The Supersingular Locus of Unitary Shimura Varieties with Exotic Good Reduction

Dissertation
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

von
M. Sc. Haifeng Wu
aus Tangshan

vorgelegt bei der Fakultät für
Mathematik der Universität
Duisburg-Essen (Campus Essen)

Essen 2016
Gutachter
Prof. Dr. Ulrich Görtz
Prof. Dr. Massimo Bertolini
Prof. Dr. Michael Rapoport

Datum der mündlichen Prüfung
07. September 2016
Contents

1 Introduction

2 Preliminaries
2.1 Notations
2.2 Hermitian forms over local fields
2.3 Group data
2.3.1 Affine root systems and Iwahori-Weyl groups
2.3.2 Bruhat decomposition and μ-admissible set
2.3.3 Lattice models for Bruhat-Tits buildings and parahoric subgroups

3 Rapoport-Zink spaces and affine Deligne-Lusztig varieties
3.1 Unitary p-divisible groups
3.2 Moduli space of p-divisible groups
3.3 Local PEL datum
3.4 Kottwitz invariants of quasi-isogenies
3.5 Affine Deligne-Lusztig varieties

4 Set structure of N
4.1 Deligne-Lusztig varieties
4.2 The group-theoretic approach
4.3 Crucial lemma
4.4 The set structure of Bruhat-Tits stratification

5 Scheme-theoretic structure of N
5.1 The closed and open Bruhat-Tits strata
5.2 An A-windows-theory interlude
5.3 The Bruhat-Tits strata as Deligne-Lusztig varieties
5.4 The Bruhat-Tits stratification

6 The supersingular locus of the unitary Shimura varieties
6.1 The integral model
6.2 The supersingular locus
Chapter 1

Introduction

We are interested in the geometry of the basic loci of Shimura varieties, which may have important applications in the Langlands program and Kudla program, for example, see the work of M. Harris & R. Taylor in [HT01] and S. Kudla & M. Rapoport in [KR11] & [KR14]. The basic locus of a Shimura variety is the unique closed and, in some sense, the most interesting Newton stratum. However, usually the geometric structure of the basic locus cannot be described explicitly, for example, we even do not know the dimension of the basic locus in the Siegel moduli spaces with Iwahori level structure in the odd case (cf. [GY12 Theorem 1.1]). Many mathematicians contributed to the general problem of giving a concrete description of basic loci of Shimura varieties. For the work in this area before 2005, we refer to the introduction of [Vol10]. Let us review the work after 2005.

- I. Vollaard & T. Wedhorn study the supersingular locus of the reduction of the Shimura variety for GU(1, n − 1) at an inert prime p in [VW11].
- U. Görtz & C.-F. Yu study the supersingular locus of the Siegel modular varieties with Iwahori level structure \(A_{g,1} \) in [GY12]. They show that if \(g \) is even, the dimension of the supersingular locus is \(g^2/2 \). If \(g \) is odd, they give an estimate of the dimension of the supersingular locus. And in any case, the supersingular locus is not equidimensional if \(g \geq 2 \).
- M. Rapoport, U. Terstiege & S. Wilson study the supersingular locus of the Shimura variety for GU(1, n − 1) over a ramified prime with the parahoric level structure given by a selfdual lattice in [RTW14].
- B. Howard & G. Pappas study the supersingular locus of the Shimura variety for GU(2, 2) at an inert prime in [HP14].
- U. Görtz & X. He in [GH15] claim that the supersingular locus of the Shimura variety for GU(2, 2) at a split prime can be written down similarly to [HP14].

In all the above cases except the Görtz-Yu case, the supersingular locus is a union of Ekedahl-Oort strata and admits a stratification by classical Deligne-Lusztig varieties, and the index set and the closure relations between strata can be described in terms of the Bruhat-Tits building of a certain inner form.
of the underlying group. Such Shimura varieties are called of Coxeter type in \[\text{[CH15]}\]. U. Görtz & X. He study the analogous problem in the equi-characteristic case, i.e. the basic affine Deligne-Lusztig varieties of Coxeter type. They give a \((\text{finite})\) complete list of ADLV of Coxeter type (cf. [CH15, Theorem 5.1.2]). In the mixed characteristic case, the affine Deligne-Lusztig “variety” is only a set.

X. Zhu shows that the perfection of the special fiber of a Rapoport-Zink space (whose underlying group is unramified) is canonically isomorphic to an affine Deligne-Lusztig variety in his mixed affine Grassmannian in \[\text{[Zhu]}\] Proposition 0.4.

Recently, M. Chen & E. Viehmann claim that they can give a complete description of the Shimura variety for \(\text{GU}(2, n - 2)\) at an inert prime in \[\text{[CV]}\].

This paper is a contribution to the program of giving a concrete description of the basic loci of the Shimura varieties of Coxeter type. We study the supersingular locus of the unitary Shimura varieties for \(\text{GU}(1, n - 1)\) at a ramified prime with special parahoric level structure. More precisely, let \(E\) be an imaginary quadratic field extension of \(\mathbb{Q}\) together with a ramified rational prime \(p \geq 3\). Let \((W, \varphi)\) be a hermitian space of signature \((1, n - 1)\), \(\mathbb{G}\) the corresponding unitary similitude group. Let \(C_p\) be the special parahoric subgroup corresponding to the 0-th vertex of the local Dynkin diagram \([2.3.16]\) and \([2.3.24]\), \(C^P\) a sufficiently small open compact subgroup of \(G(A^P_f)\). Let \(\mathcal{A}\) be the integral model of the Shimura variety \(\text{Sh}_{\mathcal{C}^P}(\mathbb{G}, h)\), then \(\mathcal{A}\) is smooth by \([\text{Arz09, Proposition 4.16}]\). The smoothness of \(\mathcal{A}\) is unexpected because \(p\) is ramified, so we use the terminology “exotic good reduction”.

The supersingular locus of the special fiber of \(\mathcal{A}\) can be studied using Rapoport-Zink’s \(p\)-adic uniformization theorem. Now let us consider the corresponding Rapoport-Zink spaces.

Let \(F\) be a ramified quadratic field extension of \(\mathbb{Q}_p\), together with the unique non-trivial automorphism \(\bar{\pi} \in \text{Gal}(F/\mathbb{Q}_p)\) and the uniformizer \(\pi\) such that \(\bar{\pi} = -\pi\). We denote \(L\) the completion of the maximal unramified field extension of \(\mathbb{Q}\) and let \(\mathbb{F} := F \otimes_{\mathbb{Q}_p} L\). Let \(\mathbb{F}\) denote the algebraic closed field \(\overline{\mathbb{Q}_p}\).

For an \(\mathbb{F}\)-scheme \(S\), a unitary \(p\)-divisible group of signature \((1, n - 1)\) over \(S\) (cf. \[\text{[RZ2, 3.1]}\]) is a triple \((X, \iota_X, \lambda_X)\), where \(\iota_X\) is an \(\mathcal{O}_F\)-action satisfying the Kottwitz condition, the Wedge condition and the extra Spin condition if \(n\) is even. The polarization \(\lambda_X\) satisfies the condition that the Rosati involution on \(\text{End}(X)\) attached to \(\lambda_X\) induces the non-trivial automorphism on \(\mathcal{O}_F\) over \(\mathbb{Q}_p\). Furthermore, the periodicity condition is assumed: if \(n\) is even, \(\ker(\lambda_X) = X[\lambda_X(\pi)]\); if \(n\) is odd, \(\ker(\lambda_X) \subset X[\iota_X(\pi)]\) is of height \(n - 1\).

We fix a supersingular unitary \(p\)-divisible group \((X, \iota_X, \lambda_X)\) of signature \((1, n - 1)\) over \(\mathbb{F}\), and consider the moduli functor \(\mathcal{N}^c:\)

\[
(F\text{-schemes}) \longrightarrow (\text{Sets}),
\]

\[
S \mapsto \{(X, \iota_X, \lambda_X, \rho_X)/ \cong\},
\]

where \((X, \iota_X, \lambda_X)\) is a unitary \(p\)-divisible group and \(\rho_X\) is an \(\mathcal{O}_F\)-linear quasi-isogeny such that \(\rho^*(\lambda_X)\) and \(\lambda_X\) differ locally on \(S\) by a scalar in \(\mathbb{Q}_p^\times\). Then \(\mathcal{N}^c\) is of relative dimension \(n - 1\) and has the same underlying topological space with the honest Rapoport-Zink space (cf. Proposition \[3.2.2]\). Let \(\mathcal{N}\) be the honest Rapoport-Zink space, then we have \(\mathcal{N}_{\text{red}} = \mathcal{N}^c_{\text{red}}\).

Let \(G = \text{GU}(N, \varphi)\) be the unitary similitude group of signature \((1, n - 1)\) where \((N, b\sigma)\) is the isocrystal given by the framing object \((X, \iota_X, \lambda_X)\) and \(\varphi\) is
the hermitian form corresponding to the polarization λ_X. Let $K = \text{Stab}(\mathcal{M})$ be the special parahoric subgroup corresponding to the 0-th vertex of the local Dynkin diagram of G (see (2.3.16) and (2.3.24)) and μ the geometric minuscule cocharacter $(1, 0^{n-1}; 1)$. Then, via Dieudonné theory, we have a bijection

$$\Phi : X(\mu, b)_K \to N^e(F),$$

(1.0.2)

$$g \mapsto gM,$$

(1.0.3)

where $X(\mu, b)_K$ is a union of affine Deligne-Lusztig varieties. Then the map Φ induces a scheme structure on the left hand side. Let $\mathcal{X} = Stab(M)$ be the special parahoric subgroup corresponding to the 0-th vertex of the local Dynkin diagram of G and η the geometric minuscule cocharacter $(1, 0^{n-1}; 1)$. Then, via Dieudonné theory, we have a bijection

$$\Phi : X(\mu, b)_K \to N^e(F),$$

(1.0.2)

$$g \mapsto gM,$$

(1.0.3)

where $X(\mu, b)_K$ is a union of affine Deligne-Lusztig varieties. Then the map Φ induces a scheme structure on the left hand side. Let $X(\mu, b)_K$ (resp. \mathcal{X}) be the connected component with trivial Kottwitz invariant of $X(\mu, b)_K$ (resp. N^e). In [GH15] Görtz-He show that the affine Deligne-Lusztig variety is a disjoint union of fine affine Deligne-Lusztig varieties (aka. Ekedahl-Oort strata)

$$X(\mu, b)_K = \bigsqcup_{w \in EO} X_f^w(b),$$

(1.0.4)

and each Ekedahl-Oort stratum is a disjoint union of classical Deligne-Lusztig varieties

$$X_f^w(b) \cong \bigsqcap_{j \in J \cap P_{\Sigma}} j \cdot Y_{\Sigma}(w),$$

(1.0.5)

where

$$Y_{\Sigma}(w) = \{ g \in P_{\Sigma}/P_\Sigma : g^{-1}b_{ad}\sigma(g) \in P_\Sigma wP_\Sigma \}. $$

(1.0.6)

For the framing object, we associate to it a hermitian space C. A lattice Λ in C is called a vertex lattice if $\Lambda \subset \Lambda^{\#} \subset \pi^{-1}\Lambda$, where $\Lambda^{\#}$ is the dual of Λ. The dimension of the \mathbb{F}_p-vector space $\Lambda/\pi\Lambda^{\#}$ is called the type of the lattice, denoted by $t(\Lambda)$. Let B be the set of vertex lattices. Via the crucial lemma (cf. Lemma [4.3.1]), each basic EO element $w \in EO_{\text{cox}}$ is attached to a vertex lattice Λ. And we can show that the map Φ induces an isomorphism from the closure of the Deligne-Lusztig variety $Y_{\Sigma}(w)$ to a closed subscheme S_Λ of S.

Using these group-theoretic results and Smithling’s result in [Smi15], via the map Φ, we have the main theorem.

Theorem 1.

1. There is a stratification, which is called the Bruhat-Tits stratification, of S by locally closed subschemes

$$S = \bigsqcup_{\Lambda \in B} S_\Lambda,$$

(1.0.7)

and each stratum is isomorphic to the Deligne-Lusztig variety associated to the orthogonal group $SO(B_\Lambda)$ and a σ-Coxeter element. The closure of each stratum S_Λ in S is given by

$$S_\Lambda = \bigcup_{N \subset \Lambda} S_N = S_{\Lambda}.$$

(1.0.8)

2. The scheme S is geometrically connected of pure dimension $[n-1]/2$. The irreducible components of S are those S_Λ with $t(\Lambda) = n$.

Then, using the p-adic uniformization theorem, we have the description of the supersingular locus of $\mathcal{A} \otimes \mathbb{F}$.

Theorem 2. The supersingular locus \mathcal{A}_{ss}^p is of pure dimension $\left\lfloor \frac{n-1}{2} \right\rfloor$. We have natural bijections

\[
\{\text{irreducible components of } \mathcal{A}_{ss}^p\} \xrightarrow{1:1} \mathbb{I}(\mathbb{Q})/(J(\mathbb{Q}_p)/K_{\text{max}} \times \mathbb{G}(\mathbb{A}_f^p)/\mathbb{C}_p), \quad (1.0.9)
\]

and

\[
\{\text{connected components of } \mathcal{A}_{ss}^p\} \xrightarrow{1:1} \mathbb{I}(\mathbb{Q})/(J(\mathbb{Q}_p)/J^0 \times \mathbb{G}(\mathbb{A}_f^p)/\mathbb{C}_p). \quad (1.0.10)
\]

where J^0 is the subgroup of $J(\mathbb{Q}_p)$ consisting of those j such that $c(j)$ is a unit and K_{max} is the stabilizer of some maximal-type vertex lattice in $J(\mathbb{Q}_p)$.

This paper is structured as follows. In Chapter 2 we collect some group data from the literature. In Chapter 3 we establish the bijection between the Rapoport-Zink space and the affine Deligne-Lusztig variety. In Chapter 4 we describe the set-theoretic structure of the Rapoport-Zink space using Görtz-He’s group-theoretic result. In Chapter 5 we establish the Bruhat-Tits stratification scheme-theoretically. In Chapter 6 using the p-adic uniformization theorem we describe the supersingular locus.

Acknowledgement

I would like to give special thanks to my advisor Prof. Ulrich Görtz for introducing me to the area of the reductions of Shimura varieties. I am very grateful that he spent innumerable hours on discussion with me and provided infinite patience and encouragement to me. I also would like to thank my wife Shouhong Yu and my friends for constantly supporting me.
Chapter 2

Preliminaries

2.1 Notations

We list some notations which would be used through the whole paper. Let \(p \) be an odd prime number, \(F \) a ramified quadratic field extension of \(\mathbb{Q}_p \). We denote \(\psi \in \text{Gal}(F/\mathbb{Q}_p) \) the non-trivial automorphism. Let \(\pi \) be a uniformizer of \(F \) such that \(\overline{\pi} = -\pi \) and \(\pi^2 = \varpi \), where \(\varpi = \epsilon p \) is a uniformizer of \(\mathbb{Q}_p \) and \(\epsilon \) is a unit in \(\mathbb{Z}_p \). We denote \(L \) the completion of the maximal unramified field extension of \(\mathbb{Q}_p \) and \(\widehat{F} = F \otimes_{\mathbb{Q}_p} L \). Let \(\sigma \) be the Frobenius automorphism of \(L/\mathbb{Q}_p \). Let \(\Gamma = \text{Gal}(\overline{L}/L) \).

2.2 Hermitian forms over local fields

Let \(E/E_0 \) be a quadratic extension of local fields of mixed characteristic \((0,p)\), \(W \) an \(n \)-dimensional vector space over \(E \) together with a non-degenerate hermitian form
\[
\varphi : W \times W \to E
\]
with respect to the quadratic extension \(E/E_0 \), i.e. \(\varphi \) is \(E \)-linear in the first factor and \(\ast \)-linear in the second factor, where \(\ast \in \text{Gal}(E/E_0) \) is the non-trivial automorphism. The pair \((W,\varphi)\) is called a hermitian space.

Remark 2.2.1. To give a hermitian space \((W,\varphi)\) of dimension \(n \) with respect to a ramified quadratic field extension \(E/E_0 \) is equivalent to give a vector space \(W \) of dimension \(2n \) over \(E_0 \), together with a homomorphism \(\iota : E \to \text{End}(W) \) and an \(E_0 \)-linear alternating non-degenerate form
\[
\langle \cdot, \cdot \rangle : W \times W \to E_0,
\]
such that
\[
\langle \iota(\gamma) x, y \rangle = \langle x, \iota(\gamma^*) y \rangle,
\]
where \(\gamma \) is a uniformizer of \(E \) satisfying \(\gamma^* = -\gamma \). To see this, given a hermitian form \(\varphi \), define
\[
\langle x, y \rangle := \frac{1}{2} \text{Tr}_{E/E_0}(\gamma^{-1} \cdot \varphi(x, y)).
\]
Conversely, given an alternating form \(\langle \cdot, \cdot \rangle \) on \(W \) satisfying condition (2.2.1), define a structure of \(E \)-vector space on \(W \) using \(\iota \) and let

\[
\varphi(x, y) := \langle \iota(\gamma)x, y \rangle + \iota(\gamma)\langle x, y \rangle.
\]

The isomorphism classes of hermitian forms can be determined by their discriminants in the group \(E_0^\times / N_{E/E_0}E^\times \).

Proposition 2.2.2 ([Jac62, Th 3.1]). Let \(V \) and \(W \) be \(n \)-dimensional hermitian spaces over \(E \), then \(V \) is isomorphic to \(W \) if and only if their discriminants coincide in \(E_0^\times / N_{E/E_0}E^\times \).

Definition 2.2.3. A hermitian space \((W, \varphi)\) is called *split* if it has trivial discriminant, i.e., the image of \((-1)^{n(n-1)/2}\det W\) in the group \(E_0^\times / N_{E/E_0}E^\times \) is trivial, otherwise \((W, \varphi)\) is called *non-split*.

Remark 2.2.4. The local class field theory shows the group \(E_0^\times / N_{E/E_0}E^\times \) is of order 2. If the field extension \(E/E_0 \) is ramified, the group \(E_0^\times / N_{E/E_0}E^\times \) is generated by the units in \(\mathcal{O}_{E_0} \). Therefore, in the ramified case, when \(n \) is odd, there is only one similarity class of hermitian forms; when \(n \) is even, there are two similarity classes of hermitian forms. Here the similar class of a hermitian form \(\varphi \) is the set of all \(a \cdot \varphi \) for all \(a \in E_0^\times \).

Remark 2.2.5. For an \(n \)-dimensional hermitian space \((W, \varphi)\) with respect to \(E/E_0 \), we have the Witt decomposition:

\[
W = H_1 \oplus \cdots \oplus H_q \oplus W_0,
\]

where \(H_i \) is a hyperbolic plane for all \(i \), \(W_0 \) is anisotropic of at most dimension 2 by [O'M00, 63:19]. When \(n \) is odd, \(W_0 \) is a line; when \(n \) is even, \(W \) is split if and only if \(W_0 = 0 \).

Proposition 2.2.6. For an \(n \)-dimensional hermitian space \((W, \varphi)\) with respect to \(E/E_0 \), let \(SU(W, \varphi) \) be the special unitary group over \(E_0 \). Then when \(n \) is odd, \(SU(W, \varphi) \) is always quasi-split; when \(n \) is even, \(SU(W, \varphi) \) is quasi-split if and only if the hermitian form \(\varphi \) is split.

Proof. We have the Witt decomposition (2.2.2)

\[
W = H_1 \oplus \cdots \oplus H_q \oplus W_0.
\]

Let \(S \) be the maximal \(E_0 \)-split torus with respect to the decomposition (2.2.3). Then, by definition, \(SU(W, \varphi) \) is quasi-split if and only if the centralizer of \(S \) is a maximal torus, which is equivalent to the condition that the \(E_0 \)-rank of \(S \) is \(\lfloor \frac{n}{2} \rfloor \), i.e., \(W_0 \) is a line when \(n \) is odd and \(W_0 = 0 \) when \(n \) is even.

We are interested in lattices in hermitian spaces. A lattice \(M \) in \((W, \varphi)\) is called *\(\gamma \)-modular* if \(M^\vee = \gamma^{-1}M \), where \(M^\vee \) is the dual lattice of \(M \) with respect to \(\varphi \) and \(\gamma \) is a uniformizer of \(E \); \(M \) is called *nearly \(\gamma \)-modular* if \(M \subset M^\vee \cong \gamma^{-1}M \), where the symbol \(\cong \) means that the quotient of the inclusion is of dimension \(k \) over the residue field of \(E \).

1Here we adopt the terminology in [RSZ].
Lemma 2.2.7. Let (W, φ) be an n-dimensional hermitian space with respect to the ramified field extension \bar{F}/L. Then when n is odd, φ is similar to a split hermitian form; when n is even, φ is split if and only if it contains a π-modular lattice.

Proof. If n is odd, there exists $a \in L^\times$ such that $a\varphi$ has trivial discriminant because the group $L^\times/N_{F/L} \bar{F}^\times$ is generated by the units O_L^\times. If $n = 2m$ is even and (W, φ) is split, by Remark 2.2.8, we can choose a basis e_0, \ldots, e_n such that $\varphi(e_i, e_j) = \delta_{i,n+1-j}$, then the lattice

$$\text{Span}_{O_L} \{e_1, \ldots, e_m, \pi e_{m+1}, \ldots, \pi e_n\}$$

is π-modular. If $n = 2m$ is even and W contains a π-modular lattice M, then [Jac62, Proposition 8.1 (b)] shows that there exists a basis e_1, \ldots, e_n of M such that $\varphi(e_i, e_j) = \pi \delta_{i,n+1-j}$, in particular, W is split. \hfill \blackbox

2.3 Group data

Let (V, ϕ) be an n-dimensional split hermitian space over F, (e_1, \ldots, e_n) a basis such that $\phi(e_i, e_j) = \delta_{i,n+1-j}$. Let $G = \text{GU}(V, \phi)$ be the general unitary group defined over \mathbb{Q}_p, i.e. for each \mathbb{Q}_p-algebra R,

$$G(R) = \left\{ g \in \text{GL}_{F\otimes \mathbb{Q}_p} (V \otimes \mathbb{Q}_p) R : \phi(gv, gw) = c(g) \phi(v, w) \right\} . \quad (2.3.1)$$

The algebraic group G is a reductive group over \mathbb{Q}_p, and its derived group $G_{der} = \text{SU}(V, \phi)$ is semisimple and simply connected. We have the following exact sequence of linear algebraic groups

$$1 \to G_{der} \to G \to D \to 1,$$

where D is the torus G/G_{der}. We identify $\pi_1(G) = \pi_1(D) = X_*(D)$.

Let $S \subset G$ be the maximal L-split torus consisting of diagonal matrices defined over \mathbb{Q}_p, T its centralizer, N its normalizer. Then T is a maximal torus of G because G is quasi-split. Over \bar{F}, we have the following isomorphism:

$$G_{\bar{F}} \simeq \text{GL}_{n, \bar{F}} \times G_{m, \bar{F}}, \quad (2.3.2)$$

$$g \mapsto (g_0, c(g)).$$

where g_0 is the image of g under the map $x \otimes y \mapsto xy$ on entries of matrices. More precisely, if we write $g = (g_{ij}^{(0)} \otimes g_{ij}^{(1)})_{ij}$ with $g_{ij}^{(0)} \in F$ and $g_{ij}^{(1)} \in \bar{F}$, then $g_0 = (g_{ij}^{(0)} \cdot g_{ij}^{(1)})_{ij}$. Then via the identification (2.3.2), the action of the non-trivial automorphism $-\otimes \text{id}_L \in \text{Gal}(\bar{F}/L)$ on RHS is given by the map $(g_0, c) \mapsto (\phi^{-1} g_0^{-1} \phi, c)$.

In this section, we collect some group data from [Tit79] [HR08] [PR08] [PR09] [Smi11] [Smi13] [Bou02].

2.3.1 Affine root systems and Iwahori-Weyl groups

First of all, we will compute the relative root system $(X^*, X_\ast, \Phi, \Phi^\vee)$ of G and its Iwahori-Weyl group.
(a) odd case.

We write \(n = 2m + 1 \). Then

\[
S(L) = \{ \text{diag}(s_1, \ldots, s_n) : s_i \in L^\times \text{ and } s_1s_n = \cdots = s_ms_{m+2} = s_{m+1}^2 \},
\]

\[
T(L) = \{ \text{diag}(t_1, \ldots, t_n) : t_i \in \bar{F}^\times \text{ and } t_1t_n = \cdots = t_{m}t_{m+2} = t_{m+1}t_{m+1} \}.
\]

Under the identification (2.3.2), \(X_+(T) \) can be identified with \(\mathbb{Z}^n \times \mathbb{Z} \). The action of \(\Gamma \) on \(X_+(T) \) factors through \(\text{Gal}(\bar{F}/L) \), the non-trivial automorphism acts on \(X_+(T) \) by

\[
(x_1, \ldots, x_n; y) \mapsto (y - x_n, \ldots, y - x_1; y).
\]

(2.3.3)

So \(X_+(S) \) can be identified with the subgroup of \(\mathbb{Z}^n \times \mathbb{Z} :

\[
\{(x_1, \ldots, x_n; y) \in \mathbb{Z}^n \times \mathbb{Z} : x_1 + x_n = \cdots = x_m + x_{m+2} = 2x_{m+1} = y \}. \quad (2.3.4)
\]

And \(X_+(T)_\Gamma \) is identified with \(\mathbb{Z}^m \times \mathbb{Z} \) under the following map:

\[
X_+(T) \rightarrow X_+(T)_\Gamma,
\]

\[
(x_1, \ldots, x_n; y) \mapsto (x_1 - x_n, \ldots, x_m - x_{m+2}, y).
\]

(2.3.5)

Let \(X_* = X_+(T)_\Gamma \otimes \mathbb{R} = \mathbb{R}^m \times \mathbb{R} \), then we identify \(X_+(S) \) with its image \(2X_+(T)_\Gamma \) in \(X_* \) under the above map. It is easy to check that the following diagram is commutative

\[
\begin{array}{ccc}
T(L) & \xrightarrow{\nu} & X_* \\
& \searrow^{\kappa_T} & \\
& & X_+(T)_\Gamma,
\end{array}
\]

where \(\nu \) is the (positive) Tits’ map (cf. [Tit79 1.2(1)] [Lan96 Lemma 1.1]) given by

\[
\text{diag}(t_1, \ldots, t_n) \mapsto (\text{val}(\frac{t_1}{t_n}), \ldots, \text{val}(\frac{t_m}{t_{m+2}}); \text{val}(\epsilon(t))),
\]

(2.3.7)

and \(\kappa_T \) is the Kottwitz map of \(T \) (cf. [Kot97 7.2]).

Similarly, the non-trivial automorphism \(\kappa_T \) acts on \(X^*(T) = \mathbb{Z}^n \times \mathbb{Z} \) by

\[
(x_1, \ldots, x_n; y) \mapsto (-x_n, \ldots, -x_1; y + \sum_{i=1}^{n} x_i). \quad (2.3.8)
\]

So we may identify \(X^*(S) \) with \(\mathbb{Z}^m \times \mathbb{Z} \) under the following map:

\[
X^*(T) \rightarrow X^*(T)_{\text{Gal}(F/L)/\text{torsion}} = X^*(S),
\]

\[
(x_1, \ldots, x_n; y) \mapsto (x_1 - x_n, \ldots, x_m - x_{m+2}; y - \sum_{i=m+2}^{n} x_i).
\]

(2.3.9)

Let \(X^* = X^*(S) \otimes \mathbb{R} \). Then the set of roots \(\Phi \) is just the image of the absolute roots \(\Phi(T,G) \), which is of type \(A_{n-1} \) by (2.3.2), under the natural map (2.3.9). Let \(\epsilon_i \in X^* \) be the function on \(X_* \) given by

\[
(x_1, \ldots, x_m; y) \mapsto x_i
\]
for any \(i \in \{1, 2, \ldots, m\} \). Then
\[
\Phi = \begin{cases}
\pm \epsilon_i, & 1 \leq i \leq m, \\
\pm 2\epsilon_i, & 1 \leq i \leq m, \\
\pm \epsilon_i \pm \epsilon_j, & 1 \leq i \leq m,
\end{cases}
\] (2.3.10)

So \(\Phi \) is non-reduced, it belongs to two reduced root systems:
\[
\Phi_{B_m} = \{\pm \epsilon_i, \pm \epsilon_i \pm \epsilon_j\},
\] (2.3.11)
\[
\Phi_{C_m} = \{\pm 2\epsilon_i, \pm \epsilon_i \pm \epsilon_j\}.
\] (2.3.12)

in the sense of [Bor66, 6.2], i.e. the root system \(\Phi_{B_m} \) is obtained by removing the longer multiple of \(\alpha \) for each \(\alpha \in \Phi \), and \(\Phi_{C_m} \) is obtained by removing the shorter ones.

Let’s look at the set of affine roots \(\Phi_a \), by [PR09, Proposition 2.2],
\[
\Phi_a = \begin{cases}
\pm \epsilon_i + \frac{1}{2}\mathbb{Z}, & 1 \leq i \leq m, \\
\pm 2\epsilon_i + \frac{1}{2}\mathbb{Z}, & 1 \leq i \leq m, \\
\pm \epsilon_i \pm \epsilon_j + \frac{1}{2}\mathbb{Z}, & 1 \leq i < j \leq m
\end{cases}
\] (2.3.13)

So the affine hyperplanes associated to \(\Phi_a \) can be viewed as the zero loci of the affine functions
\[
\left\{ \pm 2\epsilon_i + \frac{1}{2}\mathbb{Z}, \pm \epsilon_i \pm \epsilon_j + \frac{1}{2}\mathbb{Z} \right\},
\] (2.3.14)

which can be viewed as an affine root system of type \(C_m \). Let \(W_0 = N(L)/T(L) \) be the Weyl group, which is isomorphic to \(S_m \times \{\pm 1\}^m \) in the spirit of (2.3.14).

The affine Weyl group \(W_a = X^*_{\mathfrak{T}_{sc}} \rtimes W_0 \) is isomorphic to \(W_a \rtimes \pi_1(G) \rtimes W_0 \) isomorphic to \(W_a \times \pi_1(G) \rtimes W_0 \) isomorphic to \(X^*(\mathfrak{T}_{sc}) \Gamma \rtimes X^*(\mathfrak{T}_{sc}) \Gamma = \mathbb{Z} \).

Following [Tit79, 1.8], we choose a basis of \(\Phi_a \)
\[
\left\{ \alpha_i = \epsilon_{m+1-i} - \epsilon_{m-i}, \quad \alpha_m = 2\epsilon_1, \quad \alpha_0 = \frac{1}{2} - \epsilon_m \right\},
\] (2.3.15)
then we get the local Dynkin diagram of type \(C_{-BC_m} \).
\[
\begin{array}{cccccccc}
\circ & \circ \\
\alpha_0 & \alpha_1 & \alpha_2 & \cdots & \cdots & \cdots & \cdots & \alpha_m \\
\end{array}
\] (2.3.16)

Note that \(\alpha_0 \) and \(\alpha_m \) are special vertices.

(b) even case.

We write \(n = 2m \). Following the same procedure as in the odd case, the root system \((X^*, X_\ast, \Phi, \Phi^\vee) \) can be computed similarly.

Similarly, \(X_\ast(T) = \mathbb{Z}^n \times \mathbb{Z} \), so \(X_\ast(T) \Gamma \) can be identified with \(\mathbb{Z}^m \times \mathbb{Z} \) under the following map
\[
X_\ast(T) \to X_\ast(T) \Gamma, \quad (x_1, \ldots, x_n; y) \mapsto (x_1 - x_n, \ldots, x_n - x_{m+1}, y).
\] (2.3.17)
Then $X_*(S)$ consists of those $(x_1, \ldots, x_n; y) \in X_*(T)$ satisfying $x_1 + x_n = \cdots = x_m + x_{m+1} = y$, we identify $X_*(S) \otimes \mathbb{R} \cong X_*(T) \otimes \mathbb{R} = X_*$. Furthermore, $X^*(S)$ can be identified with $\mathbb{Z}^m \times \mathbb{Z}$ under the following map

$$X^*(T) \rightarrow X^*(T)_{\Gamma}/\text{torsion} = X^*(S),$$

$$(x_1, \ldots, x_n; y) \mapsto (x_1 - x_n, \ldots, x_m - x_{m+1}; y + \sum_{i=m+1}^{n} x_i).$$

So the relative roots are

$$\Phi = \left\{ \pm 2\epsilon_i, \quad 1 \leq i \leq m, \right\}. \tag{2.3.19}$$

Then the affine roots are

$$\Phi_a = \left\{ \pm 2\epsilon_i + \mathbb{Z}, \quad 1 \leq i \leq m, \right\}, \tag{2.3.20} \quad \text{where} \quad \alpha_{m} = 2\epsilon_m.$$
2.3.2 Bruhat decomposition and \(\mu \)-admissible set

Let \(\mathfrak{B} \) be the Bruhat-Tits building of \(G_{\text{ad}} \), then \(G(L) \) acts on \(\mathfrak{B} \) via the canonical map \(G \to G_{\text{ad}} \). Following [HR08], a subgroup \(P \subset G(L) \) is called parahoric if

\[
P = \text{Stab}_{G(L)}(\mathfrak{F}) \cap \ker(\kappa_G),
\]

where \(\mathfrak{F} \) is a facet of \(\mathfrak{B} \), and \(\kappa_G: G(L) \to \pi_1(G) \) is the Kottwitz map. Iwahori subgroups of \(G(L) \) are those parahoric subgroups associated to an alcove. We call the apartment associated with the torus \(S \) the standard apartment.

Proposition 2.3.1 ([HR08, Proposition 8]). For any parahoric subgroups \(P \) and \(Q \), whose corresponding facets are contained in the standard apartment, we have

\[
W_P \backslash \hat{W} / W_Q \cong P \backslash G(L) / Q,
\]

where \(W_P \) (resp. \(W_Q \)) is defined as \((N(L) \cap P) / T(L)_1 \) (resp. \((N(L) \cap Q) / T(L)_1 \)), and \(T(L)_1 \) is the kernel of the Kottwitz map \(\kappa_T \).

Let \(\mu \in X^* (T) \) be a minuscule cocharacter, \(\lambda \) its image in \(X^* (T) \Gamma \), in [Rap05] the admissible subset of \(\tilde{W} \) is defined as

\[
\text{Adm}(\mu) = \{ w \in \tilde{W} : w \leq \mu_{\omega(\lambda)}(w_0) \text{ for some } w_0 \in W_0 \}.
\]

(2.3.25)

In the spirit of Proposition [2.3.1], we are interested in the image, denoted by \(\text{Adm}^0(\mu) \), of \(W_0 \cdot \text{Adm}(\mu) \) in \(W_0 \backslash \hat{W} / W_0 \). Note that all elements in \(\text{Adm}(\mu) \) have the same image in \(\pi_1(G) \Gamma \). Because once a special vertex is chosen, we may write \(\hat{W} = X_*(T) \Gamma \rtimes W_0 \). \(\text{Adm}^0(\mu) \) is completely determined by the dominance order on \(X^* (T) \Gamma \) induced by the Bruhat order on \(\hat{W} \).

From now on, \(\mu = (1, (0)^{n-1}; 1) \in X_*(T) = \mathbb{Z}^n \times \mathbb{Z}; \) for \(s = 0, 1, \lambda_s = (1^s, 0^{n-s}; 1) \in X_*(T) \Gamma = \mathbb{Z}^m \times \mathbb{Z} \) in both odd and even cases. Then, as in [PR09 2.4.1 & 2.4.2],

\[
\text{Adm}^0(\mu) = \begin{cases}
\{\lambda_1, \lambda_0\} & \text{n odd,} \\
\{\lambda_1\} & \text{n even.}
\end{cases}
\]

(2.3.26)

For convenience of computation, we choose representative(s) \(\mu_1 \) (and \(\mu_0 \) in the odd case) of \(\text{Adm}^0(\mu) \) in \(T(L) \) under the Kottwitz map (2.3.6) as follows

\[
\mu_1 = \begin{pmatrix}
\pi^2 & & \\
& \ddots & \\
& & \pi \\
& & & -1
\end{pmatrix}
\]

(2.3.27)

in both odd and even case, and

\[
\mu_0 = \begin{pmatrix}
\pi & & \\
& \ddots & \\
& & \pi \\
& & & \pi
\end{pmatrix}
\]

(2.3.28)
in odd case. Then, if K is the special parahoric subgroup of $G(L)$ corresponding to the 0-th vertex of the local Dynkin diagram \((2.3.16)\) and \((2.3.24)\),

\[
\bigcup_{w \in \text{Adm}(\mu)} K w K = \begin{cases}
K_{\mu_1} K \cup K_{\mu_0} K & \text{odd case}, \\
K_{\mu_1} K & \text{even case}.
\end{cases}
\]

(2.3.29)

2.3.3 Lattice models for Bruhat-Tits buildings and parahoric subgroups

Recall that $G = GU(V, \phi)$, now we describe parahoric subgroups of $G(L)$ in terms of lattices, following [PRS8] [PRS9].

For $i = 0, \ldots, n - 1$, let

\[
\Lambda_i = \text{span}_{\mathbb{Q}_L} \{\pi^{-1} e_1, \ldots, \pi^{-1} e_i, e_{i+1}, \ldots, e_n\}.
\]

(2.3.30)

More generally, for $j = kn + i$, $\Lambda_j := \pi^{-k} \Lambda_i$. Let L_I be the lattice chain \(\{\Lambda_j : j \in n\mathbb{Z} \pm I\}\) for any non-empty subset $I \subset \{0, 1, \ldots, m\}$. For simplicity, we write $L := L_{(1)}$. Note that for each minimal lattice chain L_i, there exists a unique lattice $M \in L_i$ such that $M \subset M' \subset \pi^{-1} M$, such M is called the standard representative of L_i (see [AN02 6.1]). It is easy to see that Λ_i' is the standard representative of L_i.

Note that for $g \in GL_n(\mathbb{F})$, \((g\Lambda_0)' = t\phi^{-1} \cdot g^{-1} \cdot \Lambda_0\). So if $g \in G(L)$, for any lattice M, we have \((gM)' = c(g)^{-1} g M'\).

(a) odd case.

In this case, the Kottwitz map is given by

\[
\kappa_G : G(L) \rightarrow \pi_1(G)_I = \mathbb{Z},
\]

\[
g \mapsto \text{val}(c(g)).
\]

(2.3.31)

Let I as before, P_I the stabilizer of L_I, i.e.

\[
P_I = \{g \in G(L) : gM = M \text{ for any } M \in L_I\}.
\]

(2.3.32)

To see an element $g \in P_I$ has trivial Kottwitz invariant, consider a lattice M which is the standard representative of some minimal sub-chain of L_I, then

\[
c(g)M' = c(g)(gM)' = gM' = M'.
\]

(2.3.33)

Proposition 2.3.2 (PRS9 1.2.3.(a)). The subgroup P_I is a parahoric subgroup of $G(L)$, and any parahoric subgroup is conjugate to P_I for some subset I. The sets $I = \{0\}$ and $I = \{m\}$ correspond to special maximal parahoric subgroups.

Note that for maximal parahoric subgroups, we have

\[
P_{\{i\}} = \text{Stab}_{G(L)}(M \subset M' \subset \pi^{-1} M),
\]

(2.3.34)

where M is the standard representative of L_i.

For the special unitary group $SU(V, \phi)$, we have a similar result, i.e., $P_I \cap SU(V, \phi)$ is a parahoric sub-group of $SU(V, \phi)$, and any parahoric subgroup of $SU(V, \phi)$ is conjugate to $P_I \cap SU(V, \phi)$ for some subset I.

Remark 2.3.3. Note that the maximal parahoric subgroup $P_{\{i\}}$ for some $i \in \{0, 1, 2, \ldots, m\}$ corresponds to the $(m - i)$-th vertex of the local Dynkin diagram \((2.3.16)\). In particular the special parahoric subgroup $P_{\{m\}}$ corresponds to the 0-th vertex.
(b) even case.

In this case, the Kottwitz map is given by

\[\kappa_G : G(L) \to \pi_1(G)^r = \mathbb{Z} \times \{ \pm 1 \}, \]
\[g \mapsto (\text{val}(c(g)), (-1)^{\text{val}(b)}), \]

where \(b \in \hat{E}^\times \) such that \(b/\overline{b} = \det(g) \cdot c(g)^{-m} \) by Hilbert’s Satz 90.

To describe parahoric subgroups, we need to consider the lattice

\[\Lambda_{m'} := \text{span}_{\mathcal{O}_E} \{ \pi^{-1}e_1, \ldots, \pi^{-1}e_{m-1}, e_m, \pi^{-1}e_{m+1}, \ldots, e_m \}. \]

(2.3.36)

For \(J \subset \{ 0, 1, 2, \ldots, m-2, m', m \} \), \(Q_J \) is defined as the stabilizer of the lattices \(\{ \Lambda_i \}_{i \in J} \), let \(Q_J^0 := Q_J \cap \ker(\kappa_G) \). Then \(Q_J^0 \) is a parahoric subgroup of \(G(L) \), and each parahoric subgroup of \(G(L) \) is conjugate to \(Q_J^0 \) for some \(J \). However, usually such lattices \(\{ \Lambda_i \} \) cannot form a lattice chain. Note that \(\Lambda_{m-1} = \Lambda_m \cap \Lambda_{m'} \). Let \(I \subset \{ 0, 1, 2, \ldots, m-2, m-1, m \} \), \(P_I \) is defined as the stabilizer of the lattice chain \(\mathcal{L}_I \). If both \(m \) and \(m' \) lie in \(J \), then \(Q_J = P_I \), where \(I := (J - \{ m' \}) \cup \{ m - 1 \} \). If \(m' \notin J \) but \(m' \notin J \), let \(\tau \) be the unitary isomorphism exchanging \(e_m \) and \(e_{m+1} \), but fixing all the other \(e_i \)'s. It is easy to see that \(\tau \Lambda_{m'} = \Lambda_m \) and we have \(Q_J = \tau P_I \), where \(I \) is obtained from \(J \) by replacing \(m' \) by \(m \). Let \(P_I^0 := P_I \cap \ker(\kappa_G) \). In summary, we have the following result.

Proposition 2.3.4 ([PR09 1.2.3(b)]). The subgroup \(P_I^0 \) is a parahoric subgroup of \(G(L) \), and any parahoric subgroup of \(G(L) \) is conjugate to \(P_I^0 \) for a unique subset \(I \) with the property that if \(m-1 \in I \), then \(m \in I \). For such a subset \(I \), \(P_I^0 = P_I \) if and only if \(m \in I \). The set \(I = \{ m \} \) corresponds to a special maximal parahoric subgroup.

For the special unitary group \(SU(V, \phi) \), we have a similar description for parahoric subgroups, however, the Kottwitz invariant needs not to be considered because it is always trivial in the semisimple and simply connected case.

Remark 2.3.5. Note that the maximal parahoric subgroup \(P_{(i)}^0 \) for some \(i \in \{ 0, 1, \ldots, m \} \) corresponds to the \((m-i) \)-th vertex of the local Dynkin diagram (2.3.24), in particular the special parahoric subgroup \(P_{(m)} \) corresponds to the 0-th vertex.
Chapter 3

Rapoport-Zink spaces and affine Deligne-Lusztig varieties

3.1 Unitary p-divisible groups

Let $\text{Nilp}_{\mathcal{O}_F}$ be the category of \mathcal{O}_F-schemes S such that π is locally nilpotent on S. For $S \in \text{Nilp}_{\mathcal{O}_F}$, a unitary p-divisible group of signature $(1, n-1)$ over S, following [RSZ 3.1], consists of the following data:

1. a p-divisible group X over S,
2. an \mathcal{O}_F-action on X

 $\iota_X : \mathcal{O}_F \to \text{End}_S(X),$
3. a polarization $\lambda_X : X \to X^\vee$ such that the Rosati involution on $\text{End}_S(X)$ attached to λ_X induces the non-trivial automorphism on \mathcal{O}_F over \mathbb{Q}_p, satisfying the following conditions:

1. **Kottwitz condition:**

 $\text{charpol}(\iota_X(\pi)|\text{Lie}(X)) = (T - \pi)(T + \pi)^{n-1} \in \mathcal{O}_S[T], \quad (3.1.1)$

2. **Wedge condition:**

 $\bigwedge^n(\iota(\pi) - \pi|\text{Lie}(X)) = 0, \quad (3.1.2)$

 $\bigwedge^2(\iota(\pi) + \pi|\text{Lie}(X)) = 0 \text{ if } n \geq 3, \quad (3.1.3)$

3. when n is even, the extra **Spin condition** is assumed: $\iota_X(\pi)|\text{Lie}(X_s)$ non-vanishing for any $s \in S$,

4. **Periodicity condition:** if n is even, $\ker(\lambda_X) = X[\iota_X(\pi)];$ if n is odd, $\ker(\lambda_X) \subset X[\iota_X(\pi)]$ is of height $n-1$.

15
Remark 3.1.1. Our definition of unitary p-divisible groups is slightly different from the one in [RSZ, 3.1]. In our context, the Spin condition is not assumed in the odd case, because later we will see that the corresponding Rapoport-Zink space is has the same underlying topological space with the honest Rapoport-Zink space (see Proposition 3.2.2) which is enough for our purposes because in the p-adic uniformization theorem (see Theorem 6.2.1), the underlying reduced scheme structure is required.

3.2 Moduli space of p-divisible groups

From now on, the sign \mathbb{F} denotes the algebraic closure of \mathbb{F}_p. To define the Rapoport-Zink space, we fix a supersingular unitary p-divisible group (X, ι_X, λ_X) of signature $(1, n-1)$ over \mathbb{F} as the framing object henceforth. Note that [RSZ, Proposition 3.1] shows that such a framing object exists and is unique up to a quasi-isogeny.

There are two ways to define the honest Rapoport-Zink space. Let M^naive be the naive Rapoport-Zink space, i.e. the formal scheme representing the functor

$$\text{Nilp}_{\mathcal{O}_\mathbb{F}} \to \text{Sets},$$

$$S \mapsto (X, \iota_X, \lambda_X, \rho_X)/\cong,$$

where

- (X, ι_X, λ_X) is a naive unitary p-divisible group over S, i.e. defined in the same way as a unitary p-divisible group but without the wedge condition and the extra spin condition;

- $\rho_X : X \times_S \mathfrak{S} \to X \times_S \mathfrak{S}$ is an \mathcal{O}_F-linear quasi-isogeny (of any height) such that $\rho^*(\lambda_Y)$ and λ_X differ locally on \mathfrak{S} by a scalar in \mathbb{Q}_p^\times.

Two quadruples $(X, \iota_X, \lambda_X, \rho_X)$ and $(Y, \iota_Y, \lambda_Y, \rho_Y)$ are isomorphic if there exists an \mathcal{O}_F-linear isomorphism of p-divisible groups $\alpha : X \to Y$ such that the diagram is commutative

$$\begin{array}{ccc}
X \times_S \mathfrak{S} & \xrightarrow{\alpha} & Y \times_S \mathfrak{S} \\
\downarrow & & \downarrow \\
Y \times_S \mathfrak{S} & \xrightarrow{\rho_Y} & X \times_S \mathfrak{S}
\end{array}$$

and $\alpha^*(\lambda_Y)$ and λ_X differ locally on \mathfrak{S} by a scalar in \mathbb{Q}_p^\times.

The formal scheme M^naive is formally locally of finite type over Spf $\mathcal{O}_\mathbb{F}$ (cf. [RZ96, Theorem 3.25]). Unfortunately, M^naive is not flat over $\mathcal{O}_\mathbb{F}$ (cf. [Pap00, Proposition 3.8]) because dimensions of the special and generic fiber of M^naive may differ. Let M be the flat closure in M^naive of its generic fiber. Then M is called the honest Rapoport-Zink space. However, it’s not clear whether M has a moduli description. Another way to define Rapoport-Zink spaces is to add some extra conditions on the p-divisible groups and get a moduli space of p-divisible groups with extra conditions.

Now we associate to (X, ι_X, λ_X) a set-valued functor M^e on the category $\text{Nilp}_{\mathcal{O}_\mathbb{F}}$. The superscript e stands for “exotic”.
Definition 3.2.1. For any $S \in \text{Nilp}_F$, $\mathcal{M}^c(S)$ is the set of isomorphism classes of $(X, \iota_X, \lambda_X, \rho_X)$, where

- (X, ι_X, λ_X) is a unitary p-divisible group of signature $(1, n-1)$ over S;
- $\rho_X : X \times_S \overline{S} \to \mathbb{X} \times_F \overline{S}$ is an \mathcal{O}_F-linear quasi-isogeny (of any height) such that $\rho^*(\lambda_X)$ and λ_X differ locally on \overline{S} by a scalar in \mathbb{Q}_p^\times.

Proposition 3.2.2 (Smithling). The functor \mathcal{M}^c is represented by a separated formal scheme over $\text{Spf}(\mathcal{O}_{\mathbb{F}})$, which is locally formally of finite type, of relative formal dimension $n-1$ over $\mathcal{O}_{\mathbb{F}}$ and has the same underlying topological space with \mathcal{M}. Furthermore, if n is even, \mathcal{M}^c is flat over $\mathcal{O}_{\mathbb{F}}$.

Let us explain the standard procedure to reduce the proof of the proposition to a result on local models (which is established by Smithling in [Smi11] and Rapoport-Smithling-Zhang in [RSZ]).

Let \mathcal{M} be the Dieudonné module of X, which is a free $\mathcal{O}_{\mathbb{F}}$-module of rank $2n$, N its isocrystal with Frobenius F and Verschiebung V. Then the \mathcal{O}_F-action on X induces an F-action on N such that \mathcal{M} is stable under the F-action. Let π denote the operator $\iota(\pi)$ on N by abuse of notation. So we may view N as a vector space over $\mathbb{F}_{\mathbb{F}}$, and \mathcal{M} as an $\mathcal{O}_{\mathbb{F}}$-module of rank n. The polarization λ_X induces an alternating L-bilinear non-degenerate form on N

$$\langle , \rangle : N \times N \to L,$$

such that

$$\langle Fx, y \rangle = \langle x, Vy \rangle^\sigma$$

for any $x, y \in N$, and

$$\langle \pi x, y \rangle = \langle x, \bar{\pi}y \rangle.$$

By Remark 2.2.1 this is equivalent to giving a hermitian form φ on N such that

$$\langle x, y \rangle = \frac{1}{2} \text{Tr}_{F/L}(\pi^{-1} \varphi(x, y)).$$

Then the periodicity condition for X means that \mathcal{M} is a nearly π-modular lattice in the odd case, and a π-modular lattice in the even case. Note that by (3.2.5), the dual of \mathcal{M} with respect to φ is the same as the dual with respect to \langle , \rangle. So by Lemma 2.2.7, we can choose a \mathcal{F}-basis $\{e_1, \ldots, e_n\}$ of N such that $\varphi(e_i, e_j) = \delta_{i,n+1-j}$. We borrow the notation from (2.3.30) to denote the “standard” lattices, so $\mathcal{M} = \Lambda_m^\vee$.

Let us define a functor \mathcal{M}^naive on the category of \mathcal{O}_F-schemes.

Definition 3.2.3. ([RZ96] Definition 3.27). For each \mathcal{O}_F-scheme S, $\mathcal{M}^\text{naive}(S)$ consists of the following data:

- a functor from the category \mathcal{L}_m to the category of $\mathcal{O}_F \otimes \mathcal{O}_S$-modules on S:

$$\mathcal{L}_m \to (\mathcal{O}_F \otimes \mathcal{O}_S \text{-modules}),$$

$$\Lambda_i \to \mathcal{T}_i;$$
an inclusion
\[\mathcal{T}_i \subset \Lambda_i \otimes_{O_L} O_S \] (3.2.7)
for each \(i \in \{n\mathbb{Z} \pm m\} \) and functorial in \(\Lambda_i \);

satisfying the following conditions:

1. the inclusion \(\mathcal{T}_i \subset O_F \otimes_{O_L} O_S \) is a Zariski locally direct \(O_S \)-summand of rank \(n \);

2. the isomorphism
\[\pi \otimes 1 : \Lambda_i \otimes_{O_L} O_S \longrightarrow \Lambda_i \otimes_{O_L} O_S \] (3.2.8)
identifies \(\mathcal{T}_i \) with \(\mathcal{T}_{i-n} \);

3. the perfect \(O_S \)-bilinear paring
\[(\cdot, \cdot) \otimes O_S : \Lambda_i \otimes_{O_L} O_S \times \Lambda_{-i} \otimes_{O_L} O_S \longrightarrow O_S \] (3.2.9)
identifies \(\mathcal{T}_{i}^\vee \) with \(\mathcal{T}_{-i} \);

4. (Kottwitz condition) \(\pi \otimes 1 \) acts on \(\mathcal{T}_i \) as an \(O_S \)-linear endomorphism with characteristic polynomial
\[\text{charpol}(\pi \otimes 1|\mathcal{T}_i) = (T - \pi)(T + \pi)^{n-1} \in O_S[T]. \] (3.2.10)

Clearly \(\mathcal{M}^\text{naive} \) is represented by a closed subscheme of a product of Grassmannians. Local models and Rapoport-Zink spaces are related by the local model diagram ([RZ96, Proposition 3.33]). Let \(\mathcal{M}^\text{naive} \) be the set-valued functor on \(\text{Nilp}_{O_S} \) sending \(S \) to the set of isomorphism classes of \((X, \rho_X, \gamma_X)\), where \((X, \rho_X) \in \mathcal{M}^\text{naive}(S)\) is a naive unitary \(p \)-divisible group and an isomorphism of polarized multichains \(\gamma_{\Lambda_i} : E_{\Lambda_i} \rightarrow \Lambda_i \otimes O_S \) in the sense of [RZ96, Definition 3.21], where \(E_{\Lambda_i} \) is the Lie algebra of the universal vector extension of \(X_{\Lambda_i} \) for each \(\Lambda_i \in \mathcal{L}_m \). Let \(\mathcal{G} \) be the automorphism group of the polarized chain \(\{\Lambda_i \otimes O_S\}_{\Lambda_i \in \mathcal{L}_m} \). We have the local model diagram:

\[\begin{array}{ccc} \widetilde{\mathcal{M}}^\text{naive} & \longrightarrow & \mathcal{M}^\text{naive} \\ \mathcal{M}^\text{naive} \quad \mathcal{M}^\text{naive} \end{array} \] (3.2.11)

where \(\widetilde{\mathcal{M}}^\text{naive} \rightarrow \mathcal{M}^\text{naive} \) is the natural projection, which is smooth, and a \(\mathcal{G} \)-torsor over \(\mathcal{M}^\text{naive} \); the morphism \(\mathcal{M}^\text{naive} \rightarrow \mathcal{M}^\text{naive} \) is given by
\[(X_{\Lambda_i}, \rho_{\Lambda_i}, \gamma_{\Lambda_i}) \mapsto (\Lambda \otimes O_S \quad \gamma_{\Lambda_i}^{-1} \quad E_{\Lambda} \quad \text{Lie } X_{\Lambda}), \] (3.2.12)
which is formally smooth. In other words, there is a smooth morphism of algebraic stacks to the quotient stack
\[\mathcal{M}^\text{naive} \longrightarrow [\mathcal{M}^\text{naive} / \mathcal{G}] . \] (3.2.13)
Let M^loc be the flat closure of M^naive in its generic fiber, then the honest Rapoport-Zink space M sits inside the cartesian diagram

\[
\begin{array}{ccc}
M & \rightarrow & [M^\text{loc}/\mathcal{G}] \\
\downarrow & & \downarrow \\
M^\text{naive} & \rightarrow & [M^\text{naive}/\mathcal{G}].
\end{array}
\] (3.2.14)

Let M^e be the sub-functor of M^naive whose S-points consist of those T_i satisfying the following additional conditions:

5. (Wedge condition)
\[
\bigwedge^n (\pi \otimes 1 - 1 \otimes \pi|T_i) = 0, \quad (3.2.15)
\]
\[
\bigwedge^2 (\pi \otimes 1 + 1 \otimes \pi|T_i) = 0 \text{ if } n \geq 3; \quad (3.2.16)
\]

6. (Spin condition) if n is even, then $\pi \otimes 1|T_i \otimes \mathcal{O}_S \kappa(s)$ is nonvanishing for all $s \in S$.

Then M^e is represented by a closed subscheme of M^naive and sits inside the following cartesian diagram:

\[
\begin{array}{ccc}
M^e & \rightarrow & [M^e/\mathcal{G}] \\
\downarrow & & \downarrow \\
M^\text{naive} & \rightarrow & [M^\text{naive}/\mathcal{G}].
\end{array}
\] (3.2.17)

In both odd and even case, we have the closed immersion $M^\text{loc} \subset M^e$ and

\[
\begin{array}{cccc}
M^\text{naive} & \rightarrow & \tilde{M}^\text{naive} & \rightarrow \\
\downarrow & & \downarrow & \downarrow \\
M^\text{naive} & \rightarrow & M^e & \rightarrow \\
\downarrow & & \downarrow & \downarrow \\
M^e & \rightarrow & M & \rightarrow \\
\downarrow & & \downarrow & \downarrow \\
M^\text{loc} & \rightarrow & \tilde{M}^\text{loc} & \rightarrow \\
\end{array}
\] (3.2.18)

where \tilde{M}^e and \tilde{M} are the \mathcal{G}-torsors corresponding to the smooth morphisms to the quotient stacks respectively.

Proof of Proposition 3.2.2. The topological flatness of M^e follows from \cite[Corollary 5.6.3]{smi11} and \cite[Theorem 1.3]{smi14}, so M^e has the same underlying topological space with M by the diagram (3.2.18). The flatness of M^e in the even case follows from \cite[Proposition 3.10]{RSZ}, so by the diagram (3.2.18), M^e is flat, i.e. $M = M^e$. \qed
Let N_e, N_{naive} be the special fibers of M, M_{naive} respectively, we are interested in the geometric structure of N. Because of the topological flatness of N_e, we have $N_{red} = N_e_{red}$. The \mathbb{F}-valued points of N have a simple description: the Kottwitz condition means that X is of dimension n and of height $2n$; the Wedge condition (3.1.2) is trivial, (3.1.3) means
\[2 \bigwedge (\iota(\pi)|\text{Lie}(X)) = 0, \]
i.e. the rank of the operator $\iota(\pi)|\text{Lie}(X)$ is less than or equal to 1; in the even case the spin condition means the rank of the operator $\iota(\pi)|\text{Lie}(X)$ is 1.

Proposition 3.2.4. Via Dieudonné theory, $N(\mathbb{F}) = N_e(\mathbb{F})$ can be identified with the set of \mathcal{O}_F-lattices M in N satisfying the following conditions:

1. M is stable under \mathcal{F} and \mathcal{V};
2. $M' \subset \mathcal{P}_h M' \subset \pi^{-1}M$ if n is odd, and $\mathcal{P}_h M' = \pi^{-1}M$ if n is even for some $h \in \mathbb{Z}$;
3. $\mathcal{P}_M \subset \mathcal{V} M \subset M$;
4. $\mathcal{V} M \subset \mathcal{V} M + \pi M$;
5. if n is even, $\mathcal{V} M_1 \subset \mathcal{V} M + \pi M$.

Proof. Via Dieudonné theory, the Lie algebra of a p-divisible group X can be identified with $M/\mathcal{V} M$, where M is its Dieudonné module. So condition 3 is just the Kottwitz condition, condition 4 is the wedge condition and condition 5 is the extra Spin condition.

3.3 Local PEL datum

Let G be the algebraic group $\text{GU}(N, \varphi)$ over L. We write $\mathcal{F} = b \cdot \text{id}_F \otimes \sigma$ for some $b \in \text{GL}_F(N)$ in terms of the basis $\{e_1, \ldots, e_n\}$, by (3.2.3) and (3.2.5), we have
\[\varphi(Fx, Fy) = p \cdot \varphi(x^n, y^n) \]
which implies that $b \in G(L)$ with $\text{val}(c(b)) = 1$. Let $[b] \in B(G)$ be the $G(L)$-conjugacy classes of b, i.e. the set $\{g^{-1}bs(g) : g \in G(L)\}$. We use the notation from Section 2.3 i.e. S is the maximal L-split torus of G, T is the centralizer of S with $X_s(T) = \mathbb{Z}^n \times \mathbb{Z}$, and $\mu \in X_s(T)$ is the geometric minuscule cocharacter $(1, 0^{n-1}; 1)$. By the assumption of supersingularity and Kottwitz condition on X, we have
\[[b] \in B(G, \{\mu\})_b, \]
where $\{\mu\}$ is the geometric conjugacy classes of μ and the well-known set $B(G, \{\mu\})$ is the subset of $B(G)$ consisting of neutral acceptable elements (cf. [Kot97, 6.2] [RV14, Definition 2.3]).

In summary, $(\mathcal{F}, N, \varphi, \{\mu\}, [b], \mathcal{M})$ forms a simple integral Rapoport-Zink PEL-datum in the sense of [RV14, 4.1] (cf. [RZ96, Definition 3.18]).
Another important group is the algebraic group J consisting of automorphisms of the unitary isocrystal N, i.e.

$$J(R) = \{ g \in \text{GL}_{F \otimes R}(N \otimes_{\mathbb{Q}_p} R) \mid gF = Fg, \varphi(qx, gy) = c(g) \varphi(x, y) \text{ for some } c(g) \in (L \otimes R)^\times \} \quad (3.3.3)$$

for any \mathbb{Q}_p-algebra R. The group J acts on N: for $g \in J$, the action is given by sending $(X, \iota_X, \lambda_X, \rho_X) \in N$ to $(X, \iota_X, \lambda_X, g \circ \lambda_X)$. By [Kot85, 5.2], J is an inner form of G because $[b]$ is basic.

The group J is closely related to a hermitian space, namely C, with respect to F/\mathbb{Q}_p as discussed in [RTW14]. Recall that $\pi_2 = \varpi = \epsilon p$, let $\eta, \delta \in O_\times$ such that $\eta^2 = \epsilon - 1$ and $\delta^s = -\delta$ respectively. Then all slopes of the id $\otimes \sigma$-linear operator $\chi := \eta \varpi V^{-1}: N \to N$ are zero. Let C be the set of points in N fixed by χ, then C is a vector space over F and the isomorphism

$$C \otimes_{\mathbb{Q}_p} L \simeq N \quad (3.3.4)$$

identifies $\text{id}_C \otimes \sigma$ with χ. Let $\psi(x, y) := \delta \varphi(x, y)$ for $x, y \in C$, then by (3.3.1), we have

$$\psi(x, y) = \psi(x, y)^\sigma. \quad (3.3.5)$$

So ψ takes values in F and hence (C, ψ) becomes a hermitian space with respect to F/\mathbb{Q}_p.

Lemma 3.3.1 ([RTW14 Lemma 2.3]). The group J is isomorphic to the general unitary group $GU(C, \psi)$.

Lemma 3.3.2 ([RSZ, Lemma 3.3]). The hermitian space (C, ψ) is split if n is odd, non-split if n is even.

Remark 3.3.3. In [Sm115], when n is odd, the moduli description of M^{iso}, hence of N, is formulated by proposing a further refinement of the spin condition, which is unfortunately very complicated. For the purpose of studying basic loci of Shimura varieties in this paper, for us it is enough to work with N since $N^{\text{red}} = N_{\text{red}}$.

3.4 Kottwitz invariants of quasi-isogenies

In this section, we will define a morphism

$$\kappa: N^{\text{ec}} \to \pi_1(G). \quad (3.4.1)$$

Let $X \in N^{\text{ec}}(F)$ be a unitary p-divisible group with a quasi-isogeny $\rho: X \to X$, let M be its corresponding Dieudonné lattice in N, recall that the height of ρ is defined as

$$\text{ht}(\rho) := \text{ht}(p^s \rho) - \text{ht}(p^s), \quad (3.4.2)$$

where s is an integer such that $p^s \rho$ is an honest isogeny.

Proposition 3.4.1. If M satisfies $M \subset p^h M^\vee \subset \pi^{-1} M$ for some integer h, then $\text{ht}(\rho) = nh$.
Proof. For two lattices M_1, M_2 in N, we define
\[[M_1 : M_2] := \dim F_{M_1} / p^s M_2 - \dim F_{M_2} / p^s M_1 \] (3.4.3)
for some large enough integer s. Then by (3.4.2),
\[\text{ht} (\rho) = [M : M'] \] (3.4.4)
\[= [M' : M''] \]
\[= [M' : p^{-h} M] + [p^{-h} M : p^{-h} M] + [p^{-h} M : M] \]
\[+ [M : M''] . \]

Note that, in both odd and even cases, $[M' : p^{-h} M] = [M' : M'']$, so we get the desired result.

For a unitary p-divisible group $X \in N^e(S)$ with a quasi-isogeny ρ, the height is locally constant on S, so we get a morphism
\[\kappa_1 : N^e \longrightarrow \mathbb{Z}, \]
\[(X, \rho) \longmapsto \frac{1}{n} \text{ht} (\rho) . \] (3.4.5)

By abuse of notation, we denote by κ_1 the composite morphism $N \subset N^e \rightarrow \mathbb{Z}$.

Let N_h (resp. N^e_h) be the fiber $\kappa_1^{-1}(h)$ for $h \in \mathbb{Z}$, then N_h (resp. N^e_h) is an open and closed subscheme of N (resp. N^e), we have a decomposition
\[N = \bigsqcup_{h \in \mathbb{Z}} N_h \text{ and } N^e = \bigsqcup_{h \in \mathbb{Z}} N^e_h . \] (3.4.6)

In the even case, $N = N^e$, there is an extra invariant of quasi-isogenies, which has been discussed in [RSZ, Lemma 3.2]. Let $(\tilde{X}, \rho_1, \rho_2)$ be the minimal cover of the quasi-isogeny ρ in the following sense: \tilde{X} is a p-divisible group together with isogenies ρ_1, ρ_2 making the following diagram commutative,
\[\tilde{X} \]
\[\rho_1 \]
\[\rho_2 \]
\[\chi \]
\[\downarrow \]
\[\downarrow \]
\[\rho \]
\[\downarrow \]
\[\chi \]
\[(3.4.7) \]
such that for any p-divisible group Y with isogenies α_1, α_2 satisfying $\rho \circ \alpha_1 = \alpha_2$, there exists a unique isogeny $\beta : Y \rightarrow \tilde{X}$ making the following diagram commutative
\[Y \]
\[\alpha_1 \]
\[\alpha_2 \]
\[\downarrow \]
\[\downarrow \]
\[\tilde{X} \]
\[\rho_1 \]
\[\rho_2 \]
\[\chi \]
\[\downarrow \]
\[\downarrow \]
\[\rho \]
\[\downarrow \]
\[\chi \]
\[(3.4.8) \]

Note that, via Dieudonné theory, \tilde{X} corresponds to the lattice $M \cap M$. By (3.4.2) and Proposition 3.4.1, we have
\[nh = \text{ht} (\rho) = \text{ht} (\rho_2) - \text{ht} (\rho_1) . \] (3.4.9)
Because \(n \) is even,
\[
\text{ht}(\rho_2) \equiv \text{ht}(\rho_1) \mod 2. \tag{3.4.10}
\]
Hence we get a morphism
\[
(\kappa_1, \kappa_2) : \mathcal{N} \longrightarrow \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z},
(X, \rho) \longmapsto \left(\frac{1}{n} \text{ht}(\rho), \text{ht}(\rho_1) \mod 2 \right). \tag{3.4.11}
\]
In summary, we have the
Kottwitz morphism
\[
\kappa : \mathcal{N} \longrightarrow \pi_1(G)_\Gamma, \tag{3.4.12}
\]
when \(n \) is odd, \(\kappa = \kappa_1 \), when \(n \) is even, \(\kappa = (\kappa_1, \kappa_2) \). We have the decomposition
\[
\mathcal{N} = \bigsqcup_{\kappa \in \pi_1(G)_\Gamma} \mathcal{N}(\kappa), \tag{3.4.13}
\]
where \(\mathcal{N}(\kappa) \) consists of those quasi-isogenies with Kottwitz invariants \(\kappa \in \pi_1(G)_\Gamma \).

For any \(\kappa, \kappa' \), let \(g \in J \) such that \(\kappa(g) = \kappa' - \kappa \), then \(g \) defines an isomorphism
\[
\mathcal{N}(\kappa) \longrightarrow \mathcal{N}(\kappa'),
(X, \rho) \longmapsto (X, g \circ \rho). \tag{3.4.14}
\]
Via Dieudonné theory, we have, in the odd case
\[
\mathcal{N}(\kappa)(\mathbb{F}) = \{ M \in \mathcal{N}(\mathbb{F}) : M \subset p^\kappa M^\vee \subset \pi^{-1}M \}. \tag{3.4.15}
\]
In the even case for \(\kappa = (\kappa_1, \kappa_2) \)
\[
\mathcal{N}(\kappa) = \{ M \in \mathcal{N}(\mathbb{F}) \left| (p^{\kappa_1}M^\vee = \pi^{-1}M, \dim_{\mathbb{F}}(M + \mathbb{M}/M) \equiv \kappa_2 \mod 2) \right. \}. \tag{3.4.16}
\]

Example 3.4.2. When \(n \) is even, the lattice \(\Lambda_{m'}^\vee \) (see (2.3.36)) lies in \(\mathcal{N}(\mathbb{F}) \) and has non-trivial Kottwitz invariant, i.e.
\[
\dim_{\mathbb{F}}(\Lambda_{m'}^\vee + \mathbb{M}/\Lambda_{m'}^\vee) = 1. \tag{3.4.17}
\]

3.5 Affine Deligne-Lusztig varieties

Recall that for the local PEL-datum \((\bar{F}, N, \varphi, \{ \mu \}, [b], \mathbb{M})\) in Section 3.3, we may associate to it the *generalized affine Deligne-Lusztig variety* (cf. Rap05, Definition 4.1)
\[
X(\mu, b)_K := \{ g \in G(L)/K : g^{-1}b\sigma(g) \in \bigcup_{w \in \text{Adm}(\mu)} KwK \}, \tag{3.5.1}
\]
where \(K = \text{Stab}_{G(L)}(\mathbb{M} \subset M^\vee \subset \pi^{-1}\mathbb{M}) \) which is the special parahoric subgroup \(P_{(m)} \) of \(G(L) \) corresponding to the 0-th vertex of the local Dynkin diagram in both odd and even cases by Proposition 2.3.2 and 2.3.3, because \(\mathbb{M} = \Lambda_{m}^\vee \). Note that the group \(J \) also acts on \(X(\mu, b)_K \) because \(J \) is just the \(\sigma \)-centralizer of \(b \) in \(G(L) \).
Proposition 3.5.1. The map
\[\Phi: X(\mu, b)_K \rightarrow \mathcal{N}(F), \]
\[g \mapsto g\mathcal{M}, \]
is bijective.

Proof. For \(g \in X(\mu, b)_K \), we will check that \(g\mathcal{M} \in \mathcal{N}(F) \), i.e. it satisfies the conditions in Proposition 3.2.4. Recall that we choose representative(s) \(\mu_1 \) (and \(\mu_0 \) in odd case) of \(\text{Adm}^0(\mu) \) in \(T(L) \) in the subsection [2.3.2]

1. The condition \(g\mathcal{M} \) is stable under \(F = b \cdot \text{id} \otimes \sigma \) is equivalent to the condition
\[g^{-1} b \sigma(g) \mathcal{M} \subset \mathcal{M}, \]
so by (2.3.29), it is enough to check \(\mu_1 \mathcal{M} \subset \mathcal{M} \) (and \(\mu_0 \mathcal{M} \subset \mathcal{M} \) in odd case). By the choice of \(\mu_1 \) (and \(\mu_0 \) in (2.3.27) and (2.3.28), it is easy to see \(g\mathcal{M} \) is \(F \)-stable, and similarly, \(V \)-stable.

2. Recall that \((g\mathcal{M})^\vee = c(g)^{-1}g\mathcal{M}^\vee \), so \(g\mathcal{M} \) sits inside the chain
\[g\mathcal{M} \subset c(g)(g\mathcal{M})^\vee \subset \pi^{-1}(g\mathcal{M}). \]

3. The condition \(pg\mathcal{M} \subset Vg\mathcal{M} \subset g\mathcal{M} \) is equivalent to
\[p\mathcal{M} \subset g^{-1}b\sigma(g)\mathcal{M} \subset \mathcal{M}, \]
i.e. \(p\mathcal{M} \subset \mu_1 \mathcal{M} \subset \mathcal{M} \) (and similarly for \(\mu_0 \) in odd case) which is true by (2.3.27) and (2.3.28).

4. The condition \(Vg\mathcal{M} \leq 1 \subset Vg\mathcal{M} + \pi g\mathcal{M} \) is equivalent to
\[\pi\mathcal{M} \leq 1 \subset \pi\mathcal{M} + g^{-1}b\sigma(g)\mathcal{M}. \]
By (2.3.27) and (2.3.28), the dimension of the quotient space is 1 if and only if \(g^{-1}b\sigma(g) \in K\mu_1 K \), and is 0 if and only if \(g^{-1}b\sigma(g) \in K\mu_0 K \) in the odd case.

It’s very easy to see that \(\Phi \) is injective. For the surjectivity of \(\Phi \), we use the Görtz local model diagram (cf. [GY10 5.2]):

\[G(L) \]
\[G(L)/K \]
\[N^{\text{naive}}(F) \]
\[N^e(F) \]
\[\text{pr} \]

\[\text{pr}^e \]

\[G(L)/K \]
\[N^{\text{naive}}(F) \]
\[N^e(F) \]
\[M^{\text{naive}} \]
\[M^e, \]

\[\text{pr} \]

\[\text{pr}^e \]
where \(pr \) is the natural projection, \(pr^\sigma \) is the composite of the Lang map \(g \mapsto g^{-1}b\sigma(g) \), with the projection \(pr \), and all vertical arrows are injective. Then
\[
pr^{-1}(N^\sigma(F)) = (pr^\sigma)^{-1}(M^\sigma_F).
\]
Note that
\[
M^\sigma_F = \bigcup_{w \in \text{Adm}(\mu)} KwK/K
\]
and the injectivity of \(\Phi \) implies that \(\Phi \) is surjective.

Remark 3.5.2. For \(g \in X(\mu, b)_K \), the Kottwitz invariant is well defined by the definition of parahoric subgroups. We have the following commutative diagram:

\[
\begin{array}{ccc}
X(\mu, b)_K & \xrightarrow{\Phi} & N(F) \\
\downarrow{\kappa} & & \downarrow{\kappa} \\
\pi_1(G)_\Gamma & \xrightarrow{\kappa} & \pi_1(G)_\Gamma.
\end{array}
\]

So \(X(\mu, b)_K \) can be decomposed into a disjoint union of some subsets indexed by Kottwitz invariants. In the odd case, for any \(\kappa \in \pi_1(G)_\Gamma \simeq \mathbb{Z}, N(\kappa)(F) \) can be identified with a generalized affine Deligne-Lusztig variety \(X(\tilde{\mu}, \tilde{b})_{K'} \), associated to the derived group of \(G \), i.e. the special unitary group \(SU(V, \varphi) \), where \(K' = K \cap SU(V, \varphi) \). Because in this case, there exists a central element \(\zeta \) such that \(\mu = \zeta \tilde{\mu} \) and \(b = \tilde{b}\zeta \). Then the map
\[
X(\tilde{\mu}, \tilde{b})_{K'} \longrightarrow N(1)(F),
\]
\[
g \mapsto g\zeta M,
\]
gives the desired identification. However, this is no longer true in the even case, because \(\mu = (1, 0^{(m-1)}; 1) \in X_*(T)_\Gamma \) and \(\tilde{\mu} = (2, 0^{(m-1)}) \in X_*(T^{sc}) \) differ in a non-central element in \(\Omega \). We will work with the corresponding semisimple group of adjoint type \(G_{ad} \), i.e. the quotient of \(G \) by its center.

Let \(b_{ad}, \mu_{ad}, K_{ad} \) be the images in \(G_{ad}(L) \) of \(b, \mu, K \) respectively. Similarly to (3.5.1), we define
\[
X(\mu_{ad}, b_{ad})_{K_{ad}} := \{ g \in G_{ad}(L)/K_{ad} : g^{-1}b_{ad}\sigma(g) \in \bigcup_{w \in \text{Adm}(\mu_{ad})} K_{ad}wK_{ad} \},
\]
(3.5.12)
where \(\text{Adm}(\mu_{ad}) \) is the \(\mu_{ad} \)-admissible subset of the Iwahori-Weyl group \(\tilde{W}_{ad} \) of \(G_{ad} \), which is bijective to \(\text{Adm}(\mu) \) under the canonical map \(\tilde{W} \to \tilde{W}_{ad} \). However, there is no reasonable map from \(X(\mu_{ad}, b_{ad})_{K_{ad}} \) to \(N(F) \), because for \(g \in X(\mu_{ad}, b_{ad})_{K_{ad}}, M \in N(F) \), the notation \(gM \) doesn’t make sense. \(gM \) is no longer a lattice, but a homothety class of lattices. However, by [PR08, 6.a], (see also [GHN15, 2.2]) the natural map
\[
G(L)/K \longrightarrow G_{ad}(L)/K_{ad}
\]
(3.5.13)
induces a bijection
\[(G(L)/K)_{\kappa} \xrightarrow{\sim} (G_{\text{ad}}(L)/K_{\text{ad}})_{\kappa_{\text{ad}}},\]
(3.5.14)
where \(\kappa \in \pi_1(G)\Gamma\), \(\kappa_{\text{ad}}\) is the image of \(\kappa\) in \(\pi_1(G_{\text{ad}})\Gamma\), the notation \((\cdot)_{\kappa}\) stands for the fiber of corresponding Kottwitz maps. Immediately, we have
\[(X(\mu, b)_{K})_{\kappa} \xrightarrow{\sim} (X(\mu_{\text{ad}}, b_{\text{ad}})_{K_{\text{ad}}})_{\kappa_{\text{ad}}},\]
(3.5.15)
In particular, \(X(\mu_{\text{ad}}, b_{\text{ad}})_{K_{\text{ad}}})\) can be identified with the moduli space of quasi-isogenies of height 0, i.e.
\[
\Phi_{\text{ad}} : X(\mu_{\text{ad}}, b_{\text{ad}})_{K_{\text{ad}}} \xrightarrow{\sim} N_{0}(F),
\]
(3.5.16)
where \(\hat{g}K\) is a lifting of \(gK_{\text{ad}}\) under the map (3.5.13).

Let \(G_{\text{ad}}(\mathcal{L})'\) be the subgroup of \(G_{\text{ad}}(\mathcal{L})\) generated by all the parahoric subgroups of \(G_{\text{ad}}(\mathcal{L})\). Let
\[
X(\mu_{\text{ad}}, b_{\text{ad}})'_{K_{\text{ad}}} := \{g \in G_{\text{ad}}(\mathcal{L})'/K_{\text{ad}} : g^{-1}b_{\text{ad}}\sigma(g) \in \bigcup_{w \in \text{Adm}(\mu_{\text{ad}})} K_{\text{ad}}wK_{\text{ad}}\}.
\]
(3.5.17)
Note that \(G_{\text{ad}}(\mathcal{L})' = G_{\text{ad}}(\mathcal{L})_{1}\) by \([HR08, \text{Lemma 17}]\), in other words, the kernel of Kottwitz map is generated by all the parahoric subgroups. When \(n\) is odd, nothing is new because \(X(\mu_{\text{ad}}, b_{\text{ad}})'_{K_{\text{ad}}} = X(\mu_{\text{ad}}, b_{\text{ad}})_{K_{\text{ad}}}\); when \(n\) is even, the map \(\Phi_{\text{ad}}\) in (3.5.16) induces the following isomorphism:
\[
\Phi_{\text{ad}} : X(\mu_{\text{ad}}, b_{\text{ad}})'_{K_{\text{ad}}} \xrightarrow{\sim} N_{(0, 0)}(F).
\]
(3.5.18)
From now on, let
\[S := \begin{cases} N_{0} & \text{if } n \text{ is odd,} \\ N_{(0, 0)} & \text{if } n \text{ is even.} \end{cases} \]
(3.5.19)

Remark 3.5.3. When \(n\) is even, by the definition of \(S\), \(S(F)\) is a single \(G_{\text{ad}}(\mathcal{L})'\)-orbit of \(\mathbb{M}\), and the intersection of the \(G_{\text{ad}}(\mathcal{L})'\)-orbit of \(N'_{m'}\) and \(S(F)\) is empty.

Remark 3.5.4. An equivalent way to identify \(X(\mu_{\text{ad}}, b_{\text{ad}})_{K_{\text{ad}}}\) with a reasonable Rapoport-Zink space is to define the adjoint Rapoport-Zink space \(N_{\text{ad}} := N/G_{m}(F)\).

Because in both odd and even cases, the action of \(\pi\) on \(N\) via \(\iota_{\mathcal{X}} : F \to \text{End}(\mathcal{X})\) gives an isomorphism
\[N_{h} \xrightarrow{\sim} N_{h+1}. \]
(3.5.20)
The set \(N_{\text{ad}}(F)\) can be described as a set of homothety classes of lattices satisfying the Kottwitz, wedge and the extra spin conditions, so that for \(g \in X(\mu_{\text{ad}}, b_{\text{ad}})_{K_{\text{ad}}}\), the notation \(g\mathbb{M}\) makes sense as a homothety class of lattices, i.e. the following diagram is commutative
\[
X(\mu, b)_{K} \xrightarrow{\sim} N(F) \\
\downarrow \quad \downarrow \\
X(\mu_{\text{ad}}, b_{\text{ad}})_{K_{\text{ad}}} \xrightarrow{\sim} N_{\text{ad}}(F). \]
(3.5.21)
Chapter 4

Set structure of N

4.1 Deligne-Lusztig varieties

We need some results about classical Deligne-Lusztig varieties. Let H_0 be a reductive group over \mathbb{F}_q. We fix a maximal torus T_0 and Borel subgroup B_0 over \mathbb{F}_q. Let H be the reductive group $H_0 \otimes \mathbb{F}_q$ over \mathbb{F}_q, $B := B_0 \otimes \mathbb{F}_q$.

, with a Frobenius action σ. We fix a σ-stable maximal torus T and Borel subgroup B. Let $W = W_H$ be the Weyl group of H. The (classical) Deligne-Lusztig variety (cf. [DL76, Definition 1.4]) $X(w)$ is defined as

$$X(w) := \{ g \in H/B : g^{-1}\sigma(g) \in BwB \},$$

for each $w \in W_H$. We also say that g and h are in relative position w if $g^{-1}h \in BwB$ for $g, h \in G/B$ and $w \in W_H$.

Let X be the variety of Borel subgroups of H, consider the diagonal action

$$H \times (X \times X) \rightarrow X \times X,$$

$$(h, (B_1, B_2)) \mapsto (hB_1, hB_2).$$

Let $O(w)$ be the H-orbit of (B, wB). Then the Bruhat decomposition is equivalent to the fact that $X \times X = \bigcup_{w \in W_H} O(w)$. Two Borel subgroups B_1 and B_2 are in relative position w if and only if $(B_1, B_2) \in O(w)$.

Proposition 4.1.1 (cf. [DL76], see also [Gör10, Proposition 4.4]). For $w \in W_H$.

1. The Deligne-Lusztig variety $X(w)$ is smooth and of pure dimension $\ell(w)$, where $\ell(w)$ is the length of w.

2. The flag variety H/B is the disjoint union of all Deligne-Lusztig varieties, i.e.

$$H/B = \bigcup_{w \in W_H} X(w).$$

The closure $\overline{X(w)}$ of $X(w)$ in the flag variety H/B is normal, and

$$\overline{X(w)} = \bigcup_{w' \leq w} X(w'),$$
where \(\leq \) denotes the Bruhat order in \(W_H \). Furthermore, if \(w \) is a Coxeter element, \(X(w) \) is smooth.

3. The Deligne-Lusztig variety \(X(w) \) is irreducible if and only if \(w \) is not contained in any \(\sigma \)-stable standard parabolic subgroup of \(W_H \).

Example 4.1.2 ([DL76, 2.2]). Let \(H = \text{GL}(V) \), where \(V \) is an \(F \)-vector space defined over \(\mathbb{F}_q \) of dimension \(l \). Let \(\{e_1, \ldots, e_l\} \) be a basis of \(V \). In this case the Weyl group \(W = S_l \). Let \(s_i \) be the transposition \((i, i + 1) \) for \(1 \leq i \leq l - 1 \), \(S = \{s_1, \ldots, s_{l-1}\} \). Let \(B \) be the standard Borel subgroup. For any two Borel subgroups \(B_1 \) and \(B_2 \) with their corresponding flags

\[
B_1: 0 \subset V_1 \subset \cdots \subset V_{l-1} \subset V, \quad (4.1.5)
\]

\[
B_2: 0 \subset V_1' \subset \cdots \subset V_{l-1}' \subset V, \quad (4.1.5)
\]

\(B_1 \) and \(B_2 \) are in relative position \(w \) if and only if \((B_1, B_2) \in O(w) \), if and only if \((B_1, B_2) = h \cdot (B, w B) \) for some \(h \in H \). The last condition means there exists a basis \(\{f_1, \ldots, f_l\} \) of \(V \), such that

\[
V_i = \text{span}\{f_1, \ldots, f_i\}, \quad (4.1.6)
\]

\[
V_i' = \text{span}\{f_{w(1)}, \ldots, f_{w(i)}\}.
\]

Let \(w \) be the Coxeter element \((k, k - 1, \ldots, 1, k + 1, k + 2, \ldots, l - k + 1) \), \(r = w(1) - 1 \), then for a flag \(V \), the flags \(V_i \) and \(\sigma(V) \) are in relative position \(w \) if and only if \(V_i \) is of the form:

\[
V_{r-i} = V_i \cap \sigma(V_i) \cap \cdots \cap \sigma^i(V_i), \quad 1 \leq i \leq r - 1, \quad (4.1.7)
\]

\[
V_{r+i} = V_i + \sigma(V_i) + \cdots + \sigma^i(V_i), \quad 1 \leq i \leq l - r.
\]

Let \(P_r \) be the standard parabolic subgroup corresponding to \(S - \{s_r\} \), then we have the following commutative diagram:

\[
\begin{array}{ccc}
X(w) & \xrightarrow{\phi} & H/B \\
\downarrow & & \downarrow \\
\xrightarrow{\phi} & & \xrightarrow{H/P_r}
\end{array}
\]

(4.1.8)

where \(\phi: V \rightarrow V_r \) is injective. And \(\text{im}(\phi) \) is the subvariety of \(H/P_r \) parameterizing all the \(r \)-dimensional subspaces \(V_i \) of \(V \) such that

\[
\dim(V_i \cap \sigma(V_i) \cap \cdots \cap \sigma^i(V_i)) = r - i, \quad 1 \leq i \leq r, \quad (4.1.9)
\]

\[
\dim(V_i + \sigma(V_i) + \cdots + \sigma^i(V_i)) = r + i, \quad 1 \leq i \leq l - r.
\]

Example 4.1.3 (The split odd orthogonal group). Let \(V \) be an \(l \)-dimensional vector space over \(\mathbb{F}_q \), where \(l = 2d + 1 \) is odd, together with “the” split non-degenerate symmetric form \(\langle \cdot, \cdot \rangle \). Let \(\text{SO}(V)_0 \) be the (split) special orthogonal group over \(\mathbb{F}_q \). We fix a Borel subgroup \(B_0 \) over \(\mathbb{F}_q \). Let \(\text{SO}(V) := \text{SO}(V)_0 \otimes \mathbb{F}_q \) and \(B := B_0 \otimes \mathbb{F}_q \). Note that a Borel subgroup of \(\text{SO}(V) \) can be described as the stabilizer of a complete isotropic flag:

\[
0 \subset V_1 \subset \cdots \subset V_d \subset V_d^0 \subset \cdots \subset V_1^0 \subset V.
\]

(4.1.10)
The (absolute) Weyl group W can be identified with a subgroup of S_l:

$$W = \{ w \in S_l : w(i) + w(l + 1 - i) = l + 1 \}. \quad (4.1.11)$$

Let S be the set of simple reflections $\{ s_i, 1 \leq i \leq d \}$, where

$$s_i = \begin{cases}
(i, i + 1)(l - i, l - i + 1), & \text{if } 1 \leq i \leq d - 1, \\
(d, d + 2), & \text{if } i = d.
\end{cases} \quad (4.1.12)$$

The Dynkin diagram of type B_d is

$$s_1 \oplus s_2 \oplus \cdots \oplus s_d \quad (4.1.13)$$

Let $w = s_ds_{d-1} \cdots s_1 = (d, d + 2)(d, d - 1, \ldots, 1)(l, l - 1, \ldots, d + 2)$, then, using the same trick as Example 4.1.2 for a flag V, the V and $\sigma(V)$ are in relative position w if and only if the flag V is of the form:

$$V_{d-i} = V_d \cap \sigma(V_d) \cap \cdots \cap \sigma^i(V_d), \quad (4.1.14)$$

for $1 \leq i \leq d$. Let P be the standard parabolic subgroup corresponding to $S - \{ s_d \}$, then we have the following commutative diagram:

$$\xymatrix{ X(w) \ar[r]^{\phi} \ar[d]_\varnothing & \text{SO}(V)/B \ar[d] \\\ \text{SO}(V)/P } \quad (4.1.15)$$

where $\phi : V \mapsto V_d$ is injective. And $\text{im}(\phi)$ is the subvariety of $\text{SO}(V)/P$ parameterizing all the d-dimensional isotropic subspaces V_d such that

$$\dim(V_d \cap \sigma(V_d) \cap \cdots \cap \sigma^i(V_d)) = d - i, \quad (4.1.16)$$

for $1 \leq i \leq d$.

Example 4.1.4 (The non-split even orthogonal group). Let V be a vector space of even dimension $l = 2d$ over \mathbb{F}_q, together with “the” non-split non-degenerate symmetric form $\langle \cdot, \cdot \rangle$. We assume that $d \geq 2$. Let $\text{SO}(V)_0$ be the special orthogonal group which is a quasi-split but non-split reductive group over \mathbb{F}_q. We have the Witt decomposition:

$$V = H_1 \oplus \cdots \oplus H_{d-1} \oplus Q_0, \quad (4.1.17)$$

where H_i is “the” hyperbolic plane for all i, and Q_0 is “the” anisotropic plane (cf. [O'M00, 62:1b]). We can choose a basis $\{ e_1, \ldots, e_d, f_1, \ldots, f_d \}$ of V such that

$$V_0 = \text{span}_{\mathbb{F}_q} \{ e_d, f_d \}, \quad (4.1.18)$$

$$H_i = \text{span}_{\mathbb{F}_q} \{ e_i, f_i \}, \quad (4.1.19)$$

for $1 \leq i \leq d - 1$. We define the standard isotropic flag V, as follows

$$V_i := \text{span}_{\mathbb{F}_q} \{ e_1, \ldots, e_i \}. \quad (4.1.19)$$
for $1 \leq i \leq d - 1$. Let B_0 be the standard Borel subgroup over F_q, i.e. $B_0 := \text{Stab}(V)$.

Now consider the group $\text{SO}(V) := \text{SO}(V)_0 \otimes \overline{F}_q$. Let $B := B_0 \otimes \overline{F}_q$. Over \mathbb{F}, a non-degenerate symmetric form is always split, so we can choose a \mathbb{F}-basis $\{g, h\}$ of $Q_0 \otimes \mathbb{F}$ such that $\langle g, h \rangle = 1$ and $\langle g, g \rangle = \langle h, h \rangle = 0$. We define the standard flag W_i as follows:

$$W : 0 \subset W_1 \subset \cdots \subset W_{d-2} \subset (W_d \text{ and } W_d') \subset W_{d-2}^\perp \subset \cdots \subset W_1^\perp \subset V,$$

where

$$W_i = V_i \otimes \mathbb{F}, \quad \text{for } 1 \leq i \leq d - 2,$$

$$W_d = \text{span}_\mathbb{F}(e_1, \ldots, e_{d-1}, g),$$

$$W_d' = \text{span}_\mathbb{F}(e_1, \ldots, e_{d-1}, h).$$

Let $W_{d-1} = V_{d-1} \otimes \mathbb{F}$, we claim that

$$\text{Stab}(W_i) = \text{Stab}(W_1 \subset \cdots \subset W_{d-2} \subset W_{d-1} \subset W_d),$$

$$= \text{Stab}(W_1 \subset \cdots \subset W_{d-2} \subset W_{d-1} \subset W_d').$$

If $g \in \text{Stab}(W_i)$, then g stabilizes W_{d-1} because $W_{d-1} = W_d \cap W_d'$. Conversely, if g stabilizes W_{d-1} (and W_{d-1}^\perp), then $gW_d = W_d$ and $gW_d' = W_d'$ automatically, because there are exactly two isotropic lines in the hyperbolic plane W_{d-1}^\perp/W_{d-1}, the element g would have negative determinant if $gW_d = W_d'$. So we prove the claim. Therefore we have $B = \text{Stab}(W_i)$.

The absolute Weyl group W can be identified as the subgroup of S_l:

$$W = \left\{ w \in S_l \mid w(i) + w(l + 1 - i) = l + 1, \right.\left. \#\{i, 1 \leq i \leq d : w(i) > d\} \text{ is even} \right\}.$$ \hspace{1cm} (4.1.23)$$

Let $S = \{s_i : 1 \leq i \leq d\}$ be the set of simple reflections, where

$$s_i = \left\{ (i, i + 1)(l - i, l - i + 1), \quad 1 \leq i \leq d - 1, \right.\left. (d, d + 2)(d - 1, d + 1), \quad i = d. \right\}$$ \hspace{1cm} (4.1.24)$$

The Dynkin diagram of type D_d is

$$\text{Note that the standard parabolic subgroup } P_d, \text{ corresponding to } S - \{s_{d-1}\} \text{ is the stabilizer of } W_d', \text{ and the standard parabolic subgroup } P_d' \text{ corresponding to } S - \{s_d\} \text{ is the stabilizer of } W_d. \text{ The Frobenius } \delta \text{ acts on the Weyl group } W \text{ by exchanging } s_{d-1} \text{ and } s_d, \text{ but fixing all the other } s_i \text{'s.}$$
Using the same trick as Example 4.1.2, two Borel subgroups $B_1 = \text{Stab}(U)$ and $B_2 = \text{Stab}(U')$ are in relative position w if and only if there exists a \mathbb{F}-basis $\{f_1, \ldots, f_l\}$ of $V_{\mathbb{F}}$, such that

$$\begin{align*}
U_i &= \text{span}(f_1, \ldots, f_i), \\
U_d &= \text{span}(f_1, \ldots, f_{d-1}, f_d), \\
U_{d'} &= \text{span}(f_1, \ldots, f_{d-1}, f_{d+1}),
\end{align*}$$

(4.1.26)

and

$$\begin{align*}
U'_i &= \text{span}(f_{w(1)}, \ldots, f_{w(i)}), \\
U'_{d'} &= \text{span}(f_{w(1)}, \ldots, f_{w(d-1)}, f_{w(d)}), \\
U''_d &= \text{span}(f_{w(1)}, \ldots, f_{w(d-1)}, f_{w(d+1)}),
\end{align*}$$

(4.1.27)

and U_d and $U'_{d'}$ lie in the same $\text{SO}(V)$-orbit in the set of all maximal isotropic subspaces of $V_{\mathbb{F}}$. Note that the Frobenius δ exchanges U_d and $U_{d'}$, hence $U_{d-1} = U_d \cap \delta(U_d) = U_{d'} \cap \delta(U_{d'})$.

Let $w_1 = s_{d-1} \cdots s_2 s_1 = (d-1, 1)(d+1, \ldots, l)$, then a flag U_i lying in the Deligne-Lusztig variety $X(w_1)$ is of the form:

$$U_{d-i} = U_d \cap \delta(U_d) \cap \cdots \cap \delta^{i}(U_{d'}),$$

(4.1.28)

for $1 \leq i \leq d$.

Therefore we have a commutative diagram

$$\begin{array}{ccc}
X(w_1) & \rightarrow & \text{SO}(V)/B \\
\downarrow \phi & & \downarrow \\
\text{SO}(V)/P,
\end{array}$$

(4.1.29)

where P is P_d (resp. $P_{d'}$), ϕ is an injection sending U_i to U_d (resp. $U_{d'}$). And $\text{im}(\phi)$ is the subvariety of $\text{SO}(V)/P$ parameterizing all the maximal isotropic subspaces U of $V_{\mathbb{F}}$ such that U lies in the $\text{SO}(V)$-orbit of W_d (resp. $W_{d'}$) and

$$\dim(U \cap \delta(U) \cap \cdots \cap \delta^{i}(U)) = d - i,$$

(4.1.30)

for $1 \leq i \leq d$.

Let $w_2 = s_d s_{d-2} \cdots s_2 s_1$, by the same procedure as above we can show that a flag $U_i \in X(w_2)$ is completely determined by U_d (or equivalently, by $U'_{d'}$):

$$U_{d-i} = U_d \cap \delta(U_d) \cap \cdots \cap \delta^{-1}(U_d),$$

(4.1.31)

where $1 \leq i \leq d$. We have the following commutative diagram:

$$\begin{array}{ccc}
X(w_2) & \rightarrow & \text{SO}(V)/B \\
\downarrow \phi & & \downarrow \\
\text{SO}(V)/P_d,
\end{array}$$

(4.1.32)

where $\phi: U_i \mapsto U_d$ is injective.
Returning to the general case, let P_I be the standard parabolic subgroup of H, where I is a subset of the set of simple reflections S of W_H. Let W_I be the subgroup of W_H generated by simple reflections in I, $W_I^{\mathbf{t}}$ (resp. $W_I^{\mathbf{J}}$) the set of minimal length representatives of the cosets in W_H/W_I (resp. W_I/W_H). Let $W_I^{\mathbf{J}}$ denote $W_I \cap W_J$. Then we can define the generalized Deligne-Lusztig varieties.

Definition 4.1.5. For each $w \in W_H$, the generalized Deligne-Lusztig variety $X_{P_I}(w)$ is defined as

$$X_{P_I}(w) = \{g \in H/P_I : g^{-1} \sigma(g) \in P_I w P_{\sigma(I)} \}. \quad (4.1.33)$$

Proposition 4.1.6 ([Hoc10 Lemma 2.1.3]). For $w \in W^{\mathbf{t}(I)}$, the Deligne-Lusztig variety $X_{P_I}(w)$ is smooth of dimension $\ell(w) + \ell(W_{\sigma(I)}) - \ell(W_{\mathbf{t}(\sigma(I))})$, where $\ell(W_J)$ denotes the maximal length of elements in W_J for $J \subset S$.

The partial flag variety H/P_I can be written as the disjoint union of all such Deligne-Lusztig varieties:

$$H/P_I = \bigcup_{w \in W^{\mathbf{t}(I)}} X_{P_I}(w). \quad (4.1.34)$$

However, this partition is very coarse.

Example 4.1.7. Let us look at Example 4.1.2 again, now $H/P_1 = \mathbb{P}(V)$, and we have the partition

$$\mathbb{P}(V) = X_{P_I}(\text{id}) \cup X_{P_I}(s_1), \quad (4.1.35)$$

where $X_{P_I}(\text{id})$ is the set of all rational lines of V, $X_{P_I}(s_1)$ is the set of all unrectangular lines. And obviously, the image of $X(w)$, where $w = (1, 2, \ldots, l)$, in $\mathbb{P}(V)$ is much smaller than $X_{P_I}(w)$. Recall that the image of $X(w)$ in $\mathbb{P}(V)$ is the set of lines L such that $L \oplus \sigma(L) \oplus \sigma^2(L) \oplus \cdots \oplus \sigma^{l-1}(L) = V$ by Example 4.1.2.

To get finer partition of the partial flag variety H/P_I, the refinement of parabolic subgroups is used. For two parabolic subgroups P and Q, we define the refinement of P with respect to Q

$$P^Q := (P \cap Q) \cdot U_P, \quad (4.1.36)$$

which is parabolic again (cf. [Bor91 Proposition 14.22]). If P is of type $I \subset S$, Q is of type $J \subset S$, then P^Q is of type $I \cap^{w} J$, where $w \in W^{\mathbf{J}}$ is the relative position of P and Q (cf. [Bess86, Theorem 4]). The idea to define the fine Deligne-Lusztig varieties is to consider not only the relative position of P and $\sigma(P)$, but also their refinements. To state the definition of fine Deligne-Lusztig varieties, we need some combinatorial results.

Definition 4.1.8 (Lusztig-Bédard sequence). For $I \subset S$, let $\mathcal{T}(I, \sigma)$ be the set of sequences $(I_i, w_i)_{i \geq 0}$ such that

- $I_0 = I$, $w_0 \in W^{\mathbf{t}(I)}$,
- $I_{i+1} = I_i \cap^{w_i} \sigma(I_i)$, for $i \geq 0$,
- $w_i \in W^{\mathbf{t}(I_i)}$ and $w_{i+1} \in W_{I_{i+1}} w_i W_{\sigma(I_i)}$, for $i \geq 1$.

Let $I_\infty := I$, $w_\infty := w_i$ for $i > 0$. Then we have a bijection $T(I, \sigma) \to I^W$ given by $(I, w_i)_{i \geq 0} \mapsto w_\infty$ (cf. [He09, Proposition 9]).

For a parabolic subgroup P of type I, we associate a sequence of parabolic subgroups:

\[P^0 := P, \]
\[P^{i+1} := (P^i)^\sigma(P^i), \]

for any integer $i \geq 0$, a sequence w_0, w_1, w_2, \ldots in W, where w_i is the relative position of P^i and $\sigma(P^i)$, a sequence $I_0 \supset I_1 \supset \cdots$ of subsets of S, where I_i is the type of P^i. Then the sequence $(I_i, w_i)_{i \geq 0} \in T(I, \sigma)$. Let $P^\infty := P^i$ for $i \gg 0$.

Definition 4.1.9. For $w \in I^W$, let $t := (I, w_i)$ be the corresponding Lusztig-Bédard sequence, we define the fine Deligne-Lusztig variety $\mathcal{P}_{I,w}$ as the locally closed subscheme of H/P_I:

\[\mathcal{P}_{I,w} := \{ P \in H/P_I : P^i \text{ and } \sigma(P^i) \text{ are in relative position } w_i, \forall i \geq 0 \}. \]

We also use the notation \mathcal{P}_I^t to denote the fine Deligne-Lusztig variety $\mathcal{P}_{I,w}$.

Let $t := (I, w_i)$ be a Lusztig-Bédard sequence in $T(I, \sigma)$, for $n \geq 1$, we define the n-truncated sequence $t_n := (I'_n, w'_n)$ as follows:

\[I'_n := I_{n+i}, \ w'_n := w'_{i+n}. \]

Then $t_n \in T(I_n, \sigma)$. Let $t_\infty := (I_\infty, w_\infty)$ be the constant sequence, in this case, $\mathcal{P}_{I,w}^t$ is the generalized Deligne-Lusztig variety $X_{P^\infty}(w_\infty)$.

Proposition 4.1.10 ([Lus07, 4.2]). The map

\[\mathcal{P}_{I,w}^t \longrightarrow \mathcal{P}_{I,w}^t, \]
\[P \longrightarrow P^1, \]

defines an isomorphism between fine Deligne-Lusztig varieties, whose inverse map is the natural projection. Furthermore, the map $P^1 \mapsto P^\infty$ defines an isomorphism:

\[\mathcal{P}_{I,w} \longrightarrow \mathcal{P}_{I,\infty,w_\infty} = X_{P^\infty}(w_\infty). \]

Proposition 4.1.11 ([He09, Theorem 3.1]). Let $pr \colon H/B \to H/P_I$ be the natural projection, then for $w \in I^W$, $pr(X(w)) = \mathcal{P}_{I,w}$ and we have

\[\overline{\mathcal{P}_{I,w}} = \bigcup_{v \leq \sigma w} \mathcal{P}_{I,v}, \]

where $\leq_{I,w}$ is the natural partial order on I^W (cf. [He09, 1.4]).

Example 4.1.12. Let $X(w)$ be the Deligne-Lusztig variety in Example 4.1.3, the map ϕ is an isomorphism from $X(w)$ to the fine Deligne-Lusztig variety $\overline{\mathcal{P}_{I,w}}$, whose inverse map is $P \mapsto P^\infty$. The Lusztig-Bédard sequence is $(I_i, w_i)_{i \geq 0}$, where

\[w_i = s_{d-i} \cdots s_d, \]
\[I_i = \{ s_1, \ldots, s_{d-i-1} \}, \]

for $0 \leq i \leq d - 1$. And $w_\infty = w$, $I_\infty = \emptyset$. The even orthogonal case can be computed similarly.
Lemma 4.1.13 ([Hoe10 Proposition 2.1.9]). For \(w \in \mathcal{W} \), the fine Deligne-Lusztig variety \(\mathcal{P}_{I,w} \) consists of all \(P \in H/P_I \) such that \(P \) and \(P_{\infty} \) are in relative position \(w \). In other words,
\[
\mathcal{P}_{I,w} = \{ g \in H/P_I : g^{-1}\sigma(g) \in P_I w \sigma(I_{\infty}) \}.
\]
(4.1.44)

Remark 4.1.14. By Lemma 4.1.13, consider the Görtz local model diagram,
\[
\begin{array}{ccc}
H & \xrightarrow{L_{opp}} & H/P_I \\
\downarrow{pr} & & \downarrow{pr} \\
H/P_I & & H/P_I,
\end{array}
\]
(4.1.45)

where \(pr \) is the natural projection and \(L_{opp} \) is the opposite Lang map \(g \mapsto (g^{-1}\sigma(g))^{-1} \). Then \(L_{opp} \) and \(pr \) are smooth morphisms with the same relative dimension, and
\[
L_{opp}^{-1}(P_{\sigma(I_{\infty})}w^{-1}P_I/P_I) = \{ g \in H : g^{-1}\sigma(g) \in P_I w \sigma(I_{\infty}) \} = pr^{-1}(\mathcal{P}_{I,w}).
\]
(4.1.46)

by Lemma 4.1.13. We see that the fine Deligne-Lusztig variety \(\mathcal{P}_{I,w} \) is smoothly equivalent to the (generalized) Schubert cell \(P_{\sigma(I_{\infty})}w^{-1}P_I/P_I \) in the partial flag variety \(H/P_I \). However, by Proposition 4.1.11, the closure \(\overline{\mathcal{P}_{I,w}} \) is smoothly equivalent to
\[
\bigcup_{v \leq I, \sigma w} P_{\sigma(I_{\infty})}v^{-1}P_I/P_I,
\]
(4.1.47)

where \(I_{\infty}^v \) is the limit of the Lusztig-Bédard sequence associated to \(v \). In general, \(4.1.47 \) is not a Schubert variety. In fact, the closure of a fine Deligne-Lusztig variety is not normal in general. For example, consider the case \(GL_3 \), then we have the decomposition into fine Deligne-Lusztig varieties
\[
\mathbb{P}(V) = \mathcal{P}_{id} \cup \mathcal{P}_{s_1} \cup \mathcal{P}_{s_1s_2}.
\]
(4.1.48)

Note that \(\mathcal{P}_{s_1} \) is not irreducible and its closure is \(\mathcal{P}_{id} \cup \mathcal{P}_{s_1} \), which is not normal. See the picture.

\[
\begin{array}{cc}
\mathcal{P}_{s_1} & \overline{\mathcal{P}_{s_1}} \\
\end{array}
\]
(4.1.49)

Example 4.1.15 (The odd orthogonal group). Notations are the same as in Example 4.1.3. We will show that the closure of the fine Deligne-Lusztig variety \(\mathcal{P}_w := \phi(X(w)) \) is normal using the same method as [GH15 Proposition 7.3.2].

Consider the inclusion of closures
\[
\overline{\mathcal{P}_w} \subset X_P(w).
\]
(4.1.50)
The variety $X_P(w)$ is irreducible, so the inclusion \(^{(4.1.50)}\) is an equality if and only if $\ell(w) = \dim(X_P(w))$. In this case, let $I = \{s_1, s_2, \ldots, s_{d-1}\}$ be the type of P, $w_{\text{min}} = s_d$ the minimal representative of w in $\mathcal{I}_W(\sigma(I))$. Note that σ acts on the Dynkin diagram trivially. Then $I \cap w_{\text{min}} \sigma(I) = \{s_1, s_2, \ldots, s_{d-2}\}$. Therefore

$$
\dim(X_P(w)) = 1 + \frac{d(d - 1)}{2} - \frac{(d - 2)(d - 1)}{2} = \ell(w).
$$

Then the closure $\overline{P_w}$ is normal, and has isolated singularities by \([GH15\text{, Proposition 7.3.2}]\). The closure $\overline{P_w}$ can be described as the subvariety of $\text{SO}(V)/P$ parameterizing all the d-dimensional isotropic subspaces V_d such that

$$
\dim(V_d \cap \sigma(V_d)) \geq d - 1.
$$

Example 4.1.16. Notations are the same as Example \(^{(4.1.14)}\). Let $P_{w_1} := \phi(X(w_1))$ the fine Deligne-Lusztig variety. Let $I = \{s_1, s_2, \ldots, s_{d-2}, s_d\}$ be the type of P_{w_1}. Note that the Frobenius δ exchanges s_{d-1} and s_d, and fixes all the other s_i’s. Let $w_{\text{min}} = 1$ the minimal representative of w_1 in $\mathcal{I}_W(\delta(1))$. Then $I \cap w_{\text{min}} \delta(W) = \{s_1, s_2, \ldots, s_{d-2}\}$. We have

$$
\dim(X_{P_{w'}}(w_1)) = \frac{d(d - 1)}{2} - \frac{(d - 2)(d - 1)}{2} = \ell(w_1).
$$

Therefore the closure $\overline{P_{w_1}}$ is normal. Furthermore, $\overline{P_{w'}}$ is smooth because $\delta(P_{w'}) = P_{w'}$. The closure $\overline{P_{w_1}} = X_{P_{w'}}(\text{id})$ can be described as the subvariety of $\text{SO}(V)/P_{w'}$ parameterizing all the maximal isotropic subspaces U of V such that U lies in the $\text{SO}(V)$-orbit of W_d and

$$
\dim(U \cap \delta(U)) = d - 1.
$$

Remark 4.1.17. The odd orthogonal case has been listed in \([GH15\text{, Proposition 7.3.2}]\), which corresponds to the triple $(\tilde{C}_d, \omega_1^\vee, S, \text{id})$. However, the even orthogonal case is not in the list, which corresponds to the triple $(\tilde{B}_m, \omega_1^\vee, S, \text{id})$. Furthermore, by the same procedure, it is easy to check that the triples $(\tilde{D}_l, \omega_1^\vee, S, \sigma_0)$ should be also included in the list of \([GH15\text{, Proposition 7.3.2}]\). The extra three smooth cases make the list complete.

4.2 The group-theoretic approach

In this section, we collect some results from \([GH15]\). There is no harm to look at only one connected component of the Rapoport-Zink space, because all connected components are isomorphic to each other by \(^{(4.1.14)}\). By \(^{(3.5.18)}\), we may work with the group $G_{\text{ad}}(L)'$ instead of $G_{\text{ad}}(L)$. All notations are the same as in previous sections.

Let $\hat{S} = \{s_0, s_1, \ldots, s_m\}$ be the set of affine simple reflections in \hat{W}_{ad}. For $Z \subset \hat{S}$, we denote P_Z the corresponding standard parahoric subgroup of $G_{\text{ad}}(L)$. We will write EO_{cox} instead of $\text{EO}_{\sigma_{\text{cox}}}(\mu_{\text{ad}})$ in \([GH15\text{, 5.1}]\) to lighten the notations because in our case σ acts on the affine Dynkin diagram trivially. Let $J = J_{\text{ad}}(Q_{P_\Sigma})'$.

Proposition 4.2.1.

$$
X(\mu_{\text{ad}}, b_{\text{ad}})_{K_{\text{ad}}} = \bigcup_{\Sigma \in \mathcal{F}} \bigcup_{j \in J \cap P_{\Sigma}} j \cdot Y(w_{\Sigma})
$$

\(^{(4.2.1)}\)
Instead of reinventing the wheel, we will explain the meaning of this proposition in terms of a series of lemmas.

For any affine Deligne-Lusztig variety

\[X_w(b) := \{ g \in G_{\text{ad}}(L)' / I : g^{-1}b\sigma(g) \in IwI \} \]

(\text{cf. Rap05 Definition 4.1}), its image

\[X_w'(b) := \{ g \in G_{\text{ad}}(L)' / K_{\text{ad}} : g^{-1}b\sigma(g) \in K_{\text{ad}} \cdot \sigma IwI \} \]

under the map \(G_{\text{ad}}(L)' / I \to G_{\text{ad}}(L)' / K_{\text{ad}} \) is called the fine affine Deligne-Lusztig variety, where the superscript \(f \) stands for “fine”.

The first step is to show that \(X(\mu_{\text{ad}}, b_{\text{ad}})'_{K_{\text{ad}}} \) is a disjoint union of fine affine Deligne-Lusztig varieties.

Lemma 4.2.2 ([GH15 Theorem 5.1.2]).

\[X(\mu_{\text{ad}}, b_{\text{ad}})'_{K_{\text{ad}}} = \bigcup_{w \in EO_{\text{cox}}} X_w'(b_{\text{ad}}) \]

Let \(EO(\mu) \) be the set \(\text{Adm}^\sharp(\mu) \cap \tilde{W}_{\text{ad}} \). Let \(EO_{\text{cox}} \) be the subset of \(EO(\mu) \) consisting of those \(w \) such that \(\text{supp}_\sigma(w) \) is a proper subset of \(\tilde{S} \) and \(w \) is a \(\sigma \)-Coxeter element of \(W_{\text{supp}_\sigma(w)} \). Then to prove Lemma 4.2.2 is just to show that the triple \((G_{\text{ad}}, \mu_{\text{ad}}, S)\) is of Coxeter type, which has been completely listed in [GH15 Theorem 5.1.2].

Let \(\tau \) be the image of \(b_{\text{ad}} \) in \(\Omega \). For \(v \in \tilde{S} \) let \(d(v) \) be the minimal distance between the \(\tau \sigma \)-orbit containing \(v \) and the vertex outside \(S \). Let \(J \) be the set of subsets \(\Sigma \) of \(\tilde{S} \), that is \(\tau \sigma \)-stable and \(d(v) = d(v') \) for any \(v, v' \in \Sigma \). For \(\Sigma \in J \) let \(d(\Sigma) := d(v) \) for some \(v \in \Sigma, \Sigma' \) the union of all the \(\tau \sigma \)-orbits \(\Sigma' \) that is not contained in \(\Sigma \) and \(d(\Sigma') \leq d(\Sigma) \), \(\Sigma^\flat \) the union of all the \(\tau \sigma \)-orbits \(\Sigma' \) such that \(d(\Sigma') > d(\Sigma) \).

Lemma 4.2.3 ([GH15 Proposition 7.1.1]). The map

\[J \longrightarrow EO_{\text{cox}}, \] \(\Sigma \longmapsto w_\Sigma, \)

is bijective, where \(w_\Sigma \) is the unique element in \(EO_{\text{cox}} \) such that \(\text{supp}_\sigma(w_\Sigma) = \Sigma^\flat \). We have \(\ell(w_\Sigma) = d(\Sigma) \).

(a) odd case

In this case, \(\tau \) is identity.

\[EO_{\text{cox}} = \{ 1, s_0, s_0s_1, \ldots, s_0s_1 \ldots s_{m-1} \} \]

\[J = \{ \{ s_0 \}, \{ s_1 \}, \ldots, \{ s_m \} \}. \]

If \(\Sigma = \{ s_i \} \in J \) for some \(i \), then \(\Sigma^\flat = \{ s_0, \ldots, s_{i-1} \} \) if \(i > 0 \) or empty otherwise; \(\Sigma^\flat = \{ s_{i+1}, \ldots, s_m \} \) if \(i < m \) or empty otherwise; \(w_\Sigma = s_0s_1 \ldots s_{i-1} \) if \(i > 0 \) or 1 otherwise.

For example, if \(m = 7 \), \(\Sigma = \{ s_4 \} \), then \(\Sigma^\flat = \{ s_0, s_1, s_2, s_3 \} \) and \(\Sigma^\flat = \{ s_5, s_6, s_7 \} \). See the diagram (4.2.9), where \(\Sigma^\flat \) is surrounded by the solid frame, and \(\Sigma^\flat \) is surrounded by the dashed frame.
Supersingular Locus of Unitary Shimura Varieties

(4.2.9)

\[\Sigma^0 \quad \Sigma^\sharp \]

(b) even case

In this case, \(\tau \) switches between \(s_0 \) and \(s_1 \), and fixes all the other vertices.

EO_cox = \{\(\tau, s_0\tau, s_0s_2\tau, \ldots, s_0s_2\ldots s_{m-1}\tau \}\}. \quad (4.2.10)

For \(\Sigma \in J \), if \(\Sigma = \{ s_0, s_1 \} \), then \(\Sigma^\flat = \emptyset \), \(\Sigma^\sharp = \{ s_2, \ldots, s_m \} \); if \(\Sigma = \{ s_1 \} \) for some \(i > 1 \), then \(\Sigma^0 = \{ s_0, s_1, \ldots, s_{i-1} \} \), \(\Sigma^\sharp = \{ s_{i+1}, \ldots, s_m \} \) if \(i < m \) or empty otherwise \(w_\Sigma = s_0s_2\ldots s_{i-1}\tau \).

For example, if \(m = 8 \), \(\Sigma = \{ s_5 \} \), then \(\Sigma^0 = \{ s_0, s_1, \ldots, s_4 \} \) and \(\Sigma^\sharp = \{ s_6, s_7, s_8 \} \). See the diagram (4.2.12), where \(\Sigma^\flat \) is surrounded by the solid frame, and \(\Sigma^\sharp \) is surrounded by the dashed frame.

Lemma 4.2.4 ([GH15 Proposition 2.2.1]). For each \(w \in EO_{\text{cox}} \), we have

\[X_w(b_{\text{ad}}) = \coprod_{j \in J \cap P_{\Sigma^\flat}} j \cdot Y(w), \quad (4.2.13) \]

where

\[Y(w) = \{ g \in P_{\Sigma^\flat}/I : g^{-1}b_{\text{ad}}\sigma(g) \in IwI \} \quad (4.2.14) \]

is a Deligne-Lusztig variety in \(P_{\Sigma^\flat}/I \).

The key step of proving Lemma 4.2.4 is, by Lang’s theorem ([He14 Lemma 3.2]) and [He14 Proposition 4.5], for each \(g \in X_w(b_{\text{ad}}) \), there exists some \(x \in P_{\text{supp}_w(w)} \) such that \(x^{-1}g^{-1}b_{\text{ad}}\sigma(g)\sigma(x) = b_{\text{ad}} \), i.e. \(g \in JP_{\text{supp}_w(w)} \).

Remark 4.2.5. Note that the reductive quotient \(\overline{P}_{\Sigma^\flat} \) of \(P_{\Sigma^\flat} \) has the Dynkin diagram \(\Sigma^\flat \), i.e. when \(n = 2m+1 \) is odd, \(\overline{P}_{\Sigma^\flat} \) is an algebraic group of type \(B_m \); when \(n = 2m \), \(\overline{P}_{\Sigma^\flat} \) is of type \(D_m \).

Remark 4.2.6. When \(n = 2m+1 \) is odd, \(w_{\Sigma^\flat} \) is a Coxeter element of \(W_{\Sigma^\flat} \). However, when \(n = 2m \), \(w_{\Sigma^\flat} \) is not a Coxeter element, but a \(\sigma \)-Coxeter element.
Let $w' := w\tau^{-1}$, $\delta := \tau\sigma^{-1}$, then δ is the twisted Frobenius on the reductive quotient $P_{\Sigma'}$, and w' is a δ-twisted Coxeter element. We have

$$Y(w) = \{ g \in P_{\Sigma'} / I : g^{-1}\delta(g) \in I w' I \}, \quad (4.2.15)$$

where I is the image of I in $P_{\Sigma'}$. Note that I is a δ-stable Borel subgroup of $P_{\Sigma'}$.

Lemma 4.2.7 ([GH15 Theorem 4.1.2 (1)]). For each $w = w_\Sigma \in EO_{\text{cox}}$, we have

$$X^f_w(b_{\text{ad}}) \cong \{ g \in G_{\text{ad}}(L)' / P_{\Sigma'} : g^{-1}b_{\text{ad}}\sigma(g) \in P_{\Sigma'} w P_{\Sigma'} \}. \quad (4.2.16)$$

Let P and Q be two parahoric subgroups of $G_{\text{ad}}(L)'$, similarly to the parabolic case, we define the refinement of P with respect to Q as

$$P^Q := (P \cap Q) \cdot U_P, \quad (4.2.17)$$

where U_P is the pro-unipotent radical of P. The group P^Q is a parahoric subgroup of $G_{\text{ad}}(L)'$ again, and its pro-unipotent radical is $(P \cap U_Q) \cdot U_P$, which can be proved analogously. Görtz-He generalize the Lusztig-Bédard sequence to the case of affine Weyl groups.

Definition 4.2.8 (Lusztig-Bédard sequence). For $J \subset \tilde{S}$, let $T(J, \tau\sigma)$ be the set of sequences $(J_i, w_i)_{i \geq 0}$ such that

(a) $J_0 = J$, $w_0 \in J W_\sigma \tau\sigma(J)$,

(b) $J_{i+1} = J_i \cap w_i (\tau\sigma(J_i))$, for $i \geq 0$,

(c) $w_i \in J_i W_\sigma \tau\sigma(J_i)$ and $w_{i+1} \in W_{J_{i+1}} w_i W_{\tau\sigma(J_i)}$, for $i \geq 1$.

Let $J_\infty := J_i$, $w_\infty := w_i$, for $i \gg 0$, then the map $(J_i, w_i) \mapsto w_\infty$ defines a bijection $T \to \text{W}_a$. For each parahoric subgroup P of type J, we associate a sequence of parahoric subgroups

$$P^0 := P, \quad P^{i+1} := (P^i)_{b_{\text{ad}}\sigma(P^i)^{-1}b_{\text{ad}}^{-1}} \text{ for } i \geq 0, \quad (4.2.18)$$

and a sequence (J_i, w_i), where J_i is the type of P^i and w_i is the relative position of P^i and $b_{\text{ad}}\sigma(P^i)b_{\text{ad}}^{-1}$. Then (J_i, w_i) is a Lusztig-Bédard sequence. Let P_∞ denote P^m for $m \gg 0$. Then P_∞ is of type $J_\infty := J_m$ for $m \gg 0$.

Now for each $g \in X^f_w(b_{\text{ad}})$, let $P := g_{\text{ad}}$ be the corresponding parahoric subgroup of $G_{\text{ad}}(L)'$. We write $w = x\tau$ for some $x \in \text{W}_a$ and $\tau \in \Omega$. Recall that $w = w_\Sigma$. Then the type of P is $J_0 = \tilde{S}$. By the same procedure as in previous paragraph, we get the Lusztig-Bédard sequence (J_n, x_n), and by [He07 Lemma 1.4]. $J_\infty = \Sigma^\xi$. Then, by [Lus07 4.2 (c)(d)], the map $g_{\text{ad}} \mapsto (g_{\text{ad}})^\infty$ gives the isomorphism:

$$\theta : X^f_w(b_{\text{ad}}) \xrightarrow{\cong} \{ g \in G_{\text{ad}}(L)' / P_{\Sigma'} : g^{-1}b_{\text{ad}}\sigma(g) \in P_{\Sigma'} w P_{\Sigma'} \}, \quad (4.2.19)$$
whose inverse map is the natural projection map, i.e. the following diagram is commutative:

\[
\begin{align*}
X_w(b_{ad}) & \longrightarrow G_{ad}(L)' / I \\
\downarrow & \\
\{g \in G_{ad}(L)' / P_{\Sigma} : g^{-1}b_{ad}\sigma(g) \in P_{\Sigma}wP_{\Sigma}\} & \xrightarrow{\cong} G_{ad}(L)' / P_{\Sigma} \\
\downarrow & \\
X_w'(b_{ad}) & \longrightarrow G_{ad}(L)' / K_{ad}.
\end{align*}
\]

(4.2.20)

Remark 4.2.9. Using the same trick as Example 4.1.3 and Example 4.1.4, we can describe the map \(\theta\) in (4.2.19) in terms of lattices. Let \(g \in G_{ad}(L)' / P_{\Sigma}\) such that \(g^{-1}b_{ad}\sigma(g) \in P_{\Sigma}wP_{\Sigma}\).

1. When \(n = 2m + 1\) is odd, let \(\Sigma = \{s_i\}\) for some \(0 \leq i \leq m\), then \(P_{\Sigma}\) is the stabilizer of the lattice chain

\[
\Lambda_{m-i} \subset \cdots \subset \Lambda_{m-1} \subset \Lambda_m.
\]

(4.2.21)

Let \(\Delta_j := g \cdot \Lambda_j\), then \(g\Sigma\) is the stabilizer of the lattice chain

\[
\Delta_{m-i} \subset \cdots \subset \Delta_{m-1} \subset \Delta_m.
\]

(4.2.22)

The condition \(g^{-1}b_{ad}\sigma(g) \in P_{\Sigma}wP_{\Sigma}\) is equivalent to the condition that the pair \((g\Sigma, b_{ad}\sigma(g\Sigma))\) lies in the \(G_{ad}(L)'\)-orbit of \((P_{\Sigma}, wP_{\Sigma})\). So the lattice chain \(\Delta\) is of the form:

\[
\Delta_{m-j} = \Delta_m \cap (b_{ad}\sigma)(\Delta_m) \cap \cdots \cap (b_{ad}\sigma)^j(\Delta_m),
\]

(4.2.23)

for \(1 \leq j \leq i\) and \(\Delta_{m-i} = (b_{ad}\sigma)(\Delta_{m-i})\). Therefore, the map \(\theta\) is

\[
\Delta_m \mapsto \Delta_j,
\]

(4.2.24)

such that \(\Delta_j\) satisfies condition (4.2.23).

2. When \(n = 2m\) is even, let \(\Sigma = \{s_i\}\) for some \(2 \leq i \leq m\), then \(P_{\Sigma}\) is the stabilizer of the lattices

\[
\Lambda_{m-i} \subset \cdots \subset \Lambda_{m-2} \subset (\Lambda_m \text{ and } \Lambda_{m'}) \subset \Lambda_{m-2}^\vee \subset \cdots \subset \Lambda_{m-1}^\vee.
\]

(4.2.25)

Note that \(\Lambda_m \cap \Lambda_{m'} = \Lambda_{m-1}\), and the lattice \(\Lambda_{m'}\) is uniquely determined by \(\Lambda_{m-1}\) and \(\Lambda_m\), because there are exactly two isotropic lines in the hyperbolic plane \(\Lambda_{m-1}^\vee / \Lambda_{m-1}\). We also use the notation \(\Lambda_{m'}^1\) to denote the unique isotropic line (hence the lattice) determined by \(\Lambda_m\) and \(\Lambda_{m-1}\).

Let \(\Delta_j := g \cdot \Lambda_j\) for \(m-i \leq j \leq m\) and \(j = m'\). Then the condition \(g^{-1}b_{ad}\sigma(g) \in P_{\Sigma}wP_{\Sigma}\) implies that \(\Delta_j\) is of the form:

\[
\begin{align*}
\Delta_{m'} &= b_{ad}\sigma(\Delta_m) \\
\Delta_{m-j} &= \Delta_m \cap (b_{ad}\sigma)(\Delta_m) \cap \cdots \cap (b_{ad}\sigma)^j(\Delta_m)
\end{align*}
\]

(4.2.26)

for \(1 \leq j \leq i\) and \(\Delta_{m-i} = (b_{ad}\sigma)(\Delta_{m-i})\). Therefore, the map \(\theta\) is

\[
\Delta_m \mapsto \Delta_j,
\]

(4.2.27)
such that Δ, satisfies the condition described above.

For $\Sigma = \{s_0, s_1\}$, P_{Σ} is the stabilizer of the lattice chain:

$$\Lambda_{m-1} \subset \Lambda_m.$$ \hfill (4.2.28)

Note that P_{Σ} is also the stabilizer of the lattices

$$\Lambda_{m-1} \subset (\Lambda_m, \Lambda_m') \subset \Lambda_{m-1}'.$$ \hfill (4.2.29)

Therefore, the map θ is

$$\Delta \mapsto \Delta_\ast,$$ \hfill (4.2.30)

where $\Delta_\ast = \{\Lambda_{m-1} \subset (\Lambda_m, \Lambda_m') \subset \Lambda_{m-1}'\}$ satisfying $\Lambda_m' = b_{\text{ad}} \sigma(\Delta_m)$.

Similarly to Lemma 4.2.4 the set $\{g \in G_{\text{ad}}(L)'/P_{\Sigma} : g^{-1}b_{\text{ad}} \sigma(g) \in P_{\Sigma}wP_{\Sigma}\}$ can be decomposed into a disjoint union of some classical Deligne-Lusztig varieties, we have the following lemma:

Lemma 4.2.10 ([GH15 Corollary 4.6.2]). For each $w \in \text{EO}_{\text{cox}}$, the fine Deligne-Lusztig variety

$$X'_w(b_{\text{ad}}) \cong \bigcap_{j \in I/\cap \mathbb{P}_{j-\Sigma}} j : Y_{\Sigma}(w),$$ \hfill (4.2.31)

where

$$Y_{\Sigma}(w) = \{g \in P_{\Sigma-\Sigma}/P_{\Sigma} : g^{-1}b_{\text{ad}} \sigma(g) \in P_{\Sigma}wP_{\Sigma}\}.$$ \hfill (4.2.32)

Moreover, the natural projection $G_{\text{ad}}(L)'/I \to G_{\text{ad}}(L)'/K_{\text{ad}}$ induces an isomorphism from $Y(w)$ in P_{Σ}/I to $Y_{\Sigma}(w)$, i.e. we have the following commutative diagram

$$\begin{array}{ccc}
Y(w)^c & \longrightarrow & X_w(b_{\text{ad}})^c \\
\cong & & \cong \\
Y_{\Sigma}(w)^c & \longrightarrow & \{gP_{\Sigma} : g^{-1}b_{\text{ad}} \sigma(g) \in P_{\Sigma}wP_{\Sigma}\}^c \\
& & \cong \\
& \longrightarrow & G_{\text{ad}}(L)'/P_{\Sigma}
\end{array}$$

(4.2.33)

Now let us consider the closure of $Y(w)$ in the partial flag variety $P_{\Sigma}/P_{\Sigma\cap \Sigma}$.

Proposition 4.2.11. For each $w = w_\Sigma \in \text{EO}_{\text{cox}}$, we have

$$\overline{Y(w)} = \bigcap_{(\Sigma') \subseteq \Sigma} \bigcap_{(j \cap \mathbb{P}_{j-\Sigma}) \neq \emptyset, \ j \in I/\cap \mathbb{P}_{j-\Sigma}} jY(w_{\Sigma'}).$$ \hfill (4.2.34)

Proof. Let $Q = P_{\Sigma\cap \Sigma}$, $\text{pr} : P_{\Sigma}/I \to P_{\Sigma}/Q$ the natural projection which is proper. Then

$$\overline{Y(w)} = \bigcup_{v \leq w} \text{pr}(Y(v)).$$ \hfill (4.2.35)

The rest of the proof is exactly the same as [GH15 Theorem 7.2.1], so we omit it. \hfill \square
Remark 4.2.12. For $i \in J$, $i \cdot Y_{\Sigma}(w)$ is a Deligne-Lusztig variety in the partial flag variety $\mathcal{P}_{\Sigma}/\mathcal{P}_{\Sigma'}$, more precisely,

$$i \cdot Y_{\Sigma}(w) = \{ x \in \mathcal{P}_{\Sigma}/\mathcal{P}_{\Sigma'} : x^{-1}b_{ad}\sigma(x) \in \mathcal{P}_{\Sigma} i w \sigma(i)^{-1}(\sigma(i) \mathcal{P}_{\Sigma'}) \}, \quad (4.2.36)$$

which is isomorphic to $Y_{\Sigma'}(w)$. Using the same method as the proof of Proposition 4.2.11 it is easy to show that

$$i \cdot Y_{\Sigma'}(w) = \prod_{(\Sigma') \subset \Sigma} \prod_{i \neq j, j \in J \cap P_{\Sigma'}} j \cdot Y(w_{\Sigma'}). \quad (4.2.37)$$

The closure relations can be described by the rational Bruhat-Tits building of \mathbb{J}.

Proposition 4.2.13 ([GH15 Proposition 7.2.2]). Let $i, j \in J$, $\Sigma, \Sigma' \in \mathcal{J}$, the following are equivalent:

1. $i(J \cap P_{\Sigma}) \cap j(J \cap P_{\Sigma'}) \neq \emptyset$,
2. $i(J \cap P_{\Sigma}) \cap J \neq \emptyset$ contains an Iwahori subgroup of \mathbb{J},
3. The faces in the building of \mathbb{J} corresponding to $i(J \cap P_{\Sigma})$ and $j(J \cap P_{\Sigma'})$ are neighbors.

4.3 Crucial lemma

Recall $\chi := \eta \pi^{-1} \mathcal{F}$ in section 3.3. For each $M \in S(\mathbb{F})$ and $r \in \mathbb{Z}_{\geq 1}$, we define the lattices

$$\Xi_r(M) := M + \chi(M) + \cdots + \chi^r(M). \quad (4.3.1)$$

By [RZ96 Proposition 2.17], $\Xi_{n-1}(M)$ is invariant under χ. Note that when n is even, $M \supseteq M + \chi(M)$ by Proposition 3.2.4.

Lemma 4.3.1. Let d be the minimal number such that $\Xi_d(M)$ is χ-stable, then $0 \leq d \leq n/2$ and we have the following long lattice chain

$$M \supseteq \Xi_1(M) \supseteq \cdots \supseteq \Xi_d(M) \subset \Xi_d(M)^\vee \supseteq \cdots \supseteq \Xi_1(M)^\vee \subset M^\vee. \quad (4.3.2)$$

Furthermore, if n is even, $1 \leq d \leq n/2$.

Proof. Recall that we have a bijection

$$\Phi_{ad} : X(\mu_{ad}, b_{ad})'_{K_{ad}} \longrightarrow S(\mathbb{F}). \quad (4.3.3)$$

Let gK_{ad} be the pre-image of M for some $g \in G_{ad}(L)'$, then gK_{ad} corresponds to the parahoric subgroup

$$\text{Stab}_{G_{ad}}(M \subset M^\vee \subset \pi^{-1}M), \quad (4.3.4)$$

1The proposition in loc cit is not correct, we should assume i and j have the same Kottwitz invariants. However in our case this is true because we are working with the groups $G_{ad}(L)'$ and $\mathbb{J} = J_{ad}(\mathbb{Q}_p)'$.
which is equal to \(g_{K_{ad}} \). Then, by Lemma 4.2.2, there exists a unique \(w \in EO_{cox} \) such that \(g_{K_{ad}} \in X_f^L(b_{ad}) \). And by Lemma 4.2.3 \(w \) is of the form \(w = w_\Sigma \) for some \(\Sigma \in J \). So \((g_{K_{ad}})^\infty \) is of type \(\Sigma^2 \) and the natural projection \(G_{ad}(L')/P_{2}\rightarrow G_{ad}(L')/K_{ad} \) sending \((g_{K_{ad}})^\infty \) to \(g_{K_{ad}} \) by Lemma 4.2.7. In other words, the lattice \(M \) sits inside a long lattice chain whose connected stabilizer is the parahoric subgroup \((g_{K_{ad}})^\infty \). The lattice chain corresponding to \((g_{K_{ad}})^\infty \) is

\[
M \subset \Xi_1(M) \subset \cdots \subset \Xi_d(M) \subset \Xi_{d+1}(M) = \cdots
\]

by the calculations of \(J \) in (4.2.8) and (4.2.11).

Remark 4.3.2. The terminology “crucial lemma” is inherited from [Vol10, Lemma 2.1], and the lemma does play a “crucial” role in the theory of Bruhat-Tits stratification. Since the work of Vollaard [Vol10] and Vollaard-Wedhorn [VW11], Rapoport-Terstiege-Wilson [RTW14] and Howard-Pappas [HP14] adopt almost the same approach to the Bruhat-Tits stratification, i.e. proving some variant of “crucial lemma”, see [RTW14, Proposition 4.1] and [HP14, Proposition 2.19]. However, the proof of crucial lemmas in all the mentioned literature is elementary and not conceptual so that one can only prove them case by case. Thanks to Lusztig’s work in [Lus07], we give the “crucial lemma” a conceptual proof using a group-theoretic method.

Let \(\Xi_\infty(M) := \Xi_m(M) \) for \(m \gg 0 \). Via the identification \([3.3.4]\), the \(\chi \)-invariant lattice \(\Xi_\infty(M) \) can be viewed as an \(O_F \)-lattice in the vector space \(C \). And we have \(\pi \cdot \Xi_\infty(M)^\vee \subset \Xi_\infty(M) \subset \Xi_\infty(M)^\vee \).

Definition 4.3.3. An \(O_F \)-lattice \(\Lambda \) in \(C \) is called a vertex lattice if \(\Lambda \subset \Lambda^2 \subset \pi^{-1}\Lambda \), where \(\Lambda^2 \) is the dual of \(\Lambda \) with respect to the hermitian form \(\psi \) in Section \[3.3\]. The dimension of the \(\mathbb{F}_p \)-vector space \(\Lambda/\pi\Lambda^2 \) is called the type of the lattice, denoted by \(t(\Lambda) \).

For \(M \in S(F) \), it is easy to see that the lattice \(\Xi_\infty(M) \) is a vertex lattice and its type \(t \) is

\[
t = \begin{cases}
2d + 1, & \text{if } n \text{ is odd,} \\
2d, & \text{if } n \text{ is even.}
\end{cases}
\]

Remark 4.3.4. Our definition of vertex lattices is slightly different from the one in [RTW14, Definition 3.1], an \(O_F \)-lattice \(\Delta \) is a vertex lattice in loc. cit. if and only if \(\Delta^2 \) is a vertex lattice in our sense.

Proposition 4.3.5 (Properties of vertex lattices). Let \(\Lambda, \Lambda' \) be two vertex lattices.

1. The type of \(\Lambda \) has the same parity as \(n \).
2. The inclusion $\Lambda \subset \Lambda'$ implies $t(\Lambda) \leq t(\Lambda')$, and in this case, the equality holds if and only if $\Lambda = \Lambda'$.

3. If $t(\Lambda) = t(\Lambda')$, then either $\Lambda = \Lambda'$ or $\Lambda \not\subset \Lambda'$ and $\Lambda' \not\subset \Lambda$.

4. The intersection $\Lambda \cap \Lambda'$ is a vertex lattice if and only if $\Lambda^\sharp \subset \pi^{-1}\Lambda'$.

5. When n is odd, for each odd number t satisfying $1 \leq t \leq n$, there exists a vertex lattice of type t.

6. When n is even, for each even number t satisfying $2 \leq t \leq n$, there exists a vertex lattice of type t, but there is no vertex lattice of type 0.

Proof.

1. By Remark 4.3.4, the lattice Λ^\sharp is a vertex lattice in the sense of [RTW14, Definition 3.1], then the dimension of the \mathbb{F}_p-vector space Λ^\sharp/Λ is an even number by Lemma 3.2 in loc. cit. Hence the type of Λ has the same parity as n.

2. The inclusion $\Lambda \subset \Lambda'$ implies

$$\pi(\Lambda')^\sharp \subset \pi(\Lambda)^\sharp \subset \Lambda \subset \Lambda' \subset (\Lambda')^\sharp \subset \Lambda^\sharp,$$

so we have $t(\Lambda) \leq t(\Lambda')$.

3. Trivial.

4. Note that $(\Lambda \cap \Lambda')^\sharp = \Lambda^\sharp + (\Lambda')^\sharp$. Then $\Lambda^\sharp \subset \pi^{-1}\Lambda'$ if and only if $(\Lambda')^\sharp \subset \pi^{-1}(\Lambda \cap \Lambda')$.

5. When $n = 2m + 1$ is odd, by Lemma 3.3.2, the hermitian space (\mathbb{C}, ψ) is split, so we can choose a basis $\{v_1, \ldots, v_n\}$ such that $\psi(v_i, v_j) = \delta_{i,n+1-i}$. We define lattices

$$\Delta_i = \text{span}_{\mathbb{O}_p} \{\pi^{-1}v_1, \ldots, \pi^{-1}v_i, v_{i+1}, \ldots, v_n\},$$

then the lattice $\Delta_i^\sharp = \pi\Delta_{n-i}$ is of type $n - 2t$ for $0 \leq t \leq m$.

6. When $n = 2m$ is even, by Lemma 3.3.2, the hermitian space (\mathbb{C}, ψ) is non-split. So there is no vertex lattice of type 0, because a lattice is of type 0 if and only if it is a π-modular lattice, which exists if and only if C is split by Lemma 2.2.7. We may assume C is the direct product of an $(n - 2)$ dimensional split hermitian space with the unique non-split 2 dimensional hermitian space. Note that every lattice in the non-split 2 dimensional hermitian space is self-dual. Then similarly to the construction in the odd case, for each even number t satisfying $2 \leq t \leq n$, there exists a lattice Δ of type t.

□

Remark 4.3.6. When n is even, the fact that there does not exist vertex lattice of type 0 means no lattice in $S(\mathbb{F})$ is χ-stable.
Let B be the set of vertex lattices in C. Two vertex lattices Λ and Λ' are called neighbors if $\Lambda \subset \Lambda'$ or $\Lambda \subset \Lambda'$. A d-simplex is a vertex lattice chain:
\[\Lambda_0 \subset \Lambda_1 \subset \cdots \subset \Lambda_d \subset \pi^{-1}\Lambda_0. \] (4.3.10)

Then B forms a simplicial complex which is connected and isomorphic to the (rational) Bruhat-Tits building of J by \cite[Proposition 3.4]{RTW14}.

4.4 The set structure of Bruhat-Tits stratification

Definition 4.4.1. For each vertex lattice Λ,
\[S_\Lambda(\mathbb{F}) := \{ M \in S(\mathbb{F}) : M \subset \Lambda \}. \] (4.4.1)

Proposition 4.4.2.
1. $S(\mathbb{F}) = \bigcup_{\Lambda \in B} S_\Lambda(\mathbb{F})$.
2. Let Λ, Λ' be two vertex lattices, then the inclusion $\Lambda \subset \Lambda'$ implies that $S_\Lambda(\mathbb{F}) \subset S_{\Lambda'}(\mathbb{F})$.
3. Let Λ, Λ' be two vertex lattices, then
\[S_\Lambda(\mathbb{F}) \cap S_{\Lambda'}(\mathbb{F}) = \begin{cases} S_{\Lambda \cap \Lambda'}(\mathbb{F}), & \text{if } \Lambda \cap \Lambda' \text{ is a vertex lattice,} \\ \emptyset, & \text{otherwise}. \end{cases} \] (4.4.2)

Proof.
1. For each $M \in S(\mathbb{F})$, by Lemma 4.3.1 the lattice $\Xi_\infty(M)$ is a vertex lattice, i.e. we have
\[M \in S_{\Xi_\infty(M)}(\mathbb{F}). \] (4.4.3)

2. Trivial.

3. If $\Lambda \cap \Lambda'$ is a vertex lattice, then $M \in S_\Lambda(\mathbb{F}) \cap S_{\Lambda'}(\mathbb{F})$ implies that $M \subset \Lambda \cap \Lambda'$, in other words, $M \in S_{\Lambda \cap \Lambda'}(\mathbb{F})$. If $\Lambda \cap \Lambda'$ is not a vertex lattice, and $S_\Lambda(\mathbb{F}) \cap S_{\Lambda'}(\mathbb{F})$ is non-empty, we take $M \in S_\Lambda(\mathbb{F}) \cap S_{\Lambda'}(\mathbb{F})$, then we have
\[\pi(\Lambda)^2 \subset M \subset \Lambda \subset \Lambda', \] (4.4.4)
\[\pi(\Lambda')^2 \subset M \subset \Lambda' \subset (\Lambda')^2. \] (4.4.5)

In particular, we have
\[\pi(\Lambda^2 + (\Lambda')^2) \subset M \subset \Lambda \cap \Lambda' \subset \Lambda^2 + (\Lambda')^2, \] (4.4.6)
which implies that $\Lambda \cap \Lambda'$ is a vertex lattice, contrary to the assumption.

Definition 4.4.3. For each vertex lattice Λ,
\[S^*_\Lambda(\mathbb{F}) := \{ M \in S(\mathbb{F}) : \Xi_\infty(M) = \Lambda \}. \] (4.4.7)
Lemma 4.4.4. For any $M_1, M_2 \in S^2_{\Lambda}(F)$, we have $\Xi_\infty(M_1) = \Xi_\infty(M_2) = \Lambda$.

The proof is trivial.

Proposition 4.4.5.

1. $S^2_{\Lambda}(F) = S_{\Lambda}(F) \setminus \bigcup_{\Lambda' \subset \Lambda} S_{\Lambda'}(F)$.

2. $S(F) = \bigcup_{\Lambda' \subset B} S^2_{\Lambda'}(F)$ and $S_{\Lambda}(F) = \bigcup_{\Lambda' \subset \Lambda} S^2_{\Lambda'}(F)$.

Proof.

1. Let $M \in S_{\Lambda}(F)$ but $M \notin S_{\Lambda'}(F)$ for any $\Lambda' \subset \Lambda$. Note that $M \subset \Lambda$ implies $\Xi_\infty \subset \Lambda$, i.e. $M \in S_{\Xi_\infty}(F) \subset S_{\Lambda}(F)$. Thus $S_{\Xi_\infty}(F) = S_{\Lambda}(F)$.

2. For each $M \in S(F)$, we have $M \in S^2_{\Xi_\infty(M)}(F)$.

Lemma 4.4.6. The symmetric form $\bar{\psi}$ is non-degenerate.

Proof. If $x \in B_{\Lambda}$ such that for any $y \in B_{\Lambda}$, $\bar{\psi}(x, y) = 0$. Then by definition of $\bar{\psi}$, $\bar{\psi}(\hat{x}, \hat{y}) \in \pi O_F$, where the dot denotes liftings in Λ, in other words, $\hat{x} \in \pi \Lambda^\sharp$. Therefore $x = 0$.

Let $SO(B_{\Lambda})$ be the special orthogonal group with respect to the orthogonal space $B_{\Lambda,F} := B_{\Lambda} \otimes F$ defined over F_p. Recall that via the identification (3.3.4), $\chi = \text{id} \otimes \text{Frob}_{F/F_p}$. Let B be a fixed χ-stable Borel subgroup of $SO(B_{\Lambda})$.

For each $M \in S(F)$, let $\Lambda = \Xi_{\infty}(M)$ and $\hat{M} := M/\pi \Lambda^\sharp$ then $M^\perp = \pi M^\perp/\pi \Lambda^\sharp$ and thus \hat{M}^\perp is a maximal isotropic subspace in $B_{\Lambda,F}$ of dimension $[t(\Lambda)]^2$. Note that by Remark 3.5.3, every M lies in the same $G_{ad}(L')$-orbit, and hence every M lies in the same $SO(B_{\Lambda})$-orbit. Let Q' be the standard maximal parabolic subgroup corresponding to the $SO(B_{\Lambda})$-orbit of some (or equivalently any) $M \in S(F)$.

Lemma 4.4.7. The map

$$
S^2_{\Lambda}(F) \longrightarrow SO(B_{\Lambda})/Q',
$$
$$
M \longrightarrow \text{Stab}(M),
$$

is injective.

Proof. Let $M_1, M_2 \in S^2_{\Lambda}(F)$ such that $\hat{M}_1 = \hat{M}_2$. Then $\pi \Lambda^\sharp \subset M_1 \cap M_2 \subset \Lambda$. Modulo $\pi \Lambda^\sharp$ we get $\hat{M}_1 \cap \hat{M}_2 = \hat{M}_1 \cap \hat{M}_2$, hence $M_1 = M_2$.

\qed
Remark 4.4.8. The proof of Lemma 4.4.7 also shows that the map

\[S_\Lambda(F) \longrightarrow SO(B_\Lambda)/Q', \]
\[M \mapsto \text{Stab}(\bar{M}), \]

is injective.

Proposition 4.4.9. The map \(\Phi_{\text{ad}} \) induces a bijection

\[j \cdot Y_{\Sigma^1}(w) \longrightarrow S^*_{\Lambda}(F), \]
\[\text{for each } j \in J \text{ and } w = w_\Sigma \in EO_{\text{cox}}, \text{ where } \Lambda = j \cdot \Xi_\infty(M) \text{ for some (or equivalently any) } M \in Y_{\Sigma^1}(w). \]

Proof. Assume \(j = 1 \) firstly. Let \(g \in Y_{\Sigma^1}(w) \), \(\dot{g} \) a lifting of \(g \) in \(G(L)' \), \(M = \dot{g} M \).

Recall that from diagram (4.2.33), we have the following diagram

\[\begin{array}{ccc}
Y(w) & \longrightarrow & P_{\Sigma^1}/I \\
\downarrow \cong & & \downarrow \cong \\
Y_{\Sigma^1}(w) & \longrightarrow & P_{\Sigma^1}/P_{\Sigma^1} \\
\downarrow \phi & & \downarrow \phi \\
P_{\Sigma^1}/P_{\Sigma^1} & \longrightarrow & G_{\text{ad}}(L)/P_{\Sigma^1} \\
\end{array} \]

The condition \(g \in \phi(Y_{\Sigma^1}(w)) \) implies that \((^gK_{\text{ad}})^\infty \in P_{\Sigma^1}/P_{\Sigma^1} \), which implies that \(\Xi_\infty(M) = \Lambda_{m-1}^\vee \) if \(\Sigma = \{s_i\} \) by Remark 4.2.9 and Lemma 4.3.1, where \(\Lambda_{m-1} \) is the \((m-1)\)-th standard lattice in the subsection 2.3.3. In other words, for any \(g_1, g_2 \in Y_{\Sigma^1}(w) \), we get the same vertex lattice \(\Xi_\infty(g_1 M) = \Xi_\infty(g_2 M). \)

Therefore the map \(\Phi_{\text{ad}} \) takes \(Y_{\Sigma^1}(w) \) into \(S^*_{\Lambda}(F) \).

We write \(Q := P_{\Sigma^1}/P_{\Sigma^1} \). Then \(\Sigma^0 \cap S = \Sigma^0 - \{s_0\} \) and the image \(\tilde{Q} \) of \(Q \) in the reductive quotient \(P_{\Sigma^1} \) is a maximal parahoric subgroup if \(\Sigma^0 \) is non-empty, otherwise \(P_{\Sigma^1} = Q = I \). By Remark 4.2.5, the reductive quotient \(P_{\Sigma^1} \) has the Dynkin diagram \(\Sigma^0 \) which is the same as \(SO(B_\Lambda) \) in both odd and even cases.

So we have the same (partial) flag varieties

\[P_{\Sigma^1}/I = SO(B_\Lambda)/B, \quad P_{\Sigma^1}/Q = SO(B_\Lambda)/Q'. \]

We have the following commutative diagram

\[\begin{array}{ccc}
Y_{\Sigma^1}(w) & \longrightarrow & S^*_{\Lambda}(F) \\
\downarrow \phi & & \downarrow \phi \\
P_{\Sigma^1}/Q. & \longrightarrow & \end{array} \]

For \(M \in S^*_{\Lambda}(F) \), by Lemma 4.3.1, its image \(\bar{M} \) in the partial flag variety \(P_{\Sigma^1}/Q \) satisfies

\[\bar{M} \subset M + \chi(M) \subset \cdots \subset M + \chi^i(M) + \cdots = B_{\Lambda,B}. \]

(4.4.15)
By the description of the fine Deligne-Lusztig varieties, i.e. the image of \(\phi \), in Example 4.1.3 and 4.1.4 and taking dual of (4.4.15), we can see that \(\bar{M} \) lies in \(\text{im}(\phi) \). Hence \(\Phi_{ad} \) is bijective.

For general \(j \), if \(g \in j \cdot Y_{\Sigma}(w) \), then \(j^{-1}g \in Y_{\Sigma}(w) \). Let \(\Lambda' \) be the lattice such that \(Y_{\Sigma}(w) \cong S_{\Lambda'}^0 \). Let \(\Lambda := j \cdot \Lambda' \), then \(j \cdot Y_{\Sigma}(w) \cong S_{\Lambda}^0 \) because \(j \cdot \Xi_{\infty}(M) = \Xi_{\infty}(j \cdot M) \).

Corollary 4.4.10. The map \(\Phi_{ad} \) induces a bijection
\[
\frac{j \cdot Y_{\Sigma}(w)}{\Lambda} \longrightarrow S_{\Lambda}(\mathbb{F}),
\] (4.4.16)
for each \(j \in \mathbb{J} \), \(w = w_{\Sigma} \in EO_{cox} \) and the vertex lattice \(\Lambda \) corresponding to \(j \cdot Y_{\Sigma}(w) \) via Proposition 4.4.9.

Proof. Let \(\Lambda \) be the vertex lattice such that \(\Phi_{ad}(j \cdot Y_{\Sigma}(w)) = S_{\Lambda}^0(\mathbb{F}) \). Then by Proposition 4.2.13, \(i(\mathcal{J} \cap P_{\mathbb{F} - \Sigma'}) \cap j(\mathcal{J} \cap P_{\mathbb{F} - \Sigma}) \neq \emptyset \) if and only if \(\Lambda \) and \(\Lambda' \) are neighbors, where \(\Lambda' \) is the vertex lattice corresponding to \(i \cdot Y_{\Sigma'}(w_{\Sigma'}) \) via Proposition 4.4.9. And \((\Sigma')^c \subset \Sigma^c \) if and only if \((\Sigma')^d \supset \Sigma^d \), if and only if \(\Lambda' \subset \Lambda \). So we have
\[
\Phi_{ad}(j \cdot Y_{\Sigma}(w)) = \bigcup_{\Lambda \subset \Lambda'} S_{\Lambda}^0(\mathbb{F}).
\] (4.4.17)
Then by Proposition 4.4.9 we get the desired result. \(\square \)

Corollary 4.4.11. Let \(\Lambda, \Lambda' \) be two vertex lattices, then \(\Lambda \subset \Lambda' \) if and only if \(S_{\Lambda}(\mathbb{F}) \subset S_{\Lambda'}(\mathbb{F}) \).

Proof. If \(S_{\Lambda}(\mathbb{F}) \subset S_{\Lambda'}(\mathbb{F}) \), then \(S_{\Lambda}^0(\mathbb{F}) \subset S_{\Lambda'}(\mathbb{F}) \). By Proposition 4.4.9, there is a bijection between \(S_{\Lambda}^0(\mathbb{F}) \) and a Deligne-Lusztig variety, in particular, \(S_{\Lambda}^0(\mathbb{F}) \) is non-empty. Take \(M \in S_{\Lambda}^0(\mathbb{F}) \subset S_{\Lambda}(\mathbb{F}) \), then \(M ' \subset \Lambda' \) and by Lemma 4.4.6 we have \(\Lambda = \Xi_{\infty}(M) \subset \Lambda' \).

Remark 4.4.12. The notations \(S_{\Lambda}(\mathbb{F}) \) and \(S_{\Lambda}^0(\mathbb{F}) \) imply that they are the \(\mathbb{F} \)-points of the schemes \(S_{\Lambda} \) and \(S_{\Lambda}^0 \) which will be defined in section 5.

Remark 4.4.13. For each algebraic closed field extension \(k \) of \(\mathbb{F} \), replacing \(\mathbb{F} \) by \(k \), all results in Chapter 3 and Chapter 4 are true because by the set-up of [GH15], we may work with any algebraic closed field extension \(k \) of \(\mathbb{F} \).
Chapter 5

Scheme-theoretic structure of \mathcal{N}

5.1 The closed and open Bruhat-Tits strata

Let Λ be a vertex lattice, we define

\[\Lambda^+ := \Lambda, \]
\[\Lambda^- := \pi \Lambda^\vee. \]

It is easy to see Λ^\pm are Dieudonné modules in N (recall that N is the rational Dieudonné module of X). Let X_{Λ^\pm} be the p-divisible O_F-modules over \mathbb{F} corresponding to Λ^\pm, together with O_F-linear quasi-isogenies $\rho_{\Lambda^\pm} : X_{\Lambda^\pm} \to \mathbb{X}$ and polarizations λ^\pm. Note that the form $\pi^{-1}(\cdot)$ induces a perfect paring between Λ^+ and Λ^-, in other words, we have an isomorphism between X_{Λ^+} and tX_{Λ^-} such that the following diagram commutes,

\[
\begin{array}{ccc}
X_{\Lambda^+} & \xrightarrow{\sim} & tX_{\Lambda^-} \\
\rho_{\Lambda^+} \downarrow & & \downarrow \rho_{\Lambda^-} \\
\mathbb{X} & \xrightarrow{\lambda^+} & t\mathbb{X}.
\end{array}
\]

For any \mathbb{F}-scheme S and any unitary p-divisible group $(X, \rho_X) \in \mathcal{S}(S)$, we define quasi-isogenies:

\[
\begin{align*}
\rho_{X,\Lambda^+} & : X_S \xrightarrow{\rho_X} X_S \xrightarrow{\rho_{\Lambda^+}^{-1}} (X_{\Lambda^+})_S, \\
\rho_{\Lambda^-,X} & : (X_{\Lambda^-})_S \xrightarrow{\rho_{\Lambda^-}^{-1}} X_S \xrightarrow{\rho_X} X_S.
\end{align*}
\]

By the same reasoning as in Proposition 3.4.1 we have

\[
\begin{align*}
\text{ht}(\rho_{X,\Lambda^+}) &= \left\lfloor \frac{t(\Lambda)}{2} \right\rfloor \\
\text{ht}(\rho_{\Lambda^-,X}) &= \left\lfloor \frac{t(\Lambda) + 1}{2} \right\rfloor
\end{align*}
\]
Definition 5.1.1. The subfunctor \tilde{S}_Λ is defined as

$$\tilde{S}_\Lambda(S) := \{(X, \rho_X) \in S(S) : \rho_{X,A^+} \text{ is an isogeny}\}, \quad (5.1.8)$$

for each vertex lattice Λ and F-scheme S.

Note that ρ_{X,A^+} is an isogeny if and only if $\rho_{A^1,X}$ is an isogeny.

Lemma 5.1.2. The subfunctor \tilde{S}_Λ is represented by a projective scheme over F and the monomorphism $\tilde{S}_\Lambda \hookrightarrow S$ is a closed immersion.

Proof. The proof is exactly the same as [VW11, Lemma 3.2]. \qed

Definition 5.1.3. Let $S_\Lambda := (\tilde{S}_\Lambda)_{\text{red}}$, we call S_Λ the closed Bruhat-Tits stratum associated to Λ.

Remark 5.1.4. The definition of S_Λ coincides with Definition 4.4.1 on k-points, in the spirit of Remark 4.4.13, for any algebraic closed field extension k of F.

If Λ, Λ' are two vertex lattices such that $\Lambda \subset \Lambda'$, by Dieudonné theory, the corresponding quasi-isogeny $X_\Lambda \to X_{\Lambda'}$ is an isogeny, so we have $S_\Lambda \subset S_{\Lambda'}$.

Definition 5.1.5. The locally closed subscheme S_Λ° is defined as

$$S_\Lambda^\circ := S_\Lambda \setminus \bigcup_{\Lambda' \subset \Lambda} S_{\Lambda'}, \quad (5.1.9)$$

for each vertex lattice Λ. Then S_Λ° is an open subscheme of S_Λ. We call S_Λ° the open Bruhat-Tits stratum associated to Λ.

By definition, we have

$$S_\Lambda = \bigcup_{\Lambda' \subset \Lambda} S_{\Lambda'}^\circ. \quad (5.1.10)$$

Remark 5.1.6. The definition of S_Λ° coincides with Definition 4.4.3 on k-valued points, in the spirit of Remark 4.4.13, for any algebraic closed field extension k of F by Proposition 4.4.5.

5.2 An A-windows-theory interlude

Let us recall some basic facts about the Zink’s windows theory for formal p-divisible groups in [Zin01].

We fix an odd prime p and a base ring R such that p is nilpotent in R.

Definition 5.2.1 ([Zin01, Definition 1]). A triple (A, J, σ) is called a frame over R if

- A is a p-adic ring together with a surjective homomorphism $A \to R$;
- as an abelian group, A is torsion free;
- the kernel $J := A \to R$ is an ideal with divided powers;
- σ is an endormorphism of A that lifts the Frobenius on A/pA.

Definition 5.2.2 ([Zin01] Definition 2 & 3). Let \((A, J, \sigma)\) is a frame over \(R\), the triple \((M, M_1, \Upsilon)\) is called an \(A\)-window if

- \(M\) is a finitely generated projective \(A\)-module together with a \(\sigma\)-linear map \(\Upsilon: M \to M\);
- \(M_1\) is a submodule of \(M\) such that \(M/M_1\) is a projective \(R\)-module;
- \(JM \subset M_1\) and \(\Upsilon M_1 \subset pM\);
- as an \(A\)-module, \(M\) is generated by \(\Upsilon M_1\) and \(1_p\);
- Let \(\Pi: M \to M \otimes_A, \sigma M\) be the unique \(A\)-linear map with the property that \(\Pi(1_p \Upsilon m_1) = 1 \otimes m_1\) for \(m_1 \in M_1\) and \(\Pi(\Upsilon m) = p \otimes m\) for \(m \in M\).

Then there exists an integer \(r\) such that \(\Pi^r(M) \subset M \otimes_A, \sigma J\).

A morphism between two \(A\)-windows \((M, M_1, \Upsilon)\) and \((M', M'_1, \Upsilon')\) is an \(A\)-homomorphism \(\gamma: M \to M'\) which maps \(M_1\) into \(M'_1\) and makes the diagram

\[
\begin{array}{ccc}
M & \xrightarrow{\gamma} & M' \\
\Upsilon & & \Upsilon' \\
M & \xrightarrow{\gamma} & M'
\end{array}
\] (5.2.1)

commutes. Hence we get the category of \(A\)-windows.

Definition 5.2.3. A morphism from a frame \((A_1, J_1, \sigma_1)\) over \(R_1\) to a frame \((A_2, J_2, \sigma_2)\) over \(R_2\) consists of the following data:

- a ring homomorphism \(\alpha: R_1 \to R_2\) and a ring homomorphism \(\beta: A_1 \to A_2\) such that the following diagram is commutative

\[
\begin{array}{ccc}
A_1 & \xrightarrow{\beta} & A_2 \\
\alpha & & \alpha \\
R_1 & \xrightarrow{\beta} & R_2
\end{array}
\] (5.2.2)

- the homomorphism \(\beta\) is compatible with the Frobenius, i.e. the diagram

\[
\begin{array}{ccc}
A_1 & \xrightarrow{\beta} & A_2 \\
\sigma_1 & & \sigma_2 \\
A_1 & \xrightarrow{\beta} & A_2
\end{array}
\] (5.2.3)

is commutative.

Definition 5.2.4. Given a morphism from a frame \((A_1, J_1, \sigma)\) over \(R_1\) to a frame \((A_2, J_2, \sigma_2)\) over \(R_2\) and an \(A_1\)-window \((M, M_1, \Upsilon)\), we define the base change functor

\[
\begin{align*}
(A_1\text{-windows}) & \xrightarrow{\quad} (A_2\text{-windows}), \\
(M, M_1, \Upsilon) & \mapsto (M', M'_1, \Upsilon'),
\end{align*}
\] (5.2.4)

where \(M' := M \otimes_A, A_2\), \(M'_1 := \ker(M \otimes_A, A_2 \to M/M_1 \otimes_{R_1} R_2)\), and \(\Upsilon' := \Upsilon \otimes \sigma_2\). Note that \(M'_1\) is generated by \(M_1 \otimes_A, A_2\) and \(M \otimes_A, J_2\).
Proposition 5.2.5 ([Zin01, Theorem 4]). Let R be an excellent ring and (A, J, σ) a frame over R. Then the functor BT_R (cf. [Zin01, p. 500])

$$\text{BT}_R: (A\text{-windows}) \longrightarrow (\text{formal } p\text{-divisible groups over } R) \quad (5.2.5)$$

is an equivalence of categories. If X is the p-divisible group corresponding to an A-window (M, M_1, Υ), then we have $\text{Lie}(X) = M/M_1$. The inclusion of A-windows corresponds to the isogeny of formal p-divisible groups. Furthermore, the functor BT is commutative with the base change functor, more precisely, given a morphism from a frame (A_1, J_1, σ_1) over R_1 to a frame (A_2, J_2, σ_2) over R_2, the diagram

$$\begin{array}{ccc}
(A_1\text{-windows}) & \xrightarrow{\text{BT}} & (\text{formal } p\text{-divisible groups over } R_1) \\
\text{base change} & & \text{base change} \\
(A_2\text{-windows}) & \xrightarrow{\text{BT}} & (\text{formal } p\text{-divisible groups over } R_2)
\end{array} \quad (5.2.6)$$

is commutative.

Definition 5.2.6 (cp. [Zin02, Definition 18]). Let (A, J, σ) be a frame over R, (M, M_1, Υ) and (M', M'_1, Υ') two A-windows. A bilinear form of A-windows

$$\varphi: (M, M_1, \Upsilon) \times (M', M'_1, \Upsilon') \longrightarrow (A, J, \sigma), \quad (5.2.7)$$

is an A-bilinear form of A-modules

$$\varphi: M \times M' \longrightarrow A, \quad (5.2.8)$$

such that $\varphi(M_1, M'_1) \subset J$ and

$$\varphi(\Upsilon(x), \Upsilon'(y)) = \varphi(x, y)^\sigma, \quad (5.2.9)$$

for any $x \in M_1$ and $y \in M'_1$.

From now on let us restrict ourselves to the case that the base ring R is a field. Let k be a field of characteristic p, A the Cohen subring of $W(k)$ (cf. [Bou06, IX §2 Definition 2]). Then the triple (A, pA, σ) is a frame over k. Note that $\sigma: A \rightarrow A$ is injective, but in general not surjective except that k is perfect. For an A-module M and a σ-linear map $f: M \rightarrow M$, we denote by $f^\sharp: \sigma^* M \rightarrow M$ its linearization, where $\sigma^* M := M \otimes_{A, \sigma} A$.

Let (M, M_1, Υ) be an A-window. By Definition 5.2.2 M is generated by $\Upsilon(M)$ and $\frac{1}{p} \Upsilon(M_1)$, however the condition $pM \subset M_1$ implies that $\Upsilon(M) \subset \frac{1}{p} \Upsilon(M_1)$, i.e. M is generated by $\frac{1}{p} \Upsilon(M_1)$ or equivalently pM is generated by $\Upsilon(M_1)$ as an A-module. Then it is easy to see that $pM \subset \Upsilon(M)$. Therefore the linearization $\Upsilon^\sharp: \sigma^* M \rightarrow M$ is injective because inverting p the cokernel of Υ^\sharp is 0.

Lemma 5.2.7 (cp. [Zin02, Lemma 10]). For an A-window (M, M_1, Υ), there exists a unique A-linear map $\Pi^\sharp: M \rightarrow \sigma^* M$ such that $\Upsilon^\sharp \circ \Pi^\sharp = \text{id}_M$ and $\Pi^\sharp \circ \Upsilon^\sharp = \text{id}_{\sigma^* M}$.
Proof. Because pM is generated by $\Upsilon(M_1)$ as an A-module, the linearization Υ^\sharp induces an isomorphism $\Upsilon^\sharp: \sigma^*M_1 \cong pM$. More precisely, we have the following commutative diagram:

$$\sigma^*M \xrightarrow{\Upsilon^\sharp} M \xleftarrow{\sigma^*M_1} pM$$

(5.2.10)

Then for any $x \in M$, we define $\Pi^\sharp(x) := (\Upsilon^\sharp|_{\sigma^*M_1})^{-1}(px)$. Then it is easy to check that Π^\sharp satisfies the desired equality. Furthermore, Π^\sharp is trivially unique.

Definition 5.2.8. For an A-window (M, M_1, Υ), the map Π^\sharp determined by Lemma 5.2.7 is called the A-Verschiebung associated to the window (M, M_1, Υ).

Proposition 5.2.9. Let (M, M_1, Υ) be an A-window, Π^\sharp the associated A-Verschiebung, then we have $\sigma^*M_1 = \Pi^\sharp M$.

Proof. By the diagram (5.2.10), we have $\Upsilon^\sharp(\sigma^*M_1) = pM$, so by Lemma 5.2.7 we have $\sigma^*M_1 = \Pi^\sharp M$.

Remark 5.2.10. Note that we have the canonical injective $M_1 \to \sigma^*M_1$, but in general this is not surjective. So given Υ and Π^\sharp, we can only determine σ^*M_1.

Lemma 5.2.11. Let Y be a p-divisible group over k of height $2d$ and dimension d, $(M_Y, M_{Y,1}, \Upsilon_Y)$ its A-window. Then giving a p-divisible group X over k of height $2d$ and dimension d, together with an isogeny $\rho: X \to Y$, is equivalent to giving an A-submodule M of M_Y such that M is Υ_Y-stable and $pM \subset M$.

Proof. By the assumption on Y, we have

$$pM_Y \subset M_{Y,1} \subset M_Y.$$

(5.2.11)

Let X be a p-divisible group over k of height $2d$ and dimension d together with an isogeny $\rho: X \to Y$, (M, M_1, Υ_X) its A-window. Then the following diagram is commutative:

$$\begin{array}{ccc}
M_Y & \xrightarrow{\rho} & pM_Y \\
\downarrow & & \downarrow \\
M_{Y,1} & \xleftarrow{\Upsilon_Y} & M_Y \\
\end{array}$$

(5.2.12)

Then the diagram (5.2.12) shows that the injection

$$\text{Lie}(X) = M/M_1 \hookrightarrow \text{Lie}(Y) = M_Y/M_{Y,1}$$

(5.2.13)

is an isomorphism because they have the same dimension. Furthermore, Υ_Y induces Υ_X on M, i.e. M is Υ_Y-stable.
Now let M be an A-submodule of M_Y that is T_Y-stable and $pM^{\frac{2d}{p}} \subset M$. We define $M_1 := \ker(M \rightarrow \text{Lie}(Y))$. Then we claim that (M, M_1, T_Y) is an A-window. Clearly we have the commutative diagram:

$$
\begin{array}{ccc}
pM & \longrightarrow & pM_Y \\
\downarrow & & \downarrow \\
M_1 & \longrightarrow & M_{Y,1} \\
\downarrow & & \downarrow \\
M & \longrightarrow & M_Y,
\end{array}
$$

which implies that the following diagram

$$
\begin{array}{ccccccccc}
0 & \longrightarrow & M_1/pM & \longrightarrow & M/pM & \longrightarrow & M/M_1 & \longrightarrow & 0 \\
& \downarrow f_1 & & \downarrow f_2 & & \downarrow f_3 & & \downarrow & \\
0 & \longrightarrow & M_{Y,1}/pM_Y & \longrightarrow & M_Y/pM_Y & \longrightarrow & \text{Lie}(Y) & \longrightarrow & 0
\end{array}
$$

is commutative with exact rows. The injectivity of f_1 implies that f_2 is an isomorphism because they have the same dimension. Then f_3 is surjective and hence is an isomorphism. Therefore f_1 is an isomorphism and we have the inclusion

$$pM \overset{d}{\subseteq} M_1 \overset{d}{\subseteq} M. \quad (5.2.16)$$

The operator T_Y induces an action on M_Y/pM_Y which kills the subspace $M_{Y,1}/pM_Y$ and hence also kills M_1/pM, in other words $T_Y(M_1) \subseteq pM$. Therefore the triple (M, M_1, T_Y) is an A-window which gives rise to a p-divisible group X over k of height $2d$ and dimension d. The inclusion of A-windows induces an isogeny $X \rightarrow Y$. \hfill\Box

Now let us consider the A-windows associated to unitary p-divisible groups. Let $k \supseteq F$ be a field extension, A the Cohen subring of $W(k)$ which is also an \mathcal{O}_L-algebra. Then $(\mathcal{O}_L, p\mathcal{O}_L, \sigma)$ is a frame over F and (A, pA, σ_A) is a frame over k. The inclusion $\mathcal{O}_L \subseteq A$ induces a morphism of frames

$$(\mathcal{O}_L, p\mathcal{O}_L, \sigma) \longrightarrow (A, pA, \sigma_A). \quad (5.2.17)$$

By abuse of notation, let σ denote σ_A. Recall that we fix a supersingular unitary p-divisible group $(\mathcal{X},\iota_{\mathcal{X}},\lambda_{\mathcal{X}})$ over F of signature $(1, n - 1)$ in Section 5.2, then the A-window of the underlying p-divisible group \mathcal{X} over k is the base change of the Dieudonné module (\mathcal{M}, F, V) via the morphism of frames $\mathcal{M} \longrightarrow \mathcal{X}$. More precisely, let $(\mathcal{M}_A, \mathcal{M}_{A,1}, \mathcal{Y})$ be the A-window of $\mathcal{X} \otimes k$, then by Proposition 5.2.5 and Definition 5.2.4, we have $\mathcal{M}_A = \mathcal{M} \otimes_{\mathcal{O}_A} A$, $\mathcal{M}_{A,1}$ is the submodule of \mathcal{M}_A generated by $\mathcal{V} \mathcal{M} \otimes_{\mathcal{O}_A} A$ and $\mathcal{M} \otimes_{\mathcal{O}_A} pA$, and $\mathcal{Y} = F \otimes \sigma_A$. Note that $\mathcal{M} \otimes_{\mathcal{O}_A} pA = p\mathcal{M} \otimes_{\mathcal{O}_A} A \subset \mathcal{V} \mathcal{M} \otimes_{\mathcal{O}_A} A$, so we have $\mathcal{M}_{A,1} = \mathcal{V} \mathcal{M} \otimes_{\mathcal{O}_A} A$. Let $(\lambda_{\mathcal{X}}, \mathcal{Y})$ be the rational A-window, i.e. $N_A = \mathcal{M}_A \otimes_{\mathcal{O}_A} \text{Frac}(A)$, together with the \mathcal{O}_A-action $\iota_{\mathcal{X}}$ and the non-degenerate alternating form $\langle \cdot, \cdot \rangle$ induced by the polarization $\lambda_{\mathcal{X}} \otimes k$. For any $x, y \in N_A$, we have

$$\langle \mathcal{Y}(x), \mathcal{Y}(y) \rangle = \langle x, y \rangle^\sigma, \quad (5.2.18)$$

where σ denotes the σ_A-action on $\mathcal{Y}(x) = x \cdot \lambda_{\mathcal{X}} \otimes k$. \hfill\Box
and
\[(i(\pi)x, y) = (x, i(\bar{\pi})y).\] (5.2.19)

Henceforth, we write \(\pi\) instead of \(i(\pi)\) to lighten the notations. The \(\pi\)-action defines an \(A[\pi]\)-module structure on \(M \otimes_{\mathcal{O}_E} A\). Let \(\Lambda\) be a vertex lattice. Then \((\Lambda^+ \otimes A, \mathcal{V}\Lambda^+ \otimes A, T)\) are the \(A\)-windows of the \(p\)-divisible groups \(X_{\Lambda^+} \otimes k\). We will write \(\Lambda^+_A\) instead of \(\Lambda^+ \otimes A\), and write \(\mathcal{V}\Lambda^+_A\) instead of \(\mathcal{V}\Lambda^+ \otimes A\) for short.

Proposition 5.2.12. Via \(A\)-windows theory, \(S_\Lambda(k)\) can be identified with the set of \(A[\pi]\)-lattices \(M\) in \(N_A\) satisfying the following conditions:

1. \(M\) is \(\Upsilon\)-stable;
2. \(M^{n-1} \subseteq M^1 \subseteq \pi^{-1}M\) if \(n\) is odd, and \(M^\vee = \pi^{-1}M\) if \(n\) is even;
3. \(pM^n \subseteq M^1 \subseteq M\);
4. \(M^1 \subseteq M^1 + \pi M\);
5. if \(n\) is even, \(M^1 \subseteq M^1 + \pi M\);
6. \(M \subseteq \Lambda^+_A\);

where \(M^1 := \ker(M \to \Lambda^+ / \mathcal{V}\Lambda^+_A)\).

Proof. Let \((X, \rho_X) \in S_\Lambda(k)\) be a unitary \(p\)-divisible group together with a quasi-isogeny \(\rho_X\). By the definition of \(S_\Lambda\), we know that \(\rho_{X,\Lambda^+}\) is an isogeny. Then by Lemma 5.2.11, \(X\) corresponds to an \(\Upsilon\)-stable \(A\)-submodule \(M\) of \(\Lambda^+_A\) and the triple \((M, M^1, \Upsilon)\) is the \(A\)-window of \(X\) over \(k\), where \(M_1 := \ker(M \to \Lie(X_{\Lambda^+}) \otimes k)\). By the definition of \(S_\Lambda\), the \(\pi\)-action on \(N_A\) induces the \(\pi\)-action on \(M\), hence \(M\) is an \(A[\pi]\)-lattice in \(N_A\). Note that \(\Lie(X) \cong M/M_1\) canonically. So via \(A\)-windows theory, the periodicity condition on the \(p\)-divisible group can be translated into condition 2, the Kottwitz condition is translated into condition 3, the Wedge condition is translated into condition 4 and the extra Spin condition is translated into condition 5. Vice versa, an \(A[\pi]\)-lattice in \(N_A\) satisfying all the above conditions gives rise to a unitary \(p\)-divisible group \((X, \rho_X) \in S_\Lambda(k)\).

\(\square\)

5.3 The Bruhat-Tits strata as Deligne-Lusztig varieties

Let \(T\) be a scheme over \(F\), \((X, \rho) \in S(T)\) a unitary \(p\)-divisible group. Let \(D(X)\) be the Lie algebra of the universal vector extension of \(X\) (cf. [Mes72 Chapter IV, Definition 1.12]), then the functor

\[(p\text{-divisible groups over } T) \longrightarrow (\text{locally free } \mathcal{O}_T\text{-modules}), \quad X \longrightarrow D(X),\] (5.3.1)

commutes with an arbitrary base change \(T' \to T\). When \(T = \Spec(k)\) for an algebraic closed field extension \(k\) of \(\mathbb{F}\), we have \(D(X) \cong M(X)/pM(X)\) canonically, where \(M(X)\) is the Dieudonné module of \(X\).
Lemma 5.3.1. Let \(\rho_i : X \rightarrow Y_i \), for \(i = 1, 2 \), be two isogenies of naive unitary \(p \)-divisible groups (of any signature) over \(T \), such that \(\ker(\rho_1) \subset \ker(\rho_2) \subset X[\pi] \), then both \(\ker(D(\rho_1)) \) and \(\ker(D(\rho_2)) \) are locally free \(\mathcal{O}_T \)-modules and \(\ker(D(\rho_1)) \) is a locally direct summand of \(\ker(D(\rho_2)) \).

Proof. Note that by definition \(X \) is endowed with an \(\mathcal{O}_T \)-action, hence the proof is exactly the same as [VWII] Corollary 3.7 replacing \(p \) by \(\pi \).

Using Lemma 5.3.1, we can construct a morphism from \(\tilde{S}_\Lambda \) to the partial flag variety \(\text{SO}(\mathbb{B}_\Lambda)/Q' \) defined in section 4.4. Let \((X, \rho) \in \tilde{S}_\Lambda(R) \) for an \(\mathbb{F} \)-algebra \(R \) and a vertex lattice \(\Lambda \), we have isogenies

\[
(X^-)_R \xrightarrow{\rho^-} X_R \xrightarrow{\rho^+} (X^+)_R.
\]

where \(\rho^- = \rho_{\Lambda^-, X} \otimes \text{id}_R \) by abuse of notation and similarly for \(\rho^+ \). The composition \(\rho := \rho^+ \circ \rho^- \) corresponds to the isogeny \((X^-)_R \rightarrow (X^+)_R \) induced by the inclusion \(\Lambda^- \subset \Lambda^+ \). Then we have \(\ker(\rho^-) \subset \ker(\rho) \subset X^-[\pi] \). Note that \(\ker(D(\rho^+)) = \mathbb{B}_\Lambda \otimes R \), and when \(R = \text{Spec}(k) \) for an algebraic closed field \(k \), \(\ker(D(\rho^-)) = M(X)/\pi \Lambda' \).

Recall that for any \(\mathbb{F} \)-algebra \(R \), the partial flag variety \(\text{SO}(\mathbb{B}_\Lambda)/Q' \) has the following description as a functor

\[
(\text{SO}(\mathbb{B}_\Lambda)/Q')(R) = \left\{ \begin{array}{ll}
U \subset \mathbb{B}_\Lambda R & \text{a direct summand} \\
U \subset U^+, \\
\text{rank}_R(U) = \left\lfloor \frac{\ell(\Lambda)}{2} \right\rfloor,
\end{array} \right.
\]

for the orthogonal Grassmannian \(\text{Grass}(\mathbb{B}_\Lambda) \), we have

\[
\text{Grass}(\mathbb{B}_\Lambda)(R) = \left\{ \begin{array}{ll}
U \subset \mathbb{B}_\Lambda R & \text{a direct summand} \\
U \subset U^+, \\
\text{rank}_R(U) = \left\lfloor \frac{\ell(\Lambda)}{2} \right\rfloor,
\end{array} \right.
\]

Let \(E(X) := \ker(D(\rho^-)) \) which is of rank \(\text{ht}(\rho^-) = \left\lfloor \frac{\ell(\Lambda)}{2} \right\rfloor \), then sending \((X, \rho) \) to \(E(X)^+ \) defines a map

\[
\tilde{f} : \tilde{S}_\Lambda(R) \rightarrow \text{Grass}(\mathbb{B}_\Lambda)(R),
\]

\[
(X, \rho) \mapsto E(X)^+.
\]

In summary we have a morphism \(\tilde{S}_\Lambda \rightarrow \text{Grass}(\mathbb{B}_\Lambda) \), which induces a morphism

\[
f : S_\Lambda \rightarrow \text{Grass}(\mathbb{B}_\Lambda).
\]

Note that by Remark 4.4.8 for any algebraic field extension \(k \) of \(\mathbb{F} \), we have

\[
S_\Lambda(k) \hookrightarrow (\text{SO}(\mathbb{B}_\Lambda)/Q')(k) \subset \text{Grass}(\mathbb{B}_\Lambda)(k),
\]

i.e. the image of \(S_\Lambda \) lies in \(\text{SO}(\mathbb{B}_\Lambda)/Q' \) because \(S_\Lambda \) is reduced.

Lemma 5.3.2. The morphism \(f : S_\Lambda \rightarrow \text{SO}(\mathbb{B}_\Lambda)/Q' \) is a closed immersion. In particular, taking closure of \(S_\Lambda \) in \(S \) is the same as taking closure in \(\text{SO}(\mathbb{B}_\Lambda)/Q' \).

Proof. The scheme \(S_\Lambda \) is proper, \(\text{SO}(\mathbb{B}_\Lambda)/Q' \) is separated, so \(f \) is proper. Trivially \(f \) is a monomorphism by the definition of \(\tilde{f} \), therefore \(f \) is a closed immersion. \(\square \)
Lemma 5.3.3. The morphism f induces a morphism $f: S_{\Lambda} \to j \cdot \overline{\mathcal{Y}}_{\Sigma}(w)$, where $j \in \mathbb{J}$ and $w = w_{\Sigma} \in \mathrm{EO}_{\mathrm{cor}}$ corresponding to Λ via Proposition 4.4.9.

Proof. For any algebraic closed field extension k of \mathbb{F}, we have $f: S_{\Lambda}(k) \to (j \cdot \overline{\mathcal{Y}}_{\Sigma}(w))(k)$ by Corollary 4.4.10, since S_{Λ} is reduced, we prove the claim. □

Lemma 5.3.4. Let k be a field extension of \mathbb{F} (not necessarily algebraic closed), then the morphism f induces a bijection

$$S_{\Lambda}(k) \longrightarrow j \cdot \overline{\mathcal{Y}}_{\Sigma}(w)(k). \quad (5.3.8)$$

Proof. We have the following commutative diagram:

$$S_{\Lambda}(k) \xrightarrow{f(k)} j \cdot \overline{\mathcal{Y}}_{\Sigma}(w)(k) \xrightarrow{f(k)} j \cdot \overline{\mathcal{Y}}_{\Sigma}(w)(k), \quad (5.3.9)$$

where \bar{k} is an algebraic closure of k. So the injectivity of $f(k)$ follows from that $f(\bar{k})$ is bijective by Corollary 4.4.10 and Remark 4.4.13.

Let us prove the surjectivity of $f(k)$. Let A be the Cohen subring of $W(k)$, then $S_{\Lambda}(k)$ can be described as the set of all the $A[\pi]$-lattices in N_{A} satisfying all the conditions in Proposition 5.2.12. Let $U_{0} \in j \cdot \overline{\mathcal{Y}}_{\Sigma}(w)(k)$ be a maximal isotropic subspace of $\mathcal{B}_{A,k}$, then U_{0} gives rise to an $A[\pi]$-module M such that

$$\Lambda_{\Lambda}^{+} \subset \pi M^{\vee} \subset M \subset \Lambda_{\Lambda}^{+}.$$ \hspace{1cm} (5.3.10)

To prove the surjectivity of $f(k)$, it only needs to show that the $A[\pi]$-module M lies in $S_{\Lambda}(k)$, i.e. M satisfies all the conditions in Proposition 5.2.12. Let M_{1} be the kernel of $M \to \mathrm{Lie}(X_{\Lambda^{+}}) \otimes k$. Here is the routine check:

1. Recall that Λ^{+} is $\pi^{-1}\mathcal{F}$-invariant, hence Λ^{+}_{Λ} is $\pi^{-1}\Upsilon$-stable but not $\pi^{-1}\mathcal{Y}$-invariant in general. Then

$$\Upsilon(\Lambda^{+}_{\Lambda}) \subset \pi \Lambda^{+}_{\Lambda} \subset \Lambda^{-}_{\Lambda}. \quad (5.3.11)$$

Hence Υ induces the 0 map on $\mathcal{B}_{A,k}$, in particular, $\Upsilon(M) \subset \Lambda^{-}_{\Lambda} \subset M$.

2. By the lattice chain (5.3.10), we have $M \subset M^{\vee} \subset \pi^{-1}M$ if n is odd, and $M^{\vee} = \pi^{-1}M$ if n is even. Furthermore, we have the following commutative diagram:

$$\pi\Lambda_{\Lambda}^{-} \xrightarrow{\pi M^{\geq}} \pi\Lambda_{\Lambda}^{+} \xrightarrow{\pi M^{\leq}} \pi\Lambda_{\Lambda}^{+} \xrightarrow{\pi M^{\leq}} \pi\Lambda_{\Lambda}^{-}, \quad (5.3.12)$$

which implies that $\pi M \subset M$ and in particular $M^{n-1} \subset M^{\vee}$ if n is odd.
3. The commutative diagram:

\[\begin{array}{c}
\text{p}M & \xrightarrow{\text{p}\Lambda^+} & \text{p}\Lambda^+ \\
\downarrow & & \downarrow \\
M & \xrightarrow{\text{V}\Lambda^+} & \Lambda^+ \\
\downarrow & & \downarrow \\
\text{M} & \xrightarrow{\Lambda^+} & \text{M} \\
\end{array} \] (5.3.13)

implies that \(pM \subset M \) by the same procedure as in the proof of Proposition 5.2.12.

4. If \(n \) is odd, by Example 4.1.15, the closure \(\text{j} \cdot Y^{\Sigma}(w)(k) \) can be described as the set of all the \(d \)-dimensional isotropic subspaces \(U \) of \(B_{A,k} \) such that \(\dim(U \cap \chi(U)) \geq d - 1 \), where \(\dim_k(B_{A,k}) = 2d + 1 \). Note that we have the following commutative diagram with exact rows:

\[\begin{array}{c}
0 & \xrightarrow{\text{V}\Lambda^-} & M_1 & \xrightarrow{M_1/\text{V}\Lambda^-} & 0 \\
\downarrow & & \downarrow & & \downarrow \\
0 & \xrightarrow{\Lambda^-} & M & \xrightarrow{M/\Lambda^-} & 0 \\
\downarrow & & \downarrow & & \downarrow \\
\text{Lie}(X_{\Lambda^-}) \otimes k & \xrightarrow{\sim} & M/M_1. \\
\end{array} \] (5.3.14)

Then by the Snake Lemma we have \(M_1/\text{V}\Lambda^- = M/\Lambda^- = U_0 \). Hence the condition \(\dim(U_0 \cap \chi(U_0)) \geq d - 1 \) can be translated into the condition

\[M_1 \overset{\leq 1}{\subset} M + \pi^{-1}\Upsilon(M_1). \] (5.3.15)

By the definition of \(A \)-windows, \(M \) is generated by \(\frac{1}{p}\Upsilon(M_1) \) as an \(A \)-module, hence \(\pi M \) is generated by \(\pi^{-1}\Upsilon(M_1) \) which implies that

\[M_1 + \pi^{-1}\Upsilon(M_1) = M_1 + \pi M. \] (5.3.16)

Therefore we have

\[M_1 \overset{\leq 1}{\subset} M + \pi M. \] (5.3.17)

5. If \(n \) is even, by Example 4.1.16, the closure \(\text{j} \cdot Y^{\Sigma}(w)(k) \) can be described as the set of all the maximal isotropic subspaces \(U \) of \(B_{A,k} \) which lie in the same \(\text{SO(V)} \)-orbit of \(W_d \) such that \(\dim(U \cap \chi(U)) = d - 1 \), where \(\dim_k(B_{A,k}) = 2d \). Similarly to the odd case, we have

\[M_1 \overset{\leq 1}{\subset} M_1 + \pi^{-1}\Upsilon(M_1). \] (5.3.18)

Then by the same procedure as in the odd case, we have

\[M_1 \overset{\leq 1}{\subset} M_1 + \pi M. \] (5.3.19)
6. Trivially we have $M \subset \Lambda_\Lambda^+$.

Proposition 5.3.5. The morphism $f : S_\Lambda \to j \cdot Y_{\Sigma^1}(w)$ is an isomorphism.

Proof. Note that f is proper and quasi-finite, hence f is finite. By Corollary 4.4.10, f induces a bijection on k-valued points for each algebraic closed field extension k of \mathbb{F}, so f is universally bijective by [Gro60, 3.5.5] & [Gro64, Proposition 8.11.6]. Therefore f is a universal homeomorphism by [Gro66, Proposition 8.11.6]. In particular S_Λ is irreducible and therefore integral. Now by Lemma 5.3.4, f is bijective on k-valued points. Hence f is birational. By Example 4.1.15 and 4.1.16, the closure $j \cdot Y_{\Sigma^1}(w)$ is normal. Altogether, f is an integral birational morphism between integral schemes, with the target being normal, so it is an isomorphism.

Corollary 5.3.6. The morphism f induces an isomorphism $S_\Lambda^\circ \to j \cdot Y_{\Sigma^1}(w)$. In particular, the locally closed subscheme S_Λ° is smooth of dimension $\ell(w) = \lfloor t(\Lambda) - 1 \rfloor$.

Corollary 5.3.7. The closure $\overline{S_\Lambda}$ of S_Λ° in S is S_Λ.

Proof. By Lemma 5.3.2 and Corollary 5.3.6 we have $\overline{S_\Lambda} \cong j \cdot Y_{\Sigma^1}(w)$. Then by Proposition 5.3.5, $\overline{S_\Lambda} = S_\Lambda$.

By Example 4.1.15 and 4.1.16, we have the following corollary.

Corollary 5.3.8. The closed subscheme S_Λ of S is projective and normal of dimension $\ell(w) = \lfloor t(\Lambda) - 1 \rfloor$. When n is odd, S_Λ has isolated singularities; when n is even, S_Λ is smooth.

5.4 The Bruhat-Tits stratification

Theorem 5.4.1. Let Λ and Λ' be two vertex lattices.

1. We have $\Lambda \subset \Lambda'$ if and only if $S_\Lambda \subset S_{\Lambda'}$.

2. We have

$$S_\Lambda \cap S_{\Lambda'} = \begin{cases} S_{\Lambda \cap \Lambda'}, & \text{if } \Lambda \cap \Lambda' \text{ is a vertex lattice again}, \\ \emptyset, & \text{otherwise}. \end{cases}$$

(5.4.1)

3. Recall that \mathcal{B} is the set of vertex lattices, then we have

$$S = \bigcup_{\Lambda \in \mathcal{B}} S_\Lambda,$$

(5.4.2)

and each closed Bruhat-Tits stratum S_Λ is projective and normal of dimension $\lfloor t(\Lambda) - 1 \rfloor$, with isolated singularities when n is odd, is smooth when n is even.

\footnote{Our proof is exactly the same as [VW11, Theorem 4.8], except that we didn’t compute the dimension of the tangent space of S_Λ at every k-valued point, which seems not necessary.}
Proof. It follows from Proposition 4.4.2 and Corollary 4.4.11 that part 1 and 2
are true. Part 3 follows from Corollary 5.3.8. \qed

Theorem 5.4.2.

1. There is a stratification, which is called the Bruhat-Tits stratification, of
 S by locally closed subschemes
 \[S = \bigcup_{\Lambda \in B} S^0_\Lambda, \tag{5.4.3} \]
 and each stratum is isomorphic to the Deligne-Lusztig variety associated
to the orthogonal group $SO(\mathfrak{g}_\Lambda)$ and a σ-Coxeter element. The closure of
each stratum S^0_Λ in S is given by
 \[\overline{S^0_\Lambda} = \bigcup_{\Lambda' \subset \Lambda} S^0_{\Lambda'} = S_\Lambda. \tag{5.4.4} \]

2. The scheme S is geometrically connected of pure dimension $\left\lfloor \frac{n-1}{2} \right\rfloor$. The
 irreducible components of S are those S_Λ with $t(\Lambda) = n$.

Proof.

1. The stratification follows from (5.1.10) and part 3 of Theorem 5.4.1.

2. For a vertex lattice, the form ψ in section 3.3 defines a non-degenerate
 symplectic form on the quotient space Λ^\vee / Λ (cf. \cite{RTW14}, Lemma 6.4). Then a vertex lattices Λ' such that $\Lambda' \supset \Lambda$ corresponds to an isotropic
 subspace of Λ^\vee / Λ. In particular, Λ is contained in a maximal type vertex
 lattice. By the part 1 of Theorem 5.4.1 S_Λ is an irreducible component of
 S if $t(\Lambda) = n$. The simplicial complex B is connected, hence S is connected
 of pure dimension $\left\lfloor \frac{n-1}{2} \right\rfloor$. \qed
Chapter 6

The supersingular locus of the unitary Shimura varieties

6.1 The integral model

We start with the ramified unitary PEL datum of signature \((1, n-1)\) (cf. [PR09, 1.1] or [Har15, 5.1]). For the definition of the general PEL datum, we refer to [Har15, 2.1].

Let \(E\) be an imaginary quadratic field extension of \(\mathbb{Q}\) with a fixed embedding \(\gamma_0: E \hookrightarrow \mathbb{C}\). Let \(\bar{\gamma}\in \text{Gal}(E/\mathbb{Q})\) be the unique non-trivial automorphism. Then \(\gamma_0\) and \(\gamma_1 := \gamma_0 \circ \bar{\gamma}\) give rise to all the embeddings of \(E\) into \(\mathbb{C}\). Let \(W = E^n\) be an \(n\)-dimensional vector space over \(E\), where \(n \geq 3\), together with a hermitian form \(\varphi\). We fix an element \(\epsilon \in E\) such that \(\bar{\epsilon} = -\epsilon\), then the form \(\epsilon \cdot \varphi\) is a skew hermitian form on \(W\). Furthermore, we assume that the hermitian form \(\varphi\) is of signature \((1, n-1)\) in the following sense: there exists a \(\mathbb{C}\)-basis of \(W \otimes_{E, \gamma_0} \mathbb{C}\) such that the matrix of \(\varphi\) is

\[
H := \text{diag}(-1, 1, \ldots, 1).
\]

(6.1.1)

Note that we have an \(\mathbb{R}\)-isomorphism \(W \otimes_{\mathbb{Q}} \mathbb{R} \cong W \otimes_{E, \gamma_0} \mathbb{C}\). Therefore the matrix \(\sqrt{-1} \cdot H\) defines an \(\mathbb{R}\)-endomorphism of \(W \otimes \mathbb{R}\) satisfying \((\sqrt{-1} \cdot H)^2 = -\text{id}\) and hence a complex structure of \(W \otimes \mathbb{R}\).

The hermitian form \(\varphi\) defines a \(\mathbb{Q}\)-linear symplectic form \(\langle , \rangle: W \times W \to \mathbb{Q}\) by \(\langle v, w \rangle := \text{Tr}_{E/\mathbb{Q}}(\epsilon \cdot \varphi(v, w))\). The form \(\langle v, Hw \rangle\), for \(v, w \in W \otimes \mathbb{R}\), is \(\mathbb{R}\)-symmetric, and if it is not positive definite, we replace \(\epsilon\) by \(-\epsilon\) which will guarantee the positive definiteness.

Let \(p\) be an odd prime which ramifies in \(E\). Let \(v\) be the place above \(p\), \(E_v\) the completion of \(E\) at \(v\) with the ring of integers \(\mathcal{O}_v\). Let \(\pi\) be a uniformizer of \(E_v\) such that \(\bar{\pi} = -\pi\). We assume that the hermitian space \((W \otimes_{E_v} \mathbb{C}, \varphi)\) is split. We can define standard lattices \(\{\Lambda_i\}_{i \in \mathbb{Z}}\) in the same manner as in 2.3.3.

In summary, we have the following PEL datum.

Definition 6.1.1 (The ramified unitary PEL datum of signature \((1, n-1)\)).
1. An imaginary quadratic extension E of \mathbb{Q} with the non-trivial automorphism $\gamma \in \text{Gal}(E/\mathbb{Q})$.

2. An E-vector space W of dimension n, together with a non-degenerate hermitian form φ of signature $(1, n-1)$.

3. The \mathbb{Q}-linear symplectic form $\langle \cdot, \cdot \rangle: W \times W \to \mathbb{Q}$ satisfying $\langle bw, w \rangle = \langle v, w \rangle$ for any $v, w \in W$ and $b \in E$.

4. The endomorphism $\sqrt{-1} \cdot H \in \text{End}_R(W \otimes \mathbb{R})$.

Furthermore, we have the self-dual lattice chain $L = \{ \Lambda_i \}_{i \in \mathbb{Z}}$ in the hermitian space $(W \otimes_F E, \varphi)$.

For any \mathbb{Q}-algebra R, let

$$G(R) := \left\{ g \in \text{GL}_E \otimes_R (W \otimes R) \mid \exists c = c(g) \text{ such that } \forall v, w \in W \langle g(v), g(w) \rangle = c \langle v, w \rangle \right\}. \quad (6.1.2)$$

Then G is a reductive group over \mathbb{Q}. Sending $\sqrt{-1}$ to $\sqrt{-1} \cdot H$ defines a homomorphism

$$h: \text{Res}_{C/R} (G_{m,C}) \to G_\mathbb{R}. \quad (6.1.3)$$

Then the \mathbb{Q}-reductive group G and the $G(\mathbb{R})$-conjugacy class X of h define a Shimura datum, hence the Shimura variety $\text{Sh}(G, h)$ over the reflex field E. Let $C = \prod_w C_w$ be an open compact subgroup of $G(\mathbb{A}_f)$ with $C_w \subset G(\mathbb{Q}_w)$. Then the Shimura variety $\text{Sh}_C(G, h)$ is a quasi-projective variety over E whose \mathbb{C}-valued points can be identified with

$$G(\mathbb{Q}) \backslash (X \times (G(\mathbb{A}_f)/C)). \quad (6.1.4)$$

We assume that the subgroup $C_p := \prod_{w \neq p} C_w \subset G(\mathbb{A}_f^p)$ is sufficiently small, i.e. the subgroup C_p is contained in the principal congruence subgroup of level $N \geq 3$, where N is coprime to the discriminant of E. We also assume that C_p is the parahoric subgroup of $G(\mathbb{Q}_p)$ stabilizing the lattice Λ_m.

Now we define the integral model of $\text{Sh}_C(G, h)$ over E_v following [RZ96, Chapter 6]. For a fixed base scheme S, let $\text{AV}(S)$ be the category of abelian \mathcal{O}_E-varieties up to isogeny of order prime to p over S (cf. [RZ96, 6.3]). The objects in $\text{AV}(S)$ are pairs (A, ι), where A is an n-dimensional abelian scheme over S together with an \mathcal{O}_E-action

$$\iota: \mathcal{O}_E \otimes \mathbb{Z}(p) \to \text{End}(A) \otimes \mathbb{Z}(p). \quad (6.1.5)$$

The morphisms between (A_1, ι_1) and (A_2, ι_2) are the homomorphisms between abelian schemes compatible with the \mathcal{O}_E-actions, tensored with $\mathbb{Z}(p)$.

$$\text{Hom}_{\text{AV}}(A_1, A_2) := \text{Hom}_{\mathcal{O}_E}(A_1, A_2) \otimes \mathbb{Z}(p). \quad (6.1.6)$$

Definition 6.1.2. The naive moduli functor $\mathcal{A}_{C_p}^{\text{naive}}$ over \mathcal{O}_{E_v} is a set-valued functor:

$$\mathcal{O}_{E_v} \text{-schemes} \to \text{(Sets)}, \quad (6.1.7)$$

$$S \mapsto \text{isomorphism classes of } (A, \iota, \lambda, \eta),$$

where $(A, \iota) \in \text{AV}(S)$, λ is a \mathbb{Q}-homogeneous polarization of (A, ι) which contains a polarization $\lambda: A \to A^\vee$ such that
• if \(n \) is odd, \(\ker(\lambda) \subset A[\iota(\pi)] \) is of height \(n - 1 \),
• if \(n \) is even, \(\ker(\lambda) = A[\iota(\pi)] \);

and \(\bar{\eta} \) is a \(\mathcal{C}_p \)-level structure

\[
\bar{\eta}: H_1(A, \mathcal{A}_f^p) \cong W \otimes \mathcal{A}_f^p \mod \mathcal{C}_p. \tag{6.1.8}
\]

Furthermore, the pair \((A, \iota)\) is required to satisfy the determinant condition:

\[
\det_{O_s}(\iota(a)|\text{Lie}(A)) = (T_0 + T_1 \pi)(T_0 + T_1 \bar{\pi})^{n-1} \in O_{E_v}[T_0, T_1] \tag{6.1.9}
\]

for all \(a \in O_{E_v} \). Then the functor \(\mathcal{A}_{C}^{\text{naive}} \) is represented by a quasi-projective scheme over \(O_{E_v} \), which is denoted by \(\mathcal{A}_{C}^{\text{naive}} \) by abuse of notation.

The scheme \(\mathcal{A}_{C}^{\text{naive}} \) is not flat by [Pap00, Proposition 3.8].

Definition 6.1.3. The subfunctor \(\mathcal{A}^e \) of \(\mathcal{A}_{C}^{\text{naive}} \) is defined by requiring that the quadruple \((A, \iota, \bar{\lambda}, \bar{\eta}) \in \mathcal{A}^e(S)\) satisfy the following condition(s):

1. (Wedge condition.) For each \(a \in O_{E_v} \), the homomorphisms

\[
\wedge^n(\iota(a) - a): \wedge^n \text{Lie}(A) \longrightarrow \wedge^n \text{Lie}(A), \tag{6.1.10}
\]

\[
\wedge^2(\iota(a) - \bar{a}): \wedge^2 \text{Lie}(A) \longrightarrow \wedge^2 \text{Lie}(A), \tag{6.1.11}
\]

are both equal to zero.

2. When \(n \) is even, the extra Spin condition is assumed: \(\iota(\pi)|\text{Lie}(A_s) \) non-vanishing for all \(s \in S \).

Definition 6.1.4. The **honest integral model** \(\mathcal{A} \) is defined as the flat closure of \(\mathcal{A}_{C}^{\text{naive}} \) in its generic fiber.

Proposition 6.1.5 (Smithling). The functor \(\mathcal{A}^e \) is represented by a closed subscheme of \(\mathcal{A}_{C}^{\text{naive}} \) over \(O_{E_v} \), which is topologically flat and of dimension \(n - 1 \). Furthermore, when \(n \) is even, \(\mathcal{A}^e \) is flat over \(O_{E_v} \), in other words, \(\mathcal{A}^e = \mathcal{A} \).

Proof. Note that \(\mathcal{A}_{C}^{\text{naive}}, \mathcal{A}^e \) and \(\mathcal{A} \) sit inside the local model diagram:

\[
\text{(6.1.12)}
\]

by [Pap00, Theorem 2.2], see the definition of \(\mathcal{A}_{C}^{\text{naive}} \) in loc. cit. Then similar to the proof of Proposition 3.2.2, the proposition follows from the property of the local model. \(\square \)
Remark 6.1.6. By the local model diagram (6.1.12), we can see that the honest integral model is smooth, because the local model $M_{\text{loc}}^{\text{loc}}$ is smooth (cf. [Arz09 Proposition 4.16] & [Ric13 Remark 0.7]).

Let A_F (resp. A_e^F) be the special fiber of A (resp. A_e), then by Proposition [6.1.5] we have $A_{F,\text{red}} = A_{e,\text{red}}$.

6.2 The supersingular locus

Let $A_{e,\text{ss}}^F$ (resp. A_{ss}^F) be the supersingular locus of A_e^F (resp. A_{ss}^F), then $A_{e,\text{ss}}^F = A_{e,\text{ss}}^F$ because by definition the supersingular locus is endowed with the closed reduced subscheme structure (cf. [RZ96 Theorem 6.27]).

Similarly to the naive case, we have the p-adic uniformization theorem.

Theorem 6.2.1 ([RZ96 Theorem 6.30] & [VW11 6.4]). Let $(A_0, \iota_0, \bar{\lambda}_0, \eta_0) \in A_e^F$ be a supersingular abelian variety, together with its corresponding Rapoport-Zink space N_e^c. Then the uniformization morphism given by $(A_0, \iota_0, \bar{\lambda}_0, \eta_0)$

$$\Theta: I(\mathbb{Q}) \backslash N_e^c \times G(A_p^F)/C_p \to A_{e,\text{ss}}^F(6.2.1)$$

is an isomorphism, I is the group of O_{E_v}-linear quasi-isogenies in $\text{End}(A_0) \otimes \mathbb{Q}$ which respect the polarizations $\bar{\lambda}_0$. And the source of the uniformization morphism is a finite disjoint sum

$$\prod_{i=1}^m \Gamma_i \backslash N_{\text{red}}^c,$$ (6.2.2)

where $\Gamma_i = I(\mathbb{Q}) \cap g_iC_p g_i^{-1} \subset J(\mathbb{Q}_p)$ which is discrete and cocompact modulo center, and g_1,\ldots,g_m are representatives of the finitely many double cosets in $I(\mathbb{Q}) \backslash G(A_p^F)/C_p$. Furthermore, the induced surjective morphism

$$\tilde{\Theta}: \prod_{i=1}^m N_{\text{red}}^c \to A_{e,\text{ss}}^F,$$ (6.2.3)

is a local isomorphism and the restriction of $\tilde{\Theta}$ to any closed quasi-compact subscheme of N_{red}^c is finite.

Theorem 6.2.2. The supersingular locus $A_{e,\text{ss}}^F$ is of pure dimension $\left[\frac{n-1}{2}\right]$. We have natural bijections

$$\{\text{irreducible components of } A_{e,\text{ss}}^F\} \xrightarrow{1:1} I(\mathbb{Q}) \backslash (J(\mathbb{Q}_p)/K_{\max} \times G(A_p^F)/C_p),$$ (6.2.4)

and

$$\{\text{connected components of } A_{e,\text{ss}}^F\} \xrightarrow{1:1} I(\mathbb{Q}) \backslash (J(\mathbb{Q}_p)/J^0 \times G(A_p^F)/C_p).$$ (6.2.5)

where J^0 is the subgroup of $J(\mathbb{Q}_p)$ consisting of those j such that $c(j)$ is a unit and K_{\max} is the stabilizer of some maximal-type vertex lattice in $J(\mathbb{Q}_p)$.

Proof. the proof is the same as [VW11 6.5].
Bibliography

[AN02] Peter Abramenko and Gabriele Nebe, *Lattice chain models for affine buildings of classical type*, Math. Ann. **322** (2002), no. 3, 537–562.

[Arz09] Kai Arzdorf, *On local models with special parahoric level structure*, Michigan Math. J. **58** (2009), no. 3, 683–710.

[Béd85] Robert Bédard, *On the Brauer liftings for modular representations*, J. Algebra **93** (1985), no. 2, 332–353.

[Bor66] Armand Borel, *Linear algebraic groups*, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 3–19.

[Bor91] Armand Borel, *Linear algebraic groups*, second ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991.

[Bou02] Nicolas Bourbaki, *Lie groups and Lie algebras. Chapters 4–6*, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002, Translated from the 1968 French original by Andrew Pressley.

[Bou06] N. Bourbaki, *Éléments de mathématique. Algèbre commutative. Chapitres 8 et 9*, Springer, Berlin, 2006, Reprint of the 1983 original.

[CV] Miaofen Chen and Eva Viehmann, *Affine Deligne-Lusztig varieties and the action of J*, arXiv:1507.02806.

[DL76] P. Deligne and G. Lusztig, *Representations of reductive groups over finite fields*, Ann. of Math. (2) **103** (1976), no. 1, 103–161.

[GH15] Ulrich Görtz and Xuhua He, *Basic loci of Coxeter type in Shimura varieties*, Camb. J. Math. **3** (2015), no. 3, 323–353.

[GHN15] Ulrich Görtz, Xuhua He, and Sian Nie, *P-alcoves and nonemptiness of affine Deligne-Lusztig varieties*, Ann. Sci. Éc. Norm. Supér. (4) **48** (2015), no. 3, 647–665.

[Gör10] Ulrich Görtz, *Affine Springer fibers and affine Deligne-Lusztig varieties*, Affine flag manifolds and principal bundles, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2010, pp. 1–50.

[Gro60] A. Grothendieck, *Éléments de géométrie algébrique. I. Le langage des schémas*, Inst. Hautes Études Sci. Publ. Math. (1960), no. 4, 228.
[Gro64] ________, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964), no. 20, 259.

[Gro66] ________, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. (1966), no. 28, 255.

[GY10] Ulrich Görtz and Chia-Fu Yu, Supersingular Kottwitz-Rapoport strata and Deligne-Lusztig varieties, J. Inst. Math. Jussieu 9 (2010), no. 2, 357–390.

[GY12] ________, The supersingular locus in Siegel modular varieties with Iwahori level structure, Math. Ann. 353 (2012), no. 2, 465–498.

[Har15] Philipp Hartwig, Kottwitz-Rapoport and p-rank strata in the reduction of Shimura varieties of PEL type, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 3, 1031–1103.

[He07] Xuhua He, The G-stable pieces of the wonderful compactification, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3005–3024 (electronic).

[He09] ________, G-stable pieces and partial flag varieties, Representation theory, Contemp. Math., vol. 478, Amer. Math. Soc., Providence, RI, 2009, pp. 61–70.

[He14] ________, Geometric and homological properties of affine Deligne-Lusztig varieties, Ann. of Math. (2) 179 (2014), no. 1, 367–404.

[Hoe10] Maarten Hoeve, Stratifications on moduli spaces of abelian varieties and Deligne-Lusztig varieties, Ph.D. thesis, Universiteit van Amsterdam, 2010.

[HP14] Benjamin Howard and Georgios Pappas, On the supersingular locus of the GU(2, 2) Shimura variety, Algebra Number Theory 8 (2014), no. 7, 1659–1699.

[HR08] Thomas J. Haines and Michael Rapoport, On parahoric subgroups, Adv. Math. 219 (2008), no. 1, 188–198.

[HT01] Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001, With an appendix by Vladimir G. Berkovich.

[Jac62] Ronald Jacobowitz, Hermitian forms over local fields, Amer. J. Math. 84 (1962), 441–465.

[Kot85] Robert E. Kottwitz, Isocrystals with additional structure, Compositio Math. 56 (1985), no. 2, 201–220.

[Kot97] ________, Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255–339.
Supersingular Locus of Unitary Shimura Varieties

[100x735][KR11] Stephen Kudla and Michael Rapoport, Special cycles on unitary Shimura varieties I. Unramified local theory, Invent. Math. 184 (2011), no. 3, 629–682.

[100x707][KR14] ______, Special cycles on unitary Shimura varieties II: Global theory, J. Reine Angew. Math. 697 (2014), 91–157.

[Lau96] Erasmus Landvogt, A compactification of the Bruhat-Tits building, Lecture Notes in Mathematics, vol. 1619, Springer-Verlag, Berlin, 1996.

[Lus07] G. Lusztig, A class of perverse sheaves on a partial flag manifold, Represent. Theory 11 (2007), 122–171.

[Mes72] William Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Mathematics, Vol. 264, Springer-Verlag, Berlin-New York, 1972.

[O’M00] O. Timothy O’Meara, Introduction to quadratic forms, Classics in Mathematics, Springer-Verlag, Berlin, 2000, Reprint of the 1973 edition.

[Pap00] Georgios Pappas, On the arithmetic moduli schemes of PEL Shimura varieties, J. Algebraic Geom. 9 (2000), no. 3, 577–605.

[PR08] G. Pappas and M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), no. 1, 118–198, With an appendix by T. Haines and Rapoport.

[PR09] ______, Local models in the ramified case. III. Unitary groups, J. Inst. Math. Jussieu 8 (2009), no. 3, 507–564.

[Rap05] Michael Rapoport, A guide to the reduction modulo p of Shimura varieties, Astérisque (2005), no. 298, 271–318, Automorphic forms. I.

[Ric13] Timo Richarz, Schubert varieties in twisted affine flag varieties and local models, J. Algebra 375 (2013), 121–147.

[RSZ] M. Rapoport, B. Smithling, and W. Zhang, On the arithmetic transfer conjecture for exotic smooth formal moduli spaces, arXiv:1503.06520.

[RTW14] Michael Rapoport, Ulrich Terstiege, and Sean Wilson, The supersingular locus of the Shimura variety for $GU(1,n-1)$ over a ramified prime, Math. Z. 276 (2014), no. 3-4, 1165–1188.

[RV14] Michael Rapoport and Eva Viehmann, Towards a theory of local Shimura varieties, Münster J. Math. 7 (2014), 273–326.

[RZ96] M. Rapoport and Th. Zink, Period spaces for p-divisible groups, Annals of Mathematics Studies, vol. 141, Princeton University Press, Princeton, NJ, 1996.

[Smi11] Brian D. Smithling, Topological flatness of local models for ramified unitary groups. I. The odd dimensional case, Adv. Math. 226 (2011), no. 4, 3160–3190.
[Smi14] Haifeng Wu, Topological flatness of local models for ramified unitary groups. II. The even dimensional case, J. Inst. Math. Jussieu 13 (2014), no. 2, 303–393.

[Smi15] Brian Smithling, On the moduli description of local models for ramified unitary groups, Int. Math. Res. Not. IMRN (2015), no. 24, 13493–13532.

[Tit79] J. Tits, Reductive groups over local fields, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69.

[Vol10] Inken Vollaard, The supersingular locus of the Shimura variety for GU(1, s), Canad. J. Math. 62 (2010), no. 3, 668–720.

[VW11] Inken Vollaard and Torsten Wedhorn, The supersingular locus of the Shimura variety of GU(1, n − 1) II, Invent. Math. 184 (2011), no. 3, 591–627.

[Zhu] Xinwen Zhu, Affine Grassmannians and the geometric Satake in mixed characteristic, arXiv:1407.8519.

[Zin01] Thomas Zink, Windows for displays of p-divisible groups, Moduli of abelian varieties (Texel Island, 1999), Progr. Math., vol. 195, Birkhäuser, Basel, 2001, pp. 491–518.

[Zin02] Thomas Zink, The display of a formal p-divisible group, Astérisque (2002), no. 278, 127–248, Cohomologies p-adiques et applications arithmétiques, I.