Probing the Perturbative NLO Parton Evolution in the Small–x Region

M. Glück, C. Pisano, E. Reya

Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany

Abstract

A dedicated test of the perturbative QCD NLO parton evolution in the very small–x region is performed. We find a good agreement with recent precision HERA–data for $F_2^p(x, Q^2)$, as well as with the present determination of the curvature of F_2^p. Characteristically, perturbative QCD evolutions result in a positive curvature which increases as x decreases. Future precision measurements in the very small x–region, $x < 10^{-4}$, could provide a sensitive test of the range of validity of perturbative QCD.
Parton distributions \(f(x, Q^2) \), \(f = q, \bar{q}, g \), underlie a \(Q^2 \)-evolution dictated by perturbative QCD at \(Q^2 \gtrsim 1 \text{ GeV}^2 \). It was recently stated \cite{1} that the NLO perturbative QCD \(Q^2 \)-evolution disagrees with HERA data \cite{2,3} on \(F_2^p(x, Q^2) \) in the small–\(x \) region, \(x \lesssim 10^{-3} \). In view of the importance of this statement we perform here an independent study of this issue. In contrast to \cite{1} we shall undertake this analysis in the standard framework where one sets up input distributions at some low \(Q^2_0 \), here taken to be \(Q^2_0 = 1.5 \text{ GeV}^2 \), corresponding to the lowest \(Q^2 \) considered in \cite{1}, and adapting these distributions to the data considered. In the present case the data considered will be restricted to

\[
1.5 \text{ GeV}^2 \leq Q^2 \leq 12 \text{ GeV}^2, \quad 3 \times 10^{-5} \lesssim x \lesssim 3 \times 10^{-3}
\]

as in \cite{1} and will be taken from the corresponding measured \(F_2^p(x, Q^2) \) of the H1 collaboration \cite{2}. The choice of these data is motivated by their higher precision as compared to corresponding data of the ZEUS collaboration \cite{3}, in particular in the very small–\(x \) region.

We shall choose two sets of input distributions based on the GRV98 parton distributions \cite{4}. In the first set we shall adopt \(u_\nu, d_\nu, s = \bar{s} \) and \(\Delta \equiv \bar{d} - \bar{u} \) from GRV98 and modify \(\bar{u} + \bar{d} \) and the gluon distribution in the small–\(x \) region to obtain an optimal fit to the H1 data \cite{2} in the aforementioned kinematical region. We shall refer to this fit as the ‘best fit’. The second choice will be constrained to modify the GRV98 \(\bar{u} + \bar{d} \) and \(g \) distributions in the small–\(x \) region as little as possible. We shall refer to this fit as GRV\(_{\text{mod}}\). It will turn out that both input distributions are compatible with the data to practically the same extent, i.e. yielding comparable \(\chi^2/dof \). In view of these observations we do not agree with the conclusions of ref. \cite{1}, i.e. we do not confirm a disagreement between the NLO \(Q^2 \)-evolution of \(f(x, Q^2) \) and the measured \cite{2,3} \(Q^2 \)-dependence of \(F_2^p(x, Q^2) \).

The remaining flavor–singlet input distributions at \(Q^2_0 = 1.5 \text{ GeV}^2 \) to be adapted to
the recent small–x data are expressed as

$$xg(x, Q^2_0) = N_g x^{-a_g} \left(1 + A_g \sqrt{x} + 7.283x \right) (1 - x)^{4.759} \quad (2)$$

$$x(\bar{u} + \bar{d})(x, Q^2_0) = N_s a^{-a_s} \left(1 + A_s \sqrt{x} - 4.046x \right) (1 - x)^{4.225} \quad (3)$$

where the parameters relevant for the large x–region, $x > 10^{-3}$, which is of no relevance for the present small–x studies, are kept unchanged and are taken from, e.g. GRV98 [4]. The refitted relevant small–x parameters turn out to be

‘best fit’ : $N_g = 1.70$, $a_g = 0.027$, $A_g = -1.034$

$N_s = 0.171$, $a_s = 0.177$, $A_s = 2.613$ \quad (4)

GRV mod : $N_g = 1.443$, $a_g = 0.125$, $A_g = -2.656$

$N_s = 0.270$, $a_s = 0.117$, $A_s = 1.70$ \quad (5)

to be compared with the original GRV98 parameters [4]: $N_g = 1.443$, $a_g = 0.147$, $A_g = -2.656$ and $N_s = 0.273$, $a_s = 0.121$, $A_s = 1.80$. The resulting predictions are compared to the H1–data [2] in Fig. 1. These results are also consistent with the ZEUS–data [3] with partly lower statistics. The corresponding χ^2/dof are 0.50 for the ‘best fit’ ($\text{dof} = 48$) and 0.94 for GRV mod ($\text{dof} = 50$), respectively. Our treatment of the heavy flavor contributions to F_2 differs from that in [1]. We evaluate these contributions in the fixed flavor $f = 3$ scheme of [4], together with the massive heavy quark (c, b) contributions, rather than in the $f = 4$ (massless) scheme utilized in [4]. We have checked, however, that our disagreement with [1] does not result from our $f = 3$ plus heavy quarks vs. the $f = 4$ massless quark calculations in [1]: we have also performed a fit for $f = 4$ massless quarks and the results for F_2 and its curvature, to be discussed below, remain essentially unchanged.

In Figs. 2 and 3 we show our gluon and sea input distributions in (2) and (3), as well as their evolved shapes at $Q^2 = 4.5$ GeV2 in the small–x region. It can be seen that both
of our new small–x gluon distributions at $Q^2 = 4.5$ GeV2 conform to the rising shape obtained in most available analyses published so far, in contrast to the valence–like shape obtained in [1] where the gluon density xg decreases as $x \to 0$. It is possible to conceive a valence–like gluon at some very–low Q^2 scale, as in [4], but even in this extreme case the gluon ends up as non valence–like at $Q^2 > 1$ GeV2, in particular at $Q^2 = 4.5$ GeV2, as physically expected.

Turning now to the curvature test of F_2 advocated and discussed in [1], we first present in Fig. 4 our results for $F_2(x, Q^2)$ at $x = 10^{-4}$, together with two representative expectations of global fits [5, 6], as a function of

$$q = \log_{10} \left(1 + \frac{Q^2}{0.5 \text{ GeV}^2} \right).$$

(6)

This variable has the advantage that most measurements lie along a straight line [1] as indicated by the dotted line at $x = 10^{-4}$ in Fig. 4. The MRST01 parametrization [5] results in a sizable curvature for F_2 in contrast to all other fits shown in Fig. 4. This large curvature, incompatible with the data presented in [1], is mainly caused by the valence–like input gluon distribution of MRST01 at $Q_0^2 = 1$ GeV2 in the small–x region which becomes even negative for $x < 10^{-3}$ [5]. A similar result was obtained in [1] based on a particular gluon distribution $xg(x, Q^2)$ which decreases with decreasing x for $x \lesssim 10^{-3}$ even at $Q^2 = 4.5$ GeV2 (cf. fig. 7 in [1]). More explicitly the curvature can be directly extracted from

$$F_2(x, Q^2) = a_0(x) + a_1(x)q + a_2(x)q^2.$$

(7)

The curvature $a_2(x) = \frac{1}{2} \partial^2_q F_2(x, Q^2)$ is evaluated by fitting the predictions for $F_2(x, Q^2)$ at fixed values of x to a (kinematically) given interval of q. In Fig. 5(a) we present $a_2(x)$ which results from experimentally selected q–intervals [1]:

$$0.7 \leq q \leq 1.4 \quad \text{for} \quad 2 \times 10^{-4} < x < 10^{-2}$$

$$0.7 \leq q \leq 1.2 \quad \text{for} \quad 5 \times 10^{-5} < x \leq 2 \times 10^{-4}$$

$$0.6 \leq q \leq 0.8 \quad \text{for} \quad x = 5 \times 10^{-5}.$$

(8)
Notice that the average value of q decreases with decreasing x due to the kinematically more restricted Q^2 range accessible experimentally. For comparison we also show in Fig. 5(b) the curvature $a_2(x)$ for an x–independent fixed q–interval

$$0.6 \leq q \leq 1.4 \quad (1.5 \text{ GeV}^2 \leq Q^2 \leq 12 \text{ GeV}^2) .$$

Apart from the rather large values of $a_2(x)$ specific for the MRST01 fit as discussed above (cf. fig. 4), our ‘best fit’ and GRV$_{\text{mod}}$ results, based on the inputs in (4) and (5), respectively, do agree well with the experimental curvatures as calculated and presented in [1] using H1 data. It should be noted that perturbative NLO evolutions result in a positive curvature $a_2(x)$ which increases as x decreases. This feature is supported by the data shown in fig. 5(a); since the data point at $x < 10^{-4}$ is statistically insignificant, future precision measurements in this very small x–region should provide a sensitive test of the range of validity of perturbative QCD evolutions.

Furthermore, the H1 collaboration [2] has found a good agreement between the perturbative NLO evolution and the slope of $F_2(x, Q^2)$, i.e. the first derivative $\partial_{Q^2} F_2$.

To conclude, the perturbative NLO evolution of parton distributions in the small–x region is compatible with recent high–statistics measurements of the Q^2–dependence of $F_2^p(x, Q^2)$ in that region. A characteristic feature of perturbative QCD evolutions is a positive curvature $a_2(x)$ which increases as x decreases (cf. fig. 5). Although present data are indicative for such a behavior, they are statistically insignificant for $x < 10^{-4}$. Future precision measurements and the ensuing improvements of the determination of the curvature in the very small x–region should provide further information concerning the detailed shapes of the gluon and sea distributions, and perhaps may even provide a sensitive test of the range of validity of perturbative QCD.

This work has been supported in part by the ‘Bundesministerium für Bildung und Forschung’, Berlin/Bonn.
References

[1] D. Haidt, *Eur. Phys. J.* C35, 519 (2004)

[2] C. Adloff et al., H1 Collab., *Eur. Phys. J.* C21, 33 (2001)

[3] S. Chekanov et al., ZEUS Collab., *Eur. Phys. J.* C21, 443 (2001)

[4] M. Glück, E. Reya, A. Vogt, *Eur. Phys. J.* C5, 461 (1998)

[5] A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, *Eur. Phys. J.* C23, 73 (2002)

[6] J. Pumplin et al., *JHEP* 7, 12 (2002) [hep-ph/0201195]
Figure 1: Comparison of our ‘best fit’ and GRV\textsubscript{mod} results based on (4) and (5), respectively, with the H1 data \cite{2}. To ease the graphical representation, the results and data for the lowest bins in $Q^2 = 1.5 \text{ GeV}^2$ and 2 GeV^2 have been multiplied by 0.75 and 0.85, respectively, as indicated.
Figure 2: The gluon distributions at the input scale $Q^2_0 = 1.5$ GeV2 corresponding to (2) with the ‘best fit’ and GRV$_{\text{mod}}$ parameters in (4) and (5), respectively, and at $Q^2 = 4.5$ GeV2. For comparison, the original GRV98 results [4] are shown as well by the dotted curves.
Figure 3: The sea distribution $x(\bar{u} + \bar{d})$ at the input scale $Q_0^2 = 1.5$ GeV2 in (3) with the 'best fit' and GRV$_{\text{mod}}$ parameters in (4) and (5), respectively, and at $Q^2 = 4.5$ GeV2. For comparison, the original GRV98 results [4] are shown as well by the dotted curves.
Figure 4: Predictions for $F_2(x, Q^2)$ at $x = 10^{-4}$ plotted versus q defined in (6). Representative global fit results are taken from MRST01 [5] and CTEQ6M [6]. Most small-x measurements lie along the straight (dotted) line [1].
Figure 5: The curvature $a_2(x)$ as defined in (7) for (a) the variable q–intervals in (8) and (b) the fixed q–interval in (9). Also shown are the corresponding MRST01 results [5]. The experimental curvatures (squares) shown in (a) are taken from [1].