Supplementary Material to: Ranking Procedures for Repeated Measures Designs with Missing Data - Estimation, Testing and Asymptotic Theory

Kerstin Rubarth ¹, Markus Pauly ² and Frank Konietzschke¹

We present in this supplementary material selected results from the type-I error and power simulations. Furthermore, we present the proofs of all theorems and propositions from the paper.

1 Results of the Simulation Study
Within this section, we will present additional tables and figures of the type-I error and power results of the simulation study. We simulated

1. the WTS in (16) with a critical value from a χ²_j distribution,
2. the ATS (1) in (17) with the proposed F-approximation,
3. the ATS (2) in (18) with the proposed F-approximation,
4. the MCTP T_0 in (19) with a $t_{n-1}(0, \mathbf{R}_n)$ approximation,

and compared them with

5. the WTS and ATS statistics for testing H_{F0} as proposed by Domhof et al.1 in different homo- and heteroscedastic repeated measures designs with different rates of missing values. Even though Domhof et al.1 reported a liberal behavior of the WTS (for testing H_{F0}), we added the method as a competing procedure for completeness. We thus also investigated their robustness to variance heteroscedasticity. Since all of the methods above use all-available data, we additionally compared them with two MCTP-based approaches: a complete case analysis and a naive imputation approach, in which we either

6. deleted the whole observation vector X_k of subject k if any X_{ik} was missing ($\lambda_{ik} = 0$), or
7. if X_{ik} was missing ($\lambda_{ik} = 0$), we calculated $\text{median}(\lambda_{i1} X_{i1}, \ldots, \lambda_{in} X_{in})$, and assigned it to X_{ik} and set $\lambda_{ik} = 1$.

Data have been generated using discretized, by rounding to integers, normal and log-normal distributions with varying numbers of time points $d \in \{3, 4\}$, sample sizes $n \in \{20, 30, 50\}$, amount of missing values $r \in \{0\%, 10\%, 30\%\}$ and six different types of covariance matrices

\[
\Sigma_1 = \begin{pmatrix}
1 & 0.5 & 0.5 \\
0.5 & 1 & 0.5 \\
0.5 & 0.5 & 1
\end{pmatrix}, \quad \Sigma_2 = \begin{pmatrix}
1 & 0.5 & 0.5 & 0.5 \\
0.5 & 1 & 0.5 & 0.5 \\
0.5 & 0.5 & 1 & 0.5 \\
0.5 & 0.5 & 0.5 & 1
\end{pmatrix}, \quad (1)
\]

\[
\Sigma_3 = \begin{pmatrix}
1 & 0.3 & 0.6 \\
0.3 & 1.2 & 0.9 \\
0.6 & 0.9 & 1.5
\end{pmatrix}, \quad \Sigma_4 = \begin{pmatrix}
1 & 0.2 & 0.4 & 0.6 \\
0.2 & 2 & 0.7 & 0.5 \\
0.4 & 0.7 & 2.5 & 0.6 \\
0.6 & 0.5 & 0.6 & 3
\end{pmatrix},
\]

\[
\Sigma_5 = \begin{pmatrix}
1 & 0.6 & 0.36 & 0.216 \\
0.6 & 1 & 0.6 & 0.36 \\
0.36 & 0.6 & 1 & 0.6 \\
0.216 & 0.36 & 0.6 & 1
\end{pmatrix}, \quad \Sigma_6 = \begin{pmatrix}
1 & 0.8 & 0.64 & 0.512 \\
0.8 & 1.5 & 0.8 & 0.64 \\
0.64 & 0.8 & 2 & 0.8 \\
0.512 & 0.64 & 0.8 & 2.5
\end{pmatrix}.
\]

The covariance matrices were chosen to model a broad selection of dependency patterns, including homoscedastic (Σ_1 and Σ_2) as well as heteroscedastic marginals. Note that H_{F0} holds only under Σ_1 and Σ_2. We furthermore investigate the methods sensitivity to both MCAR and MAR data to cover realistic scenarios. In order to generate the former, we multiplied the observations with randomly chosen indicators $\lambda_{ik} \sim B(1 - r)$, with
a zero entry being interpreted as a missing observation, whereas we followed Santos et al.\(^2\) for the latter. Hereby we defined pairs of observations \(\{X_{\text{obs}}, X_{\text{miss}}\}\), where \(X_{\text{obs}}\) determines the probability that \(X_{\text{miss}}\) was actually observed. For instance, in case of \(d = 4\) we defined the pairs \(\{X_{1k}, X_{2k}\}\) and \(\{X_{3k}, X_{4k}\}\). Following the idea of Amro et al.\(^3\), we investigated two different types of MAR scenarios, MAR (1) and MAR (2). First, for the MAR (1) scenario, we divided \(X_{i,\text{obs}}\) into three groups: (1) \(\{X_{ik} = X_{i,\text{obs}} \in (\,-\infty,-\sigma_i), k = 1,\ldots,n\}\), (2) \(\{X_{ik} = X_{i,\text{obs}} \in (-\sigma_i, \sigma_i), k = 1,\ldots,n\}\) and (3) \(\{X_{ik} = X_{i,\text{obs}} \in (\sigma_i, \infty), k = 1,\ldots,n\}\), where \(\sigma_i^2\) is the variance of \(X_{i,\text{obs}}\). Then, we assigned a missing rate of 10% to the first and third group and a missing rate of 30% to the second group. Second, in the MAR (2) scenario, data was divided into two groups using the median, following the idea of Zhu et al.\(^4\). Specifically, we defined (1) \(\{X_{ik} = X_{i,\text{obs}} \in (-\infty, \text{median}(X_{i,\text{obs}})), k = 1,\ldots,n\}\) and (2) \(\{X_{ik} = X_{i,\text{obs}} \in (\text{median}(X_{i,\text{obs}}), \infty), k = 1,\ldots,n\}\). Here, we assigned a missing rate of 0% to the first group and a missing rate of 10% to the second group.

In order to investigate the power of the procedures, a simulation study was conducted using four-dimensional normal and log-normal distributions with \(\mu = (\mu_1, \mu_2, \mu_3, \mu_4)'\) and covariance matrices \(\Sigma_2, \Sigma_4, \Sigma_5, \Sigma_6\). In particular, three different types of shift-alternatives were considered

\[
\begin{align*}
\text{Alternative 1} & \quad \mu = (0, 0, 0, \delta)' \\
\text{Alternative 2} & \quad \mu = (0, 0, \delta, \delta)' \\
\text{Alternative 3} & \quad \mu = (0, 1\delta, 2\delta, 3\delta)',
\end{align*}
\]

with ranging \(\delta = (0.2, 0.4, 0.6, 0.8, 1, 1.5)\) and different amount of missing values. As the WTS turned out to be inappropriate for small sample sizes, it was not included into the power analysis. Moreover, since the second version of the ATS for testing \(H_0^P\) showed a more accurate behaviour than the first version, we only present results for the second version.

For each design, 10,000 simulation runs were performed using the R software package of statistical computing, version R 3.6.4\(^5\). The complete simulation code is available on https://github.com/KerstinRubarth/RM_Miss.

1.1 Type-I error

The type-I error rates under the MCAR mechanism for different sample sizes \(n\), covariances matrices, missing rates \(r\) and discretized distributions can be found in Tables 1 – 3. A graphical comparisons of rather small and large sample sizes and no, medium and high missing rates can be found in Figure 1.
Table 1. Type-I-error ($\alpha = 5\%$) simulation results of the ATS and WTS for testing H_{F0} and H_{P0} and MCTP in different designs with covariance matrices Σ_1 and Σ_2 as given in (23). Here, r denotes the rate of missing data. Data is MCAR. Note that H_{F0} holds.

n	r(%)	Dist	Σ_1	Σ_2		
			H_{F0}	H_{P0}	H_{F0}	H_{P0}
			WTS ATTS	WTS ATTS	WTS ATTS	WTS ATTS
20	0	N	0.102 0.066	0.075 0.051	0.141 0.062	0.098 0.047
20	10	N	0.097 0.066	0.078 0.053	0.138 0.060	0.104 0.050
20	30	N	0.099 0.061	0.090 0.058	0.137 0.058	0.118 0.056
30	0	N	0.086 0.062	0.070 0.054	0.102 0.056	0.082 0.047
30	10	N	0.081 0.059	0.070 0.051	0.100 0.056	0.083 0.049
30	30	N	0.080 0.059	0.077 0.057	0.104 0.057	0.095 0.054
50	0	N	0.068 0.056	0.061 0.052	0.075 0.051	0.066 0.047
50	10	N	0.066 0.056	0.061 0.052	0.075 0.052	0.067 0.048
50	30	N	0.068 0.055	0.065 0.053	0.079 0.056	0.075 0.054
20	0	LN	0.100 0.059	0.074 0.046	0.139 0.060	0.097 0.045
20	10	LN	0.096 0.059	0.076 0.049	0.142 0.060	0.109 0.050
20	30	LN	0.096 0.060	0.087 0.057	0.140 0.058	0.117 0.054
30	0	LN	0.082 0.060	0.068 0.051	0.100 0.054	0.081 0.047
30	10	LN	0.085 0.062	0.073 0.056	0.097 0.055	0.082 0.047
30	30	LN	0.077 0.057	0.074 0.056	0.095 0.050	0.088 0.047
50	0	LN	0.063 0.052	0.058 0.048	0.075 0.052	0.066 0.047
50	10	LN	0.066 0.053	0.061 0.049	0.079 0.054	0.072 0.049
50	30	LN	0.069 0.056	0.067 0.054	0.079 0.053	0.076 0.052
Table 2. Type-I-error ($\alpha = 5\%$) simulation results of the ATS and WTS for testing H_F^0 and H_P^0 and MCTP in different designs with covariance matrices Σ_3 and Σ_4 as given in (23). Here, r denotes the rate of missing data. Data is MCAR. Note that H_P^0 holds.

n	r(%)	Dist	Σ_3	H_F^0	H_P^0	Σ_4	H_F^0	H_P^0						
			WTS	ATS	WTS	ATS1	ATS2	MCT	WTS	ATS	WTS	ATS1	ATS2	MCT
20	0	N	0.111	0.066	0.078	0.053	0.043	0.050	0.130	0.058	0.108	0.047	0.038	0.054
20	10	N	0.102	0.065	0.077	0.054	0.044	0.049	0.134	0.060	0.118	0.055	0.045	0.060
20	30	N	0.100	0.064	0.088	0.059	0.048	0.059	0.140	0.062	0.133	0.062	0.051	0.070
30	0	N	0.087	0.063	0.065	0.052	0.044	0.050	0.100	0.053	0.087	0.048	0.041	0.051
30	10	N	0.082	0.061	0.069	0.053	0.045	0.051	0.099	0.054	0.090	0.050	0.043	0.053
30	30	N	0.084	0.061	0.078	0.057	0.050	0.058	0.105	0.059	0.099	0.057	0.051	0.066
50	0	N	0.071	0.057	0.061	0.052	0.048	0.049	0.082	0.056	0.071	0.051	0.047	0.051
50	10	N	0.070	0.056	0.062	0.051	0.047	0.050	0.080	0.055	0.072	0.051	0.048	0.057
50	30	N	0.069	0.055	0.066	0.053	0.048	0.054	0.083	0.057	0.080	0.055	0.051	0.060
20	0	LN	0.105	0.064	0.074	0.051	0.041	0.046	0.136	0.058	0.113	0.052	0.042	0.056
20	10	LN	0.107	0.070	0.083	0.058	0.047	0.055	0.130	0.056	0.115	0.051	0.040	0.061
20	30	LN	0.100	0.063	0.088	0.060	0.047	0.058	0.141	0.060	0.130	0.060	0.049	0.073
30	0	LN	0.089	0.061	0.068	0.053	0.044	0.049	0.105	0.059	0.093	0.053	0.046	0.056
30	10	LN	0.084	0.063	0.073	0.056	0.047	0.052	0.110	0.064	0.102	0.060	0.052	0.065
30	30	LN	0.080	0.058	0.075	0.055	0.047	0.056	0.108	0.058	0.109	0.058	0.049	0.067
50	0	LN	0.070	0.054	0.060	0.048	0.044	0.049	0.087	0.058	0.080	0.053	0.050	0.058
50	10	LN	0.066	0.056	0.059	0.052	0.047	0.049	0.087	0.059	0.082	0.055	0.050	0.059
50	30	LN	0.069	0.060	0.066	0.058	0.054	0.054	0.087	0.062	0.085	0.060	0.055	0.063
Table 3. Type-I-error ($\alpha = 5\%$) simulation results of the ATS and WTS for testing H^F_0 and H^P_0 and MCTP in different designs with covariance matrices Σ_5 and Σ_6 as given in (23). Here, r denotes the rate of missing data. Data is MCAR. Note that H^P_0 holds.

n	r(%)	Dist	Σ_5	H^F_0	H^P_0	MCT	Σ_6	H^F_0	H^P_0	MCT				
20	0	N	0.141	0.058	0.097	0.051	0.042	0.049	0.147	0.060	0.050	0.041	0.052	
20	10	N	0.139	0.057	0.104	0.051	0.042	0.052	0.146	0.062	0.111	0.053	0.042	0.058
20	30	N	0.138	0.057	0.119	0.055	0.045	0.064	0.147	0.063	0.125	0.060	0.051	0.068
30	0	N	0.100	0.054	0.080	0.048	0.042	0.046	0.114	0.059	0.087	0.052	0.044	0.049
30	10	N	0.097	0.052	0.081	0.048	0.040	0.048	0.102	0.055	0.083	0.049	0.041	0.050
30	30	N	0.102	0.056	0.094	0.055	0.047	0.058	0.104	0.060	0.094	0.057	0.049	0.058
50	0	N	0.076	0.054	0.066	0.052	0.048	0.050	0.083	0.055	0.069	0.050	0.045	0.051
50	10	N	0.074	0.052	0.067	0.049	0.044	0.051	0.080	0.053	0.070	0.049	0.045	0.050
50	30	N	0.074	0.050	0.073	0.049	0.045	0.056	0.078	0.052	0.073	0.049	0.045	0.053
20	0	LN	0.141	0.060	0.101	0.049	0.040	0.050	0.148	0.064	0.107	0.054	0.043	0.054
20	10	LN	0.138	0.059	0.109	0.051	0.041	0.054	0.139	0.062	0.104	0.054	0.046	0.054
20	30	LN	0.142	0.062	0.124	0.061	0.051	0.066	0.142	0.059	0.122	0.058	0.049	0.068
30	0	LN	0.102	0.060	0.084	0.054	0.048	0.052	0.110	0.064	0.089	0.055	0.047	0.054
30	10	LN	0.096	0.051	0.079	0.046	0.040	0.051	0.104	0.063	0.088	0.058	0.050	0.056
30	30	LN	0.098	0.054	0.091	0.053	0.047	0.059	0.100	0.056	0.093	0.054	0.047	0.056
50	0	LN	0.080	0.058	0.070	0.054	0.050	0.054	0.088	0.063	0.077	0.057	0.052	0.057
50	10	LN	0.075	0.052	0.069	0.050	0.046	0.049	0.084	0.060	0.073	0.055	0.051	0.056
50	30	LN	0.075	0.051	0.072	0.051	0.046	0.054	0.079	0.057	0.075	0.055	0.051	0.054
Figure 1. Type-I error rates of the newly proposed Wald- (WTS), ANOVA-type (ATS (1) and ATS (2)) and MCT procedures and the procedures of Domhof et al.1 in MCAR scenarios.

1.2 Power

The power simulation results for $n = 30$ and Σ_4 are given in Tables 4 and 5 for discretized normal and log-normal distributions respectively. An exploration of the power under different MAR scenarios, covariance matrices, alternatives and discretized distributions can be found in Figures 2 - 5.
Table 4. Power comparisons of the ATS for testing either H_0^F (ATS (F)) or H_0^P (ATS (2)) and the MCTP to detect the three alternatives listed in (24) in normal distributions with Σ_4 and $n = 30$. Data is MCAR.

delta	r(%)	Alternative 1		Alternative 2		Alternative 3				
		ATS(F)	ATS(2)	MCTP	ATS(F)	ATS(2)	MCTP	ATS(F)	ATS(2)	MCTP
0.0	0	0.053	0.041	0.051	0.059	0.047	0.056	0.055	0.042	0.050
0.0	10	0.054	0.043	0.053	0.058	0.046	0.058	0.057	0.043	0.058
0.0	30	0.059	0.051	0.066	0.056	0.047	0.061	0.057	0.049	0.061
0.2	0	0.085	0.070	0.078	0.099	0.079	0.095	0.309	0.267	0.301
0.2	10	0.080	0.067	0.077	0.088	0.072	0.087	0.269	0.234	0.269
0.2	30	0.074	0.064	0.081	0.082	0.071	0.093	0.208	0.189	0.227
0.4	0	0.176	0.150	0.152	0.248	0.212	0.220	0.903	0.880	0.872
0.4	10	0.160	0.138	0.149	0.219	0.186	0.201	0.851	0.821	0.823
0.4	30	0.132	0.118	0.129	0.177	0.157	0.175	0.694	0.666	0.688
0.6	0	0.355	0.313	0.317	0.526	0.481	0.430	0.999	0.999	0.998
0.6	10	0.319	0.284	0.286	0.454	0.411	0.377	0.997	0.995	0.993
0.6	30	0.235	0.212	0.227	0.341	0.314	0.311	0.974	0.968	0.966
0.8	0	0.574	0.532	0.527	0.801	0.766	0.682	1.000	1.000	1.000
0.8	10	0.521	0.484	0.474	0.732	0.694	0.617	1.000	1.000	1.000
0.8	30	0.391	0.367	0.376	0.572	0.540	0.493	1.000	0.999	0.999
1.0	0	0.789	0.755	0.742	0.949	0.936	0.862	1.000	1.000	1.000
1.0	10	0.720	0.685	0.676	0.912	0.896	0.821	1.000	1.000	1.000
1.0	30	0.566	0.540	0.546	0.784	0.758	0.693	1.000	1.000	1.000
1.5	0	0.987	0.983	0.982	1.000	1.000	0.998	1.000	1.000	1.000
1.5	10	0.974	0.967	0.964	1.000	0.999	0.994	1.000	1.000	1.000
1.5	30	0.904	0.891	0.886	0.988	0.986	0.965	1.000	1.000	1.000
Table 5. Power comparisons of the ATS for testing either H_F^0 (ATS (F)) or H_p^0 (ATS (2)) and the MCTP to detect the three alternatives listed in (24) in log-normal distributions with Σ_4 and $n = 30$. Data is MCAR.

delta	r(%)	ATS(F)	ATS(2)	MCTP	ATS(F)	ATS(2)	MCTP	ATS(F)	ATS(2)	MCTP
0.0	0	0.059	0.046	0.056	0.059	0.047	0.060	0.059	0.048	0.057
0.0	10	0.064	0.052	0.065	0.064	0.052	0.066	0.059	0.047	0.061
0.0	30	0.058	0.049	0.067	0.059	0.050	0.065	0.061	0.053	0.066
0.2	0	0.100	0.083	0.094	0.124	0.102	0.121	0.366	0.329	0.366
0.2	10	0.099	0.082	0.093	0.110	0.091	0.108	0.337	0.300	0.335
0.2	30	0.085	0.074	0.088	0.098	0.086	0.107	0.238	0.214	0.260
0.4	0	0.205	0.175	0.184	0.303	0.263	0.261	0.926	0.906	0.904
0.4	10	0.188	0.162	0.166	0.260	0.229	0.237	0.880	0.857	0.859
0.4	30	0.143	0.127	0.145	0.207	0.186	0.199	0.731	0.704	0.732
0.6	0	0.397	0.357	0.350	0.581	0.536	0.479	0.999	0.999	0.999
0.6	10	0.345	0.312	0.316	0.505	0.465	0.428	0.998	0.997	0.996
0.6	30	0.269	0.246	0.262	0.387	0.358	0.354	0.977	0.973	0.973
0.8	0	0.619	0.579	0.569	0.830	0.798	0.715	1.000	1.000	1.000
0.8	10	0.548	0.511	0.504	0.764	0.732	0.658	1.000	1.000	1.000
0.8	30	0.423	0.397	0.408	0.608	0.579	0.535	0.999	0.999	0.999
1.0	0	0.809	0.777	0.769	0.959	0.945	0.887	1.000	1.000	1.000
1.0	10	0.746	0.714	0.703	0.932	0.917	0.854	1.000	1.000	1.000
1.0	30	0.596	0.573	0.574	0.813	0.792	0.729	1.000	1.000	1.000
1.5	0	0.991	0.988	0.986	1.000	1.000	0.999	1.000	1.000	1.000
1.5	10	0.977	0.971	0.965	1.000	0.999	0.996	1.000	1.000	1.000
1.5	30	0.916	0.906	0.898	0.993	0.992	0.975	1.000	1.000	1.000
Normal Distribution, MAR (1), n = 20

Figure 2. Power simulation of the ATS (2) and the MCTP for testing $H_{0\delta}$, the ATS for testing $H_{0\delta}^C$ and the MCTP for testing $H_{0\delta}^P$ using only complete cases, data is MAR (1).
Figure 3. Power simulation of the ATS (2) and the MCTP for testing H^F_0, the ATS for testing H^C_0, and the MCTP for testing H^P_0 using only complete cases, data is MAR (1).
Figure 4. Power simulation of the ATS (2) and the MCTP for testing H_{0}^{p}, the ATS for testing H_{0}^{F} and the MCTP for testing H_{0}^{p} using only complete cases, data is MAR (2).
LogNormal Distribution, MAR (2), n = 20

![Diagram showing power simulation for ATS (2) and MCTP]

Figure 5. Power simulation of the ATS (2) and the MCTP for testing H_0^p, the ATS for testing H_0^F and the MCTP for testing H_0^p using only complete cases, data is MAR (2).

2 Proofs

In this section we will provide the proofs of the theoretical results achieved in the paper. The strong consistency of the point and variance estimators follows from the following generalization of the Glivenko-Cantelli Theorem:

Lemma 1: Let $F^{(-)}_i(x) = P(X_{i1} < x)$ and $F^{(+)}_i(x) = P(X_{i1} \leq x)$ denote the left-continuous and right-continuous versions of the distribution function of X_{i1} and let

\[
\hat{F}^{(-)}_i = \frac{1}{\lambda_i} \sum_{k=1}^{n} \lambda_{ik} c^{(-)}(x - X_{ik}) \quad \text{and} \quad \hat{F}^{(+)}_i = \frac{1}{\lambda_i} \sum_{k=1}^{n} \lambda_{ik} c^{(+)}(x - X_{ik})
\]

denote their empirical counterparts, where

\[
c^{(-)}(u) = \begin{cases} 0 & u \leq 0 \\ 1 & u > 0 \end{cases} \quad \text{and} \quad c^{(+)}(u) = \begin{cases} 0 & u < 0 \\ 1 & u \geq 0 \end{cases}
\]
Furthermore, let \(F_i(x) = \frac{1}{2}(F_i^-(x) + F_i^+(x)) \), \(G(x) \), \(\hat{F}_i(x) = \frac{1}{2}(\hat{F}_i^- + \hat{F}_i^+) \) and \(\hat{G}(x) = \frac{1}{d} \sum_{i=1}^{d} \hat{F}_i(x) \) denote the normalized versions of the distribution functions as used in the manuscript. Then,

\[
\left\| \hat{F}_i - F_i \right\|_{\infty} \xrightarrow{a.s.} 0, \; \lambda_i \to \infty \quad \text{and} \quad \left\| \hat{G} - G \right\|_{\infty} \xrightarrow{a.s.} 0, \; \min\{\lambda_1, \ldots, \lambda_d\} \to \infty.
\]

Proof: Since \(\hat{F}_i(x) \) is the mean of the left- and right continuous version, it follows

\[
\left\| \hat{F}_i - F_i \right\|_{\infty} = \left\| \frac{1}{2}(\hat{F}_i^- - F_i^-) + \frac{1}{2}(\hat{F}_i^+ - F_i^+) \right\|_{\infty} \leq \frac{1}{2} \left\| \hat{F}_i^- - F_i^- \right\|_{\infty} + \frac{1}{2} \left\| \hat{F}_i^+ - F_i^+ \right\|_{\infty} \xrightarrow{a.s.} 0, \; \lambda_i \to \infty.
\]

The proof of the almost sure convergence of the last remaining terms is given by \(^6\), page 111. Furthermore, by triangle inequality, the convergence \(\left\| \hat{G} - G \right\|_{\infty} \xrightarrow{a.s.} 0 \) follows, which completes the proof.

2.1 Proof of Proposition 1

1. The estimator \(\hat{p} = (\hat{p}_1, \ldots, \hat{p}_d)' \) is asymptotically unbiased, because

\[
\left| E(\hat{p}_i) - p_i \right| = \frac{1}{d} \sum_{h=1}^{d} \left| E \left(\int \hat{F}_h d\hat{F}_i - \int F_h dF_i \right) \right| \\
= \frac{1}{d} \sum_{h=1}^{d} \frac{1}{\lambda_h \lambda_i} \sum_{k=1}^{n} \sum_{\ell=1}^{n} \lambda_{ik} \lambda_{h\ell} \left(E \left(c(X_{ik} - X_{h\ell}) - \int F_h dF_i \right) \right) \\
= \frac{1}{d} \sum_{h=1}^{d} \frac{1}{\lambda_h \lambda_i} \sum_{k=1}^{n} \lambda_{ik} \lambda_{hk} \left(E \left(c(X_{ik} - X_{hk}) - \int F_h dF_i \right) \right) \\
\leq \frac{1}{d} \sum_{h=1}^{d} \frac{n}{\lambda_h \lambda_i} \sum_{k=1}^{n} \lambda_{ik} \lambda_{hk} \left(E \left(c(X_{ik} - X_{hk}) - \int F_h dF_i \right) \right) \\
\leq \frac{1}{d} \sum_{h=1}^{d} \frac{n}{\lambda_h \lambda_i} \leq \frac{1}{d} \sum_{h=1}^{d} \frac{N_0}{\lambda_i} = \frac{N_0}{\lambda_i} \to 0, \; \lambda_i \to \infty.
\]
2. The strong consistency of \hat{p} follows from
\[
|\hat{p}_i - p_i| \leq \frac{1}{d} \sum_{s=1}^{d} \left| \int \hat{F}_s d\hat{F}_i - \int F_s dF_i \right|
\]
\[
= \frac{1}{d} \sum_{s=1}^{d} \left| \int \hat{F}_s d\hat{F}_i - \int F_s dF_i - \int F_s d\hat{F}_i + \int F_s d\hat{F}_i \right|
\]
\[
\leq \frac{1}{d} \sum_{s=1}^{d} \left(\left| \int (\hat{F}_s - F_s) d\hat{F}_i \right| + \left| \int F_s d(\hat{F}_i - F_i) \right| \right)
\]
\[
= \frac{1}{d} \sum_{s=1}^{d} \left(\left| \int (\hat{F}_s - F_s) d\hat{F}_i \right| + \left| \int (F_i - \hat{F}_i) dF_s \right| \right)
\]
\[
\leq \frac{1}{d} \sum_{s=1}^{d} \left(||\hat{F}_s - F_s||_\infty + ||\hat{F}_i - F_i||_\infty \right) \xrightarrow{a.s.} 0, \lambda_i, \lambda_s \to \infty.
\]

2.2 Proof of Theorem 1
It is sufficient to prove the theorem only for the i-th component. By adding and subtracting $\int G d\hat{F}_i$ and $\int G dF_i$, it holds for all $i = 1, \ldots, d$ that
\[
\sqrt{n} \int \hat{G} d(\hat{F}_i - F_i) = \sqrt{n} \int G d(\hat{F}_i - F_i) + \sqrt{n} \int (\hat{G} - G) d(\hat{F}_i - F_i).
\]

If it can be shown, that
\[
\sqrt{n} Z_i = \sqrt{n} \int (\hat{G} - G) d(\hat{F}_i - F_i) \xrightarrow{p} 0, i = 1, \ldots, d,
\]
the proof will be complete. It is technically easier to prove the stronger result $E(\sqrt{n} Z_i)^2 \to 0$. Therefore, consider
\[
\sqrt{n} Z_i = \sqrt{n} \int (\hat{G} - G) d(\hat{F}_i - F_i) = \frac{1}{d} \sum_{s=1}^{d} \sqrt{n} \int (\hat{F}_s - F_s) d(\hat{F}_i - F_i)
\]
and thus
\[
E(\sqrt{n} Z_i)^2 = E \left\{ \frac{n}{d^2} \sum_{s=1}^{d} \sum_{t=1}^{d} \int (\hat{F}_s - F_s) d(\hat{F}_i - F_t) \int (\hat{F}_t - F_t) d(\hat{F}_i - F_i) \right\}.
\]

It follows with the same arguments as used by Dobler et al.\(^7\) (see equation (8)), Gao et al.\(^8\) (Lemma 2.1) or Munzel\(^9\) that
\[
E \left\{ n \int (\hat{F}_s - F_s) d(\hat{F}_i - F_t) \int (\hat{F}_t - F_t) d(\hat{F}_i - F_i) \right\} \to 0, \lambda_i \to \infty,
\]
for any fixed pair of \((s,t)\) under \((A1)\) and \((A2)\). It remains to show that

\[
\sqrt{n} \int Gd(\hat{F}_i - F_i) = \sqrt{n} \int Gd(\hat{F}_i - F_i) + o_p(1)
\]

\[
\iff \sqrt{n}(\hat{p}_i - p_i) = \sqrt{n} \left(\int Gd\hat{F}_i - \int F_idG + 1 - 2p_i \right) + o_p(1)
\]

\[
= \sqrt{n} \left(\frac{1}{\lambda_i} \sum_{k=1}^{n} \lambda_{ik} G(X_{ik}) - \int F_id \left(\frac{1}{d} \sum_{s=1}^{d} \hat{F}_s \right) + 1 - 2p_i \right) + o_p(1)
\]

\[
= \sqrt{n} \left(\frac{1}{n} \sum_{k=1}^{n} \frac{n \lambda_{ik}}{\lambda_i} G(X_{ik}) - \frac{1}{d} \sum_{s=1}^{d} \int F_id\hat{F}_s + 1 - 2p_i \right) + o_p(1)
\]

\[
= \sqrt{n} \left(\frac{1}{n} \sum_{k=1}^{n} \frac{n \lambda_{ik}}{\lambda_i} \left(G(X_{ik}) - \frac{1}{d} F_i(X_{ik}) \right) - \frac{1}{d} \sum_{s \neq i}^{n} \frac{n \lambda_{sk}}{\lambda_s} F_i(X_{sk}) + (1 - 2p_i) \right) + o_p(1)
\]

\[
= \frac{1}{\sqrt{n}} \sum_{k=1}^{n} (\Psi_{ik} - E(\Psi_{ik})) + o_P(1),
\]

which completes the proof.

2.3 Proof of Theorem 2

Note that \(\sqrt{n}B\) is a mean (multiplied by \(\sqrt{n}\)) of independent random variables

\[
\sqrt{n}B = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} (\Psi_k - E(\Psi_k)), \quad \Psi_k = (\Psi_{1k}, \ldots, \Psi_{dk})'.
\]

Furthermore, note that the random variables \(\Psi_k\) are uniformly bounded by Assumption \((A2)\) in (??). Thus, the multivariate Lindeberg Feller Theorem implies that \(\sqrt{n}B\) is asymptotically normal with covariance matrix \(\tilde{V}_n\) and the result follows from Theorem 1 and Slutsky.

2.4 Proof of Theorem 3

1. Let \(y = (y_1, \ldots, y_d)'\) be a vector of constants. Then it holds

\[
y'\tilde{V}_n y = y' \left\{ \frac{1}{n-1} \sum_{k=1}^{n} \left(\hat{\Psi}_k - \hat{\beta}_k \right) \left(\hat{\Psi}_k - \hat{\beta}_k \right)' \right\} y
\]

\[
= \frac{1}{n-1} \sum_{k=1}^{n} y' \left(\hat{\Psi}_k - \hat{\beta}_k \right) \left(\hat{\Psi}_k - \hat{\beta}_k \right)' y
\]

\[
= \frac{1}{n-1} \sum_{k=1}^{n} \left(\left(\hat{\Psi}_k - \hat{\beta}_k y \right)' \right)^2 \geq 0.
\]
2. For the diagonal elements, it suffices to show, that

$$\left| \frac{1}{n} \sum_{k=1}^{n} \left((\hat{\Psi}_{ik} - \hat{\beta}_{ik})^2 - (\Psi_{ik} - E(\Psi_{ik}))^2 \right) \right| \overset{a.s.}{\longrightarrow} 0, \ n \rightarrow \infty, \forall i,$$

since

$$\frac{1}{n - 1} \sum_{k=1}^{n} (\Psi_{ik} - E(\Psi_{ik}))^2 = \frac{1}{n} \sum_{k=1}^{n} (\Psi_{ik} - E(\Psi_{ik}))^2 + O\left(\frac{1}{n}\right), \forall i.$$

First, we compute the bound of

$$|\Psi_{ik}| = \left| \frac{n \lambda_{ik}}{\lambda_i} \left\{ G(X_{ik}) - \frac{1}{d} F_i(X_{ik}) \right\} - \frac{1}{d} \sum_{s \neq i}^{n} \frac{n \lambda_{sk}}{\lambda_s} F_i(X_{sk}) \right|$$

$$= \left| \frac{1}{d} \sum_{s \neq i}^{n} \frac{n \lambda_{ik}}{\lambda_i} F_s(X_{ik}) - \frac{1}{d} \sum_{s \neq i}^{n} \frac{n \lambda_{sk}}{\lambda_s} F_i(X_{sk}) \right| \leq N_0.$$

With the same arguments, it follows $|\hat{\Psi}_{ik}| \leq N_0$, $|\beta_{ik}| \leq N_0$ and $|\hat{\beta}_{ik}| \leq N_0$.

As $n \rightarrow \infty$, it follows that

$$\left| \frac{1}{n} \sum_{k=1}^{n} \left((\hat{\Psi}_{ik} - \hat{\beta}_{ik})^2 - (\Psi_{ik} - E(\Psi_{ik}))^2 \right) \right|$$

$$\leq \max_{k=1,\ldots,n} \left| (\hat{\Psi}_{ik} - \hat{\beta}_{ik})^2 - (\Psi_{ik} - E(\Psi_{ik}))^2 \right|$$

$$= \max_{k=1,\ldots,n} \left| (\hat{\Psi}_{ik} - \hat{\beta}_{ik} + \Psi_{ik} - E(\Psi_{ik})) (\hat{\Psi}_{ik} - \hat{\beta}_{ik} - \Psi_{ik} + E(\Psi_{ik})) \right|$$

$$\leq 4N_0 \max_{k=1,\ldots,n} \left| \hat{\Psi}_{ik} - \hat{\beta}_{ik} - \Psi_{ik} + E(\Psi_{ik}) \right|$$

$$\leq 4N_0 \max_{k=1,\ldots,n} \left| \hat{\Psi}_{ik} - \Psi_{ik} \right| + 4N_0 \max_{k=1,\ldots,n} \left| \hat{\beta}_{ik} - E(\Psi_{ik}) \right| \overset{\text{a.s.}}{\longrightarrow} 0,$$

$$\overset{(i)}{\leq} \overset{(ii)}{\leq} \left| \hat{\Psi}_{ik} - \Psi_{ik} \right| + \left| \hat{\beta}_{ik} - E(\Psi_{ik}) \right| \overset{\text{a.s.}}{\longrightarrow} 0,$$
since

\[(i) = \left| \frac{n\lambda_{ik}}{\lambda_i} \left(\hat{G}(X_{ik}) - \frac{1}{d}\hat{F}_i(X_{ik}) \right) - \frac{1}{d} \sum_{s \neq i} \frac{n\lambda_{sk}}{\lambda_s} \hat{F}_i(X_{sk}) \right| \\
- \left(\frac{n\lambda_{ik}}{\lambda_i} \left(G(X_{ik}) - \frac{1}{d}F_i(X_{ik}) \right) - \frac{1}{d} \sum_{s \neq i} \frac{n\lambda_{sk}}{\lambda_s} F_i(X_{sk}) \right) \right| \\
\leq \frac{n\lambda_{ik}}{\lambda_i} \left(|\hat{G}(X_{ik}) - G(X_{ik})| + \frac{1}{d}|\hat{F}_i(X_{ik}) - F_i(X_{ik})| \right) \\
+ \frac{1}{d} \sum_{s \neq i} \frac{n\lambda_{sk}}{\lambda_s} |\hat{F}_i(X_{sk}) - F_i(X_{sk})| \\
\leq N_0 \left(||\hat{G} - G||_{∞} + \frac{1}{d}||\hat{F}_i - F_i||_{∞} \right) + \frac{1}{d} \sum_{s \neq i} N_0 ||\hat{F}_i - F_i||_{∞} \xrightarrow{a.s.} 0,
\]

under assumption (A2) and

\[(ii) = \left| \left(\frac{n\lambda_{ik}}{\lambda_i} \left(p_i - \frac{1}{d}p^{(ii)} \right) - \frac{1}{d} \sum_{s \neq i} \frac{n\lambda_{sk}}{\lambda_s} p^{(is)} \right) \right| \\
- \left(\frac{n\lambda_{ik}}{\lambda_i} \left(\hat{p}_i - \frac{1}{d}\hat{p}^{(ii)} \right) - \frac{1}{d} \sum_{s \neq i} \frac{n\lambda_{sk}}{\lambda_s} \hat{p}^{(is)} \right) \right| \\
\leq N_0 \left(|\hat{p}_i - p_i| + \frac{1}{d}||\hat{p}^{(ii)} - p^{(ii)}|| \right) + \frac{1}{d} \sum_{s \neq i} N_0 ||\hat{p}^{(is)} - p^{(is)}|| \xrightarrow{a.s.} 0.
\]

For the off diagonal elements, it holds that

\[
\frac{1}{n} \sum_{k=1}^{n} \left((\hat{\Psi}_{ik} - \hat{\beta}_{ik})(\hat{\Psi}_{jk} - \hat{\beta}_{jk}) - (\Psi_{ik} - E(\Psi_{ik}))(\Psi_{jk} - E(\Psi_{jk})) \right) \Delta_{ik} \\
\leq \max_{k=1,\ldots,n} |\Delta_{ik}| \xrightarrow{a.s.} 0,
\]
since
\[|\Delta_{ik}| = \left| (\tilde{\Psi}_{ik} - \tilde{\beta}_{ik})(\tilde{\Psi}_{jk} - \tilde{\beta}_{jk}) - (\Psi_{ik} - E(\Psi_{ik}))(\Psi_{jk} - E(\Psi_{jk})) \right| \]
\[= \left| (\tilde{\Psi}_{ik} - \tilde{\beta}_{ik})(\tilde{\Psi}_{jk} - \tilde{\beta}_{jk}) - (\Psi_{ik} - E(\Psi_{ik}))(\Psi_{jk} - E(\Psi_{jk})) \right| + (\Psi_{jk} - E(\Psi_{jk}))\left| (\tilde{\Psi}_{ik} - \tilde{\beta}_{ik}) - (\Psi_{ik} - E(\Psi_{ik})) \right| \]
\[\leq \left| (\tilde{\Psi}_{ik} - \tilde{\beta}_{ik})(\tilde{\Psi}_{jk} - \tilde{\beta}_{jk}) - (\Psi_{ik} - E(\Psi_{ik}))(\Psi_{jk} - E(\Psi_{jk})) \right| \]
\[+ 2N_0 \left| (\tilde{\Psi}_{jk} - \tilde{\beta}_{jk}) - (\Psi_{jk} - E(\Psi_{jk})) \right| \]
\[\leq 2N_0 \left| (\tilde{\Psi}_{jk} - \tilde{\beta}_{jk}) - (\Psi_{jk} - E(\Psi_{jk})) \right| \]
\[+ 2N_0 \left| (\tilde{\Psi}_{ik} - \tilde{\beta}_{ik}) - (\Psi_{ik} - E(\Psi_{ik})) \right| \]
\[\leq 2N_0 \left[|\tilde{\Psi}_{jk} - \Psi_{jk}| + |\tilde{\beta}_{jk} - E(\Psi_{jk})| + |\tilde{\Psi}_{ik} - \Psi_{ik}| + |\tilde{\beta}_{ik} - E(\Psi_{ik})| \right] \]
\[\xrightarrow{a.s.} 0. \]

References
1. Domhof S, Brunner E and Osgood DW. Rank procedures for repeated measures with missing values. *Sociological Methods & Research* 2002; 30(3): 367–393.
2. Santos MS, Pereira RC, Costa AF et al. Generating synthetic missing data: A review by missing mechanism. *IEEE Access* 2019; 7: 11651–11667.
3. Amro L, Konietschke F and Pauly M. Incompletely observed nonparametric factorial designs with repeated measurements: A wild bootstrap approach, 2021.
4. Zhu B, He C and Liatsis P. A robust missing value imputation method for noisy data. *Appl Intell* 2012; 36: 61–74.
5. R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria, 2013. URL http://www.R-project.org/.
6. Domhof S. *Nichtparametrische relative Effekte* (Doctoral dissertation, Niedersächsische Staats-und Universitätsbibliothek Göttingen). 2001. URL https://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-000D-F284-4/domhof.pdf?sequence=1.
7. Dobler D, Friedrich S and Pauly M. Nonparametric manova in meaningful effects. *Annals of the Institute of Statistical Mathematics* 2019; 72: 1–26.
8. Gao X, Alvo M, Chen J et al. Nonparametric multiple comparison procedures for unbalanced one-way factorial designs. *Journal of Statistical Planning and Inference* 2008; 138(8): 2574 – 2591.
9. Munzel U. Nonparametric methods for paired samples. *Statistica Neerlandica* 1999; 53(3): 277–286.