Crystal structures of two erbium(III) complexes with 4-aminobenzoic acid and 4-chloro-3-nitrobenzoic acid

Graham Smith and Daniel E. Lynch

Acta Cryst. (2015). E71, 1457–1461
Crystal structures of two erbium(III) complexes with 4-aminobenzoic acid and 4-chloro-3-nitrobenzoic acid

Graham Smitha* and Daniel E. Lyncht

The crystal structures of two erbium(III) complexes with 4-aminobenzoic acid (4-ABAH), namely bis(μ₂-4-aminobenzoato-κ²O,O’)bis[4-aminobenzoato-κ²O,O’]diaquaerbium(III) dihydrate, [Er₂(C₇H₆NO₂)₆(H₂O)₄]·2H₂O, (I), and 4-chloro-3-nitrobenzoic acid (CLNBAH), namely poly[hexakis(μ₂-4-chloro-3-nitrobenzoato-κ²O,O’)bis(dimethyl sulfoxide-κO)dietherbium(III)], [Er₂(C₇H₃ClNO₄)₆(C₂H₆OS)₂]n, (II), have been determined. In the structure of solvatomorphic compound (I), the symmetry-related irregular ErO₈ coordination polyhedra in the discrete centrosymmetric dinuclear complex comprise two monodentate water molecules and six carboxylate O-atom donors, four from two bidentate carboxylate O₂O₂-chelate groups and two from the bis-monodentate O₂O₂-bridging group of the third 4-ABA anion. The Er—O bond-length range is 2.232 (3)–2.478 (3) Å and the Er···Er separation in the dinuclear complex unit is 4.7527 (4) Å. One of the coordinating water molecules is involved in an intra-unit O—H···O hydrogen-bonding association with an inversion-related carboxylate O-atom acceptor. In contrast, the anhydrous compound (II) is polymeric, based on centrosymmetric dinuclear repeat units comprising ErO₇ coordination polyhedra which involve four O-atom donors from two bidentate O₂O₂-bridging carboxylate groups, one O-atom donor from the monodentate dimethyl sulfoxide ligand and two O-atom donors from the third bridging CLNBA anion. The latter provides the inter-unit link in the one-dimensional coordination polymer extending along [100]. The Er···O bond-length range in (II) is 2.239 (6)–2.348 (6) Å and the Er···Er separation within the dinuclear unit is 4.4620 (6) Å. In the crystal of (I), extensive inter-dimer O—H···O and N—H···O hydrogen-bonding interactions involving both the coordinating water molecules and the solvent water molecules, as well as the amine groups of the 4-ABA anions, give an overall three-dimensional network structure. Within this structure are also weak π···π ring interactions between two of the coordinating ligands [ring-centroid separations = 3.676 (3) and 3.711 (2) Å]. With (II), only weak intra-polymer C—H···O, C—H···Cl and C—H···S interactions are present.

1. Chemical context

The coordination chemistry of the rare earth (RE) metals has been investigated extensively and the structures of a large number of complexes with various ligand types are known (Sastri et al., 2003). Of interest is the lanthanide contraction across the series and 4-aminobenzoic acid (4-ABAH) has provided a valuable ligand for this purpose in a comprehensive study of this effect with the RE³⁺ (La–Y) series of complexes (Sun et al., 2004). Within this series there are two sub-sets of isotypic complexes, one monoclinic (P2₁/n) (La–Tb as well as Dy and Er), in which the structures are two-dimensional, the second triclinic (P-T) forming dinuclear structures (Yb, Lu, Y, as well as Tb). The solvatomorphism of
the Tb member \{monoclinic, \[\text{Tb}_2(4\text{-ABA})_6(\text{H}_2\text{O})_2]\}; triclinic \[[\text{Tb}_2(4\text{-ABA})_6(\text{H}_2\text{O})_2] \cdot \text{H}_2\text{O}\}\] is of interest and its occurrence was indicated as being dependent on pH control in the preparation.

It was considered that some of the other later members of the RE series (predominantly triclinic) might also show the same effect so this was tested with Er in a reaction of erbium(III) acetate with 4-ABA in aqueous ethanol under mild reaction conditions, with no additional pH control. The title triclinic complex \[[\text{Er}_2(\text{C}_7\text{H}_6\text{NO}_2)_6(\text{H}_2\text{O})_4] \cdot \text{H}_2\text{O}\], (I), was obtained. For (I), the preliminary unit-cell data (Table 1) suggested a possible solvatomorphic variant of the previously reported polymeric monoclinic ErIII complex \[[\text{Er}_2(4\text{-ABA})_6(\text{H}_2\text{O})_2] \cdot \text{H}_2\text{O}\] (Sun \textit{et al.}, 2004), and this was confirmed in the X-ray structural analysis. The comparative cell data for the triclinic TbIII complex with 4-ABA are

Parameter	Value
\(a\)	9.0964
\(b\)	11.0117
\(c\)	12.7430
\(\alpha\)	89.372
\(\beta\)	72.0360
\(\gamma\)	75.0730
\(V\)	1169.97

Table 1: Selected bond lengths (Å) for (I).

Bond Pair	Distance (Å)
ErI—O\textsubscript{1}W	2.373 (2)
ErI—O\textsubscript{1}2A	2.333 (3)
ErI—O\textsubscript{2}W	2.295 (3)
ErI—O\textsubscript{1}2B	2.385 (3)
ErI—O\textsubscript{1}1A	2.477 (3)
ErI—O\textsubscript{1}1C	2.232 (3)
ErI—O\textsubscript{1}1B	2.478 (3)

Symmetry code: (i) = \(-x, y, -z, -z + 1\).

subsequent recrystallization using DMSO. The structures of both complexes are reported herein.

2. Structural commentary

In the title centrosymmetric dinuclear structure of compound (I) (Fig. 1), the two identical irregular ErIII complex units \[[\text{Er}—\text{O bond length range, 2.232 (3)—2.478 (3) Å}]\] (Table 1), comprise two monodentate water molecules (O\textsubscript{1}W, O\textsubscript{2}W), four O-atom donors from two slightly asymmetric bidentate \(O,O'\) chelate carboxylate groups (the \(A\) and \(B\) 4-ABA ligands) and two bridging O-atom donors from two symmetry-related ligands (C). The ErI—ErI separation in the dinuclear unit is 4.7527 (4) Å. Unlike the polymeric solvatomorphic ErIII complex \[[\text{Er}_2(4\text{-ABA})_6(\text{H}_2\text{O})_2] \cdot \text{H}_2\text{O}\] (Sun \textit{et al.}, 2004), in which the extending Er—N bond is somewhat elongated at 2.660 (3) Å, with (I), there is no reasonable Er—N bonding contact. The monodentate water molecule O2W in (I) replaces the bridging amino N-donor site which is present in the 8-coordination sphere about Er in the solvatopolymer. Within the dinuclear complex unit of (I), an intra-dimer O—H\cdot\cdot\cdotO carboxylate hydrogen bond is present between one of the coordinating water molecules (O1W) and an inversion-
related carboxylate O-atom (O11A') (Table 2). This structure is similar to the triclinic isotypic Tb$^{3+}$ complex with 4-ABA (Sun et al., 2004).

In (I), the 4-ABA ligand species show some variation in the conformation of the carboxylate groups. In one of the bidentate O,O'-chelate ligands (A) and the bridging ligand (C), the groups are essentially coplanar with the benzene ring [torsion angles C2A/C—C1A/C—C11A/C—O11A/C = 171.2 (4) and 174.8 (4)$^\circ$, respectively], while in the second bidentate chelate ligand (B) the group is rotated out of the plane [corresponding torsion angle = 155.9 (4)$^\circ$]. Such a 'planar' conformation is also found in the structure of the parent acid (Gracin & Fischer, 2005) and in molecular adducts with aromatic carboxylic acids (Chadwick et al., 2009).

In the crystal structure of complex (II), a centro symmetric dinuclear repeat unit is present with the two inversion-related ErIII atoms (Fig. 2) being seven-coordinated through four bridging carboxylate O,O' groups (the A and B ligands), a monodentate DMSO O-atom and O-donors (O12Ci) and O11Ci from the C ligand which extends the dinuclear unit into a one-dimensional coordination polymer lying along [100] (Fig. 3). The Er—O bond length range is 2.239 (6)–2.348 (6) Å (Table 3) and the Er–·Er separation in the dimeric unit is 4.4620 (6) Å. Also present within the repeat unit are a C2B—H—·O11 hydrogen bond [3.298 (13) Å] and a C2A—H—·S1 interaction [3.743 (10) Å] (Table 4).

The torsion angles defining the conformation of the carboxylate groups of the CLNBA ligands in (II) are C2A/B/C—C1A/B/C—C11A/B/C—O11A/B/C = 157.2 (4) and 174.8 (4)$^\circ$, respectively. In the torsion angles of the nitro groups C2A/B/C—C3A/B/C—N3A/B/C—O32A/B/C are -150.4 (12), 174.1 (16) and 120.3 (13)$^\circ$, respectively. In the structure of the parent CLNBA acid (Ishida & Fukunaga, 2003), the corresponding torsion angles are 174.02 (17) and -132.61 (18)$^\circ$ compared to 179.7 (2) and -137.8 (2)$^\circ$ in the Na–CLNBA monohydrate salt (Smith, 2013).

Table 2

Hydrogen-bond geometry (Å, $^\circ$) for (I).
D—H · · · A

O1W—H11W···O11Ai
O1W—H12W···O11Bii
O2W—H21W···N4Biii
O2W—H22W···N4Civ
O3W—H31W···O12B
O3W—H32W···O12Av
N4A···H42A···O3Bvi
N4B···H41B···O3Wvii
N4C···H42C···O1Biii

Symmetry codes: (i) $-x, -y+1, -z+1$; (ii) $-x+2, -y+1, -z+1$; (iii) $x, y-1, z$; (iv) $x+1, y+1, z$; (v) $-x+1, -y+1, -z+2$; (vi) $-x, -y+1, -z+2$; (vii) $-x+1, -y+2, -z+1$.

Table 3

Selected bond lengths (Å) for (II).
D—H · · · A

Er1—O11
Er1—O11C
Er1—O12B
Er1—O12Ci

Symmetry codes: (i) $-x, -y+1, -z+1$; (ii) $-x+1, -y+1, -z+1$.

Table 4

Hydrogen-bond geometry (Å, $^\circ$) for (II).
D—H · · · A

C2A···H2A···S1
C2B···H2B···O11
C11···H111···C14i
C12···H123···O32Aii

Symmetry codes: (iii) $-x+1, -y+1, -z$; (iv) $-x, -y+1, -z$.

Figure 2

The molecular configuration and atom-naming scheme for the centro-symmetric dinuclear repeat unit in the polymeric complex (II), with displacement ellipsoids drawn at the 40% probability level. [Symmetry code: (v) $x+1, y, z$; for other symmetry codes, see Table 3.]

Figure 3

The packing of the one-dimensional polymeric chain structure of (II) in the unit cell, viewed approximately along [001]. H atoms have been omitted.
3. Supramolecular features

In the crystal structure of compound (I), extensive inter-unit \(\text{O–H} \cdots \text{O}\) and \(\text{O–H} \cdots \text{N}\) hydrogen-bonding interactions are present, involving both the coordinating water molecules as well as the solvent water molecules, with carboxylate O-atom acceptors and amine N-atom acceptors (Table 2). These, together with amine N–H\(\cdots\)O\(_\text{water}\) and O\(\cdots\)carboxyl hydrogen bonds give a three-dimensional network structure (Figs. 4 and 5). One H atom of each of the amine groups on the three 4-ABA ligand components of the complex is not involved in hydrogen-bonding. Also present in the supramolecular structure are weak \(\text{C} \cdots \text{C}\) interactions between A ligands \([\text{ring-centroid separation A} \cdots \text{A}^\text{vii} = 3.711 (3) \text{Å}]\) and C ligands \([\text{C} \cdots \text{C}^\text{viii} = 3.676 (3) \text{Å}\] (for symmetry codes, see Table 2). This dimeric carboxylate-bridged complex mode is similar to that found in the erbium acetate complex \([\text{Er}_2(\text{CH}_3\text{CO}_2)_6(\text{H}_2\text{O})_4]^2\text{H}_2\text{O}\) (Sawase et al., 1984).

With (II), present are two weak intra-polymer C–H\(\cdots\)O hydrogen bonds involving methyl H atoms and both a DMSO O-atom acceptor and a Cl-atom acceptor (Table 4).

4. Synthesis and crystallization

The title compounds were synthesized by warming together for 10 min, a solution obtained by mixing 5 ml of ethanolic 4-aminobenzoic acid (1 mmol: 135 mg) [for (I)] or 4-chloro-3-nitrobenzoic acid (1 mmol: 200 mg) [for (II)], with 10 ml of aqueous erbium(III) acetate hexahydrate (0.3 mmol: 216 mg). Partial room-temperature evaporation of these solutions provided pale-pink block-like single crystals of (I), suitable for X-ray analysis while a colourless powder was obtained from the preparation of (II). Recrystallization using the slow diffusion of water into a DMSO solution gave minor small crystals of (II), suitable for X-ray analysis.

5. Refinement details

Crystal data, data collection and structure refinements for (I) and (II) are summarized in Table 5. Hydrogen atoms on all water molecules and the amine groups of the 4-ABA ligands in (I) were located by difference methods and positional parameters were refined with restraints \([\text{O–H} \text{bond length} = 0.85 (2) \text{Å} \text{and} \text{N–H} = 0.88 (2) \text{Å}]\) with \(U_{\text{iso}}(\text{H}) = 1.5 U_{eq}(\text{O})\) or \(1.2 U_{eq}(\text{N})\). Other H atoms were included in the refinement at calculated positions \([\text{C–H(aromatic)} = 0.95 \text{Å} \text{or} \text{C–H(methyl)} = 0.96 \text{Å}\] with \(U_{\text{iso}}(\text{H}) = 1.2 U_{eq}(\text{C})(\text{aromatic})\) or \(1.5 U_{eq}(\text{C})(\text{methyl})\] using a riding-model approximation. In the refinement of (II), a number of large difference electron density residual peaks \((5–7 \text{e Å}^{-3})\] located within 1.0 Å of the \(\text{Er}^1\) site were present. These are possibly due to poor crystal quality coupled to effects of an insufficient absorption correction.

Acknowledgements

The author acknowledges support from the Science and Engineering Faculty, Queensland University of Technology.

References

Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
Chadwick, K., Sadiq, G., Davey, R. J., Seaton, C. C., Pritchard, R. G. & Parkin, A. (2009). Cryst. Growth Des. 9, 1278–1279.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
Gracin, S. & Fischer, A. (2005). Acta Cryst. E61, o1242–o1244.
Ishida, H. & Fukunaga, T. (2003). Acta Cryst. E59, o1984–o1986.
Sastry, V. S., Bünzli, J.-C., Ramachandra Rao, V., Rayudi, G. V. S. & Perumareddi, J. R. (2003). In Modern Aspects of Rare Earths and Their Complexes. Amsterdam: Elsevier.
Table 5
Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	[Er₂(C₇H₆NO₂)₆(H₂O)₄]·2H₂O	[Er₂(C₇H₃ClNO₄)₆(C₂H₆OS)₂]
Mr	1259.38	1694.10
Crystal system, space group	Triclinic, P₁	Triclinic, P₁
Temperature (K)	200	200
a, b, c (Å)	9.0332 (5), 10.9363 (6), 12.6194 (6)	8.2408 (3), 12.4040 (8), 15.3409 (10)
α, β, γ (°)	89.015 (4), 72.105 (5), 74.814 (5)	111.443 (6), 98.063 (4), 96.684 (4)
V (Å³)	1142.21 (10)	1421.04 (14)
Z	1	1
Radiation type	Mo Kα	Mo Kα
μ (mm⁻¹)	3.73	3.38
Crystal size (mm)	0.30 × 0.30 × 0.25	0.25 × 0.12 × 0.04

Data collection

Diffraetometer	Oxford Diffraction Gemini-S CCD detector	Oxford Diffraction Gemini-S CCD detector
Absorption correction	Multi-scan (CrysAlis PRO; Agilent, 2013)	Multi-scan (CrysAlis PRO; Agilent, 2013)
Tₘin, Tₘax	0.713, 0.980	0.494, 0.980
No. of measured, independent and observed	7274, 4480, 4137	10041, 5566, 4814
F > 2σ(F)	0.035	0.055
(sin θ/λ)max (Å⁻¹)	0.617	0.617

Refinement

R[F² > 2σ(F²)], wR(F²), S	0.029, 0.058, 1.05	0.067, 0.181, 1.06
No. of reflections	4480	5566
No. of parameters	343	397
No. of restraints	12	0
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained
Δρmax, Δρmin (e Å⁻³)	1.03, −0.71	6.83, −2.41

Computer programs: CrysAlis PRO (Agilent, 2013), SIR92 (Altomare et al., 1993), SHELX97 and SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Sawase, H., Koizumi, Y., Suzuki, Y., Shimoi, M. & Ouchi, Z. (1984). Bull. Chem. Soc. Jpn., 57, 2730–2737.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Smith, G. (2013). Acta Cryst. C69, 1472–1477.
Speck, A. L. (2009). Acta Cryst. D65, 148–155.
Sun, H.-L., Ye, C.-H., Wang, X.-Y., Li, J.-R., Gao, S. & Yu, K.-B. (2004). J. Mol. Struct. 702, 77–83.
Crystal structures of two erbium(III) complexes with 4-aminobenzoic acid and 4-chloro-3-nitrobenzoic acid

Graham Smith and Daniel E. Lynch

Computing details
For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013). Program(s) used to solve structure: SIR92 (Altomare et al., 1993) for (I); SHELXS97 (Sheldrick, 2008) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

(I) Bis(μ₂-4-aminobenzoato-κ²O,O')bis(4-aminobenzoato-κ²O,O')diaquaerbium(III) dihydrate

Crystal data
\[\text{Er}_2(C_7H_6NO_2)_6(H_2O)_4\cdot2H_2O\]
\[M_r = 1259.38\]
Triclinic, \(P\bar{1}\)
Hall symbol: -P 1
\(a = 9.0332\) (5) Å
\(b = 10.9363\) (6) Å
\(c = 12.6194\) (6) Å
\(\alpha = 89.015\) (4)°
\(\beta = 72.105\) (5)°
\(\gamma = 74.814\) (5)°
\(V = 1142.21\) (10) Å³

Data collection
Oxford Diffraction Gemini-S CCD-detector diffractometer
Radiation source: Enhance (Mo) X-ray source
Graphite monochromator
Detector resolution: 16.077 pixels mm⁻¹
\(\omega\) scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
\(T_{\text{min}} = 0.713, T_{\text{max}} = 0.980\)

Refinement
Refinement on \(F^2\)
Least-squares matrix: full
\(R[F^2 > 2\sigma(F^2)] = 0.029\)
\(wR(F^2) = 0.058\)
\(S = 1.05\)
4480 reflections
343 parameters
12 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

\[w = \frac{1}{\sigma^2(F_o^2) + (0.011P)^2} \]
where \(P = (F_o^2 + 2F_c^2)/3 \)

\((\Delta/\sigma)_{\text{max}} = 0.002 \)
\(\Delta \rho_{\text{max}} = 1.03 \, \text{e} \, \text{Å}^{-3} \)
\(\Delta \rho_{\text{min}} = -0.71 \, \text{e} \, \text{Å}^{-3} \)

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su’s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.’s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of \(F^2 \) against ALL reflections. The weighted \(R \)-factor \(wR \) and goodness of fit \(S \) are based on \(F^2 \), conventional \(R \)-factors \(R \) are based on \(F \), with \(F \) set to zero for negative \(F^2 \). The threshold expression of \(F^2 > \sigma(F^2) \) is used only for calculating \(R \)-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. \(R \)-factors based on \(F^2 \) are statistically about twice as large as those based on \(F \), and \(R \)-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å\(^2\))

	x	y	z	\(U_{eq} \)/\(U_{eq} \)
Er1	0.63868 (2)	0.48651 (2)	0.63400 (1)	0.0172 (1)
O1W	0.8216 (3)	0.4689 (3)	0.4504 (2)	0.0236 (9)
O2W	0.8310 (4)	0.3257 (3)	0.6738 (3)	0.0310 (10)
O3W	0.4420 (4)	0.6614 (4)	1.0062 (3)	0.0450 (13)
O11A	0.3424 (3)	0.5182 (3)	0.7029 (2)	0.0229 (9)
O11B	0.8438 (3)	0.5973 (3)	0.6381 (2)	0.0226 (9)
O11C	0.4044 (4)	0.6642 (3)	0.4607 (3)	0.0393 (11)
O12A	0.4967 (3)	0.3977 (3)	0.7885 (2)	0.0279 (10)
O12B	0.6239 (4)	0.6268 (3)	0.7818 (2)	0.0297 (10)
O12C	0.5398 (3)	0.6760 (3)	0.5771 (2)	0.0326 (10)
N4A	−0.1513 (5)	0.2669 (5)	1.0592 (3)	0.0420 (16)
N4B	0.8254 (5)	1.1355 (4)	0.8371 (3)	0.0338 (14)
N4C	0.1613 (5)	1.2581 (4)	0.5966 (4)	0.0408 (14)
C1A	0.2234 (5)	0.3912 (4)	0.8436 (3)	0.0205 (12)
C1B	0.7719 (5)	0.7812 (4)	0.7614 (3)	0.0209 (11)
C1C	0.3588 (4)	0.8633 (4)	0.5499 (3)	0.0173 (11)
C2A	0.2533 (5)	0.2916 (4)	0.9109 (3)	0.0259 (12)
C2B	0.6425 (5)	0.8743 (4)	0.8302 (3)	0.0245 (12)
C2C	0.3840 (5)	0.9328 (4)	0.6308 (3)	0.0239 (12)
C3A	0.1314 (5)	0.2489 (4)	0.9799 (3)	0.0286 (16)
C3B	0.6601 (5)	0.9903 (4)	0.8557 (3)	0.0269 (12)
C3C	0.3173 (5)	1.0619 (4)	0.6478 (3)	0.0297 (14)
C4A	−0.0285 (5)	0.3068 (4)	0.9855 (3)	0.0272 (16)
C4B	0.8090 (5)	1.0165 (4)	0.8158 (3)	0.0238 (14)
C4C	0.2265 (5)	1.1253 (4)	0.5836 (4)	0.0264 (14)
C5A	−0.0601 (5)	0.4036 (4)	0.9147 (3)	0.0284 (14)
C5B	0.9399 (5)	0.9232 (4)	0.7501 (3)	0.0263 (12)
C5C	0.1958 (5)	1.0556 (4)	0.5055 (3)	0.0295 (14)
C6A	0.0656 (5)	0.4452 (4)	0.8453 (3)	0.0240 (12)
C6B	0.9214 (5)	0.8076 (4)	0.7221 (3)	0.0243 (12)
C6C	0.2620 (5)	0.9257 (4)	0.4890 (3)	0.0272 (14)
Atomic displacement parameters (Å²)

Atom	U¹¹	U¹²	U¹³	U¹²	U¹³	U¹³
Er1	0.0190 (1)	0.0146 (1)	0.0170 (1)	-0.0037 (1)	-0.0048 (1)	0.0002 (1)
O1W	0.0257 (16)	0.0120 (17)	0.0175 (15)	-0.0052 (15)	-0.0073 (15)	0.0014 (15)
O2W	0.0154 (16)	0.0156 (15)	0.0141 (14)	-0.0052 (14)	-0.0063 (14)	0.0006 (14)
O11A	0.0220 (15)	0.0180 (15)	0.0201 (14)	-0.0065 (13)	-0.0076 (13)	0.0010 (13)
O11B	0.0244 (16)	0.0164 (15)	0.0196 (15)	-0.0058 (15)	-0.0070 (15)	0.0013 (15)
O12B	0.0344 (12)	0.0238 (12)	0.0230 (12)	-0.0134 (12)	-0.0155 (12)	0.0040 (12)
N4A	0.025 (3)	0.014 (3)	0.014 (3)	-0.003 (3)	-0.010 (3)	0.002 (3)
N4B	0.027 (3)	0.022 (2)	0.020 (2)	-0.003 (2)	-0.009 (2)	0.001 (2)
C1A	0.024 (2)	0.020 (2)	0.017 (2)	-0.006 (2)	-0.007 (2)	0.002 (2)
C1B	0.028 (2)	0.021 (2)	0.013 (2)	-0.004 (2)	-0.006 (2)	0.001 (2)
C1C	0.0153 (19)	0.016 (2)	0.019 (2)	-0.0049 (16)	-0.0023 (16)	0.0001 (16)
C2A	0.024 (2)	0.028 (2)	0.028 (2)	-0.0071 (19)	-0.0114 (19)	0.0045 (19)
C2B	0.025 (2)	0.025 (2)	0.021 (2)	-0.0074 (19)	-0.0033 (18)	0.0024 (18)
Geometric parameters (Å, º)

Er1—O1W 2.373 (2) C1A—C2A 1.391 (6)
Er1—O2W 2.295 (3) C1B—C2B 1.393 (6)
Er1—O11A 2.477 (3) C1B—C6B 1.393 (7)
Er1—O11B 2.478 (3) C1B—C11B 1.480 (6)
Er1—O12A 2.333 (3) C1C—C11C 1.490 (6)
Er1—O12B 2.385 (3) C1C—C6C 1.380 (6)
Er1—O12C 2.232 (3) C1C—C2C 1.390 (6)
Er1—O11Ci 2.233 (4) C2A—C3A 1.362 (6)
O11A—C11A 1.257 (5) C2B—C3B 1.375 (6)
O11B—C11B 1.262 (5) C2B—C6B 1.374 (6)
O11C—C11C 1.245 (6) C3A—C4A 1.397 (7)
O12A—C11A 1.273 (6) C3B—C4B 1.388 (7)
O12B—C11B 1.273 (6) C3C—C4C 1.379 (6)
O12C—C11C 1.254 (5) C4A—C5A 1.402 (6)
O1W—H12W 0.82 (3) C4B—C5B 1.386 (6)
O1W—H11W 0.82 (4) C4C—C5C 1.391 (6)
O2W—H21W 0.84 (4) C5A—C6A 1.382 (6)
O2W—H22W 0.86 (4) C5B—C6B 1.383 (6)
O3W—H31W 0.83 (4) C5C—C6C 1.381 (6)
O3W—H32W 0.85 (5) C2A—H2A 0.9300
N4A—C4A 1.375 (6) C2B—H2B 0.9300
N4B—C4B 1.388 (6) C2C—H2C 0.9300
N4C—C4C 1.409 (6) C3A—H3A 0.9300
N4A—H41A 0.87 (4) C3B—H3B 0.9300
N4A—H42A 0.88 (4) C3C—H3C 0.9300
N4B—H41B 0.86 (4) C5A—H5A 0.9300
N4B—H42B 0.86 (3) C5B—H5B 0.9300
N4C—H41C 0.89 (5) C5C—H5C 0.9300

Acta Cryst. (2015). E71, 1457-1461
Bond	Distance (Å)	Bond	Distance (Å)	Distance (Å)
N4C—H42C	0.86 (3)	C6A—H6A	0.9300	
C1A—C11A	1.482 (6)	C6B—H6B	0.9300	
C1A—C6A	1.386 (7)	C6C—H6C	0.9300	
O1W—Er1—O2W	87.02 (12)	C2C—C1C—C6C	118.8 (4)	
O1W—Er1—O11A	131.43 (9)	C6C—C1C—C11C	121.1 (4)	
O1W—Er1—O11B	72.20 (9)	C1A—C2A—C3A	121.6 (4)	
O1W—Er1—O12A	151.62 (11)	C1B—C2B—C3B	121.2 (4)	
O1W—Er1—O12B	124.33 (11)	C1C—C2C—C3C	120.6 (4)	
O1W—Er1—O12C	79.98 (10)	C1C—C2C—C3C	120.6 (4)	
O1W—Er1—O11C	73.68 (12)	C2B—C3B—C4B	120.7 (4)	
O2W—Er1—O11A	126.78 (12)	C2C—C3C—C4C	120.6 (4)	
O2W—Er1—O11B	78.50 (12)	C3A—C4A—C5A	119.1 (4)	
O2W—Er1—O12A	75.02 (12)	N4A—C4A—C5A	121.4 (4)	
O2W—Er1—O12B	93.16 (12)	N4A—C4A—C5A	119.5 (4)	
O2W—Er1—O12C	156.11 (12)	C3B—C4B—C5B	118.7 (4)	
O2W—Er1—O11C	85.80 (13)	C4B—C5B—C6B	120.5 (4)	
O11A—Er1—O11B	140.04 (10)	N4B—C4B—C3B	120.8 (4)	
O11A—Er1—O12A	53.86 (10)	C3C—C4C—C5C	118.9 (4)	
O11A—Er1—O12B	91.09 (11)	N4C—C4C—C5C	121.9 (4)	
O11A—Er1—O12C	76.09 (10)	N4C—C4C—C5C	119.2 (4)	
O11A—Er1—O11C	75.35 (12)	C4A—C5A—C6A	119.8 (4)	
O11B—Er1—O12A	123.63 (9)	C4B—C5B—C6B	120.6 (4)	
O11B—Er1—O12B	53.56 (10)	C4C—C5C—C6C	120.3 (4)	
O11B—Er1—O12C	78.48 (10)	C1A—C6A—C5A	120.8 (4)	
O11B—Er1—O11C	142.95 (11)	C1B—C6B—C5B	120.8 (4)	
O12A—Er1—O12B	79.21 (10)	C1C—C6C—C5C	120.6 (4)	
O12A—Er1—O12C	123.94 (10)	O11A—C11A—C1A	122.2 (4)	
O11C—Er1—O12A	83.11 (12)	O12A—C11A—C1A	118.5 (4)	
O12B—Er1—O12C	78.15 (10)	O11A—C11A—O12A	119.2 (4)	
O11C—Er1—O12B	161.93 (12)	O11B—C11B—C1B	120.7 (4)	
O11C—Er1—O12C	109.26 (11)	O12B—C11B—C1B	119.4 (3)	
Er1—O11A—C11A	90.0 (3)	O11B—C11B—O12B	119.8 (4)	
Er1—O11B—C11B	90.2 (3)	O11C—C11C—O12C	124.0 (4)	
Er1—O11C—C11C	165.0 (3)	O11C—C11C—C1C	117.9 (4)	
Er1—O12A—C11A	96.3 (2)	O12C—C11C—C1C	118.1 (4)	
Er1—O12B—C11B	94.2 (2)	C1A—C2A—H2A	119.00	
Er1—O12C—C11C	138.1 (3)	C3A—C2A—H2A	119.00	
H11W—O1W—H12W	100 (4)	C3B—C2B—H2B	119.00	
Er1—O1W—H11W	119 (3)	C1B—C2B—H2B	119.00	
Er1—O1W—H12W	141 (2)	C1C—C2C—H2C	120.00	
H21W—O2W—H22W	107 (5)	C3C—C2C—H2C	120.00	
Er1—O2W—H21W	122 (4)	C4A—C3A—H3A	120.00	
Er1—O2W—H22W	130 (3)	C2A—C3A—H3A	120.00	
H31W—O3W—H32W	104 (5)	C2B—C3B—H3B	120.00	
C4A—N4A—H41A	121 (4)	C4B—C3B—H3B	120.00	
H41A—N4A—H42A	122 (5)	C4C—C3C—H3C	120.00	
C4A—N4A—H42A	115 (3)	C2C—C3C—H3C	120.00	
C4B—N4B—H42B 111 (4) C4A—C5A—H5A 120.00
H41B—N4B—H42B 112 (4) C6A—C5A—H5A 120.00
C4B—N4B—H41B 116 (3) C6B—C5B—H5B 120.00
C4C—N4C—H41C 108 (3) C4B—C5B—H5B 120.00
H41C—N4C—H42C 121 (5) C4C—C5C—H5C 120.00
C4C—N4C—H42C 110 (3) C6C—C5C—H5C 120.00
C2A—C1A—C6A 118.6 (4) C5A—C6A—H6A 120.00
C6A—C1A—C11A 121.7 (4) C1A—C6A—H6A 120.00
C2A—C1A—C11A 119.7 (4) C2B—C1B—C6B 120.00
C2B—C1B—C11B 120.6 (4) C5B—C6B—H6B 120.00
C6B—C1B—C11B 121.3 (4) C1C—C6C—H6C 120.00
C2B—C1B—C6B 118.0 (4) C5C—C6C—H6C 120.00
C2C—C1C—C11C 120.1 (4) O1W—Er1—O11A—C11A 139.1 (2) Er1—O12C—C11C—C1C 153.5 (3)
O2W—Er1—O11A—C11A 14.1 (3) C2A—C1A—C6A—C5A 1.9 (6)
O11B—Er1—O11A—C11A −106.2 (3) C6A—C1A—C2A—C3A −1.8 (6)
O12A—Er1—O11A—C11A −4.9 (2) C11A—C1A—C2A—C3A 176.4 (4)
O12B—Er1—O11A—C11A −80.7 (2) C6A—C1A—C11A—O11A −10.6 (6)
O12C—Er1—O11A—C11A −158.2 (2) C6A—C1A—C11A—O12A 170.5 (4)
O11C—Er1—O11A—C11A 87.3 (2) C1A—C6A—C11A—O11A −10.6 (6)
O1W—Er1—O11B—C11B 158.2 (3) C2A—C1A—C11A—O12A 171.2 (4)
O2W—Er1—O11B—C11B −111.2 (2) C2A—C1A—C11A—O11A −7.7 (6)
O11A—Er1—O11B—C11B 23.9 (3) C6B—C1B—C2B—C3B 2.1 (6)
O12A—Er1—O11B—C11B −48.1 (3) C11B—C1B—C2B—C3B −174.4 (4)
O12B—Er1—O11B—C11B −8.5 (2) C2B—C1B—C6B—C5B −0.5 (6)
O12C—Er1—O11B—C11B 75.2 (2) C2B—C1B—C11B—O11B 155.9 (4)
O11C—Er1—O11B—C11B −178.1 (2) C2B—C1B—C11B—O12B −19.8 (6)
O1W—Er1—O12A—C11A −107.0 (3) C6B—C1B—C11B—O11B −20.5 (6)
O2W—Er1—O12A—C11A −159.5 (3) C6B—C1B—C11B—O12B 163.9 (4)
O11A—Er1—O12A—C11A 4.9 (2) C11B—C1B—C6B—C5B 176.0 (4)
O11B—Er1—O12A—C11A 135.7 (2) C6C—C1C—C2C—C3C −1.7 (6)
O12B—Er1—O12A—C11A 104.2 (3) C11C—C1C—C2C—C3C 176.5 (4)
O12C—Er1—O12A—C11A 36.6 (3) C2C—C1C—C11C—O12C −5.8 (6)
O11C—Er1—O12A—C11A −72.0 (2) C6C—C1C—C11C—O11C −7.1 (6)
O1W—Er1—O12B—C11B −6.9 (3) C6C—C1C—C11C—O12C 172.3 (4)
O2W—Er1—O12B—C11B 81.7 (3) C2C—C1C—C6C—C5C 2.2 (6)
O11A—Er1—O12B—C11B −151.4 (3) C11C—C1C—C6C—C5C −176.0 (4)
O11B—Er1—O12B—C11B 8.5 (2) C2C—C1C—C11C—O11C 174.8 (4)
O12A—Er1—O12B—C11B 155.8 (3) C1A—C2A—C3A—C4A −1.0 (6)
O12C—Er1—O12B—C11B −75.9 (3) C1B—C2B—C3B—C4B −1.8 (6)
O1W—Er1—O12C—C11C 88.7 (4) C1C—C2C—C3C—C4C −1.2 (7)
O2W—Er1—O12C—C11C 146.8 (4) C2A—C3A—C4A—C5A 3.7 (6)
O11A—Er1—O12C—C11C −48.7 (4) C2A—C3A—C4A—N4A −177.0 (4)
O11B—Er1—O12C—C11C 162.4 (4) C2B—C3B—C4B—C5B −0.3 (6)
O12A—Er1—O12C—C11C −74.6 (4) C2B—C3B—C4B—N4B 177.0 (4)
O12B—Er1—O12C—C11C −142.8 (4) C2C—C3C—C4C—N4C −177.8 (4)
O11C—Er1—O12C—C11C 20.1 (4) C2C—C3C—C4C—C5C 3.6 (7)

Acta Cryst. (2015). E71, 1457-1461

sup-6
Er1—O11A—C11A—O12A 8.3 (4) N4A—C4A—C5A—C6A 177.1 (4)
Er1—O11A—C11A—C1A −170.6 (3) C3A—C4A—C5A—C6A −3.7 (6)
Er1—O11B—C11B—O12B 14.9 (4) C3B—C4B—C5B—C6B 1.9 (6)
Er1—O11B—C11B—C1B −160.7 (4) N4B—C4B—C5B—C6B −175.4 (4)
Er1—O12A—C11A—O11A −8.9 (4) C3C—C4C—C5C—C6C −3.1 (7)
Er1—O12A—C11A—C1A 170.1 (3) N4C—C4C—C5C—C6C 178.2 (4)
Er1—O12B—C11B—O11B −15.5 (4) C4A—C5A—C6A—C1A 0.9 (6)
Er1—O12B—C11B—C1B 160.1 (3) C4B—C5B—C6B—C1B −1.5 (6)
Er1—O12C—C11C—O11C −27.1 (6) C4C—C5C—C6C—C1C 0.2 (7)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O1W—H11W···O11A	0.82 (4)	1.95 (4)	2.757 (4)	166 (4)
O1W—H12W···O11B	0.82 (3)	1.98 (3)	2.777 (4)	163 (4)
O2W—H21W···N4B	0.84 (4)	2.09 (4)	2.902 (5)	162 (5)
O2W—H22W···N4C	0.86 (4)	1.89 (4)	2.735 (6)	168 (5)
O3W—H31W···O12B	0.83 (4)	1.99 (4)	2.777 (4)	160 (5)
O3W—H32W···O12A	0.85 (5)	2.07 (5)	2.841 (5)	151 (5)
N4A—H41A···O3W	0.86 (4)	2.08 (4)	2.902 (6)	156 (5)
N4A—H42A···O3W	0.86 (3)	2.49 (4)	3.341 (5)	170 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x, y−1, z; (iv) x+1, y−1, z; (v) −x, −y+1, −z+2; (vi) −x, −y+2, −z+1; (vii) −x+1, −y+2, −z+1; (viii) −x+1, −y+1, −z+2.

(II) Poly[hexakis(μ-2-4-chloro-3-nitrobenzoato-κ²O²:O′)bis(dimethyl sulfoxide-κO)dierbium(III)]

Crystal data

[Er₂(C₇H₃ClNO₄)₆(C₂H₆OS)₂]

Mr = 1694.10

Triclinic, P¹

Hall symbol: -P 1

a = 8.2408 (3) Å

b = 12.4040 (8) Å

c = 15.3409 (10) Å

α = 111.443 (6)°

β = 98.063 (4)°

γ = 96.684 (4)°

V = 1421.04 (14) Å³

Data collection

Oxford Diffraction Gemini-S CCD-detector

Radiation source: fine-focus sealed tube

Graphite monochromator

Detector resolution: 16.077 pixels mm^{−1}

0 scans

Absorption correction: multi-scan

(Crystalis PRO; Agilent, 2013)

T_{min} = 0.494, T_{max} = 0.980
Refinement

Refinement on F^2

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.067$

$wR(F^2) = 0.181$

$S = 1.06$

5566 reflections

397 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

$w = 1/\left[\sigma^2(F_o^2) + (0.1243P)^2\right]$

where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\text{max}} = 0.001$

$\Delta\rho_{\text{max}} = 6.83 \text{ e Å}^{-3}$

$\Delta\rho_{\text{min}} = -2.41 \text{ e Å}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2)

	x	y	z	U_{eq}/U_{eq}		
Er1	0.24949 (4)	0.48443 (3)	0.46092 (2)	0.0175 (1)		
Cl4A	0.6408 (5)	0.7116 (4)	0.0335 (3)	0.0699 (16)		
Cl4B	0.2887 (4)	−0.1334 (3)	0.0200 (2)	0.0627 (10)		
Cl4C	−0.3399 (4)	−0.1283 (2)	0.5158 (2)	0.0452 (9)		
S	0.0342 (3)	0.4386 (2)	0.23184 (16)	0.0269 (7)		
O11	0.1349 (8)	0.3972 (6)	0.2999 (5)	0.0294 (19)		
O11A	0.6659 (7)	0.5633 (6)	0.4105 (4)	0.0252 (19)		
O11B	0.6883 (7)	0.3352 (5)	0.4066 (4)	0.0254 (17)		
O11C	0.0768 (7)	0.3102 (6)	0.4347 (5)	0.027 (2)		
O12A	0.3978 (7)	0.5899 (6)	0.3912 (4)	0.0259 (17)		
O12B	0.4342 (7)	0.3679 (5)	0.4117 (4)	0.0239 (17)		
O12C	−0.0361 (7)	0.4170 (5)	0.5538 (5)	0.0231 (19)		
O31A	0.1634 (13)	0.6185 (12)	0.0929 (8)	0.079 (5)		
O31B	−0.0284 (11)	0.0741 (13)	0.1852 (10)	0.128 (6)		
O31C	−0.1757 (16)	0.1537 (14)	0.7463 (8)	0.112 (6)		
O32A	0.3085 (15)	0.5798 (10)	−0.0175 (7)	0.075 (4)		
O32B	−0.0018 (15)	−0.0583 (16)	0.0725 (12)	0.174 (7)		
O32C	−0.4244 (12)	0.0843 (11)	0.6745 (8)	0.074 (4)		
N3A	0.2942 (15)	0.6108 (9)	0.0664 (7)	0.050 (4)		
N3B	0.0575 (12)	0.0190 (9)	0.1417 (8)	0.050 (3)		
N3C	−0.2816 (13)	0.1149 (8)	0.6759 (7)	0.043 (3)		
C1A	0.5617 (11)	0.6222 (8)	0.2856 (6)	0.023 (2)		
C1B	0.4672 (11)	0.1949 (8)	0.2879 (6)	0.023 (3)		
C1C	−0.0974 (10)	0.2075 (8)	0.5005 (6)	0.023 (3)		
C2A	0.4248 (11)	0.6144 (8)	0.2190 (6)	0.025 (3)		
C2B	0.2996 (11)	0.1571 (9)	0.2529 (7)	0.029 (3)		
Atomic displacement parameters (Å²)	\(U_{11} \)	\(U_{22} \)	\(U_{33} \)	\(U_{12} \)	\(U_{13} \)	\(U_{23} \)
-----------------------------------	---------------	---------------	---------------	---------------	---------------	---------------
Er1	0.0131 (2)	0.0219 (2)	0.0184 (2)	0.0064 (2)	0.0031 (2)	0.0079 (2)
Cl4A	0.092 (3)	0.105 (3)	0.061 (2)	0.055 (2)	0.052 (2)	0.063 (2)
Cl4B	0.0548 (18)	0.0484 (17)	0.0474 (18)	0.0099 (14)	−0.0065 (14)	−0.0183 (14)
Cl4C	0.0525 (17)	0.0285 (13)	0.0578 (18)	−0.0038 (12)	0.0126 (13)	0.0231 (12)
S1	0.0227 (11)	0.0357 (13)	0.0211 (11)	0.0059 (9)	0.0017 (8)	0.0105 (9)
O11	0.031 (3)	0.031 (3)	0.026 (4)	0.016 (3)	0.002 (3)	0.009 (3)
O11A	0.017 (3)	0.035 (4)	0.025 (3)	0.010 (3)	0.005 (2)	0.012 (3)
O11B	0.016 (3)	0.033 (3)	0.028 (3)	0.005 (3)	0.004 (2)	0.012 (3)
O11C	0.016 (3)	0.035 (4)	0.028 (4)	0.000 (3)	0.005 (3)	0.012 (3)
O12A	0.021 (3)	0.035 (3)	0.028 (3)	0.008 (3)	0.006 (3)	0.018 (3)
O12B	0.020 (3)	0.026 (3)	0.027 (3)	0.010 (3)	0.008 (2)	0.009 (3)
Atom	U1	U2	U3	U12	U13	U23
--------	--------	--------	--------	--------	--------	--------
O12C	0.015	0.017	0.034	0.005	0.001	0.007
O31A	0.048	0.135	0.064	0.021	-0.010	0.057
O31B	0.017	0.158	0.111	-0.001	0.005	-0.052
O31C	0.094	0.168	0.041	-0.061	-0.002	0.035
O32A	0.106	0.081	0.034	0.026	-0.011	0.025
O32B	0.039	0.176	0.154	0.001	-0.016	-0.092
O32C	0.051	0.119	0.081	0.017	0.039	0.064
N3A	0.060	0.058	0.033	0.020	-0.009	0.022
N3B	0.032	0.055	0.046	0.008	-0.006	0.004
N3C	0.059	0.035	0.034	-0.001	0.015	0.014
C1A	0.022	0.027	0.020	0.005	0.005	0.010
C1B	0.017	0.027	0.023	0.005	0.002	0.007
C1C	0.017	0.026	0.025	0.004	0.005	0.010
C2A	0.021	0.032	0.020	0.006	0.002	0.009
C2B	0.022	0.033	0.027	0.008	0.000	0.007
C2C	0.015	0.028	0.030	0.001	0.003	0.015
C3A	0.044	0.036	0.028	0.012	0.000	0.014
C3B	0.022	0.032	0.035	-0.003	0.001	0.007
C3C	0.021	0.047	0.031	0.013	0.010	0.020
C4A	0.050	0.047	0.030	0.018	0.021	0.023
C4B	0.038	0.034	0.030	0.003	0.006	0.007
C4C	0.025	0.023	0.042	-0.004	0.001	0.022
C5A	0.031	0.050	0.046	0.014	0.020	0.027
C5B	0.033	0.034	0.036	0.013	0.010	0.004
C5C	0.041	0.020	0.041	0.008	0.005	0.014
C6A	0.015	0.045	0.042	0.007	0.007	0.018
C6B	0.027	0.031	0.026	0.012	0.009	0.008
C6C	0.029	0.019	0.031	0.002	0.010	0.011
C11	0.028	0.069	0.023	0.014	0.007	0.014
C11A	0.016	0.024	0.016	0.001	0.005	0.009
C11B	0.010	0.021	0.027	0.007	0.004	0.012
C11C	0.008	0.029	0.028	0.006	-0.002	0.016
C12	0.021	0.048	0.034	0.002	0.006	0.014

Geometric parameters (Å, °)

Bond	Length (Å)	Angle (°)
Er1—O11	2.306 (7)	1.419 (14)
Er1—O11C	2.312 (8)	1.496 (13)
Er1—O12A	2.317 (7)	1.398 (13)
Er1—O12B	2.239 (6)	1.387 (14)
Er1—O12C	2.287 (6)	1.507 (14)
Er1—O11A	2.300 (6)	1.386 (14)
Er1—O11B	2.348 (6)	1.390 (15)
Cl4A—C4A	1.729 (13)	1.354 (16)
Cl4B—C4B	1.714 (11)	1.361 (17)
Cl4C—C4C	1.730 (11)	1.383 (15)
S1—O11	1.514 (8)	1.391 (15)
S1—C11	1.785 (10)	1.396 (16)

Acta Cryst. (2015). E71, 1457-1461
Bond	Distance (Å)	Bond	Distance (Å)	Bond	Distance (Å)
S1—C12	1.772 (11)	C4B—C5B	1.391 (15)		
O11A—C11A	1.274 (11)	C4C—C5C	1.367 (15)		
O11B—C11B	1.255 (10)	C5A—C6A	1.368 (16)		
O11C—C11C	1.255 (11)	C5B—C6B	1.394 (15)		
O12A—C11A	1.250 (10)	C5C—C6C	1.391 (15)		
O12B—C11B	1.249 (10)	C2A—H2A	0.9500		
O12C—C11C	1.271 (12)	C2B—H2B	0.9500		
O31A—N3A	1.206 (17)	C2C—H2C	0.9500		
O31B—N3B	1.151 (16)	C5A—H5A	0.9500		
O31C—N3C	1.191 (16)	C5B—H5B	0.9500		
O32A—N3A	1.229 (14)	C5C—H5C	0.9500		
O32B—N3B	1.13 (2)	C6A—H6A	0.9500		
O32C—N3C	1.188 (15)	C6B—H6B	0.9500		
N3A—C3A	1.480 (16)	C6C—H6C	0.9500		
N3B—C3B	1.474 (14)	C11—H111	0.9800		
N3C—C3C	1.481 (14)	C11—H112	0.9800		
C1A—C2A	1.380 (13)	C11—H113	0.9800		
C1A—C6A	1.386 (14)	C12—H121	0.9800		
C1A—C11A	1.524 (13)	C12—H122	0.9800		
C1B—C2B	1.369 (13)	C12—H123	0.9800		
O11—Er1—O11C	72.5 (3)	N3C—C3C—C2C	117.7 (9)		
O11—Er1—O12A	74.7 (2)	N3C—C3C—C4C	120.7 (10)		
O11—Er1—O12B	80.6 (2)	C2C—C3C—C4C	121.5 (9)		
O11—Er1—O12C	77.0 (3)	C14A—C4A—C3A	124.2 (9)		
O11—Er1—O11A	140.9 (3)	C14A—C4A—C5A	117.3 (9)		
O11—Er1—O11B	143.3 (2)	C3A—C4A—C5A	118.5 (11)		
O11C—Er1—O12A	145.4 (2)	C14B—C4B—C3B	124.4 (8)		
O11C—Er1—O12B	84.1 (2)	C14B—C4B—C5B	116.3 (8)		
O11C—Er1—O12C	94.7 (2)	C3B—C4B—C5B	119.3 (10)		
O11A—Er1—O11C	73.9 (2)	C14C—C4C—C3C	121.1 (8)		
O11B—Er1—O11C	130.3 (2)	C14C—C4C—C5C	119.7 (9)		
O12A—Er1—O12B	80.0 (2)	C3C—C4C—C5C	119.2 (10)		
O12A—Er1—O12C	88.4 (2)	C4A—C5A—C6A	121.0 (10)		
O11A—Er1—O12A	130.5 (2)	C4B—C5B—C6B	120.5 (10)		
O11B—Er1—O12A	83.5 (2)	C4C—C5C—C6C	120.1 (10)		
O12B—Er1—O12C	156.8 (2)	C1A—C6A—C5A	119.9 (9)		
O11A—Er1—O12B	76.7 (2)	C1B—C6B—C5B	119.3 (9)		
O11B—Er1—O12B	124.6 (2)	C1C—C6C—C5C	120.3 (9)		
O11A—Er1—O12C	125.3 (2)	O11A—C11A—O12A	127.7 (8)		
O11B—Er1—O12C	73.2 (2)	O11A—C11A—C1A	116.0 (7)		
O11A—Er1—O11B	75.2 (2)	O12A—C11A—C1A	116.3 (8)		
O11—S1—C11	103.9 (5)	O11B—C11B—O12B	121.6 (8)		
O11—S1—C12	106.0 (5)	O11B—C11B—C1B	119.8 (8)		
C11—S1—C12	99.3 (5)	O12B—C11B—C1B	118.6 (8)		
Er1—O11—S1	133.1 (4)	O11C—C11C—O12C	123.6 (9)		
Er1—O11A—C11A	140.3 (6)	O11C—C11C—C1C	118.1 (8)		
Er1—O11B—C11B	110.9 (5)	O12C—C11C—C1C	118.3 (8)		
Er1—O11C—C11C 113.9 (6) C1A—C2A—H2A 120.00
Er1—O12A—C11A 132.8 (6) C3A—C2A—H2A 120.00
Er1—O12B—C11B 172.3 (6) C1B—C2B—H2B 120.00
Er1'—O12C—C11C 128.2 (6) C3B—C2B—H2B 120.00
O31A—N3A—O32A 124.3 (12) C1C—C2C—H2C 120.00
O31A—N3A—C3A 118.5 (10) C3C—C2C—H2C 120.00
O32A—N3A—C3A 117.1 (12) C4A—C5A—H5A 119.00
O31B—N3B—O32B 118.3 (13) C6A—C5A—H5A 120.00
O31B—N3B—C3B 120.3 (12) C4B—C5B—H5B 120.00
O32B—N3B—C3B 121.2 (11) C6B—C5B—H5B 120.00
O31C—N3C—O32C 124.1 (12) C4C—C5C—H5C 120.00
O31C—N3C—C3C 116.7 (11) C6C—C5C—H5C 120.00
O32C—N3C—C3C 119.2 (10) C1A—C6A—H6A 120.00
C2A—C1A—C6A 119.6 (9) C5A—C6A—H6A 120.00
C2A—C1A—C11A 120.3 (8) C1B—C6B—H6B 120.00
C6A—C1A—C11A 120.1 (8) C5B—C6B—H6B 120.00
C2B—C1B—C6B 119.5 (9) C1C—C6C—H6C 120.00
C2B—C1B—C11B 121.6 (8) C5C—C6C—H6C 120.00
C6B—C1B—C11B 118.9 (8) S1—C11—H111 109.00
C2C—C1C—C6C 119.0 (9) S1—C11—H112 109.00
C2C—C1C—C11C 120.7 (8) S1—C11—H113 109.00
C6C—C1C—C11C 120.3 (8) H111—C11—H112 109.00
H111—C11—H113 110.00
C1A—C2A—C3A 119.6 (9) H112—C11—H113 110.00
C1B—C2B—C3B 120.6 (9) H112—C11—H113 110.00
C1C—C2C—C3C 119.8 (9) S1—C12—H121 109.00
N3A—C3A—C2A 115.0 (10) S1—C12—H122 109.00
N3A—C3A—C4A 123.6 (10) S1—C12—H123 109.00
C2A—C3A—C4A 121.4 (10) H121—C12—H122 110.00
N3B—C3B—C2B 116.5 (9) H121—C12—H123 110.00
N3B—C3B—C4B 122.7 (10) H122—C12—H123 109.00
C2B—C3B—C4B 120.7 (9)

O11C—Er1—O11—S1 123.8 (6) O31C—N3C—C3C—C2C −58.0 (16)
O12A—Er1—O11—S1 −67.4 (6) C6A—C1A—C11A—O11A −20.4 (13)
O12B—Er1—O11—S1 −149.5 (6) C2A—C1A—C11A—O11A 158.7 (9)
O12C—Er1—O11—S1 24.6 (5) C2A—C1A—C11A—O12A −20.0 (13)
O11A'—Er1—O11—S1 155.6 (4) C2A—C1A—C6A—C5A −0.8 (16)
O11B'—Er1—O11—S1 −11.7 (8) C11A—C1A—C6A—C5A 178.3 (10)
O11—Er1—O11C—C11C −136.0 (7) C11A—C1A—C2A—C3A −175.0 (9)
O12A—Er1—O11C—C11C −155.2 (6) C6A—C1A—C2A—C3A 4.1 (15)
O12B—Er1—O11C—C11C 142.1 (6) C6A—C1A—C11A—O12A 160.9 (9)
O12C—Er1—O11C—C11C −61.2 (6) C2B—C1B—C11B—O12B −4.0 (14)
O11A''—Er1—O11C—C11C 64.2 (6) C2B—C1B—C11B—O11B 177.2 (9)
O11B''—Er1—O11C—C11C 10.6 (7) C6B—C1B—C11B—O11B −4.2 (14)
O11—Er1—O12A—C11A −102.6 (8) C11B—C1B—C6B—C5B −177.4 (9)
O11C—Er1—O12A—C11A −83.6 (8) C2B—C1B—C6B—C5B 1.2 (15)
O12B—Er1—O12A—C11A −19.8 (7) C6B—C1B—C2B—C3B 0.5 (16)
O12C—Er1—O12A—C11A −179.6 (8) C11B—C1B—C2B—C3B 179.1 (10)
O11Aii—Er1—O12A—C11A 43.0 (8) C6B—C1B—C11B—O12B 174.7 (9)
O11B—Er1—O12A—C11A 107.2 (8) C6C—C1C—C11C—O11C −18.6 (13)
O11—Er1—O12C—C11Ci −162.8 (8) C2C—C1C—C11C—O11C 160.3 (8)
O11C—Er1—O12C—C11Ci 126.4 (8) C6C—C1C—C11C—O12C −179.3 (9)
O11− Er1—O11Aii—C11Aii 85.7 (10) C2C—C1C—C6C—C5C 1.5 (14)
O11C—Er1—O11Aii—C11Aii 117.2 (10) C6C—C1C—C2C—C3C −0.5 (14)
O11− Er1—O11Bii—C11Bii −118.1 (6) C1A—C2A—C3A—N3A 173.0 (10)
O11C—Er1—O11Bii—C11Bii 123.2 (6) C1B—C2B—C3B—C4B −3.0 (17)
O12A—Er1—O11Aii—C11Aii −34.5 (11) C11C—C1C—C6C—C5C −179.6 (9)
O12B—Er1—O11Aii—C11Aii 29.6 (9) C1A—C2A—C3A—N3A 173.0 (10)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C2A—H2A···S1	0.95	2.86	3.743 (10)	155
C2B—H2B···O11	0.95	2.56	3.298 (13)	135
C11—H111···C14Aii	0.98	2.79	3.486 (11)	129
C12—H123···O32Aiv	0.98	2.44	3.376 (15)	158

Symmetry codes: (iii) −x+1, −y+1, −z; (iv) −x, −y+1, −z.

Acta Cryst. (2015). E71, 1457-1461