Identification and association of polymorphism in THOC5 gene with fatty acid composition in Indonesian sheep

K Listyarini1, C Sumantri1, S Rahayu1, M J Uddin2 and A Gunawan1

1Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University, 16680 Bogor, Indonesia
2School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton Qld 4343, Australia

Email: agunawan@apps.ipb.ac.id

Abstract. THO Complex 5 (THOC5) gene involves in lipid and fatty acid metabolism. The aim of this study was to analyse polymorphism of THOC5 gene and its association with fatty acid composition in sheep. A total of 120 rams at the age 12 month with the average body weight of 25–30 kg was used for identification of gene polymorphism using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). 83 rams, representative from different genotypes of sheep were used for association study using a General Linear Model (GLM). The results identified polymorphism in the THOC5 gene. The THOC5 gene showed two genotypes: CC and CT genotype. Association analysis revealed that THOC5 (g.68234589 C>T) was significantly (P<0.05) associated with fatty acid composition including unsaturated fatty acid: palmitoleic acid (C16:1), and saturated fatty acid: stearic acid (C18:0). The CC genotype was associated with higher level of unsaturated fatty acid and lower level of saturated fatty acid, while the CT genotype was vice versa. This result indicates that THOC5 gene (g.68234589 C>T) may contribute to fatty acid composition in sheep, as well as this polymorphism could be used as a candidate to select sheepmeat with high unsaturated fatty acid and low saturated fatty acid.

1. Introduction
Fat and fatty acids (FA) are essential to meat’s nutritional value and contribute significantly to different aspects of meat quality [1]. The fatty acid can be divided into two general categories: saturated (SFA) and unsaturated (UFA). Meat contains high saturated fatty acid (SFA) levels [2]. A previous study reported that intake of saturated fatty acid (SFA) has strong positive correlations with the incidence of cardiovascular disease (CVD) [3,4]. Conversely, intake of unsaturated fatty acids (UFA has been shown to minimize the risk of CVD [5]. For human health, meat production with high UFA and low SFA content is beneficial [6].

Genetic improvement through selection is recommended since one of the most realistic approaches to producing meat with high UFA and low SFA content. Fatty acid composition in sheep shows moderate to high heritability, indicating that they can modify fatty acid characteristics through selection [7,8]. The THO Complex 5 (THOC5) gene is one the critical gene which contributes to fatty acid metabolism. THOC5 gene has also been found to affect meat tenderness in cattle [9]. The beneficial effects of lipid on meat tenderness are possibly due to the lipid inside perimysium cells that separate muscle fiber bundles [9].
A number of candidate genes for fatty acid composition in sheep have been detected including SCD [10], APOA5 [6], TGFBR2 [11], KIF12 [12], LEPR [13], DGAT1 [14], AHSG [15], and BHMT genes [16]. However, the identification and association study of the THOC5 gene related to fatty acid composition has not been conducted, notably in Indonesian sheep. In sheep, a quantitative trait locus (QTL) affecting the fatty acid composition has been identified. QTL for fatty acid composition was identified for chromosome 2 affecting linoleic acid (18:3 n-3) [17]. Positional and functional research has shown that the THOC5 gene could be significant for the fatty acid composition candidate gene. This study was conducted to analyse the polymorphism and association of the THOC5 gene with fatty acids composition in sheep.

2. Material and Methods

2.1. Animals
A number of 120 samples (Longissimus dorsi and blood) and phenotypes were collected from body-weight rams between 25–30 kg and 12 months of age to identify gene polymorphism. The rams were retained under the same management systems and fattening feed was given ad libitum. A total of 83 slaughtered rams were used for association study in a profit-oriented slaughtered house. The data of carcass and meat quality were gathered in accordance with the Indonesian performance test guidelines. For fatty acid composition analysis, longissimus dorsi was taken for as much as 500 g. 30 μL of blood was taken for DNA extraction. All samples were placed in an ice flask for fatty acid composition analysis and DNA extraction and were stored at a temperature of -20°C.

2.2. Fatty acid composition analysis
Analysis of fatty acid composition was carried out on longissimus dorsi samples. For each sample, the fat and fatty acid composition were measured using AOAC 991.36 (2012) and AOAC 969.333 (2012) extraction methods (2012). The determination of the composition of fatty acids was analyzed by Gas Chromatography (GC), which needs the fat extraction process, followed by methylation, conversion of the FAs into methyl esters afterward (FAMEs), and finally determination process by Gas Chromatography. Measurements of fatty acid composition included saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA).

Table 1. Gen bank accession number and primers.

Gene name	Accession number	Primer	Size (bp)	Tm (°C)	Enzyme	SNP	Digested fragments length (bp)
THOC5	NC_019474.2	F : 5’-CCC AGG AAG GTT TGA TTC TC-3’	322	60	Tail	g.682	CC = 129, 193 bp
		R : 5’-CAC ACC TAC CAT GTA GTC CT-3’				34589	CT = 129, 193, 322 bp
		C>T					TT = 322 bp

2.3. DNA extraction and PCR-RFLP amplification
Genomic DNA was extracted from blood using the Geneaid Genomic DNA Mini Kit. Using MEGA 6.0 software, gene-specific primers for the THOC5 gene (table 1) were developed. The PCR was conducted with reaction of 15 μL containing 1 μL of genomic DNA, 0.2 μL of forward and reverse primers, 7.5 μL of MyTaq Red Mix and 6.1 μL of ddH2O. THOC5 gene fragment amplification was performed using the ESCO GeneAmp PCR system with the following thermocycling profile: initial denaturation at 94°C for 1 min, then 35 cycles at 94°C for 10 s, 60°C for 15 s, 72°C for 15 s, and final extension at 72°C for
1 min. The DNA amplicon was visualized by 1.5 percent electrophoresis gel. The validation of SNP genotyping was carried out using PCR-RFLP. The DNA amplification product and TaqI enzymes restriction were incubated for 4 hours at 37°C. Using 2 percent agarose gel, the digested products were visualized.

2.4. Data analysis
The value of the allele frequency, genotype frequencies, and the equilibrium value of Hardy-Weinberg were performed according to Nei and Kumar (2000) after genotypes obtained through PCR-RFLP method. Statistical analysis was calculated using SAS ver 9.2. PROC GLM was used to assess the effects of genotype using a fixed effect model (ANOVA) [18].

\[Y_{ijk} = \mu + \text{genotype}_i + e_{ij} \]

Where:
- \(Y_{ijk} \) = is the sheepmeat compounds (fatty acid composition)
- \(\mu \) = is the population mean
- \(\text{genotype}_i \) = is the fixed effect of i-th genotype (i = CC and CT)
- \(e_{ij} \) = is the residual error

3. Result and discussion

3.1. Phenotype of fatty acid composition in Indonesian sheep
The mean and standard deviation (SD) value of fatty acid composition was presented in table 2. Thirty-one fatty acid compositions were detected, consisting of fourteen SFA and seventeen UFA (PUFA and MUFA). Erucic acid (C22:1n9) showed the lowest mean values (0.0004%) among all the fatty acid composition, whereas oleic acid (C18:1n9c) showed the highest mean values (24.090%). The mean value of fatty acid composition in this study including palmitic acid (C16:0), myristic acid (C14:0), and oleic acid (C18:1n9c), and stearic acid (C18:0) were low in comparison with previous studies [19,20].

The predominant SFAs were palmitic acid (C16:0, 18.425%) and stearic acid (C18:0, 15.703%). These findings are comparable to those reported in prior studies [7,21,22] where these SFA were predominant in sheep. Palmitic acid (C16:0) has been related to increased total plasma cholesterol, particularly LDL (low-density lipoproteins) [23]. The stearic acid (C18:0) improved the plasma cholesterol profile by decreasing total or HDL (high-density lipoproteins) cholesterol ratio compared to other SFA and tended to raise LDL cholesterol, increased the ratio of total HDL cholesterol compared to UFA [24]. The most abundant UFA was oleic acid (C18:1n9c, 24.090%). This result was consistent with the previous study [7,21,25]. The oleic acid (C18:1n9c) has decreased the total plasma cholesterol, however it has not changed plasma triglycerides and non-esterified fatty acids [26].

3.2. Polymorphism of THOC5 gene
A SNP was genotyped in THOC5 gene at position g.68234589 C>T. The SNP was revealed by PCR-RFLP and the THOC5 gene showed two genotypes namely CC and CT genotype. DNA restriction fragments acquired for g.68234589 C>T of THOC5 polymorphism were: 129, 193 bp for CC genotype and 129, 193, 322 bp for CT genotype (figure 1).

The CC genotype was more frequent than CT, and TT genotype was not found in our populations. This result was consistent with a prior study reported with different genes (CYP2A6 and CAST-MspI locus) [27,28] in Indonesian sheep. The TT genotype was not detected, probably due to direct selection or a non-random mating system [29]. The THOC5 gene (g.68234589 C>T) was identified in the Hardy Weinberg Equilibrium (HWE) (P<0.05) as a fundamental concept of population genetics [30]. HWE is used to calculate the number of homozygous and heterozygous carrier variants based on their allele frequency in populations that do not develop [31]. HWE is in an equilibrium state if the frequency of genotypes in the population remains constant among generations in the absence of external factors.
disturbance [30]. The number of animals per genotype and allel frequency of THOC5 was shown in table 3.

Table 2. Fatty acid composition (%), mean value and standard deviation (SD) in Indonesian sheep.

Fatty acid composition (%)	Mean (n=83)	SD
Fat content	4.143	3.357
Caprilic acid (C8:0)	0.046	0.121
Capric acid (C10:0)	0.088	0.050
Laurie acid (C12:0)	0.484	0.501
Tridecanoic acid (C13:0)	0.011	0.013
Myristic acid (C14:0)	3.133	1.778
Myristoleic acid (C14:1)	0.151	0.106
Pentadecanoic acid (C15:0)	0.497	0.147
Palmitic acid (C16:0)	18.425	3.883
Palmitoleic acid (C16:1)	1.530	0.399
Heptadecanoic acid (C17:0)	0.936	0.340
Ginkgolic acid (C17:1)	0.390	0.348
Stearic acid (C18:0)	15.703	5.575
Elaidic acid (C18:1n9c)	2.916	7.861
Oleic acid (C18:1n9c)	24.090	9.400
Linoleic acid (C18:2n6c)	2.427	2.008
Linolenic acid (C18:3n3)	0.290	0.231
v-Linolenic acid (C18:3n6)	0.032	0.067
Arachidic acid (C20:0)	0.117	0.101
Eicosenoic acid (C20:1)	0.029	0.087
Eicosadienoic acid (C20:2)	0.052	0.055
Cis-8,11,14-Eicosatrienoic acid (C20:3n6)	0.079	0.121
Arachidonic acid (C20:4n6)	1.020	1.414
Cis-5,8,11,14,17-Eicosapentaenoic acid (C20:5n3)	0.166	0.195
Heneicosylic acid (C21:0)	0.021	0.021
Behenic acid (C22:0)	0.070	0.093
Erucic acid (C22:1n9)	0.0004	0.002
Cis-13,16-Docosadienoic acid (C22:2)	0.007	0.041
Docosahexaenoic acid (C22:6n3)	0.051	0.076
Tricosanoic (C23:0)	0.035	0.055
Tetracosanoic acid (C24:0)	0.054	0.105
Nervonic acid (C24:1)	0.047	0.097
Fatty acid total	72.920	9.200
Saturated fatty acid (SFA)	39.625	7.637
Monounsaturated fatty acid (MUFA)	26.210	9.600
Polyunsaturated fatty acid (PUFA)	4.119	3.030
Unsaturated fatty acid (UFA)	30.330	9.720
3.3. Association of THOC5 gene polymorphisms related to fatty acid composition

Association analysis showed that THOC5 (g.68234589 C>T) was strongly (P<0.05) related to fatty acid composition, which includes unsaturated fatty acid, palmitoleic acid (C16:1), and saturated fatty acid; stearic acid; (C18:0). The CC genotype was associated with a higher level of unsaturated fatty acid and a lower saturated fatty acid level, whereas the CT genotype was vice versa (table 4).

The THOC5 gene (g.68234589 C>T) was significantly (P<0.05) associated with palmitoleic acid (C16:1) and stearic acid (C18:0). This result was consistent with the previous study of various genes in Indonesian sheep [14,16]. Palmitoleic acid (C16:1) has been observed to have potential benefits on increased insulin sensitivity, metabolism of cholesterol, hemostasis, decreased bodyweight, enhanced hyperglycemia, and hypertriglyceridemia [32,33].

Stearic acid (C18:0) has been observed to have potential benefits on decreased cardiovascular and cancer risk different from other saturated fatty acids [34]. The neutral effect of stearic acid (C18:0) on whole blood and low-density lipoprotein (LDL) cholesterol levels has been demonstrated [35]. The THOC5 gene is involved in lipid and fatty acid metabolism [9]. A previous study reported that the THOC5 gene, together with all three study populations, was significantly related to HDL-C in a simultaneous meta-analysis and further studied in an in vitro analysis to elucidate its potentially important role in the metabolism of HDL-C [36]. This study showed the important role of the THOC5 gene in the metabolism of fatty acids. Sheep with a high level of unsaturated fatty acid (palmitoleic acid, C16:1) and a low level of saturated fatty acid (stearic acid, C18:0) may be produced by a selection of sheep with a CC genotype.

Table 3. The number of animals per genotype and allele frequency

Sample	N	Genotype	Allele	Chi square (χ²)
Indonesian sheep	120	CC	CT	TT
				0.94 0.06 0.533

Figure 1. PCR-RFLP result for the THOC5 Gene
Table 4. Analysis of THOC5 genotype and association.

Composition of fatty acid (%)	Genotype		
	CC	CT	TT
Fat content	4.30±3.39	1.67±0.82	0.00±0.00
Capric acid (C8:0)	0.04±0.12	0.00±0.00	0.00±0.00
Caprylic acid (C10:0)	0.09±0.05	0.05±0.01	0.00±0.00
Lauric acid (C12:0)	0.49±0.51	0.37±0.13	0.00±0.00
Tridecanoic acid (C13:0)	0.01±0.01	0.01±0.01	0.00±0.00
Myristic acid (C14:0)	3.19±1.81	2.20±0.43	0.00±0.00
Myristoleic acid (C14:1)	0.15±0.10	0.08±0.02	0.00±0.00
Pentadecanoic acid (C15:0)	0.49±0.14	0.47±0.14	0.00±0.00
Palmitic acid (C16:0)	18.58±3.92	15.98±2.09	0.00±0.00
Palmitoleic acid (C16:1)	1.55±0.39	1.17±0.18	0.00±0.00
Heptadecanoic acid (C17:0)	0.94±0.34	0.77±0.09	0.00±0.00
Ginkgolic acid (C17:1)	0.39±0.35	0.29±0.03	0.00±0.00
Stearic acid (C18:0)	15.37±5.51	20.89±3.92	0.00±0.00
Elaidic acid (C18:1n9t)	2.80±7.74	4.62±10.34	0.00±0.00
Oleic acid (C18:1n9c)	24.50±9.35	17.51±8.19	0.00±0.00
Linoleic acid (C18:2n6c)	2.42±2.05	2.40±1.30	0.00±0.00
Linolenic acid (C18:3n3)	0.30±0.23	0.12±0.02	0.00±0.00
v-Linolenic acid (C18:3n6)	0.03±0.06	0.02±0.04	0.00±0.00
Arachidic acid (C20:0)	0.03±0.08	0.12±0.07	0.00±0.00
Eicosenoic acid (C20:1)	0.05±0.05	0.05±0.01	0.00±0.00
Eicosadienoic acid (C20:2)	0.05±0.12	0.08±0.04	0.00±0.00
Cis-8,11,14-Eicosatrienoic acid (C20:3n6)	0.17±0.19	0.08±0.05	0.00±0.00
Arachidonic acid (C20:4n6)	1.01±1.45	1.13±0.59	0.00±0.00
Cis-5,8,11,14,17-Eicosapentaenoic acid (C20:5n3)	0.02±0.02	0.02±0.01	0.00±0.00
Heneicosylic acid (C21:0)	0.06±0.09	0.07±0.02	0.00±0.00
Behenic acid (C22:0)	0.0005±0.002	0.00±0.00	0.00±0.00
Erucic acid (C22:1n9h)	0.17±0.19	0.08±0.05	0.00±0.00
Cis-13,16-Docosadienoic acid (C22:2)	0.007±0.04	0.00±0.00	0.00±0.00
Docosahexaenoic acid (C22:6n3)	0.05±0.07	0.04±0.02	0.00±0.00
Tricosanoic acid (C23:0)	0.03±0.05	0.04±0.02	0.00±0.00
Tetraicosanoic acid (C24:0)	0.05±0.10	0.05±0.02	0.00±0.00
Nervonic acid (C24:1)	0.04±0.10	0.03±0.02	0.00±0.00
Fatty acid total	73.17±9.33	68.79±6.03	0.00±0.00
Saturated fatty acid (SFA)	39.53±7.72	41.09±6.54	0.00±0.00
Monounsaturated fatty acid (MUFA)	26.66±9.54	19.10±8.30	0.00±0.00
Polyunsaturated fatty acid (PUFA)	4.13±3.10	3.94±1.48	0.00±0.00
Unsaturated fatty acid (UFA)	30.79±9.61	23.04±9.22	0.00±0.00

Mean±SD are the percentage unit of fatty acid composition.
ab Mean value with differ significantly at P<0.05.

4. Conclusion
The THOC5 gene (g.68234589 C>T) is polymorphic in Indonesian sheep. The association analysis shows that the THOC5 gene is significantly (P<0.05) associated with the fatty acid composition, including palmitoleic acid (C16:1), unsaturated fatty acid, and stearic acid (C18:0), saturated fatty acid. The CC genotype was associated with a higher level of unsaturated fatty acid and a lower saturated fatty acid level. These results indicate that the SNP in the THOC5 gene (g.68234589 C>T) may contribute to the fatty acid composition of sheep and could therefore be applied as a candidate gene to select sheep meat with high unsaturated fatty acid and low saturated fatty acid.
Acknowledgment
Authors are grateful to the RISTEKDIKTI for funding this research on the fiscal year 2020, Number: 4185/IT3.L1/PN/2020 of 12 May 2020. The authors are also grateful to those colleagues who have made positive advice for improving this paper.

References
[1] Wood J W, Enser M, Fisher A V, Nute G R, Sheard P R, Richardson R I, Hughes S I and Whittington F M 2008 Fat deposition, fatty acid composition and meat quality: A review Meat Sci. 78 343–358
[2] Wood J D, Enser M, Richardson R I and Whittington F M 2007 Fatty acids in meat and meat products in: Fatty Acids in Foods and Their Health Implications 3rd ed Ed Chow C K (New York (UK): CRC Press Taylor & Francis Group)
[3] Hu F B, Stumpfer M J, Manson J E, Rimm E, Colditz G A, Rosner B A, Hennekens C H and Willett W C 1997 Dietary fat intake and the risk of coronary heart disease in women N. Engl. J. Med. 337 1491–99
[4] Posner B M, Cobb J L, Belanger A J, Cupples L A, D’Agostino R B and Stokes J 1991 Dietary lipid predictors of coronary heart disease in men The Framingham Study Arch. Intern. Med. 151 1181–87
[5] Wood J D, Richardson R I, Nute G R, Fisher A V, Campo M M, Kasapidou E, Sheard P R and Enser M 2003 Effect of fatty acids on meat quality: a review Meat Sci. 66 21–32
[6] Gunawan A, Anggrela D, Listyarini K, Abuzahra M A, Jakaria, Yamin M, Inounu I and Sumantri C 2018 Identification of single nucleotide polymorphism and pathway analysis of apolipoprotein A5 (APOA5) related to fatty acid traits in Indonesian sheep Trop. Anim. Sci. J. 41 165–173
[7] Rovadoscki G A, Pertile S F N, Alvarenga A B, Cesar A S M, Pertille F, Pertini J, Franco V, Soares WVB, Morota G, et al. 2018 Estimates of genomic heritability and genome-wide association study for fatty acids profile in Santa Ines sheep BMC Genom 19 1–14
[8] Bishop S C, Richardson R I, Nute G R, Gibson K P, McLean K A and Karamichou E 2006 Quantitative Trait Loci for Meat Quality in Sheep In Proc. 9th Annual Langford Food Industry Conf. on New Developments in Sheepmeat Quality pp 49–53
[9] Braz C U, Taylor J F, Bresolin T, Espigolan R, Feitosa F L B, Carvalheiro R, Baldi F, de Albuquerque L G and de Oliveira H N 2019 Sliding window haplotype approaches overcome single SNP analysis limitations in identifying genes for meat tenderness in Nelore cattle BMC Gen. 20 1–12
[10] Aali M, Moradi-Shahrbabak H, Moradi-Shahrbabak M, Sadeghi M and Kohram H 2016 Polymorphism in the SCD gene is associated with meat quality and fatty acid composition in Iranian fat- and thin-tailed sheep breeds Livestock Sci. 188 1–40
[11] Gunawan A, Sahertian L, Listyarini K, Abuzahra M A M, Yamin M, Sumantri C, Inounu I and Jakarta 2018 Identification of TGFB2 Gene Polymorphism Associated with Fatty Acid Traits in Indonesian Sheep The 4th International Seminar on Animal Industry 23–30 August 2018 (Bogor)
[12] Gunawan A, Tazkya S, Listyarini K, Yamin M, Inounu I and Sumantri C 2018 Karakterisasi gen KIF12 (kinesin family 12) serta hubungannya dengan komposisi asam lemak pada domba JITRO 5 88–94
[13] Gunawan A, Pramukti F W, Listyarini K, Abuzahra M A M, Jakaria, Sumantri C, Inounu I and Uddin M J 2019 Novel variant in the leptin receptor (LEPR) gene and its association with fat quality, odor, and flavour in sheep J. Indonesian Trop. Anim. Agric. 44 1–9
[14] Gunawan A, Harahap R S, Listyarini K and Sumantri C 2019 Identifikasi keragaman gen DGAT1 serta asosiasinya terhadap karakteristik karkas dan sifat perlemakan domba JITRO 6 267–74
[15] Munyaneza J P, Gunawan A and Noor RR 2019 Identification of single nucleotide polymorphism and association analysis of alpha 2-heremans Schmid glycoprotein (AHSG) gene related to fatty
acid traits in sheep Int. J. Sci. Res. Sci. Tech. 6 351–60
[16] Munyaneza J P, Gunawan A and Noor R R 2019 Exploring effects of betaine-homocysteine methyltransferase (BHMT) gene polymorphisms on fatty acid traits and cholesterol in sheep J. Indonesian Trop. Anim. Agric. 44 243–51
[17] Karamichou E, Richardson R I, Nute G R, Gibson K P and Bishop S C 2006 Genetic analyses and quantitative trait loci detection, using a partial genome scan, for intramuscular fatty acid composition in Scottish Blackface sheep J. Anim. Sci. 84 3228–38
[18] Nei M and Kumar S 2000 Molecular Evolution and Phylogenetics (New York: Oxford University Press)
[19] Enser M, Hallett K, Hewitt B, Fursey G A J and Wood J D 1996 Fatty acid content and composition of English beef, lamb and pork at retail Meat Sci. 42 443–56
[20] Demirel G, Ozpinar H, Nazli B and Keser O 2006 Fatty acids of lamb meat from two breeds fed different forage: concentrate ratio Meat Sci. 72 229–35
[21] Nudda A, McGuire M K, Battacone G, Manca M G, Boe R, and Pulina G 2011 Documentation of fatty acid profiles in lamb meat and lamb-based infant foods J Food Sci 76 43–47
[22] Sahu C, Enser M E, Campo M M, Nute G R, Maria G, and Sierra I and Wood J D 2000 Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain Meat Sci 54 339–46
[23] Ohlsson L 2010 Dairy products and plasma cholesterol levels Food Nutr. Res. 54 5124
[24] Hunter J E, Zhang J and Kris-Etherton M K 2010 Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review Am. J. Clin. Nutr. 91 46–63
[25] Landim A V, Cardoso M T M, Castanheira M, Fioravanti M C S, Louvandini H, and McManus C 2011 Fatty acid profile of hair lambs and their crossbreds slaughtered at different weights Trop Anim. Health Prod. 43 1561–66
[26] Karacor K and Cam M 2015 Effects of oleic acid Med. Sci. Discov. 2 125–32
[27] Listyarini K, Jakaria, Uddin M J, Sumantri C, and Gunawan A 2018 Association and expression of CYP2A6 and KIF12 genes related to lamb flavour and odour Trop. Anim. Sci. J. 41 100–107
[28] Sumantri C, Diyono R, Farajallah A and Inoumu I 2008 Polymorphism of calpastatin gene and its effect on body weight of local sheeps JTV 13 117–26
[29] Bourdon R M 2000 Understanding Animal Breeding 2nd Ed (New Jersey: Prentice Hall Inc. Upper Saddle River)
[30] Edwards A W F 2008 G H Hardy (1908) and hardy–weinberg equilibrium Genetics 179 1143 1150
[31] Abramov N, Brass A and Tassabehji M 2020 Hardy-weinberg equilibrium in the large scale genomic sequencing era Front Genet. 11 210
[32] Yang Z, Miyahara H and Hatanaka A 2011 Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay mice with genetic type 2 diabetes Lipids Health Dis 10 120
[33] Morgan N G and Dhayal S 2010 Unsaturated fatty acids as cytoprotective agents in the pancreatic beta-cell Prostaglandins Leukot Essent Fatty Acids 82 231–36
[34] Senyilmaz-Tiebe D, Pfaff D H, Virtue S, Schwarz K V, Fleming T, Altamura S, Muckenthaler M U, Okun J G, Vidal-Puig A, Naworth P and Telemans A A 2018 Dietary stearic acid regulates mitochondria in vivo in humans Nat. Commun. 9 3129
[35] Grundy SM 1994 Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acid Am. J. Clin. Nutr. 60 986–90
[36] Keller M, Schleinitz D, Forster J, Tonjes A, Botcher Y, Fischer-Rosinsky A, Breitfeld J, Weidle K, Rayner NW, Burkhardt R, et al 2013 THOC5: a novel gene involved in HDL-cholesterol metabolism J. Lipid Res. 54 3170–76