Supplementary information A

Respiratory syncytial virus two-step infection screen reveals inhibitors of early and late life cycle stages

Svenja M. Sakea, Christina Koschb, c, Sebastian Blockusa, Sibylle Haida, Antonia P. Gunescha, Xiaoyu Zhanga, Martina Frieslanda, Sofie B. Trummera, Christina Grethea, Anne Kühnela, Jessica Rückerta, d,e, W. Paul Duprexf, Jiabin Huangg, Marie-Anne Rameix-Weltih, Martin Emptingh, c, Nicole Fischerh, Anna K. H. Hirscha, c, i, j, Thomas F. Schulzd, e, j, and Thomas Pietschmanna, e, i, j, #

aInstitute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research; Feodor-Lynen-Str. 7, 30625 Hannover, Germany.
bHelmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI); Campus Building E8.1, 66123 Saarbrücken, Germany.
cDepartment of Pharmacy, Saarland University; Campus Building E8.1, 66123 Saarbrücken, Germany.
dInstitute of Virology, Hannover Medical School; Carl Neuberg Str. 1, 30625 Hannover, Germany.
eGerman Centre for Infection Research, Hannover-Braunschweig Site; 30625 Hannover, Germany.
fCentre for Vaccine Research, University of Pittsburgh; Pittsburgh, Pennsylvania 15261, USA.
gInstitute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany.
hUniversité Paris-Saclay, Université de Versailles St. Quentin; UMR 1173 (2I), INSERM; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15; Versailles, France.
iHelmholtz International Lab for Anti-infectives.
jCluster of Excellence RESIST (EXC 2155), Hannover Medical School; 30625 Hannover, Germany.
Corresponding author: Thomas Pietschmann, Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research; Feodor-Lynen-Straße 7, 30625 Hannover, Germany, phone: +49-511-220027130, fax: +49-511-220027131 email: thomas.pietschmann@twincore.de

Email: Thomas.pietschmann@twincore.de

Running title: RSV inhibitors
Contents

1. Supplementary Methods ... 4
 1.1 Preparation of RSV virus stocks.. 4
 1.2 Immunofluorescence staining... 4
 1.3 Quantification of RSV infection by intracellular RSV P protein staining and FACS analysis...... 4
 1.4 Vesicular stomatitis virus pseudotype preparation and transduction.. 5

2. Supplementary Schemes... 6

3. Supplementary Tables.. 8

4. List of Tables ... 11

5. Supplementary References.. 11
1. Supplementary Methods

1.1 Preparation of RSV virus stocks

Stocks of the recent clinical isolates RSV-A-ON1-H1, RSV-A-GA2-H2, and RSV-B-H3/H4/H5(1, 2) (nasopharyngeal washes kindly provided by the Clinic for Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany), as well as the RSV B reporter viruses hRSV B05 eGFP(3) and of the firefly luciferase or GFP strain Long reporter viruses rHRSV-A-Luc, rHRSV-A-GFP(4, 5) were prepared in HEp-2 cells (reporter viruses kindly provided by W. Paul Duprex, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Marie-Anne Rameix-Welti, UMR1173, Institute National de la Santé et de la Recherche Médicale (INSERM), Université de Versailles St. Quentin, Montigny-le-Bretonneux, France and Jean-François Eléouët, Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, Jouy-en-Josas, France). For harvesting, cells were scraped and transferred together with supernatant into 50 mL tubes and vortexed rigorously for 2 min to ensure release of cell bound virus particles. The samples were then centrifuged at 1,000 x g for 5 min to remove cellular debris. The supernatant was mixed with a stabilizing solution (final conc. 100 mM MgSO4, 50 mM HEPES, pH7.5). Aliquots were snap-frozen and stored at -80 °C.

1.2 Immunofluorescence staining

Cells were fixed in 3% paraformaldehyde in PBS for at least 30 min and then washed with PBS before permeabilisation with 0.5% Triton X-100 in PBS for 5 min. Subsequently, cells were incubated with the anti-RSV-P (26D6G5C6) antibody(6) in PBS containing 5% goat serum for 1 h. After washing with PBS, cells were incubated with a fluorescently labelled goat anti-mouse antibody for 1 h, then stained with DAPI (0.5 μg/mL) for 1 min. After washing with H2O, cover slips were fixed on microscope slides and analyzed on an Olympus IX81 microscope.

1.3 Quantification of RSV infection by intracellular RSV P protein staining and FACS analysis

Cells were detached by trypsination and incubated in fixation buffer (0.5% paraformaldehyde, 1% FCS in PBS) for 30 min before permeabilisation in PBS supplemented with 0.1% Saponin at 4 °C for 20 min. Cells were then incubated with anti-RSV-P (26D6G5C6; 2 μg/mL in PBS/1% FCS) antibody (6) for 1 h, washed with PBS, and stained by Alexa-fluor-488 coupled anti-mouse antibodies (10 μg/mL
in PBS/1% FCS) for 30 min. Cells were resuspended in fixation buffer and measured via flow cytometry on the Accuri™ C6 Cytometer or SA3800 Spectral Analyzer and results were evaluated using FlowJo V10.

1.4 Vesicular stomatitis virus pseudotype preparation and transduction

Recombinant VSV-based pseudotypes were produced according to an adapted protocol of Berger Rentsch et al. (7). G-protein expression was induced in BHK-G43 cells by addition of 10⁻⁹ M mifepristone for 6 h. Subsequently, cells were inoculated in a ratio of 1:100 with VSVΔG-G (kindly provided by Gert Zimmer, Institute of Virology and Immunology, Bern, Switzerland) for 24 h. The next day, supernatant was centrifuged for 15 min at 1200 x g at 4 °C and titrated on HEK293T cells. For production of pseudotyped virions, HEK293T were seeded in 10 cm dishes (4.8 x 10⁵ cells/well) and transfected the next day. Therefore, 6 µg/µL of envelope plasmids VSV-G, RAB-V, 229E-S (pCAGGS_229E-S, kindly provided by Stefan Pöhlmann, German Primate Centre, Göttingen, Germany), ebola virus glycoprotein ((pVR1012-GP(Z) (Zaire EBOV-GP), kind gift of Dr. Gary Nabel and Anthony Sanchez, NIH, Bethesda, USA), or empty vector was mixed with Lipofectamine 2000 (ratio 1:1) and OptiMEM and a total of 3 mL were added to 6 mL of fresh 3% FCS DMEM w/o antibiotics on the cells. After 4-6 h at 37 °C, media were exchanged for 10 mL 3% FCS DMEM complete. The next day, cells were inoculated with VSVΔG-G (MOI 3) and washed with PBS after 2 h. To 10 mL of fresh media, anti-VSV-G antibody (I1, produced from CRL-2700 mouse hybridoma cells) was added 1:1000 except for the VSV-G transfected wells. After incubation over night at 37 °C, supernatant was collected and centrifuged at 2000 x g for 10 min. Stocks were titrated on target cells as well as on BHK-21 cells. For transduction, Huh-7.5_Ace2 cells were seeded at 1.5 x 10⁴ cells/well in 96-well plates and inoculated the next day with the respective pseudotypes and compound 3s, 5s, or DMSO in the indicated concentrations. Medium was changed after 4-6 h and cells were lysed after another 16-18 h incubation at 37 °C, followed by FLuc activity measurement.
2. Supplementary Schemes

SA-Scheme 1: Synthetic pathways for resyntheses and corresponding conditions.

(I) Formamide, acetic acid, 150°C, overnight (o/n), closed vessel, 3b: 91%. (II) 1-(3-(chloromethyl)-4-methoxyphenyl)ethan-1-one, K2CO3, N,N-dimethylformamide (DMF), room temperature (r.t.), o/n, 3s: 55%. (III) Corresponding amine (1.0 - 2.2 equiv.), N,N-diisopropylethylamine (DIPEA), dichloromethane (DCM), 0°C → r.t., 1 h - 7 days, 5b: 67%, 5s: 29%. (IV) 2-Aminothiophenol, DIPEA, propanephosphonic acid anhydride (T3P, 50% in DMF), microwave-assisted (mw), 100 °C, 15 min, 9b-1: 43% (crude), 9b-2: 28%. (V) Chloroacetyl isocyanate, DCM, r.t., o/n, 9d: 76%. (VI) Triethylamine
(NEt$_3$), tetrahydrofuran (THF), r.t., 1 - 2 days, (R)-9s: 27%, (S)-9s: 50%. (VII) 1) NaOH, H$_2$O, reflux, 0.5 h, 2) ClCH$_2$COOH, H$_2$O, reflux, 5 h, **12b**: 61%. (VIII) 2-phenoxyaniline, DIPEA, 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU), DMF, 120 °C, 2 h, **12s**: 35%.
3. Supplementary Tables

SA-Table 1: IC_{50}, IC_{90} and CC_{50} values of hRSV targeting small molecules [μM].

Compound	3	5	9	12
IC_{50}	1.1	>10	>10	1.0
IC_{90}	>100	n.c.	n.c.	63.9
CC50	>100	51.6	>100	>100
SI [CC_{50}/IC_{50}]	>91	n.a.	n.a.	>100

Infection round I

Compound	IC_{50}	IC_{90}	CC50	SI [CC_{50}/IC_{50}]
IC_{50}	0.9	23.6	>23	>23
IC_{90}	3.4	3.7	6.9	>500
CC50	4.4	6.9	6.2	>500
SI [CC_{50}/IC_{50}]	111	15	>23	>500

Dose used in further experiments: 1 dose based on IC_{90} round II; 2 dose based on CC_{50} (1/3 of CC_{50}); 3 dose based on IC_{90} round I

Final concentrations in p10: 25; 17; 34; 64

SA-Table 2: Purities of commercial and resynthesized compounds according to LC-MS analyses.

Purities determined via peak integration of peaks in UV/Vis chromatograms (SB-Fig. 34 - 37, SB-Tables 7 - 9, applied system and method described in SB 1.).

Compound	Purity according to LC-MS
3	94%
3s	> 98%
5	96%
5s	> 98%
9*	> 98%
(R)-9s	> 98%
(S)-9s	> 98%
12	> 98%
12s	> 98%

* no stereo information available
SA-Table 3: Compound concentration during virus adaptation [μM].

Passage	3	5	9	12
1	2	4	4	2
2	10	8	8	4
3	20	8	8	20
4	30	8	8	30
5	30	4	0	20
6	30	4	2	25
7	30	6	4	40
8	30	8	6	60
9	30	10	8	100
10	30	12	10	100
SA-Table 4: Amino acid changes in viral proteins of the adapted virus populations (frequency in %).

Protein	Virus population passaged in presence of	3	5	9	12	DMSO
NS1	Y88H (81.17)	-	-	-	-	-
NS2	-	-	-	-	-	-
N	-	-	-	V239I (8.87)	-	-
P	P91H (17.38)	-	-	-	-	-
M	-	-	-	-	-	-
SH	-	-	-	-	-	-
G	-	-	-	L13P (34.1)	I11F (6.18)	-
						W17R (32.23)
F	K68T (80.62)	-	-	-	I11F (6.18)	-
	L141F (8.73)			F137Y (28.35)		
	L142I (80.76)			A149T (58.43)		
				A552V (26.03)		
M2-1	-	-	-	-	-	-
M2-2	-	-	-	-	-	-
L	-	-	-	-	-	-
4. List of Tables

SA-Table 1: IC$_{50}$, IC$_{90}$ and CC$_{50}$ values of hRSV targeting small molecules [μM]. 8

SA-Table 2: Purities of commercial and resynthesized compounds according to LC-MS analyses. Purities determined via peak integration of peaks in UV/Vis chromatograms (SB-Fig. 34 - 37, SB-Tables 7 - 9, applied system and method described in SB 1.) ... 8

SA-Table 3: Compound concentration during virus adaptation [μM]. .. 9

SA-Table 4: Amino acid changes in viral proteins of the adapted virus populations (frequency in %). ... 10

5. Supplementary References

1. Blockus S, Sake SM, Wetzeke M, Grethe C, Graalmann T, Pils M, Le Goffic R, Galloux M, Prochnow H, Rox K, Huttel S, Rupcic Z, Wiegmann B, Dijkman R, Rameix-Welti MA, Eleouet JF, Duprex WP, Thiel V, Hansen G, Bronstrup M, Haid S, Pietschmann T. 2020. Labyrinthopeptins as virolytic inhibitors of respiratory syncytial virus cell entry. Antiviral Res 177:104774.

2. Risso-Ballester J, Galloux M, Cao J, Le Goffic R, Hontonnou F, Jobart-Malfait A, Desquesnes A, Sake SM, Haid S, Du M, Zhang X, Zhang H, Wang Z, Rincheval V, Zhang Y, Pietschmann T, Eleouet JF, Rameix-Welti MA, Altmeyer R. 2021. A condensate-hardening drug blocks RSV replication in vivo. Nature 595:596-599.

3. Lemon K, Nguyen DT, Ludlow M, Rennick LJ, Yuksel S, van Amerongen G, McQuaid S, Rima BK, de Swart RL, Duprex WP. 2015. Recombinant subgroup B human respiratory syncytial virus expressing enhanced green fluorescent protein efficiently replicates in primary human cells and is virulent in cotton rats. J Virol 89:2849-56.

4. Rameix-Welti MA, Le Goffic R, Herve PL, Sourimant J, Remot A, Riffault S, Yu Q, Galloux M, Gault E, Eleouet JF. 2014. Visualizing the replication of respiratory syncytial virus in cells and in living mice. Nat Commun 5:5104.

5. Bouillier C, Rincheval V, Sitterlin D, Blouquit-Laye S, Desquesnes A, Eleouet JF, Gault E, Rameix-Welti MA. 2019. Generation, Amplification, and Titration of Recombinant Respiratory Syncytial Viruses. J Vis Exp doi:10.3791/59218.

6. Haid S, Grethe C, Bankwitz D, Grunwald T, Pietschmann T. 2015. Identification of a Human Respiratory Syncytial Virus Cell Entry Inhibitor by Using a Novel Lentiviral Pseudotype System. J Virol 90:3065-73.

7. Berger Rentsch M, Zimmer G. 2011. A Vesicular Stomatitis Virus Replicon-Based Bioassay for the Rapid and Sensitive Determination of Multi-Species Type I Interferon. PLOS ONE 6:e25858.
Supplementary information B

Respiratory syncytial virus two-step infection screen reveals inhibitors of early and late life cycle stages

Svenja M. Sakea, Christina Koschb, Sebastian Blockusa, Sibylle Haidb, Antonia P. Gunescha, Xiaoyu Zhangb, Martina Frieslanda, Sofie B. Trummera, Christina Gretheb, Anne Küehnela, Jessica Rückerta, W. Paul Duprexf, Jiabin Huangg, Marie-Anne Rameix-Weltih, Martin Emptingb, c, Nicole Fischerb, Anna K. H. Hirschb, c, i, j, Thomas F. Schulzd, e, j, and Thomas Pietschmanna, e, i, j, #

aInstitute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research; Feodor-Lynen-Str. 7, 30625 Hannover, Germany.

bHelmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI); Campus Building E8.1, 66123 Saarbrücken, Germany.

cDepartment of Pharmacy, Saarland University; Campus Building E8.1, 66123 Saarbrücken, Germany.

dInstitute of Virology, Hannover Medical School; Carl Neuberg Str. 1, 30625 Hannover, Germany.

eGerman Centre for Infection Research, Hannover-Braunschweig Site; 30625 Hannover, Germany.

fCentre for Vaccine Research, University of Pittsburgh; Pittsburgh, Pennsylvania 15261, USA.

gInstitute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany.

hUniversité Paris-Saclay, Université de Versailles St. Quentin; UMR 1173 (2I), INSERM; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15; Versailles, France.

iHelmholtz International Lab for Anti-infectives.

jCluster of Excellence RESIST (EXC 2155), Hannover Medical School; 30625 Hannover, Germany.
Contents

1. General information ... 4

2. General procedures ... 6
 2.1 General procedure A (GP A) ... 6
 2.2 General procedure B (GP B) ... 6
 2.3 General Procedure C (GP C) ... 6

3. Experimental details .. 7
 3.1 6,8-Dichloroquinazolin-4(3H)-one (3b) ... 7
 3.2 1-(3-(((6,8-Dichloroquinazolin-4-yl)oxy)methyl)-4-methoxyphenyl)ethan-1-one (3s) 7
 3.3 2-Chloro-4,6-di(pyrrolidin-1-yl)-1,3,5-triazine (5b) .. 8
 3.4 N-Cyclopentyl-4,6-di(pyrrolidin-1-yl)-1,3,5-triazin-2-amine (5s) ... 8
 3.5 (R)-2-(piperidin-3-yl)benzo[d]thiazole (9b-1) ... 8
 3.6 (S)-2-(1-Boc-piperidin-3-yl)benzo[d]thiazole (9b-2) .. 8
 3.7 2-Chloro-N-(cyclopentylcarbamoyl)acetamide (9d) ... 9
 3.8 (R)-2-(3-(benzo[d]thiazol-2-yl)piperidin-1-yl)-N-(cyclopentylcarbamoyl)acetamide ((R)-9s) ... 10
 3.9 (S)-2-(3-(benzo[d]thiazol-2-yl)piperidin-1-yl)-N-(cyclopentylcarbamoyl)acetamide ((S)-9s) ... 10
 3.10 2-((5,7-Dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)thio)acetic acid (12b) 11
 3.11 2-((5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)thio)-N-(2-phenoxyphenyl)acetamide (12s)... 11

4. Appendix ... 13
 4.1 NMR spectra .. 13
 4.2 LC-MS data .. 25
 4.3 HRMS data .. 36

5. List of Figures .. 39

6. List of Tables .. 40

7. Supplementary References .. 40
1. General information

This document describes the general procedures, experimental details as well as characterizations of chemically synthesized compounds 3s, 5s, (R)-9s, (S)-9s, and 12s. Furthermore, details regarding the performed purity analyses of screening compounds are included.

All chemicals were used as obtained from commercial suppliers without further purification.

1H and 13C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Fourier 500 [500 MHz (1H), 126 MHz (13C)] spectrometer. Chemical shifts were given in parts per million (ppm) and referenced against the residual dimethyl sulfoxide-d_6 (DMSO-d_6), Chloroform-d (CDCl$_3$), or acetone-d_6 peak, while coupling constants (J) were indicated in hertz (Hz). Multiplicities were described with singlet (s), broad singlet (br s), doublet (d), doublet of a doublet (dd), doublet of a doublet of a doublet (ddd), triplet (t), doublet of a triplet (dt), quartet (q), doublet of a quartet (dq), sextet (sxt), septet (sept), and multiplet (m).

For reaction controls, thin layer chromatography (TLC) and/or liquid chromatography-mass spectrometry (LC-MS) were used. Low-resolution mass analytics and purity control of final compounds were performed by applying a SpectraSystems-MSQ LC-MS system (Thermo Fisher Scientific) consisting of pump, Hypersil Gold column (100 mm x 2.1 mm, particle size 3 µm), autosampler, VWD detector and an ESI quadrupole mass spectrometer. For LC-MS measurements, the following method was used: positive/negative mode, acetonitrile (ACN + 0.1% formic acid (FA))/water (H$_2$O) + 0.1% FA, 5 – 100% ACN + 0.1% FA over 5.8 min, 0.7 mL/min, wavelength (λ) = 254 nm.

Microwave-assisted (mw) syntheses were carried out in a Discover microwave synthesis system from CEM. For column chromatography, either the automated flash column chromatography (AFC) system CombiFlash Rf 150 (Teledyne Isco) equipped with RediSepRf silica columns was used or manual flash column chromatography (MFC) with Silica 60 M, 0.04 - 0.063 mm or 0.063 - 0.2 mm, (Macherey-Nagel) was performed.

Final products were dried under high vacuum. In case the final compound was purified with semi-preparative high performance liquid chromatography (semi-prep HPLC), the corresponding isolated fraction was lyophilized using a Christ Alpha 2-4 LD plus freeze-dryer connected to Chemistry Hybrid Pump RC6 (Vacuubrand). For semi-prep HPLC, an Ultimate 3000 ultra-high performance liquid
chromatography (UHPLC) system (Thermo Fisher Scientific) equipped with Dionex RS Pump, Diode Array Detector, Automated Fraction Collector, Nucleodur C18 Gravity column (250 mm x 10 mm (column A) or 16 mm (column B), particle size 5 µm) was used.

High resolution mass spectrometry (HRMS) measurements were conducted with a Q Exactive Focus (Thermo Fischer Scientific) connected to Dionex Ultimate 3000 RS Pump and Autosampler as well as UHPLC system Column compartment with Nucleodur C18 Pyramid column (150 mm x 2 mm, particle size 3 µm) and Diode Array Detector.
2. General procedures

2.1 General procedure A (GP A)
The general procedure A was performed as described in the protocol of Cheng et al.1. The corresponding amine (1.0 – 2.2 equivalents (equiv.)) and \textit{N,N}-diisopropylethylamine (DIPEA, 2.2 - 3.0 equiv.) were added dropwise to a solution of the related starting material in dry dichloromethane (DCM, 0.54 M) at 0 °C. The mixture was stirred at the same temperature or reaching room temperature. After a full conversion detected via LC-MS, the reaction mixture was washed with hydrochloric acid (HCl, 2 m, aqueous (aq.)). From this aqueous layer, the crude was extracted twice with DCM. After combining all organic layers and drying them over MgSO\textsubscript{4}, the solvent was removed \textit{in vacuo}. The crude was purified \textit{via} AFC to isolate the related product.

2.2 General procedure B (GP B)
Piperidine-3-carboxylic acid \textit{9a-1} or \textit{9a-2}, DIPEA (1.5 equiv.), propanephosphonic acid anhydride (T3P, 50\% in \textit{N,N}-dimethylformamide (DMF), 1.0 equiv.), and 2-aminothiophenol (1.2 equiv.) were heated mw to 100 °C for 15 min2. For \textit{9b-1}, the reaction mixture was concentrated \textit{in vacuo}, and water (5 mL) was added to the residue. For \textit{9b-1}, the pH was adjusted to 8 with Na\textsubscript{2}CO\textsubscript{3} solution (aq., saturated (sat.)). From this aqueous mixture the crude was extracted with EtOAc (2 x 10 mL), and the combined organic layers were dried over MgSO\textsubscript{4} and \textit{in vacuo}. For \textit{9b-2}, the same procedure was applied without changing the pH of the aqueous layer, washing with Brine (10 mL) after extraction and using Na\textsubscript{2}SO\textsubscript{4} for drying the organic phase2. The resulting crude product was either used without further purification (\textit{9b-1}), or purified via MFC (\textit{9b-2}).

2.3 General Procedure C (GP C)
In case of a Boc-protected starting material, the compound was first dissolved in DCM (0.1 M), cooled to 0 °C and treated with HCl (4 N in 1,4-dioxane, 10.0 equiv.). The mixture was stirred overnight reaching room temperature. After removing the solvent, the resulting HCl salt was directly used for the substitution reaction. \textit{9b-1} or deprotected \textit{9b-2}, respectively, triethylamine (NE\textsubscript{t}\textsubscript{3}, 1.1 equiv. for amines or 2.2 equiv. for HCl salts), and \textit{9d} (1.0 equiv.) were stirred in tetrahydrofuran (THF, 0.45 M) at room temperature for 1 – 2 days. Then, the reaction mixture was poured into ice and the formed beige solid
was extracted with DCM. After drying the organic layer over MgSO₄, the solvent was removed in vacuo. The obtained crude product was purified via AFC and/or semi-prep HPLC.

3. Experimental details

3.1 6,8-Dichloroquinazolin-4(3H)-one (3b)

Adapting literature known conditions slightly, 2-aminobenzoic acid 3a (50.0 mg, 0.24 mmol), acetic acid (0.2 mL, 1.2 M) and formamide (2.0 mL, 0.12 M) were stirred at 150 °C in a closed vessel overnight. The reaction mixture was cooled to room temperature and poured into ice water. The formed, white to yellow solid was filtered, washed with water, transferred with acetone and dried in vacuo to obtain 3b (47.7 mg, 0.22 mmol, 91%) as a colorless solid. ¹H NMR (DMSO-d₆, 500 MHz) δ = 12.70 (br s, 1H), 8.25 (s, 1H), 8.15 (d, 1H, J=2.4 Hz), 8.03 (d, 1H, J=2.4 Hz). ¹³C NMR (DMSO-d₆, 126 MHz) δ = 159.4, 146.9, 144.3, 134.1, 132.4, 130.7, 125.1, 124.2. LC-MS ([M+H]+) = 214.96 Retention time regarding UV-chromatogram (tᵣ,UV) = 3.28 min, purity 98%.

3.2 1-(3-(((6,8-Dichloroquinazolin-4-yl)oxy)methyl)-4-methoxyphenyl)ethan-1-one (3s)

3b (50.0 mg, 0.77 mmol) was dissolved in DMF. To this solution, K₂CO₃ (32.2 mg, 0.23 mmol) and 1-(3-(chloromethyl)-4-methoxyphenyl)ethan-1-one (69.3 mg, 0.35 mmol) were added. The mixture was stirred at room temperature overnight. After concentrating the mixture in vacuo, water was added to the residue. The crude was extracted from the aqueous mixture using DCM. Then, the combined organic layers were dried over MgSO₄ and the solvent was removed in vacuo. After additional washing with ethyl acetate (EtOAc) the pure product 3s (49.0 mg, 0.13 mmol, 55%) was obtained as a colorless solid. ¹H NMR (DMSO-d₆, 500 MHz) δ = 8.64 (s, 1H), 8.16 (d, 1H, J=2.4 Hz), 8.04 (d, 1H, J=2.4 Hz), 7.97 (dd, 1H, J=2.2, 8.6 Hz), 7.84 (d, 1H, J=2.2 Hz), 7.14 (d, 1H, J=8.6 Hz), 5.7-5.8 (m, 1H), 5.15 (s, 2H), 3.92 (s, 3H), 2.50 (s, 3H) †. ¹³C NMR (DMSO-d₆, 126 MHz) δ = 196.3, 161.1, 158.8, 149.8, 143.3, 134.1, 132.3, 131.1, 131.0, 130.9, 124.4, 124.0, 123.4, 110.8, 56.1, 46.2, 26.4. LC-MS m/z ([M+H]+, [M-C₁₀H₁₁O₂]+) = 376.95, 164.08, tᵣ,UV = 4.49 min, purity > 98%. HRMS calculated: m/z ([M+H]+) = 377.0454, found: m/z ([M+H]+) = 377.0448.

* ¹H NMR published by Orfi et al.4, but they reported another tautomer in DMSO-d₆; Li et al. ⁶ published ¹H NMR in Chloroform-d.
† Overlapping with solvent peak, by recording Heteronuclear Single Quantum Coherence spectrum (HSQC - 2D spectrum) this could be confirmed (cf. SB-Fig. 5)
3.3 2-Chloro-4,6-di(pyrrolidin-1-yl)-1,3,5-triazine (5b)

According to GP A, 5b was synthesized using cyanuric chloride 5a (100.0 mg, 0.54 mmol), DIPEA (0.21 mL, 1.19 mmol) and pyrrolidine (0.10 mL, 1.193 mmol) in DCM (1.0 mL). The reaction was fully converted after 1 h. After purification via AFC (petroleum ether (PE/EtOAc, 0 – 100% EtOAc over 23 min, 18 mL/min, 4 g silica, product at 22% EtOAc), 5b was obtained (92.2 mg, 0.36 mmol, 67%) as a colorless solid.

\[\text{^1H NMR (CDCl}_3, 500 MHz) \delta = 3.5-3.6 (m, 8H), 1.9-2.0 (m, 8H). \]

\[\text{^13C NMR (CDCl}_3, 126 MHz) \delta = 168.3, 162.6, 46.4, 46.2, 25.3, 25.0. \]

LC-MS \[m/z ([M+H]^+) = 253.97, t_{UV} = 4.62 \text{ min, purity > 98\%.} \]

3.4 N-Cyclopentyl-4,6-di(pyrrolidin-1-yl)-1,3,5-triazin-2-amine (5s)

5s was synthesized according to GP A mixing 5b (50.0 mg, 0.20 mmol), DIPEA (0.12 mL, 0.59 mmol) and cyclopentylamine (0.06 mL, 0.59 mmol) in DCM (0.5 mL). The solution was stirred for 7 days at room temperature to afford 5s (17.2 mg, 0.057 mmol, 29%) as a colorless solid after purification via AFC (cyclohexane/EtOAc, 15 - 55% EtOAc over 17 min, 18 mL/min, product at 15% EtOAc).

\[\text{^1H NMR (CDCl}_3, 500 MHz) \delta = 4.69 (br d, 1H, J=6.9 Hz), 4.29 (sxt, 1H, J=6.9 Hz), 3.52 (br s, 8H), 2.0-2.1 (m, 2H), 1.89 (m, 8H), 1.6-1.7 (m, 2H), 1.5-1.6 (m, 2H), 1.4-1.5 (m, 2H). \]

\[\text{^13C NMR (CDCl}_3, 126 MHz) \delta = 52.3, 45.8, 33.3, 25.3, 23.8. \]

LC-MS \[m/z ([M+H]^+) = 303.15, t_{UV} = 4.04 \text{ min, purity > 98\%.} \]

HRMS calculated: \[m/z ([M+H]^+) = 303.2292, \text{ found: } m/z ([M+H]^+) = 303.2286. \]

3.5 (R)-2-(piperidin-3-yl)benzo[d]thiazole (9b-1)

Following GP B, 9b-1 was synthesized. For this, 9a-1 (100.0 mg, 0.77 mmol), DIPEA (0.2 mL, 1.16 mmol), T3P (50% in DMF, 500 mg, 0.79 mmol), and 2-aminothiophenol (0.1 mL, 0.96 mmol) were used. The resulting crude 9b-1 (72.1 mg, 0.33 mmol, 43%) was used without further purification.

\[\text{^1H NMR (CDCl}_3, 500 MHz) \delta = 7.99 (d, 1H, J=8.1 Hz), 7.87 (d, 1H, J=8.1 Hz), 7.47 (t, 1H, J=7.6 Hz), 7.37 (t, 1H, J=7.6 Hz), 3.47 (br d, 1H, J=12.1 Hz), 3.2-3.4 (m, 1H), 3.11 (br d, 1H, J=12.4 Hz), 3.04 (t, 1H, J=11.5 Hz), 2.77 (t, 1H, J=11.5 Hz), 2.2-2.4 (m, 1H), 1.9-1.9 (m, 1H), 1.8-1.9 (m, 1H), 1.6-1.7 (m, 1H). \]

\[\text{^13C NMR (CDCl}_3, 126 MHz) \delta = 174.0, 153.0, 134.5, 125.9, 124.8, 122.7, 121.5, 51.8, 46.3, 42.4, 31.4, 29.7, 25.6. \]

LC-MS \[m/z ([M+H]^+) = 219.00, t_{UV} = 0.93 \text{ min, purity 62\%.} \]

3.6 (S)-2-(1-Boc-piperidin-3-yl)benzo[d]thiazole (9b-2)

First, (S)-1-Boc-piperidine-3-carboxylic acid was prepared from starting material 9a-2 (100.0 mg, 0.77 mmol) by stirring its solution in THF/H2O (v/v 5/1, 2.6 mL) with Na2CO3 (82.0 mg, 0.77 mmol)
and di-tert-butyl bicarbonate (Boc₂O, 168.9 mg, 0.77 mmol) at 0 °C overnight reaching room temperature. The resulting mixture was diluted with water, adjusted to pH 7 using NH₄Cl (aq., sat.), and extracted with EtOAc (3 x 10 mL). Furthermore, the organic layers were combined, dried over Na₂SO₄ and in vacuo to isolate the Boc-protected compound (139.0 mg, 0.61 mmol, 78%). A part of it (86.4 mg, 0.38 mmol) was directly used for the next step without further purification following GP B under usage of DIPEA (0.10 mL, 0.57 mmol), T₃P (50% in DMF, 0.11 mL, 0.38 mmol) and 2-aminothiophenol (0.04 mL, 0.38 mmol). The resulting crude was purified by MFC (PE/EtOAc, 3 – 6% EtOAc, ~5 g silica Mesh 60 (0.04 - 0.063 mm)) obtaining 9b-2 (34 mg, 0.107 mmol, 28%) as a pink sticky oil. Rₓ (PE/EtOAc, 93/7) = 0.08. ¹H NMR (CDCl₃, 500 MHz) δ = 8.00 (d, 1H, J=8.1 Hz), 7.87 (d, 1H, J=8.1 Hz), 7.47 (t, 1H, J=7.6 Hz), 7.37 (t, 1H, J=7.6 Hz), 4.40 (br s, 1H), 4.07 (br d, 1H, J=6.1 Hz), 3.2-3.3 (m, 1H), 3.19 (br s, 1H), 2.9-3.0 (m, 1H), 2.3-2.3 (m, 1H), 1.8-1.9 (m, 2H), 1.6-1.7 (m, 1H), 1.5-1.5 (m, 9H). ¹³C NMR (CDCl₃, 126 MHz) δ 172.7, 154.7, 153.0, 134.5, 126.0, 124.9, 122.8, 121.6, 79.8, 48.8, 44.0, 41.4, 31.3, 28.4, 24.6. LC-MS m/z ([M+H]+, [M-Boc]+) = 319.23, 219.12, tᵣ,UV = 5.06 min, purity > 98%.

3.7 2-Chloro-N-(cyclopentylcarbamoyl)acetamide (9d)

Chloroacetyl isocyanate (168.4 mg, 1.41 mmol) was added dropwise to a solution of cyclopentyl amine 9c (100.0 mg, 1.17 mmol) in dry DCM (2.0 mL) and stirred at room temperature overnight. After removing the solvent in vacuo and washing with cold ether, the residue was recrystallized from ethanol (EtOH)/H₂O (v/v 1/1, 10 mL). Additionally, the resulting solid was washed with cold water, to isolate 9d (182.3 mg, 0.891 mmol, 76%) as a colorless solid. ¹H NMR (acetone-d₆, 500 MHz) δ = 9.54 (br s, 1H), 8.12 (br s, 1H), 4.30 (s, 2H), 4.09 (sxt, 1H, J=6.4 Hz), 1.94 (qd, 2H, J=6.4, 12.4 Hz), 1.7-1.7 (m, 2H), 1.6-1.7 (m, 2H), 1.4-1.5 (m, 2H). ¹³C NMR (acetone-d₆, 126 MHz) δ = 168.5, 152.3, 152.3, 51.8, 43.2, 33.0, 23.6. HRMS calculated: m/z ([M+H]+) = 205.0738, found: m/z ([M+H]+) = 205.0739.

Weak signal
Weak signal
3.8 (R)-2-(3-(benzo[d]thiazol-2-yl)piperidin-1-yl)-N-(cyclopentylcarbamoyl)acetamide ((R)-9s)

According to GP C, 9b-1 (68.8 mg, 0.315 mmol), THF (0.70 mL), NEt₃ (0.05 mL, 0.35 mmol,) and 9d (65.5 mg, 0.32 mmol) were stirred at room temperature for 1 day. The obtained crude was purified by AFC (cyclohexene/EtOAc, 0 – 45% EtOAc over 14 min, 18 mL/min, 4 g silica, product at 10% EtOAc) and additionally by semi-prep HPLC (ACN + 0.05% FA/ H₂O + 0.05% FA, 5 – 100% ACN + 0.05% FA over 55 min, 5 mL/min, column A, product at 38% ACN + 0.05% FA) giving 9-(R) (32.7 mg, 0.085 mmol, 27%) as a sticky colorless oil. Ratio (rotamer A/rotamer B) = 4/5: Rotamer A: ¹H NMR (CDCl₃, 500 MHz) δ = 9.14 (br s, 1H), 8.19 (br s, 1H), 8.00 (br d, 1H, J=8.1 Hz), 7.79 (d, 1H, J=8.1 Hz), 7.41 (t, 1H, J=7.6 Hz), 7.30 (t, 1H, J=7.6 Hz), 4.1-4.1 (m, 1H), 4.03 (s, 2H), 3.40 (br s, 1H), 3.10 (br s, 3H), 2.73 (br s, 2H), 2.35 (br s, 1H), 2.15 (br s, 1H), 1.9-2.0 (m, 2H), 1.7-1.8 (m, 1H), 1.6-1.7 (m, 2H), 1.5-1.6 (m, 2H), 1.4-1.5 (m, 2H). Rotamer B: ¹H NMR (CDCl₃, 500 MHz) δ = 8.49 (br s, 1H), 8.03 (2 br s, 1H), 8.00 (br d, 1H, J=8.1 Hz), 7.79 (d, 1H, J=8.1 Hz), 7.40 (t, 1H, J=7.6 Hz), 4.1-4.1 (m, 1H), 4.03 (s, 2H), 3.40 (br s, 1H), 3.10 (br s, 3H), 2.73 (br s, 2H), 2.35 (br s, 1H), 2.15 (br s, 1H), 1.9-2.0 (m, 2H), 1.7-1.8 (m, 1H), 1.6-1.7 (m, 2H), 1.5-1.6 (m, 2H), 1.4-1.5 (m, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ = 166.3, 152.0, 151.2, 150.6, 133.4, 125.1, 124.0, 121.9, 120.5, 53.1, 50.8, 50.6, 41.4, 32.1, 32.0, 29.4, 22.6, 22.5. LC-MS m/z ([M+H]+, [M-C₅H₁₀N+H]+) = 387.01, 301.99, t_r,UV = 3.33 min, purity > 98%. HRMS calculated: m/z ([M+H]+) =387.1849, found: m/z ([M+H]+) = 387.1842.

3.9 (S)-2-(3-(benzo[d]thiazol-2-yl)piperidin-1-yl)-N-(cyclopentylcarbamoyl)acetamide ((S)-9s)

Following GP C, (S)-9 was prepared using 9b-2 (27.4 mg, 0.079 mmol), HCl (4 N in 1,4-dioxane, 0.20 mL) in DCM (0.79 mL) for the deprotection step, and NEt₃ (0.02 mL, 0.17 mmol) as well as 9d (16.2 mg, 0.079 mmol) in THF (0.16 mL) for the substitution reaction. The reaction mixture was stirred at room temperature for 2 days. The obtained crude was purified via semi-prep HPLC (ACN + 0.05% FA/H₂O + 0.05% FA, 5 - 100% ACN + 0.05% FA over 30 min, 10 mL/min, column B, product at 37% ACN + 0.05% FA) giving 9-(S) (15.08 mg, 0.085 mmol, 50%) as a colorless solid. ¹H NMR (DMSO-d₆, 500 MHz) δ = 9.90 (s, 1H), 8.27 (br d, 1H, J=6.9 Hz), 8.05 (d, 1H, J=8.1 Hz), 8.01 (br d, 1H, J=8.1 Hz), 7.48 (t, 1H, J=7.6 Hz), 7.40 (t, 1H, J=7.6 Hz), 4.00 (sxt, 1H, J=6.7 Hz), 3.40
(br s, 1H), 3.38 (br s, 1H), 3.27 (d, 1H, J=16.3 Hz), 3.19 (d, 1H, J=16.3 Hz), 3.12 (br d, 1H, J=9.3 Hz), 2.73 (br d, 1H, J=10.5 Hz), 2.65 (t, 1H, J=9.6 Hz), 2.3-2.4 (m, 1H), 2.0-2.1 (m, 1H), 1.86 (qd, 2H, J=6.4, 12.4 Hz), 1.6-1.7 (m, 5H), 1.5-1.6 (m, 2H), 1.41 (qd, 2H, J=9.3, 12.4 Hz). 13C NMR (DMSO-d6, 126 MHz) δ = 196.4, 173.7, 172.3, 163.3, 152.5, 152.2, 134.2, 126.0, 124.9, 122.5, 122.0, 60.8, 57.4, 52.8, 50.8, 40.6, 32.6, 30.1, 24.1, 23.1. LC-MS m/z ([M+H]+, [M- C5H10N+H]+) = 367.31, 302.17, tr,UV = 3.38 min, purity > 98%. HRMS calculated: m/z ([M+H]+) = 387.1849; found: m/z ([M+H]+) = 387.1845.

3.10 2-((5,7-Dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)thio)acetic acid (12b)

Similar to the literature known procedure8, 12b was synthesized. For this synthesis, 12a (100.0 mg, 0.56 mmol), sodium hydroxide (44.4 mg, 1.11 mmol), and 2-chloroacetic acid (52.4 mg, 0.56 mmol) were used. After acidifying the reaction mixture to pH 2-3 using HCl (5.0 mL, 2 M), no product precipitated. Therefore, the product was extracted with DCM (3 x 5mL) instead of isolation by filtration and recrystallization from DMF. The combined organic layers were dried over MgSO4 and the solvent was removed in vacuo to obtain 12b (81.2 mg, 0.34 mmol, 61%) as a white solid. This product was used without further purification. 1H NMR (DMSO-d6, 500 MHz) δ = 12.87 (br s, 1H), 7.12 (s, 1H), 4.08 (s, 2H), 2.66 (s, 3H), 2.55 (s, 3H). 13C NMR (DMSO-d6, 126 MHz) δ = 169.8, 165.1, 164.2, 155.0, 146.3, 110.4, 54.9, 33.1, 24.4, 16.5. LC-MS m/z ([M+H]+) = 238.97, tr,UV = 2.24 min, purity 91%.

3.11 2-((5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)thio)-N-(2-phenoxyphenyl)acetamide (12s)

To a solution of carboxylic acid 12b (50.0 mg, 0.21 mmol) in dry DMF (0.35 M), DIPEA (0.04 mL, 0.23 mmol) was added. This solution was stirred at room temperature for 10 min. After addition of 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU, 95.4 mg, 0.25 mmol) to the mixture and further stirring for 10 min at room temperature, 2-phenoxyaniline (38.7 mg, 0.21 mmol) was added. The solution was stirred at 120 °C for 2 h, cooled to room temperature, and concentrated in vacuo. After adding NH4Cl (sat., aq.) to the residue the product was extracted with DCM for three times. The organic layers were combined and dried over MgSO4. Then, the solvent was removed in vacuo. To isolate the product, the crude was purified by AFC (cyclohexane/EtOAc, gradient: 0 – 100% EtOAc over 25 min, 4 g silica, product at 75% EtOAc) obtaining 12s (29.8 mg, 0.074 mmol, 35%) as a colorless solid. 1H NMR (CDCl3, 500 MHz) δ = 9.68 (br s, 1H), 8.39 (dd, 1H, J=1.5, 8.5 Hz), 7.0-7.1 (m, 3H), 6.94 (t, 2H, J=7.3 Hz), 6.67 (td, 3H, J=1.5, 8.5 Hz),
6.58 (br s, 1H), 4.07 (s, 2H), 2.61 (s, 2H), 2.6-2.7 (m, 1H), 2.52 (s, 2H), 2.4-2.6 (m, 1H). 13C NMR (CDCl$_3$, 126 MHz) $\delta = 167.6, 166.4, 164.4, 156.2, 155.3, 146.6, 145.7, 129.9, 129.3, 124.2, 123.8, 123.4, 121.4, 118.8, 117.6, 110.2, 35.2, 24.8, 16.9. LC-MS m/z ([M+H]$^+$) = 405.99, $t_{r, UV} = 4.16$ min, purity > 98%. HRMS calculated: m/z ([M+H]$^+$) = 406.1332; found: m/z ([M+H]$^+$) = 406.1327.
4. Appendix

4.1 NMR spectra

SB-Fig.1: 1H NMR spectrum of 3b in DMSO-d_6 at 500 megahertz (MHz).
SB-Fig.2: 13C NMR spectrum of 3b in DMSO-d$_6$ at 126 MHz.

SB-Fig.3: 1H NMR spectrum of 3s recorded in DMSO-d$_6$ at 500 MHz.
SB-Fig.4: 13C NMR spectrum of 3s recorded in DMSO-d_6 at 126 MHz.

SB-Fig.5: HSQC-2D spectrum of 3s recorded in DMSO-d_6.
SB-Fig.6: 1H NMR spectrum of 5b recorded in CDCl$_3$ at 500 MHz.

SB-Fig.7: 13C NMR spectrum of 5b recorded in CDCl$_3$ at 126 MHz.
SB-Fig. 8: 1H NMR spectrum of 5s recorded in CDCl$_3$ at 500 MHz.

SB-Fig. 9: 13C NMR spectrum of 5s recorded in CDCl$_3$ at 126 MHz.
SB-Fig.10: 1H NMR spectrum of 9b-1 recorded in CDCl$_3$ at 500 MHz.

SB-Fig.11: 13C NMR spectrum of 9b-1 recorded in CDCl$_3$ at 126 MHz.
SB-Fig.12: 1H NMR spectrum of 9b-2 recorded in CDCl$_3$ at 500 MHz.

SB-Fig.13: 13C NMR of 9b-2 recorded in CDCl$_3$ at 126 MHz.
SB-Fig.14: 1H NMR spectrum of 9d recorded in acetone-d$_6$ at 500 MHz.

SB-Fig.15: 13C NMR spectrum of 9d recorded in acetone-d$_6$ at 126 MHz.
SB-Fig.16: 1H NMR spectrum of (R)-9s recorded in CDCl$_3$ at 500 MHz.

SB-Fig.17: 13C NMR spectrum of (R)-9s recorded in CDCl$_3$ at 126 MHz.
SB-Fig.18: 1H NMR spectrum of (S)-9s recorded in DMSO-d_6 at 500 MHz.

SB-Fig.19: 13C NMR spectrum of (S)-9s measured in DMSO-d_6 at 126 MHz.
SB-Fig.20: 1H NMR spectrum of 12b measured in DMSO-d$_6$ at 500 MHz.

SB-Fig.21: 13C NMR spectrum of 12b measured in DMSO-d$_6$ at 126 MHz.
SB-Fig.22: 1H NMR spectrum of 12s measured in CDCl$_3$ at 500 MHz.

SB-Fig.23: 13C NMR spectrum of 12s measured in CDCl$_3$ at 126 MHz.
4.2 LC-MS data

4.2.1 Characterizations/purity analyses of intermediates and final compounds

SB-Fig.24: LC-MS data of 3b (top: mass chromatogram, middle: mass spectrum of UV/Vis peak, bottom: UV/Vis chromatogram).

SB-Table 1: Peak list of UV/Vis chromatogram for purity analysis of 3b.

Apex RT	Start RT	End RT	Area	%Area	Height	%Height
2.76	2.73	2.85	80737.208	2.02	23779.566	2.66
3.28	3.23	3.57	3917181.870	97.98	868548.459	97.34
SB-Fig.25: LC-MS data of 3s (top: mass chromatogram, middle: mass spectrum of UV/Vis peak, bottom: UV/Vis chromatogram).

SB-Fig.26: LC-MS data of 5b (top: mass chromatogram, middle: mass spectrum of UV/Vis peak, bottom: UV/Vis chromatogram).
SB-Fig.27: LC-MS data of 5s (top: mass chromatogram, middle: mass spectrum of main UV/Vis peak, bottom: UV/Vis chromatogram).

SB-Table 2: Peak list of UV/Vis chromatogram for purity analysis of 5s.

Apex RT	Start RT	End RT	Area	%Area	Height	%Height
3.62	3.53	3.87	21430.153	0.59	2403.576	1.03
4.04	3.94	4.74	3587255.601	99.41	229963.617	98.97
SB-Fig.28: LC-MS data of 9b-1 (top: mass chromatogram, middle: mass spectrum of main UV/Vis peak, bottom: UV/Vis chromatogram).

SB-Table 3: Peak list of UV/Vis chromatogram for purity analysis of 9b-1.

Apex RT	Start RT	End RT	Area	%Area	Height	%Height
0.93	0.84	1.35	5671055.252	61.76	1998212.286	75.87
2.43	2.31	2.61	2818722.123	30.70	484777.726	18.41
2.79	2.70	2.85	264549.408	2.88	42706.931	1.62
2.92	2.86	2.99	427880.252	4.66	107870.408	4.10
SB-Fig.29: LC-MS data of 9b-2 (top: mass chromatogram, middle: mass spectrum of UV/Vis peak, bottom: UV/Vis chromatogram).

SB-Fig.30: LC-MS data of (R)-9s (top: mass chromatogram, middle: mass spectrum of UV/Vis peak, bottom: UV/Vis chromatogram).
SB-Fig.31: LC-MS data of (S)-9s (top: mass chromatogram, middle: mass spectrum of main UV/Vis peak, bottom: UV/Vis chromatogram).

SB-Table 4: Peak list of UV/Vis chromatogram for purity analysis of (S)-9s.

Apex RT	Start RT	End RT	Area	%Area	Height	%Height
2.82	2.78	2.95	49126.895	1.04	10493.928	2.11
3.38	3.25	3.75	4672597.072	98.96	486172.558	97.89

SB-Fig.32: LC-MS data of 12b (top: mass chromatogram, middle: mass spectrum of main UV/Vis peak, bottom: UV/Vis chromatogram).
SB-Table 5: Peak list of UV/Vis chromatogram for purity analysis of 12b.

Apex RT	Start RT	End RT	Area	%Area	Height	%Height
2.24	2.12	2.50	1678611.788	91.09	350247.991	90.11
2.83	2.76	2.90	947563.08	5.14	24123.759	6.21
2.95	2.91	3.03	69338.978	3.76	14315.320	3.68

SB-Table 6: Peak list of UV/Vis chromatogram for purity analysis of 12s.

Apex RT	Start RT	End RT	Area	%Area	Height	%Height
4.18	4.09	4.55	979004.637	98.34	195111.321	97.85
4.73	4.70	4.81	16529.825	1.66	4295.881	2.15

SB-Fig.33: LC-MS data of 12s (top: mass chromatogram, middle: mass spectrum of main UV/Vis peak, bottom: UV/Vis chromatogram).
4.2.2 Purity analyses of commercial compounds

SB-Fig.34: LC MS data of Z15682900 (top: mass chromatogram, middle: mass spectrum of main UV/Vis peak, bottom: UV/Vis chromatogram).

SB-Table 7: Peak list of UV/Vis chromatogram for purity analysis of Z15682900.

Apex RT	Start RT	End RT	Area	%Area	Height	%Height
3.27	3.21	3.39	22131.608	3.85	4910.965	4.77
4.02	3.97	4.12	6018.691	1.05	1120.822	1.09
4.50	4.38	4.77	537914.502	93.60	94987.635	92.21
5.40	5.34	5.51	8618.649	1.50	1998.097	1.94
SB-Fig.35: LC-MS data of T6092069 (top: mass chromatogram, middle: mass spectrum of main UV/Vis peak, bottom: UV/Vis chromatogram).

SB-Table 8: Peak list of UV/Vis chromatogram for purity analysis of T6092069.

Apex RT	Start RT	End RT	Area	%Area	Height	%Height
3.61	3.55	3.81	59172.816	3.74	9831.828	8.41
4.15	4.03	4.66	1525044.130	96.26	107108.906	91.59
SB-Fig.36: LC-MS data of Z46486286. (top: mass chromatogram, middle: mass spectrum of main UV/Vis peak, bottom: UV/Vis chromatogram).

SB-Table 9: Peak list of UV/Vis chromatogram for purity analysis of Z46486286.

Apex RT	Start RT	End RT	Area	%Area	Height	%Height
3.39	3.26	3.69	446142.831	98.66	70256.712	98.45
4.03	3.98	4.12	3261.649	0.72	648.641	0.91
5.56	5.49	5.66	2816.670	0.62	457.245	0.64
SB-Fig.37: LC-MS data of Z14490688. (top: mass chromatogram, middle: mass spectrum of UV/Vis peak, bottom: UV/Vis chromatogram).
4.3 HRMS data

SB-Fig.38: HRMS spectra of 3s (top: measured spectrum, middle and bottom: calculated spectra).

SB-Fig.39: HRMS spectra of 5s (top: measured spectrum, bottom: calculated spectrum).
SB-Fig.40: HRMS spectra of 9d (top: measured spectrum, bottom: calculated spectrum).

SB-Fig.41: HRMS spectra of (R)-9s (top: measured spectrum, middle and bottom: calculated spectra).
SB-Fig.42: HRMS spectra of (S)-9s (top: measured spectrum, middle and bottom: calculated spectra).

SB-Fig.43: HRMS spectra of 12s (top: measured spectrum, bottom: calculated spectrum).
5. List of Figures

SB-Fig.1: 1H NMR spectrum of 3b in DMSO-d$_6$ at 500 megahertz (MHz). .. 13
SB-Fig.2: 13C NMR spectrum of 3b in DMSO-d$_6$ at 126 MHz .. 14
SB-Fig.3: 1H NMR spectrum of 3s recorded in DMSO-d$_6$ at 500 MHz .. 14
SB-Fig.4: 13C NMR spectrum of 3s recorded in DMSO-d$_6$ at 126 MHz ... 15
SB-Fig.5: HMQC-2D spectrum of 3s recorded in DMSO-d$_6$.. 15
SB-Fig.6: 1H NMR spectrum of 5b recorded in CDCl$_3$ at 500 MHz .. 16
SB-Fig.7: 13C NMR spectrum of 5b recorded in CDCl$_3$ at 126 MHz .. 16
SB-Fig.8: 1H NMR spectrum of 5s recorded in CDCl$_3$ at 500 MHz .. 17
SB-Fig.9: 13C NMR spectrum of 5s recorded in CDCl$_3$ at 126 MHz .. 17
SB-Fig.10: 1H NMR spectrum of 9b-1 recorded in CDCl$_3$ at 500 MHz ... 18
SB-Fig.11: 13C NMR spectrum of 9b-1 recorded in CDCl$_3$ at 126 MHz ... 18
SB-Fig.12: 1H NMR spectrum of 9b-2 recorded in CDCl$_3$ at 500 MHz ... 19
SB-Fig.13: 13C NMR of 9b-2 recorded in CDCl$_3$ at 126 MHz .. 19
SB-Fig.14: 1H NMR spectrum of 9d recorded in acetone-d$_6$ at 500 MHz .. 20
SB-Fig.15: 13C NMR of 9d recorded in acetone-d$_6$ at 126 MHz .. 20
SB-Fig.16: 1H NMR spectrum of (R)-9s recorded in CDCl$_3$ at 500 MHz .. 21
SB-Fig.17: 13C NMR spectrum of (R)-9s recorded in CDCl$_3$ at 126 MHz .. 21
SB-Fig.18: 1H NMR spectrum of (S)-9s recorded in DMSO-d$_6$ at 500 MHz 22
SB-Fig.19: 13C NMR spectrum of (S)-9s measured in DMSO-d$_6$ at 126 MHz 22
SB-Fig.20: 1H NMR spectrum of 12b measured in DMSO-d$_6$ at 500 MHz .. 23
SB-Fig.21: 13C NMR spectrum of 12b measured in DMSO-d$_6$ at 126 MHz .. 23
SB-Fig.22: 1H NMR spectrum of 12s measured in CDCl$_3$ at 500 MHz ... 24
SB-Fig.23: 13C NMR spectrum of 12s measured in CDCl$_3$ at 126 MHz ... 24
SB-Fig.24: LC-MS data of 3b (top: mass chromatogram, middle: mass spectrum of UV/Vis peak, bottom: UV/Vis chromatogram) .. 25
SB-Fig.25: LC-MS data of 3s (top: mass chromatogram, middle: mass spectrum of UV/Vis peak, bottom: UV/Vis chromatogram) .. 26
SB-Fig.26: LC-MS data of 5b (top: mass chromatogram, middle: mass spectrum of UV/Vis peak, bottom: UV/Vis chromatogram) .. 26
SB-Fig.27: LC-MS data of 5s (top: mass chromatogram, middle: mass spectrum of main UV/Vis peak, bottom: UV/Vis chromatogram) .. 27
SB-Fig.28: LC-MS data of 9b-1 (top: mass chromatogram, middle: mass spectrum of main UV/Vis peak, bottom: UV/Vis chromatogram) .. 28
SB-Fig.29: LC-MS data of 9b-2 (top: mass chromatogram, middle: mass spectrum of UV/Vis peak, bottom: UV/Vis chromatogram) .. 29
SB-Fig.30: LC-MS data of (R)-9s (top: mass chromatogram, middle: mass spectrum of UV/Vis peak, bottom: UV/Vis chromatogram) .. 29
SB-Fig.31: LC-MS data of (S)-9s (top: mass chromatogram, middle: mass spectrum of main UV/Vis peak, bottom: UV/Vis chromatogram) .. 30
SB-Fig.32: LC-MS data of 12b (top: mass chromatogram, middle: mass spectrum of main UV/Vis peak, bottom: UV/Vis chromatogram) .. 30
SB-Fig.33: LC-MS data of 12s (top: mass chromatogram, middle: mass spectrum of main UV/Vis peak, bottom: UV/Vis chromatogram) .. 31
SB-Fig.34: LC MS data of 5s recorded in DMSO-d$_6$ at 126 MHz .. 17
SB-Fig.35: 1H NMR spectrum of 5s recorded in DMSO-d$_6$ at 500 MHz .. 17
SB-Fig.36: 13C NMR spectrum of 5b recorded in CDCl$_3$ at 126 MHz .. 18
SB-Fig.37: 1H NMR spectrum of 9b-1 recorded in CDCl$_3$ at 500 MHz .. 18
SB-Fig.38: HRMS spectra of 3s (top: measured spectrum, middle and bottom: calculated spectra) 36
SB-Fig.39: HRMS spectra of 5s (top: measured spectrum, bottom: calculated spectrum) 36
SB-Fig.40: HRMS spectra of 9d (top: measured spectrum, bottom: calculated spectrum) 37
SB-Fig.41: HRMS spectra of (R)-9s (top: measured spectrum, middle and bottom: calculated spectra) 37
6. List of Tables

SB-Table 1: Peak list of UV/Vis chromatogram for purity analysis of 3b. ... 25
SB-Table 2: Peak list of UV/Vis chromatogram for purity analysis of 5s. ... 27
SB-Table 3: Peak list of UV/Vis chromatogram for purity analysis of 9b-1. ... 28
SB-Table 4: Peak list of UV/Vis chromatogram for purity analysis of (S)-9s. ... 30
SB-Table 5: Peak list of UV/Vis chromatogram for purity analysis of 12b. ... 31
SB-Table 6: Peak list of UV/Vis chromatogram for purity analysis of 12s. ... 31
SB-Table 7: Peak list of UV/Vis chromatogram for purity analysis of Z15682900. .. 32
SB-Table 8: Peak list of UV/Vis chromatogram for purity analysis of T6092069. .. 33
SB-Table 9: Peak list of UV/Vis chromatogram for purity analysis of Z46486286. .. 34

7. Supplementary References

1. Cheng C, Liu Z, Shen L et al. Synthesis and spectral properties of triazine-based dendritic dithienylethenes. *Journal of Chemical Research* 2011; 35: 282-7.
2. Harty RNF, Bruce D.; Wrobel, Jay E.; Reitz, Allen B.; Loughran, H. Marie Novel antiviral compounds and methods using same cross-reference to related applications., 2015.
3. Singh RB, Singh GK, Chaturvedi K et al. Design, synthesis, characterization, and molecular modeling studies of novel oxadiazole derivatives of nipecotic acid as potential anticonvulsant and antidepressant agents. *Medicinal Chemistry Research* 2018; 27: 137-52.
4. Orfi L, Waczek F, Pato J et al. Improved, High Yield Synthesis of 3H-Quinazolin-4-ones, the Key Intermediates of Recently Developed Drugs. *Current Medicinal Chemistry* 2004; 11: 2549-53.
5. Li F, Feng Y, Meng Q et al. An efficient construction of quinazolin-4 (3H)-ones under microwave irradiation. *Arkivoc* 2007; 1: 40-50.
6. Lee NK, Lee, Jun Won, Lee, Sukho, Im, Guang-jin, Han, Hye Young, Kim, Tae Kon, Kim, Yong Hyuk, Kwak, Wie-jong, Kim, Sang Woong, Ha, Joohun, Kim, Eon Kyum, Lee, Jung Kyu, Yoo, Choong Yeul, Lee, Dae Yeon. Quinazoline derivatives for the treatment and prevention of diabetes and obesity. United States: SK CHEMICALS CO., LTD. (Suwon-si, KR),LEADGENEX INC. (Daejeon, KR),INDUSTRY ACADEMIC COOPERATION FOUNDATION OF KYUNGHEE UNIVERSITY (Yongsin-si, KR), 2008.
7. Fortin JS, Lacroix J, Desjardins M et al. Alkylation potency and protein specificity of aromatic urea derivatives and bioisosteres as potential irreversible antagonists of the colchicine-binding site. *Bioorg Med Chem* 2007; 15: 4456-69.
8. Yang G, Xu L, Lu A. Synthesis and bioactivity of novel triazolo [1, 5-a] pyrimidine derivatives [3]. *Heteroatom Chemistry: An International Journal of Main Group Elements* 2001; 12: 491-6.