Association of Hypoxia-Inducible Factor 1α Gene Polymorphisms With Breast Cancer Susceptibility: A Meta-Analysis

Md. Shihabul Islam, MSc¹; and Jesmin, PhD²

PURPOSE Overexpression of the hypoxia-inducible factor 1α (HIF1A) gene is significantly associated with different types of cancers, including breast cancer. In this study, the effects of single-nucleotide polymorphisms rs11549465, rs11549467, and rs2057482 of the HIF1A gene and their association with breast cancer were systematically investigated through meta-analysis.

MATERIALS AND METHODS After a systematic review, nine case-control studies of the HIF1A rs11549465 C/T polymorphism, six case-control studies of the HIF1A rs11549467 G/A polymorphism, and one case-control study of the HIF1A rs2057482 C/T polymorphism were included in this meta-analysis. The summary pooled odds ratios with 95% CIs were evaluated to detect the relationship between HIF1A polymorphisms and breast cancer susceptibility.

RESULTS Subgroup-stratified analyses showed that the T and TT genotypes of the HIF1A rs11549465 C/T polymorphism were significantly associated with increased breast cancer risk in the Asian population under three genetic models (allele, homozygous, and recessive). HIF1A rs11549467 G/A analyses indicated that the A and AA genotypes were significantly associated with increased breast cancer risk in the Asian population under allele and dominant models. However, no association with breast cancer was observed in the White population for the HIF1A rs11549465 C/T and rs11549467 G/A polymorphisms. In addition, the HIF1A rs2057482 C/T polymorphism showed no association with breast cancer under any genetic models or by ethnicity-stratified analyses.

CONCLUSION The results of this meta-analysis suggested that the HIF1A rs11549465 C/T and rs11549467 G/A polymorphisms were significantly associated with increased breast cancer risk in the Asian population, but no associations were found in the White population. Thus, HIF1A could be an important biomarker for population-based breast cancer screening.

INTRODUCTION Worldwide, breast cancer is the most commonly diagnosed cancer in women, accounting for more than 2 million new cases and around 627,000 estimated deaths from breast cancer in 2018.¹ About one in 20 females will be diagnosed with breast cancer in their lifetime.²,³ The risk of developing breast cancer varies among women significantly by country, and recent studies have provided more evidence of genetic susceptibility with an increased risk of cancer.⁴,⁵ Several genome-wide association studies (GWASs) have already identified approximately 100 common variants associated with breast cancer risk.⁶,⁷ For patients with cancer, intratumoral hypoxia denotes higher metastasis risk, poorer prognosis, and lower response to radiotherapy and chemotherapy.¹⁶-¹⁹

Hypoxia-inducible factor 1α (HIF1A) is an oxygen-sensitive transcription factor that plays a crucial role in facilitating cells to adapt to hypoxia through regulating more than 100 genes involved in angiogenesis, erythropoiesis, metabolic reprogramming, metastasis, etc.²⁰,²¹ In recent years, studies have demonstrated the influence of HIF1A polymorphisms with different cancer susceptibilities, such as lung, breast, pancreatic, and gastric.²²,²³ The most frequently reported HIF1A single-nucleotide polymorphisms (SNPs) in association with cancers were the two missense mutation loci rs11549465 and rs11549467 on HIF1A and a micro-RNA binding locus rs2057482 regulating HIF1A expression.²²,²⁴ In the literature, some studies
have reported no significant association of the HIF1A rs11549465 C/T polymorphism with breast cancer in the White population25-27 or the Asian population28, whereas other studies on the Asian population showed a significant association between the HIF1A rs11549465 C/T polymorphism and breast cancer risk29-33. Similarly, for the HIF1A rs11549467 G/A polymorphism, Naidu et al29 Kim et al33 and Sharma et al28 found no significant association with breast cancer in the Asian population and Apaydin et al25 and Ribeiro et al27 reported the same in White ethnicity. However, a recent study by Shan et al34 concluded a significant association in the Chinese population. Thus, several studies have investigated the impact of HIF1A polymorphisms on breast cancer risk in different populations; however, the available studies are heterogeneous in their design and operational quality and reported various
inconclusive results across studies.25-34 As yet, there was no study exploring the association of the \textit{HIF1A} gene polymorphisms rs11549465, rs11549467, and rs2057482 and breast cancer, where \(n \) is the number of corresponding studies. C/T and G/A are alleles. \textit{HIF1A}, hypoxia-inducible factor 1α.

\section*{Materials and Methods}

\subsection*{Search Strategy and Study Selection}

To retrieve eligible peer-reviewed publications of empirical studies, PubMed, PubMed Central, Web of Science, and Google Scholar databases were searched systematically. The articles published in the English language between the years 2008 and 2019 were only considered in this investigation. The search criteria used to find out the eligible studies were as follows: (1) hypoxia-inducible factor-1A, (2) \textit{HIF1A}, (3) SNPs, (4) polymorphisms, (5) rs11549465, (6) rs11549467, (7) rs2057482, (8) cancer, (9) case-control study, and (11) breast cancer. Advanced searches were conducted with the combination of phrases using Boolean operators (AND, OR, and NOT). The references of the related reviews and articles were further searched manually for incorporating additional relevant publications.

\subsection*{Eligibility Criteria and Data Extraction}

Two investigators independently screened the titles and abstracts of all the research articles on the basis of the inclusion and exclusion criteria. Full texts were assessed when it is difficult to make the selection just on the basis of the abstract. Only case-control studies of breast cancer with \textit{HIF1A} gene polymorphisms, GWAS, and human research were included for the final review. The published articles in the English language were only considered for this study, and any discrepancies in extracting data were resolved by discussion. Editorials, reviews, meta-analyses, and non-human research were excluded. In addition, the studies with the following criteria were excluded: (1) study in nonhuman participants or in vitro studies, (2) study with duplicate or overlapping data, (3) articles without full text available, (4) articles with incomplete data on population ethnicity, (5) articles with incomplete allele frequencies data, and (6) articles without the timeline of the study clearly defined. Studies for the final review included: (1) authors name, (2) year of publication, (3) country, (4) ethnicity, (5) allele frequency data, (6) sample size, and (7) sources of control (Table 1).

\section*{Meta-Analysis}

The meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement.35 From the final 10 included articles, the case-control studies of the \textit{HIF1A} gene polymorphisms: (1) rs11549465 C/T comprising a sample size of 5,473, (2) rs11549467 G/A of sample size 2,794, and (3) rs2057482 C/T with a sample size of 2,198, were included in this meta-analysis.

\section*{Statistical Analysis}

Meta-analysis of the \textit{HIF1A} gene polymorphisms (rs11549465 C/T, rs11549467 G/A, and rs2057482 C/T) and breast cancer susceptibility was evaluated using an odds ratio (OR) with a 95% CI. The OR measures the association between exposure and outcome. The strength of association was measured by the magnitude of OR. In case-control studies, OR > 1.0 indicates an increased occurrence of an event.36 In the calculation of ORs, to avoid the computation of reciprocal of zeros among observed values (if present), a slightly adjusted estimator of OR was used.36 The \(\chi^2 \) statistic37 and \(I^2 \) test38 were used for heterogeneity among studies assessment \((I^2 \geq 50\%\) indicating the presence of heterogeneity). If the study is heterogeneous, pooled ORs with 95% CIs were calculated using a random-effects model incorporating the inverse variance-weighted method39,40; otherwise, a fixed-effects model was adopted,41 and a \(P \) value < .05 was considered statistically significant. Subgroup analyses were stratified by ethnicity. The Hardy-Weinberg Equilibrium (HWE) test was performed on the control group for each study. Studies with control not in HWE \((P < .05)\) were supervised with sensitivity analysis. Furthermore, publication bias in the eligible studies was assessed by Begg’s42 funnel plot and Egger’s43 test. All statistical analyses were performed using Stata 13.0 software (Stata Corporation, College Station, TX).
Ethnicity	Study No.	Sample Size	OR (95% CI)	P						
rs11549465										
Overall	9	5,473	1.87 (0.86 to 4.08)	.114	1.13 (0.84 to 1.52)	.409	1.32 (0.90 to 1.93)	.156	1.80 (0.89 to 3.65)	.105
Asian	6	4,862	2.97 (1.83 to 4.83)	< .001	1.20 (0.84 to 1.74)	.318	1.58 (0.97 to 2.57)	.064	2.72 (1.68 to 4.42)	< .001
White	3	611	0.44 (0.16 to 1.22)	.114	0.95 (0.63 to 1.44)	.810	0.86 (0.58 to 1.29)	.474	0.45 (0.17 to 1.23)	.121
rs11549467										
Overall	6	2,794	1.29 (0.58 to 2.87)	.525	1.26 (0.95 to 1.68)	.106	1.29 (0.98 to 1.70)	.073	1.27 (0.98 to 2.82)	.551
Asian	4	2,420	1.40 (0.59 to 3.34)	.448	1.31 (0.99 to 1.75)	.064	1.34 (1.01 to 1.77)	.042	1.37 (0.57 to 3.26)	.478
White	2	374	0.86 (0.12 to 6.19)	.883	0.32 (0.06 to 1.79)	.197	0.32 (0.06 to 1.79)	.197	0.88 (0.12 to 6.31)	.898
rs2057482										
Asian	1	2,198	0.95 (0.61 to 1.47)	.815	0.93 (0.78 to 1.10)	.395	0.93 (0.78 to 1.10)	.395	0.98 (0.63 to 1.50)	.917

NOTE. A, T, G, and C are alleles. AA, CCCT, GG, GA, and TT are allelic combinations.
Abbreviation: OR, odds ratio.
*The value of ORs for the ethnicity subgroups represents the overall breast cancer risk.
A

Study ID	OR (95% CI)	% Weight
White		
Apaydin et al\(^{25}\)	0.59 (0.34 to 1.02)	11.16
Zagouri et al\(^{26}\)	0.97 (0.47 to 1.98)	9.62
Ribeiro et al\(^{27}\)	1.05 (0.54 to 2.04)	10.08
Subtotal (I\(^2\) = 4.0%, \(P = .353\))	0.80 (0.55 to 1.16)	30.87
Asian		
Lee et al\(^{31}\)	1.08 (0.84 to 1.39)	13.44
Kim et al\(^{32}\)	1.27 (0.51 to 3.21)	7.95
Naidu et al\(^{33}\)	1.69 (1.21 to 2.36)	12.90
Huang et al\(^{30}\)	14.84 (6.90 to 31.91)	9.23
Bhushann Meka et al\(^{31}\)	1.13 (0.84 to 1.52)	13.14
Subtotal (I\(^2\) = 89.2%, \(P = .000\))	1.69 (1.03 to 2.77)	69.13
Overall (I\(^2\) = 85.4%, \(P = .000\))	1.35 (0.91 to 2.00)	100.00

NOTE. Weights are from random-effects analysis.

B

Study ID	OR (95% CI)	% Weight
White		
Apaydin et al\(^{25}\)	0.49 (0.12 to 1.99)	9.52
Zagouri et al\(^{26}\)	1.10 (0.07 to 17.73)	2.46
Ribeiro et al\(^{27}\)	0.30 (0.06 to 1.57)	6.84
Subtotal (I\(^2\) = 0.0%, \(P = .724\))	0.45 (0.16 to 1.23)	18.81
Asian		
Lee et al\(^{32}\)	3.61 (0.75 to 17.41)	7.69
Kim et al\(^{33}\)	2.29 (0.20 to 25.66)	3.26
Naidu et al\(^{33}\)	2.94 (0.98 to 8.82)	15.72
Huang et al\(^{30}\)	7.18 (2.61 to 19.70)	18.66
Sharma et al\(^{29}\)	1.96 (0.66 to 1.42)	12.47
Bhushann Meka et al\(^{31}\)	3.13 (0.85 to 11.47)	11.27
Subtotal (I\(^2\) = 36.5%, \(P = .164\))	2.72 (1.68 to 4.42)	81.19
Heterogeneity between groups: \(P = .002\)		
Overall (I\(^2\) = 56.7%, \(P = .018\))	1.94 (1.26 to 3.00)	100.00

C

Study ID	OR (95% CI)	% Weight
White		
Apaydin et al\(^{25}\)	0.43 (0.10 to 1.79)	9.48
Zagouri et al\(^{26}\)	1.09 (0.07 to 17.68)	2.48
Ribeiro et al\(^{27}\)	0.33 (0.06 to 1.76)	6.86
Subtotal (I\(^2\) = 0.0%, \(P = .771\))	0.44 (0.16 to 1.21)	18.83
Asian		
Lee et al\(^{32}\)	3.61 (0.75 to 17.41)	7.76
Kim et al\(^{33}\)	2.29 (0.20 to 25.75)	3.29
Naidu et al\(^{33}\)	3.21 (1.07 to 9.68)	16.80
Huang et al\(^{30}\)	9.97 (3.60 to 27.62)	18.49
Sharma et al\(^{29}\)	1.08 (0.44 to 2.61)	24.51
Bhushann Meka et al\(^{31}\)	3.12 (0.85 to 11.47)	11.33
Subtotal (I\(^2\) = 52.7%, \(P = .061\))	2.97 (1.83 to 4.83)	81.17
Heterogeneity between groups: \(P = .001\)		
Overall (I\(^2\) = 63.9%, \(P = .005\))	2.08 (1.34 to 3.22)	100.00

FIG 2. Forest plot of the hypoxia-inducible factor 1α gene rs11549465 C/T polymorphism for the (A) allelic (T v C), (B) recessive (TT v CT + CC), and (C) homozygous (TT v CC) models, showing the overall association with breast cancer susceptibility. The squares and horizontal lines correspond to the individual study-specific ORs with 95% CIs. The blue areas of the squares represent the corresponding study weight. The blue diamonds reflect the pooled OR, and the lateral points of the diamonds represent the CIs of the overall analyses. The solid vertical lines are the OR of 1, which are the lines of no effect. The red dashed vertical lines show the corresponding pooled ORs of the analyses. C and T are alleles. CC, CT, and TT are allelic combinations. OR, odds ratio.
FIG 3. Forest plot of the hypoxia-inducible factor 1α gene rs11549467 G/A polymorphism for the (A) allelic (A v G) and (B) dominant (AA + GA v GG) models, showing the overall association with breast cancer susceptibility. The squares and horizontal lines correspond to the individual study-specific ORs with 95% CIs. The blue areas of the squares represent the corresponding study weight. The blue diamonds reflect the pooled OR, and the lateral points of the diamonds represent the CIs of the overall analyses. The solid vertical lines are the OR of 1, which are the line of no effect. The red dashed vertical lines show the corresponding pooled ORs of the analyses. A and G are alleles. AA, GA, and GG are allelic combinations. OR, odds ratio.

TABLE 1

Study ID	OR (95% CI)	% Weight
White		
Apaydin et al25	0.20 (0.02 to 1.69)	1.48
Ribeiro et al27	0.77 (0.05 to 12.44)	0.89
Subtotal (I² = 0.0%, P = .445)	0.33 (0.06 to 1.80)	2.36
Asian		
Kim et al33	0.44 (0.14 to 1.43)	4.95
Naidu et al23	1.27 (0.87 to 1.85)	48.50
Sharma et al28	1.00 (0.06 to 16.04)	0.89
Shan et al34	1.62 (1.09 to 2.41)	43.29
Subtotal (I² = 32.4%, P = .218)	1.34 (1.03 to 1.74)	97.64
Overall	1.29 (1.00 to 1.68)	100.00
Heterogeneity between groups: P = .110		

FIG 4. Funnel plots (pseudo 95% CI limits) of studies evaluating the risk of breast cancer associated with the hypoxia-inducible factor 1α gene polymorphisms: (A) T versus C allelic model of the rs11549465 C/T polymorphism and (B) A versus G allelic model of the rs11549467 G/A polymorphism. A, C, G, and T are alleles. OR, odds ratio.
FIG 5. Worldwide prevalence of the *HIF1A* gene polymorphisms: (A) rs11549465 C/T, (B) rs11549467 G/A, and (C) rs2057482 C/T polymorphisms and allele frequency data from the 1,000 Genomes Projects (phase III). A, C, G, and T are alleles. *HIF1A*, hypoxia-inducible factor 1α.
Summary Measures

Pooled ORs with a 95% CI were computed from studies by allelic comparisons (T vs C), dominant model (TT + CT vs CC), recessive model (TT vs CT + CC), homozygote comparisons (TT vs CC), and heterozygote comparisons (CT vs CC) for both rs11549465 C/T and rs2057482 C/T polymorphisms of the HIF1A gene. The genotype contrasts for the HIF1A rs11549467 G/A polymorphism were as follows: homozygote comparison (AA vs GG), heterozygote comparison (GA vs GG), dominant model (AA + GA vs GG), recessive model (AA vs GA + GG), and the allele comparison model (A vs G). The statistical significance level was based on a Z-test with a P value < .05.

RESULTS

Characteristics of the Selected Studies

Initially, after the screening of the titles and abstracts, 194 articles were identified and were further assessed in full text. After the inclusion and exclusion criteria, 10 studies25-34 were finally enrolled to collect data for the meta-analysis (Fig 1 and Data Supplement). Among the 10 enrolled articles, nine case-control studies of the HIF1A rs11549465 C/T polymorphism, including 2,787 cases and 2,686 controls; six case-control studies of the HIF1A rs11549467 G/A polymorphism, including 1,458 cases and 1,336 controls; and a single case-control study of the HIF1A rs2057482 C/T polymorphism, comprising 1,150 controls.
cases and 1,048 controls, were included to explore the relationship with breast cancer risk. The characteristics of the included studies are shown in Table 1, and in most, the source of control was population-based (PB): seven of the included case-control studies were on the Asian population and the other three were on the White population. The sources of control were PB in seven studies and hospital-based in three studies (Table 1).

Association of the HIF1A rs11549465 C/T Polymorphism With Breast Cancer Risk

The pooled ORs for overall analyses suggested that the HIF1A rs11549465 C/T polymorphism was not significantly associated with breast cancer under any of the five genetic models (Table 2 and Data Supplement). However, the subgroup-stratified analyses by ethnicity for the Asian population suggested that the T allele and TT genotype of HIF1A rs11549465 C/T polymorphism were significantly associated with increasing breast cancer risk in homozygote comparison (TT v CC: OR = 2.97; 95% CI, 1.83 to 4.83; P value < .001), recessive model (TT v CT + CC: OR = 2.72; 95% CI, 1.68 to 4.42; P value < .001), and the allele model comparison (T v C: OR = 1.69; 95% CI, 1.03 to 2.77; P value = .038; Fig 2 and Table 2). The magnitude of ORs > 2 and P values < .001 indicated a strong association between the HIF1A rs11549465 C/T polymorphism and breast cancer. However, the analyses data for the HIF1A rs11549465 C/T polymorphism suggested no significant effect on the White population.

Sources of Heterogeneity

Statistically significant heterogeneity was observed across the included studies of the HIF1A rs11549465 C/T polymorphism for overall cancer risk in all five genetic models (T v C: Q = 54.62, df = 8, P value < .001, I² = 85.4%; TT v CC: Q = 22.17, df = 8, P value = .005, I² = 63.9%; CT v CC: Q = 21.53, df = 8, P value = .006, I² = 62.8%; TT + CT v CC: Q = 40.48, df = 8, P value < .001, I² = 80.2%; and TT v CT + CC: Q = 18.49, df = 8, P value = .018, I² = 56.7%). However, when stratified on the basis of subgroup analyses by ethnicity, heterogeneity disappeared in the White population. The results suggested that the studies in Asian ethnicity were the main sources of heterogeneity (Data Supplement).

Association of the HIF1A rs11549467 G/A Polymorphism With Breast Cancer

The pooled ORs for the overall analyses suggested no significant association between the HIF1A rs11549467 G/A polymorphism and breast cancer under any genetic model (Table 2 and Data Supplement). However, the subgroup-stratified analyses by ethnicity for the Asian population suggested that the A allele and the AA genotype of HIF1A rs11549467 G/A polymorphism were significantly associated with increased breast cancer risk in the allele model (A v G: OR = 1.34; 95% CI, 1.03 to 1.74; P value = .031) and the dominant model comparisons (AA + GA v GG: OR = 1.34; 95% CI, 1.01 to 1.77; P value = .042; Fig 3, Table 2). The magnitude of the OR > 1 and P values < .05 indicated a significant association of the HIF1A rs11549467 G/A polymorphism with breast cancer. The analyzed data from studies on White ethnicity revealed no significant association between the rs11549467 G/A polymorphism and breast cancer risk.

Sources of Heterogeneity

No significant heterogeneity was observed in the HIF1A rs11549467 G/A polymorphism analyses under any of the genetic model comparisons for overall cancer (Data Supplement).

Association of rs2057482 C/T Polymorphism With Breast Cancer Development

The results of the pooled ORs indicated no significant association between the HIF1A rs2057482 C/T polymorphism and breast cancer risks under any of the five genetic models (Table 2).

Publication Bias

The evidence of publication bias within this meta-analysis of the HIF1A rs11549465 C/T polymorphism for T versus C allele and the HIF1A rs11549467 G/A polymorphism for A versus G allele was assessed using both Begg’s funnel plot and Egger’s test. Funnel plot shapes demonstrated symmetrical distribution, and no publication bias was detected for the HIF1A rs11549465 C/T (T v C allele: Z = 0.94, P value = .348) polymorphism and the HIF1A rs11549467 G/A (A v G allele: Z = 0.38, P value = .707) polymorphism (Fig 4 and Data Supplement). In addition, Egger’s linear regression analyses suggested no evidence of significant publication bias for the HIF1A rs11549465 C/T polymorphism (T v C allele: t = −2.01, P value = .115; Fig 4 and Data Supplement).

Sensitivity Analysis

To evaluate the stability of the acquired pooled ORs of the HIF1A rs11549465 C/T and rs11549467 G/A polymorphisms, the sensitivity analysis was carried out by excluding the studies that were not in HWE. The results demonstrated no significant fluctuations in the pooled ORs by omitting any individual study that was not in HWE (Data Supplement). Thus, none of the studies influenced the combined overall results substantially in this meta-analysis and confirmed that the obtained results of the meta-analysis were stable and robust.

DISCUSSION

The results of this meta-analysis showed no significant association between the HIF1A rs2057482 C/T polymorphism and breast cancer risk. For the two missense SNP variants of the HIF1A genes rs11549465 C/T and rs11549467 G/A, although the overall pooled ORs showed no association with breast cancer, the subgroup stratified
by ethnicity analyses showed a significant association between the HIF1A rs11549465 C/T polymorphism and increasing breast cancer risk in the homoygote, recessive, and allele model comparisons for the Asian population. In addition, a significant association between the HIF1A rs11549467 G/A polymorphism and increasing breast cancer risk was observed under the allele and dominant model comparisons in the Asian population. However, the subgroup analyses by ethnicity for the White population showed no association with rs11549465 C/T or rs11549467 G/A polymorphisms of the HIF1A gene.

To understand this Asian ethnicity–based association with breast cancer propensity, we interrogated three publicly available databases: 1000 Genome browser phase III, NCBI variation database dbSNP, and PGG.SNV to review the current knowledge of allele frequency for the HIF1A variants rs11549465 C/T, rs11549467 G/A, and rs2057482 C/T in the overall worldwide population and then compared that with the subgroup of the Asian and White ethnicity. Furthermore, we interrogated the 1000 Genome browser (phase III) for the allele frequency of the HIF1A rs11549465 C/T and rs11549467 G/A variants in the Asian population overall and then compared that with the subgroup of the South Asian and East Asian ethnicity.

In conclusion, this meta-analysis has demonstrated that the HIF1A rs11549465 C/T and rs11549467 G/A polymorphisms are significantly associated with increased risk of breast cancer, especially among Asian women, whereas there is no significant association with increased breast cancer risk in the White population. Taken together, this study suggested that HIF1A could be a PB reliable biomarker for early breast cancers screening and detection. In the future, the availability of more experimental data with a larger sample size of different ethnic groups would help to validate and confirm the findings.

AFFILIATIONS
1Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
2Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh

CORRESPONDING AUTHOR
Jesmin, PhD, Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh; e-mail: jesmin@du.ac.bd.

AUTHOR CONTRIBUTIONS
Conception and design: All authors
Provision of study materials or patients: Md. Shihabul Islam
Collection and assembly of data: All authors
Data analysis and interpretation: All authors
Manuscript writing: All authors

REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, et al: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394-424, 2018
2. World Health Organization (WHO) Cancer Regional Profile 2020, Global Profile (Trends, Breast Cancer) and Cancer Cases and Death. https://www.who.int/cancer/country-profiles/Global_Cancer_Profile_2020.pdf?ua=1
3. The Cancer Atlas. https://canceratlas.cancer.org/
4. Nelson HD, Zakher B, Cantor A, et al: Risk factors for breast cancer for women aged 40 to 49 years: A systematic review and meta-analysis. Ann Intern Med 156:635-648, 2012
5. Winters S, Martin C, Murphy D, et al: Breast cancer epidemiology, prevention, and screening. Prog Mol Biol Transl Sci 151:1-32, 2017
6. Hartmann LC.Sellers TA, Frost MH, et al: Benign breast disease and the risk of breast cancer. N Engl J Med 353:229-237, 2005
7. Lindstrom S, Thompson DJ, Paterson AD, et al: Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk. Nat Commun 5:1-8, 2014
8. Michailidou K, Beesley J, Lindstrom S, et al: Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet 47:373-380, 2015
9. Michailidou K, Hall P, Gonzalez-Neira A, et al: Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45:353-361, 2013

Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/go/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

No potential conflicts of interest were reported.

10 © 2022 by American Society of Clinical Oncology
10. Curtis C, Shah SP, Chin SF, et al: The genomic and transcriptomic architecture of 2,000 breast tumors reveals novel subgroups. Nature 486:346-352, 2012
11. Yang XR, Chang-Claude J, Goede EL, et al: Associations of breast cancer risk factors with tumor subtypes: A pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst 105:250-263, 2011
12. Turkoz FP, Solak M, Petekkaya I, et al: Association between common risk factors and molecular subtypes in breast cancer patients. Breast 22:344-350, 2013
13. Waks AG, Winer EP: Breast cancer treatment: A review. JAMA 321:288-300, 2019
14. Dang CV, Semenza GL: Oncogenic alterations of metabolism. Trends Biochem Sci 24:68-72, 1999
15. Gatenby RA, Gillies RJ: A microenvironental model of carcinogenesis. Nat Rev Cancer 8:56-61, 2008
16. Schito L, Re S, Tafani M, et al: Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc Natl Acad Sci USA 109:E2707-E2716, 2012
17. Liu ZJ, Semenza GL, Zhang HF: Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci B 16:32-43, 2015
18. Osinsky S, Zavelievich M, Vaupel P: Tumor hypoxia and malignant progression. Exp Oncol 31:80-86, 2009
19. Mees G, Dierckx R, Vangestel C, et al: Molecular imaging of hypoxia with radio labelled agents. Eur J Nucl Med Mol Imaging 36:1674-1686, 2009
20. Ke Q, Costa M: Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469-1480, 2006
21. Samanta D, Prabhakar NR, Semenza GL: Systems biology of oxygen homeostasis. Wiley Interdiscip Rev Syst Biol Med 9:e1382, 2017
22. Paek J, Oh Y, Kim J, et al: Single nucleotide polymorphisms in HIF-1α gene and residual ridge resorption (RRR) of mandible in Korean population. Gene Exp 16:137-144, 2015
23. Anam MT, Ishika A, Hossain MB, et al: A meta-analysis of hypoxia inducible factor 1-alpha (HIF1A) gene polymorphisms: Association with cancers. Biomark Res 3:29, 2015
24. Wu LF, Xu GP, Zhao Q, et al: The association between hypoxia inducible factor 1 subunit alpha gene rs2057482 polymorphism and cancer risk: A meta-analysis. BMC Cancer 19:1123, 2019
25. Apaydin I, Konac E, Onen HI, et al: Single nucleotide polymorphisms in the hypoxia-inducible factor-1α (HIF-1α) gene in human sporadic breast cancer. Arch Med Res 39:338-345, 2008
26. Zagouri F, Sergentanis TN, Gazouli M, et al: HSP90, HSPA8, HIF-1 alpha and HSP70-2 polymorphisms in breast cancer: A case-control study. Mol Biol Rep 39:10873-10879, 2012
27. Ribeiro AL, Gaspar JF, Pereira T, et al: Lack of relevance of HIF-1α polymorphisms in breast cancer in a Portuguese population. Anticancer Res 33:2549-2555, 2013
28. Sharma S, Kapahi R, Sambyal V, et al: No association of hypoxia inducible factor-1α gene polymorphisms with breast cancer in North-West Indians. Asian Pac J Cancer Prev 15:9973-9978, 2014
29. Naidu R, Har YC, Taib NA: Associations between hypoxia-inducible factor-1alpha (HIF-1alpha) gene polymorphisms and risk of developing breast cancer. Neoplasma 56:441-447, 2009
30. Huang CJ, Lian SL, Hou MF, et al: SNP 1772 C>T of HIF-1α gene associates with breast cancer risk in a Taiwanese population. Cancer Cell Int 14:1-7, 2014
31. Bhuishan Meka P, Cingeetham A, Nanchari SR, et al: HIF-1α (1772C>T) polymorphism as a marker for breast cancer development. Tumor Biol 36:3215-3220, 2015
32. Lee JY, Choi JY, Lee KM, et al: Rare variant of hypoxia-inducible factor-1α (HIF-1α) and breast cancer risk in Korean women. Clin Chim Acta 389:167-170, 2008
33. Kim HO, Jo YH, Lee J, et al: The C1772T genetic polymorphism in human HIF-1α gene associates with expression of HIF-1α protein in breast cancer. Oncol Rep 20:1181-1187, 2008
34. Shan C, Zheng Y, Wang M, et al: Polymorphisms in HIFs and breast cancer susceptibility in Chinese women: A case-control study. Biosci Rep 38, 2018
35. Moher D, Liberati A, Tetzlaff J, et al: Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLos Med 6:e1000097, 2009
36. Liu JM, Agresti A: Mantel-Haenszel-type inference for cumulative odds ratios with a stratified ordinal response. Biometrics 52:1223-1234, 1996
37. Higgins JPT, Thompson SG: Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539-1558, 2002
38. Cochran WG: The combination of estimates from different experiments. Biometrics 10:101-129, 1954
39. Sutton AJ, Abrams KR, Jones DR, et al: Methods for Meta-Analysis in Medical Research. Chichester, United Kingdom, John Wiley, 2000, pp 348
40. DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials 7:177-188, 1986
41. Mantel N, Haenszel W: Statistical aspects of the analysis of data from retrospective studies of disease. J Nat Cancer Inst 22:719-748, 1959
42. Begg CB, Mazumdar M: Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088-1101, 1994
43. Egger M, Smith GD, Schneider M, et al: Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629-634, 1997
44. Clarke L, Fairley S, Zheng-Bradley X, et al: The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data. Nucleic Acids Res 45:D894-D899, 2016
45. The Database of Short Genetic Variation (dbSNP). https://www.ncbi.nlm.nih.gov/snp/