СМЕРТНОСТЬ ОТ БОЛЕЗНЕЙ СИСТЕМЫ КРОВООБРАЩЕНИЯ И БОЛЕЗНЕЙ ОРГАНОВ ДЫХАНИЯ, АССОЦИРОВАННАЯ С ГРИППОМ, В РОССИЙСКОЙ ФЕДЕРАЦИИ

ВО ВРЕМЯ СЕЗОНОВ ГРИППА С 2013–2014 ДО 2018–2019

Гольдштейн Э.М.

Гарвардская школа общественного здравоохранения, Бостон, e-mail: egoldste@hsph.harvard.edu

Информация о смертности, ассоциированной с гриппом, в России ограничена. Используя ранее разработанную регрессионную модель, мы выразили месячные уровни смертности в Российской Федерации от болезней органов дыхания, а также от болезней системы кровообращения между 07/2013 и 07/2019 (данные Росстата через месячные индикаторы циркуляции гриппа A/H3N2, A/H1N1 и В (полученные из данных института гриппа им. Смодринцева), базовые (с годовой периодичностью) уровни месячной смертности не связанной с гриппом и временной тренд в смертности. В сезоны 2013/14 до 2018/19, в среднем 17821 (95% ДИ (9723,25918)) годовых смертей от болезней системы кровообращения и 4174 (3252,5095) смертей от болезней органов дыхания были ассоциированы с гриппом. Наибольшая смертность как от болезней системы кровообращения и болезней органов дыхания был грипп A/H3N2; грипп В (в основном В/Ямагата) и грипп A/H1N1 тоже внесли существенный вклад в соответствующую смертность. По сравнению с сезонами 2013/14 до 2015/16, в сезоны 2016/7 до 2018/19 (когда уровень вакцинации против гриппа значительно возрос), смертность от гриппа упала на 9,2 %, или в среднем 2128 годовых смертей от болезней системы кровообращения и болезней органов дыхания. Наши результаты являются свидетельством в поддержку дополнительного увеличения уровня вакцинации против гриппа, особенно среди людей с сердечно-сосудистыми заболеваниями и пожилых людей, использование четырехвалентной вакцины против гриппа, а также применение противовирусных препаратов в определенных группах населения во время активной циркуляции гриппа.

Ключевые слова: грипп, смертность, грипп A/H3N2, грипп A/H1N1, грипп В/Ямагата, болезни системы кровообращения, болезни органов дыхания

INFLUENZA-ASSOCIATED MORTALITY FOR CIRCULATORY AND RESPIRATORY CAUSES DURING THE 2013–2014 THROUGH THE 2018–2019 INFLUENZA SEASONS IN RUSSIA

Goldsteyn E.M.

Harvard TH Chan School of Public Health, Boston, e-mail: egoldste@hsph.harvard.edu

Information on influenza-associated mortality in Russia is limited. Using previously developed methodology, we regressed the monthly rates of mortality in Russia (Rosstat data) for respiratory causes, as well as circulatory causes linearly against the monthly proxies for the incidence of influenza A/H3N2, A/H1N1 and B (obtained using data from the Smorodintsev Research Institute of Influenza (RII)), adjusting for the baseline rates of mortality not associated with influenza circulation and temporal trends. For the 2013/14 through the 2018/19 seasons, influenza circulation was associated with an average annual 17821 (95% CI(9723,25918)) deaths for circulatory causes and 4174 (3252,5095) deaths for respiratory causes, with the largest number of influenza-associated deaths (30098 (17618,42578) for circulatory causes and 6793 (5369,8216) for respiratory causes) estimated during the 2014/15 influenza season. The biggest contributor to both circulatory and respiratory deaths was influenza A/H3N2, followed by influenza B and A/H1N1. Compared to the 2013/14 through the 2015/16 seasons, during the 2016/17 through the 2018/19 seasons (when levels of influenza vaccination were significantly higher), the volume of influenza-associated mortality declined by about 9.2 %, or 2128 annual respiratory and circulatory deaths. Those results support the potential utility of further extending the levels of influenza vaccination, the use of quadrivalent influenza vaccines, and extra efforts for protecting individuals with circulatory disease in Russia, including vaccination and the use of antiviral medications.

Keywords: influenza, mortality, influenza A/H3N2, influenza A/H1N1, influenza B/Yamagata, circulatory mortality, respiratory mortality

Основные подтипы гриппа (A/H3N2, A/H1N1 и В) ежегодно циркулируют в Российской Федерации [1–3]. Подобные эпидемии приводят к значительному уровню смертности в странах северного полушария [4–6], включая смертность от болезней системы кровообращения [4, 7]; известно также, что инфекция гриппа связана с рядом сердечно-сосудистых осложнений [8, 9]. В то же время информация о вкладе гриппа в смертность в Российской Федерации ограничена. Ежегодные оценки количества смертей с диagnostированным гриппом предположительно отражают только малую долю...
(несколько процентов) всех смертей, ассоцированных с гриппом (т.е. смертей, для которых инфекция гриппа является тритем, а не только смертей, при которых грипп диагностирован), особенно среди старших возрастных групп, а также для смертей от болезней системы кровообращения. Например в [9] показано, что лабораторно подтвержденный грипп увеличивает риск инфаркта примерно в 6 раз. Это значит, что приблизительно 5 из 6 инфарктов у людей с заболеванием гриппа являются «избыточными»; при этом в каждом конкретном случае установить роль гриппа в инфаркте непросто, и грипп диагностируется крайне редко при подобных инфарктах и связанных с ними смертях. Отметим также, что уровень смертности от болезней системы кровообращения в России высок, и что при эпидемиях гриппа скажи в уровне смертности от болезней системы кровообращения по абсолютной величине заметно превышают скажи в уровне смертности от болезней органов дыхания (рис. 1, 3, 4).

В дополнение к этому случаи с диа гностированным гриппом могут неверно отражать относительный вклад разных подтипов гриппа (A/H3N2, A/H1N1 и B) в смертность, ассоциированную с гриппом. При эпидемиях гриппа A/H1N1, распределение по возрасту у смертей с диагностированным гриппом значительно моложе, чем при эпидемиях гриппа A/H3N2 и B [2]. Соответственно, смерти, ассоциированные с гриппом A/H1N1, чаще диагностируемые, чем смерти, ассоциированные с гриппом A/H3N2 и B. Действительно, грипп A/H1N1 был самой распространенной причиной диагностированных смертей с гриппом даже в сезон 2014/15, когда циркуляция гриппа A/H1N1 была мала [3]. Все это говорит о том, что необходима иная методология, чем изучение смертей с диагностированным гриппом для того, чтобы лучше оценить бремя смертности от разных болезней в разных возрастных группах, ассоциированной с основными подтипами гриппа (A/H3N2, A/H1N1, B) в разные годы, и лучше понять эффект недавнего увеличения уровня вакцинации против гриппа в РФ на смертность, ассоциированную с гриппом.

В наших ранних работах [4, 7] мы ввели статистический метод для оценки уровней смертности и госпитализаций, ассоциированных с гриппом, разработанный с целью устранения ряда ограничений в предыдущей методологии оценки уровня смертности и госпитализаций от респираторных вирусов. Одним из важных аспектов этой методологии является использование «индексов» циркуляции гриппа A/H3N2, A/H1N1 и B, которые пропорционально уровням инфекций с соответствующими вирусами в населении. Эти (недельные или месячные) индексы строятся из данных о медицинских консультациях с симптомами гриппа/ОРВИ, а также данных о тестировании респираторных образцов у людей с симптомами гриппа/ОРВИ на разные подтипы гриппа [4]. Мы использовали индексы циркуляции основных подтипов гриппа (A/H3N2, A/H1N1 и B) для того, чтобы оценить смертность, ассоциированную с гриппом в разных возрастных группах для различных причин смерти в США [4, 7]. Впоследствии этот метод был применен для оценки уровня смертности, ассоциированной с гриппом в ряде других стран [5, 6]. В этой статье мы определили и вычислили аналогичные индексы циркуляции гриппа, используя эпидемиологические данные института гриппа им. Смородинцева [10]. Эти индексы циркуляции гриппа были использованы в сочетании с месячными данными Росстата о смертности [11] в рамках статистической модели, разработанной в [4, 7] для того, чтобы оценить смертность, ассоциированную с гриппом в сезоны с 2013/14 до 2018/19 в РФ.

Цель исследования: оценка смертности от болезней системы кровообращения и болезней органов дыхания, ассоциированной с гриппом в Российской Федерации во время сезонов гриппа с 2013/14 до 2018/19, включая относительный вклад гриппа A/H3N2, A/H1N1 и B в эту смертность, и изменения в уровнях смертности, ассоциированной с гриппом после увеличения уровня вакцинации против гриппа начиная с сезона 2016/17.

Материалы и методы исследования

Данные

Данные Росстата о месячной смертности от болезней органов дыхания и от болезней системы кровообращения доступны в [11]. Средние ежедневные уровни смертности на 100,000 человек по месяцам были получены из соответствующего месячного количества смертей и данных Росстата о количестве населения.

Недельные данные о заболеваемости гриппом/ОРВИ на 10,000 человек в РФ доступны в [10]. Недельные данные о процентах респираторных образцов у пациентов с симптомами гриппа/ОРВИ, ПЦР-положительных на каждый из основных подтипов гриппа (A/H3N2, A/H1N1, B) также содержатся в [10] (в разделе Лабораторная диагностика гриппа и ОРВИ).
Индексы циркуляции гриппа

Только часть пациентов с симптомами гриппа/ОРВИ заражены вирусом гриппа. Мы оценили недельные индексы циркуляции для каждого из основных подтипов гриппа (A/H3N2, A/H1N1, B) следующим образом

Недельный индекс циркуляции для данного подтипа гриппа = (Уровень заболеваемости гриппом/ОРВИ) * (% респираторных образцов, ПЦР-положительных на данный подтип гриппа).

Как отмечалось в [4], недельные индексы циркуляции для каждого подтипа гриппа пропорциональны недельным уровням заболеваемости от данного подтипа гриппа в населении – по сути эти индексы равны уровню заболеваемости от данного подтипа гриппа на 10,000 человек умноженные на чувствительность ПЦР-теста. Месячные индексы циркуляции для каждого из основных подтипов гриппа определяются как взвешенная сумма недельных индексов циркуляции данного подтипа гриппа, а именно, для данного месяца и подтипа гриппа мы суммируем недельные индексы циркуляции гриппа данного подтипа для тех недель, которые пересекаются с данным месяцем, помноженные на количество общих дней у данных месяца и недели (7 дней, если неделя полностью содержится в данном месяце), и в конце делим полученный результат на количество дней в данном месяце. Наконец, для того, чтобы связать индексы циркуляции гриппа со смертностью, ассоциированной с гриппом, мы учтем время между заболеваемостью гриппом и смертью и сдвигаем недельные индексы циркуляции на неделю вперед ([4, 7]), а затем из этих сдвинутых недельных индексов получаем месячные индексы, как описывается выше в этом абзаце.

Вирусы гриппа В делются на две основные линии: В/Виктория и В/Ямагата. Распределение по возрасту у больных гриппом В/Виктория значительно моложе, чем у больных гриппом В/Ямагата [12], а смертность от гриппа в основном отражает смертю среди старших слоев населения. Соответственно, при данном индексе циркуляции гриппа В/Виктория, связанная с этим инфекциями смертность в населении может сильно отличаться (предположительно, быть в разы меньше) от смертности, связанной с гриппом В/Ямагата при таком же индексе циркуляции. Грипп В/Ямагата преобладал в циркуляции гриппа В в сезоны 2013/14, 2014/15, 2017/18, и 2018/19 (сезон определяется как период с сентября по июнь), а грипп В/Виктория преобладал в сезоны 2015/16 и 2016/17 [10]. Соответственно, чтобы сопоставить индексы циркуляции гриппа Б со связанными с ними смертностью, мы разбиваем индекс циркуляции гриппа В на два: индекс в сезоне 2013/14, 2014/15, 2017/18, и 2018/19 (который мы назовем индекс В/Ямагата), и индекс в сезоны 2015/16 и 2016/17 (который мы назовем индекс В/Виктория). На рис. 2 изображены месячные индексы циркуляции гриппа A/H3N2, A/H1N1, В/Ямагата и В/Виктория в период с 07/2013 до 07/2019. Мы также отметим, что аналогичные индексы циркуляции гриппа могут служить индикаторами уровня циркуляции гриппа в реальное время в будущие сезоны гриппа.

Статистический анализ

Мы связываем месячные индексы циркуляции гриппа с месячными уровнями смертности в России (отдельно для смертности от болезней органов дыхания и болезней системы кровообращения) следующим образом: Пусть С(m) будет уровень соответствующей смертности в месяц m (m = 1 для 07/2013; m = 73 для 07/2019), и A/H3N2(m), A/H1N1(m), В/Ямагата(m), В/Виктория(m) будут соответствующие индексы циркуляции гриппа в месяц m. Тогда

С(m) = β0 + β1 ∙ A/H3N2(m) +
+ β2 ∙ A/H1N1(m) + β3 ∙ В/Ямагата(m) +
+ β4 ∙ В/Виктория(m) + Базовый уровень(m) + Тренд(m) + Белый шум. (2)

«Базовый уровень (m)» отражает ожиаемый уровень смертности от данного класса болезней, не связанный с гриппом в месяц m – предполагается, что этот уровень периодичен с годовой периодичностью. Мы моделируем «Базовый уровень (m)» как

Базовый уровень (m) =
= β5 ∙ cos(2πm/12) + β6 ∙ sin(2πm/12) + β7 ∙ Янв. (3)

Здесь переменное <<Янв>> равно 1 для января и нулю для других месяцев. Это переменное включено в регрессионную модель потому, что месячные данные о смертности [11] являются оперативными, и данные, не внесенные в систему в течение календарного года переносятся на январь следующего года [13]. Более того, наличие январского эффекта на смертность от болезней системы кровообращения в России
было выявлено в [14]. Мы также отметим по поводу тригонометрической модели в уравнении (3), что предыдущие работы показали, что выбор модели для базовых уровней смертности имеет ограниченное влияние на оценки уровня смертности, ассоциированной с гриппом (дополнительная информация в статье [4]). Тренд (м) отражает временные тенденции в смертности от данного класса болезней. Тренд (м) моделируется как многочлен низкой степени от месяца м. Мы используем информационный критерий Акаиеке (AIC) для выбора параметров в модели в уравнении (2). При каждом шаге параметр, чье удаление из модели приводит к максимальному уменьшению оценки AIC (если таковое возможно), опускается. Это приводит к соответствующим регрессионным моделям для смертности от болезней органов дыхания и болезней системы кровообращения.

Болезни системы кровообращения

\[
C_{кровообращение}(м) = \beta_0 + \beta_1 \cdot A/H3N2(м) + \\
+ \beta_2 \cdot A/H1N1(м) + \beta_3 \cdot В/Ямагата(м) + \\
+ \beta_4 \cdot sin\left(\frac{2\pi m}{12}\right) + \beta_{5} \cdot Янв(м) + \beta_{6} \cdot м + \\
+ \beta_{7} \cdot м^2 + \text{Белый шум.} \tag{4}
\]

Болезни органов дыхания

\[
C_{дыхание}(м) = \beta_0 + \beta_1 \cdot A/H3N2(м) + \\
+ \beta_2 \cdot A/H1N1(м) + \beta_3 \cdot В/Ямагата(м) + \\
+ \beta_4 \cdot sin\left(\frac{2\pi m}{12}\right) + \beta_{5} \cdot Янв(м) + \beta_{6} \cdot м + \\
+ \beta_{7} \cdot м^2 + \text{Белый шум.} \tag{5}
\]

Результаты исследования и их обсуждение

Рис. 1 отображает ежедневный уровень смертности от болезней органов дыхания на миллион человек, и от болезней системы кровообращения на 100 000 человек в РФ по месяцам в период с 07/2013 до 07/2019. Рис. 2 отображает месячные индексы циркуляции гриппа A/H3N2(м), A/H1N1(м), В/Ямагата(м), В/Виктория(м) в период с 07/2013 до 07/2019. Отметим, что есть хорошее временн ое соответствие между высокой циркуляцией гриппа и скачками в смертности, за исключением циркуляции гриппа В/Виктория в сезон 2016/17. Отсутствие соответствующего сигнала в кривой смертности при высокой циркуляции гриппа В/Виктория может быть объяснено тем, что этот грипп относительно редко поражает немолодых людей [12].
Рис. 3 отображает результаты модели для смертности от болезней органов дыхания, заданной уравнением (4). Рис. 4 отображает результаты модели для смертности от болезней системы кровообращения, заданной уравнением (5). Результаты модели достаточно последовательно отражают уровни смертности, особенно для болезней органов дыхания. Это дает подтверждение уместности структуры нашей модели, выражающей месячные уровни смертности через вклад гриппа в дополнение к регулярному образцу (базовые уровни + тренд).

В табл. 1 представлены оценки годового вклада гриппа в смертность от болезней органов дыхания, и болезней системы кровообращения для каждого из сезонов гриппа с 2013/14 по 2018/19 (сезон определяется как период с сентября по июнь), а также среднегодовые значения за этот период времени (6 сезонов). Мы оценили, что в среднем 17821 (95 % ДИ(9723,25918)) годовых смертей от болезней системы кровообращения и 4174 (3252,5095) смертей от болезней органов дыхания с 2013/14 до 2018/19 были ассоциированы с гриппом. Наибольшая смертность как от болезней системы кровообращения (30098 (17618,42578)), так и от болезней органов дыхания (6793 (5369,8216)), ассоциированная с гриппом была оценена в сезон 2014/15, когда дрейфовые варианты гриппа А/H3N2 и В/Ямагата циркулировали в России [10]. В сезон 2014/15, высокая смертность, связанная с циркуляцией гриппа А/H3N2 и В/Ямагата была зафиксирована и в ряде других стран [5]. Уровень вакцинации против гриппа в России возрос начиная с сезона 2016/17. По сравнению с сезонами 2013/14 до 2015/16, в сезоны 2016/17 до 2018/19 смертность, ассоциированная с гриппом, упала на 9,2 %, или в среднем 2128 годовых смертей от болезней системы кровообращения и болезней органов дыхания. Наконец, мы отметим высокий уровень смертности от болезней системы кровообращения, ассоциированной с гриппом, которая превышает уровень смертности от болезней органов дыхания, ассоциированной с гриппом в 4,27 раза. В США отношение между уровнем смертности от болезней системы кровообращения и уровнем смертности от болезней органов дыхания, ассоциированной с гриппом, в период 1997–2007 оценивается в 1,35 [4]. При этом соотношение общего количества смертей от болезней системы кровообращения к количеству смертей от болезней органов дыхания в России (14 к 1 в 2018 г., [11]) значительно превышает соотношение общего количества смертей от болезней системы кровообращения к количеству смертей от болезней органов дыхания в США (3,08 к 1 в 2017 г. [15]).
Рис. 3. Средний ежедневный уровень смертности от болезней органов дыхания 100 000 человек в РФ по месяцам с 07/2013 до 07/2019 (черная кривая), результаты модели (красная кривая), и базовый уровень смертности, не связанной с гриппом + тренд (зеленая кривая). Вклад гриппа в смертность равен разнице между красной и зеленой кривыми.

Рис. 4. Средний ежедневный уровень смертности от болезней системы кровообращения 100 000 человек в РФ по месяцам с 07/2013 до 07/2019 (черная кривая), результаты модели (красная кривая), и базовый уровень смертности, не связанной с гриппом + тренд (зеленая кривая). Вклад гриппа в смертность равен разнице между красной и зеленой кривыми.
Таблица 1

Количество смертей от болезней системы кровообращения и болезней органов дыхания, ассоциированных с гриппом, в сезоны с 2013/14 до 2018/19 в РФ, и годовое среднее для соответствующих 6-и сезонов гриппа

Сезон	Болезни системы кровообращения	Болезни органов дыхания
2013/14	13430 (7415, 19446)	3070 (2386, 3754)
2014/15	30098 (17618, 42578)	6793 (5369, 8216)
2015/16	12174 (502, 23845)	3612 (2283, 4941)
2016/17	18025 (5111, 30938)	3513 (2046, 4979)
2017/18	19786 (11205, 28368)	4788 (3807, 5769)
2018/19	13412 (5163, 21661)	3268 (2330, 4205)

Годовое среднее

Таблица 2

Среднее годовое количество смертей от болезней системы кровообращения и болезней органов дыхания, ассоциированных с гриппом А/H3N2, А/H1N1 и В в сезоны с 2013/14 до 2018/19 в РФ

Подтип	Болезни системы кровообращения	Болезни органов дыхания
А/H3N2	8221 (2290, 14152)	1593 (919, 2267)
А/H1N1	4008 (−219, 8235)	1239 (758, 1721)
В	5592 (1969, 9214)	1342 (928, 1756)

Заключение

Информация о смертности, ассоциированной с гриппом в РФ, ограничена и в основном базируется на данных о смертях с диагностированным гриппом. Эти смерти представляют только малую долю всех смертей, ассоциированных с гриппом, и не позволяют оценить вклад разных подтипов гриппа в смертность, связанную с гриппом, а также уровень смертности от разных болезней, ассоциированной с гриппом (Введение). В этой статье мы применили ранее разработанную методологию, которая уже была использована для оценки уровня смертности, ассоциированной с гриппом в ряде стран [4–6] для того, чтобы оценить уровень смертности от болезней органов дыхания и болезней системы кровообращения, ассоциированной с гриппом в РФ в сезоны гриппа с 2013/14 до 2018/19. Наши оценки подтверждают и квантифицируют наблюдаемую связь между высокой циркуляцией гриппа и повышением уровня смертности от болезней системы кровообращения и болезней органов дыхания. Мы нашли значительный вклад гриппа, особенно гриппа А/H3N2, но также гриппа А/H1N1 и В в смертность, особенно от болезней системы кровообращения. Мы также нашли эффект недавнего увеличения уровня вакцинации на смертность от гриппа (уменьшение в среднем на 2100 смертей в год начиная с сезона 2016/17). Наши результаты являются свидетельством в поддержку дополнительного увеличения уровня вакцинации против гриппа, особенно среди людей с сердечно-сосудистыми заболеваниями и пожилыми людьми, а также применения антивирусных препаратов, особенно для представителей групп риска, таких как люди с сердечно-сосудистыми и другими хроническими заболеваниями и пожилые люди, включая применение в амбулаторных условиях при симптомах гриппа в периоды высокого уровня циркуляции гриппа. Вклад гриппа В/Ямагата в смертность, особенно в сезоны, когда этот вид гриппа не содержался в трехвалентной вакцине, является свидетельством в поддержку использования четырехвалентных вакцин против гриппа. Мы также надеемся, что эта работа послужит стимулом для более подробного изучения эпидемиологии тяжелых последствий эпидемий гриппа в России, основанного на более гранулированных данных, в целях планирования усилий по уменьшению смертности и других тяжелых последствий, связанных с эпидемиями гриппа.

Методы

В табл. 2 представлены оценки среднего годового количества смертей от болезней системы кровообращения и болезней органов дыхания, ассоциированных с основными подтипами гриппа, в сезоны с 2013/14 по 2018/19 в РФ. Мы оценили, что в тот период среди смертей, ассоциированных с гриппом, 46,1% смертей от болезней системы кровообращения и 38,2% смертей от болезней органов дыхания были связаны с гриппом А/H3N2 (табл. 1 и 2); 22,5% смертей от болезней системы кровообращения и 29,7% смертей от болезней органов дыхания были связаны с гриппом А/H1N1; 31,4% смертей от болезней системы кровообращения и 32,1% смертей от болезней органов дыхания были связаны с гриппом В.

Отметим, что ограничение нашей статьи заключается в том, что мы использовали месячные, оперативные данные о смертности [11], а не недельные данные. Данные о смертности, стратифицированные по неделям/возрастным группам, помогут лучше понять эпидемиологию смертности, связанной с циркуляцией гриппа в России – см., например, [7, 5].
Список литературы

1. Карпова Л.С., Волк К.М., Столырев К.А., Поповцева Н.М., Столырева Т.П., СомининаС.А., Бурцева Е.И. Особенности эпидемического процесса при гриппе А(H1N1) PDM09 и А(H3N2) в России с 2009 по 2017 гг. // Вопросы вирусологии. 2018. № 63 (4).

2. Львов Д.К., Бурцева Е.И., Кириллова Е.С., КолобухинаМ.Л., Мукашева Е.А., Трушаева С.Ф., Федоровтова Е.Л., Меркулова Л.И., Краснослободцев К.Г., Гарина Е.Ф., Федякина И.Т., Аристова В.А., Вартанян Р.В., Кистенева Л.В., Дерябин П.Г., Клиническая картина и прогнозируемые последствия эпидемического процесса при гриппе А(H1N1) PDM09 и А(H3N2) в России в сезоне 2016–2017 гг. в России и странах северного полушария // Вопросы вирусологии. 2018. № 63 (2). С. 61–68.

3. Карпова Л.С., Поповцева Н.М., Столырева Т.П., Коновалова Н.И., Еропкин М.Ю., Бурцева Е.И., Федоровтова Е.Л., Соминина А.А. Эпидемия гриппа в России в сезоне 2014–2015 гг. // МИР Ж. 2015. № 2(1). С. 19–27. DOI: 10.18527/2500-2236-2015-2-1-19-27.

4. Гольденстайн Г., Вибудов Ч., Чару В., Липстич М. Улучшение модели хронических моральных исходов гриппа в Европе на основе сезонной балансировки. Epidemiology. 2012. Vol. 23(6). Р. 829–838.

5. Пебоди Р.Г., Грин Н.К., Ворбуртон Ф., Синнатамби М., Элис Дж., Мольбак К. Характеристики сезонной вспышки гриппа в Великобритании в 2014–2015 гг. // ВИМ Ж. 2015. № 2(1). С. 1106–1113.

6. Нильсен И., Краус Т.Г., Мольбак К. Инфлюэнза-ассоциированный исход, связанный с ассоциированным смертностью от всех причин в Дании в 2010–2016 гг. // The FluMOMO model. Influenza and Other Respir Viruses. 2018. Vol. 12 (5). Р. 591–604.

7. Quandelacy М.Т., Viboud C., Чару В., Липстич М., Гольденстайн Е. Возрастно-сексуальные риски инфлюэнза-ассоциированной смертности в США между 1997 и 2007 годами. Am. J. Epidemiol. 2014. Vol. 179 (2). P. 156–167.

8. Мамас М.А., Фрэйзер Д., Нейос Л. Кardiоваскулярные проявления инфлюэнза-ассоциированный вирусной инфекции. Int. J. Cardiol. 2008. Vol. 130 (3). Р. 304–309.

9. Квонг Дж., Свартс К.Л., Кампетели М.А., Чунг Х., Кроуфорд Н.С., Карнаухов Т., Катц К., Ко Д.Т., Мейкер А.Д., Максель Д., Ричардсон Д.С., Росела Л.С., Симор А., Смит М., Захариадис Г., Губбай Г.Н. Хирургическое вмешательство при лабораторно-подтвержденной инфлюэнзской инфекции. N. Engl. J. Med. 2018. Vol. 378(4). Р. 345–353.

10. Защита от инфлюэнзальной инфекции. Росстат. Справочник. 2019. [Электронный ресурс]. URL: https://wonder.cdc.gov/mcd-icd10.html (дата обращения: 15.11.2019).

11. Федеральная служба государственной статистики (Росстат). Число зарегистрированных умерших по основным классам и отдельным причинам смерти (оперативные данные). 2019. [Электронный ресурс]. URL: https://fedstat.ru/indicator/33559 (дата обращения: 15.11.2019).

...