Microscopic evaluation and physicochemical analysis of *Origanum majorana* Linn leaves

BP Pimple¹ *, AN Patel², PV Kadam², MJ Patil²

1. Introduction

Origanum majorana Syn. *Majorana hortensis* (M.) plant is an evergreen herbaceous plant belonging to the family Lamiaceae. It is also known as Sweet marjoram¹². The genus *Origanum* houses around 900 different species and many species are extensively used for the flavoring of alcoholic beverages, food products and in perfumery owing to their spicy fragrance³. In addition to their commercial importance, such plants have been traditionally used as condiments and spices for foods like salads, soups, sausages and meats. Recently antimicrobial⁴, antimitogenic⁵ antihyperglycemic, antilipidemic¹ and antiulcer⁶ effect their use for the management of diverse diseases was also in practice, being sudorific, stomachic, expectorant, emmenagogic, stimulant, antiseptic⁷ hepatoprotective and nephroprotective⁸⁹.

Marjoram is a bushy tender perennial herb that grows up to 1 foot in height. It is native to Asia, but was naturalized in Europe where it was a favorite of the Greeks and Romans. The plant is well known as marwa in marathi and hindi.

The branches have square stems and tiny, oval, gray–green leaves that may be fuzzy. The buds are knot–like and open to form clusters of white or pink flowers. The branches and leaves are steam distilled to produce an essential oil with a warm, woody, spicy, slightly peppery and nutty aroma that is calming and comforting. The scent (fresh & herbaceous; warm, sweet and slightly woody) and properties are milder than the closely related and potentially overwhelming Oregano.

Traditionally, the leaves are employed to cure diabetes, insomnia, catarrh, asthma and nervousness¹⁰. The leaf extracts have been scientifically proved to be effective as an antioxidant¹¹, hepatoprotective¹², antibacterial¹³, antihypertensive¹⁴ and antiplatelet aggregation¹⁵ properties.

Both academic world and the food industry have been fascinated in the biological properties of *Origanum* extracts and essential oils due to their antimicrobial and antioxidant potential.

2. Material and methods

2.1. Collection and of authentication plant

The leaves of *Origanum majorana* Linn were collected in
the month of November from the local markets of Pune and
were authenticated by Botanical Survey of India, Western
Circle, Pune with voucher specimen no. SWK-1.

2.2. Reagents and chemicals

All chemicals and solvents used in this project were
procured from Merck (Germany), SD Fine chemical (India),
Loba, Research Lab and Ranchem (India).

2.3. Morphology

Morphology of the leaves was determined by placing them
over the stage of a simple microscope and observing through
a 6 X lens.

2.4. Microscopic Studies

Light microscopy (LM): For bright field microscopy,
specimens of fresh material were prepared. The fresh leaves
were hand-sectioned transversely and paradermally with
a sharp diamond edge blade. The sections were soaked in
various reagents as explained in standard textual procedure.
The following histochemical reactions were carried out:
Toluidine Blue (TBO) at pH 5-6 as an indicative stain for
polysaccharides Ruthenium Red for polysaccharides other
than cellulose; Nadi reagent for essential oil detection
Sudan Red 7B for lipids ferric chloride for polyphenols and
Naphthol Blue Black to show up proteins and Berberine–
Aniline Blue for suberin, lignin, and callose[16].
Photomicrographs of different magnifications (X 100 and X
400) were taken with Moticam 2300 camera and were analyzed
by Motic Image–Plus 2.0 software. Magnifications are
indicated below the figures. Histology and histochemistry
of the entire drug was performed according to the methods
described by Brain and Turner[17–19] the powder microscopy
was studied according to the method described in the recent
pharmacognosy practical books[20–22]. Terminology used for
the anatomical features were as given in the standard books
on plant anatomy[17,20,21,23].

2.5. Organoleptic and microscopic evaluation of powder

The leaves were dried in shade and crushed to yield coarse
powder. The powder was stored in an airtight amber colored
bottle throughout the study. The powder was sensed for its
color, odor, texture and taste by placing in a Petri dish. The
color was reported by placing the powder against a white
background and observing in day light. The odor and taste
was evaluated by sensing a dry powder as well as placing a
pinch of powder in warm water.

2.6. Physicochemical analysis

Physicochemical parameters such as ash values, extractive
values, foaming index, tannin content were determined
according to the official method of the WHO guidelines on
quality control methods for medical plants materials[24].

2.7. Preliminary phytochemical screening

Preliminary phytochemical screening was carried out with
the help of standard procedure described by Kokate and
Khandelwal[20,23].

2.8. Fluorescence analysis

Dried leaves were powdered and observed under visible
light, short ultra violet light, long ultra violet light after
treatment with different reagents like chloroform, ethyl
acetate, methanol, petroleum ether (b.p. 600 – 800 C), 50%
sulphuric acid, 50% nitric acid, 50% hydrochloric acid, 10 %
sodium hydroxide, etc[25,26].

2.9. Essential oil extraction and analysis

The fresh *Origanum majorana* leaves were extracted in
Clevenger type apparatus. An oily layer appeared over water
in the receiver. The water in the receiver was shaken with
diethyl ether to extract any dissolved phenols. The ether
layer was evaporated and residual contents were mixed in
volatile oil. The oil was collected and stored in an air tight
container in a refrigerator[24].

3. Results

3.1. Morphology of *Origanum majorana* leaves

Leaves are smooth, simple, petiolated, ovate to oblong-
ovoate, (0.5–1.5 cm) long, (0.2–0.8 cm) wide, with obtuse apex,
entire margin, symmetrical but tapering base and reticulate
venation. The texture is extremely smooth due to presence
of numerous hairs. Table 1 summarises the morphological
characters of *Origanum majorana* leaves. Table 1 and Figure
1 shows the morphology of *Origanum majorana* leaves.

![Figure 1](image-url) Morphology of *Origanum majorana* Linn leaves showing arrangement and size of leaves
Table 1
Morphological characteristic of *Origanum majorana* leaves

Parameters	Observations
Color	Dorsal surface – Grayish green Ventral surface – pale green
Odor	Aromatic and pleasant
Taste	Bland followed by sweet
Form	Simple
Shape	Ovate
Size	1–2 cm X 1 cm
Apex	Obtuse
Margin	Entire
Texture	Smooth
Venation	Reticulate
Base	Symmetrical and tapering
Arrangement of leaves	Opposite

Table 2
Microscopic characteristics of transverse and paradermal section of *Origanum majorana* leaves

Parameters	Observation
Type of leaf	Dorsiventral
Epidermis	Wavy, thin walled (upper & lower)
Trichomes	Covering, multicellular, uniseriate, bulbous base, pointed apex, non–warty, glandular trichomes absent
Stomata	Diacytic
Palisade cells	Columnar, radially elongated, loosely arranged
Parenchymatous cells	thin walled, spherical, loosely arranged
Collechyma	Thick walled, compactly arranged, few cells
Cortical Parenchyma	loosely arranged cells, (cystolith and calcium oxalate crystals are absent)
Vascular bundle	Collateral arrangement, lignified xylem, non–lignified phloem
Stomatal index – lower surface	22.3±1.21
Stomatal index – upper surface	34.1±2.44

Values are expressed as mean±standard deviation. The leaf samples were analyzed in triplicate for determination of surface constants.

Table 3
Histochemical properties of transverse section of *Origanum majorana* leaves

Test	Color	Histological zone
Aniline sulphate + H_2SO_4	Yellow	Lignified xylem present
Phloroglucinol + HCl	Pink	Lignified xylem present
Conc. H_2SO_4	Green	Cellulose cell wall present
Weak Iodine solution	Pale blue	Starch present
Millions reagent	No red color	Protein absent
Dragendorffs reagent	No orange red	Alkaloids absent
H_2SO_4 (60% v/v)	No needle shaped crystals	Ca. oxalate absent
Antimony trichloride	Pink	Terpenes present

3.2 Microscopic studies of *Origanum majorana* leaves

Paradermal study of the surface reveals the presence of diacytic stomata, wherein the stoma is covered with two guard cells followed by two subsidiary cells and epidermis layer. Epidermal cells are polygonal, thin and wavy walled. Surface analysis of the leaf also reveals the presence of veins, vein islet and vein terminations. Upper epidermis consists of polygonal cells and the outer wall which contains numerous covering trichomes and stomata. The covering trichomes are multicellular, uniseriate, thin walled and pointed. Lower epidermis is similar to upper epidermis (Figure 2).

Transverse section of leaf shows the cuticularized epidermis followed by layers of compactly arranged chollenchyma followed by vascular bundles (xylem and phloem). Whereas, the mesophyll exhibited only palisade cells and spongy parenchyma. Collenchyma tissue consists of thick walled rounded parenchymatous cells. Xylem fibers are lignified whereas phloem fibers are non–lignified. Table 2, Table 3 and Figure 3 reveal the detailed microcopy of leaf.
Figure 3 Microscopical characters of Origanum majorana leaves (X400)
Transverse section showing a – Covering trichomes, b – Mesophyll with palisade cells, cuticularised epidermis and SP (spongy parenchyma), c – starch stores in SP (spongy parenchyma), d – SP (spongy parenchyma) with oil globules, e – compactly arranged collenchyma, SP (spongy parenchyma), oil globules, lignified xylem.

3.3. Organoleptic and microscopic evaluation of powder

The leaf powder when evaluated for organoleptic parameters, revealed the following characteristics. The leaf powder is grayish-green in color, with a characteristic and pleasant aromatic odour. The dry powder of leaves when tasted initially gives a bland taste followed by sweet sensation.

The leaf powder microscopy revealed different tissues such as stomata, trichomes, epidermal cells, palisade cells, starch granules, xylem and phloem fibres. The observed organoleptic and microscopic characters are reported in Table 4 and Figure 4.

Figure 4 Microscopical characters of Origanum majorana powder (X 400)
Powder showing a – lignified xylem with tracheids, b– trichomes and stomata, c– starch grains and epidermal cells

Table 4

| Organoleptic and microscopic characteristics of Origanum majorana leaf powder |
|------------------|------------------|
| Characters | Observations |
| Color | Greyish green |
| Odor | Spicy aromatic |
| Taste | Slightly bitter |
| Texture | Rough |
| Xylem fibres | Scalariform tracheids, lignified |
| Phloem fibres | Nonlignified |
| Trichomes | Covering, multilocular, unicellular |
| Stomata | Diacytic |
| Starch grains | Present |
| Oil cells | Present |

3.4. Physicochemical analysis of the powder

Physicochemical analysis of the powder was performed and various parameters were evaluated. The foreign matter was 0.51%, LOD was found to be 10.05%, total ash 4.20%, water soluble ash 2.07%, acid insoluble ash 0.84%. The powder did not reveal the swelling and hemolytic index. The extractive values are primarily useful for the determination of the exhausted or adulterated drug. Extractive values recorded in petroleum ether, alcohol and water were 1.28, 3.71 and 4.88% w/w respectively. Table 5 summarizes the physicochemical analysis of leaf powder.

3.5. Preliminary phytochemical screening

The preliminary phytochemical screening basically revealed the presence of following phytocomstituents such as triterpenoids, phenols, tannins, carbohydrates etc. Table 6 reveals the details of phytochemical analysis of leaf powder.

Table 5

| Physiochemical analysis of Origanum majorana leaf powder |
|------------------|------------------|
| Parameters | Value |
| Total ash | 04.20± ±0.12 % w/w |
| Acid insoluble ash | 00.84± ±0.03 % w/w |
| Water soluble ash | 02.07± ±0.05 % w/w |
| Sulphated ash | 00.43± ±0.06 % w/w |
| Foreign matter | 00.51± ±0.04 % w/w |
| Loss on drying | 10.05± ±0.24 % w/w |
| Haemolytic index | No hemolysis |
| Foaming index | < 100 |
| Tannin content | 01.11± ±0.06 % w/w |
| Swelling index | No swelling |
| Petroleum ether (bp:40 –60 0C) | No swelling |
| Alcohol soluble extractive | 00.95± ±0.06 % w/w |
| Water soluble extractive | 03.71± ±0.08 % w/w |

Values are expressed as mean±standard deviation. The powder samples were analyzed in triplicate.

3.6. Fluorescence analysis

Fluorescence analysis of the powder treated with different solvents and reagents is exhibited in table 7.
3.7. Physicochemical analysis of essential oil

The essential oil extracted by hydrodistillation was analyzed for various physicochemical properties. The oil was pale yellow in color with characteristic aromatic odor and free flow. The yield was 1.72%; specific gravity and RI, when recorded at 20°C were found to be 0.893 and 1.477 respectively. Oil was freely soluble in ethanol and ethyl acetate whereas insoluble in water. (Refer table 8 for detail physiochemical properties of oil)

Table 8
Physiochemical parameters of Origanum majorana Linn. oil

Parameters of Oil	Observations
Color	Pale yellow
Odor	Aromatic, fresh herbaceous
Appearance	Mobile liquid
Oil Yield (g 100g–1)	0.72±0.09
Refractive Index @ 20°C	1.477±0.02
Specific gravity @ 20 °C	0.893±0.03
Boiling point @ 760 mm Hg	265.5±0.20 °C
Solubility in ethyl acetate	soluble in 2 parts
Solubility in ethanol (75 % v/v)	soluble in 2 parts
Solubility in water	insoluble

Values are expressed as mean±standard deviation. The oil sample was analyzed in triplicate.

4. Discussion

Sensory evaluation plays a vital part in determining the suitability or denunciation of a crude drug in the market. Organoleptic testing of a crude drug is the technique for qualitative evaluation based on the observation of morphological and sensory profile[23]. In this report, various morphological, microscopical, physicochemical standards have been developed; that will help botanists for identification and standardization of Origanum majorana Linn.

The estimation of ash values and extractive values can help for recognition of adulteration[27]. Presence or absence of foreign inorganic matter such as metallic salts and/or silica can be easily determined by performing the total ash. Water soluble ash is the measure of physiological inorganic components of the crude drug. Rise in water soluble ash is normally due to supply of hard water excess mineralized soil for cultivation. Acid insoluble ash gives an idea about the non–physiological ash produced due to the adherence of inorganic dirt, dust to the crude drug. Increased acid insoluble ash means adulteration due to dirt, soil or sand[28]. Table 5 gives the details of ash values obtained for Origanum majorana leaves.

Extractive values are useful to estimate the chemical constituents present in the crude drug and are a measure...
to determine the solubility of phytoconstituents from the crude drug in a given solvent[29]. Each crude drug loose specific amount and type of phytoconstituents when shaken with a particular solvent. Normally alcohol and water are used as solvents to determine extractive value as per the pharmacopoeias, but certain industries have their own standards. Table 5 highlights the extractive values of Origanum majorana leaf powder.

Loss on drying explains the amount of components that leaves the powder when heated at 1100C until constant weight is attained. High LOD value is undesirable as it leads to loss in weight and may attract microbial contamination. Swelling index gives an idea about the mucilage content of the crude drug[28]. No swelling was observed indicating absence of mucilage in the leaves. Foaming index determines the saponin content of the crude drug. Saponin glycosides are responsible for antulcer and antiadipant property of the drug. Excess amount of saponins in the crude drug may prove to be fatal as it causes hemolysis of the blood. Origanum majorana was found to contain fewer amounts of saponins hence; it is safe and can prove to be a better antiulcer and antiulcer drug (refer table 5 for values).

Fluorescence is the phenomenon exhibited by numerous phytoconstituents present in the plant material. Many chemicals fluoresce in presence of certain reagents or solvents. The fluorescence color is specific for each compound. The fluorescence analysis of the leaf powder of Origanum majorana Linn exhibited different colors when treated with various chemical reagents (Table 3).

One of the simplest and cheapest methods to establish the accurate identity of plant material is microscopic analysis[30]. On observing the paradermal section, stomata were found to be diacytic as the longitudinal axes of two guard cells were exactly perpendicular to that of the subsidiary cell axes. The trichomes were covering type, multicellular (having 2–3 cells), uniseriate, with pointed apex and warts were absent[20]. The secretory glands were formed by fusion of 10–16 epidermal cells. The epidermis was lined with cuticle which was confirmed by staining with sudan red III reagent.

The upper and lower epidermal cells were found to be wavy with thin cell wall. The epidermal cells serve as a protective barrier for leaf both from the dorsal and ventral surface. The epidermal cells are transparent to facilitate the entry of sunlight towards the palisade cells for photosynthesis. Certain epidermal cells modifies into trichomes, stomata and oil secretory glands. Salt glands were found on the epidermis. Opening of the gland was found to be surrounded by 10–12 radially elongated cells. Recent reports suggest that the essential oil and fatty oil content and composition are affected by the salinity[31]. The oil is reported to have many beneficial reports such as antimicrobial, anticholinesterase, and antioxidant[32,33].

Study of transverse section of the leaf reveals its dorsiventral nature i.e. the palisade cells are found to be present only at the dorsal surface. The palisade cells have chlorophyll which aids in photosynthesis[20]. The mesophyll comprises of spongy parenchyma and a single layer of columnar, radially elongated, uniform palisade cells below the upper epidermis. The palisade cells manufacture monomer and transfer these monomers to the adjoining parenchyma, where they polymerize to form starch granules. The spongy parenchyma serves as storage reservoir for starch. Parenchymatous cells are loosely arranged with ample intercellular spaces.

The palisades cells are absent in the midrib region and are replaced by collenchyma. Collenchyma cells are compactly arranged without any intercellular spaces and have thick cell wall. Collenchyma provides mechanical strength to the neighboring vascular bundles[18]. The midrib appears like a sandwich of vascular bundle & spongy parenchyma between two collenchymatous layers.

Vascular bundle is restricted to the midrib region and comprises of collateral arrangement of xylem and phloem. Lignified xylem and non–lignified phloem fibers are arranged in stripes. The lignified xylem can be observed after staining the transverse section with phloroglucinol: HCl (1:1) proportion[19]. The intracellular components like starch can be observed by soaking the T.S. in dilute iodine solution. When the transverse section was treated with H2SO4 (60% v/v), no needle shape crystals of Calcium sulphate were observed indicating the absence of calcium oxalate crystals and cystoliths (CaCO3)[18]. Recent reports on Origanum majorana suggest its wide application in the field of skin care cosmetics[34], pharmaceuticals, agro–alimentary[35].

5. Conclusion

The present study was carried out with a vision to setup standards that could be beneficial for detecting the authenticity of this vital medicinal plant. Numerical standards reported in this work could be useful for the compilation of a suitable monograph of Origanum majorana Linn.

Acknowledgement

The authors would like to thank the Principal Dr. P.D. Chaudhari and Prof. Dr. S.L. Badole, P. E. S. Modern College of Pharmacy, Nigdi, Pune; Botanical Survey of India (Western Circle), Pune and University of Pune for providing necessary assistance. This work was supported by Grants-in-Aid for Scientific Research from the Board of College and University Development (BCUD), University of Pune.

Conflict of Interest

We declare that we have no conflict of interest.

References
[1] Pimple BP, Kadam PV, Patil MJ. Comparative antihyperglycemic and antihyperlipidemic effect of Origanum majorana extracts in NIDDM Rats. Orient Pharm Exp Med 2012; 12(1): 41–50.

[2] Kumar SBVN, Rupesh–Kumar M, Tamizhmani T, Fasalu ROM, Mohamed NK. Majorana hortensis (M.) A review update. Pharma Science Monitor 2011; 2(4): 59–74.

[3] Filippo–Dantuono L, Galletti GC, Bocchini P. Variability of essential oil content and composition of Origanum vulgare L. populations from a north Mediterranean area (Liguria Region, Northern Italy). Annals of Botany 2000; 86: 471–478.

[4] Mohammed N, Yasmen SH, Nohir G. Antimicrobial activity of water and ethanol Marjoram (Origanum majorana L.) extract. The 6th Arab and 3rd International Annual Scientific Conference on Development of Higher Specific Education Programs in Egypt and the Arab World in the Light of Knowledge Era Requirements Faculty of Specific Education Mansoura University – Egypt 2011; April 13–14, 2350–2366.

[5] Al–Harbi NO. Effects of marjoram extract treatment on the cytological and biochemical changes induced by cyclophosphamide in mice. J Med Plants Res 2011; 5(23): 5479–5485.

[6] Pimple BP, Kadam PV, Patil MJ. Ulcer healing properties of different extracts of Origanum majorana in streptozotocin – nicotinamide induced diabetic rats. Asian Pac J Trop Dis 2012; 24(3): 312–318.

[7] Ozcan M. Inhibitory effect of spice extracts on the growth of Aspergillus parasiticus NRRL–2999 strain. Zeitschrift fur Lebensmittel–Untersuchung und Forschung A. 1998; 207: 253–255.

[8] Shati AA. Effects of Origanum majorana L. on cadmium induced hepatotoxicity and nephrotoxicity in albino rats. Saudi Med J 2011; 32(8): 797–805.

[9] Rashwan NM. Effect of Majoram and choline mixture consumption against liver injury in experimental rats. World J Dairy Food Sci 2011; 6(1): 98–104.

[10] Kano JH, Volpato G. Herbal mixtures in the traditional medicine of Eastern Cuba. J Ethnopharmacol 2004; 90: 293–316.

[11] Suhaj M. Spice antioxidants isolation and their antiradical activity: a review. J Food Composition and analysis 2006; 19: 531–537.

[12] El–Ashmawy IM, El–Nahas AF, Salama OM. Protective effect of volatile oil, alcoholic and aqueous extracts of Origanum majorana on lead acetate toxicity in mice. Basic Clin Pharmacol Toxicol 2005; 97: 238–243.

[13] Darwish RM, Aburjai TA. Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on Escherichia coli. BMC Complementary & Alternative Med 2010; 10(9): 2–8.

[14] Tahraoui A, El–Hilaly J, Ismaili ZH, Lyoussi B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south–eastern Morocco (Errachidia province). J Ethnopharmacol 2007; 110: 105–117.

[15] Yarzandparast R, Shahriyari L. Comparative effects of Artemisia dracunculus, Satureja hortensis and Origanum majorana on inhibition of blood platelet adhesion, aggregation and secretion. Vascular Pharmacol 2008; 48: 32–37.

[16] Serrato–Valenti G, Bisio A, Cornara L, Ciarello G. Structural and histochemical investigation of the glandular trichomes of Salvia aurea L. Leaves, and chemical analysis of the essential oil. Annals of Botany 1997; 79: 329–336.

[17] Brain KR, Turner TD. The practical evaluation of phytopharmaceuticals. Bristol: Wright–Sciencetechnica; 1975. p. 4–9.

[18] Kokate CK. Practical pharmacognosy. 4th ed., 11th reprint, Vallabh Prakashan; New Delhi, India: 2007. p.1–23.

[19] Iyengar MA. Study of crude drugs. 14th ed., Manipal: Manipal Press; 2009.

[20] Khandelwal KR. Practical pharmacognosy techniques and experiments. 20th ed. Pune, India: Niralri Prakashan. 2010, p. 2.1–2.6, 20.1–20.5, 23.1–23.17.

[21] Iyengar MA. Pharmacognosy of powdered crude drugs. 9th Ed., Manipal: Manipal Press; 2009.

[22] Gokhale SB, Gokhale A, Kulkarni Y, Yele S. Experimental pharmacognosy. 1st ed. Pune: Niralri Prakashan; 2011, p. 2.1–2.8.

[23] Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. 43th ed. Niralri Prakashan; Pune, 2009. p. 6.1–6.44.

[24] WHO. Quality control methods for medicinal plant material. Geneva: WHO, 1998.

[25] Kumar D, Gupta J, Kumar S, Arya R, Kumar T, Gupta A. Pharmacognostic evaluation of Caryota trifolia (Linn.) leaf. Asian Pacific J Trop Biomed 2012; 6: 6–10.

[26] Gupta PC, Sharma N, Rao CV. Pharmacognostic studies of the leaves and stem of Careya arborea Roxb. Asian Pac J Trop Biomed 2012; 2: 404–408.

[27] Nayak BS, Patel KN. Pharmacognostic studies of the Jatropha carcus leaves. Int J Pharm Tech Res 2010; 2(1): 140–143.

[28] Mukherjee PK. Quality control of herbal drugs an approach to evaluation of botanicals. 1st ed. New Delhi, India: Business Horizons Pharmaceutical Publishers; 2008, p. 379–412.

[29] Thomas S, Patil DA, Patil AG, Chandra N. Pharmacognostic evaluation and physicochemical analysis of Averrhoa carambola L. fruit. J Herb Toxicol 2008; 2(2): 51–54.

[30] Singh S, Machawal L, Chauhan MG. Pharmacognostic study of male leaves of Trichosanthes dioica Roxb. with special emphasis on microscopic technique. J Pharmacognosy Phytother 2010; 25(5): 71–75.

[31] Baatour O, Kaddou R, Mahmoudi H, Tarchoun I, Bettaieb I, Nasri N, et al. Salt effects on Origanum majorana fatty acid and essential oil composition. J Sci Food Agr 2011; 91(14): 2613–2620.

[32] Mossa ATH, Nawar G.M. Free radical scavenging and antiacetylcholinesterase activities of Origanum majorana L. essential oil. Hum Exp Toxic 2011; 30(10): 1501–1513.

[33] Hussain AI, Anwar F, Rashid S, Nigam PS, Janneh O, Sarker SD. Composition, antioxidant and chemotherapeutic properties of the essential oils from two Origanum species growing in Pakistan. Brazilian J Pharmacog 2011; 21(6): 943–952.

[34] Lee CJ, Chen L, Chang T, Ke WM, Lo YF, Wang CC. The correlation between skin–care effects and phytochemical contents in Lamiaceae plants. Food Chem 2011; 124: 833–841.

[35] Sellami IH, Maamouri E, AidiWannes, Chahed T, AidiWannes K, Chouk ME, Marzouk B. Effect of growth stage on the content and composition of the essential oil and phenolic fraction of sweet marjoram (Origanum majorana L.). Industrial Crops Prod 2009; 30: 395–402.