Short communication

Can nitrogen isotope fractionation reveal ammonia oxidation responses to varying soil moisture?

Seok-In Yun 1, Hee-Myong Ro

Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea

ARTICLE INFO

Article history:
Received 17 December 2013
Received in revised form 11 April 2014
Accepted 21 April 2014
Available online 20 May 2014

Keywords:
Ammonia oxidation
Isotope fractionation factor
Nitrification
Soil moisture
Substrate diffusion

ABSTRACT

To interpret the response of ammonia oxidation to changing soil moisture, we conducted a batch aerobic incubation with a loam soil at different soil water potentials (SWP) from –1100 to –11 kPa, and calculated net nitrification rates and apparent isotope fractionation factors (ζ_{lip}). With increasing SWP, net nitrification rates increased from 2.3 to 9.8 mg N kg⁻¹ d⁻¹, while ζ_{lip} increased from 0.25 to 0.31 at field-capacity (SWP of –33 kPa) but decreased with increasing SWP above field capacity. The increased ζ_{lip} at field-capacity indicated that intracellular NH₄⁺ concentration increased as a result of NH₄⁺ supply exceeding NH₃ oxidation, while NH₃ oxidation exceeding NH₄⁺ supply above field-capacity resulted in both decreased intracellular NH₄⁺ concentration and ζ_{lip}. Our results suggest that NH₄⁺ diffusion contributes more sensitively to increasing SWP than NH₃ oxidation below field-capacity, while the reverse is the case above field-capacity.

Many attempts have been made to investigate the effect of environmental changes on the kinetics of the nitrification process, the biological oxidation of NH₄⁺/NH₃ into NO₂⁻ and then into NO₃⁻. Measurement of the concentrations or isotope compositions (¹⁵N/¹⁴N) of soil inorganic N pools is a good metric of nitrification kinetics (Stark and Firestone, 1995; Yun et al., 2011). Natural abundance of ¹⁵N/¹⁴N of soil inorganic N pool can provide integrated insight and/or specific evidence for naturally-occurring N transformation processes, because N isotope fluxes during N transformation imprint specific N isotope signals on soil N pools. Therefore, variations in δ¹⁵N of soil inorganic N during N transformation occur as a consequence of isotope fractionation that discriminates against the heavier isotope (¹⁵N) (Kerley and Jarvis, 1996). Apparent isotope fractionation factor (ζ_{lip}) for ammonia oxidation ranged from 1.015 to 1.035, was similar between ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) (Högberg, 1997; Santoro et al., 2011), and can vary with extracellular abiotic conditions through influencing intracellular NH₄⁺ level (Casciotti et al., 2003; Yun et al., 2011). Obviously, soil moisture can regulate intracellular NH₄⁺ concentration, because it affects extracellular NH₄⁺ transport by changing diffusivity of the soil and enzymatic NH₃ oxidation by changing intracellular enzyme activity (Stark and Firestone, 1995). Therefore, ζ_{lip} obtained during ammonia oxidation may reflect the integrated microbial response to changing soil moisture regime. Here, we periodically analyzed the time-course patterns of concentrations and δ¹⁵N of soil NH₄⁺ and NO₃⁻ during aerobic incubation to examine the effect of soil moisture on apparent N isotope fractionation (ζ_{lip}).

A loam soil (fine, silty, mixed, thermic family of Fluventic Dystropepts, USDA classification) was collected from an experimental field of the university farm of Seoul National University, Korea, air-dried, passed through a 2-mm sieve, and used for incubation experiment. Soil pH in distilled water was 6.1, and clay and carbon content was 22.9 and 7.6 g kg⁻¹, respectively. Concentrations and δ¹⁵N of soil N were 0.9 g N kg⁻¹ and +7.9% for total N, 2.7 mg N kg⁻¹ and +0.4% for NH₄⁺-N and 70.5 mg N kg⁻¹ and +29.0% for NO₃⁻-N, respectively. The soil had a moisture content of 0.24 kg kg⁻¹ at soil matric potential of –33 kPa. Six soil moisture treatments were set up in triplicate, and their respective soil water potentials (SWPs) were –1100, –300, –100, –33, –16, and –11 kPa. Each 25 g of soil was individually transferred into 100-ml polyethylene bottles, covered with a perforated cap, and pre-incubated at 27 ± 1 °C in the dark for two weeks. After pre-incubation, 1 ml of 3.00 g N l⁻¹ (NH₄)₂SO₄ solution was added to each bottle, mixed homogeneously, packed to give a soil bulk density of 1.2 Mg m⁻³, and then incubated at 27 ± 1 °C in the dark.
The SWP for each treatment was adjusted by adding distilled water to maintain their initial weights during incubation. Three bottles for each treatment were sampled periodically throughout the incubation. At sampling, NH$_4^+$ and NO$_3^-$ from soil were extracted with 100 ml of 2 M KCl solution. A 40-ml aliquot of each extract was added to a distillation flask and steam-distilled with MgO and Devarda’s alloy to determine NH$_4^+$ and NO$_3^-$ (Bremner and Keeney, 1966; Keeney and Nelson, 1982). The ammonia liberated during each steam-distillation was collected into a H$_2$SO$_4$ solution and titrated with a standard NaOH solution. After the titration, the solutions were adjusted to pH 2–3 using diluted H$_2$SO$_4$ and then evaporated to dryness. The dried samples were analyzed for 15N using an IsoPrime-EA stable isotope ratio mass spectrometer (Micromass, UK). The accuracy and reproducibility checked with reference materials (IAEA-N2, ammonium sulfate, +20.3‰) were better than 0.2‰. The 15N of samples were expressed in parts per thousand deviations from the atmospheric N$_2$ as described by the following equation: 15N ($\%$) = $(R_{sample}/R_{standard}) - 1) \times 1000$, where R_{sample} and $R_{standard}$ are the 15N(14N+15N) ratios of samples and the atmospheric N$_2$.

Net nitrification rates (NNR) and $\alpha_{s/p}$ were calculated using concentration and 15N of NH$_4^+$ observed at 40, 16, 12, 8, 8, and 10 days after incubation for soils at SWP of -1100, -300, -100, -33, -16, and -11 kPa, respectively. Rate constants (k, NNR) for a decrease in NH$_4^+$ concentration were obtained by using zero-order kinetics described as follows: $C = C_0 - kt$, where C_0 and C are the concentrations of substrate at time 0 and t, respectively. The $\alpha_{s/p}$ was calculated according to Mariotti et al. (1981) using the following equation:

$$\ln \left(\frac{10^{-3}\delta_s + 1}{10^{-3}\delta_s + 1}\right) = \left(\frac{1}{\alpha_{s/p}} - 1\right) \ln f$$

where f is the unreacted fraction of NH$_4^+$ – N at time t, and δ_s and δ_t are the 15N of NH$_4^+$ – N at time 0 and t, respectively. The $\alpha_{s/p}$ was calculated from the slope $(1/\alpha_{s/p} - 1)$ of the straight line on a natural logarithmic scale. Data were analyzed using the SAS software package (SAS Institute Inc., Cary, USA). NNR and $\alpha_{s/p}$ were compared among soil moisture treatments using the least significance differences test after a one-way ANOVA for the completely randomized design to assess the significance of any differences among the treatments at the significance level of $\alpha = 0.05$.

While NH$_4^+$ concentrations after adding (NH$_4$)$_2$SO$_4$ decreased rapidly from 120 to a level below 10 mg N kg$^{-1}$ within 30 days of incubation (DOI) for soils treated at SWP greater than or equal to -300 kPa, those of soils at SWP of -1100 kPa decreased gradually to 32 mg N kg$^{-1}$ during 40 DOI (Fig. 1a). On the other hand, NO$_3^-$ concentration rose rapidly from 70 to 200 mg N kg$^{-1}$ except for SWP of -1100 kPa, which increased gradually to 168 mg N kg$^{-1}$ during 40 DOI (Fig. 1b). The quasi-linearly decreasing patterns of NH$_4^+$ – N concentrations with time (Fig. 1a) were fitted well with zero-order kinetics; the determination coefficient mean is 0.981 (range 0.964–0.995, data not shown). The estimated NNR increased with increasing SWP, which was consistent with previous studies (Malhi and McGill, 1982; Stark and Firestone, 1995; Bateman and Baggs, 2005). Although field-capacity condition (SWP of -33 kPa) is optimal for nitrification, NNR increased steadily even above field-capacity (Fig. 2).

The 15N of NH$_4^+$ was close to 0_{atm} after the addition of (NH$_4$)$_2$SO$_4$ solution, peaked within 25 DOI for soils treated at SWP greater or equal to -300 kPa, and thereafter decreased abruptly below $+5.0_{\text{atm}}$ (Fig. 3a). In contrast, the 15N of NH$_4^+$ at SWP of -1100 kPa increased gradually to $+33.2_{\text{atm}}$. On the other hand, the patterns of temporal variations in 15N of NO$_3^-$ were opposite to those of NH$_4^+$ (Fig. 3b). Isotope fractionation factors ($\alpha_{s/p}$) increased from 1.025 to 1.031 with increasing SWP up to field-capacity, and decreased to 1.027 above field-capacity (Fig. 4). To our knowledge, there is no systematic investigation that addresses the question of how changing SWP affects $\alpha_{s/p}$ under unsaturated soil moisture condition. Meanwhile, a few studies have investigated the effect of changing SWP...
soil temperature on α_{NH_4} associated with denitrification (Mariotti et al., 1981) and nitrification (Yun et al., 2011). In both studies, α_{NH_4} p decreased with increasing reaction rates as soil temperature increased. In this study, however, α_{NH_4} p showed an inverted V-shaped pattern, while nitrification rate increased with increasing SWP, and this two-phase change pattern of α_{NH_4} p indicated a possibility that at least one more factor in addition to soil moisture is involved in the discrimination against 15N during nitrification. A possible mechanism to explain such variation in α_{NH_4} p under different SWP would be the balance between the intracellular NH$_4^+$ transport (supply) and NH$_3$ oxidation (consumption). Stark and Firestone (1995) observed that nitrification was inhibited mostly via substrate-limitation (supply) at SWP higher than -0.6 MPa, but otherwise by cell dehydration that can suppress enzyme activity (consumption). A disturbance in equilibrium between NH$_4^+$ supply and NH$_3$ consumption can alter intracellular NH$_4^+$ concentration, and this change may in turn lead to unique isotope fractionation. The changes in intracellular NH$_4^+$ concentration and α_{NH_4} can be explained by the ratio of final (C$_f$) to initial (C$_i$) intracellular NH$_4^+$ concentration (C$_f$/C$_i$) as postulated by Yun et al. (2011). Both NH$_4^+$ supply and NH$_3$ oxidation in microbial cells may increase with increasing SWP, resulting in the increase in NNR (Fig. 3). However, a greater increase in NH$_4^+$ supply than in NH$_3$ oxidation may increase C$_i$/C$_f$ ratio, leading to a greater apparent isotope fractionation; otherwise, α_{NH_4} p decreased by lowering C$_i$/C$_f$ ratio (approach of δ^{15}N of accumulated NO$_3^-$ to that of substrate NH$_4^+$). In this study, the increased α_{NH_4} p with increasing SWP to field-capacity suggests that a greater increase in NH$_4^+$ supply than the increase in NH$_3$ oxidation would cause a reduction of intracellular NH$_4^+$ level, resulting in a decrease in intracellular C$_i$/C$_f$ ratio. In contrast, the reason for the decreased α_{NH_4} p with increasing SWP above field-capacity would be a greater increase in NH$_3$ oxidation than an increase in NH$_4^+$ supply, causing a decrease in intracellular NH$_4^+$ level. A possible explanation for the decreased α_{NH_4} p observed in this moisture domain below saturation would be faster oxidation of intracellular NH$_4^+$, leading to a decrease in intracellular C$_i$/C$_f$ ratio. N mineralization may also affect α_{NH_4} p by changing NH$_4^+$ pool size and δ^{15}N, but its effect may be negligible because net N mineralization was low and α_{NH_4} p was assessed before the abrupt decrease in δ^{15}N of NH$_4^+$ (Yun et al., 2011). Furthermore, δ^{15}N of inorganic N, which was obtained from concentration and δ^{15}N of NH$_4^+$ and NO$_3^-$ using mass balance equation (Karamanos and Rennie, 1981), varied little during the assessment, less than 1%, (data not shown), and so the effect of mineralization on α_{NH_4} p would be little.

Our results showed that NNR increased with increasing SWP, while α_{NH_4} p increased up to field-capacity but decreased above this moisture level. This finding indicates the sensitivity of microbial NH$_3$ oxidation and the availability of NH$_4^+$ to changing soil moisture regimes, affecting intracellular NH$_4^+$ concentrations that vary depending on the balance between NH$_4^+$ transport and enzymatic oxidation. Despite the lack of direct information supporting the response mechanisms suggested in this study, the differences in α_{NH_4} p under different SWP indicate that α_{NH_4} p might be a useful tool to qualitatively assess how changing soil moisture regimes affect nitrification at cellular level. However, it should be noted that further investigations or formulation on the intracellular NH$_4^+$ and the associated α_{NH_4} p at the cellular level are required to explain how the relationship between NH$_4^+$ transport and enzymatic oxidation determines intracellular NH$_4^+$ concentrations. In addition, our findings should be extrapolated to a wide range of soil types to better understand the mechanism and to get more general notions.

Acknowledgments

The Editor and two anonymous reviewers provided helpful comments and criticism that improved the manuscript. The authors also acknowledged Dr. Sang-Mo Lee of the NICEM, Seoul National University for helping the use of stable isotope ratio...
mass spectrometer, and Mr. Jae-Min Kim and Ms. Min-Jin Lee for their laboratory assistance in N isotope analysis. This research was funded not only by the Brain Korea 21 Program, but also by the support of “Basic Core Technology Development Program through the National Research Foundation (Project No: NRF-C1ABA001-2011-0021063)” and “Basic Science Research Program through the National Research Foundation (Project No. 2012R1A1A043203)” of the Ministry of Education, Science and Technology in Korea.

References

Bateman, E.J., Baggs, E.M., 2005. Contributions of nitrification and denitrification to N₂O emissions from soils at different water-filled pore space. Biology and Fertility of Soils 41, 379–388.

Bremner, J.M., Keeney, D.R., 1966. Determination and isotope-ratio analysis of different forms of nitrogen in soils: 3. Exchangeable ammonium, nitrate, and nitrite by extraction-distillation methods. Soil Science Society of America Proceedings 30, 577–582.

Bremner, J.M., Keeney, D.R., 1966. Determination and isotope-ratio analysis of different forms of nitrogen in soils: 3. Exchangeable ammonium, nitrate, and nitrite by extraction-distillation methods. Soil Science Society of America Proceedings 30, 577–582.

Casciotti, K.L., Sigman, D.M., Ward, B.B., 2003. Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria. Geomicrobiology Journal 20, 335–353.

Karamanos, R.E., Rennie, 1981. The isotope composition of residual fertilizer nitrogen in soil columns. Soil Science Society of America Journal 45, 316–321.

Keeney, D.R., Nelson, D.W., 1982. Nitrogen-inorganic forms. In: Page, A.L. (Ed.), Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. ASA and SSSA, Madison, pp. 643–698.

Keeney, D.R., Nelson, D.W., 1982. Nitrogen-inorganic forms. In: Page, A.L. (Ed.), Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. ASA and SSSA, Madison, pp. 643–698.

Kerley, S.J., Jarvis, S.C., 1996. Preliminary studies of the impact of excreted N on cycling and uptake of N in pasture systems using natural abundance stable isotope discrimination. Plant and Soil 178, 287–294.

Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., Tardieux, P., 1981. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62, 413–430.

Stark, J.M., Firestone, M.K., 1995. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied and Environmental Microbiology 61, 218–221.

Yun, S.I., Ro, H.M., Choi, W.J., Han, G.H., 2011. Interpreting the temperature-induced response of ammonia oxidizing microorganisms in soil using nitrogen isotope fractionation. Journal of Soils and Sediments 11, 1253–1261.