THE WEAK BANACH-SAKS PROPERTY OF THE SPACE \((L^p_n)^m\)

ZHENGLU JIANG AND XIAOYONG FU

ABSTRACT. In this paper we show the weak Banach-Saks property of the Banach vector space \((L^p_n)^m\) generated by \(m\) \(L^p_n\)-spaces for \(1 \leq p < +\infty\), where \(m\) is any given natural number. When \(m = 1\), this is the famous Banach-Saks-Szlenk theorem. By use of this property, we also present inequalities for integrals of functions that are the composition of nonnegative continuous convex functions on a convex set of a vector space \(\mathbb{R}^m\) and vector-valued functions in a weakly compact subset of the space \((L^p_n)^m\) for \(1 \leq p < +\infty\) and inequalities when these vector-valued functions are in a weakly* compact subset of the product space \((L^\infty_n)^m\) generated by \(m\) \(L^\infty_n\)-spaces.

1. Introduction

We begin with some notations and definitions used throughout this paper. \(m\) and \(n\) are natural numbers, \(\mathbb{R}\) denotes the real number system, \(\mathbb{R}^n\) is the usual vector space of real \(n\)-tuples \(x = (x_1, x_2, \cdots, x_n)\), \(\mu\) is a nonnegative Lebesgue measure of \(\mathbb{R}^n\); \(L^p_\mu(\mathbb{R}^n)\) represents a Banach space of any measurable function \(\hat{u} = \hat{u}(x)\) with its finite norm

\[\|\hat{u}\|_p = \left(\int_{\mathbb{R}^n} |\hat{u}(x)|^p d\mu\right)^{\frac{1}{p}}\]

for any given \(p \in [1, +\infty)\), and \((L^p_\mu(\mathbb{R}^n))^m\) denotes a Banach vector space where each measurable vector-valued function \(u = u(x)\) with \(m\) components \(\hat{u}(j) = \hat{u}^j(x)\) \((j = 1, 2, \cdots, m)\) in \(L^p_\mu(\mathbb{R}^n)\) is given by \(u = (\hat{u}^1, \hat{u}^2, \cdots, \hat{u}^m)\) and its norm is defined by

\[\|u\|_p = \left(\sum_{j=1}^{m} \|\hat{u}^j\|_p^p\right)^{\frac{1}{p}};\]

similarly, \(L^\infty_\mu(\mathbb{R}^n)\) represents a Banach space of any measurable function \(\hat{u} = \hat{u}(x)\) with its finite norm

\[\|\hat{u}\|_\infty = \text{ess sup}_{x \in \mathbb{R}^n} |\hat{u}(x)|\] (or say \(\|\hat{u}\|_\infty = \inf_{\mu(E^c) = 0} \sup_{x \in E} |\hat{u}(x)|\))

where \(E^c\) represents the complement set of \(E\) in \(\mathbb{R}^n\), and \((L^\infty_\mu(\mathbb{R}^n))^m\) denotes a Banach vector space where each measurable vector-valued function \(u = u(x)\) with \(m\) components \(\hat{u}_j = \hat{u}_j(x)\) \((i = 1, 2, \cdots, m)\) in \(L^\infty_\mu(\mathbb{R}^n)\) is denoted by \(u = (\hat{u}^1, \hat{u}^2, \cdots, \hat{u}^m)\) and its norm is defined by

\[\|u\|_\infty = \sum_{j=1}^{m} \|\hat{u}^j\|_\infty\]

If a function \(u\) and a sequence \(\{u_i\}_{i=1}^{+\infty}\) in \((L^p_\mu(\mathbb{R}^n))^m\) are assumed to satisfy the fact that \(\lim_{i \to \infty} \|u_i - u\|_p = 0\), then this sequence \(\{u_i\}_{i=1}^{+\infty}\) is said to be strongly convergent in \((L^p_\mu(\mathbb{R}^n))^m\) to \(u\). Similarly, if a function \(u\) and a sequence \(\{u_i\}_{i=1}^{+\infty}\) in \((L^\infty_\mu(\mathbb{R}^n))^m\) are assumed to have the property that \(\lim_{i \to \infty} \|u_i - u\|_\infty = 0\), then this sequence \(\{u_i\}_{i=1}^{+\infty}\) is said to be strongly convergent in \((L^\infty_\mu(\mathbb{R}^n))^m\) to \(u\).

Besides the convergence given above, we consider a definition of weak convergence of a sequence in \((L^p_\mu(\mathbb{R}^n))^m\). Assume that \(q = p/(p-1)\) as \(p \in (1, +\infty)\) and that \(q = \infty\) as
p = 1. If a function \(\hat{u} \) and a sequence \(\{ \hat{u}_i \}_{i=1}^{\infty} \) in \(L_p^\mu(\mathbb{R}^n) \) have the following relation:

\[
\lim_{i \to +\infty} \int_{\mathbb{R}^n} \hat{u}_i \hat{v} d\mu = \int_{\mathbb{R}^n} \hat{u} \hat{v} d\mu
\]

for all \(\hat{v} \in L^q_\mu(\mathbb{R}^n) \), then the sequence \(\{ \hat{u}_i \}_{i=1}^{\infty} \) is said to be weakly convergent in \(L^p_\mu(\mathbb{R}^n) \) to \(\hat{u} \). If \(\{ \hat{u}_i^{(j)} \}_{i=1}^{\infty} \) is weakly convergent in \(L^p_\mu(\mathbb{R}^n) \) to \(\hat{u}^{(j)} \) for all \(j = 1, 2, \ldots, m \) as \(i \) goes to \(\infty \), then a sequence \(\{ u_i = (\hat{u}_i^{(1)}, \hat{u}_i^{(2)}, \ldots, \hat{u}_i^{(m)}) \}_{i=1}^{\infty} \) is said to be weakly convergent in \((L^p_\mu(\mathbb{R}^n))^m \) to \(u = (\hat{u}^{(1)}, \hat{u}^{(2)}, \ldots, \hat{u}^{(m)}) \).

Similarly, we introduce a definition of weak* convergence of a sequence in \(L^\infty_\mu(\mathbb{R}^n) \). If a function \(\hat{u} \) and a sequence \(\{ \hat{u}_i \}_{i=1}^{\infty} \) in \(L^\infty_\mu(\mathbb{R}^n) \) satisfy the equality \((\) \) for all \(\hat{v} \in L^q_\mu(\mathbb{R}^n) \), then the sequence \(\{ \hat{u}_i \}_{i=1}^{\infty} \) is said to be weakly* convergent in \(L^\infty_\mu(\mathbb{R}^n) \) to \(\hat{u} \). If \(\{ \hat{u}_i^{(j)} \}_{i=1}^{\infty} \) is weakly* convergent in \(L^\infty_\mu(\mathbb{R}^n) \) to \(\hat{u}^{(j)} \) for all \(j = 1, 2, \ldots, m \) as \(i \) goes to \(\infty \), then a sequence \(\{ u_i = (\hat{u}_i^{(1)}, \hat{u}_i^{(2)}, \ldots, \hat{u}_i^{(m)}) \}_{i=1}^{\infty} \) is said to be weakly* convergent in \((L^\infty_\mu(\mathbb{R}^n))^m \) to \(u = (\hat{u}^{(1)}, \hat{u}^{(2)}, \ldots, \hat{u}^{(m)}) \).

Assume that \(Y \) is a Banach space. \(Y \) is said to be of the weak Banach-Saks property if any sequence \(\{ y_i \}_{i=1}^{\infty} \) weakly convergent in \(Y \) to \(y \) contains a subsequence \(\{ y_{n_k} \}_{k=1}^{\infty} \) such that \(\sum_{k=1}^{\infty} y_{n_k} = y \).

Banach and Saks \([1] \) first proved that \(L_p^\mu(\mathbb{R}^n) \) has the weak Banach-Saks property for the \(1 < p < +\infty \) case in 1930 and then the similar result for \(L^\infty_\mu(\mathbb{R}^n) \) was showed by Szlenk \([8] \) in 1965. This result about \(L_p^\mu(\mathbb{R}^n) \) is the famous Banach-Saks-Szlenk theorem. Now there is not yet this result about the Banach vector space \((L_p^\mu(\mathbb{R}^n))^m \) when \(m \neq 1 \). The aim of this paper is to extend the Banach-Saks-Szlenk theorem to the case of the vector space \((L_p^\mu(\mathbb{R}^n))^m \) generated by \(m \) \(L_p^\mu(\mathbb{R}^n) \)-spaces for \(1 \leq p < +\infty \) and show that \((L_p^\mu(\mathbb{R}^n))^m \) has the weak Banach-Saks property for any fixed natural number \(m \). An application of this property is to show inequalities for integrals of functions that are the composition of nonnegative continuous convex functions on a convex set of a vector space \(\mathbb{R}^m \) and vector-valued functions in a weakly compact subset of a Banach vector space generated by \(m \) \(L_p^\mu \)-spaces for \(1 \leq p < +\infty \) and inequalities when these vector-valued functions are in a weakly* compact subset of a Banach vector space generated by \(m \) \(L_p^\infty \)-spaces.

2. The Weak Banach-Saks Property

A detail description of the weak Banach-Saks property of \((L_p^\mu(\mathbb{R}^n))^m \) for any fixed natural number \(m \) is as follows:

Theorem 1. Given a real number \(p \) in \([1, +\infty)\). Assume that a sequence \(\{ u_i = u_i(x) \}_{i=1}^{\infty} \) converges weakly in \((L_p^\mu(\mathbb{R}^n))^m \) to \(u = u(x) \). Then this sequence contains a subsequence \(\{ u_{i_k} \}_{k=1}^{\infty} \) with its arithmetic means \(\frac{1}{k} \sum_{i=1}^{k} u_{i_k} \) strongly convergent in \((L_p^\mu(\mathbb{R}^n))^m \) to \(u \) as \(k \) goes to infinity.

We can below show Theorem \([1] \) using the two following techniques with only minor adjustments: one is given by Banach and Saks \([1] \) for any fixed \(p \in (1, +\infty) \), and another by Szlenk \([8] \) in the case when \(p = 1 \).

To prove Theorem \([1] \) for any fixed \(p \in (1, +\infty) \), we have first to introduce the following lemma:

Lemma 1 (\([1] \)). Let \(a \) and \(b \) be any real numbers and \(1 < p < +\infty \). Then

\[
|a + b|^p \leq |a|^p + p|a|^{p-1}|sgn(a)|b + A|b|^p + B(p, a, b).
\]
Here, A is a positive constant independent of a and b; $\text{sgn}(\tau)$ is defined as follows: $\text{sgn}(0) = 0$, $\text{sgn}(\tau) = 1$ as $\tau > 0$ and $\text{sgn}(\tau) = -1$ as $\tau < 0$; $B(p, a, b) = 0$ as $p \in (1, 2]$ and $B(p, a, b) = \sum_{i=2}^{E(p)} |a|^{p-1}|b|^i$ as $p \in (2, +\infty)$, where $E(p)$ is the largest natural number less than p.

The proof of this lemma can be found in [1]. Using the inequality [2], we can get a similar result to that given by Banach and Saks [1]. This result is as follows:

Lemma 2. Assume that $p > 1$ and that a sequence $\{\hat{u}_i = \hat{u}_i(x)\}_{i=1}^{\infty}$ in $L^p_\mu(\mathbb{R}^n)$ satisfies
\[
\int_{\mathbb{R}^n} |\hat{u}_i(x)|^p d\mu \leq 1
\]for all $i \geq 1$. Put $\hat{s}_k(x) = \sum_{i=1}^k \hat{u}_i(x)$. Then
\[
\int_{\mathbb{R}^n} |\hat{s}_k(x)|^p d\mu \leq C(k) + p \int_{\mathbb{R}^n} |\hat{s}_{k-1}(x)|^{p-1}[\text{sgn}(\hat{s}_{k-1}(x))]|\hat{u}_k(x)| d\mu + \int_{\mathbb{R}^n} |\hat{s}_{k-1}(x)|^p d\mu, \tag{4}
\]
where, $C(k) = A + Bk^{p-2}$, A and B are positive constants independent of k and $\{\hat{u}_i\}_{i=1}^{\infty}$, $\text{sgn}(\tau)$ is defined as in Lemma [1].

Proof. Insert $a = \hat{s}_{k-1}(x)$ and $b = \hat{u}_k(x)$ into the inequality [2] and integrate all its terms over the space \mathbb{R}^n. Then, by (3), we can know that (4) holds in the $1 < p \leq 2$ case and that
\[
\int_{\mathbb{R}^n} |\hat{s}_k(x)|^p d\mu \leq \int_{\mathbb{R}^n} |\hat{s}_{k-1}(x)|^p d\mu + p \int_{\mathbb{R}^n} |\hat{s}_{k-1}(x)|^{p-1}[\text{sgn}(\hat{s}_{k-1}(x))]|\hat{u}_k(x)| d\mu
\]
\[+ \sum_{i=2}^{E(p)} \int_{\mathbb{R}^n} |\hat{s}_{k-1}(x)|^{p-1}|\hat{u}_k(x)|^i d\mu + A \tag{5}
\]
for all $p > 2$. Notice that $\int_{\mathbb{R}^n} |\hat{s}_{k-1}(x)|^{p-1}|\hat{u}_k(x)|^i d\mu \leq k^{p-2}$ for all $i \leq p$; this can be obtained by first using the Hölder inequality and then the Minkowski one with the help of the condition (3). Take $B = \sum_{i=2}^{E(p)} \left(\frac{p}{i} \right)$. It can be then found that (5) gives (4) for $p > 2$. This hence completes our proof.

We below give the proof of Theorem [11] for any fixed $p \in (1, +\infty)$. To do this, it suffices to consider the case when $m = 2$. Let us first denote all the vector-valued functions u_i of this sequence in $(L^p_\mu(\mathbb{R}^n))^2$ by $u_i = (\hat{u}_i^{(1)}, \hat{u}_i^{(2)})$, where $\hat{u}_i^{(1)} = \hat{u}_i^{(1)}(x)$ and $\hat{u}_i^{(2)} = \hat{u}_i^{(2)}(x)$ represent two functions in $L^p_\mu(\mathbb{R}^n)$ for any natural number i. Since any weak convergent sequence in $L^p_\mu(\mathbb{R}^n)$ is bounded, we may first assume without loss of generality that all the functions u_i of the considered sequence satisfy
\[
\|u_i\|^p \leq 1 \tag{6}
\]for all $i \geq 1$. We may also assume without loss of generality that this sequence $\{u_i\}_{i=1}^{+\infty}$ converges weakly in $(L^p_\mu(\mathbb{R}^n))^2$ to zero. Then, by recursion, we can determine a subsequence $\{u_i = (\hat{u}_i^{(1)}, \hat{u}_i^{(2)})\}_{i=1}^{+\infty}$ ($i_1 = 1$). This recursive process can be roughly divided into two steps and they are described as follows. The first step to do is to take $s_k^{(1)}(x) = \sum_{i=1}^k \hat{u}_i^{(1)}(x)$ for $j = 1, 2$ under the assumption that k previous terms $\{u_i = (\hat{u}_i^{(1)}, \hat{u}_i^{(2)})\}_{i=1}^k$ of this subsequence is determined. It can be then known that $s_k^{(j)}(x) \in L^p_\mu(\mathbb{R}^n)$ and that $|s_k^{(j)}(x)|^{p-1}[\text{sgn}(s_k^{(j)}(x))] \in L^p_\mu(\mathbb{R}^n)$. Since these functions $\hat{u}_i^{(j)}$ converge weakly in $L^p_\mu(\mathbb{R}^n)$ to zero for $j = 1, 2$, there exists a natural
number \(i_k \) such that
\[
\int_{\mathbb{R}^n} |\hat{s}_{k}^{(j)}(x)|^{p-1}[sgn(\hat{s}_{k}^{(j)}(x))]\hat{u}_{i_k}^{(j)}(x)\,d\mu \leq 1
\]
for all \(i > i_k \) and \(j = 1, 2 \); thus the second one is to define the subscript \(i_{k+1} \) of the next term to be one of all the natural numbers \(i \) satisfying the condition given by (7).

Then, by (7), we can know that for all \(k > 1 \) and \(j = 1, 2 \),
\[
\int_{\mathbb{R}^n} |\hat{s}_{k-1}^{(j)}(x)|^{p-1}[sgn(\hat{s}_{k-1}^{(j)}(x))]\hat{u}_{i_k}^{(j)}(x)\,d\mu \leq 1.
\]
Combining (6) and (8) and using Lemma 2, we can show that for \(j = 1, 2 \),
\[
\int_{\mathbb{R}^n} |\hat{s}_k^{(j)}(x)|^p\,d\mu \leq (A + p)k + Bk^{p-2} + 1,
\]
thus giving
\[
\lim_{k \to \infty} \int_{\mathbb{R}^n} \left| \frac{\hat{s}_k^{(j)}(x)}{k} \right|^p \,d\mu = 0 \text{ for } j = 1, 2.
\]
This hence completes our proof of Theorem 1 for any given \(p \in (1, +\infty) \).

Now it remains to prove Theorem 1 when \(p = 1 \). To do this, we first recall a lemma as follows:

Lemma 3 ([8]). Assume that \(\hat{u}_i \) belongs to the Banach space \(L[0, 1] \) for any natural number \(i \) and converges weakly to zero as \(i \) goes to infinity. Then, for any given \(\varepsilon > 0 \), there exists a sequence of indexes \(i_r \) such that
\[
\lim_{k \to \infty} \sup_{1 \leq k < \cdots < k_m} \frac{1}{k} \| \sum_{r=1}^{k} \hat{u}_{i_r} \|_L \leq \varepsilon \text{ where } \| \cdot \|_L \text{ represents the norm of the Banach space } L[0, 1].
\]

Lemma 3 and its proof were shown by Szlenk [8] in 1965. By using a similar proof to that given by Szlenk, it can be found that Lemma 3 still holds if \(L[0, 1] \) is replaced by the Banach space \(L([0, 1]^n) \). Since \(L(\mathbb{R}^n) \) is isometric to \(L([0, 1]^n) \) (see [9], Page 83), we can easily deduce that

Lemma 4. Assume that \(\hat{u}_i \) belongs to the Banach space \(L(\mathbb{R}^n) \) for any natural number \(i \) and converges weakly to zero as \(i \) goes to infinity. Then, for any given \(\varepsilon > 0 \), there exists a sequence of indexes \(i_r \) such that
\[
\lim_{k \to \infty} \sup_{1 \leq k < \cdots < k_m} \frac{1}{k} \| \sum_{r=1}^{k} \hat{u}_{i_r} \|_1 \leq \varepsilon.
\]

Using Lemma 4, we can get the following result:

Lemma 5. Assume that \(u_i \) belongs to the Banach space \((L(\mathbb{R}^n))^m \) for any natural number \(i \) and converges weakly to zero as \(i \) goes to infinity. Then, for any given \(\varepsilon > 0 \), there exists a sequence of indexes \(i_r \) such that
\[
\lim_{k \to \infty} \sup_{1 \leq k < \cdots < k_m} \frac{1}{k} \| \sum_{r=1}^{k} u_{i_r} \|_1 \leq \varepsilon.
\]

We can below prove Theorem 1 when \(p = 1 \). To do this, it suffices to consider the case of \(u = 0 \). By Lemma 3, for any given \(l \geq 1 \), there exists a sequence of indexes \(i_{l,r} \) such that
\[
\lim_{k \to \infty} \sup_{1 \leq k < \cdots < k_m} \frac{1}{k} \| \sum_{r=1}^{k} u_{i_{l,r}} \|_1 \leq 1 \frac{1}{l}.
\]
Assume that the sequence of indexes $i_{i+1,r}$ is a subsequence of the sequence of indexes $i_{i,r}$. Denote by $\{u_{i,r}\}_{r=1}^{+\infty}$ a sequence of indexes $i_r = i_{r,r}$ corresponding to the condition (10). Then we can know that this sequence $\{u_{i,r}\}_{r=1}^{+\infty}$ satisfies
\[
\frac{1}{k} \sum_{r=1}^{k} u_{i,r} \to \infty \leq \frac{1}{k} \sum_{r=1}^{l} u_{i,r} + \frac{1}{k-l} \sum_{r=1}^{k-l} u_{i,r} \to \infty
\]
for all $k > l$. It follows that
\[
\lim_{k \to \infty} \frac{1}{k} \sum_{r=1}^{k} u_{i,r} \leq \lim_{k \to \infty} \frac{1}{k-l} \sum_{r=1}^{k-l} u_{i,r} = \lim_{k \to \infty} \frac{1}{k} \sum_{r=1}^{k} u_{i,r}.
\]
(11)

Since $\{u_{i,r}\}_{r=1}^{+\infty}$ is a subsequence of this sequence $\{u_{i,r}\}_{r=1}^{+\infty}$, we have
\[
\frac{1}{k} \sum_{r=1}^{k} u_{i,r} \leq \sup_{s_1 < \cdots < s_k} \frac{1}{k} \sum_{r=1}^{k} u_{i,r}.
\]
(12)

Combining (10), (11) and (12), we can know that
\[
\lim_{k \to \infty} \frac{1}{k} \sum_{r=1}^{k} u_{i,r} \leq \frac{1}{l}
\]
for $l = 1, 2, \cdots$.

This implies that $\frac{1}{k} \sum_{r=1}^{k} u_{i,r}$ converges strongly in the Banach space $(L(R^p))^m$ to zero as k tends to infinity. Our proof is hence finished.

We can also extend Theorem 1 to a more general case, that is,

Theorem 2. Given a measure space (X, \mathcal{A}, μ) and a real number p in $[1, +\infty)$. Assume that $\{\hat{u}^{(i)}\}_{i=1}^{+\infty}$ converges weakly in $(L^p(X))^m$ to $\hat{u}^{(i)}$ for $j = 1, 2, \cdots, m$. Take $u = (\hat{u}^{(1)}, \hat{u}^{(2)}, \cdots, \hat{u}^{(m)})$ and $u_i = (\hat{u}_i^{(1)}, \hat{u}_i^{(2)}, \cdots, \hat{u}_i^{(m)})$ for any natural number i. Then this sequence $\{u_i\}_{i=1}^{+\infty}$ contains a subsequence $\{u_{i,r}\}_{r=1}^{+\infty}$ with its arithmetic means $\frac{1}{k} \sum_{r=1}^{k} u_{i,r}$ strongly convergent in $(L^p(X))^m$ to u as k goes to infinity.

When $m = 1$, this result appears in the book of Benedetto [2] and there is an explanation of its proof, that is, it is the same as given by Banach and Saks for any $p \in (1, +\infty)$ and by Szlenk in the case when $p = 1$. We below give a simple proof of Theorem 2. Notice that the separable space $L^p(X)$ is isometric to $L^p[0, 1]$ for any $p \in [1, +\infty)$ (see [3]). It is then clear that $(L^p(X))^m$ is also isometric to $(L^p[0, 1])^m$ for any fixed natural number m. By Theorem 1, Theorem 2 thus follows.

3. **APPLICATION TO INEQUALITIES FOR INTEGRALS**

By use of the weak Banach-Saks property of $(L^p)^m$, we can show inequalities for integrals of functions which are the composition of nonnegative continuous convex functions on a convex set of a vector space R^m and vector-valued functions in a weakly compact subset of a Banach vector space generated by $m \ L^p$-spaces for any given $p \in [1, +\infty)$. That is the following

Theorem 3. Suppose that a sequence $\{u_{i+1}^{+\infty}\}_{i=1}^{+\infty}$ weakly converges in $(L^p(R^n))^m$ to u as i goes to infinity, where $p \in [1, +\infty)$ and m and n are two positive integers. Assume that all the values of u and u_i ($i = 1, 2, 3, \cdots$) belong to a convex set K in R^m and that $f(w)$ is a nonnegative continuous convex function from K to R. Then
\[
\lim_{i \to +\infty} \int_{\Omega} f(u_i) d\mu \geq \int_{\Omega} f(u) d\mu
\]
for any measurable set $\Omega \subseteq R^n$. (13)
The estimates of integrals of this kind of composite function is interesting and important in many application areas such as the existence of solutions of differential equations (e.g., see [3] and [10]). A similar result was shown by Jiang et. al [4] if K is assumed to be an open convex set of \mathbb{R}^m instead; Egorov’s theorem is used into their proof except for the weak Banach-Saks property of $(L_p^m)^m$. Meanwhile, a simple proof of another similar one was given in [5] when K is set to be \mathbb{R}^m; this proof requires the weak Banach-Saks property of $(L_p^m)^m$ but it does not give any proof of this property; it only shows the case when $m = 1$ in Theorem 2. The former device is valid for only an open convex set K while the latter one is suitable to show inequalities for integrals of these composite functions in a more general case, or more precisely speaking, this case is for any convex set K in \mathbb{R}^m. Therefore it is still very necessary to show Theorem 3 and its proof.

It is worth mentioning that some properties of convex functions and weakly compact sets can be found in the literature (e.g., see [2], [6], [7], [9] and [11]).

Proof of Theorem 3. Put $\alpha_i = \int_{\Omega} f(u_i)d\mu$ ($i = 1, 2, \cdots$) and $\alpha = \lim_{i \to +\infty} \int_{\Omega} f(u_i)d\mu$ for all $\Omega \subseteq \mathbb{R}^n$. Then there exists a subsequence of $\{\alpha_i\}_{i=1}^{+\infty}$ such that this subsequence, denoted without loss of generality by $\{\alpha_i\}_{i=1}^{+\infty}$, converges to α as $i \to +\infty$.

Since u_i converges weakly in $(L_p^m(\mathbb{R}^n))^m$ to u for $1 \leq p < +\infty$, by Theorem 1 it is easy to see that there exists a subsequence $\{u_{i_j} : j = 1, 2, \cdots\}$ such that $\frac{1}{k} \sum_{j=1}^{k} u_{i_j} \to u$ in $(L_p^m(\mathbb{R}^n))^m$ for $1 \leq p < +\infty$ as $k \to +\infty$. Thus there exists a subsequence of $\{\frac{1}{k} \sum_{j=1}^{k} u_{i_j} : k = 1, 2, \cdots\}$ such that this subsequence (also denoted without loss of generality by $\{\frac{1}{k} \sum_{j=1}^{k} u_{i_j} : k = 1, 2, \cdots\}$) satisfies that, as $k \to +\infty$,

$$\frac{1}{k} \sum_{j=1}^{k} u_{i_j} \to u \text{ a.e. in } \mathbb{R}^n.$$ \hfill (14)

On the other hand, since all the values of $\{u_i\}_{i=1}^{+\infty}$ and u belong to the convex set K in \mathbb{R}^m and $f(w)$ is a nonnegative continuous convex function from K to \mathbb{R}, we have

$$f\left(\frac{1}{k} \sum_{j=1}^{k} u_{i_j}\right) \leq \frac{1}{k} \sum_{j=1}^{k} f(u_{i_j}).$$ \hfill (15)

By (15) and Fatou’s lemma, it follows that

$$\int_{\Omega} \lim_{k \to +\infty} f\left(\frac{1}{k} \sum_{j=1}^{k} u_{i_j}\right)d\mu \leq \lim_{k \to +\infty} \frac{1}{k} \sum_{j=1}^{k} \int_{\Omega} f(u_{i_j})d\mu.$$ \hfill (16)

Combining (14) and (16), we can know that

$$\int_{\Omega} f(u)d\mu \leq \lim_{k \to +\infty} \frac{1}{k} \sum_{j=1}^{k} \int_{\Omega} f(u_{i_j})d\mu \equiv \lim_{k \to +\infty} \frac{1}{k} \sum_{j=1}^{k} \alpha_{i_j}.$$ \hfill (17)

Finally, by using the property of the convergence of α_i to α, (17) gives (13). This completes our proof. \hfill \Box

Furthermore, we can give the following similar result for weakly* convergent sequences in $(L_p^\infty(\mathbb{R}^n))^m$:

Theorem 4. Assume that a sequence $\{u_i\}_{i=1}^{+\infty}$ weakly* converges in $(L_p^\infty(\mathbb{R}^n))^m$ to u as i goes to infinity, where m and n are two positive integers. Assume that all the values
of u and u_i $(i = 1, 2, 3, \cdots)$ belong to a convex set K of \mathbb{R}^m and that $f(w)$ is a nonnegative continuous convex function from K to \mathbb{R}. Then the inequality (13) holds for any measurable set $\Omega \subseteq \mathbb{R}^n$.

Proof. Put $\Omega_R = \Omega \cap \{ x : |x| < R, x \in \mathbb{R}^n \}$. Then Ω_R is a bounded measurable set in \mathbb{R}^n for all the fixed positive real number R. Since $u_i \to u$ weakly* in $(L^\infty_\mu(\mathbb{R}^n))^m$, $u_i \to u$ weakly* in $(L^\infty_\mu(\Omega_R))^m$. Hence, by $L^\infty(\Omega_R) \subset L^1(\Omega_R)$, it can be easily known that $u_i \to u$ weakly in $(L^1(\Omega_R))^m$. Then, using the process of the proof of Theorem 3 we can get

$$\lim_{i \to +\infty} \int_{\Omega_R} f(u_i) d\mu \geq \int_{\Omega_R} f(u) d\mu.$$ \hfill (18)

It follows from the nonnegativity of the convex function f that

$$\lim_{i \to +\infty} \int_\Omega f(u_i) d\mu \geq \int_\Omega f(u) d\mu.$$ \hfill (19)

Finally, by Lebesgue monotonous convergence theorem, as $R \to +\infty$, (19) implies (13). Our proof is completed. \hfill \Box

Also, removing the nonnegativity of $f(w)$ and assuming that the convex set K is closed, by Mazur’s lemma (see [9] and [11]), we can deduce

Theorem 5 ([4]). Assume that a sequence \(\{u_i\}_{i=1}^{+\infty} \) weakly* converges in \((L^\infty_\mu(\mathbb{R}^n))^m\) to u as i goes to infinity, where m and n are two positive integers. Assume that all the values of u and u_i $(i = 1, 2, 3, \cdots)$ belong to a closed convex set K in \mathbb{R}^m and that $f(w)$ is a continuous convex function from K to \mathbb{R}. Then the inequality (13) holds for any bounded measurable set $\Omega \subset \mathbb{R}^n$.

Theorem 5 is in fact an extension of a result given by Ying [10] (or see [4] and [5]) and its detailed proof can be found in [4].

Acknowledgement. This work was supported by grants of NSFC 10271121 and joint grants of NSFC 10511120278/10611120371 and RFBR 04-02-39026. This work was also sponsored by SRF for ROCS, SEM. We would like to thank the referee of this paper for his/her valuable comments on this work.

References

[1] S. Banach, S. Saks, Sur la convergence dans les champs L^p, Studia Mathematica, 2, 1930, 51-57.

[2] J. J. Benedetto, Real Variable and Integration, B. G. Teubner, Stuttgart, 1976, p228-229.

[3] R. J. DiPerna, P. L. Lions, Global Solutions of Boltzmann’s Equation and the Entropy Inequality, Arch. Rational Mech. Anal., 114, 1991, 47-55.

[4] Z. Jiang, X. Fu, H. Tian, Convex Functions and Inequalities for Integrals, Journal of Inequalities in Pure and Applied Mathematics (JIPAM), 7(5), Article 184, 2006.

[5] Z. Jiang, X. Fu, H. Tian, A Simple Proof of Inequalities of Integrals of Composite Functions, Journal of Mathematical Analysis and Applications, 2006.

[6] S. R. Lay, Convex Sets and Their Applications. John Wiley & Sons, Inc., New York, 1982, p214-215.

[7] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

[8] W. Szlenk, Sur les suites faiblement convergentes dans l'espace L, Studia Mathematica, 25, 1965, 337-341.

[9] P. Wojtaszczyk, Banach Spaces for Analysts. Cambridge University Press, Cambridge, 1991, p28.

[10] L. Ying, Compensated Compactness Method and Its Application to Quasilinear Hyperbolic Equations, Advances In Mathematics (in Chinese), 17(1), Jan., 1988.

[11] K. Yosida, Functional Analysis, Springer-Verlag, 1965.

Department of Mathematics, Zhongshan University, Guangzhou 510275, China

E-mail address: mcsjzl@mail.sysu.edu.cn

Department of Mathematics, Zhongshan University, Guangzhou 510275, China

E-mail address: mcsfxy@mail.sysu.edu.cn