RESEARCH ARTICLE

Treatment of dye-producing chemical industry wastewater by persulfate advanced oxidation

Deniz Izlen Cifci1,*, Elcin Gunes1,*, Yalcin Gunes1,*

1Tekirdag Namik Kemal University, Environmental Engineering Department, 59860 Corlu, Tekirdag, TURKIYE

ABSTRACT

A dye-producing chemical industry wastewater in Corlu (Tekirdag) is treated by the coagulation-flocculation process of the wastewater. However, the wastewater discharged after coagulation-flocculation still has a very high COD (4402 mg L-1) with very high proportion of dissolved COD (4316 mg L-1). Therefore, the aim of this study is to achieve higher COD and color removal in wastewater using Fe2+/S2O82- or UV/S2O82- oxidation process after coagulation-flocculation. The processes in the oxidation of this industrial wastewater using Fe2+/S2O82- and UV/S2O82- were examined and the effect of COD/Fe2+/S2O82- ratio (in Fe2+/S2O82- or COD/S2O82- ratio (in UV/S2O82-), pH and oxidation time were evaluated in the study. While high organic matter and color removal was observed in acidic conditions for both processes, optimum pH were 3 and 6 in Fe2+/S2O82- and UV/S2O82- oxidation processes, respectively. In Fe2+/S2O82- oxidation, 61.1% of COD removal and above 97% of color (UV 254, UV 525 and UV 630) removal was obtained at 1/8/8 of COD/Fe2+ ratio and pH 3 after 1 h oxidation. In UV/S2O82- oxidation (COD/S2O82- ratio 1/8, pH 6), 54.4% of COD and 98% of color (UV 436, UV 525 and UV 630) removals were achieved after 4 h oxidation. As a result, both Fe2+/S2O82- and UV/S2O82- oxidation processes were applied to ensure discharge standards for color removal from this chemical industry wastewater are effective methods as they provide over 97% color removal. Moreover, COD removal efficiency was approximately 55-60% in both methods.

Keywords: Activation, kinetics, oxidation, persulfate, industrial wastewater treatment

1. INTRODUCTION

The chemical industry is considered a highly polluting sector. Generally, the chemical industry does not alter chemical products and processes and prefers to deal with the end of the pipe for the management of wastewater [1]. The chemical industry produces special chemicals such as adhesives, sealants, catalysts, coatings, plastic adhesives, and personal care products such as pharmaceuticals, soaps, detergents, shampoos, creams from various raw materials [1]. One of the chemical industries, the dye-producing chemical industry uses many different raw materials (aniline, soluble, etc.), auxiliary chemicals, dyes and intermediates, many of which can be toxic to the environment and have carcinogenic effects in humans [2]-[3]. Auxiliary chemicals, dyes and intermediates include many agents, phosphates, polyamide resins, acrylic coatings and the wastewaters formed have high organic matter, non-biodegradable and toxic substances [4].

Advanced oxidation technologies are suitable and effective method for the treatment of high non-biodegradable and persistent organic pollutants in industrial wastewaters [5]. Although hydroxyl (OH•) production processes such as Fenton and UV photocatalysis oxidation processes have been used as advanced oxidation processes for many years, interest in the persulfate oxidation processes for producing the sulfate radical has increased for persistent organic pollutant removal in recent years [6]. SO•- has become an alternative to OH• radical for the organic compound degradation and wastewater treatment due to the high redox potential (2.5-3.1 V) and longer lifetime (3-4.10^{-5} s) [7].

Methods such as heat, UV, alkaline, metal ions and activated carbon is used to activate the persulfate to generate sulphate free radicals [8]-[9]. Many studies showed that the sulfate radical based treatment is very effective and promising results for various organic pollutants and dye treatment [9]-[10]. However, the
studies generally focused on leachate treatment, and it was stated that UV/S_{2}O_{8} Fe/S_{2}O_{8} oxidation processes were effective for the treatment of landfill leachate [11]-[16]. In addition, studies show that the UV/S_{2}O_{8} or Fe/S_{2}O_{8} oxidation processes can be used in the treatment of petrochemical wastewater that 66-69% of COD removal could be achieved up to 120 min oxidation [17]-[19]. Treatment of dye-producing chemical industry wastewater by UV/S_{2}O_{8} or Fe/S_{2}O_{8} persulfate oxidation has not been studied yet. Studies on the comparison of iron and UV activation methods for persulfate oxidation are insufficient and it could not be determined which method was more effective for organic matter removal. In this study, the chemically treated wastewater of a chemical industry, which produces dyes for textile, paper, plastic (masterbatch) and metal industries was trying to be treated by UV/S_{2}O_{8} and Fe/S_{2}O_{8} persulfate oxidation method. The wastewater of this industry is quite complex and much polluted in terms of organic matter and color so to treat it very hard. The aim of this study is to compare iron and UV activation methods for persulfate oxidation process in terms of COD and color removal efficiencies. For this purpose, the optimum pH, oxidation time and persulfate doses in both methods were determined and the kinetic evaluations of the processes were also made.

2. MATERIALS AND METHODS

2.1. Wastewater characterization

Wastewater was taken from dye-producing chemical industry. In this industry, dispersed dyes, reactive dyes, acrylic dyes, acid dyes, digital inks, digital auxiliaries, pigments and chemical groups of liquid, powder and dispersion products used in the textile industry are produced. Hybrid electrostatic powder paint for metal industry, and paper auxiliaries, brown paint, optical brightener and performance chemicals for the paper industry are also produced. The wastewater in this chemical industry is chemically treated using FeCl_{3} as a coagulant and then transferred to the central wastewater treatment plant of the industrial zone in Çerkezköy, Tekirdağ. The wastewater used in the study was taken after the coagulation-flocculation process. The characterization of the wastewater is given in Table 1. As seen from Table 1, although the wastewater is the chemically treated, the COD concentration is quite high, but the majority of the COD is in soluble form. In addition, the low TSS concentration in the wastewater shows that the particulate matter in the wastewater is low due to chemical treatment as expected. The color (UV_{254}- UV_{325}-UV_{620}) values in the wastewater are quite high and the wastewater has a brown-red color.

Parameter	Unit	Concentration
pH	-	7.84
EC	μS cm^{-1}	6.84
TSS	mg L^{-1}	87±2.0
VSS	mg L^{-1}	42±2.6
NH_{3}-N	mg L^{-1}	12.1±1.6
TKN	mg L^{-1}	37.3±1.6
Total COD	mg L^{-1}	4402±135
Soluble COD	mg L^{-1}	4316±41
UV_{254}	abs.	13.2±0.53
UV_{280}	abs.	10.4±0.34
UV_{325}	abs.	4.79±0.33
UV_{520}	abs.	0.91±0.03
UV_{1200}	abs.	0.65±0.02

2.2. Fe^{2+}/S_{2}O_{8} oxidation process

Jar test method was used for the treatment of wastewater with Fe^{2+}/S_{2}O_{8} oxidation process. 200 mL wastewater, required amount of Fe_{2}O_{3}·7H_{2}O (Sigma-Aldrich, 215422) and K_{2}S_{2}O_{8} (Merck, 1.05091) were added to the 600 mL beaker. pH was adjusted to the desired value and wastewater were stirred for 60 min at 60 rpm. Then pH was adjusted to about 7.5 with 6 N NaOH to precipitate excess iron and settled for 1 h. After 1 h of precipitation, sample was taken from the supernatant and centrifuged for 5 min at 4000 rpm for the analysis. COD/Fe^{2+}/S_{2}O_{8} [as g/g/g] ratio was used to evaluate the effect of the Fe^{2+} and S_{2}O_{8}^{2-} concentration. Also, effect of pH (2-7) and oxidation time (0.5-4 h) were investigated in the experiments.

2.3. UV/S_{2}O_{8} Oxidation Process

UV/S_{2}O_{8} oxidation experiments were conducted by using 500 mL graduated cylinder (active volume 300 mL). Required amount of K_{2}S_{2}O_{8} were added to the wastewater and the pH was adjusted to the desired value. 12 watts of mercury vapor lamp (model Hg F15-05, Eurotech) at 254 nm was positioned in the center of the cylinder for the UV-C irradiation [20].
Wastewater was stirred with magnetic stirrer at about 60 rpm during the UV irradiation. The samples were taken at certain times and centrifuged for 5 min at 4000 rpm before the analysis. The effect of the COD/SO₄²⁻ (as g/g) ratio, pH and oxidation time were evaluated the oxidation studies.

2.4. Analysis

The pH was measured using a pH meter (WTW pH 315i). Color (UV₂₅₄, UV₂₅₂, UV₂₈₀) and humic substance (UV₂₅₄, UV₂₈₀) of the wastewater were determined using a UV spectrophotometer (Shimadzu UV-2401 PC instrument). UV₂₅₄ is used for aromatic and unsaturated organic compounds and UV₂₈₀ is represented aromaticity [21]. Total COD, soluble COD, total suspended solids (TSS), volatile suspended solids (VSS), total Kjeldahl nitrogen (TKN) and ammonia nitrogen (NH₃-N) was analyzed based on the Standard Methods for the Examination of Water and Wastewater [22]. The chemical oxygen demand (COD) was determined using a closed reflux colorimetric method. SSO₄ concentration was measured according to Liang et al. [23]. The removal efficiencies of COD, UV₂₅₄, UV₂₈₀ or color were obtained using the following Eq. 1.

Removal Efficiency(%) = \frac{C_t - C_t}{C_0} (1)

where C₀ is the initial COD (mg L⁻¹), UV₂₅₄, UV₂₈₀ or color (m⁻¹) concentration and Cₜ refer to the COD (mg L⁻¹), UV₂₅₄, UV₂₈₀ or color (m⁻¹) concentration at time t or at the end of the treatment, respectively.

The pseudo first order kinetics of COD, UV₂₅₄, UV₂₈₀, UV₄₃₆, UV₂₅₂ or UV₂₆₀ is calculated according to Eq. 2 [23]:

\ln \frac{C_t}{C_0} = -k_1 t (2)

where C₀ is the initial pollutant as COD (mg L⁻¹), UV₂₅₄, UV₂₈₀, UV₄₃₆, UV₂₅₂ or UV₂₆₀ (m⁻¹) concentration and Cₜ refer to the pollutant as COD (mg L⁻¹), UV₂₅₄, UV₂₈₀, UV₄₃₆, UV₂₅₂ or UV₂₆₀ (m⁻¹) concentration at time t, respectively. k₁ is the pseudo first order kinetic constant rate as (h⁻¹).

3. RESULTS AND DISCUSSION

3.1. Fe²⁺/SO₄²⁻ oxidation process

Effect of Fe²⁺ concentration for Fe²⁺/SO₄²⁻ oxidation process

Fe²⁺/SO₄²⁻ ratio is an important parameter for the persulfate oxidation. When the SO₄²⁻ activated with Fe²⁺ ion, sulfate radical (SO₄⁻) was generated in the system and then oxidation occurs by reacting organic matter with sulfate radicals. The reactions were given in Eq. 3 and Eq. 4 [14].

S₂O₄²⁻ + Fe²⁺ → SO₄⁻ + Fe³⁺ + SO₄²⁻ (3)
SO₄⁻ + organic matter → intermediates (like humic substance) → CO₂ + H₂O (4)

However, in the case of excessive amounts of Fe²⁺, a scavenging effect of sulfate radicals occurs due to the reaction between Fe²⁺ and SO₄⁻ and oxidation efficiency decreases (Eq. 5) [24][25].

Fe²⁺ + SO₄²⁻ → Fe³⁺ + SO₄²⁻ (5)

The effect of Fe²⁺ ions on COD and color removal efficiencies were investigated by keeping COD/SO₄²⁻ ratio (1/5) constant of the COD/SO₄²⁻/Fe²⁺ ratio. It was observed that 25.4% COD removal was achieved at the lowest Fe²⁺ concentration (at COD/SO₄²⁻/Fe²⁺ = 1/5/1) and COD removal efficiency increased up to 57.2% (at COD/SO₄²⁻/Fe²⁺ = 1/5/8) as the Fe²⁺ concentration increased (Fig. 1). A slight decrease of COD removal (56.5%) showed in 1/5/9 ratio due to the scavenger effect of excessive Fe²⁺ on the sulfate radical. When the COD/SO₄²⁻/Fe²⁺ ratio is between 1/5/1 and 1/5/4, UV₂₅₄ removal is close to each other, while UV₂₈₀ removal is lower than UV₂₅₄ removal. This suggests that COD/SO₄²⁻/Fe²⁺≤1/5/4 is insufficient and further oxidation is needed to break down organic matter. After the COD/SO₄²⁻/Fe²⁺ = 1/5/4 ratio, UV₂₅₄ removal started to increase and in parallel UV₂₅₄ removal also enhanced.

When the examine of the consumed SSO₄ concentration on the COD, UV₂₅₄, UV₂₈₀, UV₄₃₆, UV₂₅₂ or UV₂₆₀ is calculated according to Eq. 5 and Eq. 6 [23]:

\ln \frac{C_t}{C_0} = -k_1 t (2)

where C₀ is the initial pollutant as COD (mg L⁻¹), UV₂₅₄, UV₂₈₀, UV₄₃₆, UV₂₅₂ or UV₂₆₀ (m⁻¹) concentration and Cₜ refer to the pollutant as COD (mg L⁻¹), UV₂₅₄, UV₂₈₀, UV₄₃₆, UV₂₅₂ or UV₂₆₀ (m⁻¹) concentration at time t, respectively. k₁ is the pseudo first order kinetic constant rate as (h⁻¹).

Effect of SSO₄²⁻ concentration on Fe²⁺/SO₄²⁻ oxidation process

SSO₄²⁻ concentration is important in the sulfate oxidation process for wastewater treatment since sulfate radicals are generated by the SSO₄²⁻. However, when the excessive amount of SSO₄²⁻ is added into the system, the sulfate radicals formed can react with each other by the effect of collision and reformed to SSO₄²⁻ [25].

When the amount of COD/SSO₄²⁻/Fe²⁺ ratio increased from 1/4/8 to 1/8/8, COD removal efficiency increased from 54.9% to 61.1%, UV₂₅₄ removal efficiency increased from 67.6% to 72.8% and UV₂₈₀ removal efficiency enhanced from 77.7% to 82.8% (Fig 2).
Effect of oxidation time on the COD, UV

The most appropriate COD/SO\textsubscript{4}/Fe2+ ratio was 1/8/8 due to the fact that no significant change in COD, UV\textsubscript{254} and UV\textsubscript{525} removal was observed in the applications after 1/8/8, and the residual SO\textsubscript{4} in the treated wastewater increased after the 1/8/8 ratio. In addition, color (UV\textsubscript{436}:UV\textsubscript{525}:UV\textsubscript{620}) removal was higher than 95% between 1/4/8 and 1/10/8 of COD/SO\textsubscript{4}/Fe2+ ratios while UV\textsubscript{436}, UV\textsubscript{525} and UV\textsubscript{620} removals in 1/8/8 ratio were 98.5%, 99.4% and 98.8%, respectively. This result was consistent with the literature that when the stabilized leachate was treated using Fe2+/SO\textsubscript{4} oxidation process, the highest COD removal was observed at Fe2+/SO\textsubscript{4} molar ratio 1:1 [12]. In the treatment of leachate using COD/SO\textsubscript{4}/Fe2+ oxidation process, the best COD removal was obtained as 76.2% at 90 mM Fe2+ with COD/SO\textsubscript{4} 1/6.7 after 120 min oxidation [11].

Effect of pH for Fe2+/SO\textsubscript{4} oxidation process

One of the critical factors in the treatment of wastewater by Fe2+/SO\textsubscript{4} oxidation process is the solution pH due to the control of free sulfate radical and Fe2+ ions [28]. As can be seen from Fig. 3, the removal efficiencies of COD, UV\textsubscript{254} and UV\textsubscript{525} decreased as the pH of the wastewater increased. The decrease of the removal efficiencies between pH 2 and 4 was very negligible, but when the pH increased from 4 to 7, the COD, UV\textsubscript{254} and UV\textsubscript{525} removal efficiency decreased from 57.7% to 44.0% from 70.0% to 53.0% and from 78.9% to 68.5%, respectively. This finding is compatible with the literature.

Asha et al. [12] achieved the highest COD removal for stabilized leachate treatment with Fe/SO\textsubscript{4} was in the range of pH 3-4 and stated that COD removal decreased when the pH was above 4 [12]. Likewise, the highest treatment efficiency of leachate with the Fe2+/SO\textsubscript{4} process was obtained at pH 3, and the COD removal decreased as the pH increased [11]. In other study, maximum COD removal efficiency was found as 69% at pH 3 under Fe2+/SO\textsubscript{4} ratio of 6 for the treatment recalitrant petrochemical wastewater [18]. Because when the pH is above 4, iron deactivation occurs which leads to the formation of iron hydroxide complexes having the high stability and low catalytic activity [14], [28]-[29]. Another reason for increasing removal efficiencies at pH ≤ 4 is that H\textsubscript{2}O\textsubscript{2} is produced by the hydrolysis of SO\textsubscript{4} and together with H\textsubscript{2}O and Fe2+ may form extra OH radicals by Fenton reaction [30]. While the pH change did not have a significant effect on color (UV\textsubscript{436}:UV\textsubscript{525}:UV\textsubscript{620}) removal, it can be seen that a slight color removal decreased with increasing pH.

Effect of oxidation time on Fe2+/SO\textsubscript{4} oxidation process

The effect of oxidation time on Fe2+/SO\textsubscript{4} oxidation process is shown in Fig 4. COD, UV\textsubscript{254} and UV\textsubscript{525} as well as color removal tended to increase rapidly up to 1 h reaction. After 1 h of oxidation, no significant change in color removal was observed. Similar to color removal, COD, UV\textsubscript{254} and UV\textsubscript{525} removal increased rapidly during the first hour oxidation period and no significant change was observed after 1 h of oxidation time.

![Fig 2: Effect of S\textsubscript{4}O\textsubscript{6} concentration on the COD, UV\textsubscript{280}, UV\textsubscript{360} and color (UV\textsubscript{436}:UV\textsubscript{525}:UV\textsubscript{620}) removal (pH: 2, oxidation time: 60 min)](image1)

![Fig 3: Effect of pH on the COD, UV\textsubscript{280}, UV\textsubscript{360} and color (UV\textsubscript{436}:UV\textsubscript{525}:UV\textsubscript{620}) removal (COD/Fe2+/S\textsubscript{4}O\textsubscript{6} ratio 1/8/8, oxidation time: 60 min)](image2)

![Fig 4: Effect of oxidation time on the COD, UV\textsubscript{254}, UV\textsubscript{525} and color (UV\textsubscript{436}:UV\textsubscript{525}:UV\textsubscript{620}) removal (COD/Fe2+/S\textsubscript{4}O\textsubscript{6} ratio 1/8/8, pH:2, oxidation time: 60 min)](image3)
3.2. UV/S$_2$O$_8$ oxidation process

Effect of COD/S:S$_2$O$_8$ ratio for UV/S$_2$O$_8$ oxidation process

To determine the effect of COD/S$_2$O$_8$ ratio on the COD, UV$_{254}$ and UV$_{280}$ removal efficiencies at initial pH 6, three different COD/S$_2$O$_8$ ratios (1/4, 1/6 and 1/8) were used (Fig 5). When the COD/S$_2$O$_8$ ratio was increased from 1/4 to 1/8 after 4 hours of oxidation, COD, UV$_{254}$ and UV$_{280}$ removal efficiencies increased from 17.4%, 17.1% and 31.3% to 54.4%, 54.3% and 66.5%, respectively. The increase in pollutant removal by UV/S$_2$O$_8$ is related to the formation of free sulphate radicals after activation of persulfate by UV irradiation. (Eq. 7) [15], [31].

$$S_2O_8^- + hv \rightarrow 2SO_4^- \quad (7)$$

Fig 5. Effect of COD/S$_2$O$_8$ ratio (a) on the COD removal (pH:6); (b) on the UV$_{254}$ and UV$_{280}$ removal (pH:6).

UV$_{436}$, UV$_{254}$ and UV$_{280}$ removal efficiencies were increased after 4 hours oxidation (Fig 6). The UV$_{436}$, UV$_{254}$ and UV$_{280}$ removals were obtained over 95% after 2.5 h oxidation. The UV$_{436}$, UV$_{254}$ and UV$_{280}$ removal efficiencies were 97.5%, 97.2% and 98.2% at 1/8 of COD/S$_2$O$_8$ ratio after 2.5 h oxidation, respectively. At the end of 4 h oxidation, the UV$_{436}$ UV$_{254}$ and UV$_{280}$ removals were reached 92.9%, 85.2% and 86.3% at 1/6 of COD/S$_2$O$_8$ ratio, while they were remained 82.1%, 66.5% and 68.5% at 1/4 of COD/S$_2$O$_8$ ratio.

Fig 6. Effect of COD/S$_2$O$_8$ ratio on the color (UV$_{436}$-UV$_{254}$-UV$_{280}$) removal (pH:6).

Effect of pH for UV/S$_2$O$_8$ oxidation process

The effect of the initial pH on the removal of organic matter and color was investigated using the initial pH of 3, 6 and 10. The removal efficiencies of COD, UV$_{254}$ and UV$_{280}$ were increased by increasing the initial pH from 3 to 6 (Fig 7). However, when the initial pH increased to 10, the COD, UV$_{254}$ and UV$_{280}$ removal efficiencies decreased after 4 h of oxidation, they were 31.8%, 30.7% and 55.5% respectively.

Maximum COD, UV$_{254}$ and UV$_{280}$ removal efficiencies were obtained at pH 6. This finding is consistent with the literature that the highest pollutant removal with persulfate oxidation has been achieved at near neutral pH levels [32]-[34]. The highest COD removal was obtained at pH 6 and 8.2 values in the treatment of pulp and paper wastewater by UV/S$_2$O$_8$ oxidation [34]. In some studies related to oxidation of organic substances (1H-benzotriazole, NN-diethyl-m-toluamide, chlorophene, 3-methylindole, and nortriptyline hydrochloride, trichloroethylene) with sulfate radicals, the activation energy of the reactions was found to be the lowest at pH 7 and therefore the removal efficiencies were reported to be higher at this pH [32], [35]. In this study, it is thought that a similar result was obtained because chemical industry wastewaters which contain many different organic materials were used. In the range of pH 7-10.5, SO$_4^-$ and OH$^-$ radicals are present in solution and the OH$^-$ radical is predominant, which may reduce the removal efficiency at basic conditions [33], [36]. Although the removal of UV$_{254}$ and UV$_{280}$ at pH 3 and 10 were close to each other, COD removal was higher at pH 10 than pH 3.

No significant change in color removal was observed at pH 6 and 10. The UV$_{254}$, UV$_{252}$ and UV$_{280}$ absorbances removal efficiencies were high at both pH 10 and pH 6, and over 90% removal of UV$_{436}$, UV$_{252}$ and UV$_{280}$ was achieved at pH 6 after 2 h of oxidation (Fig 8). UV$_{436}$ decolorization at pH 3 was close to that of pH 6 and 10; however UV$_{254}$ and UV$_{280}$ absorbances removal at pH 3 remained considerably lower than pH 6 and 10. Compared COD, UV$_{254}$, UV$_{280}$ removal with color removal efficiency, both organic matter removal and color removal at pH 3 remain low according to pH 6 and 10.
3.3. Kinetic evaluation of Fe2+/S\textsubscript{2}O\textsubscript{8} and UV/S\textsubscript{2}O\textsubscript{8} oxidation process

Fe2+/S\textsubscript{2}O\textsubscript{8} and UV/S\textsubscript{2}O\textsubscript{8} oxidation of dye-producing chemical industrial wastewater is fitted better pseudo first order kinetic model for COD, UV\textsubscript{254}, UV\textsubscript{280}, UV\textsubscript{436}, UV\textsubscript{525} and UV\textsubscript{620} removals. The pseudo first order rate constants (k\textsubscript{i}) for Fe2+/S\textsubscript{2}O\textsubscript{8} oxidation process were 0.8510 h-1, 1.2689 h-1, 1.6557 h-1, 3.5816 h-1, 3.5731 h-1 and 3.5816 h-1 for COD, UV\textsubscript{254}, UV\textsubscript{280}, UV\textsubscript{436}, UV\textsubscript{525} and UV\textsubscript{620} removal at 1/8/8 COD/S\textsubscript{2}O\textsubscript{8}/Fe2+ ratio and pH 2, respectively (Table 2). The pseudo first order rate constants (k\textsubscript{i}) for COD, UV\textsubscript{254}, UV\textsubscript{280}, UV\textsubscript{436}, UV\textsubscript{525} and UV\textsubscript{620} removal were 0.2071 h-1, 0.1731 h-1, 0.2816 h-1, 1.4335 h-1, 1.3059 h-1 and 1.4727 h-1 at 1/8 ratio of UV/S\textsubscript{2}O\textsubscript{8} and pH 6, respectively.

In a study by Pourehie and Saien [17], k\textsubscript{1} value of COD was calculated 0.0218 min-1 under the optimum conditions as 302.9 mg/L K\textsubscript{2}S\textsubscript{2}O\textsubscript{8}, 20.3 mg/L FeSO\textsubscript{4}.7H\textsubscript{2}O and 4.8 pH for treating petroleum refinery wastewater using UV/Fe2+/S\textsubscript{2}O\textsubscript{8} oxidation process [17]. In addition, according to a study on the treatment of petrochemical wastewater by UV/S\textsubscript{2}O\textsubscript{8} and UV/S\textsubscript{2}O\textsubscript{8}/Fe2+ oxidation processes, k\textsubscript{1} value for COD removal was calculated as 0.0108 min-1 and 0.0108 min-1, respectively [19].

The oxidation rate in UV/S\textsubscript{2}O\textsubscript{8} oxidation process was lower than Fe2+/S\textsubscript{2}O\textsubscript{8} oxidation process. For COD, UV\textsubscript{254} and UV\textsubscript{280} using Fe2+/S\textsubscript{2}O\textsubscript{8} treatment, k\textsubscript{i} values were 4.38, 7.33 and 5.88 times higher than UV/S\textsubscript{2}O\textsubscript{8} treatment. In addition, the color (UV\textsubscript{254}, UV\textsubscript{280} and UV\textsubscript{620}) removal rates were found to be about 2.3-2.5 times higher in Fe2+/S\textsubscript{2}O\textsubscript{8} process. Above 90% of color (UV\textsubscript{254}, UV\textsubscript{280} and UV\textsubscript{620}) removal efficiency could be achieved by Fe2+/S\textsubscript{2}O\textsubscript{8} oxidation process in 1 h, while UV/S\textsubscript{2}O\textsubscript{8} oxidation process was obtained in 2 h.

Table 2. Pseudo first order kinetic constants of Fe2+/S\textsubscript{2}O\textsubscript{8} and UV/S\textsubscript{2}O\textsubscript{8} oxidation

Parameter	Fe2+/S\textsubscript{2}O\textsubscript{8} oxidation process (COD/S\textsubscript{2}O\textsubscript{8}/Fe2+ ratio 1/8/8)	UV/S\textsubscript{2}O\textsubscript{8} oxidation process (COD/S\textsubscript{2}O\textsubscript{8} ratio 1/8)		
	k\textsubscript{i} (h-1)	R2	k\textsubscript{i} (h\textsupersupt {1})	R2
COD	0.9074	0.9857	0.2071	0.9886
UV\textsubscript{254}	1.2689	0.9937	0.1731	0.9372
UV\textsubscript{280}	1.6557	0.9645	0.2816	0.9793
UV\textsubscript{436}	3.5816	0.8366	1.4335	0.9924
UV\textsubscript{525}	3.0519	0.8301	1.3059	0.9818
UV\textsubscript{620}	3.5731	0.8510	1.4727	0.9841
4. CONCLUSIONS

The treatment of dye-producing chemical industrial wastewater using Fe$^{2+}$/S$_{2}$O$_{8}$ or UV/S$_{2}$O$_{8}$ oxidation process was investigated in this study. In Fe$^{2+}$/S$_{2}$O$_{8}$ oxidation process, optimum COD/Fe$^{2+}$/S$_{2}$O$_{8}$ ratio, pH and oxidation time were found to be 1/8/8, 3 and 1 h. In these conditions, COD, UV$_{254}$, UV$_{280}$ UV$_{336}$, UV$_{525}$ and UV$_{620}$ removal efficiencies in this chemical industrial wastewater were obtained as 61.1%, 72.8%, 82.8%, 98.4%, 97.1% and 98.4%, respectively. In UV/S$_{2}$O$_{8}$ oxidation process, COD, UV$_{254}$, UV$_{280}$ UV$_{336}$, UV$_{525}$ and UV$_{620}$ removal efficiencies were 54.4%, 54.3%, 66.5%, 98.9%, 98.2% and 98.3% at 1/8 of COD/S$_{2}$O$_{8}$ ratio and pH 6 after 4 h oxidation time, respectively. While more than 97% color removal can be achieved in both Fe$^{2+}$/S$_{2}$O$_{8}$ and UV/S$_{2}$O$_{8}$ oxidation processes, it was seen that organic matter removal was lower in UV/S$_{2}$O$_{8}$ oxidation process when COD, UV$_{254}$ and UV$_{280}$ parameters are examined. In the Fe$^{2+}$/S$_{2}$O$_{8}$ oxidation process, high COD and color removal efficiencies were achieved compared to UV/S$_{2}$O$_{8}$ oxidation process and also the oxidation time was shorter (the oxidation rate was higher). The results showed that both Fe$^{2+}$/S$_{2}$O$_{8}$ and UV/S$_{2}$O$_{8}$ oxidation processes were effective and suitable methods for removal of especially color parameter in this chemically treated dye-producing chemical industry wastewater. Although the organic matter removal (as COD, UV$_{254}$) was higher in the Fe$^{2+}$/S$_{2}$O$_{8}$ oxidation process, the amount of Fe$^{2+}$ used in this process and the amount of sludge formed should also be taken into account for economic evaluation.

ACKNOWLEDGMENT

The authors would like to thank Yasemin Kayhan for her assistance in providing wastewater.

REFERENCES

[1] V. García, E. Pongrácz and R. Keiski, "Waste minimization in the chemical industry: From theory to practice", Proceedings of the Waste Minimization and Resources Use Optimization Conference, pp. 93-106, 2004.
[2] M. Kornaros and G. Lyberatos, "Biological treatment of wastewaters from a dye manufacturing company using a trickling filter", Journal of Hazardous Materials, Vol. 136, pp. 95-102, 2006.
[3] H.-Y. Shu and W.-P. Hsieh, "Treatment of dye manufacturing plant effluent using an annular UV/H$_{2}$O$_{2}$ reactor with multi-UV lamps", Separation and Purification Technology, Vol. 51, pp. 379-386, 2006.
[4] F. Sun, B. Sun, J. Hu, Y. He and W. Wu, "Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale", Journal of Hazardous Materials, Vol. 286, pp. 416-424, 2015.
[5] E. Kattel, N. Dulova, M. Viisimaa, T. Tenno and M. Trapido, "Treatment of high-strength wastewater by Fe$^{2+}$-activated persulphate and hydrogen peroxide", Environmental Technology, Vol. 37 (3), pp. 352-359, 2016.
[6] L.A. Ike, K.G. Linden, J.D. and M. Orbell Duke, "Critical review of the science and sustainability of persulphate advanced oxidation processes", Chemical Engineering Journal, Vol. 338, pp. 651-669, 2018.
[7] P. Devi, U. Das and A.K. Dalai, "In-situ chemical oxidation: Principle and applications of persulphate and persulfate treatments in wastewater systems", Science of the Total Environment, Vol. 571, pp. 643-657, 2016.
[8] R. Guo, Q. Meng, H. Zhang, X. Zhang, B. Li, Q. Cheng and X. Cheng, "Construction of Fe$_{2}$O$_{3}$/Co$_{3}$O$_{4}$/exfoliated graphite composite and its high efficient treatment of landfill leachate by activation of potassium persulfate", Chemical Engineering Journal, Vol. 355, pp. 952-962, 2019.
[9] L.W. Matzek and E.K. Carter, "Activated persulfate for organic chemical degradation: A review", Chemosphere, Vol. 151, pp. 178-188, 2016.
[10] S. Wacławek, H.V. Lutze, K. Grüb, V.V.T. Padil, M. Černík and D.D. Dionysiou, "Chemistry of persulfates in water and wastewater treatment: A review", Chemical Engineering Journal, Vol.330, pp. 44-62, 2017.
[11] S. Yazici Guvenc, "Optimization of COD removal from leachate nanofiltration concentrate using H$_{2}$O$_{2}$/Fe$^{2+}$/heat- Activated persulfate oxidation processes", Process Safety and Environmental Protection, Vol.126, pp. 7-17, 2019.
[12] T.T. Asha, R. Gandhi, M.T. Ramam and P.V. Nidheesh, "Treatment of stabilized leachate by ferrous-activated persulfate oxidative system", Journal of Hazardous, Toxic, and Radioactive Waste, Vol. 21 (2), pp. 1-6, 2017.
[13] E. Kattel and N. Dulova, "Ferrous ion-activated persulfate process for landfill leachate treatment: removal of organic load, phenolic micropolutants and nitrogen", Environmental Technology, Vol. 38 (10), pp. 1223-1231, 2017.
[14] Z. Liu, X. Li, Z. Rao and F. Hu, "Treatment of landfill leachate biochemical effluent using the nano-Fe$_{3}$O$_{4}$/Na$_{2}$S$_{2}$O$_{8}$ system: Oxidation performance, wastewater spectral analysis, and activator characterization", Journal of Environmental Management, Vol. 208, pp. 159-168, 2018.
[15] A.R. Ishak, F.S. Hamid, S. Mohamad and K.S. Tay, "Stabilized landfill leachate treatment by coagulation-flocculation coupled with UV-based sulfate radical oxidation process", Waste Management, Vol. 76, pp. 575-581, 2018.
[16] C. Chen, H. Feng and Y. Deng, "Re-evaluation of sulfate radical based advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate", Water Research, Vol. 153, pp. 100-107, 2019.
[17] O. Pourhejie and J. Saien, "Treatment of real petroleum refinery wastewater with alternative ferrous-assisted UV/persulfate homogeneous processes", Desalination and Water Treatment, Vol. 142, pp. 140-147, 2019.
[18]. Z.G. Rahmat and M. Ahmadi, “Activation of persulfate by Fe2+ for saline recalcitrant petrochemical wastewater treatment: Intermediates identification and kinetic study”, Desalination and Water Treatment, Vol. 166, pp. 35-43, 2019.

[19]. A.A. Babaei and F. Ghanbari, “COD removal from petrochemical wastewater by UV/hydrogen peroxide, UV/persulfate and UV/percarbonate: biodegradability improvement and cost evaluation”, Journal of Water Reuse and Desalination, Vol. 6 (4), pp. 484-494, 2016.

[20]. E. Güneş, E. Demir, Y. Güneş and A. Hanedar, “Characterization and treatment alternatives of industrial container and drum cleaning wastewater: Comparison of Fenton-like process and combined coagulation/oxidation processes”, Separation and Purification Technology, Vol. 209, pp. 426-433, 2019.

[21]. I. Arslan-Alaton and I. Almehebati Balcioglu, “Biodegradability assessment of ozonated raw and biotreated pharmaceutical wastewater”, Archives of Environmental Contamination and Toxicology, Vol. 43 (4), pp. 425-431, 2002.

[22]. Standard Methods for the Examination of Water and Wastewater 21th edn, American Public Health Association/American Water Works Association/Water Environment Federation, Washington D.C., USA, 2005.

[23]. C. Liang, C.-F. Huang, N. Mohanty and R.M. Kurakalva, “A rapid spectrophotometric determination of persulfate anion in ISCO”, Chemosphere, Vol. 73, pp. 1540-1543, 2008.

[24]. H. Zhang, Z. Wang, C. Liu, Y. Guo, N. Shan, C. Meng and L. Sun, “Removal of COD from landfill leachate by an electro/Fe2+/peroxysulfate process”, Chemical Engineering Journal, Vol. 250, pp. 76-82, 2014.

[25]. S. Zhu, Z. Zhou, H. Jiang, J. Ye, J. Ren, L. Gu and L. Wang, “Advanced treatment of effluents from an industrial park wastewater treatment plant by ferrous ion activated persulfate oxidation process”, Water Science & Technology, Vol. 74 (2), pp. 535-541, 2016.

[26]. C.S. Uyguner and M. Beldbolet, “Evaluation of humic acid photocatalytic degradation by UV-vis and fluorescence spectroscopy”, Catalysis Today, Vol. 101 (3-4), pp. 267-274, 2005.

[27]. D. Kulikowska, T. Jóźwiak, M. Kuczajowska-Zadrożna, T. Pokój and Z. Gusiatin, “Efficiency of nitrification and organics removal from municipal landfill leachate in the rotating biological contactor (RBC)”, Desalination and Water Treatment, Vol. 33 (1-3), pp. 125-131, 2011.

[28]. G. Barzegar, S. Jorfi, V. Zarezade, M. Khatebasreh, F. Mehdi-pour and F. Ghanbari, 4 “Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron: Reusability, identification of degradation intermediates and potential application for real wastewater”, Chemosphere, Vol. 201, pp. 370-379, 2018.

[29]. F. Ghanbari, M. Moradi and M. Manshouri, “Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: Compared with zero valent copper”, Journal of Environmental Chemical Engineering, Vol. 2 (3), pp. 1846-1851, 2014.

[30]. J.M. Monteagudo, A. Duran, R. Gonzalez and A.J. Exposito, “In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2”, Applied Catalysis B: Environmental, Vol. 176-177, pp. 120-129, 2015.

[31]. M. Hassan, X. Wang, F. Wang, D. Wu, A. Hussain and B. Xie, “Coupling ARB-based biological and photochemical (UV/TiO2 and UV/S2O8) techniques to deal with sanitary landfill leachate”, Waste Management, Vol. 63, pp. 292-298, 2017.

[32]. J.L. Acero, F.J. Benitez, F.J. Real and E. Rodríguez, “Degradation of selected emerging contaminants by UV-activated persulfate: Kinetics and influence of matrix constituents”, Separation and Purification Technology, Vol. 201, pp. 41-50, 2018.

[33]. S. Dhaka, R. Kumar, M.A. Khan, K.-J. Paeng, M.B. Kurade, S.-J. Kim and B.-H. Jeon, “Aqueous phase degradation of methyl paraben using UV-activated persulfate method”, Chemical Engineering Journal, Vol. 321, pp. 11-19, 2017.

[34]. N. Jaafarzadeh, M. Omidinasab and F. Ghanbari, “Combined electro-coagulation and UV-based sulfate radical oxidation processes for treatment of pulp and paper wastewater”, Process Safety and Environmental Protection, Vol. 102, pp. 462-472, 2016.

[35]. C. Liang, Z.-S. Wang and C.J. Bruell, “Influence of pH on persulfate oxidation of TCE at ambient temperatures”, Chemosphere, Vol. 66, pp. 106-113, 2007.

[36]. Z. Wang, Y. Shao, N. Gao and N. An, “Degradation kinetic of dibutyl phthalate (DBP) by sulfate radical- and hydroxyl radical-based advanced oxidation process in UV/persulfate system”, Separation and Purification Technology, Vol. 195, pp. 92-100, 2018.