The clinical outcomes of COVID-19 in HIV-positive patients: A systematic review of current evidence

SeyedAhmad SeyedAlinaghi1 | Amirali Karimi2 | Mehrzad MohsseniPour1 | Alireza Barzegary3 | Seyed Peyman Mirghaderi2 | Amirata Fakhfouri3 | Solmaz Saeidi4 | Armin Razi5 | Hengameh Mojdeganlou6 | Marcarious M. Tantuoyir2,7 | Amir Masoud Afsahi8 | Esmaeil Mehraeen9,10 | Omid Dadras11

1Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
2School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
3School of Medicine, Islamic Azad University, Tehran, Iran
4Department of Nursing, University of Medical Sciences, Khalkhal, Iran
5Internal Medicine Department, Tehran University of Medical Sciences, Tehran, Iran
6Department of Pathology, Urmia University of Medical Sciences, Urmia, Iran
7Biomedical Engineering Unit, University of Ghana Medical Center (UGMC), Accra, Ghana
8Department of Radiology, University of California, San Diego (UCSD), San Diego, California, USA
9Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
10AMAD Research Institute, Supreme National Defense University, Tehran, Iran
11Department of Global Health and Socioepidemiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan

Abstract

Introduction: Patients with chronic underlying diseases are more susceptible to coronavirus disease 2019 (COVID-19) complications. Recent studies showed people living with HIV (PLWH) are not at greater risk than the general population. Few studies have reviewed the impacts of COVID-19 on PLWH. The purpose of this systematic review was to investigate the impact of COVID-19 on patients infected with HIV.

Methods: We executed a systematic search using four databases of PubMed, Scopus, Science Direct, and Web of Science and screened the records in two steps based on their title/abstract and full text. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist to elevate the validity and reliability of its results.

Results: We reviewed 36 studies. The patients' age was above 20 years in all studies. In almost all studies, the inflammatory parameters were reported high. In most of the studies, all HIV patients completely recovered from the COVID 19 infection. Although CD4 count was not recorded in all studies, the minimum level was reported as 12 cells/µl.

Conclusion: Based on the current review, we concluded that HIV patients at advanced stages (3 or 4) of the disease, whose CD4 counts are low, may show less severe COVID-19 infection symptoms. Similarly, Interference can reduce the severity of immune reactions and subsequent cytokine storms and consequently mitigate the symptoms. Therefore, in most of the studies, the majority of HIV patients showed no severe symptoms and completely recovered from COVID 19 infection.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. Immunity, Inflammation and Disease published by John Wiley & Sons Ltd.
INTRODUCTION

At the end of December 2019, cases of a highly contagious infectious disease had been reported in Wuhan, China.\(^1\)\(^–\)\(^7\) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus and belongs to the Beta coronavirus genus of the Coronaviridae family. Due to the high interpersonal transmission rate, soon SARS-CoV-2 spread globally and turned into a global pandemic.\(^6\)\(^–\)\(^10\) The World Health Organization (WHO) announced its concern about the novel coronavirus on January 30, 2020, and declared the highest level of alarm as a public health emergency.\(^11\) The COVID-19 outbreak was been declared as a global pandemic by WHO on March 11, 2020.\(^12\) As of May 30th, a total of 169 million cases of infected patients were reported around the world and the number of deaths reached 3.52 million.\(^13\) Coronavirus disease 2019 (COVID-19) can affect different organs in the human body. The most common complications of SARS-CoV-2 are respiratory failure and Acute Respiratory Distress Syndrome (ARDS).\(^14\) Risk factors of COVID-19 are related to the type of immune system response and host factors such as age, gender, underlying diseases, and so on.\(^15\)\(^–\)\(^18\)

Patients with chronic underlying diseases can experience COVID-19 complications more than the general population, although recent studies showed people living with HIV (PLWH) are not at greater risk than the general population.\(^19\)\(^,\)\(^20\) HIV attacks a specific type of immune system cells known as a CD4 helper cell and destroys them. When the CD4 count drops below 200 cells/µl, the patient will have progressed to AIDS. According to the Joint United Nations Programme on HIV/AIDS (UNAIDS), the number of PLWH around the world was 37.9 million,\(^21\) and unfortunately, around 12 million of them are not receiving antiretroviral therapy (ART). A recent study revealed 86% of HIV patients receiving ART, have a positive response to it and this leads to undetectable viral load. In conclusion, patients who respond to ART and maintain treatment are not immunocompromised.\(^19\)

Few studies have reviewed the impacts of COVID-19 on PLWH. There is yet no certain answer whether patients infected with HIV are at greater risk of severe illness and worse outcomes. We still need to know whether there are any differences between controlled HIV infection with undetectable viral load and a CD4 count ≥200 cells/µl and uncontrolled HIV infection or AIDS in COVID-19 outcomes. Thus, the aim of this systematic review was to investigate the outcome of COVID-19 among patients infected with HIV.

METHODS

2.1 Study design

We systematically searched four databases, including PubMed, Scopus, Science Direct, and Web of Science to retrieve the related articles based on the keywords used in our search strategy. Two researchers (S. P. M. and S. S.) screened the retrieved articles using the Covidence website (https://www.covidence.org). The screening consisted of two-step title/abstract and full-text screening processes. Utilizing this website eased settling of the discrepancies in the inclusion process. A third researcher (A. K.) addressed the remaining discrepancies. Two researchers (H. M. and A. R.) extracted and summarized the data of the included studies.

2.2 Search strategy

We included the search terms for HIV/AIDS and COVID-19 as presented below:

A. [SARS-CoV-2] (Title/Abstract) OR [COVID-19] (Title/Abstract) OR [2019-nCoV] (Title/Abstract) OR [Novel Coronavirus] (Title/Abstract)
B. [Human Immunodeficiency Virus] (Title/Abstract) OR [HIV] (Title/Abstract) OR [Acquired Immune Deficiency Syndrome] (Title/Abstract) OR [AIDS] (Title/Abstract)
C. [A] AND [B].

2.3 Inclusion criteria

We included all the original articles discussing the COVID-19 status in PLWH. The exclusion criteria are the following:
TABLE 1 Quality assessment of the included studies using NIH tool

Study	Study design	Score	Quality rating (good, fair, or poor)
Blanco et al. JL23	Case series	7/9	Good
Brown et al.24	Prospective cohort	13/14	Good
Cabello et al.25	Case series	8/9	Good
Calza et al.26	Case series	7/9	Good
Calza et al.27	Case series	6/9	Fair
d’Ettorre et al.28	Case report	8/9	Good
D’Souza et al.29	Cohort	10/14	Fair
Boule et al.30	Retrospective cohort	12/14	Good
Del Amo et al.31	Retrospective cohort	11/14	Good
Etienne et al.32	Prospective cohort	12/14	Good
Geretti et al.33	Prospective cohort	13/14	Good
Gudipati et al.34	Case series	7/9	Good
Guo et al.35	Retrospective cohort	10/14	Fair
Härter et al.36	Case series	7/9	Good
Ho et al.37	Case series	8/9	Good
Karmen-Tuohy et al.38	Retrospective cohort	11/14	Good
Kim et al.39	Case report	7/9	Good
Kowalska et al.40	Case series	8/9	Good
Kumar et al.41	Case report	6/9	Fair
Menghua et al.42	Case report	7/9	Good
Myashita and Kuno43	Retrospective cohort	9/14	Fair
Mondi et al.44	Case series	7/9	Good
Nagarakanti et al.45	Retrospective cohort	10/14	Fair
Okoh et al.46	Case series	7/9	Good
Patel and Pella47	Case report	6/9	Fair
Ridgway et al.48	Cohort	7/14	Fair
Ruan et al.49	Case series	6/9	Fair
Sachdev et al.50	Retrospective cohort	9/14	Fair
Stoeckle et al.51	Retrospective cohort	11/14	Good

TABLE 1 (Continued)

Study	Study design	Score	Quality rating (good, fair, or poor)
Swaminathan et al.52	Case series	7/9	Good
Tesoriero et al.53	Retrospective cohort	10/14	Fair
Toombs et al.54	Case report	8/9	Good
Vizcarra et al.55	Prospective cohort	11/14	Good
Wang et al.56	Case report	6/9	Fair
Wu et al.57	Case report	7/9	Good
Yang et al.58	Retrospective cohort	12/14	Good
Zhang et al.59	Case report	7/9	Good

(1) Review articles, letter to the editors, or other studies without original data.
(2) Ongoing studies.
(3) Irrelevant to the aims, settings, and design of this study.
(4) Abstracts, conference abstracts, errata, or other studies lacking full-texts.

2.4 | Quality assessment

We utilized the National Institutes of Health (NIH) tool to evaluate the quality of the studies. A researcher (A. K.) examined all the studies to ensure the quality of evidence. If an element of the criteria was insufficiently addressed, not applicable, or not reported in a study and it could not be identified indirectly, we did not allocate a score to that element. For cohort and cross-sectional studies, 11–14 was considered good, 6–10 fair, and 0–5 poor. We chose 9–12, 5–8, and 0–4 for good, fair, and poor quality in the case-control studies, respectively. The numbers were 7–9, 4–6, and 0–3 for the case series. Case reports were checked with the same checklist as the case series.

3 | RESULTS

Most of the studies were considered of good quality (25/37). Other studies (12/37) had a fair quality, and we did not classify any studies as poor (Table 1).

Thirty-six studies met the inclusion criteria. The results of these 36 studies are summarized in Tables 2 and 3.
ID	Study (reference)	Country	Study population	Total cases (HIV + cases)	Age(year)	Sex					
1	Bhaskaran et al.	UK	17,282,905	27,480	18–39 years: 6625 (24.1%) 40–49 years: 8093 (29.5%) 60–69 years: 3130 (11.4%) 70–79 years: 937 (3.4%) ≥80 years: 209 (0.8%) Median (IQR): 48 years (40–55)	Male: 17780 (64.7%) Female: 9700 (35.3%)					
2	Blanco et al.	Spain	5	5	40, 49, 29, 40, 31 years	Transgender: 2 (40%), Male: 3 (60%)					
3	Cabello et al.	Spain	63	63	Median (IQR): 46 years (37–52)	Male: 56 (88.9%)					
4	Calza et al.	Italy	9	9	Median (IQR): 56.2 years (41–73)	Male: 7 (78%)					
5	Calza et al.	Italy	26	26	Median (IQR): 53.8 years (28–80)	Male: 19 (73%)					
6	Cipolat et al.	Brazil	1	1	63 years	Female					
7	D'Ettorre et al.	Italy	16	11	52 years	Female: 1 (100%)					
8	D'Souza et al.	USA	3411	2078	Median (IQR): 57 years (26–94)	Male: 956 (46%), female: 1123 (54%)					
9	Davies	South Africa	3,460,932	3978	All patients were above 20 years	Male: 1682 (42.3%), female: 2296 (57.7%)					
10	Del Amo et al.	Spain	77,590	77590	20–39 years: 14,506 (19%) 40–49 years: 19,373 (25%) 50–59 years: 32,321 (42%) 60–69 years: 8762 (11%) 70–79 years: 2628 (3%)	Male: 58,120 (75%), female: 19,470 (25%)					
11	Ettiene et al.	France	54	54	Median (IQR): 54 years (47–60)	Male: 33 (61.1%), female: 21 (38.9%)					
12	Geretti et al.	England	47,592	122	Median (IQR): HIV + group: 56 years (49–62) HIV - group: 74 years (60–84)	Female: HIV + group: 41/121 (33.9%) HIV group: 20/302 (42.9%)					
13	Gudipati et al.	USA	14	14	Median (IQR): 57.5 years (36–74)	Male: 12 (85.7%), female: 2 (14.3%)					
14	Guo et al.	China	1701	1701	Mean: 42 ± 14.5 years	Male: 1484 (87.2%), female: 217 (12.8%)					
15	Härter et al.	Germany	33	33	Mean (SD): 48 years (26–82)	Male: 30 (91%), female: 3 (7%)					
16	Ho et al.	USA	93	93	Median (IQR): 58 years (52–65)	Male: 67 (72%), female: 23 (24.7%) Transgender: 3 (3.2%)					
17	Karmen-Tuohy et al.	USA	63	21	Not mentioned	Not mentioned					
ID	Study (reference)	Country	Study population	Total cases (HIV + cases)	Age(year)	Sex					
----	-------------------	---------	------------------	--------------------------	-----------	--------------					
18	Kim et al.39	Korea	1	1	29 years	Male: 1 (100%)					
19	Kowalska et al.40	Poland	34	34	Median: 40.5 years	Female: 10 (29.4%), Male: 24 (70.6%)					
20	Kumar et al.41	USA	1	1	50 years	Male:1 (100%)					
21	Menghua et al.42	China	1	1	49 years	Female: 1 (100%)					
22	Miyashita et al.43	USA	8912	161	≤50 years: 38 51–65 years: 82 ≥66 years: 41	Male: 125(77%), female: 36 (23%)					
23	Mondi et al.44	Italy	605	5	61, 46, 31, 55, 55 years	Male: 4 (80%), Transgender woman: 1 (20%)					
24	Nagarakanti et al.45	USA	277	23	Median (IQR): 59 years (51–67)	Male: 14 (60.8), female: 9(39.2)					
25	Okoh et al.46	USA	27	27	Median (IQR): 58 years (50–67)	Male: 15 (55.5%), female: 12 (44.5%)					
26	Patel et al.47	USA	1	1	58 years	Male: 1 (100%)					
27	Ridgway et al.64	USA	5537	8	Not mentioned	Not mentioned					
28	Ruan et al.49	China	4	4	38, 25, 46, 54 years	Male: 4 (100%)					
29	Sachdev et al.50	USA	276,807	193	48 years (20–76)	Male: 176 (91.2%), female: 12 (6.2%), Transgender female: 5 (2.6%)					
30	Stoeckle et al.51	USA	120	30	60.5 years (56.6–70.0)	Male: 24 (80%), female: 6 (20%)					
31	Swaminathan et al.52	USA	6	6	Mean: 64 years (62, 59, 45, 74, 57, 87 years)	Male: 5 (83%), female: 1 (17%)					
32	Tesoriero et al.53	USA	108,062	2988	<40 years: 492 pt 40–60 years: 1400 pt >60 years: 1096	Male: 2109 (70%), female: 879 (30%)					
33	Toombs et al.54	UK	3	3	62, 46, 57 years	Male: 2 (66%), female: 1 (34%)					
34	Vizcarr et al.55	Spain	1339	51	Mean: 53.3 years	Male: 43 (84%), Woman: 8 (16%)					
35	Wang et al.56	China	1	1	37 years	Male: 1 (100%)					
36	Wu et al.57	China	2	2	60 years	Male: 2 (100%)					
37	Yang et al.58	China	56	3	31, 60, 29 years	Male: 3 (100%)					
38	Zhang et al.59	China	2	2	24, 37 years	Male: 2 (100%)					
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19Therapy	
----	-------------------	---------------------	--------------------------	-----------------	-----------------------------	---------------	----------------	-------------------------------	---------------------	----------------	
1	N/A	N/A	N/A	N/A	N/A	Hypertension 5290 (19.3%), Chronic respiratory disease 1095 (4.0%), Chronic heart disease 1444 (5.3%), Chronic liver disease 921 (3.4%), Stroke or dementia 559 (2.0%), Other neurological disease 239 (0.9%), Organ transplant 72 (0.3%)	25 Death in HIV/COVID-19 population	N/A	N/A		
2	Fever/cough/ malaise/ headache	1. 13 years 2. 17 years 3. 7 years 4. 17 years 5. 3 months	1. 616 2. 445 3. 604 4. 1140 5. 13	N/A	N/A	1. ART at admission remained (Tenofovir+Adefovir, Emtricitabine, Darunavir-boosted Cobicistat) 2. Tenofovir proxifumarate, Emtricitabine plus Lopinavir-boosted Ritonavir (ongoing) 3. Tenofovir proxifumarate, Emtricitabine plus Lopinavir-boosted Ritonavir (for 3 days)	1. None 2. Hypothyroidism 3. None 4. Asthma 5. None	1. Cured 2. Still at the hospital 3. Cured 4. Cured 5. Cured	N/A	1. CRP, Ferritin: not done 2. CRP: 30 mg/dl, ferritin:1020 ng/ml 3. CRP:0.72 mg/dl, ferritin:1044 ng/ml 4. CRP: 0.43 mg/dl, ferritin:1044 ng/ml 5. CRP:40 mg/dl, ferritin:1044 ng/ml	Interferon beta-1b hydroxychloroquine Meropenem linezolid Tocilizumab Azithromycin Azithromycin Cefixime Inhaled corticosteroids hydroxychloroquine Azithromycin cefaroline fosamil

(Continues)
TABLE 3 (Continued)

ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19 Therapy
3	Fever: 66.1%	HIV infection time	<50 copies/ml	PI-based therapy: 9.8%	Hypertension: 19%	Global mortality rate: 3.22%	Ferritin >1000 mcg/L	N/A		
	Cough: 66.1%	(years): 10.8		INSTI-based therapy: 63.9%	DM: 9.5%	CD4 (cell/mm³): 605	N/A			
	Dyspnea: 46.8%			NNRTI-based therapy: 26.2%	Overweight: 13.1%	(Median): 391–921	N/A			
	Anosmia: 11.3%	(days): 6.5–16.5		TDF-containing regimen: 14.8%	Cardiovascular disease: 12.7%	Nadir CD4 < 200	N/A			
	Ageusia: 9.7%			TFV (TAF or TDF)-containing regimen: 26.2%	COPD: 4.8%	(cell/mm³): 26.7%	N/A			
	Diarrhea: 22.6%			Smoker: 48.2%	Chronic kidney disease (crl < 30 ml/min): 3.2%	N/A				
	Headache: 14.5%				Tocilizumab: 6.3%	N/A				
	Weakness: 25.8%				N/A					
	Myalgia/arthralgia: 24.2%				N/A					

4	Cough: 7 (77.8%)	Median (IQR): 21.4 years (13.6–29.4)	Plasm HIV RNA ranged between 66 and 1240 copies/ml, and 7 patients had HIV RNA < 200 copies/ml (77.8%)	Arterial hypertension: 6 (66.7%)	Recovery: 9 (100%)	Six subjects had CD4 + lymphocyte count ranging between 200 and 350 cells/mm³, and 3 subjects had CD4 + lymphocyte count <200 cells/mm³	N/A
	Myalgia: 7 (77.8%)	Median (IQR): 258 (156–343) (cells/mm³)		Diabetes mellitus: 2 (22.2%)			N/A
	Fatigue: 9 (100%)		1 boosted protease inhibitor (PI) in 3 cases, 1 integrase strand transfer inhibitor in 4, and 1 nonnucleoside reverse transcriptase inhibitor in 2	BMI > 30 Kg/m², 1 (11.1%)			N/A
	Anosmia and/or ageusia: 3 (33.3%)			COPD, 1 (11.1%)			N/A
	Dyspnea: 2 (22.2%)						N/A

4. Tenofovirdisoproxilumate, Emtricitabine plus Lopinavir-boosted Ritonavir (for 14 days)
5. TenofovirAlafenamide, Emtricitabine, Darunavir-boosted Cobicistat(ongoing)

COVID-19 Therapy: co-trimoxazole corticosteroids
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19 Therapy
5	Fever > 38°C, cough, fatigue, myalgia, and tachypnea	N/A	Above 350 cells/mm³; 22 individuals (85%)	Undetectable HIV viral load in all patients	N/A	N/A	Recovery: 26 (100%)	N/A	CRP (mg/dL), median: 4.2 (0.71–9.2)	Hydroxychloroquine: 50% Exonaparin: 23%
6	Fever, myalgia, nausea, abdominal pain, diarrhea, hyposmia, hypogeusia, cough, dyspnea	15 years	CD4: 426	Undetectable	Tenofovir (TDF), lamivudine (3TC), and dolutegravir (DTG)	Hypertension	Discharged in good conditions	N/A	CRP: 65.5 LDH: 316	HCQ + Azithromycin
7	Fever, fatigue	23 years	528 cells/µl	N/A	Darunavir/Cobicistat	N/A	Cured	HIV-1 viral load: below level of detection (<37 HIV-1 RNA copies/ml) CD4 count: 242 cells/ml, CD8 count: 336 cells/ml	IL-6: 50.98 pg/ml	N/A
8	Headache (23%), Myalgias (19%), Shortness of breath (14%), Chills (12%), Fever (6%) and Loss of taste or smell (6%)	N/A	682 cells/mm³ (median)	Undetectable viral load: 74%	N/A	N/A	Recovered and symptom free: 71.1% Feeling better but not completely recovered: 26.3% Not feeling better: 2.6%	Median CD4 cell count: 682 cells/mm³; 74% had undetectable HIV viral load (<20 copies/mL)	N/A	N/A

(Continues)
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19 Therapy	
9	N/A	N/A	N/A	N/A	Abacavir or Zidovudin	Diabetes	Died: 2.8%	N/A	N/A	N/A	
					Tenofovir	Hypertension					
					Efavirenz	Chronic kidney disease					
					Lopinavir						
					Atazanavir	Chronic pulmonary disease/asthma					
					Dolutegravir	Tuberculosis					
10	N/A	N/A	N/A	N/A	Tenofovirdisoproxifumarate/emtricitabine: 12 395 (16%))		Age and gender standardized mortality from COVID-19 in HIV-positive persons (3.7 per 10,000)	N/A	N/A	N/A	
					TenofovirAlafenamide/emtricitabine: 25 570 (33%)						
					Abacavir/lamivudine						
					20 105 (26%)						
					Other regimens						
					19,520 (25%)						
					Third drug: NNRTI	15 733 (21%)					
					Protease inhibitor	14,267 (19%)					
					Integrase inhibitor	37,622 (50%)					
					Other 9968 (10%)						
11	N/A	N/A	Median (IQR): 583 (474-773)	HIV viral load < 40 copies: 96.2%	Protease inhibitors based: 9 (16.7%)	Diabetes: 5 (9.3%)	Cured: 43 (86%)	N/A	N/A	N/A	
					Darunavir: 6 (11.1%)	hypertension: 16 (29.6%)	Still hospitalized: 1 (2%)				
					Atazanavir: 2 (3.7%)	Other cardiac disease: 4 (7.4%)	Not cured: 5 (10%)				
					Lopinavir: 1 (1.9%)	Renal insufficiency (crcl<60 ml/min): 3 (5.6%)	death: 1 (2%)				
					Non-nucleoside inhibitors based: 25 (46.3%)						
					Nucleoside inhibitors based: 43 (79.6%)						
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	Inflammatory markers	COVID-19Therapy	
----	-------------------	---------------------	---------------------------	----------------	-----------------------------	---------------	-----------------	--------------------------------------	----------------------	-----------------	
					Integrase inhibitors: 33 (61.1%)	Respiratory disease (asthma, chronic bronchitis): 5 (9.3%)					
12	HIV+ group:	N/A	N/A	N/A		Chronic pulmonary disease: (10.8%)					
	Fever: (82.5%)					Asthma: (10.3%)					
	Myalgia: (26.9%)					Chronic kidney disease: (18.1%)					
	Headache: (18.8%)					Diabetes, no complications: (13.7%)					
	Cough: (79.3%)					Diabetes, with complications: (7.7%)					
	Dyspnea: (72.7%)					Obesity: (17%)					
	Chest pain: (22.9%)					Chronic neurological disorder: (6.9%)					
	Sore throat: (14%)					Dementia: (2.5%)					
	Wheeze: (5.9%)					Mild liver disease: (2.5%)					
	Rhinorrhea: (3.1%)					Moderate/severe liver disease: (5.1%)					
	Diarrhea: (25.9%)					Rheumatological disease: (5.1%)					
	Nausea or vomiting: (21.9%)					Malnutrition: (4.5%)					
	Abdominal pain: (12.5%)										
	Fatigue: (43.9%)										

(Continues)
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19Therapy
13	Fever: 7 (50%) Shortness of breath: 7 (50%) Cough: 10 (70%) Diarrhea: 4 (29%) Anosmia, ageusia: 4 (29%)	N/A	Median (IQR): 519.5 (21–1756) N/A	11 patients <20 1 patient: 25 1 patient: 36 1 patient: 1646 (copies/ml)	N/A	Obesity (N = 8; 57%) Hypertension (N = 8; 57%) Diabetes (N = 6; 43%), chronic kidney disease (N = 5; 36%) and ESRD requiring hemodialysis (N = 2; 14%)	5 patients died	N/A	N/A	CRP: 6 patients; not available Median: 65 (2.1–21.5 mg/dl)
14	N/A	Average: 27 ± 11 days CD4 count > 200/µl: 9 (pts with COVID19-HIV coinfection) 9 pts had undetectable viral loads 1406, 82.7%: (NRTIs) and (NNRTIs) 172 (10.1%): LPV/r-based ART, 87 (5.1%): integrase inhibitors (INI)-based ART (62 dolutegravir-based, 19 elvitegravir/cobicistat-based, 4 raltegravir-based, 2 bictegravir-based). 36 individuals (2.1%) were still treatment naïve	N/A	N/A	Nine out of the 11 COVID-19/AIDS patients had relatively high CD4 count (>200/µl) and undetectable HIV viral load (<20 copies/ml).					
15	Cough: 25 (78%) Fever: 22 (69%) Arthralgia/myalgia: 7 (22%)	N/A	Median (IQR): 670/mm³ (69–1715/mm³) N/A	In 30/32 cases: below 50 copies/ml Nucleoside reverse transcriptase inhibitors (NRTIs) in 31 patients, integrase strand transfer inhibitors (INSTI) in 20, protease inhibitors (PI) Documented in 20/33 (60%) patients	N/A	Recovered: 29/32 of patients (91%) Died: 3	N/A	N/A	N/A	
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19Therapy
----	-------------------	-------------------	--------------------------	-----------------	--------------------------	----------------	----------------	---------------------------------	---------------------	----------------
16	Fever:	Median: 20 years	Median (IQR): 61/89 (69.6%) were on an antiretroviral therapy (ART) regimen:	Recovered:53	Died:19	CRP	CD4 + : 220 cells/µL	N/A		
	61 (65.6%)	(15–26, n = 57)	554 (339–752) (n = 64)			(n = 69): Median CRP, 1.37 mg/L	(n = 53) (132–372)			
	cough:					(n = 69): Median CRP, 1.37 mg/L	(n = 46) (17–18)			
	71 (76.3%)					(n = 69): Median CRP, 1.37 mg/L	(n = 46) (17–18)			
	shortness of breath:					(n = 69): Median CRP, 1.37 mg/L	(n = 46) (17–18)			
	57 (61.3%)					(n = 69): Median CRP, 1.37 mg/L	(n = 46) (17–18)			
	Altered mental status:					(n = 69): Median CRP, 1.37 mg/L	(n = 46) (17–18)			
	10/93 (10.8%)					(n = 69): Median CRP, 1.37 mg/L	(n = 46) (17–18)			
	Congestion:	13 (14%)				(n = 69): Median CRP, 1.37 mg/L	(n = 46) (17–18)			
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19Therapy
----	-------------------	---------------------	---------------------------	-----------------	-----------------------------	---------------	-----------------	--------------------------------------	----------------------	-----------------
	Sore throat:									
	18 (19.4%)									
	Myalgia:									
	33 (35.5%)									
	Anosmia:									
	2 (2.2%)									
	Diarrhea:									
	18/93 (19.4%)									
	Headache:									
	17 (18.3%)									

17	N/A	N/A	298/ml (135–542), N = 19	N/A	N/A	N/A	N/A	Mortality rate: 28.6%	N/A	HIV group:	
			Only 1 patient had a viral load > 50 copies/ml					In HIV group		Ferritin: 679 ng/mL (338–1446)	19
										N = 19	
										CRP: 154.48 ± 94.44 mg/L	

Only 1 patient had a viral load > 50 copies/ml
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19 Therapy			
18	Cough, sputum, Chilling, myalgia, Rhinorrhea, sore throat, loss of taste and smell	5 years	N/A	N/A	GenoSyva[®]: elvitegravir/cobicistat/ emtricitabine/tenofovir	N/A	Improved and discharged (with persistent positive PCR)	CD 4 count: 555/mm³	Lactate dehydrogenase: 449. 4 ± 239. 8 U/L, N = 5	N/A			
19	N/A	Median: 5 years (1–14 years)	557 cells/mm³	HIV viral load log: median: 4.93 copies/ml (4.2–6)	82.3% on ART regimen	52. 9%(18 pts) had comorbidities: Cardiovascular disease:5 Chronic lung disease:2 Diabetes:2 Hypertension:2 Other:7	Fully recovered:26 Died:2 Still in hospital:6	Undetectable HIV RNA in 54. 5%	N/A	N/A			
20	Fevers, chills, nasal congestion, and mild cough	23 years	435 cells/µl	< 20 copies/ml	Dolutegravir, emtricitabine, and tenofovir alafenamide.	Hypertension, asthma, steatohepatitis, and resolved hepatitis B infection, HIV-associated nephropathy/ focal segmental glomerulosclerosis (FSGS)	Cured	CD4: 395 cells/µl HIV RNA: < 20 copies/mL	No specific treatment	N/A	Interferon atomization		
21	Fatigue, fever, chills, and pharyngeal pain	8	Nadir CD4 + count: 224	Remained undetectable from 2013	Efavirenz 600 mg, zidovudine 300 mg,	N/A	Cured	N/A	N/A	Interferon atomization	(Continues)		
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19 Therapy			
----	-------------------	---------------------	---------------------------	-----------------	---------------------------	---------------	-----------------	-------------------------------------	----------------------	-----------------			
22	N/A	N/A	N/A	N/A	N/A	Hypertension: 74	Admission: 36	Intubated: 19	Death: 23	N/A	N/A	N/A	
						Diabetes: 46	N/A	N/A	N/A	(5 million bid)			
						Dyslipidemia: 55				Ribavirin (150 mg TID)			
						Heart Failure: 15				Abidol (200 mg TID)			
23	Asymptomatic: 2	Pt1: NA	1:438	<30: 5	All patient less than 30	Asthma :1	1:438	Ferritin = 241;	LDH = 207;	HCQ + Tocilizumab			
	Fever: 3	Pt2: 22 years	2:112	DTG + DRV/r: 1		Cardiomyopathy:1	2:1127	Lym-phocyte = 1252		Pt2,3,4: HCQ			
	Dry cough: 3	Pt3: 3 years	3:219	DTG + DRV/c: 1		HBV:1	3:219	Methylprednisolone		Pt5: No specific treatment			
	Shortness of breath: 1	Pt4: 1 years	4:127	TDF/FTC + EFV: 1		No Comorbidity:2	4:127	LDF = 2306					
	Myalgia: 1	Pt5: 20 years	5:352	TDF/FTC + DTG: 1			5:352	LDF = 644					
		CD4 in hospital		TAF/FTC/RPV: 1			Cd4 in admission						
24	Cough: 20	N/A	N/A	Integrate based: 8		Hypertension:15	CD4 > 200:	Lymphocyte = 1056	Hydroxychloroquine: 11				
	Fever: 18			NNRTI: 5		Diabetes mellitus:7	16/19 pt	(16%)		Azithromycin: 11			
	Dyspnea: 17			PI + integrase based: 6		Chronic kidney disease:11	3/19		Procalcitonin (ng/ml): 0.25 (0.07, 0.39)	Ceftriaxone: 8			
	Myalgia: 11			Not available: 2		Coronary artery disease: 2	CD4 = 101 pt		CD4 = 116 1 pt	Remdesivir: 0			
	Diarrhea: 4			Protease inhibitor based: 1			CD4 = 179 1 pt	CD4 = 557	Steroids: 5				
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	Inflammatory markers	COVID-19 Therapy			
----	-------------------	---------------------	---------------------------	-----------------	-----------------------------	---------------	-----------------	-------------------------------------	---------------------	----------------			
25	Cough: 18 Fever: 17, Dyspnea: 17, Fatigue: 13, Myalgias: 9, Diarrea: 4, Nausea/vomiting: 4	N/A	Median (IQR): 551 (286–710)	<20: 11 20–120: 15 120: 1	Integrate based: 9 NNRTI: 5 PI + integrate: 5 Not available: 4 NNRTI + integrate: 3 PI based: 1	Hypertension: 16 Diabetes mellitus: 9 CKD: 10 Dialysis: 6 CHF: 3 CAD: 1 COPD: 0	ICU Care: 3 pt Death: 2 pt	Undetectable Viral Load: 16/18 pt HIV VL = 269001 pt 1 pt HIV VL > 2 million 1 pt	N/A	Lymph = 17% Procalcitonin, m/L 0.26 (0.08–0.41)	Hydroxychloroquine: 7 Azithromycine: 8 Remdesivir: 0 Steroids: 1 Tocilizumab: 0		
26	Weakness, anorexia, and diarrhea for 2 weeks	N/A	CD4 = 497 (43%)	N/A	Emtricitabine (200 mg) and tenofovir (25 mg) every 24 h, atazanavir (300 mg) every 24 h, and ritonavir (100 mg) every 24 h	Chronic bronchitis, hypertension	Recovered (Discharged)	N/A	Lymph: 23% = 1334	Hydroxychloroquine + Azithromycin + Zinc Sulfate			
27	N/A	Hospitalized; 6/8 pt ICU admission: 1/8 pt Death: 0/8 pt	N/A	N/A	N/A								
28	Pt1: cough, fever, dyspnea Pt2: fever, cough, and dyspnea Pt3: fever, cough	Pt1: 1 year Pt2: 1 year Pt3: 5 years Pt4: 4 years	Pt1: CD4 = 34 Pt2: CD4 = 12 Pt3: CD4 = 540	N/A	1: No therapy 2: No therapy 3: EFV/3TC/TDF 4: EFV/3TC/TDF	Pt1,2,3 = no comorbidity Pt4: Hypertension, Diabetes, CHD	1,2 = severe 3,4 = moderate All Discharged	Pt1: Procalcitonin = 0.05 Pt2: ESR = NA Pt3: ESR = 3	N/A	N/A	N/A		
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19Therapy			
-----	-------------------------------------	---------------------	---------------------------	-----------------	-----------------------------	---	--	----------------------------------	---------------------	---------------			
Pt4	Fever, cough, and dyspnea		Pt4: CD4 = 743					N/A	N/A				
29	Cough (38.8%), fever (33.9%), rhinorrhea (25.7%), myalgias (28.4%), headache (26.8%), chills (21.9%), shortness of breath (15.3%), sore throat (15.3%) loss of taste/smell (19.1%)	Year of HIV diagnosis 1985–2010-133 (68.9%) to 2011–2015-26 (13.5%) to 2016–2020-34 (17.6%)	Last CD4 count result: 121 (62.7%) to CD4 count > 500 cells/mm² 60 (31.1%) to CD4 count of 200–500, 12 (6.2%) to CD4 count <200	N/A	Increased incidence of SARS-CoV-2 infection among HIV compared with people without HIV in San Francisco from the date community transmission was reported	Patients interviewed (n = 183)	Any comorbidity: 78 (42.6%)	Lung disease: 8 (4.4%)	ICU admission: 2 (1.1%)	Hospitalized: 14 (7.6%)	Deceased: 0		
30	Fever 17 (57%), Cough 21 (70%), Sputum production 1 (3%)		CD4 count, median (IQR): 332 (123–526)			Hypertension: 12 (40%) to DM: 8 (27%)	Hypoxemic: 15/30 pt to Intubation: 4/30 pt	Coronary artery disease 2 (7%) to Stroke 0 (0%)	ICU admission: 4/40 pt to Discharged: 24/30 pt	Death: 2/30 pt	Hypertension: absolute lymphocyte count, median 900 (97%) to CRP: 7.6 (2.8–16.5)	Hydroxychloroquine: (67%) systemic corticosteroids: (13%)	Remdesivir (0)
	Dyspnea 7 patients, Sore throat 20 (67%), Rhinorrhea or nasal congestion 1 (3%)		CD4 count < 200 to CD4:CD8 ratio, median (IQR)			Asthma 3 (10%)	Hypoxemic: 15/30 pt to Intubation: 4/30 pt	Coronary artery disease 2 (7%) to Stroke 0 (0%)	ICU admission: 4/40 pt to Discharged: 24/30 pt	Death: 2/30 pt	Hypertension: absolute lymphocyte count, median 900 (97%) to CRP: 7.6 (2.8–16.5)	Hydroxychloroquine: (67%) systemic corticosteroids: (13%)	Remdesivir (0)
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19Therapy			
----	-------------------	---------------------	---------------------------	-----------------	-----------------------------	--------------	----------------	---------------------------------------	---------------------	----------------			
31	N/A	N/A	N/A	N/A	N/A								
			Last CD4 count (cells/µm³):		ABC/EFV/3TC								
			491,1500, 500,772, 678, 651		BIC/TAF/FTC								
			viral load (copies/ml)		EVG-c/TAF/FTC								
			10,000 (1 pt)		EFV/TDF/FTC								
			Undetectable (4 pt)										
			CD4: mean 765										
			Hypertension: 4 pt		Coronary Disease: 2 pt								
			2 Patients: Expired		Diabetic: 3 Pt								
			Lymphocyte: 1010, 1770, 1220, 7-80, 560, 620		LDH: 338, 520, 214								
			CRP (mg/L): 274, 243.8, NA										
			Procalcitonin: (ng/ml)										
			5, 83, 74, NA, NA, 0, 1.0, 42										
			Pt1: Hydroxychloroquine										
			Pt2: Hydroxychloroquine +										
			Steroid										
			Pt3, 4: No specific treatment										
			Pt5, Hydroxychloroquine										
			Pt6: Hydroxychloroquine										
32	N/A	N/A	N/A	N/A	N/A								
			Stage 1		N/A								
			HIV: 1774		N/A								
			Total Case: 2988		N/A								
			Hospitalized: 896		N/A								
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19Therapy			
----	-------------------	---------------------	---------------------------	-----------------	----------------------------	----------------	-----------------	--------------------------------------	----------------------	----------------			
	Stage 2	HIV: 843											
	Stage 3	HIV: 270											
	Others: 101	viral suppression: Yes: 2628											
	Stage 1:	CD4 ≥ 500 cells/mm³ or ≥26% of total lymphocytes (age ≥ 6 years), CD4 ≥ 1000 cells/mm³ or ≥30% of total lymphocytes (age 1–5 years); Stage 2: CD4 200–499 cells/mm³ or 14%–25% of total											

Death: 207
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19 Therapy	
33	N/A	Pt1: 18 years	CD4: Pt1: 180 Pt2: 50 Pt3: 3,890	N/A	Pt1: Raltegravir 400 mg BD Lamivudine 50 mg OD Abacavir 600 mg OD	Pt1: Hypertension, ESRD, Renal transplant, Diabetes Pt2: G6PD Pt3: Hypertension, Diabetes, Obesity	Pt1: Death Pt2,3: CPAP (Discharged later)	N/A	Lymphocyte: Pt1: 230 Pt2: 1130 Pt3: 1100 CRP, mg/dL Pt1: 260 Pt2: 51 Pt3: 78	Prednisolone Specific Treatment	
		Pt2: 7 years						N/A			
		Pt3: 8 years							N/A		
34	Fever: 36 (71%)	19.5 years (9.3–28.6)	Recent CD4: 565 (296–782)	N/A	Protease inhibitors 11 (22%) NNRTI 8 (16%) INSTI 41 (80%) Tenofovir (TAF or TDF) 37 (73%)	Any 32 (63%) Hypertension 18 (35%) Cardiovascular disease 14 (27%) Diabetes 7 (14%) Chronic kidney disease 6 (12%) Chronic liver disease 24 (47%)	Total Case: 51 Admit: 28 (55%) => 22 noncritical disease 6 critical disease 2 deaths 21 recovered 5 still admitted	N/A	Lymphocyte: 1,200 (800–1,800) Serum ferritin, ng/mL (n = 7) 972 (366–2791) Procalcitonin, ng/mL: 0.08 (0.04–0.13)	No specific antiviral therapy hydroxychloroquine azithromycin ritonavir boosted	
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/μl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19 Therapy	
----	-------------------	---------------------	-------------------------	-----------------	-----------------------------	---------------	-----------------	--------------------------------------	---------------------	-----------------	
35	Fever, dry cough, chest pain	N/A	CD4 cell count = 34/ul, CD8 cell count = 737/ul	N/A	N/A	N/A	1 Pt: Mechanical Ventilation + ICU admission (Still admitted)			Lymphocyte: 1550	
								CRP: 96.5 LDH: 423		Methyprednisolone then Tocilizumab	
36	Pt1: Myalgia, fever, dyspnea, productive cough	Pt1: 6 years diagnosed	N/A	N/A	N/A	Pt1: Tenofovir disoproxil fumarate, lamivudine and efavirenz	Pt1: stage IV diffuse large B-cell lymphoma, pulmonary tuberculosis, Diabetes	Pt1: Moderately ill and discharged	Pt1: Lymph = 900 Procalcitonin (PCT) = 0.19 ng/ml; C-reactive protein (CRP) = 191.21 mg/L		Oseltamivir + Umifenovir
	Pt2: New diagnosed									Pt2: Ribavirin + Umifenovir	
	Fever, nonproductive cough,										
ID	Signs and symptoms	Duration of disease	Last CD4 count (cells/µl)	Last viral load	Last antiretroviral regimen	Comorbidities	Clinical outcome	Diagnostic parameters during COVID-19	inflammatory markers	COVID-19 Therapy	
----	-------------------	-------------------	------------------------	----------------	----------------------------	----------------	----------------	-------------------------------	-------------------	----------------	
37	N/A	N/A	CD4:	N/A	Pt1: AZT/3TC/NVP	N/A	N/A	N/A	Lymphocyte count:	N/A	
			Pt1 = 420		Pt2: TDF/3TC/EFV			Pt1: Lymph= 670	Procalcitonin=	Pt2: Arbidol then Tocilizumab	
			Pt2 = 550		Pt3: STRIBILD			Pt2: Procalcitonin= 0.05		Pt2: Arbidol the Methylprednisolone then Tocilizumab	
			Pt3 = 21					Pt3: Lymphocyte= 1550		Pt3: Arbidol then Tocilizumab	
38	Pt1: Fever, fatigue, poor appetite, shortness of breath, sore throat	Pt1,2= New HIV	Pt1: CD4 = 13	N/A	Pt1 –	N/A	N/A	Pt1: Lymphocyte= 1080		Pt1: Arbidol then Tocilizumab	
			Pt2: CD4 = 23		Pt2 –			Pt2: Procalcitonin: 0.03		Pt2: Arbidol the Methylprednisolone then Tocilizumab	
								Pt2: CRP = 96.51		Pt3: Arbidol then Tocilizumab	
Forty percent of the studies were from the USA, 20% from China, 11.4% from Italy, 11.4% from Spain and the remainder were from Germany, France, UK, South Korea, Poland, and South Africa. All the articles were published between January and December 2020. The study population in the explored articles ranged from one patient (in case reports) to 3,460,932 patients in a large cohort study from South Africa (Table 2).

Among the total studied population of 3,993,400 COVID-19 patients, 89,343 patients had COVID19-HIV coinfection, among which 72% (ranged from 42.3% to 100%) were male, 0.01% (11 patients) were transgender. Patients' gender was not available in two studies. Patients' age was above 20 years in all studies. As the review revealed, nine studies did not mention the ART regimen for HIV + patients. At the time of the COVID-19 diagnosis, the most common symptoms were fever, cough, myalgia, and headache. Additionally, most of the patients had various comorbidities such as hypertension, diabetes mellitus, asthma, renal insufficiency, cardiovascular disease, etc.

Laboratory values including CRP, ferritin, and Interleukins levels were available in about two-third of the studies. But in almost all the studies with inflammatory tests results, the values were elevated. In most of the studies, all HIV patients completely recovered from the COVID-19 infection. In 8 studies, mortality was reported ranging from 1% to 36%. Although CD4 count was not recorded in all the studies, the minimum level was reported as 12 cells/µl.

4 | DISCUSSION

We found that HIV patients at advanced stages (3 or 4) of the disease with low CD4 count and weak immune systems show less severe COVID-19 symptoms. However, some studies showed controversial results which contradict our primary hypothesis. The main reason for these contradictory results was the scarcity of existent literature and inconsistency of evidence that limited our ability to address and reasonably argue our main hypothesis. This may also be due to simultaneous symptoms and underlying comorbidities that come along at advanced stages of HIV infections and could perplex and obscure the typical presentation of COVID-19 in such patients. Despite these contradictory results, the majority of studies included in this review indicate mild or no typical symptoms of COVID-19 in HIV patients, particularly in those at the advanced stages of HIV disease. This review also found an unexpected high recovery rate in these patients after COVID-19 infection, which contradicts the common knowledge of higher morbidity and mortality rate in immunocompromised patients.

SARS-CoV-2 is a new strain of coronavirus, which is the causal agent of COVID-19. The usual symptoms of COVID-19 are fever, cough, headache, shortness of breath, tiredness, loss of taste or smell, and gastrointestinal symptoms such as diarrhea, anorexia, nausea, and abdominal pain,1 of which, many are due to the cytokine storm caused by the host's immune system. To control these symptoms, corticosteroids have been used now and then by clinicians around the world which indicates the substantial role of immune system function interfered with SARS-CoV-2. Application of Canakinumab, a humanized monoclonal antibody against IL-1β in a sub-group of hospitalized patients with COVID-19 and subsequent swift reduction in the systemic inflammatory response and oxygenation improvement by Claudio Ucciferri et al. also manifests the fundamental role of the immune system and inflammatory cytokines in the SARS-CoV-2 pathophysiology.55,66 The human immunodeficiency virus targets the body's natural immune system and causes immune deficiency. This immune deficiency can lower the severity of the immune system reactions such as cytokine storms and subsequently the accompanying symptoms. This could explain the milder symptoms, lower morbidity, and less mortality among HIV-positive patients infected by COVID-19 as the primary fatal condition in COVID patients is caused by the cytokine storm which subsequently leads to multiorgan dysfunction and death. The hypothesis was supported by some of the included studies in the present review, while, some contradictory results were also observed.

In the present review, a CD4 count less than 500 was assumed as a cutoff point. Thus, the patients with a mean CD4 count less than 500 were considered immunodeficient and assumed to be at advanced stage patients. In the study conducted by Calza et al. all the nine HIV-positive patients with CD4 count less than 258 fully recovered, which supports the hypothesis of our study.26 Additionally, in Kumar et al.’s and Patel RH.'s study, the patients had a CD4 count less than 500 and again completely recovered.41,47 Similar findings were reported by Mondi A et al.44 In contrast, in Karmen-Tuohy et al.’ study contradictory results were reported. Although the median CD4 count of patients was lower than 500 and the patients were immunodeficient, the mortality rate was higher (28%).39 Likewise, in the study by Blanco et al., all the patients with CD4 count > 500 were cured, but one of the two patients with CD4 count < 500 remained in the hospital due to the severity of illness that may have been due to comorbidities as is reported by authors.23 However, the findings of the Ruan L et al’ study were completely against our hypothesis. In this
study, all the patients with CD4 count > 500 experienced moderate-severity clinical outcomes; while, all the patients with CD4 count < 500 had severe clinical outcomes.

4.1 Limitation

Despite the limited available evidence, the findings of the present review authenticate the primary hypothesis arguing less severe clinical outcomes in HIV patients at the advanced stages. Although this could be mainly due to the inability of the immune system in HIV patients to provoke the cytokine storm, which is believed to be the main responsible event for severe clinical outcomes in COVID patients, the contradictory results inform future studies to explore further the possible underlying causes of such an observation.

5 CONCLUSION

In conclusion, the results of the present study suggest that HIV patients at advanced stages (3 or 4) of the disease, when CD4 counts are low and their immune system is compromised, manifest less severe symptoms and less mortality following COVID-19. This has been attributed to the inability of HIV-positive individuals’ immune systems in provoking the cytokine storm that caused the severe clinical outcome in COVID patients. By a similar mechanism, it seems that corticosteroids mitigate the severity of symptoms in COVID patients with a healthy immune system.

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTIONS

Conception and design of the study: Esmaeil Mehraeen, SeyedAhmad SeyedAlinaghi; acquisition of data: Amirali Karimi, Seyed Peyman Mirghaderi, Amirata Fakhfouri; analysis and interpretation of data: Hengameh Mojdeganlou, Alireza Barzegary; drafting the article: Esmaeil Mehraeen, Mehrzad MohsseniPour, Solmaz Saeidi; revising it critically for important intellectual content: SeyedAhmad SeyedAlinaghi, Armin Razi; final approval of the version to be submitted: Esmaeil Mehraeen, Amir Masoud Afsahi, Omid Dadras, Marcarious M. Tantuoyir.

DATA AVAILABILITY STATEMENT

The authors stated that all information provided in this article could be shared.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

ORCID

SeyedAhmad SeyedAlinaghi https://orcid.org/0000-0003-3210-7905
Esmaeil Mehraeen http://orcid.org/0000-0003-4108-2973

REFERENCES

1. SeyedAlinaghi S, Oliaei S, Kianzad S, et al. Reinfection risk of novel coronavirus (CoVID-19): A systematic review of current evidence. World J Virol. 2020;9(5):79-90.
2. Esmaeil M, Farzane B, Mohammad AS, Tayebeh N, Hamid H, SeyedAhmad S. Olfactory and gustatory dysfunctions due to the coronavirus disease (COVID-19): a review of current evidence. Eur Arch Otorhinolaryngol. 2021;278(2):307-312.
3. Mehraeen E, Hayati B, Saeidi S, Heydari M, Seyed Alinaghi S. Self-care instructions for people not requiring hospitalization for coronavirus disease 2019 (COVID-19). Arch Clin Infect Dis. 2020;15:e102978.
4. Mehraeen E, Karimi A, Barzegary A, et al. Predictors of mortality in patients with COVID-19–a systematic review. Eur J Integrat Med. 2020;40:101226.
5. Mehraeen E, Salehi MA, Behnezhad F, Moghaddam HR, SeyedAlinaghi S. Transmission modes of COVID-19: a systematic review. Infect Disord Drug Targets. 2020
6. SeyedAlinaghi S, Karimi A, Shobeiri P, et al. Psychological symptoms of COVID-19 epidemic: A systematic review of current evidence. Psihologija. 2021;54(2):173-192.
7. SeyedAlinaghi S, Mirzapour P, Dadras O, et al. Characterization of SARS-CoV-2 different variants and related morbidity and mortality: a systematic review. Eur J Med Res. 2021;26(1):51.
8. Loffl M, Hamblin MR, Rezaei N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta. 2020;508:254-266.
9. Ndairou F, Area I, Nieto JJ. Torres DFM. Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals. 2020;135:109846.
10. Karimi A, Nowroozi A, Aliou S, Amini E. Indirect factors affecting fertility in the era of COVID-19. Urol J. 2021
11. Mehraeen E, Seyed Alinaghi SA, Nowroozi A, et al. A systematic review of ECG findings in patients with COVID-19. Indian Heart J. 2020;72(6):500-507.
12. Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Bio Med Atenei Parmensis. 2020;91(1):157-160.
13. The World Health Organization, WHO Coronavirus Disease (COVID-19) Dashboard, May 30th, 2021 [available online at: https://covid19.who.int/]
14. Seyed Alinaghi S, Afsahi AM, Mohsseni Pour M, et al. Late complications of COVID-19: a systematic review of current evidence. Arch Acad Emerg Med. 2021;9(1):e14.
15. Ong EZ, Chan YFZ, Leong WY, et al. A dynamic immune response shapes COVID-19 progression. *Cell Host Microbe*. 2020;27(6):879-882.

16. Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: A review. *J Infect Pub Health*. 2020;13(11):1619-1629.

17. SeyedAlinaghi S, Abhasian L, Solduzian M, et al. Predictors of the prolonged recovery period in COVID-19 patients: a cross-sectional study. *Eur J Med Res*. 2021;26(1):41.

18. Seyed Alinaghi S, Mehrbak M, Mohseni Pour M, et al. Genetic susceptibility of COVID-19: a systematic review of current evidence. *Eur J Med Res*. 2021;26(1):46.

19. Cooper TJ, Woodward B, Alom S, Harky A. Coronavirus disease 2019 (COVID-19) outcomes in HIV/AIDS patients: a systematic review. *HIV Med*. 2020;21(9):567-577.

20. Laurence J. Why aren’t people living with HIV at higher risk for developing severe coronavirus disease 2019 (COVID-19)? *AIDS Patient Care STDS*. 2020;34(6):247-248.

21. Yoo M, Yoon C-H, Choi B-S. Current status of the estimation on the number of people who living with hiv and the rate of undiagnosed cases. *J Bacterial Virol*. 2020;50(3):150-157.

22. NIH. Study Quality Assessment Tools. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools

23. Blanco JL, Ambrosioni J, Garcia F, et al. COVID-19 in patients with HIV: clinical case series. *Lancet HIV*. 2020;7(5):e314-e316.

24. Brown J, Pickett E, Smith C, et al. The effect of HIV status on the frequency and severity of acute respiratory illness. *PLOS One*. 2020;15(5):e0232977.

25. Cabello A, Zamorro B, Nistal S, et al. COVID-19 in people living with HIV: A multicenter case-series study. *Int J Infect Dis*. 2021;102:310-315.

26. Calza L, Bon I, Borderi M, et al. COVID-19 Outcomes in patients with uncontrolled HIV-1 Infection. *J Acquire Immune Deficiency Syndrome*. 2021;86(1):e15-e17.

27. Calza L, Bon I, Tadolini M, et al. COVID-19 in patients with HIV-1 infection: a single-centre experience in northern Italy. *Infection*. 2020;49:1-5.

28. d'Ettorre G, Recchia G, Ridolfi M, et al. Analysis of type I IFN response and T cell activation in severe COVID-19/HIV-1 coinfection: A case report. *Medicine*. 2020;99(36):e21803.

29. D'Souza G, Springer G, Gustafson D, et al. COVID-19 symptoms and SARS-CoV-2 infection among people living with HIV in the US: the MACS/WIHS combined cohort study. *HIV research & clinical practice*. 2020;21(5):130-139.

30. Boule A, Davies M-A, Hussey H, et al. Risk factors for COVID-19 death in a population cohort study from the Western Cape Province, South Africa. *Clin Infect Dis*. 2020

31. Del Amo J, Polo R, Moreno S, et al. Incidence and severity of COVID-19 in HIV-positive persons receiving antiretroviral therapy: a cohort study. *Ann Intern Med*. 2020;173(7):536-541.

32. Etienne N, Karmokchine M, Slama L, et al. HIV infection and COVID-19: risk factors for severe disease. *AIDS*. 2020;34(12):1771-1774.

33. Geretti AM, Stockdale AJ, Kelly SH, et al. Outcomes of COVID-19 related hospitalization among people with HIV in the ISARIC WHO Clinical Characterization Protocol (UK): a prospective observational study. *Clin Infect Dis*. 2020

34. Gudipati S, Brar I, Murray S, McKinnon JE, Yared N, Markowitz N. Descriptive analysis of patients living with HIV affected by COVID-19. *J Acquire Immune Deficiency Syndrome*. 2020;85(2):123-126.

35. Guo W, Ming F, Dong Y, et al. Driving force of Covid-19 among people living with HIV/AIDS in Wuhan, China. *Res Sq*. 2020;rs:3rs-53351.

36. Härter G, Spinner CD, Roifer J, et al. COVID-19 in people living with human immunodeficiency virus: a case series of 33 patients. *Infection*. 2020;48(5):681-686.

37. Ho HE, Peluso MJ, Margus C, et al. Clinical outcomes and immunologic characteristics of Covid-19 in people with HIV. *J Infect Dis*. 2020;223(3):403-408.

38. Karmen-Tuohy S, Carlucci PM, Zervou FN, et al. Outcomes among HIV-positive patients hospitalized with COVID-19. *J Acquire Immune Deficiency Syndromes*. 2020;85(1):6-10.

39. Kim YJ, Kim JM, Peck KR. The first case of an HIV patient diagnosed with COVID-19 in Korea. *J Korean Med Sci*. 2020;35(39):e358.

40. Kowalska JD, Kase K, Vassilenko A, et al. The characteristics of HIV-positive patients with mild/asymptomatic and moderate/severe course of COVID-19 disease—a report from Central and Eastern Europe. *Int J Infect Dis*. 2020;104:293-296.

41. Kumar RN, Tanna SD, Shetty AA, Stosor V. COVID-19 in an HIV-positive kidney transplant recipient. *Transplant Infect Dis*. 2020;22(5):e13338.

42. Menghua W, Xin Z, Jianwei L, Yu Z, Qinwei Y. Case report: one case of coronavirus disease 2019 (COVID-19) in a patient co-infected by HIV with a normal CD4(+) T cell count. *AIDS Res Ther*. 2020;17(1):46.

43. Miyashita H, Kuno T. Prognosis of coronavirus disease 2019 (COVID-19) in patients with HIV infection in New York City. *HIV Med*. 2021;22(1):e1-e2.

44. Mondi A, Citini E, Colavita F, et al. COVID-19 in people living with HIV: clinical implications of dynamics of the immune response to SARS-CoV-2. *J Med Virol*. 2020;93:1796-1804.

45. Nagarankanti SR, Okoh AK, Grinberg S, Bishburg E. Clinical outcomes of patients with COVID-19 and HIV coinfection. *J Med Virol*. 2020:93:1687-1693.

46. Okoh AK, Bishburg E, Grinberg S, Nagarankanti S. COVID-19 pneumonia in patients with HIV: a case series. *J Acquir Immune Deficiency Syndrom*. 2020;85(851):e4-e5.

47. Patel RH, Pella PM. COVID-19 in a patient with HIV infection. *J Med Virol*. 2020;92(11):2356-2357.

48. Ridgway JP, Schmitt J, Friedman E, et al. HIV care continuum and COVID-19 outcomes among people living with HIV during the COVID-19 pandemic, Chicago, IL. *AIDS Behav*. 2020;24(10):2770-2772.

49. Ruan L, Zhang Y, Luo Y, et al. Clinical features and outcomes of four HIV patients with COVID-19 in Wuhan, China. *J Med Virol*. 2020:93:133-136.

50. Sachdev D, Mara E, Hsu L, et al. COVID-19 susceptibility and outcomes among people living with HIV in San Francisco. *J Acquire Immune Deficiency Syndromes*. 2021;86(1):19-21.

51. Stoeckle K, Johnston CD, Jannat-Khah DP, et al. COVID-19 in Hospitalized adults with HIV. Open forum infectious diseases. *Open Forum Infect Dis*. 2020;7(8):327.
52. Swaminathan N, Moussa P, Mody N, Lo KB, Patarroyo-Aponte G. COVID-19 in HIV-infected patients: a case series and literature review. J Med Virol. 2020;93:2557-2563.

53. Tesoriero JM, Swain CE, Pierce JL, et al. Elevated COVID-19 outcomes among persons living with diagnosed HIV infection in New York State: results from a population-level match of HIV, COVID-19, and hospitalization databases. medRxiv. 2020.

54. Toombs JM, Van den Abbeele K, Democratis J, Merricks R, Mandal AKJ, Missouris CG. COVID-19 in HIV-infected individuals: a single-centre, prospective cohort. Lancet HIV. 2020;7(8):e554-e564.

55. Vizcarra P, Pérez-Elias MJ, Quereda C, et al. Description of COVID-19 in HIV-infected individuals: a single-centre, prospective cohort. Lancet HIV. 2020;7(8):e554-e564.

56. Wang M, Luo L, Bu H, Xia H. One case of coronavirus disease 2019 (COVID-19) in a patient co-infected by HIV with a low CD4(+) T-cell count. Int J Infect Dis. 2020;96:148-150.

57. Wu Q, Chen T, Zhang H. Recovery from the coronavirus disease-2019 (COVID-19) in two patients with coexisted (HIV) infection. J Med Virol. 2020;92(11):2325-2327.

58. Yang R, Gui X, Zhang Y, Xiong Y, Gao S, Ke H. Clinical characteristics of COVID-19 patients with HIV coinfection in Wuhan, China. Expert Rev Respir Med. 2020;1-7.

59. Zhang JC, Yu XH, Ding XH, et al. New HIV diagnoses in patients with COVID-19: two case reports and a brief literature review. BMC Infect Dis. 2020;20(1):771.

60. Bhaskaran K, Rentsch CT, MacKenna B, et al. HIV infection and COVID-19 death: a population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform. Lancet HIV. 2021;8(1):e24-e32.

61. Cipolat MM, Sprinz E. COVID-19 pneumonia in an HIV-positive woman on antiretroviral therapy and undetectable viral load in Porto Alegre, Brazil. Braz J Infect Dis. 2020;24(5):455-457.

62. Davies MA. HIV and risk of COVID-19 death: a population cohort study from the Western Cape Province, South Africa. medRxiv. 2020.

63. Guo W, Ming F, Dong Y, et al. Driving force of Covid-19 among people living with HIV/AIDS in Wuhan, China. Research square. 2020.

64. Ridgway JP, Schmitt J, Friedman E, et al. HIV care continuum and COVID-19 outcomes among people living with HIV during the COVID-19 pandemic, Chicago, IL. AIDS Behav. 2020;24(10):2770-2772.

65. SeyedAlinaghi S, Ghadimi M, Hajiabdolbaghi M, et al. Prevalence of COVID-19-like symptoms among people living with HIV, and using antiretroviral therapy for prevention and treatment. Curr HIV Res. 2020;18(5):373-380.

66. Ucciferri C, Auricchio A, Di Nicola M, et al. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumat. 2020;2(8):e457-e468.

How to cite this article: SeyedAlinaghi SA, Karimi A, MohsseniPour M, et al. The clinical outcomes of COVID-19 in HIV-positive patients: a systematic review of current evidence. Immum Inflamm Dis. 2021;9:1160-1185. https://doi.org/10.1002/iid3.497