In Silico Promoter Analysis can Predict Genes of Functional Relevance in Cell Proliferation: Validation in a Colon Cancer Model

Alan C. Moss¹, Peter P. Doran² and Padraic MacMathuna¹,³

¹Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland and Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, U.S.A. ²General Clinical Research Unit and ³Gastrointestinal Unit, Mater Misericordiae University Hospital, Dublin 7, Ireland.

Abstract: Specific combinations of transcription-factor binding sites in the promoter regions of genes regulate gene expression, and thus key functional processes in cells. Analysis of such promoter regions in specific functional contexts can be used to delineate novel disease-associated genes based on shared phenotypic properties. The aim of this study was to utilize promoter analysis to predict cell proliferation-associated genes and to test this method in colon cancer cell lines. We used freely-available bioinformatic techniques to identify cell-proliferation-associated genes expressed in colon cancer, extract a shared promoter module, and identify novel genes that contain this module in the human genome. An EGRF/ETSF promoter module was identified as prevalent in proliferation-associated genes from a colon cancer cDNA library. We detected 30 other genes, from the known promoters of the human genome, which contained this proliferation-associated module. This group included known proliferation-associated genes, such as HERG1 and MCM7, and a number of genes not previously implicated in cell proliferation in cancer, such as TSPAN3, Necdin and APLP2. Suppression of TSPAN3 and APLP2 by siRNA was performed and confirmed by RT-PCR. Inhibition of these genes significantly inhibited cell proliferation in colon cancer cell lines. This study demonstrates that promoter analysis can be used to identify novel cancer-associated genes based on shared functional processes.

List of abbreviations: siRNA; small interfering RNA, EGRF; early growth response family, ETSF; E26 transformation-specific family.

Keywords: colorectal cancer, cell proliferation, promoter modules

Background

The methods of analysis of the colon cancer transcriptome described thus far produce large quantities of data in their output (Alon et al. 1999; Saha et al. 2001). Given the often arbitrary nature of the statistical thresholds for determining disease association, the functional relevance of many “over-expressed” genes is often unclear (Kothapalli et al. 2002; Troyanskaya, 2005). The absence of hypothesis in many microarray papers has yielded as many questions as answers (Shih et al. 2005).

One approach to this “data overload” is to focus on specific biological processes rather than individual genes that are altered in malignant cells. Such processes are driven by transcription factors that are common to genes which share similar functional contexts e.g. proliferation, invasion (Qiu, 2003; Werner, 2001). The promoter regions of these genes contain patterns of transcription factor binding sites (promoter modules) that form the basis for such co-regulation. These modules contain at least two transcription factor binding sites separated by a defined distance (Fessele et al. 2002). By identifying the promoter modules prevalent in genes that are known to share a common biological function, one can use these as a starting point to detect previously unknown genes that are involved in this process (Werner, 2001). The presence of these modules in a genes’ promoter region can positively or negatively influence functional processes. In this manner, a network of co-regulated genes can be determined that are implicated in specific processes (Liu et al. 2003). This approach has been used successfully in detecting interferon-responsive genes in inflammation, and novel cell-junction...
associated proteins (Cohen et al. 2006; Klingenhoff et al. 1999).

The purpose of this study was to use bioinformatic techniques to determine promoter modules common to those genes in the colon cancer transcriptome that are involved in cell proliferation. In this paper we utilize an integrated bioinformatics pathway to identify novel genes associated with cell proliferation in colon cancer, and validate this approach in an in vitro model.

Methods

Bioinformatic techniques

An outline of the bioinformatics pipeline is illustrated in Figure 1. A transcriptional profile of colorectal cancer was produced by comparing cDNA libraries obtained from normal colon and colon carcinoma with Digital Differential Display (DDD), as previously described (Moss et al. 2006). Briefly, the relative abundance of ESTs in colon cancer libraries was compared to normal tissue libraries, and those genes significantly over-expressed in colon cancer were extracted. The output was ontologically classified using Onto-Express to select those transcripts associated with cell proliferation (Khatri et al. 2002). The accession numbers of these transcripts were uploaded to Gene2Promoter (Genomatix Software GmbH), a software program that allowed identification of promoter regions based on the individual transcripts in a gene expression profile (Werner, 2001). The promoter sequences from Gene2Promoter were submitted to FrameWorker, (FrameWorker, 2006) and once a model common to the input promoters was identified, its presence was screened for in known promoters of the human genome using Model Inspector (Model

![Figure 1. Summary of bioinformatics methods used. References for each method contained in text.](image-url)
Translational Oncogenomics 2007: 2

Microvessel Density in Hepatocellular Carcinoma

Briefly, all matches for individual elements of the module which score above a pre-set threshold are located in the promoter database. These individual elements are combined to match the organization (element order and distances) of the input module, to evaluate the fit of the model. Finally, Bibliosphere was utilized to examine the characteristics of selected genes based on the published literature (Scherf et al. 2005).

Gene expression
Public gene expression repositories derived from microarray data from normal colon, colonic cancers and colon cancer cell lines, were interrogated for genes of interest. The normal colon microarray profile originated from pooled samples from normal colonic tissue (Gene Expression Omnibus tissue GSM44680) hybridized to the Affymetrix GeneChip Human Genome U133 Array (Ge et al. 2005). The results are expressed in log2 of user-provided counts for comparison to other normal tissues. Colon cancer tissue expression profile was obtained from the transcriptome of 10 colorectal adenocarcinomas hybridized to the U95a Affymetrix GeneChip and compared to other human cancers (Su et al. 2001). Finally, the microarray data from a primary colon cancer (SW480) and a metastatic colon cancer cell line (SW620) hybridized to the Affymetrix GeneChip Human Genome U133 Array was surveyed (Provenzani et al. 2006). The results are expressed in log2 of user-provided counts for comparison between the cell lines.

Cell lines
The Caco2 human colonocyte cell line was purchased from ATCC (LGC Promochem, U.K.) and the T84 cells were a kind gift from Dr. Cormac Taylor, UCD. Cell lines were cultured in minimum essential medium (Caco2) or mixture of Dulbecco’s modified Eagle’s medium and Ham’s F12 medium under standard conditions (T84).

siRNA transfection
Prior to transfection 1×10^5 cells were seeded in 500 µl of medium in each well of a 24 well plate and cultured until 50–80% confluent (~24 hours). For transfection, 0.5 µg of custom-designed siRNA (Dharmacon, IL, U.S.A.) was diluted in 100 µl medium and 1.5 µl RNAiFect transfection reagent added (Qiagen, U.K.) at a 1:3 ratio and added to each well as per protocol. Three controls were used for each experiment; a positive control of laminin siRNA for mRNA quantification, a positive control of fluorescent-labeled siRNA for microscopy, and negative controls of medium only, transfection reagent only and scrambled siRNA only. The transfected cells were incubated for 24 hours under normal conditions.

RT-PCR
RNA extraction was subsequently performed from cells using the RNeasy kit (Qiagen, U.K.), and reverse transcribed using SuperScript II (Promega, U.K.). Quantitative PCR was performed using an ABI Prism Taqman PCR machine. Expression levels of individual genes were normalized to 18s RNA.

Cell proliferation assay
In order to determine the effect of siRNA on cell proliferation rates, transfected CaCO2 cells were seeded into 96-well plates at a concentration of 1×10^4 cells in 100 µl per well and allowed to adhere overnight. The MTS cell proliferation assay (Promega, U.K.) was used to assess proliferation rates at 48 hours, based on absorbance at 490 nm in an ELISA plate reader. Proliferation ratios were based on comparison of mean absorbance values for transfected and untransfected wells using one-way ANOVA.

Statistical analysis
Statistical analysis of laboratory results was performed using StatView software (SAS Institute, Cary, NC). Normalised gene expression was analysed using ANOVA, after testing for equality of variance. A p < 0.05 was considered significant. The differential expression profiles, promoter analysis and module detection all contain integral statistical thresholds for results as described in the results section.

Results
An EGRF/ETSF transcription factor module is prevalent in cell proliferation-associated genes over-expressed in colorectal cancer

Digital Differential Display comparison of normal colon to colorectal cancer cDNA libraries identified 163 transcripts differentially expressed in colon cancer, of which 16 were classified as involved in cellular proliferation (supplementary 1)(Moss
These 16 genes were the source material for promoter screening. The loci of these 16 genes were entered into Gene2Promoter, which detected 30 unique promoters assigned to 30 transcripts in the mapped regions; all transcripts with at least one exon identical to one of the mapped exons and their promoters were listed (Table 1). Fifteen of these promoters had been experimentally verified, and the other 15 were computational predictions based in sequence location and content.

The identified promoter sequences were investigated using FrameWorker software, which detects patterns in transcription factor binding sites (TFBS). We searched for modules containing at least 2 elements (TFBS), at a distance of 5–50 nucleotides apart, and adjusted the quorum constraint (prevalence threshold) until the program identified a common module. No individual module was common to all the input promoter sequences. However, one complex module, containing members of the EGRF and ETSF transcription factor binding site families, was present in 18/30 (60%) of the input promoters (Fig. 2). The specificity score of this model had a p-value of 0.0059 e.g. the probability that an equal or greater number of sequences with a model match would be obtained in a randomly drawn sample of the same size as the input sequence set. The relative occurrence of individual model matches in a

mRNA	Locus	Transcript/TSS	Quality Level
NM_002394	SLC3A2 (Loc 6520)	AK090758_1	Verified
		AK094620_1	Verified
		NM_002394	Predicted
NM_005916	MCM7	AK055379_1	Verified
		AK096959_1	Verified
		NM_005916	Predicted
NM_014865	CNAP1	AK022511_1	Verified
		AK125155_1	Verified
		AK128354_1	Verified
NM_001034	RRM2	AK092671_1	Verified
		AK123010_1	Verified
		NM_001034	Predicted
NM_002707	PPM1G	AK127593_1	Verified
		NM_002707	Predicted
		NM_177983	Predicted
NM_000077	CDKN2A	NM_058195	Predicted
NM_016343	CENPF	NM_016343	Predicted
NM_002447	MST1R	NM_002447	Predicted
NM_001255	CDC20	NM_001255	Predicted
NM_004526	MCM2	AK128291_1	Verified
		AK025380_1	Verified
		AK097277_1	Verified
		NM_005186	Predicted
NM_004494	HDGF	AK096411_1	Verified
		NM_004494	Predicted
NM_003334	UBE1	AK097343_1	Verified
		NM_003334	Predicted
NM_002335	LRP5	NM_002335	Predicted
NM_002032	FTH1	NM_002032	Predicted
NM_005030	PLK	NM_005030	Predicted
background promoter sequence set of 5000 human promoters scanned with this module was 0.27 and 0.50 for EGRF and ETSF respectively.

This EGRF/ETSF module contains members of the Early Growth Response Factor family and the ETS factor family at a distance of 6-44 base pairs between elements. The matrices (transcription factors) of the EGRF family were EGR1, EGR2, EGR3, EGR4 and Wilms tumour suppressor. The re-value, an expectation value of the number of matches per 1000 base pairs of random DNA sequence for each individual matrix, ranged from 0.03–0.35 for the EGRF elements. ETS1, ETS2, ELK1 and NRF2 were the components of the ETSF element, with re-values of <0.01–2.05. The free version of the software does not detail the

Figure 2. EGRF/ETSF module is common to proliferation genes expressed in colon cancer. EGRF element (purple), ETSF element (yellow) and combined module (grey) location in promoter region of representative sample of input loci relative to transcription start site (TSS, red arrow). Graphical output generated by FrameWorker software.
exact sequences of the modules, as it is their relative location, rather than sequence, that determines a module’s functional activity.

The EGRF/ETSF module identifies novel proliferation-associated genes

The known promoters of the human genome were screened for the EGRF/ETSF module using Model Inspector, based not on sequence alignment, but detection of individual elements and their position relative to each other. At the time of the experiment, the database contained 46,119 promoters with known transcripts. A total of 102 matches for the selected proliferation-associated module were detected in 30 genes (Table 2). All matches contained a model score of ≥85% specificity. The chromosomal locations of these genes were widely dispersed throughout the genome, excluding the possibility of coregulation due to overlapping sequences (data not shown).

The products of the 30 genes were entered into Bibliosphere (Bibliosphere, 2006) to determine their functional context based on the scientific literature e.g. published experimental evidence of a role in affecting cellular proliferation (Table 2). Eleven of these genes (37%) have been implicated in cell proliferation in the literature, including KCNH2 and MCM7 (Lastraioli et al. 2004; Yoshida et al. 2003) (Table 2). Six of the genes have been described in the literature as expressed in colonic neoplasia based on experimental data, and nine are up-regulated in colon cancer gene expression profiles in public databases (Table 2) (Diehn et al. 2003). As a control functional context, a common disease process, inflammation, was explored in the 30 identified genes using Bibliosphere; only one (TLX2) has been associated with inflammation (data not shown).

Suppression of TSPAN3 and APLP2 inhibits cell proliferation in colorectal cell lines

The experiments above identified genes containing a promoter module that is frequently present in genes associated with cell proliferation in colon cancer. In order to determine the functional significance of the presence of this module in these genes, the role of their knock-down by siRNA on cell proliferation was determined. We screened the identified genes using Bibliosphere for 1) reports of expression in colon cancer, 2) reports of a role in cell proliferation (Table 2). As our interest was in novel proliferation-associated genes which may be relevant to colon cancer, we selected three genes not previously reported as altered in colon cancer; TSPAN3, NDN and APLP2. They have been described as having positive, negative and unknown roles in cell proliferation (Taniura et al. 1999; Tiwari-Woodruff et al. 2001). The TSPAN3 gene contains the EGRF/ETSF module at position 491-418 on the negative strand at 15q24.3. The APLP2 gene contained the EGRF/ETSF module at position 2492-2532 on the positive strand at 11q24. The NDN gene contained the EGRF/ETSF module at position 1268-1179 on the negative strand at 15q11.2-q12.

Gene expression of each gene in colon cancer was first measured from 3 diverse microarray databases; one from 36 types of normal tissue, one from 174 epithelial tumors that included 10 colorectal adenocarcinomas, and a third from primary and metastatic colorectal cell lines (Ge, Yamamoto, Tsutsumi, Midorikawa, Ihara, Wang and Aburatani, 2005; Provenzani, Fronza, Lorenzi, Pascale, Amadio and Quattrone, 2006; Su, Welsh, Sapinoso, Kern, Dimitrov, Lapp, Schultz, Powell, Moskaluk, Frierson, Jr. and Hampton, 2001). Both TSPAN3 and APLP2 were expressed in normal colon, and colon cancer cell lines, although only TSPAN3 was relatively over-expressed in colonic adenocarcinoma tissue relative to other tumours (Figure 3). NDN was not expressed in normal colon, adenocarcinoma or colon cancer cell lines.

Cells were transfected with siRNA designed to provide at least 70% silencing of expression, and mRNA levels and cell proliferation quantified (Reynolds et al. 2004). TSPAN3 expression in T84 colon cancer cell line was confirmed by RT-PCR (Fig. 4a). siRNA caused a 62% inhibition of TSPAN3 expression at 24 hours (Fig. 4a, p < 0.05). Confirmation of cellular uptake was observed using the labeled fluorescent siRNA (Fig. 4b). This led to a 40% reduction in cellular proliferation at 48 hours in T84 cells (Fig. 4c, p < 0.05). Neither scrambled siRNA or transfection agent alone affected cell proliferation. APLP2 expression in colon cancer cells was confirmed by RT-PCR (Fig. 5a). siRNA caused a 45% inhibition of APLP2 expression at 24 hours (Fig. 5a, p < 0.05). Confirmation of cellular uptake was observed using the labeled fluorescent siRNA (Fig. 5b). This inhibition led to a 40% reduction in cellular proliferation at
Table 2. Identified genes that contain the EGRF/ETSF promoter module in their promoter regions.

Accession	Gene\(^a\)	Model score	Effect on proliferation\(^b\)	Expression in colon cancer\(^c\)	Public microarray data\(^d\)	References
AB000381	GML	89%	negative	Yes - in cell lines	No	Oncogene 1996; 13 (9) 1965–7. Int J Clin Oncol. 2001 Apr; 6(2):90-6
AB001517	TMEM1	90%	?	?	No	DNA Repair 2004; 3(5): 475-482 Proc Natl Acad Sci USA. 2006 Jun 6; 103(23):8822-7
AB001523	PWP2	90%	?	?	No	Mol Carcinog. 2001 Nov; 32(3):154-66.
AB003173	WRN	90%	positive	Yes – in unmethylated tumours	Yes	Gene 1998; 213(1-2): 65-72
AB003469	MCM5	90%	?	Yes	Yes	Clin Cancer Res. 1996 Aug; 5(8):2121-32
AB004270	MCM7	90%	positive	?	Yes	Oncogene 2006; 25(7): 1090-9
AB005647	NPR2	90%	?	?	No	Mol Carcinog. 2001 Nov; 32(3):154-66.
AB006784	HMG-CoA synthase	89%	?	Yes	No	Gene 1998; 213(1-2): 65-72
AB007828	AIRE	91%	?	?	No	Mol Carcinog. 2001 Nov; 32(3):154-66.
AB008496	COL4A3	90%	negative	?	No	J Biol Chem 2000; 275 (28):21340-8
AB008502	TLX2	90%	?	?	No	Dev Biol 2004; 266(2): 334-45 Gut. 2001 Sep; 49(3):409-17
AB008681	ACVR2B	92%	positive	Yes – in cell lines	No	J Biol Chem 2001; 107(10):1235-4
AB008822	TNFRSF1B	92%	negative	?	No	J Biol Chem 2003; 278(5):2947-55 Cancer Res. 2004 Jan 15; 64(2):606-11
AB009071	KCNH2	88%	positive	Yes	Yes	Cancer Res 2005; 65(23):10674-9
AB009667	Klotho	95%	?	?	No	Cancer Res 2005; 65(23):10674-9
AB009777	NID2	85%	?	?	No	Cancer Res 2005; 65(23):10674-9
AB012286	ITGB4	90%	positive	?	Yes	J Cell Biol 153:295-305

\(a\). HUGO accepted gene name
\(b\). Published experimental evidence of effect on cell proliferation
\(c\). Experimental evidence of increased protein or mRNA expression in colon cancer
\(d\). Upregulation of gene in public microarray database of expression relative to normal (Diehn et al. 2003)
48 hours in CaCo2 cells (Fig. 5c, p < 0.05). Neither scrambled siRNA or transfection agent alone affected cell proliferation.

Discussion

This study has demonstrated the use of promoter modules as bioinformatic “bait” to delineate key regulatory networks in colon cancer, and to identify novel biological players in cell proliferation. It is based on the premise that genes expressed in similar disease states share a common “footprint” of transcriptional regulatory processes for specific functional activities. The relative order and spacing of these transcription factor (TF) binding sites (TFBSs) within a module are often highly conserved through evolution, highlighting their importance in regulation. This conservation allows us to use computational searching to pinpoint these clusters of known TF binding sites rather than specific nucleotide sequences (Berman et al. 2002). Although the shared process selected for this study, proliferation, is not unique to cancer cells, it is a dominant process that partially defines this disease state. The presence of the EGRF/ETSF module in the promoter region of genes associated with cell proliferation suggests a role for this module in the regulation of cellular proliferative activity (Lantinga-van I et al. 2005). Although this influence could be positive or negative, its frequency in the promoter regions of over-expressed genes in colon cancer cDNA libraries, compared to random promoter sets, suggests a pro-proliferative effect in this setting. The experimental data clearly suggests a role for the studied genes in cell proliferation, although whether this is actually dependent on the identified promoter module, would require further studies.

This strategy predicted a role for TSPAN3 in cell proliferation in colorectal cancer that has not previously been described. TSPAN3 is a member of the tetraspanin family of cell surface receptors that have been implicated in the cell proliferation process in oligodendrocytes (Tiwari-Woodruff, Buznikov, Vu, Micevych, Chen, Kornblum and Bronstein, 2001). Our data demonstrating its expression in normal and neoplastic colon, and the
Figure 4. Inhibition of TSPAN3 expression by siRNA inhibits colon cell line proliferation. (a) RNA extracted from transfected and untransfected T84 cells after 24 hours was reverse transcribed to cDNA and probed for TSPAN3 using Taqman PCR (expressed in arbitrary units normalised to 18s RNA). (b) T84 cells in a 96-well plate were transfected with a control fluorescent-labeled siRNA to confirm transfection efficiency. (c) Proliferation of transfected T84 cells in a 96-well plate was assessed after 24 hours using the MTS Cell Proliferation Assay. Control = media only, vehicle = media and transfection agent (Lipofectamine), scrambled siRNA = transfection agent and scrambled siRNA, and TSPAN3 siRNA = custom-designed TSPAN3 siRNA (10 nm)
Figure 5. Inhibition of APLP2 expression by siRNA inhibits colon cell line proliferation. (a) RNA extracted from transfected and untransfected T84 cells after 24 hours was reverse transcribed to cDNA and probed for APLP2 using Taqman PCR (expressed in arbitrary units normalised to 18s RNA) (b) T84 cells in a 96-well plate were transfected with a control fluorescent-labeled siRNA to confirm transfection efficiency (c) Proliferation of transfected T84 cells in a 96-well plate was assessed after 24 hours using the MTS Cell Proliferation Assay. Control = media only, vehicle = media and transfection agent (Lipofectamine), scrambled siRNA = transfection agent and scrambled siRNA, and APLP2 siRNA = custom-designed APLP2 siRNA (10 nm)
negative effects of its inhibition on cell proliferation in colon cancer cell lines, confirming the predicted role based on promoter analysis. Further work will be required to determine whether this effect is unique to colon cancer cells, and which component of proliferation is involved. APLP2 is an amyloid-like protein precursor that plays a role in G-coupled signaling. It may be required for epithelial cell growth in wounds (Siemes et al. 2006). This study suggests a role for APLP2 in colon cancer cell proliferation, which may be due to its key function in genomic segregation (von der et al. 1994).

Although this study validates this approach in identifying co-regulated genes, the activation of the promoters involved has not been experimentally tested. As this work focuses on functionally relevant associations between genes and disease, we sought to examine the functional end-point primarily. The confirmation of alterations in expression and proliferation validates the computational predictions. We have not focused on the descriptive aspects of the module discussed e.g. sequence, as it is the strategic organization of the EGRF/ETSF matrix in the promoters of interest, rather than sequence comparisons, that confers its functional properties (Dohr et al. 2005). Our intention was proof-of-concept evidence that could validate this bioinformatic approach.

In conclusion, this study demonstrates that an integrated in silico promoter analysis approach can be used to delineate novel cancer-associated genes. We have described a previously unreported role for TSPAN3 and APLP2, in cell proliferation in colon cancer based on a common promoter module. Further study of this module may provide increased understanding of this regulatory network.

Acknowledgements
Anne-Marie Griffin, Conway Institute, UCD for assistance with cell line work. This research was funded by Cancer Research Ireland.

Competing interests
The authors have no competing interests to disclose.

References
Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D. and Levine, A.J. 1999. “Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays.” Proc. Natl. Acad. Sci. U.S.A., 96(12): 6745–6750.

Berman, B.P., Nibu, Y., Pfeiffer, B.D., Tomancak, P., Celniker, S.E., Levine, M., Rubin, G.M. and Eisen, M.B. 2002. “Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome.” Proc. Natl. Acad. Sci. U.S.A., 99(2):757–762.

Digital Differential Display. http://www.ncbi.nlm.nih.gov/UniGene/info_ddd.shtml. NCBI. 2006. Ref Type: Computer Program.

Klingenhoff, A., Frech, K., Quandt, K. and Werner, T. 1999. “Functional promoter modules can be detected by formal models independent of overall nucleotide sequence similarity.” Bioinformatics, 15(3):180–186.

Kothapalli, R., Yoder, S.J., Mane, S. and Loughran, T.P., Jr. 2002. “Micro array results: how accurate are they?” BMC Bioinformatics, 3(22).

Lantinga-van, L.I., Leonhard, W.N., Dauwerse, H., Baelde, H.J., van Oost, B.A., Breuning, M.H. and Peters, D.J. 2005. “Common regulatory elements in the polycystic kidney disease 1 and 2 promoter regions.” Eur. J. Hum. Genet.

Lastrioli, E., Guasti, L., Crociani, O., Polvani, S., Hofmann, G., Witchel, H., Bencini, L., Calistrati, M., Messerini, L., Scatizzi, M., Moretti, R., Wanke, E., Olivotto, M., Mungi, G. and Arcangeli, A. 2004. “hrg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells.” Cancer Res., 64(2):606–611.

Liu, R., McEachin, R.C. and States, D.J. 2003. “Computationally identifying novel NF-kappa B-regulated immune genes in the human genome.” Genome Res., 13(4):654–661.

Model Inspector. http://www.genomatix.de/products/ModelInspector/index.html. 2006. Ref Type: Computer Program.

Fessele, S., Maier, H., Zischek, C., Nelson, P.J. and Werner, T. 2002. “Regulatory context is a crucial part of gene function.” Trends Genet., 18(2):60–63.

Diehn, M., Sherlock, G., Binkley, G., Jin, H., Matee, J.C., Hernandez-Boussard, T., Rees, C.A., Cherry, J.M., Botstein, D., Brown, P.O. and Alizadeh, A.A. 2003. “SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data.” Nucleic Acids Res., 31(1):219–223.

FrameWorker. http://www.genomatix.de/products/FrameWorker/index.html. 2006. Ref Type: Computer Program.

Khatri, P., Draghici, S., Ostermeier, G.C. and Krawetz, S.A. 2002. “Profiling gene expression using onto-express.” Genomics, 79(2):266–270.

Klingenhoff, A., Frech, K., Quandt, K. and Werner, T. 1999. “Functional promoter modules can be detected by formal models independent of overall nucleotide sequence similarity.” Bioinformatics, 15(3):180–186.

Kothapalli, R., Yoder, S.J., Mane, S. and Loughran, T.P., Jr. 2002. “Micro array results: how accurate are they?” BMC Bioinformatics, 3(22).

Lantinga-van, L.I., Leonhard, W.N., Dauwerse, H., Baelde, H.J., van Oost, B.A., Breuning, M.H. and Peters, D.J. 2005. “Common regulatory elements in the polycystic kidney disease 1 and 2 promoter regions.” Eur. J. Hum. Genet.

Lastraíoli, E., Guasti, L., Crociani, O., Polvani, S., Hofmann, G., Witchel, H., Bencini, L., Calistrati, M., Messerini, L., Scatizzi, M., Moretti, R., Wanke, E., Olivotto, M., Mungi, G. and Arcangeli, A. 2004. “hrg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells.” Cancer Res., 64(2):606–611.

Liu, R., McEachin, R.C. and States, D.J. 2003. “Computationally identifying novel NF-kappa B-regulated immune genes in the human genome.” Genome Res., 13(4):654–661.

Model Inspector. http://www.genomatix.de/products/ModelInspector/index.html. 2006. Ref Type: Computer Program.

Moss, A.C., Lawlor, G., Murray, D., Tigh, D., Madden, S.F., Mulligan, A.M., Keane, C.O., Brady, H.R., Doran, P.P. and Macmathuna, P. 2006. “ETV4 and Myc eff nodown knockdown impirs colon cancer cell line proliferation and invasion.” Biochem. Biophys. Res. Commun., 345(1):216–221.

Provenzano, A., Fronza, R., Lorenzi, F., Pascale, A., Amadio, M. and Quattrone, A. 2006. “Global alterations in mRNA polysomal recruitment in a cell model of colorectal cancer progression to metastasis.” Carcinogenesis, 27(7):1323–1333.

Qiu, P. 2003. “Recent advances in computational promoter analysis in understanding the transcriptional regulatory network.” Biochem. Biophys. Res. Commun., 309(3):495–501.

Dohr, S., Klingenhoff, A., Maier, H., Hrabé, d.a., Werner, T. and Schneider, R. 2005. “Linking disease-associated genes to regulatory networks via promoter organization.” Nucleic Acids Res., 33(3):864–872.
Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S. and Khvorova, A. 2004. “Rational siRNA design for RNA interference.” *Nat. Biotechnol.*, 22(3):326–330.

Saha, S., Bardelli, A., Buckhaults, P., Velculescu, V.E., Rago, C., St, C.B., Romans, K.E., Choti, M.A., Lengauer, C., Kinzler, K.W. and Vogelstein, B. 2001. “A phosphatase associated with metastasis of colorectal cancer.” *Science*, 294(5545):1343–1346.

Scherf, M., Epple, A. and Werner, T. 2005. “The next generation of literature analysis: integration of genomic analysis into text mining.” *Brief Bioinform.*, 6(3):287–297.

Shih, W., Chetty, R. and Tsao, M. S. 2005. “Expression profiling by microarrays in colorectal cancer (Review).” *Oncol. Rep.*, 13(3):517–524.

Siemes, C., Quast, T., Kummer, C., Wehner, S., Kirfel, G., Muller, U. and Herzog, V. 2006. “Keratinocytes from APP/APLP2-deficient mice are impaired in proliferation, adhesion and migration in vitro.” *Exp. Cell Res.*

Su, A.I., Welsh, J.B., Sapinoso, L.M., Kern, S.G., Dimitrov, P., Lapp, H., Schultz, P.G., Powell, S.M., Moskaluk, C.A., Frierson, H.F., Jr. and Hampton, G.M. 2001. “Molecular classification of human carcinomas by use of gene expression signatures.” *Cancer Res.*, 61(20):7388–7393.

Taniura, H., Matsumoto, K. and Yoshikawa, K. 1999. “Physical and functional interactions of neuronal growth suppressor necdin with p53.” *J. Biol. Chem.*, 274(23):16242–16248.

Tiwari-Woodruff, S.K., Buznikov, A.G., Vu, T.Q., Micevych, P.E., Chen, K., Kornblum, H.I. and Bronstein, J.M. 2001. “OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and beta1 integrin and regulates proliferation and migration of oligodendrocytes.” *J. Cell Biol.*, 153(2):295–305.

Troyanskaya, O.G. 2005. “Putting microarrays in a context: integrated analysis of diverse biological data.” *Brief Bioinform.*, 6(1):34–43.

von der, K.H., Hanes, J., Klaudiny, J. and Scheit, K.H. 1994. “A human amyloid precursor-like protein is highly homologous to a mouse sequence-specific DNA-binding protein.” *DNA Cell. Biol.*, 13(11):1137–1143.

Werner, T. 2001. “Target gene identification from expression array data by promoter analysis.” *Biomol. Eng.*, 17(3):87–94.

Yoshida, K. and Inoue, I. 2003. “Conditional expression of MCM7 increases tumor growth without altering DNA replication activity.” *FEBS Lett.*, 553(1–2):213–217.
Supplementary 1

Accession	Cluster	Name	Expression	Fold
NM_001644.2	560	**apoB mRNA editing enzyme, catalytic**	Exclusive	54
NM_001804.1	1545	**CDX1**	Exclusive	14
NM_005814	143131	**GPA33**	Exclusive	11
NM_001986.1	7711	**ETV4**	Significant	20
NM_001265.2	77399	**CDX2**	Significant	20
NM_138768.1	116051	**MYEOV**	Significant	14
NM_004963.1	1085	**GUCY2C**	Significant	13
NM_024017.3	86327	**HOXB9**	Significant	6
XM_032721.3	109358	**KRT19**	Significant	5
NM_033266.1	114905	**ERN2**	Significant	4
NM_019010.1	84905	**KRT20**	Significant	4
NM_005310.1	86859	**GRB7**	Significant	4
NM_001738.1	23118	**CA1**	Significant	4
NM_004306.1	181107	**ANXA13**	Significant	3
NM_007028.2	91096	**TRIM31**	Significant	
NM_001500.1	1054435	**GMDS**	Preferential	39
NM_005628.1	183556	**SLC1A5**	Preferential	36
NM_001505.1	182265	**KRT19**	Preferential	33
NM_001556.1	182018	**IRAK1**	Preferential	23
NM_002295	356261	**LAMR1**	Preferential	19
NM_001402	493552	**EEF1A1**	Preferential	19
NM_002087	180577	**GRN**	Preferential	19
NM_006597	180414	**HSPA8**	Preferential	18
NM_005507	170622	**CFL1**	Preferential	17
NM_001903	254321	**CTNNA1**	Preferential	17
NM_002819	172550	**PTBP1**	Preferential	17
NM_007363	355861	**TRIM31**	Preferential	17
NM_002568	169902	**PABPC1**	Preferential	16
NM_006516	180577	**KCNQ1**	Preferential	16
NM_002046	389037	**MCM3AP**	Preferential	16
NM_003906	389037	**MCM3AP**	Preferential	15
NM_004433	67928	**ELF3**	Preferential	14
NM_007127	166068	**VIL1**	Preferential	14
NM_000218	367809	**KCNQ1**	Preferential	13
NM_003379	403997	**VIL2**	Preferential	13
NM_001018	153357	**PLOD3**	Preferential	12
NM_005789	152978	**PSME3**	Preferential	12
NM_005561	150101	**LAMP1**	Preferential	11

(Continued)
Accession	Cluster	Name	Expression	Fold Diff
NM_005080	437638	X-box binding protein 1 (XBP1)	Preferential 11	
NM_002105	144700	H2A histone family, member X (H2AFX)	Preferential 11	
NM_004429	139800	golgi phosphoprotein 4 (GOLPH4)	Preferential 9	
NM_014498		high-mobility group (nonhistone chromosomal) protein isoforms (HMG1Y)	Preferential 9	
NM_007052	132370	NADPH oxidase 1 (NOX1)	Preferential 9	
NM_001416	129673	eukaryotic translation initiation factor 4A, isoform 1(EIF4A1)	Preferential 9	
NM_004655	127337	axin 2 (conductin, axil) (AXIN2)	Preferential 9	
NM_004442	125124	EphB2 (EPHB2)	Preferential 9	
NM_000966	119598	ribosomal protein L3 (RPL3)	Preferential 8	
NM_005063	119597	stearyl-CoA desaturase (delta-9-desaturase) (SCD)	Preferential 8	
NM_000990	443625	collagen, type III, alpha 1 (COL3A1)	Preferential 8	
NM_012423	419535	ribosomal protein L13a (RPL13A)	Preferential 8	
NM_006026	75307	H1 histone family, member X (H1FX)	Preferential 8	
NM_001923	290758	damage-specific DNA binding protein 1 (127kD) (DDB1)	Preferential 8	
NM_032044	105484	regenerating gene type IV (REG-IV)	Preferential 8	
NM_003258	105907	thymidine kinase 1, soluble (TK1)	Preferential 7	
XM_039777	102482	mucin 5, subtype B, tracheobronchial (MUC5B)	Preferential 7	
NM_005724	100090	tetrans 3 (TSPAN-3)	Preferential 7	
NM_000972	416801	ribosomal protein L7a (RPL7A)	Preferential 7	
NM_018952	98428	homeo box B6 (HOXB6)	Preferential 7	
NM_015925	312129	similar to liver-specific bHLH-Zip transcription factor	Preferential 6	
NM_000075	95577	cyclin-dependent kinase 4 (CDK4)	Preferential 6	
NM_006408	226391	anterior gradient 2 homolog (Xenopus laevis) (AGR2)	Preferential 6	
NM_004044	90280	5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (ATIC)	Preferential 6	
NM_004494	89525	hepatoma-derived growth factor (high-mobility group protein 1-like) (HDGF)	Preferential 6	
NM_004063	89436	cadherin 17, LI cadherin (liver-intestine) (CDH17)	Preferential 6	
NM_000213	85266	integrin, beta 4 (ITGB4)	Preferential 6	
NM_001730	84728	Kruppel-like factor 5 (intestinal) (KLF5)	Preferential 6	
NM_001255	82906	CDC20 cell division cycle 20 homolog (S. cerevisiae) (CDC20)	Preferential 5	
NM_001747	82422	capping protein (actin filament), gelsolin-like (CAPG)	Preferential 5	
NM_002534	442936	2',5'-oligoadenylate synthetase 1 (40-46 kD) (OAS1)	Preferential 5	
NM_000178	82327	glutathione synthetase (GSS)	Preferential 5	
NM_000903	406515	NAD(P)H dehydrogenase, quinone 1 (NQO1)	Preferential 5	
NM_002394	79748	solute carrier family 3 member 2 (SLC3A2)	Preferential 5	
NM_005567	79393	lectin, galactoside-binding, soluble, 3 binding protein (LGALS3BP)	Preferential 5	
NM_000404		galactosidase, beta 1 (GLB1)	Preferential 5	
NM_006907	458332	pyrroline-5-carboxylate reductase 1 (PYCR1)	Preferential 5	
NM_000291	78771	phosphoglycerate kinase 1 (PGK1)	Preferential 5	
NM_002653	290404	solute carrier family 25 member 3 (SLC25A3)	Preferential 5	
NM_001640	221589	N-acylaminoacyl-peptide hydrolase (APEH)	Preferential 5	
NM_005030	329989	polo-like kinase (Drosophila) (PLK)	Preferential 5	
NM_002224	77515	inositol 1,4,5-trisphosphate receptor, type 3 (ITPR3)	Preferential 4	
NM_002668	77422	proteolipid protein 2 (colonic epithelium-enriched) (PLP2)	Preferential 4	
NM_016343	77204	centromere protein F (350/400kD, mitosin) (CENPF)	Preferential 4	
NM_005916	438720	MCM7 minichromosome maintenance deficient 7 (S. cerevisiae) (MCM7)	Preferential 4	

(Continued)
Accession	Cluster	Name	Expression	Fold Diff
NM_001006	356572	ribosomal protein S3A (RPS3A)	Preferential	4
NM_000701	371889	ATPase, Na+K+ transporting, alpha 1 polypeptide (ATP1A1)	Preferential	4
NM_000990	356542	ribosomal protein L27a (RPL27A)	Preferential	4
NM_015379	410497	brain protein I3 (BRI3)	Preferential	4
NM_012408	191990	protein kinase C binding protein 1 (PRKCBP1)	Preferential	4
NM_002773	75799	protease, serine, 8 (prostasin) (PRSS8)	Preferential	4
NM_002951	406532	ribophorin II (RPN2)	Preferential	4
NM_001673	446546	asparagine synthetase (ASNS)	Preferential	4
NM_002862	145820	phosphorylase, glycogen; brain (PYGB)	Preferential	4
NM_000918	410578	procollagen-proline, 2-oxoglutarate 4-dioxygenase (P4HB)	Preferential	3
NM_000228	436983	laminin, beta 3 (nicein (125kD), kalinin (140kD), BM600 (125kD) (LAMB3)	Preferential	3
NM_001034	226390	ribonucleotide reductase M2 polypeptide (RRM2)	Preferential	3
NM_003217	35052	testis enhanced gene transcript (BAX inhibitor 1) (TEGT)	Preferential	3
NM_001658	286221	ADP-ribosylation factor 1 (ARF1)	Preferential	3
NM_000014	436983	alpha-2-macroglobulin (A2M)	Preferential	3
NM_007355	74335	heat shock 90kD protein 1, beta (HSPCB)	Preferential	3
NM_001288	414565	chloride intracellular channel 1 (CLIC1)	Preferential	3
NM_007367	74111	RNA binding protein (RALY)	Preferential	3
NM_002483	436718	carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6)	Preferential	3
NM_021220	386387	zinc finger protein 339 (ZNF339)	Preferential	3
NM_001202	68879	bone morphogenetic protein 4 (BMP4)	Preferential	3
NM_000224	406013	keratin 18 (KRT18)	Preferential	3
NM_019894	414005	transmembrane protease, serine 4 (TMPRSS4)	Preferential	3
NM_002032	448738	ferritin, heavy polypeptide 1 (FTH1)	Preferential	3
NM_016276	62863	serum/glucocorticoid regulated kinase 2 (SGK2)	Preferential	3
NM_003756	127149	eukaryotic translation initiation factor 3, subunit 3 (gamma, 40kD) (EIF3S3)	Preferential	3
NM_003751	371001	eukaryotic translation initiation factor 3, subunit 9 (eta, 116kD) (EIF3S9)	Preferential	3
NM_004526	57101	MCM2 minichromosome maintenance deficient 2, (S. cerevisiae) (MCM2)	Preferential	3
NM_021978	56937	suppression of tumorigenicity 14 (colon carcinoma, epithin) (ST14)	Preferential	3
NM_006187	129895	2'-5'-oligoadenylate synthetase 3 (100 kD) (OAS3)	Preferential	3
NM_003753	55682	eukaryotic translation initiation factor 3, subunit 7 (zeta, 66/67kD) (EIF3S7)	Preferential	3
NM_001712	512682	carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1)	Preferential	3
NM_005727	31439	tetraspan 1 (TSPAN-1)	Preferential	3
NM_021102	31439	serine protease inhibitor, Kunitz type, 2 (SPINT2)	Preferential	3
NM_007183	26557	plakophilin 3 (PKP3)	Preferential	3
NM_001306	25640	claudin 3 (CLDN3)	Preferential	3
NM_004572	25051	plakophilin 2 (PKP2)	Preferential	3
NM_004289	404741	nuclear factor (erythroid-derived 2)-like 3 (NFE2L3)	Preferential	3
NM_003627	444159	SLC43A1	Preferential	2
NM_005498	18894	adaptor-related protein complex 1, mu 2 subunit (AP1M2)	Preferential	2
NM_005558	18141	ladinin 1 (LAD1)	Preferential	2
NM_002707	17883	protein phosphatase 1G magnesium-dependent, gamma isoform (PPM1G)	Preferential	2

(Continued)
Accession	Cluster	Name	Expression	Fold Diff
NM_020384	16098	claudin 2 (CLDN2)	Preferential	2
NM_001614	14376	actin, gamma 1 (ACTG1)	Preferential	2
NM_052854	405961	old astrocyte specifically induced substance (OASIS)	Preferential	2
NM_016234	11638	fatty-acid-Coenzyme A ligase, long-chain 5 (FACL5)	Preferential	2
NM_021107	411125	mitochondrial ribosomal protein S12 (MRPS12)	Preferential	2
NM_002335	6347	low density lipoprotein receptor-related protein 5 (LRP5)	Preferential	2
NM_022085	430169	thioredoxin related protein (MGC3178)	Preferential	2
NM_033049	5940	mucin 13, epithelial transmembrane (MUC13)	Preferential	2
NM_014865		chromosome condensation-related SMC-associated protein 1 (CNAP1)	Preferential	2
NM_006098	5662	guanine nucleotide binding protein beta polypeptide 2-like 1 (GNB2L1)	Preferential	2
NM_024526	5366	epidermal growth factor receptor pathway related protein 3 (EPS8R3)	Preferential	1
NM_006149	5302	lectin, galactoside-binding, soluble, 4 (galectin 4) (LGALS4)	Preferential	1
NM_014275	437277	mannosyl (alpha-1,3-) (MGAT4B)	Preferential	1
NM_003752	388163	eukaryotic translation initiation factor 3, subunit 8 (110kD) (EIF3S8)	Preferential	
	3989	plexin B2 (PLXNB2)	Preferential	
NM_002447	2942	macrophage stimulating 1 receptor (c-met-related tyrosine kinase) (MST1R)	Preferential	
NM_001038		sodium channel, nonvoltage-gated 1 alpha (SCNN1A)	Preferential	
NM_002083	2704	glutathione peroxidase 2 (gastrointestinal) (GPX2)	Preferential	
NM_005186	356181	calpain 1, (mu/l) large subunit (CAPN1)	Preferential	
NM_001404	256184	eukaryotic translation elongation factor 1 gamma (EEF1G)	Preferential	
NM_003334	406683	ubiquitin-activating enzyme E1 (UBE1)	Preferential	
NM_005998	1708	chaperonin containing TCP1, subunit 3 (gamma) (CCT3)	Preferential	
NM_012073	1600	chaperonin containing TCP1, subunit 5 (epsilon) (CCT5)	Preferential	
NM_000077	421349	cyclin-dependent kinase inhibitor 2A (melanoma (CDKN2A)	Preferential	
NM_002014	848	FK506 binding protein 4 (59kD) (FKBP4)	Preferential	
NM_004502	436181	home box B7 (HOXB7)	Preferential	
NM_004966	808	heterogeneous nuclear ribonucleoprotein F (HNRPF)	Preferential	
NM_002354	692	tumor-associated calcium signal transducer 1 (TACSTD1)	Preferential	
NM_005435	334	Rho guanine nucleotide exchange factor (GEF) 5 (ARHGEF5)	Preferential	
NM_002457	458274	mucin 2, intestinal/tracheal (MUC2)	Preferential	
NM_000968	186350	ribosomal protein L4 (RPL4)	Preferential	