Cloning and expression of ornithine decarboxylase gene from human colorectal carcinoma

Hai-Yan Hu, Xian-Xi Liu, Chun-Ying Jiang, Yan Zhang, Ji-Feng Bian, Yi Lu, Zhao Geng, Shi-Lian Liu, Chuan-Hua Liu, Xiao-Ming Wang, Wei Wang

RESULTS: The ODC prokaryote expression vector is confirmed with restriction enzyme digestion and subsequent purification by Ni-NTA chromatographic column. The sequence of inserted fragment was confirmed by DNA sequencing, the fusion protein including 6His-tag was facilitated for the fusion protein with high purity.

CONCLUSION: The ODC prokaryote expression vector is constructed and thus greatly facilitates to study the role of ODC in colorectal carcinoma.

INTRODUCTION

Ornithine decarboxylase (ODC) is the first key enzyme of the biosynthesis of polyamine which catalyzes the decarboxylation of the amino acid ornithine to the diamine putrescine. Its activation regulates the metabolism of spermidine, spermine and their precursor putrescine. Activity of polyamine biosynthesis is closely associated with the proceeding of physiological cell growth, proliferation and regeneration[11] and pathological proliferation[12]. It is necessary for cell to progress into S phase, or polyamine depletion arrest cells in G1[13]. ODC activity and polyamine concentration in colorectal cancers are significantly elevated compared with that in normal adjacent and healthy control tissues on rodents[14] and human beings. ODC repressor (eg. Difluoromethylornithine) has been considered to be one of the molecular targeted interventions of colon cancer[15]. The changing of ODC activity is an early event during the expression of malignancy. In this study, an ODC expression vector expressing a 6His-tag fusion protein was successfully constructed. The 6His-tag enabled us to purify the fusion protein with high purity.

MATERIALS AND METHODS

Materials

Trizol, RNA extract reagent, were purchased from Life Technologies Inc. RT-PCR kit, T-A clone kit, DNA marker and all restrictive enzymes were purchased from TaKaRa Shuzo Co.Ltd. Primers were synthesized by Sangon. The QIAquick Gel Extraction Kit, and expression system were got from QIAGEN. Protein marker was purchased from Shanghai Lizhudongfeng biotechnologies Co.Ltd. Standard ODC was purchased from Sigma.

Tissues

Colorectal carcinoma and respective adjacent normal colorectal mucus were obtained during surgery. Once the specimens were removed during operation, the necrotic and ulcerated tumors were removed and the normal mucosa was dissociated from the muscle and connective tissue. All specimens were then kept in liquid nitrogen until further use.

Extraction of total RNA

The total cellular RNA was extracted from normal and cancer tissues, respectively. The method of RNA extraction was similar to the Trizol RNA extraction protocol (Life Technologies Inc.). The concentration of RNA extracted was determined at wavelength of 260nm using U-2000 spectrophotometer (HITACH Ltd, Tokyo, Japan).

Reverse transcription polymerase chain reaction (RT-PCR)

The sequence of ODC primers was as follows, up-stream primer: 5'-gca ggatcc acc atg aac aac ttt ggt aa; down-stream primer: 5'- gaa gtcgac cta cac att aat act agc cg. The 5' primer recognized the start codon of ODC in exon 3, and the 3' primer recognized the end-codon in exon 12. Restriction sites were BamH I and Sal I. The first strand of cDNA was synthesized for 30 min in the presence of AMV reverse transcriptase (0.5 unit/µl), RNase inhibitor 1 unit/ml, dNTP 1.0 mM, MgCl2 2.5 mM. The PCR was processed through 35 cycles of denaturation (1 min at 95 °C), annealing (1.5 min at 58 °C), and extension (1 min at 72 °C) (Perkin-Elmer2400 PCR apparatus).

Purification of PCR product and T-A cloning

The PCR products were separated in 1 % agarose gel, and the
band containing ODC cDNA was cut off and placed into the QIAquick spin column. The ODC cDNA was purified and linked to plasmid pMD-18 with a polyA linker. The recombinant was transformed into E. coli DH5α and selected by selective culture medium containing ampicillin.

Construction of pQE30-ODC

The pMD-ODC and pQE30 were digested by restrictive enzymes BamH I and SalI. The inserted fragment of pMD-ODC was collected from electrophoretic gel, then it was ligated with the linearized pQE30 by T4 Ligase at 18 °C overnight. The recombinant was transformed into E. coli DH5α by CaCl₂ method and selected by agar plate containing ampicillin and confirmed by restriction enzyme mapping. The positive recombinant was transformed into E. coli M15. The sequence of inserted fragment was confirmed by DNA sequencing (Shanghai Sangon Bioengineering Co.Ltd.).

The expression of ODC fusion protein

The ampicillin-resistant colony of E. coli cells transformed with plasmid were cultured in LB cultural medium containing 100 mg/L ampicillin and 25 mg/L Kanamycin, and induced by 1 mM IPTG. The cultured cells were harvested at 1, 2, 3, 4hr after culture, respectively. The optimum time of maximum expression of proteins was analyzed through SDS-PAGE. The expressed ODC protein was tested through Western blot with specific antiserum.

RESULTS

RT-PCR amplification of ODC encoding sequence

RT-PCR was done with total RNA template extracted from human colon cancer cell. The designed primers include encoding sequence of ODC. Electrophoresis of RT-PCR products confirmed the length of RT-PCR fragment (1 480 bp) (Figure 1).

The purified ODC cDNA was ligated to pMD-18 by T-A complimentary pairing. ODC cDNA was inserted into pQE30 at BamH I and Sal I sites (Figure 2).

DISCUSSION

The polyamines are naturally occurring aliphatic polycations found in almost all living cells[9]. They are positively charged at neutral pH and the charge is distributed along the length of the molecule. This facilitates their interaction with anionic molecules such as DNA and RNA[9,10]. Polyamines have been shown to be essential for optimal rates of cell growth and differentiation, with high concentrations being found in rapidly growing cells and tissues[11].

Cancer cells always have a higher intracellular polyamine content than the equivalent normal tissue[12-15]. In addition to changes in polyamine content, ODC activity has also been found to be increased significantly in colon adenocarcinoma tissue compared to microscopically normal tissue from the same patients[13,16]. Similar findings were observed in human colonic surgical specimens with both ODC activity and polyamine content of the malignant tissue being increased[16,17]. Intratumour content of spermidine and spermine was increased to many growth stimuli such as hormones, growth factors, and tumor promoters, it has a rapid turnover rate with half-life at 15 minutes[18]. Numerous studies have demonstrated that regulation of ODC can occur at multiple levels, including the transcription of protooncogene c-myc[19-22], mRNA translation[10,23,24], protein turnover[10,25,28], and post-transcriptional interactions and modifications[27,30]. Recent studies focus intensely on ODC and
polyamine regulation as therapeutic targets. Inhibitors of ODC were found to suppress tumor formation in experimental models of bladder, breast, colon, and skin carcinogenesis.[31-35]

Colorectal cancer is a major health problem in the western world and is associated with significant morbidity and mortality. First-line therapy is radical surgery with adjuvant chemotherapy commonly being treatment with antimetabolites such as 5-fluorouracil.[106] Although great clinical efforts have been made for the therapy of colorectal cancer with new technologies, such as CT or MRI colography,[4,14], there is still much to be done on the early diagnosis and treatment. It is suggested that ODC activity and polyamine content may have interest in the diagnosis of malignancy and prognosis[51]. As the change of ODC activity is an early event in the development of the disease, it may be helpful for early screening and diagnosis of colon cancer.

We designed two primers from human ODC gene including the start codon (ATG) in exon 3 and the termination codon (TAG) so as to amplify the whole encoding sequence about 1 480 bp of ODC. The exons encode a protein is identical to the 461-amino acid sequence derived from human ODC.

The restriction fragment mapping of the recombinant, pQE-30-ODC, indicated that the inserted fragment was about 1.5kb, which was consistent with the encoding sequence of ODC. ODC activity in the lysate of transformed M15 was demonstrated through Western blot. The expressed fusion protein is about 50kDa, which is similar to the known ODC protein. The construction and expression of recombinant ODC provide a tool for ODC related further study.

REFERENCES

1. Jeevanandam M, Petersen SR. Clinical role of polyamine analysis: problem and promise. Curr Opin Clin Nutr Metab Care 2001; 4: 385-390
2. Auvinen M. Cell transformation, invasion, and angiogenesis: a regulatory role for ornithine decarboxylase. J Natl Cancer Inst 1997; 89: 533-537
3. Bowlin TL, McKown BJ, Davis GF, Sunkara PS. Effect of polyamine depletion in vivo by DL-alpha-difluoromethylornithine on functionally distinct populations of tumoroticid effectors in normal and tumor-bearing mice. Cancer Res 1966; 45: 5494-5498
4. Umar A, Viner JL, Hawk ET. The future of colon cancer prevention. Ann N Y Acad Sci 2001; 922: 88-106
5. Rozhin J, Wilson PS, Bull AW, Nigro ND. Ornithine decarboxylase activity in the rat and human colon. Cancer Res 1984; 44: 3226-3230
6. Hixon LJ, Garewal HS, McGregor DL, Sloan D, Fertility MB, Sampliner RE, Gerner EW. Ornithine decarboxylase and polyamines in colorectal neoplasia and mucosa. Cancer Epidemiol Biomarkers Prev 1993; 2: 369-374
7. Giardiello FM, Hamilton SR, Hyland LM, Yang VW, Tamez P, Casero RA Jr. Ornithine decarboxylase and polyamines in familial adenomatous polyposis. Cancer Res 1997; 57: 199-201
8. Pegg AE, Shantz LM, Coleman CS. Ornithine decarboxylase as a target for chemoprevention. J Cell Biochem (Suppl.) 1995; 22: 132-138
9. Thomas T, Thomas T. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 2001; 58: 224-258
10. Wallon UM, Persson L, Heby O. Regulation of ornithine decarboxylase during cell growth. Changes in the stability and translatability of the mRNA, and in the turnover of the protein. Molec Cell Biochem 1984; 70: 39-44
11. Seiler N, Antanasov CL, Raul F. Polyamine metabolism as target for cancer chemoprevention (review). Raul F Int J Oncol 1998; 13: 993-1006
12. Kingsnorth AN, Wallace HM. Elevation of monoacetylated polyamines in human breast cancers. Eur J Cancer Clin Oncol 1985; 21: 1057-1062
13. Wallace HM, Caslake R. Polyamines and colon cancer. Eur J Gastroenterol Hepatol 2001; 13: 1033-1039
14. Faaland CA, Thomas TJ, Balabhadrapatruni S, Langer T, Mian S, Shirahata A, Gallo MA, Thomas T. Molecular correlates of the action of bis(ethyl)polyamines in breast cancer cell growth inhibition and apoptosis. Biochem Biophys Res Commun 2000; 275: 415-426
15. Canizares F, Salinas, de las Heras M, Diaz J, Tovar I, Martinez P, Penafiel R. Prognostic value of ornithine decarboxylase and polyamines in human breast cancer: correlation with clinico-pathologic parameters. Clin Cancer Res 1995; 1: 2035-2041
16. Linsalata M, Caruso MG, Leo S, Guerra V, D’Atoma B, Di Leo A. Prognostic value of tissue polyamine levels in human colorectal carcinoma. Anticancer Res 2002; 22: 2465-2469
17. Takami H, Koudaira H, Kodaira S. Relationship of ornithine decarboxylase activity and human colon tumorigenesis. Jpn J Clin Oncol 1994; 24: 141-143
18. Pegg AE. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J 1986; 234: 269-262
19. Evan GI, Wylie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992; 69: 119-128
20. Bello-Fernandez C, Packham G, Cleveland JL. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci U S A 1993; 90: 7804-7808
21. Packham G, Cleveland JL. Ornithine decarboxylase is a mediator of c-Myc-induced apoptosis. Molec Cell Biol 1994; 14: 5741-5747
22. Iyengar RV, Pawlik CA, Krull EJ, Phelps DA, Burger RA, Harris LC, Potter PM, Danks MK. Use of a modified ornithine decarboxylase promoter to achieve efficient c-MYC- or N-MYC-regulated protein expression. Cancer Res 2001; 61: 3045-3052
23. Kahana C, Nathans D. Translational regulation of mammalian ornithine decarboxylase by polyamines. J Biol Chem 1985; 260: 15390-15393
24. Shantz LM, Pegg AE. Translational regulation of ornithine decarboxylase and other enzymes of the polyamine pathway. Int J Biochem Cell Biol 1999; 31: 107-122
25. Lu L, Stanley BA, Pegg AE. Identification of residues in ornithine decarboxylase essential for enzymic activity and for rapid protein turnover. Biochem J 1991; 277: 671-675
26. Dircks L, Grens A, Siezynger TC, Scheffler IE. Post-transcriptional regulation of ornithine decarboxylase activity. J Cell Physiol 1986; 126: 371-378
27. Heller JS, Fong WF, Canelakis ES. Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci USA 1976; 73: 1859-1862
28. Fogel-Petrovic M, Vujic S, Miller J, Porter CW. Differential post-transcriptional control of ornithine decarboxylase and spermine-spermidine N1-acetyltransferase by polyamines. FEMS Lett 1996; 391: 89-94
29. Ruhi KK, Pompey MM, Rhim J, Tuan RS, Hickok NJ. Post-transcriptional suppression of human ornithine decarboxylase gene expression by phorbol esters in human keratinocytes. J Invest Dermatol 1994; 103: 687-692
30. Flamigni F, Campana G, Carboni L, Rossoni C, Spampinato S. Post-transcriptional inhibition of ornithine decarboxylase induction by zinc in a difluoromethylornithine resistant cell line. Biochem Biophys Acta 1994; 1201: 101-105
31. Thompson HJ, Ronan AM. Effect of L, D-difluoromethylornithine and endocrine manipulation on the induction of mammalian carcinogenesis by 1-methyl-1-nitrosourea. Carcinogenesis 1966; 7: 2003-2006
32. Nigro ND, Bull AW, Boyd ME. Inhibition of intestinal carcinogenesis in rats: effect of difluoromethylornithine with piroxicam. Biochem J 1993; 290: 103-107
33. Loprinzi CL, Messing EM, O’Fallon JR, Poon MA, Love RR, Quella SK, Trump DL, Morton RF, Novotny P. Toxicity evaluation of difluoromethylornithine: doses for chemoprevention trials. Cancer Epidemiol Biomarkers Prev 1998; 7: 371-374
34. Carbone PP, Douglas JA, Larson PO, Verma AK, Blair IA, Douglas JA, Larson PO, Verma AK, Blair IA, Love RR, Carbone PP, Verma AK, Gilmore D, Carey P, Tutsch KD. Phase I chemoprevention study of piroximac and alpha-difluoromethylornithine.Cancer Epidemiol Biomarkers Prev 1998; 7: 907-912
35. Love RR, Carbone PP, Verma AK, Gilmore D, Carey P, Tutsch KD, Pomplun M, Wilding G. Randomized phase I chemoprevention dose-finding study of alpha-difluoromethylornithine. Cancer Epidemiol Biomarkers Prev 1993; 2: 732-737

Edited by Ren SY