Clinical utility of PEG-G-CSF for preventing severe neutropenia in metastatic colorectal cancer patients treated with FOLFOXIRI plus bevacizumab: A single center retrospective study

Kitagawa Yusuke
Cancer Institute Hospital of Japanese Foundation for Cancer Research
https://orcid.org/0000-0002-3439-0743

Hiroki Osumi
Cancer Institute Hospital of Japanese Foundation for Cancer Research

Eiji Shinozaki
Cancer Institute Hospital of Japanese Foundation for Cancer Research
https://orcid.org/0000-0002-7448-5894

Yumiko Ota
Cancer Institute Hospital of Japanese Foundation for Cancer Research

Izuma Nakayama
Cancer Institute Hospital of Japanese Foundation for Cancer Research

Takeshi Suzuki
Cancer Institute Hospital of Japanese Foundation for Cancer Research

Takeru Wakatsuki
Cancer Institute Hospital of Japanese Foundation for Cancer Research

Mariko Ogura
Cancer Institute Hospital of Japanese Foundation for Cancer Research

Akira Ooki
Cancer Institute Hospital of Japanese Foundation for Cancer Research

Daisuke Takahari
Cancer Institute Hospital of Japanese Foundation for Cancer Research

Mitsukuni Suenaga
Cancer Institute Hospital of Japanese Foundation for Cancer Research

Keisho Chin
Cancer Institute Hospital of Japanese Foundation for Cancer Research

Kensei Yamaguchi
Cancer Institute Hospital of Japanese Foundation for Cancer Research

Research article
Abstract

Background: This study aimed to evaluate in clinical practice the efficacy and safety of polyethylene glycol conjugated granulocyte colony-stimulating factor (PEG-G-CSF) for preventing neutropenia in metastatic colorectal cancer (mCRC) patients that received fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) plus bevacizumab (Bev).

Methods: We retrospectively analyzed mCRC patients who received FOLFOXIRI plus Bev between December 2015 and December 2017. We evaluated the efficacy of PEG-G-CSF for treating neutropenia, the overall response rate (ORR) according to the Response Evaluation Criteria in Solid Tumors version 1.1, progression free survival (PFS), overall survival (OS), and adverse events of FOLFOXIRI plus Bev based on the Common Terminology Criteria for Adverse Events version 4.0.

Results: A total of 26 patients (median age 53.5 years) were included. The ORR rate was 65.3%, the median PFS was 9.6 months (7.2–16.9), and the median OS was 24.2 months (13.6–NA). Grade 3 or 4 neutropenia occurred in 53.8% of the patients and febrile neutropenia occurred in 7.7%. PEG-G-CSF was given to 77.0% of the patients, including prophylactically (n = 9) and after the development of grade 3 or 4 neutropenia (n = 11). No patients experienced grade 3 or higher neutropenia after the administration of PEG-G-CSF. In seven of the nine patients who received PEG-G-CSF prophylactically (77.7%), no dose adjustment was required.

Conclusions: PEG-G-CSF was useful in preventing severe neutropenia in mCRC patients treated with FOLFOXIRI plus Bev.

Background

Recently, combination chemotherapy of cytotoxic agents such as irinotecan, oxaliplatin, and fluorouracil, and molecular targeted-drugs including anti-vascular endothelial growth factor antibody and anti-epidermal growth factor antibody have extended the overall survival (OS) of patients with metastatic colorectal cancer (mCRC) \(^1\). The efficacy of fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) for mCRC patients in terms of overall response rate (ORR), progression free survival (PFS), and OS was confirmed by several studies \(^2\). The benefit of adding bevacizumab (Bev) to the FOLFOXIRI regimen has also been demonstrated and the use of FOLFOXIRI plus Bev as an upfront treatment for mCRC patients is currently widely used \(^3,4\). In the Pan-Asian adopted European Society for Medical Oncology (ESMO) consensuses guidelines, FOLFOXIRI plus Bev is recommended as a first-line cytoreduction chemotherapy in “fit” mCRC patients with right sided primary tumor location or for those with the \(BRAF\) V600E mutation \(^5\). FOLFOXIRI plus Bev is also one of the alternative treatment options of first-line chemotherapy of mCRC listed in another treatment guidelines including the Japanese Society for Cancer of the Colon and Rectum Guidelines 2019 \(^6,7\). Furthermore, the MEBGEN RASKET™-B kit was recently approved in Japan for detecting mCRC patients with the \(BRAF\) V600E mutation \(^8\). Therefore, it is expected that the number of patients treated with FOLFIXIRI plus Bev will increase.
With regard to adverse events of FOLFOXIRI plus Bev, grade 3 or higher neutropenia or febrile neutropenia (FN) frequently occur. Several studies have shown that approximately 50% of patients experience grade 3 or higher neutropenia \(^3,9–12\). In a Japanese phase 2 trial of FOLFOXIRI plus Bev for mCRC, grade 3 or higher neutropenia and FN occurred in 72.5% and 21.7%, respectively \(^13\). The American Society of Clinical oncology practice guidelines recommend the prophylactic use of granulocyte colony stimulating factor (G-CSF) when the risk of FN in approximately 20% or higher \(^14\). Thus, we consider prophylactic G-CSF to be suitable for Japanese patients treated with FOLFOXIRI plus Bev. However, a dose adjustment of the chemotherapy is often required, and the management of neutropenia is often inadequate, even if G-CSF is administered. Polyethylene glycol-conjugated G-CSF (PEG-G-CSF), which is characterized as having an increased circulating half-life, has the potential to shorten the duration and severity of neutropenia. However, while the addition of PEG-G-CSF with FOLFOXIRI plus Bev may be useful in preventing severe neutropenia or FN, there are currently few reports evaluating the efficacy of the PEG-G-CSF for neutropenia in mCRC patients administered FOLFOXIRI plus Bev and in the safety of PEG-G-CSF in a every 2-week cycle of use. The current study aimed to evaluate the efficacy and safety of the PEG-G-CSF for preventing neutropenia in mCRC patients treated with FOLFOXIRI plus Bev.

Methods

Patients

Patients diagnosed with mCRC and that received FOLFOXIRI plus Bev between December 2015 and December 2017 at the Cancer Institute Hospital, Tokyo, Japan were included in the study based on the following eligibility criteria: 1) histologically confirmed colorectal adenocarcinoma; 2) unresectable or recurrent disease; 3) no previous chemotherapy except for adjuvant chemotherapy completed more than 6 mo prior to the starting date of FOLFOXIRI plus Bev treatment. The protocol summary was described on the hospital website and the subjects were provided with the opportunity to opt out. Therefore, no new consent for this study was required from the patients.

Data collection

All data were collected by reviewing medical records and imaging results. We confirmed the patient age, sex, and Eastern Cooperative Oncology Group Performance Status (ECOG-PS). Data regarding the primary tumor site, the histological type of primary site tumor, whether primary resection was performed, the metastatic sites, and the number of metastatic sites were also considered. Any previous adjuvant chemotherapy, the tumor maker level before chemotherapy, \(RAS\) and \(UGT1A1\) status, the number of chemotherapy cycles, tumor response (objective response and early tumor shrinkage (ETS)), toxicity, conversion surgery, the date of disease progression, and the date of the last follow-up were also evaluated.
Treatment and evaluation

Bev was administered as a 5 mg/kg intravenous dose. FOLFOXIRI treatment consisted of a 165 mg/m\(^2\) intravenous infusion of irinotecan for 60 min followed by an 85 mg/m\(^2\) intravenous infusion of oxaliplatin given concurrently with 200 mg/m\(^2\) leucovorin for 120 min followed by a 3200 mg/m\(^2\) continuous infusion of fluorouracil for 48 h. The overall tumor response was assessed according to the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 and toxicity was graded according to the Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. PFS was measured as the day of initiation of FOLFOXIRI plus Bev therapy to the day on which disease progression was confirmed or to the final day of follow-up without disease progression. OS was measured as the day of initiation of FOLFOXIRI plus Bev therapy until the final day of follow-up. ETS was defined as the relative change in the sum of the longest diameters at week eight (± 4 weeks compared to that of the baseline (cutoff: 20%). PEG-G-CSF (3.6 mg) starting at day four was administered every 2 weeks until progression. Whether PEG-G-CSF was used as primary preventative treatment for neutropenia or as a secondary treatment after a patient experienced grade 4 neutropenia or FN was decided by the treating physician.

Statistical analysis

PFS and OS rates were estimated using the Kaplan-Meier method. All statistical analyses were performed using EZR software (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria).

Results

Patient characteristics

The demographics and clinical characteristics of the 26 patients before the initiation of FOLFOXIRI plus Bev therapy are summarized in Table 1. The median follow-up period was 24.2 month (range, 13.6-NA). The median age of the patients was 53.5 years (range, 27–74 years). Thirteen patients (50%) were male and 18 patients (69.2%) had an ECOG-PS of 0. The primary location of colorectal cancer was in the right side for eight (30.8%) of the patients. The histology type was poorly differentiated or mucinous adenocarcinoma in five patients (19.2%) and the primary lesion was resected in eight patients (30.8%). Metastatic lesions of the liver, lung, lymph nodes, and peritoneum were detected in 23 (88.4%), 7 (26.9%), 16 (61.5%), and 5 (19.3%) of the patients, respectively. Twenty-one patients (80.7%) had two or more metastatic sites. The median carcinoembryonic antigen (CEA) and carbohydrate antigen (CA19–9) levels before chemotherapy were 88.0 ng/ml (range, 1.5–9205) and 75.4 IU/ml (range, < 2–50,000), respectively. Twenty-three patients (88.5%) had RAS mutation and UGT1A1 polymorphism was observed in eight patients (30.7%).
Adverse events and efficacy and safety of PEG-GCSF in mCRC patients treated with FOLFOXIRI plus Bev

The most common adverse event was hematological toxicity with grade 3 or higher neutropenia observed in 14 patients (53.8%). Grade 3 FN was observed in two patients (7.7%). Other hematological or non-hematological toxicities were less frequent such as diarrhea being observed in two patients (7.7%). No treatment-related deaths occurred. In the 26 patients, 20 (77%) received PEG-G-CSF. Eleven patients (55%) received it secondarily to treat neutropenia. Among these 11 patients, two had previously been treated prophylactically with conventional G-CSF. Nine patients (45%) were administrated PEG-G-CSF prophylactically (Fig. 1). None of the patients developed grade 3 or higher neutropenia after receiving PEG-G-CSF. Ten of 26 patients (38%) received a reduction in their dose of FOLFOXIRI plus Bev. Six of 11 patients (54.5%) who received PEG-G-CSF secondarily to treat neutropenia were able continue treating with FOLFOXIRI plus Bev without the need for a dose adjustment. On the other hand, in the nine patients given PEG-G-CSF prophylactically, two (22.2%) required the dose adjustment due to non-hematological adverse events. There were no severe adverse events associated with the PEG-G-CSF treatment.

Treatment outcomes

Treatment outcomes and adverse events are shown in Table 2 and Table 3, respectively. The median number of treatment cycles per patient was 6.5 (range, 1.0–12.0). The ORR was 65.3% (95% confidence interval [CI], 44.0–83.0) and the disease control rate was 84.5% (95% CI, 65.0–96.0). PFS and OS were 9.6 months (95% CI, 7.2–16.9) and 24.2 months (95% CI, 13.6–NA), respectively (Fig. 2). Thirteen patients (50%) were identified as demonstrating early tumor shrinkage and seven patients (26.9%) received conversion surgery.

Discussion

In the current study, we evaluated the efficacy and safety of the PEG-G-CSF for preventing neutropenia in mCRC patients treated with FOLFOXIRI plus Bev. Despite the high ratio of poorly differentiated adenocarcinoma and patients with RAS mutant type, the ORR was relatively high. PEG-G-CSF prevented the development of severe neutropenia without any increases in adverse events.

FN is one of the life-threatening adverse events of chemotherapy. In the 1990’s, G-CSF was widely used in the clinic as a leading supportive therapy for FN. There is substantial data regarding the effectiveness of G-CSF for cancer chemotherapy15,16. Compared to conventional G-CSF, the number of visits to a hospital by patients and the work load of the medical staff both decreased when we used PEG-G-CSF. This demonstrates a great benefit for the outpatient clinic. There are several reports regarding the efficacy of PEG-G-CSF for neutropenia and FN in both mCRC and other cancers.
A Japanese double-blind placebo-controlled randomized phase 3 trial of PEG-G-CSF in 343 breast cancer patients receiving docetaxel and cyclophosphamide chemotherapy showed that the incidence of FN was significantly lower in the PEG-G-CSF group compared to that in the placebo group (1.2% vs. 68.8%, \(P < 0.001 \)) \(^{17}\). A Japanese retrospective study also showed that the incidence of FN was significantly lower in a group of non small cell lung cancer patients pretreated with PEG-G-CSF compared to that in the placebo group [0/52 (0%) vs 3/9 (33%), respectively] \(^{18}\).

Regarding mCRC patients, in a phase 3 double-blind trial that evaluated the efficacy of PEG-G-CSF compared to a placebo in reducing the incidence of grade 3 or 4 FN in patients with advanced CRC receiving Bev combined with first-line chemotherapy, PEG-G-CSF significantly reduced the incidence of grade 3 and grade 4 FN in the first four treatment cycles (PEG-G-CSF 2.4%, placebo, 5.7%, \(P = 0.014 \)) \(^{19}\). Another randomized placebo-controlled phase II study examined PEG-G-CSF efficacy and safety in patients with CRC that received chemotherapy every two weeks. Results from this study showed that PEG-G-CSF significantly reduces the incidence of grade 3 and grade 4 FN (PEG-G-CSF, 2.0%; placebo, 8.0%; \(P < 0.001 \)) \(^{20}\). Notably, this study demonstrated that PEG-G-CSF could prevent severe neutropenia in patients receiving FOLFOXIRI plus Bev on a two-week cycle without an increase of adverse events, consistent with previous reports. However, the safety of PEG-G-CSF had not been established when administered within 14 days before the start of chemotherapy. It is recommended that the administration interval of PEG-G-CSF should be 2 weeks or longer.

In addition, \(UG T 1 A 1 \) polymorphism was detected in this study in eight (30.7%) of the patients (*6 in six patients, *28 in two patients). Among these patients with \(UG T 1 A 1 \) polymorphism, six had been administered PEG-G-CSF, two after the development of grade 3 neutropenia and four prophylactically. In Japan, the incidence of \(UG T 1 A 1 * 6 \) polymorphism is higher than that in the US and European countries \(^{21–23}\). In a Japanese phase 2 trial of FOLFOXIRI plus BV in mCRC patients, the frequency of neutropenia in patients with \(UG T 1 A 1 * 6 \) or *28 polymorphism is higher than that in patients with wild-type \(UG T 1 A 1 \) \(^{13}\). However, in the current study, no patients experienced severe neutropenia after the administration of PEG-G-CSF, even in those patients with \(UG T 1 A 1 * 6 \) or *28 polymorphisms. Furthermore, five of 6 patients were able continue treating with FOLFOXIRI plus Bev without the need for a dose adjustment. These data suggest that the administration of PEG-G-CSF in two-week cycle may be safe and that PEG-G-CSF is able to prevent severe neutropenia in patients with \(UG T 1 A 1 * 6 \) or *28 polymorphisms.

There were several limitations to our study. For instance, it was a retrospective study with a relatively small sample size. A further large-scale study to validate the results of this study and to compare PEG-G-CSF with G-CSF in mCRC patients treated with FOLFOXIRI plus Bev is needed. However, even with the limitations, this study showed that neutropenia, which is the most common adverse events in patients being treated with FOLFOXIRI plus Bev, could be prevented using PEG-G-CSF.

Conclusion
PEG-G-CSF was useful in preventing severe neutropenia in mCRC patients treated with FOLFOXIRI plus Bev without any increases in adverse events.

List Of Abbreviations

PEG-G-CSF: polyethylene glycol conjugated granulocyte colony-stimulating factor

mCRC: metastatic colorectal cancer

FOLFOXIRI: fluorouracil, leucovorin, oxaliplatin, and irinotecan

Bev: bevacizumab

ORR: overall response rate

PFS: progression free survival

OS: overall survival

ESMO: European Society for Medical Oncology

FN: febrile neutropenia

ECOG-PS: Eastern Cooperative Oncology Group Performance Status

ETS: early tumor shrinkage

RECIST: Response Evaluation Criteria in Solid Tumors

CTCAE: Common Terminology Criteria for Adverse Events

CEA: carcinoembryonic antigen

CA19–9: carbohydrate antigen

Declarations

Acknowledgments

We thank the data manager Yuki Horiike. A part of this paper was presented at the ESMO 20th World Congress on Gastrointestinal Cancer. The abstract was published in *Annals of Oncology*, Volume 29, Issue suppl_5, 1 June 2018.

Ethics approval and informed consent
The study was performed in accordance with the Declaration of Helsinki and was approved by the Cancer Institute Hospital Institutional Review Board (Registry no: 2018–1014).

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Funding

The author reports no any funding about this analysis.

Competing interests

The author reports no conflicts of interest in this work.

Acknowledgments

We would like to thank the data manager, Yuki Horiike.

References

1. Grothey A, Sargent D, Goldberg RM, et al. Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol 2004;22:1209–1214.

2. Falcone A, Ricci S, Brunetti I, et al. Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: the Gruppo Oncologico Nord Ovest. J Clin Oncol 2007;25:1670–1676.

3. Loupakis F, Cremolini C, Masi G, et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. New Engl J Med 2014;371:1609–1618.

4. Cremolini C, Loupakis F, Masi G, et al. FOLFOXIRI or FOLFOXIRI plus bevacizumab as first-line treatment of metastatic colorectal cancer: a propensity score-adjusted analysis from two randomized clinical trials. Ann Oncol 2016;27:843–849.

5. Yoshino T, Arnold D, Taniguchi H, et al. Pan-Asian adapted ESMO consensus guidelines for the management of patients with metastatic colorectal cancer: a JSMO-ESMO initiative endorsed by CSCO, KACO, MOS, SSO and TOS. Ann Oncol 2018;29:44–70.

6. Watanabe T, Muro K, Ajioka Y, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer. Int J Clin Oncol 2018;23:1–34.
7. Taniguchi H, Okamoto W, Muro K, et al. Clinical validation of newly developed multiplex kit using Luminex xMAP technology for detecting simultaneous RAS and BRAF mutations in colorectal cancer: results of the RASKET-B Study. Neoplasia (New York, NY) 2018;20:1219–1226.

8. Vamvakas L, Athanasiadis A, Karampeazis A, et al. Clinical outcome of elderly patients with metastatic colorectal cancer treated with FOLFOXIRI versus FOLFIRI: subgroup analysis of a randomized phase III trial from the Hellenic Oncology Research Group (HORG). Crit Rev Oncol/Hematol 2010;76:61–7.

9. Masi G, Loupakis F, Salvatore L, et al. Bevacizumab with FOLFOXIRI (irinotecan, oxaliplatin, fluorouracil, and folinate) as first-line treatment for metastatic colorectal cancer: a phase 2 trial. The Lancet Oncol 2010;11:845–852.

10. Xu W, Kuang M, Gong Y, et al. Survival benefit and safety of the combinations of FOLFOXIRI +/- bevacizumab versus the combinations of FOLFIRI +/- bevacizumab as first-line treatment for unresectable metastatic colorectal cancer: a meta-analysis. OncoTargets Therapy 2016;9:4833–4842.

11. Marques RP, Duarte GS, Sterrantino C, et al. Triplet (FOLFOXIRI) versus doublet (FOLFOX or FOLFIRI) backbone chemotherapy as first-line treatment of metastatic colorectal cancer: A systematic review and meta-analysis. Crit Rev Oncol/Hematol 2017;118:54–62.

12. Oki E, Kato T, Bando H, Yoshino T, et al. A multicenter clinical phase II study of FOLFOXIRI plus Bevacizumab as first-line therapy in patients with metastatic colorectal cancer: QUATTRO Study. Clin Colorectal Cancer 2018;17:147–155.

13. Smith TJ, Khatcheressian J, Lyman GH, et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol 2006;24:3187–3205.

14. Bohlius J, Herbst C, Reiser M, et al. Granulopoiesis-stimulating factors to prevent adverse effects in the treatment of malignant lymphoma. The Cochrane database of systematic reviews 2008:Cd003189.

15. Renner P, Milazzo S, Liu JP, et al. Primary prophylactic colony-stimulating factors for the prevention of chemotherapy-induced febrile neutropenia in breast cancer patients. The Cochrane database of systematic reviews 2012:Cd007913.

16. Kosaka Y, Rai Y, Masuda N, et al. Phase III placebo-controlled, double-blind, randomized trial of pegfilgrastim to reduce the risk of febrile neutropenia in breast cancer patients receiving docetaxel/cyclophosphamide chemotherapy. Supp Care Cancer 2015;23:1137–1143.

17. Hata A, Harada D, Okuda C, et al. Docetaxel plus ramucirumab with primary prophylactic pegylated-granulocyte-colony stimulating factor for pretreated non-small cell lung cancer. Oncotarget 2018;9:27789–27796.

18. Pinter T, Klippel Z, Cesas A, et al. A phase III, randomized, double-blind, placebo-controlled trial of pegfilgrastim in patients receiving first-line FOLFOX/Bevacizumab or FOLFIRI/Bevacizumab for
locally advanced or metastatic colorectal cancer: final results of the Pegfilgrastim and Anti-VEGF Evaluation Study (PAVES). Clin Colorectal Cancer 2017;16:103–114.e103.

19. Hecht JR, Pillai M, Gollard R, et al. A randomized, placebo-controlled phase ii study evaluating the reduction of neutropenia and febrile neutropenia in patients with colorectal cancer receiving pegfilgrastim with every-2-week chemotherapy. Clin Colorectal Cancer 2010;9:95–101.

20. Sai K, Saeki M, Saito Y, et al. UGT1A1 haplotypes associated with reduced glucuronidation and increased serum bilirubin in irinotecan-administered Japanese patients with cancer. Clin Pharmacol Therapeut 2004;75:501–515.

21. Innocenti F, Liu W, Chen P, et al. Haplotypes of variants in the UDP-glucuronosyltransferase1A9 and 1A1 genes. Pharmacogen Genom 2005;15:295–301.

22. Han JY, Lim HS, Shin ES, et al. Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 2006;24:2237–2244.

Tables

Due to technical limitations, all Table(s) are only available as a download in the supplemental files section.

Figures

The frequency of using PEG-G-CSF n=26

- PEG-G-CSF (-) 23%
- PEG-G-CSF (+) 77%

Reasons n=20

- After grade 3/4 neutropenia 55%
- Prophylactic 45%

Figure 1
Frequency and reasons for use of polyethylene glycol-conjugated granulocyte colony-stimulating factor (PEG-G-CSF).

![Graphs showing progression free survival and overall survival rates of the study cohort.]

Figure 2

Progression free survival and overall survival rates of the study cohort.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Kitagawaetal.FOLFOXIRIBevTables2.13.xlsx