Original Article

Serum Neutrophil Gelatinase B-associated Lipocalin and Matrix Metalloproteinase-9 Complex as a Surrogate Marker for Mucosal Healing in Patients with Crohn’s Disease

Magali de Bruyn, Ingrid Arijs, Gert De Hertogh, Marc Ferrante, Gert Van Assche, Paul Rutgeerts, Séverine Vermeire, Ghislain Opdenakker

*Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
*Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
*Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium

Corresponding author: Prof. Dr. Ghislain Opdenakker, Rega Institute for Medical Research, Minderbroedersstraat 10 blok x - bus 1030, 3000 Leuven, Belgium. Tel: 32 16 3 37341; fax: 32 16 3 37340; email: ghislain.opdenakker@rega.kuleuven.be

Conference Presentation: ECCO Barcelona 2015 [poster presentation], BWGE Brussels 2015 [oral presentation], and DDW Washington 2015 [poster presentation].

Abstract

Background and Aims: Although costly and uncomfortable for the patient, the current standard to assess mucosal healing in Crohn’s disease [CD] patients is endoscopy. The aim of this study was to evaluate NGAL-MMP-9 as surrogate marker for mucosal healing in CD patients.

Methods: Serum NGAL-MMP-9 levels were determined with sandwich enzyme-linked immunosorbent assay before and up to 5 years after first infliximab infusion in 108 active CD patients [median age at first infliximab 36 years, 57% female] and 43 healthy controls [HC, median age 27 years, 60% female]. Serum samples were matched to the time of endoscopy and complete endoscopic healing was defined as absence of ulcerations. Histological healing was defined as absence of epithelial damage [D’Haens score].

Results: At baseline, median [interquartile range] NGAL-MMP-9 levels were significantly higher in active CD patients vs HC (77.6 [36.9-141.0] vs 25.5 [17.8-42.8] ng/ml; p < 0.001). After treatment, NGAL-MMP-9 levels significantly decreased in completely healed CD patients [n = 38] (84.5 [36.7-138.4] to 23.4 [7.4-42.5] ng/ml; p < 0.001) and—to a lesser extent—in non-healed CD patients [n = 36] (100.9 [43.4-152.6] to 43.8 [27.0-96.8] ng/ml; p = 0.001). Receiver operating characteristic analysis defined a NGAL-MMP-9 cut-off level of 45 ng/ml corresponding to complete endoscopic healing [area under the curve [AUC] = 0.79, 82% sensitivity, 65% specificity] and histological healing [AUC = 0.72, 79% sensitivity, 53% specificity]. At baseline, C-reactive protein [CRP] was not elevated in 33% of active CD patients whereas 53% of these patients did have elevated NGAL-MMP-9 levels.

Conclusions: In the search for surrogate markers to assess mucosal healing in inflammatory bowel disease, NGAL-MMP-9 supplements and outperforms CRP in both ulcerative colitis and CD patients.

Keywords: NGAL; MMP-9; Crohn’s disease

Copyright © 2015 European Crohn's and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved.

For permissions, please email: journals.permissions@oup.com
1. Introduction

Crohn’s disease (CD) is a chronic, relapsing disease of the gastrointestinal tract with increasing prevalence and incidence in both industrialised and developing countries. In CD, a defective acute immune response with impaired neutrophil accumulation and interleukin (IL)-8 production is observed. This may lead to delayed or incomplete removal of bacteria that breach the mucosal barrier. These bacteria will subsequently be taken up by macrophages that elicit a granulomatous reaction and produce a secondary chronic inflammation. However, neutrophil migration to the active site of inflammation is stimulated by bacterial components, e.g., through the pro-inflammatory NOD2/CARD15 pathway.

The primary function of neutrophils is to kill bacteria, with the use of potent digestive enzymes present in and secreted from the granules. Neutrophil gelatinase B-associated lipocalin (NGAL, lipocalin-2) is found in secondary neutrophil granules. NGAL is expressed in response to Toll-like receptor activation during infections and can inhibit bacterial growth by sequestering iron-laden siderophores. Moreover, NGAL has been correlated with parameters of active disease in IBD patients. Tertiary neutrophil granules contain matrix metalloproteinase-9 (MMP-9, gelatinase B), a member of the MMP family. MMPs are zinc-dependent endopeptidases involved in many developmental processes, including angiogenesis, wound healing, and extracellular matrix (ECM) degradation. Dysregulated MMP-9 levels have been previously described in inflammatory bowel disease (IBD). Recently, the EMBARK study showed that a combination of fecal calprotectin, serum MMP-9, and serum IL-22 had a strong association with imaging/endpoint-defined inflammation. Moreover, neutralising antibodies with tissue inhibitor of MMPs (TIMP)-like mechanisms against MMP-2 and MMP-9 were shown to attenuate the development of colitis in IBD mouse models. In addition to their separate circulating forms, MMP-9 and NGAL occur in covalent complexes, mainly in neutrophil degranulates. However, the functional role of this NGAL-MMP-9 complex is still debated. One hypothesis is that by formation of this complex, NGAL protects MMP-9 from autodegradation.

In a few studies, NGAL or MMP-9 levels were investigated separately in blood or biopsies after anti-inflammatory treatment in patients with CD. Based on our original view that by measuring the covalent complex of NGAL with MMP-9 we would evaluate two markers of active disease in IBD patients, we recently described that serum NGAL-MMP-9 complex levels decrease after infliximab treatment in ulcerative colitis (UC) patients achieving mucosal healing, and that levels correlate well with the Mayo endoscopic subscore. With the present study, we aimed to investigate whether NGAL-MMP-9 complex levels are elevated in CD patients in comparison with healthy controls and whether levels decrease after anti-inflammatory treatment in patients with mucosal healing. Moreover, since C-reactive protein (CRP) is not elevated in 20–30% of CD patients, we aimed to compare the diagnostic accuracy of NGAL-MMP-9 with CRP.

2. Materials and Methods

2.1. Patient sampling

Consecutive serum sampling and endoscopy were performed in 108 CD patients before and after first treatment with infliximab (Remicade; Centocor). Baseline characteristics of the CD patients are shown in Table 1. The baseline samples were obtained from active CD patients within 1 month before first infusion of infliximab, and follow-up samples were obtained up to 5 years after start of treatment. The median (interquartile range [IQR]) time to follow-up endoscopy was 13 [6–54] weeks. The median [IQR] interval between follow-up serum sampling and last infusion with infliximab was 49 [30–57] days. Serum samples were matched to a current endoscopy with a maximum interval of 30 days between serum sampling and time of endoscopy. CRP levels and neutrophil counts were measured in a centralised laboratory facility before and after infliximab, at time points corresponding to endoscopy. Furthermore, we collected serum samples from 43 healthy [non-IBD] controls [HC, median age 27 years, 60% female]. From all individuals written informed consent was obtained, and the study was approved by the University Hospital Ethics Committee (Vlaams erfelijkheidsonderzoek Crohn en colitis ulcerosa [VLECC] S-53684).

2.2. Definition of endoscopic and histological healing

Endoscopic mucosal healing was determined by expert gastroenterologists [SV, MF, PR, and GVA] at follow-up endoscopic evaluation. Complete endoscopic healing was defined as absence of ulcerations, whereas partial healing was defined as significant endoscopic improvement but with ulcerations still present. Histopathological analysis was performed on mucosal biopsies stained with haematoxylin and eosin (H&E). The pathologist (GDH) was blinded to the patient identity (ID), disease status, and treatment. The slides were scored using the D’Haens histological scoring system which comprises 8 subcategories mounting to a maximum total score of 16 (also presented in Supplementary Table 1 [available as Supplementary Data at JCC online]). Histological healing was defined as an absence of epithelial damage.

2.3. Sandwich ELISA

The commercial anti-human NGAL-MMP-9 complex ELISA [enzyme-linked immunosorbent assay] kit [R&D Systems, Abingdon, UK] was used to determine NGAL-MMP-9 complex levels in the serum of CD patients and HC according to the manufacturer’s guidelines. Briefly, two antibodies with different antigen specificities were used: an antibody directed towards MMP-9 was pre-coated on the plate and another against NGAL was used as the detection antibody. Hence, only NGAL-MMP-9 complexes were measured. The absorbance was measured at 450 nm with a spectrophotometer (Omega, Nazareth, Belgium). NGAL-MMP-9 complex levels were quantified with the use of a calibration curve using purified human NGAL-MMP-9 as a standard [Mars software, BMG Labtech, Ortenberg, Germany].

2.4. Statistical analysis

Data were analysed with SPSS Statistics 20.0 software [SPSS Inc., Chicago, IL] with the use of the non-parametric Mann-Whitney U-test for unpaired samples and Wilcoxon signed rank test for paired samples. Spearman correlation analysis [correlation coefficient = r], Kendall’s tau rank correlation [correlation coefficient = τ], Fisher’s exact test, chi square test, receiver operating characteristic (ROC) analysis, and binary logistic regression analysis were also performed in SPSS; p-values of < 0.05 were considered significant.

3. Results

3.1. Serum NGAL-MMP-9 complex levels are increased in active CD patients and decrease after treatment with infliximab

Complete mucosal healing with absence of ulcerations at follow-up endoscopy was seen in 38 CD patients [35%] after treatment;
Table 1. Patient characteristics and laboratory markers at the start of first treatment with infliximab for CD patients with complete, partial, and no mucosal healing.

Baseline patient characteristics	CH [n = 38]	PH [n = 34]	NH [n = 36]	p-value*
Male/female [%]	14/24 [37/63]	16/18 [47/53]	16/20 [44/56]	0.66a
Median [IQR] age at first infliximab [years]	41.0 [30.8-50.3]	34.3 [25.8-43.6]	34.7 [23.7-45.6]	0.21a
Median [IQR] duration of disease prior to first infliximab [years]	7.5 [3.0-21.9]	7.6 [3.5-16.0]	11.6 [2.0-18.6]	0.93a
Median [IQR] CRP at first infliximab [mg/l]	6.4 [1.7-26.5]	13.5 [7.5-31.2]	16.5 [3.3-29.7]	0.09a
Normal CRP [%] or >5 mg/l levels at baseline [%]	18 [47]	7 [21]	11 [31]	0.05a
Median [IQR] amount of neutrophils [%]	5.8 [4.5-8.0]	5.8 [4.2-7.5]	6.2 [4.3-7.9]	0.71a
Active smoking at first infliximab [%]	13 [38]	7 [21]	9 [27]	0.13a
Montreal classification				0.48b
Age at diagnosis [%]				0.53b
A1 [≤ 16 years]	4 [11]	5 [15]	5 [14]	
A2 [17–40 years]	27 [71]	26 [76]	29 [81]	
A3 [> 40 years]	7 [18]	3 [9]	2 [5]	
Location of disease [%]				0.77b
L1 [ileum]	6 [16]	3 [8]	2 [6]	
L2 [colon]	9 [24]	6 [18]	10 [27]	
L3 [ileocolon]	23 [60]	25 [74]	24 [67]	
L4 [upper GI]	1 [3]	0 [0]	2 [6]	
Disease behaviour [%]				
B1 [non-stricturing, non-penetrating]	12 [32]	7 [21]	11 [31]	
B1p	8 [21]	4 [11]	6 [17]	
B2 [stricturing]	8 [21]	8 [24]	5 [14]	
B2p	5 [13]	8 [24]	9 [25]	
B3 [penetrating]	3 [8]	3 [9]	1 [3]	
B3p	2 [5]	4 [11]	4 [10]	
Major abdominal surgery prior to first infliximab [%]	17 [45]	18 [53]	11 [31]	0.16a
Concomitant medication at first infliximab [%]				
5-aminosalicylates [5-ASA]	23 [61]	17 [50]	18 [50]	0.58a
Corticosteroids	12 [32]	9 [26]	10 [28]	0.88a
Immunomodulators [AZA or MTX]	24 [63]	20 [59]	22 [61]	0.93a

AZA, azathioprine; CD, Crohn’s disease; CH, complete healer; CRP, C-reactive protein; IQR, interquartile range; MTX, methotrexate; NH, no healer; p, perianal disease modifier; PH, partial healer.

*p < 0.05 was considered significant and the statistical difference was analysed by Kruskal-Wallis test or chi square test.

34 patients [32%] presented clear endoscopic improvement, but some ulcers could still be observed. In contrast, 36 CD patients [33%] did not show any signs of endoscopic improvement or presented even worsened lesions. Serum NGAL-MMP-9 complex levels were elevated at baseline in active CD patients as compared with HC [p < 0.001] [Figure 1A and Table 2]. After treatment, NGAL-MMP-9 levels significantly decreased in completely healed CD patients [p < 0.001], although four patients [10%] showed increased NGAL-MMP-9 levels after therapy [Figure 1A and Table 2]. Patients with partial healing had mild decrease of NGAL-MMP-9 levels after treatment [p = 0.048] [Figure 1A and Table 2], and the decrease of NGAL-MMP-9 levels [difference between before and after treatment] was significantly lower than in patients with complete healing [p = 0.001]. Moreover, 10 patients with partial healing [34%] had increased levels after treatment. In non-healed CD patients, NGAL-MMP-9 serum levels also decreased after treatment [p = 0.001] [Figure 1A and Table 2]. However, the decrease was significantly less profound than in completely healed CD patients [p = 0.020]. No significant difference in extent of decrease of NGAL-MMP-9 levels was observed in completely healed patients compared with partially healed patients [p = 0.294]. Moreover, NGAL-MMP-9 levels in completely healed CD patients decreased after treatment to levels equivalent to HC levels (median [IQR] 23.4 [7.4-42.5] vs 25.5 [17.8-42.8]; p = 0.131), whereas NGAL-MMP-9 levels in partially healed or non-healed CD patients remained elevated after treatment in comparison with HC levels (median [IQR] 43.5 [18.7-61.8] and 43.8 [27.0-96.8] vs 25.5 [17.8-42.8]; p = 0.041 and p = 0.016, respectively) [Figure 1A and Table 2]. No significant differences were found between NGAL-MMP-9 levels in completely, partially, or non-healed CD patients at start of treatment [Figure 1A and Table 2].

Finally, we investigated whether patients at time of follow-up endoscopy were maintained under the same type of concomitant treatment as at the time of first infliximab infusion. We found that 56%, 83%, 96%, and 73% of the patients who received 5-aminosalicylic acid [5-ASA], azathioprine/6-mercaptopurine [AZA/6-MP], methotrexate [MTX], or corticosteroids, respectively, were maintained on the same concomitant treatment at follow-up endoscopy. A proportion of patients stopped 5-ASA or corticosteroid treatment. However, we recorded no influence of the type of concomitant treatment at follow-up endoscopy on the outcome of mucosal healing [Supplementary Table 2, available as Supplementary Data at JCC online].

3.2. Serum NGAL-MMP-9 complex levels correlate with neutrophil counts and complement CRP as an inflammatory marker

To assess its role as a serum marker of inflammation and mucosal healing, we correlated serum NGAL-MMP-9 complex levels with neutrophil counts and complement CRP as an inflammatory marker.
Table 2

Table 2 Overview of NGAL-MMP-9, CRP and neutrophil counts in CD patients before and after treatment with infliximab.

	NGAL-MMP-9 [ng/ml]	CRP [mg/l]	#neutrophils [10⁹/l]
CH [n=38] median [IQR]	23.4 [7.4-42.5]	2.3 [1.0-4.6]	5.0 [3.1-6.3]
PH [n=34] median [IQR]	43.5 [18.7-61.8]	3.0 [1.8-7.2]	6.2 [4.3-7.9]
NH [n=36] median [IQR]	100.9 [43.4-152.6]	16.5 [3.3-29.7]	5.0 [3.1-6.3]

CH, complete healer; IFX, infliximab; IQR, interquartile range; MMP-9, matrix metalloproteinase-9; NA, not available; NGAL, neutrophil gelatinase B-associated lipocalin; NH, no healer; PH, partial healer; CRP, C-reactive protein; CD, Crohn's disease; HC, healthy control.

*p < 0.05 was considered significant and the statistical difference was analyzed by Wilcoxon signed rank test.

counts were found to be in the clinically determined interval of 2.5–7.8 10⁹/l. Nevertheless, 25% of the CD patients presented with neutrophilia (> 7.8 10⁹/l). Neutrophil counts significantly decreased after treatment in completely healed CD patients (p < 0.001) [Table 2 and Figure 1C], whereby 13% of the patients showed neutropenia with neutrophil counts lower than 2.5 10⁹/l. CD patients with partial healing after treatment also showed a decrease in neutrophil counts (p = 0.002) [Table 2 and Figure 1C]. However, this decrease had a trend to be less profound than in patients with complete healing (p = 0.118). In CD patients without healing, neutrophil counts also decreased after treatment (p = 0.005), but to a lesser extent than in patients with complete healing (p = 0.153) [Table 2 and Figure 1C]. The decrease of neutrophil counts was not significantly different between partially healed or non-healed CD patients (p = 0.928). Furthermore, no significant difference was observed between baseline neutrophil counts of CD patients with complete healing compared with CD patients without mucosal healing (p = 0.95) [Table 2 and Figure 1C]. The amount of neutrophils correlated with CRP levels (r = 0.337, p < 0.001). In patients with high CRP levels, the neutrophil count was also elevated (> 5.4 10⁹/l) in 56% of the patients whereas, in patients with low CRP levels, 70% of the patients also had low neutrophil levels. In cases of low or high NGAL-MMP-9 levels, neutrophil counts were high (> 5.4 10⁹/l) in 38% of patients with high NGAL-MMP-9 (> 45 ng/ml), and in 73% of the patients neutrophils counts were low (< 5.4 10⁹/l) when NGAL-MMP-9 was also low (< 45 ng/ml). Furthermore, we calculated the ratio of NGAL-MMP-9 levels over the amount of neutrophils (ng/ml/10⁹/l) to investigate whether the decrease of NGAL-MMP 9 levels only reflected the decrease in number of neutrophils. With ROC analysis, an area under the curve [AUC] of 0.74 could be determined for the ratio to discriminate complete mucosal healing [Supplementary Figure 1, available as Supplementary Data at JCC online], which was lower than the AUC of NGAL-MMP-9 as such [AUC = 0.78].

A good correlation was detected between NGAL-MMP-9 and CRP levels (r = 0.448, p < 0.001). In 67% of active CD patients, CRP levels were elevated (>5 mg/l) at start of treatment with infliximab. After treatment, CRP levels significantly decreased in CD patients with complete and partial mucosal healing (p < 0.001 and p < 0.001, respectively) [Table 2 and Figure 1B]. We observed no significant difference in the decrease of CRP levels between complete and partially healed patients (p = 0.420). CRP levels also decreased in CD patients without mucosal healing after treatment (p = 0.037) [Table 2 and Figure 1B]. However, the decrease of CRP levels was more profound in complete or partial CD healers after treatment than in CD non-healers (p = 0.104 and p = 0.003, respectively). Of importance, CRP was not elevated (>5 mg/l) in 33% of patients with active disease at start of treatment, whereas 53% of these patients did have elevated (> 45 ng/ml) NGAL-MMP-9 levels. Moreover, 47% of the patients...
with low CRP levels did have elevated neutrophil counts \([> 5.4 \times 10^9/l] \). This indicates that both NGAL-MMP-9 levels and neutrophil counts can be used to supplement CRP measurements in patients who do not present with elevated CRP levels.

3.3. Serum NGAL-MMP-9 complex levels correlate with endoscopic healing and are lower in patients with ileal disease

Serum NGAL-MMP-9 complex levels correlated with endoscopic scores, indicating the degree of healing [Kendall’s tau \(\tau = 0.296, p < 0.001 \)] as was defined at the time of endoscopic evaluation. The highest NGAL-MMP-9 complex levels were observed in patients who did not reach mucosal healing. After therapy with infliximab, NGAL-MMP-9 levels decreased rapidly and correlated with restoration of mucosal integrity. An analogue analysis was performed identifying the correlation of CRP levels \([\tau = 0.307, p < 0.001] \) and neutrophil counts \([\tau = 0.239, p < 0.001] \) with the degree of mucosal healing. NGAL-MMP-9 complex levels decreased according to the degree of mucosal healing [Figure 2A]. In contrast, CRP was markedly elevated in CD patients who did not heal, whereas CRP levels in patients with partial and complete healing were similar and therefore not discriminative [Figure 2B]. Neutrophil count reflected the degree of endoscopic improvement, discriminating between no, partial, and complete mucosal healing [Figure 2C].

Median [IQR] NGAL-MMP-9 levels were significantly lower \((36.8 [10.4-69.1] \text{ ng/ml})\) in patients with active ileal disease \([n = 11]\) compared with patients with active [ileo-]colonic disease \((84.0 [40.3-147.6] \text{ ng/ml})\) before start of treatment \([p = 0.008]\) [Supplementary Figure 2A, B, available as Supplementary Data at JCC online]. No significant difference was observed in NGAL-MMP-9 levels at start of treatment of completely \([n = 6]\) or partially \([n = 3]\) healed CD patients with ileal disease compared with non-healed \([n = 2]\) CD patients with ileal disease \([p = 0.286 \text{ and } p = 0.200, \text{ respectively}]\) [Supplementary Figure 2B]. Since neutrophils are the source of NGAL-MMP-9, we further compared the amount of neutrophils in patients with ileal disease with the amount in [ileo-]colonic disease. However, the difference was not significant \([p = 0.069]\) with a median [IQR] neutrophil count of \(5.0 [2.9-6.9] \times 10^9/l\) in patients with ileal disease and \(6.0 [4.3-7.9] \times 10^9/l\) in patients with [ileo-]colonic disease.

3.4. Serum NGAL-MMP-9 complex can discriminate complete mucosal healing as defined by endoscopic evaluation

ROC analysis was performed to evaluate the performance of NGAL-MMP-9, CRP, and neutrophil levels to discriminate mucosal healing. When including patients with partial mucosal healing in the non-healing group of patients, the AUC for NGAL-MMP-9 levels was 0.77, and levels lower than \(45 \text{ ng/ml}\) were determined to discriminate complete mucosal healing with \(82\%\) sensitivity, \(60\%\) specificity, \(29\%\) positive predictive value [PPV] and \(95\%\) negative predictive value [NPV]. The AUC for CRP levels was 0.74, and levels lower than \(5 \text{ mg/l}\) were able to discriminate complete mucosal healing with \(79\%\) sensitivity, \(57\%\) specificity, \(28\%\) PPV and \(93\%\) NPV. Neutrophil levels lower than \(5.4 \times 10^9/l\) were able to discriminate complete mucosal healing with an AUC of 0.68, sensitivity of \(79\%\), specificity of \(48\%\), 25\% PPV, and \(91\%\) NPV.

Figure 2. Distributions of NGAL-MMP-9 complex levels, C-reactive protein [CRP] levels and neutrophil counts with endoscopic and histological healing scores. The top panels illustrate the levels of NGAL-MMP-9 [A], CRP [B] and neutrophils [C] with the corresponding endoscopic healing scores, regardless of their response to therapy or time point before or after treatment (CH, complete healer; PH, partial healer and NH, no healer). In the lower panels, the levels of NGAL-MMP-9 [D], CRP [E] and neutrophils [F] were grouped according to the corresponding histological healing scores (HH, histological healing and NH, no healing). Kendall’s tau correlation factors (T) are indicated in the top left part of each graph.
ROC analysis, whereby patients with partial mucosal healing were excluded, indicated that NGAL-MMP-9 complex levels lower than 45 ng/ml could discriminate complete mucosal healing from no healing with a sensitivity of 82% and specificity of 64% [Figure 3A and Table 3]. The AUC was 0.79, and a PPV of 44% and NPV of 91% were determined. The diagnostic accuracy of NGAL-MMP-9 was 68%. ROC analysis with CRP levels showed a comparable AUC of 0.75. CRP levels lower than 5 mg/l were able to discriminate complete mucosal healing with 79% sensitivity, 58% specificity, 39% PPV, and 89% NPV [Figure 3A and Table 3]. To investigate the superiority of NGAL-MMP-9 over CRP, we analysed the performance of NGAL-MMP-9 to discriminate complete mucosal healing in patients with low CRP levels at baseline. Of the 36 patients with low CRP, 18 patients had complete healing and 11 patients had no healing after treatment. An AUC of 0.78 was determined, and a cut-off value of 38 ng/ml NGAL-MMP-9 was able to discriminate complete mucosal healing with 83% sensitivity, 58% specificity, 47% PPV, and 88% NPV. Finally, a neutrophil count lower than 5.4 10^9/L was able to discriminate complete mucosal healing with an AUC of 0.70, 79% sensitivity, 52% specificity, 36% PPV, and 88% NPV [Figure 3A and Table 3].

In order to investigate whether the combination of NGAL-MMP-9 and CRP in clinical practice would improve the prediction of complete mucosal healing, we performed binary logistic regression analysis including both parameters. With the use of the predicted probabilities, ROC analysis was performed and indicated that the combination of the two markers was able to discriminate complete mucosal healing with an AUC of 0.81, 82% sensitivity, 73% specificity, 51% PPV, and 92% NPV [Figure 3A and Table 3]. The combination of three markers [NGAL-MMP-9, CRP, and neutrophils] did not improve the discriminative power [AUC of 0.81] as compared with the combination of two markers [NGAL-MMP-9 and CRP].

Finally, we evaluated the diagnostic value of NGAL-MMP-9 to discriminate between UC and CD patients. In our previous study, we identified a median [IQR] NGAL-MMP-9 level of 87.3 [43.2-161.9] ng/ml in active UC patients before start of treatment. In the present CD cohort, the median [IQR] NGAL-MMP-9 level was 77.6 [36.9-141.0] ng/ml in active patients at start of treatment with infliximab. Based on these data, we could not document a significant difference between active UC and CD patients [$p=0.268$]

Figure 3. Receiver operating characteristic [ROC] analysis of serum NGAL-MMP-9 complex values, C-reactive protein [CRP levels] and neutrophil counts corresponding to complete endoscopic [A] and histological [B] healing. The cut-off values, area under the curve [AUC], specificity, sensitivity, positive predictive value [PPV], and negative predictive value [NPV] of NGAL-MMP-9, CRP, neutrophil count, and the combination of NGAL-MMP-9 with CRP to discriminate complete mucosal healing and histological healing are shown in Table 3. The ROC curve for NGAL-MMP-9 levels is illustrated as green stripes (---), for CRP levels as a purple dotted line (...), for neutrophil count as blue alternating stripes and dots (-.-) and for the combination of NGAL-MMP-9 with CRP as a full red line (-).

Table 3. ROC analysis specifications of serum NGAL-MMP-9 complex values, CRP levels, neutrophil counts, and the combination of NGAL-MMP-9 and CRP to discriminate complete endoscopic and histological healing.

Serum marker	Cut-off	Complete endoscopic healing	Histological healing								
		AUC [95% CI]	%sens	%spec	PPV	NPV	AUC [95% CI]	%sens	%spec	PPV	NPV
NGAL-MMP-9	45 ng/ml	0.79 [0.71-0.88]	82	64	44	91	0.72 [0.60-0.84]	79	53	29	91
CRP	5 mg/l	0.75 [0.66-0.84]	79	58	39	89	0.68 [0.58-0.79]	75	54	29	90
Neutrophils	5.4 10^9/L	0.70 [0.61-0.80]	79	52	36	88	0.60 [0.48-0.72]	68	46	24	85
NGAL-MMP-9 + CRP	0.34 [pred_prob]	0.81 [0.73-0.89]	82	73	51	92	0.72 [0.61-0.83]	54	79	39	87

AUC, area under the curve; sens, sensitivity; spec, specificity; PPV, positive predictive value; NPV, negative predictive value; pred_prob, predicted probability as defined by binary logistic regression analysis; ROC, receiver operating characteristic; CRP, C-reactive protein.
[Supplementary Figure 3, available as Supplementary Data at JCC online with means ± standard error of the mean].

3.5. Serum NGAL-MMP-9 complex levels correlate well with histological activity and can discriminate histological healing

Histological activity was determined in a subset of CD patients \[n = 70\] with the use of the D’Haens score. A good correlation was determined between endoscopic and histological activity scores \[r = 0.656, p < 0.001\]; 28 CD patients showed histological healing with absence of epithelial damage after treatment, of whom 21 patients \[75\%\] also had complete mucosal healing based on endoscopic evaluation and 7 \[25\%\] had partial mucosal healing. A high concordance was found especially in patients with active disease, since all 19 patients with no endoscopic healing also had no histological healing. Of the patients with partial endoscopic healing, however, only 32\% \[7 out of 22\] had histological healing. Importantly, 21 out of 29 patients \[72\%\] with complete endoscopic healing also had histological healing with an absence of epithelial damage.

NGAL-MMP-9 levels correlated well with histological healing \[\tau = 0.238, p = 0.001\] [Figure 2D], whereas CRP levels and neutrophil count had lower correlation factors \[\tau = 0.197, p = 0.006 and \tau = 0.118, p = 0.099; respectively\] [Figure 2E-F]. Intriguingly, NGAL-MMP-9 levels and neutrophil counts were lower in patients with ileal disease [see above]. Histopathological investigation showed that all patients with ileal disease \[n = 8\] had moderate infiltration of polymorphonuclear [PMN] cells in the lamina propria and no crypt abscesses were seen in the epithelium. In contrast, 15\% of patients with [ileo-]colonic disease did have severe increase of PMN cells in the lamina propria, 40\% of the patients had cryptitis, and 22\% presented with crypt abscesses in the epithelium.

With ROC analysis, we identified that NGAL-MMP-9 levels lower than 45 ng/ml could discriminate histological healing with an AUC of 0.72, 79\% sensitivity, 53\% specificity, 29\% PPV, and 91\% NPV [Figure 3B and Table 3]. In contrast, CRP levels lower than 5 mg/l were not as potent as NGAL-MMP-9 to discriminate histological healing [AUC = 0.68, 75\% sensitivity, 54\% specificity, 29\% PPV, and 90\% NPV] [Figure 3B and Table 3]. A neutrophil count lower than 5.4 \(10^9/l\) was the least potent marker [AUC = 0.60, 68\% sensitivity, 46\% specificity, 24\% PPV, and 85\% NPV] [Figure 3B and Table 3]. Finally, the combination of NGAL-MMP-9 and CRP was not better than NGAL-MMP-9 alone to discriminate histological healing [AUC = 0.72, 54\% sensitivity, 79\% specificity, 39\% PPV, and 87\% NPV] [Figure 3B and Table 3].

4. Discussion

Identification of non-invasive biomarkers has become an important research topic, since frequent endoscopic examinations are costly and uncomfortable for the patient. Several serological and fecal markers have been investigated for their use in diagnosis and assessment of disease activity, but none have been shown to be superior to the commonly used CRP. In this study, we investigated the diagnostic accuracy of NGAL-MMP-9, CRP and neutrophil levels in a considerable CD cohort and found that NGAL-MMP-9 performed better than CRP and neutrophil count in discriminating complete endoscopic and histological healing. With ROC analysis, we showed that NGAL-MMP-9 was the best discriminator of complete endoscopic healing and that the combination with CRP discretely enhanced the discriminative power. Importantly, we found that CRP was not elevated in one-third of CD patients with active disease at start of treatment, whereas more than half of these patients did have elevated NGAL-MMP-9 levels. This was further investigated by ROC analysis, identifying that NGAL-MMP-9 was a good surrogate marker to discriminate complete mucosal healing in patients without elevated CRP levels at baseline. These data suggest that NGAL-MMP-9, which is a combination of two marker molecules in one assay, can be considered as a new surrogate marker for IBD patients to assess mucosal healing and can complement or even replace CRP measurements. In a previous study, we already showed the value of the NGAL-MMP-9 complex as surrogate marker for mucosal healing in UC patients.

Besides CRP, other markers currently used include fecal calprotectin. Fecal calprotectin is a sensitive marker of intestinal inflammation and correlates well with the degree of endoscopic activity. Patients with ileal CD are reported to have significantly lower fecal calprotectin levels than those with [ileo-]colonic disease, even in the presence of large and/or very large ulcers. Moreover, the time of sampling during the day may affect calprotectin levels. In our cohort, we found that NGAL-MMP-9 levels were lower in patients with active ileal disease compared with patients with [ileo-]colonic disease before start of treatment [Supplementary Figure 2A, B]. Since neutrophils are the source of both calprotectin and NGAL-MMP-9, we further looked whether the amount of neutrophils was lower in patients with ileal disease compared with [ileo-]colonic disease; however, we could not document a significant difference.

A limitation of our study is the lack of fecal calprotectin measurements for a direct comparison with NGAL-MMP-9. Interestingly, the EMBARK study showed that a combination of fecal calprotectin, serum MMP-9, and serum IL-22 had a strong association with imaging/endoscopy-defined inflammation. Moreover, recent reports indicate the emergence of fecal MMP-9 levels in the IBD biomarker field. Annahazi et al. described that fecal MMP-9 is a good marker for the non-invasive evaluation of disease activity and mucosal healing in UC. Moreover, Kolho et al. showed that fecal MMP-9 performed equally well as fecal calprotectin in UC, suggesting its use as a surrogate marker of inflammation. Recently, fecal MMP-9 was also tested in a cohort of CD patients, but was not correlated with any of the activity indices of CD. Therefore, it might be interesting in the future to evaluate NGAL-MMP-9 complex levels in fecal samples.

As was shown by previous studies, endoscopic mucosal healing does not necessarily reflect quiescent histological disease. Most of the studies investigating histological healing were performed in UC patients, and there is scarce information in CD. In the present study, we used the D’Haens score which is also known in literature as the Colonic or Ileal Global Histologic Disease Activity Score [GHAS]. Despite the evidential importance of microscopic activity, histological remission has yet to be recommended as a therapeutic endpoint for clinical trials or practice in IBD. In our cohort of CD patients, we found a good correlation between histological and endoscopic mucosal healing. A high concordance was found, especially in patients with active disease. Importantly, 72\% of the patients with complete endoscopic healing also had histological healing with an absence of epithelial damage. These data are in line with current literature, since it was reported that persistent histological inflammation occurs in 25–37\% of patients with clinical and endoscopic quiescent CD.

Since CD is characterised by transmural disease, endoscopic and histological mucosal evaluations are not able to actually determine ‘deep’ remission in CD patients. Recent studies indicate that magnetic resonance enterography [MRE] can evaluate ulcer healing.
with a high level of accuracy compared with ileocolonoscopy. This method is, however, not routinely performed in all patients, is costly, and requires technical and analytical skills. Moreover, it has been recommended that the combination of mucosal and histological healing should be achieved as a minimum therapeutic target in IBD patients.

In order to investigate the diagnostic value of NGAL-MMP-9, we compared the levels between active UC and CD patients; however, we could not document a significant difference [Supplementary Figure 3]. Moreover, with ROC analysis we defined a higher cut-off value [97.7 ng/ml] in our UC cohort than in the present CD cohort [45 ng/ml]. This may be in part due to the fact that, in general, higher NGAL-MMP-9 levels were found in UC patients compared with CD patients. In addition, the cut-off values were chosen in order to identify as accurately as possible patients with mucosal healing. In the UC cohort, a high specificity of the test was chosen since levels higher than 97.7 were positively associated with no healing. In the present CD cohort, a high sensitivity was chosen since levels lower than 45 ng/ml were positively associated with complete mucosal healing.

Although NGAL and MMP-9 have been discussed separately as good markers of disease, our previous study in UC patients was the first to investigate the NGAL-MMP-9 complex as a surrogate serum marker of mucosal healing. Urinary NGAL-MMP-9 has been reported to predict paediatric IBD, and in cancer research NGAL-MMP-9 complex is a well-known biomarker.

In conclusion, we propose that serum NGAL-MMP-9 complex is a useful and recommended as a surrogate marker of endoscopic and histological mucosal healing after treatment with infliximab in both UC and CD patients. NGAL-MMP-9 complex hereby outperforms CRP and can be used as a single marker in patients without elevated CRP levels or in combination with CRP to discriminate mucosal healing. Prospective studies to evaluate this new marker are needed, and the efficacy of the marker to discriminate mucosal healing under other emerging gut-selective biological treatments [eg vedolizumab] should be investigated.

Funding

This work was supported by the Fund for Scientific Research of Flanders [FWO-Vlaanderen] [grant number: G077513N], the Agency for Innovation by Science and Technology [IWT, Belgium], the ‘Gecementeerde OnderzoeksActies’ [GOA 2013/14], and Janssen Biologics. IA is a postdoctoral fellow and SV, GVA, and MF are Senior Clinical Investigators of FWO-Vlaanderen. MdB is a PhD student funded by an IWT fellowship.

Conflict of Interest

SV reports following conflicts of interest: grant support, lecture fees, and consulting fees from Abbvie, Centocor, MSD, Takeda, Pfizer, Shire, Tillotts Pharma, Hospira, Munipharma, Genentech/NovoRoche. GVA reports fees or grant support from Abbvie, Janssen, and MSD. MF reports fees from MSD. Janssen, Abbvie, Ferring, Chiesi, Tillotts, and Zeria. PR received consultancy fees from Centocor, Merck, UCB, Abbvie, Millenium/Takeda, Genentech/Hoffman LaRoche, Merck/Serono, Bristol Myers Squibb, Robarts, Tillotts, Pfizer, and Falk Pharma, speaker’s fees from Centocor, Merck, and Abbvie, and research support from Abbvie, Centocor, and Merck. GDH received consultancy fees from Genentech, Centocor, and Galapagos. All other authors have no disclosures.

Acknowledgments

The authors would like to thank Vera Ballet for managing the VLECC database and biobank of IBD patients at the Leuven University Hospital.

Author Contributions

All authors made substantial contributions to the submitted work. MdB: conception and design of the study, acquisition, analysis and interpretation of data, and drafting of the manuscript; IA: conception and design of the study, acquisition and interpretation of data, and critical revision of the manuscript; GDE: conception and design of the study, acquisition and interpretation of data, and critical revision of the manuscript; MF: conception and design of the study, acquisition and interpretation of data, and critical revision of the manuscript; GVA: conception and design of the study, acquisition and interpretation of data, and critical revision of the manuscript; PR: conception and design of the study, acquisition and interpretation of data, and critical revision of the manuscript; SV: conception and design of the study, acquisition and interpretation of data, and drafting of the manuscript; GO: conception, design, and supervision of the study, acquisition and interpretation of data, and drafting of the manuscript. All authors had access to the study data and reviewed and approved the final manuscript. No external writing assistance was provided.

Supplementary Data

Supplementary data are available at ECCO-JCC online.

References

1. Molodecky NA, Soom IS, Rabí DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012;142:46–54.e42; quiz e30.
2. Marks DJ, Harbord MW, MacAllister R, et al. Defective acute inflammation in Crohn’s disease: a clinical investigation. Lancet 2006;367:668–78.
3. Segal AW, Loewi G. Neutrophil dysfunction in Crohn’s disease. Lancet 1976;2:219–21.
4. Ryan P, Kelly RG, Lee G, et al. Bacterial DNA within granulomas of patients with Crohn’s disease—detection by laser capture microdissection and PCR. Am J Gastroenterol 2004;99:1539–43.
5. James DG. A clinicopathological classification of granulomatous disorders. Postgrad Med J 2000;76:457–65.
6. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 1993;268:10425–32.
7. Kjeldsen L, Bainton DF, Sengelov H, Borregaard N. Identification of neutrophil gelatinase B-associated lipocalin as a novel matrix protein of specific granules in human neutrophils. Blood 1994;83:799–807.
8. Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestering iron. Nature 2004;432:917–21.
9. Chan YR, Liu JS, Pociask DA, et al. Lipocalin 2 is required for pulmonary host defense against Klebsiella infection. J Immunol 2008;182:4947–56.
10. Nielsen BS, Borregaard N, Bundgaard JR, Timshel S, Sehested M, Kjeldsen L. Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut 1996;38:414–20.
11. Manfredi MA, Zurakowski D, Rufo PA, Walker TR, Fox VL, Moses MA. Increased incidence of urinary matrix metalloproteinases as predictors of disease in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis 2008;14:1091–6.
12. Bolignano D, Della Torre A, Lacquaniti A, Costantino G, Fries W, Buemi M. Neutrophil gelatinase-associated lipocalin levels in patients with Crohn’s disease undergoing treatment with infliximab. J Investig Med 2010;58:569–71.
13. Oikonomou KA, Kapsoritakis AN, Theodoridou C, et al. Neutrophil gelatinase-associated lipocalin [NGAL] in inflammatory bowel disease: association with pathophysiology of inflammation, established markers, and disease activity. J Gastroenterol 2012;47:519–30.
14. Yesil A, Gonci E, Senates E, et al. Relationship between neutrophil gelatinase-associated lipocalin [NGAL] levels and inflammatory bowel disease type and activity. Dig Dis Sci 2013;58:2587–93.
15. Nielsen OH, Giovannetti P, Amsworth M, et al. Rectal dialysate and fecal concentrations of neutrophil gelatinase B-associated lipocalin, interference...
kin-8, and tumor necrosis factor-alpha in ulcerative colitis. *Am J Gastroenterol* 1999;94:2923–8.

16. Aris I, De Hertogh G, Lemaire K, et al. Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease. *PLoS One* 2009;4:e7984.

17. Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 [MMP-9]: the next decade. *Grit Rev Biochem Mol Biol* 2013;48:222–72.

18. Liu H, Patel NR, Walter L, Ingersoll S, Sitaraman SV, Garg P. Constitutive expression of MMP9 in intestinal epithelium worsens murine acute colitis and is associated with increased levels of proinflammatory cytokine KC. *Am J Physiol Gastrointest Liver Physiol* 2013;304:G793–803.

19. Kolho KL, Sipponen T, Valtonen E, Savilathi E. Fecal calprotectin, MMP-9, and human beta-defensin-2 levels in pediatric inflammatory bowel disease. *Int J Colorectal Dis* 2014;29:43–50.

20. Koelink P, Overbeek SA, Braber S, et al. Collagen degradation and neutrophil infiltration: a vicious circle in inflammatory bowel disease. *Gut* 2014;63:578–87.

21. Bailey CJ, Hembry RM, Alexander A, Irving MH, Grant ME, Shuttleworth CA. Distribution of the matrix metalloproteinases stromelysin, gelatinases A and B, and collagenase in Crohn's disease and normal intestine. *J Clin Pathol* 1994;47:113–6.

22. Kofla-Dlubacz A, Matusiewicz M, Kresziek E, Noga L, Iwanczak B. Metalloproteinase-3 and -9 as novel markers in the evaluation of ulcerative colitis activity in children. *Adv Clin Exp Med* 2014;23:103–10.

23. Lakatos G, Hritz I, Varga MZ, et al. The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. *Dig Dis* 2012;30:289–95.

24. Makitalo L, Rintamaki H, Tervaharttala T, Sorsa T, Kolho KL. Serum MMPs 7–9 and their inhibitors during glucocorticoid and anti-TNF-alpha therapy in pediatric inflammatory bowel disease. *Scand J Gastroenterol* 2012;47:785–9.

25. von Lampe B, Barthel B, Coupland SE, Riecken EO, Rosewicz S. Differential expression of matrix metalloproteinases and their tissue inhibitors in colon mucosa of patients with inflammatory bowel disease. *Gut* 2000;47:63–73.

26. Ravi A, Garg P, Sitaraman SV. Matrix metalloproteinases in inflammatory bowel disease: boon or a bane? *Am J Baxwell 2007;13:97–107.

27. Faubion WA Jr, Fletcher JG, O’Byrne S, et al. Emergeing BiomARKers in Inflammatory Bowel Disease [EMBARK] study identifies fecal calprotectin, serum MMP9, and serum IL-22 as a novel combination of biomarkers for Crohn’s disease activity: role of cross-sectional imaging. *Am J Gastroenterol* 2013;108:1891–900.

28. Sela-Passwell N, Kikkeri R, Dym O, et al. Antibodies targeting the catalytic zinc complex of activated matrix metalloproteinases show therapeutic potential. *Nat Med* 2011;18:143–7.

29. Kubbun FJ, Sef CF, Hawinkels LJ, et al. Clinical evidence for a protective role of lipocalin-2 against MMP-9 autodegradation and the impact for gastric cancer. *Eur J Cancer* 2007;43:1869–76.

30. Geboes K, Rutgeerts P, Opdenakker G, et al. Endoscopic and histologic evidence of persistent mucosal healing and correlation with clinical improvement following sustained infliximab treatment for Crohn’s disease. *Curt Med Res Opin* 2005;21:1741–54.

31. Gao Q, Meijer MJ, Schluter UC, et al. Infliximab treatment influences the serological expression of matrix metalloproteinase [MMP]-2 and -9 in Crohn’s disease. *Inflamm Bowel Dis* 2013;19:693–702.

32. de Bruyn M, Aris I, Wollants WJ, et al. Neutrophil gelatinase B-associated lipocalin and matrix metalloproteinase-9 complex as a surrogate serum marker of mucosal healing in ulcerative colitis. *Inflamm Bowel Dis* 2014;20:1198–207.

33. Jurgens M, Mahachie John JM, Cleynen I, et al. Levels of C-reactive protein are associated with response to infliximab therapy in patients with Crohn’s disease. *Clin Gastroenterol Hepatol* 2011;9:421–7.e421.

34. D’Haens GR, Geboes K, Peeters M, Baert F, Penninckx F, Rutgeerts P. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. *Gastroenterology* 1999;114:262–7.

35. Lewis JD. The utility of biomarkers in the diagnosis and therapy of inflammatory bowel disease. *Gastroenterology* 2011;140:1817–26.e1812.

36. D’Haens G, Ferrante M, Vermeire S, et al. Fecal calprotectin is a surrogate marker for endoscopic lesions in inflammatory bowel disease. *Inflamm Bowel Dis* 2012;18:2218–24.

37. Geese KB, Brandse JF, van Wilpe S, et al. Impact of disease location on fecal calprotectin levels in Crohn’s disease. *Scand J Gastroenterol* 2015;1–7.

38. Louis E. Fecal calprotectin: towards a standardized use for inflammatory bowel disease management in routine practice. *J Crohns Colitis* 2015;9:1–3.

39. Annahazi A, Molnar T, Farkas K, et al. Fecal MMP-9: A New Noninvasive Differential Diagnostic and Activity Marker in Ulcerative Colitis. *Inflamm Bowel Dis* 2013;19:316–20.

40. Farkas K, Sarodi Z, Balint A, et al. The diagnostic value of a new fecal marker, matrix metalloproteinase-9, in different types of inflammatory bowel diseases. *J Crohns Colitis* 2015;9:231–7.

41. Lemmens B, Aris I, Van Assche G, et al. Correlation between the endoscopic and histologic score in assessing the activity of ulcerative colitis. *Inflamm Bowel Dis* 2013;19:1194–201.

42. Rosenberg L, Nanda KS, Zenlea T, et al. Histologic markers of inflammation in patients with ulcerative colitis in clinical remission. *Clin Gastroenterol Hepatol* 2013;11:991–6.

43. Bryant RV, Winer S, Travis SP, Raddell RH. Systematic review: histological remission in inflammatory bowel disease. Is ‘complete’ remission the new treatment paradigm? An IOIBD initiative. *J Crohns Colitis* 2014;8:1582–97.

44. D’Haens GR, Fedorak R, Lemann M, et al. Endpoints for clinical trials evaluating disease modification and structural damage in adults with Crohn’s disease. *Inflamm Bowel Dis* 2009;15:1599–604.

45. Molander P, Sipponen T, Kemppainen H, et al. Achievement of deep remisssion during scheduled maintenance therapy with TNF alpha-blocking agents in BD. *J Crohns Colitis* 2013;7:730–5.

46. Korelitz BI, Sommers SC. Response to drug therapy in Crohn’s disease: evaluation by rectal biopsy and mucosal cell counts. *J Clin Gastroenterol* 1984;6:123–7.

47. Ordas I, Rimola J, Rodriguez S, et al. Accuracy of magnetic resonance enterography in assessing response to therapy and mucosal healing in patients with Crohn’s disease. *Gastroenterology* 2014;146:374–82.e371.

48. Pineton de Chambrun G, Peyrin-Biroulet L, Lemann M, Colombel JF. Clinical implications of mucosal healing for the management of IBD. *Nat Rev Gastroenterol Hepatol* 2010;7:15–29.

49. Yan L, Borregaard N, Kjeldsen L, Moses MA. The high molecular weight urinary matrix metalloproteinase [MMP] activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin [NGAL]. *Modulation of MMP-9 activity by NGAL. J Biol Chem* 2001;276:37258–65.

50. Bolignano D, Donato V, Lacquaniti A, et al. Neutrophil gelatinase-associated lipocalin [NGAL] expression is dependent on the tumor-associated sigma-2 receptor S2RPgrmc1. *J Biol Chem* 2012;287:14494–501.