Method Article

Functionalization of kaolinite for removal of phosphate from urban sewage

Camilla Carbinatti, Fabiano Tomazini da Conceição, Rodrigo Braga Moruzzi, Amauri Antônio Menegário

UNESP - Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas, Avenida 24-A, no 1515, CEP 13506-900, Bela Vista, Rio Claro, São Paulo, Brazil.

UNESP - Universidade Estadual Paulista, Centro de Estudos Ambientais, Rio Claro, Brazil.

ABSTRACT

The PO\textsubscript{4}3− widespread in urban sewages promotes eutrophication of water sources, with harmful effects to natural life and endanger human health. The removal of PO\textsubscript{4}3− from urban sewage requires treatment at tertiary level, with high costs and low efficiency in most cases. Thus, a functionalization method for surface modification of kaolinite was proposed to improve the removal of PO\textsubscript{4}3− from urban sewage. The kaolinite commercial did not remove PO\textsubscript{4}3− from aqueous solution. However, the functionalized kaolinite (FK) was efficient, with a maximum removal capacity of 8.4 ± 0.1 mg PO\textsubscript{4}3−/L, within less than 1 min of reaction. The removal of PO\textsubscript{4}3− is associated with precipitation of pyromorphite, a mineral with low solubility (K\textsubscript{sp} < 10-79.0). Finally, real urban sewage samples (raw and treated) were also tested for removal of PO\textsubscript{4}3− using FK, confirming its effectiveness. The central aspects of this development are:

- Functionalized kaolinite (FK), with Pb(II), for removal of PO\textsubscript{4}3− from urban sewage was studied.
- The FK was efficient for removal of up to 8.4 mg PO\textsubscript{4}3−/L from aqueous solution, within a short reaction time.
- The precipitation of pyromorphite was the mechanism responsible for removal of PO\textsubscript{4}3− and FK efficiency have been confirmed for real urban sewage samples.

© 2021 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

ARTICLE INFO

Method name: Functionalization of kaolinite for removal of phosphate from urban sewage

Keywords: Clay minerals, Surface functionalization, Phosphate removal, Mineral precipitation

Article history: Received 26 April 2021; Accepted 17 June 2021; Available online 18 June 2021

* Corresponding author.
E-mail address: fabiano.tomazini@unesp.br (F.T. da Conceição).

https://doi.org/10.1016/j.mex.2021.101423
2215-0161/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specifications table

Subject Area:	Environmental Science
More specific subject area:	Removal of phosphate from urban sewage
Method name:	Functionalization of kaolinite for removal of phosphate from urban sewage
Name and reference or original method:	S. Moharami & M. Jalali (2015). Use of modified clays for removal of phosphorous from aqueous solutions. Environ. Monit. Assess. 187:639.
Resources availability:	N/A

Method details

Background

The PO₄³⁻ present in urban sewage promotes eutrophication in the water bodies [1]. This anion is difficult to remove during the treatment of urban sewage, requiring treatment at the tertiary level [2]. The most used method for the removal of PO₄³⁻ from urban sewage is the chemical precipitation, involving the addition of bivalent or trivalent metal salts [3–5]. Recently, studies have shown the precipitation of pyromorphite (5Pb²⁺ + 3PO₄³⁻ + H₂O → Pb₅(PO₄)₃(OH)(pyromorphite) + H⁺) in natural surface waters due to presence of PO₄³⁻ and Pb(II), reducing the concentration of dissolved Pb(II) [6,7]. The pyromorphite has a low solubility constant (Ksp < 10⁻⁷⁹.6), preventing that the Pb(II) returns to the environment as a dissolved cation [8–10].

Kaolinite [Al₂Si₂O₅(OH)₄] has its negatively-charged surface, becoming this mineral an important adsorbent for cationic ions [11]. The functionalization of kaolinite with acid treatment [12] and bivalent trace elements can promote the removal of anionic molecules, such as PO₄³⁻, present in the urban sewage [13–15]. Based on the functionalization of commercial kaolinite (CK) with bivalent trace elements, the functionalized kaolinite (FK) with Pb(II) was produced. The efficiency for removal of PO₄³⁻ from aqueous solution using FK was studied and compared with CK. Furthermore, the reaction time and maximum removal capacity of PO₄³⁻ was determined using FK. Finally, the FK was applied in real urban sewage samples, attesting its effectiveness.

Functionalization of commercial kaolinite

The CK (Sigma-Aldrich®, CAS Number 1318-74-7) was used in this study. The following procedures have been applied for the functionalization:

1 – About 1.0 g of CK was placed in a beaker;
2 – 10 mL of aqueous solution with Pb(II) initial concentration of 40 mg/L was added;
3 – The beaker was agitated (digital shaker Biohec – model BT 645) for 24 h at 145 rpm;
4 – The solution was centrifuged (centrifuge Excelsa II® – model 206-BL) for 25 min at 3000 rpm;
5 – The FK was separated and washed three times, using ultrapure water (Milli-Q® system - model IQ 7000) with electrical conductivity lower than 0.02 μS/cm;
6 – Finally, the FK was dried for 12 h at 40 °C.

Method validation

For validation purposes, 1.0 g of each sample (CK and FK) was mixed with 10 mL of aqueous solution containing PO₄³⁻ in the initial concentration (C₀) of 1 mg/L at pH 6 [9]. The suspension was shaken for 24 h at 145 rpm, and then centrifuged at 3000 rpm for 25 min. The supernatant was separated and the PO₄³⁻ concentration remaining in solution (Cₑ) was measured using a Hach DR-2800 spectrophotometer, with a detection limit of 0.1 mg/L. The removal efficiency of PO₄³⁻ (%A – in percentage) was determined according to the Eq. 1. The experimental procedures were carried out in triplicate.

\[\%A = \left(\frac{C₀ - Cₑ}{C₀} \right) \times 100 \] (1)
Table 1
Removal efficiency (%A) of PO₄³⁻ (mg/L) using FK and CK in aqueous solution.

	CK		FK	
C₀	Cₑ	%A	C₀	Cₑ
1.0	1.0 ± 0.1	0	1.0	< 0.1

Table 2
Reaction time (min) and removal efficiency (%A) of PO₄³⁻ (mg/L) using FK in aqueous solution.

Time	C₀	Cₑ	%A
0	1.0	1.0 ± 0.1	0
1	1.0	< 0.1	100
5	1.0	< 0.1	100
15	1.0	< 0.1	100
30	1.0	< 0.1	100
60	1.0	< 0.1	100

Table 3
Maximum removal capacity of PO₄³⁻ using FK and concentration of residual Pb(II) in aqueous solution.

PO₄³⁻ (mg/L)	Pb(II) (mg/L)	
C₀	Cₑ	%A
		692 ± 20
1	< 0.1	100
2	< 0.1	100
3	< 0.1	63 ± 3
4	< 0.1	100
7	< 0.1	100
9	0.6 ± 0.1	93.3

The results are presented in Table 1. The removal efficiencies of PO₄³⁻ were 0 and 100% using CK and FK, respectively. These results evidenced the functionalization plays a crucial role on the removal of PO₄³⁻. The precipitation of pyromorphite was the main mechanism associated with PO₄³⁻ removal using FK with Pb(II), as shown in Fig. 1.

Reaction time and maximum removal capacity of PO₄³⁻ using functionalized kaolinite

The reaction time for removal of PO₄³⁻ using KF has been investigated, according the following procedures carried out in triplicate. The FK (1.0 g) was mixed in 10 mL of an aqueous solution with C₀ of 1 mg PO₄³⁻/L at pH 6 [9]. The suspension was shaken at 145 rpm, with samples taken after 1, 5, 15, 30 and 60 min. The solution was centrifuged at 3000 rpm for 25 min, with the supernatant separated and the Cₑ determined. The experiments have shown no residuals of PO₄³⁻ after 1 min of reaction time (Table 2), showing a fast reaction time for removal of PO₄³⁻ associated to the mineral pyromorphite precipitation.

The maximum removal capacity of PO₄³⁻ using FK was also determined (in triplicate). The samples with 1.0 g: 10 mL of an aqueous solution with C₀ of 1 mg/L were stirred at 145 rpm for 5 min at pH 6 [9], with C₀ of 1, 2, 3, 4, 7 and 9 mg/L. The solutions were centrifuged for 25 min at 3000 rpm and the Cₑ determined in the supernatants. The maximum removal capacity of PO₄³⁻ using FK was 8.4 ± 0.1 mg/L (Table 3) or 8.4 mg/g, indicating an efficiency of 93.3% for removal of PO₄³⁻ from aqueous solutions with C₀ of 9 mg/L. The value of 8.4 mg/g is higher than the removal capacities obtained for natural or functionalized kaolinite, i.e., CK used in this study (< 0.1 mg/g), kaolinite from Linthipe (ca. 0.15 mg/g) [12], modified kaolinite with FeCl₃ (1.31 mg/g) [13] and modified kaolinite with seawater in different temperatures (4.07 mg/g at 600 °C) [15].

Trace levels of residual Pb(II) in the treated effluent can pose a serious environmental risk for aquatic systems due to its toxicity. Thus, the concentration of Pb(II) were also determined in the
Fig. 1. SEM-EDS images of functionalized kaolinite after the removal of PO$_4^{3-}$, showing the precipitation of small grains (lower than 5 μm) of pyromorphite (spots 1, 2 and 3).
supernatants by inductively coupled plasma optical emission spectrometry (ICP OES), iCAP 6000 SERIES machine Thermo Scientific, with detection limit of 0.006 mg/L. The presence of residual Pb(II) in aqueous solutions was measured in aqueous solutions with C_0 of 1, 2 e 3 mg/L of PO_4^{3-}. Residual Pb(II) was not detected for C_0 of $\text{PO}_4^{3-} \geq 4$ mg/L, indicating the use of FK for removal of PO_4^{3-} only in urban sewage with $C_0 \geq 4$ mg/L. Further studies for lower C_0 concentrations in urban sewage are encouraged before application.

Removal of PO_4^{3-} using functionalized kaolinite in real urban sewage samples

Three samples of raw and treated urban sewage were collected in a wastewater treatment plant (WWTP) located in Rio Claro, São Paulo State, Brazil. These samples were stored in labeled amber container at 4°C and transported immediately to the laboratory, where they were filtered, using 0.45 μm MF-Millipore® membrane filter, and the C_0 of PO_4^{3-} and Pb(II) measured (Table 4). In order to verify the real removal efficiency of PO_4^{3-} from urban sewage (raw and treated), 10 mL of each filtered sample were mixed with 1.0 g of FK. The solutions were shaken at 145 rpm for 5 min at pH 6 [9], centrifuged at 3000 rpm for 25 min, and then the C_e of PO_4^{3-} and Pb(II) were determined in the supernatants (Table 4).

The C_0 averages of PO_4^{3-} were 6.1 ± 0.1 e 3.8 ± 0.1 mg/L, respectively, for raw and treated urban sewage. After the use of FK, C_e averages of PO_4^{3-} were lower than 0.1 mg/L. In addition, the C_0 and C_e averages of Pb(II) were always lower than the detection limit of 0.006 mg/L. These results show the efficiency during the use of FK for removal of PO_4^{3-} from urban sewage in real samples collected in a WWTP.

Conclusions

A method for functionalization of kaolinite for removal of PO_4^{3-} from urban sewage was studied. The functionalized kaolinite (FK) with Pb(II) have shown a promising alternative for removal of PO_4^{3-} in aqueous solution, with maximum removal capacity of 8.4 mg/L, within a reaction time lower than 1 min. The precipitation of PO_4^{3-} is associated with pyromorphite, a mineral with low solubility ($K_{sp} < 10^{-79.6}$). Finally, real urban sewage samples (raw and treated) were also tested for removal of PO_4^{3-} using KF, confirming its effectiveness for removal of PO_4^{3-} from urban sewage with $C_0 \geq 4$ mg/L.

Acknowledgments

This investigation was performed under a scholarship from Coordination of Superior Level Staff Improvement - CAPES, Brazil. Dr. Moruzzi is grateful to National Council for Scientific and Technological Development - CNPq (grant 301210/2018-7) and to CAPES (grant code 001) for financing support. We thank Dr. Daniela Barceló (Editor-in-chief) and all the referees for their detailed and insightful review’s comments, whom helped to improve the manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References

[1] V.H. Smith, Eutrophication of freshwater and coastal marine ecosystems a global problem, Environ. Sci. Pollut. Res. 10 (2003) 126–139.

[2] S. Yeoman, The removal of phosphorus during wastewater treatment: a review, Environ. Pollut. 49 (1988) 183–233.

[3] J.T. Bunce, et al., A review of phosphorous removal technologies and their applicability to small-scale domestic wastewater treatment systems, Front. Environ. Sci. 6 (2018) 8.

[4] Morse G.K., et al., Phosphorus removal and recovery technologies, Sci. Total Environ. 212 (1998) 69–81.

[5] B.E. Rittmann, et al., Capturing the lost phosphorus, Chemosphere 84 (2011) 846–853.

[6] J. Zhao, et al., Formation and aggregation of lead phosphate particles: implications for lead immobilization in water supply systems, Environ. Sci. Technol. 52 (2018) 12612–12623.

[7] Q. Shi, et al., Lead immobilization by phosphate in the presence of iron oxides: adsorption versus precipitation, Water Res. 179 (2020) 115853.

[8] Q.Y. Ma, T.J. Logan, S.J. Traina, Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks, Environ. Sci. Technol. 29 (1995) 1118–1126.

[9] R.X. Cao, et al., Phosphate-induced metal immobilization in a contaminated site, Environ. Pollut. 122 (2003) 19–28.

[10] P. Miretzky, A. Fernandez-Cirelli, Phosphates for Pb immobilization in soils: a review, Environ. Chem. Lett. 6 (2008) 121–133.

[11] M. Raji, A.E. Qaiss, R. Bouhfid, Effects of bleaching and functionalization of kaolinite on the mechanical and thermal properties of polyamide 6 nanocomposites, RSC Adv. 10 (2020) 4916–4926.

[12] M.W. Kamiyango, et al., Phosphate removal from aqueous solutions using kaolinite obtained from Linthipe, Malawi. Phys. Chem. Earth 34 (2009) 850–856.

[13] S. Moharami, M. Jalali, Use of modified clays for removal of phosphorous from aqueous solutions, Environ. Monit. Assess. 187 (2015) 639.

[14] L. Deng, Z. Shi, Synthesis and characterization of a novel Mg-Al hydrotalcite-loaded kaolin clay and its adsorption properties for phosphate in aqueous solution, J. Alloy. Compd. 637 (2015) 188–196.

[15] J. Li, et al., Enhancement of kaolin adsorption affinity toward phosphate by sequestrating naturally abundant Ca/Mg from seawater, Clean 46 (2018) 1700662.