On “Do the attractive bosons condense?” by

N. K. Wilkin, J. M. F. Gunn, R. A. Smith.

M. S. Hussein and O.K. Vorov

Instituto de Fisica, Universidade de Sao Paulo

Caixa Postal 66318, 05315-970,

Sao Paulo, SP, Brasil

(6 August 2001)

Abstract

Using Perron-Frobenius theorem, we prove that the results by Wilkin, Gunn
and Smith \[1\] for the ground states of \(N \) Bose atoms rotating at the angular
momentum \(L \) in a harmonic atomic trap with frequency \(\omega \) interacting via
attractive \(\delta^2(r) \) forces, are valid for a broad class of predominantly attractive
interactions \(V(r) \), not necessarily attractive for any \(r \). The sufficient condition
for the interaction is that all the two-body matrix elements
\[\langle \bar{z}_1^k \bar{z}_2^l | V | \bar{z}_2^m \bar{z}_1^n \rangle \]
allowed by the conservation of angular momentum \(k+l=m+n \), are negative.
This class includes, in particular, the Gaussian attraction of arbitrary ra-
dius, \(\frac{1}{r} \)-Coulomb and \(\log(r) \)-Coulomb forces, as well as all the short-range
\(R \ll \omega^{-1/2} \) interactions satisfying inequality
\(\int d^2r V(r) < 0 \). There is no con-
densation at \(L \gg 1 \), and the angular momentum is concentrated in the col-
lective “center-of-mass” mode.
PACS numbers: 03.75.Fi, 32.80.Pj, 67.40.Db, 03.65.Fd
Recently, Wilkin, Gunn and Smith have shown in Ref. [1] that the minimum energy
states at given angular momentum \(L \) of a system of \(N \) bosons in a 2d spherically symmetric
harmonic trap with frequency \(\omega = 1 \), interacting via attractive \(\delta^2(r) \)-forces have, in the weak
coupling limit, the form

\[
\Psi_L = G \left(\sum_{k=1}^{k=N} z_k \right)^L, \quad G = e^{-\sum_{i=1}^{i=N} |z_i|^2}, \quad z_k = x_k + iy_k
\]

(1)

These non-degenerate ground states reveal no condensation at large \(L \) [1]. Here we show that
their result is valid for a broad class of forces, predominantly attractive, but not necessarily
everywhere attractive.

We reformulate the arguments of Ref. [1] in the way that they can be viewed as a particular case of Perron-Frobenius theorem [2]: if a matrix \(M_{\alpha\beta} \) is irreducible (A) and its entries
are non-negative (B), then its positive eigenvector \(\sum c_\alpha |\alpha\rangle \) (all \(c_\alpha > 0 \)) has maximum eigen-
value, which is non-degenerate. Irreducibility means that there is a chain \(|1\rangle \rightarrow |2\rangle \rightarrow \ldots |p\rangle \),
connecting all the basis states, such that \(M_{\alpha,\alpha+1} \neq 0 \) for any \(|\alpha\rangle \rightarrow |\alpha+1\rangle \). In this case, the
matrix can not be expressed in block-diagonal form by means of permutations of rows and
columns.

In the weak coupling limit, the Hilbert space \(\mathcal{H} \) of the problem is spanned by the vectors

\[
|\alpha\rangle \equiv \left[l_1, l_2, \ldots, l_N \right] \equiv GP_S z_1^{l_1} z_2^{l_2} \ldots z_N^{l_N}, \quad \sum_{i=0}^{N} l_i = L.
\]

(2)

Each vector corresponds to a given partition of integer \(L \). Here, \(P_S \) denotes symmetrization.
The state \(\Psi_L = \sum c_\alpha |\alpha\rangle \) has all \(c_\alpha > 0 \) in this basis [1], and \(\Psi_L \) is eigenstate of any interaction
\(\sum_{i>j} V(|\vec{r}_i - \vec{r}_j|) \) in \(\mathcal{H} \) [3] with eigenvalue

\[
\frac{1}{2} (N^2 - N) \int_0^\infty rdre^{-r^2/2}V(r).
\]

Therefore, the state (1) must be non-degenerate ground state of any interaction \(V \), whose
matrix \(M_{\alpha,\beta} = -V_{\alpha,\beta} \) obeys the conditions of the Perron-Frobenius theorem, (A) and (B).
Since operation \(M_{\alpha\alpha} \rightarrow M_{\alpha\alpha} + const \) does not affect eigenvectors, (B) reads \(M_{\alpha\neq\beta} \geq 0 \). The
off-diagonal matrix elements are given by
\[-M_{\alpha\beta} = V_{\alpha\beta} = \sum_{klmn(m > l)} S^{\alpha,\beta}_{kl,mn} V_{kl,mn}, \quad S^{\alpha,\beta}_{kl,mn} \geq 0, \quad (3) \]

with

\[V_{kl,mn} \equiv \langle \bar{z}_1^k z_2^l V z_2^m z_1^n \rangle = \int d^2z_1 \int d^2z_2 \bar{z}_1^k z_2^l V \left(\sqrt{|z_1 - z_2|^2} \right) z_2^m z_1^n Q = \delta_{k+l,m+n} V_{klm} \]

the two-body matrix element obeying conservation of the angular momentum. Here, \(Q = e^{-|z_1|^2 - |z_2|^2} \), bar denotes complex conjugation and S are some non-negative quantities [Cf.(2)].

Now, we show that the conditions \(V_{klm}[V] < 0 \quad (4) \)

\((l>m)\) are sufficient for both (A) and (B). Indeed, the connecting chain for the basis states (2)

\[[L, 0, 0, ..] \rightarrow [L - 1, 1, 0, ..] \rightarrow [L - 2, 2, 0, ..] \rightarrow [L - 2, 1, 1, ..] \rightarrow .. \rightarrow [1, 1, ..1] .. \]

is found keeping the only terms \(V_{kl,l-1k+1} \) in (3). Adding other \(V_{kl,mn} \) can produce no cancellations by virtue of (4). For the same reason, all \(M_{\alpha\beta} \geq 0 \).

In particular, the conditions (4) hold for the attractive \(\delta \)-function, as we have

\[V_{klm}(-\delta) = \frac{-(k + l)!2^{-(k+l+1)}}{\pi \sqrt{k!!l!!m!!}(k + l - m)!}. \]

In general case, \((4) \) reads

\[V_{klm} = \sum_{i,j=0}^{m,j=k} a(-2)^{-(i+j)}(\Delta + i + j)!f \frac{1}{(m - i)!(\Delta + i)!(k - j)!(\Delta + j)!i!j!} < 0, \quad (5) \]

where \(a=\frac{\sqrt{k!!l!!m!!(k+\Delta)!}}{2^{m}} \) and \(\Delta = l - m > 0 \), the function \(f \) is defined by

\[f = \int_0^{\infty} rdrV(r)L_{\Delta+i+j}(\frac{r^2}{2})e^{-\frac{r^2}{2}} \]

with \(L_{\Delta}(x) \) the Laguerre polynomial [3].

For short-range interactions \(V_R(r) \) with effective radius \(R \) much smaller than the oscillator length, \(R \ll 1 \), (3) is reduced to
\[\mathcal{V}_{klm}(V_{R \ll 1}) = \mathcal{V}_{klm}(\delta) \int d^2 r V_{R \ll 1}(r) \]

and the sufficiency conditions [4,5] are therefore replaced by the single inequality

\[\int d^2 r V_{R \ll 1}(r) < 0. \]

Thus, the results (1) hold for short-range \((R \ll 1 \equiv \sqrt{\frac{k}{m\omega}}) \), interactions which are attractive on average.

The conditions (4) can be seen valid for a wide class of long-range interactions. The Gaussian attractive interaction, \(V = -\frac{e^{-r^2/R^2}}{\pi R^2} \), gives

\[\mathcal{V}_{klm} \left[-\frac{e^{-r^2/R^2}}{\pi R^2} \right] = -\frac{1}{\pi \Delta!} \frac{k!m!}{k!m!} \frac{1}{(2+R^2)^{k+m+1}} \frac{1}{(1+R^2)^2} < 0, \quad (6) \]

where \(_2F_1[a, b; c; x] \) is the hypergeometric function [4] which is seen to be positive for any \(R \). The results for log-Coulomb forces, \(V = \log(r) \), and Coulomb forces, \(V = -1/r \), can be obtained from (6). We have

\[\mathcal{V}_{klm}[\log(r)] = \frac{\pi}{2} \int_0^\infty d(R^2) \mathcal{V}_{klm} \left[-\frac{e^{-r^2/R^2}}{\pi R^2} \right] \]

and

\[\mathcal{V}_{klm} \left[-\frac{1}{r} \right] = 2\sqrt{\pi} \int_0^\infty dR \mathcal{V}_{klm} \left[-\frac{e^{-r^2/R^2}}{\pi R^2} \right], \]

respectively. It is seen that \(\mathcal{V}_{klm} \leq 0 \) in both cases.

We conclude therefore that the results (1) for the “yrast states” of weakly attractive Bose atoms in harmonic trap, derived by Wilkin, Gunn and Smith in Ref. [1,4] for the case of \(\delta \)-forces, are valid for a wide class of interactions which are predominantly attractive (4,5): There is no condensation at \(L \gg 1 \) (4), and the angular momentum is concentrated in the collective “center-of-mass” mode.

This work was supported by FAPESP.
REFERENCES

[1] N. K. Wilkin, J. M. F. Gunn, and R. A. Smith, Phys. Rev. Lett. 80, 2265 (1998) [cond-mat/9705050].

[2] P. Lancaster and M. Tismenetsky, The Theory of Matrices, (Academic Press, London, 1985).

[3] M. S. Hussein and O. K. Vorov, subm. to Phys. Rev. Lett. [Preprint cond-mat/0102505]

[4] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, (National Bureau of Standards, 1964).