Novel Vortex Distribution in the β-Pyrochlore Superconductor KOs$_2$O$_6$

T. Shibauchi1,2, M. Konczykowski2, C. J. van der Beek2, R. Okazaki1, Y. Matsuda1,3, J. Yamaura3, Y. Nagao3, and Z. Hiroi3

1Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
2Laboratoire des Solides Irradiés, Ecole Polytechnique, 91128 Palaiseau cedex, France
3Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

E-mail: shibauchi@sphys.kyoto-u.ac.jp

Abstract. By utilizing the micro-Hall probe array, we study the superconducting and the vortex states in a single crystal of KOs$_2$O$_6$ near the first-order transition at $T_p \sim 8$ K, which is associated with a change in the rattling motion of K ions. We show that below the first-order transition, the lower critical field exhibits a distinct decrease, suggesting that the electron-phonon coupling is weakened below the transition. At high magnetic fields, the local magnetization shows an unexpectedly large jump at T_p with a sign change near the sample edges. Our results demonstrate a novel redistribution of vortices whose energy is reduced abruptly below the first-order transition at T_p.

1. Introduction

In the recently discovered β-pyrochlore superconductor KOs$_2$O$_6$ [1, 2], having the highest superconducting transition temperature $T_c = 9.6$ K among pyrochlores, an intriguing first-order transition in the superconducting state has been observed below T_c [2, 3, 4] and its relation to the anomalous “rattling” motion of K ions [5, 6] has attracted much interest. How this transition affects the superconductivity and the vortex state in the presence of magnetic fields is a fundamental physical problem yet to be clarified.

From the micro-Hall probe array magnetometry, we observed a number of remarkable anomalies of vortex state associated with the first-order transition [7]. Below the first-order transition at $T_p \sim 8$ K, the lower critical field shows a distinct decrease, suggesting that the electron-phonon coupling is weakened below the transition. At high magnetic fields, the local magnetization shows an unexpectedly large jump at T_p with a sign change near the sample edges. Our results demonstrate a novel redistribution of vortices whose energy is reduced abruptly below the first-order transition at T_p.

2. Experimental

KOs$_2$O$_6$ single crystals were grown by the technique described elsewhere [2]. We measure the local induction B_{local} by using a sensitive Hall-sensor array tailored in a GaAs/AlGaAs two dimensional electron gas system. Each sensor has an active area of $6 \times 6 \ \mu$m2, and the center-to-center distance of neighboring sensors is $20 \ \mu$m. A KOs$_2$O$_6$ crystal with dimensions $110 \times 270 \times 90 \ \mu$m3 is placed on top of the array; the magnetic field H is applied along the
90 μm direction by using a low-inductance 1.8-T superconducting magnet with a negligibly small remanent field.

3. Results and Discussion
In Fig. 1(a) we show the field dependence of “local magnetization” defined by $B_{\text{local}} - H$. At the first penetration field H_{fp}, a sharp dip (or peak) is observed. This indicates that the small hysteresis is governed by geometrical (surface) barriers [8, 9] and the contribution of bulk pinning in this system is quite small. In such a case, the lower critical field H_{c1} can be determined from the expression for the first-penetration field of a superconducting bar, accounting for the demagnetization effect: $H_{fp}/H_{c1} = \tanh(\sqrt{b/a})$, where b/a is aspect ratio of the bar, with the perpendicular field along the thickness $2b$ [9]. From this, we evaluate $H_{fp}/H_{c1} = 0.50$ and thus we obtain $H_{c1}(T)$ as depicted in Fig. 1(b). The obtained slope shows thermodynamic consistency with other reports [4, 10]. It is clear that $H_{c1}(T)$ below $T_p \sim 8$ K is lower than that extrapolated from higher temperature data. Since the low temperature data extrapolates to a temperature $T_0 = 9.2$ K, lower than T_c, the relative decrease in H_{c1} immediately indicates that the effective transition temperature is reduced below T_p. This is reinforced by the consistent results in recent measurements of the penetration depth $\lambda(T)$ [11], in which a similar shift of the superfluid density $\lambda^{-2}(T)$ to a lower value is observed below T_p. These results indicate that below T_p, the effective T_c, the superconducting gap, and the condensation energy become smaller. Since there is growing evidence for fully gapped superconductivity [11, 12, 13] which favors phonon-mediated pairing, the obtained result suggests that the electron-phonon coupling strength is weakened below T_p [14].

Next, let us discuss the higher field measurements. Recent global magnetization measurements revealed a jump at T_p in the total induction $\Delta B \sim 0.5$ G at 2 T [4]. In sharp contrast, the local induction $B_{\text{local}}(T)$ exhibits a much larger jump at T_p. In Fig. 2(a) we plot the change of the local induction $\delta B_{\text{local}}(T)$ relative to the normal state near the center of the sample. With decreasing temperature, δB_{local} becomes negative below $T_c(H)$ and decreases down to T_p. At T_p, there is a jump with field-dependent magnitude up to ~ 8 G, which is more than an order of magnitude larger than the global jump. Remarkably, the behavior of the ΔB_{local} jump at T_p strongly depends on the position at which it is measured on the samples.
Near the center, $\delta B_{\text{local}}(T)$ increases abruptly below T_p [Fig. 2(a)], but it jumps to an opposite direction near the edge [Fig. 2(b)].

To clarify this anomalous jump at the transition, we plot the position dependence of δB_{local} in Fig. 3. Above T_p [Fig. 3(a)], the induction profile shows the standard behavior. Just below T_p, the field distribution has drastically changed, especially at high fields [Fig. 3(b)]: the vortex density profile now has a characteristic dome-like shape with troughs away from the center.

Finally, we discuss the possible mechanism of this novel vortex redistribution considering vortex energy change below T_p. The free energy of a single vortex per unit length $\varepsilon = \ldots$

Figure 2. Temperature dependence of the local induction change with respect to the value in the normal state, for different applied fields near the crystal edge (a) and near the center (b).

Figure 3. Local induction change as a function of position just above (a) and below T_p (b).
\[
\left(\frac{\Phi_0}{4\pi} \right)^2 \ln \kappa = \frac{\Phi_0}{4\pi} H_{c1}
\]
becomes smaller in the low-temperature phase, because of the relative reduction of \(H_{c1}\) as observed in Fig. 1. At the first-order transition, the low-\(T\) phase and high-\(T\) phase coexist, and the region of the low-\(T\) phase is invested by “cheaper” vortices with smaller \(\varepsilon\). Then vortices near the boundaries between the two phases should be attracted to the low-\(T\) phase region. This mechanism promotes inhomogeneous vortex density: denser in the low-\(T\) phase and sparse in the high-\(T\) phase regions. In this way, we may have the dome-shaped vortex distribution resembling the situation discussed in the presence of the geometrical surface barriers [8].

4. Summary
In summary, a Hall sensor array was used to detect magnetic induction locally in the superconducting and vortex states of a single crystal of the \(\beta\)-pyrochlore superconductor \(\text{KOs}_2\text{O}_6\) presenting a first-order transition within the superconducting state. Below the first-order transition temperature \(T_p\), the lower critical field is shifted down, and the local induction reveals large jumps which depend on the position inside the sample. We found an abrupt vortex redistribution into a flux dome, which we believe decorates the nucleating low-temperature phase. Our results indicate that the change in the rattling motion reduces the superconducting critical fields as well as the vortex energy.

Acknowledgments
We thank fruitful discussion with T. Dahm, R. Ikeda, A. Buzdin, and S. Fujimoto. This work was supported by Japan-France Integrated Action Program SAKURA from JSPS.

References
[1] Yonezawa S, Muraoka Y, Matsushita Y and Hiroi Z 2004 J. Phys.: Condens. Matter 16 L9
[2] Hiroi Z, Yonezawa S, Yamaura J, Muramatsu T and Muraoka Y 2005 J. Phys. Soc. Jpn. 74 1682; Hiroi Z, Yonezawa S, Yamaura J, Muramatsu T, Matsushita Y and Muraoka Y 2005 J. Phys. Soc. Jpn. 74 3400
[3] Brihwiler M, Kazakov S M, Karpinski J and Batlogg B 2006 Phys. Rev. B 73 094518
[4] Hiroi Z, Yonezawa S, Nagao Y and Yamaura J 2007 Phys. Rev. B 76 014523; Hiroi Z, Yonezawa S and Yamaura J 2007 J. Phys.: Condens. Matter 19 145283
[5] Kuneš J, Jeong T and Pickett W E 2004 Phys. Rev. B 70 174510; Kuneš J and Pickett W E 2006 Phys. Rev. B 74 094302
[6] Yamaura J, Yonezawa S, Muraoka Y and Hiroi Z 2006 J. Solid State Chem. 179 336
[7] Shibauchi T, Konczykowski M, van der Beek C J, Okazaki R, Matsuda Y, Yamaura J, Nagao Y and Hiroi Z 2007 Phys. Rev. Lett. 99 257001
[8] Zeldov E, Larkin A I, Geshkenbein V B, Konczykowski M, Majer D, Khaykovich B, Vinokur V M and Shtrikman H 1994 Phys. Rev. Lett. 73 1428
[9] Brandt E H 1999 Phys. Rev. B 60 11939
[10] Shibauchi T, Krusin-Elbaum L, Kasahara Y, Shimono Y, Matsuda Y, McDonald R D, Mielke C H, Yonezawa S, Hiroi Z, Arai M, Kita T, Blatter G and Sigrist M 2006 Phys. Rev. B 74 220506(R); Ohmichi E, Osada T, Yonezawa S, Muraoka Y and Hiroi Z 2006 J. Phys. Soc. Jpn. 75 045002
[11] Shimono Y, Shibauchi T, Kasahara Y, Kato T, Hashimoto K, Matsuda Y, Yamaura J, Nagao Y and Hiroi Z 2007 Phys. Rev. Lett. 99 257004
[12] Kasahara Y, Shimono Y, Shibauchi T, Matsuda Y, Yonezawa S, Muraoka Y and Hiroi Z 2006 Phys. Rev. Lett. 98 247004
[13] Bonalde I, Ribeiro R, Brämer-Escamilla W, Yamaura J, Nagao Y and Hiroi Z 2007 Phys. Rev. Lett. 98 227003
[14] Dahm T and Ueda K, Phys. Rev. Lett. 99 187003