Electronic chirality inversion of lanthanide complex induced by achiral molecules

Satoshi Wada¹, Yuichi Kitagawa², Takayuki Nakanishi³, Masayuki Gon⁴, Kazuo Tanaka⁴, Koji Fushimi⁵, Yoshiki Chujo⁶ & Yasuchika Hasegawa²

A novel mechanism for chiroptical activity inversion based on the electronic structure of metal complexes without Λ- or Δ-type structure change was demonstrated spectroscopically and theoretically. To demonstrate the mechanism, a europium (Eu(III)) complex with chiral (+)-3-(trifluoroacetyl)camphor (+tfc) and achiral triphenylphosphine oxide (tppo) was prepared. The steric and electronic structures of the Eu(III) complex were adjusted by additional achiral tppo and coordinating acetone molecules, and were characterised by ¹H NMR, photoluminescence, and emission lifetime measurements. The optical activity of the Eu(III) complex in solution was evaluated by circularly polarized luminescence (CPL) measurements. CPL sign inversion, which was independent of Λ- or Δ-type structure changes from the spectroscopic viewpoint, and a drastic CPL intensity enhancement were observed depending on the external achiral molecules around Eu(III) ion. These phenomena provide the first clarification of optical activity change associated with electronic structure rather than chiral coordination structure-type (Λ or Δ) under external environments.

Chirality is prevalent in our life. Chirality is attributed to asymmetric molecular structure, which arises from the molecular level to the macroscopic helical scale, like a DNA double helix. Chiral structures also play a critical role in chiral properties such as enzyme activity and asymmetric synthesis using chiral catalysts. The chiral structures are susceptible to external environments such as solvents, temperature, light, or pH, causing chiral inversion phenomena in large variety of systems from biological macromolecules like B- or Z-form DNA to artificial soft matter and liquid crystals. Hence, the influence of external environment is of importance to control the molecular chirality.

Generally, chiral molecules exhibit optical activities with absorption (circular dichroism: CD) or emission (circularly polarized luminescence: CPL) related to the molecular structure. Optical activities are estimated from the different electronic transition probabilities between left- and right-handed circularly polarized light. The CD and CPL signals are dependent on the molecular chirality, which is influenced by the external field. The inversion of optical activity induced by the external field has been reported extensively. Ishii and Verbiest achieved the CD signal inversion of a chiral polythiophene derivative by controlling the molecular aggregation speed. George observed the tuneable helicity inversion of Zn(II)-coordinated naphthalenediimide assemblies with chiral adenosine phosphates using CD measurements. Meskers and Swager described the solvent polarity-dependent CPL signal switching of a self-assembled chiral poly(p-phenylenevinylene) derivative. The magnitude of optical activity is estimated by a dissymmetry factor (g), which is composed of electric and magnetic field components related to the electronic transition. Their components are governed by the molecular structure in the surrounding environment.

Here, we targeted chiral lanthanide complexes to clarify the influence of electric and magnetic field components on optical activities. Their sharp luminescence bands comprise electric and magnetic field components of 4f-4f transitions. Their components in the electronic transitions are dominated by external organic molecules around the lanthanide ion. In particular, the magnetic dipole transition of the europium (Eu(III)) complex

¹Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan. ²Faculty of Engineering, Hokkaido University, N13 W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan. ³Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Nijuku, Katsushika-ku, Tokyo, 125-8585, Japan. ⁴Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan. Correspondence and requests for materials should be addressed to Y.K. (email: y-kitagawa@eng.hokudai.ac.jp) or Y.H. (email: hasegaway@eng.hokudai.ac.jp)
Results

Coordination structures in solution. X-ray crystallography measurements indicated that the coordination structure of the Eu(III) complex in the solid is an eight-coordinated \(\Delta \)-type structure composed of three chiral \(+\)-tfc and two tppo ligands. To evaluate the conformation of \([\text{Eu}(+\text{tfc})_3(\text{tppo})_2]\) in acetone, \(^1\)H NMR spectra with additional \(n \) equivalents \((n = 0, 8, 28, 48, \text{and } 98)\) relative to \([\text{Eu}(+)\text{-Exn}]\) of tppo molecules, namely \([\text{Eu}(+)\text{-Exn}]\), were acquired (Fig. 2 and Supplementary Table S1). In the low-magnetic-field side, protons of tppo molecules in \([\text{Eu}(+)\text{-Ex0}]\) show broad peaks in Fig. 2 (black; A). The line-broadening and chemical shifts originate from the exchange reaction and paramagnetic effect on the metal complex. The paramagnetic effect of the Eu(III) ion generally induces little broadening (bandwidth; nearly 10 Hz). Therefore, the large broadening of tppo signals in our experiment (Fig. 2, black; A, bandwidth; nearly 300 Hz) is mainly caused by their exchange reaction in acetone-d\(_6\). The lower-magnetic-field shift in \([\text{Eu}(+)\text{-Ex0}]\) (Fig. 2, black; A) is influenced by the direct coordination of tppo ligands with the Eu(III) ion.

NMR peaks of the chiral \(+\)-tfc ligands in the Eu(III) complex were observed in the high-magnetic-field side (Fig. 2, signals B - I). \([\text{Eu}(+)\text{-Ex8}]\) provided effective chemical shifts of \(+\)-tfc ligands compared with those of \([\text{Eu}(+)\text{-Ex0}]\) (black). We also observed gradual shifts at the B, E, G, and I peaks of \([\text{Eu}(+)\text{-Ex28}]\) (purple), \(-\text{Ex48}\) (red), and \(-\text{Ex98}\) (blue). The effective shifts of the tppo and \(+\)-tfc signals indicate that the Eu(III) complex with tppo molecules is rearranged by additional tppo molecules, resulting in the formation of several equilibrium states in acetone-d\(_6\).

Luminescence properties. Photophysical properties of Eu(III) complexes are affected by the coordination geometry. The emission spectra of \([\text{Eu}(+)\text{-Ex0}]\) and \(-\text{Ex498}\) in acetone \((1 \times 10^{-3} \text{ M})\) are shown in Fig. 3 (black; a, and red; b). The Eu(III) complexes show sharp emission peaks in the region of 570–630 nm, which are attributed to the \(^{5}\text{D}_{0} \rightarrow ^{7}\text{F}_{j} (j = 0, 1, \text{and } 2)\) transitions of Eu(III) ions. The spectra were normalised with respect to the integrated intensities of the magnetic dipole transition \(^{5}\text{D}_{0} \rightarrow ^{7}\text{F}_{1}\). Their spectral shapes in liquid media were different from that of \([\text{Eu}(+)\text{-Ex0}]\) in the solid state (Supplementary Fig. S1). The emission spectra for the \(^{5}\text{D}_{0} \rightarrow ^{7}\text{F}_{1}\) and \(^{5}\text{D}_{0} \rightarrow ^{7}\text{F}_{2}\) transitions were also changed in response to the concentration of the tppo molecules in the solution.
solution. In particular, the $^5D_0 \rightarrow ^7F_1$ transition band is composed of three Stark sublevels under the electric field (crystal field). Eu(III)-Ex0 showed three peaks at 584.5, 588, and 593.5 nm in the $^5D_0 \rightarrow ^7F_1$ transition (Fig. 3 inset, black; a), whereas Eu(III)-Ex498 showed two peaks at 588 and 593 nm (Fig. 3 inset, red; b). The $^5D_0 \rightarrow ^7F_1$ transition of Eu(III)-Ex0 at a lower concentration (1×10^{-5} M, Fig. 3, blue; c) also showed three peaks at 584, 587.5, and 593.5 nm, which are similar to that of Eu(III)-Ex0 at a higher concentration. The small peak at 587.5 nm can be attributed to the $^5D_1 \rightarrow ^7F_3$ transition, which is sometimes observed in the same energy region as the $^5D_0 \rightarrow ^7F_1$ transition. The emission bands at around 612 nm are attributed to hypersensitive electric dipole transitions ($^5D_0 \rightarrow ^7F_2$), which are strongly dependent on the local symmetry of the Eu(III) ion. The change of spectral shape is influenced by the rearrangement of coordination geometries of the Eu(III) complex depending on additional tppo molecules. In case of the non-coordinating toluene solution, the emission spectra of Eu(III)-Ex0 and -Ex498 were similar in shape to that of Eu(III)-Ex498 in acetone, irrespective of the amount of additional tppo molecules (Supplementary Fig. S2). We propose that the inner coordination structure of Eu(III)-Ex498 in acetone is composed of one Eu(III) ion, three +tfc ligands, and two tppo ligands.

The time-resolved emission profiles of Eu(III)-Ex0 and -Ex498 in acetone (1×10^{-3} M) were measured to clarify their coordination structures. The emission lifetimes were estimated using triple (for Eu(III)-Ex0) or double (for Eu(III)-Ex498) exponential functions to analyse several conformations in solution (Fig. 4a,b). The estimated...
emission lifetimes are summarised in Table 1. For Eu(+)−Ex0, the emission lifetimes (τ₁, τ₂, and τ₃) and their ratios were calculated to be 0.27 ms (50%), 0.09 ms (49%), and 0.01 ms (1%), respectively. The longer component τ₁ in higher concentration (1 × 10⁻³ M, 0.27 ms) was similar to the single component τ₁ in lower concentration (1 × 10⁻⁵ M, 0.31 ms, Fig. 4c). We consider that the τ₁ component is the Eu(III) complex with coordinating acetone molecules (Fig. 4a,d). The τ₁ and τ₂ component ratios decreased and increased, respectively, with increasing amount of tppo molecules. The main τ₂ value of Eu(+)−Ex498 was found to be 0.12 ms (97%). The lifetime τ₂ in acetone was similar to the single-lifetime component in toluene (Supplementary Table S2), indicating that the Eu(III) ion is attached with three +tfc and two tppo ligands (Fig. 4b,d). We revealed that the two types of steric structures with τ₁ and τ₂ components were reorganized in response to the external tppo and acetone molecules.

Table 1. Luminescence properties of Eu(+)−Exn excited at 356 nm in acetone a. aEmission decay curves were analysed by multi-exponential curve fittings [I(t) = ∑Ai exp(-t/τi)]. The ratio of each component denotes 100 × Ai/∑Aiτi.

	Concentration [M]	τ₁ [ms]	τ₂ [ms]	τ₃ [ms]	ΔCPL
Eu(+)−Ex0	1 × 10⁻³	0.27 (50%)	0.09 (49%)	0.01 (1%)	-0.44
Eu(+)−Ex498	1 × 10⁻³	0.37 (3%)	0.12 (97%)	—	+0.013
Eu(+)−Ex0	1 × 10⁻⁵	0.31 (100%)	—	—	-1.0

Chiroptical properties. The CPL spectra and dissymmetry factors of Eu(+)−Ex0 and -Ex498 are shown in Fig. 5 and Table 1, respectively. The CPL signals for the ⁵D₆→⁷F₁ transition were composed of two peaks at
583 and 594 nm. The CPL signals at 594 nm were inverted by the addition of tppo molecules. The CPL spectrum of Eu(+) -Ex0 (1 x 10^{-3} M) shows a large negative peak at 594 nm, the g_{CPL} value of which (-0.44) is similar to a previously reported g_{CPL} value (g_{CPL} = -0.47)\(^{35}\) in acetone-d_{4} (1 x 10^{-3} M). The CPL spectrum of Eu(+) -Ex498 (1 x 10^{-3} M, excess amount of tppo) exhibits a small positive peak (g_{CPL} = +0.013). The enantiomer [Eu(-tfc)\(_{3}\)(tppo)\(_{2}\)] also exhibits CPL sign inversion at the transition (Supplementary Fig. S3). The CPL intensity of Eu(+) -Ex0 in lower concentration (1 x 10^{-5} M, g_{CPL} = -1.00) is much larger than that in higher concentration (1 x 10^{-3} M, g_{CPL} = -0.44). In contrast, the CPL signals of Eu(+) -Ex0 and -Ex498 at around 583 nm in the \(^{5}D_{0} \rightarrow \^{7}F_{1}\) transition exhibit negative CPL signals in these conditions. The CPL sign inversion behaviours depending on the external environments are summarised in Supplementary Fig. S4. Law and Dai reported similar CPL sign inversion phenomena of chiral Eu(III) complexes in the \(^{5}D_{0} \rightarrow \^{7}F_{1}\) transition depending on solvents (Supplementary Fig. S4b)\(^{39}\).

Considering the presence of \(\tau_{1}\) and \(\tau_{2}\) components in the emission lifetime measurements, the observed CPL spectra of Eu(+) -Ex0 and -Ex498 in acetone (1 x 10^{-3} M) were attributed to several equilibrium states of the Eu(III) complex in acetone. The large negative g_{CPL} of Eu(+) -Ex0 is dominated by the \(\tau_{1}\) component related to coordinating acetone molecules (Supplementary Figs S5–S7). The small positive g_{CPL} of Eu(+) -Ex498 is related to the \(\tau_{2}\) component of the eight-coordinated Eu(III) complex with two inner tppo ligands; this was supported by the similar positive g_{CPL} (+0.036) in toluene (Supplementary Fig. S8).

Discussion

The dissymmetry factor g_{CPL} is expressed in terms of the transition electric dipole moment \(\vec{\mu}^{\dagger}\) and transition magnetic dipole moment \(\vec{m}\) as follows\(^{28}\):

\[
g_{\text{CPL}} = 4 \cdot \frac{|\vec{\mu}^{\dagger}||\vec{m}|\cos\theta}{|\vec{\mu}^{\dagger}| + |\vec{m}|²} = 4 \cdot \frac{\left(\frac{|\vec{\mu}^{\dagger}|}{|\vec{m}|}\right)}{\left(\frac{|\vec{\mu}^{\dagger}|}{|\vec{m}|}\right)^2 + 1},
\]

where \(\theta\) is the angle between \(\vec{\mu}^{\dagger}\) and \(\vec{m}\). When \(\vec{\mu}^{\dagger} = \vec{m}\ (\theta = 0)\), equation (1) provides the largest g_{CPL} value (=2) mathematically (Fig. 6a). In the region \(|\vec{\mu}^{\dagger}|/|\vec{m}| < 1\) (Fig. 6a,b, orange regions), the Eu(III) complex with a large \(|\vec{\mu}^{\dagger}|/|\vec{m}|\) provides a large g_{CPL} value. In general, the \(|\vec{\mu}^{\dagger}|/|\vec{m}|\) value in the \(^{5}D_{0} \rightarrow \^{7}F_{1}\) transition is larger than the \(|\vec{\mu}^{\dagger}|/|\vec{m}|\) value \((|\vec{\mu}^{\dagger}|/|\vec{m}| < 1)\(^{40}\). The intensity of \(\vec{\mu}^{\dagger}\) in the \(^{5}D_{0} \rightarrow \^{7}F_{1}\) transition depends on the crystal field around the Eu(III) ion\(^{41,42}\). The \(^{7}F_{1}\) energy level of the Eu(III) ion in a typical eight-coordinate structure (C\(_{4v}\) or D\(_{2d}\)) splits into two Stark sublevels (Fig. 6b)\(^{38}\). The two bands at 583 and 594 nm in the CPL spectra are assigned to the \(A_{1} \rightarrow A_{2}\) and \(A_{1} \rightarrow E\) transitions\(^{43}\), respectively, in Fig. 6b,c. The observed CPL signal in the \(A_{1} \rightarrow E\) transition was inverted from minus to plus, while that in the \(A_{1} \rightarrow A_{2}\) transition retained the minus sign. In C\(_{4v}\) or D\(_{2d}\) symmetry, the direct product \(A_{1}(=A_{1} \times A_{2})\) is expressed in terms of the electric dipole (ED) forbidden and magnetic dipole (MD) allowed transitions (\(R_{L}\)) on the character table in group theory (Fig. 6c, Supplementary Tables S3 and S4). On the other hand, the direct product \(E(=A_{1} \times E)\) produces ED and MD allowed transitions (\((x, y); (R_{x}, R_{y})\), Fig. 6c, Supplementary Tables S3 and S4). The CPL sign at 583 nm (ED forbidden \(A_{1} \rightarrow A_{2}\) transition) reflects the intrinsic \(\Lambda\)- or \(\Delta\)-type structure, because of insensitive electronic state mixing. Considering the same CPL sign at 583 nm

Figure 5. CPL spectra of (a) Eu(+)-Ex0 (1 x 10^{-3} M, black), (b) Eu(+)-Ex498 (1 x 10^{-3} M, red), and (c) Eu(+)-Ex0 (1 x 10^{-2} M, blue) excited at 350 nm in acetone.
of the τ₁ and τ₂ components, the structure-type (Λ or Δ) with the τ₁ component is the same as that with the τ₂ component in our experiments. The coordination symmetry of τ₁ component was much similar to that of τ₂ component, which was supported by magnetic circular dichroism (MCD) measurements and DFT calculation (Supplementary Figs S9–S11). In contrast, the CPL sign in the ED and MD allowed A₁ → E transition is sensitive to electronic state mixing even for the same chiral structure-type (Λ or Δ). The effective sign inversion and drastic intensity change of the CPL signal in the A₁ → E transition should be caused by the change of \(\mu \) based on electronic state mixing.

In the \(^5\text{D}_0 \rightarrow ^7\text{F}_1 \) transition, \(\mu \) is mainly altered by the J-mixing of \(^7\text{F}_2 \) or \(^7\text{F}_3 \) sublevels into \(^7\text{F}_1 \). In the photoluminescence spectra, the Stark splitting energy of the τ₁ component (270 cm\(^{-1}\), Fig. 3 inset, blue; c) was larger than that of the τ₂ component (160 cm\(^{-1}\), Fig. 3 inset, red; b). The large Stark splitting energy suggests the large J-mixing in the A₁ → E transition of the τ₁ component. The J-mixing increases the value at the ED allowed A₁ → E transition relative to that at the ED forbidden A₁ → A₂ transition, which is consistent with relatively large emission intensity at the A₁ → E transition (593.5 nm) of the τ₁ component (Fig. 3 inset, blue; c). The \(\Delta \mu \) change leads to the large \(g_{\text{CPL}} \) value in equation (1).

The angle \(\theta \) between \(\mu \) and \(\mathbf{m} \) of the τ₁ component is larger than 90°, whereas that of the τ₂ component is smaller than 90°, suggesting that the angle is established by \(\mu \) vector change due to J-mixing. The extra-large enhancement of \(g_{\text{CPL}} \) from +0.013 to −1.0 also indicates that J-mixing promotes the direction of \(\mu \) and \(\mathbf{m} \) to antiparallel, leading to the large \(g_{\text{CPL}} \). We demonstrated that the CPL sign and intensity are strongly influenced by the chiral electronic structure depending on the \(\mu \) under J-mixing in the same chiral structure-type.

Conclusion

We successfully observed a CPL sign inversion with a drastic \(g_{\text{CPL}} \) change from +0.013 to −1.0 for the Eu(III) complex with the same chiral coordination structure-type. The CPL phenomena were attributed to the chiral electronic structure depending on the \(\mu \) under J-mixing. We also achieved an extra-large \(g_{\text{CPL}} \) (−1.3) of the Eu(III) complex with chiral +tfc ligands in DMSO, suggesting that the \(g_{\text{CPL}} \) of the Eu(III) complex could be enhanced by J-mixing with a small 4f-5d mixing character (Supplementary Figs S12 and S13, Table S5). The results provide a novel aspect for the optical activity of metal complexes and molecular design of chiral lanthanide complex by maximising the \(g_{\text{CPL}} \) value.

Methods

Synthesis of Tris(3-trifluoroacetyl-(+)-camphorato)europium(III) bis(triphenylphosphine oxide) ([Eu(+-tfc)\(_3\)(tppo)]). Europium(III) acetate \(n \)-hydrate (0.36 g) was dissolved in distilled water (150 mL), and a few drops of 28% ammonia solution were added. (+)-3-trifluoroacetyl camphor (+tfc, 0.50 g, 2.0 mmol) in methanol (20 mL) was added to the solution, and the mixture was stirred for 3 h at room temperature. The obtained powder was washed with distilled water, and the powder was dried in vacuo (0.42 g). The powder (0.19 g) and triphenylphosphine oxide (tppo, 0.11 g, 0.40 mmol) were dissolved in methanol (20 mL) and refluxed for 3 h. The reaction solution was evaporated using a rotary evaporator. The obtained powder was recrystallised from a hot acetonitrile solution and gave yellow crystals. Yield: 47%. Elemental analysis: Calculated for \(\text{C}_{127}\text{H}_{127}\text{Eu}_2\text{O}_3\text{P}_2\cdot 0.5\text{H}_2\text{O}, \text{C}, 59.63\%, \text{H}, 5.00\%\). Found: C, 59.54%, H, 4.92%.

Synthesis of Tris(3-trifluoroacetyl-(−)-camphorato)europium(III) bis(triphenylphosphine oxide) ([Eu(-tfc)\(_3\)(tppo)]). [Eu(-tfc)\(_3\)(tppo)] was prepared using the same method for [Eu(+tfc)\(_3\)(tppo)]. Starting from (−)-3-trifluoroacetyl camphor, yielding yellow powder. Yield: 64%. Elemental analysis: Calculated for \(\text{C}_{127}\text{H}_{127}\text{Eu}_2\text{O}_3\text{P}_2\cdot 0.5\text{H}_2\text{O}, \text{C}, 59.63\%, \text{H}, 5.00\%\). Found: C, 59.49%, H, 4.94%.
Materials

Europium(III) acetate n-hydrate, acetone-d_4 (99.9%), acetone (spectroscopic grade), toluene (spectroscopic grade), dimethyl sulfoxide (spectroscopic grade), and 28% ammonia solution were purchased from Wako Pure Chemical Industries Ltd. (−)-3-(trifluoroacetyl)camphor and (+)-3-(trifluoroacetyl)camphor were purchased from Sigma-Aldrich Co. Triphenylphosphine oxide was purchased from Tokyo Chemical Industry Co., Ltd. All other chemicals and solvents were of reagent grade and were used without further purification.

Apparatus

Elemental analyses were performed on an Exeter Analytical CE440. Proton nuclear magnetic resonance (1H NMR) spectra were recorded in acetone-d_4, on an auto-NMR JEOL ECS 400 MHz. Acetone ($\delta_2=2.05$ ppm) was used as an internal reference. Emission spectra and emission lifetimes were measured using a Horiba/Jobin-Yvon FluoroLog-3 spectrophotometer. CPL spectra were measured using a JASCO CPL-200 spectrophotofluorometer.

References

1. Hembury, G. A., Borovkov, V. V. & Inoue, Y. Chirality-sensing supramolecular systems. *Chem. Rev.* **108**, 1–73 (2008).
2. Pérez-García, L. & Amabilino, D. B. Spontaneous resolution under supramolecular control. *Chem. Soc. Rev.* **31**, 342–356 (2002).
3. Yoon, T. P. & Jacobsen, E. N. Privileged chiral catalysts. *Chem. Soc. Rev.* **33**, 363–372 (2004).
4. Mason, S. F. Selection rules for lanthanide optical activity. *Coord. Chem. Rev.* **31**, 6869–6964 (2014).
5. Mateos-Timoneda, M. A., Crego-Calama, M. & Reinhoudt, D. N. Supramolecular chirality of self-assembled systems in solution. *Chem. Soc. Rev.* **33**, 363–372 (2004).
6. Katsonis, N., Lacaze, E. & Ferrari, A. Controlling chirality with helix inversion in cholesteric liquid crystals. *J. Mater. Chem. B* **22**, 7088–7097 (2012).
7. Pieraccini, S., Di Bari, L. & Gazzari, S. A dynamic supramolecular polymer with stimuli-responsive handedness for in situ probing of enzymatic ATP hydrolysis. *Nat. Commun.* **5**, 1–8 (2014).
8. Kim, J. & Prasad, S. Induction and control of supramolecular chirality by light in self-assembled helical nanostructures. *Nat. Commun.* **6**, 1–8 (2015).
9. Lin, R. et al. pH-switchable inversion of the metal-centered chirality of metalallabenzenes: Opposite stereodynamics in reactions of ruthenabenzenes with L- and D-cysteine. *Chem. Eur. J.* **17**, 2420–2427 (2011).
10. Choi, J. & Majima, T. Conformational changes of non-B DNA. *Chem. Soc. Rev.* **40**, 5893–5909 (2011).
11. Zhang, L., Qin, L., Wang, X., Cao, H. & Liu, M. Supramolecular Chirality in Self-Assembled Soft Materials: Regulation of Chiral Nanostructures and Chiral Functions. *Adv. Mater.* **26**, 6959–6964 (2014).
12. Francesco, Z. & Di Bari, L. Lanthanide circularly polarized luminescence: Bases and applications. *Adv. Mater.* **21**, 9885–9888 (2009).
13. Okazaki, M. et al. Solvent-controlled sign inversion of circularly polarized luminescent binaphthylacetic acid derivative. *J. Photochem. Photobiol. A* **331**, 115–119 (2016).
14. Kimoto, T. et al. Control of solid-state circularly polarized luminescence of binaphthyl organic fluorophores through environmental perturbations. *J. Am. Chem. Soc.* **132**, 9030–9031 (2006).
15. Okazaki, M. et al. Solvent-controlled sign inversion of circularly polarized luminescent binaphthylacetic acid derivative. *J. Photochem. Photobiol. A* **206**, 2420–2427 (2011).
16. Shin, Y. et al. Reversal circularly polarized luminescence of AIE-active chiral binaphthyl molecules from solution to aggregation. *Chem. Eur. J.* **21**, 13196–13200 (2015).
17. Hidaka, T. et al. Circularly polarized luminescence of Eu(III) complexes with point- and axis-chiral ligands dependent on coordination structures. *Inorg. Chem.* **50**, 2011–2012 (2011).
18. Carr, R., Evans, N. H. & Parker, D. Lanthanide complexes as chiral probes exploiting circularly polarized luminescence. *Chem. Soc. Rev.* **41**, 7673–7686 (2012).
19. Bünzli, J.-C. G. On the design of highly luminescent lanthanide complexes. *Coord. Chem. Rev.* **293–294**, 19–47 (2015).
20. Hinze, T., Beswick, T. & van der Meer, M. Selection rules for lanthanide optical activity. *Inorg. Chem.* **19**, 2806–2812 (1980).
21. Vanmeensel, J., Gheysen, S., Gheysen, S., Gheysen, S. & Gheysen, S. Chiral optical activity of chiral lanthanides(III) with an encapsulated alkali metal ion: circularly polarized luminescence and absolute chiral structures for the Eu(III) and Sm(III) complexes. *Inorg. Chem.* **50**, 12724–12732 (2011).
22. Kuroda, T. et al. Circularly polarized luminescence of Eu(III) complexes with point- and axis-chiral ligands dependent on coordination structures. *Inorg. Chem.* **48**, 11242–11250 (2009).
23. Klockner, I. R. & Foster, M. P. An introduction to NMR-based approaches for measuring protein dynamics. *Biochim. Biophys. Acta* **1814**, 942–968 (2011).

The text content above is a natural language representation of the provided scientific report, ensuring clarity and coherence in the presentation of scientific findings and methodologies.
37. Cockerill, A. F., Davies, G. L. O., Harden, R. C. & Rackham, D. M. Lanthanide shift reagents in nuclear magnetic resonance spectroscopy. Chem. Rev. 73, 553–588 (1976).
38. Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1–45 (2015).
39. Dai, L., Lo, W. S., Coates, I. D., Pal, R. & Law, G. L. New class of bright and highly stable chiral cyclen europium complexes for circularly polarized luminescence applications. Inorg. Chem. 55, 9065–9070 (2016).
40. Richardson, F. S., Berry, M. T. & Reid, M. F. Ligand polarization contributions to lanthanide 4f→4f magnetic dipole transition moments and rotary strengths. Mol. Phys. 58, 929–945 (1986).
41. Görller-Walrand, C., Fluyt, L., Ceulemans, A. & Carnall, W. T. Magnetic dipole transitions as standards for Judd-Ofelt parametrization in lanthanide spectra. J. Chem. Phys. 95, 3099–3106 (1991).
42. Forsberg, J. H. Complexes of lanthanide (III) ions with nitrogen donor ligands. Coord. Chem. Rev. 10, 195–226 (1973).
43. Ma, C. G., Brik, M. G., Kuik, V., Kangur, T. & Sildos, I. Spectroscopic and crystal-field analysis of energy levels of Eu³⁺ in SnO₂ in comparison with ZrO₂ and TiO₂. J. Alloys Compd. 509, 3441–3451 (2011).

Acknowledgements
We thank professor K. Monde and assistant professor T. Taniguchi in Hokkaido University for the discussion of spectroscopic measurements. This work was partly supported by JSPS KAKENHI Grant Number JP17H06375. This work was also supported by Grants-in-Aid for Scientific Research (no. 18H02041, no. 18H04497), Young Scientists (B) (no. 17K1446707), and JSPS Research Fellow (no. 16J01325). S. Wada was also supported by The Ministry of Education, Culture, Sports Science and Technology through Program for Leading Graduate Schools (Hokkaido University ‘Ambitious Leader’s Program’).

Author Contributions
S.W. performed all the syntheses and measurements, and wrote the paper under the supervision of Y.K., T.N., K.F. and Y.H., M.G., K.T. and Y.C. supported the CPL measurements. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-34790-0.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2018