Antiemetic Effect of Fruit Extracts of *Trapa bispinosa* Roxb. in Chick Emesis Model

Syed Waleed Ahmed Bokhari¹, Sabiha Gul², Rida Fatima³, Sana Sarfaraz⁴*, Muhammad Mohtasheemul Hasan⁵ and Afshan Abbbas⁶

¹Department of Pharmacognosy, Faculty of Pharmacy, Hamdard University, Pakistan.
²Department of Pharmacology, Faculty of Pharmacy, Hamdard University, Pakistan.
³Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, Pakistan.
⁴Department of Pharmacology, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Pakistan.
⁵Department of Pharmacognosy, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Pakistan.
⁶Department of Pharmacology, Sir Syed College of Medical Sciences, Karachi, Pakistan.

Authors’ contributions

This work was carried out in collaboration among all authors. Author SWAB and MMH designed the study. Author SG and AA did the literature searches and author RF wrote the first draft. Author SS performed the analysis and reviewed the final draft. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2020/v32i3330956

Editor(s):

(1) Prof. Mostafa A. Shalaby, Cairo University, Egypt.

Reviewers:

(1) Baldé Etaadj Saidou, University Gamal Abdel Nasser, Guinea.
(2) Florin Muselin, Banat’s University of Agricultural Sciences and Veterinary Medicine, Romania.
(3) Michael G. Mauk, University Pennsylvania, USA.

Complete Peer review History: http://www.sdiarticle4.com/review-history/62983

ABSTRACT

Background: Vomiting and nausea are common symptoms associated with many diseased conditions. They also occur as side effects due to intake of certain medications. Natural remedies are nowadays being considered as a better alternate compared to allopathic medicine.

Aim: The current study was designed to evaluate the antiemetic effect of hexane and ethanolic extracts of *Trapa bispinosa* Roxb fruit.

Methodology: The study was conducted on young chicks aged 6-7 days using Copper sulfate (50 mg/kg) for the induction of emesis using oral route. Antiemetic effect was determined by observing

Corresponding author: E-mail: sana.sarfraz@live.com
the reduction in the number of retches in different groups of chicks. Metoclopramide and
Chlorpromazine (150 mg/kg) were used as standard antiemetic agents. Chicks were treated with
both extracts (ethanolic and hexane) at the dose of 150 mg/kg.

Results: Hexane extract was found to be most effective when compared with all the groups. The
results showed that T.bispinos Roxb. hexane extract was able to effectively prevent the copper
sulfate induced emesis in chicks. Phytochemical analysis was also performed and it was predicted
that the antiemetic effect of hexane extract might be due to the presence of alkaloids and
triterpenoids.

Conclusion: The positive effects obtained from this study showed that natural remedy might also
be used as an alternate to allopathic medicine for nausea and vomiting.

Keywords: Anti-emetic; alkaloids; copper sulphate Trapa bispinosa roxb; triterpenoids

1. INTRODUCTION

Human bodies undergo substantial changes throughout life due to hormonal and mechanical
effects. These changes lead to variety of symptoms and illness. Among which vomiting is
very common. Emesis is the expulsion of gastric and small contents of intestine from the mouth. It
is a manifestation of large number of conditions like gastritis, food poisoning, overexposure to
radiations, side effects of medicines like opioids and chemotherapy etc. Chemoreceptor trigger
zone plays imperative role as stimulus for vomiting. Antiemetic drug treatment is chosen
according to the etiology of vomiting [1].

Metoclopramide and Chlorpromazine are potent antiemetic agents and are also effective in
vomiting associated with cancer chemotherapy especially in pediatric oncology and also
effective in children [2-3]. Chlorpromazine in pediatric oncology is more effective than
metoclopramide [4].

Despite the clinical significance, these antiemetic agents have more susceptibility towards adverse
effects and safety concerns have caused interest for the discovery and development of new
antiemetic agents with fewer adverse effects [5]. In some out patients clinical studies involving
Chlorpromazine adverse events like arrhythmia, polydipsia and sedation have been observed [6].
Several natural products have been reported to have antiemetic activity in which ginger is
considered as the most potent antiemetic agent due to the presence of gingerol and shogaol [7].
Herbal medicine is the fastest growing complementary alternative medicine used
throughout the world [8].

Trapa Bispinosa Roxb. commonly known as water chest nut belongs to the family Trapaceae.
Water chest nut is an aquatic herb found in tropical, sub-tropical and temperate zone of the
world. Trapa is annual aquatic herb found in lakes and ponds. Floating leaves are
rhombohedral in shape, 2-6 cm in diameter, with dark green top and reddish purple bottom,
denticate, dentate, serrate or incised with entire base, apex is acute. Flowers are white. Fruit is
triangular with two horns, green in fresh condition but after drying it becomes blackish; pulp of the
fruit is whitish, sweet in taste [9]. In addition *Trapa bispinosa* Roxb. contains high quantity of
saponins, alkaloids, flavanoids, triterpenoids, carbohydrates, vitamin B-complex (thiamine,
rifoflavin, pantothenic acid, pyridoxine, nicotinic acid), vitamin C and vitamin A [10]. As far as
medicinal uses are concerned *Trapa bispinosa* Roxb. in Unani Medicine is used in sexual
debility, spermatorrhea, fatigue, fever, dysentery, bleeding disorders, dental carries [11], sore
throat, STDs (sexually transmitted diseases) and also during pregnancy [12]. According to
literature survey pharmacological activities of *Trapa bispinosa* Roxb. [13] includes anti-diabetic
[14], analgesic [15], antiulcer, immune-
mudulatory, nootropic, anti-bacterial [16].
neuroprotective and Neuropharmacological
effects [17]. It has also shown beneficial effects in reducing the progression of cataractogenesis
in diabetic rat's lens [18].

In the past no study has been conducted to
evaluate the anti-emetic activity of *Trapa bispinosa* Roxb. so the current study focuses on
assessing the anti-emetic potential of hexane and ethanolic extract of water chest nut.

2. MATERIALS AND METHODS

2.1 Collection of Plant Material

The fresh fruits of *Trapa bispinosa* Roxb. were purchased from the local market in Karachi,
Pakistan in the month of January 2019 and were
identified by Department of Pharmacognosy, Faculty of Pharmacy, Jinnah University for Women with voucher number JUW-PHG/18/024.

2.2 Preparation of Ethanolic and Hexane Extract

Half Kilogram two portions of fruit material were washed and after drying were grinded using grinder (National Company) and macerated in ethanol and hexane (1000 ml each) specifically for seven days. The macerated fruit solvents were then filtered out through muslin cloth to remove debris and later were filtered through filter paper. The excessive solvents were then evaporated separately via rotary evaporator (Rotavapor R-3, Vacuum pump 700+Nanometer, Chiller F-100) to obtain concentrated extract. The obtained ethanolic extract was 1.564 g and hexane extract was 1,234 g. Both the extracts were stored at room temperature of 23-25 ± 2°C in an airtight container.

2.3 Chemicals

Copper sulphate was obtained from Shahsons (PVT) Ltd- Karachi, Pakistan, n - hexane purchased from BDH laboratory supplies poole, Bh15 1TD England. Chlorpromazine and metoclopramide were bought from multinational pharmaceuticals.

2.4 Animals

Young and healthy male chicks, 6-7 days of age weighing from 28 g – 48 g were purchased from Bismillah poultry farm Ramzan Goth Karachi Pakistan. They were then housed in the animal house of Faculty of Pharmacy, Jinnah University for Women. All chicks were kept under proper laboratory conditions at room temperature with 12 h light and dark cycles and allowed free access to food and water. After 3 days habituation period they were fasted for 24 hours then the antiemetic activity was assessed. All animal testing and experiment were performed in accordance with the specification provided by Hubrecht and Kirkwood 2010 [19] and the study was approved by the intuitional board.

2.5 Drug Administration

Experimental chicks were divided into 5 groups respectively comprising (n=6) animals in each group. Group I was labelled as negative control (copper sulfate 50mg/kg), Group II and III were labelled as Treated I and II (Ethanol and Hexane extracts 150mg/kg) of T. bispinosa Roxb. Group IV and V were used as standard (Metoclopramide and Chlorpromazine 150 mg/kg b.w) [20]. The extracts were dissolved in distilled water to obtain the final concentration. All groups were administered orally via oral gavage.

2.6 Anti-Emetic Activity

The antiemetic activity was estimated by using chick induced emesis model [21]. Each chick was retained in a large plastic cage and left for 10 minutes. The hexane and ethanolic extracts of trapa bispinosa fruit were prepared at a dose of 150 mg/kg body weight in a volume of 25 ml of distilled water [22]. The dose was administered orally. The negative control group received copper sulfate (50 mg/kg) only where as other groups were first administered with standard (metoclopramide and Chlorpromazine) and treated (hexane and ethanolic extract of trapa fruit) at dose of 150 mg/kg respectively. After 10 minutes of dose administration, the animals were administered copper sulfate 50mg/kg orally and the number of retches were observed for 10 minutes.

The percent inhibition was calculated by the following formula:

\[
\text{Inhibition (\%) } = \frac{(A-B)}{A} \times 100
\]

Where, \(A = \text{Frequency of retching in negative control group; and } B = \text{Frequency of retching in test group}\)

2.7 Phyto-Chemical Analysis

The hexane and ethanolic extracts of trapa bispinosa fruit was screened for the presence of carbohydrate, alkaloids, saponins and tannins by following standard procedure [23-24].

2.8 Statistical Analysis

The data was expressed as Mean ± S.D. The data was analyzed by SPSS version 22 (Statistical Package for Social Sciences). One-way ANOVA followed by multiple comparison post hoc Tukey’s test was performed for statistical calculations. All p-values less than 0.05 were considered significant where \(^a p < 0.05\) as compared to Negative control, \(^b p < 0.05\) as compared to Standard I (metoclopramide), \(^c p <0.05\) as compared to Standard II (Chlorpromazine), \(^d p < 0.05\) as compared to ethanolic extract and \(^e p < 0.05\) as compared to hexane extract.
3. RESULTS

According to Table 1 when all the groups were compared with negative control it was seen that there was a significant reduction (p ≤ 0.05) in number of retches in all the group’s i.e both the standard and treated group showed significant reduction in retching as compared to negative control.

When Standard I (Metoclopramide) was compared with Standard II and both the treated groups it was found that Metoclopramide significantly reduced (p ≤ 0.05) the number of retching (95.1%) inhibition as compared to Chlorpromazine (79.2%) inhibition and ethanolic extract of trapa fruit (87.8%). However there was insignificant difference between the hexane extract of trapa fruit and metoclopramide (both showed 95.1% inhibition).

Similarly when Standard II (Chlorpromazine) was compared with both the treated groups, the number of retching’s were significantly increased (p ≤ 0.05) as compared to ethanolic and hexane extract of trapa fruit. Among the treated groups ethanolic extract of trapa fruit significantly increased (p ≤ 0.05) the number of retching’s as compared to hexane extract.

Table 2 shows the presence of phytochemicals such as alkaloids, triterpenoids and flavonoids.

4. DISCUSSION

The whole study revealed that the fruit of *Trapa Bispinosa* Roxb. possess anti-emetic potential. The constituents which are found to be responsible for antiemetic effects may be alkaloids and triterpenoids which is also validated by the phytochemical study. The hexane extract shows a significant decrease in emesis in chicks induced by copper sulphate and attenuate the emetic effect of copper sulphate at the dose of 150 mg/kg. Retching is physiologically comparable to vomiting and is characterized as the labored, spasmodic, rhythmic contractions of the respiratory muscles without expulsion of gastric substance [25]. Usually chemotherapeutic regimes are associated with side effects that include retching and vomiting. Chemotherapeutic agents cause this effect by triggering the vomiting center or chemoreceptor trigger zone or by causing release of serotonin from the entero-chromaffin cells of the small intestinal mucosa by peripherally acting and damaging the cells of the GIT. The serotonin then binds with the 5HT receptors in the vagus and the afferent splanchnic fibers [26] carrying the sensory stimulus to the medulla which causes emesis [27]. Copper Sulphate induced emesis is said to be related to the peripheral 5HT receptors [28]. Possible mechanism of action of *Trapa Bispinosa* Roxb. might be through the inhibition of serotonin and dopamine interacting with 5-HT4 receptor in addition with 5-HT3 and referred to as serotonin antagonist [29]. Some chicks administered ethanolic extract showed sedation with antiemetic effect that might show dopamine antagonist like activity i.e minimizing the impact of dopamine at the D2 receptor within the chemoreceptor trigger zone, in this manner restricting emetic input to the medullary spewing center and side-effects of dopamine antagonists such as sedation [26]. The alkaloid present in the fruit possess anti-cholinergic effect which might play a role in inhibiting emesis. Alkaloids usually produce this effect by acting at the M3 and M5 receptors and mediating the cholinergic activity within the vestibular input to the vestibular nuclei and probably also within brainstem pathways integrating vomiting such as the nucleus tractus solitarius (NTS) [30-31]. A study conducted in 2019 has also shown similar effects due to presence of alkaloids when methanolic extract of *Swertia chirata* was evaluated for anti-emetic potential [32].

Groups	No. of retches	Percentage of Inhibition (%)
Negative Control (CuSO4 50 mg/kg)	82 ± 1.2	95.1%
Standard I (Metoclopramide 150 mg/kg)	4 ± 1.16a	95.1%
Standard II (Chlorpromazine 150 mg/kg)	17 ± 2.06b	95.1%
Ethanolic extract (150 mg/kg)	10 ± 1.87c	95.1%
Hexane Extract (150 mg/kg)	4 ± 0.89d	95.1%

Mean ± S.D. (n=6) where *p < 0.05 as compared to Negative control, *p ≤ 0.05 as compared to Standard I (metoclopramide), *p ≤ 0.05 as compared to Standard II (Chlorpromazine), *p ≤ 0.05 as compared to ethanolic extract and *p ≤ 0.05 as compared to hexane extract.
Table 2. Qualitative phytochemical analysis of hexane extract of *T. bispinosa* Roxb

S.No	Test	Observation	Result
1.	Alkaloid (Wagner test)	Positive	
2.	Triterpenoids (Salkowski test)	Positive	
3.	Tannins (Gelatin test)	No ppt	Negative
4.	Flavanoids (Alkaline reagent test)	No ppt	Negative
5.	Anthraquinones	No ppt	Negative
6.	Saponins (Froth test)	No ppt	Negative
Ethanol extract of *T. bispinosa* Roxb.

No.	Compound	Test Result	Conclusion
1.	Alkaloid	No ppt	Negative
2.	Triterpenoids	No ppt	Negative
3.	Tannins	No ppt	Negative
4.	Flavanoids		Positive
5.	Anthraquinones	No ppt	Negative
6.	Saponins	No ppt	Negative
5. CONCLUSION

The hexane extract of Trapa fruit in the future might prove to useful against chemotherapy induced vomiting, pregnancy vomiting, gastroenteritis vomiting and anxiety induced vomiting but further studies need to be conducted to evaluate the exact mechanism of action.

CONSENT

It is not applicable.

ETHICAL APPROVAL

Principles of laboratory animal care (NIH publication No. 85-23, revised 1985) were followed, as well as specific national laws where applicable. The experiments were examined and approved by the institutional ethics committee.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the assistance of Mr. Tahir and Ms. Samreen Lab attendants Jinnah University for Women, Karachi, Pakistan.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Opana L, Mulaku MN, Opana SA, Godman B, Kurdi A. Adverse effects of chemotherapy and their management in Pediatric patients with Non-Hodgkin’s Lymphoma in Kenya: A descriptive, situation analysis study. Expert review of anticancer therapy. 2019;19(5):423-30.
2. Ruggiero A, Rizzo D, Catalano M, Coccia P, Triarico S, Attinà G. Acute chemotherapy-induced nausea and vomiting in children with cancer: STILL waiting for a common consensus on treatment. Journal of International Medical Research. 2018;46(6):2149-56.
3. Phillips RS, Friend AJ, Gibson F, Houghton E, Gopaul S, Craig JV, Pizer B. Antiemetic medication for prevention and treatment of chemotherapy-induced nausea and vomiting in childhood. Cochrane Database of Systematic Reviews. 2016;(2).
4. Antonarakis ES, Evans JL, Heard GF, Noonan LM, Pizer BL, Hain RD. Prophylaxis of acute chemotherapy-induced nausea and vomiting in children with cancer: What is the evidence? Pediatric blood & cancer. 2004;43(6):651-8.
5. Chikowe I, Domingo M, Mwakaswaya V, Parveen S, Mafuta C, Kampira E. Adverse drug reactions experienced by out-patients taking chlorpromazine or haloperidol at Zomba Mental Hospital, Malawi. BMC research notes. 2019;12(1):376.
6. Saneei Totmaj A, Emamat H, Jarrahi F, Zarrati M. The effect of ginger (Zingiber officinale) on chemotherapy-induced nausea and vomiting in breast cancer patients: A systematic literature review of randomized controlled trials. Phytotherapy Research. 2019;33(8):1957-65.
7. Saghatchian M, Bihane C, Chenaillet C, Mazouni C, Dauchy S, Delage S. Exploring frontiers: use of complementary and alternative medicine among patients with early-stage breast cancer. The Breast. 2014;23(3):279-85.
8. Imtiyaz S, Anwar M, Ali SJ, Tariq M, Chaudhury SS. Trapa bispinosa Roxb: an ethnopharmacological review. Int Res J Pharm Plant Sci. 2013;1:13-20.
9. Zhu F. Chemical composition, health effects, and uses of water caltrop. Trends in Food Science & Technology. 2016; 49:136-45.
10. Gani A, Haq SS, Masoodi FA, Broadway AA, Gani A. Physico-chemical, morphological and pasting properties of starches extracted from water chestnuts (Trapa natans) from three lakes of Kashmir, India. Brazilian Archives of Biology and Technology. 2010;53(3):731-40.
11. Adkar P, Dongare A, Ambavade S, Bhaskar VH. Trapa bispinosa Roxb: A review on nutritional and pharmacological aspects. Advances in pharmacological sciences; 2014.
12. Bolotova YV. Aquatic plants of the Far East of Russia: A review on their use in medicine, pharmacological activity. Bangladesh Journal of Medical Science. 2015;14(1):9-13.
13. Huang HC, Chao CL, Liaw CC, Hwang SY, Kuo YH, Chang TC, Chao CH, Chen CJ,
Kuo YH. Hypoglycemic constituents isolated from Trapa natans L. pericarps. Journal of agricultural and food chemistry. 2016;64(19):3794-803.

14. Panda SK, Kbaliquzzama M, Agrahari AK. Evaluation of psychopharmacological activity of methanolic extract of Trapa natans L. var. bispinosa Roxb roots. Advances in Pharmacology and Toxicology. 2010;11(2):71.

15. Razvy MA, Faruk MO, Hoque MA. Environment friendly antibacterial activity of water chestnut fruits. Journal of Biodiversity and Environmental Sciences. 2011;1(1):26-34.

16. Phukan P, Bawari M, Sengupta MA. Promising neuroprotective plants from north-east India. Int J Pharm Pharm Sci. 2015;7(3):28-39.

17. Kinoshita S, Sugawa H, Nanri T, Ohno RI, Shirakawa Ji, Sato H, Katsuta N, Sakake S, Nagai R. Trapa bispinosa Roxb. and lutein ameliorate cataract in type 1 diabetic rats. Journal of Clinical Biochemistry and Nutrition. 2019;19-34.

18. Hubrecht R and Kirkwood J. The UFAW handbook on care and management of laboratory and other research animals. 8th edn. Wiley Blackwell, Oxford; 2010.

19. Ahmed S, Sabzwar T, Hasan MM. Azhar I. Antiemetic activity of leaves extracts of five leguminous plants. International Journal of Research in Ayurveda & Pharmacy. 2012;3(2).

20. Ahmed S, Onocha AP. Antiemetic activity of tithonia diversifolia (HemsL) a gray leaves in copper sulphate induced chick emesis model. Am J Phytoed Clin Therapeut. 2013;1:734-9.

21. Ahmed S, Sultana M, Mohtasheem M, Hasan U, Azhar I. Analgesic and antiemetic activity of Cleome viscosa L. Pakistan Journal of Botany. 2011;43:119-122.

22. Phukan P, Namasudra S, Bawari M, Sengupta M. Mercury induced neurobehavioral deficit and its ameliorating effects of aqueous extract of Trapa bispinosa. Mercury. 2018;11(9):420-424.

23. Eraj A, Sarfaraz S, Usmanhanni K. Hepato-protective potential and phytochemical screening of cymbopogon citratus. J Anal Pharm Res. 2016;3(6):00074.

24. GE Trease, WC Evans. Phenols and phenolic glycosides in Textbook of Pharmacognosy, Balliese, Tindall and Co Publishers, London, UK. 1989;12:343–383

25. Scuderi PE. Pharmacology of antiemetics. International anesthesiology clinics. 2003;41(4):41-66.

26. Flake ZA, Scalley R, Bailey AG. Practical selection of antiemetics. American family physician. 2004;69(5):1169-74.

27. Hasan MM, Azhar I, Muzammil S, Ahmed S, Ahmed SW. Antiemetic activity of some leguminous plants. Pakistan Journal of Botany. 2012;44(1):389-91.

28. Papich MG. Dolasetron Mesylate. saunders handbook of veterinary drugs, 2016; 262–263.

29. Pasricha, PJ. Prokinetic agents, antiemetics and agents used in irritable bowel syndrome. The pharmacological basis of therapeutics, New York: Mc Graw-Hill, 2001:1021–36.

30. Hossain MM, Ahamed SK, Dewan SM, Hassan MM, Istiaq A, Islam MS, Moghal MM. In vivo antipyretic, antiemetic, in vitro membrane stabilization, antimicrobial and cytotoxic activities of different extracts from Spilaneae paniculata leaves. Biological Research. 2014;47(1):45.

31. Soto E, Vega R. Neuropharmacology of vestibular system disorders. Current Neuropharmacology. 2010;8(1):26-40.

32. Medhi PK, Gohain K. Study on the antiemetic property of methanolic stem extract of Swertia chirata using chick emesis model. International Journal of Basic & Clinical Pharmacology. 2019;8(2):327.

© 2020 Bokhari et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.