n-1} which is the same as (γ, α) entry of Q_n. So the lemma is verified in this case too.

The sets TQ_n(W(π_n)) form a nested sequence in W(π_0), all containing x. Let

$$C(x) = \bigcap_n TQ_{x,n}(W_n)$$

Let μ be a probability measure on the disjoint union $I_+ \sqcup I_-$ invariant under the non-classical exchange x. Let $(λ_d^0)$ be the widths assigned by μ to the bands. Proposition 4.2 of [5] shows that if x is minimal i.e., orbits of x are dense, then the map $μ \rightarrow (λ_d^0)$ is a homeomorphism from the set of x-invariant probability measures onto the set C(x).

Let m be the Lebesgue measure on each configuration space induced by the $(d-2)$-volume form on it as a codimension 1 submanifold of Δ, normalized so that the total volume of the configuration space is 1.

To estimate the measure of subsets of $TQ_n(W(π_n))$, we compare the push-forward $(TQ_n)_*(m)$ measure from $W(π_n)$ to $W(π_0)$ to the measure m on $W(π_0)$. The Radon-Nikodym derivative of m with respect to $(TQ_n)_*(m)$ is the Jacobian $\mathcal{J}(TQ_n)$ of the restriction $TQ_n : W(π_n) \rightarrow W(π_0)$. Integrating $\mathcal{J}(TQ_n)$ over the subset gives its measure. Thus, to give quantitative estimates, one needs to understand $\mathcal{J}(TQ_n)$ better.

Suppose π_n is the same as π_0 at some stage $j_0 : π_0 \rightarrow \cdots \rightarrow π_n = π_0$, and suppose κ is a finite splitting sequence starting from π_0. If $\mathcal{J}(TQ_j)$ is roughly the same at all points, then the relative probability that κ follows j is roughly equal to the probability that an expansion starts with κ. We make this precise below:

Definition 4.3. Suppose $j_0 : π_0 \rightarrow π_1 \rightarrow \cdots \rightarrow π_n$ is a stage and Q_j the associated matrix. For $C > 1$, we say that j is C-uniformly distorted if for all $y, y' \in W_n$

$$\frac{1}{C} \leq \frac{\mathcal{J}(TQ_j)(y)}{\mathcal{J}(TQ_j)(y')} \leq C$$

Remark 4.4. The matrix Q_j is C-distributed if for all $α, β ∈ \mathcal{A}$, the columns of Q_j satisfy

$$\frac{1}{C} \leq \frac{|Q_j(α)|}{|Q_j(β)|} < C.$$

As shown in [5] by analyzing $\mathcal{J}(TQ_j)$, the columns of Q_j are $C^{1/(d-1)}$-distributed then j is C-uniformly distorted. The relative probability statement then becomes:

Lemma 4.5. Suppose $j_0 : π_0 \rightarrow \cdots \rightarrow π_n = π_0$ is C-distributed, and let $κ$ be a finite splitting sequence starting from $π_0$. Let $j * κ$ denote the sequence j followed by κ. Then

$$\frac{m(TQ_{j*κ}(W(π_{j*κ})))}{m(TQ_{j}(W(π_j)))} \approx m(TQ_{κ}(W(π_κ)))$$

The main technical theorem is [5 Theorem 1.2] which we reproduce below:

Theorem 4.6 (Uniform Distortion). Let $j_0 : π_0 \rightarrow π_1 \rightarrow \cdots \rightarrow π_n$ be a stage. There exists a constant $C > 1$, independent of j, such that for almost every $x ∈ TQ_j(W_n)$, there is some $m > n$, depending on x, such that j followed by $π_n \rightarrow \cdots \rightarrow π_{x,m}$ is C-uniformly distorted. Additionally, $π_{x,m}$ can be arranged to be the same as $π_0$.

Given Remark 4.4 to prove Theorem 4.6 one in fact shows that there is some $m > n$ such that j followed by $π_n \rightarrow \cdots \rightarrow π_{x,m}$ is C-distributed.

A consequence of Theorem 4.6 is [5 Theorem 11.1] which we reproduce below:

Theorem 4.7 (Strong Normality). In almost every expansion, for any finite sequence j starting from $π_0$, there are infinitely many instances in which j immediately follows a C-distributed stage.
5. Cyclic approximation

Let \(\ell \) denotes the Lebesgue measure on \(I_+ \cup I_- \). Let \(\pi \in \mathcal G \). For \(x = (\lambda_\alpha) \in W(\pi) \) be the non-classical exchange determined by the widths.

Theorem 5.1 (Cyclic approximation). For almost every set of widths \(x = (\lambda_\alpha) \in W(\pi) \), and any \(\delta > 0 \), there is a positive integer \(N \), a band \(\alpha \), such that for some \(j = I(\alpha, n) \)

1. \(J \cap x^k(J) = \emptyset \) for all \(1 < k < N \).
2. \(x \) is linear on the set \(x^k(J) \) for all \(1 < k < N \).
3. \(\ell \left(\bigcup_{k=0}^{N-1} x^k(J) \right) > 1 - \delta \)
4. \(\ell(J \cap x^N(J)) > (1 - \delta) \ell(J) \)

Moreover, \(\alpha \) is orientation preserving in \(\pi_n \).

Proof: We simply check that the individual steps in the original proof by Veech [10, Theorem 1.4] hold for non-classical exchanges.

Step 1: As a consequence of Theorem 4.6, there is a \(C \)-distributed stage \(j : \pi \rightarrow \pi_1 \rightarrow \cdots \rightarrow \pi_m = \pi' \) such that the matrix \(Q_j \) is positive and some band \(\alpha \) is orientation preserving in \(\pi' \).

Step 2: Given a constant \(0 < \xi < 1 \), let \(W(\pi', \alpha, \xi) \) be the subset of \(W(\pi') \) satisfying \(\lambda_\alpha > (1 - \xi)|\lambda| \). Because \(\alpha \) is orientation preserving in \(\pi' \), the subset \(W(\pi', \alpha, \xi) \) is non-empty and \(m(W(\pi', \alpha, \xi)) / m(W(\pi')) \approx \xi^{d-2} \). Consider \(W = TQ_j(W(\pi', \alpha, \xi)) \). By Strong Normality, for almost every \(x \in W(\pi) \) there is a finite splitting sequence \(\kappa : \pi \rightarrow \cdots \rightarrow \pi \) depending on \(x \) such that \(TQ_\kappa(W) \) contains \(x \). Hence, the expansion of \(x \) begins with the concatenation \(\kappa * j \) i.e., \(\kappa \) followed by \(j \). Thus, \(Q_{\kappa * j} = Q_\kappa Q_j \).

Step 3: Corresponding to the splitting sequence \(\kappa * j \), let \(y = \mathcal R^n(x) \) be the exchange induced on corresponding subintervals \(I_\pm(n) \) of \(I_\pm \). Assuming \(\alpha \) is orientation preserving, the widths for \(y \) satisfy

\[
\lambda_\alpha^{(n)} > (1 - \xi)|\alpha^{(n)}|
\]

Recall from Lemma 4.2 that the \((\beta, \alpha) \) entry of the matrix \(Q_{\kappa * j} \) counts the number of times a point in \(I(\alpha, n) \) visits \(I(\beta) \) under the exchange \(x \), before returning to \(I_+(n) \cap I_-(n) \). Hence, for \(1 < k < q = |Q_{\kappa * j}(\alpha)| \), we have \(I(\alpha, n) \cap x^k(I(\alpha, n)) = \emptyset \). Finally, \(x^q(I(\alpha, n)) \subset I_+(n) \cap I_-(n) \). This implies

\[
\ell \left(I(\alpha, n) \cap x^q(I(\alpha, n)) \right) > (1 - 2\xi) \ell(I_+(n) \cup I_-(n))
\]

Step 4: For a positive \(d \times d \) matrix \(Q \), let

\[
v(Q) = \max_{1 \leq i, j, k \leq d} \frac{Q_{ij}}{Q_{ik}}
\]

Let \((\lambda_\gamma) = x \) be the original widths. Assuming \(\alpha \) is orientation preserving, we use \(\lambda = Q_{\kappa * \gamma} (\lambda^{(n)}) \) to get

\[
|\lambda| - \lambda_\alpha^{(n)} q = \sum_{\beta \neq \alpha} \lambda_\beta^{(n)} |Q_{\beta * \kappa}(\lambda^{(n)})|
< q v(Q_{\kappa * \gamma}) \xi |\lambda^{(n)}|
< q v(Q_{\kappa * \gamma}) \frac{\xi}{1 - \xi} \lambda_\alpha^{(n)}
< v(Q_{\kappa * \gamma}) \frac{\xi}{1 - \xi} |\lambda|
\]
This implies
\[\ell \left(\bigcup_{k=0}^{q-1} x^k(I(\alpha, n)) \right) > \left(1 - \nu(Q_j^* \kappa) \frac{\xi}{1 - \xi} \right) |\lambda| \]

Step 5: Finally, choose \(\xi > 0 \) small enough such that \(2\xi < \delta \) and \(\nu(Q_j^* \kappa)(\delta/1 - \delta) < \xi \). Then, properties (1)-(4) in the theorem hold with \(N = q \) and \(J = I(\alpha, n) \). \(\square \)

Remark 5.2. A main point in the proof above is that \(\alpha \) is orientation preserving in \(\pi' = R^n(\pi) \). This implies that \(J = I(\alpha, n) \) has a component each in \(I_{\pm} \). This shall turn out to be relevant later in Section 7.

6. Rigidity Sequences

Following [2], a positive integer \(n \) is a \(\xi \)-rigidity time for a non-classical exchange \(x \in W(\pi) \) if
\[
\int_{I_{\pm}} |x^n(t) - t| d\ell < \xi
\]
In particular, a consequence of Theorem 5.1 is that for every \(\xi > 0 \) and for almost every \(x \in W(\pi) \) there is a \(\xi \)-rigidity time.

A sequence of positive integers \(n_1, n_2, \cdots \) is a **rigidity sequence** for a non-classical exchange \(x \) if
\[
\int_{I_{\pm}} |x^{n_i}(t) - t| d\ell \to 0
\]

For a sequence of natural numbers \(A \), let \(a(n) \) be the cardinality of \(A \cap [1, \cdots, n] \). The sequence \(A \) is **density 1** if \(\lim a(n)/n = 1 \).

To prove disjointness it suffices to show [2, Remark 7] that

1. Any sequence of density 1 contains a rigidity sequence for almost every non-classical exchange.
2. For any \(\alpha \) we have \(m(\{x \in W(\pi) : \alpha \text{ is an eigenvalue of } x\}) = 0 \).

Theorem 6.1. Let \(A \) be a sequence of natural numbers with density 1. Almost every non-classical exchange \(x \in W(\pi) \) has a rigidity sequence in \(A \).

The above theorem follows from:

Theorem 6.2. For every \(\xi > 0 \) there exists \(d(\xi) < 1 \) such any sequence of density \(d(\xi) \) contains a rigidity sequence for a set of non-classical exchange of measure \(1 - \xi \).

Corollary 6.3. For any irrational \(\alpha \) we have \(m(\{x \in W(\pi) : \alpha \text{ is an eigenvalue of } x\}) = 0 \).

The above corollary follows by Theorem 6.2 from the total ergodicity of almost every non-classical exchange (Theorem 7.1) and an identical argument to the proof of [2, Corollary 5].

Proof. The proof of Theorem 6.2 is identical to the proof of [2, Corollary 3] except that the following facts need to be true for non-classical exchanges instead. This is done in [5].

Fact 1: At any stage \(j \) in the expansion, there is a constants \(K, C > 1 \) and probability \(0 < p < 1 \) independent of \(j \) that there are future stages \(\kappa_r \) that are \(C \)-distributed and
\[
\max_{\alpha} |Q_{\kappa_r}(\alpha)| < K \max_{\alpha} |Q_j(\alpha)|
\]
This is [5, Proposition 10.21].
7. Total ergodicity

A measure preserving transformation is said to be \textit{totally ergodic} if every forward iterate of it is ergodic. To finish the proof of Theorem 1.1, we show:

\textbf{Theorem 7.1.} If π has an orientation preserving band then almost every x in $W(\pi)$ is totally ergodic.

We first give a sufficient condition for total ergodicity.

\textbf{Proposition 7.2.} A non-classical exchange x is totally ergodic with respect to ℓ if for any prime p, there are arbitrarily good cyclic approximations of height n coprime to p.

\textbf{Lemma 7.3.} Suppose x is ergodic but not totally ergodic. There is a prime p such that x^p is not ergodic.
Proof. Suppose x^k is not ergodic. By the ergodic decomposition theorem, there exists a x^k invariant set $S \subset I_+ \cup I_-$ with $\ell(S) > 0$ such that S is the support of an ergodic measure μ of x^k, and any other ergodic measure of x^k assigns measure 0 to S. Any translate x^nS is x^k invariant and carries the x^k ergodic measure $(x^n)_*\mu$. Hence, by the decomposition theorem, either x^nS and S coincide or their intersection is empty i.e. either $x^nS \cap S = S$ or $x^nS \cap S = \emptyset$. Let $m = \min \{ n : \ell(x^nS \cap S) > 0 \}$. Then $x^{mn}S = S$. If $p|m$ then the set

$$B = S \cup x^{m/p}S \cup x^{2(m/p)}S \cup \cdots \cup x^{(p-1)(m/p)}S$$

is x^p invariant and does not have full measure. Hence, x^p is not ergodic. \qed

Proof of Proposition 7.2. Let B be a x^p-invariant set that is the support of an ergodic measure as above. Then the translates $\{B, xB, x^2B, \cdots, x^{p-1}B\}$ are all disjoint.

By Lusin’s Theorem, we may assume that B contain all but a very small proportion, say $1/u$ for very large u, of a subinterval V of $I_+ \cup I_-$ of size δ_1. Choose δ for the cyclic approximation to be less than δ_1/p. By assumption, we may chose the height n of a cyclic approximation to x to be such that $\gcd(n, p) = 1$ and $n > 3/\delta$. For $0 \leq j < n$, call the sets x^jJ as levels of the approximation. By the choice of δ, there is some level x^jJ such that at least one of the two subintervals of x^jJ, say x^jJ_+ is in V. Consider the subset

$$J'_+ = \bigcap_{i=0}^{p-1} x^{-i\cdot n}(J_+).$$

These are points in J_+ whose first pn iterates of x lie in the corresponding level mod n. By the approximation theorem, we have the estimate:

$$\ell(J'_+) > \ell(J_+)(1-p\delta) > \ell(J_+)(1-\delta_1)$$

Notice that if $t \in J'_+$ then the sequence $(x^p)_{t}$ for $0 \leq i < n$ hits each level exactly once. So we get the estimate:

$$\ell\left(\bigcap_{j=1}^{p-1} x^{-jn}(x^J \cap B)\right) > \ell(J_+)(1-\delta_1 - 1/u).$$

This implies that $\bigcup_{i=0}^{n-1} x^i(J_+)$. By x^p invariance of B, the former is also a subset of B. Since

$$\ell\left(\bigcup_{i=1}^{n-1} x^{-i}(J_+)\right) > 1/2 - \delta,$$

we must have $\ell(B) \geq 1/2$. If $\ell(B) \neq 1$ then disjointness of the translates of B implies $\ell(B) = 1/2$. This means that $p = 2$ and $xB = B' = I_+ \cup I_- \setminus B$. This contradicts the fact that the subset of B constructed above contains most of $\bigcup_{i=1}^{n-1} x^{-i}(J_+)$. Hence, B has full measure, and x^p is ergodic with respect to ℓ. \qed

It remains to show the existence of arbitrarily good cyclic approximations with heights coprime to p. This proposition is the only result that requires the hypothesis that π has orientation preserving bands.

Proposition 7.4. Suppose π has an orientation preserving band. For any $\delta > 0$ and prime p, the set

$$\{ x \in W(\pi) : \exists n \text{ with } \gcd(n, p) = 1 \text{ s.t. } x \text{ has a height } n \text{ cyclic approximation with constant } \delta \}$$

has full measure.

We first state and prove a well known fact for completeness.

Lemma 7.5. Let Q be a matrix in $SL(d, \mathbb{Z})$ with column norms q_1, q_2, \cdots, q_d. Then, $\gcd(q_1, q_2, \ldots, q_d) = 1$.

Proof. Let A be the $d \times d$ matrix with all entries 1. Every entry of AQ is divisible by $\gcd(q_1, q_2, \ldots, q_d)$. Therefore, for all matrices $B \in SL(d, \mathbb{Z})$ the matrix AQ^mB has every entry divisible by $\gcd(q_1, q_2, \ldots, q_d)$. In particular, this is true for $B = Q^{-1}$. However $AQQ^{-1} = A$. Therefore, $\gcd(q_1, q_2, \ldots, q_d) = 1$. \qed
Lemma 7.6. Let \(p \) be a prime and suppose \(\pi \) has orientation preserving bands. Then, there is a constant \(C > 1 \) such that for almost every \(x \in W(\pi) \) there are infinitely many \(\{n_k\}_{k=1}^\infty \subseteq \mathbb{N} \) such that \(Q_{x,n_k} \) is \(C \)-distributed and there is an orientation preserving band \(\alpha_k \) for which \(|Q_{x,n_k}(\alpha_k)| \) is coprime to \(p \).

Claim 7.7. Let \(\pi \rightarrow \pi_1 \rightarrow \pi_2 \cdots \) be any infinite expansion. With the hypothesis that \(\pi \) has orientation preserving bands, for every \(n \in \mathbb{N} \) either some orientation preserving band in \(\pi_n \) has column norm in \(Q_n \) coprime to \(p \) or if column norms in \(Q_n \) of all orientation preserving bands in \(\pi_n \) are divisible by \(p \) then there exists orientation reversing bands \(\beta_1, \beta_2 \) on opposite sides i.e., on \(I_+ \) and \(I_- \) respectively, such that \(|Q_n(\beta_1)| \) and \(|Q_n(\beta_2)| \) have remainders \(r_1 \) and \(r_2 \) such that \(r_1 + r_2 \neq 0 \mod p \).

Proof. When \(n = 0 \), all column norms are 1, so the claim is true. Suppose the claim is true for \(n \).

First, suppose that \(|Q_n(\alpha)| \) is coprime to \(p \) for some orientation preserving band \(\alpha \) in \(\pi_n \). There remains an orientation preserving band with column norm in \(Q_{n+1} \) coprime to \(p \) unless \(\alpha \) is the only orientation preserving band in \(\pi_n \) with \(|Q_n(\alpha)| \neq 0 \mod p \) and \(\alpha \) splits some orientation reversing band \(\beta \) in the subsequent split \(\pi_n \rightarrow \pi_{n+1} \). Let \(\alpha \) splits the orientation reversing band \(\beta \) and let \(r_2 = |Q_n(\beta)| \mod p \). Then \(|Q_{n+1}(\alpha)| = r_1 + r_2 \mod p \). Consider an orientation reversing band \(\gamma \) on the opposite side and let \(r_3 = |Q_{n+1}(\gamma)| \mod p \). Then \(r_3 + r_2 = 0 \mod p \) and \(r_3 + r_1 + r_2 = 0 \mod p \) cannot be simultaneously true. Thus, at least one of the pairs \((\gamma, \alpha)\) and \((\gamma, \beta)\) satisfy the remainder condition of the claim.

Now suppose that all orientation preserving bands in \(\pi_n \) have column norms divisible by \(p \), and there are orientation reversing bands \(\beta_1 \) and \(\beta_2 \) on \(I_+ \) and \(I_- \) respectively such that \(|Q_n(\beta_1)| \) and \(|Q_n(\beta_2)| \) have remainders \(r_1 \) and \(r_2 \) satisfying \(r_1 + r_2 \neq 0 \mod p \). Without loss of generality, we may assume that at least one of \(\beta_1 \) or \(\beta_2 \), say \(\beta_1 \), is in a critical position. Let \(\gamma \) be the band in the other critical position. If \(\gamma \) splits \(\beta_1 \) then the \(\beta_1 \)-column is unchanged, so assume that \(\beta_1 \) splits \(\gamma \). If \(\gamma \) is orientation preserving then \(\beta_1 \) remains orientation reversing on \(I_+ \) and \(|Q_{n+1}(\beta_1)| = r_1 \mod p \). So the pair \((\beta_1, \beta_2)\) continues to satisfy the remainder condition. If \(\gamma \) is orientation reversing then either \(|Q_{n+1}(\beta_1)| \neq 0 \mod p \) in which case we have \(\beta_1 \) as an orientation preserving band with column norm coprime to \(p \), or \(|Q_n(\gamma)| = -r_1 \mod p \). In the later case, there must exist an orientation reversing band \(\beta_3 \) on \(I_+ \), and suppose \(|Q_{n+1}(\beta_3)| = r_3 \mod p \). Then \(r_3 + r_2 = 0 \mod p \) and \(r_3 - r_1 = 0 \mod p \) cannot be simultaneously true. Thus, at least one of the pairs \((\beta_3, \beta_2)\) and \((\beta_3, \gamma)\) satisfies the remainder condition.

The claim follows by induction. \(\square \)

Now restrict to \(\pi \) and consider an assignment of remainders \(\bmod p \) to all bands such the remainders assigned to orientation preserving bands are zero and there is a pair \((\beta_1, \beta_2)\) of orientation reversing bands on \(I_+ \) and \(I_- \) respectively with remainders \((r_1, r_2)\) such that \(r_1 + r_2 \neq 0 \mod p \). Starting from such an assignment, we can derive an assignment of remainders in all stages obtained by a splitting sequence from \(\pi \).

Claim 7.8. Given an initial assignment of remainders \(\bmod p \) to bands in \(\pi \) as described above, there is a splitting sequence from \(\pi \) such that in the final stage there is an orientation preserving band with nonzero remainder \(\bmod p \).

Proof. By [5, Proposition 10.1], there is a shortest splitting sequence that brings one of \(\beta_1 \) or \(\beta_2 \) to the critical position on the corresponding interval \(I_+ \) or \(I_- \). Without loss of generality, say \(\beta_1 \) is brought to the critical position on \(I_+ \). Then the \(\beta_1 \) and \(\beta_2 \) remainders remain unchanged during this sequence. We may also assume that the conclusion of the claim is not satisfied during this sequence. After \(\beta_1 \) is in the critical position on \(I_+ \), split it by every band to the left of \(\beta_2 \) on \(I_- \) till \(\beta_2 \) appears in the critical position on \(I_- \). Again, the \(\beta_1 \) and \(\beta_2 \) remainders remain unchanged, and we might assume that the conclusion of the claim is not satisfied during this sequence. But then, in the next split either \(\beta_1 \) or \(\beta_2 \) becomes orientation preserving and has the non-zero remainder \(r_1 + r_2 \mod p \), proving the claim. \(\square \)

Proof of Lemma 7.6. For each assignment \(\sigma \) as above of remainders to bands in \(\pi \), Claim 7.8 gives a splitting sequence \(j(\sigma) \) from \(\pi \) that produces an orientation preserving band with non-zero remainder \(\bmod p \).
of the sequences $j(\sigma)$.

By Theorem[4.6] there is a constant $C > 1$ such that for almost every $x \in W(\pi)$ there are infinitely many $\{m_k\}_{k=1}^{\infty}$ such that Q_{x,m_k} is C-distributed and $\pi_{x,m_k} = \pi$. If the column norms in Q_{x,m_k} of all orientation preserving bands in π are divisible by p then consider the remainders mod p of the column norms of all bands. Call this assignment σ_k. As established earlier, there must be a pair of orientation reversing bands (β_1, β_2) with remainders (r_1, r_2) such that $r_1 + r_2 \neq \mod p$. In this case, consider $\pi \to \cdots \pi_{x,m_k}$ followed by $j(\sigma_k)$. Since the length of $j(\sigma_k)$ is bounded above independent of x and m_k, there is a lower bound independent of x and m_k on the relative probability that $j(\sigma_k)$ follows $\pi \to \cdots \pi_{x,m_k}$. For the same reason, there is also an upper bound independent of x and m_k on the distortion introduced by $j(\sigma_k)$.

By Strong Normality (Theorem 4.7), for almost every x, there is a subsequence of $\{m_k\}$, call it $\{n_k\}$, such that either the column norm in Q_{x,n_k} of some orientation preserving band is coprime to p or the sequence $j(\sigma_k)$ follows $\pi \to \cdots \pi_{x,n_k}$ in the expansion for x, resulting in an orientation preserving band with column norm coprime to p. Given that $j(\sigma_k)$ introduces a distortion bounded above independently of x and n_k, we can choose a bigger constant C such that all of these stages are C-distributed. This proves Lemma[7.6]

Proof of Proposition 7.2. For almost every x, there are infinitely many $\{n_k\}_{k=1}^{\infty} \subset \mathbb{N}$ such that the matrix Q_{x,n_k} is C-distributed. By Lemmas[7.5] and[7.6], there is α_k orientation preserving preserving in π_{x,n_k} such that $|Q_{x,n_k}(\alpha_k)|$ is coprime to p. Let X_k denote the set of x such that $\delta^{(\alpha)}(x) \in W(\pi, \alpha_k, \delta/C)$. From the proof of Theorem 5.1 the exchanges $x \in X_k$ have a cyclic approximation of height $|Q_{x,n_k}(\alpha_k)|$ with constant δ.

Let μ be the minimum over $\alpha \in \mathcal{A}$ of $m(W(\pi, \alpha, \delta/C))$. By Lemma 4.3 up to a universal multiplicative constant, we have $m(X_k) \geq \mu$. Thus, $\sum_k m(X_k) = \infty$. Moreover, since the sets X_k are pairwise independent, by the standard Borel-Cantelli lemma almost every x belongs to some X_k, and in fact, belongs to infinitely many X_k.

Proof of Theorem 7.4. By Proposition 7.2 and the fact that a countable intersection of full measure sets has full measure it suffices to prove Proposition 7.4.

Remark 7.9. Starting from a generalized permutation with all bands orientation reversing, in all later stages, the column norms are even for all orientation preserving bands and odd for all orientation reversing bands. Thus, all cyclic approximations have even height. This is in line with the fact that x^2 leaves I_+ and I_- each invariant. In fact, Proposition 7.2 shows that these are the only invariant subsets for x^2, and also that all odd iterates of x are ergodic.

8. PROOF OF THEOREM 1.1

The proof of Theorem 1.1 now follows verbatim as in [2]. The results of the preceding sections establish the necessary facts for non-classical exchanges.

REFERENCES

[1] Boissy, C. and Lanneau, E. Dynamics and Geometry of the Rauzy-Veech induction for quadratic differentials. Ergodic Theory Dynam. Systems 29 (2009), no 3, 767-816.

[2] Chaika, J. Every transformation is disjoint from almost every IET. http://arxiv.org/abs/0905.2370 to appear in Ann. of Math.

[3] Danthony, C. and Nogueira, A. Measured foliations on non-orientable surfaces. Ann. Sci. Ecole Norm. Sup. (4) 26 (1993), no. 3, 2431-2499.

[4] Dunfield, N. and Thurston, D. A random tunnel number one 3-manifold does not fiber over the circle. Geom. Topol. 10 (2006), 2431-2499.

[5] Gadre, V. Dynamics of non-classical interval exchanges. http://arxiv.org/abs/0906.2563 to appear in Ergodic Theory Dynam. Systems.

[6] Kerckhoff, S. Simplicial systems for interval exchange maps and measured foliations. Ergodic Theory Dynam. Systems (1985), 5, 257-271.

[7] Masur, H. Interval exchange transformations and measured foliations. Ann. of Math. (2) 115 (1982), no. 1, 169-200.
[8] Nogueira, A. *Almost all interval exchange transformations with flips are non-ergodic*. Ergodic Theory Dynam. Systems 9 (1989), no. 3, 515-525.

[9] Veech, W. *Gauss measures for transformations on the space of interval exchange maps*. Ann. of Math. (2) 115 (1982), no 1, 201-242.

[10] Veech, W. *The metric theory of interval exchange transformations I*. Amer. J. Math. 106 (1984), no. 6, 1331-1359.

[11] Yoccoz, J-C. *Continued fraction algorithms for interval exchange maps: an introduction*. Frontiers in number theory, physics and geometry. I, 401-435, Springer, Berlin 2006.

Mathematics, University of Chicago, 5734 S. University Avenue, Chicago IL 60637

E-mail address: jonchaika@math.uchicago.edu

Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138, USA

E-mail address: vaibhav@math.harvard.edu