Flexible and Proficient Routing in Mobile Ad-Hoc Network

K Padmanaban* and A K Velmurugan
Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
Email: *padmanaban.k@kluniversity.in

Abstract. Mobile ad hoc networks (MANETs) can be distinct as a gathering amount of mobile nodes which build the irregular network lacking assist of several network structures. Every mobile node entering together as host as well as a router also it transmits the data to receiver via multi-hop manner. The dynamic topography, node mobility, offers large amount of degree, self-organizing capacity that is a features of MANET. Owing to the scenery intends to improvement of routing is disputing chore for communication surroundings. In this paper, Flexible and Proficient Routing in MANET is introduced. Here, Routing can be achieved both multi-hop and multipath. In an efficient network, care to achieve both in the most optimized manner is essential. An analysis of when multi-hop data transmission is required and when multipath transmission can be used for efficient communication is analyzed. The results provide better routing efficiency in MANET.

Keywords: Mobile ad hoc networks, multi-hop data transmission, multipath routing

1. Introduction

MANETS will explain as merely assortment of mobile nodes and transmit the information between nodes through wireless connections. Whereas catching significant features, this depiction does not construct open how MANETs also not permit the measurement of present IP approaches on MANETs. Likewise, the absent of an obvious structural explanation inside the situation of the Internet [1].

Nodes are free to travel randomly; therefore, the topography is normally multi-hop may change erratically at volatile period. Since, the topography is updating continually, it is essential for every pair of adjoining nodes to integrate in the routing problem to avoid several type of possible attacks which attempt to build utilize of exposures in the routing approach [2].

Several strategies have attained to offer solutions to execute and transmit the data in a well-organized manner. But, the significant troubles during the link failure since the node mobility [3]. Bandwidth restraints, lesser battery energy are the other components which obstruct the competence in the network. Figure 1 shows the link failure among sender and receiver in MANET.
2. Related Works
A better next hop collection approach is, thus, necessary that is capable to improve the system lifespan and maximize data transaction [4]. In [5] introduced a location based approach that supporting an energy efficient selection as well as data routing to extend the lifespan of network. The clustering approach sure equated size cluster arrangement with least amount of broadcast accepts functions. This approach developed to attain equates the energy utilization thus prolonging the lifetime.

The LEACH (Low-Energy Adaptive Clustering Hierarchy) approach [6] is an extensively recognized as well as efficient one to diminish and equate the energy utilization. The LEACH approach arbitrarily rotates Cluster Heads (CHs) between nodes, so as to avoid rapid energy utilization of the set of CHs.

Localization approach is performing better by connectivity information. It can integrate distance among neighboring nodes whereas it is accessible [7]. Community detection-based routing approach is an expansion of the Routing Label Propagation. It is a distributed probabilistic procedure which enhances the network connectivity inside the communities [8]. Vicinity based Dynamic Connectivity approach is capable to energetically search the status of the network through connectivity metric [9]. Dynamic random geometric graph framework is used for highly dynamic networks [10]. Mobility, energy as well as traffic congestion are the major causes for a reducing route function [11]. Mobility, Energy and Congestion Aware Routing approach that increase the route function. It also discovers the stable as well as congestion-free route [12]. Link availability evaluation based consistent routing protocol that conceives the unheralded network topology update difficulty to enhance the network function. The link accessibility represents the possibility of a connection will be incessantly presented for a specified time [13].

3. Flexible and Proficient Routing in Mobile Ad-Hoc Network
Routing can be attained both multi-hop as well as multipath. In a competent network, concern to attain both in the majority optimized method is a necessary. An analysis of while multi-hop data [14] communication is necessitated also multi-path [15] communication may be utilized for efficient transaction is examined. The alteration of multi-path also multi-hop routing established on an amount of potential like below are measured facing routing:

Multi-hop:
a. Next hop Remaining energy
b. Next hop Reliability
c. Next hop Quality of service
Mult-path:

- Bandwidth
- Path Reliability

The function of a multipath routing method also a multi-hop routing method is compared with the introduced protocol in this paper.

3.1. Multipath Routing

Multipath routing is the routing procedure of applying several alternative routes via a network that can give way a diversity of advantages for example, such as bandwidth, fault tolerance and security improvement. The several routes calculated may be overlapped, and node-disjointed with every other. Widespread research has been completed on multipath routing approaches, but multipath routing is not until now extensively distributed in perform. Figure 2 explains the Multi Path data Transmission among Sender and receiver. Thus remove the traffic and congestion control in MANET.

![Figure 2: Multi Path data Transmission among Sender and receiver](image)

3.2. Multi-Hop Routing

Multi-hop Routing is an feature of the MANET itself entire data moves hop to hop earlier than it attains the receiver except the sender also receiver are inside straight range of every other. Though, in this situation multipath routing may signify the communication of the whole data from one to other nodes. Figure 3 explains the Multi-hop data transmission among Sender and receiver. Thus attain the receiver efficiently in the network.
4. Result Evaluation

The function of the combined Multi-hop and multi-path is evaluated using the simulator tool NS-2. The Result Evaluation is done through estimating throughput and delay. We employ NS2.35 simulation results for a MANET. Here, the 50 mobile nodes are arbitrarily distributed in a 600x500m² topology area with required modification to preserve the property.

The figure 4 and Figure 5 explains the throughput evaluation of Multi-hop, multi-path as well as combined Multi-hop and multi-path method. Figure 4 deeply explains the result of Multi-hop, multi-path as well as combined Multi-hop and multi-path method against the node scalability. Here, Multi-path route provide better efficiency than the multi-hop routing. But, combined Multi-hop and multi-path method provide greater throughput than the Multi-hop and multi-path methods.
Figure 5 explains the delay result of Multi-hop, multi-path as well as combined Multi-hop and multi-path method against the node scalability. Here, Multi-path route provide lesser delay than the multi-hop routing. But, combined Multi-hop and multi-path method provide very less delay than the Multi-hop and multi-path methods.

![Figure 5: Average Delay](image)

5. Conclusion
In this paper, Flexible and Proficient Routing in MANET is introduced. Here, Routing can be achieved both multi-hop and multipath. In an efficient network, care to achieve both in the most optimized manner is essential. An analysis of when multi-hop data transmission is required and when multi-path transmission can be used for efficient communication is analyzed. Multi-hop routing provides better routing efficiency and multi-path routing minimizes the network congestion and delay in the MANET. The results prove combined Multi-hop and multi-path method better throughput efficiency and lesser delay in a MANET.

References
[1]. Yunfeng Chen and Nidal Nasser. 2006. Energy-balancing multipath routing protocol for wireless sensor networks. In Proceedings of the 3rd international conference on Quality of service in heterogeneous wired/wireless networks (QShine '06). ACM, New York, NY, USA., Article 21.
[2]. Nasser, Nidal, and Yunfeng Chen. "Secure multipath routing protocol for wireless sensor networks." Distributed Computing Systems Workshops, 2007. ICDCSW'07. 27th International Conference on. IEEE, 2007.
[3]. Kim, Moonseong, et al. "Multipath energy-aware routing protocol in wireless sensor networks." Networked Sensing Systems, 2008. INSS 2008. 5th International Conference on. IEEE, 2008.
[4]. Gong, Bencan, et al. "Multihop routing protocol with unequal clustering for wireless sensor networks." Computing, Communication, Control, and Management, 2008. CCCM'08. ISECS International Colloquium on. Vol. 2. IEEE, 2008.
[5]. Liu, Wenjun, et al. "A Grid-based Distributed Multi-hop Routing Protocol for Wireless Sensor Networks." Embedded and Ubiquitous Computing, 2008. EUC'08. IEEE/IFIP International Conference on. Vol. 1. IEEE, 2008.
[6]. Sabri, N. A. M., Basari, ASH., Hussin, B., Samah K.A.F., 2015, Dijkstra-Ant Colony Optimization Algorithm For Shortest And Safest Evacuation In High Rise Building, 79:3 (2017) 69–77. 9.
[7]. Ashok Kumar, Vinod Kumar, Narottam Chand,” Energy Efficient Clustering and Cluster Head Rotation Scheme for Wireless Sensor Networks” (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 3, No.5, 2011.

[8]. Huang Lu, Jie Li, Mohsen Guizani, “Secure and Efficient Data Transmission for Cluster based Wireless Sensor Networks,” IEEE TRANS. ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012.

[9]. Kumar, MJ& Baskaran, R 2015, ‘Performance Analysis and Comparison of Congestion Control in Wired and Wireless Environment’, International Journal of Control Theory and Applications, vol. 8, no.5, pp. 1743-1757.

[10]. La-Yuan, S. B. L. L. (2004). A QoS Based Multicast Routing Protocol in Ad Hoc Networks [J]. Chinese Journal of Computers, 10.

[11]. Kumar, MJ & Baskaran, R (2017), Analyzing a Personalized Network System through NetFlow’, Institute of Integrative Omics and Applied Biotechnology (IIOAB), 7(7), pp. 1-7.

[12]. Jan, Z., Azeem, N., & Zahoor, F. (2015, November). Digital watermarking using combination of Ranklets and wavelets. In 2015 First International Conference on Anti-Cybercrime (ICACC) (pp. 1-5). IEEE.

[13]. Ramasamy, V. (2017). Mobile wireless sensor networks: An overview. Wireless Sensor Networks—Insights and Innovations.

[14]. Hassan, J. (2018, April). Future of Applications in Mobile wireless Sensor Networks. In 2018 1st International Conference on Computer Applications & Information Security (ICCAIS) (pp. 1-6). IEEE.

[15]. De Paulo, M. A., Nascimento, M. C., & Rosset, V. (2016, October). Improving the Connectivity of Community Detection-based Hierarchical Routing Protocols in Large-scale WSNs. In KES (pp. 521-530).