TRACE HOMOMORPHISM FOR SMOOTH MANIFOLDS

YILDIRAY OZAN

Abstract. Let M be a closed connected smooth manifold and $G = \text{Diff}_0(M)$ denote the connected component of the diffeomorphism group of M containing the identity. The natural action of G on M induces the trace homomorphism on homology. We show that the image of trace homomorphism is annihilated by the subalgebra of the cohomology ring of M, generated by the characteristic classes of M. Analogously, if J is an almost complex structure on M and G denotes the identity component of the group of diffeomorphisms of M preserving J then the image of the corresponding trace homomorphism is annihilated by subalgebra generated by the Chern classes of (M, J).

1. Introduction and the results

Let G be any topological group acting on a topological space X and R any commutative ring. We define the trace homomorphism,

$$H_k(G, R) \times H_l(X, R) \xrightarrow{\text{tr}} H_{k+l}(X, R),$$

corresponding to this action as follows: if $\phi : U \to G$ and $\sigma : A \to X$ are cycles in G and X of degrees k and l representing classes υ, α, respectively, let $\text{tr}_{\sigma}(\upsilon, \alpha)$ be the class represented by the homology cycle $(u, a) \mapsto \phi(u)(\alpha)$, $(u, a) \in U \times A$. In 2003, it is proved in [1, 2] that the trace homomorphism of the Hamiltonian group of a closed symplectic manifold (M, ω) on the rational homology of M,

$$H_k(\text{Ham}(M, \omega), \mathbb{Q}) \times H_l(M, \mathbb{Q}) \xrightarrow{\text{tr}} H_{k+l}(M, \mathbb{Q}),$$

is trivial, for $k \geq 1$. Inspired by this result we prove the following smooth analog:

Date: March 14, 2022.

1991 Mathematics Subject Classification. Primary 57S05. Secondary 53D35.

Key words and phrases. Trace homomorphism, Diffeomorphism group.

The author is partially supported by the Turkish Academy of Sciences (TUBA-GEBIP-2004-17).
Theorem 1.1. Let M be a closed connected smooth manifold and R denote the either field \mathbb{Z}_2 or \mathbb{Q}. Also let P denote the subalgebra of the cohomology algebra $H^*(M, R)$, generated by the Stiefel-Whitney classes $w_i(M)$, if $R = \mathbb{Z}_2$, and the subalgebra generated by the Pontryagin classes $p_i(M)$ and the Euler class $e(M)$, if $R = \mathbb{Q}$. If $\text{Diff}_0(M)$ denotes the connected component of the diffeomorphism group of M containing the identity then the image of the trace homomorphism

$$H_k(\text{Diff}_0(M), R) \times H_l(M, R) \xrightarrow{\text{tr}_u} H_{k+l}(M, R)$$

is in the annihilator of P, provided that $k \geq 1$.

The proof of the above result yields immediately the following almost complex analog:

Theorem 1.2. Assume that M is a closed connected smooth manifold and J is an almost complex structure on M. Let P denote the subalgebra of the cohomology algebra $H^*(M, \mathbb{Q})$, generated by the Chern classes $c_i(M)$. If $\text{Diff}_0(M, J)$ denotes the identity component of the group of diffeomorphisms of M preserving J, then the image of the trace homomorphism

$$H_k(\text{Diff}_0(M, J), \mathbb{Q}) \times H_l(M, \mathbb{Q}) \xrightarrow{\text{tr}_u} H_{k+l}(M, \mathbb{Q})$$

is in the annihilator of P, provided that $k \geq 1$.

1.1. Trace homomorphism on cohomology. For $R = \mathbb{Z}_2$ or \mathbb{Q} we have $H^p(M, R) = \text{Hom}(H_p(M, R), R)$ and using this duality we may define trace homomorphism in cohomology: Let $u \in H_k(\text{Diff}_0(M), R)$ and define

$$\text{tr}_u^*: H^p(M, R) \to H^{p-k}(M, R)$$

by the formula $a \mapsto \text{tr}_u^*(a)$, $a \in H^p(M, R)$, where

$$\text{tr}_u^*(a) : H^{p-k}(M, R) \to R; \quad \text{tr}_u^*(a)(\alpha) = a(\text{tr}_u(u, \alpha)), \quad \alpha \in H^{p-k}(M, R).$$

Hence, the conclusions of Theorem 1.1 and of Theorem 1.2 can be written as $\text{tr}_u^*(P) = 0$, for all $u \in H_k(\text{Diff}_0(M), R)$, $k \geq 1$.

Suppose that $u \in H_k(\text{Diff}_0(M), R)$ is a spherical class. Using any cycle representing u we can build a fiber bundle $M \to E \to S^{k+1}$, such that the connecting homomorphism in the Wang sequence corresponding to this bundle is nothing but the trace homomorphism:

$$\to H^{p-1}(E, R) \to H^{p-1}(M, R) \xrightarrow{\text{tr}_u^*} H^{p-k-1}(M, R) \to H^p(E, R) \to$$

It is well known that the connecting homomorphism in the Wang sequence is a derivation of degree k (3). In other words, for any $x, y \in H^*(M, R)$,

$$\text{tr}_u^*(xy) = \text{tr}_u^*(x) \cdot y + (-1)^{\deg(x)} \cdot x \cdot \text{tr}_u^*(y).$$
On the other hand, for general u, since $\text{Diff}_0(M)$ is an H-space any rational homology class u is a product of spherical classes (cf. see Section 5 of [1]) and therefore tr_u is the composition of the trace homomorphisms corresponding to the spherical factors of u. Hence, we obtain the following result:

Proposition 1.3. Let $u \in H_k(\text{Diff}_0(M), \mathbb{Q})$, $k > 0$. For cohomology classes $x, y \in H^*(M, \mathbb{Q})$ such that $y \in P$ (hence $tr_u^*(y) = 0$) we have $tr_u^*(xy) = tr_u^*(x)y$. Moreover, if $\deg(x) < k$ then $tr_u^*(xy) = 0$.

The above proposition yields the following corollary:

Corollary 1.4. The natural map

$$tr^*: H_k(\text{Diff}_0(M), \mathbb{Q}) \to \text{hom}_P(H^*(M, \mathbb{Q}), H^{*-k}(M, \mathbb{Q}))$$

is a homomorphism, where we regard $H^*(M, \mathbb{Q})$ as a right module over its subalgebra P and $\text{hom}_P(H^*(M, \mathbb{Q}), H^{*-k}(M, \mathbb{Q})$ denotes the group of P-modulo homomorphisms.

Example 1.5. Let u be as in the complex analog of the above proposition, where P is generated by the Chern classes of the almost complex manifold (M, J) and u belongs to $H_k(\text{Diff}_0(M, J), R)$. Assume that (M, ω) is a monotone closed symplectic manifold of dimension $2n$. So $[\omega]$ is a multiple of $c_1(M)$ and hence it is in P. Assume further that M has the Hard Lefschetz Property, i.e.,

$$\cup [\omega]^r : H^{n-r}(M, \mathbb{C}) \to H^{n+r}(M, \mathbb{C})$$

is an isomorphism for any $r \geq 0$. So, if $b \in H^{n+r}(M, \mathbb{C})$ then $b = a [\omega]^r$ for some $a \in H^{n-r}(M, \mathbb{C})$ and hence

$$tr_u^*(b) = tr_u^*(a [\omega]^r) = tr_u^*(a) [\omega]^r.$$

In particular, $tr_u^*([\omega]^r) = 0$. It follows that, if $k > n$ then $tr_u^* = 0$.

2. Proof of the Theorem

To prove the above results we need to recall the definition and some basic properties of equivariant bundles: Let G be any Lie group and $F \to E \xrightarrow{\pi} B$ a fiber bundle. If G acts on both E and B such that the projection map π is G-equivariant; i.e., $\pi(v \cdot g) = \pi(v) \cdot g$, for all $g \in G$ and $v \in E$, we say that the bundle is G-equivariant. Note that if X is also a G-space and $f : X \to B$ is a G-equivariant map then the pullback bundle has an induced G-equivariant structure.

Example 2.1. i) Let $F \to E \xrightarrow{\pi} B$ be a G-equivariant fiber bundle, where the action of G on B, and hence on E, is free. Taking quotients of both the total space and the base by G, we get another fiber bundle
\(F \to E/G \xrightarrow{\pi} B/G \), whose pullback via the quotient map \(p : B \to B/G \) is isomorphic to the bundle \(F \to E \xrightarrow{\pi} B \).

ii) Let \(M \) be a smooth manifold. Since any diffeomorphism of \(M \), \(\phi : M \to M \), extends to the tangent bundle \(\phi^*: T_\ast M \to T_\ast M \), we see that the tangent bundle is \(\text{Diff}(M) \)-equivariant, where \(\text{Diff}(M) \) is the group of all diffeomorphisms of \(M \).

Proof of Theorem 1.1. Let \(G \) denote the group \(\text{Diff}_0(M) \), the group of diffeomorphism of \(M \) isotopic to the identity, and \(\sigma : A \to M \) be a cycle in \(M \) representing any given class \(\alpha \) of degree \(l \). Since the base field is either \(\mathbb{Z}_2 \) or \(\mathbb{Q} \) we may assume that \(A \) is a closed smooth manifold and \(\sigma : A \to M \) is a smooth map. Consider the trace map

\(tr : A \times G \to M, \ (a, g) \mapsto \sigma(a) \cdot g, \ 	ext{for all} \ (a, g) \in A \times G. \)

To prove the theorem it suffices to show that \(tr^*(v) = 0 \), for any \(v \in P \) of degree \(l + k \).

Note that \(G \) acts on \(A \times G \) by right multiplication on the second factor, which makes the trace map \(G \)-equivariant. By the above example the tangent bundle \(T_\ast M \to M \) is \(G \)-equivariant and hence the pullback bundle \(tr^*(T_\ast M) \to A \times G \) is \(G \)-equivariant. Since the \(G \)-action on the base space \(A \times G \) is free this bundle is induced from the quotient bundle \(tr^*(T_\ast M)/G \to (A \times G)/G \), which is isomorphic to \(\sigma^*(T_\ast M) \to A \). In particular, by the naturality of characteristic classes \(tr^*(v) \) is the pullback of a class in \(H^{k+l}(A, R) \). However, \(H^{k+l}(A, R) = 0 \), because \(A \) is \(l \)-dimensional and \(k \geq 1 \). Hence, \(tr^*(v) = 0 \) and the proof finishes. \(\square \)

Remark 2.2. i) Note that the above proof works also for Theorem 1.2. Indeed more is true: Let \(G \) be a subgroup of \(\text{Diff}_0(M) \) and \(E \to M \) be a \(G \)-equivariant real or complex vector bundle. Then the analogous result to Theorem 1.1 holds for \(G \) and the subalgebra \(P \) of the cohomology algebra of \(M \), generated by the characteristic classes of \(E \).

ii) Another extension of the main theorem, suggested by Dieter Kotschick, to foliations is as follows: Assume that the smooth manifold \(M \) is foliated and let \(G \) be the subgroup of \(\text{Diff}_0(M) \) preserving the foliation. Then \(G \) acts as isomorphisms of both the tangent bundle \(\tau \) and the normal bundle \(\eta \) of the foliation, where we have \(T_\ast M = \tau \oplus \eta \). Then for this \(G \) we can replace the subalgebra \(P \) in Theorem 1.1 with the subalgebra generated by the characteristic classes of the two summands of the tangent bundle to \(M \). Note that this subalgebra is clearly bigger than the subalgebra generated by the characteristic classes of \(T_\ast M \) only. Of course, this is no surprise since \(G \) is generally much smaller than \(\text{Diff}_0(M) \).
Acknowledgment. The author would like to thank Dusa McDuff for pointing out some errors in the earlier version of the article and to Dieter Kotschich for his remarks and suggestions.

REFERENCES

[1] F. Lalonde, D. McDuff. Symplectic structures on fiber bundles. Topology 42 (2003), 309-347.
[2] F. Lalonde, D. McDuff, L. Polterovich. Topological rigidity of Hamiltonian loops and Quantum homology. Invent. Math. 135 (1999), 369-385.
[3] G. W. Whitehead. Elements of Homotopy Theory. 3rd Edition, (Springer-Verlag, 1995) pp. 319-320.

DEPARTMENT OF MATHEMATICS, MIDDLE EAST TECHNICAL UNIVERSITY,
06531 ANKARA, TURKEY
E-mail address: ozan@metu.edu.tr