Аденокарцинома пищевода развивается, как правило, в нижней части органа. Продолжительность жизни и выживаемость при данном заболевании зависят от стадии патологического процесса и состояния здоровья пациента. Наиболее успешный метод для лечения аденокарциномы пищевода — химиолучевая терапия. Проблема подбора оптимальных доз облучения для достижения максимального эффекта по сей день актуальна. Целью исследования было изучить эффективные дозы и оценить противопухолевую активность лучевой терапии на ортотопическом PDX аденокарциномы пищевода человека.

Исследование проводили на самцах мышей линии Balb/c nude (n = 25). Ортотопическую трансплантацию осуществляли путем имплантации образцов опухоли пациента в шейный отдел пищевода иммунодефицитной мыши. Лучевое воздействие на ортотопические ксенографты исследовали в 3 этапа с кратностью облучения 1 раз в дозах 4, 6, 8 и 10 Гр. По результатам гистологического анализа ксенографты 1-й генерации воспроизводили основные морфологические характеристики опухоли пациента. Оценка динамики роста объемов опухолевых узлов экспериментальных животных позволила сделать вывод, что у животных, облученных в однократной дозе 6, 8 или 10 Гр, средние значения объемов опухолевых узлов статистически значимо отличались (р ≤ 0,01) от значений в контрольной группе после каждой из трех процедур лучевого воздействия. По расчетам показателя торможения роста опухоли при суммарной дозе 18 Гр наблюдали значительное подавление роста опухоли. Дальнейшее повышение дозы лучевого воздействия было неэффективно. Установлено, что снижение объемов опухолевых узлов в ксенографтах коррелирует с увеличением разовой дозы, при этом суммарные дозы более 18 Гр губительно влияют на систему кроветворения и биохимические показатели крови мышей.

Ключевые слова: аденокарцинома пищевода, ортотопический ксенографт, лучевая терапия, PDX-модель, иммунодефицитная мышь

Вклад авторов:
- А. А. Киблицкая — обработка материала, написание текста, техническое редактирование, оформление библиографии, подготовка иллюстраций; А. С. Гончарова, А. А. Маслов — концепция и дизайн исследования, подготовка статьи; А. Е. Анисимов — концепция и дизайн исследования, подготовка статьи, сбор, анализ и интерпретация данных, написание текста; А. В. Снежко — научное редактирование, подготовка статьи; С. Н. Димитриади — анализ и интерпретация данных, техническое редактирование; Е. Н. Колесников — научное редактирование, техническое редактирование

Соблюденные этические стандарты: исследование проведено с соблюдением требований Хельсинкской декларации; условия содержания животных соответствовали стандартам работы с животными; все хирургические манипуляции в эксперименте были выполнены с соблюдением «Правил проведения работ с использованием лабораторных животных». От животных было получено письменное информированное согласие на передачу биологического материала.

Для корреспонденции: Александра Андреевна Киблицкая ул. 14-я линия, д. 63, г. Ростов-на-Дону, 344037, Россия; kibaleand@gmail.com

Статья получена: 16.09.2021 | Статья принята к печати: 04.10.2021 | Опубликована онлайн: 20.10.2021

ДОИ: 10.24075/vrgmu.2021.047

ANTITUMOR EFFECT OF RADIATION THERAPY ON ORTHOTOPIC PDX MODELS OF HUMAN ESOPHAGEAL ADENOCARCINOMA

Kiblitskaya AA, Goncharova AS, Anisimov AE, Snezhko AV, Dimitriadi SN, Maslov AA, Gevorkyan YA, Kolesnikov EN

National Medical Research Center for Oncology, Rostov-on-Don, Russia

As a rule, esophageal adenocarcinoma develops in the lower esophagus. Life expectancy and survival rates depend on the cancer stage and the general health of the patient. Chemoradiotherapy is the most successful treatment approach to this type of cancer. The choice of optimal radiation doses for achieving the best possible therapeutic effect is still a challenge. The aim of this paper was to study effective radiation doses and assess response of human esophageal adenocarcinoma to radiation using a PDX model. The study was conducted in female Balb/c nude mice (n = 25). Fragments of the donor tumor were implanted into the cervical esophagus of immunodeficient mice. Effects of radiation on the obtained orthotopic xenografts were studied after each of 3 irradiation sessions (4, 6, 8, and 10 Gy in each of the experimental groups, respectively). First-passage xenografts reproduced the morphology of the donor tumor. The mean tumor volume differed significantly between the control group and the experimental groups exposed to 6, 8 or 10 Gy (p ≤ 0.01) after each irradiation session. Tumor growth delay was significant after exposure to the total dose of 18 Gy. The further radiation dose increase was ineffective. The reduction of tumor volume in the xenografts was correlated to the increase in the one-time radiation dose. The total dose over 18 Gy produced a detrimental effect on the hematopoietic system and blood biochemistry of the experimental mice.

Keywords: esophageal adenocarcinoma, orthotopic xenograft, radiotherapy, PDX-model, immunodeficient mouse

Author contribution: Kiblitskaya AA — data processing, manuscript preparation, technical editing, reference list, figures; Goncharova AS, Maslov AA — study concept and design, manuscript preparation; Anisimov AE — study concept and design, manuscript preparation, data acquisition, analysis and interpretation; Snezhko AV — content editing, manuscript preparation; Dimitriadi SN — data analysis and interpretation, technical editing; Gevorkyan YA — content editing; Kolesnikov EN — content and technical editing.

Ethical standards: the study fully complied with the principles of the Declaration of Helsinki; all requirements for animal housing were met; surgical interventions were conducted following the guidelines on the Care and Use of Laboratory Animals. The donors provided informal consent for their biological samples to be used in the study.

Correspondence should be addressed: Alexandra A. Kiblitskaya 14 Liniya, 63, Rostov-on-Don, 344037, Russia; kibaleand@gmail.com

Received: 16.09.2021 | Accepted: 04.10.2021 | Published online: 20.10.2021

ДОИ: 10.24075/brsmu.2021.047
Рак пищевода (РП) считается одним из наиболее агрессивных злокачественных новообразований и занимает ведущие позиции по заболеваемости и смертности во всем мире [1]. Пятилетняя выживаемость пациентов после момента постановки диагноза РП составляет примерно 10–15%, что объясняется высокой степенью метастазирования данной нозологии в лимфатические узлы [2]. К факторам риска развития РП относятся: употребление очень горячей или холодной пищи и напитков, курение, злоупотребление алкоголем, вдыхание токсических газов, употребление питьевой воды с содержанием тяжелых металлов, пролазунение едких веществ [3].

ПР массажем плаценты от двух гистологических подтипов: плоскоклеточный рак и аденокарцинома. Физической терапии на ортотопической PDX-модели АП человека, является отсутствие эффективности лечения рака [12]. При создании PDX-модели фрагмент опухоли донора имплантируют в организм иммунодефицитной мыши [13]. В трансляционных исследованиях рака используют специфических бестимусных мышей линии Bald/c nude, характерной особенностью которых является мутация в гене Foxn1 [14, 15]. Ослабление иммунитета по причине дефицита T-лимфоцитов значительно облегчает приживление и метастазирование опухолевых клеток в ксенотрансплантатах после имплантации [16]. Модели PDX сохраняют морфологические характеристики и гетерогенность первичной опухоли донора и вследствие этого чувствительность к лечению может быть спрогнозирована лучше, чем с помощью ксенотрансплантатов клеточных линий [17]. Несмотря на то что строма человека в ксенографте заменяется стromой мыши, PDX хорошо сохраняют внутрипупокловую гетерогенность, в том числе при многократном пассировании [18].

Применение гетеротопических (подкожных) PDX очень распространено в трансляционных исследованиях рака, что объясняется технической простотой исполнения. Тем не менее подкожные ксенотрансплантаты не воспроизводят исходное микроокружение опухоли донора, опухолевые узлы в организме мыши-реципиента инкапсулируются, вследствие чего имеют локальный экспансион рост и не метастазируют [19]. Ортотопическую PDX-модель АП человека создают путем непосредственной имплантации опухолевого фрагмента донора в стенку дистального отдела пищевода мыши. Ксенографт и действие облучения легко обнаружить при разрастании опухолевого узла, но создание модели рака этого типа чрезвычайно сложно технически из-за анатомического расположения и размера пищевода мыши [20]. Однако преимуществом этого способа трансплантации является специфическое внутриорганное микроокружение опухоли, что способствует воспроизведению патоморфологических и молекулярных параметров опухоли пациента [21]. Поэтому ортотопические PDX используют в изучении поведения опухоли в отношении различных терапевтических подходов. В ходе нашего эксперимента степень противовопухолевого воздействия лучевой терапии определяли, вычисляя показатель торможения роста опухоли (ТРО) [22].

Цель исследования состояла в изучении эффективных доз и оценки противополуговой активности лучевой терапии на ортотопической PDX-модели АП человека, полученной путем ксенотрансплантации фрагмента опухоли донора в шейный отдел пищевода иммунодефицитной мыши. РАЦИАНТЫ И МЕТОДЫ

Исследование провели на базе ФГБУ «НИЦ онкологии» Минздрава России. Для создания ортотопических ксенотрансплантатов использовали свежий опухолевой материал от пациента с АП. При создании шестого

| СПИСОК ЛИТЕРАТУРЫ | |
60%, при световом режиме день–ночь, в искусственно вентилируемых клетках. В конце эксперимента проводили эвтаназию животных в СО₂-камере с последующим отбором опухолевого материала для исследований.

Исследование лучевого воздействия проводили на ортотопических PDX AP человека 6-го пассажа (рис. 1). Облучение начинали проводить при размерах ксенографтов не менее 100 мм³, на 30-е сутки после трансплантации. Животных разделили на 5 групп (контроль, 1, 2, 3 и 4 группы) с различными режимами воздействия, по 5 особей в каждой группе. В первой группе разовая доза облучения мышей составила 4 Гр (суммарная доза 12 Гр), во 2, 3 и 4 группах режимы облучения составили 6 (18), 8 (24) и 10 (30) Гр соответственно. Эксперимент выполняли в течение 7 дней, облучение проводили в 3 приема с кратностью 1 раз. Однократное облучение проводили с использованием аппарата Xstrahl 150 (Xstrahl; UK) с фильтром 1 (Al 0,2) и аппликаторами 1,5 и 2 см.

Измерение размеров опухолевых узлов проводили с помощью штангенциркуля. Расчет объемов опухолевых узлов осуществляли по формуле Шрека для эллипсоида:

\[V = \frac{a \times b \times c \times \pi}{6}, \]

где \(V \) — объем опухоли (мм³); \(a, b, c \) — максимальные диаметры эллипсоида в трех плоскостях (мм).

Степень торможения роста опухоли рассчитывали с применением показателя TPO по формуле:

\[TPO, \% = \left(\frac{V_{\text{контроль}} - V_{\text{опыт}}}{V_{\text{контроль}}} \right) \times 100. \]

Гематологический анализ крови выполняли с помощью ветеринарного анализатора Exigo (BouleMedical; USA). Анализ биохимических показателей проводили на анализаторе VETSCANVS2 (Zoetis; USA).

Статистический анализ данных проводили с помощью программного пакета STATISTICA 10. Количественные переменные приводятся в виде средних величин и стандартных отклонений от среднего \(M \pm SD \). Для исследования достоверности различий средних величин для двух независимых выборок использовали критерий Манна–Уитни и критерий Уилкоксона–Манна–Уитни.

Ортотопическая трансплантация образцов опухоли в пищевод иммунодефицитной мыши

Перед хирургическим вмешательством проводили премедикацию животных препаратом на основе ксилазина гидрохлорида в дозе 20 мг/кг внутримышечно. Затем через 15 мин мышей наркотизировали внутримышечно препаратом, содержащим в качестве действующих веществ тилетамин гидрохлорид и золазепам гидрохлорид, в дозе 22,57 мг/кг.

Образцы опухоли донора перед трансплантацией разделяли на фрагменты объемом примерно 27 мм³, участки некротизированной ткани заранее удаляли. Опухолевый материал трансплантировали через 30 мин после резекции. Непосредственно перед операцией кожу мыши в области рассечения обрабатывали 10% раствором повидон-йода.

Для обеспечения доступа к пищеводу выполняли рассечение кожи шеи от основания правого уха до основания левого уха. Затем тупым способом проводили выделение трахеи и лежащего под ней пищевода. С помощью скальпеля рассекали адвентициально-мышечный слой пищевода. Над выполненным разрезом к стенке пищевода подшивали фрагмент опухоли с использованием литературы Пролен 5-0. Далее скорняжным
шовом при помощи лигатуры Пролен 4–0 ушивали операционную рану [23].

После того как опухолевый узел ортотопической модели достигал объема 150–250 мм3, выполняли перевивку ксенографта до 6-го пассажа описанным выше способом.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
Зарегистрировали увеличение степени приживления опухолевого материала у иммунодефицитных мышей с каждым последующим пассажем. При 1, 2 и 3 пассаже наблюдали 55, 70 и 80% приживления соответственно. Начиная с 4-го и до 6-го пассажа у ортотопических ксенографтов прививаемость биоматериала донора достигла 100%.

Гистологическая верификация PDX-моделей АП человека
Опухоль пациента гистологически идентифицировали как умеренно дифференцированную аденокарциному. Наряду с типичными клетками аденокарциномы в препарате обнаружили атипичные клетки веретенообразной формы с кариопикнозом и кариорексисом клеточного ядра. Гистотип ксенографтов 1-го пассажа в достаточной степени точно повторял основные характеристики опухоли-донора и был представлен также умеренно дифференцированной аденокарциномой, значительная доля клеток которой была типичной формы с дегенеративно измененными ядрами или патологическими митозами (рис. 2).

Влияние лучевого воздействия на ортотопические ксенографты АП человека
Средние объемы ксенографтов и средний вес мышей контрольной и опытных групп представлены в табл. 1. В группе 1 (4 Гр) после первого и третьего сеансов облучения наблюдались статистически значимые отличия показателей (р ≤ 0,01) средних объемов ксенографтов от показателей животных контрольной группы, не подвергавшейся облучению. При этом в опытных группах с разовой дозой облучения 6, 8 и 10 Гр средние объемы опухолевых узлов мышей статистически значимо отличались (р ≤ 0,01) от аналогичных показателей животных контрольной группы после каждой из трех процедур лучевого воздействия. В

Группа	Показатель	0-е сутки	1-е сутки	5-е сутки	7-е сутки				
		V, мм3	Вес, г	V, мм3	Вес, г				
Контроль									
Среднее	86	21	626	22,7	1250,7	22,3	2136,6	22,3	
Стандартное отклонение	2,8	0,5	4,9	0,3	148,5	0,8	74,5	0,8	
1 (4 Гр)	Среднее	91,1*	21,7	554,8*	23	1052,0*	21,1	1145,9*	21,1
Стандартное отклонение	2,4	0,6	9	0,4	72,9	1,2	120,7	1	
2 (6 Гр)	Среднее	88	20,5	235,1*	22,2	249,3*	22,7	248,1*	22,5
Стандартное отклонение	1,6	0,5	2,7	0,8	2	0,8	1,3	1,2	
3 (8 Гр)	Среднее	80,9*	22,2	210,8*	23,5	228,9*	23,5	227,8*	23,5
Стандартное отклонение	2	0,4	5,8	0,4	14	0,5	8,2	0,5	
4 (10 Гр)	Среднее	89,5	21,5	195,2*	22,7	200,1*	19,7	198,9*	19,8
Стандартное отклонение	2,8	0,8	6	1,3	3	3	4	0,9	

Примечание: * — статистически значимые различия между показателями животных в контрольной и экспериментальных группах 1 (4 Гр), 2 (6 Гр), 3 (8 Гр) и 4 (10 Гр) по критерию Манна–Уитни (р < 0,05); • — статистически значимые различия между показателями животных в контрольной и экспериментальных группах 1 (4 Гр), 2 (6 Гр), 3 (8 Гр) и 4 (10 Гр) по критерию Манна–Уитни (р ≤ 0,01).

Рис. 3. Показатели ТРО мышей с PDX АП человека для экспериментальных групп с дозами облучения 1 (4 Гр), 2 (6 Гр), 3 (8 Гр) и 4 (10 Гр)
В ходе эксперимента мы исследовали гематологические показатели у мышей всех групп после завершения лучевой терапии (табл. 2).

Среднее содержание гемоглобина в крови животных уменьшилось по мере увеличения дозы радиации, при этом наблюдался статистически значимый отклик показателей животных групп 1–4 от контрольных животных контрольной группы (р < 0,01). Общее содержание эритроцитов, лейкоцитов, лимфоцитов, моноцитов и тромбоцитов в крови также уменьшилось во всех исследуемых группах. В группах 2, 3 и 4 число лимфоцитов, моноцитов и тромбоцитов статистически значимо отличалось (р < 0,01) от аналогичных показателей животных группы контроля. Содержание эритроцитов, лейкоцитов у мышей всех опытных групп статистически значимо отличалось (р < 0,01) от контрольных животных.

Также мы провели биохимический анализ крови иммунодефицитных мышей с ксенографтами РП (табл. 3). Концентрация белка в крови мышей 2, 3, 4 групп статистически значимо отличалась от аналогичных показателей животных контрольной группы (р < 0,01). После увеличения дозы радиации у животных наблюдалось плавное повышение содержания в крови глюкозы, креатинина и аланинаминотрансферазы, при этом увеличение в дозе 8 и 10 Гр привело к появлению статистически значимых отклонений (р < 0,01) от показателей группы контроля, не подвергшейся облучению. Данные сдвиги в биохимическом профиле крови животных опытных групп можно объяснить процессами активной некротизации опухолевых узлов под воздействием лучевой терапии. При мониторинге уровня глюкозы в крови животных статистически значимых отклонений не выявлено. Содержание гемоглобина в крови мышей групп 2, 3, 4 групп статистически значимо отличалось (р < 0,01) от аналогичных показателей животных контрольной группы по мере увеличения дозы радиации. Снижение активности целочного фосфата в крови мышей 2, 3, 4 групп статистически значимо отличалось (р < 0,01) от аналогичных показателей животных контрольной группы.

Группа	Гемоглобин	Тромбоциты	Лейкоциты, 10^9/л	Лимфоциты, 10^9/л	Моноциты, 10^9/л	Эритроциты, 10^11/л
Контроль	118 ± 4,9	481 ± 79	3,7 ± 0,8	1,6 ± 0,4	0,9 ± 0,2	6,8 ± 0,5
1 (4 Гр)	115 ± 4,3*	477 ± 60*	3,3 ± 0,5*	1,4 ± 0,4	0,85 ± 0,2	6,6 ± 0,4
2 (8 Гр)	111 ± 4,4*	474 ± 55*	3,0 ± 0,4*	1,2 ± 0,3*	0,7 ± 0,3	6,0 ± 0,4*
3 (10 Гр)	99 ± 5,6*	470 ± 58*	2,7 ± 0,4*	1,0 ± 0,4*	0,5 ± 0,2*	5,7 ± 0,4*
4 (10 Гр)	93 ± 3,8*	484 ± 52*	2,5 ± 0,3*	0,7 ± 0,1*	0,4 ± 0,1*	5,2 ± 0,3*

Примечание: * — отличается от значений в контрольной группе, р < 0,01; критерий Уилкоксона–Манна–Уитни.

Рис. 4. Гистологический препарат PDX-модели АП человека на иммунодефицитных мышах линии Balb/cNude после лучевого воздействия в суммарной дозе 30 Гр. Окраска гематоксилином и эозином (ув. ×400)

Гематологический и биохимический профиль крови ортотопических PDX АП человека после лучевого воздействия

В ходе эксперимента мы исследовали гематологические показатели у мышей всех групп после завершения лучевой терапии (табл. 2).

Среднее содержание гемоглобина в крови животных уменьшилось по мере увеличения дозы радиации, при этом наблюдался статистически значимый отклик показателей животных групп 1–4 от контрольных показателей животных контрольной группы (р < 0,01). Общее содержание эритроцитов, лейкоцитов, лимфоцитов, моноцитов и тромбоцитов в крови также уменьшилось во всех исследуемых группах. В группах 2, 3 и 4 число лимфоцитов, моноцитов и тромбоцитов статистически значимо отличалось (р < 0,01) от аналогичных показателей животных группы контроля. Содержание эритроцитов, лейкоцитов у мышей всех опытных групп статистически значимо отличалось (р < 0,01) от контрольных животных.

Также мы провели биохимический анализ крови иммунодефицитных мышей с ксенографтами РП (табл. 3). Концентрация белка в крови мышей 2, 3, 4 групп статистически значимо отличалась от аналогичных показателей животных контрольной группы (р < 0,01). После увеличения дозы радиации у животных наблюдалось плавное повышение содержания в крови глюкозы, креатинина и аланинаминотрансферазы, при этом увеличение в дозе 8 и 10 Гр привело к появлению статистически значимых отклонений (р < 0,01) от показателей группы контроля, не подвергшейся облучению. Данные сдвиги в биохимическом профиле крови животных опытных групп можно объяснить процессами активной некротизации опухолевых узлов под воздействием лучевой терапии. При мониторинге уровня глюкозы в крови животных статистически значимых отклонений не выявлено. Содержание гемоглобина в крови мышей групп 2, 3, 4 групп статистически значимо отличалось (р < 0,01) от аналогичных показателей животных контрольной группы по мере увеличения дозы радиации. Снижение активности целочного фосфата в крови мышей 2, 3, 4 групп статистически значимо отличалось (р < 0,01) от аналогичных показателей животных контрольной группы. После воздействия радиации в суммарной дозе 24 Гр изменения жизненно важных параметров крови у экспериментальных животных сопровождались снижением их активности и сутулой походкой.

Группа	Гемоглобин	Тромбоциты	Лейкоциты, 10^9/л	Лимфоциты, 10^9/л	Моноциты, 10^9/л	Эритроциты, 10^11/л
Контроль	118 ± 4,9	481 ± 79	3,7 ± 0,8	1,6 ± 0,4	0,9 ± 0,2	6,8 ± 0,5
1 (4 Гр)	115 ± 4,3*	477 ± 60*	3,3 ± 0,5*	1,4 ± 0,4	0,85 ± 0,2	6,6 ± 0,4
2 (8 Гр)	111 ± 4,4*	474 ± 55*	3,0 ± 0,4*	1,2 ± 0,3*	0,7 ± 0,3	6,0 ± 0,4*
3 (10 Гр)	99 ± 5,6*	470 ± 58*	2,7 ± 0,4*	1,0 ± 0,4*	0,5 ± 0,2*	5,7 ± 0,4*
4 (10 Гр)	93 ± 3,8*	484 ± 52*	2,5 ± 0,3*	0,7 ± 0,1*	0,4 ± 0,1*	5,2 ± 0,3*

Примечание: * — отличается от значений в контрольной группе, р < 0,01; критерий Уилкоксона–Манна–Уитни.

Рис. 4. Гистологический препарат PDX-модели АП человека на иммунодефицитных мышах линии Balb/cNude после лучевого воздействия в суммарной дозе 30 Гр. Окраска гематоксилином и эозином (ув. ×400)
Таблица 3. Значения биохимических показателей крови PDX аденокарциномы пищевода человека на 25-е сутки эксперимента

Группа	Белок, мг/дл	Мочевина, мг/дл	Креатинин, мг/дл	Глюкоза, мг/дл	АЛТ, ед./л	ЦФТ, ед./л
Контроль	5,4 ± 0,3	0,4 ± 0,1	0,6 ± 0,05	190 ± 14	51 ± 6,7	65 ± 8,2
1 (4 Гр)	5,5 ± 0,3	0,5 ± 0,1	0,75 ± 0,1	185 ± 15	53 ± 7	62 ± 4,8
2 (6 Гр)	5,7 ± 0,5*	0,8 ± 0,2	0,9 ± 0,1*	189 ± 10	58 ± 6,5*	63 ± 4*
3 (8 Гр)	6,1 ± 0,4*	0,8 ± 0,1*	1,2 ± 0,2*	192 ± 16	59 ± 8,6*	61 ± 5,5*
4 (10 Гр)	6,3 ± 0,4*	1,1 ± 0,3*	1,3 ± 0,1*	191 ± 12	62 ± 6,7*	55 ± 7,5*

Примечание: * — отличается от значений в контрольной группе, p < 0,01; критерий Уилкоксона-Манна-Уитни; АЛТ — аланинаминотрансфераза; ЦФТ — щелочная фосфатаза.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Особый интерес из ранее опубликованных исследований вызывает работа, в которой изучили радио-опухолевый эффект фракционированной лучевой терапии (3 × 2 Гр) в сочетании с препаратом ТН-302 (50 мг/кг, внутрибрюшное введение) в отношении поджожных ксенографтов клеточных культур плоскоклеточного РП OE21 и АП OE19 [24]. Показана значительная задержка роста опухоли в карциномах OE21 (p = 0,02) и OE21 (p = 0,03) при комбинированном лечении ТН-302 с лучевой терапией по сравнению только с лучевой терапией. Модели, полученные путем подкожной имплантации раковых клеточных линий, не обладали интравитальной гетерогенностью клонов клеток, свойственной опухоли человека, по причине чего данные дохлинических исследований могут значительно расходиться с результатами последующих клинических испытаний [12].

В другой работе показано, что комбинация РИКх-селективного ингибитора CYH33 и радиационного излучения синергически подавляла рост подкожных ксенотрансплантатов, полученных от пациентов с плоскоклеточным РП [25]. Несмотря на то, что подкожные ксенотрансплантаты, созданные с использованием фрагментов человеческой опухоли, сохраняли гетерогенность клонов и гемоглобина, количества эритроцитов и лейкоцитов в крови и повышению деградации белковых молекул в процессе некротизации опухоли. Таким образом, без последующего введения комбинированных радиационных факторов, превышающих 18 Гр, приводило к снижению содержания белка в крови на протяжении эксперимента, общий анализ крови и анализ биохимических показателей позволяет сделать вывод о негативном дозозависимом эффекте лучевой терапии на организм животного. Суммарная доза, превышающая 18 Гр, приводила к снижению кровотока в опухоли, чего недостаточно для оценки лучевого воздействия, что позволило нам изучить влияние лучевого воздействия на рост ксенографтов и определить его дозозависимый эффект. В ранее опубликованных исследованиях PDX-модели различных опухолей человека изучали как модели метастазирования и не использовали для оценки лучевого воздействия [27].

ВЫВОДЫ

Средние объемы опухолевых узлов PDX-моделей опытных групп с разовой дозой облучения 6, 8 и 10 Гр статистически значимо отличались (p < 0,01) от аналогичных показателей контрольной группы контроля после каждой из трех процедур лучевого воздействия. При этом показатель ТРО на момент окончания эксперимента в четырех опытных группах ортотопических PDX-моделей АП человека составил 46,4, 88,4, 89,3 и 90,7% соответственно. Несмотря на то, что доза радиации, примененная в экспериментах, вызывала у животных выраженные изменения в динамике их веса, общий анализ крови и анализ биохимических показателей позволяет сделать вывод о негативном дозозависимом эффекте лучевой терапии на организм животного. Суммарная доза, превышающая 18 Гр, приводила к снижению кровотока в опухоли, чего недостаточно для оценки лучевого воздействия на организм животного. Суммарная доза, превышающая 18 Гр, приводила к снижению кровотока в опухоли, чего недостаточно для оценки лучевого воздействия на организм животного.

Литература

1. Градицкая И. А., Тряницин А. А., Захходра Ф. О., Маликова О. А., Иванов С. М., Кравец О. А. и др. Рак пищевода: эпидемиология, факторы риска и методы диагностики. Онкологический журнал: лучевая диагностика, лучевая терапия. 2020; 3 (1): 69–76.
2. Ho ALK, Smyth EC. A global perspective on esophageal cancer: factors, incidence and survival, and their relation to treatment and outcomes. Health and quality of life. 2020; 15: 1–14. DOI: 10.1038/s41562-020-0466-3.
3. Enzinger PC, Mayer RJ. Esophageal cancer. New England Journal of Medicine. 2003; 349 (23): 2241–52.
4. Lin EW, Karakasheva TA, Hicks PO, Bass AJ, Rustgi AK. The tumor microenvironment in esophageal cancer. Oncogene. 2016; 35 (41): 5337–49.
5. Аксель Е. М. Статистика злокачественных новообразований желудочно-кишечного тракта. Сибирский онкологический журнал. 2017; 16 (3): 5–11. DOI: 10.21294/1814-4861-2017-3-5-11
6. Кит О. И. Нейроэндокринные, клинические и морфологические аспекты рака желудка. Новочеркасск: Лик, 2014; 221 с.
7. Ishihara R, Oyama T, Abe S, Takahashi H, Ono H, Fujisaki J et al. Risk of metastasis in adenocarcinoma of the esophagus: a multicenter retrospective study in a Japanese population. Journal of gastroenterology. 2017; 52 (7): 800–8. DOI: 10.1007/s00535-016-1275-0.
8. Mahoney JL, Condron R. E. Adenocarcinoma of the esophagus. Annals of surgery. 1987; 205 (5): 567.
9. Урмонов У. Б., Добродеев А. Ю., Афанасьев С. Г., Гладилина И. А., Трякин А. А., Захидова Ф. О., Малихова О. А., Иванов С. М., Кравец О. А. и др. Рак пищевода: эпидемиология, факторы риска и методы диагностики. Онкологический журнал: лучевая диагностика, лучевая терапия. 2020; 3 (1): 69–76.
10. Hidalgo M, Amant F, Biankin AV, Budinsky A, Caldas C, et al. Patient-derived xenograft models: an emerging platform for clinical translation. Nature reviews clinical oncology. 2019; 16 (4): 78–84. DOI: 10.1038/s41571-018-0047-7.
11. Hidalgo M, Amant F, Biankin AV, Budinsky A, Caldas C, et al. Patient-derived xenograft models: an emerging platform for clinical translation. Nature reviews clinical oncology. 2019; 16 (4): 78–84. DOI: 10.1038/s41571-018-0047-7.
References

1. Gladilina IA, Tryakin AA, Zahidova FO, Malnova OA, Ivanov SM, Kravec OA, i dr. Rak pishchevoda: jepidemiologija, faktory riska i metodi diagnostiki. Onkologicheskij zhurnal: luchevaja diagnostika, luchevaja terapija. 2020; 3 (1): 69–76. Russian.

2. Ho ALK, Smyth EC. A global perspective on esophageal cancer: two diseases in one. The Lancet Gastroenterology & Hepatology. 2020; 5 (6): 521–2. DOI: 10.1016/s2468-1253(20)30047-9.

3. Choi YY, Lee JE, Kim H, Sim MH, Kim K.-K., Lee G, et al. Establishment and characterisation of patient-derived xenografts as paracrine models for gastric cancer. Sci Rep. 2016; 6: 22172. DOI: 10.1038/srep22172.

4. Hoffman RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer. 2015; 15: 451–2. DOI: 10.1038/nrc3972.

5. Tétreault MP. Esophageal cancer: insights from mouse models. Cancer growth and metastasis. 2015; 8: 37–46. DOI: 10.4137/CGM.S21218.

6. Wilding JL, Bodmer WF. Cancer Cell Lines for Drug Discovery and Development. Cancer Res. 2014; 74 (9): 2377–84. DOI: 10.1158/0008-5472.CAN-13-2977.

7. Peng P, Pimentel MML, Santos FD, Praxedes ÉA, Brito PD, Lima MA, Leis ICNG, Macedo MF, Bezerra MB. Hematological and biochemical profile of BALB/c nude and C57BL/6 SCID female mice after ovarian xenograft. An Acad Bras Cienc. 2018; 90 (4): 3941–48. DOI: 10.1590/0001-376520180180586.

8. Zhukova GV, Shihlyarova AI, Sagakyanc AB, Protasova TP. O расширении вариантов использования мышей BALB/c nude для экспериментального изучения злокачественных опухолей человека in vivo. Южно-Российский онкологический журнал. 2020; 1 (2): 28–35. Russian.

9. Szadvari I, Krizanova O, Babula P. Athymic nude mice as an experimental model for cancer treatment. Physiol Res. 2016; 65 (Suppl 4): S414–53. DOI: 10.33549/physiolres.933526.

10. Pompili L, Porru M, Caruso C, Birocco A, Leonetti C. Patient-derived xenografts: a relevant preclinical model for drug development. J Exp Clin Cancer Res. 2016; 35 (1): 189. DOI: 10.1186/s13046-016-0462-4.

11. Choi YY, Lee JE, Kim H, Sam MH, Kim K-K., Lee G, et al. Establishment and characterisation of patient-derived xenografts as paracrine models for gastric cancer. Sci Rep. 2016; 6: 22172. DOI: 10.1038/srep22172.

12. Hoffman RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer. 2015; 15: 451–2. DOI: 10.1038/nrc3972.

13. Hoffmann OP. Competitive models in preclinical research for precision oncology. Laboratory Animal Research. 2020; 36: 10.17650/1726-9784-2017-16-3-6-13. DOI: 10.17650/1726-9784-2017-16-3-6-13.

14. Szadvari I, Krizanova O, Babula P. Athymic nude mice as an experimental model for cancer treatment. Physiol Res. 2016; 65 (Suppl 4): S414–53. DOI: 10.33549/physiolres.933526.

15. Pompili L, Porru M, Caruso C, Birocco A, Leonetti C. Patient-derived xenografts: a relevant preclinical model for drug development. J Exp Clin Cancer Res. 2016; 35 (1): 189. DOI: 10.1186/s13046-016-0462-4.

16. Choi YY, Lee JE, Kim H, Sim MH, Kim K-K., Lee G, et al. Establishment and characterisation of patient-derived xenografts as paracrine models for gastric cancer. Sci Rep. 2016; 6: 22172. DOI: 10.1038/srep22172.

17. Hoffman RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer. 2015; 15: 451–2. DOI: 10.1038/nrc3972.

18. Hoffmann OP. Competitive models in preclinical research for precision oncology. Laboratory Animal Research. 2020; 36: 10.17650/1726-9784-2017-16-3-6-13. DOI: 10.17650/1726-9784-2017-16-3-6-13.
20. Tétreault MP. Esophageal cancer: insights from mouse models. Cancer growth and metastasis. 2015; 8: 37–46. DOI: 10.4137/CGM.S21218.

21. Bhargava S, Hotz B, Buhr HJ, Hotz HG. An orthotopic nude mouse model for preclinical research of gastric cardia cancer. Int J Colorectal Dis. 2009; 24: 31–9. DOI: 10.1007/s00384-008-0584-z.

22. Rostovcev NM, Kotljarov NA. Sravnitel’nyj analiz jeffektivnosti luchevogo i fotodinamicheskogo lechenija jeksperimental’noj opuholi. Pediatriceskij vestnik Juzhnogo Urala. 2015; 1: 29–32. Russian.

23. Kolesnikov EN, Kit SO, Lukbanova EA, Goncharova AS, Maksimov AYu, avtory. Federal’noe gosudarstvennoe budyshetnoe uchrezhdenie ‘Rostovskij nauchno-issledovatel’skij onkologicheskij institut’ Ministerstva zdravoohranenija Rossisskoj Federacii, patentoobladatel’. Sposob ortotopicheskoy transplantacii kultury opuholevyh kletok pishhevoda cheholoveka v shejnyj otdel pishhevoda immunodeficitnyh myshej. Patent RF 2713798. G09B 23/28. Zajavka # 2019115016 ot 30.04.19. Russian.

24. Spiegelberg L, van Hoof SJ, Biemans R, Lieuwes NG, Marcus D, Niemars R, et al. Epoosfamide sensitizes esophageal carcinomas to radiation without increasing normal tissue toxicity. Radiother Oncol. 2019; 141: 247–55. DOI: 10.1016/j.radonc.2019.06.034.

25. Shi J-J, Xing H, Wang YX, Zhang X, Zhan G-M, Geng M-Y, et al. PI3Kα inhibitors sensitize esophageal squamous cell carcinoma to radiation by abrogating survival signals in tumor cells and tumor microenvironment. Cancer Letters. 2019; 459: 145–55. DOI: 10.1016/j.canlet.2019.05.040.

26. Teicher BA, Andrews PA, editors. Anticancer Drug Development Guide. Preclinical screening, clinical trials, and approval. 2nd ed. Totowa, New Jersey: Humana Press; 2004. DOI: 10.1007/978-1-59259-739-0.

27. Treshhalina EM. Immunodeficientnye myshi Balb/c nude i modelirovanie razlichnyh variantov opuholevogo rosta dlya doklinicheskix issledovanij. RBZh. 2017; 16 (3): 6–13. DOI: 10.17850/1726-9784-2017-16-3-6-13. Russian.