Gravitational wave and electroweak baryogenesis with two Higgs doublet models

Ruiyu Zhou1 and Ligong Bian*2,1

1School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
2Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, P. R. China

(Dated: April 19, 2022)

We study stochastic gravitational wave production and baryon number generation at electroweak phase transition with the two Higgs doublet models. The produced stochastic gravitational wave during the strongly first-order phase transition can be probed by future space-based interferometers. The nonlocal electroweak baryogenesis cannot address the observed Baryon asymmetry of the Universe successfully in the strongly first-order phase transition parameter spaces due to the CP violation phase is severely bounded by the electron electric dipole moment measurement ACMEII.

INTRODUCTION

The Baryon asymmetry of the Universe is one of the fundamental and unsolved problems in particle physics and cosmology. The electroweak baryogenesis (EWB), producing baryon asymmetry at the electroweak phase transition, is one of the most popular mechanism to account for the Baryon asymmetry of the Universe due to potentially testability in future colliders and electric dipole moment measurements [1, 2]. Recently, the gravitational wave study raises people’s growing interest after the observation of the binary black hole merger [3], and the approval of the space-based detector LISA [4]. The observation of a stochastic gravitational wave background produced at first-order phase transitions is one promising target of LISA [5], since it can certainly provide important information on cosmology and behind high-energy physics, thus provide a novel opportunity to probe new physics beyond the standard model [6, 7].

The CP-violation beyond the standard model, as one crucial ingredient to address the BAU puzzle within EWB, can be tested by the high precision electric dipole moment (EDM) measurements [1]. The ACME further improved the sensitivity to the CP violation through the measurement of electron EDM [8], which ruled out a lot new physics models addressing BAU with EWB [9] [74]. The conventionally adopt EWB mechanism with chiral transitions [22], where the type-II 2HDM suffers more server experimental constraints (especially the measurement of $B \rightarrow X_s \gamma$) in comparison with the type-I 2HDM scenario. Therefore, there are more parameter spaces in type-I 2HDM that, there is more chance to achieve bubble nucleation situation, we adopt the first-order EWP. To estimate the bubble nucleation situation, we adopt the first-order EWPT points with $v_c/T_c > 1$ in both type-I and type-II 2HDM.

Our results are shown in Fig. 1. The figure depicts that, there is more chance to achieve bubble nucleation with a relatively large phase transition strength in type-I 2HDM. The tendency of the figure reflects the electroweak precision bounds and the alignment assumptions [22], where a strong EWPT can be obtain in parameter spaces with large mass splitting, which is consistent with findings of Refs. [20] [22] [24]. As in previous studies, in this work we adopt the thermal field theory of 2HDM around electroweak scale and focus on EWPT. It should be note that in some parameter spaces of strong
We define inside the electroweak vacuum bubble (broken phase) which states that the electroweak sphaleron process of baryon number preservation criterion (BNPC) [1, 25], phase transition condition coming from the requirement pole beyond the electroweak scale.

quartic Higgs couplings which may suffer from Landau scenario.

late the electroweak sphaleron energy \(E \) cross-over standard model electroweak numerical lattice simulation of the sphaleron rate at the comparable with the uncertainty coming from the nu-
to the fluctuation determinant uncertainty [26], which is
The numerical range in the right hand side corresponds \(E \) evaluation after solving the bounce at the bubble nucle-
both parameters \(\alpha, \beta, H_n \) are evaluated after solving the bounce at the bubble nucleation temperature \(T_n \) [31, 32]. We calculate the electroweak sphaleron energy \(E_{sph}(T) \) with the approach given in Appendix.

In Fig. 2 we present the relation among the electroweak sphaleron energy \(E_{sph}(T) \), the phase transition strength \(v(T)/T \), and the quantity of \(PT_{sph} \) inside the vacuum bubble. With the increase of the phase transition strength, the electroweak sphaleron energy at the nucleation temperature is found to close to the SM scenario \((E^{SM}_{sph} \sim 1.91 \times 4\pi v/g) \), where one have a large \(PT_{sph} \) which can sufficiently quench the electroweak sphaleron process inside the vacuum bubble and therefore keep the net baryon numbers generated at the EWPT. As will be studied in the following, one may have a strong gravitational wave signal that can be detected at LISA for a large \(PT_{sph} \), meaning that the gravitational wave may serve as a test of parameter spaces for the EWB [78].

FIG. 1: The phase transition strength \(v_n/T_n \) at nucleation temperature \(T_n \) versus the mass difference \(m_H - m_A (m_{h^{\pm}} - m_A) \). The left (right) panel shows the type-I (type-II) 2HDM scenario.

FIG. 2: The \(PT_{sph} \) as a function of the phase transition strength \(v_n/T_n \) and the electroweak sphaleron energy inside the broken-phase bubble. The left (right) panel shows the type-I (type-II) 2HDM scenario.

GRAVITATIONAL WAVE

To predict the gravitational wave spectrum from the first-order EWPT, we first calculate the phase transition strength as \(\alpha \equiv (\delta_s(T_s) - \delta_b(T_b))/3\omega_s \), with \(\delta \equiv e - p/c_s^2 \) [31, 32], where \(\{e, p, \omega, c_s\} \) is \{the energy density, the pressure, the enthalpy density, and the sound speed\} respectively. The subscripts “s, b” denote states inside/outside the bubbles. With the help of the free energy density, the phase transition strength recast the form of [33]:

\[
\alpha = \frac{1}{3\omega_s}((1 + 1/c_s^2)\Delta V_{eff} - T (dV_{eff}/dT))|_{T= T_n},
\]

where the \(\Delta V_{eff} \) is the thermal effective potential difference between the symmetric and broken phase. The other crucial parameter for the calculation of gravitational wave spectrum is \(\beta \), which characterizes the inverse time duration of the phase transition and is defined as

\[
\beta/H_n = T d(S_3(T)/T)|_{T= T_n},
\]

Where, \(H_n \) is the Hubble constant at the nucleation temperature \(T_n \). Both the two parameters (\(\alpha \) and \(\beta/H_n \)) are evaluated after solving the bounce at the bubble nucleation temperature \(T_n \) [31, 36].

In Fig.3, we present the three crucial parameters for the gravitational wave predictions from electroweak phase transition with the 2HDMs, i.e., \((\alpha, \beta/H_n, T_n) \). The two plots depict that: 1) With the decrease of the nucleation temperature \(T_n \), one have decrease of \(\beta/H_n \) and increase of \(\alpha \), where one may have a large magnitude of gravitational wave signal from the electroweak phase transition; 2) In comparison with type-II 2HDM, type-I 2HDM allows a larger possibility to achieve a large \(\alpha \) and low \(\beta/H_n \) with low bubble nucleation temperature.

Another crucial parameter for the gravitational wave prediction from the phase transition is the wall velocity. We checked the Bodecker-Moore criterion [37] and found that there is no runaway of the bubbles for these strongly
FIG. 3: The GW parameters of T_n, β/H_n and α in the type-I (left) and type-II (right) 2HDMs.

first-order EWPT points. Generally, the detectability of the gravitational waves from the phase transition at LISA requires a relativistic or ultra-relativistic bubble walls\cite{10}. By taking the wall velocity as a free parameter, we calculate the gravitational wave prediction from the electroweak phase transition in 2HDMs\cite{79}. Here, we consider the sound waves in the plasma \cite{38,39} and the magnetohydrodynamic turbulence (MHD) \cite{38,39} that are believed to dominate the gravitational wave production during the phase transition, with the energy density spectrum from the sound waves simulated by the sound-shell model \cite{39}.

Our gravitational wave predictions for benchmarks given by the Table. I are shown in Fig. 4. Where the sound wave dominates all the gravitational wave sources and the wall velocity determines the amplitude and the peak of the sound wave spectrum. A lower wall velocity leads to a lower magnitude and a lower frequency of the peak of the gravitational wave spectrum, while it is necessary for the nonlocal EWB. The wall width would be thickness for the relevant nonlocal baryogenesis, and supercooling case with large α embracing thin wall does not happen in this study.

![Gravitational waves from the strong electroweak phase transition for benchmarks shown in Table. I](image)

FIG. 4: Gravitational waves from the strong electroweak phase transition for benchmarks shown in Table. I. The solid (dashed) line depicts the $v_w = 0$ $1(1)$ scenarios.

COMMENT ON ELECTROWEAK BARYOGENESIS

We now study the realization of EWB at the EWPT. We focus on the nonlocal EWB situation under the current EDM experiments. During a strongly first-order EWPT, the effective top quark mass embraces a space-time dependent phase varying across the slow bubble wall\cite{80} and thus leads to a CPV source term \cite{40,41}.

$$S_t(z) \approx 3 \frac{3}{2\pi^2} \left(\frac{m_t}{v \sin \beta} \right)^2 v_T(z) \theta'(z) v_w T.$$ (5)

Which relies on the bubble wall velocity and wall width calculation based on microphysics and hydrodynamics, and the VEV's phase across the wall $\Delta \theta$ which depends on phase transition dynamics when the CP violation shows up. The CPV phase $\Delta \theta$ is supposed to have a similar size with the zero temperature phase ξ \cite{18,42}, i.e., $\Delta \theta \approx \alpha_b \sim 0.1$ is required to ensure enough BAU generation \cite{43}. The current upper limit set by the current electron EDM measurement of ACME II is: $|d_e| < 1.1 \times 10^{-29}$ e cm at 90% confidence level \cite{8}. To evade the server bounds, the cancellation mechanism \cite{43,44} is necessary. On the other hand, a strong phase transition prefers a large mass splitting between the heavy CP-even Higgs and the heavy CP-odd Higgs as shown above, there wouldn’t be cancellation driven by the mixing of the CP-odd and CP-even heavy Higgses due to the large mass splitting \cite{45}. Therefore, the CP-violation bounds from the current electron EDM measurement may extremely reduce the possibility to achieve the correct BAU with the conventionally and extensively studied nonlocal
Considering gauge invariant Barr-Zee diagram contributions \cite{47}, we estimate the electron EDM by adopting the formula collected in Ref. \[44 \text{--} 48\] for the benchmarks in Table 1 with the CP violation amplitude characterized by \(\alpha_b\). Our estimation turns that \(\alpha_b \leq 10^{-5}\), which is far small to yield the correct BAU with the nonlocal EWB.

CONCLUDING REMARK

Utilizing 2HDM, we checked the baryon number preservation criterion and found that a strong phase transition required by a strong stochastic gravitational wave corresponds to a sufficient quench of the electroweak sphaleron process as needed by the nonlocal EWB. We found that, in the type-I and type-II 2HDMs, the sufficient strong EWPT parameter spaces can be probed by the stochastic gravitational wave search conducted by the projected space mission LISA, TianQin \[51\], Taiji \[52\], Big Bang Observer (BBO)\[53\], and DECihertz Interferometer Gravitational wave Observatory (DECIGO)\[54\]. For these parameter spaces, the large mass-splitting among heavy Higgses are required by the BNPC. The CP violation allowed by the eEDM experiment is too small to yield the correct BAU with nonlocal EWB.

The exact calculation of bubble wall velocity with microphysics and hydrodynamics and the lattice simulation of the electroweak sphaleron rate in the symmetric and broken phase during the phase transition are the two crucial ingredients to settle down if the observed BAU can be explained with the EWB.

ACKNOWLEDGEMENT

Ligong Bian was supported by the National Natural Science Foundation of China under the grants Nos.12075041, 12047564, and the Fundamental Research Funds for the Central Universities of China (No. 2021CDJQY-011 and No. 2020CDJQY-Z003), and Chongqing Natural Science Foundation (Grants No.cstc2020jcyj-msxmX0814). We are grateful to Guy David Moore, Michael J. Ramsey-Musolf, Mark Harmsdsh, Archil Kobakhidze, David E. Morrissey, Antonio Riotto, Michael Dine, Thomas Konstandin, Mark Trodden, Lauri Nieni, Kari Rummukainen, Jonathan Kozaczuk, Wouter Dekens, Xucheng Gan, Jiang-Hao Yu and Huai-Ke Guo for conversation and enlightenment discussions.

Electroweak sphaleron

The Electroweak sphaleron in the CP-violation 2HDM at zero temperature has also been studied previous at zero temperature, see Ref \[55, 56\]. Since the CP-violation operators have null contributions to the sphaleron energy \[29\] and also phase transition dynamics as previous studies, we therefore perform the Electroweak sphaleron calculations inside the vacuum bubble with CP-conserving 2HDM. In this study, we employ the spherically symmetric ansatz and conduct the Electroweak sphaleron energy closely following the approach given in Ref. \[57, 58\]. The configuration space are spanned by the following functions:

\[
A_i(r, \theta, \phi) = -\frac{i}{g} f(r) \frac{\partial}{\partial \theta} U(\theta, \phi) (U(\theta, \phi))^{-1},
\]

\[
\Phi_1(r, \theta, \phi) = \frac{\nu_1}{\sqrt{2}} h_1(r) U(\theta, \phi) \left(\begin{array}{c} 0 \\ 1 \end{array} \right),
\]

\[
\Phi_2(r, \theta, \phi) = \frac{\nu_2}{\sqrt{2}} h_2(r) U(\theta, \phi) \left(\begin{array}{c} 0 \\ 1 \end{array} \right),
\]

where \(A_i\) are SU(2) gauge fields, \(A_i = \frac{1}{2} A_i^r r^a, v = \sqrt{v_1^2 + v_2^2}\), and \(U(\theta, \phi)\) is defined as

\[
U(\theta, \phi) = \left(\begin{array}{cc} \cos \theta & e^{i\phi} \sin \theta \\ -e^{-i\phi} \sin \theta & \cos \theta \end{array} \right).
\]

Adopting the \(A_0 = 0\) gauge, the Electroweak sphaleron energy function can be obtained as:

\[
E_{\text{sph}}[f, h_1, h_2] = \frac{4\pi}{g} \int_0^\infty d\xi \left[4 \left(\frac{d\nu_1}{d\xi} \right)^2 + \frac{\nu_1^2}{4} (f - f^2) \right.
\]

\[
+ \frac{\xi^2}{2} \left(\frac{dh_1}{d\xi} \right)^2 + \frac{\xi^2}{2} \left(\frac{dh_2}{d\xi} \right)^2
\]

\[
+ \left(\frac{\nu_1^2}{2} h_1^2 + \frac{\nu_2^2}{2} h_2^2 \right) (1 - f)^2
\]

\[
\left. \left. + \frac{\xi^2}{g^2 v_1 v_2} V(h_1, h_2) \right] \right),
\]

where \(\xi = g\nu\). From Eq. (10), the equations of motion are found to be

\[
\frac{d^2 f}{d\xi^2} = \frac{2}{\xi^2} f(1 - f)(1 - 2f) - \left(\frac{v_1^2}{4v^2} h_1^2 + \frac{v_2^2}{4v^2} h_2^2 \right) (1 - f),
\]

\[
\frac{d}{d\xi} \left(\frac{\xi^2 dh_1}{d\xi} \right) = 2h_1(1 - f)^2 + \frac{\xi^2}{g^2 v_1 v_2} \frac{\partial V}{\partial h_1},
\]

\[
\frac{d}{d\xi} \left(\frac{\xi^2 dh_2}{d\xi} \right) = 2h_2(1 - f)^2 + \frac{\xi^2}{g^2 v_1 v_2} \frac{\partial V}{\partial h_2},
\]

with following boundary conditions should be satisfied:

\[
\lim_{\xi \to 0} f(\xi) = 0, \lim_{\xi \to 0} h_1(\xi) = 0, \lim_{\xi \to 0} h_2(\xi) = 0,
\]

\[
\lim_{\xi \to \infty} f(\xi) = 1, \lim_{\xi \to \infty} h_1(\xi) = 1, \lim_{\xi \to \infty} h_2(\xi) = 1.
\]

The Electroweak sphaleron energy at finite temperature during the phase transition process \(E_{\text{sph}}(T)\) can be obtained with the replacement of the prefactor of \(\frac{4\pi}{g}\) of
In Fig. 5, we show the Electroweak sphaleron energy as a function of temperature, with temperature $T \leq T_c$. It demonstrates that the Electroweak sphaleron process would be highly suppressed in low temperatures after symmetry broken.

![Graph showing Electroweak sphaleron energy as a function of temperature](image)

FIG. 5: The Electroweak sphaleron energy evolution with the temperature drops, these benchmark points are from Table I in the main text.

1 Electronic address: lgbycl@cqu.edu.cn

[1] D. E. Morrissey and M. J. Ramsey-Musolf, “Electroweak baryogenesis,” *New J. Phys.* **14** (2012) 125003. [arXiv:1206.2942 [hep-ph]]

[2] N. Arkani-Hamed, T. Han, M. Mangano, and L.-T. Wang, “Physics opportunities of a 100 TeV proton?proton collider,” *Phys. Rept.* **652** (2016) 1–49. [arXiv:1511.06495 [hep-ph]]

[3] LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” *Phys. Rev. Lett.* **116** no. 6, (2016) 061102. [arXiv:1602.03837 [gr-qc]]

[4] LISA Collaboration, P. Amaro-Seoane et al., “Laser Interferometer Space Antenna,” [arXiv:1702.00786 [astro-ph.IM]]

[5] A. Klein et al., “Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions,” *JCAP* **1604** no. 04, (2016) 001. [arXiv:1512.06239 [astro-ph.CO]]

[6] C. Caprini et al., “Detecting gravitational waves from cosmological phase transitions with LISA: an update,” [arXiv:1910.13125 [astro-ph.CO]]

[7] L. Fromme, S. J. Huber, and M. Seniuch, “Baryogenesis in the two-Higgs doublet model,” *JHEP* **11** (2006) 038. [arXiv:hep-ph/0605242 [hep-ph]]

[8] S. J. Huber, M. Pospelov, and A. Ritz, “Electric dipole moment constraints on minimal electroweak baryogenesis,” *Phys. Rev.* **D75** (2007) 036006. [arXiv:hep-ph/0610003 [hep-ph]]

[9] G. C. Dorsch, S. J. Huber, and J. M. No, “A strong electroweak phase transition in the 2HDM after LHC8,” *JHEP* **10** (2013) 029. [arXiv:1305.6610 [hep-ph]]

[10] J. O. Andersen, T. Gorda, M. Muhlleitner, J. Wittbrodt, and A. Wlotzka, “Strong First Order Electroweak Phase Transition in the CP-Conserving 2HDM Revisited,” *JHEP* **02** (2011) 121. [arXiv:1006.4479 [hep-ph]]

[11] C. Caprini et al., “Baryogenesis at the electroweak scale,” *Nucl. Phys.* **B562** no. 2, (2008) 253–279. [arXiv:0711.1824 [hep-ph]]
[27] R. Zhou, L. Bian, and H.-K. Guo, “Probing the Electroweak Sphaleron with Gravitational Waves,” arXiv:1910.00234 [hep-ph].

[28] M. Quiros, “Finite temperature field theory and phase transitions,” in Proceedings, Summer School in High-energy physics and cosmology: Trieste, Italy, June 29-July 17, 1998, pp. 187–259. 1999. arXiv:hep-ph/9901312 [hep-ph].

[29] X. Gan, A. J. Long, and L.-T. Wang, “Electroweak sphaleron with dimension-six operators,” Phys. Rev. D96 no. 11, (2017) 115018 arXiv:1708.03061 [hep-ph].

[30] M. D’Onofrio, K. Rummukainen, and A. Tranberg, “Sphaleron Rate in the Minimal Standard Model,” Phys. Rev. Lett. 113 no. 14, (2014) 141602 arXiv:1404.3865 [hep-ph].

[31] F. Giese, T. Konstandin, and J. van de Vis, “Model-independent energy budget of cosmological first-order phase transitions—A sound argument to go beyond the bag model,” JCAP 07 no. 07, (2020) 057 arXiv:2004.06995 [astro-ph.CO].

[32] F. Giese, T. Konstandin, K. Schmitz, and J. van de Vis, “Model-independent energy budget for LISA,” JCAP 01 (2021) 072 arXiv:2010.09744 [astro-ph.CO].

[33] H.-K. Guo, K. Sinha, D. Vaghe, and G. White, “The benefits of diligence: how precise are predicted gravitational wave spectra in models with phase transitions?”, JHEP 06 (2021) 164 arXiv:2103.06933 [hep-ph].

[34] A. Masoumi, K. D. Olum, and J. M. Wachter, “Approximating tunneling rates in multi-dimensional field spaces,” JCAP 1710 no. 10, (2017) 022 arXiv:1702.00356 [gr-qc].

[35] C. L. Wainwright, “CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields,” Comput. Phys. Commun. 183 (2012) 2006–2013 arXiv:1109.4189 [hep-ph].

[36] P. Athron, C. Balazs, M. Bardsley, A. Fowlie, D. Harries, and G. White, “BubbleProfiler: finding the field profile and action for cosmological phase transitions,” Comput. Phys. Commun. 244 (2019) 448–468 arXiv:1901.03714 [hep-ph].

[37] D. Bodeker and G. D. Moore, “Can electroweak bubble walls run away?,” JCAP 0905 (2009) 009 arXiv:0903.4099 [hep-ph].

[38] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, “Gravitational waves from the sound of a first order phase transition,” Phys. Rev. Lett. 112 (2014) 041301 arXiv:1304.2433 [hep-ph].

[39] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, “Numerical simulations of acoustically generated gravitational waves at a first order phase transition,” Phys. Rev. D92 no. 12, (2015) 123009 arXiv:1504.03291 [astro-ph.CO].

[40] P. Huet and A. E. Nelson, “Electroweak baryogenesis in supersymmetric models,” Phys. Rev. D53 (1996) 4578–4597 arXiv:hep-ph/9506477 [hep-ph].

[41] C. Lee, V. Cirigliano, and M. J. Ramsey-Musolf, “Resonant relaxation in electroweak baryogenesis,” Phys. Rev. D71 (2005) 075010 arXiv:hep-ph/0412354 [hep-ph].

[42] J. M. Cline, K. Kainulainen, and M. Trott, “Electroweak Baryogenesis in Two Higgs Doublet Models and B meson anomalies,” JHEP 11 (2011) 089 arXiv:1107.3559 [hep-ph].

[43] J. Shu and Y. Zhang, “Impact of a CP Violating Higgs Sector: From LHC to Baryogenesis,” Phys. Rev. Lett. 111 no. 9, (2013) 091801 arXiv:1304.0773 [hep-ph].

[44] L. Bian, T. Liu, and J. Shu, “Cancellations Between Two-Loop Contributions to the Electron Electric Dipole Moment with a CP-Violating Higgs Sector,” Phys. Rev. Lett. 115 (2015) 021801 arXiv:1411.6695 [hep-ph].

[45] L. Bian and N. Chen, “Cancellation mechanism in the predictions of electric dipole moments,” Phys. Rev. D95 no. 11, (2017) 115029 arXiv:1608.07975 [hep-ph].

[46] G. C. Dorsch, S. J. Huber, T. Konstandin, and J. M. No, “A Second Higgs Doublet in the Early Universe: Baryogenesis and Gravitational Waves,” JCAP 1705 no. 05, (2017) 052 arXiv:1611.05874 [hep-ph].

[47] T. Abe, J. Hisano, T. Kitahara, and K. Tobio, “Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models,” JHEP 01 (2014) 106 arXiv:1311.4704 [hep-ph] [Erratum: JHEP 04, 161 (2016)].

[48] L. Bian and N. Chen, “Higgs pair productions in the CP-violating two-Higgs-doublet model,” JHEP 09 (2016) 069 arXiv:1607.02703 [hep-ph].

[49] S. Ione, M. J. Ramsey-Musolf, and Y. Zhang, “CP-violating phenomenology of flavor conserving two Higgs doublet models,” Phys. Rev. D95 no. 9, (2017) 095008 arXiv:1706.09425 [hep-ph].

[50] TianQin Collaboration, J. Luo et al., “TianQin: a space-borne gravitational wave detector,” Class. Quant. Grav. 33 no. 3, (2016) 035010 arXiv:1512.02076 [astro-ph.IM].

[51] W.-H. Ruan, Z.-K. Guo, R.-G. Cai, and Y.-Z. Zhang, “Taiji Program: Gravitational-Wave Sources,” arXiv:1807.09495 [gr-qc].

[52] K. Yagi and N. Seto, “Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries,” Phys. Rev. D83 (2011) 044011 arXiv:1101.3940 [astro-ph.CO] [Erratum: Phys. Rev.D95,no.10,109901(2017)].

[53] S. Kawamura et al., “The Japanese space gravitational wave antenna: DECIGO,” Class. Quant. Grav. 28 (2011) 094011.

[54] J. Grant and M. Hindmarsh, “Sphalerons in two Higgs doublet theories,” Phys. Rev. D64 (2001) 016002 arXiv:hep-ph/0101120 [hep-ph].

[55] B. M. Kastening, R. D. Peccei, and X. Zhang, “Sphalerons in the two doublet Higgs model,” Phys. Lett. B266 (1991) 413–418.

[56] F. R. Klinkhamer and N. S. Manton, “A Saddle Point Solution in the Weinberg-Salam Theory,” Phys. Rev. D28 (1983) 2212.

[57] N. S. Manton, “Topology in the Weinberg-Salam Theory,” Phys. Rev. D89 (2014) 025022.

[58] M. Jiang, L. Bian, W. Huang, and J. Shu, “Impact of a complex singlet: Electroweak baryogenesis and dark matter,” Phys. Rev. D93 no. 6, (2016) 065032 arXiv:1502.07574 [hep-ph].

[59] V. Vaskonen, “Electroweak baryogenesis and...
gravitational waves from a real scalar singlet," \textit{Phys. Rev.} \textbf{D95} no. 12, (2017) 123515, \texttt{arXiv:1611.02073} [hep-ph]

[61] W. Chao, “CP Violation at the Finite Temperature,” \textit{Phys. Lett.} \textbf{B796} (2019) 102–106, \texttt{arXiv:1706.01041} [hep-ph]

[62] S. Bruggisser, T. Konstandin, and G. Servant, “CP-violation for Electroweak Baryogenesis from Dynamical CKM Matrix,” \textit{JCAP} \textbf{1711} no. 11, (2017) 034, \texttt{arXiv:1706.08534} [hep-ph]

[63] F. P. Huang, Z. Qian, and M. Zhang, “Exploring dynamical CP violation induced baryogenesis by gravitational waves and colliders,” \textit{Phys. Rev.} \textbf{D98} no. 1, (2018) 015014, \texttt{arXiv:1804.06813} [hep-ph]

[64] S. A. R. Ellis, S. Ipek, and G. White, “Electroweak Baryogenesis from Temperature-Varying Couplings,” \textit{JHEP} \textbf{08} (2019) 002, \texttt{arXiv:1905.11994} [hep-ph]

[65] X. Wang, F. P. Huang, and X. Zhang, “Gravitational wave and collider signals in complex two-Higgs doublet model with dynamical CP-violation at finite temperature,” \textit{Phys. Rev.} \textbf{D101} no. 1, (2020) 015015, \texttt{arXiv:1909.02978} [hep-ph]

[66] P. John and M. G. Schmidt, “Do stops slow down electroweak bubble walls?,” \textit{Nucl. Phys.} \textbf{B598} (2001) 291–305, \texttt{arXiv:hep-ph/0002050} [hep-ph] [Erratum: Nucl. Phys.\textbf{B648},449(2003)].

[67] J. M. Clune and K. Kainulainen, “Electroweak baryogenesis at high wall velocities,” \texttt{arXiv:2001.00568} [hep-ph]

[68] G. D. Moore and K. Rummukainen, “Electroweak bubble nucleation, nonperturbatively,” \textit{Phys. Rev.} \textbf{D63} (2001) 045002, \texttt{arXiv:hep-ph/0009132} [hep-ph]

[69] G. D. Moore, “Measuring the broken phase sphaleron rate nonperturbatively.” \textit{Phys. Rev.} \textbf{D59} (1999) 014503, \texttt{arXiv:hep-ph/9805264} [hep-ph]

[70] E. Hall, T. Konstandin, R. McGehee, H. Murayama, and G. Servant, “Baryogenesis From a Dark First-Order Phase Transition,” \texttt{arXiv:1910.08068} [hep-ph]

[71] E. Hall, T. Konstandin, R. McGehee, and H. Murayama, “Asymmetric Matters from a Dark First-Order Phase Transition,” \texttt{arXiv:1911.12342} [hep-ph]

[72] T. Liu, M. J. Ramsey-Musolf, and J. Shu, “Electroweak Beautygenesis: From b \to s CP-violation to the Cosmic Baryon Asymmetry,” \textit{Phys. Rev. Lett.} \textbf{108} (2012) 221301, \texttt{arXiv:1109.4145} [hep-ph]

[73] K. Kainulainen, V. Keus, L. Niemi, K. Rummukainen, T. V. I. Tenkanen, and V. Vaskonen, “On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model,” \textit{JHEP} \textbf{06} (2019) 075, \texttt{arXiv:1904.01329} [hep-ph]

[74] The EDM measurements ruled out the nonlocal EWB with real or complex singlet models studied in Ref. \texttt{[59, 60]}, with the dynamical CP violation scenario is an exception \texttt{[61–65]}. We note that the wall velocity in the SM and MSSM has been estimated to be subsonic in Ref. \texttt{[10, 11, 66]}. See Ref. \texttt{[67]} for the case of two-step phase transition case, where EWB at high wall velocities has been studied.

[75] Here, we note that, taking into account the bubble nucleation dynamics, one have a much stronger bound on the BNPC, which could be $\Gamma < 10^{-3} \bar{H}$ \texttt{[88]}, and the duration of the phase transition can also alert the criteria given in Eq. \texttt{[23, 69]}. To settle down the prefactor of the Γ_{sph}, and therefore to lower the uncertainty of the criteria, lattice simulation of the Electroweak sphaleron inside the bubble is necessary. At present, the lattice simulation is not able to perform for the larger phase transition strength, and new method is required to cure the problem.

[76] This is consistent with the tree-level driven phase transition scenario \texttt{[27]}.

[77] See Ref. \texttt{[70, 71]} for the gravitational wave signals coming from a first order "electroweak" phase transition with 2HDM in the dark sector.

[78] As for the bottom quark scenario we refer to Ref \texttt{[72]}.

[79] Previous studies show that large scalar quartic couplings and narrow wall width is necessary for successful nonlocal EWB in the 2HDM, the lattice simulation is not valid anymore \texttt{[21, 22]} in the situation.