Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahar city, Sistan and Baluchistan province in Iran

Abbas Abbasnia a, Mahmoud Alimohammadi a,⁎, Amir Hossein Mahvi a, Ramin Nabizadeh a, Mahmood Yousefi a, Ali Akbar Mohammadi b, Hassan Pasalaric c, Majid Mirzabeigi a

a Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Science, Tehran, Iran
b Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
c Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Science, Tehran, Iran

Article info
Article history:
Received 10 September 2017
Received in revised form
23 October 2017
Accepted 1 November 2017
Available online 8 November 2017

Keywords:
Groundwater quality
WQI
Scaling and corrosiveness potential
GIS
Chabahr

Abstract
The aims of this study were to assess and analysis of drinking water quality of Chabahar villages in Sistan and Baluchistan province by water quality index (WQI) and to investigate the water stability in subjected area. The results illustrated that the average values of LSI, RSI, PSI, LS, and AI was 0.5 (± 0.34), 6.76 (± 0.6), 6.50 (± 0.99), 2.71 (± 1.59), and 12.63 (± 0.34), respectively. The calculation of WQI for groundwater samples indicated that 25% of the samples could be considered as excellent water, 50% of the samples were classified as good water category and 25% of the samples showed poor water category.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Chemistry
More specific subject area	Describe narrower subject area
Type of data	Table, graph, figure
How data was acquired	All water samples were analyzed according to the Standard Methods for Examination of Water and Wastewater Temporary and permanent hardness, magnesium, calcium, and chloride were measured by titration method. The hydrogen ion concentration (pH) and electrical conductivity and opacity were analyzed with pH meter (model wtw, Esimetrwb) and turbidity meter (model Hach 50161/co 150 model P2100Hach, USA), respectively. Also, fluoride, nitrate, and sulfate were determined with Hach DR5000 spectrophotometer and compared with internal standards.
Data format	Raw, analyzed
Experimental factors	The mentioned parameters above, in abstract section, were analyzed according to the standards for water and wastewater treatment handbook.
Experimental features	The levels of physical and chemical parameters were determined.
Data source location	Chabahar, Sistan and Baluchistan province, Iran
Data accessibility	Data are included in this article

Value of the data

1. These data could be helpful for many organizations, such as rural water and wastewater organizations, water treatment plants, water resources management, and the Ministry of Energy, which need these to make decisions and adopt guidelines for water quality management.
2. The zoning of the scaling and corrosion indices and water quality index (WQI) was done to provide a clear picture of the water quality in the water resources at the villages of Chabahar.
3. In dry and semi-arid climates such as Iran, groundwater is almost the main source of water supply, therefore, the continuous monitoring of the quality of these valuable resources is very necessary.

1. Data

The parameters and indices were calculated in the experiments are including chloride ion, sulfate, temperature, Electrical Conductivity (EC), Total Dissolved Solids (TDS), pH, total alkalinity, bicarbonate ions, and calcium hardness according to standard methods for examination of water and wastewater [1]. Then LSI, RSI, PSI, LS, and AI were used to evaluate the water stability. Fig. 1 shows the sampling locations and Table 1 presents the indexes, equation, and some definition and criteria for categorizing the stability of the water. The chemical and physical properties of drinking water are presented in Tables 2 and 3. Table 4 shows the water stability indices in different parts of the region studied. As seen in Table 4, 7.5, 30, 80.72.5, and 97.5% of water supplies of Chabahar were corrosive according to the obtained results from LSI, RSI, LS, PSI, and AI, respectively (Fig. 2). Estimated corrosion indexes with GIS software are shown in Fig. 3. In the following we calculated water quality index (WQI).

An important parameter for determining the water quality and its sustainability for drinking purposes is water quality index (WQI). In order to provide the composite influence of individual water quality parameters on the overall water quality WQI could be useful [2]. Also according to World Health Organization (WHO) 2011 standards calculating the WQI has been considered for drinking water quality assessment. The
relative weight (W_i) was assigned for water quality parameters based on their relative importance on water quality for drinking purposes (Table 5). The water quality classification based on WQI values is shown in Table 6. The calculation of WQI for groundwater samples is shown in Table 7. A total of 40 samples were analyzed for WQI. Among these, 25% of the samples showed excellent water, 50% of the samples fell under good water category and 25% of the samples showed poor water category respectively (Fig. 4).

Table 1

Equation	Index value	Water condition	
Langelier saturation index (LSI)	\[LSI = pH - pH_s\]	$LSI > 0$	Super saturated, tend to precipitate CaCO$_3$
	\[pH_s = A + B - \log (Ca^{2+}) - \log (Alk)\]	$LSI = 0$	Saturated, CaCO$_3$ is in equilibrium
	\[pH_s = (9.3 + A + B) - (C + D)\]	$LSI < 0$	Under saturated, tend to dissolve solid CaCO$_3$
Ryznar stability index (RSI)	\[RSI = 2pHs - pH\]	$RSI < 6$	Super saturated, tend to precipitate CaCO$_3$
	\[6 < RSI < 7\]	Saturated, CaCO$_3$ is in equilibrium	
	\[RSI > 7\]	Under saturated, tend to dissolve solid CaCO$_3$	
Puckorius scaling index (PSI)	\[PSI = 2 (pHeq) - pH\]	$PSI < 6$	Scaling is unlikely to occur
	\[pH = 1.465 + \log (TALK) + 4.54\]	$PSI > 7$	Likely to dissolve scale
\[pHeq = 1.465 \times \log (TALK) + 4.54\]	\[LS = (Cl^- + SO_4^{2-})/(HCO_3^- + CO_3^{2-})\]	$LS < 0.8$	Chloride and sulfate are unlikely to interfere with the formation of protecting film
Larson-skold index (LS)	\[0.8 < LS < 1.2\]	Corrosion rates may be higher than expected	
	\[LS > 1.2\]	High rates of localized corrosion may be expected	
Aggressive index (Al)	\[Al = pH + \log[Alk(H)]\]	$Al > 12$	Non aggressive
	\[10 < Al < 12\]	Moderately aggressive	
	\[Al < 10\]	Very aggressive	

Fig. 1. Location of water sampling sites in Chabahar city.
2. Experimental design, materials and methods

2.1. Study area description

Chabahar city in Sistan and Baluchistan province and its aquifers are located in South-East Iran between the latitudes 25°17′ N and longitudes 60°37′ E, encompassing an area of about 9739 km² (Fig. 1). The study area is a semi-flat plain region with a gentle slope toward the south has a warm, temperate climate. Also the air’s highest and lowest temperatures are 50 °C and −7 °C, respectively, with an annual average of 25 °C. The subjected area was classified as a semi-arid, and the precipitation

Number	Well	ALK (mg/L)	CaCO3	CL− (mg/L)	SO4²− (mg/L)	Temp °C	EC (μmhos/cm)	TDS (mg/L)	pH	HCO3− (mg/L)	CaH (mg/L)	CaCO3
w1	200.08	222	90	19	1063	680.32	8.21	200.08	196			
w2	141.52	174	50	22	845	540.8	8.28	141.52	150			
w3	202.52	171	80	22	920	588.8	8.23	202.52	160			
w4	305	363	370	22	2310	1478.4	8.2	305.00	250			
w5	248.88	377	400	19	2320	1484.8	8.19	248.88	162			
w6	129.32	197	100	26	927	593.28	8.31	129.32	180			
w7	217.16	114	70	25	886	567.04	8.12	217.16	124			
w8	263.52	286	420	26	2230	1427.2	7.97	263.52	200			
w9	253.76	78	120	30	853	545.92	7.76	253.76	162			
w10	312.32	184	150	23	1434	917.76	7.36	312.32	340			
w11	390.4	505	390	23	2850	1824	7.56	390.4	360			
w12	385.52	391	690	23	3250	2080	7.53	385.52	304			
w13	295.24	375	560	23	2770	1772.8	7.8	295.24	384			
w14	224.48	112	90	23	831	588.8	8.23	224.48	112			
w15	307.44	398	510	23	2770	1772.8	7.72	307.44	312			
w16	278.16	363	470	23	2540	1625.6	7.78	278.16	250			
w17	241.56	86	110	23	835	534.4	8	241.56	162			
w18	295.24	153	150	23	1197	766.08	7.64	295.24	202			
w19	409.92	483	480	23	3140	2009.6	7.48	409.92	396			
w20	312.32	347	510	23	2620	1676.8	7.7	312.32	384			
w21	209.84	94	100	19	785	502.4	8.3	209.84	104			
w22	307.44	264	510	19	2150	1376	7.72	307.44	284			
w23	170.8	663	100	27	2240	1433.6	7.7	170.8	364			
w24	273.28	242	250	27	1570	1004.8	7.85	273.28	340			
w25	158.6	177	390	24	1495	956.8	7.8	158.6	360			
w26	217.16	390	80	23	1556	995.84	7.97	217.16	110			
w27	22.04	475	660	27	2660	1702.4	7.5	22.04	204			
w28	270.84	197	800	22	2710	1734.4	8.1	270.84	806			
w29	331.84	203	760	22	2690	1721.6	7.67	331.84	1024			
w30	239.12	277	460	23	1973	1262.72	7.68	239.12	899.95			
w31	326.96	206	800	19	2670	1708.8	7.46	326.96	1070			
w32	209.84	362	200	19	1656	1059.84	7.89	209.84	140			
w33	175.68	234	300	19	1481	947.84	7.6	175.68	192			
w34	170.8	238	480	19	1896	1213.44	7.45	170.8	474			
w35	2207.4	432	600	19	2680	1715.2	7.3	2207.4	502			
w36	236.68	751	800	19	3450	2208	7.2	236.68	728			
w37	190.32	727	825	19	3750	2400	7.3	190.32	790			
w38	287.92	251	370	19	1915	1225.6	7.3	287.92	332			
w39	165.92	360	500	19	2330	1491.2	7.52	165.92	448			
w40	231.8	262	450	19	1920	1228.8	7.15	231.8	410			
Mean	295.47	304.6	381.13	22.18	2004.2	1282.69	7.77	300.42	369.20			
Min	22.04	78	50	19	785	502.4	7.15	129.32	104			
Max	2207.4	751	825	30	3750	2400	8.31	2207.4	1070			
St.dev.	319.32	163.96	244.12	2.87	827.10	529.34	0.32	316.50	254.51			
range is 70–130 mm per year with the evaporation rate of 4000 mm per year (four times as high as Iran’s average) [7].

2.2. Sample collection and analytical procedures

In this cross-sectional study, 40 rural drinking water sources in Chabahar villages in Sistan and Baluchistan province were analyzed during 12 months (2010–2011) according to physical and chemical parameters. Fig. 1 shows the study area and sampling locations in this study. Samples were
collected in polythene bottles (1L) and then immediately transported at 4°C to the central laboratory of the water and wastewater company. All water samples were analyzed according to the Standard Methods for Examination of Water and Wastewater and using titration method permanent hardness, magnesium, calcium, and chloride were measured [1]. The concentration of hydrogen ion (pH) and electrical conductivity and opacity were also analyzed with pH meter (model wtw, Esimetwb) and

Table 4	Drinking water stability of Chabahar water distribution networks.					
Index	Water stability					
	AI	PSI	LS	RSI	LSI	
Number	Well	LSI	RSI	LS	PSI	AI
w1	0.68	6.86	1.56	7.16	12.80	NA
w2	0.58	7.13	1.58	7.72	12.61	NA
w3	0.70	6.83	1.24	7.14	12.74	NA
w4	0.92	6.36	2.40	6.38	13.08	NA
w5	0.56	7.07	3.12	7.21	12.80	NA
w6	0.73	6.86	2.30	7.54	12.68	NA
w7	0.58	6.96	0.85	7.11	12.55	NA
w8	0.63	6.72	2.68	6.60	12.69	NA
w9	0.52	6.73	0.78	6.42	12.37	NA
w10	0.71	6.33	1.07	5.90	12.79	NA
w11	0.54	6.48	2.29	5.71	12.71	NA
w12	0.41	6.71	2.80	5.91	12.60	NA
w13	0.69	6.42	3.17	6.06	12.85	NA
w14	0.31	7.29	0.90	7.23	12.32	NA
w15	0.54	6.65	2.95	6.18	12.70	NA
w16	0.46	6.85	2.99	6.50	12.61	NA
w17	0.59	6.83	0.81	6.80	12.59	NA
w18	0.37	6.91	1.03	6.39	12.42	NA
w19	0.51	6.47	2.35	5.58	12.69	NA
w20	0.62	6.46	2.74	5.96	12.78	NA
w21	0.55	7.20	0.92	7.56	12.64	NA
w22	0.44	6.84	2.52	6.38	12.66	NA
w23	0.45	6.80	4.47	6.69	12.49	NA
w24	0.82	6.20	1.80	5.94	12.82	NA
w25	0.50	6.80	3.58	6.83	12.56	NA
w26	0.27	7.44	2.16	7.45	12.35	NA
w27	−0.45	8.39	5.92	9.39	11.62	NA
w28	1.25	5.59	3.68	5.59	13.44	NA
w29	1.11	5.55	2.90	5.07	13.29	NA
w30	0.90	5.89	3.08	5.54	13.01	NA
w31	0.75	5.96	3.08	5.20	13.00	NA
w32	0.27	7.54	2.68	7.49	12.36	NA
w33	−0.04	7.68	3.04	7.43	12.13	NA
w34	0.15	7.14	4.20	6.78	12.36	NA
w35	1.09	5.12	0.47	2.98	13.34	NA
w36	0.14	6.92	6.55	6.10	12.44	NA
w37	0.17	6.96	8.15	6.38	12.48	NA
w38	0.08	7.15	2.16	6.31	12.28	NA
w39	0.16	7.21	5.18	6.93	12.39	NA
w40	−0.08	7.31	3.07	6.45	12.13	NA
Ct	7.5	30	80	72.5	97.5	NA
Stable	0.0	57.5	15	0	0	0
St	92.5	12.5	5	27.5	2.5	2.6
Mean	0.5	6.76	6.50	2.71	12.63	12.63
Max	1.25	8.39	9.39	8.15	13.44	13.44
Min	−0.45	5.12	2.98	0.47	11.62	11.62
St.dev	0.34	0.60	0.99	1.59	0.34	0.34
turbidity meter (model Hach 50161/co 150 model P2100Hach, USA), respectively. On the other hand, using Hach DR5000 spectrophotometer fluoride, nitrate, and sulfate were determined compared with internal standards [1,8–11]. Then, to calculate WQI, the weight for physical and chemical parameters were determined with respect to the relative importance of the overall water quality for drinking...
water purposes, as shown in Tables 6 and 7 and the Langelier saturation index, Ryznar saturation index, Aggressiveness index, Larson–Skold index, and Puckorius scaling index were calculated and the results were classified in three categories: scaling, stabilized, and corrosive. Table 1 presents the indices, equations and some definitions and criteria for categorizing the stability of the water. Finally, the severity of corrosion in different water supply systems of Chabahar villages in Sistan and Baluchistan province was displayed using a geographic information system (GIS). All analyses were done using Excel 2010 and Arc GIS 10.3 software.
2.2.1. Water quality index calculation

To calculate the WQI, the weight for the physico-chemical parameters were assigned according to the relative importance of parameters in the overall quality of water for drinking purposes. Using the following equation, the relative weight was computed:

\[Wi = \sum_{i=1}^{n} \frac{Wi_i}{\sum_{i=1}^{n} Wi_i} \]

where

- \(Wi \) is the relative weight
- \(Wi_i \) is the weight of each parameter
- \(n \) is the number of parameters.

The quality rating scale for each parameter is calculated by dividing its concentration in each water sample by its respective standards (World Health Organization 2011 [5]) and multiplied the results by 100.

\[qi = \left(\frac{Ci}{Si} \right) \times 100 \]

where

- \(qi \) is the quality rating
- \(Ci \) is the concentration of each chemical parameter in each sample in milligrams per liter
- \(Si \) is the World Health Organization standard for each
Chemical parameter in milligrams per liter according to the guidelines of the (WHO 2011 [5])

For computing the final stage of WQI, the SI is first determined for each parameter. The sum of SI values gives the water quality index for each sample.

\[Si = Wi \pi q_i \]

\[WQI = \sum Si_i \]

where

- \(Si_i \) is the sub-index of it parameter
- \(qi \) is the rating based on concentration of it parameter
- \(n \) is the number of parameters [2]

Number	Well	WQI	Water quality rating
W1		42.49	Excellent
W2		37.23	Excellent
W3		42.44	Excellent
W4		80.74	Good
W5		77.94	Good
W6		41.77	Excellent
W7		35.86	Excellent
W8		77.42	Good
W9		40.07	Excellent
W10		89.45	Good
W11		95.58	Good
W12		103.82	Poor
W13		97.31	Good
W14		36.89	Excellent
W15		93.08	Good
W16		82.16	Good
W17		38.52	Excellent
W18		47.05	Excellent
W19		103.38	Poor
W20		91.60	Good
W21		39.24	Excellent
W22		83.33	Good
W23		83.40	Good
W24		72.00	Good
W25		73.46	Good
W26		53.74	Good
W27		110.21	Poor
W28		119.88	Poor
W29		125.81	Poor
W30		105.36	Poor
W31		128.97	Poor
W32		61.70	Good
W33		60.05	Good
W34		84.75	Good
W35		124.02	Poor
W36		140.84	Poor
W37		144.35	Poor
W38		73.74	Good
W39		83.48	Good
W40		78.55	Good
Acknowledgements

The authors want to thank authorities of Tehran University of Medical Sciences (240.116) for their comprehensive support for this study.

Transparency document. Supplementary material

Transparency document associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.11.003

References

[1] APHA, Standard Methods for the Examination of Water and Waste Water (APHA), 1995.
[2] C. Ramakrishnaiah, C. Sadashiviah, G. Rangama, Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State, India, J. Chem. 6 (2) (2009) 523–530.
[3] M. Mirzabeygi, M. Naji, N. Yousefi, M. Shams, H. Biglari, A.H. Mahvi, Evaluation of corrosion and scaling tendency indices in water distribution system: a case study of Torbat Heydariye, Iran, Desalin. Water Treat. 57 (54) (2016) 25918–25926.
[4] M. Shams, A.A. Mohamadi, S.A. Sajadi, Evaluation of corrosion and scaling potential of water in rural water supply distribution networks of Tabas, Iran, World Appl. Sci. J. 17 (11) (2012) 1484–1489.
[5] WHO, Guidelines for Drinking-water Quality, World Health Organization, Geneva (2011) 303–304.
[6] R. Nabizadeh, M.V. Amin, M. Alimohammadi, K. Naddafi, A.H. Mahvi, S. Yousefzadeh, Development of innovative computer software to facilitate the setup and computation of water quality index, J. Environ. Health Sci. Eng. 11 (1) (2013) 1.
[7] M. Mirzabeygi, A. Abbasnia, M. Yunesian, R. Nabizadeh, M. Hadi, A.H. Mahvi, Heavy metal contamination and health risk assessment in drinking water of Sistan-and-Baluchistan, Southeastern Iran, Human. Ecol. Risk Assess.: Int. J. (2017).
[8] A.A. Mohammadi, M. Yousefi, A.H. Mahvi, Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature, Data Brief 13 (2017) 312–315.
[9] F.B. Asghari, A.A. Mohammadi, Z. Abooasedi, M. Yaseri, M. Yousefi, Data on fluoride concentration levels in cold and warm season in rural area of Shout (West Azerbaijan, Iran), Data Brief 15 (2017) 528–531.
[10] M. Mirzabeygi, N. Yousefi, A. Abbasnia, H. Youzi, M. Alikhani, A.H. Mahvi, Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water supply networks, Iran, J. Water Supply: Res. Technol.-Aqua (2017) (jws2).
[11] A.A. Mohammadi, K. Yaghmaeian, F. Hossein, R. Nabizadeh, M.H. Dehghani, J.K. Khaili, A.H. Mahvi, Temporal and spatial variation of chemical parameter concentration in drinking water resources of Bandar-e Gaz City using Geographic Information System, Desalin. Water Treat. 68 (2017) 170–176.