CENTRALIZERS OF CERTAIN QUADRATIC ELEMENTS IN POISSON–LIE ALGEBRAS AND ARGUMENT SHIFT METHOD

L. G. RYBNIKOV

1. Introduction.

Let \(g \) be a semisimple complex Lie algebra. The universal enveloping algebra \(U(g) \) bears a natural filtration by the degree with respect to the generators. The associated graded algebra \(\text{gr} U(g) \) is naturally isomorphic to the symmetric algebra \(S(g) = \mathbb{C}[g^*] \) by the Poincaré-Birkhoff-Witt theorem. The commutator operation on \(U(g) \) defines a Poisson bracket on \(S(g) \), which we call the Poisson–Lie bracket.

The argument shift method gives a way to construct Poisson-commutative subalgebras in \(S(g) \). The method is as follows. Let \(ZS(g) = S(g)^g \) be the center of \(S(g) \) with respect to the Poisson bracket, and let \(\mu \in g^* \) be a regular semisimple element. Then the algebra \(A_\mu \subset S(g) \) generated by the elements \(\partial^\mu \Phi \), where \(\Phi \in ZS(g) \), (or, equivalently, generated by central elements of \(S(g) = \mathbb{C}[g^*] \) shifted by \(t\mu \) for all \(t \in \mathbb{C} \)) is Poisson-commutative and has maximal possible transcendence degree equal to \(\frac{1}{2}(\dim g + \text{rk} g) \) (see [3]). Moreover, the subalgebras \(A_\mu \) are maximal Poisson-commutative subalgebras in \(S(g) \) (see [7]). In [9], the subalgebras \(A_\mu \subset S(g) \) are named the Mischenko–Fomenko subalgebras.

Let \(h \subset g \) be a Cartan subalgebra of the Lie algebra \(g \). We denote by \(\Delta \) and \(\Delta_+ \) the root system of \(g \) and the set of positive roots, respectively. Let \(\alpha_1, \ldots, \alpha_l \) be the simple roots. Fix a non-degenerate invariant scalar product \((\cdot, \cdot) \) on \(g^* \) and choose from each root space \(g_\alpha \), \(\alpha \in \Delta \), a nonzero element \(e_\alpha \) such that \((e_\alpha, e_{-\alpha}) = 1 \). Set \(h_\alpha := [e_\alpha, e_{-\alpha}] \), then for any \(h \in h \) we have \((h_\alpha, h) = (\alpha, h) \).

The elements \(e_\alpha \) (\(\alpha \in \Delta \)) together with \(h_1, \ldots, h_l \in h \) form a basis of \(g \).

We identify \(g \) with \(g^* \) via the scalar product \((\cdot, \cdot) \) and assume that \(\mu \) is a regular semisimple element of the fixed Cartan subalgebra \(h \subset g = g^* \). The linear and quadratic part of the Mischenko–Fomenko subalgebras can be described as follows [2]:

\[
A_\mu \cap g = h,
\]

\[
A_\mu \cap S^2(g) = S^2(h) \oplus Q_\mu, \quad \text{where} \quad Q_\mu = \left\{ \sum_{\alpha \in \Delta_+} \frac{\langle \alpha, h \rangle}{\langle \alpha, \mu \rangle} e_{\alpha} e_{-\alpha} | h \in h \right\}.
\]

The main result of the present paper is the following

Theorem 1. For generic \(\mu \in h \) (i.e. for \(\mu \) in the complement to a certain countable union of Zariski-closed subsets in \(h \)), the algebra \(A_\mu \) is the Poisson centralizer of the subspace \(Q_\mu \) in \(S(g) \).

The work was partially supported by RFBR grant 04-01-00702, RFBR grant 05 01 00988-a and RFBR grant 05-01-02805-CNRSL-a.
In [1, 4, 6] the Mischenko–Fomenko subalgebras were lifted (quantized) to the universal enveloping algebra, i.e. the family of commutative subalgebras $A_\mu \subset U(g)$ such that $\text{gr} A_\mu = A_\mu$ was constructed for any classical Lie algebra g (i.e. sl_r, so_r, sp_{2r}). In [5] we do this (by different methods) for any semisimple g.

We deduce the following assertion from Theorem 1.

Theorem 2. For generic $\mu \in h$ there exist no more than one commutative subalgebra $A_\mu \subset U(g)$ satisfying $\text{gr} A_\mu = A_\mu$.

This means that there is a unique quantization of Mischenko–Fomenko subalgebras. In particular, the methods of [1, 4, 6] and [5] give the same for classical Lie algebras. In the case $g = gl_n$ the assertion of Theorem 2 was proved by A. Tarasov [8] for any regular $\mu \in h$.

I thank E. B. Vinberg for attention to my work and useful discussions.

2. Proof of Theorem 1

Note that the set $E_n \subset h$ of such $\mu \in h$ that the Poisson centralizer of the space Q_μ in $S^n(g)$ has the dimension greater than $\dim A_\mu \cap S^n(g)$ is Zariski-closed in h for any n. Therefore it suffices to prove that $E_n \neq h$ for any n. Thus, it suffices to prove the existence of $\mu \in h$ satisfying the conditions of the Theorem.

Lemma 1. There exist $\mu, h \in h$ such that numbers $\frac{\langle h, \alpha \rangle}{\langle \alpha, \mu \rangle}$ ($\alpha \in \Delta_+$) are linearly independent over Q.

Proof. Choose μ such that the values $\alpha_i(\mu)$ are algebraically independent over Q for simple roots α_i. Since there are no proportional positive roots, the numbers $\frac{1}{\langle \alpha, \mu \rangle}$, $\alpha \in \Delta_+$, are linearly independent over Q. Choose h such that the values $\langle \alpha, h \rangle$ are nonzero rational numbers. Then the numbers $\frac{\langle \alpha, h \rangle}{\langle \alpha, \mu \rangle}$, $\alpha \in \Delta_+$, are linearly independent over Q. \square

Choose $\gamma \in g^*$ such that $\gamma(\alpha_i) = 1$ for any simple root α_i and $\gamma(e_\alpha) = 0$ for $\alpha \in \Delta$. We define a new Poisson bracket $\{\cdot, \cdot\}_\gamma$ on $S(g)$ by setting $\{x, y\}_\gamma = \gamma([x, y])$ for $x, y \in g$. This bracket is compatible with the Poisson–Lie bracket, i.e. the linear combination $t\{\cdot, \cdot\} + (1 - t)\{\cdot, \cdot\}_\gamma$ is a Poisson bracket on $S(g)$ (i.e. satisfies the Jacobi identity) for any $t \in \mathbb{C}$. Moreover, for $t \neq 0$, the corresponding Poisson algebras are isomorphic. Namely, denote by $S(g)_t$ the algebra $S(g)$ equipped with the Poisson bracket $t\{\cdot, \cdot\} + (1 - t)\{\cdot, \cdot\}_\gamma$; then for $t \neq 0$ the Poisson algebra isomorphism $\psi_t : S(g)_t \to S(g)_t$ is defined on the generators $x \in g$ as follows: $\psi_t(x) = t^{-1}x + t^{-2}(1 - t)\gamma(x)$. Clearly, we have $\psi_t(Q_\mu) = Q_\mu$.

Lemma 2. The transcendence degree of the Poisson centralizer of the subspace Q_μ in $S(g)_0$ is not greater than $\frac{1}{2}(\dim g + \text{rk } g)$ for some $\mu \in h$.

2
Proof. Choose \(\mu \) and \(h \) as in Lemma 1 and set \(q = \sum_{\alpha \in \Delta_+} \frac{\langle \alpha, h \rangle}{\langle \alpha, \mu \rangle} e_\alpha e_{-\alpha} \in Q_\mu \). For any \(f \in S(\mathfrak{g}) \), we have \(\{q, f\}_\gamma = \sum_{\alpha \in \Delta_+} \gamma(h_\alpha) \frac{\langle \alpha, h \rangle}{\langle \alpha, \mu \rangle} (e_\alpha e_{-\alpha} - e_{-\alpha} e_\alpha) \). In particular,

\[
(1) \quad \{q, \prod_{i=1}^l h_{\alpha_i}^{m_i} \prod_{\alpha \in \Delta_+} e_\alpha^{n_\alpha} e_{-\alpha}^{n_{-\alpha}} \}_\gamma = \sum_{\alpha \in \Delta_+} \gamma(h_\alpha) \frac{\langle \alpha, h \rangle}{\langle \alpha, \mu \rangle} \left(n_{-\alpha} - n_\alpha \right) \prod_{i=1}^l h_{\alpha_i}^{m_i} \prod_{\alpha \in \Delta_+} e_\alpha^{n_\alpha} e_{-\alpha}^{n_{-\alpha}}.
\]

For any \(\alpha = \sum_{i=1}^l k_i \alpha_i \in \Delta_+ \), we have \(\gamma(h_\alpha) = \sum_{i=1}^l k_i \in Q \setminus \{0\} \). Since the numbers \(\frac{\langle \alpha, h \rangle}{\langle \alpha, \mu \rangle} \) are linearly independent over \(Q \), the right hand part of (1) is zero iff \(n_\alpha - n_{-\alpha} = 0 \) for any \(\alpha \in \Delta_+ \). This means that the Poisson centralizer of \(q \) in \(S(\mathfrak{g})_0 \) is linearly generated by monomials having equal degrees in \(e_\alpha \) and \(e_{-\alpha} \) for any \(\alpha \in \Delta_+ \), i.e. the Poisson centralizer of \(q \) in \(S(\mathfrak{g})_0 \) is generated (as a commutative algebra) by the elements \(h_{\alpha_i} \) \((i = 1, \ldots , l) \) and \(e_\alpha e_{-\alpha} \) \((\alpha \in \Delta_+) \). Therefore, the transcendence degree of the Poisson centralizer of \(q \) in \(S(\mathfrak{g})_0 \) is equal to \(\frac{1}{2} (\dim \mathfrak{g} + \text{rk} \mathfrak{g}) \).

By Lemma 2, the transcendence degree of the Poisson centralizer of the subspace \(Q_\mu \) in \(S(\mathfrak{g})_t \) is not greater than \(\frac{1}{2} (\dim \mathfrak{g} + \text{rk} \mathfrak{g}) \) for generic \(t \). Since the Poisson algebras \(S(\mathfrak{g})_t \) are isomorphic to each other for \(t \neq 0 \), this lower bound of the transcendence degree holds for any \(t \in \mathbb{C} \). Let \(Z \subset S(\mathfrak{g}) \) be the Poisson centralizer of \(Q_\mu \) in \(S(\mathfrak{g})_1 \). Since \(\text{tr deg}(Z) \leq \text{tr deg}(A_\mu) \) and \(A_\mu \subset Z \), we see that each element of \(Z \) is algebraic over \(A_\mu \). By Tarasov’s results \([7] \), the subalgebra \(A_\mu \) is algebraically closed in \(S(\mathfrak{g})_1 \), hence, \(Z = A_\mu \). Theorem 1 is proved.

3. Proof of Theorem 2

By \([3] \), the subspace \(A_\mu^{(2)} = \mathbb{C} + h + S^2(h) + Q_\mu \subset S(\mathfrak{g})^{(2)} \) can be uniquely lifted to a commutative subspace \(A_\mu^{(2)} \subset U(\mathfrak{g})^{(2)} \) (this subspace is the image of \(A_\mu^{(2)} \) under the symmetrization map). By Theorem 1, any lifting \(A_\mu \subset U(\mathfrak{g}) \) of \(A_\mu \) is the centralizer of the subspace \(A_\mu^{(2)} \) in \(U(\mathfrak{g}) \) for generic \(\mu \). Theorem 2 is proved.

References

[1] Chervov, A. and Talalaev, D. Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, preprint hep-th/0604128
[2] Fomenko, A. T. Symplectic structures and integrable systems in symmetric spaces. (Russian) Mat. Sb. (N.S.) 115(157) (1981), no. 2, 263–280, 320.
[3] Mischenko, A. S.; Fomenko, A. T. Integrability of Euler’s equations on semisimple Lie algebras. (Russian) Trudy Sem. Vektor. Tenzor. Anal. No. 19 (1979), 3–94.
[4] Nazarov M., Olshanski G., Bethe Subalgebras in Twisted Yangians, Comm. Math. Phys., V.178, P.433–506 (1996), [q-alg/9507003]
[5] Rybnikov, L. G., Argument shift method and Gaudin model, Func. Anal. Appl., 40 (2006), No 3. [math.RT/0606380]
[6] Tarasov, A. A. *On some commutative subalgebras in the universal enveloping algebra of the Lie algebra gl(n, C)*. (Russian) Mat. Sb. 191 (2000), no. 9, 115–122; translation in Sb. Math. 191 (2000), no. 9-10, 1375–1382.

[7] Tarasov, A. A. *The maximality of some commutative subalgebras in Poisson algebras of semisimple Lie algebras*. (Russian) Uspekhi Mat. Nauk 57 (2002), no. 5(347), 165–166; translation in Russian Math. Surveys 57 (2002), no. 5, 1013–1014.

[8] Tarasov, A. A. *On the uniqueness of the lifting of maximal commutative subalgebras of the Poisson-Lie algebra to the enveloping algebra*. (Russian) Mat. Sb. 194 (2003), no. 7, 155–160; translation in Sb. Math. 194 (2003), no. 7-8, 1105–1111.

[9] Vinberg, E. B., *Some commutative subalgebras of a universal enveloping algebra*. (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 1, 3–25, 221; translation in Math. USSR-Izv. 36 (1991), no. 1, 1–22.

Poncelet laboratory (Independent University of Moscow and CNRS) and Moscow State University, department of Mechanics and Mathematics

E-mail address: leo.rybnikov@gmail.com