CTX-M β-Lactamase–producing *Klebsiella pneumoniae* in Suburban New York, New York, USA

Guiqing Wang, Tiangui Huang, Pavan Kumar Makam Surendraiah, Kemeng Wang, Rashida Komal, Jian Zhuge, Chian-Ru Chern, Alexander A. Kryszuk, Cassidy King, and Gary P. Wormser

Pulsed-field gel electrophoresis and multilocus sequence typing revealed high genetic heterogeneities in CTX-M–producing *K. pneumoniae* isolates. This study demonstrates the recent emergence and polyclonal spread of multidrug resistant CTX-M–producing *K. pneumoniae* isolates among patients in a hospital setting in the United States.

**CTX-M enzymes are a group of class A extended-spectrum β-lactamases (ESBLs) that are rapidly spreading among *Enterobacteriaceae* worldwide (1). Since the initial isolation of CTX-M-1 from a European patient in the late 1980s (2), >130 CTX-M allelic variants have been described (http://www.lahey.org/Studies/other.asp#table1). These CTX-M variants have been divided into 5 major phylogenetic groups, CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9, or CTX-M-25 on the basis of their amino acid sequences (1,2).

During the past decade, CTX-M enzymes have become the most prevalent ESBL enzymes in clinical *Enterobacteriaceae* isolates, especially in ESBL-producing *Escherichia coli* in Europe, Asia, and South America (1,3). By contrast, SHV- and TEM-type ESBL enzymes are primarily found in ESBL-producing *K. pneumoniae* and *E. coli* clinical isolates in North America (3). In the United States, CTX-M–like ESBL-producing *Enterobacteriaceae* was first reported in 2003, when CTX-M enzymes were detected in 9 *E. coli* clinical isolates from 5 US states (4). The spread of CTX-M type ESBL in *Enterobacteriaceae*, however, was not appreciated until 2007 when a Texas study showed a high prevalence of CTX-M ESBL in *E. coli* clinical isolates recovered during 2000–2005 (5). Since then, CTX-M–producing *E. coli* isolates have been documented in dispersed US geographic regions (3,6,7). CTX-M enzymes are now the predominant ESBL type in *E. coli* clinical isolates in Texas (5), Pennsylvania (6), Illinois (8), and New York (9,10).

CTX-M–type ESBL enzymes have also been reported in the United States in some non- *E. coli Enterobacteriaceae* species, such as *Klebsiella* spp. (5,11,12), *Proteus mirabilis* (5,11), *Enterobacter* spp. (5), *Salmonella* spp. (13), *Shigella* spp. (14), and *Morganella morganii* (5). Nevertheless, CTX-M–type ESBL have been principally detected and reported in *E. coli* clinical isolates. To date, <50 CTX-M–producing *K. pneumoniae* isolates have been described in the United States, and the epidemiologic and microbiological data provided have been limited (5,11,12,15–18). The implications of CTX-M–producing *K. pneumoniae* for laboratory detection, patient care, and public health in the United States remain to be elucidated.

In this study, we investigated the prevalence of SHV-, TEM-, and CTX-M–encoding genes in a large collection of ESBL-producing *K. pneumoniae* and *E. coli* clinical isolates from a tertiary care medical center in suburban New York City in Westchester County, New York, over an

Authors affiliation: New York Medical College, Valhalla, New York, USA

DOI: http://dx.doi.org/10.3201.1911.121470
8-year period (2005–2012). Microbiological characteristics of CTX-M ESBL-producing K. pneumoniae isolates were examined, and certain clinical/epidemiologic features of patients with these isolates were analyzed.

Materials and Methods

Bacterial Isolates and Phenotypic Detection of ESBLs

Nonduplicate K. pneumoniae clinical isolates were recovered from patient specimens during January 2005–July 2012 at the clinical microbiology laboratory of Westchester Medical Center. These included 208 bla_{KPC}-negative non-K. pneumoniae carbapenemase (non-KPC) ESBL-producing or third-generation cephalosporin-resistant K. pneumoniae isolates and 228 KPC (bla_{KPC}-positive)–producing K. pneumoniae isolates. In addition, 163 nonduplicate ESBL-producing E. coli clinical isolates from the same period were also analyzed for comparison. Isolates were randomly selected to span the entire study year with an approximately equal number of isolates per quarter; only 1 isolate from each patient was chosen and tested. The center is a 643-bed academic tertiary-care medical center in Westchester County, New York. The Institutional Review Board of New York Medical College approved this study.

The bacterial isolates were identified and evaluated for antimicrobial drug susceptibility with the MicroScan WalkAway 96 system (Siemens, Sacramento, CA, USA). ESBL production was phenotypically confirmed by a double-disk or broth microdilution method for suspected ESBL isolates according to the Clinical and Laboratory Standards Institute (CLSI) guidelines (19). The antimicrobial drug susceptibility of CTX-M–producing K. pneumoniae isolates against selected antimicrobial drugs was also assessed with standardized CLSI disk diffusion and Etest methods. Bacterial isolates were refrigerated on nutrient agar slants or were grown on Trypticase soy agar with 5% sheep blood (TSA II, BBL, Sparks, MD, USA) by boiling a dense suspension of an approximately no. 1 McFarland standard in sterile distilled water. As the DNA template in the PCR assays, 2–3 μL of the boiled cell suspension was used. PCR amplification of bla_{CTX-M}, bla_{SHV}, bla_{TEM}, and bla_{KPC} genes in K. pneumoniae and E. coli clinical isolates was performed by using a consensus primer pair specific to each type of β-lactamase as described (20–22). A multiplex PCR was developed and used for simultaneous detection of bla_{CTX-M} (551 bp) and bla_{TEM} (972 bp) genes. Two PCRs were performed for bla_{SHV}-ESBL and bla_{KPC}, respectively. PCRs were carried out by using the HotStart DNA polymerase master mix (QIA-GEN, Germantown, MD, USA) with 30–35 cycles at an annealing temperature of 50°C for bla_{CTX-M} and bla_{TEM}, and 52°C for bla_{SHV} and bla_{KPC}. PCR products were analyzed by agarose gel electrophoresis or by using the QIAxcel system (QIAGEN). The specificity of PCR amplicons on representative isolates was confirmed by DNA sequencing.

DNA Sequencing

For DNA sequencing, PCR products were purified by using the PCR Purification kit (QIAGEN) or the ExoSAP-IT PCR Clean-up kit (Affymetrix, Cleveland, OH, USA), according to the manufacturer’s instructions. The purified DNA amplicons were sequenced by using an ABI Prism BigDye Terminator (version 1.1) cycle sequencing ready reaction kit on the ABI Prism 3730xl or ABI 3500xl DNA Analyzers (Applied Biosystems, Foster City, CA, USA) in-house, or by a commercial facility (GeneWiz, South Plainfield, NJ, USA). The CTX-M, TEM, and SHV gene sequences were compared with sequences in GenBank by using the NCBI basic local alignment search tool (www.ncbi.nlm.nih.gov/BLAST).

Multilocus Sequence Typing

Multilocus sequence typing (MLST) was performed by using primers and conditions as described by Diancourt et al. (23). PCR products from MLST were sequenced as described above. Allelic profiling and sequence types (STs) were determined by querying the K. pneumoniae MLST database maintained by the Pasteur Institute (www.pasteur.fr/recherche/genopole/PF8/mlst/Kpneumoniae.html).

Pulsed-field Gel Electrophoresis (PFGE)

Pulsed-field gel electrophoresis (PFGE) on CTX-M ESBL–producing K. pneumoniae isolates representing each CTX-M genotype was performed as described (24). The GelCompare II software, (version 2.0; Applied Maths, Austin, TX, USA) was used to calculate the Dice similarity coefficients and generate dendrograms by cluster analysis with the unweighted-pair group method using average linkages. Pulsotype designations were assigned at the ≥80% profile similarity level.

Results

CTX-M in ESBL-producing, non-KPC K. pneumoniae Clinical Isolates

Of the 121 ESBL–producing K. pneumoniae isolates originally recovered during 2005–2009, bla_{SHV} and bla_{TEM} genes were detected in 102 (84.3%) and 61 (50.4%) of 121 isolates respectively (Table 1). Overall, 25 CTX-M-type
ESBL K. pneumoniae were identified. However, none of the 81 K. pneumoniae isolates from 2005 through 2008 was positive for blaCTX-M genes. CTX-M–type ESBL was first detected in 2 (5.0%) of 40 K. pneumoniae isolates from 2009. The prevalence of K. pneumoniae isolates carrying the CTX-M–encoding genes increased to 6 (17.6%) of 34 in 2010 and 12 (34.3%) of 35 in 2011. The level remained high (27.8%, 5/18) in the first 7 months of 2012. Overall, only 2 (1.7%) of 121 ESBL-producing K. pneumoniae isolates from 2005 through 2009 carried the blaCTX-M genes, compared with 23 (26.4%) of 87 isolates from 2010 through 2012 (p<0.0001, Fisher exact test), indicating the rapid emergence and spread of CTX-M enzymes among ESBL-producing K. pneumoniae clinical isolates since 2009.

CTX-M in ESBL-producing E. coli Clinical Isolates

One hundred sixty-three ESBL-producing E. coli clinical isolates from 2005 through 2012 were analyzed by PCR for detection of blaUSEBL genes of the SHV, TEM, and CTX-M types (Table 2). Unlike the situation with K. pneumoniae, blaCTX-M genes were detected in ESBL-producing E. coli isolated as early as 2005. Overall, 89 (54.6%) of 163 ESBL E. coli isolates from the 8-year period carried blaCTX-M genes. CTX-M was the leading ESBL type in all years examined except 2008. The blaCTX-M genes from 47 (52.8%) of 89 CTX-M–producing E. coli isolates sequenced. CTX-M-15 was determined in 45 (95.7%) of 47 CTX-M–producing E. coli isolates analyzed. CTX-M-1 and CTX-M-3 genotypes were each found in 1 ESBL E. coli isolate.

CTX-M in KPC-producing K. pneumoniae Clinical Isolates

Two hundred twenty-eight KPC-producing K. pneumoniae isolates from 2005 to 2012 were examined by PCR for detection of blaKPC genes of the SHV, TEM, and CTX-M types. All K. pneumoniae isolates were positive for the blaKPC gene by PCR as described (22). None was positive for the blaCTX-M gene.

Clinical and Microbiological Characteristics of CTX-M–producing K. pneumoniae

Selected clinical/epidemiologic features of the 25 patients with CTX-M–producing K. pneumoniae and certain microbiological characteristics of the isolates are shown in Table 3, Appendix (wwwnc.cdc.gov/EID/article/19/12-1470-T3.htm). Mean patient age was 56 years, and 13 (52%) of the patients were male. Sixteen patients (64%) had bacteriuria. CTX-M–producing K. pneumoniae isolates were recovered from 13 (52%) patients within 72 hours of hospital admission; however, 18 (72%) of these patients had been hospitalized in the 8 months before the current admission.

The blaCTX-M genes from all 25 CTX-M ESBL–producing K. pneumoniae isolates from 2009 through 2012 were sequenced. CTX-M-15 was identified in 19 (76.0%) and was the dominant CTX-M genotype. The remaining 6 isolates were determined to be CTX-M-3 (n = 4), CTX-M-1 (n = 1), and CTX-M-2 (n = 1, respectively. Twenty-four (96.0%) had coexisting blaSHV β-lactamases, which were predominantly non-ESBL blaSHV11 (n = 15) and blaSHV1 (n = 5) Four additional K. pneumoniae carried ESBL-type blaSHV β-lactamases, including blaSHV12 (n = 1), blaSHV21 (n = 1), and blaSHV12 (n = 2). Seventeen (68.0%) were positive for TEM-type β-lactamases, and all were confirmed to be blaTEM-1.

The antimicrobial drug susceptibilities of CTX-M–producing K. pneumoniae isolates are summarized in Table 4. Of the 25 CTX-M–producing K. pneumoniae isolates examined in this study, only 12% (n = 3) and 36% (n = 8) of isolates were susceptible to ciprofloxacin and gentamicin, respectively. Low susceptibility rates were also observed for piperacillin/tazobactam (36%), tetracycline (20%) and trimethoprim/sulfamethoxazole (4%). Twenty-three of the 25 (92%) isolates tested were susceptible to carbapenems. Notably, the 2 carbapenem-resistant K. pneumoniae isolates (PK30 and PK107) carried blaCTX-M1 and blaSHV-11 and blaTEM-1. One of these K. pneumoniae isolates also showed resistance to colistin with an MIC of 64µg/mL. Both patients died of complications associated with bloodstream and respiratory tract infections. Three of 22 CTX-M–producing K. pneumoniae isolates examined by Etest were nonsusceptible to tigecycline (MICs 3 µg/mL, 3 µg/mL, and 8 µg/mL).

All 25 CTX-M–producing K. pneumoniae isolates examined were resistant to cefotaxime, and all but 1 isolate

Table 1. Detection of blaUSEBL genes of the SHV, TEM, and CTX-M types in 208 ESBL-producing Klebsiella pneumoniae clinical isolates, 2005–2012

Year	No. isolates tested	blaSHV (% positive)	blaTEM (% positive)	blaCTX-M (% positive)	CTX-M type (no. isolates)
2005	22	20 (90.9)	7 (31.8)	0	CTX-M-15 (2)
2006	21	15 (71.4)	11 (52.4)	0	CTX-M-15 (4), CTX-M-2 (1), CTX-M-3 (1)
2007	17	11 (64.7)	10 (58.8)	0	CTX-M-15 (9), CTX-M-3 (2), CTX-M-1 (1)
2008	21	19 (90.5)	10 (47.6)	0	CTX-M-15 (4), CMX-M-3 (1)
2009	40	37 (92.5)	23 (57.3)	2 (5.0)	CTX-M-15 (2)
2010	34	31 (91.2)	9 (26.4)	6 (17.6)	CTX-M-15 (4), CTX-M-2 (1), CTX-M-3 (1)
2011	35	32 (91.4)	13 (36.1)	12 (34.3)	CTX-M-15 (4), CMX-M-3 (1)
2012	18	16 (88.9)	8 (44.4)	5 (27.8)	CTX-M-15 (4), CMX-M-3 (1)
Total	208	181 (87.0)	91 (43.8)	25 (12.0)	

*ESBL, extended-spectrum β-lactamase.
showed higher MICs of cefotaxime than of ceftazidime. The 50% minimum inhibitory concentration (MIC\textsubscript{50}) for cefotaxime among these isolates was >256 µg/mL. By contrast, the MIC\textsubscript{50} and 90% inhibitory concentration for ceftazidime were 16 µg/mL and 128 µg/mL, respectively. Two CTX-M–producing \textit{K. pneumoniae} isolates (8.0%) were susceptible (MIC ≤4 µg/mL) and 5 isolates (20%) were intermediate in susceptibility (8 µg/mL) to ceftazidime according to the 2010 revised CLSI breakpoints (Figure 1). In addition, we determined the susceptibilities of 100% for cefotaxime and 90.9% for ceftazidime with 2 minor errors.

PFGE and MLST Analysis of CTX-M–producing \textit{K. pneumoniae}

Of 17 representative CTX-M–producing \textit{K. pneumoniae} isolates analyzed by PFGE, 8 different pulsotypes (PF1–8) were identified with Dice coefficients of ≥80% similarity (Figure 2). Ten of 17 \textit{K. pneumoniae} isolates examined belonged to 3 major groups (PF3, PF4, PF5) with 3–4 isolates in each group. The remaining pulsotypes contained only 1 or 2 \textit{K. pneumoniae} isolates. No clear temporal relationship was shown among the highly related isolates.

MLST was performed on 18 CTX-M–producing \textit{K. pneumoniae} isolates. These isolates were selected to represent different CTX-M genotypes, pulsotypes, antimicrobial susceptibility profiles, and years of isolation. Twelve STs were recognized for the \textit{K. pneumoniae} isolates examined (Table 3, Appendix). Notably, all 3 CTX-M group 1, non–CTX-M-15 \textit{K. pneumoniae} isolates analyzed (KP38, PK107, and PK135) had ST11, whereas 10 different STs (ST15, ST16, ST17, ST48, ST147, ST252, ST258, ST280, ST392, and ST437) were identified for the 14 CTX-M-15 \textit{K. pneumoniae} isolates. Isolate F351 was the only non–CTX-M-1 group \textit{K. pneumoniae} isolate identified in this study and was determined to be a separate group (ST792) by MLST. Of the 14 CTX-M–producing \textit{K. pneumoniae} isolates evaluated simultaneously by DNA sequencing, PFGE and MLST, a high genetic divergence was demonstrated by the detection of 4 CTX-M genotypes (CTX-M-1, CTX-M-2, CTX-M-3, and CTX-M-15), 8 pulsotypes (PF1–8) and 11 STs (ST11, ST15, ST16, ST17, ST48, ST147, ST252, ST280, ST392, ST437, and ST792) (Figure 2).

Discussion

CTX-M ESBL–producing \textit{E. coli}, especially ST131 strains, have emerged in recent years in several US states (5–7,25,26). In this study, we detected \textit{bla\textsubscript{CTX-M}} genes in ESBL-producing \textit{E. coli} strains isolated from patients at a tertiary care medical center in suburban New York City as early as 2005. Eighty-nine (54.6%) of 163 ESBL-producing \textit{E. coli} isolates in the study period (2005–2012) carried \textit{bla\textsubscript{CTX-M}}. Our findings confirm the emergence and dominance of CTX-M enzymes in ESBL-producing \textit{E. coli} since the mid-2000s in the New York City metropolitan area (9,10).

Despite this high prevalence of CTX-M in ESBL-producing \textit{E. coli} since 2005, none of 81 ESBL-producing \textit{K. pneumoniae} isolates recovered from patients at the same tertiary care medical center from 2005 through 2008 was positive for \textit{bla\textsubscript{CTX-M}}. CTX-M–type ESBL was first detected in \textit{K. pneumoniae} isolates from our institution in 2009. The percentage of \textit{K. pneumoniae} isolates carrying \textit{bla\textsubscript{CTX-M}} has increased significantly since then. During 2010–2012, \textit{bla\textsubscript{CTX-M}} genes were identified in 23 of 87 (26.4%) ESBL-producing \textit{K. pneumoniae} isolates. These data demonstrate the rapid emergence and spread of CTX-M ESBL–producing \textit{K. pneumoniae} in our patients. To date, CTX-M–producing \textit{K. pneumoniae} has been recognized in several US states, including Texas (2004–2007, n = 11) (5,12), Nebraska (2005, n = 1)
(15), Pennsylvania (2007, n = 5) (11), and 1 isolate in 2007 each from California, Massachusetts, Michigan, New Jersey, New York, Washington, and Wisconsin (12). In addition, a few CTX-M *K. pneumoniae* isolates have been reported from 2 collections of the SMART surveillance program with isolates recovered during 2008–2009 (16) and 2009–2010 (18). No CTX-M was detected in US ESBL-producing *K. pneumoniae* isolates collected before 2000 (3), with all CTX-M-producing *K. pneumoniae* isolates recovered from US patients in or after 2004. Therefore, we speculate that the emergence and spread of *bla*_{CTX-M} in *K. pneumoniae* are recent evolutionary events that most likely occurred in the mid- to late-2000s in the United States.

The particular CTX-M enzyme type in ESBL-producing *K. pneumoniae* and *E. coli* varies geographically. CTX-M-15, which belongs to the CTX-M-1 group, is the most prevalent CTX-M allele with a worldwide distribution (1,2,26). CTX-M-14, which belongs to the CTX-M-9 group, is another common variant that is highly prevalent in some European and Asian countries (27–30), whereas CTX-M-2 in the CTX-M-2 group and CTX-M-8 seem to be dominant in South America (1,31). In the United States, CTX-M-15 is the most frequently detected genotype among CTX-M-producing *K. pneumoniae* isolates, followed by CTX-M-14 (5,11,12). CTX-M-2 group and CTX-M-8 group ESBL-producing *K. pneumoniae* each was identified in 1 isolate (16).

Our data provide strong evidence for the recent, rapid emergence, and polyclonal spread of the CTX-M-1 group, especially CTX-M-15 ESBL-producing *K. pneumoniae* in a US hospital setting. In this study, 24 (96.0%) of 25 *bla*_{CTX-M}-positive *K. pneumoniae* were categorized as group 1 CTX-M, including isolates encoding CTX-M-15 (n = 19), CTX-M-1 (n = 1), and CTX-M-3 (n = 4). Similarly, group 1 CTX-M was detected in 47 (100%) of 47 *bla*_{CTX-M}-positive *E. coli* isolates. In addition, 1 *K. pneumoniae* isolate had the CTX-M-2 genotype. No CTX-M-14 was detected in these *K. pneumoniae* and *E. coli* isolates. CTX-M-14 has been reported in *E. coli* ESBL isolates in several US states, including geographically adjacent Pennsylvania (6). CTX-M-14 has also been reported in *K. pneumoniae* isolates in the Calgary Healthcare Region of Canada (32). Why CTX-M-14 is absent in the ESBL-producing *E. coli* and *K. pneumoniae* isolates from the New York, NY, metropolitan area is unknown. Because CTX-M-15–producing *K. pneumoniae* isolates may exhibit significantly higher resistance rates to ciprofloxacin and piperacillin-tazobactam than CTX-M-14–producing isolates (27,28), CTX-M genotypes and their antimicrobial drug profiles should be monitored among CTX-M–producing *E. coli* and *K. pneumoniae* isolates in regions where they are emerging.

We investigated the genetic relatedness of CTX-M–producing *K. pneumoniae* isolates by PFGE and MLST. Of the 17 representative isolates examined by PFGE, 8 different pulsotypes were determined. Similarly, 12 MLST STs were identified for the 18 CTX-M–producing isolates analyzed. Our data, in combination with findings from other groups (1), suggest that CTX-M–producing *K. pneumoniae* isolates are genetically heterogeneous. The emergence and polyclonal spread of CTX-M–producing *K. pneumoniae* likely occurred among isolates with diverse genetic backgrounds. This hypothesis contrasts with findings regarding KPC-producing *K. pneumoniae*: a clonal spread of KPC-producing *K. pneumoniae* isolates belonging to the ST258 lineage was observed by us (33) and Pournaras et al. (34).

In clinical strains, CTX-M–encoding genes have commonly been located on plasmids that vary in size from 7 kb to 160 kb (2). Plasmid-mediated transmission of CTX-M genes in *Enterobacteriaceae* that involves several motile
genetic elements has been described (2, 35, 36). Given the dominance of CTX-M-15 genotypes among genetically heterogeneous K. pneumoniae isolates, our study also implies the probable horizontal transfer of a genetic element carrying \(\text{bla}_{\text{CTX-M}} \) among K. pneumoniae isolates.

Of the 12 STs determined for the CTX-M ESBL–producing K. pneumoniae isolates, ST11, ST15, ST17, ST48, ST147, and ST258 have been reported in CTX-M–positive K. pneumoniae in Spain, Hungary, or Korea (28, 37, 38). Among these, only ST17 was reported among CTX-M–producing K. pneumoniae isolates in Canada (39). In this study, we determined the STs among CTX-M–producing K. pneumoniae isolates evaluated in this study showed several notable epidemiologic, clinical, and microbiological features. First, most CTX-M–producing isolates were recovered from patients with bacteriuria, which is similar to that observed for infections caused by CTX-M–producing E. coli in New York, NY, (9, 10). Although CTX-M–producing K. pneumoniae was isolated in clinical specimens collected within 72 hours of hospitalization in about half of the patients, 18 (72%) of 25 patients had been hospitalized in the prior 8 months. This factor highlights the potential for acquiring CTX-M–producing K. pneumoniae in health care settings and differs from the experience with CTX-M–producing E. coli that are associated with infections arising in the community setting unrelated to exposure to health care facilities (26). Second, the CTX-M–producing K. pneumoniae study isolates exhibited high rates of resistance to gentamicin (68%), trimethoprim-sulfamethoxazole (96%), and tetracycline (80%), in addition to resistance to ciprofloxacin (88%) and piperillin-tazobactam (64%) as described previously in Europe and Asia (27, 28, 37). Whether such high rates of resistance are associated with the dominant spread of CTX-M-15–producing, rather than CTX-M-14–producing, K. pneumoniae, in these patients is not known. The coexistence of CTX-M ESBL and TEM-1 and SHV-type \(\beta \)-lactamases in these isolates may have also contributed to the observed high rate of antimicrobial drug resistance. All except 1 of our CTX-M–positive K.

Figure 1. MIC distribution for cefotaxime (CTX) and ceftazidime (CAZ) in CTX-M extended-spectrum \(\beta \)-lactamase–producing Klebsiella pneumoniae clinical isolates from a tertiary care medical center, in suburban New York, New York, USA, 2005–2012 (n = 22). The MICs were determined by Etest.

Figure 2. Dendrogram of pulsed-field gel electrophoresis (PFGE) patterns showing the genetic relatedness of CTX-M extended-spectrum \(\beta \)-lactamase (ESBL)–producing Klebsiella pneumoniae isolates from patients in suburban New York, NY, USA (n = 17). Eight PFGE pulsetypes (PF1–8) were identified with ≥80% similarity, which is marked by the vertical line. The corresponding CTX-M genotype, sequence type (ST), if available, and year of isolation for each isolate are listed on the right side of the dendrogram.
K. pneumoniae isolates produced SHV- and CTX-M-type ESBLs. These findings have clinical implications for selecting empiric antimicrobial drug therapy when infection caused by ESBL-producing K. pneumoniae is suspected. The rapid emergence of such CTX-M–producing K. pneumoniae isolates, mainly in US hospitals, is also raising new concerns for public health and infection control practice. Third, none of the 228 KPC-producing isolates, mainly in US hospitals, is also raising new concerns for public health and infection control practice. This study reveals the rapid emergence and polyclonal spread of CTX-M–producing K. pneumoniae in patients in Westchester County, New York. A limitation of our study is that the clinical isolates were collected from patients at a single tertiary-care medical center. Investigations of CTX-M–producing K. pneumoniae isolates from a variety of geographic regions should be undertaken to clarify the epidemiology and clinical and public health effects of the emergence of CTX-M–producing K. pneumoniae in the United States.

Acknowledgments

We thank Ira Schwartz and Maria Aguero-Rosenfeld for helpful advice and generous support. We are also indebted to the technologists at the Westchester Medical Center Clinical Microbiology Laboratory for saving the study isolates and for their technical contributions.

This study was supported by an intramural grant of New York Medical College (No. 46-356-1) sponsored by the Castle-Krob Foundation.

Dr. Wang is the chief of microbiology at the Westchester Medical Center and assistant professor at New York Medical College. His primary research interests include the epidemiology, mechanisms, and molecular diagnosis of emerging antimicrobial drug resistance and tick-borne diseases.

References

1. Rossolini GM, D’Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect. 2008;14(Suppl 1):33–41. http://dx.doi.org/10.1111/j.1469-0691.2007.01869.x
2. Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004;48:1–14. http://dx.doi.org/10.1128/AAC.48.1.1-14.2004
3. Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD, Rice LB, et al. Extended-spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases. Antimicrob Agents Chemother. 2003;47:3554–60. http://dx.doi.org/10.1128/AAC.47.11.3554-3560.2003
4. Moland ES, Black JA, Hossain A, Hanson ND, Thomson KS, Pottravarty S. Discovery of CTX-M-like extended-spectrum beta-lactamases in Escherichia coli isolates from five US States. Antimicrob Agents Chemother. 2003;47:2382–3. http://dx.doi.org/10.1128/AAC.47.7.2382-2383.2003
5. Lewis JS, Herrera M, Wickes B, Patterson JE, Jorgensen JH. First report of the emergence of CTX-M-type extended-spectrum beta-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrob Agents Chemother. 2007;51:4015–21. http://dx.doi.org/10.1128/AAC.00576-07
6. Sidjabat HE, Paterson DL, Adams-Haduch JM, Ewan L, Pasculle AW, Muto CA, et al. Molecular epidemiology of CTX-M-producing Escherichia coli isolates at a tertiary medical center in western Pennsylvania. Antimicrob Agents Chemother. 2009;53:4733–9. http://dx.doi.org/10.1128/AAC.00533-09
7. Johnson JR, Urban C, Weissman SJ, Jorgensen JH, Lewis JS II, Hansen G, et al. Molecular epidemiological analysis of Escherichia coli sequence type ST131 (O25:H4) and blaCTX-M, among extended-spectrum-beta-lactamase-producing E. coli from the United States, 2000 to 2009. Antimicrob Agents Chemother. 2012;56:2364–70. http://dx.doi.org/10.1128/AAC.00382-11
8. Qi C, Pilla V, Yu JH, Reed K. Changing prevalence of Escherichia coli with CTX-M-type extended-spectrum beta-lactamases in outpatient urinary E. coli between 2003 and 2008. Diagn Microbiol Infect Dis. 2010;67:87–91. http://dx.doi.org/10.1016/j.diagmicrobio.2009.12.011
9. Urban C, Mariano N, Bradford PA, Tuckman M, Segal-Maurer S, Webbhe W, et al. Identification of CTX-M beta-lactamases in Escherichia coli from hospitalized patients and residents of long-term care facilities. Diagn Microbiol Infect Dis. 2010;66:402–6.
10. Tiruvuru H, Johnson JR, Mariano N, Gremmer L, Colon-Urban R, Erritouni M, et al. Identification of CTX-M beta-lactamases among Escherichia coli from the community in New York City. Diagn Microbiol Infect Dis. 2012;72:248–52. http://dx.doi.org/10.1016/j.diagmicrobio.2011.11.008
11. McGgettigan SE, Hu B, Andreacchio C, Nachamkin I, Edelstein PH. Prevalence of CTX-M beta-lactamases in Philadelphia, Pennsylvania. J Clin Microbiol. 2009;47:2970–4. http://dx.doi.org/10.1128/JCM.00319-09
12. Castanheira M, Sader HS, Jones RN. Antimicrobial susceptibility patterns of KPC-producing or CTX-M-producing Enterobacteriaceae. Microb Drug Resist. 2010;16:61–5. http://dx.doi.org/10.1089/mdr.2009.0031
13. Sjolund M, Yam J, Schwenk J, Joyce K, Medalla F, Barzilay E, et al. Human Salmonella infection yielding CTX-M beta-lactamase, United States. Emerg Infect Dis. 2008;14:1957–9. http://dx.doi.org/10.3201/eid1412.080494
14. Folster JP, Pecic G, Krueger A, Rickert R, Burger K, Carattoli A, et al. Identification and characterization of CTX-M-producing Shigella isolates in the United States. Antimicrob Agents Chemother. 2010;54:2269–70. http://dx.doi.org/10.1128/AAC.00539-10
15. Hanson ND, Moland ES, Hong SG, Propst DJ, Cavaliere SJ. Surveillance of community-based reservoirs reveals the prevalence of CTX-M, imported AmpC, and OXA-30 beta-lactamases in urine isolates of Klebsiella pneumoniae and Escherichia coli in a U.S. community. Antimicrob Agents Chemother. 2008;52:3814–6. http://dx.doi.org/10.1128/AAC.00877-08
16. Lascols C, Hackel M, Hujer AM, Marshall SH, Bouchillon SK, Hoban DJ, et al. Using nucleic acid microarrays to perform molecular epidemiology and detect novel beta-lactamases: a snapshot of extended-spectrum beta-lactamase distributions throughout the world. J Clin Microbiol. 2010;48:1632–9.
17. Castanheira M, Mendes RE, Rhomberg PR, Jones RN. Rapid emergence of blacon among Enterobacteriaceae in U.S. medical centers: molecular evaluation from the MYSTIC Program (2007). Microb Drug Resist. 2008;14:211–6. http://dx.doi.org/10.1089/mdr.2008.0827
18. Hoban DJ, Lascols C, Nicolle LE, Badal R, Bouchillon S, Hackel M, et al. Antimicrobial susceptibility of Enterobacteriaceae, including molecular characterization of extended-spectrum beta-lactamase-producing species, in urinary tract isolates from hospitalized patients in North America and Europe: results from the SMART study 2009–2010. Diagn Microbiol Infect Dis. 2012;74:62–7. http://dx.doi.org/10.1016/j.diagmicrobio.2012.05.024

19. Clinical Laboratory and Standards Institute. Performance standards for antimicrobial susceptibility testing: twentieth supplemental information. CLSI document M100–S20. Wayne (PA): The Institute; 2010.

20. Lomaestro BM, Tobin EH, Shang W, Gootz T. The spread of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae to upstate New York. Clin Infect Dis. 2006;43:e26–8. http://dx.doi.org/10.1086/505598

21. Gröbner S, Linke D, Schutz W, Fladerer C, Madlung J, Autenrieth IB, et al. Emergence of carbapenem-non-susceptible extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates at the university hospital of Tubingen, Germany. J Med Microbiol. 2009;58:912–22. http://dx.doi.org/10.1099/jmm.0.005850-0

22. Moland ES, Hanson ND, Herrera VL, Black JA, Lockhart TJ, Hossain A, et al. Plasmid-mediated, carbapenem-hydrolysing beta-lactamase, KPC-2, in Klebsiella pneumoniae isolates. J Antimicrob Chemother. 2003;51:711–4. http://dx.doi.org/10.1093/jac/dkg124

23. Diacourlet L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43:4178–82. http://dx.doi.org/10.1128/JCM.43.8.4178-4182.2005

24. Arlet G, Rouveau M, Casin I, Bouvet PJ, Lagrange PH, Philippin A. Molecular epidemiology of Klebsiella pneumoniae strains that produce SHV-4 beta-lactamase and which were isolated in 14 French hospitals. J Clin Microbiol. 1994;32:2553–8.

25. Johnson JR, Johnston B, Clabots C, Kuskowski MA, Castanheira M. Escherichia coli sequence type ST131 as the major cause of serious multiresistant E. coli infections in the United States. Clin Infect Dis. 2010;51:286–94. http://dx.doi.org/10.1086/653932

26. Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother. 2011;66:1–14. http://dx.doi.org/10.1093/jac/dkq415

27. Titelman E, Iversen A, Kahlmeter G, Giske CG. Antimicrobial susceptibility to parenteral and oral agents in a largely polyMIC klebsiella pneumoniae strain. J Antimicrob Chemother. 2011;69:55–6. http://dx.doi.org/10.1093/jac/dks026

28. Shinn J, Kim DH, Ko KS. Comparison of CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J Infect. 2011;63:39–47. http://dx.doi.org/10.1016/j.jinf.2011.05.003

29. Karim A, Poirel L, Nagarajan S, Nordmann P. Plasmid-mediated extended-spectrum beta-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. FEMS Microbiol Lett. 2001;201:237–41.

30. Chuang EC, Minar AJ, da Costa Darini AL. CTX-M-producing Escherichia coli ST131. Diagn Microbiol Infect Dis. 2012;74:1134–6. http://dx.doi.org/10.1016/j.diagmicrobio.2012.06.011

31. Climaco EC, Marinari LA, da Costa Darini AL. CTX-M-producing Klebsiella spp. in a Brazilian hospital: what has changed in 6 years? Diagn Microbiol Infect Dis. 2010;68:186–9. http://dx.doi.org/10.1016/j.diagmicrobio.2010.05.013

32. Pitout JD, Hossain A, Hanson ND. Phenotypic and molecular detection of CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol. 2004;42:5715–21. http://dx.doi.org/10.1128/JCM.42.12.5715-5721.2004

33. Wang G, Kryszuk AA, Wang K, Granada M, Schwartz I, Wormser GP. Phenotypic and molecular characterization of carbapenem-resistant Klebsiella pneumoniae clinical isolates (2005–2010). Proceedings of the 111th American Society for Microbiology General Meeting, New Orleans, Louisiana, May 21–24, 2011. Washington: American Society for Microbiology. Abstract C-604.

34. Pourmaras S, Protonotariou E, Voulgaris E, Kristo I, Dimitroulia E, Viti D, et al. Clonal spread of KPC-2 carbapenemase-producing Klebsiella pneumoniae strains in Greece. J Antimicrob Chemother. 2009;64:348–52. http://dx.doi.org/10.1093/jac/dkp207

35. Sandegren L, Linkevicius M, Lytsy B, Melhus A, Andersson DI. Transfer of an Escherichia coli ST131 multiresistance cassette has created a Klebsiella pneumoniae-specific plasmid associated with a major nosocomial outbreak. J Antimicrob Chemother. 2012;67:74–83. http://dx.doi.org/10.1093/jac/dkr405

36. Karim A, Poirel L, Nagarajan S, Nordmann P. Plasmid-mediated extended-spectrum beta-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. FEMS Microbiol Lett. 2001;201:237–41.

37. Otoe J, Cuevas O, Lopez-Rodriguez I, Banderas-Florido A, Vindel A, Perez-Vazquez M, et al. Emergence of CTX-M-15-producing Klebsiella pneumoniae of multilocus sequence types 1, 11, 14, 17, 20, 35 and 36 as pathogens and colonizers in newborns and adults. J Antimicrob Chemother. 2009;64:524–8. http://dx.doi.org/10.1093/jac/dkp211

38. Damjanova I, Toth A, Paszti J, Hajbel-Vekony G, Jakab M, Berta J, et al. Expansion and countrywide dissemination of ST11, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-type beta-lactamase-producing Klebsiella pneumoniae epidemic clones in Hungary in 2005–the new ‘MRSAs’? J Antimicrob Chemother. 2008;62:978–85. http://dx.doi.org/10.1093/jac/dkn287

39. Parraño G, Garland D, Pitout JD, Pitout JD. Molecular epidemiology of extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae over a 10 year period in Calgary, Canada. J Antimicrob Chemother. 2012;67:1114–20. http://dx.doi.org/10.1093/jac/dks026

40. Chen S, Hu F, Xu X, Liu Y, Wu W, Zhu D, et al. High prevalence of KPC-2-type carbapenemase coupled with CTX-M-type extended-spectrum beta-lactamases in carbapenem-resistant Klebsiella pneumoniae in a teaching hospital in China. Antimicrob Agents Chemother. 2011;55:2493–4. http://dx.doi.org/10.1128/AAC.0047-11

Address for correspondence: Guiqing Wang, Department of Pathology Clinical Laboratories, Westchester Medical Center, Macy Pavilion, Rm 1J-04, 100 Woods Rd, Valhalla, NY 10595, USA; email: guiqing_wang@nymc.edu