Litho- and biostratigraphic data of lower-middle Miocene sections in the Transylvanian basin and SE Carpathian Foredeep (Romania)

K. Sant a, D.V. Palcu a, E. Turco b, A. Di Stefano c, N. Baldassini c, T. Kouwenhoven d, K.F. Kuiper e, W. Krijgsman a, *

a Paleomagnetic Laboratory Fort Hoofddijk, Utrecht University, Utrecht, the Netherlands
b Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parma, Italy
c Department of Biological, Geological and Environmental Sciences, Catania University, Catania, Italy
d Department of Geosciences, Stratigraphy-Paleontology, Heidelberglaan 2, 3584 CS Utrecht, the Netherlands
e Department of Earth Sciences, Vrije Universiteit Amsterdam, the Netherlands

ABSTRACT

Litho- and biostratigraphic data are provided of 5 stratigraphic sections in Romania covering the “Badenian” marine flooding that occurred in the Central Paratethys during the middle Miocene (Langhian). The dataset includes stratigraphic logs and descriptions of the profiles, and biostratigraphic analyses on calcareous nannofossils and foraminifera. In addition, characteristic stratigraphic features and representative fossils, including tiny *Streptochilus* foraminifera in the Campinit¸ a section in the SE Carpathian Foredeep, are presented in photographs. The data show that the flooding is characterized by the sudden abundance of Langhian calcareous nannofossils and foraminifera with a strong Mediterranean affinity.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The litho- and biostratigraphic data from the sections document a shift from restricted brackish-marine deposits to open marine deposition by the sudden appearance of abundant Mediterranean planktonic foraminifera (Figs. 1 and 2). This transgressive interval was logged in detail in the Campinit¸a and Brebu sections, located in the Carpathian bend area in the East Carpathian Foredeep, where both intervals share similar features (Fig. 2., Fig. 3a). In the SE Carpathian Foredeep, the onset of the open marine conditions is assigned to the planktonic foraminiferal zone MMi5b and calcareous nannofossil zones MNN4c-MNN5a. In the Transylvanian sections, the quality of the data is variable and the base of the flooding is in the range MMi4c to MMi5a (planktonic foraminifera) and MNN5a-MNN5b (calcareous nannofossils). The data can be used for a paleoenvironmental and chronostratigraphic interpretation of the research area.

2. Experimental design, materials, and methods

2.1. Sampling and analysis

The stratigraphic profiles were logged at ~0.5–1 m resolution during a fieldwork campaign in May 2015. Biostratigraphic samples were taken with a resolution of 1–2 m from the Valea Dracului (DV), Ciceu-Giurgest¸i (CG), Cepari (CP) and Campinit¸a (CA) sections. Additionally, biostratigraphic samples were taken at an approximately 25 cm resolution in the intervals just below the marine transgression...
in Valea Dracului, Campinița and Brebu. The resolution is lower (4 m or more) in intervals with a lot of coarse-grained material, such as sands and volcanic material.

A total of 81 calcareous nannofossil smear slides were prepared for calcareous nannofossil analysis using standard methods [1,2] and analyzed with a Zeiss Axioscope microscope under magnification 1000× at Catania University. According to the counting methodologies proposed by Refs. [2,3], targeted counts of biostratigraphically significant taxa were performed, in order to obtain relative abundances. Specifically, 30 and 50 specimens within the genera Sphenolithus and Helicosphaera were counted, respectively.

A total of 88 samples for the analysis of foraminiferal assemblages were prepared partly at the Geolab of the Faculty of Geosciences of Utrecht University and partly at the Micropaleontology Laboratory of the University of Parma. Samples (about 250 g) were dried in an electric oven at 40 °C for approximately 2 days, were processed with H2O2 (3%), and washed over 63 and 125 μm sieves. A qualitative analysis of planktonic foraminiferal assemblages was carried out on the >125 μm fraction of the washed residues focusing on the biostratigraphic marker species and on the >63 μm fraction specifically for Streptochilus spp; representative taxa were picked and mounted on micropaleontological slides. The biostratigraphic scheme for the Mediterranean by Ref. [4] emended in Ref. [5] was adopted. The foraminiferal content of the samples is highly variable, from (nearly) absent to very abundant. The preservation is also variable, from very poor to good. The samples containing benthic foraminifera (>125 μm size fraction) were qualitatively examined and representative taxa were mounted on micropaleontology slides for reference.

2.2. Lithostratigraphy

2.2.1. SE Carpathian Foredeep: Campinița and Brebu

The Miocene sediments in the SE Carpathian bend area were deposited in a former piggyback basin and subsequently incorporated into the Tarcău nappe. Similar deposits are found in the Râmniciu Vâlce-Câmpulung — Câmpina — Slănic areas [e.g.,6,7]. In the study area, the Slănic tuff with Globigerina Marls that mark the Badenian flooding are known as the Campinița Formation [8].

The Campinița (CA; 45.136799°N, 25.711042°E) section is 155 m thick and located on the southern flank of an anticline along the western bank of the Prahova river. The outcrop covers the upper part of
the Doftana, Campinita and Upper Evaporite Formations (Fig. 2). The lithology is dominated by brown- and green-gray clays and silts with occasional wavy bedded sandy levels. Continental mottled red and green clays mark the basal part (Fig. 3f). Thin gypsum levels appear from 60 m upwards. Around 80 m a prominent interval with wavy gypsum lamina intercalating with mm-scale organic rich shales is present, which likely represents the Ciresu gypsum [1] (Fig. 3). Thick yellow-gray fine to coarse mica-rich sand bodies stand out between 100 and 117 m (Fig. 3g. Some have current structures at their base and they often alternate with reddish marls in layers of 30–50 cm. Findings of vertebrate footprints and traces of raindrops suggest shallow water to intertidal conditions for part of the environment [9]. The base of the Campinita Fm is at 138 m (Fig. 1). The formation is dominated by an about 10 m-thick sequence of gray tuffaceous marls with three biotite-bearing tuffs (5–10 cm thick) with large middle Miocene planktonic foraminifera. The section is sealed by a sequence of sapropels, gypsum-rich conglomerates and salt breccia.

The 400 m-thick Brebu (BR; 45.185498°N, 25.775669°E) profile is found along a NE striking tributary of the Doftana river and covers almost the complete early Miocene succession including the uppermost Lower Gypsum, Cornu(?), Brebu and Doftana Formations (Fig. 2). After a basal interval of
gypsum and black shales (about 50 m; Lower Evaporite Fm), the lower part of the stratigraphy is dominated by conglomerates and sands (Brebu Fm) gradually passing into microconglomerates and clays of the Doftana Fm. Sands of the Brebu Fm are sourced from the Pers¸ ani mountains, which currently form the internal part of the East Carpathians suggesting a low Carpathian topography at that time of deposition [6].

The upper part of the Brebu section is dominated by gray, green and red mottled clays and sandy silts including several gypsum layers (Doftana Fm). This part is poorly to non-exposed due to mudslides and vegetation, and was studied in more detail in the Campinit¸ a section. Two notable evaporitic intervals could be recognized; the Perchiu gypsum at the base of the Doftana Fm, and the Cires¸ u gypsum towards the top, serving as regional evaporitic marker levels (Fig. 3b). Another notable feature is a biotite-bearing tuff layer (20–50 cm thick) followed by a prominent gypsum bed. The middle Miocene Slăníc tuff level is clearly visible in the top of the main Brebu profile. The transgressive boundary between the Doftana Fm and Campiniţa Fm is exposed in a parallel section towards the west next to the Brebu Manastirei cemetery (Fig. 3b). It can be summarized by about 15 m of tuffitic clays and tuffites. The Brebu section is topped by a layer of salt breccia.

The transgressive intervals in Campiniţa and Brebu sections both start with blue-gray clay and silt layers, followed by a dark sapropelic silt or clay interval full with orange-weathered iron oxides and barren in fossils. In both sections, this is followed by sands bearing water escape structures. The first rich planktonic foraminiferal assemblages appear within or just on top of these sand packages. In Brebu, the succession is followed by another resistant and prominent thick fine-to-medium green-white three-layered disturbed sand package with wavy lamination and iron coated ‘knobs’ at its base (Fig. 3b).

2.2.2. NW Transylvanian Basin: Valea Dracului, Ciceu-Giurgeşti and Cepari

The Valea Dracului (DV), Ciceu-Giurgeşti (CG) and Cepari (CP) sections cover (parts of) the upper Hida Fm and Dej Fm in the NW Transylvanian basin (Fig. 1). In this region, several studies defined the
Sample Level (m)	Preservation	Main taxa	Biozone	Residue description	Marker species in bold	Biozone	Notes
151.8	very fossiliferous, made up of planktonic foraminifera. Preservation good	Sphenolithus moriformis (A), Helicosphaera carteri (A), H. mediterranea (C), H. eupratis (R), S. heteromorphus (R).	MNN5b	assemblage is dominated by small-sized specimens of globorotalids	No markers		
150.7	very fossiliferous, made up of planktonic foraminifera. Preservation moderate (recrystallized and very often deformed)	Globigerinoides trilobus, Globorotalia praescitula	MNN5b	No markers			
149.4	very fossiliferous, made up of planktonic foraminifera. Preservation good	H. carteri and S. heteromorphus abundant	MNN5b	assemblage of fraction >125μm is dominated by Orbulinids. Orbulina suturalis, O. suturalis/ univcrsa transition.	MMi5b		
149.2	very fossiliferous, made up of planktonic foraminifera. Preservation good even if slightly oxidized, often deformed and fragmented	Sphenolithus moriformis (C/A), S. heteromorphus (C), Helicosphaera carteri (A)	MNN5b	No markers			
148.3	very fossiliferous, made up of planktonic foraminifera. Preservation good if H. ampliaperta is reworked	H. carteri and S. heteromorphus abundant	MNN5b	No markers			
147.4	very fossiliferous, made up of planktonic foraminifera. Preservation good even if often deformed	H. carteri abundant, S. heteromorphus common; very few H. ampliaperta. Biozone MNN4b	MNN4b	No markers			
147.4	very fossiliferous, made up of planktonic foraminifera. Preservation good even if often deformed	Dentoglobigerina spp. (A), Globigerinoides trilobus (R), Globorotalia spp., Praeorbula glomerosa glomerosa, P. glomerosa circulares, Orbulina suturalis	MMi5a	Praeorbula/Orbulina group common			
Index	Depth (m)	Description					
--------	-----------	-------------					
CA3	145.4	Good. *H. carteri* and *S. heteromorphus* abundant, *H. walbersdorffensis* present; *C. premacintyrei*, *G. rotula* common.					
MNN5c		Very fossiliferous, made up of planktonic foraminifera. Preservation good even if often deformed and fragmented. *Globigerinoides trilobus*, *Globigerinoides sicanus*, *Globorotalia praescitula*, *Globorotalia* spp. No markers.					
CF9	144.8	Very fossiliferous, made up of planktonic foraminifera. Preservation good even if often deformed and sometimes fragmented. *Globigerinoides trilobus*, *Globigerinoides sicanus*, *Paragloborotalia siakensis* (sin.)(R), *Globorotalia praescitula*, *Globorotalia* spp., *Praeorbulina glomerosa circularis* (also evolute specimens), *Orbulina suturalis* very rare and deformed.					
CF8	143.5	Very fossiliferous, made up of planktonic foraminifera. Preservation moderate (slightly recrystallized and often deformed). *Globigerinoides trilobus*, *Globigerinoides sicanus*, *Paragloborotalia siakensis* (sin.), *Globorotalia praescitula*, *Globorotalia* spp., *Praeorbulina glomerosa circularis* (also evolute specimens), *Orbulina suturalis* gr rare.					
CA1	142.9	Small-size *H. carteri* and *S. heteromorphus* abundant, very few *H. walbersdorffensis*.					
MNN5b		Very fossiliferous, made up of planktonic foraminifera. Preservation good even if often deformed. *Globigerinoides trilobus*, *Globigerinoides sicanus*, *Paragloborotalia siakensis* (sin.)(R), *Globorotalia praescitula*, *Globorotalia* spp., *Praeorbulina glomerosa circularis* (also evolute specimens), *Orbulina suturalis*.					
CF7.2	141	Good. *H. carteri* and *S. heteromorphus* abundant, very few *H. walbersdorffensis*; *C. premacintyrei*, *G. rotula* common.					
MNN5b		Almost exclusively made up of undisaggregated sediment grains. Very diluted planktonic foraminiferal content. Small-sized specimens *Globigerinoides trilobus*, *Globigerinoides sicanus*, *Paragloborotalia siakensis* (sin.)(R), *Globorotalia praescitula*. No markers.					
CX16	140.1	Very good. *Helicosphaera carteri* (A), *H. ampligera* (R), *H. waltrans* (R), *Sphenolithus heteromorphus* (C), *S. moriformis* (C).					
MNN5a		No terrigenous fraction, very fossiliferous, residue made up of planktonic foraminifera, preservation good. *Paragloborotalia siakensis*, *Globorotalia scitula*, *Globigerinoides trilobus*, *G. cf. sicanus*, *Praeorbulina glomerosa glomerosa*, *P. glomerosa circularis*, *Orbulina suturalis*. MM5a.					

(continued on next page)
Sample	Level (m)	Preservation	Main taxa	Biozone	Residue description	Main taxa	Biozone	Notes
CF6.2	140	good	H. carteri and S. heteromorphus abundant, f&w H. walbersdorfensis; C. premaciintyreii, G. rotula common	MNNSb/c	very fossiliferous, made up of planktonic foraminifera. Preservation good even if sometimes deformed or fragmented	Globigerinoides trilobus (A), Globigerinoides cf. sicanus, Pfraglaborotalia sikanu (sin.), Globorotalia proesculata, Praeorbulina glomerosa glomerosa, P. glomerosa circulars, Orbulina suturalis	MMi5a	
CX14	139.7	good	Helicosphaera carteri (C/A), Spheroithus heteromorphus (C/A), S. moriformis (C), H. walbersorfensis (C), H. euphratis (R)	MNNSc	very fossiliferous, no terrigenous fraction. Planktonic foraminifera represent almost the all residue, preservation moderate.	Dentoglobigerina altispina gr., Globigerinoides trilobus, G. sicanus, Praeorbulina glomerosa curva, P. glomerosa glomerosa, P. glomerosa circulars, Orbulina suturalis (apertures not always well visible)	MMi5a	
CF5.2	139.5	BARREN	Spheroithus moriformis (C/A), S. heteromorphus (C), Helicosphaera carteri (A)	MNNSb	inorganic fraction abundant, made up of oxidized and pyritized sediment fragments, pyrite. Plant remains abundant. Planktonic foraminifera common, moderately preserved, no benthic foraminifera	Globigerina bulloides gr., Globigerinoides trilobus, Globoturborotalita woodi, Globorotalia scitula, Turborotalita cf. T. quinqueloba, Denthoglobigerina spp., G. cf. sicanus, Praeorbulina glomerosa curva, P. glomerosa glomerosa, P. glomerosa circulars, Orbulina suturalis	MMi5a	
CX13	139.3	good				Dentoglobigerina altispina gr., Turborotalita cf. T. quinqueloba, Globigerinoides trilobus, Orbulina suturalis?? (only 1 specimen, apertures not well visible)	MMi5a??	
CX12	139.3	good	Helicosphaera carteri (C/A), Spheroithus heteromorphus (C), S. moriformis (C), H. intermedia (R), H. waltrans (R), H. obliqua (R)	MNNSa	very little residue; qz, mica. Planktonic foraminifera in trace, preservation moderate.	Dentoglobigerina altispina gr., Turborotalita cf. T. quinqueloba, Globigerinoides trilobus, Orbulina suturalis?? (only 1 specimen, apertures not well visible)	MMi5a	
Sample	Depth	Fertility	Description					
--------	-------	-----------	-------------					
CA8	138.7	Very poor	UNDEFINABLE inorganic fraction abundant (lithic grains), planktonic foraminifera in trace, rare Streptochilus/Bolivina variabilis in fraction <125 µm, no markers					
CX8	138.5	Good	Helicosphaera carteri (C/A), Sphenolithus heteromorphus (C), S. moriformis (C), H. waltrans (R), H. intermedia (R), H. ampliaperta (R), H. obliqua (R), H. mediterranea (R/C)					
C6	138.1	Poor	S. moriformis, H. ampliaperta, D. varabiliis and H. carteri are present					
CF3.2	Very poor	UNDEFINABLE sediment fragments	barren					
CX3	137.4	Poor	Helicosphaera carteri (C), Sphenolithus heteromorphus (RR), S. moriformis (C), H. mediterranea (R), H. ampliaperta (R)					
CX02	137.2	Poor	Very little residue, mica (muscovite) very abundant, lithic grains rare, pyrite, Planktonic foraminifera rare, preservation good, Globigerinoides trilobus, G. cf. sicanus, Dentoglobigerina altispia gr., Globorotalia praescitula					
CX01	137	Poor	Very little residue, mica (muscovite) very abundant, lithic grains rare, pyrite, Globigerinoides spp., Globorotalia spp.; rare Streptochilus/Bolivina variabilis in fraction <125 µm, One Morozovella sp. (Paleogene)					
CA9	136.5	Good	Helicosphaera carteri (C), Sphenolithus moriformis (C), H. euphratis (R), H. mediterranea (R), H. ampliaperta (C), H. walbersdorfiensis (R)					
CA10	133.7	Poor	Helicosphaera carteri (C), Sphenolithus moriformis (C/A), H. intermedia (R), H. euphratis (R)					
CF2-1	136.5	Very poor	UNDEFINABLE S. moriformis (C), H. ampliaperta (C), H. carteri (C), H. euphratis (R)					
CF1.2	Moderate	UNDEFINABLE S. moriformis (C), H. ampliaperta (C), H. carteri (C), H. euphratis (R)						

(continued on next page)
Sample Level (m)	Preservation	Main taxa[^1]	Biozone	Residue description[^2]	Main taxa[^1]	Biozone	Notes
CA11 130.9		euphratis (R), H. mediterranea (R), H. ampliaperta (R), H. obliqua (R)		radiolarians, plant remains. Foraminifera in trace	variabilis in fraction <125 µm		
		inorganic fraction made up of abundant mica (mainly muscovite), common terrigenous fragments and quartz, foraminifera very rare		small-sized globigerinids, Turborotalita cf. T. quinqueloba; rare Streptochilus/Bolivina variabilis in fraction <125 µm		nearly barren, no markers	
CA12 118.9							
		inorganic fraction made up of only mica (muscovite), abundant plant remains very little residue, muscovite very abundant, quartz, terrigenous fragments, some plant remains. Foraminifera in trace, plant remains, radiolarians and spiculas					
CA13 117.9	good	Helicocphaera Carteri (C), Sphenolithus moriformis (C), H. intermedia (R), H. euphratis (R), H. mediterranea (R), H. ampliaperta (R), H. walbersdorfeni (R)	MNN3b	nearly barren, no markers			
CA18 102.9							
					globeigerinids		no markers
CA19 101.7	good	Helicocphaera Carteri (C), Sphenolithus moriformis (C/A), H. intermedia (R), H. euphratis (R), H. mediterranea (R), H. ampliaperta (C), H. walbersdorfeni (R)	MNN3b	very little residue, terrigenous fragments abundant, lithic grains, rare pyritized fragments, very diluted foraminiferal (planktonic and benthic) content. Radiolarians??	Paragloborotalia siakensis, Globigerinoides triobulus, G. cf. sconus (apertures not visible), Praeorbulina glomerosa glomerosa 1 spec. 1	MM4c?	This datum and thus the subzonal attribution is very weak
CA20 100.2	good	Helicocphaera Carteri (C), Sphenolithus moriformis (C/A), S. heteromorphus (C), H. euphratis (R/C), H. mediterranea (R/C), H. ampliaperta (R), H. intermedia (R), H. scissura (R), H. obliqua	MNN5a	very little residue, muscovite abundant, lithic grains, quartz, rare pyritized fragments			nearly barren

[^1]: Marker species in bold.
[^2]: Ostracods
CA21	98.7	good	
Helicophaga Carteri (C/A), Sphenolithus moriformis (A), Helicosphaera euphratis (C), H. ampliaperta (C), H. intermedius (R), S. heteromorphus (C), H. obliqua (R), H. mediterranea (R/C)	MNN4a	very little residue, mica	nearly barren, no markers

CA22	97.5	poor	
Helicophaga Carteri, H. euphratis, H. scissura, H. walbersdorfensis, Sphenolithus heteromorphus, S. moriformis	MNN5a	very little washed residue (>63 mm)	barren

CA23	96.5	barren
very little residue, lithic grains, qz, mica	barren	

CA24	95.4	barren
very little residue, lithic grains, qz, mica, plant remains	barren	

CA25	93.9	barren
residue made up of mica, Globigerinoids, Globigerina praebulloides, Globigerinoides trilobus, Globigerina praebulloides, Globigerinella sp.	nearly barren, no markers	

CA26	92.4	rare and fragmented benthic foraminifera: fragments of nodosarids, Ammonia, Elphidium, Bulimina, Uvigerina spp.; aggregates of taxa?
Globigerinoides trilobus, Globigerina praebulloides, Globigerinella sp.	nearly barren, no markers	

CA27	90.9	barren
very little residue, terrigenous and lithic grains, pyritized fragments, mica, qz	barren	

CA28	89.5	barren
residue made up of mica, Globigerina praebulloides, Globigerinella sp.	No markers	

CA29	88	good	
Helicophaga Carteri (C/A), Sphenolithus moriformis (C/A), S. heteromorphus (R), Helicosphaera euphratis (R/C), H. mediterranea (R/C), H. ampliaperta (R), H. scissura (R), H. obliqua (R), H. recta (R), H. walbersdorfensis (R)	MNN4c	very little residue, lithic grains, qz, rare pyritized fragments, rare plant remains. Planktonic foraminiferal content	barren

K. Sant et al. / Data in brief 24 (2019) 103904
Sample Level (m)	Preservation	Main taxa	Biozone	Residue description	Main taxa	Biozone	Notes
CA30 87	very little residue, terrigenous fragments, lithic grains, qz, muscovite, plant remains. Planktonic foraminifera in trace reworked (Cretaceous?)	Planktonic foraminifera	nearly barren	rare fragments of agglutinated benthic foraminifera			
CA33 83.9	little residue, lithic grains, qz, muscovite, rare plant remains. Planktonic foraminifera absent		barren				
CA34 82.9	very little residue, lithic grains, mica (muscovite) (A), oxydized fragments, lignite and plant remains. Planktonic foraminifera absent	Planktonic foraminifera	barren				
CA35 80.4	terrigenous grains, common transparent crystals (gypsum?). Planktonic foraminifera absent.	Globigerinoides trilobus (4 specimens), Globorotalia sp. (1 specimen), Globorotalita woodi (1 specimen), Praeorbulina \(\textit{glomerosa glomerosa} \) (1 specimen)	nearly barren	rare fragments of agglutinated benthic foraminifera			
CA36A 79.4	good \(\textit{Helicosphaera carteri} \) (C), \(\textit{Sphenolithus mastiformis} \) (C/A), \(\textit{S. heteromorphus} \) (R), \(\textit{H. intermedia} \) (R/C), \(\textit{H. euphratis} \) (R/C), \(\textit{H. mediterranea} \) (R/C), \(\textit{H. ampliaperta} \) (C), \(\textit{H. scissura} \) (R), \(\textit{H. obliqua} \) (R)	MNN4a	barren				
CA40B 71.1	muscovite and aggregated sediment		barren				
CA44 62.6	little residue, lignite (A), oxydized and pyritized terrigenous grains, mica, quartz. Planktonic foraminifera in trace	Globigerinoideidae trilobus	Nearly barren: 1 specimen of benthic foraminifera				
CA45 60.3	very little residue, terrigenous grains, oxydized and pyritized fragments		barren				
Sample	Level (m)	Preservation	Calcareous nannofossils	Planktonic foraminifera	Benthic foraminifera	Ostracods	
--------	-----------	--------------	-------------------------	-------------------------	----------------------	-----------	
CA46B	55.3	good	*Helicosphaera carteri* (C), Sphenolithus* moriformis* (C/A), *S. heteromorphus* (R), *H. intermedia* (R/C), *H. euphratis* (R), *H. mediterranea* (R/C), *H. ampliaperta* (C), *H. obliqua* (R)	MNN4a very little residue, qz, terrigenous fragments, lithic grains, mica, planktonic foraminifera in trace. *Globigerinoides trilobus* (2 specimens). *Praeorbulina* sp. very badly preserved (1 specimen)	nearly barren	rare fragments of (mainly agglutinated) benthic foraminifera	
CA47	51.8	good	*Helicosphaera carteri* (C), Sphenolithus* moriformis* (C/A), *S. heteromorphus* (R), *H. intermedia* (R), *H. euphratis* (R), *H. mediterranea* (R/C), *H. ampliaperta* (C), *H. obliqua* (R)	MNN4a			
CA55	37.3	good	*Helicosphaera carteri* (C), Sphenolithus* moriformis* (C/A), *S. disbelemnos* (R), *H. intermedia* (R), *H. euphratis* (R), *H. mediterranea* (R/C), *H. ampliaperta* (RC)	MNN3b very little residue, terrigenous fragments, lithic grains, muscovite abundant, rare plant remains, very rare planktonic foraminifera (poorly preserved). *Globigerinoides trilobus*, *G. sconus* (elongated and less elongated morphotypes, maybe 1 with 3 apertures) *Paragloborotalia* cf. spinulosis			
CA60	29.6	poor	*Helicosphaera carteri* (C), Sphenolithus* moriformis* (C), *H. intermedia* (R), *H. euphratis* (R), *H. mediterranea* (R), *H. ampliaperta* (R)	MNN3b very little residue, quartz, lithic grains, muscovite, rare plant remains, planktonic foraminifera in trace. *Globigerinoides trilobus* (1 specimen), *Dentoglobigerina* sp.	nearly barren	rare fragments of benthic foraminifera	
CA71	8.7	poor	*Helicosphaera carteri* (C), Sphenolithus* moriformis* (C), *H. euphratis* (R), *H. mediterranea* (R), *H. perch-nielseniae* (R), *H. scissura* (R), *H. ampliaperta* (R), *H. recta* (R)	MNN3b very little residue, rare muscovite	barren		

K. Sant et al. / Data in brief 24 (2019) 103904

(continued on next page)
Sample	Level (m)	Preservation	Main Taxa	Biozone	Residue description	Main taxa	Biozone	Notes
CG23	72.8	sediment fragments, quartz, rare biotite, lithic grains, plant remains.	nearly barren, no markers					
CG22	67.8	good Helicosphaera Carteri (C/A), Sphenolithus heteromorphus (RR), S. moriformis (C/A), H. mediterranea (R)	MNN5b nearly barren, no markers					
CG18	57.9	very poor UNDEFINABLE						
CG17	55.4	good Helicosphaera Carteri (C/A), Sphenolithus heteromorphus (C), S. moriformis (C/A), H. vedderi (R)	MNN5b inorganic fraction abundant (sediment fragments). Echinid remains, ostracods. Foraminifera common, moderately/poorly preserved, almost exclusively benthic. Planktonic foraminifera in trace					
CG16	52.4	poor Helicosphaera Carteri (C), Sphenolithus heteromorphus (CR), S. moriformis (C/R), H. vedderi (R)	MNN5b					
CG14	47.5	poor Helicosphaera Carteri (C), Sphenolithus heteromorphus (C), S. moriformis (C/R), H. walbersofensis (C), H. intermedia (R), H. mediterranea (R), H. vedderi (R), Discoaster musculus (C)	MNN5c inorganic fraction prevalent (lithic grains, sediment fragments, quartz, glauconite). Planktonic foraminifera rare, moderately/poorly preserved. Benthic foraminifera more abundant.					
			Globigerinoides trilobus (1 specimen), Globigerina praebulloides (1 specimen)	MM5a relatively rich. Bolivina spathulata, Bulimina elongata, Cibicides dutempleri, C. ungerianus, Discosphaerina coronata, discorbids/glabratellids, Elphidium spp., Fursenkoina acuta, Globobulimina sp., Nonion sp., Rosalina bradyi, large Uvigerina spp. (U. cf. acuminata, U. continuosa, U. semiorientata). Few but large agglutinated taxa, a.o. textularids. Large, reworked miliolids.				

K. Sant et al. / Data in brief 24 (2019) 103904
subglobosa, nodosariids, Pullenia bulloides, Spaeroidina bulloides, large Uvigerina spp. (U. continuosa, U. seminornata, U. venusta). Few but large agglutinated taxa, a.o. Spiroplectinella carinata.

CG13 44.5 poor
Helicosphaera carteri (C), *Sphenolithus heteromorphus* (C), *S. moriformis* (C/R), *H. walbersdorffensis* (C), *H. ephraimis* (R)
MNN5c sediment fragments dominant, quartz, lithic grains, mica. Foraminifera in trace: few benthic, few planktonic foraminifera inorganic fraction subordinate to organic one. Foraminifera abundant, moderately preserved but very often deformed.
Nearly barren, no markers
Very few benthic foraminifera (*Uvigerina*, *Bulimina*)

CG12 36.4 poor
Helicosphaera carteri (C), *Sphenolithus heteromorphus* (C/R), *S. moriformis* (C), *H. walbersdorffensis* (C), *H. vederi* (R)
MNN5c inorganic fraction prevalent (sediment fragments, quartz, rare pyritized fragments). Planktonic foraminifera rare, moderately/poorly preserved (often deformed), sediment fragments dominant, quartz, rare pyritized fragments, plant remains. Foraminifera in trace: Globigerinoides trilobus (A), *Praeorbulina gromerosa circularis*, *Orbulina suturalis* (1 specimen).
MMi5a
Globigerinoides trilobus (A), *Praeorbulina gromerosa circularis*, *Orbulina suturalis* (often deformed)
MMi5a
Praeorbulina and Orbulina poorly preserved (often deformed and apertures not well visible).

CG11 33 good
Helicosphaera carteri (C), *Sphenolithus heteromorphus* (C), *S. moriformis* (G/A), *H. intermedia* (R)
MNN5b inorganic fraction dominant (sediment fragments, quartz, rare pyritized fragments). Foraminifera in trace: Globigerinoides trilobus, *G. cf. sicamus*.
MMi4d
Globigerinoides trilobus, *G. cf. sicamus*, *Praeorbulina gromerosa circularis* (some specimens evolved toward *O. suturalis*)
MMi4d

CG10 29 poor
Helicosphaera carteri (C), *Sphenolithus heteromorphus* (C), *S. moriformis* (G/A), *H. intermedia* (R), *H. mediterranea* (R)
MNN5b inorganic fraction dominant (sediment fragments, quartz, rare pyritized fragments). Foraminifera in trace: Globigerinoides trilobus, *G. cf. sicamus*.
Nearly barren, no markers

CG8 22.1 good
Helicosphaera carteri (C), *Sphenolithus heteromorphus* (C), *S. moriformis* (C), *H. intermedia* (R), *H. mediterranea* (R)
MNN5b inorganic fraction dominant (sediment fragments, quartz, rare pyritized fragments). Foraminifera in trace: Globigerinoides trilobus, *G. cf. sicamus*, *Praeorbulina gromerosa circularis* (some specimens evolved toward *O. suturalis*)
MMi4d
Rare, fragmented benthic foraminifera

(continued on next page)
Sample	Level (m)	Preservation	Main Taxa	Biozone	Residue description	Main taxa	Biozone	Notes
CG5	17.1	good	Helicosphaera carteri (C), Sphenolithus heteromorphus (C), S. moriformis (C), H. intermedia (R), H. mediterranea (R)	MNN5b	Dentoglobigerina abundant, Praeorbulina glomerosa, Orbulina suturalis (some specimens are evolved toward O. universa)	MMi5a	O. suturalis: a few specimens seem very close to O. universa but preservation is not optimal. Probably very close to MMi5b.	
CG2	8.8	good	Helicosphaera carteri (C), Sphenolithus heteromorphus (C), S. moriformis (C), H. obliqua (R), H. mediterranea (R), H. euphratis (R)	MNN5b	Dentoglobigerina abundant, Globigerinoides trilobus (A), Dentoglobigerina spp., G. sicanus, Praeorbulina cf. glomerosa glomerosa?	MMi4c?	Preservation of Praeorbulina specimens is very poor (recrystallized and deformed). Uncertain interpretation.	
CG1	6.5	good	Helicosphaera carteri (C), Sphenolithus heteromorphus (C), S. moriformis (C), H. intermedia (R), H. mediterranea (R)	MNN5a	Globigerinoides trilobus (A), Dentoglobigerina spp., G. sicanus, Praeorbulina cf. glomerosa glomerosa?	MMi4d	MMi4d	

Table 1 (continued)

Sample	Level (m)	Preservation	Main Taxa	Biozone	Residue description	Main taxa	Biozone	Notes
DV/22	33	good	Helicosphaera carteri (C), Sphenolithus heteromorphus (C), S. moriformis (C)	MNN5b				
DV/21	30.7	good	Helicosphaera carteri (A), Sphenolithus heteromorphus (C), S. moriformis (C), H. waltrans (R), H. mediterranea (R), H. intermedia (R)	MNN5a				
DV/20	30	good	Helicosphaera carteri (C), Sphenolithus heteromorphus (C), S. moriformis (C), H. waltrans (R), H. mediterranea (R), Discoaster variabilis (C)	MNN5a				
DV/20	29.5	good						

Valea Dracului section

Sample	Level (m)	Preservation	Main Taxa	Residue description	Main taxa	Biozone	Notes
DV/22	33	good			Dentoglobigerina abundant, Praeorbulina glomerosa, Orbulina suturalis (some specimens are evolved toward O. universa)	MMi5a	O. suturalis: a few specimens seem very close to O. universa but preservation is not optimal. Probably very close to MMi5b.
DV/21	30.7	good			Dentoglobigerina abundant, Globigerinoides trilobus, G. cf. sicanus, Praeorbulina glomerosa glomerosa, Praeorbulina glomerosa circularis (some specimens are evolved toward Orbulina suturalis)	MMi4d	MMi4d
DV/20	30	good			Globigerinoides trilobus/ sicanus, Praeorbulina glomerosa curvus, Praeorbulina glomerosa circularis (some specimens are evolved toward Orbulina suturalis)	MMi4d	
DV/19	29.5	good			Dentoglobigerina spp., Globigerinoides trilobus, Globorotalia praecoxula, Praeorbulina spp. (deformed)	No markers	rare benthic foraminifera, reworked? Cibicides lobatulus (1 specimen), C. cf. ungerianus? Fragments of agglutinated species (Textularia sp.)
DV18	28	poorly	*S. moriformis* and *H. carteri* are present	MNN4c?			
-------	-----	--------	---	--------			
DV19d	26.5	poor	*Helicosphaera carteri* (C), *Sphenolithus heteromorphus* (C), *S. moriformis* (C), *H. ampliaperta* (R), *H. mediterranea* (R), *H. intermedia* (R), *H. scissura* (R)	MNN5a			
DV19c	26.3	BARREN	quartz and lithic fragments abundant	barren			
DV19b	26.1	very poor	UNDEFINABLE *Helicosphaera carteri* (C), *Sphenolithus heteromorphus* (C), *S. moriformis* (C), *H. mediterranea* (R), *H. intermedia* (R), *H. scissura* (R)	MNN5a			
DV19a	25.7	good	quartz and lithic fragments	barren			
DV17	21.8	BARREN	little residue, quartz, lithic	MM14c?			
			grains, oxidized fragments, no benthic foraminifera, planktonic foraminifera in trace	nearly barren; based on only a single occurrence			
DV16	20.3	BARREN	quartz abundant, lithic	barren			
			grains abundant, not well sorted				
DV14	17	BARREN	quartz abundant, lithic	barren			
			grains abundant, well sorted				
DV13	14.3	BARREN	residue made up of sediment fragments, quartz, mica (muscovite and biotite), rare oxidized and pyritized fragments, plant remains	barren			
DV12	12.9	BARREN	residue made up of sediment fragments, quartz, mica (muscovite and biotite), rare oxidized and pyritized fragments, plant remains	barren			
DV11	11.6	BARREN	residue made up of sediment fragments, quartz, mica (muscovite and biotite), rare oxidized and pyritized fragments, plant remains	barren			
DV03	5.6	BARREN	residue made up of sediment fragments, quartz, mica (muscovite and biotite), rare oxidized and pyritized fragments	barren			

K. Sant et al. / Data in brief 24 (2019) 103904
Sample	Level (m)	Preservation	Main Taxa	Biozone	Residue description (>125 µm)	Main taxa	Biozone	Notes	
CP10	18.7	good	Helicosphaera carteri (C), Sphenolithus heteromorphus (C), S. mortiformis (C), H. intermedius (R), H. euphratis (R)	MNN5a	inorganic fraction common, planktonic foraminifera abundant but very poorly preserved (very often deformed)	Praeorbulina glomerosa glomerosa, Praeorbulina glomerosa circularis, O. cf. suturealis, Paragloborotalia siakensis rare	MM4d	Praeorbulina very poorly preserved (recrystallized and deformed)	
CP9	16.7	?	Helicosphaera carteri (C), Sphenolithus heteromorphus (C), S. mortiformis (C), H. vedderi (R)	MNN5a	inorganic fraction rare, planktonic foraminifera very abundant but very often deformed	Praeorbulina glomerosa, Globigerinoides trilobus, G. cf. sicanus, Paragloborotalia cf. siakensis trace	MM4c	Praeorbulina very poorly preserved (recrystallized and deformed)	
CP7B	14.7	good	Helicosphaera carteri (C), Sphenolithus heteromorphus (C), S. mortiformis (C), H. vedderi (R)	MNN5a	inorganic fraction rare, planktonic foraminifera very abundant but very often deformed	Praeorbulina glomerosa, Globigerinoides trilobus, G. cf. sicanus, Paragloborotalia cf. siakensis trace	MM4c	Praeorbulina very poorly preserved (recrystallized and deformed)	
CP6	11.7	?		MNN5b	terrigenous fraction abundant (quartz, lithic grains, rare mica), planktonic foraminifera common poorly preserved (often deformed)	Globigerinoides trilobus, G. cf. sicanus, Paragloborotalia cf. siakensis trace		no markers	
CP5	9.2	poor		MNN5k					
CP4	7.7	?		MNN5b					
CP3B	3.4	BARREN		MNN5b	dirty, terrigenous material	Globigerinoides trilobus, G. cf. sicanus, Paragloborotalia cf. siakensis trace		no markers	
CP3A	3.4	BARREN						barren	
CP2	1.4	BARREN			pyritized terrigenous fraction, pyritized burrows abundant, echinids remains, planktonic foraminifera in trace	Globigerinoides bulloides, Globigerinoides trilobus		no markers	

Benthic foraminifera: relatively abundant. Ammonia beccarii and A. tepida, Bulimina eckingata, many Cassidulina carinata, few cibicidids (a.o. C. lobatulus), Discosoridae coronata, Elphidium spp., Pusroyina acuta, Gavelinopsis lobatula, Globorotalia spp., Porosononion granosum. Few large agglutinated taxa: Spiroplectinella deperdita, Textularia spp. Large reworked miliolids.

Ostracods: Cytheridea acuminate, Loxoconcha kochi, Phetygocythereis calcarata.
Sample	Level (m)	Preservation	Main taxa	Biozone	Residue description (>125 microm)	Main taxa	Biozone	Notes
BX13	2.4	good	*Helicosphaera carteri* (C), *Sphenolithus heteromorphus* (C), *S. moriformis* (C), *H. intermedia* (R), *H. euphratis* (R)	MNNSb	very fossiliferous, no terrigenous fraction, only rare pyritized fragments and burrows. Preservation of planktonic foraminifera moderate (recrystallized and sometimes deformed)	*Globigerinoides trilobus*, *Dentoglobigerina* spp., *Praeorbulina* abundant but the apertures are not always visible, *P. cf. glomerosa curva, P. glomerosa glomerosa, P. glomerosa circularis, Orbulina suturalis*	MM5a	A few specimens seem to be transitional to *O. universa.*
BX10	2	good	*Helicosphaera carteri* (A), *Sphenolithus heteromorphus* (C), *S. moriformis* (C), *H. ampliaperta* (R), *H. waltrans, H. intermedia* (R)	MNNSa	very little washed residue; inorganic fraction rare (sediment fragments, pyritized fragments, quartz, mica). Planktonic foraminifera abundant, preservation moderate/poor (recrystallized, deformed)	*Globigerinoides trilobus, G. cf. sicanus, Globorotalia praescitula, Globoturborotalita woodi, Paragloborotalita sikanensis, D. altipira gr., Turborotalita cf. quinquela, Praeorbulina glomerosa glomerosa, Orbulina suturalis*	MM5a	
BX8	1.6	poor	*Helicosphaera carteri* (C), *Sphenolithus heteromorphus* (C), *S. moriformis* (C), *H. euphratis* (R), *H. mediterranea* (R)	MNNSa	very little residue made up of sediment fragments, quartz, plant remains. Planktonic foraminifera rare, preservation good.	*Globigerinoides praebulloides, Globorotalia praescitula, G. trilobus, Dentoglobigerina altipira gr., Paragloborotalita sikanensis, Globoturborotalita woodi, G. sicanus, Praeorbulina cf. glomerosa curva, Praeorbulina glomerosa glomerosa, Praeorbulina glomerosa circularis, Orbulina suturalis*	MM5a	
BX6	1.25	BARREN	Little residue, terrigenous fraction very abundant (sediment fragments, quartz, mica), very abundant plant remains, planktonic foraminifera rare, preservation moderate.			*Globigerinoides trilobus, Dentoglobigerina altipira gr., Globigerinoides praebulloides, Globorotalia praescitula, Turborotalita cf. T. quinquela, Paragloborotalita sikanensis, Praeorbulina sp. (the apertures are not always visible), Orbulina suturalis*	MM5a	
BX5	1	UNDEFINABLE						
BX4	0.75	BARREN	*Helicosphaera carteri* (C), *S. moriformis* (A), *H. ampliaperta* (R), *H. euphratis* (R/C), *H. mediterranea* (R/C), *H. intermedia* (R/C)	MNNS4c	elongated crystals (A), oxydized sediments fragments (A), plant remains.			
BX3	0.5	poor						

(continued on next page)
Brebu section	Sample	Level (m)	Preservesion	Main taxa	Biozone	Main taxa	Biomarkers	Biozone	Notes
BX2	0.25	poor	**Helicophaera carteri (C), Sphenolithus heteromorphus (C/R), S. moriformis (C),** H. euphratis (R), H. mediterranea (R)	**MNN4b** sediment fragments, elongated crystals, mica (muscovite), oxidized and pyritized fragments, plant remains.	**Globigerinoides trilobus, G. cf. sicanus, Praeorbulina glomerosa glomerosa, Praeorbulina glomerosa circularis**?	barren			
BX1	0	poor	**Helicophaera carteri (C), Sphenolithus heteromorphus (C/R), S. moriformis (C),** H. euphratis (R), H. mediterranea (R)	**MNN4b** very little residue made up of pyritized fragments, pyrite, sediment fragments, plant remains, foraminifera in trace, preservation moderate/poor (recrystallized and deformed)	G. Sant et al. / Data in brief 24 (2019) 103904 20	barren			
NN4 nannofossil biozone (Burdigalian) for the whole exposed Hida Fm, and the NN5a biozone (Langhian; after [10]) for the Dej Fm [11–13].

The 46 m long Valea Dracului (DV) section (alternative names: Dej, Râpa Dracului) (47.147342°N, 23.859869°E) is exposed on the flanks of a river canyon and covers the upper Hida and Dej Formations (Fig. 1). The upper Hida Fm (0–24 m) displays gray brown clays with cm-scale sand and coaly lenses. These are occasionally perturbed by yellow fine to medium sand beds that pinch out laterally (Fig. 3d). At 20 m, thick coarse to medium sand beds with basal clay with rip up clasts and coal chips appear. The facies reflect a distal fan delta environment with some gravity flow associated deposits.

The Dej Fm begins with a wedging conglomerate lens (0–5 m thick) cutting laterally into a finer-grained succession with middle Miocene planktonic foraminifera. The basal part starts with orange fine sand grading first into slightly mottled brown-orange silt and later into gray brown silty clay. A horizontal layer of cm-scale iron nodules is present at the silt to clay transition. The brown clay is

NN4 nannofossil biozone (Burdigalian) for the whole exposed Hida Fm, and the NN5a biozone (Langhian; after [10]) for the Dej Fm [11–13].

Fig. 4. Calcareous nannofossils. (1) Helicosphaera ampliaperta (sample CA10); (2) H. walbersdorfiensis (sample CG13); (3) H. waltrans (sample CA20); (4) H. euphratis (sample CX14); (5a, b) Sphenolithus heteromorphus (sample CG1) at 0° and 45°; (6) S. heteromorphus and S. moriformis (sample BX13); (7) H. carteri (sample BX13); (8) H. intermedia (sample CA9); (9) H. ampliaperta (sample CA19); (10) H. mediterranea (sample CA20); (11a, b, c) S. disbelemnos (sample CA55) at 0°, 20° and 40°.
succeeded by distinct colored units: dark green bedded clay to sand, an orange clay level (1 cm), purple clay laminated with tuffites, gray marl with cm-lenses of tuffaceous sand, and green-white bedded tuffs (Fig. 1). This interval (24.3–28.7 m); DX in Fig. 2 is covered by massive volcanoclastics, towering high above the Dracului valley. The lowermost part is a tuffaceous sand with characteristic green elongated Dej tuff clasts with an erosive base, the middle part (~6 m) is coarse sand with large scale cross beds, and the top is a bedded alternation of silts and greenish tuff layers (Fig. 3d and e). The Dej Fm was deposited on the shelf margin or in deeper marine settings. The prominent coarse tuffites/sands with basal rip-up clasts were interpreted as a submarine meandering channel reflecting high input of volcanic activity. This channel eroded into the underlying shelf deposits.

The 73 m thick Ciceu-Giurgesti section (CG; 47.241532°N, 24.032811°E) is exposed along a low-standing river gully [14]. Published a log and planktonic foraminiferal bio-events for the lower part of the Ciceu-Giurgesti section covering the early-middle Miocene boundary. During the fieldwork campaign in 2015, however, the lowermost part of the section presented by [23] was covered by sediment and vegetation, and could not be studied. Therefore, the here presented section starts just above the First Occurrence (FO) of Praeorbulina glomerosa, and thus covers the Dej Fm only. Here, the Dej Fm is also known as the Ciceu-Giurgesti Fm, but this term is not used to avoid confusion with the other Transylvanian sections. The lowermost part of the profile (0–11 m) contains clays, silts and a thin conglomerate layer and is mostly unexposed (see [14] for details). Upwards a 5 m thick package of poorly sorted medium-coarse sand with elongated coarse greenish rip-up clasts and pebbles (<10 cm) stands out. The rip-up clasts are rich in tuffaceous material and occur in all sizes, the largest are 75 cm in length. The sand body is covered by an interval of silty clays and sands with (often) reworked green tuffs, and an ~7 m interval dominated by volcanoclastic sands and cross-laminated layered tuffs. A tuff at ~20 m stratigraphic height was dated at 14.38 ± 0.06 Ma [14]. The stratigraphy continues with dark gray clays intercalated with green tuff levels and an 1.5 m silty bed with algae mats and dark clay lenses. In the top of the CG section (>50 m) fine and medium grained sands with organic rich interbeds and some tuff intercalations stand out.

The 38 m thick Cepari section (CP; 47.242542°N, 24.425911°E) is well-exposed in a former quarry. Some authors infer a discontinuity at the base of the Langhian transgression in this region (~7 km NW of Cepari) based on lithostratigraphy and microfaunal analysis [15]. In most places, the transgression begins with a conglomerate level followed by characteristic Langhian microfauna. The basal part (0–4.5 m) of Cepari section contains gray brown silty clay with occasional yellow sands, and may be part of the Hida Fm. It is overlain by two discontinuous beds of dark gray and gray clay, that are laterally cut by a maximally 3 m thick coarse-to-medium poorly sorted sand with sand intraclasts. The beginning of the Dej Fm is marked by the first 4 m thick tuff bed. Silty clays with tuffs including a second thick (3 m) tuff package are positioned on top. The section ends with tuffaceous yellow gray clays intercalating with some fine sands, and one thick volcanoclastic sand.

2.3. Biostratigraphic data

2.3.1. Calcareous nannoplankton

In the Campinita (CA) section, calcareous nannofossils are common in nearly all of the analyzed samples and show a good to sometimes poor degree of preservation. The stratigraphically lower and intermediate samples (CA71 to CA09: 8.7–136.5 m) are dominated by middle to late Burdigalian assemblages from the MNN3b Zone to the MNN4a Subzone (Table 1, Fig. 7), with the exception of CA29, CA21 and CA20. The Burdigalian attribution is based on the recognition of Sphenolithus heteromorphus (Fig. 4) First Common Occurrence (it marks the base of the MNN4a Subzone), and on the continuous presence of Helicosphaera ampliaperta (Fig. 4) (its Last Common Occurrence defines the base of MNN4b Subzone). The analysis of samples CX3-CX16 (137.4–140.1 m) allows recognizing the early-middle Langhian MNN4c-MNN5a bio-chronostratigraphic interval. This attribution is based on the recognition of the Sphenolithus heteromorphus paracme interval in the lowermost sample (it defines the base of MNN4c Subzone), and by high abundances of the species in the following samples (the S. heteromorphus Paracme End defines the base of the MNN5a Zone). The calcareous nannofossil assemblages from samples CF16-1 (150.7 m) and CF12-1 (149.2 m), as well as samples CA01-CA07 (142.9–149.4 m), allowed depicting the middle to late Langhian MNN5b Subzone based on the recognition of poor
percentages of *Helicosphaera walbersdorfen*s (Fig. 4) (its First Common Occurrence defines the base of the MNN5c Subzone) and the absence of *H. waltrans* (Fig. 4) (its Last Common Occurrence marks the base of MNN5b Subzone) (Figs. 4 and 7).

In the Brebu section, preservation is generally poor and calcareous nanofossil assemblages are often poorly preserved in the analyzed samples. However, in each sample the most relevant biostratigraphic markers were individuated, allowing to ascribe the deposits from the base to the top to the early Langhian MNN4b Subzone (BX1 and BX2 at 0 and 0.25 m), to the middle Langhian MNN5a Subzone (BX3 to BX10: 0.5–2 m), and to the late Langhian MNN5b Subzone (BX13, 2.4 m) (Table 1, Fig. 7).

The preservation of the calcareous nanofossil assemblages in the Dracului Valley (DV) section is very poor in the low-intermediate portion of the sampled interval, between samples DV01 and DV17 (base of section to 21.8 m). Conversely, starting from sample DV19a (25.7 m), a good degree of preservation allows ascribing the deposits to the middle to late Langhian MNN5a (samples DV19a-DV21; 25.7–30.7 m) — MNN5b (sample DV22; 33 m) subzones. Sediments from Ciceu-Giurgesti Section are in general well-preserved. The bio-chronostratigraphic analysis allowed ascribing the samples between the early Langhian MNN5b Subzone (samples CG01-CG11; 6.5–33 m) and the late Langhian to early Serravallian MNN5c Subzone (samples CG12-CG24; 36.4–80 m). In the Cepari section, the preservation degree is very poor in the lowermost samples (CP01-CP3B; 0.1–3.4 m), and good in the upper part of the section (samples CP7b-CP10; 14.7–18.7 m). The bio-chronostratigraphic analysis allowed framing the deposition in the middle Langhian MNN5a Subzone (Fig. 7).

2.3.2. Planktonic foraminifera

Planktonic foraminifera from the lower part of the Campinița section (up to sample CA08 at about 139 m, Doftana Fm) are generally absent or very diluted (Table 1). In a few stratigraphic levels (CA30 and CA29 at about 87 m) ill-preserved double-keeled planktonic specimens are evidence of reworking of Cretaceous sediments. Miocene planktonic foraminiferal assemblages are represented by rare and scattered occurrences of *Dentoglobigerina* spp., *Globigerina praebulloides*, *Globigerinella* spp., *Globigerinoides trilobus* and *Paragloborotalia siakensis*. In only two samples (CA44 at about 62 m and CA19 at about 102 m) a single occurrence of *Praeorbulina glomerosa glomerosa* has been found suggesting the attribution to Subzone MMi4c (Fig. 7). However, the biostratigraphic interpretation is weak because of the extreme rarity of planktonic foraminifera. In a few samples (CA12, CA11, CA10 and CA9B, ~118–134 m) occurrences of *Streptochilus* spp./Bolivin spp. have been recorded in the >63 < 125 μm fraction of the washed residue (Table 1, Fig. 6).

Samples from the uppermost part of the section (from 139 m up to the top, Campinița Fm) generally yield abundant planktonic foraminifera mainly represented by globigerinids (in some levels), *Globigerinoides trilobus*, *Globigerinoides cf. G. sicanus*, *Paragloborotalia siakensis*, *Globorotalia praescitula*, *Globorotalia* spp., *Praeorbulina glomerosa glomerosa*, *P. glomerosa circularis* and *Orbulina sutruralis* (Fig. 5). The occurrence of *O. sutruralis* allows the attribution of the interval including samples CX13 to CA5 (139.3–147.4 m) to Subzone MMi5a. In sample CA07 (at about 150 m) the occurrence of *Orbulina universa* indicates Subzone MMi5b (Fig. 7).

In the Brebu section, most of the samples are barren in fossils or contain very rare planktonic foraminifera. Only the uppermost samples (BX10 and BX13) yield abundant and moderately preserved planktonic foraminifera. The most recurrent taxa are *Dentoglobigerina altispira* gr., *Globigerina praebulloides*, *Globigerinoides sicanus*, *Globigerinoides trilobus*, *Globorotalia praescitula*, *Globoturborotalita woodi*, *Paragloborotalia siakensis*, *Praeorbulina glomerosa* s.l. and *Orbulina sutruralis*. Rare specimens of *Praeorbulina glomerosa glomerosa* and *P. cf. glomerosa circularis* occur in the lowermost sample (BX1) suggesting Subzone MMi4c/d?, while *Orbulina sutruralis* has been found in the sample interval between BX06 and BX13 allowing the attribution of this interval to Subzone MMi5a. In the latter sample few specimens of *O. sutruralis* show more evolved characters close to *O. universa*, whose first occurrence identifies the base of Subzone MMi5b (Table 1, Fig. 7).

Samples from the lower part of the Valea Dracului section, up to 25 m, are generally barren or nearly barren in foraminifera. In sample DV 17 (at ~22.8 m) a single specimen of *Praeorbulina glomerosa glomerosa* has been found suggesting Subzone MMi4c? Note, however, that the reliability of this biostratigraphic attribution is weak since planktonic foraminifera are extremely rare in this sample.
Samples from the upper part of the section, from 25 m to the top, contain more abundant planktonic foraminiferal assemblages, mainly represented by *Dentoglobigerina altispira*, *Globigerinoides sicanus*, *Globigerinoides trilobus*, *Praeorbulina glomerosa* s.l. and *Orbulina suturalis*. Specifically, the occurrence of *Praeorbulina glomerosa circularis* in samples DV20 and DV21, and the occurrence of *O. suturalis* in sample DV22, indicates Subzones MMi4d and MMi5a, respectively (Table 1, Fig. 7).

Planktonic foraminiferal assemblages in the Ciceu-Giurgești section are moderately to poorly preserved and are mainly represented by *Dentoglobigerina altispira* gr., *Globigerinoides sicanus*, *Globigerinoides trilobus*, *Praeorbulina glomerosa* s.l. and *Orbulina suturalis*. Specifically, the occurrence of *Praeorbulina glomerosa circularis* in samples DV20 and DV21, and the occurrence of *O. suturalis* in sample DV22, indicates Subzones MMi4d and MMi5a, respectively (Table 1, Fig. 7).

Finally, the lower part of the Cepari section (up to about 5 m) is characterized by very rare to common poorly preserved planktonic foraminifera, mainly represented by *Globigerinoides* cf. *G. sicanus*, *Globigerinoides trilobus* and *Paragloborotalia siakensis*. The absence of marker species does not allow a precise biozonal assignment of this interval. Upward, planktonic foraminiferal assemblages are characterized by the occurrence of *Praeorbulina* and *Orbulina* sp., but their poor preservation generally hampers the classification at specific level. However, sample CP7B (14.7 m) is characterized by the presence of *Praeorbulina glomerosa curva* and *P. glomerosa glomerosa* indicating Subzone MMi4c, and sample CP10 (18.7 m) contains *P. glomerosa glomerosa*, *P. glomerosa circularis* and few specimens close to *Orbulina* (O. cf. *suturalis*) indicating Subzone MMi4d/MMi5a(?) (Table 1, Figs. 5 and 7).
2.3.3. Benthic foraminifera and ostracods

In the samples containing benthic foraminifera, the assemblages vary from extremely poor to relatively rich (Table 1). In the SE Carpathian Foredeep, in the Campinița (CA) section, the interval

Fig. 6. a. Ostracods. (1) Loxoconcha punctatella (sample CA8); (2) Pterygothythereis calcarata (sample CP2); (3) Cytheridea acuminata (sample CP2); (4) Loxoconcha kochi (sample CP2). b. Benthic foraminifera. (1) Spiroplectinella carinata (sample CG14); (2) S. deperdita (sample CP2); (3) Stilostomella sp. (sample CP2); (4) Uvigerina cf. U. acuminata (sample CG14); (5) Uvigerina semiornata (sample CG14); (6) Uvigerina cf. U. venusta (sample CG14); (7) Farsenkoaina acuta (sample CP2); (8) Globobulimina sp. (sample CP2); (9) Bulimina elongata (sample CG14); (10) Cibicides cf. C. ungerianus (sample CG14); (11) Cibicides dutemplei (sample CG17); (12) miliolid spp. (sample CA8); (13) Porosonion granosum (sample CP2).
below the open marine flooding (117.9–136.5 m; samples CA13, CA10 and CA9) is quartz-rich and the relatively rare hyaline taxa are poorly preserved. Grain size sorting suggests transport or winnowing. Plant remains in CA10 and CA13 indicate a near-coastal environment, possibly brackish and in the vicinity of a river plume. Most taxa in these samples are restricted to the inner-mid shelf; some taxa (miliolids, *Hanzawaia boueana*, *Rosalina globularis*) tolerate a certain degree of hypo- and hypersalinity. In sample CA09, preservation of fish remains suggests oxygen restriction (since phosphate is preserved under anoxic conditions), and a specimen of the planktonic foraminifer *Morozovella* sp. indicates reworking of Paleogene sediments. Sample CA08, located in the base of the flooding at 138.7 m, mainly contains diverse miliolids together with numerous, nearly monospecific smooth ostracods (*Loxoconcha punctatella*) pointing to an oxic, shallow-marine environment with deviating salinity (*Table 1; Fig. 5*).

In the Transylvanian Basin, the washed residue of the sample collected from the basal Dej Fm just above the flooding in the Valea Dracului (DV) section (DV19A; 25.7 m) is large, well-sorted and clean (mainly quartz, lithic fragments), suggesting a high-energy environment, possibly a beach. Absence of planktonic foraminifer and rare, recrystallized benthic foraminifera: miliolid, *Elphidium* sp. and *Textularia* sp. suggest shallow-marine waters. Higher up, the washed residue of sample DV19 (29.5 m) contains only two hyaline specimens (*Cibicides lobatulus* and a *C. cf. ungerianus*) which may be...
displaced or reworked. Planktonic foraminifera are relatively common and minor pyrite and fish remains are present. Together with the virtual absence of benthic foraminifera this might point to bottom-water oxygen deficiency in shelf waters of normal marine salinity.

In the Ciceu-Giurgesti (CG) section, two samples in the Dej Fm at 47.5 (CG14) and 55.4 m (CG17) contain comparatively rich and diverse benthic foraminiferal associations (Fig. 5). Most specimens are large, although some more fragile taxa are also present. The samples contain a mix of shallow-water (Ammonia tepida, Discanomalina coronata, Elphidium spp., Rosalina bradyi, discorbids) and deeper-water, mid-outer shell taxa (Cibicides dutemplei, C. ungerianus, large Uvigerina spp.: Uvigerina cf. U. acuminata, Uvigerina cf. U. venusta, U. semiornata), indicating a mid-shelf environment for sample CG17. Sample CG14 may have been deposited in slightly deeper water (outer shelf depth) since it also contains Globocassidulina subglobosa, Pullenia bulloides, Sphaeroidina bulloides and nodosariids. The sediments were possibly deposited in slightly dysoxic environments, indicated by a relatively high percentage of species thriving under limited oxygenation and/or high organic load (Bolivina spathulata, Bulimina aculeata, B. elongata, Fursenkoina acuta, Globobulimina sp., Uvigerina cf. U. acuminata, U. continuosa, U. semiornata). Bimodal grain size sorting, especially in CG17 might indicate transport. This sample contains large, reworked miliolids and part of the shallow-water foraminifera and the (scarce) ostracods are pyritized, and may be reworked too.

Sample CP02, collected in the Cepari (CP) section 3 m below the flooding surface contains relatively abundant, often large Miocene benthic foraminifera (Fig. 6). Bimodal grain size sorting suggests transport; taxa normally occurring on the shallow shelf (Ammonia beccarii, A. tepida, Discanomalina coronata, Elphidium spp.) may have been transported to mid-shelf depths (indicated by (scarce) Cibicides spp., Cassidulina carinata, Gavelinopsis lobatula, Hanzawaia boueana, Spiroplectinella deperdita). Large, pyritized miliolids are almost certainly reworked. Common Bulimina elongata, Globobulimina spp. and Fursenkoina acuta, together with pyrite might point to a high organic load and associated oxygen limitation, although burrows confirm the presence of some oxygen. Both smooth (Loxoconcha punctatella) and ornamented ostracods occur (Cytheridea acuminata, Loxoconcha kochi, Pterygocythereis calcarata; Fig. 6).

Acknowledgements

We thank Jan Spierings and Zelda Zeegers for their help with the fieldwork, Giovanna Gianelli for processing samples for foraminiferal analysis and Luca Barchi for SEM photographs. We are also very grateful for fruitful discussions with Rocco Gennari about tiny Streptochilus foraminifera. Marius Stoica is acknowledged for fruitful discussions and ostracod taxonomy. This project was financially supported by the Dutch Organization for Scientific Research (NWO) [VICI grant 865.10.011].

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103904.

References

[1] B.U. Haq, G.P. Lohmann, Pliocene-Pleistocene calcareous nannofossil distribution patterns in the western Mediterranean, Mar. Micropaleontol. 1 (1967) 119–194.
[2] D. Rio, I. Raffi, G. Villa, Pliocene-Pleistocene Calcareous Nannofossil Distribution Patterns in the Western Mediterranean, 1990.
[3] E. Fornaciari, D. Rio, Latest Oligocene to early middle Miocene quantitative calcareous nannofossil biostratigraphy in the Mediterranean region, Micropaleontology 42 (1996) 1–36.
[4] A. Di Stefano, L.M. Foresi, F. Lirer, S.M. Iaccarino, E. Turco, F.O. Amore, R. Mazzei, S. Morabito, G. Salvatorini, H. Abdul Aziz, Calcareous plankton high resolution bio–magnetostratigraphy for the Langhian of the Mediterranean area, Rev. Ital. Di Paleontol. e Stratigr. 114 (2008) 51–76.
[5] S.M. Iaccarino, A. Di Stefano, L.M. Foresi, E. Turco, N. Baldassini, A. Cascella, S. Da Prato, L. Ferraro, R. Gennari, F.J. Hilgen, F. Lirer, R. Maniscalco, R. Mazzei, F. Riforgiato, B. Russo, L. Sagnotti, G. Salvatorini, F. Speranza, M. Verducci, High-resolution integrated stratigraphy of the upper Burdigalian-lower Langhian in the Mediterranean: the Langhian historical stratotype and new candidate sections for defining its GSSP, Stratigraphy 8 (2011) 199–215.
[6] D. Frunzescu, Stratigraphical and Sedimentological Study of Miocene Evaporites between Buzău Valley and Teleajen Valley, Bucharest University, 1998.

[7] M. Mărunțeanu, Litho and biostratigraphy (calcereous nannoplankton) of the Miocene deposits from the Outer Moldavides, Geol. Carpathica 50 (1999) 313–324.

[8] M. Crihan, Studiul lito-biostratigrafic al Miocenului mediu dintre Valea Prahovei și Valea Teleajenului, la sud de Sinclinalul Slânic, „Babes-Bolyai” University Cluj-Napoca, 1999.

[9] M. Sândulescu, M. Mărunțeanu, G. Popescu, Lower-middle Miocene formations in the folded area of the East Carpathians, Rom. J. Stratigr. 76 (1995) 1–32.

[10] M. Mărunțeanu, M. Crihan, C. Chira, Badenian nannofossil zonation – the carpathian area, Romania, Acta Paleontol. Rom. 2 (1999) 261–267.

[11] C. Beldean, S. Filipescu, R. Bălc, An early Miocene biserial foraminiferal event in the Transylvanian Basin (Romania), Geol. Carpathica 61 (2010) 227–234, https://doi.org/10.2478/v10096-010-0013-4.

[12] C. Chira, Early Miocene calcareous nannofossils assemblages from Transylvania, Acta Palaeontol. Rom. 4 (2004) 81–88.

[13] C. Chira, E. Szabo, C. Ianoliu, Badenian (middle miocene) calcereous nannofossils from Pâglișa (cluj district): biostratigraphical importance, Stud. Univ. Babes-Bolyai Geol. 45 (2000) 21–31.

[14] A. de Leeuw, S. Filipescu, L. Mațenco, W. Krijgsman, K. Kuiper, M. Stoica, Paleomagnetic and chronostratigraphic constraints on the middle to late Miocene evolution of the Transylvanian Basin (Romania): implications for central Paratethys stratigraphy and emplacement of the Tisza–Dacia plate, Glob. Planet. Chang. 103 (2013) 82–98, https://doi.org/10.1016/j.gloplacha.2012.04.008.

[15] A. Rusu, G. Popescu, M. Melinte, Oligocene-Miocene transition and main geological events in Romania, Rom. J. Stratigr. 76 (1996) 56.

[16] M. Tiliţă, Evolution of the Transylvanian Basin: Inferences from Seismic Interpretation and Numerical Modelling (PhD Thesis), Utrecht University, 2015.