A Pedagogical Intrinsic Approach to Relative Entropies as Potential Functions of Quantum Metrics: the q-z Family

Florio M. Ciaglia1,2, Fabio Di Cosmo1,2, Marco Laudato1, Giuseppe Marmo1,2, Fabio M. Mele1, Franco Ventriglia1,2, and Patrizia Vitale1,2

1 Dipartimento di Fisica “E. Pancini”, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo Edificio 6, via Cintia, 80126 Napoli, Italy.

2 INFN-Sezione di Napoli, Complesso Universitario di Monte S. Angelo Edificio 6, via Cintia, 80126 Napoli, Italy.

e-mail: ciaglia@na.infn.it, fabiodicosmo@gmail.com, marcolaudato@hotmail.com, marmo@na.infn.it, mele.fabio91@gmail.com, ventriglia@na.infn.it, patrizia.vitale@na.infn.it

Abstract

q-z-relative entropies provide a huge two parameters family of relative entropies which include almost all known relative entropies for suitable values of the parameters. In this paper we use these relative entropies as generalized potential functions to generate metrics on the space of quantum states. We further investigate possible ranges for the parameters q and z which allow to recover known quantities in Information Geometry. In particular, we show that a proper definition of both the Bures metric and the Wigner-Yanase metric can be derived from this family of divergence functions. To easily visualize the results, we first perform the calculation for the qubit case. For $q = z = \frac{1}{2}$ and $q = \frac{1}{2}, z = 1$, the q-z-relative entropy respectively reduces to the divergence functions for the Bures and Wigner-Yanase metrics and, as we explicitly show, these metrics are actually recovered from the general expression of the q-z-metric for such values of the parameters. Finally, we extend the derivation of the metric tensor to a generic n-level system. This allows us to give explicit expressions both of the Bures and Wigner-Yanase metric also for the n-level case.
1 Introduction

Information geometry is an approach to classical information by means of modern geometry [2, 3]. In such a framework, families of classical probability distributions are endowed with the structure of a Riemannian manifold, which we provisionally call the statistical
manifold1, in order to address natural questions such as the definition of distance between two probability distributions, or the notion of parallel transport, necessary to take derivatives on the statistical manifold, if one wants to perform any calculation on it. In classical information geometry a metric tensor and a dual pair of affine connections on the space of probability distributions may be obtained from a divergence function (say a potential function), which is a two-points function defined on two copies of the statistical manifold2 and, roughly speaking, may be interpreted as a measure of the separation between probabilities. The metric is essentially associated with the Hessian matrix of the divergence function and the connections with triple derivatives of the divergence. Since the divergence need not be symmetric with respect to the exchange of its arguments, the triple derivatives give rise to two dually paired connections, and these connections need not be metric. It is possible to describe these connection by means of a tensor field known as skewness tensor [25].

In this paper we switch the focus to the quantum world, where probability distributions are replaced by quantum states (non-commutative analogue of probabilities). Paraphrasing what we said in the beginning, Quantum Information Geometry is an approach to quantum information by means of geometry. However, the set of quantum states is not a differential manifold, it is a disjoint union of differential manifolds of different dimensions3 [18, 33]. Therefore, the issue of developing a coordinate-free differential calculus, which would supply an intrinsic definition of the metric and skewness tensor together with operative tools to perform calculations, is not obvious. Here, we will focus on the space of invertible quantum states (density matrices with maximal rank), which is a differential manifold in the standard sense [1]. Following the ideas of some of the authors [26], we decided to unfold the space of invertible quantum states to a “bigger manifold”, namely, the product of the unitary group times the open interior of the simplex. In this manner, being the unfolding manifold parallelizable, the differential calculus on the subalgebra of covariant tensor fields pulled-back from the space of invertible quantum states benefits of the existence of left-invariant and right invariant vector fields and forms. In particular, we exploit these tools to perform the calculations needed to extract the metric tensors from the family of quantum potential functions known as q-z-relative entropies [5] without introducing explicit coordinates. As in [26], metric tensors for states that are not of maximal rank are obtained via a limiting procedure.

The paper is organized as follows. The first part of the article contains a pedagogical and detailed formulation of the canonical formalism of Information Geometry, both clas-

1Strictly speaking what is called a Statistical Manifold \(P(\chi) \) is the infinite dimensional manifold of probability densities \(p(x) \) on a measure space \(\chi, x \in \chi \), while a Statistical Model is the manifold of families of probability densities \(p(x; \xi) \) parametrized by a set of \(n \) variables \(\xi = [\xi_1, ..., \xi_n] \), so that the map \(\xi \to p(x; \xi) \) is injective.

2A dynamical framework where two copies of the statistical manifold are connected with the tangent bundle by means of the Hamilton-Jacobi theory can be found in [10].

3The only exception is the two-dimensional case, in which the space of quantum states is a smooth manifold with boundary known as the Bloch ball [18, 33]
sical and quantum. In this part of the paper we aim at giving a reformulation of some well-known and some new results in Information Geometry within a fully coordinate-free picture. Specifically, in Section 2 we will give a careful definition of the notion of potential functions for geometric tensors, and explore their symmetry properties further developing the work done in [26]. In Subsection 2.2 we will focus on the quantum picture, and we will recall the notion of quantum stochastic maps, the notion of monotonicity property for a family of metric tensors on the space of invertible quantum states, and the notion of Data Processing Inequality (DPI) for a family of quantum divergence functions on the space of invertible quantum states. The coordinate-free picture just introduced will allow us to prove that the DPI for a family of quantum divergence functions implies the monotonicity property for the associated family of quantum metric tensors.

The second part is dedicated to the application of the formalism developed in the first part to an explicit example, i.e., the family of quantum relative entropies known as q-z-relative entropies [5]. In Section 3 we review some examples of well known quantum relative entropies, together with their relevant properties, and we show how to retrieve all of them from the family $S_{q,z}$ of $q-z$-relative entropies [5] by means of suitable choices on the particular values of the parameters (q, z). Our goal is to compute the metric tensors associated with the family of $q-z$-relative entropies for a generic n-level system. In order to do this without introducing explicit coordinates, in Section 4 we unfold the space of invertible quantum states S_n of an n-level quantum system into the manifold $\mathcal{M}_n = SU(n) \times \Delta_0^n$ given by the Cartesian product of the Lie group $SU(n)$ and the open interior of a n-dimensional simplex. Indeed, any $\rho \in S_n$ can be parametrized in terms of a diagonal matrix ρ_0 and unitary transformation $U \in SU(n)$ by means of $\rho = U\rho_0U^{-1}$. Clearly, the unitary matrix U is determined only up to unitary transformations by elements in the commutant of ρ_0. The diagonal matrices associated with states, form a simplex, therefore, if we limit the analysis to faithful states, we can consider the space to be parametrized by some homogeneous space of $SU(n)$, i.e., $SU(n)$ quotiented by the stability group of the state times the open “part” of the simplex to which the diagonal part of the state belongs. As the homogeneous spaces of $SU(n)$ are not parallelizable, we shall consider the differential calculus we are going to use as carried on the group $SU(n)$ times the open part of the simplex. In Section 5 we tackle the problem of computing a metric out of the potential function $S_{q,z}$ adopting the techniques developed in Sec. 2, for qubits, and we retrieve some notable limits such as the Bures metric tensor and the Wigner-Yanase metric tensor. In Sec 6 we extend the result to n-level systems and, after non-trivial calculations fully explained in the appendix A, we obtain the explicit formula Eq. (6.1) for the (pullback of the) metric tensor. Although the actual computations are non-trivial, the final expression is in our opinion remarkably simple. Many interesting examples of quantum metric tensors which are already available in the literature can be easily obtained as special cases of our formula. This represents the main result of our work. In Sec. 7 we study the expression of the metric tensor when we take some special limits for the parameters q and z. For example, we are able to obtain explicit expression
for the Bures and the Wigner-Yanase metric tensor for generic n-level systems. Section 8 presents some concluding remarks.

\section{Quantum metrics from potential functions}

In this section we will provide an intrinsic definition of the coordinates-based formulae used in information geometry to derive a metric tensor and a skewness tensor from a divergence function \cite{2, 3, 27}. We will recast most of the well-known material on divergence functions and their symmetry properties using the intrinsic language of differential geometry. This will turn out to be very useful when dealing with quantum information geometry, where we have to take in consideration nonlinear manifolds like the space of pure quantum states.

Essentially, we will introduce the notions of left and right lift of a vector field, along with the diagonal immersion of a manifold into its double. Then, after some important properties connecting the diagonal immersion with the left and right lifts are proved, we introduce a coordinate-free algorithm to extract covariant tensors of order (0, 2) and (0, 3) from a two-point function. This will lead us to define the class of potential functions. These are two-point functions generalizing the concept of divergence functions of classical information geometry. Finally, we will analyze how potential functions behave with respect to smooth maps between differential manifolds.

Let M be a differential manifold, TM its tangent bundle, and $\tau: TM \to M$ the canonical projection. A point in the tangent bundle TM is a couple (m, v_m), where $m \in M$, and $v_m \in T_m M$ is a tangent vector at m. Note that, in general, TM is not a cartesian product, hence, the notation (m, v_m) should be treated with care because the second factor v_m is not independent from the first one. A vector field $X \in \mathfrak{X}(M)$ may be thought of as a derivation of the associative algebra $\mathcal{F}(M)$ of smooth functions on M, or as a section of the tangent bundle TM, that is, a map $X: M \to TM$ such that $\tau \circ X = id_M$. In the latter case, we may write the evaluation of a vector field on $m \in M$ as $X(m) = (m, v^X_m)$.

Let $M \times M$ denote the so-called double manifold of M. We have two canonical projections $pr_1: M \times M \to M$ and $pr_1: M \times M \to M$ acting as:

$$ pr_1(m_1, m_2) := m_1 $$

$$ pr_r(m_1, m_2) := m_2. $$

(2.1)

Given $f \in \mathcal{F}(M)$, we may define the following functions on $M \times M$ by means of pr_1 and pr_r:

$$ f_l: M \times M \to \mathbb{R}, \quad f_l := pr_1^* f $$

$$ f_r: M \times M \to \mathbb{R}, \quad f_r := pr_r^* f. $$

(2.2)

This means that on $M \times M$ we have identified two different subalgebras of $\mathcal{F}(M \times M)$,
the left and the right subagebras:

\[F_l(M \times M) := \{ f_l \in F(M \times M) : \exists f \in F(M) \text{ such that } f_l = \pi^*_l f \} \]

\[F_r(M \times M) := \{ f_r \in F(M \times M) : \exists f \in F(M) \text{ such that } f_r = \pi^*_r f \} . \]

The tangent space \(T_{(m_1, m_2)} M \times M \) at \((m_1, m_2) \in M \times M\) may be split into the direct sum \(T_{m_1} M \oplus T_{m_2} M \). Accordingly, we may write the evaluation of a vector field \(X \in \mathfrak{X}(M \times M) \) at \((m_1, m_2)\) as:

\[X(m_1, m_2) = (m_1, v^X_{m_1}; m_2, v^X_{m_2}) . \]

(2.4)

This motivates the following:

Definition 1. Let \(X \in \mathfrak{X}(M) \) be a smooth vector field. We defined the left and right lift of \(X \) to be, respectively, the vector fields \(X_l, X_r \in \mathfrak{X}(M \times M) \) defined as:

\[X_l(m_1, m_2) = (m_1, v^X_{m_1}; m_2, 0) , \]

(2.5)

\[X_r(m_1, m_2) = (m_1, 0; m_2, v^X_{m_1}) . \]

(2.6)

By direct computation, it is possible to prove the following:

Proposition 1. Let \(X, Y \in \mathfrak{X}(M) \), and \(f \in F(M) \), and denote with \(L \) the Lie-derivative. The following equalities hold:

\[[X_l, Y_l] = ([X, Y])_l , \quad [X_r, Y_r] = ([X, Y])_r , \quad [X_l, Y_r] = 0 , \]

(2.7)

\[(fX)_l = f_l X_l , \quad (fX)_r = f_r X_r , \quad L_{X_l} f_r = L_{X_r} f_l = 0 . \]

(2.8)

There is a natural immersion \(i_d \) of \(M \) into its double \(M \times M \) given by:

\[M \ni m \mapsto i_d(m) = (m, m) \in M \times M . \]

(2.9)

The map \(i_d \) allows us to immerse \(M \) in the diagonal of its double, and, by means of the pullback operation, gives an intrinsic and coordinates-free definition of the procedure of “restricting to the diagonal” used in information geometry. Indeed, the pullback of a function to a submanifold can be identified with the restriction of the function to the submanifold. Note that the same is not true for covariant tensors of higher order for which a ”restriction” in the sense of evaluation at specific points is always possible, however this does not coincide with the value that the pulled-back covariant tensor will take at the same point as an element of the submanifold.

By using the tangent functor it is possible to associate vector fields on \(M \) with vector fields on \(M \times M \) along the immersion \(i_d \) of \(M \) into \(M \times M \). We have the following proposition:
Proposition 2. Let \(X \in \mathfrak{X}(M) \), then \(X \) is \(i_d \)-related to \(X_l + X_r \), that is [1]:

\[
T_i_d \circ X = X_{lr} \circ i_d,
\]

(2.10)

where \(X_{lr} \equiv (X_l + X_r) \), and \(T_i_d \) denotes the tangent map of \(i_d \).

Proof. By direct computation, we have:

\[
T_i_d \circ X(m) = T_i_d(m, v_m^X) = (m, v_m^X, m, v_m^X).
\]

(2.11)

and:

\[
X_{lr} \circ i_d(m) = X_{lr}(m, m) = (m, v_m^X, m, v_m^X),
\]

(2.12)

and the proposition follows.

Now, we are ready to introduce the coordinate-free algorithm to extract covariant \((0, 2)\) tensor from a two-point function. In order to do so, we define the following maps:

Definition 2. Let \(S \in F(M \times M) \). We define the following bilinear, \(\mathbb{R} \)-linear maps from \(X(M) \times X(M) \) to \(F(M) \):

\[
\begin{align*}
g_{ll}(X, Y) & := i_d^*(L_{X_l}L_{Y_l}S), & g_{rr}(X, Y) & := i_d^*(L_{X_r}L_{Y_r}S), \\
g_{lr}(X, Y) & := i_d^*(L_{X_l}L_{Y_r}S), & g_{rl}(X, Y) & := i_d^*(L_{X_r}L_{Y_l}S).
\end{align*}
\]

(2.13)

Notice that, at the moment, these maps do not have definite symmetry properties. To prove that these maps give a coordinate-free version of the formulae for metric-like tensors used in information geometry, we start with the following proposition:

Proposition 3. Consider the maps in definition 2. Then:

1. \(g_{lr}, g_{rl} \) are covariant \((0, 2)\) tensors on \(M \), and \(g_{lr}(X, Y) = g_{rl}(Y, X) \);
2. \(g_{ll} \) is a symmetric covariant \((0, 2)\) tensor on \(M \) if and only if:

\[
i_d^*(L_{X_l}S) = 0 \quad \forall X \in \mathfrak{X}(M);
\]

(2.15)

3. \(g_{rr} \) is a symmetric covariant \((0, 2)\) tensor on \(M \) if and only if:

\[
i_d^*(L_{X_r}S) = 0 \quad \forall X \in \mathfrak{X}(M).
\]

(2.16)

Proof. To show 1 we have to show that \(g_{lr} \) and \(g_{rl} \) are bilinear with respect to vector fields, and \(F(M) \)-linear. We start with \(g_{rr} \). According to proposition 1, we have:

\[
g_{rr}(fX + hY, Z) = i_d^*(L_{fX_l+hY_l}L_{Z_l}S).
\]

(2.17)

The linearity of the pullback, together with the properties of the Lie derivative, imply:

\[
i_d^*(L_{fX_l+hY_l}L_{Z_l}S) = i_d^*(fL_{X_l}L_{Z_l}S) + i_d^*(hL_{Y_l}L_{Z_l}S).
\]

(2.18)
Since \(L_{X_i}L_{Z_r}S \) and \(L_{Y_i}L_{Z_r}S \) are smooth functions, we have that
\[
i_d^* (f_1 L_{X_i} L_{Z_r} S) = i_d^* f_1 i_d^* (L_{X_i} L_{Z_r} S)
\]
and thus:
\[
g_{tr} (fX + hY, Z) = f i_d^* (L_{X_i} L_{Z_r} S) + h i_d^* (L_{Y_i} L_{Z_r} S) = f g_{tr} (X, Z) + h g_{tr} (Y, Z) \tag{2.19}
\]
According to last equality of proposition 1, we have \(L_{X_i} f_r = L_{X_r} f_1 = 0 \) for all \(X \) and \(f \).

Taking this equality into account, we may proceed as above, and show that:
\[
g_{tr} (Z, fX + hY) = f g_{tr} (Z, X) + h g_{tr} (Z, Y) \tag{2.20}
\]
This proves that \(g_{tr} \) is a covariant \((0, 2)\) tensor field on \(M \). With exactly the same procedure, we can prove that \(g_{ri} \) is a covariant \((0, 2)\) tensor field on \(M \). Finally, the equality
\[
g_{tr} (X, Y) = g_{tr} (Y, X)
\]
follows from direct computation.

To show 2, again, we have to show that \(g_{ul} \) is bilinear with respect to vector fields, and \(\mathcal{F}(M)\)-linear. The linearity and \(\mathcal{F}(M)\)-linearity on the first factor are proved analogously to the previous case. Concerning the second factor, we start with the following chain of equalities:
\[
g_{ul} (Z, fX + hY) = i_d^* (L_{Z_i} L_{fX_i + hY_i} S) = i_d^* (L_{Z_i} (f_1 L_{X_i} S)) + i_d^* (L_{Z_i} (h_1 L_{Y_i} S)) = i_d^* (L_{Z_i} f_1 L_{X_i} S) + i_d^* (f_1 L_{Z_i} L_{X_i} S) + i_d^* (L_{Z_i} h_1 L_{Y_i} S) + i_d^* (h_1 L_{Z_i} L_{Y_i} S) = i_d^* (L_{Z_i} f_1) i_d^* (L_{X_i} S) + f g_{ul} (Z, X) + i_d^* (L_{Z_i} h_1) i_d^* (L_{Y_i} S) + h g_{ul} (Z, Y) \tag{2.21}
\]
It is then clear that:
\[
g_{ul} (Z, fX + hY) = f g_{ul} (Z, X) + h g_{ul} (Z, Y) \tag{2.22}
\]
is equivalent to:
\[
i_d^* (L_{Z_i} f_1) i_d^* (L_{X_i} S) + i_d^* (L_{Z_i} h_1) i_d^* (L_{Y_i} S) = 0 \tag{2.23}
\]
Being \(f \) and \(h \) arbitrary functions, equation 2.23 is satisfied if and only if:
\[
i_d^* (L_{X_i} S) = 0 \; \forall X \in \mathcal{X}(M) \tag{2.24}
\]
as claimed. Now, we prove that \(g_{ul} \) is a symmetric tensor:
\[
g_{ul} (X, Y) = i_d^* (L_X L_Y S) = i_d^* (L_Y L_X S) + i_d^* (L_{[X,Y]} S) = i_d^* (L_Y L_X S) = g_{ul} (Y, X) \tag{2.25}
\]
where, in the last passage, we have used the first equality of proposition 1. With exactly the same procedure we can prove 3.

Interestingly, when \(S \) satisfies condition (2.15) and condition (2.16), the covariant tensor fields are all related to one another. In order to clearly see this, we recall the following proposition (see [1] page 239):
Proposition 4. Let $\phi: N \to M$ be a smooth map between smooth manifolds. Let $X \in \mathfrak{X}(N)$ and $Y \in \mathfrak{X}(M)$ be ϕ-related, that is $T\phi \circ X = Y \circ \phi$, then:

$$L_X \phi^*(f) = \phi^*(L_Y f) \quad \forall f \in \mathcal{F}(M). \quad (2.26)$$

This means that X and Y agree along the image of N into M. In particular, since $X \in \mathfrak{X}(M)$ is i_d-related to $X_l + X_r$, we have that:

$$L_X i_d^*(f) = i_d^*(L_{X_l + X_r} f) \quad \forall f \in \mathcal{F}(M \times M). \quad (2.27)$$

Now, we are ready to prove

Proposition 5. Let S be a smooth function on $M \times M$ satisfying condition (2.15) and condition (2.16). Then:

$$g_{ll} = g_{rr} = -g_{lr} = -g_{rl}. \quad (2.28)$$

In particular, all these tensors are symmetric.

Proof. According to definition 2, we have:

$$g_{ll}(X, Y) + g_{lr}(X, Y) = i_d^*(L_{X_l}L_{Y_l+S}, S) = i_d^*(L_{X_l+S}, L_{Y_l} S) + i_d^*(L_{X_l}, L_{Y_l+S} S).$$

Now, recalling that $[X_l, Y_r] = 0$ because of the third equality in proposition 1, that S satisfies condition (2.15), and recalling equation (2.27), we have

$$g_{ll}(X, Y) + g_{lr}(X, Y) = i_d^*(L_{Y_l+S}, L_{X_l} S) = L_Y i_d^*(L_{X_l} S) = 0. \quad (2.29)$$

This proves that $g_{ll} = -g_{lr}$. Proceeding analogously, we obtain $g_{rr} = -g_{rl}$. Then, being g_{ll} and g_{rr} symmetric (see proposition 3), and being $g_{lr}(X, Y) = g_{rl}(Y, X)$ (see proposition 3), we obtain $g_{lr} = g_{rl}$, and thus $g_{ll} = g_{rr}$ which completes the proof.

Remark 1. Note that conditions (2.15) and (2.16) are not equivalent to $i_d^*(dS) = 0$. For instance, take $M = \mathbb{R}$, and

$$S = \frac{x^2 - y^2}{2}.$$

We have

$$dS = xdx - ydy,$$

and thus $i_d^*dS = 0$, while, an easy calculation shows that

$$i_d^*(L_{X_l}S) = x \neq 0 \quad \text{if } X_l = \frac{\partial}{\partial x},$$

and

$$i_d^*(L_{X_r}S) = -y \neq 0 \quad \text{if } X_r = \frac{\partial}{\partial y}.$$

It can be checked that the maps g_{ll} and g_{rr} associated with S do not define tensor fields because they are not $\mathcal{F}(M)$-linear in the second factor.
Motivated by proposition 5, we give the following definition:

Definition 3 (Potential function). Let S be a smooth function on $M \times M$. We call S a potential function if it satisfies condition (2.15) and condition (2.16), that is:

\[i^*_d(L_X l S) = 0 \quad \forall X \in \mathfrak{X}(M), \tag{2.30} \]
\[i^*_d(L_X r S) = 0 \quad \forall X \in \mathfrak{X}(M). \tag{2.31} \]

We denote with g the symmetric covariant $(0, 2)$ tensor field associated with S (see proposition 5).

We stress that proposition 5 gives necessary and sufficient conditions for S to give rise to a (unique) symmetric covariant $(0, 2)$ tensor field on M. This gives a formal and intrinsic characterization of potential functions.

To make contact with the coordinate-based formulae of information geometry, we introduce coordinate chart $\{x^j\}$ on M, and a coordinate chart $\{q^j, Q^j\}$ on $M \times M$. Then, we have:

\[X = X^j(x) \frac{\partial}{\partial x^j}, \quad X_t = X^j(q) \frac{\partial}{\partial q^j}, \quad X_r = X^j(Q) \frac{\partial}{\partial Q^j}. \tag{2.32} \]

Consequently, it is easy to see that:

\[g = \left(\frac{\partial^2 S}{\partial q^j \partial q^k} \right) \bigg|_d dx^j \otimes_s dx^k = \left(\frac{\partial^2 S}{\partial Q^j \partial Q^k} \right) \bigg|_d dx^j \otimes_s dx^k = - \left(\frac{\partial^2 S}{\partial q^j \partial Q^k} \right) \bigg|_d dx^j \otimes_s dx^k, \tag{2.33} \]

and these expressions are in complete accordance with the ones used in information geometry [2, 3, 27].

Remark 2. If S is not a potential function, we can not define the tensor g_{ll}, or the tensor g_{rr}, or both. However, we can always define the tensors g_{lr} and g_{rl}. These tensors will not be symmetric, and we can decompose them into symmetric and anti-symmetric part. For example, let $M = \mathbb{R}^2$, let $\{x^j\}_{j=0,1}$ be a global Cartesian coordinates system on M, and let $\{q^j, Q^j\}_{j=0,1}$ be a global Cartesian coordinates on $M \times M$. Consider the function:

\[S(q^0, q^1; Q^0, Q^1) = -\frac{1}{2} \left((q^0 - Q^0)^2 + (q^1 - Q^1)^2 + q^0 Q^1 - q^1 Q^0 \right). \tag{2.34} \]

An explicit calculation shows that:

\[g_{lr} = dx^0 \otimes dx^0 + dx^1 \otimes dx^1 + dx^0 \wedge dx^1. \tag{2.35} \]

The coordinate expressions in equation (2.33) allow us to give a “local” characterization of potential functions:

Proposition 6. A function $S \in \mathcal{F}(M \times M)$ is a potential function according to definition 3 if and only if every point (m, m) on the diagonal of $M \times M$ is a critical point for S.

10
Proof. The proof follows upon comparing the local expression for \((m, m)\) to be a critical point for \(S\) with the coordinate expressions of condition (2.15) and condition (2.16) in the coordinate system \(\{q^j, Q^j\}\) introduced before.

This characterization of potential functions allows us to better understand what kind of tensor field is \(g\). Specifically, resorting to the theory of multivariable calculus it is possible to prove the following proposition:

Proposition 7. Let \(S\) be a potential function on \(M \times M\). Then:

1. \(g\) is positive-semidefinite if and only if every point on the diagonal is a local minimum for \(S\). In particular, \(g\) is a metric if and only if every point of the diagonal is a nondegenerate local minimum for \(S\);

2. \(g\) is negative-semidefinite if and only if every point on the diagonal is a local maximum for \(S\).

It is now easy to see the relation between the class of potential functions introduced here and the class of divergence functions of classical information geometry:

Definition 4 (Divergence function). A smooth function \(S\) on \(M \times M\) such that:

\[
S(m_1, m_2) \geq 0, \quad S(m_1, m_2) = 0 \iff m_1 = m_2, \tag{2.36}
\]

is called a divergence function.

According to proposition 6 \(S\) is a potential function (see definition 3) and thus it gives rise to a symmetric covariant \((0,2)\) tensor field \(g\) on \(M\). According to proposition 7, the tensor field \(g\) is positive-semidefinite.

In information geometry, divergence (contrast) functions give rise to metric tensors by means of the second derivatives, and to symmetric covariant \((0,3)\) tensors by means of third derivatives. These tensors are referred to as skewness tensors [3, 27]. We will now give an intrinsic definition for these skewness tensors using again Lie derivatives.

Let \(S\) be a potential function on \(M \times M\). For \(j = 1, \ldots, 8\), define the following maps \(T_j : \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathcal{F}(M)\):

\[
T_1(X, Y, Z) := i_d^*(L_{\xi_1}L_{\nu_1}L_{Z_1} S), \quad T_2(X, Y, Z) := i_d^*(L_{\xi_1}L_{\nu_1}L_{Z_2} S), \tag{2.37}
\]

\[
T_3(X, Y, Z) := i_d^*(L_{\xi_1}L_{\nu_2}L_{Z_2} S), \quad T_4(X, Y, Z) := i_d^*(L_{\xi_2}L_{\nu_2}L_{Z_1} S), \tag{2.38}
\]

\[
T_5(X, Y, Z) := i_d^*(L_{\xi_2}L_{\nu_1}L_{Z_1} S), \quad T_6(X, Y, Z) := i_d^*(L_{\xi_2}L_{\nu_1}L_{Z_2} S), \tag{2.39}
\]

\[
T_7(X, Y, Z) := i_d^*(L_{\xi_1}L_{\nu_2}L_{Z_1} S), \quad T_8(X, Y, Z) := i_d^*(L_{\xi_2}L_{\nu_2}L_{Z_2} S). \tag{2.40}
\]

Following the line of reasoning developed above, patient but simple calculations show that:

\[
T_{12}(X, Y, Z) := T_1(X, Y, Z) - T_2(X, Y, Z), \tag{2.41}
\]
\[T_{34}(X,Y,Z) := T_{3}(X,Y,Z) - T_{4}(X,Y,Z), \] (2.42)
\[T_{56}(X,Y,Z) := T_{5}(X,Y,Z) - T_{6}(X,Y,Z), \] (2.43)
\[T_{78}(X,Y,Z) := T_{7}(X,Y,Z) - T_{8}(X,Y,Z) \] (2.44)

are actually tensors fields on \(M \). Recalling that \(X \) is \(i_d \) related to \(X_l + X_r \), and applying equation (2.27), we have:

\[T_1(X,Y,Z) + T_6(X,Y,Z) = i^*_d (L_{X_l} L_{Y_l} L_{Z_l} S) = L_X g(Y,Z), \] (2.45)
\[T_2(X,Y,Z) + T_5(X,Y,Z) = i^*_d (L_{X_l} + L_{Y_l}, L_{Z_r} S) = L_X g(Y,Z), \] (2.46)

and thus \(T_{12} = T_{56} \). Similarly, it can be shown that \(T_{34} = T_{78} \). Furthermore:

\[T_3(X,Y,Z) + T_5(X,Y,Z) = i^*_d (L_{X_l} L_{Y_l} + L_{Z_r} S) = L_Y g(X,Z) + g([X,Y],Z), \] (2.47)
\[T_4(X,Y,Z) + T_6(X,Y,Z) = i^*_d (L_{X_r} L_{Y_l} + L_{Z_r} S) = L_Y g(X,Z) + g([X,Y],Z), \] (2.48)

and thus \(T_{34} = -T_{56} \), from which it follows that

\[T_{12} = T_{56} = -T_{34} = -T_{78}. \] (2.49)

This means that we can define a single symmetric tensor field \(T \) of order 3 on \(M \) starting with a potential function \(S \). For instance, we set:

\[T(X,Y,Z) := i^*_d (L_{X_l} L_{Y_l} L_{Z_r} S - L_{X_r} L_{Y_l} L_{Z_l} S) . \] (2.50)

We have thus proved the following proposition:

Proposition 8. Let \(S \) be a potential function on \(M \times M \). Then, all the maps defined in equations (2.41), (2.42), (2.43), and (2.44) define the same symmetric covariant \((0,3)\) tensor field \(T \) on \(M \).

For the sake of simplicity, we write \(T \) as in equation (2.50). In the coordinate charts \(\{x^j\} \) and \(\{q^j, Q^j\} \) introduced above, we have:

\[T = \left(\frac{\partial^3 S}{\partial q^j \partial q^k \partial Q^l} - \frac{\partial^3 S}{\partial Q^j \partial Q^k \partial q^l} \right) \bigg|_{d} dx^j \otimes_s dx^k \otimes_s dx^l, \] (2.51)

and this expression is the one conventionally used in information geometry for the skewness tensor in information geometry [3, 27].

2.1 Potential functions and smooth mappings

Now that we have a formal intrinsic characterization for potential functions, we may ask what happens to a potential function through the pullback operation. This will be of capital importance when we analyze the monotonicity properties of metric tensors on the space of invertible quantum states.
Suppose \(\phi : N \to M \) is a smooth map between differential manifolds. Let \(i_N \) and \(i_M \) denote, respectively, the diagonal immersions of \(N \) and \(M \) into their doubles \(N \times N \) and \(M \times M \). Let \(\Phi : N \times N \to M \times M \) be the map defined by:

\[
(n, n) \mapsto \Phi(n, n) := (\phi(n), \phi(n)).
\]

(2.52)

A direct calculation shows that:

\[
\Phi \circ i_N = i_M \circ \phi.
\]

(2.53)

Furthermore:

Proposition 9. Let \(X \in \mathfrak{X}(N) \) be \(\phi \)-related to \(Z \in \mathfrak{X}(M) \), that is, \(T\phi \circ X = Z \circ \phi \). Then \(X_l \) is \(\Phi \)-related to \(Z_l \), that is, \(T\Phi \circ X_l = Z_l \circ \Phi \), and \(X_r \) is \(\Phi \)-related to \(Z_r \), that is, \(T\Phi \circ X_r = Z_r \circ \Phi \).

Proof. By hypothesis, it is \(T\phi \circ X = Z \circ \phi \). We want to cast this equality in a more useful form. We start noting that:

\[
T\phi \circ X(n) = (\phi(n), T_n \phi(v^n_x)),
\]

(2.54)

\[
Z \circ \phi(n) = (\phi(n), v^Z_{\phi(n)}),
\]

(2.55)

from which it follows that \(T\phi \circ X = Z \circ \phi \) implies:

\[
T_n \phi(v^n_x) = v^Z_{\phi(n)}.
\]

(2.56)

Now, we have

\[
T\Phi(n_1, v^n_{n_1}, v^n_{n_2}) = (\phi(n_1), T_{n_1} \phi(v^n_{n_1}); \phi(n_2), T_{n_2} \phi(v^n_{n_2})),
\]

(2.57)

and thus:

\[
T\Phi \circ X_l(n_1, n_2) = T\Phi(n_1, v^n_{n_1}, n_2, 0) = (\phi(n_1), T_{n_1} \phi(v^n_{n_1}); \phi(n_2), 0).
\]

(2.58)

On the other hand:

\[
Z_l \circ \Phi(n_1, n_2) = Z_l(\phi(n_1), \phi(n_2)) = (\phi(n_1), v^Z_{\phi(n_1)}; \phi(n_2), 0).
\]

(2.59)

Plugging equation (2.56) into equation (2.59), and then comparing equation (2.59) with equation (2.58) we obtain:

\[
T\Phi \circ X_l = Z_l \circ \Phi
\]

(2.60)

as claimed. Proceeding analogously, we prove that \(X_r \) is \(\Phi \)-related to \(Z_r \). This completes the proof.

With the help of proposition 9 we are able to analyze the behaviour of potential functions with respect to smooth maps. Specifically, we have the following:
Proposition 10. Let $\phi: N \to M$ be a smooth map between smooth manifold, and let $\Phi: N \times N \to M \times M$ be defined as $\Phi(n_1, n_2) := (\phi(n_1), \phi(n_2))$. Let S be a potential function on $M \times M$ then $\Phi^* S$ is a potential function on $N \times N$, and the symmetric covariant tensor extracted from $\Phi^* S$ is equal to the pullback by means of ϕ of the symmetric covariant tensor extracted from S.

Proof. Suppose that S is a potential function on $M \times M$. Take a generic $X \in \mathfrak{X}(N)$, and consider a vector field $Z \in \mathfrak{X}(M)$ which is ϕ-related to X. Then:

$$i^*_N(L_X \Phi^* S) = i^*_N \Phi^* (L_Z \Phi^* S) = (\Phi \circ i_N)^* (L_Z S) =$$

$$= (i_M \circ \phi)^* (L_Z S) = \phi^* i^*_M (L_Z S) = 0,$$

where we used equation (2.27), proposition 9, equation (2.53), and condition (2.15). In a similar way, it is possible to show that $i^*_N(L_X, \Phi^* S) = 0$, and this means that $\Phi^* S$ is a potential function on $N \times N$.

Denote with g_N the symmetric covariant tensor field on N generated by the potential function $\Phi^* S$, and with $Z (W)$ the vector field on M which is ϕ-related to $X (Y)$. Recalling equation (2.27), proposition 9, and equation (2.53), we have:

$$g_N(X,Y) = i^*_N(L_{X_1} L_{Y_1} \Phi^* S) = i^*_N \Phi^* (L_Z L_W S) =$$

$$= (\Phi \circ i_N)^* (L_Z L_W S) = (i_M \circ \phi)^* (L_Z L_W S) =$$

$$= \phi^* i^*_M (L_Z L_W S) = \phi^* (g_M(Z, W)).$$

Being $g_N(X,Y)$ a function, we may evaluate it at n:

$$(g_N(X,Y))(n) = (\phi^* (g_M(Z, W)))(n) =$$

$$= (g_M(Z, W))(\phi(n)) = g_M|_{\phi(n)} \left(Z|_{\phi(n)}, W|_{\phi(n)} \right)$$

(2.62)

Now, by the very definition of the pullback $\phi^* g_M$ we have:

$$((\phi^* g_M)(X,Y))(n) = g_M|_{\phi(n)}(\phi_* X|_{\phi(n)}, \phi_* Y|_{\phi(n)}).$$

(2.63)

Being Z and W ϕ-related to, respectively X and Y, we have:

$$Z|_{\phi(n)} = \phi_* X|_{\phi(n)}, \quad W|_{\phi(n)} = \phi_* Y|_{\phi(n)},$$

and thus the symmetric covariant tensor we can extract from $\Phi^* S$ coincides with the pullback $\phi^* g_M$ we can extract from S.

We are now in the position to say something about the relation between the symmetry properties of g and the symmetry properties of the potential function S with
which it is associated. At this purpose, let G be a Lie group acting on M by means of diffeomorphisms ϕ_g with $g \in G$. Then G acts on $M \times M$ by means of the maps $\Phi_g(m_1, m_2) := (\phi_g(m_1), \phi_g(m_2))$. Let S be a potential function on $M \times M$. It then follows from proposition 10 that:

$$
(\phi_g^* g - g)(X, Y) = -i_d(L_X, L_Y, (S - \Phi_g^* S)) = 0.
$$

(2.65)

From this equation we conclude that if S is invariant under the action of G on $M \times M$ associated with the action of G on M, then

$$
(\phi_g^* g - g)(X, Y) = 0 \quad \forall X, Y \in \mathfrak{X}(M),
$$

(2.66)

and thus G is a symmetry group for the metric-like tensor g associated with S, that is:

$$
\phi_g^* g = g \quad \forall g \in G.
$$

(2.67)

\section{2.2 Quantum divergence functions and monotonicity}

We will now use the geometric tools developed in the previous section in order to define the monotonicity property for quantum metric tensors, to define the data processing inequality (DPI) for quantum divergence functions, and to prove that quantum divergence functions satisfying the data processing inequality give rise to quantum metric tensors satisfying the monotonicity property. Essentially, the monotonicity property is a quantum version of the so-called invariance criterion of classical information geometry [2, 8], where classical stochastic mappings are replaced with quantum stochastic mappings. Consequently, we will introduce the notion of quantum stochastic mapping according to [30]. These class of maps plays a prominent role not only in the definition of the monotonicity property for quantum metric tensors, but also for the definition of the data processing inequality for quantum divergence functions.

Denote with \mathbb{N}_2 the set of natural number without $\{0\}$ and $\{1\}$. Let $j \in \mathbb{N}_2$, and let $\mathcal{S}_j \subset \mathcal{B}(\mathcal{H}_j)$ be the manifold of invertible quantum states associated with a system with Hilbert space \mathcal{H}_j where $\dim(\mathcal{H}_j) = j$. The notion of quantum stochastic map is then formulated in terms of completely-positive trace preserving (CPTP) maps. Specifically, we say that a CPTP map ϕ from $\mathcal{B}(\mathcal{H}_j)$ to $\mathcal{B}(\mathcal{H}_k)$ is stochastic if $\phi(\mathcal{S}_j) \subseteq \mathcal{S}_k$ [30]. Note that the family of quantum stochastic map form a category precisely as the family of classical stochastic map [8].

In Holevo’s books [21] and [22] there is an interesting discussion on the theoretical and operational relevance of the class of quantum stochastic maps. Once we have fixed this class of maps between invertible density matrices, we are ready to give a definition of the monotonicity property for quantum Riemannian metric tensors [9, 30]. Clearly, since the family of quantum stochastic maps may connect systems with different dimensions, we must not consider a single tensor field defined on the manifold of invertible density matrices of a single quantum system, but, rather, a family of tensor fields.
Definition 5. Let \(\{S_j\}_{j \in \mathbb{N}_2} \) be a family of functions such that \(S_j \) is a divergence function on \(S_j \times S_j \) for all \(j \in \mathbb{N}_2 \). Assume that each \(S_j \) generates a metric tensor \(g_j \) on \(S_j \) for each \(j \in \mathbb{N}_2 \). We say that the family \(\{g_j\}_{j \in \mathbb{N}_2} \) of metric tensors has the monotonicity property if:

\[
g_j(X, X) \geq (\phi^* g_k)(X, X),
\]

for all \(X \in \mathcal{X}(S_j) \) and for all stochastic maps \(\phi \). By the very definition of the pullback operation, the monotonicity property is equivalent to:

\[
g_j|_\rho \left(X|_\rho, X|_\rho \right) \geq g_k|_{\phi(\rho)} \left(\phi_* X|_{\phi(\rho)}, \phi_* X|_{\phi(\rho)} \right),
\]

where \(\rho \in S_j \).

Roughly speaking, the monotonicity property for a family of quantum Riemannian metric tensors ensures that the notion of geodesical distance between invertible density matrices, as encoded in the family of quantum Riemannian metric tensors, does not increase under quantum stochastic maps. We will now rephrase the monotonicity property of the family \(\{g_j\}_{j \in \mathbb{N}_2} \) in terms of the behaviour of the family \(\{S_j\}_{j \in \mathbb{N}_2} \) of divergence functions with respect to stochastic maps. We have the following proposition:

Proposition 11. Let \(\{g_j\}_{j \in \mathbb{N}_2} \) be a family of monotone metrics generated by the family of divergence functions \(\{S_j\}_{j \in \mathbb{N}_2} \) according to definition 5. Let \(\phi: S_j \to S_k \) be a stochastic map, and let \(\Phi: S_j \times S_j \to S_k \times S_k \) be defined as

\[
\Phi(\rho_1, \rho_2) := (\phi(\rho_1), \phi(\rho_2)).
\]

Then, setting \(S_{jk}^\phi = (S_j - \Phi^* S_k) \), the monotonicity property of \(\{g_j\}_{j \in \mathbb{N}_2} \) is equivalent to:

\[
g_{jk}^\phi(X, X) := -i_j^* (L_{\mathcal{X}_l} L_{\mathcal{X}_r} S_{jk}^\phi) \geq 0
\]

for all \(X \in \mathcal{X}(S_j) \) and for all stochastic maps \(\phi \).

Proof. According to proposition 10, we know that \(\phi^* g_k \) is the metric-like tensor generated by the divergence function \(\Phi^* S_k \). This means that we may write:

\[
(\phi^* g_k)(X, Y) = -i_j^* (L_{\mathcal{X}_l} L_{\mathcal{X}_r} \Phi^* S_k)
\]

where we used definition 2. Again using definition 2, we write:

\[
g_j(X, Y) = -i_j^* (L_{\mathcal{X}_l} L_{\mathcal{X}_r} S_j).
\]

Comparing these two equations, it then follows that

\[
g_j(X, X) \geq (\phi^* g_k)(X, X)
\]

is equivalent to:

\[
g_{jk}^\phi(X, X) := -i_j^* (L_{\mathcal{X}_l} L_{\mathcal{X}_r} S_{jk}^\phi) \equiv -i_j^* (L_{\mathcal{X}_l} L_{\mathcal{X}_r} (S_j - \Phi^* S_k)) \geq 0
\]

as claimed.
As anticipated before, there is a very interesting connection between this result and the so-called data processing inequality (DPI) for quantum divergences:

Definition 6. We say that \(\{S_j\}_{j \in \mathbb{N}_2} \) satisfies the data processing inequality (DPI) if:

\[
S_j(\rho_1, \rho_2) \geq S_k(\phi(\rho_1), \phi(\rho_2))
\]

(2.76)

for all \(\rho_1, \rho_2 \) and for all stochastic maps \(\phi \).

The operational meaning of this inequality is to ensure that the information-theoretical content encoded in the family of quantum two-point functions does not increase under quantum stochastic maps. Then, the following proposition shows that the DPI “implies” the monotonicity property:

Proposition 12. If the family \(\{S_j\}_{j \in \mathbb{N}_2} \) satisfies the DPI, then it generates a family \(\{g_j\}_{j \in \mathbb{N}_2} \) of metric tensors satisfying the monotonicity property.

Proof. The function \(\Phi^*S_k \) is a potential function because \(S_k \) is a potential function (see proposition 10). According to the DPI, we have:

\[
S_{jk}^\Phi(\rho_1, \rho_2) := S_j(\rho_1, \rho_2) - \Phi^*S_k(\rho_1, \rho_2) =
\]

\[
= S_j(\rho_1, \rho_2) - S_k(\phi(\rho_1), \phi(\rho_2)) \geq 0.
\]

(2.77)

From this, we conclude that \(S_{jk}^\Phi \) is a non-negative potential function vanishing on the diagonal of \(S_j \times S_j \). This means that every point on the diagonal of \(M \times M \) is a local minimum for \(S_{jk}^\Phi \). Then, according to proposition 7 the metric-like tensor \(g_{jk}^\phi \) it generates is positive-semidefinite. In particular it is:

\[
g_{jk}^\phi(X, X) \geq 0.
\]

(2.78)

According to proposition 11 this is equivalent to the monotonicity property for the family \(\{g_j\}_{j \in \mathbb{N}_2} \), and the proposition is proved.

This result may be seen as a sort of generalization to the quantum case of the invariance criterion of classical information geometry [2, 8]. Furthermore, the abstract coordinate-free framework in which proposition 12 is contextualized may prove to be useful for a generalization to the infinite dimensional case.

3 q-z-Relative entropies

In the previous sections we have shown that divergence functions can be used to define metric tensors on the space of invertible states of a quantum system. These divergence functions play a central role in quantum information theory [5, 29]. As an example, let consider the quantum relative entropy, also known as von Neumann relative entropy:
It is the quantum generalization of the Kullback-Leibler divergence function used in classical information geometry and, in the asymptotic, memoryless setting, it yields fundamental limits on the performance of information-processing tasks [20]. Another important family of relative entropies is the q-Rényi relative entropies (q-RRE) \(^4\)

$$S_{\text{RRE}}(\rho|\varrho) = \frac{1}{q-1} \log \text{Tr} \left(\rho^q \varrho^{1-q} \right),$$ \quad (3.2)

where $q \in (0, 1) \cup (1, \infty)$. These divergence functions are able to describe the cut-off rates in quantum binary state discrimination [28]. Two other examples, which are relevant for the definition of metric tensors, can be given. The potential function \(^5\) of the Bures metric tensor

$$S_B(\rho|\varrho) = 4 \left[1 - \text{Tr} \left(\rho \varrho^{\frac{1}{2}} \right) \right]$$ \quad (3.3)

and the potential function of the Wigner-Yanase metric tensor:

$$S_{\text{WY}}(\rho|\varrho) = 4 \left[1 - \text{Tr} \left(\rho^{\frac{1}{2}} \varrho^{\frac{1}{2}} \right) \right].$$ \quad (3.4)

Several efforts were done in order to find a common mathematical framework to unify this plethora of different divergence functions. A first (partial) result was achieved by the q-quantum Rényi divergence (q-QRD)

$$S_{\text{QRD}}(\rho|\varrho) = \frac{1}{q-1} \log \text{Tr} \left(\rho^{\frac{1+q}{2}} \varrho^{\frac{1-q}{2q}} \right),$$ \quad (3.5)

where again $q \in (0, 1) \cup (1, \infty)$. However, it has two important limitations: the data-processing inequality (DPI)

$$S_{\text{QRD}}(\Phi(\rho)|\Phi(\varrho)) \leq S_{\text{QRD}}(\rho|\varrho)$$ \quad (3.6)

where Φ is a completely positive trace preserving map (CPTP) acting on a pair of semidefinite Hermitian operators ρ and ϱ, is not satisfied for $q \in (0, 1/2)$ \(^6\) and it does not contain the q-RRE family.

\(^4\)Differently from the notation used in [5], in this work we use the parameter q for α, following the notation adopted in [26]. This is just a relabeling of the parameter (i.e., $\alpha = q$ here) which, as will be clear in the following, helps to compare our results with those in [26] and should not be confused with the parameter α in [2], related to α-divergences, where instead $\alpha = 2q - 1$.

\(^5\)As explained in the following (see Sec. 5.3), it is basically related to the so-called root fidelity $\sqrt{F}(\rho, \varrho) = \text{Tr} \left(\sqrt{\sqrt{\rho} \varrho \sqrt{\rho}} \right)$.

\(^6\)See for instance [35] where it is shown that the Riemannian metric derived from the sandwiched Rényi q-divergence (3.5) is monotone if and only if $q \in (-\infty, -1] \cup [\frac{1}{2}, \infty)$.
Recently, a new family of two-point functions which includes all the previous examples was defined [5]. It is the so-called q-z–Rényi Relative Entropy (q-z-RRE)

$$S_{q,z}(\rho|\varrho) = \frac{1}{q-1} \log \text{Tr} \left(\rho^{\frac{q}{q-1}} \varrho^{\frac{1-q}{q-1}} \rho^{\frac{q}{q-1}} \right)^z$$ \hspace{1cm} (3.7)

that can be recast as:

$$S_{q,z}(\rho|\varrho) = \frac{1}{q-1} \log \text{Tr} \left(\rho^{\frac{q}{z}} \varrho^{\frac{1-q}{z}} \right)^z.$$ \hspace{1cm} (3.8)

Remark: In general, the product of two Hermitian matrices is not a Hermitian matrix. However, the product matrix $\rho^{\frac{q}{z}} \varrho^{\frac{1-q}{z}}$ has real, non-negative eigenvalues, even though it is not in general a hermitian matrix. It means that the trace functional

$$f_{q,z}(\rho|\varrho) = \text{Tr} \left(\rho^{\frac{q}{z}} \varrho^{\frac{1-q}{z}} \right)^z$$ \hspace{1cm} (3.9)

is well defined as the sum of the the z-th power of the eigenvalues of the product matrix [5] and it can be developed in Taylor series.

As is shown in [5], in particular limits of the parameters q and z it is possible to recover the q-RRE family

$$S_{q,1}(\rho|\varrho) := \lim_{z \to 1} S_{q,z}(\rho|\varrho) \equiv S_{RRE}(\rho|\varrho) = \frac{1}{q-1} \log \text{Tr} \left(\rho^{\frac{q}{q-1}} \varrho^{\frac{1-q}{q-1}} \right),$$ \hspace{1cm} (3.10)

the q-QRD family

$$S_{q,q}(\rho|\varrho) := \lim_{z \to q} S_{q,z}(\rho|\varrho) \equiv S_{QRD}(\rho|\varrho) = \frac{1}{q-1} \log \text{Tr} \left(\rho^{\frac{q}{z}} \varrho^{\frac{1-q}{z}} \right)^z,$$ \hspace{1cm} (3.11)

and the von Neumann relative entropy:

$$S_{1,1}(\rho|\varrho) := \lim_{z \to 1} S_{q,z}(\rho|\varrho) \equiv S_{vN}(\rho|\varrho) = \text{Tr} \left(\rho \log \rho - \rho \log \varrho \right).$$ \hspace{1cm} (3.12)

The data processing inequality for the q-z-RRE was studied in [19, 12, 15, 6] and it is not established yet in full generality. To prove it, one has to show that the trace functional (3.9) is jointly concave when $q \leq 1$, or jointly convex when $q \geq 1$. The results of these analysis are well summarized in [5] and it results that the DPI holds only for certain range of the parameters as sketched in fig. 1.

For the purposes of this work, however, we lie in the range of parameters in which the DPI holds.
Figure 1: In this figure from [5] a schematic overview of the various relative entropies unified by the $q-z$-relative entropy is shown. The blue region indicates the range of the parameters in which the DPI was proven, while the orange region indicates where it is just conjectured. To keep contact with the notation of [5], the divergence functions S are indicated with the letter D, the parameter q is indicated with α, $D(\rho\parallel\sigma)$ is the von Neumann relative entropy, D_{\min} is the logarithm of the fidelity and $D_{\max} := \inf\{\gamma : \rho \leq 2^\gamma \sigma\}$. Credits: [5].

Since we are interested in computing the metric tensors starting from this two-parameter family of two-point functions, it is convenient to consider the following regularization of the logarithm, the so-called q-logarithm:

$$\log_q \rho = \frac{1}{1-q} (\rho^{1-q} - 1) \quad \text{with} \quad \lim_{q \to 1} \log_q \rho = \log \rho. \quad (3.13)$$

Moreover, inspired by Petz [30], we will consider a rescaling by a factor $1/q$. In this way, the resulting family of functions will be symmetric under the exchange of $q \to (1-q)$. With a slight abuse of notation, let us denote the resulting two-point function with the same symbol of the q-z-RRE, that is:

$$S_{q,z}(\rho|\sigma) = \frac{1}{q(1-q)} \left[1 - \Tr \left(\rho^{\frac{q}{1-q}} \sigma^{\frac{1-q}{1-q}} \right) \right]. \quad (3.14)$$

Since the analysis of the DPI involves only the trace functional, we are ensured that the DPI holds for the same range of parameters of the q-z-RRE. Moreover, in the limit $z \to 1$, it is possible to recover the expression for the Tsallis relative entropy in [26]

$$S_{q,1}(\rho|\sigma) := \lim_{z \to 1} S_{q,z}(\rho|\sigma) \equiv S_T(\rho|\sigma) = \frac{1}{q(1-q)} \left[1 - \Tr \left(\rho^{\frac{q}{1-q}} \sigma^{1-q} \right) \right], \quad (3.15)$$
in the limit \(z = q \to 1 \), we recover the von Neumann relative entropy

\[
S_{1,1}(\rho|\varrho) := \lim_{z=q \to 1} S_{q,z}(\rho|\varrho) \equiv S_{\text{vN}}(\rho|\varrho) = \text{Tr} \rho (\log \rho - \log \varrho) ,
\]

(3.16)
in the limit \(z = q = 1/2 \), we recover the divergence function of the Bures metric tensor

\[
S_{1/2,1/2}(\rho|\varrho) := \lim_{z=q \to 1/2} S_{q,z}(\rho|\varrho) \equiv S_{B}(\rho|\varrho) = 4 \left[1 - \text{Tr} \left(\rho \varrho^\dagger \right)^{1/2} \right] ,
\]

(3.17)
and finally, in the limit \(z = 1, q \to 1/2 \), we recover the divergence function of the Wigner-Yanase metric tensor:

\[
S_{1/2,1}(\rho|\varrho) := \lim_{z=1,q \to 1/2} S_{q,z}(\rho|\varrho) \equiv S_{\text{WY}}(\rho|\varrho) = 4 \left[1 - \text{Tr} \left(\rho^{1/2} \varrho^{1/2} \right) \right] .
\]

(3.18)
All these special cases belong to the range of parameters for which \(S_{q,z} \) is actually a quantum divergence function satisfying the DPI. Consequently, in accordance with the result of Subsec. 2.2, the family of associated quantum metric tensors satisfies the monotonicity property.

\section{Unfolding of the space of invertible quantum states}

We want to perform calculations without referring to explicit coordinate systems, therefore, we will unfold the manifold \(\mathcal{S}_n \) of invertible density matrices to the more gentle manifold \(\mathcal{M}_n = SU(n) \times \Delta^0_n \), where \(\Delta^0_n \) is the open interior of the n-dimensional simplex \(\Delta_n \), that is:

\[
\Delta^0_n := \left\{ \vec{p} \in \mathbb{R}^n : p^j > 0, \sum_{j=1}^{n} p^j = 1 \right\} .
\]

(4.1)
This manifold is parallelizable since it is the Cartesian product of parallelizable manifolds, and thus, we have global basis of vector fields and differential one-forms at our disposal. We will use these basis to perform coordinate-free computations in any dimension. However, before entering the description of these basis, we want to explain why \(\mathcal{M}_n \) may be thought of as an unfolding manifold for \(\mathcal{S}_n \). To do this, let us start selecting an orthonormal basis \(\{|j\rangle\}_{j=0,...,n-1} \) in \(\mathcal{H} \). Associated with it there is an orthonormal basis \(\{E_{jk}\}_{j,k=0,...,(n-1)} \) in \(\mathcal{B}(\mathcal{H}) \) defined setting \(E_{jk} := |j\rangle\langle k| \). Now, consider an invertible density matrix \(\rho \in \mathcal{S}_n \). It is well known that \(\rho \) can be diagonalized, and that its eigenvalues are strictly positive and sum up to one. This means that, denoting with \(\vec{p} \in \Delta^0_n \) a vector the components of which coincide with the eigenvalues of \(\rho \), we can find a \(U \in SU(n) \) such that:

\[
\rho = U \rho_0 U^\dagger ,
\]

(4.2)
where ρ_0 is a diagonal matrix in the sense that its only nonzero components with respect to the canonical basis $\{E_{jk}\}_{j,k=0,\ldots,(n-1)}$ of $B(ℋ)$ are those relative to $\{E_{jj}\}_{j=0,\ldots,(n-1)}$. It is clear that every ρ_0 can be identified with a point \vec{p} in Δ_n^0 and vice versa. This one-to-one correspondence is given by the map $\rho_0 = p^j E_{jj}$.

Remark 3. It is important to point out that the correspondence between ρ_0 and \vec{p} explicitly depends on the choice of the basis $\{E_{jk}\}_{j=0,\ldots,(n-1)}$ as a reference basis. For instance, if we consider a multipartite system for which:

$$B(ℋ_N) = \bigotimes_{j=1}^r B(ℋ_{n_j}),$$

(4.3)

where $N = n_1 n_2 \cdots n_r$, and we select an orthonormal basis in $ℋ_N$ which is made up of separable vectors with respect to the decomposition (4.3), the orthonormal basis in $B(ℋ_N)$ turns out to be composed of separable elements with respect to the decomposition (4.3). Consequently, the reference density matrix ρ_0 associated with the probability vector \vec{p} is separable, and this clearly has consequences with respect to the entanglement properties of the system. Specifically, when we unfold the quantum state ρ into the couple (U, \vec{p}), all the information regarding the entanglement properties of ρ will be encoded in U because \vec{p} is associated with the separable state ρ_0.

The diagonalization procedure for $\rho \in S_n$ provides us with a map:

$$\pi_n : SU(n) \times \Delta_n^0 \to S_n$$

$$(U, \vec{p}) \mapsto \pi_n(U, \vec{p}) = U \rho_0 U^\dagger$$

(4.4)

Obviously, the map π_n is a surjection because for a given $\rho \in S_n$ there is an infinite number of elements $(U, \vec{p}) \in M_n$ such that $\pi_n(U, \vec{p}) = \rho$. It is in this sense that we think of M_n as an unfolding manifold for S_n. Now that we have the map π_n, we proceed to prove the following:

Proposition 13. The map $\pi_n : M_n \to S_n$ is a surjective submersion, and the kernel of its differential at $(U, \vec{p}) \in M_n$ is given by $(iH, \vec{0})$, where H is a self-adjoint matrix such that $[H, \rho_0] = 0$.

Proof. The surjectivity of the map π_n follows from the spectral decomposition for every density matrix ρ. To prove that π_n is a submersion, we consider the following curve γ_t on M_n:

$$\gamma_t(U, \vec{p}) = (U \exp(itH), \vec{p}_t),$$

(4.5)

where H is self-adjoint and traceless, and \vec{p}_t is any curve in the interior of the n-simplex Δ_n^0 starting at $\vec{p}_0 = \vec{p}$ and such that $\left.\frac{d\vec{p}_t}{dt}\right|_{t=0} = \vec{a}$ with $\sum_j a^j = 0$. The differential:
\((T\pi_n)_{(U,\vec{p})} : T(U,\vec{p})\mathcal{M}_n \to T_\rho S_n\)
of \(\pi\) at \((U,\vec{p})\) is then:

\[
(T\pi_n)_{(U,\vec{p})} \left(\frac{d\gamma(U,\vec{p})}{dt} \right)_{t=0} = \frac{d}{dt} \left(U \exp(it\mathbf{H}) \rho_0(t), \exp(-it\mathbf{H})U^\dagger \right)_{t=0} = U \left(i[H,\rho_0] + a^j E_{jj} \right) U^\dagger.
\]

(4.6)

The tangent space \(T_\rho S_n\) at \(\rho = U \rho_0 U^\dagger\) is the space of traceless self-adjoint matrices, and it is clear that every such element can be written in the form

\[
U \left(i[H,\rho_0] + a^j E_{jj} \right) U^\dagger.
\]

This means that \(\pi_n\) is a submersion at every \((U,\vec{p}) \in \mathcal{M}_n\). Furthermore, it follows that the tangent vector \((i\mathbf{H},\vec{a})\) at \((U,\vec{p})\) is sent to the null vector \(0\) at \(\rho = U \rho_0 U^\dagger\) if and only if \(\vec{a} = \vec{0}\) and \([H,\rho_0] = 0\).

The global differential calculus on \(\mathcal{M}_n\) is easily defined considering the projection maps:

\[
pr_{SU(n)} : \mathcal{M}_n = SU(n) \times \Delta^0_n \to SU(n), \quad (U,\vec{p}) \mapsto pr_{SU(n)}(U,\vec{p}) = U,
\]

\[
pr_{\Delta^0_n} : \mathcal{M}_n = SU(n) \times \Delta^0_n \to \Delta^0_n, \quad (U,\vec{p}) \mapsto pr_{\Delta^0_n}(U,\vec{p}) = \vec{p}.
\]

(4.7)

Then, since \(SU(n)\) is a Lie group, we have, for instance, a basis of globally defined left-invariant differential one-forms \(\{\theta^j\}_{j=1,...,n^2-1}\) and a basis of globally defined left-invariant vector fields \(\{X_j\}_{j=1,...,n^2-1}\) which is dual to \(\{\theta^j\}_{j=1,...,n^2-1}\). Consequently, we can take the pullback of every \(\theta^j\) by means of \(pr_{SU(n)}\) and obtain a set of globally defined differential one-forms on \(\mathcal{M}_n\). With an evident abuse of notation, we will keep writing \(\{\theta^j\}_{j=1,...,n^2-1}\) for this set of one-forms. Regarding \(\Delta^0_n\), we will construct an “overcomplete” basis of differential one-forms as follows. First of all, we define \(n\) functions \(P^j : \Delta^0_n \to \mathbb{R}\):

\[
\vec{p} \mapsto P^j(\vec{p}) = p^j.
\]

(4.8)

This functions are globally defined and smooth, and thus their differential \(dP^j = dp^j\) are globally defined differential one-forms. Clearly, we have \(n\) of them, and since \(\text{dim}(\Delta^0_n) = n - 1\), these one-forms are not functionally independent. Indeed, it holds:

\[
\sum_{j=1}^{n} P^j(\vec{p}) = \sum_{j=1}^{n} p^j = 1,
\]

(4.9)

and thus:

\[
\sum_{j=1}^{n} dP^j = \sum_{j=1}^{n} dp^j = 0.
\]

(4.10)
Now, the set \(\{dp_j\}_{j=1,\ldots,n} \) of globally defined differential one-forms on \(\Delta_n^0 \) is a basis of the module of one-forms on \(\Delta_n^0 \), that is, for every differential one-form \(\omega \) on \(\Delta_n \), it always exists a decomposition:

\[
\omega = \omega_j dp_j,
\]

where \(\omega_j \in \mathcal{F}(\Delta_n^0) \). This is the sense in which \(\{dp_j\}_{j=1,\ldots,n} \) is an overcomplete basis for the space of differential one-forms on \(\Delta_n^0 \). Now, similarly to what we have done for \(SU(n) \), we consider the pullback of \(dp_j \) by means of \(pr_{\Delta_n^0} \), and we obtain a set of globally defined differential one-forms on \(\mathcal{M}_n \). Again with an abuse of notation, we will keep writing this set as \(\{dp_j\}_{j=1,\ldots,n} \). Eventually, the set \(\{(\theta^j)_{j=1,\ldots,n^2-1}, \{dp_j\}_{j=1,\ldots,n}\} \) is a basis of the module of differential one-forms on \(\mathcal{M}_n \).

5 The qubit case

Now that we have the global basis for a differential calculus on \(\mathcal{M}_n \) (for all \(n \)), we may proceed with the explicit computations. First of all, we consider the modified \((q-z)\)-Rényi relative entropy of equation (3.14):

\[
S_{q,z}(\rho, \sigma) = \frac{1}{q(1-q)} \left[1 - \operatorname{Tr} \left(\rho^q \sigma^{1-q} \right)^z \right],
\]

and take its pullback to \(\mathcal{M}_n \times \mathcal{M}_n \) by means of the map:

\[
\Pi_n : \mathcal{M}_n \times \mathcal{M}_n \to \mathcal{S}_n \times \mathcal{S}_n \quad \text{by} \quad (\mathbf{U}, \mathbf{p}_1, \mathbf{V}, \mathbf{p}_2) \mapsto (\pi_n(\mathbf{U}, \mathbf{p}_1); \pi_n(\mathbf{V}, \mathbf{p}_2)).
\]

The result is the following function on \(\mathcal{M}_n \times \mathcal{M}_n \):

\[
D_{q,z}(\mathbf{U}, \mathbf{p}_1; \mathbf{V}, \mathbf{p}_2) = \frac{1}{q(1-q)} \left(1 - \operatorname{Tr} \left[\left((\mathbf{U} \rho_0 \mathbf{U}^\dagger)^\frac{q}{z} (\mathbf{V} \sigma_0 \mathbf{V}^\dagger)^{\frac{1-q}{z}} \right)^z \right] \right).
\]

At the moment, we do not know if \(D_{q,z} \) is a potential function, but we can always extract a covariant tensor field from it by computing (see proposition 3):

\[
g_{q,z}(X, Y) := -i^*_d (L_{X_l} L_{Y_r} D_{q,z}^n) .
\]

Here we will consider the particular case of the qubit \((n = 2)\). Without entering into the details of the calculations, for which we refer to appendix A, we simply state that we have:

\[
g_{q,z}(X, Y) = \frac{z}{q(1-q)} i^*_d \left[\operatorname{Tr} \left((AB)^{z-1} (i_{X_l} dA) (i_{Y_r} dB) \right) \right] +
\]
\[+ \frac{1}{q(1-q)} i^x \sum_{m=0}^{\infty} m c_m(z) \sum_{s=0}^{m-2} \text{Tr} \left((AB-1)^a (i\xi_i dA) B (AB-1)^{m-s-2} A (i\nu, dB) \right), \quad (5.5) \]

where we have introduced the notation:

\[A = \rho^2 = U \rho_0^2 U^{-1}, \quad B = \frac{1}{q} = V \frac{1}{q_0} V^{-1}. \quad (5.6) \]

Performing the pull-back along the map \(i \), which essentially amounts to put \(U = V, U^{-1} = V^{-1} \) and \(\rho_0 = q_0 \), the first term in (5.5) gives

\[\frac{z}{q(1-q)} i^x \left[\text{Tr} \left((AB)^{z-1} (i\xi_i dA) (i\nu, dB) \right) \right] = \frac{z}{q(1-q)} \left\{ \text{Tr} \left(\rho_0^{-1} d\rho_0^a (X) d\rho_0^{1-x} (Y) \right) + \text{Tr} \left(\rho_0^{-1} [U^{-1} dU(X), \rho_0^a] [U^{-1} dU(Y), \rho_0^{1-x}] \right) \right\}, \quad (5.7) \]

where we have used the relation

\[d\rho^a = d(U\rho_0^2 U^{-1}) = U d\rho_0^2 U^{-1} + U [U^{-1} dU, \rho_0^a] U^{-1}, \quad (5.8) \]

and the fact that the mixed terms vanish (see appendix A). Now, for a two-level system, we have a basis in \(\mathcal{B}(\mathcal{H}) \) made up of the \((2 \times 2) \) identity matrix \(\sigma_0 \) and the Pauli matrices \(\sigma_1, \sigma_2, \sigma_3 \). We select an orthonormal basis \(\{ \{ j \} \}_j \subset \mathcal{H} \) made up of eigenvector of \(\sigma_3 \), so that, in this basis, \(\sigma_3 \) is the diagonal matrix \(\sigma_3 = E_{00} - E_{11} \). According to section 4, \(\rho_0 \) is a diagonal density matrix, and, in the qubit case, it is characterized in terms of a single real parameter \(-1 \leq w \leq 1\) so that it can be written as

\[\rho_0 = \begin{pmatrix} \frac{1+w}{2} & 0 \\ 0 & \frac{1-w}{2} \end{pmatrix} = \frac{1}{2} (\sigma_0 + w\sigma_3). \quad (5.9) \]

Therefore, for any power \(\rho_0^\alpha \) of \(\rho_0 \), we have

\[\rho_0^\alpha = \begin{pmatrix} \left(\frac{1+w}{2} \right)^\alpha & 0 \\ 0 & \left(\frac{1-w}{2} \right)^\alpha \end{pmatrix} = \frac{1}{2} (a_\alpha + b_\alpha) \sigma_0 + \frac{1}{2} (a_\alpha - b_\alpha) \sigma_3, \quad (5.10) \]

with

\[a_\alpha = \left(\frac{1+w}{2} \right)^\alpha, \quad b_\alpha = \left(\frac{1-w}{2} \right)^\alpha. \quad (5.11) \]

The first term in (5.7) then yields

\[\frac{z}{q(1-q)} \left\{ \text{Tr} \left(\rho_0^{-1} d\rho_0^a (X) d\rho_0^{1-x} (Y) \right) \right\} = \frac{1}{z} \text{Tr} \left(\rho_0^{-1} d\rho_0(X) d\rho_0(Y) \right) = \frac{1}{z(1-w^2)} d\rho(X) d\rho(Y). \quad (5.12) \]

Moreover, being \([\sigma_j, \sigma_k] = 2i\varepsilon^j_{kl} \sigma_l\) and \(U^{-1} dU = i\sigma_k \theta^k \), with \(\{ \theta^k \}_k \subset \mathcal{H} \) a basis of left-invariant 1-forms on \(U(2) \), the left-invariant Maurer-Cartan 1-form, the commutators in the second term of (5.7) are given by

\[[U^{-1} dU(X), \rho_0^a] = (a_\alpha - b_\alpha) \varepsilon^a_{3k} \theta^k(X) \sigma_\ell, \quad (5.13) \]
and, remembering that $\sigma_j\sigma_k = \delta_{jk} + i\varepsilon_{j,k}\sigma_\ell$, we get
\[
\text{Tr} \left(\rho_0^{\frac{1}{z}} \left(U^{-1}dU(X), \rho_0^{\frac{z}{2}} \right) \left(U^{-1}dU(Y), \rho_0^{\frac{1}{1-z}} \right) \right) =
\]
\[
= \frac{z}{q(1-q)}\left(a_{\frac{1}{z}} - b_{\frac{1}{z}} \right) (a_{1-q} - b_{1-q})(a_{z-1} + b_{z-1})\delta_{jk}\theta^j(X) \theta^k(Y) +
\]
\[
i \frac{z}{q(1-q)}(a_{\frac{1}{z}} - b_{\frac{1}{z}})(a_{1-q} - b_{1-q})(a_{\frac{1}{1-z}} - b_{\frac{1}{1-z}})\varepsilon_{3jk}\theta^j(X) \theta^k(Y) ,
\]
where there is a sum over repeated indices j and k with $j,k \neq 3$.

Regarding the second term in (5.5), after the pull-back it yields
\[
\frac{1}{q(1-q)}i_d^{i_d} \sum_{m=0}^{\infty} m c_m(z) \sum_{a=0}^{n-2} \text{Tr} \left((AB - \mathbb{1})^a (i_{X_d}dA) B (AB - \mathbb{1})^{m-a-2} A (i_{Y_d}dB) \right) =
\]
\[
= \frac{1}{q(1-q)} \sum_{n=0}^{\infty} n c_n(z) \sum_{m=0}^{n-2} \text{Tr} \left((\rho_0^{\frac{1}{z}} - \mathbb{1})^m d\rho_0^{\frac{1}{z}} (\rho_0^{\frac{z}{2}} (\rho_0^{\frac{1}{z}} - \mathbb{1})^{n-m-2} \rho_0^{\frac{z}{2}} d\rho_0^{\frac{1}{z}} (Y) +
\]
\[
+ \frac{1}{q(1-q)} \sum_{n=0}^{\infty} n c_n(z) \sum_{m=0}^{n-2} \text{Tr} \left((\rho_0^{\frac{1}{z}} - \mathbb{1})^m U^{-1}dU(X), \rho_0^{\frac{1}{z}} \rho_0^{\frac{z}{2}} (\rho_0^{\frac{1}{z}} - \mathbb{1})^{n-m-2} \rho_0^{\frac{z}{2}} U^{-1}dU(Y), \rho_0^{\frac{1}{1-z}} \right) \right).
\]
In the first term of (5.15), the matrices involved in the trace are all diagonal and hence they commute with each other. Therefore, using the relation
\[
\sum_{n=0}^{\infty} n c_n(z) \sum_{m=0}^{n-2} (\rho_0^{\frac{1}{z}} - \mathbb{1})^{m} (\rho_0^{\frac{z}{2}} - \mathbb{1})^{n-m-2} = \sum_{n=0}^{\infty} n(n-1) c_n(z) (\rho_0^{\frac{1}{z}} - \mathbb{1})^{n-2} = z(z-1)\rho_0^{-\frac{2}{z}} , \quad (5.16)
\]
we get:
\[
\frac{1}{q(1-q)} \sum_{n=0}^{\infty} n c_n(z) \sum_{m=0}^{n-2} \text{Tr} \left((\rho_0^{\frac{1}{z}} - \mathbb{1})^m d\rho_0^{\frac{1}{z}} (\rho_0^{\frac{z}{2}} (\rho_0^{\frac{1}{z}} - \mathbb{1})^{n-m-2} \rho_0^{\frac{z}{2}} d\rho_0^{\frac{1}{z}} (Y) +
\]
\[
= \frac{z-1}{z} \text{Tr} \left(\rho_0^{-1}d\rho_0(X) d\rho_0(Y) \right) = \frac{z-1}{z} \frac{1}{1-u^2} dw(X) dw(Y) .
\]
The evaluation of the second bit in (5.15) is a little trickier. Indeed, as discussed in Appendix A, we have to use binomial expansions, partial sums of geometric series, and a lot of algebra, in order to obtain:
\[
+ \frac{1}{q(1-q)} \sum_{n=0}^{\infty} n c_n(z) \sum_{m=0}^{n-2} \text{Tr} \left((\rho_0^{\frac{1}{z}} - \mathbb{1})^m U^{-1}dU(X), \rho_0^{\frac{z}{2}} (\rho_0^{\frac{1}{z}} - \mathbb{1})^{n-m-2} \rho_0^{\frac{z}{2}} U^{-1}dU(Y), \rho_0^{\frac{1}{1-z}} \right) =
\]
\[
= \frac{z}{q(1-q)}(a_{\frac{1}{z}} - b_{\frac{1}{z}})(a_{1-q} - b_{1-q})(a_{\frac{1}{z}} + b_{\frac{1}{z}})(a_{\frac{1}{1-z}} - b_{\frac{1}{1-z}})\delta_{jk}\theta^j(X) \theta^k(Y) +
\]
\[
i \frac{z}{q(1-q)}(a_{\frac{1}{z}} - b_{\frac{1}{z}})(a_{1-q} - b_{1-q})(a_{\frac{1}{1-z}} - b_{\frac{1}{1-z}})\varepsilon_{3jk}\theta^j(X) \theta^k(Y) ,
\]
where, again, there is a sum over repeated indices j and k with $j,k \neq 3$.

Finally, summing the four terms (5.12), (5.14), (5.17) and (5.18), the covariant metric-like tensor on the unfolding space of the space of invertible quantum states for a two-level
system is given by:

\[
g_{q,z} = \frac{1}{1 - w^2} dw \otimes dw + \frac{2wz}{q(1 - q)} \left(\frac{(a^2 - b^2)(a_{1-q} - b_{1-q})}{(a^2_1 - b^2_1)} \right) (\theta^1 \otimes \theta^1 + \theta^2 \otimes \theta^2)
\]

\[
= g_{q,z}^{\text{transv}} + g_{q,z}^{\text{tang}},
\]

i.e., the imaginary terms in Eqs. (5.14) and (5.18) erase each other and the metric splits into a component transversal to the orbits of the unitary group, which is the usual Fisher-Rao metric, and a component tangential to the orbits of the unitary group.

5.1 Weak radial limit to pure states

For a two-level system the full density matrix \(\rho \) can be written in terms of the Pauli matrices as

\[
\rho = U \rho_0 U^{-1} = \frac{1}{2} (\sigma_0 + w \vec{x} \cdot \vec{\sigma}) , \quad -1 \leq w \leq 1, \ U \in SU(2)
\]

with the parameters \(x_j, j = 1, 2, 3 \), functions of the unitary matrix elements through the relation

\[
U \sigma_3 U^{-1} = \vec{x} \cdot \vec{\sigma}
\]

Taking the square on both sides, it follows that

\[
\sum_{j=1}^{3} x_j^2 = 1,
\]

i.e., the manifold of parameters is the three dimensional ball \(B^2 \) of unit radius, usually known as Bloch ball. This is a stratified manifold, each stratum being an orbit of \(SL(2, \mathbb{C}) \) [18, 33]. There are two strata. One is provided by rank two-states, the other one by rank one-pure states, characterized by \(w^2 = 1 \). The latter actually coincides with the topological boundary \(S^2 \) of the Bloch ball.

However, the metric defined in Eq. (5.19) only holds for invertible density states, that is, inside the bulk of the Bloch ball. It is possible to extend the metric to pure states, that is, to the boundary of the Bloch ball for a two-level system, by performing the so-called weak radial limit [31, 34]. This procedure can be summarized by means of the following steps:

1. we first consider an invertible quantum state \(\tilde{\rho} \) strictly inside the Bloch sphere with \(a > b \), where \(a = \frac{1+w}{2} \) and \(b = \frac{1-w}{2} \) denote the elements of the probability vector associated to the corresponding diagonal density matrix \(\tilde{\rho}_0 \);

2. we then evaluate the scalar product \(g_{q,z}(X_1, X_2)|_{\tilde{\rho}} \) of two tangential vectors, say \(X_1, X_2 \), at the point \(\tilde{\rho} \), so that only the tangential part of the metric contributes;
3. we finally perform the radial limit \(w \to 1 \) along the radius passing through \(\bar{\rho} \), up to the pure state \(\bar{\rho}_P \) with eigenvalues \(a = 1, b = 0 \).

This limiting procedure therefore yields the following expression of the metric \(g^0_{q,z} \) for pure states living on the boundary of the Bloch ball

\[
g^0_{q,z} = \frac{2z}{q(1-q)}(\theta_1 \otimes \theta_1 + \theta_2 \otimes \theta_2),
\]

(5.23)

which, again for \(z \to 1 \), reduces to the metric \(g^0_\theta \) for pure states obtained in [26] starting from the Tsallis relative entropy, and it is singular for \(q \to 1, 0 \). Performing the limit \(q \to 1^7 \) in Eq. (5.19), the expression for rank two density states yields

\[
g \equiv \lim_{q \to 1,0} g_{q,z} = \frac{1}{1-w^2} dw \otimes dw + 2w \log \left(\frac{1+w}{1-w} \right) (\theta_1 \otimes \theta_1 + \theta_2 \otimes \theta_2),
\]

(5.24)

where we have used the definition (3.13) of the q-logarithm function. Notice that Eq. (5.24) does not depend on the parameter \(z \) and it actually coincides with the result of [26]. Moreover, both in Eq. (5.19) and in Eq. (5.24), we recognize the transversal contribution and the round metric on the 2-sphere, with different coefficients. Now, in agreement with Eq. (5.23), we see that for \(q = 0, 1 \) the coefficient of the tangential component diverges when we take the limit \(w \to \pm 1 \). This essentially means that it is not possible to perform the radial limit procedure to recover the metric for pure states or in other words, the radial limit and the limit \(q \to 1, 0 \) commute and give a negative result.

This is coherent with what we know from Petz classification theorem [30, 32]. Indeed, the metric (5.19) can be recast in the Petz form

\[
g^\text{Petz} = \frac{1}{1-w^2} dw \otimes dw + \frac{w^2}{(1+w)f(\frac{1-w}{1+w})} (\theta_1 \otimes \theta_1 + \theta_2 \otimes \theta_2),
\]

(5.25)

with operator monotone function \(f : [0, \infty \to \mathbb{R} \), such that \(f(t) = tf(1/t) \), given by\(^8\)

\[
f(t) = \frac{q(1-q)}{4z} \frac{(t-1)(t^\frac{1}{q}-1)}{(t^\frac{1}{q}-1)(t^\frac{1}{1-q}-1)}, \quad t = \frac{1-w}{1+w}.
\]

(5.26)

For \(q = 1, 0 \), instead we have

\[
f(t) = \frac{t-1}{4 \ln t}
\]

(5.27)

and, according to [31, 34], the radial limit is well defined if and only if \(f(0) \neq 0 \) which is actually the case for \(q \neq 1, 0 \) but it is not verified for \(q = 1, 0 \).

\(^7\)The case \(q = 0 \) can be treated in the same way.

\(^8\)As proved in Sec. 2.2, quantum divergence functions satisfying the DPI give rise to quantum metrics possessing the monotonicity property. Therefore, since the DPI is satisfied in the range of parameters we are considering in this work (see Sec. 3) and according to Petz classification theorem, we are ensured that the function (5.26) is operator monotone for \(z \in \mathbb{R}^+ \) and \(q \in [0,1] \).
Note that, up to a normalization factor, in the limit $z \to 1$ the function (5.26) reduces to the operator monotone function reproducing the Petz metric obtained from the Tsallis relative entropy

$$f(t) = \frac{q(1-q)}{4} \frac{(t-1)^2}{(t^q - 1)(t^{1-q} - 1)},$$

and accordingly (5.27) is the operator monotone function reproducing the metric (5.24) obtained from the von Neumann relative entropy.

5.2 The $z \to 1, q \to \frac{1}{2}$ limit: Wigner-Yanase metric

In the limit $z \to 1$, we recover the result of [26]. Indeed, as already discussed in Eq. (3.15), for such value of the parameter z the $q-z$-relative entropy (3.14) reduces to the Tsallis q-relative entropy and coherently the metric (5.19) becomes

$$g_q \equiv g_{q,1} = \frac{1}{1-w^2} dw \otimes dw + \frac{2}{q(1-q)} (a_q - b_q)(a_{1-q} - b_{1-q}) (\theta^1 \otimes \theta^1 + \theta^2 \otimes \theta^2).$$

Thus, performing the limit $q \to \frac{1}{2}$, we get

$$g_{\frac{1}{2},1} = \frac{1}{1-w^2} dw \otimes dw + 8(1-\sqrt{1-w^2}) (\theta^1 \otimes \theta^1 + \theta^2 \otimes \theta^2) \equiv g_{WY},$$

which is the so-called Wigner-Yanase information metric [16, 17]. Indeed, as already discussed in Sec. 3, for such values of the parameters, the $q-z$-relative entropy reduces to

$$S_{\frac{1}{2},1}(\rho|\varrho) = 4\left[1 - \text{Tr}\left(\rho^{\frac{1}{2}}\varrho^{\frac{1}{2}}\right)\right],$$

which, as discussed in [16, 17], is the divergence function for the Wigner-Yanase metric. Moreover, for such values of the parameters ($z = 1$ and $q = \frac{1}{2}$), the operator monotone function (5.26) gives

$$f(t) = \frac{1}{16} \frac{(t-1)^2}{(\sqrt{t} - 1)^2} = \frac{1}{16} (\sqrt{t} + 1)^2,$$

which, up to a normalization factor, is the operator monotone function associated with the Wigner-Yanase metric [16, 17]. This can be easily checked by substituting the function (5.32) in the expression (5.25), where we set $t = \frac{1-w}{1+w}$, and thus obtaining the metric (5.30).

5.3 The $z \to \frac{1}{2}, q \to \frac{1}{2}$ limit: Bures metric

As anticipated in Sec. 3, in the limit $z \to \frac{1}{2}, q \to \frac{1}{2}$, the $q-z$-relative entropy (3.14) reduces to

$$S_{\frac{1}{2},\frac{1}{2}}(\rho|\varrho) = 4\left[1 - \text{Tr}(\rho\varrho)^{1/2}\right].$$

29
which coincides with the divergence function of the Bures metric

\[S_{\text{Bures}}(\rho|\varrho) = 4\left[1 - \sqrt{F(\rho, \varrho)}\right], \quad (5.34) \]

where \(\sqrt{F(\rho, \varrho)} \) is the so-called root fidelity. Indeed, according to Uhlmann’s fidelity theorem [7], the root fidelity is given by

\[\sqrt{F(\rho, \varrho)} = \text{Tr} \sqrt{\varrho \rho \varrho \rho}, \quad (5.35) \]

where in the last equality we used the property that, for any pair of square matrices \(A \) and \(B \), the eigenvalues of \(AB \) and \(BA \) are the same from which it follows that the matrix \(\rho \tilde{\rho} \) has real, non-negative eigenvalues (even though it is not in general self-adjoint), and the trace functional \(\text{Tr}(\cdot)^{1/2} \) in this expression is well-defined as the sum of the square roots of these eigenvalues, which are the same as those of \(\rho^{1/2} \rho \rho^1 \) [5].

Accordingly, for \(z = q = \frac{1}{2} \), the \(q - z \)-metric (5.19) then reduces to the Bures metric

\[g_{q,\frac{1}{2}} = \frac{1}{1 - w^2} dw \otimes dw + 4w^2 (\theta^1 \otimes \theta^1 + \theta^2 \otimes \theta^2) \equiv g_{\text{Bures}}, \quad (5.36) \]

as can be easily checked by direct computation from Eq. (5.19) or alternatively noticing that, for such values of the parameters, the operator monotone function (5.26) yields

\[f(t) = \frac{1 + t}{8}, \quad t = \frac{1 - w}{1 + w}, \quad (5.37) \]

which, up to a normalization factor, is actually the operator monotone function associated to the Bures metric [4, 23] as can be verified by substituting it in Eq. (5.25) thus obtaining the metric (5.36).

6 The n-level case

Here, we will discuss the result of the computations and simply refer to subsection A for all the details. The final result is:

\[g_{q,z} = g_{q,\frac{1}{2}} + g_{q,\frac{1}{2}} = \sum_{\alpha=1}^{n} p_\alpha d \ln p_\alpha \otimes d \ln p_\alpha + \frac{z}{q(1 - q)} \sum_{j,k=1}^{n} C_{jk} \theta^j \otimes \theta^k, \quad (6.1) \]

where \(\{p_\alpha\}_{\alpha=1,...n} \) denote the eigenvalues of \(\bar{\rho} \), the coefficients \(C_{jk} \) are given by:

\[C_{jk} = \sum_{\alpha, \beta=1}^{n} \mathcal{E}_{\alpha \beta} \Re [M_j^{\alpha \beta} M_k^{\beta \alpha}], \quad (6.2) \]

30
with $M_{j}^{\alpha\beta}$ being numerical coefficients depending on the choice of a basis in the Lie algebra of $U(n)$, and with:

$$\mathcal{E}_{\alpha\beta} := \frac{(p_{\alpha} - p_{\beta})(\frac{1}{p_{\alpha}} - \frac{1}{p_{\beta}})}{(p_{\alpha} - 1/p_{\beta})},$$

(6.3)

where, as highlighted by the notation \sum' in (6.1), it is always $\alpha \neq \beta$ (see appendix A). It turns out that the coefficients C_{jk} are symmetric in j and k, and thus $g_{q,z}^{n}$ is a symmetric tensor. Furthermore, the sum over j and k in Eq. (6.1) does not involve the basic left-invariant 1-forms dual to the Cartan subalgebra. Indeed, the only terms which contain the left-invariant 1-forms associated with the Cartan subalgebra are those with $\alpha = \beta$ which have vanishing coefficients C_{jk} (see appendix A for a detailed discussion).

Whenever the parameters q and z are such that the modified q, z-RRE $S_{q,z}$ of equation (3.14) is a divergence function in the sense of definition 4, we have that $D_{q,z}$ is a non-negative potential function, and that $g_{q,z}$ is a positive-semidefinite symmetric covariant tensor field which is the pullback of the positive-semidefinite symmetric covariant tensor field on \bar{S}_{n} extracted from $S_{q,z}$ (see proposition 10 and proposition 7). Recalling that $g_{q,z}$ does not contain the basic left-invariant 1-forms dual to the Cartan subalgebra, and since dp_{j} and θ^{j} are basis elements, we conclude that the kernel of $g_{q,z}$ is given by the span of the vector fields dual to the left-invariant 1-forms associated with the Cartan subalgebra. According to proposition 13, these vector fields are π_{n} related with the null vector field on \bar{S}_{n}. This means that $g_{q,z}$ is the pullback to \mathcal{M}_{n} of a symmetric invertible tensor on \bar{S}_{n}, that is, a Riemannian metric tensor on the space of invertible density matrices.

If the values of q and z for which $S_{q,z}$ is a divergence function are such that $\{S_{q,z}\}_{n \in \mathbb{N}_{2}}$ satisfies the DPI, is the pullback to $\{\mathcal{M}_{n}\}_{n \in \mathbb{N}_{2}}$ of a family of quantum Riemannian metric tensors on $\{\bar{S}_{n}\}_{n \in \mathbb{N}_{2}}$ satisfying the monotonicity property. In particular, according to the formulae in the introduction of this chapter, the family of metric tensors associated with the von Neumann-Umegaki relative entropies, with the Tsallis relative entropies, with the Wigner-Yanase skew informations, and with the Bures divergences, all satisfies the monotonicity property.

Equation (6.1) points out another interesting fact. The first term in the expression of $g_{q,z}$ is precisely the Fisher-Rao metric tensor related to the component of the “classical” probability vector $\vec{p} = (p_{1}, \ldots, p_{n})$ identified with the diagonal elements of the invertible density matrix. Consequently, since the monotonicity property is connected to the DPI, since the DPI depends on the explicit values of q and z, and since the Fisher-Rao contribution to $g_{q,z}$ does not depend on (q, z), the “obstruction” to the monotonicity property is completely encoded in the unitary contribution to $g_{q,z}$.
7 Special limits and explicit examples

In order to test the result of the previous section for the general expression of the quantum metric tensor, in this section we specialize it to some explicit examples and particular limits checking if the corresponding expressions allow to recover what we already know. Specifically, first of all we show that for \(N = 2 \) the metric (6.1), or equivalently (A.44), reduces to the expression (5.19) that we found in Sec. 5 for the qubit case. Furthermore, in analogy to what we have done in the qubit case, we consider the various limits for the parameters \(q \) and \(z \) thus providing the explicit expressions of both the Wigner-Yanase and the Bures metric on the space of (invertible) quantum states of a generic \(N \)-level system for suitable values of the parameters. Finally, as a less trivial example, we consider also the case of a three-level system.

7.1 Recovering the \(n = 2 \) case

For a two-level system \((N = 2) \), we have

\[
\rho_0 = \begin{pmatrix} \frac{1+w}{2} & 0 \\ 0 & \frac{1-w}{2} \end{pmatrix} = \left(\frac{1+w}{2} \right) \tau_{11} + \left(\frac{1-w}{2} \right) \tau_{22},
\]

i.e.

\[
p_1 = \frac{1+w}{2} \equiv a, \quad p_2 = \frac{1-w}{2} \equiv b.
\]

Moreover, since the Pauli matrices can be written in terms of the \(\tau \)'s as

\[
\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \tau_{11} + \tau_{22}, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \tau_{12} + \tau_{21},
\]

\[
\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = i(\tau_{21} - \tau_{12}), \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \tau_{11} - \tau_{22},
\]

by imposing that \(i \sigma_k \theta^k = i \tau_{\alpha\beta} \theta^{\alpha\beta} \), a straightforward computation yields

\[
\theta^{11} = \theta^0 + \theta^3, \quad \theta^{22} = \theta^0 - \theta^3, \quad \theta^{12} = \theta^1 + i\theta^2, \quad \theta^{21} = \theta^1 - i\theta^2.
\]

Therefore, by substituting Eqs. (7.2) and (7.4) into (6.1), we get

\[
g^{\text{transv}}_{q,z} = \frac{1}{p_1} dp_1 \otimes dp_1 + \frac{1}{p_2} dp_2 \otimes dp_2
\]

\[
= \frac{1}{2(1+w)} dw \otimes dw + \frac{1}{2(1-w)} dw \otimes dw
\]

\[
= \frac{1}{1-w^2} dw \otimes dw,
\]
and

\[g_{q,z}^{\text{tang}} = \frac{z}{q(1-q)} \left(\frac{p_1 - p_2}{p_1 + p_2} \right) \left(\frac{1 - p_1}{1 - p_2} \right) \left(\theta^{12} \otimes \theta^{21} + \theta^{21} \otimes \theta^{12} \right) \]

\[= \frac{2wz}{q(1-q)} \left(\frac{a_i - b_i}{a_i + b_i} \right) \left(\theta^1 \otimes \theta^1 + \theta^2 \otimes \theta^2 \right), \quad (7.6) \]

i.e.

\[g_{q,z}^{(N=2)} = \frac{1}{1 - w^2} dw \otimes dw + \frac{2wz}{q(1-q)} \left(\frac{a_i - b_i}{a_i + b_i} \right) \left(\theta^1 \otimes \theta^1 + \theta^2 \otimes \theta^2 \right), \quad (7.7) \]

which is actually the result obtained in Sec. 5 for the qubit case (see Eq. (5.19)). This can also be seen directly from the expression (6.1). Indeed, according to Eqs. (A.11) and (7.3), in the two-level case we have

\[M_{01}^{11} = M_{02}^{12} = 1, \quad M_{01}^{12} = M_{02}^{21} = 0 \quad (7.8) \]
\[M_{11}^{11} = M_{12}^{12} = 0, \quad M_{11}^{12} = M_{12}^{21} = 1 \quad (7.9) \]
\[M_{21}^{11} = M_{22}^{12} = 0, \quad M_{21}^{12} = M_{22}^{21} = i \quad (7.10) \]
\[M_{31}^{11} = -M_{32}^{12} = 1, \quad M_{31}^{12} = M_{32}^{21} = 0 \quad (7.11) \]

Eqs. (A.42) and (A.43) then yield

\[g_{q,z}^{\text{tang}} = \frac{z}{q(1-q)} \sum_{j,k=1}^{3} \left(\mathcal{E}_{12} \Re \left[M_{j1}^{12} M_{k2}^{21} \right] + \mathcal{E}_{21} \Re \left[M_{j1}^{21} M_{k2}^{12} \right] \right) \theta^j \otimes \theta^k \]

\[= \frac{2z}{q(1-q)} \sum_{j,k=1,2} \mathcal{E}_{12} \Re \left[M_{j1}^{12} M_{k2}^{21} \right] \theta^j \otimes \theta^k \]

\[= \frac{2z}{q(1-q)} \mathcal{E}_{12} \left(\theta^1 \otimes \theta^1 + \theta^2 \otimes \theta^2 \right), \quad (7.12) \]

which, remembering the explicit expression (A.39) for the coefficients \(\mathcal{E}_{\alpha\beta} \), gives again the correct expression for the tangential part of the metric in the qubit case.

7.2 \(z = 1 \)

For \(z = 1 \), the two-parameters family of metrics reduces to the 1-parameter family of metrics derived from the Tsallis relative entropy in [26]. Indeed, for such value of the parameter \(z \), the expression (6.1) for the \(q - z \)-metric tensor becomes

\[g_{q,1} = \sum_{\alpha=1}^{N} \frac{1}{p_{\alpha}} dp_{\alpha} \otimes dp_{\alpha} + \frac{1}{q(1-q)} \sum_{\alpha,\beta=1}^{N} \left(p_{\alpha}^q - p_{\beta}^q \right) \left(p_{\alpha}^{1-q} - p_{\beta}^{1-q} \right) \theta^{\alpha\beta} \otimes \theta^{\beta\alpha}, \quad (7.13) \]
or equivalently Eq. (6.1) becomes

\[
g_{q,1} = \sum_{\alpha=1}^{N} \frac{1}{p_{\alpha}} dp_{\alpha} \otimes dp_{\alpha} + \frac{1}{q(1-q)} \sum_{j,k=1}^{N^2-1} C_{jk} \theta^j \otimes \theta^k , \tag{7.14}
\]

with

\[
C_{jk} = \sum_{\alpha,\beta=1}^{N} (p_{\alpha}^q - p_{\beta}^q)(p_{\alpha}^{1-q} - p_{\beta}^{1-q}) \Re[M_{\alpha\beta}^j M_{\beta\alpha}^k] . \tag{7.15}
\]

This essentially provides the expression of the quantum metric tensor derived from the Tsallis q-relative entropy for a generic N-level system and, in agreement with [26], for \(N = 2 \) both Eq. (7.13) and Eq. (7.14) actually reproduce the expression (5.29) for the qubit case.

7.3 \(z = 1, q = \frac{1}{2} \)

According to the result of Sec. 5.2, for such values of the parameters, the expression (6.1) or equivalently (A.44) provides us with the general form of the Wigner-Yanase metric tensor for a generic N-level system, that is

\[
g_{WY} \equiv g_{1,1} = \sum_{\alpha=1}^{N} \frac{1}{p_{\alpha}} dp_{\alpha} \otimes dp_{\alpha} + 4 \sum_{\alpha,\beta=1}^{N} \left(p_{\alpha}^{1/2} - p_{\beta}^{1/2} \right)^2 \theta_{\alpha\beta} \otimes \theta_{\alpha\beta} \tag{7.16}
\]

\[
= \sum_{\alpha=1}^{N} \frac{1}{p_{\alpha}} dp_{\alpha} \otimes dp_{\alpha} + 4 \sum_{j,k=1}^{N^2-1} \sum_{\alpha,\beta=1}^{N} \left(p_{\alpha}^{1/2} - p_{\beta}^{1/2} \right)^2 \Re[M_{\alpha\beta}^j M_{\beta\alpha}^k] \theta^j \otimes \theta^k .
\]

In particular, using Eqs. (7.2) and (7.4), for \(N = 2 \) we have

\[
g_{WY}^{(N=2)} \equiv g_{1/2,1} = \sum_{\alpha=1,2} \frac{1}{p_{\alpha}} dp_{\alpha} \otimes dp_{\alpha} + 4 \left(p_{1}^{1/2} - p_{2}^{1/2} \right)^2 (\theta^{12} \otimes \theta^{21} + \theta^{21} \otimes \theta^{12})
\]

\[
= \frac{1}{1-w^2} dw \otimes dw + 8(a_{1/2} - b_{1/2})^2 (\theta^1 \otimes \theta^1 + \theta^2 \otimes \theta^2) \tag{7.17}
\]

\[
= \frac{1}{1-w^2} dw \otimes dw + 8(1-\sqrt{1-w^2}) (\theta^1 \otimes \theta^1 + \theta^2 \otimes \theta^2) ,
\]

i.e., we recover the expression (5.30) of Sec. 5.2 for the qubit case.

7.4 \(z = \frac{1}{2}, q = \frac{1}{2} \)

According to the result of Sec. 5.3, for such values of the parameters, the expression (6.1) or equivalently (A.44) provides us with the general form of the Bures metric tensor for a
generic N-level system, that is
\[g_{\text{Bures}} \equiv g_{\frac{1}{2}, \frac{1}{2}} = \sum_{\alpha=1}^{N} \frac{1}{p_\alpha} dp_\alpha \otimes dp_\alpha + 2 \sum_{\alpha, \beta=1}^{N} \frac{(p_\alpha - p_\beta)^3}{(p_\alpha^2 - p_\beta^2)} \theta^{\alpha \beta} \otimes \theta^{\beta \alpha} \]
\[= \sum_{\alpha=1}^{N} \frac{1}{p_\alpha} dp_\alpha \otimes dp_\alpha + 2 \sum_{\alpha, \beta=1}^{N} \frac{(p_\alpha - p_\beta)^2}{(p_\alpha + p_\beta)} \theta^{\alpha \beta} \otimes \theta^{\beta \alpha} \] \hspace{1cm} (7.18)
\[= \sum_{\alpha=1}^{N} \frac{1}{p_\alpha} dp_\alpha \otimes dp_\alpha + 2 \sum_{j, k=1}^{N^2 - 1} \sum_{\alpha, \beta=1}^{N} \frac{(p_\alpha - p_\beta)^2}{(p_\alpha + p_\beta)} \Re [M_{j}^{\alpha \beta} M_{k}^{\beta \alpha}] \theta^j \otimes \theta^k . \]

In particular, using Eqs. (7.2) and (7.4), for \(N = 2 \) we have
\[g_{\text{Bures}}^{(N=2)} \equiv g_{\frac{1}{2}, \frac{1}{2}}^{(N=2)} = \sum_{\alpha=1, 2} \frac{1}{p_\alpha} dp_\alpha \otimes dp_\alpha + 2 \frac{(p_1 - p_2)^2}{(p_1 + p_2)} (\theta^{12} \otimes \theta^{21} + \theta^{21} \otimes \theta^{12}) \]
\[= \frac{1}{1 - w^2} dw \otimes dw + 4 \frac{(a - b)^2}{a + b} (\theta^1 \otimes \theta^1 + \theta^2 \otimes \theta^2) \] \hspace{1cm} (7.19)
\[= \frac{1}{1 - w^2} dw \otimes dw + 4 w^2 (\theta^1 \otimes \theta^1 + \theta^2 \otimes \theta^2) , \]

i.e., we recover the expression (5.36) of Sec. 5.3 for the qubit case.

7.5 A less trivial example: three level system

For a three-level system the relevant group of unitary transformations is \(SU(3) \) and the parameter manifold is a proper submanifold of \(3 \times 3 \) matrices. The bulk region \(S_3^3 \) of the space \(S_3 \) of invertible quantum states, i.e., \(S_3 \) without the totally mixed state, is the union of \(SU(3) \) orbits (four- and six-dimensional sub-manifolds in \(\mathbb{R}^8 \)) [13, 33, 14]. In this case, we have a basis in \(\mathcal{B}(\mathcal{H}) \) made up of the Gell-Mann matrices denoted by \(\lambda_j, j = 1, \ldots, 8 \), and the identity matrix \(\lambda_0 = 1_{3 \times 3} \). Selecting the orthonormal basis \(\{|j\}_{j=0,1,2} \) in \(\mathcal{H} \) made up of eigenvectors of \(\lambda_3 \), we have the following matrix realization of the Gell-Mann matrices:

\[
\begin{align*}
\lambda_1 &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & \lambda_2 &= \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & \lambda_3 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & \lambda_4 &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \\
\lambda_5 &= \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, & \lambda_6 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, & \lambda_7 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, & \lambda_8 &= \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.
\end{align*}
\] \hspace{1cm} (7.20)

The density matrix \(\rho \) can be written as
\[\rho = U \rho_0 U^{-1} = \lambda_\mu x^\mu = \frac{1}{3} \lambda_0 + \lambda_j x^j , \] \hspace{1cm} (7.21)
where \(\mu = 0, \ldots, 8 \) and the condition \(\text{Tr} \rho = 1 \) imposes \(x_0 = \frac{1}{3} \). Repeating the analysis of the two-level case, the diagonal density matrix \(\rho_0 \) in Eq. (7.21) can be written in terms
of three real parameters \(p_1, p_2, p_3 > 0 \) as

\[
\rho_0 = \begin{pmatrix}
p_1 & 0 & 0 \\
0 & p_2 & 0 \\
0 & 0 & p_3
\end{pmatrix}
\quad \text{with} \quad \sum_{k=1}^{3} p_k = 1 ,
\tag{7.22}
\]
or in terms of the diagonal Gell-mann matrices of the \(su(3) \)-Cartan subalgebra (\(\lambda_0, \lambda_3 \) and \(\lambda_8 \) in the chosen basis) as

\[
\rho_0 = \frac{1}{3} \lambda_0 + \beta \lambda_3 + \gamma \lambda_8 ,
\tag{7.23}
\]
with

\[
\beta = \frac{1}{2} (p_1 - p_2) \quad , \quad \gamma = \frac{1}{2\sqrt{3}} (p_1 + p_2 - 2p_3) .
\tag{7.24}
\]

From Eq. (7.21), we have then

\[
U(\beta \lambda_3 + \gamma \lambda_8)U^{-1} = \lambda_j x^j \quad , \quad j = 1, \ldots, 8
\tag{7.25}
\]
which implies, after taking the square on both sides and the trace

\[
\beta^2 + \gamma^2 = \sum_{j=1}^{8} x_j^2 ,
\tag{7.26}
\]
or, in terms of the parameters \(p_1, p_2, p_3 \)

\[
\sum_{j=1}^{8} x_j^2 = \frac{1}{3} - (p_1p_2 + p_1p_3 + p_2p_3) ,
\tag{7.27}
\]
which identifies the manifold of parameters as a submanifold with boundary in \(\mathbb{R}^8 \). The unitary orbits passing through rank-three density states are diffeomorphic to

\[
O_3 \cong \frac{U(3)}{U(1) \times U(1) \times U(1)} \quad (\text{dim} \ O_3 = 6) ,
\tag{7.28}
\]
if the three eigenvalues are all different (i.e., \(p_1 \neq p_2 \neq p_3 \)), while for each two eigenvalues being coincident but different from the remaining one, i.e., \(p_j = p_k \neq p_\ell, j \neq k \neq \ell \), we have four-dimensional unitary orbits diffeomorphic to

\[
O_2 \cong \frac{U(3)}{U(2) \times U(1)} \quad (\text{dim} \ O_2 = 4) .
\tag{7.29}
\]

Let us now evaluate the quantum metric (6.1) for this case. In terms of the \(3 \times 3 \) matrices \(\tau \) of the standard basis, the Gell-mann matrices (7.20) read as

\[
\lambda_1 = \tau_{12} + \tau_{31} \quad , \quad \lambda_2 = i(\tau_{21} - \tau_{12}) \quad , \quad \lambda_3 = \tau_{11} - \tau_{22} \quad , \quad \lambda_4 = \tau_{13} + \tau_{31} ,
\]
\[
\lambda_5 = i(\tau_{31} - \tau_{13}) \quad , \quad \lambda_6 = \tau_{23} + \tau_{32} \quad , \quad \lambda_7 = i(\tau_{32} - \tau_{23}) \quad , \quad \lambda_8 = \frac{1}{\sqrt{3}}(\tau_{11} + \tau_{22} - 2\tau_{33}) ,
\tag{7.30}
\]
and obviously $\lambda_0 = \tau_{11} + \tau_{22} + \tau_{33}$. Therefore, imposing that $\lambda_\mu = \sum_{\alpha, \beta = 1}^{3} M^\alpha_\mu M_\alpha^\beta \tau_{\alpha \beta}$ for any $\mu = 0, \ldots, 8$, it follows that the only non-zero coefficients M^α_μ are

$$
\begin{align*}
M_0^{11} = M_0^{22} = M_0^{33} = 1, & \quad M_3^{11} = -M_3^{22} = 1, & \quad M_8^{23} = M_8^{32} = 1, \\
M_4^{12} = M_4^{21} = 1, & \quad M_4^{31} = M_4^{31} = 1, & \quad M_4^{32} = -M_4^{23} = i, \\
M_2^{21} = -M_2^{12} = i, & \quad M_5^{31} = -M_5^{33} = i, & \quad M_8^{11} = M_8^{22} = 1/\sqrt{3}, M_8^{33} = -2/\sqrt{3}.
\end{align*}
$$

(7.31)

Hence, according to Eq. (6.1), in the qutrit case the two contributions to the quantum metric tensor are given by

$$
g^{\text{trans}}_{q,z} = \sum_{\alpha = 1}^{3} p_\alpha d \ln p_\alpha \otimes d \ln p_\alpha, \quad (7.32)
$$

and

$$
g^{\text{ang}}_{q,z} = \frac{2z}{q(1 - q)} \sum_{j,k = 1}^{8} \left(\mathcal{E}_{12} \Re \left[M_j^{12} M_k^{21} \right] + \mathcal{E}_{13} \Re \left[M_j^{13} M_k^{31} \right] + \mathcal{E}_{23} \Re \left[M_j^{23} M_k^{32} \right] \right) \theta^j \otimes \theta^k
$$

$$
= \frac{2z}{q(1 - q)} \left[(p_1 - p_2)(p_1 - p_2)(p_1^2 - p_2^2) \left(\frac{1}{p_1^2} - \frac{1}{p_2^2} \right) \left(\theta^1 \otimes \theta^1 + \theta^2 \otimes \theta^2 \right) \right. \\
+ (p_1 - p_3)(p_1 - p_3)(p_1^2 - p_3^2) \left(\frac{1}{p_1^2} - \frac{1}{p_3^2} \right) \left(\theta^3 \otimes \theta^3 + \theta^2 \otimes \theta^2 \right) \right. \\
+ (p_2 - p_3)(p_2 - p_3)(p_2^2 - p_3^2) \left(\frac{1}{p_2^2} - \frac{1}{p_3^2} \right) \left(\theta^2 \otimes \theta^2 + \theta^3 \otimes \theta^3 \right) \left. \right].
$$

(7.33)

The above result makes explicit what we stressed at the end of Sec. 6, in the passage from the first to the second line of Eq. (7.33) we see that the only non-zero terms are those for $j = k \neq 0, 3, 8$ since the mixed terms and those with $j, k = 0, 3, 8$ are characterized by vanishing \mathcal{E} coefficients or, being the product $M_j^{\alpha \beta} M_k^{\beta \alpha}$ zero or imaginary, by $\Re [M_j^{\alpha \beta} M_k^{\beta \alpha}] = 0$.

Finally, let us close this section with the following remarks:

i) From the expression (7.33) of $g^{\text{ang}}_{q,z}$ it is evident the splitting into three $SU(2)$ copies (cfr. Eq. (5.19)). Furthermore, we see that the structure of the metric retrieves the stratification in terms of the unitary orbits discussed in Eqs. (7.28) and (7.29). Indeed, for $p_1 \neq p_2 \neq p_3$, the tangential part of the metric is the pull-back to the parameters manifold of that on the six-dimensional orbit O_3, whereas for each two coincident eigenvalues, but different from the remaining one, e.g., for $p_1 = p_2 \neq p_3$, the coefficient in the first term of Eq. (7.33) vanishes and the other two become equal so that we find the pull-back of four-dimensional unitary orbits O_2 [33, 14, 26].
ii) For $z \to 1$ the quantum metric $g_{q,z}^{(N=3)} = (7.32) + (7.33)$ obtained here for the qutrit case reduces to the one derived in [26] using the Tsallis relative entropy (cfr. Eq. (3.47) in [26]). Moreover, our result has the same structure of the symmetric part of the quantum Fisher information tensor obtained in [11], i.e., it splits into three $SU(2)$-related contributions. The explicit form of the coefficients is however different because of the different regularization procedures employed. Indeed, as discussed in [26], the starting point in [14, 11] is a generalization of the Fisher tensor for mixed states defined by means of the so-called symmetric logarithmic derivative, while here we used the q-z-relative entropy as a potential function for the metric, which cannot give rise to antisymmetric terms and it essentially amounts to define the logarithmic derivative through the introduction of q-logarithms.

iii) As discussed in [26], the radial limit procedure illustrated in Sec. 5.1 for the qubit case can be performed also in the present case for rank-one pure states and rank-two density states. Indeed, by getting rid of the transversal part of the metric by means of tangent vectors to the orbits and choosing for instance $p_1 > p_2 > p_3$, we first perform the limit $p_3 \to 0, p_1 + p_2 \to 1$ in order to obtain the metric for the stratum of rank-two density states

$$
\tilde{g}_{q,z} = \frac{2z}{q(1-q)} \left[\frac{(p_1 - p_2)(\frac{p_1}{p_2})^{1/2} - (p_1^{1/2} - p_2^{1/2})}{(p_1^{1/2} - p_2^{1/2})} \left(\theta^1 \otimes \theta^1 + \theta^2 \otimes \theta^2 \right) + \right. \\
\left. + p_1 (\theta^4 \otimes \theta^4 + \theta^5 \otimes \theta^5) + p_2 (\theta^6 \otimes \theta^6 + \theta^7 \otimes \theta^7) \right]_{p_1+p_2=1},
$$

and then, if we further perform the limit $p_2 \to 0, p_1 \to 1$, we obtain the metric for pure states

$$
g_{q,z}^0 = \frac{2z}{q(1-q)} \sum_{j \neq 3,6,7,8} \theta^j \otimes \theta^j ,
$$

which is singular for $q \to 1, 0$ as in the two-level case discussed in Sec. 5.1 (cfr. Eq. (5.23)).

8 Conclusions and outlook

To summarize, we point out the main results of our work. In the first part of the paper, we developed a coordinate-free formalism for Information Geometry. In Section 2 we introduced the notion of potential functions as the most general type of two-point function from which it is possible to extract symmetric covariant $(0,2)$ and $(0,3)$ tensors by means of a coordinate-free algorithm. This algorithm is the coordinate-free counterpart of the standard one used in Information Geometry [2, 3]. The set of divergence functions used in Information Geometry turns out to be a subset of the set of potential functions introduced here. Then, we focused on Quantum Information Geometry. We reviewed the notion of
quantum stochastic map, the so-called monotonicity property for a family of metric tensors on the manifold of invertible quantum states, and the so-called Data Processing Inequality (DPI) for a family of divergence functions on the manifold of invertible quantum states. By means of the abstract formalism developed in Section 2 we are able to prove that the DPI for a family of quantum divergence functions implies the monotonicity property for the associated family of quantum metric tensors.

Once the formal framework has been settled, we introduced the family of q-z-relative entropies. This is a two-parameter family of relative entropies including almost all known relative entropies for suitable values of the parameters. We then used these relative entropies as potential functions to generate metrics on the space of invertible states for a quantum system with arbitrary finite dimension. We further investigated possible ranges of the parameters q and z allowing to recover known quantities in Information Geometry. In particular, we showed that a proper definition of both the Bures metric and the Wigner-Yanase metric can be derived from this family of divergence functions. To easily visualize the results, we first performed the calculation for the qubit case. For $q = z = \frac{1}{2}$ and $q = \frac{1}{2}, z = 1$, the q-z-relative entropy respectively reduced to the divergence functions for the Bures and Wigner-Yanase metrics and, as we explicitly showed, these metrics were actually recovered from the general expression of the q-z-metric for such values of the parameters. Moreover, we extended the derivation of the metric tensor to a generic N-level system. In order to test the validity of our results we first checked that the two-level case was actually recovered from the general expression of the metric when $N = 2$, and then we analyzed the less trivial case of a three-level system showing how the structure of the metric retrieved the foliation of the stratum of rank-three invertible quantum states into unitary orbits. Finally, the general expression for the q-z quantum metric allowed us to give explicit expressions both of the Bures and Wigner-Yanase metric also for the N-level case.

In conclusion, a few comments are in order. In this work we mainly focused on the calculation of the metric tensor but the intrinsic formalism developed here can be also used to extract symmetric covariant $(0,3)$ tensors (skewness tensors). We leave such analysis as well as the extension to higher rank structures to forthcoming publications. Moreover, within the framework of the tomographic reconstruction of metrics on the space of quantum states introduced in [26], in a previous paper [24] some of the authors have shown that there exists a one-to-one correspondence between the choice of a tomographic scheme and the quantum metric associated with a particular relative entropy. From this perspective, it would be very interesting to investigate if different q-z quantum metrics (corresponding to different values of the parameters) might be related by a change of tomographic scheme. More specifically, since the change of tomographic schemes actually induces a diffeomorphism mapping Petz metrics into Petz metrics and being the operator monotone function (5.26) associated to the q-z metric dependent also on the parameters q and z, the diffeomorphism induced by changing the tomographic scheme would now involve also q and z thus resulting into a different quantum metric within the q-z family.
itself. According to the generality of such a family of metrics and its relation with well-know quantities in Information Geometry for specific values of the parameters, this may be useful to better understand the connections between the different quantum metrics employed in the literature towards a proper extension of the quantum Fisher metric on the full space of quantum states.

Acknowledgements G.M. would like to acknowledge the grant “Santander-UC3M Excellence Chairs 2016/2017”. P.V. acknowledges support by COST (European Cooperation in Science and Technology) in the framework of COST Action MP1405 QSPACE.

A Explicit computations

Here we will perform the detailed computation of the covariant tensor field:

\[g_{q,z}(X, Y) := -i \ast (L_{X_1} L_{Y_1}, D_{q,z}) , \]

(A.1)

where:

\[D_{q,z}(U, \vec{p}_1; V, \vec{p}_2) = \frac{1}{q(1-q)} \left(1 - \text{Tr} \left[\left((U \bar{\rho}_0 U^\dagger)^\frac{q}{z} (V \bar{\rho}_0 V^\dagger)^{1-\frac{q}{z}} \right)^z \right] \right) , \]

(A.2)

with \(\bar{\rho}_0 = \text{diag}(\vec{p}_1) \) and \(\bar{\rho}_0 = \text{diag}(\vec{p}_2) \). At this purpose, we start setting:

\[A = \bar{\rho}_0^\frac{q}{z} U \quad , \quad B = \bar{\rho}_0^\frac{1-q}{z} V^\dagger . \]

(A.3)

Since \(z \in \mathbb{R}_+ \), it can take both integer and noninteger values. Therefore, in order to have a well defined expression, we consider the analytical expansion of the function \((AB)^z\) with respect to the identity, say:

\[(AB)^z = \sum_{n=0}^{\infty} c_n(z)(AB - 1)^n . \]

(A.4)

Let us notice that, as stressed in [5], even if \(AB = \bar{\rho}_0^\frac{q}{z} \bar{\rho}_0^\frac{1-q}{z} \) is not Hermitian, the spectrum of \(AB \) coincides with the spectrum of \(BA = (AB)^\dagger \) for \(A \) and \(B \) Hermitian operators as in (A.3). This ensures that the spectrum of \(AB \) is real and hence \((AB)^z\) as a function of \(z \) does not have nonanalyticity branches and can be expanded as in (A.4).

Next, we consider:

\[L_{X_1} L_{Y_1} \text{ Tr} [(AB)^z] = \sum_{n=0}^{\infty} c_n(z) L_{X_1} L_{Y_1} \text{ Tr} [(AB - 1)^n] . \]

(A.5)
Using the Leibniz rule together with the cyclic property of the trace and with the relation \(L_{Y_r} = i_{Y_r}d \) which is valid on functions, we have:

\[
L_{Y_r} \, \text{Tr} [(AB)^z] = \sum_{m=0}^{\infty} c_m(z) \, L_{Y_r} \, \text{Tr} \left(\frac{(AB - 1)^m}{m} \right) =
\]

\[
= \sum_{m=0}^{\infty} c_m(z) \, \text{Tr} \left(A \, (i_{Y_r} dB) \, (AB - 1)^{m-1} + (AB - 1) \, A \, (i_{Y_r} dB) \, (AB - 1)^{m-2} + \cdots + (AB - 1)^{m-1} \, A \, (i_{Y_r} dB) \right) =
\]

\[
= \sum_{m=0}^{\infty} m \, c_m(z) \, \text{Tr} \left((AB - 1)^{m-1} \, A \, (i_{Y_r} dB) \right)
\text{(A.6)}
\]

where we used the fact that \(i_{Y_r} dB = 0 \) because \(A \) depends only on the elements of the left factor of \(\mathcal{M}_n \times \mathcal{M}_n \). Then:

\[
L_{X_i} \, L_{Y_r} \, \text{Tr} [(AB)^z] = \sum_{m=0}^{\infty} m \, c_m(z) \, L_{X_i} \, \text{Tr} \left(\frac{(AB - 1)^m}{m} \right) =
\]

\[
= \sum_{m=0}^{\infty} m \, c_m(z) \left[\text{Tr} \left((AB - 1)^{m-1} \, (i_{X_i} dB) \right) + \text{Tr} \left((i_{X_i} dB) \, B \, (AB - 1)^{m-2} \, (i_{Y_r} dB) + \cdots + (AB - 1)^{m-2} \, (i_{X_i} dB) \, B \, (AB - 1)^{m-3} \, (i_{Y_r} dB) \right) \right] =
\]

\[
= z \, \text{Tr} \left((AB)^{z-1} \, (i_{X_i} dB) \, (i_{Y_r} dB) \right) +
\sum_{m=0}^{\infty} m \, c_m(z) \sum_{a=0}^{m-2} \text{Tr} \left((AB - 1)^a \, (i_{X_i} dB) \, B \, (AB - 1)^{m-a-2} \, A \, (i_{Y_r} dB) \right)
\text{(A.7)}
\]

where we used the fact that \(i_{X_i} dB = 0 \) because \(B \) depends only on the elements of the right factor of \(\mathcal{M}_n \times \mathcal{M}_n \), and, in the first term of the last equality, we have used the relation

\[
z(AB)^{z-1} = \sum_{m=0}^{\infty} m \, c_m(z) (AB - 1)^{m-1}
\text{(A.8)}
\]

for the first-order derivative of a analytical function. The metric is then:

\[
g_{q,z}(X, Y) = \frac{z}{q(1-q)} i_d^* \left[\text{Tr} \left((AB)^{z-1} \, (i_{X_i} dB) \, (i_{Y_r} dB) \right) \right] +
\frac{1}{q(1-q)} i_d^* \left[\sum_{m=0}^{\infty} m \, c_m(z) \sum_{a=0}^{m-2} \text{Tr} \left((AB - 1)^a \, (i_{X_i} dB) \, B \, (AB - 1)^{m-a-2} \, A \, (i_{Y_r} dB) \right) \right].
\text{(A.9)}
\]

In order to perform computations for a generic \(N \)-level system it is useful to use the canonical basis \(\{ E_{jk} \}_{j,k=1,\ldots,n} \) of \(\mathcal{B(H)} \) introduced before. The left-invariant Maurer-Cartan 1-form \(U^{-1} dU \) can be then written as:

41
\[U^{-1}dU = i\sigma_k\theta^k = iE_{\alpha\beta}\theta^{\alpha\beta} \]
(A.10)

where \(\{\sigma_k\}_{k=0,\ldots,n^2-1} \) denote the basis for the \(u(n) \) algebra with \(\sigma_0 = I \), \(\{\theta^k\}_{k=0,\ldots,n^2-1} \) the dual basis of left-invariant 1-forms. The matrices \(\sigma \) can be expressed into the standard basis as a linear combination of the \(E_{\alpha\beta} \) matrices with complex coefficients\(^9\), say:

\[\sigma_k = \sum_{\alpha,\beta=1}^{N} M_{k}^{\alpha\beta} E_{\alpha\beta} \quad , \quad M_{k}^{\alpha\beta} \in \mathbb{C} \]
(A.11)

from which, according to Eq. (A.10), it follows that:

\[\theta^{\alpha\beta} = \sum_{k=0}^{N^2-1} M_{k}^{\alpha\beta} \theta^k . \]
(A.12)

The complex coefficients \(M_{k}^{\alpha\beta} \) have to satisfy the following property\(^10\):

\[M_{k}^{\beta\alpha} = \overline{M_{k}^{\alpha\beta}} \quad \forall \ k = 0, \ldots, N^2 - 1 \]
(A.13)

as can be seen by taking the Hermitian conjugate of Eq. (A.11) which yields:

\[\sigma_k = \overline{M_{k}^{\alpha\beta}} (\tau_{\alpha\beta})^\dagger = \overline{M_{k}^{\alpha\beta}} \tau_{\beta\alpha} = M_{k}^{\beta\alpha} \tau_{\beta\alpha} , \]
(A.14)

where we have used the fact that the \(\sigma \)'s are Hermitian and the property of the real matrices \(E \) according to which \((E_{\alpha\beta})^\dagger = (E_{\alpha\beta})^T = E_{\beta\alpha} \).

Remark 4. More precisely, when we write the left-invariant 1-form \(U^{-1}dU \) in the standard basis as in (A.10), we are exploiting the fact that the \(\sigma \) matrices provide a basis both of the vector space underlying the \(u(n) \) Lie algebra and of its complexification. Consequently, we are able to consider suitable complex linear combinations to express the basis matrices of \(u(n) \) in terms of the \(E_{\alpha\beta} \) and to recast then the matrix-valued Maurer-Cartan

\(^9\)For instance, in the \(U(2) \) case we have:

\[\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} , \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

\[\tau_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} , \quad \tau_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} , \quad \tau_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} , \quad \tau_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} . \]

Therefore:

\[\sigma_0 = \tau_{11} + \tau_{22} , \quad \sigma_1 = \tau_{12} + \tau_{21} , \quad \sigma_2 = i(\tau_{21} - \tau_{12}) , \quad \sigma_3 = \tau_{11} - \tau_{22} \]

from which, by imposing the equality (A.10), it is easy to see that:

\[\theta^{11} = \theta^0 + \theta^3 , \quad \theta^{12} = \theta^3 - i\theta^2 , \quad \theta^{21} = \theta^1 + i\theta^2 , \quad \theta^{22} = \theta^0 - \theta^3 . \]

\(^10\)Here \(\overline{M_{k}^{\alpha\beta}} \) denotes the complex conjugate of \(M_{k}^{\alpha\beta} \).
1-form $U^{-1}dU$ in terms of the $E_{\alpha\beta}$ and the 1-forms $\theta^{\alpha\beta}$ given in (A.12). This is just a computational trick which allows to simplify the calculation of the metric and in the end we should check that it does not introduce any additional information by rewriting the resulting expression of the metric in terms of the basic left-invariant 1-forms on the group.

The diagonal density matrix $\bar{\rho}_0$ can be written in terms of the E basis as:

$$\bar{\rho}_0 = \sum_{\alpha=1}^{n} p_{\alpha} E_{\alpha\alpha}, \quad (A.15)$$

where the p_{α} denote the n eigenvalues of $\bar{\rho}_0$ satisfying the constraint $\text{Tr}(\bar{\rho}_0) = \sum_{\alpha} p_{\alpha} = 1$, and the sum (A.15) involves only the diagonal matrices $E_{\alpha\alpha}$. Moreover, by using the decomposition (A.15) and the commutation relations:

$$[E_{\alpha\beta}, E_{\alpha'\beta'}] = \delta_{\beta\alpha'} E_{\alpha\beta} - \delta_{\beta\alpha} E_{\alpha'\beta'}, \quad (A.16)$$
we have:

$$[U^{-1}dU, \bar{\rho}_0^\tau] = i \sum_{\alpha,\beta} (p^\tau_\beta - p^\tau_\alpha) E_{\alpha\beta} \theta^{\alpha\beta}, \quad (A.17)$$
for any power $\bar{\rho}_0^\tau$ of $\bar{\rho}_0$. Consequently, we have:

$$L_{\xi_k} \bar{\rho}^\tau = d\bar{\rho}^\tau(\xi_k) = U \left(d\bar{\rho}^\tau(\xi_k) \right) U^\dagger + U \left[\left(U^\dagger dU(\xi_k) \right) , \bar{\rho}^\tau \right] U^\dagger =$$

$$= \frac{q}{z} \sum_{\alpha} U E_{\alpha\alpha} U^\dagger p_{\alpha} d\rho_{\alpha}(\xi_k) + U i \sum_{\alpha,\beta} (p^\tau_\beta - p^\tau_\alpha) E_{\alpha\beta} \theta^{\alpha\beta}(\xi_k) U^\dagger, \quad (A.18)$$

$$L_{\eta_r} \bar{\rho}^\tau = d\bar{\rho}^\tau(\eta_r) = V \left(d\bar{\rho}^\tau(\eta_r) \right) V^\dagger + V \left[\left(V^\dagger dV(\eta_r) \right) , \bar{\rho}^\tau \right] V^\dagger =$$

$$= \frac{1}{z} \sum_{\alpha} V E_{\alpha\alpha} V^\dagger p_{\alpha} d\rho_{\alpha}(\eta_r) + V i \sum_{\alpha,\beta} (p^\tau_\beta - p^\tau_\alpha) E_{\alpha\beta} \eta^{\alpha\beta}(\eta_r) V^\dagger, \quad (A.19)$$

where $\bar{\rho}_0 = \sum_{\alpha=1}^{n} \bar{\rho}_\alpha E_{\alpha\alpha}$. Now, coming back to the expression (A.9) for the tensor:

$$g_{\eta,\zeta}(X, Y) = \frac{z}{q(1-q)} i_d^* \left[\text{Tr} \left((AB)^{z-1} (i_{\xi_k}dA) (i_{\eta_r}dB) \right) \right] +$$

$$+ \frac{1}{q(1-q)} i_d^* \left[\sum_{m=0}^{\infty} m c_m(z) \sum_{a=0}^{m-2} \text{Tr} \left((AB - 1)^a (i_{\xi_k}dA) B (AB - 1)^{m-a-2} A (i_{\eta_r}dB) \right) \right], \quad (A.20)$$

we focus on the first term in the RHS, and, using (A.18) and (A.19) and performing the pullback along i_d, we obtain:
\[
\frac{z}{q(1-q)} \left[\text{Tr} \left(\rho_0^{-\frac{1}{2}} \left(\frac{q}{z} \sum_\alpha E_{\alpha\alpha} p_\alpha^{-\frac{1}{2}} dp_\alpha(X) + i \sum_{\alpha,\beta} (p_\beta^{-\frac{1}{2}} - p_\alpha^{-\frac{1}{2}}) E_{\alpha\beta} \theta^{\alpha\beta}(X) \right) \right) \cdot \left(\frac{1-q}{z} \sum_\alpha E_{\gamma\gamma} p_\gamma^{-\frac{1}{2}} dp_\gamma(Y) + i \sum_{\gamma,\mu} (p_\mu^{-\frac{1}{2}} - p_\gamma^{-\frac{1}{2}}) E_{\gamma\mu} \theta^{\gamma\mu}(Y) \right) \right] \right].
\]

(A.21)

It is easy to see that the terms with \(dp_\alpha(X) \cdot \theta^{\gamma\mu}(Y)\) and \(\theta^{\alpha\beta}(X) \cdot dp_\gamma(Y)\) vanish, indeed:

\[
\frac{i}{1-q} \sum_{\alpha,\beta,\gamma,\mu} p_{\beta}^{-\frac{1}{2}} p_{\alpha}^{-\frac{1}{2}} (p_{\beta}^{-\frac{1}{2}} - p_{\alpha}^{-\frac{1}{2}}) \text{Tr} \left(E_{\beta\beta} E_{\alpha\alpha} E_{\gamma\gamma} \left(\sum_{\delta,\mu,\delta,\gamma} \delta_{\beta\delta} \delta_{\alpha\gamma} \right) dp_\alpha(X) \cdot \theta^{\gamma\mu}(Y) \right) = 0,
\]

(A.22)

\[
\frac{i}{q} \sum_{\alpha,\beta,\gamma,\mu} p_{\mu}^{-\frac{1}{2}} p_{\gamma}^{-\frac{1}{2}} (p_{\mu}^{-\frac{1}{2}} - p_{\gamma}^{-\frac{1}{2}}) \text{Tr} \left(E_{\mu\mu} E_{\alpha\beta} E_{\gamma\gamma} \left(\sum_{\delta,\mu,\delta,\gamma} \delta_{\gamma\delta} \delta_{\alpha\gamma} \right) dp_\gamma(Y) \cdot \theta^{\alpha\beta}(X) \right) = 0.
\]

(A.23)

On the other hand, the terms with \(dp_\alpha(X) \cdot p_\gamma(Y)\) and \(\theta^{\alpha\beta}(X) \cdot \theta^{\gamma\mu}(Y)\) are:

\[
\frac{1}{z} \sum_\alpha p_\alpha^{-1} dp_\alpha(X) \cdot dp_\alpha(Y),
\]

(A.24)

\[
\frac{z}{q(1-q)} \sum_{m=0}^\infty \sum_{a=0}^{m-2} \text{Tr} \left(\left(\frac{1}{\rho_0} - 1 \right)^a \left(\frac{q}{z} \sum_\alpha E_{\alpha\alpha} p_\alpha^{-\frac{a}{2}} dp_\alpha(X) + i \sum_{\alpha,\beta} (p_\beta^{-\frac{a}{2}} - p_\alpha^{-\frac{a}{2}}) E_{\alpha\beta} \theta^{\alpha\beta}(X) \right) \right) \cdot \left(\frac{1-q}{z} \sum_\gamma E_{\gamma\gamma} p_\gamma^{-\frac{a}{2}} dp_\gamma(Y) + i \sum_{\gamma,\mu} (p_\mu^{-\frac{a}{2}} - p_\gamma^{-\frac{a}{2}}) E_{\gamma\mu} \theta^{\gamma\mu}(Y) \right) \right].
\]

(A.26)

Again, it is easy to see that the terms with \(dp_\alpha(X) \cdot \theta^{\gamma\mu}(Y)\) and \(\theta^{\alpha\beta}(X) \cdot dp_\gamma(Y)\) vanish, and we are left with the term in \(dp_\alpha(X) \cdot dp_\alpha(Y)\):

\[
\frac{1}{z} \sum_\alpha \sum_{m=0}^\infty m (m-1) c_m(z) (p_\alpha^{-\frac{1}{2}} - 1)^{m-2} p_\alpha^{2-\frac{1}{2}} dp_\alpha(X) \cdot dp_\alpha(Y) = \frac{z-1}{z} \sum_\alpha p_\alpha^{-1} dp_\alpha(X) \cdot dp_\alpha(Y),
\]

(A.27)
where we have used the expression:

$$z(z - 1)(p_0^\frac{1}{a})^{z-2} = \sum_{m=0}^{\infty} m(m - 1) c_m(z)(p_0^\frac{1}{a} - 1)^{m-2}$$ \hspace{1cm} (A.28)$$

for the second-order derivative of an analytical function, and the term in $\theta^{a\beta}(X) \cdot \theta^{\gamma\mu}(Y)$:

$$\frac{-1}{q(1-q)} \sum_{m=0}^{\infty} \sum_{a=0}^{m-2} \sum_{\alpha,\beta,\gamma,\mu} m c_m(z) \text{Tr} \left((p_0^\frac{1}{a} - 1)^{\alpha} E_{\alpha\beta} \frac{1-a}{p_0^\frac{1}{a}} (p_0^\frac{1}{a} - 1)^{m-a-2} \rho^\frac{2}{\gamma} \rho_{\gamma\mu} \right).$$

where we have used equation (A.15) and the binomial expansions:

$$\left(p_0^\frac{1}{a} - 1 \right)^{\alpha} = \sum_{b=0}^{a} \left(\begin{array}{c} a \\ b \end{array} \right) (-1)^{b} \rho_0^{\frac{a-b}{z}}$$ \hspace{1cm} (A.30)$$

$$\left(p_0^\frac{1}{a} - 1 \right)^{m-a-2} = \sum_{c=0}^{m-a-2} \left(\begin{array}{c} m - a - 2 \\ c \end{array} \right) (-1)^{c} \rho_0^{\frac{m-a-2-c}{z}},$$ \hspace{1cm} (A.31)$$

in the first equality; the relations:

$$p_0^\frac{1}{a}(p_0^\frac{1}{a} - 1)^{m-a-2} = \sum_{c=0}^{m-a-2} \left(\begin{array}{c} m - a - 2 \\ c \end{array} \right) (-1)^{c} p_0^{\frac{m-a-1-c}{z}}$$ \hspace{1cm} (A.32)$$

$$\left(p_0^\frac{1}{a} - 1 \right)^{a} = \sum_{b=0}^{a} \left(\begin{array}{c} a \\ b \end{array} \right) (-1)^{b} \rho_0^{\frac{a-b}{z}}$$ \hspace{1cm} (A.33)$$

in the second equality; the expression for the finite sum of a geometric series:
\[\sum_{a=0}^{m-2} x^a = \frac{1 - x^{m-1}}{1 - x}, \quad \text{with} \quad x = \frac{p_\alpha}{p_\beta} - 1 \]

in the third equality, and the expression:

\[\sum_{m=0}^{\infty} m c_m(z)(p_\alpha^{\frac{1}{z}} - 1)^{m-1} = z \frac{z-1}{p_\alpha} \]

for the first-order derivative of an analytical function in the last equality. Again, note that (A.29) vanishes when \(\alpha = \beta \), and we introduced the notation \(\sum'_{\alpha \beta} \) to stress that the summation is on \(\alpha \neq \beta \).

Collecting the terms in \(dp_\alpha(X) \cdot dp_\alpha(Y) \) (equations (A.24) and (A.27)) we obtain:

\[g_{\perp}^{\perp}(X, Y) = \frac{1}{z} \sum_{\alpha} p_\alpha^{-1} dp_\alpha(X) \cdot dp_\alpha(Y) + \frac{z-1}{z} \sum_{\alpha} p_\alpha^{-1} dp_\alpha(X) \cdot dp_\alpha(Y) = \]

\[= \sum_{\alpha=1}^{n} \frac{1}{p_\alpha} dp_\alpha(X) \cdot dp_\alpha(Y). \]

From this it follows that:

\[g_{\perp}^{\perp} = \sum_{\alpha=1}^{n} \frac{1}{p_\alpha} dp_\alpha \otimes dp_\alpha = \sum_{\alpha=1}^{n} p_\alpha d \ln p_\alpha \otimes d \ln p_\alpha \]

which is the Fisher-Rao metric related to the component of the “classical” probability vector \(\vec{p} = (p_1, \ldots, p_n) \) identified with the diagonal elements of the invertible density matrix.

Collecting the terms in \(\theta^{\alpha\beta}(X) \cdot \theta^{\gamma\mu}(Y) \) (equations (A.25) and (A.29)) we obtain:

\[g_{\parallel}^{\parallel}(X, Y) = \frac{z}{q(1-q)} \sum_{\alpha\beta} \sum' p_\alpha^{-z} \left(p_\beta^{\frac{1}{z}} - p_\alpha^{\frac{1}{z}} \right) \left(p_\alpha^{\frac{1-z}{z}} - p_\beta^{\frac{1-z}{z}} \right) \theta^{\alpha\beta}(X) \cdot \theta^{\gamma\mu}(Y) + \]

\[+ \frac{z}{q(1-q)} \sum_{\alpha\beta} \left[\frac{1}{p_\beta} \left(p_\beta^{\frac{1}{z}} - p_\alpha^{\frac{1}{z}} \right) \left(p_\alpha^{\frac{1-z}{z}} - p_\beta^{\frac{1-z}{z}} \right) \right] \theta^{\alpha\beta}(X) \cdot \theta^{\gamma\mu}(Y) = \]

\[= \frac{z}{q(1-q)} \sum_{\alpha, \beta} \sum' \left(\frac{p_\beta - p_\alpha}{p_\beta^{\frac{1}{z}} - p_\alpha^{\frac{1}{z}}} \left(p_\alpha^{\frac{1-z}{z}} - p_\beta^{\frac{1-z}{z}} \right) \right) \theta^{\alpha\beta}(X) \cdot \theta^{\gamma\mu}(Y), \]

where \(\sum'_{\alpha, \beta} \) denotes summation on \(\alpha \neq \beta \). Let us now rewrite this expression in the basis of left-invariant \(\mathfrak{su}(n) \)-valued 1-forms. In order to do this, let us introduce the shorthand notation for the coefficients:
Then, $g_{q,z}^\parallel$ can be written as

$$g_{q,z}^\parallel = \frac{z}{q(1-q)} \sum_{\alpha,\beta=1}^n 1E_{\alpha\beta} \theta^{\alpha\beta} \otimes \theta^{\beta\alpha} \quad (A.40)$$

Using now the expression (A.12) of the $\theta^{\alpha\beta}$ in terms of the θ^j we have:

$$g_{q,z}^\parallel = \frac{z}{q(1-q)} \sum_{j,k=1}^{n^2-1} \frac{1}{2} \sum_{\alpha,\beta=1}^n E_{\alpha\beta} (\theta^{\alpha\beta} \otimes \theta^{\beta\alpha} + \theta^{\beta\alpha} \otimes \theta^{\alpha\beta}) \theta^j \otimes \theta^k \quad (A.41)$$

from which, according to the property (A.13), it follows that:

$$g_{q,z}^\parallel = \frac{z}{q(1-q)} \sum_{j,k=1}^{n^2-1} \sum_{\alpha,\beta=1}^n C_{jk} \theta^j \otimes \theta^k \quad (A.42)$$

with:

$$C_{jk} = \sum_{\alpha,\beta=1}^n E_{\alpha\beta} \Re \left[M^{\alpha\beta}_j M^{\beta\alpha}_k \right] \quad (A.43)$$

The coefficients C_{jk} in Eq. (A.43) depend only on the eigenvalues of the density matrix $\hat{\rho}$ and on the transformation matrices relating the two basis. Moreover, the C_{jk} are symmetric with respect to the exchange of j and k (i.e., $C_{jk} = C_{kj}$) and, being the $E_{\alpha\beta}$ defined in Eq. (A.39) real, they are also real.

Eventually, summing equations (A.37) and (A.42) we obtain the expression of the tensor $g_{q,z}$:

$$g_{q,z} = g_{q,z}^\perp + g_{q,z}^\parallel = \sum_{\alpha=1}^n p_\alpha d \ln p_\alpha \otimes d \ln p_\alpha + \frac{z}{q(1-q)} \sum_{j,k=1}^{n^2-1} C_{jk} \theta^j \otimes \theta^k \quad (A.44)$$

Note that we kept the notation Σ' introduced before to stress that the sum over j and k in Eq. (A.44) does not involve the basic left-invariant 1-forms dual to the Cartan subalgebra. Indeed, the only terms which contain the left-invariant 1-forms associated with the Cartan subalgebra are those with $\alpha = \beta$ which have vanishing coefficients C_{jk}. This is coherent
with the result for the qubit case since it actually means that the component of the metric tangential to the orbits of the unitary group does not involve the 1-forms dual to the Cartan subalgebra.

References

[1] R. Abraham, J. E. Marsden, T. Ratiu, *Manifolds, tensor analysis, and applications*, Springer-Verlag, New York, 3-rd edition (2012).

[2] S. I. Amari, *Information Geometry and Its Applications*, Applied Mathematical Sciences 194, Springer Japan, (2016).

[3] S. I. Amari and H. Nagaoka, *Methods of Information Geometry*, American Mathematical Society, Providence RI, (2000).

[4] A. Andai, *Monotone Riemannian metrics on density matrices with non-monotone scalar curvature*, J. Math. Phys. 44, 3675 (2003)

[5] K. M. R. Audenaert and N. Datta, *alpha-z-relative Renyi entropies*, J. Math. Phys., 56, 022202 (2015).

[6] S. Beigi, *Quantum Rényi Divergence Satisfies Data Processing Inequality*, J. Math. Phys., 54, 122202, (2013).

[7] I. Bengtsson, K. Zyczkowski, *Geometry of Quantum States: An Introduction to Quantum Entanglement*, Cambridge University Press, (2007).

[8] N. N. Cencov, *Statistical Decision Rules and Optimal Inference*, American Mathematical Society, Providence, Rhode Island (1982).

[9] N. N. Cencov and E. A. Morozowa, *Markov invariant geometry on state manifolds*, Journal of Soviet Mathematics 56(5): 2648-2669 (1991).

[10] F. M. Ciaglia, F. Di Cosmo, D. Felice, S. Mancini, G. Marmo, J. M. Pérez-Pardo, *Hamilton-Jacobi approach to potential functions in information geometry*, J. Math. Phys. 58, 063506 (2017).

[11] I. Contreras, E. Ercolessi, and M. Schiavina, *On the geometry of mixed states and the Fisher information tensor*, J. Math. Phys. 57, 062209 (2016).

[12] H. Epstein, *Remarks on two Theorem of Lieb*, Commun. Math. Phys., 31, 317, (1973).

[13] E. Ercolessi, G. Marmo, G. Morandi, N. Mukunda, *Geometry of mixed states and degeneracy structure of geometric phases for multi-level quantum systems. A unitary group approach*, Int. J. Mod. Phys. A, 16, 5007 (2001).

[14] E. Ercolessi and M. Schiavina, *Symmetric logarithmic derivative for general n-level systems and the quantum Fisher information tensor for three-level systems*, Phys. Lett. A 377, 1996 (2013).

[15] R.L. Frank, E.H. Lieb, *Monotonicity of a Relative Rényi Entropy*, J. Math. Phys., 54, 122201, (2013).

[16] P. Gibilisco and T. Isola, *A characterization of Wigner-Yanase skew information among statistically monotone metrics*, Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 4(4): 553-
[17] P. Gibilisco and T. Isola, *Wigner-Yanase information on quantum state space: the geometric approach*, Journal of Mathematical Physics 44, 3752-3762, (2003), DOI: 10.1063/1.1598279.

[18] J. Grabowski, G. Marmo and M. Kus, *Geometry of quantum systems: Density states and entanglement*, J. Phys. A 38 (2005), 10217, doi:10.1088/0305-4470/38/47/011 [math-ph/0507045].

[19] F. Hiai, *Concavity of Certain Matrix Trace and Norm Functions*, Linear Algebra Appl., 439(5), 1568-1589, (2013).

[20] F. Hiai, D. Petz, *The Proper Formula for Relative Entropy and its Asymptotics in Quantum Probability*, Commun. Math. Phys., 143, 99, (1991).

[21] A. S. Holevo *Probabilistic and Statistical Aspects of Quantum Theory*, Edizioni della Normale (2011).

[22] A. S. Holevo *Statistical Structure of Quantum Theory*, Springer-Verlag, Berlin, Heidelberg (2001).

[23] F. Kubo and T. Ando, *Means of positive linear operators*, Math. Ann. 246, 205, (1980).

[24] M. Laudato, G. Marmo, F. M. Mele, F. Ventriglia and P. Vitale, “Tomographic Reconstruction of Quantum Metrics,” arXiv:1704.01334 [math-ph], (2017).

[25] S. L. Lauritzen, *Differential geometry in statistical inference*, eds. S. I. Amari and O. E. Barndorff-Nielsen and R. E. Kass and S. L. Lauritzen and C. R. Rao, Institute of Mathematical Statistics, Hayward, California (1987).

[26] V.I. Man’ko, G. Marmo, F. Ventriglia, P. Vitale, *Metric on the Space of Quantum States from Relative Entropy. Tomographic Reconstruction*, J. Phys. A: Math. Theor. 50, 335302, (2017).

[27] T. Matumoto, *Any statistical manifold has a contrast function: on the c³-functions taking the minimum at the diagonal of the product manifold*, Hiroshima mathematical journal, 23(2):327–332, (1993).

[28] M. Mosonyi, F. Hiai, *On the Quantum Rényi Relative Entropies and Related Capacity Formulas*, IEEE Trans. Inf. Th., 57, 2474-2487, (2011).

[29] M. Ohya and D. Petz, *Quantum Entropy and Its Use*, Springer-Verlag, Berlin Heidelberg (1993).

[30] D. Petz, *Monotone Metrics on Matrix Spaces*, Linear Algebra Appl., 244, 8196 (1996).

[31] D. Petz, C. Sudar, *Extending the Fisher metric to density matrices*, Geometry in Present Days Science, eds. O.E. Barndorff-Nielsen and E.B. Vendel Jensen, World Scientific (1999).

[32] D. Petz and C. Sudar, *On the curvature of a certain Riemannian space of matrix*, J. Math. Phys. 37, 2662 (1996).

[33] S. G. Schirmer, T. Zhang, J. V. Leahy, *Orbits of quantum states and geometry of Bloch vectors for N-level systems*, J. Phys. A 37, 1389 (2004).

[34] C. Sudar, *Radial extension of mononone Riemannian metrics on density matrices*, Publ. Math. Debrecen 49, 243 (1996).

[35] K. Takahashi and A. Fujiwara, *Information geometry of sandwiched Rényi α-divergence*, J. Phys. A: Math. Theor. 50, 165301 (2017).