Natural products in drug discovery: advances and opportunities

Atanas G. Atanasov1,2,3,4✉, Sergey B. Zotchev2, Verena M. Dirsch2, the International Natural Product Sciences Taskforce* and Claudiu T. Supuran5,6✉

Abstract | Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments — including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances — are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities.

Historically, natural products (NPs) have played a key role in drug discovery, especially for cancer and infectious diseases1–4, but also in other therapeutic areas, including cardiovascular diseases (for example, statins) and multiple sclerosis (for example, fingolimod)5–9.

NPs offer special features in comparison with conventional synthetic molecules, which confer both advantages and challenges for the drug discovery process. NPs are characterized by enormous scaffold diversity and structural complexity. They typically have a higher molecular mass, a larger number of sp3 carbon atoms and oxygen atoms but fewer nitrogen and halogen atoms, higher numbers of H-bond acceptors and donors, lower calculated octanol–water partition coefficients (cLogP values, indicating higher hydrophilicity) and greater molecular rigidity compared with synthetic compound libraries10–12. These differences can be advantageous; for example, the higher rigidity of NPs can be valuable in drug discovery tackling protein–protein interactions13. Indeed, NPs are a major source of oral drugs ‘beyond Lipinski’s rule of five’14. The increasing significance of drugs not conforming to this rule is illustrated by the increase in molecular mass of approved oral drugs over the past 20 years15. NPs are structurally ‘optimized’ by evolution to serve particular biological functions, including the regulation of endogenous defence mechanisms and the interaction (often competition) with other organisms, which explains their high relevance for infectious diseases and cancer. Furthermore, their use in traditional medicine may provide insights regarding efficacy and safety. Overall, the NP pool is enriched with ‘bioactive’ compounds covering a wider area of chemical space compared with typical synthetic small-molecule libraries16.

Despite these advantages and multiple successful drug discovery examples, several drawbacks of NPs have led pharmaceutical companies to reduce NP-based drug discovery programmes. NP screens typically involve a library of extracts from natural sources (Fig. 1), which may not be compatible with traditional target-based assays17. Identifying the bioactive compounds of interest can be challenging, and dereplication tools have to be applied to avoid rediscovery of known compounds. Accessing sufficient biological material to isolate and characterize a bioactive NP may also be challenging18. Furthermore, gaining intellectual property (IP) rights for (unmodified) NPs exhibiting relevant bioactivities can be a hurdle, since naturally occurring compounds in their original form may not always be patented (legal frameworks vary between countries and are evolving)19, although simple derivatives can be patent-protected (Box 1). An additional layer of complexity relates to the regulations defining the need for benefit sharing with countries of origin of the biological material, framed in the United Nations 1992 Convention on Biological Diversity and the Nagoya Protocol, which entered into force in 2014 (Ref. 20), as well as recent developments concerning benefit sharing linked to use of marine genetic resources21.

Although the complexity of NP structures can be advantageous, the generation of structural analogues to explore structure–activity relationships and to optimize...
Lipinski’s rule of five
This guideline for the likelihood of a compound having oral bioavailability is based on several characteristics: containing the number 5. It predicts that a molecule is likely to have poor absorption or permeation if it has more than one of the following characteristics: there are >5 H-bond donors and <10 H-bond acceptors; the molecular weight is >500; or the partition coefficient (LogP) is >5. Notably, natural products were identified as common exceptions at the time of publication in 1997.

Dereplication
Pharmacological screening of natural product extracts yields hits potentially containing multiple natural products that need to be considered for further study to identify the bioactive compounds. Dereplication is the process of recognizing and excluding from further study such hit mixtures that contain already known bioactive compounds.

Phenotypic assays
Assays that rely on the ability of tested compounds to exert desired phenotypic changes in cells, isolated tissues, organs or animals. They offer a complementary strategy to target-based assays for identifying new potential drugs.

NP leads can be challenging, particularly if synthetic routes are difficult. Also, NP-based drug leads are often identified by phenotypic assays, and deconvolution of their molecular mechanisms of action can be time-consuming. Fortunately, there have been substantial advances both in the development of screening assays (for example, harnessing the potential of induced pluripotent stem cells and gene editing technologies) and in strategies to identify the modes of action of active compounds.

Here, we discuss recent technological and scientific advances that may help to overcome challenges in NP-based drug discovery, with an emphasis on three areas: analytical techniques, genome mining and engineering, and cultivation systems. In the concluding section, we highlight promising future directions for NP drug discovery.

Application of analytical techniques
Classical NP-based drug research starts with biological screening of ‘crude’ extracts to identify a bioactive ‘hit’ extract, which is further fractionated to isolate the active NPs. Bioactivity-guided isolation is a laborious process with a number of limitations, but various strategies and technologies can be used to address some of them (FIG. 2). For example, to create libraries that are compatible
An example of a pathway affected by diverse natural products (NPs) is the KEAP1/NRF2 pathway. This pathway regulates the expression of genes encoding proteins with versatile cytoprotective functions and has essential roles in the maintenance of redox and protein homeostasis, mitochondrial biogenesis and the resolution of inflammation.[20-24].

Activation of this pathway can protect against damage by most types of oxidants and pro-inflammatory agents, and it restores redox and protein homeostasis.[20]. The pathway has therefore attracted attention for the development of drugs for the prevention and treatment of complex diseases, including neurological conditions such as relapsing–remitting multiple sclerosis[25] and autism spectrum disorder.[22]. Despite this erroneous assumption, DMF is effective in treating psoriasis, both topically and orally, and is the active principle of Fumaderm, which has been used clinically for several decades in the treatment of plaque psoriasis in Germany. More recently, a DMF formulation developed by Biogen has been tested in other immunological disorders, with successful phase III trials in multiple sclerosis.[26,27] leading to its approval by the FDA and EMA in 2013.

The isothiocyanate sulforaphane, isolated from broccoli (Brassica oleracea)[28], is among the most potent naturally occurring inducers of the KEAP1/NRF2 pathway[20] and has protective effects in animal models of Parkinson[20], Huntington[21] and Alzheimer[22] diseases, traumatic brain injury[21], spinal cord contusion injury[21], stroke[20], depression[16] and multiple sclerosis[27]. Sulforaphane-rich broccoli extract preparations are being developed as preventive interventions in areas of the world with unavoidable exposure to environmental pollutants, such as China; the initial results of a randomized clinical trial showed rapid and sustained, statistically significant increases in the levels of excretion of the glutathione-derived conjugates of benzene and acrolein[29,30], and a follow-up trial (NCT02566420) also demonstrated dose–response–dependent benzene detoxification[30]. In a placebo-controlled, double-blind, randomized clinical trial in young individuals (age 13–27 years) with autism spectrum disorder, sulforaphane reversed many of the clinical abnormalities[31]; these encouraging findings led to a recently completed clinical trial in children (age 3–12 years) (NCT02362481); results of the trial are not yet publicly available. An α-cyclodextrin complex of sulforaphane known as SFX-01 (developed by Evgen Pharma) is being clinically studied for its potential to reverse resistance to endocrine therapies in patients with ER[32] metastatic breast cancer (phase II trial completed[29]) and in patients with subarachnoid haemorrhage (phase II trial NCT02415472 recently completed; results not yet publicly available). Currently, a clinical trial of SFX-01 in patients hospitalized with COVID-19 is in its final stages of preparation.

Finally, the pentacyclic triterpenoids bardoxolone methyl (also known as RTA 402) and omaveloxolone (RTA 408), which are semi-synthetic derivatives of the NP oleanolic acid, are the most potent (active at nanomolar concentrations) activators of the KEAP1/NRF2 pathway known to date.[32]. These compounds have shown protective effects in numerous animal models of chronic disease[34], and are currently in clinical trials for a wide range of indications, such as chronic kidney disease in type 2 diabetes, pulmonary arterial hypertension, melanoma, radiation dermatitis, ocular inflammation and Friedreich’s ataxia[35]. Most recently, bardoxolone methyl has entered a clinical trial in patients hospitalized with confirmed COVID-19 (NCT04944640).

Dimethyl fumarate

Sulforaphane

Bardoxolone methyl (RTA 402)

Omaveloxolone (RTA 408)
orders of magnitude11,12. However, challenges remain in data mining and in the unambiguous identification of the metabolites using various workflows relying on open web-based tools40.

Dereplication of secondary metabolites in bioactive extracts includes the determination of molecular mass and formula and cross-searching in the literature or structural NP databases with taxonomic information, which greatly assists the identification process. Such metadata, which are difficult to query in the literature, are often compiled in proprietary databases, such as the Dictionary of Natural Products, which encompasses all NP structures reported with links to their biological sources (see Related links). However, a comprehensive experimental tandem mass spectrometry (MS/MS) database of all NPs reported to date does not exist, and a search for experimental spectra across various platforms is hindered by the lack of standardized collision energy conditions for fragmentation in LC–MS/MS42.

In this respect, the Global Natural Products Social (GNPS) molecular networking platform developed in the Dorrestein laboratory is an important addition to the toolbox41. Molecular networking organizes thousands of sets of MS/MS data recorded from a given set of extracts and visualizes the relationship of the analytes as clusters of structurally related molecules. This improves the efficiency of dereplication by enabling annotation of isomers and analogues of a given metabolite in a cluster42. The recorded experimental spectra can be searched against putative structures and their corresponding predicted MS/MS spectra generated by tools such as competitive fragmentation modelling (CFM-ID)43. Based on such approaches, vast databases of theoretical NP spectra have been created and applied in dereplication44. The GNPS molecular networking approach has limitations, however, such as better applicability to some classes of NPs than others and the uncertainty of structural assignment among possible metabolites using various workflows relying on open web-based tools.

Bacterial strains isolated from marine sediment from the coastal areas of Panama were used for the preparation of 234 NP extracts. Image-based phenotypic bioactivity profiling of the 234 NP extracts in HeLa cells led to prioritization of promising extracts for further analysis, resulting in the discovery of the new NPs, quinocinnolinomycins A–D. Another illustrative example of LC–HRMS screening of NP extracts is the work of Clevenger et al.,85 who obtained novel NP extracts through heterologous expression of fungal artificial chromosomes (FACs) containing uncharacterized biosynthetic gene clusters (BGCs) from diverse fungal species in Aspergillus nidulans. Analysis of the LC–HRMS metabolomics data with a FAC- Score algorithm directed the simultaneous discovery of 15 new NPs and the characterization of their BGCs.

Fig. 2 | Applications of advanced analytical technologies empowering modern natural product-based drug discovery. a | An illustrative example of the application of liquid chromatography–high-resolution mass spectrometry (LC–HRMS) metabolomics in the screening of natural product (NP) extracts is the work of Kurita et al.,58 in which 234 bacterial extracts were subjected to image-based phenotypic bioactivity screening and LC–HRMS metabolomics. Clustering of the resulting data allowed prioritization of promising extracts for further analysis, resulting in the discovery of the new NPs, quinocinnolinomycins A–D. b | Another illustrative example of LC–HRMS screening of NP extracts is the work of Clevenger et al.,85, who obtained novel NP extracts through heterologous expression of fungal artificial chromosomes (FACs) containing uncharacterized biosynthetic gene clusters (BGCs) from diverse fungal species in Aspergillus nidulans. Analysis of the LC–HRMS metabolomics data with a FAC- Score algorithm directed the simultaneous discovery of 15 new NPs and the characterization of their BGCs.
predicted candidates. Efforts to address such issues are ongoing43-45, including overlaying molecular networks of large NP extract libraries with taxonomic information to improve the confidence of annotation46. Overall, molecular networking mainly allows better prioritization of the isolation of unknown compounds by strengthening the dereplication process and elucidating relationships between NP analogues, and rigorous structure elucidation for NPs of interest should not be neglected.

Another useful platform for metabolite identification is METLIN47, which includes a high-resolution MS/MS database with a fragment similarity search function that is useful for identification of unknown compounds. Other databases and in silico tools such as Compound Structure Identification (CSI): FingerID and Input Output Kernel Regression (IOKR) can be used to search available fragment ion spectra, as well as to generate predicted spectra of fragment ions not present in current databases48. A novel computational platform for predicting the structural identity of metabolites derived from any identified compound has also been recently reported49, which should increase the searchable chemical space of NPs.

To accelerate the identification of bioactive NPs in extracts, metabolomics data can be matched to the biological activities of these extracts50. Various chemometric methods such as multivariate data analysis can correlate the measured activity with signals in the NMR and MS spectra, enabling the active compounds to be traced in complex mixtures with no need for further bioassays51-53. Furthermore, several analytical modules involving different bioassays and detection technologies can be linked to allow simultaneous bioactivity evaluation and identification of compounds present in small amounts (analytical scale) in complex compound mixtures54,55.

Metabolomics data can be integrated with data obtained by other omics techniques such as transcriptomics and proteomics and/or with imaging-based screens. For example, Acharya et al. used this approach to characterize NP-mediated interactions between a Micromonospora species and a Rhodococcus species56. In another interesting example, Kurita et al. developed a compound activity mapping platform for the prediction of identities and mechanisms of action of constituents from complex NP extract libraries by integrating cytological profiling57 with untargeted metabolomics data from a library of extracts58, and identified quinocinolominycins as a new family of NPs causing endoplasmic reticulum stress59 (FIG. 2a).

Analytical advances that enable the profiling of responses to bioactive molecules at the single-cell level can also accelerate NP-based drug discovery. Irish, Bachmann, Earl and colleagues developed a high-throughput platform for metabolomic profiling of bioactivity by integrating phospho-specific flow cytometry, single-cell chemical biology and cellular barcoding with metabolomic arrays (characterized chromotographic microtitre arrays originating from biological extracts)60. Using this platform, the authors studied the single-cell responses of bone marrow biopsy samples from patients with acute myeloid leukaemia following exposure to microbial metabolomic arrays obtained from extracts of biosynthetically prolific bacteria, which enabled the identification of new bioactive polyketides61.

Finally, advances in analytical technologies continue to support the rigorous structure determination of NPs of interest. The progressive development of higher-field NMR instruments and probe technology62-64 has enabled NP structure determination from very small quantities (below 10 \(\mu\)g)65, which is important, as the available quantities of NPs are often limited. In addition, microcrystal electron diffraction (MicroED) has recently emerged as a cryo-electron microscopy-based technique for unambiguous structure determination of small molecules66 and is already finding important applications in NP research67. The increased resolution and sensitivity of analytical equipment can also help address problems associated with ‘residual complexity’ of isolated NPs; that is when biologically potent but unidentified impurities in an isolated NP sample (which could include structurally related metabolites or conformers) lead to an incorrect assignment of structure and/or activity68,69. To avoid futile downstream development efforts, Pauli and colleagues recommended that lead NPs should undergo advanced purity analysis at an early stage using quantitative NMR and LC−MS70.

Genome mining and engineering

Advances in knowledge on biosynthetic pathways for NPs and in developing tools for analysing and manipulating genomes are further key drivers for modern NP-based drug discovery. Two key characteristics enable the identification of biosynthetic genes in the genomes of the producing organisms. First, these genes are clustered in the genomes of bacteria and filamentous fungi. Second, many NPs are based on polyketide or peptide cores, and their biosynthetic pathways involve enzymes — polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSSs), respectively — that are encoded by large genes with highly conserved modules71.

‘Genome mining’ is based on searches for genes that are likely to govern biosynthesis of scaffold structures, and can be used to identify NP biosynthetic gene clusters72-75. Prioritization of gene clusters for further work is facilitated by advances in biosynthetic knowledge and predictive bioinformatics tools, which can provide hints about whether the metabolic products of the clusters have chemical scaffolds that are new or known, thereby supporting dereplication72,73. Such predictive tools for gene cluster analysis can be applied in combination with spectroscopic techniques to accelerate the identification of NPs76 and determine the stereochemistry of metabolic products77. Furthermore, to extend genome mining from a single genome to entire genera, microbiomes or strain collections, computational tools have been developed, such as Big-SCAPE, which enables sequence similarity analysis of biosynthetic gene clusters, and CORASON, which uses a phylogenomic approach to elucidate evolutionary relationships between gene clusters78.

Phylogenetic studies of known groups of talented secondary metabolite producers can also empower discovery of novel NPs. Recently, a study comparing secondary metabolite profiles and phylogenetic data in...
NATURE REVIEWS | DRUG DISCOVERY

myxobacteria demonstrated a correlation between the taxonomic distance and the production of distinct secondary metabolite families. In filamentous fungi, it was likewise shown that secondary metabolite profiles are closely correlated with their phylogeny. These organisms are rich in secondary metabolites, as demonstrated by LC–MS studies of their extracts under laboratory conditions. Concurrent genomic and phylogenomic analyses implied that even the genomes of well-studied organism groups harbour many gene clusters for secondary metabolite biosynthesis with as yet unknown functions. The phylogeny of biosynthetic gene clusters, together with analysis of the absence of known resistance determinants, was recently used to prioritize members of the glycopeptide antibiotic family that could have novel activities. This led to the identification of the known antibiotic complestatin and the newly discovered corbomycin as compounds that act through a previously uncharacterized mechanism involving inhibition of peptidoglycan remodelling.

Many microorganisms cannot be cultured, or tools for their genetic manipulation are not sufficiently developed, which makes it more challenging to access their NP-producing potential. However, biosynthetic gene clusters for NPs can be cloned and heterologously expressed in organisms that are well-characterized and easier to culture and to genetically manipulate (such as Streptomyces coelicolor, Escherichia coli and Saccharomyces cerevisiae). The aim is to achieve higher production titres in the heterologous hosts than in wild-type strains, improving the availability of lead compounds. Vectors that can carry large DNA inserts are needed for the cloning of complete NP biosynthetic gene clusters. Cosmids (which can have inserts of 30–40 kb), fosmids (which can harbour 40–50 kb) and bacterial artificial chromosomes (BACs; which can have inserts of 100 kb to >300 kb) have been developed. For fungal gene clusters, self-replicating fungal artificial chromosomes (FACs) have been developed, which can have inserts of >100 kb. FACs in combination with metabolomic scoring were used to develop a scalable platform, FAC-MS, allowing the characterization of fungal biosynthetic gene clusters and their respective NPs at unprecedented scale. The application of FAC-MS for the screening of 56 biosynthetic gene clusters from different fungal species yielded the discovery of 15 new metabolites, including a new macrolactone, valactamide A. Even in culturable microorganisms, many biosynthetic gene clusters may not be expressed under conventional culture conditions, and these silent clusters could represent a large untapped source of NPs with drug-like properties. Several approaches can be pursued to identify such NPs. One approach is sequencing, bioinformatic analysis and heterologous expression of silent biosynthetic gene clusters, which has already led to the discovery of several new NP scaffolds from cultivable strains. Direct cloning and heterologous expression was also used to discover the new antibiotic taromycin A, which was identified upon the transfer of a silent 67 kb NRPS biosynthetic gene cluster from Saccharomonospora sp. CNQ-490 into S. coelicolor.

To transfer a biosynthetic gene cluster of such size, a platform based on transformation-associated recombination (TAR) cloning was developed. This platform enables direct cloning and manipulation of large biosynthetic gene clusters in S. cerevisiae, maintenance and manipulation of the vector in E. coli, and heterologous expression of the cloned gene clusters in Actinobacteria (such as S. coelicolor) following chromosomal integration, and is an alternative to BACs for heterologous expression of large biosynthetic gene clusters.

Heterologous expression has limitations, such as the need to clone and manipulate very large genome regions occupied by biosynthetic gene clusters and the difficulty of identifying a suitable host that provides all conditions necessary for the production of the corresponding NPs. These limitations can be circumvented by activating biosynthetic gene clusters directly in the native microorganism through targeted genetic manipulations, generally involving the insertion of activating regulatory elements or deletion of inhibitory elements such as repressors or their binding sites. For example, a derepression strategy of deleting gbnR, a gene for a transcriptional repressor in Streptomyces venezuelae ATCC 10712 was used by Sidda et al. in the discovery of gaburedins, a family of γ-aminobutyrate-derived ureas.

An example of the activator-based strategy is the constitutive expression of the samI0484 gene in Streptomyces ambofaciens ATCC 23877, which led to the discovery of stambomycins A–D, 51-membered cytotoxic glycosylated macroolides. Alternatively, silent biosynthetic gene clusters can be activated using repressor decoys, which have the same DNA nucleotide sequence as the binding sites for the repressors that prevent the expression of the clusters. When these decoys are introduced into the bacteria, they sequester the respective repressors, and the ‘endogenous’ binding sites in the genome remain unoccupied, leading to derepression of the previously silent biosynthetic genes and production of the corresponding NPs. This approach has been applied to activate eight silent biosynthetic gene clusters in multiple streptomycetes and led to the characterization of a novel NP, oxazolodoxopromycin A. The repressor decoy strategy is simpler, easier and faster to perform than the deletion of genes encoding regulatory factors. However, it has the same limitation as other approaches that rely on the introduction of recombinant DNA molecules into cells: it is necessary to develop protocols for efficient introduction of DNA into the targeted host strain, and the decoy must be maintained on a high-copy plasmid to ensure efficient repressor sequestration.

Another approach focused on exchange of regulatory elements is based on the CRISPR–Cas9 technology. The promise of this technique is exemplified in a recent work by Zhang et al., which demonstrated that CRISPR–Cas9-mediated targeted promoter introduction can efficiently activate diverse biosynthetic gene clusters in multiple Streptomyces species, leading to the production of unique metabolites, including a novel polyketide in Streptomyces viridosphaeroginges. The CRISPR–Cas9 technology was also used to knock out genes encoding two well-known and frequently rediscovered antibiotics in several actinomycete strains, which led to the

Taxonomic distance

The distance of compared taxa on a constructed phylogenetic tree (also known as an evolutionary tree). Closer distance of compared taxa indicates a closer evolutionary relationship.
DNA isolation from specific microorganism/environment/microbiota → Sequencing → Bioinformatics analysis (genome mining) → NP chemical synthesis

Heterologous expression → Genetic manipulations of the native host → NP isolation and characterization

Sequenced metagenomes of 2,000 soil samples → Analysed sequences for BGCs that code for lipopeptides with calcium-binding motifs and clustered to create a phylogenetic tree → Selected a soil sample rich in BGCs from a tree branch not associated with the BGCs for known calcium-binding antibiotics and cloned DNA in a cosmid library

Identified a predicted BGC and transferred into Streptomyces albus using transformation-associated recombination

Malacidins isolated from cultures and their structures elucidated using a combination of mass spectrometry and NMR data, supported by bioinformatics analysis of the BGC

Extracts from cultures of S. albus harbouring the BGC found to show antibacterial activity against Staphylococcus aureus

Analysed genomic sequence data from human microbiome for gene clusters predicted to encode large (≥5 residues) nonribosomal peptides → Identified 57 unique NRPS gene clusters → Chemically synthesized 25 'synthetic–bioinformatic' NP-like compounds predicted to be encoded by the analysed gene clusters

Identified humimycins as new antibiotics active against methicillin-resistant S. aureus

Tested the 25 NP-like compounds for activity against a panel of common human commensal and pathogenic bacteria.
production of different rare and previously unknown variants of antibiotics that were otherwise obscure, including amicetin, thiolactomycin, phenanthrovinidin and 5-chloro-3-formylindole.

Approaches that rely on sequencing, bioinformatics and heterologous expression can also enable the identification of novel NPs from bacterial strains that have not yet been cultivated (Fig. 3a). For example, Hover et al. searched the metagenomes of 2,000 soil samples for biosynthetic gene clusters for lipopeptides with calcium-binding motifs. This led to the discovery of malacidins, members of the calcium-dependent antibiotic family, via heterologous expression of a 72 kb biosynthetic gene cluster from a desert soil sample in a Streptomyces albus host strain (Fig. 3b). However, in comparison with some of the other above-discussed strategies, this metagenome-based discovery approach is more suited to finding new members of known NP classes rather than discovery of entirely new classes. In another study, Chu et al. developed a human microbiome-based approach that identified nonribosomal linear heptapeptides called humimycins as novel antibiotics active against methicillin-resistant Staphylococcus aureus (MRSA) (Fig. 3c). The structure of the NPs was predicted via bioinformatics analysis of gene clusters found in human commensal bacteria, followed by their chemical synthesis. A major strength of this innovative approach is that it is entirely independent of microbial cultivation and heterologous gene expression. Nevertheless, there are limitations related to the accuracy of computational chemical structure predictions and the feasibility of total chemical synthesis.

The genomes of plants or animals can also be mined for novel NPs. For example, mining of 116 plant genomes enabled by identification of a precursor gene for the biosynthesis of lyciumins, a class of branched cyclic ribosomal peptides with hypotensive action produced by Lycium barbarum (popularly known as goji), identified diverse novel lyciumin chemotypes in seven other plants, including crops such as soybean, beet, quinoa and eggplant. Genome mining in the animal kingdom is exemplified by the work of Dutertre et al., which used an integrated transcriptomics and proteomics approach to discover thousands of novel venom peptides from Conus marmoratus snails. Proteomics analysis revealed that the vast majority of the conopeptide diversity was derived from a set of ~100 genes through variable peptide processing.

Some bioactive compounds initially isolated from marine organisms might be products of symbions, and genome mining can facilitate the characterization of such NPs. For example, it has been shown that bioactive compounds from the sponge Theonella swinhoei are produced by bacterial symbionts, and characterization of the symbiont Candidatus Entotheonella sertae using single-cell genomics led to the discovery of gene clusters for misakinolide and theonnellamide biosynthesis. Another example of a marine NP produced by a bacterial symbiont is ET-743 (trabectedin), originally isolated from the tunicate Ecteinascidia turbinata. A meta-omics approach developed by Rath et al. revealed that the producer of this clinically used anticancer agent is the bacterial symbiont Candidatus Endoecteinascidia frumentensis.

Similarly, plant microbiomes also represent a large reservoir for the identification of novel bioactive NPs (such as the antitumour agents maytansine, paclitaxel and camptothecin, which were initially isolated from plants and later shown to be produced by microbial endophytes) that can be tapped by genome mining approaches. An illustrative example is a recent work by Helfrich et al. that identified hundreds of novel biosynthetic gene clusters by genome mining of 224 bacterial strains isolated from Arabidopsis thaliana leaves. A combination of bioactivity screening and imaging mass spectrometry was used to select a single species for further genomic analysis and led to the isolation of a NP with an unprecedented structure, the trans-acyltransferase PKS-derived antibiotic macrobrevin.

Targeted genetic engineering of NP biosynthetic gene clusters can be of high value if the producing organism is difficult to cultivate or the yield of a NP is too low to allow comprehensive NP characterization. Rational genetic engineering and heterologous expression contributed to increase the production of vioprolides, a depsipeptide class of anticancer and antifungal NPs in the myxobacterium Cystobacter violaceus Cb vi35, by several orders of magnitude. In addition, non-natural vioprolide analogues were generated by this approach. Similarly, promoter engineering and heterologous expression of biosynthetic gene clusters was reported to result in a 7-fold increase in the production of the cytotoxic NP disorazol, and a 328-fold increase in the production of spinosad, an insecticidal macrolide produced by the bacterium Saccharopolyspora spinosa.

Besides increasing NP yields, targeted gene manipulation can also be used to alter biosynthetic pathways in a predictable manner to produce new NP analogues with improved pharmacological properties, such as higher specific activity, lower toxicity and better pharmacokinetics. Such biosynthetic engineering approaches depend on a solid understanding of the biosynthetic pathway leading to a specific NP, access to the genes specifying this pathway and the ability to manipulate them in either the original or a heterologous host. Recent advances in biosynthetic engineering have enabled faster and more efficient production of NP analogues, including the development of methods for
accelerated engineering and recombination of modules of PKS gene clusters, NRPSs and NRPS–PKS assembly lines, as well as elucidation of mechanisms for polyketide chain release that are contributing to NP structural diversification. Examples of biosynthetic engineering applied to several important NPs include the generation of analogues of the immuno-suppressant rapamycin, the antitumour agents mithramycin and bleomycin, and the antifungal agent nystatin.

It should be noted that biosynthetic engineering has limitations regarding the parts of the NP molecule that can be targeted for modifications, and the chemical groups that can be introduced or removed. Considering the complexity of many NPs, however, total synthesis may be prohibitively costly, and a combined approach of biosynthetic engineering and chemical modification can provide a viable alternative for identifying improved drug candidates. For example, biosynthetic engineering may create a ‘handle’ for addition of a beneficial chemical group by synthetic chemistry, as demonstrated for the biosynthetically engineered analogues of nystatin mentioned above; further synthetic chemistry modification results in compounds with improved in vivo pharmacotherapeutic characteristics compared with amphotericin B.

Advances in microbial culturing systems

The complex regulation of NP biosynthesis in response to the environment means that the conditions under which producing organisms are cultivated can have a major impact on the chance of identifying novel NPs. Several strategies have been developed to improve the likelihood of identifying novel NPs compared with monoculture under standard laboratory conditions and to make ‘uncultured’ microorganisms grow in a simulated natural environment [Fig. 4].

One well-established approach to promote the identification of novel NPs is the modulation of culture conditions such as temperature, pH and nutrient sources. This strategy may lead to activation of silent gene clusters, thereby promoting production of different NPs. The term ‘One Strain Many Compounds’ (OSMAC) was coined for this approach about 20 years ago, but the concept has a longer history, with its use being routine in industrial microbiology since the 1960s.

While OSMAC is still widely used for the identification of new active compounds, this approach has limited capacity to mimic the complexities of natural habitats. It is difficult to predict the combination of cues (which might also involve metabolites secreted by other members of the microbial community) to which the microorganism has evolved to respond by switching metabolic programmes. To account for such kinds of interactions, co-culturing using ‘helper’ strains can be applied. This can enable the production and identification of new NPs, as illustrated by recent studies in which particular fungi were co-cultured with Streptomyces species.

Study of the molecular mechanisms underlying the ability of helper strains to increase the cultivability of previously uncultured microbes can lead to the identification of specific growth factors, allowing expansion of the number of species that can be successfully cultured. This strategy was used by D’Onofrio et al. for the identification of new acyl-desferrioxamine siderophores (iron-chelating compounds) as growth factors produced by helper strains promoting the growth of previously uncultured isolates from marine sediment biofilm. The siderophore-assisted growth is based on the property of these compounds to provide iron for microbes unable to autonomously produce siderophores themselves, and the application of this approach led to the isolation of previously uncultivated microorganisms. The development of strategies to cultivate microbial symbionts that produce NPs only upon interaction with their hosts can promote access to new NPs. Microbial symbionts interacting with insects or other organisms are a highly promising reservoir for the discovery of novel bioactive NPs produced in a unique ecological context. To stimulate NP production, culturing strategies can be developed that better mimic the native environment of microbial symbionts of insects, including the use of media containing either lyophilized dead insects or l-proline, a major constituent of insect haemolymph.

Strategies to mimic the natural environment even more closely by harnessing in situ incubation in the environment from which the microorganism is sampled have been developed, dating back to more than 20 years ago with the biotech companies OneCell and Diversa. They developed platforms that allowed the growth of some previously uncultivated microbes from various environments based on diluting out and suspension in a single drop of medium. More recently, such strategies have been highlighted by the development and application of a platform dubbed the iChip, in which diluted soil samples are seeded in multiple small chambers separated from the environment with a semipermeable membrane. After seeding, the iChip is placed back into the soil from which the sample was taken for an in situ incubation period, allowing the cultured microorganisms to be exposed to influences from their native environment. The power of this culturing approach was demonstrated by the discovery of a new antibiotic, teixobactin, produced by a previously uncultured soil bacterium [Fig. 4]. This platform may be of great significance for NP drug discovery, given that it has been estimated that only 1% of soil organisms have so far been successfully cultured using traditional culturing techniques.

The omics strategies discussed in previous sections can complement efforts to explore NPs produced upon microbial interactions. The application of such a strategy is illustrated in the work of Derevwacz et al., who analysed the metabolome of a genome-sequenced Nocardiopsis bacterium upon co-culture with bacteria of the genera Escherichia, Bacillus, Tsukamurella and Rhodococcus. Around 14% of the metabolomic features found in co-cultures were undetectable in monocultures, with many of those being unique to specific co-culture genera, and the previously unreported polyketides cicomin A and B, which possess an unusual pyrrolidinol substructure and displayed moderate and selective
cytotoxicity, were identified\(^13^8\). Other examples include a ‘culturomics’ approach that combines multiple culture conditions with MS profiling and 16S rRNA-based taxonomy to identify prokaryotic species from the human gut\(^13^9\), and an ultrahigh-throughput screening platform based on microfluidic droplet single-cell encapsulation and cultivation followed by next-generation sequencing and LC–MS, which allows investigation of pairwise interactions between target microorganisms\(^14^0\). The latter approach enabled identification of a slow-growing oral microbiota species that inhibits the growth of \(S.\) \textit{aureus}\(^14^1\).

Historically, early-adopted microbial culturing approaches led to a bias reflected in the predominant discovery of NPs from microorganisms that are easy to cultivate (such as streptomyces and some common filamentous fungi). As a result, a vast number of NPs from such ‘easy to culture’ microbes have already been characterized, and conventional screening efforts tend to yield disappointing returns associated with frequent rediscovery of known NPs and their closely related congeners. Therefore, culturing strategies aimed at previously unexplored (or under-investigated) microbial groups, with the potential to produce NPs with entirely new scaffolds and bioactivities (such as \textit{Burkholderia}, \textit{Clostridium} and \textit{Xenorhabdus}) are of high interest\(^14^2,14^3\). Cloothioamide, the first secondary metabolite from a strictly anaerobic bacterium, was discovered from \textit{Clostridium cellulolyticum} by this approach\(^14^4\). Targeted isolation of such species is important, and a genome-guided approach to achieve this goal has recently been demonstrated for \textit{Burkholderia} strains in environmental samples\(^14^5\). Another highly innovative approach to the isolation and cultivation of previously uncultured bacteria was...
Chrysomycin A was identified as a hit in a high-throughput screen against multidrug-resistant tuberculosis strains. A 10-step scalable synthesis of chrysomycin A was developed, which also enabled the synthesis of 33 new analogues. One of the new analogues exhibited fivefold stronger activity against multidrug-resistant tuberculosis strains.

Arylomycins are a class of NP antibiotics with weak activity and limited spectrum. Chemical derivatization of arylomycin A-C\textsubscript{16} led to the discovery of G\textsubscript{0775}. G\textsubscript{0775} exhibits an unprecedented molecular mechanism of action and activity against multidrug-resistant Gram-negative clinical isolates in vitro and in vivo.

Streptomyces mobaraensis DSM40847 was identified by genome mining as a new bleomycin producer. Targeted manipulation of the biosynthetic pathway of bleomycin in S. mobaraensis led to the production of 6′-deoxy-BLM A2. 6′-deoxy-BLM A2 resulted in more rapid DNA cleavage than BLM A2.
Fig. 5 | Strategies to obtain natural product analogues with superior properties. Unmodified natural products (NPs) often possess suboptimal properties, and superior analogues need to be obtained in order to yield valuable new drugs. a | NP analogues can be accessed through the development of total chemical synthesis followed by chemical derivatization, through semisynthesis using a NP as a starting point for the introduction of chemical modifications, and through biosynthetic engineering using manipulations of biosynthetic pathways of the producing organism to generate NP analogues. b,c | Tetracyclines are an example of NP-derived antibiotics that have already yielded several generations of successfully marketed semisynthetic and synthetic derivatives. The first generation of tetracyclines (such as doxycycline (Dox) and minocycline (Min)) were unmodified NPs, while the two subsequent generations of analogues with optimized properties were semisynthetic (second-generation, doxycycline, minocycline; third-generation, tigecycline) and the most recently developed fourth-generation analogues (eravacycline) are entirely synthetic, accessed via total synthesis. More recent examples of property optimization of other classes of NPs through total chemical synthesis followed by chemical derivatization or through semisynthesis are illustrated by studies focused on analogues of chrysomycin A (panel b) and arylomycins (panel c), respectively. d | The biosynthetic engineering approach has also shown potential; for example, in the generation of analogues of rapamycin, bleomycin (panel d) and nystatin. 6'-deoxo-BLM A2, 6'-deoxy-bleomycin A2; BLM A2, bleomycin A2.

Outlook for NPs in drug discovery

The technological advances discussed above have the potential to reinvigorate NP-based drug discovery in both established and emerging areas. NPs have long been the key source of new drugs against infectious diseases, especially antibiotics (reviewed elsewhere). Selected NPs with antimicrobial properties discovered by leveraging advances discussed in the sections above, including strategies to exploit the human microbiome for novel NPs are highlighted in Figs 3, 6. Along with the search for new NPs with antimicrobial activities, researchers are continuing to develop and optimize already known NP classes, making use of advances in biosynthetic engineering, total synthesis, or semi-synthetic strategies. In addition, antivirulence strategies could represent an alternative approach to fighting infections, for which NPs targeting bacterial quorum sensing could be of interest.

NPs also have a successful history as cancer therapeutics, which has been well covered in other reviews. An important new opportunity in this field is the capacity of some NPs to trigger a selective yet potent host immunity reaction against cancer cells, particularly given the intense interest at present in strategies that could improve response rates to immune checkpoint inhibitors by turning ‘cold’ tumours ‘hot’. For example, NPs such as cardiac glycosides can increase the immunogenicity of stressed and dying cancer cells by triggering immunogenic cell death, characterized by the release of damage-associated molecular patterns (DAMPs), which could open new avenues for drug discovery or repurposing.

Botanical therapeutics containing complex mixtures of NPs have long attracted interest owing to the potential for synergistic therapeutic effects of components within the mixture. However, the variability of the NP composition in the starting plant material owing to factors such as environmental variations in the location at which the plants were collected is a major challenge for the development of botanical drugs. With the advances in technology for their characterization, such as metabolomics discussed above, as well as development of regulatory guidance for complex mixtures of NPs (see Related links), it is becoming more feasible to develop such mixtures as therapeutics, rather than to identify and purify a single active ingredient.

Since gut microbiota are considered to play a major role in health and disease, and NPs are known to affect the gut microbiome composition, this area is an emerging opportunity for NP-based drug discovery. However, drug discovery efforts in this area are still in their infancy, with many open questions remaining.

A future direction may be the characterization of single microbiota-derived species for particular therapeutic applications, and the advances in culturing strategies, genome mining and analytics discussed above will be of great importance in this respect.

Many advances discussed above are supported by computational tools including databases (such as genomic, chemical or spectral analysis data; see REF. for a recent review on NP databases) and tools that enable the analysis of genetic information, the prediction of chemical structures and pharmacological activities, the integration of data sets with diverse information (such as tools for multi-omics analysis) and machine learning applications.

Although this Review focuses on technologies that enable the discovery of novel NPs, it is important to acknowledge that unmodified NPs may possess suboptimal efficacy or absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. So, for development of NP hits into leads and ultimately into successful drugs, chemical modification may be required. In addition, bringing a compound into clinical
development requires a sustainable and economically viable supply of sufficient quantities of the compound. Total chemical synthesis, semi-synthesis using a NP as a starting point for analogue generation and biosynthetic engineering modifying biosynthetic pathways of the producing organism will be of great importance in this context (Fig. 5). Recent advances in chemical synthesis and biosynthetic engineering technologies are strongly empowering NP-based drug discovery and development by enabling property optimization of complex NP scaffolds that were previously regarded as inaccessible. This allows the enrichment of screening libraries with NPs, NP hybrids, NP analogues and NP-inspired molecules, as well as superior structure functionality approaches (including late-stage functionalization) for optimization of NP leads.

Finally, although NP-based drug discovery offers a unique niche for diverse forms of academia–industry collaboration, a key challenge is that scientific and technological expertise is often scattered over many academic institutions and companies. Focused efforts are needed to support translational NP research in academia, which has become more difficult in recent years given the decline in the number of large companies actively engaged in NP research. A conventional solution to improve academia–industry interaction is to focus the relevant expertise under one umbrella and in close spatial proximity. For example, the Phytovallayl Tyrol, centre in Innsbruck, Austria, brings together several research institutions and companies (among others, the Austrian Drug Screening Institute (ADSI), the Michael Popp Research Institute for New Phytoto-Entities, Bionorica Research and Biocrates Life Sciences AG) with the aim of accelerating NP-based drug discovery. Another solution could be virtual consortia, such as the International Natural Product Sciences Taskforce (INPST) that we have recently established (see Related links), which provides a platform for integration of expertise, technology and materials from the participating academic and industrial entities.

In conclusion, NPs remain a promising pool for the discovery of scaffolds with high structural diversity and various bioactivities that can be directly developed or used as starting points for optimization into novel drugs. While drug development overall continues to be challenged by high attrition rates, there are additional hurdles for NPs due to issues such as accessibility, sustainable supply and IP constraints. However, we believe that the scientific and technological advances discussed in this Review provide a strong basis for NP-based drug discovery to continue making major contributions to human health and longevity.

Published online 28 January 2021
Berlinck, R. G. S. et al. Approaches for the isolation of natural products – new strategies for drug discovery. J. Nat. Prod. 83, 855–868 (2020).

Zhou, Z., Xiong, X. & Zhu, Z.-J. MetCCS predictor: a web server for predicting collision cross-section values of metabolites in ion mobility-mass spectrometry based metabolomics. Biosensors 33, 2235–2237 (2017).

Rath, C. M. et al. Propagating annotations of molecular networks using in-silico fragmentation. PLoS Comput. Biol. 14, e1006089 (2018).

Randazzo, G. M. et al. Prediction of retention time in reversed-phase liquid chromatography as a tool for steriod identification. Anal. Chem. Acta 916, 8–16 (2016).

Zhou, Z., Xiong, X. & Zhu, Z.-J. MetCCS predictor: a web server for predicting collision cross-section values of metabolites in ion mobility-mass spectrometry based metabolomics. Biosensors 33, 2235–2237 (2017).

Wu, C. et al. A genome mining approach. J. Nat. Prod. 74, 242–250 (2011).

Liu, J. et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambrofaciens. Proc. Natl Acad. Sci. US 108, 6258–6263 (2011).

Weber, T. & Kim, H. U. The secondary metabolism bioinformatics community: a computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020).

Hoffmann, T. et al. Correlating chemical diversity with taxonomic diversity for discovery of natural products. Proc. Natl Acad. Sci. Rep. 36, 885–886 (2019).

Graziun, V. et al. Metabolic approach for a rapid identification of natural products with cytotoxic activity against human colorectal cancer cells. Sci. Rep. 8, 5309 (2018).

Grone, P. M. et al. In NMR-MS-based heterocoreviance as a drug discovery tool for finding bioactive compounds out of a complex mixture of structural analogues. Nat. Rev. Drug Discov. 18, 285–295 (2013).

Kurita, K. L., Glassy, E. & Linington, R. G. Integration of high content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries. Proc. Natl Acad. Sci. USA 112, 11199–12004 (2015).

Earl, D. C. et al. Discovery of human cell selective effector molecules using single cell multiplexed activity metabolomics. Nat. Commun. 9, 39 (2018).

Wisath, D. S. NMR metabolomics: a look ahead. J. Magn. Reson. 199, 155–161 (2019).

Berlink, R. G. S. et al. Approaches for the isolation and identification of hydrophilic, light-sensitive, volatile and minor natural products. Nat. Prod. Rep. 36, 71–114 (2019).

Hilton, B. D. & Martin, G. E. Investigation of the experimental limits of small-sample heteronuclear 1H-13C correlation data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

Sultan, S. et al. Evolving trends in the dereplication of natural product extracts. S. Further lassospirodiols from an unidentified fungus, an endophyte from Mapania kuru. Tetrabothrium lett. 55, 455–455 (2014).

Jones, C. E. et al. The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4, 1587–1592 (2018).

Wang, B., Guo, F., Dong, S.-H. & Zhao, H. Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat. Chem. Biol. 11, 111–114 (2015).

Zhang, M. et al. CRISPR-Cas9 strategy for activation of silent Streptomyces antibiotic gene clusters. Nat. Chem. Biol. 13, 607–609 (2017).

Culp, E. J. et al. Hidden antibiotics in actinomycetes can be identified by intracellular screening using an uncharacterised antibiotic, a novel method for the discovery of new antibiotics. J. Bacteriol. 195, 3370–3379 (2013).

Zhang, X. et al. Diversity-oriented biosynthesis: a new strategy for drug discovery. Curr. Opin. Chem. Biol. 16, 1206–1217 (2013).

Hirata, M. et al. Discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat. Microbiol. 3, 415–422 (2018).

Chu, J. et al. Novel metabolite production using primary sequence from the human microbiome. Nat. Chem. Biol. 12, 1004–1006 (2016).

Linden, N. D. & Wegmann, J. K. Gene-guided discovery and engineering of branched cyclic peptides in plants. Proc. Natl Acad. Sci. USA 115, E10961–E10969 (2018).

Dutertre, S. et al. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol. Cell. Proteomics 12, 512–529 (2013).

Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 68–62 (2014).

Mori, T. et al. Single-cell bacterial genomes validates rich and varied specialized metabolism of uncultivated Entotheonella sponge symbionts. Proc. Natl Acad. Sci. USA 115, 1718–1723 (2018).

Rath, C. M. et al. Meta-omic characterization of the marine invertebrate metagenome. Nat. Commun. 9, 44 (2018).

Newman, D. J. Are microbial endophytes the ‘actual’ producers of bioactive antitumor agents? Trends Cancer 4, 662–670 (2018).

Heilich, E. J. et al. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat. Microbiol. 3, 909–919 (2018).

Yan, F. et al. Biosynthesis and heterologous production of viricyanin: rational biosynthetic engineering using unprecedented 4-methylazetidinecarboxylic acid formation. Angew. Chem. Int. Ed. 57, 8754–8759 (2018).

Tu, Q. et al. Genetic engineering and heterologous expression of the disoralline biosynthetic gene cluster via Red/ET recombination. ACS Chem. Biol. 15, 2677–2678 (2020).
REVIEWS

115. Proebstelzhenskaya, M. N. et al. Synthesis and study of the antifungal activity of new mono- and disubstituted derivatives of a genetically engineered polyethylene antibiotic 28,29-didehydrostaalin A (S44HP). J. Antibiot. 40, 406–464 (2016).

116. Teyashova, A. N. et al. Structure-antifungal activity relationships of polyethylene antibiotics from the amphotericin B group. Antibiotics. Agents Chemother. 57, 3518–3522 (2015).

117. Lewis, K., Epstein, S., D’Onofrio, A. & Ling, L. Unveiling the life story of a taxonomically unclassified marine microorganism: a source of secondary metabolites. J. Antibiot. 63, 468–476 (2010).

118. Schiewe, H.-J. & Zeeck, A. Cineromycosis, yllinomycosis by analysis of the secondary metabolite pattern created by a single strain of Streptomycetes. J. Antibiot. 52, 635–642 (1999).

119. Zahn, K. Some aspects of antibiotics research. Angew. Chem. Int. Ed. Engl. 16, 687–694 (1977).

120. Newman, D. Screening and identification of novel biologically active natural compounds. F1000Research 6, 783 (2017).

121. Hussain, A. et al. Novel bioactive molecules from Lentinus tolerans strain AS 08 using one strain-many compounds (OSMAC) approach. Bioorg. Med. Chem. Lett. 27, 2579–2582 (2017).

122. Hemphill, C. F. P. et al. OSMAC approach leads to new families of compounds from Fusarium tricinctum. J. Antibiot. 70, 726–732 (2017).

123. Vartoukian, S. R., Palmer, R. M. & Wade, W. G. Strategies for finding uncharacterizable bacteria. FEMS Microbiol. Lett. 309, 1–7 (2010).

124. Moussa, M. et al. Co-culture of the fungus Fusarium tricinctum with actinomycetes induces production of cryptic naphthoquinone dimers. RSC Adv. 9, 1491–1500 (2019).

125. Almeida, A. M., Kousoulou, A., Fresse, M., Sevald, N. & Shaaban, M. Penicillicericus C, a new polypeptolyated sterol produced by co-culturing of Streptomyces pyroginus with Aspergillus Niger. Steroids 138, 21–25 (2018).

126. D’Onofrio, A. et al. Siderophores from neighboring organisms promote the growth of uncultivated bacteria. Angew. Chem. Int. Ed. Engl. 42, 2780–2784 (2003).

127. Van Arnam, E. B., Currie, C. R. & Clardy, J. Defense contracts: molecular protection in insect-microbe symbioses. Nat. Rev. Microbiol. 7, 435–447 (2009).

128. Molloy, E. M. & Hertweck, C. Antimicrobial discovery inspired by ecological interactions. Curr. Opin. Microbiol. 17, 131–141 (2014).

129. Tobias, N. J., Shi, Y. M. & Bode, H. B. Refining the antifungal activity of new mono- and disubstituted Gram-negative pathogens. Nature 576, 459–464 (2019).

130. Bode, E. et al. Biosynthesis and function of simple antifungal agents. Z. Naturforsch. Chem. 70, 1765–1768 (2015).

131. Nichols, D. et al. Use of ischp for high-throughput in situ cultivation of ‘uncultivable’ microbial species. Appl. Environ. Microbiol. 76, 2445–2450 (2010).

132. Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

133. Homma, T. et al. Dual targeting of cell wall precursors by teixobactin leads to cell lysis. Antimicrob. Agents Chemother. 60, 6510–6517 (2016).

134. Pham, V. H. T. & Kim, J. Cultivation of unculturable soil bacteria. J. Bacteriol. 150, 475–484 (1979).

135. Mitarai, S. et al. Mapping microbial response for ultrahigh-throughput single-cell screening of natural products databases: Where to find data in 2020. J. Med. Chem. 63, 20–25 (2020).

136. Schierach, K. & Hertweck, C. Mediators of microbial response to antibiotics. J. Med. Chem. 63, 303–308 (2020).

137. Modé, S. R., Collins, J. J. & Reiman, D. A. Antibiotics and the gut microbiota. J. Clin. Invest. 124, 4212–4218 (2014).

138. Peterson, C. T. et al. Effects of turmeric and curcumin dietary supplementation on human gut microbiota—a double-blind, randomized, placebo-controlled pilot study. J. Evid. Based Integr. Med. 23, 2515690X18790725 (2018).

139. Ed, G. et al. Microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Front. Pharmacol. 9, 1–24 (2018).

140. Valencia, P. M., Richard, M., Brock, J. & Bögeli, E. The human microbiome: opportunity or hype? Nat. Rev. Drug Discov. 16, 1247–1248 (2017).

141. Sorokina, M. & Steineck, C. Review on natural products databases: Where to find data in 2020. J. Cheminform. 12, 1–30 (2020).

142. Schneider, G. et al. Deorphaning the macromolecular targets of the natural antibiotic compound dolicilide. Angew. Chem. Int. Ed. 55, 12408–12411 (2016).

143. Palazzozzo, A. & Weber, O. Multiomics and multiomics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr. Opin. Microbiol. 41, 109–116 (2019).

144. Dias, T., Gaudinich, S. P. & Pereira, F. A computer-driven approach to discover natural product leads for metabolic engineering: a case study of the fumarate reductase aminase aureus infection therapy. Mar. Drugs 17, 16 (2019).

145. Bostrom, J., Brown, D. G., Young, R. J. & Keseru, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).

146. Zhao, X. et al. A novel drug discovery strategy inspired by traditional medicine philosophies. Science 347, 536–540 (2015).

147. Liao, S. et al. Tanshinone boreal extol, a novel synthetic small molecule angiogenesis stimulator inspired by both foramen and falaris. Br. J. Pharmacol. 176, 3143–3160 (2019).

148. Bai, Y. et al. Polygalata tanuelloa-Acan tornionensis hairypair as an inspiration for small molecule a-asarone esters: design, synthesis, antiviralactivity, and inhibition of lactate dehydrogenase suicide. Eur. J. Med. Chem. 153, 313–337 (2018).

149. Sespe, I. B. et al. A platform for the discovery of new macrolide antibiotics. Nature 533, 338–345 (2016).

150. Liao, S. et al. Novel interactomic approach identifies ABCA1 as direct target of evodiamine, which macrophages cholesterol efflux. Sci. Rep. 8, 11061 (2018).

151. Chang, J., Kim, Y. & Kwon, H. J. Advances in identification and validation of protein targets of natural products with chemoinformatics modification. Nat. Prod. Rep. 35, 719–730 (2018).

152. Adhikari, J. & Fitzgerald, M. C. SILAC pulse proteomics: a mass spectrometry-based method for discovery and cross-validation in proteome-wide studies of ligand binding. J. Am. Soc. Mass Spectrom. 30, 1119–1133 (2019).

153. Gregori-Puigjaner, E. et al. Identifying mechanism-of-action targets for drugs and probes. Proc. Natl Acad. Sci. USA 109, 11718–11723 (2012).

154. Yippe-Gutierrez, A. & Weber, O. Fixing the unfailable: the art of optimizing natural products for human medicine. J. Med. Chem. 62, 8412–8428 (2019).

155. Markley, L. J. & Wenczewicz, T. A. Tetrahydrocyclo-inactivating enzymes. Front. Microbiol. 9, 1058 (2018).

156. Wu, F. et al. Chrysoymin A derivatives for the treatment of multi-drug-resistant tuberculosis. ACS Cent. Sci. 6, 928–938 (2020).
Linker, R. A. et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation. Trends Biochem. Sci. 2016, 113–117 (2016).

Murphy, K. E. & Park, J. J. Can co-activation of Nrf2 and neurotrophic signaling pathways slow Alzheimer’s disease? J. Alzheimers Dis. 2018, 1167 (2018).

Cuadrauto, A. et al. Therapeutic targeting of the Nrf2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 2016, 295–317 (2019).

Linke, R. A. & Haghikia, A. Dimethyl fumarate in multiple sclerosis: latest developments, evidence and place in therapy. Ther. Adv. Chronic Dis. 7, 198–207 (2016).

Fox, R. J. et al. Efficacy and tolerability of delayed-release dimethyl fumarate in U.K. patients with relapsing-remitting multiple sclerosis: post hoc integrated analysis of DEFINE (NCT01131607), 101–178 (2011).

Fernández, Ó. et al. Efficacy and safety of delayed-release dimethyl fumarate for relapsing-remitting multiple sclerosis in prior interferon users: an integrated analysis from International CONFIRM. Clin. Ther. 2016, 1671–1679 (2016).

Zhang, Y., Talayal, P., Cho, C. G. & Posner, G. H. A major inducer of NADPH in Black, Hispanic, and Asian patients with relapsing-remitting multiple sclerosis: post hoc integrated analysis of DEFINE (NCT01131607), 101–178 (2011).

Linker, R. A. & Haghikia, A. Dimethyl fumarate in multiple sclerosis: latest developments, evidence and place in therapy. Ther. Adv. Chronic Dis. 7, 198–207 (2016).

Linke, R. A. & Haghikia, A. Dimethyl fumarate in multiple sclerosis: latest developments, evidence and place in therapy. Ther. Adv. Chronic Dis. 7, 198–207 (2016).

Howell, S. J. et al. Final results of the STEM trial: SFX-01 in the treatment and evaluation of ER-HER2– metastatic breast cancer (mBC). Ann. Oncol. 30, v122 (2019).

Linko, D. K. V. et al. Extremely potent trimethoprim inducers of the phase 2 response: correlations of protection against oxidant and inflammatory injury. Proc. Natl Acad. Sci. USA 102, 4584–4589 (2005).

Liby, K. T. & Sporn, M. B. Synthetic cleanane trimethoprim: multiple new drugs, a broad range of applications for prevention and treatment of chronic disease. Pharmacol. Rev. 64, 972–1003 (2012).

Acknowledgements

This paper is affectionately dedicated in memory of Dr Maria Macias (1964–2020) M.D., Ph.D. in Immunology, Emergency Physician and Researcher at San Juan de Dios (Spain), and active member of a research team working against SARS-CoV-2. An excellent professional and a better person. Her humanity, kindness, special and unsmakable smile, generosity, dedication and professionalism will never be forgotten. The authors are grateful to P. Kirkpatrick for his editorial contribution, which resulted in a greatly improved manuscript. A.C.A. acknowledges support from the Austrian Science Fund (FWF) project P25971-B23 (Improved cholesterol efflux by natural products). R.B. acknowledges support from a grant by the Austrian Science Fund (FWF) project P27672-B30. N.B. is a recipient of an Australian Research Council DECRA Fellowship that provided the necessary financial support by a grant from the Austrian Science Fund (FWF) P27672-B30. N.B. is a recipient of an Australian Research Council DECRA Fellowship that provided the necessary financial support. The research was supported by the Austrian Science Fund (FWF) project P27672-B30. N.B. is a recipient of an Australian Research Council DECRA Fellowship that provided the necessary financial support.

The research work of A.T.D.-K. is funded by Cancer Research UK and the Brain Korea 21 (BK21) PLUS programme, by the Creative-Pioneering Researchers Program through Seoul National University (funding number: 370C-201600602), by Research in the laboratory of Kaisa Haapalainen, by the ‘Recherche Cancer et Santé’ foundation, by the ‘Recherches Scientifiques Luxembourg’ association, by the ‘Ein Häärz f r kriskränk Kanner’ association, by the Action Lionne ‘Vaincre le Cancer et l’Inflammation’ and by the ‘Fonds National Belge de la Recherche Scientifique’. The research was supported by a grant provided by the National Research Foundation (NRF) through the Strategic Basic Research Program (NRF-2020R1A4A1015315), through project P32109 and a NATVANTAGE grant 2019 by the Wilhelm Doerenkamp- Stiftung. A.K. acknowledges support from the Austrian Science Fund (FWF) project P25971-B23 (Improved cholesterol efflux by natural products). R.B. acknowledges support from a grant by the Austrian Science Fund (FWF) project P27672-B30. N.B. is a recipient of an Australian Research Council DECRA Fellowship that provided the necessary financial support. The research work of A.T.D.-K. is funded by Cancer Research UK (C09553/186434), the Biotechnology and Biological Sciences Research Council (BB/011952/1), Roata Pharmaceutical, and Tenovus Scotland (T17/11). B.L.F. acknowledges BMBF (TUNGER 056/FLUCOOFOOD) and AIF (AGEsense) for supporting his research. M.I.G. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme, project PlantsYSYST SGA No 739582 under FPA No. 664620 (2020) and the BGSOMSP2001-0001-001-C01 project, financed by the European Union’s Horizon 2020. The research work of A.T.D.-K. is funded by Cancer Research UK (C09553/186434), the Biotechnology and Biological Sciences Research Council (BB/011952/1), Roata Pharmaceutical, and Tenovus Scotland (T17/11). B.L.F. acknowledges BMBF (TUNGER 056/FLUCOOFOOD) and AIF (AGEsense) for supporting his research. M.I.G. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme, project PlantsYSYST SGA No 739582 under FPA No. 664620 (2020) and the BGSOMSP2001-0001-001-C01 project, financed by the European Union’s Horizon 2020. The research work of A.T.D.-K. is funded by Cancer Research UK (C09553/186434), the Biotechnology and Biological Sciences Research Council (BB/011952/1), Roata Pharmaceutical, and Tenovus Scotland (T17/11). B.L.F. acknowledges BMBF (TUNGER 056/FLUCOOFOOD) and AIF (AGEsense) for supporting his research. M.I.G. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme, project PlantsYSYST SGA No 739582 under FPA No. 664620 (2020) and the BGSOMSP2001-0001-001-C01 project, financed by the European Union’s Horizon 2020. The research work of A.T.D.-K. is funded by Cancer Research UK (C09553/186434), the Biotechnology and Biological Sciences Research Council (BB/011952/1), Roata Pharmaceutical, and Tenovus Scotland (T17/11). B.L.F. acknowledges BMBF (TUNGER 056/FLUCOOFOOD) and AIF (AGEsense) for supporting his research. M.I.G. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme, project PlantsYSYST SGA No 739582 under FPA No. 664620 (2020) and the BGSOMSP2001-0001-001-C01 project, financed by the European Union’s Horizon 2020.
