N-FIBER-FULL MODULES

HONGMIAO YU

ABSTRACT. Let A be a Noetherian flat $K[t]$-algebra, h an integer and let N be a graded $K[t]$-module, we introduce and study “N-fiber-full up to h” A-modules. We prove that an A-module M is N-fiber-full up to h if and only if $\Ext^i_A(M,N)$ is flat over $K[t]$ for all $i \leq h - 1$. And we show some applications of this result extending the recent result on square-free Gröbner degenerations by Conca and Varbaro.

1. INTRODUCTION

Throughout this paper, A is a Noetherian flat $K[t]$-algebra, M and N are finitely generated A-modules which are flat over $K[t]$, and all of A, M and N are graded $K[t]$-modules. At the “CIME-CIRM Course on Recent Developments in Commutative Algebra” conference in 2019, Matteo Varbaro introduced the notion of “fiber-full modules” providing a new proof of the main result of [2]. The starting point of this paper is to find some possible generalizations of this concept. We recall that M is a fiber-full A-module if, for any $m \in N_{>0}$, the natural projection $M/t^m M \to M/tM$ induces injective maps $\Ext^i_A(M/tM,A) \to \Ext^i_A(M/t^m M,A)$ for all $i \in \mathbb{Z}$. And one of the “most important” properties of fiber-full modules is that being fiber-full is related to the flatness over $K[t]$ of every $\Ext^i_A(M,A)$ [9]. We notice that if N is a graded $K[t]$-module, the induced map $\Ext^0_A(M/tM,N) \to \Ext^0_A(M/t^m M,N)$ is always injective. Motivated by this, let us introduce the “N-fiber-full up to h” modules:

Definition 1.1. Let h be an integer. We say that M is N-fiber-full up to h as an A-module if, for any $m \in N_{>0}$, the natural projection $M/t^m M \to M/tM$ induces injective maps $\Ext^i_A(M/tM,A) \to \Ext^i_A(M/t^m M,A)$ for all $i \leq h$. An important question is: if M is N-fiber-full up to h as an A-module, can we obtain the flatness of some $\Ext^i_A(M,N)$? The main theorem of this paper goes in this direction.

Main Theorem(cf. Theorem 2.10). Let h be an integer. M is N-fiber-full up to h as an A-module if and only if $\Ext^i_A(M,N)$ is flat over $K[t]$ for all $i \leq h - 1$.

To prove this theorem, the most difficult part is the proof of Lemma 2.5 below, concerning the equivalence between two properties 1) and 2). At the beginning, I thought one could prove it using a way similar to the proof of Lemma 3.5 in [9], actually the proof of implication 1 \Rightarrow 2) is done in this way. But the proof of the other implication of this lemma is the hardest point of this paper: the whole section 2 is to prove Lemma 2.5 and the main theorem. In section 3, we will talk about some applications of N-fiber-full modules. A main consequence, as we will see, is that the notion “N-fiber-full up to h” allows us to infer interesting results whenever the special fiber M/tM has “nice” properties after removing primary components of big height. For example,
Theorem (cf. Theorem 3.5). Let S be the polynomial ring $K[X_1, \ldots, X_n]$ over a field K, let $I \subseteq S$ be a homogeneous ideal. Fixing a monomial order on S, we denote by $\text{in}(I)$ the initial ideal of I with respect to this monomial order. If I is such that $\text{in}(I)^{\text{sat}}$ is square-free, then

$$\dim_K H^i_m(S/I)_j = \dim_K H^i_m(S/\text{in}(I))_j$$

for all $i \geq 2$ and for all $j \in \mathbb{Z}$.

Equivalently,

Theorem. Let \mathbb{P}^n be the n-dimensional projective space over a field K, let $X \subseteq \mathbb{P}^n$ be a projective scheme and let I be a homogeneous ideal of $S = K[X_0, \ldots, X_n]$ such that $X = \text{Proj}(S/I)$. Fix a monomial order $<$ on S and assume that $\text{in}(X) = \text{Proj}(S/\text{in}(I))$ is reduced, where $\text{in}(I)$ is the initial ideal of I with respect to $<$. Then

$$\dim_K H^i(X, \mathcal{O}_X(j)) = \dim_K H^i(\text{in}(X), \mathcal{O}_{\text{in}(X)}(j))$$

for all $i > 0$ and for all $j \in \mathbb{Z}$.

This theorem has already been announced by Varbaro in his paper [11] (Theorem 4.4) without writing the complete proof. By a private communication, Varbaro told me that he realized later that it was not clear to him how to extend the proof given in [9] for the same reasons explained above. But we will show that we can complete the proof of a very general version of this theorem using Theorem 2.10 of this paper.

2. Definition and Properties of N-fiber-full Modules

In this section we prove some basic properties of N-fiber-full modules, in order to show the equivalence between being N-fiber-full up to h and the flatness of modules $\text{Ext}_A^i(M, N)$ with $i \leq h - 1$.

Remark 2.1. If A is a Cohen-Macaulay complete local ring, N is the canonical module of A and $M = A/I$ with I an ideal of A, then M is N-fiber-full up to $\dim A$ is equivalent to saying that t is a surjective element in M in the sense of [3] section 3.1.

If A is a local ring and $N = A$, then M is N-fiber-full up to h for each $h \in \mathbb{N}$ is equivalent to saying that M is fiber-full defined as in [9] Definition 3.8.

One implication of the main theorem is not difficult to prove, but it is very useful because we need it to prove the other one.

Theorem 2.2. Let h be an integer and let $\text{Ext}_A^i(M, N)$ be flat over $K[t]$ for all $i \leq h - 1$. Then M is N-fiber-full up to h as an A-module.

Proof. If $\text{Ext}_A^i(M, N)$ is flat over $K[t]$ for all $i \leq h - 1$, then

$$\text{Ext}_A^i(M, N) \xrightarrow{t^{m-1}} \text{Ext}_A^i(M, N)$$

is injective for all $i \leq h - 1$ and for all $m \in \mathbb{N}_{>0}$, hence

$$\text{Ext}_A^{i-1}(M, N) \xrightarrow{t^{m-1}} \text{Ext}_A^{i-1}(M, N)$$
is injective for all \(i \leq h \) and for all \(m \in \mathbb{N}_{>0} \). The commutative diagram of \(A \)-modules with exact rows

\[
\begin{array}{ccc}
0 & \longrightarrow & M \\
& \downarrow{t^m} & \downarrow{t^{m-1}} \\
0 & \longrightarrow & M \\
& \uparrow{t^{m-1}} & \uparrow{t^m} \\
& \longrightarrow & M/tM \\
\end{array}
\]

yields the following commutative diagram of \(A \)-modules with exact rows

\[
\begin{array}{ccc}
\text{Ext}_A^{i-1}(M, N) & \longrightarrow & \text{Ext}_A^{i-1}(M, N) \\
\downarrow{t^m} & \downarrow{t^{m-1}} & \downarrow{t^m} \\
\text{Ext}_A^{i-1}(M, N) & \longrightarrow & \text{Ext}_A^i(M/tM, N) \\
\end{array}
\]

\[
\begin{array}{ccc}
& \longrightarrow & \text{Ext}_A^i(M, N) \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{Ext}_A^{i-1}(M, N) & \longrightarrow & \text{Ext}_A^i(M/tM, N) \\
\text{Ext}_A^{i-1}(M, N) & \longrightarrow & \text{Ext}_A^i(M/t^mM, N) \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{Ext}_A^i(M, N) \\
\end{array}
\]

Since

\[
\text{Ext}_A^{i-1}(M, N) \xrightarrow{t^{m-1}} \text{Ext}_A^{i-1}(M, N)
\]

is injective for all \(i \leq h \), by the proof of the Five Lemma we have that

\[
\text{Ext}_A^i(M/tM, N) \longrightarrow \text{Ext}_A^i(M/t^mM, N)
\]

is injective for all \(i \leq h \).

\[\square \]

Remark 2.3. The map \(M/t^kM \xrightarrow{t^{l-k}} M/t^lM \) is injective for each \(k, l \in \mathbb{N}_{>0} \) such that \(l \geq k \).

Proof. If \(x \in M \) is such that \(\overline{t^{l-k}x} = 0 \) in \(M/t^lM \), then there exists \(y \in M \) such that \(t^l y = t^{l-k} x \), hence \(t^{l-k}(x - t^k y) = 0 \). Since \(M \) is flat over \(K[t] \), we have \(x = t^k y \), it follows that \(\overline{x} = 0 \) in \(M/t^kM \).

\[\square \]

Lemma 2.4. The following are equivalent:

1. \(M \) is N-fiber-full up to \(h \).
2. For each \(k, l \in \mathbb{N}_{>0} \) such that \(l \geq k \), the short exact sequence

\[
0 \longrightarrow M/t^kM \xrightarrow{t^{l-k}} M/t^lM \longrightarrow M/t^{l-k}M \longrightarrow 0
\]

induces a short exact sequence

\[
0 \longrightarrow \text{Ext}_A^i(M/t^{l-k}M, N) \longrightarrow \text{Ext}_A^i(M/t^lM, N) \xrightarrow{f_{k,l}^i} \text{Ext}_A^i(M/t^kM, N) \longrightarrow 0
\]

for all \(i \leq h - 1 \).
3. For each \(k, l \in \mathbb{N}_{>0} \) such that \(l \geq k \), the natural projection \(M/t^lM \longrightarrow M/t^kM \) induces injective maps \(\text{Ext}_A^i(M/t^kM, N) \longrightarrow \text{Ext}_A^i(M/t^lM, N) \) for all \(i \leq h \).

Furthermore, up to the identifications

\[
t^{l-k} \text{Ext}_A^i(M/t^lM, N) \cong \text{Ext}_A^i(M/t^kM, N) \quad \text{for each } i \leq h - 1,
\]

the map \(f_{k,l}^i \) in 2) corresponds to the surjective map

\[
\text{Ext}_A^i(M/t^lM, N) \xrightarrow{t^{l-k}} t^{l-k} \text{Ext}_A^i(M/t^lM, N)
\]

for each \(i \leq h - 1 \).
Proof. In the case $k = l$, 2) and 3) are always true, so we suppose $k < l$.

1 \Rightarrow 2) We consider the short exact sequence

$$0 \rightarrow M/t^k M \xrightarrow{d} M/t^{k+1} M \rightarrow M/t M \rightarrow 0,$$

it induces a long exact sequence

$$\cdots \rightarrow \Ext^i_A(M/t^k M, N) \rightarrow \Ext^i_A(M/t M, N) \rightarrow \Ext^i_A(M/t^{k+1} M, N) \rightarrow \cdots.$$

Since M is N-fiber-full up to h, $\Ext^i_A(M/t M, N) \rightarrow \Ext^i_A(M/t^{k+1} M, N)$ is injective for each $i \leq h$, it follows that $f^j_{k,k+1}$ is surjective for each $j \leq h - 1$.

Hence $f^j_{k,l} = f^j_{k,k+1} \circ \cdots \circ f^j_{l-1,l}$ is surjective for each $j \leq h - 1$. Therefore

$$0 \rightarrow \Ext^j_A(M/t^{-k} M, N) \rightarrow \Ext^j_A(M/t^l M, N) \xrightarrow{f^j_{k,l}} \Ext^j_A(M/t^k M, N) \rightarrow 0$$

is exact for all $j \leq h - 1$.

2 \Rightarrow 3) The short exact sequence

$$0 \rightarrow M/t^{-k} M \xrightarrow{d^k} M/t^l M \rightarrow M/t^k M \rightarrow 0$$

induces a long exact sequence

$$\cdots \rightarrow \Ext^i_A(M/t^{-k} M, N) \rightarrow \Ext^{i+1}_A(M/t^k M, N) \rightarrow \Ext^{i+1}_A(M/t^l M, N) \rightarrow \cdots.$$

By 2) $f^i_{k,l}$ is surjective for all $i \leq h - 1$, it follows that

$$\Ext^i_A(M/t^k M, N) \rightarrow \Ext^i_A(M/t^l M, N)$$

is injective for all $j \leq h$.

3 \Rightarrow 1) Take $k = 1$.

Furthermore, we observe that the endomorphism

$$M/t^l M \xrightarrow{d^l} M/t^l M$$

corresponds to the composition of maps

$$M/t^l M \xrightarrow{p} M/t^k M \xrightarrow{d^{l-k}} M/t^l M$$

where p is the natural projection, therefore the following diagram

$$\begin{array}{ccc}
\Ext^i_A(M/t^l M, N) & \xrightarrow{d^{l-k}} & \Ext^i_A(M/t^l M, N) \\
& f^i_{k,l} & \downarrow \\
& \Ext^i_A(M/t^k M, N) & \\
\end{array}$$

is commutative. By 3) $\Ext^i_A(M/t^k M, N) \rightarrow \Ext^i_A(M/t^l M, N)$ is injective for all $i \leq h - 1$, and by 2) $f^i_{k,l}$ is surjective for each $i \leq h - 1$. We have that for each $i \leq h - 1$,

$$\Ext^i_A(M/t^k M, N) \cong d^{l-k} \Ext^i_A(M/t^l M, N)$$

is a submodule of $\Ext^i_A(M/t^l M, N)$, and $f^i_{k,l}$ corresponds to the surjective map

$$\Ext^i_A(M/t^l M, N) \xrightarrow{d^{l-k}} t^{l-k} \Ext^i_A(M/t^l M, N).$$
The next lemma is crucial to show Theorem 2.10. The most difficult implication 2 \(\Rightarrow\) 1) surprisingly uses Theorem 2.2.

Lemma 2.5. Let \(h\) be an integer. The following are equivalent:

1) \(\text{Ext}^i_A(M, N)\) is flat over \(K[t]\) for all \(i \leq h\).

2) \(\text{Ext}^i_{A/t^m A}(M/t^m M, N/t^m N)\) is flat over \(K[t]/(t^m)\) for all \(m \in \mathbb{N}_{>0}\) and for all \(i \leq h-1\).

Proof. 1 \(\Rightarrow\) 2): Since \(N\) is flat over \(K[t]\), there is a short exact sequence

\[0 \rightarrow N \overset{t^m}{\rightarrow} N \rightarrow N/t^m N \rightarrow 0. \]

Consider the induced long exact sequence of \(\text{Ext}^i_A(M, -)\):

\[\ldots \rightarrow \text{Ext}^i_A(M, N) \overset{t^m}{\rightarrow} \text{Ext}^i_A(M, N) \rightarrow \text{Ext}^i_A(M, N/t^m N) \rightarrow \ldots \]

Since \(\text{Ext}^i_A(M, N)\) is flat over \(K[t]\) for all \(k \leq h\), \(t^m\) is an \(\text{Ext}^i_A(M, N)\)-regular element for all \(m \in \mathbb{Z}_{+}\), and so we obtain a short exact sequence

\[0 \rightarrow \text{Ext}^i_A(M, N) \overset{t^m}{\rightarrow} \text{Ext}^i_A(M, N) \rightarrow \text{Ext}^i_A(M, N/t^m N) \rightarrow 0 \]

for all \(i \leq h-1\). It follows that

\[\text{Ext}^i_A(M, N/t^m N) \cong \frac{\text{Ext}^i_A(M, N)}{t^m \text{Ext}^i_A(M, N)} \]

for all \(i \leq h-1\). Furthermore, using again 1) we have that \(\text{Ext}^i_A(M, N)/t^m \text{Ext}^i_A(M, N)\) is flat over \(k[t]/(t^m)\) for \(i \leq h\) (see [3] Section 7). Therefore,

\[\text{Ext}^i_{A/t^m A}(M/t^m M, N/t^m N) \cong \text{Ext}^i_A(M, N/t^m N) \]

is flat over \(k[t]/(t^m)\) for all \(i \leq h-1\).

1 \(\Leftarrow\) 2): We use induction on \(h \geq 0\). If \(h = 0\), we consider the long exact sequence

\[0 \rightarrow \text{Hom}_A(M/tM, N) \rightarrow \text{Hom}_A(M, N) \overset{t}{\rightarrow} \text{Hom}_A(M, N) \rightarrow \ldots, \]

induced by the short exact sequence \(0 \rightarrow M \overset{t^l}{\rightarrow} M \rightarrow M/t^l M \rightarrow 0\). Since \(N\) is flat over \(K[t]\), we have \(\text{Hom}_A(M/tM, N) = 0\), and it follows that the map \(\text{Hom}_A(M, N) \overset{t}{\rightarrow} \text{Hom}_A(M, N)\) is injective. Hence 1) is true.

If \(h \geq 1\), we suppose that \(\text{Ext}^i_{A/t^m A}(M/t^m M, N/t^m N)\) is flat over \(K[t]/(t^m)\) for all \(m \in \mathbb{N}_{>0}\) and for all \(i \leq h-1\). By the inductive hypothesis \(\text{Ext}^i_A(M, N)\) is flat over \(K[t]\) for all \(i \leq h-1\). Furthermore, \(M\) is \(N\)-fiber-full up to \(h\) by Theorem 2.2. We prove that \(\text{Ext}^i_A(M, N)\) is flat over \(K[t]\). By contradiction, suppose that there exists \(x \in \text{Ext}^i_A(M, N), x \neq 0\) and there exists \(k \in \mathbb{N}\) such that \(t^k x = 0\). Let \(l\) be an integer such that \(l > k\). The commutative diagram

\[
\begin{array}{cccccc}
0 & \rightarrow & M & \overset{t^l}{\rightarrow} & M & \rightarrow & M/t^l M & \rightarrow & 0 \\
& & \downarrow t^k & & \downarrow t^k & & \downarrow t^k & & \\
0 & \rightarrow & M & \overset{t^{l-k}}{\rightarrow} & M & \rightarrow & M/t^{l-k} M & \rightarrow & 0
\end{array}
\]
yields the following commutative diagram of A-modules with exact rows

$$\begin{array}{cccc}
\Ext^h_A(M, N) & \xrightarrow{\psi} & \Ext^h_A(M/t^l M, N) & \xrightarrow{\phi} & \Ext^h_A(M, N) \\
& / & f^h_{l-k,l} & / & \\
\Ext^h_A(M, N) & \xrightarrow{\eta} & \Ext^h_A(M/t^{l-k} M, N) & \xrightarrow{\zeta} & \Ext^h_A(M, N) \\
& / & t^k & / & \\
& \Ext^h_A(M, N) & \xrightarrow{d^h} & \Ext^h_A(M, N). \\
\end{array}$$

Since $t^k x = 0$, $t > k$, we have $t^l x = 0$, hence there exists $y \in \Ext^h_A(M/t^l M, N)$, $y \neq 0$ such that $\phi(y) = x$. We may suppose that $f^h_{l-k,l}(y) = 0$. Indeed, if $f^h_{l-k,l}(y) \neq 0$, since $\zeta(f^h_{l-k,l}(y)) = t^k(\phi(y)) = t^k x = 0$, there exists $z \in \Ext^h_A(M, N)$ such that $\eta(z) = f^h_{l-k,l}(y)$. Set $y' = y - \psi(z)$. We have

$$\phi(y') = \phi(y) - \phi(\psi(z)) = x$$

and

$$f^h_{l-k,l}(y') = f^h_{l-k,l}(y) - f^h_{l-k,l}(\psi(z)) = f^h_{l-k,l}(y) - \eta(z) = 0.$$

Hence, using Lemma 2.4, we may suppose that $t^k y = 0$ in $\Ext^h_A(M/t^l M, N)$. Furthermore, since $\Ext^h_A(M/t^l M, N) \cong \Ext^{h-1}_{A/t_{l}A}(M/t^l M, N/t^l N)$ (see [1] Lemma 3.1.16), there exists $[\varphi] \in \Ext^{h-1}_{A/t_{l}A}(M/t^l M, N/t^l N)$, $[\varphi] \neq 0$ such that $t^l [\varphi] = 0$.

Since M is N-fiber-full up to h, the natural map

$$\Ext^h_A(M/t^l M, N) \longrightarrow \Ext^h_A(M/t^m M, N)$$

is injective for each $m \geq l$ by Lemma 2.4. Hence $[\varphi] \in \Ext^{h-1}_{A/t_{m}A}(M/t^m M, N/t^m N)$ for each $m \geq l$ and $t^l [\varphi] = 0$ in $\Ext^{h-1}_{A/t_{m}A}(M/t^m M, N/t^m N)$ for each $m \geq l$. Now it is enough to find a positive integer $m \geq l$ such that $[\varphi] \not\in t^{m-k}\Ext^{h-1}_{A/t_{m}A}(M/t^m M, N/t^m N)$. Let us take an A-free resolution F_\bullet of M, and let $(G_\bullet, \partial_\bullet)$ be the complex

$$\Hom_A(F_\bullet, N),$$

so that $\Ext^i_A(M, N)$ is the i-th cohomology module of G_\bullet. Since M and A are flat over $K[t]$, $F_\bullet/t^m F_\bullet$ is an $A/t^m A$-free resolution of $M/t^m M$ for all $m \in \mathbb{N}_{>0}$. Let $(\overline{G_\bullet}, \partial_\bullet)$ denote the complex

$$\Hom_{A/t^m A}(F_\bullet/t^m F_\bullet, N/t^m N),$$

so that $\Ext^i_{A/t^m A}(M/t^m M, N/t^m N)$ is the i-th cohomology module of $\overline{G_\bullet}$ and π^\bullet the natural map of complexes from G_\bullet to $\overline{G_\bullet}$. Since F_{h-1} is free and finitely generated, there exists $\beta_{h-1} \in \mathbb{N}$ such that $F_{h-1} = A^{\beta_{h-1}}$, hence

$$G^{h-1} = \Hom_A(F_{h-1}, N) = \Hom_A(A^{\beta_{h-1}}, N) \cong N^{\beta_{h-1}}$$

and

$$\overline{G^{h-1}} = \Hom_{A/t^m A}(F_{h-1}/t^m F_{h-1}, N/t^m N) \cong (N/t^m N)^{\beta_{h-1}}.$$
therefore \(\pi_{h^{-1}} : G^{h^{-1}} \rightarrow \overline{G^{h^{-1}}} \) is surjective. It follows that there exists \(\delta \in G^{h^{-1}} \) such that \(\pi_{h^{-1}}(\delta) = \varphi \).

\[
G^{h^{-1}} \xrightarrow{\partial^{h^{-1}}} G^{h} \xrightarrow{\partial^{h}} G^{h+1} \\
\downarrow \pi^{h^{-1}} \downarrow \pi^{h} \\
\overline{G^{h^{-1}}} \xrightarrow{\overline{\partial^{h^{-1}}}} \overline{G^{h}}
\]

Set \(w = \partial^{h^{-1}}(\delta) \in G^{h} \). Since \(\overline{\partial^{h^{-1}}}(\varphi) = 0 \), then

\[
\pi^{h}(w) = 0 \in \overline{G^{h}} = \text{Hom}_{A/tmA}(F_{h}/t^{m}F_{h}, N/t^{m}N) \\
\cong \text{Hom}_{A}(F_{h}, N)/t^{m}\text{Hom}_{A}(F_{h}, N).
\]

So there exists \(w' \in G^{h} \) such that \(w = t^{m}w' \). Hence \(w \in t^{m}G^{h} \) for all \(m \gg 0 \). Using Krull’s intersection theorem we have that \(\partial^{h^{-1}}(\delta) = w = 0 \), thus \([\delta] \in \text{Ext}^{h^{-1}}_{A}(M, N) \). Since \([\varphi] \neq 0 \), \(\varphi \not\in \text{Im}(\partial^{h^{-2}}) \). If \(\varphi = \pi^{h^{-1}}(\delta) \in t^{m-k}\ker(\overline{\partial^{h^{-1}}}) \),

\[
\delta \in t^{m-k}\ker(\partial^{h^{-1}}) + t^{m}G^{h^{-1}} \subseteq t^{m-k}G^{h^{-1}}.
\]

But \(\delta \neq 0 \), so \(\varphi \not\in t^{m-k}\ker(\overline{\partial^{h^{-1}}}) \) for all \(m \gg 0 \) by Krull’s intersection theorem. Therefore, there exists \(m \) such that

\[
t^{k}[\varphi] = 0
\]

and

\[
[\varphi] \not\in t^{m-k}\text{Ext}^{h^{-1}}_{A}(M/t^{m}M, N/t^{m}N),
\]

but this contradicts the fact that \(\text{Ext}^{h^{-1}}_{A}(M/t^{m}M, N/t^{m}N) \) is flat over \(K[t]/(t^{m}) \).

\[
\square
\]

Notations 2.6. We introduce some notations which are useful in the following results.

- \(A_{m} = A/t^{m}A \) for each \(m \in \mathbb{Z}_{+} \).
- \(M_{m} = M/t^{m}M \) for each \(m \in \mathbb{Z}_{+} \).
- \(N_{m} = N/t^{m}N \) for each \(m \in \mathbb{Z}_{+} \).
- \(\iota_{j} : t^{j+1}M_{m} \rightarrow t^{j}M_{m} \) the natural inclusion for each \(m \in \mathbb{Z}_{+} \) and for each \(j \in \mathbb{N} \).
- \(\mu_{j} : t^{j}M_{m} \rightarrow t^{m-1}M_{m} \) the multiplication by \(t^{m-1-j} \) for each \(m \in \mathbb{Z}_{+} \) and for each \(j \in \mathbb{N} \), \(j \leq m-1 \).
- \(E_{m}^{i}(-) \) the contravariant functor \(\text{Ext}^{i}_{A}(M, N_{m}) \) for each \(i \in \mathbb{N} \).

Remark 2.7. Suppose that \(k \in \mathbb{Z}_{+} \). Since \(t^{m} \) is an \(A \)- and \(N \)-regular element for all \(m \in \mathbb{Z}_{+} \) and \(t^{m}M_{k} = 0 \) for all \(m \geq k \), we have that

\[
\text{Ext}^{i+1}_{A}(M_{k}, N) \cong \text{Ext}^{i}_{A/tmA}(M_{k}, N/t^{m}N) = E_{m}^{i}(M_{k})
\]

for all \(i \in \mathbb{N} \) and for all \(m \geq k \) by Lemma 3.1.16 in [1]. In particular,

\[
\text{Ext}^{i+1}_{A}(M_{k}, N) \cong E_{k}^{i}(M_{k})
\]

for all \(i \in \mathbb{N} \). Therefore,

\[
E_{k}^{i}(M_{k}) \cong \text{Ext}^{i+1}_{A}(M_{k}, N) \cong E_{m}^{i}(M_{k})
\]

for all \(i \in \mathbb{N} \) and for all \(k \leq m \).
Remark 2.8. The following map

\[M_i \rightarrow t^{m-j}M_m \]

is an isomorphism for all \(j \leq m \).

Proof. If \(j = m \), it is trivial. We suppose that \(j < m \). It is clear that the above map is surjective. If \(t^{m-j}m \in t^m M \), then there exists \(n \in M \) such that \(t^{m-j}(m - t^n n) = t^{m-j}m - t^m n = 0 \). Since \(t^{m-j} \) is an \(M \)-regular element for all \(j < m \), \(m = t^n n \in t^j M \). It follows that the above map is injective. \(\square \)

Remark 2.9. Let \(h \) be an integer and let \(j \leq m - 1 \). If \(M \) is \(N \)-fiber-full up to \(h \), then the following short exact sequence

\[0 \rightarrow t^{j+1}M_m \xrightarrow{\iota_j} t^j M_m \xrightarrow{\mu_j} t^{m-1}M_m \rightarrow 0 \]

yields a short exact sequence

\[0 \rightarrow E^i_m(t^{m-1}M_m) \xrightarrow{E^i_m(\mu_j)} E^i_m(t^j M_m) \xrightarrow{E^i_m(\iota_j)} E^i_m(t^{j+1}M_m) \rightarrow 0 \]

for all \(i \leq h - 2 \).

Proof. It is easy to check that \(0 \rightarrow t^{j+1}M_m \xrightarrow{\iota_j} t^j M_m \xrightarrow{\mu_j} t^{m-1}M_m \rightarrow 0 \) is a short exact sequence and, using the identifications in Remark 2.8, the following diagram is commutative

\[\begin{array}{cccccc}
0 & \xrightarrow{\iota_j} & t^j M_m & \xrightarrow{\mu_j} & t^{m-1}M_m & \rightarrow 0 \\
0 & \xrightarrow{\iota_j} & t^j M_m & \xrightarrow{\mu_j} & t^{m-1}M_m & \rightarrow 0
\end{array} \]

Applying \(E^i_m(-) \) on the short exact sequence and the above diagram we obtain a long exact sequence

\[\ldots \rightarrow E^i_m(t^{m-1}M_m) \xrightarrow{E^i_m(\mu_j)} E^i_m(t^j M_m) \xrightarrow{E^i_m(\iota_j)} E^i_m(t^{j+1}M_m) \rightarrow E^{i+1}_m(t^{m-1}M_m) \xrightarrow{E^{i+1}_m(\mu_j)} E^{i+1}_m(t^j M_m) \rightarrow \ldots \]

and a commutative diagram

\[\begin{array}{ccc}
E^i_m(t^{m-1}M_m) & \xrightarrow{E^i_m(\mu_j)} & E^i_m(t^j M_m) \\
\downarrow{\cong} & & \downarrow{\cong} \\
E^i_m(M_1) & \xrightarrow{\cong} & E^i_m(M_{m-j})
\end{array} \]

for all \(i \in \mathbb{N} \). Since \(M \) is \(N \)-fiber-full up to \(h \), \(\text{Ext}^j_A(M/tM, N) \rightarrow \text{Ext}^j_A(M/t^m M, N) \) is injective for all \(j \leq h \), and so \(E^i_m(M_1) \rightarrow E^i_m(M_{m-j}) \) is injective for all \(i \leq h - 1 \) by Remark 2.7. Hence \(E^i_m(\mu_j) \) is injective for all \(i \leq h - 1 \) by the above diagram. It follows that

\[0 \rightarrow E^i_m(t^{m-1}M_m) \xrightarrow{E^i_m(\mu_j)} E^i_m(t^j M_m) \xrightarrow{E^i_m(\iota_j)} E^i_m(t^{j+1}M_m) \rightarrow 0 \]

is exact for all \(i \leq h - 2 \). \(\square \)
\textbf{Theorem 2.10.} Let \(h \) be an integer. \(M \) is \(N \)-fiber-full up to \(h \) as an \(A \)-module if and only if \(\text{Ext}^i_A(M, N) \) is flat over \(K[t] \) for all \(i \leq h - 1 \).

\textit{Proof.} \(\iff \) See Theorem \[2.9\].

\(\Rightarrow \) Suppose \(i \leq h - 2 \). By Lemma \[2.6\], it is enough to show that \(E^i_m(M_m) \) is flat over \(K[t]/(t^m) \) for all \(m \in \mathbb{Z}_+ \). We show this by induction on \(m \geq 1 \):

If \(m = 1 \), then \(E^i_1(M_1) \) is flat since \(K[t]/t \) is a field.

Now assume \(m \geq 2 \) and assume that \(E^i_{m-1}(M_{m-1}) \) is flat over \(K[t]/(t^{m-1}) \).

Since the ideal \((t^{m-1})/(t^m)\) is nilpotent, using the local criterion for flatness (see \[3\] Theorem \[22.3\]) we have that \(E^i_m(M_m) \) is flat over \(K[t]/(t^m) \) if and only if the following two conditions holds:

i) \(E^i_m(M_m)/t^{m-1}E^i_m(M_m) \) is flat over \(K[t]/(t^{m-1}) \), and

ii) the natural multiplication map

\[\theta : (t^{m-1})/\left\langle t^m \right\rangle \otimes_{K[t]/(t^m)} E^i_m(M_m) \longrightarrow E^i_m(M_m) \]

is injective, that is, \(0 : E^i_m(M_m) t^{m-1} = 0 \).

For each \(j \leq m - 2 \), we denote by \(\nu^j \) the composition of natural inclusions

\[\nu^j = t_j \circ \ldots \circ t_{m-2} : t^{m-1}M_m \longrightarrow t^j M_m. \]

Since \(\mu_j : t^j M_m \longrightarrow t^{m-1}M_m \) is the multiplication by \(t^{m-1-j} \) and \(\nu^j \) is the natural inclusion, \(\nu^j \circ \mu_j : t^j M_m \longrightarrow t^j M_m \) is the multiplication by \(t^{m-1-j} \). Furthermore, since \(E^i_m(t_k) \) is surjective for all \(k \in \mathbb{N} \) by Remark \[2.9\] and since \(E^i_m(\cdot) \) is a functor, we have that \(E^i_m(\nu^j) \) is surjective for all \(j \leq m - 2 \).

Therefore, since \(E^i_m(\cdot) \) is a \(A_m \)-linear functor, we have

\[\text{Im}(E^i_m(\mu_j)) = \text{Im}(E^i_m(\nu^j \circ E^i_m(\mu_j))) = t^{m-1-j}E^i_m(t^j M_m) \]

for all \(j \leq m - 2 \). Using again Remark \[2.9\],

\[\text{Ker}(E^i_m(t_j)) = \text{Im}(E^i_m(\mu_j)) = t^{m-1-j}E^i_m(t^j M_m), \]

and so

\[E^i_m(t^{j+1} M_m) \cong \frac{E^i_m(t^j M_m)}{t^{m-1-j}E^i_m(t^j M_m)} \]

for all \(j \leq m - 2 \).

Since \(m \geq 2 \), we can plug in \(j = 0 \) and we get

\[E^i_m(M_m) / t^{m-1}E^i_m(M_m) \cong E^i_m(tM_m). \]

Using Remark \[2.8\] and Remark \[2.7\],

\[E^i_m(tM_m) \cong E^i_m(M_m-1) \cong E^i_{m-1}(M_{m-1}) \]

is flat over \(K[t]/(t^{m-1}) \) by the inductive hypothesis, and it follows that \(E^i_m(M_m)/t^{m-1}E^i_m(M_m) \) is flat over \(K[t]/(t^{m-1}) \). So the condition i) is proved.

Before proving the condition ii), we show first that \(\text{Ker}(E^i_m(\nu^j)) = tE^i_m(t^j M_m) \) by induction on \(j \leq m - 2 \).

If \(j = m - 2 \), then \(t^{m-2} = t_{m-2} \) and we have shown above that

\[\text{Ker}(E^i_m(t_{m-2})) = tE^i_m(t^{m-2}M_m). \]
Hence $\ker(E_m^i(t^{m-2})) = tE_m^i(t^{m-2}M_m)$. If $j < m - 2$, since $E_m^i(t^j) = E_m^i(t_{m-2}) \circ \cdots \circ E_m^i(t_j)$, we have

$$E_m^i(t_{m-3}) \circ \cdots \circ E_m^i(t_j) (tx) \in tE_m^i(t^{m-2}M_m) = \ker(E_m^i(t_{m-2}))$$

for each $x \in E_m^i(t^j M_m)$. It follows that $tE_m^i(t^j M_m) \subseteq \ker(E_m^i(t^j))$. On the other hand, if $u \in \ker(E_m^i(t^j))$, then

$$E_m^i(t_j)(u) \in \ker(E_m^i(t^{j+1})) = tE_m^i(t^{j+1}M_m)$$

by the inductive hypothesis, and so there exists $v \in E_m^i(t^{j+1}M_m)$ such that $E_m^i(t_j)(u) = tv$. Since $E_m^i(t_j)$ is surjective by Remark 2.9 there exists $w \in E_m^i(t^j M_m)$ such that $E_m^i(t_j)(w) = v$. Hence

$$u - tw \in \ker(E_m^i(t_j)) = t^{m-1-j}E_m^i(t^j M_m).$$

It follows that $u \in tE_m^i(t^j M_m) + t^{m-1-j}E_m^i(t^j M_m) = tE_m^i(t^j M_m)$. Therefore, $tE_m^i(t^j M_m) = \ker(E_m^i(t^j))$ for all $j \leq m - 2$.

In particular, we have $tE_m^i(t M_m) = \ker(E_m^i(t^0))$.

Now we prove the condition ii). Since

$$E_m^i(\mu_0) \circ E_m^i(t^0) = E_m^i(\mu_0 \circ t^0) : E_m^i(M_m) \rightarrow E_m^i(M_m)$$

is the multiplication by t^{m-1} and since $E_m^i(\mu_0)$ is injective by Remark 2.9 we have

$$0 : E_m^i(M_m) t^{m-1} = \ker(E_m^i(\mu_0) \circ E_m^i(t^0)) = \ker(E_m^i(t^0)) = tE_m^i(M_m).$$

\square

3. Applications

In this section, we study some applications of N-fiber-full modules.

Notations 3.1. Let $R = K[X_1, \ldots, X_n]$ be the polynomial ring and fix $w = (w_1, \ldots, w_n) \in \mathbb{N}^n$ a weight vector. Notice that for each $f \in R$ there exists a unique (finite) subset of the set of monomials of R, denoted by $\text{Supp}(f)$, such that

$$f = \sum_{\mu \in \text{Supp}(f)} a_\mu \mu \quad \text{with} \quad a_\mu \in K \setminus \{0\}.$$

If $\mu = X_1^{u_1} \cdots X_n^{u_n}$, then we set $w(\mu) = w_1u_1 + \cdots + w_nu_n$. If $f = \sum_{\mu \in \text{Supp}(f)} a_\mu \mu \in R$, $f \neq 0$, we set

$$w(f) = \max\{w(\mu) : \mu \in \text{Supp}(f)\},$$

$$\text{init}_w(f) = \sum_{\mu \in \text{Supp}(f)} a_\mu \mu,$$

and we call

$$\text{hom}_w(f) = \sum_{\mu \in \text{Supp}(f)} a_\mu \mu t^{w(f) - w(\mu)} \in R[t]$$

the w-homogenization of f.

Given an ideal $I \subseteq R$, $\text{in}_w(I)$ denotes the ideal of R generated by $\text{init}_w(f)$ with $f \in I$, and $\text{hom}_w(I)$ denotes the ideal of $R[t]$ generated by $\text{hom}_w(f)$ with $f \in I$.
Given a monomial order < on \(R = K[X_1, \ldots, X_n] \) and given an ideal \(I \subseteq R \), there exists a weight vector \(w = (w_1, \ldots, w_n) \in (\mathbb{N}_{>0})^n \) such that \(\text{in}_<(I) = \text{in}_w(I) \) (see [9] Proposition 3.4).

The following corollary is a generalization of Corollary 3.3 in [9].

Corollary 3.2. Let \(I \subseteq R = K[X_1, \ldots, X_n] \) be an ideal, \(w = (w_1, \ldots, w_n) \in \mathbb{N}^n \) a weight vector and suppose that \(S = P/\text{hom}_w(I) \) is \(N \)-fiber-full up to \(h \) as a \(P \)-module, where \(P = R[t], N \) is finitely generated and flat over \(K[t] \). Then \(\text{Ext}^i_P(S, N) \) is a flat \(K[t] \)-module for \(i \leq h - 1 \) by the previous theorem. So, if furthermore \(I \) is homogeneous, we have

\[
\dim_K(\text{Ext}^i_R(R/I, N/tN)_j) = \dim_K(\text{Ext}^i_R(R/\text{in}_w(I), N/tN)_j)
\]

for all \(i \leq h - 2 \) and for all \(j \in \mathbb{Z} \).

In particular, if \(N = P \), then

\[
\dim_K(H^i_m(R/I)_j) = \dim_K(H^i_m(R/\text{in}_w(I))_j)
\]

for all \(i \geq n - h + 2 \) and for all \(j \in \mathbb{Z} \).

Proof. We observe that \(\text{Ext}^i_P(S, N) \) is a flat \(K[t] \)-module for \(i \leq h - 1 \) follows directly from Theorem 2.10. Let us give a graded structure to \(R = K[X_1, \ldots, X_n] \) by putting \(\deg X_i = g_i \) for each \(i \in \{1, \ldots, n\} \), where \(g = (g_1, \ldots, g_n) \) is a vector of positive integers. Suppose that \(I \) is a \(g \)-homogeneous ideal, and note that \(\text{hom}_w(I) \) is homogeneous with respect to the bi-graded structure on \(P = R[t] \) given by \(\deg(X_i) = (g_i, w_i) \) and \(\deg(t) = (0,1) \). So \(S = P/\text{hom}_w(I) \) and \(\text{Ext}^i_P(S, N) \) are finitely generated bi-graded \(P \)-modules, and it follows that

\[
\text{Ext}^i_P(S, N)_{(j,k)} = \bigoplus_{k \in \mathbb{Z}} \text{Ext}^i_P(S, N)_{(j,k)}
\]

is a finitely generated graded (with respect to the standard grading) \(K[t] \)-module for all \(j \in \mathbb{Z} \). By Remark 3.7 and Remark 3.8 in [9], we have that for each \(i, j \in \mathbb{Z} \):

\[
\text{Ext}^i_P(S, N)_{(j,k)} \cong K[t]^{a_{i,j}} \oplus (\bigoplus_{k \in \mathbb{N}_{>0}} (K[t]/(t^k))^{b_{i,j,k}})
\]

for some natural numbers \(a_{i,j} \) and \(b_{i,j,k} \). Set \(b_{i,j} = \sum_{k \in \mathbb{N}_{>0}} b_{i,j,k} \). Repeating a discussion similar to Theorem 3.1 in [9] we obtain

\[
\dim_K(\text{Ext}^i_R(R/I, N/tN)_j) = a_{i,j}
\]

and

\[
\dim_K(\text{Ext}^i_R(R/\text{in}_w(I), N/tN)_j) = a_{i,j} + b_{i,j} + b_{i+1,j}
\]

for every \(i, j \in \mathbb{Z} \). Since \(\text{Ext}^i_P(S, N) \) is a flat \(K[t] \)-module for \(i \leq h - 1 \), \(b_{i,j} = 0 \) for all \(i \leq h - 1 \) and so \(b_{i+1,j} = 0 \) for all \(i \leq h - 2 \). Hence for all \(i \leq h - 2 \) and for all \(j \in \mathbb{Z} \)

\[
\dim_K(\text{Ext}^i_R(R/I, N/tN)_j) = a_{i,j} = \dim_K(\text{Ext}^i_R(R/\text{in}_w(I), N/tN)_j)
\]

If \(N = P \), then

\[
\dim_K(H^i_m(R/I)_j) = \dim_K(H^i_m(R/\text{in}_w(I))_j)
\]

for all \(i \geq n - h + 2 \) and for all \(j \in \mathbb{Z} \) by the local duality theorem for graded modules (see [11] Theorem 3.6.19).

In what follows, we suppose furthermore that \(A = \bigoplus_{i \in \mathbb{N}} A_i \) is positively graded with \(A_0 = K \) and \(t \in A_1 \), and \(M \) and \(N \) are graded \(A \)-modules.
Notation 3.3. Let m the homogeneous maximal ideal of A, $d = \dim A$ and let

$$I = \bigcap_{i=1}^{s} q_i$$

be a homogeneous ideal of A, where q_i are the primary components of I. For each integer h, we set

$$I^{\leq h} = \bigcap_{i=1}^{\dim(A/q_i) \geq d-h} q_i.$$

Notice that,

- $f^{\leq d-1} = I^{\text{sat}},$
- $H^i_m(A/I) \cong H^i_m(A/I^{\leq h})$ for all $i \geq d - h$.

Proposition 3.4. If A is a d-dimensional Cohen-Macaulay ring, $N = \omega_A$ is the canonical module of A, I is a homogeneous ideal of A and $A/(I,t)^{\leq h}$ is cohomologically full (see Definition 1.1 in [3]) with h an integer, then A/I is N-fiber-full up to h.

Proof. First, supposing $m \in \mathbb{N}_{>0}$ and using Theorem 2.3 in [10] we observe that

$$((I,t^m)^{\leq h} = \{g \in A| \dim \left(A/(I,t^m) : g \right) < d - h \}$$

$$= \{g \in A| \dim A - \dim \left(A/(I,t^m) : g \right) > h \}$$

in particular,

$$((I,t)^{\leq h} = \{g \in A| \dim \left(I, t : g \right) > h \}.$$

If $g \in ((I,t^m)^{\leq h}$, then $\dim \left(I, t^m : g \right) > h$. Since $((I,t^m) \subseteq (I,t)$, we have

$$((I,t^m) : g \subseteq (I,t) : g,$$

it follows that

$$\dim \left(I, t : g \right) > \dim \left(I, t^m : g \right) > h.$$

Hence $((I,t^m)^{\leq h} \subseteq (I,t)^{\leq h}$.

We recall that $f \in \sqrt{(I,t)^{\leq h}}$ if and only if there exists $N \in \mathbb{N}$ such that $f^N \in (I,t)^{\leq h}$, if and only if there exists $N \in \mathbb{N}$ such that $\dim \left(I, t : f^N \right) > h$. Let g_1, \ldots, g_l be the minimal generators of $(I,t) : f^N$. We have $g_i f^N \in (I,t)$ for all $i \in \{1, \ldots, l\}$, hence

$$g_i^m f^m = (g_i f^N)^m \in (I,t)^m \subseteq (I,t^m)$$

for all $i \in \{1, \ldots, l\}$. It follows that

$$\left(g_1^m, \ldots, g_l^m \right) \subseteq (I,t^m) : f^{Nm}.$$

Since

$$\dim \left(g_i^m, \ldots, g_l^m \right) = \dim \left(I, t : f^N \right) > h,$$

we have

$$\dim \left(I, t^m : f^{Nm} \right) \geq \dim \left(g_i^m, \ldots, g_l^m \right) > h,$$

therefore $f \in \sqrt{(I,t^m)^{\leq h}}$. Thus $\sqrt{(I,t)^{\leq h}} = \sqrt{(I,t^m)^{\leq h}}$.

Now for each $m \in \mathbb{N}_{>0}$, we set $m_m = m/(I,t^m)$. Since $A/(I,t)^{\leq h}$ is cohomologically full, the natural map

$$H^j_{m_m}(A/(I,t^m)^{\leq h}) \rightarrow H^j_{m_1}(A/(I,t)^{\leq h})$$
is surjective for all j. In general, for all j we have $H^1_{m_i}(A/(I,t)) \cong H^i_{m_i}(A/(I,t))$ and $H^2_{m_i}(A/(I,t^m)) \cong H^i_{m_i}(A/(I,t^m))$, hence the natural map

$$H^i_{m_i}(A/(I,t^m)) \rightarrow H^i_{m_i}(A/(I,t))$$

is surjective for all $j \geq d - h$. Since A is *complete, by the local duality theorem for graded modules (see [1] Theorem 3.6.19), $\text{Ext}^i_A(A/(I,t), N) \rightarrow \text{Ext}^i_A(A/(I,t^m), N)$ is injective for all $i \leq h$. \hfill \Box

Let R be the polynomial ring $K[X_1, \ldots, X_n]$ over a field K and let $I \subseteq R$ be a homogeneous ideal. In the paper of Conca and Varbaro [2] they obtained the following result:

if $\text{in}(I)$ is a square-free monomial ideal for some term order, then

$$\dim_K H^i_{m}(R/I)_j = \dim_K H^i_{m}(R/\text{in}(I))_j$$

They actually showed that

$$\dim_K H^i_{m}(R/I)_j = \dim_K H^i_{m}(R/\text{in}(I))_j$$

for all i, j if $R/\text{in}(I)$ is cohomologically full. If $\text{in}(I)$ is a square-free monomial ideal then $R/\text{in}(I)$ is cohomologically full (see [6] Theorem 1).

Using the notion of N-fiber-full we can prove the following theorem:

Theorem 3.5. Let $I \subseteq R = K[X_1, \ldots, X_n]$ be a homogeneous ideal, $w = (w_1, \ldots, w_n) \in \mathbb{N}^n$ a weight vector and $P = R[t]$. If $R/\text{in}_w(I)^{\leq h}$ is cohomologically full, then

$$\dim_K (H^i_{m}(R/I)_j) = \dim_K (H^i_{m}(R/\text{in}_w(I))_j)$$

for all $i > n - h$ and for all $j \in \mathbb{Z}$.

In particular, fixing a monomial order $<$ on R,

- if $R/\text{in}_w(I)^{\leq h}$ is cohomologically full, then $\dim_K (H^i_{m}(R/I)_j) = \dim_K (H^i_{m}(R/\text{in}_w(I))_j)$ for all $i > n - h$ and for all $j \in \mathbb{Z}$;

- if $\text{in}_w(I)^{\leq h}$ is square-free, then $\dim_K (H^i_{m}(R/I)_j) = \dim_K (H^i_{m}(R/\text{in}_w(I))_j)$ for all $i > n - h$ and for all $j \in \mathbb{Z}$.

Proof. We claim

$$R/\text{in}_w(I)^{\leq h} \cong P/(\text{hom}_w(I), t)^{\leq h+1}.$$

Indeed, if $\text{in}_w(I) = \bigcap_{i=1}^s q_i$ is a primary decomposition of $\text{in}_w(I)$, by definition

$$\text{in}_w(I)^{\leq h} = \bigcap_{\dim(R/q_i) \geq n-h} q_i.$$

Since $q_i \subseteq R, x, t$ is a P-regular sequence for each $x \in R$ such that $x \neq 0$ and x is not invertible, we have that (q_i, t) are the primary components of the ideal $(\text{in}_w(I), t)$.
and

\[
\begin{align*}
(\text{in}_w(I)^{\leq h}, t) &= \left(\bigcap_{i=1}^s (q_i) \right) \cap (t) \\
&= \bigcap_{i=1}^s (q_i, t) \\
&= \bigcup_{i=1}^s (q_i, t) \\
&= (\text{in}_w(I), t)^{\leq h+1}.
\end{align*}
\]

By Proposition 3.5 in [9], we have

\[
(\text{hom}_w(I), t) = (\text{in}_w(I), t).
\]

Hence

\[
R/\text{in}_w(I)^{\leq h} \cong P/(\text{in}_w(I)^{\leq h}, t) \cong P/(\text{in}_w(I), t)^{\leq h+1} \cong P/(\text{hom}_w(I), t)^{\leq h+1}.
\]

Since \(R/\text{in}_w(I)^{\leq h} \) is cohomologically full, by our claim and by Proposition 3.4 we have that \(P/\text{hom}_w(I) \) is \(P \)-fiber-full up to \(h + 1 \). Therefore

\[
\dim_K(H^i_m(R/I)_j) = \dim_K(H^i_m(R/\text{in}_w(I))_j)
\]

for all \(i > n - h \) and for all \(j \in \mathbb{Z} \) by Corollary 3.2.

In particular, given a monomial order \(< \) on \(R \), there exists a weight vector \(w = (w_1, \ldots, w_n) \in (\mathbb{N}_{>0})^n \) such that \(\text{in}_w(I) = \text{in}_{<}(I) \), and this yields the statement. \(\square \)

Remark 3.6. In the paper of Dao, De Stefani and Ma [3] they proved the following result (see [3] Lemma 3.7):

Let \(R \) be the polynomial ring \(K[X_1, \ldots, X_n] \) over a field \(K \) and let \(J \subseteq R \) be a homogeneous ideal. If \(R/J \) is a cohomologically full ring, then \(R/J \) satisfies Serre’s condition \((S_1) \), that is, \(\text{Min}(J) = \text{Ass}(R/J) \).

Hence, it can happen that \(R/J \) is not cohomologically full only because it has some embedded primes. But using the notion \(J^{\leq h} \), sometimes we can remove the embedded primes of \(R/J \) and make \(R/J^{\leq h} \) be a cohomologically full ring.

Example 3.7. Let \(I \) be a monomial ideal of the polynomial ring \(R = K[x_1, \ldots, x_n] \) and let \(\mu_1, \ldots, \mu_s \) be the minimal monomial generators of \(I \) such that the following condition holds: if there exists \(\mu \in \{ \mu_1, \ldots, \mu_s \} \) and there exists an integer \(t \geq 2 \) such that \(x_k^t | \mu \) with \(k \in \{1, \ldots, n\} \), then there exists \(g \in I^{\text{sat}} \) such that \(g \sqrt{\mu} \). Then we have \(I^{\text{sat}} = I^{\leq n-1} \) is square-free. Hence \(R/I^{\text{sat}} \) is cohomologically full.

A simple example is the following: If \(R = K[x, y, z] \) and \(J = (x^2y, xy^2, xyz) \), then we have \(\text{Ass}(R/J) = \{(x, y, z), (x, y)\} \) and \(\text{Min}(J) = \{(x, y)\} \), hence \(R/J \) is not a cohomologically full ring. We observe \(\text{Ass}(R/J^{\text{sat}}) = \{(x, y)\} = \text{Min}(J^{\text{sat}}) \). Since \(J^{\text{sat}} \) is square-free, \(R/J^{\text{sat}} \) is cohomologically full.

Remark 3.8. We observe that in the situation of Corollary 3.2, if \(N = K[t] \) then

\[
\dim_K(\text{Ext}^i_R(R/I, N/tN)_j) = \dim_K(\text{Ext}^i_R(R/I, K)_j) = \beta_{i,j}(R/I)
\]
is the \((i, j)\)-th Betti number of \(R/I\) and
\[
\dim_K(\Ext^i_R(R/\in_w(I), N/tN)_j) = \beta_{i,j}(R/\in_w(I))
\]
is the \((i, j)\)-th Betti number of \(R/\in_w(I)\), hence
\[
\beta_{i,j}(R/I) = \beta_{i,j}(R/\in_w(I))
\]
for all \(i \leq h - 2\) and for all \(j \in \mathbb{Z}\). However in general, \(\beta_{i,j}(R/I) \neq \beta_{i,j}(R/\in_w(I))\) even if \(\in_w(I)\) is a square-free monomial ideal. Hence \(R\) is fiber-full does not imply \(R\) is \(K[t]\)-fiber-full.

In practice, if \(A\) is Cohen-Macaulay and \(A/(I, t)\) is cohomologically full, then the natural map \(\Ext^i_A(A/(I, t), \omega_A) \longrightarrow \Ext^i_A(A/J, \omega_A)\) is injective for all \(i\), where \(J \subseteq (I, t)\) and \(\sqrt{J} = \sqrt{(I, t)}\). Hence, if \((I, t)\) is a square-free monomial ideal, then the natural map \(\Ext^i_A(A/(I, t), N) \longrightarrow \Ext^i_A(A/J, N)\) is injective if \(N = \omega_A\), however it is not true if \(N = K[t]\).

Example 3.9. Consider the following graph \(G\):

```
   1
  /|
 / |
/  |
5 - 2
/|
/  \
4 - 3
```

We obtain the binomial edge ideal of \(G\) (see [3]):
\[
J_G = (x_1y_2 - x_2y_1, x_2y_3 - x_3y_2, x_3y_4 - x_4y_3, x_4y_5 - x_5y_4, x_1y_5 - x_5y_1),
\]
and using Macaulay2 [4] we compute the initial ideal of \(J_G\):
\[
in_<(J_G) = (x_2y_1, x_3y_1, x_3y_2, x_4y_2, x_4y_3, x_1x_2x_5y_3,
\]
\[
x_5y_4, x_4y_1y_5, x_1x_4y_2y_5, x_3y_1y_4y_5),
\]
where \(<\) is the lexicographic order on \(K[x_1, x_2, \ldots, x_5, y_1, y_2, \ldots, y_5]\) induced by
\[
x_1 > x_2 > \cdots > x_5 > y_1 > y_2 > \cdots > y_5.
\]

Therefore, \(\in_<(J_G)\) is a square-free monomial ideal, \(\beta_0(J_G) = 5\) and \(\beta_0(\in_<(J_G)) = 10 \neq \beta_0(J_G)\).

Hence, in the situation of Corollary 3.2, it would be very interesting to understand when \(S = P/\hom_w(I)\) is \(K[t]\)-fiber-full, a condition that would guarantee that the graded Betti numbers are preserved going from \(I\) to \(\in_w(I)\).

REFERENCES

[1] W. Bruns; J. Herzog. *Cohen-Macaulay rings*. Cambridge Studies in Advanced Mathematics, **39**, Cambridge University Press, Cambridge, 1993. xii+403 pp.

[2] Aldo Conca; Matteo Varbaro. *Square-free Gröbner Degenerations*. Invent. Math. Volume **221**, Issue 3, 1 September 2020, 713-730.

[3] Hailong Dao; Alessandro De Stefani; Linquan Ma. *Cohomologically Full Rings*. To appear in IMRN, 2019. [arXiv:1806.00536](https://arxiv.org/abs/1806.00536) [math.AC]. https://arxiv.org/abs/1806.00536

[4] Daniel R.Grayson; Michael E.Stillman. *Macaulay2, a software system for research in algebraic geometry*. Available at http://www.math.uiuc.edu/Macaulay2/.
[5] Jürgen Herzog; Takayuki Hibi; Freyja Hreinsdóttir; Thomas Kahle; Johannes Rauh. *Binomial Edge Ideals and Conditional Independence Statements*. Advances in Applied Mathematics **45**, 2010, 317–333.

[6] G. Lyubeznik. *On the Local Cohomology Modules $H^a_i(R)$ for Ideals a generated by Monomials in an R-sequence*. Lecture Notes Mathematics **1092**, 1983.

[7] Linquan Ma; Pham Hung Quy. *Frobenius actions on local cohomology modules and deformation*. 2010 Mathematics Subject Classification. **13A35, 13D45, 14B05** (2017)

[8] H. Matsumura. *Commutative ring theory*. Translated from the Japanese by M. Reid. Cambridge Studies in Advanced Mathematics, **8**. Cambridge University Press, Cambridge, 1986. xiv+320 pp.

[9] Claudia Polini (Author); Claudiu Raicu (Author); Matteo Varbaro (Author); Mark E. Walker (Author); Aldo Conca (Editor); Srikanth B. Iyengar (Editor); Anurag K. Singh (Editor). *Recent Developments in Commutative Algebra: Levico Terme, Trento 2019*. Lecture Notes in Mathematics, **2283**. Springer International Publishing, 2021. xi+116 pp.

[10] Bernd Sturmfels; Ngô Viêt Trung; Wolfgang Vogel. *Bounds on Degrees of Projective Schemes*. Mathematics Subject Classification (1991). **14A15, 14C17, 14Q20, 13C05, 13P10** (1994)

[11] Matteo Varbaro. *Gröbner Deformations*. Bollettino dell’Unione Matematica Italiana. Springer, 03 July 2020.