Data Descriptor: Open data set of live cyanobacterial cells imaged using an X-ray laser

Gijs van der Schot1, Martin Svenda2, Filipe R.N.C. Maia3, Max F. Hantke4, Daniel P. DePonte5,
M. Marvin Seibert6, Andrew Aquila7, Joachim Schulz8, Richard A. Kirian9, Mengning Liang2, Francesco Stellato5,6,
Sadia Bari1,7, Bianca Iwan1, Jakob Andreasson1,9, Nicusor Timneanu1,9, Johan Bielecki1, Daniel Westphal1,
Francisa Nunes de Almeida10, Duško Odič11, Dirk Hasse1, Gunilla H. Carlsson1, Daniel S.D. Larsson11,
Anton Barty1, Andrew V. Martin12, Sebastian Schorb13, Christoph Bostedt1, John D. Bozek14, Sebastian Carron3,
Ken Ferguson7, Daniel Rolles15,16, Artem Rudenko15,17, Sascha W. Epp15,17, Benedikt Rudek15,17,
Benjamin Erk15,17, Robert Hartmann18, Nils Kimmel19,20, Peter Holt18, Lars Engler20,21, N. Duane Loh22,
Henry N. Chapman5,23, Inger Andersson1, Janos Hajdu1,3 & Tomas Ekeberg1

Structural studies on living cells by conventional methods are limited to low resolution because radiation
damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron
lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright
coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that
are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from
micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 399,000
diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis
methods and algorithms for studying structure and structural variability in large populations of cells and to
create abstract models. Such studies will allow us to understand living cells and populations of cells in new
ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new
areas in structural sciences.

1Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3
(Box 596), SE-751 24 Uppsala, Sweden. 2CLLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road,
Menlo Park, California 94025, USA. 3European XFEL, Albert-Einstein-Ring 19, 22761 Hamburg, Germany.
4Arizona State University, Physics Department, PO Box 871504, Tempe, Arizona 85287-1504, USA. 5Center for
Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. 6I.N.F.N. and Physics
Department, University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica 1, 00133 Rome, Italy. 7Deutsches
Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany. 8ELI beamlines, Institute of Physics,
Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Prague, Czech Republic. 9Department of
Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, Box 516, SE-751 20 Uppsala, Sweden.
10MRC Laboratory for Molecular Cell Biology, UCL, Gower St., London WC1E 6BT, UK. 11Center for Technology
Transfer and Innovation, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia. 12ARC Centre of
Excellence for Advanced Molecular Imaging, School of Physics, The University of Melbourne, Victoria 3010,
Australia. 13Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623
Berlin, Germany. 14Synchrotron SOLEIL, L’orme des Merisiers roundabout of St Aubin, 91190 Saint Aubin, France.
15Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg,
Germany. 16Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany. 17Max
Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. 18PNSensor GmbH, Otto-Hahn-
Ring 6, 81739 Munich, Germany. 19Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München,
Germany. 20Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany.
21Ultrafast Coherent Dynamics Group, University Oldenburg, Carl-von-Ossietzky Strasse 9-11, 26129 Oldenburg,
Germany. 22Centre for Biomaging Sciences, National University of Singapore, 14 Science Drive 4, Blk 51 A,
Singapore 117546, Singapore. 23University of Hamburg, Notkestrasse 85, 22607 Hamburg, Germany.
Correspondence and requests for materials should be addressed to T.K. (email: ekeberg@xray.bmc.uu.se).
Background & Summary

Imaging living cells at resolutions higher than the resolution of optical microscopy is challenging. A dose in excess of hundred million Grays (Gy: J kg⁻¹) is required to reach sub-nanometer resolution on a micron-sized cell, using X-rays or electrons, and no cell can survive this level of irradiation; a dose of only hundred Grays kills most cells. What is known about cells today at high resolution comes from dead cells.

Ultra-short and extremely intense coherent X-ray pulses from X-ray lasers offer the possibility to outrun key damage processes and deliver a molecular-level snapshot of a cell that is alive at the time of image formation but explodes a few picosecond later. 'Diffraction-before-destruction' has been successfully demonstrated on a wide range of biological samples, including protein nanocrystals, living cells, cell organelles and virus particles. Recent results also show 3D reconstruction of reproducible virus particles. The data sets described in this paper are from similar ultra-fast imaging experiments.

The ability to measure millions of diffraction patterns in a day at X-ray free-electron lasers (XFELs) offers new avenues for experiments on cells. The femtosecond illumination 'freezes' all motion in the sample on the time scale of atomic vibrations. The massive amount of data emerging from XFELs will represent more than just individual projection images of cells. There is a need to develop algorithms to create abstract models of cells from the data, where no individual image gives us complete information but rather nudges the abstraction to describe common features and common internal interactions. Conversely, the data can be used to describe structural variability in populations. With so many images per day, even statistically rare events could be pinpointed and studied. The data sets also offer innovative avenues for data-driven discovery, and helping this effort was one of our motivations in releasing the data sets.

Cyanobacteria were used in this experiment because of their small size and for being remarkably robust. Solitary *C. gracile* cells are between 0.25–0.4 μm in diameter and 0.4–2.4 μm long. The *S. elongatus* cells are similar in diameter but are longer on average by up to a micron. Both species divide symmetrically by binary fission. The two daughter cells separate from each other after reaching the size and shape of the mother cell. We used non-synchronized cell cultures in our studies, undergoing active growth and providing cells in various stages of their cell cycle.

The live cells were delivered into the pulse train of the Linac Coherent Light Source (LCLS) in an aerosol at a reduced pressure using methods developed for studies on giant viruses. This type of sample injection delivers truly isolated samples into the X-ray beam and gives diffraction patterns with practically no background noise. In addition, the contrast between the sample and its surrounding (wet helium gas expanding into a vacuum chamber) is also exceptionally high. Injected cells arrive in random order and are imaged in random orientations. The data sets include images with signal extending beyond 4 nm resolution.

At these wavelengths and the scattering angles of the strongest patterns, a single diffraction pattern contains limited depth information, and this information may be retrieved by a numerical propagation of the complex-valued wave front. There is a need to explore possibilities to extract depth information from the patterns, and a community effort would speed up progress here.

In order to facilitate developments, we present two data records containing a total of 199,000 diffraction patterns from living cells, making it the largest freely available X-ray diffraction data set on cells collected at an X-ray FEL. A subset of 11 diffraction patterns from these data sets was used in a recent publication on imaging live cells. We hope the release of these very large data sets will stimulate interest and help software development.

Methods

Experimental setup

The experiment was executed using the CFEL-ASG Multi-Purpose (CAMP) instrument, at the AMO end station of the Linac Coherent Light Source (LCLS), using an experimental configuration identical to that used in ref. 10. The bandwidth of the LCLS is approximately 0.5%. The length of the electron bunch was ~70 fs (full-duration at half-maximum) and the length of the photon bunch is believed to be shorter. The size of the focal spot was 3 μm × 7 μm (full width at half maximum).
The two data records presented in this paper come from two experiments, using different experimental parameters (Table 1). In Experiment 1 we collected diffraction patterns from *C. gracile* cells. The patterns are presented in data record 1. The photon energy of experiment 1 was 517 eV (2.40 nm wavelength). In Experiment 2 we collected diffraction patterns from *S. elongatus*, presented in data record 2. The photon energy of experiment 2 was 1,100 eV (1.13 nm).

The interaction chamber was equipped with two pairs of pnCCD16 X-ray area detectors (front and back detectors), each consisting of two movable detector panels (Fig. 1). The front detector assembly was placed 220 mm from the interaction point, and the back detector assembly at 741 mm in both experiments. The gap between the two front detector panels was 55.6 mm for experiment 1 and 22.8 mm for experiment 2. The gap between the back detector panels was closed in both experiments. The direct beam exited through openings between the two detector halves and was absorbed in a beam dump behind the back detectors. Each detector panel contained 512 × 1,024 pixels with 75 μm edge lengths and a full-well capacity of 500,000 electrons/pixel, corresponding to 3,500 photons in experiment 1 and 1,600 photons in experiment 2. The read-out rate matched the 120 Hz repetition rate of the LCLS.

Cells
Cyanobium gracile PCC 6307 and *Synechococcus elongatus* PCC 7942 cells were grown in the standard Bg11 medium in batch cultures under constant light. The cell cultures were non-synchronized providing cells in various stages of division. Before the imaging experiments, cells were centrifuged at 6,500 g for 10 min, creating a soft pellet. The pellet was resuspended in 25 mM ammonium acetate, and this buffer exchange was repeated twice to remove salt and contaminants.

Sample injection
The suspension of live cells was aerosolized with helium in a gas dynamic nebulizer19. The aerosols were delivered into the pulse train of the X-ray laser through an aerodynamic lens20. This method delivers cells in free flight without substrate or other supporting medium, thereby minimizing background scattering, and can produce millions of exposures per day. Most of the nebulizing gas, and vapours of the volatile buffer were pumped away through a differential pumping stage.

Data recording
We recorded a variety of diffraction patterns, originating from single cells, clusters of cells, droplets of buffer or contaminants. The patterns have a large variation in recorded intensity, depending on X-ray pulse-intensity, where in the pulse the particle was hit, and the size of the particle. Figure 2 shows a representative set of diffraction patterns from both experiments.

Sample	Experiment 1	Experiment 2
Cell type	*Cyanobium gracile*	*Synechococcus elongatus*
Source Parameters		
End station	AMO	AMO
Repetition rate	120 Hz	120 Hz
Pulse duration	~ 70 fs	~ 70 fs
Photons per pulse	~ 1.5 × 10¹⁵ (1.26 mJ)	~ 1.2 × 10¹⁵ (2.18 mJ)
Optical efficiency	15%	15%
Bandwidth	0.5%	0.5%
Photon energy	517 eV (2.4 nm)	1,100 eV (1.13 nm)
Focal size	3 μm × 7 μm	3 μm × 7 μm
Flux in the focus	1.1 × 10¹⁵ photons/μm²	8.6 × 10¹⁴ photons/μm²
Detector Properties		
Distance from interaction point (front detector)	220 mm	220 mm
Gap size (front detector)	55.6 mm	22.8 mm
Full-well capacity (front detector)	3,500 photons	1,600 photons
Distance from interaction point (back detector)	741 mm	741 mm
Gap size (back detector)	0 mm	0 mm
Full-well capacity (back detector)	3,500 photons	1,600 photons

Table 1. Experimental setup. This table describes the experimental parameters used in experiment 1 and experiment 2. The sample, the source parameters, and the detector properties.
Data preprocessing
We also supply a minimally preprocessed dataset, which includes only diffraction patterns with significant scattered signal (199,000 out of 540,000 patterns). The preprocessing included generation and subtraction of calibration levels, the masking of faulty pixels, the application of the experimental geometry, and a background subtraction. Frames were considered hits if more than 300 pixels record a value above 45 arbitrary detector units (ADU) for experiment 1, and 4,000 pixels recording a value above 45 ADU for experiment 2. The increased threshold in experiment 2 compensates for a stronger background scattering present in experiment 2. All preprocessing steps were done automatically using the Cheetah software package. The Cheetah configuration files, calibration data, the bad pixel masks, and the respective geometry files are also included into the Data records (Tables 2 and 3).

Data Records
Data record 1
Data record 1 contains the raw and preprocessed data of 473,447 snapshots from C. gracile measured during 77 min of beam-time. The X-ray photon energy was 512 eV and both front and back detector panels were included. The snapshots include blank shots, hits of contaminants, and hits of single and multiple C. gracile cells in random orientation and in random stages of the cell cycle, exposed to different pulse intensities. We estimate the hit ratio of C. gracile cells to be 41% (192,370 diffraction patterns).

The raw data is provided in extended tagged container (XTC) format, and the preprocessed data is provided in CXI format. Both are available for download from the Coherent X-ray Imaging Data Bank (CXIDB).

Data record 2
Data record 2 contains the raw and preprocessed data of 66,442 snapshots from S. elongatus measured during 9 min of beam-time. The X-ray wavelength was 1,100 eV and both front and back detector panels were included. The snapshots include blank shots, hits of contaminants, and hits of single and multiple S. elongatus cells in random orientation and in random stages of the cell cycle, exposed to different pulse intensities. We estimate the hit ratio of S. elongatus cells to be 10% (6394 diffraction patterns).

The raw data is provided in XTC format, and the preprocessed data is provided in CXI format, both available at the CXIDB (Data Citation 1).
Figure 2. Compilation of representative sampling of diffraction patterns from both experiments. Ten representative diffraction patterns from each data record were selected. Both data sets contain diffraction patterns from single living cells, multiple cells, large clusters of cells, as well as from contaminants such as spherical droplets, or virus-like particles (possibly being an earlier injected sample). All patterns are normalized individually; dark blue is no scattered signal, dark red is most intense signal in the pattern.

Table 2. Deposited data and configuration files. This table describes the files deposited on the CXIDB under accession number ID-37. ID-37 consists of two data records, from two experiments. Both records contain all these files.
Technical Validation

Viability of cells

In ref. 8 we show that the injection method was not disruptive to the cells and that the cells were alive at the moment of exposure to the X-ray pulse.

Contamination

We have observed contaminants to be present in each data set, i.e., spherical droplets, and virus-like particles. The former is a common artifact from the injection method, and the latter is most likely samples injected earlier that remained in the pipeline. Both contaminants are easily distinguished by their diffraction patterns (see Fig. 2).

Reconstruction validation

It is shown in ref. 8 that diffraction patterns from this data set can be phased and that the resulting electron densities are matching expectations.

Usage Notes

The data is available in CXI format (Table 4). CXI uses the HDF5 format which is readable in many computational environments such as matlab, python and C.

Table 3. Description of the experimental data sets. This table describes the experimental data of the two data records; the species of cyanobacteria imaged, the data type, the run number of the data sets, the size of the data set, the hit ratio, and the duration of the run.

Records	Cell species	Data Type	Run number	Size (# exposures)	Hit ratio	Duration run
Data Record 1	No sample	Calibration data	r0206	885	N.A.	1 min
C. gracile	Diffraction data	r0207	195,491	42%	27 min	
C. gracile	Diffraction data	r0210	67,685	39%	9 min	
C. gracile	Diffraction data	r0212	4,222	46%	1 min	
C. gracile	Diffraction data	r0214	206,049	40%	29 min	
Data Record 2	No Sample	Calibration data	r0140	2,597	N.A.	2 min
S. elongatus	Diffraction data	r0142	66,442	10%	9 min	

Table 4. Examples of data stored in the cxiformat. The examples in this table summarize the structure of the cxiformats deposited under ID-37. There are three main groups in the cxiformat: LCLS, Cheetah, and entry_1. LCLS contains various experimental parameters, such as the photon energy for each exposure (photon_energy_eV). Cheetah contains cheetah-calculated variables, for example the number of lit pixels (peakNpix). Entry_1 contains preprocessed front and back detector readouts. It might be useful to use the number of lit pixels to sort your data for instance, or perhaps some of the experimental parameters could be useful for as sort as well. For a detailed description of the data format see ref.22.

Description	Location descriptor
Preprocessed back detector data of hits	/entry_1/image_1/data
Preprocessed front detector data of hits	/entry_1/image_2/data
Photon energy of hits	/LCLS/photon_energy_eV
Number of lit pixels in hits	/cheetah/event_data/peakNpix

References

1. Fairand, B. P. Radiation Sterilization for Health Care Products: X-Ray, Gamma, and Electron Beam. 6, 6–7 (2001).
2. Game, J. C., Williamson, M. S. & Baccari, C. X-ray survival characteristics and genetic analysis for nine Saccharomyces deletion mutants that show altered radiation sensitivity. Genetics 169, 51–63 (2005).
3. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).
4. Bergh, M. et al. Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction. Q. Rev. Biophys. 41, 181–204 (2008).
5. Rath, A. D. et al. Explosion dynamics of sucrose nanospheres monitored by time of flight spectrometry and coherent diffractive imaging at the split-and-delay beam line of the FLASH soft X-ray laser. Optics Express 22, 38914–38925 (2014).
6. Chapman, H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006).
7. Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).
8. Van Der Schot, G. et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nature Communications 6, 5704 (2015).
9. Hantke, M. F. et al. High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nature Photonics 8, 943–949 (2014).
10. Seibert, M. M. et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470, 78–U86 (2011).
11. Ekeberg, T. et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser. Physical Review Letters 114, 098102 (2015).
12. Komarek, J., Kopecy, J. & Cepak, V. Generic characters of the simplest cyanoprokaryotes Cyanobium, Cyanobacterium and Synechococcus. Cryptogram. Algol. 20, 209–222 (1999).
13. Cohen-Bazire, G. S. Fine-Structure of Cyanobacteria. Methods Enzymol. 167, 157–172 (1988).
14. Spence, J. C. H. et al. Phase recovery and lensless imaging by iterative methods in optical, X-ray and electron diffraction. Phil. Trans. A Math. Phys. Eng. Sci. 360, 875–895 (2002).
15. Raines, K. S. et al. Three-dimensional structure determination from a single view. Nature 463, 214–217 (2010).
16. Strüder, L. et al. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nucl. Instrum. Methods Phys. Res., Sect. A 614, 483–496 (2010).
17. Rostedt, C. et al. Ultra-fast and ultra-intense x-ray sciences: first results from the Linac Coherent Light Source free-electron laser. J. Phys. B 46, 164003 (2013).
18. Emma, P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010).
19. DePonte, D. P. et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D: Appl. Phys. 41, 195505 (2008).
20. Bogan, M. L. et al. Single particle X-ray diffractive imaging. Nano Lett. 8, 310–316 (2008).
21. Barty, A. et al. A new resource for processing serial X-ray diffraction data. J. Appl. Cryst. 47, 1118–1131 (2014).
22. Maia, F. R. N. C. The Coherent X-ray Imaging Data Bank. Nat. Methods 9, 854–855 (2012).
23. The HDF Group. Hierarchical Data Format, version 5, 1997-2016. http://www.hdfgroup.org/HDF5/.

Data Citation
1. van der Schot, G. et al. Coherent X-ray Imaging Data Bank. http://dx.doi.org/10.11577/1245696 (2016).

Acknowledgements
This work was supported by the Swedish Research Council (621-2011-5710, 2015-05007, 628-2008-1109, 828-2012-108, 822-2012-5260, 822-2010-6157, 621-2012-3404, ICA 12-0064, 621-2012-3570), the Knut and Alice Wallenberg Foundation (KAW-2011.081), the European Research Council (ERC-291602), the European Commission through program funds to DESY. Portions of this research were carried out at the Linac Coherent Light Source, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. We are grateful to the scientific and technical staff of the LCLS for support. We thank the CAMP collaboration for giving us access to their experimental setup and for supporting the experiment at the LCLS. We also acknowledge the Max Planck Society for funding the development and operation of the CAMP instrument.

Author Contributions
J.H., F.R.N.C.M. and T.E. developed the imaging concept and conceived the experiment. G.vd.S, F.R.N.C.M., T.E., A.B., N.D.L., A.M., and D.L. developed ideas and software to process the diffraction data. M.S., D.H., G.C., F.N.A. and D.O. prepared and characterised the cells for the study. J.H., B.I., F.R.N.C.M., T.E., A.B., N.D.L., A.M., and D.L. developed the imaging concept and conceived the experiment. G.vd.S, F.R.N.C.M. and T.E. processed the data. G.vd.S, T.E., F.R.N.C.M., and J.H. analysed the results. G.vd.S, J.H. and T.E. wrote the manuscript with input from others.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: van der Schot, G. et al. Open data set of live cyanobacterial cells imaged using an X-ray laser. Sci. Data 3:160058 doi: 10.1038/sdata.2016.58 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0

Metadata associated with this Data Descriptor is available at http://www.nature.com/sdata/ and is released under the CC0 waiver to maximize reuse.

© The Author(s) 2016