A NOTE ON VERTEX COLORINGS OF PLANE GRAPHS

IGOR FABRICIĆ
JOCHEN HARANT
STANISLAV JENDROL
AND
ROMAN SOTÁK

Institute of Mathematics
P.J. Šafárik University
Košice, Slovak Republic

Institut für Mathematik
Technische Universität
Ilmenau, Germany

Abstract

Given an integer valued weighting of all elements of a 2-connected plane graph G with vertex set V, let \(c(v) \) denote the sum of the weight of \(v \in V \) and of the weights of all edges and all faces incident with \(v \). This vertex coloring of \(G \) is proper provided that \(c(u) \neq c(v) \) for any two adjacent vertices \(u \) and \(v \) of \(G \). We show that for every 2-connected plane graph there is such a proper vertex coloring with weights in \(\{1, 2, 3\} \). In a special case, the value 3 is improved to 2.

Keywords: plane graph, vertex coloring.

2010 Mathematics Subject Classification: 05C10, 05C15.

\(^1\)This work was supported by the Slovak Science and Technology Assistance Agency under the contract No. APVV-0023-10 and by Slovak VEGA grant No. 1/0652/12.
1. Introduction

We consider a simple, finite, and undirected graph G with vertex set V and edge set E. If G is plane, then F denotes the set of faces of G. The set $V \cup E$ and the set $V \cup E \cup F$ is the set of elements of G. For further notation and terminology, we refer to [7] and [10].

Colorings of a graph defined by weightings (labellings) of elements of that graph are popular topics in research. Here we will consider vertex colorings of G, this is a mapping c of V into the set of positive integers ([13]).

For each vertex $v \in V$, let $S(v)$ be a nonempty subset of the set of elements of G and $S = \{S(v) \mid v \in V\} = \{S(v)\}$. For a positive integer k we consider a weighting of $\bigcup_{v \in V} S(v)$, this is a mapping w from $\bigcup_{v \in V} S(v)$ into the set of integers i with $1 \leq i \leq k$.

Furthermore, we define the corresponding vertex coloring c by $c(v) = \sum_{x \in S(v)} w(x)$ for $v \in V$. The vertex coloring c is called irregular if $c(u) \neq c(v)$ for any two vertices u and v of G, and proper, if $c(u) \neq c(v)$ for any two adjacent vertices u and v of G, unless $S(u) = S(v)$.

Moreover, for fixed S, let $k_i(S)$ and $k_p(S)$ be the minimum k such that there exists a corresponding irregular coloring and a corresponding proper coloring, respectively. If $S = \bigcup_{v \in V} S(v)$ is ordered and the k-th member of S gets the weight 2^k, then $k_p(S) \leq k_i(S) < 2^{|S|}$.

Note that $k_i(\{v\}) = |V|$ and $k_p(\{v\}) = \chi(G)$, where $\chi(G)$ is the chromatic number of G ([13]).

Modifying the sets $S(v)$, next we will survey several coloring concepts considered so far. The case $S = \{N_V(v)\}$, where $N_V(v)$ denotes the set of vertices adjacent to $v \in V$, was recently considered in [6] and [9]. The following result of Norin can be found there.

Theorem 1 [6]. Let G be a graph with chromatic number $\chi(G) = r$ and coloring number $\text{col}(G) = k$. Let n_1, \ldots, n_r be pairwise coprime integers with $n_i \geq k$ for $i = 1, \ldots, r$. Then $k_p(\{N_V(v)\}) \leq n_1 n_2 \cdots n_r$.

By taking $n_1 = 7$, $n_2 = 8$, $n_3 = 9$, and $n_4 = 11$, it follows from Theorem 1 that $k_p(\{N_V(v)\}) \leq 5544$ for a planar graph G. In [6], this bound is improved to 468. Moreover, it is shown there that $k_p(\{N_V(v)\}) \leq 36$ for a 3-colorable planar graph, that $k_p(\{N_V(v)\}) \leq 4$ for a planar graph of girth ≥ 13, and that $k_p(\{N_V(v)\}) \leq 2$ if G is a tree.

Recently [4], it was proved that $k_p(\{N_V[v]\}) \leq \Delta^2 - \Delta + 1$ for a graph with maximum degree Δ, where $N_V[v] = \{v\} \cup N_V(v)$ for $v \in V$, $k_p(\{N_V(v)\}) \leq \Delta - 1$ if G is bipartite, and $k_p(\{N_V[v]\}) \leq 2$ if G is a tree.

Let $N_E(v)$ denote the set of edges incident with $v \in V$. Karoński, Łuczak, and Thomason posed the following conjecture for graphs having no component K_2.
Conjecture 2 [16]. $k_p(\{N_E(v)\}) \leq 3$.

We remark that Conjecture 2 is true for 3-colorable graphs [16] and $k_p(\{N_E(v)\}) \leq 30$ is shown in [1]. This bound is reduced to 16 in [2] and to 13 in [18]. The best known result is $k_p(\{N_E(v)\}) \leq 5$ by Kalkowski, Karoński, and Pfender [15].

Note that $k_i(\{N_E(v)\})$ is called the irregularity strength of G [8, 11]. The latest results and a survey about this topic can be found in [9].

The case $S = \{\{v\} \cup N_E(v)\}$ was firstly introduced by Bača, Jendrol’, Miller, and Ryan in [5]. Here, $k_i(\{\{v\} \cup N_E(v)\})$ is called the total vertex irregularity strength. Motivated by [5] and [15], Przybyło and Woźniak posed the following conjecture.

Conjecture 3 [17]. $k_p(\{\{v\} \cup N_E(v)\}) \leq 2$.

In addition, Przybyło and Woźniak showed

Theorem 4 [17]. $k_p(\{\{v\} \cup N_E(v)\}) \leq \min\{11, 1 + \lfloor \chi(G)/2 \rfloor\}$.

It follows from Theorem 4 that Conjecture 3 is true for 3-colorable graphs. The breakthrough is done by Kalkowski [6] showing that $k_p(\{\{v\} \cup N_E(v)\}) \leq 3$ by using the weights for the vertices in $\{1, 2\}$ and the weights for the edges in $\{1, 2, 3\}$.

Motivated by the above mentioned conjectures and results and by the paper of Wang and Zhu [19], Jendrol’ and Šugerek [12] introduced a concept for a 2-connected plane graph G by considering $k_p(\{\{v\} \cup N_E(v) \cup N_F(v)\})$, where $N_F(v)$ denotes the set of faces of G incident with v. In [4], $k_i(\{\{v\} \cup N_E(v) \cup N_F(v)\})$ is called the entire vertex irregularity strength.

Jendrol’ and Šugerek formulated the following conjecture

Conjecture 5 [12]. *If G is a 2-connected plane graph, then $k_p(\{\{v\} \cup N_E(v) \cup N_F(v)\}) \leq 2$.*

In Section 2, we will show that $k_p(\{\{v\} \cup N_E(v) \cup N_F(v)\}) \leq 3$ for each 2-connected plane graph G and that Conjecture 5 is true, if the subgraph of G spanned by the vertices of degree at least 4 is bipartite.

2. Results

Jendrol’ and Šugerek proved

Theorem 6 [12]. *If G is a 2-connected plane graph, then $k_p(\{\{v\} \cup N_E(v) \cup N_F(v)\}) \leq \chi(G)$.*

We will show
Theorem 7. If G is a 2-connected plane graph, then $k_p(\{\{v\} \cup N_E(v) \cup N_F(v)\}) \leq 3$.

Proof. From the Four Color Theorem [3], we know that $\chi(G) \leq 4$. If $\chi(G) \leq 3$, then we are done by Theorem 6.

Suppose $\chi(G) = 4$ and let $f(v) \in \{1, 2, 3, 4\}$ for $v \in V$ be a proper vertex coloring of G. Now we associate the following weights to the members of $S = V \cup E \cup F$: put $w(v) = f(v)$ for $v \in V(G)$, $w(e) = 2$ for $e \in E$, and $w(\alpha) = 2$ for $\alpha \in F$. Clearly, $c(v) \equiv f(v) \pmod{4}$ for $v \in V$, hence, $c(u) \neq c(v)$ if u and v are adjacent vertices of G.

Next we gradually relabel vertices weighted with weight 4. Therefore, let u and v be two adjacent vertices of G connected by the edge e with $w(u) = 4$, $w(v) \leq 3$ and $w(e) = 2$. We relabel u, v, and e as follows.

If $w(v) = 2$ or 3, then the new labels are $w^*(u) = 3$, $w^*(v) = w(v) - 1$, and $w^*(e) = 3$. If $w(v) = 1$, then $w^*(u) = 1$, $w^*(v) = 2$ and $w^*(e) = 1$.

Note that $c(v) \equiv f(v) \pmod{4}$ for each $v \in V$ after this relabeling and that each edge incident with a remaining vertex of weight 4 still has weight 2 (i.e. the relabelling can proceed). □

Conjecture 5 is true for every 2-connected bipartite plane graph, see Theorem 6. We prove the next theorem supporting Conjecture 5, too.

Theorem 8. Let G be a 2-connected plane graph and H be the subgraph of G induced by all vertices of degree at least 4. If H is empty or bipartite, then $k_p(\{\{v\} \cup N_E(v) \cup N_F(v)\}) \leq 2$ and there is a corresponding vertex coloring c such that the weights of all faces of G equal 2.

Proof. Case 1: H is the empty graph. If G is isomorphic to K_4, then the assertion is easily checked.

Hence, we may assume that $\chi(G) \leq 3$. Using Theorem 4, we may assume that there is a coloring c' realizing $k_p(\{\{v\} \cup N_E(v)\}) \leq 2$. We extend c' to a coloring c realizing $k_p(\{\{v\} \cup N_E(v) \cup N_F(v)\}) \leq 2$ by the additional weights $w(\alpha) = 2$ for every face $\alpha \in F$. Note that all vertices of G have degree 2 or 3 and that $c(v) = c'(v) + 2d$ for a vertex $v \in V$ of degree d. Hence, $c(u) \neq c(v)$ for any two adjacent vertices $u, v \in V$ of the same degree.

It remains to consider adjacent vertices $u, v \in V$ of degree 2 and 3, respectively. Let e be the edge connecting u and v. Since $w(\alpha) = 2$ for every face $\alpha \in F$, $c(u) \leq w(e) + 8$ and $c(v) \geq w(e) + 9$ and we are done in Case 1.

Case 2: H is a non-empty graph. Let $V(H)$ and $E(H)$ denote the vertex set and the edge set of H, respectively. Let the graph G' be obtained from G by simultaneously replacing each vertex $v \in V(H)$ of degree d as follows. Since G is embedded into the plane, let $e_1, \ldots, e_d \in E$ be the edges of E incident
with v in clockwise order. Delete v, add the cycle on \{v_1, \ldots, v_d\} with edge set \{v_1v_2, v_2v_3, \ldots, v_{d-1}v_d, v_dv_1\}, and let e_i be incident with v_i for $i = 1, \ldots, d$.

Although v is replaced by v_i, the edge e_i is considered to be an edge of G and an edge of G' as well ($i = 1, \ldots, d$), thus, $E \subset E(G')$. A vertex in $V \setminus V(H)$ is also considered to be a vertex of G', hence, $V \setminus V(H) \subset V(G')$. Obviously, $G' = (V(G'), E(G'), F(G'))$ is a plane 2-connected graph of maximum degree 3.

By Case 1, G' admits a weighting w' with $S'(v) = \{v\} \cup N_{E(G')}(v) \cup N_{F(G'}(v)$ for $v \in V(G')$ and $k_p(\{v\} \cup N_{E(G')}(v) \cup N_{F(G'}(v) | v \in V(G')) \leq 2$ for the corresponding vertex coloring c' and $w'(\alpha) = 2$ for every face $\alpha \in F(G')$. We will define step by step a weight $w(x) \in \{1, 2\}$ for all $x \in S = V \cup E \cup F$ as follows.

For each face $\alpha \in F$ we put $w(\alpha) = 2$. If $v \in V \setminus V(H)$ and $e \in E \setminus E(H)$, then let $w(v) = w'(v)$ and $w(e) = w'(e)$, respectively. Note that the weight $w(x)$ is already defined for all $x \in S(v) = \{v\} \cup N_{E}(v) \cup N_{F}(v)$, if $v \in V \setminus V(H)$, hence, $c(u) \neq c(v)$ for two adjacent vertices of $V \setminus V(H)$.

Furthermore, let $w(e) = 2$ for all $e \in E(H)$. It remains to define $w(v)$ for $v \in V(H)$ and, finally, to show that $c(u) \neq c(v)$ for two adjacent vertices $u \in V \setminus V(H)$ and $v \in V(H)$. Therefore, consider an arbitrary component (a bipartite graph) K of H and let v_0 be a fixed vertex of K. If $v \in V(K)$, then let $\text{dist}(v)$ be the distance of v to v_0 in K. Note that $\text{dist}(v_0) = 0$ and that $\text{dist}(u) \neq \text{dist}(v)$ for any two adjacent vertices $u, v \in V(K)$, otherwise we have an odd cycle in K.

We put $w(v_0) = 2$ and determine $c(v_0)$. Consider $u \in V(K)$ with $\text{dist}(u) > 0$ and let $w(v)$ and, hence, also $c(v)$ be already defined for all $v \in V(K)$ with $\text{dist}(v) < \text{dist}(u)$.

Since $w(x)$ is defined for $x \in S(u) \setminus \{u\}$, let $t \in \{1, 2\}$ be chosen such that $t + \sum_{x \in S(u) \setminus \{u\}} w(x) \not\equiv (c(v_0) + \text{dist}(u)) \mod 2$ and put $w(u) = t$. Note that the colors $c(x)$ of all vertices x of K having the same value of $\text{dist}(x)$ are of the same parity. Thus, we may assume now that $w(v)$ is defined for all $v \in V(H)$ and that $c(u) \neq c(v)$ for any two adjacent vertices $u, v \in V(H)$.

Eventually, let $u \in V \setminus V(H)$ and $v \in V(H)$ be connected by the edge e and it remains to show that $c(u) \neq c(v)$. Since the degree of u is at most 3, $c(u) = \sum_{x \in S(u)} w(x) \leq w(e) + 12$. Let v have degree $d \geq 4$ in G. If $v = v_0$ then $w(v_0) = 2$. If $v \neq v_0$, then at least one edge of H is incident with v and such an edge has weight 2. In both cases, it follows $c(v) \geq 2d + (d - 1) + 2 + w(e) = 3d + 1 + w(e) \geq w(e) + 13$, since $w(\alpha) = 2$ for each face $\alpha \in F$.

References

[1] L. Addario-Berry, K. Dalal, C. McDiarmid, B.A. Reed and A. Thomason, Vertex-coloring edge-weightings, Combinatorica 27 (2007) 1–12.

doi:10.1007/s00493-007-0041-6
[2] L. Addario-Berry, K. Dalal and B.A. Reed, Degree constrained subgraphs, Discrete Appl. Math. 156 (2008) 1168–1174. doi:10.1016/j.dam.2007.05.059

[3] K. Appel and W. Haken, Every planar map is four-colorable, I. Discharging, Illinois J. Math. 21 (1977) 429–490.

[4] M. Axenovich, J. Harant, J. Przybyło, R. Soták and M. Voigt, A note on adjacent vertex distinguishing colorings number of graphs, Electron. J. Combin. (submitted).

[5] M. Bača, S. Jendrol’, M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378–1388. doi:10.1016/j.disc.2005.11.075

[6] T. Bartnicki, B. Bosek, S. Czerwiński, J. Grytczuk, G. Matecki and W. Żelazny, Additive colorings of planar graphs, Graphs Combin. 30 (2014) 1087–1098. doi:10.1007/s00373-013-1331-y

[7] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).

[8] G. Chartrand, M.S. Jacobson, L. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187–192.

[9] S. Czerwiński, J. Grytczuk and W. Żelazny, Lucky labelings of graphs, Inform. Process. Lett. 109 (2009) 1078–1081. doi:10.1016/j.ipl.2009.05.011

[10] R. Diestel, Graph Theory (Springer, 2000).

[11] A. Frieze, R.J. Gould, M. Karoński and F. Pfender, On graph irregularity strenght, J. Graph Theory 41 (2002) 120–137. doi:10.1002/jgt.10056

[12] S. Jendróľ and P. Šugerek, A note on face coloring entire weightings of plane graphs, Discuss. Math. Graph Theory 34 (2014) 421–426. doi:10.7151/dmgt.1738

[13] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley, 1995).

[14] M. Kalkowski, A note on 1,2-conjecture, Electron. J. Combin. (to appear).

[15] M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weightings: towards the 1-2-3-conjecture, J. Combin. Theory (B) 100 (2010) 347–349. doi:10.1016/j.jctb.2009.06.002

[16] M. Karoński and T. Łuczak, A. Thomason, Edge weights and vertex colors, J. Combin. Theory (B) 91 (2004) 151–157. doi:10.1016/j.jctb.2003.12.001

[17] J. Przybyło and M. Woźniak, On 1,2 conjecture, Discrete Math. Theor. Comput. Sci. 12 (2010) 101–108.

[18] T. Wang and Q. Yu, On vertex-coloring 13-edge-weighting, Front. Math. China 3 (2008) 1–7. doi:10.1007/s11461-008-0009-8
[19] W. Wang and X. Zhu, *Entire coloring of plane graphs*, J. Combin. Theory (B) **101** (2011) 490–501.
doi:10.1016/j.jctb.2011.02.006

Received 7 May 2013
Revised 13 January 2014
Accepted 13 January 2014