Identification of commonly expressed exoproteins and proteolytic cleavage events by proteomic mining of clinically relevant UK isolates of Staphylococcus aureus

Citation for published version:
Smith, DS, Siggins, MK, Gierula, M, Pichon, B, Turner, CE, Lynskey, NN, Mosavie, M, Kearns, AM, Edwards, RJ & Sriskandan, S 2016, 'Identification of commonly expressed exoproteins and proteolytic cleavage events by proteomic mining of clinically relevant UK isolates of Staphylococcus aureus', Microbial Genomics, vol. 2, no. 2, pp. e000049. https://doi.org/10.1099/mgen.0.000049

Digital Object Identifier (DOI):
10.1099/mgen.0.000049

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Microbial Genomics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Identification of commonly expressed exoproteins and proteolytic cleavage events by proteomic mining of clinically relevant UK isolates of *Staphylococcus aureus*

Debra S. Smith, Matthew K. Siggins, Magdalena Gierula, Bruno Pichon, Claire E. Turner, Nicola N. Lynskey, Mia Mosavie, Angela M. Kearns, Robert J. Edwards and Shiranee Sriskandan

1Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
2Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom

Correspondence: Shiranee Sriskandan (s.sriskandan@imperial.ac.uk.)

DOI: 10.1099/mgen.0.000049

The range of exoproteins and core exoproteome of 14 *Staphylococcus aureus* isolates representing major lineages associated with asymptomatic carriage and clinical disease in the UK was identified by MS proteomics using a combined database incorporating sequences derived from 39 *S. aureus* genomes. In all, 632 different proteins were identified and, of these, only 52 (8%) were found in all 14 isolates whereas 144 (23%) were found in just a single isolate. Comparison of the observed mass of each protein (based on migration by SDS-PAGE) with its predicted mass (based on amino acid sequence) suggested that 95% of the proteins identified were not subject to any major post-translational modification. Migration of 5% of the proteins was not as expected: 1% of the proteins migrated at a mass greater than predicted, while 4% appeared to have undergone proteolytic cleavage; these included SsaA2, Aur, SspP, Ebh as well as BlaR1, MecR1, FsH, OatA and LtaS. Intriguingly, a truncated SasG was produced by a single CC8 USA300-like strain. The analysis provided evidence of the marked heterogeneity in protein expression by *S. aureus* in broth, while yielding a core but narrow common exoproteome.

Keywords: MS; proteolysis; SasG; *Staphylococcus aureus*.

Abbreviations: MRSA, meticillin-resistant *S. aureus*; MSSA, meticillin-susceptible *S. aureus*; PI, propidium iodide; ST, sequence type.

Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files.

Data Summary
Tables S1–S3 have been deposited in figshare. DOI: http://dx.doi.org/10.6084/m9.figshare.1566807
Table S4 (text file), non-overlapping combined database used to identify *S. aureus* proteins, has been deposited in figshare. DOI: http://dx.doi.org/10.6084/m9.figshare.1566710

Genome data from the 14 isolates used are deposited in the European Nucleotide Archive (http://www.ebi.ac.uk/ena, accession number PRJEB12240, secondary study accession number ERP013694).

Introduction
Staphylococcus aureus is a major nosocomial and community-acquired pathogen, which is carried asymptomatically by much of the population in the anterior nares either persistently or intermittently (Vandenbergh & Verbrugh, 1999).
Often the cause of minor skin infections, it can give rise to systemic infections affecting the blood, bone, heart or lung and trigger toxin-mediated disease such as toxic shock syndrome, while meticillin-resistant *S. aureus* (MRSA) poses additional management challenges (Rudkin et al., 2012).

Since publication of the N315 and Mu50 genomes by Kuroda *et al.* (2001), the number of sequenced *S. aureus* genomes has increased rapidly. Currently, about 50 completed *S. aureus* genomes have been deposited at NCBI, whilst over 600 projects are in progress (www.ncbi.nlm.nih.gov/genome/genomes/154). Data from such whole genome sequencing projects have demonstrated that there is a high level of diversity within the species, with variability occurring in approximately 20–30% of the genome (Witney *et al.*, 2005). Approximately 70% of the genes can be considered core (present in >95% isolates), while 10–12% comprise ‘core-variable’ genes that are lineage specific; the remainder are encoded by mobile genetic elements and comprise the variable genome (Lindsay *et al.*, 2006). Although some virulence genes reside within the core genome, the vast majority of core genes encode proteins with housekeeping functions. Conversely, most of the variable and core variable genes are involved in the interaction of the bacterium with its environment, its host or other bacterial cells.

Sibbald *et al.* (2006) defined the core exoproteome of *S. aureus* as the 58 proteins with predicted Sec-type signal peptides encoded by genes present in all sequenced *S. aureus* strains. While this *in silico* bioinformatic approach is highly efficient, it cannot provide data on expression, post-translational modifications, cleavage and turnover, which may be important considerations in pathogenesis research or biomarker studies. Furthermore, as noted by Sibbald *et al.*, and many others, Sec-secreted proteins are only a subset of the proteins found in the supernatants of *S. aureus* cultures (Henderson & Martin, 2011; Sibbald *et al.*, 2006; Tjalsma *et al.*, 2004). Many groups have attempted to define the proteome of *S. aureus* (Becher *et al.*, 2009; Nandakumar *et al.*, 2005; Raviyap & Reilly, 2010; Sibbald *et al.*, 2006; Ziebandt *et al.*, 2010), to identify vaccine candidates (Glowalla *et al.*, 2009; Vytytyska *et al.*, 2002), to study virulence factors and their regulators (Bernardo *et al.*, 2002; Burlak *et al.*, 2007; Kawano *et al.*, 2001; Nakano *et al.*, 2002; Pocsfalvi *et al.*, 2008; Rogasch *et al.*, 2006; Ziebandt *et al.*, 2001, 2004), and to study changes in proteins in response to different conditions such as anaerobiosis (Fuchs *et al.*, 2007) and glucose starvation (Michalik *et al.*, 2009).

In this study we set out to determine the core exoproteome of 14 clinical *S. aureus* isolates representing the dominant clinical lineages identified in the UK. Our approach was not biased towards any particular protein, based on virulence or any other phenomenon, and made no assumptions about proteins that would or would not be secreted by the bacterium. We analysed *S. aureus* culture supernatant proteins using a GeLC-MS proteomic approach and identified the proteins using a database that combined sequences from 39 *S. aureus* completed genomes to identify as many proteins as possible amongst the clinical isolates studied, in a single proteomic study.

Impact Statement

Proteins secreted by 14 strains from clinically relevant major lineages of *S. aureus* were identified using an unbiased proteomic method that made no prior assumptions as to the perceived importance, class or location of exoproteins. Surprisingly, out of over 600 different proteins found, only 8% were common to all lineages, underlining the extreme heterogeneity of the *S. aureus* exoproteome, with relevance for both development of microbial diagnostics and pathogenetic studies in this species. Intriguingly, the approach simultaneously identified novel proteolytic events and hitherto unsuspected truncated proteins that may impact on virulence and pathogenesis of *S. aureus*.

Methods

Bacterial strains and growth conditions. Fourteen temporally and geographically unrelated isolates of *S. aureus* [six meticillin-susceptible *S. aureus* (MSSA), eight MRSA] were selected to represent a broad spectrum of disease and genetic diversity (including 11 different MLST clonal complexes). Isolates were grown with shaking at 37 °C in Lysogeny broth (LB), tryptic soy broth, casein hydrolysate-yeast extract-containing medium, RPMI and RPMI containing 0.15 mM desferrioxamine (to sequester iron). Bacterial growth was assessed by measuring OD₆₀₀ of appropriately diluted samples of the culture mixture using a spectrophotometer (Biophotometer; Eppendorf) on three separate occasions in fresh LB.

SDS-PAGE. Proteins were precipitated from 3.5 ml of filtered (0.22 μm) culture supernatants obtained by addition of three volumes of 40% trichloroacetic acid in acetone overnight at −20 °C; the exact volumes were adjusted based on OD₆₀₀ measurements to normalize protein loading on this basis. Protein pellets were washed twice with acetone, dried, dissolved in 60 μL LDS electrophoresis sample treatment buffer with 40 mM DTT and heated at 70 °C for 10 min. Iodoacetamide (200 mM) was added to 18 μL of the sample and incubated for 20 min prior to loading onto a 10% Bistris pre-cast gel (Life Technologies) and separation using MOPS buffer. Gels were stained for protein with InstantBlue (Expedeon).

Membrane integrity of *S. aureus*. In total, 5 × 10⁸ c.f.u. *S. aureus* HHS-1, -7, -8 and -9 were stained with a final concentration of 30 μM propidium iodide (PI) in 500 μl PBS, incubated protected from light for 5 min and then analysed on a FACSCalibur flow cytometer (BD Biosciences). *S. aureus* was identified by light-scatter characteristics, and PI fluorescence was measured in the...
Exoproteome of clinically relevant S. aureus

Molecular typing/PCR. Typing of spa was carried out as described previously (Harmsen et al., 2003). MLST clonal complex assignments were inferred based on spa typing data and by reference to the spa server (http://spa.ridom.de/mlst.shtml). Specific sequence types (STs) were assigned following whole genome sequencing. Selected toxin genes were screened for by multiplex PCR, including: enterotoxins A–E and G–J (sea–see and seq–seq), toxic shock syndrome toxin-1 (tst), exfoliative toxins A, B and D (eta, etb and etd), and Panton–Valentine leukocidin (luk-PV), as described previously (Holmes et al., 2005); sep and ser were detected by genome sequencing. Characterization of staphylococcal cassette chromosome mec (SCC mec) elements was carried out on all MRSA isolates as described by Milheiroičo et al. (2007). The sasG gene was amplified by PCR from genomic DNA extracted from HHS5 using primers 5’-GTCAAGATGGGGCC-3’ and 5’-CTTTCGATAATCCTGG-3’.

Sample preparation for LC-MS/MS. Isolates were grown in LB until they reached exponential phase (OD₆₀₀ of 2.0). Supernatant proteins were precipitated, separated by SDS-PAGE and stained for protein as described above. Each lane in the gel was cut into 27 rows. The proteins present in each gel slice were digested with trypsin, and the resultant peptides were extracted and analysed by LC-MS/MS as described previously (Zhu et al., 2008).

Protein identification. Identification of the proteins present in each gel slice was determined from analysis of the LC-MS/MS data using SEQUEST and a non-redundant database based on 39 completed S. aureus genome sequences available on the PATRIC database (brcdownloads.vbi.vt.edu/patric2/genomes/) as of 28 October 2013. The database comprised 31784 different protein sequences followed by 20 common contaminants such as human keratins. The SEQUEST software assigns protein designations using the first instance in the database, so the order that the S. aureus FASTA sequences appear in the database can be of relevance in the listed output of identified proteins. S. aureus COL protein sequences were placed first in the reference database, which was then expanded sequentially by addition of non-identical protein sequences that occur in the following strains: NCTC 8325, JH1, MW2, Mu50, N315, Newman, USA300_FPR3757, MSSA476, MRSA252, JH9, Mu3, USA300_TCH1516, JKD6008, ED98, TW20, ST398, 04-02981, ED133, JKD6159, HO 5096 0412, RF122, LGA251, 08BA02176, CA-347, M1, ST228/10388, ST228/10497, ST228/15332, ST228/18412, 11819-97, 55/2053, 71193, ECT-R 2, M013, MSHR1132, T0131, TCH60 and VC40. All SEQUEST results were filtered based on peptide cross correlation scores exceeding 1.5 (single-charged ions), 2.0 (double-charged ions) and 2.5 (triple-charged ions) and identification of at least two different peptides to a protein with a probability score <0.01. Using a database with FASTA sequences from several genomes increased the chance of correctly assigning a protein designation, but also introduced the possibility of peptides from a single protein matching to multiple orthologues and to indicate falsely the presence of different proteins. To address this, non-COL protein identifications were assigned to an orthologous COL sequence or, in those cases where no COL orthologue was found, to another suitable reference sequence. This was achieved by calculating the minimum Levenstein distance for each non-COL protein identified amongst all protein sequences in the COL database. Non-COL protein sequences with less than 20% mismatches were assigned to the equivalent COL protein. All others were analysed using BLAST against a representative set of S. aureus genomes (NCTC 8325, JH1, MW2, Mu50, Newman, USA300_FPR3757 and MRSA252) and assigned to their closest orthologue. Where no match was found the protein retained its original assignment. The program PSORTB was used to identify the predicted cellular location for each protein identified (Yu et al., 2010).

Analysis of the migration of proteins following SDS-PAGE. The theoretical mass of each protein was calculated from its predicted sequence as occurs in the PATRIC database without taking into account any known or assumed modifications. The actual mass deduced from migration by SDS-PAGE was determined by comparison with the migration of electrophoretic markers (SeeBlue Plus2 Pre-stained Protein Standard; Life Technologies). For proteins identified in a single row the migration position was taken as the centre of the excised row. For those proteins that occurred in multiple contiguous rows, the migration position was estimated as a weighted average based on the frequency of occurrence of the protein in the different isolates.

Results

Characterization of the exoproteome of 14 S. aureus isolates

The molecular characterization of the study isolates is shown in Table 1. Isolate HHS-1 was grown in five different media and the proteins present in each of the supernatants were analysed by SDS-PAGE (Fig. 1a). Although there was some variation in the overall intensity of staining, the composition of the proteins appeared similar in each case. The result obtained using LB appeared representative and so was selected for use in further studies. Growth characteristics in LB were examined for all the isolates. Each isolate grew rapidly in culture after a short lag phase until an OD₆₀₀ of approximately 5 was reached when growth slowed (Fig. 1b, and Fig. S1, available in the online Supplementary Material). The integrity of the bacterial membrane was assessed in four strains by measuring the proportion of cells capable of excluding PI. When cultured to exponential phase (OD₆₀₀ of 2.0), 99% of the bacteria excluded PI (isolates HSS-1, HHS-7 and HSS-8) with the exception of HSS-9, where 95% of the
bacteria excluded PI. Bacterial cell membrane integrity was reduced further after culturing overnight (OD$_{600}$ of \geq 6) to 93–99%, whilst heat treatment of the bacteria for 30 min resulted in substantial loss of ability to exclude PI (5–8% in each case) (Fig. 1c). Thus, culturing the bacteria to exponential phase growth (OD$_{600}$ of 2.0) appeared appropriate for studies of proteins released by viable cells into the supernatant.

All 14 isolates were cultured to exponential phase (OD$_{600}$ of 2.0) in LB, and SDS-PAGE of proteins present in each of the culture supernatants was performed (Fig. 2). This showed that although it was evident that some bands occurred in

Table 1. Characteristics of the 14 *S. aureus* isolates studied

- Not applicable; ST, sequence type derived *in silico* from genome data.

Strain	Year of isolation	Clinical presentation	Toxin gene profile	SCCmec type	spa type	MLST clonal complex	ST
HHS-1	2006	Bacteraemia	sea, seh	IV$_{NT}$	t127	1	1
HHS-2	2005	Skin abscess	sed, seg, sei, sep, ser, luk-PV	IVc	t002	5	5
HHS-3	2009	Skin abscess	sed, seg, sei, sep, ser	VI	t002	5	5
HHS-4	2009	Burn	—*	III	t037	8	239
HHS-5	2004	Skin abscess	luk-PV	IVa	t008	8	8
HHS-6	2007	Scalded skin syndrome	seg, sei, eta	—	t209	9	109
HHS-7	2006	Bacteraemia	sec, sep	—	t156	12	1460
HHS-8	2006	Bacteraemia	—*	—	t084	15	15
HHS-9	2006	Bacteraemia	sec, seg, sei	IVh	t032	22	22
HHS-10	2008	Necrotizing pneumonia	seg, sei, etd, luk-PV	—	t660	25	25
HHS-11	2006	Bacteraemia	sea, seg, sei, tst	II	t018	30	36
HHS-12	2006	Bacteraemia	seg, sei, luk-PV	IVc	t019	30	30
HHS-13	2007	Skin abscess	seg, sei	—	t015	45	45
HHS-14	2007	Scalded skin syndrome	seg, sei, eta	—	t171	121(51)	1693

* Specified toxin genes not detected.

Fig. 1. Investigation of culture conditions suitable for proteomic analysis. (a) SDS-PAGE analysis of *S. aureus* isolate HHS-1 cell-free supernatant after culture in LB, tryptic soy broth (TSY), casein hydrolysate-yeast extract-containing (CCY) medium, RPMI and RPMI containing desferrioxamine (RPMI-Fe). Supernatant proteins were precipitated and amounts equivalent to a volume of cells with an OD$_{600}$ of 1.0 were loaded onto the gel. (b) Growth curves showing OD$_{600}$ over time for all 14 *S. aureus* isolates, HHS-1 to HHS-14, in LB; error bars represent SEM of three separate LB cultures on different days. (c) Membrane integrity of *S. aureus* isolates HHS-1, -7, -8 and -9 determined by exclusion of PI, measured by flow cytometry, cultured to exponential growth phase, OD$_{600}$ of 2.0 (OD 2), overnight (O/N) and heat-treated (H/T).
most of or all the supernatant samples, there was also a high degree of variation in both the intensity and the distribution of many individual bands noted (Table 1).

Proteomics was performed on individual gel slices to identify proteins migrating throughout the gel, and the respective mass at which proteins migrated. In all, 632 different proteins were identified amongst the 14 study isolates (Tables S1–S3). Of these, it was possible to assign 569 (90%) to COL protein sequences using the merged database of 39 genomes (Table S4). The remaining non-COL proteins were mainly linked to mobile genetic elements. The program PSORT b was used to predict a cellular location for each exoprotein identified with the following results: 5% cell wall, 8% cytoplasmic membrane, 64% cytoplasmic, 10% extracellular and 13% unknown.

Distribution of proteins amongst the isolates

Of the 632 proteins identified, just 52 (8%) were identified in all 14 isolates (Fig. 3, Table 2). Seventeen additional proteins (just 11% of the 632), including gamma-haemolysin components A and B and staphyloxanthin biosynthesis protein, were identified in 13/14 of the isolates. Overall, there appeared to be no threshold fraction that suggested that a proportion of the isolates might have a common proteome, regardless of lineage. In fact, the largest group comprised 144 (23%) proteins that were detected in just a single isolate, thus demonstrating the extent of inter-isolate heterogeneity (Fig. 3). Interestingly, one Panton–Valentine leukocidin-positive strain, HHS-2, produced the lowest number of detectable exoproteins in total. This strain also produced the full range of recognized S. aureus exo-proteases (aureolysin; SspA/V8; SspB/staphopain B; SspA/staphopain A; SplA–F). In contrast, none of the classical exo-proteases was detected from HHS-6, a strain that produced the greatest number of detected exoproteins.

Evidence of post-translational modifications

As the supernatant proteins were first separated by SDS-PAGE prior to proteomic identification, it was possible to estimate approximate masses from their migration and to compare these values with those expected from the predicted sequences. A plot of these data showed that 95% of the proteins identified migrated as expected (Fig. 4). However, about 1% of the proteins did not migrate as far through the gel as expected and hence appeared to have a larger mass than predicted from their sequence. These included serine-aspartate repeat-containing protein C (SdrC), clumping factors A and B (ClfA, ClfB), putative surface anchored protein (SasF), SAAG_00319 (fibronectin binding protein B), SaurJH1_2050 (phi13 family phage major tail protein), SAV1826 (enterotoxin, Yent2) and several hypothetical proteins. The remaining 4% of the proteins identified migrated faster than expected, i.e. they appeared to have smaller masses than predicted. Particularly marked differences were apparent for LtaS, OatA, BlaR1, MecR1, EbpS and FtsH (Fig. 4). Several proteins...
Table 2. Proteins common to all 14 *S. aureus* strains

Of the proteins identified, 52 occurred in all 14 isolates examined. It was possible to assign each protein to a COL sequence as indicated. The program PSORTb was used to determine the predicted cellular location (C, cytoplasmic; CM, cell membrane; CW, cell wall; E, exoprotein; U, unknown).

Reference	*S. aureus* protein name	Predicted location
SACOL0204	Formate acetyltransferase	C
SACOL0222	L-Lactate dehydrogenase	C
SACOL0452	Alkyl hydroperoxide reductase subunit C	C
SACOL0460	Inosine-5'-monophosphate dehydrogenase	C
SACOL0593	Elongation factor G	C
SACOL0594	Elongation factor Tu	C
SACOL0660	Alcohol dehydrogenase	C
SACOL0838	Glyceraldehyde 3-phosphate dehydrogenase	C
SACOL0839	Phosphoglycerate kinase	C
SACOL0842	Phosphopyruvate hydratase	C
SACOL1092	Phosphoenolpyruvate-protein phosphotransferase	C
SACOL1102	Pyruvate dehydrogenase complex E1 component, alpha subunit	C
SACOL1104	Branched-chain alpha-keto acid dehydrogenase	C
	dihydrodipicolinate dehydrogenase	C
SACOL1329	Dihydrolipoamide dehydrogenase	C
SACOL1516	Glutamine synthetase FemC	C
SACOL1637	Molecular chaperone DnaK	C
SACOL1722	Trigger factor	C
SACOL1729	Threonyl-tRNA synthetase	C
SACOL1745	Pyruvate kinase	C
SACOL1952	Ferritins family protein	C
SACOL2145	Glucosamine-fructose-6-phosphate aminotransferase	C
SACOL2213	DNA-directed RNA polymerase subunit alpha	C
SACOL2618	L-Lactate dehydrogenase	C
SACOL0545	50S ribosomal protein L25/general stress protein Ctc	C
SACOL2117	Fructose-bisphosphate aldolase	C
SACOL2224	50S ribosomal protein L6	C
SACOL2227	50S ribosomal protein L5	C
SACOL0778	Sulfatase family protein	CM
SACOL2002	Map protein, programmed frameshift	CM
SACOL0995	Immunoglobulin G binding protein A precursor	CW
SACOL0507	LysM domain-containing protein	CW
SACOL0609	sdrD protein	CW
SACOL0723	LysM domain-containing protein	CW
SACOL0856	Clumping factor A	CW
SACOL0317/0390	Lipase precursor, interruption-N	E
SACOL0860	Thermonuclease precursor	E
SACOL1062	Bifunctional autolysin	E
SACOL1173	Alpha-haemolysin precursor	E
SACOL2004	Leukocidin subunit precursor, putative	E
SACOL2006	Aerolysin/leukocidin family protein	E
SACOL2291	Staphyloxanthin biosynthesis protein	E
SACOL2421	Gamma haemolysin, component C	E
SACOL2584	Immunodominant antigen A	E
SACOL2660	Immunodominant antigen B	E
SACOL2666	N-Acetylmuramoyl-1-alanine amidase	E
SACOL2694	Lipase	E
SACOL1377	Transketolase	U
SACOL0962	Glycerophosphoryl diester phosphodiesterase GlpQ, putative	U
SACOL0303	5'-Nucleotidase	U
SACOL1704	Rod shape-determining protein MreC	U
SACOL2418	IgG-binding protein SBI	U
were found to be represented as two or more different masses, including SsaA2, Aur, SspP and extracellular matrix-binding protein (Ebh) (SACOL1472). Such migration is consistent with proteolytic cleavage. To investigate this further, the distribution of the peptides detected within the protein sequences was examined and, in 11 cases, there was sufficient peptide information to be informative (Fig. 5). For LtaS, OatA, BlaR1, MecR1 and EbpS, the peptides were located in the C-terminal region of each protein (Fig. 5) suggesting a post-translational cleavage of the N terminus in each case. SsaA2 appeared to be present as both a full-length protein and a cleaved product of ~15 kDa in all 14 isolates. Unusually, amongst all the peptides identified, one peptide was only detected in the cleaved product (12/14 isolates) but was not detected in the uncleaved precursor (all 14 isolates). Peptides corresponding to Phi77 ORF006-like protein were located together in a region that corresponds to a protein mass of 32 kDa, as observed. Aur was detected as both a 43 and 25 kDa form. The 43 kDa form contained peptides from the C-terminal region only whereas the 25 kDa form contained peptides only located in the N-terminal region of the protein.

SasG was found in three isolates where it migrated according to its predicted mass of 136 kDa, although in strain HHS-5 it ran as a 49 kDa protein, identified from peptides occurring in the N-terminal region only (Fig. 5H). This might be explained by a nucleotide deletion at nucleotide 1287 of sasG, which is known to occur in several clinical isolates although a truncated protein has not previously been identified (Diep et al., 2006; Geoghegan et al., 2010). Consequently, PCR amplification and sequencing of the central region of the sasG gene from isolate HHS-5 was undertaken. Comparison of the sequence data with the COL genome showed a single nucleotide deletion 100 nt downstream of the 5′ primer (COL: AAAAAAAGTT; HHS-5: AAAAAA-GTT) resulting in a premature stop codon.

Fig. 4. Comparison between the masses of *S. aureus* proteins predicted from amino acid sequences and masses observed from protein migration in SDS-PAGE. Proteins were identified in 1–14 of the *S. aureus* isolates studied; those identified to migrate at the mass predicted from amino acid sequences are plotted along the line of equivalence. Proteins to the left of the line were identified at masses greater than those predicted from the database. Proteins to the right of the line were identified at masses lower than those predicted and represent potential cleavage events or truncations. Data points have been overlaid such that those proteins found in the greater number of isolates are placed in the foreground. Proteins are labelled as SACOL-matching proteins or, where there is no match in COL, to another suitable reference database. Those proteins discussed in the text and referred to by short name codes are indicated as such and highlighted in pink.
Discussion

The present study set out to characterize the exoproteome of representatives of dominant clones of *S. aureus* that occur in the UK, specifically to identify common core exoproteins. However, despite 70% of *S. aureus* genes being considered to belong to the core genome, only 8% of the proteins detected were shared among these clinically relevant strains. Furthermore, some 60% of the proteins identified were not ‘professional’ exoproteins, but were of predicted cytosolic and metabolic origin. Finally, it was possible to clearly identify cleaved and truncated protein products simply from proteomic comparison of observed and expected molecular masses.
Previous studies have identified up to 250 different exoproteins in *S. aureus* culture supernatants (Burlak et al., 2007; Pocsfalvi et al., 2008), while, in this present analysis we found a total of 632 proteins, with over 400 in some individual strains. The greater number of proteins identified is likely to result from the number of strains evaluated, use of a more sensitive 1D in-gel analytical technique, and the use of a non-repetitive database of manageable size that aimed to link each identified protein to a single reference strain only. The result of the analysis performed in this way is inclusive, as it is not based on comparison with any one genome/predicted proteome and is easier to interpret as it is referenced principally to one proteome. In this case, we chose to use *S. aureus* COL as the reference database, as the characteristics of this strain are well documented, but the whole process could just as easily be based on any suitable reference database. As the approach makes comparisons between the protein sequences, difficulties with inconsistent or incorrect annotations that occur between sequence databases are avoided.

Overall, there was considerable heterogeneity between the proteins identified amongst the 14 isolates analysed in this study, as has been reported previously for *S. aureus* (Ziebandt et al., 2010). The clinical strains were selected to be representative of UK clinical isolates and to be genetically diverse, as confirmed by subsequent whole genome sequencing (Fig. S2). Although the proteomic study was conducted once only, there were no apparent lineage-specific features in the proteins identified, apart from genes that are variably present.

While Ziebandt et al. (2010) reported just seven Sec-dependent extracellular proteins in 17 clonally different strains that they examined, our study identified 52 core extracellular proteins, although several proteins reported therein were also identified in our study including IsaA. Of the 52 common proteins detected in the current study, PSORTb predicted a cytoplasmic localization for 28 of them. The appearance of cytoplasmic proteins is common in studies of the secretome (Ebner et al., 2015; Foulston et al., 2014; Henderson & Martin, 2011; Sibbald et al., 2006; Tjalsma et al., 2004). Release of cytosolic proteins could be related to *S. aureus* production of membrane vesicles or other specific efflux mechanisms (Ebner et al., 2015; Lee et al., 2009), although the activity of bifunctional autolysin (Atl) and amidase (SACOL2666), which were detected in all strains, and the necessary process of cell-wall remodelling during growth cannot be discounted.

Post-translational modification of several proteins was apparent, as evident from aberrant migration or the appearance of multiple bands following SDS-PAGE. Some of these proteins migrated more slowly than estimated from their predicted structure, suggesting a greater mass than expected. Several of these proteins, including serine-aspartate repeat-containing protein C (SdrC), clumping factors A and B (CφA, CφB), and putative surface anchored protein (SasF), are known, or presumed, to be post-translationally modified through a covalent anchor to the peptidoglycan of the cell-wall envelope, which would explain their increased mass. The other outliers include SAAG_00319 (fibronectin binding protein B), Saur/H1_2050 (φI13 family phage major tail protein), SAV1826 (enterotoxin, Yent2) and several hypothetical proteins for which amino acid composition or multimerization may explain aberrant migration.

A greater number of proteins was found that migrated more rapidly than estimated from their amino acid structure. Some were evident in multiple rows, suggesting proteolysis resulting in cleavage products with smaller masses compared with the parent proteins. The majority of rapidly migrating proteins represented known mature products that had resulted from defined proteolytic processes rather than as the result of unspecific proteolytic digestion as might occur if the cells were extensively lysed, underlining the value of comparing actual and predicted molecular size when undertaking proteomic studies. There is evidence from several previous studies to support the assertion of N-terminal cleavage of LtaS (Gatlin et al., 2006; Gründling & Schneewind, 2007; Wörmann et al., 2011), OtaA (Schallenberger et al., 2012), BlaR1 (Llarrull et al., 2011; Powers et al., 2011; Zhang et al., 2001), EbpS (Downer et al., 2002; Nakakido et al., 2007; Park et al., 1991, 1996), FtsH (Akiyama, 1999; Karnataki et al., 2009; Krzywda et al., 2002) and Phi77 ORF006-like protein (Conway et al., 1995; Duda et al., 1995). Similarly, Aur is known to undergo sequential processing resulting in two mature products (Nickerson et al., 2008). SsaA2 was found to be present as both a full-length protein and an N-terminally cleaved product of ~15 kDa in all 14 isolates. To our knowledge, this does not appear to have been described previously, demonstrating the added value of molecular size comparisons in proteomic studies.

The surface protein SasG was found in the culture supernatant of just three isolates, where it migrated according to its predicted mass of 136 kDa. In HHS-5, however, which represents a USA300-like CC8 lineage, the gene exhibits a premature stop codon. Accordingly, SasG ran as a 49 kDa protein, identified from peptides occurring in the N-terminal region only, corresponding to the A domain of a truncated SasG. To our knowledge, this is the first evidence that the A domain is expressed, secreted and stable enough to be detected when SasG is truncated. Studies point to a role of SasG in *S. aureus* biofilm formation, attributed largely to the bacterial cell-wall-bound B domain of the protein (Corrigan et al., 2007; Roche et al., 2003). Although a specific role for soluble A domain has yet to be proven, the finding may be of importance given that recombinant A domain can contribute to auto-aggregation through homo-oligomerization (Kuroda et al., 2008).

Identification of the core exoproteins produced in broth that are common to clinically relevant *S. aureus* lineages...
may provide potential immunodiagnostic biomarkers of \(S. aureus \) growth, for example in blood cultures, where rapid distinction from coagulase-negative staphylococci would be advantageous. Biomarkers could include those with housekeeping functions, provided that there is no orthologue in other staphylococci, or provided that the C-terminal sequence is unique, making them suitable targets for C-terminal antibody-based diagnostics (Edwards et al., 2007). Potential candidates include alcohol dehydrogenase, both lactate dehydrogenases and staphylococcal immunodominant antigen A (IsaA), although these findings cannot be extrapolated to clinical samples produced in vivo without further experimentation.

In conclusion, we have determined the experimental exoproteome of the important human pathogen \(S. aureus \) in 14 genetically diverse, clinically relevant isolates of the species. As well as identifying the presence of a variety of functionally relevant proteins we have also used this large dataset to reveal information concerning protein processing and truncation of SasG. Our approach was unbiased, and did not place emphasis on any particular class of protein, such as virulence factors, nor make assumptions about which proteins should or should not be found in the supernatant. Indeed, many proteins found outside the cell did not have predictable signal sequences and, whilst they may be products of cell turnover, it is also possible that they are performing as yet unknown functions on the surface or outside the cell.

Acknowledgements

This work was funded by the UK Clinical Research Collaboration (UKCRC, Grant G0800777 National Centre for Infection Prevention and Management). Funding from the NIHR Biomedical Research Centre Award to Imperial College NHS Healthcare Trust and the Health Protection Research Unit (HPRU) in Healthcare Associated Infections and Antimicrobial Resistance is acknowledged.

References

Akiyama, Y. (1999). Self-processing of FtsH and its implication for the cleavage specificity of this protease. *Biochemistry* 38, 11693–11699.

Becher, D., Hempel, K., Sievers, S., Zühke, D., Panè-Farré, J., Otto, A., Fuchs, S., Albrecth, D., Bernhardt, J. & other authors (2009). A proteomic view of an important human pathogen – towards the quantification of the entire \(S. aureus \) proteome. *PLoS One* 4, e8176.

Bernardo, K., Fleer, S., Pakulat, N., Krut, O., Hünger, F. & Krönke, M. (2002). Identification of \(S. aureus \) exotoxins by combined sodium dodecyl sulfate gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. *Proteomics* 2, 740–746.

Burlak, C., Hammer, C. H., Robinson, M.-A., Whitney, A. R., McGavin, M. J., Kreiswirth, B. N. & Deleo, F. R. (2007). Global analysis of community-associated methicillin-resistant \(S. aureus \) exoproteins reveals molecules produced in vitro and during infection. *Cell Microbiol* 9, 1172–1190.

Conway, J. F., Duda, R. L., Cheng, N., Hendrix, R. W. & Steven, A. C. (1995). Proteolytic and conformational control of virus capsid maturation: the bacteriophage HK97 system. *J Mol Biol* 253, 86–99.

Corrigan, R. M., Rigby, D., Handley, P. & Foster, T. J. (2007). The role of \(S. aureus \) surface protein SasG in adherence and biofilm formation. *Microbiology* 153, 2435–2446.

Diep, B. A., Gill, S. R., Chang, R. F., Phan, T. H., Chen, J. H., Davidson, M. G., Lin, F., Lin, J., Carleton, H. A. & other authors (2006). Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant \(S. aureus \). *Lancet* 367, 731–739.

Downer, R., Roche, F., Park, P. W., Mecham, R. P. & Foster, T. J. (2002). The elastin-binding protein of \(S. aureus \) (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. *J Biol Chem* 277, 243–250.

Duda, R. L., Hempel, J., Michel, H., Shabanowitz, J., Hunt, D. & Hendrix, R. W. (1995). Structural transitions during bacteriophage HK97 head assembly. *J Mol Biol* 247, 618–635.

Ebner, P., Prax, M., Nega, M., Koch, I., Dube, L., Yu, W., Rinker, J., Popella, P., Fiöltenmeyer, M. & Götz, F. (2015). Excretion of cytoplasmic proteins (ECP) in \(S. aureus \). *Mol Microbiol* 97, 775–789.

Edwards, R. J., Wrigley, A., Bai, Z., Bateman, M., Russell, H., Murray, S., Lu, H., Taylor, G. W., Boobis, A. R. & Sriskandan, S. (2007). C-terminal antibodies (CTAbs): a simple and broadly applicable approach for the rapid generation of protein-specific antibodies with predefined specificity. *Proteomics* 7, 1364–1372.

Foulston, L., Elsholz, A. K. W., DeFrancesco, A. S. & Losick, R. (2014). The extracellular matrix of \(S. aureus \) biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. *MBio* 5, e01667-14.

Fuchs, S., Panè-Farré, J., Kohler, C., Hecker, M. & Engelmann, S. (2007). Anaerobic gene expression in \(S. aureus \). *J Bacterial* 189, 4273–4289.

Gatlin, C. L., Pieper, R., Huang, S.-T., Mongodin, E., Gebregeorgis, E., Parmar, P. P., Clark, D. J., Alami, H., Papazisi, L. & other authors (2006). Proteomic profiling of cell envelope-associated proteins from \(S. aureus \). *Proteomics* 6, 1530–1549.

Geoghegan, J. A., Corrigan, R. M., Gruszka, D. T., Speziale, P., O’Gara, J. P., Potts, J. R. & Foster, T. J. (2010). Role of surface protein SasG in biofilm formation by \(S. aureus \). *J Bacterial* 192, 5663–5673.

Glowalla, E., Tosetti, B., Krönke, M. & Krut, O. (2009). Proteomics-based identification of anchorless cell wall proteins as vaccine candidates against \(S. aureus \). *Infect Immun* 77, 2719–2729.

Gründling, A. & Schneewind, O. (2007). Synthesis of glycerol phosphate lipoteichoic acid in \(S. aureus \). *Proc Natl Acad Sci U S A* 104, 8478–8483.

Harmsen, D., Claus, H., Witte, W., Rothgäenger, J., Claus, H., Turmwald, D. & Vogel, U. (2003). Typing of meticillin-resistant \(S. aureus \) in a university hospital setting by using novel software for spa repeat determination and database management. *J Clin Microbiol* 41, 5442–5448.

Henderson, B. & Martin, A. (2011). Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. *Infect Immun* 79, 3476–3491.

Holmes, A., Ganner, M., McGuane, S., Pitt, T. L., Cookson, B. D. & Kearns, A. M. (2005). \(S. aureus \) isolates carrying Panton–Valentine leucocidin genes in England and Wales: frequency, characterization, and association with clinical disease. *J Clin Microbiol* 43, 2384–2390.
Exoproteome of clinically relevant S. aureus

Karnataki, A., DeRocher, A. E., Feagin, J. E. & Parsons, M. (2009). Sequential processing of the Toxoplasma apicoplast membrane protein FtsH1 in topologically distinct domains during intracellular trafficking. Mol Biochem Parasitol 166, 126–133.

Kawano, Y., Kawagishi, M., Nakano, M., Mase, K., Yamashino, T., Hasegawa, T. & Ohta, M. (2001). Proteolytic cleavage of staphylococcal exoproteins analyzed by two-dimensional gel electrophoresis. Microbiol Immunol 45, 285–290.

Krzywyd, S., Brzozowski, A. M., Verma, C., Karata, K., Ogura, T. & Wilkinson, A. J. (2002). The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 Å resolution. Structure 10, 1073–1083.

Kuroda, M., Ohta, T., Uchihaya, I., Baba, T., Yuzawa, H., Kobayashi, I., Cui, L., Oguchi, A., Aoki, K. & other authors (2001). Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240.

Kuroda, M., Ito, R., Tanaka, Y., Yao, M., Matoba, K., Saito, S., Tanaka, I. & Ohta, T. (2008). Staphylococcus aureus surface protein SasG contributes to intercellular autoaggregation of Staphylococcus aureus. Biochim Biophys Acta 1777, 1102–1106.

Lee, E. Y., Choi, D. Y., Kim, D. K., Kim, J. W., Park, J. O., Kim, S., Kim, S. H., Desiderio, D. M., Kim, Y. K. & other authors (2009). Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9, 5425–5436.

Lindsay, J. A., Moore, C. E., Day, N. P., Peacock, S. J., Witney, A. A., Stabler, R. A., Husain, S. E., Butcher, P. D. & Hinds, J. (2006). Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 188, 669–676.

Llarrull, L. I., Toth, M., Champion, M. M. & Mobashery, S. (2011). Activation of BlaR1 protein of methicillin-resistant Staphylococcus aureus, its proteolytic processing, and recovery from induction of resistance. J Biol Chem 286, 38148–38158.

Michalik, S., Liebeke, M., Zühlke, D., Lalk, M., Bernhardt, J., Gerth, U. & Hecker, M. (2009). Proteolysis during long-term glucose starvation in Staphylococcus aureus COL. Proteomics 9, 4468–4477.

Milheiro, C., Oliveira, D. C. & de Lencastre, H. (2007). Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus. Antimicrob Agents Chemother 51, 3374–3383.

Nakakido, M., Tanaka, Y. & Tsumoto, K. (2007). The N-terminal domain of elastin-binding protein of Staphylococcus aureus changes its secondary structure in a membrane-mimetic environment. J Biochem 142, 131–134.

Nakano, M., Kawano, Y., Kawagishi, M., Hasegawa, T., Inuma, Y. & Oht, M. (2002). Two-dimensional analysis of exoproteins of Staphylococcus aureus. Mol Microbiol 45, 11–22.

Nandakumar, R., Nandakumar, M. P., Marten, M. R. & Ross, J. M. (2005). Proteome analysis of membrane and cell wall associated proteins from Staphylococcus aureus. J Proteome Res 4, 250–257.

Nickerson, N. N., Joag, V. & McGavin, M. J. (2008). Rapid autocalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fugalysin-thermolysin-propeptide domain. Mol Microbiol 69, 1530–1543.

Park, P. W., Roberts, D. D., Grosso, L. E., Parks, W. C., Rosenblom, J., Abrams, W. R. & Mecham, R. P. (1991). Binding of elastin to Staphylococcus aureus. J Biol Chem 266, 23399–23406.

Park, P. W., Rosenblom, J., Abrams, W. R., Rosenblom, J. & Mecham, R. P. (1996). Molecular cloning and expression of the gene for elastin-binding protein (ebpS) in Staphylococcus aureus. J Biol Chem 271, 15803–15809.

Psomas, G., Gacce, G., Cucurullo, M., Serauca, G., Sorrentino, A., Schlosser, G., Blaiotta, G. & Malorni, A. (2008). Proteomic analysis of exoproteins expressed by enterotoxigenic Staphylococcus aureus strains. Proteomics 8, 2462–2476.

Powers, M. E., Smith, P. A., Roberts, T. C., Fowler, B. J., King, C. C., Trauger, S. A., Siuzdak, G. & Rombes, F. E. (2011). Type I signal peptide and protein secretion in Staphylococcus epidermidis. J Bacteriol 193, 340–348.

Ravipaty, S. & Reilly, J. P. (2010). Comprehensive characterization of methicillin-resistant Staphylococcus aureus subsp. aureus COL secretome by two-dimensional liquid chromatography and mass spectrometry. Mol Cell Proteomics 9, 1898–1919.

Roche, F. M., Meehan, M. & Foster, T. J. (2003). The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology 149, 2759–2767.

Rogasch, K., Rühming, V., Pané-Farré, J., Höper, D., Weinberg, C., Fuchs, S., Schmutte, M., Bröker, B. M., Wolz, C. & other authors (2006). Influence of the two-component system SasRS on global gene expression in two different Staphylococcus aureus strains. J Bacteriol 188, 7742–7758.

Rudkin, J. K., Edwards, A. M., Bowden, M. G., Brown, E. L., Pozzi, C., Waters, E. M., Chan, W. C., Williams, P., O’Gara, J. P. & Massey, R. C. (2012). Methicillin resistance reduces the virulence of healthcare-associated methicillin-resistant Staphylococcus aureus by interfering with the agr quorum sensing system. J Infect Dis 205, 798–806.

Schallenberg, M. A., Niessen, S., Shao, C., Fowler, B. J. & Rombes, F. E. (2012). Type I signal peptide and protein secretion in Staphylococcus aureus. J Bacteriol 194, 2677–2686.

Sibbald, M. J. B., Ziebandt, A. K., Engelman, S., Hecker, M., de Jong, A., Harmsen, H. J. M., Raangs, G. C., Stokroos, I., Arends, J. & other authors (2006). Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol Mol Biol Rev 70, 755–785.

Tjalsma, H., Antelmann, H., Jongbloed, J. D. H., Braun, P. G., Darmon, E., Dorenbos, R., Dubois, J.-Y. F., Westers, H., Zanen, G. & other authors (2004). Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68, 207–233.

Vandenbergh, M. F. & Verbrugh, H. A. (1999). Carriage of Staphylococcus aureus epidermidis and clinical relevance. J Lab Clin Med 133, 525–534.

Vytvytska, O., Nagy, E., Blüggel, M., Meyer, H. E., Kurzbauer, R., Huber, L. A. & Klade, C. S. (2002). Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics 2, 580–590.

Witney, A. A., Marsden, G. L., Holden, M. T. G., Stabler, R. A., Husain, S. E., Vass, J. K., Butcher, P. D., Hinds, J. & Lindsay, J. A. (2005). Design, validation, and application of a seven-strain Staphylococcus aureus PCR product microarray for comparative genomics. Appl Environ Microbiol 71, 7504–7514.

Wörmann, M. E., Reichmann, N. T., Malone, C. L., Horswill, A. R. & Gründling, A. (2011). Proteolytic cleavage inactivates the Staphylococcus aureus lipoteichoic acid synthase. J Bacteriol 193, 5279–5291.

Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinlap, S. C., Ester, M. & other authors (2010). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615.

http://mgen.microbiologyresearch.org
Zhang, H. Z., Hack Barth, C. J., Chansky, K. M. & Chambers, H. F. (2001). A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. *Science* 291, 1962–1965.

Zhu, Z., Boobis, A. R. & Edwards, R. J. (2008). Identification of estrogen-responsive proteins in MCF-7 human breast cancer cells using label-free quantitative proteomics. *Proteomics* 8, 1987–2005.

Ziebandt, A. K., Weber, H., Rudolph, J., Schmid, R., Höper, D., Engelmann, S. & Hecker, M. (2001). Extracellular proteins of *Staphylococcus aureus* and the role of SarA and σB. *Proteomics* 1, 480–493.

Ziebandt, A.-K., Becher, D., Ohlsen, K., Hacker, J., Hecker, M. & Engelmann, S. (2004). The influence of *agr* and σB in growth phase dependent regulation of virulence factors in *Staphylococcus aureus*. *Proteomics* 4, 3034–3047.

Ziebandt, A.-K., Kusch, H., Degner, M., Jaglitz, S., Sibbald, M. J. B., Arends, J. P., Chlebowicz, M. A., Albrecht, D., Pantucek, R. & other authors (2010). Proteomics uncovers extreme heterogeneity in the *Staphylococcus aureus* exoproteome due to genomic plasticity and variant gene regulation. *Proteomics* 10, 1634–1644.

Data References

Figshare. DOI: http://dx.doi.org/10.6084/m9.figshare.1566807 (2016)

Figshare. DOI: http://dx.doi.org/10.6084/m9.figshare.1566710 (2016)

European Nucleotide Archive. http://www.ebi.ac.uk/ena. Accession number PRJEB12240, secondary study accession number ERP013694 (2016)