A Fractal Space-filling Complex Network

D. J. B. Soares1,4, J. Ribeiro Filho1,2, A. A. Moreira1, D. A. Moreira3, and G. Corso3,4

1 Departamento de Física, Universidade Federal
do Ceará, 60451-970 Fortaleza, CE, Brazil
2 Curso de Matemática, Universidade Estadual
Vale do Acaráú 62040-370, Sobral, CE, Brazil
3 Departamento de Física Teórica e Experimental,
Universidade Federal do Rio Grande do Norte,
Campus Universitário, 59078 970 Natal, RN, Brazil and
4 Departamento de Biofísica e Farmacologia, Centro de Biociências,
Universidade Federal do Rio Grande do Norte,
Campus Universitário 59072 970, Natal, RN, Brazil

(Dated: November 7, 2018)

Abstract

We study in this work the properties of the Q_{mf} network which is constructed from an
anisotropic partition of the square, the multifractal tiling. This tiling is build using a single
parameter ρ, in the limit of $\rho \to 1$ the tiling degenerates into the square lattice that is asso-
ciated with a regular network. The Q_{mf} network is a space-filling network with the following
characteristics: it shows a power-law distribution of connectivity for $k > 7$ and it has an high
clustering coefficient when compared with a random network associated. In addition the Q_{mf}
network satisfy the relation $N \propto \ell^{d_f}$ where ℓ is a typical length of the network (the average
minimal distance) and N the network size. We call d_f the fractal dimension of the network. In
the limit case of $\rho \to 1$ we have $d_f \to 2$.

PACS numbers: 89.75.Da, 89.75.Hc, 61.43.Hv

Keywords: networks, fractals, space-filling, multifractal tiling, small-world
I - INTRODUCTION

The last years have seen an increasing interest in network studies in physics [1, 2]. Despite graph theory have been a research topic of mathematics and science of computation, the physicists have driven their attention to networks that show distribution of connectivity, $P(k)$, following a power law and that present small world effect: $\ell \propto \ln N$, for ℓ a typical network distance and N the size of the network. A recent article [3] points the difficulty to put together these two aspects in a common broad scale-free framework, it means, a fractal paradigm. In fact, a real fractal should have $N \propto \ell^{d_f}$ for d_f the fractal dimension, and not a logarithm dependence between N and ℓ. In this work we present a network that have the following characteristics: it is fractal, $N \propto \ell^{d_f}$, it is scale-free $P(k) \propto k^{-\gamma}$ for a large range of k, and it is complex in the sense of having large clustering coefficient. The scaling relation $N \propto \ell^d$ is trivially fulfilled for regular lattices where d is an integer, the topologic dimension of the space. The complex fractal network we explore in this paper has a non integer d_f.

Recently networks embedded in metric spaces have been investigated in the literature [4] because of the large applications of networks that effectively occupy a volume in 3-dimensions. In addition, motivated by microprocessors design space-filling networks [5] have been studied. We cite these new trends in networks because the distinguished network we analyze in this paper is embedded in a metric space and furthermore it is space filling. In fact our network has a geometrical inspiration, it comes from a partition of the square. Indeed this network is originated from a singular tiling that has the additional property of being a multifractal partition of the square [6].

We follow the previous literature [6, 7, 8, 9, 10] and call this object the multifractal tiling, Q_{mf}. The Q_{mf} tiling was developed in the context of modeling transport and percolation in heterogeneous porous media. In fact, a broad set of irregular and heterogeneous systems are model in the literature using a multifractal approach. We cite systems in geology [11, 12], atmospheric science [13] and chemistry [14]. Oil reservoirs are complex anisotropic structures whose treatment have been challenged science and technique because of its non trivial geometry. Inspired in the description of oil reservoirs it was developed [6] the Q_{mf} tiling. In reference [7] an exhaustive study of the percolation threshold of Q_{mf} was performed, in [8] a random version of Q_{mf} was created, in [9] some of its percolation critical exponents were found, and in [10] a numerical study of its coordination number is done.

In this work we explore the network properties of the Q_{mf}, it means its topology, the study of the connections (neighborhood) among the cells of the tiling. The paper is organized as follows. In section 2 we describe in some detail the process of construction of the Q_{mf} tiling and show its more important properties. In section 3 we show the main results concerning the properties of the network: the distribution of connectivity, the scaling of the the average minimal distance between two sites and the clustering
coefficient. Finally in section 4 we present our conclusions, discuss the main implications of our results and compare the properties of the Q_{mf} network with other networks in the literature.

II - THE MULTIFRACTAL OBJECT

The multifractal tiling is a peculiar partition of the square. It is interesting to think about the Q_{mf} tiling in contrast to the square lattice. The square lattice can be constructed using the following algorithm: take a square and cut it symmetrically with horizontal and vertical lines. This procedure produces four square cells. Repeat this procedure n times inside each new block and you have finally a square lattice with 2^n cells. The Q_{mf} object is generated in a similar way as the square lattice above described, but instead of using a symmetric partition we perform horizontal and vertical sections following a given ratio.

In Fig. 1 we exemplify the five initial steps of the construction of the multifractal for the parameter $\rho = 1/3$, or $(s, r) = (1, 3)$. In (a) we show, $n = 0$, the initial square that by convenience we assume of size $L = 1$. In (b), $n = 1$, a vertical cut is performed and two rectangles are formed. We call this a $(s, r) = (1, 3)$ object because the square is divided in 4 parts such that 1 part stays at one side and 3 parts at the other side. In (c), $n = 2$, two horizontal lines are drawn using the same section rate as before. At this level the initial square generates four rectangular blocks. Using as the area unit a square of size $\epsilon = 1/(s + r)$, the largest block has area r^2, there are two blocks of areas rs and the smallest block has area s^2. In (d) and (e), $n = 3$ and $n = 4$, respectively, the same procedure is repeated inside the initial four blocks. In reference [15] it is explored the group of eight possibilities of cutting a square lattice with a given ratio. In this work, as in other papers about Q_{mf}, it is followed the recipe of Fig. 1.

We remark that the number of blocks at step n is 2^n. These blocks do not have all the same area, we call the subsets of blocks of same area by a k-set. It is easy to check that the block area distribution follows a binomial distribution and the number of k-sets
FIG. 2: A Q_{mf} multifractal tiling and a Q_{mf} network, for $\rho = 1/2$ and $n = 6$. In (a) the original tiling and in (b) the corresponding network.

is $k = n + 1$. This fact implies that the Q_{mf} has the remarkable property: in the limit of $n \to \infty$ the area of its forming blocks follows a multifractal distribution \mathcal{D} [6]. The spectrum of fractal distributions comes from a box counting reasoning:

$$D_X = \lim_{\epsilon \to 0} \frac{\log N(X)}{\log (1/\epsilon)}$$

for $N(X)$ the number of unitary cells of size length ϵ that cover the set of blocks of a given area X. Once the initial square is partitioned n times, the size of the unitary cell is $\epsilon = 1/(s + r)^n$. For each k-set the total area of blocks (using ϵ area units) is done by:

$$N_k = C_n^k s^k r^{(n-k)},$$

where C_n^k is the binomial coefficient that express the number of elements k-type, and $s^k r^{(n-k)}$ is the area of each element of this set. We put together all these elements to have the fractal dimension of each k-set:

$$D_k = \lim_{\epsilon \to 0} \frac{\log N_k}{\log (1/\epsilon)} = \lim_{n \to \infty} \frac{\log (C_n^k s^k r^{(n-k)})}{\log (s + r)^n}. \tag{3}$$

This distribution show a concave shape with a maximum at $k = \rho n$. The case $r = s = 1$ is degenerated. In this situation the subsets of the lattice are composed uniquely by square cells of the same area. Therefore the tiling is formed by a single subset of dimension 2.
In Fig. 2 (a) it is shown an example of Q_{mf} construction for $(s, r) = (1, 2)$ and $n = 6$. In Fig. 2 (b) we build a network corresponding to this tiling. The nodes of the network are the 2^n blocks of the Q_{mf} and the vertices are established according to a neighborhood criterion. These last figures offer a glimpse of the metric heterogeneity and the topology of the multifractal. In the next section we explore in detail the network properties of this class of objects.

III - RESULTS

We start the analysis of the properties of the Q_{mf} network discussing its distribution of connectivity, $P(k)$. In Fig. 3 we show the cumulative sum of $P(k)$ versus k for several values of ρ as indicated in the figure. The option for the cumulative sum instead of $P(k)$ itself is due to the strong fluctuation of the data. Fig. 3 confirms the results of a previous work [10]. For low k, typically $k < 7$, the curve suggests an exponential behavior and above this threshold the network depicts a scale-free behavior. The values of the exponents γ of the power-law $P(k) \propto k^{-\gamma}$ are indicated in Table I for several ρ, trivially the values of γ are estimated from the slopes of the curve of the cumulative sum decreased by one. The exponent γ goes to an asymptotic limit for large N [10]. We observe that in the limit of $\rho \to 1$ the Q_{mf} tiling gets more symmetric and at $\rho = 1$ the Q_{mf} degenerates into the square lattice. For the regular square lattice $P(k)$ is a delta of Dirac centered at $k = 4$ and the cumulative sum a step function. Fig. 3 corroborates this idea, the skewed curves in the $\rho \to 1$ limit anticipate the phase transition at $\rho = 1$.

We explore the distance characterization of the Q_{mf} network in Fig. 4 where we display the behavior of the average shortest distance for all couple of distinct vertices of the network, ℓ, versus network size, N. The simulation is performed for some values
FIG. 4: In (a) it is displayed the average distance ℓ as a function of N for several values of ρ. We find $2 < d_f < 4$, the full set of d_f is shown in Table I. Two limit cases are interesting. The limit $\rho \to 1$, which corresponds to the square lattice, has $d_f \to 2$ as it is expected in a bidimensional space. The opposit limit $\rho \to 0$, which is associated with very anisotropic structures, shows large d_f. We cannot affirm that 4 is an asymptotic threshold, further numerical investigation should test this hypothesis. We remark that the Q_{mf} network does not follow a small world relationship $\ell \propto \ln N$ that is common to most of power-law and random like networks.

An analysis of the clustering coefficient, C, versus network size, N, is shown in Fig. 5. The general view of this figure points to a stable behavior of C in the limit of large N. The dispersion of C among ρ is not large, the numerics show $C = 0.37 \pm 0.01$. Smaller values of ρ, however, show a significant larger C. The discussion about C is intriguing once we compare the numerical values of C with the clustering coefficient of a random network associated to the Q_{mf} network. An associated random network is defined as a network with the same N and $\langle k \rangle$ of the original network (we do not compare our results with a random network with a same $P(k)$ because such random network would alterate the space filling characteristics that we are interested in). For a random network $C = \langle k \rangle / N$, in the case of our network: $\langle k \rangle$ is a constant number smaller than 6 and N a number that can grow without limit. As a consequence the associated random
network has $C \to 0$ in the limit $N \to \infty$. Therefore the Q_{mf} network has a C that is infinitely larger than the clustering coefficient of the associated random network. Because of the high C and the power-law behavior of distribution of connectivity we call the Q_{mf} network a complex network.

In Table I it is shown some parameters related to the Q_{mf} network for several values of ρ. Most of these data was already commented in the text. We focus now on the average connectivity $<k>$ of the network. For all ρ studied we have $<k> \sim 5.43$ which characterizes a sparse network. This is not surprising, since there is a result in topology that shows that for two dimensions the average coordination number of a tiling cannot exceed 6. The average connectivity confirms Fig. 3 where we can see that the majority of vertices are situated in the range: $4 \leq k \leq 6$. Otherwise we note that most of interesting results concerning the distribution of connectivity, in special the power-law behavior, are satisfied only in the range $k > 7$. Indeed, the Q_{mf} network, as most of complex networks, also have hubs that determine the distinguished characteristics of the network.
TABLE I: The average quantities: clustering coefficient, \(C \), minimal distance, \(\ell \), and connectivity, \(< k > \); the slope \(\gamma \) of the distribution of connectivity and the fractal dimension \(d_f \). The data corresponding to the average parameters are estimated for \(N = 2^{16} \).

\(\rho \)	(3,4)	(2,3)	(1,2)	(1,3)	(1,4)	(1,8)
\(C \)	0.3603	0.3610	0.3703	0.3735	0.3769	0.3777
\(\ell \)	122.02	115.26	96.43	75.12	57.12	41.70
\(< k > \)	5.4357	5.4357	5.4338	5.4275	5.4357	5.4357
\(\gamma \)	16.6	11.1	6.4	4.2	3.4	2.9
\(d_f \)	2.09	2.14	2.25	2.52	2.94	3.79

IV - CONCLUSION

In this work we explore some properties of a space filling network that come from a multifractal partition of the square lattice, the \(Q_{mf} \) network. An analysis of the distribution of the connectivity, \(P(k) \), assures that the \(Q_{mf} \) network shows a power-law tail that is more accentuated as increases the anisotropy of the underlying \(Q_{mf} \) tiling. Roughly the power-law tail of \(P(k) \) starts at \(k \sim 7 \). We remark that there is no regular lattice in 2 dimensions with \(k > 6 \) and typical Voronoi lattices have an exponential small number of vertices in this range. In addition the \(Q_{mf} \) network has a clustering coefficient that approaches a constant, \(C = 0.37 \pm 0.01 \), that does not depend on \(N \). This fact is in contrast to random networks that (for a constant \(< k > \)) have \(C \propto N^{-1} \). Because the value of \(C \) is much larger than the value of \(C \) of the associated random network we call the \(Q_{mf} \) network a complex network.

The most interesting aspect of the \(Q_{mf} \) network concerns its fractal behavior. For the average minimal path \(\ell \) we observe that \(N \propto \ell^{d_f} \) for the fractal dimension, \(d_f \). The simulations show that \(2 < d_f < 4 \). The lower limit correspond to the case \(\rho = 1 \) where the multifractal tiling degenerates into the square lattice. In this situation the slope \(\gamma \) (from the power law \(P(k) \propto k^{-\gamma} \)) increases dramatically, this situation corresponds to the \(P(k) \) of the square lattice that is of the form of a Delta of Dirac. The opposite limit, \(\rho = 0 \), corresponding to very anisotropic tilings, presents comparatively small values of \(\gamma \).

We point that, diversly from [3], the \(Q_{mf} \) network shows an actual fractal behavior \(N \propto \ell^{d_f} \) that is obtained without any renormalization artefact. In the reference [3] an ingenious procedure is used to calculate two fractal dimensions \(d_B \) and \(d_f \). The first dimension depends on a suitable embedding in a metric space and a box counting methodology. The second is based on network distance and a mass (number of vertices) inside a given
radios. In our case, we have calculated d_f in the standard way, the box-counting, however, depends on the methodology we use to make the embedding of the Q_{mf} object. The simplest embedding is the Q_{mf} lattice itself that is a 2-dimensional object and as a result $d_B = 2$. Note that the multifractal property of Q_{mf} appears when we consider the subsets of blocks of same area, if we disregard the area set a bidimensional tiling assumes the trivial topologic dimension, $d_f = 2$.

The Q_{mf} tiling is indeed a remarkable mathematical object, from a metric perspective it is a multifractal: it is formed by a denumerable quantity of sets of different areas each one with a given fractal dimension. In a topologic perspective the connections among the vertices (the cells of the tiling) form a fractal network. We remark that regular networks (generated from lattices for instance) and the Bethe tree satisfy the criterium $N \propto \ell^d$, but these structures are regular. For the best knowledgement of the authors the Q_{mf} network is the only case of a true fractal, scale-free and with high clustering coefficient.

Acknowledgments

The authors gratefully acknowledge the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-Brazil, FINEP and Programa PET-SESU/MEC. D. J. B. S. Thanks to D. R. de Paula.

[1] R. Albert and A-L Barabási, Rev. Mod. Phy. 74, 47 (2002).
[2] S. H. Strogatz, Nature, 410, 268 (2001).
[3] C. Song, S. Havlin and H. A. Makse, Nature, 433 392 (2005).
[4] Danyel J. B. Soares, Constantino Tsallis, A. M. Mariz and L. R. da Silva, Europhys. Lett., 70, pp 70-76 (2005).
[5] J. S. Andrade,Jr, H. J. Hermann, R. F. S Andrade, and L. R. da Silva, Phys. Rev. Lett. 94, 018702 (2005).
[6] G. Corso, J. E. Freitas, L. S. Lucena, and R. F. Soares, Phys. Rev. E. 69, 066135 (2004).
[7] L. S. Lucena, J. E. Freitas, G. Corso, and R. F. Soares, Brazilian Journal of Physics 33, 637 (2003).
[8] M. G. Pereira, G. Corso, L. S. Lucena, and J. E. Freitas Chaos, Solitons and Fractals, 23, 1105 (2004).
[9] M. G. Pereira, G. Corso, L. S. Lucena, and J. E. Freitas, International Journal of Modern Physics C, 16 317 (2005).
[10] G. Corso, J. E. Freitas and L. S. Lucena, Physica A, 342, 214 (2004).
[11] R. H. Riedi, Multifractals and wavelets: a potential tool in Geophysics, Proceedings of the 68th SEG Meeting, New Orleans, Louisiana, USA, (1998).
[12] F. Herrmann, A Scaling Medium Representation, a Discussion on Well-logs, Fractals and
Waves. PhD Thesis, Delft University of Technology, (1997).

[13] J. Muller Annales Geophysicae - Atmospheres Hydrospheres and Space Sciences 11, (6): 525-531 (1993).

[14] H. E. Stanley and P. Meakin, Nature 355, 405 (1988).

[15] G. Corso and L. S. Lucena, Physica A (to appear) (2005).