gp74 a Membrane Glycoprotein of the cis-Golgi Network that Cycles through the Endoplasmic Reticulum and Intermediate Compartment

Jose Alcalde, Gustavo Egea,* and Ignacio V. Sandoval

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain; and *Departamento de Biología Celular y Anatomía Patológica, Facultad de Medicina, Universidad de Barcelona, Departamento de Inmunología, Instituto Municipal de Investigación Médica, Barcelona, Spain

Abstract. A monoclonal antibody CC92 (IgM), raised against a fraction of rat liver enriched in Golgi membranes, recognizes a novel Endo H-resistant 74-kD membrane glycoprotein (gp74). The bulk of gp74 is confined to the cis-Golgi network (CGN). Outside the Golgi gp74 is found in tubulovesicular structures and ER foci. In cells incubated at 37°C the majority of gp74 is segregated from the intermediate compartment (IC) marker p58. However, in cells treated with organelle perturbants such as low temperature, BFA, and [AIF₄]⁻ the patterns of the two proteins become indistinguishable. Both proteins are retained in the Golgi complex at 20°C and in the IC at 15°C. Incubation of cells with BFA results in relocation of gp74 to p58 positive IC elements. [AIF₄]⁻ induces the redistribution of gp74 from the Golgi to p58-positive vesicles and does not retard the translocation of gp74 to IC elements in cells treated with BFA. Disruption of microtubules by nocodazol results in the rapid disappearance of the Golgi elements stained by gp74 and redistribution of the protein into vesicle-like structures. The responses of gp74 to cell perturbants are in sharp contrast with those of cis/middle and trans-Golgi resident proteins whose location is not affected by low temperatures or [AIF₄]⁻, are translocated to the ER upon addition of BFA, and stay in slow disintegrating Golgi elements in cells treated with nocodazol. The results suggest that gp74 is an itinerant protein that resides most of the time in the CGN and cycles through the ER/IC following the pathway used by p58.

Structure and function are intimately interrelated in the intricate machinery that is the Golgi complex (Farquhar and Palade, 1981; Dunphy and Rothman, 1985; Kornfeld and Kornfeld, 1985; Griffiths and Simons, 1986; Mellman and Simons, 1992). Recent results have provided new insights on how the Golgi complex is organized and functions. At least three compartments appear to constitute the Golgi complex: the cis-Golgi network (CGN), the stack of cisternae, and the TGN (see the reviews by Rothman and Orci, 1992; and Mellman and Simons, 1992). The CGN appears to consist of the cis-most cisterna associated with an array of tubules (Lindsey and Ellisman, 1985; Rambourg and Clermont, 1990) and is the Golgi subcompartment involved in receiving and sorting newly synthesized proteins from the ER (Palade, 1975; Pfeffer and Rothman, 1987). In most cells it also appears to be involved in the recycling of proteins and lipids to the ER (Pelham, 1988, 1989; Dean and Pelham, 1990; Pelham, 1991), the addition of the first N-acetylgalactosamine residues to O-linked oligosaccharides (Tooze et al., 1988), the phosphorylation of lysosomal enzymes (Palham, 1988), and the fatty acylation of membrane proteins (Rizzolo and Kornfeld, 1988; Bonatti et al., 1989). The material transported from the ER arrives at the CGN via the intermediate compartment (IC) (Schweizer et al., 1988, 1990). The IC appears to be formed by a complex network of tubules that covers large areas of the cytoplasm. However, the nature of the IC remains controversial and it is not clear whether it is a distinct organelle interposed between the ER and the Golgi complex (Schweizer et al., 1991; Clermont, 1990) and is the Golgi subcompartment involved in receiving and sorting newly synthesized proteins from the ER (Palade, 1975; Pfeffer and Rothman, 1987). In most cells it also appears to be involved in the recycling of proteins and lipids to the ER (Pelham, 1988, 1989; Dean and Pelham, 1990; Pelham, 1991), the addition of the first N-acetylgalactosamine residues to O-linked oligosaccharides (Tooze et al., 1988), the phosphorylation of lysosomal enzymes (Pelham, 1988), and the fatty acylation of membrane proteins (Rizzolo and Kornfeld, 1988; Bonatti et al., 1989). The material transported from the ER arrives at the CGN via the intermediate compartment (IC) (Schweizer et al., 1988, 1990). The IC appears to be formed by a complex network of tubules that covers large areas of the cytoplasm. However, the nature of the IC remains controversial and it is not clear whether it is a distinct organelle interposed between the ER and the Golgi complex (Schweizer, A., G. Griffiths, T. Bach, and H. P. Hauri. 1991. J. Cell Biol. 374:65a; Plutner et al., 1992) or if it is formed by the collection of ER outposts (i.e., transitional elements) involved in the exchange of materials with the Golgi complex (Hauri and Schweizer, 1992). The CGN and the ER/IC are connected

© The Rockefeller University Press, 0021-9525/94/03/649/17 $2.00
The Journal of Cell Biology, Volume 124, Number 5, March 1994 649-665 649
by vesicular organelles that shuttle and transport materials between the two (Palade, 1975).

Much remains to be understood on how the CGN and the IC are organized, function, and interact. Since organelles, as well as their subcompartments are defined by specific protein frameworks, our understanding of the structure and function of the CGN and the IC requires the characterization of their protein components to enable the study of their distribution and organization. This is presently limited by the paucity of accepted marker proteins (Hauri and Schweizer, 1992). Some studies have recently been reported with a few markers: the rat IC component p58 (Saraste et al., 1987; Saraste and Svensson, 1991) and its human homolog (Lahtinen et al., 1992) p53 (Schweizer et al., 1988, 1990); the KDEL receptor (Lewis and Pelham, 1992; Tang et al., 1993) and the small GTP-binding proteins rab2 (Chavrier et al., 1990); and rabbp (Plutner et al., 1991).

Here we report the characterization of a novel membrane protein, gp74, the bulk of which resides predominantly in the Golgi and the ER/IC along the same pathway used by the IC marker p58. The responses of gp74 distribution to organelle perturbants such as BFA, low temperature, [AIF-] and nocodazole reveals the dynamics, morphology, and functional connections of a pathway between the CGN, the IC, and ER.

Materials and Methods

Cell Cultures

NRK (Normal rat kidney) cells were grown on plastic Petri dishes or glass coverslips, in 90% DME, 10% FCS, 10 mM morpholinoethane-sulfonic acid, 2 mM glutamine and antibiotics (50 U/ml penicillin; 50 μg/ml streptomycin) at 37°C (or room temperature), in an atmosphere of 93% air, 7% CO2, and 85% humidity. When required the cells were incubated with BFA, low temperature, [AIF-] and nocodazole.

Antibodies and Other Protein Probes

mAb CC92 was an IgM raised in a mouse injected with 0.1 M Na2CO3 treated membranes from a rat liver fraction enriched in the Golgi complex (Yuan et al., 1987). The development of mouse mAbs and rabbit polyclonal antibodies (pAb) to integral membrane proteins from the cis/middle (GMPc) and trans-Golgi (GMPt) has been previously reported (Yuan et al., 1987; Alcalde et al., 1992). The pAb to the IC marker p58 (Saraste et al., 1987) and the rat mAb to tubulin (Kilmartin et al., 1982) were gifts of Drs. Saraste (University of Bergen, Bergen, Germany) and Kilmartin (Laboratory of Molecular Biology, MRC, Cambridge, UK), respectively.

The pAb to the ER marker PDI (Lambert and Freedman, 1985) was a gift of Dr. Castaño (Instituto de Investigaciones Biomedicas, CSIC, Madrid, Spain). The mAb C4 to the Tn epitope (GnNAcα-O-Ser-Thr) (Tkachakshi et al., 1988) was a gift of Dr. S. I. Hakomori (The Biomembrane Institute, Seattle, WA). The pAb to mannosidase II (Moremen and Touster, 1985) was a gift of Dr. M. Baron (Center for Biotechnology, Karolinska Institute, Huddinge, Sweden). Limax flavus agglutinin (LPA) was from Calbiochem-Novabiochem Corp. (La Jolla, CA). Protein A was from Pharmacia (Lund, Sweden). Rhodamine and fluorescein-conjugated rabbit anti-mouse IgG + IgM (RAM) pAb was from Dako (Dako, Glostrup, Denmark). Rabbit anti-mouse IgG and IgM pAbs conjugated to gold were from BioCell (Cardiff, UK). Biotin-conjugated goat anti-rabbit IgG + IgM (RAM) pAb and fluorescein-conjugated streptavidin were from Boehringer Mannheim Biochemicals (Indianapolis, IN) and were used to stain p58 (Lahtinen et al., 1992).

Characterization of gp74

Incubation of NRK extracts, metabolically labeled with [35S]methionine, with antibody CC92, did not immunoprecipitate any protein and the antibody failed also to react with proteins from either rat liver or NRK extracts resolved by SDS-PAGE and blotted onto nitrocellulose. The identification of gp74 was thus achieved by photoaffinity labeling using sulfosuccinimidyl 2-(p-sulfo-α-ethyl-amido)ethyl-111-dithiopropionate (SASD) (Tae and Ji, 1982) attached to mAb CC92. Briefly, 5.5 μg of the photoaffinity reagent SASD (Pierce, Rockford, IL) was labeled with 0.5 mCi [35S] to a maximal specific activity of 5 x 106 Ci/mmol and conjugated to 36 μg of CC92 antibody, according to the manufacturer instructions. NRK cells, grown to 90% confluence in a 100 mm dish were fixed-permeabilized for 5 s with 90% methanol, at room temperature, to permeabilize the cells without irreversible fixation of the proteins. The fixed-permeabilized cells were then incubated for 1 h at 37°C in the dark with the [35S]-SASD-antibody conjugate in PBS, in the absence or presence of a 200-fold molar excess of unconjugated CC92 antibody. After thorough washing of the cells with PBS, the SASD was photoactivated for 15 min at a wavelength between 244-366 nm. The [35S]-SASD antibody conjugate covalently bound to the protein was reduced for 30 min at 37°C with 50 mM DTT in PBS, washed quickly twice with PBS, and incubated with 250 μl of 10 μg/ml RNAse, 10 μg/ml RNase in PBS at 30 min at 37°C. Finally, the cells were harvested, and boiled for 20 min in the RNAse/DNAse solution adjusted to contain 2% SDS, 0.1 M DTT, 1 mM PMSF, 1 μg/ml leupeptin, 1 μg/ml chymotain, 1 μg/ml aprotinin, 125I-labeled proteins were analyzed by SDS-PAGE. Identical experiments were also performed with [35S]-SASD-conjugated F(ab′)2 CC92 fragments. These F(ab′)2 fragments were produced by incubating purified CC92 with pepsin (Boehringer Mannheim Biochemicals), at a w/w ratio of 25/1, in 35 mM sodium acetate/150 mM NaCl, for 24 h at 4°C; the fragments were separated from unconverted CC92 antibody gel filtration on a column of Superose (Pharmacia, FPLC) and 0.26 mmol coupling to 16 nmol [35S]SASD as described above.

Protein electrophoresis, autoradiography, and glycoprotein analysis were performed as previously described (Barriocanal et al., 1986). Studies on the partition of gp74 between the Triton X-114 and aqueous phases were performed as described (Bordi, 1981).

Immunofluorescence Microscopy

Single and double immunofluorescence microscopy studies were performed on NRK cells as described (Barriocanal et al., 1986; Yuan et al., 1987; Lahtinen et al., 1992).

Immunoelectron Microscopy

Monodisperse colloidal gold particles with average diameters of 15, 8, or 10 nm were prepared as described (Frens, 1973; Slot and Geuze, 1985) and conjugated to protein A (Roth, 1982) and fetuin (Roth et al., 1984) as reported. Male Sprague-Dawley rats were anesthetized, perfused with buffered iced saline solution and then for 20 min with 0.1 M phosphate buffer (pH 7.4) containing either 4% paraformaldehyde, or 4% paraformaldehyde/0.05% glutaraldehyde. Duodenum, distal, and proximal colon were quickly excised, cut into small pieces, and immersed in the respective fixatives for 2 h at room temperature. NRK cells were cooled on ice, washed with either ice-cold 0.1 M sodium cacodylate, pH 7.2, or 0.2 M Hapes, pH 7.2, detached from the culture dishes by digestion with 25 μg/ml proteinase K, in 0.1 M cacodylate, pH 6.9, containing 1% SDS, 0.1 M DTT, 1 mM PMSF, 1 μg/ml leupeptin, 1 μg/ml chymostain, 1 μg/ml aprotinin. 125I-labeled proteins were analyzed by SDS-PAGE. The fixed specimens were embedded in Lowicryl K4M at −35°C (Carlemalm et al., 1982), and postembedding immunogold labeling done on either Lowicryl K4M ultrathin sections (Roth, 1982) or ultrathin cryosections (Slot and Geuze, 1985).

Single Labeling with mAbs or pAb. Thin sections were floated on drops of PBS for 10 min, at room temperature, and then incubated for 2 h at room temperature, or overnight at 4°C, on small droplets of mAbs in PBS, or sera in PBS/1% skim milk. After rinsing twice with PBS, sections were incubated with mAbs for 45 min at room temperature with 25 μg/ml affinity-purified RAM IgG + IgM in PBS/0.1% Tween 20. Sections incubated with RAM or with 15C8 antiserum were floated for 1 h at room temperature on a droplet of protein A-gold (15 nm) OD280 = 0.4) in PBS (PBS/1% BSA/0.05% Triton X-100/0.075% Tween 20), washed twice with PBS, once with distilled water, and air dried.

Double Labeling with Limax flavus Lectin and mAbs to Tn and gp74. The first labeling reaction was performed with the lectin, according to the two step cytochemical procedure described by Roth et al. (1984); briefly, sections were floated on a droplet of PBS and then transferred to a droplet
of LPA (75-100 μg/ml in PBS), washed and incubated with fetuin-gold (8 nm) (OD_{254} = 0.3) in PBS for 30 min. The labeled sections were rinsed twice in PBS, floated on 1% glutaraldehyde in PBS for 15 min, washed again in PBS, and laid onto a drop of 50 mM of ammonium chloride in PBS for 60 min to block free aldehyde groups.

Following two more washes in PBS, the sections were incubated with the corresponding mAbs, either anti-Tn or anti-gp74, which were labeled with RAM and then with protein A-gold (15 nm).

Double Labeling with Antibodies. For double labeling with mAbs Cu-1 and CC92, the tissue sections were incubated first with mAb Cu-1 and then with RAM IgG-gold (10 nm) diluted to 1/10 or 1/20 in PBS. The sections were fixed with 1% glutaraldehyde, and free aldehyde groups quenched with ammonium chloride (50 mM in PBS) before incubation with mAb CC92 and, subsequently, with RAM IgM (15 nm) diluted 1/10-1/20 in PBS. For double labeling with either anti-GMP~+~1 or anti-PDI serum and mAb CC92, the sections were incubated first with either serum, labeled with protein A-gold (10 nm), fixed with glutaraldehyde, and quenched with ammonium chloride before incubation with mAb CC92. Labeling of mAb CC92 was visualized directly using RAM IgM-gold (15 nm) or RAM followed by protein A-gold. For double labeling with anti-p58 serum and mAb CC92 the sections were incubated first with the antibody to p58, labeled with goat anti-rabbit IgG-gold (15 nm), fixed with glutaraldehyde, and quenched with ammonium chloride, before incubation with mAb CC92 and subsequently with RAM IgM-gold (10 nm).

All the gold-labeled sections were air-dried and stained in 3% uranyl acetate for 6 min and with 1% lead citrate for 45 s in a nitrogen atmosphere, before viewing in a Philips 301 electron microscope at 60 KV electron acceleration voltage.

Other Procedures.

The metabolic labeling of NRK cells, preparation of cell extracts, immunoprecipitations, gel electrophoresis, and immunoblotting were performed as previously described (Bonifacino et al., 1985; Barriocanal et al., 1986; Alcalde et al., 1992). The time courses of the redistribution of gp74, p58, GMP~+~1, GMP~−~1 in response to BFA, [AIF4]−, and to the Golgi integral membrane proteins GMP~+~1 (comprised as previously described (Bonifacino et al., 1985; Barriocanal et al., 1986; Alcalde et al., 1992). The time courses of the redistribution of gp74, p58, GMP~+~1, GMP~−~1 in response to BFA, [AIF4]−, low temperature, and nocodazol, were studied by quantifying the effects of the drugs on groups of 100 cells stained and studied by immunofluorescence microscopy.

Other Reagents.

Tetrachloroauric acid, trisodium citrate, polyethylene glycol (20,000 mol wt), paraformaldehyde, Tween 20, ammonium chloride, aluminium chloride, and sodium fluoride were from Merck (Darmstadt, FRG); glutaraldehyde (25% in water) was from Fluka (Buchs, Switzerland); Triton X-114 and fetuin were from Sigma.

Results.

Antibody CC92 Recognizes a 74-kD Membrane Glycoprotein.

Since antibody CC92 failed to immunoprecipitate or react with the antigen on immunoblots, the characterization of the antigen was achieved by photoaffinity labeling using [125I]-labeled SASD conjugated to the CC92 antibody. When [125I]-labeled SASD antibody was incubated with cells fixed-permeabilized with methanol at room temperature for 5 s, a 74-kD protein (gp74) was radio-labeled (Fig. 1, lane 1). The specificity of the reaction was shown by the lack of labeling when the incubation was performed in the presence of a 200-fold molar excess of unconjugated antibody (Fig. 1, lane 2) but not by excess of an unrelated IgM (not shown). The same protein was labeled by [125I]-labeled SASD-CC92 (Fab)2 fragments (Fig. 1, lane 5) and the reaction again was inhibited by performing the incubation in the presence of a 200-fold molar excess of unconjugated CC92 antibody (lane 6). The weaker reaction of gp74 with [125I]-labeled SASD-CC92 (Fab)2 fragments than with intact [125I]-labeled SASD-CC92 IgM, is probably due to the more extensive cross-linking and consequent inactivation of the fragments by SASD as suggested by the weaker fluorescent staining of cells incubated with CC92 (Fab)2 treated with SASD (not shown). This might explain the presence of a strong 47-kD band (Fig. 1, lanes 5 and 6) which showed the molecular weight expected for IgM (Fab)2 fragments produced by pepsin digestion (Pascual and Clem, 1992) and comigrated with [125I]-labeled SASD-CC92 Fab (Fab)2-conjugated fragments (not shown).

Analysis of the sensitivity of gp74 to endo H and N-glycanase digestion revealed that the protein contained fewer N-linked high-mannose residues than complex N-linked carbohydrates (Fig. 1, lanes 3 and 4). The polypeptide backbone had an apparent molecular weight of 34 kD, indicating a surprisingly high number of complex carbohydrates in gp74 (see Discussion). Finally, incubation of gp74 with Triton X-114 at 37°C (Bordier, 1981) resulted in complete partitioning of the protein into the detergent phase (Fig. 1, compare lanes 7 and 8), indicating that gp74 was a membrane glycoprotein.

gp74 Is Localized in the Golgi Complex and Punctate Structures Clustered in the Golgi Area.

NRK cells fixed-permeabilized with cold (−20°C) methanol, when incubated with the antibody to gp74 displayed the fluorescence pattern shown in Fig. 2 A. There was an intense staining of a large reticulum, located at one of the poles of the nucleus, and numerous punctate structures distributed in its vicinity. The reticulum was identified as part of the Golgi complex by double staining of cells with antibodies to gp74 and to the Golgi integral membrane proteins GMP~+~1 (compare Fig. 2, A and B) and GMP~−~1 (not shown). As expected
Cellular distribution of gp74. NRK cells double stained with antibodies to gp74 (A) and GMPc-~ (B), to gp74 (C) and PDI (D) and to gp74 (E) and p58 (F). Note the staining of the Golgi reticulum and punctate structures by gp74, the localization of the Golgi to the area of partial ER (i.e., PDI) exclusion and the different distributions of gp74 and p58. Bars, 15 μm.

Fig. 2. Cellular distribution of gp74. NRK cells double stained with antibodies to gp74 (A) and GMPc-~ (B), to gp74 (C) and PDI (D) and to gp74 (E) and p58 (F). Note the staining of the Golgi reticulum and punctate structures by gp74, the localization of the Golgi to the area of partial ER (i.e., PDI) exclusion and the different distributions of gp74 and p58. Bars, 15 μm.

for the Golgi, the reticulum was located in the area of partial ER exclusion as seen in cells double stained for gp74 and the ER marker protein disulphide isomerase (see Fig. 2, C and D). Moreover, the distribution of gp74 was markedly different from that of the IC marker p58 which stained a granuloreticular structure which was spread beyond the Golgi area (Saraste and Svensson, 1991) and stained the Golgi complex with less intensity than gp74 (Fig. 2, compare E and F).

EM Studies Localizes gp74 to the cis-most Golgi, Smooth Tubulo-vesicular Structures and Discrete Zones of the ER

The localization of gp74 within the Golgi complex was studied at the ultrastructural level on intestinal goblet cells, which display a highly polarized Golgi complex between a well developed ER, on the cis side, and clusters of mucin droplets, on the trans side. The polarization of the Golgi complex was demonstrated by the complete segregation of simple O-linked glycans (GalNaco-O-Ser/Thr) in the cis-Golgi from sialylated saccharides in the trans-Golgi, in cells double labeled with the mAb Cu-1 (15 nm gold) and Limax flavus lectin (8 nm gold), respectively (Fig. 3 A). The distribution of gp74 within the Golgi complex was localized to a compartment opposite to the trans-Golgi, as demonstrated by the segregation of the antibody to gp74 (15 nm gold) from the Limax flavus lectin (8 nm gold) (Fig. 3 B). Furthermore, gp74 (15 nm gold) showed partial colocalization both with the cis/middle-cisterna marker GMPc-~ (10 nm gold) (Fig. 3 C) and the simple O-linked glycans in the cis-Golgi (not shown). A detailed comparison of the distributions of gp74 and GMPc-~ revealed that gp74 was slightly more cis than GMPc-~ (Table I A). The cisterna housing gp74 was frequently swollen and displayed the fenestrated morphology characteristic of the cis-most cisterna (Fig. 3 B) (Rambourg et al., 1979; Rambourg and Clermont, 1990). The data was consistent with the accumulation of gp74 in the cis-most Golgi (i.e., CGN).

In NRK cells gp74 also accumulated in the cis side of the Golgi (Fig. 4 A). The distribution of gp74 outside the Golgi complex was further studied by EM in these cells also labeled for the ER marker protein disulphide isomerase (PDI) and the IC marker p58. The studies, performed in the absence and presence of cycloheximide (not shown), showed that gp74 was localized in clusters at discrete and separate ER foci (Figs. 4, B and G), as well as in long tubules (Fig. 4, D and E) and 50–60 nm vesicles (Fig. 4 F). The areas of ER (Fig. 4 B) and some of the tubules and vesicles labeled with gp74 were frequently found to contain PDI (Fig. 4 C, E, and F). Moreover, gp74 overlapped partially with the IC marker p58 in the ER foci (Fig. 4, G and H) and in electrulcent pleomorphic structures with a light electrondense core (Fig. 4 I). A quantitative analysis of the gp74 and p58 distributions indicated a preferent localization of gp74 in the Golgi and of p58 in the ER (Table I B).

Changes in gp74 and p58 Distributions with Temperature Shifts

The concentration of gp74 in the CGN and its presence in ER and tubulovesicular structures suggested the possibility that gp74 was a protein that cycled between the Golgi complex and the ER. Furthermore, the partial overlapping between the distributions of gp74 and the IC marker p58 suggested that the two proteins may use the same pathway of cycling. To test this possibility, the distributions of gp74 and p58 were compared in cells incubated at 37, 20, and 15°C, temperatures that alter the transport through the exocytic pathway (Saraste et al., 1986; Kuusmanen and Saraste, 1989;...
Figure 3. Localization of gp74 within the Golgi complex. Lowicryl sections of rat goblet cells. (A) Labeling of the cis (antibody to Tn antigen, 15 nm gold), and trans (sialic acid residues labeled with Limax flavus lectin/fetuin, 8 nm gold) sides of the Golgi complex. (B) Segregation of gp74 (antibody CC92, 15 nm gold) and sialic acid residues (Limax flavus lectin/fetuin, 8 nm gold). (C) Distribution of gp74 (antibody CC92, 15 nm gold) and GMPc-1 (antibody 15C8, 10 nm gold), respectively. Note the slightly cis localization of gp74 (arrowheads) with respect to GMPc-1 (arrows). (D) Distribution of gp74 (antibody CC92, 10 nm gold, small arrows) and p58 (antibody to p58, 15 nm gold, large arrows): note the similar location of both antigens and their segregation into different clusters. (E) Distribution of p58 throughout the cis-Golgi (arrowheads) and ER cisternae. G, Golgi complex; M, mucin droplets; mt, mitochondria; N, nucleus; PM, plasma membrane. RER, rough endoplasmic reticulum. Bars, 0.5 μm.
Figure 4. Localization of gp74 outside the Golgi complex. Lowicryl sections of NRK cells (A–C, G–I) and ultra-thin cryosections of rat enterocytes (D–F) labeled for gp74 (A–C, G–I, 10 nm gold; D–F, 15 nm gold), PDI (A–C, 15 nm gold; E and F, 10 nm gold) and p58 (G–I, 15 nm gold). (A) Note the clusters of gp74 and PDI in the cis side of the Golgi (G). (B and C) Observe the foci distribution of gp74 clusters through the ER cisternae labeled with PDI (arrows). (D and E) Clustering of gp74 within long tubules that contain PDI (E, arrows). (F) Vesicle labeling by gp74 and PDI (arrow). Labeling of ER cisternae (G), sacks (H; arrows mark the contour of tubules ending in a sack) and a pleomorphic electrolucent structure (I) by clusters of gp74 and p58 (arrows) and gp74 alone (arrowheads). Bars: (A–F, H and I) 200 nm; (B and G) 500 nm.

Schweizer et al., 1990). Comparison of cells incubated at 37°C with cells incubated at 20°C revealed no significant effect of the low temperature on the gp74 distribution (compare Figs. 2 E and 5 A). In contrast, the incubation at 20°C resulted in a dramatic accumulation of p58 in the Golgi complex (compare Fig. 5 B with Figs. 2 F and 5 A). However, in cells incubated at 15°C, gp74 was found to stain less the Golgi complex and to overlap more extensively with p58 than at 37°C (Fig. 5, compare C to F). The distribution of gp74 at 15°C was similar to that of p58 in cells incubated at 37°C, as shown also by EM studies that localized the two proteins in ER foci and electrolucent pleomorphic vesicles (data not shown). Finally, the change in gp74 distribution was also in contrast with the insensitivity of the resident cis-Golgi protein, GMPc2, to incubation at 15°C temperature (Fig. 5 G).

The results identified gp74 as a putative itinerant Golgi protein. They suggested that at 20°C transport from the Golgi to the IC was slowed down resulting in the retention of p58 in the Golgi, and at 15°C transport from the IC to
Table 1. Comparison of the Distributions of gp74, the cis-Golgi Markers GMPc-t and Tn, and the IC Marker p58 through the Golgi and ER

Antigen	-1	+1	+2	+3	+4	+5
gp74	26 ± 2	30 ± 3	18 ± 2	5 ± 1	-	-
p58	7 ± 1	11 ± 3	2 ± 1	-	-	-
GMPc-t	4 ± 1	11 ± 1	13 ± 2	2 ± 1	-	-
Tn	30 ± 3	39 ± 4	29 ± 2	8 ± 2	-	-

The distribution of the antigens was studied by counting the gold particles on micrographs from Lowicryl sections of rat goblet cells immunostained as indicated in Fig. 3. (A) Distribution of antigens within the Golgi. Individual Golgi cisternae were numbered in a cis to trans direction from +1 to +5. Position -1 corresponds to gold particles found in pre-Golgi elements adjacent to the cis-most cisterna (+1). (B) Distribution of antigens between the Golgi and the ER in rat goblet cells.

the Golgi was blocked (Schweizer et al., 1990; Saraste and Svensson, 1991) causing the retention of gp74 and p58 in the IC. The codistribution of gp74 and p58 at 20°C and 15°C also suggests that both proteins use the same Golgi-ER/IC cycling pathway.

BFA Induces the Translocation of gp74 to p58 Positive Vesicles

Studies in cells treated with BFA have shown marked differences in the redistribution of cis-Golgi and IC proteins, with the cis-Golgi proteins translocated to the ER (Lippincott-Schwartz et al., 1989; 1990; Doms et al., 1989; Ulmer and Palade, 1989; Reeves and Banting, 1992; Alcalde et al., 1992) and the bulk of p58 retained in what appears to be IC-derived or transport elements (Lippincott-Schwartz et al., 1990; Saraste and Svensson, 1991). The apparent cycling of the Golgi gp74 through the IC made it interesting to study if its response to BFA was influenced by its access to IC elements. In cells treated for 10-15 min with BFA the cis-Golgi marker GMPc-t showed a uniform distribution consistent with its translocation to the ER (Alcalde et al., 1992) (Fig. 6 A). The bulk of gp74 was however found in p58 positive punctate structures scattered throughout the cytoplasmin (Fig. 6, compare B and C). Studies of the BFA-treated cells by EM confirmed the disappearance of the Golgi complex (not shown) and the presence of gp74 in pleomorphic vesicles (average large axis 540 nm) that devoid of the ER marker PDI (Fig. 7, A and B) frequently contained p58 (Fig. 7, C and D). In addition, as in untreated cells, gp74 was also localized in discrete foci within the membrane of swollen ER cisternae (Fig. 7, A and C) (see Discussion).

The Golgi Elements Stained by gp74 and GMPc-t Are Reassembled at Different Rates upon Removal of BFA

A previous study on the reassembly of the Golgi complex in cells pretreated with BFA has shown that the removal of the drug was followed by the rapid translocation of GMPc-t from the ER into vesicle-like structures, but that reassembly of the cis-Golgi was a much slower process that required nearly 1 h (Alcalde et al., 1992). The different redistribution of gp74 and GMPc-t in response to BFA and the EM observation that gp74 and GMPc-t are probably in distinct cis-Golgi compartments made it interesting to compare the reassembly of the Golgi by following the distributions of gp74 and GMPc-t. The reconstruction of the Golgi elements stained by gp74 (Fig. 6 D) occurred between 8 and 10 min after removal of the drug, while GMPc-t, though transported out of the ER, was retained in vesicle-like structures for an hour before its incorporation into the Golgi (see Fig. 6, F and G). The rapid incorporation of gp74 into a Golgi reticulum and the lag between the release of GMPc-t from the ER and its incorporation into Golgi elements are all consistent with the location of gp74 and GMPc-t in distinct Golgi compartments which are reassembled at different rates (Alcalde et al., 1992) (see Discussion).

[AlF4]− Induces the Redistribution of gp74 from the Golgi to p58 Positive Vesicles in Cells That Show No Change in the Distribution of Golgi Resident Proteins

Previous studies have shown that non-clathrin-coated vesicles are involved in the transport of materials between the ER and through the Golgi complex (Malhotra et al., 1989; Orci et al., 1986, 1989; Serafini et al., 1991; Peter et al., 1993) and that stabilization of their coats by [AlF4]− results in vesicle accumulation and inhibition of transport (Melancon et al., 1987; Beckers et al., 1987; Beckers and Balch, 1989; Donaldson et al., 1991; Peter et al., 1992).

Since gp74 appeared to cycle between the Golgi complex and the IC, we sought to confirm its itinerant character by studying its distribution in cells treated with [AlF4]−. Control experiments included [AlF4]−-treated cells stained for the immobile Golgi proteins GMPc-t and GMPt-t as well as for the itinerant IC p58. As shown in Fig. 8, cells that were treated with 50 #M [AlF4]− for more than 20 min, when double stained for gp74 and either GMPc-t or GMPt-t, displayed gp74 in punctate structure clustered in the Golgi area and GMPc-t and GMPt-t in intact Golgi reticulum (Fig. 8, compare A to C). In cells double stained for gp74 and p58 it was noted that incubations with [AlF4]− for periods shorter than 20 min resulted in concentration of p58 in the Golgi complex (compare Figs. 2 F with 8, E and G). However, in incubations longer than 20 min [AlF4]− caused the disappearance of the Golgi staining and the appearance of punctate structures which were stained by gp74 (Fig. 8, H and I). The punctate structures were identified by EM as 40-70 nm electrodense vesicles (Fig. 8 J). Again, the results were consistent with the itinerant character of gp74 (see Discussion).

[AlF4]− Does Not Interfere with the Redistribution of gp74 in BFA-treated Cells but Delays the Translocation of Golgi Resident Proteins to the ER

It has been reported that [AlF4]− blocks the BFA induced translocation of cis-Golgi proteins to the ER (Donaldson et al., 1991) and the redistribution of the procoat component β-COP (Kistaklis et al., 1992). We thus studied the effect of [AlF4]− on the redistribution of gp74 in cells treated with...
Figure 5. Redistribution of gp74 and p58 in cells incubated at low temperatures. NRK cells were incubated at 20°C for 2 h (A and B) or at 15°C for either 30 min (C and D) or 2 h (E-G). Cells double stained for gp74 (A, C, and E, rhodamine channel) and p58 (B, D and F, fluorescein channel) and single stained for GMPc-1 (G). Note the retention of gp74 and p58 in the Golgi of cells incubated at 20°C (A and B) and their gradual redistribution to granular structures in cells incubated at 15°C (C-F). Observe that the distribution of GMPc-1 is not affected by the low temperature incubation (G). (H) Time courses of the redistributions of gp74 and p58 at 15°C and 20°C: percentage of cells showing colocalization of gp74 and p58 at different temperatures. Bars, 15 μm.

BFA. Preincubation of the cells in 50 μM [AlF₄]⁻ for 10 min did not prevent the translocation of the protein to vesicle-like structures (Fig. 9, A and B) though markedly delayed the disassembly of Golgi elements stained by GMPc-1 (Fig. 9, C and D), α-mannosidase (Fig. 9, E and F) or GMPc (for the time course of translocation of the four proteins see Fig. 9 (G and H).

The gp74 Undergoes a Rapid Redistribution in Response to Microtubule Depolymerization

Previous studies have shown that the Golgi complex undergoes a relatively slow disorganization upon changes in microtubule organization, thus implicating microtubules in the maintenance of the Golgi structure and its centrosomal localization (Kupffer et al., 1982, 1983; Wehland et al., 1983a,b; Sandoval et al., 1984; Turner and Tartakoff, 1989; Kreis, 1990; Corthézy-Theulaz, 1992). Microtubules have also been implicated in the traffic of vesicles that shuttle between the ER, IC and Golgi complex (Lippincott-Schwartz et al., 1990; Saraste and Svensson, 1991). The effect of microtubule disruption on the distribution of gp74 was examined in cells that were treated with 20 μM nocodazol and, then, double stained for gp74 and the Golgi resident proteins GMPc-1.
Figure 6. Changes in gp74 distribution upon addition and removal of BFA. NRK cells were incubated for 10 min with 1 \(\mu \)g/ml BFA. (A) Cell stained for GMP\(_{6,6}\). (B and C) Cell double stained for gp74 (B) and p58 (C). Note the diffuse cytoplasmic staining of the cell stained for GMP\(_{6,6}\) (compare 6 A with Fig. 2 B) and the colocalization of gp74 and p58 to punctate structures (B and C). Cells incubated for 70 min with 1 \(\mu \)g/ml BFA and then for 10 min in drug-free medium were stained for gp74 (D) or GMP\(_{6,6}\) (E). Time courses of the redistribution of gp74 (\(\bullet \)) and GMP\(_{6,6}\) (\(\circ \)) upon removal of BFA: cells displaying the proteins in punctate structures (F) and in fully reconstructed Golgi complexes (G). Note that the fast rise in gp74-positive punctate structures is followed by a rapid decline that coincides with the assembly of Golgi elements. Observe that GMP\(_{6,6}\) is slowly released from the ER and is not incorporated into Golgi elements. Bars, 15 \(\mu \)m.

and GMP\(_{6,6}\). Depolymerization of microtubules (Fig. 10, A to C) had a rapid and dramatic effect on the distribution of gp74 which disappeared from the Golgi and was detected in numerous punctate structures scattered throughout the cytoplasm (Fig. 10, D, H, L, F, J, and N). In contrast, the resident proteins GMP\(_{6,6}\) (Fig. 10, E, I, M) and GMP\(_{5,6}\) (Fig. 10, G, K, O) remained in cis- and trans-Golgi elements and drifted with them upon their disruption. The results implicate microtubules in the cycling of gp74 which appeared to be unable to return to the slowly disintegrating Golgi complex. In this respect, it is interesting to note that pretreatment of cells with [AIF\(_4\)]\(^-\) prevented the effects of nocodazol on both the redistribution of gp74 and the disruption of Golgi elements (Fig. 11) (see Discussion).

Discussion

Using a monoclonal antibody raised to rat liver membranes we have identified a novel CGN membrane protein that cycles through the ER/IC. The antibody recognizes a glycoprotein of 74 kD (gp74) that has a polypeptide backbone of 34 kD.

The high content in N-linked complex carbohydrates, though unexpected, is not novel as proteins resident in the early Golgi (Yuan et al., 1987; Gonatas et al., 1989) and ER (Peter et al., 1992) have been reported to have complex carbohydrates. It is likely that proteins located in cis compartments acquire complex carbohydrates by virtue of their cycling through or escaping to the Golgi stacks where reside the enzymes involved in the processing of simple to complex carbohydrates (Kornfeld and Kornfeld, 1985; Pelham, 1991; Peter et al., 1992). This is consistent with the observations that decreasing but significant levels of gp74 are detected in the second and third cisternae of the Golgi stack (see Table I B).

Immunofluorescence microscopy studies show that the an-
Figure 8. Redistribution of gp74 and p58 in response to [AlF₄]⁻. NRK cells were treated for 30 min with 50 μM [AlF₄]⁻ and double stained for gp74 (A, fluorescein channel) and GMPc (B, rhodamine channel). Note the relocation of gp74 to punctate structures clustered in the vicinity of the Golgi elements stained by GMPc (C). Percentage of cells that incubated with 50 μM [AlF₄]⁻ for the indicated times and stained for gp74 (D), GMPc (E), or GMPc (F) showed intact Golgi elements. Cells treated for 10 min (D and E), 20 min (F and G), or 40 min (H and I) with 50 μM [AlF₄]⁻ and double stained for gp74 (D, F, and H, rhodamine channel) and p58 (E, G, and I, fluorescein channel). (J) EM of cells treated as in H and I: vesicles loaded with g16"/4 (gold 10 nm) and p58 (gold 15 nm). (K) Time course of the redistribution of p58 in cells treated with 50 μM [AlF₄]⁻. Percentage of cells displaying preferential accumulation of p58 in gp74 negative (○) or positive punctate structures (□) and in Golgi elements (△). Bars: (A and B) 15 μm; (D-I) 15 μm; (J) 100 nm.

tibody to gp74 strongly stains the same reticular structure visualized by antibodies to the Golgi resident membrane proteins GMPc and GMPc, (Yuan et al., 1987), indicating that the bulk of gp74 is in the Golgi complex. Studies on the distribution of gp74 within the Golgi complex, performed by immunogold EM, show that gp74 is located in a compartment opposite the trans-Golgi that contains sialylated proteins (Roth et al., 1985, 1986) and suggests that gp74 is expressed in the cis-Golgi. Its position cis to GMPc, a marker of the cis/middle cisternae (see Table I) and codistribution with the Tn antigen, GalNac-O-Ser/Thr, seen in glycoproteins that are not transported beyond the early cis-Golgi (Takahashi et al., 1988), suggests that gp74 is located in the cis-most Golgi. This conclusion is also supported by the localization of gp74 in cisternae with the fenestrated morphology characteristic of the first Golgi cisterna (Rambourg et al., 1979) which is part of the CGN (Lindsey and Ellisman, 1985; Rambourg and Clermont, 1990; Mellman and Simons, 1992). Furthermore, the rapid redistribution of gp74 upon addition and removal of BFA is also consistent with its retention in the CGN (Alcalde et al., 1992).

In addition to the Golgi complex gp74 is also localized in numerous punctate structures which, though clustered in the vicinity of the Golgi, are not stained by cis- and trans-Golgi resident markers. At the EM level, the gp74 localized outside the Golgi complex is found as foci within the ER cisternae.

Figure 7. Localization of gp74 in cells treated with BFA. Lowicryl sections of NRK cells incubated for 10 min with BFA and double stained for gp74 (15 nm gold) and PDI (10 nm gold) (A and B) or for gp74 (10 nm gold) and p58 (15 nm gold) (C and D). (A) Clusters of gp74 labeling the membranes of swollen ER cisternae loaded with PDI and of large pleomorphic vesicles lacking PDI and ribosomes (*) are visible. (B) Vesicle loaded with gp74 (the arrows mark the contour of the vesicle). (C and D) Labeling of ER membranes (large arrows) and of pleomorphic vesicles with membranes that lack ribosomes (*) by gp74 and p58. ER membranes decorated with ribosomes are marked with three small arrows and glycogen rosettes with arrowheads. Bars, 500 nm.
Figure 9. \([\text{AlF}_4^-]\) does not retard the redistribution of gp74 in cells treated with BFA. NRK cells incubated in normal medium stained for gp74 (A), GMPc_{1} (C), or \(\alpha\)-mannosidase II (E). Cells incubated for 10 min with 50 \(\mu\)M \([\text{AlF}_4^-]\) before continuing the incubation for 10 min with 1 \(\mu\)g/ml BFA, stained for gp74 (B), GMPc_{1} (D), or \(\alpha\)-mannosidase II (F). Percentage of cells that preincubated for 10 min with 50 \(\mu\)M \([\text{AlF}_4^-]\) and then for the indicated times with 50 \(\mu\)M \([\text{AlF}_4^-]\) and 1 \(\mu\)g/ml BFA, when stained for gp74 (G), GMPc_{1} (H), \(\alpha\)-mannosidase II (I), or GMPc_{1} (J) showed intact (G) or disassembled Golgi complexes (H). Bars: (A–F) 15 \(\mu\)m.
the observation that the translocation of resident Golgi proteins to the ER continues in cells containing gp74 localized to vesicular structures (Alcalde et al., 1992) would support the possibility that proteins can be translocated directly from the Golgi to the ER, probably through tubules that emerge from the Golgi (Lippincott-Schwartz et al., 1990). BFA has also been a useful tool in the study of the transport-related phenomenon of Golgi assembly, which upon removal of the drug has been shown to proceed in a cis to trans direction (Alcalde et al., 1992). The observation that the Golgi reticulum stained by gp74 assembles rapidly upon removal of the drug is again consistent with the retention of gp74 in the CGN. The differences between the rates of assembly of the Golgi elements containing gp74 (8-10 min) and GMPc1 (1 h; Alcalde et al., 1992) is consistent with EM data indicating that gp74 and GMPc1 are localized in different Golgi compartments (Table I A). The possibility that these differences are due to the asynchronous return of gp74 and GMPc1, to a Golgi pattern is less likely as the Golgi elements stained by gp74 are assembled within 8 to 10 min after removal of BFA and, within the same period of time, GMPc1 was released from the ER, even though the Golgi elements stained by GMPc1 were only assembled after 1 h.

The redistribution of gp74 to vesicles in [AlF4]-treated cells is again in contrast with the absence of any effect on the distribution of GMPc1, and also supports the idea of gp74 as an itinerant protein. It is interesting that [AlF4]- treatment causes the rapid disappearance of p58 from vesicle-like structures and accumulation in the Golgi complex but that, in a subsequent phase, the protein is relocated to gp74-positive vesicles. The early effect probably reflects the rapid consumption of uncoated vesicles and/or an increase in the coating of Golgi membranes resulting in the slowdown of vesicle budding and retention of the protein in the organelle. The accumulation of gp74 and p58 in vesicles after a lag of 20 min, is consistent with their loading into slow budding transport vesicles that are unable to lose their coats and fuse with the acceptor organelles (Melançon et al., 1987).

It has previously been reported that [AlF4]- blocks the BFA induced translocation of Golgi proteins to the ER, and interferes with the disassembly of the Golgi complex, by securing the coats attached to Golgi membranes (Donaldson et al., 1991; Kitastakis et al., 1992). The fastening of coats to Golgi membranes could decrease the mobility of membrane proteins, increase the stability of the organelle, and result in the inhibition of the vesicle-mediated transport (Melançon et al., 1987; Stow et al., 1992). Such a mechanism would explain the slow translocation of GMPc1, GMPc1, and α-mannosidase to the ER in the cells pretreated with [AlF4]- and the lack of effect of [AlF4]- on the redistribution of gp74 to vesicle-like structures reflect the itinerant character of gp74 and its ability to escape from coated membranes that retain resident proteins with high efficiency.

Finally, the rapid dispersion of gp74 into punctate structures upon microtubule depolymerization is also distinct from the response of resident Golgi membrane proteins. The involvement of microtubule motors in vesicular transport (Vale and Goldstein, 1990; Vallee and Shpetner, 1990; Bleik and Meyerowitz, 1991) and the translocation of gp74 to disperse punctate structures suggest that the cycling of gp74 is disorganized in the absence of microtubules. The dispersion is, however, also consistent with the possibility of a rapid disruption of the gp74 containing compartment as microtubules have also been implicated in maintaining the integrity and localization of the Golgi complex (Kupffer et al., 1982, 1983; Wehland et al., 1983a,b; Sandoval et al., 1984; Turner and Tartakoff, 1989; Kreis, 1990; Cortés y Theulaz, 1992) and the gp74-stained reticular structure shows discontinuities that are in sharp contrast with the integrity of Golgi elements stained by cis- and tran-resident membrane proteins. Since previous results have shown that in cells treated with BFA the disassembly of the Golgi complex proceeds in a cis to trans direction (Alcalde et al., 1992), we speculate that microtubule depolymerization might cause the rapid disruption of a highly fragile CGN and initiate the collapse of the entire Golgi complex.

It is interesting that whereas [AlF4]- promotes the slow redistribution of gp74 to vesicles in cells with intact microtubules it inhibits the rapid redistribution of the protein that follows microtubule depolymerization. The inhibitory effect could result from extensive coating and stabilization of the Golgi membranes that may inhibit vesicle budding and/or Golgi disruption in the absence of microtubules.

We do not know the function of gp74. Among the mammalian Golgi proteins reported in the literature gp74 shows a similar distribution and cycling behavior to the 23-kD KDEL receptor (Lewis and Pelham, 1992; Tang et al., 1993). The KDEL receptor retrieves luminal ER proteins from later stages of the secretory pathway and has been involved in the regulation of the retrograde flow (Lewis and Pelham, 1992). A quite distinct signal (KXXX or KXXXXX) has been identified on the cytoplasmic tail of the adenovirus E3/19K and other resident ER membrane proteins, suggesting an equally specific receptor and the possibility that it would act to retrieve protein molecules that escape the ER (Jackson et al., 1990). The accumulation of gp74 in the CGN and its cycling through the ER/IC suggests that could be involved either in the retrieval of ER proteins or in regulating the retrograde flow. We are presently examining these possibilities. As the scarcity of accepted marker proteins is a major limitation to studies on the structure and function of the cis-most Golgi (i.e., CGN), new markers like gp74, used in conjunction with other markers of the IC should enable better definition of the boundaries between the CGN and IC and characterize their structures and dynamics. It is likely that from such studies and from the understanding of the mechanisms that regulate the cycling of proteins between the IC and Golgi complex a more complete picture of their function and relationships will emerge.

This paper is dedicated to the memory of the late Carlos Cabrera Vázquez (1951-1992).

We thank Dr. Senén Viláró for help with the cryoimmuno EM experiments, performed in the laboratory of Dr. J. W. Slot (University of Utrecht, Utrecht, The Netherlands). We are in debt to Drs. J. Castaño, J. V. Kilmartin, Dr. S. I. Hakomori, and M. Baron for the gift of antibodies to PDI, tubulin, Tn epitope, and α-mannosidase, to the Sandoz laboratories for the gift of brefeldin A, and to Drs. J. Cuezva, J. Mata, and B. Seguf for critical reading of the manuscript.

The institutional support of the Fundación Ramón Areces is acknowledged.

Received for publication 8 October 1993 and in revised form 19 November 1993.

Alcalde et al. Cis-Golgi Network and Protein Cycling
Figure 11. [AIF4]− delays the redistribution of gp74 and the disruption of the Golgi complex in cells treated with nocodazol. (A) NRK cells incubated for 30 min with 20 μM nocodazol, stained for gp74. (C) NRK cells incubated for 10 min with 50 μM [AIF4]− before continuing the incubation for 30 min with 20 μM nocodazol, stained for gp74. (B and D) Percentage of cells that incubated as in A (B) or C (D) and stained for gp74 (D), GMPc-1 (), or GMPt-1 (>). Bars, 15 μm.

References
Alcalde, J., P. Bonay, A. Roa, S. Vilaro, and I. V. Sandoval. 1992. Assembly and disassembly of the Golgi complex: two processes arranged in a cis-trans direction. J. Cell Biol. 116:69–83.
Barriocanal, J. G., J. S. Bonifacino, L. Yuan, and I. V. Sandoval. 1986. Biosynthesis, glycosylation, movement through the Golgi system, and transport to lysosomes by a N-linked carbohydrate-independent mechanism of three lysosomal integral membrane proteins. J. Biol. Chem. 261:16755–16763.
Beckers, C. J. M., and W. E. Balch. 1989. Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus. J. Cell Biol. 108:1245–1256.
Beckers, C. J. M., D. S. Keller, and W. E. Balch. 1987. Semi-intact cells permeable to macromolecules: use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell. 50:523–554.
Bisk, A. M., and E. M. Meyerowitz. 1991. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature (Lond.). 351:411–414.
Bonatti, S., G. Miglaccio, and K. Simons. 1989. Palmitoylation of viral membrane glycoproteins takes place after exit from the endoplasmic reticulum. J. Biol. Chem. 264:12590–12595.
Bonifacino, J. S., P. Perez, R. D. Klausner, and I. V. Sandoval. 1985. Study of the transit of an integral membrane protein from secretory granules through the plasma membrane of secreting rat basophilic leukemia cells using a specific monoclonal antibody. J. Cell Biol. 102:516–522.
Bordier, C. 1981. Phase separation of integral membrane proteins in triton X-114 solution. J. Biol. Chem. 256:1604–1607.
Carlemalm, E., R. M. Garavito, and W. Villiger. 1982. Resin development for electron microscopy and an analysis of embedding at low temperature. J. Microsc. 126:123–143.
Changeux, P., R. G. Parrot, H. P. Hauri, K. Simons, and M. Zerial. 1990. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell. 62:317–329.
Cortes-Hoefius, I., P. Paulino, A., and S. R. Pfeffer. 1992. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J. Cell Biol. 118:1333–1345.
Dean, N., and H. R. B. Pelham. 1990. Recycling of proteins from the Golgi compartment to the ER in yeast. J. Cell Biol. 111:369–377.

Figure 10. Microtubule depolymerization causes the rapid redistribution of gp74 to punctate structures and the slow disruption of the Golgi complex. NRK cells incubated without (A) or with 20 μM nocodazol for 15 (B) or 45 min (C, centrosomes are marked with arrows) stained for tubulin. Cells incubated for 5 min (D–G), 15 min (H–K), or 45 min (L–O) with 20 μM nocodazol and double stained for gp74 (D, H, and L, fluorescein channel) and GMPc-1 (E, I, and M, rhodamine channel), or for gp74 (F, J, and N, fluorescein channel), and GMPt1 (G, K, and O, rhodamine channel). Note the rapid redistribution of gp74 and the slow disruption of the Golgi elements stained by GMPc-1 and GMPt1. Arrows mark Golgi elements that uniformly labeled by the antibodies to GMPc1 and GMPt1 show discontinuities when labeled with the antibody to gp74. Bars, 15 μm.
Tae, H., and I. Ji. 1982. Macromolecular photoaffinity labeling with radioactive photoactivable heterobifunctional reagents. Anal. Biochem. 121:286-289.

Takahashi, H. K., R. Metoki, and S. I. Hakomori. 1988. Immunoglobulin G3 monoclonal antibody directs to Tn antigen (tumor-associated α-N-acetylgalactosaminy1 epitope) that does not cross-react with blood group A antigen. Cancer Res. 48:4361–4367.

Tang, B. L., H. L. Wong, S. H. Qi, S. H. Low, and W. Hong. 1993. Molecular cloning, characterization, subcellular localization and dynamics of p23, the mammalian KDEL receptor. J. Cell Biol. 120:325-338.

Tooze, S., J. Tooze, and G. Warren. 1988. Site of addition of N-acetyl-galactosamine to the E, glycoprotein of mouse hepatitis virus-A59. J. Cell Biol. 106:1475-1487.

Turner, J. R., and A. M. Tartakoff. 1989. The response of the Golgi complex to microtubule alterations: the roles of metabolic energy and membrane traffic in Golgi complex organization. J. Cell Biol. 109:2081-2088.

Ulmer, J. B., and G. E. Palade. 1989. Targeting and processing of glycoporphins in murine erythroleukemia cells: use of Brefeldin A as a perturbant of intracellular traffic. Proc. Natl. Acad. Sci. USA. 86:6992-6996.

Vale, R. D., and L. S. B. Goldstein. 1990. One motor, many tails: An expanding repertoire of force-generating enzymes. Cell. 60:883-885.

Vallee, R. B., and H. S. Shpetner. 1990. Motor proteins of cytoplasmic microtubules. Annu. Rev. Biochem. 59:909-932.

Wehland, J., and I. V. Sandoval. 1983a. Cells infected with guanosine 5’(a,b methylene) triphosphate, and a β-non-hydrolysable analog of GTP show anomalous patterns of tubulin polymerization affecting cell translocation, intracellular movement and the organization of Golgi elements. Proc. Natl. Acad. Sci. USA. 80:1938–1941.

Wehland, J., M. Henkart, R. D. Klausner, and I. V. Sandoval. 1983b. Role of microtubules in the distribution of the Golgi apparatus: effect of taxol and microinjected anti-α-tubulin antibodies. Proc. Natl. Acad. Sci. USA. 80:4286-4290.

Yuan, L., J. G. Barriocanal, J. S. Bonifacino, and I. V. Sandoval. 1987. Two integral membrane proteins located in the cis-middle and transport of the Golgi system acquire sialylated N-linked carbohydrates and display different turnovers and sensitivity to cAMP-dependent phosphorylation. J. Cell Biol. 105:215–227.