Evaluation of Different Control Practices on Damping off Disease of Tomato (Lycopersicon esculentum Mill.) Var. Novaday in Pots Condition

Ram Prawesh Prasad¹, Prawez Williams¹, Divyanshu Shekhar² and Amba Kumari³

¹Department of Plant Pathology & Nematology, Sam Higginbottom University of Agriculture, Technology and Sciences, Naini, Prayagraj, 211007, Uttar Pradesh, India
²KVK Jale Darbhanga-847302, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar-858125, India
³Department of Horticulture, KVK Jale, Darbhanga –Bihar-847302, (Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur -Bihar), India-858125

*Corresponding author

A Pots experiment was conducted for two years (2001-2002) to evaluate the response of different control practices on damping off disease of Tomato (Lycopersicon esculentum Mill.) var. Novaday in Pots condition during Ph.D (Plant Pathology) in the Department of Plant Protection, Allahabad Agricultural Institute – Deemed University, Allahabad. The observations recorded at successive stages of plant growth were statistically analyzed for interpretation of results. The effect of seed rates on incidence of damping-off was studied at three seed rates and found that the incidence of damping-off increased progressively with increase in the seed rates but dry neem leaves checked the decrease in disease incidence. The effect of different treatments on incidence of damping-off of seedlings was studied. Of these, soil application of Dry Neem Leaves showed better results in managing damping-off in pots condition.

A B S T R A C T

Introduction

Tomato (Lycopersicon esculentum Mill.) is one of the important sources among all the vegetables throughout the world. It originated in tropical America and cultivated for thousands of years in Mexico and Peru before invasion of the Europeans. Tomato is also popular vegetable crop of India and is a good source of vitamins A, B and C (Khoso, 1994) (1). Tomatoes are the major dietary source of the antioxidant lycopene; Lycopene is a carotenoid that is present in tomatoes, processed tomato products and other fruits.
It is one of the most potent antioxidants among dietary carotenoids. Dietary intake of tomatoes and tomato products containing lycopene has been shown to be associated with a decreased risk of chronic diseases, such as cancer and cardiovascular disease.

Serum and tissue lycopene levels have been found to be inversely related to the incidence of several types of cancer, including breast cancer and prostate cancer. Although the antioxidant properties of lycopene are thought to be primarily responsible for its beneficial effects, evidence is accumulating to suggest that other mechanisms may also be involved.

In this article we outline the possible mechanisms of action of lycopene and review the current understanding of its role in human health and disease prevention. Chronic diseases, including cancer and cardiovascular disease, are the main causes of death in the Western world. Along with genetic factors and age, lifestyle and diet are also considered important risk factors (2, 3).

About 50% of all cancers have been attributed to diet (4). The yield per hectare is low as compared to other parts of the country due to attack of several viral and soil borne diseases, that are responsible for damaging the quantity and quality of the crop every year.

Among the soil borne fungal diseases, damping-off of seedlings and wilt of adult plants are caused by several species of Fusarium, Pythium, Rhizoctonia and Verticillium (Kaprashvili, 1996; Lucas et al., 1997) (5) (6), and is widely distributed throughout the world.

Therefore we evaluated numbers of different seed rates & control practices for the management of damping off disease of tomato (*Lycopersicon esculentum* Mill.) var. Navoday” in pots condition.

Materials and Methods

The present investigation was conducted in the Department of Plant Protection, Allahabad Agricultural Institute – Deemed University, Allahabad During kharif season of 2001-2002 to evaluate the effectiveness of various seed rate and control practices against damping off disease of tomato .Three seed rate S1 (50 No. of seeds/ pot) S2 (40 No. of seeds/pot) & S3(30seeds/pot) and Seven treatments including control were tried in the experiment, 3 x 7 Factorial Randomized Block Design (R. B. D.) was adopted and the analysis of variance (ANOVA) technique was applied.

For drawing conclusion from the data, the calculated values were compared to the tabulated values at 5% level of significance (Fisher, 1955) (7). The research plots size 1mx1m tomato var. Navoday was planted during 27.06.2001 and 25.06.2002. Three seed rate and seven treatments including control were tested as fallow.

Seed rate

Seed rate	Description
S1	50 No. of seeds/pot
S2	40 No. of seeds/pot
S3	30 No. of seeds/pot

Treatments

Treatment	Description
T₀	Control
T₁	Thiram @ 250 g a.i. g/q seed treatments.
T₂	Bavistin (a.i. 50%) @ 1 k a.i./ha at the time of sowing0
T₃	Dithane Z-78- @ 0.25% a.i. at 15 and 25 DAS foliar application.
T₄	Dry neem leaves @ 600g/m²
T₅	*Beauveriabassiana*@4.0g/m²
T₆	Soil solarization used white polythene of thickness 50 um size (1.5m x1.5m).
Treatment combinations

S1T0	S2T0	S3T0
S1T1	S2T1	S3T1
S1T2	S2T2	S3T2
S1T3	S2T3	S3T3
S1T4	S2T4	S3T4
S1T5	S2T5	S3T5
S1T6	S2T6	S3T6

Maximum damping-off was observed in S1 (3.40) followed by S2 (3.28) and S3 (3.15) in year 2001. Year 2002 damping-off significantly differed amongst all the seed rates viz., S1 (50 seeds/pot), S2 (40 seeds/pot) and S3 (30 seeds/pot) from one another. Maximum damping-off was observed in S1 (2.44) followed by S2 (2.42) and S3 (2.33), respectively (Table 2 and Fig. 2). The general effect of seed rates of tomato was found to be significant in respect of disease incidence of damping-off.

The treatments and the interaction in respect of incidence of damping-off were significant. Disease incidence in treatments T4 (Dry Neem Leaves @ 600 g/m²), T1 (seed treatment with Thiram @ 250 g/q) and T6 (soil solarization) at seed rate of S1 (50 seeds/Pot) and S2 (40 seeds/pot) whereas incidence of damping-off in treatment T4 (0.00) and T1 (0.96) and S3 (1.17) only at seed rate of S3 (30 seeds/pot) was found significant when compared with different combinations at seed rate of S2 (40 seeds/pot) and S3 (30 seeds/pot). In year 2001 and 2002 disease incidence of damping-off in treatments T4 (Dry Neem Leaves @ 600 g/m²) and T1 (seed treatment by Thiram @ 250 g/q) and T6 (soil Solarization) at the seed rate of S3 (30 seeds/Pot) were found significant when compared with other combination at the seed rate.

Results and Discussion

Effect of different treatment on incidence of damping off disease on differed seed rates viz., S1 (50 seeds/pot), S2 (40 seeds/pot) and S3 (30 seeds/pot). Maximum damping-off was observed after 15 days of sowing in S1 (2.14), S2 (1.83) and S3 (1.59), in year 2001 and year 2002 maximum damping-off was observed in S1 (2.33) followed by S2 (2.75) and S3 (1.59), respectively (Table 1 and Fig.1). Effect of different seed rates on incidence of damping of disease in pots at 20 days after sowing damping-off significantly differed among all the seed rates viz., S1 (50 seeds/pot), S2 (40 seeds/pot) and S3 (30 seeds/pot) from one another.

The use of conventional pesticides, including fungicides, has come under increasing public scrutiny in many countries especially in the European Union (Bourguet and Guillemaud 2016; Lamichhane et al., 2016) (10) (11). In addition, increasing reports of pest resistance development to pesticides have become an issue, thereby increasing risks of pest management failure with potential threats of economic losses for farmers (Onstad 2013; Bourguet and Guillemaud 2016) (12) (13).
Table 1. Disease incidence of damping-off at 15 DAS in Pot conditions (A) Interaction Effect

Treatment	2001 Seed Rate	2002 Seed Rate				
	S₁ (50 Nos./ pot)	S₂ (40 Nos./ pot)	S₃ (30 Nos./ pot)	S₁ (50 Nos./ pot)	S₂ (40 Nos./ pot)	S₃ (30 Nos./ pot)
T₀ Control	3.47	2.73	2.97	3.71	2.83	3.04
T₁ Thiram	1.22	1.06	0.96	1.04	0.68	0.79
T₂ Bavistin	2.18	1.71	1.28	2.35	1.16	1.30
T₃ Dithane Z-78	3.24	2.20	2.77	3.13	2.08	2.74
T₄ Dry Neem Leaves	0.34	0.46	0.00	0.56	0.56	0.00
T₅ Beauveria bassiana	2.30	2.55	2.01	3.32	2.68	2.11
T₆ Soil Solarization	2.26	2.09	1.17	2.19	2.28	1.59

at 5% level = 1.70

C. D. at 5% level = 1.78

(B) Individual Effect

	S₁	T₀	S₁	T₀	C. D. at 5% Level
S₂	2.14	T₀	3.06	S₁	2.33
S₃	1.83	T₁	1.08	S₂	2.75
		T₂	1.72	S₃	1.65
		T₃	2.73		
		T₄	0.27		
		T₅	2.29		
		T₆	1.84		

C. D. at 5% Level

(2001 - 2002) 0.92
Table 2: Disease incidence of damping-off at 20 DAS in Pot conditions (A) Interaction Effect

Treatment	2001	2002	C. D. at 5% Level = 1.92	C. D. at 5% Level = 1.07		
	Seed Rate					
	S1	S2	S3	S1	S2	S3
	(50Nos./pot)	(40Nos./pot)	(30 Nos./pot)	(50 Nos./pot)	(40Nos./pot)	(30Nos./pot)
T0 Control	4.96	5.81	5.40	3.63	3.12	3.01
T1 Thiram	2.27	1.31	1.59	1.93	1.58	2.07
T2 Bavistin	3.29	2.31	3.25	2.86	2.77	2.84
T3 Dithane Z-78	4.22	5.10	4.32	3.53	3.33	2.96
T4 Dry Neem Leaves	1.43	0.56	0.71	0.71	0.79	0.00
T5 Beauveria bassiana	4.17	4.29	3.50	2.49	2.88	2.50
T6 Soil Solarization	3.49	3.60	3.26	1.92	2.46	2.38

(B) Individual Effect

S1	T0	T1	T2	T3	T4	T5	T6	S = 0.72	T = 1.11	S = 0.40	T = 0.61
3.40	5.39	1.72	2.95	4.55	0.90	3.90	3.45				

C. D. at 5% Level (2001 - 2002) 1.13
T0 (Control) T1 (Thiram) T2 (Bavistin) T3 (Dithane Z-78) T4 (Dry Neem Leaves) T5 (Beauveria bassiana) T6 (Soil Solarization)

Fig.1 Disease incidence of damping-off at 15 DAS in Pot condition

Fig.2 Disease incidence of damping-off at 20 DAS in Pot conditions
Chemical fungicides can also cause phytotoxicity on crops and foliage plants, which is another drawback of their use (Dias 2012) (14). Then present findings corroborated with the result of the Singh and Singh (1982) (15) recorded that neem cakes when applied in soil reduced the wilt of pigeon pea. This amendment was found to affect bacterial and fungal population in rhizosphere of wheat and also the behavior of pathogen. Singh et al., (1983)(16) reported the effect of green manure plant residues on the population of Pythium aphanidermatum in soil samples.

When plated by using selective medium, reduced the population of Pythium aphanidermatum in the soil. Shenoi et al., (1993) (17) reported ten botanicals were evaluated in vitro by paper disc and aqueous leaf extracts methods against Pythium aphanidermatum, Alternaria alternata, Azadirachta indica and Lawsonia inermis, effectively inhibited the radial growth of mycelia sporulation and germination of species, indication broad spectrum fungicidal potentiality in sick microplots. All the five neem products tested, controlled damping off caused by Pythium aphanidermatum upto 25 - 30 days.

References

1. Khoso, A.W. 1994. Growing vegetable in Sindh. 2nd Ed. Allied Printing corporation, Hyderabad.136 pp
2. Food, nutrition and the prevention of cancer: a global perspective. Washington: World Cancer Research Fund/American Institute for Cancer Research; 1997. [PubMed]
3. Trichopoulos D, Willett WC.(1996) Nutrition and cancer. Cancer Causes Control; 7: 3-4. [PubMed]
4. Williams GM, Williams CL, Weisburger JH. (1999) Diet and cancer prevention: the fiber first diet. Toxicol Sci., 52(Suppl); 72-86. [PubMed]
5. Kuprashvili, T.D. (1996). The use phytocides for seed treatment. Zashchita-1-Karantin-Rastenii, 55: 31p
6. Lucas, G.B, C.L. Campbell and L.T. Lucas. (1997). Introduction to plant disease identification and management. CBS Pub. and Distributors, New Delhi. 364pp
7. Ronald Fisher (1955) Journal of the Royal Statistical Society. Series B (Methodological) Vol. 17, No. 1, pp. 69-78.
8. James, W.C. 1971. A manual of assessment keys for plant diseases. Canada Department of Agriculture. Publication No. 1458. The American Phytopathological Society, 3340 Pilot Knob Road, St. Paul, MN 55121 USA
9. Singh, R. S. (1972), Introduction of Principles of Plant Pathology, first edn. Oxford and IBH Publishing Company, New Delhi). pp.85.
10. Bourguet D, Guillemaud T (2016) The hidden and external costs of pesticide use. In: Lichtfouse E (ed) Sustain. Agric. Rev, Vol, vol 19. Springer International Publishing, Cham, pp 35–120. doi:10.1007/978-3-319-26777-7_2
11. Lamichhane JR, Dachbrodt-Saaydeh S, Kudsk P, Messéan A (2016) Toward a reduced reliance on conventional pesticides in European agriculture. Plant Dis 100:10–24.
12. Onstad DW (2013). Insect resistance management: biology, economics, and prediction. Academic Press, p 560
13. Bourguet D, Guillemaud T (2016). The hidden and external costs of pesticide use. In: Lichtfouse E (ed) Sustain. Agric. Rev, Vol, vol 19. Springer International Publishing, Cham, pp 35–120.
14. Dias MC (2012) Phytotoxicity: an overview of the physiological responses of plants exposed to fungicides. J Bot.
doi:10.1155/2012/135479
15. Singh, N. and R. S. Singh. (1982.) Effect of oil cake amended soil atmosphere on pigeon pea wilt pathogen. Indian Phytopath., 35: 300-305.
16. Singh, N. and Singh, R.S. (1983). Inhibition of *Fusarium udum* (Pigeonpea wilt pathogen) by ether distillate of margosa cake amended soil. Indian J. Mycol. Pl. Pathol. 13(3): 329-330.
17. Shenoi *et al.*, (2010) Evaluation of anti-inflammatory activity of *Tepluraciaper pracacsadm* Pac J Trap Med. Vol.3/3.pp.193-95.

How to cite this article:

Ram Prawesh Prasad, Prawez Williams, Divyanshu Shekhar and Amba Kumari. 2020. Evaluation of Different Control Practices on Damping Off Disease of Tomato (*Lycopersicon esculentum Mill.*) Var. Novaday in Pots Condition. *Int.J.Curr.Microbiol.App.Sci.* 9(04): 2298-2305. doi: https://doi.org/10.20546/ijcmas.2020.904.275