SUPPLEMENTARY MATERIAL

Angucycline antibiotics and its derivatives from marine-derived actinomycete *Streptomyces* sp. A6H

Zhijuan Hu\(^a\), Lele Qin\(^a\), Qianqian Wang\(^a\), Wanjing Ding\(^a\), Zhen Chen\(^b\) and Zhongjun Ma\(^a\)*

\(^a\)Ocean College, Zhejiang University, Hangzhou 310058, PR China;

\(^b\)Chinese Traditional Medicine Hospital of Zhejiang Province, Hangzhou 310006, PR China.

*Corresponding author: Dr. Zhongjun Ma; E-mail address: mazj@zju.edu.cn; Tel: 86-571-88206621; Fax: 86-571-88208891

Abstract: Vineomycin A\(_1\) (1) and B\(_2\) (2) were isolated from the culture broth of marine actinomycete *Streptomyces* sp. A6H. Five hydrolysis products were obtained by rational hydrolysis and methanolsysis of the fermentation extract. Their structures were characterized as aquayamycin (3), vineomycinone B\(_2\) (4), 9-C-D-olivosyltetragulol (5), 7-O-methylgaltamycinone (6) and vineomycinone B\(_2\) methyl ester (7). In addition to these compounds, two ester derivatives vineolactone A (8) and vineomycinone B\(_2\) benzyl ester (9) of compound 4 were generated semisynthetically. Compound 6 is a new analogue of galtamycinone while compounds 8 and 9 are new members of vineomycins. Cytotoxic activities and antimicrobial activities were determined for all compounds. The results indicate that only compound 1 showed significant activities with IC\(_{50}\) value of 0.34 µM against H1975 and MIC value of 4 µg/mL against *Staphylococcus aureus*.

Keywords: *Streptomyces* sp. A6H; angucycline; hydrolysis; semisynthesis;
Content

Experimental..Page 3
16S rDNA sequence of strain A6H..Page 6
Table S1. Sequences producing significant alignments..Page 7
Figure S1. 1H-NMR spectrum of compound 6..Page 8
Figure S2. 13C-NMR spectrum of compound 6..Page 8
Figure S3. 1H-1H COSY spectrum of compound 6...Page 9
Figure S4. HSQC spectrum of compound 6...Page 9
Figure S5. HMBC spectrum of compound 6...Page 10
Figure S6. NOESY spectrum of compound 6...Page 10
Figure S7. 1H-NMR spectrum of compound 8..Page 11
Figure S8. 13C-NMR spectrum of compound 8..Page 11
Figure S9. HMBC spectrum of compound 8...Page 12
Figure S10. 1H-NMR spectrum of compound 9..Page 12
Figure S11. 13C-NMR spectrum of compound 9...Page 13
Figure S12. HMBC spectrum of compound 9..Page 13
Table S2. 1H and 13C NMR data of compounds 6, 8 and 9...............................Page 14
Table S3. Antimicrobial activity of compounds 1-9 (except 2).............................Page 14
Experimental

General experimental procedures. HPLC analysis was performed on Shimadzu High Performance Liquid Chromatography (DGU-20A5 Degasser, LC-20AT Liquid Chromatography, SIL-20AC Auto Sampler, SPD-M20A Diode Array Detector, CTO-20AC Column Oven) using Inerstil ODS-SP (5 μm, 4.6 × 250 mm) column. UV spectra were obtained from HPLC analysis. NMR spectra were recorded on a 600 MHz Bruker Advance NMR spectrometer at 298K in DMSO-d_6 or CDCl_3. High resolution mass spectra were acquired using an Agilent 1260 HPLC-6230 TOF tandem mass spectrometer. Preparative HPLC was performed on Beijing Chuangxintongheng LC3000 Semi-preparation Gradient HPLC System using Sepax Amethyst C-18 (5 μm, 21.2 × 250 mm) column. TLC was carried out on Qingdao Puke Sil G/UV254 plates of 0.25 thickness, and spots were visualized by spraying with 10% H_2SO_4/EtOH followed by heating.

Microorganism. The actinomycetes were isolated from a sediment sample collected in Taiwan Strait, China. The sample was collected in a 50 mL centrifuge tube containing 10 mL 40% glycerol water solution. After shaken at 3000 rpm for 30 min, the sample was diluted with saline (10^{-1}, 10^{-2} and 10^{-3}, respectively). Then 100 μL aliquots were spread onto Gause’s agar containing nalidixic acid (40μg/mL). The plates were incubated 10 days at 28°C, and the resulting colonies were transferred to Gause’s agar. The taxonomic identity of the strain A6H was determined by 16S rDNA sequence analysis. The top sequence of A6H was 99% sequence similarity to two Streptomyces cellulosae strains NRRL B-2889 and NBRC 13027 (accession number: NR_043815.1 and NR_112346.1) and 99% sequence similarity to other nine Streptomyces sp. strains Table S1) in the GenBank database. Therefore, the taxonomy of actinomycete A6H was proposed to be Streptomyces sp. A6H.

Large-scale fermentation and extraction. Spores of strain A6H were inoculated to eighteen 500-mL Erlenmeyer flask containing 250 mL medium described above and shake-cultured for 3 days at 28°C. Afterwards, 5 mL portions of the culture were inoculated to 500-mL Erlenmeyer flasks containing 250 mL the same medium. A total of 180L fermentation was carried out at 28°C on a rotary shaker at 180rpm for 7 days.
Then the fermentation broth was combined and filtered. And the filtrate was extracted with EtOAc three times and dried in vacuo to provide the crude extract (15g).

Isolation. The crude extract (15g) was subjected to a silica gel column, eluting with a gradient of dichloromethane – methanol (100:1, 80:1, 60:1, 40:1, 20:1, 10:1 0:1) to give eleven fractions (Fr. A-Fr. K). Fr. D (3.3g) was subjected to another silica gel chromatography to give five fractions (Fr. D1-D5). Fr. D2 was separated by preparative HPLC using acetonitrile-H2O as the mobile phase (60% CH3CN maintained for 60 min, flow rate 10mL/min) to yield compound 1 (12 mg, tR=58 min).

Fr. E (1.5g) was subjected to preparative HPLC using acetonitrile – H2O as the mobile phase (0-30min: 65%-100% CH3CN, 30-40min: 100% CH3CN, flow rate 10mL/min) to yield compound 2 (2mg, tR=30min).

Hydrolysis. The fractions were recombined and delivered to hydrolysis. A mixture (2g) in 0.1N HCl-THF (50mL) was treated at 40°C for 24h. After that, the reaction mixture was concentrated and the residue was resuspended with 20 mL water, extracted with CH2Cl2 (20 mL × 3), washed with water and concentrated to dryness. The residue was subjected to a silica gel chromatography to give four fractions (Fr. 1-4). Fr. 2 was purified by preparative HPLC (CH3OH/H2O, 90% CH3OH maintained for 35min, flow rate 10mL/min) to obtain compound 5 (2.4mg, tR=26min) and compound 6 (2.3mg, tR=29min). Fr. 3 was separated by preparative HPLC (CH3OH/H2O, 45% CH3OH maintained for 30min, flow rate 10mL/min) to give compound 3 (5mg, tR=21min).Fr. 4 was separated by preparative HPLC (CH3CN/H2O, 30% CH3CN maintained for 60min, flow rate 10mL/min) to give compound 4 (70mg, tR=45min).

Methanolysis. The combined mixture (100mg) was dissolved in 0.1N HCl-MeOH (5mL) and stirred at 40°C for 10h. The reaction mixture was neutralized with saturated NaHCO3 and evaporated to dryness. The residue was resuspended with 10 mL water, extracted with EtOAc (10 mL × 3), washed with water and concentrated to dryness. The products were subjected to a silica gel chromatography to yield compound 7 (9mg) as a orange powder.

Synthesis of 8 from 4. A solution of compound 4 (24.3mg, 0.05mmol) and
trimethylamine (24µL, 0.175mmol) in 2mL THF and 8mL CH₂Cl₂ was added over 6h to a solution of 2,4,6-trichlorobenzylo chloride (11.8µL, 0.075mmol) and DMAP (6.5mg, 0.055mmol) in CH₂Cl₂ (1mL). The solution was then allowed to stir for 1h after complete addition after which time it was quenched with H₂O (10mL). The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (2×10mL). The organic phases were combined and the solvent was removed via rotary evaporation to yield a brown solid which was purified by preparative HPLC to yield compound 8 (10mg, 42%) as a yellow powder.

Synthesis of 9 from 4. A solution of compound 4 (4.86mg, 0.01mmol) and KOH (1.8mg, 0.032mmol) in DMF (2mL) was treated with benzyl bromide (3µL, 0.025mmol) and stirred at 40°C for 4h. The reaction mixture was diluted with water and then extracted with CH₂Cl₂ three times. The organic phases were combined, washed with water ten times and dried in vacuo to yield a brown oil which was purified by preparative HPLC to yield compound 9 (3.2mg, 56%) as a yellow powder.

Antimicrobial assay
Antimicrobial activities were measured against Staphylococcus aureus ATCC25923, methicillin-resistant Staphylococcus aureus ATCC43300, Pseudomonas aeruginosa ATCC27853, Canidia albicans ATCC10231 and Fusarium graminearum by broth microdilution method. The microbial cultures were prepared by diluting precultured broths to 5×10⁵ cfu/mL. The assay was performed in 96-well plates. Each compound were tested in dilution series ranging from 64 to 0.0625 µg/mL. The plates were incubated at 35°C for 24 h. Then the MICs were recorded as the lowest concentrations that completely inhibited bacterial growth, assessed with visual inspection.

Cytotoxicity assay
Human cancer cell lines H1975, SGC-7901 and EC109 were cultured in 1640 medium (Gibco Company) with 10% FBS (Hyclone Company) at 37 °C in a humidified incubator (Thermo Company) with 5% CO₂. The cells (5×10³/well) were inoculated in 96-well plates and treated with compounds for 24h. Then 10µL of CCK8 (Dojindo Company) was added and reacted for 1-3h. The OD values were measured at 450nm using a multiskan spectrum (Plus 384, MD Company).
16S rDNA sequence of strain A6H
ACGCTGTGCGGCGGTCTTAACACATGCAAGTCCAACGAGTGAACCTTCG
GTGGGGATTTAGTGGCGAAGCTCCCGGCGGTGCAAGATGAGCCC
ACTCTGGGACAAGCCTGGAAACGGGTCTCTAATACCGGATGCTG
TTGGGCATCTCTGTTGGTGAATTCACTACAAGGCGAAACGGCGCCAG
GCCTACTACGGGAGGCGAGCTGAAATTTGGCAATGGGGCGAAAGCCTG
GCCTAAGCTTGTTGGTGAGGTAAATGGCTCACCAATGGGGCGAAAGCCTG
AGCCCGGCTTAACCCCGGCTGCTCTGCAGGCAGCTACTTGCAAGGCGAAACGGCGCCAG
AACACTACGGCGACGCAGCGCCTTAATACGCTAGGGCGGCGAGCTTTGTCGC
AGCAGCGAATTCCCGGCAGTACCGCTAGGGCGGCTCTTGAAATCGCCAGATAC
AGGAGGAACACCGTGCGCAGGCGGCAAGCCCGATCTCCTGGGGCGGACACATG
GCCGTAAAACCGTGCGCAGCTCGCTCGCTTGCTGCTGCTCGCTTGCGTG
CGCAGCTAACCAGATTGCCCCCGCTGGGAGTACCGGCAAGGCGACAGCTG
AAATCCAAAGGAAATTTGACGGGGGCGCCCCACAGGCGAGGAGCTTGCT
TAATTGCAGCGAACCGGAAAACCTTACCAAGGCTGTACATACAGGGCGGCAAGC
AACCCCTTGAGACAGGTCCCCCTTGTGCTGCTGTAAGGGTGTGGTACAGG
CTGTCGTACCTCGTGCTGATTATGTTGTTGATATTGGTAAGTCCCAGGCAAGC
AAAATTCCTTTCTCCCGGCTTGGCAGCAGGCCTTTGTGCTGGTGGGTACACT
GGGAGACCGCGGGGTCACGTGGAGGAAGGTGGGCTCAGGACGTCAAGTCA
TGCTGTCGTACCTCGTGCTGATTATGTTGTTGATATTGGTAAGTCCAGTC
CGGAGTGTGGTCGGGCTCTGAGGAAATCCATGGAATCGGAGTCGCTAGTAAT
TGAGCTGCGATACCCCGGGAAGTCGAATCTCAGACCCGACGTGAAGT
TCGGATTGCGGTTGCTCGAATTCAACCTGCATCGGGGCTTCTGTATAC
CGCAGATCGATCCTGTGCGGGAATCGTTCGCCCGGCTTGTACACACC
Description	Max score	Total score	Query cover	Accession
Streptomyces cellulosae NRRL B-2889	2590	2590	99%	NR_043815.1
Streptomyces cellulosae NBRC 13027	2590	2590	99%	NR_112346.1
Streptomyces sp. ASC764	2584	2584	99%	JQ358565.1
Streptomyces sp. OAct 68	2579	2579	99%	JX047040.1
Streptomyces gancidicus	2571	2571	99%	JX042473.1
Streptomyces caelestis AW9-9C	2571	2571	99%	JX204833.1
Streptomyces pseudogriseolus NRRL B-3288	2571	2571	99%	NR_043835.1
Streptomyces sp. 5361	2571	2571	99%	EF063470.1
Streptomyces sp. 11E-1290	2571	2571	99%	EF063449.1
Streptomyces sp. 3177	2571	2571	99%	DQ663177.1
Streptomyces malachiticus subsp. griseospinosus	2571	2571	99%	AB184540.1
Figure S1. 1H-NMR spectrum of compound 6 (in DMSO-d_6)

Figure S2. 13C-NMR spectrum of compound 6 (in DMSO-d_6)
Figure S3. 1H-1H COSY spectrum of compound 6 (in DMSO-d_6)

Figure S4. HSQC spectrum of compound 6 (in DMSO-d_6)
Figure S5. HMBC spectrum of compound 6 (in DMSO-\textit{d}_6)

Figure S6. NOESY spectrum of compound 6 (in DMSO-\textit{d}_6)
Figure S7. 1H-NMR spectrum of compound 8 (in DMSO-d_6)

Figure S8. 13C-NMR spectrum of compound 8 (in DMSO-d_6)
Figure S9. HMBC spectrum of compound 8 (in DMSO-d_6)

Figure S10. 1H-NMR spectrum of compound 9 (in CDCl$_3$)
Figure S11. 13C-NMR spectrum of compound 9 (in CDCl$_3$)

Figure S12. HMBC spectrum of compound 9 (in CDCl$_3$)
Table S2. 1H and 13C NMR data of compounds 6, 8 and 9.

Position	6^a	8^b	9^b						
	δ_C	δ_H (J in Hz)	δ_C	δ_H (J in Hz)	δ_C	δ_H (J in Hz)			
1	119.8	7.68(d, 7.8)	167.0	161.3	13.2(s, 1-OH)	13.2(d, 13)			
2	133.1	7.81(d, 7.8)	45.6	2.52(d, 13)	134.6	2.48(d, 13)			
3	137.1	74.6	5.41(s, 3-OH)	139.6	7.66(d, 7.7)	7.66(d, 7.7)			
4	156.9	12.4(s, 4-OH)	43.5	2.96(d, 14)	118.8	7.79(d, 7.7)			
				2.93(d, 14)					
4a	113.9		138.4	131.7					
5	187.3		136.2	7.83(d, 7.8)	158.9	13.1(s, 5-OH)			
5a	133.5								
6	99.8	7.57(s)	124.1	8.13(d, 7.8)	138.2				
6a	120.4		133.3						
7	160.3		187.9	133.3	7.92(d, 7.8)				
7a	114.8								
8	113.0	7.60(s)	157.4	12.7(s, 8-OH)	119.4	7.85(d, 7.8)			
8a					131.8				
9	140.7		136.7	188.1					
9a					115.6				
10	118.6	7.00(s)	133.5	7.86(d, 7.8)	188.1				
10a	129.7				115.5				
---	---	---	---						
11	155.2	118.8	7.67(d, 7.8)						
11a	125.8	133.1							
12	185.7	180.3							
12a	135.8	123.2							
12b		150.1							
13	21.1	2.43(s, CH₃)							
14	56.5	4.15(s, CH₃)							
1'	70.6	4.79(d, 7)	70.6	4.80(d, 11)	71.2	4.95(d, 11)			
2'	40.0	2.28(dd; 13, 4)	40.0	2.25(dd; 13, 4)	39.3	2.54(dd; 13, 4)	1.32(m)	1.32(m)	1.48(m)
3'	71.7	3.55(m)	71.7	3.54(m)	73.1	3.86(m)	5.04(d, 3'-OH)	5.03(s, 3'-OH)	
4'	77.0	2.90(td; 8, 4)	77.0	2.89(t, 8.7)	75.9	3.22(t, 8.8)	4.95(d, 4'-OH)	4.94(s, 4'-OH)	
5'	76.1	3.38(m)	76.2	3.37(m)	78.0	3.53(m)			
6'	18.4	1.28(d, 6, CH₃)	18.4	1.26(d, 6, CH₃)	18.1	1.41(d, 6, CH₃)			
1''				40.5	3.10(d, 13)	3.02(d, 13)			
2''					71.9				
3''			44.5	3.62(d, 16)	2.58(d, 16)				
4''					172.6				
5

Compound	δ (ppm)	J (Hz)
Bn-CH₂	66.6	5.15(s)
Bn-Ar	135.3	7.36(5H,m)

128.6

128.6

128.4

128.4

128.5

[^a]: measured in DMSO-d_6 at 600 MHz;[^b]: measured in CDCl3 at 600 MHz.

Table S3. Antimicrobial activity of compounds 1-9 (except 2).

Test organism	MIC (µg/mL)	1	3	4	5	6	7	8	9	+*
Staphylococcus aureus		4	16	<64	>64	>64	>64	>64	>64	2
Staphylococcus aureus (methicillin-resistant)		4	32	>64	>64	>64	>64	>64	>64	1
Pseudomonas aeruginosa		>64	>64	>64	>64	>64	>64	>64	>64	1
Canidia albicans		>64	>64	>64	>64	>64	>64	>64	>64	2
Fusarium graminearum		>64	>64	>64	>64	>64	>64	>64	>64	4

[^*]: for *Staphylococcus aureus* and methicillin-resistant *Staphylococcus aureus* was vancomycin hydrochloride; for *Pseudomonas aeruginosa* was polymyxin B sulfate; for *Canidia albicans* was amphotericin B; for *Fusarium graminearum* was carbendazim.