Snakebite knowledge assessment and training of healthcare professionals in Asia, Africa, and the Middle East: A review

Godpower Chinedu Michael a,*, Auwal Adam Bala b, Mustapha Mohammed c,d

a Department of Family Medicine, Amiru Kano Teaching Hospital, Kano, Nigeria
b Department of Pharmacology, College of Medicine and Health Sciences, Federal University Dusse, Nigeria
c School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Pulau Pinang, Malaysia
d Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria

A R T I C L E I N F O

Handling Editor: Dr. Denise Tambourgi

Keywords:
Envenoming
Health care professional
Knowledge
Snakebite
Training

A B S T R A C T

Snakebite envenoming (SBE) is a common neglected tropical disease in rural communities of Asia, Africa and Latin America. Among the several challenges besetting the control of SBE is inadequate access to high-quality care by snakebite victims, partly contributed by inadequate knowledge of SBE among healthcare professionals (HCPs). This narrative review examined the existing literature on the knowledge of snakebites among HCPs, the factors associated with their knowledge of snakebites and their training needs. Data on the knowledge of healthcare professionals regarding snakebites appeared scanty and were predominantly from studies done in Asia, Africa, and the Middle East. We found that the proportion of health workers with adequate knowledge of local medically important snakes could be as low as 20.2% in some settings in India, while as much as three-quarters of health workers still recommend tourniquets and Blackstone as first aid in some settings in India and Rwanda, respectively. In addition, the mean knowledge score of local snake-induced clinical syndromes could be as low as 46.2% in some settings in Ghana, while 52.7% of tertiary hospital doctors in northern Nigeria recommend antivenom in all snakebite cases. Similarly, 23% of Bhutan health workers have adequate overall knowledge of snakebite management. Furthermore, several sociodemographic characteristics of the HCPs (such as increasing age, years of experience, work setting, medical specialty, health profession and previous involvement in snakebite management) are associated with adequate snakebite knowledge. Moreover, most studies have consistently reported a lack of training on snakebites as a challenge. Therefore, the knowledge gaps identified could be incorporated into training programs and regional policies on SBE treatment protocols.

1. Introduction

Snakebite envenoming (SBE) is a common medical emergency that disproportionately affects rural dwellers, farmers and children in many tropical communities of Asia, Africa and Latin America and parts of Oceania (Gutiérrez et al., 2006, 2017; Harrison et al., 2009; Warrell, 2010; Williams et al., 2010). In 2017 the World Health Organization (WHO) recognized SBE as a category A neglected tropical disease to streamline efforts and build a formidable global response toward its control (Williams et al., 2019). Although the exact incidence of snakebite remains unknown, the WHO estimates an incidence of 5.4 million snakebites, 2.7 million envenoming, and 81,000 to 138,000 deaths globally; however, around 400,000 survivors of SBE suffer amputations and permanent disabilities (Williams et al., 2019). With an ambitious target to half the number of deaths and disabilities from SBE by the year 2030, the WHO prioritized some specific objectives towards achieving this goal, which include (1) ensuring that safe and effective treatment is accessible and affordable for all (2) empowering regional, national, and local communities to take proactive action (3) strengthening health systems to deliver better outcomes; and (4) building a robust global coalition of partners to build advocacy, mobilize resources, coordinate action, and ensure that implementation of the roadmap is successful (Williams et al., 2019).

Furthermore, SBE predominantly affects the world’s poorest people...
Managing SBE. Examples of these guidelines are the validated WHO regional guidelines for preventing and managing SBE. Essential sources of snakebite information are the WHO regional guidelines for preventing and managing SBE. Examples of these guidelines include the WHO South East Asia Regional Office (SEARO) guidelines for the management of snakebites (2016) (Organization, 2016) and the WHO Africa Regional Office (AFRO) guidelines for the prevention and clinical management of snakebites in Africa” (2010) (Organization, 2010). These guidelines are used in the training and permanent educational programs of physicians and nurses. In addition, many countries have developed national guidelines, which are valuable items for training physicians and nurses.

Furthermore, the training of HCPs (e.g., medical doctors, nurses, pharmacists, etc.) has profusely been reported as suboptimal and will need to be addressed (Gutierrez, 2014). Moreover, a qualitative study in Kenya has indicated that HCPs welcomed their training in snakebite management, diagnosis and antivenom administration (Barnes et al., 2021). However, this will require identifying the training needs of these professionals.

Table 1
Summary of snakebite knowledge studies and their key findings.

First authors name and year	Country	Design	Population	Key findings on knowledge
Knowledge of local medically important snakes				
Fung et al. (2009)	Hong Kong	Cross-sectional	Doctors	57% incorrectly identified Naja atra as neurotoxic
Inthanomchanh et al. (2017)	Lao PDR	Cross-sectional	Doctors, nurses	27.7% had adequate knowledge of identifying snakes
Michael et al. (2018)	Nigeria	Cross-sectional	Doctors	- 50.8% had adequate knowledge of snake species that cause most injuries and deaths
Malik and Chatterjee (2020)	India	Cross-sectional	Doctors	- 85.3% Incorrectly identified Naja nigripalpis as neurotoxic
Sapkota et al. (2020)	Bhutan	Cross-sectional	Doctors, nurses, others	6.8% knew of the number of local medically important snake species
Ameade, 2020	Ghana	Cross-sectional	Doctors, pharmacists, nurses	55% lacked confidence to identify local venomous snakes
Khurshua et al. (2020); Sulaiman et al. (2020)	Palestine	Cross-sectional	Nursing students	Mean snake knowledge score was 46.2%
Knowledge of snakebite first aid measures				
Fung et al. (2009)	Hong Kong	Cross-sectional	Doctors	52% would recommend applying a tourniquet after snakebite
Michael et al. (2018)	Nigeria	Cross-sectional	Doctors	Only 48% recommended pressure immobilization and transport to hospital
Subedi et al. (2018)	Nepal	Cross-sectional	Medical students	75.7% had adequate knowledge of first aid
Malik and Chatterjee (2018)	Bangladesh	Cross-sectional	Doctors, nurses and others	77.8% erroneously believed applying tourniquet was an appropriate first aid measure
Khurshua et al. (2020); Sulaiman et al. (2020)	Palestine	Cross-sectional	Nursing students	72% correctly recommended non-use of tourniquet
Knowledge of the clinical presentation of snakebites				
Fung et al. (2009)	Hong Kong	Cross-sectional	Doctors	50% believed that inability to identify the biting snake hindered effective treatment
Inthanomchanh et al. (2017)	Lao People’s DR	Cross-sectional	Doctors and nurses	59% could identify symptoms of SBE
Malik and Chatterjee (2020)	India	Cross-sectional	Doctors	52% and 20% knew the clinical presentation of the local Krait and other elapid snakes
Michael et al. (2018)	Nigeria	Cross-sectional	Tertiary hospital doctors	62% had adequate knowledge of the clinical features of SBE
Khurshua et al. (2020); Sulaiman et al. (2020)	Palestine	Cross-sectional	Nursing students	Mean knowledge score for signs and symptoms was 60%
Ahmad (2009)	United Kingdom	Cross-sectional	Emergency physicians and plastic surgeons	Poor knowledge of the clinical consequences of SBE and administering antivenom
Fung et al. (2009)	Hong Kong	Cross-sectional	Physicians	92% had confidence in treating SBE
Inthanomchanh et al. (2017)	Lao DR	Cross-sectional	Physicians & Nurses	45.4% had adequate knowledge of managing SBE
Michael et al. (2018)	Nigeria	Cross-sectional	Tertiary hospital doctors	50% believed that inability to identify the biting snake hindered effective treatment
Sapkota et al. (2020)	Bhutan	Cross-sectional	doctors, nurses, and others	- Mean overall knowledge score of 70.2%
Ameade et al. (2021)	Ghana	Cross-sectional	Pharmacist, Doctors, nurses	- 25% had adequate knowledge of snakebite treatment
Schurer et al. (2022)	Rwanda	Cross-sectional	Physicians and medical interns	50.3% had confidence in managing SBE
Knowledge involvement in the treatment of snakebite				
Fung et al. (2009)	Hong Kong	Cross-sectional	Doctors	52% had treated snakebite before
Ahsan et al. (2017)	Bangladesh	Cross-sectional	Doctors, nurses and others	30% had managed snakebite before
Inthanomchanh et al. (2017)	Lao PDR	Cross-sectional	Doctors and nurses	47.9% had treated snakebite before
Michael et al. (2018)	Nigeria	Cross-sectional	Doctors, nurses and others	78.3% had been involved in managing SBE
Taieb et al. (2018)	Cameroon	Quasi-experimental	Doctors, nurses and others	33.7% had managed snakebite the previous year
Malik and Chatterjee (2020)	India	Cross-sectional	Doctors	76.1% had managed a case of snakebite with or without assistance
Sapkota et al. (2020)	Bhutan	Cross-sectional	Doctors, nurses and others	81% had treated snakebite before
Bala et al. (2021)	Nigeria	Cross-sectional	Doctors, pharmacists, nurses	Only 19% had ever administered or dispensed antivenom before
Ameade et al. (2021)	Ghana	Cross-sectional	Pharmacist, Doctors, nurses	82.8% had managed snakebite before

PDR: Peoples Democratic Republic.
The objective of this narrative review was, therefore, to explore literature from Asia, Africa, the Middle East and Latin America on HCPs’ (1) knowledge of snakebite care, (2) factors associated with knowledge of snakebite management and (3) to identify their training needs. We hope that the findings will be helpful in the strategic planning of training programs to improve snakebite management since a study has demonstrated the positive impact of training on snakebite knowledge (Taieb et al., 2018); this, in turn, could improve practice.

2. Review

Current literature on the knowledge of healthcare professionals regarding snakebites appeared scanty and was predominantly from studies carried out in Asia, Africa, and the Middle East, as shown in Table 1.

2.1. Knowledge gaps in snakebite care

2.1.1. Knowledge of local medically important snakes

Snake species identification is sometimes essential in caring for snake-envenomed patients that require antivenom (e.g., in Australia, where venom detection kits and monospecific antivenom are readily available), given the differences in the venom composition of different snake species. However, in many cases, especially in Africa and Asia, identifying the offending snake is not strictly required for treatment, as the snake-induced clinical syndrome is used in addition to the knowledge of the main venomous snakes in that setting (Blaylock, 2005; Ariaratnam et al., 2009). Remarkably, a knowledge deficit exists regarding local venomous snakes of medical importance. For instance, in Asia, only about a quarter (27.7%) of HCPs (physicians and nurses) in the Lao People’s Democratic Republic (PDR) could confidently identify local snakes of medical importance (Inthanomchanh et al., 2017). Similarly, only 6.8% of the medical practitioners (doctors) knew the number of snake species of medical importance in India, while only 50.2% and 20.2% of the practitioners knew the local Kraits and vipers, respectively; however, 91.7% of them knew of other elapids (like the Indian cobra) (Malik and Chatterjee, 2020).

Furthermore, in Bhutan, 55% of health workers (doctors, nurses and others) lacked sufficient confidence to identify venomous snakes (Sapkota et al., 2020), while about half (57%) of selected doctors ((working in accident and emergency, internal medicine, ICU, family medicine, orthopaedic, anaesthesiology departments) in Hong Kong, China reported Naja atra as neurotoxic when, in fact, they are mainly cytotoxic (Fung et al., 2009). This finding appears to be a common finding even in Africa, as 85.3% of northern Nigerian tertiary hospital doctors also incorrectly reported that Naja nigricollis causes neurotoxic symptoms when, in fact, they are cytotoxic (Michael et al., 2018).

Similarly, among students in Palestine (Middle East), the mean knowledge score for the most common medically important snakes (e.g., Vipera palestinae) was 5.1/13 (i.e., 39.2%) among nursing students and 3.8/13 (29.2%) among medical students (Kharusha et al., 2020; Sulaiman et al., 2020). These findings suggest that the knowledge deficit among practising health workers may be due to a deficient or ineffective undergraduate curriculum/program.

2.1.2. Knowledge of snakebite first aid measures

HCPs are respected leaders in communities where they work, especially in rural areas; they are also effective health promotion agents, as seen in the impact of simple office counseling and education on chronic disease prevention (Sharaf, 2010). Therefore, knowledge of evidence-based first aid practices for snakebites is crucial. Counseling and education of snakebite survivors or their caregivers could be offered in the health facility setting or when there are opportunities to talk to community groups on snakebite prevention. However, as reported in many studies, there appears to be a significant knowledge gap in this area. For instance, in Asia, about half (52%) of Indian and Pakistani doctors in a study recommended at least a tourniquet application after snakebite, with only a quarter (25.8%) suggesting pressure immobilization and transport to the hospital as first aid (Simpson, 2008). Three quarters (74.5%) of doctors in Kerala, India, recommended tourniquet application as a first aid management strategy (Pillay et al., 2021). Similarly, in Hong Kong, only about half (48%) of the doctors recommended immobilization of the victim and transport to the hospital (Fung et al., 2009). However, about three-quarters (72%) of respondents in a Bhutan study correctly recommended the non-use of a tourniquet when snakebite occurs (Sapkota et al., 2020). Unsurprisingly, over three-quarters (77.8%) of Nepal preclinical and clinical medical students believed that applying a tourniquet on the limb proximal to the bite site is an appropriate first-aid practice (Subedi et al., 2018). Moreover, in the middle east, low mean first-aid knowledge scores of 44% and 55.3% were reported among Palestinian nursing and medical students, respectively (Kharusha et al., 2020; Sulaiman et al., 2020).

In Africa, a similar proportion of Nigerian doctors (75.7%) had sufficient knowledge of snakebite first aid (Michael et al., 2018). However, a recent study in Rwanda among hospital physicians and interns not only showed that a third (34.8%) of respondents believed that traditional healers could manage snake-envenomed patients successfully but that two-thirds of those also believed that Blackstone application at the bite site was an appropriate first aid for snakebite (Schurer et al., 2022).

2.1.3. Knowledge of the clinical presentation of snakebites

SBE is a medical emergency requiring a high index of suspicion from the HCP. The HCPs will have to rely on their knowledge of snakebites to make a prompt diagnosis and commence appropriate management. Unfortunately, many HCPs and medical and nursing students have insufficient knowledge of the clinical features of SBE. For instance, in Asia, a study in Hong Kong reported that 50% of physicians reported that the inability to identify the clinical presentation of Krait bites was hindering the effective treatment of SBE (Fung et al., 2009); similarly, only about 59% of health care providers in Lao DR could correctly identify symptoms of envenoming (Inthanomchanh et al., 2017). Likewise, only about 52.2% and 20.2% of Indian medical practitioners are aware of the common presentations of Common Krait and Viper envenoming, respectively (Malik and Chatterjee, 2020).

In Africa, a study reported that only 62.3% of tertiary hospital doctors in Northern Nigeria had sufficient knowledge of the clinical features of SBE in the region (Michael et al., 2018), while 46.2% was the mean medically important snake knowledge score in a study among Ghanaian health workers (doctors, pharmacists, nurses) (Ameade, 2020).

Interestingly, there is a similar knowledge gap among nursing and medical students regarding snakebite presentation. For instance, mean knowledge scores of 9.6/16 (60%) and 8.2/16 (51.3%) for signs and symptoms of SBE had been reported among Palestinian nursing and medical students, respectively (Kharusha et al., 2020; Sulaiman et al., 2020).

2.1.4. Prior involvement in the treatment of snakebite

Exposure of HCPs to snakebite care varies with the context; for instance, 29.6% and 17.3% of HCPs in Bangladesh had been involved in snakebite treatment before and in the preceding twelve months, respectively (Ahsan et al., 2017); only about a third (33.7%) of health workers in Cameroon had been involved in snakebite care in the preceding year (Taieb et al., 2018); 52% of doctors have treated snakebite in Hong Kong (Fung et al., 2009); 47% of health care workers (doctors and nurses) had been involved in the treatment of snakebite in Lao PDR (Inthanomchanh et al., 2017), while in a Nigerian study that examined knowledge of antivenom, only 19% of the HCPs (doctors, pharmacists, nurses and pharmacy technicians) had ever administered or dispensed antivenom (Bala et al., 2020, 2021). However, three-quarters (75.1%) of Indian and Pakistani doctors reported having treated snakebite victims (Simpson, 2008); a similar proportion of Indian doctors (76.1%) had managed a case of snakebite with or without assistance (Malik and

G.C. Michael et al.

Toxicol. X 16 (2022) 100142

that the topic of snakebite needs more emphasis at the undergraduate curriculum was inadequate to deal with snakebite, while 91.4% thought medical practitioners felt that their undergraduate medical education training on snakebite at the undergraduate level is inadequate and that snakebite consequences and antivenom administration (Ahmad, 2009).

had sufficient knowledge of antivenom treatment for snakebites; how technicians) have adequate knowledge of antivenom, an essential training in snakebite management remains low. For instance, only 12% (32.6%) of Indian medical practitioners had correct knowledge about managing adverse reactions to anti-snake venom (Malik and Chatterjee, 2020). However, in Kerala, India, a high mean overall knowledge of the doctors was reported (10.65/14 (76.1%)) (Pillay et al., 2021). The situation is similar in African studies; for instance, only 12.7% of Nigerian HCPs (doctors, pharmacists, nurses, and pharmacy technicians) have adequate knowledge of antivenom, an essential therapy in managing SBE (Bala et al., 2021). Moreover, another study among northern Nigerian doctors showed that half of the respondents had sufficient knowledge of antivenom treatment for snakebites; however, about half (52.7%) of them incorrectly reported that antivenom is given in all cases of snakebite (Michael et al., 2018). Furthermore, a low overall mean knowledge score of 49.4% (range: 31.3–70.8%) was reported among hospital physicians and medical interns in Rwanda (Schur et al., 2022). However, the inadequate knowledge of SBE management is not limited to the poor regions of Africa, Asia and the Middle East. For example, a study carried out among emergency physicians and plastic surgeons in the UK reported low knowledge of snakebite consequences and antivenom administration (Ahmad, 2009).

2.1.5. Adequacy of health care professional’s overall knowledge of snakebite

The knowledge of HCPs has remained worryingly low over time in Asia and Africa. For instance, in Asia, only 29% of doctors in Hong Kong were confident in treating snakebites (Fung et al., 2009), while Inthamomchanh et al. reported that 45.5% of health workers in Lao DR had sufficient knowledge of snakebite management (Inthamomchanh et al., 2017). Similarly, only 23% of Bhutanese health workers (nurses and doctors) have adequate knowledge of snakebite management (Sapkota et al., 2020). Furthermore, an online survey in 2020 showed that only a third (32.6%) of Indian medical practitioners had correct knowledge about managing adverse reactions to anti-snake venom (Malik and Chatterjee, 2020). However, in Kerala, India, a high mean overall knowledge of the doctors was reported (10.65/14 (76.1%)) (Pillay et al., 2021). The situation is similar in African studies; for instance, only 12.7% of Nigerian HCPs (doctors, pharmacists, nurses, and pharmacy technicians) have adequate knowledge of antivenom, an essential therapy in managing SBE (Bala et al., 2021). Moreover, another study among northern Nigerian doctors showed that half of the respondents had sufficient knowledge of antivenom treatment for snakebites; however, about half (52.7%) of them incorrectly reported that antivenom is given in all cases of snakebite (Michael et al., 2018). Furthermore, a low overall mean knowledge score of 49.4% (range: 31.3–70.8%) was reported among hospital physicians and medical interns in Rwanda (Schur et al., 2022). However, the inadequate knowledge of SBE management is not limited to the poor regions of Africa, Asia and the Middle East. For example, a study carried out among emergency physicians and plastic surgeons in the UK reported low knowledge of snakebite consequences and antivenom administration (Ahmad, 2009).

2.1.6. Previous training on snakebite

There appears to be a consensus among HCPs that the current level of training on snakebite at the undergraduate level is inadequate and that regular training is required after graduation. For instance (Malik and Chatterjee, 2020), reported that nearly three-quarters (72.3%) of Indian medical practitioners felt that their undergraduate medical education curriculum was inadequate to deal with snakebite, while 91.4% thought that the topic of snakebite needs more emphasis at the undergraduate level. In Bhutan, all the health workers stressed the need for snake identification and snakebite management training (Sapkota et al., 2020), while the study by (Fung et al., 2009) suggested the need for locally relevant training and protocols. Unfortunately, some HCPs in a Ghanaian study over-rated their knowledge about snakebite envenoming (Ameade, 2020). Similarly, 98.7% of doctors in northern Nigeria believed they had knowledge of SBE in a study (Michael et al., 2018).

Furthermore, the proportion of healthcare workers receiving training in snakebite management remains low. For instance, only 12% of health workers in a multi-country study (Kenya, Uganda and Zambia) reported having had formal training in snakebite management (Ooms et al., 2020), while 33.7% and 30.6% of health workers had received any form of post-graduation training on snakebite management in Cameroon and Ghana, respectively (Taeib et al., 2018; Ameade et al., 2021). However, those who have had the privilege of attending training programs have recommended regular training (Taeib et al., 2018). This clearly makes training of health workers an area for investment.

2.2. Factors associated with healthcare professionals’ knowledge of snakebite

Interestingly, some characteristics of HCPs have been associated with higher knowledge of snakebites. These include the male gender (Ameade, 2020; Pillay et al., 2021; Sapkota et al., 2020), increasing age (>35years) (Sapkota et al., 2020), higher years of experience (Michael et al., 2018; Pillay et al., 2021; Sapkota et al., 2020), prior training on snakebite (Ameade, 2020), and previous participation in managing snakebite (Michael et al., 2018; Sapkota et al., 2020) were more likely to have sufficient knowledge of snakebite.

2.3. Training needs of healthcare professionals that manage snakebites

The HCPs’ preparedness in managing snakebite envenoming begins with sufficient knowledge and skills in managing the condition. While the WHO regional and National guidelines are becoming readily available, disseminating these essential materials and their utilization by health professionals remain challenging. Ingenious ways of surmounting these challenges could involve using information and communication platforms and technologies to educate health professionals on snakebite; these include webinars, podcasts, online courses, etc. Regional and national toxology societies could take up this challenge with support from other partners.

Furthermore, The HCP should have adequate knowledge of the local venomous snakes and their clinical presentation after a bite, the recommended snakebite first aid/prehospital care, as well as the complications of using inappropriate prehospital care, the nearest health care facility with the capacity to treat snakebites, the local treatment protocol for snakebite, rational use of antivenom, and the identification and treatment of its adverse effects. Moreover, the managing team should be able to detect and treat mental disorders (e.g., depression and post-traumatic stress disorders) in survivors of snakebite, especially those with sequelae such as permanent and severe scars and amputations (Bhaumik et al., 2020; Islam et al., 2018; Muhammed et al., 2017) and refer them for rehabilitation as appropriate. Health care workers also require knowledge of these long-term effects of snake envenoming such as chronic kidney diseases, disfigurations, long term pain, muscle contractures and deformities.

Ideally, all HCPs likely to be confronted with snakebite treatment should receive training and retraining to offer the best care possible to snakebite victims. However, where resources are constrained, younger healthcare workers with few years of experience, especially those who are likely to see the victim first in the health facility, those in the emergency departments and surgeons likely to be involved in complicated snakebite (e.g., in cases of compartment syndromes, amputations, etc.), pharmacy technicians/pharmacists, and those without previous training should be considered for training.

2.4. Limitations of the study

Being a narrative review, the literature search may not have been exhaustive, especially non-English language studies. Second, there is a lack of snakebite knowledge studies in Latin America and Oceania; hence, data from these regions were poorly represented. Third, only a few knowledge studies were carried out among pharmacists/pharmacy technicians who also handle the storage and dispensing of anti-snake venom. Fourth, most studies designed their questions with different assessment domains; this suggests the need for a standardized questionnaire that may require only slight modifications to accommodate local peculiarities in the holistic assessment of snakebite knowledge.
2.5. Conclusion

A preponderance of studies in this review identified knowledge gaps among HCPs regarding snakebites; this suggests that current efforts to curtail the injuries and deaths from SBE should include training and retraining of HCPs, as some of the recorded deaths may have been due to wrong decisions by these important stakeholders.

Credit author statement

Godpower C. Michael conceived the idea, reviewed the reports and co-wrote the manuscript. Anwul A. Bala and Mustapha Mohammed reviewed the reports and co-wrote the manuscript.

Ethical statement

No ethical approval was required for this review.

Funding

No funding was received for this study.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

None.

References

Ahisan, H.N., Rahman, M.R., Amin, R., Chowdhury, E.H., 2017. Knowledge of snake bite management amongst health service providers in a rural community of Bangladesh. Journal of Current and Advance Medical Research 4, 17–22.

Ahmad, Z., 2009. A study of the knowledge and attitudes of emergency physicians and plastic surgeons in the management of snakebites European. J. Plast. Surg. 32, 141–145.

Ameade, E., 2020. Health care provider’s knowledge on snakes and snakebites - a study in the three tongu districts of the volta region, Ghana. Internal Medicine Research - Open Journal 5, 1–7.

Ameade, E.P.K., Bonney, I., Boateng, E.T., 2021. Health professionals’ overestimation of knowledge on snakebite management, a threat to the survival of snakebite victims—a cross-sectional study in Ghana. PLoS Neglected Trop. Dis. 15, e0008756.

Ariaratnam, C.A., Sheriff, M.H., Arambepola, C., Theakston, R.D., Warrell, D.A., 2009. Syndromeic approach to treatment of snake bite in Sri Lanka based on results of a prospective national hospital-based survey of patients envenomed by snakes. Am. J. Trop. Med. Hyg. 81, 725–731.

Bala, A.A., Jatau, A., Yunusa, I., Mohammed, M., Mohamed, A.-K.H., Isi, A.M., Wada, A., Gulma, K.A., Bello, I., Michael, G.C., 2020. Knowledge assessment of snake venom among healthcare practitioners involving educational intervention in northern Nigeria: a study protocol. Therapeutic advances in drug safety 5, 645–654.

Bala, A.A., Jatau, A., Yunusa, I., Mohammed, M., Mohamed, A.-K.H., Isi, A.M., Wada, A.S., Gulma, K.A., Bello, I., Malami, S., 2021. Knowledge assessment of anti-snake venom among healthcare practitioners in northern Nigeria. Therapeutic Advances in Infectious Disease 8, 2049096620935721.

Hamajima, N., 2017. Assessment of knowledge about snakebite management knowledge amongst select physicians in Hong Kong and the implications for snakebite training. Wilderness Environ. Med. 20, 364–372.

Gutierrez, J.M., 2014. Reducing the impact of snakebite envenoming in Latin America and the Caribbean: achievements and challenges ahead. Trans. R. Soc. Trop. Med. Hyg. 108, 530–537.

Gutierrez, J.M., Calvette, J.J., Habib, A.G., Harrison, R.A., Williams, D.J., Darrell, W.A., 2017. Snakebite envenoming. Nat. Rev. Dis. Prim. 3, 1–21.

Gutierrez, J.M., Theakston, R.D.G., Darrell, W.A., 2006. Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med. 3, e1156.

Harrison, R.A., Hargreaves, A., Waggstaff, S.C., Faraghar, B., Laloo, D.G., 2009. Snake envenoming: a disease of poverty. PLoS Neglected Trop. Dis. 3, e569.

Inthanomchanh, V., Royer, A.A., Blessmen, J., Pharainsoumth, K., Yamamoto, E., Hamajima, N., 2017. Assessment of knowledge about snakebite management amongst healthcare providers in the provincial and two district hospitals in Savannakhet Province, Lao PDR. Nagoya J. Med. Sci. 79, 299.

Islam, A.T., Sulmana, S., Uddin, M.K., Rahman, M., 2018. Snake bites with neuropsychiatric presentation—a study in Hill tracts of Bangladesh. Journal of Enam Medical College 8, 20–24.

Kharusta, I.K., Sulaiman, S.S., Samara, A.M., Al-Jabi, S.W., Ziyoud, S.E.H., 2020. Assessment of knowledge about first aid methods, diagnosis, and management of snakebite among nursing students: a cross-sectional study from Palestine. Emergency Medicine International, 2020.

Malik, A.S., Chatterjee, K., 2020. Awareness of Indian medical practitioners about snakebite and its management: Is there a need to re-evaluate medical training? Medical Journal of Dr. DY Patil Vidyapeeth 13, 519.

Margono, F., Outwater, A.H., Lowery Williams, M., Howell, K.M., Barnighausen, T., 2022. Snakebite treatment in Tanzania: identifying gaps in community practices and hospital resources. Int. J. Environ. Res. Public Health 19, 4701.

Michael, G.C., Grema, B.A., Aliyu, I., Albaji, M.A., Lawal, T.O., Ibrahim, H., Fikin, A.G., Gyan, F.S., Kane, K.N., Thacher, T.D., 2018. Knowledge of venomous snakes, snakebite first aid, treatment, and prevention among clinicians in northern Nigeria: a cross-sectional multicentre study. Trans. R. Soc. Trop. Med. Hyg. 112, 47–56.

Muhammed, A., Dalhat, M.M., Joseph, B.O., Ahmed, A., Nguku, P., Poggesse, G., Adeiza, M., Yahya, G.I., Hamza, M., Habib, Z.G., 2017. Predictors of depression among patients receiving treatment for snakebite in general hospital, Kaltungo, Adamawa state, Nigeria: august 2016 – 11, 1–7.

Ooms, G.I., van Oirschot, J., Waldmann, B., van Bernus, S., van den Ham, H.A., Mantel-Teeuwisse, A.K., Reed, T., 2020. The current state of snakebite care in Kenya, Uganda, and Zambia: healthcare workers’ perspectives and knowledge, and health facilities’ treatment capacity. Am. J. Trop. Med. Hyg. 104, 774–782.

Organization, WH, 2010. Guidelines for the Prevention and Clinical Management of Snakebite in Africa. World Health Organization. Regional Office for Africa. Organization, WH, 2016. Guidelines for the Management of Snakebites. World Health Organization.

Organization, WH, 2019. Snakebite Envenoming: a Strategy for Prevention and Control. Pillay, R., Rathish, B., Pillay, V., Mukhtar, F., 2021. Awareness of the standard of care for snakebite management among physicians in Kerala: a cross-sectional study. Am. J. Trop. Med. Hyg. 105, 528.

Sapkota, S., Pandey, D.P., Dhakal, G.P., Gurung, D.B., 2020. Knowledge of health workers on snakes and snakebite management and treatment seeking behavior of snakebite victims in Bhaktapur, Nepal. PLoS Neglected Trop. Dis. 14, e0008793.

Sharif, F., 2010. Impact of health education on compliance among patients of chronic diseases in Al Qaisim, Saudi Arabia. Int. J. Health Sci. 4, 139.

Schurrer, J.M., Hirvua, E.M., Masimbi, O., Nduwayezu, R., 2022. Knowledge, attitudes, and practices: a quantitative assessment of hospital physicians and medical interns treating snakebite envenomation in Rwanda. Trans. R. Soc. Trop. Med. Hyg. 116, 645–654.

Simpson, L.D., 2008. A study of the current knowledge base in treating snake bite amongst doctors in the high-risk countries of India and Pakistan: does snake bite treatment training reflect local requirements? Trans. R. Soc. Trop. Med. Hyg. 102, 1108–1114.

Subedi, N., Paudel, I.S., Khadka, A., Shrestha, U., Mallik, V.B., Ankur, K.C., 2018. Knowledge of first aid methods and attitude about snake bite among medical students: a cross sectional observational study. Journal of Occupational Medicin and Toxicology 13, 26.

Sulaiman, S.S., Kharusta, I.K., Samara, A.M., Al-Jabi, S.W., Ziyoud, S.E.H., 2020. An assessment of medical students’ proficiency in the diagnosis and management of snakebites: a cross-sectional study from Palestine. J. Occup. Med. Toxicol. 15, 1–11.

Taeib, F., Dub, T., Mzec, Y., Tonderc, L., Chiappa, J.P., Lebreton, M., Medang, R., Poupe, F.N.N., Tcholfo, D., Potet, J., 2018. Knowledge, attitude and practices of snakebite management amongst health workers in Cameroon: need for continuous training and capacity building. PLoS Neglected Trop. Dis. 12, e0006716.

Darrell, W.A., 2010. Snake bite. Lancet 375, 77–88.

Williams, D., Gutierrez, J.M., Harrison, R., Darrell, W.A., White, J., Winkel, K.D., Gopalakrishnakone, P., 2010. The global snake bite initiative: an antidote for snake bite. Lancet 375, 89–91.

Williams, D.J., Faiz, M.A., Abela-Ridder, B., Ainsworth, S., Bullone, T.C., Nickerson, A.D., Habib, A.G., Junghans, T., Fan, H.W., Turner, M., 2019. Strategy for a globally consistent response to a priority neglected tropical disease: snakebite envenoming. PLoS Neglected Trop. Dis. 13, e0007059.