CALICE SiW ECAL - Development and test of the chip-on-board PCB solution.

A. Irles on behalf of the CALICE collaboration

Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

E-mail: irles@lrl.in2p3.fr

ABSTRACT: The highly granular silicon-tungsten electromagnetic calorimeter (SiW ECAL) is the reference design of the ECAL for the International Large Detector (ILD) concept, one of the two detector concepts proposed for the future International Linear Collider (ILC). Prototypes for this type of detector are developed within the CALICE Collaboration. This contribution reports on the development of an ultra-thin PCB called Chip-on-Board (COB) that is equipped with wirebonded ASICs and pixelated silicon wafers. This set will form the basic unit of detection of the SiW ECAL. It will favour the design of an ultra compact calorimeter since these boards feature a thickness of 1.2 mm to be compared with the 3 mm of the default solution variant using ASICs in BGA packaging. We report also on the first results obtained with the COB boards on a beam test at DESY.

KEYWORDS: Calorimeter methods, calorimeters, Si and pad detectors

1Corresponding author.
1 Introduction

The next large accelerator based particle physics experiment will, most possibly, be an e^+e^- collider at a relatively high energy. Projects of different natures are currently under discussion. One particular example is the International Linear Collider (ILC) which has produced a technical design report (TDR) in 2013 [1]. This project offers a wide high precision physics program based on collisions of polarized electron and positron beam at a nominal centre-of-mass energy of 250 GeV and with potential runs at energies spanning between 91 GeV - 1 TeV. Therefore, the ILC will be a Higgs boson and $f\bar{f}$ factory.

To accomplish the ambitious physics program of the ILC, two multipurpose detectors have been proposed: the International Large Detector (ILD) and the Silicon Detector (SiD) [2]. Both detectors are optimized to use the Particle Flow (PF) techniques [3, 4]. These techniques require maximizing the information provided in each collision in order to fully reconstruct and separate all particles generated. This implies the construction of detectors with high granularity and featuring minimum dead material. This is particularly challenging for the calorimetric systems, which also are required to be very compact. The R&D of highly granular calorimeters for future linear colliders is conducted within the CALICE collaboration [5]. For further information about PF and CALICE R&D we refer the reader to reference [6] and references therein.

In this document, we discuss some of the developments of the technological prototype of the silicon tungsten electromagnetic calorimeter [7], SiW ECAL. This calorimeter is the reference design for the electromagnetic calorimeter of the ILD. It will be placed inside a magnetic coil that will provide 3.5-4 T. The baseline design consists in a detector of 20-24 radiation lengths (X_0) integrated in a volume of \sim 20 cm. In this volume, the SiW ECAL has to contain the active material (silicon, Si) and the absorber (tungsten, W). The SiW ECAL will feature $\sim 10^8$ channels, each one reading out one of the 5×5 mm2 squared cells in which the silicon sensors will be segmented in. Due to these requirements, the SiW ECAL design foresees that the very-front-end (VFE) electronics will be embedded in the modules together with the silicon sensors, the PCB and the tungsten plates. Each of these detector layers will have, in average, 10000 channels. The data acquisition will be based on self-triggering and zero suppression mode for all channels independently. The strict space
constrains leaves no space to any active cooling system between modules and therefore all heat has
to be dissipated through the structure. Therefore, the overall power consumption has to be reduced
to the minimum. For that, the SiW ECAL will exploit the special bunch structure foreseen for the
ILC: the e^+e^- bunch trains will arrive within acquisition windows of $\sim 1\text{-}2 \text{ ms}$ width separated
by $\sim 200 \text{ ms}$. During the idle time, the bias currents of the electronics will be switched off. This
technique is usually denominated power pulsing. In addition, only a volume of about $6 \times 18 \times 0.2$
 cm^3 is available for the digital readout and the power supply of the individual detector layers.

In this document we focus on the development of a new 1.2 mm thick 11-layer PCB with
wirebonded ASICs denominated COB (chip-on-board). We also presented in this conference a
newly developed front-end system based on the SL-Board readout and interface card. This is
described in [8]. All COB boards were readout using this new DAQ in a performance beam test
at DESY, as discussed in section 3. The performance of these objects at beam test at DESY is
discussed in Section 3.

2 Active Signal Unit (ASU)

The entity of sensors, thin PCB (printed circuit boards) and ASICs (application-specific integrated
circuits) is called Active Signal Units or ASU. Each individual ASU has a lateral dimension of
$18\times18 \text{ cm}^2$. Four silicon wafers are glued onto it. The ASU is equipped with 16 ASIC for the read
out and features 1024 square pad sensors (p on n-bulk type) of $5.5\times5.5 \text{ mm}$. The ASICs are the
version 2a of the SKIROC [9, 10] (Silicon pin Kalorimeter Integrated ReadOut Chip) ASIC which
has been designed for the readout of the Silicon PIN diodes. This ASIC, as the version 2, works in
self-trigger mode but still without automatic zero suppression. Each ASU can hold up to 4 sensors
of $90\times90 \text{ mm}^2$, each subdivided in 256 pads. Each of the sensor pads is connected to the ASU pads
through a dot of conductive glue. The sensors are glued to the PCBs as explained in [7]. The bias
voltage needed for the sensor depletion is provided through a conductive foil of copper and kapton
glued to the back of the sensor and connected to the high voltage through the interface card or the
SL-Board. All previous published results of the technological prototype of the SiW ECAL [7, 11]
have been obtained with ASUs equipped with ASICs in different plastic/ceramic packagings. This
generation of ASUs is denominated as FEV. So far, the most compact versions were the FEV10-13
ASUs [7, 12, 13], equipped with 16 BGA packaged ASICs. These boards have a thickness of
$3.2\text{-}3.5 \text{ mm}$ including components and connectors.

2.1 Ultra thin ASU based on the chip-on-board (COB)

An alternative concept for the ASU has been proposed and produced. It consists on a ultra thin
11-layer alternative PCB design in which the ASICs in semiconductor packaging are directly glued
on board of the PCB in dedicated cavities and wirebonded to the PCB. This concept of ASU is
denominated chip-on-board ASU or COB. It has been designed to be compatible with the batch
of ASUs that were produced and operative at the time of the design (FEV10-12), \textit{i.e.} featuring
the same dimensions, number and location of pads, connectors, ASICs, same high voltage supply
scheme etc. For the beam test described in Section 3, two COB boards were equipped with a 90×90
 mm^2 Si sensor of $500\mu\text{m}$ thickness. As for the rest of FEVs the sensors are glued to the PCBs as
explained in [7]. Due to the fragility of the sensor, an excellent planarity of PCB is required in
order to not damage the sensor through mechanical stress once it is glued. This is satisfied by all COBs produced in this last batch, showing a deviation from the planarity equal or lower than 0.5 mm. Two photographs showing the COB are shown in Fig. 1. This made possible the gluing of the silicon sensors to the back of the COB by an automatized gluing robot.

It is important to notice that due to the tight specifications on the total thickness of the PCB, the COB ASU does not allow any space for extra components such as decoupling capacitances for the ASIC power supplies, in contrast with the FEV generation that has up to 4 decoupling capacitances of few 100 μF per ASIC in order to reduce disturbances in the power supplies that create spurious signals that may compromise the data acquisition. These signals are observed as consecutive triggers bunchs that may involve many channels and may fill out the 15 analogue memory cells of the ASIC quicker than the real signals. They are usually denominated as retriggers and they are described in detail in [11]. If they are not saturating the memory of the ASICs, these retriggers can easily be filter-out by studying the time distribution of the triggers.

3 Performance in an electron beam test

For the beam test conducted at DESY in summer 2019, up to 9 ASUs were equipped and tested. This was also the first beam test in which the new ultra compact front-end solution based on the SL-Board system was used. The nine ASUs were hosted in the same mechanical structure which was designed to provide maximal flexibility to adapt to the different dimensions of the different modules and also to the different front-ends. The mechanical structure, made in aluminum and plastic, had two different patch panels to host the new and old front-end solutions.
We tested two COBs. Both of them were only partially equipped with one silicon sensor of 500 µm of thickness 90 × 90 mm² of surface. In addition, one of the COB was equipped with four extra decoupling capacitances (120 µF each) between the analogue power supply layer of the board and the ground. We placed these decoupling capacitances near the connector pads, since the board has no space for them near the ASICs i.e. effectively increasing the total thickness of the PCB. The purpose of adding these capacitances was to compare the performance of both COBs in order to establish what are the minimal requirements of a new design iteration. The rest of the ASU were of the FEV generation: two FEV12 and five FEV13. The FEV12 were each one equipped with a silicon sensor of 500 µm of thickness 90 × 90 mm² as the COB. Four of the FEV13 were each one equipped four silicon sensors of 650 µm of thickness. The last FEV13 was equipped with four silicon sensors of 320 µm of thickness.

The beamline at DESY provides continuous electron beams in the energy range of 1 to 6 GeV with rates from a few hundreds of Hz to a few kHz with a maximum of ∼3 kHz for 2-3 GeV. The full program took two weeks and most of it was dedicated to the study of the MIP response of the different modules. This can be seen in the first two plots in Fig. 2. There we show the MIP spectrum for one of the COBs and the FEV13s. In both cases, the same noise filtering, pedestal correction and fit distribution procedures as explained in [7] are applied. We observed that the COB in which we had added extra decoupling capacitances feature a comparable level of retriggers than the ASUs based on the BGA packaged ASICs, making possible the use of all the 15 analogue memory cells of the ASIC. For the COB without decoupling capacitances, only the last 13 of these memory cells were usable. It is important to remark that FEV boards based in BGA packaged ASICs have more than ten times more decoupling capacitances for noise filtering. Detailed studies on this issue are being conducted and will be the main topic of a future beam test.

4 Conclusions and prospects.

In this document we have summarized the status and performance in beam test of SiW ECAL prototype of CALICE. In particular, we report on the development and test of the ultra thin PCB denominated COB. This board is the result of a long R&D process but this is the first time to be operated in a beam test. The performance of this board is very promising and it seems to be competitive with the other type of PCBs, although more detailed test in a beam facility will be conducted to study it in better detail. A new beam test is planned in March 2020 also at DESY. For this beam test, a calorimeter of up to 15 modules will be tested using the new DAQ. Among these 15 modules we foresee to have 2-3 being based on the COB solution.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 Research and Innovation program under Grant Agreement no. 654168. This work was supported by the P2IO LabEx (ANR-10-LABX-0038), excellence project HIGHTEC, in the framework ’Investissements d’Avenir’ (ANR-11-IDEX-0003-01) managed by the French National Research Agency (ANR). The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement,
Figure 2. First plot: MIP distribution for all channels readout by one ASIC of the COB boards with extra decoupling capacitances. We observe in this plot a bump around the expected value of 2 MIPs: it is due to events in which two electrons cross together the detector. Second plot: equivalent distributions obtained during the same run for all the FEV13s modules. In this case, the small peak in 2 MIPs is not observed, probably due to a larger spread of the calibration values between cells. Last plot: event display, again for the same run, showing the signal of all modules for the same event. We see that two electrons separated by ~ 50 mm interacted with the detector at the same time. One of them even started to shower in the middle of the detector. This event display was obtained before performing any offline module alignment.

PCOFUND-GA-2013-609102, through the PRESTIGE programme coordinated by Campus France. The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).
References

[1] T. Behnke, J. E. Brau, B. Foster, J. Fuster, M. Harrison, J. M. Paterson et al., *The International Linear Collider Technical Design Report - Volume 1: Executive Summary*, 1306.6327.

[2] H. Abramowicz et al., *The International Linear Collider Technical Design Report - Volume 4: Detectors*, 1306.6329.

[3] J.-C. Brient and H. Videau, *The Calorimetry at the future e+ e- linear collider*, *eConf* C010630 (2001) E3047, [hep-ex/0202004].

[4] V. Morgunov and A. Raspereza, *Novel 3-D clustering algorithm and two particle separation with tile HCAL*, in *Linear colliders. Proceedings, International Conference, LCWS 2004, Paris, France, April 19-23, 2004*, pp. 431–436, 2004. physics/0412108.

[5] CALICE collaboration, C. Collaboration.

[6] F. Sefkow, A. White, K. Kawagoe, R. Poeschl and J. Repond, *Experimental Tests of Particle Flow Calorimetry*, *Rev. Mod. Phys.* 88 (2016) 015003, [1507.05893].

[7] K. Kawagoe et al., *Beam test performance of the highly granular siw-ecal technological prototype for the ilc*, *Nucl. Instrum. Meth.* A950 (2020) 162969.

[8] CALICE collaboration, D. Breton, A. Irles, J. Jeglot, J. Maalmi, R. Poeschl and D. Zerwas, *CALICE SiW ECAL - Development and performance of a highly compact digital readout system*, in *International Workshop on Future Linear Colliders (LCWS 2019) Sendai, Miyagi, Japan, October 28-November 1, 2019*, 2020. 2002.09556.

[9] S. Callier, F. Dulucq, C. de La Taille, G. Martin-Chassard and N. Seguin-Moreau, *SKIROC2, front end chip designed to readout the Electromagnetic CALorimeter at the ILC*, *JINST* 6 (2011) C12040.

[10] T. Suehara et al., *Performance study of SKIROC2/A ASIC for ILD Si-W ECAL*, *JINST* 13 (2018) C03015, [1801.02024].

[11] M. S. Amjad et al., *Beam test performance of the SKIROC2 ASIC*, *Nucl. Instrum. Meth.* A778 (2015) 78–84.

[12] CALICE collaboration, R. Poeschl, *Recent results of the technological prototypes of the CALICE highly granular calorimeters*, in *15th Vienna Conference on Instrumentation (VCI2019) Vienna, Austria, February 18-22, 2019*, 2019. 1904.02825.

[13] CALICE collaboration, C. Collaboration, *Development of siw-ecal technological prototype for the international large detector (contribution to ieee2018)*.