Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in
Au+Au Collisions at RHIC

L. Adamczyk, J. K. Adkins, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, I. Alekseev, A. Aparin,
D. Arkhipkin, E. C. Aschenauer, A. Attri, G. S. Averichev, X. Bai, V. Bariith, R. Bellwied,
A. Bhasin, A. K. Bhati, P. Bhattacharjee, J. Bielcik, J. Bielcikova, L. C. Bland, G. Bordyuzhin,
J. Bouchet, J. D. Brandenburg, A. V. Brandin, I. Bunzarov, J. Butterworth, H. Caines,
M. Calderón de la Barca Sánchez, J. M. Campbell, D. Cebra, I. Chakaberia, P. Chaloupka, Z. Chang,
A. Chatterjee, S. Chattopadhyay, J. H. Chen, X. Chen, J. Cheng, M. Cherney, W. Christie,
G. Contin, H. J. Crawford, D. Das, L. C. De Silva, R. R. Debbe, T. G. Dedovich, J. Deng, A. A. Dereschikov,
B. di Ruzza, L. Didenko, C. Dilks, X. Dong, J. L. Drachenberg, J. E. Draper, C. M. Du,
L. E. Dunkelberger, J. C. Dunlop, L. G. Efimov, J. J. Engel, G. Eppley, R. Esha, O. Evtokimov,
O. Eyser, R. Fatemi, S. Fazio, F. Federico, J. J. Fodor, Z. Feng, P. Filip, Y. Fisyak, E. E. Flores,
L. Fulek, C. A. Gagliardi, D. Garand, F. Geurts, A. Gibson, M. Girard, L. Greiner, D. Grosnick,
D. S. Gunaratne, Y. Guo, H. Gupta, A. Gupta, W. Gury, A. I. Hamad, M. Hamed, R. Haque,
J. W. Harris, L. He, S. Heppelmann, S. Heppelmann, A. Hirsch, G. W. Hoffman, S. Horvat,
T. Huang, X. Huang, H. B. Huang, P. Huf, T. J. Humanc, G. I. Ogo, W. W. Jacobs,
H. Jiang, A. Jentsch, J. Jia, K. Jiang, E. G. Judd, S. Kabana, D. Kalinkin, K. Kang, K. Kauder,
H. W. Ke, D. Keane, A. Kechechyan, Z. H. Khan, D. P. Kikola, I. Kisel, A. Kistiel, L. Kochenda,
D. D. Koetke, L. K. Kosarzewski, A. F. Kraishan, P. Krvatsov, K. Krueger, L. Kumar, M. A. C. Lammot,
J. M. Landgraf, K. D. Landry, J. L. Lauret, A. Lebedev, R. Lednnicki, J. H. Lee, X. Li, C. Li, X. Li, Y. Li, W. Li, T. Lin, M. A. Lisa, F. Liu, T. Ljubicic, W. J. Llope, M. Lomnitz, R. S. Longacre,
X. Luo, R. Ma, G. L. Ma, Y. G. Ma, L. Ma, N. Magdy, R. Majka, A. Manion, S. Margetis,
C. Markert, H. S. Matis, D. McDonald, S. McKinzie, K. Meehan, J. C. Mei, N. G. Minev,
S. Mioduszewski, D. Mishra, B. Mohanty, M. Mondal, D. A. Morozov, M. M. Mustafa,
B. K. Najdi, T. Nakai, G. Nigmatkulov, T. Niida, L. V. Novag, S. Y. Noh, J. Novak, S. B. Nurushev, G. Odyniec, A. Ogawa, K. Oh, V. A. Orkorokov, D. Olvitt Jr., B. S. Page,
R. Pak, Y. X. Pan, P. Pandit, Y. Panebratsev, B. Pawlik, H. Pei, C. Perkins, P. Piile, J. Pluta,
K. Piontowska, J. Porter, M. Posik, A. M. Poskanzer, K. Pruthi, J. Putschke, H. Qiu,
A. Quintero, S. Ramachandran, S. Raniwala, R. Raniwala, R. L. Ray, H. G. Ritter, J. B. Roberts,
O. V. Rogachevskiy, J. L. Romero, L. Ruan, J. Rusnak, O. Rusnakova, N. R. Sahoo, P. K. Sahu,
I. Sakrejda, S. Salur, J. Sandweiss, A. Sarkar, J. Schambach, R. P. Scharenberg, A. M. Schmahl,
W. B. Schmidke, N. Schmitz, J. Seger, P. Seyboth, N. Shah, E. Shalhaliev, P. V. Shanmuganathan,
M. Shao, A. Sharma, B. Sharma, M. K. M. Shih, W. Q. Shen, S. S. Shi, Q. Y. Shou,
E. P. Schittermann, R. Sikora, M. Simko, S. Singha, M. J. Skoby, N. Smirnov, D. Smirnov, S. Solost, L. Song, P. Sorensen, H. M. Spinka, B. Srivastava, T. S. Stanislaus, M. Stepanov, R. Stock,
M. Strikhanov, B. Stringfellow, M. Sumner, B. Summa, Z. Sun, X. M. Sun, Y. Sun, B. Surrow,
D. N. Svirda, Z. Tang, A. H. Targay, T. Tarnowsky, A. Tawfik, J. Thäder, H. Thomas, A. R. Timmins, D. Thusty, T. Todoroki, M. Tokarev, S. Trentalange, E. R. Tribble, P. Tribedy, S. K. Tripathy, O. D. Tsai, T. Ullrich, D. G. Underwood, I. Upsal, G. Van Buren, G. van Wouw, M. Vandenbroucke, R. Varma, H. N. Vasiliev, R. Vertesi, F. Videbæk, S. Vokal, A. V. Voloshin, V. Vossen, F. Wang, G. Wang, J. S. Wang, H. Wang, Y. Wang, W. Wang, G. Webb, J. C. Webb, L. Wen, G. D. Westfall, H. Wieman, S. W. Wissink, R. Witt, Y. Wu, Z. G. Xiao, W. Xie, J. Xie, K. Xin, Y. F. Xu, Q. H. Xu, N. Xu, Z. Xu, J. Xu, S. Yang, Y. Yang, C. Yang, Y. Yang, Q. Yang, Z. Ye, Z. Ye, P. Yepes, L. Yi, K. Yip, I. -K. Yoo, N. Yu, H. Zbrosczyk, W. Zha, X. P. Zhang, Y. Zhang, J. Zhang, J. Zhang, S. Zhang, S. Zhang, Z. Zhang, J. B. Zhang, J. Zhao, C. Zhong, L. Zhou, Z. Zhu, Y. Zoulikarnav, and M. Zyzak (STAR Collaboration)

1 AGH University of Science and Technology, FPACS, Cracow 30-059, Poland
2 Argonne National Laboratory, Argonne, Illinois 60439
3 Brookhaven National Laboratory, Upton, New York 11973
4 University of California, Berkeley, California 94720
We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\sqrt{s_{NN}} = 7.7$ GeV to 200 GeV. The third harmonic $v_3^2(2) = \langle \cos 3(\phi_1 - \phi_2) \rangle$, where $\phi_1 - \phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\Delta \eta = \eta_1 - \eta_2$. Non-zero $v_3^2(2)$ is directly related to the previously observed large-$\Delta \eta$ narrow-$\Delta \phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2(2)$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2(2)$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, $v_3^2(2)$ for central collisions shows a minimum near $\sqrt{s_{NN}} = 20$ GeV.

Researchers collide heavy nuclei at ultra-relativistic energies to create nuclear matter hot enough to form
a Quark Gluon Plasma (QGP) [14]. QGP permeated the entire universe in the first few microseconds after the Big Bang. Lattice QCD calculations show that the transition between hadronic matter and a QGP at zero baryon chemical potential is a smooth cross-over [3]. Data from the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory and at the Large Hadron Collider (LHC) at CERN have been argued to show that the matter created in these collisions is a nearly perfect fluid with a viscosity-to-entropy density ratio smaller than any other fluid known in nature [6–10]. At the higher collision energies, baryon number is not as easily transported from beam rapidity to mid-rapidity leaving the matter at mid-rapidity nearly net baryon free [11]. As $\sqrt{s_{NN}}$ is decreased however, more baryon number can be transported to mid-rapidity creating a system with a larger net baryon density and larger baryon chemical potential (μ_B) [12–14]. Collisions with higher μ_B values probe a region of the temperature-μ_B phase diagram, where the transition between QGP and hadrons may change from a smooth cross-over to a first-order phase transition [15], thus defining a possible critical point. In addition to having a larger μ_B, collisions at lower $\sqrt{s_{NN}}$ will also start with lower initial temperatures. For this reason, the system will spend relatively more time in the transition region until, at low enough $\sqrt{s_{NN}}$, it will presumably fail to create a QGP. It is not currently known at what μ_B the transition might become first-order or at what $\sqrt{s_{NN}}$ the collision region will become too cold to create a QGP. In this letter, we report on correlations of particle correlations that are expected to be sensitive to whether a low viscosity QGP phase has been created.

Correlations between particles emitted from heavy-ion collisions are particularly rich in information about the dynamics of the collision. It has been found that pairs of particles are preferentially emitted with small relative azimuthal angles ($\Delta \phi = \phi_1 - \phi_2 \sim 0$) [16]. Surprisingly, this preference persists even when the particles are separated by large pseudo-rapidity ($|\eta|$) gaps ($|\Delta \eta| > 0$). These long-range correlations, known as the ridge, have been traced to the conversion of density anisotropies in the initial overlap of the two nuclei into momentum space correlations through subsequent interactions in the expansion [17–21]. Hydrodynamic models have been shown to require a low viscosity plasma phase early in the evolution to propagate the geometry fluctuations through pressure gradients into correlations between particles produced at freeze-out [6–8]. Reduction in the pressure, as expected during a mixed phase for example, should lead to a reduction in the observed correlations [22–25]. The strength of correlations at different length scales can be studied through the analysis of $v_n^2(2) = \langle \cos n(\Delta \phi) \rangle$ as a function of $|\Delta \eta|$. The second harmonic in this decomposition is dominated by asymmetries related to the elliptic shape of the collision overlap region and has been studied for decades [26, 27]. The higher harmonics in this decomposition received attention more recently [16, 28, 30] after the importance of the initial density fluctuations was realized [17–21]. The harmonic $v_3^2(2)$ is thought to be particularly sensitive to the presence of a QGP phase: Hybrid model calculations show that while the large elliptic shape of the overlap region can develop into $v_2^2(2)$ throughout the evolution, including the hadronic phase, the development of $v_3^2(2)$ relies more strongly on the presence of a low viscosity QGP phase early in the collision [31, 32]. This suggests unless an alternative explanation for $v_3^2(2)$ is found [33], $v_3^2(2)$ will be an ideal observable to probe the formation of a QGP and the pressure gradients in the early plasma phase. In this letter we present measurements of $v_3^2(2)(|\Delta \eta|)$ as a function of centrality in Au+Au collisions at $\sqrt{s_{NN}} = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4$ and 200 GeV by the STAR detector at RHIC. We also compare these measurements to similar measurements from 2.76 TeV Pb+Pb collisions at the LHC [28].

The charged particles used in this analysis are detected through ionization energy loss and momentum [34]. The transverse momentum p_T, η, and charge are determined from the trajectory of the track in the solenoidal magnetic field of the detector. With the 0.5 Tesla magnetic field used during data taking, particles can be reliably tracked for $p_T > 0.2$ GeV/c. The efficiency for finding particles drops quickly as p_T decreases below this value [14]. Weights $w_{i,j}$ have been used to correct the correlation functions for the p_T-dependent efficiency and for imperfections in the detector acceptance. The quantity analyzed and reported as $v_n^2(2)(|\Delta \eta|)$ is

$$\langle \cos n(\Delta \phi) \rangle = \left\langle \left(\frac{\sum_{i,j,i\neq j} w_i w_j \cos(\phi_i - \phi_j)}{\sum_{i,j,i\neq j} w_i w_j} \right)^2 \right\rangle$$

where $\sum_{i,j,i\neq j}$ is a sum over all unique pairs in an event and $\langle \rangle$ represents an average over events with each event weighted by the number of pairs in the event. The weights $w_{i,j}$ are determined from the inverse of the $|\phi|$ distributions after they have been averaged over many events (which for a perfect detector, should be flat) and by the p_T-dependent efficiency. The $w_{i,j}$ depend on the p_T, η, and charge of the particle, the collision centrality, and the longitudinal position of the collision vertex. The correction procedure is verified by checking that the $|\phi|$ distributions are flat after the correction and that $\langle \cos n(\phi) \rangle$ and $\langle \sin n(\phi) \rangle$ are much smaller than the $\langle \cos n(\Delta \phi) \rangle$ [35]. With these corrections applied, the data represent the $v_3^2(2)(|\Delta \eta|)$ that would be seen by a detector with perfect acceptance for particles with $p_T > 0.2$ GeV/c and $|\eta| < 1$. Some previous results [30] on the $|\Delta \eta|$ dependence of $v_3^2(2)$ use average rather than differential corrections leading to small differences in the $|\Delta \eta|$ dependence between that work and this work. The difference is largest in central collisions at $1.5 < |\Delta \eta| < 2$.
short-range Gaussian and integrating over the remaining structure within $|\Delta \eta| < 2$:

$$\langle v_3^2 \rangle = \frac{\int (dN/d\Delta \eta)(v_3^2(\Delta \eta) - \delta)d\Delta \eta}{\int (dN/d\Delta \eta)d\Delta \eta} \tag{2}$$

where $dN/d\Delta \eta$ is the number of pairs in each $\Delta \eta$ bin (which decreases approximately linearly with $\Delta \eta$ to zero at the edge of the acceptance) and δ is the contribution from the narrow Gaussian. This quantity is extracted using the same procedure for different centralities and different beam energies. Our analysis does not attempt to isolate correlations attributed to flow from those attributed to other sources like jets and resonance decays (flow vs. non-flow) \cite{41, 42}. Those non-flow correlations typically decrease with increasing multiplicity, and thus are not the dominating contribution in central collisions. This is especially so for the cases where $v_3^2(2)$ is present in central collisions but absent in peripheral.

In Fig. 2 we present $v_3^2(2)$ for charged hadrons integrated over $p_T>0.2$ GeV/c and $|\eta|<1$, multiplied by N_{part} and plotted vs. N_{part}. The figure shows data for eight $\sqrt{s_{\text{NN}}}$ values ranging from 7.7 to 200 GeV and for nine different centrality intervals corresponding to 0-5, 5-10, 10-20, 20-30, 30-40, 40-50, 60-70, and 70-80% most central. The corresponding average N_{part} values are estimated to be 350.6, 298.6, 234.3, 167.6, 117.1, 78.3, 49.3, 28.2 and 15.7 \cite{14}. N_{part} only weakly depends on energy and we use the same N_{part} values for all energies even though centrality resolution changes with $\sqrt{s_{\text{NN}}}$. We plot $N_{\text{part}}v_3^2(2)$ to cancel the approximate $1/N_{\text{part}}$ decrease one expects for two-particle correlations or fluctuations as N_{part} increases. If a central collision was a trivial linear superposition of p+p collisions, then $N_{\text{part}}v_3^2(2)$ would remain constant with centrality. The data deviate drastically from the trivial expectation. In peripheral collisions, $N_{\text{part}}v_3^2(2)$ is close to zero, but then increases with centrality until it saturates at values close to $N_{\text{part}}=300$ before exhibiting a systematic tendency to drop slightly in the most central bins. This drop in the most central bin is there for all except the lowest energies where error bars become somewhat larger and the centrality resolution becomes worse. This rise and then fall has been traced to the non-trivial evolution of the initial geometry of two overlapping nuclei \cite{43}: when the collisions are off-axis, the effect of fluctuations in positions of nucleons in one nucleus are enhanced when they collide with the center of the other nucleus (increasing $v_3^2(2)$). This effect subsides when the two nuclei collide nearly head-on. The increase of $N_{\text{part}}v_3^2(2)$ is exhibited at all energies including 7.7 GeV. Several models suggest that the absence of a QGP should be accompanied by a significant decrease in $v_3^2(2)$ \cite{31, 32}, but we do not see that decrease. We include a comparison of the AMPT (Default) hadronic model to the 7.7 GeV data \cite{32}. The non-QGP model predicts a smaller $v_3^2(2)$ value than the.
data, suggesting that a QGP phase may exist in more central collisions at energies as low as 7.7 GeV.

Systematic errors on the integrated $v_3^2\{2\}$ are studied by analyzing data from different years or from different periods of the run, by selecting events that collided at different z-vertex positions, by varying the efficiency correction within uncertainties, and by varying the selection criteria on tracks. A systematic uncertainty is also assigned based on the fitting and subtraction of the short range correlations (we assume a 10% uncertainty on the subtraction) and on residual acceptance corrections (10% of $\langle \cos 3\phi \rangle^2 + \langle \sin 3\phi \rangle^2$). These errors are all added in quadrature for the final error estimate.

In Fig. 3, we re-plot the data from Fig. 2 for several centralities as a function of $\sqrt{s_{NN}}$. Data from 2.76 TeV Pb+Pb collisions are also included. At 200 GeV, the 50%-60% central data drop well below the 30%-40% central data and become consistent with zero for 7.7 and 11.5 GeV collisions. This shows again, that peripheral collisions at lower energies seem to fail to convert geometry fluctuations into a ridge-like correlation. This idea is consistent with the absence of a low viscosity QGP phase in low energy peripheral collisions. For more central collisions however, $v_3^2\{2\}$ is finite even at the lowest energies and changes very little from 7.7 GeV to 19.6 GeV. Above that, it begins to increase more quickly and roughly linearly with $\log(\sqrt{s_{NN}})$. This trend continues up to 2.76 TeV where for corresponding centrality intervals, the $v_3^2\{2\}$ values are roughly twice as large as those at 200 GeV. Given that the dominant trend at the higher energies is for $v_3^2\{2\}$ to increase with $\log(\sqrt{s_{NN}})$, it is notable that $v_3^2\{2\}$ is approximately constant for the lower energies.

One would expect, independent of what energy range...
We investigated these expectations at the lower \(\sqrt{s_{NN}}\) range around 15-20 GeV which is absent for peripheral collisions. Variations of \(v_2^2(2)/n_{ch,PP}\) with different parameterizations of \(n_{ch,PP}\) are typically on the order of a few percent. The trends in \(n_{ch,PP}\) also have a change in behavior in the same energy range where the dip appears in Fig. 4 but the apparent minima in the figure do not depend on the details of the parameterization of \(n_{ch,PP}\); the local minima remain even if scaling by \(\log(\sqrt{s_{NN}})\). The minima are an inevitable consequence of the near independence of \(v_2^2(2)\) with respect to \(\sqrt{s_{NN}}\) for \(\sqrt{s_{NN}}<20\) GeV while simultaneously, the multiplicity is monotonically increasing. If the otherwise general increase of \(v_2^2(2)\) is driven by ever increasing pressure gradients in ever denser systems at higher energies, then the local minimum in \(v_2^2(2)/n_{ch,PP}\) could be an indication of an anomalously low pressure inside the matter created in collisions with energies near 15-20 GeV. We note that the minima in Fig. 4 could depend on the specific scaling scheme and more rigorous theoretical modelling is needed to connect this measurement to the initial density and flow dynamics. In addition, the interpretation of data in this energy range is complicated by changes in the baryon to meson ratio [47], a relatively faster increase of \(\mu_B\) driven by baryon stopping [48], possible changes
in the sources and magnitude of non-flow [42], and the longer crossing times for nuclei at lower energies [31]. The existence of the minimum in $v_2^2(2)/v_{ch,PP}$ and other provocative trends in data collected around these energies including the minimum in the slope of the net proton v_1 [25] is interesting and provides ample motivation for further investigation [19].

In summary, we presented measurements of the $\sqrt{s_{NN}}$ dependence of $v_2^2(2)$ in Au+Au collisions for $\sqrt{s_{NN}}$ energies ranging from 7.7 to 200 GeV. The conversion of density fluctuations in the initial-state have previously been found to provide a simple explanation for $v_2^2(2)$ and the corresponding ridge correlations. Model calculations have shown that while v_2 can also be established over a longer period in a higher viscosity hadronic phase, $v_3^2(2)$ is particularly sensitive to the presence of a low viscosity plasma phase in the evolution of the collision. By studying the $\Delta \eta$ dependence of $v_2^2(2)$, we find that for sufficiently central collisions ($N_{\text{part}} > 50$), the ridge and $v_2^2(2)$ persist down to the lowest energies studied. For more peripheral collisions however, the ridge correlation appears to be absent at low energies for $N_{\text{part}} < 50$, in agreement with certain non-QGP models. When comparing $v_2^2(2)$ at RHIC and the LHC, the much larger multiplicities at the LHC lead to a much larger $v_2^2(2)$. When divided by multiplicity, $v_2^2(2)$ shows a local minimum in the region near 15-20 GeV. This feature has not been shown in any known models of heavy ion collisions and could indicate an interesting trend in the pressure developed inside the system.

We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, the KISTI Center in Korea, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. NSF, the Ministry of Education and Science of the Russian Federation, NSFC, CAS, MoST and MoE of China, the National Research Foundation of Korea, NCKU (Taiwan), GA and MSMT of the Czech Republic, FIAS of Germany, DAE, DST, and UGC of India, the National Science Centre of Poland, National Research Foundation, the Ministry of Science, Education and Sports of the Republic of Croatia, and RosAtom of Russia.

[1] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975).
[2] S. A. Chin, Phys. Lett. B 78, 552 (1978).
[3] J. I. Kapusta, Nucl. Phys. B 148, 461 (1979).
[4] R. Anishetty, P. Koehler and L. D. McLerran, Phys. Rev. D 22, 2793 (1980).
[5] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz and K. K. Szabo, Nature 443, 675 (2006).
[6] I. Arsene et al. [BRAHMS Collaboration], Nucl. Phys. A 757, 1 (2005); B. B. Back et al. [PHOBOS Collaboration], Nucl. Phys. A 757, 28 (2005); J. Adams et al. [STAR Collaboration], Nucl. Phys. A 757, 102 (2005); K. Adcox et al. [PHENIX Collaboration], Nucl. Phys. A 757, 184 (2005).
[7] B. Muller, Acta Phys. Polon. B 38, 3705 (2007); W. A. Zajc, Nucl. Phys. A 805, 283 (2008).
[8] C. Gale, S. Jeon, B. Schenke, P. Tribedy and R. Venugopalan, Phys. Rev. Lett. 110, no. 1, 012302 (2013).
[9] S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. C 89, no. 4, 044906 (2014).
[10] B. B. Abelev et al. [ALICE Collaboration], JHEP 1506, 190 (2015).
[11] C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 86, 4778 (2001) [Phys. Rev. Lett. 90, 119903 (2003)].
[12] H. Appelshauser et al. [NA49 Collaboration], Phys. Rev. Lett. 82, 2471 (1999).
[13] J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 92, 112301 (2004).
[14] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 79, 034909 (2009).
[15] F. R. Brown et al., Phys. Rev. Lett. 65, 2491 (1990); A. Mocsy, F. Sannino and K. Tuominen, Phys. Rev. Lett. 92, 182302 (2004); F. Karsch and M. Lutgemeier, “Deconfinement and chiral symmetry restoration in an SU(3) gauge theory Nucl. Phys. B 550, 449 (1999); A. Barducci, R. Casalbuoni, G. Pettini and R. Gatto, Phys. Rev. D 49, 426 (1994); A. M. Halasz, A. D. Jackson, R. E. Shrock, M. A. Stephanov and J. M. J. Verbaarschot, Phys. Rev. D 58, 096007 (1998); O. Scavenius, A. Mocsy, I. N. Mishustin and D. H. Rischke, Phys. Rev. C 64, 045202 (2001); N. G. Antoniu and A. S. Kapoyannis, Phys. Lett. B 563, 165 (2003); Y. Hatta and T. Ikeda, Phys. Rev. D 67, 014028 (2003); M. A. Stephanov, K. Rajagopal and E. V. Shuryak, Phys. Rev. Lett. 81, 4816 (1998).
[16] J. Adams et al. [STAR Collaboration], Phys. Rev. C 73, 064907 (2006); J. Adams et al. [STAR Collaboration], Phys. Rev. C 75, 034901 (2007); J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 95, 152301 (2005); A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 78 (2008) 014901; B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 80, 064912 (2009); B. Alver et al. [PHOBOS Collaboration], Phys. Rev. Lett. 104, 062301 (2010); B. I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett. 105, 022301 (2010); S. Chatrchyan et al. [CMS Collaboration], JHEP 1107, 076 (2011); K. Aamodt et al. [ALICE Collaboration], Phys. Lett. B 708, 249 (2012); G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 86, 014907 (2012).
[17] S. A. Voloshin, Nucl. Phys. A 749, 287 (2005).
[18] A. P. Mishra, R. K. Mohapatra, P. S. Saumia, A. M. Srivastava, Phys. Rev. C 77, 064902 (2008).
[19] P. Sorensen, arXiv:0808.0503 [nucl-ex]; P. Sorensen, J. Phys. G 37, 094011 (2010).
[20] J. Takahashi et al., Phys. Rev. Lett. 103, 242301 (2009).
[21] B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010).
[22] H. Sorge, Phys. Rev. Lett. 82, 2048 (1999).
[23] S. A. Voloshin and A. M. Poskanzer, Phys. Lett. B 474, 27 (2000).
[24] H. Stoecker, Nucl. Phys. A 750, 121 (2005).
[25] L. Adamczyk et al. [STAR Collaboration], Phys. Rev. Lett. 112, no. 16, 162301 (2014).
[26] K. H. Ackermann et al. [STAR Collaboration], Phys. Rev. Lett. 86, 402 (2001); J. Adams et al. [STAR Collab-
oration, Phys. Rev. Lett. 92, 052302 (2004); J. Adams et al. [STAR Collaboration], Phys. Rev. C 72, 014904 (2005).

[27] S. A. Voloshin, A. M. Poskanzer, R. Snellings, in Landolt-Boernstein, Relativistic Heavy Ion Physics (Springer-Verlag, Berlin, 2010), Vol. 1/23, p. 5. arXiv:0809.2949 [nucl-ex]; P. Sorensen, in Quark-Gluon Plasma 4 (World Scientific, Singapore, 2010), p. 323 arXiv:0905.0174 [nucl-ex]; H. G. Ritter and R. Stock, J. Phys. G 41, 124002 (2014).

[28] K. Aamodt et al. [ALICE Collaboration], Phys. Rev. Lett. 107, 032301 (2011).

[29] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 107, 252301 (2011).

[30] L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 88, no. 1, 014904 (2013).

[31] J. Auvinen and H. Petersen, Phys. Rev. C 88, no. 6, 064908 (2013).

[32] D. Solanki, P. Sorensen, S. Basu, R. Raniwala and T. K. Nayak, Phys. Lett. B 720, 352 (2013).

[33] L. He, T. Edmonds, Z. W. Lin, F. Liu, D. Molnar and F. Wang, arXiv:1502.05572 [nucl-th].

[34] STAR Collaboration, C. Adler et al., Nucl. Instr. Meth. A 499, 624 (2003).

[35] A. Bilandzic, R. Snellings and S. Voloshin, Phys. Rev. C 83, 044913 (2011); A. Bilandzic, C. H. Christensen, K. Gulbrandsen, A. Hansen and Y. Zhou, Phys. Rev. C 89, no. 6, 064904 (2014).

[36] M. L. Miller, K. Reygers, S. J. Sanders and P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007).

[37] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).

[38] H. Petersen, Q. Li, X. Zhu and M. Bleicher, Phys. Rev. C 74, 064908 (2006).

[39] J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 97, 162301 (2006).

[40] M. A. Lisa, S. Pratt, R. Soltz and U. Wiedemann, Ann. Rev. Nucl. Part. Sci. 55, 357 (2005).

[41] N. Borghini, P. M. Dinh and J. Y. Ollitrault, Phys. Rev. C 64, 054901 (2001).

[42] N. M. Abdelwahab et al. [STAR Collaboration], Phys. Lett. B 745, 40 (2015).

[43] J. Adams et al. [STAR Collaboration], J. Phys. G 32, L37 (2006).

[44] G. Agakishiev et al. [STAR Collaboration], Phys. Rev. C 86, 064902 (2012).

[45] P. Sorensen, B. Bolliet, A. Mocsy, Y. Pandit and N. Pruthi, Phys. Lett. B 705, 71 (2011).

[46] B. Alver et al. [PHOBOS Collaboration], Phys. Rev. C 83, 024913 (2011); K. Aamodt et al. [ALICE Collaboration], Phys. Rev. Lett. 105, 252301 (2010).

[47] P. Braun-Munzinger, J. Cleymans, H. Oeschler and K. Redlich, Nucl. Phys. A 697, 902 (2002).

[48] I. C. Arsene et al. [BRAHMS Collaboration], Phys. Lett. B 677, 267 (2009).

[49] U. Heinz, P. Sorensen, A. Deshpande, C. Gagliardi, F. Karsch, T. Lappi, Z. E. Meziani and R. Milner et al., arXiv:1501.00477 [nucl-th]; Y. Akiba, A. Angerami, H. Caines, A. Frawley, U. Heinz, B. Jacak, J. Jia and T. Lappi et al., arXiv:1502.02730 [nucl-ex].