LIFE CYCLE OF THE PARASITE PROFILICOLLIS CHASMAGNATHI (ACANTHOCEPHALA) ON THE PATAGONIAN COAST OF ARGENTINA BASED ON MORPHOLOGICAL AND MOLECULAR DATA

Eliana Lorenti1, Sara M. Rodríguez2, Florencia Cremonte3, Guillermo D’Elía2, and Julia I. Diaz1

1 Centro de Estudios Parasitológicos y de Vectores (CCT La Plata–CONICET–UNLP), 120 e/60 y 64, B1900FWA La Plata, Buenos Aires Province, Argentina.
2 Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, campus Isla Teja s/n, Valdivia, 5090000, Chile.
3 Laboratorio de Parasitología (LAPA), Instituto de Investigaciones de Organismos Marinos (IBIOMAR) (CCT CONICET–CENPAT), Boulevard Brown 2915, U9120ACD Puerto Madryn, Chubut Province, Argentina.
4 Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, campus Isla Teja s/n, Valdivia, 5090000, Chile.

Correspondence should be sent to Julia I. Diaz at: jidiaz@cepave.edu.ar

ABSTRACT: This study verifies the identity of adult specimens of the parasite Profilicollis chasmagnathi (Acanthocephala, Polymorphidae) recovered from kelp gulls Larus dominicanus (Aves, Laridae), and cystacanths found in crabs Cyrtograpsus altimanus (Crustacea, Decapoda) from the southwestern Atlantic coast. The life cycle of this parasite is elucidated in the intertidal zone of Patagonia, Argentina, based on morphological and molecular data. Preferences by size and sex of the intermediate host and seasonal variation of this parasite are provided, contributing to the knowledge of this host-parasite association.

Adult members of the family Polymorphidae are endoparasites of marine mammals, waterfowl, and fish-eating birds. They are diagnosed by having a spinose trunk, bulbous proboscis, double-walled proboscis receptacle, and usually 4 to 8 tubular cement glands (Nickol et al., 1999; García-Varela et al., 2011, 2013). The genus Profilicollis Meyer, 1931, was considered as a sub-genus of Polymorphus Lühe 1911 until Nickol et al. (1999), based on ecological characters, ranked Profilicollis as a genus level. According to Nickol et al. (1999), all species of Profilicollis use decapods as an intermediate host, whereas Polymorphus use amphipods. Recent phylogenetic analysis based on molecular evidence suggests that Polymorphus is paraphyletic and Profilicollis is monophyletic (García-Varela and Pérez-Ponce de León, 2008). Amin (2013) recognized 9 species of Profilicollis: the type species of the genus Profilicollis botulaus (Van Cleave, 1916), Profilicollis altmani (Perry, 1942) (= Profilicollis bullocki, Profilicollis kenti, and Profilicollis texensis), Profilicollis antarcticus Zdzitowiecki, 1985, Profilicollis arcticus (Van Cleave, 1920), Profilicollis chasmagnathi (Holcman-Spector, Mahé-Garzón and Dei-Cas, 1977), Profilicollis formosus (Schmidt and Kuntz, 1967), Profilicollis major (Lundström, 1942), Profilicollis noveazelandensis Brockerhoff and Smales, 2002, and Profilicollis sphaerocephalus (Bremser in Rudophl, 1819) (Amin, 2013; Goulding and Cohen, 2014; Rodríguez et al., 2016). Recently the validity of P. antarcticus was questioned by Rodríguez et al. (2017), that suggested it might be a junior synonym of P. chasmagnathi.

All members of the genus Profilicollis infect mainly waterfowl as adults and use decapods as intermediate hosts (Zdzitowiecki, 1985; Nickol et al., 1999; Rodríguez et al., 2016). Along the southwestern Atlantic coast, only adults of P. chasmagnathi have been reported, from the gut of several bird species in the estuaries of Buenos Aires Province (Martorelli, 1989; Vizcaíno, 1989; La Sala et al., 2013) and from that of the kelp gull Larus dominicanus (Lichtenstein) (Aves, Laridae) on the coast of Chubut Province (Diaz et al., 2011). In contrast, cystacanths of 2 species of Profilicollis have been reported on the southwestern Atlantic coast: P. chasmagnathi parasitizes different crab species from estuarine and rocky intertidal habitats in Uruguay and Argentina (Holcman-Spector et al., 1977a; Martorelli, 1989; La Sala et al., 2012; Rodríguez et al., 2017), while P. altmani parasitizes the mole crab Emerita brasiliensis (Schmitt) on sandy beaches along the Uruguayan coast (Rodríguez and D’Elía, 2016; Rodríguez et al., 2016).

Closely related species of Profilicollis are difficult to distinguish based on their phenotype. Moreover, there is limited knowledge about their degree of geographic variation (Near et al., 1998; Balboa et al., 2009), and the identity of some populations of Profilicollis, mostly of their immature stages, remains unclear (Rodríguez et al., 2016). One goal of this study was to test the relationship between the adult specimens of Profilicollis recovered from the kelp gull L. dominicanus and that of cystacanths found in the crab Cyrtograpsus altimanus Rathbun (Crustacea, Decapoda) using morphological and molecular evidence. Additionally, seasonal variation of this parasite and its preferences for size and sex of the intermediate host were studied. These investigations contribute to the knowledge of life cycles and host-parasite interactions in the intertidal zone of Patagonia, Argentina.

MATERIALS AND METHODS

Sampling

Mature acanthocephalan specimens were obtained from a total of 89 kelp gulls (L. dominicanus) out of which 29 were collected along the coast of Peninsula Valdés and adjacent areas (42°05’ to 42°53’S, 64°21’ to 65°04’W), Chubut Province, Argentina (see Diaz et al., 2011). The remaining 60 gulls were obtained from the same area between 2012 and 2015 while conducting a project aimed to mitigate the interaction between kelp gulls and southern right whales developed by the Ministerio de Ambiente y Control del Desarrollo Sustentable, Chubut and the CCT CONICET–Centro Nacional Patagónico (Decree 1106/12). Some hosts were dissected and the viscera fixed in 10% formalin. Other hosts were immediately dissected or frozen at −20°C until further analysis. In the laboratory, viscera were inspected under a stereomicroscope and acanthocephalans...
collected from the gut. Some parasite specimens were fixed in 10% formalin and preserved in 70% ethanol for morphological analyses. Specimens recovered from the fresh and frozen hosts were fixed and stored in 96% ethanol for subsequent DNA extraction.

Specimens of larval acanthocephalan were obtained following dissection of 94 specimens of C. altimanus. Crabs were collected by hand in the intertidal zone of Punta Cuevas, Puerto Madryn (42°46′S, 65°29′W), Chubut Province, between 2007 and 2016, during all seasons. Crabs were transported alive to the laboratory, measured (carapace width in mm), and separated into three size intervals (S): S1, 4.1–10 mm; S2, 10.1–16 mm; and S3, 16.1–22 mm). Size intervals were determined by dividing the total size range (22 mm maximum size, 4.1 mm minimum size) into 3 equal size classes, and the crab frequency in each size interval was computed. Crabs were dissected, sexed, and larvae removed from the hemocoel under a stereomicroscope. Most larvae were placed in small Petri dishes containing physiological solution and incubated at 39 C. They were observed at different time intervals to study the evagination of the proboscis. They were then fixed in 10% formalin and preserved in 70% for morphological analysis. Some specimens were fixed and stored in 96% ethanol for subsequent DNA extraction.

Morphological identification

Specimens were studied in temporary mounts of lactophenol or eugenol using an Olympus BX51® microscope (OM) (Olympus, Tokyo, Japan). Several specimens were dehydrated in a graded ethanol series, dried using the critical point method (Hayat, 1973), coated with gold, examined by scanning electron microscopy (SEM) (Jeol 6360LV®, JEOL, Tokyo, Japan), and photographed. Measurements, given in micrometers unless otherwise indicated, are provided as the mean followed by the range in parentheses. Eggs were measured through the body wall. Acanthocephalans were identified following specific bibliographic references (Holcman-Spector et al., 1977a, 1977b; Zdzitowiecki, 1985; Vizcaíno, 1989; Nickol et al., 1999; Amin, 2013). Scientific names of hosts are according to WoRMS (2017). Voucher sequences of larval acanthocephalan were obtained following dissection of 94 specimens of C. altimanus. Crabs were collected by hand in the intertidal zone of Punta Cuevas, Puerto Madryn (42°46′S, 65°29′W), Chubut Province, between 2007 and 2016, during all seasons. Crabs were transported alive to the laboratory, measured (carapace width in mm), and separated into three size intervals (S): S1, 4.1–10 mm; S2, 10.1–16 mm; and S3, 16.1–22 mm). Size intervals were determined by dividing the total size range (22 mm maximum size, 4.1 mm minimum size) into 3 equal size classes, and the crab frequency in each size interval was computed. Crabs were dissected, sexed, and larvae removed from the hemocoel under a stereomicroscope. Most larvae were placed in small Petri dishes containing physiological solution and incubated at 39 C. They were observed at different time intervals to study the evagination of the proboscis. They were then fixed in 10% formalin and preserved in 70% for morphological analysis. Some specimens were fixed and stored in 96% ethanol for subsequent DNA extraction.

Molecular data and phylogenetic analysis

Genetic comparisons and phylogenetic analyses were based on a fragment of 578 base pairs of the mitochondrial gene cytochrome oxidase I (hereafter COI). The Chubut sample comprises sequences of 2 individuals of Profilicollis from kelp gulls (L. dominicanus) and 3 individuals of Profilicollis from the crab C. altimanus; the latter 3 sequences were generated by Rodriguez et al. (2017) and downloaded from GenBank. The 2 new sequences were generated from DNA extracted using a commercial kit (Wizard® Genomic DNA Purification Kit, Promega, Madison, Wisconsin) and amplified using the primers detailed by Folmer et al. (1994), following the protocol of Rodriguez and D’Elia (2016). Amplicons were sequenced using an external sequencing service (Macrogen Inc., Seoul, South Korea); DNA sequences were edited using Codon-Code (Codon Code Aligner, Dedham, Massachusetts) and deposited in GenBank (MG859265 and MG859266).

The 5 sequences of Profilicollis from Chubut Province (see below) were assembled in a matrix with other sequences downloaded from GenBank. It included 16 sequences of P. chasmagnathi retrieved from definitive and intermediate hosts from the southwestern Atlantic (Uruguay) and Pacific (Chile) coasts generated by Rodriguez et al. (2016, 2017). A total of 21 sequences of P. chasmagnathi were analyzed. The matrix also included sequences of P. altmani, Polymorphus brevis (Van Cleave, 1916), Polymorphus minutus Goeze, 1782, and P. botulus, which were used to form the outgroup.

Sequences were aligned in Clustal using MEGA 7 software (Tamura et al., 2013) using default parameter values. Observed genetic p-distances (p) between haplotype and sample pairs were calculated in MEGA 7. Phylogenetic relationships were inferred via Maximum Likelihood analysis conducted using IQ-TREE (Nguyen et al., 2015) and the online implementation W-IQ-TREE (http://iqtree.cibiv.univie.ac.at; Trifinopoulos et al., 2016). The IQ-TREE software was also used to select the model of nucleotide substitution (TPM3u+G4). Support for clades found in the most likely tree was calculated via the SH-aLRT test (Guindon et al., 2010) and with 1,000 pseudoreplicates of ultrafast bootstrap (BL).

Ecological parameters

Prevalence (P), mean intensity (MI), and mean abundance (MA) were calculated following Bush et al. (1997). The seasonal distribution of adult acanthocephalans was based on counts of the kelp gulls made by Diaz et al. (2011). For data analysis, Spearman’s rank-order coefficient (r) was used to establish the relationship between crab size and season vs. P and MI. An unequal variance t-test was used to establish statistical differences in size between male and female crabs. Probability (P) values <0.05 were considered significant. The chi-square, Fisher’s test, and unconditional tests were applied to test differences between P values; MI differences were estimated by bootstrap tests, and P values <0.05 were considered significant, using Quantitative Parasitology 3.0 Budapest software (Rózsa et al., 2000).

RESULTS

General morphology

Adult (based on 10 males and 5 females) (Fig. 1A–F): Body divided into 3 sections: proboscis, neck, and trunk. The proboscis has a spheroid shape, armed with 18–22 longitudinal rows, each one with 7–8 hooks. Apical hooks slightly smaller than basal hooks. Neck long and slender. Trunk long covered with spines anteriorly. Genital spines absent.

Male: Proboscis 1,150 (900–1,350) in diameter. Apical hooks 43 (30–50), median hooks 47 (30–55), basal hooks 50 (40–65). Proboscis receptacle 5,104 (3,700–7,050) long. Neck 2,577 (1,800–3,500) long. 244 (200–300) wide. Trunk 5,683 (2,200–10,240) long, 1,522 (950–2,100) wide. Testes tandem, anterior testis 811 (450–1,100) long, 644 (500–950) wide; posterior testis 789 (500–1,150) long, 582 (400–850) wide. Four tubular cement glands, 4,106 (2,500–5,800) long.

Female: Proboscis 1,133 (1,000–1,300) wide. Apical hooks 51 (45–60), median hooks 46 (30–60), basal hooks 54 (45–70) long.
FIGURE 1. Schematic illustration of the life cycle of Profilicollis chasmagnathi on the Patagonian coast of Argentina (upper) and scanning electron micrographs of various stages (lower). DH: definitive host, IH: intermediate host. (A–F) Adult specimens from Larus dominicanus. (A–D) Proboscis showing detail of hook distribution. (E, F) Detail of anterior trunk spines. (G–J) Cystacanth from Cyrtograpsus altimanus. (G) Proboscis, apical view showing hook distribution. (H) Proboscis, lateral view showing the number of hooks in each row. (I) Whole cystacanth. (J) Detail of anterior trunk spines. Scale bars: A, E, J = 200 μm; B, C, D, F, G, H = 100 μm; I = 500 μm.
The genealogical analysis indicated that sequences of the adults from the kelp gull *L. dominicanus* and cystacanths from the crab *C. altimanus* collected on the southwestern Atlantic coast of Argentina are very similar; p-distance values for sequence samples pairs ranged between 0.005 and 0.013 (average = 0.009). These sequences are part of a highly supported clade (SH-aLRT = 100; BL = 100) formed by sequences of *P. chasmagnathi* (Fig. 2). This clade showed low genetic variation (average = 0.6%, range = 0–0.5%). In addition, the genetic variation of *P. chasmagnathi* is not geographically structured. For example, 2 cystacanth larvae obtained from *Cyrtograpsus angulatus* (Varunidae) from Uruguay share the same sequence with cystacanth larvae obtained from *Neohelice granulata* and *Hemigrapsus crenulatus* (Varunidae) from Uruguay and Chile, respectively. In contrast, the most divergent sequences of this clade were found in adults obtained from *L. dominicanus* from Argentina and cystacanth larva obtained from *C. angulatus* from Uruguay.

Ecological analysis

Of the 89 kelp gulls examined, 16 were parasitized (prevalence [P] = 19%); a total of 62 adults were found in the gut (MI = 3.87; MA = 0.73). Male crabs were larger than females (P = 0.01). Of the 94 crabs examined, 25 were parasitized (P = 26.6%); a total of 46 cystacanth larvae were found in the hemocoel (MI = 1.84; MA = 1.49). The number of larvae per crab ranged from 1 to 7. The prevalence (P) in male crabs was higher than in females (29% vs. 23%, respectively). In contrast, MI was higher in females than in males (3.1 vs. 1.5, respectively). However, these differences were not statistically significant. The maximum P and MI were found in S2 (37.9% and 2.5%, respectively) (Fig. 3A), and were significantly higher than in S1 (P = 0.02 and P = 0.04, respectively). Regarding the seasonal distribution of parasites, it was observed that in the intermediate hosts, P and MI were higher in autumn and winter respectively (Fig. 3B), whereas in their definitive host they were higher in spring and summer, respectively (Fig. 3C), although these differences were not statistically significant.

DISCUSSION

Measurements of specimens collected in the present study fall within the range provided for *P. chasmagnathi* by previous authors (Martorelli, 1989; Vizcaíno, 1989). The molecular characterization indicates that *P. chasmagnathi* in Peninsula Valdés uses the crab *C. altimanus* as the intermediate host and the kelp gull as definitive host, demonstrating a trophic relationship between both host species and link between stages in the life cycle.

In the host-parasite system studied here, females of *P. chasmagnathi* infect *L. dominicanus* and produce eggs (with acanthor inside) that are released into the environment with the feces of the bird host. Shelled acanthors are ingested by the crab *C. altimanus*, in which the acanthor develops into an acanthella in the hemocoel, and then into a cystacanth that infects the gulls when the latter preys upon an infected *C. altimanus* (Fig. 1).

The correlation observed between prevalence (P) and crab size could be explained by the fact that larger hosts are older and therefore exhibit more prolonged exposure to parasites (Poulin, 1997). Also, the difference observed in size between males and females could explain the higher P (although not statistically significant) observed in males than in females. In addition, larger crabs consume more food and are thus may be more frequently exposed to the shelled acanthors. It was also observed that smaller crabs occupy the spaces made available in the mussel beds, forcing large crabs to migrate to adjacent cobblestone (tidal pools) habitat (Vázquez et al., 2012) where the crabs are in close contact with the eggs released by birds.

Considering that the highest P and MI in crabs occur in autumn and winter, and based on the time that larvae require to reach maturity (see Holcman-Spector et al., 1977b), it was also expected that the highest prevalence and intensities in birds would occur after autumn. Data from this study substantiate this trend, but results were not statistically significant.

Capasso and Díaz (2016) found immature specimens identified as *Profilicollis* sp. parasitizing *Calidris* spp. (Aves: Scolopacidae) near Peninsula Valdés. Other studies have mentioned immature *P. altmani* parasitizing *Calidris* spp. in different sites of southern
Brazil (Buehler et al., 2010). However, the absence of adults in these shorebirds suggests that *Calidris* spp. would not be involved in the parasite life cycle of *Profilicollis* spp.

There are differences in the patterns of host specificity of species of *Profilicollis* in Chile and Argentina. In this context, adults of *P. altmani* in Chile have been reported to infect different gull species, whereas adults of *P. chasmagnathi* infect only *L. dominicanus* (Rodríguez et al., 2017). In contrast, on the Argentinean coast, *P. chasmagnathi* was reported from several bird species (Martorelli, 1989; Vizcaíno, 1989; La Sala et al., 2013), and so far this is the only species of *Profilicollis* found in *L. dominicanus*.

The differential host distribution of *P. altmani* and *P. chasmagnathi* could be related to the type of habitat frequented by their intermediate and definitive hosts. Rodríguez et al. (2017) reported that intermediate hosts of *P. altmani* inhabit the sandy intertidal zone, whereas those from *P. chasmagnathi* are associated with estuaries and the rocky intertidal. Studies of kelp gulls from Chile included populations that eat decapods from those three different environments (Rodríguez et al., 2016), whereas those from Argentina include birds that prey decapods from estuaries (e.g., Martorelli 1989; Vizcaíno, 1989; La Sala et al., 2013) and the rocky intertidal (Díaz et al., 2011; present study).

The molecular analysis showed that *P. chasmagnathi* shows low genetic variation that is not structured on the basis of hosts or geography. Recent studies have shown that *P. altmani* also presents low genetic variation lacking geographic structure (Goulding and Cohen, 2014; Rodríguez and D’Elía, 2016; Rodríguez et al., 2016, 2017). This finding may be attributed to the high vagility of their definitive hosts, allowing mixing of acanthocephalan populations and thus resulting in their genetic homogenization. For *P. chasmagnathi*, shorebirds with high dispersal potential, e.g., *L. dominicanus*, *L. atlanticus*, and the imperial cormorant *P. atriceps*, have been reported as definitive hosts (Torres et al., 1992; La Sala et al., 2013; Rodríguez et al. 2016). While bird host vagility could explain the lack of phylogeographic structure, it would not be the cause of the low levels of genetic variation observed. In fact, the processes causing low genetic variation remain unknown. The issue can be addressed by assessing variation in nuclear genes sequences (e.g., ITS1, ITS2) recovered from additional host populations and localities, as a way to test whether the observed levels of genetic variation of the mitochondrial DNA, instead of reflecting demographic history (e.g., recent population expansions), are caused by selective sweeps (Nielsen, 2005).

ACKNOWLEDGMENTS

The authors gratefully acknowledge Marcelo Bertellotti for his help in providing some of the birds and Nuria Vázquez and Carmen Gilardoni for their help in crab collection. We especially thank Graciela T. Navone for her unconditional advice, Patricia Sarmiento from Servicio de Microscopia Electrónica de Barrido from Museo de La Plata, and Kabe Solas for drawing the hosts. Special thanks to the anonymous reviewers whose comments substantially improved the article. Fieldwork was conducted using permits issued by the Secretaría de Turismo y Áreas Protegidas of Chubut. The present study was funded by CONICET (PIP 0698), Fondo IBoL 2013 and 2015, Agencia
LITERATURE CITED

AMIN, O. M. 2013. Classification of the Acanthocephala. Folia Parasitologica 60: 273–305.

BALBAG, L. A., A. HINOJOSA, C. RIQUELME, S. RODRIGUEZ, J. BUSTOS, and M. GEORGE-NASMMENTO. 2009. Allohexic distribution of cystacanths of two Profilicollis species in sympatric crustacean hosts in Chile. Journal of Parasitology 95: 1205–1208.

BUHLE, D. M., L. BUGONI, G. M. DORRESTEIN, P. M. GONZALEZ, J. PEREIRA-JR, L. PROENCA, I. DE LIMA SERRANO, A. J. BAKER, and T. PIERSMA. 2010. Local mortality events in migrating sandpipers (Calidris) at a stopover site in southern Brazil. Wader Study Group Bulletin 117: 150–156.

BUSH, A. O., K. D. LAFFERTY, J. M. LOTZ, and A. W. SHOSTAK. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83: 575–583.

CAPASSO, S., and J. I. DIAZ. 2016. Arthystrohmorphynchus comptus (Acanthocephala: Polymorphidae) from shorebirds in Patagonia, Argentina, with some comments on a species of Profilicollis. Check List 12: Article 1910, 6 p. doi: https://doi. org/10.15560/12.3.1910

DIAZ, J. I., F. CREMONTTE, and G. T. NAVONE. 2011. Helminths of the Kelp Gull, Larus dominicanus, from the north Patagonian coast. Parasitology Research 109: 1555–1562.

FOLMER, O., M. BLACK, W. HOFI, R. LOTZ, and R. VRIJENHOEK. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

GARCIA-VARELA, M., and G. PEREZ-PONCE DE LEON. 2008. Validating the systematic position of Profilicollis Meyer, 1931 and Hexaglandula Petrochenko, 1950 (Acanthocephala: Polymorphidae) using cytochrome C oxidase (cox 1). Journal of Parasitology 94: 212–217.

GARCIA-VARELA, M., G. PEREZ-PONCE DE LEON, F. J. AZNAR, and S. A. NADLER. 2011. Erection of Ibirhynchus gen. nov. (Acanthocephala: Polymorphidae), based on molecular and morphological data. Journal of Parasitology 97: 97–105.

GARCIA-VARELA, M., G. PEREZ-PONCE DE LEON, F. J. AZNAR, and S. A. NADLER 2013. Phylogenetic relationship among genera of Polymorphidae (Acanthocephala), inferred from nuclear and mitochondrial gene sequences. Molecular Phylogenetics and Evolution 68: 176–184.

GOULDING, T. C., and C. S. COHEN. 2014. Phylogeography of a marine acanthocephalan: Lack of cryptic diversity in a cosmopolitan parasite of mole crabs. Journal of Biogeography 41: 965–976.

GUINDON, S., J. F. DUFAVAYD, V. LEFORT, M. ANISIMOVA, W. HORDIUK, and O. GÁRCUEL. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321.

HAYAT, M. A. 1973. Principles and techniques of electron microscopy: v. 3: Biological applications. Van Nostrand Reinhold Company, New York, New York, 272 p.

HOLCRAIN-SPECTOR, B., F. MAÑE-GARZON, and E. DEI-CAS. 1977a. Una larva cystacantha (Acanthocephala) de la cavidad general de Chasmagnathus granulatus Dana, 1851. Revista de Biologia de Uruguay 5: 67–76.

HOLCRAIN-SPECTOR, B., F. MAÑE-GARZON, and E. DEI-CAS. 1977b. Ciclo evolutivo y descripción de Falsifilicollis chasmagnathi n. sp. Revista de Biologia de Uruguay 5: 77–91.

LA SALA, L. F., A. M. PEREZ, and S. R. MARTORELLI. 2012. Epidemiology of acanthocephalan infections in crabs from the Bahía Blanca Estuary, Argentina. Journal of Helminthology 86: 446–452.

LA SALA, L. F., A. M. PEREZ, J. E. SMITS, and S. R. MARTORELLI. 2013. Pathology of enteric infections induced by the acanthocephalan Profilicollis chasmagnathi in Olrog’s gull, Larus atlanticus, from Argentina. Journal of Helminthology 87: 17–23.

MARTORELLI, S. R. 1989. El rol de Cyrtograpsus angulatus (Crustacea; Brachyura) en los ciclos de vida de Microphallus szidati (Digena; Microphallidae) y Falsifilicollis chasmagnathi (Acanthocephala; Ficullicollidae). Algunos aspectos de su ecologia parasitaria. Memorias do Instituto Oswaldo Cruz 84: 567–574.

NEAR, T., J. J. R. GAREY, and S. A. NADLER. 1998. Phylogenetic relationships of the Acanthocephala inferred from ribosomal DNA sequences. Molecular Phylogenetic and Evolution 10: 287–298.

NGUYEN, L. T., H. A. SCHMIDT, A. VON HAASELER, and B. Q. MINH. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274.

NICKOL, B. B., D. CROMPTON, and D. SEARLE. 1999. Reintroduction of Profilicollis Meyer, 1931, as a genus in Acanthocephala: Significance of the intermediate host. Journal of Parasitology 85: 716–718.

NIELSEN, R. 2005. Molecular signatures of natural selection. Annual Reviews of Genetics 39: 197–218.

POULIN R. 1997. Species richness of parasite assemblages: Evolution and patterns. Annual Review of Ecology and Systematics 28: 341–58.

RODRIGUEZ, S. M., and G. D’ELIA. 2016. Pan-American marine coastal distribution of Profilicollis altmani based on morphometric and phylogenetic analysis of cystacanths from the mole crab Emerita brasiliensis. Journal of Helminthology 91: 371–375.

RODRIGUEZ, S. M., G. D’ELIA, and N. VALDIVIA. 2016. The phylogeny and life cycle of two species of Profilicollis (Acanthocephala: Polymorphidae) in marine hosts off Pacific coast of Chile. Journal of Helminthology 91: 589–596.

RODRIGUEZ, S. M., J. I. DIAZ, and G. D’ELIA. 2017. Morphological and molecular evidence on the existence of a single estuarine acanthocephalan species of the genus Profilicollis along the Atlantic and Pacific coasts of southern South America. Systematic Parasitology 94: 527–533.

ROZSA, L., J. REICZIGEL, and G. MAJOROS. 2000. Quantifying parasites in samples of hosts. Journal of Parasitology 86: 228–232.
Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30: 2725–2729.

Torres, P., A. Contreras, V. Cubillos, W. Gesche, A. Montefusco, C. Rebolledo, A. Mira, J. Arenas, J. Miranda, S. Asenjo, et al. 1992. Parasitismo en peces, aves piscívoras y comunidades humanas rivereñas de los lagos Yelcho y Tagua Tagua, X región de Chile. Archivos de Medicina Veterinaria 24: 77–93.

Trifinopoulos, J., L. T. Nguyen, A. von Haeseler, and B.Q. Minh. 2016. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44: W232–W235. doi: https://doi.org/10.1093/nar/gkw256.

Vázquez, M. G., C. C. Bas, and E. D. Spivak. 2012. Population structure of the intertidal crab *Cystograpsus altimanus* (Brachyura: Varunidae) in a northern Patagonian mussel bed. Journal of the Marine Biological Association of the United Kingdom 92: 327–334.

Vizcaíno, S. I. 1989. Acanthocephalan parasites of argentine birds I. Morphological complements to the knowledge of *Polymorphus* (Profilicollis) chasmagnathi comb. nov. (Polymorphidae). Studies on Neotropical Fauna and Environment 24: 189–192.

WoRMS Editorial Board. 2017. World register of marine species. Available from http://www.marinespecies.org at VLIZ. Accessed 22 August 2017. doi:10.14284/170.

Zdzitowiecki, K. 1985. Acanthocephalans of birds from South Shetlands (Antarctic). Acta Parasitologica Polonica 30:11–24.