Detection and identification of *Xanthomonas* pathotypes associated with citrus diseases using comparative genomics and multiplex PCR

Natasha P Fonseca 1, Érica B Felestrino 1, Washington L Caneschi 1, Angélica B Sanchez 1, Isabella F Cordeiro 1, Camila GC Lemes 1, Renata AB Assis 1, Flávia MS Carvalho 2, Jesus A Ferro 2, Alessandro M Varani 2, José B Júnior 3, João C Setubal 1, Guilherme P Telles 5, Deiviston Aguena 6, Nalvo F Almeida 6, Leandro M Moreira 1, 7

1 Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
2 Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
3 Departamento de Fitopatologia, Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo, Brazil
4 Departamento de Bioquímica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
5 Instituto de Computação, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
6 Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
7 Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil

Corresponding Authors: Nalvo F Almeida, Leandro M Moreira
Email address: nalvo@facom.ufms.br, lmmorei@ufop.edu.br

Background: In *Citrus* cultures, three species of *Xanthomonas* are known to cause distinct diseases. *X. citri* subsp. *citri* patotype A, *X. fuscans* subsp. *aurantifolii* pathotypes B and C, and *X. alfalfae* subsp. *citrumelonis*, are the causative agents of cancrosis A, B, C, and citrus bacterial spots, respectively. Although these species exhibit different levels of virulence and aggressiveness, only limited alternatives are currently available for proper and early detection of these diseases in the fields. The present study aimed to develop a new molecular diagnostic method based on genomic sequences derived from the four species of *Xanthomonas*. Results: Using comparative genomics approaches, primers were synthesized for the identification of the four causative agents of citrus diseases. These primers were validated for their specificity to their target DNA by both conventional and multiplex PCR. Upon evaluation, their sensitivity was found to be 0.02 ng/µl in vitro and 1.5×10⁴ CFU ml⁻¹ in infected leaves. Additionally, none of the primers were able to generate amplicons in 19 other genomes of *Xanthomonas* not associated with *Citrus* and one species of *Xylella*, the causal agent of citrus variegated chlorosis (CVC). This denotes strong specificity of the primers for the different species of *Xanthomonas* investigated in this study. Conclusions: We demonstrated that these markers can be used as potential candidates for performing *in vivo* molecular diagnosis exclusively for citrus-associated *Xanthomonas*. The bioinformatics pipeline developed in this study to design specific genomic regions is capable of generating specific primers. It is freely available and can be
utilized for any other model organism.
Detection and identification of Xanthomonas pathotypes associated with citrus diseases using comparative genomics and multiplex PCR

Natasha P Fonseca¹, Érica B Felestrino¹, Washington L Caneschi¹, Angélica B Sanchez¹, Isabella F Cordeiro¹, Camila GC Lemes¹, Renata AB Assis¹, Flávia MS Carvalho², Jesus A Ferro², Alessandro MVArani², José B Junior³, João C Setubal⁴, Guilherme P Telles⁵, Deiviston Aguena⁶, Nalvo F Almeida⁶#, Leandro M Moreira¹,⁷#.

¹Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
²Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
³Departamento de Fitopatologia, Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo, Brazil
⁴Departamento de Bioquímica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
⁵Instituto de Computação, Universidade Estadual de Campinas, Campinas, SP, Brazil
⁶Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
⁷Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil

#Corresponding authors:

Leandro Moreira mailing address: Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil. Zip Code 35400-000. Phone: +55 (31) 3559-1698, FAX: +55 (31) 3559-1672. E-mail: lmmorei@gmail.com

Nalvo Almeida mailing address: Faculdade de Computação (FACOM), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil. Zip Code 79070-900. Phone: +55 67 3345-7457, FAX: +55 67 3345-7457. E-mail: nalvojr@gmail.com
Short Title

Molecular diagnostic of bacterial citrus diseases

Abstract

Background:

In citrus cultures, three species of *Xanthomonas* are known to cause distinct diseases. *X. citri* subsp. *citri* patotype A, *X. fuscans* subsp. *aurantifolii* pathotypes B and C, and *X. alfalfae* subsp. *citrumelonis*, are the causative agents of cancrrosis A, B, C, and citrus bacterial spots, respectively. These species exhibit different levels of virulence and aggressiveness, and only limited alternatives are currently available for proper and early detection of these diseases in the field. The present study aimed to develop a new molecular diagnostic method based on genomic sequences derived from the four pathotypes of *Xanthomonas*.

Results:

Using comparative genomics approaches, primers were synthesized for the identification of the four causative agents of citrus diseases. These primers were validated for their specificity to their target DNA by both conventional and multiplex PCR. Upon evaluation, their sensitivity was found to be 0.02 ng/µl *in vitro* and 1.5×10^4 CFU ml$^{-1}$ in infected leaves. Additionally, none of the primers were able to generate amplicons in 19 other genomes of *Xanthomonas* not associated with citrus and one species of *Xylella*, the causal agent of citrus variegated chlorosis (CVC). This denotes strong specificity of the primers for the different species of *Xanthomonas* investigated in this study.

Conclusions:

We demonstrated that these markers can be used as potential candidates for performing *in vivo* molecular diagnosis exclusively for citrus-associated *Xanthomonas*. The bioinformatics pipeline developed in this study to design specific genomic regions is capable of generating specific primers. It is freely available at https://git.facom.ufms.br/bioinfo/specific-primers and can be utilized for any other organism.

Keywords: Multiplex PCR; molecular diagnostic; citrus canker; *Xanthomonas*; comparative genomics analysis.
Introduction

Xanthomonas is a genus of phytopathogenic Gram-negative bacteria that cause a variety of diseases in several agricultural commodities, including citrus [1]. These diseases cause huge economic losses to the agricultural sector. Consequently, bacteria from this genus have been targeted as an essential model of study in different pathosystems; for instance, *X. oryzae* in *Oryza* spp. (rice), *X. campestris* in *Brassica* spp. (cabbage), *X. vesicatoria* in *Solanum* spp. (potato), and *X. citri* in *Citrus* spp. (orange) [2–6]. Since *Xanthomonas* are quarantine pests in all these pathosystems and controlling them with agrochemicals is very expensive, early detection is of paramount importance for the control and management of the diseases caused by these bacteria.

The *Xanthomonas* and citrus pathosystem is composed mainly of the following three species: *X. citri* subsp. *citri* pathotype A (*XccA*), *X. fuscans* subsp. *aurantifolii* (*Xau*), and *X. alfalfae* subsp. *citrumelonis* (*Xacm*). These bacteria damage crops and consequently cause losses [7,8] (Table 1). Although the pathosystem as here defined contains only three species, control and eradication efforts are complicated by the genetic diversity of the pathotypes, with varying degrees of aggressiveness and virulence [9,10]. *XccA*, the causative agent of Asian citrus canker, is the most aggressive and virulent among the pathotypes. It infects all cultivated varieties of citrus hosts [11]. In addition to the pathotype A, two other variants, A* (*XccA*) and A*W* (*XccA*W) have been reported in previous studies [12,13]. Although they are genetically close to type A, these variants are associated with a smaller set of compatible hosts (Table 1) [9,13]. *Xau* is represented by two pathotypes known as B (*XauB*) and C (*XauC*). Pathotype B causes false citrus canker or cancrosis B, a less aggressive disease than citrus canker that affects sour lemons (*Citrus limon*) severely [10,14]. Pathotype C is the cause of cancrosis C, which is characterized by induction of hypersensitivity reaction in its hosts as described in ‘Galego’ acid lime (*C. aurantifolia*) [10] and ‘Swingle’ citrumelo (*Citrus paradisi × Poncirus trifoliata*) [15]. *Xacm*, or pathotype E, is the causative agent of citrus bacterial spot. It is not classified as cancrosis since it does not cause typical corticosteroid lesions. However, citrus bacterial spot may be confused with cancrosis, and pathotype E is pathogenic in ‘Swingle’ citrumelo [16–19].

Due to this considerable diversity in the characteristics of infection and disease spread, these bacteria are one of the main phytosanitary problems that affect and decimate Brazilian orange orchards. As they are cosmopolitan pathogens, they not only harm the economy of Brazil, a major citrus producer, but also the world [20]. Since the management of the plants during cultivation and export are different for each infecting strain, correct diagnosis of the pathogen may reduce damages [9].

Molecular diagnosis is a cost-effective option for identifying pathogens with great genetic proximity. Molecular biology techniques have been extensively used for identifying various species of the genus *Xanthomonas* [21–30]. The genetic diversity of the *Xanthomonas* pathotypes that infect citrus makes their correct identification a challenging task. The low sensitivity and false negative cases of serological tests [13, 31], and false positive amplifications of the molecular tests,
demonstrate the need for new detection tests that are specific and that discriminate the different variants of this class of plant pathogens [32]. Thus, this study aimed to develop a molecular detection method from unique genomic sequences, identified by comparative genomics, which can distinguish different *Xanthomonas* pathotypes infecting *Citrus* spp. These sequences are intended to be used only for detecting *Xanthomonas* isolates obtained from *Citrus* spp..

Materials and methods

For a better understanding of the methodological steps involved in this study, a flowchart of actions was established (Fig. 1).

Comparative Genomics for identification of pathotype-specific regions

In order to identify the pathotype-specific regions, we have built a very simple 4-step pipeline. The input for the method is the set of nucleotide FASTA sequences from the four genomes of the genus *Xanthomonas*, belonging to each of the disease-causing-pathotypes in citrus obtained from NCBI (Table 2). The first step is to pre-process sequences, to concatenate all contigs of each genome, in case of being in a draft condition, and also to concatenate all FASTA genome files in a unique one. This file is the input for the second step, where mauveAligner, from the Mauve package [33], is used to build a multiple sequence alignment. MauveAligner outputs unique regions defined as regions that are present in one genome but absent from at least one of the other genomes. We call these unique regions ‘Mauve islands’, and they are the input to a custom Perl script to pick out specific regions from each genome. The third step is to post-process data just to separate all specific regions in distinct FASTA files. The candidate regions found at this point are double-checked in the fourth step, using BLASTn [34]. BLASTn is then performed on each candidate region from genome G against the set of all genomes except G. The final output of this workflow consists of the list of all unique regions with no hits in this BLASTn run. This comparative genomics pipeline is freely available at https://git.facom.ufms.br/bioinfo/specific-primers, including a short and simple tutorial for installation and using, and can be used for any set of genomes in a regular Linux system.

Other specific regions finders are available in the literature, for instance Insignia [35]. Insignia is a web application where the user can find specific regions from a genomic sequence, but only against sequences available currently in the previously populated database by the authors. On the other hand, our tool is a very easy-to-install and easy-to-use stand-alone tool where the user can find specific regions against any set of genomes (available in databases or not), even draft ones.

Selection of specific sequences and production of primers
The sets of unique regions determined for each genome were used as a reference for the selection of the primers using Primer-BLAST tool [36]. To verify the specificity of each primer to their target DNA, each generated primer was subjected to local alignment against Xanthomonas pathotypes that infect citrus using BLASTn. Primers that demonstrated specificity and ability to form amplicons of different sizes among the analyzed pathotype were selected for in vitro empirical verification.

In silico evaluation of possible false positive amplifications

To verify false positive amplifications from other Xanthomonas species or other plant-associated microorganisms whose DNA could be extracted from infected plant tissue, the primers were compared against all sequences available at GenBank (using BLASTn against NT database).

Bacterial strain and growth conditions

For the biological assays, 16 strains belonging to the pathotype XccA (7 strains), XauB (2 strains), XauC (5 strains), and Xacm (2 strains) were selected. These strains came from culture collections maintained by the Agronomy School of the University of São Paulo (ESALQ) and by the Faculty of Agrarian and Veterinary Sciences of the State University of São Paulo (Campus Jaboticabal), both in the state of São Paulo, Brazil. The isolates were reactivated in nutrient agar medium - NA (5 g/l peptone, 3 g/l beef extract, 15 g/l agar, pH 6.8-7.0) and incubated at 28°C for 48 hours for XccA and Xacm strains and 96 hours for XauB and XauC strains. Then, a colony was grown in nutrient broth medium (NB; NA without agar) under agitation at 250 rpm at 28 °C for 12 hours.

In addition to the citrus-pathogenic Xanthomonas isolates, the markers have also been tested against other Xanthomonas strains that are not known to infect citrus: X. axonopodis pv. vignicola FDC 1701 (IBSBF 1739), X. axonopodis pv. vesicatoria 1387 (IBSBF 1387), X. axonopodis pv. vesicatoria FDC 1689 (IBSBF 331), X. axonopodis pv. allii 1770 (IBSBF 1770), X. axonopodis pv. phaseoli IAC 11280, X. alfalfa subsp. alfalfa FDC 1711 (IBSBF 3174), X. axonopodis pv. passiflorae M89, X. axonopodis pv. patelli FDC 1727 (IBSBF 3181), X. axonopodis pv. coracanae FDC 1729 (IBSBF 3187), X. axonopodis pv. manihotis 1954 (IBSBF 1954), X. axonopodis pv. phaseoli var. fuscans IAC13755, X. citri pv. rhynchosiae FDC 1721 (IBSBF 3184), X. axonopodis vasculorum 2008 (IBSBF 2008), X. axonopodis pv. axonopodis FDC 1696 (IBSBF 1444), X. axonopodis pv. diefenbachiae 1478 (IBSBF 1478), X. axonopodis pv. glycines FDC 1694 (IBSBF 333), X. citri pv. cajani FDC 1718 (IBSBF 3180), X. citri pv. sesbaniae FDC 1719 (IBSBF 3179), and against Xylella fastidiosa strain 9a5c [37], a phytopathogenic bacterium that is disseminated by insects among citrus.
Extraction of DNA from isolates

The DNA of the isolates was extracted with the Spin Tissue™ Core Kit (Qiagen Biosciences, MD, USA) following the manufacturer's recommendations.

Inoculation of the isolates in the leaves and genomic DNA extraction from bacterial cells in exudate

The bacteria were inoculated into Hamlin-type orange leaves with a needleless syringe. The syringe was pressed lightly into the abaxial part of the leaf to allow entry of the phytopathogen into the intercellular space of the leaf. A leaf from the same plant was inoculated likewise with ultrapure water as a negative control. Immediately after the inoculation, the inoculated area was cut into small pieces, and bacterial exudation was carried out.

To mimic the condition of naturally infected plants, spray inoculation methods were also used. Spray inoculation was perform in ‘Pera-rio’ orange leaves according to the methods described by Yan and Wang [38]. After 30 days of inoculation, leaves containing lesions were detached from the plants and each lesion was cut into small pieces to get the exudate with bacteria. The inoculated area/lesions were submerged in 1 mL of ultrapure water for 30 min and agitated for 5 min to facilitate bacterial exudation from the leaf. After agitation, genomic DNA extraction from bacterial cells in the exudate was performed with a rapid manual DNA extraction protocol. The exudate was centrifuged at 16,000 x g for 4 min at 4 °C and washed twice with an isotonic solution (33 mM KH₂PO₄, 60 mM K₂HPO₄, 7.6 mM (NH₄)₂SO₄, 3.3 mM sodium citrate, and 4.0 mM MgSO₄). The pellet was resuspended in lysis buffer (10 mM Tris-HCl 1 M, pH 8.0; 100 mM EDTA 0.5 M, pH 8.0; 10 mM NaCl 5 M; 0.5% of 10% SDS), and isotonic solution with subsequent extraction with phenol and incubation with RNAse (5 mg/ml) for 1 hour at 37 °C. After further extraction with phenol, the DNA was precipitated with ethanol and sodium acetate (7.5 M, pH 7.4) and then diluted in Tris–EDTA buffer 10:0.1.

PCR Conditions

PCR amplifications were carried out in a final volume of 25μl. The final concentrations of the reagents in the reaction were: 2 mM MgCl₂, 200 μM dNTPs, 0.2 μM of each primer (Foward and Reverse), 1 unit of Taq DNA polymerase™ (CellCo, SP, Brazil) and 0.4 ng of the DNA sample from the isolates grown in medium or 1 μl of the total DNA extracted from the exudates. The initial denaturation temperature was 94 °C for 3 min, followed by 30 cycles of denaturation at 94 °C for 45 seconds, annealing at 59 °C for 45 seconds and extension at 72 °C for 45 seconds, followed by a final extension at 72 °C for 5 min. Verification of PCR amplicons was established by applying 10 μl of the PCR product in 3.0% (w/v) agarose gel.
Multiplex PCR

Multiplex PCR amplifications (mPCR) were also performed in final volumes of 25 μl. The final concentration of the reagents in the reaction was the same as on the conventional PCR, except for increasing the concentration of dNTPs to 400 μM and using 0.2 μM of each primer (Forward and Reverse) of all four primer pairs (XccAm, XauBm, XauCm, and Xacmm) in the same reaction.

Sensitivity of PCR

To verify the sensitivity of the PCR reaction *in vitro*, progressive dilutions of DNA from the isolates were performed until the amplification checked the minimal DNA concentration detectable by PCR. The isolates used in this test were *XccA* strain 306 (*XccA*306), *XauB* strain FDC 1561 (*XauB*1561), *XauC* strain FDC 1559 (*XauC*1559), and *Xacm* strain 1510 (*Xacm*1510). For leaf testing, sensitivity was found from minimal inoculations of leaf bacteria (1.5×10⁷, 1.5×10⁶, 1.5×10⁵, 1.5×10⁴, 1.5×10³ CFU ml⁻¹) with consequent lower extraction of DNA from the exudate.

In-silico PCR

The *in-silico* PCR was performed using the tool ‘In silico PCR amplification’ [39] available at http://insilico.ehu.eus/.

Results

Specific sequences and selection of primers

Mauve found 5,217 islands. From these, 173 candidates for specific regions of *XccA*306, 59 of *XauB*1561, 55 of *XauC*1559 and 38 of *Xacm*1510 were identified. After the BLAST refinement step, we found 135 specific regions of *XccA*306, 23 of *XauB*1561, 12 of *XauC*1559, and 33 of *Xacm*1510. From the sequences, a pair of primers were developed for each *Xanthomonas* pathotype. Each marker was developed using a different amplicon size, allowing its differentiation from the other pathotypes. The primer sequences and their respective amplicons are described in Table 3. Primer XccAm appears to amplify part of a hypothetical gene and a transcriptional activator FtrA, generating a 509bp amplicon. Primer XauBm amplifies an intergenic region (434bp); primer XauCm amplifies part of a hypothetical gene (160bp) and primer Xacmm amplifies part of a gene encoding a D-alanyl-D-alanine synthetase A (115bp). Due to the
intraspecific genetic proximity between *Xanthomonas*, a reference genome was used for each target pathotype.

BLASTn analysis of the primers against NCBI’s non-redundant sequence database NT revealed high sequence specificity (100% identity) for the citrus-associated *Xanthomonas* pathothypes in all cases, and also for other non-citrus-associated *Xanthomonas* species (80 to 100% identity). However, *in silico* analysis of the possible amplicons generated in the non-citrus-associated species indicated different sizes from those expected for the defined targets. Only one pair of primers (XauC) indicated possible amplification in the case of *Stenotrophomonas maltophilia*, a bacterium that lives in aqueous environments, soil, and plants. However, the coverage of the XauCm forward and reverse primers on the genome of *Stenotrophomonas maltophilia* is not complete and the size of *in silico* amplicon is not similar to that of previously predicted amplicon for XauC.

Specificity of molecular markers and sensitivity of PCR

The specificity for citrus-associated *Xanthomonas* verified *in silico* was confirmed as shown in Fig. 2. Primer XccAm generated an amplicon of size 509 bp, primer XauBm generated an amplicon of 434 bp, primer XauCm generated an amplicon of 160 bp, and primer Xacmm generated an amplicon of 115 bp for their corresponding pathotypes. All markers generated unique amplicons for their respective target DNAs without cross-amplifications for other investigated strains. Progressive dilutions of the target DNA verified the *in vitro* sensitivity. The minimum concentrations that allowed PCR amplification were 0.02 ng/μl for XccA (~70 cells), 0.03 ng/μl for XauB (~100 cells), 0.12 ng/μl for XauC (~400 cells), and 0.07 ng/μl Xacm (~200 cells) (Fig. 3).

These results were reproducible when the markers were subject to multiplex PCR with their respective target DNAs and with the DNAs of the four pathotypes (Fig. 4). Despite the findings *in silico*, when tested with the other 18 species of *Xanthomonas* that do not infect citrus, the markers developed for XccA, XauB, and XauC did not demonstrate amplification with any of these isolates (Fig. 5). In contrast, Xacmm amplified a weak fragment for five of the investigated strains (*X. axonopodis* pv. *vesicatoria* 1689, *X. axonopodis* pv. *passiflorae* M89, *X. axonopodis* pv. *manihotis* IBSBF1954, *X. axonopodis* pv. *axonopodis* 1696, and *X. axonopodis* pv. *glycinus* 1694), but with a different amplicon size (~125 bp) without correspondence to the established standards for citrus-associated xanthomonads. Although now empirically shown, this result does not affect detection since none of these strains with false positive amplification infects citrus. Finally, no amplicons were generated due to cross-amplification with DNA from *Xylella*, a plant pathogen that also infects citrus.

In vivo assays replicated the results obtained *in vitro*. The markers were specific for the inoculated bacterium (Fig. 6) and citrus canker lesions (Fig. 7) without cross-reaction with any other DNA
that may have been extracted from exudate, including endophytic DNA. Additionally, the plants
inoculated with water did not amplify with any marker tested, confirming the specificity for
bacteria of the genus *Xanthomonas* (Fig. 6). For the exudate, the minimum concentrations that
allowed PCR amplification were approximately \(1.5 \times 10^4\) CFU mL\(^{-1}\) for *XccA*, \(1.5 \times 10^5\) CFU mL\(^{-1}\)
for *XauB*, \(1.5 \times 10^5\) CFU mL\(^{-1}\) for *XauC*, and \(1.5 \times 10^4\) CFU mL\(^{-1}\) for *Xcm* (Fig. 6).

Discussion

Currently, the citrus disease of greatest concern to citrus growers worldwide is greening, also
known as Huanglongbin (HLB) [40]. However, citrus canker still is a problem for the citrus
industry due to its virulence and rapid propagation characteristics [41]. Coupled with deficiencies
in maintaining legislation and inspecting contaminated orchards, citrus canker causes great losses
to farmers worldwide [42]. Thus, the correct identification of the pathogen is crucial to restrain
this disease, given that the management of plants during cultivation and export may differ with
each infecting strain [9].

Due to its high virulence and host range, the development of diagnostics is aimed towards the
detection of *XccA* strains, the causative agent of Asian citrus canker. Currently, field detection is
performed through rapid tests based on the immune-identification of its proteins as Xcc
ImmunoStrip® Test, Agdia, Inc. (Catalog number: STX 92200), but there are several studies that
have developed serological diagnoses for *XccA* [14,28,43–47]. However, these tests have low
sensitivity, and in some cases, false negative results have already been reported in phenotypically
different strains of *XccA* [13,31]. Additionally, its high cost per sample is a significant
disadvantage when compared to methods based on molecular biology techniques.

Some studies have already demonstrated the potential of molecular diagnosis for *Xanthomonas*,
more specifically for *XccA* strains, based on several techniques such as conventional PCR,
multiplex PCR, real-time PCR (qPCR), nested-PCR, loop-mediated isothermal amplification
(LAMP-PCR), droplet digital polymerase chain reaction (ddPCR), BOX-PCR, and FISH [22-27,29,30,48-53]. The wide variety of techniques used in the molecular diagnostics developed for
citrus canker solved the problem of cost and low sensitivity presented by serological methods.
However, the false-positive amplifications already highlighted among strains of genetically close
variants, such as *XccA* and *Xau*, once again reveal the need for new detection methods that are
specific and that distinguish the different pathotypes of these plant pathogens [32]. Thus, to the
best of our knowledge, this is the first study that presents a single method that simultaneously
distinguishes the four pathotypes of *Xanthomonas* that infect citrus. In this method, each of these
four pathotypes will have its own distinct amplicon.

It is important to emphasize that the method presented here is not a general method for identifying
the *Xanthomonas* strains discussed here with respect to other bacterial isolates. The application
setting for which the detection tool was designed is for strains isolated from citrus trees only.
The specificity verified in the results enables the adoption of individualized management for each pathotype, which could reduce cultivation losses. Although BLASTn analysis of primer sequences against genomes deposited in NCBI has shown that non-specific binding to other *Xanthomonas* genomes may occur, two factors must be considered with respect to false positives: a) a possible PCR product generated for other species of *Xanthomonas* would likely have a different size from that observed for citrus pathotypes; b) as far as we know, the only members of the *Xanthomonas* genus that infect citrus are the ones considered here. Therefore we think that the probability of amplification of false positives in samples from diseased trees is small, which is corroborated by the analyses presented in Fig. 5.

The sensitivity of the PCR *in vivo* tests shows the potential of its usage as a preventive detection tool since it can detect as little as 10^4 CFU of bacteria, allowing the pathogen to be screened during the colonization and survival phase of its life cycle, avoiding its later dissemination and infection of healthy plants. Remaining canker lesions under favorable conditions have a concentration of up to 10^7-10^8 CFU of viable bacteria for a new infection [54,55].

Another potential benefit of the correct detection of *Xanthomonas* strains presented here is its use on seedlings that will be distributed to rural producers, since the introduction of infected seedlings in orchards is one of the mechanisms of dissemination of the bacteria to healthy plants [10,19,56]. Additionally, our method can be used for a biogeographic survey of the pathotypes, to trace the distribution profile among citrus orchards throughout the world. This becomes important for epidemiological surveillance of this phytopathogen, as this type of analysis is typically hampered by the lack of adequate molecular typing techniques for surveillance and outbreak investigation [25].

Our approach is based on conventional PCR because it is an accessible and inexpensive technique, without compromising the quality of the analysis. Furthermore, the present study has established the detection of all pathotypes in the same PCR reaction, as demonstrated in the results of multiplex PCR. This technique increases the importance of the detection method, since the same sample can be submitted to a PCR reaction with all the primers, reducing the time for obtaining the result. Another technique used in our study, which could enhance the speed of detection, was the extraction of total DNA from the exudate of the leaves. This extraction takes less than four hours to be carried out; thus, there is no need to wait for several days for bacterial growth from its lesion isolation.

Collectively, both experimental procedures make the methodology feasible on a large scale and at a reduced cost. It is important to highlight that the variable size of the PCR products for each pathotype was established to facilitate its identification, and the use of PCR-RFLP would only be justifiable to verify genetic diversity within species, which is not the objective of this study. Moreover, although we did not use the TaqMan system to verify the potential of these molecular markers in the identification of these pathogens, it is likely that the use of this system would only make detection sensitivity higher than that observed by conventional PCR, as described for other
organisms [57–59]. However, the cost of analysis would be higher, which could significantly burden large-scale analyses.

Thus, our results not only allow the correct identification of the four pathotypes of *Xanthomonas* that infect citrus, but they also point to a possible bioinformatics pipeline for the production of species-specific molecular markers for any set of genomes defined by the user. The high specificity and sensitivity obtained demonstrated the effectiveness of our bioinformatics analysis.

Conclusions

In summary, the identification of unique sequences from different genomes, using comparative genomics, allowed the development of specific molecular markers. This is the first conventional or multiplex PCR-based method that discriminates four different citrus-associated *Xanthomonas* pathotypes. This study further describes an effective pipeline for the generation of species-specific molecular markers.

Author’s contributions

- NFA, GPT, DA, AMV, JCS, and LMM designed and implemented the comparative genomics workflow.
- LMM, JAF and JBJ select the strains.
- NFA, DA, NPF, and LMM designed and selected the pathotypes specific primers.
- NPF, EBF, WLC, ABS, IFC, and RABA performed *in vitro* assays.
- FMSC, CGLB, NFP performed *in vivo* assays.
- NPF, NFA, and LMM analyzed the results and drafted an initial version of the manuscript.
- AMV, RABA, GPT, NFA, JCS, and LMM wrote the final version of the manuscript.

Acknowledgments

Thanks to all members of the Laboratory of Biochemistry and Molecular Biology (LBBM, Federal University of Ouro Preto, UFOP) and the Laboratory of Biochemistry and Molecular Biology of Faculty of Agrarian and Veterinary Sciences UNESP, Jaboticabal campus for their support. Thanks, Dr. Fabrício Jaciani, FUNDECITRUS researcher, for the critical help in finalizing this paper.
Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Consent for publication

Not applicable.

Ethics approval and consent to participate

This study did not involve human participants or animals.

Funding

The following agencies supported this work: the National Council of Technological and Scientific Development (CNPq Process 481226/2013-3), Foundation of Protection to Research of the State of Minas Gerais – FAPEMIG (process APQ-02387-14), and Coordination for the Improvement of Higher Education Personnel (CAPES) (the BIGA Project, CFP 51/2013, process 3385/2013). Leandro Marcio Moreira, João Carlos Setubal, Nalvo Franco de Almeida, and Jesus Aparecido Ferro have a research fellowship from CNPq.

References

[1] Vauterin L, Hoste B, Kersters K, Swings J. Reclassification of Xanthomonas. Int J Syst Bacteriol 1995;45:472–89. doi:10.1099/00207713-45-3-472.

[2] Ferreira-Tonin M, Rodrigues-Neto J, Harakava R, Lanza Destéfano SA. Phylogenetic analysis of Xanthomonas based on partial rpoB gene sequences and species differentiation by PCR-RFLP. Int J Syst Evol Microbiol 2012;62:1419–24. doi:10.1099/ijs.0.028977-0.

[3] Huang R, Hui S, Zhang M, Li P, Xiao J, Li X, Yuan M, Wang S. A Conserved Basal
Transcription Factor Is Required for the Function of Diverse TAL Effectors in Multiple Plant Hosts. Front Plant Sci 2017;8:1–10. doi:10.3389/fpls.2017.01919.

[4] Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012;13:614–29. doi:10.1111/j.1364-3703.2012.00804.x.

[5] Ryan RP, Vorhölter FJ, Potnis N, Jones JB, Van Sluys MA, Bogdanove AJ, Dow JM. Pathogenomics of Xanthomonas: Understanding bacterium-plant interactions. Nat Rev Microbiol 2011;9:344–55. doi:10.1038/nrmicro2558.

[6] Vauterin L, Swings J, Kersters K, Gillis M, Mew TW, Schroth MN, Palleroni NJ, Hilderbrand DC, Stead DE, Civerolo EL, Hayward AC, Maraite H, Stall RE, Vidaver AK, Bradbury JF. Towards an Improved Taxonomy of Xanthomonas. Int J Syst Bacteriol 1990;40:312–6.

[7] Schaad NW, Postnikova E, Lacy GH, Sechler A, Agarkova I, Stromberg PE, Stromberg VK, Vidaver AK. Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye 1978 forms A, B/C/D, and E as X. smithii subsp. citri (ex Hasse) sp. nov. nom. rev. comb. nov., X. fuscans subsp. aurantifolii (ex Gabriel 1989) sp. nov. nom. rev. comb. nov., and X. alfalfa subsp. citrumelo (ex Riker and Jones) Gabriel et al., 1989 sp. nov. nom. rev. comb. nov.; X. campestris pv. malvacearum (ex smith 1901) Dye 1978 as X. smithii subsp. smithii nov. comb. nov. nom. nov.; X. campestris pv. alfalfa (ex Riker and Jones, 1935) dye 1978 as X. alfalfa subsp. alfalfa (ex Riker et al., 1935) sp. nov. nom. rev.; and "var. fuscans" of X. campestris pv. phaseoli (ex Smith, 1987) Dye 1978 as X. fuscans subsp. fuscans sp. nov. Syst Appl Microbiol 2005;28:494–518. doi:10.1016/j.syapm.2005.03.017.

[8] Schaad NW, Postnikova E, Lacy G, Sechler A, Agarkova I, Stromberg PE, Stromberg VK, Vidaver AK. Emended classification of xanthomonad pathogens on citrus. Syst Appl Microbiol 2006;29:690–5. doi:10.1016/j.syapm.2006.08.001.

[9] Graham JH, Gottwald DTR, Cubero J, Achor DS. Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Mol Plant Pathol 2004;5:1–15. doi:10.1046/J.1364-3703.2003.00197.X.

[10] Schubert TS, Gottwald TR, Rizvi S a, Graham JH, Sun X, Dixon WN. Meeting the challenge of eradicating citrus canker in Florida - Again. Plant Dis 2001;85. doi:10.1094/PDIS.2001.85.4.340.

[11] Da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LMC, Amaral AM, Bertolini MC, Camargo LEA, Camarote G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RMB, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJS, Ferreira RCC, Ferro MIT, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EGM, Lemos MVF, Locali EC, Machado MA, Madeira AMBN, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CFM, Miyaki CY, Moon DH, Moreira LM, Novo MTM, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JAD, Silva C, Souza RF, Spinola LAF, Takita MA, Tamura RE, Teixeira EC, Tezza RID, Santos
MT, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002;417:459–63. doi:10.1038/417459a.

[12] Sun X, Stall RE, Jones JB, Cubero J, Gottwald TR, Graham JH, Dixon WN, Schubert TS, Chaloux PH, Stromberg VK, Lacy GH, Sutton BD. Detection and characterization of a new strain of citrus canker bacteria from key/mexican lime and alemow in South Florida. Plant Dis 2004;88:1179–88. doi:10.1094/PDIS.2004.88.11.1179.

[13] Vernière C, Hartung JS, Pruvost OP, Civerolo EL, Alvarez AM, Maestri P, Luisetti J. Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from Southwest Asia. Eur J Plant Pathol 1998;104:477–87. doi:10.1023/A:1008676508688.

[14] Goto M, Takahashi T, Messina MA. A Comparative study of the strains of Xanthomonas campestris pv. citri isolated from citrus canker in Japan and cancrosis B in Argentina. Ann Phytopathol Soc Japan 1980;46:329–38. doi:10.3186/jjphytopath.46.329.

[15] Jaciani FJ, Destéfano SAL, Neto JR, Belasque J. Detection of a new bacterium related to Xanthomonas fuscans subsp. aurantifolii infecting swingle citrumelo in Brazil. Plant Dis 2009;93:1074–1074. doi:10.1094/PDIS-93-10-1074B.

[16] Gottwald TR, Alvarez AM, Hartung JS, Benedict AA. Diversity of Xanthomonas campestris pv. citrumelo strains associated with epidemics of citrus bacterial spot in Florida citrus nurseries: correlation of detached leaf, monoclonal antibody, and restriction fragment length polymorphism assay. Phytopathology 1991;81:749–53. doi:10.1094/Phyto-81-749.

[17] Gottwald TR, Civerolo EL, Garnsey SM, Brlansky RH, Graham JH, Gabriel DW. Dynamics and spatial distribution of Xanthomonas campestris pv. citri group E strains in simulated nursery and new grove situations. Plant Dis 1988;72:781–7. doi:10.1094/PD-72-0781.

[18] Graham JH, Gottwald TR. Variation in aggressiveness of Xanthomonas campestris pv. citrumelo associated with citrus bacterial spot in Florida citrus nurseries. Phytopathology 1990;80:190–6. doi:10.1094/Phyto-80-190.

[19] Schouties CL, Civerolo EL, Miller JW, Stall RE, Krass CJ, Poe SR, DuCharme EP. Citrus canker in Florida. Plant Dis 1987;71:388–95. doi:10.1094/PD-71-0388.

[20] Jaciani FJ, Ferro JA, Ferro MIT, Vernière C, Pruvost O, Belasque J. Genetic Diversity of a brazilian strain collection of Xanthomonas citri subsp. citri based on the type III effector protein genes. Plant Dis 2012;96:193–203. doi:10.1094/PDIS-04-11-0357.

[21] Adikini S, Tripathi L, Beed F, Tusiime G, Magembe EM, Kim DJ. Development of a specific molecular tool for detecting Xanthomonas campestris pv. musacearum. Plant Pathol 2011;60:443–52. doi:10.1111/j.1365-3059.2010.02419.x.

[22] Coletta-Filho HD, Takita MA, De Souza AA, Neto JR, Destéfano SAL, Hartung JS, Machado MA. Primers based on the rpf gene region provide improved detection of Xanthomonas axonopodis pv. citri in naturally and artificially infected citrus plants. J Appl Microbiol 2006;100:279–85. doi:10.1111/j.1365-2672.2005.02787.x.
[23] Mavrodieva V, Levy L, Gabriel DW. Improved sampling methods for real-time polymerase chain reaction diagnosis of citrus canker from field samples. Phytopathology 2004;94:61–8. doi:10.1094/PHYTO.2004.94.1.61.

[24] Munhoz CF, Weiss B, Hanai LR, Zucchi MI, Fungaro MHP, Oliveira AL, Monteiro-Vitorello CB, Vieira ML. Genetic diversity and a PCR-based method for Xanthomonas axonopodis detection in passion fruit. Phytopathology 2011;101:416–24. doi:10.1094/PHYTO-06-10-0169.

[25] Ngoc LBT, Vernière C, Jarne P, Brisse S, Guérin F, Boutry S, Gagnevin L, Pruvost O. From local surveys to global surveillance: Three high-throughput genotyping methods for epidemiological monitoring of Xanthomonas citri pv. citri pathotypes. Appl Environ Microbiol 2009;75:1173–84. doi:10.1128/AEM.02245-08.

[26] Park DS, Hyun JW, Park YJ, Kim JS, Kang HW, Hahn JH, Go SJ. Sensitive and specific detection of Xanthomonas axonopodis pv. citri by PCR using pathovar specific primers based on hrpW gene sequences. Microbiol Res 2006;161:145–9. doi:10.1016/j.micres.2005.07.005.

[27] Rigano LA, Marano MR, Castagnaro AP, Do Amaral A, Vojnov AA. Rapid and sensitive detection of citrus bacterial canker by loop-mediated isothermal amplification combined with simple visual evaluation methods. BMC Microbiol 2010;10:176. doi:10.1186/1471-2180-10-176.

[28] Trindade LC, Marques E, Lopes DB, Ferreira MASV. Development of a molecular method for detection and identification of Xanthomonas campestris pv. viticola. Summa Phytopathol 2007;33:16–23. doi:10.1590/S0100-54052007000100002.

[29] Waite DW, Griffin R, Taylor R, George S. Rapid and accurate identification of Xanthomonas citri subspecies citri by fluorescence in situ hybridization. Lett Appl Microbiol 2016;63:315–21. doi:10.1111/lam.12624.

[30] Zhao Y, Xia Q, Yin Y, Wang Z. Comparison of droplet digital PCR and quantitative PCR assays for quantitative detection of Xanthomonas citri subsp. citri. PLoS One 2016;11:1–18. doi:10.1371/journal.pone.0159004.

[31] Gottwald TR, Graham J, Bock C, Bonn G, Civerolo E, Irey M, Leite R, McCollum G, Parker P, Ramallo J, Riley T, Schubert T, Stein B, Taylor E. The epidemiological significance of post-packinghouse survival of Xanthomonas citri subsp. citri for dissemination of asiatic citrus canker via infected fruit. Crop Prot 2009;28:508–24. doi:10.1016/j.cropro.2009.02.003.

[32] Delcourt S, Vernière C, Boyer C, Pruvost O, Hostachy B, Robène-Soustrade I. Revisiting the specificity of PCR primers for diagnostics of Xanthomonas citri pv. citri by experimental and in silico analyses. Plant Dis 2013;97:373–8. doi:10.1094/PDIS-04-12-0351-RE.

[33] Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004;14:1394–403.
Altschul S, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–402. doi:10.1093/nar/25.17.3389.

Phillippy AM, Ayanbule K, Edwards NJ, Salzberg SL. Insignia: a DNA signature search web server for diagnostic assay development. Nucleic Acids Res 2009;37:W229–34. doi:10.1093/nar/gkp286

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012;13:1.11. doi:10.1186/1471-2105-13-134.

Simpson AJ, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R, Alves LM, Araya JE, Baia GS, Baptista CS, Barros MH, Bonaccors ED, Bordin S, Bove JM, Briones MR, Bueno MR, Camargo AA, Camargo LE, Carraro DM, Carrer H, Colauto NB, Colombo C, Costa FF, Costa MC, Costa-Neto CM, Coutinho LL, Cristofani M, Dias-Neto E, Docena C, El-Dorry H, Facincani AP, Ferreira AJ, Ferreira VC, Ferro JA, Fraga JS, França SC, Franco MC, Frohme M, Furlan LR, Garnier M, Goldman GH, Goldman MH, Gomes SL, Gruber A, Ho PL, Hoheisel JD, Junqueira ML, Kemper EL, Kitajima JP, Krieger JE, Kuramae EE, Laigret F, Lambais MR, Leite LC, Lemos EG, Lemos MV, Lopes SA, Lopes CR, Machado JA, Machado MA, Madeira AM, Madeira HM, Marino CL, Marques MV, Martins EA, Martins EM, Matsukuma AY, Menck CF, Miracca EC, Miyaki CY, Monteriro-Vitorelo CB, Moon DH, Nagai MA, Nascimento AL, Netto LE, Nhani A, Nobrega FG, Nunes LR, Oliveira MA, Oliveira MC, Oliveira RC, Palmieri DA, Paris A, Peixoto BR, Pereira GA, Pereira HA, Pesquero JB, Quaggio RB, Roberto PG, Rodrigues V, Rosa AJM, Rosa VE, Sá RG, Santelli RV, Sawasaki HE, Silva AC, Silva AM, Silva FR, Silva WA, Silveira JF, Silvestri ML, Siqueira WJ, Souza AA, Souza AP, Terenzi MF, Truffi D, Tsai SM, Tshukho MH, Vallada H, Van Sluys MA, Verjovski-Almeida S, Vettore AL, Zago MA, Zatt M, Meidanis J, Setubal JC. The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa consortium of the Organization for Nucleotide Sequencing and Analysis. Nature 2000;406:151–9. doi:10.1038/35018003.

Yan Q, Wang N. The colR/colS two-component system plays multiple roles in the pathogenicity of the citrus canker pathogen Xanthomonas citri subsp. citri. J Bacteriol 2011;193:1590–9. doi:10.1128/JB.01415-10.

San Millán RM, Martinez-Ballesteros I, Rementeria A, Garaizar J, Bikandi J. Online exercise for the design and simulation of PCR and PCR-RFLP experiments. BMC Res Notes 2013;6:2–5. doi:10.1186/1756-0500-6-513.

Gottwald TR, Graça J V, Bassanezi RB. Citrus Huanglongbing: The pathogen and its impact. Plant Heal Prog 2007. doi:10.1094/PHP-2007-0906-01-RS.

Ference CM, Gochez AM, Behlau F, Wang N, Graham JH, Jones JB. Recent advances in understanding Xanthomonas citri subsp. citri pathogenesis and citrus canker disease management. Mol Plant Pathol 2017;19:1302–18. doi:10.1111/mpp.12638.
[42] Behlau F, Fonseca AE, Belasque J. A comprehensive analysis of the asiatic citrus canker eradication programme in São Paulo state, Brazil, from 1999 to 2009. Plant Pathol 2016;65:1390–9. doi:10.1111/ppa.12503.

[43] Afonso AS, Zanetti BF, Santiago AC, Henrique-Silva F, Mattoso LHC, Faria RC. QCM immunoassay for recombinant cysteine peptidase: a potential protein biomarker for diagnosis of citrus canker. Talanta 2013;104:193–7. doi:10.1016/j.talanta.2012.11.003.

[44] Alvarez AM, Benedict AA, Mizumoto CY, Pollard LW, Civerolo EL. Analysis of Xanthomonas campestris pv. citri and X. c. citrumelo with Monoclonal Antibodies. Phytopathology 1991;81:857–65. doi:10.1094/Phyto-81-857.

[45] Bach EE, Alba APC. Cross-reactive Antigens between Xanthomonas campestris pv. citri pathotypes and citrus species. J Phytopathol 1993;138:84–9. doi:10.1111/j.1439-0434.1993.tb01363.x.

[46] Bach EE, Guzzo SD. Serological relationship and chemical composition of exopolysaccharides (EPS) from different pathotypes of Xanthomonas campestris pv. citri and Xanthomonas campestris pv. manihotis. J Phytopathol 1994;141:1–9. doi:10.1111/j.1439-0434.1994.tb01440.x.

[47] Yano T, Castro AFP, Lauritis JA, Namekata T. Serological differentiation of bacteria belonging to the Xanthomonas campestris group by indirect hemagglutination test. Ann Phytopathol Soc Japan 1979;45:1–8. doi:10.3186/jjphytopath.45.1.

[48] Golmohammadi M, Cubero J, Peñalver J, Quesada JM, López MM, Llop P. Diagnosis of Xanthomonas axonopodis pv. citri, causal agent of citrus canker, in commercial fruits by isolation and PCR-based methods. J Appl Microbiol 2007;103:2309–15. doi:10.1111/j.1365-2672.2007.03484.x.

[49] Hartung JS, Daniel JF, Pruvost OP. Detection of Xanthomonas campestris pv. citri by the polymerase chain reaction method. Appl Environ Microbiol 1993;59:1143–8. doi:10.1094/PHYTO-95-1333

[50] Kositcharoenkul N, Chatchawankanphanich O, Bhunchoth A. Detection of Xanthomonas citri subsp. citri from field samples using single-tube nested PCR. Plant Pathol 2011;60:436–42. doi:10.1111/j.1365-3059.2010.02390.x.

[51] Cubero J, Graham JH. Quantitative PCR method for diagnosis of citrus bacterial canker. Appl Environ Microbiol 2001;67:2849–52. doi:10.1128/AEM.67.6.2849.

[52] Cubero J, Graham JH. Genetic relationship among worldwide strains of Xanthomonas causing canker in citrus species and design of new primers for their identification by PCR. Appl Environ Microbiol 2002;68:1257–64. doi:10.1128/AEM.68.3.1257.

[53] Cubero J, Graham JH. Quantitative real-time polymerase chain reaction for bacterial enumeration and allelic discrimination to differentiate Xanthomonas strains on Citrus. Phytopathology 2005;95:1333–40. doi:10.1094/PHYTO-95-1333.

[54] Graham JH, Gerberich KM, Davis CL. Injection–infiltration of attached grapefruit with
Xanthomonas citri subsp. citri to evaluate seasonal population dynamics in citrus canker lesions. J Phytopathol 2016;164:528–33. doi:10.1111/jph.12478.

[55] Pruvost O, Boher B, Brocherieux C, Nicole M, Chiroleu F. Survival of Xanthomonas axonopodis pv. citri in leaf lesions under tropical environmental conditions and simulated splash dispersal of inoculum. Phytopathology 2002;92:336–46. doi:10.1094/PHYTO.2002.92.4.336.

[56] Das AK. Citrus canker - a review. J Appl Hortic 2003;5:52–60.

[57] Ranjbar R, Naghoni A, Farshad S, Lashini H, Najafi A, Sadeghifard N, Mammina C. Use of TaqMan® real-time PCR for rapid detection of Salmonella enterica serovar typhi. Acta Microbiol Immunol Hung 2014;61:121–30. doi:10.1556/AMicr.61.2014.2.3.

[58] Angelone-Alasaad S, Molinar Min A, Pasquetti M, Alagaili AN, D’Amelio S, Berrilli F, Obanda V, Gebely MA, Soriguer RC, Rossi L. Universal conventional and real-time PCR diagnosis tools for Sarcoptes scabiei. Parasit Vectors 2015;8:587. doi:10.1186/s13071-015-1204-8.

[59] Zhou X, Zhang T, Song D, Huang T, Peng Q, Chen Y, Li A, Zhang F, Wu Q, Ye Y, Tang Y. Comparison and evaluation of conventional RT-PCR, SYBR green I and TaqMan real-time RT-PCR assays for the detection of porcine epidemic diarrhea virus. Mol Cell Probes 2017;33:36–41. doi:10.1016/j.mcp.2017.02.002.
Tables

Table 1: Relation of compatible host and causal agents
Table 2: General characteristics of the reference genomes
Table 3: Molecular markers selected for the assays
Figure captions

Figure 1: Experimental design. Stages and procedures from the development of the *in silico* stages to the validation of the molecular results of the plant diagnosis.

Figure 2: Specificity of molecular markers *in vitro*. Conventional PCR electrophoresis using Xcc-specific oligonucleotides for *Xanthomonas citri* subsp. *citri* pathotypes A (*XccA*) and A* (*XccA*) with a 509 bp amplicon, (A) *Xanthomonas fuscans* subsp. *aurantifolii* pathotype B (*XauB*) with 434 bp amplicon, (B) *Xanthomonas fuscans* subsp. *aurantifolii* pathotype C (*XauC*) with 160 bp amplicon, (C) *Xanthomonas* *alfalfae* subsp. *citrumelonis* (*Xacm*) with an amplicon of 115 bp, and (D) MW: molecular weight (ladder 100 bp).

Figure 3: Progressive DNA dilutions demonstrating the sensitivity of PCR. (A) *XccA* (0.02 ng/μl, ~70 cells), (B) *XauB* (0.03 ng/μl, ~100 cells), (C) *XauC* (0.12 ng/μl, ~400 cells), and (D) *Xacm* (0.07 ng/μl, ~200 cells). MW: molecular weight (ladder 100 bp).

Figure 4: Multiplex PCR of *Xanthomonas* that infect citrus. (A) Multiplex PCR electrophoresis containing the combination of the DNA of one species with all pairs of specific primers generating only their amplicon (lines 2 to 5). MP - Combination of DNAs of all pathotypes with all primers (line 6). MW: molecular weight (ladder 100 bp) and (B) Theoretical electrophoresis of multiplex PCR.

Figure 5: Multiplex PCR electrophoresis of *Xanthomonas* spp. that do not infect citrus. (1701) - *X. axonopodis* pv. *vignicola* strain 1701; (1387) - *X. axonopodis* pv. *vesicatoria* strain IBSBF1387; (1689) - *X. axonopodis* pv. *vesicatoria* strain 1689; (1770) - *X. axonopodis* pv. *allii* strain IBSBF1770; (11280) - *X. axonopodis* pv. *phaseoli* strain IAC11280; (1711) - *X. alfalfae* subsp. *alfalfa* strain 1711; (M89) - *X. axonopodis* pv. *passiflorae* strain M89; (1727) - *X. axonopodis* pv. *patelli* strain 1727; (1729) - *X. axonopodis* pv. *coracanae* strain 1729; (1954) - *X. axonopodis* pv. *manihotis* strain IBSBF 1954; (13755) - *X. axonopodis* pv. *phaseoli* var. *fuscans* strain IAC13755; (1721) - *X. citri* pv. *rhynchosiae* strain 1721; (2008) - *X. axonopodis* pv. *vasculorum* strain IBSBF 2008; (1696) - *X. axonopodis* pv. *axonopodis* strain 1696; (1478) - *X. axonopodis* pv. *dieffenbachiae* strain IBSBF 1478; (1694) - *X. axonopodis* pv. *glycines* strain 1694; (1718) - *X. citri* pv. *cajani* strain 1718; (1719) - *X. citri* pv. *sesbaniae* strain 1719; (Xf) *Xylella fastidiosa* strain 9a5c. MW: molecular weight (ladder 100 bp).
Figure 6: Specificity and sensitivity of amplification by *in vivo* PCR. Conventional PCR of bacterial exudate using the specific markers for *XccA*, *XauB*, *XauC*, and *Xacm*. The minimum concentration detected by PCR (A) for *XccA* was 1.5x10^4 CFU ml⁻¹, (B) for *XauB* was 1.5x10^5 CFU ml⁻¹, (C) for *XauC* was 1.5x10^5 CFU ml⁻¹, and (D) for *Xacm* 1.5x10^4 CFU ml⁻¹. PC: positive control. NC: negative control of leaves inoculated with water. MW: molecular weight (ladder 100 bp).

Figure 7: Specificity of the markers in exudate samples from leaves inoculated by spraying with *XccA* strain. PC: Positive control *in vitro* DNA extraction; *XccA*, *XauB*, *XauC*, and *Xacm* PCR using XccAm, XauBm, XauCm, and Xacmm specific markers respectively, for exudate samples of citrus canker lesions induced by *XccA*306. MW: molecular weight (ladder 100 bp).
Table 1 (on next page)

Relation of compatible host and causal agents

Source: (Gottwald et al. 1991; Gottwald et al. 1988; Graham et al. 1990; Jaciani 2012; Schoulties et al. 1987; Schubert et al. 2001; Sun et al. 2004; Vernière et al. 1998). *The results presented in this table are means of several reports of the disease in plantations and studies of pathogenicity tests. +++ very pathogenic to host ++ moderately pathogenic to host + little pathogenic to the host
Table 1 Relation of compatible host and causal agents

Host	Pathogen	XccA	XccA*	XccAw	XauB	XauC	Xacm
Citrus sinensis		+++	-	-	+	±	+
Citrus aurantium		+++	-	-	+	-	+
Citrus limon		++	-	-	++	+	-
Citrus limonia		+++	-	-	-	+	+
Citrus latifolia		++	-	-	-	+	+
Citrus aurantiifolia		+++	+	+	+++	+	
Citrus macrophylla		+	-	+	-	-	-
Citrus paradisi × Poncirus trifoliata		+++	-	-	-	++	+
Citrus reticulata (Tangerina ‘Ponkan’)		+	-	-	-	+	-
Citrus reticulata (Tangerina ‘Cravo’)		++	-	-	-	+	+
Citrus reshni		+	-	-	-	+	-
Citrus paradisi		+++	-	-	-	-	+
Citrus maxima		+	-	-	+	-	-

*The results presented in this table are means of several reports of the disease in plantations and studies of pathogenicity tests [10, 12, 13, 16-20].

+++ very pathogenic to host

++ moderately pathogenic to host

+ little pathogenic to the host
Table 2 (on next page)

General characteristics of the reference genomes

1WDCM (World Data Centre for Microorganisms)

2IBSBF - Instituto Biológico de São Paulo

3*Xanthomonas euvesicatoria* pv. *citrumelonis* strain 1510 is the same as *X. alfalfae* subsp. *citrumelonis* strain 1510 (https://www.ncbi.nlm.nih.gov/nuccore/NZ_LAOU0000000.1)
Table 2 General characteristics of the reference genomes

Organism	WDCM (Accession number)	Abbreviations	Genome	NCBI Reference Sequence	CDSs	Ref
X. citri subsp. *citri* pathotype A strain 306	IBSBF (1594)	XccA306	Complete	NC_003919.1	4,687	(Da Silva et al. 2002)
Xanthomonas citri subsp. *aurantifolii* pathotype B strain 1561	IBSBF (409)	XauB1561	Complete	CP011250.1	4,397	Unpublished
Xanthomonas citri subsp. *aurantifolii* pathotype C strain 1559	IBSBF (381)	XauC1559	Complete	CP011160.1	4,733	Unpublished
X. alfalfa subsp. *citrumeloni* strain 1510	IBSBF (1925)	Xacm1510	Draft	GCF_005059785.1	4,017	Unpublished

1 WDCM (World Data Centre for Microorganisms)
2 IBSBF - Instituto Biológico de São Paulo
3 *Xanthomonas euvesicatoria* pv. *citrumeloni* strain 1510 is the same as *X. alfalfa* subsp. *citrumeloni* strain 1510 (https://www.ncbi.nlm.nih.gov/nuccore/NZ_LAOU00000000.1)

Xanthomonas euvesicatoria pv. citrumeloni strain 1510 is the same as X. alfalfa subsp. citrumeloni strain 1510 (https://www.ncbi.nlm.nih.gov/nuccore/NZ_LAOU00000000.1)
Table 3 (on next page)

Molecular markers selected for the assays.

The oligonucleotides and amplicons generated by PCR are protected by the patent application registration under process number BR 10 2018 067332 7.
Pathotypes	Markers	Forward	Reverse	Amplicon size (bp)	Tm (°C)
XccA	XccAm	ATGCTGAGCAA	AGCTGGGAACGA	509	59
		GCCTTCGAT	TGATGGTG		
XauB	XauBm	TCGATCGCACG	AAAATCGGCTC	434	59
		GACTACTTG	TCCCTCTC		
XauC	XauCm	CACTGGAGGCA	CCACCCTCAAGTT	160	59
		GGAGTCGAG	CAGCAACA		
Xacm	Xacmm	ACCAACACCTT	TGTCGTCAAAACC	115	59
		GTGGTCGTA	GGCCA		

2 The oligonucleotides and amplicons generated by PCR are protected by the patent application registration under process number BR 10 2018 067332 7.
Figure 1

Experimental design.

Stages and procedures from the development of the *in silico* stages to the validation of the molecular results of the plant diagnosis.
Figure 2

Specificity of molecular markers \textit{in vitro}.

Conventional PCR electrophoresis using Xcc-specific oligonucleotides for \textit{Xanthomonas citri} subsp. \textit{citri} pathotypes A (XacA) and A* (XacA*) with a 509 bp amplicon, (A) \textit{Xanthomonas fuscans} subsp. \textit{aurantifolii} pathotype B (XauB) with 434 bp amplicon, (B) \textit{Xanthomonas fuscans} subsp. \textit{aurantifolii} pathotype C (XauC) with 160 bp amplicon, (C) \textit{Xanthomonas alfalfae} subsp. \textit{citrumelonis} (Xacm) with an amplicon of 115 bp, and (D) MW: molecular weight (ladder 100 bp).
Figure 3

Progressive DNA dilutions demonstrating the sensitivity of PCR.

(A) XccA (0.02 ng/μl, ~70 cells), (B) XauB (0.03 ng/μl, ~100 cells), (C) XauC (0.12 ng/μl, ~400 cells), and (D) Xacm (0.07 ng/μl, ~200 cells). MW: molecular weight (ladder 100 bp).
Figure 4

Multiplex PCR of *Xanthomonas* that infect citrus.

(A) Multiplex PCR electrophoresis containing the combination of the DNA of one species with all pairs of specific primers generating only their amplicon (lines 2 to 5). MP - Combination of DNAs of all pathotypes with all primers (line 6). MW: molecular weight (ladder 100 bp) and (B) Theoretical electrophoresis of multiplex PCR.
Manuscript to be reviewed
Figure 5

Multiplex PCR electrophoresis of *Xanthomonas* sp. that do not infect citrus.

(1701) - *X. axonopodis* pv. *vignicola* strain 1701; (1387) - *X. axonopodis* pv. *vesicatoria* strain IBSBF1387; (1689) - *X. axonopodis* pv. *vesicatoria* strain 1689; (1770) - *X. axonopodis* pv. *allii* strain IBSBF1770; (11280) - *X. axonopodis* pv. *phaseoli* strain IAC11280; (1711) - *X. alfae* subsp. *alfalae* strain 1711; (M89) - *X. axonopodis* pv. *passiflorae* strain M89; (1727) - *X. axonopodis* pv. *patelli* strain 1727; (1729) - *X. axonopodis* pv. *coracanae* strain strain 1729; (1954) - *X. axonopodis* pv. *manihotis* strain IBSBF 1954; (13755) - *X. axonopodis* pv. *phaseoli* var. *fuscans* strain IAC13755; (1721) - *X. citri* pv. *rhynchosiae* strain 1721; (2008) - *X. axonopodis* pv. *vasculorum* strain IBSBF 2008; (1696) - *X. axonopodis* pv. *axonopodis* strain 1696; (1478) - *X. axonopodis* pv. *dieffenbachiae* strain IBSBF 1478; (1694) - *X. axonopodis* pv. *glycines* strain 1694; (1718) - *X. citri* pv. *cajani* strain 1718; (1719) - *X. citri* pv. *sesbaniae* strain 1719; (Xf) *Xylella fastidiosa* strain 9a5c. MW: molecular weight (ladder 100 bp).
Figure 6

Specificity and sensitivity of amplification by *in vivo* PCR.

Conventional PCR of bacterial exudate using the specific markers for \textit{XccA}, \textit{XauB}, \textit{XauC}, and \textit{Xacm}. The minimum concentration detected by PCR (A) for \textit{XccA} was 1.5×10^4 CFU ml$^{-1}$, (B) for \textit{XauB} was 1.5×10^5 CFU ml$^{-1}$, (C) for \textit{XauC} was 1.5×10^5 CFU ml$^{-1}$, and (D) for \textit{Xacm} 1.5×10^4 CFU ml$^{-1}$. PC: positive control. NC: negative control of leaves inoculated with water. MW: molecular weight (ladder 100 bp).
Figure 7

Specificity of the markers in exudate samples from leaves inoculated by spraying with XccA strain.

PC: Positive control in vitro DNA extraction; XccA, XauB, XauC, and Xacm PCR using XccAm, XauBm, XauCm, and Xacmm specific markers respectively, for exudate samples of citrus canker lesions induced by XacA306. MW: molecular weight (ladder 100 bp).