Pcc Constituents Quantification Through Partial Replacement of Fine Aggregate And Cement

V.Mallikarjuna Reddy, Tammisetty Srinivas Karthik

Abstract: The paper aim is to acknowledge the use of Quartz Sand (silica sand) & Metakaolin in replacement of natural sand and cement. As the nature sand is depleting at an alarming rate due to perpetual mining and on other side the emission of co2 from production of cement causing global warming. The M30 grade is prepared as well as evaluated for strength characteristics viz. split tensile, compressive and flexural. Ordinary Portland cement is replaced with metakaolin at 0,10,20,30,40 and 50%, while the fine aggregate is replaced with Quartz sand at 40% constant by weight. The specimens are casted and tested for split tensile, compressive and flexural strengths after curing for 7,14,28 days.

Keywords- Quartz sand, Metakaolin, Conventional concrete, Partial replacement, Physical properties.

I. INTRODUCTION

Concrete, the most far-flung man-made material on planet. The cement industry is one of the primary producers of CO2. In 2018 the cement produced in India is 290 million metric tons and 4250 million metric tons worldwide. The excessive sand mining causes the degradation of rivers which leads to increased flooding and threat to biodiversity. This both leads to global warming and environmental pollution to overcome these issues the usage of Metakaolin to decrease the consumption of cement and Quartz sand to decrease the consumption of sand must be adopted without compromising in strength of concrete. Metakaolin is the white powder of A.2Si by dehydrating kaolin (Al2O3 2SiO3.2H2O) at an acceptable temperature (700-900oC). kaolin is in a very stratified silicate structure, with the layers binding with one another via the Vander Weal’s bond, among that “O” is bound determinedly. When Kaolin is heated in air it might undergo many structural changes and heated to around 600°C its superimposed structure will be broken because of dehydration and makes a transient phase with poor crystallinity. The resultant material is called metakaolin. It has irregular arrangement in molecular structure having thermodynamic meta-stable condition and cementitious beneath a satisfactory excitation. With this exalted activity, it is used to production of cementitious materials and elevated strength superior concrete mix. The most prominent sand making material is quartz as it is resistant to different weathering conditions. Sand which has enriched quartz is probably going conventional and has moved off from the source region to several kilometres.

II. MATERIAL CHARACTERISTICS

The different materials and their characteristics were observed such that better concrete mix results can be obtained with combinations

A. Cement

Table- I: Physical Characteristics

| S.NO. | PROPERTY      | RESULT |
|-------|---------------|--------|
| 1     | Fineness modulus | 0.16   |
| 2     | Specific gravity | 3.15   |
| 3     | Initial setting time | 30 min |
| 4     | Final setting time | 450 min |

B. Fine Aggregate

For fine aggregate, sand of river was used conforming to IS383:1970

It takes longer duration for breakdown of weaker minerals of rocks by phenomena of weather. Sand having this sort of mineral grains from source rocks have formed many years ago and have seen many lithification and weathering cycles. The preceding researches observed better results when the cement and quartz with Metakaolin and subtle aggregate respectively in concrete. In the present work an attempt was made to study mechanical properties of M30 grade concrete with the above replacements. In preceding research, quality of sand made concrete degraded as replacement level increases [1]. The effect of adding metakaolin overshoot the strength of OPC mixes [2]. In some journals they concluded that the optimum usage of metakaolin gives the great result compared to conventional concrete [3]. It was observed that the split tensile strength and flexural strength development in the concrete had similar tendency with compressive strength i.e. the strengths are directly proportional to each other [4]. The better strengthen results were observed by replacement of sand with robo-sand [5]. The various strength characteristics of concrete were improved by the adding 2% of nano silica & 5% of metakaolin [6].

Dr.V.Mallikarjuna Reddy, Head of the Department, department of civil engineering, GRIET, Hyderabad.

Tammisetty Srinivas Karthik*, Post Graduate student, department of civil engineering, GRIET, Hyderabad.
Table- II: Physical Characteristics

| S.NO. | PROPERTY           | RESULT |
|-------|--------------------|--------|
| 1     | Bulk density       | 4.13   |
| 2     | Specific gravity   | 2.63   |
| 3     | Fineness modulus   | 2.76   |

C. Coarse Aggregate
For coarse aggregates, 20mm Crushed angular aggregates were used conforming to IS383:1970

Table- III: Physical Characteristics

| S.NO. | PROPERTY          | RESULT |
|-------|-------------------|--------|
| 1     | Fineness modulus  | 6.42   |
| 2     | Specific gravity  | 2.6    |
| 3     | Water absorption  | 1.1    |

D. Quartz Sand
The crushed powder of Quartz rock is taken from the local manufacturer. The micro filling effect of quartz sand improves the particle packing of concrete.

Table- IV: Physical Characteristics

| S.NO. | PROPERTY          | RESULT |
|-------|-------------------|--------|
| 1     | Fineness modulus  | 2.7    |
| 2     | Specific gravity  | 2.65   |

Table- V: Chemical Properties

| S.NO. | PROPERTY              | PERCENTAGE |
|-------|-----------------------|------------|
| 1     | SiO₂+Al₂O₃+Fe₂O₃      | 99.53      |
| 2     | CaO                   | 0.11       |
| 3     | So₃                   | 0.17       |
| 4     | K₂O                   | 0.07       |
| 5     | Cl                    | 0.02       |
| 6     | Na₂O                  | 0.1        |
| 7     | Loss of Ignition      | 1          |

E. Metakaolin
It is the calcined form of kaolinite which is also known as china clay. The Metakaolin was obtained from the supplier ASTRRA Chemicals, Chennai.

Table- VI: Physical Characteristics

| S.NO. | PROPERTY          | RESULT |
|-------|-------------------|--------|
| 1     | Bulk density      | 0.45   |
| 2     | Specific gravity  | 2.5    |

Table- VII: Chemical Properties

| S.NO. | PROPERTY | RESULT |
|-------|----------|--------|
| 1     | SiO₂     | 58.3   |
| 2     | Al₂O₃    | 34.3   |
| 3     | Fe₂O₃    | 4.29   |
| 4     | CaO      | 0.38   |
| 5     | MgO      | 0.08   |
| 6     | Na₂O     | 0.12   |
| 7     | K₂O      | 0.05   |

F. Super Plasticizer
To increase the workability of concrete super plasticizer was used. The super plasticizer used in the experiment was RHEOBUILD 920SH. As per IS9103-1999. The super plasticizer was used 1% of binder and the specific gravity is 1.20.

G. Mix Proportion
The mix proportion for the present study designed as per 10262-2009 is 1:2.17:3. Water/cement ratio is 0.43. The concrete mixes used in the study are

| Mix | Proportion | Compressive strength N/mm² |
|-----|------------|----------------------------|
| MQ0 | Conventional Mix | 26 | 36 | 39 |
| MQ1 | 10% M + 40% Q | 28.2 | 39 | 41.1 |
| MQ2 | 20% M + 40% Q | 30.5 | 42.2 | 43.8 |
| MQ3 | 30% M + 40% Q | 23.3 | 32.3 | 36.1 |
| MQ4 | 40% M + 40% Q | 19.1 | 26.5 | 32.3 |
| MQ5 | 50% M + 40% Q | 16.9 | 23.4 | 30.4 |

M-metakaolin Q-quartz sand
The results of compressive strengths show that the compressive strength increased when the metakaolin increased up to 20% and quartz sand 40%. After that the compressive strength is decreased when the...
metakaolin is increased above 30%. It was clear that the metakaolin and quartz sand influence the strength significantly.

Fig.1 Compressive Strength Results

B. Split Tensile Strength

Ability of the concrete to withstand loads which tend to elongate without breaking. Table 10 shows the effects of metakaolin and quartz sand on 7, 14 & 28 days split tensile strength of concrete.

Table IX: Split tensile strength test results

| Mix design | Proportion | Split Tensile strength |
|------------|------------|------------------------|
|            |            | 7 days | 14 days | 28 days |
| MQ0        | 0% M 0% Q  | 2.0    | 2.8     | 3.2     |
| MQ1        | 10% M 40% Q| 2.2    | 3.1     | 3.4     |
| MQ2        | 20% M 40% Q| 2.5    | 3.5     | 3.7     |
| MQ3        | 30% M 40% Q| 2.1    | 2.8     | 3.3     |
| MQ4        | 40% M 40% Q| 1.9    | 2.6     | 3.0     |
| MQ5        | 50% M 40% Q| 1.7    | 2.45    | 2.7     |

Fig.2 Split Tensile Strength Results

The results of Split tensile strengths show that the tensile strength increased when the metakaolin increased up to 20% and quartz sand 40%. After that the tensile strength is decreased when the metakaolin is increased above 30%. It was clear that the metakaolin and quartz sand influence the strength significantly.

C. Flexural Strength

The ability of beam to resist failure in bending. Table 11 shows the effect of metakaolin and quartz sand on 7, 14 & 28 days flexural strength of concrete.

Table X: Flexural strength test results

| Mix design | Proportion | Flexural strength |
|------------|------------|-------------------|
|            |            | 7 days | 14 days | 28 days |
| K0         | 0% M 0% Q  | 2.9    | 4.1     | 4.5     |
| K1         | 10% M 40% Q| 3.1    | 4.3     | 4.7     |
| K2         | 20% M 40% Q| 3.2    | 4.5     | 5.0     |
| K3         | 30% M 40% Q| 2.9    | 4.0     | 4.4     |
| K4         | 40% M 40% Q| 2.8    | 3.9     | 4.3     |
| K5         | 50% M 40% Q| 2.5    | 3.5     | 3.9     |

Fig.3 Flexural Strength Results

The results of flexural strengths show that the tensile strength increased when the metakaolin increased up to 20% and quartz sand 40%. After that the flexural strength is decreased when the metakaolin is increased above 30%. It was clear that the metakaolin and
quartz sand influence the strength significantly

IV. CONCLUSION

The incorporation of 20% metakaolin and 40% quartz sand is found advantageous (43.8 MPa) for 28 days. Compared to conventional concrete the strength increased 12% for K2 mix. The combination of 20% metakaolin and 40% quartz sand is found peerless for split tensile for 28 days. The K2 split tensile mix was increased 14% compared to conventional concrete. The mix K2 with 20% metakaolin and 40% quartz sand is found beneficial for flexural for 28 days. An improvement of 15% was observed in flexural than conventional concrete. As per the test results it was noticed that split tensile as well as flexural strengths of concrete had similar liabilities with compressive strength. The strengths are directly proportional to each other.

REFERENCES

1. Jyostna lalit chawdary, Alwin harison and vikas srivatsav “Use of silica sand as cement replacement in ppc concrete” International journal of research in engineering and technology eISSN:2319-1163, pISSN:2321-7308.
2. M. Narmatha and Dr. T.Felixkala “Metakaolin – The best material for replacement of cement in concrete” Journal of mechanical and civil engineering, volume 13, issue 4, version 1(July-august 2016), pp 66-71.
3. Kamaldeep Kaur, Jaspal Singh and Devinder Singh “Determination of optimum percentage of metakaolin by compressive strength and XDR analysis”, International journal of scientific engineering and applied science, volume-1, issue 2, may 2015.
4. O. Pavitra, D. Gayatri and T. Naresh Kumar “Experimental analysis on concrete with partial replacement of cement with metakaolin and sand with quartz sand”, International journal of advance engineering and research development, volume 4, issue 12, December 2017.
5. M. Jagadeesh naik and S.M.Gupta “experimental investigation on the properties of concrete replacing cement and natural sand with metakaolin and robo sand”,Journal of civil engineering and environmental technology, volume 3,issue 5, June 2016.
6. S. Venkata Maruthi and Dr. D.V. Prasada Rao “Effects of nano silica on concrete containing metakaolin”, International journal of civil engineering and technology, volume 7, issue 2, Feb 2016, pp 104-112.