Systemic lupus erythematosus associated with sickle-cell disease: a case report and literature review

Mouna Maamar*, Zoubida Tazi-Mezalek, Hicham Harmouche, Wafaa Mounfaloti, Mohammed Adnaoui and Mohammed Aouni

Abstract

Introduction: The occurrence of systemic lupus erythematosus has been only rarely reported in patients with sickle-cell disease.

Case presentation: We describe the case of a 23-year-old North-African woman with sickle-cell disease and systemic lupus erythematosus, and discuss the pointers to the diagnosis of this combination of conditions and also present a review of literature. The diagnosis of systemic lupus erythematosus was delayed because our patient’s symptoms were initially attributed to sickle-cell disease.

Conclusions: Physicians should be alerted to the possible association of sickle-cell disease and systemic lupus erythematosus so as not to delay correct diagnosis and initiation of appropriate treatment.

Keywords: Sickle-cell disease, systemic lupus erythematosus

Introduction

Sickle-cell disease (SCD) is a prevalent genetic disorder that includes sickle-cell anemia (the homozygous and most common form of SCD (SS)), sickle-cell hemoglobin C (SC) and sickle-cell β thalassemia (S/β thal) [1]. The protean clinical features of SCD result from chronic variable intravascular hemolysis and microvascular ischemia, leading to damage in multiple organs [2]. The occurrence of connective tissue diseases, in particular systemic lupus erythematosus (SLE), has only been rarely reported in patients with SCD [2]. The incidence of SLE in patients with SCD is not known because most of the published studies are case reports. Due to similar clinical manifestations, diagnosis of SLE in patients with SCD may be difficult and is often delayed. We report the case of a patient who developed symptoms initially attributed to SCD, but on further investigation underlying SLE was revealed.

Case presentation

A 23-year-old North-African woman with no family history of SCD was admitted to our department of internal medicine with symptoms of anemia, bone pain, arthralgia and fever. Her symptoms had been developing for six weeks with alteration of her general condition and abdominal pain. On physical examination our patient was pale; she had a temperature of 39.5°C, her blood pressure was 130/75mmHg and heart rate was 100 beats/minute. The patient had slight splenomegaly, pain on pressure in the long bones and arthritis in her knees.

Blood test results showed normocytic anemia at 6.6g/dL with a high reticulocyte count (230,000 cells/mm3), hyperleukocytosis with granulocytosis (leukocyte count 16,500 cells/mm3, polymorphonuclear cells 9500 cells/mm3) and moderate thrombopenia (100,000 cells/mm3). Further investigations showed diminished haptoglobin (0.08mg/L), elevated lactate dehydrogenase (4670UI/L) indirect hyperbilirubinemia (21mg/L) with moderate cytolysis and cholestasis (aspartate aminotransferase 43U/L, alanine aminotransferase 65U/L, phenylalanine ammonia lyase 217U/L and γ-glutamyl transpeptidase 188U/L). Hemoglobin (Hb) electrophoresis test results showed Hb S at 50.3 percent, Hb C at 44 percent and
Hb A1 at 0 percent, confirming a diagnosis of SCD (hemoglobin S/C).

Our patient's erythrocyte sediment rate was 110mm/first hour, her C-reactive protein level was 38mg/L (range <6mg/L), fibrinogen was 6.4g/L (24g/L) and serum protein electrophoresis showed a polyclonal IgG 24g/L (range 9 to 13g/L) with normal immunofixation. Results of a chest X-ray were normal. Abdominal ultrasonography, transthoracic and transesophageal echocardiography results were also normal. A thoraco-abdominal scan revealed numerous splenic infarctions. The results of a bone scan showed diffuse bone infarcts. Her symptoms were attributed to SCD and hence our patient received blood transfusions, antibiotics and analgesics, but with no improvement. Her fever and arthritis failed to respond to this treatment. Instead, the evolution of her condition was marked by the development of arthritis in her hands and relapse of anemia.

Blood culture test results were negative, and the result of a tuberculin skin test was an 8mm induration. There was no BK virus found in repeated sputum and urine examinations, and procalcitonin test results were negative.

Serology test results for human immunodeficiency virus, hepatitis B, hepatitis C, brucellosis and typhoid fever were all negative. Cytobacteriological urine analysis revealed no bacteria but microscopic hematuria (670 cells/mm³). Proteinuria results were negative.

The results of a Coombs test performed on admission were strongly positive for IgG. Immunological investigations revealed a positive anti-nuclear antibody (1/2600) result, and a positive anti-Sm result. Anti-DNA antibody tests were negative. A test for anti-extractable nuclear antigen antibodies (anti-ENA) was negative. C3 levels and C4 levels were normal (respectively, 0.95g/L and 0.3g/L). Tests for anti-phospholipid antibodies were negative. A diagnosis of SLE associated to SCD was established, with five of the diagnostic criteria of the American College of Rheumatology being met. Steroids were administered as a pulse of methylprednisolone 1g/day for three days followed by oral prednisone at 1mg/kg/day with hydroxychloroquine. Her symptoms quickly improved. At her 18-month follow up, she was in clinical remission on prednisone 5mg per day and hydroxychloroquine; she had not experienced a sickle-cell crisis and her lupus is still quiescent.

Discussion

In the present report we described the case of a Moroccan woman with SCD and coexistent SLE. The overlap of SLE and SCD is of interest, but the limited number of patients that have been reported previously implies that the association is uncommon [3]. Only 40 similar cases have been reported in the literature over the last 50 years [2-16] (Table 1). The African/Afro-Caribbean/African-American population is predisposed to contracting both SCD and SLE, explaining the fact that most patients with this association are African women (70 percent in Table 1 and 73 percent in the series by Michel et al.). All reported cases were relatively young at the time of lupus diagnosis (mean age 23 years, range eight to 57 years). All of them had SCD several years before SLE. Articular involvement is the most frequent lupus-related symptom, present in 84 percent of cases, followed by serositis (36 percent), and glomerulonephritis class III or IV (11 percent). Cutaneous manifestations are not frequently mentioned. Positive anti-nuclear antibody (ANA) results were found in 34 cases. Prognosis was favorable in 80 percent of cases (Table 1). Patients with SCD present with a defective activation of the alternate pathway of the complement system; this is the reason why these patients are at increased risk of capsulate bacteria infection, such as from pneumococci [15]. Some authors have suggested the hypothesis that this defect may lead to immune complex disorders secondary to failure to eliminate antigens, predisposing these patients to autoimmune diseases, but this has not been confirmed in other studies [3,11,13]. The clinical features of SLE and SCD have certain elements in common. Diverse manifestations such as polyarthritis, anemia, fever, visceral pain, renal, cardiovascular and pulmonary involvement are common in both conditions. Owing to the overlap of clinical features in the two diseases it may easy to confuse them, as occurred with our patient.

Further, the frequency and titers of antibodies in SCD have been reported as relatively higher than in population controls, making the diagnosis more challenging in clinical practice [17].

Toly-Ndour et al. reported that 50 percent of 88 patients with SCD had positive anti-nuclear antibody results and 20 percent had titers greater than one in 200, but only one patient developed rheumatoid arthritis five years later and no patients developed SLE [18]. In this series, patients treated with hydroxyurea had ANA-positive results less frequently than non-treated patients (P=0.053) [18].

Large prospective epidemiological studies are necessary to determine whether the prevalence of immune complex diseases is increased in patients with SCD.

Conclusions

This report illustrates the importance of considering associated diseases when clinical findings are unexplained by SCD alone, or are unresponsive to the conventional treatment. Early diagnosis and the initiation of appropriate treatment may decrease morbidity and mortality in these patients.
Lead author/year/reference	Sex/origin	Age of SCD onset	Age of SLE onset	SLE features	Immunologic features	Hemoglobin type	Treatment	Outcome	
Cherner 2010 [3]	F/Afro-Caribbean	13	21	Arthritis, fever	ANA+	SS	Prednisone	Clinical improvement	
				Malar rash	Anti-CCP+				
				Gut vasculitis	Anti-RNP+				
					ACL+				
					Renal disease (biopsy not performed)	Anti-DNA+			
Cherner 2010 [3]	F/Afro-Caribbean	7	41	Skin rash	ANA+	SS	Prednisone	Clinical improvement	
					Anti-RP+				
Appenzeller 2008 [4]	F/African-American	NA	16	Fever, arthritis	ANA+	SS	Prednisone	Clinical improvement	
				Photosensitivity	Anti-DNA+				
				Cardiomyopathy	Anti-SM+				
				Pericarditis					
Appenzeller 2008 [4]	F/African-American	15	21	Arthritis	ANA+	SS	Prednisone	Clinical improvement	
				Pleuritis	Anti-DNA+	SS	Hydroxychloroquine		
				Lymphadenopathy	Anti-Sm+				
Appenzeller 2008 [4]	F/African-American	NA	57	Arthritis	ANA+	SS	Prednisone	Clinical improvement	
				Photosensitivity	Anti-Sm+	SS	Hydroxychloroquine		
				Discoid lesions					
				Raynaud’s phenomenon					
Michel 2008 [2]	F/NA	NA	30	Arthritis	ANA+	SS	Prednisone	Deceased	
				Pericarditis	Anti-DNA+				
				Pleuritis	Anti-Sm+				
				GN class II					
Michel 2008 [2]	M/NA	NA	40	Arthritis	ANA+	SS	Prednisone	Remission	
				Discoid lesions			Hydroxychloroquine		
Study	Gender	Age	Diagnosis	Antinuclear Antibodies	Patient Outcomes	Therapies			
---------------	--------	-----	-----------	------------------------	------------------	---			
Michel 2008 [2]	F/NA	32	Thrombocytopenia	ANA+ Anti-DNA+	SC	Hydroxychloroquine Remission			
Michel 2008 [2]	F/NA	35	Arthritis, Cutaneous vasculitis, Raynaud’s phenomenon, GN class II	ANA+ Anti-DNA+ Anti-Sm+ Anti-SSA+ Anti-RNP	SS	Prednisone Hydroxychloroquine Methotrexate			
Michel 2008 [2]	F/NA	27	Arthritis	ANA+ Anti-DNA+	SS	Prednisone Hydroxychloroquine Remission			
Michel 2008 [2]	F/NA	25	Arthritis, GN class III, Jaccoud arthropathy, Major depression	ANA+ Anti-DNA+ Anti-RNP+ ACL+	SS	Prednisone Hydroxychloroquine Remission			
Michel 2008 [2]	M/NA	26	Arthritis	ANA+ Anti-DNA+ Anti-RNP+ ACL+	SC	Hydroxychloroquine Clinical improvement			
Michel 2008 [2]	F/NA	28	Arthritis, GN class IV, Bullous lupus	ANA+ Anti-DNA+ Anti-Sm+ Anti-RNP+	SS	Prednisone Hydroxychloroquine Dapsone			
Michel 2008 [2]	F/NA	32	Arthritis, Kikuchi’s disease, Autoimmune hepatitis	ANA+ RF+	SS	Prednisone Remission			
Michel 2008 [2]	F/NA	40	Arthritis, Discoid lupus, Venous thrombosis	ANA+ Anti-Ro+ ACL	SS	Hydroxychloroquine Clinical improvement			
Name	Gender	Race	Age	Symptoms	Antibodies	Treatment	Outcome		
----------------------	--------	------	-----	-----------------------------------	-------------	-----------	-----------------		
Michel 2008 [2]	F/NA	NA	38	Arthritis	ANA+, SS	Prednisone	Clinical improvement		
						Hydroxychloroquine			
Michel 2008 [2]	F/NA	NA	17	Arthritis, Thrombocytopenia	ANA+, SS	Prednisone	Clinical improvement		
						Hydroxychloroquine			
Michel 2008 [2]	F/NA	NA	35	Pedal and peri-orbital edema, Ascites and renal failure	ANA+, SC	Prednisone	Dialysis		
						Anti-DNA+	Cyclophosphamide		
Oqunbiyi 2007 [6]	M/African	NA	8	Malar rash	ANA+, SS	Prednisone	Clinical improvement		
						Hydroxychloroquine			
Khalide 2005 [7]	F/NA	NA	16	Heart failure Renal failure Pericarditis Pulmonary emboli Polyneuropathy Generalized seizures	Anti-DNA+, Anti-Sm+, Lupus anticoagulant+	Prednisone	Clinical improvement		
						Hydroxychloroquine, azathioprine			
Khalide 2005 [7]	M/NA	NA	16	Discoid rash Polyarthritis Partial seizures	ANA+, SS	Prednisone	Clinical improvement		
						Hydroxychloroquine			
Khalide 2005 [7]	M/NA	NA	23	Skin rash Pleuritis Arthritis	ANA+, SS	Prednisone	Hydroxychloroquine	Lost to follow up	
						ACL+			
Name	Gender, Race	Age	Presenting Symptoms	Laboratory Findings	Treatment	Outcome			
-----------------------	------------------	-----	--------------------------------------	---------------------	--------------------	--------------------------			
Khalide 2005 [7]	F/NA	28	Raynaud’s phenomenon, Arthritis	ANA+	Prednisone	Clinical improvement			
Saxena 2003 [8]	M/African-American	9	Arthritis	ANA+	Prednisone	Clinical improvement			
Saxena 2003 [8]	F/African-American	7	Fever, Acute chest syndrome, Pericarditis, Seizures	ANA+	Prednisone	Clinical improvement			
Saxena 2003 [8]	F/African-American	11	Fever, Arthritis, Skin rash, Seizures, Cardiomegaly	ANA+	Prednisone	Clinical improvement			
Saxena 2003 [8]	F/African-American	14	Seizures	ANA+	Prednisone	Septic shock due to pneumococcal bacteremia			
Saxena 2003 [8]	M/African-American	17	Malar rash, Splenomegaly, Arthritis, Pericarditis	ANA+	Prednisone	Hemodialysis dependent			
Name	Ethnicity	Age	Symptoms	Treatments	Outcome				
---------------	----------------	-----	--	-----------------------------	------------------------------				
Shetty 1998	F/Afro-Caribbean	9 months	Cardiomegaly, GN class V, Arthritis, Pulmonary infiltrate, Pericarditis, Myocarditis	Prednisone	Clinical improvement				
Pham 1997	F/Afro-Caribbean	NA 18	Arthritis, Nephrotic syndrome, ANA+	Prednisone	Clinical improvement				
Katsanis 1987	F/Afro-Caribbean	NA 16	Arthritis, ANA+, Malar rash, Photosensitivity, Pleuritis, Pericarditis, Renal class II	Hydroxychloroquine					
Katsanis 1987	F/Afro-Caribbean	NA 15	Arthritis, ANA+, Pleuritis, Anti-DNA+	Prednisone	Clinical improvement				
Warrier 1984	F/Afro-Caribbean	NA 11	Malar rash, Alopecia, Arthralgia, Seizures, Hepatosplenomegaly	Prednisone					
Luban 1980	F/African-American	NA 8	Discoid lesions, Pericarditis, Myocarditis	Prednisone					
Luban 1980	F/African-American	NA 14	Fever, Renal disease	Prednisone					
Author	Gender	Race	Age	Duration	Diagnosis	ANA	SS	Treatment	Outcome
-----------------	--------	-------------------	-----	----------	------------------------------------	-----	------	--------------------	------------------
Karthikeyan 1978 [14]	F	African	4	15	Arthritis	ANA+		Prednisone	Clinical improvement
					Raynaud’s phenomenon				
					Photosensitivity				
Wilson 1976 [15]	F	African-American	30	40	Arthritis	ANA+	SS	Prednisone	Deceased
					Positive LE cells				
					Pleuritis				
					Libman-Sacks endocarditis				
Wilson 1976 [15]	F	African-American	Four months	16	Arthritis	ANA+		Prednisone	Clinical improvement
					Hepatitis				
					Pneumonitis				
Wilson 1976 [16]	F	African-American	NA	27	Arthritis	ANA+	SS	No treatment for SLE	Deceased
					Histopathologic evidence for SLE on post-mortem examination				

ACL=anti-cardiolipin antibodies; ANA=anti-nuclear antibodies; anti-ENA=anti-extractable nuclear antigen antibodies; GN=glomerulonephritis; NA=not available; RF=rheumatoid factor; anti-RNP=anti-ribonucleoprotein antibodies; SCD=sickle-cell disease; SLE=systemic lupus erythematosus; anti-SSA=anti-Sjögren syndrome antigen A antibodies.
Consent
Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
MM was the major contributor to the writing of the manuscript. ZTM and performed the literature research in PubMed. MAad and MAo gave final approval for the version to be published. All authors read and approved the final manuscript.

Received: 3 August 2012 Accepted: 28 September 2012
Published: 26 October 2012

References
1. Steinberg MH: Management of sickle cell disease. New Engl J Med 1999, 340:1021–1029.
2. Michel M, Habibi A, Godeau B, Bachir D, Lahari A, Galacteros F, Fifi-Mah A, Arti S: Characteristic and outcome of connective tissue diseases in patients with sickle cell disease: report of 30 cases. Semin Arthritis Rheum 2008, 38:228–240.
3. Cherrier M, Isenberg D: The overlap of systemic lupus erythematosus and sickle cell disease: report of two cases and a review of the literature. Lupus 2010, 19:875–883.
4. Appenzeller S, Fattori A, Saad ST, Costallat TL: Systemic lupus erythematosus in a patient with sickle cell disease. Clin Rheumatol 2008, 27:359–364.
5. Kanodia VK, Vanikar AV, Goplani KR, Gupta SB, Trivedi HL: Sickle cell nephropathy with diffuse proliferative lupus nephritis: a case report. Diagn Pathol 2008, 3:89.
6. Ogunbiyi AO, Geoge AO, Brown O, Oksufi BO: Diagnostic and treatment difficulties in systemic lupus erythematosus coexisting with sickle cell disease. West Afr J Med 2007, 26:152–155.
7. Khalidi NA, Ajmani H, Varga J: Coexisting systemic lupus erythematosus and sickle cell disease. A diagnostic and therapeutic challenge. J Clin Rheumatol 2005, 11:86–92.
8. Saxena VR, Mina R, Moallem HJ, Rao SP, Miller ST: Systemic lupus erythematosus in children with sickle cell disease. J Pediatr Hematol Oncol 2003, 25:668–671.
9. Shetty AK, Baliga MR, Gedalia A, Warrier RP: Systemic lupus erythematosus and sickle cell disease. Indian J Pediatr 1998, 65:618–621.
10. Pham TP, Lew SQ, Balow JE: Sickle cell nephropathy during the postpartum period in a patient with SLE. Am J Kidney Dis 1997, 30:761–803.
11. Katsanis E, Hsu E, Luke KH, McKee JA: Systemic lupus erythematosus and sickle hemoglobinopathies: a report of two cases and review of the literature. Am J Hematol 1987, 25:211–214.
12. Warrier RP, Sahney S, Walker H: Hemoglobin sickle cell disease and systemic lupus erythematosus. J Nat Med Assoc 1984, 76:1030–1031.
13. Luban NL, Boeckx RL, Barr O: Sickle cell anemia and SLE. J Pediatr 1980, 96:1120.
14. Karthikeyan G, Wallace SL, Blum I: SLE and sickle cell disease. Arthritis Rheum 1980, 23:862–863.
15. Wilson WA, Nicholson GD, Hughes GR, Armin S, Alleyne G, Serjeant GR: Hemoglobin sickle cell disease and systemic lupus erythematosus. Br Med J 1976, 1:183.
16. Wilson FM, Clifford GO, Wolf PL: Lupus erythematosus associated with sickle cell anemia. Arthritis Rheum 1964, 7:443–449.
17. Baethge BA, Bordelon TR, Mills GM, Bowen LM, Wolf RE, Bairnsfather L: Antinuclear antibodies in sickle cell disease. Acta Haematol 1990, 84:186–189.
18. Toly-Ndour C, Rouquette AM, Obadia S, M’bappe P, Lionnet F, Hagege I, Boussa Khettab F, Tshilolo L, Girot R: High titers of autoantibodies in patients with sickle cell disease. J Rheumatol 2011, 38:302–309.

Cite this article as: Maamar et al. Systemic lupus erythematosus associated with sickle-cell disease: a case report and literature review. Journal of Medical Case Reports 2012 6:366.

doi:10.1186/1752-1947-6-366

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit