CD49b/CD69-dependent generation of resting T helper cell memory

Asami Hanazawa1, Max Löhning1,2, Andreas Radbruch1† and Koji Tokoyoda1*†
1 Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany
2 Department of Rheumatology and Clinical Immunology, Charité – University Medicine Berlin, Berlin, Germany

INTRODUCTION
The immune system can memorize previously encountered specific antigens for many years, both by the secretion of specific antibodies (humoral memory) and by long-lived, pre-activated cells (reactive memory). It is still debated whether immunological memory is dependent on persistent antigen (1, 2) and whether it is dependent on long-lived effector cells as opposed to dedicated memory cells (3). Here we define immunological memory as “the maintenance of information in the absence of the original instruction”, i.e., memory cells are maintained in the absence of antigen (4). This definition distinguishes “resting” long-lived memory cells from the long-lived effector cells that develop during infection and persistent immune responses. Recent evidence indeed points to the existence of distinct professional memory lymphocytes. In particular, long-lived “memory” plasma cells have been identified, which mostly reside in the bone marrow (BM) and provide humoral memory (5–7). Recently, also professional memory T helper (Th) cells have been located in the BM. They represent up to 10% of the Th cells generated in an immune reaction. It has been shown that they rest in terms of proliferation and gene expression (8). This finding provides a fascinating challenge for the understanding of how these memory Th cells are generated, maintained, and reactivated. It also raises questions about their relation to long-lived effector Th cells out of the BM. Here we review recent data about roles of CD49b and CD69 in generation of the precursors of memory Th cells and discuss new concepts on how BM memory Th cells are generated and on the particular role of the BM in this process.

RESTING MEMORY
Memory Th cells, memory B cells and memory plasma cells are in a resting state, i.e., they rest in terms of proliferation (5, 7, 9, 10), while for memory CD8 T cells this is likely, but has not been formally demonstrated so far. Memory B cells are thought to be generated in the germinal centers (GCs), although some studies report that early memory B cells develop outside of GCs (11–13) and that affinity-matured IgM+ memory B cells develop in GCs (14, 15). Memory plasma cells are generated from activated B cells, in a way not fully understood, alternative to memory B cell differentiation (16, 17). While it has been described that memory B cells are maintained in the spleen (18, 19), memory plasma cells are maintained mostly in the BM (5, 6). Memory plasma cells of the BM are maintained in distinct survival niches, organized by CXCL12-expressing reticular stromal cells, but also containing other cells, like eosinophils, providing essential survival factors (10, 20, 21). A survival niche for memory B cells has not been identified so far. Memory plasma cells themselves are immobile. Although they express CXCR4, they do not migrate in response to its ligand CXCL12, while their immediate precursors, the plasmablasts do (22). Thus, it seems reasonable to assume that plasmablasts immigrate into the BM, dock onto CXCL12-expressing stromal cells and there differentiate into memory plasma cells [Figure 1; (7, 23)].

NUMERICAL CONTROL OF RESTING TH CELL MEMORY IN BM
More than 95% of antigen-specific memory Th cells in the BM individually colocalize with VCAM-1+ IL-7+ stromal cells, which comprise about 2% of the total BM cell populations (8). These IL-7-expressing stromal cells probably form a survival niche for resting memory Th cells within the BM. Studies show the competition of newly generated memory Th cells with older ones (24, 25), suggesting the number of niches may be limited; this may determine the overall capacity of the BM for memory Th cells. We compared immune responses to a lymphocytic choriomeningitis virus (LCMV) peptide with responses to a natural LCMV infection and found that they differed substantially in terms of magnitude;
these results provide insight as to how a limited number of BM survival niches regulate the size of the memory T-cell pool. In the memory phase of each immune response, the absolute numbers of specific memory Th cells in the BM during each of the responses were comparable (unpublished data). In addition, we detected similar absolute numbers of antigen-specific memory Th cells in the BM in responses to ovalbumin (OVA) plus lipopolysaccharide (LPS) or in response to OVA plus Alum; however, the numbers of effector cells specific for these antigens were different. These numbers games suggest that the BM efficiently restricts access by activated CD4 T cells derived from the pool of memory Th cells via a mechanism that probably involves IL-7-expressing stromal cell, which organizes a niche for exactly one memory Th cell [Figure 1; (23)].

The maintenance of Th cell memory is dependent on IL-7, because long-lived CD4 T cells isolated from the spleen and lymph nodes and then adoptively transferred into IL-7-deficient mice do not survive (26). Persistence of antigen at low levels, i.e., TCR signaling, has been suggested to be required to maintain Th cell memory (1, 2). However, studies using MHC class II-deficient mice (27) and targeted deletion of the TCR (28) show that the maintenance of Th cell memory is independent of TCR-mediated signaling. Professional memory Th cells of BM dock onto IL-7-expressing reticular stromal cells, and there are no MHC class II-expressing cells in their immediate neighborhood (8). Thus it seems likely that the IL-7-expressing stromal cells organize survival niches for memory Th cells of the BM and that TCR stimulation is not required for the maintenance of resting memory Th cells of BM (23). If it is so important for the memory Th cell to be in this dedicated BM niche, central questions for the understanding of immunological memory are: When and how do the T cells get there, and which T cells do get there?

To determine the dynamics of the establishment of professional memory Th cells in the BM, we tracked murine antigen-specific CD4 T cells, generated in intentional immune responses to a defined antigen, into the memory phase of immune responses (8). In immune responses of naive TCR-transgenic CD4 T cells, specific for LCMV or OVA, or wild-type CD4 T cells in response to 4-hydroxy-3-nitrophenylacetyl keyhole limpet hemocyanin (NP-KLH), antigen-specific CD44hi CD4 T cells were present in spleen and lymph nodes on day 4 and 7 (8). Then, the numbers of CD44hi T cells in the secondary lymphoid organs decreased; however, there was an increase in the number of antigen-specific CD44hi CD4 T cells in the BM. From day 30 to 60 post-immunization, more than 80% of the antigen-specific CD4 T cells were in the BM. In the BM they persisted in constant numbers for the rest of the observation period, 7–20 weeks. Beyond day 30 the antigen-specific Th cells are maintained in a resting state in the BM; these cells are not proliferating, having switched off most of their genes. When exactly the cells differentiate from activated cells into resting cells remains to be determined, as well as whether the T cells in BM also rest in terms of mobility.

CD49B/CD69-DEPENDENT GENERATION OF RESTING TH CELL MEMORY

The phenotype of resting memory Th cells of BM is clearly distinct from that of long-lived Th cells in the secondary lymphoid organs and in the blood. They share high expression of CD44, and low expression of CD62L. But only the memory Th cells of BM highly express Ly-6C. They also express CD49b and CD69. While the role of Ly-6C is still enigmatic, it should be noted that humans do not have an orthologous gene. It could be speculated that activated, Ly-6Ch CD4 T cells of the secondary lymphoid organs are precursors of BM memory cells. But whether and if so, how Ly-6C is
involved in their homing into the BM or their local maintenance remains unclear.

CD49b, or alpha2 integrin, together with beta1 integrin forms an adhesion molecule VLA-2, which binds mainly to collagens I, II, and XI (29, 30). BM-resident memory Th cells express both, VLA-2 and VLA-4, the alpha2- and the alpha4- beta1-integrin heterodimers. Notably, VLA-4 is expressed also by memory plasma cells, and antibodies to VLA-4 have been shown to eliminate plasma cells from BM (31). For memory Th cells this has not been tested so far. However, the homing of adoptively transferred BM memory Th cells to BM can be efficiently blocked by antibodies to alpha2 integrin (8). This observation alone points to a decisive role of CD49b in the trafficking of memory Th cell precursors to the BM niches for memory Th cells. It should be noted that among the putative ligands of VLA-2 are the collagens II and XI, and collagen XI is exclusively expressed in the BM (32). However, how collagen XI might guide memory Th cell precursors to their desired location remains to be determined.

CD69 is a member of the C-type lectin family and its extracellular ligand is unknown. It is expressed constitutively by more than 60% of the resting memory Th cells of BM (8, 33). This is surprising in the first place, since in general CD69 is considered as an activation marker, expressed by T cells activated in secondary lymphoid organs (34, 35). Jason G. Cyster and his colleagues then showed that CD69 in secondary lymphoid organs essentially acts as an activation marker, expressed by T cells activated in secondary lymphoid organs (34, 35). The particular role of the BM in memory maintenance, which should be investigated further.

REFERENCES

1. Gray D, Matzinger P. T cell memory is short-lived in the absence of antigen. J Exp Med (1991) 174:969–74. doi:10.1084/jem.174.5.969
2. Zinkernagel RM, Hengartner H. Protective ‘immunity’ by pre-existing neutralizing antibody titers and preactivated T cells but not by so-called ‘immunological memory’. Immunol Rev (2006) 211:310–9. doi:10.1111/j.0002-8999.2006.00402.x
3. Bell EB, Westermann J. CD4 memory T cells on trial: immunological memory without a memory T cell. Trends Immunol (2008) 29:405–11. doi:10.1016/j.tim.2008.06.002
4. Radbruch A, Rajewsky K. The cellular basis of B cell memory. In: Frederick W, Alt TH, Michael SN editors. The Molecular Biology of B Cells. London: Elsevier Science (2004), p. 247–59.
5. Manz RA, Thiel A, Radbruch A. Lifetime of plasma cells in the bone marrow. Nature (1997) 388:133–4. doi:10.1038/40540
6. Slifka MK, Antia R, Whitmore JK, Ahmed R. Humoral immunity due to long-lived plasma cells. Immunity (1998) 8:363–72. doi:10.1016/S1074-7613(00)80541-5
7. Radbruch A, Muellinghaus G, Lugur EC, Inamine A, Smith KG, Dorner T, et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol (2006) 6:741–50. doi:10.1038/nri1886
8. Tokoyoda K, Zehentmeier S, Hlegazy AN, Albrecht I, Grün JR, Lohning M, et al. Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity (2009) 30:721–30. doi:10.1016/j.immuni.2009.03.015
9. Tomayko MM, Anderson SM, Bratyon CE, Sadanand S, Steinel NC, Behrens TW, et al. Systematic comparison of gene expression among murine memory and naïve B cells demonstrates that memory B cells have unique signaling capabilities. J Immunol (2008) 181:27–38.
10. Tokoyoda K, Radbruch A. Signals controlling rest and reactivation of T helper memory lymphocytes in bone marrow. Cell Mol Life Sci (2012) 69:1609–13. doi:10.1007/s00018-012-0969-6
11. Toyama H, Okada S, Hatanza M, Takahashi Y, Takeda N, Ichii H, et al. Memory B cells without somatic hypermutation are generated from Bcl6-deficient B cells. Immunology (2002) 17:329–39. doi:10.1046/j.1365-2567.2002.02181.x
12. Linterman MA, Vinuesa CG. T follicular helper cells during immunity and tolerance. Prog Mol Biol Transl Sci (2010) 92:207–48. doi:10.1016/S1877-1173(10)92009-7

www.frontiersin.org

July 2013 | Volume 4 | Article 183 | 3

Hanazawa et al. Resting T helper cell memory

DIFFERENTIATION INTO RESTING MEMORY CELL PRECURSORS

In mice, 10–20% of newly generated plasma cells persist in the BM during a secondary immune response (5, 7, 37, 38). In humans that have been vaccinated against tetanus, the proportion of specific antibodies that persists in the memory phase of the immune response is about 10% of that of the peak response, probably reflecting a corresponding elimination of 90% of the antibody-secreting cells had been generated (39). However, it is unclear how the 10% of memory plasma cell precursors, i.e., plasmablasts that finally make it are selected. In analogy to memory plasma cells, memory Th cells are generated from activated CD4 T cells, i.e., T-cell blasts. Upon immunization with protein antigens, about 10% of the splenic activated CD4 T cells generated at the peak of the response actually mature into BM memory Th cells. Does this mean that 10% of the T-cell blasts make it into the BM memory pool? And how are they qualified? We showed that both CD49b and CD69 are essential for the homing of memory Th cell precursors to the BM (8, 33). On day 6 post-immunization, about 10% of activated CD4 T cells expressed both CD49b and CD69 (unpublished data). It is an intriguing speculation, and hypothesis worthwhile testing, that coexpression of CD69 and CD49b by individual activated Th cells defines these cells as the precursors of resting memory Th cells. In addition, to improve vaccine efficacy, various vaccination strategies should be checked based on the efficiency in inducing CD69 and CD49b coexpressing memory Th cell precursors. Human BM CD4 T cells also preferentially express CD69 compared to peripheral blood CD4 T cells (40). The concept that memory Th cells reside and rest in the BM as observed in mice, may also extend to human T cell memory and the particular role of the BM in memory maintenance, which should be investigated further.

ACKNOWLEDGMENTS

This work was supported by the Leibniz Association (International Leibniz Research Cluster “ImmunoMemory”).
13. Kaji T, Ishige A, Hikida M, Taka H, Hijioka A, Kubo M, et al. Distinct cellular pathways select germ-line-encoded and somatically mutated antibodies into immunological memory. J Exp Med (2012) 209:2079–97. doi:10.1084/jem.2012127

14. Dogan A, Bertocci B, Vilmont V, Delbos F, Megret J, Storc K, et al. Multiple layers of B cell memory with different effector functions. Nat Immunol (2009) 10:1292–9. doi:10.1038/ni.1814

15. Pape KA, Taylor JJ, Maul RW, Zotos D, Tarlinton DM. Deter-

A, Weller S, Faili A, Staib C, Delbos F, Megret J, Storck S, et al. Memory B and memory plasma cells. Immunol Rev (2010) 237:117–39. doi:10.1111/j.1600-065X.2010.00938.x

16. Hauser AE, Debes GF, Arce S, Cass-

ese G, Hamann A, Radbruch A, et al. Chemotactic responsiveness toward ligands for CXCR3 and CXCR4 is regulated on plasma blasts during the time course of a memory immune response. J Immunol (2002) 169:1277–82.

17. Yokoyama K, Hauser AE, Nakayama T, Radbruch A. Organization of immunological memory by bone marrow stroma. Nat Rev Immunol (2010) 10:193–200. doi:10.1038/nri2727

18. Hatase J, Moon JJ, Khoruts A, Reilly C, Jenkins MK. Naive and memory CD4+ T cell survival controlled by clonal abun- dance. Science (2006) 312:114–6. doi:10.1126/science.1132828

19. Blair DA, Lefrançois L. Increased competition for antigen during priming negatively impacts the generation of memory CD4 T cells. Proc Natl Acad Sci U S A (2007) 104:15045–50. doi:10.1073/pnas.0703767104

20. Kondrack RM, Harbertson J, Tan JT, McBreen ME, Surb CD, Bradley LM. Interleukin 7 regulates the survival and generation of memory CD4 T cells. J Exp Med (2003) 198:1797–806. doi:10.1084/jem.20030735

21. Swain SL, Hu H, Huston G. Class II-independent generation of CD4 memory T cells from effector CD8+ T cells. Science (1999) 286:1381–3. doi:10.1126/science.286.5434.1381

22. Polic B, Kunkel D, Scheffold A, Rajewsky K. How alpha beta T cells deal with induced TCR alpha a blation. Proc Natl Acad Sci U S A (2001) 98:8744–9. doi:10.1073/pnas.141218998

23. Yung K, An J, Lanier LL, et al. CD69. This article was submitted to Frontiers in Immunological Memory, a specialty of Frontiers in Immunology. Citation: Hanazawa A, Löhning M, Radbruch A and Tokoyoda K (2013) CD49b/CD69-dependent generation of resting T helper cell memory. Front. Immunol. 4:183. doi:10.3389/fimmu.2013.00183

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any com-

merical or financial relationships that could be construed as a potential con-

flict of interest.

Received: 06 May 2013; paper pending published: 29 May 2013, accepted: 24 June 2013; published online: 10 July 2013.

Citation: Hanazawa A, Löhning M, Radbruch A and Tokoyoda K (2013) CD49b/CD69-dependent generation of resting T helper cell memory. Front. Immunol. 4:183. doi:10.3389/fimmu.2013.00183

This article was submitted to Frontiers in Immunological Memory, a specialty of Frontiers in Immunology. Copyright © 2013 Hanazawa, Löhning, Radbruch and Tokoyoda. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, pro-

vided the original authors and source are credited and subject to any copy-

right notices concerning any third-party graphics etc.