Asymmetric Topologies on Statistical Manifolds

Roman V. Belavkin

School of Science and Technology
Middlesex University, London NW4 4BT, UK

GSI2015, October 28, 2015
Sources and Consequences of Asymmetry

Method: Symmetric Sandwich

Results
Sources and Consequences of Asymmetry

Method: Symmetric Sandwich

Results
Asymmetric Information Distances

Kullback-Leibler divergence

\[D[p, q] = \mathbb{E}_q \{ \ln(p/q) \} \]
Asymmetric Information Distances

Kullback-Leibler divergence

- \(D[p, q] = \mathbb{E}_q\{\ln(p/q)\} \)
- \(D[p_1 \otimes p_2, q_1 \otimes q_2] = D[p_1, q_1] + D[p_2, q_2] \)
Asymmetric Information Distances

Kullback-Leibler divergence

1. \(D[p, q] = \mathbb{E}_q\{\ln(p/q)\} \)
2. \(D[p_1 \otimes p_2, q_1 \otimes q_2] = D[p_1, q_1] + D[p_2, q_2] \)
3. \(\ln : (\mathbb{R}_+, \times) \to (\mathbb{R}, +) \)
Asymmetric Information Distances

Kullback-Leibler divergence

- $D[p, q] = \mathbb{E}_q\{\ln(p/q)\}$
- $D[p_1 \otimes p_2, q_1 \otimes q_2] = D[p_1, q_1] + D[p_2, q_2]$
- $\ln : (\mathbb{R}_+, \times) \rightarrow (\mathbb{R}, +)$

Asymmetry of the KL-divergence

- $D[p, q] \neq D[q, p]$
Asymmetric Information Distances

Kullback-Leibler divergence

- \(D[p, q] = E_q\{\ln(p/q)\} \)
- \(D[p_1 \otimes p_2, q_1 \otimes q_2] = D[p_1, q_1] + D[p_2, q_2] \)
- \(\ln : (\mathbb{R}_+, \times) \rightarrow (\mathbb{R}, +) \)

Asymmetry of the KL-divergence

- \(D[p, q] \neq D[q, p] \)
- \(D[q + (p - q), q] \neq D[q - (p - q), q] \)
Asymmetric Information Distances

Kullback-Leibler divergence

- $D[p, q] = \mathbb{E}_q\{\ln(p/q)\}$
- $D[p_1 \otimes p_2, q_1 \otimes q_2] = D[p_1, q_1] + D[p_2, q_2]$
- $\ln : (\mathbb{R}_+, \times) \to (\mathbb{R}, +)$

Asymmetry of the KL-divergence

- $D[p, q] \neq D[q, p]$
- $D[q + (p - q), q] \neq D[q - (p - q), q]$
Asymmetric Information Distances

Kullback-Leibler divergence

- \(D[p, q] = \mathbb{E}_q\{\ln(p/q)\} \)
- \(D[p_1 \otimes p_2, q_1 \otimes q_2] = D[p_1, q_1] + D[p_2, q_2] \)
- \(\ln : (\mathbb{R}_+, \times) \to (\mathbb{R}, +) \)

Asymmetry of the KL-divergence

- \(D[p, q] \neq D[q, p] \)
- \(D[q + (p - q), q] \neq D[q - (p - q), q] \)
- \[\|p - q\| = \inf\{\alpha^{-1} > 0 : D[q + \alpha(p - q), q] \leq 1\} \]
Asymmetric Information Distances

Kullback-Leibler divergence

- $D[p, q] = \mathbb{E}_q\{\ln(p/q)\}$
- $D[p_1 \otimes p_2, q_1 \otimes q_2] = D[p_1, q_1] + D[p_2, q_2]$
- $\ln : (\mathbb{R}_+, \times) \to (\mathbb{R}, +)$

Asymmetry of the KL-divergence

- $D[p, q] \neq D[q, p]$
- $D[q + (p - q), q] \neq D[q - (p - q), q]$

\[
\|p - q\| = \inf\{\alpha^{-1} > 0 : D[q + \alpha(p - q), q] \leq 1\} \\
\simeq \sup_x \{\mathbb{E}_{p-q}\{x\} : \mathbb{E}_q\{e^x - 1 - x\} \leq 1\}
\]
Asymmetric Information Distances

Kullback-Leibler divergence

- $D[p, q] = \mathbb{E}_q \{ \ln(p/q) \}$
- $D[p_1 \otimes p_2, q_1 \otimes q_2] = D[p_1, q_1] + D[p_2, q_2]$
- $\ln : (\mathbb{R}_+, \times) \rightarrow (\mathbb{R}, +)$

Asymmetry of the KL-divergence

- $D[p, q] \neq D[q, p]$
- $D[q + (p - q), q] \neq D[q - (p - q), q]$

\[
\|p - q\| = \inf \{ \alpha^{-1} > 0 : D[q + \alpha|p - q|, q] \leq 1 \}
\]

\[
\simeq \sup_{x} \{ \mathbb{E}_{p-q} \{ x \} : \mathbb{E}_q \{ e^{\left| x \right|} - 1 - \left| x \right| \} \leq 1 \}
\]
Functional Analysis in Asymmetric Spaces

Theorem (e.g. Theorem 1.5 in Fletcher and Lindgren (1982))

Every topological space with a countable base is quasi-pseudometrizable.
Functional Analysis in Asymmetric Spaces

Theorem (e.g. Theorem 1.5 in Fletcher and Lindgren (1982))

Every topological space with a countable base is quasi-pseudometrizable.

- An asymmetric seminormed space can be T_0, but not T_1 (and hence not Hausdorff T_2).
Functional Analysis in Asymmetric Spaces

Theorem (e.g. Theorem 1.5 in Fletcher and Lindgren (1982))

Every topological space with a countable base is quasi-pseudometrizable.

- An asymmetric seminormed space can be T_0, but not T_1 (and hence not Hausdorff T_2).
- Dual quasimetrics $\rho(x, y)$ and $\rho^{-1}(x, y) = \rho(y, x)$ induce two different topologies.

Functional Analysis in Asymmetric Spaces

Theorem (e.g. Theorem 1.5 in Fletcher and Lindgren (1982))

Every topological space with a countable base is quasi-pseudometrizable.

- An asymmetric seminormed space can be T_0, but not T_1 (and hence not Hausdorff T_2).
- Dual quasimetrics $\rho(x, y)$ and $\rho^{-1}(x, y) = \rho(y, x)$ induce two different topologies.
- There are 7 notions of Cauchy sequences: left (right) Cauchy, left (right) K-Cauchy, weakly left (right) K-Cauchy, Cauchy.
Functional Analysis in Asymmetric Spaces

Theorem (e.g. Theorem 1.5 in Fletcher and Lindgren (1982))

Every topological space with a countable base is quasi-pseudometrizable.

- An asymmetric seminormed space can be T_0, but not T_1 (and hence not Hausdorff T_2).
- Dual quasimetrics $\rho(x, y)$ and $\rho^{-1}(x, y) = \rho(y, x)$ induce two different topologies.
- There are 7 notions of Cauchy sequences: *left (right) Cauchy, left (right) K-Cauchy, weakly left (right) K-Cauchy, Cauchy.*
- This gives 14 notions of completeness (with respect to ρ or ρ^{-1}).
Functional Analysis in Asymmetric Spaces

Theorem (e.g. Theorem 1.5 in Fletcher and Lindgren (1982))

Every topological space with a countable base is quasi-pseudometrizable.

- An asymmetric seminormed space can be T_0, but not T_1 (and hence not Hausdorff T_2).
- Dual quasimetrics $\rho(x, y)$ and $\rho^{-1}(x, y) = \rho(y, x)$ induce two different topologies.
- There are 7 notions of Cauchy sequences: left (right) Cauchy, left (right) K-Cauchy, weakly left (right) K-Cauchy, Cauchy.
- This gives 14 notions of completeness (with respect to ρ or ρ^{-1}).
- Compactness is related to outer precompactness or precompactness, which are strictly weaker properties than total boundedness.
Functional Analysis in Asymmetric Spaces

Theorem (e.g. Theorem 1.5 in Fletcher and Lindgren (1982))

Every topological space with a countable base is quasi-pseudometrizable.

- An asymmetric seminormed space can be T_0, but not T_1 (and hence not Hausdorff T_2).
- Dual quasimetrics $\rho(x, y)$ and $\rho^{-1}(x, y) = \rho(y, x)$ induce two different topologies.
- There are 7 notions of Cauchy sequences: left (right) Cauchy, left (right) K-Cauchy, weakly left (right) K-Cauchy, Cauchy.
- This gives 14 notions of completeness (with respect to ρ or ρ^{-1}).
- Compactness is related to outer precompactness or precompactness, which are strictly weaker properties than total boundedness.
- An asymmetric seminormed space may fail to be a topological vector space, because $y \mapsto \alpha y$ can be discontinuous (Borodin, 2001).
Functional Analysis in Asymmetric Spaces

Theorem (e.g. Theorem 1.5 in Fletcher and Lindgren (1982))

Every topological space with a countable base is quasi-pseudometrizable.

- An asymmetric seminormed space can be T_0, but not T_1 (and hence not Hausdorff T_2).
- Dual quasimetrics $\rho(x, y)$ and $\rho^{-1}(x, y) = \rho(y, x)$ induce two different topologies.
- There are 7 notions of Cauchy sequences: left (right) Cauchy, left (right) K-Cauchy, weakly left (right) K-Cauchy, Cauchy.
- This gives 14 notions of completeness (with respect to ρ or ρ^{-1}).
- Compactness is related to outer precompactness or precompactness, which are strictly weaker properties than total boundedness.
- An asymmetric seminormed space may fail to be a topological vector space, because $y \mapsto \alpha y$ can be discontinuous (Borodin, 2001).
- Practically all other results have to be reconsidered (e.g. Baire category theorem, Alaoglu-Bourbaki, etc). (Cobzas, 2013).
Random Variables as the Source of Asymmetry

\[M^\circ := \{ x : \langle x, y \rangle \leq 1, \ \forall \ y \in M \} \]
Random Variables as the Source of Asymmetry

\[M^\circ := \{ x : \langle x, y \rangle \leq 1, \ \forall \ y \in M \} \]
Random Variables as the Source of Asymmetry

\[M^\circ := \{ x : \langle x, y \rangle \leq 1, \ \forall y \in M \} \]

- Minkowski functional:

\[\mu M^\circ(x) = \inf\{ \alpha > 0 : x/\alpha \in M^\circ \} \]
Random Variables as the Source of Asymmetry

\[M^\circ := \{ x : \langle x, y \rangle \leq 1, \ \forall y \in M \} \]

- **Minkowski functional:**
 \[\mu M^\circ(x) = \inf\{ \alpha > 0 : x/\alpha \in M^\circ \} \]

- **Support function**
 \[sM(x) = \sup\{ \langle x, y \rangle : y \in M \} \]
Random Variables as the Source of Asymmetry

$M^\circ := \{ x : \langle x, y \rangle \leq 1, \ \forall \ y \in M \}$

- Minkowski functional:

 $\mu M^\circ(x) = \inf \{ \alpha > 0 : x/\alpha \in M^\circ \}$

- Support function

 $sM(x) = \sup \{ \langle x, y \rangle : y \in M \}$

$M = \{ u : D[(1 + u)z, z] \leq 1 \}$
Random Variables as the Source of Asymmetry

\[M^\circ := \{ x : \langle x, y \rangle \leq 1, \ \forall y \in M \} \]

- **Minkowski functional:**
\[\mu_{M^\circ}(x) = \inf \{ \alpha > 0 : x/\alpha \in M^\circ \} \]

- **Support function**
\[sM(x) = \sup \{ \langle x, y \rangle : y \in M \} \]

- \[M = \{ u : D[(1 + u)z, z] \leq 1 \} \]
- \[D = \langle (1 + u) \ln(1 + u) - u, z \rangle \]
Random Variables as the Source of Asymmetry

\[M^\circ := \{ x : \langle x, y \rangle \leq 1, \ \forall y \in M \} \]

- Minkowski functional:
 \[\mu M^\circ (x) = \inf \{ \alpha > 0 : x/\alpha \in M^\circ \} \]

- \(M^\circ \simeq \{ y : D^*[x, 0] \leq 1 \} \)

- Support function
 \[sM(x) = \sup \{ \langle x, y \rangle : y \in M \} \]

- \(M = \{ u : D[(1 + u)z, z] \leq 1 \} \)

- \(D = \langle (1 + u) \ln(1 + u) - u, z \rangle \)
Sources and Consequences of Asymmetry

Random Variables as the Source of Asymmetry

\(M^\circ := \{ x : \langle x, y \rangle \leq 1, \ \forall y \in M \} \)

- Minkowski functional:
 \[\mu M^\circ(x) = \inf \{ \alpha > 0 : x/\alpha \in M^\circ \} \]

- \(M^\circ \simeq \{ y : D^*[x, 0] \leq 1 \} \)
- \(D^*[x, 0] = \langle e^x - 1 - x, z \rangle \)

- Support function
 \[sM(x) = \sup \{ \langle x, y \rangle : y \in M \} \]

- \(M = \{ u : D[(1 + u)z, z] \leq 1 \} \)
- \(D = \langle (1 + u) \ln(1 + u) - u, z \rangle \)
Examples

Example (St. Peterbourgh lottery)

- \(x = 2^n, \ q = 2^{-n}, \ n \in \mathbb{N}. \)
Examples

Example (St. Peterbourgh lottery)

- \(x = 2^n, \ q = 2^{-n}, \ n \in \mathbb{N}. \)
- \(E_q\{x\} = \sum_{n=1}^{\infty} (2^n/2^n) \to \infty \)
Examples

Example (St. Peterbourgh lottery)

- $x = 2^n, \ q = 2^{-n}, \ n \in \mathbb{N}$.
- $E_q\{x\} = \sum_{n=1}^{\infty} \left(\frac{2^n}{2^n} \right) \rightarrow \infty$
- $E_p\{x\} < \infty$ for all biased $p = 2^{-(1+\alpha)n}, \ \alpha > 0$.
Examples

Example (St. Peterbourgh lottery)

- \(x = 2^n, \ q = 2^{-n}, \ n \in \mathbb{N}. \)
- \(\mathbb{E}_q\{x\} = \sum_{n=1}^{\infty} \left(\frac{2^n}{2^n} \right) \rightarrow \infty \)
- \(\mathbb{E}_p\{x\} < \infty \) for all biased \(p = 2^{-(1+\alpha)n}, \ \alpha > 0. \)
- \(2^n \notin \text{dom} \mathbb{E}_q\{e^x\}, \ -2^n \in \text{dom} \mathbb{E}_q\{e^x\} \)
Examples

Example (St. Peterbourgh lottery)

- $x = 2^n$, $q = 2^{-n}$, $n \in \mathbb{N}$.
- $E_q\{x\} = \sum_{n=1}^{\infty} \left(\frac{2^n}{2^n} \right) \rightarrow \infty$
- $E_p\{x\} < \infty$ for all biased $p = 2^{-(1+\alpha)n}$, $\alpha > 0$.
- $2^n \not\in \text{dom} \ E_q\{e^x\}$, $-2^n \in \text{dom} \ E_q\{e^x\}$
- $0 \not\in \text{Int}(\text{dom} \ E_q\{e^x\})$
Examples

Example (St. Peterbourgh lottery)

- \(x = 2^n, \ q = 2^{-n}, \ n \in \mathbb{N}. \)
- \(\mathbb{E}_q\{x\} = \sum_{n=1}^{\infty} \frac{2^n}{2^n} \to \infty \)
- \(\mathbb{E}_p\{x\} < \infty \) for all biased \(p = 2^{-(1+\alpha)n}, \ \alpha > 0. \)
- \(2^n \notin \text{dom} \mathbb{E}_q\{e^x\}, \ -2^n \in \text{dom} \mathbb{E}_q\{e^x\} \)
- \(0 \notin \text{Int}(\text{dom} \mathbb{E}_q\{e^x\}) \)

Example (Error minimization)

- Minimize \(x = \frac{1}{2} \|a - b\|^2_2 \) subject to \(D_{KL}[w, q \otimes p] \leq \lambda, \ a, b \in \mathbb{R}^n. \)
Examples

Example (St. Peterbourgh lottery)

- $x = 2^n$, $q = 2^{-n}$, $n \in \mathbb{N}$.
- $\mathbb{E}_q\{x\} = \sum_{n=1}^{\infty} (2^n/2^n) \to \infty$
- $\mathbb{E}_p\{x\} < \infty$ for all biased $p = 2^{-(1+\alpha)n}$, $\alpha > 0$.
- $2^n \notin \text{dom } \mathbb{E}_q\{e^x\}$, $-2^n \in \text{dom } \mathbb{E}_q\{e^x\}$
- $0 \notin \text{Int}(\text{dom } \mathbb{E}_q\{e^x\})$

Example (Error minimization)

- Minimize $x = \frac{1}{2} \|a - b\|_2^2$ subject to $D_{KL}[w, q \otimes p] \leq \lambda$, $a, b \in \mathbb{R}^n$.
- $\mathbb{E}_w\{x\} < \infty$ minimized at $\bar{w} \propto e^{-\beta x} q \otimes p$.
Examples

Example (St. Peterbourgh lottery)

- $x = 2^n$, $q = 2^{-n}$, $n \in \mathbb{N}$.
- $\mathbb{E}_q\{x\} = \sum_{n=1}^{\infty} (2^n/2^n) \to \infty$
- $\mathbb{E}_p\{x\} < \infty$ for all biased $p = 2^{-(1+\alpha)n}$, $\alpha > 0$.
- $2^n \notin \text{dom } \mathbb{E}_q\{e^x\}$, $-2^n \in \text{dom } \mathbb{E}_q\{e^x\}$
- $0 \notin \text{Int}(\text{dom } \mathbb{E}_q\{e^x\})$

Example (Error minimization)

- Minimize $x = \frac{1}{2} \|a - b\|_2^2$ subject to $D_{KL}[w, q \otimes p] \leq \lambda$, $a, b \in \mathbb{R}^n$.
- $\mathbb{E}_w\{x\} < \infty$ minimized at $\overline{w} \propto e^{-\beta x} q \otimes p$.
- Maximization of x has no solution.
Examples

Example (St. Peterbourgh lottery)

- \(x = 2^n, \ q = 2^{-n}, \ n \in \mathbb{N}. \)
- \(\mathbb{E}_q\{x\} = \sum_{n=1}^{\infty} \left(\frac{2^n}{2^n} \right) \to \infty \)
- \(\mathbb{E}_p\{x\} < \infty \) for all biased \(p = 2^{-(1+\alpha)n}, \ \alpha > 0. \)
- \(2^n \not\in \text{dom} \mathbb{E}_q\{e^x\}, \ -2^n \in \text{dom} \mathbb{E}_q\{e^x\} \)
- \(0 \not\in \text{Int}(\text{dom} \mathbb{E}_q\{e^x\}) \)

Example (Error minimization)

- Minimize \(x = \frac{1}{2}\|a - b\|_2^2 \) subject to \(D_{KL}[w, q \otimes p] \leq \lambda, \ a, b \in \mathbb{R}^n. \)
- \(\mathbb{E}_w\{x\} < \infty \) minimized at \(\bar{w} \propto e^{-\beta x} q \otimes p. \)
- Maximization of \(x \) has no solution.
- \(\frac{1}{2}\|a - b\|_2^2 \not\in \text{dom} \mathbb{E}_{q \otimes p}\{e^x\}, \ -\frac{1}{2}\|a - b\|_2^2 \in \text{dom} \mathbb{E}_{q \otimes p}\{e^x\} \)
Examples

Example (St. Peterbourgh lottery)

- \(x = 2^n, \, q = 2^{-n}, \, n \in \mathbb{N}. \)
- \(\mathbb{E}_q\{x\} = \sum_{n=1}^{\infty} \frac{2^n}{2^n} \to \infty \)
- \(\mathbb{E}_p\{x\} < \infty \) for all biased \(p = 2^{-(1+\alpha)n}, \, \alpha > 0. \)
- \(2^n \notin \text{dom} \mathbb{E}_q\{e^x\}, \, -2^n \in \text{dom} \mathbb{E}_q\{e^x\} \)
- \(0 \notin \text{Int}(\text{dom} \mathbb{E}_q\{e^x\}) \)

Example (Error minimization)

- Minimize \(x = \frac{1}{2} \|a - b\|_2^2 \) subject to \(D_{KL}[w, \, q \otimes p] \leq \lambda, \, a, \, b \in \mathbb{R}^n. \)
- \(\mathbb{E}_w\{x\} < \infty \) minimized at \(\bar{w} \propto e^{-\beta x} \, q \otimes p. \)
- Maximization of \(x \) has no solution.
- \(\frac{1}{2} \|a - b\|_2^2 \notin \text{dom} \mathbb{E}_{q \otimes p}\{e^x\}, \, -\frac{1}{2} \|a - b\|_2^2 \in \text{dom} \mathbb{E}_{q \otimes p}\{e^x\} \)
- \(0 \notin \text{Int}(\text{dom} \mathbb{E}_{q \otimes p}\{e^x\}) \)
Sources and Consequences of Asymmetry

Method: Symmetric Sandwich

Results
Method: Symmetric Sandwich

- $s[-A \cap A] \leq sA \leq s[-A \cup A]$
Method: Symmetric Sandwich

- $s[-A \cap A] \leq sA \leq s[-A \cup A]$
- $\mu_{co}[-A^o \cup A^o] \leq \mu A^o \leq \mu[-A^o \cap A^o]$
Method: Symmetric Sandwich

- $s[-A \cap A] \leq sA \leq s[-A \cup A]$
- $\mu \text{co} [-A^\circ \cup A^\circ] \leq \mu A^\circ \leq \mu [-A^\circ \cap A^\circ]$
- $s[-A \cap A] = s(-A)\text{co} \land sA = \inf \{sA(z) + sA(z - y) : z \in Y\}$
Method: Symmetric Sandwich

- $s[-A \cap A] \leq sA \leq s[-A \cup A]$
- $\mu \text{co} [-A^\circ \cup A^\circ] \leq \mu A^\circ \leq \mu [-A^\circ \cap A^\circ]$
- $s[-A \cap A] = s(-A)^\circ \land sA = \inf\{sA(z) + sA(z - y) : z \in Y\}$
- $s[-A \cup A] = s(-A) \lor sA$
Method: Symmetric Sandwich

- $s[-A \cap A] \leq sA \leq s[-A \cup A]
- \mu \text{co} [-A^\circ \cup A^\circ] \leq \mu A^\circ \leq \mu [-A^\circ \cap A^\circ]
- s[-A \cap A] = s(-A) \text{co} \land sA = \inf\{sA(z) + sA(z - y) : z \in Y\}
- s[-A \cup A] = s(-A) \lor sA
Method: Symmetric Sandwich

- \(s[-A \cap A] \leq sA \leq s[-A \cup A] \)
- \(\mu_{co}[-A^o \cup A^o] \leq \mu A^o \leq \mu[-A^o \cap A^o] \)
- \(s[-A \cap A] = s(-A)_{co} \wedge sA = \inf\{sA(z) + sA(z - y) : z \in Y\} \)
- \(s[-A \cup A] = s(-A) \vee sA \)
Method: Symmetric Sandwich

- $s[-A \cap A] \leq sA \leq s[-A \cup A]$
- $\mu co[-A^o \cup A^o] \leq \mu A^o \leq \mu[-A^o \cap A^o]$
- $s[-A \cap A] = s(-A) co \wedge sA = \inf \{sA(z) + sA(z - y) : z \in Y\}$
- $s[-A \cup A] = s(-A) \vee sA$

\[\mu M^o \leq \mu(-M^o) \vee \mu M^o \]
\[\mu(-M) co \wedge \mu M \leq \mu M \]
Method: Symmetric Sandwich

- $s[-A \cap A] \leq sA \leq s[-A \cup A]
- \mu_{co} [-A^\circ \cup A^\circ] \leq \mu A^\circ \leq \mu [-A^\circ \cap A^\circ]
- $s[-A \cap A] = s(-A)_{co} \land sA = \inf \{sA(z) + sA(z - y) : z \in Y\}$
- $s[-A \cup A] = s(-A) \lor sA$

$$
\mu(-M^\circ)_{co} \land \mu M^\circ \leq \mu M^\circ
\quad \mu M \leq \mu(-M) \lor \mu M
$$
Lower and upper Luxemburg (Orlicz) norms

\[\varphi^*(x) = e^x - 1 - x \]

\[\varphi(u) = (1 + u) \ln(1 + u) - u \]
Lower and upper Luxemburg (Orlicz) norms

\[\varphi^*(x) = e^x - 1 - x \]
\[\varphi_+(x) = \varphi^*(|x|) \notin \Delta_2 \]

\[\varphi(u) = (1 + u) \ln(1 + u) - u \]
\[\varphi_+(u) = \varphi(|u|) \in \Delta_2 \]
Lower and upper Luxemburg (Orlicz) norms

\[
\varphi^*(x) = e^x - 1 - x \\
\varphi_+(x) = \varphi^*(|x|) \notin \Delta_2 \\
\varphi^-(x) = \varphi^*(-|x|) \in \Delta_2
\]

\[
\varphi(u) = (1 + u) \ln(1 + u) - u \\
\varphi_+(u) = \varphi(|u|) \in \Delta_2 \\
\varphi_-(u) = \varphi(-|u|) \notin \Delta_2
\]
Lower and upper Luxemburg (Orlicz) norms

\[\varphi^*(x) = e^x - 1 - x \]

\[\varphi_+^*(x) = \varphi^*(|x|) \notin \Delta_2 \]

\[\varphi_-^*(x) = \varphi^*(-|x|) \in \Delta_2 \]

\[\|x\|^*_{\varphi} = \mu\{x : \langle \varphi^*(x), z \rangle \leq 1\} \]

\[\varphi(u) = (1 + u) \ln(1 + u) - u \]

\[\varphi_+(u) = \varphi(|u|) \in \Delta_2 \]

\[\varphi_-(u) = \varphi(-|u|) \notin \Delta_2 \]

\[\|u\|_{\varphi} = \mu\{u : \langle \varphi(u), z \rangle \leq 1\} \]
Lower and upper Luxemburg (Orlicz) norms

\[\varphi^*(x) = e^x - 1 - x \]
\[\varphi_+(x) = \varphi^*(|x|) \notin \Delta_2 \]
\[\varphi_-(x) = \varphi^*(-|x|) \in \Delta_2 \]
\[\|x\|_{\varphi} = \mu\{x : \langle \varphi^*(x), z \rangle \leq 1\} \]

\[\varphi(u) = (1 + u) \ln(1 + u) - u \]
\[\varphi_+(u) = \varphi(|u|) \in \Delta_2 \]
\[\varphi_-(u) = \varphi(-|u|) \notin \Delta_2 \]
\[\|u\|_{\varphi} = \mu\{u : \langle \varphi(u), z \rangle \leq 1\} \]

Proposition

- \(\| \cdot \|_{\varphi^+}, \| \cdot \|_{\varphi^-} \) are Luxemburg norms and \(\|x\|_{\varphi^-} \leq \|x\|_{\varphi} \leq \|x\|_{\varphi^+} \)
- \(\| \cdot \|_{\varphi^+}, \| \cdot \|_{\varphi^-} \) are Luxemburg norms and \(\|u\|_{\varphi^+} \leq \|u\|_{\varphi} \leq \|u\|_{\varphi^-} \)
Lower and upper Luxemburg (Orlicz) norms

\[\varphi^*(x) = e^x - 1 - x \]
\[\varphi^*_+(x) = \varphi^* (|x|) \notin \Delta_2 \]
\[\varphi^*_-(x) = \varphi^* (-|x|) \in \Delta_2 \]
\[\|x\|_\varphi^* = \mu \{ x : \langle \varphi^*(x), z \rangle \leq 1 \} \]

\[\varphi(u) = (1 + u) \ln(1 + u) - u \]
\[\varphi^+_+(u) = \varphi (|u|) \in \Delta_2 \]
\[\varphi^-_-(u) = \varphi (-|u|) \notin \Delta_2 \]
\[\|u\|_\varphi = \mu \{ u : \langle \varphi(u), z \rangle \leq 1 \} \]

Proposition

- \(\| \cdot \|_{\varphi^+}, \| \cdot \|_{\varphi^-} \) are Luxemburg norms and \(\|x\|_{\varphi^-} \leq \|x\|_\varphi \leq \|x\|_{\varphi^+} \)
- \(\| \cdot \|_{\varphi^+}, \| \cdot \|_{\varphi^-} \) are Luxemburg norms and \(\|u\|_{\varphi^+} \leq \|u\|_\varphi \leq \|u\|_{\varphi^-} \)
Sources and Consequences of Asymmetry

Method: Symmetric Sandwich

Results
KL Induces Hausdorff \((T_2)\) Asymmetric Topology

Theorem

\((Y, \| \cdot \|_\varphi)\) (resp. \((X, \| \cdot \|^{*}_\varphi)\)) is Hausdorff.
KL Induces Hausdorff (T_2) Asymmetric Topology

Theorem

$(Y, \| \cdot \|_\varphi)$ (resp. $(X, \| \cdot \|_*^\varphi)$) is Hausdorff.

Proof.

$\|u\|_{\varphi^+} \leq \|u\|_\varphi$ (resp. $\|x\|_{\varphi^-} \leq \|x\|_\varphi$) implies $(Y, \| \cdot \|_\varphi)$ (resp. $(X, \| \cdot \|_*^\varphi)$) is finer than normed space $(Y, \| \cdot \|_{\varphi^+})$ (resp. $(X, \| \cdot \|_{*^-}^\varphi)$).
Separable Subspaces

Theorem

\((Y, \| \cdot \|_{\varphi^+})\) \((resp. \ (X, \| \cdot \|_{\varphi^-}^*)\) is a separable Orlicz subspace of \((Y, \| \cdot \|_\varphi)\)
\((resp. \ (X, \| \cdot \|_{\varphi^*})\).\)
Separable Subspaces

Theorem

\((Y, \| \cdot \|_{\varphi^+})\) (resp. \((X, \| \cdot \|_{\varphi^-}^*)\)) is a separable Orlicz subspace of \((Y, \| \cdot \|_{\varphi})\) (resp. \((X, \| \cdot \|_{\varphi}^*)\)).

Proof.

\(\varphi_+(u) = (1 + |u|) \ln(1 + |u|) - |u| \in \Delta_2\) (resp. \(\varphi_-(x) = e^{-|x|} - 1 + |x| \in \Delta_2\)). Note that \(\varphi_- \notin \Delta_2\) and \(\varphi_+ \notin \Delta_2\). \(\square\)
Completeness

Theorem

\((Y, \| \cdot \|_\varphi) \ (\text{resp. } (X, \| \cdot \|^{*}_\varphi)) \) is

1. Bi-Complete: \(\rho^s \)-Cauchy \(y_n \xrightarrow{\rho^s} y \).
Completeness

Theorem

\((Y, \| \cdot \|_\varphi) \ (\text{resp.} \ (X, \| \cdot \|^{*}_\varphi)) \) is

1. **Bi-Complete**: \(\rho^s\)-Cauchy \(y_n \xrightarrow{\rho^s} y\).
2. **\(\rho\)-sequentially complete**: \(\rho^s\)-Cauchy \(y_n \xrightarrow{\rho} y\).
Completeness

Theorem

\((Y, \| \cdot \|_\varphi) \) (resp. \((X, \| \cdot \|^{*}_\varphi) \)) is

1. **Bi-Complete:** \(\rho^s \)-Cauchy \(y_n \xrightarrow{\rho^s} y \).
2. **\(\rho \)-sequentially complete:** \(\rho^s \)-Cauchy \(y_n \xrightarrow{\rho} y \).
3. **Right K-sequentially complete:** right K-Cauchy \(y_n \xrightarrow{\rho} y \).
Completeness

Theorem

\((Y, \| \cdot \|_\varphi) \) (resp. \((X, \| \cdot \|_\varphi^*)\)) is

1. Bi-Complete: \(\rho^s\)-Cauchy \(y_n \xrightarrow{\rho^s} y\).
2. \(\rho\)-sequentially complete: \(\rho^s\)-Cauchy \(y_n \xrightarrow{\rho} y\).
3. Right K-sequentially complete: right K-Cauchy \(y_n \xrightarrow{\rho} y\).

Proof.

\(\rho^s(y, z) = \|z - y\|_\varphi \lor \|y - z\|_\varphi \leq \|y - z\|_{\varphi^-},\) where \((Y, \| \cdot \|_{\varphi^-})\) is Banach.

Then use theorems of Reilly et al. (1982) and Chen et al. (2007).
Summary and Further Questions

- Topologies induced by asymmetric information divergences may not have the same properties as their symmetrized counterparts (e.g. Banach spaces), and therefore many properties have to be re-examined.
Summary and Further Questions

- Topologies induced by asymmetric information divergences may not have the same properties as their symmetrized counterparts (e.g. Banach spaces), and therefore many properties have to be re-examined.
- We have proved that topologies induced by the KL-divergence are:
 - Hausdorff.
 - Bi-complete.
 - ρ-sequentially complete and right K-sequentially complete.
 - Contain a separable Orlicz subspace.
 - Total boundedness, compactness?
Topologies induced by asymmetric information divergences may not have the same properties as their symmetrized counterparts (e.g. Banach spaces), and therefore many properties have to be re-examined.

We have proved that topologies induced by the KL-divergence are:
- Hausdorff.
Summary and Further Questions

- Topologies induced by asymmetric information divergences may not have the same properties as their symmetrized counterparts (e.g. Banach spaces), and therefore many properties have to be re-examined.

- We have proved that topologies induced by the KL-divergence are:
 - Hausdorff.
 - Bi-complete, ρ-sequentially complete and right K-sequentially complete.
Summary and Further Questions

- Topologies induced by asymmetric information divergences may not have the same properties as their symmetrized counterparts (e.g. Banach spaces), and therefore many properties have to be re-examined.

- We have proved that topologies induced by the KL-divergence are:
 - Hausdorff.
 - Bi-complete, ρ-sequentially complete and right K-sequentially complete.
 - Contain a separable Orlicz subspace.
Summary and Further Questions

- Topologies induced by asymmetric information divergences may not have the same properties as their symmetrized counterparts (e.g. Banach spaces), and therefore many properties have to be re-examined.
- We have proved that topologies induced by the KL-divergence are:
 - Hausdorff.
 - Bi-complete, ρ-sequentially complete and right K-sequentially complete.
 - Contain a separable Orlicz subspace.
- Total boundedness, compactness?
Summary and Further Questions

- Topologies induced by asymmetric information divergences may not have the same properties as their symmetrized counterparts (e.g. Banach spaces), and therefore many properties have to be re-examined.
- We have proved that topologies induced by the KL-divergence are:
 - Hausdorff.
 - Bi-complete, ρ-sequentially complete and right K-sequentially complete.
 - Contain a separable Orlicz subspace.
- Total boundedness, compactness?
- Other asymmetric information distances (e.g. Renyi divergence).
Sources and Consequences of Asymmetry

Method: Symmetric Sandwich

Results
Borodin, P. A. (2001). The Banach-Mazur theorem for spaces with asymmetric norm. *Mathematical Notes, 69*(3–4), 298–305.

Chen, S.-A., Li, W., Zou, D., & Chen, S.-B. (2007, Aug). Fixed point theorems in quasi-metric spaces. In *Machine learning and cybernetics, 2007 international conference on* (Vol. 5, p. 2499-2504). IEEE.

Cobzas, S. (2013). *Functional analysis in asymmetric normed spaces*. Birkhäuser.

Fletcher, P., & Lindgren, W. F. (1982). *Quasi-uniform spaces* (Vol. 77). New York: Marcel Dekker.

Reilly, I. L., Subrahmanyam, P. V., & Vamanamurthy, M. K. (1982). Cauchy sequences in quasi-pseudo-metric spaces. *Monatshefte für Mathematik, 93*, 127–140.