Distributions of \(n \)th Powers in Finite Fields

Aaron Doman

Abstract

In this paper, we first find the distribution of \(n \)th power residues modulo a prime \(p \) by analyzing sums involving Dirichlet characters. We then extend this method to characterize the distribution of powers in finite fields.

Let \(n > 1 \) be an integer. A Dirichlet character mod \(n \) is a homomorphism \(\chi : (\mathbb{Z}/n\mathbb{Z})^\times \to \mathbb{C}^\times \). In other words, \(\chi \) is completely multiplicative and periodic mod \(n \). It is conventional to treat \(\chi \) as a function of integers and to set \(\chi(a) = 0 \) if \(\gcd(a, n) > 1 \) (preserving multiplicativity).

From Euler’s theorem, it follows that if \(\gcd(a, n) = 1 \), then
\[
\chi(a)^{\varphi(n)} = \chi(a^{\varphi(n)}) = \chi(1) = 1,
\]
so the nonzero values of \(\chi \) are all \(\varphi(n) \)th roots of unity. The principal character is the character for which \(\chi(a) = 1 \) if \(\gcd(a, n) = 1 \) and 0 otherwise, which we write as \(\chi_1 \).

Dirichlet characters have some nice orthogonality properties, including
\[
\sum_{1 \leq a \leq n \atop \gcd(a, n) = 1} \chi(a) = \begin{cases}
\varphi(n) & \text{if } \chi = \chi_1 \\
0 & \text{otherwise,}
\end{cases}
\]
as well as
\[
\sum_{\chi} \chi(a) = \begin{cases}
\varphi(n) & \text{if } a \equiv 1 \pmod{n} \\
0 & \text{otherwise,}
\end{cases}
\]
where the sum is taken over all characters mod \(n \).

Here, we will restrict ourselves to the case when \(n \) is an odd prime. Doing so not only makes computations simpler but also allows us to use the fact that there exists a primitive root modulo any prime \(p \), which will be denoted \(g \). Since \(g \) generates \((\mathbb{Z}/p\mathbb{Z})^\times \), it follows that any character mod \(p \) is completely determined by its value at \(g \).

In the work that follows, we consider \(n \)th power residues modulo a prime \(p \). Note that if \(\gcd(n, p - 1) = d \), then there are integers \(u, v \) such that \(un + v(p - 1) = d \), so \(g^d = g^{vn} \) is an \(n \)th power residue. Thus, the \(d \)th power residues are \(n \)th power residues, and vice versa. We therefore assume that \(n \mid p - 1 \).

Before proving any results, we need a key lemma.

Lemma 1: Let \(\chi \) be a non-principal Dirichlet character mod \(p \). Then
\[
\left| \sum_{n=0}^{p-1} \chi(n)e^{2\pi n i / p} \right| = \sqrt{p}.
\]
Proof: We have
\[
\left\| \sum_{n=0}^{p-1} \chi(n)e^{2\pi ni/p} \right\|^2 = \left(\sum_{n=0}^{p-1} \chi(n)e^{2\pi ni/p} \right) \left(\sum_{n=0}^{p-1} \overline{\chi(n)}e^{-2\pi ni/p} \right) = \sum_{0 \leq n,m \leq p-1} \chi(n)\overline{\chi(m)}e^{2\pi i (n-m)/p}.
\]
Making the substitution \(n = m + k \) gives
\[
\sum_{0 \leq n,m \leq p-1} \chi(n)\overline{\chi(m)}e^{2\pi i (n-m)/p} = \sum_{0 \leq k,m \leq p-1} \chi(m+k)\overline{\chi(m)}e^{2\pi ki/p}.
\]
Since \(\chi(0) = 0 \), we can let \(m \) be nonzero. This allows us to invert \(m \), and so
\[
\sum_{0 \leq k,m \leq p-1} \chi(m+k)\overline{\chi(m)}e^{2\pi ki/p} = \sum_{0 \leq k \leq p-1} \sum_{1 \leq m \leq p-1} \chi(1 + km^{-1})e^{2\pi ki/p}.
\]
If \(k = 0 \), then \(\chi(1 + km^{-1}) = 1 \), so the inner sum is \(p - 1 \). Otherwise, as \(m \) varies, \(1 + km^{-1} \) varies over all elements of \(\mathbb{Z}/p\mathbb{Z} \) except 1. The inner sum is therefore \(-e^{2\pi ki/p} \) since \(\chi \neq \chi_1 \). It follows that
\[
\left\| \sum_{n=0}^{p-1} \chi(n)e^{2\pi ni/p} \right\|^2 = p - 1 - \sum_{k=1}^{p-1} e^{2\pi ki/p} = p,
\]
and we are done. \(\blacksquare \)

We now give our first theorem relating Fourier series to the distribution of \(m \)th power residues. For brevity, we let \(R_m \) denote the set of \(m \)th power residues mod \(p \) between 1 and \(p-1 \).

Theorem 1: Let \(m > 1 \) be an integer and \(p \equiv 1 \pmod{m} \) be a prime. Let \(f : [0,1] \to \mathbb{R} \) be a function whose Fourier series converges pointwise to \(f \) on \((0,1) \), say
\[
f(x) = \sum_{n=-\infty}^{\infty} a_n e^{2\pi nix}.
\]
Suppose the sum
\[
S(f) = \sum_{n \neq 0} |a_n|
\]
converges. Then
\[
\left| \sum_{k \in R_m} f\left(\frac{k}{p} \right) - \frac{1}{m} \sum_{k=1}^{p-1} f\left(\frac{k}{p} \right) \right| \leq \left(1 - \frac{1}{m} \right) S(f) \sqrt{p}.
\]

Proof: Let \(\chi \) be a non-principal character mod \(p \) for which \(\chi(g) \) is an \(m \)th root of unity. Then
\[
\sum_{k=1}^{p-1} \chi(k) f\left(\frac{k}{p} \right) = \sum_{n=-\infty}^{\infty} a_n \left[\chi(1)e^{2\pi ni/p} + \chi(2)e^{4\pi ni/p} + \ldots + \chi(p-1)e^{(2p-2)\pi ni/p} \right].
\]
Observe that the RHS can be rewritten as
\[
\sum_{n=-\infty}^{\infty} a_n \overline{\chi(n)} \left[\chi(n)e^{2\pi ni/p} + \chi(2n)e^{4\pi ni/p} + \cdots + \chi(n(p-1))e^{(2p-2)\pi ni/p} \right],
\]
since \(\chi(n)\overline{\chi(n)} = 1 \) unless \(p \mid n \), in which case the summand is 0. This sum, in turn, is equal to
\[
\sum_{n=-\infty}^{\infty} a_n \overline{\chi(n)} \left[\chi(1)e^{2\pi i/p} + \chi(2)e^{4\pi i/p} + \cdots + \chi(p-1)e^{(2p-2)\pi i/p} \right].
\]
The bracketed expression is precisely the Gauss sum from Lemma 1, so taking absolute values gives
\[
\left| \sum_{k=1}^{p-1} \chi(k)f \left(\frac{k}{p} \right) \right| = \sqrt{p} \left| \sum_{n=-\infty}^{\infty} a_n \overline{\chi(n)} \right|
\leq \sqrt{p} \sum_{n \neq 0} |a_n|
= S(f)\sqrt{p}.
\]
We therefore have
\[
\left| \sum_{k=1}^{p-1} \chi(k)f \left(\frac{k}{p} \right) \right| \leq S(f)\sqrt{p}.
\]
Summing over all non-principal \(\chi \) for which \(\chi(g)^m = 1 \), we get
\[
\sum_{\chi \neq 1} \left| \sum_{k=1}^{p-1} \chi(k)f \left(\frac{k}{p} \right) \right| \leq (m-1)S(f)\sqrt{p}.
\]
Again by the triangle inequality,
\[
\left| \sum_{\chi \neq 1} \sum_{k=1}^{p-1} \chi(k)f \left(\frac{k}{p} \right) \right| \leq (m-1)S(f)\sqrt{p}
\]
\[
\left| \sum_{k \in R_m} f \left(\frac{k}{p} \right) - \sum_{k=1}^{p-1} f \left(\frac{k}{p} \right) \right| \leq (m-1)S(f)\sqrt{p},
\]
where in the second line we used the fact that summing over all \(\chi \) for which \(\chi(g)^m = 1 \) gives each \(m \)th power residue weight \(m \) and each nonresidue weight 0. Dividing both sides of the inequality by \(m \), we have the desired result.

We will now use Theorem 2 to prove another result that says that the \(m \)th power residues are randomly distributed, roughly speaking. We require the following lemmas.

Lemma 2: Let \(t, x \) be real numbers with \(0 < t \leq 1 \) and \(0 < x < 1 \). Then
\[
\sum_{n=1}^{\infty} n \frac{t^n \sin 2\pi nx}{n} = \arctan \left(\frac{t \sin 2\pi x}{1 - t \cos 2\pi x} \right).
\]
Proof: We have
\[
\sum_{n=1}^{\infty} \frac{t^n \sin 2\pi nx}{n} = \text{Im}\left(\sum_{n=1}^{\infty} \frac{t^n e^{2\pi inx}}{n} \right) = -\text{Im}[\log(1 - te^{2\pi ix})] = \arctan\left(\frac{t \sin 2\pi x}{1 - t \cos 2\pi x} \right).
\]
The last step requires some care in choosing the branch of \(\log z\), but it suffices to check that equality holds for a single pair \((t, x)\). ■

Lemma 3: Let \(\delta, t\) be positive numbers with \(\delta \leq 1/3\) and \(t \leq 1/(1 + 3\delta^2)\). Then
\[
\frac{1 - t \cos 2\pi \delta}{t \sin 2\pi \delta} - \pi \delta \leq \frac{\pi}{2\delta} \left(\frac{1}{t} - 1 \right).
\]
Proof: We have
\[
\frac{1 - t \cos 2\pi \delta}{t \sin 2\pi \delta} - \pi \delta = \left(\frac{1}{t} - 1 \right) \csc 2\pi \delta + \csc 2\pi \delta - \cot 2\pi \delta - \pi \delta
\]
\[
= \left(\frac{1}{t} - 1 \right) \csc 2\pi \delta + (\tan \pi \delta - \pi \delta).
\]
Now both \(x \csc 2\pi x\) and \((\tan \pi x)/x\) are increasing on \((0, 1/3)\), so we have
\[
\csc 2\pi \delta \leq \frac{2}{3\sqrt{3}\delta}, \tan \pi \delta \leq 3\sqrt{3}\delta.
\]
Thus, it suffices to prove that
\[
\frac{2}{3\sqrt{3}\delta} \left(\frac{1}{t} - 1 \right) + (3\sqrt{3} - \pi)\delta \leq \frac{\pi}{2\delta} \left(\frac{1}{t} - 1 \right),
\]
which after rearranging becomes
\[
\frac{1}{t} - 1 \geq \frac{(3\sqrt{3} - \pi)\delta^2}{2 - \frac{3\sqrt{3}}{\delta}}.
\]
The RHS is less than \(3\delta^2\), so taking \(t \leq 1/(1 + 3\delta^2)\) is sufficient and we are done.

Theorem 2: Let \(m > 1\) be an integer and \(C\) be a constant greater than \(\frac{3}{4} (1 - \frac{1}{m})\). Then for all sufficiently large primes \(p \equiv 1 \pmod{m}\), the number of \(m\)th power residues in any interval \((a, b) \subset (0, p)\) is within \(C \sqrt{p} \log p\) of \((b - a)/m\).

Proof: Take a prime \(p \equiv 1 \pmod{m}\) and let \(\alpha = a/p, \beta = b/p\). Consider the function
\[
f(x) = \begin{cases} 1 & \text{if } \alpha < x < \beta \\ \frac{1}{2} & \text{if } x = \alpha \text{ or } x = \beta \\ 0 & \text{otherwise.} \end{cases}
\]
It is clear that
\[
\left| \sum_{k \in R_m} f\left(\frac{k}{p} \right) - \frac{1}{m} \sum_{k=1}^{p-1} f\left(\frac{k}{p} \right) \right|
\]

4
is the difference between the number of mth power residues in (a, b) and $(b-a)/m$, up to some small constant. To bound this quantity, we examine the Fourier series of f. It is straightforward to find that

$$f(x) = (\beta - \alpha) + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2\pi n(x-\alpha)) - \sin(2\pi n(x-\beta))}{n}.$$

This series converges pointwise to f, but

$$\left| \sum_{n \neq 0} |a_n| \right| = \sum_{n \neq 0} \left| \frac{e^{-2\pi in\alpha} - e^{-2\pi in\beta}}{2\pi |n|} \right|,$$

which may diverge. Thus, we cannot directly apply Theorem 2 and instead must approximate f; this will give us the error bound of $O(\sqrt{p} \log p)$.

Consider the functions

$$f_t(x) = (\beta - \alpha) + \frac{1}{\pi} \sum_{n=1}^{\infty} t^n \frac{\sin(2\pi n(x-\alpha)) - \sin(2\pi n(x-\beta))}{n}$$

for $0 < t < 1$. All these functions satisfy the conditions of Theorem 2, so

$$\left| \sum_{k \in \mathbb{R}_m} f_t \left(\frac{k}{p} \right) - \frac{1}{m} \sum_{k=1}^{p-1} f_t \left(\frac{k}{p} \right) \right| \leq \left(1 - \frac{1}{m} \right) S(f_t) \sqrt{p}.$$

If we can make $|f(x) - f_t(x)|$ small by taking t near 1, then we can obtain a similar bound for f. We therefore need to determine the rate at which f_t converges to f.

Let

$$g_t(x) = \sum_{n=1}^{\infty} \frac{\sin(2\pi n x)}{n} - \sum_{n=1}^{\infty} \frac{t^n \sin(2\pi n x)}{n},$$

where x is in some interval $[\delta, 1 - \delta]$ to avoid the discontinuities at $x = 0$ and $x = 1$. Differentiating with respect to x yields

$$g'_t(x) = -\pi - \frac{2\pi (t \cos 2\pi x - t^2)}{1 - 2t \cos 2\pi x + t^2}$$

by Lemma 2. Since $t < 1$, g'_t is negative and so the extreme values of g_t occur at the endpoints of the interval considered. Furthermore, $g_t(1 - \delta) = -g_t(\delta)$, so

$$|g_t(x)| \leq |g_t(\delta)| = \left| \frac{\pi - 2\pi \delta}{2} - \arctan \left(\frac{t \sin 2\pi \delta}{1 - t \cos 2\pi \delta} \right) \right|,$$

again by Lemma 2. From $0 < \delta < 1/2$ it follows that

$$\frac{t \sin 2\pi \delta}{1 - t \cos 2\pi \delta} > 0.$$

Thus, we can combine the $\pi/2$ and arctangent terms to get

$$\left| \arctan \left(\frac{1 - t \cos 2\pi \delta}{t \sin 2\pi \delta} \right) - \pi \delta \right|$$
for the bound on $|g_t|$. We remove the absolute value bars and use Laurent series to get

$$|g_t(x)| \leq \arctan\left(\frac{1 - t \cos 2\pi \delta}{t \sin 2\pi \delta}\right) - \pi \delta$$

$$\leq \frac{1 - t \cos 2\pi \delta}{t \sin 2\pi \delta} - \pi \delta$$

$$= \left(\frac{1}{t} - 1\right) \cdot \frac{1}{2\pi \delta} + O(\delta).$$

By increasing the constant $1/(2\pi)$ to $\pi/2$, we can ignore the higher-order terms for δ sufficiently small (depending on t).

By Lemma 3, if $\delta \leq 1/3$ and $t \leq 1/(1 + 3\delta^2)$, then

$$\left|\sum_{n=1}^{\infty} \frac{\sin 2\pi nx}{n} - \sum_{n=1}^{\infty} \frac{t^n \sin 2\pi nx}{n}\right| \leq \frac{\pi}{2\delta} \left(\frac{1}{t} - 1\right)$$

for $\delta \leq x \leq 1 - \delta$. We can then bound $|f_t(x) - f(x)|$ as follows:

$$|f(x) - f_t(x)| = \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(1 - t^n)[\sin(2\pi n(x - \alpha)) - \sin(2\pi n(x - \beta))]}{n}$$

$$\leq \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(1 - t^n)\sin(2\pi n(x - \alpha))}{n} + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(1 - t^n)\sin(2\pi n(x - \beta))}{n}$$

$$\leq \frac{1}{\delta} \left(\frac{1}{t} - 1\right),$$

where δ is chosen so that x is at least a distance δ from the discontinuities at α and β. Since we care only about $x = 1/p, 2/p, \ldots, (p-1)/p$, the optimal δ is

$$\delta = \min_{1 \leq k \leq p-1} \min\left\{\frac{k}{p} - \alpha, \frac{k}{p} - \beta\right\}.$$

We can do far better, however, by setting aside the two multiples of $1/p$ nearest to α and similarly for β (if α or β is a multiple of $1/p$, it does not matter which of the neighboring points we choose). Ignoring these four values of k/p will increase our error bound by some small quantity. On the other hand, we can now safely take $\delta = 1/p$ since the remaining values of k/p are more than $1/p$ away from α and β. Then for p sufficiently large,

$$\left|f\left(\frac{k}{p}\right) - f_t\left(\frac{k}{p}\right)\right| \leq p \left(\frac{1}{t} - 1\right)$$

for all but the four special values of k, which we handle separately. From (1), it follows that $|g_t(x)| \leq \pi/2$ for any t, x, so

$$|f(x) - f_t(x)| \leq \frac{1}{\pi} \left(\frac{\pi}{2} + \frac{\pi}{2}\right) = 1.$$

Letting

$$\epsilon = p \left(\frac{1}{t} - 1\right),$$

then for p sufficiently large,

$$\left|f\left(\frac{k}{p}\right) - f_t\left(\frac{k}{p}\right)\right| \leq \epsilon$$

for all but the four special values of k, which we handle separately. From (1), it follows that $|g_t(x)| \leq \pi/2$ for any t, x, so

$$|f(x) - f_t(x)| \leq \frac{1}{\pi} \left(\frac{\pi}{2} + \frac{\pi}{2}\right) = 1.$$
we therefore have

\[
\left| f\left(\frac{k}{p}\right) - f_t\left(\frac{k}{p}\right) \right| \leq \begin{cases} 1 & \text{if } \frac{k}{p} \text{ is one of four nearest to } \alpha, \beta \\ \epsilon & \text{otherwise.} \end{cases}
\]

Then by Theorem 2 applied to \(f_t \) and the triangle inequality,

\[
\left| \sum_{k \in R_m} f\left(\frac{k}{p}\right) - \frac{1}{m} \sum_{k=1}^{p-1} f\left(\frac{k}{p}\right) \right| \leq \left(1 - \frac{1}{m} \right) S(f_t) \sqrt{p} + \frac{2p - 2}{m} \epsilon + 4,
\]

and we wish to choose \(t \) so that the size of the the RHS is minimal. We take \(\epsilon = 1/\sqrt{p} \) so that the second and third terms are negligible compared to the first. This corresponds to

\[
t = \frac{1}{1 + p^{-3/2}}.
\]

The conditions of Lemma 3 are satisfied since \(\delta = 1/p \leq 1/3 \) and \(t < 1/(1 + 3\delta^2) \).

Now we have

\[
S(f_t) = \frac{1}{2\pi} \sum_{n \neq 0} t|n| \left| e^{-2\pi n\alpha} - e^{-2\pi n\beta} \right| n \log(1 - t)
\]

\[
= \frac{2}{\pi} \log(p^{3/2} + 1).
\]

Hence, the dominant term in the bound is at most

\[
\frac{2}{\pi} \left(1 - \frac{1}{m} \right) \sqrt{p} \log(p^{3/2} + 1).
\]

Finally, we observe that the lower bound on \(p \) needed to get these estimates depends on \(C \), but not on \(\alpha \) or \(\beta \). The result immediately follows.

Theorem 2 is, up to a constant, a consequence of the Polya-Vinogradov inequality [1]. Rather than looking at power residues in \(\mathbb{Z}/p\mathbb{Z} \) over an interval, we will now examine the distribution of power residues in a field extension over a higher-dimensional box. In the work that follows, we write \(\mathbb{F}_p \) in lieu of \(\mathbb{Z}/p\mathbb{Z} \) to emphasize that we are working with field extensions. Here, \(R_m \) will denote the set of \(m \)-th powers in the chosen finite field.

Theorem 3: Fix integers \(d, m > 1 \) and let \(p \) be a prime for which \(m \mid p^d - 1 \). Choose a polynomial of degree \(d \) with integer coefficients that is irreducible over \(\mathbb{F}_p \), and let \(\xi \) be one of its roots. It follows that \(\mathbb{F}_p(\xi) \) is a field, and every element can be written uniquely in the form

\[
c_0 + c_1\xi + c_2\xi^2 + \cdots + c_{d-1}\xi^{d-1},
\]

where the \(c_i \)'s are in \(\mathbb{F}_p \). Then for any \(d \)-dimensional box

\[
R = [a_0, b_0] \times [a_1, b_1] \times \cdots \times [a_{d-1}, b_{d-1}] \subset (0, p)^d,
\]
the number of mth powers in $\mathbb{F}_p(\xi)$ with $(c_0, c_1, \ldots, c_{d-1}) \in R$ is, up to a small error,

$$\frac{(|b_0| - |a_0|)(|b_1| - |a_1|) \cdots (|b_{d-1}| - |a_{d-1}|)}{m}.$$

This error is bounded in absolute value by

$$\left[\frac{2}{\pi \sqrt{7 \log(3p^d + 1)}} \right]^d + \frac{2d}{m} p^{d/2}. $$

Proof: First note that since ξ is a root of a polynomial that is irreducible over \mathbb{F}_p, the extension $\mathbb{F}_p(\xi)$ is indeed a field. Call this field F. The extension is of degree d, so each element can be written uniquely as a linear combination of $1, \xi, \xi^2, \ldots, \xi^{d-1}$. We now need to prove the claim about the distribution of the mth powers.

Since F is a finite field, its group of units is cyclic; let g be a generator of this group. Since $m \mid p^d - 1$, the nonzero mth powers in the field are precisely the powers of g^m. We define a character χ to be a multiplicative function from F to \mathbb{C}^\times, which is completely determined by its value at g. As before, we will count the mth powers via these characters.

Next, observe that we can move the vertices of R slightly without changing the number of lattice points inside it. We can replace a_i with $[a_i] - 1/2$ and b_i with $|b_i| + 1/2$, and this does not alter the number of mth powers in the box or the main term in the estimate. Thus, without loss of generality, we suppose the a_i’s and b_i’s are half-integers. Let $\alpha_j = a_j/p$, $\beta_j = b_j/p$, and

$$R' = [\alpha_0, \beta_0] \times \cdots \times [\alpha_{d-1}, \beta_{d-1}].$$

Now that R has been scaled down by a factor of p, we let $1_{R'}$ be the indicator function of R'. We have

$$1_{R'}(x_0, x_1, \ldots, x_{d-1}) = \prod_{j=0}^{d-1} 1_{[\alpha_j, \beta_j]}(x_j),$$

and each term on the RHS has a Fourier series that converges pointwise to the function except at α_j and β_j. Let $f_t(x_0, x_1, \ldots, x_{d-1})$ be the Fourier series of $1_{R'}$ and g_j be the Fourier series of $1_{[\alpha_j, \beta_j]}$. We also introduce families of functions $g_{j,t}$ whose Fourier coefficients are those of g_j weighted by $t^{|n|}$. Similarly, f_t is a weighted version of f, defined to be the product of the $g_{j,t}$’s. Thus, we can write

$$f_t(x_0, x_1, \ldots, x_{d-1}) = \sum_{n_0, n_1, \ldots, n_{d-1}} a_{n_0, n_1, \ldots, n_{d-1}} \exp[2\pi i (n_0 x_0 + n_1 x_1 + \cdots + n_{d-1} x_{d-1})],$$

where $a_{j,k}$ is the coefficient of $e^{2\pi i k x}$ in the Fourier series of $g_{j,t}$.

To count the mth powers, we first need to bound

$$\sum_{0 \leq e_0, c_1 \ldots c_{d-1} \leq p-1} \chi(c_0 + c_1 \xi + \cdots + c_{d-1} \xi^{d-1}) \zeta_n^{e_0 c_0 + e_1 c_1 + \cdots + e_{d-1} c_{d-1}},$$

where χ is a non-principal character, ζ is a primitive pth root of unity, and the n_i’s are arbitrary integers. Let

$$\psi(c_0 + c_1 \xi + \cdots + c_{d-1} \xi^{d-1}) = \zeta_n^{e_0 c_0 + e_1 c_1 + \cdots + e_{d-1} c_{d-1}},$$

and then substitute $c_j = \alpha_j x_j + \beta_j n_j$ and apply the above bound in place of ψ.
which, not coincidentally, is a homomorphism from \((F, +)\) to \(\mathbb{C}^\times\). We wish to prove that

\[
\left| \sum_{z \in F} \chi(z) \psi(z) \right| = \begin{cases} 0 & \text{if } p \mid n_0, n_1, \ldots, n_{d-1} \\ p^{d/2} & \text{otherwise.} \end{cases}
\]

The first case is easy to check, since then \(\psi(z)\) is always 1. Otherwise, we write

\[
\left| \sum_{z \in F} \chi(z) \psi(z) \right|^2 = \sum_{z, w \in F} \chi(z) \psi(z) \chi(w) \psi(w).
\]

Now make the substitution \(z = w + u\) to get

\[
\sum_{z, w \in F} \chi(z) \psi(z) \chi(w) \psi(w) = \sum_{u \in F} \sum_{w \in F^\times} \chi(1 + uw^{-1}) \psi(u).
\]

If \(u = 0\), then \(1 + uw^{-1} = 1\) for all \(w\). Otherwise, for fixed nonzero \(u\), \(1 + uw^{-1}\) varies over all elements of the field except 1. Thus,

\[
\sum_{u \in F} \sum_{w \in F^\times} \chi(1 + uw^{-1}) \psi(u) = (p^d - 1) - \sum_{u \in F^\times} \psi(u)
\]

and it is straightforward to check that the sum on the RHS is zero when \(\psi\) is not identically 1. This proves the claim.

From this bound and equation (2), we immediately get that

\[
\left| \sum_{0 \leq c_0, c_1, \ldots, c_{d-1} \leq p-1} \chi(c_0 + c_1 \xi + \cdots + c_{d-1} \xi^{d-1}) f_t \left(\frac{c_0}{p}, \frac{c_1}{p}, \ldots, \frac{c_{d-1}}{p} \right) \right|
\]

\[
\leq p^{d/2} \left| \sum_{n_0, n_1, \ldots, n_{d-1} \neq 0} a_0, a_1, n_1 \ldots a_{d-1}, n_{d-1} \right|
\]

\[
= p^{d/2} \prod_{j=0}^{d-1} \sum_{n_j} |a_{j, n_j}|,
\]

where in the last line we split the sum into a product and used the triangle inequality. Summing over those non-principal \(\chi\) for which \(\chi(g)^m = 1\) and dividing through by \(m\), we get

\[
\left| \sum_{z \in R_m} f_t \left(\frac{z}{p} \right) - \frac{1}{m} \sum_{z \in F} f_t \left(\frac{z}{p} \right) \right| \leq \left(1 - \frac{1}{m} \right) p^{d/2} \prod_{j=0}^{d-1} \sum_{n_j \neq 0} |a_{j, n_j}|,
\]

where \(z/p\) denotes the point \((c_0/p, c_1/p, \ldots, c_{d-1}/p)\). For brevity, we let

\[
S(g_j, t) = \sum_{n_j \neq 0} |a_{j, n_j}|.
\]
Then the above inequality becomes

\[
\left| \sum_{z \in R_m} f_t\left(\frac{z}{p}\right) - \frac{1}{m} \sum_{z \in F} f_t\left(\frac{z}{p}\right) \right| \leq \left(1 - \frac{1}{m} \right) p^{d/2} \prod_{j=0}^{d-1} S(g_{j,t}).
\]

Suppose we choose \(t \) so that \(|g_{j,t}(x) - g_j(x)| \leq \epsilon \) for some fixed \(\epsilon > 0 \) and all \(j = 0, 1, \ldots, d - 1 \). Using the triangle inequality and the fact that \(|g_{j,t}(x)| \leq 1 \) for all \(j, t, x \), we get

\[
|f_t(x_0, x_1, \ldots, x_{d-1}) - f(x_0, x_1, \ldots, x_{d-1})| = \left| \prod_{j=0}^{d-1} g_{j,t}(x_j) - \prod_{j=0}^{d-1} g_j(x_j) \right| \leq \epsilon.
\]

Then when we approximate \(f \) with \(f_t \) on the \(p^d - 1 \) points in question, we will get an error of order \(p^d \epsilon \). We therefore take \(\epsilon = \frac{p}{2} \) so that this term is negligible compared to the other terms in the bound. We use Lemma 3 to find sufficient conditions for

\[
|g_{j,t}(x) - g_j(x)| \leq \frac{p^{d/2}}{2}
\]

to hold for \(x \) in some interval. Taking

\[
\delta = \frac{p^{-d/2}}{3}, \quad t = \frac{1}{1 + 3\delta^2} = \frac{1}{1 + p^{-d/3}},
\]

the conditions of the lemma hold and so

\[
|g_{j,t}(x) - g_j(x)| \leq \frac{1}{\delta} \left(\frac{1}{t} - 1 \right) = p^{-d/2},
\]

where \(x \) is at least \(\delta \) away from the discontinuities of \(g_j \).

Since the vertices of \(R \) were taken to have half-integer coordinates, every lattice point \((c_0, c_1, \ldots, c_{d-1})\) satisfies \(|c_j - a_j| \geq 1/2 \) and \(|c_j - b_j| \geq 1/2 \) for all \(j \). But \(\delta < 1/(2p) \), so when we rescale by \(1/p \), we get

\[
\left| \frac{c_j}{p} - \alpha_j \right|, \left| \frac{c_j}{p} - \beta_j \right| > \delta
\]

for all \(j \). In other words, \(c_j/p \) is at least \(\delta \) away from the discontinuities of \(g_j \) and so

\[
|f_t\left(\frac{z}{p}\right) - f\left(\frac{z}{p}\right)| \leq dp^{-d/2}
\]

for all \(z \in F \).

We now combine all this information to get the desired result. For the above choice of \(t \), we have

\[
S(g_{j,t}) = \sum_{n\neq0} t^{|n|} \left| \frac{e^{-2\pi i n \alpha_j} - e^{-2\pi i n \beta_j}}{2\pi i n t} \right| \\
\leq \frac{1}{\pi} \sum_{n\neq0} t^{|n|} \left| \frac{1}{n} \right| \\
= \frac{2}{\pi} \log \left(\frac{1}{1 - t} \right) \\
= \frac{2}{\pi} \log(3p^d + 1).
\]
From (3), it then follows that

$$\left| \sum_{z \in R_m} f_t \left(\frac{z}{p} \right) - \frac{1}{m} \sum_{z \in F} f_t \left(\frac{z}{p} \right) \right| \leq \left(1 - \frac{1}{m} \right) p^{d/2} \left(\frac{2}{\pi} \log(3p^d + 1) \right)^d.$$

This, of course, can be weakened slightly by removing the factor of $1 - 1/m$, and then we get the first term in the error bound from the theorem.

We have chosen t so that $|f_t - f| \leq dp^{-d/2}$ for the points in question, so we have

$$\left| \sum_{z \in R_m} f \left(\frac{z}{p} \right) - \frac{1}{m} \sum_{z \in F} f \left(\frac{z}{p} \right) \right| \leq \left(\frac{2}{\pi} \sqrt{\log(3p^d + 1)} \right)^d + \frac{2(p^d - 1)}{m}, dp^{-d/2}.$$

This can be weakened slightly to give the cleaner bound

$$\left| \sum_{z \in R_m} f \left(\frac{z}{p} \right) - \frac{1}{m} \sum_{z \in F} f \left(\frac{z}{p} \right) \right| \leq \left(\frac{2}{\pi} \sqrt{\log(3p^d + 1)} \right)^d + \frac{2d p^{d/2}}{m}.$$

This is precisely the result we sought, since $f = 1_{R'}$ except on the boundary of R', but $\partial R'$ does not contain any of the rescaled lattice points. This concludes the proof.

References

[1] C. Pomerance, Remarks on the Pólya-Vinogradov Inequality, Integers (Proceedings of the Integers Conference, October 2009), 11A (2011), Article 19, 11pp.