Performance of different weedicides on yield and economics of Kodo millet (*Paspalum scrobiculatum L.*)

Meghana GK, Sukanya TS, Salmankhan RM and Kiran HP

DOI: https://doi.org/10.22271/chemi.2020.v8.i5m.10408

Abstract

An experiment in Kodo millet was conducted during Kharif 2018 in red sandy loamy soil of Zonal Agricultural Research Station, University of Agricultural Sciences, GKVK, Bengaluru with different weed management practices. Twelve treatments replicated thrice in a randomized complete block design (RCBD). Among the different weedicides treatments on yield and economics of kodo millet. Application of Bensulfuron methyl 0.6 G + Pretilachlor 6.0 G @ 165 g a. i. ha⁻¹ (T1) recorded highest grain (1958 kg ha⁻¹), straw yield (4063 kg ha⁻¹), gross monetary returns (Rs.69,509 ha⁻¹), net monetary returns (Rs.46,812 ha⁻¹) and B:C ratio(3.06) with lower weed index (6.67%).

Keywords: Kodo millet, weedicides, yield, economics

Introduction

Kodo millet (*Paspalum scrobiculatum L.*) is an important small millet crop grown in India and is having longest duration crop among other minor millets. It is known as haraka, cow grass, rice grass, ditch millet, native paspalum and Indian crown grass grown as a minor crop in many Asian countries, with the exception of the Deccan plateau in India where it is grown as a food source. In view of nutrient composition, the crop is now considered as nutri cereals. The grains are rich source of protein (10-11%) and have long storability under ambient conditions and hence, suitable as famine reserve (Ramesh et al., 1998) [4]. It is also an excellent source of fibre at 10 g per 100 g, as opposed to rice, which provides 0.2 g per100 g, and wheat, which provides 1.2 g per 100 g. An adequate fibre source helps to combat the feeling of hunger. Kodo millet contains 66.6 g of carbohydrates and 3.6 g of fat per 100 g of grain, comparable to other millets. It provides minimal amounts of iron (0.5 mg per 100 mg) and calcium (27 mg per 100 mg). Kodo millets also contain high amounts of polyphenols and lower phosphorus content than any other millet and its anti oxidant potential is much higher than any other millet and major cereals. When consumed as food it provides a sustaining diet, especially wholesome food for diabetic patients. Straw is a good fodder and when fed to animals may also be malted and flour of the malted grain is used in cakes or porridge and a nourishing food for infants.

Kodo millet is mainly cultivated for human consumption in Philippines, Indonesia, Vietnam, Thailand, West Africa and India. It grows wild as a perennial in the west of Africa, where it is eaten as a famine food. Small millets are grown worldwide and it is cultivated over an area of 0.62 m. ha with the production of 0.44 m. t. and with a productivity of 714 kg ha⁻¹ in India. Madhya Pradesh, Chhattisgarh, Maharashtra, Tamil Nadu and Karnataka are the main states of its cultivation in India.

Material and Methods

The experiment to study the performance of different weedicides on yield and economics in kodo millet consisted of twelve treatments replicated thrice in a randomized complete block design (RCBD). This experiment was conducted during Kharif 2018 at Gandhi Krishi Vignan Kendra (GKVK). The soil is red sandy loam and the treatments tested were, T1: Oxadiargyl 80% WP @ 150 g a. i. ha⁻¹, T2: Bensulfuron methyl 0.6% G + Pretilachlor 6.0% G @ 165 g a. i. ha⁻¹, T3: Pendimethalin 38.7% CS @ 450 g a. i ha⁻¹, T4: Oxadiargyl 80% WP @ 150 g a. i.
ha⁻¹(fb) Bispyribac sodium 10% SC @ 10 g a.i. i ha⁻¹, T₅: Bensulfuron methyl 0.6% G + Prettichlor 6.0% G @ 165 g a.i. i ha⁻¹, fb Bispyribac sodium 10% SC @ 10 g a.i. i ha⁻¹, T₆: Pendimethalin 38.7% CS @ 450 g a.i. i ha⁻¹, fb Bispyribac sodium 10% SC @ 10 g a.i. i ha⁻¹, T₇: Oxadiargyl 80% WP @ 150 g a.i. i ha⁻¹, fb Ethenoxsulfuron 15% WG @ 12 g a.i. i ha⁻¹, T₈: Bensulfuron methyl 0.6% G + Prettichlor 6.0% G @ 165 g a.i. i ha⁻¹, fb Ethenoxsulfuron 15% WG @ 12 g a.i. i ha⁻¹, T₉: Pendimethalin 38.7% CS @ 450 g a.i. i ha⁻¹, fb Ethenoxsulfuron 15% WG @ 12 g a.i. i ha⁻¹, T₁₀: Two intercultivation + hand weeding @ 20 and 40 DAS, T₁₁: un weeded check and T₁₂: weed free check.

Variety ‘RBK-155’ was sown at a spacing of 30 × 10 cm and fertilizer level of 40 kg N and 20 kg P₂O₅ was used. The gross and net plot sizes were 4.5 m × 4.0 m and 3.3 m × 3.6 m, respectively. Data averaged over three replications and the data on Kodo millet grain and straw yield was collected after the crop harvest. The economics of weed management practices was worked out. The data collected on different traits was statistically analyzed using the standard procedure and the results were tested at five per cent level of significance as given by Gomez and Gomez (1984) [²].

Weed index
Weed index is defined as the reduction in yield due to presence of weeds in comparison to weed free check. Weed index was calculated by using the formula,

\[WI (\%) = \frac{(X-Y)}{X} \times 100 \]

Where
WI = Weed index expressed in percentage
X = Yield of weed free plot
Y = Yield from treatment for which weed index is to be worked out

Weed control efficiency (%)
The weed control efficiency was calculated as the percentage reduction in density and growth of weeds in case of the treatments under study compared to the control treatment.

Weed control efficiency (%) = \(\frac{W₀ - Wᵢ}{W₀} \times X 100\)

Where
W₀ = Total dry weight of weeds from unweeded plot.
Wᵢ = Total dry weight of weeds from treated plot.

Gross returns (ha⁻¹)
The gross return per hectare was calculated by multiplying prevailing market price into total yield obtained per hectare. (Market price / unit quantity × grain yield + Market price of straw × straw yield).

Net returns
The net returns per hectare was calculated by deducting the cost of cultivation per hectare from the gross return per hectare

Net returns = Gross returns – Total cost of cultivation

Benefit cost ratio
The Benefit: Cost (B:C) ratio was worked out using the following formula

\[B:C = \frac{\text{Gross return (ha}^{-1})}{\text{Cost of cultivation (ha}^{-1})} \]

Results and Discussion

Yield attributes
The grain yield of herbicide treatments, T₅ i.e., bensulfuron methyl 0.6 G + pretilachlor 6.0 G (165 g a. i/ha) fb bispyribac sodium 10 SC (10 g a. i/ha) @ 15-20 DAS was significantly superior to other herbicide treatments (1958 kg ha⁻¹) followed by T₆ i.e., bensulfuron methyl 0.6 G + pretilachlor 6.0 G (165 g a. i/ha) fb ethoxsulfuron 15 WG (12 g a. i/ha) @ 15-20 DAS (1940 kg ha⁻¹), were on par with T₁₂ i.e., weed free check which recorded highest grain yield of kodo millet (2107 kg ha⁻¹). Whereas, unweeded control (T₁₁) recorded significantly the lowest grain yield (717 kg ha⁻¹) compared to all other treatments.

The higher grain yield of kodo millet among herbicide treatments was recorded with bensulfuron methyl 0.6 G + pretilachlor 6.0 G (165 g a. i/ha) fb bispyribac sodium 10 SC (10 g a. i/ha) @ 15-20 DAS. This is due to control of the broad spectrum of weeds effectively during the critical period of crop weed competition, which otherwise were quite notorious for imposing competition for light, space and nutrients with crop. It has provided congenial environment for better expression of growth stature and yield attributes viz., number of ear heads per plant, ear head length, number of grains per ear head, weight of grains per ear head and test weight. The cumulative effect of all these yield components resulted in increased grain yield. These results were conterminous with the work of Dubey et al. (2005) [¹] and Prajapati et al. (2007) [³].

The straw yield of herbicide treatments, T₅ i.e., bensulfuron methyl 0.6 G + pretilachlor 6.0 G (165 g a. i/ha) fb bispyribac sodium 10 SC (10 g a. i/ha) @ 15-20 DAS (4063 kg ha⁻¹), T₆ i.e., bensulfuron methyl 0.6 G + pretilachlor 6.0 G (165 g a. i/ha) fb ethoxsulfuron 15 WG (12 g a. i/ha) @ 15-20 DAS (4037 kg ha⁻¹) and T₇ i.e., pendimethalin 38.7 CS (450 g a. i/ha) fb bispyribac sodium 10 SC (10 g a.i/ha) @ 15-20 DAS were significantly superior to other treatments and were on par weed free check (T₁₂) which recorded highest straw yield (4200 kg ha⁻¹). Whereas, unweeded control (T₁₁) recorded significantly lowest straw yield (2038 kg ha⁻¹) compared to all other treatments.

The higher straw yield in T₅ and T₆ among herbicide treatments might be due to cumulative effect of vegetative growth as evident from higher plant height, leaf area index and dry matter production (Shahid and Mudasir, 2016) [⁶]. Unweeded control (T₁₁) recorded the lowest straw yield. This might be due to heavy weed infestation, which exploited the growth resources and resulted in poor growth of kodo millet. The lowest weed index was noticed in two inter cultivation + hand weeding at 20 and 40 DAS (T₁₀) (3.33%) followed by bensulfuron methyl 0.6 G + pretilachlor 6.0 G (165 g a. i/ha) fb bispyribac sodium 10 SC (10 g a. i/ha) @ 15-20 DAS (T₆) (6.67%) and bensulfuron methyl 0.6 G + pretilachlor 6.0 G (165 g a. i/ha) fb ethoxsulfuron 15 WG (12 g a. i/ha) @ 15-20 DAS (T₅) (10%). Highest weed index was noticed in T₁₁ i.e., unweeded control (66.67%). Followed by oxadiargyl 80 WP (150 g a. i/ha) within 3 DAS (T₁) (53.33%).

The lower weed index attributed to reduction in the weed dry weight as a result of effective weed control in these treatments. Lower weed index is a result of satisfactory control of weeds owing to increase in yield. This enabled the crop to utilize available resources like light, nutrients, moisture and space resulting in higher yield. These results are
in accordance with the findings of Saha (2009) and Singh et al. (2005). Among herbicide treatments, highest weed control efficiency (94.63%) at harvest was recorded in T3 i.e., pre + post emergence application of bensulfuron methyl 0.6% G + pretilachlor 6.0% G @ 165 g a. i. ha\(^{-1}\) at 3 DAS fb bispirirbic sodium 10% SC 10 g a. i. ha\(^{-1}\).

Table 1: Grain yield, straw yield and weed index in kodo millet as influenced by weed management practices

Treatment	Grain yield (kg ha\(^{-1}\))	Straw yield (kg ha\(^{-1}\))	Weed index (%)	Weed control efficiency (%)
T\(_1\): Oxadixyl 80% WP @ 150 g a. i. ha\(^{-1}\)	956	3055	53.33	70.42
T\(_2\): Bensulfuron methyl 0.6% G + Pretilachlor 6.0%G @ 165 g a. i. ha\(^{-1}\)	1173	3525	43.33	71.36
T\(_3\): Pendimethalin 38.7% CS @ 450 g a. i. ha\(^{-1}\)	1046	3246	50.00	73.65
T\(_4\): Oxadixyl 80% WP @ 150 g a. i. ha\(^{-1}\) fb Bispirirbic sodium 10 SC @ 10 g a. i. ha\(^{-1}\)	1859	2386	13.33	73.58
T\(_5\): Bensulfuron methyl 0.6 G + Pretilachlor 6.0 G @ 165 g a. i. ha\(^{-1}\) fb Bispirirbic sodium 10 SC @ 10 g a. i. ha\(^{-1}\)	1958	4063	6.67	94.63
T\(_6\): Pendimethalin 38.7 CS @ 450 g a. i. ha\(^{-1}\) fb Bispirirbic sodium 10 SC @ 10 g a. i. ha\(^{-1}\)	1909	4012	10.00	83.44
T\(_7\): Oxadixyl 80 WP @ 150 g a. i. ha\(^{-1}\) fb Ethoxysulfuron 15 WG @ 12 g a. i. ha\(^{-1}\)	1504	3633	30.00	81.96
T\(_8\): Bensulfuron methyl 0.6 G + Pretilachlor 6.0 G @ 165 g a. i. ha\(^{-1}\) fb Ethoxysulfuron 15 WG @ 12 g a. i. ha\(^{-1}\)	1940	4037	10.00	86.87
T\(_9\): Pendimethalin 38.7 CS @ 450 g a. i. ha\(^{-1}\) fb Ethoxysulfuron 15 WG @ 12 g a. i. ha\(^{-1}\)	1607	3737	26.67	79.93
T\(_{10}\): Two intercultivation + hand weeding	2034	4101	3.33	96.31
T\(_{11}\): Un weeded check	717	2038	900	-
T\(_{12}\): Weed free check	2107	1420	0.00	0.00
S.Em±	6545	77.31	-	-
C. D. at 5%	190.53	226.78	-	-

Table 2: Economics of weed management practices in Kodo millet

Treatment	Gross returns (Rs. ha\(^{-1}\))	Cost of cultivation (Rs. ha\(^{-1}\))	Net returns (Rs. ha\(^{-1}\))	B:C ratio
T\(_1\): Oxadixyl 80% WP @ 150 g a. i. ha\(^{-1}\)	33950	20485	13465	1.66
T\(_2\): Bensulfuron methyl 0.6% G + Pretilachlor 6.0%G @ 165 g a. i. ha\(^{-1}\)	41653	22093	19561	1.89
T\(_3\): Pendimethalin 38.7% CS @ 450 g a. i. ha\(^{-1}\)	37145	22155	14990	1.68
T\(_4\): Oxadixyl 80% WP @ 150 g a. i. ha\(^{-1}\) fb Bispirirbic sodium 10 SC @ 10 g a. i. ha\(^{-1}\)	66006	22778	43229	2.90
T\(_5\): Bensulfuron methyl 0.6 G + Pretilachlor 6.0 G @ 165 g a. i. ha\(^{-1}\) fb Bispirirbic sodium 10 SC @ 10 g a. i. ha\(^{-1}\)	69509	22698	46812	3.06
T\(_6\): Pendimethalin 38.7 CS @ 450 g a. i. ha\(^{-1}\) fb Bispirirbic sodium 10 SC @ 10 g a. i. ha\(^{-1}\)	67770	22758	45012	2.98
T\(_7\): Oxadixyl 80 WP @ 150 g a. i. ha\(^{-1}\) fb Ethoxysulfuron 15 WG @ 12 g a. i. ha\(^{-1}\)	53404	22780	30624	2.34
T\(_8\): Bensulfuron methyl 0.6 G + Pretilachlor 6.0 G @ 165 g a. i. ha\(^{-1}\) fb Ethoxysulfuron 15 WG @ 12 g a. i. ha\(^{-1}\)	68870	22700	46170	3.03
T\(_9\): Pendimethalin 38.7 CS @ 450 g a. i. ha\(^{-1}\) fb Ethoxysulfuron 15 WG 12 g a. i. ha\(^{-1}\)	57049	22763	34286	2.51
T\(_{10}\): Two intercultivation + hand weeding	72195	26715	45480	2.70
T\(_{11}\): Un weeded check	25442	17575	7867	1.45
T\(_{12}\): Weed free check	74799	27840	46959	2.69

Economics

Economics is the ultimate criteria for acceptance or rejection and wider adoption of any technology (Table 2). Among the various treatments, herbicide combination of Bensulfuron methyl 0.6% G + Pretilachlor 6.0% G @ 165 g a. i. ha\(^{-1}\) as pre-emergent herbicide fb Bispirirbic sodium 10% SC @ 10 g a. i. ha\(^{-1}\) as post-emergence herbicide recorded highest net returns of Rs. 46,812 ha\(^{-1}\) with higher benefit: cost ratio (3.06) compared to other treatments. This was attributed to effective weed management at critical stages by integration of effective pre- and post-emergence herbicides which resulted in higher grain with reduced cost of cultivation. The lowest B:C ratio (1.45) was obtained in the un weeded check plot.

Conclusion

The herbicide combination of Bensulfuron methyl 0.6% G + Pretilachlor 6.0% G @ 165 g a. i. ha\(^{-1}\) as pre-emergence fb Bispirirbic sodium 10% SC @ 10 g a. i. ha\(^{-1}\) as post-emergence is very effective in controlling weeds in Kodo millet and resulted in higher grain and straw yield with better economic returns due to reduced cost of cultivation.

References

1. Dubey RP, Moorthy BT, Gogoi AK. Bio-efficacy of acethol + bensulfuron methyl against weeds in transplanted rice. Indian J Weed Sci. 2005; 37(3&4):265-266.
2. Gomez KA, Gomez AA. Statistical Procedures for Agric. Res. 2nd Ed. John Wiley & Sons, New York, 1984.
3. Prajapati BL, Upadhyay VB, Singh RP. Integrated weed management in rainfed Kodo millet (Paspalum scrobicularium L.). Indian J of Agron. 2007; 52(1):67-69.
4. Ramesh S, Shankara BT, Gangappa E. Inheritance of qualitative characters in proso millet (Panicum miliaceum L.). Crop Res. 1998; 15(2&3):218-220.
5. Saha S. Efficacy of bensulfuron-methyl for controlling sedges and non grassy weeds in transplanted rice (Oryza sativa L.). Indian J Agric. Sci. 2009; 79(1):140-143.
6. Shahid R, Mudasir HK. Growth and yield of maize (Zea mays L.) as influenced by integrated weed management under temperate conditions of north western himalayas. American J.Exptl. Agri. 2016; 14(1):1-9.
7. Singh VP, Govindra S, Mahendra S. Effect of bensulfuron-methyl on sedges and weeds in transplanted rice. Indian J Weed Sci. 2005; 48(3&4):87-91.