Bounding ramification with covers and curves

Hélène Esnault, joint with Vasudevan Srinivas

Upstate NY NT Seminar, September 28, 2020
Lefschetz theorem: topology

X sm q-proj var over \mathbb{C}, $\pi_1^{\text{top}}(X, x)$ top fund gr based at $x \in X(\mathbb{C})$.

Theorem (Lefschetz)

\exists sm curve $C \to X$, $C \ni x$, st $\pi_1^{\text{top}}(C, x) \to \pi_1^{\text{top}}(X, x)$.

given $X \hookrightarrow \bar{X}$ a good compactification, any ci of sm ample divisors in good position wrt $\bar{X} \setminus X$ does it.
X sm q-proj var over \mathbb{C}, $\pi_1^{\text{top}}(X, x)$ top fund gr based at $x \in X(\mathbb{C})$.

Theorem (Lefschetz)

\exists sm curve $C \to X$, $C \ni x$, st $\pi_1^{\text{top}}(C, x) \twoheadrightarrow \pi_1^{\text{top}}(X, x)$.

given $X \hookrightarrow \bar{X}$ a good compactification, any ci of sm ample divisors in good position wrt $\bar{X} \setminus X$ does it.

\leadsto same thm on $\pi_1^{\text{alg}}(X, x)$ pro-alg. completion: $\forall \mathcal{V}$ cplx loc syst, the restriction $\mathcal{V}|_C$ keeps the same monodromy.
Lefschetz theorem: topology

X sm q-proj var over \mathbb{C}, $\pi_1^{\text{top}}(X, x)$ top fund gr based at $x \in X(\mathbb{C})$.

Theorem (Lefschetz)

\exists sm curve $C \to X$, $C \ni x$, st $\pi_1^{\text{top}}(C, x) \twoheadrightarrow \pi_1^{\text{top}}(X, x)$.

given $X \hookrightarrow \bar{X}$ a good compactification, any ci of sm ample divisors in good position wrt $\bar{X} \setminus X$ does it.

\leadsto same thm on $\pi_1^{\text{alg}}(X, x)$ pro-alg. completion: $\forall \mathcal{V}$ cplx loc syst, the restriction $\mathcal{V}|_C$ keeps the same monodromy.

$\mathbb{C} \leadsto k$ alg. cl. of char. 0, $\pi_1^{\text{top}}(X, x) \leadsto \pi_1(X, x)$ Grothendieck’s étale fundamental gr \leadsto same thm (and tiny rmk).
No Lefschetz thm: eg $X = \mathbb{A}^2$, Artin-Schreier cover $t^p - t = f$, $f \in \mathcal{O}(\mathbb{A}^2)$ splits on curve $C : f = 0$. So $\nexists C$ with $\pi_1(C, x) \to \pi_1(X, x)$.

No Lefschetz /k of char. $p > 0$
Tameness: Kerz-Schmidt’s definition

Recall: \(R \) complete (or henselian) dvr, finite Galois ext \(R \subset S \) of such, perfect res fields, Galois gr \(G \), then \(G = \exists G_0 \supset G_1 \supset \ldots G_{\exists N \geq 1} = 0 \) with \(G_0/G_1 \subset \text{Frac}(S)^\times \) cyclic of order prime to \(p \), \(G_i/G_{i+1} = \text{fin pr} \) of cyclic gr of order \(p \).

Definition

1) \(\text{Sw} \ (S/R) \leq n \) iff \(N \leq n + 1 \); \(\text{Sw} \ (S/R) = 0 \) iff \(S/R \) tame.
2) [Kerz-Schmidt] \(X/k \) sm, \(k \) perfect, \(Y \rightarrow X \) fin étale is tame if \(\forall \) sm curve \(C \rightarrow X \), \(Y \times_X C \rightarrow C \) is tame.
3) \(\leadsto \pi_1(X, x) \rightarrow \pi_1^t(X, x) \) tame quotient.

- tame allows non-perfect res fields: res field ext should be sep and ram index prime to \(p \)
- if has good comp \(X \leftrightarrow \bar{X} \), defn agrees with Grothendieck’s defn: tame at the codim 1 points in \(\bar{X} \setminus X \)
Theorem (Drinfeld)

X/k sm quasi-proj, $\exists C \rightarrow X$, $x \in C$ sm curve st $\pi^t_1(C, x) \rightarrow \pi^t_1(X, x)$.

if $X \hookrightarrow \bar{X}$ good compactification, then any ci of sm ample divisors in good position wrt $\bar{X} \setminus X$ does it (E-Kindler)
Ramification in geometry: definition

Definition

Given $X \hookrightarrow \bar{X}$ normal comp $/k$ perfect, D eff div supp in $\bar{X} \setminus X$, then

1) $Y \to X$ finite étale has \textit{ramification bounded by} D if $\forall C \to X$ sm curve, $\text{Sw} \left(Y \times_X C/C \right) \leq D \times \bar{X}$.

2) \bar{Q}_ℓ- loc sys \mathcal{V}_ρ defined by $\rho : \pi_1(X, x) \to GL_r(\bar{\mathbb{Z}}_\ell) \subset GL_r(\bar{Q}_\ell)$ has ramification bounded by D iff Galois cover $\pi : X_{\bar{\rho}} \to X$ defined by $\bar{\rho} : \pi_1(X, x) \to GL_r(\bar{\mathbb{F}}_\ell)$ has ramification bounded by D (depends only on $(\bar{\rho})^{ss}$).

3) $\pi^* \mathcal{V}_\rho$ tame: say π \textit{tamifies} ρ.

4) A sm curve $C \to X$ is a \textit{Lefschetz curve for} a family $S = \{ \mathcal{V} \}$ if $\mathcal{V}|_C$ keeps the same monodromy $\forall \mathcal{V} \in S$.

Hélène Esnault, joint with Vasudevan Srinivas

Bounding ramification

Upstate NY NT Seminar, September 28, 2020
Theorem (L. Lafforgue dim 1, Deligne in higher dim, cor Langlands corr)

X sm q-proj/k, then \exists only finitely many $\tilde{\mathbb{Q}}_\ell$-simple loc sys \mathcal{V} with (r, D) bounded, up to twist by a char. of k.

Analog of the Hermite-Minkowski thm: $\#$ field K, \exists only fin many ext L/K of bounded deg and disc
$k = \mathbb{F}_q$ finite field

Theorem (L. Lafforgue dim 1, Deligne in higher dim, cor Langlands corr)

If X is a smooth q-projective over k, then there exist only finitely many \mathbb{Q}_ℓ-simple local systems V with (r, D) bounded, up to twist by a character of k.

Analog of the Hermite-Minkowski thm: If K is a field, then there exist only finitely many extensions L/K of bounded degree and discriminant.

Corollary

1) If (r, D) is bounded, then there exists a finite étale cover $\pi : Y \to X$ which tamifies all V with (r, D) bounded ('covers' from title).

2) Given (r, D), there exists a Lefschetz curve for all V with bounded (r, D) ('curves' from title).
on Proof of Corollary

1) take cover $\pi: X_{\oplus_{\text{fin}}} \rightarrow X$
on Proof of Corollary

1) take cover $\pi : X_{\oplus_{\text{fin}}} \rho \to X$

2) a) top gr th: $\pi_1(C, x) \to \pi_1(X, x) \to I \subset GL_r(O_E) \text{ surj } (E/\mathbb{Q}_\ell \text{ finite})$ iff $\pi_1(C, x) \to \pi_1(X, x) \to \tilde{I} \subset GL_r(O_E/m_E^2) \text{ surj } (O_E/m_4 \text{ for } \ell = 2)$;
1) take cover $\pi : X_{\oplus_{\text{fin}}} \rightarrow X$

2a) top gr th: $\pi_1(C, x) \rightarrow \pi_1(X, x) \rightarrow I \subset GL_r(O_E)$ surj $(E/\mathbb{Q}_\ell$ finite) iff $\pi_1(C, x) \rightarrow \pi_1(X, x) \rightarrow \overline{I} \subset GL_r(O_E/m^2_E)$ surj $(O_E/m^4$ for $\ell = 2)$;

2b) Hilbert irreducibility (or Bertini if we allow ext $\mathbb{F}_q^m \supset \mathbb{F}_q$) $\Rightarrow \exists C$.
How to bound the ramification if $k = \bar{k}$?

The notion of ramification bounded by D is purely geometric, i.e. depends only on cover $(Y \rightarrow X)_{\bar{k}}$ or $V|_{\pi_1(x_{\bar{k}}, x)}$.
How to bound the ramification if $k = \bar{k}$?

The notion of ramification bounded by D is purely geometric, i.e. depends only on cover $(Y \to X)_{\bar{k}}$ or $\mathcal{V}|_{\pi_1(x_{\bar{k}}, x)}$.

To 1) ‘covers’: $/k = \bar{k}$, (r, D) bounded, then $\exists \pi : Y \to X$ finite étale which tamifies all simple \mathcal{V} with (r, D) bounded: given Sw, Witt-artin-Schreier covers with Galois gr $\mathbb{Z}/p^n \ \forall n \geq 1$ with this Sw exist (Brylinski-Kato).
How to bound the ramification if $k = \overline{k}$?

The notion of ramification bounded by D is purely geometric, i.e. depends only on cover $(Y \to X)_{\overline{k}}$ or $\mathcal{V}|_{\pi_1(X_{\overline{k}}, x)}$.

To 1) ‘covers’ /$k = \overline{k}$, (r, D) bounded, then $\not\exists \pi : Y \to X$ finite étale which tamifies all simple \mathcal{V} with (r, D) bounded: given S_w, Witt-artin-Schreier covers with Galois $gr \mathbb{Z}/p^n \forall n \geq 1$ with this S_w exist (Brylinski-Kato).

To 2) ‘curves’ (Deligne): /$k = \overline{k}$, $X, (r, D)$, \exists Lefschetz curve for all \mathcal{V} with bounded (r, D)?
To 'covers': Tamifying up to codim 2

Definition (E-S)

\[\pi : Y \to X \] finite connected tamifies \(V \) outside of codim 2 if there is a normal compactification \(Y \to \bar{Y} \) st \(\pi^* V \) is tame at codim 1 points of \(\bar{Y} \).
To 'covers': Tamifying up to codim 2

Definition (E-S)
\(\pi : Y \to X \) finite connected \textit{tamifies} \(V \) \textit{outside of codim} 2 if there is a normal compactification \(Y \hookrightarrow \bar{Y} \) st \(\pi^*V \) is tame at codim 1 points of \(\bar{Y} \).

Theorem (E-S)
\(X \) sm q-proj \(/k = \bar{k} \), given \((r, D) \), \(\exists n \in \mathbb{N} \), \(\forall V \) with rank \(\leq r \) and ramification bounded by \(D \), \(\exists \pi_V : Y_V \to X \) of deg \(\leq n \) which tamifies \(V \) up to codim 2.

For \(X \leadsto R \), \(R \) complete dvr with res field \(k \), (E-Kindler-S)
On Proof of Thm

1) reduce to X affine; via $X \to \mathbb{A}^d$ finite étale, reduce to

$$X = \mathbb{A}^d \hookrightarrow \bar{X} = \mathbb{P}^d;$$

2) prove local thm on $k(Z)[[t]]$ using (E-K-S), $Z = \mathbb{P}^d \setminus \mathbb{A}^d$ to produce a finite étale extension of $k(Z)((t))$ tamifying $\mathcal{V}|_{k(Z)((t))}$;

3) use Harbater-Katz-Gabber to extend to a finite étale cover of $\mathbb{G}_m/k(Z)$;

4) close it up to get the normal finite cover of \mathbb{P}^d, then of X.
To ‘curves’: rank 1 case

Theorem (Kerz-S.Saito if $X \hookrightarrow \bar{X}$ good compactification, E-S in general) \[/k = \bar{k}, X \hookrightarrow \bar{X} \text{ normal compactification, } D, \exists \text{ Lefschetz curve for } (1, D). \]
To ‘curves’: rank 1 case

Theorem (Kerz-S. Saito if $X \hookrightarrow \tilde{X}$ good compactification, E-S in general)

$/k = \overline{k}, X \hookrightarrow \tilde{X}$ normal compactification, D, \exists Lefschetz curve for $(1, D)$.

On Proof.

1) reduce to Artin-Schreier;
2) $\{\mathcal{V}\}$ with $(r, D) \subset \{\mathcal{W}\}$ with $(r, D \cap X^{\text{reg}})$ (less curves to test).
3) use coh description (Kerz-S. Saito) on X^{reg} and finiteness of Frobenius invariant \mathcal{O}-modules of local coh gr along $\tilde{X} \setminus X^{\text{reg}}$ to prove: $\exists N \geq 1$ so $\{\mathcal{W}\}$ with $(r, D \cap X^{\text{reg}}) \subset \{\mathcal{V}\}$ with (r, ND). \qed
Application of classical Bertini theorem

Theorem (E-S)

$\exists K/k$ alg. cl. of purely tr. fin. gen. field $/k$, $C_K \to X$ curve $/K$ st

$\pi_1(C_K, x) \to \pi_1(X, x)$.

It is an illustration of the fact that if C is not proper,

1) $\pi_1(C_k, x)$ does not satisfy base change;

2) there is no specialization map $\pi_1(C, x) \to \pi_1(C_k, x)$ for a specialization $K \to k$.

Hélène Esnault, joint with Vasudevan Srinivas

Bounding ramification

Upstate NY NT Seminar, September 28, 2020
Application of classical Bertini theorem

Theorem (E-S)

\[\exists K/k \text{ alg. cl. of purely tr. fin. gen. field } /k, C_K \rightarrow X \text{ curve } /K \text{ st } \]

\[\pi_1(C_K, x) \rightarrow \pi_1(X, x). \]

It is an illustration of the fact that if \(C \) is not proper,

1) \(\pi_1(C, x) \) does not satisfy base change;
2) there is no specialization map \(\pi_1(C, x) \rightarrow \pi_1(C_k, x_k) \) for a specialization \(K \rightsquigarrow k \).