Research Article

Mikhail Yu. Kiskin*, Anton I. Vasyunin, and Vitaly V. Akimkin

A numerical approach to model chemistry of complex organic molecules in a protoplanetary disk

https://doi.org/10.1515/astro-2022-0009
received October 31, 2021; accepted February 07, 2022

Abstract: Multiphase astrochemical modeling presents a numerical challenge especially for the simulation of objects with the wide range of physical parameters such as protoplanetary disks. We demonstrate an implementation of the analytical Jacobian for the numerical integration of the system of differential rate equations that govern chemical evolution in star-forming regions. The analytical Jacobian allowed us to greatly improve the stability of the code in protoplanetary disk conditions. We utilize the MONACO code to study the evolution of abundances of chemical species in protoplanetary disks. The chemical model includes 670 species and 6,015 reactions in the gas phase and on interstellar grains. The specific feature of the utilized chemical model is the inclusion of low-temperature chemical processes leading to the formation of complex organic molecules (COMs), included previously in the models of chemistry of COMs in prestellar clouds. To test the impact of analytical Jacobian on the stability of numerical simulations of chemical evolution in protoplanetary disks, we calculated the chemical composition of the disk using a two-phase model and four variants of the chemical reaction network, three values of the surface diffusion rates, and two types of the initial chemical composition. We also show a preliminary implementation of the analytical Jacobian to a three-phase model.

Keywords: astrochemistry, complex organic molecules, protoplanetary disks, interstellar medium

1 Introduction

Studies of the chemical composition of objects in the interstellar medium, especially for the content of complex organic molecules (COM), is an important prerequisite for understanding the origin of life in the Universe. Protoplanetary disks are dust- and gas-rich objects that could possibly form planetary systems. They are ubiquitous around young low-mass stars (e.g., Manara et al. 2016, Kim et al. 2017). A study of the chemical composition in the disks around Sun-like stars will provide an idea of the origin of organic molecules in the early Solar System, which in turn can serve as a key to understanding the early chemical composition of the Earth and other planets.

To date, complex organic molecules (which are defined to have six or more atoms, including carbon, Herbst and van Dishoeck 2009) such as methanol (\(\text{CH}_3\text{OH}\); Walsh et al. 2016) and acetonitrile (\(\text{CH}_3\text{CN}\); Öberg et al. 2015, Bergner et al. 2018) have been detected in protoplanetary disks. In addition, formaldehyde (\(\text{H}_2\text{CO}\); Öberg et al. 2017, Podio et al. 2019) and formic acid (\(\text{HCOOH}\); Favre et al. 2018) molecules were also found in the disks. Other molecules representative of the COMs content in the ISM, such as methyl formate \(\text{HCOOCH}_3\) and dimethyl ether \(\text{CH}_3\text{OCH}_3\), are still not found in the Class II protoplanetary disks, but are widely observed in star-forming regions representing earlier stages of low-mass protostellar evolution, such as prestellar cores (Jiménez-Serra et al. 2016) and hot cores/corinos (Jorgensen and PILS Team 2020, Manigand 2020) and FU Ori type young stars (Lee et al. 2019).

Aikawa et al. (1997) were among the first to study the evolution of the molecular composition of protoplanetary disks. They considered stationary minimum mass solar nebula (MSMN) without radial mixing; density and temperature did not change over time. Their chemical model included gas-phase reactions, adsorption onto dust grains, and thermal desorption from dust particles. Ionization and dissociation by interstellar and stellar ultraviolet radiation
were neglected. The chemical network of reactions was based on the UMIST94 database (Millar et al. 1991).

Over the next 20 years, protoplanetary disk models became more sophisticated (e.g., see review by Henning and Semenov 2013). However, the applied chemical models remained mostly two phase, that is, only gas–grain interactions were considered. Ruaud and Gorti (2019) were able to apply the three-phase chemical model to protoplanetary disks for the first time.

In this article, for the first time, we apply a scenario of the formation of complex organic molecules in cold gas of prestellar cores proposed by Vasyunin and Herbst (2013) and further developed by Vasyunin et al. (2017) to a protoplanetary disk around a Sun-like star. The evolution of the chemical composition was calculated for 1 Myr assuming that the disk structure is in a quasi-stationary mode for a given time period (Akimkin et al. 2013).

To numerically solve the system of differential equations that determine chemical evolution, the three-phase MONACO code uses the DVODE integrator (Brown et al. 1989). In the current state, the application of the MONACO code to protoplanetary disks is challenging due to a wide range of physical conditions typical for disks. Numerical integration of a system of ordinary differential equations requires the calculation of the Jacobian matrix of the system. The DVODE can work in two regimes: with internally generated numerical Jacobian and with user-supplied analytical Jacobian. The latter option typically results in much higher numerical stability of integration. On the other hand, it requires additional efforts from researchers aimed at derivation and implementation of the analytical expressions for the Jacobian matrix into the numerical code. To solve this problem, we added to the code the implementation of specifying the analytical Jacobian of the system of differential equations.

In this study, we set the following goals: by supplying the analytical Jacobian, to increase the stability of the MONACO code for efficiently calculating the evolution of the chemical composition of the protoplanetary disk under the wide range of physical parameters and conditions typical of protoplanetary disks. Also, we aim to study the formation of COMs in the disk, especially midplane, using the model suggested by Vasyunin and Herbst (2013) tested on prestellar cores, the conditions that are close to the conditions in midplane.

2 Models

2.1 Physical model of the protoplanetary disk

As a physical model of a protoplanetary disk (PPD), we used the model presented by Molyarova et al. (2017). This model is the PPD model around a T Tauri type star with the mass of 1\(M_\odot\) and utilizes the 1+1D approach to calculate disk density and temperature. The disk is considered quasi-stationary, axisymmetric, and hydrostatic in the vertical direction. The protoplanetary disk model used in this article is a grid of 4,400 points (55 radial and 80 vertical points). The model parameters are presented in Table 1.

Dust temperature in the upper disk is calculated using multifrequency ray tracing (RT) procedure for the stellar and background radiation similar to the study by Molyarova et al. (2018). RT is done in 2D in \((r, \phi)\)-plane and includes four directions (to and from the central star, upward and downward relative to the disk midplane). The corresponding angle-averaged intensity is used to calculate radiation field strength and rates of photoreactions. We assume \(1M_\odot\) for the stellar mass, stellar effective temperature \(T_\ast\), and radius \(R_\ast\) are taken from the evolutionary tracks in the study by Baraffe et al. (2015).

In Figure 1, the distributions of disk grid points (top left), the strength of UV radiation (top right), gas temperature (bottom left), and gas density (bottom right) in the disk (at each grid point) are also presented as a function of radial distance from the central star \(r\) and vertical distance from disk midplane \((\frac{z}{\sqrt{r}})\).

2.2 Chemical model

In this study, we utilized a chemical model with the network of gas phase and surface chemical reactions, which was used in the study by Vasyunin and Herbst (2013) with

Table 1: Parameters of the protoplanetary disk model
Parameter

Number of points of the radial grid
Number of points of the vertical grid
Inner grid boundary
Outer grid boundary
Inner characteristic radius
Outer characteristic radius
Total mass of gas in the disk
Mass of the central star
Dust solid density
\(\alpha\)-parameter
Dust-to-gas ratio
an addition of a set of new gas-phase chemical reactions important for the formation of COMs presented in Vasyunin et al. (2017).

The chemical reaction network used in this model contains 670 species and 6,015 gas-phase and surface reactions, as well as 198 species and 880 reactions in the ice mantle of dust particles depending on the simulation mode (see details in Section 2.2.2). Following Vasyunin et al. (2017), we utilize five types of desorptions in the model: thermal evaporation, photodesorption, desorption by cosmic ray particles (CRP), CRP-driven photodesorption, and reactive desorption. We do not consider CRP attenuation inside the disk. Cosmic-ray ionization rate in our model is $\zeta_{\text{CR}} = 1.3 \times 10^{-17}$ s$^{-1}$ (Glassgold and Langer 1974). Ionization by short-living radionuclides is $\zeta_{\text{RN}} = 6.5 \times 10^{-19}$ s$^{-1}$ (Umebayashi and Nakano 2009). We also consider thermal hopping across the grain surface for species and quantum tunneling through potential barriers for light species (atomic and molecular hydrogen), depending on the simulation mode (see details in Section 2.2.2).

In Table 2, the atomic initial fractional abundances of elements with respect to the total number of hydrogen nuclei used in the model are presented (according to Wakelam and Herbst 2008). The molecular initial composition is calculated as a result of the chemical evolution of a cold dark cloud at 10^6 years by MONACO with next parameters: density of gas $n_{\text{H}} = 10^5$ cm$^{-3}$, temperature of gas and dust $T = 10$ K, ionization rate by cosmic rays $\zeta_{\text{CR}} = 1.3 \times 10^{-17}$ s$^{-1}$, and interstellar extinction $A_V = 10$.

We modified the chemical model to take into account the radiation fields from the central star and interstellar radiation according to the protoplanetary disk model. The rate constants of photoionization reactions K_i are calculated as follows:

$$K_i = a_i G_{\text{UV}}(r, z) e^{-\gamma A_V(r, z)},$$

(1)
Table 2: The initial fractional abundances of reactants

Reactants	Abundance
H₂	4.99 \times 10^{-1}
H	1.00 \times 10^{-3}
He	9.00 \times 10^{-2}
N	7.60 \times 10^{-5}
O	2.56 \times 10^{-4}
C	1.20 \times 10^{-4}
S	1.50 \times 10^{-5}
Si⁺	1.70 \times 10^{-6}
Fe⁺	2.00 \times 10^{-7}
Na⁺	2.00 \times 10^{-7}
Mg₂⁺	2.40 \times 10^{-6}
Cl⁻	1.80 \times 10^{-7}
P⁺	1.17 \times 10^{-7}
F⁻	1.80 \times 10^{-8}
e⁻	1.40 \times 10^{-4}

The fractional abundances are given with respect to the total number of hydrogen nuclei.

where α is the photoreaction rate in the field of unshielded ultraviolet radiation; G_{UV} and A_V are factors characterizing the radiation field and attenuation of the radiation field, respectively (they are the parameters of the protoplanetary disk model, G_{UV} is utilized in units of the Draine’s field Draine 1978), and γ is a parameter that takes into account the increased field attenuation in the ultraviolet range compared to the visible one (McElroy et al. 2013).

The grid points of the protoplanetary disk model are not independent in terms of calculating the evolution of the chemical composition because the self-shielding of the molecules H₂ and CO has to be taken into account when calculating the photodissociation of those molecules. In our case of 1+1D physical disk model, chemistry in each radial column of the model grid must be calculated in a specific order, namely, starting from the outermost point in disk atmosphere and toward the disk midplane. This is needed because one has to calculate self-shielding factors for CO and H₂ molecules along the radiation propagation path, that is, 1+1D model is in the vertical direction at each radial column, and for that, it is necessary to know the corresponding vertical column densities of the molecules. H₂ and CO self-shielding are calculated based on the study by Visser et al. (2009).

For the top points in each radial column (points with a maximum height above the disk midplane), the column densities H₂ and CO ($N_{\text{H}_2}^{\text{Sol}}$) are assumed to be zero. The column densities at the other points N_{k}^{col} are calculated as follows:

$$N_{k}^{\text{col}} = \frac{1}{2} \left(\frac{N}{N_{H}} \right) + \left(\frac{N}{N_{H}} \right)_{i+1} \left(N_{z}^{0}(z_{i+1} - z_{i}) \sum_{k=1}^{80} (N_{k}^{\text{col}}) \right)$$

(2)

where $\left(\frac{N}{N_{H}} \right)$ is the fractional abundance of H₂ or CO, N_{H}^{0} is the number of hydrogen nuclei at the initial moment (the total number of hydrogen nuclei at a grid point does not change with time in our model), z is the vertical distance of the grid point of the protoplanetary disk model measured from the midplane, and i is the index of the point in the column (the count starts from the bottom of the column, i.e., the smaller the index i, the smaller the vertical distance from the midplane of the point z). The chemical composition within a single column was calculated sequentially, starting from the top point, downwards the midplane, for all 55 columns in the protoplanetary disk model grid.

In the case of a three-phase model, the evolution of the molecular composition is determined by the following system of differential equations (Vasyunin et al. 2017):

$$\frac{dn_{i}}{dt} = \sum_{jk} k_{jk} n_{j}^{\text{gas}} n_{k}^{\text{gas}} - n_{i}^{\text{gas}} \sum_{l} k_{il} n_{l}^{\text{gas}} - k_{\text{acc}} n_{i}^{\text{gas}} + R_{i}^{\text{des}}$$

$$\frac{dn_{i}^{\text{surf}}}{dt} = \frac{dn_{i}^{\text{surf}}}{dt}^{\text{chem}} + \frac{dn_{i}^{\text{surf}}}{dt}^{\text{tran}} + \frac{dn_{i}^{\text{surf}}}{dt}^{\text{diff}}$$

$$\frac{dn_{i}^{\text{bulk}}}{dt} = \frac{dn_{i}^{\text{bulk}}}{dt}^{\text{chem}} - \frac{dn_{i}^{\text{bulk}}}{dt}^{\text{tran}} - \frac{dn_{i}^{\text{bulk}}}{dt}^{\text{diff}}$$

(3)

Here, dn_{i}/dt, dn_{i}^{surf}/dt, and dn_{i}^{bulk}/dt – change in the abundances in the gas phase, on the surface of dust grains and in the mantle of dust particles, respectively. In the case of a two-phase model, this system of equations is noticeably simplified: the terms of the equations describing abundances in the mantle and the transition of molecules between the mantle and the surface are not considered.

For the numerical integration of the system of differential rate Eq. (3), the Adams method is used, implemented in the DVODE integrator. The integration time is 1 Myr.

2.2.1 Supplying the analytical Jacobian

When using a two-phase model (gas–grain) and a chemical network containing ~660 reactants, including ~200
species on the surface and ~6,000 chemical reactions, the Jacobian contains ~435,000 elements, among which ~6,000 are nonzero, which is about 1.4%. In the case of a three-phase model (gas-surface-mantle), the Jacobian contains ~739,600 elements, and the number of nonzero terms is rather difficult to determine in advance, but it is very large, much more than in the case of a two-phase model.

The two-phase Jacobian is well described analytically with the exception of reactive desorption (R^{des}_{fi} term in Eq. (3)) that violates this harmony of the analytical Jacobian. In different models, we have considered three types of reactive desorption. The first type is based on the probability that a molecule formed as a result of a reaction on the grain surface has energy exceeding its binding energy and on the assumption of a rapid loss of this energy, for example, the transfer of energy to a dust particle more massive than the molecule itself (Garrod et al. 2007). This type of desorption is used for reactions with one product, which adds ~700 more nonzero elements of the Jacobian (+0.16%). In the second type of reactive desorption, a fixed value of the desorption efficiency is considered, but for all products of surface reactions (Vasyunin and Herbst 2013), which adds ~1,000 nonzero Jacobian elements (+0.23%). The third type of reactive desorption takes into account both the features of the reaction and the properties of the dust grain surface, namely, the effective mass of the surface element from which the molecule is desorbed into the gas phase (Minissale et al. 2016). This most complex type of reactive desorption considered in our model adds ~25,000 nonzero elements to the Jacobian (+5.7%). The two-phase Jacobian, modified to take into account reactive desorption, is still sparse, but not as simple.

To obtain the symbolic Jacobian of such a system of ordinary differential equations, the SymPy symbolic computation package for the Python language was chosen. The process of numerically solving the system of equations is as follows. On the basis of the chemical reaction network, a system of differential equations in Fortran is formed, since the numerical solution is performed by means of this language. A system of differential equations in Python is also formed, but in a symbolic form. Then symbolic partial derivatives are calculated using SymPy. Then symbolic expressions are simplified. After that, the Python code forms the Fortran source code, and the system of differential equations is solved numerically.

2.2.2 Simulation setups

So far we have applied the following simulation setups:

- Two phase with reactive desorption taken into account, without specifying the Jacobian;
- Three phase (gas–surface–mantle) with reactive desorption taken into account, without specifying the Jacobian;
- “Incomplete” three phase with reactive desorption taken into account, with specifying the Jacobian.

In two-phase approaches, no distinction is made between the surface and the ice mantle of dust particles, which is a noticeable simplification in comparison with the structure of real multilayer ice. In three-phase approaches, we allow surface molecules to bury deep into the ice mantle. Thus, such molecules become inaccessible for direct desorption into the gas phase. In the three-phase approach, the change of the mantle abundances occurs due to adsorption to the surface (“tran” terms in Eq. (3)), chemical reactions (“chem” terms), and physical diffusion between the inert bulk and the surface (“diff” terms). In the “incomplete” three-phase approach, physical diffusion is not implemented yet.

In all setups, we used the type of reactive desorption according to Minissale et al. (2016). Each simulation approach we tested using four different chemical network options: network used in the study by Vasyunin and Herbst (2013); network with refined binding energies for some species; network that additionally includes reactant CH$_3$OCH$_3$ and chemical reactions with its participation; updated network used in the study by Vasyunin et al. (2017). Also, for each simulation approach, we used three values of the diffusion/desorption surface ratio: $\frac{D}{E_{\text{diff}}}$ = 0.3 (with tunneling for light species) and 0.5 and 0.8 (with no tunneling), as well as two variants of the initial chemical composition: atomic and molecular.

3 Results and discussion

3.1 Two-phase setups

In total, in each two-phase approach (with and without Jacobian), we calculated 24 models of protoplanetary disks (4 variants of chemical networks, 3 different values of the surface chemistry parameter, and 2 variants of the initial chemical composition). Thus, 105,600 runs of the numerical integration of the differential equations system were performed in each of the two-phase modes under different physical conditions and different parameters of chemistry.
When using the Jacobian, the calculation speed increased by four to five times on average. The number of unsuccessfully completed calculations has decreased significantly, namely, by 150 times. Now that number is eight unsuccessful calculations out of 105,600 runs. Thus, we consider it reasonable to use the symbolic Jacobian in two-phase models with reactive desorption.

3.1.1 Distribution of organic molecules in the disk

In this section, we present two-dimensional distributions of the fractional abundances of selected organic molecules and some chemically related species with respect to the total number of hydrogen nuclei in the disk in the gas phase and on the surface of dust particles at time $t_{\text{final}} = 10^6$ years with using the network from Vasyunin et al. (2017). $E_g/E_i = 0.3$ and atomic initial chemical composition. In all figures in this section, the abscissa shows the radial distance in logarithmic scale, and the ordinate shows the ratio of vertical and radial distances from midplane and central star, respectively. In those coordinates, the grid of model points is uniform spatially (see Figure 1(a)).

The color scale displays the decimal logarithm of the fractional abundances of the molecule. The g prefix in front of the name of the molecule denotes molecule on the grain surface. Species without “g”, in contrast, reside in the gas phase. To plot the two-dimensional distribution, only the fractional abundances of the molecules greater than 10^{-15} were taken into account.

As shown in Figure 2(a) and (b), the relative hydrogen abundance of the hydroxyl group OH reaches 10^{-7} in the gas phase in the outer region of the disk and 10^{-9} on the grain surfaces in the outer disk. Figures 2(c)–3(f) shows that organic molecules such as formaldehyde H_2CO, methanol CH_3OH, methyl formate $HCOOCH_3$, dimethyl ether CH_3OCH_3, and formic acid $HCOOH$, are more abundant on grain surfaces than in the gas phase in the midplane. The maximum fractional abundances of these molecules on the grain surfaces are in the midplane in intermediate and outer regions of the disk and reach values from 10^{-8} to 10^{-5}, whereas the maximum fractional abundances of these molecules in the gas phase are several orders of magnitude lower (from 10^{-13} to 10^{-7}).

The maximum fractional abundance on the grain surfaces of H_2CO is reached within the radial distances from 60 to 200 au (see Figure 2(d)), CH_3OH – from 500 to 600 au (Figure 2(f)), $HCOOCH_3$ – from 40 to 50 au (Figure 3(b)), CH_3OCH_3 – from 20 to 200 au (Figure 3(d)), and $HCOOH$ – from 80 to 100 au (Figure 3(f)).

As follows from Figures 2(c)–3(f), the values of the maximum fractional abundances on the grain surfaces of H_2CO and $HCOOH$ are $\sim 10^{-6}$, CH_3OH – $\sim 10^{-5}$, $HCOOCH_3$ – $\sim 10^{-7}$, and CH_3OCH_3 – $\sim 10^{-8}$. In the gas phase, the maximum values of abundances H_2CO and CH_3OH are $\sim 10^{-7}$, CH_3OCH_3 and $HCOOCH_3$ – $\sim 10^{-13}$, and $HCOOH$ – $\sim 10^{-9}$. These results are consistent with the results obtained in the study by Walsh et al. (2014), where complex organic molecules formed more efficiently on the surface of dust particles in the middle plane of the disk and also reached maximum values from 10^{-6} to 10^{-5} (see Figures 6 and 7 in the study by Walsh et al. 2014).

The main channel for the formation of COMs, in particular methanol, in this model consists of the sequential hydrogenation of CO on grains:

$$
\text{CO} \xrightarrow{\text{freeze}} \text{gCO} \xrightarrow{\text{gH}} \text{gHCO} \xrightarrow{\text{gH}} \text{gH}_2\text{CO} \xrightarrow{\text{gH}}
$$

$$
\xrightarrow{\text{gH}} \text{gCH}_2\text{O} \xrightarrow{\text{gH}} \text{gCH}_3\text{OH}
$$

$$
\xrightarrow{\text{gH}} \text{gCH}_2\text{OH} \xrightarrow{\text{gH}} \text{gCH}_3\text{OH}. \quad (4)
$$

In our model, COMs are more efficiently formed in the midplane on grains. At 5–30 K and weak UV field, due to attenuation in the depth of the disk, CO in sufficiently large quantities can freeze out to grains. At high altitudes, CO is destroyed under the stronger UV field (CO $\xrightarrow{\text{phot}} C + O$) and COMs are no longer formed in such quantities as in the midplane. However, as shown in Figure 2(d) and (f), in the midplane at 300–400 au, there is a region with a reduced abundances of gH_2CO and gCH_3OH on grain surfaces. We attribute this to a slight increase in the UV field in this region in the physical model of the protoplanetary disk (see Figure 1(b)).

3.1.2 Total column densities of organic molecules

We also present the column densities profiles for selected molecules as a function of the disk radius (total number of molecules in the column) in (cm$^{-2}$). In Figure 4, total column densities for molecules in the gas phase with using the network from Vasyunin et al. (2017), $E_g/E_i = 0.3$ and atomic (blue line) and molecular (orange line) initial chemical composition are presented.

In the work by Podio et al. (2019), estimates of the column densities for formaldehyde H_2CO molecule in the protoplanetary disk of DG Tauri were obtained. Their estimates are at the level of 10^{16} cm$^{-2}$. As shown in Figure 4(b), in our model, the total column densities for H_2CO in the gas reach values 6×10^{15} cm$^{-2}$ for atomic initial composition.
Figure 2: The two-dimensional distribution of the fractional abundance of OH (top row), H$_2$CO (middle row), and CH$_3$OH (bottom row) with respect to hydrogen in the disk in the gas phase (left column) and on the grain surfaces (right column) at the time $t_{\text{final}} = 10^6$ years (color scale is $\lg\left(\frac{n_{\text{mol}}}{n_H + 2n_{\text{H}_2}}\right)$).
Figure 3: The two-dimensional distribution of the fractional abundance of HCOOCH₃ (top row), CH₃OCH₃ (middle row) and HCOOH (bottom row) with respect to hydrogen in the disk in the gas phase (left column), and on the grain surfaces (right column) at the time $t_{\text{final}} = 10^6$ years (color scale is $\log_{10}\left(\frac{n_{\text{molecule}}}{n_H + 2n_H}\right)$).
and $7 \times 10^{16} \text{cm}^{-2}$ for molecular initial composition in the inner disk at ~ 3 au. Walsh et al. (2016) estimate that the peak of the column density of methanol CH$_2$OH molecule in the protoplanetary disk of TW Hya is $\sim 10^{12}$ cm$^{-2}$ at 30 au. Figure 4(c) shows that in our model gas-phase methanol reaches the same value between ~ 0.6 and ~ 1.5 au for atomic initials.

In the work by Walsh et al. (2014), the model column densities of H$_2$CO and CH$_3$OH were estimated as $\sim 10^{12} - \sim 10^{13}$ cm$^{-2}$ (see Figure 8 in the study by Walsh et al. 2014). We understand that our profiles of column densities do not reproduce the observational data and previous models completely; however, we believe that there are sections of the profiles that satisfy the existing data. We do not pay detailed attention to the reasons for the peaks or troughs of our profiles since the priority for us is the modification of the three-phase model for stable calculations of the protoplanetary disk. We started with our two-phase model to work out the technicalities of the Jacobian assignment and are aiming to apply the Jacobian to our full three-phase model. Note that among the possible reasons for such results may indeed be a low value of the disk mass. In our model, we use the value of 0.01 M_\odot. While estimates of disk mass, for example, TW Hydra, referred to by Walsh et al. (2016), have an upper limit of 0.1 M_\odot and a best-fit of 0.023 M_\odot (Kama et al. 2016).

As shown in Figure 4, the use of different variants of the initial chemical compositions has a significant impact on the simulation results, especially with regard to complex organic molecules. The approach in which the protoplanetary disk inherits its initial composition from the previous evolutionary stages of the protostar is more fair.

3.2 Three-phase setups

Work on adding the Jacobian to the three-phase model is ongoing. Currently, we have implemented the supplying of analytical Jacobian for the processes of instantaneous surface redefinition due to the adsorption/desorption of molecules from/to the gas phase from the surface. This added another 230,104 (31%) non-zero Jacobian elements. Such Jacobian obviously ceases to be sparse.

The use of the Jacobian of the differential equations system significantly affected the operation of the three-phase mode. In the three-phase mode without the Jacobian, the calculations for most of the grid points of the protoplanetary disk physical model do not complete successfully in a reasonable CPU time. The addition of the Jacobian to the “incomplete” three-phase regime significantly improved the stability and speed of calculations, but still does not allow
us to calculate the chemical evolution in the inner disk. At the current moment in this mode, we were able to calculate the chemical composition for the outer regions of the disk with the radial distance from the central star of more than 25 au.

In the three-phase model, the molecules from the deep of ice mantle cannot be directly desorbed into the gas phase. “Incomplete” three-phase mode is an intermediate step toward “full” three-phase mode. In the “incomplete” mode, there is no physical transfer of molecules between the mantle and the surface. Mantle molecules can become surface molecules only by emptying the upper layers of the surface. Therefore, the results obtained in this mode must be treated with caution. Nevertheless, using the example of methanol (Figure 5), it can be seen that the abundances in the gas phase and on the grain surfaces in the area accessible to us (especially in midplane) have become several orders of magnitude lower compared to the two-phase regime (Figure 2(e) and (f)). Obviously, this is achieved due to the settling of species deep into the bulk. Hence, the presence of the third solid phase in the chemical model has a significant effect on the abundance of molecules in the gas phase.

4 Summary

We have implemented an option to supply the analytical Jacobian in the MONACO code for the chemical evolution
of interstellar objects, which was previously applied to cold dark clouds and applied it for the first time to the physical model of the protoplanetary disk around a Sun-like star. Specifying the Jacobian for the two-phase (gas–grain) model made it possible to reduce the time of numerical integration of the differential equations system, as well as to increase the stability and accuracy of calculations as applied to the protoplanetary disk.

We also present preliminary results on adding the Jacobian to the three-phase (gas-surface-bulk) model, the intermediate results of which also demonstrated the justification and the necessity of using the Jacobian in modeling the formation of complex organic molecules in protoplanetary disks using the MONACO code. This update is crucial to allow numerically effective modeling of three-phase chemistry in protoplanetary disk conditions.

Funding information: MYK and AIV acknowledge the support Ministry of Science and Higher Education of the Russian Federation via the State Assignment contract FEUZ-2020-0038. VVA is grateful to the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” for financial support (20-1-2-20-1).

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

Aikawa Y, Umebayashi T, Nakano T, Miyama SM. 1997. Evolution of molecular abundance in protoplanetary disks. ApJ. 486(1):L51–L54. doi: 10.1086/310837.

Akimkin V, Zhukovska S, Wiebe D, Semenov D, Pavlyuchenkov Y, Vasyunin A, et al. 2013. Protoplanetary disk structure with grain evolution: The ANDES model. ApJ. 766(1):8. doi: 10.1088/0004-637X/766/1/8.

Baraffe I, Homeier D, Allard F, Chabrier G. 2015. New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astron Astrophys. 577:A42. doi: 10.1051/0004-6361/201425481.

Bergner JB, Guzmán VG, Öberg KI, Loomis RA, Pegues J. 2018. A survey of CH$_3$CN and HC$_3$N in protoplanetary disks. ApJ. 857:69. doi: 10.3847/1538-4357/aab664.

Brown PN, Byrne GD, Hindmarsh AC. 1989. VODE: A variable-coefficient ODE solver. SIAM J Sci Comput. 10(5):1038–1051. doi: 10.1137/0910062.

Draine BT. 1978. Photoelectric heating of interstellar gas. Apj Suppl Ser. 36:595–619. doi: 10.1086/190513.

Favre C, Fedele D, Semenov D, Parfenov S, Codella C, Ceccarelli C, et al. 2018. First detection of the simplest organic acid in a protoplanetary disk. ApJ Lett. 862:L2. doi: 10.3847/2041-8213/aa046.

Garrod RT, Wakelam V, Herbst E. 2007. Non-thermal desorption from interstellar dust grains via exothermic surface reactions. Astron Astrophys. 467(3):1103–1115. doi: 10.1051/0004-6361:20066704.

Glassgold AE, Langer WD. 1974. Model calculations for diffuse molecular clouds. ApJ. 193:73–91. doi: 10.1086/153130.

Henning T, Semenov D. 2013. Chemistry in protoplanetary disks. Chem Rev. 113(12):9016–9042. doi: 10.1021/cr400128p.

Herbst E, van Dishoeck EF. 2009. Complex organic interstellar molecules. Annu Rev Astron Aстр. 47:427–480. doi: 10.1146/annurev-astro-082708-101654.

Jiménez-Serra I, Vasyunin AI, Caselli P, Marcelino N, Billot N, Viti S, et al. 2016. The spatial distribution of complex organic molecules in L1544 pre-stellar core. ApJ Lett. 830(1):L6. doi: 10.3847/2041-8205/830/1/L6.

Jørgensen JK, PILS Team. 2020. The ALMA-PILS Survey: New insights into the complex chemistry of young stars. Proc Int Astron Union. 345:132–136. doi: 10.1017/S1743921319002849.

Kama M, Bruderer S, van Dishoeck EF, Hogerheijde M, Folsom CP, Miotello A, et al. 2016. Volatile-carbon locking and release in protoplanetary disks–A study of TW Hya and HD 100546. Astron Astrophys. 592:A83. doi: 10.1051/0004-6361/201526991.

Kim JS, Fang M, Clarke CJ, Facchini S, Pascucci I, Apai D, et al. 2017. Young stellar objects & photoevaporating protoplanetary disks in the Orionas sibling NGC 1977. Mem S.A.It. 88:790.

Lee JE, Lee S, Baek G, Aikawa Y, Cieza L, Yoon SY, et al. 2019. The ice composition in the disk around V883 Ori revealed by its stellar core. ApJ Lett. 830(1):L1. doi: 10.3847/2041-8205/830/1/L1.

Lee SJ, Miyama SM, Kuzuhara Y, Hashimoto M, Lee J, Hayashi M, et al. 2014. Map of the ice composition in the disk around V883 Ori. ApJ Lett. 790:L24. doi: 10.1088/2041-8205/790/1/L24.

Lee SJ, Miyama SM, Kuzuhara Y, Hashimoto M, Lee J, Hayashi M, et al. 2014. Map of the ice composition in the disk around V883 Ori. ApJ Lett. 790:L24. doi: 10.1088/2041-8205/790/1/L24.

Lee SJ, Miyama SM, Kuzuhara Y, Hashimoto M, Lee J, Hayashi M, et al. 2014. Map of the ice composition in the disk around V883 Ori. ApJ Lett. 790:L24. doi: 10.1088/2041-8205/790/1/L24.

Lee SJ, Miyama SM, Kuzuhara Y, Hashimoto M, Lee J, Hayashi M, et al. 2014. Map of the ice composition in the disk around V883 Ori. ApJ Lett. 790:L24. doi: 10.1088/2041-8205/790/1/L24.

Lee SJ, Miyama SM, Kuzuhara Y, Hashimoto M, Lee J, Hayashi M, et al. 2014. Map of the ice composition in the disk around V883 Ori. ApJ Lett. 790:L24. doi: 10.1088/2041-8205/790/1/L24.

Lee SJ, Miyama SM, Kuzuhara Y, Hashimoto M, Lee J, Hayashi M, et al. 2014. Map of the ice composition in the disk around V883 Ori. ApJ Lett. 790:L24. doi: 10.1088/2041-8205/790/1/L24.

Lee SJ, Miyama SM, Kuzuhara Y, Hashimoto M, Lee J, Hayashi M, et al. 2014. Map of the ice composition in the disk around V883 Ori. ApJ Lett. 790:L24. doi: 10.1088/2041-8205/790/1/L24.

Lee SJ, Miyama SM, Kuzuhara Y, Hashimoto M, Lee J, Hayashi M, et al. 2014. Map of the ice composition in the disk around V883 Ori. ApJ Lett. 790:L24. doi: 10.1088/2041-8205/790/1/L24.

Lee SJ, Miyama SM, Kuzuhara Y, Hashimoto M, Lee J, Hayashi M, et al. 2014. Map of the ice composition in the disk around V883 Ori. ApJ Lett. 790:L24. doi: 10.1088/2041-8205/790/1/L24.

Lee SJ, Miyama SM, Kuzuhara Y, Hashimoto M, Lee J, Hayashi M, et al. 2014. Map of the ice composition in the disk around V883 Ori. ApJ Lett. 790:L24. doi: 10.1088/2041-8205/790/1/L24.

Lee SJ, Miyama SM, Kuzuhara Y, Hashimoto M, Lee J, Hayashi M, et al. 2014. Map of the ice composition in the disk around V883 Ori. ApJ Lett. 790:L24. doi: 10.1088/2041-8205/790/1/L24.
Molyarova T, Akimkin V, Semenov D, Ábrahám P, Henning T, Kóspál Á, et al. 2018. Chemical signatures of the FU Ori outbursts. ApJ. 866(1):46. doi: 10.3847/1538-4357/aadfd9.

Öberg KI, Guzmán VV, Furuya K, Qi C, Aikawa Y, Andrews SM, et al. 2015. The comet-like composition of a protoplanetary disk as revealed by complex cyanides. Nature. 520(7546):198–201. doi: 10.1038/nature14276.

Öberg KI, Guzmán VV, Merchantz CJ, Qi C, Andrews SM, Cleeves LI, et al. H2CO distribution and formation in the TW HYA disk. 2017. ApJ. 839(1):43. doi: 10.3847/1538-4357/aa689a.

Podio L, Bacciotti F, Fedele D, Favre C, Codella C, Rygl KLJ, et al. 2019. Organic molecules in the protoplanetary disk of DG Tauri revealed by ALMA. Astron Astrophys. 623:L6. doi: 10.1051/0004-6361/201834475.

Ruaud M, Gorti U. 2019. A three-phase approach to grain surface chemistry in protoplanetary disks: Gas, ice surfaces, and ice mantles of dust grains. ApJ. 885(2):146. doi: 10.3847/1538-4357/ab4996.

Umebayashi T, Nakano T. 2009. Effects of radionuclides on the ionization state of protoplanetary disks and dense cloud cores. ApJ. 690(1):69–81. doi: 10.1088/0004-637X/690/1/69.

Vasyunin AI, Herbst E. 2013. Reactive desorption and radiative association as possible drivers of complex molecule formation in the cold interstellar medium. ApJ. 769(1):34. doi: 10.1088/0004-637X/769/1/34.

Vasyunin AI, Caselli P, Dulieu F, Jiménez-Serra I. 2017. Formation of complex molecules in prestellar cores: a multilayer approach. ApJ. 842(1):33. doi: 10.3847/1538-4357/aa6ec.

Visser R, van Dishoeck EF, Black JH. 2009. The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks. Astron Astrophys. 503(2):323–343. doi: 10.1051/0004-6361/200912129.

Walsh C, Herbst E. 2008. Polycyclic aromatic hydrocarbons in dense cloud chemistry. ApJ. 680(1):371. doi: 10.1086/587734.

Walsh C, Millar TJ, Nomura H, Herbst E, Weaver SW, Aikawa Y, et al. 2014. Complex organic molecules in protoplanetary disks. Astron Astrophys. 563:A33. doi: 10.1051/0004-6361/201322446.

Walsh C, Loomis RA, Öberg KI, Kama M, vanat Hoff MLR, Millar TJ, et al. 2016. First detection of gas-phase methanol in a protoplanetary disk. ApJ Lett. 823(1):L10. doi: 10.3847/2041-8205/823/1/L10.