tire vertebral body (VB) was part of target volume in all patients. The IMRT plan was generated using 3 fields with single field optimisation technique. Last 5 patients were treated using dose gradient (DG) (98–93%) deliberately creating 3–5 mm of VB. Intent-to-treat patients with DG, maximum mean dose to esophagus (36.7 GY) vs 25.4 GY, 31.53 GY vs 20.41 GY, midline mucosa (28.95 GY) vs 25.31 GY, 21.85 GY vs 14.61 GY) and bowel bag (32.9 GY vs 24.27 GY, 3.59 GY vs 3.21 GY) were higher compared to patients without DG. Both patients whose DG was not created, developed grade 2 esophageal toxicities requiring supportive care and treatment interruptions (4 and 2 days). All 5 patients with DG did not develop esophageal toxicity and had no interruptions. CONCLUSION: Creating a dose gradient over anterior VB using IMRT reduces dose to esophagus and midline mucosa leading to lower acute esophageal toxicity which potentially avoids treatment interruptions during CSI.

RONG-24. PROTON THERAPY FOR PEDIATRIC EPENDYMOMA: MATURE OUTCOMES FROM THE UNIVERSITY OF FLORIDA AND MASSACHUSETTS GENERAL HOSPITAL

Daniel Indelicato1, Myriss Soeckem-Joanmou, Julie Bradley1, Ryan Tretter1, Christopher Macdonald2, Masaaki Takeuchi2, Lin Yock Kiyokawa3, and Thomas Beach1,2

OBJECTIVE: Report long-term efficacy and toxicity of proton therapy for pediatric ependymoma. MATERIALS AND METHODS: Between 2000–2017, 318 children with nonmetastatic grade II/III intracranial ependymoma received proton therapy at Massachusetts General Hospital or the University of Florida. Median age at diagnosis was 3.5 years (range, 0.7–21.3 years); 56% were male. Most (69%) tumors were in the posterior fossa and classified as WHO grade III (64%). Eighty-four percent had a gross total or near total tumor resection before radiotherapy and 30% received chemotherapy. Median radiation dose was 55.8 GCE (range, 50.4–59.4 GCE). RESULTS: Median follow-up was 6 years (range, 0.6–19.2 years). Seven-year local control, progression-free survival, and overall survival rates were 77.1% (95% CI 71.7–81.7%), 64.4% (95% CI 58.6–69.8%), and 81.3% (95% CI 76.9–85.9%), respectively. Subtotal resection was associated with inferior local control (60% vs 80%; p<0.01), progression-free survival (49% vs 67%; p<0.01), and overall survival (69% vs 84%; p<0.05). Male gender was associated with inferior progression-free (59% vs 71%; p=0.01) and overall survival (77% vs 9%; p<0.05). Twenty patients (6.2%) required hearing aids; of these, 12/20 received cisplatin. Grade 3+ brainstem toxicity rate was 1.6% and more common in patients who received >54 GCE. The rate of second malignancy was 0.9%. CONCLUSION: Proton therapy offers commensurate disease control to modern photon therapy without unintended neurotoxicity. The high rate of local control supports efforts to reduce radiation exposure in this young population with brain tumors. Independent of modality, this large series confirms extent of resection as the most important modifiable factor for survival.

RONG-25. A CASE OF PEDIATRIC PONTINE GLIOMA TREATED WITH GAMMA KNIFE SURGERY

Sasmita Kanyak1, Jura Kiyokawa1, Shin Hirota1, Yasuhisa Murota1, Mariko Ishikawa1, Hiroto Yamaoka1, Masataka Yoshinuma1, Masaaki Yamamoto2, and Shinji Yamamoto2

Tsuschiura Kyodo General Hospital, Tsuschiura, Ibaraki, Japan, 1Mito Gamma House, Hitachinaka, Ibaraki, Japan

BACKGROUND: Pediatric brainstem gliomas rarely occur and are a heterogeneous group of diseases, which increases the difficulty of treatment strategy. Here, we present a case of pediatric pontine glioma treated with Gamma Knife surgery (GKS) after open biopsy. CASE DESCRIPTION: An 11-year-old boy presented with diplopia due to the left MLF syndrome. MRI showed a well-circumscribed, protruding tumor with partial low-signal enhancement in the dorsal pons. An open biopsy was performed via the suprafacial triangle following multilevel suboccipital approach. Histological examinations revealed high cellularity and mild atypia. Immunohistochemistry demonstrated positive stain for GFAP and Olig2 antibodies, and negative for p53 protein. The Ki67 labeling index was 6.8%. Pyrosequence analysis indicated IDH1/2 wild type (wt), BRAF V600 wt, H3F3A K27 wt, FGFR1 wt, and TERT wt. The final diagnosis was pediatric diffuse astrocytoma, WHO grade II, pons. GKS was performed one month after the biopsy. After transient worsening of the symptom, it disappeared gradually. The tumor was stable for three years with mild shrinkage of the size. DISCUSSION: Gross total resection (GTR) of pediatric low-grade, brainstem gliomas may result in a good prognosis. However, unlike pilocytic astrocytoma, diffuse astrocytoma is not easy to perform GTR without any complications. There are some reports regarding GKS for brainstem gliomas, which prove an increase in progression free survival rate. No marked tumor regression is achieved in our case, but tumor growth is well-controlled so far. CONCLUSION: GKS after biopsy can be a useful treatment option for pediatric low-grade brainstem gliomas.

RONG-26. A CASE OF RADIATION NECROSIS OF THE CEREBELLUM 16 YEARS AFTER CHEMORADIOThERAPY FOR MEDULLOBLASTOMA

Mayuko Miyata, Masahiro Nonaka, and Akio Asai

Department of Neurosurgery, Kansai Medical University, Hirakata City, Osaka, Japan

BACKGROUND: If new lesions are observed during follow-up of the malignant tumor after treatment, it is difficult to distinguish whether the tumor is a recurrent lesion, secondary cancer, or radiation necrosis of the brain. We have encountered a patient with symptomatic radiation necrosis of the cerebellum 16 years after treatment of medulloblastoma. CASE REPORT: A 24-year-old man who had received a tumor resection and chemoradiotherapy for cerebellar medulloblastoma at the age of 8 presented with dizziness. For the past 16 years, there was no recurrence of the tumor. He subsequently underwent MRI scan, and TI-Gd image showed enhanced lesion in the right cerebellar peduncle. Cerebrospinal fluid cytology analysis was negative for tumor. We suspected tumor recurrence or secondary cancer, and performed lesion biopsy. The result of the pathological examination was radiation necrosis of the cerebellum. DISCUSSION: Radiation necrosis of the brain and radiotherapy can vary from months to more than 10 years. So, whenever a new lesion is identified, radiation brain necrosis must be envisioned. According to guidelines in Japan, there is no absolute examination for discriminating tumor recurrence from radiation brain necrosis and diagnosis by biopsy may be required. CONCLUSION: We experienced a case of symptomatic radiation necrosis of the cerebellum 16 years after treatment. In patients showing new lesion after long periods of time, the possibility of radiation necrosis to be considered.

RONG-27. PROTON THERAPY REDUCES DOSE TO CRITICAL CENTRAL NERVOUS SYSTEM STRUCTURES IN MEDULLOBLASTOMA: A DOSIMETRIC ANALYSIS OF CHILDREN’S ONCOLOGY GROUP (COG) ACNS0331

Matthew Deek1, Matthew Ladra1, Lan Lin1, Yimei Li1, Yanjuan Han1, Kristina Hardey3, and Jeff Michalski2

Johns Hopkins Hospital, Baltimore, MD, USA, 2St. Jude Children’s Hospital, Memphis, TN, USA, 3Children’s National, Washington DC, USA, 4Washington University in St. Louis, St. Louis, MO, USA

BACKGROUND: Recently published data demonstrated proton therapy (PRT) significantly reduced cognitive decline relative to photons for pediatric medulloblastoma. These findings imply that reductions in dose to critical CNS structures during the boost phase may account for better outcomes over time. Here, we examine differences in dosimetric data for medulloblastoma patients treated on ACNS0331 with photon (Intensity Modulated Radiation Therapy, 3D-Conformal Radiation Therapy) vs PRT to identify potential structures responsible for cognitive benefits. METHODS: COG ACNS031 was a randomized trial examining the impact of reduced craniospinal irradiation (CSI) dose (standard vs low dose, in patients aged 3–7) and volume (whole posterior fossa vs involved field) in pediatric medulloblastoma patients. We identified 136 patients (IMRT vs PRT, 3DCRT-28, Protons-13) enrolled on ACNS0331. A dosimetric analysis was performed for children with complete radiation and imaging data and re-contoured 10 critical brain structures to calculate dose. RESULTS: Proton therapy significantly reduced the dose to critical structures. For example, temporal lobe mean dose and V30 were both statistically lower. CONCLUSION: Proton therapy significantly reduces dose to critical CNS structures when compared to IMRT or 3DCRT. Further studies are needed to correlate dose reductions in these structures with improved cognitive outcomes.

RONG-31. ADVANCED ECHOCARDIOGRAPHY WITH MYOCARDIAL-STRAIN-ANALYSIS DESCRIBES SUBCLINICAL CARDIAC DYSFUNCTION AFTER CRANIOSPINAL IRRADIATION (CSI) IN PEDIATRIC AND YOUNG ADULT PATIENTS WITH CENTRAL NERVOUS SYSTEM (CNS) TUMORS

Hugo Martinez1, Ralph Sallow1, Erin Wright2, Philip Khouyr1, Justin Trett2, and Thomas Ryan1

1Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA

CSI is part of the treatment of CNS tumors and is associated with cardiovascular disease; data in pediatric/young adult patients are limited. Myocardial-strain-analysis can reveal subclinical dysfunction. Retrospective,
single-center study in CNS tumor patients managed with CSI from 1986–
2018. Clinical details, and echocardiography including myocardial-strain
analysis were collected at T1-first echocardiogram after CSI, and T2-most recent
postoperative echocardiogram. Data are missing for 3 patients. The averages
were available in 44 patients (46.9% female, 14.8±9.8 years) at T1 and
39 patients (38.6% female, 21.0±11.3 years) at T2. Standard echocardiography
was normal for all subjects. At T1, global longitudinal peak systolic strain (GRS) was 16.9±5.3% in CSI vs. 21.6±5.5% in controls (p<0.05),
global radial peak systolic strain (GRS) was 21.5±10.1% in CSI vs.
26.5±7.4% in controls, and global circumferential peak systolic strain
(GCS) was -19.5±6.0% in CSI vs. -21.4±3.4% in controls (p<0.05). At T2, GRS was -22.0±10.4% in CSI vs. 27.1±8.2% in controls
(p<0.05); GCS was -20.5±6.9% in CSI vs. -21.8±3.5% in controls
(p=0.10). For 17 patients with myocardial-strain-analysis available for both
time points; difference in GRS was 0.6±2.2% (p=0.05); GRS was 5.3±9.5% in CSI vs. GCS -6.5±8.3% in controls (p=0.0001).
Subclinical dysfunction is present at first echocardiogram after CSI. Myocardial impairment may recover with time, however further analysis is needed to identify risk factors and trends. These results argue for inclusion of baseline cardiovascular assessment and longitudinal follow-up in CNS tumor patients post CSI.

BONC-32. LOCAL CONTROL FOLLOWING PROTON THERAPY FOR PEDIATRIC CHORDOMA
Daniel Indelicato1, Ronny Rotondo2, Raymond Vega1, Adam Holtzman1, Wen Shen Loos1, Christopher Morris1, Eric Sandler1, Philipp Aldana1, and Julie Bradley1. 1University of Florida, Jacksonville, FL, USA; 2University of Kansas, Kansas City, KS, USA.

BACKGROUND: Due to the location and high dose required for disease control, pediatric chordomas are therefore not suitable for treatment with proton therapy, but their low incidence limits the clinical outcome data avail-
able in the literature. METHODS AND MATERIALS: Between 2008 and
2019, 29 patients with a median age of 14.8 years (range, 3.8–21.8) received
proton therapy for non-metastatic chordoma at a single institution. Twenty-
four tumors arose in the clivus/cervical spine region and 5 in the lumbosacral
spine. Twenty-six tumors demonstrated well-differentiated histology and 3
were dedifferentiated or not otherwise specified (NOS). Approximately half
of the tumors underwent specialized testing; 14 were brachyury-positive and
10 retained INI-1. Seventeen patients had gross disease at the time of radia-
tion. The median radiation dose was 73.8 GyRBE. RESULTS: With a
median follow-up of 4.3 years (range, 1.0–10.7), the 5-year estimates of
local control, progression-free survival, and overall survival rates were 85%,
82%, and 86%, respectively. EXCLUDING: 3 patients with dedifferen-
tiated/NOS chordoma, the 5-year local control, progression-free survival,
and overall survival rates were 92%, 92%, and 91%, respectively. Serious
toxicities included 3 patients with hardware failure or related infection re-
quiring revision surgery, 2 patients with hormone deficiency, and 2 patients
with Eustachian tube dysfunction causing chronic otitis media. CONCLU-
SION: In pediatric patients with chordoma, proton therapy is associated
with a low risk of serious toxicity and high efficacy, particularly in well-
differentiated tumors. Complete resection may be unnecessary for local con-
trol and destabilizing operations requiring intervention may result in
additional complications following therapy.

NEUROSURGERY

SURG-02. INITIAL MANAGEMENT OF HYDROCEPHALUS IN THE PEDIATRIC AND YOUNG-ADULT PATIENTS WITH BRAIN TUMORS: THE EFFICACY OF LONG-TERM INDWELLING EXTERNAL VENTRICULAR DRAINAGE
Shigeru Yamauchi1, Hiroshi Motegi1, Yukitomo Ishi1, Michinari Okamoto1, Akihito Iuchi1, Yoko Cho1, Minako Sugiyama1, Atushi Manabe1, and Kyohou Houkin1. 1Department of Neurosurgery, Hokkaido University Hospital, Sapporo, Japan.

BACKGROUND: Pediatric and Young-Adult (AYA) brain tumors often present with hydrocephalus. As temporary cerebrospinal fluid (CSF) di-
version procedure, we perform long-term indwelling external ventricular
drainage (EVD) in the case of the management of CSF diversion more than
two weeks presumably. The aim of this study is to investigate the initial
management for hydrocephalus in pediatric AYA patients with brain tumors,
especially about long-term EVD. MATERIALS AND METHODS: The pa-
tients less than 30 years of age diagnosed with brain tumor between 2005
and 2019 were retrospectively analyzed. Procedures of long-term EVD
were similar to that of ventriculoperitoneal shunt (VPS) system. Operation.
using flow-controllable VPS system, peritoneal catheter passed out of the body at the
anterior chest, and distal end of the catheter was connected to standard
EVD system. RESULTS: In total of 345 patients with brain tumor, 109 had hydrocephalus at presentation. Among them, 25 patients (23%) under-
went long-term EVD. The main reasons for selecting long-term EVD were
to avoid intraperitoneal dissemination (n=13), and to maintain longer
period of CSF diversion for the treatment of tumor (n=12). The median of
long-term EVD was 38 days (range: 12 – 222 days). Although one case suf-
dering from drainage tube occlusion at 59 days, there were no other compli-
gations allowing immersive virtual reality (VR) visualization of obtained models
offer the opportunity to appreciate neuroanatomical details and spatial rela-
tionship between the tumor and normal neuroanatomical structures to a level
not previously seen. We present our preliminary experience with the Sur-
egical Theatre, a commercially available 3D VR system, in 60 consecutive
neurosurgical oncology cases. 3D models were developed from volumetric
CT scans and MR standard and advanced sequences. The system allows the
loading of 6 different layers at the same time, with the possibility to modu-
late opacity and threshold in real time. Use of the 3D VR was used during
preoperative planning allowing a better definition of surgical strategy. A
tailored craniotherapy and brain dissection can be simulated in advanced
and precise operating room (OR) environment. VR was also used offline, both before and after
surgery, in the setting of case discussion within the neurosurgical team and
during MDT discussion. Finally, 3D VR was used during informed consent,
improving communication with families and young patients. 3D VR allows to
assist surgical strategies to the single patient, contributing to procedural
safety and efficacy and to the global improvement of neurosurgical oncology
care.

SURG-03. IMMERSIVE VIRTUAL REALITY APPLICATIONS IN NEUROSURGICAL ONCOLOGY
Andrea Carai1, Angela Mastronuzzi1, Giovanna Stefania Colafati1, Paul Vocci1, Nicola Onorini1, Alessia Carboni1, Gadaa Del Bald1, Aalap Jamadagni Herur-Ramani1, Alessandro De Benedictis1, and Carlo Ettio Marras1. 1Bambino Gesù Children’s Hospital, Rome, Italy; 2Surgical Theatre Inc., Cleveland, OH, USA.

Tridimensional (3D) rendering of volumetric neuroimaging is increasingly
been used to assist surgical management of brain tumors. New technolo-
gies allowing immersive virtual reality (VR) visualization of obtained models

SURG-04. THE APPLICATION OF EN BLOC RESECTION IN THE OPERATION OF PEDIATRIC POSTERIOR FOSSA TUMOR
Ma Jin1, Weimei Mao1, Shuaiwei Tian1, Baocheng Wang, and Yang Zhao2. 1Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China; 2Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of Medicine from January 2018 to December 2019. Among them, 35 cases were treated with traditional resection (control group) and 59 cases with en bloc resection (ob-
ervation group). We counted the amount of blood loss and the time during
tumor resection, We compare the symptoms and signs between the two
groups and determine a extent of tumor resection based on microscopic ob-
servation and preoperative and postoperative imaging comparison. RESULT:
The total tumor resection rate of the observation group (88.1%, 52 / 59) was significantly higher than that of the control group (62.85%, 22 / 35, P < 0.05). The average bleeding volume of 90.8ml in the observation group was significantly smaller than that of the control group (113.3ml, P < 0.05). The average bleeding volume of 90.8ml in the observation group (p<0.05). The average operation time of 38.6min in the observation group was significantly smaller than that of the control group (113.3ml, P < 0.05), The average operation time of 38.6min in the control group was significantly smaller than that of the control group (113.3ml, P < 0.05), and the average operation time of 38.6min in the observation group was significantly smaller than that of the control group (113.3ml, P < 0.05).

SURG-05. AN AWARE SURGERY FOR A CHILD SUFFERING FROM EPILEPSY DUE TO DYSSEMYBRIALYTIC NEUROEPITHELIAL TUMOR LOCATED IN THE LEFT PARIELT Lobe
Jun Kiyokawa1, Shun Yamamoto1, Yasuhiro Munota1, Mariko Ishikawa1, Hiroto Yamaoka1, Satoshi Kaneko1, Masataka Yoshinura1, Shin Hirota1. 1Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of Medicine from January 2018 to December 2019. Among them, 35 cases were treated with traditional resection (control group) and 59 cases with en bloc resection (ob-
ervation group). We counted the amount of blood loss and the time during
tumor resection, We compare the symptoms and signs between the two
groups and determine a extent of tumor resection based on microscopic ob-
servation and preoperative and postoperative imaging comparison. RESULT:
The total tumor resection rate of the observation group (88.1%, 52 / 59) was significantly higher than that of the control group (62.85%, 22 / 35, P < 0.05). The average bleeding volume of 90.8ml in the observation group was significantly smaller than that of the control group (113.3ml, P < 0.05), and the average operation time of 38.6min in the observation group was significantly smaller than that of the control group (57.4min, P < 0.05) only for tumor resection procedure. CONCLUSION: En bloc resection technique can ef-
citely accelerate the resection time, reduce intraoperative bleeding and improve the total resection rate of tumors in children's posterior cranial fossa.