Inventory of Medicinal Plants Used Traditionally to Manage Kidney Diseases in North-Eastern Morocco: Ethnobotanical Fieldwork and Pharmacological Evidence

Noureddine Bencheikh 1, Amine Elbouzidi 1, Loubna Kharchoufa 1, Hayat Ouassou 1, Ilyass Alami Merrouni 1, Hamza Mechchat 2, Imane Es-safi 2*, Christophe Hano 3, Mohamed Addi 4, Mohamed Bouhri 5, Bruno Eto 5 and Mostafa Elachouri 1

Citation: Bencheikh, N.; Elbouzidi, A.; Kharchoufa, L.; Ouassou, H.; Alami Merrouni, I.; Mechchat, H.; Es-safi, I.; Hano, C.; Addi, M.; Bouhri, M.; et al. Inventory of Medicinal Plants Used Traditionally to Manage Kidney Diseases in North-Eastern Morocco: Ethnobotanical Fieldwork and Pharmacological Evidence. Plants 2021, 10, 1966. https://doi.org/10.3390/plants10091966

Academic Editors: Ahmed A. Hussein and Ahmad Cheikhrouf

Received: 24 August 2021
Accepted: 15 September 2021
Published: 20 September 2021

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract: Kidney disease is one of the most common health problems and kidney failure can be fatal. It is one of the health disorders associated with extreme pain and discomfort in patients. In developing countries, such as Morocco where socioeconomic and sanitary conditions are precarious, medicinal plants are considered the primary source of medication. In the present work an ethnobotanical survey was conducted in a remote area of North-Eastern Morocco and we focused on (1) establishing a record of medicinal plants used traditionally by local people to treat kidney diseases and (2) correlate the obtained ethnomedical use with well-studied pharmacological evidence. From February 2018 to January 2020, information was gathered from 488 informants using semi-structured questionnaires. The data were analyzed using three quantitative indices: the use value (UV), family use value (FUV), and informant consensus factor (ICF). A total of 121 plant species belonging to 57 botanical families were identified to treat kidney diseases. The families most represented were Asteraceae (14 species), followed by Lamiaceae (12 species) and Apiaceae (10 species). The most commonly used plant parts were leaves, followed by the whole plant and they were most commonly prepared by decoction and infusion. The highest value of the (UV) index was attributed to Herniaria hirsuta L. (UV = 0.16), and the highest family use value (FUV) was assigned to Caryophyllaceae with (FUV = 0.163). Regarding the informant consensus factor (ICF), this index’s highest values were recorded for kidney stones (ICF = 0.72). The use of 45% of the selected plants were validated based on literature review. This study helped document and preserve crucial traditional plant knowledge of 121 plant species used to treat kidney problems that can be used in the search for new biologically active compounds through more upcoming pharmacological studies.

Keywords: ethnobotany; ethnomedicinal; traditional medicine; renal diseases; folk medicine; traditional knowledge; kidney problems; lithiasis; calculus; diuretic
1. Introduction

Nowadays, kidneys and their problems have gained increasing interest concomitant with life changes, industrialization and malnutrition. Plants have always played a significant role in traditional medicine in underdeveloped countries and have also been an integral part of local communities’ history and cultural practices [1]. Medicinal plants have been recognized for centuries as a rich source of medicinal agents for preventing and treating a variety of ailments in Morocco [2]. Several researches conducted in different regions of Morocco indicated that people excessively use medicinal plants to meet their healthcare needs in Morocco (at least 75% of the population) [3,4] and it is due to several factors, such as the high cost of conventional medicines, the lack of adequate sanitary facilities, and frangible socioeconomic conditions of users, especially those living in poor, remote areas and also their safety and low incidence of adverse effects [5].

As other regions of Morocco, people living in North-Eastern Morocco have a common cultural past that dates back to the Arab civilization in the seventh century. The original cumulative culture has maintained a well-developed traditional knowledge of medicinal plants’ uses that form the basis of the traditional medical system existing until now [6,7]. Unfortunately, this local cultural and natural heritage is threatened with extinction. The decrease of these phyto-therapeutic practices and the degradation of phyto-genetic resources are due to several factors, mainly the lack of documentary databases related to traditional medical practices and the scarcity of ethnobotanical information archives aggravate this natural and cultural heritage loss.

Regarding, these ancestral medical practices in this country, we found that there are many investigations carried out in different regions of Morocco that deal with traditional use of medicinal plants for the treatment of renal diseases. In fact, an ethnobotanical survey conducted in the Fez-Meknes region was able to document traditional knowledge related to the 69 plant species belonging to 38 families, used as traditional remedies for the treatment of kidney diseases in this region [8]. In the Boulemane region of Morocco, Jouad et al. (2001) conducted an ethnobotanical survey to document traditional medicinal practices related to medicinal plants used for the treatment of diabetes and kidney disease, among which they identify 33 medicinal plants used specifically to treat kidney problems [9]. In addition, a study led by Khouchlaa et al. (2016) in the Rabat region provided a catalogue of 35 medicinal plants with information on therapeutic practices for treating urinary lithiasis [10]. All these ethnobotanical fieldworks cited are practically concentrated on a part of the Moroccan territory, which shows that the ancestral medical practices in this country have remained to be preserved with regard to kidney diseases.

To the best of our knowledge, no ethnobotanical survey on the use of medicinal plants used in treating kidney diseases has been conducted in North-Eastern Morocco, appealing this study to be conducted with the objective of (1) record, evaluate, and document medicinal plants and know-how related used by local people, in the control and healing of renal disorders, in six provinces of the North-Eastern region of Morocco, (2) make a quantitative analysis of traditional knowledge assigned to species inventoried, (3) provide pharmacological and toxicological data of the plant species listed in the present paper.

2. Results and Discussion
2.1. Socio-Demographic Data
2.1.1. Global Data

In Table 1, we regrouped the information on the participants’ sociodemographic characteristics in this study. The variable including age, gender, education level, income, and attitude toward medication. These data showed that 488 local informants were interviewed, including 476 non-specialists and 12 health herbalists (care professionals). The use of medicinal plants in the area of study is widespread in all age groups. As indicated in Table 1, participants in the age group [46–65 years] have more knowledge of medicinal
plants than other age groups, with a frequency of use 53%, followed by the group [25–45 years] with 27%, age group [over 65 years] with 11% and the last group [under 25 years], with a percentage 9%. These results confirm the data indicated previously in other ethnobotanical studies conducted in other areas in Morocco [11,12]. The high proportion of participants was dominated by women, with 58% followed by men with 42%. The high possession of the traditional phyotherapy knowledge, detained by women, could be explained by the nature of women’s behaviors within their families; in fact, the women were frequently sitting at home and are responsible for the care of their children and to maintain the health of their families in the most effective and economic ways [13]. So, we can say that women were more connected to traditional practices than men. These results are consistent with other national work results [6,14–16]. Regarding the level of education, the results showed that 59% of the respondents were illiterate, followed by secondary and primary education categories, with percentages, respectively, of 17% and 14%. However, people with a university-level education represented a low percentage of 9%. These observations showed that traditional remedies used by people living in this region of study to treat renal diseases are affected by the educational level and age of participants. Our findings resonate with other results observed in other ethnobotanical fieldworks conducted in other Morocco regions [17–19].

Table 1. Socio-demographic characteristics of the informants in North-Eastern Morocco.

Distribution of Informants	Categories	Number of Informants	Percentage of Informants (%)
By sex	Men	207	42
	Women	281	58
By age range	Less than 25 years	42	9
	25–45	132	27
	46–65	260	53
	More than 65 years	54	11
By education level	Illiterate	290	59
	Primary education	69	14
	Secondary education	85	17
	University education	44	9
By income/month	Unemployed	311	64
	500–2000 DH *	108	22
	2000–6000 DH *	53	11
	>6000 DH *	16	3
By choice of medicine	Herbal medicine	264	54
	Both conventional and herbal medicine	161	33
	Modern medicine	63	13

* 1 MAD (Moroccan Dirham) = 0.11 USD (United States Dollar).

2.1.2. Attitude of the Population toward Pattern of Uses

In this part of the text and for convenience, we divided medical practices, adopted by the population in North-Eastern Morocco, for treating renal diseases into three categories: those using only medicinal plants for these purposes, those using conventional medicine, and those using both traditional and conventional medicine. As indicated in Table 1, the population’s attitude in this region toward the treatment of renal diseases is variable. These data highlight the great diversity in patterns of use. The majority of interviewers cited traditional healthcare as their first-choice treatment option when they felt sick, with a percentage equaling to 54%, followed by the second choice, corresponding to the use of both conventional and herbal medicine, with a percentage of 33%, and in the third choice relative to the persons using exclusively modern medicine, with a percentage of
13%. Within the context of a dual health care system (traditional and western), the most significant determinants behind the participants’ attitude towards traditional medicine were the socio-economic factors and the residence of the users. Several factors were behind the driving force leading the majority of the interviewers toward traditional medicine. The results regrouped in Tables 1 and 2 showed that the total people interviewed were living in remote areas and had a low socio-economic level. In addition to the lacking money and the high cost of modern medical treatment of renal diseases, the travel to cities, where the patients could have access to health facilities, constitutes a barrier to reach modern medicine and pull factors that attract people into seeking traditional treatments in the local area of study. This is congruent with studies conducted among populations in other Morocco regions [20].

Table 2. Number of informants for each station.

Provinces	Stations	Number of Informants	
		Population	Herbalist
Guercif	Ras Laksar	22	0
	Saka	43	1
	Jal	25	0
	Gteter	37	1
Taourirt	Debdou	21	1
	Ain Benimatham	17	1
Jerada	Guenfouda	48	2
	Jerada	25	0
	Naima	18	0
Berkane	Tafoughalt	15	2
	Ahfir	14	0
	Chouihia	21	1
	Tiztoutine	29	1
Nador	Bouarg	22	1
	Bni Sidel Jbel	18	0
	Afsou	20	0
	Bni Drar	69	1
Oujda-Angad	Sidi Moussa Lemhaya	12	0
Total	18 stations	476	12

Based on the information mentioned above, we deduced that informal health care approaches “traditional medication” have been reported to be shared among people living in this region, especially for renal diseases. Despite the population in this region’s lack of trust in the modern healthcare system, our findings confirm that patients still consider traditional medical practices a better option than conventional healthcare approaches.

So, according to these observations, we can say that the socio-economic conditions, patients’ residence, culture, and tradition influenced the user’s decision to use traditional healthcare approaches.

2.1.3. Source of Information

Among participants who chose informal healthcare as their first-choice treatment option, their subsequent decision to use standard healthcare options depended on their experiences or their initial interaction with the older and herbalists, when that exists. According to our results, most parts of ethnobotanical information generated from this inquiry were given by people living in remote areas. Based on this inquiry’s ethnobotanical information, we deduced that the accumulated experiences with age are the primary source of information at the local level. The highest age respondents provide more reliable
information because they hold much of the oral tradition's ancestral knowledge. However, the young generation detained less information related to traditional knowledge because they were influenced by modernization and exotic culture and the tendency to disinterest and the gradual mistrust of this herbal medicine. So, the present-day, the substantial holder of traditional knowledge, which is becoming very old, and the lack of interest among the younger generation as well as their tendency to migrate to cities to ensure their basic needs, could harm the transmission of the traditional know-how on medicinal plants of the elderly to the young people.

Consequently, the traditional indigenous knowledge that has been transferred orally, which is fast disappearing, is in danger, and there is a possibility of losing this wealth of knowledge shortly. Indeed, this traditional knowledge on phytotherapy, which is transmitted from one generation to the next, is on the verge of extinction if no effort is made to save it [21].

2.2. Diversity of Plants Species Used to Treat Kidney Diseases

In the present study, 121 species of medicinal plants belonging to 57 families were used to treat kidney diseases. Ethnobotanical information related to these plants' use was documented, including vernacular names, traditional uses, parts used, method of preparation, and route of administration (Table 3).
Table 3. List of medicinal plants species used by local people for the treatment of kidney diseases.

Scientific Name (Voucher Number)	Local/English Name	Therapeutic Uses	Part Used/Mode of Preparation/Mode of Administration	Common Traditional Dosages	UR	UV	FUV
ALLIACEAE							
Allium cepa L. (HUMPOM628)	البصل/Onion	Renal insufficiency, renal colic, kidney stones, diuretic	bu, st, fr/jui, dec/oral	-	6	0.014	0.017
Allium sativum L. (HUM-POM631)	الثوم/Garlic	Renal insufficiency, kidney stones, kidney inflammation, pyelonephritis, polycystic kidney disease	bu/dec	-	2	0.005	
ALOACEAE							
Aloe vera (L.) Burm.f (HUMPOM632)	الألوفيرا/Aloe v.	Renal insufficiency, polycystic kidney disease	wp, ap/jui, dec/oral	Spoon, glass	2	0.005	0.007
Aloe succotrina Lam. (HUMPOM629)	الصبأر/Fynbos aloe	Renal insufficiency	wp, ap/jui/oral	Spoon, glass	2	0.005	
AMARANTHACEAE							
Anabasis arctoiides Moq. and Coss. ex Bunge* (HUMPOM692)	أك hôn/Anabasis	Diuretic, polycystic kidney disease	lf/dec/oral	Teapot	1	0.002	0.010
Beta vulgaris subsp. adanensis* (Pamukç.) Ford-Lloyd and J.T. Williams (HUMPOM630)	باربية/beetroot	Diuretic	rt/mac/oral	Handful	1	0.002	
Dysphania ambrosioides (L.) Mosyakin and Clemants (HUMPOM693)	مخينزة/Mexican tea	Diuretic, kidney stones	if/inf, dec/oral	Handful, Teapot	3	0.007	
ANACARDIACEAE							
Pistacia atlantica Desf.* (HUMPOM694)	الٍثيم/Atlas mastic tree	Diuretic	cortex/dec/oral	Spoon	1	0.002	0.008
Pistacia lentiscus L.* (HUMPOM632)	السكة الحرة، نرو/Mastic tree	Diuretic, renal insufficiency, kidney stones	if/dec, inf/oral	Spoon, handful	3	0.007	
Family	Scientific Name	Common Name	Indication	Preparation	Yield mg	Cited mg	
-------------------	--	------------------------------	--	-------------	----------	----------	
APIACEAE							
Daucus carota L.*	(HUMPOM696)	Wild carrot, Khuzi	Renal pain, diuretic, pyelonephritis	rh/inf/oral	1	0.002	
Foeniculum vulgare Mill.*	(HUMPOM697)	Fennel	Kidney stones, renal colic, renal detoxification	se, lf/inf, tis, dec/oral	8	0.019	
Petroselinum crispum (Mill.) Fuss*	(HUMPOM695)	Fennel	Kidney stones, renal colic, renal detoxification, polycystic kidney disease	wp, lf, ap, st, se, rt/inf, mac, dec, oil, jui /oral	48	0.114	
Ammi visnaga (L.) Lam.*	(HUMPOM699)	Toothpick-plant	Kidney stones, renal pain, renal colic, polycystic kidney disease	se, fr, lf/dec, inf, mac/oral	7	0.017	
Ammodaucus leucotrichus Coss.*	(HUMPOM698)	-	Renal colic, polycystic kidney disease	lf/dec/oral	1	0.002	
Apium graveolens L.*	(HUMPOM633)	Celery	Improved kidney performance, kidney swelling, kidney stones, renal detoxification, renal pain, diuretic, renal colic, polycystic kidney disease	rt, tw, ap, lf/inf, dec/oral	17	0.040	
Coriandrum sativum L.*	(HUMPOM700)	Coriander	Kidney stones, diuretic	wp, ap, lf/inf, dec/oral	5	0.012	
Cuminum cyminum L.	(HUMPOM701)	Cumin	Diuretic, kidney stones	lf/inf, dec/oral	2	0.005	
Daucus crinitus Desf.*	(HUMPOM702)	Common carrot	Detoxification of the kidneys	rt/dec/oral	1	0.002	
Pimpinella anisum L.	(HUMPOM703)	Aniseed	Diuretic; kidney stones	fr, lf/dec/oral	1	0.002	
ASCLEPIADACEAE							
Caralluma europaea (Guss.) N.E.Br.*	(HUMPOM634)	Caralluma	Urine retention, kidney stones, polycystic kidney disease	wp, ap/inf/oral	2	0.005	0.005
Family	Species	Common Name	Action	Form	Quantity	Parts	Uses
----------------------	--	-----------------------------------	-------------------	----------	----------	-------	--
ASPHODELACEAE	*Asphodelus microcarpus* Salzm. and Viv. (HUMPOM745)	Common asphodel	Diuretic	rt/dec/oral	Handful	1	0.002 0.002
ARALIACEAE	*Panax bipinnatifidus var. angustifolius* (Burkill) J.Wen (HUMPOM635)	Panax	Diuretic	rh/tis/oral	Spoon	1	0.002 0.002
ASTERACEAE	*Echinops spinosissimus* Turr* (HUMPOM704)	Spiny globe thistle	Diuretic, kidney stones, polycystic kidney disease	ap, rt/inf, dec/oral	Spoon, teapot 5	0.019	0.083
	Helianthus annuus L. (HUMPOM636)	Sunflower	Renal pain, kidney inflammation	se, fl/dec, inf, mac/oral	Spoon	14	0.033
	Lactuca sativa L. (HUMPOM637)	Lettuce	Kidney inflammation, polycystic kidney disease	lf/mac/oral	Spoon	1	0.002
	Artemisia arborescens (Vaill.) L. (HUMPOM638)	Tree wormwood	Kidney stones, renal colic, renal detoxification, diuretic, renal colic, pyelonephritis, polycystic kidney disease	lf/dec, inf, mac/oral	Teapot, glass 6	0.014	
	Artemisia campestris L. (HUMPOM705)	Wormwood sagwort	Kidney stones	lf/dec/oral	Spoon	1	0.002
	Brocchia cinerea (Delile) Vis. (HUMPOM706)	-Frutafat	Kidney stones	lf/mac/oral	Spoon	1	0.002
	Cichorium intybus L.* (HUMPOM707)	Common chicory	Diuretic	rt/dec/oral	Spoon	1	0.002
	Cynara cardunculus L. (HUMPOM709)	Cardoon	Pyelonphritis	rt/pow/oral	Handful	1	0.002
	Dittrichia viscosa (L.) Greuter* (HUMPOM708)	False yellow head	Kidney stones, pyelonphritis	wp/dec/oral	Handful	1	0.002
	Glehionis coronaria (L.) Cass. ex Spach* (HUMPOM710)	Garland chrysanthemum	Kidney stones	wp/inf/oral	Handful	1	0.002
	Rhaponticum acaule (L.) DC. (HUMPOM712)	Maral root	Renal detoxification, renal pain	rt/dec/oral	Glass	1	0.002
Plant Name	Species Details	Plant Family	Common Uses	Preparation	Admin. Route	Notes	
------------------------------------	---	-------------------------	--	----------------------	--------------	----------	
Scorzonera undulata Vahl	(HUMPOM711)	**BERBERIDACEAE**	Renal detoxification	rt/dec/oral	Spoon	1	
		Scorzoneraundulata	Viper’s grass			0.002	
Taraxacum campylodes G.E.Haglund	(HUMPOM639)	**BORAGINACEAE**	Renal detoxification, kidney stones, kidney inflammation, pyelonephritis, diuretic	wp, lf, se/inf, dec/oral	Spoon, teapot, glass	13	
	(Trevir.) Sch.Bip (HUMPOM713)					0.030	
Tanacetum cinerarifolium	(Trevir.) Sch.Bip (HUMPOM713)	**BRASSICACEAE**	Kidney stones	st/inf/oral	Spoon	1	
		Tanacetum cinerarifolium				0.002	
BERBERIS vulgaris subsp. australis	(Boiss.) Heywood* (HUMPOM714)	**CAESALPINIACEAE**	Kidney stones	st/pow/oral	Spoon	1	
		Berberis vulgaris	Common barberry			0.002	
BORAGO officinalis L* (HUMPOM715)		**BURSERACEAE**	Diuretic	If/dec/oral	Spoon	1	
		Borago officinalis	Burge			0.002	
Brassica napus L. (HUMPOM640)		**CACTACEAE**	Annual rape	ap/dec/oral	Spoon	1	
		Brassica napus				0.002	
Brassica oleracea L. (HUMPOM641)			Renal pain	If/dec/oral	Handful	1	
		Brassica oleracea	Wild cabbage			0.002	
Lepidium sativum L. (HUMPOM642)		**BURGERACEAE**	Urine retention	se/dec/oral	Spoon	1	
		Lepidium sativum	Common cress			0.002	
Bostwellia ameroa Balf.f. (HUMPOM716)		**CACTACEAE**	Pyelonephritis	se/dec/oral	Spoon	1	
		Boswellia ameroa	Socotra Frankincense Tree			0.0024	
Opuntia ficus-indica (L.) Mill.	(HUMPOM717)	**CACTACEAE**	Diuretic, kidney stones	fl, lf, fr/dec, mac/oral	Spoon	3	
		Opuntia ficus-indica				0.007	
Ceratonia siliqua L. (HUMPOM118)		**CAESALPINIACEAE**	Renal insufficiency, renal colic, kidney stones	fr/dec, pow/oral	Spoon, handful	3	
		Ceratonia siliqua	Carob			0.007	

Notes:
- rt: root, dec: decoction, oral: oral use
- wp: whole plant, If: leaf, se/inf: seed/infusion, dec/oral: decoction/oral use
- Spoon: spoonful, teapot: teapot, glass: glass
- Handful: handful
- Spoon, teapot, glass: spoonful, teapot, glass
- Spoon, handful: spoonful, handful
| Family | Genus/Species | Common Name(s) | Conditions | Form(s) | Source | Handful Size | Dose (mg) | p-value |
|---------------------|--------------------------------------|-------------------------|--|--------------------|----------------|--------------|------------|----------|
| Caryophyllaceae | Corrigiola litoralis subsp. | Strapwort | Kidney stones, renal colic, pyelonephritis, renal pain, diuretic, renal detoxification, polycystic kidney disease | wp, ap, st, lf/inf, dec/oral | Handful | 1 | 0.002 | 0.162 |
| Herniaria hirsuta L.* (HUMPOM730) | Hairy rupturewort | | Handful, Spoon, teapot, glass | | 68 | 0.161 |
| Convolvulaceae | Convolvulus althaeoides L.* | Mallow bindweed | Kidney stones, polycystic kidney disease | se/pow/oral | Handful | 2 | 0.005 | 0.005 |
| Cucurbitaceae | Citrullus lanatus (Thunb.) Matsum. and Nakai (HUMPOM643) | Watermelon | Kidney stones, polycystic kidney disease | ba, fr/inf, jui, dec/oral | Spoon, glass | 6 | 0.014 | 0.034 |
| Bryonia cretica subsp. dioica (Jacq.) Tutin (HUMPOM644) | Bryony | Kidney inflammation | fr/dec/oral | Glass | 1 | 0.002 |
| Cucumis melo L. (HUMPOM645) | Honeydew | Renal pain | fr/eat/oral | - | 1 | 0.002 |
| Cucumis sativus L. (HUMPOM646) | Cucumber | Renal pain | fr/jui/oral | Glass | 1 | 0.002 |
| Cucurbita pepo L. (HUMPOM647) | Pumpkin | Kidney stones, urine retention, renal pain, diuretic | se, lf/inf, dec/oral | Spoon | 6 | 0.014 |
| Cupressaceae | Juniperus oxycedrus L.* (HUMPOM721) | Prickly juniper | Kidney stones, renal colic | lf/dec/oral | Spoon | 5 | 0.012 | 0.015 |
| Tetraclinis articulata (Vahl) Mast.* (HUMPOM722) | Arar tree | Renal colic, kidney stones, diuretic | lf/dec/oral | Spoon, handful | 3 | 0.007 |
| Equisetaceae | Equisetum arvense L. (HUMPOM746) | Field horsetail | Renal colic, kidney stones | ap/dec, inf/oral | Spoon | 3 | 0.007 | 0.005 |
| Family | Species | Description | Mode | Potency | Dose |
|-------------------------------|--------------------------------------|--|------|---------|------|
| **ERICACEAE** | *Vaccinium macrocarpon* Aiton (HUMPOM747) | 蔓越莓/Cranberry Kidney stones, renal insufficiency, diuretic | fr/mac, dec/oral | Glass | 5 | 0.012 | 0.024 |
| | *Arbutus unedo* L.* (HUMPOM748) | 苹果/Strawberry tree Renal pain, diuretic, renal colic, polycystic kidney disease | rt, lf/dec/oral | Spoon, handful | 5 | 0.012 |
| **EUPHORBIACEAE** | *Euphorbia retusa* Forsk (HUMPOM723) | 花椒/Spurge Kidney stones | lf/inf/oral | Handful | 1 | 0.002 | 0.002 |
| **FABACEAE** | *Anagyris foetida* L.* (HUMPOM648) | 豆腐花/Stinking bean trefoil Kidney stones | se/inf/oral | Handful | 1 | 0.002 | 0.022 |
| | *Arachis hypogaea* L. (HUMPOM649) | 花生/Peanut Urine retention | ba, se/dec, mec/oral | Handful | 2 | 0.005 |
| | *Glycyrrhiza glabra* L. (HUMPOM650) | 甘草/Licorice Renal colic, diuretic, renal pain | rt, st/inf, dec, mac/oral | Teapot | 7 | 0.017 |
| | *Trigonella foenum-graecum* L. (HUMPOM725) | 芳香菜/Spice fenugreek Improved kidney performance, renal pain, diuretic | se/inf, dec, mac/oral | Spoon | 4 | 0.010 |
| | *Vicia faba* L. (HUMPOM724) | 豆/Broad bean Renal pain | se/dec/oral | Handful | 1 | 0.002 |
| **FAGACEAE** | *Quercus suber* L.* (HUMPOM651) | 杉木/Cork oak Kidney stones | lf, ba/dec/oral | Spoon | 1 | 0.002 | 0.002 |
| **GENTIANACEAE** | *Centaurium erythraea* Rafn* (HUMPOM726) | 唐松草/Common centaury Renal pain | ap/dec/oral | Handful | 1 | 0.002 | 0.002 |
| **GLOBULARIACEAE** | *Globularia alypum* L.* (HUMPOM728) | 花洋甘菊/Alypo globe daisy Kidney stones, pyelonephritis | lf/dec/oral | Spoon, handful | 4 | 0.010 | 0.010 |
| **HYACINTHACEAE** | *Drimia maritima* (L.) Stearn* (HUMPOM729) | 海芋/Maritime squill Diuretic, kidney stones, urine retention | bu/inf, dec, mac/oral | Glass | 4 | 0.010 | 0.010 |
| Family | Species | Scientific Name | Common Name | Medicinal Uses | Dosage | Weight (g) | Concentration (g/l) |
|----------------------|----------------------------------|----------------------------------|----------------------|---|---------------|-------------|---------------------|
| IRI\(D\)ACEAE | **Crocus sativus** L. (HUMPOM652) | | **Saffron** | Kidney stones, diuretic, renal colic, kidney inflammation, polycystic kidney disease | Pinch, 6 | 0.014 | 0.014 |
| JUN\(C\)ACEAE | **Juncus acutus** L.* (HUMPOM731) | | **Spiny rush** | Diuretic | Spoon, 1 | 0.002 | 0.002 |
| LAM\(I\)ACEAE | **Ajuga iva** (L.) Schreb.* (HUMPOM653) | **Southern bugle** | Renal detoxification, kidney stones | ap/dec, inf/oral | Handful, 2 | 0.005 | 0.107 |
| | **Clinopodium nepeta** subsp. glan-dulosum (Req.) Govaerts* (HUMPOM654) | **Lesser calamint** | Renal colic, diuretic | If, st, ap/oin, mac, dec, inf/mas, oral | Handful, 7 | 0.017 | |
| | **Lavandula dentata** L.* (HUMPOM655) | **French lavender** | Kidney swelling, urine retention, renal detoxification | If, wp, fl/dec, inf/oral | Spoon, 7 | 0.017 | |
| | **Mentha pulegium** L.* (HUMPOM656) | **Pennyroyal** | Renal colic, kidney stones | wp, ap/dec, inf/oral | Teapot, 2 | 0.005 | |
| | **Mentha spicata** L. (HUMPOM657) | **Mint** | Renal pain | If/dec/oral | Teapot, 1 | 0.002 | |
| | **Mentha suaveolens** Ehrh.* (HUMPOM658) | **Bigleaf mint** | Kidney inflammation | If/pow/oral | Spoon, 1 | 0.002 | |
| | **Ocimum basilicum** L. (HUMPOM659) | **Sweet basil** | Renal pain | If/inf/oral | Spoon, 1 | 0.002 | |
| | **Origanum compactum** Benth.* (HUMPOM660) | **Oregano** | Kidney colic, kidney swelling, urine retention, pyelonephritis, renal pain, polycystic kidney disease | If, ap/inf, dec, tis/oral | Spoon, teapot | 0.012 | |
| | **Origanum majorana** L. (HUMPOM661) | **Sweet marjoram** | Renal colic, renal pain, urine retention, pyelonephritis | If/inf, dec/oral | Handful, 2 | 0.005 | |
| | **Rosmarinus officinalis** L.* (HUMPOM662) | **Rosemary** | Kidney stones, kidney inflammation, renal detoxification, urine retention, renal colic, diuretic, renal pain, polycystic kidney disease | If, ap/inf, dec/oral | Teapot, 10 | 0.024 | |
| Plant Family | Scientific Name | Common Name | Use(s) | Form | Quantity | P-value 1 | P-value 2 |
|--------------------|--|----------------------------------|--|-----------------------------|----------|-----------|-----------|
| LAURACEAE | Laurus nobilis L. (HUM-POM732) | Bay tree | Renal colic, kidney stones | If/dec, inf/oral | Handful | 2 | 0.005 |
| | Linum usitatissimum L. (HUM-POM734) | Flaxseed | Renal diseases, diuretic | se/dec/oral | Spoon | 1 | 0.002 |
| LYTHRACEAE | Lawsonia inermis L. (HUM-POM665) | Mignonette tree | Kidney stone | If/dec/oral | Spoon | 1 | 0.002 |
| MORACEAE | Morus alba L. (HUM-POM735) | White mulberry | Renal colic, diuretic, renal detoxification| If, fr/mac, dec, inf/oral | Glass | 4 | 0.010 |
| MYRTACEAE | Myrtus communis L. (HUM-POM666) | Common myrtle | Renal detoxification, pyelonephritis | If/dec/oral | Spoon | 1 | 0.002 |
| | Syzygium aromaticum (L.) Merr. and L.M.Perry (HUMPOM668)| Clove | Renal insufficiency, renal colic, renal pain| ap, lf/inf, dec/oral | Spoon | 4 | 0.010 |
| OLEACEAE | Fraxinus excelsior L. (HUM-POM737) | Common ash | Kidney stones, pyelonephritis, polycystic kidney disease | If/inf/oral | Handful, spoon | 4 | 0.010 | 0.007 |
| | Olea europaea L. (HUM-POM736) | Olive | Renal detoxification, kidney stones, diuretic | If, fr/dec, oil/oral | Spoon (oil), handful | 3 | 0.007 |
| Family | Botanical Name | Arabic Name | Use | Use Details | Amount | P-value | Amount | P-value |
|----------------------|----------------|-------------|-----|--------------------|--------|---------|--------|---------|
| PAPAVERACEAE | Papaver rhoeas L.* (HUMPOM669) | بﻧﻌﻣﺎﻥ/Common poppy | Kidney stones, kidney inflammation, pyelonephritis | se/pow/oral | Handful | 1 | 0.002 | 0.002 |
| PIPERACEAE | Piper cubeba L. f. (HUMPOM670) | ﯾﺑﺎﮑیة/Cubeb pepper | Pyelonephritis, polycystic kidney disease | fr/inf/oral | Handful | 1 | 0.002 | 0.002 |
| PLANTAGINACEAE | Globularia repens Lam. (HUMPOM671) | ﻋﯿﻥ لﺮﻧﺒ/Creeping globe daisy | Renal insufficiency, kidney stones, urine retention | lf/pow/oral | Spoon | 3 | 0.007 | 0.007 |
| POACEAE | Pennisetum glaucum (L.) R.Br. (HUMPOM738) | ﺍﻟﺧﺭﻁﺎﻝ/Yellow bristlegrass | Renal pain, polycystic kidney disease, pyelonephritis | se/pow/oral | Spoon | 1 | 0.002 | 0.074 |
| Avena sativa L. (HUMPOM741) | ﺍﻟﺧﺭﻁﺎﻝ/Common oat | ﺍﻟﺧﺭﻁﺎﻝ/Common oat | Diuretic, renal pain | se/dec/oral | Handful | 1 | 0.002 | |
| Cynodon dactylon (L.) Pers.* (HUMPOM740) | ﻋﺮﻮق ﺍﻟﻨﺠﻢ/Bermuda grass | ﻋﺮﻮق ﺍﻟﻨﺠﻢ/Bermuda grass | Kidney stones, renal pain, diuretic | rt, lf/dec, mac, inf/oral | Handful | 3 | 0.007 | |
| Hordeum vulgare L. (HUMPOM739) | ﺍﻟﺷﻌﻴﺮ/Barley | ﺍﻟﺧﺭﻁﺎﻝ/Barley | Diuretic, kidney stones | fr, se/dec, mac/oral | Handful | 2 | 0.005 | |
| Zea mays L. (HUMPOM742) | ﺍﻟﺫﺭﺓ/Maize | ﺍﻟﺫﺭﺓ/Maize | Kidney stones, kidney swelling, renal insufficiency, renal pain, diuretic, pyelonephritis | fr, fl/dec, inf/oral | Handful | 22 | 0.052 | |
| POLYGONACEAE | Rumex vesicatorius L. (HUMPOM672) | ﻫﻤﻴﺤﺔ/Ruby dock | Renal detoxification, kidney stones | ap, lf/dec, inf/oral | Handful | 2 | 0.005 | 0.007 |
| PUNICACEAE | Punica granatum L. (HUMPOM743) | ﺍﻟﺭﻣﺎﻥ/Pomegranate | Renal detoxification, renal colic, kidney stones, pyelonephritis | ba, fr/dec, pow/oral | Glass | 5 | 0.012 | 0.012 |
| RANUNCULACEAE | Nigella sativa L. (HUMPOM744) | ﺍﻟﺳﺎﻧﻭﺝ، ﻣﻌﻳﺔ ﺍﻟﮑﻠﺎﺕ/Black caraway | Detoxification of the kidneys, diuretic | se/dec, inf, oil/oral | Pinch | 3 | 0.007 | 0.007 |
| Family | Genus | Botanical Name | Plant Parts | Condition(s) | Preparation | Quantity | Dosage |
|---------------|------------------------------|----------------|-------------|---|-------------|----------|------------|
| RHAMNACEAE | Ziziphus jujuba Mill. (HUMPOM673) | Lotus jujube | fr/inf/oral | Renal detoxification, pyelonephritis | Handful | 1 | 0.002 |
| | Ziziphus lotus (L.) Lam. (HUMPOM674) | Lotus tree | rt, fr, lf/dec, inf, pow/oral | Urine retention, diuretic, renal colic, kidney stones, polycystic kidney disease | Handful, spoon | 35 | 0.083 |
| ROSACEAE | Malus sylvestris (L.) Mill. (HUMPOM675) | Common apple | fr/inf, eat/oral | Kidney swelling, renal colic, kidney stones | Handful | 5 | 0.012 |
| | Prunus cerasus L. (HUMPOM677) | Sour cherry | tw, fr/dec/oral | Renal colic, renal pain, diuretic, kidney stones | Handful | 3 | 0.007 |
| | Rosa canina L.* (HUMPOM676) | Common briar | lf/mac/oral | Diuretic, pyelonephritis | Handful | 1 | 0.002 |
| RUBIACEAE | Rubia peregrina L. (HUMPOM678) | Common wild madder | lf, ap/dec, inf/oral | Renal pain, kidney stones, diuretic | Handful | 4 | 0.010 |
| RUTACEAE | Citrus × aurantium L. (HUMPOM690) | Lime | fr/jui/oral | Kidney stones, renal pain | Glass | 2 | 0.005 |
| | Citrus limon (L.) Osbeck (HUMPOM691) | Lemon | bu, fr/jui, inf/oral | Kidney stones, renal insufficiency, renal detoxification, | Glass | 6 | 0.014 |
| | Citrus salicifolius L. (HUMPOM688) | Sage-leaved rock-rose | rt/dec/oral | Renal detoxification | Handful | 1 | 0.002 |
| | Citrus sinensis (L.) Osbeck (HUMPOM689) | Lime | fr/jui, inf/oral | Renal colic, renal insufficiency, kidney stones | Glass | 6 | 0.014 |
| | Ruta montana (L.) L.* (HUMPOM687) | Rue | lf/inf/oral | Kidney stones, polycystic kidney disease | Spoon | 1 | 0.002 |
| SOLANACEAE | Capsicum annum L. (HUMPOM679) | Capsicum pepper | fr/dec, pow/oral | Diuretic | Pinch | 2 | 0.005 |
| Family | Species | Uses | Parts Used | Mode of Preparation | Handful/Teapot | U Value | F UV | UR |
|-----------------------|---------------------------------------|--|------------------------|---------------------|----------------|---------|-----|----|
| THYMELAEACEAE | Thymela microphylla Meisner.* | Diuretic, renal colic, kidney stones, pyelonephritis | lf, ap/dec, mac/oral | Handful, teapot | 14 | 0.005 | 0.036 |
| TILIACEAE | Tilia sylvestris Desf (HUM-POM681) | Kidney stones, renal detoxification | ap, lf/dec/oral | Glass | 1 | 0.002 | 0.010 |
| URTICACEAE | Urtica dioica L.* (HUM-POM682) | Urine retention, kidney stones, diuretic, renal insufficiency, renal pain, kidney swelling, pyelonephritis, renal colic, kidney inflammation | st, ap, wp, lf/dec, pow, inf/oral | Handful | 15 | 0.036 | 0.036 |
| VERBENACEAE | Aloysia citriodora Palau (HUM-POM683) | Diuretic, pyelonephritis | lf/dec, inf/oral | Handful | 3 | 0.007 | 0.007 |
| VITACEAE | Vitis vinifera L. (HUM-POM684) | Renal detoxification, diuretic, pyelonephritis | lf/dec | Glass | 3 | 0.007 | 0.007 |
| ZINGIBERACEAE | Curcuma longa L. (HUM-POM685) | Renal detoxification, renal colic, kidney stones | rh/pow, dec, inf/oral | Spoon | 8 | 0.019 | 0.060 |
| Zingiber officinale Roscoe (HUM-POM686) | Kidney swelling, kidney stones, renal detoxification, detoxification of the kidneys, kidney inflammation, renal pain, diuretic, poly-cystic kidney disease | rh, rt/pow, dec, inf/oral | Spoon, pinch | 19 | 0.045 |

Abbreviation: parts used: bu: bulb; st: stem; fr: fruit; wp: whole plant; ap: aerial part; lf: leaf; rt: root; rh: rhizome; se: seeds; tw: twigs; fl: flowers; ba: bark; sta: stamen. Mode of preparation: juice: jui; decoction: dec; infusion: inf; maceration: mac; powder: pow; tisane: tis; ointment: oin; massage: mas; UV: Use Value. FUV: Family Use Value. UR: Use reports. *: Endemic.
The dominated families that have been used to treat and relieve renal disorders were the Asteraceae (14 species), followed by the Lamiaceae (12 species), the Apiaceae (10 species), Rutaceae, Poaceae and Fabaceae (5 species) each, Cucurbitaceae with (4 species), Rosaceae, Myrtaceae, Brassicaceae and Amaranthaceae with (3 species for each), while the other families represent less than three species (Figure 1). The predominance of Asteraceae, Lamiaceae, and Apiaceae, has already been proven in several ethnobotanical studies carried out in other Moroccan regions [14,22–24], as well as in other countries such as Turkey [25] and Italy [26]. Furthermore, the predominance of these plant families has already been confirmed in the results of specific ethnobotanical work for kidney disorders conducted in the Moroccan territory [17,22,27]. On the other hand, these botanical families dominate the Moroccan flora and are also almost omnipresent in the Moroccan territory [28].

As shown in Figure 2, the most preferred plant species used to treat kidney diseases in remote areas of North-Eastern Moroccan folk medicine were *H. hirsuta* with (106 use reports; 14.29% of total use reports), followed by *A. graveolens* (71 use reports; 9.57% of total use reports), *P. crispum* (52 use reports; 7.00% of total use reports), and *Z. lotus* (45 use reports; 6.06% of total use reports), *Z. mays* (39 use reports; 5.26% of total use reports), *Z. officinale* (37 use reports; 4.99% of total use reports), *U. dioica* (30 use reports; 4.04% of total use reports), *T. campylodes* (27 use reports; 3.64% of total use reports), *T. microphylla* (25 use reports; 3.37% of total use reports), and *R. officinalis* (19 use reports; 2.57% of total use reports). These ten species accounted for 60.78% of total use reports, and the remaining 101 species represent only 39.22% of total use reports. The frequent use of *H. hirsuta, P. crispum, Z. lotus,* and *Z. mays* against kidney pain are already confirmed in the results of a study conducted in the Fes-Meknes region of Morocco [19]. These four medicinal plants are widely used in Moroccan folk medicine to manage various diseases [4].
2.3. Ethnic Medicinal Characteristics

Used Plant Parts and Method of Preparation

In this survey, several parts of plant species are used as medicine (Figure 3). The most widely used medicinal plant part was the leaves with a frequency of 23%, followed by the whole plant with a percentage of 15%, aerial parts (12%), fruits (10%), seeds (7%), rhizomes (6%) and the other parts (stems, flowers, roots, bulbs, bark, and twig) are represented by a rate lower than 6%. Likewise, several communities in other regions of Morocco and other countries use leaves to prepare herbal medicines [29–31]. The frequent use of one part over another in herbal medicine depends on its active ingredient content. The leaves are the most exploited plant parts. This could be explained by the fact that they are both sites of photosynthesis and reservoirs of secondary metabolites that have [32,33]. The rapidity and ease of leaf harvesting also explain their predominance over other plant parts [29]. Besides, harvesting these organs is a relatively sustainable practice compared to other plant parts, such as roots and stem. The harvesting of the roots could contribute to the extermination and disappearance of the plants.

Figure 2. Plant species commonly used traditionally by local people to treat kidney disease.
As shown in Figure 4, the preparation method most used by the population of North-Eastern Morocco for the treatment of kidney disorders is decoction with a frequency of 51%, followed by infusion (23%), powder, maceration, and juice with a percentage of 6% for each, oil (5%), and other methods of preparation represent only 3%. This high percentage of decoction shows that the local population grows at this mode of preparation and finds it suitable for warming the body and disinfecting the plant [34]. On the other hand, the decoction makes it possible to collect the most active ingredients and attenuates or cancels specific recipes’ toxic effects [35].
2.4. Commonly Treated Kidney Diseases and Noteworthy Plants

Traditionally, the local population uses the species inventoried in this survey to treat a wide range of kidney symptoms. Nevertheless, it should be noted that the most mentioned kidneys symptoms (Figure 5) are kidney stones (228 citations, 63 plants), followed by diuretic (87 citations, 46 plants), renal colic (76 citations, 32 plants), kidney detoxification (55 citations, 25 plants) and Pyelonephritis (31 citations, 12 plants). Some species such as *H. hirsuta* (106 use reports), *A. graveolens* (71 use reports), and *P. crispum* (52 use reports) were the most commonly used species for the treatment of kidney symptoms. The aerial parts of *H. hirsuta*, in decoction, are used against kidney stones, the infused leaves are used against Pyelonephritis and renal colic, the whole plant, in decoction, is used to relieve pain in the kidneys, and as well as for detoxifying the kidneys. The aerial part of *A. graveolens*, in decoction, is used against swelling of the kidneys, decocted roots are used to improve the kidneys’ performance, and the infusion of the aerial part against renal colic and kidney stones.

![Figure 5](image-url)

Figure 5. Distribution of plants used traditionally to treat various kidney syndromes.

2.5. Quantitative Analysis

2.5.1. The Use Value (UV)

The local population’s choice to use certain medicinal species more than others to treat different kidney symptoms is confirmed by the use-value index (UV). The high score of this index reflects the importance of the plant in the study area population. The use-value (UV) results were presented in Table 3, with limited values between 0.16 and 0.0024. According to our results, *H. hirsuta* is the most used by the local population to treat renal disorders with high use value (UV = 0.161), followed by *P. crispum* (UV = 0.114), *Z. lotus* (UV = 0.083), *Z. mays* (UV = 0.052), *Z. officinale* (UV = 0.050), *A. graveolens* (UV = 0.040), *U. dioica* (UV = 0.036), *T. microphylla* (UV = 0.0355), *H. annus* (UV = 0.034), *T. campyloides* (UV = 0.031), *R. officinalis* (UV = 0.024) and *C. longa* (UV = 0.021). The intensive use of these medicinal species by the population of North-Eastern Morocco is also mentioned with high percentages for the treatment of kidney diseases in the ethnobotanical study conducted in the Northcentral region of Morocco [9], and in other led in the region of Rabat on kidney stones [36].
2.5.2. Botanical Family Use Value (FUV)

As shown in Table 3, the distribution of botanical families of medicinal species in the study area fluctuated between a minimum importance value of 0.0023 and a maximum value of 0.161. Regarding the family use value of the plants recorded in this paper, the results show the high score for Caryophyllaceae (FUV = 0.163), followed by Lamiaceae (FUV = 0.099), Rhamnaceae (FUV = 0.084), Asteraceae (FUV = 0.083) Poaceae (FUV = 0.074), Asteraceae (FUV = 0.071), Zingiberaceae (FUV = 0.060), Rutaceae (FUV = 0.044), Thymelaeaceae and Urticaceae (FUV = 0.034) for each, Cucurbitaceae (FUV = 0.034) and Ericaceae (FUV = 0.024). The other families have the use value less than 0.024.

2.5.3. Informant Consensus Factor (ICF)

The ICF was calculated for each category of renal symptoms, and the index values range from a maximum significance value of 0.72 to a minimum value of 0.16 (Figure 6). Based on these results, we noted that the highest values of this index (ICF) were recorded for kidney stones (ICF = 0.72) with 63 plant species, followed by Pyelonephritis (ICF = 0.63) with 12 plant species, renal colic (ICF = 0.58), kidney poisoning (ICF = 0.56) and diuretic (ICF = 0.47). High values (close to 1) of this index for kidney stones and pyelonephritis indicate that few species were used by a large proportion of informants for each of these two disease categories. For kidney inflammation and urinary retention, the index values were ICF=0.16 and ICF=0.22, which means that the number of citations is almost equal to the number of plants used by informants to treat these symptoms. High ICF values for kidney stones may be due to their high incidence of occurrence in the study area [37].

![Informant Consensus Factor (ICF)](image)

Figure 6. Informant consensus factor (ICF).

2.6. Pharmacological Validation from Literature

Our ethnobotanical fieldwork indicated that people living in North-Eastern Morocco have important knowledge regarding the use of medicinal plants for the treatment of renal diseases. These ethnobotanical data, which described a wide variety of quantitative indicators, were very interesting for bioprospection purposes. It could be interesting to screen in the literature these plants for their pharmacological activities.
According to the studied literature, among 121 medicinal species inventoried during this survey, 54 plants were studied for their pharmacological properties against kidney disorders, which seems that traditional medicine could be an excellent classical basis for the selection of plant species against kidney problems. The grouped pharmacological data (the plant’s scientific name, the part extracted from the plant; the type of extracts; the experimental model used; the dose used, and the pharmacological effect) of these 54 plants were summarized in Table 4.
Table 4. Pharmacological data of the medicinal species cited by local people to treat kidney diseases.

Scientific Name	Used Parts	Used Extracts	Experimental Model	Pharmacological Uses	Therapeutic Doses	References
Ajuga iva (L.) Schreb.	Whole plant	Aqueous extract	Rats	Beneficial for correcting the hyperglycemia and preventing diabetic complications in liver, pancreas and kidneys	50 mg/kg of body weight daily for 3 weeks	[38]
	Bulbs	Aqueous extract	Rats	Modulatory effects on renal oxidative stress and nitric oxide production in streptozotocin-induced diabetic nephropathy in rats	200–400 mg/kg of body weight for 30 consecutive days	[39]
Allium sativum L.	Bulbs	Aqueous extract	Rats	Modulates the expression of angiotensin II AT2 receptor in adrenal and renal tissues of streptozotocin-induced diabetic rats	500 mg/kg of body weight 8 weeks after diabetes induction	[40]
	Bulbs	Aqueous extract	Rats	Protects hepatic and renal toxicity of alloxan in rats	100–200 mg/kg of body weight/day; given by oral gavage for 21 days)	[41]
	Bulbs	Ethanol extract	Rats	Ameliorative effects on renal parenchyma of gentamicin-induced nephropathic rats	200 mg/kg of body weight for 10 days	[42]
Aloe vera (L.) Burm.f.	Leaves	Leaf pulp extract	Rats	Protective effect on mild damage caused by type II diabetic on kidney tissue	500 mg/kg of body weight	[43]
	Leaves	Ethanol extract	Rats	Protective role on liver and kidney of streptozotocin-induced diabetic rats	300 mg/kg of body weight for 30 days	[44]
	Leaves	Ethanol extract	Rats	Antinephropathy effect on PKC-β level of rat kidney in diabetes mellitus	30–120 mg/kg of body weight	[45]
Ammi visnaga (L.) Lam.	Fruits	Aqueous extract	LLC-PK1 and Madin-Darby-canine kidney (MDCK) cells	Prevent cell damage caused by oxalate in renal epithelial cells	(100 μg/mL)	[46]
	Fruits	Aqueous extract	Rats	Prevention of renal crystal deposition	125–500 mg/kg of body weight for 14 days	[47]
Apium graveolens L.	Aerial parts	Fresh celery	Rabbits	Accentuates urinary Ca^{2+} excretions in experimental model of nephrocalcinosis	8 g/kg added to the animal food	[48]
Plant Species	Part	Extract Type	Species	Effect	Dosage	Reference
---------------	------	--------------	---------	--------	--------	-----------
Stem, leaves	Ethanolic extract	Rats	Protective effect on kidney damage in ischemia/reperfusion injury rats model	250–1000 mg/kg of body weight for 14 days	[49]	
Fruits	Essential oil	Dogs	Diuretic effect	0.004–0.008 mL/kg of body weight	[50]	
Arachis hypogaea L.	Peanuts pods	Methanol and aqueous extracts	Mice	Nephroprotective effect on CCl₄ induced kidney damage in mice	50–100 mg/kg of body weight	[51]
Arbutus unedo L.	Leaves	Aqueous extracts	Rats	Prevent cardiovascular and renal hemodynamic effects in L-NAME-induced hypertensive rats	250 mg/kg of body weight/day	[52]
Artemisia arborescens (Vaill.) L.	Leaves	Hydroalcoholic extract	Rats	Nephroprotective effects against oestrogen-induced kidney damages in rats	200 mg/kg body weight during 6 weeks	[53]
Artemisia campestris L.	Aerial parts	Essential oil	Rats	Protective effect on Deltamethrin induced oxidative stress in kidney and brain of rats	200 mg/kg of body weight for two weeks	[54]
Avena sativa L.	Seeds	Powder	Human	Beneficial effect on serum albumin and serum potassium in patients with CKD	50 g of oat flour per day for 8 weeks	[55]
Avena sativa L.	Seeds	Powder	Human	Protective effects of against oxidative stress-induced kidney damage resulting from an estrogen deficiency in ovariectomized swiss mice model	200 mg/kg of body weight	[56]
Berberis vulgaris subsp. australis (Boiss.) Heywood	Bark	Ethanolic extract	Rats	Ameliorative effects on lipid profile, kidney and liver function in experimental dyslipidemia	300–500 mg/kg of body weight for eight weeks	[57]
Brassica oleracea L.	Broccoli sprouts	Juice	Rats	Protective effects toward renal damage in high-salt-fed SHRSP: role of AMPK/PPARα/UCP2 axis	340 ml/120 mg in diet	[58]
Ceratonia siliqua L.	Pulp and seeds	Aqueous extract	Rats	Protective effect against a dextran sulfate sodium-induced alteration in liver and kidney in rat	50 and 100 mg/kg of body weight for 21 days	[59]
Ceratonia siliqua L.	Leaves	Ethyl acetate fraction	Rats	Ameliorative effects against CCl₄ induced hepatic oxidative damage and renal failure in rats	250 mg/kg of body weight for 8 days	[60]
Plant	Part	Extract	Species	Effect	Dose	
-------------------------------	--------------------	------------------	----------------------------------	--	-----------------------	
Cichorium intybus L.	Seeds	Aqueous extract	Rats	Improving effect on renal parameters in experimentally induced early and late diabetes type 2 in rats	125 mg/kg of body weight for 21 days [61]	
	Aerial parts	Ethanol extract	Rats	Against cisplatin induced renal toxicity	500 mg/kg of body weight for 10 consecutive days [62]	
	Flowers	Aqueous extract	Rats	Preventive effects on ethylene glycol-induced renal calculi in rats	50–200 mg/kg of body weight for 30 days [63]	
	Roots	Aqueous extract	Rats	Improving effects on serum oxidative stress, liver and kidney volume, and cyclin B1 and Bcl-2 levels in the brains of rats with ethanol induced damage	200 mg/kg of body weight for 18 days [64]	
	Roots	Unspecified	Rats	Ameliorates hydroxyapatite nanoparticles induced kidney damage in rats	20 and 300 mg/kg of body weight for 4 weeks [65]	
Cinnamomum cassia (L.) J.Presl	Bark	Methanol extract	Rats	Ameliorative effect against Ni-NPs-induced liver and kidney damage in male Sprague Dawley rats	175–225 mg/kg of body weight [66]	
Citrus sinensis (L.) Osbeck	Leaves	Essential oil	Rats	Ameliorative effect on some liver and kidney function indices of diabetic rats	110 mg/Kg of body weight for 15 days [67]	
	Stems	Aqueous and methanolic extracts	Human Embryonic Kidney Carcinoma (HEK) cell line	Anti-proliferative or cytopathic potential effects against human embryonic kidney carcinoma cell line	IC₅₀ at 32-fold dilution of the extract [68]	
Coriandrum sativum L.	Seeds	Aqueous and ethanol extracts	Mice	Protective role against lead nitrate induced oxidative stress and tissue damage in the liver and kidney in mal mice	WE (300 and 600 mg/kg of body weight), EtOH (250 and 500 mg/kg of body weight) [69]	
	Unspecified	Aqueous extract	Cats	Increase the glomerular filtration rate and shortened the emptying half-time of radiopharmaceutical	90 mg/kg body weight [70]	
Crocus sativus L.	Saffron threads	Aqueous extract	Rats	Protect the kidney and liver of diabetic rats against damage caused by hyperglycemia-induced inflammation, due to its anti-inflammatory potential	200 mg/kg of body weight [71]	
Plants 2021, 10, 1966						

Petals	Hydroalcoholic extract	Rats	Beneficial for the kidneys	200–600 mg/kg of body weight/day	[72]	
Petals	Hydroalcoholic extract	Rats	Protects the kidney	167.5 and 335 mg/kg of body weight/day	[73]	
Cucumis melo L.	Seeds	Ethanolic extract	Mice	Renoprotective effects in gentamicin-induced renal damage	250–500 mg/kg of body weight for 8 days	[74]
Cucumis melo L.	Leaves	Ethanol extract	Rats	Potential and effective role in inhibiting inflammation and oxidative stress in the kidney of diabetic rats	30–120 mg/kg of body weight for 30 consecutive days	[75]
Cucumis sativus L.	Pulp	Ethanol extract	Rats	Ameliorative effect on alloxan-induced kidney toxicity in male adult Wistar rats	100–500 mg/kg of body weight for 28 days	[76]
Cucurbita pepo L.	Seeds	Methanol extract	Rats	Antiurilithic against sodium oxalate-induced renal calculi	In vivo (250–1000 mg/kg of body weight), in vitro (20–80 mg/mL)	[77]
Curcuma longa L.	Rhi-zomes	Ethanol extract	Rats	Effect on antioxidant enzymes in kidney of alloxan induced type-1 diabetic male rats	250 mg/kg of body weight	[78]
Curcuma longa L.	Rhi-zomes	Hydro-alcoholic extract	Rats	Protective effect on adriamycin-induced oxidative stress in kidney rat	1000 mg/kg of body weight	[79]
	Rhi-zomes	Ethanol extract	Chickens	Effect on biochemical and pathological parameters of liver and kidney in chicken aflatoxicosis	5 mg mixed with 1 kg of diet	[80]
	Rhi-zomes	Polyphenol extract	Rats	Effect on doxorubicin-induced kidney injury in rats	5 mg mixed with 1 g of died	[81]
Cynodon dactylon (L.) Pers.	Whole plant	Aqueous extract	Rats	Against kidney stones	12.5, 50 and 200 mg/kg of body weight	[82]
Daucus carota L.	Seeds	Methanol extract	Rats	Antihyperlipidemic properties and protective effect on liver and kidney function in diabetic rats	100–300 mg/kg of body weight for 6 days using gavage	[83]
Daucus carota L.	Roots	Petroleum ether and methanol extract	Rats	Protective and curative potential on renal ischemia reperfusion injury in rats	250–500 mg/kg of body weight for 14 days	[84]
Species	Part	Extract	Animals	Effect	Dosage	Reference
---------------------------------	-------------------	--------------------	---------	---	---------------------------------	-----------
Carrot	Tuber	Aqueous extract	Rats	Hepatoprotective, hepatocurative and nephrocurative properties and could be explored in nutrition and health	300 mg/kg of body weight for 6 weeks	[85]
Eucalyptus globulus	Leaves	Methanol extract	Mice	Hepato-renal protective potential against Cyclophosphamide induced toxicity in mice	50–100 mg/kg of body weight for 15 days	[86]
Foeniculum vulgare	Fruits	Aqueous extract	Rats	Protective effect against acetaminophen-induced kidney damages in male rat	130 mg/kg of body weight/day; for 42 days)	[87]
Globularia allypum	Aerial parts	Aqueous extract	Rats	Inhibition of calcium oxalate renal crystals formation in rats	4 ml/100g body weight for 4 weeks	[88]
Glycyrrhiza glabra	Roots	Powder	Rats	Effect of licorice on adrenal-kidney pituitary axis in rats	100–500 mg/kg of body weight for 15 consecutive days	[94]
Helianthus annuus	Roots	Petroleum ether extract	Rats	Metabolic effects on lipid distribution pattern, liver and renal functions of albino rats	5–10% of Powder in diet	[93]
Herniaria hirsuta	Aerial parts	Hydro-ethanolic and aqueous extracts	Oxalo-calcic and cystine stones of patients	Dissolution of oxalo-calcic and cystine stones in physiological solution (9 g of NaCl/L)	300 mg/kg of body weight for 3 weeks	[95]
Plant Name	Part Used	Extract Type	Animal Model	Effect	Methodological Details	Reference
----------------------------------	-----------	--------------------	--------------	--	--	-----------
Hordeum vulgare L.	Seeds	Aqueous and alco-	Rats	Against ethylene glycol and ammonium chloride-induced urolithiasis	Final concentration was 50 mg/mL (rats received 1 ml/day of extract for 14 days)	[102]
		holic seed extracts				
Lactuca sativa L.	Aerial	Essential oil	Rabbits	Beneficial effect for the functions and histology of the kidneys	Placing calculations and fragments of calculations cystine in the presence of 20 ml of extract plant for 8 weeks	[103]
Lawsonia inermis L.	Leaves	Ethanol extract	Rats	Decreased blood glucose level and was able to restore the kidney destruction of alloxan-induced diabetic rats	400–600 mg/kg of body weight for 28 days)	[104]
Lepidium sativum L.	Seeds	Aqueous extract	Rats	Protective effect against aluminum-induced liver and kidney effects in albino rats	20 mg/kg of body weight for 8 weeks	[105]
	Seeds	Aqueous extract	Rats	Effect on renal glucose reabsorption and urinary TGF-β1 levels in diabetic rats	20 mg/kg of body weight	[106]
Linum usitatissimum L.	Seeds	Ethanolic extract	Rats	Renoprotective effect through hemodynamic changes and conservation of antioxidant enzymes in renal ischemia/reperfusion injury in rats	200 mg/kg and 400 mg/kg for 4 weeks	[107]
Plant	Part	Extract Type	Organ(s)	Effect	Dose/Duration	Reference
-----------------------	---------------	-------------------------------	-----------------	---	--	-----------
Plants						
	Seeds	Aqueous and methanolic extract	Rats	Increased serum estradiol, progesterone, total proteins, total cholesterol, ALT and AST activity, and decreased ovarian cholesterol levels, while it had no effect on kidney function in immature female rats.	500 mg/kg daily for 14 days	[108]
	Unspecified	Essential oil	Rats	Ameliorative effects on roundup-induced biochemical and histopathological changes in the liver and kidney of rats	0.5 g/kg of body weight	[109]
	Leaves	Methanol extract	Mice	Antioxidant effect on kidney, testes, spleen and intestine of mice	200–800 mg/kg of body weight for 10 days	[110]
	Leaves	Aqueous extract	Rats	Ameliorative effect against diabetes-induced changes in kidney	1g/100g of diet	[111]
Morus alba L.	Leaves	Acetone extract	Rats	Ameliorative effect on urine creatinine levels and histology of diabetic rat kidney	90–150 mg/Kg of body weight for 14 days	[112]
	Leaves	Methanol extract	Mice	Ameliorative effect against Schistosoma mansoni-induced renal and testicular injuries in mice	200–800 mg/kg of body weight/day for 10 days	[113]
	Whole plant	Essential oil	Rabbits	Against oxytetracycline-induced hepato-renal toxicity in rabbits	2 ml/kg of body weight	[114]
Nigella sativa L.	Seeds	Aqueous and ethanol extracts	Rats	Protective effect on renal ischemia-reperfusion-induced oxidative damage in rats	0.7, 1 and 1.6 g/kg of body weight	[115]
	Seeds	Ethanol extract	Rats	Nephroprotective effect in cisplatin-induced renal injury	50 mg/kg of body weight	[116]
	Seeds	Aqueous extract	Rats	Significantly prevented renal ischemia/reperfusion induced functional and histological injuries	1 g/kg of body weight	[117]
	Seeds	Ethanol extract	Rats	Protective effect against cisplatin-induced renal toxicity and oxidative stress in wistar rats	100–200 mg/kg of body weight for 5 days	[118]
Ocimum basilicum L.	Aerial parts	Hydroalcoholic extract	Rats	Against cisplatin models of acute renal failure	100–500 mg/kg of body weight	[119]
Plant Species	Extract Type	Animals	Application	Dose	Reference	
-------------------------	-------------------------------	----------	--	--	-----------	
Aerial parts	Essential oils	Rats	Renoprotective effect against diabetes induced renal affection in albino rats.	500 mg/kg of body weight/day; given to rats through gastric tube for six weeks	[120]	
Leaves	Ethanolic extract	Rats	Hepato-renal protective against paracetamol toxicity in rat model.	200–400 mg/kg of body weight; once daily for 30 consecutive days	[121]	
Aerial parts	Hydroalcoholic extract	Rats	Decreased cell injury and apoptosis and preventive effect in kidney tissue damages produced by exposure to electromagnetic field in rats.	1.5g/kg of body weight for 40 consequence day	[122]	
Leaves	Ethanol extract (oleuropein)	Rats	Improvement of blood pressure and cardiac performances, but tends to retain elevated vascular resistance, therefore, reducing the inflow of blood into the brain and kidneys of the spontaneously hypertensive rats.	25–50 mg/kg of body weight	[123]	
Olea europaea L.	Ethanol extract Human rhabdomyosarcom cells (RD) (line CCL-136)	Rats	Antitumoral activity and the cytotoxicity on renal cells.	IC50 (75.6 μg/mL)	[124]	
Leaves	Unspecified	Rats	Protective effect against oxidative stress injury generated with renal ischemia reperfusion.	100–200 mg/kg of body weight for 15 days	[125]	
Leaves	Ethanol extract	Rats	Up-regulates Nrf2/ARE/HO-1 signaling and attenuates cyclophosphamide-induced oxidative stress, inflammation and apoptosis in rat kidney.	100–200 mg/kg of body weight for 15 days	[126]	
Leaves	Essential oil	Rats	Beneficial effects on the adrenal-kidney-pituitary axis in rats.	100–500 μg/kg of body weight for 14 consecutive days	[127]	
Opuntia ficus-indica (L.) Mill.	Aqueous extract	Rats	Diuretic effect on rats, and the lyophilized extract has a diuretic and hypotensive effect on normotensive rabbits without deterioration in renal function test.	100 mg/kg of body weight	[128]	
	Aqueous extract	Rats	Nephroprotective effect on sodium dichromate-induced kidney injury in rats.	100 mg/kg of body weight for 40 days	[129]	
Plant Name	Part(s)	Extract/Oil	Animals	Effect	Dose Details	
------------	---------	-------------	---------	--------	--------------	
Plants						
Origanum majorana L.	Whole plant	Essential oil	Rats	Protective effect on hepatic and renal toxicities induced by nickel chloride in male albino rats	0.5 ml/kg of body weight for 4 weeks [131]	
Petroselinum crispum (Mill.) Fuss	Fruits	Fresh celery	Women and men urine	Effect on urinary apigenin excretion in human subjects	20 g parsley/10 mL/days [132]	
	Leaves and stems	Ethanolic extract	Rats	Protective effect on ischemia/reperfusion-induced acute kidney injury	100–200 mg/kg of body weight [133]	
Pimpinella anisum L.	Unspecified	Essential oil	Rats	Decreased the toxicity of aspartame-induced hepatorenal toxicity	0.5 ml/kg of body weight/day; for 2 months [137]	
Pistacia lentiscus L.	Fruits	Essential oil	Rabbits	Safe with no adverse effect on liver functions and renal functions with possible anti-glycogenesis activity	1 mL/kg of body weight for 6 consecutive weeks [138]	
	Fruits	Juice and methanol extract	Rats	Antioxidant properties of pomegranate in hepatic and renal tissues of rats	Juice (3 ml/kg body weight; for 21 days), MtOH (200 mg/kg; body weight; for 21 days) [139]	
Punica granatum L.	Fruits	Juice	Rats	Reduces lead-induced cell damage in kidney, liver and heart tissue	30–60 μL/days for 5 weeks [140]	
	Seeds	Juice	Rats	Improving effect on diabetes-induced changes in kidney	7.5% of pomegranate seeds in an AIN-76 diet, for a period of two months. [111]	
Seeds, fruits and peel	Peel MtOH, SOE, fruit juices	Rats	Effects on apoptosis in rat kidney induced by diethylnitrosamine and phenobarbital Peel MtOH (250 mg/kg; body weight), Fruits juice (250 mg/kg; body weight), SOE (2 ml/kg; body weight)	[141]		
------------------------	-----------------------------	------	--	------		
Fruits	Pomegranate juice and methanolic extract of peel	Mice	Improving effect on steroid induced proximal and distal tubular dilatation in mice kidney Juice (3 ml/kg of body weight, for 8 weeks), MtOH peel extract (200 mg/kg of body weight, for 8 weeks)	[142]		
flowers	Hydroalcoholic extract	Rats	Against glycerol-induced acute renal failure in rats 125 and 250 mg/kg of body weight twice daily for 3 days	[143]		
Rosa canina L.	Fruit Ethanolic extract	Rats	Protective effects on renal disturbances induced by reperfusion injury in rats 2700 mg/kg of body weight in 3 mL volume through gavage for 7 days	[144]		
Rosmarinus officinalis	Tosemary extract containing 40% carnosic acid	rats	Protective effect against etoposide-induced changes in liver and kidney functions, and DNA damage in rats 220 mg/kg of body weight /twice weekly	[145]		
L.	Leaves Essential oil	Mice	Ameliorants effect on histology and biological parameters of liver and kidney 100–400 mL	[146]		
Leaves	Aqueous extract	Rats	Improving effect on kidney and liver of diabetic rats 0.2 mg/mL/day for 30 days	[147]		
Leaves	Aqueous extract	Mice	Effects on development of mice embryos kidney and some hormonal effect of treated mothers 83.9, 167.8 mg/kg; body weight for 6 weeks	[148]		
Salvia officinalis L.	Leaves Essential oil	Mice	Protective effects against hyperlipidemia, liver, and kidney injuries in mice submitted to a high-fat diet 4 mg/kg body weight for 8 weeks	[149]		
Leaves	Ethanol extract	Rats	Preventive effects on chlorpyrifos-and methomyl-induced renal toxicity and oxidative stress in albino rats 50 mg/kg body weight for 4 weeks	[150]		
Leaves	Essential oil	Mice	Protective role against carbon tetrachloride-induced liver and kidney damage in mice 0.1, 0.2, and 0.4 mL/kg body weight for 2 weeks	[151]		
Syzygium aromaticum (L.) Merr. and L.M.Perry

Component	Extract Type	Organ	Species	Effect	Dosage	Reference
Clove	Clove oil	Rats		Protective role against acrylamide induced oxidative damage and impairment of liver, kidney, and testicular functions in albino rats	100 and 200 mg/kg of body weight for 21 consecutive days	[152]
Seeds	Aqueous extract	Rats		Protective effect on kidney function and morphology in diabetic rats via its antioxidant activity	440–1740 mg/kg of body weight for 6 weeks	[153]
Seeds	Ethanol extract	Rats		Protective effect against carbon tetrachloride-induced toxicity in liver and kidney of male rats	10% in pellet rat feed for 7 weeks	[154]
Seeds	Powder	Rats		Against ethylene glycol-induced kidney stone in rats	10 gm of fenugreek in 100 ml of water and 10 gm in 100 gm of standard diet	[155]
Seeds	Aqueous extract	Rats		Attenuated radiation-induced oxidative stress in liver and kidney tissues	1g/kg of body weight during 7 days before irradiation	[156]

Trigonella foenum-graecum L.

Component	Extract Type	Organ	Species	Effect	Dosage	Reference
Seeds	Aqueous extract	Rats		Protective effect on kidney function and morphology in diabetic rats via its antioxidant activity	100 mg/kg of body weight/daily	[157]
Seeds	Ethanol extract	Rats		Effects on the expression level of cyclooxygenase-2 and caspase-3 in the liver and kidney of streptozotocin-induced diabetic rats	200 mg/kg of body weight/day	[158]
Seeds	Powder	Rats		Protective role in some biochemical parameters and histological changes in methionine for liver, kidney and heart in mice (Mus musculus)	10–30% mg/kg of body weight during 30 days	[160]

Urtica dioica L.

Component	Extract Type	Organ	Species	Effect	Dosage	Reference
Leaves	Aqueous extract	Rats		Effects on some blood and urine parameters, and liver and kidney histology in diabetic rats	0.5% infusion of the leaves	[159]
Leaves	Methanolic extract	Rats		Protective role in some biochemical parameters and histological changes in methionine for liver, kidney and heart in mice (Mus musculus)	10–30% mg/kg of body weight during 30 days	[160]

Vitis vinifera L.

Component	Extract Type	Organ	Species	Effect	Dosage	Reference
Grape seeds	Aqueous extract	Mice		Improved kidney failure in rat model induced by gentamicin	75 mg/kg of body weight for 4 weeks	[162]
Corn silk, leaves	Aqueous extract	Human urine samples		Antilithiatic effects	The water supply was replaced with an infusion of 2g /L of plant for 7 days	[161]

Z. mays L.

Component	Extract Type	Organ	Species	Effect	Dosage	Reference
Stigmata	Aqueous extract	Rats		Antilithiatic effects	The water supply was replaced with an infusion of 2g /L of plant for 7 days	[161]
Corn silk, leaves	Ethanol extract	Rats		Improved kidney failure in rat model induced by gentamicin	75 mg/kg of body weight for 4 weeks	[162]
Corn silk	Aqueous extract	Human urine samples		Solubility of calcium in kidney stones and diuretic effect	2–10% of infuse solution	[163]
Plant	Extract Type	Animal	Effect Description	Dosage	Reference	
---------------	--------------	--------	---	-------------------------------	-----------	
Zingiber officinale Roscoe	Powder	Rats	Protective effect against kidney damage in rats	2.5–5.0% powder of ginger	[164]	
Fresh ginger	Aqueous extract	Mice	Protective effect against injury in the kidney of mice treated with CCL4	500 mg/kg of body weight	[165]	
Fresh ginger	Hydro-alcoholic extract	Rats	Effects on treating lead-poisoned kidney of neonatal rats	2 g/kg of body weight	[166]	
Fresh ginger	Ethanol extract	Mice	Protective effect on acute renal failure induced by cisplatin and liver of rats exposed to car-bendazim	250 mg/kg of body weight	[167]	
Rhi-zomes	Powder	Rats	Effects on some physiological parameters and kidney structure in rats	Rats fed with diet contain 5% ZOR Roscoe	[168]	
Rhi-zomes	Aqueous extract	Rats	Alleviate liver and kidney dysfunctions and oxidative stress induced by mercuric chloride in male rats	125 mg/kg of body weight	[169]	
Rhi-zomes	Aqueous extract	Rats	Ameliorative effect on the cadmium-induced liver and kidney injury in females’ rats	2g/L for 40 days	[170]	
Among 121 medicinal plants listed in our survey, three plant species, *H. hirsuta*, *A. graveolens*, and *P. crispum* have been the most cited by North-Eastern Morocco people to treat or prevent the traditionally multiple forms of kidneys. In the following paragraphs, we will discuss the potential of these three plants to validate their activity against kidney disorders:

H. hirsuta is ranked first as the most cited plant (14.29% of total use reports). According to the traditional knowledge of the North-Eastern Moroccan population, this plant is considered a powerful and common medicinal herb that has shown significant results in treating kidney stones; renal colic; pyelonephritis; kidney pain; diuretic; detoxification of the kidneys; and polycystic kidney disease. From a pharmacological point of view, the aqueous extract of the aerial part of this plant has an inhibitory effect on the crystallization of calcium oxalate in vitro at doses of 0.0625 mg/mL and 0.5% of plant extracts in physiological solution (9 g of NaCl/L) [96,97], and in vivo at a concentration of 50 mg/mL [98], also has an effect on cystine stones in different patients with congenital cystinuria at a dose of 20 g/L [101]. Phytochemical studies have reported and identified some components of *H. hirsuta* include flavonoids, coumarin, tannins and saponins [100,171–173]. The active component in the prevention of lithiasis has not yet been identified. However, the literature suggests that the antilithiatic potential of *H. hirsuta* is attributed to saponins with a high probability [171,174]. Recently, a phytochemical study conducted to identify the bioactive constituents of *H. hirsuta* has shown that the aerial part of this plant is rich in phenolic compounds (Figure 7a,b) [171]. According to the literature, these compounds are well known for various pharmacological effects [175–179]. Therefore, the antilithiasic activity of *H. hirsuta* may be due to the presence of these compounds.
Apium graveolens L. is ranked second, with a percentage of citations of (9.57% of total use reports). It is commonly used to treat several kidney problems: improved kidney performance, kidney swelling, kidney stones, kidney detoxification, kidney pain, diuretic, renal colic, and renal polycystic. The aerial part of Apium graveolens L. accentuates urinary excretion of Ca\(^{2+}\) in an experimental model of nephron-calcinosis in rabbits at an amount of 8 g/kg added to the animal feed [48]. The ethanolic extract from the stem and leaves of Apium graveolens L. demonstrated in vivo a protective effect on kidney damage in the model of rats with ischemia/reperfusion at a dose of 1000 mg/kg body weight [49]. The ethanolic extract and essential oils of fruits of Apium graveolens L. have a diuretic effect in vivo in dogs at doses (25 mg/kg; b.w) for the ethanolic extract and (0.004 mL/kg; b.w) for essential oils [50]. The presence of phenolic compounds in the parts of Apium graveolens L. is the reason why celery is the plant most used in traditional medicine [180,181]. Previously published photochemical studies have shown that extracts of Apium graveolens L.
are rich in bioactive compounds such as polyphenols and flavonoids [182,183] (Figure 8). It is well known that these secondary compounds present in *Apium graveolens* L. have considerable pharmacological activities, suggesting that the activities mentioned below may be due to these secondary metabolites.

![Figure 8](image)

Figure 8. Bioactive compounds from *Apium g.* extracts.

P. crispum is ranked third as the most cited plant with 7.00% of total use reports. The North-Eastern people of Morocco use this plant against kidney stones, renal colic, and kidney inflammation. The ethanolic extract from the leaves and stem of *P. crispum* has protective effects on acute renal damage induced by ischemia/reperfusion in vivo in rats at doses 100, 150, and 200 mg/kg body weight [133]. At a 200 mg/kg bodyweight concentration, the seeds ethanolic extract showed a protective effect on histopathological changes in the kidneys induced by sodium valproate in male rats [134]. The juice of *P. crispum* has an ameliorative effect against cadmium-induced changes in lipid profile, lipid peroxidation, and catalase activity in the kidneys of *albino* male mice [135]. The aqueous extract from these plant leaves attenuates serum uric acid levels and improves liver and kidney structures in oxolane-induced hyperuricemia rats at doses 3.5, 7.0, 10.5 g/kg of the body weight [136]. Indeed, the pharmacological properties of *P. crispum* are mainly discussed by a wide range of active biomolecules present in this plant. Phytochemical constituents
of *P. crispum* were isolated from seeds, roots, leaves or petioles through different separation methods [184]. These phytochemical constituents can be grouped into flavonoids, carbohydrates, coumarins, essential oils and other various compounds. A literature review conducted by Agyare et al. (2017) shows that flavonoids are the most dominant compounds of *P. crispum* such as isorhamnetin, apigenin, quercetin, luteolin, diosmetin 7-O—D-Glucopyranoside, kaempferol 3-O-β-D-glucopyranoside (Figure 9) [184]. These phytochemicals may be at the origin of the pharmacological activities of *P. crispum* against the kidney disorders mentioned above.

![Phytochemicals of *P. crispum*](image)

Figure 9. Bioactive compounds from *Petroselinum crispum* (Mill.) Fuss extracts.

2.7. Constraints of Medicinal Plant’ Uses

Adherence to traditional medical practices by people living in remotes areas of North-Eastern Morocco should be taken with great care. Skepticism, which is, in most cases, based on personal or peer experience regarding the use of medicinal plants, especially the safety and efficacy of the herbal treatment of renal disease. Some medicinal plants’ toxicity, which some users often overlook because of the incorrectly held belief that herbal medications are innocuous, remained critical. The use of medicinal plants faces many problems related to these herbs’ safety that could harm health. This conception was identified as a barrier to some participants that they felt distraught. We know that folk medicine, especially herbal medications, lack the required essential standards of consistency in the pharmacologically active principles of second metabolites containing in these herbs. Besides, the incorrect identification leading to substitution of an innocuous herb, the process of extraction, the adulteration, and the standardization of the use of these herbs contribute to the dangerousness of these herbs.

Several assumptions confirm these. Our team reported that some common plants used as medicine by people in North-eastern Morocco, such as *A. baetica* and *B. dioica*, have evidence of significant concern nephrotoxicity [185]. According to these authors, this toxicity’s causal factors are threefold; the substitution, the misidentification, and the toxic compounds containing in these two species (*Aristolochic* acid in *A. baetica* and cucurbitacin in *B. dioica*). Another work, published recently by our team reviewed toxic plants in the region, indicated that out of 287 medicinal plants used by local people, 87 plant species
had been identified as toxic [186]. In the current work, we found that out of 121 medicinal plant species used traditionally to treat renal diseases, only seven plant species have been identified as toxic by the respondents. The information reported during our interview showed that *E. spinosissimus* and *B. cretica* subsp. Dioica, used separately, could have toxic effects targeting the nervous system leading to excitement and convulsive effects; the consumption of *L. usitatissimum* could have some physiological turbulence such as colic, numbness, and/or respiratory acceleration; *A. succotrina*, when ingested, could have intense organic congestion, eczematous dermatitis, the bulbs of *D. maritima*, in decoction, causes digestive disorders with vomiting, the use of *C. litoralis* subsp. *telephifolia*. at high dose could have intense diarrhea, and prolonged treatment with the aerial part of *G. glabra* can lead to the digestive system's neuronal toxicity and disorders. The literature review revealed that among the seven species cited as toxic by the local population, three species were studied for their toxic effects on the laboratory. Hydroethanolic extract of the roots of *C. litoralis* subsp. *telephifolia*. Showed toxicity in mice with the oral mean lethal dose (LD₅₀) value of 14,000 mg/kg body weight [187]. *D. maritima* showed a cytotoxic effect against cancer cells of different lines as in the cell line of non-small cell lung cancer A549 (NSCLC) with IC₅₀ = 0.02 µg/mL and in human cervical cancer cell lines Siha and Hela, hosting HPV16 and HPV 18, respectively [188,189]. The aqueous extract of the roots of *B. cretica* subsp. Dioica. showed cytotoxic and apoptogenic activity in Burkitt BL41 lymphoma cell lines at a dose of 125 g/mL [187].

From these observations, we can deduce that although these plants were used traditionally by local people for the treatment of renal diseases and are considered to be safe, for some respondents, they may cause damage due to their unwanted side effects. Therefore, studying medicinal plants' side effects would have an influential role in identifying and diagnosing the herbs' safety profile. So, medicinal plants' consumption without studies of efficacy and safety can result in several side effects that may affect people's health.

3. Materials and Methods

3.1. Study Area

The study was conducted in North-Eastern Morocco (Figure 10). This region is limited in the North by the Mediterranean Sea (200 km of coastline), in the East by Moroccans-Algeria frontier, in the south by part of the desert (Figuig province), and in the west by a part of middle Atlas (Taza province). The region includes Benisnassen, Rif, and Horst's mountainous area, culminating respectively to 1800 m and 1500 m. These geographical features provide the region with a Mediterranean climatic zone that is characterized by hot and dry summers while winters are more cool and wet with average rainfall between 100 mm per year in the South (Saharan bioclimatic zone) and 400 mm per year in the North (Influenced by the Mediterranean Sea). Additionally, the region encompasses several Sites of Biological and Ecological Interest (SBEI) and protected areas such as Benisnassen, Jbel Gorouguou. Indeed, these sites had already been identified for their original flora as well as for their biological and ecological qualities [4]. According to the national census conducted in 2014, the region’s total area is 90130 km², representing 12% of the national territory. Historically, North-Eastern Morocco people have a shared cultural past dating back to the Arab civilization in the seventh century. The cumulative traditional culture, related to ethno-botanical knowledge, has been maintained until now and constitutes the basis for the region’s traditional medical system [6,7].
3.2. Ethnobotanical Survey

In order to collect the traditional knowledge about medicinal plants used by people living in the study area, an ethnobotanical survey was conducted from February 2018 to January 2020 in thirteen rural communes of the North-Eastern region of Morocco (Table 2) spread over six provinces (Guercif, Taourirt, Jerada, Berkane, Nador, Oujda-Angad). The ethnobotanical data were randomly selected at thirteen sites visited by conducting semi-structured interviews with 476 respondents from the local population and 12 traditional herbalists. The application of simple random sampling achieved the selection of informants. This sampling technique has the main advantage of ensuring the representativeness of the population. Informants who do not live in the study area are excluded from this study. The questionnaire used consists of two parts: the first one focused on the demographic characteristics of the participants (age, gender, level of education, ethnomedicinal knowledge sources and income of participants...), and the second one focuses on the plant species used in popular medicine for the treatment of kidney disease (vernacular name, parts used, methods of preparation and route of administration).

3.3. Identification of Medicinal Plant Species

All local names of plants collected during this study were translated into botanical names, based on the following references [7,190]. For the authentication and the accuracy of plant names listed in this paper of scientific names, we consulted documents specializing in the taxonomy of Moroccan flora (Then, the identification was performed by using standard floras available in Morocco [191–196]. For the accuracy and authentication of the scientific nomenclature, the plants recorded were checked against database available online: Catalogue of Life: 2019 Annual Checklist (https://www.catalogueoflife.org/col/) (accessed on 13 April 2020), the Plant List (http://www.theplantlist.org/) (accessed on 13 April 2020) and African Plant Database (http://www.ville-ge.ch/musinfo/bd/cjb/africa/recherche.php) (accessed on 15 April 2020). Only the plant names accepted in these databases were retained. Following the Angiosperm Phylogeny Group IV (2016), the plant families listed in this paper were checked with database APG-IV 2016 [197].

Once the name of each plant species selected was identified correctly, the whole or a part of the picked plants were pressed with a plant press and dried properly. A voucher number was attributed to each specimen and deposited in the Herbarium (HUMPOM), at Mohammed first University, Oujda, Morocco.
3.4. Quantitative Data Analysis

3.4.1. Medicinal Use Value (UV)

To give the relative importance of each plant species known locally to be used in popular medicine, we calculated the use-value (UV) for each species. This index was calculated using the following formula [198]:

\[UV = \frac{\sum U}{N} \]

(1)

where UV = use value of species, \(U \) = number of quotations per species, \(N \) = number of informants.

The value of UV will be higher if there are many reports of use for a plant, which implies that the plant is important, while they will be close to zero if there are few reports related to its use.

3.4.2. Botanical Family Use Value (FUV)

In order to assess the relationship between botanical families and users of species belonging to these families, we used the index called Family Use Value (FUV) which is equal to the average total use value for each species in the family [199].

\[FUV = \frac{\sum UV}{N} \]

(2)

where FUV = family use value, which equals the average total use value for each species in the family, \(UV \) = use value of the species belonging to the family, \(N \) = number of species in the family.

3.4.3. Informant Consensus Factor (ICF)

To know about informants’ agreement and consensus, we calculated Index Consensus Factor (ICF) by using the following formula [200]:

\[ICF = \frac{(Nur−Nt)}{(Nur−1)} \]

(3)

where Nur is the number of use-reports for a particular ailment category, Nt refers to the number of taxa used for a particular ailment category by all informants.

The ICF values’ margin varies between 0 and 1, where values close to 0 show that the plants are randomly selected or that there is no exchange of information on their use among the informants. Values close to 1 are obtained when there is a well-defined selection criterion within the given community and/or if the information is exchanged between informants.

3.5. Bibliographic Review

A review of the available literature on the plants’ biological activities identified against kidney disease was undertaken using the following electronic databases: PubMed, Science Direct, Google Scholar, Scopus, and Web of Science using the following keywords “kidney disease,” “renal disease,” “renal insufficiency,” “nephropathy,” combined with the scientific name of the plant. Chemical structures of plant compounds were performed by Chem Draw 18.1 software.

4. Conclusions

This survey showed that people living in North-Eastern Morocco’s remote areas still use medicinal plants to treat ailments, especially renal diseases. The choice of these people was based on their socio-economic and cultural conditions. This preference offered the best chance for them to manage renal sequelae. The people in the study region found that traditional uses of medicinal plants possess suitable healing properties. The results demonstrate the promising role of medicinal plants in managing this particular health
problem for these users. However, this preference should be taken with great care. To confirm their therapeutic uses, more investigations are needed to approve the safety and efficacy of their bioactive compounds. Additionally, in predicting the traditionally believed effects of these herbs, researchers need to find out the actuality of their clinical effectiveness and active substances. Once the positive effects of these herbs were proved to be accurate, it is possible to produce drugs useful in the treatment of renal disorders.

Author Contributions: Conceptualization, N.B. and M.E.; methodology, N.B. and A.E.; software, L.K., C.H., M.A., H.O. and M.B.; validation, B.E. and I.A.M.; investigation, N.B. and A.E. data curation, H.M. and I.E.-S.; writing—original draft preparation, N.B.; supervision, M.E. All authors have read and agreed to the published version of the manuscript.

Funding: This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data are included in the present study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rajalakshmi, S.; Vijayakumar, S.; Arulmozhi, P. Ethnobotanical Survey of Medicinal Plants in Thanjavur and Its Surrounding (Tamil Nadu-India). *Acta Ecol. Sin.* 2019, 39, 380–397, doi:10.1016/j.chnaes.2018.09.010.
2. Bencheikh, N.; Bouhrim, M.; Mennouni, I.A.; Boutahiri, S.; Kharchoufa, L.; Addi, M.; Tungmunithum, D.; Hano, C.; Eto, B.; Legssyer, A.; et al. Antihyperlipidemic and Antioxidant Activities of Flavonoid-Rich Extract of Ziziphus Lotus (L.) Lam. Fruits. *Applied Sciences* 2021, 11, 7788, doi:10.3390/app11177788.
3. Alami Mennouni, I.; Elachouri, M. Anticancer Medicinal Plants Used by Moroccan People: Ethnobotanical, Preclinical, Phytochemical and Clinical Evidence. *J. Ethnopharmacol.* 2021, 266, 113435, doi:10.1016/j.jep.2020.113435.
4. Fakchich, J.; Elachouri, M. An Overview on Ethnobotanical-Medicinal Studies Carried out in Morocco, from 1991 to 2015: Systematic Review (Part 1). *J. Ethnopharmacol.* 2020, 267, 113–200.
5. Ahmed, M.J.; Akhtar, T. Indigenous Knowledge of the Use of Medicinal Plants in Bheri, Muzaffarabad, Azad Kashmir, Pakistan. *Eur. J. Integr. Med.* 2016, 8, 560–569, doi:10.1016/j.eujim.2016.01.006.
6. Ziyyat, A.; Legssyer, A.; Mekfhi, H.; Dassouli, A.; Serrouchini, M.; Benjelloun, W. Phytotherapy of Hypertension and Diabetes in Oriental Morocco. *J. Ethnopharmacol.* 1997, 58, 45–54.
7. Fakchich, J.; Elachouri, M. Ethnobotanical Survey of Medicinal Plants Used by People in Oriental Morocco to Manage Various Ailments. *J. Ethnopharmacol.* 2014, 154, 76–87.
8. Ammor, K.; Mahjoubi, F.; Bousta, D.; Chaqroune, A. Ethnobotanical Survey of Medicinal Plants Used in the Treatment of Kidney Stones in Region of Fez-Meknes, Morocco. *Eth. Res. Appl.* 2020, 19, 1–12, doi:10.32859/era.19.50.1-12.
9. Jouad, H.; Haloui, M.; Rhiouani, H.; El Hilayi, J.; Eddouks, M. Ethnobotanical Survey of Medicinal Plants Used for the Treatment of Diabetes, Cardiac and Renal Diseases in the North Centre Region of Morocco (Fez–Boulemane). *J. Ethnopharmacol.* 2001, 77, 175–182, doi:10.1016/S0378-8741(01)00289-6.
10. Khouchlaa, A.; Tijane, M.; Chebat, A.; Hseini, S.; Kahoudjidi, A. Enquête ethnopharmacologique des plantes utilisées dans le traitement de la lithiase urinaire au Maroc. *Phytothérapie* 2017, 15, 274–287, doi:10.1007/s10298-016-1073-4.
11. Es-Safi, I.; Mechate, H.; Amaghnounje, A.; Jawhari, F.Z.; Bari, A.; Cerruti, P.; Avella, M.; Andriy, A.; Andriy, D. Medicinal Plants Used to Treat Acute Digestive System Problems in the Region of Fez–Meknes in Morocco: An Ethnopharmacological Survey. *Eth. Res. Appl.* 2020, 20, 1–14, doi:10.32859/era.20.25.1-14.
12. Kharchoufa, L.; Bouhrim, M.; Bencheikh, N.; Addi, M.; Hano, C.; Mechate, H.; Elachouri, M. Potential Toxicity of Medicinal Plants Inventoried in Northeastern Morocco: An Ethnobotanical Approach. *Plants* 2021, 10, 1108, doi:10.3390/plants10061108.
13. Laadim, M.; Ouahidi, M.; Zidane, L.; Hessni, A.; Ouichou, A.; Mesfioui, A. Ethnopharmacological Survey of Plants Used for the Treatment of Diabetes in the Town of Sidi Slimane (Morocco). *J. Pharmacogn. Phytother.* 2017, 9, 101–110, doi:10.5897/jpp2016.0437.
14. Tahraoui, A.; El-Hilaly, J.; Israilli, Z.H.; Lyoussi, B. Ethnopharmacological Survey of Plants Used in the Traditional Treatment of Hypertension and Diabetes in South-Eastern Morocco (Errachidia Province). *J. Ethnopharmacol.* 2007, 110, 105–117, doi:10.1016/j.jep.2006.09.011.
15. Benkhnigue, O.; Zidane, L.; Fadli, M.; Elyacoubi, H.; Rochdi, A.; Douira, A. Etude Ethnobotanique Des Plantes Médicinales Dans La Région de Mechraâ Bel Ksiri (Région Du Gharb Du Maroc). *Acta Bot. Barc.* 2010, 53, 191–216.
16. Chaachouay, N.; Benkhnigue, O.; Fadli, M.; El Ibaoui, H.; Zidane, L. Ethnobotanical and Ethnopharmacological Studies of Medicinal and Aromatic Plants Used in the Treatment of Metabolic Diseases in the Moroccan Rif. *Heliyon* 2019, 5, e02191, doi:10.1016/j.heliyon.2019.e02191.
17. Benkhnigue, O.; Hachi, M.; Fadli, M.; Douira, A.; Zidan, L. Catalogue of the Medicinal Plants Used in the Treatment of Urinary Infections in the Area of Al-Haouz Rhamna (Central Morocco). *Eur. J. Bot. Plant Sci. Phytol.* 2016, 3, 1–49.
18. Ghourri, M.; Zidane, L.; Douira, A. La Phytothérapie et Les Infections Urinaires (La Pyélonéphrite et La Cystite) Au Sahara Marocain. *J. Anim. Plant Sci.* 2014, 20, 3171–3193.
19. Chebaibi, M.; Bousta, D.; Iken, I.; Hoummani, H.; Ech-Choayeb, A.; Najdi, A.; Houssaini, T.S.; Achour, S. Ethnopharmacological Survey of Medicinal Plants Used in Traditional Treatment of Kidney Diseases in Fez–Meknes Region, Morocco. *Phytotérapié* 2020, 18, 99–114, doi:10.3166/phyto-2019-0189.
20. El Hassani, M.; Douri, E.M.; Bammì, J.; Zidane, L.; Badoc, A.; Douira, A. Plantes Médicinales de la Moyenne Moulouya (Nord-Est Du Maroc). *Ethnopharmacol. 2013*, 30, 39–53.
21. Sargin, S.A.; Selvi, S.; Büyükcengiz, M. Ethnomedicinal Plants of Aydincik District of Mersin, Turkey. *J. Ethnopharmacol.* 2015, 174, 200–216, doi:10.1016/j.jep.2015.08.008.
22. Bencheikh, N.; Bouhrim, M.; Kharchoufa, L.; Al Kamaly, O.M.; Mechchate, H.; Es-safi, I.; Dahmani, A.; Ouahhoud, S.; El Assri, S.; Eto, B.; et al. The Nephroprotective Effect of Zizyphus Lotus L. (Desf.) Fruits in a Gentamicin-Induced Acute Kidney Injury Model in Rats: A Biochemical and Histopathological Investigation. *Molecules* 2021, 26, 4806, doi:10.3390/molecules26164806.
23. Eddouks, M.; Ajeblí, M.; Hebi, M. Ethnobotanical Survey of Medicinal Plants Used in Daraa-Tafilalet Region (Province of Errachidia), Morocco. *J. Ethnopharmacol.* 2017, 198, 516–530, doi:10.1016/j.jep.2016.12.017.
24. Merzouki, A.; Ed-derfoufi, F.; Molero Mesa, J. Contribution to the Knowledge of Riffian Traditional Medicine. II: Folk Medicine in Ksar Lakbîr District (NW Morocco). *Fitoterapia* 2000, 71, 278–307, doi:10.1016/S0367-326X(00)00139-8.
25. Güzel, Y.; Güzelsemme, M.; Miski, M. Ethnobotany of Medicinal Plants Used in Antakya: A Multicultural District in Hayat Province of Turkey. *J. Ethnopharmacol.* 2015, 174, 118–152, doi:10.1016/j.jep.2015.07.042.
26. Leto, C.; Tuttolomondo, T.; La Bella, S.; Licata, M. Ethnobotanical Study in the Madonie Regional Park (Central Sicily, Italy)—Medicinal Use of Wild Shrub and Herbaceous Plant Species. *J. Ethnopharmacol.* 2013, 146, 90–112, doi:10.1016/j.jep.2012.11.042.
27. Khouchlaa, A.; Talbaoui, A.; El Yahyaoui El Idrissi, A.; Bouyahya, A.; Ait Lahsen, S.; Kahouadji, A.; Tijane, M. Détermination Des Composés Phénoliques et Évaluation de l’activité Litholytique in Vitro Sur La Lithiase Urinaire d’extrait de Zizyphus Lotus L. d’origine Marocaine. *Phytothérapie* 2017, 1–6, doi:10.1007/s10298-017-1106-3.
28. Fennane, M.; Tattoo, M.I. Observations sur la flore vasculaire endémique, rare ou menacée du Maroc. *Flora Medii. 1999*, 9, 113–124.
29. Yemele, M.D.; Telefo, P.B.; Lienou, L.L.; Tagne, S.R.; Fodouop, C.S.P.; Goka, C.S.; Lemfack, M.C.; Moundipa, F.P. Ethnobotanical Survey of Medicinal Plants Used for Pregnant Womens Health Conditions in Menoua Division-West Cameroon. *J. Ethnopharmacol.* 2015, 160, 14–31, doi:10.1016/j.jep.2014.11.017.
30. Mrabti, H.N.; Jararat, N.; Kachmar, M.R.; Ed-Dra, A.; Ouahbi, A.; Cherrah, Y.; El Abbes Faouzi, M. Integrative Herbal Treatments of Diabetes in Beni Mellal Region of Morocco. *J. Integr. Med.* 2019, 17, 93–99.
31. Yebouk, C.; Redouan, F.Z.; Benitez, G.; Boughal, M.; Kadiri, M.; Boumediana, A.I.; Molero-Mesa, J.; Merzouki, A. Ethnobotanical Study of Medicinal Plants in the Adrar Province, Mauritania. *J. Ethnopharmacol.* 2020, 246, 112217, doi:10.1016/j.jep.2019.112217.
32. Didi, O.; Ould El Hadj, M.; Hadj-Mahammed, M.; Zabeirou, H. Place Des Plantes Spontanées Dans La Medicine Traditionnelle de La Region de Ouargla (Sahara Septentrional Est). *Couvr. Savoir* 2003, 3, 47–51.
33. Benlmdini, N.; Elhafian, M.; Rochdi, A.; Zidane, L. Étude Floristique et Ethnobotanique de La Flore Médicinale Du Haut Atlas Oriental (Haute Moulouya). *J. Appl. Biosci.* 2014, 78, 6771, doi:10.4314/jab.v78i11.17.
34. Aguiar, N.; Meira, D.; Raquel, S. Study on the Efficacy of the Portuguese Cooperative Taxation. *REVESCO Rev. Estudios Cooper. 2015*, 121, 7–32, doi:10.5209/rev.
Plants 2021, 10, 1966
44 of 52

35. Tahri, N.; Basti, A.E.L.; Zidane, L.; Rochdi, A.; Douira, A. Etude Ethnobotanique Des Plantes Medicinales Dans La Province De Settat (Maroc). Kastamonu Univ. J. For. Fac. 2014, 2, 192–208.
36. Khouchlaa, A.; Tijane, M.; Chebat, A.; Hseini, S.; Kahoudji, A. Ethnopharmacology Study of Medicinal Plants Used in the Treatment of Urolithiasis (Morocco). Phytotherapie 2017, 15, 274–287, doi:10.1007/s10298-016-1073-4.
37. El Guerrouj, B.; Bouhrim, M.; Bentata, Y.; Daudon, M.; Melhaoui, M.; Kharchoufa, L.; Bencheikh, N.; Bekkouch, O. Kidney Stone Disease (Urolithiasis): Epidemiological Study in the Eastern Region of Morocco. Eur. J. Sci. Res. 2019, 155, 40–57.
38. Hamden, K.; Ayadi, F.; Jamoussi, K.; Masmoudi, H.; Elfeki, A. Therapeutic Effect of Phytoecdysteroids Rich Extract from Ajuga Iva on Alloxan Induced Diabetic Rats Liver, Kidney and Pancreas. BioFactors 2009, 33, 1–12, doi:10.3233/BIO-2009-1040.
39. Mariee, A.D.; Abd-allah, G.M.; El-ymamny, M.F. Renal Oxidative Stress and Nitric Oxide Production in Streptozotocin-Induced Diabetic Nephropathy in Rats: The Possible Modulatory Effects of Garlic (Allium Sativum L.). Biotechnol. Appl. Biochem. 2009, 232, 227–232, doi:10.1042/BA20080086.
40. Mansour, M.H.; Al-qatan, K.; Thomson, M.; Ali, M. Garlic (Allium Sativum) Modulates the Expression of Angiotensin II AT 2 Receptor in Adrenal and Renal Tissues of Streptozotocin-Induced Diabetic Rats. Adv. Biol. Chem. 2011, 1, 93–102, doi:10.4236/abc.2011.1.13011.
41. Aprioku, J.S.; Amah-Tariah, F.S. Garlic (Allium Sativum L.) Protects Hepatic and Renal Toxicity of Alloxan in Rats. J. Pharm. Res. Intern. 2017, 17, 1–7, doi:10.9734/JPRI/2017/74909.
42. Omotoso, D.R.; Olajumoke, J.M. Ameliorative Effects of Ascorbic Acid and Allium Sativum (Garlic) Ethanol Extract on Renal Parenchyma of Gentamicin-Induced Nephropathic Rats. J. Complement. Altern. Med. Res. 2020, 9, 1–8, doi:10.9734/JOCAMR/2020/v9i43014.
43. Bolkent, S.; Akev, N.; Ozsol, N.; Şengezer-İnceli, M.; Can, A.; Okyar, A.; Yanardag, R. Effect of Aloe Vera (L) Burm. Fil. Leaf Gel and Pulp Extracts on Kidney in Type-II Diabetic Rat Models. Ind. J. Exp. Biol. 2004, 42, 48–52.
44. Ramachandrahahgari, R.M.Y.; Somesula, S.R.; Adi, P.J.; Shaik, I.M.; Enamala, M.; Matcha, B. Protective Role of Ethanolic Extract of Aloe Vera Antioxidant Properties on Liver and Kidney of Streptozotocin-Induced Diabetic Rats. Dig. J. Nanomater. Biострукт. 2012, 7, 175–184.
45. Utami, J.P.; Lestari, U.; Wulandari, N.; Susanto, H.; Handaya, Y. Antinephropathie Effect of Aloe Vera Gel to PKC-β Level on Wistar Rat Kidney in Diabetes Mellitus. Kru Life Sci. 2015, 2, 45–50.
46. Vanachayangkul, P.; Byer, K.; Khan, S.; Butterweck, V. An Aqueous Extract of Ammi Visnaga Fruits and Its Constituents Khellin and Visnagin Prevent Cell Damage Caused by Oxalate in Renal Epithelial Cells. Phytomedicine 2010, 17, 653–658, doi:10.1016/j.phymed.2009.10.011.
47. Vanachayangkul, P.; Chow, N.; Khan, S.R.; Butterweck, E. Prevention of Renal Crystal Deposition by an Extract of Ammi Visnaga L. and Its Constituents Khellin and Visnagin in Hyperoxaluric Rats. Urol. Res. 2011, 39, 189–195, doi:10.1007/s00240-010-0333-y.
48. Al Jawad, F.H.; Al Razzuqi, R.A.M.; Al Jeboori, A.A. Apium Graveolens Accentuates Urinary Ca +2 Excretions in Experimental Model of Nephrocalcinosis. Inter. J. Gr. Pharm. 2011, 5, 100–102, doi:10.4103/0973-8258.85160.
49. Afifah; Muflikah, K.; Att, V.R.B.; Tsani, R.M.; Khasanah, D.; Maulana, W. Protective Effect of Ethanol Extract of Celery (Apium Graveolens L.) on Kidney Damage in Ischemia/Reperfusion Injury Rats Model. Molekul 2019, 14, 11–17, doi:10.20884/1.jm.2019.14.1.448.
50. Mahran, G.H.; Kadry, H.A.; Isaac, Z.G.; Thabett, C.K. Investigation of Diuretic Drug Plants. 1. Phytochemical Screening and Pharmacological Evaluation of Anethum Graveolens L., Apium Graveolens L., Daucus Carota L. and Erucua Sativa Mill. Phytother. Res. 1991, 5, 169–172.
51. Ibrahim, A.K.; Al-Azawi, A.H. Nephro-Protective Effect of (Arachis Hypogaea L.) Peanut Skin Extracts on CCI 4 Induced Kidney Damage in Mice Nephro-Protective Effect of (Arachis Hypogaea L.) Peanut Skin Extracts on CCI 4 Induced Kidney Damage in Mice. Intern. J. Nat. Eng. Sci. 2019, 13, 7–14.
52. Afkir, S.; Nguelefack, T.B.; Aziz, M.; Zoheir, J.; Cuinaud, G.; Bnouham, M.; Mekhi, H.; Legssyer, A.; Lahlou, S.; Ziyyat, A. Arbutus Unedo Prevents Cardiovascular and Morphological Alterations in L-NAME-Induced Hypertensive Rats. Part I: Cardiovascular and Renal Hemodynamic Effects of Arbutus Unedo in L-NAME-Induced Hypertensive Rats. J. Ethnopharmacol. 2008, 116, 288–295, doi:10.1016/j.jep.2007.11.029.
53. Rifqi, N.; Wahyuni, A. Fennel (Foeniculum Vulgare) Leaf Infusion Effect on Mammary Gland Activity and Kidney Function of Lactating Rats. Nusant. Biosci. 2019, 11, 101–105, doi:10.13057/nusbiosc/n110117.
54. Saoudi, M.; Badraoui, R.; Boughaja, H.; Ncir, M.; Rahmouni, F.; Grati, M.; Jamoussi, K.; Feki, A. El Deltamethrin Induced Oxidative Stress in Kidney and Brain of Rats: Protective Effect of Artemisia Campestris Essential Oil. Biomed. Pharmacother. 2017, 94, 955–963, doi:10.1016/j.biopha.2017.08.030.
55. Rouhani, M.H.; Najafabadi, M.M.; Surkan, P.J.; Esmaillzadeh, A.; Feizi, A.; Azadbakht, L. The Impact of Oat (Avena Sativa) Consumption on Biomarkers of Renal Function in Patients with Chronic Kidney Disease: A Parallel Randomized Clinical Trial. *Clin. Nutr.* **2016**, *1–2*, doi:10.1016/j.clnu.2016.11.022.

56. Ltaif, M.; Gargouri, M.; Magné, C.; Feki, A. El; Soussi, A. Protective Effects of Avena Sativa against Oxidative Stress-Induced Kidney Damage Resulting from an Estrogen Deficiency in Ovariectomized Swiss Mice Model. *Food Biochem.* **2020**, *44*, 1–13, doi:10.11151/j.fbc.13205.

57. Neag, M.A.; Bocsan, I.C.; Catinean, A.; Vesa, S.C.; Balan, G.G.; Parvu, M.; Muntean, D.M.; Vlase, L.; Melincovici, C.S.; Pop, R.; et al. Effects of Berberis Vulgaris Extract on Lipid Profile, Kidney and Liver Function in Experimental Dyslipidemia. *Rev. Chim.* **2019**, *70*, 614–618, doi:10.37358/RC.19.2.6968.

58. Rubattu, S.; Castro, S.D.; Cotugno, M.; Bianchi, F.; Mattioli, R.; Baima, S.; Stanzione, R.; Madonna, M.; Bozzao, C.; Marchitti, S.; et al. Protective Effects of Brassica Oleracea Sprouts Extract toward Renal Damage in High-Salt-Fed SHRSP: Role of AMPK/PPAR α/UCP2 Axis. *J. Hypertens.* **2015**, *33*, 1–15, doi:10.1097/HJH.0000000000000562.

59. Rhibi, K.; Selmi, S.; Jabri, M.-A.; El-Benna, J.; Amri, M.; Marzouki, L.; Sebai, H. Protective Effect of Ceratonia Siliqua L. Against a Dextran Sulfate Sodium Induced Alterations in Liver and Induced in Rat. *J. Med. Food* **2016**, *19*, 882–889, doi:10.1089/jmf.2016.0020.

60. Hsouna, A.B.; Saoudi, M.; Trigui, M.; Jamoussi, K.; Boudawara, T.; Jaoua, S.; Feki, A. El Characterization of Bioactive Compounds and Ameliorative Effects of Ceratonia Siliqua Leaf Extract against CCI4 Induced Hepatic Oxidative Damage and Renal Failure in Rats. *Food Chem. Toxicol.* **2011**, *49*, 3183–3191, doi:10.1016/j.fct.2011.09.034.

61. Pourfarjam, Y.; Rezaoghali-zadeh, L.; Nowrouzi, A.; Meysamie, A.; Ghaseminejad, S.; Ziamajidji, N.; Norouzi, D. Effect of Cichorium Intybus L. Seed Extract on Renal Parameters in Experimentally Induced Early and Late Diabetes Type 2 in Rats. *Ren. Fail.* **2016**, *39*, 1–11, doi:10.1080/0886022X.2016.1256317.

62. Noori, S.; Mahboob, T. Role of Electrolytes Disturbances and Na + -K + -ATPase in Cisplatin—Induced Renal Toxicity and Effects of Ethanolic Extract of Cichorium Intybus. *Pak. J. Pharm. Sci.* **1985**, *25*, 857–862.

63. Emamiyan, M.Z.; Vaezi, G.; Tehranipour, M.; Shahrokhabadi, K.; Shahrokhabadi, K. Preventive Effects of the Aqueous Extract of Cichorium Intybus L. Flower on Ethylene Glycol-Induced Renal Calculi in Rats. *Avicenna J. Phytomed.* **2018**, *8*, 170–178.

64. Erkic, O.E.; Arihan, O.; Colcimen, N.; Kara, M.; Karatas, E.; Demir, H.; Ragbetli, M.C. Effects of Cichorium Intybus on Serum Oxidative Stress, Liver and Kidney Volume, and Cyclin B1 and Bcl-2 Levels in the Brains of Rats with Ethanol Induced Damage. *Cell. Mol. Biol.* **2018**, *64*, 30–35, doi:10.14715/cmb/2018.64.7.6 Copyright:

65. El-masry, T.A.; Altwijary, N.; Altaibi, B.; Tousson, E.; Albobghadldly, A.; Saleh, A. Chicory (Cichorium Intybus L.) Extract Ameliorates Hydroxyapatite Nanoparticles Induced Kidney Damage in Rats Chicory (Cichorium Intybus L.) Extract Ameliorates Hydroxyapatite Nanoparticles Induced Kidney Damage in Rats. *Pak. J. Pharm. Sci.* **2020**, *33*, 1251–1260, doi:10.36721/PJPS.2020.33.3.SUP.1251-1260.1.

66. Iqbal, S.; Jabeen, F.; Peng, C.; Ijaz, M.U.; Chaudhry, A.S. Cinnamonum Cassia Ameliorates Ni-NPs-Induced Liver and Kidney Damage in Male Sprague Dawley Rats. *Hum. Exp. Toxicol.* **2020**, *39*, 1565–1581, doi:10.1177/0960377219030125.

67. Soji-Omoniwa, O.; Muhammad, N.O.; Usman, L.A.; Omoniwa, B.P. Effect of Leaf Essential Oil of Citrus Sinensis at Different Harvest Time on Some Liver and Kidney Function Indices of Diabetic Rats. *Intern. J. Biol. Biomol. Agric. Food Biotechnol. Eng.* **2014**, *8*, 484–488.

68. Mahmood, N.; Manzoor, F.; Khaled, A.; Javed, M.; Qureshi, Z. Anti-Proliferative or Cytopathic Potential of Thapsia Garganica, Citrus Sinensis, Citrus Limon and Vinca Rosea Extracts Against Human Embryonic Kidney Carcinoma Cell Line. *West Indian Med. J.* **2016**, *1–6*, doi:10.7727/wijm.2015.325.

69. Kansal, L.; Sharma, V.; Sharma, A.; Lodi, S.; Sharma, S.H. Protective Role of Coriandrum Sativum (Coriander) Extracts against Lead Nitrate Induced Oxidative Stress and Tissue Damage in the Liver and Kidney in Male Mice. *Intern. J. Appl. Biol. Pharm. Technol.* **2011**, *2*, 65–83.

70. Vosough, D.; Hooshyar, S.H.; Moini, E. Effect of Saffron (Crocus Sativus) Administration on Kidney Function in Normal Cats as Determined by Use of 99m Tc-DTPA Renal Scintigraphy. *Iran. J. Vet. Surg.* **2014**, *9*, 45–50.

71. Ashrafi, M.; Afsar, Z.; Erjaee, H.; Nazifi, S. The Effects of Saffron (Crocus Sativus) Aqueous Extract on TNF-α Levels in Liver, Kidney, and Lens Tissues of Diabetic Rats. *Tuk. J. Endocrinol. Metab.* **2018**, *22*, 217–224, doi:10.25179/tjemand.2018.59710.

72. Azizi, M.; Ahmad, M.R.H.; Mohammadpour, M.; Daemi, A.; Asadi, S.; Shirzadpour, E.; Amraei, M. Investigating the Histopathological Effects of Saffron Petal (Crocus Sativus L.) Hydroalcoholic Extract on Kidney and Liver Functional Parameters in Rats. *Biomed. Res. Ther.* **2020**, *7*, 3727–3738, doi:10.15419/bmrat.v7i4.600.
73. Azizi, M.; Abbasi, N.; Mohamadpour, M.; Bakhtiyari, S.; Asadi, S.; Shirzadpour, E.; Aidy, A.; Mohamadpour, M.; Amraei, M. Investigating the Effect of Curcous Satius I. Petal Hydroalcoholic Extract on Inflammatory and Enzymatic Indices Resulting from Alcohol Use in Kidney and Liver of Male Rats. J. Inflamm. Res. 2019, 12, 269–283, doi:10.2147/JIR.S216125.

74. Saleem, M.; Javed, F.; Asif, M.; Baig, M.K.; Arif, M. HPLC Analysis and In Vivo Renoprotective Evaluation of Hydroalcoholic Extract of Curcuma Melo Seeds in Gentamicin-Induced Renal Damage. Medicina 2019, 55, 1–10.

75. El-Maksoud, M.A.E.A. Effect of Cucumis Melo Var. Flexuus Leaves Extract on Renal Oxidative Injury and Inflammation in Diabetic Male Albino Rats. Egypt. J. Zool. 2019, 71, 13–20, doi:10.12816/ejz.2019.10515.1007.

76. Ofoego, U.C.; Nweke, E.O.; Nzube, O.M. Ameliorative Effect of Ethanolic Extract of Curcuma Satius (Cucumber) Pulp on Alloxan Induced Kidney Toxicity in Male Adult Wistar Rats. Ameliorative Effect of Ethanolic Extract of Curcuma Sativas (Cucumber) Pulp on Alloxan Induced Kidney Toxicity. J. Nat. Sci. Res. 2020, 9, 12–22, doi:10.7176/JNSR.

77. Shehzad, A.; Saleem, U.; Muhammad, A.S.; Cruz, C.V.L.; Khan, A.H.; Ahmad, B. Antiurolithic Evaluation of Culcurbita Pepo Seeds Extract against Sodium Oxalate-Induced Renal Calculi. Pharmacogn. Mag. 2019, 15, S38–46, doi:10.4103/pm.pm.

78. Sekhar, M.G.; Basha, S.S.; Madhavi, Y.R.R.; Krishna, S.R.; Ismail, S.M.; Bhaskar, M. The Effects of Curcuma Longa and Trigonella Foenum Graecum on Antioxidant Enzymes in Kidney of Alloxan Induced Type-1 Diabetic Male Rats. Adv. Pharmacol. Toxicol. 2010, 11, 95–105.

79. Mohebbati, R.; Shahef, M.N.; Soukhtanloo, M.; Mohammadian Roshan, N.; Khajavi Rad, A.; Anaegoudari, A.; Hosseinian, S.; Karimi, S.; Beheshiti, F. Adriamycin-Induced Oxidative Stress Is Prevented by Mixed Hydro-Alcoholic Extract of Nigella Sativa and Curcuma Longa in Rat Kidney. Avicenna J. Phytomed. 2016, 6, 86–94, doi:10.22038/ajp.2016.5486.

80. Gholami-Ahangaran, M.; Rangsz, N.; Azizi, S. Evaluation of Turmeric (Curcuma Longa) Extract on Biochemical Parameters of Liver and Kidney in Chicken Aflatoxicosis. Pharm. Biol. 2016, 54, 780–787, doi:10.3109/13880209.2015.1080731.

81. Russo, E.R.; Facincani, I.; Nakazato, K.C.; Coimbra, T.M.; Crevelin, E.J.; Pereira, A.M.S.; Carmona, F. Oral Administration of Powdered Dried Rhizomes of Curcuma Longa (Turmeric, Zingiberaceae) Is Effective in the Treatment of Doxorubicin-Induced Kidney Injury in Rats. Phytother. Res. 2018, 32, 2408–2416, doi:10.1002/ptr.6176.

82. Golshan, A.; Hayatdavoudi, P.; Hadjzadeh, M.A.; Khajavi Rad, A.; Mohamadian Roshan, N.; Abbasnezhad, A.; Mousavi, S.M.; Pakdel, R.; Zarei, B.; Aghaeie, A. Kidney Stone Formation and Antioxidant Effects of Cynodon Dactylon Decoction in Male Wistar Rats. Avicenna J. Phytomed. 2017, 7, 180–190, doi:10.22038/ajp.2016.7844.

83. Pourabol, I.; Ranjbar, B. The Effect of Daucus Carota Seeds Extract on Lipid Profile, LFT and Kidney Function Indicators in Streptozocin-Induced Diabetic Rats. Intern. J. Plant Sci. Ecol. 2015, 1, 84–87.

84. Afzal, M.; Kazimi, I.; Kaur, R.; Ahmad, A.; Anwar, F. Comparison of Protective and Curative Potential of Daucus Carota Root Extract on Renal Ischemia Reperfusion Injury in Rats. Pharm. Biol. 2013, 51, 856–862, doi:10.3109/13880209.2013.767840.

85. Nwaichi, E.O. Influence of Daucus Carota on the Hepatic and Renal Biomarkers of Dichlorvos-Exposed Albino Rats. EC Pharmacol. Toxicol. 2019, 10, 1067–1075.

86. Ghareeb, M.A.; Sobeh, M.; El-Maaddawy, W.H.; Mohammed, H.S.; Khalil, H.; Botros, S.; Wink, M. Chemical Profiling of Polyphenolics in Eucalyptus Globulus and Evaluation of Its Hepato-Renal Protective Potential against Cyclophosphamide Induced Toxicity in Mice. Antioxidants 2019, 8, 2–19, doi:10.3390/antiox8090415.

87. Dhibi, S.; Mbarki, S.; Elfeki, A.; Hfaiedh, N. Eucalyptus Globulus Extract Protects upon Acetaminophen-Induced Kidney Damages in Male Rats. Bosn. J. Basic Med. Sci. 2014, 14, 99–104, doi:10.17305/bjbms.2014.2272.

88. Ibrahim, F.Y.; El-Khatheeb, A.Y. Effect of Herbal Beverages of Foeniculum Vulgare and Cymbopogon Pusimus on Inhibition of Calcium Oxalate Renal Crystals Formation in Rats. Ann. Agric. Sci. 2013, 58, 221–229, doi:10.1016/j.ajas.2013.07.006.

89. Abdel-Wahab, A.; Hashem Abdel-Razik, A.R.; Abdel Aziz, R.L. Rescue Effects of Aqueous Seed Extracts of Foeniculum Vulgare and Carum Carvi against Cadmium-Induced Hepatic, Renal and Gonadal Damage in Female Albino Rats. Asian Pac. J. Trop. Med. 2017, 10, 1123–1133, doi:10.1016/j.aptm.2017.10.019.

90. Sadreffazalay, S.; Farokhi, F. Effect of the Aqueous Extract of Foeniculum Vulgare (Fennel) on the Kidney in Experimental PCOS Female Rats. Avicenna J. Phytomed. 2014, 4, 110–117, doi:10.22038/ajp.2014.1824.

91. Taleb-dida, N.; Krouf, D.; Bouchenak, M. Globularia Alypum Aqueous Extract Decreases Hypertriglyceridermia and Ameliorates Oxidative Status of the Muscle, Kidney, and Heart in Rats Fed a High-Fructose Diet. Nutr. Res. 2011, 31, 488–495, doi:10.1016/j.nutres.2011.05.005.
92. Naouel, B.; Hayat, T.; Iman, K.; Lekhmissi, A.; Abderrahmane, B. Kinetics of Inhibition of Xanthine Oxidase by Globularia Alypum and Its Protective Effect against Oxonate-Induced Hyperuricemia and Renal Dysfunction in Mice. *J. Appl. Pharm. Sci.* **2016**, *6*, 159–164, doi:10.7324/JAPS.2016.60422.

93. Sitohy, M.Z.; El-Massry, R.A.; El-Saadany, S.S.; Labib, S.M. Metabolic Effects of Licorice Roots (*Glycyrrhiza Glabra*) on Lipid Distribution Pattern, Liver and Renal Functions of Albino Rats. *Nahrung* **1991**, *35*, 799–806, doi:10.1002/food.19910350803.

94. Al-Qarawi, A.A.; Abdel-Rahman, H.A.; Ali, B.H.; El Mougy, S.A. Liquorice (*Glycyrrhiza Glabra*) and the Adrenal-Kidney-Pituitary Axis in Rats. *Food Chem. Toxicol.* **2002**, *40*, 1525–1527, doi:10.1016/S0278-6915(02)00080-7.

95. Ojo, A.B.; Adanalowo, I.G.; Ojo, O.A. Ameliorative Potentials of Saponins from Helianthus Annuus Roots on Hepatoprotective and Some Kidney Function Indices of Alloxan-Induced Diabetic Rats. *Pharmacol. Online* **2016**, *3*, 73–79.

96. Ammor, K.; Mahjoubi, F.; Boustia, D.; Elhabbani, R.; Chaqroune, A. In Vitro Litholytic Activity of Extracts and Phenolic Fractions of Some Medicinal Plants on Urinary Stones. *Medit. J. Chem.* **2020**, *9*, 468–477, doi:10.13171/mjc9602001101135ka.

97. Atmani, F.; Khan, S.R. Effects of an Extract from Herniaria Hirsuta on Calcium Oxalate Crystallization in Vitro. *BJU Intern.* **2000**, *85*, 621–625, doi:10.1046/j.1445-2199.2000.00485.x.

98. Atmani, F.; Slimani, Y.; Mimouni, M.; Hacht, B. Prophylaxis of Calcium Oxalate Stones by Herniaria Hirsuta on Experimentally Induced Nephrolithiasis in Rats. *BJU Intern.* **2003**, *92*, 137–140, doi:10.1046/j.1445-2199.2003.04289.x.

99. Grases, F.; Ramis, M.; Costa-Bauzà, A.; March, J.G. Effect of Herniaria Hirsuta and Agropyron Repens on Calcium Oxalate Urolithiasis Risk in Rats. *J. Ethnopharmacol.* **1995**, *45*, 211–214, doi:10.1016/0378-8741(94)01218-O.

100. Atmani, F.; Farell, G.; Lieske, J.C. Extract from Herniaria Hirsuta Coats Calcium Oxalate Monohydrate Crystals and Blocks Their Adhesion to Renal Epithelial Cells. *J. Urol.* **2004**, *172*, 1510–1514, doi:10.1097/01.ju.0000131004.03795.c5.

101. Meiouet, F.; El Kabajj, S.; Daudon, M. Étude en Vitro de l’activité Litholytique de Quatre Plantes Médicinales Vis-à-Vis Des Calculs Urinaires de Cystine. *Prog. Urol.* **2011**, *21*, 40–47, doi:10.1016/j.purol.2010.05.009.

102. Patel, M.; Raval, S.K.; Modi, R.J. Effect of Seed Extracts of Vigna Unguiculata and Hordeum Vulgare on Kidney Homogenate and Rat Kidney Injury Molecule-1 in Ethylene Glycol and Ammonium Chloride Induced Urolithiasis in Rats. *Ind. J. Vet. Sci. Biotechnol.* **2020**, *15*, 1–4.

103. Khudhiar, A.S.; Dakheel, M.H.; Twuej, M.A.S.; Faris, J.K. Effect of Use of (Lactuca Sativa) on the Function and Histological Structure of Kidney in Locals Male Rabbits. *Plant Arch.* **2020**, *20*, 2742–2746.

104. Sari, M.I.; Antika, M.A.; Anggraini, D.R. Blood Glucose Levels and the Microscopic Structure of Kidney Wistar Rat Diabetes Mellitus under the Effect of Lawsonia Inermis (Linn.) Leaves Ethanolic Extract. *Asian J. Pharm. Clin. Res.* **2018**, *11*, 257–261, doi:10.22159/ajpcr.2018.v11i4.23502.

105. Balgoon, M.J. Assessment of the Protective Effect of Lepidium Sativum against Aluminum-Induced Liver and Kidney Effects in Albino Rat. *BioMed Res. Intern.* **2019**, *2019*, 9, doi:10.1155/2019/4516730.

106. Eddouks, M.; Mhamed, M. Effect of Lepidium Sativum L. on Renal Glucose Reabsorption and Urinary TGF-B1 Levels in Diabetic Rats. *Phytother. Res.* **2008**, *22*, 1–5, doi:10.1002/ptr.

107. Ghule, A.E.; Jadhav, S.S.; Bodhankar, S.L. Renoprotective Effect of Linum Usitatissimum Seeds through Haemodynamic Changes and Conservation of Antioxidant Enzymes in Renal Ischaemia-Reperfusion Injury in Rats Renoprotective Effect of Linum Usitatissimum Seeds through Haemodynamic Changes and Cons. *Arab J. Urol.* **2019**, *9*, 215–221.

108. Ahmad, N.; Zia-ur-Rahman; Akhtar, N.; Ali, S. Effects of Aqueous Methanolic Extract of Flax Seeds (Linum Usitatissimum) on Serum Estradiol, Progesterone, Kidney and Liver Functions and Some Serum Biochemical Metabolites in Immature Female Rats. *Pak. Vet. J.* **2011**, *8318*, 2074–7764.

109. Djaber, N.; Ounaceur, L.S.; Moubine, B.N.; Khaldi, T.; Rouag, M.; Berrouague, S.; Amara, H.; Taibi, F.; Boumendjal, M.; Boumendjal, A.; et al. Roundup-Induced Biochemical and Histopathological Changes in the Liver and Kidney of Rats: The Ameliorative Effects of Linum Usitatissimum Oil. *Acta Biochim. Polon.* **2020**, *67*, 53.

110. Dhikil, M.A.; Bauomy, A.A.; Diab, M.S.M.; Al-Quraishy, S. The Antioxidant Effect of Morus Alba Leaves Extract on Kidney, Testes, Spleen and Intestine of Mice. *Pak. J. Zool.* **2015**, *47*, 393–397.

111. Gurukar, M.S.A.; Nandini, C.D.; Mahadevamma, S.; Salimath, P. V Ocimum Sanctum and Morus Alba Leaves and Punica Granatum Seeds in Diet Ameliorate Diabetes-Induced Changes in Kidney. *J. Pharm. Res.* **2012**, *5*, 4729–4733.

112. Sartono, N.; Novianto, D.; Ulfa, E.; Susanto, A.B.; Puspitaningrum, R. Crude Extract Mulberry (Morus Alba L.) Leaves Chlorophyll Improves Urine Creatinine Levels and Histology of Diabetic Rat Kidney. *Asian J. Microbiol. Biotechnol. Environ. Sci.* **2015**, *17*, 451–459.
113. Diab, M.S.M.; Bauomy, A.A.; Dkhil, M.A.; Amer, O.S.O.; Al-Quraishy, S. Role of Morus Alba in Ameliorating Schistosoma Mansoni-Induced Renal and Testicular Injury in Mice. *Pak. J. Zool.* 2013, 45, 1367–1375.

114. Abdel-Daim, M.M.; Ghazy, E.W. Effects of Nigella Sativa Oil and Ascorbic Acid against Oxytetracycline-Induced Hepato-Renal Toxicity in Rabbits. *Iran. J. Basic Med. Sci.* 2015, 18, 221–227, doi:10.22038/ijbms.2015.4117.

115. Hosseinzadeh, H.; Montahaei, R. Protective Effect of Nigella Sativa L. Extracts and Thymoquinone, Its Active Constituent, on Renal Ischemia-Reperfusion-Induced Oxidative Damage in Rats. *Pharm. Online* 2007, 1, 176–189.

116. Salama, R.H.M.; Abd-El-Hameed, N.A.-M.; Abd-El-Ghaffar, S.K.; Mohammed, Z.T.; Ghandour, N.M.A. Nephroprotective Effect of Nigella Sativa and Matricaria Chamomilla in Cisplatin Induced Renal Injury. *Intern. J. Clin. Med.* 2011, 2, 185–195, doi:10.4236/ijcme.2011.23031.

117. Mousavi, G. Study on the Effect of Black Cumin (Nigella Sativa Linn.) on Experimental Renal Ischemia-Reperfusion Injury in Rats. *Acta Cir. Bras.* 2015, 30, 542–550.

118. Busari, A.A.; Adejare, A.A.; Shodipe, A.F.; Oduniyi, O.A.; Ismail-Badmus, K.B.; Oreagba, I.A. Protective but Non-Synergistic Effects of Nigella Sativa and Vitamin E against Cisplatin-Induced Renal Toxicity and Oxidative Stress in Wistar Rats. *Drug Res.* 2018, 68, 696–703, doi:10.1055/a-0626-7003.

119. Zaveri, M.; Desai, N.; Movaliya, V. Effect of Ocimum Basilicum on Cisplatin Models of Acute Renal Failure. *Adv. Res. Pharm.* 2011, 1, 91–100.

120. Almalki, D.A. Renoprotective Effect of Ocimum Basilicum (Basil) Against Diabetes-Induced Renal Affection in Albino Rats. *Mater. Socio Med.* 2019, 31, 236, doi:10.5455/msm.2019.31.236-240.

121. Soliman, A.M.; Rizk, H.A.; Shalaby, M.A.; Elkomy, A.A. Mechanisms of Hepato-Renal Protective Activity of Oci mum Basilicum Leaf Extract against Paracetamol Toxicity in Rat Model. *Adv. Anim. Vet. Sci.* 2020, 8, 385–391.

122. Khaki, A.A.; Azad, F.F.; Khaki, A. Treatment Effects of Ocimum Basilicum on Kidney Cells Apoptosis Produced by Exposure to Electromagnetic Field (EMF) in Rats. *Adv. Environ. Biol.* 2011, 5, 2019–2023.

123. Ivanov, M.; Vajic, U.; Mijailovic-Stanojevic, N.; Miloradovic, Z.; Jovovic, D.; Grujic-Milancovic, J.; Karonovic, D.; Dekanski, D. Highly Potent Antioxidant Olea Europaea L. Leaf Extract Affects Carotid and Renal Haemodynamics in Experimental Hypertension: The Role of Olearpexin. *EXCLI J.* 2018, 17, 29–44, doi:10.17179/excli2017-1002.

124. Elamrani, A. The Antitumoral Activity and the Cytotoxicity on Renal Cells of Ethanolic Extracts from the Leaves of Four Varieties of Olea Europaea L. Grown in Morocco. *Anal. Chem. Lett.* 2015, 7928, 63–69, doi:10.1080/22297928.2011.10648205.

125. Senturk, H.; Yildiz, F. Protective Effects of Olea Europaea (Olive) Leaf Extract against Oxidative Stress Injury Generated with Renal Ischemia Reperfusion. *J. Anim. Plant Sci.* 2018, 28, 1027–1033.

126. Alhaithloul, H.A.S.; Alo taibi, M.F.; Bin-jumah, M; Elgebaly, H.; Mahmoud, A.M. Olea Europaea Leaf Extract Up-Regulates Nrf2/ARE/FOXO1 Signaling and Attenuates Cyclophosphamide-Induced Oxidative Stress, in FL Anma- toplasia and Apoptosis in Rat Kidney. *Biomed. Pharmacother.* 2019, 111, 667–685, doi:10.1016/j.biopha.2018.12.112.

127. ElMougy, S.A.; Al-Qarawi, A.A.; Bazaid, S.A. The Effect of an Aqueous Extract of Olive (Olea Europaea) Leaves on the Adrenal-Kidney-Pituitary Axis in Rats. *J. Herbs Spices Med. Plants* 2015, 15, 37–41, doi:10.1080/10496470903507932.

128. Bakour, M.; Al-Waili, N.; El-Haskoury, R.; El-Menyiy, N.; Al-Waili, T.; AL-Waili, A.; Lyoussi, B. Comparison of Hypotensive, Diuretic and Renal Effects between Cladodes of Opuntia Ficus-Indica and Furosemide. *Asian Pac. J. Trop. Med.* 2017, 10, 900–906, doi:10.1016/j.apjtm.2017.08.016.

129. Mbarkaa, H.; Dalem, B.; Nizar, Z.M.; Lazhar, Z. Phytochemical Analysis and Nephroprotective Effect of Cactus (Opuntia Ficus-Indica) Cladodes on Sodium Dichromate-Induced Kidney Injury in Rats. *Appl. Physiol. Nutr. Metabol.* 2018, 44, 3–34.

130. Alimi, H.; Bouoni, Z.; Feriani, A.; Hfaiedh, N.; Sakly, M.; Rhouma, K. Ben Opuntia Ficus Indica f. Inermis Fruit Juice Alleviates Ethanol-Induced Kidney Injury in Rats. *Asiin J. Biomed. Pharm. Sci.* 2017, 4, 116–123.

131. Hashem, M.A.; Ismail, H.T.H.; Hassan, E.H.M. Protective Effect of Angelica Sinensis Extract and Origanum Majorana Oil on Hepatic and Renal Toxicities Induced by Nickel Chloride in Male Albino Rats. *J. Zagazig Vet.* 2019, 47, 306–316, doi:10.21608/zvzj.2019.13886.1050.

132. Nielsen, S.E.; Young, J.F.; Daneshvar, B.; Lauridsen, S.T.; Knuthsen, P.; Sandstrom, B.; Dragsted, L.O. Effect of Parsley (Petroselinum Crispum) Intake on Urinary Apigenin Excretion, Blood Antioxidant Enzymes and Biomarkers for Oxidative Stress in Human Subjects. *Br. J. Nutr.* 1999, 81, 447–455.

133. Roshankhah, S.; Jalili, C.; Salahshoor, M.R. Protective Effects of Petroselinum Crispum on Ischemia/Reperfusion—Induced Acute Kidney Injury in Rats. *Physiol. Pharmacol.* 2019, 23, 129–139.

134. Jassim, A.M. Protective Effect of Petroselinum Crispum (Parsley) Extract on Histopathological Changes in Liver, Kidney and Pancreas Induced by Sodium Valproate—In Male Rats. *Kufa J. Vet. Med. Sci.* 2013, 81, 20–27.
135. Yousif, H.A.; Al-zubaidi, F.S.; Yousif, W.H. Study of the Interaction Effect Between Parsley Petroselinum Crispum and Cadmium on Lipid Profile, Lipid Peroxidation and Catalase Activity of Albino Mice Males' Liver and Kidney. *Iraqi J. Sci.* 2014, 55, 711–721.
136. Rahmat, A.; Ahmad, N.S.S.; Ramli, N.S. Parsley (Petroselinum Crispum) Supplementation Attenuates Serum Uric Acid Level and Improves Liver and Kidney Structures in Oxonate-Induced Hyperuricemic Rats. *Orient. Pharm. Exp. Med.* 2019, 19, 393–401, doi:10.1007/s13596-018-0353-7.
137. El Haliem, N.G.A.; Mohamed, D.S. The Effect of Aspartame on the Histological Structure of the Liver and Renal Cortex of Adult Male Albino Rat and the Possible Protective Effect of Pimpinella Anisum Oil. *Egypt. J. Histol.* 2011, 34, 715–726, doi:10.1007/s10009.01.eh.2004.06589.05585.8d.
138. Djerrouz, Z.; Hamdi-Pacha, Y.; Belkhiri, A.M.; Djallelab, H.; Riachi, F.; Serakta, M.; Boukeloua, A.; Maameri, Z. Evaluation of Pistacia Lentiscus Fatty Oil Effects on Glycemic Index, Liver Functions and Kidney Functions of New Zealand Rabbits. *Afr. J. Tradit. Complement. Altern. Med.* 2011, 8, 214–219, doi:10.4314/ajtcam.v8i5S.27.
139. Moneim, A.E.A.; Dkhil, M.A.; Al-Quraisha, S. Studies on the Effect of Pomegranate (Punica Granatum) Juice and Peel on Liver and Kidney in Adult Male Rats. *J. Med. Plant Res.* 2011, 5, 5083–5088.
140. Aksu, D.S.; Sağlam, Y.S.; Yildirim, S.; Aksu, T. Effect of Pomegranate (Punica Granatum L.) Juice on Kidney, Liver, Heart and Testis Histopathological Changes, and the Tissues Lipid Peroxidation and Antioxidant Status in Lead Acetate-Treated Rats. *Cell. Mol. Biol.* 2017, 6, 33–43, doi:10.1051/cmb/2017.63.10.5.
141. Asmaa, F.H.; Shaban, N.Z. Short and Long Term Efficacy of Pomegranate (Punica Granatum) Extracts on Apoptosis in Rat Kidney Induced by Diethylnitrosamine and Phenobarbital. *J. Pharm. Pharmacol.* 2016, 4, 52–63, doi:10.17265/2328-2150/2016.02.002.
142. Ali, H.; Shadab, A.B.; Qamar, K. Ameliorative Effect of Punica Granatum on Steroid Induced Proximal and Distal Tubular Dilatation in Mice Kidney. *Pak. Armed Forces Med. J.* 2018, 68, 333–38.
143. Singh, A.P.; Singh, A.J.; Singh, N. Pharmacological Investigations of Punica Granatum in Glycerol-Induced Acute Renal Failure in Rats. *Indian J. Pharmacol.* 2011, 43, 551–556, doi:10.4103/0253-7613.84971.
144. Ashtiyani, S.C.; Najafi, H.; Jalalvandi, S.; Hosseinei, F. Protective Effects of Rosa Canina L Fruit Extracts on Renal Disturbances Induced by Reperfusion Injury in Rats. *Iran. J. Kidney Dis.* 2013, 7, 290–298.
145. Almakhatreh, M.; Hafez, E.; Tousson, E.; Masoud, A. Biochemical and Molecular Studies on the Role of Rosemary (Rosmarinus Officinalis) Extract in Reducing Liver and Kidney Toxicity Due to Etoilepside in Male Rats. *Asian J. Res. Pharm. Sci.* 2019, 7, 1–11, doi:10.9734/ajrmps/v7i30126.
146. Qadori, Y.T.; Rashid, K.I.; Madhloom, I.I.; Al-Shaikh, M.N. Histological Study for the Biological Effect of Rosemary Rosmarinus Officinalis L Essential Oil on Liver and Kidney Tissues. *J. Biotechnol. Res. Cent.* 2013, 7, 48–53.
147. Al-badry, F.A.M. Effect of Aqueous Extract of Rosmarinus Officinalis on Kidney and Liver of Male Rats Experimentally Infected With Diabetic. *J. Coll. Educ. Pure Sci.* 2017, 7, 171–186.
148. Al-Ani, B.T.; Al Saadi, R.R.; Reshan, R.G. Investigating Effects of Salvia Officinalis (Sage) on Development of Mouse Embryos Kidney and Some Hormonal Effect of Treated Mothers. *Indian J. Forensic Med. Toxicol.* 2020, 14, 649–654, doi:10.37506/v14/n12/2020/iijftm.192975.
149. Koubaa-Ghorbel, F.; Chaâbane, M.; Turki, M.; Makni-Ayadi, F.; El Feki, A. The Protective Effects of Salvia Officinalis Essential Oil Compared to Simvastatin against Hyperlipidemia, Liver, and Kidney Injuries in Mice Submitted to a High-Fat Diet. *J. Food Biochem.* 2020, 44, 1–14, doi:10.1111/jfb.13160.
150. Ashour, M.B.; Ahmed, O.M.; Asran, A.E.M.A.; Ali, M.A. Assessment of the Preventive Effects of Salvia Officinalis and Ruta Graveolens Ethanolic Leaf Extracts on Chlorpyrifos- and Methomyl-Induced Renal Toxicity and Oxidative Stress in Albino Rats. *Intern. J. Prev. Treat.* 2017, 6, 34–44, doi:10.5923/j.ijipt.20170602.03.
151. Fahmy, M.A.; Diab, K.A.; Abdel-Samie, N.S.; Omara, E.A.; Hassan, Z.M. Carbon Tetrachloride Induced Hepato/ Renal Toxicity in Experimental Mice: Antioxidant Potential of Egyptian Salvia Officinalis L Essential Oil. *Environ. Sci. Pollut. Res.* 2018, 25, 27858–27876, doi:10.1007/s11356-018-2820-6.
152. Elkomy, A.; Aboubakr, M.; Ibrahim, S.; Abdelhamid, Y. Protective Effects of Syzygium Aromaticum Oil (Clove) against Acrylamide Induced Hepatic, Renal, and Testicular Toxicity in Rats. *Intern. J. Pharmacol. Toxicol.* 2018, 6, 12, doi:10.14419/ijpt.v6i10.19972.
153. Xue, W.; Lei, J.; Li, X.; Zhang, R. Trigonella Foenum Graecum Seed Extract Protects Kidney Function and Morphology in Diabetic Rats via Its Antioxidant Activity. *Nutr. Res.* 2011, 31, 555–562, doi:10.1016/j.nutres.2011.05.010.
154. Mbariki, S.; Alimi, H.; Bouzenna, H.; Elfeki, A.; Hfaiedh, N. Phytochemical Study and Protective Effect of Trigonella Foenum Graecum (Penugreek Seeds) against Carbon Tetrachloride-Induced Toxicity in Liver and Kidney of Male Rat. *Biomed. Pharmacother.* 2017, 88, 19–26, doi:10.1016/j.biopha.2016.12.078.
155. Shekha, M.S.; Qadir, A.B.; Ali, H.H.; Selim, X.E. Effect of Fenugreek (Trigonella Foenum-Graecum) on Ethylene Glycol Induced Kidney Stone in Rats. *Jordan J. Biol. Sci.* 2014, 7, 257–260.

156. El-Tawil, G.A. Effect of Fenugreek (Trigonella Foenum-Graecum) Supplementation on Radiation-Induced Oxidative Stress in Liver and Kidney of Rats. *J. Radiat. Res. Appl. Sci.* 2009, 2, 19–30.

157. Khanaki, K.; Abedinzade, M.; Hamidi, M. The Effects of Urtica Dioica and Lamium Album Extracts on the Expression Level of Cyclooxygenase-2 and Caspase-3 in the Liver and Kidney of Streptozotocin-Induced Diabetic Rats. *Pharm. Sci.* 2019, 25, 37–43, doi:10.15171/PS.2019.6.

158. Hajihashemi, S.; Ahmadi, M.; Chehrei, A.; Ghanbari, F. Ameliorative Effect of Cotreatment with the Methanol-icelalextract of Urtica Dioica on Acute Kidney Injury Induced by Gentamicin in Rats. *Avicenna J. Phytomed.* 2020, 10, 273–286.

159. Güneş, H.V.; Değiirmenci, İ.; Aydin, M.; Bozan, B.; Aral, E.; Tunaliier, Z.; Üstüner, C.; Erçakir, M.; Başer, K.H.C.; Başaran, A. The Effects of Rumex Patientia L. and Urtica Dioica L. on Some Blood and Urine Parameters, and Liver and Kidney Histology in Diabetic Rats. *Turk. J. Med. Sci.* 1999, 29, 227–232.

160. Ahmed, A.H.; Alabbasy, R.H.; Khaleel, Z.I. The Protective Role of Aqueous Extract of Grape Seeds Vitis Vinifera in Some Biochemical Parameters and Histological Changes in Methionine for Liver, Kidney and Heart in Mice (Mus Musculus); Baghdad, Iraq. 2020; p. 020304.

161. Grases, F.; March, J.G.; Ramis, M.; Costa-Bauzá, A. The Influence of Zea Mays on Urinary Risk Factors for Kidney Stones in Rats. *Phytother. Res.* 1993, 7, 146–149, doi:10.1002/ptr.2650070210.

162. Sukandar, E.Y.; Sigit, J.I.; Adiwibowo, L.F. Study of Kidney Repair Mechanisms of Corn Silk (Zea Mays L. Hair)-Binhahong (Anredera Cordifolia (Ten.) Steenis) Leaves Combination in Rat Model of Kidney Failure. *Intern. J. Pharmacol.* 2013, 9, 12–23, doi:10.3923/ijp.2013.12.23.

163. Pardeed, T.R.; Bachr, M. Analysis on Calcium Solubility in Kidney Stones (In Vitro) and Diuretic Effect (in Vivo) Using Corn Silk (Zea Mays L.) Infuse. *Asian J. Pharm. Clin. Res.* 2018, 11, 80–83, doi:10.22159/ajpcr.2018.v11s1.26573.

164. Al Shammar, A.M.N. Protective Effect of Ginger (Zingiber Officinale) Consumption Against Kidney Damage in Rats. *Life Sci. J.* 2018, 15, 80–85, doi:10.7537/marslsj150118.14.

165. Abdulhameed, I.S.; Al-Mohamadamin, D.F.H.; Abed, A.B.; Abid, W.B. The Effect of Ginger Plant (Zingiber Officinale) Aqueous Extract on Function The Effect of Ginger Plant (Zingiber Officinale) Aqueous Extract on Function and Histological Structure of Kidney in Mice Treated with Carbon Tetrachloride. *Intern. J. Chem. Tech. Res.* 2017, 10, 208–219.

166. Johari, H.; Delirnasab, F.; Sharifi, E.; Hemayat-Khah, V.; Pourdanesh, M.; Kargar, H.; Nikpour, M.; Yazdani, M. The Effects of Hydro-Alcoholic Extract of Zingiber Officinale on Prevention from Plumbism in Kidney Tissue of Neonatal Rats. *Zahedan J. Res. Med. Sci.* 2012, 15, 13–17.

167. Ajith, T.A.; Nivitha, V.; Usha, S. Zingiber Officinale Roscoe Alone and in Combination with α-Tocopherol Protect the Kidney against Cisplatin-Induced Acute Renal Failure. *Food Chem. Toxicol.* 2007, 45, 921–927, doi:10.1016/j.fct.2006.11.014.

168. Abd El Hamid, A.A. Effects of Zingiber Officinale and Ambrosia Maritima on Some Physiological Parameters and Kidney Structure in Rats. *J. Anim. Poult. Prod.* 2019, 10, 351–355, doi:10.21608/jappmu.2019.67871.

169. Joshi, D.; Kumar, S.; Belemkar, S.; Dixit, V.A. Zingiber of Fi Cinale and 6-Gingerol Alleviate Liver and Kidney Dysfunctions and Oxidative Stress Induced by Mercuric Chloride in Male Rats: A Protective Approach. *Biomed. Pharmacother.* 2017, 91, 645–655, doi:10.1016/j.biopha.2017.04.108.

170. Mohammad, S.I.; Abdulqader, I.A.M.; Shang, Z.A. Ameliorative Effect of the Aqueous Extract of Zingiber Officinale on the Cadmium-Induced Kidney and Liver Injury in Female Rats. *Jordan J. Biol. Sci.* 2013, 6, 231–234.

171. Peeters, L.; Van der Auwera, A.; Beimaert, C.; Bijjtebier, S.; Laukens, K.; Pieters, L.; Hermans, N.; Foubert, K. Compound Characterization and Metabolomic Profile Elucidation after In Vitro Gastrointestinal and Hepatic Biotransformation of an Herniaria Hirsuta Extract Using Unbiased Dynamic Metabolomic Data Analysis. *Metabolites* 2020, 10, 111, doi:10.3390/metabo10030111.

172. Ammor, K.; Bousta, D.; Jennan, S.; Bennani, B.; Chaqroune, A.; Mahjoubi, F. Phytochemical Screening, Polyphenols Content, Antioxidant Power, and Antibacterial Activity of Herniaria Hirsuta from Morocco. *Sci. World J.* 2018, 2018, 1–7, doi:10.1155/2018/7470384.

173. Uddin, G.; Ali, J.; Feroz, S. Antimicrobial, Antioxidant and Phytochemical Analysis of Herniaria Hirsuta. *Univ. Swabi J.* 2017, 1, 84–93.

174. Van Dooren, L.; Foubert, K.; Bijjtebier, S.; Theunis, M.; Velichkova, S.; Claeyys, M.; Pieters, L.; Exarchou, V.; Apers, S. Saponins and Flavonoids from an Infusion of Herniaria Hirsuta. *Planta Med.* 2016, 82, 1576–1583.
175. Sharma, P.; Tyagi, A.; Bhansali, P.; Pareek, S.; Singh, V.; Ilyas, A.; Mishra, R.; Poddar, N.K. Saponins: Extraction, Bio-Medical Properties and Way Forward to Anti-Viral Representatives. Food Chem. Toxicol. 2021, 150, 112075, doi:10.1016/j.fct.2021.112075.

176. Cibulski, S.; Teixeira, T.F.; Varela, A.P.M.; de Lima, M.F.; Casanova, G.; Nascimento, Y.M.; Fechine Tavares, J.; da Silva, M.S.; Sesterhein, P.; Souza, D.O.; et al. IMXQB-80: A Quillaja Brasiliensis Saponin-Based Nanoadjuvant Enhances Zika Virus Specific Immune Responses in Mice. Vaccine 2021, 39, 571–579, doi:10.1016/j.vaccine.2020.12.004.

177. Navarro Del Hierro, J.; Casado-Hidalgo, G.; Reglero, G.; Martin, D. The Hydrolysis of Saponin-Rich Extracts from Fenugreek and Quinoa Improves Their Pancreatic Lipase Inhibitory Activity and Hypocholesterolemic Effect. Food Chem. 2021, 338, 128113, doi:10.1016/j.foodchem.2020.128113.

178. Mechchate, H.; Es-safi, I.; Mohamed Al kamaly, O.; Boust, D. Insight into Gentisic Acid Antidiabetic Potential Using In Vitro and In Silico Approaches. Molecules 2021, 26, 1932, doi:10.3390/molecules26071932.

179. Amaghrouje, A.; Mechchate, H.; Es-Safi, I.; Boukhira, S.; S Aliqahtani, A.; Noman, M.O.; Nasr, A.F.; Conte, R.; Calarco, A.; Boust, D. Subacute Assessment of the Toxicity and Antidepressant-Like Effects of Origanum Majornana L. Polyphenols in Swiss Albino Mice. Molecules 2020, 25, 5653.

180. Kooti, W.; Daraei, N. A Review of the Antioxidant Activity of Celery (Apium Graveolens L). J. Evid. Based Complement. Altern. Med. 2017, 22, 1029–1034.

181. Kooti, W.; Ali-Akbari, S.; Asadi-Samani, M.; Ghadery, H.; Ashtary-Larky, D. A Review on Medicinal Plant of Apium Graveolens. Adv. Herb. Med. 2015, 1, 48–59.

182. Masic, D.; Tadic, V.; Korzeniowska, M.; Nisavic, J.; Aksentijevic, K.; Kuzmanovic, J.; Zizovic, I. Supercritical Fluid Extraction of Celery and Parsley Fruit-Chemical Composition and Antibacterial Activity. Molecules 2020, 25, 3163, doi:10.3390/molecules25143163.

183. Khalid, K.A.; Hussein, M.S. Effect of Cattle and Liquid Manures on Essential Oil and Antioxidant Activities of Celery (Apium Graveolens L.) Fruits. J. Essential Oil Bear. Plants 2012, 15, 97–107, doi:10.1080/0972060X.2012.10644025.

184. Agyare, C.; Appiah, T.; Boakye, Y.D.; Apenteng, J.A. Petroselinum Crispum: A Review. Med. Spices Veg. Afr. 2017, 527–547, doi:10.1016/B978-0-12-809286-6.00025-X.

185. Yamani, A.; Bunel, V.; Antoine, M.H.; Hussun, C.; Stévigny, C.; Duez, P.; Elachouri, M.; Nortier, J. Substitution between Aristolochia and Bryonia Genus in North-Eastern Morocco: Toxicological Implications. J. Ethnopharmacol. 2015, 166, 250–260, doi:10.1016/j.jep.2015.03.036.

186. Kharchoufa, L.; Merrouni, I.A.; Yamani, A.; Elachouri, M. Profile on Medicinal Plants Used by the People of North Eastern Morocco: Toxicity Concerns. Toxicon 2018, 154, 90–113, doi:10.1016/j.toxicon.2018.09.003.

187. Lakmichi, H.; Bakhtaoui, F.Z.; Gadhi, C.A.; Ezoubeiri, A.; Jahiri, Y.E.; Mansouri, A.E.; Zrara, I.; Loutfi, K. Toxicity Profile of the Aqueous Ethanol Root Extract of Corrigiola Telephiifolia Pourr. (Caryophyllacée) in Rodents. 2011, 2011, 2–10, doi:10.1155/2011/317090.

188. Bozuk, H.; Ozdogan, M.; Akyurt, O.; Topçuoglu, F.; Öztürk, H.; Ekinç, D.; Karadeniz, A.; Mutlu, A.; Burgucu, D. Urginea Maritii-Ma (L.) Baker (Liliaceae) Extract Induces More Cytotoxicitythan Standard Chemotherapeutics in the A549 Non-Smallcell Lung Cancer (NSCLC) Cell Line. Turk. J. Med. Sci. 2011, 41, 101–108.

189. Merghoub, N.; Benbacer, L.; Amzazi, S.; Morjani, H.; Mohamed, E.M. Cytotoxic Effect of Some Moroccan Medicinal Plantextracts on Human Cervical Cell Lines. J. Med. Plants 2009, 12, 1045–1050.

190. Bellakhdar, J.; Claiss, R.; Fleurentin, J.; Younus, C. Repertory of Standard Herbal Drugs in the Moroccan Pharmacopea. J. Ethnopharmacol. 1991, 35, 123–143, doi:10.1016/0378-8741(91)90064-K.

191. Jahandiez, E.; Maire, R. Catalogue Des Plantes Du Maroc; Minerva, Alger et Lechevalier: Paris, France, 1931; Volume 1.

192. Jahandiez, E.; Maire, R. Catalogue Des Plantes Du Maroc; Minerva, Alger et Lechevalier: Paris, France, 1932; Volume 2.

193. Jahandiez, E.; Maire, R. Catalogue Des Plantes Du Maroc; Minerva, Alger et Lechevalier: Paris, France, 1934; Volume 3.

194. Fennane, M.; Ibn Tattou, M.; Mathez, J.; Ouyahya, A.; El Oualidi, J. Flore Pratique Du Maroc: Pteridophyta, Gymnospermae, Angiospermae (LauraeaeNeuradaceae): Manuel de Démétermination Des Plantes Vasculaires, Série Botanique N°36; Travaux de l’Institut Scientifique: Rabat, Morocco; 1999; Volume 1.

195. Fennane, M.; Ibn Tattou, M.; Ouyahya, A.; El Oualidi, J. Flore Pratique Du Maroc: Angiospermae (Leguminosae—Lentibulariaeae): Manuel de Démétermination Des Plantes Vasculaires, Série Botanique N°38. Travaux de l’Institut Scientifique: Rabat, Morocco, 2007; Volume 2.
196. Fennane, M.; Ibn Tattou, M.; Ouyahya, A.; El Oualidi, J. *Flore Pratique Du Maroc: Dicotyledones (P.P), Monocotyledones: Manuel de Détermination Des Plantes Vasculaires, Série Botanique N°40*; Travaux de l’Institut Scientifique: Rabat, Morocco, 2014; Volume 3.

197. A.P.G. III. An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG III. *Bot. J. Linn. Soc.* 2009, 161, 105–121, doi:10.1111/j.1095-8339.2009.00996.x.

198. Tabuti, J.R.S.; Dhillion, S.S.; Lye, K.A. Traditional Medicine in Bulamogi County, Uganda: Its Practitioners, Users and Viability. *J. Ethnopharmacol.* 2003, 85, 119–129, doi:10.1016/S0378-8741(02)00378-1.

199. Hoffman, B.; Gallaher, T. Importance Indices in Ethnobotany. *Ethnobot. Res. Appl.* 2007, 5, 201–218, doi:10.17348/era.5.0.201-218.

200. Kayani, S.; Ahmad, M.; Sultana, S.; Khan Shinwari, Z.; Zafar, M.; Yaseen, G.; Hussain, M.; Bibi, T. Ethnobotany of Medicinal Plants among the Communities of Alpine and Sub-Alpine Regions of Pakistan. *J. Ethnopharmacol.* 2015, 164, 186–202, doi:10.1016/j.jep.2015.02.004.