Proofreading of DNA polymerase: a new kinetic model with higher-order terminal effects

Yong-Shun Song¹, Yao-Gen Shu², Xin Zhou¹, Zhong-Can Ou-Yang² and Ming Li¹

¹ School of Physical Sciences, University of Chinese Academy of Sciences, No 19A Yuquan Road, Beijing 100049, People’s Republic of China
² Institute of Theoretical Physics, Chinese Academy of Sciences, Zhong Guan Cun East Street 55, PO Box 2735, Beijing 100190, People’s Republic of China

E-mail: liming@ucas.ac.cn

Received 4 August 2016, revised 9 October 2016
Accepted for publication 11 October 2016
Published 14 November 2016

Abstract
The fidelity of DNA replication by DNA polymerase (DNAP) has long been an important issue in biology. While numerous experiments have revealed details of the molecular structure and working mechanism of DNAP which consists of both a polymerase site and an exonuclease (proofreading) site, there were quite a few theoretical studies on the fidelity issue. The first model which explicitly considered both sites was proposed in the 1970s and the basic idea was widely accepted by later models. However, all these models did not systematically investigate the dominant factor on DNAP fidelity, i.e. the higher-order terminal effects through which the polymerization pathway and the proofreading pathway coordinate to achieve high fidelity. In this paper, we propose a new and comprehensive kinetic model of DNAP based on some recent experimental observations, which includes previous models as special cases. We present a rigorous and unified treatment of the corresponding steady-state kinetic equations of any-order terminal effects, and derive analytical expressions for fidelity in terms of kinetic parameters under bio-relevant conditions. These expressions offer new insights on how the higher-order terminal effects contribute substantially to the fidelity in an order-by-order way, and also show that the polymerization-and-proofreading mechanism is dominated only by very few key parameters. We then apply these results to calculate the fidelity of some real DNAPs, which are in good agreements with previous intuitive estimates given by experimentalists.

Keywords: DNA polymerase, proofreading, kinetics, fidelity, higher-order terminal effects

(Some figures may appear in colour only in the online journal)
independently the so-called kinetic proofreading mechanism which correctly points out that the replication fidelity is not determined thermodynamically by the free energy difference, but kinetically by the incorporation rate difference, between the match and the mismatch. This model, however, assumed that the proofreading occurs before nucleotide incorporation is accomplished (as illustrated in figure 1(a1)), which is not the case of real DNAPs. Structural and functional studies show that DNAP often has two parts. The basic part of all DNAPs is a synthesis domain (i.e. polymerase) which binds the incoming dNTP and catalyzes its incorporation into the nascent ssDNA strand (called as primer below for convenience). Proofreading is performed by a second domain (i.e. exonuclease) which may much likely excise the just-incorporated mismatched nucleotide, once the mismatched terminus is transferred from the polymerase site into the exonuclease site by thermal fluctuation. The first model that explicitly invokes the exonuclease, referred to as Galas–Branscomb model (figure 1(b1)), was proposed by Galas et al [6] and revisited by many other groups [7–10]. Many experimental studies gave consistent results to this model [11–13]. Recently, improved experimental techniques revealed

J_{A} and J_{B} in order to calculate such steady-state flux–flux ratios, one can map the original schemes to much simplified versions.

For instance, any multistep pathway without branches can be mapped to a single-step pathway. Thus one obtains the much simplified schemes (a2), (b2) and (c2). On the other hand, in many kinetic assays of the DNAP reactions, multiple steps in the same pathway cannot be identified individually. In such cases, minimal schemes like (a2), (b2) and (c2) are directly used to analyze the experimental data.
Figure 3. The simplified reaction scheme. X', X' (or X'', X''): pre-translocation (or post-translocation) state of DNAP when the primer terminus is in the synthesis (s) site or the exonuclease (e) site respectively. When the primer terminus is in the exonuclease site, one does not need to distinguish between $\sim A'$ (or B'). However, it is still convenient to use $\sim A'$ (B') to denote the immediate state when the terminus switches back to the polymerase site. By setting all the excision rates equal to r', we obtain the models for real DNAPs. Under the steady-state conditions, the dNTP addition reaction can be expressed as $f_{st} = k_p[X],$ where k_p is a pseudo-first-order rate constant, $[X]$ is the concentration of the incoming dNTP (to calculate the intrinsic fidelity, one often sets $[A] = [B]$). All other kinetic parameters in this figure are effective parameters which are combinations of the original rate constants in figure 2.

more details of the synthesizing and proofreading processes [14, 15], and several detailed kinetic models have been proposed [15–17]. However, all these models are based on the original simple Galas–Branscomb model and many important details such as higher-order neighbor effects of the primer terminus are not considered systematically [17] (see later sections). In particular, recent experimental works on phi29 DNA polymerase [18, 19] revealed more details about the working mechanism of DNAP, highlighting the importance of the forward and backward translocation steps which were absent from the Galas–Branscomb models. Considering this point, as well as many other structural [20–24] and kinetic [8, 12, 18, 19, 25] experimental results, we propose a comprehensive reaction scheme of DNAPs as shown in figure 2.

There are several key features of this scheme. First, the template-primer duplex binds to DNAP and forms two types of complexes. In the ‘polymerase type’, the 3‘ terminus of the primer is located at the polymerase site. In the ‘exonuclease type’, the primer terminus is unzipped from the duplex and transferred to the exonuclease site. For the ‘polymerase type’ complexes, two substrates were experimentally observed [18, 19]. One is the pre-translocation state of DNAP in which the dNTP binding site is occupied by the primer terminus. The other is the post-translocation state in which the DNAP translocates forward (relative to the template) to expose the binding site to the next dNTP. DNAP can rapidly switch between these two states. Correspondingly, one can assume two substrates of DNAP in the ‘exonuclease type’ complexes, though there are not sufficient experimental evidences. One is the pre-translocation state in which the exonuclease site is occupied when the primer terminus is transferred from the polymerase site. The other is the post-translocation state in which the exonuclease site is exposed after the nucleotide excision while the newly-formed primer terminus does not return to the polymerase site.

Second, once the incoming dNTP is incorporated into the primer, the DNAP can either translocate forward to the post-translocation state and bind a new dNTP in the polymerase site, or it pauses at the pre-translocation state and the primer terminus is unzipped from the duplex and transferred to the exonuclease site (the terminus can switch between the two sites without being excised [19]). The large distance about 30–40 Å [20–24] between the two sites implies that more than one nucleotides of the primer terminus must be unzipped, and thus the stability of the entire terminal region may put an impact on the unzipping probability of the primer terminus. Such neighbor effects, as well as other types of neighbor effects, can be very significant for the replication fidelity and should be taken account of in the kinetic models (details see later sections).

Third, the exonuclease site can excise only the terminal nucleotide. What happens after the cleavage is not clear yet [26]. Here we propose two possible pathways, which are denoted as models I and II in figure 2. In model I, DNAP undergoes a backward translocation and the primer terminus can either be excised processively, or be transferred back to the polymerase site (at the pre-translocation state). In model II, the primer terminus is directly transferred back to the polymerase site (at the post-translocation state).

Fourth, under physiological conditions, the two reactions, i.e. dNTP addition at the polymerase site and dNMP excision at the exonuclease site, are regarded as irreversible for the following reasons. In principle, the first reaction can be reversed by PPI incorporation, and the equilibrium constant has been experimentally measured $K_p \equiv [dNTP]_p/[PPI]_eq = 10^{-4}$ (see table II of [12]). Since the physiological concentrations [dNTP], [PPI] are typically 5–40 μM and 0.2–0.3 mM [27, 28] respectively, the ratio $[dNTP]/[PPI] \sim 10^{-2} \gg K_p,$ so PPI incorporation is actually negligible. The second reaction can be reversed by dNMP addition, and the equilibrium constant $K_M \equiv \epsilon_0/[dNMP]_eq$ is estimated as 10^{-4} ($\epsilon_0 \equiv 1$ M is defined as the standard concentration). The physiological concentrations [dNMP] is about 0.3–20 μM [27], the ratio $\epsilon_0/ [dNMP] \gg K_M,$ so dNMP addition is negligible. These realistic conditions largely simplify the mathematical treatment of the models presented in figure 2 or its simplified version figure 3.

One can also reasonably assume that the translocation of DNAP in ‘polymerase type’ complex is in a rapid equilibrium. In biochemical experimental studies such as steady-state kinetic assays [15, 25], the translocation cannot be observed (for comparison, the subsequent dNTP binding can be clearly observed). In other words, the two substrates can not be identified individually, indicating there exists a rapid equilibrium between them. Thus one does not need to distinguish between

The equilibrium constant of the overall hydrolysis reaction (the free dNTP hydrolyzes into dNMP and PPi) is $K_t \equiv [dNTP]_p e^{q_0}/([dNTP]_p [PPI]) = \exp(\Delta G^0/(RT)),$ where $\Delta G^0 = 45.6$ kJ mol$^{-1}$ [60], $R = 8.31451 J K^{-1} mol^{-1} \ T = 300 K$, i.e. $K_t = 10^{-5},$ so $K_M = K_t/K_p = 10^{-3}.$ Under physiological concentrations [dNMP] $\sim 0.3–20 \mu M,$ dNMP addition can be reasonably regarded negligible. This assumption is a prerequisite to apply the factorization methods in section I to model I. If one further considers dNMP addition at the exonuclease sites, the copolymer sequence can no longer be described by Markov-chain assumptions like equations (4) and (5), and thus our method fails. Analytically solving the fully reversible model I is challenging and is beyond the scope of this paper. In contrast, however, the factorization method can be directly applied to the fully reversible model II as described in our previous paper [30].
the pre-translocation and the post-translocation states. Under such an approximation, model II can be reduced to the Galas–Branscomb model as shown in figure 1(b1), while model I is reduced to figure 1(c1).

Although model II were widely accepted, there is no direct experimental evidence to exclude model I. Moreover, it has been found that the ssDNA binding to the exonuclease site can be processively excised [25], indicating that more than one nucleotide bind to the exonuclease site (e.g. three nucleotides bind to the exonuclease site for polymerase I KF [29]) and removing the terminal nucleotide may trigger backward translocation of DNAP for the subsequent excisions. So we will discuss both models in this paper, but put a focus on model I due to the following technique consideration. Kinetic proofreading models like figure 1(a1) or (a2) are irreversible reactions, so the corresponding kinetic equations are always closed (i.e. of finite number) and can be analytically calculated. The Galas–Branscomb models like figure 1(b1) or (b2), however, are seemingly reversible, and the corresponding kinetic equations are always unclosed and hierarchically coupled, which is hard to solve. Fortunately, a general analytical treatment for such problems has been established recently by us [30] and this method can be directly applied to model II (some results are given in appendix C). For model I like figure 1(c1) or (c2), however, the above methods are inapplicable and new method should be developed, which will be a focus of later sections.

This paper is organized as follows. Section 2 introduces the basic theory of the steady-state kinetics of model I (the minimal scheme figure 1(c2)) including higher-order neighbor effects. In section 3, we discuss the replication fidelity problem of DNAP with either model I or II (figures 1(c2) and (b2) respectively). While it is hard to analytically calculate the fidelity in terms of the kinetic parameters from the basic kinetic theory, we introduce an alternative method (infinite-state Markov chain) for the calculation and show numerically its equivalence to our basic theory. With this method, analytical expressions for fidelity are obtained under the so-called biologically-relevant conditions. We further show that models I and II give exactly the same expressions which offer an intuitive understanding of the higher-order neighbor effects on the fidelity. In section 4, we will apply these results to discuss the fidelity problem of some real DNAPs.

2. Basic kinetic theory of proofreading model I

It has been shown that the terminal mismatch and even the penultimate mismatch at the primer terminus will greatly reduce the addition rate of the next dNTP, compared with the case that a match is at the same position [8, 31, 32]. This means that some rate constants in figure 2 depends on the states (A or B) of the few consecutive base pairs at the terminal region, i.e. there does exist higher-order neighbor effects (referred to as terminal effects in this paper) in DNA replication. Thus the zero-order terminal model shown in figure 3 is not appropriate and higher-order models like figure 4 or 6 are required. Below we demonstrate how to analytically treat the steady-state kinetics of such models. To proceed, we note first that each step in the reaction scheme may have terminal effect but of different order. For instance, the addition rate may be of first order while the transfer rate may be of zero order, which is a special case of the general first-order scheme figure 4 (by putting $k_F = k_F^0$). Similarly, reaction schemes with kinetic parameters up to nth order can be included in the general nth-order scheme.

2.1. First-order proofreading model

In this section, we will discuss the general first-order proofreading model figure 4 to demonstrate the basic ideas of our approach. Following the same logic of [30], we use P_n^s to denote the occurrence probability of the terminal sequence X_n in the synthesis (polymerase) site, N_X to denote the occurrence probability of X_n in the exonuclease site, $X_i = A, B$. N_{X_n} is defined as the total number of sequence X_n appearing in the primer chain.

The overall incorporation rate of sequence X_n appearing in the primer chain is defined as,

$$N_{X_n} = J_{X_n} = J_{X_n}^s + J_{X_n}^e$$

(1)

where $J_{X_n}^s = J_{X_n}^s P_{X_n}^s$ and $J_{X_n}^e = -r_{X_n} P_{X_n}^e$.

The kinetic equations of P_n^s in (n \geq 1, m = s, e) can be written as,

$$P_n^s = J_{X_n}^s X_n^s - J_{X_n}^e X_n^e - P_n^{se}$$

(2a)

and

$$P_n^e = J_{X_n}^e X_n^e - J_{X_n}^s X_n^s + P_n^{es}$$

(2b)

where, $J_{X_n}^s = J_{X_n}^{se} + J_{X_n}^{es}$ and $J_{X_n}^e = J_{X_n}^{se} + J_{X_n}^{es}$. We also have $P_n^{se} = P_{AX}^{se} X_i + P_{BX}^{se} X_i$,

$$P_n^{es} = P_{AX}^{es} X_i + P_{BX}^{es} X_i$$

(i \geq 1) and so on.

For example,

$$P_{AB}^s = J_{AB}^s P_A^s P_B^s - (J_{BA}^s + J_{BB}^s) P_{AB}^s - k_{AB}^{se} P_A^s P_B^s + k_{AB}^{es} P_B^s$$

$$P_{AB}^e = J_{AB}^e P_A^e P_B^e - (J_{BA}^e + J_{BB}^e) P_{AB}^e - k_{AB}^{se} P_A^e P_B^e + k_{AB}^{es} P_B^e$$

(3a)

$$P_{AB}^s = -r_{AB}^{se} P_A^s P_B^s + r_{AB}^{es} P_A^{es} P_B^s + r_{AB}^{es} P_A^{es} P_B^e + k_{AB}^{es} P_B^se - k_{AB}^{es} P_B^se$$

$$P_{AB}^e = J_{AB}^e - (J_{BA}^e + J_{BB}^e) + J_{AB}^{se}$$

(3b)

The steady state is defined as $P_n^{se} = 0$ and $P_n^{es} = 0$ for any $n \geq 1$. To analytically solve these coupled equations, we extend the logic of [30] and propose the following factorization conjecture:
The second-order proofreading model

Second-order terminal effects have been observed for some DNAPs where the penultimate mismatch at the terminus can affect the next nucleotide incorporation [32, 34]. In this section, we extend the method of the preceding section to the second-order model shown in figure 6.

Similar to the first-order model, we have,

\[J_{\bar{X}X} - J_{XX} = J_{\bar{X}X} - J_{XX} = J_{\bar{X}X} - J_{XX} = J_{\bar{X}X} - J_{XX} = J_{\bar{X}X} - J_{XX} \]

where \(J_{\bar{X}X} = J_{XX} \).

The kinetic equations for \(P_{Xe} - X_{Xe} (n \geq 1, m = s, e) \) can be written as,

\[P_{Xe} - X_{Xe} = J_{Xe} - X_{Xe} = J_{Xe} - X_{Xe} = J_{Xe} - X_{Xe} = J_{Xe} - X_{Xe} \]

Under steady-state conditions \(P_{Xe} - X_{Xe} = 0 \), we proposed the following factorization conjecture:

\[P_{Xe} - X_{Xe} = \prod_{i=1}^{n} P_{Xe} - X_{Xe} \left(\prod_{i=1}^{n} P_{Xe} - X_{Xe} \right)^{-1} \]

\[P_{Xe} - X_{Xe} = 0, \quad m = s, e, \]

\[n \geq 4, \quad m = s, e, \]

which can be tested by Monte Carlo simulations (results not shown here).

Therefore, we obtain the following closed equations for the second-order proofreading model:

\[J_{\bar{X}X} - J_{XX} = J_{\bar{X}X} - J_{XX} = J_{\bar{X}X} - J_{XX} = J_{\bar{X}X} - J_{XX} \]

where \(\bar{X} \) differs from \(X \).
3. The fidelity problem of DNA replication by DNAP

In this section, we discuss the fidelity problem of DNAP. In principle, one can define the fidelity naturally as the ratio of matches over mismatches incorporated into the primer. However, it is difficult to directly measure this fidelity in experiments and some indirect methods were developed. One of the common used methods is the forward mutation assay [13, 36–38] which scores the replication errors indirectly by counting the phenotype change rate of the bacterial hosts transfected by reporter gene DNA. Other frequently used methods are steady-state [39–41] or pre-steady state [12, 42–44] kinetic assays which investigate the kinetics of DNA replication and calculate the replication fidelity indirectly based on the theoretical models. The basic ideas of these two approaches differ, but the obtained fidelity are often of similar order of magnitudes. For example, the average fidelity of Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) is about 106 in vitro DNAPs, the fidelity determination assay [38]. In general, for most proofreading-proficient DNAPs, the fidelity in vitro is about 10^6–10^7 with a contribution from exonuclease proofreading of 10^1–10^2 [3, 46].

In this paper, we only discuss the kinetic-based fidelity, since it can be rigorously defined and calculated within the framework of our basic theory. Here we define the fidelity as

\[\phi = N_{A}/N_{B}, \]

where \(N_{A} \) is the total number of incorporated matches into the primer, \(N_{B} \) is the total number of mismatches. Once the steady-state kinetic equations such as equations (5) or (9) are solved numerically or analytically, the total flux \(J_{A} = J_{A}^{+} + J_{A}^{-} \), \(J_{B} = J_{B}^{+} + J_{B}^{-} \) can be calculated. Since \(N_{A} = J_{A} \), \(N_{B} = J_{B} \), and \(d(N_{A}/N_{B})/dt = 0 \) (in steady state), we can calculate the replication fidelity exactly by \(\phi = N_{A}/N_{B} = J_{A}/J_{B} \). In particular, the analytical solutions to the kinetic equations are quite useful for further experimental and theoretical studies. However, it is often impossible to solve the kinetic equations analytically. To circumvent this problem, we introduce below an alternative method, the infinite-state Markov chain method [47], to calculate \(\phi \). This method has already been used for higher-order copolymerization by us (see the supplementary of [30]) and can be readily extended to the exonuclease proofreading schemes.

3.1. The infinite-state Markov chain method for exonuclease proofreading

To calculate the fidelity, we begin with the first-order proofreading scheme which can be rewritten as a branching model shown in figure 7.

The steady-state growth of primer can be completely characterized by four groups of transition probabilities:

\[P_{X|X|X} \equiv f_{XX}^{+} f_{XX}^{-} + f_{XX}^{+} k_{XX}^{e}, \]
\[P_{X|X}^{e} \equiv k_{XX}^{e} f_{XX}^{+} + f_{XX}^{-} k_{XX}^{e}, \]
\[P_{X|X} \equiv k_{XX}^{e} f_{XX}^{+} + f_{XX}^{-} k_{XX}^{e}, \]
\[P_{X|X}^{e} \equiv 1 - P_{X|X}^{e} = r_{XX}^{e} f_{XX}^{+} + f_{XX}^{-} k_{XX}^{e}. \]

We also employ the idea of ‘cycle completion’ [47], since any incorporated nucleotide (either A or B) has a chance to be excised, only those not being excised account for the final composition of the primer. Thus the fidelity for the first-order terminal model can be defined as

\[\phi = \frac{Q_{AA} + Q_{BA}}{Q_{AB} + Q_{BB}}, \]

where \(Q_{X|X} \) is the probability that \(X_{1} \) is added to the terminal \(X_{2} \) and never being excised, satisfying \(Q_{AA} + Q_{AB} + Q_{BA} + Q_{BB} = 1 \). \(Q_{X|X} \) can be explicitly expressed as \(Q_{X|X} = \tilde{P}_{X|X} P_{mu|X|X} \), where \(\tilde{P}_{X|X} \) is the probability that adding \(X_{1} \) to the terminal \(X_{2} \), \(P_{mu|X|X} \) is the probability of the terminal \(X|X \) never being excised. The absolute values of \(\tilde{P}_{X|X} \) are not known a priori, but the following equalities obviously hold:
The listed values differ for different base pairs (matched or mismatched). This type is defined as, 2.3b 714b XX PTuX X uX X >∼, we define 11 21 — — 11 11 sat- 0.002a 0.023 >∼, and 714b kAA are solved, — — — — — ever being excised. 10 3 kABA 21 21 21 21 P P probability of the terminal sequence effect is beyond the scope of this paper and not discussed here. 3.2. Approximation of ϕ under bio-relevant conditions In table 1, we list experimental values of some kinetic parameters for some real DNAPs. The dNTP concentration appearing in the pseudo-first-order rates of dNTP incorporation (i.e. the polymerization rates, see the caption of figure 3) is often set as 100 μM which is the typical value under physiological conditions. In such cases, there exists huge difference in the order of magnitudes of the parameters. For example, addition of matched nucleotide at the polymerase site is very fast, and always much faster than mismatch addition. This enables us to suggest reasonable approximations (so-called bio-relevant conditions in this paper) to simplify the above calculation and obtain explicit mathematical expressions of ϕ in terms of some key parameters.

For any higher-order models (say, hth-order model), we propose

(a) \(f_{AAA}^{h} \gg f_{AAA}^{h+1} \), which leads to \(P_{A|AAA}^{h} \gg P_{B|AAA}^{h+1} \).

This means that the overall nucleotide incorporation is dominated by the addition of A and the occurrence probability of B in the primer is negligible. This highly efficient discrimination between A and B is executed by the polymerase site.

(b) \(f_{AAA}^{h} \gg k_{AAA}^{h} (\gg r_{AAA}^{h}) \), which leads to \(P_{A|AAA}^{h} \gg P_{A|AAA}^{h+1} \).

This can be achieved at appropriate concentration of dNTP (notice that \(f_{AAA}^{h} \) is proportional to dNTP concentration). It means that the matched terminus can be rapidly
extended by the next match, instead of being transferred to the exonuclease site and excised. This ensures that the primer growth is dominated by match extension in the polymerase site and the introduction of exonuclease proofreading pathway nearly does not change the overall growth velocity.

\[\dot{\hat{R}}_{AAA} = \dot{R}_{AAA} \geq f_{AAA}^{s} \hat{R}_{AAA} \quad \text{for} \quad 0 < i \leq m \quad \text{(which leads to)} \quad \dot{\hat{R}}_{AAA} \geq f_{AAA}^{s} \hat{R}_{AAA} \quad \text{(c)}, \]
\[\dot{\hat{R}}_{AAAA} = \dot{R}_{AAAA} \geq f_{AAAA}^{s} \hat{R}_{AAAA} \quad \text{for} \quad m + 1 < i \leq h \quad \text{(i.e.} \quad R_{i} \ll F_{i}). \]

This means that the primer terminus containing a mismatch is more readily transferred and excised rather than extended by the addition of the next matched nucleotide. This makes a significant contribution to the proofreading efficiency. On the other hand, as the mismatch is buried deeper (i.e. \(i > m \)), the transfer-and-excision rate \(\dot{\hat{R}}_{AAA} \) decreases and the addition rate \(f_{AAA}^{s} \) increases and far exceeds the transfer-and-excision rate when \(i > m \). Hence, only those kinetic parameters of \(0 < i \leq m \) contribute significantly to the proofreading efficiency. More details about this condition can be found in appendix B.

(d) \(f_{X_{0}X_{1}X_{2}} \equiv 0 \) (where \(X_{0}X_{1}X_{2} \cdots X_{i} = AAA \cdots h \)), which leads to \(P_{0|X_{0}X_{1}X_{2}X_{3}X_{i}X_{i}} = 0 \).

This means that the chance of adding one more mismatch within the length of \(h \) is negligible.

With these bio-relevant conditions, a very simple and intuitive expression of the replication fidelity can be obtained:

\[\phi = \phi_{1} \phi_{2}, \quad \phi_{1} \simeq f_{AAA}^{s} f_{AAAA}^{s}, \quad \phi_{2} \simeq \left(1 + \frac{R_{1}}{F_{1}}\right) \left(1 + \frac{R_{2}}{F_{2}}\right) \cdots \left(1 + \frac{R_{h}}{F_{h}}\right), \]

(15)

where \(F_{i} \) and \(R_{i} \) are defined above in the formulation of condition (c). \(\phi_{1} \), \(\phi_{2} \) denotes the contribution of the polymerase pathway and the proofreading pathway to the overall fidelity, respectively (details can be found in appendix B).

Particularly, for the first-order model, we have,

\[\phi_{1} \simeq f_{AAA}^{s} f_{AB}^{s}, \quad \phi_{2} \simeq 1 + \frac{R_{AB}}{f_{BA}}, \]

(16)

where \(f_{XX} \) is defined in equation (14).

For the second-order model, we have,

\[\phi_{1} \simeq f_{AAA}^{s} f_{AB}^{s}, \quad \phi_{2} \simeq \left(1 + \frac{R_{AB}}{f_{AB}}\right) \left(1 + \frac{R_{BA}}{f_{BA}}\right). \]

(17)

Here \(f_{XX}^{s} \) is the first-order model. If all the parameters are taken as first order, the term \(f_{AB}^{s} f_{BA}^{s} \) becomes negligible (according to the condition (b) \(f_{BA}^{s} \gg \dot{R}_{BA}^{s} \)), and equation (17) is indeed reduced to equation (16).

For model II, following similar procedure, one can derive the same expression of \(\phi \) as equation (15) under the same conditions (details see appendix C). Furthermore, by numerically solving the steady-state kinetic equations (e.g. equations (5)), one can also show that models I and II give almost the same overall reaction velocity \(U_{rel} = \dot{X}_{A} + \dot{X}_{B} \) under the bio-relevant conditions (data not shown). This is conceivable, since the overall velocity is dominated by the addition of \(A \) (\(f_{AAA}^{s} \) is far larger than any other kinetic parameters) and introduction of proofreading pathway only slightly changes the overall velocity. Therefore, the two models behave almost the same in steady state under the bio-relevant conditions (they do differ under other conditions, which are beyond the topic of the present paper). This means that the details how the excised terminus returns to the polymerase site may be unimportant for real DNAPs to obtain high proofreading efficiency while maintain high polymerization velocity.

4. Case studies

In the above expressions of \(\phi \), only a few key parameters appear, which enables us to evaluate the fidelity of some real DNAPs even if other unimportant kinetic parameters are unknown or not precisely measured. Here we give two case studies.

4.1. First-order proofreading

Employing the pre-steady-state kinetic analysis method, Johnson et al analyzed the polymerization process and the excision process of T7 DNA polymerase [12, 25, 31]. The kinetic parameters they obtained are listed in table 1, and can be understood as first order parameters. Since they satisfy the bio-relevant conditions, equation (16) can be applied here.

For \(\phi_{1} \), Johnson et al used an expression exactly the same as ours (= \(f_{AA}^{s} f_{AB}^{s} \simeq 10^{5} \)). However, for \(\phi_{2} \) they calculated as

\[\phi_{2} = 1 + \frac{k_{AB}^{s}}{f_{BA}^{s}} \simeq 193. \]

(18)

Compared to equation (16), it is obvious that they ignored the bidirectional transfer of the primer terminus between the polymerase site and exonuclease site. By our theory, it can be modified as

\[\phi_{2} \simeq 1 + \frac{R_{AB}}{f_{BA}^{s}} = 1 + \frac{k_{AB}^{s}}{f_{BA}^{s}} \simeq 107. \]

(19)

Here \(\sigma \simeq \frac{r^{s}}{r^{s} + k_{AB}^{s}} \approx 0.56 \), not far from its upper limit at which Johnson et al’s expression is recovered. Notice that \(\sigma \) could play a negative role if \(\sigma \ll 1 \) (i.e. \(r^{s} \ll k_{AB}^{s} \)). \(\sigma = 0.56 \) implies that the excision process is highly efficiently employed by T7 DNAP for the proofreading purpose.

To further validate the approximate expression equation (16) for T7 DNAP, we compared the approximate result \(\phi_{app} = \phi_{1} \phi_{2} \) (equation (16)) to the exact numerical solution \(\phi \) of equation (5) in a large range of the two undetermined
and parameters k_{BA}^{re} and k_{BA}^{es}. As shown in figure 8, both methods give very close results in large range of k_{BA}^{re} and k_{BA}^{es}.

4.2. Second-order proofreading

For human mitochondrial DNAP pol γ, Johnson et al measured some kinetic parameters [34] (table 1) which displays the second-order terminal effect. Although some involved parameters have not been determined directly, some of their combinations were measured. For instance, $r_{AAB}^{es} = k_{AAB}^{re}(r_{r} + k_{AAB}^{es}) = 0.4$ s$^{-1}$ (i.e., $k_{exo} = 0.4$ s$^{-1}$ in scheme 1 of [34]), $r_{ABA}^{es} = k_{ABA}^{re}(r_{r} + k_{ABA}^{es}) = 3$ s$^{-1}$ (i.e., $k_{exo} = 3$ s$^{-1}$ in scheme 1 of [34]).

Assuming that above-mentioned bio-relevant conditions are satisfied and using the available kinetic parameters, one can make a rough estimate of the overall fidelity $\phi = \phi_{1}\phi_{2}$ as follows:

\[
\phi_{1} \approx \frac{f_{AAA}^{s}}{f_{AAB}^{s}} = \frac{3900-5700}{0.023-1.6} \approx 10^{4}-10^{5}, \tag{20a}
\]

\[
\phi_{2} \approx (1 + \frac{r_{ABA}^{s}}{f_{ABA}^{s}})(1 + \frac{r_{ABA}^{es}}{f_{ABA}^{es}}) = (1 + \frac{0.4}{0.1})(1 + \frac{3}{2.7}) \approx 10. \tag{20b}
\]

In their article [34], Johnson et al divided ϕ_{2} intuitively into two multiplying parts. One is due to the correction of the terminal mismatch, and the other is due to the correction of the buried mismatch. In our terminology, they actually considered $(P_{AAB}^{s}f_{ABA}^{s})$ and $(P_{ABA}^{es}f_{ABA}^{es})$, respectively. So their expression of ϕ_{2} is almost the same as our equation (17).

To validate the approximate expression equation (17) for human mitochondrial DNAP pol γ, we compared the approximate result ϕ_{approx} (ϕ, ϕ_{v}, equation (17)) to the exact numerical solution ϕ of equation (9). To carry out the numerical calculations of equation (9), we first set k_{ABA}^{re}, k_{ABA}^{es}, k_{AAA}^{es} as equal since the exonuclease site does not distinguish between A and B. Second, $k_{X_{AA}X_{A}}^{es}$ and $r_{X_{AA}X_{A}}^{s}$ appear in equation (13) only through the combined parameter $P_{X_{AA}X_{A}}^{s}$, so the ratio $\sigma = r_{X_{AA}X_{A}}^{s}/(k_{X_{AA}X_{A}}^{es} + k_{X_{AA}X_{A}}^{es})$ is selected as an independent unknown parameter. Third, since $k_{X_{AA}X_{A}}^{es}$ are not directly available, their values are calculated by $r_{X_{AA}X_{A}}^{s}/\sigma$, where all $P_{X_{AA}X_{A}}^{s}$ except P_{BAA}^{s} are known from experiments. So k_{BAA}^{es} is selected as another unknown parameter. Finally, all other rates involved two Bs are set as zero. As shown in figure 9, ϕ_{approx} agrees well with the exact value ϕ in large range of σ and k_{BAA}^{es}, as long as condition (b) $f_{AAA}^{s} \gg k_{BAA}^{es}$ is satisfied.

One may notice that the second-order proofreading contribution $(P_{AAB}^{s}f_{ABA}^{es})$, seems insignificant. Fortunately, it can be enhanced, when free dNTP matching the terminal or penultimate base on the template are presented in the solution. Actually, these dNTPs were observed to apparently accelerate the excision of the penultimate mismatch (see scheme 2 of [34]). This can be understood by the above expression of ϕ_{2}. Since the duplex terminus is unstable due to the buried mismatch, the free dNTP has the chance to bind transiently to the template at the polymerase site, which may accelerate the transfer of the primer terminus from the polymerase site to the exonuclease site, or hinder the back transfer. This will increase k_{BAA}^{es} or decrease k_{ABA}^{re} (in either case, to increase P_{BAA}^{s}), and thus enhance ϕ_{2}. In fact, P_{ABA}^{s} was found to increase from 3 s$^{-1}$ (in the absence of matching dNTP in the solution) to up to 21–39 s$^{-1}$ (in the presence of matching dNTP), which leads to an order of magnitudes increase of ϕ_{2}.

Figure 8. The fidelity ϕ of T7 DNAP, which is calculated by the exact numerical solution, divided by the approximate expression ϕ_{approx} (i.e. equation (16)). It shows that ϕ can be well approximated by ϕ_{approx} in large range of the two undetermined parameters k_{BA}^{re} and k_{BA}^{es}. Kinetic parameters are taken from table 1 (in unit s$^{-1}$): $f_{AA}^{s} = 250$, $f_{AB}^{s} = 0.002$, $f_{BA}^{s} = 0.012$, $k_{A}^{r} = 0.2$, $k_{B}^{r} = 2.3$, $k_{AAA}^{es} = 714$, $k_{ABA}^{re} = 986$. All other parameters involving BB are set as zero.
The fidelity problem of DNAP which consists of both a polymerase site and an exonuclease site is an important issue in biology. Experiments have shown that higher-order terminal effects are crucial for DNAP to achieve extremely high fidelity. So far as we know, only the first-order effect has been theoretically studied ever [53, 54]. In this work, we propose a general kinetic framework to analyze the fidelity problem in the presence of any-order terminal effects. Closed equations were derived which fully describe the steady-state replication process. By these equations, the replication fidelity ϕ, as well as other quantities such as the total flux J (the overall reaction velocity), can be calculated. In particular, using the infinite-state Markov chain method which is numerically equivalent to our steady-state equations, we derived analytical expressions of ϕ for both models I and II under bio-relevant conditions. We found that models I and II behave almost the same in every aspect (e.g. the fidelity, the overall reaction velocity, etc) under those conditions. This implies that the proofreading efficiency of DNAP may not depend on the details of how the excised primer terminus returns from the exonuclease site to the polymerase site. This conclusion can even be valid to the full scheme figure 2 which is applicable to any DNAP, though this scheme is much more complex and very hard to treat analytically (it should be the subject of future studies). Furthermore, the highly simplified expressions of ϕ show that the replication fidelity is only determined by very few kinetic parameters, which indicates that the polymerization-proofreading mechanism is insensitive to details of the reaction schemes.

The expression of ϕ of hth-order model (equation (15)) offers intuitive and important insights to understand the higher-order terminal effects. We noticed that the polymerase site can add A to the primer terminus with a much larger rate than adding B, which contributes significantly to the overall fidelity. In this pathway, however, the hth-order terminal effects are not reflected explicitly in ϕ. In fact, the higher-order effects work in the proofreading pathway.

To simply put, when the primer terminus contains one B at whatever position, it can be extended one A by the polymerase site, or be transferred and excised by the exonuclease site. Once the former is much smaller than the latter (see condition (c), for $0 < i \leq m$), it can substantially contribute to ϕ as a ratio between these two rates. In principle, for each possible position (the terminal, the penultimate, etc) of B, there is a corresponding ratio contributing to ϕ. However, it seems only a few leading ratios contribute significantly to ϕ. As pointed out in [55], the higher-order effects may originate mainly from base-stacking interaction in the DNA duplex. The presence of terminal or penultimate mismatch may significantly disrupt the base stacking of the duplex terminus, and thus increases the transfer-and-excision rate and decreases the addition rate, which enhances the proofreading contribution to the overall fidelity. On the other hand, deeper mismatches may put less impact on both rates and thus on the proofreading efficiency (see condition (c), for $m < i \leq h$). For instance, in the case of human mitochondrial DNAP pol γ, it has been observed $f_{ABA}^{BAA} \gg f_{ABA}^{ABA}$ (table 1), and thus the contribution of the buried mismatch (in the absence of matching dNTP in the solution) to ϕ, ($f_{ABA}^{BAA}f_{ABA}^{ABA}$), is smaller than that of the terminal mismatch ($f_{ABA}^{BAA}f_{ABA}^{ABA}$). This raises the question that whether the third-order even higher-order effects per se can be observed for any real DNAPs. For the third-order model, $\phi \simeq (1 + f_{ABA}^{BAA}f_{ABA}^{ABA})(1 + f_{ABA}^{BAA}f_{ABA}^{ABA})(1 + f_{ABA}^{BAA}f_{ABA}^{ABA})$. If f_{ABA}^{BAA} approaches to f_{ABA}^{BAA} which is much larger than any other kinetic parameter, then the term corresponding to the third-order effect $f_{ABA}^{BAA}f_{ABA}^{ABA}$ is negligible, meaning that this has no practical contributions to fidelity. However, as demonstrated
in the case of human mitochondrial DNAP pol γ, free nucleotides matching the template can significantly enhance the proofreading efficiency when the mismatch is presented at the penultimate position. Whether such enhanced higher-order effects exist for other DNAPs is worthy investigation in the future.

It should also be pointed out that we have not discussed the template-sequence effect on the fidelity in this paper. As shown by experiments such as [34], the 16 possible base pairs may have different incorporation rates or excision rates, which of course have more or less impact on the overall fidelity. Our model and indeed most of the existing models are actually based on the presumption that the rates of the 4 matches are of similar order of magnitude, and the rates of the 12 mismatches are also of similar order of magnitude. This coarse-grained description of DNA replication process is appropriate for the purpose to estimate the overall replication fidelity, but cannot account for much subtle effects such as base type-dependent replication errors which are biologically very important. Furthermore, we also ignore the intrinsic statistical correlations in the template sequences which may put a substantial impact on the replication fidelity. Analysis on genomic DNA sequences shows that the symbolic pattern of long DNA sequences is quite complex and often cannot be simply described as Markov chain [56–58]. To develop a new kinetic theory to consider all these template-sequence effects exists for other DNAPs is worthy investigation in the future.

(b) It is also possible that the primer terminal X_j is buried by the next dNTP addition and eventually be excised. For example, X_j is buried by the subsequent addition of A (with a possibility $T_X P_{A|X_j}$), and this newly added A is excised (with a possibility $P_{wa|A}$), and finally X_j itself is excised (with a possibility $T_X P_{a|X_j}$). According to this logic, the possibility of the route that A is incorporated and excised i times and B is incorporated and excised j times before the final excision of X_j, can be calculated as $p_{aw|AAB} = C_{i+j} (T_X P_{A|X_j} P_{wa|A}) (P_{wA|AAB}^{*})^{i-j} (T_X P_{B|X_j} P_{wa|A}) (T_X P_{a|X_j})$ ($i + j \geq 1$).

Accordingly, we have

$$p_{aw|j} = \sum_{i \geq 0} p_{aw|AAB}$$

$$= \hat{p}_{aw|A} + \frac{T_X P_{wa|A} T_{X|A} P_{a|A}}{P_{wa|A}} \sum_{i \geq 1} C_{i+j} \hat{p}_{a|A} P_{wa|A} P_{wa|A}^{(i-j)} (T_X P_{B|X_j} P_{wa|A}) (T_X P_{a|X_j})$$

$$= \hat{p}_{aw|B} + \frac{T_X P_{wa|A}}{P_{wa|A}} \sum_{i \geq 1} \hat{p}_{a|A} P_{wa|A} P_{wa|A}^{(i-j)} - 1)$$

$$= \hat{p}_{a|A} (P_{wa|A} - 1) (T_X P_{a|X_j})$$

(1.1)

For higher-order terminal models, one can also obtain recursion equations of the same form.

Appendix B. The approximation of ϕ under bio-relevant conditions

We use the second-order model to demonstrate the approximation.

Under bio-relevant conditions, the fidelity expression can be approximated as,

$$\phi = \frac{Q_{AAA} + Q_{ABA} + Q_{BAA} + Q_{BBB}}{Q_{AAB}} \approx \frac{Q_{AAA} + Q_{ABA} + Q_{BAA}}{Q_{AAB}}$$

$$\approx \frac{Q_{AAA}}{Q_{AAB}} + 2 \frac{\hat{P}_{wa|AAB}}{P_{wa|AAB}}$$

(B.1)

In the first step, we have $Q_{ABB} = Q_{BAA} = Q_{BBB} = 0$ because of condition (d). In the second step, we have $Q_{AAA} \gg Q_{AAB}$ because of the conditions (a) and (b), and $Q_{ABA} = Q_{BAA} = Q_{AAB}$ due to constraint equation (12) (i.e., $Q_{XX} = Q_{XY} + Q_{YY} = Q_{XX} + Q_{XY}$).

The fidelity expression can then be separated into two parts, $\phi_e = \hat{P}_{wa|AAB}$ and $\phi_p = P_{wa|AAB}/P_{wa|AAB}$. The first part is the contribution of polymerase site, which can be easily calculated as $\phi_e = \hat{P}_{wa|AAB}/P_{wa|AAB}$ from equation (13). The second part ϕ_p is the contribution of exonuclease site, which can be calculated as follows.

First, $P_{wa|AAB} = 1 - P_{wa|AAA} \approx 1$, since $P_{wa|AAA} \approx 0$ (this is intuitive according to conditions (a) and (b), and can be verified by numerical calculation). Thus, the fidelity ϕ_p is determined...
by \(P_{\text{euAAB}} = 1 - P_{\text{euABA}} \). For \(P_{\text{euABA}} \), similar to appendix A, we have
\[
P_{\text{euABA}} = \frac{\hat{P}_{\text{ABA}}}{P_{\text{euAAB}}^p P_{\text{euABA}}^p} \left(1 - (\hat{P}_{\text{ABA}} P_{\text{euABA}} + P_{\text{uABA}} P_{\text{euABA}}) P_{\text{euABA}}^p - \frac{1}{T_{\text{ABA}}} \right) = \frac{\hat{P}_{\text{ABA}}}{P_{\text{euAAB}}^p P_{\text{euABA}}^p} \left(1 - (\hat{A}_1^{(2)} + B_2^{(2)}) P_{\text{euABA}}^p - \frac{1}{T_{\text{ABA}}} \right) = \frac{\hat{P}_{\text{ABA}}}{P_{\text{euAAB}}^p P_{\text{euABA}}^p} \left(1 - A_1^{(2)} P_{\text{euABA}}^p - \frac{1}{T_{\text{ABA}}} \right),
\]
where \(A_1^{(2)} = \hat{P}_{\text{ABA}} P_{\text{uABA}} \). B_2^{(2)} = \hat{P}_{\text{uBA}} P_{\text{euABA}} \). In the second step, we used \(B_2^{(2)} = 0 \) because of condition (d). Now all the quantities in the expression of \(P_{\text{euABA}} \) are known except \(P_{\text{euABA}} \) which can be expressed as,
\[
P_{\text{euABA}} = \frac{\hat{P}_{\text{ABA}}}{P_{\text{euAAB}}^p P_{\text{euABA}}^p} \left(1 - (\hat{P}_{\text{ABA}} P_{\text{uABA}} + \hat{P}_{\text{uBA}} P_{\text{euABA}}) P_{\text{euABA}}^p - \frac{1}{T_{\text{ABA}}} \right) = \frac{\hat{P}_{\text{ABA}}}{P_{\text{euAAB}}^p P_{\text{euABA}}^p} \left(1 - (\hat{A}_2^{(2)} + B_2^{(2)}) P_{\text{euABA}}^p - \frac{1}{T_{\text{ABA}}} \right) = \frac{\hat{P}_{\text{ABA}}}{P_{\text{euAAB}}^p P_{\text{euABA}}^p} \left(1 - A_2^{(2)} P_{\text{euABA}}^p - \frac{1}{T_{\text{ABA}}} \right),
\]
where \(A_2^{(2)} = \hat{P}_{\text{ABA}} P_{\text{uABA}} \). B_2^{(2)} = \hat{P}_{\text{uBA}} P_{\text{euABA}} \). In the second step, we used \(B_2^{(2)} = 0 \) because of condition (d). As for \(A_2^{(2)} \), it is actually negligible. To make it clear, we resort to the expression of \(P_{\text{euAAA}} \):
\[
P_{\text{euAAA}} = \frac{\hat{P}_{\text{AAA}}}{P_{\text{euAAB}}^p P_{\text{euAAA}}^p} \left(1 - (\hat{P}_{\text{AAA}} P_{\text{uAAA}} + \hat{P}_{\text{uAA}} P_{\text{euAAA}}) P_{\text{euAAA}}^p - \frac{1}{T_{\text{AAA}}} \right) = \frac{\hat{P}_{\text{AAA}}}{P_{\text{euAAB}}^p P_{\text{euAAA}}^p} \left(1 - A_3^{(2)} P_{\text{euAAA}}^p - \frac{1}{T_{\text{AAA}}} \right) = \hat{P}_{\text{AAA}} \approx 0,
\]
where \(A_3^{(2)} = \hat{P}_{\text{AAA}} P_{\text{uAAA}} \). B_3^{(2)} = \hat{P}_{\text{uAA}} P_{\text{euAAA}} \). Finally, we obtain \(P_{\text{euAAA}} \approx \hat{P}_{\text{uAAA}} \). Now we have \(P_{\text{euABA}} \approx \hat{P}_{\text{uABA}} \), \(A_1^{(2)} = \hat{P}_{\text{ABA}} P_{\text{uABA}} \), and
\[
P_{\text{euABA}} \approx \frac{P_{\text{euAAB}}}{P_{\text{euABA}}^p} \left(1 - \frac{1}{T_{\text{ABA}}} \right)
\]
This expression is of the following general form:
\[
p_1 = \frac{\alpha}{\theta \gamma} \frac{1}{1 - (1 - \alpha) \beta \gamma} - (1 - \theta \gamma),
\]
where \(\alpha = \theta (1 - \gamma)/(1 - \theta \gamma) \) and \(0 < \alpha, \beta, \gamma, \theta < 1 \). It can be approximated by the following simpler expression:
\[
p_2 = \alpha + (1 - \alpha) \beta.
\]
where \(p_2 \) holds for \(\alpha \geq 0.5 \) (here it means \(\hat{P}_{\text{uABA}} \geq 0.5 \), i.e. \(R_i \geq F_i \) for \(0 < i \leq 1 \), see condition (c)), which can be verified numerically as shown by figure B1. Thus, we can write \(P_{\text{euABA}} \) as,
\[
P_{\text{euABA}} \approx \hat{P}_{\text{uABA}} + \hat{P}_{\text{uABA}} \hat{P}_{\text{uBA}} \hat{P}_{\text{uBA}}.
\]
The fidelity \(\phi \simeq 1/(1 - P_{\text{euABA}}) \) can then be calculated. Finally we obtain an intuitive approximate expression of the overall replication fidelity:
\[
\phi \simeq \frac{\hat{P}_{\text{AAA}}}{\hat{P}_{\text{AAA}}^p} \frac{1 - \hat{P}_{\text{AAA}}}{\hat{P}_{\text{AAA}}^p \hat{P}_{\text{uAAA}} + \hat{P}_{\text{uAA}} P_{\text{euAAA}}} = \frac{\hat{P}_{\text{AAA}}}{\hat{P}_{\text{AAA}} \hat{P}_{\text{uAAA}} \hat{P}_{\text{uBA}} \hat{P}_{\text{uBA}}}
\]
It should be noted that under conditions that \(\alpha \ll 1 \) and \(\beta \ll 1 \) (i.e. \(R_i \ll F_i \) for \(0 < i \leq 2 \), see condition (c)), the
expression equation (B.9) is still valid, since \(p_1 \simeq 0 \) and thus \(\phi_e \simeq 1 \).

Extending this logic to higher-order models is straightforward. For \(h \)-th order model, we similarly have

\[
\phi \equiv \frac{\sum_{X_{a,b}} \tilde{P}_{X_{a,b}} X_{a,b}}{\sum_{X_{a,b}} \tilde{P}_{X_{a,b}} X_{a,b} - \sum_{X_{a,b}} \tilde{P}_{X_{a,b}} X_{a,b}} = \frac{\sum_{X_{a,b}} \tilde{P}_{X_{a,b}} X_{a,b}}{\sum_{X_{a,b}} \tilde{P}_{X_{a,b}} X_{a,b}} + h
\]

\[
\approx \frac{\tilde{P}_{X_{a,b}}}{\sum_{X_{a,b}} \tilde{P}_{X_{a,b}} X_{a,b}}.
\]

(10.10)

and we also have \(\sum_{X_{a,b}} \tilde{P}_{X_{a,b}} X_{a,b} \simeq 0 \), thus \(\sum_{X_{a,b}} \tilde{P}_{X_{a,b}} X_{a,b} \simeq 1 \). To calculate \(\sum_{X_{a,b}} \tilde{P}_{X_{a,b}} X_{a,b} \), we have to calculate all the following:

\[
R_i^\prime \equiv \sum_{X_{a,b}} \tilde{P}_{X_{a,b}} X_{a,b} = \frac{\tilde{P}_{X_{a,b}}}{\sum_{X_{a,b}} \tilde{P}_{X_{a,b}}} \frac{1}{1 - (A_i^{(b)} + B_i^{(h)})^{B_i^{(h)}} - T_{X_{a,b}}^{(b)}}
\]

The following conditions (a) and (b) are satisfied:

1. \(A_i^{(b)} \simeq 0 \) because of condition (d), \(B_i^{(h)} \simeq 0 \) because of condition (a), and \(\phi_e \simeq 0 \) because of condition (c).

As defined in the main text, \(F_i \equiv \sum_{X_{a,b}} \tilde{P}_{X_{a,b}} X_{a,b} \), and \(R_i \equiv \sum_{X_{a,b}} \tilde{P}_{X_{a,b}} X_{a,b} \). For \(1 \leq i \leq h \), they can be written as (due to condition (d)):

\[
F_i = \frac{f_{X_{a,b}}^{(a)}}{f_{X_{a,b}}^{(a)} + f_{X_{a,b}}^{(b)}},
\]

(11.1a)

\[
R_i = \frac{f_{X_{a,b}}^{(b)}}{f_{X_{a,b}}^{(a)} + f_{X_{a,b}}^{(b)}} + \sum_{X_{a,b}} \tilde{P}_{X_{a,b}} X_{a,b}
\]

(11.1b)

and obviously \(F_i + R_i = 1 \).

To calculate other \(R_i^\prime \), we first notice that \(A_i^{(b)} \simeq 0 \) and thus \(R_i \simeq 0 \), since \(R_i^{(a)} \simeq 0 \). For \(R_i^\prime \) (\(1 \leq i \leq h - 1 \)), we can express it in a form similar to equation (B.6) and thus it can be rewritten as equation (B.7) under conditions (c') \(R_i^\prime \geq F_i \) (\(1 \leq i \leq h - 1 \)):

\[
\rightarrow X_4 X_3 X_2 \xrightarrow{f_{rX_{a,b}} X_{a,b}} X_4 X_3 X_2 \xrightarrow{r_{X_{a,b}} X_{a,b}} ...
\]

Figure C1. The minimal second-order reaction scheme for model II.

\[
R_i^\prime = R_i + F_i R_i^\prime \quad (1 \leq i \leq h).
\]

(12.12)

Hence, it can be easily proved that

\[
\phi_e \simeq 1
\]

(12.13)

Thus, for \(h \)-th order model, we have:

\[
\phi = \phi_e \simeq \frac{1}{1 - R_i^\prime} = 1 - \frac{R_i}{F_i} + \frac{R_i}{F_i} + \frac{R_i}{F_i} + \frac{R_i}{F_i}.
\]

(12.14)

Similar to the second-order model, it can be seen that this expression is still valid under the condition (c) which is less restrictive and more practical than condition (c').

Appendix C. Approximation of \(\phi \) for model II

The minimal second-order scheme of model II is shown as figure C1. The effective excitation rate \(\tilde{P}_{X_{a,b}} \) is the same as that in model I, which is \(\tilde{P}_{X_{a,b}} = k_{rX_{a,b}} f_{rX_{a,b}} X_{a,b} + k_{rX_{a,b}} f_{rX_{a,b}} X_{a,b} \). As shown in the supplement of our previous paper [30], infinite-state Markov chain method can also apply to model II, and the iterative expression for \(P_{X_{a,b}} \), is:

\[
P_{X_{a,b}} = 1 - \left(\tilde{P}_{X_{a,b}} \right)^{-1} \left(\tilde{P}_{X_{a,b}} \right)^{-1}.
\]

(13.1)

We also define \(\tilde{P}_{X_{a,b}} = \tilde{P}_{X_{a,b}} - f_{X_{a,b}} + f_{X_{a,b}} \), and \(\tilde{P}_{X_{a,b}} = \tilde{P}_{X_{a,b}} - f_{X_{a,b}} + f_{X_{a,b}} \).

Under bio-relevant conditions, the fidelity expression can be approximated as,

\[
\phi = \frac{Q_{X_{a,b}} + Q_{X_{a,b}} + Q_{X_{a,b}} + Q_{X_{a,b}}}{Q_{X_{a,b}} + Q_{X_{a,b}} + Q_{X_{a,b}} + Q_{X_{a,b}}}
\]

\[
\simeq \frac{\tilde{P}_{X_{a,b}}}{\tilde{P}_{X_{a,b}}}
\]

(13.2)

\[
= \phi_e \phi_e
\]

where \(\phi_e = \tilde{P}_{X_{a,b}} \tilde{P}_{X_{a,b}} \). Therefore, the fidelity \(\phi_e \) is determined by \(P_{X_{a,b}} = 1 - P_{X_{a,b}} \).

\[
P_{X_{a,b}} = 1 - \left(\tilde{P}_{X_{a,b}} \right)^{-1} \left(\tilde{P}_{X_{a,b}} \right)^{-1}
\]

(13.3)

\[
P_{X_{a,b}} \text{ can be calculated as,}
\]
\[P_{euABA} = \frac{\hat{P}_{d|ABA}}{1 - (\hat{P}_{d|ABA}P_{euABA} + \hat{P}_{d|ABA}P_{euABA})} \]
\[\approx \frac{\hat{P}_{d|ABA}}{1 - \hat{P}_{d|ABA}P_{euABA}}. \]
\[P_{euBAA} \]
\[\approx \frac{\hat{P}_{d|BAA}}{1 - \hat{P}_{d|BAA}P_{euBAA}} \]
\[\approx \hat{P}_{d|BAA} \approx 0. \]
\[P_{euAB} \]
\[\approx \hat{P}_{d|AB}(\frac{1}{1 - \hat{P}_{d|AB}\hat{P}_{d|ABA}}). \]
\[\ln(p_2/p_1) \]

Figure C2. Comparison between \(p_1' \) and \(p_2 \), in the parameter space \((\alpha, \beta)\).

\[P_{euABA} = \frac{\hat{P}_{d|ABA}}{1 - (\hat{P}_{d|ABA}P_{euABA} + \hat{P}_{d|ABA}P_{euABA})} \]
\[\approx \frac{\hat{P}_{d|ABA}}{1 - \hat{P}_{d|ABA}P_{euABA}}. \]
\[P_{euBAA} \]
\[\approx \frac{\hat{P}_{d|BAA}}{1 - \hat{P}_{d|BAA}P_{euBAA}} \]
\[\approx \hat{P}_{d|BAA} \approx 0. \]
\[P_{euAB} \]
\[\approx \hat{P}_{d|AB}(\frac{1}{1 - \hat{P}_{d|AB}\hat{P}_{d|ABA}}). \]
\[\ln(p_2/p_1) \]

References

[1] Watson J D et al 1953 Nature 171 737
[2] Lehman I R, Bessman M J, Simms E S and Kornberg A 1958 J. Biol. Chem. 233 163
[3] Kunkel T A and Bebenek K 2000 Annu. Rev. Biochem. 69 497
[4] Hopfield J J 1974 Proc. Natl Acad. Sci. 71 4135
[5] Ninio J 1975 Biochimie 57 587
[6] Galas D J and Branscomb E W 1978 J. Mol. Biol. 124 653
[7] Clayton L K, Goodman M F, Branscomb E W and Galas D J 1979 J. Biol. Chem. 254 1902
[8] Johnson K A 1993 Annu. Rev. Biochem. 62 685
[9] Goodman M F 1997 Proc. Natl Acad. Sci. 94 10493
[10] Goodman M F and Fygenson D K 1998 Genetics 148 1475
[11] Fersht A R 1979 Proc. Natl Acad. Sci. 76 4946
[12] Patel S S, Wong I and Johnson K A 1991 Biochemistry 30 511
[13] Cline J, Braman J C and Hogrefe H H 1996 Nucleic Acids Res. 24 3546
[14] Wuie G J, Smith B Y, Young M, Cox A, Akeson M and Wang H 2013 J. Am. Chem. Soc. 135 609
[15] Tsai Y-C and Johnson K A 2006 Biochemistry 45 9675
[16] Xie P 2009 J. Theor. Biol. 259 434
[17] Sharma A K and Chowdhury D 2012 Phys. Rev. E 86 011913
[18] Lieberman K R, Dahl J M, Mai A H, Cox A, Akeson M and Wang H 2013 J. Am. Chem. Soc. 135 9149
[19] Lieberman K R, Dahl J M and Wang H 2014 J. Am. Chem. Soc. 136 7117
[20] Ollis D L, Brick P, Hamlin R, Xuong N G and Steitz T A 1985 Nature 313 762
[21] Berman A J, Kamtekar S, Goodman J L, Lázaro J M, de Vega M, Blanco L, Salas M and Steitz T A 2007 EMBO J. 26 3494
[22] Doublie S, Tabor S, Long A M, Richardson C C and Ellenberger T 1998 Nature 391 251
[23] Kamtekar S, Berman A J, Wang J, Lázaro J M, de Vega M, Blanco L, Salas M and Steitz T A 2004 Mol. Cell 16 609
[24] Wang J, Sattar A A, Wang C, Karam J, Konigsberg W and Steitz T 1997 Cell 89 1087
[25] Donlin M J, Patel S S and Johnson K A 1991 Biochemistry 30 538
[26] Lamichhane R, Berezhna S Y, Gill J P, Van der Schans E and Millar D P 2013 J. Am. Chem. Soc. 135 4735
[27] Traut T W 1994 Mol. Cell. Biochem. 140 1
[28] Heinonen J K 2001 Biological Role of Inorganic Pyrophosphate (Norwell, MA: Kluwer Academic)
[29] Beeze L S, Derbyshire V and Steitz T A 1993 Science 260 352
[30] Shu Y-G, Song Y-S, Ou-Yang Z-C and Li M 2015 J. Phys.: Condens. Matter 27 235105
[31] Wong I, Patel S S and Johnson K A 1991 Biochemistry 30 526
[32] Johnson A A and Johnson K A 2001 J. Biol. Chem. 276 38090
[33] Gillespie D T 1977 J. Phys. Chem. 81 2340
[34] Johnson A A and Johnson K A 2001 J. Biol. Chem. 276 38097
[35] Johnson S J and Beeze L S 2004 Cell 116 803
[36] Tindall K R and Kunkel T A 1988 Biochemistry 27 6008
[37] Lundberg K S, Dan D S, Adams M W W, Short J M, Sorge J A and Mathur E J 1991 Gene 108 1
[38] Kokoska R J, Bebenek K, Boudsocq F, Woodgate R and Kunkel T A 2002 J. Biol. Chem. 277 19633
[39] Boosalis M S, Petruska J and Goodman M F 1987 J. Biol. Chem. 262 14689
[40] Goodman M F, Creighton S, Bloom L B, Petruska J and Kunkel T A 1993 Crit. Rev. Biochem. Mol. Biol. 28 83
[41] Bebenek K, Joyce C M, Fitzgerald M P and Kunkel T A 1990 J. Biol. Chem. 265 13878
[42] Kuchta R, Mizrahi V, Benkovic P, Johnson K and Benkovic S 1987 Biochemistry 26 8410
[43] Kuchta R D, Benkovic P and Benkovic S J 1988 Biochemistry 27 6716
[44] Fiala K A and Sui Z 2004 Biochemistry 43 2106
[45] Boudsocq F, Iwai S, Hanaoka F and Woodgate R 2001 Nucleic Acids Res. 29 4607
[46] Kunkel T A 1992 J. Biol. Chem. 267 18251
[47] Cady F and Qian H 2009 Phys. Biol. 6 036011
[48] Bloom L B, Chen X, Fygenson D K, Turner J, O’Donnell M and Goodman M F 1997 J. Biol. Chem. 272 27919
[49] Miller H and Perrino F W 1996 Biochemistry 35 12919
[50] Capson T L, Peliska J A, Kaboord B F, Frey M W, Lively C, Dahlberg M and Benkovic S J 1992 Biochemistry 31 10984
[51] Esteban J A, Salas M and Blanco L 1993 J. Biol. Chem. 268 2719
[52] Esteban J A, Soengas M S, Salas M and Blanco L 1994 J. Biol. Chem. 269 31946
[53] Gaspard P 2016 Phys. Rev. E 93 042419
[54] Gaspard P 2016 Phys. Rev. E 93 042420
[55] Petruska J, Goodman M F, Boosalis M S, Sowers L C, Cheong C and Tinoco I 1988 Proc. Natl. Acad. Sci. U.S.A. 85 6252
[56] Ebeling W, Feistel R and Herzl H 1987 Phys. Scr. 35 571
[57] Hao B-L, Lee H and Zhang S-Y 2000 Chaos Solitons Fractals 11 825
[58] Provata A, Nicolis C and Nicolis G 2014 Phys. Rev. E 89 052105
[59] Gaspard P and Andreux D 2014 J. Chem. Phys. 141 044908
[60] Frey P A and Arabshahi A 1995 Biochemistry 34 11307