Distribution Modelling of Porites (Poritidae) in Indonesia

Safran Yusri¹, Vincentius P. Siregar², Suharsono³
¹Yayasan TERANGI, Jl. Asyibaniah no 105-106 Depok 16438, West Java, Indonesia
²Faculty of Marine and Fisheries, Bogor Agricultural University (IPB), IPB Dramaga Campus, FPIK Building, Bogor 16680, West Java, Indonesia
³Oceanography Research Center, Indonesia Institute of Science, Jl. Pasir Putih I, Ancol Timur, Jakarta 14430, Indonesia

Corresponding author: safran.yusri@gmail.com

Abstract. Porites (Poritidae) is one of the most temperature induced bleaching-resistant coral genera. Therefore, their presence is essential for coral reefs to survive when facing the threat of climate change. Species distribution modelling for Porites corals could provide predictive maps of species distribution in various scenarios, and therefore provided the input for decision support tools. Distribution Model will cover coral reefs in Indonesia, using maximum entropy. Data from field observations collected by TERANGI Foundation since 2002 in various places of Indonesia, Indonesia Institute of Sciences since 1999, specimen data from GBIF, and other various sources were used as the only current input for the analysis. Environmental variables were derived from satellite imageries and oceanographic models, such as HYCOM, LANDSAT 8, MODIS AQUA, and GEBCO. Genera identification were based on Suharsono (2017). The results found that the model was well-performed with AUC value of 0.9747 and if compared to the null distribution, it was considered statistically significant (AUC = 0.7348). Jackknife analysis indicated that the environmental variables with the biggest contributions were substrate type, bathymetry, and mean of chlorophyll A concentration.

1. Introduction

Scleractinian corals, the building blocks of coral reefs, have symbiotic association between the animal host (corals) and dinoflagellate algae symbiont (also known as zooxanthellae), that provide more than 90% of its organic carbon through photosynthesis[1]. The relationship between corals and their zooxanthellae are vulnerable to environmental stressors, such as thermal stress, that can lead to the loss of zooxanthellae and their photosynthetic pigments [2][3]. The world has experienced several mass bleaching events, such as in 1983, 1997-1998, 2010, and 2015-2016[4][5][6][7][8]. Hoegh-Guldberg[5][9] even predicts that coral reefs will disappear as a result of global warming, based on the assumption that corals are living close (within 1 - 2°C) to their maximum thermal limits, that generation times are too long to allow for adaptation over the required time frames, and there is insufficient genetic diversity in existing symbiont and corals. Therefore, thermal induced bleaching is considered as the main drivers of global reef degradation [9].

There are differences in the susceptibility of coral taxa to thermal stress [10]. Fast growing corals, such as Acropora and Pocillopora are susceptible to thermal stress, but Porites is considered more resistant to thermal induced bleaching [11]. Porites is also less sensitive to high CO₂ and high temperature treatment in the laboratories [12]. Baird and Marshall [13] found that after a severe bleaching incident, 88% of Acropora hyacinthus, 32% of A. millepora, 15% of Platygryradaedala died, but no death were recorded in Porites lobata. Therefore, the presence of this genus is important for reefs to survive global warming.
Unlike coral cover, there are limited data on coral genera to date. Only several institutions currently have such data, including: The Indonesia Institute of Science, TERANGI Foundation, Wildlife Conservation Society Indonesia Programme, and several universities. This augments difficulties to coral conservation and management and causing the zonation process to become ignorant to coral diversity. Species distribution modelling are widely used in a range of fields and applications including regional biodiversity assessments, spatial conservation prioritisation, evolutionary biology, epidemiology, global change biology, and wildlife management [14]. SDM can provide predictive maps of species distribution in various scenarios, and therefore provide the input for decision support tools (i.e. MARXAN)[15]. SDM has also been used on corals, such as Acropora cervicornis in the Caribbean [16][16], and therefore SDM can be developed for Porites.

Even though there are numerous modelling techniques used in SDM, Maximum Entropy (Maxent) modelling is the most used. Maxent consistently outperforms other presence-only modelling packages including Ecological Niche Factor Analysis (ENFA)[17][18]. Therefore, the objective of this research is to create Porites distribution map using Maxent to support coral reefs conservation and management in Indonesia.

2. Methods

This research was conducted in Jakarta, Belitung Island and Karimun Jawa (Figure 1). Data from GBIF, Yayasan TERANGI, PPO LIPI, and other sources were obtained in Jakarta. Species occurrence data were obtained in Belitung Island and Karimun Jawa Island for model testing and evaluation. Coral genera occurrence from museum specimens were obtained from GBIF. Genera occurrences from field observations were collected from COREMAP LIPI and Yayasan TERANGI.

The flowchart of the research is shown in Figure 2. Coral occurrence data were collected from museum specimens from GBIF [19], observation data from various reports, and field observations and stored in a PostGIS database. Museum specimen data collected from GBIF and observation data were filtered and free from bias to obtain high quality data using R and Rgbif[20]. Biased data from GBIF, such as those having their coordinates rounded, missing or impossible coordinates, uncertain taxonomy, and other errors would be omitted from the analysis [21][22].
Environmental variable datasets were prepared using GEE from various Earth observation data and models [23]. The environmental variables included benthic habitat type from satellite images; bathymetry from GEBCO; chlorophyll A concentration, normalised fluorescence line height, salinity, water velocity, and sea surface temperature from HYCOM and MODIS Aqua[24][25][26]. All environmental variables were exported using the same projection, resolution, and spatial extent to a Microsoft Azure Virtual Machine. Using R, all rasters in TIFF format were converted to ASC to be the input for Maxent.

Maxent modelling estimated the probability of habitat suitability for a certain species based on the maximum entropy due to environmental conditions [27]. According to Phillips et al. [28] given the probability distribution of pi, the information entropy (H) of the distribution is:

$$ H = -\sum_{i=1}^{N} p_i \ln(p_i) $$

The goal is to calculate the probability (p) of presence (y=1) or absence (y=0) along gradient of environmental covariates (z) [29]. Maxent only requires present data, which are mostly available in museum collections[27]. All occurrence and environmental data were used as the inputs for Maxent version 3.4.1 (https://biodiversityinformatics.amnh.org/open_source/maxent/) to model predicted coral distributions. Default model parameters would be used as they have performed well in other studies and validated on a wide range of datasets (a convergent threshold of 10-5, maximum iteration value of 500 and a regularisation multiplier of 1)[30]. Threshold feature used is 10 percentile training presence. Models were ran with three fold cross validation, where the present locations were split into training data for model fitting and test data for model evaluation, with each run consisted of 265 occurrences data, and then averaged [31].

Model evaluation was based on the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC), that is, a rank-based analysis that showed a randomly chosen presence site is
ranked above a random background site[32][37]. The AUC were compared with 99 null models to find the significance of *Porites* distribution model [33]. The other model output was the Jackknife analysis, which reviewed the gain of each environmental variables against a species’ distribution. From this analysis, influences of each variable were identified [27].

3. Results

Porites distribution was successfully modelled with 217,185.323 km² of total habitable area. The genus was distributed almost evenly on all coral reefs in Indonesia. The distribution of *Porites* is shown in Figure 3.

![Figure 3. Map of *Porites* distribution in Indonesia.](image)

Based on the result, the model was well-performed with the test AUC value of 0.9747 and AUC standard deviation of 0.003. According to Swets [34], AUC value higher than 0.9 is considered very good. The top 5% of the 99 null distributions’ AUC is 0.7348, therefore the *Porites* distribution model’s AUC is considered to be statistically significant. Both *Porites* distribution model’s AUC along with the 99 null distribution’s AUC can be seen in Figure 4.
Figure 4. Area under the curve (AUC) of the receiver operating characteristic (ROC) of *Porites* distribution model’s (top) and comparison between AUC values of the 99 null distribution models and the *Porites* distribution model’s (bottom).

Environmental variables with the highest contribution towards gain were substrate type, bathymetry, and curvature; with contribution of 38.4%, 31.2%, and 11.8% respectively. Based on the importance of the variables, bathymetry, curvature, and mean of sea surface elevation were the most significant variables. The percentage contribution and permutation of importance for each variable is given in Table 1. Evaluation of the variable’s importance was also done using Jackknife analysis. Bathymetry was the variable with the highest contribution towards gain when used, and gave the highest decreased when
omitted. Substrate type and minimum of chlorophyll A concentration were the next important variables. The results of the Jackknife analysis is tabulated in Figure 5.

Table 1. Contribution of each variable towards model gain and its permutation of importance.

No.	Long Variable Name	Short name	Percent contribution	Permutation importance
1	Substrate type	substrate	38.4	0.6
2	Bathymetry	bathymetry	31.2	85.5
3	Curvature Minimum concentration of Chlorophyll A	curvature	11.8	5.4
4	Mean of Sea Surface Temperature	salmean	3.1	0.2
5	Minimum of sea surface temperature	sstmin	1.8	0.1
6	Maximum of salinity	salmax	1.6	0.7
7	Mean concentration of Chlorophyll A	chmean	1.5	0.6
8	Mean of sea surface elevation	hssemean	1.5	2.3
9	Mean of normalised fluorescence line height	nflhmax	0.9	0.2
10	Mean of sea surface elevation	hssemax	0.8	1.3
11	Mean of eastward sea water velocity	hswvemean	0.8	0.1
12	Mean of Sea Surface Temperature	sstmean	0.6	0.3
13	Mean of normalised fluorescence line height	nflhmean	0.5	0.2
14	Maximum of particulate organic carbon	pocmax	0.4	0.2
15	Minimum of eastward sea water velocity Minimum of northward sea water			
16	Mean of scalar water speed	scalarmax	0.2	0.2
17	Slope	slope	0.2	1.4
18	Mean of scalar water speed	scalarmean	0.2	0
19	Minimum of scalar water speed	scalarmin	0.2	0.1
20	Maximum of northward sea water velocity	hswvumax	0.1	0
21	Minimum of particulate organic carbon	pocmin	0.3	0.1
22	Maximum of normalised fluorescence line height	nflhmin	0	0
23	Mean of northward sea water velocity	hswvuemax	0.1	0
24	Minimum of salinity	salmin	0.1	0
25	Maximum of scalar water speed	scalarmax	0.2	0
26	Minimum of particulate organic carbon	pocmean	0	0
27	Minimum of normalised fluorescence line height	nflhmin	0	0
Figure 5. Result of the Jackknife analysis of the importance of environmental variables towards model gain.

Another output of the model were the response curves of each variable towards habitat suitability. *Porites* preferred shallow water habitat. While it preferred to live on coral dominated reefs, it can also thrive in sand dominated reefs. Based on slope and curvature, *Porites* also preferred a slight inclination...
and little curvature variations, as well as warm water with mean sea surface temperature between 26 - 32°C. The full results of Porites’s responses to the environmental variables are available in Figure 6.
Porites were present on all focused areas, such as Seribu Islands, Belitung Island, and Karimun Jawa Island. Porites were also distributed evenly in Derawan Island, Bunaken Island, North Minahasa, Lembeh Island, and Raja Ampat. However, they were predicted to be absent in Jakarta Bay. This genus distribution in all focused areas can be seen in Figure 7.
Figure 7. *Porites* distribution in all focus areas, Belitung Island (top left), Jakarta Bay (top right), Karimun Jawa Islands (middle left), Derawan Islands (middle right), Bunaken, Likupang, and Lembeh Island (bottom left), and Raja Ampat (bottom right).

4. Discussions

Our *Porites* distribution model performed very well, since it has high AUC values for both training and testing data. Models with AUC larger than 0.75, such as the resulting model, is considered useful, informative, and indicative of good accuracy [35][30][32]. The AUC of the top 5% of the null models, generated from randomised presences, was 0.7348, which was much smaller than *Porites* model’s AUC, and therefore it was considered statistically significant [33]. Such robust model could be used for conservation prioritisation, targeting of incentive funding, and habitat maintenance and restoration [36].
Porites distribution model could play critical roles in decision making process especially in dealing with decision uncertainties [37].

All of the traits found in the model justified the widespread distribution of Porites in Indonesia and the surrounding waters. Based on the environmental contributions on the probability of presence, Porites thrived in both coral-dominated reefs and sand-dominated reefs, with a slight preference towards the previous. Its ability to live under various substrates was also observed in various areas, such as in Seribu Islands and Malang, Indonesia [38][39], and Colombian and Mexican Caribbean[40][41]. This genus has several life forms possibilities, such as encrusting, sub massive, massive, and branching that can cover most habitats [42][43]. Occupying both coral and sand dominated reefs could also attributed to Porites’ reproduction strategy that relied on asexual fragmentation, to acquire living space in a direction away from potential competitors [44]. During times of sedimentation, its skeletal density and strength would decrease, and the colony became prone to fragmentation, further promoting its reproduction [45]. This genus could also deter sediment as small as silt from smothering its polyps through proliferation of mucus, a trait required for living in sandy bottom [42].

Most habitable region for this genus was also found in shallow water above 30 m, but it could also inhabit the mesophostic zone (30 – 150m), such as observed by Klein et al. [46] and Bruckner and Dempsey[47] in the Red Sea. Porites can be a part of mesophostic coral ecosystems due to having Symbiodinium type C15 as the symbiont, which has strong photoacclimatory signal over depth [48]. Mesophostic coral ecosystems are reproductive refuge for Porites astreoides in the US Virgin Island from climate change and coastal development, since it can disperse both vertically and horizontally [49][50].

Environmental parameters related to particle suspended in water (chlorophyll concentration, fluorescence line height, and particulate organic carbon), water energy (sea surface elevation and water speed), sea surface temperature, and salinity only contributed very little towards model gain (<5% each). This implied that the probability of Porites’ presence is less influenced by those variables [51]. Carili et al.[52] found that common environmental factors, such as sea surface temperature, gave less influence to Porites’ growth than micro-scale physical variability and colony specific factors. If there are less suspended particle in the water column, this genus will be largely autotroph, but during times of sedimentation it would become mixatrophic and heterotrophic by feeding on planktons [53][45].

Porites can be found in most coral reefs in Indonesia and the surrounding shallow water, with total habitable area of 217,185 km² based on a 500 x 500 m pixel. On the other hand, based on our model, this genus could not succeed in Jakarta Bay (Figure 7). This could be attributed to two factors, which are available substrate type and water clarity. Estradivari et al. [38] found that the sea bottom of this area was smothered with sediment, so there was no preferable substrate type (coral reefs and sandy bottom) for this genus. Currently, 13 polluted rivers are dumping their sediments, heavy metals, liquid and solid wastes altogether, causing this area to have high sedimentation that lowered the possibility for corals to survive since they were unable to photosynthesize [54][55]. Sediment accumulation rate in Jakarta Bay was up to 0.852 cm/year [56]. Dedi and Ariffin [57] found that coral health disturbance which were affecting 37.96% of coral colonies in the nearby islands, were due to sedimentation. This condition would not be improved in the future, since Jakarta would experience coastal reclamation, that would increase the benthic sediment thickness to 2.49 m compared to 0.84 m today[58]. On the other hand, coral reefs in the north of Jakarta Bay (Seribu Island) tent to be in stable state[38][59]. It would be a challenge to stop the degradations from spreading to other parts of Seribu Islands.

The genus ability to withstand bleaching has been studied extensively[11][12][13][1][60]. One of the mechanisms is through storing more lipid and generate thicker tissues to increase the total energy available to survive bleaching events [61]. Other mechanism is called the phoenix effect, whereby remnant cryptic patches of tissue that survived bleaching events regenerate and rapidly overgrew adjacent dead skeleton, giving it the capacity to recover after severe partial mortality [62]. Porites colonies could also provide historical evidence of past bleaching events [52]. In addition, the genus’ preference for asexual fragmentation could also be used for coral transplantation [44]. Therefore, Porites distribution model can be used to select habitat restoration and donor site[16], monitor past and present bleaching event [44][63][64], and develop scenarios for conservation [36].
5. Conclusion
Coral reefs in Indonesia with *Porites* have a chance to survive the temperature-induced bleaching, since temperature contributed only a little towards model gain. *Porites* showed that its distribution is mainly influenced by substrate type, bathymetry and curvature. The model was very well-performed and could be used for marine spatial planning or conservation planning. Species Distribution Model could be used to complement field observations where data is scarce.

6. Acknowledgement
The authors would like to thank the Indonesia Climate Change Trust Fund, for funding the field survey in Belitung Island. We also would like to express our gratitude to Microsoft for providing Microsoft Azure cloud credit for model development. The authors also thank all staffs and surveyors from Yayasan TERANGI.

References

[1] Wooldridge SA, 2013 Differential thermal bleaching susceptibilities amongst coral taxa: reposing the role of the host *Coral Reefs*, 33(1) pp 15–27 doi:10.1007/s00338-013-1111-4
[2] West JM, and Salin, 2003, Resistance and Resilience to Coral Bleaching: Implications for Coral Reef Conservation and Management *Conservation Biol.*, 17(4) pp 956–967 doi:10.1046/j.1523-1739.2003.02055.x
[3] Douglas AE 2003 Coral bleaching—how and why? *Mar. Poll. Bull.* 46(4) pp 385–392 doi:10.1016/s0025-326x(03)00377-7
[4] Brown BE, and Suharsono 1990 Damage and recovery of coral reefs affected by El Niño related seawater warming in the Thousand Islands, Indonesia *Coral Reefs* 8(4) pp 163–170 doi:10.1007/bf00265007
[5] Hoegh-Guldberg O, 1999, *Mar. and Freshwater Res.* 50(839)
[6] Wilkinson C 2000 *Status of Coral Reefs of the World:2000*. Australian Institute of Marine Science, Townsville, Australia, pp 363
[7] Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, and Wilson, SK 2017 Global warming and recurrent mass bleaching of corals *Nature*, 543(7645) pp 373–377 doi:10.1038/nature21707
[8] Wouthuyzen S, Abrar M, and Lowrens I 2018 A comparison between the 2010 and 2016 El-Niño induced coral bleaching in the Indonesian waters *IOP Conf. Ser.: Earth Environ. Sci.* pp 118 012051
[9] Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, and Hatzios, ME 2007 Coral Reefs Under Rapid Climate Change and Ocean Acidification *Science*, 318(5857) pp 1737–1742 doi:10.1126/science.1152509
[10] Marshall PA and Baird AH 2000 Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa *Coral Reefs* 19 pp 155-163
[11] Maynard JA, Anthony KRN, Marshall PA, and Masiri I 2008 Major bleaching events can lead to increased thermal tolerance in corals *Mar. Biol.* 155(2) pp 173–182 doi:10.1007/s00227-008-1015-y
[12] Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, and Hoegh-Guldberg O 2008 Ocean acidification causes bleaching and productivity loss in coral reef builders *PNAS* 105(45) pp 17441 – 17446
[13] Baird AH and Marshall PA 2002 Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef *Mar. Ecol. Prog. Ser.* 237 pp 133–141
[14] Araújo B and Peterson AT 2012 Uses and misuses of bioclimatic envelope modeling. – *Ecology*. 93 pp 1527–1539
[15] Gisela A, Tingley R, Baumgartner JB, Nautokaitis-Lewis I, Sutcliffe PR, Tilloch AT, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney M, Possingham HP, and Buckley YM 2013 Predicting Species distributions for conservation decisions *Ecology Letters* 16(12) pp 1424-1435 doi: 10.1111/ele.12189
[16] Ames KM 2016 Acropora habitat evaluation and restoration site selection using a species distribution modelling approach Dissertation, University of South Florida pp 179.

[17] Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettman F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, and Zimmermann NE 2006 Novel methods improve prediction of species’ distributions from occurrence data Ecography 29 pp 129–151.

[18] Tittensor DP, Baco AR, Brewin PE, Clark MR, Consalvey M, Hall-Spencer J, Rowden AA, Schlacher T, Stocks KI, Rogers AD 2009 Predicting global habitat suitability for stony corals on seamounts. J. of Biogeography. 36 pp 1111–1128.

[19] GBIF 2018. GBIF Occurrence Download. https://doi.org/10.15468/dl.mgzdfx accessed February 25th, 2018.

[20] Chamberlain, Barve SV, McGlin D. 2017.Rgbif: Interface to the Global Biodiversity Information Facility API https://github.com/ropensci/rgbif

[21] Chapman AD 2005 Principles and Methods of Data Cleaning – Primary Species and Species Occurrence Data, version 1.0. Report for the Global Biodiversity Information Facility GBIF, Copenhagen pp i + 75.

[22] Maldonado C, Molina CI, Zizka A, Persson C, Taylor CM, Albán J, Chilquillo E, Rømsted N, and Antonelli A 2015 Species diversity and distribution in the era of Big Data. Global Ecology and Biogeography 24 pp 973-984 doi:10.1111/geb.12326

[23] Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R 2017 Google Earth Engine: Planetary-scale geospatial analysis for everyone Remote Sensing of Environment 202 pp 18-27.

[24] Cummings JA and Smedstad OM 2013 Variational Data Assimilation for the Global Ocean Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications vol II, chapter 13 pp 303-343.

[25] Clayson CA, Jeremiah B, and NOAA CDR Program 2016 NOAA Climate Data Record Ocean Surface Bundle (OSB) Climate Data Record (CDR) of Sea Surface Temperature - WHOI, Version 2. NOAA National Climatic Data Center doi:10.7289/V5FB510W.

[26] NASA Goddard Space Flight Center, Ocean Ecology Laboratory, and Ocean Biology Processing Group 2014 Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Ocean Color Data, NASA OB.DAAC, Greenbelt, MD.

[27] Phillips SJ, Anderson RP, and Schapire RE 2006 Maximum entropy modeling of species geographic distributions Ecological Modelling 19 pp 231–259

[28] Phillips SJ 2004 A maximum entropy approach to species distribution modeling Proc. of the Twenty-First International Conference on Machine Learning. ACM Press, New York pp 472-486.

[29] Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, and Yates CJ 2011 A statistical explanation of MaxEnt for ecologists Divers. Distrib. 17 pp 43–57

[30] Philips SJ, and Dudik M. 2007. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation Ecography 31 pp 161-175 doi: 10.1111/j.2007.0906-7590.05203.x

[31] Merow CM, Smith MJ, and Silander JA 2013 A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter Ecography 36 pp 1058–1069 doi: 10.1111/j.1600-0587.2013.07872.x

[32] Fielding AH and Bell JF 1997 A review of methods for the assessment of prediction errors in conservation presence/absence models Environmental Conservation 24 pp 38–49

[33] Raes N and ter Steege H 2007 A null-model for significance testing of presence-only species distribution models Ecography 30(5) pp 727 – 736 DOI: 10.1111/j.2007.0906-7590.05041.x

[34] Swets JA, 1988 Measuring the Accuracy of Diagnostic Systems Science 240(4857) pp 1285-93. DOI: 10.1126/science.3287615.

[35] Elith J 2002 Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. In: Ferson S and Burgman M (eds), Quantitative methods for
conservation biology Springer pp. 39–58.

[36] Lehtomaki J and Moilanen A 2013 Methods and workflow for spatial conservation prioritization using Zonation Environmental Modelling and Software 47(2013) pp 128-137.

[37] Pi DV 2016 Applying species distribution models in conservation biology Thesis Universitat De Barcelona Barcelona pp 229

[38] Estradivari, Syahrir M, Susilo N, Yusri S, and Timotius S 2007 Terumbu karang Jakarta: Pengamatan jangka panjang terumbu karang Kepulauan Seribu (2004 -2005) Yayasan TERANG, Jakarta pp ix + 87.

[39] Luthfi OM, Alviana PZ, Guntur, Sunardi, and Jauhari A 2016 Distribution of massive Porites at reef flat in Kondang Merak, Malang, Indonesia. Rese. J. of Life Sci. 3(1)

[40] Bernal-Sotelo K and Acosta A 2012 The relationship between physical and biological habitat conditions and hermatypic coral recruits abundance within insular reefs (Colombian Caribbean) Rev. Biol. Trop. (Int. J. Trop. Biol.) 60(3) pp 995-1014

[41] Rodriguez-Martinez RE and E Jordan-Dahlgren 1999 Epibiotic and free-living Porites astreoides. Coral Reefs 18 pp 159-161

[42] Veron JEN 2000 Corals of the world Vol 1-3. Australian Institute of Marine Science, Townsville, Australia pp 1382

[43] Suharsono 2017 Jenis-jenis karang di Indonesia LIPI PRESS Jakarta pp vi +536.

[44] Seebauer J 2001 Zoology of Porites cylindrica: potential for use in reef-rehabilitation transplantation efforts. SUND Genesee Journal of Science and Mathematics 2(1), 2001: 26-34

[45] McDermond J 2014 Reproduction and Population of Porites divaricata at Rodriguez Key: The Florida Keys, USA Master’s thesis Nova Southeastern University. https://nsuworks.nova.edu/occ_stuetd/17.

[46] Klein RJ, Patzold G, Weier Y,and Loya 1993 Depth-related timing of density band formation in Porites spp. Corals from the Red Sea inferred from X-ray chronology and stable isotope composition Mar. Ecol. Prog. Ser. 97 pp 99-104

[47] Bruckner AW and Dempsey AC 2015 The Status, Threats, and Resilience of Reef-Building Corals of the Saudi Arabian Red Sea Springer Earth System Sciences DOI 10.1007/978-3-662-45201-1_27.

[48] Ziegler MC, Roder M, Buchel C, and Voolstra CR 2015 Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology Frontiers in Mar. Sci. 2(4) pp 1-10. doi: 10.3389/fmars.2015.00004

[49] Holstein DM, Smith TB, Paris CB 2016 Depth-Independent Reproduction in the Reef Coral Porites astreoides from Shallow to Mesophotic Zones PLoS ONE 11(1) pp 46 - 68. doi: 10.1371/journal.pone.0146068

[50] Serrano XM, Baum IB, Smith TB, Jones TL, Shearer TL and Baker AC 2016 Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides Sci. Rep. 6 pp 16-19 doi: 10.1038/srep21619.

[51] Phillips SJ 2017 A Brief Tutorial on Maxent Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/

[52] Carili JE, Hartmann AC, Heron SF, Pandolfi JM, Cobb K, Sayani H, Dunbar R, Sandin SA 2017 Porites coral response to an oceanographic and human impact gradient in the Line Islands. Limnol. Oceanogr. 62 pp 2850–2863. doi: 10.1002/lo.10670

[53] Edmunds PJ, and Davies PS 1986 An energy budget for Porites porites (Scleractinia). Marine Biology, 92(3), pp. 339–347. doi:10.1007/bf00392674

[54] Nurruhwati I, Kaswadji R, Bengen DG, Isnaniawardhani V 2012 Kelimpahan Foraminifera Bentik Resen Pada Sedimen Permukaan Di Perairan Teluk Jakarta Jurnal Akuatika III(1) pp 11-18

[55] Rositasari R, Puspitasari R, Nurhati IS, Purbonegoro T, Yogaswara D 2017 5 Dekade LIPI di Teluk Jakarta Puslit Oceanografi – LIPI Jakarta pp 150.

[56] Lubis AA, Aliyanta B, and Menry Y 2007 Estimasi Laju Akumulasi Sedimen Daerah Teluk Jakarta dengan Teknik Radionuklida Alam Unsupported 210pb Indo. J. Chem. 7 (3) pp 309-313
[57] Dedi and Arifin T 2017 Kondisi Kesehatan Karang Di Pulau – Pulau Kecil Teluk Jakarta Jurnal Kelautan Nasional, 11(3) pp 175-187
[58] Aprilia E and Pratomo DG 2017 Pemodelan Hidrodinamika 3-Dimensi Pola Persebaran Sedimentasi Pra dan Pasca Reklamasi Teluk Jakarta Jurnal Teknik ITS 6(2) pp 2337-3520
[59] Giyanto, Abrar M, Hadi TA, Budiyanto A, Hafizt M, Salatalohy A, and Iswari MY 2017 Status terumbu karang Indonesia 2017 Puslit Oseanografi LIPI Jakarta pp ix + 30
[60] Grottoli AG, Rodrigues LJ, and Palardy JE 2006 Heterotrophic plasticity and resilience in bleached corals Nature 440(7088) pp 1186–1189 doi:10.1038/nature04565
[61] Rodrigues LJ and Grottoli AG 2007 Energy reserves and metabolism as indicators of coral recovery from bleaching Limnol. Oceanogr. 52(5) pp 1874–1882
[62] Roff G, Bejarano S, Bozec YM, Nugues M, Steneck RS, and Mumby PJ 2014 Porites and the Phoenix effect: unprecedented recovery after a mass coral bleaching event at Rangiroa Atoll, French Polynesia Marine Biology 161(6) pp 1385–1393 doi:10.1007/s00227-014-2426-6
[63] Tanzil JTI, Brown BE, Dunne RP, Lee JN, Kaandorp JA, and Todd PA 2013 Regional decline in growth rates of massive Porites corals in Southeast Asia Global Change Biology 19(10) pp 3011–3023 doi:10.1111/gcb.12279
[64] Marshall PA and Baird AH 2000. Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19 pp 155-163