Objective: This study examines the support from stepparents to adult children and considers the role of the composition of the parent network, that is, the presence or absence of the biological mother or father.

Background: Going beyond previous research that compared the support provided by different types of parental households, this study provides deeper insights into adult stepfamily dynamics by considering support transfers on the stepparent–stepchild dyad level.

Method: The analyses were based on data from the Ouders en Kinderen in Nederland (Parents and Children in the Netherlands) survey, which was conducted among a stratified random sample of Dutch adults (aged 25–45) with stepparents reporting on support from each of their stepparents (N = 4,351) and biological parents (N = 5,460) separately.

Results: The results revealed different stories for stepmothers and stepfathers. Within-child analyses showed that, controlled for the duration of coresidence, children received less types of support from their stepmother than from their biological mother, whereas among fathers, the stepfather provided more. When compared between children, stepmothers provided less types of support if their stepchild’s biological mother was still alive, whereas stepfathers’ support was unaffected by the biological father’s presence. Stepparents of both genders provided less types of support if their partner (i.e., the child’s biological parent) was deceased.

Conclusion: These findings articulate the central role of the biological mother in postseparation families and the ambiguous position of the stepmother and “widowed stepparents.”

During the past 5 decades, all Western societies have been characterized by rapid changes in partnership behavior, including a rise in divorce and repartnering (Thomson, 2014). As a result, an increasing proportion of adults have seen multiple parent figures enter and leave their lives and homes. After parental divorce, biological parents establish separate households...
involving, in many cases, new partners. These stepparents and stepfamilies have received considerable attention in the literature. Given the well-established finding that children who experienced parental divorce are disadvantaged in many ways (Amato & Anthony, 2014; McLanahan & Percheski, 2008), studies have focused on the role of stepparents in children’s lives and the extent to which stepparents compensate for—often more distant—nonresidential parents (e.g., Berger, Carlson, Bzostek, & Osborne, 2008; King, 2007).

Most research is limited to the role of stepparents during childhood, although these parent–child relations can be argued to be just as critical during the dynamic sequence of important life transitions characteristic of young and early middle adulthood. These transitions, such as entering the labor market and family formation (Rindfuss, 1991; Staff, Ramirez, & Vuolo, 2015), can be emotionally, practically, and financially challenging. Therefore, parental support—and, potentially, stepparental support—plays an important role in this stage of children’s lives (Swartz, 2008). Children who are supported in making their way through college, finding good housing, and pursuing a successful career are not only better off in the short term but also have a sound basis for the future.

Thus far, only a small number of studies have focused on stepparental support to adult children. When looking at support transfers made by remarried couples, parents were found to provide more support to their adult joint biological children than to adult children from previous relations (i.e., one of the parents’ stepchildren), especially when it concerns the fathers’ children (i.e., the mother’s stepchildren; Henretta, Van Voorhis, & Soldo, 2014). When compared between families, mother–stepfather households provide more support than single parent or father–stepmother households (Henretta, Van Voorhis, & Soldo, 2018; White, 1994). In addition, a larger number of parents—through the addition of stepparents—has been found to be insufficient to compensate for the lower incidence of money and time transfers that were made in stepfamilies in comparison with intact families (Wiemers, Seltzer, Schoeni, Hotz, & Bianchi, 2019).

One gap in prior research when it comes to stepparents’ contributions is that it treats support transfers as coming from households. For example, the advantage of the mother–stepfather household over the single mother household can be driven by stepfathers’ contributions as well as by a positive selection of mothers with more support potential into new partnerships. In addition, if children have two parental households, focusing on support transfers from parental households in isolation overlooks the dynamics of collaboration or substitution between them. Therefore, it is important to go beyond the comparison of different types of parental households and to consider support on the stepparent–stepchild dyad level in the context of the complete network of parent figures (both biological parents and their new partners, i.e., stepparents).

In the present study, we focus on young adults (aged 25–45) with at least one stepparent and study parental support along two different lines. First, we compare the support provided by stepparents to support from biological parents within children. We test the idea that the ambiguous status of stepparenthood (Cherlin, 1978) makes stepparents’ roles secondary to that of biological parents. Second, we study to what extent stepparents’ support transfers are shaped by the composition of the parent network, which requires a comparison between children. For the context of the stepparent-stepchild relation, it makes an important difference whether the child’s biological parents are alive or deceased: The stepparent is part of one of the child’s two parental households or forms, together with his or her partner, the child’s only parental household if the other biological parent is deceased. Similarly, the death of a child’s biological parent might leave behind a widowed stepparent. These differences in composition translate to different dynamics between parents. Along both lines—step versus biology and parent network composition—we study the role of gender. Previous research suggests that parental roles as well as the dynamics underlying them, such as kin-keeping, are strongly gendered (e.g., Brown & DeRycke, 2010). We argue that traditional gender roles might have consequences for the norms surrounding the involvement of stepmothers and stepfathers and accordingly the support they provide.

We analyze data of the newly collected Ouders en Kinderen in Nederland survey (Parents and Children in the Netherlands survey [OKiN]; Kalmijn et al., 2018), which have a number of important advantages. First, as a result of a systematic oversampling of stepfamilies, we can
compare adult children raised in different family structures. In many datasets, the children raised in stepfamilies are too small in number to make theoretically important distinctions. The OKiN data comprise 3,164 adults with stepparents, which allows us to distinguish stepparents in many different parent compositions, even including, for example, widowed stepparents. Second, in the OKiN survey, the children reported on their relationship to both their biological parents and their stepparents. This allows us to compare different parent–child dyads in a within-child analysis, thereby controlling for unobserved characteristics that systematically vary between families. Third, the survey asked about multiple types of support, namely, support with practical tasks, advice, financial support (including both gifts and loans) and support with child care. This allows us to consider a broad range of types of parental support.

Theory

Previous work on intergenerational solidarity provides a range of explanations for parental support to adult children (Ganong & Coleman, 2006; Seltzer & Bianchi, 2013), such as altruism, anticipation of later returns (exchange theory), and social norms. Remarkably, most of these theories focus on the perspective of the parent but pay little attention to the child’s perspective in explaining downward transfers. We deem it insightful to consider the parent’s as well as the child’s perspectives when thinking about support transfers. First, accepting some types of support, such as advice or babysitting, involves positive sentiment or at least trust in the parent’s accountability. Second, the need for support is in many cases finite, in other words, it can be satisfied by one parent, which makes the other parent’s support superfluous. Therefore, and particularly relevant in complex family structures, children can be in the position to choose between parents or even between parental households. This implies that the composition of the parent network has consequences for the involvement of stepparents on the individual level, as their support is neither independent from their partner’s support nor from the other parental household’s support. We study this interdependency by theorizing and testing how these dynamics on the level of the parent network and the household play out for the stepparent’s involvement on the level of the parent–child relation.

Differences Between Stepparent–Stepchild and Biological Parent–Child Relations

We begin by theorizing how support from stepparents to adult children might differ from support received from biological parents. Cherlin (1978, 2004) argued that the noninstitutionalized character of remarriage—in contrast to the traditional, intact family—involves ambiguity about the meaning of steprelations. Whereas it is generally defined what is considered appropriate in the relationship to biological children (e.g., helping out when a grandchild is born), it is more ambiguous what is “normative” in relationships to stepchildren. In a similar vein, step ties involve more uncertainty about their sustainability than biological ties. Hence, if parents would support children in anticipation of future returns, such an investment would be riskier and therefore less likely if parents are only related to a child by the relationship to their partner (i.e., a stepparent) than if parents are related to a child by blood (i.e., a biological child). Therefore, we expect that adult children receive less support from stepparents than from biological parents (Hypothesis [H] 1a). Because parent–child solidarity positively relates to childhood coresidence (Kalmijn, 2013), structural differences in duration of coresidence might confound the comparisons of support from stepparents and biological parents. We test our hypotheses net these structural differences by controlling for the duration of coresidence.

We argue that stepmothers’ support transfers are subject to larger barriers than stepfathers’, even beyond stepmothers’ typical disadvantage in duration of coresidence with the child (Kalmijn & De Graaf, 2000). Although norms about parenting have been shifting in the direction of increasing gender equalities in the past decades, the (step)parents of today’s younger adults were raised and have raised their children in the cultural context of traditional gender roles: The father role mainly consists of being the family’s breadwinner, whereas mothers are expected to take care of the children and the household (Lamb & Tamis-Lemonda, 2004; Sigle-Rushton, Goisis, & Keizer, 2013). Within this normative framework, motherhood has been argued to carry the idealized norm that (biological) mothers are the best caretakers for their children (labeled “motherhood myth” [Braverman, 1989] or “motherhood mandate” [Russo, 1976]), whereas fathers’ involvement with their
children is considered subordinate to mothers’ involvement.

Stepmothers, on one hand, face norms concerning the motherhood myth and at the same time the negative stigma of the “wicked” stepmother (Miller, Cartwright, & Gibson, 2018). The support of a child, a central part of traditional motherhood, might therefore be a domain in which stepmothers would be particularly cautious about appearing to try to “replace” the child’s biological mother. Such sentiments emerge from several qualitative studies in which stepmothers express the difficulty of being in a mothering position without being a “real” mother (Doodson, 2014; Sanner & Coleman, 2017; Weaver & Coleman, 2005, 2010). Stepfathers, on the other hand, could be argued to be on less dangerous ground when providing support. When it comes to answering children’s needs, the norms surrounding fatherhood are weaker than the norms surrounding motherhood. Therefore, a stepfather stepping in to support does not, or at least to a lower extent than among mothers, intervene with the traditional role of the biological father. At the same time, stepfathers are less negatively stereotyped than stepmothers (Fine, 1986), which might also make them less hesitant to get involved.

With biological motherhood on such a pedestal, children might be more rigid toward the involvement of stepmothers in their lives than toward the involvement of stepfathers. They can see their opening up to a stepmother’s involvement as an affront to their biological mother (Greenwood, 2017), which might also make them less likely to trust a stepmother. Therefore, stepfathers are more likely to step in to support when it comes to answering children’s needs.

Composition of the Parent Network

We continue by theorizing how support transfers coming from stepparents might depend on the composition of the parent network in which the stepparent–stepchild relation is embedded. First, if an adult child has two parental households, their support flows might work as substitutes, especially along the line of gender (e.g., stepmothers’ support substitutes biological mothers’ support). Similar to parenting in general, parental support has a gendered nature. Whereas mothers mostly engage in (grand)child care and household chores, fathers more often provide their services as handymen or assist with financial matters (Rossi & Rossi, 1990). It follows that if there are two parents of the same gender (e.g., a child has a living biological father and a stepfather), both are eligible for the same types of support. Given that the need for support is finite, the presence of a biological parent of the same gender likely affects the urgency of a stepparent to step in. Given the, on average, closer and more intimate relationships between biological parents and children (Kalmijn, 2013) as well as the stronger normative framework surrounding obligations in biological relationships (Cherlin, 1978), the stepparent is most likely secondary to the biological parent. For example, if a woman needs her child to be taken care of for 1 day and her stepmother as well as her biological mother are available, her biological mother is most probably the one to help her. The daughter puts most trust in her biological mother, and at the same time, the stepmother might not offer her help because she considers the biological mother first in line.

Biological parents might also affect stepparents’ involvement more actively through restrictive gatekeeping. This concept stems from the literature on postdivorce coparenting and refers to parents’ efforts to restrict another parent’s role in a child’s life (Ganong & Coleman, 2017). Returning to our previous example of the daughter in need of child care, the mother could have questioned the stepmother’s trustworthiness in the presence of her daughter, or the daughter does not ask her stepmother’s help to avoid her mother’s feelings of exclusion. Moreover, if expartners restrict each other’s involvement (e.g., the biological mother restricts the biological father’s role in the child’s life), this can spill over to their partners’ involvement as well. Some types of parental support are often provided by parental couples rather than individually (e.g., babysitting the grandchildren together). It follows that little involvement of a biological parent also reduces the probability of involvement of his or her partner. Following the notions of the primacy of biology and restrictive gatekeeping, we expect stepparents to provide less support if
Stepparental Support to Adult Children

the biological parent of the same gender is alive than if that parent is deceased (H2a).

Although both the biological father and mother might engage in parental gatekeeping, previous research suggests that gatekeeping is primarily a female affair (Allen & Hawkins, 1999; Ganong, Coleman, Jamison, & Feistman, 2015). Biological mothers in coparenting arrangements often believe that they should be the leader of the group of parents who keeps control over each parent’s role and makes sure her own relationship with the child is secured (Ganong et al., 2015). In addition, in the context of parental support, gatekeeping could be considered particularly gendered given that supporting a child, keeping an eye on the child’s well-being, and paying attention to the child’s needs are considered central parts of traditional motherhood (e.g., Braverman, 1989). Therefore, the stepmother performing such tasks might provoke feelings of unease among biological fathers in relation to stepfathers, whose roles are to a lesser extent defined by these care and support tasks. Therefore, we expect that the presence of the biological mother (in contrast to her being deceased) is more influential to the stepmother’s support than the biological father’s presence is to the stepfather’s support (H2b).

A second aspect of composition that might affect stepparental support concerns the presence of a partner. Support flows are often made and decided upon on the level of the parental household rather than by parents individually. This is especially the case for stepparents, who are, by definition, connected to the child through their partner. By comparing stepparents whose partner (i.e., the child’s biological parent) is deceased (i.e., widowed stepparents) to stepparents whose partner is still alive, we gain insight into the role of the partner in stepparents’ support. Adult children consider former stepparents (widowed or divorced) less often “family” or “parents” than current stepparents (Schmeeckle, Giarrusso, Feng, & Bengtson, 2006). Furthermore, contact with widowed stepparents diminishes gradually after the death of the spouse (Noël-Miller, 2013). Without a tie in the form of the union between the stepparent and the child’s biological parent, the status of the stepparent–stepchild relationship becomes even more ambiguous along with norms and expectations about solidarity between them (Van Houdt, Kalmijn, & Ivanova, 2018). Therefore, we expect stepparents with a partner (the child’s biological parent) to provide more support than widowed stepparents (H3a).

In addition, the presence of the biological parent not only makes the stepparent–stepchild relation less ambiguous, but he or she could also serve as a facilitator of the stepparents’ role. Facilitative parental gatekeeping, often more generally referred to as kin-keeping (Rosenthal, 1985), refers to parents’ efforts to encourage other parents’ involvement in a child’s life. Similar to restrictive gatekeeping, kin-keeping is perceived as something predominantly performed by women and is argued to be driven by the wish for family solidarity and continuity (Brown & DeRycke, 2010; Rosenthal, 1985). Research on the gendered effect of divorce on support from children to their parents indicates that fathers benefit from having a (kin-keeping) spouse (Kalmijn, 2007). In the context of parental separation and repartnering, mother’s kin-keeping efforts might shift from the biological father to the stepfather to have the stepfamily operate as a “nuclear” family (Marcil & Hinojosa, 2007). This might provide another advantage for the stepfather’s role over the stepmother’s role. For example, the mother arranges joint visits to her child in which the stepfather occasionally does some jobs around the house. At the same time, under the gaze of the mother who is promoting her family’s cohesion, children might be more inclined to accept their stepfather’s involvement. Based on the gendered nature of kin-keeping, we expect the presence of a partner to be more influential for stepfathers than for stepmothers. In other words, the difference in support between widowed and nonwidowed stepparents will be larger among stepfathers than among stepmothers (H3b).

Data and Method

Data

The data we analyzed come from the OKiN survey. This survey (conducted between June and January 2017) was based on a stratified random sample drawn from the Dutch population registers of independently living persons born in the Netherlands between 1971 and 1991 (aged 25–45). It contains a large oversample (75%) of persons who grew up with separated (including both former marital and cohabiting unions) or widowed parents as well as an oversample of
persons who grew up with a stepparent. These sampling strata were defined by the registered residence address of the child at age 15 and the biological parents and possible new partners. These children (anchors) as well as their parents and possible stepparents (alters) were approached with response rates of 62% and 38%, respectively. Given the current study’s focus on the composition of the parent network from the child’s perspective, we analyzed the anchor data.

The respondents received a letter inviting them to participate in the study using a (personal) link to the web survey. Those who had not participated after two reminders were visited by a trained interviewer who conducted the survey face to face at the respondent’s home. Overall, the median duration of the survey was 37 minutes. The key constructs of the present study were recorded in a module in which the respondents’ current relationships to parents were assessed, which was repeated for each living biological parent as well as the partners they currently live with (either married or unmarried) as indicated by the respondent. Because the survey was linked to the population registers from which the sample was drawn, the OKiN data contain a rich variety of administrative data in addition to the survey measures. These register variables (e.g., employment status, income) cover information about both the anchor respondent and his or her parents and possible coresident partners (unconditional to their participation in the alter study).

We only analyzed respondents who reported to have at least one living biological parent (which was part of the survey’s sample criteria) and at least one stepparent (parents’ current partners who may have entered the respondent’s life at any time point). Furthermore, we excluded respondents with parents in same-sex unions (71 cases) and respondents who indicated to have started living independently before the age of 15 (nine cases). Given its dissimilar nature and low prevalence, we also excluded respondents who experienced parental separation during adulthood (81 cases) and analyze a final sample of 3,164 respondents. We analyzed the data as parent–child dyads (N = 9,811), composed of dyads with biological mothers (30%), biological fathers (26%), stepmothers (22%), and stepfathers (22%). The sample of stepparents included current partners of biological parents (N = 4,061) as well as widowed partners of deceased biological parents (N = 290).

Measures

Dependent Variable. Our dependent variable, parental support, covered support on the following four domains: practical support, advice, support with child care, and financial support. First, to assess practical support, respondents were asked to indicate for each parent and stepparent separately, how frequently in the past 12 months the parent provided support with (a) practical matters (e.g., jobs around the house, administration) and (b) household chores (e.g., cooking or cleaning). Second, the respondents indicated how frequently in the past 12 months their (step)parent gave advice. Third, the respondents with children were asked whether they received any support in taking care of their children in the past 12 months (e.g., by taking them to school or babysitting) from their (step)parents. The respondents who received any support were asked to indicate for each (step)parent separately how often they provided support with child care (never, just a few instances, or several times). Fourth, the respondents were asked, in general, whether any of their (step)parents provided (a) goods or money (over 100 euros in the past 12 months and excluding birthday presents), (b) a loan (over 100 euros, in the past 12 months), or (c) any financial support concerning housing or mortgage (e.g., by covering part of the mortgage or by serving as a guarantor). For each of these items (if applicable), respondents reported which of the (step)parents provided the support along with the value of their gift or loan. The respondents could indicate whether the (step)parents provided financial support individually or together with their partner—in contrast to the other types of support for which the questionnaire did not assess whether the parents provided the support with or without their partners.

Although the questionnaire assessed frequency of support as well as the value of the financial transfers, these scales in themselves did not allow us to distinguish different levels of support in the analyses. The prevalence of some types of support was relatively low (e.g., 19% for child care), and in terms of the frequency or amount of support, all types of support clustered in the lowest answer categories. Therefore, we dichotomized each support variable (“no support” = 0, “any support”—either individually or as a couple” = 1) and proceeded in two ways. First, to get an overall view, we constructed a count variable that indicates the number of types
of support the parent provided the child (ranging from 0 to 7). Second, we used the dichotomous indicators in an auxiliary analysis to predict the likelihood of each type of support separately.

Independent Variables. The indicator stepparent distinguished biological parents (0) from stepparents (1), which were defined as biological parents’ partners or in the case of deceased parents, their last partner, as reported by the respondent. The survey explicitly asked to consider only parents’ current cohabiting partners (either married or unmarried).

To distinguish different parent network compositions, we constructed a set of dichotomous variables that indicated—from the perspective of the stepparent—the presence of the partner (i.e., the child’s biological mother for stepfathers; the biological father for stepmothers), the biological parent of the same gender (i.e., the biological father for stepfathers; the biological mother for stepmothers), and the other stepparent (i.e., a stepmother for stepfathers; a stepfather for stepmothers). The presence of biological parents indicated whether the respective parent is alive, except for the few cases in which the respondents indicated not to know their mother (0.4%) or father (5.8%) at all. To be considered part of the parent network, we regarded only those parents known to the child as relevant and therefore these unknown parents were added to the category of deceased parents. With this operationalization of presence, we incorporated the role of biological parents only in a passive sense: being alive and known. We therefore kept their role as exogenous to stepparents’ support as possible to estimate clean compositional effects. Yet the theoretical arguments suggest that the fact that a biological parent is alive and known is not enough to affect the involvement of a stepparent. It requires at least some active presence in the child’s life to serve as a gatekeeper or a reasonable alternative to the stepparent’s support. Therefore, we explored in additional analyses to what extent the effect of the presence of a parent is contingent upon having had regular contact with this parent during the past year.

In our sample, all (biological) parental unions were either dissolved by widowhood (9%) or separation (91%). In the case of widowhood, one of the biological parents is deceased by definition, whereas in the case of separation, both parents can either be alive or deceased. Therefore, controlling for the distinction of separation or widowhood was crucial in isolating the effects of composition from the effects of parental separation in itself given the confounding effect of dissolution by widowhood on the absence of a biological parent.

Furthermore, we controlled for the duration of coresidence, which indicated the total number of years the child lived with the (step)parent and the age of 18. For biological parents, the respondents reported their residential history (e.g., only with mother, alternating between parents) following the event of parental separation or widowhood up to having left the parental home. Each year of joint physical custody (reported by only 6% of the respondents) as well as each year before separation was counted as a year of coresidence for both biological parents. Further in the questionnaire, the respondents were asked to indicate whether and at what ages they lived with their parents’ current partners, which was counted zero in the case of no coresidence or if the stepparent entered after the child reached 18 years of age.

In addition, we controlled for the following parent characteristics: age, gender, working hours in categories (register variable), personal income in quintiles (register variable), and the number of biological children (in addition to the anchor respondent). In the analyses that did not include child fixed effects, we controlled for the child’s age, gender, working hours in categories (register variable), personal income in quintiles (register variable), education (highest level attained), and having children (yes/no). The data did not contain information of geographical proximity. Although this is an often included indicator in the literature on intergenerational solidarity, it would have complicated rather than explained our results as it is highly endogenous to the comparisons we made.

Table 1 shows the descriptive statistics of the independent variables included in the analyses separated by type of parent (the dependent variable, support, will be discussed in detail in the Results section). The average duration of coresidence per type of parent clearly reflected the dominance of the mother’s physical custody, a small advantage of biological fathers over stepfathers, and the shortest average duration with stepmothers. Although less prevalent, there was a substantial number of respondents who lived with their biological father after parental separation as well as with their stepmother.
Table 1. Descriptive Statistics Independent Variables

Variable	Child	Biological father	Biological mother	Stepfather	Stepmother
	N = 3,164	N = 2,543	N = 2,917	N = 2,203	N = 2,148
Age	32.71	62.17	59.86	60.62	56.47
Female (ref. male)	0.53	–	–	–	–
No. of children	0.52	1.59	1.45	1.41	1.27
Partner (ref. none)	0.78	–	–	–	–
Education	4.50	2.04	–	–	–
Income	1st quintile	0.10	0.13	0.03	0.10
2nd quintile	0.18	0.08	0.24	0.07	0.14
3rd quintile	0.26	0.16	0.22	0.15	0.18
4th quintile	0.28	0.25	0.18	0.26	0.14
5th quintile	0.17	0.35	0.11	0.32	0.12
Unknown	0.02	0.13	0.11	0.17	0.32
Working hours	0.15	0.37	0.45	0.33	0.30
Part-time	0.37	0.11	0.34	0.10	0.31
Full-time	0.41	0.32	0.10	0.34	0.09
Unknown	0.07	0.20	0.11	0.23	0.31
Duration coresidence	9.42	5.64	16.90	2.67	5.41
Composition					
Biological father present	0.80	–	0.79	0.75	0.92
Biological mother present	0.92	0.90	–	0.98	0.89
Stepfather present	0.70	0.65	0.74	–	0.56
Stepmother present	0.68	0.78	0.66	0.54	–
Child’s biological parents	0.91	–	0.93	0.94	
separated (ref. widowed)					

Note: ref. = reference, Prop. = proportion, Min. = minimum, Max. = maximum. *For children, this is a dichotomous indicator for having children (ref. no children); for parents, this indicates the number of biological children (in addition to anchor child); all values over 6 were coded 6. **Highest level of education attained, 0 = only primary education, 7 = university. °Obtained from Dutch registers.

Analytical Strategy

In the first part of our analyses, we focused on the differences between stepparents and biological parents—within children—by estimating the child fixed effects models. This way we predicted the number of types of support provided by each of the child’s parents while accounting for unobserved heterogeneity between children. This dependent variable has two important advantages over the use of the separate indicators of support. First, in the context of fixed effects models, we could only analyze cases with within-child variation. Given its higher amount of variance, the use of the count variable allowed us to include many more cases than dichotomous dependent variables would. Second, a measure that includes all types of support might capture parents’ compensation for support on a certain domain on any other domain. To do justice to the distribution of the dependent variable (a count variable), we estimated Poisson regression models. With these models, we looked at the effect of biology (H1a). Please note that, by means of the sample and the within-child design, the comparison concerns only separated or widowed biological parents. To test to what extent the effect of biology is gendered (H1b), we included an interaction between gender and stepparenthood. In auxiliary analyses, we predicted the likelihood of providing each type of support separately using fixed effects logistic regression.
Table 2. Proportion of Children Who Received Support in the Past 12 Months

Support Type	Biological Father	Biological Mother	Stepfather	Stepmother
Practical tasks	0.42	0.45	0.46	0.12
Household chores	0.07	0.40	0.10	0.09
Advice	0.53	0.74	0.56	0.31
Child care a	0.23	0.58	0.41	0.21
Financial support b	0.24	0.32	0.24	0.11
Loan				
Individually	0.04	0.05	0.01	<0.01
With partner	0.03	0.05	0.06	0.02
Gift				
Individually	0.08	0.09	0.01	<0.01
With partner	0.10	0.14	0.16	0.08
Housing c				
Individually	0.03	0.03	0.01	<0.01
With partner	0.03	0.05	0.05	0.02
No. of types of support, M (SD)	1.44 (1.42)	2.31 (1.59)	1.63 (1.42)	0.76 (1.15)

Note: Observed data (N = 3,164 adult children with separated or widowed biological parents). a Conditional on having children (N = 1,653). b Parent provided at least one type of financial support. c Refers to “ever” instead of the past 12 months.

In the second part of our analyses, we focused exclusively on stepparents and compared stepparent–stepchild dyads in different parent network compositions (i.e., between children). Given that our expectations about compositional effects (H2a and H3a) strongly diverge between genders (H2b and H3b), we present separate Poisson regression models for stepmothers’ and stepfathers’ support. These models involved no nesting given that we only analyzed one parent figure per child at a time. To test the differences in effects between stepfathers and stepmothers, we fitted pooled random effects models in which we estimated interaction effects between gender and compositional features. Ideally, we would have also estimated compositional effects on the likelihood of each type of support separately. Unfortunately, the combination of the relatively small groups in our compositional categories (see Table 1) and the large groups receiving zero support in the separate support indicators (see Table 2) prevented us from obtaining reliable results for the separate types of support.

RESULTS

Descriptive Results

Table 2 displays, for each type of support and per parent figure, the observed proportion of children (with separated or widowed parents) who received support given that they had such a parent figure. For all types of support, support from biological mothers was most common (except for practical tasks, in which stepfathers emulated biological mothers), which was also reflected in the total number of types of support (see bottom row of Table 2).

Especially in the case of household chores, the proportion of biological mothers who provided support stood out in comparison with the other parent figures (0.40 vs. approx. 0.10). In contrast, stepmothers’ support was least common for any type of support except for household chores, where the proportion went slightly beyond that of the biological fathers (0.09 vs. 0.07). In general, having received support from stepfathers and biological fathers was about equally common, with the exception of child care, which was more commonly provided by stepfathers.

For financial support, the respondent could indicate whether the support was provided by parents individually or together with their partner. The table shows instances in which stepparents provided financial support individually, but in most cases, they provided it together with their partner. This signals a subtle form of kin-keeping: Stepparents were involved in supporting their stepchild because it was financed by the couple’s pooled income.
Comparison of Biological Parents’ and Stepparents’ Support

Combined Measure of Support. Table 3 presents the results of the fixed effects Poisson regression model in which parents were compared within children. The model estimated the gendered difference between stepparents and biological parents (H1a and H1b) and controlled for the duration of coresidence, parents’ ages, working hours, income, and number of children. The coefficients should be interpreted as the effect on the natural log of the predicted count of the number of types of support provided by the parent to the child. The estimates were based on a slightly smaller subsample (91% of the children) with within-child variation on the outcome (i.e., at least two parents differed in the number of types of support they provided). The rows in the bottom of the table show the differences between parent types in percentages.

The interaction between the variables female and stepparent showed that the difference in number of types of support between stepparents and (separated or widowed) biological parents was highly gendered. The main effect of stepparenthood, which should be interpreted as the difference between stepfathers and biological fathers, showed that, in contradiction with our hypothesis (H1a), children received 38% (\(e^{0.32}\)) more types of support from their stepfathers than from their biological fathers. The interaction effect between gender and stepparent showed that the difference for mothers was in the opposite direction: Children received 39% (\(1 - e^{(0.32 - 0.81)}\)) less types of support from their stepmothers than from their biological mothers. Although we did not expect stepfathers to provide more support than biological fathers, these findings supported our hypothesis (H1b) that the disadvantage in stepparental support was larger among mothers. The main effect of gender showed that among biological parents, mothers provided more types of support than fathers (30%), whereas among stepparents (the main effect of gender combined with the interaction effect), it was the stepmothers who provided less types of support than the stepfathers (42%).

Moreover, there was a positive effect of duration of coresidence. The longer children had lived with a parent in youth, the more types of support the parent provided the child in adulthood. Each additional year of coresidence was associated with an increase of 4% (\(e^{0.04}\)).

Auxiliary analyses (not displayed) indicated that approximately one third of the difference between stepmothers and biological mothers could be attributed to the differences in duration of coresidence, whereas it did not explain any differences among fathers.

In addition, the results showed that parental support increased with parents’ income and decreased with the number of children a parent had in addition to the anchor child, which was consistent with previous research (Seltzer & Bianchi, 2013). Furthermore, we found an inversed \(U\)-shaped effect of age: Support increased with parents’ ages, but this effect diminished as the parents became older (and possibly less able to perform practical tasks). Last, the parents whose working hours were unknown provided less types of support than the parents who did not work. This might be

Variable	\(B\)	\(SE\)
Stepparent (ref. biological)	0.32***	0.03
Female (ref. male)	0.26***	0.03
Stepparent \(\times\) Female	-0.81***	0.05
Duration coresidence	0.04***	<0.01
Age	0.08***	0.02
Age squared	<0.01***	<0.01
Working hours (ref. none)	-0.11***	0.03
Part-time	-0.06	0.04
Full-time	-0.17***	0.04
Unknown	-0.06	0.05
Income (ref. 1st quintile)	0.04	0.05
2nd quintile	0.04	0.05
3rd quintile	0.09*	0.05
4th quintile	0.18***	0.05
5th quintile	-0.06	0.05
Unknown	-0.02*	0.01
Number of children	-0.02*	0.01
\(N\) (parents)	8,979	
\(N\) (children)	2,865	
Log likelihood	-7,199.23	

Differences in %

| Step vs. biological fathers | +38% |
| Step vs. biological mothers | -39% |

Note: The model only includes children with separated or widowed biological parents. ref. = reference. *\(p < .05\), **\(p < .01\), ***\(p < .001\).
caused by a group of self-employed parents in this category of whom working hours were not registered.

Specific Types of Support. To see to what extent this overall pattern applied to different domains of support, we estimated fixed effects logistic regression models and predicted the likelihood of having provided each type of support separately (Table 4). The first part of the table displays the fixed effects with the differences in percentages as calculated from the model estimates provided at the bottom of the table. Given the exclusion of cases without within-child variance, we also display the random effects estimates as a reference in the table. All models were controlled for the duration of coresidence, parent’s age, working hours, income, and number of biological children (effects not displayed). The random effects models were in addition controlled for child’s age, gender, working hours, income, education, partnership status, and children. The coefficients should be interpreted as the effect on the natural log of the likelihood of providing the type of support in question.

For all types of support, we observed the same pattern as the analyses of the joint measure of support revealed. Although among fathers the stepparent was more likely to provide support than the biological parent, among mothers, it was the biological parent who was most likely to provide support. Using seemingly unrelated regression, we pooled the estimates and tested the differences (chi-square test) in effects over the models (as indicated by the footnotes in the table). In terms of the difference between stepmothers and biological mothers, financial support stood out, with a significantly smaller difference than any other type of support. This was consistent with the idea that the “exclusive-ness” of motherhood would be most salient in domains that are considered central to traditional motherhood. The difference between mothers in the likelihood of having provided other types of
support did not significantly vary. For the difference between fathers, it was support with child care that stood out: Stepfathers were five times as likely as biological fathers to have provided child care, which was a significantly larger difference than any other type of support. This suggested that grandparenting was particularly prone to the biological mother’s kin-keeping. As grandfathers commonly operate jointly with their partner when taking care of grandchildren (Barnett, Scaramella, Neppl, Ontai, & Conger, 2010), the difference between the stepmother’s and the biological mother’s involvement might spill over to their partners on this domain most strongly. The effect of the duration of coresidence was equally large for every type of support.

The comparison of the fixed effects estimates with the random effects estimates (including all cases) showed that although there were some differences in the magnitude of the effects, they followed a similar pattern.

Effects of Composition of the Parent Network

Table 5 shows the results of the Poisson regression models in which we estimated the compositional effects (H2 and H3) on stepfathers’ (first two columns) and stepmothers’ support (second two columns). The evidence for substitution along the line of gender (H2a) was mixed. Stepfathers’ support did not seem to be affected by the presence of a biological father. In contrast, for stepmothers, we did find support for this hypothesis. The predicted count of stepmaternal support was 21% ($1 - e^{-0.26}$) lower if the child’s biological mother was alive than if she was deceased. These findings supported the hypothesis that stepmothers’ support was more strongly affected by the presence of a parent of the same gender than stepfathers’ support (H2b). The interaction between gender and the presence of a biological parent of the same gender, estimated in a pooled random effects model (not displayed), confirmed the statistical significance of the difference.

Furthermore, consistent with H3a, stepfathers provided more types of support if their partner, the child’s biological mother, was still alive—almost three times as many ($e^{1.01}$). Among stepmothers, we observed a similar effect of having a partner: Stepmothers whose partner was still alive (the child’s biological father) provided more types of support than widowed stepmothers. Although the partner effect seemed smaller for stepmothers than for stepfathers, the effects did not significantly differ ($p = .24$). In other words, the results did not provide strong support for our hypothesis (H3b) that stepfathers’ support benefits more from having a partner than stepmothers’ support.

With regard to the effects of the child’s characteristics, there were a few differences between stepmothers’ and stepfathers’ support. Stepmothers who partnered with a separated father provided less types of support than stepmothers who partnered with a widowed father, with a difference of 27% ($1 - e^{-0.32}$), controlled for the presence of the biological mother. This finding might be a reflection of the lower frequency of contact separated fathers have been found to have in comparison with widowed fathers (Tomassini et al., 2004). Furthermore, stepmothers provided more types of support to stepdaughters than to stepsons and stepfathers more to working than to nonworking children. Being a parent and being single seemed to be associated with having received more types of support from both stepmothers and stepfathers. Last, stepparental support increased with the child’s level of education and decreased with the child’s age. For the interpretation of the effects of the parent’s characteristics, as well as the effect of coresidence, we considered the estimates of the fixed effects models (Table 3) more accurate as they are, in contrast to the estimates presented in Table 5, free from unobserved heterogeneity between children.

Driven by the earlier finding that the difference between stepparents and biological parents was smaller for financial support and larger for child care, we examined to what extent these types of support influence the compositional effects. We estimated the between-children models (Table 5) to predict the number of types of support (a) excluding financial support and (b) excluding child care. In both cases, the results (not displayed) were highly similar to the models predicting the complete count variable.

The Role of Contact

In additional analyses, we examined to what extent the effect of the presence of a parent was contingent on having regular contact with
Table 5. Poisson Regression Models of Compositional Effects on Number of Types of Support Provided by Stepparents

Variable	Stepfathers			Stepmothers		
	B	SE		B	SE	
Biological father present (ref. deceased)	-0.05	0.05		0.88***	0.15	
Biological mother present (ref. deceased)	1.01***	0.19		-0.26*	0.11	
Stepfather present				-0.01	0.05	
Stepmother present	0.03	0.04		0.06***	0.01	
Child's biological parents separated (ref. widowed)	-0.09	0.07		-0.32**	0.13	
Duration coresidence	0.03***	<0.01		0.06***	0.01	
Stepfathers						
Stepmother						

Child characteristics

Income (ref. 1st quintile)						
2nd quintile	0.01	0.07	-0.20*	0.10		
3rd quintile	-0.04	0.07	-0.05	0.10		
4th quintile	0.01	0.07	<0.01	0.10		
5th quintile	0.05	0.08	-0.07	0.12		
Unknown	0.12	0.13	-0.15	0.22		
Work (ref. none)						
Part-time	0.25***	0.06	0.10	0.09		
Full-time	0.15*	0.07	-0.05	0.10		
Unknown	0.12	0.09	0.03	0.13		
Education	0.03**	0.01	0.08***	0.02		
Age	-0.02***	<0.01	-0.04***	0.01		
Children (ref. none)	0.20***	0.04	0.43***	0.06		
Partner (ref. no partner)	-0.16***	0.04	-0.23***	0.07		
Female (ref. male)	0.03	0.04	0.10	0.06		

Parent characteristics

Income (ref. 1st quintile)						
2nd quintile	-0.04	0.14	-0.05	0.10		
3rd quintile	<0.01	0.13	0.07	0.10		
4th quintile	0.08	0.12	0.25*	0.10		
5th quintile	0.27*	0.12	0.38**	0.11		
Unknown	-0.08	0.13	-0.11	0.10		
Work (ref. none)						
Part-time	<0.01	0.06	-0.17*	0.07		
Full-time	0.01	0.05	-0.14	0.11		
Unknown	0.06	0.07	-0.17*	0.08		
Age	0.06**	0.02	0.09**	0.03		
Age squared	<0.01*	<0.01	<0.01*	<0.01*	<0.01	
Number of children	-0.05***	0.01	-0.05**	0.02		
Constant	-2.37***	0.75	-2.53*	0.98		
N (parents)	2,203		2,148	2,148		
N (children)	2,203		2,148	2,148		
Log likelihood	-3,553.93		-2,535.65			

Note: ref. = reference. *p < .05, **p < .01, ***p < .001.

this parent. A possible explanation for the finding that steppmothers’ support was affected by the biological mother’s presence, whereas stepfathers’ support was unaffected by the biological father’s presence, was that children more often lose contact with their biological fathers than with their biological mothers (28% of the fathers vs. 9% of the mothers). Therefore, we performed additional analyses in which we not only considered whether biological parents were alive but also whether the child had regular contact with them during the past year. These
analyses might shed some light on our previous findings, yet we also introduced endogeneity: The reasons underlying whether children are on speaking terms with a biological parent are interwoven with the dynamics underlying receiving support from a stepparent. Therefore, we considered these analyses as exploratory rather than leading.

We estimated between-child models as displayed in Table 5 but instead of the dichotomy of the biological parent being alive or not included a threefold categorization: Within the group of biological parents who are alive, we distinguished parents with whom there had been contact at least every 2 months during the past year (via phone or face to face) from parents with whom there had been less contact. Deceased (or unknown) parents formed the reference category.

The results (Table 6) showed that for both mothers and fathers, the presence of a biological parent of the same gender was only associated with a reduction in stepparental support if the child had regular contact with that biological parent during the past year. If this biological parent was alive but there was no regular contact, this did not reduce the stepparent’s involvement. Hence, the category of no or little contact and the deceased category were similar. Consistent with our speculations, distinguishing contact from no-contact or little-contact fathers revealed that part of the difference in effect between the father’s and the mother’s presence could be explained by the fact that fathers more often lose touch with their children. Yet a gender difference remains, as the effect of the presence of a biological mother with regular contact on stepmothers’ support was significantly larger than the effect of a biological father with regular contact on stepfathers’ support ($p < .01$).

In a similar way, the facilitating role of a partner only applies if the partner had regular contact with the child. In fact, stepparents with a partner who did not have regular contact with the child provided less types of support than stepparents whose partner was deceased. The effect of the partner’s presence (either with or without regular contact) did not significantly differ between stepmothers and stepfathers.

Discussion

In the present study, we examined stepparental support to adult children in stepfamilies and examined how stepparents’ contributions are shaped by the embeddedness of the parent–child relationship in the child’s parent network. We were the first to consider stepparents’ support transfers on a dyadic level and contribute to our understanding of coparental dynamics as well as stepfamily relationships. Our study has shown that although stepparents might make significant contributions, these are stratified by gender and the composition of the parent network. We argue that, especially in the context of family complexity, understanding parental support requires the parent’s as well as the child’s perspective. Not only should parents be willing and able to offer support but also children should be willing to accept it and might be in the position to choose among parents.

First, our findings suggest that, in terms of parental support, the mother role is more “exclusive” than the father role. The role of the stepmother is subordinate to the biological mother’s role, and if the biological mother is deceased, the stepmother seems to take a step forward. By matter of substitution, the stepmother’s support might not be necessary as long as the biological mother fulfills the child’s needs. At the same time, the finding that stepfather support is unaffected by the presence of the biological father suggests that there is more to it than the finite need for parental support. Although this gender difference seems to be partly driven by the fact that fathers, more often than mothers, have lost contact with their children, the presence of a biological parent of the same gender is more influential among mothers, even accounting for this difference. In light of the literature of the myth of motherhood (Braverman, 1989; Russo, 1976), this implies that taking up the mother role is more sensitive than taking up the father role. Both stepmothers’ considerations to offer support as well as the child’s considerations to ask or accept it might be colored by the charged position of the biological mother. In addition, the negative effect of having partnered a separated rather than a widowed father suggests a double jeopardy for many stepmothers’ involvement.

Second, we expected that higher levels of ambiguity and uncertainty about stepparents would result in lower levels of support from stepparents in comparison to biological parents.
Table 6. Regular Poisson Regression Models Predicting Number of Types of Support Provided by Stepparents (Auxiliary Analyses)

Variable	Stepfathers	Stepmothers		
	B	SE	B	SE
Presence biological father (ref. deceased)				
Contact between partner and child	-0.14**	0.05	1.18***	0.15
No or little contact between partner and child	0.04	0.05	-1.30***	0.21
Presence biological mother (ref. deceased)				
Contact between biological parent and child	1.08***	0.19	-0.24*	0.11
No or little contact between biological parent and child	-1.58***	0.28	0.08	0.14
Stepfather present				
Stepmother present	0.02	0.04	<0.01	0.05
N (parents)	2,203	2,148	2,203	2,148
Log likelihood	-3,318.87	2,245.89		

Note: The models were controlled for parental separation and duration of co-residence, parent’s age, working hours, income and number of biological children, as well as child’s age, gender, working hours, income, education, partnership status, and children. ref. = reference. *p < .05, **p < .01, ***p < .001.

Although we clearly found this expectation supported for mothers, in contrast, children received more types of support from their stepfather than from their biological father. This reversed stepgap is consistent with the idea that the role of the father is more flexible than the role of the mother and fits into the notion of fathers “swapping” families, as described in the literature on parents’ post-divorce involvement with (step)children (Manning & Smock, 2000). Furthermore, this finding seems to articulate the central role of the biological mother. Given that support is frequently jointly provided by parent couples, the high level of involvement of the biological mother might spill over to the stepfather.

Third, the finding that partnered stepparents provide more support than widowed stepparents reflects the ambiguous role of “former” stepparents: What expectations and obligations belong to someone who used to be your deceased parent’s partner? Yet the finding that stepparents only provide more support if their partner has regular contact with the child points toward an important role of the partner’s kin-keeping, which facilitates the stepparent’s involvement in the child’s life. In contrast to our expectations on the basis of the common idea that it is primarily mothers who engage in kin-keeping, we did not find stepfathers’ support to benefit more from the presence of a partner than stepmothers’ support. This implies that in the context of support, parents’ facilitative roles are not as gendered as the literature on kin-keeping would suggest. We possibly observe more subtle forms of kin-keeping (e.g., making a financial transfer from a joint bank account), whereas the literature considers more pronounced—and perhaps more gendered—kin-keeping practices (e.g., directing a child to its stepfather for advice).

In a more general sense, we have shown that the composition of the parent network affects the stepparent–stepchild relation. However, to study the underlying dynamics—as they have been suggested in the Theory section—in more detail, we propose a number of venues for future research. First, it would be insightful to consider biological parents’ restrictive or facilitating roles in more active terms. For example, the facilitating role of biological parents can be expected to be stronger if they have a good relationship with the child. Second, we only considered downward support. Looking at whether these children support their stepparents later in life would provide a more complete view on stepfamily dynamics and might provide new insights in how intergenerational solidarity in step ties compares to biological ties. Third, we argued how the perspectives and considerations of the actors involved—the child, the biological parents, and the stepparents—might lead to certain
outcomes. Although the qualitative literature has provided a more in-depth view on these different perspectives (e.g., Marsiglio & Hinojosa, 2007; Weaver & Coleman, 2010), these studies focused most commonly on stepfamilies with younger children. As our findings suggest, stepfamily dynamics are not limited to the period of the child’s upbringing. To get a more grounded view on these dynamics, future research should consider how different family members perceive the role of stepparents in the lives of adult children. Last, the data only allowed us to operationalize the level of support as the number of types provided. More detailed information, for example, the number of hours of babysitting or the extent to which parents provide support together, might provide more understanding of the way tasks are divided among parents.

To conclude, this study captured family cohesion among the first generation of adults to have grown up in a society in which divorce and remarriage have become widespread phenomena. Its findings show that stepparents can certainly actively contribute to their stepchildren’s lives. Yet despite what the “detraditionalizing” trend in family behavior (Thomson, 2014) might suggest, biological Relatedness and traditional gender roles play a central role in the dynamics of stepfamily solidarity.

NOTE
This work was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation program (Grant 669334).

REFERENCES
Allen, S. M., & Hawkins, A. J. (1999). Maternal gatekeeping: Mothers’ beliefs and behaviors that inhibit greater father involvement in family work. *Journal of Marriage and the Family*, 61, 199–212. https://doi.org/10.2307/353894
Amato, P. R., & Anthony, C. J. (2014). Estimating the effects of parental divorce and death with fixed effects models. *Journal of Marriage and Family*, 76(2), 370–386. https://doi.org/10.1111/jomf.12100
Barnett, M. A., Scaramella, L. V., Neppl, T. K., Ontai, L., & Conger, R. D. (2010). Intergenerational relationship quality, gender, and grandparent involvement. *Family Relations*, 59(1), 28–44. https://doi.org/10.1111/j.1741-3729.2009.00584.x
Berger, L. M., Carlson, M. J., Bzostek, S. H., & Osborne, C. (2008). Parenting practices of resident fathers: The role of marital and biological ties. *Journal of Marriage and Family*, 70(3), 625–639. https://doi.org/10.1111/j.1741-3737.2008.00510.x
Braverman, L. (1989). Beyond the myth of motherhood. In M. McGoldrick, C. Anderson, & F. Walsh (Eds.), *Women in families: A framework for family therapy* (pp. 227–243). New York, NY: Norton.
Brown, L. H., & DeRycke, S. B. (2010). The kinkeeping connection: Continuity, crisis and consensus. *Journal of Intergenerational Relationships*, 8(4), 338–353. https://doi.org/10.1080/15350770.2010.520616
Cherlin, A. J. (1978). Remarriage as an incomplete institution. *American Journal of Sociology*, 84(3), 634–650. https://doi.org/10.1086/226830
Cherlin, A. J. (2004). The deinstitutionalization of American marriage. *Journal of Marriage and Family*, 66(4), 848–861. https://doi.org/10.1111/j.0022-2445.2004.00058.x
Doodson, L. (2014). Understanding the factors related to stepmother anxiety: A qualitative approach. *Journal of Divorce & Remarriage*, 55(8), 645–667. https://doi.org/10.1080/10502556.2014.959111
Fine, M. A. (1986). Perceptions of stepparents: Variation in stereotypes as a function of current family structure. *Journal of Marriage and the Family*, 48, 537–543. https://doi.org/10.2307/352039
Ganong, L., & Coleman, M. (2006). Patterns of exchange and intergenerational responsibilities after divorce and remarriage. *Journal of Aging Studies*, 20(3), 265–278. https://doi.org/10.1016/j.jaging.2005.09.005
Ganong, L., & Coleman, M. (2017). Stepfamily relationships: Development, dynamics, and interventions (2nd ed.). New York, NY: Springer.
Ganong, L., Coleman, M., Jamison, T., & Feistman, R. (2015). Divorced mothers’ coparental boundary maintenance after parents repartner. *Journal of Family Psychology*, 29(2), 221–231. https://doi.org/10.1037/fam0000064
Greenwood, S. (2017). Envy in relationships between maternal dyads. *The Family Journal*, 25(1), 48–54. https://doi.org/10.1177/1066480716679650
Henretta, J. C., Van Voorhis, M. F., & Soldo, B. J. (2014). Parental money help to children and stepchildren. *Journal of Family Issues*, 35(9), 1131–1153. https://doi.org/10.1177/0192513X13485077
Henretta, J. C., Van Voorhis, M. F., & Soldo, B. J. (2018). Cohort differences in parental financial help to adult children. *Demography*, 55, 1567–1582. https://doi.org/10.1007/s13524-018-0687-2
Kalmijn, M. (2007). Gender differences in the effects of divorce, widowhood and remarriage on intergenerational support: Does marriage protect fathers? *Social Forces*, 85(3), 1079–1104. https://doi.org/10.1353/sof.2007.0043
Kalmijn, M. (2013). Adult children’s relationships with married parents, divorced parents, and step-parents: Biology, marriage, or residence? *Journal of Marriage and Family, 75*(5), 1181–1193. https://doi.org/10.1111/jomf.12057

Kalmijn, M., & De Graaf, P. M. (2000). Geschieden vaders en hun kinderen: een empirische analyse van voogdij en bezoekfrequentie [Divorced fathers and their children: An empirical analysis of custody and visit frequency]. *Bevolking en Gezin, 29*(2), 59–84.

Kalmijn, M., Ivanova, K., van Gaalen, R., de Leeuw, S. G., van Houdt, K., van Spijker, F., & Hornstra, M. (2018). A multi-actor study of adult children and their parents in complex families: Design and content of the OKiN survey. *European Sociological Review, 34*(4), 452–470. https://doi.org/10.1093/esr/jcy016

King, V. (2007). When children have two mothers: Relationships with nonresident mothers, stepmothers, and fathers. *Journal of Marriage and Family, 69*(5), 1178–1193. https://doi.org/10.1111/j.1741-3737.2007.00440.x

Lamb, M. E., & Tamis-Lemonda, C. S. (2004). The role of the father: An introduction. In M. E. Lamb (Ed.), *The role of the father in child development* (pp. 1–31). New York, NY: Wiley.

Manning, W. D., & Smock, P. J. (2000). “Swapping” families: Serial parenting and economic support for children. *Journal of Marriage and Family, 62*(1), 111–122. https://doi.org/10.1111/j.1741-3737.2000.00111.x

Marsiglio, W., & Hinojosa, R. (2007). Managing the multifather family: Stepfathers as father allies. *Journal of Marriage and Family, 69*(3), 845–862. https://doi.org/10.1111/j.1741-3737.2007.00409.x

McLanahan, S., & Percheski, C. (2008). Family structure and the reproduction of inequalities. *Annual Review of Sociology, 34*, 257–276. https://doi.org/10.1146/annurev-soc.34.040507.134549

Miller, A., Cartwright, C., & Gibson, K. (2018). Stepmothers’ perceptions and experiences of the wicked stepmother stereotype. *Journal of Family Issues, 39*, 1984–2006. https://doi.org/10.1177/0192513X17739049

Noël-Miller, C. M. (2013). Former stepparents’ contact with their stepchildren after midlife. *Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 68*(3), 409–419. https://doi.org/10.1093/geront/gbt021

Rindfuss, R. R. (1991). The young adult years: Diversity, structural change, and fertility. *Demography, 28*(4), 493–512. https://doi.org/10.2307/2061419

Rosenthal, C. J. (1985). Kinkeeping in the familial division of labor. *Journal of Marriage and the Family, 47*, 965–974. https://doi.org/10.2307/352340

Rossi, P. H., & Rossi, A. S. (1990). *Of human bonding: Parent-child relations across the life course*. New York, NY: de Gruyter.

Russo, N. F. (1976). The motherhood mandate. *Journal of Social Issues, 32*(3), 143–153. https://doi.org/10.1111/j.1540-4560.1976.tb02603.x

Sanner, C., & Coleman, M. (2017). (re) constructing family images: Stepmotherhood before biological motherhood. *Journal of Marriage and Family, 79*(5), 1462–1477. https://doi.org/10.1111/jomf.12428

Schmeckle, M., Giarrusso, R., Deng, D., & Bengtson, V. L. (2006). What makes someone family? Adult children’s perceptions of current and former stepparents. *Journal of Marriage and Family, 68*(3), 595–610. https://doi.org/10.1111/j.1741-3737.2006.00277.x

Seltzer, J. A., & Bianchi, S. M. (2013). Demographic change and parent-child relationships in adulthood. *Annual Review of Sociology, 39*, 275–290. https://doi.org/10.1146/annurev-soc-071312-145602

Sige-Rushton, W., Goisis, A., & Keizer, R. (2013). Fathers and fatherhood in the European Union. In N. J. Cabrera & C. S. Tamis-Lemonda (Eds.), *Handbook of father involvement: Multidisciplinary perspectives* (pp. 81–96). New York, NY: Routledge.

Staff, J., Ramirez, N., & Vuolo, M. (2015). The transition to adulthood matters. In P. R. Amato, A. Booth, S. M. McHale, & J. Van Hook (Eds.), *Families in an era of increasing inequality* (pp. 137–147). Cham: Springer.

Swartz, T. T. (2008). Family capital and the invisible transfer of privilege: Intergenerational support and social class in early adulthood. *New Directions for Child and Adolescent Development, 2008*(119), 11–24. https://doi.org/10.1002/cd.206

Thomson, E. (2014). Family complexity in Europe. *The Annals of the American Academy of Political and Social Science, 654*(1), 245–258. https://doi.org/10.1177/0002716214531384

Tomassini, C., Kalogirou, S., Grundy, E., Fokkema, T., Martikainen, P., Van Groenou, M. B., & Karisto, A. (2004). Contacts between elderly parents and their children in four European countries: Current patterns and future prospects. *European Journal of Ageing, 1*(1), 54–63. https://doi.org/10.1007/s10433-004-0003-4

Van Houdt, K., Kalmijn, M., & Ivanova, K. (2018). Family complexity and adult Children’s obligations: The role of divorce and co-residential history in norms to support parents and step-parents. *European Sociological Review, 34*(2), 169–183. https://doi.org/10.1093/esr/jcy007

Weaver, S. E., & Coleman, M. (2005). A mothering but not a mother role: A grounded theory study of the nonresidential stepmother role. *Journal of Social and Personal Relationships,* 34(3), 303–329.
Weaver, S. E., & Coleman, M. (2010). Caught in the middle: Mothers in stepfamilies. *Journal of Social and Personal Relationships, 27*(3), 305–326. https://doi.org/10.1177/0265407510361729

White, L. (1994). Growing up with single parents and stepparents: Long-term effects on family solidarity. *Journal of Marriage and Family, 56*(4), 935–948. https://doi.org/10.2307/353604

Wiemers, E. E., Seltzer, J. A., Schoeni, R. F., Hotz, V. J., & Bianchi, S. M. (2019). Stepfamily structure and transfers between generations in U.S. families. *Demography, 56*, 229–260. https://doi.org/10.1007/s13524-018-0740-1