Double parton scattering
What is that? Why bother? What do we know?

M. Diehl

Deutsches Elektronen-Synchroton DESY

Siegen, 24 November 2014
Hadron-hadron collisions

- standard description based on factorization formulae

\[
\text{cross sect} = \text{parton distributions} \times \text{parton-level cross sect}
\]

example: \(Z\) production

\[
pp \rightarrow Z + X \rightarrow \ell^+ \ell^- + X
\]

- most common: integrate over net transv. momentum \(q_T\) of particles produced in parton-level scattering (vector boson for Drell-Yan)

\(\leadsto k_T\) integrated (collinear) parton distributions

- for selected proc’s (Drell-Yan, Higgs prod’n) also have theory description with measured \(q_T\)

\(\leadsto k_T\) dependent (unintegrated) parton distributions (TMDs)
Hadron-hadron collisions

- standard description based on factorization formulae

\[\text{cross sect} = \text{parton distributions} \times \text{parton-level cross sect} \]

example: \(Z \) production

\[pp \rightarrow Z + X \rightarrow \ell^+\ell^- + X \]

- factorization formulae are for inclusive cross sections \(pp \rightarrow Y + X \)
 where \(Y = \) produced in parton-level scattering, specified in detail
 \(X = \) summed over, no details
Hadron-hadron collisions

- standard description based on factorization formulae

\[
\text{cross sect} = \text{parton distributions} \times \text{parton-level cross sect}
\]

example: \(Z \) production

\[
pp \rightarrow Z + X \rightarrow \ell^+ \ell^- + X
\]

- factorization formulae are for inclusive cross sections \(pp \rightarrow Y + X \)

where \(Y \) = produced in parton-level scattering, specified in detail

\(X \) = summed over, no details

- also have interactions between “spectator” partons

their effects cancel in inclusive cross sections \text{thanks to unitarity} but they affect the final state \text{(namely} \(X \))
Multiparton interactions (MPI)

- secondary (and tertiary etc.) interactions generically take place in hadron-hadron collisions
- predominantly low-p_T scattering
 - \rightsquigarrow underlying event (UE)
- at high collision energy (esp. at LHC) can be hard
 - \rightsquigarrow multiple hard scattering
- many studies:
 - theory: phenomenology, theoretical foundations (1980s, recent activity)
 - experiment: ISR, SPS, HERA (photoproduction), Tevatron, LHC
 - Monte Carlo generators: Pythia, Herwig++, Sherpa, ...
- and ongoing activity: see e.g. the MPI@LHC workshop series
 - http://indico.cern.ch/event/305160
Relevance for LHC

example: \(pp \rightarrow H + Z \rightarrow b\bar{b} + Z \)

- multiple interactions contribute to signal and background

same for \(pp \rightarrow H + W \rightarrow b\bar{b} + W \)

study for Tevatron: Bandurin et al, 2010
Multiparton interactions

- phenomenology based on simple, physically intuitive formula

\[
\text{cross sect} = \text{multiparton distributions} \times \text{parton-level cross sect's}
\]

and ansatz

\[
\text{multiparton distribution} = \text{factor} \times \prod \text{single-parton distributions}
\]

Paver, Treleani 1982, 1984; Mekhfi 1985, ...

also underlies implementation in many event generators

- questions:
 - to which extent can these formulae be derived in QCD?
 - where and how do they need to be modified?
 - can factorization theorems for multiparton interactions be formulated and proven?

- no definitive answers to all points, but some results and identified problems

- ultimate goal: improved theory as a guide for phenomenology
Space-time structure

- Large (plus or minus) momenta of partons $x_i p$, $\bar{x}_i \bar{p}$ fixed by final state exactly as for single hard scattering
- Transverse parton momenta not the same in amplitude A and in A^*
 cross section $\propto \int d^2 r \, F(x_i, k_i, r) F(\bar{x}_i, \bar{k}_i, -r)$
- Fourier trf. to impact parameter: $F(x_i, k_i, r) \to F(x_i, k_i, y)$
 cross section $\propto \int d^2 y \, F(x_i, k_i, y) F(\bar{x}_i, \bar{k}_i, y)$
- Interpretation: $y = \text{transv. dist. between two scattering partons}$
 $\quad = \text{equal in both colliding protons}$
Cross section formula

\[
\frac{d\sigma_{\text{double}}}{dx_1 \, d\bar{x}_1 \, dx_2 \, d\bar{x}_2} = \frac{1}{C} \hat{\sigma}_1 \hat{\sigma}_2 \int d^2y \, F(x_1, x_2, y) F(\bar{x}_1, \bar{x}_2, y)
\]

- \(C \) = combinatorial factor
- \(\hat{\sigma}_i \) = parton-level cross sections
- \(F(x_1, x_2, y) \) = double parton distribution (DPD)
- \(y \) = transv. distance between partons

- follows from Feynman graphs and hard-scattering approximation
 no semi-classical approximation required
- can make \(\hat{\sigma}_i \) differential in further variables (e.g. for jet pairs)
- can extend \(\hat{\sigma}_i \) to higher orders in \(\alpha_s \)
 get usual convolution integrals over \(x_i \) in \(\hat{\sigma}_i \) and \(F \)

Paver, Treleani 1982, 1984; Mekhfi 1985, . . ., MD, Ostermeier, Schäfer 2012
Cross section formula

- for measured transv. momenta

\[
\frac{d\sigma_{\text{double}}}{dx_1 \, d\bar{x}_1 \, d^2 q_1 \, dx_2 \, d\bar{x}_2 \, d^2 q_2} = \frac{1}{C} \hat{\sigma}_1 \hat{\sigma}_2 \\
\times \left[\prod_{i=1}^{2} \int d^2 k_i \, d^2 \bar{k}_i \, \delta(q_i - k_i - \bar{k}_i) \right] \int d^2 y \, F(x_i, k_i, y) \, F(\bar{x}_i, \bar{k}_i, y)
\]

- \(F(x_i, k_i, y) = k_T \) dependent two-parton distribution

- has structure of a Wigner function:
 - \(k_1, k_2 = \) transv. parton momenta averaged over \(A \) and \(A^* \)
 - \(y = \) transv. distance between partons averaged over \(A \) and \(A^* \)
Cross section formula

- for measured transv. momenta

\[
\frac{d\sigma_{\text{double}}}{dx_1 d\bar{x}_1 d^2q_1 dx_2 d\bar{x}_2 d^2q_2} = \frac{1}{C} \hat{\sigma}_1 \hat{\sigma}_2 \\
\times \left[\prod_{i=1}^{2} \int d^2k_i d^2\bar{k}_i \delta(q_i - k_i - \bar{k}_i) \right] \int d^2y F(x_i, k_i, y) F(\bar{x}_i, \bar{k}_i, y)
\]

- \(F(x_i, k_i, y) = k_T\) dependent two-parton distribution

- operator definition as for TMDs

schematically:

\[
F(x_i, k_i, y) = \mathcal{FT}_{z_i \rightarrow (x_i, k_i)} \langle p| \bar{q} \left(-\frac{1}{2}z_2 \right) \Gamma_2 q \left(\frac{1}{2}z_2 \right) \bar{q} \left(y - \frac{1}{2}z_1 \right) \Gamma_1 q \left(y + \frac{1}{2}z_1 \right) |p\rangle
\]

- essential for studying factorization, scale dependence, etc.

- similar def for collinear distributions \(F(x_i, y)\)

renormalized bilinear op’s \(\bar{q} \Gamma_i q\) at different transv. positions

⇒ not a twist-four operator but product of two twist-two operators
Power behavior: single versus double hard scattering

- from scattering formulae readily find

\[s \frac{d\sigma}{dx_1 \, d\bar{x}_1 \, d^2q_1 \, dx_2 \, d\bar{x}_2 \, d^2q_2} \sim \frac{1}{Q^2 \Lambda^2} \]

\[Q^2 \sim q_i^2, \, \Lambda^2 \sim \text{GeV} \]

for both

\[\Rightarrow \text{double scattering not power suppressed} \]
Power behavior: single versus double hard scattering

- from scattering formulae readily find

\[
 s \frac{d\sigma}{dx_1 d\bar{x}_1 d^2 q_1 dx_2 d\bar{x}_2 d^2 q_2} \sim \frac{1}{Q^2 \Lambda^2}
\]

\(Q^2 \sim q_i^2, \Lambda^2 \sim \text{GeV}\)

- double scattering not power suppressed

- but if integrate over \(q_1\) and \(q_2\) then

 single: \(s \frac{d\sigma}{dx_1 d\bar{x}_1 dx_2 d\bar{x}_2} \sim 1\) since \(\int d^2(q_1 + q_2) \sim \Lambda^2\)

 and \(\int d^2(q_1 - q_2) \sim Q^2\)

 double: \(s \frac{d\sigma}{dx_1 d\bar{x}_1 dx_2 d\bar{x}_2} \sim \frac{\Lambda^2}{Q^2}\) since \(\int d^2q_1 \int d^2q_2 \sim \Lambda^4\)

 i.e. single hard scattering has larger phase space for transv. momenta
Power behavior: single versus double hard scattering

- from scattering formulae readily find

\[
s \frac{d\sigma}{dx_1 d\bar{x}_1 d^2q_1 dx_2 d\bar{x}_2 d^2q_2} \sim \frac{1}{Q^2 \Lambda^2}
\]

\[Q^2 \sim q_i^2, \, \Lambda^2 \sim \text{GeV}\]

for both

\[s d\sigma \] \[dx_1 d\bar{x}_1 dx_2 d\bar{x}_2 d^2q_1 \]

and

\[d\sigma \] \[dx_1 d\bar{x}_1 d^2q_1 \]

⇒ double scattering not power suppressed

- if integrate only over \(q_1 + q_2\) then no power suppression yet

\[
s \frac{d\sigma}{dx_1 d\bar{x}_1 dx_2 d\bar{x}_2 d^2(q_1 - q_2)} \sim \frac{1}{Q^2}
\]
Energy dependence

\[
\frac{sd\sigma}{\prod_{i=1}^{2} dx_i d\bar{x}_i d^2q_i} \quad \frac{sd\sigma}{\prod_{i=1}^{2} dx_i d\bar{x}_i}
\]

- interference between single and double scattering:
 - leading power when differential in \(q_i \)
 - power suppressed when \(\int d^2q_i \), twist-three parton distributions

- at small \(x_1 \sim x_2 \sim x \) expect
 - single scattering \(\propto x^{-4-2\lambda} \) with \(xf(x) \sim x^{-\lambda} \)
 - double scattering \(\propto x^{-4-4\lambda} \)
 - interference? how do three-particle correlators behave for small \(x \)?
Pocket formula

- if two-parton density factorizes as
 \[F(x_1, x_2, y) = f(x_1) f(x_2) G(y) \]
 where \(f(x_i) \) = usual PDF

- if assume same \(G(y) \) for all parton types
 then cross sect. formula turns into
 \[
 \frac{d\sigma_{\text{double}}}{dx_1 \, d\bar{x}_1 \, dx_2 \, d\bar{x}_2} = \frac{1}{C} \frac{d\sigma_1}{dx_1 \, d\bar{x}_1} \frac{d\sigma_2}{x_2 \, \bar{x}_2} \frac{1}{\sigma_{\text{eff}}}
 \]
 with \(1/\sigma_{\text{eff}} = \int d^2 y \, G(y)^2 \)
 \(\sim \) scatters are completely independent

- underlies bulk of phenomenological estimates

- pocket formula fails if any of the above assumptions is invalid
 and if further terms must be added to original expression of cross sect.
Experimental investigations (only a sketch)

- further studies:
 - double charm production ($c\bar{c}c\bar{c}$)
 - $J/\Psi + J/\Psi$, $J/\Psi + C$, $C + C$ with $C = D^0, D^+, D_s^+, \Lambda_c^+$
 - LHCb 2011, 2012; CMS 2014
 - $W + J/\Psi$
 - ATLAS 2014
Parton correlations

- if neglect correlations between two partons

\[F(x_1, x_2, y) = \int d^2b \ f(x_2, b) \ f(x_1, b + y) \]

where \(f(x_i, y) \) = impact parameter dependent single-parton density

and if neglect correlations between \(x \) and \(y \) of single parton

\[f(x_i, y) = f(x_i)F(y) \]

with same \(F(y) \) for all partons

then \(G(y) = \int d^2b \ F(b) \ F(b + y) \)
Parton correlations

- if neglect correlations between two partons

\[F(x_1, x_2, y) = \int d^2 b \ f(x_2, b) f(x_1, b + y) \]

where \(f(x_i, y) = \) impact parameter dependent single-parton density

and if neglect correlations between \(x \) and \(y \) of single parton

\[f(x_i, y) = f(x_i) F(y) \]

with same \(F(y) \) for all partons

then \[G(y) = \int d^2 b \ F(b) F(b + y) \]

- for Gaussian \(F(y) \) with average \(\langle y^2 \rangle \)

\[\sigma_{\text{eff}} = 4\pi\langle y^2 \rangle = 41 \text{ mb} \times \langle y^2 \rangle / (0.57 \text{ fm})^2 \]

determinations of \(\langle y^2 \rangle \) from GPDs and form factors: \((0.57 \text{ fm} - 0.67 \text{ fm})^2 \)
is \(\gg \sigma_{\text{eff}} \sim 5 \) to 20 mb from experimental extractions

if \(F(y) \) is Fourier trf. of dipole then 41 mb \(\rightarrow 36 \) mb

- complete independence between two partons is disfavored

or pocket formula misses important contributions to cross section

cf. Calucci, Treleani 1999; Frankfurt, Strikman, Weiss 2003-04; Blok et al 2013
Correlations involving x

- $F(x_1, x_2, y) = f(x_1) f(x_2) G(y)$ cannot hold for all x_1, x_2
- most obvious: energy conservation $\Rightarrow x_1 + x_2 \leq 1$
 - often used to suppress region of large $x_1 + x_2$:
 $$F(x_1, x_2, y) = (1 - x_1 - x_2)^n f(x_1) f(x_2) G(y)$$
- significant $x_1 - x_2$ correlations found in constituent quark model
 - Rinaldi, Scopetta, Vento: arXiv:1302.6462

![Plot showing the function $F_{uu}(x_1, x_2, y)/f_u(x_2)$ for different values of x_2.](image)

- plot shows $\int d^2y \frac{F_{uu}(x_1, x_2, y)}{f_u(x_2)}$ is x_2 independent if factorization holds
- unknown: size of correlations when one or both of x_1, x_2 small
Correlations involving x and y

- $f(x, y)$ related to generalized parton distribution (GPD) by Fourier transform of $\text{GPD} \sim \langle p'|\bar{q}\Gamma q|p\rangle$ w.r.t. $p' - p$

- HERA results on $\gamma p \rightarrow J/\Psi p$ give

$$\langle b^2 \rangle \propto \text{const} + 4\alpha' \log(1/x)$$

with $\alpha' \approx 0.15 \text{GeV}^{-2} = (0.08 \text{fm})^2$ for gluons at $x \sim 10^{-3}$

\rightarrow weak but nonzero correlation between x and b
Correlations involving x and y

- $f(x, y)$ related to generalized parton distribution (GPD)
 - by Fourier transform of $\text{GPD} \sim \langle p' | \bar{q} \Gamma q | p \rangle$ w.r.t. $p' - p$
 - lattice simulations \rightarrow strong decrease of $\langle b^2 \rangle$ with x above ~ 0.1
 - seen by comparing moments $A_{n0}(t) = \int dx x^{n-1} H(x, t)$

$$t = -(p' - p)^2$$

\[m_s = 498\text{MeV}, 20^3, u+d \]

LHCP Collaboration, in Ph. Hägler, arXiv:0912.4583
Correlations involving x and y

- $f(x, y)$ related to generalized parton distribution (GPD) by Fourier transform of $\text{GPD} \sim \langle p' | \bar{q} \Gamma q | p \rangle$ w.r.t. $p' - p$

- indirect determination:

 MD, Th Feldmann, R Jakob, P Kroll 2004
 MD, P Kroll 2013

fit ansatz $H^{q-\bar{q}}(x, t) = q_{\text{val}}(x) \exp[tf_q(x)]$

to e.m. form factors of proton and neutron

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{correlations}
\end{figure}

\begin{itemize}
 \item u-ubar
 \item d-dbar
\end{itemize}
Correlations involving x and y

- $f(x, y)$ related to generalized parton distribution (GPD) by Fourier transform of $\text{GPD} \sim \langle p'|\bar{q}\Gamma q|p\rangle$ w.r.t. $p' - p$

- Expect similar correlations between x_i and b in two-parton dist’s even if $F(x_1, x_2, y) \approx \int d^2b f(x_2, b) f(x_1, b + y)$ does not hold

- If interaction 2 produces high-mass system
 \rightarrow have large x_2, \bar{x}_2
 \rightarrow smaller y \rightarrow more central collision
 \rightarrow secondary interactions enhanced

Frankfurt, Strikman, Weiss 2003
study in Pythia 8: Corke, Sjöstrand 2011
Spin correlations

\[F(x_i, k_i, y) = \mathcal{F} \mathcal{T} \langle p| \bar{q}\left(-\frac{1}{2}z_2\right) \Gamma_2 q\left(\frac{1}{2}z_2\right) \bar{q}(y - \frac{1}{2}z_1) \Gamma_1 q(y + \frac{1}{2}z_1)|p\rangle \]

- polarizations of two partons can be correlated even in unpolarized target already pointed out by Mekhfi (1985)
 - quarks: longitudinal and transverse pol., e.g.
 \[F_{\Delta q\Delta q} : \Gamma_1 = \Gamma_2 = \frac{1}{2} \gamma^+ \gamma_5 \quad \Leftrightarrow \quad q_1^\uparrow q_2^\uparrow + q_1^\downarrow q_2^\downarrow - q_1^\uparrow q_2^\downarrow - q_1^\downarrow q_2^\uparrow \]
 - gluons: longitudinal and linear pol.
- can be included in factorization formula
 - e.g. \[F_{\bar{q}g} F_{qg} \sigma(q\bar{q} \rightarrow Z) \sigma(gg \rightarrow 2\,\text{jets}) + F_{\Delta q\Delta g} F_{\Delta q\Delta g} \Delta \sigma(q\bar{q} \rightarrow Z) \Delta \sigma(gg \rightarrow 2\,\text{jets}) \]

- if spin correlations are large \(\rightarrow \) large effects for rate and final state distributions of double hard scattering

T. Kasemets, MD 2012; A. Manohar, W. Waalewijn 2011
How large are spin correlations in the proton?

- polarized DPDs fulfil positivity constraints analogous to Soffer bound for usual PDFs, e.g.

\[
F_{qq} - F_{\Delta q\Delta q} \geq 2|F_{\delta q\delta q}|
\]

\(q = \text{unpol.}, \Delta q = \text{long.}, \delta q = \text{transv.};\) schematic notation

- large effects expected in valence quark region

 toy model: \(SU(6)\) symmetric proton wave function

 spin-flavor part: \(\frac{1}{\sqrt{6}} \left(|u^+u^-d^+\rangle + |u^-u^+d^-\rangle - 2|u^+u^+d^-\rangle \right)\)

gives

\[
\Delta u/u = 2/3 \quad \Delta d/d = -1/3
\]

\[
F_{\Delta u\Delta u}/F_{uu} = 1/3 \quad F_{\Delta u\Delta d}/F_{ud} = -2/3
\]

- large correlations found in bag model study

 Chang, Manohar, Waalewijn 2012

- unknown: size of correlations when one or both of \(x_1, x_2\) small
Color structure

- quark lines in amplitude and its conjugate can couple to color singlet or octet:

\[1^F \rightarrow (\bar{q}_2 \mathbb{1} q_2) \ (\bar{q}_1 \mathbb{1} q_1) \]
\[8^F \rightarrow (\bar{q}_2 t^a q_2) \ (\bar{q}_1 t^a q_1) \]

- \(8^F\) describes color correlation between quarks 1 and 2 is essentially unknown (no probability interpretation as a guide)

- for two-gluon dist's more color structures: 1, 8\(_S\), 8\(_A\), 10, 10\(_\bar{1}\), 27

- for \(k_T\) integrated distributions: color correlations suppressed by Sudakov logarithms

\[\ldots \text{but not necessarily negligible for moderately hard scales} \]

Manohar, Waalewijn arXiv:1202:3794 used SCET methods

\[U = \text{Sudakov factor, } Q = \text{hard scale} \]
Behavior at small interparton distance

- for \(y \ll 1/\Lambda \) in perturbative region \(F(x_1, x_2, y) \) dominated by graphs with splitting of single parton

- find strong correlations in \(x_1, x_2 \), spin and color between two partons e.g. 100% correlation for longitudinal pol. of \(q \) and \(\bar{q} \)

- can compute short-distance behavior:

\[
F(x_1, x_2, y) \sim \frac{1}{y^2} \text{ splitting fct } \otimes \text{ usual PDF}
\]
Scale evolution for collinear distributions without color correlation

- if define two-parton distributions as operator matrix elements in analogy with usual PDFs

\[F(x_1, x_2, y; \mu) \sim \langle p | O_1(0; \mu) O_2(y; \mu) | p \rangle \quad f(x; \mu) \sim \langle p | O(0; \mu) | p \rangle \]

where \(O(y; \mu) = \) twist-two operator renormalized at scale \(\mu \)

- \(F(x_i, y) \) for \(y \neq 0 \):

 separate DGLAP evolution for partons 1 and 2

\[\frac{d}{d \log \mu} F(x_i, y) = P \otimes x_1 F + P \otimes x_2 F \]

 two independent parton cascades

- \(\int d^2 y F(x_i, y) \):

 extra term from \(2 \to 4 \) parton transition

 since \(F(x_i, y) \sim 1/y^2 \)

Kirschner 1979; Shelest, Snigirev, Zinovev 1982

Gaunt, Stirling 2009; Ceccopieri 2011

- which evolution eq. is relevant for double hard scattering?
Deeper problems with the splitting graphs

- contribution from splitting graphs in cross section gives divergent integrals
 \[\int d^2 y \ F(x_1, x_2, y) F(\bar{x}_1, \bar{x}_2, y) \sim \int dy^2 / y^4 \]

- double counting problem between double scattering with splitting and single scattering at loop level

 MD, Ostermeier, Schäfer 2011; Gaunt, Stirling 2011; Gaunt 2012
 Blok, Dokshitzer, Frankfurt, Strikman 2011; Ryskin, Snigirev 2011, 2012
 same problem for jets: Cacciari, Salam, Sapeta 2009

- possible solution:
 subtract splitting contribution from two-parton dist’s when \(y \) is small
 will also modify their scale evolution; remains to be worked out
Deeper problems with the splitting graphs

- contribution from splitting graphs in cross section gives divergent integrals $\int d^2y \; F(x_1, x_2, y) F(\bar{x}_1, \bar{x}_2, y) \sim \int dy^2 / y^4$
- also have graphs with single PDF for one and double PDF for other proton

What is double parton scattering?

Blok et al, 2011-13; Gaunt 2012
Sudakov factors

- for k_T dependent distributions, i.e. measured q_i:
 - Sudakov logarithms for all color channels
 - close relation with physics of parton showers

- for double Drell-Yan process
 - can adapt Collins-Soper-Sterman formalism for single Drell-Yan
 - include and resum Sudakov logs in k_T dependent parton dist’s
 - MD, D Ostermeier, A Schäfer 2011

 for jet production inherit problems of usual TMD factorization

- at leading double log accuracy: singlet and octet dist’s 1F and 8F
 - have same Sudakov factor as in single scattering

- beyond double log: Sudakov factors mix singlet and octet dist’s
Factorization?

- open problem (for TMD and collinear formulations): exchange of gluons in Glauber region

Not discussed in this talk:

- multiparton interactions in pA collisions
- small-x approach connection with diffraction, AGK rules ridge effect in pp and pA

Bartels, Salvadore, Vacca 2008
Dumitru et al 2011; ...
Conclusions

▶ multiple hard scattering is not generically suppressed in sufficiently differential cross sections
▶ current phenomenology relies on strong simplifications
▶ have several elements for a formulation of factorization but important open questions still unsolved
 ● crosstalk with single hard scattering at small distances closely related with evolution equations (1 \rightarrow 2 parton splitting)
 ● Glauber gluon exchange
▶ double hard scattering depends on detailed hadron structure including correlation and interference effects
 ● corresponding nucleon matrix elements largely unknown theoretical activity only started
 ● transverse distance between partons essential
▶ subject remains of high interest for
 ● understanding high-multiplicity final states at LHC
 ● study of hadron structure in its own right