Orbital-quenching–induced magnetism in Ba$_2$NaOsO$_6$

K.-W. Lee$^{(a)}$ and W. E. Pickett

Department of Physics, University of California - Davis, CA 95616, USA

received 15 August 2007; accepted in final form 11 September 2007
published online 10 October 2007

PACS 71.70.Ej – Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect
PACS 71.27.+a – Strongly correlated electron systems; heavy fermions
PACS 77.84.Bw – Elements, oxides, nitrides, borides, carbidic, chalcogenides, etc.

Abstract – The double perovskite Ba$_2$NaOsO$_6$ with heptavalent Os (d^1) is observed to remain in the ideal cubic structure (i.e. without orbital ordering) despite single occupation of the t_{2g} orbitals, even in the ferromagnetically ordered phase below 6.8 K. Analysis based on the ab initio dispersion expressed in terms of an Os t_{2g}-based Wannier function picture, spin-orbit coupling, Hund’s coupling, and strong Coulomb repulsion shows that the magnetic OsO$_6$ cluster is near a momentless condition due to spin and orbital compensation. Quenching (hybridization) then drives the emergence of the small moment. This compensation, unprecedented in transition metals, arises in a unified picture that accounts for the observed Mott insulating behavior.

Copyright © EPLA, 2007

Orbital physics in transition metal oxides has attracted a good deal of attention for three decades, with much of the activity focused on coupling to spin, charge, and lattice degrees of freedom in d^1 systems. The d^1 configuration is typically found in the early 3d transition metals (TMs), i.e. titanates and vanadates, and the associated phenomena —often revolving around the tendency to orbitally order— are remarkably rich. The d^1 configuration can also occur in the mid- to late-5d TM ions, which are distinguished also by unusually high formal valence states.

Unless fully itinerant, partially filled d shells lead to non-spherical ions that often are accommodated by orbital ordering (OO), that is, ordered alignment of the filled orbitals [1,2] in a manner that minimizes strain, electronic, and magnetic energies [3]. An outcome is that OO has been identified as the driving mechanism in symmetry-breaking structural and magnetic transitions [2], and may also be coupled to magnetism and charge order, the Mott insulating d^1 perovskite YTiO$_3$ being a well-studied example [4]. Very different behavior is shown by the d^1 system LaTiO$_3$ which has a structural distortion although evidence of OO has been difficult to obtain. A prominent explanation is that orbital fluctuations dominate, leading to a disordered orbital liquid ground state [5,6].

The double-perovskite structure Ba$_2$NaOsO$_6$ (BNOO) is a rare example of a heptavalent osmium compound, also rare because it is a ferromagnetic insulator [7,8]1 ($T_C = 6.8$ K), and it shows other perplexing behavior. Although it has a single 5d electron in the t_{2g} complex that orders magnetically, it shows no evidence of orbital order that would destroy its cubic symmetry. On the other hand, the sister compound La$_2$NaOsO$_6$ with high-spin d^3 Os configuration with nominally cubic symmetry is observed to be highly distorted [9], which is ascribed to misfit arising from the small cation radius. The question of spin ordering surely is a delicate one, since isostructural and isovalent Ba$_2$LiOsO$_6$ (BLOO) orders antiferromagnetically in spite of a very similar Curie-Weiss susceptibility [7] and nearly identical volume.

The question of formal valence, and identification of several material constants, can be identified from first principles local density approximation (LDA) calculations using two all-electron full-potential electronic methods of FPLO and Wien2k [10–12]2. The Fermi level E_F lies within the t_{2g} bands, confirming the heptavalent nature of the Os ion. A crystal (ligned) field splitting of almost 5 eV separates the centroids of the e_g and t_{2g} bands, reflecting the unusually strong 5d-2p hybridization, and a gap of roughly 1.5 eV separates the t_{2g} symmetry

1Erickson et al. [8] measure no hysteresis, suggesting BNOO is not a simple ferrromagnet (such as having non-collinearity).

2In FPLO, basis orbitals were chosen such as Ba ($4d5s5p$)6s6p5d, Na (2s2p)3s3p3d, Os (4d4f5s5p)6s6p5d, and O 2s2p3d. (The orbitals in parentheses indicates semicore orbitals.) In Wien2k, the basis size was determined by $R_{mt}K_{max} = 7.0$ and APW sphere radii (2.5 for Ba, 2.14 for Na, 1.86 for Os, 1.65 for O).
bands from the more tightly bound O 2p-dominated OsO₆ cluster orbitals, with gaps separating various degenerate molecular orbitals [13,14].

Several complications must be taken into account to obtain a realistic picture of the electronic structure. i) The strong hybridization of Os 5d orbitals with O 2p states, which has ramifications in this double-perovskite structure beyond the usual ones in oxides. ii) Strong spin-orbit coupling (SOC) on the Os site has important consequences. iii) Hund’s (exchange) coupling effectively selects the occupied orbital. iv) Intra-cluster Coulomb repulsion, which is the obvious suspect for a magnetic insulating state in an open shell system. Finally, it is likely that quantum fluctuations may also play an important role in determining the observed behavior. While the interplay of spin and orbital physics has been addressed in considerable detail [15], the large SOC in BNOO puts this compound in a distinct class relative to the early 3d systems.

The unusual aspects of BNOO then are: a Mott insulating state based on a localized d¹ ion that nonetheless retains a cubic environment, and a small ordered moment in a 3D system where fluctuation effects typically are minor. It is most instructive to consider the various aspects of the electronic structure consecutively. We build an understanding of the electronic structure and competing mechanisms in a different manner from Xiang and Whangbo [16] in their study of BNOO.

Isolated t₂g bands: cluster orbitals. – The t₂g bands, with bandwidth $W = 1.05$ eV, form a self-contained system for the purpose of understanding the low-energy, low-temperature physics. The three bands can be represented accurately in a Wannier function basis with three first neighbor d-d hopping parameters (in meV) $t_\sigma = -121$, $t_\pi = 64$, $t_\delta = 24$ meV, with on-site energy $\varepsilon = 202$. (For BLOO $t_\sigma = -131$ is the only change.) Note that t_δ is necessary to give the excellent representation of the bands shown in fig. 1. The corresponding total and atom-decomposed densities of states (DOS) are pictured in fig. 2, which reveals the isolation of the narrow t₂g bands. As pointed out by Erickson et al. [8], the overlap takes place between O 2pσ orbitals on neighboring OsO₆ octahedra; these O orbitals comprise the “tails” of the t₂g symmetry cluster orbitals. The Fermi level lies 0.5 eV (one electron) up into the bands. The DOS shown in fig. 2 is highly non-symmetric about their center, with 2/3 of the weight lying in the upper half of the bands.

As analyzed in some detail by Singh and coworkers [13,14] in the context of pentavalent Ru in Sr₂YRuO₆ which also contains a closed shell ion (Y³⁺) in one of the cation sites, the OsO₆ unit should be approached as an isolated cluster. The Os t₂g states generalize to cluster orbitals with the Os 5dₓᵧ state (say) bonded to the pσ orbitals lying in the (x, y)-plane. We calculate that half of the density of the t₂g bands lies on Os, the other half distributed amongst four pσ orbitals, and the cluster orbital (with symmetric partners D_{xz}, D_{yz}) is

$$D_{xy} \approx \sqrt{\frac{T}{2}} d_{xy} + \sqrt{\frac{T}{8}} \sum_{j=1}^{4} p_{\sigma,j}. \quad (1)$$

This cluster orbital aspect, adopted also by Erickson and collaborators [8], is central to the following analysis. The overlap of these cluster orbitals is what is described by t_σ, t_π, t_δ.

Tendency toward magnetism. – Xiang and Whangbo reported [16] obtaining a FM ground state for
BNOO. Checking out this question with progressively finer k-point samplings of the zone, we find BNNO is not quite unstable to a FM state. For meshes of $8 \times 8 \times 8$ or finer, the magnetic moment that is obtained on coarser meshes vanishes. Thus the Stoner interaction constant can be obtained from the condition of (near) fulfillment of the Stoner instability: $I_{st} = 1/N(E_F) = 0.35$ eV (the Fermi level density of states $N(E_F) = 2.88$ states/eV per spin.) As will also be the case for the SOC strength (below), it is important that this parameter is not evaluated from the Os atomic potential alone, because the relevant local (molecular) orbital is only half Os $5d$, and I_{st} is reduced accordingly. Hund’s (exchange) splitting for a fully polarized d^1 orbital is $J_H \approx I_{st} = 0.35$ eV, which is smaller than the bandwidth but comparable to the SOC strength (see below).

Spin-orbit coupling. – It has been known for fifty years [17–19] that the t_{2g} complex can be mapped onto an angular momentum $\vec{L} \rightarrow -\vec{L}$ with quantum number $L = 1$, so within these bands the SOC operator becomes $-\xi \vec{L} \cdot \vec{S}$ with $\xi > 0$. The basis $\{D_{xy}, D_{yz}, D_{zx}\}$ can be mapped onto the L_z eigenstates to $|0\> \rightarrow D_{xy}; |\pm 1\> \rightarrow D_{zx} \pm iD_{yz}$, where the integer denotes the angular momentum projection m_L onto \hat{z}. The negative sign leads to an inverted spectrum, with the $J = \frac{3}{2}$ quartet at $-\xi/2$ and the $J = \frac{1}{2}$ doublet at $+\xi$. The calculated splitting at $k = 0$ gives a large SOC strength $\xi = 0.30$ eV, so large it splits off the entire upper $J = 1/2$ band as is clear from fig. 1.

The DOS with SOC included is displayed in fig. 3. In addition to the split-off upper $J = \frac{1}{2}$ band, the lower two bands are nearly disjoint, being bound together only by the degeneracy within the $J = \frac{3}{2}$ states at zero momentum (fig. 1). As a result, the problem of the Mott insulating state does not rigorously reduce to a single band problem though it may be effectively single band. As a result of the mapping $\vec{L} \rightarrow -\vec{L}$ within the t_{2g} states of interest, the total angular momentum is $J = \vec{S} - \vec{L}$ $(J = \frac{1}{2}, \frac{3}{2})$, the magnetic moment is $\vec{M} = \mu_B(2\vec{S} - \vec{L})$, and the g-factor is $g_J = \frac{3}{2} - \frac{5}{2}\sqrt{(J + 1)}$. In this isolated cluster limit, the r.m.s. moment $(\vec{M}^2)^{1/2}$ is small $(1 \mu_B)$ for $J = \frac{1}{2}$ but is larger $(\sqrt{7} \mu_B)$ in the $J = \frac{3}{2}$ ground state.

At the band structure level, there remains only Hund’s exchange splitting $H_{ex} = -J_H S_z$ due to the Os moment, which becomes important because this interaction lifts the remaining degeneracies. The lowest state at $k = 0$ is

$$|m_L m_S\> = |+1\> \propto [D_{zx} + iD_{yz}] |\uparrow\>,$$

but the dispersion over overlapping bands and metallic-ity, so intra-cluster Coulomb repulsion effects are required to describe the observed insulating character, as also concluded by Xiang and Whangbo.

Intra-atomic vs. intra-molecular repulsion: the Mott insulating state. – For a lattice of d^1 ions in t_{2g} orbitals, an on-site Hubbard repulsion of roughly $U \sim W$ is expected to lead to a Mott insulating state. To model this insulating state, we initially applied the correlated band LDA + U method, using $J = 1$ eV (whose value seemed immaterial) and varying U. Since the initial interest was to look for an orbitally ordered solution, the full rotationally invariant form of interaction implemented in Wien2k was used, and (following conventional practice) the U (and J) interaction is applied only to the Os 5d orbitals. A Mott insulating state was not obtained for values of U even several times larger than W. At $U = 4$ eV $\approx 4W$ the increasing exchange splitting leads only to a half metallic state, not an insulating state.

This failure of the LDA + U method, as conventionally applied to atomic orbitals, to produce the expected Mott insulating state is a situation we have observed previously in 4d and 5d oxides. The problem can be cast not as a failure of the LDA + U approach per se, but rather of its application to an extended cluster orbital by applying the orbital potentials solely to the Os 5d atomic function, rather than the entire molecular orbital D. Since only 50% of the D orbital’s charge is Os 5d, the LDA + U correction tends mainly to change the relative amounts of 5d and 2p character, rather than to open a gap by shifting the energy of a cluster orbital. As a result, no state with integer 5d occupation number can arise, whereas in the LDA + U method integer occupation is necessary to obtain the insulating state. This problem is cured by using the Wannier basis, rather than the atomic state basis, in the LDA + U method.

The full correlated electronic structure. – The unfolding of the electronic structure that we find most instructive is pictured in fig. 4. We begin from the basis of degenerate orthonormal cluster orbitals (H_0), include SOC interaction H_{SOC}, then account for Hund’s (exchange) splitting
interaction J that breaks the degeneracy, and finally the repulsive Coulomb interaction H_U (as in LDA + U)

$$H = H_0 + \xi \vec{L} \cdot \vec{S} - J_H \vec{S}_z + H_U. \quad (3)$$

All of these are single site, and therefore simple to visualize. Kinetic effects (banding) is a small effect that enables charge transfer, but when it does not destroy the gap, as here, it is the least significant.

As mentioned above, Hund’s exchange lowers the pure spin up $| + 1 \uparrow \rangle$ member of the lower spin-orbit quartet, making it the orbital that must be occupied to achieve the lowest energy. Then Coulomb repulsion lowers this occupied state by $\sim U$ with respect to the others. We find that a critical (minimum) value of $U_c \sim 1.1 eV$ is required to produce the Mott insulating state. This critical value is significantly less than (therefore consistent with) values that have been suggested [8,16] as applicable to BNOO. This agreement reaffirms that Coulomb repulsion on top of strong SOC is an essential aspect of the mechanism underlying the insulating state. The compensation of the moments distinguishes between the various viewpoints, as we now describe.

The $| + 1 \uparrow \rangle$ state is pure-spin and pure-orbital moment, and within this state the z-component of the moment $\langle M_z \rangle = (+ 1 \uparrow | 2S_z - L_z | + 1 \uparrow) \approx 0$ is compensated precisely by opposing spin and orbital contributions. This feature makes BNOO an unprecedented transition metal analog of the case of the Sm$^{3+}$ d^2 ion [20] where $L = 2S$ and $M_z \sim 0$: the ion/cluster is magnetic ($J \neq 0$) but there is nearly vanishing total moment for a fixed direction of spin. The effect of mixing-in of other states by the kinetic hopping (quenching) is measured by the resulting exchange coupling $4\xi^2 t_{2g} \sim 30 \text{meV}$ ($t \approx 120 \text{meV}$, $U = 1.5-2 \text{eV}$), i.e. it is small compared to other energies in the system. While the spin and orbital moments each depend fairly strongly on the value of U (table 1), the cancellation between the two remains near-complete. This cancellation is a nontrivial effect, since appreciable mixing-in of the $| 0 \downarrow \rangle$ state along (say) would degrade the spin moment without affecting the orbital moment.

Discussion. – The small ordered moment was one of the principle questions about BNOO. From the point of view presented here, a small moment is expected and the question becomes rather: why is it as large as observed? Naively, this near-pure spin state is unexpected, given the strong SOC which is largely regarded as mixing (not separating out) spin and orbital moments, nevertheless it is an occurrence that has recently been anticipated [21]. At the level of description of the Hamiltonian equation (3) in the mean-field approximation, we have a Curie-Weiss moment $(M^2)^{1/2} = \sqrt{7} \mu_B$ and an ordered FM moment of 0.4 μ_B (see table 1), which is only nonzero due to quenching. The agreement with the observed values (near 0.7 and 0.2 μ_B, respectively) in absolute terms is not good, however one would expect a small ordered moment of 0.2 μ_B to be difficult to reproduce in a first-principles manner. The degree of collinearity of \vec{S} and $\vec{\xi}$, which finally determines the moment, is sensitive to the environment. The magnitude of collinearity, $\| \vec{L} \cdot \vec{S} \| / (\| S \| \| L \|)$, is only 40% in the $J = \frac{3}{2}$ manifold anyway. Adding a crystalline anisotropy term $\gamma\xi^2 L_z^2$ decreases the magnitude of collinearity rapidly, by a further 35% for $\gamma = 6 \xi$ and by 60% for $\gamma = 2 \xi$ (this is orbital moment quenching). The quantum fluctuations are thus quite sensitive to the environment.

The matter of quantitative agreement of moments is actually a broader question: the related compound Ba$_2$CaOsO$_6$ (BCOO) with one more electron and $S = 1$ and a cubic crystal structure is more conventional, yet it has a Curie-Weiss moment [22] of 1.61 μ_B that is also far below the spin-only value of 2.83 μ_B. The Re-based d^3 double perovskites Sr$_2$XReO$_6$, X = Mg and Ca, on the other hand, experience much smaller SOC and have moments equal to the spin-only values and display structural distortions as the conventional picture would suggest. This distinction supports the involvement of strong spin-orbit coupling in both the small moment and the “restoration” of cubic symmetry in the heptavalent osmates BNOO and BLOO.

The magnetic ordering issue (BNOO is FM; isostructural and isovalent BLOO with almost identical volume

Table 1: Values of spin, orbital, and total moments vs. the value of U, within the correlated t_{2g} shell of BNOO.

U	M_S	M_L	M_{tot}
1.1	−0.717	−0.717	−0.003
1.5	−0.866	+0.043	
2.0	−0.935	+0.041	
is AFM) is a challenging and delicate question involving several complications. First, the fcc lattice itself can be considered one of the most frustrated. Frustration on the triangular lattice, with its edge-sharing triangles, is well known. Symmetric tetrahedra are frustrated, and the pyrochlore lattice of vertex-sharing tetrahedra is a well studied case of strong frustration. The fcc lattice can be pictured as one of space-filling, face-sharing tetrahedra.

Second, spin coupling between the OsO₆ clusters in BNOO proceeds through three distinct hopping processes t_x, t_y, t_z between anisotropic $D_{xx} + iD_{yz}$ cluster orbitals, and the behavior of the Curie-Weiss susceptibility reflects a net antiferromagnetic coupling. Such coupling is strongly frustrated on an fcc lattice, and the actual pattern of ordering can be a delicate problem. The difference between FM BNOO and AFM BLOO, based on some small detail, reflects the geometrical frustration and apparent competing couplings that must be expected in this structure. Note that the cousin $S = \frac{1}{2}$ compound Sr₂CaReO₆, even with the coherent structural distortion that relieves some of the frustration, has been shown to be a spin glass system [23].

Thirdly, orbital ordering is also subject to frustration [24]. The surviving cubic structural symmetry of the Os d^2 ion is remarkable, but one must recognize that the “ferromagnetism” arising in a strongly coupled spin + orbital moment system lowers the electronic symmetry of the system. The question of whether this degree of freedom remains disordered (a combined “spin-orbital liquid”within the FM phase), and thus serves to restore effective cubic symmetry, is a question that requires further study. In any case, frustration and large spin-orbital coupling are key issues in Ba₂NaOsO₆.

This work was supported by DOE grant No. DE-FG03-01ER45876 and DOE’s Computational Materials Science Network.

REFERENCES

[1] KUGEL K. I. and KHOMSKII D. I., Sov. Phys. Usp., 25 (1982) 231.
[2] TOKURA Y. and NAGAOSA N., Science, 288 (2000) 462.
[3] FANG Z. and TERAKURA K., J. Phys.: Condens. Matter, 14 (2002) 3001.
[4] PAVARINI E., YAMASAKI A., NUSCH J. and ANDERSEN O. K., New J. Phys., 7 (2005) 188.
[5] ISHIHARA S., YAMANAKA M. and NAGAOSA N., Phys. Rev. B, 56 (1997) 686.
[6] KHALIJULLIN G. and MAEKAWA S., Phys. Rev. Lett., 85 (2000) 3950.
[7] STITZER K. E., SMITH M. D. and ZUR LOYE H., Solid State Sci., 4 (2002) 311.
[8] ERICKSON A. S., MISRA S., MILLER G. J., GUPTA R. R., SCHLESINGER Z., HARRISON W. A., KIM J. M. and FISHER I. R., Phys. Rev. Lett., 99 (2007) 016404.
[9] GEMMILL W. R., SMITH M. D., PROZOROV R. and ZUR LOYE H.-C., Inorg. Chem., 44 (2005) 2639.
[10] KOEPPERNIK K. and ESCHRIG H., Phys. Rev. B, 59 (1999) 1743.
[11] ESCHRIG H., RICHTER M. and OPAHLE I., in Relativistic Electronic Structure Theory–Part II, edited by SCHERDTFEGER P. (Elsevier, Amsterdam) 2004, pp. 723–776.
[12] BLAHA P., SCHWARZ K., MADSEN G. K. H., KVASNICKA and HORSCH P. and FEINER L. F., Phys. Rev. B, 72 (2005) 214431.
[13] XIANG H. J. and WANGBO M.-H., Phys. Rev. B, 75 (2007) 052407. Equation (2) of this paper contains a sign error which can be located by setting $\theta = \phi = 0$.
[14] STEVENS K. W. H., Proc. R. Soc. London, A, 219 (1953) 542.
[15] GOODENOUGH J. B., Phys. Rev., 171 (1968) 466.
[16] LACROIX C., J. Phys. C, 13 (1980) 5125.
[17] ADACHI H. and INO H., Nature, 401 (1999) 148.
[18] PICKETT W. E. and ESCHRIG H., J. Phys.: Condens. Matter, 19 (2007) 315203.
[19] YAMAMURA K., WAKESHIMA M. and HNATSU Y., J. Solid State Chem., 179 (2006) 605.
[20] WIEBE C. R., GREEDAN J. E., LUKE G. M. and GARDNER J. S., Phys. Rev. B, 65 (2002) 144413.
[21] KHOMSKII D. I. and MOSTOVOY M. V., J. Phys. A, 36 (2003) 9197.