Protein Kinase C-δ Mediates Neuronal Apoptosis in the Retinas of Diabetic Rats via the Akt Signaling Pathway

Young-Hee Kim,¹ Yoon-Sook Kim,¹ Chang-Iwan Park,¹ In-Yong Chung,² Ji-Myong Yoo,² Jae-Geun Kim,³ Byung-Ju Lee,³ Sang-Soo Kang,¹ Gyeong-Jae Cho,¹ and Wan-Sung Choi¹

OBJECTIVE—Protein kinase C (PKC)-δ, an upstream regulator of the Akt survival pathway, contributes to cellular dysfunction in the pathogenesis of diabetes. Herein, we examined the role of PKC-δ in neuronal apoptosis through Akt in the retinas of diabetic rats.

RESEARCH DESIGN AND METHODS—We used retinas from 24- and 35-week-old male Otsuka Long-Evans Tokushima fatty (OLETF) diabetic and Long-Evans Tokushima Otsuka (LETO) nondiabetic rats. To assess whether PKC-δ affects Akt signaling and cell death in OLETF rat retinas, we examined 1) PKC-δ activity and apoptosis; 2) protein levels of phosphatidylinositol 3-kinase (PI 3-kinase) p85, heat shock protein 90 (HSP90), and protein phosphatase 2A (PP2A); 3) Akt phosphorylation; and 4) Akt binding to HSP90 or PP2A in LETO and OLETF retinas in the presence or absence of rottlerin, a highly specific PKC-δ inhibitor, or small interfering RNAs (siRNAs) for PKC-δ and HSP90.

RESULTS—In OLETF retinas from 35-week-old rats, ganglion cell death, PKC-δ and PP2A activity, and Akt-PP2A binding were significantly increased and Akt phosphorylation and Akt-HSP90 binding were decreased compared with retinas from 24-week-old OLETF and LETO rats. Rottlerin and PKC-δ siRNA abrogated these effects in OLETF retinas from 35-week-old rats. HSP90 siRNA significantly increased ganglion cell death and Akt-PP2A complexes and markedly decreased HSP90-Akt binding and Akt phosphorylation in LETO retinas from 35-week-old rats compared with those from nontreated LETO rats.

CONCLUSIONS—PKC-δ activation contributes to neuro-retinal apoptosis in diabetic rats by inhibiting Akt-mediated signaling pathways. Diabetes 57:2181–2190, 2008

Protein kinase C (PKC)-δ, a ubiquitously expressed isoform of the novel PKC subfamily, mediates an anti-apoptotic signaling cascade through the phosphatidylinositol 3-kinase (PI 3-kinase)–mediated survival pathway (1,2) and also promotes apoptosis by interfering with Akt signaling (3–5).

Akt is a downstream target of PI 3-kinase that plays an integral role in cell survival. Dysregulation of Akt is frequently observed in diseases such as cancers and diabetes (6–8). PI 3-kinase activates Akt through the phosphorylation of two key regulatory residues, Thr308 and Ser473, on Akt. Phosphorylation of both residues is necessary for full activation of Akt and subsequent regulation of many PI 3-kinase–mediated biological responses (9,10).

Protein phosphatase 2A (PP2A), a major cellular serine/threonine phosphatase, regulates the phosphorylation state of cellular proteins in various pathological conditions (11–13). Recently, it has been reported that PP2A is involved in the regulation of cell proliferation and survival through its ability to dephosphorylate Akt (11–15). Furthermore, heat shock protein 90 (HSP90) counteracts the effect of PP2A in cells through direct binding to Akt, protecting Akt from PP2A-mediated dephosphorylation and thus functioning as a positive regulator of Akt signaling (13,15,16). Of note, numerous reports have suggested that Akt- or HSP-mediated cytoprotection is regulated by PKC (1,5,13,17,18).

Otsuka Long-Evans Tokushima fatty (OLETF) rats are a genetic animal model of late onset of hyperglycemia. Animals spontaneously develop type 2 diabetes and exhibit hyperglycemia and insulin resistance at 20–40 weeks of age (19–21). Recently, we reported that PKC-δ activation is involved in neuronal apoptosis in 35-week OLETF rat retinas (22); however, a direct association between PKC-δ and Akt was not defined.

Therefore, we examined effects of PKC-δ on Akt-mediated survival pathways and neuronal apoptosis in the retinas of diabetic OLETF rats.

RESEARCH DESIGN AND METHODS—Six-week-old male OLETF and Long-Evans Tokushima Otsuka (LETO) rats were obtained from the Otsuka Pharmaceutical Tokushima Research Institute (Tokushima, Japan). We used 8 LETO and 8 OLETF rats at 24 weeks of age and 28 LETO and 28 OLETF rats at 35 weeks of age. Rats were housed in groups of three animals and supplied with water and food ad libitum under ambient temperature conditions (22 ± 2°C) and a 12-h light/dark cycle, in accordance with the protocol of the institutional review board. We randomly selected five LETO and five OLETF rats at 24 and 35 weeks of age and measured their body weights and glucose levels. Blood samples were obtained by tail snipping after a 24-h fasting period. Blood glucose levels were measured using the SureStep (LifeScan, Milpitas, CA).

Intravitreal injection. Rats were anesthetized with an intraperitoneal injection of 50 mg/kg sodium pentobarbital followed by topical application of 0.5% proparacaine to the eye. For intravitreal injection, a 30-gauge needle was inserted into the vitreous 2 mm posterior to the limbus through the pars plana using a microscope, without damaging the lens and the retina. Injections were covered by the institutional animal care and use committee of Gyeongsang National University.

Rottlerin (Sigma, St Louis, MO), a highly specific PKC-δ inhibitor, was dissolved in 0.5% dimethyl sulfoxide (DMSO), and 3 μl rottlerin (5 μmol/l) was used for intravitreal injection into the right eye of 35-week-old LETO and OLETF rats. DMSO (3 μl) was injected into the left vitreous as a control. All rats were killed 1 day after the injection.
For PKC-δ and HSP90 gene silencing, we used commercially available small interfering RNAs (siRNAs) from Dharmacon (ON-TARGET plus Duplex J-080142-05-0050 for Rat PRKCD and J-102259-01-0020 for Rat Hspcb; Dharmacon, Chicago). The sense and antisense strands of the PKC-δ and HSP90 siRNAs were as follows: PKC-δ, 5'-GCAACGCUGCAUUAUUU-3' (sense) and 5'-PUUAUGG AUGCCAGCUUGCUU-3' (antisense); HSP90, 5'-GCUPUGGGUCAUACAU UU-3' (sense) and 5'-PAUGUAUCCACCUCUAGCUU-3' (antisense). siRNAs were completely dissolved in RNAse-free distilled water (Dharmacon) at a final concentration of 500 μmol/l before injection. To assess the effects of PKC-δ and HSP90 siRNAs on retinas, 1 and 3 μl siRNAs, each at a concentration of 500 μmol/l, were intravitreally injected into the right eye of OLETF and LETO rats at 35 weeks. Control rats received 1 and 3 μl distilled water into the left eye. Rats were killed at 1, 2, and 5 days after the injection, and the effects of siRNAs on PKC-δ and HSP90 were determined by immunoblotting. Data are representative of four independent experiments.

Antibodies. Mouse monoclonal antibodies against PKC-δ, PI 3-kinase p85 (regulatory subunit), HSP90, and Akt; goat polyclonal anti-Thy-1 antibody; and rabbit polyclonal anti-PP2A (catalytic subunit, 36 kDa) and anti-Akt antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Rabbit polyclonal antibodies against PP2B and phospho-Akt were obtained from BD Biosciences (San Jose, CA) and Cell Signaling (Danvers, MA), and mouse monoclonal anti-α-tubulin antibody was purchased from Sigma. Horseradish peroxidase–conjugated secondary antibodies were purchased from Pierce (Rockford, IL). Cy 3–conjugated donkey anti-rabbit and anti-mouse IgGs and Alexa Fluor 405–conjugated chicken anti-goat IgG were obtained from Amersham Biosciences (Piscataway, NJ) and Invitrogen (Carlsbad, CA), respectively.

FIG. 1. Ganglion cell apoptosis in retinas of LETO and OLETF rats at 24 and 35 weeks. The TUNEL assay was performed after Thy-1 immunostaining, a specific ganglion cell marker, and then sections were stained with the nuclear marker DAPI and B–F: Representative images of 35-week LETO and OLETF retinas. The arrows indicate TUNEL-positive ganglion cells in 35-week-old OLETF rats (B). The arrowheads in F show the codistribution of TUNEL-positive signals (small arrowheads in C) and Thy-1–positive ganglion cells in 35-week OLETF retinas. The number of co-positive cells was counted and the fold changes are presented as the means ± SE (n = 4) (G). **P < 0.01 compared with 24-week LETO and the other groups. INL, inner nuclear layer; IPL, inner plexiform layer; L (24) and L (35), 24- and 35-week LETO retinas, respectively; O (24) and O (35), 24- and 35-week OLETF retinas, respectively; ONL, outer nuclear layer. Bars, 12.5 μm. (Please see http://dx.doi.org/10.2337/db07-1431 for a high-quality digital representation of this figure.)
Immunoblot analysis. Retinal protein extraction and immunoblot analysis were performed as described previously (23). Total protein (30 μg) from LETO and OLETF rat retinas was subjected to SDS-PAGE and then transferred to a nitrocellulose membrane. Antibody incubations and washing were performed on the membranes, and the immunoreactive proteins were visualized using an enhanced chemiluminescent kit (Amersham Biosciences). Each membrane was then stripped and reblotted with anti-α-tubulin antibody as a control. Data are representative of four independent experiments. The fold changes in protein levels are indicated below the blots in each figure.

Immunoprecipitation. Immunoprecipitations were performed as described previously (24). Pre-cleared immune complexes were collected using protein-G/A-agarose beads and washed with radioimmunoprecipitation assay buffer (50 mmol/l Tris-HCl [pH 8.0], 150 mmol/l NaCl, 0.1% SDS, 0.5% sodium deoxycholate, and 1% Nonidet P-40) containing protease inhibitors. SDS-PAGE sample buffer was added to the beads, and final fractions were subjected to immunoblot analysis. All immunoblots were reprobed with the immunoprecipitating antibody to account for loading differences in protein levels, and each reciprocal analysis was performed. Data are representative of three to four independent experiments.

PKC-δ kinase assay. We performed PKC-δ kinase assay using the SignaTECT PKC Assay System (Promega, Madison, WI) according to the manufacturer’s protocol, as described previously (23). Briefly, PKC-δ immune complexes were collected using protein G/A-agarose beads, and then the beads were resuspended in 20 μl kinase reaction buffer (25 mmol/l Tris-HCl [pH 7.5], 5 mmol/l β-glycerol phosphate, 2 mmol/l dithiothreitol, 0.1 mmol/l sodium orthovanadate, 10 mmol/l MgCl2, and 0.5 μCi [γ-32P]ATP [3,000 Ci/mmol]). Kinase activity was determined using a scintillation counter. Data are representative of four independent experiments.

PP2A phosphatase assay. PP2A activity was determined using a PP2A-IP phosphatase assay kit (catalog no. D-001810-01-20; Upstate, Temecula, CA) according to the manufacturer’s protocol. Total protein (300 μg) from retinas was incubated with 4 μg anti–PP2A-C (catalytic subunit) antibody and 40 μl protein A-agarose beads for 2 h at 4 °C with constant rocking. The immune complexes were washed three times in Tris-buffered saline and once with Ser/Thr assay buffer (50 mmol/l Tris-HCl [pH 7.0] and 100 mmol/l CaCl2). The phosphatase reaction was initiated by the addition of 60 μl phosphopeptide substrate (final
reaction concentration of 750 μmol/l and allowed to proceed for 30 min in a shaking incubator. The reaction mixture was centrifuged briefly, and the supernatant was transferred to a 96-well microplate. Malachite green phosphate detection solution was added to each well and allowed to develop for 15 min at room temperature. Free phosphate was quantified by measuring the absorbance of each well at 650 nm using a microplate reader. Data are representative of four independent experiments.

Akt kinase assay. Akt activity was measured using a nonradioactive Akt kinase assay kit (Cell Signaling) according to the manufacturer’s protocol without any modification. Akt immune complexes from total protein (300 μg) from retinas were incubated with recombinant glycogen synthase kinase (GSK)-3α/β fusion protein (30 kDa). Phosphorylation of GSK-3 was measured by immunoblotting using anti-phospho-GSK-3α/β (Ser21/9) antibody. Data represent the results of four independent experiments.

Immunohistochemistry. The preparation of frozen retinal sections and immunohistochemical staining were performed as described previously (24). After blocking, retinal sections were incubated with primary antibodies against HSP90, PP2A, and phospho-Akt (Ser473) and biotinylated secondary antibodies. The sections were washed in PBS, incubated with an avidin-biotinylated horseradish peroxidase complex (ABC; Vector Laboratories, Burlingame, CA), and developed using 0.025% 3,3’-diaminobenzidine tetrahydrochloride (DAB; Sigma)/0.003% H2O2 in PBS.

To confirm ganglion cell–specific expression of HSP90, PP2A, and phospho-Akt, double-immunofluorescent staining was performed with Thy-1, a ganglion cell marker, as described previously (24). Briefly, retinal sections were incubated in a mixture of primary antibodies, rinsed in PBS, incubated in a mixture of secondary antibodies, and then wet-mounted. Images were obtained using a BH-2 Olympus microscope (Melville, NY) at a point that was ~0.5–1 mm from the optic nerve head. Data are representative of three independent experiments.

Cell death assay. Cell death was determined using a Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay (In Situ Cell Death Detection kit; Roche, Mannheim, Germany) according to the manufacturer’s protocol, as described previously (25). To assess ganglion cell death, the TUNEL assay was performed after Thy-1 immunofluorescent staining on retinal sections or flat mounts. All sections were stained with the nuclear marker 40.6-diamidino-2-phenylindole dihydrochloride (DAPI; Invitrogen) before being wet-mounted. Whole retinal preparation and flat-mounting were carried out as described previously (26). TUNEL-positive images were obtained using a confocal microscope (Axioplan2 Imaging; Zeiss). The number of cells that had a positive signal of TUNEL and Thy-1 was quantified using the Soft Imaging System (Soft Imaging System; Münster, Germany). Data are representative of four independent experiments from different retinal sections or flat mounts.

Data analysis. Densitometric analysis of immunoblots was performed using SigmaGel 1.0 (Jandel Scientific, Erkrath, Germany) and SigmaPlot 4.0 (SPSS, Chicago). All data are presented as means ± SE. Statistical significance was determined using one-way ANOVA followed by a Tukey post hoc test (SAS Institute, Cary, NC) and the Mann-Whitney U test (SPSS). P < 0.05 was considered to be statistically significant.

RESULTS

During the course of this study, OLETF rats gained weight faster than the control LETO rats. The mean body weights of OLETF and LETO rats at 24 weeks were 688 ± 10.5 and 471 ± 8.2 g, respectively, and the difference in weight was increased significantly at 35 weeks (732 ± 20.1 and 520 ± 11.2 g, respectively; P < 0.05, n = 5). Blood glucose levels in OLETF and LETO rats were 14.5 ± 0.8 and 8.2 g, respectively, and the difference in weight was significantly different in 24-week-old LETO and OLETF rats but not in 35-week-old OLETF rats (Fig. 2). Blood glucose levels were increased (1.4- and 2.3-fold; P < 0.05 and 0.01, respectively; n = 4) in 24-week OLETF retinas compared with LETO retinas and decreased significantly (1.7- and 2.5-fold; P < 0.05 and 0.01, respectively; n = 4) in 35-week OLETF retinas (Fig. 3D). Blood glucose levels were increased and significantly different in 24-week-old LETO and OLETF rats but were greatly increased in retinas from 35-week-old OLETF rats (Fig. 3D). Phospho-Akt (Thr308) and -Akt (Ser473) levels were increased (1.4- and 2.3-fold; P < 0.05 and 0.01, respectively; n = 4) in 24-week OLETF retinas compared with LETO retinas and decreased significantly (1.7- and 2.5-fold; P < 0.05 and 0.01, respectively; n = 4) in 35-week OLETF retinas (Fig. 3E–H). Akt activity, based on phospho-GSK-3α/β level (30 kDa), was significantly lower (twofold; P < 0.01; n = 4) in 35-week-old OLETF rats than in 24-week-old LETO rats (Fig. 3D).

To assess whether PKC-δ affects the association of Akt with its binding partners, we subjected Akt immune complexes to immunoblot analysis using anti-HSP90, -PP2A, and -PP2B antibodies (Fig. 4). Akt binding to HSP90 or PP2A was similar in 24-week-old LETO and OLETF retinas; however, in 35-week OLETF retinas, this association was significantly decreased or increased more than threefold (P < 0.01; n = 4), respectively, compared with 24-week-old LETO rats. Neither PI 3-kinase binding to HSP90 nor PP2A or HSP90 binding to PP2A was detectable in all
groups, there were no differences in PI 3-kinase binding to PKC-δ among groups, and PKC-δ–PP2A binding appeared only in 35-week OLETF rat retinas (data not shown).

HSP90 immunoreactivity was specific only in the ganglion cell layer (GCL), and PP2A- and phospho-Akt (Ser473) signals were positive in the nerve fiber layer (NFL), the inner segment layer, and the GCL in 35-week LETO and OLETF retinas (Fig. 5). HSP90 and phospho-Akt signals in the GCL (Fig. 5, large arrows and arrowheads) were decreased and PP2A signals (Fig. 5, small arrows) were increased in 35-week-old OLETF rats compared with LETO rats. By double-immunostaining with Thy-1 of HSP90, PP2A, and phospho-Akt (Ser473), we confirmed that these positive signals colocalized to ganglion cells (Fig. 5, right panels, insets). PKC-δ immunoreactivity was also observed throughout the retina, including the GCL, and there was no significant difference among 24- and 35-week-old LETO and OLETF rats (data not shown).

In a previous study, we found that PKC-δ activity was greatly increased (4.9-fold; \(P < 0.01; n = 4 \)) in 35-week OLETF retinas compared with LETO retinas, and 5 μmol/l rottlerin abrogated this effect (22). In this study, 5 μmol/l rottlerin treatment also significantly decreased ganglion cell death in 35-week OLETF retinas (2.4-fold; \(P < 0.05; n = 4 \)) compared with DMSO-treated OLETF retinas (Fig.

FIG. 5. Distribution of HSP90, PP2A, and phospho-Akt (Ser473) in retinas of LETO and OLETF rats at 35 weeks. Their positive signals in the GCL are indicated by arrows, arrowheads, and small arrows, respectively. *Insets* show enlarged images of ganglion cells co-labeled with these proteins and Thy-1, a specific ganglion cell marker. Data are representative of three independent experiments. INL, inner nuclear layer; IPL, inner plexiform layer; IS, inner segment layer; ONL, outer nuclear layer; OPL, outer plexiform layer. Bars, 12.5 μm. (Please see http://dx.doi.org/10.2337/db07-1431 for a high-quality digital representation of this figure.)
6). However, rottlerin had no effect on PKC-δ activity or cell death in LETO rats (data not shown).

Rottlerin did not significantly affect PI 3-kinase p85 and phospho-Akt (Thr308) protein levels, although it modestly increased HSP90 levels in 35-week OLETF retinas (Fig. 7A–C). Furthermore, rottlerin greatly decreased PP2A protein levels (2.5-fold; \(P < 0.01; n = 4 \); Fig. 7D) and increased phospho-Akt (Ser473) levels (2.8-fold; \(P < 0.01; n = 4 \); Fig. 7E–G). Rottlerin also blocked the decrease in Akt activity in 35-week OLETF retinas (Fig. 7H). Akt binding to HSP90 or PP2A was significantly increased or decreased, respectively, (2.7- and 2-fold; \(P < 0.01 \), respectively; \(n = 4 \); Fig. 7I–M) in rottlerin-treated 35-week OLETF retinas compared with the untreated group.

We next examined the effect of PKC-δ and HSP90 siRNA treatment on 35-week OLETF and LETO rat retinas. Three microliters siRNA significantly reduced PKC-δ and HSP90 protein expression in OLETF and LETO rats 1 day (30.2 ± 1.1 and 11.1 ± 0.8%; \(P < 0.05 \), respectively; \(n = 4 \)) and 2 days (70 ± 2.1 and 50.1 ± 1.8%; \(P < 0.01 \) and 0.05, respectively; \(n = 4 \)) after the injection, whereas 1 μl siRNA did not show these effects. No effects were shown at 5 days after siRNA injection (data not shown). Distilled water treatment did not show any effect on PKC-δ and HSP90 protein expression in the retinas. Figures 8 and 9

FIG. 6. The effects of rottlerin treatment on ganglion cell death in retinas of LETO and OLETF rats at 35 weeks. The effects of rottlerin (5 μmol/l; 3 μl) were examined 24 h after an intravitreal injection into the right eye of rats. As a control, 0.5% DMSO (3 μl) was introduced into the left vitreous. Data (fold changes) are means ± SE (\(n = 4 \)). **P < 0.01 compared with DMSO-treated LETO and the other groups; †P < 0.05 compared with DMSO- and rottlerin-treated OLETF retinas.

FIG. 7. The effects of rottlerin treatment on protein levels of PI 3-kinase, HSP90, PP2A, and Akt; Akt activity; and the associations with Akt and HSP90 or PP2A in retinas of LETO and OLETF rats at 35 weeks. Immunoblot data are representative of four independent experiments (A and E). B–D and F–H: Fold changes in protein levels after rottlerin treatment. Akt, HSP90, and PP2A immune complexes were subjected to immunoblot analysis using the indicated antibodies (I–K). The immunoblots were reprobed with the immunoprecipitating antibody to account for loading differences. Data are representative blots of four independent experiments. L and M: Fold changes in Akt-HSP90 and Akt-PP2A binding after rottlerin treatment. Data are means ± SE (\(n = 4 \)). *P < 0.05 and **P < 0.01 compared with DMSO-treated LETO and the other groups; †P < 0.05 and ††P < 0.01 compared with DMSO- and rottlerin-treated OLETF retinas. IP, immunoprecipitation; Rott, rottlerin; L (24) and L (35), 24- and 35-week LETO retinas, respectively; O (24) and O (35), 24- and 35-week OLETF retinas, respectively.
show data at 2 days after 3-μl siRNA (500 μmol/l) injection. PKC-δ siRNA significantly decreased PP2A protein levels and phosphatase activity and Akt-PP2A binding in 35-week OLETF retinas (Fig. 8A–C), whereas it modestly increased Akt-HSP90 binding (Fig. 8D–F). PKC-δ silencing also significantly increased phospho-Akt (Ser473) levels and Akt activity but did not affect phospho-Akt (Thr308) levels (Fig. 8G and H). We also observed that ganglion cell death in 35-week OLETF retinas was blocked by PKC-δ siRNA treatment (Fig. 8J–K). Additionally, we found that HSP90-silenced LETO retinas show significant decreases in Akt-HSP90 binding and Akt activity and increases in Akt-PP2A binding and ganglion cell death (Fig. 9A–G).

DISCUSSION
We have demonstrated here that PKC-δ activation is responsible for neuro-retinal apoptosis in diabetic OLETF rats via the inactivation of Akt.
Previously, we found that PKC-δ acts as a selective mediator of neuronal apoptosis in the retinas of 35-week-old OLETF rats (22). In the current study, we demonstrated that apoptosis occurs only in ganglion cells of the 35-week OLETF retinas (Fig. 1) and that PKC-δ activity is greatly increased in 35-week OLETF retinas compared with 24- or 35-week LETO and 24-week OLETF retinas (Fig. 2). PKC-δ immunoreactivity was observed throughout the retina and was highest in the GCL group (data not shown). These results indicate that PKC-δ activation is involved in ganglion cell death in OLETF rat retinas.

The activity of Akt is regulated by its association with a variety of binding partners, and Akt binding to PP2A results in the dephosphorylation and inactivation of Akt, consistent with our results. Moreover, HSP90 physically associates with Akt and disrupts the PP2A-Akt complex, stabilizing Akt activity (13,15,16). As expected, protein levels of PI 3-kinase, HSP90, and phospho-Akt and Akt activity were moderately increased in 24-week OLETF retinas compared with LETO retinas, but these were significantly decreased, with the exception of PI 3-kinase levels, in 35-week-old OLETF rats (Figs. 3 and 4). PI 3-kinase–Akt survival signals were differently regulated in OLETF rat retinas at 24 and 35 weeks. The significant reduction in these signaling components in 35-week-old OLETF rats may reflect the retinal damage associated with the pathological progression of diabetes, whereas these increases in 24-week-old OLETF rats may relate to func-
neuronal death in retinas of diabetic rats via PP2A activation and Akt signaling inhibition. Ganglion cell death occurs early as an initial event in diabetic retinopathy, and the mechanism of this cell death is unknown. Therefore, our data provide new insights into the mechanism of diabetes-associated neuro-retinal damage, showing that specific PKC-δ inhibitors may have potential for therapeutic agents for the prevention of human diabetic retinopathy.

ACKNOWLEDGMENTS

This work has been supported by a grant from the Korean Research Foundation (KRF-2006-005-J04201) and partially by the Medical Research Center program of the Ministry of Science and Technology/Korea Science and Engineering Foundation (R13-2005-012-01001-1).

REFERENCES

1. Okhrimenko H, Lu W, Xiang C, Hamburger N, Kazinirsky G, Brodie C: Protein kinase C-epsilon regulates the apoptosis and survival of glioma cells. Cancer Res 65:7391–7399, 2005
2. Xia S, Forman LW, Faller DV: PKC delta is required for survival of cells expressing activated p21ras. J Biol Chem 282:13190–13210, 2007
3. Murriel CL, Churchill E, Inagaki K, Szweda LI, Mochly-Rosen D: Protein kinase C delta activation induces apoptosis in response to cardiac ischemia and reperfusion damage: a mechanism involving BAD and the mitochondria. J Biol Chem 279:47885–47901, 2004
4. Suzuki E, Honda K, Toledo MS, Hakomori S, Suzuki E, Honda K, Toledo MS, Hakomori S: Sphingosine-dependent apoptosis: a unified concept based on multiple mechanisms operating in concert. Proc Natl Acad Sci U S A 101:14788–14793, 2004
5. Li L, Sampat K, Hu N, Zakari J, Yusu SH: Protein kinase C negatively regulates Akt activity and modifies UVC-induced apoptosis in mouse keratinocytes. J Biol Chem 281:3237–3243, 2006
6. Lee YI, Kang-Park S, Do SJ, Lee YI: The hepatitis B virus X protein activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem 276:10669–10677, 2001
7. Pung MM, Rohwer F, McGuire KL: IL-2 activation of a PKD-dependent STAT3 serine phosphorylation pathway in primary human T cells. Cell Signal 15:625–636, 2003
8. Ha RS, Kim KM, Kwon YG, Bai SK, Nam WD, Yoo YM, Kim PK, Chung HT, Billiar TR, Kim YM: Nitric oxide prevents 6-hydroxydopamine-induced apoptosis in PC12 cells through cGMP-dependent PKD1/Akt activation. FASEB J 17:1036–1047, 2003
9. Sandra F, Matsuki NA, Takeuchi H, Ikebe T, Kanematsu T, Ohishi M, Hirata M: TNF inhibited the apoptosis by activation of Akt serine/threonine kinase in the human head and neck squamous cell carcinoma. Cell Signal 14:771–778, 2002
10. Boniguer-Bercedero I, Rodelants FM, Thorner J, Nombela C, Molina M, Cid VJ: Reconstitution of the mammalian P3K/PTEN/Akt pathway in yeast. Biochem J 390:613–623, 2005
11. Andrabi S, Gjoerup OV, Kean JA, Roberta TM, Schaffhausen B: Protein phosphatase 2A regulates life and death decisions via Akt in a context-dependent manner. Proc Natl Acad Sci U S A 104:19011–19016, 2007
12. Ugi S, Imamura T, Maegawa H, Egawa K, Yoshizaki T, Shi K, Obata T, Ebina Y, Kashiwagi A, Olefsky JM: Protein phosphatase 2A negatively regulates insulin’s metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes. Mol Cell Biol 24:8778–8789, 2004
13. Sato S, Fujita N, Tsuruo T: Modulation of Akt kinase activity by binding to HSP90. J Biol Chem 274:26029–26036, 2000
14. Van Kanegan MJ, Adams DG, Wadzinski BE, Strack S: Distinct protein phosphatase 2A hetrotrimers modulate growth factor signaling to extra-cellular signal-regulated kinases and Akt. J Biol Chem 281:29800–29806, 2006
15. Haendeler J, Hoffmann J, Rahmann S, Zeiher AM, Dimmeler S: Regulation of telomerase activity and anti-apoptotic function by protein-protein interaction and phosphorylation. FEMS Lett 536:180–186, 2003
16. Koga F, Xu W, Karpova TS, McNally JG, Baron R, Neckers L: Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proc Natl Acad Sci U S A 103:11318–11322, 2006
17. Lee YJ, Lee DH, Cho CK, Bae S, Jinon GJ, Lee SJ, Soh JW, Lee YS: HSP25 inhibits protein kinase C delta-mediated cell death through direct interaction. J Biol Chem 280:18108–18119, 2005
18. Liu Z, Liu X, Nakayama KI, Nakayama K, Ye K: Protein kinase C-delta...
phosphorylates Ebp1 and prevents its proteolytic degradation, enhancing cell survival. *J Neurochem* 100:1278–1288, 2007

19. Jesmin S, Sakuma I, Hattori Y, Fujii S, Kitabatake A: Long-acting calcium channel blocker benidipine suppresses expression of angiogenic growth factors and prevents cardiac remodelling in a type II diabetic rat model. *Diabetologia* 45:402–415, 2002

20. Saito F, Kawaguchi M, Izumida J, Asakura T, Maehara K, Maruyama Y: Alteration in haemodynamics and pathological changes in the cardiovascular system during the development of type 2 diabetes mellitus in OLETF rats. *Diabetologia* 46:1161–1169, 2003

21. Huang Q, Bu S, Yu Y, Guo Z, Ghatnekar G, Bu M, Yang L, Lu B, Fong Z, Liu S, Wang F: Dinzoxide prevents diabetes through inhibiting pancreatic beta-cells from apoptosis via Bcl-2/Bax rate and p38-beta mitogen-activated protein kinase. *Endocrinology* 148:81–91, 2007

22. Kim YH, Choi MY, Kim YS, Lee JH, Park CH, Kang SS, Choi WS, Cho GJ: Protein kinase Cδ regulates anti-apoptotic αB-crystallin in the retina of type 2 diabetes. *Neurobiol Dis* 28:203–303, 2007

23. Kim YH, Kim YS, Noh HS, Kim HJ, Cho GJ, Choi WS: Expression of 14-3-3 zeta and interaction with protein kinase C in the rat retina in early diabetes. *Diabetologia* 48:1411–1415, 2005

24. Kim YH, Kim YS, Kang SS, Cheon EW, Park SK, Lee BJ, Choi WS, Cho GJ: Changes in rhodopsin kinase and transducin in the rat retina in early-stage diabetes. *Exp Eye Res* 80:763–766, 2005

25. Kim YS, Kim YH, Cheon EW, Park WM, Yoo JM, Kang SS, Cho GJ, Choi WS: Retinal expression of clusterin in the streptozotocin-induced diabetic rat. *Brain Res* 976:53–59, 2003

26. Kim YH, Chung IV, Choi MY, Kim YS, Lee JH, Park CH, Kang SS, Roh GS, Choi WS, Yoo JM, Cho GJ: Triamcinolone suppresses retinal vascular pathology via a potent interruption of proinflammatory signal-regulated activation of VEGF during a relative hypoxia. *Neurobiol Dis* 26:569–576, 2007

27. Zhang D, Kanthasamy A, Yang Y, Anantharam V, Kanthasamy A: Protein kinase C delta negatively regulates tyrosine hydroxylase activity and dopamine synthesis by enhancing protein phosphatase-2A activity in dopaminergic neurons. *J Neurosci* 27:5349–5362, 2007

28. Grossoni VC, Falbo KB, Kazanietz MG, de Kier Joffe ED, Urtreger AJ: Protein kinase C delta enhances proliferation and survival of murine mammary cells. *Mol Carcinog* 46:381–390, 2007

29. Zhong M, Lu Z, Foster DA: Downregulating PKC delta provides a PI3K-Akt-independent survival signal that overcomes apoptotic signals generated by overexpression. *Oncogene* 21:1071–1078, 2002

30. Liao YF, Hung YC, Chang WH, Tsay GJ, Hour TC, Hung HC, Liu GY: The PKC delta inhibitor, rottlerin, induces apoptosis of haematopoietic cell lines through mitochondrial membrane depolarization and caspases’ cascade. *Life Sci* 77:707–719, 2005

31. Stephen, PD: Rottlerin is a mitochondrial uncoupler that decreases cellular ATP levels and indirectly blocks protein kinase Cδ tyrosine phosphorylation. *J Biol Chem* 276:37986–37992, 2001

32. Tillman DM, Izaradjiene K, Szucs KS, Douglas L, Houghton JA: Rottlerin sensitizes colon carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via uncoupling of the mitochondrial independent of protein kinase C. *Cancer Res* 63:5118–5125, 2003

33. Xu SZ: Rottlerin induces calcium influx and protein degradation in cultured lenses independent of effects on protein kinase C delta. *Basic Clin Pharmacol Toxicol* 101:459–464, 2007

34. Sato S, Fujita N, Tsuurno T: Regulation of kinase activity of 3-phosphoinositide-dependent protein kinase-1 by binding to 14-3-3. *J Biol Chem* 277:39360–39367, 2002

35. Gschwendt M, Muller HJ, Kielbassa K, Zang R, Kittstein W, Rinche G, Marks F: Rottlerin, a novel protein kinase inhibitor. *Biochem Biophys Res Commun* 199:93–98, 1994

36. Kurosu T, Tsuji K, Kida A, Koyama T, Yamamoto M, Miura O: Rottlerin synergistically enhances imatinib-induced apoptosis of BCR/ABL-expressing cells through its mitochondrial uncoupling effect independent of protein kinase C-delta. *Oncogene* 26:2975–2987, 2006