Title
Synoptic-scale transport of reactive nitrogen over the western Pacific in spring

Permalink
https://escholarship.org/uc/item/2rk691rq

Journal
Journal of Geophysical Research, 108(D20)

ISSN
0148-0227

Authors
Miyazaki, Y
Kondo, Y
Koike, M
et al.

Publication Date
2003

DOI
10.1029/2002jd003248

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Synoptic-scale transport of reactive nitrogen over the western Pacific in spring

Y. Miyazaki,1 Y. Kondo,1 M. Koike,2 H. E. Fuelberg,3 C. M. Kiley,3 K. Kita,4 N. Takegawa,1 G. W. Sachse,5 F. Flocke,6 A. J. Weinheimer,6 H. B. Singh,7 F. L. Eisele,6,9 M. Zondlo,6 R. W. Talbot,8 S. T. Sandholm,9 M. A. Avery,5 and D. R. Blake10

Received 29 November 2002; revised 20 March 2003; accepted 2 May 2003; published 3 September 2003.

[1] Pathways of synoptic-scale uplifted transport of pollutants from East Asia and their effects on chemical distributions of NOy species are investigated based on a subset of the aircraft data obtained during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) experiment, conducted in February–April 2001. Meteorological and chemical analyses indicate that 73% of the uplifted transport was associated with warm conveyor belts (WCBs) and convective outflow (COF), which transported air masses strongly impacted by biomass burning over Southeast Asia. The rest (27%) of the uplifted air masses originated over coastal regions of northeast China, where fossil fuel combustion was a dominant source of pollutants. Both WCB associated with a midlatitude cyclone and COF associated with a stationary front over southeast China are examined in detail for the April 4 case. During the TRACE-P period, low NOy (= NO + NO2)/NOy ratios in the WCB and COF indicate that a significant part of the NOy was oxidized to nitric acid (HNO3) and peroxyacetyl nitrate (PAN) during transport. Low HNO3/NOy ratios in the WCB and COF airstreams indicate that a large amount of HNO3 was removed during transport on timescales within 1–3 days. PAN was found to be the dominant form of NOy in air masses transported by the WCB and COF, likely due to the production of PAN in regions of biomass burning and industrial emissions, as well as due to the rapid removal of HNO3 during transport. For emissions that were transported to the free troposphere by WCBs and COF, about 10–20% of the NOy remained after transport to the free troposphere, and 30% of the NOy surviving in the boundary layer in limited cases. The results indicate that the WCB and COF provide both an efficient sink for HNO3 and an efficient mechanism for the transport of PAN from the boundary layer to the free troposphere over the western Pacific. INDEX TERMS: 0368 Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry; 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305); KEYWORDS: warm conveyor belts, convection, reactive nitrogen, TRACE-P, western Pacific

Citation: Miyazaki, Y., et al., Synoptic-scale transport of reactive nitrogen over the western Pacific in spring, J. Geophys. Res., 108(D20), 8788, doi:10.1029/2002JD003248, 2003.

1. Introduction

[2] Midlatitude cyclones have been recognized to play a key role in redistributing trace species and affecting their chemical evolution in the troposphere. Airstreams associated with midlatitude cyclones, such as Warm Conveyor Belts (WCBs) and Dry Airstreams (DAs), are of great importance. The WCB is an ascending airstream ahead of a surface cold front, traveling into the middle to upper troposphere [e.g., Browning and Roberts, 1994], which transports trace species from the boundary layer to the free troposphere.

[3] Recently, characteristics of these airstream types associated with midlatitude cyclones have been studied, especially from a viewpoint of the effects of transport on trace species. Bethan et al. [1998] interpreted chemical and meteorological data in the context of the airstreams within cyclones over the eastern North Atlantic Ocean (NAO) in spring. They concluded that the conveyor belts within
cylones are capable of effectively transporting boundary layer air to the free troposphere. Kowol-Santen et al. [2001] showed that up to \(\sim 70\% \) of carbon monoxide (CO) in the boundary layer can be transported to the free troposphere in the region of WCBs, using a mesoscale model. The chemical characteristics of CO, ozone \((O_3) \), and total reactive nitrogen \((NO_y) \) were studied more systematically for these airstreams associated with midlatitude cyclones over the NAO, based on aircraft measurements [Cooper et al., 2002a, 2002b].

[4] The chemical compositions in the airstreams are controlled mainly by two factors: the geographic distribution of sources and the cyclone pathway. For example, air masses in WCBs vary from fairly clean [Grant et al., 2000] to highly polluted [Stohl and Trickl, 1999], depending on their origins. East Asia also experiences midlatitude cyclones [e.g., Chen et al., 1991, 1992]. In fact, Stohl [2001] has shown that WCB air masses originate most frequently in the boundary layer over the warm water pools in East Asia, similarly to northeast America, based on a large number of trajectory calculations.

[5] The export of NO\(_x\) from the boundary layer to the free troposphere is a key parameter of the global O\(_3\) budget. Liang et al. [1998] showed that the influence of NO\(_y\) exported from the U.S. boundary layer on the global O\(_3\) budget is greater than the influence of direct O\(_3\) transport, by using a three-dimensional (3-D) chemical transport model (CTM). Considering the large emissions of reactive nitrogen over the Asian continent [Streets et al., 2003], transport of NO\(_x\) from the continental boundary layer over Asia to the western Pacific should be of great importance. In 3-D CTM studies, Bey et al. [2001] found that frontal lifting plays a critical role in controlling the chemical characteristics of the Asian outflow in February–March. In fact, cumulus convection associated with a cold front over northeast China has been shown with aircraft measurements to transport highly polluted air to the upper troposphere over the Japan Sea in April [Miyazaki et al., 2002]. There are still, however, large uncertainties in our knowledge concerning the emission rates, chemical processes, and transport processes of NO\(_x\) species [Stohl et al., 2002].

[6] In this study, the chemical data obtained during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) experiment, conducted in February–April 2001, are used to investigate the chemical evolution of NO\(_x\) associated with upward transport due to convection and midlatitude cyclones over the western Pacific in spring. A major objective of this study is to examine pathways of uplifted airstreams from the Asian continent and to investigate the role of upward transport in controlling the distributions of NO\(_y\) species. For this purpose, we focus on uplifted patterns of transport from the boundary layer over the continent. In addition, the chemical evolution of NO\(_x\) species is examined in detail within airstreams in the developing cyclones and convective outflow, based on aircraft measurements.

2. Data Description

[7] During TRACE-P, a variety of chemical species and meteorological parameters were measured on board the NASA P-3B and DC-8 aircraft. The instrumentation of the TRACE-P mission is described in an accompanying overview paper [Jacob et al., 2003]. Measurement data and the instrumentation used in this study are summarized in Table 1. In this study, CO was used as a long-lived tracer in combination with trajectories for identifying airstreams. One-minute merged data were used for the P-3B, and the measured NO\(_2\) was used as total reactive nitrogen. For the DC-8 measurements, NO\(_y\) is defined as the sum of NO + NO\(_2\) + PAN + HNO\(_3\). Uncertainty associated with using the sum of these species as a surrogate for the total NO\(_x\) was estimated to be 14% from the median values and accuracy of each measurement. Alkyl nitrates and peroxypropionyl nitrate (PPN) constituted only 2–3% when they are included in the sum of the NO\(_y\) species for the DC-8 data. Since HNO\(_3\) was measured on the DC-8 with a temporal resolution of 2 min, HNO\(_3\) merged data were used for the DC-8 NO\(_y\) analysis. Table 2 summarizes the relationship between the measured NO\(_y\) and the sum of NO + NO\(_2\) + PAN + HNO\(_3\) for the P-3B. The data used here were obtained over 122°–170°E, 22°–42°N, which is the study area described in section 3.2. On average, 86% of NO\(_x\) at 2–6 km is accounted for as NO\(_x\), PAN, and HNO\(_3\). Although NO\(_x\) was not measured at 7–12 km during TRACE-P, Kondo et al. [1997a] and Singh et al. [1998] reported general agreement of the measured and the sum of NO\(_y\) with a small deficit (10–15%) at 6–12 km over the western Pacific based on data from PEM-West B, conducted in February–March 1994. The deficit of NO\(_x\) in this study can be explained mainly by alkyl nitrates [Simpson et al., 2003; Talbot et al., 2003] and aerosol nitrate (NO\(_3^+\)) [Koike et al., 2003]. We do not include these data in this analysis because the time resolution of these species (typically 5–15 min) would make it difficult to discuss the NO\(_x\) in a selected air mass.

[8] In order to select vertically uplifted patterns of lagrangian transport from the Asian continent, 5-day back trajectories were used. The trajectories were calculated along the flight tracks of the P-3B and DC-8 at 5-min intervals by the Florida State University (FSU) Kinematic Trajectory Model [Fuelberg et al., 1996]. The calculation used the European Centre for Medium-Range Weather Forecasts (ECMWF) data [Fuelberg et al., 2003]. The data set has a \(1^\circ \times 1^\circ \) horizontal resolution and 61 sigma levels in the vertical, supplied at 6-hourly intervals throughout the TRACE-P period. Some limitations of the trajectory calculations are described in previous works [e.g., Stohl et al., 1995]. Geostationary Meteorological Satellite-5 (GMS-5) infrared (IR) images were used for the identification of airstreams associated with cyclones. Images of average rainfall rates, using the Ferriday algorithm [Ferriday and Avery, 1994] on Special Sensor Microwave/Imager (SSM/I) satellite data, are available at the NOAA website http://www.etl.noaa.gov/satres/archive.html.

3. Transport Pathways From the Asian Continent During TRACE-P

3.1. Meteorological Conditions in February–April

[9] Brief highlights of the meteorological conditions in February–April during TRACE-P are described here, which are key points for this study. Meteorological conditions concerning atmospheric transport during TRACE-P are
summarized by Fuelberg et al. [2003] in more detail. Figure 1 displays the time-averaged sea level pressure and rainfall rates derived from the SSM/I instrument in February–April 2001. Stationary fronts prevail in the convergence zones that corresponds to the transition period from the winter to summer monsoons in Asia [Nieuwolt, 1977]. Incursions of warmer air from the south become more frequent due to the building up of the Pacific high-pressure system, while movement of cold air southward decreases because the Siberian High weakens by March, as seen in the left panels of Figure 1. As a result, the warming causes frequent convection in Southeast Asia [Nieuwolt, 1977; Bey et al., 2001], indicated in the right panels of Figure 1. Moreover, a widespread region of precipitation over the western Pacific, as seen in Figure 1, is associated with pathways of midlatitude cyclones, as indicated by Fuelberg et al. [2003]. They derived an average frequency of 3–4 midlatitude cyclones per week over the western Pacific during TRACE-P.

3.2. Trajectory Analyses

In order to examine the export pathways of pollutants, vertically uplifted patterns of Lagrangian transport were selected by using 5-day back trajectories of sampled air masses. We selected air masses that originated in the boundary layer (pressure levels greater than 800 hPa; altitudes below 2 km) over the Asian continent and that were transported above the 800-hPa level prior to the aircraft measurements. An uplifted air mass is defined here as that ascending at least 1 km. It should be noted that the boundary layer altitude can extend higher or lower depending on a variety of local conditions. Therefore the boundary layer in the current analysis is approximated by this range of altitudes. Figure 2a shows a horizontal plot of the selected trajectories, and a summary of these trajectories is listed in Table 3. Variations of height are also given as functions of longitude (Figure 2b) and time (Figure 2c). During the observational period between 7 March and 4 April, the uplifted transport pattern consists of 146 trajectories (90 from 9 DC-8 flights and 56 from 6 P-3B flights). The air masses were uplifted from the boundary layer within 1–3 days (Table 3 and Figure 2c). The study area in this analysis is defined to be over 122°–170°E, 22°–42°N, where the intensive flights were made from Hong Kong and Yokota.

Locations where the trajectories reached the 800-hPa level are plotted in Figure 3, which represent estimated origins of the air masses. The results show that 73% of the selected trajectories originated over a broad region in Southeast Asia (SA) where frequent convective activities occurred during the TRACE-P period, as revealed by abundant satellite-derived precipitation and lightning observations (see Figure 1 and also Fuelberg et al. [2003]). The SA region corresponds to the location where extensive biomass burning occurred during the observational season. This will be further examined in section 3.3. On the other hand, 27% of the selected trajectories showed the air masses originated in the northeast coastal region of China (NC) at 30°–40°N.

Individual trajectories were also compared with cloud images observed by the GMS and with surface weather charts. In this study, WCB airstreams were distinguished from other uplifted transport, i.e., convection. For instance, Stohl and Trickl [1999] have defined WCBs as airstreams ascending at least 8 km in 60 hours, using coherent ensembles of trajectories (CETs) methods [Wernli and Davies, 1997] with PV fields and cloud images. In this analysis, airstreams associated with the WCB are defined as follows: first, cloud features associated with surface cold and warm fronts were examined in relation to the sampling location of the aircraft. Each back trajectory calculated along the flight track was then compared to the motion of the frontal system. If the trajectories run parallel to the surface cold front and ascend at least 1 km within 24 hours, the corresponding airstream was identified as a WCB. As a result, four individual WCBs within different cyclones were identified, consisting of 53 trajectories (36% of the uplifted trajectories). All of these WCBs originated in the SA region, with a mean ascent rate of 2.3 (±1.1) km/24 hours.

Convection outflow (COF) was determined by trajectories that were uplifted over satellite-observed convective cloud regions and those identified with surface weather charts. The COF determined in this study includes convection such as that associated with a stationary front and that occurring behind a cold front. In addition, convection in advance of a cold front is also categorized as COF in this analysis. The results of this analysis show that 10 individual trajectories were associated with COF.

Table 1. Species Used in This Study Mearmed Aboard the P-3B and DC-8 Aircraft During TRACE-P

Species	Aircraft	Technique	Accuracy 1σ (NOy)	Precision 1σ (%)	Reference
CO	P-3B, DC-8	Differential absorption technique using a tunable diode laser	±2%	±1%	Fuelberg et al. [2003]
NOx, NOy, NOz	P-3B	Chemiluminescence	±8% (NOx)	±20% (NOy)	Kondo et al. [1997b]
	DC-8	Photofragmentation two-photon laser-induced fluorescence	±18% (NOy)	±20–30% (NOz)	Koike et al. [2000]
PAN	P-3B	GC/ECD	±20%	±10%	Singh et al. [1996]
HNO3	DC-8	CIMS	±15–25%	±20%	Mauldin et al. [1998]
HNCO	DC-8	Mist chamber technique	±10–20%	±10–20%	Talbot et al. [1997]
NMHCs/halocarbons	P-3B, DC-8	Grab sample/GC	±2–20%	±1–3%	Blake et al. [2001]

Table 2. Mean and ± 1σ Standard Deviations of Ratios Between the Measured NOy and the Sum of NOx, PAN, and HNO3 (Defined as Σ(NOx)) on Board the P-3B

Altitude, km	Σ(NOx)/NOy	Number of Data Points
4–6	0.88 (± 0.14)	152
2–4	0.84 (± 0.19)	175
0–2	0.78 (± 0.22)	365
COFs were identified, consisting of 80 trajectories (55% of the uplifted trajectories). Seven of the 10 COFs originated in the SA region, while the remaining three originated in the NC region. The mean ascent rate for COFs was 4.7 (±2.5) km/24 hours, which is faster than that of the WCBs by a factor of 2. It should be noted that the trajectories have limitations of spatial and temporal resolution relative to the much smaller scales of vertical transport, including convection. Some air masses may ascend much more rapidly in a convective cell than indicated by the relatively coarse resolution of the ECMWF data currently used. Thus the uplifted transport presented here might be a lower limit of upward transport in the real atmosphere. The remaining trajectories identified as neither WCB nor COF consist of only 9% of the total, most of which include outflows in the lower free troposphere. It should also be noted that the fractions of WCBs and COF to the total uplifted trajectories are not statistically representative due to a bias in the sampling locations and time.

3.3. Chemical Tracers of Source Description

In addition to the frequent convection over Southeast Asia, distributions of pollutant emissions during the observational period are also important. Figure 4 shows the annual emission rates of CO and NOx/CO molar ratios over Asia estimated for the year 2000 [Streets et al., 2003]. These emission rates are given at http://www.cgrer.uiowa.edu/people/carmichael/ACESS/Emission-data_main.html. CO and NOx are strongly emitted along the east and southeast coast of China (22°–44°N, 110°–122°E). Two major sources are considered in these estimates: biomass burning and industrial emissions. Extensive biomass burning occurs in Southeast Asia and northern India in the spring (February–April) [e.g., Duncan et al., 2003], while industrial emissions are largest in northeast China [e.g., Bey et al., 2001].

In order to examine the signatures of the chemical tracers in the identified air masses, scatter plots among CO, CH3Cl, and C2Cl4 are shown in Figure 5. In this analysis, CH3Cl and C2Cl4 are used as tracers of biomass burning and fossil fuel combustion, respectively [e.g., Wang et al., 1995; Blake et al., 1996]. A tight, positive correlation between CO and CH3Cl (r² = 0.74) is apparent in the airstreams in the SA category. A slope of the regression line (dCH3Cl/dCO) of 0.52 (pptv/ppbv) is similar to the emission ratios of 0.50–0.57 (pptv/ppbv) [Rudolph et al., 1995; Andreae et al., 1996; Blake et al., 1996] from biomass burning.
contrast, the correlation was much poorer in the NC
category ($r^2 = 0.34$), with lower values of CH$_3$Cl (530–
620 pptv) than those in the SA category (570–700 pptv).
These results are consistent with the trajectory analysis,
showing that the WCB and COF air masses originated from
the intense biomass burning region.

In contrast, the mixing ratios of C$_2$Cl$_4$ in the NC
category (8–15 pptv) were higher than those in the SA
category (3–10 pptv). The result indicates that the airstreams
in the NC category were much more strongly influenced by
fossil fuel combustion than those in the SA category.
However, it is likely that the air masses influenced by fossil
fuel combustion were mixed with the biomass burning
plumes in the WCB and COF airstreams because CO was
correlated with C$_2$Cl$_4$ ($r^2 = 0.43$).

4. WCB and COF on 4 April
4.1. Meteorological Conditions

This section describes an example of two different
pathways of upward transport: WCB and COF. Figure 6
shows GMS water vapor images with flight tracks for the
P-3B and DC-8 and sea level pressure at 0000 UT on
4 April. There were two frontal systems over the western-
to-central Pacific on this day. A developing wave cyclone
(Cyclone-A) was centered near 50$^\circ$N, 150$^\circ$E, with a cold
front extending southward. The other system was a deeply
occluded low (Cyclone-B) located just west of Alaska. The
upper level trough associated with Cyclone-A (not shown)
corresponds to a dry region over Japan in the middle to
upper troposphere. The P-3B flew from Yokota Air Force
Base (AFB) (35$^\circ$N, 140$^\circ$E) to Midway Island (28$^\circ$N,
177$^\circ$E), conducting extensive in-progress vertical sampling
at 0–6 km. The DC-8, which headed for Kona (19$^\circ$N,
204$^\circ$E), Hawaii, also followed the same route between
Yokota and Midway at 0–11 km. Both aircraft crossed a
cloud region associated with the surface cold front at 146$^\circ$E.

In order to obtain good vertical coverage of air samplings
over the western Pacific, the P-3B made low-altitude

![Figure 2.](image1)

Figure 2. (a) Horizontal plot of 5-day back trajectories
corresponding to uplifted airstreams from the boundary
layer over the Asian continent. Dots indicate the aircraft
sampling points along the flight tracks. A study area in this
study is also shown. (b) Vertical changes of the trajectories
corresponding to the uplifted airstreams as a function of
longitude. (c) Same as Figure 2b but as a function of time
prior to the samplings.

![Table 3.](image2)

Table 3. Trajectory Data Used in This Studya

Altitude, hPa	Altitude, km	Median Latitude, $^\circ$N	Median Longitude, $^\circ$E	DC-8 + P-3B	Uplifted Trj	CO, ppbv	Average Times, days
350–200	8–12	35.3	146.0	358	20	200	2.3± 0.9
550–350	5–8	33.9	157.1	812	32	196	2.1± 0.8
800–550	2–5	30.1	135.1	1578	94	257	1.3± 0.9

aValues in the DC-8+P-3B column represent the total number of trajectories in the study area. Similarly, values in the uplifted Trj column represent
the number of trajectories in the uplifted transport category. Average times are timescales from the top of the boundary layer to the sampling points derived
from the trajectories.
measurements coinciding with the high-altitude measurements by the DC-8 and vice versa. Thus, the distributions of chemical species in a broad spatial range were obtained around the Cyclone-A.

4.2. Airstream Classification Associated With the Cyclone

Figure 7 displays vertical and longitudinal distributions of measured CO along the flight tracks of the P-3B and DC-8. High CO values reaching 200 ppbv were observed at 5–10 km over a wide domain in the western Pacific at 142°–186°E. Air masses in each identified airstream are categorized as a (WCB), b (COF), and c (DA) at 5–10 km and are described in sections 4.2.1–4.2.3.

4.2.1. Warm Conveyor Belt (WCB)

Figure 8 shows the trajectories that represent a well-defined WCB airstream (Figure 7a). Air masses in the WCB were observed at 8°–20° east in longitude relative to the center of a cyclone, which were within a typical range of 0°–20° in the upper troposphere [Cooper et al., 2002b]. As is typical for WCB trajectories [e.g., Browning, 1990], the trajectories move parallel to the surface cold front, ascending toward the northeast over the western Pacific. The mean timescale for transport from the top of the boundary layer to the sampling points was estimated to be 2.6±0.6 days, which was derived from trajectories. The mean ascent rate of the WCB was 2.3±0.9 km/24 hours, estimated from the trajectories. High relative humidity of 85 to nearly 100% (not shown) is consistent with upward transport. The median CO mixing ratios in the WCB air masses were 180–200 ppbv, reflecting the strong influence of high emissions of pollutants in the SA region. The CO values were higher than the median values of 140 ppbv in the WCB in the middle to upper troposphere over the western North Atlantic Ocean in spring [Cooper et al., 2002b]. Trajectories in Figure 8 indicate that these air masses were strongly impacted by CO emissions over southeast China, including coastal regions, where the emissions of CO from biomass burning are large.

4.2.2. Convective Outflow (COF)

Contrary to a typical WCB, the sampling points of the air masses shown in Figure 7b were located 0°–7° west in longitude relative to the center of Cyclone-A. These air masses were also polluted (CO mixing ratios > 200 ppbv) and humid (relative humidity of nearly 100%), indicating that they were also transported upward from the polluted boundary layer. The bulk of the trajectories shows mean ascending motion of the air masses in 1.3 ± 0.2 days from the boundary layer to the sampling points at 10 km, as seen in Figure 9. The ascent rate estimated from the trajectories was about 7.3 ± 1.7 km/24 hours, which was much faster than that of the WCB (2.3 ± 0.9 km/24 hours) described in section 4.2.1.

Figure 10 shows the GMS water vapor image at 0200 UT on 3 April together with the location of a surface frontal at about 25°N over southeast China for approximately 3 days during 1 April and 4 April. Therefore the polluted air masses should have been rapidly lifted up to an altitude of 9–10 km by this stationary front and then transported cyclonically at this altitude along the eastern side of the upper-level trough located over the northern part of Japan.

According to the trajectories, these air masses were found to originate in southeast China. As examined in section 3.3, correlation between CO and CH₃Cl (not shown) also confirms that the influence of biomass burning was dominant in these air masses. Because the air masses in the WCB were also identified as originating from the region of this stationary front, as discussed in the previous section, some air masses were lifted up by the stationary frontal
convection, while others were transported by the WCB as the cyclone developed.

4.2.3. Dry Airstreams (DA)

It is well established that downward transport of stratospheric air into the troposphere occurs behind cold fronts [e.g., Danielsen, 1968; Shapiro et al., 1987]. A dry airstream is defined here as an airstream behind a surface cold front, originating in the upper troposphere or lower stratosphere at high latitude. Locations where DAs were observed at 5–9 km on this flight (Figure 7c) correspond to a dry region in the middle to upper troposphere over Japan (30°C–45°C N, 130°C–145°C E), as seen in Figure 6. Air masses in the DAs were characterized by high O3 of 120–200 ppbv, low CO of 80–100 ppbv, and a low relative humidity of 2% (not shown). Figure 11a illustrates a cross section of potential vorticity (PV) calculated along the flight track with the observed O3 values by the aircraft. A tongue of PV can clearly be seen extending downward to the mid-troposphere at 5 km and 139°C–143°C E, corresponding to the region of high O3 values. The trajectories shown in Figure 11b confirm that the air masses in the DA were transported from high altitudes north of 55°C N. Together, the PV map and TOMS total O3 (not shown) clearly represent air masses of stratospheric origin associated with a dry intrusion.

It is interesting to note that the DAs at 5–9 km were observed in the region adjacent to the air masses impacted by the COF at 10 km, as described in section 4.2.2. If these different types of air masses are mixed by turbulent mixing, the mixing ratios of trace gases such as O3, NOy, and H2O in the resulting air masses can vary significantly depending on the degree of mixing. In fact, evidence of the mixing of stratospheric air with polluted air transported from the boundary layer has also been reported previously. Prados et al. [1999] showed that air masses behind a cold front, transported to the midtroposphere over Bermuda, were a mixture of stratospheric air and polluted air advected ahead of another cold front. Parrish et al. [2000] reported that highly polluted air was located in the immediate vicinity of air of stratospheric origin in the lower troposphere within a cyclone system over the western NAO. A key point of the current analysis is that the mixing of biomass burning effluents transported by convection with stratospherically influenced air could occur in the upper troposphere in the vicinity of the frontal region.

5. Partitioning and Export of NOy Species

In order to investigate the chemical evolution of NOy species in the air masses vertically transported over the western Pacific, partitioning of NOy is presented in this section for the WCB and COF identified in section 3. Figure 12 shows the median values of NOx, PAN, and HNO3 mixing ratios and their ratios to the total NOy in the WCB and COF, as identified in section 3.2. The median values of the whole set of data obtained at the study area (22°C–42°C N and 122°C–170°C E) during TRACE-P are also shown in the figure for comparison. The NOx mixing ratios and NOy/NOx ratios in the WCB and COF were much lower (10–30 pptv and 0.03) than the midlatitude median values (50–70 pptv and 0.10–0.15), particularly at 6–10 km. The NO2/NOy ratios in the WCB and COF were also lower than the median values of 0.10–0.30 in the continental air masses at 6–10 km over the western Pacific in February–March [Kondo et al., 1997a]. Similarly, the HNO3 mixing ratios (80 ± 10 pptv) and HNO3/NOy ratios (0.15 ± 0.05) in the WCB and COF were lower than the median values of 0.10–0.30 in the continental air masses at 6–10 km over the western Pacific in February–March [Kondo et al., 1997a]. In contrast, the PAN mixing ratios (330 ± 70 pptv) and the PAN/NOy ratios (0.75 ± 0.10) in the WCB and COF were higher than the midlatitude median values (150 ± 50 pptv and 0.45 ± 0.05, respectively).

NOx is oxidized to HNO3 by reaction with OH during daytime on a timescale of 1 day and by nighttime formation of N2O5 followed by hydrolysis on sulfate aerosols on a similar timescale [Dentener and Crutzen, 1993]. The residence time of air masses in the WCB and COF is 1–3 days, while chemical recycling from HNO3 to NOx occurs on a longer timescale of 10 days to several weeks [Kley et al., 1981]. Therefore NOx is not in chemical equilibrium with HNO3 in these WCB and COF air masses. Moreover, the low HNO3/NOy ratios in
the WCB and COF suggest that HNO₃ has been substantially removed during the vertical transport within 1–3 days, leading to the reduction of chemical recycling from HNO₃ to NOₓ. In contrast, the midlatitude median values of NOₓ increased with altitude at 6–12 km. This general increase of NOₓ with altitude has typically been observed over the western Pacific [Kondo et al., 1997a] and over other regions [Kley et al., 1981; Ridley et al., 1994], due to the longer chemical lifetime of NOₓ and the input of in situ sources of NOₓ in the upper troposphere such as lightning or aircraft emissions. The present results show that the air masses in the WCB and COF were isolated from ambient air and were less affected by such in situ sources of NOₓ. To summarize, the lower NOₓ/NOy ratios in the WCB and COF are due to both the chemical imbalance between NOₓ and HNO₃ and a small influence of in situ sources without significant mixing with surrounding air masses.

[27] The elevated PAN mixing ratios in the WCB and COF can be attributed to limited decomposition of the PAN produced over the biomass burning and industrial emissions region followed by the rapid upward transport of the air masses and limited mixing with surrounding air masses. Moreover, the dominance of PAN in NOy was also due to the rapid loss of HNO₃ during transport by the WCB and COF, leading to the increase in the PAN/NOy ratios. Loss of PAN during transport in the free troposphere should be very small due to the stability of PAN at low temperatures. In addition, wet deposition of PAN is negligible compared to HNO₃ because its solubility in water is small [Kames et al., 1991]. PAN chemistry has only a minimal impact on net NOₓ production of ±10% in the cold upper troposphere, as estimated using a 3-D CTM by Moxim et al. [1996]. However, the dominance of PAN in the WCB and COF can provide significant sources of NOₓ in remote regions through long-range transport followed by descent to the

Figure 6. (top) GMS water vapor images (Infrared-3 channel) at 0400 UT on 4 April 2001 with flight tracks for the P-3B and DC-8 aircraft shown as black solid lines. Red represents a cloud region, while blue represents a cloud-free region or a relatively dry region. Locations of the centers of Cyclone-A and Cyclone-B are indicated as “A” and “B,” respectively. Locations of Yokota AFB (solid circle), Midway (solid triangle), and Kona (solid square) are also plotted. (Bottom) Sea level pressure at 0000 UT on 4 April 2001.
warmer lower troposphere, where PAN decomposes to NOx [Maxim et al., 1996].

6. Removal of HNO$_3$ in the WCB and COF

In this section, we estimate the export efficiency (EE) with which NO$_y$ emitted from the surface over East Asia was transported to the sampling points by the WCB and COF. CO can serve as a good reference for estimating the NO$_y$ removal rate [Stohl et al., 2002], because CO is emitted simultaneously with NO$_x$ and has a lifetime of 1–2 months. For the calculation of EE, the enhancement of NO$_y$ and CO over their background level should be used [Stohl et al., 2002]. In this analysis, the background mixing ratios of NO$_y$ ($NO_y(bkg)$) and CO ($CO(bkg)$) were determined to be 100 pptv and 80 ppbv, respectively, which are approximately the lowest values at 2–10 km over the study area (22°/C176–42°/C176N, 120°/C176–170°/C176E) during TRACE-P. The dNO_y and dCO can be then defined as $dNO_y = NO_y - NO_y(bkg)$ and $dCO = CO - CO(bkg)$, respectively. The EE of NO$_y$ can be derived from the slope of dNO_y/dCO ratios in each air mass by dividing it by the NO$_y$/CO emission ratios over the source regions. Molar ratios of NO$_y$/CO emitted over the SA and NC are estimated to be 0.034 ± 0.017 mol/mol and 0.051 ± 0.013 mol/mol, respectively, for the year 2000 (Figure 4) [Streets et al., 2003]. Based on uncertainties in the CO (±156%) and NO$_x$ (±23%) emissions estimations in China [Streets et al., 2003], the overall uncertainty of the NO$_y$/CO ratios was estimated to be ±158%.

Figure 13a shows a scatter plot of CO and NO$_y$ in the WCB and COF air masses with reference data obtained at 2–11 km over the study area. The slopes of the regression lines for the WCB (3.15 pptv/ppbv) and COF (SA) (5.27 pptv/ppbv) show lower values compared to the reference data points between CO and NO$_y$ over the study region. These lower slopes reflect large amounts of NO$_y$ removal, as discussed below. On the other hand, the slope of the regression line for the COF (NC) showed a larger value of 10 pptv/ppbv. The difference of the slopes between the SA and NC categories can be attributed to (1) the removal rate during transport and/or (2) the difference of emission ratios over the two regions. Figure 13b also represents these scatter plots of CO against NO$_y$ for the SA and NC with the expected fraction of the emission ratios. The EE value was estimated to be 9% in the WCB, while it was 15% (SA) and 19% (NC) in the COF. The results indicate that the WCB and COF transported 10–20% of NO$_y$ emitted over the Asian continent to the free troposphere over the western Pacific. If the estimated uncertainties in the emissions ratios are given, the EE values range within 6–19% (WCB), 10–31% (COF-SA), and 13–26% (COF-NC). Stohl et al. [2002] showed only 3–5% of the NO$_y$ emissions over the United States were transported above an altitude of 3 km over the North Atlantic, utilizing the aircraft data combined with a lagrangian transport model.

It should be noted that EE includes the loss of NO$_y$ in the boundary layer (z = 0–2 km) in addition to the removal during uplifted transport of air masses into the free troposphere (z = 2–12 km). In order to examine this process, the EE in the boundary layer near the source regions was...
estimated. Air masses transported in the boundary layer within one day were selected based on trajectories calculated from the P-3B flight tracks on 7 and 9 March for the SA region and on 17 and 18 March for the NC region. The resulting number of trajectories was 17 for SA and 10 for NC. Figure 13b also includes scatter plots of CO and NOy in these air masses of the selected boundary layer (BL) outflow. For the calculation of EE in the BL, CO\textsubscript{bkg} and NOy\textsubscript{bkg} were determined to be 100 ppbv and 100 pptv, respectively, which are approximately the lowest values at 0–2 km over the study area. The EE values in these BL outflows for the SA and NC categories were estimated to be 33% and 30%, respectively. These BL outflows were likely affected by a much smaller subset of the source regions than the WCB and COF air masses. Given that source regions exhibit different emissions ratios, ranging from 0.038 (Southeast Asia) to 0.060 (China) [Streets et al., 2003], the EE values in these BL outflows range over 19–33%. It should be noted, however, that these BL data were obtained only in limited cases and may not be representative. This is because concentrations of NOy in the BL air masses are highly variable depending on variable occurrences of removal processes since emissions and because the emission estimates include initial uncertainties as described above. Koike et al. [2003] have made a similar estimate for NOy of 15% (20–40%) at 2–7 km (0–2 km) transported from the northeast part of China to the Yellow Sea and Japan Sea during TRACE-P. These values are similar to those obtained in this study including the SA as a source region of NOy.

Figure 10. GMS water vapor image at 0200 UT on 3 April 2001, which corresponds to approximately one day prior to the observation. A stationary front is also shown, located over south China around 25°N.

Figure 11. (a) Longitude-altitude cross section of the observed O\textsubscript{3} (colored) and PV (gray scale) along the flight tracks, where 1 PVU = 1 \times 10^{-6} K-kg^{-1}m^{2}s^{-1}. The open triangle on the longitude axis represents the location of a surface cold front. (b) Same as Figure 8 but for the DA.
Considering the EE value ranges of 10–20% for the WCB and COF at 2–10 km and 30% at 0–2 km, the results of this study suggest that there was additional NOy removal during transport by the WCB and COF, by a factor of 1.5–3. This removal of NOy, mainly due to HNO3, occurred most likely by precipitation associated with warm frontal clouds or convective clouds (see Figure 1) during transport. In order to examine this, temporal and vertical variations of relative humidity are shown in Figure 14, which were derived from the ECMWF data along the trajectories for the WCB and COF on 4 April described in section 4. Altitude ranges where the relative humidity reached 100% were about 3–4 km and 2–4 km for the WCB and COF, respectively. These altitude ranges correspond to regions where precipitation had occurred. Mari et al. [2000] simulated that 70% of HNO3 is efficiently scavenged by liquid precipitation in the lower (warm) part of the deep convective cloud below 7 km, by using a one-dimensional entraining/detraining plume model. The results of this study suggest that in addition to loss of HNO3 in the BL, warm frontal clouds of the WCB as well as convective clouds provide an efficient sink for HNO3, especially at lower altitudes in the free troposphere.

For the EE estimation in this analysis, there is an assumption that the dNOy/dCO ratios do not change due to dilution with constant dNOy/dCO in an assumed background air. Even if the assumed CObkg value is 120 ppbv, which is the median value in the study area, the resulting EE values for each category increase by only 3%. This shows that the uncertainty of CObkg values does not significantly affect the estimates of EE values. Uncertainties of the EE estimates also include the possibility of additional inputs of NOy during transport, such as lightning or aircraft emissions. However, as described in the previous section, the extremely low NOx/NOy ratios of less than 0.10 suggest that these additional inputs of NOy were absent in both WCB and COF air masses. Therefore the influence of these additional sources of NOy in the WCB and COF is considered negligible in the current analysis.

7. Summary and Conclusions

We investigated the origins and pathways of synoptic-scale uplifted transport of pollutants and their effects on chemical distributions of NOx species over the western Pacific, based on systematic aircraft measurements obtained during the TRACE-P period.
during TRACE-P, in conjunction with 5-day back trajectories. During the observational season, convection and cyclones over East Asia to the western Pacific were attributed to more frequent incursions of warmer air from the south due to the building up of Pacific high pressure, compared to decreasing southward movement of cold air because of the weakening of the Siberian High by March.

Vertically uplifted patterns of lagrangian transport from the Asian continent were selected by the trajectories calculated from sampling points along the 9 DC-8 and 6 P-3B flight tracks. Of these, 73% originated over Southeast Asia, where biomass burning was most active during this season, while 27% originated over northeast China. The SA-originating trajectories were associated with warm conveyor belts within midlatitude cyclones and convective outflow (COF) over southern China. The strong influence of biomass burning was confirmed by the higher mixing ratios of CO and CH$_3$Cl than the midlatitude median values, with a positive correlation of these species. On the other hand, the NC-originating trajectories were associated with convection within low-pressure systems. Air masses in the NC categories showed a large influence of fossil fuel combustion, revealed by higher mixing ratios of C$_2$Cl$_4$ compared to those in the SA categories.

WCB and COF associated with a stationary front were identified for the 4 April case. The WCB and COF were found to originate in southern China, suggesting that air masses in the biomass burning region were transported by both the stationary front and WCB as the cyclone developed. The dry airstream, identified as originating from the tropopause region from the trajectory and PV analysis, was found to be located adjacent to the COF. Therefore turbulent mixing can produce air masses with combined chemical signatures of stratospherically influenced air masses and pollutants from biomass burning.

The fractions of NOx, PAN, and HNO$_3$ of the total NOy in the WCB and COF were found to be different from the midlatitude median values. The NOx levels were rela-
the boundary layer of the biomass burning and industrial region can be due to the substantial production of PAN in the "western Pacific."

Figure 14. Temporal and vertical variations of relative humidity (RH) in the air mass along the back trajectories for the (a) COF and (b) WCB on 4 April. The RH was obtained from the ECMWF data within the 6-hour interval prior to sampling.

Evidently low both in the WCB and COF due to the chemical imbalance between NOx and HNO3 after the oxidation of a significant portion of the NOy, as well as due to the small influence of in situ sources in the isolated air masses. PAN was found to be the dominant form of the NOy in air masses transported by the WCB and COF. The high PAN/NOy ratio can be due to the substantial production of PAN in the boundary layer of the biomass burning and industrial region and the lower temperature in the middle to upper troposphere. The WCB and COF can transport NOy over long distances in the form of PAN to regions remote from Asian sources.

The HNO3/NOy ratios in the WCB and COF were much lower than the midlatitude median values, indicating that HNO3 was removed during transport within 1–3 days. Fractions of NOy emitted from the surface over East Asia reaching the sampling points in the WCB and COF were estimated to be 10–20%. Similarly, fractions of NOy transported within the boundary layer were estimated to be 30% for the SA and NC, although the amount of data collected was quite limited for each air mass category. The results suggest that a large amount of NOy was removed during transport from the BL to the free troposphere. This was most likely due to loss of HNO3 by precipitation during transport in the lower free troposphere in WCB and COF air masses, as well as loss of HNO3 in the BL. A widespread region of precipitation over the east coast of the Asian continent to the North Pacific also suggests that the WCB and COF can provide an efficient sink for HNO3 over the western Pacific.

Acknowledgments. The TRACE-P mission was supported by the NASA Global Tropospheric Chemistry Program. The authors thank the crew of the NASA P-3B and DC-8 aircraft for their support. R. E. Newell and Y. Hu are acknowledged for providing PV values and a map of sea level pressure produced from ECMWF gridded data. The authors are grateful to H. Nakamura for helpful discussions on meteorology. Thanks also go to N. Oshima and Y. Morino for their assistance with the data analysis. Y. M. was supported by research fellowships of the Japan Society for the Promotion of Science for Young Scientists.

References

Andreae, et al., Trace gas and aerosol emissions from savanna fires, in Biomass Burning and Global Change, edited by J. S. Levine, pp. 278–295, MIT Press, Cambridge, Mass., 1996.

Benthin, S., G. Vaughan, C. Gerbig, A. Voltz-Thomas, H. Richer, and D. D. Tidman, Chemical air mass differences near fronts, J. Geophys. Res., 103, 13,413–13,434, 1998.

Bey, I., D. J. Jacob, J. A. Logan, and R. M. Yantosca, Asian chemical outflow to the Pacific: Origins, pathways and budgets, J. Geophys. Res., 106, 23,097–23,114, 2001.

Blake, N. J., D. R. Blake, B. C. Sive, T.-Y. Chen, J. E. Collins Jr., G. W. Sachse, B. E. Anderson, and F. S. Rowland, Biomass burning emissions and vertical distribution of atmospheric methyl halides and other reduced carbon gases in the south Atlantic Region, J. Geophys. Res., 101, 24,151–24,164, 1996.

Blanke, N. J., et al., Large-scale latitudinal and vertical distribution of NMHCs and selected halocarbons in the troposphere over the Pacific Ocean during the March–April 1999 Pacific Exploratory Mission (PEM-Tropics B), J. Geophys. Res., 106, 32,627–32,644, 2001.

Browning, K. A., Organisation of clouds and precipitation in extratropical cyclones, in Extratropical Cyclones—The Erik Palmen Memorial Volume, Am. Meteorol. Soc., Boston, Mass., 1990.

Browning, K. A., and N. M. Roberts, Structure of a frontal cyclone, Q. J.R. Meteorol. Soc., 122, 1845–1872, 1994.

Chen, S.-J., Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, Synoptic climatology of cyclogenesis over east Asia, Mon. Weather Rev., 119, 1407–1418, 1991.

Chen, S.-J., Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, Climatometry of explosive cyclones off the east coast, Mon. Weather Rev., 120, 3029–3035, 1992.

Cooper, O. R., et al., Trace gas composition of midlatitude cyclones over the western North Atlantic Ocean: A conceptual model, J. Geophys. Res., 107(D7), 4056, doi:10.1029/2001JD000901, 2002a.

Cooper, O. R., et al., race gas composition of midlatitude cyclones over the warm North Atlantic Ocean: A seasonal comparison of O3 and CO, J. Geophys. Res., 107(D7), 4057, doi:10.1029/2001JD000902, 2002b.

Danielsen, E. F., Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity, J. Atmos. Sci., 25, 502–518, 1968.

Dentener, F. J., and P. J. Crutzen, Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3, and OH, J. Geophys. Res., 98, 7149–7163, 1993.

Duncan, B. N., R. V. Martin, A. C. Staudt, R. Yevich, and J. A. Logan, Interannual and seasonal variability of biomass burning emissions constrained by satellite observations, J. Geophys. Res., 108(D21), 4100, doi:10.1029/2002JD002378, 2003.

Ferryad, J. G., and S. K. Avery, Passive remote sensing of rainfall with SSM/I: Algorithm development and implementation, J. Appl. Meteorol., 33, 1587–1596, 1994.

Fuelberg, H. E., et al., TRACE A Trajectory intercomparison: 2. Isentropic and kinematic methods, J. Geophys. Res., 101, 23,927–23,939, 1996.

Fuelberg, H. E., C. M. Kiley, J. R. Hannam, D. J. Westberg, M. A. Avery, and R. E. Newwell, Atmospheric transport during the Transport and Chemical Evolution over the Pacific (TRACE-P) experiment, J. Geophys. Res., 108(D20), 8782, doi:10.1029/2002JD003092, in press, 2003.

Grant, W. B., et al., A case study of transport of tropical marine boundary layer and lower tropospheric air masses to the northern midlatitude upper troposphere, J. Geophys. Res., 105, 3757–3769, 2000.

Jacoby, D. J., et al., The transport and chemical evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results, J. Geophys. Res., 108(D20), 8781, doi:10.1029/2002JD003276, in press, 2003.

Kames, J., S. Shweighoefer, and U. Schurath, Henry's Law constant and hydrolysis of peroxyacetyl nitrate, J. Atmos. Chem., 12, 169–180, 1991.

Kley, D., J. W. Drummond, M. McFarland, and S. C. Liu, Tropospheric profiles of NOy, J. Geophys. Res., 86, 3153–3161, 1981.

Koike, M., et al., Impact of aircraft emissions on reactive nitrogen over the North Atlantic flight corridor region, J. Geophys. Res., 105, 3665–3677, 2000.

Koike, M., et al., Impact of anthropogenic reactive nitrogen and sulfur compounds from the East Asia region in spring, J. Geophys. Res., 108(D20), 8789, doi:10.1029/2002JD003284, in press, 2003.

Kondo, Y., M. Koike, S. Kawakami, H. B. Singh, H. Nakajima, G. L. Gregory, D. R. Blake, G. W. Sachse, J. T. Merrill, and R. E. Newell, Profiles and partitioning of reactive nitrogen over the Amazon in winter and early spring, J. Geophys. Res., 102, 28,405–28,424, 1997a.
Kondo, Y., S. Kawakami, M. Koike, D. W. Fahey, H. Nakajima, N. Toriyama, M. Kanada, Y. Zhao, G. W. Sachse, and G. L. Gregory, The performance of an aircraft instrument for the measurement of NOy, J. Geophys. Res., 102, 28,663–28,671, 1997b.

Kowol-Santen, J., M. Beeckman, S. Schmitgen, and K. Dewey, Tracer analysis of transport from the boundary layer to the free troposphere, Geophys. Res. Lett., 28, 2907–2910, 2001.

Liang, J., W. L. Horowitz, D. J. Jacob, Y. Wang, A. M. Fiore, J. A. Logan, G. M. Gardner, and J. W. Munger, Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere, J. Geophys. Res., 103, 13,435–13,450, 1998.

Mari, C., D. J. Jacob, and P. Bechtold, Transport and scavenging of soluble gases in a deep convective cloud, J. Geophys. Res., 105, 22,255–22,267, 2000.

Mauldin, R. L., III, D. J. Tanner, and F. L. Eisele, A new chemical ionization mass spectrometer technique for the fast measurement of gas phase nitric acid in the atmosphere, J. Geophys. Res., 103, 3361–3367, 1998.

Miyazaki, Y., K. Kita, Y. Kondo, M. Koike, M. Ko, W. Hu, S. Kawakami, D. R. Blake, and T. Ogawa, Springtime photochemical ozone production observed in the upper troposphere over East Asia, J. Geophys. Res., 108(D3), 8398, doi:10.1029/2001JD000811, 2002.

Moxim, W. J., H. Levy II, and P. S. Kasibhatla, Simulated global tropospheric PAN: Its transport and impact on NOy, J. Geophys. Res., 101, 12,621–12,638, 1996.

Nieuwolt, S., Tropical Climatology: An Introduction to the Climates of the Low Latitudes, John Wiley, New York, 1977.

Parrish, D. D., J. S. Holloway, R. Jakoubek, M. Trainer, T. B. Ryerson, G. Hubler, F. C. Fehsenfeld, J. L. Moody, and O. R. Cooper, Mixing of anthropogenic pollution with stratospheric ozone: A case study from the North Atlantic wintertime troposphere, J. Geophys. Res., 105, 24,363–24,374, 2000.

Prados, A. I., R. R. Dickerson, B. G. Doddridge, P. A. Milne, J. L. Moody, and J. T. Merrill, Transport of ozone and pollutants from North America to the North Atlantic Ocean during the 1996 AEROCE Intensive Experiment, J. Geophys. Res., 104, 26,219–26,234, 1999.

Ridley, B. A., J. G. Walega, J. E. Dye, and F. E. Grahek, Distributions of NO, NOy, NOx, and NO2, An airborne-compatible photofragmentation two-photon laser-induced fluorescence instrument for measuring background tropospheric NOx, NOy, and NOx, J. Geophys. Res., 95, 10,155–10,161, 1990.

Shapiro, M. A., T. Hampel, and A. J. Krueger, The Arctic tropopause fold, Mon. Weather Rev., 115, 444–487, 1987.

Simpson, I. J., N. J. Blake, E. Atlas, F. Flocke, J. H. Crawford, H. E. Furbish, C. M. Kiley, F. S. Rawland, and D. R. Blake, Photochemical production and evolution of selected C2-C5 alkyl nitrates in tropospheric air influenced by Asian outflow, J. Geophys. Res., 108(D20), 8808, doi:10.1029/2002JD002830, in press, 2003.

Singh, H. B., et al., Reactive nitrogen and ozone over the western Pacific: Distribution, partitioning, and sources, J. Geophys. Res., 101, 1793–1808, 1996.

Singh, H. B., et al., Latitudinal distribution of reactive nitrogen in the free troposphere over the Pacific Ocean in late winter/early spring, J. Geophys. Res., 103, 28,237–28,246, 1998.

Stohl, A., A 1-year Lagrangian “climatologie” of airstreams in the Northern Hemisphere troposphere and lowermost stratosphere, J. Geophys. Res., 106, 7263–7279, 2001.

Stohl, A., and T. Trickl, A textbook example of long-range transport: Simultaneous observation of ozone maxima of stratospheric and North American origin in the free troposphere over Europe, J. Geophys. Res., 104, 30,445–30,462, 1999.

Stohl, A., G. Wotawa, P. Seibert, and H. Kromp-Kolb, Interpolation errors in wind fields as a function of spatial and temporal resolution and their impact on different types of kinematic trajectories, J. Appl. Meteorol., 34, 2149–2165, 1995.

Stohl, A., M. Trainer, T. B. Ryerson, J. S. Holloway, and D. D. Parrish, Export of NOy from the North American boundary layer during 1996 and 1997 North Atlantic Regional Experiments, J. Geophys. Res., 107(D11), 4131, doi:10.1029/2001JD000519, 2002.

Streets, D. G., et al., A year-2000 inventory of gases of gaseous and primary aerosol emissions in Asia to support TRACE-P modeling and analysis, J. Geophys. Res., 108(D21), 8809, doi:10.1029/2002JD003093, in press, 2003.

Talbot, R. W., et al., Large-scale distributions of tropospheric nitric, formic, and acetic acids over the western Pacific basin during wintertime, J. Geophys. Res., 102, 28,303–28,313, 1997.

Talbot, R. W., et al., Reactive nitrogen in Asian continental outflow over the western Pacific: Results from the NASA TRACE-P airborne mission, J. Geophys. Res., 108(D20), 8803, doi:10.1029/2002JD003129, in press, 2003.

Wang, C. J. L., D. R. Blake, and F. S. Rowland, Seasonal variations in the atmospheric distribution of a reactive chlorine compound, tetrachloroethene (CCl2 = CCl2), Geophys. Res. Lett., 22, 1097–1100, 1995.

Wernli, H., and H. C. Davis, A Lagrangian-based analysis of extratropical cyclones, I, The method and some applications, Q.J.R. Meteorol. Soc., 123, 467–489, 1997.

M. A. Avery and G. W. Sachse, Chemistry and Dynamics, NASA Langley Research Center, Hampton, VA 23681, USA. (m.a.avery@larc.nasa.gov; g.w.sachse@larc.nasa.gov)

D. R. Blake, Department of Chemistry, University of California, Irvine, CA 92697, USA. (dr.blake@uci.edu)

F. L. Eisele, F. Flocke, A. J. Weinheimer, and M. Zondlo, Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO 80303, USA. (eisele@ncaer.ucar.edu; fll@aoe.ucar.edu; wein@aoe.ucar.edu; zondlo@aoe.ucar.edu)

H. E. Fuelberg and C. M. Kiley, Department of Meteorology, Florida State University, Tallahassee, FL 32306, USA. (fuelberg@huey.met.fsu.edu; ckiley@met.fsu.edu)

K. Kita, Department of Environmental Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki, 310-8512, Japan. (kita@env.sci.ibaraki.ac.jp)

M. Koike, Earth and Planetary Science, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan. (koike@eps.u-tokyo.ac.jp)

K. Kita, Department of Environmental Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki, 310-8512, Japan. (kita@env.sci.ibaraki.ac.jp)

H. B. Singh, NASA Ames Research Center, Moffet Field, CA 94035, USA. (hsingh@mail.arc.nasa.gov)

R. W. Talbot, University of New Hampshire, Durham, NH 03820, USA. (robert.talbot@unh.edu)