Blood Protein Derivative Viral Safety: Observations and Analysis

BERNARD HOROWITZ, Ph.D.

New York Blood Center, New York, New York

Received April 17, 1990

The well-documented viral safety of albumin arises from several factors operating in concert, including virus removal during preparation, immune neutralization, serendipitous inactivation, virus sterilization through pasteurization. Safety with respect to HBV transmission was achieved even prior to the development of sensitive screening tests for HBsAg, as can be predicted given the initial virus load and the influence of factors affecting removal and inactivation. Coagulation factor concentrates, as traditionally prepared, are known to have transmitted the viral agents of hepatitis and AIDS with high frequency. Application of virucidal procedures to these concentrates, in some cases, appears to have eliminated virus transmission, raising the question as to whether absolute safety has now been achieved. Clinical proof of absolute safety is made difficult by the small number of eligible patients who can be monitored, lengthy and expensive monitoring procedures, and opportunity for transmission of virus by product-independent routes. Based on viral load analysis, modern coagulation factor concentrates are predicted to have the same probability of freedom from HIV, HBV, and HCV transmission as that exhibited by albumin.

INTRODUCTION

A number of articles reviewing the safety of blood derivatives have appeared recently [1–5]. For the most part, these have given an overview of the various methods currently employed to inactivate viruses together with a comparison of their effectiveness, based on animal and clinical study results. This paper will examine the issue from a different perspective, one that is more theoretical and statistical, in which predicted rates of infectivity of various products for blood-borne viruses are calculated based on information concerning viral loads and compared with the actual published incidence data. By doing so, it is hoped that we will be better able to judge whether the current generation of coagulation factor concentrates are truly safe with regard to the transmission of human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV; formerly non-A, non-B hepatitis virus), the viruses of principal concern in blood protein derivatives.

ALBUMIN SAFETY

As a consequence of pasteurization, combined with methods of purification which remove virus, albumin solutions have achieved an admirable record of virus safety [6]. The decision to prescribe and infuse albumin solutions today rests solely on issues of

Abbreviations: AIDS: acquired immunodeficiency syndrome FFP: fresh frozen plasma HBsAg: hepatitis B surface antigen HBV: hepatitis B virus HCV: hepatitis C virus HIV: human immunodeficiency virus ID50: the amount of virus causing infection in 50 percent of cases NANBH: non-A, non-B hepatitis virus

Work supported in part by Grant No. HL 41221 from NHLBI

Address reprint requests to: Bernard Horowitz, Ph.D., New York Blood Center, 310 East 67th Street, New York, NY 10021

Copyright © 1990 by The Yale Journal of Biology and Medicine, Inc. All rights of reproduction in any form reserved.
medical need and cost, and not on issues of safety, which is as it should be. Pasteurized albumin is considered to be so innocuous that it is frequently used as the placebo in clinical trials of other protein solutions, and as a formulation aid. Understanding why albumin is as safe as it is will place into context the new methods of virus inactivation applicable to far more labile molecules than albumin.

Analysis of virus safety requires an appreciation of the initial viral load, the extent to which virus is removed during processing, serendipitous inactivation which occurs during processing and/or storage, the efficacy of the inactivation method employed, and host susceptibility factors. Provided we are willing to accept a degree of uncertainty, an estimate of each for HBV is provided in Table 1 for susceptible hosts [1,7-12]. Prior to implementation of screening assays for HBsAg, both the proportion of units containing infectious HBV and the titer of HBV contained in infectious units was substantially higher than that observed today. Under this circumstance, the probability that a vial of albumin would contain infectious HBV is calculated at 3 \times 10^{-6}. Phrased differently, one vial per 300,000 is predicted to contain infectious HBV. This calculation is in good agreement with the occasional, but rare, outbreak of hepatitis B arising from albumin prepared from unscreened donors. With inclusion of HBsAg screening, the number of vials/ID_{50} exceeds 10^9. This corresponds to the well-documented belief that albumin is safe [6].

While this analysis of safety may appear to be esoteric, it should be accepted with the same confidence as is recognized when assessing methods of bacterial sterilization, such as by autoclaving, sterile filtration, ultraviolet irradiation, and the like. In the case of albumin manufacture and HBV transmission, it is important to understand that albumin's large margin of safety arises from a combination of factors operating in concert (Fig. 1). The safety margin is sufficiently high that the U.S. Food and Drug Administration does not generally demand a product recall following the accidental inclusion of plasma positive for HBsAg into a plasma pool.

SAFETY OF COAGULATION FACTOR CONCENTRATES

Traditionally Manufactured Concentrates

Coagulation factor concentrates, as traditionally prepared, transmit HIV and HCV [6,14-16]. Based on a combination of published evidence and assumptions concerning HCV properties during fractionation, a viral load analysis similar to that provided for albumin can be made.

The total quantity of HIV, HBV, and HCV in a plasma pool used in the manufacture of a traditional AHF concentrate is estimated at 2 \times 10^3, 3 \times 10^5, and 4 \times 10^7 infectious doses (ID_{50}), respectively (Table 2) [3,6,14,18,20-28]. For HIV, cryoprecipitation and aluminum hydroxide adsorption have been reported to remove 10^3 ID_{50}, and lyophilization results in the inactivation of 10^1 ID_{50} [29]. Consequently, on filling, one out of four vials would be expected to contain infectious HIV. A similar calculation performed for both HBV and HCV predicts that 30,000 vials would contain one ID_{50} of HBV and 1/0.03 vials (i.e., 40 ID_{50}/vial) would contain infectious HCV. Based on these estimates, a hemophiliac treated for one year with 80,000 units of coagulant in the form of these concentrates would have a probability of being exposed to HIV, HBV, and HCV of, respectively, 100 percent, 0.3 percent, and 100 percent. Actual transmission rates are in accord with these calculated values [6,14,15,17-19]. Of interest, as
compared with a hemophiliac treated with the same amount of AHF in the form of single-donor cryoprecipitates, a hemophiliac treated with concentrate had a fourfold higher chance of exposure to HIV, a ninetyfold lower chance of exposure to HBV (as a consequence of antibody neutralization on pooling many units of plasma), and the exposure to HCV was virtually certain for each. Clinical experience is in line with these predictions [15–17].
Modern Coagulation Factor Concentrates

Laboratory and preclinical validation of virucidal methods indicate a wide variance in their effectiveness; some methods inactivate $<10^4$ ID$_{50}$ of HIV, HBV, and/or HCV (Table 3A), and other methods inactivate the highest levels of challenge available, 10^6-10^{11} ID$_{50}$ for HIV, 10^6 ID$_{50}$ for HBV, and 10^5 ID$_{50}$ for HCV (Table 3B). With 200 ID$_{50}$ of HIV and 0.03 ID$_{50}$ of HBV remaining in the fractionated pool (Table 2, line 7) application of even a modestly effective virucidal procedure, e.g., one that inactivates 10^3 ID$_{50}$, is calculated to provide rates of infectivity which approach zero. This rate compares well with the observed transmission rates; 2/157 and 0/35 carefully monitored patients were infected with HIV and HBV, respectively (Table 3A). Application of the same virucidal procedure to the quantity of HCV estimated to be present, 40,000 ID$_{50}$, is not, however, sufficient to yield an HCV-safe product. This prediction is borne out by the observation that 29/67 of patients developed signs of HCV infection during the course of several months of treatment (Table 3A). In contrast, highly virucidal methods, defined as those shown or likely to inactivate $>10^5$ ID$_{50}$ of HIV, HBV, and HCV (Table 3B), are predicted to provide a product found to be safe in clinical transmission studies, and such has been the case. HBV and HCV transmission has occurred rarely and, where observed, may well represent transmission by community vectors and not by product.

What, then, is the predicted viral safety of modern coagulation factor concentrates?

Adoption of the solvent/detergent inactivation method [30,31] or another similarly potent virucidal procedure, when coupled with improvements in donor screening and product purification, is calculated to increase the vials/ID$_{50}$ to $>10^{16}$ for HIV, $>10^{13}$ for HBV, and to $>10^6$ for HCV (Table 4). This rate compares favorably with the predicted HBV safety of albumin (Fig. 2). Furthermore, it should be remembered that the values for vials/ID$_{50}$ in AHF concentrates are minimums, since, in the validation studies, virus kill was complete to the extent of challenge. The potential for virus kill can be substantially higher.

CONCLUSION

Substantial progress has been made toward eliminating virus transmission by blood derivatives. Albumin has long been considered a virally safe product, and clinical
TABLE 2

Viral Load of Traditional AHF Concentrates*

Line	HIV	HBV	HCV	
1	Number of units/batch	24,000	24,000	24,000
2	% with virus	0.04	0.05	2.00
3	Virus in infectious unit (ID$_{50}$/mL)	1×10^3	1×10^3	3×10^2
4	Virus in pool (ID$_{50}$)	2×10^3	3×10^3	4×10^3
5	Removal during processing	1×10^1	1×10^2	1×10^2
6	Inactivation during processing	1×10^1	1×10^2	1×10^2
7	Residual virus in pool (ID$_{50}$)	2×10^2	3×10^{-2}	4×10^4
8	Vials filled	900	900	900
9	ID$_{50}$/vial	3×10^{-1}	3×10^{-3}	40
10	Vials/ID$_{50}$	4	30,000	0.03
11	Annual probability of exposure	1.0	0.003	1.00
12	Annual probability of exposure with single donor cryoprecipitate	0.23	0.27	1.00

*Prior to HIV and HCV antibody tests, virus sterilization, and extensive purification

Line 2: HIV—Of 1,027,786 units of donated blood tested following licensure of HIV antibody screening, 333 were western-blot positive, or 0.038 percent [40]. In addition, it has been estimated that from 1/40,000–1/250,000 (0.0004 percent–0.0025 percent) anti-HIV-negative donor bloods are infectious for HIV [18,21,41,42].

HBV—Refer to Table 1.

HCV—Reported incidence of hepatitis transmission with HBsAg-negative blood varies from 5.9–21 percent of recipients [21, a summary]. On a per-unit basis, the risk varied from 0.5 to 2.9 percent.

Line 3: HIV—The mean titer of HIV in filtered plasma from asymptomatic patients and in AIDS patients was reported to be $10^{1.4}$ and $10^{2.5}$ TCID$_{50}$/mL, respectively [43]. In a more recent study, HIV titers in plasma for patients with asymptomatic infections, AIDS, or ARC were, respectively, 30, 3,500, and 3,200 TCID$_{50}$/mL [25]. Viral titers of infectious plasma placed into fractionation might be higher than these values as a result of leukocyte contamination. For asymptomatic patients, 20 per million peripheral blood mononuclear cells had isolatable virus [25].

HBV—Refer to Table 1.

HCV—Chronic-phase plasma has been reported to contain infectious titers of 10^1–10^3/mL [28]. Acute-phase plasma can contain 10^6 ID$_{50}$/mL, but this has been rare [3].

Line 4: Line 1 x 250 mL/unit x line 2 x line 3

Line 5: 95 percent of HIV antigen added to plasma was found in cryoprecipitate, an intermediate fraction for AHF processing [44]. Aluminum hydroxide adsorption and subsequent purification by precipitation have been reported to remove/inactivate approximately 1 log each of other retroviruses [29].

Cryoprecipitation removes 1.9 log$_{10}$ of HBsAg [39].

The fractionation characteristics of HCV are unknown at this time.

Line 6: Serendipitous inactivation during processing is uncertain. Lyophilization inactivates approximately 1 log$_{10}$ of mouse retrovirus [29], and this finding is confirmed by our experience with HIV.

Considerable HBV is neutralized by excess anti-HBs [12], found in virtually every lot of final product. Serendipitous inactivation of HCV is estimated.

Line 7: Line 4 + (line 5 x line 6)

Line 8: Assumes recovery of 150 U/L and 1,000 U/vial

Line 9: Line 7 + line 8

Line 10: 1 + line 9

Line 11: Probability of infection = 1 – [(1 – risk per vial) number of vials]; assumes 80,000 units infused per year

Line 12: Assumes 125 units per cryoprecipitate and same assumptions as given for line 11
TABLE 3A
Low Virucidal Efficacy

Procedure	Validation (Log_{10} Kill)	Clinical Safety (Infected/Total)				
	HIV	HBV	HCV	HIV	HBV	HCV
Heated at 60° for 30 hours as lyophilizate	2	<3.5	>3.5	2/90	0/2	2/2
Heated at 60° for 72 hours as lyophilizate	~1	<2.5	endog	2/24	0/12	15/19
Heated at 68° for 72 hours as lyophilizate	>2.8	NA	>3.4	0/6	—	1/6
Heated at 68° for 20 hours as lyophilizate, + heptane	>3.2	>2.7 to 4.0	2.7 to <3.5	0/37	0/18	8/37
Heated at 68° for 72 hours as lyophilizate, + chloroform	NA	NA	NA	—	0/3	3/3

TABLE 3B
High Virucidal Efficacy

Procedure	Validation (Log_{10} Kill)	Clinical Safety (Infected/Total)				
	HIV	HBV	HCV	HIV	HBV	HCV
Heated at 80° for 72 hours and 80°C for one hour as lyophilizate	NA	NA	NA	0/32	0/32	0/32
Heated at 60° for 72 hours as lyophilizate, + vapor	>6.0	NA	NA	0/109	4/53	0/58
Heated at 60° for ten hours in solution, + sucrose, glycine	>5.0	>5.6	>5.5	0/237	2/68	2/95
Heated at 60° for 30 hours as lyophilizate, + high purity	>3.0	>5.5	>3.0	0/19	—	0/19
TNBP/Detergent treated	>10.0	>6.0	>5.0	0/200	0/21	0/106
TNBP/Detergent treated, + high purity	>8.0	est	est	est	—	—
Beta-Propiolactone + UV	>14.0	est	est	0/45	—	0/29
	>6.0	6.9	>4.5	0/6	0/11	0/11

See Prince et al. [3] for most references. A more recent review [51] will also be available.

NA, not available; endog, endogenous

experience corresponds well with predicted rates of infectivity based on the known viral load and studies quantitating virus removal/inactivation during processing. During the past decade, no fewer than 12 different approaches directed toward improving the viral safety of coagulation factor concentrates reached the stage where product was placed into clinical evaluation. As a consequence, extensive information is available to permit a good estimate of initial viral loads and of the influence of factors affecting removal and inactivation. As shown in the accompanying analysis, there is a close correspondence between clinical experience related to the transmission of HIV, HBV, and HCV and the predicted probability of safety, thus increasing confidence in the predictions made. This confidence is especially important for HCV, because data are not available about its fractionation characteristics and assumptions had to be made.

Thus, through the development of improved donor and donor blood screening procedures, improved virus sterilization technology, and, in some cases, vigorous purification methodology, the calculated margin of safety for the best of the current
TABLE 4

Viral Load of Modern AHF Concentrates

Line	HIV	HBV	HCV	
1	Vials/ID$_{50}$	4	30,000	0.03
2	Inactivation by solvent/detergent	1×10^{11}	1×10^6	1×10^3
3	Improved donor select/screen	4.0×10^1	5.0	1.5×10^1
4	Removal during added purification	1×10^3	1×10^2	1×10^2
5	Final vials/ID$_{50}$	2×10^{14}	2×10^{13}	4×10^4
6	Annual probability of exposure	9×10^{-15}	5×10^{-12}	2×10^{-5}

*Following HIV antibody screening, virus inactivation by solvent/detergent or other similarly potent virucidal procedure, and immune affinity or other method of extensive purification.

Line 1: From Table 2

Line 2: Piszkiewicz et al. have demonstrated the inactivation of $\geq 10^{11}$ TCID$_{50}$ of HIV on treatment by solvent/detergent [34]. Virus kill is essentially instantaneous. In the chimpanzee model, we have shown the inactivation of $\geq 10^6$ CID$_{50}$ of HBV and $\geq 10^5$ CID$_{50}$ of HCV [45,46, unpublished results].

Line 3: HIV risk diminished as a consequence of donor screening from 40/100,000 to 0.4–2.5 per 100,000 (see line 2, Table 2). The overall improvement in donor selection, because of public education, donor questionnaires, and new screening tests must also reduce HBV viral load; fivefold is strictly an estimate. A combination of ALT and anti-HCV testing was predicted to decrease NANBH transmission by 60 percent [47]. When AHF is prepared from anti-HCV screened plasma, a further fivefold reduction might be expected.

HCV viral load is reduced by a combination of factors: institution of ALT and anti-HCV testing should reduce the per-unit risk by 60 percent [47], anti-HCV testing should cause (when performed) a reduction of 80 percent [32], and a further improvement should occur with improvements in donor selection and a decrease in virus titer associated with remaining infectious units.

Line 4: Highly purified concentrates are now beginning to appear. Enhanced purification has been reported to remove up to 10^4 HIV [34], though lesser removal may be seen with other viruses, other methods, or in a production setting.

Line 5: Line 1 + (line 2 x line 3 x line 4)

Line 6: Assumes 80,000 units infused per year

coagulation factor concentrates approaches and may exceed that calculated for albumin. If correct, concerns of viral risk, at least for HIV, HBV, and HCV, should no longer hinder the clinical use of blood derivatives. This experience encourages the preparation of virally sterilized forms of the traditional single donor products, fresh

frozen plasma (FFP) and cryoprecipitate, even if prepared from plasma pools. With the viral safety of the blood protein derivatives seemingly in hand, the final challenge in providing safe blood products will be the development of procedures to remove or inactivate virus from the cellular components.

REFERENCES

1. Menache D, Aronson DL: Measures to inactivate viral contaminants of pooled plasma products. In Infection, Immunity, and Blood Transfusion. Edited by RY Dodd, LF Barker. New York, Alan R Liss, Inc, 1985, pp 407–423
2. Gomperts ED: Concise review: Procedures for the inactivation of viruses in clotting factor concentrates. Amer J Hematol 23:295–305, 1986
3. Prince AM, Horowitz B, Horowitz MS, Zang E: The development of virus-free labile blood derivatives—a review. Eur J Epidemiol 3:103–118, 1987
4. Burnof T, Martinache L, Goudemand M: L’inactivation des virus dans les fractions plasmatiques à usage thérapeutique. Nouv Rev Fr Hematol 29:93–96, 1987
5. Mannucci PM, Colombo M: Virucidal treatment of clotting factor concentrates. Lancet ii:782–785, 1988
6. Gerety RJ, Aronson DL: Plasma derivatives and viral hepatitis. Transfusion 22:347–351, 1982
7. Alter HJ, Holland PV, Purcell RH, Lander JJ, Feinston SM, Morrow AG, Schmidt PJ: Posttransfusion hepatitis after exclusion of commercial and hepatitis-B antigen-positive donors. Ann Int Med 77:691–699, 1972
8. Szmunees W, Hirsch RL, Prince AM, Levine RW, Harley EJ, Ikram H: Hepatitis B surface antigen in blood donors: Further observations. J Inf Dis 131:111–118, 1975
9. Barker LF, Maynard JE, Purcell RH, Hoofnagle JH, Berquist KR, London WT, Gerety RJ, Krushak DH: Hepatitis B virus infection in chimpanzees: Titration of subtypes. J Inf Dis 132:451–458, 1975
10. Robinson WS, Lutwick LI: The virus of hepatitis, type B. N Engl J Med 295:1168–1175, 1232–1236, 1976
11. Trepo C, Hantz O, Jacquier MF, Nemoz G, Cappel R, Trepo D: Different fates of hepatitis B virus markers during plasma fractionation. Vox Sang 35:143–148, 1978
12. Brummelhuis HGJ, Over J, Duivis-Vorst CC, deSturler-Law LA, Ates G, Hoek PJ, Reerink-Brongers EE: Contributions to the optimal use of human blood. IX. Elimination of hepatitis B transmission by potentially infectious plasma derivatives. Vox Sang 45:205–216, 1983
13. Shikata T, Karasawa T, Abe K, Takahashi T, Mayumi M, Oda T: Incomplete inactivation of hepatitis B virus after heat treatment at 60°C for 10 hours. J Inf Dis 138:242–244, 1978
14. Horowitz B, Piet MPJ: Transmission of viral diseases by plasma protein fractions. Plasma Ther Transfus Technol 7:503–513, 1986
15. Goedert JJ, Sarnagdharan MG, Eyster ME, Weiss SH, Bodner AJ, Gallo RC, Blattner WA: Antibodies reactive with human T cell virus in the serum of hemophiliacs receiving factor VIII concentrate. Blood 65:492–495, 1985
16. Ragni MV, Tegtmeyer GE, Levy JA, Kaminsky LS, Lewis JH, Spero JA, Bontempo FA, Handwerk-Leber HC, Bayer WL, Zimmerman DH, Britz JA: AIDS retrovirus antibodies in hemophiliacs treated with factor VIII or factor IX concentrates, cryoprecipitate or fresh frozen plasma: Prevalence, seroconversion rate, and clinical correlations. Blood 67:592–595, 1986
17. Melief CJM, Goudsmit J: Transmission of lymphotrophic retroviruses (HTLV-I and LAV-HTLV-III) by blood transfusion and blood products. Vox Sang 50:1–11, 1986
18. Ward JW, Holmberg SD, Allen JR, Cohn DL, Critchley SE, Kleinman SH, Lenes BA, Ravenholt O, Davis JR, Quinn MG, Jaffe HW: Transmission of human immunodeficiency virus (HIV) by blood transfusions screened as negative for HIV antibody. N Engl J Med 318:473–477, 1988
19. Goedert JJ, Kessler CM, Aledort LM, Biggar RJ, Andes WA, White GC, Drummond JE, Vaidya K, Mann DL, Eyster ME, Ragni MV, Lederman MM, Cohen AR, Bray GL, Rosenbog RS, Friedman RM, Hillgartner MW, Blattner WA, Kroner B, Gail MH: A prospective study of human immunodeficiency virus type I infection and the development of AIDS in subjects with hemophilia. N Engl J Med 321:1141–1148, 1989
20. Schorr JB, Berkowitz A, Cumming PD, Katz AJ, Sandler SG: Prevalence of HTLV-III antibody in American blood donors. N Engl J Med 313:384–385, 1985
21. Bove JR: Transfusion associated hepatitis and AIDS: What is the risk? N Engl J Med 317:242–245, 1987
22. Peterman TA, Lui K-J, Lawrence DN, Allen JR: Estimating the risks of transfusion associated acquired
immunodeficiency syndrome and human immunodeficiency virus infection. Transfusion 27:371–374, 1987
23. Dodd RY, Barker LF: Early markers of HIV-1 infection in plasma donors. JAMA 262:92–93, 1989
24. Ludlam CA, Tucker J, Steel CM, Tedder RS, Cheingsong-Popov R, Weiss RA, McClelland DBL, Philip I, Prescott RJ: Human T-lymphotropic virus type III (HTLV-III) infection in seronegative haemophiliacs after transfusion of factor VIII. Lancet ii:233–236, 1985
25. Ho DD, Moudgil T, Alam M: Quantitation of human immunodeficiency virus type 1 in the blood of infected persons. N Engl J Med 321:1621–1625, 1989
26. Coombs RW, Collier AC, Allain JP, Nikora B, Leuther M, Gjerset GF, Corey L: Plasma viremia in human immunodeficiency virus infection. N Engl J Med 321:1626–1631, 1989
27. Schnittman SM, Psallidopoulos MC, Lane HC, Thompson L, Baseler M, Massari F, Fox CH, Salzman NP, Fauci AS: The reservoir for HIV-1 human peripheral blood is a T cell that maintains expression of CD4. Science 245:305–308, 1989
28. Tabor E, Purcell R, Gerety R: Primate animal models and titered inocula for the study of hepatitis A, hepatitis B, and non-A, non-B hepatitis. J Med Primatol 12:305–318, 1984
29. Levy JA, Mitra GA, Wong MF, Mozen MM: Inactivation by wet and dry heat of AIDS-associated retroviruses during factor VIII purification from plasma. Lancet i:1456, 1985
30. Horowitz B, Wiebe ME, Lippin A, Stryker MH: Inactivation of viruses in labile blood derivatives. Transfusion 25:516–522, 1985
31. Horowitz MS, Rooks C, Horowitz B, Hilgartner MW: Virus safety of solvent/detergent-treated antithaemophilic factor concentrate. Lancet ii:186–189, 1988
32. Vanderpoel CL, Reesink HW, Schaasberg W, Leentvaar-Kuypers A, Bakker E, Exel-Oehlers PJ, Lelie PN: Infectivity of blood seropositive for hepatitis C virus antibodies. Lancet 335:558–560, 1990
33. Weiner AJ, Kuo G, Bradley DW, Bonino F, Saracco G, Lee C, Rosenblatt J, Choo QL, Houghton M: Detection of hepatitis C viral sequences in non-A, non-B hepatitis. Lancet 335:1–3, 1990
34. Piszkiewicz D, Sun C-S, Tondreau SC: Inactivation and removal of human immunodeficiency virus in monoclonal purified antihemophilic factor (human) (Hemofil). Thromb Res 55:627–634, 1989
35. Goldfield M: Some epidemiologic studies of transfusion associated hepatitis. In Transmissible Disease and Blood Transfusion. Edited by TJ Greenwalt, GA Jamieson. New York, Grune & Stratton, Inc, 1975, pp 141–151
36. Aach RD, Szmuness W, Mosley JW, Hollinger FB, Kahn RA, et al: Serum alanine aminotransferase of donors in relation to the risk of non-A, non-B hepatitis in recipients. N Engl J Med 304:998–994, 1981
37. Almeida JD: Individual morphological variations seen in Australia antigen positive sera. Amer J Dis Child 123:303–308, 1972
38. Tabor E: Infectious complications of blood transfusion. New York, Academic Press, 1982, p 13
39. Schroeder DD, Mozen MM: Australia antigen: Distribution during Cohn ethanol fractionation of human plasma. Science 168:1462–1464, 1970
40. Schorr JB, Berkowitz A, Cumming PD, et al: Prevalence of HTLV-III antibody in American blood donors. N Engl J Med 313:384–385, 1985
41. Kleinman S, Secord K: Risk of human immunodeficiency virus (HIV) transmission by anti-HIV negative blood. Estimates using the lookback methodology. Transfusion 28:499–501, 1988
42. Peterman TA, Lui K-J, Lawrence DN, Allen JR: Estimating the risks of transfusion-associated acquired immune deficiency syndrome and human immunodeficiency virus infection. Transfusion 27:371–374, 1987
43. Coombs RW, Collier AC, Allain J-P, et al: Plasma viremia in human immunodeficiency virus infection. N Engl J Med 321:1626–1631, 1989
44. Wells MA, Wittek AE, Epstein JS, et al: Inactivation and partition of human T-cell lymphotropic virus, type III, during ethanol fractionation of plasma. Transfusion 26:210–213, 1986
45. Prince AM, Horowitz B, Brotman B: Sterilisation of hepatitis and HTLV-III viruses by exposure to tri(n-butyl)phosphate and sodium cholate. Lancet i:706, 1986
46. Piet MPJ, Chin S, Prince AM, Brotman B, Cundell AM, Horowitz B: The use of tri(n-butyl)phosphate detergent mixtures to inactivate hepatitis viruses and human immunodeficiency virus in plasma and plasma’s subsequent fractionation. Transfusion 30:591–598, 1990
47. Zuck TF, Sherwood WC, Bove JR: A review of recent events related to surrogate testing of blood to prevent non-A, non-B posttransfusion hepatitis. Transfusion 27:203–206, 1987
48. Roecikel IE: The blood supply — safer than it has ever been. Transfusion 29:276, 1989
49. Horowitz B: Inactivation of viruses found with plasma proteins. In Biotechnology of Blood. Edited by Jack Goldstein. Stoneham, UK, Butterworth Publishers, in press