COMMENTARY

A Model-Based Illustrative Exploratory Approach to Optimize the Dosing of Peg-IFN/RBV in Cirrhotic Hepatitis C Patients Treated With Triple Therapy

C Laouénan1,2, J Guedj1, G Peytavin1,2, TH Tran Nguyen1, M Lapalus4, F Khelfa-Mourit9, N Boyer5, F Zoulim6,7, L Serfaty6, J-P Bronowicki9,10, M Martinot-Peignoux4, O Lada4, T Asselah4,5, C Dorival11, C Hézode12,13, F Carrat11,14, F Nico15, P Marcellin4,5, and F Mentré1,2 for the ANRS CO20-CUPIC Study Group

Hézode et al. recently reported the frequent occurrence of anemia and thrombocytopenia in the ANRS-CO20-CUPIC cohort of hepatitis C virus (HCV) cirrhotic experienced patients treated with pegylated-interferon (Peg-IFN), ribavirin (RBV), and telaprevir or boceprevir. Using frequent measurements of serum drug concentrations, hemoglobin, and platelet concentrations obtained in 15 patients of this cohort, we show how an on-treatment model-based approach could be used to individualize dose regimen and avoid the occurrence of RBV-induced anemia and Peg-IFN-induced thrombocytopenia.

CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 37–40; doi:10.1002/psp4.8; published online on 30 December 2014.

In this commentary, we provide results from 15 HCV genotype 1 patients included in the MODCUPIC study, nine receiving telaprevir and six boceprevir. Twelve (80%) were men, with a median (min-max) age of 55 (44–64) years. Eleven patients received Peg-IFN-α2a (eight in telaprevir group, three in boceprevir group), three patients Peg-IFN-α2b (all in boceprevir group), and one patient in the telaprevir group did not receive any injection of Peg-IFN. The observed drug concentrations, the estimated drug concentrations, the observed hemoglobin, and the estimated hemoglobin were well captured by our model (Supplementary Figures S1 and S2, online) and was well captured by our model (Supplementary Figure S3).

RBV-induced anemia modeling

The median (min-max) baseline hemoglobin level was 15.1 g/dl (10.8–16.0) (15.4 g/dl (10.8–16.0) in the telaprevir group and 14.5 g/dl (12.6–15.8) in the boceprevir group, P = 0.3). The hemoglobin level decreased over time in all patients (Supplementary Figures S1 and S2, online) and was well captured by our model (Supplementary Figure S3). Adding the other drugs, Peg-IFN and protease inhibitors (PIs) did not improve the fit of the data. The model predicted that the concentration leading to a 50% blocking effectiveness of RBV in blocking hemoglobin production, IC50RBV, was equal to 7,090 ng/ml (Supplementary Table S1), leading to a median predicted hemoglobin level at steady state, Hbss, of 10.0 g/dl (7.8–11.6) in the telaprevir group and 9.1 g/dl (8.0–11.8) in the boceprevir group, P = 0.5). This corresponds to a median predicted change in hemoglobin level of 4.4 g/dl (2.1–6.6) (4.2 g/dl (2.1–5.5) in the telaprevir group and 4.9 g/dl (3.3–6.6) in the boceprevir group, P = 0.4).

Figure 1a shows the relationship between individual predicted RBV concentration at steady state (CssRBV) and effect (blocking production of hemoglobin). For the six patients (40%) who had Hbss <10 g/dl (Table 1), the model predicted that a median RBV dose reduction of 373 mg/day (45–670) would be needed to avoid anemia corresponding to a median dose reduction of 31% (4–67).

Peg-IFN-induced thrombocytopenia modeling

Median baseline platelet counts were 125,500/mm3 (39,000–230,000) (126,000/mm3 (67,000–230,000) in Peg-IFN-α2a patients and 80,000/mm3 (39,000–161,000) in Peg-IFN-α2b patients, P = 0.4). The platelet counts decreased over time in all patients (Supplementary Figures S4 and S5) and could be well captured by our model (Supplementary Figure S6). Adding the other drugs (RBV and PIs) did not improve the fit of the data. The model predicted that the concentration leading to a 50% blocking effectiveness of Peg-IFN in blocking platelets production, IC50PegIFN, was equal to 104 ng/ml (Supplementary Table S1), leading to a median predicted platelet counts at steady state, PLTss, of 66,720/mm3 (31,400–121,900) (67,270/mm3 (39,370–121,900) in Peg-IFN-α2a patients and 60,000/mm3 (31,400–108,300) in Peg-IFN-α2b patients, P = 0.7), corresponding to a median predicted change in platelet counts of 51,490/mm3 (16,670–...
108,400) \((60,940/mm^3 \text{ (32,210–108,400)})\) in the Peg-IFN-\(\alpha_{2a}\) group and 28,980/mm\(^3\) \((16,670–53,760)\) in the Peg-IFN-\(\alpha_{2b}\) group, \(P = 0.09\). Figure 1b shows the relationship between individual Peg-IFN concentration \(\left(C_{\text{SS Peg-IFN}}\right)\) and effect (blocking production of platelets). Four patients out of 14 (29%) had predicted \(\text{PLT}_{\text{SS}} < 50,000/mm^3\) using the current dose or Peg-IFN, but one patient had a baseline \(\text{PLT} < 50,000/mm^3\) (Table 1). For these three patients the model predicted that a median Peg-IFN dose reduction of 37 \(\mu g/\text{week}\) (25–37) would be needed to avoid...
Towards an approach integrating efficacy and toxicity

The increasing availability of highly effective treatment holds the promise that high rates of sustained virological response (SVR) with lower toxicity can be reached. However, the CUPIC study reporting an incidence of 34.1% and 17.0% for grade 2–4 anemia and grade 3–4 thrombocytopenia, respectively, should serve as a reminder that safety may remain an important concern in HCV treatment management, in particular in patients with advanced liver disease whose prevalence in real life is larger than in clinical trials.

Using a model to relate anemia and thrombocytopenia to RBV and Peg-IFN exposure, respectively, we predicted that a dose reduction of RBV and Peg-IFN in 40% and 30% of patients, respectively, would have been needed to avoid toxicity. This would correspond to a median dose reduction of 31% and 60% for RBV and Peg-IFN, respectively. These adjusted RBV and Peg-IFN doses are not practical to administer in actual clinical practice. But here we explore the feasibility and provide an order of magnitude of the amplitude of dose reduction to avoid the occurrence of toxicity.

Because both RBV and Peg-IFN have modest effectiveness against HCV, at least in the first weeks of treatment, where most viruses are sensitive to PIs, this dose reduction is unlikely to have a significant impact on the early viral kinetics. Consistent with this prediction, Poordad et al. showed in a randomized clinical trial that reduction in RBV dosage (up to 50% of the initial amount) throughout the course of triple therapy did not affect SVR rates.

Clearly, the small sample size of our population is the main limitation of the study. The lack of statistical power may explain the lack of any significant effect of PI exposure on hemoglobin level and platelet count kinetics. It is well explain the lack of any significant effect of PI exposure on anemia, leading to a reduction in the hemoglobin level, whereas Peg-IFN induces mainly suppression of hematopoiesis, leading to a reduction in platelet counts. This small population also constrained us to analyze the effects of RBV and Peg-IFN separately and independently and we could not evaluate the effect association between the two effects, such as the fact that the bone marrow suppressive effect of Peg-IFN may also contribute to the associated anemia.

Both RBV and Peg-IFN concentrations were close to an inhibition effect in hemoglobin level and platelet counts, respectively, equal to 50%. Interestingly, we previously reported that Peg-IFN concentrations in this population also led to an antiviral effect in blocking viral production close to 50%. The fact that Peg-IFN concentrations led to comparable levels of efficacy and toxicity suggests that Peg-IFN has a particularly narrow therapeutic index and reinforces the interest of Peg-IFN therapeutic monitoring in this population. Of note, it should be acknowledged that the effects of RBV and Peg-IFN were described by turnover indirect models assuming a maximum inhibition of 100% given by:

\[
\frac{dHb}{dt} = Hb_0 \times k_{out}^Hb \times \left(1 - \frac{C_{RBV}(t)}{C_{RBV}(t) + IC_{50}^{RBV}}\right) - k_{out}^Hb \times Hb(t)
\]

\[
\frac{dPLT}{dt} = PLT_0 \times k_{out}^{PLT} \times \left(1 - \frac{C_{Peg-IFN}(t)}{C_{Peg-IFN}(t) + IC_{50}^{Peg-IFN} + IC_{50}^{RBV}}\right) - k_{out}^{PLT} \times PLT(t)
\]

where Hb_0 (PLT_0) is the baseline level of hemoglobin (platelet counts), k_{out}^Hb (k_{out}^{PLT}) is the rate constant of hemoglobin (platelets) elimination, safety IC_{50}^{RBV} (IC_{50}^{Peg-IFN}) is the half maximal effective RBV (Peg-IFN) concentration, and C_{RBV}(t) (C_{Peg-IFN}(t)) is the trough concentration predicted by a PK model previously developed. In brief, C_{RBV}(t) and C_{Peg-IFN}(t) were fitted using an exponential model to obtain the trough concentration at steady state C_{RBV}^{inf} and C_{Peg-IFN}^{inf}. We assumed a linear PK for both drugs.

Patients and data

MODCUPIC is a substudy of the French ANRS-CO20-CUPIC cohort. From September 2011 to September 2012, patients chronically monoinfected with HCV genotype 1, compensated cirrhosis, nonresponders to a prior IFN-based therapy, and who started triple therapy were recruited. Telaprevir-based therapy included 12 weeks of telaprevir (750 mg tid) with Peg-IFN-α2a (180 μg/week) and RBV (1,000 or 1,200 mg/day, depending on body weight), then 36 weeks of Peg-IFN-α2a/RBV. Boceprevir-based therapy included 4 weeks (lead-in phase) of Peg-IFN-α2b (1.5 μg/kg/week) or Peg-IFN-α2a (180 μg/week) and RBV (800 or 1,400 mg/day, depending on body weight), then 44 weeks of Peg-IFN-α2b/RBV and boceprevir (800 mg tid).

Written informed consent was obtained before enrollment. The protocol was approved by the Ile-de-France IX Ethics Committee (Créteil, France).

Blood samples were collected post-PIs initiation at hours 0, 8, 12, 24, days 0, 1, 2, 3, and weeks 1, 2, 3, 4, 8, and 12. There were two additional visits during the boceprevir lead-in phase. Details of bioanalytical methods are available in Laouénan et al.

Pharmacokinetic and pharmacodynamic model

We assumed that the changes in hemoglobin level and platelet counts were mainly driven by RBV and Peg-IFN concentrations, respectively. The effects of RBV and Peg-IFN were described by turnover indirect models assuming a maximum inhibition of 100% given by:

\[
\frac{dHb}{dt} = Hb_0 \times k_{out}^Hb \times \left(1 - \frac{C_{RBV}(t)}{C_{RBV}(t) + IC_{50}^{RBV}}\right) - k_{out}^Hb \times Hb(t)
\]

\[
\frac{dPLT}{dt} = PLT_0 \times k_{out}^{PLT} \times \left(1 - \frac{C_{Peg-IFN}(t)}{C_{Peg-IFN}(t) + IC_{50}^{Peg-IFN} + IC_{50}^{RBV}}\right) - k_{out}^{PLT} \times PLT(t)
\]

where Hb_0 (PLT_0) is the baseline level of hemoglobin (platelet counts), k_{out}^Hb (k_{out}^{PLT}) is the rate constant of hemoglobin (platelets) elimination, safety IC_{50}^{RBV} (IC_{50}^{Peg-IFN}) is the half maximal effective RBV (Peg-IFN) concentration, and C_{RBV}(t) (C_{Peg-IFN}(t)) is the trough concentration predicted by a PK model previously developed. In brief, C_{RBV}(t) and C_{Peg-IFN}(t) were fitted using an exponential model to obtain the trough concentration at steady state C_{RBV}^{inf} and C_{Peg-IFN}^{inf}. We assumed a linear PK for both drugs.

Data analysis and parameter estimation

Wilcoxon tests were used to compare baseline hemoglobin level (boceprevir vs. telaprevir) and baseline platelet counts (Peg-IFN-α2a vs. -2b). Parameters (Hb_0, PLT_0, k_{out}^{PLT}, k_{out}^Hb, IC_{50}^{Peg-IFN}, IC_{50}^{RBV}) were estimated using longitudinal data.
analyzed by nonlinear mixed-effect models with the Stochastic Approximation Expectation Minimization (SAEM) algorithm in MONOLIX v. 4.2 (http://www.lixoft.eu), assuming exponential random effects models and additive error models. The model codes and example datasets are provided in the Supplementary Materials online. Model evaluation was performed using goodness-of-fit plots, as well as the individual weighted residuals (IWRES) and the normalized prediction distribution errors (NPDE) over time. Wald tests on Hb and IC50 were used to assess the influence of gender for RBV-induced anemia. We also tested using the Bayesian information criteria whether the addition of other drug had an effect in each model.

### Prediction of individual dosage regimen avoiding toxicity

Maximum a posteriori was used to obtain individual Empirical Bayesian Estimates (EBE). For each patient, from the EBEs, hemoglobin level and platelet counts at steady state, Hbss and PLTss, was obtained as:

\[
\begin{align*}
Hbss &= Hb_0 \times \left(1 - \frac{C_{RBV}}{C_{RBV} + IC_{50}}\right) \\
PLTss &= PLT_0 \times \left(1 - \frac{C_{PEG-IFN}}{C_{PEG-IFN} + IC_{50}}\right)
\end{align*}
\]

where \(\frac{C_{RBV}}{C_{RBV} + IC_{50}}\) and \(\frac{C_{PEG-IFN}}{C_{PEG-IFN} + IC_{50}}\) represent the blocking production of hemoglobin and platelets, respectively. Wilcoxon tests were used to compare Hbss and PLTss between treatment groups. If Hbss was predicted below 10 g/dl, the maximum dose of RBV leading to Hbss ≥ 10g/dl was calculated. If PLTss was predicted below 50,000/mm³, the maximum dose of Peg-IFN leading to PLTss ≥ 50,000/mm³ was calculated.

### Acknowledgments

The study was sponsored and funded by the French National Agency for research on Aids and viral Hepatitis (ANRS) and in part by the Association Française pour l’Etude du Foie (AEFF). The authors thank Ventzislava Petrov Sanchez and Setty Allam (ANRS) and Cécile Dufour (Inserm UMR 1136, University Pierre et Marie Curie, Paris, France).

### Conflict of Interest/Disclosure

JG has consulted with Gilead SC. FZ received speakers/consulting fees from Gilead SC, MSD, BMS, Janssen cilag, Abbvie, Boehringer Ingelheim. CH and JPB have been clinical investigators, speakers, and/or consultants for Abbvie, Boehringer Ingelheim, BMS, Gilead Sciences, Janssen, Merck Sharp & Dohme, and Roche. PM has been a clinical investigator, speaker, and/or consultant for Roche, Gilead, Vertex, Novartis, Janssen - Tibotec, MSD, Boehringer, Abbott, Pfizer, Alios BioPharma. GP has received travel grants, consultancy fees, honoraria, or study grants from various pharmaceutical companies, including Bristol-Myers Squibb, Gilead SC, Janssen, Merck, ViV Healthcare, and Splicos.

### Author Contributions

CL, JG, and FM made the analysis and drafted the article; all authors provided the data; all authors read and approved the final article.

1. Hézode, C. et al. Triple therapy in treatment-experienced patients with HCV-cirrhosis in a multicentre cohort of the French Early Access Programme (ANRS CO20-CUPIC) - NCT01514890. J. Hepatol. 59, 434–441 (2013).
2. Hézode, C. et al. Effectiveness of telaprevir or boceprevir in treatment-experienced patients with HCV genotype 1 infection and cirrhosis. Gastroenterology 147, 132–142 (2014).
3. Laouenan, C. et al. Using pharmacokinetic and viral kinetic modeling to estimate the antiviral effectiveness of telaprevir, boceprevir, and pegylated interferon during triple therapy in treatment-experienced hepatitis C virus-infected cirrhotic patients. Antimicrob. Agents Chemother. 58, 5332–5341 (2014).
4. Poordad, F. et al. Effects of ribavirin dose reduction vs. erythropoietin for boceprevir-related anemia in patients with chronic hepatitis C virus genotype 1 infection—a randomized trial. Gastroenterology 145, 1035–1044 (2013).
5. Bacon, B.R. et al. Boceprevir for previously treated chronic HCV genotype 1 infection. N. Engl. J. Med. 364, 1207–1217 (2011).
6. Zeuzem, S. et al. Telaprevir for retreatment of HCV infection. N. Engl. J. Med. 364, 2417–2428 (2011).
7. Morello, J., Rodriguez-Novoa, S., Jiménez-Nácher, I. & Soriano, V. Usefulness of monitoring ribavirin plasma concentrations to improve treatment response in patients with chronic hepatitis C. J. Antimicrob. Chemother. 62, 1174–1180 (2008).
8. Hayashi, H., Beppu, T., Shiari, K., Maehara, Y. & Baba, H. Management of thrombocytopenia due to liver cirrhosis: a review. World J. Gastroenterol. 20, 2595–2605 (2014).
9. De Franceschi, L. et al. Hemolytic anemia induced by ribavirin therapy in patients with chronic hepatitis C virus infection: role of membrane oxidative damage. Hepatology 31, 997–1004 (2000).
10. Sukowski, M.S. Anemia in the treatment of hepatitis C virus infection. Clin. Infect. Dis. 37 (suppl. 4), S315–322 (2003).

© 2014 The Authors CPT: Pharmacometrics & Systems Pharmacology
Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website (http://www.wileyonlinelibrary.com/psp4)