Molecular detection of *Brucella* spp. in ruminant herds in Greece

Aristomenis Katsioli1 · Eleni Papanikolaou2 · Athanasia Stournara3 · Panagiota Giakkoupi4 · Emmanouil Papadogiannakis4 · Antonis Zdragas5 · Nektarios D. Giadinis6 · Evanthia Petridou1

Received: 22 July 2021 / Accepted: 14 April 2022 / Published online: 28 April 2022 © The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract

Brucellosis is a worldwide distributed infectious disease. Ruminants and other animal species (swine, dogs, equids, etc.), as well as wild mammals, can be affected. The disease can be transmitted to humans through the food chain or by direct contact with infected animals. Because of the relatively high economic burden due to abortions within a herd, significant efforts have been employed and hence the disease in most European countries has been eradicated. Accordingly, Greece applies both control and eradication programs concerning small ruminants (sheep and goats) and bovines depending on the geographical area. Current challenges in the standard antibody-based laboratory methods used for *Brucella* detection are the failure to differentiate antibodies against the wild strain from the ones against the vaccine strain Rev1 and antibodies against *B. melitensis* from those against *B. abortus*. The aim of the study was to reexamine and combine previously published protocols based on PCR analysis and to generate a rapid, not expensive, and easy to perform diagnostic tool able to confirm the doubtful results delivered from serology. For this reason, 264 samples derived from 191 ruminants of the farm and divided in 2 groups (male/female) were examined with a modified DNA extraction and PCR protocol. Molecular examination revealed the presence of *Brucella* spp. in 39 out of 264 samples (derived from 30 animals). In addition, *Brucella* spp. was detected in infected tissues such as testicles, inguinal lymph nodes, fetal liver, and fetal stomach content.

Keywords Brucellosis · Abortions · Ruminants · PCR · *Brucella* spp

Introduction

Brucellosis, also known as Malta fever, is one of the most common bacterial zoonoses in Mediterranean countries (Wareth 2019) with intensive farming (Memish and Balkhy 2004; FAO/Brucellosis in human and animals 2006). The main causative agent of human Brucellosis is *Brucella melitensis* (Alton and Forsyth 1996) (FAO/OIE/WHO 2006). The disease is transmitted mainly from infected ruminants to humans and from the consumption of unpasteurized dairy products (Cooper 1992; FAO/Brucellosis in human and animals 2006; Norman et al. 2016; CDC 2017) provoking a reported amount of about 500,000 new human cases of brucellosis per year worldwide (Godfroid et al. 2013; Berger 2016). It is mostly an occupational zoonosis (International Labour Office 2010). Even if human mortality rate is low, the burden caused by the disease is substantial because of its chronic nature and the frequent relapses that occur with systemic manifestation (Colmenero et al. 1996). Therefore, an early and accurate diagnosis is of utmost importance (Pappas et al. 2005).
The natural reservoirs of the bacterium in the environment are the domestic ruminants of the farm, such as sheep, goats, and cattle. Brucellosis in farm animals represents an equally great burden with financial consequences in most parts of the world (Rossetti et al. 2017). Several countries though in western and northern Europe, Canada, Japan, Australia, and New Zealand are believed to be free from the pathogen (OIE, https://www.oie.int/en/disease/brucellosis/2021). Given the fact that there is no human vaccine available, the key-player to prevention of human disease is the control of zoonosis in animal populations either by vaccination programs or by eradication strategy.

Since 1977, the basic concept for controlling and eradicating brucellosis in Greece has always been vaccination of herds combined with blood testing and slaughtering of all animals found positive in laboratory tests such as Rose Bengal Test (RBT) and Complement Fixation Test (CFT) (seropositive animals). The State Veterinary Services from the Ministry of Rural Development & Food and from the Ministry of Interior have implemented a control and eradication policy, based on systematic vaccination of female animals over the age of 3 months old and blood-sampling of males over the age of 6 months old on the mainland (vaccination zone-VZ), as well as a test and slaughter policy on most of the islands (eradication zone-EZ). The vaccination of sheep and goats was based on the conjunctival administration of the attenuated live vaccine strain, Rev1 (OCUREV® CZV), once in their life of female sheep and goats. According to the above program, it is strictly forbidden to move animals from the VZ to the EZ, or to move animals which have not been vaccinated within VZ (Fig. 1). Animals found positive in RBT and/or CFT are slaughtered separately from healthy ones, taking all necessary biosecurity measures to prevent the spreading of infection (Tzani and Katsiolis 2012; Greek Ministerial Decision on sheep & goat brucellosis programme, 3399/117339 2016). Unfortunately, this approach was unsuccessful due to various reasons (Katsiolis et al. 2018).

Detection of Brucella spp. by culture method is sometimes unsuccessful. The current gold standard in terms of laboratory techniques for the screening of brucellosis in ruminants are Rose Bengal Test (RBT) and Complement Fixation Test (CFT). Although both methods are officially recommended by the EU, both fail to discriminate the produced antibodies between the wild and the vaccine strains resulting in generation of false positive results (Stournara et al. 2008) that provoke wrongful slaughtering. Therefore, the generation of a novel, rapid, sensitive, and specific molecular diagnostic tool such as PCR directly on tissues of suspected animals (mainly aborted fetuses and associated maternal tissues, spleen of seropositive animals) (Bricker 2002) should be developed in order to accurately detect the pathogen. The most common difficulties comprise the preparation of samples and purification of PCR inhibitors (Amin et al. 2001).

For all the above reasons, a reliable PCR test able to detect the bacterium in infected tissues of seropositive animals would minimize the false positive results and would boost the laboratory involvement.

Materials and methods

Reference strains of B. melitensis and B. abortus as positive controls

The following Brucella reference strains were used as positive controls in this study. Reference strain 16M (B. melitensis, ATCC4 23456) and Reference strain 544 (B. abortus, ATCC 23448) were purchased from Culture Public Health England (Salisbury, UK). The vaccine strains Rev1 and RB51 [produced by CZ Veterinaria (Pontevedra — Spain, the European distributor of the product, under license from the Colorado Serum Company, Denver, Colo, USA)]. Once reconstituted one intraocular dose (1drop ≈ 35μl) of the vaccine Rev1 contains 1–2 × 10^9 cfu of live attenuated B. melitensis strain (smooth phase). Accordingly, each dose (2 ml, sc) of the vaccine RB51, contained 10–34 × 10^9 cfu/ml of live attenuated B. abortus strain RB51 (Tittarelli et al. 2008) (rough phase). These two types of vaccines are widely used in national brucellosis eradication programs in Greece. B. melitensis strains

4 ATCC: American Type Culture Collection
(16M, Rev1) were cultured aerobically while the B. abortus strains (544, RB51) were cultured under microaerophilic conditions, respectively. For cultivation, Brucella agar (Oxoid, Hampshire, UK) supplemented with Brucella Selective Supplement SR0083A (Oxoid, Hampshire, UK) and Columbia sheep blood agar plates (Oxoid, Hampshire, UK) were used.

Samples collection

In Greece, the range of seroprevalence rate of brucellosis infection in sheep and goats for the years 2016–2018 was 3.82–5.86% with a mean of 4.84% and for cows 1.14–2.11% with a mean of 1.63% (Hellenic Ministry of Rural Development and Food 2016, 2017, 2018). These estimates were used to determine the number of sheep, goats, and cows needed for the study. The number of animals needed was determined using Martin et al. (1987) formula:

$$n = \frac{(1.96)^2 \times PQ}{L^2},$$

where the 1.96 is 95% confidence level, p is the expected prevalence of positive seroprevalence animals (4.84% for sheep and goats, and 1.63% for cows), Q is the expected prevalence of negative seroprevalence animals (95.16% for sheep and goats, and 98.37% for cows), and L is the allowable error (required precision) around the true population mean (5%). Thus, the calculated minimum sample size required of sheep and goats was 70 and for cows 25 animals. In order to increase the power of the study, it was decided to increase the number of sheep and goats to 138 animals and 53 for cows.

In this study, 264 samples were collected from a total of 191 domestic ruminants from farms/herds located in different regions of Greek mainland, during the period 2016–2018. All samples were immediately forwarded to the Department of Microbiology and Infectious Diseases (Aristotle University of Thessaloniki, Greece) for DNA extraction. The extract was then stored at −20 °C for further analysis.

The samples were divided into two different groups. The first group included 121 samples from tissues (49 testicles, 56 spleens, and 16 inguinal lymph nodes) that were collected from 83 non-vaccinated, slaughtered male animals which were found positive in RBT and/or CFT (47 rams, 29 billy goats, and 7 bulls).

The second group included tissues collected from aborted fetuses of sheep, goats, and cattle. In total, 143 samples (5 fetal membranes, 47 fetal livers, 9 fetal spleens, 68 fetal stomach contents, 11 placentas, and 3 posterior mammary lymph nodes) derived from 108 cases of abortion (57 sheep, 5 goats, 46 cows) were vaccinated with Rev-1 vaccine.

DNA extraction

All tissue samples were processed under Biosafety Level three (BSL3) with high personal protections (WHO 2004). Tissue samples were processed aseptically by removing extraneous material and chopped into small pieces and macerated using a tissue grinder with 200 μl of sterile Phosphate Buffered Saline (PBS-Sigma Aldrich, Germany).

Genomic DNA from reference bacterial strains was extracted using the High Pure PCR template preparation kit (Roche, Basel, Switzerland) according to the instructions of manufacturer but also with some adaptions as previously described (Karponi et al. 2019).

PCR protocol

Reaction mixture and cycling parameters

A conventional PCR was performed to all samples (Garcia-Yoldi et al. 2006). In every thin-walled PCR tube of 50 μl there were 38.25 μl water (nuclease free), 5 μl Dream Taq buffer 10× (Thermo Scientific, California, USA), 1 μl dNTPs (c = 10 mM, Invitrogen, Carlsbad, CA, USA), 0.25 μl primer f (c = 100 μM), 0.25 μl primer r (c = 100 μM), 0.25 μl Dream Taq DNA polymerase (1.25 units, Thermo Scientific, California, USA), and 5 μl DNA. Pipette tips with aerosol filters were used in order to prevent contaminations. The mix was vortexed briefly to ensure homogeneity of reagents and to avoid bubbles.

For the PCR, a thermal cycler with heated lid was used (Techne, Touchgene, Gradient). After initial denaturation at 95 °C for 7 min, the PCR profile was as follows: 1 min of template denaturation at 95 °C, 1 min of primer annealing at 59 °C, and 1 min of primer extension at 72 °C, for a total of 40 cycles, with a final extension at 72 °C for 10 min. After PCR amplification, 12 μl of PCR product and 4 μl of bromophenol blue (loading buffer) were loaded into wells in 1.5% regular agarose gel (Ultra-Pure Agarose, Invitrogen) in Tris base, Acetic acid, and Ethylene Diethyl Tetracetic Acid (EDTA) (TAE) buffer in a cuvette flooded with TAE 1× slightly covering the gel. In total, 1 kb DNA ladder (ready to use, GeneRuler, ThermoScientific) was used as molecular marker. Sterile ultrapure water was used as negative control and reference strain 16M, Rev1, reference strain 544 or RB51 were used as positive controls. Bands were visualized by staining with GelRed, Biotium. The electrophoresis equipment was set to run at 110 V for 40 min. Finally, the gel was visualized under UV light and the bands were observed and recorded. (Figs. 2 and 3).
PCR primers

Four pairs of primers were involved in the essay gradually: (1) the pair BMEI0428f/ BMEI0428r (5′-GCC GCT ATT ATG TGG ACT GG-3′/ 5′-AAT GAC TTC ACG GTC GTT CG-3′, amplicon size: 587 bp) which detects Brucella spp.; (2) the pair BMEI0752f/ BMEI0752r (5′-CAG GCA AAC CCT CAG AAC C-3′/ 5′-GAT GTG GTA ACG CAC ACC AA-3′, amplicon size: 218 bp) which detects Rev1 strain; (3) the pair BMEI0843f/ BMEI0844r (5′-TTT ACA CAG GCA ATC CAG CA-3′/ 5′-GAT GTG GTA ACG CAC ACC AA-3′, amplicon size: 1071 bp) which detects B. melitensis and Rev1; and (4) the pair BMEI0998f/ BMEI0998r (5′-ATC CTA TTG CCC CGA TAA GG-3′/ 5′-GCT TCG CAT TTT CAC TGT AGC-3′, amplicon size: 1682 bp) which detects B. melitensis, Rev1, B. abortus but no RB51. PCR protocol was an adaptation from the previously published paper (Garcia-Yoldi et al. 2006).

Initially, all samples were tested with primers 428f/428r in order to distinguish those which were positive in Brucella spp. as screening method. Then, the positive samples of sheep and goats were tested with the pair 752f/752r, which represent the only primers that can distinguish B. melitensis from B. melitensis Rev1. The positive samples of cattle were tested with 843f/844r in order to distinguish B. melitensis from B. abortus, and once negative, they were further tested with 998f/997r in order to distinguish B. abortus from RB51 (positive in case of B. abortus) (Table 1).

Results

In total, 264 samples were examined derived from 191 animals. Thirty-nine (39) out of 264 derived from 30 animals were found PCR positive (Tables 2, 3, 4, and 5).

In the first group of the 83 seropositive male animals, the results were as follows: 13 out of 121 samples derived from 12 seropositive animals (2 rams, 5 billy goats, and 5 bulls) were found positive. In detail, in 1 ram B. melitensis and in another ram Rev1 strain were detected, respectively.
out of the total of 47 seropositive rams (4.26%). In 1 billy goat was found *B. melitensis* in both testicles and spleen while, and in another one, *B. melitensis* was detected in testicles only. Moreover, 3 billy goats were found PCR positive to *B. melitensis* Rev1 strain which was also detected in testicles. In total, 5 out of the 29 seropositive billy goats (17.24%) examined were found PCR positive. Finally, 5 bulls were found positive to *B. abortus* out of the 7 seropositive ones (71.43%) (Tables 2 and 3).

Table 1
Primer, amplicon size, specificity, and sequences

Primers	bp	*B. melitensis*	Rev-1	*B. abortus*	Primer^a sequence (5′-3′)
1) 428f	587	+	+	+	GCC GCT ATT ATG TGG ACT GG
28r					AAT GAC TTC ACG GTC GTT CG
2) 752f	218	-	+	-	CAG GCA AAC CCT CAG AAG C
752r					GAT GTG GTA ACG CAC ACC AA
3) 843f	1.071	+	+	-	TTT ACA CAG GCA ATC CAG CA
844r					GCG TCC AGT TGT TGT TGA TG
4) 998f	1.682	+	+	+	ATC CTA TTG CCC CGA TAA GG
997r					GCT TCG CAT TTT CAC TGT AGC

^a: BMEI or BMEII numbers designate loci in *B. melitensis* genome

* f, forward; r, reverse

Table 2
First group with 83 male animals positive in brucellosis by RBT and/or CFT

Kind of animal	Animals/samples	Positive in PCR	Kind of tissues/positive in PCR			
	Animals	Samples	Testicles	Spleen	Inguinal lymph nodes	
Rams	47/66	2 (4.26%)	2 (3.03%)	23/2 (8.7%)	35/0	8/0
Billy goats	29/48	5 (17.24%)	6 (12.5%)	26/5 (19.23%)	21/1 (4.76%)	1/0
Bulls	7/7	5 (71.43%)	5 (71.43%)	0	0	7/5 (71.43%)

Table 3
First group. Detected *Brucella* strains in infected tissues

Animal	Number of samples (from seropositive animals)	Number of positive samples in PCR	*Brucella* species found in samples	Infected tissues
Rams	66	2 (3.03%)	• 1 *B. melitensis*, • 1 Rev1	• 2 testicles
Billy goats	48	6 (12.5%)	• 3 *B. melitensis*, • 3 Rev1	• 5 testicles, • 1 spleen
Bulls	7	5 (71.43%)	• 5 *B. abortus*	• 5 inguinal lymph nodes

Table 4
Second group with female animals that aborted and aborted fetuses

Kind of animal	Animals/samples	Positive in PCR	Kind of tissues/positive in PCR						
	Animals	Samples	Fetal membranes	Fetal liver	Fetal spleen	Stomach contents of the fetus	Placenta	Posterior mammary lymph nodes	
Sheep	57/73	5 (8.77%)	6 (8.22%)	2/0	24/3 (12.5%)	2/0	40/2 (5%)	5/1	0
Goats	5/6	2 (40%)	3 (50%)	0	2/1 (50%)	0	3/2 (66.67%)	1/0	0
Cows	46/64	11 (23.91%)	17 (25.56%)	3/0	21/6 (28.57%)	7/1 (14.29%)	25/7 (28%)	5/3 (60%)	3/0
	108/143	18 (16.67%)	26	5/0	47/10	9/1	68/11	11/4	3/0
Regarding the infected tissues of small ruminants, 7 out of 49 testicle samples (14.28%) were found positive by PCR, while only 1 spleen was found positive out of 56 spleen samples (1.78%). On the other hand, regarding the bulls, 5 out of 7 samples from inguinal lymph nodes were found positive (71.43%).

In the second group which included 108 aborted fetuses, the results were the following: 26 samples taken from 18 animals (5 sheep, 2 goats, and 11 cows) were found positive on a total of 143 samples. In detail, 4 sheep were found positive for \textit{B. melitensis} and 1 sheep positive for Rev1 strain out of 57 sheep in total (8.77%). It should be mentioned that the positive for Rev1 sheep was originated from flock different than the rest positive in \textit{B. melitensis} animals. Two goats out of 5 were found positive for \textit{B. melitensis} and 11 cows out of 46 were found positive in \textit{B. abortus} (23.91%) (Tables 4 and 5).

Regarding the small ruminants aborted fetal tissues, 4 fetal livers were found positive out of 26 total liver samples (15.38%) and 4 aborted fetal stomach contents were found positive out of 43 (9.30%). On the other hand, regarding the cows, 6 fetal livers out of 21 in total were found positive (28.57%) while 7 out of 25 stomach contents originated from aborted fetuses were found positive (28%). In 10 cases where fetal liver and stomach content were originated from the same animal, the 5 out of them were found PCR positive in both samples. In the 3 of them, only fetal livers were positive and in 2 of them, only stomach contents were positive.

Discussion

Brucellosis is a severe zoonosis that affects many animal species, with most important, the domestic ruminants, such as sheep, goats, and cattle. Both breeders and the National Economy deal with grade economic losses such as the reduction of milk production, the trade restrictions, the culling of seropositive animals (and in some cases seronegative, as well), the abortions and stillbirths, the cost of veterinary services, and miscellaneous factors arising from brucellosis on farms (Rossetti et al. 2017).

Rose Bengal test (RBT) and Complement Fixation Test (CFT) have been used for many years, in brucellosis eradication programs (Garin-Bastuji et al. 1998; Nagati et al. 2016). The diagnosis of brucellosis in small ruminants and cattle requires the use of more than one serological test and RBT and CFT are among the most useful tests for routine diagnosis (Baum et al. 1995). Serological cross-reactions when occurred between smooth \textit{Brucella} species and \textit{Escherichia coli} serotypes 0:116 and 0:157, \textit{Salmonella} serotypes of Kaufmann-White group N, 0:30 antigen, \textit{Pseudomonas maltophilia}, and \textit{Yersinia enterocolitica} serotype 0:9 were of little significance (FAO/Brucellosis in human and animals. 2006).

The results of our study using the above PCR protocol indicates that detection of \textit{Brucella} spp. DNA directly from testicles and spleen of seropositive male animals was not a convenient procedure confronting with the results derived from serology tests (RBT/CFT) in the first group of 83 seropositive animals. In fact, only 14.45% of the seropositive animals were found positive in PCR analysis. Testes and spleen as biological samples-target for the detection of brucellosis via PCR is mostly rare. According to the literature, the most frequently tested tissues from male animals in order to detect \textit{Brucella} spp. are serum, semen, nasal secretions, feces, lymph nodes, and whole blood (Bricker 2002; Ilhan et al. 2008; Yu and Nielsen 2010).

Respectively, in the second group of 108 suspected animals, 16.67% of the female animals and fetuses were found positive in PCR analysis. The relatively few \textit{Brucella} PCR positive samples from female ruminants with clinical symptoms from the reproductive system in the present study might also suggest the existence of other causes of abortion than brucellosis and it warrants further studies (Petridou et al. 2018).

PCR-based tests are proving to be faster and more sensitive than conventional methods. Several PCR assays have been described for the detection of \textit{Brucella} DNA using

Table 5

Second group. Detected \textit{Brucella} strains in infected tissues

Animal	Number of samples	Number of positive samples in PCR	\textit{Brucella} species found in samples	Infected tissues
Sheep	73	6 (8.22%)	• 5 \textit{B. melitensis}, • 1 Rev1	3 fetal livers,
				2 stomach contents of the fetus,
				1 placenta
Goats	6	3 (50%)	• 3 \textit{B. melitensis}	2 stomach contents of the fetus,
				1 fetal liver
Cows	64	17 (25.56%)	• 17 \textit{B. abortus}	7 stomach contents of the fetus,
				6 fetal livers,
				3 placentas,
				1 fetal spleens

| | 143 | 26 | 26 |

173 Page 6 of 8 Tropical Animal Health and Production (2022) 54: 173
pure cultures or animal or human clinical samples. However, the sensitivity and specificity of the PCR for Brucella spp. varies between laboratories, standardization of sample preparation, PCR inhibitors on tissues, target genes, selected primers, and clinical status of the animal (acute/chronic) (Amin et al. 2001; Tekle et al. 2019). The challenge lies in simplifying the procedure for detecting Brucella spp. at the species level in specialized laboratories (Navarro et al. 2004; Ghorbani, et al. 2012).

The modified PCR protocol used in our study was time consuming in terms of samples preparation resulting to a minimum of 3 days for the results to be delivered while the cost was much higher than the one required for serology.

An ideal diagnostic method should be specific, sensitive, rapid, not expensive, and easy to perform (Geresu & Kassa, 2016). According to the presented study, it seems that for the time being, this PCR protocol described does not fulfill all these requirements. Finally, the purchase of reagents is fairly expensive compared with RBT/CFT, but cost may decrease as more PCR diagnostic assays are developed.

In both groups, the prevalence of the Brucella strains detected in samples derived from goats (♂ 12.5% and ♀ 50%) and bovines (♂ 71.43% and ♀ 25.56%) was much higher than the prevalence of the same detected bacterium in sheep (♂ 3.03% and ♀ 8.22%). Actually, goats are approximately four times more likely to be infected than sheep (Sintayehu, et al., 2015). Generally, sheep are less susceptible to Brucella infection than goats, and this could be partly explained because sheep excrete the bacteria for shorter periods. This may reduce the potential for spread of the disease within and between sheep flocks (Radostits et al. 2007).

The fact that vaccine strain Rev1 was detected in non-vaccinated rams and billy goats, indicates that possibly errors during the vaccine administration in females may occur resulting in accidental vaccination of the male animals which were found seropositive during the surveillance program. Finally, due to the above vaccine administration errors, male animals were slaughtered while the farm was quarantined for a period of at least 2 to 6 weeks. The development of a rapid and cost-effective laboratory method that will discriminate the vaccine antibodies from those caused by wild-type strains is of paramount importance. Alternatively, the development of a new vaccine, like the RB51 strain (Dorneles et al. 2015), which is implemented in cattle and the produced antibodies are not detectable by RBT/CFT may solve this inconvenience equally.

Conclusions

Therefore, the use of the suggested PCR protocol in our study may play an important role in terms of confirmation before the suspected females with abortion are slaughtered when a proper sample from their aborted fetuses is available for molecular diagnosis.

Br. melitensis and *B. abortus* are common pathogens in Greek small ruminant and dairy cow farms in Greece, while, the Rev1 vaccine strain can sometimes be implicated in false brucellosis positive diagnosis of small ruminants.

Data availability statement The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author contribution A.K. conceived, performed the PCR analyses, and wrote the manuscript. E.P. (Eleni Papanikolaou) conceived, designed the methodology, and corrected the paper. A.S. corrected the paper. A.Z. conceived and corrected the paper. P.G performed the PCR analyses. E.P (Emmanouil Papadogiannakis) corrected the paper. N.G coordinated the study and helped to draft the manuscript. E.P. (Evanthia Petridou), conceived, coordinated the study, and corrected the paper. All authors read and approved the final manuscript.

Declarations

Ethics approval All animal manipulations were carried out according to the EU Directive on the protection of animals’ usage for scientific purposes (2010/63/EU). The research protocol was approved by the General Assembly of the Veterinary Faculty of Aristotle University of Thessaloniki decision 55/27-5-2015.

Consent to participate All authors have given their consent for participation

Consent for publication All authors have seen and approved the final version of the submitted manuscript. The article that is the authors’ original work has not received prior publication and is not under consideration for publication elsewhere.

Conflict of interest The authors declare no competing interests.

References

Alton, G.G. and Forsyth J.R.L. (1996) *Brucella In*: Medical Microbiology.University of Texas Medical Branch at Galvenston, Texas. Samuel Baron 4th eds

Amin, Adel S., Hamdy, Mahmoud E.R. and Ibrahim, Adel K. (2001) Detection of *Brucella melitensis* in semen using the polymerase chain reaction assay. Veterinary Microbiology. 83(1), 37-44.

Baum, M., Zamir, O., Bergman-Rios, R., Katz, E., Beider, Z., Cohen, A., Banai, M. (1995) Comparative evaluation of microagglutination test and serum agglutination test as supplementary diagnostic methods for brucellosis. Clinical Microbiology. 33(8), 2166–2170.

Berger, S. (2016) Brucellosis: GlobalStatus. Los Angeles, CA: GIDEON Informatics, Inc.

Boschiroli, M.L., Foulonagne, V. and O’Callaghan, D. (2001) Brucellosis: a worldwide zoonosis. Current Opinion in Microbiology. 4(1), 58-64.

Bricker, Betsy J. (2002) PCR as a diagnostic tool for brucellosis. Veterinary Microbiology. 90(1–4), 435-446.

CDC (2017) Brucellosis reference guide: exposures, testing, and prevention.

Colmerero, J.D., Reguera, J.M., Martos, F., Sánchez-de-Mora, D., Delgado, M., Causse, M., Martín-Farfán, A., Juarez, C. (1996)
Complications associated with *Brucella melitensis* infection: a study of 530 cases. Medicine. 75(4), 195-211.

Cooper, Christopher W. (1992) Risk factors in transmission of brucellosis from animals to humans in Saudi Arabia. Transactions of the Royal Society of Tropical Medicine and Hygiene. 86(2), 206-209.

Dorneles, Elaine M.S., Sriranganathan, Nammalwar and Lage, Andrey P. (2015) Recent advances in *Brucella abortus* vaccines. Veterinary Research. 46(76).

FAO/OIE/WHO (2006) Brucellosis in human and animals. Geneva.

García-Yoldi, D., Marín, C.M., de Miguel, M.J., Muñoz, P.M., Vizmanos, J.L., López-Goñi, I. (2006) Multiplex PCR Assay for the Identification and Differentiation of all *Brucella* Species and the Vaccine Strains *Brucella abortus* S19 and RB51 and *Brucella melitensis* Rev1. Clinical Chemistry. 52(4), 779-781.

Garin-Bastuji, B., Blasco, J-M., Grayon M., Verger, J-M. (1998) *Brucella melitensis* infection in sheep: present and future. Veterinary Research, BioMed Central. 29(3-4), 255-274.

Geresu, M.A. and Kassa, G.M. (2016) A Review on Diagnostic Methods of Brucellosis. Journal of Veterinary Science & Technology. 7 (3).

Ghorbani, A., Rabbani Khorasgani, M., Zarkesh-Esfahani, H., Emami, H. (2012) Comparison of serology, culture and PCR for detection of brucellosis in slaughtered camels in Central areas of Iran. Comparative Clinical Pathology. 22(5), 913-917.

Godfroid, J., Al Dahouk, S., Pappas, G., Roth, F., Matope, G., Muma, J., Marcotty, T., Pfeiffer, D., Skjerve, E. (2013) A “One Health” surveillance and control of brucellosis in developing countries: Moving away from improvisation. Comparative Immunology Microbiology and Infectious Diseases. 36(3), 241-248.

Hellenic Ministry of Rural Development and Food (2016) Annual data on National eradication brucellosis program for ruminants.

Hellenic Ministry of Rural Development and Food (2017) Annual data on National eradication brucellosis program for ruminants.

Hellenic Ministry of Rural Development and Food (2018) Annual data on National eradication brucellosis program for ruminants.

Ilhan, Z., Aksakal, A., Ekin, I.H., Gülhan, T., Solmaz, H., Erdenlig, S. (2008) Comparison of culture and PCR for the detection of *Brucella melitensis* in blood and lymphoid tissues of serologically positive and negative slaughtered sheep. Letters in Applied Microbiology. 46(3), 301-306.

International Labour Office. (2010) List of Occupational Diseases. Occupational Safety and Health Series No. 74. Geneva.

Karponi, G., Kritas, S.K., Papanikolau, E., Petridou, E. (2019) A cellular model of infection with *Brucella* in ovine macrophages: Novel insights for intracellular bacterial detection. Veterinary Sciences. 6(3), 71.

Katsiolis, A., Thanou, O., Tzani, M., Dile, C., Stournara, A., Petridou, E., Giadinis, N. (2018) Investigation of the human resources needs for the effective and efficient implementation of the sheep and goat brucellosis program in Greece. Veterinary Journal of Republic of Srpska (Banja Luka). XVIII(2), 270-296.

Martin, S. W., Meek, A. H., Willeberg, P. (1987) Veterinary Epidemiology. Iowa: Iowa State University. p 22-42

Memish, Z.A. and Balkhy, H.H. (2004) Brucellosis and international travel. Journal of Travel Medicine. 11(1), 49-55.

Nagati, S.F. and Safaa, K.H. (2016) Diagnosis of *Brucella* Infection in Sheep and Goat and Evaluation of the associated Practices in Animal Contacts. American Journal of Infectious Diseases and Microbiology. 4(5), 95-101.

Navarro, E., Casao, M. and Solera, J. (2004) Diagnosis of human brucellosis using PCR. Expert Review of Molecular Diagnostics. Expert Review of Molecular Diagnostics. 4(1), 115-123.

Norman, F.F., Monge-Maillo, B., Chamorro-Tojeiro, S., Perez-Molina, J.A., Lopez-Velez, R. (2016) Imported brucellosis: A case series and Travel Medicine and Infectious Disease. xx, 1-18.

OIE. https://www.oie.int. [Online] [Cited: 06 01, 2021.] https://www.oie.int/en/disease/brucellosis/.

Pappas, G. Akritidis, N., Bosilkovski, M. and Tsianos, E. (2005) Brucellosis. New England Journal of Medicine. 352(22), 2325-2336.

Petridou, E., Chochlakis, D., Papadopoulos, D., Boumbaris, L., Kalaitzakis, E., Psaroulaki, A. and Giadinis, N. (2018) Investigation of small ruminant’s abortion outbreaks for the presence of zoonotic agents by molecular means. In proceedings of the annual ECS-RHM meeting, Thessaloniki

Radostits, O.M., Gay, C.C., Blood, D.C. and Hinchliff, K.W. (2007) Disease caused by *Brucella* spp. A Textbook of the Disease of Cattle, Sheep, Pigs, Goats and Horses. 10th Ed., ELBS Bailliere Tindall, London, UK, 870-871.

Rossetti, C.A. Arenas-Gamboa, A.M. and Maurizio, E. (2017) Caprine brucellosis: A historically neglected disease with significant impact on public health. PLOS Neglected Tropical Diseases. 11(8), 1-17.

Sintayehu, G., Melesse, B., Abayneh, D., Sintayehu, A., Melaku, S., Alehegne, W., Mesfin, S., De Blas, I., Casal, J., Allepuz, A., Martin-Valls, G., Africa, T. and Abera, K. (2015) Epidemiological survey of brucellosis in sheep and goats in selected pastoral and agro-pastoral lowlands of Ethiopia. Scientific and Technical Review. 34(3), 881-893.

Stournara, A., Minas, A., Bourti-Chatzopoulou, E., Stack, J., Kop Toloupolou, G., Petridou, E. and Sarris, K. (2008) Assessment of serological response of young and adult sheep to conjunctival vaccination with Rev-1 vaccine by fluorescence polarization assay (FPA) and other serological tests for *B. melitensis*. Veterinary microbiology. 119(1), 53-64.

Tekle, M., Legesse, M., Edao, B.M., Ameni, G. and Mama, G. (2019) Isolation and identification of *Brucella melitensis* using bacteriological and molecular tools from aborted goats in the Afar region of north-eastern Ethiopia. BMC Microbiology. 19(108), 2-6.

Tittarelli, M., Bonfini, B., De Massis, F., Giovannini, A., Di Vneta, M., Nannini, D. and Caporale, V. (2008) *Brucella abortus* strain RB51 vaccine: immune response after calfhood vaccination and field investigation in Italian cattle population. Clinical & Developmental Immunology. 1-6.

Tzani, M. and Katsiolis, A. (2012) Program for the control and eradication of brucellosis in sheep and goats in Greece. HCDCP e-buletin, 2(4), 19-20.

Wareth, G. (2019) Brucellosis in the Mediterranean countries: history, prevalence, distribution, current situation and attempts at surveillance and control. Technical Series, Vol. 12, Paris: OIE.

WHO (2004) Laboratory Biosafety Manual, Third Edition. 3. Geneva.

Yu, W.L. and Nielsen, K. (2010) Review of detection of *Brucella* spp. by polymerase chain reaction. Croatian Medical Journal. 51(4), 306-313.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.