APPROXIMATION OF GENERAL 3-VARIABLE JENSEN \(\rho \)-FUNCTIONAL INEQUALITIES IN COMPLEX BANACH SPACES

GANG LU*, WENLONG SUN, HANYUE QIAO, YUANFENG JIN*, AND CHOOKIL PARK

Abstract. In this paper, we introduce and investigate general 3-variable Jensen \(\rho \)-functional equation, and prove the Hyers-Ulam stability of the Jensen functional equations associated with the general 3-variable Jensen \(\rho \)-functional inequalities in complex Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [26] concerning the stability of group homomorphisms. The essence of the problem is, under what condition does there exists a homomorphism near an approximate homomorphism? The study of stability for functional equation arises from the Ulam’s problem. In 1941, Hyers [11] gave the first affirmative answer to the question of Ulam for Banach spaces. His method was called the direct method. Later, Hyers’ theorem was generalized by Aoki [1] for additive mappings and by Rassias [23] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Th.M. Rassias theorem was obtained by Găvruta [10] by replacing the unbounded Cauchy difference by a general control function in the spirit of Th.M. Rassias’ approach. The stability problems for several functional equations or inequalities have been extensively investigated by a number of authors (see [2]–[9], [12]–[19], [22], [24]–[27]).

The function equations

\[
\begin{align*}
 f(x + y + z) + f(x + y - z) - 2f(x) - 2f(y) &= 0 \tag{1.1} \\
 f(x + y + z) - f(x - y - z) - 2f(y) - 2f(z) &= 0. \tag{1.2}
\end{align*}
\]

are called 3-variable Jensen. In [18, 20, 25], Lu et al. investigated the 3-variable functional inequalities and proved their stability.

In this paper, we consider the following functional equations

\[
\begin{align*}
 f(x + y + \alpha z) + f(x + y - \alpha z) - 2f(x) - 2f(y) &= 0, \tag{1.3} \\
 f(x + \beta y + \alpha z) - f(x - \alpha z) - \beta f(y) - 2f(\alpha z) &= 0. \tag{1.4}
\end{align*}
\]
where \(\beta \) and \(\alpha \) are nonzero real numbers. And discuss the Hyers-Ulam stability of general 3-variable Jensen \(\rho \)-functional equations associated with functional inequalities in complex Banach spaces.

Throughout this paper, assume that \(X \) is a complex normed vector space with norm \(\| \cdot \| \) and that \(Y \) is a complex Banach space.

2. Hyers-Ulam stability of (1.3)

In this section, we prove the Hyers-Ulam stability of the 3-variable function inequality

\[
\| f(x + y + \alpha z) + f(x + y - \alpha z) - 2f(x) - 2f(y) \|
\leq \| \rho_1 (f(x + y + \alpha z) - f(x + y) - f(\alpha z)) \|
\leq \| \rho_2 (f(x + y - \alpha z) + f(-x) + f(\alpha z - y)) \|
\]

in complex Banach spaces, where \(\rho_1 \) and \(\rho_2 \) are fixed complex numbers with \(|\rho_1| + 3|\rho_2| < 2 \).

Lemma 2.1. Let \(f : X \to Y \) be a mapping. If it satisfies (2.1) for all \(x, y, z \in X \), then \(f \) is additive.

Proof. Letting \(x = y = z = 0 \) in (2.1), we get

\[
2\| f(0) \| \leq (|\rho_1| + 3|\rho_2|)\| (f(0) \|
\]

and thus \(f(0) = 0 \), \(|\rho_1| + 3|\rho_2| < 2 \).

Letting \(x = y = 0 \) in (2.1), we get

\[
\| f(\alpha z) + f(-\alpha z) \| \leq \| \rho_2 (f(-\alpha z) + f(\alpha z)) \|
\]

and so \(f(-x) = -f(x) \) for all \(x \in X \).

Letting \(z = 0 \) in (2.1), we have

\[
\| 2f(x + y) - 2f(x) - 2f(y) \| \leq \| \rho_2 (f(x + y) - f(x) - f(y)) \|
\]

and so \(f(x + y) = f(x) + f(y) \) for all \(x, y \in X \). Hence \(f : X \to Y \) is additive. \(\square \)

Corollary 2.2. Let \(f : X \to Y \) be a mapping satisfying

\[
\| f(x + y + \alpha z) + f(x + y - \alpha z) - 2f(x) - 2f(y) \|
\leq \| \rho_1 (f(x + y + \alpha z) - f(x + y) - f(\alpha z)) \|
\leq \| \rho_2 (f(x + y - \alpha z) + f(-x) + f(\alpha z - y)) \|
\]

for all \(x, y, z \in X \). Then \(f : X \to Y \) is additive.

We prove the Hyers-Ulam stability of the additive functional inequality (2.1) in complex Banach spaces.
Theorem 2.3. Let $f : X \to Y$ be a mapping. If there is a function $\varphi : X^3 \to [0, \infty)$ with $\varphi(0,0,0) = 0$ such that
\[
\|f(x + y + \alpha z) + f(x + y - \alpha z) - 2f(x) - 2f(y)\|
\leq \rho_1(f(x + y + \alpha z) - f(x + y) - f(\alpha z))
+ \rho_2(f(x + y - \alpha z) + f(-x) + f(\alpha z - y)) + \varphi(x, y, z)
\]
and
\[
\lim_{j \to \infty} \frac{1}{2^j} \varphi(2^j x, 2^j y, 2^j z) = 0
\]
for all $x, y, z \in X$, then there exists a unique additive mapping $A : X \to Y$ such that
\[
\|f(x) - A(x)\| \leq \tilde{\varphi}(x)
\]
for all $x \in X$.

Proof. Letting $x = y = z = 0$ in (2.3), we get
\[
2\|f(0)\| \leq (|\rho_1| + 3|\rho_2|)\|f(0)\|.
\]
(2.7)
So $f(0) = 0$. Letting $x = y = 0$ in (2.1), we get
\[
\|f(\alpha z) + f(-\alpha z)\| \leq \rho_2(f(-\alpha z) + f(\alpha z)) + \varphi(0, 0, z)
\]
and so
\[
\|f(z) + f(-z)\| \leq \frac{\varphi(0, 0, \frac{z}{\alpha})}{1 - |\rho_2|}
\]
for all $z \in X$.

Letting $y = x$ and $z = 0$ in (2.3), we get
\[
\|2f(2x) - 4f(x)\| \leq |\rho_2|\|f(2x) - 2f(x)\| + 2|\rho_2|\|f(x) + f(-x)\| + \varphi(x, x, 0)
\]
(2.8)
and so
\[
\|f(2x) - 2f(x)\| \leq \frac{1}{2 - |\rho_2|} \left(\varphi(x, x, 0) + \frac{2|\rho_2|}{1 - |\rho_2|} \varphi(0, 0, \frac{x}{\alpha}) \right)
\]
for all $x \in X$. Thus
\[
\left\| \frac{f(x) - f(2x)}{2} \right\| \leq \frac{1}{2(2 - |\rho_2|)} \left(\varphi(x, x, 0) + \frac{2|\rho_2|}{1 - |\rho_2|} \varphi(0, 0, \frac{x}{\alpha}) \right)
\]
for all \(x \in X \). Hence one may have the following formula for positive integers \(m, l \) with \(m > l \),

\[
\left\| \frac{1}{2^l} f \left(2^l x \right) - \frac{1}{2^m} f \left(2^m x \right) \right\| \\
\leq \sum_{i=l}^{m-1} \frac{1}{2^{i+1}} \frac{1}{(2 - |\rho_2|)} \left(\phi(2^i x, 2^i x, 0) + \frac{2|\rho_2|}{1 - |\rho_2|} \phi \left(0, 0, \frac{2^i x}{\alpha} \right) \right)
\]

(2.9)

for all \(x \in X \).

It follows from (2.5) that the sequence \(\left\{ \frac{f(2^k x)}{2^k} \right\} \) is a Cauchy sequence for all \(x \in X \).

Since \(Y \) is complete, the sequence \(\left\{ \frac{f(2^k x)}{2^k} \right\} \) converges. So one may define the mapping \(A : X \to Y \) by

\[
A(x) := \lim_{k \to \infty} \left\{ \frac{f(2^k x)}{2^k} \right\}, \quad \forall x \in X.
\]

Taking \(l = 0 \) and letting \(m \) tend to \(\infty \) in (2.9), we get (2.6).

It follows from (2.3) that

\[
\| A(x + y + \alpha z) + A(x + y - \alpha z) - 2A(x) - 2A(y) \| \\
= \lim_{n \to \infty} \frac{1}{2^n} \left\| f \left[2^n (x + y + \alpha z) \right] + f \left[2^n (x + y - \alpha z) \right] - 2 f \left(2^n x \right) - 2 f \left(2^n y \right) \right\| \\
\leq \lim_{n \to \infty} \frac{1}{2^n} \left\| \rho_1 (f \left[2^n (x + y + \alpha z) \right] - f \left(2^n x + 2^n y \right) - f \left(2^n \alpha z \right)) \right\| \\
+ \lim_{n \to \infty} \frac{1}{2^n} \left\| \rho_2 (f \left[2^n (x + y - \alpha z) \right] + f \left(-2^n x \right) + f \left(-2^n y + 2^n \alpha z \right)) \right\| \\
+ \lim_{n \to \infty} \frac{1}{2^n} \phi \left(2^n x, 2^n y, 2^n \alpha z \right) \\
= \| \rho_1 (A(x + y + \alpha z) - A(x + y) - A(\alpha z)) \| \\
+ \| \rho_2 (A(x + y - \alpha z) + A(-x) + A(-y + \alpha z)) \| \\
\]

(2.10)

for all \(x, y, z \in X \). One can see that \(A \) satisfies the inequality (2.1) and so it is additive by Lemma 2.1.

Now, we show that the uniqueness of \(A \). Let \(T : X \to Y \) be another additive mapping satisfying (2.3). Then one has

\[
\| A(x) - T(x) \| = \left\| \frac{1}{2^k} A \left(2^k x \right) - \frac{1}{2^k} T \left(2^k x \right) \right\| \\
\leq \frac{1}{2^k} \left(\| A \left(2^k x \right) - f \left(2^k x \right) \| \\
+ \| T \left(2^k x \right) - f \left(2^k x \right) \| \right) \\
\leq 2 \frac{1}{2^k} \tilde{\phi}(2^k x) = \sum_{i=k}^{\infty} \frac{1}{2^{i+1}} \frac{1}{(2 - |\rho_2|)} \left(\phi(2^i x, 2^i x, 0) + \frac{2|\rho_2|}{1 - |\rho_2|} \phi \left(0, 0, \frac{2^i x}{\alpha} \right) \right),
\]

(2.11)
which tends to zero as $k \to \infty$ for all $x \in X$. So we can conclude that $A(x) = T(x)$ for all $x \in X$.

\textbf{Corollary 2.4.} Let $r < 1$ and θ be nonnegative real numbers and $f : X \to Y$ be a mapping such that

$$\|f(x + y + \alpha z) + f(x + y - \alpha z) - 2f(x) - 2f(y)\|$$

$$= \|\rho_1(f(x + y + \alpha z) - f(x + y) - f(\alpha z))\|$$

$$+ \|\rho_2(f(x + y - \alpha z) + f(-x) + f(\alpha z - y))\| + \theta(\|x\|^{r} + \|y\|^{r} + \|z\|^{r})$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $A : X \to Y$ such that

$$\|f(x) - A(x)\| \leq \frac{2\theta}{(2 - 2^{r})} \cdot \frac{1}{(1 - |\rho_2|)(2 - |\rho_2|)} \|x\|^{r}$$

for all $x \in X$.

\textbf{Theorem 2.5.} Let $f : X \to Y$ be a mapping with $\varphi(0, 0, 0) = 0$. If there is a function $\varphi : X^3 \to [0, \infty)$ satisfying (2.13) such that

$$\lim_{j \to \infty} 2^{j} \varphi \left(\frac{x}{2^{j}}, \frac{y}{2^{j}}, \frac{z}{2^{j}}\right) = 0$$

for all $x, y, z \in X$, then there exists a unique additive mapping $A : X \to Y$ such that

$$\|f(x) - A(x)\| \leq \tilde{\varphi} \left(\frac{x}{2}\right) := \sum_{i=0}^{\infty} \frac{1}{2^{i}} \cdot \frac{1}{2 - |\rho_2|} \left(\varphi \left(\frac{x}{2^{i+1}}, \frac{x}{2^{i+1}}, 0\right) + \frac{2|\rho_2|}{1 - |\rho_2|} \varphi(0, 0, \frac{x}{2^{i+1}})\right)$$

for all $x \in X$.

\textit{Proof.} Similar to the proof of Theorem 2.3, we can get

$$\left\|f(x) - 2f \left(\frac{x}{2}\right)\right\| \leq \frac{1}{2 - |\rho_2|} \left(\varphi \left(\frac{x}{2}, \frac{x}{2}, 0\right) + \frac{2|\rho_2|}{1 - |\rho_2|} \varphi(0, 0, \frac{x}{2\alpha})\right)$$

for all $x \in X$.

Next, we can prove that the sequence $\{2^{n}f \left(\frac{x}{2^{n}}\right)\}$ is a Cauchy sequence for all $x \in X$, and define a mapping $A : X \to Y$ by

$$A(x) := \lim_{n \to \infty} 2^{n}f \left(\frac{x}{2^{n}}\right)$$

for all $x \in X$.

The rest proof is similar to the corresponding part of the proof of Theorem 2.3. \hfill \Box

\textbf{Corollary 2.6.} Let $r > 1$ and θ be nonnegative real numbers and $f : X \to Y$ be a mapping such that

$$\|f(x + y + \alpha z) + f(x + y - \alpha z) - 2f(x) - 2f(y)\|$$

$$\leq \|\rho_1(f(x + y + \alpha z) - f(x + y) - f(\alpha z))\|$$

$$+ \|\rho_2(f(x + y - \alpha z) + f(-x) + f(\alpha z - y))\| + \theta(\|x\|^{r} + \|y\|^{r} + \|z\|^{r})$$

(2.14)
for all \(x, y, z \in X\). Then there exists a unique additive mapping \(A : X \rightarrow Y\) such that
\[
\|f(x) - A(x)\| \leq \frac{2^{1+r} \theta}{2^r - 1} \frac{1}{(1 - |\rho_2|)(2 - |\rho_2|)}\|x\|^r
\]
for all \(x \in X\).

3. Hyers-Ulam stability of (1.4)

In this section, we prove that the Hyers-Ulam stability of the 3-variable functional inequality
\[
\|f(x + \beta y + \alpha z) - f(x - \alpha z) - \beta f(y) - 2f(\alpha z)\|
\leq \|\rho_1(f(x + \alpha z) - f(x) - f(\alpha z))\|
+ \|\rho_2(f(x + \beta y - \alpha z) - f(x) - \beta f(y) + f(\alpha z))\|
\] in complex Banach space, where \(\rho_1\) and \(\rho_2\) are fixed complex numbers with \(|\rho_2| < 1\) and \(|\beta + 2| \geq |\rho_1| + |\rho_2(1 - \beta)|\).

Lemma 3.1. Let \(f : X \rightarrow Y\) be a mapping. If it satisfies (3.1) for all \(x, y, z \in X\), then \(f\) is additive.

Proof. Letting \(x = y = z = 0\) in (3.1) for all \(x, y, z \in X\), we get
\[
\|(\beta + 2)f(0)\| \leq (|\rho_1| + |\rho_2||\beta - 1|)\|f(0)\|.
\] Thus \(f(0) = 0\).

Letting \(x = y = 0\) in (3.1), we get
\[
(1 - |\rho_2|)\|f(\alpha z) + f(-\alpha z)\| \leq 0
\] and so \(f(-x) = -f(x)\) for all \(x \in X\).

Letting \(x = 0\) in (3.1), we have
\[
\|f(\beta y + \alpha z) - f(\alpha z) - \beta f(y)\| \leq \|\rho_2(f(\beta y - \alpha z) - \beta f(y) + f(\alpha z))\|
\] for all \(y, z \in X\).

Letting \(z = -z\) in (3.3), we get
\[
\|f(\beta y - \alpha z) + f(\alpha z) - \beta f(y)\| \leq |\rho_2|\|f(\beta y + \alpha x) - \beta f(y) - f(\alpha z)\|
\] for all \(y, z \in X\). Thus
\[
\|f(\beta y - \alpha z) - \beta f(y) + f(\alpha z)\| \leq 0
\] and so
\[
\|f(y + z) - f(y) - f(z)\| = 0
\] for all \(y, z \in X\). Hence \(f : X \rightarrow Y\) is additive. \(\square\)
Corollary 3.2. Let \(f : X \rightarrow Y \) be a mapping satisfying
\[
\|f(x + \beta y + \alpha z) - f(x - \alpha z) - \beta f(y) - 2f(\alpha z)\| \\
= \|\rho_1(f(x + \alpha z) - f(x) - f(\alpha z))\| \\
+ \|\rho_2(f(x + \beta y - \alpha z) - f(x) - \beta f(y) + f(\alpha z))\| \\
\tag{3.6}
\]
for all \(x, y, z \in X \). Then \(f : X \rightarrow Y \) is additive.

We prove the Hyers-Ulam stability of the functional inequality (3.1) in complex Banach spaces.

Theorem 3.3. Let \(f : X \rightarrow Y \) be a mapping. Assume that there is a function \(\phi : X^3 \rightarrow [0, \infty) \) with \(\phi(0, 0, 0) = 0 \) such that
\[
\|f(x + \beta y + \alpha z) - f(x - \alpha z) - \beta f(y) - 2f(\alpha z)\| \\
\leq \|\rho_1(f(x + \alpha z) - f(x) - f(\alpha z))\| \\
+ \|\rho_2(f(x + \beta y - \alpha z) - f(x) - \beta f(y) + f(\alpha z))\| + \phi(x, y, z) \\
\tag{3.7}
\]
and
\[
\lim_{j \to \infty} \frac{1}{|1 + \beta|^j} \phi((1 + \beta)^j x, (1 + \beta)^j y, (1 + \beta)^j z) = 0 \tag{3.8}
\]
for all \(x, y, z \in X \). Then there exists a unique additive mapping \(A : X \rightarrow Y \) such that
\[
\|f(x) - A(x)\| \leq \tilde{\phi}(x, x, 0) \tag{3.9}
\]
for all \(x \in X \), where
\[
\tilde{\phi}(x, y, z) := \frac{1}{|1 + \beta|(1 - |\rho_1|)} \sum_{j=0}^{\infty} \frac{1}{|1 + \beta|^j} \phi((1 + \beta)^j x, (1 + \beta)^j y, (1 + \beta)^j z) < \infty \tag{3.10}
\]
for all \(x, y, z \in X \).

Proof. Letting \(x = y = z = 0 \) in (3.7), we get
\[
\| (\beta + 2)f(0) \| \leq (|\rho_1| + |(1 - \beta)\rho_2|) \|f(0)\|. \tag{3.11}
\]
So \(f(0) = 0 \).

Letting \(z = 0 \) and \(y = x \) in (3.7), we get
\[
\|f((1 + \beta)x) - (1 + \beta)f(x)\| \leq |\rho_2|\|f((1 + \beta)x) - (1 + \beta)f(x)\| + \phi(x, x, 0) \tag{3.12}
\]
for all \(x \in X \).

Thus
\[
\left\| \frac{f(x) - f((1 + \beta)x)}{1 + \beta} \right\| \leq \frac{1}{1 - |\rho_2|} \frac{1}{|1 + \beta|} \phi(x, x, 0)
\]
for all \(x \in X \).
Hence one may have the following formula for positive integers \(m, l\) with \(m > l\),

\[
\left\| \frac{1}{|1 + \beta|^l} f \left((1 + \beta)^l x \right) - \frac{1}{|1 + \beta|^m} f \left((1 + \beta)^m x \right) \right\| \\
\leq \frac{1}{|1 + \beta|(1 - |\rho_1|)} \sum_{i=l}^{m-1} \frac{1}{|1 + \beta|^i} \varphi \left(|1 + \beta|^i x, |1 + \beta|^i x, 0 \right),
\]

(3.13)

for all \(x \in X\).

It follows from (3.10) that the sequence \(\left\{ \frac{f((1 + \beta)^k x)}{(1 + \beta)^k} \right\}\) is a Cauchy sequence for all \(x \in X\). Since \(Y\) is complete, the sequence \(\left\{ \frac{f((1 + \beta)^k x)}{(1 + \beta)^k} \right\}\) converges. So one may define the mapping \(A : X \to Y\) by

\[
A(x) := \lim_{k \to \infty} \left\{ \frac{f((1 + \beta)^k x)}{(1 + \beta)^k} \right\}, \quad \forall x \in X.
\]

Taking \(m = 0\) and letting \(l\) tend to \(\infty\) in (3.13), we get (3.9).

It follows from (3.7) that

\[
\|A(x + \beta y + \alpha z) - A(x - \alpha z) - \beta A(y) - 2A(\alpha z)\|
\]

\[
= \lim_{n \to \infty} \frac{1}{|1 + \beta|^n} \| f \left[(1 + \beta)^n (x + \beta y + \alpha z) \right] + f \left[(1 + \beta)^n (x - \alpha z) \right] - \beta f \left((1 + \beta)^n y \right) - 2f \left((1 + \beta)^n \alpha z \right) \|
\]

\[
\leq \lim_{n \to \infty} \frac{1}{|1 + \beta|^n} \| \rho_1 \left(f \left[(1 + \beta)^n (x + \alpha z) \right] - f \left[(1 + \beta)^n (x - \alpha z) \right] \right) - f \left((1 + \beta)^n \alpha z \right) \|
\]

\[
+ \lim_{n \to \infty} \frac{1}{|1 + \beta|^n} \| \rho_2 \left(f \left[(1 + \beta)^n (x + \beta y - \alpha z) \right] - f \left((1 + \beta)^n x \right) \right) - \beta f \left((1 + \beta)^n y \right) + f \left((1 + \beta)^n \alpha z \right) \|
\]

\[
+ \lim_{n \to \infty} \frac{1}{|1 + \beta|^n} \varphi \left((1 + \beta)^n x, (1 + \beta)^n y, (1 + \beta)^n z \right)
\]

\[
= \| \rho_1 (A(x + \alpha z) - A(x) - A(\alpha z)) \|
\]

\[
+ \| \rho_2 (A(x + \beta y - \alpha z) - A(x) - \beta A(y) + A(\alpha z)) \|
\]

(3.14)

for all \(x, y, z \in X\). One can see that \(A\) satisfies the inequality (3.1) and so it is additive by Lemma 3.1.

Now, we show that the uniqueness of \(A\). Let \(T : X \to Y\) be another additive mapping satisfying (3.7). Then one has
\[\|A(x) - T(x)\| = \left\| \frac{1}{(1 + \beta)^k} A((1 + \beta)^k x) - \frac{1}{(1 + \beta)^k} T((1 + \beta)^k x) \right\| \]
\[\leq \frac{1}{1 + \beta} \left(\|A((1 + \beta)^k x) - f((1 + \beta)^k x)\| \right. \]
\[+ \left. \|T((1 + \beta)^k x) - f((1 + \beta)^k x)\| \right) \]
\[\leq 2 \frac{1}{1 + \beta|k|} \tilde{\varphi}(x, x, 0), \]

which tends to zero as \(k \to \infty\) for all \(x \in X\). So we can conclude that \(A(x) = T(x)\) for all \(x \in X\). \(\Box\)

Corollary 3.4. Let \(r > 1\) and \(\theta\) be nonnegative real numbers and \(f : X \to Y\) be a mapping such that
\[\|f(x + \beta y + \alpha z) - f(x - \alpha z) - \beta f(y) - 2f(\alpha z)\| \]
\[\leq \|\rho_1(f(x + \alpha z) - f(x) - f(\alpha z))\| \]
\[+ \|\rho_2(f(x + \beta y - \alpha z) - f(x) - \beta f(y) + f(\alpha z))\| + \theta(||x||^r + ||y||^r + ||z||^r) \quad (3.15)\]

for all \(x, y, z \in X\) with \(|1 + \beta| > 1\). Then there exists a unique additive mapping \(A : X \to Y\) such that
\[\|f(x) - A(x)\| \leq \frac{2\theta}{|1 + \beta| - |1 + \beta|^r} \frac{1}{1 - |\rho_2|} ||x||^r \quad (3.16)\]

for all \(x \in X\).

Theorem 3.5. Let \(f : X \to Y\) be a mapping with \(f(0) = 0\). If there is a function \(\varphi : X^3 \to [0, \infty)\) satisfying (3.7) such that
\[\tilde{\varphi}(x, y, z) := \sum_{j=1}^{\infty} |1 + \beta|^j \varphi \left(\frac{x}{(1 + \beta)^j}, \frac{y}{(1 + \beta)^j}, \frac{z}{(1 + \beta)^j} \right) < \infty \quad (3.17)\]

for all \(x, y, z \in X\), then there exists a unique additive mapping \(A : X \to Y\) such that
\[\|f(x) - A(x)\| \leq \frac{1}{1 - |\rho_2|} \tilde{\varphi} \left(\frac{x}{1 + \beta}, \frac{x}{1 + \beta}, 0 \right) \quad (3.18)\]

for all \(x \in X\).

Proof. Similar to the proof of Theorem 3.3 we can get
\[\left\| f(x) - (1 + \beta) f \left(\frac{x}{1 + \beta} \right) \right\| \leq \frac{1}{1 - |\rho_2|} \varphi \left(\frac{x}{1 + \beta}, \frac{x}{1 + \beta}, 0 \right) \]

for all \(x \in X\).
Next, we can prove that the sequence \(\{(1 + \beta)^nf\left(\frac{x}{(1+\beta)^n}\right)\} \) is a Cauchy sequence for all \(x \in X \) and define a mapping \(A : X \to Y \) by
\[
A(x) := \lim_{n \to \infty} (1 + \beta)^nf\left(\frac{x}{(1+\beta)^n}\right)
\]
for all \(x \in X \). The rest of the proof is similar to the corresponding part of the proof of Theorem 3.3. \(\square \)

Corollary 3.6. Let \(r > 1 \) and \(\theta \) be nonnegative real numbers and \(f : X \to Y \) be a mapping such that
\[
\|f(x + \beta y + \alpha z) - f(x - \alpha z) - \beta f(y) - 2f(\alpha z)\|
\leq \|\rho_1(f(x + \alpha z) - f(x) - f(\alpha z))\|
+ \|\rho_2(f(x + \beta y - \alpha z) - f(x) - \beta f(y) + f(\alpha z))\|
+ \theta(\|x\|^r + \|y\|^r + \|z\|^r)
\]
for all \(x, y, z \in X \) and \(|1 + \beta| < 1\). Then there exists a unique additive mapping \(A : X \to Y \) such that
\[
\|f(x) - A(x)\| \leq \frac{2\theta}{|1 + \beta|^r - |1 + \beta| |1 - |\rho_2||} \|x\|^r
\]
for all \(x \in X \).

Competing interests

The author declares that he has no competing interests.

Authors’ contributions

The author conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Funding

This work was supported by National Natural Science Foundation of China (No. 11761074), the Projection of the Department of Science and Technology of JiLin Province and the Education Department of Jilin Province (No. 20170101052JC) and the scientific research project of Guangzhou College of Technology and Business in 2020(No. KA202032).
REFERENCES

1. T. Aoki, *On the stability of the linear transformation in Banach spaces*, J. Math. Soc. Japan 2 (1950), 64–66.
2. J. Aczel and J. Dhombres, *Functional Equations in Several Variables*, Cambridge Univ. Press, Cambridge, 1989.
3. L. Cădariu and V. Radu, *Fixed points and the stability of Jensen’s functional equation*, J. Inequal. Pure Appl. Math. 4 (2003), no.1, Article No. 4.
4. I. Chang, M. Eshaghi Gordji, H. Khodaei and H. Kim, *Nearly quartic mappings in β-homogeneous F-spaces*, Results Math. 63 (2013), 529–541.
5. P.W. Cholewa, *Remarks on the stability of functional equations*, Aequationes Math. 27 (1984), 76–86.
6. Y. Cho, C. Park and R. Saadati, *Functional inequalities in non-Archimedean Banach spaces*, Appl. Math. Lett. 23 (2010), 1238–1242.
7. Y. Cho, R. Saadati and Y. Yang, *Approximation of homomorphisms and derivations on Lie C∗-algebras via fixed point method*, J. Inequal. Appl. 2013, 2013:415.
8. J. B. Diaz and B. Margolis, *A fixed point theorem of the alternative for contractions on a generalized complete metric space*, Bull. Am. Math. Soc. 44 (1968), 305–309.
9. A. Ebadian, N. Ghebadipour, Th. M. Rassias and M. Eshaghi Gordji, *Functional inequalities associated with Cauchy additive functional equations in non-Archimedean spaces*, Discrete Dyn. Nat. Soc. 2011 (2011), Article ID 929824.
10. P. Gavruta, *A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings*, J. Math. Anal. Appl. 184 (1994), 431–436.
11. D. H. Hyers, *On the stability of the linear functional equation*, Proc. Nat. Acad. Sci. USA 27 (1941), 222–224.
12. D. H. Hyers, G. Isac and Th. M. Rassias, *Stability of Functional Equations in Several Variables*, Birkhäuser, Basel, 1998.
13. G. Isac and Th. M. Rassias, *On the Hyers-Ulam stability of ψ-additive mappings*, J. Approx. Theory 72 (1993), 131–137.
14. S. Jung, D. Popa, M. Th. Rassias, *On the stability of the linear functional equation in a single variable on complete metric spaces*, J. Global Optim. 59 (2014), 13–16.
15. J. Lee, C. Park and D. Shin, *Stability of an additive functional inequality in proper CQ∗-algebras*, Bull. Korean Math. Soc. 48 (2011), 853–871.
16. S. Lee, J. Bae and W. Park, *On the stability of an additive functional inequality for the fixed point alternative*, J. Comput. Anal. Appl. 17 (2014), 361–371.
17. Y. Lee, S. Jung, M. Th. Rassias, *Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation*, J. Math. Inequal. 12 (2018), 43–61.
18. G. Lu, Q. Liu, Y. Jin and J. Xie, *3-Variable Jensen’s functional inequalities and equations*, J. Nonlinear Sci. Appl. 9 (2016), 5995–6003.
19. G. Lu and C. Park, *Hyers-Ulam stability of additive set-valued functional equations*, Appl. Math. Lett. 24 (2011), 1312–1316.
20. C. Park, *The stability of an additive (ρ1, ρ2)-functional inequality in Banach spaces*, J. Math. Inequal. 13 (2019), 95–104.
21. C. Park, Y. Cho and M. Han, *Functional inequalities associated with Jordan-von-Neumann-type additive functional equations*, J. Inequal. Appl. 2007 (2007), Article ID 41820.
22. C. Park and M. Th. Rassias, *Additive functional equations and partial multipliers in C∗-algebras*, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113 (2019), 2261–2275.
23. Th. M. Rassias, *On the stability of the linear mapping in Banach spaces*, Proc. Am. Math. Soc. 72 (1978), 297–300.
24. Th. M. Rassias (Ed.), *Functional Equations and Inequalities*, Kluwer Academic, Dordrecht, 2000.
25. W. Sun, Y. Jin, C. Park, and G. Lu, *3-variable double ρ-functional inequalities of Drygas*, J. Math. Inequal., **13**(2019), 1235-1244.

26. S. M. Ulam, *Problems in Modern Mathematics*, Chapter VI, Science ed., Wiley, New York, 1940.

27. T. Z. Xu, J. M. Rassias, and W. X. Xu, *A fixed point approach to the stability of a general mixed additive-cubic functional equation in quasi fuzzy normed spaces*, Int. J. Phys. Sci. **6** (2011), 313–324.

GANG LU
DIVISION OF FOUNDATIONAL TEACHING, GUANGZHOU COLLEGE OF TECHNOLOGY AND BUSINESS,
GUANGZHOU 510850, P.R. CHINA
Email address: lvgang1234@163.com

WENLONG SUN
DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE, SHENYANG UNIVERSITY OF TECHNOLOGY,
SHENYANG 110870, P.R. CHINA
Email address: 179378033@qq.com

HANYUE QIAO
DEPARTMENT OF MATHEMATICS, YANBIAN UNIVERSITY, YANJI 133001, P.R. CHINA
Email address: 1378435807@qq.com

YUANFENG JIN
DEPARTMENT OF MATHEMATICS, YANBIAN UNIVERSITY, YANJI 133001, P.R. CHINA
Email address: yfkim@ybu.edu.cn

CHOONKIL PARK
RESEARCH INSTITUTE FOR NATURAL SCIENCES, HANYANG UNIVERSITY, SEOUL 04763, KOREA
Email address: baak@hanyang.ac.kr