Remarks on the K-theory of C^*-algebras of products of odometers

Hui Li

Received: 13 July 2020 / Accepted: 1 March 2021 / Published online: 11 March 2021
© Tusi Mathematical Research Group (TMRG) 2021

Abstract
We pose a conjecture on the K-theory of the self-similar k-graph C^*-algebra of a standard product of odometers. We generalize the C^*-algebra Q_S to any subset of $\mathbb{N}^\times \setminus \{1\}$ and then realize it as the self-similar k-graph C^*-algebra of a standard product of odometers.

Keywords C^*-algebra · K-theory · Self-similar k-graph · Products of odometers

Mathematics Subject Classification 46L05

1 Introduction
Motivated by the work of Bost and Connes in Ref. [3], Cuntz in Ref. [5] constructed a C^*-algebra $Q_\mathbb{N}$ which is strongly related to the $ax + b$-semigroup over \mathbb{N}. Later Li in Ref. [15] defined the notion of semigroup C^*-algebras and Brownlowe, Ramagge, Robertson, and Whittaker in Ref. [4] defined the boundary quotients of semigroup C^*-algebras. Their work branches out to many interesting mathematical areas and, hence, generates a very popular area of C^*-algebras.

For any nonempty subset $S \subset \mathbb{N}^\times \setminus \{1\}$ consisting of mutually coprime numbers, Barlak, Omland, and Stammeier in Ref. [2] defined a C^*-algebra Q_S which is a direct generalization of the Cuntz algebra $Q_\mathbb{N}$ (by letting S be the set of all prime numbers). Barlak, Omland, and Stammeier decomposed the K-theory of Q_S into a free abelian part which they solved in Ref. [2] and a highly nontrivial torsion part. At the end of [2], Barlak, Omland, and Stammeier made a conjecture to the torsion part which is equivalent to a conjecture of k-graph C^*-algebras about whether the

Communicated by Baruch Solel.

* Hui Li
lihui8605@hotmail.com

1 Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
\(K\)-theory of the single-vertex \(k\)-graph \(C^*\)-algebra is independent of the factorization rule. Very recently, many authors also found the \(k\)-graph algebra conjecture is highly connected with the famous Yang–Baxter equation (see for example [8, 27]). Therefore, the conjecture of Barlak, Omland, and Stammeier, and the conjecture about the \(k\)-graph \(C^*\)-algebra are extremely important in many ways.

Self-similar actions appear naturally in geometric group theory. Nekrashevych was the first who systematically built a bridge between the \(C^*\)-algebra theory and the self-similar actions (on rooted trees, see [20, 21]). Nekrashevych’s work was recently generalized to the self-similar directed graphs, self-similar directed graph \(C^*\)-algebras by Exel and Pardo in Ref. [7], and to the self-similar \(k\)-graphs, self-similar \(k\)-graph \(C^*\)-algebras by Li and Yang in Ref. [17].

The purpose of this paper is twofold. First, we pose a conjecture (see Conjecture 4.3) on the \(K\)-theory of the self-similar \(k\)-graph \(C^*\)-algebra of a standard product of odometers (see Definition 2.9). Second, we generalize the \(C^*\)-algebra \(Q\) to any subset of \(\mathbb{N}^k \setminus \{1\}\) and then realize it as the self-similar \(k\)-graph \(C^*\)-algebra of \(\Lambda\). Therefore, Conjecture 4.3 naturally includes the conjecture of Barlak, Omland, and Stammeier and the conjecture about the \(k\)-graph \(C^*\)-algebra. We hope the self-similar \(k\)-graph \(C^*\)-algebra setting will provide insight on how to solve these conjectures in the future.

Our paper is organized as follows. In Sect. 2, we provide the background material about self-similar \(k\)-graph \(C^*\)-algebras. In Sect. 3, we use the skew product approach to stabilize every self-similar \(k\)-graph \(C^*\)-algebra. In Sect. 4, we pose a conjecture (see Conjecture 4.3) on the \(K\)-theory of the self-similar \(k\)-graph \(C^*\)-algebra of a standard product of odometers and then we discuss the relationship between Conjecture 4.3 and the conjecture of Barlak, Omland, and Stammeier.

2 Preliminaries

In this section, we recap the background of \(k\)-graphs, \(k\)-graph \(C^*\)-algebras, self-similar \(k\)-graph, self-similar \(k\)-graph \(C^*\)-algebras from [13, 17, 18].

Definition 2.1 Let \(k\) be a positive integer which is allowed to be infinity. A countable small category \(\Lambda\) is called a \(k\)-graph if there exists a functor \(d: \Lambda \rightarrow \mathbb{N}^k\) satisfying that for \(\gamma \in \Lambda\), \(p, q \in \mathbb{N}^k\) with \(d(\gamma) = p + q\), there exist unique \(\gamma' \in d^{-1}(p)\) and \(\gamma'' \in d^{-1}(q)\) with \(s(\gamma') = r(\gamma'')\) such that \(\gamma = \gamma' / \gamma''\).

Definition 2.2 Let \(\Lambda\) be a \(k\)-graph. For \(p, q \in \mathbb{N}^k, \lambda \in \mathbb{T}^k\), denote by \(p \vee q := (\max\{p_i, q_i\})_{i=1}^k\), denote by \(\Lambda^p := d^{-1}(p)\), denote by \(\lambda^p := \prod_{i=1}^k \lambda_i^{p_i}\). For \(\mu, \nu \in \Lambda\), define \(\Lambda^{\min}(\mu, \nu) := \{ (\alpha, \beta) \in \Lambda \times \Lambda : \mu \alpha = \nu \beta, d(\mu \alpha) = d(\mu) \vee d(\nu) \}\). For \(A, B \subset \Lambda\), denote by \(AB := \{ \mu \nu : \mu \in A, \nu \in B, s(\mu) = r(\nu) \}\). Denote by \(\{e_i\}_{i=1}^k\) the standard basis of \(\mathbb{N}^k\). For \(1 \leq n \leq k\), denote by \(1_n := \sum_{i=1}^n e_i\).
Definition 2.3 Let Λ be a k-graph. Then, Λ is said to be row-finite if $|v\Lambda^n| < \infty$ for all $v \in \Lambda^0$ and $p \in \mathbb{N}^k$. Λ is said to be source-free if $v\Lambda^n \neq \emptyset$ for all $v \in \Lambda^0$ and $p \in \mathbb{N}^k$. Λ is said to be finite if $|\Lambda^n| < \infty$ for all $n \in \mathbb{N}^k$.

Throughout the rest of this paper, all k-graphs are assumed to be row finite and source free.

Definition 2.4 Let Λ be a k-graph. Then, the k-graph C^*-algebra O_Λ is defined to be the universal C^*-algebra generated by a family of partial isometries $\{s_\lambda : \lambda \in \Lambda\}$ (Cuntz-Krieger Λ-family) satisfying

1. $\{s_v\}_{v \in \Lambda^0}$ is a family of mutually orthogonal projections;
2. $s_{\mu v} = s_\mu s_v$ if $s(\mu) = r(v)$;
3. $s_\mu s_\nu = s_{s(\mu)}$ for all $\mu \in \Lambda$; and
4. $s_v = \sum_{\mu \in \Lambda^0} s_\mu s_\nu^*$ for all $v \in \Lambda^0, p \in \mathbb{N}^k$.

Definition 2.5 Let G be a countable discrete group, let Λ be a k-graph, let $\cdot : G \times \Lambda \to \Lambda$, $(g, \mu) \mapsto g \cdot \mu$ be a map, and let $| : G \times \Lambda \to G$, $(g, \mu) \mapsto g|_\mu$ be a map. Then, the pair (G, Λ) is called a self-similar k-graph if

1. $G \cdot \Lambda^p \subseteq \Lambda^p$ for all $p \in \mathbb{N}^k$;
2. $s(g \cdot \mu) = g \cdot s(\mu)$ and $r(g \cdot \mu) = g \cdot r(\mu)$ for all $g \in G, \mu \in \Lambda$;
3. $g \cdot (\mu \nu) = (g \cdot \mu)(g|_\mu \cdot v)$ for all $g \in G, \mu, v \in \Lambda$ with $s(\mu) = r(v)$;
4. $g|_v = g$ for all $g \in G, v \in \Lambda^0$;
5. $g|_\nu = g|_\mu |_v$ for all $g \in G, \mu, v \in \Lambda$ with $s(\mu) = r(v)$;
6. $1_G|_\mu = 1_G$ for all $\mu \in \Lambda$;
7. $(gh)|_\mu = g|_h \cdot h|_\mu$ for all $g, h \in G, \mu \in \Lambda$.

Remark 2.6 Conditions 3 and 7 of Definition 2.5 define the interaction between the map \cdot and the map $|$. This interaction is the defining characteristic of a self-similar k-graph.

Definition 2.7 Let (G, Λ) be a self-similar k-graph. Define $O_{G,\Lambda}^+$ to be the universal unital C^*-algebra generated by a Cuntz–Krieger Λ-family $\{s_\mu : \mu \in \Lambda\}$ and a family of unitaries $\{u_g : g \in G\}$ satisfying

1. $u_g h = u_g u_h$ for all $g, h \in G$;
2. $u_g s_\mu = s_{g \cdot \mu} u_g|_\mu$ for all $g \in G, \mu \in \Lambda$.

Define $O_{G,\Lambda} := \overline{\operatorname{span}} \{s_\mu u_g s_\nu^* : s(\mu) = g \cdot s(\nu)\}$, which is called the self-similar k-graph C^*-algebra of (G, Λ).

Remark 2.8

1. To see the spanning elements of $O_{G,\Lambda}$ are closed under the multiplication, we calculate that...
\[S_{\mu} u_{\mu^{i}} s_{\rho} u_{\rho^{j}} s_{\eta} = S_{\mu} u_{\mu^{i}} \left(\sum_{(\xi,\eta) \in \Lambda^{\min}(v,a)} s_{\xi} s_{\eta} \right) u_{\rho^{j}} s_{\rho} \]

\[= \sum_{(\xi,\eta) \in \Lambda^{\min}(v,a)} s_{\mu(g,\xi)} u_{\mu^{i}} u_{(h(\eta^{-1})_{v})} s_{\rho} s_{\rho^{-1}} \]

2. If \(\Lambda \) is finite, then \(O_{G,\Lambda} \) is a unital \(C^* \)-algebra with the unit \(\sum_{v \in \Lambda} s_{v} \).

3. There exists a strongly continuous homomorphism \(\gamma : \mathbb{T}^k \to \text{Aut}(O_{G,\Lambda}) \), which is called the gauge action, such that \(\gamma_{x}(s_{\mu} u_{\mu^{i}} s_{\nu}) = \lambda^{d(\mu)-d(v)} s_{\mu} u_{\mu^{i}} s_{\nu} \) for all \(\mu, \nu \in \Lambda, g \in G \) with \(s(\mu) = g \cdot s(v) \). By the gauge-invariant uniqueness theorem (see [13, Theorem 3.4]), \(O_{\Lambda} \) embeds in \(O_{G,\Lambda} \) naturally.

Definition 2.9 [16, Definition 4.6] Let \((G, \Lambda)\) be a self-similar \(k \)-graph. Then, \((G, \Lambda)\) is called a product of odometers if

1. \(G = \mathbb{Z} \);
2. \(\Lambda^{0} = \{v\} \);
3. \(\Lambda^{1} := \{x_{\xi}^{\prime} \}_{\xi \in \mathbb{N}, \xi > 1} \) for all \(1 \leq i \leq k \);
4. \(1 \cdot x_{\xi}^{\prime} = x_{\xi(\xi+1) \mod n_{i}}^{\prime} \) for all \(1 \leq i \leq k, 0 \leq \xi \leq n_{i} - 1 \);
5. \(1|_{x_{\xi}^{\prime}} = \begin{cases} 0 & \text{if } 0 \leq \xi < n_{i} - 1 \\ 1 & \text{if } \xi = n_{i} - 1 \end{cases} \) for all \(1 \leq i \leq k, 0 \leq \xi \leq n_{i} - 1 \).

In particular, if \(k = 1 \), then \((G, \Lambda)\) is called an odometer. Moreover, if \(x_{\xi} \cdot x_{\eta} = x_{\xi+\eta} \) for all \(1 \leq i < j \leq k, 0 \leq \xi, \xi' \leq n_{i} - 1, 0 \leq t, t' \leq n_{j} - 1 \) with \(\xi + t \xi = t' + \xi' n_{j} \), then \((G, \Lambda)\) is called a standard product of odometers. Denote by \(g_{\Lambda} := \gcd\{n_{i} - 1 : 1 \leq i \leq k\} \).

3 Self-similar skew products

Kumjian and Pask in Ref. [13, Definition 5.1] defined the notion of skew products of \(k \)-graphs. That is, given a \(k \)-graph \(\Lambda \) and a functor from \(\Lambda \) into a group \(K \), they endowed the Cartesian product \(\Lambda \times K \) with a \(k \)-graph structure and it is called the skew product of \(k \) and \(K \). Since any \(k \)-graph \(\Lambda \) carries a functor which is the degree map \(d : \Lambda \to \mathbb{Z}^{k} \), there is a natural skew product \(\Lambda \) and \(\mathbb{Z}^{k} \), denoted by \(\Lambda \star \mathbb{Z}^{k} \), induced from the degree map (see Definition 3.1).

In this section, for any self-similar \(k \)-graph \((G, \Lambda)\), we construct a self-similar \(k \)-graph \((G, \Lambda \star \mathbb{Z}^{k})\) and we show that \(O_{G,\Lambda \star \mathbb{Z}^{k}} \cong O_{G,\Lambda} \star_{v} \mathbb{T}^{k} \), where \(\gamma : \mathbb{T}^{k} \to \text{Aut}(O_{G,\Lambda}) \) is the gauge action.

Definition 3.1 (cf. [13, Definition 5.1]) Let \(\Lambda \) be a \(k \)-graph. Define \(\Lambda \star \mathbb{Z}^{k} := \Lambda \times \mathbb{Z}^{k} \); define \((\Lambda \star \mathbb{Z}^{k})^{0} := \Lambda^{0} \times \mathbb{Z}^{k} \); for \((\mu, z) \in \Lambda \star \mathbb{Z}^{k} \), define \(s(\mu, z) := (s(\mu), d(\mu) + z) \); \(r(\mu, z) := (r(\mu), z) \); for \((\mu, z), (\nu, d(\mu) + z) \in \Lambda \star \mathbb{Z}^{k} \) with \(s(\mu) = r(\nu) \), define \((\mu, z) \cdot (\nu, d(\mu) + z) := (\mu \nu, z) \); for \((\mu, z) \in \Lambda \star \mathbb{Z}^{k} \), define \(d(\mu, z) := d(\mu) \). Then, \(\Lambda \star \mathbb{Z}^{k} \) is a \(k \)-graph.
Definition 3.2 Let \((G, \Lambda)\) be a self-similar \(k\)-graph. For \(g \in G, (\mu, z) \in \Lambda \rtimes \mathbb{Z}^k\), define \(g \cdot (\mu, z) := (g \cdot \mu, z)\) and \(g|_{(\mu, z)} := g|_\mu\). Then, \((G, \Lambda \rtimes \mathbb{Z}^k)\) is a self-similar \(k\)-graph.

Definition 3.3 Let \((G, \Lambda)\) be a self-similar \(k\)-graph. Denote by \(\{s_y, u_g\}\) the generators of \(O_{G, \Lambda}^\text{tf}\) and by \(\{t(\mu, z), v_g\}\) the generators of \(O_{G, \Lambda \rtimes \mathbb{Z}^k}^\text{tf}\). We have \(O_{G, \Lambda \rtimes \mathbb{Z}^k} = \overline{\text{span}}\{t(\mu, z-d(\mu))v_g t(\nu, z-d(\nu)) : \mu, \nu \in \Lambda, g \in G, z, \nu \in \mathbb{Z}^k, s(\mu) = g \cdot s(\nu)\} \).

Lemma 3.4 Let \(A\) be a \(C^*\)-algebra, let \(S\) be a set of generators of \(A\), and let \((T_i)_{i \in I}\) be a net of operators in \(M(A)\) such that \((T_i)_{i \in I}\) is uniformly bounded. Suppose that for any \(a \in S \cup S^*\), the nets \((T_ia)_{i \in I}\) and \((T^*a)_{i \in I}\) converge. Then \((T_i)_{i \in I}, (T^*_i)_{i \in I}\) converge strictly and \((\lim_{i \in I} T_i^*) = \lim_{i \in I} T_i^*\).

Theorem 3.5 (cf. [13, Corollary 5.3]) Let \((G, \Lambda)\) be a self-similar \(k\)-graph. Then \(O_{G, \Lambda} \rtimes \gamma \mathbb{T}^k\) is isomorphic to \(O_{G, \Lambda \rtimes \mathbb{Z}^k}\).

Proof Let \((i_A, i_G)\) be the universal covariant homomorphism of \((O_{G, \Lambda} \rtimes \mathbb{T}^k, \gamma)\) in \(M(O_{G, \Lambda} \rtimes \gamma \mathbb{T}^k)\) (cf. [26, Theorem 2.61]).

For \(\mu \in \Lambda, \gamma \in \mathbb{Z}^k\), define \(\pi(s_\mu) := \sum_z t(\mu, z), \pi(u_g) := \sum_z t(\mu, z) v_g\), \(U_\lambda := \sum_{(\gamma, z)} \lambda^{-z} t(\mu, z), (\pi(s_\mu), \pi(u_g)), U_\lambda\) lie in \(M(O_{G, \Lambda \rtimes \mathbb{Z}^k})\) due to Lemma 3.4. It is straightforward to check that there exists a homomorphism \(\pi : O_{G, \Lambda}^\text{tf} \to M(O_{G, \Lambda \rtimes \mathbb{Z}^k})\) which restricts to a nondegenerate homomorphism of \(O_{G, \Lambda}^\text{tf}\). Since \(\pi(s_\mu u_g s^*_\nu) = U_\lambda \pi(s_\mu u_g s^*_\nu) U_\lambda^*\) for all \(\mu, \nu \in \Lambda, g \in G, \lambda \in \mathbb{T}^k\), we get a nondegenerate covariant homomorphism \((\pi, U)\) of \((O_{G, \Lambda} \rtimes \mathbb{T}^k, \gamma)\) in \(M(O_{G, \Lambda \rtimes \mathbb{Z}^k})\). By the universal property of \(O_{G, \Lambda} \rtimes \gamma \mathbb{T}^k\), there is a nondegenerate homomorphism \(\pi \rtimes U : O_{G, \Lambda} \rtimes \gamma \mathbb{T}^k \to M(O_{G, \Lambda \rtimes \mathbb{Z}^k})\) (denote by \(\pi \rtimes U : M(O_{G, \Lambda} \rtimes \gamma \mathbb{T}^k) \to M(O_{G, \Lambda \rtimes \mathbb{Z}^k})\) the unique extension of \(\pi \rtimes U\) such that \(\pi \rtimes U o i_A = \pi\mathbb{T} \rtimes U o i_G = U\). Notice that the image of \(\pi \rtimes U\) actually lies in \(O_{G, \Lambda \rtimes \mathbb{Z}^k}\).

Conversely, for \(\mu \in \Lambda, z \in \mathbb{Z}^k, g \in G\), define \(\rho(t(\mu, z)) := \int \lambda^{d(\mu) + z} i_A(s_\mu) i_G(\lambda) d\lambda, \rho(v_g) := \sum_z i_A(s_\mu u_g)\). It is straightforward to see that there exists a homomorphism \(\rho : O_{G, \Lambda \rtimes \mathbb{Z}^k} \to M(O_{G, \Lambda} \rtimes \gamma \mathbb{T}^k)\). Observe that \(\rho(O_{G, \Lambda \rtimes \mathbb{Z}^k}) \subset O_{G, \Lambda} \rtimes \gamma \mathbb{T}^k\).

It is easy to see that \(\rho \circ (\pi \rtimes U) = \text{id}|_{O_{G, \Lambda} \rtimes \gamma \mathbb{T}^k}\) and \((\pi \rtimes U) \circ \rho|_{O_{G, \Lambda \rtimes \mathbb{Z}^k}} = \text{id}|_{O_{G, \Lambda \rtimes \mathbb{Z}^k}}\).

Hence, we are done.

Corollary 3.6 Let \((G, \Lambda)\) be a self-similar \(k\)-graph. Then there exists a group homomorphism \(\hat{\gamma} : \mathbb{Z}^k \to \text{Aut}(O_{G, \Lambda \rtimes \mathbb{Z}^k})\) such that

1. \(\hat{\gamma}(t(\mu, w-d(\mu))v_g t(\nu, w-d(\nu))) = t(\mu, w-d(\mu))v_g t(\nu, w-d(\nu))\) for all \(\mu, \nu \in \Lambda, g \in G, z, w \in \mathbb{Z}^k\) with \(s(\mu) = g \cdot s(\nu)\);
2. \(O_{G, \Lambda \rtimes \mathbb{Z}^k} \rtimes \hat{\gamma} \mathbb{Z}^k\) is Morita equivalent to \(O_{G, \Lambda}\).

Proof The first statement follows immediately from Theorem 3.5. The second statement follows due to the Takai duality theorem (see [24]).

\[\text{Birkhäuser} \]
4 K-theory of C^*-algebras of products of odometers

4.1 A conjecture on the K-theory of C^*-algebras of products of odometers

In this subsection, we pose a conjecture on the K-theory of the self-similar k-graph C^*-algebra of a standard product of odometers.

Proposition 4.1 Let (\mathbb{Z}, Λ) be a product of odometers. For $n \geq 1$, define

$$B_n := \begin{cases} \text{span}\{t_{(\mu,n_1_\cdots-d(\mu))}y_{g} t_{(\nu,n_1_\cdots-d(\nu))}^*\}, & \text{if } k \neq 1 \\ \text{span}\{t_{(\mu,n_1_\cdots-d(\mu))}y_{g} t_{(\nu,n_1_\cdots-d(\nu))}^*\}, & \text{if } k = \infty. \end{cases}$$

1. For $n \geq 1$, B_n is a C^*-subalgebra of $O_{\mathbb{Z}, \Lambda_*, \mathbb{Z}^i}$.
2. For $n \geq 1$, $B_n \cong C(\mathbb{T}) \otimes K(L^2(\Lambda))$.
3. $(B_n)_{n=1}^\infty$ is an increasing sequence and $O_{\mathbb{Z}, \Lambda_*, \mathbb{Z}^i} = \bigcup_{n=1}^\infty B_n$.
4. $K_1(O_{\mathbb{Z}, \Lambda_*, \mathbb{Z}^i}) \cong \mathbb{Z}$ and

$$K_0(O_{\mathbb{Z}, \Lambda_*, \mathbb{Z}^i}) \cong \left\{ \frac{z}{\prod_{i=1}^k p_i} : z \in \mathbb{Z}, p_1, \ldots, p_k \in \mathbb{N}, \sum_{i=1}^k p_i < \infty \right\}.$$

5. The homomorphism $\tilde{\gamma}$ in Corollary 3.6 induces an action of \mathbb{Z}^k on $K_0(O_{\mathbb{Z}, \Lambda_*, \mathbb{Z}^i})$ such that $z - w/(n_1 \cdots n_k) = w/((n_1 \cdots n_k)z_1 \cdots z_k)$ for all $z \in \mathbb{Z}^k$, $w \in \mathbb{Z}$, and $n \geq 1$, and induces a trivial action \mathbb{Z}^k of on $K_1(O_{\mathbb{Z}, \Lambda_*, \mathbb{Z}^i})$.

Proof The proof of this proposition is similar for both the cases $k < \infty$ and $k = \infty$. So, we only prove the proposition for $k < \infty$ and omit the proof of the other case. We assume that $k < \infty$.

For $n \geq 1$, $\mu, \nu, \alpha, \beta \in \Lambda, g, h \in \mathbb{Z}$, we have

$$t_{(\mu,n_1_\cdots-d(\mu))}y_{g} t_{(\nu,n_1_\cdots-d(\nu))}^* t_{(\alpha,n_1_\cdots-d(\alpha))} h_{K_1(\mathbb{Z}, \Lambda_*, \mathbb{Z}^i)} = \delta_{\nu,\alpha} t_{(\mu,n_1_\cdots-d(\mu))}y_{g} t_{(\nu,n_1_\cdots-d(\nu))}^* t_{(\alpha,n_1_\cdots-d(\alpha))} h_{K_1(\mathbb{Z}, \Lambda_*, \mathbb{Z}^i)}.$$

So B_n is a C^*-subalgebra of $O_{\mathbb{Z}, \Lambda_*, \mathbb{Z}^i}$.

For $n \geq 1$, by Lemma 3.4, $\sum_{\mu \in \Lambda} t_{(\mu,n_1_\cdots-d(\mu))}y_{g} t_{(\mu,n_1_\cdots-d(\mu))}^*$ is a unitary of $M(B_n)$ for all $g \in \mathbb{Z}$. Denote by $V : \mathbb{T} \to \mathbb{C}$, $\lambda \mapsto \lambda$ the generating unitary of $C(\mathbb{T})$. Then, there exists a homomorphism $\varphi : C(\mathbb{T}) \to M(B_n)$ such that $\varphi(V_g) = \sum_{\mu \in \Lambda} t_{(\mu,n_1_\cdots-d(\mu))}y_{g} t_{(\mu,n_1_\cdots-d(\mu))}^*$ for all $g \in \mathbb{Z}$. Denote by $\{e_{\mu,\nu}\}_{\mu,\nu \in \Lambda}$ the generators of $K(L^2(\Lambda))$. For $\mu, \nu \in \Lambda$, define $E_{\mu,\nu} := t_{(\mu,n_1_\cdots-d(\mu))}y_{g} t_{(\nu,n_1_\cdots-d(\nu))}^*$. For $\mu, \nu, \alpha, \beta \in \Lambda$, we have $E_{\mu,\nu} E_{\alpha,\beta} = \delta_{\nu,\alpha} E_{\mu,\beta}$. So there exists a homomorphism $\psi : K(L^2(\Lambda)) \to B_n$ such that $\psi(e_{\mu,\nu}) = E_{\mu,\nu}$ for all $\mu, \nu \in \Lambda$. Since the images of φ, ψ commute, by [19, Theorem 6.3.7] there exists a surjective homomorphism $h : C(\mathbb{T}) \otimes K(L^2(\Lambda)) \to B_n$ such that $h(V_g \otimes e_{\mu,\nu}) = t_{(\mu,n_1_\cdots-d(\mu))}y_{g} t_{(\nu,n_1_\cdots-d(\nu))}^*$ for all $g \in \mathbb{Z}$, $\mu, \nu \in \Lambda$. Notice that there exist two faithful expectations...
\[E : C(\mathbb{T}) \otimes K(\ell^2(\Lambda)) \to C(\mathbb{T}) \otimes K(\ell^2(\Lambda)), F : B_\eta \to B_\eta \] (the existence of \(F \) follows from \([18, \text{Theorem 3.20}]\)) such that
\[E(V_g \otimes e_{\mu,k}) = \delta_{g,0} \delta_{\mu,1} C(\mathbb{T}) \otimes e_{\mu,k}, F(t_{(\mu,n_1-\mu,\ldots,\mu,n_{1-k-1,1})}) = \delta_{g,0} \delta_{\mu,1} t_{(\mu,n_1-\mu,\ldots,\mu,n_{1-k-1,1})}. \] It is easy to check that \(h \circ E = F \circ h \) and \(h \) is injective on the image of \(E \). Hence, \(h \) is an isomorphism by \([11, \text{Proposition 3.11}]\). Therefore, \(B_\eta \cong C(\mathbb{T}) \otimes K(\ell^2(\Lambda)) \).

For \(n \geq 1, \mu, \nu \in \Lambda, g \in \mathbb{Z} \), we have
\[
\begin{align*}
I_{(\mu, n_1-\mu)}(V_g t_{(\nu, n_1-\mu)}) &= \sum_{a \in \Lambda^k} t_{(\mu, n_1-\mu)}(V_g t_{(\nu, n_1-\mu)}) t_{(a, n_1)} t_{(\nu, n_1-\mu)} \\
&= \sum_{a \in \Lambda^k} t_{(\mu, n_1-\mu)}(V_g t_{(a, n_1)}) t_{(\nu, n_1-\mu)} \\
&= \sum_{a \in \Lambda^k} t_{(\mu, n_1-\mu, (a, n_1))}(V_g t_{(\nu, n_1-\mu)}).
\end{align*}
\]
So \(B_\eta \subset B_{\eta+1} \).

For \(\mu, \nu \in \Lambda, w \in \mathbb{Z}^k, g \in \mathbb{Z} \), pick up an arbitrary \(n \geq 1 \) such that \(w \leq n_1 \), we have
\[
\begin{align*}
I_{(\mu, w-\mu)}(V_g t_{(w, w-\mu)}) &= \sum_{a \in \Lambda^{k-w}} t_{(\mu, w-\mu)}(V_g t_{(w, w-\mu)}) t_{(a, w)} t_{(w, w-\mu)} \\
&= \sum_{a \in \Lambda^{k-w}} t_{(\mu, w-\mu)}(V_g t_{(a, w)}) t_{(w, w-\mu)} \\
&= \sum_{a \in \Lambda^{k-w}} t_{(\mu, w-\mu, (a, w))}(V_g t_{(w, w-\mu)}).
\end{align*}
\]
Hence, \(O_{\mathbb{Z}^k \Lambda^k} = \bigcup_{n \geq 1} B_n \).

For \(n \geq 1 \), denote by \(t_n : B_{\eta} \to B_{\eta+1} \) the inclusion map. We compute that \(I_{(\nu, n_1-\nu)} = \sum_{\mu \in \Lambda^k} I_{(\mu, (n+1)_1-\nu)} I_{(\nu, (n+1)_1-\nu)} \), so \(K_0(t_n)(1) = n_1 \cdots n_k \). Hence, \(K_0(O_{\mathbb{Z}^k \Lambda^k}) \cong \{ t \in \mathbb{Z} : t \in \mathbb{Z}, p_1, \ldots, p_k \in \mathbb{N} \} \). We calculate that
\[
\begin{align*}
I_{(\nu, n_1-\nu)}(t^*_{(\nu, n_1-\nu)}) &= \sum_{a \in \Lambda^k} t_{(1-a, (n+1)_1-\nu)} V_{1-a}^* t_{(\nu, n_1-\nu)} \\
&= \sum_{a \in \Lambda^k} t_{(1-a, (n+1)_1-\nu)} V_{1-a}^* t_{(\nu, n_1-\nu)}.
\end{align*}
\]
So \(I_{(\nu, n_1-\nu)}(t^*_{(\nu, n_1-\nu)}) = \sum_{a \in \Lambda^k} t_{(1-a, (n+1)_1-\nu)} V_{1-a}^* t_{(\nu, n_1-\nu)} \) in \(K_1(M_{\Lambda^k} \otimes C(\mathbb{T})) \). Since \(1|_{\delta_{\hat{a}_1, n_1-1}} \cdots \delta_{\hat{a}_k, n_{k,1}-1} = K_1(t_n) = \text{id} \). Hence \(K_1(O_{\mathbb{Z}^k \Lambda^k}) \cong \mathbb{Z} \).
Since \(\widehat{\gamma} \) is a group homomorphism from \(\mathbb{Z}^k \) to \(\text{Aut}(O_{G, \Lambda} \ltimes \mathbb{Z}^k) \), \(\widehat{\gamma} \) induces actions of \(\mathbb{Z}^k \) on \(K_0(O_{G, \Lambda} \ltimes \mathbb{Z}^k) \) and \(K_1(O_{G, \Lambda} \ltimes \mathbb{Z}^k) \). For \(z \in \mathbb{Z}^k, n \geq 1 \), there exists \(m \geq 1 \) such that \(z \leq m1_k \). Then, \(\widehat{\gamma}(v_{(n,1)}) = v_{(n,1+z)} = \sum_{a \in A^{m1_k-z}} t_{a, (m+1)}(a) t_{a, (m+1)}(a) \). So \(K_1(\widehat{\gamma}) = 1/(n_1 \cdots n_k) \). Moreover, we calculate that

\[
\widehat{\gamma}(v_{(n,1)}) = v_{(n,1+z)} = \sum_{a \in A^{m1_k-z}} t_{a, (m+1)}(a) t_{a, (m+1)}(a)
\]

So \(K_1(\widehat{\gamma}) \) is the identity map.

Remark 4.2 When \(k = 1 \), the \(K \)-theory of the \(C^* \)-algebra \(O_{Z, \Lambda} \) was studied in numerous papers such as [6, 9, 12, 14].

When \(k \geq 2 \), by Corollary 3.6, to determine the \(K \)-theory of \(O_{Z, \Lambda} \), it is equivalent to determine the \(K \)-theory of \(O_{Z, \Lambda} \ltimes \mathbb{Z}^k \). Based on the combination of previous profound work ([1, Corollary 2.5], [10, 6.10], [22, Theorem 2], [23]), it gives rise to a cohomology spectral sequence (see [25]) \(E_r^{p,q} \) for \(p, q \in \mathbb{Z} \), where for \(p, q \in \mathbb{Z} \), we have \(E_r^{p,q} = K_r(O_{Z, \Lambda} \ltimes \mathbb{Z}^k) \ltimes \mathbb{Z}^k \). The differential map is

\[
d_1^{p,q} : E_1^{p,q} \rightarrow E_1^{p+1,q}, \quad g \otimes e \mapsto \sum_{e_i \in \mathbb{Z}^k} (e_i \cdot g - g) \otimes (e \otimes e_i)
\]

for all \(g \in K_q(O_{Z, \Lambda} \ltimes \mathbb{Z}^k), e \in \mathbb{Z}^k \). By the definition of the cohomology spectral sequence, \(E_2^{p,q} := \ker(d_1^{p,q})/\text{Im}(d_1^{p-1,q}) \) for all \(p, q \in \mathbb{Z} \). By Proposition 4.1, each \(d_1^{p,q} \) and each \(d_1^{p,q} \) are clear, so we can determine \(E_2^{p,q} \). When \(q \) is even, following the algorithm from [2, Proposition 6.12], \(E_2^{p,q} = \begin{cases} \mathbb{Z}^k & \text{if } 1 \leq p \leq k \\ 0 & \text{if } p < 1 \text{ or } p > k \end{cases} \). On the other hand, when \(q \) is odd, since the action on \(K_1(O_{Z, \Lambda} \ltimes \mathbb{Z}^k) \) is trivial due to Proposition 4.1, we can easily deduce that the connecting maps \(d_1^{p,q} \) are all zero, hence \(E_2^{p,q} = \begin{cases} \mathbb{Z}^k & \text{if } 0 \leq p \leq k \\ 0 & \text{if } p < 0 \text{ or } p > k \end{cases} \). Since the determination of the \(k + 1 \)-th page of the spectral sequence and further the \(K \)-theory of \(O_{Z, \Lambda} \ltimes \mathbb{Z}^k \) is obstructed by extension issues, we are not able to characterize the \(K \)-theory of \(O_{Z, \Lambda} \ltimes \mathbb{Z}^k \). However, we can make the following conjecture.

Conjecture 4.3 Let \((Z, \Lambda) \) be a product of odometers with \(k \geq 2 \). Denote by \(e := (\delta_{i,j})_{i,j=1}^{2^{k-2}} \in (\mathbb{Z}/g\Lambda\mathbb{Z})^{2^{k-2}} \). Then

\[
(K_0(O_{Z,\Lambda}), [1_{O_{Z,\Lambda}}], K_1(O_{Z,\Lambda})) \cong (\mathbb{Z}^{2^{k-1}} \oplus (\mathbb{Z}/g\Lambda\mathbb{Z})^{2^{k-2}}, (0, e), \mathbb{Z}^{2^{k-1}} \oplus (\mathbb{Z}/g\Lambda\mathbb{Z})^{2^{k-2}}).
\]

4.2 Generalized \(\mathcal{O}_5 \) and a conjecture of Barlak, Omland, and Stammeier

For any nonempty subset \(S \subset \mathbb{N}^\times \setminus \{1\} \) consisting of mutually coprime numbers, Barlak, Omland, and Stammeier in Ref. [2] defined a unital \(C^* \)-algebra \(\mathcal{O}_S \) and they made a conjecture about the \(K \)-theory of this \(C^* \)-algebra.
Conjecture 4.4 [2, Conjecture 6.5]

\((K_0(Q_S), [1_{Q_S}], K_1(Q_S)) \cong (\mathbb{Z}^{2^n-1} \oplus (\mathbb{Z}/g_S\mathbb{Z})^{2^{|S|-2}}, (0,e), \mathbb{Z}^{2^n-1} \oplus (\mathbb{Z}/g_S\mathbb{Z})^{2^{|S|-2}}), \)

where \(g_S = \gcd\{n - 1 : n \in S\} \), \(e = (\delta_{1,i} + \mathbb{Z}/g\Lambda\mathbb{Z})_{1 \leq i \leq k} \in (\mathbb{Z}/g\Lambda\mathbb{Z})^{2^{|S|-2}} \).

In the final subsection, we first generalize the construction of \(Q_S \) to an arbitrary nonempty subset of \(\mathbb{N}^\infty \setminus \{1\} \), and we show that \(Q_S \) is indeed a self-similar \(|S|\)-graph\(C^*\)-algebra of a standard product of odometers, finally we connect Conjecture 4.3 with Conjecture 4.4.

Definition 4.5 (cf. [2, Definition 2.1]) Let \(S \) be a nonempty subset of \(\mathbb{N}^\infty \setminus \{1\} \). Define \(Q_S \) to be the universal unital \(C^*\)-algebra generated by a family of isometries \(\{s_n\}_{n \in S} \) and a unitary \(u \) satisfying for any \(n, m \in S \),

1. \(s_n s_m = s_{nm} \);
2. \(s_n u = u^n s_n \);
3. \(\sum_{i=0}^{n-1} u^i s_n u^{-i} = 1_{Q_S} \).

Remark 4.6 It is very natural to extend Conjecture 4.4 to the case that \(S \) is any nonempty subset of \(\mathbb{N}^\infty \setminus \{1\} \).

Lemma 4.7 Let \(S \) be a nonempty subset of \(\mathbb{N}^\infty \setminus \{1\} \), and let \(B \) be a unital \(C^*\)-algebra generated by a family of isometries \(\{S_n\}_{n \in S} \) and a unitary \(U \) satisfying Conditions (2), (3) of Definition 4.5. Then for \(n \in S, z \in \mathbb{Z} \setminus n\mathbb{Z} \), we have \(S_n^* U z S_n = 0 \).

Proof We may assume that \(z > 0 \). Write \(z = wn + l \), for some \(w \geq 0, 1 \leq l \leq n - 1 \).

We calculate that

\[
(S_n^* U z S_n)(S_n^* U z S_n)^* = S_n^* U^l U^{wn} S_n S_n^* U^{-wn} U^{-l} S_n
\]

\[
= S_n^* U^l (U^{wn} S_n) (U^{wn} S_n)^* U^{-l} S_n
\]

\[
= S_n^* U^l (S_n U^w) (S_n U^w)^* U^{-l} S_n
\]

\[
= S_n^* U^l S_n S_n^* U^{-l} S_n
\]

\[
= S_n^* U^l \left(1_B - \sum_{i=1}^{n-1} U^i S_n S_n^* U^{-i} \right) U^{-l} S_n
\]

\[
= 1_B - S_n^* U^w S_n S_n^* U^{-w} S_n - \sum_{1 \leq i \leq n-1, i \neq n-l} S_n^* U^{l+i} S_n S_n^* U^{-l-i} S_n
\]

\[
= - \sum_{1 \leq i \leq n-1, i \neq n-l} S_n^* U^{l+i} S_n S_n^* U^{-l-i} S_n.
\]

So \((S_n^* U z S_n)(S_n^* U z S_n)^* = 0 \). Hence \(S_n^* U z S_n = 0 \). \(\square \)

Proposition 4.8 Let \(S \) be a nonempty subset of \(\mathbb{N}^\infty \setminus \{1\} \), and let \(B \) be a unital \(C^*\)-algebra generated by a family of isometries \(\{S_n\}_{n \in S} \) and a unitary \(U \) satisfying
Conditions (2), (3) of Definition 4.5. Then \(\{S_n\}_{n \in S} \) and \(U \) satisfy Condition (1) of Definition 4.5 if and only if for any \(n, m \in S \),

\[
S^*_n S_m = \sum_{i=0}^{n-1} S^*_n U^i S_n^* S_n^* U^{-i} S_m
\]

\[
= \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} S^*_n U^i S_n U^j S_m S_n^* U^{-j} S_n^* U^{-i} S_m
\]

\[
= \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} S^*_n U^{i+j} S_n S_m S_n S_n^* U^{-i-j} S_m
\]

\[
= \sum_{i=0}^{nm-1} S^*_n U^i S_n S_m S_n^* U^{-i} S_m
\]

\[
= \sum_{0 \leq i \leq nm-1, 1 \in \mathbb{Z}} U^{i/n} S_m S_n^* U^{-i/m} \text{ (by Lemma 4.7).}
\]

Conversely, suppose that for any \(n, m \in S \),

\[
S^*_n S_m = \sum_{0 \leq i \leq nm-1, 1 \in \mathbb{Z}} U^{i/n} S_m S_n^* U^{-i/m}.
\]

For \(n, m \in S \), we calculate that

\[
S^*_m S_n S_n^* S_n = \sum_{0 \leq i \leq nm-1, 1 \in \mathbb{Z}} (S^*_m U^{i/n} S_m)(S^*_n U^{-i/m} S_n)
\]

\[
= 1_B + \sum_{1 \leq i \leq nm-1, 1 \in \mathbb{Z}} (S^*_m U^{i/n} S_m)(S^*_n U^{-i/m} S_n)
\]

\[
= 1_B \text{ (by Lemma 4.7).}
\]

So

\[
(S_n S_m - S_m S_n)^* (S_n S_m - S_m S_n) = 2 \cdot 1_B - S^*_m S_n S_m S_n - S^*_n S_m S_n S_m = 0.
\]

Hence \(S_n S_m = S_m S_n \). \(\Box \)

Remark 4.9 Let \((\mathbb{Z}, \Lambda)\) be a standard product of odometers. Then \(O_{\mathbb{Z}, \Lambda}\) is a universal unital \(C^*\)-algebra generated by a family of isometries \(\{s_{x_i}\}_{1 \leq i \leq k, 0 \leq \theta \leq n_i - 1}\) and a unitary \(u\) satisfying that

1. \(\sum_{\theta=0}^{n_i-1} s_{x_i} s_{x_i}^* = 1_{O_{\mathbb{Z}, \Lambda}} \) for all \(1 \leq i \leq k\);
2. \(s_{x_i} s_{x_j} = s_{x_j} s_{x_i} \) for all \(1 \leq i < j \leq k, 0 \leq \theta, \theta' \leq n_i - 1, 0 \leq t, t' \leq n_j - 1\) with \(\theta + tn_i = t' + \theta'n_j \);
3. \[us_{x_i} = \begin{cases}
 s_{x_{i+1}} & \text{if } 0 \leq \delta < n_i - 1 \\
 s_{x_0} u & \text{if } \delta = n_i - 1
 \end{cases} \text{, for all } 1 \leq i \leq k, 0 \leq \delta \leq n_i - 1. \]

Theorem 4.10 Let \(S \) be a nonempty subset of \(\mathbb{N}^\times \setminus \{1\} \). We enumerate \(S = \{ 1 < n_1 < \cdots < n_k \} \). Denote by \((\mathbb{Z}, \Lambda_S)\) the standard product of odometers such that \(|\Lambda_S^x| = n_i \) for all \(1 \leq i \leq k \). Then \(Q_S \cong \mathcal{O}_{\mathbb{Z}, \Lambda_S} \).

Proof Denote by \(\{s_{n_i}\}_{1 \leq i \leq k} \) and \(u \) the generators of \(Q_S \), and denote by \(\{t_{x_i} : 1 \leq i \leq k, 0 \leq \delta \leq n_i - 1\} \) and \(v \) the generators of \(\mathcal{O}_{\mathbb{Z}, \Lambda_S} \) as discussed in Remark 4.9.

Define \(V := u, T_{x_i} := u^\delta s_{n_i} \) for all \(1 \leq i \leq k, 0 \leq \delta \leq n_i - 1 \). Then \(\{T_{x_i} : 1 \leq i \leq k, 0 \leq \delta \leq n_i - 1\} \) and \(V \) satisfy Conditions (1)–(3) of Remark 4.9. So there exists a homomorphism \(\pi : \mathcal{O}_{\mathbb{Z}, \Lambda_S} \rightarrow Q_S \) such that \(\pi(t_{x_i}) = u^\delta s_{n_i}, \pi(v) = u \) for all \(1 \leq i \leq k, 0 \leq \delta \leq n_i - 1 \).

Conversely, define \(U := v, S_{n_i} := t_{x_i} \) for all \(1 \leq i \leq k \). Then \(\{S_{n_i} : 1 \leq i \leq k\} \) and \(U \) satisfy Conditions (1)–(3) of Definition 4.5. So, there exists a homomorphism \(\rho : Q_S \rightarrow \mathcal{O}_{\mathbb{Z}, \Lambda_S} \) such that \(\rho(u) = v, \rho(s_{n_i}) = s_{x_i} \) for all \(1 \leq i \leq k \).

Since \(\rho \circ \pi = \text{id}, \pi \circ \rho = \text{id} \), we deduce that \(Q_S \cong \mathcal{O}_{\mathbb{Z}, \Lambda_S} \).

Remark 4.11 For any nonempty subset \(S \subset \mathbb{N}^\times \setminus \{1\} \), by the above theorem, we can easily deduce that Conjecture 4.4 is contained in Conjecture 4.3.

Acknowledgements The author was supported by National Natural Science Foundation of China (Grant no. 11801176) and by Fundamental Research Funds for the Central Universities (Grant no. 2020MS040).

References

1. Barlak, S.: On the spectral sequence associated with the Baum–Connes conjecture for \(\mathbb{Z}^n \). arXiv :1504.03298
2. Barlak, S., Omland, T., Stammeier, N.: On the \(K \)-theory of \(C^* \)-algebras arising from integral dynamics. Ergod. Theory Dyn. Syst. **38**, 832–862 (2018)
3. Bost, J.B., Connes, A.: Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory. Sel. Math. (N.S.) **1**, 411–457 (1995)
4. Brownlowe, N., Ramage, J., Robertson, D., Whittaker, M.F.: Zappa–Szép products of semigroups and their \(C^* \)-algebras. J. Funct. Anal. **266**, 3937–3967 (2014)
5. Cuntz, J.: \(C^* \)-algebras associated with the \(ax + b \)-semigroup over \(\mathbb{N} \). In: EMS Series of Congress Reports, \(K \)-Theory and Noncommutative Geometry, pp. 201–215. European Mathematical Society, Zürich (2008)
6. Cuntz, J., Vershik, A.: \(C^* \)-algebras associated with endomorphisms and polymorphsims of compact abelian groups. Commun. Math. Phys. **321**, 157–179 (2013)
7. Exel, R., Pardo, E.: Self-similar graphs, a unified treatment of Katsura and Nekrashevych \(C^* \)-algebras. Adv. Math. **306**, 1046–1129 (2017)
8. Fletcher, J., Gillaspy, E., Sims, A.: Homotopy of product systems and \(K \)-theory of Cuntz–Nica–Pimsner algebras. arXiv:1911.00959
9. Hirshberg, I.: On \(C^* \)-algebras associated to certain endomorphisms of discrete groups. New York J. Math. **8**, 99–109 (2002)
10. Kasparov, G.G.: Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91, 147–201 (1988)
11. Katsura, T.: The ideal structures of crossed products of Cuntz algebras by quasi-free actions of abelian groups. Can. J. Math. 55, 1302–1338 (2003)
12. Katsura, T.: A construction of actions on Kirchberg algebras which induce given actions on their K-groups. J. Reine Angew. Math. 617, 27–65 (2008)
13. Kumjian, A., Pask, D.: Higher rank graph C^*-algebras. New York J. Math. 6, 1–20 (2000)
14. Larsen, N.S., Li, X.: The 2-adic ring C^*-algebra of the integers and its representations. J. Funct. Anal. 262, 1392–1426 (2012)
15. Li, X.: Semigroup C^*-algebras and amenability of semigroups. J. Funct. Anal. 262, 4302–4340 (2012)
16. Li, H., Yang, D.: Boundary quotient C^*-algebras of products of odometers. Can. J. Math. 71, 183–212 (2019)
17. Li, H., Yang, D.: Self-similar k-graph C^*-algebras. Math. Res. Not. IMRN, Int (2019). https://doi.org/10.1093/imrn/rnz146
18. Li, H., Yang, D.: The ideal structures of self-similar k-graph C^*-algebras. arXiv:1906.10658
19. Murphy, G.J.: C^*-Algebras and Operator Theory, p. x+286. Academic Press Inc., Boston (1990)
20. Nekrashevych, V.: Cuntz–Pimsner algebras of group actions. J. Oper. Theory 52, 223–249 (2004)
21. Nekrashevych, V.: C^*-algebras and self-similar groups. J. Reine Angew. Math. 630, 59–123 (2009)
22. Savinien, J., Bellissard, J.: A spectral sequence for the K-theory of tiling spaces. Ergod. Theory Dyn. Syst. 29, 997–1031 (2009)
23. Schochet, C.: Topological methods for C^*-algebras I spectral sequences. Pac. J. Math. 96, 193–211 (1981)
24. Takai, H.: On a duality for crossed products of C^*-algebras. J. Funct. Anal. 19, 25–39 (1975)
25. Weibel, C.A.: An Introduction to Homological Algebra, p. xiv+ 450. Cambridge University Press, Cambridge (1994)
26. Williams, D.P.: Crossed Products of C^*-Algebras, p. xvi + 528. American Mathematical Society, Providence (2007)
27. Yang, D.: The interplay between k-graphs and the Yang–Baxter equation. J. Algebra 451, 494–525 (2016)