UG18 at SemEval-2018 Task 1: Generating Additional Training Data for Predicting Emotion Intensity in Spanish

Marloes Kuijper
CLCG
University of Groningen
marloes.madelon@gmail.com

Mike van Lenthe
CLCG
University of Groningen
mikevanlenthe@gmail.com

Rik van Noord
CLCG
University of Groningen
r.i.k.van.noord@rug.nl

Abstract

The present study describes our submission to SemEval 2018 Task 1: Affect in Tweets. Our Spanish-only approach aimed to demonstrate that it is beneficial to automatically generate additional training data by (i) translating training data from other languages and (ii) applying a semi-supervised learning method. We find strong support for both approaches, with those models outperforming our regular models in all subtasks. However, creating a stepwise ensemble of different models as opposed to simply averaging did not result in an increase in performance. We placed second (EI-Reg), second (EI-Oc), fourth (V-Reg) and fifth (V-Oc) in the four Spanish subtasks we participated in.

1 Introduction

Understanding the emotions expressed in a text or message is of high relevance nowadays. Companies are interested in this to get an understanding of the sentiment of their current customers regarding their products and the sentiment of their potential customers to attract new ones. Moreover, changes in a product or a company may also affect the sentiment of a customer. However, the intensity of an emotion is crucial in determining the urgency and importance of that sentiment. If someone is only slightly happy about a product, is a customer willing to buy it again? Conversely, if someone is very angry about customer service, his or her complaint might be given priority over somewhat milder complaints.

Mohammad et al. (2018) present four tasks in which systems have to automatically determine the intensity of emotions (EI) or the intensity of the sentiment (Valence) of tweets in the languages English, Arabic, and Spanish. The goal is to either predict a continuous regression (reg) value or to do ordinal classification (oc) based on a number of predefined categories. The EI tasks have separate training sets for four different emotions: anger, fear, joy and sadness. Due to the large number of subtasks and the fact that this language does not have many resources readily available, we only focus on the Spanish subtasks. Our work makes the following contributions:

• We show that automatically translating English lexicons and English training data boosts performance;
• We show that employing semi-supervised learning is beneficial;
• We show that the stepwise creation of an ensemble model is not necessarily better method than simply averaging predictions.

Our submissions ranked second (EI-Reg), second (EI-Oc), fourth (V-Reg) and fifth (V-Oc), demonstrating that the proposed method is accurate in automatically determining the intensity of emotions and sentiment of Spanish tweets. This paper will first focus on the datasets, the data generation procedure, and the techniques and tools used. Then we present the results in detail, after which we perform a small error analysis on the largest mistakes our model made. We conclude with some possible ideas for future work.

2 Method

2.1 Data

For each task, the training data that was made available by the organizers is used, which is a selection of tweets with for each tweet a label describing the intensity of the emotion or sentiment (Mohammad and Kiritchenko, 2018). Links and usernames were replaced by the general tokens URL and @username, after which the tweets

\footnote{We did not participate in subtask 5 (E-c).}
were tokenized by using TweetTokeniser. All text was lowercased. In a post-processing step, it was ensured that each emoji is tokenized as a single token.

2.2 Word Embeddings

To be able to train word embeddings, Spanish tweets were scraped between November 8, 2017 and January 12, 2018. We chose to create our own embeddings instead of using pre-trained embeddings, because this way the embeddings would resemble the provided data set: both are based on Twitter data. Added to this set was the Affect in Tweets Distant Supervision Corpus (DISC) made available by the organizers (Mohammad et al., 2018) and a set of 4.1 million tweets from 2015, obtained from Toral et al. (2015). After removing duplicate tweets and tweets with fewer than ten tokens, this resulted in a set of 58.7 million tweets, containing 1.1 billion tokens. The tweets were preprocessed using the method described in Section 2.1. The word embeddings were created using word2vec in the gensim library (Rehurek and Sojka, 2010), using CBOW, a window size of 40 and a minimum count of 5.2 The feature vectors for each tweet were then created by using the AffectiveTweets WEKA package (Mohammad and Bravo-Marquez, 2017).

2.3 Translating Lexicons

Most lexical resources for sentiment analysis are in English. To still be able to benefit from these sources, the lexicons in the AffectiveTweets package were translated to Spanish, using the machine translation platform Apertium (Forcada et al., 2011).

All lexicons from the AffectiveTweets package were translated, except for SentitStrength. Instead of translating this lexicon, the English version was replaced by the Spanish variant made available by Bravo-Marquez et al. (2013).

For each subtask, the optimal combination of lexicons was determined. This was done by first calculating the benefits of adding each lexicon individually, after which only beneficial lexicons were added until the score did not increase anymore (e.g. after adding the best four lexicons the fifth one did not help anymore, so only four were added). The tests were performed using a default SVM model, with the set of word embeddings described in the previous section. Each subtask thus uses a different set of lexicons (see Table 1 for an overview of the lexicons used in our final ensemble). For each subtask, this resulted in a (modest) increase on the development set, between 0.01 and 0.05.

2.4 Translating Data

The training set provided by Mohammad et al. (2018) is not very large, so it was interesting to find a way to augment the training set. A possible method is to simply translate the datasets into other languages, leaving the labels intact. Since the present study focuses on Spanish tweets, all tweets from the English datasets were translated into Spanish. This new set of “Spanish” data was then added to our original training set. Again, the machine translation platform Apertium (Forcada et al., 2011) was used for the translation of the datasets.

2.5 Algorithms Used

Three types of models were used in our system, a feed-forward neural network, an LSTM network and an SVM regressor. The neural nets were inspired by the work of Prayas (Goel et al., 2017) in the previous shared task. Different regression algorithms (e.g. AdaBoost, XGBoost)

Task	NRC-HSL	S-140	SenStr	AFINN	EMOTICONS	Bing Liu	MPQA	NRC-10-exp	NRC-HEAL	NEGATION
EI-Reg-a	✔	✔	✗	✔	✔	✗	✔	✔	✗	✔
EI-Reg-f	✔	✔	✗	✔	✗	✔	✔	✗	✔	✔
EI-Reg-j	✔	✔	✗	✔	✗	✔	✔	✗	✔	✔
EI-Reg-s	✔	✔	✗	✔	✗	✔	✔	✗	✔	✔
EI-Oc-a	✔	✔	✗	✔	✗	✔	✔	✗	✔	✔
EI-Oc-f	✔	✔	✗	✔	✗	✔	✔	✗	✔	✔
EI-Oc-j	✔	✔	✗	✔	✗	✔	✔	✗	✔	✔
EI-Oc-s	✔	✔	✗	✔	✗	✔	✔	✗	✔	✔

Table 1: Lexicons included in our final ensemble. NRC-10 and SentiWordNet are left out of the table because they never improved the score for a task.
were also tried due to the success of SeerNet (Duppada and Hiray, 2017), but our study was not able to reproduce their results for Spanish.

For both the LSTM network and the feed-forward network, a parameter search was done for the number of layers, the number of nodes and dropout used. This was done for each subtask, i.e. different tasks can have a different number of layers. All models were implemented using Keras (Chollet et al., 2015). After the best parameter settings were found, the results of 10 system runs to produce our predictions were averaged (note that this is different from averaging our different type of models in Section 2.7). For the SVM (implemented in scikit-learn (Pedregosa et al., 2011)), the RBF kernel was used and a parameter search was conducted for epsilon. Detailed parameter settings for each subtask are shown in Table 2. Each parameter search was performed using 10-fold cross validation, as to not overfit on the development set.

2.6 Semi-supervised Learning

One of the aims of this study was to see if using semi-supervised learning is beneficial for emotion intensity tasks. For this purpose, the DISC (Mohammad et al., 2018) corpus was used. This corpus was created by querying certain emotion-related words, which makes it very suitable as a semi-supervised corpus. However, the specific emotion the tweet belonged to was not made public. Therefore, a method was applied to automatically assign the tweets to an emotion by comparing our scraped tweets to this new data set.

First, in an attempt to obtain the query-terms, we selected the 100 words which occurred most frequently in the DISC corpus, in comparison with their frequencies in our own scraped tweets corpus. Words that were clearly not indicators of emotion were removed. The rest was annotated per emotion or removed if it was unclear to which emotion the word belonged. This allowed us to create silver datasets per emotion, assigning tweets to an emotion if an annotated emotion-word occurred in the tweet.

Our semi-supervised approach is quite straightforward: first a model is trained on the training set and then this model is used to predict the labels of the silver data. This silver data is then simply added to our training set, after which the model is retrained. However, an extra step is applied to ensure that the silver data is of reasonable quality. Instead of training a single model initially, ten different models were trained which predict the labels of the silver instances. If the highest and lowest prediction do not differ more than a certain threshold the silver instance is maintained, otherwise it is discarded.

This results in two parameters that could be optimized: the threshold and the number of silver instances that would be added. This method can be applied to both the LSTM and feed-forward networks that were used. An overview of the characteristics of our data set with the final parameter settings is shown in Table 3. Usually, only a small subset of data was added to our training set, meaning that most of the silver data is not used in the experiments. Note that since only the emotions were annotated, this method is only applicable to the EI tasks.3

2.7 Ensembling

To boost performance, the SVM, LSTM, and feed-forward models were combined into an ensemble. For both the LSTM and feed-forward approach, three different models were trained. The first model was trained on the training data (regular), the second model was trained on both the training and translated training data (translated) and the third one was trained on both the training data and the semi-supervised data (silver). Due to the nature of the SVM algorithm, semi-supervised learning does not help, so only the regular and translated model were trained in this case. This results in 8 different models per subtask. Note that for the valence tasks no silver training data was obtained, meaning that for those tasks the semi-supervised models could not be used.

Per task, the LSTM and feed-forward model’s predictions were averaged over 10 prediction runs. Subsequently, the predictions of all individual models were combined into an average. Finally, models were removed from the ensemble in a step-wise manner if the removal increased the average score. This was done based on their original scores, i.e. starting out by trying to remove the worst individual model and working our way up to the best model. We only consider it an increase in score if the difference is larger than 0.002 (i.e. the difference between 0.716 and 0.718). If at some point the score does not increase and we

3For EI-Oc, the labels were normalized between 0 and 1.
Table 2: Parameter settings for the algorithms used. For feed-forward, we show the number of nodes per layer. The Dense column for LSTM shows whether a dense layer was added after the LSTM layers (with half the number of nodes as is shown in the Nodes column). The feed-forward networks always use a dropout of 0.001 after the first layer.

Task	Epsilon	Layers	Nodes	Layers	Nodes	Dropout	Dense
EI-Reg-a	0.01	2	(600, 200)	2	400	0.001	✗
EI-Reg-f	0.04	2	(700, 200)	2	400	0.01	✓
EI-Reg-j	0.05	2	(500, 500)	2	200	0.1	✗
EI-Reg-s	0.06	2	(400, 300)	2	600	0.001	✗
EI-Oc-a	0.005	2	(600, 200)	2	200	0.001	✗
EI-Oc-f	0.06	2	(700, 300)	2	200	0.001	✓
EI-Oc-j	0.04	2	(800, 200)	3	400	0.001	✓
EI-Oc-s	0.005	2	(500, 200)	3	800	0.01	✓
V-Reg	0.07	3	(400, 400, 100)	2	200	0.001	✓
V-Oc	0.09	3	(400, 400, 100)	3	600	0.01	✓

Table 3: Statistics and parameter settings of the semi-supervised learning experiments.

Words	Tweets	Task	Threshold	Tweets added	Threshold	Tweets added	
Anger	23	81,798	EI-Reg	0.1	2,500	0.05	2,500
			EI-Oc	0.1	1,000	0.1	2,500
Fear	17	54,113	EI-Reg	0.1	1,500	0.05	1,500
			EI-Oc	0.075	1,000	0.1	2,500
Joy	29	51,135	EI-Reg	0.125	1,500	0.15	500
			EI-Oc	0.05	500	0.05	500
Sadness	16	102,810	EI-Reg	0.1	5,000	0.1	2,500
			EI-Oc	0.125	2,000	0.05	2,500

are therefore unable to remove a model, the process is stopped and our best ensemble of models has been found. This process uses the scores on the development set of different combinations of models. Note that this means that the ensembles for different subtasks can contain different sets of models. The final model selections can be found in Table 4.

3 Results and Discussion

Table 5 shows the results on the development set of all individuals models, distinguishing the three types of training: regular (r), translated (t) and semi-supervised (s). In Tables 4 and 5, the letter behind each model (e.g. SVM-r, LSTM-r) corresponds to the type of training used. Comparing the regular and translated columns for the three algorithms, it shows that in 22 out of 30 cases, using translated instances as extra training data resulted in an improvement. For the semi-supervised learning approach, an improvement is found in 15 out of 16 cases. Moreover, our best individual model for each subtask (bolded scores in Table 5) is always either a translated or semi-supervised model. Table 5 also shows that, in general, our feed-forward network obtained the best results, having the highest F-score for 8 out of 10 subtasks.

However, Table 6 shows that these scores can still be improved by averaging or ensembling the individual models. On the dev set, averaging our 8 individual models results in a better score for 8 out of 10 subtasks, while creating an ensemble beats all of the individual models as well as the average for each subtask. On the test set, however, only a small increase in score (if any) is found for stepwise ensembling, compared to averaging. Even though the results do not get worse, we can-
Task	SVM-r	SVM-t	LSTM-r	LSTM-t	LSTM-s	FF-r	FF-t	FF-s
EI-Reg-anger	✗	✔	✗	✔	✔	✔	✔	✓
EI-Reg-fear	✔	✔	✗	✔	✔	✔	✔	✔
EI-Reg-joy	✔	✔	✗	✔	✔	✗	✔	✔
EI-Reg-sadness	✔	✔	✗	✔	✗	✔	✔	✔
EI-Oc-anger	✔	✔	✗	✔	✔	✗	✔	✔
EI-Oc-fear	✗	✔	✗	✔	✔	✔	✔	✔
EI-Oc-joy	✔	✔	✗	✔	✔	✗	✔	✔
EI-Oc-sadness	✗	✔	✗	✔	✔	✔	✔	✔
V-Reg	✔	✔	✗	✔	✔	✗	✔	✔
V-Oc	✗	✔	✔	✗	✔	✗	✔	✔

Table 4: Models included in our final ensemble.

Task	SVMr	SVMt	LSTMr	LSTMt	LSTMs	FF-r	FFt	FFs
EI-Reg-anger	0.630	0.663	0.644	0.672	0.683	0.659	0.672	0.681
EI-Reg-fear	0.683	0.700	0.666	0.702	0.682	0.675	0.704	0.674
EI-Reg-j	0.702	0.711	0.683	0.709	0.699	0.688	0.720	0.710
EI-Reg-s	0.690	0.696	0.694	0.67	0.678	0.694	0.704	
EI-Oc-anger	0.663	0.645	0.602	0.673	0.589	0.611	0.659	0.640
EI-Oc-f	0.621	0.579	0.610	0.603	0.615	0.596	0.598	0.629
EI-Oc-j	0.626	0.674	0.670	0.657	0.671	0.616	0.638	0.628
EI-Oc-s	0.579	0.621	0.590	0.612	0.610	0.579	0.633	0.595
V-Reg	0.728	0.735	0.729	0.766	-	0.751	0.765	-
V-Oc	0.680	0.670	0.719	0.711	-	0.724	0.727	-

Table 5: Scores for each individual model per subtask. Best individual score per subtask is bolded.

Task	Avg Dev	Ens Dev	Avg Test	Ens Test
EI-Reg-a	0.684	0.692	0.589	0.595
EI-Reg-f	0.709	0.718	0.687	0.689
EI-Reg-j	0.721	0.727	0.712	0.712
EI-Reg-s	0.711	0.716	0.710	0.712
EI-Oc-a	0.658	0.678	0.500	0.499
EI-Oc-f	0.643	0.666	0.592	0.606
EI-Oc-j	0.669	0.695	0.668	0.665
EI-Oc-s	0.612	0.645	0.612	0.625
V-Reg	0.728	0.744	0.686	0.682
V-Oc	0.767	0.772	0.706	0.707

Table 6: Results on the dev and test set for averaging and stepwise ensembling the individual models. The last column shows our official results.

not conclude that stepwise ensembling is a better method than simply averaging.

Our official scores (column **Ens Test** in Table 6) have placed us second (EI-Reg, EI-Oc), fourth (V-Reg) and fifth (V-Oc) on the SemEval AIT-2018 leaderboard. However, it is evident that the results obtained on the test set are not always in line with those achieved on the development set. Especially on the anger subtask for both EI-Reg and EI-Oc, the scores are considerably lower on the test set in comparison with the results on the development set. Therefore, a small error analysis was performed on the instances where our final model made the largest errors.

3.1 Error Analysis

Due to some large differences between our results on the dev and test set of this task, we performed a small error analysis in order to see what caused these differences. For **EI-Reg-anger**, the gold labels were compared to our own predictions, and we manually checked 50 instances for which our system made the largest errors. Some examples that were indicative of the shortcomings of our system are shown in Table 7. First of all, our system did not take into account capitalization. The implications of this are shown in the first sentence, where capitalization intensi-
Table 7: Error analysis for the EI-Reg-anger subtask, with English translations.

Example sentence	Pred.	Gold	Possible problem
QUIERES PELEA FISICA? DO YOU WANT A PHYSICAL FIGHT?	0.25	0.80	Capitalization
Ojal una precuela de Imperator Furiosa. I wish a prequel to Imperator Furiosa.	0.64	0.24	Named entity not recognized
Odio estar tan enojada y que me de risa I hate being so angry and that that makes me laugh	0.79	0.46	Reduced angriness
Yo la mejor y que te contesten as nomas me infla la vena I am the best and that they answer you like that, it just inflates my vein	0.45	0.90	Figurative speech

fies the emotion used in the sentence. In the second sentence, the name Imperator Furiosa is not understood. Since our texts were lowercased, our system was unable to capture the named entity and thought the sentence was about an angry emperor instead. In the third sentence, our system fails to capture that when you are so angry that it makes you laugh, it results in a reduced intensity of the angriness. Finally, in the fourth sentence, it is the figurative language me infla la vena (it inflates my vein) that the system is not able to understand.

The first two error-categories might be solved by including smart features regarding capitalization and named entity recognition. However, the last two categories are problems of natural language understanding and will be very difficult to fix.

4 Conclusion

To conclude, the present study described our submission for the Semeval 2018 Shared Task on Affect in Tweets. We participated in four Spanish subtasks and our submissions ranked second, second, fourth and fifth place. Our study aimed to investigate whether the automatic generation of additional training data through translation and semi-supervised learning, as well as the creation of stepwise ensembles, increase the performance of our Spanish-language models. Strong support was found for the translation and semi-supervised learning approaches; our best models for all subtasks use either one of these approaches. These results suggest that both of these additional data resources are beneficial when determining emotion intensity (for Spanish). However, the creation of a stepwise ensemble from the best models did not result in better performance compared to simply averaging the models. In addition, some signs of overfitting on the dev set were found. In future work, we would like to apply the methods (translation and semi-supervised learning) used on Spanish on other low-resource languages and potentially also on other tasks.

References

Felipe Bravo-Marquez, Marcelo Mendoza, and Barbara Poblete. 2013. Combining strengths, emotions and polarities for boosting twitter sentiment analysis. In Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining, page 2. ACM.

François Chollet et al. 2015. Keras. https://github.com/keras-team/keras.

Venkatesh Duppada and Sushant Hiray. 2017. Seernet at emoint-2017: Tweet emotion intensity estimator. In Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 205–211, Copenhagen, Denmark. Association for Computational Linguistics.

Mikel L. Forcada, Mireia Ginestá-Rosell, Jacob Nordfalk, Jim O'Regan, Sergio Ortiz-Rojas, Juan Antonio Pérez-Ortiz, Felipe Sánchez-Martínez, Gema Ramírez-Sánchez, and Francis M Tyers. 2011. Apertium: a free/open-source platform for rule-based machine translation. Machine translation, 25(2):127–144.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and Kaushal Kumar Shukla. 2017. Prayas at emoint 2017: An ensemble of deep neural architectures for emotion intensity prediction in tweets. In Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 58–65.

Saif Mohammad and Felipe Bravo-Marquez. 2017. Emotion intensities in tweets. In Proceedings of the 6th Joint Conference on Lexical and Computational Semantics, *SEM @ ACM 2017, Vancouver, Canada, August 3-4, 2017, pages 65–77.

Saif M. Mohammad, Felipe Bravo-Marquez, Mohammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceedings of International Workshop on Semantic Evaluation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018. Understanding emotions: A dataset of tweets to study interactions between affect categories. In Proceedings of the 11th Edition of the Language Resources and Evaluation Conference, Miyazaki, Japan.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pages 45–50, Valletta, Malta. ELRA. http://is.muni.cz/publication/884893/en.

Antonio Toral, Xiaofeng Wu, Tommi A Pirinen, Zhengwei Qiu, Ergun Bicici, and Jinhua Du. 2015. Dublin city university at the tweetmt 2015 shared task. In TweetMT@ SEPLN, pages 33–39.