ON SOME FRACTIONAL ORDER BINOMIAL SEQUENCE SPACES WITH INFINITE MATRICES

S.DUTTA¹, S. SINGH²*

ABSTRACT. The main purpose of this article is to introduce some new binomial difference sequence spaces of fractional order \(\tilde{\alpha} \) along with infinite matrices. Some topological properties of these spaces are considered along with the Schauder basis and \(\alpha- \), \(\beta- \) and \(\gamma- \)duals of the spaces.

1. INTRODUCTION AND PRELIMINARIES

By \(\omega \), we denote the space of all real valued sequences and any subspace of \(\omega \) is called a sequence space. Let \(c_0, c \) and \(l_\infty \) be the spaces of all null, convergent and bounded sequences respectively which are normed by \(\|x\|_\infty = \sup_k |x_k| \). Again \(l_1, cs, bs \) denote the spaces of absolutely summable, convergent series and bounded series respectively. The space \(l_1 \) is normed by \(\sum_k |x_k| \) and the spaces \(cs, bs \) are normed by \(\sup_{n} |\sum_{k=0}^{n} x_k| \), throughout this paper the summation without limit runs from 0 to \(\infty \) and \(n \in \mathbb{N}^+ = \{0, 1, 2, ...\} \).

The notion of difference sequence spaces was introduced by Kizmaz [16] by considering \(X(\Delta) = \{x = (x_k) : \Delta (x_k) \in X\} \) which is further generalized to \(m^{th} \) order difference sequence space as

\[\Delta^m(X) = \{x = (x_k) : \Delta^m(x) \in X\} \quad \text{for} \quad X = \{c_0, c, l_\infty\} \]

by Et and Çolak [13] where, \(m \) be a non-negative integer.

Also \(\Delta^m(x) = \Delta^{m-1}(x_k) - \Delta^{m-1}(x_{k+1}) \)

\(\Delta^0(x) = x_k \) and

\[\Delta^m(x_k) = \sum_{i=0}^{m} (-1)^i \binom{m}{i} x_{k+i} \]

The spaces \(l_\infty, c, c_0 \), are Banach spaces normed by

\[\|x\|_\Delta = \sum_{i=1}^{n} |x_i| + \sup_k |\Delta^m(x_k)| . \]

* Corresponding author.
2010 Mathematics Subject Classification. Primary 46A45; Secondary 46B45, 46A35.
Key words and phrases. Binomial difference sequence space, difference operator, \((\Delta^\tilde{\alpha}) \), infinite matrix, Schauder basis, \(\alpha- \), \(\beta- \) and \(\gamma- \)duals.

Date: Received: xxxxxx; Revised: yyyyyy; Accepted: zzzzzz.
Altay and Basar [2] and Altay et al [3] introduced the following Euler sequence spaces

\[
e^r_0 = \left\{ x = (x_k) \in \omega : \lim_{n \to \infty} \sum_k \binom{n}{k} (1-r)^{n-k} x_k = 0 \right\}
\]

\[
e^r_c = \left\{ x = (x_k) \in \omega : \lim_{n \to \infty} \sum_k \binom{n}{k} (1-r)^{n-k} x_k \text{ exists} \right\}
\]

\[
e^r_{\infty} = \left\{ x = (x_k) \in \omega : \sup_{n \in \mathbb{N}} \left| \sum_k \binom{n}{k} (1-r)^{n-k} x_k \right| < \infty \right\}
\]

where the \(r^{th}\) order Euler mean matrix \(E^r\) is defined as \(E^r = (e^r_{nk})\), with \(0 < r < 1\) and

\[
e^r_{nk} = \begin{cases} \binom{n}{k} (1-r)^{n-k} k, & \text{if } 0 \leq k \leq n \\ 0, & \text{if } k > n \end{cases}
\]

Altay and Polat [1] introduced and studied the Euler difference sequence spaces \(Z(\Delta)\), for \(Z \in \{e^r_0, e^r_c, e^r_{\infty}\}\). Polat and Başar [18] further extended those space to \(Z(\Delta^{(m)}) = \{x = (x_k) : (\Delta^{(m)}(x_k)) \in Z, m \in \mathbb{N}\}\)
where \(Z \in \{e^r_0, e^r_c, e^r_{\infty}\}\) and \(\Delta^{(m)} = \delta^{(m)}_{nk}\) is a triangle defined by

\[
\delta^{(m)}_{nk} = \begin{cases} (-1)^{n-k} \binom{m}{n-k}, & \text{if } \max\{0, n-m\} \leq k \leq n \\ 0, & \text{if } 0 \leq k \leq \max\{0, n-m\} \text{ or } k > n \end{cases}
\]

The difference sequence spaces still attracted various mathematicians. In 2016 Bisgin [8, 9] introduced the Binomial sequence spaces

\[
b^r_s = \left\{ x = (x_k) \in \omega : \lim_{n \to \infty} \frac{1}{(s+r)^n} \sum_{k=0}^{n} \binom{n}{k} s^{n-k} x_k = 0 \right\}
\]

\[
b^r_c = \left\{ x = (x_k) \in \omega : \lim_{n \to \infty} \frac{1}{(s+r)^n} \sum_{k=0}^{n} \binom{n}{k} s^{n-k} x_k \text{ exists} \right\}
\]

\[
b^r_{\infty} = \left\{ x = (x_k) \in \omega : \sup_{n \in \mathbb{N}} \left| \frac{1}{(s+r)^n} \sum_{k=0}^{n} \binom{n}{k} s^{n-k} x_k \right| < \infty \right\}
\]

with introducing the binomial matrix \(B^r_{nk} = (b^r_{nk})\), defined by:

\[
b^r_{nk} = \begin{cases} \frac{1}{(s+r)^n} \binom{n}{k} s^{n-k} k, & \text{if } 0 \leq k \leq n \\ 0, & \text{if } k > n \end{cases}
\]

where \(r, s \in \mathbb{R}\) and \(r + s \neq 0\)

For \(r + s = 1\), the Binomial matrix reduces to Euler matrix \(E^r\).

Further Meng and Song [17] introduced the sequence space

\[
Z(\nabla^m) = \{x = (x_k) : (\nabla^{(m)}(x_k)) \in Z\},
\]

of order \(m\), for \(Z \in \{b^r_0, b^r_c, b^r_{\infty}\}\) and \(\nabla^m x_k = \sum_{i=0}^{m} (-1)^i \binom{m}{i} x_{k-i}\).

For a positive fraction \(\tilde{a}\), Baliarsingh & Dutta ([4, 5, 6, 7, 10, 11]) they introduced
the difference operator \(\Delta^{\tilde{\alpha}} \)
\[
\Delta^{\tilde{\alpha}}x_k = \sum_i (-1)^i \frac{\Gamma (\tilde{\alpha} + 1)}{i!\Gamma (\tilde{\alpha} - i + 1)} x_{k-i}
\tag{1.1}
\]
with its inverse as
\[
\Delta^{-\tilde{\alpha}}x_k = \sum_i (-1)^i \frac{\Gamma (-\tilde{\alpha} + 1)}{i!\Gamma (-\tilde{\alpha} - i + 1)} x_{k-i}
\tag{1.2}
\]
\(\Delta^{(\tilde{\alpha})} \) can be expressed as a triangle
\[
(\Delta^{\tilde{\alpha}})_{nk} = \begin{cases}
(\lambda_{n-k}-\lambda_{n-k-1}) & \text{if } 0 \leq k \leq n \\
0 & \text{if } k > n
\end{cases}
\]
where \(\Gamma (m) \) is a Gamma function of all real numbers \(m \notin \{0, -1, -2, \ldots\} \), with
\[
\Gamma (m) = \int_{0}^{\infty} e^{-x} x^{m-1} dx
\tag{1.3}
\]
Now let \(\lambda = (\lambda_k)_{k=0}^{\infty} \) be a strictly increasing sequence of positive reals tending to infinity, that is \(0 < \lambda_0 < \lambda_1 < \ldots \) and \(\lambda_k \to \infty \) as \(k \to \infty \). Mursaleen and Noman [14] introduced the sequence spaces \(l_{p}^{\lambda} \) and \(l_{\infty}^{\lambda} \) of non-absolute type as the spaces of all sequences whose \(\Lambda \)-transforms are in the spaces \(l_{p} \) and \(l_{\infty} \) respectively.

where
\[
\lambda_{nk} = \begin{cases}
\frac{\lambda_{k}-\lambda_{k-1}}{\lambda_{n}} & \text{if } 0 \leq k \leq n \\
0 & \text{if } k > n
\end{cases}
\]

2. Main Results

Now we define the product matrix \(\Lambda \left(B^{r,s} \left(\Delta^{\tilde{\alpha}} \right) \right) \) and obtain their inverses and introduce binomial difference sequence spaces of fractional order \(\tilde{\alpha} \), \([c_0]_{\Lambda(B^{r,s}(\Delta^{\tilde{\alpha}}))} \), \([c]_{\Lambda(B^{r,s}(\Delta^{\tilde{\alpha}}))} \), \([l_{\infty}]_{\Lambda(B^{r,s}(\Delta^{\tilde{\alpha}}))} \) and give some topological properties of the spaces. Combining the infinite matrix \(\Lambda \), binomial matrix \(B^{r,s} \) and the difference operator \(\Delta^{\tilde{\alpha}} \), the product matrix is defined as
\[
(\Lambda \left(B^{r,s} \left(\Delta^{\tilde{\alpha}} \right) \right))_{nk} = \begin{cases}
\sum_{i=k}^{n} \frac{1}{x_n} \frac{\Gamma (\tilde{\alpha} + 1)}{(i-k)!\Gamma (\tilde{\alpha} - i + k + 1)} s^{i} x_{n-i}, & \text{if } 0 \leq k \leq n \\
0, & \text{if } k > n
\end{cases}
\tag{2.1}
\]
Equivalently
\[(\Lambda (B^{r,s} (\Delta \bar{a})))^{-1} = \begin{pmatrix}
\frac{\lambda_0-\lambda_1}{\lambda_0} & 0 & 0 & \ldots \\
\frac{\lambda_0-\lambda_1}{\lambda_0} \frac{(s-\tilde{a}r)}{(s+r)} & \frac{\lambda_1-\lambda_0}{\lambda_1} & 0 & \ldots \\
\frac{\lambda_0-\lambda_1}{\lambda_2} \frac{1}{(s+r)^2} (s^2 - 2\tilde{a}sr + \frac{\tilde{a}(\tilde{a}-1)}{2} r^2) & \frac{\lambda_1-\lambda_0}{\lambda_2} \frac{1}{(s+r)^2} (2sr - \tilde{a}r^2) & 0 & \ldots \\
\vdots & \vdots & \ddots & \ddots
\end{pmatrix}
\] (2.2)

where * means \(\frac{\lambda_2-\lambda_k}{\lambda_2} \frac{1}{(s+r)^2 r^2}\)

Now we are interested the inverse of above mentioned matrices.

Before proving certain theorems we now quote certain lemmas which will be used in sequel.

Lemma 2.1. The inverse of the difference matrix \(\Delta \bar{a}\) is given by the triangle
\n\[(\Delta^{-\bar{a}})_{nk} = \begin{cases} (-1)^{n-k} \frac{\Gamma(-\tilde{a}+1)}{(n-k)! \Gamma(-\tilde{a}-n+k+1)} & \text{if } 0 \leq k \leq n \\ 0 & \text{if } k > n \end{cases}
\]

Lemma 2.2. The inverse of the binomial matrix \(B^{r,s}\) is given by the triangle
\n\[(B^{r,s})^{-1}_{nk} = \begin{cases} (-1)^{n-k} (s+r)^k \binom{n}{k} s^{n-k} r^{-n} & \text{if } 0 \leq k \leq n \\ 0 & \text{if } k > n \end{cases}
\]

Proof. The proof can be obtained easily using the method as provided in [7, 10] and hence omitted.

Lemma 2.3. The infinite matrix inverse
\n\[\Lambda^{-1} = \lambda^{-1}_{nk} = \begin{cases} (-1)^{n-k} \frac{\lambda_0}{\lambda_0-\lambda_{k-1}} & \text{if } 0 \leq k \leq n \\ 0 & \text{if } k > n \end{cases}
\]

Theorem 2.4. The inverse of the product matrix \((\Lambda (B^{r,s} (\Delta \bar{a})))\) is given by
\n\[(\Lambda (B^{r,s} (\Delta \bar{a})))^{-1}_{nk} = \begin{cases} (s+r)^k \sum_{i=k}^{n} (-1)^{n-k} \frac{\lambda_0}{\lambda_0-\lambda_{k-1}} \binom{i}{k} \frac{\Gamma(-\tilde{a}+1)}{(n-i)! \Gamma(-\tilde{a}-n+i+1)} r^{-i} s^{i-k} & \text{if } 0 \leq k \leq n \\ 0 & \text{if } k > n \end{cases}
\]

Proof. The result can be easily obtained by using lemma 2.1, lemma 2.2 and lemma 2.3.

Now we define the sequence spaces
\n\[(\Lambda (B^{r,s} (\Delta \bar{a})))_0, \Lambda (B^{r,s} (\Delta \bar{a})): (\Lambda (B^{r,s} (\Delta \bar{a})))_\infty, \tilde{I}(p) as follows :
\]
\n\[\Lambda (B^{r,s} (\Delta \bar{a})))_0 = [c]_{\langle \Lambda (B^{r,s} (\Delta \bar{a}))) \rangle} = \left\{ x = (x_k) \in \omega : \lim_{n \to \infty} \sum_{k=0}^{n} i=k \frac{1}{\lambda_0} (\lambda_0-\lambda_{k-1}) (-1)^{i-k} \frac{1}{(s+r)^n} \binom{n}{r-i} s^{n-i} x_k = 0 \right\}
\]

\n\[\Lambda (B^{r,s} (\Delta \bar{a})))_\infty = [c]_{\langle \Lambda (B^{r,s} (\Delta \bar{a}))) \rangle} = \left\{ x = (x_k) \in \omega : \lim_{n \to \infty} \sum_{k=0}^{n} i=k \frac{1}{\lambda_0} (\lambda_0-\lambda_{k-1}) (-1)^{i-k} \frac{1}{(s+r)^n} \binom{n}{r-i} s^{n-i} x_k \right\}
\]
Define the sequence \(y \) and \(\lambda \)

\[
\|x\|_{X(\Delta)} = \|y\|_{\Delta},
\]

\[
\|x\|_{X(\Delta)} = \|y\|_{\Delta},
\]

where \(X \in \{ (\Lambda (B^{r,s}(\Delta)), \Lambda (B^{r,s}(\Delta)))_0, (\Lambda (B^{r,s}(\Delta)), (\Lambda (B^{r,s}(\Delta)))_\infty \} \).

Proof. The proof is a routine verification and hence omitted.

Theorem 2.6. The sequence spaces \((\Lambda (B^{r,s}(\Delta)), \Lambda (B^{r,s}(\Delta)))_0, (\Lambda (B^{r,s}(\Delta)), (\Lambda (B^{r,s}(\Delta)))_\infty \) are linearly isomorphic to \(c_0, c, l_\infty \), respectively.

Proof. The result will be proved for the space \((\Lambda (B^{r,s}(\Delta)), \Lambda (B^{r,s}(\Delta)))_0 \).

For other spaces the results can follow in a similar manner.

Now define a mapping \(T : (\Lambda (B^{r,s}(\Delta)), \Lambda (B^{r,s}(\Delta)))_0 \to c_0 \) by \(x \to y = Tx \).

Clearly whenever \(Tx = 0 \), \(T \) is linear.

Which implies \(T \) is injective.

Let \(y \in c_0 \), we define a sequence \(x = (x_k) \) by

\[
x_k = \sum_{i=0}^{n} (s+r)^i \sum_{j=1}^{n} \left(-1 \right)^{k-i} \frac{\lambda_k}{\lambda_i - \lambda_{i-1}} \left(\frac{j}{i} \right) \frac{\Gamma (-\tilde{\alpha} + 1)}{(k-j)!\Gamma (-\tilde{\alpha} - k + j + 1)} r^{-j} s^{k-i} y_i
\]

using theorem 2.4. Then we have

\[
\lim_{n \to \infty} \left(\Lambda (B^{r,s}(\Delta)) x \right)_n = \lim_{n \to \infty} \sum_{j=0}^{n} \sum_{i=j}^{n} \left(-1 \right)^{i-j} \frac{1}{\lambda_n} \left(\frac{1}{s+r} \right)^i \left(\frac{n}{n-i} \right) \frac{\Gamma (\tilde{\alpha} + 1)}{(i-j)!\Gamma (\tilde{\alpha} + j + 1)} r^{-j} s^{k-i} x_j
\]

\[
= \lim_{n \to \infty} y_n = 0.
\]

Therefore

\[
x \in (\Lambda (B^{r,s}(\Delta)))_0
\]

and \(y = Tx \)

Which implies \(T \) is surjective and norm preserving.
i.e. \((\Lambda(B^{r,s}(\Delta^s)))_0 \cong c_0 \).

3. Schauder Basis

This section deals with Schauder basis for the sequence spaces \((\Lambda(B^{r,s}(\Delta^s)))_0 \) and \((\Lambda(B^{r,s}(\Delta^s))) \). A sequence \((x_k)\) of a normed space \((X, \| \cdot \|)\) is called a Schauder basis if for every \(u \in X \) there exist an unique sequence of scalars \((a_k)\) such that

\[
\lim_{n \to \infty} \left\| u - \sum_{k=0}^{n} a_k x_k \right\| = 0
\]

Define the sequence \((k)\theta^{r,s} = (\theta^{r,s}_n)_{n \in \mathbb{N}}\) by

\[
(k)\theta^{r,s}_n = \begin{cases} (s + r)^k \sum_{i=k}^{n} (-1)^{n-k} \frac{\lambda_i - \lambda_{k-1}}{\lambda_k} \binom{i}{k} \frac{\Gamma(-\alpha+1)}{\Gamma(-\alpha+n+1)} r^{-i} s^{i-k} & \text{if } 0 \leq k \leq n \\ 0 & \text{if } k > n \end{cases}
\]

for each \(k \in \mathbb{N} \).

Theorem 3.1. The sequence \((k)\theta^{r,s}\) is a Schauder basis for the sequence space \((\Lambda(B^{r,s}(\Delta^s)))_0 \) and every \(x \in (\Lambda(B^{r,s}(\Delta^s)))_0 \) has unique representation of the form

\[
x = \sum_{k} \sigma^{r,s(k)} k \theta^{r,s}_k
\]

where \(\sigma^{r,s}_k = [\Lambda(B^{r,s}(\Delta^s)) x]_k \) for each \(k \in \mathbb{N} \).

Proof. Using the definition of \((\Lambda(B^{r,s}(\Delta^s))) \) and \((k)\theta^{r,s}\), we can easily verify that

\[
((\Lambda(B^{r,s}(\Delta^s))) (k)\theta^{r,s}) = \epsilon^{(k)} \in c_0,
\]

where \(\epsilon^{(k)}\) is a sequence with 1 in the \(k \)th place and zeros elsewhere. So, the inclusion \((k)\theta^{r,s} \in [\Lambda(B^{r,s}(\Delta^s)) x]_0\).

The set \(\{\epsilon^{(k)} : k \in \mathbb{N}\}\) is the Schauder basis for the space \(c_0 \). Because the isomorphism \(T \) defined by \(x \to y = Tx \) by (see Theorem 2.6 from the space \((\Lambda(B^{r,s}(\Delta^s)))_0 \) to \(c_0\) is onto, therefore the inverse image of the basis of space \(c_0 \) forms the basis of \((\Lambda(B^{r,s}(\Delta^s)))_0 \), i.e.

\[
\lim_{n \to \infty} \left\| x - \sum_{k=0}^{n} \sigma^{r,s(k)} k \theta^{r,s}_k \right\| = 0, \quad x \in (\Lambda(B^{r,s}(\Delta^s)))_0.
\]

To verify the uniqueness of the representation assume that \(x = \sum_{k} \mu^{r,s(k)} k \theta^{r,s}_k \) then we have

\[
[\Lambda(B^{r,s}(\Delta^s)) x]_k = \sum_{k} \mu^{r,s(k)} (\Lambda(B^{r,s}(\Delta^s))(k)\theta^{r,s})_k = \sum_{k} \mu^{r,s(k)} \epsilon^{(k)} = \mu^{r,s}_k.
\]

This contradict to our assumption that \(\mu^{r,s}_k = [\Lambda(B^{r,s}(\Delta^s)) x]_k \) for each \(k \in \mathbb{N} \). \(\square \)
Theorem 3.2. Define $\eta = \eta_k$ by

$$\eta_k = \sum_{i=0}^{k} (s + r)^i \sum_{j=i}^{k} (-1)^{n-i} \binom{j}{i} \frac{\Gamma(-\tilde{\alpha} + 1)}{(n-j)!(\tilde{\alpha} - n + j + 1)} r^{-j} s^{j-i}, ~ k, n \in \mathbb{N}$$

and $\lim_{k \to \infty} \sigma_k^{r,s} = l$. Then the set $\{\eta, \theta^{r,s}, \theta^{r,s}, \ldots\}$ is a Schauder basis for the space $(\Lambda \left(B^{r,s} \left(\Delta^{\tilde{\alpha}}\right)\right))_c$ and every $x \in (\Lambda \left(B^{r,s} \left(\Delta^{\tilde{\alpha}}\right)\right))_0$ has a unique representation of the form

$$x = l\eta + \sum_{k} (\sigma_k^{r,s} - l)^{(k)} \theta^{r,s}.$$

Proof. The proof as it is similar to previous theorem.

Corollary 3.3. The sequence spaces $(\Lambda \left(B^{r,s} \left(\Delta^{\tilde{\alpha}}\right)\right))_c$ and $(\Lambda \left(B^{r,s} \left(\Delta^{\tilde{\alpha}}\right)\right))_0$ are separable.

Proof. The result follows from the theorems 2.5, 3.1, 3.2.

4. α, β AND γ DUALS

This section deals with $\alpha-$, $\beta-$ and $\gamma-$duals of $(\Lambda_0 \left(B^{r,s} \left(\Delta^{\tilde{\alpha}}\right)\right))$ and $\left(\Lambda_c \left(B^{r,s} \left(\Delta^{\tilde{\alpha}}\right)\right)\right)$. For the sequence spaces X and Y, define multiplier sequence space $M(X, Y)$ by

$$M(X, Y) = \{u = (u)_k \in \omega : ux = (u_k x_k) \in Y, \text{ whenever } x = (x_k) \in X\}$$

Let $\alpha-$, $\beta-$ and $\gamma-$duals be denoted by

$X^\alpha = M(X, l_1)$, $X^\beta = M(X, cs)$, $X^\gamma = M(X, bs)$ respectively.

Throughout τ will denote the collection of all finite subsets of \mathbb{N}. We consider $K \in \tau$.

We now quote the following results which will be used for finding the duals.

\[
\sup_{k \in \tau} \sum_{n} \left| \sum_{k \in K} a_{n,k} \right| < \infty \tag{4.1}
\]

\[
\sup_{n \in N} \sum_{k} |a_{n,k}| < \infty \tag{4.2}
\]

\[
\lim_{n \to \infty} a_{n,k} = a_k, \quad \text{for each } k \in N \tag{4.3}
\]

\[
\lim_{n \to \infty} \sum_{k} a_{n,k} = a \tag{4.4}
\]

\[
\lim_{n \to \infty} \sum_{k} |a_{n,k}| = \sum_{k} \lim_{n \to \infty} |a_{n,k}| \tag{4.5}
\]

Lemma 4.1. [19] Let $A = (a_{n,k})$ be an infinite matrix, then

1. $A \in (c_0 : l_1) = (c : l_1) = (l_\infty : l_1)$ iff (4.1) holds.
2. $A \in (c_0 : c)$ iff (4.2), (4.3) hold.
3. $A \in (c : c)$ iff (4.2), (4.3), (4.4) hold.
4. $A \in (l_\infty : c)$ iff (4.3) and (4.5) hold.
5. $A \in (c_0 : l_\infty) = (c : l_\infty) = (l_\infty : l_\infty)$ iff (4.2) holds.
Therefore we deduce that
$$D_{1}^{r,s} = \left\{ d = (d_k) \in \omega : \sup_{k \in \mathbb{N}} \left(\sum_{i \in K} (s + r)^k(-1)^{n-k} \frac{\lambda_k}{\lambda_i - \lambda_{i-1}} \sum_{j=k}^{n} \left(\begin{array}{c} j \\ k \end{array} \right) \frac{\Gamma(-\bar{\alpha} + 1)}{(n-j)!\Gamma(-\bar{\alpha} - n + j + 1)} s^{j-k} r^{j-k} d_j \right) \right\}$$

Theorem 4.2. The $\alpha-$duals of the spaces $(\Lambda_0 \left(B^{r,s} (\Delta^{(\bar{\alpha})}) \right), (\Lambda_c \left(B^{r,s} (\Delta^{(\bar{\alpha})}) \right))$ and $(\Lambda_{\infty} \left(B^{r,s} (\Delta^{(\bar{\alpha})}) \right))$ is the set

$$D_{1}^{r,s} = \left\{ (\Lambda_0 \left(B^{r,s} (\Delta^{(\bar{\alpha})}) \right)), (\Lambda_c \left(B^{r,s} (\Delta^{(\bar{\alpha})}) \right)) \right\}$$

Proof. Considering $x = (x_k)$ as in 2.4, let $d = (d_k) \in \omega$ define

$$d_{n,x} = \sum_{k=0}^{n} (s + r)^k(-1)^{n-i} \frac{\lambda_k}{\lambda_i - \lambda_{i-1}} \sum_{j=i}^{n} \left(\begin{array}{c} j \\ i \end{array} \right) \frac{\Gamma(-\bar{\alpha} + 1)}{(n-j)!\Gamma(-\bar{\alpha} - n + j + 1)} s^{j-i} d_n y_i$$

where $D_{r,s} = (d_{r,s})$ is defined by

$$d_{r,s} = \left\{ \begin{array}{ll}
(s + r)^k \frac{\lambda_k}{\lambda_i - \lambda_{i-1}} (-1)^{n-k} \sum_{j=i}^{n} \left(\begin{array}{c} j \\ k \end{array} \right) \frac{\Gamma(-\bar{\alpha} + 1)}{(n-j)!\Gamma(-\bar{\alpha} - n + j + 1)} s^{j-k} r^{j-k} d_n, & \text{if } 0 \leq k \leq n \\
0, & \text{if } k > n
\end{array} \right.$$

Therefore we deduce that

$$d_k = (d_{n,x}) \in \mathbb{L}_1$$

whenever $x \in (\Lambda_0 \left(B^{r,s} (\Delta^{(\bar{\alpha})}) \right))$ or $x \in (\Lambda_c \left(B^{r,s} (\Delta^{(\bar{\alpha})}) \right))$

or $x \in (\Lambda_{\infty} \left(B^{r,s} (\Delta^{(\bar{\alpha})}) \right))$ if and only if $D^{r,s} y \in \mathbb{L}_1$ whenever $y \in \mathbb{C} \& l_{\infty}$, which implies that $d = (d_n) \in \left[\Lambda_0 \left(B^{r,s} (\Delta^{(\bar{\alpha})}) \right) \right]^{\hat{\alpha}} = \left[\Lambda_c \left(B^{r,s} (\Delta^{(\bar{\alpha})}) \right) \right]^{\hat{\alpha}}

\begin{equation}
= \left[\Lambda_{\infty} \left(B^{r,s} (\Delta^{(\bar{\alpha})}) \right) \right]^{\hat{\alpha}}
\end{equation}

if and only if $D^{r,s} \in (c_0 : l_1) = (c : l_1) = (l_{\infty} : l_1)$ by lemma 4.1(1), we obtain

$$\sup_{k \in \mathbb{N}} \left| \sum_{i=0}^{n} (s + r)^k(-1)^{n-i} \frac{\lambda_k}{\lambda_i - \lambda_{i-1}} \sum_{j=k}^{n} \left(\begin{array}{c} j \\ k \end{array} \right) \frac{\Gamma(-\bar{\alpha} + 1)}{(n-j)!\Gamma(-\bar{\alpha} - n + j + 1)} s^{j-k} r^{j-k} d_k \right| < \infty$$

Thus we have

$$\left(\Lambda_0 \left(B^{r,s} (\Delta^{(\bar{\alpha})}) \right) \right) = \left(\Lambda_c \left(B^{r,s} (\Delta^{(\bar{\alpha})}) \right) \right) \right\}^{\hat{\alpha}} = \left(\Lambda_{\infty} \left(B^{r,s} (\Delta^{(\bar{\alpha})}) \right) \right) = \mathbb{D}^{r,s}_{1}$$

\square

Theorem 4.3. Now we define the sets $D_{2}^{r,s}, D_{3}^{r,s}$ and $D_{4}^{r,s}$ by

$$D_{2}^{r,s} = \left\{ d = (d_k) \in \omega : \sup_{n \in \mathbb{N}} \sum_{K} |t_{n,k}^{r,s}| < \infty \right\}$$

$$D_{3}^{r,s} = \left\{ d = (d_k) \in \omega : \lim_{n \to \infty} t_{n,k}^{r,s} \text{ exists for all } k \in \mathbb{N} \right\}$$

$$D_{4}^{r,s} = \left\{ d = (d_k) \in \omega : \lim_{n \to \infty} \sum_{K} t_{n,k}^{r,s} \text{ exists} \right\}$$

where

$$t_{n,k}^{r,s} = \left\{ \begin{array}{ll}
\sum_{i=k}^{n} (s + r)^k(-1)^{n-k} \frac{\lambda_k}{\lambda_i - \lambda_{i-1}} \sum_{j=k}^{n} \left(\begin{array}{c} j \\ k \end{array} \right) \frac{\Gamma(-\bar{\alpha} + 1)}{(n-j)!\Gamma(-\bar{\alpha} - n + j + 1)} s^{j-k} r^{j-k} d_k, & \text{if } 0 \leq k \leq n \\
0, & \text{if } k > n
\end{array} \right.$$
Theorem 4.4. Let \(\lambda_0 (B^{r,s} (\Delta (\bar{a}))))^\beta = D_2^{r,s} \cap D_3^{r,s} \), \(\lambda_c (B^{r,s} (\Delta (\bar{a}))))^\beta = D_2^{r,s} \cap D_3^{r,s} \cap D_4^{r,s} \), and \(\lambda_\infty (B^{r,s} (\Delta (\bar{a}))))^\beta = D_3^{r,s} \cap D_4^{r,s} \).

Proof. (i) Let \(d = (d_k) \in \omega \) and \(x = (x_k) \) is defined as in (2.4). Then

\[
\sum_{k=0}^n d_k x_k = \sum_{k=0}^n d_k \sum_{i=0}^k (s+r)^i y_i \frac{(j)^i}{i!} \sum_{j=0}^k \frac{\lambda_i}{\lambda_j} \sum_{j=k}^i \binom{j}{k} \frac{\Gamma(-\hat{\alpha}+1)}{(i-j)!\Gamma(-\hat{\alpha}+j+1)} r^{-j} s^{j-k} y_k
\]

Hence \(dx = (d_k x_k) \in c\omega \) whenever \(x \in (A_0 (B^{r,s} (\Delta (\bar{a}))))^\beta \) and only if \(T^{r,s} y \in c\omega \) whenever \(y \in c_0 \), which implies that \(d = (d_k) \in [A_0 (B^{r,s} (\Delta (\bar{a}))))^\beta \) if and only if \(T^{r,s} \in (c_0 : c) \).

By lemma 4.2, we obtain

\[
[A_0 (B^{r,s} (\Delta (\bar{a}))))]^\beta = D_2^{r,s} \cap D_3^{r,s}.
\]

Then proves for (ii) and (iii) can be obtained in similar manner. \(\square \)

Theorem 4.4. The \(\gamma - duality \) of the spaces \((A_0 (B^{r,s} (\Delta (\bar{a})))) \), \((A_c (B^{r,s} (\Delta (\bar{a})))) \), and \((A_\infty (B^{r,s} (\Delta (\bar{a})))) \) in the set \(D_2^{r,s} \).

Proof. As it is a routine verification we omit the proof. \(\square \)

Now using Geometric sequence spaces formulas in \((A (B^{r,s} (\Delta (\bar{a})))) \) its written as \((A (B^{r,s} (\Delta (\bar{a}))))_G \) as

\[
(A (B^{r,s} (\Delta (\bar{a}))))_G = \left(\begin{array}{cccc}
\frac{e}{\lambda_0^2} & 1 & 1 \\
\frac{e}{\lambda_0^3} & 1 & 1 \\
\frac{e}{\lambda_0^4} & 1 & 1 \\
\vdots & \vdots & \vdots \\
\end{array} \right)
\]

(4.6)

References

1. Altay, B., Polat, H., On some new Euler difference sequence spaces., Southeast Asian Bull. Math., 30 (2006),209-220.
2. Altay, B., Başar, F., On some Euler sequence spaces of nonabsolute type., Ukr. Math. J. 57, 57 (2005),1-17.
3. Altay, B., Başar, F., Mursaleen, M., On the Euler sequence spaces which include the spaces \(lp \) and \(l\infty \), I.Inf. Sci., 176 (2006),1450-1462.
4. Baliarsingh, P., Dutta, S., A unifying approach to the difference operators and their applications,Bol. Soc. Pararn., 33 (2015),49-57.
5. Baliarsingh, P., Dutta, S., On the classes of fractional order difference sequence spaces and their matrix transformations,Appl. Math. Comput., 250 (2015),665-674.
6. Baliarsingh, P., Some new difference sequence spaces of fractional order and their dual spaces,Appl. Math. Comput., 219 (2013),9737-9742.
7. Baliarsingh, P., Dutta, S., On an explicit formula for inverse of triangular matrices,.Egypt. Math. Soc., 23 (2015),297-302.
8. Bıskin, M.C., *The binomial sequence spaces of nonabsolute type*, J. Inequal. Appl., 309 (2016), 1-16.
9. Bıskin, M.C., *The binomial sequence spaces which include the spaces p and ∞ and geometric properties*, J. Inequal. Appl., 304 (2016), 1-15.
10. Dutta, S., Baliarsingh, P., *On some Toeplitz matrices and their inversion*, J. Egypt. Math. Soc., 22 (2014), 420-423.
11. Dutta, S., Baliarsingh, P., *A note on paranormed difference sequence spaces of fractional order and their matrix transformations*, J. Inequal. Math. Soc., 22 (2014), 249-253.
12. Erçan, S., *Some Cesaro-Type Summability and Statistical Convergence of Sequences Generated by Fractional Difference Operator*, A&KU J. Sci. Eng., 18 (2018), 125-130.
13. Et, M., Çolak, R., *On generalized difference sequence spaces*, Soochow J. Math., 21 (1995), 377-386.
14. Mursaleen, M., Noman, K., *On Some new sequence spaces of non-absolute type related to the spaces l_p and l_∞*, Filomat., 25 (2011), 33-51 (2).
15. Kadak, U., Baliarsingh, P., *On certain Euler difference sequence spaces of fractional order and related dual properties*, J. Nonlinear Sci. Appl., 8 (2015), 997-1004.
16. Kizmaz, H., *On certain sequence spaces*, Can. Math. Bull., 24 (1981), 169-176.
17. Meng, J., Song, M., *Binomial difference sequence space of order m*, Adv. Differ. Equ., 241 (2017), 10.
18. Polat, H., Başar, F., *Some Euler spaces of difference sequences of order m*, Acta Math. Sci., 27 (2007), 254-266.
19. Steiglitz, M., Tietz, H., *Matrixtransformationen von Folgenräumen eine Ergebnisübersicht*, Math. Z., 154 (1977), 1-16.
20. Türkmen C., Başar F., *Some Basic Results on the sets of Sequences with Geometric Calculus*, Commun. Fac. Fci. Univ. Ank. series A1., 2 (2012), 17-34.
21. Yaying, T., *et al.*, *Compactness of binomial difference operator of fractional order and sequence spaces*, Rendicoti del Circolo Mathematico di Palermo, 68 (2020), 459-476.

1 Department of Mathematics, Utkal University, Odisha, India.

Email address: saliladutta516@gmail.com

2 Department of Mathematics, Centurion University of Technology and Management, Odisha, India.

Email address: ssaubhagyalaxmi@gmail.com, saubhagyalaxmi.singh@cutm.ac.in