Broken time-reversal symmetry probed by muon spin relaxation in the caged type superconductor \(\text{Lu}_2\text{Rh}_6\text{Sn}_{18} \)

A. Bhattacharyya, D. T. Adroja, J. Quintanilla, A. D. Hillier, N. Kase, A. M. Strydom and J. Akimitsu

1 ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot Oxon, OX11 0QX, United Kingdom
2 Highly Correlated Matter Research Group, Physics Department, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
3 SEPnet and Hubbard Theory Consortium, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
4 Department of Physics and Mathematics, Aoyama-Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 252-5258, Japan
5 Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany

(Dated: December 4, 2014)

The superconducting state of the caged type compound \(\text{Lu}_2\text{Rh}_6\text{Sn}_{18} \) has been investigated by using magnetization, heat capacity, and muon-spin relaxation or rotation (\(\mu \)SR) measurements and the results interpreted on the basis of the group theoretical classifications of the possible pairing symmetries and a simple model of the resulting quasiparticle spectra. Our zero-field \(\mu \)SR measurements clearly reveal the spontaneous appearance of an internal magnetic field below the transition temperature, which indicates that the superconducting state in this material is characterized by the broken time-reversal symmetry. Further the analysis of temperature dependence of the magnetic penetration depth measured using the transverse field \(\mu \)SR measurements suggest an isotropic \(s \)-wave character for the superconducting gap. This is in agreement with the heat capacity behavior and we show that it can be interpreted as in terms of an non unitary triplet state with point nodes and an open Fermi surface.

PACS numbers: 71.20.Be, 75.10.Lp, 75.40.Cx

It is a major theoretical challenge in strongly correlated electron systems to understand the pairing mechanism in unconventional superconductors \[1, 2\]. In conventional 's–wave' superconductors, only gauge symmetry is broken. If the pairing is not conventional then some other symmetries of the Hamiltonian may be broken below the superconducting transition. Symmetries which might be broken include lattice point and translation group operations and spin rotation symmetries, in addition to the global gauge symmetry that is responsible for the Meissner effect, flux quantization, and the Josephson effects. The nature of the broken symmetry in the pairing state is reflected in the symmetry properties of the order parameter. Superconductors whose crystal structure features a center of inversion, can be classified via the parity of Cooper pair state: the spin-singlet pair state \((S = 0) \) corresponds to an orbital pair wave function \(\psi(k) \approx \psi(-k) \) with even parity \([i.e., \Delta(k) = \Delta(-k)]\); The spin-triplet state \((S = 1) \) has a superconducting order parameter with odd parity \([\psi(k) \neq \psi(-k)]\) \[3\]. A few compounds have been reported to be spin-triplet superconductors, for example the 4\(d\)-electron system \(\text{Sr}_2\text{RuO}_4 \) \[4–6\], and the 5\(f\)-electron systems \(\text{UPt}_3 \) \[7\] and \(\text{UNi}_2\text{Al}_3 \) \[8\].

Broken symmetry can modify the physics of a system and results in novel and uncommon behaviors. Superconductivity is one of the finest illustrations of a symmetry breaking phenomenon. A particularly interesting case is time–reversal symmetry (TRS) breaking. This is rare and has only been observed directly in a few unconventional superconductors, e.g., \(\text{Sr}_2\text{RuO}_4 \) \[4, 5\], \(\text{UPt}_3 \) \[7\] and \(\text{(U;Th)}\text{Be}_13 \) \[10\], \(\text{(Pr;La)}\text{(Os;Ru)}\text{Sb}_{12} \) \[11\], \(\text{PrPt}_4\text{Ge}_{12} \) \[12\], \(\text{LaNiC}_2 \) \[13\], \(\text{LaNiGa}_2 \) \[14\] and \(\text{Re}_6\text{Zr} \) \[15\]. A direct manifestation of broken TRS is the appearance of spontaneous weak magnetic fields, detected in these systems by zero field muon spin relaxation (ZF–\(\mu \)SR). ZF–\(\mu \)SR is useful to search for TRS breaking fields; the presence of such fields limits the possible superconducting states and the associated pairing symmetry. For example, TRS is a prerequisite for any state with a one-dimensional representation (singlet, triplet or admixed), and its breaking is associated with special kinds of states which have a degenerate representation. The presence of two or more degenerate superconducting phases naturally leads to a spatially inhomogeneous order parameter near the resulting domain walls; this creates spontaneous supercurrents and hence magnetic fields near those regions. Another possible origin of TRS-breaking fields is from intrinsic magnetic moments due to spin polarization (for spin-triplet pairing) and the relative angular momentum of the Cooper pairs \[2\]. Specifically one can prove, using group-theoretical arguments \[14\], that non-unitary triplet pairing (thought to occur in noncentrosymmetric.
LaNiC$_2$ [13] and centrosymmetric LaNiGa$_2$ [14] leads to a small bulk magnetization M. The latter acts as a sub-dominant order parameter of the superconducting instability i.e. it grows only linearly with decreasing temperature, $M \sim T_c - T$ [14]. Recently the size of this magnetization has been obtained within a non-unitary triplet pairing model of Sr$_2$RuO$_4$ [16].

The possibility of singlet-triplet pairing in noncentrosymmetric superconductors makes them prime candidates to exhibit TRS breaking. In spite of this, it is well established theoretically [17] and experimentally [18] that singlet-triplet mixing does not imply necessarily broken TRS. On the other hand broken TRS has been observed in Lu$_5$Rh$_6$Sn$_{18}$, which can also be categorized as the Lu$_5$Rh$_6$Sn$_{18}$ phase with the space group $I4_1/acd$ [24]. A strong interplay between quadrupolar moment and superconductivity has been pointed out in RT$_4$X$_{12}$ [22] and RT$_2$X$_{20}$ [23]. R_5Rh$_6$Sn$_{18}$ ($R = $ Sc, Y, Lu), which can also be categorized as the cage compounds, exhibit superconductivity with the transition temperature $T_c = 5$ K (Sc), 3 K (Y), and 4 K (Lu) [24]. These compounds have a tetragonal structure with the space group $I4_1/acd$ and $Z = 8$, where R occupies two sites of different symmetry [24]. In this Letter, we report on ZF–μSR and TF–μSR measurements for Lu$_5$Rh$_6$Sn$_{18}$. The results unambiguously reveal the spontaneous appearance of an internal magnetic field in the SC state, providing clear evidence for broken time reversal symmetry.

Single crystals of Lu$_5$Rh$_6$Sn$_{18}$ were grown by a conventional Sn-flux method in the ratio of Lu:Rh:Sn = 1:2:20. A detailed discussion on the crystal growth can be found in Ref. [24]. Well defined Laue diffraction spots indicated the good quality of the single crystals with a typical size 3x3x3mm. Powder X-ray diffraction patterns were indexed as the Lu$_5$Rh$_6$Sn$_{18}$ phase with the space group $I4_1/acd$ [24]. The magnetic measurements were performed using a Quantum-Design MPMS. Specific heat measurement were performed down to 500 mK by a relaxation method calorimeter (Quantum Design PPMS equipped with a 3He refrigerator).

Muon spin relaxation (μSR) experiment were carried out on the MUSR spectrometer at the ISIS pulsed muon source of the Rutherford Appleton Laboratory, U.K. [26]. The μSR experiments were conducted in zero–field (ZF), longitudinal–field (LF), and transverse–field (TF) mode. High quality single crystal of Lu$_5$Rh$_6$Sn$_{18}$ was mounted on a sample plate made of 99.995% sliver, which was placed in a dilution refrigerator with a temperature range of 100 mK to 4.5 K. Using an active compensation system the stray magnetic fields at the sample position were canceled to a level of 1 μT. TF–μSR experiments were performed in the superconducting mixed state in applied field 400 G, well above the $\mu_0H_{c1} = 20$ G of this material. Data were collected in the field–cooled mode.

![FIG. 1: (Color online) (a) The temperature dependence of the dc magnetic susceptibility of Lu$_5$Rh$_6$Sn$_{18}$. The inset in (a) isothermal field dependence of magnetization at 2.0 K. (b) shows the C_p/T vs. T^2 curve. The solid line shows the fit (see text). The inset in (b) temperature dependent of electronic specific heat C_e under zero field after subtracting the lattice contribution for Lu$_5$Rh$_6$Sn$_{18}$.](image1)

![FIG. 2: (Color online) The transverse-field muon time spectra (one component) for Lu$_5$Rh$_6$Sn$_{18}$ collected (a) at $T = 4.4$ K and (b) at $T = 0.1$ K in a magnetic field $H = 400$ G. (c) The temperature dependence of $\sigma_{ac}(T)$. The line is a fit to the data using an isotropic model (Eq. 2).](image2)
where the magnetic field was applied above the superconducting transition and the sample was then cooled down to base temperature.

Magnetization measurement indicate that Lu$_5$Rh$_6$Sn$_{18}$ is a bulk superconductor with a superconducting transition temperature $T_c = 4.0\pm(0.1)$ K as shown in Fig. 1 (a). Below T_c the low-field $\chi(T)$ shows a robust diamagnetic signal. The shielding volume fraction is $\sim 53\%$ at 2 K. Inset of Fig. 1 (a) shows the magnetization $M(H)$ curve at 2 K, which is typical for type-II superconductivity. Resistivity $\rho(T)$, not shown here, exhibits a very unusual temperature variation. $\rho(T)$ is nearly independent of T down to about 120 K, and shows an increase on further cooling. Fig. 1 (b) shows the $C_P(T)$ at $H = 0$ and 6 T. At 4.0 K a sharp anomaly is observed indicating the superconducting transition which matches well with $\chi(T)$ data. Since the normal-state specific heat was found to be invariant under external magnetic fields, the normal-state electronic specific heat coefficient γ and the lattice specific heat coefficient β were deduced from the data in a field of 6 T by a least-squares fit of the C_P/T data to $C_P/T = \gamma + \beta T^2 + \delta T^4$. The least squares analysis of the 6 T data provides a Sommerfeld constant $\gamma = 48.10\pm(0.5)$ mJ/(mol-K2), $\delta = 0.32\pm(0.03)$ mJ/(mol K6) and the Debye temperature $\Theta_D = 157\pm(2)$ K. We obtained the specific heat jump $\Delta C_P(T_C) = 397\pm(3)$ mJ/(mol K) and $T_c = 4.0\pm(0.2)$ K, which yields $\Delta C/\gamma T_C = 2.06\pm(0.03)$. From the exponential dependence of C_P as shown in the inset of Fig. 1 (b), we obtained $2\delta(0)/k_B T_C$ to be 4.26\pm(0.04). Because this value is relatively larger than that of the theoretical BCS limit of weak-coupling superconductor (3.54), this compound can be categorized as a strong-coupling superconductor.

Fig. 2 (a) and (b) show the TF-μSR precession signals above and below T_c with an applied field of 400 G (well above H_c1). Below T_c the signal decays with time due to inhomogeneous field distribution of the flux-line lattice. The TF-μSR asymmetry spectra were fitted using an oscillatory decaying Gaussian function,

$$G_{z1}(t) = A_1 \cos(2\pi \nu_1 t + \phi_1) \exp\left(-\frac{\sigma_2^2 t^2}{2}\right) + A_2 \cos(2\pi \nu_2 t + \phi_2)$$

where ν_1 and ν_2 are the frequencies of the muon precession signal and background signal, respectively, $\phi_i (i = 1, 2)$ are the initial phase offset. The first term gives the total sample relaxation rate σ; there are contributions from both the vortex lattice (σ_{sc}) and nuclear dipole moments (σ_{nm}, which is assumed to be constant over the entire temperature range) below T_c [where $\sigma = \sqrt{\sigma_{sc}^2 + \sigma_{nm}^2}$]. The contribution from the vortex lattice, σ_{sc}, was determined by quadratically subtracting the background nuclear dipolar relaxation rate obtained from spectra measured above T_c. As σ_{sc} is directly related to the magnetic penetration depth, the superconducting gap can be modeled by,

$$\frac{\sigma_{sc}(T)}{\sigma_{sc}(0)} = \frac{\lambda^{-2}(T)}{\lambda^{-2}(0)} = 1 + 2 \int_{\Delta(T)}^{\infty} \frac{\delta f}{\delta E} \frac{EdEd\phi}{\sqrt{E^2 - \Delta(T)^2}}$$

where $f = [1 + \exp(-E/K_BT)]^{-1}$ is the Fermi function. The temperature dependence of the gap is approximated by the expression $\delta(T/T_C) = \tanh\{1.82[1.018(T_c/T - 1)^{0.5}]\}$. The Kubo-Toyabe depolarization rate σ_{KT}, versus temperature in zero field shows no temperature dependence.

![Fig. 3](image-url) (Color online) (a) Zero-field μSR time spectra for Lu$_5$Rh$_6$Sn$_{18}$ collected at 0.1 K (square) and 4.4 K (circle) are shown together with lines that are least squares fits to the data using Eq. (3). These spectra collected below and above T_c are representative of the data collected over a range of T_c. (b) A LF-μSR time spectrum taken in an applied field of 5 mT at 0.2 K is also shown.

![Fig. 4](image-url) (Color online) (a) The temperature dependence of the electronic relaxation rate measured in zero magnetic field of Lu$_5$Rh$_6$Sn$_{18}$ with $T_c = 4.0$ K is shown. The lines are guides to the eye. The extra relaxation below T_c indicates additional internal magnetic fields and, consequently, suggests the superconducting state has broken time reversal symmetry. (b) The Kubo-Toyabe depolarization rate σ_{KT}, versus temperature in zero field shows no temperature dependence.
isotropic gap of 0.75±0.06 meV. This gives a gap of $2\Delta/k_BTc = 4.4±0.02$, which is higher than the 3.53 expected for BCS superconductors. This is a further indication of the strong electron-phonon coupling in the superconducting state. Lu$_5$Rh$_6$Sn$_{18}$ is a type II superconductor, assuming that roughly all the normal state carriers (n_e) contribute to the superconductivity (i.e., $n_s\approx n_e$), we have estimated the values of effective mass of the quasiparticles $m^*\approx 1.32m_e$ and superconducting electron density $\approx 2.6 \times 10^{26}$ m$^{-3}$ respectively. More details on these calculations can be found in Ref. [32] [31].

The time evolution of the ZF–μSR is shown in Fig. 3 (a) for $T = 100$ mK and 4.4 K. In these relaxation experiments, any muons stopped on the silver sample holder give a time independent background. No signature of precession is visible, ruling out the presence of a sufficiently large internal magnetic field as seen in magnetically ordered compounds. The only possibility is that the muon–spin relaxation is due to static, randomly oriented local fields associated with the nuclear moments at the muon site. The ZF–μSR data are well described by the damped Gaussian Kubo-Toyabe (KT) function,

$$G_{\tau/2}(t) = A_1G_{KT}(t)e^{-\lambda t} + A_{bg}$$

where $G_{KT}(t) = \left[\frac{1}{2} + \frac{1}{2}(1 - \sigma^2) - \frac{\lambda t}{\sqrt{\pi}} \right]; \lambda$ is the electronic relaxation rate, A_1 is the initial asymmetry, A_{bg} is the background. The parameters σ_{KT} [Fig. 4 (b)], A_1, and A_{bg} are found to be temperature independent. It is remarkable that λ shows a significant increase [Fig. 4 (a)] with an onset temperature of 4.0±0.1 K, indicating the appearance of a spontaneous internal field correlated with the superconductivity. This observation provides unambiguous evidence that TRS is broken in the SC state of Lu$_5$Rh$_6$Sn$_{18}$. Such a change in λ has only been observed in superconducting Sr$_2$RuO$_4$, [4], LaNiC$_2$ [12] and SrPtAs [35]. This increase in λ can be explained in terms of a signature of a coherent internal field with a very low frequency as discussed by Luke et al. [4] for Sr$_2$RuO$_4$. This suggest that the field distribution is Lorentzian in nature similar to Sr$_2$RuO$_4$. Considering similar temperature dependence of λ in Sr$_2$RuO$_4$, LaNiC$_2$, SrPtAs and Lu$_5$Rh$_6$Sn$_{18}$, we attribute this behavior of λ to the TRS breaking below Tc in Lu$_5$Rh$_6$Sn$_{18}$. A longitudinal magnetic field of just 50 G [Fig. 3 (b)] removes any relaxation due to the spontaneous fields and is sufficient to fully decouple the muons from this relaxation channel. This in turn shows that the associated magnetic fields are in fact static or quasistatic on the time scale of the muon precession. These observations further support the broken TRS in the superconducting state of Lu$_5$Rh$_6$Sn$_{18}$. The increase in the exponential relaxation below Tc is, 0.045 μS^{-1}, which corresponds to a characteristic field strength $\lambda/\gamma\mu = 0.5$ G. This is about the same as we observed in the B phase of UPt$_3$ and Sr$_2$RuO$_4$ [5]. No theoretical estimates of the characteristic field strength in Lu$_5$Rh$_6$Sn$_{18}$ are yet available; however, we expect them to be comparable to those in Sr$_2$RuO$_4$ and UPt$_3$ as the fields should arise from a similar mechanism.

Our main observation, namely the breaking of TRS on entering the superconducting state, has important implications for the symmetry of pairing and for the quasi-particle spectrum. In short, a standard symmetry analysis carried out under the assumption of strong spin orbit coupling, yields two possible pairing states, one with $d + id$ character (singlet) and another one non-unitary (triplet). As shown in Fig. 5 both states are nodal: the singlet has a line node and two point nodes, and the triplet has two point nodes. At temperatures $T \ll Tc$, the thermodynamics of the singlet state would be dominated by the line node, yielding for example $C \sim T^2$ for the specific heat. Similarly, the triplet state would be dominated by the point nodes, which happen to be shallow (a result protected by symmetry) and therefore also lead to $C \sim T^2$ [38]. However, because of the location of the nodes in the triplet case, fully-gapped behavior may be recovered depending on the topology of the Fermi surface. Moreover some limiting cases of the triplet state correspond to regular, i.e. linear point nodes ($C \sim T^3$) as well as to a more exotic state with a nodal surface (gapless superconductivity, $C \sim T$). The allowed pairing states and their quasiparticle spectra are discussed in detail in the Supplementary Online Material. We note that the theoretical analysis presented is valid for any superconductor with D_{4h} point group symmetry, strong spin-orbit coupling and broken time-reversal symmetry and may therefore be applied for example to Sr$_2$RuO$_4$ [39], as well as Lu$_5$Rh$_6$Sn$_{18}$.

In conclusion, we have used both ZF–μSR and TF–μSR to investigate the superconductivity of the cage type tetragonal system Lu$_5$Rh$_6$Sn$_{18}$. The ZF–μSR measurements show a spontaneous field appearing at the superconducting transition temperature. The presence of spontaneous internal magnetic fields in our measurements suggests that a time-reversal symmetry breaking mixed symmetry pairing state does occur below Tc. TF–μSR measurements yield a magnetic penetration.

![Fig. 5: Nodal structure of the allowed singlet (a) and triplet (b) pairing states. See Supplementary Online Material for details.](image)
depth that is exponentially flat at low temperatures, and so our data can be fit to a single-gap BCS model. Symmetry analysis suggests either a singlet $d + i d$ state with a line node or, alternatively, nonunitary triplet pairing with point nodes, which may be linear or shallow and can become fully gapped depending on the Fermi surface topology. The letter one is in agreement with the exponential behavior observed on the heat capacity below T_c.

We would like to thank Dr M. Smidman for help in μSR data analysis. A.B would like to acknowledge FRC of UJ, NRF of South Africa and ISIS-STFC for funding support. DTA and ADH would like to thank CMPC-STFC, grant number CMPC-09108, for financial support. AMS thanks the SA-NRF (Grant 78832) and UJ Research Committee for financial support. JQ gratefully acknowledges financial support from STFC and from HEFCE through the South-East Physics network (SEPnet). JQ thanks Paul Strange for useful discussions.

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
[2] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[3] C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000).
[4] M. G. Luke, Y. Fudamoto, K. M. Kojima, M. I. Larkin, J. Merrin, B. Nachumi, Y. J. Uemura, Y. Maeno, Z. Q. Mao, Y. Mori et al., Nature (London) 394, 558 (1998).
[5] A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75 657 (2003).
[6] Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, and K. Ishida, J. Phys. Soc. Jpn. 81, 011009 (2012).
[7] G. M. Luke, A. Keren, L. P. Le, W. D. Wu, Y. J. Uemura, D. A. Bonn, L. Taillefer, and J. D. Garrett, Phys. Rev. Lett. 71, 1466 (1993).
[8] K. Ishida, D. Ozaki, T. Kamatsuka, H. Tou, M. Kyogaku, Y. Kitaoka, N. Tateiwa, N. K. Sato, N. Aso, C. Geibel, and F. Steglich, Phys. Rev. Lett. 89, 037002 (2002).
[9] J. Xia, Y. Maeno, P. T. Beyersdorf, M. M. Fejer, and A. Kapitulnik, Phys. Rev. Lett. 97, 167002 (2006).
[10] R. H. Heffner, J. L. Smith, J. O. Willis, P. Birrer, C. Baines, F. N. Gygax, B. Hitti, E. Lippelt, H. R. Ott, A. Schenck et al., Phys. Rev. Lett. 85, 2816 (1990).
[11] Y. Aoki, A. Tsuchiya, T. Kanayama, S. R. Saha, H. Sugawara, H. Sato, W. Higemoto, A. Koda, K. Ohishi, K. Nishiyama et al., Phys. Rev. Lett. 91, 067003 (2003).
[12] A. Maisuradze, K. Kuwahara, K. Iwasa, M. Kohgi, K. Kaneko, M. Metoki, S. Raymond, M.-A. Measson, J. Flouquet, H. Sugawara, Y. Aoki, and H. Sato, Phys. Rev. Lett. 95, 107003 (2005).
[13] T. Onimaru, K. T. Matsumoto, Y. F. Inoue, K. Umeo, T. Sakakibara, Y. Karaki, M. Kubota, and T. Takabatake, Phys. Rev. Lett. 106, 177001 (2011).
[14] J. Quintanilla, A. D. Hillier, J. F. Annett, and R. Cywinski, Phys. Rev. B 82, 174511 (2010).
[15] Z. Hiroi, J. Yamaura, and K. Hattori, J. Phys. Soc. Jpn. 81, 011012 (2012).
[16] Z. Hiroi, S. Yonezawa, Y. Nagao, and J. Yamaura, Phys. Rev. B 76 014523 (2007).
[17] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[18] A. D. Hillier, J. F. Annett, R. Cywinski, Phys. Rev. B 82, 174511 (2010).
[19] E. Bauer, C. Sekine, U. Sai, P. Rogl, P. K. Biswas, and A. Amato, Phys. Rev. B 90, 054522 (2014).
[20] J. Quintanilla, A. D. Hillier, J. F. Annett, and R. Cywinski, Phys. Rev. B 82, 174511 (2010).
[21] Z. Hiroi, J. Yamaura, and K. Hattori, J. Phys. Soc. Jpn. 81, 011012 (2012).
[22] Z. Hiroi, S. Yonezawa, Y. Nagao, and J. Yamaura, Phys. Rev. B 76 014523 (2007).
[23] K. Kuwahara, K. Iwasa, M. Kohgi, K. Kaneko, M. Metoki, S. Raymond, M.-A. Measson, J. Flouquet, H. Sugawara, Y. Aoki, and H. Sato, Phys. Rev. Lett. 95, 107003 (2005).
[24] T. Onimaru, K. T. Matsumoto, Y. F. Inoue, K. Umeo, T. Sakakibara, Y. Karaki, M. Kubota, and T. Takabatake, Phys. Rev. Lett. 106, 177001 (2011).
[25] J. P. Remeika, G. P. Espinosa, A. S. Cooper, H. Barz, Z. Fisk, L. D. Woolf, H. C. Hamaker, M. B. Maple, G. Shirane, and W. Thomlinson, Solid State Commun. 34, 923 (1980).
[26] S. Miraglia, J. L. Hodeau, F. Bergevin, and M. Marezzo, Acta Crystallogr. Sect. B 43 76 (1987).
[27] S. L. Lee, S. H. Kilcoyne, and R. Cywinski, Muon Science: Muons in Physics, Chemistry and Materials (SUSSP Publications and IOP Publishing, Bristol, 1999).
[28] J. E. Sonier, J.H. Brewer, and R.F. Kiefl, Rev. Mod. Phys. 72, 769 (2000).
[29] A. D. Hillier and R. Cywinski, Appl. Magn. Reson. 13, 95 (1997).
[30] V. K. Anand, D. Britz, A. Bhattacharyya, D. T. Adroja, A. D. Hillier, A. M. Strydom, W. Kockelmann, B. D. Rainford, and K. A. McEwen, Phys. Rev. B 80, 015042 (2014).
[31] D. T. Adroja, A. D. Hillier, J. G. Park, E. A. Goremychin, K. A. McEwen, N. Takeda, R. Osborn, B. D. Rainford, and R. M. Ibberson, Phys. Rev. B 72, 184503 (2005).
[32] H. Luetkens, T. Stuhr, C. Geibel, and F. Steglich, Phys. Rev. B 82, 037002 (2010).
[33] A. K. Miyake, J. Phys. Soc. Jpn., 83, 053701 (2014).
[34] M. Tinkham, Introduction to Superconductivity (Krieger, Malabar, FL, 1975).
[35] J. F. Annett, Adv. Phys. 39, 83 (1990).
[36] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[37] B. Mazidian, J. Quintanilla, A. D. Hillier and J. F. Annett, Phys. Rev. B 88, 224504 (2013).
[38] C. N. Veenstra, Z.-H. Zhu, M. Raichle, B.M. Ludbrook, A. Nicolau, B. Slomski, G. Landolt, S. Kittaka, Y. Maeno, J.H. Dil, I.S. Ellimov, M.W. Haverkort, and A. Damascelli, et al. Phys. Rev. Lett. 112, 127002 (2014).