COUNTING PATHS IN PERFECT TREES

PETER J. HUMPHRIES

Abstract. We present some exact expressions for the number of paths of a given length in a perfect m-ary tree. We first count the paths in perfect rooted m-ary trees and then use the results to determine the number of paths in perfect unrooted m-ary trees, extending a known result for binary trees.

1. Introduction

A tree $T = (V, E)$ is a connected acyclic graph with a finite vertex set V and finite edge set $E \subseteq \binom{V}{2}$. The distance $d_T(u, v)$ between two vertices $u, v \in V$ is the number of edges in the (unique) path in T that joins u and v. In this paper, we focus on counting the pairs of vertices that are some given distance apart, or equivalently the paths of a given length, in a perfect tree.

Given a tree T, let $P(T, t)$ denote the number of pairs of vertices at distance exactly $t \geq 1$ from each other. That is,

$$P(T, t) = \left| \{ u, v \in \binom{V}{2} : d_T(u, v) = t \} \right| \quad \text{and} \quad \sum_{t \geq 1} P(T, t) = \frac{|V|(|V| - 1)}{2}.$$

Note immediately that $P(T, 1) = |E|$. Furthermore, from the observations that each vertex v of degree $\deg(v)$ is the central vertex of $\binom{\deg(v)}{2}$ distinct paths of length 2 and that each edge $\{u, v\}$ is the central edge of $(\deg(u) - 1)(\deg(v) - 1)$ distinct paths of length 3, we obtain

$$P(T, 2) = \sum_{v \in V} \binom{\deg(v)}{2} \quad \text{and} \quad P(T, 3) = \sum_{\{u, v\} \in E} (\deg(u) - 1)(\deg(v) - 1).$$

Similar expressions for $P(T, t)$ when $t \geq 4$ become increasingly complicated.

Faudree et al. [3] constructed examples showing that two non-isomorphic trees T_1, T_2 can have identical path length distributions (that is, $P(T_1, t) = P(T_2, t)$ for all t). Tight upper and lower bounds for $P(T, t)$ were given by Dankelmann [1] in terms of $|V|$ and either the radius or diameter of T.

A binary tree T, in which every vertex has degree 1 or degree 3, is perfect (or balanced) if T has the maximum number of vertices among all binary trees of the same diameter. De Jong et al. [2] used a recursive approach to show that the perfect binary tree T of diameter D with n degree-1 vertices has

$$P(T, t) = \begin{cases} 2^{\frac{t+1}{2}} \left(n - 3 \cdot 2^{\frac{t-3}{2}} \right), & t \text{ odd,} \\ 3 \cdot 2^{\frac{t-3}{2}} - 1 \left(n - 2^{\frac{t-1}{2}} \right), & t \text{ even} \end{cases}$$

paths of length t for $3 \leq t \leq D$.

Date: November 27, 2017.

1
We adopt a different approach to extend this to perfect \(m \)-ary trees, where each vertex has degree 1 or \(m + 1 \). In particular, we prove the following theorem.

Theorem 1.1. Let \(T \) be the perfect unrooted \(m \)-ary tree of diameter \(D \). Then, for \(1 \leq t \leq D \),
\[
P(T, t) = \begin{cases} m^{\frac{t-1}{2}} (V(D) - V(t-1)), & t \text{ odd,} \\ \frac{1}{2} (m+1)m^{\frac{t}{2}-1} (V(D) - V(t-1)), & t \text{ even,} \end{cases}
\]
where \(V(d) \) is the number of vertices in the perfect unrooted \(m \)-ary tree of diameter \(d \).

We first derive an analogous theorem for perfect rooted \(m \)-ary trees, where the root has degree \(m \) and all other vertices have degree 1 or \(m + 1 \). Theorem 1.2 is obtained in Section 2 by counting the paths of length \(t \) in a perfect rooted \(m \)-ary tree according to minimum depth, considering odd \(t \) and even \(t \) separately.

Theorem 1.2. Let \(T \) be the perfect rooted \(m \)-ary tree of depth \(r \), and let \(t \) satisfy \(1 \leq t \leq 2r \). If \(t \) is odd, then
\[
P(T, t) = \begin{cases} m^{\frac{t-1}{2}} (V_R(r) - V_R(\frac{t-1}{2})) - \frac{1}{2} m^{t-1}, & t \leq r, \\ m^{\frac{t}{2}} (V_R(r) - V_R(\frac{t}{2})) - (r - \frac{t}{2} + 1) m^{t-1}, & t > r, \end{cases}
\]
and if \(t \) is even, then
\[
P(T, t) = \begin{cases} \frac{1}{2} (m+1)m^{\frac{t-1}{2}} (V_R(r) - V_R(\frac{t}{2} - 1)) - \frac{1}{2} m^{t-1}, & t \leq r, \\ \frac{1}{2} (m+1)m^{\frac{t}{2}-1} (V_R(r) - V_R(\frac{t}{2} - 1)) - (r - \frac{t}{2} + 1) m^{t-1}, & t > r, \end{cases}
\]
where \(V_R(d) \) is the number of vertices in the perfect rooted \(m \)-ary tree of depth \(d \).

In Section 3 we use the results from Section 2 to prove Theorem 1.1.

2. **Perfect rooted \(m \)-ary trees**

In a rooted \(m \)-ary tree \(T = (V, E) \), there is a distinguished vertex \(\rho \) of degree \(m \) called the root, while every other vertex has degree 1 or \(m + 1 \). The depth \(r \) of \(T \) is the maximum value of \(d_T(\rho, v) \) over all vertices \(v \in V \). We call \(T \) perfect if and only if every degree-1 vertex is distance \(r \) from the root \(\rho \).

Let \(T \) be the perfect rooted \(m \)-ary tree of depth \(r \). For \(0 \leq s \leq r \), there are exactly \(m^s \) vertices \(v \in V \) for which \(d_T(\rho, v) = s \). Let \(p = v_0 \cdots v_t \) be a path of length \(t \) in \(T \). Then there is a unique vertex \(v_s \), \(0 \leq s \leq t/2 \), such that \(d_T(\rho, v_s) \leq d_T(\rho, v_i) \) for all \(0 \leq i \leq t \). We call \(p \) a type-\([s, t-s] \) path rooted at \(v_s \).

Lemma 2.1. Let \(T \) be the perfect rooted \(m \)-ary tree of depth \(r \). If \(r < t - s \), then the number of type-\([s, t-s] \) paths in \(T \) rooted at \(\rho \) is 0. If \(r \geq t - s \), then the number of type-\([s, t-s] \) paths in \(T \) rooted at \(\rho \) is
\[
\begin{align*}
\begin{cases} m^t, & s = 0, \\
(m-1)m^{t-1}, & 0 < s < \frac{t}{2}, \\
\frac{1}{2} (m-1)m^{t-1}, & s = \frac{t}{2}.
\end{cases}
\end{align*}
\]

Proof. The case \(r < t - s \) is obvious, as is the case \(r \geq t - s \) with \(s = 0 \). Assume that \(r \geq t - s \) and that \(0 < s < \frac{t}{2} \). Then any type-\([s, t-s] \) path can be decomposed into a type-\([0, s] \) path rooted at \(\rho \) and a type-\([0, t-s] \) path rooted at \(\rho \), where these two paths are disjoint. There are \(m^s \) choices for
the type-\([0, s]\) path. Once this choice has been made, there are \((m - 1)m^{t-s-1}\) choices for the type-\([0, t-s]\) path, so the total number of type-\([s, t-s]\) paths rooted at \(\rho\) is \(2\binom{m}{2}m^{t-2} = (m - 1)m^{t-1}\). If \(s = \frac{t}{2}\), then this argument counts each type-\([s, s]\) path twice, hence the third equality.

Let \(P_m(r, t)\) denote the number of paths of length \(t\) in the perfect rooted \(m\)-ary tree of depth \(r\). The preceding lemma can be used to derive exact expressions for \(P_m(r, t)\). We consider paths of odd length and paths of even length separately, and make repeated use of the identity

\[\sum_{i=a}^{b} m^i = \frac{m^{b+1} - m^a}{m - 1}.\]

Proposition 2.2. The number of paths of length \(t = 2k - 1\) in the perfect rooted \(m\)-ary tree of depth \(r\), where \(1 \leq k \leq r\), is

\[P_m(r, t) = \begin{cases} m^{2k-2} \left(\frac{m^{r-s-1}}{m-1} - (r - k + 2) \right), & r < 2k - 1, \\ m^{2k-2} \left(\frac{m^{r-s-1}}{m-1} - k \right), & r \geq 2k - 1. \end{cases}\]

Proof. Let \(T\) be the perfect rooted \(m\)-ary tree of depth \(r\). If \(r < k\), then the longest path in \(T\) has length \(2r < t\), and so \(P_m(r, t) = 0\).

If \(k \leq r < 2k - 1\) and \(2k - r - 1 \leq s \leq k - 1\), then by Lemma 2.1 there are \((m - 1)m^{t-1}\) type-\([s, t-s]\) paths rooted at each vertex \(v\) for which \(d_T(\rho, v) \leq r - t + s\). Therefore,

\[P_m(r, t) = (m - 1)m^{2k-2} \sum_{s=2k-r-1}^{k-1} \left(\sum_{d=0}^{r-2k+s-1} m^d \right) \]

\[= (m - 1)m^{2k-2} \sum_{s=2k-r-1}^{k-1} \frac{m^{r-2k+s-1} - 1}{m - 1} \]

\[= m^{2k-2} \sum_{i=1}^{r-k+1} (m^i - 1) \]

\[= m^{2k-2} \left(\frac{m^{r-k+2} - 1}{m - 1} - (r - k + 2) \right). \]

If \(r \geq 2k - 1\), then there are \(m^t\) type-\([0, t]\) paths rooted at each vertex \(v\) for which \(d_T(\rho, v) \leq r - t\). Furthermore, for \(1 \leq s \leq k - 1\), there are \((m - 1)m^{t-1}\) type-\([s, t-s]\) paths rooted at each vertex.
for which $d_T(p, v) \leq r - t + s$. Therefore,

$$P_m(r, t) = m^{2k-1} \sum_{d=0}^{r-2k+1} m^d + (m-1)m^{2k-2} \sum_{s=1}^{r-2k+s+1} \left(\sum_{d=0}^{s-2k+s+1} m^d \right)$$

$$= m^{2k-2} \left(m \left(\frac{m^{r-2k+2} - 1}{m - 1} \right) + (m-1) \sum_{s=1}^{k-1} \frac{m^{r-2k+s+2} - 1}{m - 1} \right)$$

$$= m^{2k-2} \left(\frac{m^{r-2k+3} - m}{m - 1} + \sum_{i=r-2k+3}^{r-k+1} (m^i - 1) \right)$$

$$= m^{2k-2} \left(\frac{m^{r-2k+3} - m}{m - 1} + \frac{m^{r-k+2} - m^{r-2k+3}}{m - 1} - (k-1) \right)$$

$$= m^{2k-2} \left(\frac{m^{r-k+2} - 1}{m - 1} - k \right).$$

\[\square\]

Proposition 2.3. The number of paths of length $t = 2k$ in the perfect rooted m-ary tree of depth r, where $1 \leq k \leq r$, is

$$P_m(r, t) = \begin{cases}
 m^{2k-1} \left(\frac{1}{2}(m + 1) \left(\frac{m^{r-k+1} - 1}{m - 1} \right) - (r - k + 1) \right), & r < 2k; \\
 m^{2k-1} \left(\frac{1}{2}(m + 1) \left(\frac{m^{r-k+1} - 1}{m - 1} \right) - k \right), & r \geq 2k.
\end{cases}$$

Proof. Let T be the perfect rooted m-ary tree of depth r. If $r < k$, then the longest path in T has length $2r < t$, and so $P(d, t) = 0$.

If $k \leq r < 2k$, then by Lemma 2.1 there are $\frac{1}{2}(m - 1)m^{t-1}$ type-$[k, k]$ paths rooted at each vertex v for which $d_T(p, v) \leq r - k$. Furthermore, for $2k - r \leq s \leq k - 1$, there are $(m - 1)m^{t-1}$ type-$[s, t - s]$ paths rooted at each vertex v for which $d_T(p, v) \leq r - t + s$. Therefore,

$$P_m(r, t) = \frac{1}{2} (m - 1)m^{2k-1} \sum_{d=0}^{r-k} m^d + (m-1)m^{2k-1} \sum_{s=2k-r}^{r-k-1} \left(\sum_{d=0}^{s-2k+s+1} m^d \right)$$

$$= m^{2k-1} \left(\frac{1}{2}(m - 1) \left(\frac{m^{r-k+1} - 1}{m - 1} \right) + (m-1) \sum_{s=2k-r}^{k-1} \frac{m^{r-2k+s+1} - 1}{m - 1} \right)$$

$$= m^{2k-1} \left(\frac{1}{2}(m - 1) \left(\frac{m^{r-k+1} - 1}{m - 1} \right) + \sum_{i=1}^{r-k} (m^i - 1) \right)$$

$$= m^{2k-1} \left(\frac{1}{2} \left(m^{r-k+1} - 1 \right) + \frac{m^{r-k+1} - m}{m - 1} - (r - k) \right)$$

$$= m^{2k-1} \left(\frac{1}{2}(m + 1) \left(\frac{m^{r-k+1} - 1}{m - 1} \right) - (r - k + 1) \right).$$

If $r \geq 2k$, then by Lemma 2.1 there are $\frac{1}{2}(m - 1)m^{t-1}$ type-$[k, k]$ paths rooted at each vertex v for which $d_T(p, v) \leq r - k$ and m^t type-$[0, t]$ paths rooted at each vertex v for which $d_T(p, v) \leq r - 2k$. Furthermore, for $1 \leq s \leq k - 1$, there are $(m - 1)m^{t-1}$ type-$[s, t - s]$ paths rooted at each vertex
Proposition 3.1. The number of paths of length \(r \) in a perfect unrooted \(m \)-ary tree is \(P_m(r, t) = \frac{1}{2} (m - 1) m^{2k-1} \sum_{d=0}^{r-k} m^d + (m - 1) m^{2k-1} \sum_{d=0}^{r-2k+s} m^d + m^{2k} \sum_{d=0}^{r-2k} m^d \). Therefore,

\[
P_m(r, t) = m^{2k-1} \left(\frac{1}{2} (m - 1) \left(\frac{m^{r-k+1} - 1}{m - 1} \right) + (m - 1) \sum_{s=1}^{k-1} m^{r-2k+s+1} \frac{1}{m - 1} + m \left(\frac{m^{r-2k+1} - 1}{m - 1} \right) \right)
\]

\[
= m^{2k-1} \left(\frac{1}{2} (m - 1) \left(\frac{m^{r-k+1} - 1}{m - 1} \right) + \sum_{s=1}^{k-1} m^{r-2k+s} \frac{1}{m - 1} + m \left(\frac{m^{r-2k+1} - 1}{m - 1} \right) \right)
\]

\[
= m^{2k-1} \left(\frac{1}{2} (m - 1) \left(\frac{m^{r-k+1} - 1}{m - 1} \right) + \sum_{i=r-2k+2}^{r-k} (m^i - 1) + \frac{m^{r-2k+2} - m}{m - 1} \right)
\]

\[
= m^{2k-1} \left(\frac{1}{2} (m + 1) \left(\frac{m^{r-k+1} - 1}{m - 1} \right) - k \right).
\]

Theorem 1.2 now follows by combining Propositions 2.2 and 2.3 with the observation that

\[
V_R(d) = \frac{m^{d+1} - 1}{m - 1}.
\]

3. Perfect unrooted \(m \)-ary trees

In an unrooted \(m \)-ary tree \(T = (V, E) \), every vertex has degree 1 or \(m + 1 \). The diameter \(D \) of \(T \) is the maximum value of \(d_T(u, v) \) over all pairs of vertices \(u, v \in V \). We call \(T \) perfect if and only if every degree-1 vertex is distance \(D \) from some other vertex.

The symmetry of a perfect unrooted \(m \)-ary tree \(T \) of diameter \(D \) depends on whether \(D \) is odd or even. We introduce some notation to be used in this respect. If \(D = 2r - 1 \) is odd, then \(T \) can be constructed by connecting the roots \(p_1, p_2 \) of two perfect rooted \(m \)-ary trees \(T_1, T_2 \) of depth \(r - 1 \) with an edge \(e = \{p_1, p_2\} \). If \(D = 2r \) is even, then \(T \) can be constructed by connecting the roots \(p_1, p_2 \) of the perfect rooted \(m \)-ary tree \(T_1 \) of depth \(r \) and the perfect rooted \(m \)-ary tree \(T_2 \) of depth \(r - 1 \) with an edge \(e = \{p_1, p_2\} \). In either case, a path in \(T \) is either contained in \(T_1 \), contained in \(T_2 \), or contains \(e \).

Let \(U_m(D; t) \) denote the number of paths of length \(t \) in the perfect unrooted \(m \)-ary tree of diameter \(D \). We consider four cases, depending on the parities of \(t \) and \(D \). The proofs of the propositions below make repeated use of Lemma 2.4 and Propositions 2.2 and 2.3.

Proposition 3.1. The number of paths of length \(t = 2k - 1 \) in the perfect unrooted \(m \)-ary tree of diameter \(D = 2r - 1 \), where \(1 \leq k \leq r \) is

\[
U_m(D, t) = \frac{m^{2k-2}}{m - 1} \left(2m^{r-k+1} - (m + 1) \right).
\]

Proof. Let \(T \) be the perfect unrooted \(m \)-ary tree of diameter \(D = 2r - 1 \). We use the decomposition of \(T \) into \(T_1, T_2 \), and \(e \). The number of paths in \(T \) of length \(t \) that contain \(e \) is

\[
\sum_{s=\max\{0, t-r\}}^{\min\{t-1, r-1\}} m^{t-1} = \begin{cases} 0, & r < k, \\ (2r - 2k + 1) m^{2k-2}, & k \leq r < 2k - 1 \\ (2k - 1) m^{2k-2}, & r \geq 2k - 1. \end{cases}
\]
If $r < k$, then $U_m(D, t) = 0$. If $r = k$, then the depth of T_1 (and of T_2) is $r - 1 < k$, so $P_m(T_1, t) = P_m(T_2, t) = 0$. Also, $2r - 2k + 1 = 1$, and hence $U_m(D, t) = m^{2k-2}$. If $k < r < 2k - 1$, then $k \leq r - 1 < 2k - 2$, and so

$$
U_m(D, t) = 2P_m(r - 1, 2k - 1) + (2r - 2k + 1)m^{2k-2}
= 2m^{2k-2} \left(\frac{m^{r-k+1} - 1}{m - 1} - (r - k + 1) \right) + (2r - 2k + 1)m^{2k-2}
= \frac{m^{2k-2}}{m - 1} \left(2m^{r-k+1} - (m + 1) \right).
$$

If $r = 2k - 1$, then $r - 1 < 2k - 1$, and so

$$
U_m(D, t) = 2P_m(r - 1, 2k - 1) + (2k - 1)m^{2k-2}
= 2m^{2k-2} \left(\frac{m^{r-k+1} - 1}{m - 1} - (r - k + 1) \right) + (2k - 1)m^{2k-2}
= \frac{m^{2k-2}}{m - 1} \left(2m^{r-k+1} - (m + 1) \right).
$$

If $r > 2k - 1$, then $r - 1 \geq 2k - 1$, and so

$$
U_m(D, t) = 2P_m(r - 1, 2k - 1) + (2k - 1)m^{2k-2}
= 2m^{2k-2} \left(\frac{m^{r-k+1} - 1}{m - 1} - k \right) + (2k - 1)m^{2k-2}
= \frac{m^{2k-2}}{m - 1} \left(2m^{r-k+1} - (m + 1) \right).
$$

\[\square \]

Proposition 3.2. The number of paths of length $t = 2k$ in the perfect unrooted m-ary tree of diameter $D = 2r - 1$, where $1 \leq k < r$, is

$$
U_m(D, t) = \frac{m^{2k-1}}{m - 1} \left((m + 1)m^{r-k} - (m + 1) \right).
$$

Proof. Using the decomposition of T into T_1, T_2, and e, the number of paths of length $t = 2k$ in T that contain e is

$$
\sum_{s = \max\{0, t-r\}}^{\min\{t-1, r-1\}} m^{t-1} = \begin{cases}
0, & r \leq k, \\
(2r - 2k)m^{2k-1}, & k < r \leq 2k \\
2km^{2k-1}, & r > 2k,
\end{cases}
$$

and again the result is immediate for $r \leq k$. If $k < r \leq 2k$, then $k \leq r - 1 < 2k$, and so

$$
U_m(D, t) = 2P_m(r - 1, 2k) + (2r - 2k)m^{2k-1}
= 2m^{2k-1} \left(\frac{1}{2} (m + 1) \left(\frac{m^{r-k} - 1}{m - 1} \right) - (r - k) \right) + (2r - 2k)m^{2k-1}
= \frac{m^{2k-1}}{m - 1} \left((m + 1)m^{r-k} - (m + 1) \right).
$$
If \(r > 2k \), then \(r - 1 \geq 2k - 1 \), and so
\[
U_m(D, t) = 2P_m(r-1, 2k) + 2km^{2k-1}
= 2m^{2k-1} \left(\frac{1}{2} (m + 1) \left(\frac{m^r - k - 1}{m - 1} \right) - k \right) + 2km^{2k-1}
= \frac{m^{2k-1}}{m - 1} ((m + 1)m^{r-k} - (m + 1)).
\]

\[
\square
\]

Proposition 3.3. The number of paths of length \(t = 2k - 1 \) in the perfect unrooted \(m \)-ary tree of diameter \(D = 2r \), where \(1 \leq k \leq r \), is
\[
U_m(D, t) = \frac{m^{2k-2}}{m - 1} ((m + 1)m^{r-k+1} - (m + 1)).
\]

Proof. Using the decomposition of \(T \) into \(T_1 \) (depth \(r \)), \(T_2 \) (depth \(r - 1 \)), and \(e \), the number of paths of length \(t \) paths in \(T \) that contain \(e \) is
\[
\sum_{s = \max(0, t - r)}^{\min(t - 1, r)} m^{t-1} = \begin{cases}
0, & r < k, \\
(2r - 2k + 2)m^{2k-2}, & k \leq r < 2k - 1 \\
(2k - 1)m^{2k-2}, & r \geq 2k - 1.
\end{cases}
\]

If \(r < k \), then \(U_m(D, t) = 0 \). If \(r = k \), then \(r - 1 < k \), and so
\[
U_m(D, t) = P_m(r, 2k - 1) + P_m(r-1, 2k - 1) + (2r - 2k + 2)m^{2k-2}
= m^{2k-2} \left(\frac{m^{r-k+2} - 1}{m - 1} - (r - k + 2) \right) + (2r - 2k + 2)m^{2k-2}
= \frac{m^{2k-2}}{m - 1} ((m + 1)m^{r-k+1} - (m + 1)).
\]

If \(k < r < 2k - 1 \), then \(k \leq r - 1 < 2k - 1 \), and so
\[
U_m(D, t) = P_m(r, 2k - 1) + P_m(r-1, 2k - 1) + (2r - 2k + 2)m^{2k-2}
= m^{2k-2} \left(\frac{m^{r-k+2} - 1}{m - 1} - (r - k + 2) \right) + m^{2k-2} \left(\frac{m^{r-k+1} - 1}{m - 1} - (r - k + 1) \right)
+ (2r - 2k + 2)m^{2k-2}
= \frac{m^{2k-2}}{m - 1} ((m + 1)m^{r-k+1} - (m + 1)).
\]

If \(r = 2k - 1 \), then \(r - 1 < 2k - 1 \), and so
\[
U_m(D, t) = P_m(r, 2k - 1) + P_m(r-1, 2k - 1) + (2k - 1)m^{2k-2}
= m^{2k-2} \left(\frac{m^{r-k+2} - 1}{m - 1} - k \right) + m^{2k-2} \left(\frac{m^{r-k+1} - 1}{m - 1} - (r - k + 1) \right) + (2k - 1)m^{2k-2}
= \frac{m^{2k-2}}{m - 1} ((m + 1)m^{r-k+1} - (m + 1)).
\]
If $r > 2k - 1$, then $r - 1 \geq 2k - 1$, and so

\[
U_m(D, t) = P_m(r, 2k - 1) + P_m(r - 1, 2k - 1) + (2k - 1)m^{2k-2}
\]

\[
= m^{2k-2} \left(\frac{m^{r-k+2} - 1}{m - 1} - k \right) + m^{2k-2} \left(\frac{m^{r-k+1} - 1}{m - 1} - k \right) + (2k - 1)m^{2k-2}
\]

\[
= \frac{m^{2k-2}}{m - 1} \left((m + 1)m^{r-k+1} - (m + 1) \right).
\]

Proposition 3.4. The number of paths of length $t = 2k$ in the perfect unrooted m-ary tree of diameter $D = 2r$, where $1 \leq k \leq r$, is

\[
U_m(D, t) = \frac{m^{2k-1}}{m - 1} \left(\frac{1}{2} (m + 1)^2 m^{r-k} - (m + 1) \right).
\]

Proof. Using the decomposition of T into T_1 (depth r), T_2 (depth $r - 1$), and e, the number of paths of length t in T that contain e is

\[
\sum_{s=\max(0,t-r)}^{\min(t-1,r)} m^{t-1} = \left\{
\begin{array}{ll}
0, & r < k,
(2r - 2k + 1)m^{2k-1} - (r - k + 1) + (2r - 2k + 1)m^{2k-1}, & k \leq r < 2k,
2km^{2k-1}, & r \geq 2k,
\end{array}
\right.
\]

and again the result is immediate for $r < k$. If $r = k$, then $r - 1 < k$, and so

\[
U_m(D, t) = P_m(r, 2k) + P_m(r - 1, 2k) + (2r - 2k + 1)m^{2k-1}
\]

\[
= m^{2k-1} \left(\frac{1}{2} (m + 1) \left(\frac{m^{r-k+1} - 1}{m - 1} \right) - (r - k + 1) \right) + (2r - 2k + 1)m^{2k-1}
\]

\[
= \frac{m^{2k-1}}{m - 1} \left(\frac{1}{2} (m + 1)^2 m^{r-k} - (m + 1) \right).
\]

If $k < r < 2k$, then $k \leq r - 1 < 2k$, and so

\[
U_m(D, t) = P_m(r, 2k) + P_m(r - 1, 2k) + (2r - 2k + 1)m^{2k-1}
\]

\[
= m^{2k-1} \left(\frac{1}{2} (m + 1) \left(\frac{m^{r-k+1} - 1}{m - 1} \right) - (r - k + 1) \right)
\]

\[
+ m^{2k-1} \left(\frac{1}{2} (m + 1) \left(\frac{m^{r-k} - 1}{m - 1} \right) - (r - k) \right) + (2r - 2k + 1)m^{2k-1}
\]

\[
= \frac{m^{2k-1}}{m - 1} \left(\frac{1}{2} (m + 1)^2 m^{r-k} - (m + 1) \right).
\]

If $r = 2k$, then $r - 1 < 2k$, and so

\[
U_m(D, t) = P_m(r, 2k) + P_m(r - 1, 2k) + 2km^{2k-1}
\]

\[
= m^{2k-1} \left(\frac{1}{2} (m + 1) \left(\frac{m^{r-k+1} - 1}{m - 1} \right) - k \right)
\]

\[
+ m^{2k-1} \left(\frac{1}{2} (m + 1) \left(\frac{m^{r-k} - 1}{m - 1} \right) - (r - k) \right) + 2km^{2k-1}
\]

\[
= \frac{m^{2k-1}}{m - 1} \left(\frac{1}{2} (m + 1)^2 m^{r-k} - (m + 1) \right).
\]
If $r > 2k$, then $r - 1 \geq 2k$, and so

$$U_m(D, t) = P_m(r, 2k) + P_m(r - 1, 2k) + 2km^{2k-1}$$

$$= m^{2k-1} \left(\frac{1}{2}(m+1) \left(\frac{m^{r-k+1} - 1}{m-1} \right) - k \right)$$

$$+ m^{2k-1} \left(\frac{1}{2}(m+1) \left(\frac{m^{r-k} - 1}{m-1} \right) - k \right) + 2km^{2k-1}$$

$$= \frac{m^{2k-1}}{m-1} \left(\frac{1}{2}(m+1)^2 m^{r-k} - (m+1) \right).$$

Theorem 1.1 now follows by combining Propositions 3.1 to 3.4 with the observation that

$$V(d) = \begin{cases}
\frac{2m^{d+1}}{m-1} - 2, & d \text{ odd}, \\
\frac{(m+1)m^{d+1}}{m-1} - 2, & d \text{ even}.
\end{cases}$$

References

[1] Dankelmann, P. (2011) On the distance distribution of trees. *Discrete Appl. Math.*, 159, pp. 945–952.
[2] De Jong, J. V., MacLeod, J. C., and Steel, M. (2015) Neighborhoods of Phylogenetic Trees: Exact and Asymptotic Counts. *SIAM J. Discrete Math.*, 30 (4), pp. 2265-2287.
[3] Faudree, R. J., Rousseau, C. C., and Schlep, R. H. (1973) Theory of path length distributions I. *Discrete Math.*, 6 (1), pp. 35–52.