ABSTRACT

The exponential model with pairing attenuation (EMPA) is extended and used to analysis the superdeformed rotational bands (SDRB’s) in Thallium nuclei in the mass region $A \sim 190$. The level spins are extracted by fitting the experimental dynamical moment of inertia $J^{(2)}$ to the theoretical version of Harris expansion in even powers of rotational frequency $\hbar \omega$. Using the assigned spins, the parameters of the extended exponential model are adjusted by using a computer simulated search program to fit the transition energies with experimental ones. The best adopted parameters are used to calculate transition energies $E_\gamma(I)$ rotational frequencies $\hbar \omega$, kinematic $J^{(1)}$ and dynamic $J^{(2)}$ moments of inertia. The variation of $J^{(1)}$ and $J^{(2)}$ versus $\hbar \omega$ are examined. A staggering function depends on the concept of EGOS and finite differences are suggested to investigate and exhibit the $\Delta I=1$ staggering effect in transition energies in the studied SDRB’s. The phenomenon of identical bands is also investigated in Thallium nuclei.

Keywords: Pairing Attenuation, Staggering, Thallium nuclei

1. INTRODUCTION

Since the discovery of the first superdeformed (SD) bands in 152Dy[1] and 199Hg[2], a great number of superdeformed rotational bands (SDRB’s) were identified in different mass regions $A \sim 190,150,130,80,60$[3] which have their own characteristic features. These high spin SDRB’s are associated with extremely large quadrupole deformation parameter. The difference between the SDRB’s in various mass regions are manifested through the behavior of the dynamical moment of inertia. The $A \sim 190$ mass region is of special interest, since in this region the SD bands were observed down to quite low spin, Most SDRB’S in $A \sim 190$ region display the same smooth rise in dynamical moment of inertia with increasing rotational frequency [4]. This rise behavior was attributed in the cranked shell model calculations mainly to the successive alignment of both $J^{15/2}$ quasi neutron and $J^{13/2}$quasi proton pairs from high N intruder orbital under rotation in the presence of pairing correlations [5,6]. For all SDRB’S the transition energies are the only quantities to be detected, there are no direct experimental method to determine spins, parities and excitation energies ,this is due to the difficulty of establishing the de excitation of SD band into ground states .Several theoretical procedures for assigning spins were proposed[7,13]. One of the unexpected feature happen in SDRB’s is the existence of identical bands (IB’s) [14,15],that is states in different SD bands having nearly the same γ – ray transition energies .This indicate that the rotational frequencies as well as the dynamical moment of inertia are very similar. Many authors tried to understand the IB’s phenomenon [16-19]. The interesting discovery of IB’s was seen also in pairs of normal deformed nuclei [20-22].

Another interesting feature related to the SDRB’s is the measurement of magnetic properties. The branching ratio of M1 transition linking two signature partners SD bands were observed [23-24] and is denoted as $\Delta I=1$
staggering. The crosstalk was originally observed in one direction, then it was established that the crosstalk goes both ways [25]. The \(\Delta I=1 \) staggering effect is also investigated in normal deformed nuclei between the energies of states of the ground and octupole bands [26]. Some SDRB’s in mass region \(A \sim 190 \) show an unexpected \(\Delta I=2 \) staggering effects in the transition energies [27,28]. This is commonly called \(\Delta I=4 \) bifurcation because the states of the band splits into two sequences of transition energies differing by \(2\hbar \) of angular momentum and the states in each sequence differ by \(4\hbar \) of angular momentum. The spin values in one sequence are \(I, I+4, I+8, \ldots \) while in the other sequence are \(I+2, I+6, I+10, \ldots \) Several theoretical attempts were done to explain the \(\Delta I=2 \) energy staggering phenomenon [29-34].

2. OUTLINE OF EXPONENTIAL MODEL WITH PAIRING ATTENUATION

The pairing energy \(\Delta \) depends on the angular momentum \(I \) by the relation [35]

\[
\Delta (I) = \Delta_0 \left(1 - \frac{I}{I_C} \right)^{\frac{1}{2}}
\]

(1)

where \(\Delta_0 \) is the energy pairing gap and \(I_C \) is the critical spin value at which pairing correlations disappear completely (\(I_C = I \)). That is the pairing gap vanishes. Using the cranked model, it was found [36] that the nuclear moment of inertia \(J \) depends exponentially on pairing correlation parameter \(\Delta \)

\[
J(\Delta) = J_0 \exp (-\Delta)
\]

(2)

where the parameter \(J_0 \) can be determined from the (ln \(J \)) versus \(\Delta \) plot. Inserting the moment of inertia \(J(\Delta) \) in the \(I(I+1) \) rule of excitation energy

\[
E(I) = \frac{\hbar^2}{2J} I(I+1)
\]

(3)

yield the exponential model with pairing attenuation [37]

\[
E(I) = A I(I+1) \exp [\Delta_0 \left(1 - \frac{I}{I_C} \right)^{\frac{1}{2}}]
\]

(4)

with \(A \) for SD bands. The \(\gamma \) – ray transition energy \(E_\gamma \) are the only quantity experimental measured, therefore, we can write \(E_\gamma \) between two levels differentiates by two units of angular momenta as

\[
E_\gamma(I) = E(I) - E(I-2)
\]

\[
= A \left\{ I(I+1) \exp [\Delta_0 (1-I/I_C)^{1/2}] - (I-1)(I-2) \exp [\Delta_0(1-(I-2)/I_C)^{1/2}] \right\}
\]

(5)

Equation (5) can be used to fit the transition energies of SDRB’s for fixed \(I_C \) and keeping \(A \) and \(\Delta_0 \) as a free parameter.

3. SPIN ASSIGNMENT FOR SDRB’s

The determination of spins and parity of states in all SD bands is one of most difficult and unsolved problems in the study of superdeformation. This is due to the difficulty of establishing the de excitation of a SD band into known yrast state. Several theoretical approaches [3] were attempted to assign the spins of the SD bands. Most of procedures begin with the Harris model [39]. The two parameter Harris formula for excitation energy it given by

\[
E(\omega) = \frac{1}{2} \alpha \omega^2 + \frac{3}{2} \beta \omega^4
\]

(6)

The dynamic moment of inertia \(J^{(2)} \) for the Harris formula is

\[
J^{(2)} = \frac{1}{\omega} \left(\frac{dE}{d\omega} \right)
\]

(7)

\[
J^{(2)} = \alpha + 3\beta \omega^2
\]

(8)

where \(\alpha \) corresponds to the bandhead moment of inertia. Integrating equation (8) yield the level spin \(I \)

\[
\hbar I = \int J^{(2)} d\omega = \alpha \omega + 3\beta \omega^3 + i
\]

(9)

where the intrinsic alignment \(i \) appears as a constant of integration and \(I = \sqrt{I(I+1)} \) is the intermediate nuclear spin.

The parameters \(\alpha \) and \(\beta \) are obtained from the fitting procedure of \(J^{(2)} \) with experimental data.

The kinematic moment of inertia \(J^{(1)} \) for Harris formula is
\[(J^{(2)}/\hbar^2) = h(1/\omega) = \alpha + \beta \omega^2 \]
(10)

Eliminating \(\omega \) from the two equations (9) and (10) we get a cubic equation for the energy of the rotational band levels.

\[e^3 + 2e^2 + (1 + 36d)e - 4(1 + 27d) = 0 \]
(11)

where \(e = (4\beta/\alpha^2) \), \(d = (\beta/2\alpha^3) I(I+1) \)

Equation (11) give the excitation energy \(E \) as a function of spin. Putting \(\gamma = 2d \) we have

\[E(I) = (h^2/2\alpha)(I(I+1) \left[1 - \gamma + 4\gamma^2 - 24\gamma^3 + \ldots \right] \]
(12)

The rotational frequency \(h\omega \) , the dynamic \(J^{(2)} \) and kinematic \(J^{(1)} \) moments of inertia are related to the transition energy \(E(I) \) by the relations

\[h\omega = (1/4)[E(I+2→I) + E(I→I-2)] \quad (\text{MeV}) \]
(13)

\[J^{(2)} = 4[I E(I+2→I) - E(I→I-2)] / (h^2 \text{ MeV}^{-1}) \]
(14)

\[J^{(1)} = (2I-1) / E(I→I-2) \quad (h^2 \text{ MeV}^{-1}) \]
(15)

It is seen that the dynamic moment of inertia \(J^{(2)} \) can be extracted from the energy difference between two consecutive transition energies in the band ,it does not depend on the spin while the kinematic moment of inertia \(J^{(1)} \) depend on the spin proposition . The two moments of inertia \(J^{(2)} \), \(J^{(1)} \) are related as follows.

\[J^{(2)}/\hbar^2 = (1/\hbar)(dI/d\omega) = (1/\hbar^2)[J^{(1)}+(dJ^{(1)}/d\omega)] \]
(16)

3. Analysis of energy staggering in SDRB’S

The \(\Delta I=1 \) staggering phenomenon, several pairs of signature partners SDRB’s exhibit a \(\Delta I=1 \) energy staggering [17]. these signature partners show signature splitting with large amplitude.

To exhibit the \(\Delta I=1 \) energy staggering, we consider EGOS staggering function. It represents the gamma transition energy over the spin

\[\text{EGOS}(I) = E_\gamma(I) / 2I \]
(17)

with \(E_\gamma(I) = E_\gamma(I) - E_\gamma(I - 2) \)

when EGOS is plotted against \(2I \) for pure rotator E (I) = A I (I+1) it represents a straight line parallel to the spin axis.

4. NUMERICAL RESULTS AND DISCUSSION

Our selected data set includes twelve super deformed rotational bands (SDRB’s) for Thallium nuclei The \(\gamma \)-ray transition energies in a band is assumed as the difference in energies between two levels separated by two units of angular momentum .The experimental transition energies of our SDRB’s are taken from Ref [3].The level spins of each band are determined by fitting the dynamic moments of inertia for each rotational frequency \(h\omega \) extracted from experimental transition energies with the Harris two parameter \(\alpha \) and \(\beta \) equation (10) in order to obtain a minimum root mean square deviation by the common definition of the \(\chi(J^{(2)}) \)

\[\chi(J^{(2)}) = \frac{1}{N} \sum_{i=1}^{N} \frac{(E_{\gamma}^{exp}(oi) - E_{\gamma}^{cal}(oi))^2}{\delta E_{\gamma}^{exp}(oi)} \]

where \(N \) is the total number of the experimental points entering into the fitting procedure and \(\delta J^{(2)exp} (oi) \) is the experimental errors in \(J^{(2)} \).

A computer simulated search program is used in fitting procedure. The calculated assigned bandhead spins and the best adopted Harris parameters \(\alpha \) and \(\beta \) are listed in Table (1).

After knowing the level spins for each band, another fitting procedure has been performed to adjust the two parameters \(\Delta \) and \(A \) of the exponential model with pairing attenuation by fitting the experimental transition energies with the corresponding theoretical one to minimize \(\chi(E_\gamma) \)

\[\chi(E_\gamma) = \frac{1}{N} \sum_{i=1}^{N} \frac{(E_\gamma^{exp}(oi) - E_\gamma^{cal}(oi))^2}{\delta E_\gamma^{exp}(oi)} \]

where \(\delta E_\gamma^{exp} (oi) \) is the experimental error in transition energy \(E_\gamma (oi) \).

Table (1) show the adopted best model parameters \(\Delta \), \(A \) and the rms deviation \(\chi (E_\gamma) \). The experimental lowest transition energy \(E_\gamma \) (I_0 +2→I_0). For each (SD) band is also indicated in Table (1). The calculated transition energy \(E_\gamma^{cal} (I) \) are compared to experimental...
ones $E^{\text{exp}}(\mathcal{I})$, and the results are shown in Table (2). We see that a very good agreement between calculation and experiment is obtained, which give good support to the proposed exponential model with pairing attenuation.

The moments of inertia $J^{(1)}$ and $J^{(2)}$ for the three pairs of identical bands (IB's) in $^{193,194,195}\text{Tl}$ are shown in Figure (1), they display similarities in the frequency range $0.10 \text{ MeV} < \hbar \omega < 0.35 \text{ MeV}$ for the pair $[^{193}\text{Tl} \,(SD1),^{194}\text{Tl} \,(SD3)]$, and $0.10 \text{ MeV} < \hbar \omega < 0.40 \text{ MeV}$ for the two pairs $[^{193}\text{Tl} \,(SD1),^{195}\text{Tl} \,(SD1),^{193}\text{Tl} \,(SD2),^{195}\text{Tl} \,(SD2)]$.

The bandhead moments of inertia which depends on the intrinsic structure of the rotational band for these three pairs of IB's are nearly identical.

From the analysis of $J^{(1)}$ and $J^{(2)}$ moments of inertia we observed that the lowest values of $J^{(2)}$ for the yrast superdeformed bands in Tl isotopes exhibit a zigzag moments of inertia staggering. Table (3) and Figure (2) shows the calculated and the experimental lowest values of $J^{(2)}$ versus the neutron number of the yrast SD bands in $^{191-195}\text{Tl}$ nuclei.

The main results of present paper are the observation of a $\Delta l=1$ energy staggering effect in five pairs of signature partners in odd A and odd-odd $^{192,194}\text{Tl}$ nuclei namely:

$^{191}\text{Tl} \,(SD1, SD2),^{192}\text{Tl} \,(SD1, SD2),^{193}\text{Tl} \,(SD1, SD2),^{194}\text{Tl} \,(SD1, SD2)$, and $^{195}\text{Tl} \,(SD1, SD2)$. We investigated this Effect by calculating the staggering function EGOS equation (17). The results are plotted versus nuclear spin I in Figure (3). Zigzag pattern with large amplitude is shown. The numerical values are listed in Table (4).

Table (1) The estimated bandhead spin I_0 and the adopted best model parameters α, β, Δ, A obtained from the fitting produce for studied SDRB'S in Tl the nuclei. The experimental lowest transition energy $E_\gamma (I_0+2\rightarrow I_0)$ for each (SD) band is also given. The rms deviation χ is indicated.

SD band	$\beta \text{(h}^2\text{MeV}^{-1})$	$\Delta(10^{-1})$	$A(\text{Kev})$	χ	$E_\gamma (^\text{exp})$ (Kev)
$^{191}\text{Tl} \,(SD1)$	92.7007	3.3009	3.9958	0.754	276.5
$^{191}\text{Tl} \,(SD2)$	92.1013	5.2868	3.5564	0.338	296.3
$^{192}\text{Tl} \,(SD1)$	102.7981	3.77642	3.9097	1.100	283.0
$^{192}\text{Tl} \,(SD2)$	103.5797	3.12090	4.1003	1.495	337.5
$^{193}\text{Tl} \,(SD1)$	96.4098	3.17970	3.9123	0.693	206.6
$^{193}\text{Tl} \,(SD2)$	96.4333	2.6883	4.0853	0.491	227.3
$^{194}\text{Tl} \,(SD1)$	96.9760	3.9958	3.9097	1.100	283.0
$^{194}\text{Tl} \,(SD2)$	99.9000	2.15538	4.1178	0.510	209.3
$^{194}\text{Tl} \,(SD3)$	90.7109	2.88292	4.0276	0.533	240.5
$^{194}\text{Tl} \,(SD5)$	100.4390	1.91747	4.1322	0.454	187.9
$^{195}\text{Tl} \,(SD1)$	95.5000	2.8735	4.0470	0.360	146.2
$^{195}\text{Tl} \,(SD2)$	95.0010	6.5	3.8300	1.414	167.5
Table (2). The calculated transition energy $E_\gamma (I)$ for our calculated SDRB’s and comparison with experimental data. The model parameters and the band head spins are listed in Table (1)

194TI (SD1)	195TI (SD2)	192TI (SD1)	192TI (SD2)								
$I(h\ell)$	$E_\gamma (I)$ (KeV)										
EXP	CAL	EXP	CAL	EXP	CAL	EXP	CAL				
13.5	276.5	278.687	14.5	296.3	294.725	13	283	282.121	16	337.5	332.139
15.5	317.7	319.431	16.5	337.2	336.487	15	320.8	320.898	18	374.9	372.608
17.5	359	359.574	18.5	377.8	377.249	17	359	359.928	20	413.4	412.489
19.5	398.8	399.100	20.5	416.9	416.995	19	397.8	397.599	22	451.1	451.767
21.5	438.3	437.993	22.5	455.7	455.704	21	437.1	437.433	24	489.6	490.427
23.5	476.8	476.238	24.5	492.8	493.354	23	476.1	476.253	26	527.4	528.450
25.5	514.5	513.815	26.5	529.6	529.921	25	515.2	515.521	28	565.5	565.816
27.5	551.4	550.706	28.5	566.1	565.380	27	554.4	553.840	30	603.1	602.505
29.5	587.5	586.888	30.5	600.1	599.701	29	593	592.606	32	640.9	638.491
31.5	621.8	622.336	32.5	633.4	632.852	31	632	631.352	34	677.6	673.546
33.5	656.3	657.026	34.5	665.9	664.75	33	670	671	35	715.3	708.983
35.5	689.8	691.19	36.5	697.5	695.43	35	707	706			

190TI(SD1)	190TI(SD2)	194TI(SD1)	194TI(SD2)								
$I(h\ell)$	$E_\gamma (I)$ (KeV)										
EXP	CAL	EXP	CAL	EXP	CAL	EXP	CAL				
10.5	206.6	209.066	11.5	227.3	229.038	14	268	269.062	11	209.3	210.251
12.5	247.3	249.341	13.5	267.9	269.263	16	307	307.569	13	248.4	249.253
14.5	287.7	289.077	15.5	308.2	309.028	18	345.1	345.701	15	287.5	287.901
16.5	327.4	328.262	17.5	348	348.321	20	384.2	383.448	17	326	326.187
18.5	366.4	366.888	19.5	387	387.129	22	421	420.799	19	364.4	364.1
20.5	405.3	404.931	21.5	425.4	425.441	24	457	457.743	21	401.7	401.63
22.5	442.9	442.385	23.5	463.7	463.242	26	494.9	494.266	23	439.3	438.766
24.5	479.7	479.231	25.5	501.1	500.518	28	530.9	530.355	25	475.9	475.496
26.5	516.1	515.450	27.5	537.5	537.250	30	567	565.993	27	512	511.807
28.5	551.6	551.023	29.5	573.4	573.421	32	601.2	601.849	29	548	547.684
30.5	586.5	585.930	31.5	608.8	609.010	34	634.9	635.849	31	583.5	583.110
32.5	620.3	620.145	33.5	643.8	643.997	36	669.8	670.675	33	617.5	618.070

Table (3). The lowest dynamic moment of inertia $J^{(2)}$ for the yrast SDRB’s in $^{191-195}$TI [N is the neutron number]

SD band	N	$J^{(2)}_{\text{exp}} (\hbar^2 \text{MeV}^{-1})$	$J^{(2)}_{\text{eat}} (\hbar^2 \text{MeV}^{-1})$
191TI(SD1)	110	97.083	98.1739
192TI(SD1)	111	105.8201	103.1539
193TI(SD1)	112	98.2800	99.3171
194TI(SD1)	113	102.5641	103.8732
195TI(SD1)	114	95.2380	96.6673
Table (4). The calculated $\Delta I=1$ staggering function EGOS (I) versus nuclear spin I for the signature partners ^{191}Tl (SD1, SD2), ^{192}Tl (SD1, SD2), ^{193}Tl (SD1, SD2), ^{194}Tl (SD1, SD2), ^{195}Tl (SD1, SD2)

^{191}Tl (SD1, SD2)	^{192}Tl (SD1, SD2)	^{193}Tl (SD1, SD2)	^{194}Tl (SD1, SD2)	^{195}Tl (SD1, SD2)					
$I(h)$	EGOS	$I(h)$	EGOS	$I(h)$	EGOS	$I(h)$	EGOS		
14.5	1.060	16.0	0.7029	11.5	1.7366	14.0	1.4149	8.5	2.5223
15.5	1.5939	17.0	1.6346	12.5	1.6242	15.0	1.2557	9.5	2.0988
16.5	1.0336	18.0	0.7044	13.5	1.4757	16.0	1.2292	10.5	2.0111
17.5	1.3192	19.0	1.3679	14.5	1.3664	17.0	1.0951	11.5	1.7207
18.5	0.9554	20.0	0.6945	15.5	1.2871	18.0	1.0841	12.5	1.5714
19.5	1.1205	21.0	1.1878	16.5	1.1656	19.0	0.9683	13.5	1.5362
20.5	0.8729	22.0	0.6515	17.5	1.1462	20.0	0.9674	14.5	1.3884
21.5	0.9766	23.0	1.0037	18.5	1.0034	21.0	0.8658	15.5	1.2769
22.5	0.7871	24.0	0.4972	19.5	1.0381	22.0	0.8713	16.5	1.1798
23.5	0.8737	25.0	0.9403	20.5	0.8683	23.0	0.7811	17.5	1.14
24.5	0.6996	26.0	0.4277	21.5	0.9539	24.0	0.7907	18.5	1.01
25.5	0.8823	27.0	0.9237	22.5	0.753	25.0	0.7101	19.5	1.0365
26.5	0.6077	28.0	0.3299	23.5	0.8875	26.0	0.7219	20.5	0.8646
27.5	0.7558	29.0	0.9305	24.5	0.6526	27.0	0.6496	21.5	0.9572
28.5	0.5148	30.0	0.223	25.5	0.8347	28.0	0.6624	22.5	0.7648
29.5	0.729	31.0	0.9571	26.5	0.5634	29.0	0.5975	23.5	0.896
30.5	0.42	32.0	0.108	27.5	0.7927	30.0	0.6103	24.5	0.6371
31.5	0.7185	33.0	1.0008	28.5	0.4832	31.0	0.5521	25.5	0.8486
32.5	0.3235	34.0	-0.0146	29.5	0.7592	32.0	0.5641	26.5	0.5489
33.5	0.7216	35.0	0.7029	30.5	0.4101	33.0	0.5123	27.5	0.8121
34.5	0.2253	36.0	1.6346	31.5	0.7326	34.0	0.5224	28.5	0.4535
35.5	0.736	37.0		32.5	0.3426	35.0	0.4769	29.5	0.7844
36.5	0.1253	38.0		33.5	0.712	36.0	0.4857	30.5	0.3732
37.5	0.7601	39.0		34.5	0.2796	37.0	0.4453	31.5	0.7638
38.5	0.0236	40.0		35.5	0.6961	38.0	0.4518	32.5	0.2984
			36.5	0.2202	33.5	0.7492			
			37.5	0.6862	34.5	0.2282			
			38.5	0.162	35.5	0.7396			
			39.5	0.678	36.5	0.1615			
			40.5	0.108	37.5	0.7341			
			41.5	0.6729	38.5	0.0977			
			39.5	0.7323	40.5	0.0362			
			41.5	0.7338		42.5	-0.0233		
Figure (1). The kinematic $J^{(1)}$ and dynamic $J^{(2)}$ moment of inertia verses rotational frequency ω for the three pairs of identical bands in 193,194,195Tl.

Figure (2). The lowest dynamic moments of inertia $J^{(2)}$ for the yrst SDRB’S in $^{191-195}$Tl.
5. CONCLUSION

SDRB’s in Tl isotopes with mass number between 191 and 195 have been studied in the framework of exponential model with pairing attenuation. The existence of identical bands and EGOS(I) staggering behaviors are discussed. All the studied SD bands exhibit significant amounts of staggering. We have succeeded in making very good fit \(\gamma \)-ray transition energies \(E_{\gamma} \) by using a simulated search program.

REFERENCES

[1] P. T. Twin et al. Phys. Rev.Lett.57811 (1986)811
[2] E. F. Moore et al. Phys. Rev.Lett.63360 (1989)360
[3] National Nuclear Data Center (NNDC) Brookhaven National laboratory http.www.nndc.bnl.gov/chart.
[4] R.V.F. Jonseens and T.L. Khoo, Annu.Nucl. Part.Sci. 41 (1991)321
[5] L. Ducloux et al. phys. Rev. C53(1996)2701
[6] S. Bauneau et al, phys. Rev. C53R13 (1996) R9
[7] J.A. Becker et al, Nucl.Phys. A520 (1990).187C
[8] J.Y. Zeng et al. Phys.Rev. C44 (1991) R745
[9] J.E. Draper et al Phys. Rev. C42 (1992) R1791
[10] J.A. Becker et al, Phys. Rev. C42 (1992)889
[11] F. Xu and J. Hu, Phys. Rev. C49 (1994)1449
[12] A. M. Khalaf, M. Sirag and M. Taha, Turkish Journal of Physics 39 (2013)49
[13] A. M. Khalaf, M. Kotb and K. E. Abdelmageed, Journal Advances in Physics. 6(3) (2014)1251
[14] T. Byrski et al.Phys. Rev.Lett. 64 (1990)1650
[15] C. Baktash, W. Nazarewicz and R.Wyss, Nucl, Phys.A555(1993)375, Annu.Rev. Nucl. Part Sci.45 (1995)485
[16] W. Nazarewicz et al, Phys.Rev .64 (1990)1654
[17] I. Ragnarsson, Nucl, Phys.A520 (1990)76c
[18] A.M. Khalaf, and F.A. Altalhi, JAP.7 (2) (2015) 1414
[19] A. M. Khalaf, K. M Abdelmageed, and M. Sirag, Turkish Journal In Physics. 39 (2015)178

Figure (3). The \(\Delta I=1 \) staggering parameter EGOS(I) in (KeV) as a function of nuclear spin I for the Five pairs of signature partners in Tl nuclei.
STRUCTURE AND BEHAVIOR OF SUPERDEFORMED ROTATIONAL …

[20] I. Ahmed et al, Phys. Rev. C44 (1991)12042
[21] J.Y. Zeng et al. Phys. Rev. C65 (2001)024305
[22] A. M. Khalaf, et al. Nucl. Phys.Nucl.Phys. A (2020)121719
[23] M. Joyce, et al Phys.Rev. lett.71 (1993)2176
[24] J. Duprat et al Phys.Rev. lett. B341 (1994)6
[25] L. P. Farris, Phys.Rev. S516 (1995) R2288
[26] A. M. Khalaf, et al Nucl. Phys. A 988(2019)1
[27] S. Flibotte et al. Phys.Rev. lett.71(1993)4299
[28] B. Cederwall et al. Phys.Rev. lett.72 (1994) 3150
[29] I. Hamamoto and B. Mottelson, Phys. lett. B333 (1995)294
[30] I. M. Pavlichenkov and S. Flibotte. Phys. Rev.C51 (1995) R460
[31] A.O. Macchiavelli et al. Phys.Rev.C5 (1995) R1
[32] A. M. Khalaf, M. M. Taha and M. Kotb progress in Physics 4(2013)39
[33] A. M. Khalaf, T.M. Awwad and M.F. Elgabry International Journal in Physics Applied SCINCES (IJPAS)3(4) (2016)47
[34] M. D. Okasha, progresss in Physics 10(1) (2014) 41
[35] L.G. Moretto, Nucl.PhysA185 (1972)145
[36] C.W. Ma and J.O. Rasmussen, Phys.Rev.C 9 (1974)1083
[37] P.C. Sood and A.K. Jain, Phys.Rev.C 18 (1978) 1906
[38] S.M. Harris, Phys. Rev. lett.13 (1964)663 and Phys.Rev.138 (1965)509