Pilot Studies of Cherry Juice Concentrate for Gout Flare Prophylaxis

Naomi Schlesinger1*, Ruth Rabinowitz2 and Michael Schlesinger3

1Professor of Medicine, Chief, Division of Rheumatology, Department of Medicine, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
2Lecturer, Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
3Professor of Experimental Medicine and Cancer Research, Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel

Abstract

The management of gout involves treating pain and inflammation associated with acute flares and lowering the uric acid pool. A challenge associated with the successful management of gout is an increased risk of acute flares after initiation of urate-lowering therapy (ULT). Prophylactic anti-inflammatory therapy is recommended to prevent flares and foster compliance with urate lowering therapy.

The aim of our studies was to assess whether use of cherry juice concentrate is useful for gout flare prophylaxis.

We report the results of three studies using cherry juice concentrate for gout prophylaxis. The first is a randomized controlled study comparing the use of cherry juice concentrate versus pomegranate juice concentrate for flare prophylaxis. The second is a retrospective study evaluating flare prophylaxis when cherry juice concentrate was taken over a 4 month period or longer. Lastly, a third study evaluating the effect of cherry juice concentrate compared with pomegranate juice concentrate on secretion of interleukins by human monocytes exposed to monosodium urate (MSU) crystals in vitro.

Ingesting cherry juice concentrate reduced the incidence of flares in gout patients regardless of whether or not they were treated with ULT. The number of flares was further reduced by cherry juice ingestion in patients receiving ULT than in patients not on ULT. We did not find a significant change in serum urate levels from baseline following intake of the cherry juice concentrate for 4 months or longer. Thus, cherry juice concentrate was most likely contributing to a reduction in flares via anti-inflammatory actions. We found cherry juice concentrate to inhibit in vitro secretion of IL-1β by up to 60%.

In conclusion, our studies suggest that, consumption of cherry juice concentrate for a period of 4 months or longer, reduces acute gout flares, via anti-inflammatory actions such as inhibition of IL-1β secretion. Large long-term randomized controlled trials are needed to further evaluate the usefulness of cherries and cherry juice concentrate for gout flare prophylaxis.

Keywords: Acute gout; Cherries; Serum urate

Introduction

Gout is the most common inflammatory arthritis in men and older women. The management of gout involves treating pain and inflammation associated with acute flares and lowering the uric acid pool. A challenge associated with the successful management of gout is an increased risk of acute flares after initiation of urate-lowering therapy (ULT). Prophylactic anti-inflammatory therapy is recommended to prevent flares and foster compliance with urate lowering therapy [1]. This can compromise patient adherence to ULT and hence adversely affect the outcome of treatment [2]. Prophylactic low-dose anti-inflammatory therapy is recommended to prevent flares and foster compliance with ULT.

Prophylactic administration of low doses of colchicine and/or nonsteroidal anti-inflammatory drugs (NSAIDs) is recommended when initiating ULT in order to decrease the risk of gout flares [3]. Although, use of low doses of colchicine has been the standard of care for gout prophylaxis, there is limited data regarding the efficacy of colchicine given chronically for gout prophylaxis [4]. The recommendations for colchicine prophylaxis are based on results from placebo-controlled studies that show patients receiving colchicine prophylaxis to experience fewer flares compared with patients receiving placebo [5,6]. NSAIDs, too, are used for gout prophylaxis [7] although they have not been widely studied in clinical trials. However, safety concerns, contraindications, intolerance or lack of efficacy, limit regular use of NSAIDs or colchicine as prophylaxis in many patients with gout.

In recent years, several controlled nutritional studies have been conducted to evaluate the potential of cherries and other fruits as natural gout treatments [8]. These studies have focused on the connection of gout and hyperuricemia with gluttony, alcohol and obesity dates from ancient times [8]. Decreasing consumption of meat, seafood and alcoholic beverages as well as increasing consumption of dairy products, and tofu may be helpful in reducing gout [8]. It has been suggested in the popular press and to a lesser extent in the scientific literature that consumption of cherries alleviates arthritic pain and gout. In a 1950 paper stating that “observations made by responsible physicians suggest” that in 12 patients with gout, eating half a pound of fresh cherries or canned cherries decreased serum urate and prevented flares of gout [9]. Only three case histories are described in the paper. Not all three ate cherries persistently. In addition, there have been several anecdotal reports of the use of cherries as an effective treatment of gout; however, these reports have not been confirmed in controlled nutritional studies. The mechanism of action of cherries could be via their anti-inflammatory properties, their ability to decrease uric acid levels, or their ability to prevent purine metabolism...
Clinical Studies

Materials and methods (studies 1 and 2)

The juice concentrates used in all the studies reported here were:
cherry juice concentrate prepared from fruit harvested in northern
Michigan and pomegranate juice concentrate, from fruit harvested
in California, both produced by Brownwood Acres Foods, Michigan.
The cherry as well as the pomegranate juice concentrates contain no
added sugar or sweeteners, no preservatives and no fillers. They are
100% natural juices. Each tablespoon of cherry juice concentrate is
the equivalent of 45-60 cherries and each tablespoon of pomegranate
concentrate equals the juice from one pomegranate. The juice
concentrates were kept refrigerated until they were consumed.

Study 1: Randomized controlled study of cherry juice concentrate
versus pomegranate juice concentrate for gout flare prophylaxis:
Eighteen patients with MSU crystal-proven gout were entered into this
study. They were randomized by blindly drawing a folded paper note
assigning them to one of the two groups: group A received a tablespoon
of cherry juice concentrate twice daily and group B, the control group,
received a tablespoon of pomegranate juice concentrate twice daily.
Patients continued use of allopurinol, prophylactic colchicine or
NSAIDs if they have been taking these drugs prior to initiating the
study. The parameters recorded at baseline and at 120 days were the
number of gout flares, percent of patients with gout flares, medications,
SU level and serum creatinine.

Study 2: Retrospective study evaluating flare prophylaxis when
cherry juice concentrate was taken over a 4 month period or longer:
A retrospective chart review was performed of patients seen in our clinic
between 7/1/04 and 5/1/09 with a primary or secondary diagnosis of
either gouty arthropathy or Gout NOS, diagnosis codes 274.0 or 274.9.
The parameters recorded at baseline and after at least 4 months were the
number of gout flares, percent of patients with and without gout flares,
medications, SU level and serum creatinine concentration.

Statistical analysis

The Student's t-test was used to compare the different measured
parameters. The significance of changes within each group was analyzed
by Student's paired t-test. All P values were 2-tailed and values of less
than 0.05 indicate statistical significance.

Results

Study 1: Randomized Controlled trial (RCT) of Cherry
juice concentrate versus pomegranate juice concentrate for gout
prophylaxis: Eighteen patients with MSU crystal-proven gout were
entered into this study. Four patients dropped out of the study; 2 from
the cherry group (n=1 death prior to starting the study; n=1 non
compliant), and 2 from the pomegranate group (n=1 severe heartburn,
n=1 non compliant). Fourteen patients with crystal-proven gout
completed an institutional review board (IRB) approved protocol. They
were randomized into two groups: group A (n=9) received a tablespoon
of cherry juice concentrate twice daily and the control group, group B
(n=5), received a tablespoon of pomegranate juice concentrate twice
daily, (Table 1)

Patient demographics included: age: range: 28-75; (mean ± SE= 56.43 ± 4.10); disease duration: range: 3-41; (mean ± SE= 14.43 ± 3.04); Body mass index (BMI): range: 24.4-34.4; mean ± SE= 30.02 ± 0.84;

Group A (Cherry)	No. of flares before study	No. of flares documented during study	ULT/ Colchicine	NSAIDs
3	1 per month	0 per 4 months	None	Stopped Celebrex
4	3 per month	0 per 4 months	None	Stopped Celebrex
5	3 per month	2 per month	Allopurinol 500mg/d, Colchicine 0.6 mg/d	No change
7	1 per month	1 per 2 months	None	Stopped Celebrex
8	1-2 per month	3 per 4 months	None	Stopped indomethacin
10	1-2 per month	0 per 4 months	Allopurinol 100mg/d	No change
11	1 per year	0 per 4 months	None	No change
14	0 per 4 years	0 per 4 months	Allopurinol 300mg/d	No change
16	2 per year	1 per 4 months	None	Stopped indomethacin

Group B (Pomegranate)	No. of flares before study	No. of flares documented during study	ULT/ Colchicine	NSAIDs
1	4 per month	3 per month	None	No change
2	1 per month	1 per 4 months	Allopurinol 500mg/d, Colchicine 0.6 mg/d	No change
6	1-3 per year	1 per 4 months	Allopurinol 500mg/d	No change
9	2 per year	0 per 4 months	Colchicine 0.6 mg/d	No change
13	1 per month	1 per month	None	No change

1. This patient stopped taking allopurinol.

Table 1: (Study 1) Consumption of cherry juice decreases the number of gout flares and use of NSAIDs.
Citation: Schlesinger N, Rabinowitz R, Schlesinger M (2012) Pilot Studies of Cherry Juice Concentrate for Gout Flare Prophylaxis. J Arthritis 1:101. doi:10.4172/2167-7921.1000101

Patient Group	Number of patients	Flare-free after 4 months of cherry juice	Number of flares /year prior to cherry juice	Number of flares / year after cherry juice	Significance of effect of cherry juice
Not on ULT	11	4/11 (36%)	6.82 ± 2.10	2.84 ± 1.11	P= 0.0899
On ULT	13	8/13 (62%)	6.89 ± 1.83	1.39 ± 0.60	P= 0.0086
Total	24	12/24 (50%)	6.85 ± 1.34	2.00 ± 0.60	P= 0.0001

Table 2: (Study 2) Consumption of cherry juice decreases the number of gout flares.

Twelve (50%) of the 24 patients consuming cherry juice concentrate chronically were flare-free at 4-6 months. Four of eleven (36%) patients not taking ULT were flare-free at 4-6 months; while 8/13 (62%) of patients taking ULT were flare-free at 4-6 months. However, the difference in the proportion of flare-free individuals between patients taking ULT and those not taking ULT was not statistically significant. The average SU among all patients who were flare-free was 7.8 mg/dl.

Laboratory Study

Study 3: The effect of cherry juice concentrate on the secretion of interleukins by human monocytes exposed to monosodium urate crystals in vitro

The aim of this study was to determine whether exposure of human monocytes in vitro to cherry juice concentrate affects their capacity to secrete interleukin when exposed to MSU crystals.

Materials and Methods (Study 3)

Before assessing the capacity of juice concentrates to inhibit the secretion of interleukins by human monocytes we determined the cytotoxic effect of the juice concentrates on the cells employing the MTT assay. In this test, the staining of the cells by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyloxazolium bromide was determined using a microplate reader. Only dilution of juice concentrates that did not exhibit cytotoxic activity on monocytes were tested for their capacity to inhibit the secretion of interleukins.

The cells tested in vitro were either monocytes derived from the buffy coat of volunteer blood donors obtained from the blood bank or THP-1 cells of a monocyte-like cell line. The THP-1 cell line is a monocyte-like cell line derived from a patient with acute monocytic leukemia. Cherry juice concentrate and pomegranate juice concentrate manufactured by Brownwood Acres were tested for their capacity to inhibit interleukin secretion. MSU monohydrate crystals used for monocyte stimulation were prepared according to the method described by Schiltz et al. [12].

THP-1 cells (1X10^6 cells suspended in 3 ml culture medium) or adherent monocytes from buffy coat were introduced into 35 mm Petri culture dishes. After 2 hours of incubation at 37o C in a 5% CO2 humidified atmosphere the supernatant fluid was removed and 1.5 ml MSU crystal suspension containing 100 to 250 μg/ml was added. Either culture medium or various concentrations of cherry or pomegranate juice were added to the Petri dishes. The cells in the culture dishes were exposed for 24 hours simultaneously to MSU crystals and to dilutions of juice concentrates at 37o C in a 5% CO2 humidified atmosphere. The supernatant fluid of the cultures was collected and the in vitro effect of juice concentrates on the secretion of cytokines by monocytes exposed to MSU crystals was determined. The level of both IL-1β and TNF-α in the supernatant fluids was assessed using Enzyme-linked immunosorbent assays (ELISA).

The Immunoassays were carried out with Human IL-1β/IL-1F2...
and Human TNF-α/TNFSF1A Quantikine kits obtained from R&D Systems, Abington OX143NB, UK. In short, 50 μL assay diluent was added to each well, followed by 200 μL standard, control or cell culture supernatant samples to each well. After 2 hours of incubation at room temperature the supernatant fluid in each well was aspirated, followed by 4 washes. 200 μL of anti-cytokine conjugate was added to each well, incubated for 1 hour at room temperature. Thereafter the wells were washed 4 times, and 200 μL substrate solution was added to each well incubated for 20 minutes, and 50 μL stop solution was added to each well. The optical density of each well was determined using a microplate reader set to 450 nm.

Results

As assessed by the MTT method, pomegranate juice concentrates were more toxic than cherry juice concentrates for human monocytes. The exposure in vitro to MSU crystals elicited secretion of IL-1 β and TNF-α by either peripheral human blood monocytes or by cells of the THP-1 monocyte-like line. At a concentration that had no cytotoxic effect on monocytes (dilutions of 1:1600 or higher) cherry juice concentrate inhibited the secretion of IL-1 β by up to 60 % (Table 3a). Non-toxic concentrations of pomegranate juice had either a weak inhibitory effect or a stimulatory effect on IL-1β secretion. Exposure of human monocytes to cherry juice concentrate elicited an inhibitory effect on TNF-α secretion, while pomegranate juice had a relatively weak or no effect on TNF-α secretion (Table 3b).

Discussion

Gout flare prophylaxis is an integral part of chronic gout treatment. Safety concerns and contraindications limit chronic NSAIDs or colchicine use as prophylaxis in many patients with gout. Consumption of cherries and cherry products has been reported to be health promoting, particularly in alleviating arthritic pain and gout [9]. We have found cherry juice concentrate to be well tolerated and efficacious for gout flare prophylaxis.

In our prospective pilot RCT, gout patients consuming cherry juice concentrate had a significant decrease in the number of gout flares within 4 months of initiating ingestion of the cherry juice concentrate, an effect not seen in the control group, treated with pomegranate juice. Fifty five % of patients ingesting cherry juice concentrate were flare-free and stopped their NSAIDs intake. In our retrospective study of patients consuming cherry juice concentrate daily for ≥ 4 months; a 50% or greater reduction in gout flares was seen in approximately half of the patients (similar percentage to that seen in our RCT). Importantly, 36% of patients not taking ULT were flare-free at 4-6 months of ingesting cherry juice despite an average SU of 8.7 mg/dL. Thus, although SU level in patients not taking ULT remained higher than 6.8mg/dL, the point of saturation of uric acid, cherry juice consumption significantly reduced their gout flares. Thus, ingesting cherry juice concentrate reduced the incidence of flares in gout patients regardless of whether or not they were treated with ULT.

The intake of cherries by healthy individuals was reported to provoke a significant decrease in SU levels over 5 h post dose, whereas other fruits such as strawberries, grapes and kiwifruit, produced no change [13]. Neither, in our pilot RCT nor in our retrospective study did we find a significant change in SU levels from baseline following cherry juice concentrate consumption for 4 months or longer. It is therefore not a change in SU levels that contributed to the reduced gout flares in patients receiving cherry juice concentrate. However, gout patients receiving ULT were much more responsive to ingestion of cherry juice than those not receiving ULT. In our retrospective study, 36 % of the gout patients who were not on ULT versus 62% who were on ULT were flare-free at 4-6 months. Thus, the number of flares was further reduced by cherry juice ingestion in patients receiving ULT than in patients not on ULT. These results indicate that, cherry juice concentrate was most likely contributed to a reduction in flares via its anti-inflammatory actions.

Both sweet and tart cherries are rich in antioxidants, including anthocyanins (responsible for red skin and flesh color), catechins, chlorogenic acid, flavonal glycosides and melatonin. Anthocyanins extracted from cherries have shown anti-inflammatory properties, via inhibition of cyclooxygenase (COX) activities [10,11]. Cherries contain natural COX 1 and COX 2 inhibitors. The COX inhibitory activities of anthocyanins from cherries were comparable to those of ibuprofen and naproxen at 10 ΦM concentrations. In addition, anthocyanins extracted from cherries have shown anti-inflammatory properties, via scavenging of the reactive nitric oxide (NO) radical [14]. Anthocyanins 1 and 2 are present in both cherries and raspberries. Anthocyanins and other phenolics also inhibit NO production in activated macrophages.
and modulate tumor necrosis factor (TNF-α) secretion [15]. Various flavons and flavonols were found to either inhibit or induce TNF-α production [15].

It has recently become apparent that gouty inflammation is primarily interleukin 1β (IL-1β) driven [16]. MSU crystals stimulate IL-1 release by monocytes and synovial mononuclear cells [17] as well as the cryopyrin (NLRP3) inflammasome an intracellular, multiprotein complex. Cryopyrin regulates activation of the protease caspase-1 which in turn controls the activation of IL-1β [16]. The release of IL1β [16,17] promotes neutrophil influx into the joint and joint inflammation ensues. The central role of IL-1 in the pathogenesis of gout was further demonstrated by studies of IL-1 inhibitors, showing reduction in the risk of gout flares [18].

As reported herein, we found cherry juice concentrate to inhibit the in vitro secretion of IL-1β by up to 60%. In contrast, non-toxic concentrations of pomegranate juice either had a weak inhibitory effect, or a slight stimulatory effect on IL-1β secretion. Exposure of human monocytes to cherry juice concentrate elicited a weak inhibitory effect on TNF-α secretion, while pomegranate juice had either a weak inhibitory effect or no effect.

There are a number of limitations to our studies. First, in our pilot RCT cherry juice was only given for 16 weeks. A study of a more prolonged period of cherry juice prophylaxis is needed. Secondly, our clinical studies were small, but the combination of two clinical studies reported herein, make for a stronger support of the use of cherry juice concentrate for prophylaxis flare gout.

In conclusion, our studies suggest that, consumption of cherry juice concentrate for a period of 4 months or longer, reduces acute gout flares, via anti-inflammatory actions such as inhibition of IL-1β secretion. Large long-term randomized controlled trials are needed to further evaluate the usefulness of cherries and cherry juice concentrate for gout flare prophylaxis.

Acknowledgment

The prospective RCT was supported by a grant from Brownwood Acres Foods. We are grateful to Paloma Levy and to Ori Marco for their skilled technical assistance.

References

1. Schlesinger N (2008) Overview of the management of acute gout and the role of adenocorticotropic hormone. Drugs 68: 407-415.
2. Schlesinger N, Dalbeth N, Perez-Ruiz F (2009) Gout–what are the treatment options? Expert Opin Pharmacother 10: 1319-1328.
3. Schlesinger N (2004) Management of acute and chronic gouty arthritis: present state-of-the-art. Drugs 64: 2399-2416.
4. Yu TF, Gutman AB (1961) Efficacy of colchicine prophylaxis in gout. Prevention of recurrent gouty arthritis over a mean period of five years in 208 gouty subjects. Ann Intern Med 55: 179-192.
5. Paulus HE, Schlösstein LH, Godfrey RG, Klinenberg JR, Bluestone R (1974) Prophylactic colchicine therapy of intercritical gout. A placebo-controlled study of probenecid-treated patients. Arthritis Rheum 17: 609-614.
6. Borstad GC, Bryant LR, Abel MP, Scroggie DA, Harris MD, et al. (2004) Colchicine for prophylaxis of acute flares when initiating allopurinol for chronic gouty arthritis. J Rheumatol 31: 2429-2432.
7. Becker MA, Schumacher HR Jr, Wortmann RL, MacDonald PA, Eustace D, et al. (2005) Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med 353: 2450-2461.
8. Schlesinger N (2005) Dietary factors and hyperuricaemia. Curr Pharm Des 11: 4133-4138.
9. Blau LW (1950) Cherry diet control for gout and arthritis. Tex Rep Biol Med 8: 309-311.
10. Wang H, Nair MG, Strasburg GM, Chang YC, Booren AM, et al. (1999) Antioxidant and anti-inflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J Nat Prod 62: 294-296.
11. Seeram NP, Momin RA, Nair MG, Bourquin LD (2001) Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytotherapy 8: 362-369.
12. Schiltz C, Liotel F, Prudhommeaux F, Meunier A, Champy R, et al. (2002) Monosodium urate monohydrate crystal-induced inflammation in vivo: quantitative histomorphometric analysis of cellular events. Arthritis Rheum 46: 1643-1650.
13. Jacob RA, Spinozzi GM, Simon VA, Kelley DS, Prior RL, et al. (2003) Consumption of cherries lowers plasma urate in healthy women. J Nutr 133: 1826-1829.
14. van Acker SA, Tromp MN, Hauen GR, van der Vigh WJ, Bast A (1995) Flavonoids as scavengers of nitric oxide radical. Biochem Biophys Res Commun 214: 755-759.
15. Wang J, Mazza G (2002) Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages. J Agric Food Chem 50: 4183-4189.
16. Di Giovinco FS, Malawista SE, Nuki G, Duff GW (1987) Interleukin 1 (IL 1) and TNF-α production: results of a double-blind, randomised study. Ann Rheum Dis 70: 1264-1271.
17. Martinon F, Petriili V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440: 237-241.
18. Schumacher HR Jr, Sundy JS, Terkelbaub R, Knapp HR, Mills SJ, et al. (2012) Rilonacept (IL-1 Trap) in the prevention of acute gout flares during initiation of urate-lowering therapy: results of a Phase 2 clinical trial. Arthritis Rheum .
19. Schlesinger N, Mysler E, Lin HY, De Meulemeester M, Rovensky J, et al. (2011) Canakinumab reduces the risk of acute gouty arthritis flares during initiation of allopurinol treatment; results of a double-blind, randomised study. Ann Rheum Dis 70: 1264-1271.