SoK: Yield Aggregators in DeFi

Simon Cousaert
University College London, CBT
London, United Kingdom

Jiahua Xu
University College London, CBT
London, United Kingdom

Toshiko Matsui
Imperial College London
London, United Kingdom

ABSTRACT
Yield farming has been an immensely popular activity for cryptocurrency holders since the explosion of Decentralized Finance (DeFi) in the summer of 2020. In this Systematization of Knowledge (SoK), we study a general framework for yield farming strategies with empirical analysis. First, we summarize the fundamentals of yield farming by focusing on the protocols and tokens used by aggregators. We then examine the sources of yield and translate those into three example yield farming strategies, followed by the simulations of yield farming performance, based on these strategies. We further compare four major yield aggregators—Idle, Pickle, Harvest and Yearn—in the ecosystem, along with brief introductions of others. We systematize their strategies and revenue models, and conduct an empirical analysis with on-chain data from example vaults, to find a plausible connection between data anomalies and historical events. Finally, we discuss the benefits and risks of yield aggregators.

KEYWORDS
DeFi, decentralized Finance, yield aggregator, yield farming, protocols, pools, strategies, simulation

1 INTRODUCTION
1.1 Background
Decentralized Finance (DeFi) is on a serious rise during the past year. In March 2020, the total value locked in DeFi protocols was around 600m USD [14]. That number exploded in the year coming, kick-started by the so-called “DeFi Summer” where the Total Value Locked (TVL) reached around 11bn USD by the end of September. At the time of writing, TVL numbers have reached more than 70bn USD. Apart from the non-custodial aspect, the permissionless nature and the openly auditable protocols, a main driver for the growth of this industry is the composability of financial services. The so-called “DeFi Stack” or “Money Legos” allow protocols to build and combine functionalities, without the need of having this expertise in-house. This means that developers can focus on the core business, knowing that key infrastructure is readily available. The result has been an explosion of innovation.

One of the applications that has come from the above-described movement is “yield farming”, where investors passively earn yield by transferring tokens to a wide range of yield generating smart contracts. The concept, first introduced by Synthetix [61], started to gain traction on 15 June 2020 [33] with the introduction of COMP. COMP is the governance token of Compound, one of the major DeFi lending protocols. Compound participants get rewarded with newly-minted COMP tokens through both lending and borrowing activities, a process termed “liquidity mining”. Thus, on top of the usual benefit that users get for providing liquidity in different kinds of pools (e.g. interest in the case of lending protocols, or fees in the case of providing liquidity in Automated Market Making (AMM) pools), additional governance tokens are rewarded to users to further encourage their participation in the issuing platform during the early stage of adoption. The basic yield farming idea was born: the search for opportunities in the DeFi ecosystem to squeeze out as much yield as possible across many products, in all its shapes, allowed by tokenizing positions on base assets. As a reaction to the creation of a multitude of platforms returning interests, fees and token rewards, yield aggregators built on top of the DeFi primitives came into existence.

1.2 Contribution
This paper presents a systemic analysis of the parts and mechanics behind yield aggregation strategies. We identify the risks of yield farming strategies and the sources of yield. Based on an inspection of the implementation of four major yield aggregator protocols—Idle Finance [30], Pickle Finance [47], Harvest Finance [24] and Yearn Finance [65]—we synthesize a model of the typical workflow in a yield farming strategy. Based on this workflow and three frequently adopted strategies, we simulate the wealth of a yield aggregator in a controlled market environment. Finally, major yield farming protocols are compared against each other on both theoretical and empirical grounds.

2 FUNDAMENTALS OF YIELD FARMING
A yield aggregator is a DeFi protocol that pools investors’ funds, and reinvests them in an array of yield-producing products or services through interacting with their protocols (see 2.2). The process of generating yield and increasing the value of pooled funds is termed “yield farming”, and yield aggregator users are thus also known as “yield farmers”. In essence, a yield aggregator can be deemed as a smart contract-based fund manager, whose investment strategies are pre-programmed and automatically executed.

2.1 Yield
Yield, defined as “the total amount of profit or income produced from a business or investment” [7], is often measured in terms of Annual Percentage Yield (APY). Yield is the ultimate goal pursued by farmers, and typically originates from borrowing demand, liquidity mining, as well as revenue sharing (Figure 1).

2.1.1 Borrowing demand. As the demand for loans in crypto assets grows, the borrowing interest rate increases, leading to higher yields for lenders. Particularly in a bullish market, speculators are keen to borrow funds despite a high interest rate, in expectation of an appreciation in the assets of their leveraged long position [63]. Compound and Aave, two major DeFi lending protocols (see 2.2.1), have witnessed the borrow APY of USDC rising from 2-3% in May 2020 to as high as 10% in April 2021.1 This specific kind of yield is

1https://app.defiscore.io/assets/usdc
incorporated in Protocol for Loanable Funds (PLF) yield-bearing tokens, such as cTokens from Compound or aTokens from Aave.

2.1.2 Liquidity mining. Another yield source comes from liquidity mining programs. Early participants receive native tokens representing protocol ownership. This incentivizes people to contribute funds into the protocol, and enhances decentralization as the protocol ownership is distributed to users. The native tokens often have a governance functionality attached to them which is often deemed valuable, as the token holders would have a say in the future strategic direction of the project. Thus, for a yield farming strategy, it is important to factor in the token distribution [26] of the protocols that the aggregator interacts with.

Native tokens sometimes also entitle holders to a share of the protocol revenue (see the below).

2.1.3 Revenue sharing. Some tokens entitle users to part of the revenue that is going through the protocol. These can be governance tokens or other kinds of tokens. One example is the liquidity provider tokens in AMM-based DEXs [64]. By supplying liquidity into an AMM pool, users receive the fees that are paid by traders within that pool. The higher the volume in that pool, the more fees that are generated, and the more a liquidity provider profits from this. In Uniswap [56], a 0.3% fee is charged for every trade within a pool and goes fully to LPs. In Sushiswap [52], there is also a 0.3% fee, of which 0.25% goes to LPs and 0.05% to xSUSHI holders. This brings up a second kind of revenue-sharing token, where users have to actively stake their tokens to receive a share of the revenue. SUSHI holders that stake their SUSHI will get xSUSHI in return, which represents the proportional share of a pool that captures 0.05% of all trades on Sushiswap [51]. Vesper Finance’s governance token, VSP, can also be deposited in a pool, in return for vVSP, a token that represents the user’s proportional share of a pool that captures part of the revenue generated throughout the whole Vesper platform [59].

2.2 Related protocols
Yield farming relies on other building blocks in the DeFi stack. In this section, we outline the essential types of protocols that are used within yield farming strategies and shortly explain the mechanics behind them.

2.2.1 Protocols for loanable funds (PLF). PLFs enable lending and borrowing of on-chain assets, with the interest rate is set programmatically by a smart contract [19]. In a PLF, pools are pooled together in a smart contract, and can be borrowed from the smart contract reserves. Suppliers of loanable funds receive interest over time, borrowers pay interest. Generally speaking, interest in a given market is accrued through market-specific, interest-bearing derivative tokens [43].

The most prominent PLFs are Aave [1], Compound [9] and dYdX [16].

2.2.2 Automated Market Makers (AMM). AMMs provide liquidity algorithmically by pooling funds and determining asset prices via a so-called conservation function. In a liquidity pool, reserves of two or more assets are locked into a smart contract. There are two core actors involved in the general mechanism of AMMs. First, there are the liquidity providers, who add funds to the asset pool. In return, they receive liquidity provider (LP) tokens proportionate to their liquidity contribution as a fraction of the entire pool. Generally, these LP tokens can be redeemed anytime the liquidity provider wants to get his funds back. The second core actors are the traders, who swap an input asset (what to be spent) for an output asset (what to be received). The exchange rate between the assets is deterministic, depending on the size of the pool and the desired amount to be traded. The most prominent AMMs are Uniswap [56], Balancer [3], Curve [12] and Bancor [4].

2.2.3 Liquidity incentivizing protocol. As mentioned in Section 1, the introduction of liquidity mining supercharged the yield farming business. On top of getting yield from normal operations on platforms as described above, any protocol can decide to give new tokens to its users. By doing this, the issuing protocol seeks to reward users that inject capital into the smart contracts, plus it creates a “truly” decentralized business model by distributing governance tokens to protocol users.

Since the introduction of COMP, the governance token of Compound [33], many DeFi protocols have started some similar incentive scheme, rewarding early users with governance tokens if they provide liquidity to the protocol. Apart from Compound, examples of protocols that issued liquidity incentive programs include Uniswap [55], Sushiswap [50] and Yearn Finance [11].

2.3 Tokens
While the protocols in Section 2.2 are smart contracts that pragmatically define the mechanisms behind the concept, tokens are smart contracts that generally follow a standard token interface, representing assets, synthetic assets or derivatives [62]. In this section, we discuss the most important tokens in yield farming.

2.3.1 Stablecoins. Stablecoins are cryptocurrencies that attempt to offer price stability. They are designed to have a stable price with respect to some reference point [40], being another cryptocurrency, fiat money, or even commodities. Today’s biggest stablecoins, USDT, USDC and BUSD are all pegged to the US Dollar. Stablecoins can be non-custodial or custodial, asset-backed or algorithmically programmed. For a more thorough discussion on stablecoin design, we direct the reader to [32].
The characteristic of potential lower volatility compared to traditional cryptocurrencies, makes stablecoins a desirable class of assets for yield farming. As these tokens promise less volatility, they are considered a safer base asset for yield farming, as their value will typically not fluctuate greatly, which in turn enhances the protection against the underlying mechanisms of collateral liquidation and impermanent loss, which are discussed in Section 5.2.

2.3.2 PLF interest-bearing tokens. As discussed in Section 2.2, when lenders supply funds in a market pool, they receive interest-bearing tokens that represent the lender’s share in the pool. Over time, borrowers pay interest that flows into the pool, increasing the value of the lender’s relative share. This mechanism ensures that accrued interest in a market is paid out to the fund providers. Examples of PLF interest-bearing tokens are aTokens by Aave and cTokens by Compound.

2.3.3 AMM liquidity provider (LP) tokens. Whenever liquidity is deposited into a pool, liquidity tokens are minted and sent to the liquidity provider. Similar to interest-bearing tokens in PLFs, AMM liquidity tokens represent a proportional share of the pool and the same mint and burn mechanisms are applied to keep track of liquidity. One key difference is that there are no borrowers, but traders, who pay a fee each time they do a trade.

For example, Uniswap charges a 0.3% fee. Every time a user swaps an asset in a certain pool, 0.3% of the purchased amount is retained to the pool and thus distributed pro-rata to all liquidity providers. Sushiswap charges a slightly lower fee of 0.25%.

Furthermore, as liquidity provider, one should consider the risk of divergence loss, as discussed in Section 5.2. Examples of AMM LP tokens are UNI-V2 tokens from Uniswap (e.g. ETH-USDT UNI-V2 tokens) and SLP tokens from Sushiswap (e.g. ETH-USDT SLP tokens).

2.3.4 Native/Governance tokens. As previously mentioned, liquidity mining is a big part of yield farming strategies. DeFi projects are in need of liquidity as it signals trust within the community. Both early and more mature projects therefore launch liquidity mining programs, incentivizing users to supply liquidity into the protocols of the project (see 2.1.2). Often that reward is governance tokens, that entitle holders to shape the future of a protocol. Liquidity mining programs differ among projects depending on the goal of the founding community. Regardless of the vision behind the incentives, these rewards typically form an attractive source of yield and it encourages yield farmers to look for the most attractive strategies in both the short and long term [6].

Examples of governance tokens as part of a liquidity mining program are COMP from Compound, UNI from Uniswap, SUSHI from Sushiswap and YFI from Yearn Finance.

3 YIELD FARMING STRATEGIES

A yield farming strategy is a specific set of actions through modular smart contracts that automates the yield farming process. One pool (also called "vault" or other names) commonly employs only a single strategy, but more recent developments allow for multiple strategies within one asset pool, such as the Yearn v2 vaults discussed in 4.4.

3.1 Pool workflow

A typical yield aggregator pool workflow has three to four phases, depending on the specific protocol. Figure 2 visualizes the typical workflow within yield aggregator pools. Note that the steps in this figure are not necessarily sequential, but can happen in random order once the pool has been bootstrapped.

![Figure 2: Stylized Yield Aggregator mechanism](image)

Phase 0 In this phase, a yield farming strategy is proposed, created and deployed on the blockchain. In more centralized protocols, only internal developers can create strategies; more decentralized protocols also allow other stakeholders such as farmers, to have a vote in strategy implementation. Upon approval of the strategy—either by the protocol development team, or through a decentralized governed voting mechanism, a pool is deployed in order to collect and disperse funds. From that moment, yield farmers can deposit funds into the pool or withdraw from it. By depositing funds, farmers receive pool shares in forms of “liquidity tokens”. By withdrawing funds, they surrender those liquidity tokens to redeem funds proportionate to their shares.

Phase 1 In this phase, the funds pooled in Phase 0 are used as collateral to borrow another asset through lending platforms like Maker [36], Aave [1] or Compound [9]. The purpose of this phase is to turn miscellaneous assets collected from farmers into one asset, typically a stablecoin, to prepare for strategy execution in Phase 2. Naturally, this phase can be skipped, if the pooled asset already satisfies the asset type requirement. For example, if the strategy only accepts DAI—a stablecoin pegged to USD—as the deployable capital, then funds in ETH and WBTC pools need be deposited to a PLF (see 2.2.1) as collateral to borrow DAI first; funds in the DAI pool, however, can proceed directly to Phase 2.

A critical aspect in this stage is collateral management to avoid liquidation (see 5.2.1) of deposited assets. The yield aggregator manages the collateral risk level by directing the flow of funds between smart contracts used in Phase 0 and Phase 1.

Phase 2 In this phase, funds from Phase 0 and/or Phase 1 are deployed to generate yield, by following the pre-programmed strategy (for examples see 3.2). The output of Phase 2 is the generated yield. Figure 3 shows how a single strategy typically works. “Static” assets such as USDC and WETH, represented by red coins, constitute the value-denominating underlying of yield-bearing assets such as cUSDC and aWETH.
Phase 3 The goal of Phase 3 is to get the generated yield back to the original fund. Depending on which assets constitute the yield, they can be exchanged on a DEX for the original asset and returned to Phase 0, or deposited in Phase 1 as collateral to borrow more deployable capital, or, when acceptable to the strategy, reinvested directly in Phase 2. Phase 3 can be triggered after a certain time, or after a specific smart contract function from which the previous phases is called. It is executed either automatically or manually, depending on the aggregator [39] [25].

3.2 Common strategies
In this section, we describe three common yield farming strategies: simple lending, leveraged borrow, and liquidity provision, with illustrations of their mechanisms (Figure 4). We additionally simulate the expected performance of each strategy in a controlled, parameterized environment, by tracking the trajectory of the total value W of the yield farming pool.2

Assumptions
On comparing the three common strategies, for simple demonstration purposes without loss of generality, we make the following assumptions:

1. the transaction cost is neglected;
2. the value of the yield farming pool W_t is measured in DAI; at $t = 0$, the farming pool contains 1 DAI’s worth of funds, i.e., $W_0 = 1$;
3. the aggregator supplies all funds in the pool to a yield-generating protocol—either a PLF or an AMM, and the funds represent 1% of the protocol’s total assets held at $t = 0$;
4. the yield-generating protocol—either a PLF or an AMM—distributes 0.01 governance token per day to its users proportionately to their stake in the protocol:

[The text continues with the description of each strategy and the code repository link provided.]

2The code repository can be found here.
The simple lending strategy is a low-risk one, and losses usually do not occur. Figure 5a shows that the yield farming pool value W_t is floored at 1 DAI, with the worst-case scenario when the lending APY is 0 and the governance token distributed by the PFL has 0 value. Intuitively, W_t increases with lending APY and governance token price.

3.2.2 Leveraged borrow. According to Assumption 4a and in line with practices of major PFLs such as Compound [9], governance tokens are rewarded to both lenders and borrowers. The leveraged borrow strategy thus aims to maximize the amount of governance tokens received by the PFL through leveraging spirals (Figure 4b).

In our simulated environment, at $t = 0$ the yield farming pool first deposits 1 DAI to a PFL; with this initial deposit as collateral, the farming pool then takes a loan worth 70% of its deposit, i.e. 0.7 DAI. To further augment its deposit and borrow amount for the entitlement of larger rewards, the farming pool re-deposits the borrowed funds, and use them as collateral to borrow again 70% of the new deposit; and so on and so forth. Obviously, the more spirals the farming pool undertakes, the higher shares it holds at both the lending and the borrowing sides of the PFL.

As an asset’s borrow APY always exceeds its lending APY, the farming pool’s loan accrues interest exponentially faster than its deposit. Assume a borrow APY of 10% (as per Assumption 6.) and a supply APY of 3%, we observe from Figure 4b that sufficiently valuable governance tokens can make the strategy profitable, but losses occur when the value of the governance tokens received is insufficient to offset the negative net interest revenue. In addition, a high degree of leverage, measured by the number of spirals, can amplify both the profit—in case of high-value governance tokens, as well as the loss—in case of low-value governance tokens.

3.2.3 Liquidity provision. With this strategy, the yield farming pool supplies funds to an AMM in order to profit from both trading fees and governance tokens rewarded by the AMM (Figure 4c).

In our simulated environment, at $t = 0$ the yield farming pool deposits 1 DAI’s worth of funds in the DAI-ETH pool of an AMM, and receives in return some DAI-ETH-LP tokens, representing its share in the AMM pool. According to Assumption 3, the farming pool owns 1% of the total circulating supply of DAI-ETH-LP. Given that DAI is the denominating asset (Assumption 2.), and that the DAI-ETH pool applies a constant-product conservation function (Assumption 7.), the DAI-ETH pool always contains DAI and ETH with equivalent value, and the total pool value thus equals twice the DAI quantity in the pool.

We additionally assume that, on an aggregate level, further liquidity provision and withdrawal cancel each other out; the value of the farming pool’s DAI-ETH-LP holding hence remains 1% of the DAI-ETH pool’s value. Naturally, all other things equal, the farming pool’s value increases with the value of the AMM governance token.

We further test scenarios with different market movements. Specifically, we investigate when during the entire simulation period (i) there is 0 trading volume, (ii) the buy and sell volume of ETH is respectively 45 DAI and 55 DAI, (iii) the buy and sell volume of ETH is each 50 DAI, (iv) the buy and sell volume of ETH is each 5 (v) the buy and sell volume of ETH is respectively 45 DAI and 55 DAI. We assume that the trading volume is evenly spread out throughout the simulation period. Absent any trading activity—as in Scenario (i), the farming pool’s yield solely comes from governance token reward. The yield difference between Scenarios (i) and (iii) lies in the trading fee. Clearly, with the presence of 5% trading fee, (iii) results in higher yield. Scenario (ii) describes a market situation with higher selling pressure and consequently falling ETH prices. The leads to an increase in the quantity of the depreciated ETH and a decrease in the quantity of the denominating asset DAI in the AMM pool, diminishing the AMM pool’s value. When the trading fee revenue and governance token reward are insufficient to offset this value loss, the yield would be negative.

Scenario (v) describes a market situation where a higher demand in ETH drives up its price. The leads to a decrease in the quantity of the appreciated ETH and an increase in the quantity of the denominating asset DAI in the AMM pool, raising the AMM pool’s value. Note that in both Scenarios (ii) and (v), liquidity providers suffer from divergence loss, that is, they could have been better off by just holding their DAI and ETH, as opposed to supplying them to the AMM pool.

The simulation shows that the liquidity provision strategy also entails risk, associated with market movements of the assets within the AMM pool. Higher volatility of the AMM pool assets implies higher uncertainty in yield.

4 MAJOR YIELD AGGREGATORS IN DEF
Figure 6 charts the evolution of total value locked (TVL) for major protocols since July 2020. To date, yield aggregators have collected billions of dollars worth of liquidity. This section compares four major yield aggregator protocols with a focus on strategies, performance and fee mechanism.
Table 1: Overview of major existing Yield Aggregators

Protocol	Supported Pool Assets	Phase 0 Strategies	Phase 2 Strategies	Pool	Governance token	Market cap* (mm$)	TVL (mm$)	Token holders		
Idle Finance	Single Asset LP Token Multiple Assets	Simple Lending Leveraged Borrowing Liquidity Provision	Pool	10	IDLE	171.3	176.4	3,168		
Pickle Finance	○ ○ ○ ○	○	○	○	pjar	19	PICKLE	20.0	40.3	5,612
Harvest Finance	● ○ ○ ○	○	●	●	Vault	53	FARM	129.2	528.2	8,396
Yearn Vaults	● ● ● ●	●	●	●	Vault (v1, v2)	50	VFI	1,802.4	3,307.7	32,986
Vesper	○ ○ ○ ○	●	○	○	Grow Pool	4	VSP	337.0	1,468.7	5,387
Rari Capital Earn	● ○ ● ○	●	○	○	Pool	3	RGT	173.0	961.5	9,319
Value DeFi	● ● ● ●	○	○	○	vSafe	4	VALUE	36.2	995.5	4,928

* Fully diluted market cap.

- Risk-Adjusted: this strategy automatically changes the asset pool allocation in order to find an allocation with the highest risk-return score, compared to the highest return score of the “Best Yield” strategy. It does this by incorporating a framework for quantifying risk, developed by DeFiScore [15], which outputs a 0-10 score that represents the level of risk on a specific PLF (0 = highest risk, 10 = lowest risk).

4.1 Idle Finance

Launched in August 2019, Idle is a yield aggregator that automatically allocates and aggregates interest-bearing tokens [29].

4.1.1 Strategies. Idle Finance only distributes single-asset pools over different lending protocols. In Phase 0, users’ funds are pooled together and depending on the strategy that the pool employs, assets are allocated over different PLFs, currently limited to: Compound, Fulcrum, Aave, DyDx and Maker DSR. There is no need for Phase 1 in Idle Finance, as the currently supported pools can be deposited directly into the above PLFs. When any user interacts with Idle or if no interactions are made for 1 hour, rebalancing of the assets takes place according to the rates of supported providers. Currently, Idle uses two different allocation strategies:

- Best-Yield: this strategy seeks the best interest rates across multiple lending protocols.

Figure 6: Total value locked (bn$).
Data collected from https://defillama.com/home - Assets.

Table 1 shows the characteristics of the major protocols and a few more. The data was collected on 1 May 2021. The fully diluted market cap for Yearn finance reaches $1,802.4 million and the number of YFI token holders is 32,986, achieving the largest market dominance of 0.08% amongst all the protocols. TVL of Yearn finance amounts to $3,307.7 million, followed by Vesper with $1,468.7 million.

4.1.2 Return for users. Idle uses IdleTokens to represent the farmers’ proportional ownership of the asset pool, which should accrue yield over time. In addition, farmers are rewarded with Idle governance tokens for participating in the pools as part of Idle’s liquidity mining program. In January 2021, a two-year liquidity mining program started to reward liquidity providers depending on the amount of funds deposited and the utility generated by a certain pool [27].

4.1.3 Protocol fees. A fee 10% of the returns is charged, calculated by subtracting the current IdleToken price by the average IdleToken price at the moment of minting and multiplying this by 0.1. Those fees are collected by a treasury contract that is governed by the Idle governance token holders.

4.2 Pickle Finance

Launched in September 2020, Pickle offers yield on deposits through two products: Pickle Jars (pJar) and Pickle Farms. Jars are yield farming robots, earning returns on users’ funds, while farms are liquidity mining pools where users can earn PICKLE governance tokens by staking different kinds of assets. Proportional shares in pJars are represented by pTokens.

4.2.1 Strategies. Each Pickle Jar employs a specific strategy to earn yield. Currently, two main versions of pJar strategy are in existence, pJar 0.00 and pJar 0.99:

- pJar 0.00: These pJars involve a user depositing LP tokens acquired by supplying liquidity on Curve Finance [12], an AMM-based DEX (see 2.2.2). The strategy employed in pJar 0.00 earns and re-invests CRV rewards by selling them into the market for stablecoins and re-depositing those into the Curve pools. Effectively, pJars 0.00 generate yield by accruing (1) LP fees from Curve and (2) generating CRV tokens because of Curve’s liquidity mining program [13].
- pJar 0.99: These pJars utilize LP tokens from Uniswap and Sushiswap, earning yield by accruing (1) LP fees from Uniswap/
Sushiswap and (2) generating SUSHI or other native tokens because of liquidity mining programs.

All pJars generate yield by accruing tokens, which are sold into the market for the underlying assets in the liquidity pools, depositing those again and thus increasing the number of LP tokens in Harvest Finance pJars. There is no Phase 1 involvement in pJars strategies, pooled funds are directly utilized to farm rewards. Users deposit LP tokens and should in theory get more LP tokens in return after yield is captured and sold during Phase 3.

4.2 Return for users. Return of Pickle users is generally composed of (1) the fees accrued by providing liquidity to AMM pools, (2) earning tokens distributed through external liquidity mining programs, and—depending on the product used—(3) extra pICKLE tokens, rewarded to farmers staking pTokens from the pJars. The return is thus dependent on underlying market forces, liquidity programs and token values. For example, the Pickle emission schedule defines how much pICKLE will be distributed over time [45].

Because many of the Pickle Jars strategies require depositing Uniswap-like LP tokens, the user should always incorporate divergence loss into the return calculation as well. Because Curve pools only contain equal-pegged stablecoins, Curve LP jars (pJar 0.00) are less prone to this particular kind of loss.

4.2.3 Protocol fees. Most Pickle Jars have a 20% performance fee on the generated yield. Those fees are collected by the Pickle Treasury contract.

4.3 Harvest Finance

Harvest offers yield with compounding interest on their FARM liquidity mining program, meaning that users don’t have to actively claim FARM incentives, sell them for another principal asset and re-deposit those funds to pools to compound their earnings. Instead, Harvest Finance has a command called DoHardWork which automatically reinvests profits by using 30% collected earnings to buy FARM from the market and give it to platform users. The other 70% of yields is used to increase the value of the Harvest Vault shares, which are represented by fTokens. Harvest Finance went live in August 2020.

4.3.1 Strategies. Harvest Finance has three main categories of yield farming strategies [23]:

- Single-asset Strategies: Users deposit single assets such as USDC, USDT, DAI, WBTC, renBTC or WETH into a Harvest Vault, which then deposits those assets into another yield generating protocol, including Compound and Idle Finance.
- Curve LP token Strategies: Users deposit Curve LP tokens such as CRV:STETH, CRV:HBTC, CRV:USDC, CRV:DAI, CRV:LINK and YCRV into Harvest to automatically harvest the Curve rewards.
- Uniswap-like LP token Strategies: Users deposit LP tokens from Uniswap or Sushiswap, deposited into a yield-generating smart contract on platforms as Sushiswap, Aave, Muse, 1inch and more.

All strategies use the doHardWork function to compound interest. They accumulate rewards with the funds invested in the strategy pools, liquidate those rewards into the originally invested token or underlying tokens and re-invest those tokens into the same strategy.

4.3.2 Return for users. Return of Harvest users is composed of (1) the fees accrued by providing liquidity to AMM pools, (2) earning tokens distributed through external liquidity mining programs and (3) extra FARM tokens. These returns are dependent on underlying market forces, liquidity programs and token values. For example, the Harvest emission schedule defines how much FARM will be distributed over time [21].

Because many of the Harvest strategies require depositing Uniswap-like LP tokens, the user should always incorporate divergence loss into the return calculation as well. Similar to Pickle Finance, divergence loss should be smaller for Curve LP token strategy pools.

4.3.3 Protocol fees. Harvest Finance does not charge withdrawal fees and does not claim a direct “fee” on the yield farming revenue. Although, during liquidation of the yield, 30% of the profits is used to buy the FARM token on the market, which is then distributed to users who stake FARM in the profit-sharing FARM pool [25].

4.4 Yearn Finance

Yearn Finance offers a multitude of products in Decentralized Finance (DeFi), providing lending aggregation, yield generation, and insurance [38]. The services discussed here are Yearn Earn, a lending aggregator, and Yearn Vaults a more comprehensive yield aggregator. Yearn Finance launched in July 2020.

4.4.1 Strategies.

- Earn pools: The strategy of the Earn pools is to collect a certain asset and deposit it either in dYdX, Aave or Compound, depending on where the highest interest rate of that asset is found. Yearn will withdraw from one protocol and deposit to another automatically as interest rates change between protocols. Earn pools thus omit Phase 1 and go directly to Phase 2, in a strategy that is very similar to the Idle Finance “Best-Yield” Strategy. Proportional shares in Earn pools are commonly represented by yTokens.
- Vaults: A Yearn Vault uses an asset as liquidity, deposits that liquidity as collateral (accounting for risk levels) to borrow stablecoins. Then, it uses those stablecoins to generate yield, after which that yield is re-invested in the stablecoins to generate more yield. Vaults thus employ all phases as illustrated in Figure 2, and allows for more complex strategies compared to Earn pools. Proportional shares in Yearn Vaults are commonly represented by yvTokens or other yTokens.

Yield farming strategies (Phase 2) in Yearn v2 Vaults can be complex, they can involve flash loans, undercollateralized lending through Iron Bank [10], staking on specific protocols (for example HegicStaking) and more.

4.4.2 Return for users. Yearn Finance distributed the YFI governance token over a 9-day period after launch. Liquidity providers in the Earn pools or Vaults are thus not incentivized by a liquidity mining program of Yearn, thus current yield only comes from the returns that the product strategies reap. Those returns can be straightforward, as is the case for Earn pools, and can be complex
to calculate, as is the case for v2 Vaults that can have up to 20 strategies working at once.

4.4.3 Protocol fees. v1 Vaults have a 20% performance fee and a 0.5% withdrawal fee (in case funds need to be pulled from the strategy in order to cover the withdrawal request). v2 Vaults have also a 20% performance fee, but no withdrawal fee. Instead, they charge a 2% management fee. Performance fees are split 50:50 between the Treasury and the Strategist. The management fee is assigned fully to the Treasury.

4.5 Empirical performance

By fetching on-chain data of the above mentioned four main protocols, we visualized the evolution of selected vaults for comparison purposes. The evolution of a) total supply, and b) price per share are plotted for the DAI vault, USDC vault, and 3crv vault for aggregators where these specific pools are available. The name “vaultTokens” is used to represent the share of the corresponding Token-pool in a specific protocol. The price per share represents the ratio of underlying tokens and vaultTokens, which should be 1-to-1 pegged in the beginning, but changes as yield is accrued and added to the pool. Results are shown in Figure 7.

Regarding the total pool supply, Yarn shows an overall increase for all vaults, with jumps roughly at the beginning of each month, while those of the other protocols are either stable or volatile. Specifically, the surge in total supply for Harvest vaultUSDC in the middle of October 2020, followed by the drop at the end of the same month coincides with the surge in TVL of Harvest by 21st October (TVL achieved $704.1 million on 21st October, up 110% from $334.41 million a week earlier), and the Harvest flash loan attack on 26th October, respectively. In the attack, an attacker stole funds from the USDC and USDT vaults of Harvest Finance. A malicious actor had exploited an arbitrage and temporary loss, allowing this actor to obtain vault shares for a beneficial price, after which they were burned for profit [20]. Looking at the vault3crv, drops in total supply of Harvest Finance are observed at the end of December 2020 and towards the end of March 2021 as well.

Concerning price per share, the number steadily increases overall, aside from the sharp declines observed for Harvest vaultDAI and vaultUSDC at the end of October 2020. These are again attributed to the flash loan attack that occurred on 26th October, where funds were drained out of the pool without equally affecting the number of vaultDAI. Further, the graph shows that the Yarn vaults update their contract relatively often, resulting in a short lifespan of plots—otherwise, a sharp decrease in price per share might have been observed after the attack against Yarn Finance on 4 February 2021, in which an unknown entity stole $2.8 million, resulting in Yarn’s DAI vault losing $11.1 million [8]. The hacker(s) exploited the vault using Aave—a complex exploit with over 160 nested transactions and 8.6 million gas used (around 75% of the block) reportedly resulted in a loss of $2.7 million [17].

4.6 Other Aggregators

The four main yield aggregators above are deemed the most mature, but a new wave of yield aggregating protocols is coming up. In general, there seems to be a tendency where more recent yield aggregators aim to be a one-stop-shop, providing additional functionalities such decentralized exchanges, lending and borrowing and risk-managing services.

Below we list more recently launched protocols and products that are still being tested.

Vesper Finance. Vesper [58] focuses on institutional adoption of the DeFi yield market. Currently, only Vesper Pools are available, which are comparable to the traditional yield products. In future developments, Vesper plans to integrate Vesper Labs [58] where users can build their own strategy, which can then be used by other community members.

Rari Capital. Rari Capital [49] is a roboadvisor that attempts to provide investors with the highest yield, beyond just lending. It has multiple products, including Earn, Tranches, Fuse and Tanks, extending the functionalities of a traditional yield aggregator protocol. The Earn product can be considered a traditional yield farming service, while the other products are extending the number of functionalities on the Rari Capital platform, such as lending and borrowing, and yield farming within certain risk boundaries, called “tranches” [34].

Value DeFi. Value DeFi [57] has developed three main products: Value Liquid, Farming services and Vaults. Value liquid is an AMM platform, with vSwap and vPegSwap, allowing users to trade assets and earn fees if they provide liquidity in pools. The farming services, called vFarms, offer users staking possibilities with different returns. The vaults, called vSafe, are the more standard yield-generating contracts as discussed in this paper.

Alpha Homora. Alpha Homora provides leveraged yield farming and leveraged liquidity provision. Users can participate in various roles in Alpha Homora, including Yield Farmers, Liquidity Providers, ETH Lenders, Liquidators, and Bounty Hunters [41]. This protocol does not specifically focus on extending the number of functionalities in one application, but more on allowing users to leverage their positions.
5 DISCUSSION

5.1 Benefits for yield aggregators
This aggregation level typically has a number of advantages. First, yield farmers do not have to actively compose their own strategy, but they can make use of the workflows invented by other users, turning their investment strategy from active to a more passive approach without the need for extensive knowledge about the underlying protocols. Second, because cross-protocol transactions are happening through a smart contract, capital shifts are done automatically, removing the need for the user to transfer funds manually between protocols. Finally, because funds are pooled in a strategy contract, the gas costs are socialized, resulting in fewer and thus lower interaction costs. The disadvantage of aggregating multiple protocols together is the exposure to the multitude of risks when relying on a stack of products where each building block could be a potential liability in the process. Because these risks are an important consideration when deciding upon investing strategies, they are discussed separately in 5.2.

5.2 Risks for yield aggregators
Traditionally, high rewards come with high risk and this is no different with yield farming. The composability of strategies allows creation of endless possibilities, yet in every element and layer of the stack, there are potential risks that should be accounted for. This section discusses the prominent risks in yield farming strategies.

5.2.1 Lending and borrowing risks. Yield farming strategies might use lending and borrowing transactions as part of creating yield. Both come with risks.

Liquidity risk. In PLFs, the Utilization rate U is generally defined as $\text{TotalAmountBorrowed}/\text{TotalLiquidity}$. A utility ratio of $U = 0$ means that there is no demand for the supplied funds and there are no borrowers. We speak of 'under-utilization', which is bad for business, as there is low interest. In this situation, there is no real risk. When utility ratio is close to $U = 1$, nearly all funds supplied in a pool are being borrowed. While this results in high interest rate, it also creates a so-called "liquidity risk": if many lenders withdraw at the same time, a certain amount of them will have to wait until some of the borrowers have paid back their outstanding loans. Both lenders and borrowers are incentivized to get funds back into the pool because of a high premium rate, but in an high utilization scenario, there might be insufficient funds available for withdrawal.

Liquidation risk. When a strategy borrows tokens, there is a risk of liquidation, which happens when the value of the collateral falls below a pre-determined liquidation threshold [43]. In that case; the deposited collateral is no longer deemed valuable enough to cover the amount of the loan that was taken. When a user gets liquidated, this borrower receives the collateral minus outstanding debt and a penalty charge [62]. As should be clear from the above, using assets that are volatile relative to the loaned assets potentially increases the chance of liquidations. This is why stablecoins are an important asset class in the mechanism of borrowing, as they potentially reduce the chance of liquidation by decreasing volatility in the assets used as collateral, the loaned assets or both.

5.2.2 Composability risks. Even though the composability factor of DeFi is what makes yield farming possible in the first place by allowing for complex, interconnected financial protocols, it does bring along the danger of smart contract risk as more and more money legos are plugged into a strategy. Both technical and economic weaknesses give rise to attractive exploit opportunities for malicious hackers. Funds in every step along the way can be compromised, potentially leading to huge losses for yield seekers.

Individual smart contract risk. The implementation of a smart contract application has the potential of having software bugs in the source code, which could lead to unwanted behaviour when using the application. Many protocols try to mitigate such kinds of vulnerabilities by undergoing security audits by an external party or by launching bug bounty programs for community members. While both initiatives are in no way a certainty for flawless execution afterwards, they provide another pair of eyes to the soundness of the contract.

Also, creating an application often involves design trade-offs, leading to weaker and stronger application aspects. For example, while the usage of an admin key for upgrading contracts results in more flexibility in improving the product, it also brings along the danger of a central authority deciding upon many product elements.

Composing multiple smart contracts risk. While two protocols may be secure in isolation, the combination of them may not. That means that by composing multiple smart contracts together, the attack surface might be greater than the sum of its parts. Also, the effect of failure in one of the core components can cause a ripple effect throughout the whole ecosystem. Thus, when using aggregator protocols, the risk not only lies in smart contract risks of that aggregator, but also in all of the underlying protocols in lower layers. Quantification of such risks is out of scope for this paper, but it is important for users to be aware of this when farming strategies are stacking DeFi primitives to generate yield.

Examples. On 26 October 2020, an attacker executed a theft of funds from two Harvest Finance vaults. The exploit involved opening a flash loan to open an arbitrage opportunity and was able to steal 3.2% of the total value locked in the protocol, worth $33.8 million at that time [20].

Then, on 21 November 2020, Pickle Finance suffered from a $19.7 million dollar exploit after a hacker used a fake jar to swap funds with the real cDAI jar [53]. This hack was possible after several design issues within the Pickle contracts.

5.2.3 APY instability.

Divergence loss. A commonly known risk of providing liquidity in AMMs is divergence loss, also known as impermanent loss (IL). When one compares the value of holding specific assets outside of an AMM pool with supplying those same assets to a liquidity pool, there might be a value decrease because of price movements and subsequent arbitrage opportunities. This loss is "impermanent" because as the exchange rate between the two assets in an AMM pool moves up and down, the loss experienced by LP constantly recur and re-disappear.

Strategies that make use of liquidity provision techniques should take into account the risk of value decreases in supplied liquidity,
as it can greatly influence the returns. One way to avoid this is to make use of protocols with some degree of IL protection, such as Curve, which implicitly limits impermanent loss by pooling assets with equal pegs, or Balancer that allows for weighted pool assets such that liquidity providers can retain most of the upside in case of price spikes. Xu et al. [64] show that certain characteristics of some AMMs are more fit for specific use cases.

Low trading activity. When the strategy supplies part of the funds in a liquidity pool, it is subjective to the activity within that pool for its trading fees. Low activity in the pool results in lower trading fees, decreasing APY.

Price fluctuations in liquidity incentives. As discussed in 2.2.3, protocols might reward users with liquidity incentive tokens. As demonstrated in 3.2, strategies making use of this reward system are subject to the value of those incentives. Price fluctuations in those tokens cause APYs to be unstable and thus unreliable.

5.3 The ultimate source of yield

In the past year, a multitude of yield aggregator protocols have sprung up and while the general framework behind them is similar, they all have their own flavour. Idle Finance started in 2019 with a first version of their product, which deposited funds into the PLF that gives the best rate at a given time. Inspired by the liquidity mining program of Compound, Yearn Finance extended this model in July 2020 by inventing more complex strategies, called Vaults, next to their Earn product. As more forms of liquidity mining programs sprung up, Harvest Finance and Pickle finance specialized in yield farming with LP tokens later that summer.

It is not surprising that this all happened within a relatively short period of time. After all, in a decentralized world, developers have the opportunity to work on an open-source code base and improve the existing protocols. It is clear that instead of trying to improve or add features to a working product, developers choose to take parts of a working product and create their own flavour of it. This is why most yield aggregators share a common base of code and workflows are very similar across the board.

This raises the question if we will see convergence or further divergence in the future of these protocols. The empirical data shows that in the early days, protocols like Harvest Finance and Pickle Finance were able to decrease the market dominance of Yearn Finance, in terms of TVL. Recently, Yearn Finance has taken the crown, with over $4bn locked in the protocol. Idle, Harvest and Pickle Finance have a combined TVL of about $550M. Vesper Finance, as the new kid on the block, has been performing exceptionally well, with currently about $1bn locked. While it can be argued that there is a converging trend in terms of fund concentration, Vesper shows that new players still have the potential to disrupt.

Furthermore, there seems to be a converging trend in the offered functionalities of the major protocols. Yearn Finance has a full product suite, of which the Vaults are only one part. Vesper Finance, Rari Capital and Value DeFi are building one-stop-shop solutions, offering a myriad of strategies for a multitude of assets, in-house exchanging services and lending/borrowing opportunities. Even though this paper focuses on the Ethereum blockchain, a similar tendency can be seen on the Binance Smart Chain, where protocols like PancakeSwap [42] offer multiple products in one place.

Yield aggregators have been and still are an attractive way to collect yield in DeFi. But how sustainable is this yield? Discussed in Section 2.1, yield comes from three main sources. While research on the sustainability of yield deserves a separate examination, it could be argued that yield coming from native token distribution is relatively short-lived. Once emission schedules are finished, this yield source is depleted. Even though new protocols can blossom with their newly started emission schedules, it seems unlikely that this source of yield is sustainable. The demand for borrowing could be more sustainable in that regard, but it is highly dependent on market sentiment, especially for non-stablecoins. Yield from revenue sharing tokens seems to be the most durable, especially if DeFi is able to hold on to recent growth rates.

6 RELATED WORK

There is a paucity of existing works related to DeFi, especially the ones associated with yield aggregating protocols. We present the previous studies related to our paper by dividing them into the following categories.

6.1 DeFi protocols

The investigation of DeFi protocols is a fairly new field. [40] and [44] systematically study the general designs of DeFi platforms by decomposing the structure into diverse elements, i.e., peg assets, collateral amount, price and governance mechanism, they investigate the pros and cons of DeFi platforms to spot future directions.

On the other hand, recent existing works mainly focus on particular types of DeFi protocols or explore unusual behaviours observed. For instance, Liu et al. [35] conduct a comprehensive measurement study of DeFi oracles of four prime DeFi platforms to find the operational issues intrinsic in oracles and common divergence between the real and achieved prices.

There are various papers relating to flash loans. Wang et al. [60] reveal a structure that enables the identification and classification of speculative flash loan transactions. Within the scope of the analysis of financial attack vectors that involve a flash loan, [48] study the existing flash loan-based attacks and propose optimizations that significantly improve the ROI of these attacks. Further, [18] shows with specific focus on the leading DeFi project by market share, that it is feasible for attackers to combine crowdfunding and flash loans to execute a successful attack.

The mechanics and properties of DeFi lending protocols are investigated in several studies [5, 19, 31, 43, 54]. Gudgin et al. [19] coin the phrase Protocol for Loanable Funds (PLFs), to name protocols that form distributed ledger-based markets for loanable funds. Further, they study the structure used to settle interest rates on three major PLFs, and provide several empirical analysis on the interest rate movements and the market efficiency.

Structured models for lending protocols and the relevant pools are developed in the following papers [5, 43, 54]. Bartoletti et al. [5] present the major properties of lending pools and their synergies with other DeFi protocols. An empirical analysis of liquidations on PLFs is conducted by Perez et al. [43], by utilizing the abstract model of Compound. This work employs a more generic model of
a pool, enabling both lending and DEX protocols to be formalized. Tolmach et al. [54] further set formal definitions for the dominant DeFi components and propose a formal process-algebraic technique to model DeFi protocols to enable efficient property verification.

With regards to studies that utilise simulation and stress tests, Kao et al. [31] employ agent-based modelling and simulation-based stress tests, in order to evaluate the economic security of the Compound protocol. Lewis et al. [18] explore how design weaknesses in DeFi protocols can trigger a decentralized financial crisis, by for instance conducting stress tests with Monte Carlo price simulation to show how a DeFi lending protocol may find itself under-collateralized.

Further, for building financial models specifically of blockchain protocols and applications, a simulation platform is provided by Gauntlet.4

6.2 Fund management

The portfolio optimization, or portfolio management problem, which concerns the determination of the best portfolio (asset distribution) out of all sets of portfolios available under certain constraints, is regarded as the core problem of the field of fund management.

A fundamental approach to solve this question is posed by Markowitz [37], in which he advocates the mean–variance model to formulate the problem as an optimization problem entailing two criteria: (i) the reward (measured basically by return, and should be maximized), and (ii) the risk (measured by the variance of return, and should be minimized). There does not exist a single optimal solution (portfolio), as there are two criteria to consider, but a set of optimal portfolios, i.e. efficient portfolios.

Putting the theory of Markowitz at the core, a myriad of papers have been issued by enhancing or reshaping the basic model in the following three ways [2]: (i) the simplification of the size and type of input data; (ii) the replacement of the measures of risk; and (iii) the introduction of further criteria or constraints.

7 CONCLUSION

In this SoK, we propose a general framework for yield farming strategies. First, we explain where yield comes from and describe a number of primitives in yield farming. We study protocols and tokens used by aggregators to generate yield, after which we combine this information to create a general workflow of yield farming strategies. Second, we draft three examples of frequently used strategies and simulate yield farming performance under a set of assumptions. Third, we compare four major yield aggregators by summarizing their strategies and revenue models and by evaluating on-chain data on three specific vaults. Finally, we discuss the benefits and risks of yield aggregating protocols, together with related work in the DeFi industry.

While yield farming has been exploding since 2020, an important question remains if current yields will be sustainable in the long term. Higher rewards also imply higher risks, and DeFi attacks might prove that the safest and most robust yield provider might win the race. Protocols are building one-stop-shop solutions, in pursuit of aggregating more than just yield and facilitating the on-boarding of new DeFi users. The combination of yield sustainability and aggregation of multiple services proves to be an exciting area for further research.

REFERENCES

[1] Aave. 2021. Open Source DeFi Protocol. https://aave.com/
[2] K. P. Anagnostopoulos and G. Mamanis. 2010. A portfolio optimization model with three objectives and discrete variables. Computers and Operations Research 37, 7 (2010), 1285–1297. https://doi.org/10.1016/j.cor.2009.09.009
[3] Balancer. 2021. Balancer. https://balancer.fi/
[4] Bancor. 2021. Bancor Network. https://app.bancor.network/eth/data
[5] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lucchini. 2020. SoK: Lending Pools in Decentralized Finance. (12 2020). http://arxiv.org/abs/2012.13230
[6] Dmitry Berenson. 2020. Liquidity Mining: A User-Centric Token Distribution Strategy. https://medium.com/bollinger-investment-group/liquidity-mining-a-user-centric-token-distribution-strategy-1d05c5714641
[7] Cambridge English Dictionary. 2021. YIELD. https://dictionary.cambridge.org/dictionary/english/yield
[8] CoinDesk. 2021. Yearn Finance Deal Vault ‘Has Suffered an Exploit’; $11M Drained. https://www.coindesk.com/yearn-finance-deal-vault-exploit
[9] Compound. 2021. Compound. https://compound.finance/
[10] C.R.E.A.M. 2021. Introducing The Iron Bank. Part II: The Road to Cream v2. https://creamdefinance.medium.com/introducing-the-iron-bank-bab417e9a
[11] Andre Cronje. 2020. YFI. Under yearn.finance we have released. https://medium.com/yearn-yfi/d8457df881
[12] Curve Finance. 2021. Curve Finance. https://curve.fi/
[13] Curve Finance. 2021. Understanding Tokenomics. https://resources.curve.fi/base-features/understanding-tokenomics
[14] DeFi Pulse. 2021. DeFi - The Decentralized Finance Leaderboard at DeFi Pulse. https://defipulse.com/
[15] DeFi Score. 2021. DeFi Score. https://defiscore.io/
[16] dYdX. 2021. dYdX. https://dydx.exchange/
[17] Etherscan. [n.d.]. Transaction Details - block 11792334. https://etherscan.io/tx/0x6dc26870681d1e6503739950abc5ba2211f6c6451e542444d7e1226b12e027
[18] Lewis Gudgeon, Daniel Perez, Dominik Harz, Benjamin Livshits, and Arthur Gervas. 2020. The Decentralized Financial Crisis In Crypto Valley Conference on Blockchain Technology (CVCBT). IEEE, 1–15. https://doi.org/10.1109/CVCBT5044.6420.00005
[19] Lewis Gudgeon, Sam Werner, Daniel Perez, and William J Knottenbelt. 2020. DeFi Protocols for Loanable Funds. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies. ACM, New York, NY, USA, 92–112. https://doi.org/10.1145/3419614.3423254
[20] Harvest Finance. 2020. Harvest Flashloan Economic Attack Post-Mortem . https://medium.com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-3c906de5217
[21] Harvest Finance. 2021. FARM Token Info . https://farm.chainwiki.dev/en/supply
[22] Harvest Finance. 2021. Harvest Finance. https://harvest.finance/
[23] Harvest Finance. 2021. Harvest Finance Yield Farming Strategies . https://farm.chainwiki.dev/en/strategy
[24] Harvest Finance. 2021. Harvest implementation . https://github.com/harvest-finance/harvest-strategy
[25] Harvest Finance. 2021. Harvest Vault . https://farm.chainwiki.dev/en/educatio
[26] Matt Hussey. 2019. What Is Tokenomics? The Beginner’s Guide. https://decrypt.co/resources/tokenomics
[27] Idle Finance. 2021. Distribution - Idle. https://developers.idle.finance/advanced/governance/distribution
[28] Idle Finance. 2021. Idle Finance app . https://idle.finance/#/
[29] Idle Finance. 2021. Idle Finance Documentation . https://developers.idle.finance/Idle
[30] Idle Finance. 2021. Idle Finance Implementation . https://github.com/Idle-Labs/Idle-contracts
[31] H T Kao, T Chiara, R Chiang, and J Morrow. 2020. An Analysis of the Market Risk to Participants in the Compound Protocol. In Third International Symposium on Foundations and Applications of Blockchain (FAB 20). https://scfah.github.io/2020/FAR2020/p5.pdf
[32] Ariah Klages-Mundt, Dominik Harz, Lewis Gudgeon, Jun You Liu, and Andrea Minca. 2020. Stablecoins 2.0: Economic Foundations and Risk-based Models. In AFT - Proceedings of the 2nd ACM Conference on Advances in Financial Technologies. Association for Computing Machinery, Inc, New York, NY, USA, 59–79. https://doi.org/10.1145/3419614.3423261
[33] Robert Lesher. 2020. Expanding Compound Governance. https://medium.com/compound-finance/expanding-compound-governance-ce136d4f46
[34] Jack Lipstone. 2020. Rari Capital Partners with Saffron Finance. https://medium.com/rari-capital/rari-capital-partners-with-saffron-finance-b80c82878c07
[35] Bowen Liu and Pawel Szalachowski. 2020. A First Look into DeFi Oracles. arXiv March (2020).
