The aim of the research was to determine the wood resistance against destroying fungi and its water absorption and hygroscopicity. The tests were performed with the use of scots pine (*Pinus sylvestris* L.), poplar (*Populus sp.*), and black alder wood (*Alnus glutinosa*). The samples were pretreated with sodium silicate or organosilicon compounds, with addition of aqueous dispersion of hydrophilic fumed silica and next they were subjected to oil heat treatment process (OHT). The influence of OHT process on stability of the used chemicals in the treated wood has been determined. The OHT process was carried out at the temperature of 200°C, with the use of palm oil as a heating medium. The results show pretreatment beneficial effect to the fungal resistance against *Poria placenta* even after aging procedure. The reduced water absorption and hygroscopicity of the treated wood was also observed.

INTRODUCTION

Thermal treatment of wood is known to improve wood properties by reducing hygroscopicity, improving dimensional stability and enhancing the resistance against biological attack (Stamm and Hansen 1937, Stamn 1964, Budimir and Giebler 1983). The boiling point of the most natural oils enables to use these oils in the heat treatment technology of wood. Former investigations (Rapp and Sailer 2001) proved that better wood properties can be achieved by using hot natural oils compared to the gaseous atmosphere. Thermal treatment of wood to enhance its resistance to decay and moisture related defects in service is not appropriate for low-density and permeable wood species. They show more negative aspects of the treatment, e.g. insufficient biological durability, decreased mechanical stability, UV-unstability of the surface (Bak et al. 2009 and 2013). The challenging issue was to use low-density and permeable wood species for OHT, preceded by the treatment with silicon-based chemicals. The main aim of our research work was to improve the biological durability of low-quality wood species against wood destroying fungi and reduce its water absorption and hygroscopicity.

METHODOLOGY

Spices of wood: pine (*Pinus sylvestris* L.) [P], poplar (*Populus sp.*)[Po], black alder (*Alnus glutinosa*) [Al]. Chemicals for pretreated process: A - 10% sodium silicate, B - 10% emulsion based on 29034 (Dow Corning), C - 10% emulsion based on 29034 (Dow Corning) + 5% Aerodisp W 1714 (Evonik).

Chemical Pretreated

- Vacuum 0.85 bar/30 minutes
- Wood dimensions 25 x 40 x 250 mm

OHT Process

- Preheated T = 100°C, Heated T = 200°C, t = 18 h
- Heating medium - palm oil

Cutting wood: dimensions 15 x15 x5 mm

Analysis:

Myological examination: *Poria placenta* acc. to EN 113

Aging test: acc. to EN 84

Hygroscopicity

- Water absorption

Hygroscopicity - mass changing of the wood samples incubated above saturated aqueous solution of ammonium phosphate. Water absorption - mass changing of the wood samples immersed in water.

CONCLUSION

The performed tests proved a fungal resistance of wood treated with sodium silicate. OHT process of the pretreated wood contributed to a fixation of the silicone compounds in wood and limited leaching effect. The desired effect of sodium silicate was reproducible, regardless to the species of wood. The sodium silicate increased the hygroscopicity of scots pine and black alder by about 30% and of poplar by about 70%. This parameter decreased after the aging process and remained higher than the control samples. Organosilicon compounds (2-9034 and 2-9034+Aerodisp) didn’t show any significant increase of the tested wood properties.

RESULTS

The following code system for samples were used: P - pine; Po - poplar, Al - Alder, A - sodium silicate, B - 2-9034, C - 2-9034 + Aerodisp, M/N - OHT modified/non-modified, LNL - leached/unleached.

REFERENCES

Bak M., Nemeth E., Csordos D., Tóth L. (2013) Effect of treatment medium on the moisture uptake rate and colour change during natural weathering of heat treated wood. Joint COST FP0904 & FP1006 International Workshop in Slovenia on Characterization of modified wood in relation to wood durability and coating performance. Kranj, Slovenia, October 5th-5th p. 80-86.

Bak M., Nemeth E., Tóth L., Mohor 2009. The Effect of Thermal Pretreatment on Selective Properties of Poplar and Robinia wood. European Conference on Wood Modification 2009, p. 201-204.

Glebel (H) (2013) Dimensional stabilisation of wood by means of heat pressure treatment. Holz als Roh und Werkstoff 41 (5): 454.

Rapp A., Sailer M. (2000) Heat treatment of wood in Germany – state of the art. Proceedings of Seminar “Production and development of heat treated wood in Europe” Helsinki, Stockholm, Oslo.

Stamm A. (1996) Wood and Cellulose Sciences. Ronald Press, New York.

Stamm A., Hansen LA. (1957) Minimizing wood shrinkage and swelling. Effect of heating in various gases. Industrial Engineering Chemistry Research 297:835-833.