Hemiaustroboletus, a new genus in the subfamily Austroboletoideae (Boletaceae, Boletales)

Olivia Ayala-Vásquez¹, Jesús García-Jiménez¹, Elvira Aguirre-Acosta², Rigoberto Castro-Rivera³, Rodolfo Enrique Ángeles-Argáiz², Ángel Emmanuel Saldivar⁴, Roberto Garibay-Orijel²

¹ Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Victoria, Blvd. Emilio Portes Gil #1301 Pte., Ciudad Victoria, Tamaulipas, CP 87010, Mexico ² Instituto de Biología, Universidad Nacional Autónoma de México, Circuito exterior s/n Ciudad Universitaria, Ciudad de México, CP 04510, Mexico ³ CIBA, Instituto Politécnico Nacional, Tlaxcala, CP 90700, Mexico ⁴ Departamento de Botánica y Zoología, Universidad de Guadalajara, Zapopan, Jalisco, CP 45101, Mexico

Corresponding author: Roberto Garibay-Orijel (rgaribay@ib.unam.mx)

Academic editor: Olivier Raspé | Received 4 September 2021 | Accepted 9 March 2022 | Published 30 March 2022

Citation: Ayala-Vásquez O, García-Jiménez J, Aguirre-Acosta E, Castro-Rivera R, Ángeles-Argáiz RE, Saldivar AE, Garibay-Orijel R (2022) Hemiaustroboletus, a new genus in the subfamily Austroboletoideae (Boletaceae, Boletales). MycoKeys 88: 55–78. https://doi.org/10.3897/mycokeys.88.73951

Abstract
The present study describes Hemiaustroboletus gen. nov. in the subfamily Austroboletoideae (Boletaceae). Hemiaustroboletus is supported by morphological and molecular data using LSU and RPB2 regions. Additionally, its geographic distribution and intraspecific variation were inferred using ITS sequences. The genus is characterised by pileate-stipitate basidiomata; purple, brown, reddish-brown, orange-brown to dark brown vinaceous pileus; whitish or lilac to vinaceous context and a subclavate stipe. Microscopically, it is characterised by ornamented, slightly verrucose, cracked to perforated brown basidiospores. Two species are described within the genus, Hemiaustroboletus vinaceobrunneus sp. nov. and H. vinaceus sp. nov. Hemiaustroboletus vinaceus sp. nov. is morphologically similar to Austroboletus gracilis, which suggests they may have been confused in the past. This study presents the phylogenetic placement, microscopic structures, detailed morphological descriptions and illustrations of both new species.

Keywords
Mexico, mycodiversity, neotropics, new taxa
Introduction

Boletaceae is the most diverse family within the Boletales; it has a wide distribution in both temperate and tropical regions (Binder and Hibbett 2006; Wu et al. 2014). Most species of this family are ectomycorrhizal with members of Betulaceae, Casuarinaceae, Dipterocarpaceae, Ericaceae, Fabaceae, Fagaceae, Mimosaceae, Myrtaceae, Pinaceae, Polygonaceae, and Salicaceae (Tedersoo et al. 2010; Smith et al. 2013; Wu et al. 2016). Currently, 98 genera are recognised in this family (He et al. 2019; Vadthanarat et al. 2019; Hosen and Yang 2021). Its members are characterised by fleshy, epigeous pileate-stipitate basidiomata or hypogeous to subhypogeous gastroid basidiomata, with tubular or lamellar hymenophore; elliptical, cylindrical, fusoid, subfusoid, ovoid, subglobose to globose, smooth or ornamented basidiospores; spore ornamentation ranging from striated, reticulate, echinulate, to verrucose to smooth (Singer et al. 1991; Halling et al. 2015; Ayala-Vásquez et al. 2018).

Wu et al. (2014) proposed six subfamilies for Boletaceae, of which Austroboletoideae includes *Austroboletus* (Corner) Wolfe, *Fistulinella* Henn., *Mucilopilus* Wolfe and *Veloporphyrellus* L.D. Gómez & Singer, with *Austroboletus* as the type genus. This subfamily is distinguished by pileate-stipitate basidiomes; smooth, furfuraceous, tomentose, dry or viscous pileus, with or without a marginal veil and whitish context that does not change colour when cut. The hymenophore is tubular, whitish or pink with purple tinge, immutable or rarely brown when cut. The stipe is smooth, reticulate or squamose with a whitish basal mycelium. The basidiospores are smooth or ornamented, perforated, verrucose to smooth, grey-violet, yellowish, yellow brown, ochraceous in potassium hydroxide (KOH) and yellow-brown, yellow-cinnamon to ochraceous in Melzer’s reagent. The pileipellis is formed by a trichoderm or ixotrichoderm. The hymenophoral trama is boletoid. Austroboletoideae species are mainly associated with Fagaceae and Pinaceae hosts in temperate, subtropical to tropical regions.

In recent years, various authors (Wu et al. 2014; Wu et al. 2016; Gelardi et al. 2020; Kuo and Ortiz-Santana 2020) have recognised the polyphyly of *Austroboletus*, which is divided into the *Austroboletus* s.s., *Austroboletus* s.l. and the *A. gracilis* s.l. independent clades. This study focuses on the phylogenetic placement and taxonomy of the *A. gracilis* s.l. clade, placing it in the new genus *Hemiaustroboletus* with two new species, *Hemiaustroboletus vinaceobrunneus* and *H. vinaceus*.

Materials and methods

To resolve the systematics and taxonomy of the new genus *Hemiaustroboletus*, we conducted an exhaustive sampling of an area with high bolete diversity according to García-Jiménez et al. (2013). The sampling was carried out over the last 10 years including the different biogeographic areas of Mexico: Nearctic, Neovolcanic Axis and Neotropic. The collection trips were conducted in the States of Chiapas, Chihuahua,
Hemiaustroboletus, new genus with two new species

Estado de Mexico, Jalisco, Michoacan and Oaxaca, in six vegetation types in temperate and subtropical forests during the rainy season from June to October from 2010 to 2019. The samples were characterised at macro- and micromorphological level and three genetic markers were sequenced and analysed.

Morphological study

Morphological characters were described according to Largent (1986) and Lodge et al. (2004). Chemical reactions with KOH and ammonium hydroxide (NH₄OH) were characterised. Photographs of basidiomata were taken in situ, as well as data on the botanical composition of the sites. The colours for taxonomic descriptions were based on Kornerup and Wanscher (1978). Microscopic characters of 30 basidiospores, basidia, pleurocystidia, cheilocystidia, pileipellis cells and stipitipellis were measured by optical microscopy (Carl Zeiss GmbH 37081, Germany). The Q index (length/width) was estimated for the basidiospores. Ornamentation of basidiospores was observed by scanning electron microscopy (SEM) (Hitachi Su 1510, Hitachi, Japan). The specimens were deposited at the “Herbario Nacional de México” of the “Instituto de Biología, Universidad Nacional Autónoma de México” (MEXU), at the “Herbario José Castillo Tovar del Tecnológico de Ciudad Victoria” (ITCV) and at the “Herbario del Instituto de Botánica, Universidad de Guadalajara” (IBUG).

DNA Extraction, PCR and Sequencing

Samples of dehydrated basidiomata were used for DNA extraction. The DNA was extracted using the DNeasy Power-Soil kit (QIAGEN). Cell lysis was performed by grinding samples in mortar with liquid nitrogen. Three nuclear loci (ITS, LSU and RPB2) were amplified with Platinum Taq DNA Polymerase (Invitrogen-Thermo Fisher Scientific) and Taq & Load PCR Mastermix (MP Biomedicals) in a thermocycler (BIO-RAD). The PCR parameters were as follows: 95 °C initial denaturation for 4 min; 35 cycles of denaturation at 94 °C for 60 s, alignment at 54 °C for 60 s, extension at 72 °C for 60 s and a final extension at 72 °C for 10 min. The primers ITS1/ITS4 (White et al. 1990) were used for the ITS region; LROR/LR5 (Vilgalys and Hester 1990) for LSU; and RPB2-B-F2/RPB2-B-R (Wu et al. 2014) for the partial RPB2 gene. The amplification was examined by 1% agarose gel electrophoresis; gels were stained with GelRed (Biotium) and observed under an UVP Multidoc-It transilluminator (Analytikjena). Only PCR products generated with Taq-Platinum required LB loading buffer. PCR products with successful amplification were cleaned with ExoSAP-IT (Thermo Fisher Scientific) diluted 1:1 with ddH₂O and incubated at 37 °C for 45 min and 80 °C for 15 min. Sanger sequencing was performed at the “Laboratorio de secuenciación genómica de la biodiversidad y la salud, Instituto de Biología, Universidad Nacional Autónoma de México”. Samples were sequenced in both directions with PCR primers using BigDye Terminator v.3.1 (Thermo Fisher Scientific).
Phylogenetic analyses

Hemiaustroboletus species produce scarce fruit bodies; from 606 Boletales specimens collected, just eight (1.32%) belonged to this genus. Three materials corresponded to H. vinaceus, four to H. vinaceobrunneus and two were determined as Hemiaustroboletus sp. The three loci of the holotype of H. vinaceus (IBUG-AES334) and one more collection (ITCV-AV524, MEXU-30103) were sequenced; we only recovered ITS and RPB2 loci from a third specimen (IBUG-AES364) (Table 1). The three loci of the holotype of H. vinaceobrunneus (ITCV-AV868, MEXU-30051) and one additional material (ITCV-AV845, MEXU-30052) were sequenced; only the ITS and RPB2 loci were sequenced for a third collection (ITCV-AV1168, MEXU-30053). ITS locus was also sequenced for one Hemiaustroboletus sp. collection (ITCV-AK_3508) (Table 1).

We conducted two sets of phylogenetic analyses, the first one to reconstruct the phylogenetic relationships of Hemiaustroboletus gen. nov. and the second one to complement its taxonomic concept with biogeographic and ecological information. The first analysis used the LSU and RPB2 markers in a concatenated matrix, while the second used ITS in order to leverage GenBank data.

Individual LSU and RPB2 alignments were concatenated into a single matrix (83 taxa, 1335 characters) with GENEIOUS PRIME V.2019.0.4 (Biomatters Ltd). Alignments and concatenation were performed with the MAFFT algorithm (Katoh et al. 2002) using GENEIOUS PRIME V.2019.0.4. Sequences representing the subfamilies Austroboletoideae, Boletoideae and Xerocomoideae came from: 83 LSU sequences, 56 rpb2 sequences, 30 ITS sequences from published works and unpublished sequences available in GenBank (Table 1).

The best-fit evolutionary model was estimated with JMODELTEST 2 (Darriba et al. 2012) using CIPRES SCIENCE GATEWAY V. 3.3 (Miller et al. 2010) for each marker separately. For all three markers, the best model was GTR+G+I. We used the LSU-RPB2 dataset to make evolutionary inferences within Austroboletoideae and the ITS dataset to make biogeographic/ecological inferences for Hemiaustroboletus.

The phylogenetic hypotheses (LSU-RPB2) were constructed with Bayesian Inference (BI) and Maximum Likelihood (ML) on a partitioned alignment with same evolutionary model for both markers. Bayesian posterior probability phylogeny was performed using MrBayes algorithm (Ronquist et al. 2012) using two separate Monte Carlo four chains starting from random trees for 10 million generations each (final standard deviation ± 0.224), trees were sampled every 100 generations. The first 25% of samples were discarded as burn-in. ML analyses were performed using the RAxML algorithm (Stamatakis 2014) with 1000 bootstrap replicates. For both analyses, members of subfamilies Boletoideae and Xerocomoideae were used as outgroup. The second analysis (ITS) was performed with the same parameters including Veloporphyrellus and Austroboletus without outgroup. The resulting phylogenetic trees were edited with FIGTREE V.1.4.3 (Rambaut 2009).

Average intrageneric and intergeneric nucleotide similarities between the genera within Austroboletoideae were obtained separately for RPB2, LSU and ITS alignments.
as follows. For each alignment a nucleotide similarity matrix was computed in GENEIOUS 10.2.6 (Biomatters Ltd). Sequences belonging to genera outside Austroboletoidae were removed and then the mean nucleotide similarity was calculated amongst all pairwise comparisons between sequences of each pair of genera.

Taxa	Voucher	Country	ITS	LSU	RPB2	Reference
Austroboletus betula	MEXU:29006	USA	MK601736	MK766298		Kuo and Ortiz-Santana (2020)
A. garciae	1839, AMV	Colombia	KF937307	KF714508		Vasco-Palacios et al. (2014)
A. amazonicus	1914, AMV	Colombia	KF937308	KF714509		Vasco-Palacios et al. (2014)
A. austrovirens	BRI:AQ0795791	Australia	KP242211	KP242225	KP242133	Fechner et al. (2017)
A. austrovirens	BRI:AQ0794622	Australia	KP242210			Fechner et al. (2017)
A. austrovirens	MEL:2382920a	Australia	KP242284	KP242113		Fechner et al. (2017)
A. austrovirens	BRI:AQ0794609	Australia	KP242226	KP242131		Fechner et al. (2017)
A. austrovirens	BRI:AQ0794171	Australia	KP242227	KP242133		Fechner et al. (2017)
A. eburneus	REH9487	Australia	JX889668			Vasco-Palacios et al. (2014)
A. dicrytopus	HKAS59804	China	JX901138			Hosen et al. (2013)
A. fusisporus	HKAS75207	China	JX889719	JX889720		Hosen et al. (2013)
A. fusisporus	JXS0351	China	MK765810			GenBank
A. gracilis	112-96	USA	DQ534624			Binder and Hibbett (2006)
A. gracilis	TM03_434	Canada	EU522815			Porter et al. (2008)
A. gracilis var. gracilis	CFMR BOS-547	USA	MK601715	MK766277		Kuo and Ortiz-Santana (2020)
A. gracilis var. flavipes	CFMR BOS-562	USA	MK601714			Kuo and Ortiz-Santana (2020)
A. gracilis	ACAD11344F	Canada	MH465078			Young et al. (2019)
A. gracilis	SFC2014823-02	South Korea	MN794901			GenBank
A. gracilis	NAMA 2017-106	USA	MH79242			GenBank
A. gracilis	310751	México	MH167935			GenBank
A. gracilis	CNV35	USA	MT345212			Victoroff (2020)
A. cf. gracilis	JLF6600	USA	MN174796			GenBank
A. lacunosus	REH9146	Australia	JX889669			Vasco-Palacios et al. (2014)
A. lacunosus	MEL2233764	Australia	KC552056			GenBank
A. mucous	TH6300	Guyana	AY612798			Drehmel et al. (2008)
A. mutabilis	BRI:AQ0795793	Australia	KP242169	KP242263	KP242098	Fechner et al. (2017)
A. mutabilis	BRI:AQ0669270	Australia	KP242266	KP242097		Fechner et al. (2017)
A. mutabilis	BRI:AQ0796266	Australia	KP242262	KP242099		Fechner et al. (2017)
A. niveus	312	New Zealand	DQ534622			Binder and Hibbett (2006)
A. niveus	MEL2053830	Australia	KC552016	KC552058		Orithara et al. (2016)
A. novae-zelandiae	PDD:72542	New Zealand	HM060327			GenBank
A. rarus	BRI:AQ0794045	Australia	KP242197	KP242236	KP242086	Fechner et al. (2017)
A. rostrupii	TH8189	Guyana	JN168683			Smith et al. (2011)
Austroboletus sp.	BRI:AQ0794156	Australia	KP242235	KP242115		GenBank
Austroboletus sp.	BRI:AQ0794222	Australia	KP242234	KP242106		GenBank
Austroboletus sp.	BRI:AQ0794271	Australia	KP242259	KP242102		GenBank
Austroboletus sp.	HKAS 57756	China	KF112383	KF112764		Wu et al. (2014)
Austroboletus sp.	HKAS 59624	China	KF112485	KF112765		Wu et al. (2014)
Austroboletus sp.	HKAS 74743	China	KT990527	KT990367		Wu et al. (2014)
Austroboletus sp.	PERTH6658407	Australia	KP242277	KP242126		GenBank
Austroboletus sp.	BRI:AQ0794242	Australia	KP242087			GenBank
Austroboletus sp.	OR0891	Thailand	MH614753			Vadhthanarat et al. (2019)
Taxa	Voucher	Country	ITS	LSU	RPB2	Reference
-------------------------	------------	----------	------	-------	----------	--------------------------------
Austroboletus sp.	OTA-FUNNZ	New Zealand				GenBank
A. subflavidus	JBSD130771	Dominican Republic	MT580902	MT590754	Gelardi et al. (2020)	
A. subflavidus	JBSD130722	Dominican Republic	MT580903	MT590755	Gelardi et al. (2020)	
A. subflavidus	CFMR-BZ-3178	Belize	MK601716	MK766278	Kuo and Ortiz-Santana (2020)	
A. subflavidus	KPM-NC-001783	Japan	JN378518		Oritara et al. (2012)	
A. viscidoviridis	Perth 758862	Australia	KP242282	KP242128	Fechner et al. (2017)	
Boletellus indistinctus	HKAS77623	China	KT990531	KT990371	Wu et al. (2016)	
Boletellus sp.	HKAS80554	USA	KT990535	KT990374	Wu et al. (2016)	
Boletus harrisonii	MIC: KUO-09071204	USA	MK601718	MK766280	Kuo and Ortiz-Santana (2020)	
Boletus sp.	dd08055	China	FJ810161			
Boletus sp.	MHM165	Mexico	EU569243		Morris et al. (2008)	
Boletales sp.	B0229	Canada	KY825985			
Fistulinella campinaratae var. scrobiculata	AMV1980	Colombia	KF714520		Vasco-Palacios et al. (2014)	
F. gloeocarpa	JBSD130769	Dominican Republic	MT580906	MT590756	Gelardi et al. (2020)	
F. gloeocarpa	CFMR-B4	Bahamas	MT580904		Gelardi et al. (2020)	
F. gloeocarpa	CFMR-B10	Bahamas	MT580905		Gelardi et al. (2020)	
F. prunicolor	REH9502	Australia	JX889648	MG212630	Halling et al. (2012)	
F. Olivaceoalba	HKAS 53432	Vietnam	MH745969		GenBank	
F. Olivaceoalba	LE312004	Vietnam	MH718396		GenBank	
F. ruschi	CORT:TJ8-329	USA	MT580907		Gelardi et al. (2020)	
F. viscida	238 2S	New Zealand	AF456826		Vasco-Palacios et al. (2014)	
F. cinereoaalba	TH8471	Guyana	GQ477439	KT339237	GenBank	
Hemiaustroboletus vinaceobrunneus	MEXU_30051	Mexico	MN178797	MN200222	MT887617	This study
H. vinaceobrunneus	MEXU_30052	Mexico	MN178798	MN200223	MT887618	This study
H. vinaceobrunneus	MEXU_30053	Mexico	MN178799	MT887619	This study	
H. vinaceobrunneus	AV524	Paratype	MN178802	MN200225	MT887622	This study
H. vinaceus	AES334	Holotype	MN178800	MN200224	MT887620	This study
H. vinaceus	AES364	Isotype	MN178801	MT887621	This study	
Hemiaustroboletus sp.	AK3508	Mexico	MN178803		This study	
Hemsieccinum subglabripes	MIC: KOU-08301402	USA	MK601739	MK766301	Kuo and Ortiz-Santana (2020)	
Hortiboletus rubellus	MIC: KOU-06081002	USA	MK601741	MK766303	Kuo and Ortiz-Santana (2020)	
H. amygdalinus	HKAS54166	China	KT990581	KT990416	Wu et al. (2016)	
Houtzangia chevi	Tang572	China	KP136953	KP136985	Zhu et al. (2015)	
Imleria badia	MIC: KOU-09110404	USA	MK601743	MK766305	Kuo and Ortiz-Santana (2020)	
Mucidopus castaneiceps	HKAS 75045	China	KT990697	KT990502	Wu et al. (2016)	
M. castaneiceps	HKAS50338	China	KT990555	KT990391	Wu et al. (2016)	
M. Castaneiceps	HKAS71039	China	KT990547	KT990385	Wu et al. (2016)	
Paresteroomus pseudoobii	HKAS 80480	China	KP658468	KP658470	Wu et al. (2016)	
Porphyrillus castaneus	HKAS52554	China	KT990697	KT990502	Wu et al. (2016)	
P. porphyrosporus	MB97-023	Germany	DQ534643	GU187800	Binder and Hibbett (2006)	
P. orientifumosipes	HKAS53372	China	KT990629	KT990461	Wu et al. (2016)	
Tengioboletus sp.	HKAS 77869	China	KT990658	KT990483	Wu et al. (2016)	
Hemiaustroboletus, new genus with two new species

Taxa	Voucher	Country	ITS	LSU	RPB2	Reference
Strobilomyces confusus	CFMR:DR-3024	Dominican Republic	MK601809	MK766365	Kuo and Ortiz-Santana (2020)	
Tylopilus felleus	CFMR: BOS-780	USA	MK601814	MK766370	Kuo and Ortiz-Santana (2020)	
T. sordidus	MICH: KUO-06240801	USA	MK601815	MK766371	Kuo and Ortiz-Santana (2020)	
Tylopilus sp.	HKAS 50229	China	KF112423	KF112734	Wu et al. (2014)	
Uncultured mycorrhizal	BOLETE1	USA	AY656925		Walker et al. (2005)	
Uncultured mycorrhizal	clon N_1	South Korea	AB571507		Obase et al. (2012)	
Uncultured Boletus	isolate: YM490	Japan	LC175482		Miyamoto et al. (2018)	
Uncultured Boletus	Clon ZE2	China	GU391428		Ma et al. (2010)	
Veloporphyrellus alpinus	KUN:HKAS68301	China	JX984537		Li et al. (2014)	
V. pseudovelatus	KUN: HKAS599444	China	JX984542		Li et al. (2014)	
V. pseudovelatus	KUN:HKAS52244	China	JX984531		Li et al. (2014)	
V. conicus	CFMR: BZ1670	Belize	JX984543		Li et al. (2014)	
V. conicus	CFMR: BZ1705	Belize	JX984544		Li et al. (2014)	
V. pantoreus	F:Gomez21232	Costa Rica	JX984548		Li et al. (2014)	
V. velatus	KUN:HKAS63668	China	JX984546		Li et al. (2014)	
V. aff. velatus	HKAS 57490	China	KF112380	KF112733	Wu et al. (2014)	
V. vulpinus	LE315544	Vietnam	MN511177	MN511170	GenBank	
V. vulpinus	LE315549	Vietnam	MN511180		GenBank	
V. vulpinus	LE315546	Vietnam	MN511179		GenBank	
V. vulpinus	Vietnam	MN511178			GenBank	
Xerocomellus chrysenteron	HKAS:56494	China	KF112357	KF112685	Wu et al. (2014)	

Results

Phylogenetic analyses of LSU-RPB2 concatenated alignment showed that *Hemiaustroboletus* is a supported monophyletic group, belonging to the Austroboletoideae (BPP = 0.98, MLB = 47%). Additionally, *H. vinaceobrunneus* (BPP = 1, MLB = 100%) and *H. vinaceus* (BPP = 1, MLB = 96%) were supported monophyletic species (Fig. 1). The ITS analyses showed that *Hemiaustroboletus* forms ectomycorrhizae with Fagaceae, particularly *Quercus* and also with *Pinus* in temperate, subtropical and tropical forests. It distributes in North America (Mexico, USA and Canada) and Asia (China, Japan and Korea) (Fig. 2). These analyses also showed that *Austroboletus gracilis* s.l. is a widely-used name mainly applied to designate *Hemiaustroboletus* species.

Taxonomy

Hemiaustroboletus Ayala-Vásquez, García-Jiménez & Garibay-Orijel, gen. nov.
MycoBank No: 838460

Diagnosis. *Hemiaustroboletus* is characterised by small and medium basidiomata with slightly ornamented pileus surface, stipe fibrillose to striated without veil, slightly verrucose or cracked to pitted basidiospores and pileipellis formed by an ixotrichoderm or trichoderm.
Figure 1. Phylogenetic placement of *Hemiaustroboletus* gen. nov. in the Austroboletoideae subfamily (Boletaceae) using LSU and RPB2 markers in a concatenated and partitioned matrix. The tree shows the topology of Bayesian analysis, with both MLB (≥ 70%) and BPP (≥ 0.7) clade support given. New genera and new species are indicated in the rectangles; taxa and/or branches in purple correspond to *Hemiaustroboletus* gen. nov.; remaining Austroboletoideae (blue); Boletoideae (green); Xerocomoideae (mustard). Background colours correspond to subfamilies; grey bars correspond to families.
Hemiaustroboletus, new genus with two new species

Figure 2. Phylogenetic tree of Hemiaustroboletus displaying geographic distribution using voucher and environmental ITS nrDNA sequences. The tree shows the topology of Bayesian analysis, with both MLB (≥ 70%) and BPP (≥ 0.7) clade support given. Taxa and branches in purple correspond to Hemiaustroboletus gen. nov. and those in blue to Veloporphyrellus and Austroboletus.
Etymology. From the Latin *hemi* “almost or half”, *Austroboletus* the generic epithet refers to the morphological affinities with this genus.

Generic type. *Hemiaustroboletus vinaceobrunneus* Ayala-Vásquez, García-Jiménez & Garibay-Orijel sp. nov.

Generic Description. Epigeous, stipitate-pileate basidiomata. *Pileus* reddish-brown, violet-brown, dark violet, reddish-brown, orange-brown, yellow-brown, cinnamon, dry surface, finely velvety, velutinous, rivulose, granular-tomentose, minutely areolate. *Hymenophore* tubular, circular to angular pores, whitish, pink-purple, lilac, magenta-grey, brown-violet to pinkish-brown, with or without change brown when cut. *Context* whitish to pale red. *Stipe* subclavate, tomentose, pruinose, granular furfuraceous, striate surface, longitudinally fibrous, very finely reticulated in tapering towards apex. Whitish basal mycelium. *Basidiospores* ornamented, slightly verrucose, cracked to pits, fusoid, oval-elliptical, cylindrical to subfusoid, oblong, ovoid-oblong. *Cystidia* clavate, sphaeropedunculate, subfusoid. *Pileipellis* an ixotrichoderm or trichoderm; terminal cells cylindrical, fusoid, ventricose-rostrate with or without encrustations in the wall. *Caulocystidia* fusoid, cylindrical to subclavate and tetrasporic caulobasidia.

Distribution. Canada, China, Japan, Mexico, South Korea and United States.

Ecology. Temperate and subtropical forests, with conifers and broadleaf trees (*Abies* spp., *Quercus* spp., *Pinus* spp.) from 2000 to 3000 m alt.

Hemiaustroboletus vinaceobrunneus Ayala-Vásquez, García-Jiménez & Garibay-Orijel, sp. nov.

MycoBank No: 838461

Figs 3, 4, 5B, D

Diagnosis. Pileus vinaceous to brown, pores whitish to pinkish at maturity, vinaceous context; longitudinally fribrillose stipe; basidiospores (10) 11–17 (–21) × 4–5 (–7) µm, slightly verrucose to cracked, fusoid to cylindrical; pleurocystidia ventricose-rostrate to fusoid, cheilocystidia sphaeropedunculate.

Holotype. Mexico. Oaxaca State, Santa Catarina Ixtepeji Municipality, La Cumbré Town, Peña Prieta site, 17°11’11.34"N, 96°38’00"W (DMS), 2800 m alt., 19 July 2017, Ayala-Vásquez (MEXU-30051; isotype ITCV-AV868).

Etymology. The name refers to the colour of the pileus, from the Latin “*vinosus*” vinaceous when young and “*brunneus*” brown when mature.

Description. Basidiomata stipitate-pileate. *Pileus* 36–40 mm diameter, convex when young becoming plano-convex, reddish-vinaceous (13B6) when young, orange brown (7C8), reddish-brown (8D8–8E8) to dark brown (7F8) with some ruby tones (12E8) at maturity, dry surface, subtomentose, rivulous to areolate, whitish context, de-curved margin. *Hymenophore* slightly depressed around the stipe to subadnate, pores 1–1.2 mm diameter, circular to subangular, whitish when young, pink to red-whitish (11A3–11A2) at maturity, tubes 6 mm length, of pores concolorous, unchanging when
Hemiaustroboletus, new genus with two new species

Context 4–8 mm thick, whitish, with some shades of pale red, vinaceous at the edge of the pileus and at the apex of the stipe at maturity. **Stipe** 45–65 × 8–10 mm, subclavate, reddish-vinaceous (13B6), orange-brown (7C8) to brown (7D8 -7E8) at the apex and part of the base, orange in the middle area (6B8) to orange-brown (6C8), rest of the base whitish; surface furfuraceous, longitudinally fibrillose. Whitish mycelium. **Chemical reactions** pileus negative in KOH, the context and the hymenophore slightly become pale violet (16A2) and the stipe becomes pale brown (6D4). When ammonium hydroxide (NH₄OH) is applied, the pileus becomes brown-violet (11F8-11F7), the hymenophore and context pale orange (5A2) and the stipe pale violet (16A2).

Basidiospores 10–15 (–20) × 4–5 (–7) µm, X = 14.04 × 4.96 µm, std = 3.46 × 0.99 µm, (n = 30, Q = (2.2) 2.4–2.5 (2.8), (holotype); (10–) 11–15 (–21) × 4.5–7 (–8) µm, X = 13.78 × 6.07 µm, std = 3.74 × 1.3 µm, Q = (2.2) 2.4–2.6 (2.8) (paratype MEXU-30052); (10–) 11–15 (–17) × (4–) 4.5–5.5 (–6) µm,

Figure 3. Hemiaustroboletus vinaceobrunneus A, C basidiomata (MEXU-30052 Holotype) B, D pileus (MEXU-30053, MEXU-30051, Isotype) E hymenophore (MEXU-30052 Holotype) F, G context (MEXU-30052 Holotype). Scale bar: 10 mm (A–G).
X = 13.15 × 4 µm, std = 2.62 × 0.64 µm, Q = (2.2) 2.6–2.9 (3) µm, (paratype ITCV-AV1121), cylindrical to subfusoid, slightly verrucose to cracked, brown-orange in KOH, inamyloid in Melzer’s reagent. **Basidia** 30–33 (–49) × 9–11 (–12) µm, clavate, hyaline in KOH, pale yellow in Melzer’s reagent, with granular content, tetrasporic. **Pleurocystidia** 31–45 × 8–11 µm, ventricose to fusoid, some mammillate, hyaline in KOH, yellowish in Melzer’s reagent, thick walled (1–1.5 µm). **Cheilocystidia** 42–70 (–86) × 9–15 (–17) µm, clavate with septa (1–2 µm thick), sphaeropedunculate, some mammillate, hyaline in KOH, yellowish in Melzer’s reagent, thick-walled (1–1.5 µm).

Figure 4. *Hemiaustroboletus vinaceobrunneus* (AV845-ITCV, MEXU-30052 Holotype) **A** basidiospores **B** basidia **C** pleurocystidia **D** cheilocystidia **E** pileipellis **F** caulocystidia. Scale bars: 10 µm (**A–F**).
Hemialastoletus, new genus with two new species

Hymenophoral trama boletoid; hyphae cylindrical 3–15 µm diameter, with gelatinous wall some with smooth walls, hyaline to yellowish in KOH and Melzer’s reagent. Pileipellis a trichoderm with terminal cells (22–) 35–75 (–105) × 8–14 (–21) µm, cylindrical to subclavate, hyaline in KOH, yellowish in Melzer’s reagent, embedded in a gelatinous substance and with visible contents in Melzer’s reagent, thick-walled (1–1.5 µm). Caulocystidia 20–64 (–140) × 6–14 (–16) µm, fusoid, cylindrical to sphaeropedunculate with one to two septa, hyaline to yellowish KOH with visible contents visible in Melzer’s reagent. Caulobasidia 25–30 × 7–8 µm tetraspore, concolorous with the caulocystidia. Clamp connections absent.

Habit and habitat. Solitary, in Abies guatemalensis, Pinus pseudostrobus and Quercus laurina mixed forest, putatively associated with Quercus laurina, from 2800 to 3000 m alt.

Known distribution. Currently only known from Oaxaca State, southeast Mexico.

Additional materials examined. Mexico, Oaxaca State, Santa Catarina Ixtepeji Municipality, La Cumbre Town, East of cottage site, 17°11'30"N, 96°38'18"W (DMS), 2903 m alt., 18 July 2017, Ayala-Vásquez (MEXU-30052; ITCV-AV845); Cabeza de Vaca site, 17°11'10"N, 96°38'28"W (DMS), 3038 m alt., 18 July 2017, Ayala-Vásquez (ITCV-AV1121), Cabeza de Vaca site, 15 August 2018, Ayala-Vásquez (MEXU-30053; ITCV-AV1168).

Remarks. Hemialastoletus vinaceobrunneus differs from H. vinaceus by its context with vinaceous tones especially at maturity and a whitish-pink to pale red hymenophore; the stipe is orange-brown; basidiospores are 10–15 (–20) × 4–5 (–7) µm, finely verrucose to cracked, lodged to sphaeropedunculate cheilocystidia, caulocystidia fusoid, cylindrical to sphaeropedunculate with a septum. In contrast, H. vinaceus has a whitish context with slight yellowish-brown tones near the epicutis, has shorter basidiospores (9–) 10–14.4 (–16) × 4–5(–8) µm, cylindrical to clavate cheilocystidia and caulocystidia fusoid or clavate. In the field, the former can be mistaken for Gyroporus purpurinus because of the colours and size of the basidiomata, but G. purpurinus has a hollow stipe (Davoodian and Halling 2013), while H. vinaceobrunneus has a compact context.

Hemiaustroboletus vinaceus Ayala-Vásquez, García-Jiménez & Saldivar, sp. nov.
MycoBank No: 838462
Figs 5A, C, 6, 7

Diagnosis. Pileus dark violet to dark brown, whitish context; hymenophore pink-purple to violet-brown; stipe surface tomentose to longitudinally fibrillose; basidiospores 9–13 × 4–5 µm, surface with cylindrical pits; pleurocystidia and cheilocystidia fusiform-ventricose to lanceolate.

Holotype. Mexico, Jalisco State, Tequila Municipality, Tequila Volcano site, between 11 and 12 km on the road uphill to the antenna station, 20°48'35"N, 103°51'46"W (DMS), 2144 m alt., 18 August 2019, Á.E. Saldivar (IBUG-AES334).

Etymology. The name refers to the colour of the pileus from the Latin “vinosus” vinaceous.
Description. Pileus 35–70 mm in diameter, convex when young, becoming plano-convex with age, dark violet (16F6-16F4), violet-brown (11F5-11F8), orange-brown (5E7), with lighter shades of dark brown (6F5-6F8) lighter towards margin, whole edge, straight, dry surface, finely scamose, slightly areolate at the centre. Hymenophore adnate, slightly depressed, pores 0.5–2 mm in diameter, subangular to angular, pink-purple (14A4), lilac (14B4–14C4), magenta-grey (14C4–14D4), ruby-grey (12C4–12D4), colour unchanging when injured, tubes 7–10 mm, concolorous with the pores. Context 7–12 mm thick, solid, whitish, with slight yellowish-brown tones near the epikutis. Stipe 62–77 × 8–9 mm, central, cylindrical, with wider base, surface with longitudinal striations, whitish at the apex, yellowish-brown (5D5-5E5), orange-brown (5C5) shades in the middle, base with yellowish (5B6) to whitish shades; whitish context, unchanged when cut. Whitish basal mycelium. Odour pleasant. Taste slightly acidic. Chemical reactions: KOH reddish-brown in pileus, brown in hymenophore, slightly pinkish in context, yellowish-brown in stipe. NH₄OH orange with violet tones on pileus, yellow in hymenophore, pale yellow in context, red-orange in stipe.

Figure 5. Basidiospore ornamentation of Hemiaustroboletus revealed by SEM A, C Hemiaustroboletus vinaceus (AV868-ITCV, MEXU-30051, Holotype) B, D Hemiaustroboletus vinaceobrunneus (AV1168-ITCV, MEXU-30053 Isotype).
Hemiaustroboletus, new genus with two new species

Basidiospores 9–13 (–14.5) × 4–5 (–8) µm, X = 12.14 × 5.2 µm, std = 2.08 × 1.36 µm, (n = 35), Q = (1.8) 2.1–2.2 (2.5) (holotype); (10–) 12–14 × 4–5 (–7) µm, X = 11.94 × 5.14 µm, std = 1.60 × 1.13 µm, (n = 35), Q = (2.2) 2.3–2.4 (2.5), (paratype MEXU-30103); (10–) 14–15 (–16) × (4–) 5–6 (–7) µm, X = 14.29 × 5.8 µm, std = 1.69 × 0.76 µm, (n = 40), Q = (2.2) 2.3–2.5 (2.6), (paratype colpos-CP5); subfusiform to cylindrical, slightly rough or dotted, apex rounded to subacute, with suprahilar depression, yellowish. Basidia 27–34 × 7–15.2 µm, claviform, bisporic, tetrasporic, with sterigma 2–4 × 0.5–1 µm, thin-walled, hyaline in KOH, yellow in Melzer's reagent. Pleurocystidia 28–50 × 6.4–11 µm, fusoid-ventricose, slightly lanceolate, with content hyaline in KOH, yellow in Melzer's reagent, with walls 0.5 µm thick. Cheilocystidia 25–61 × 6.4–11 µm, subclavate, hyaline in KOH, yellow in Melzer's reagent, thin-walled. Hymenophoral trama divergent, with central and lateral hyphae tubular, 2–6 µm wide, hyaline in KOH, yellow in Melzer's reagent, thin-walled; septa without clamp connections. Pileipellis a trichoderm with terminal cells 32–92 × 5–11 µm, cylindrical to subclaviform, hyaline in KOH, yellow in Melzer's reagent, thin-walled. Caulocystidia 29–95 × 14–17 (–19) µm, subclaviform to claviform, thin-walled, with yellow visible contents in Melzer's reagent, hyaline in KOH.
Habit and habitat. *Pinus-Quercus* forests and *Quercus* forests, associated with *Q. liebmani* and other *Quercus* spp.

Known distribution. Currently only known from Neovolcanic Axis and Sierra Madre del Sur, Mexico.

Additional material examined. Mexico, Jalisco State, Tequila Municipality, Tequila Volcano site, km 11–12 on the road uphill to the antenna station, 20°48’14”N,
Hemiaustroboletus, new genus with two new species

Remarks. Hemiaustroboletus vinaceus differs from H. vinaceobrunneus due to its dark violet pileus, lilac to violet hymenophore, yellow stipe in the basal area and whitish apex. It has short, perforated basidiospores 9–13 (–14.4) × 4–5 (–8) µm, caulocystidia clavate to fusoid and pileipellis formed by a trichoderm with terminal cell cylindrical or subclavate, thin-walled. In contrast, H. vinaceobrunneus has a pileipellis formed by a trichoderm with encrustations. Hemiaustroboletus vinaceus is easily confused with Austroboletus gracilis sensu Wolfe (1979), because of its macroscopic characteristics and basidiospore ornamentation, but A. gracilis differs by pileus red-brown, brown-orange, having a total or partial reticulum on the stipe surface; longer basidiospores 10–19.5 × 4.5–9 µm, rugulose-punctate, elliptical to ovoid-elliptical. Austroboletus var. gracilis (Peck) Wolfe differs from H. vinaceus by pileus surface dry, finely velvety, when young, sometime rimose, reddish-brown, cinnamon or yellow-brown; stipe surface anastomosing lines, narrow reticulation overall or at least on the upper half; basidiospores 10–17 × 5–8 µm, narrowly ovoid to subelliptical. Austroboletus gracilis var. laevipes is distinguished by the smooth stipe, pileus yellow-ochraceous to yellow-brown, stipe subclavate, striate, finely pruinose, neither ribs nor reticulated surface, pale yellow or yellow-brown, basidiospores 11.2–14 × 5–8µm, oval-elliptical in face view, inequilateral in profile (Bessette et al. 2000). Austroboletus gracilis var. pulcherripes Both & Bessette differs from H. vinaceus by a white hymenium when young, becoming pinkish to pale cocoa at maturity; stipe clavate, surface dry, coarsely reticulated on the upper two-thirds, reticulated, finely tomentose; basidiospores 13–19 × 5–8 µm, smooth to rugose-punctate, ovoid-elliptical, narrowly ovoid, inequilateral profile.

Discussion

According the phylogenetic analysis, our collections are nested within the Austroboletoideae close to Veloporphyrellus. Recognising the Hemiaustroboletus genus contributes to solving the systematics within Austroboletoideae since previous works have shown that Austroboletus and Veloporphyrellus, as currently morphologically circumscribed, are polyphyletic (Wu et al. 2016; Gelardi et al. 2020; Kuo and Ortiz-Santana 2020). For example, Wu et al. (2016) found two clades of Austroboletus, Austroboletus. s.s. and a second clade where Austroboletus gracilis s.l. (strain, 112/96) is nested with Veloporphyrellus gracilioides, this species being separated from the Veloporphyrellus s.s. clade. Gelardi et al. (2020) also recovered Austroboletus as polyphyletic with Austroboletus s.s. containing most of the species and other samples divided into four more clades. Particularly, in their analyses, most A. gracilis samples nested close to Veloporphyrellus; this is the clade we are erecting now as Hemiaustroboletus.
Our analyses show that *Hemiaustroboletus* is related to *Veloporphyrellus* (Fig. 1). This is supported by previous analyses (Gelardi et al. 2020; Kuo and Ortiz-Santana, 2020); indeed, they differ in several morphological characteristics. *Veloporphyrellus* has a veil which often embraces the apex of the stipe in younger basidiomata; hymenophoral surface white when young becoming pinkish to pink when mature; basidiospores smooth subfusiform to oblong. In contrast, *Hemiaustroboletus* has furfuraceous, tomentose to minutely areolate pileus surface; whitish, pink-purplish, lilac, magenta-grey to brown-violet hymenophoral surface; and slightly verrucose, cracked to pitted ornamented basidiospores (Table 2). Even while the phylogenetic relations between both genera are not statistically supported, nucleotide similarity demonstrated that

Table 2. Comparative table of Austroboletoidae genera, based on Wolfe (1979) and Wu et al. (2016).

Genera	Basidiomata	Basidiospores	Cystidia	Pileipellis
Austroboletus	Pileus margin which embraces the stipe when young, Stipe surface distinctly reticulate, alveolate-lacunose	Ornamented, elongate to amygdaliform, with warths, reticulate ridges or shallow to irregularly furrowed pits	Cylindrical, clavate, fusoid	Trichoderm with filamentous interwoven hyphae, sometimes strongly gelatinous
Fistulinella	Stipitate-pileate to occasionally sequestrate, with or without veil, usually viscid to strongly glutinous pileus	Smooth, elongate fusoid, inamyloid to dextrinoid	Fusiform to ventricose fusiform or lageniform	Trichoderm, ixotrichoderm or isocutis
Hemiaustroboletus	Pileus surface furfuraceous, tomentose, minutely areolate, stipe surface longitudinally fibrillose to striate	Slightly verrucose, cracked to pitted	Clavate, Rope-dunculate, subfusoid	Ixotrichoderm or trichoderm, terminal cells cylindrical, fusoid, ventricose-rostrate
Mucilopilus	Viscid pileus, stipe without colour change, white to pinkish or pink hymenophore	Smooth, subfusiform to oblong	Fusoid, ventricose to subfusciform	Ixotrichoderm, composed of strongly gelatinous filamentous hyphae
Veloporphyrellus	Pileus margin with distinct membranous veil or appendiculate, stipe nearly glabrous or fibrillose	Smooth, subfusiform to oblong	Subfusciform to ventricose	Trichoderm composed of filamentous interwoven hyphae

Table 3. Average nucleotide similarity amongst genera of Austroboletoidae.

Genus 1	Genus 2	Average nucleotide similarity (ITS) %	Average nucleotide similarity (LSU) %	Average nucleotide similarity (RPB2) %
Hemiaustroboletus	*Hemiaustroboletus*	95.49	98.93	97.96
Hemiaustroboletus	*Mucilopilus*	92.51	91.25	
Hemiaustroboletus	*Austroboletus*	71.27	85.94	87.75
Hemiaustroboletus	*Fistulinella*	88.58	89.76	
Hemiaustroboletus	*Veloporphyrellus*	74.75	94.01	93.45
Veloporphyrellus	*Veloporphyrellus*	95.49	100	
Veloporphyrellus	*Austroboletus*	85.64	86.66	
Veloporphyrellus	*Mucilopilus*	91.45	89.73	
Veloporphyrellus	*Fistulinella*	88.06	89.5	
Fistulinella	*Fistulinella*	90.48	89.5	
Fistulinella	*Mucilopilus*	87.61	89.5	
Fistulinella	*Austroboletus*	83.03	86.87	
Austroboletus	*Austroboletus*	86	92.06	
Austroboletus	*Mucilopilus*	85.05	87.88	
Mucilopilus	*Mucilopilus*	98.5	99.4	
they are the closest genera within Austroboletidae. The overall nucleotide similarity between genera in Austroboletidae in RPB2 is 89.23%, in LSU it is 88.19%, and in ITS it is 72.55%. Between Hemiaustroboletus and Veloporphyrellus, the average nucleotide similarity is 93.45% in RPB2, 94.01% in LSU and 74.75 in ITS (Table 3). These amounts of variation in the three markers also support the conclusion of recognising both genera.

Hemiaustroboletus gen. nov. accomplishes the guidelines for the establishment of new genera proposed by Vellinga et al. (2015). It is a monophyletic group supported by morphological data and phylogenetic analyses (BPP = 0.98) (Fig. 1). When Hemiaustroboletus is recognised, the related clade Austroboletus s.s. (the clade including A. dictyotus, the genus type) becomes monophyletic. Additionally, the DNA sequence sampling is broad in taxonomic and geographic terms and uses ribosomal markers and protein coding genes. Indeed, holotypes for both species described are represented with the three markers included in the phylogenetic analyses.

Hemiaustroboletus is proposed as a new genus with two species H. vinaceobrunneus and H. vinaceus, including several of the revised material being previously identified as A. gracilis by Singer et al. (1991), Ayala-Vásquez et al. (2018) and Saldivar et al. (2021). The genus has at least one more known clade (Fig. 1) containing samples originally identified as A. gracilis (TM03-434) from Canada, A. gracilis var. gracilis (CFMR BOS-547) and A. gracilis var. flavipes (CFMR BOS-562) from USA. As found in our analyses and previous works (Wu et al. 2016; Gelardi et al. 2020; Kuo and Ortiz-Santana 2020), A. gracilis is a name widely applied to several clades. In our analysis, the sample A. gracilis 112/96 belongs to Austroboletus (maybe because it lacks RPB2 locus), while the rest of the sequences with this epithet belong to Hemiaustroboletus. As this species is polyphyletic, establishing the true identity of A. gracilis s.s. requires the sequencing of its type specimen, a task beyond the objectives of this study.

Hemiaustroboletus differs morphologically from Austroboletus sect. Austroboletus sensu Wu et al. (2016) (Austroboletus s.s. in this study) because the species of the latter have clearly reticulated to costate stipe, elongate, fusoid or amygdaliform basidiospores with warts, reticulate ridges, irregularly furrowed pits or shallow ornamentation and a subreptent to trichoderm pileipellis, composed of filamentous interwoven hyphae, sometimes strongly gelatinous. In contrast, Hemiaustroboletus is characterised by a subclavate, tomentose, pruinose, granular furfuraceous, striate surface, longitudinally fibrous, very finely reticulated stipe, oval-elliptical, cylindrical to subfusoid, oblong, ovoid-oblong basidiospores with slightly verrucose, cracked to pitted surface, its pileipellis is an ixotrichoderm or trichoderm with terminal cells cylindrical, fusoid or ventricose-rostrate with or without incrustations in the wall.

Finally, A. gracilis, described by Ortiz-Santana et al. (2007) from Central America, is probably Hemiaustroboletus vinaceus or a close species, because they match the description presented here. Further analysis of these collections and others, labelled as A. gracilis in subtropical regions of Central America and eastern Asia, are needed to fully understand the diversity and distribution of Hemiaustroboletus.
Acknowledgements

Ayala-Vásquez acknowledges financial support from the Mexican Council of Science and Technology CONACYT 449637 for financial support (Scholarship); the MEXBOL network project CONACYT 280896, the CONACYT-PRONACES FOP07-2021-03 Project 316198; Javier Isaac de la Fuente, César Martínez-González for technical support, Laura Margarita Marquez Valdelamar, Head of the Sequencing facility at IB-UNAM; Lidia Irene Cabrera Martínez Head of the Molecular Biology Laboratory of the Botany Department of IB-UNAM; María Berenit Mendoza-Garfías, Head of the Laboratory of Scanning Electron Microscopy facility at IB-UNAM; García-Jiménez thanks CONACYT for financial support and the Technological Institute of Mexico.

References

Ayala-Vásquez O, Valenzuela R, Aguirre-Acosta E, Raymundo T, García-Jiménez J (2018) Species of Boletaceae (Boletales, Basidiomycota) with ornamented spores from temperate forests at the State of Oaxaca, Mexico. Studies in Fungi 3(1): 271–292. https://doi.org/10.5943/sif/3/1/28

Bessette A, Roody WC, Bessette AR (2000) North American boletes: a color guide to the fleshy pored mushrooms. Syracuse University Press, New York, 20–320.

Binder M, Hibbett DS (2006) Molecular systematics and biological diversification of Boletales. Mycologia 98(6): 971–983. https://doi.org/10.1080/15572536.2006.11832626

Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9(8): 772–772. https://doi.org/10.1038/nmeth.2109

Davoodian N, Halling RE (2013) Validation and typification of Gyroporus purpurinus. Mycotaxon 125(1): 103–105. https://doi.org/10.5248/125.103

Drehmel D, James T, Vilgalys R (2008) Molecular phylogeny and biodiversity of the boletes. Fungi 1: 17–23.

Fechner N, Bonito G, Bougher NL, Lebel T, Halling RE (2017) New species of Austroboletus (Boletaceae) in Australia. Mycological Progress 16(8): 769–775. https://doi.org/10.1007/s11557-017-1314-0

García-Jiménez J, Singer R, Estrada E, Garza-Ocañas F, Valenzuela R (2013) Dos especies nuevas del género Boletus (Boletales: Agaricomycetes) en México. Revista mexicana de biodiversidad 84: 152–162. https://doi.org/10.7550/rmb.31988

Gelardi M, Angelini C, Costanzo F, Ercole E, Ortiz-Santana B, Vizzini A (2020) Outstanding pinkish brown-spored Neotropical Boletes: Austroboletus subflavidus and Fistulinella gloeocarpa (Boletaceae, Boletales) from the Dominican Republic. Mycobiology.

Haelewaters D, Dima B, Abdel-Hafiz BII, Abdel-Wahab MA, Abul-Ezz SR, Acar I, Aguirre-Acosta E, Aime MC, Al Demir S, Ali M, Ayala-Vásquez O, Bakhit MS, Bashir H, Battistin E, Bendiksen E, CastroRivera R, Çolak ÖF, De Kesel A, de la Fuente JI, Dizkınçi A, Hussain S, Jansen GM, Kaygusuz O, Khalid AN, Khan J, Kiyashko AA, Larsson E,
Martínez González CR, Morozova OV, Niazi AR, Noordeloos ME, Pham THG, Popov ES, Psurtseva NV, Schouttenen N, Sher H, Türkekul I, Verbeken A, Ahmad H, Afshan NS, Christie P, Fiaz M, Glai zot O, Liu J, Majeed J, Markotter W, Nagy A, Nawaz H, Papp V, Péter Á, Pfie gler WP, Qasim T, Riaz M, Sándor AD, Szentiványi T, Voglmayr H, Yousaf N, Krisai-Greilhuber I (2020) Fungal Systematics and Evolution 6. Sydowia 72: 271–296.

Halling RE, Nuhn M, Osmundson T, Fechner N, Trappe JM, Soytong K, Arora D, Hibbett DS, Binder M (2012) Affinities of the Boletus chromapes group to Royoungia and the description of two new genera, Harrya and Australopolius. Australian Systematic Botany 25(6): 418–431. https://doi.org/10.1071/SB12028

Halling R, Fechner N, Nuhn M, Osmundson T, Soy tong K, Arora D, Binder M, Hibbett D (2015) Evolutionary relationships of Heimioporus and Boletellus (Boletales) with an emphasis on Australian taxa including new species and new combinations in Aureoboletus, Hemi leccinum and Xerocomus. Australian Systematic Botany 28(1): 1–22. https://doi.org/10.1071/SB14049

He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayar awarden CN, Cui B-K, Schouttenen N, Liu X-Z, Li T-H, Yao Y-J, Zhu X-Y, Liu A-Q, Li G-J, Zhang M-Z, Ling Z-L, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Gemi l J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gérón SP, Haelewaters D, He S-H, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli Jr N, Mešić A, Moncalvo J-M, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuy tinck J, Ori hara T, Rachadaw an C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Va lenzuela R, Verbek en A, Vizzini A, Wartchow F, Wei T-Z, Weiß M, Zhao C-L, Kirk PM (2019) Notes, outline and divergence times of Basidiomycota. Fungal Diversity 99(1): 105–367. https://doi.org/10.1007/s13225-019-00435-4

Hosen MI, Feng B, Wu G, Zhu XT, Li YC, Yang ZL (2013) Borofutus, a new genus of Boletaceae from tropical Asia: Phylogeny, morphology, and taxonomy. Fungal Diversity 58(1): 215–226. https://doi.org/10.1007/s13225-012-0211-8

Hosen MI, Yang ZL (2021) Kaziboletus, a new boletoid genus of Boletaceae associated with Shorea robusta in Bangladesh. Mycological Progress, 20: 1145–1156. https://doi.org/10.1007/s11557-021-01723-7

Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14): 3059–3066. https://doi.org/10.1093/nar/gkf436

Kornerup A, Wanscher JH (1978) Methuen Handbook of Color, 31st edn. Eyre Methuen Ltd. London, 227 pp.

Kuo M, Ortiz-Santana B (2020) Revision of leccinoid fungi, with emphasis on North American taxa, based on molecular and morphological data. Mycologia 112(1): 197–211. https://doi.org/10.1080/00275514.2019.1685351

Largent DL (1986) How to identify mushrooms to genus I: macroscopic features. I, 2nd edn. Mad River Press Inc., Eureka, 166 pp.

Li YC, Ortiz-Santana B, Zeng NK, Yang BFZL (2014) Molecular phylogeny and taxonomy of the genus Veloporphyrellus. Mycologia 106(2): 291–306. https://doi.org/10.3852/106.2.291
Lodge DJ, Ammirati JF, O’Dell TE, Müller G (2004) Collecting and describing macrofungi. In: Muller G, Bills G, Foster M (Eds) Biodiversity of fungi inventory and monitoring methods. California: Elsevier Academic Press, 128–158. https://www.fpl.fs.fed.us/documents/pdfs2004/fpl_2004_lodge001.pdf

Ma D, Yang G, Mu L (2010) Morphological and molecular analyses of ectomycorrhizal diversity in Pinus densiflora seedlings. Symbiosis 51(3): 233–238. https://doi.org/10.1007/s13199-010-0079-x

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, LA, 1–8. https://doi.org/10.1109/GCE.2010.5676129

Miyamoto Y, Narimatsu M, Nara K (2018) Effects of climate, distance, and a geographic barrier on ectomycorrhizal fungal communities in Japan: A comparison across Blakiston’s Line. Fungal Ecology 33: 125–133. https://doi.org/10.1016/j.funeco.2018.01.007

Morris MH, Perez-Perez MA, Smith ME, Bledsoe CS (2008) Multiple species of ectomycorrhizal fungi are frequently detected on individual oak root tips in a tropical cloud forest. Mycorrhiza 18(8): 375–383. https://doi.org/10.1007/s00572-008-0186-1

Obase K, Cha JY, Lee JK, Lee SY, Chun KW (2012) Ectomycorrhizal fungal community associated with naturally regenerating Pinus densiflora Sieb. et Zucc. seedlings on exposed granite slopes along woodland paths. Journal of Forest Research 17(4): 388–392. https://doi.org/10.1007/s10310-011-0301-6

Orihara T, Smith ME, Shimomura N, Iwase K, Maekawa N (2012) Diversity and systematics of the sequestrate genus Octaviania in Japan: Two new subgenera and eleven new species. Persoonia 28(1): 85–112. https://doi.org/10.3767/003158512X650121

Orihara T, Lebel T, Ge ZW, Smith ME, Maekawa N (2016) Evolutionary history of the sequestrate genus Rossbeevera (Boletaceae) reveals a new genus Turmalinea and highlights the utility of ITS minisatellite-like insertions for molecular identification. Persoonia 37(1): 173–198. https://doi.org/10.3767/003158516X691212

Ortiz-Santana B, Lodge DJ, Baroni TJ, Both EE (2007) Boletes from Belize and the Dominican Republic. Fungal Diversity 27: 247–416.

Porter TM, Skillman JE, Moncalvo JM (2008) Fruiting body and soil rDNA sampling detects complementary assemblage of Agaricomycotina (Basidiomycota, Fungi) in a hemlock-dominated forest plot in southern Ontario. Molecular Ecology 17(13): 3037–3050. https://doi.org/10.1111/j.1365-294X.2008.03813.x

Rambaut A (2009) FigTree. Tree figure drawing tool. http://tree.bio.ed.ac.uk/software/figtree/

Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029

Saldivar ÁE, García Jiménez J, Herrera Fonseca MJ, Rodríguez Alcántar O (2021) Listado actualizado y nuevos registros de Boletaceae (Fungi, Basidiomycota, Boletales) en Jalisco, México. Polibotánica 0(52): 25–49. https://doi.org/10.18387/polibotanica.52.3

Singer R, García J, Gómez LD (1991) The Boletineae of Mexico and Central America. III. Nova Hedwigia. Beiheft 98: 1–72.
Hemiaustroboletus, new genus with two new species

Smith ME, Henkel TW, Catherine AM, Premier AK, Vilgalys R (2011) Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. The New Phytologist 192(3): 699–712. https://doi.org/10.1111/j.1469-8137.2011.03844.x

Smith ME, Henkel TW, Uehling JK, Premier AK, Clarke HD, Vilgalys R (2013) The Ectomycorrhizal fungal community in a Neotropical forest dominated by the endemic Dipterocarp Pakaraimaeae Dipterocarpacea. PLoS ONE 8(1): e55160. https://doi.org/10.1371/journal.pone.0055160

Stamatakis A (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England) 30(9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20(4): 217–263. https://doi.org/10.1007/s00572-009-0274-x

Vadthanarat S, Lumyong S, Raspé O (2019) Cacaoporus, a new Boletaceae genus, with two new species from Thailand. MycoKeys 54: 1–29. https://doi.org/10.3897/mycokeys.54.35018

Vasco-Palacios AM, López-Quintero C, Franco-Molano AE, Boekhout T (2014) Austroboletus amazonicus sp. nov. and Fistulinella campinaranaevar. scrobiculata, two commonly occurring boletes from a forest dominated by Pseudomonotes tropenbosii (Dipterocarpaceae) in Colombian Amazonia. Mycologia 106(5): 1004–1014. https://doi.org/10.3852/13-324

Vellinga EC, Kuyper TW, Ammirati J, Desjardin DE, Halling RE, Justo A, Læssøe T, Lebel T, Lodge DJ, Matheny PB, Methven AS, Moreau PA, Mueller GM, Noordeloos ME, Nuytinck J, Ovrebo CL, Verbeken A (2015) Six simple guidelines for introducing new genera of fungi. IMA Fungus 6(2): 65–68. https://doi.org/10.1007/BF03449356

Victoroff C (2020) Response of ectomycorrhizal fungal fruiting to nitrogen and phosphorus additions in Bartlett Experimental Forest, New Hampshire. Dissertations and Theses. PhD Thesis, New Hampshire, USA 167: 1–104. https://digitalcommons.esf.edu/etds/167

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

Walker JF, Miller OK, Horton JL (2005) Hyperdiversity of ectomycorrhizal fungus assemblages on oak seedlings in mixed forests in the Southern Appalachian Mountains. Molecular Ecology 14: 829–838. https://doi.org/10.1111/j.1365-294X.2005.02455.x

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: a guide to methods and applications. San Diego, Academic Press, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wolfe Jr CB (1979) Austroboletus and Tylopilus subgenus Porphyrellus with emphasis on North American taxa. J Cramer. Bibliotheca Mycologica, 69 pp.

Wu G, Feng B, Xu J, Zhu XT, Li YC, Zeng NK, Hosen MI, Yang ZL (2014) Molecular phylogenetic analyses re-define seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. Fungal Diversity 69(1): 93–115. https://doi.org/10.1007/s13225-014-0283-8
Wu G, Li YC, Zhu XT, Zhao K, Han LH, Cui YY, Li F, Xu JP, Yang ZL (2016) One hundred noteworthy boletes from China. Fungal Diversity 81(1): 25–188. https://doi.org/10.1007/s13225-016-0375-8

Young AP, Evans RC, Newell R, Walker AK (2019) Development of a DNA barcoding protocol for fungal specimens from the E.C. Smith Herbarium (ACAD). Northeastern Naturalist 26(3): 465–483. https://doi.org/10.1656/045.026.0302

Zhu XT, Wu G, Zhao K, Halling RE, Yang ZL (2015) Hourangia, a new genus of Boletaceae to accommodate Xerocomus cheoi and its allied species. Mycological Progress 14(6): e37. https://doi.org/10.1007/s11557-015-1060-0