Citation for published version (APA):
Hauseux, J. (2018). On the exactness of ordinary parts over a local field of characteristic p. Pacific Journal of Mathematics, 295(1), 17-30. https://doi.org/10.2140/pjm.2018.295.17
ON THE EXACTNESS OF ORDINARY PARTS OVER A LOCAL FIELD OF CHARACTERISTIC \(p \)

JULIEN HAUSEUX

Abstract. Let \(G \) be a connected reductive group over a non-archimedean local field \(F \) of residue characteristic \(p \). \(P \) be a parabolic subgroup of \(G \), and \(R \) be a commutative ring. When \(R \) is artinian, \(p \) is nilpotent in \(R \), and \(\text{char}(F) = p \), we prove that the ordinary part functor \(\text{Ord}_P \) is exact on the category of admissible smooth \(R \)-representations of \(G \). We derive some results on Yoneda extensions between admissible smooth \(R \)-representations of \(G \).

1. Results

Let \(F \) be a non-archimedean local field of residue characteristic \(p \). Let \(G \) be a connected reductive algebraic \(F \)-group and \(G \) denote the topological group \(G(F) \). We let \(P = MN \) be a parabolic subgroup of \(G \). We write \(P = MN \) for the opposite parabolic subgroup.

Let \(R \) be a commutative ring. We write \(\text{Mod}^\infty_R(G) \) for the category of smooth \(R \)-representations of \(G \) (i.e. \(R[G] \)-modules \(\pi \) such that for all \(v \in \pi \) the stabiliser of \(v \) is open in \(G \) and \(R[G] \)-linear maps). It is an \(R \)-linear abelian category. When \(R \) is noetherian, we write \(\text{Mod}^{\text{adm}}_R(G) \) for the full subcategory of \(\text{Mod}^\infty_R(G) \) consisting of admissible representations (i.e. those representations \(\pi \) such that \(\pi^H \) is finitely generated over \(R \) for any open subgroup \(H \) of \(G \)). It is closed under passing to subrepresentations and extensions, thus it is an \(R \)-linear exact subcategory, but quotients of admissible representations may not be admissible when \(\text{char}(F) = p \) (see \cite[Example 4.4]{AHV17}).

Recall the smooth parabolic induction functor \(\text{Ind}^G_P : \text{Mod}^\infty_M(G) \rightarrow \text{Mod}^\infty_R(G) \), defined on any smooth \(R \)-representation \(\sigma \) of \(M \) as the \(R \)-module \(\text{Ind}^G_P(\sigma) \) of locally constant functions \(f : G \rightarrow \sigma \) satisfying \(f(m \overline{a}g) = m \cdot f(g) \) for all \(m \in M \), \(\overline{a} \in \overline{N} \), and \(g \in G \), endowed with the smooth action of \(G \) by right translation. It is \(R \)-linear, exact, and commutes with small direct sums. In the other direction, there is the ordinary part functor \(\text{Ord}_P : \text{Mod}^\infty_R(G) \rightarrow \text{Mod}^\infty_M(G) \) \(\left(\text{Eme10a} \right. \left. \text{Vig16} \right) \). It is \(R \)-linear and left exact. When \(R \) is noetherian, \(\text{Ord}_P \) also commutes with small inductive limits, both functors respect admissibility, and the restriction of \(\text{Ord}_P \) to \(\text{Mod}^{\text{adm}}_R(G) \) is right adjoint to the restriction of \(\text{Ind}^G_P \) to \(\text{Mod}^{\text{adm}}_M(G) \).

Theorem 1. If \(R \) is artinian, \(p \) is nilpotent in \(R \), and \(\text{char}(F) = p \), then \(\text{Ord}_P \) is exact on \(\text{Mod}^{\text{adm}}_R(G) \).

Thus the situation is very different from the case \(\text{char}(F) = 0 \) (see \cite{Eme10b}). On the other hand if \(R \) is artinian and \(p \) is invertible in \(R \), then \(\text{Ord}_P \) is isomorphic on \(\text{Mod}^{\text{adm}}_R(G) \) to the Jacquet functor with respect to \(P \) (i.e. the \(N \)-coinvariants) twisted by the inverse of the modulus character \(\delta_P \) of \(P \) \(\left(\text{AHV17} \right. \left. \text{Corollary 4.19} \right) \), so that it is exact on \(\text{Mod}^{\text{adm}}_R(G) \) without any assumption on \(\text{char}(F) \).

2010 Mathematics Subject Classification. 22E50.

Key words and phrases. Local fields, reductive groups, admissible smooth representations, parabolic induction, ordinary parts, extensions.

This research was partly supported by EPSRC grant EP/L02302/1.
Remark. Without any assumption on R, $\text{Ind}_P^G : \text{Mod}_{\text{adm}}^G(R) \to \text{Mod}_{\text{adm}}^G(R)$ admits a left adjoint $L_P^G : \text{Mod}_{\text{adm}}^G(R) \to \text{Mod}_{\text{adm}}^G(R)$ (the Jacquet functor with respect to P) and a right adjoint $R_P^G : \text{Mod}_{\text{adm}}^G(R) \to \text{Mod}_{\text{adm}}^G(R)$ (see [NSW08, § I.5]). If R is noetherian and p is nilpotent in R, then R_P^G is isomorphic to Ord_P on $\text{Mod}_{\text{adm}}^G(R)$ ([AHV17 Corollary 4.13]). Thus under the assumptions of Theorem 1, R_P^G is exact on $\text{Mod}_{\text{adm}}^G(R)$. On the other hand if R is noetherian and p is invertible in R, then R_P^G is expected to be isomorphic to $\delta\rho L_P^G$ (‘second adjointness’), and this is proved in the following cases: when R is the field of complex numbers ([Ber07]) or an algebraically closed field of characteristic $\ell \neq p$ ([Vig96 II.3.8 2]); when G is a Levi subgroup of a general linear group or a classical group with $p \neq 2$ ([Dat09 Théorème 1.5]); when P is a minimal parabolic subgroup of G (see also [Dat09]). In particular, L_P^G and R_P^G are exact in all these cases.

Question. Are L_P^G and R_P^G exact when R is noetherian, p is nilpotent in R, and $\text{char}(R) = p$?

We derive from Theorem 1 some results on Yoneda extensions between admissible R-representations of G. We compute the R-modules Ext_G^n in $\text{Mod}_{\text{adm}}^G(R)$.

Corollary 2. Assume R artinian, p nilpotent in R, and $\text{char}(R) = p$. Let σ and π be admissible R-representations of M and G respectively. For all $n \geq 0$, there is a natural R-linear isomorphism

$$\text{Ext}_G^n(\sigma, \text{Ord}_P(\pi)) \overset{\sim}{\rightarrow} \text{Ext}_G^n(\text{Ind}_P^G(\sigma), \pi).$$

This is in contrast with the case $\text{char}(R) = 0$ (see [Han10b]). A direct consequence of Corollary 2 is that under the same assumptions, Ind_P^G induces an isomorphism between the Ext^n for all $n \geq 0$ (Corollary 3). When $R = \mathbb{C}$ is an algebraically closed field of characteristic p and $\text{char}(R) = p$, we determine the extensions between certain irreducible admissible C-representations of G using the classification of [AHV17] (Proposition 6). In particular, we prove that there exists no non-split extension of an irreducible admissible C-representation π of G by a supersingular C-representation of G when π is not the extension to G of a supersingular representation of a Levi subgroup of G (Corollary 4). When $G = \text{GL}_2$, this was first proved by Hu ([Hu17 Theorem A.2]).

Acknowledgements. The author would like to thank F. Herzig and M.-F. Vignéras for several comments on the first version of this paper.

2. Proofs

2.1. Hecke action. In this subsection, M denotes a linear algebraic F-group and N denotes a split unipotent algebraic F-group (see [CGP15 Appendix B]) endowed with an action of M that we identify with the conjugation in $M \rtimes N$. We fix an open submonoid M^+ of M and a compact open subgroup N_0 of N stable under conjugation by M^+.

If π is a smooth R-representation of $M^+ \rtimes N_0$, then the R-modules $H^\bullet(N_0, \pi)$, computed using the homogeneous cochain complex $C^\bullet(N_0, \pi)$ (see [NSW08 § I.2]), are naturally endowed with the Hecke action of M^+, defined as the composite

$$H^\bullet(N_0, \pi) \overset{m}{\rightarrow} H^\bullet(mN_0m^{-1}, \pi) \overset{\text{cont}}{\rightarrow} H^\bullet(N_0, \pi)$$

for all $m \in M^+$. At the level of cochains, this action is explicitly given as follows (see [NSW08 § I.5]). We fix a set of representatives $\bar{N}/mN_0m^{-1} \subseteq N_0$ of the left cosets N_0/mN_0m^{-1} and we write $n \mapsto \bar{n}$ for the projection $N_0 \rightarrow \bar{N}/mN_0m^{-1}$.

For $\phi \in C^k(N_0, \pi)$, we have

\[(m \cdot \phi)(n_0, \ldots, n_k) = \sum_{\tilde{n} \in N_0/mN_0m^{-1}} \tilde{n}m \cdot \phi(m^{-1}\tilde{n}^{-1}n_0\tilde{n}^{-1}m, \ldots, m^{-1}\tilde{n}^{-1}n_k\tilde{n}^{-1}m)\]

for all $(n_0, \ldots, n_k) \in N_0^{k+1}$.

Lemma 3. Assume p nilpotent in R and $\text{char}(F) = p$. Let π be a smooth R-representation of $M^+ \ltimes N_0$ and $m \in M^+$. If the Hecke action $h_{N_0,m}$ of m on π^{N_0} is locally nilpotent (i.e. for all $v \in \pi^{N_0}$ there exists $r \geq 0$ such that $h_{N_0,m}^r(v) = 0$), then the Hecke action of m on $H^k(N_0, \pi)$ is locally nilpotent for all $k \geq 0$.

Proof. First, we prove the lemma when $pR = 0$, i.e. R is a commutative \mathbb{F}_p-algebra. We assume that the Hecke action of m on π^{N_0} is locally nilpotent and we prove the result together with the following fact: there exists a set of representatives $\overline{N_0/mN_0m^{-1}} \subseteq N_0$ of the left cosets N_0/mN_0m^{-1} such that the action of $S := \sum_{\tilde{n} \in \overline{N_0/mN_0m^{-1}}} \tilde{n}m \in \mathbb{F}_p[M^+ \ltimes N_0]$ on π is locally nilpotent.

We proceed by induction on the dimension of N (recall that N is split so that it is smooth and connected). If $N = 1$, then the (Hecke) action of m on $\pi^{N_0} = \pi$ is locally nilpotent by assumption, so that the result and the fact are trivially true. Assume $N \neq 1$ and that the result and the fact are true for groups of smaller dimension. Since N is split, it admits a non-trivial central subgroup isomorphic to the additive group. We let $N' \subseteq N$ be the subgroup of N generated by all such subgroups. It is a non-trivial vector group (i.e. isomorphic to a direct product of copies of the additive group) which is central (hence normal) in N and stable under conjugation by M (since it is a characteristic subgroup of N). We set $N'' := N/N'$. It is a split unipotent F-group endowed with the induced action of M and $\dim(N'') < \dim(N)$.

Since N' is split, we have $N'' = N/N'$. We write N'_0 and N''_0 for the compact open subgroups $N' \cap N_0$ and N_0/N''_0 of N' and N'' respectively. They are stable under conjugation by M^+. We fix a set-theoretic section $[-] : N''_0 \twoheadrightarrow N_0$.

Since N' is commutative and p-torsion, N''_0 is a compact \mathbb{F}_p-vector space. Thus for any open subgroup N'_0 of N''_0, the short exact sequence of compact \mathbb{F}_p-vector spaces

$$0 \to N'_0 \to N''_0 \to N''_0/N'_0 \to 0$$

splits. Indeed, it admits an \mathbb{F}_p-linear splitting (since \mathbb{F}_p is a field) which is automatically continuous (since N''_0/N'_0 is discrete). In particular with $N''_0/N'_0 = mN''_0m^{-1}$, we may and do fix a section $N''_0/mN''_0m^{-1} \to N'_0$. We write N''_0/mN''_0m^{-1} for its image, so that $N'_0 = N''_0/mN''_0m^{-1} \times mN''_0m^{-1}$, and $n' \mapsto \tilde{n}'$ for the projection $N''_0 \twoheadrightarrow N''_0/mN''_0m^{-1}$. We set

$$S' := \sum_{\tilde{n}' \in \overline{N''_0/mN''_0m^{-1}}} \tilde{n}'m \in \mathbb{F}_p[M^+ \ltimes N''_0].$$

For all $n'_0 \in N'_0$, we have $n'_0 = \tilde{n}'_0(\tilde{n}'^{-1}n'_0)$ with $\tilde{n}'^{-1}n'_0 \in mN''_0m^{-1}$, thus

$$n'_0S' = \sum_{\tilde{n}' \in \overline{N''_0/mN''_0m^{-1}}} (\tilde{n}'\tilde{n}')m(m^{-1}(\tilde{n}'^{-1}n'_0)m) = S'(m^{-1}(\tilde{n}'^{-1}n'_0)m)$$

with $m^{-1}(\tilde{n}'^{-1}n'_0)m \in N'_0$ (in the first equality we use the fact that N'_0 is commutative and in the second one we use the fact that N''_0/mN''_0m^{-1} is a group). Therefore, there is an inclusion $\mathbb{F}_p[N'_0]S' \subseteq S'\mathbb{F}_p[N''_0]$.

The R-module πN_0^\prime, endowed with the induced action of N_0^\prime and the Hecke action of M^+ with respect to N_0^\prime, is a smooth R-representation of $M^+ \rtimes N_0^\prime$ (see the proof of [Hau16a, Lemme 3.2.1] in degree 0). On πN_0^\prime, the Hecke action of m with respect to N_0 coincides with the action of S' by definition. On $(\pi N_0^\prime)N_0^\prime = \pi N_0^\prime$, the Hecke action of m with respect to N_0^\prime coincides with the Hecke action of m with respect to N_0 (see the proof of [Hau16a, Lemme 3.2.2]) which is locally nilpotent by assumption. Thus by the induction hypothesis, there exists a set of representatives $N_0^\prime/mN_0^\prime m^{-1} \subseteq N_0^\prime$ of the left cosets $N_0^\prime/mN_0^\prime m^{-1}$ such that the action of
\[
S := \sum_{\tilde{n}^\prime \in N_0^\prime/mN_0^\prime m^{-1}} [\tilde{n}^\prime]S' \in F_p[M^+ \rtimes N_0]
\]
on πN_0^\prime is locally nilpotent. Moreover, there is an inclusion $F_p[N_0]S \subseteq S F_p[N_0]$ (because N_0^\prime is central in N_0 and $F_p[N_0]S' \subseteq S' F_p[N_0]$).

We prove the fact. By [Hau16c, Lemme 2.1],
\[
N_0^\prime/mN_0^\prime m^{-1} := \{[\tilde{n}^\prime] \cdot \tilde{n}' : \tilde{n}^\prime \in N_0^\prime/mN_0^\prime m^{-1}, \tilde{n}' \in N_0/mN_0 m^{-1} \} \subseteq N_0
\]
is a set of representatives of the left cosets $N_0/mN_0 m^{-1}$, and by definition
\[
S = \sum_{\tilde{n} \in N_0/mN_0 m^{-1}} \tilde{n}m.
\]
We prove that the action of S on π is locally nilpotent. We proceed as in the proof of [Hu12, Théorème 5.1 (i)]. Let $v \in \pi$ and set $\pi_r := F_p[N_0] \cdot (S^r \cdot v)$ for all $r \geq 0$. Since $F_p[N_0]S \subseteq S F_p[N_0]$, we have $\pi_{r+1} \subseteq S \cdot \pi_r$ for all $r \geq 0$. Since N_0 is compact, we have $\dim_{F_p}(\pi_r) < \infty$ for all $r \geq 0$. If $S^r \cdot v \neq 0$, i.e. $\pi_r \neq 0$, for some $r \geq 0$, then $\pi_0^\prime \neq 0$ (because N_0^\prime is a pro-p group and π_r is a non-zero F_p-vector space) so that $\dim_{F_p}(S \cdot \pi_r) < \dim_{F_p}(\pi_r)$ (because the action of S on π_0^\prime is locally nilpotent).

Therefore $\pi_r = 0$, i.e. $S^r \cdot v = 0$, for all $r \geq \dim_{F_p}(\pi_0)$. We prove the result. The R-modules $H^\bullet(N_0^\prime, \pi)$, endowed with the induced action of N_0^\prime and the Hecke action of M^+, are smooth R-representations of $M^+ \rtimes N_0^\prime$ (see the proof of [Hau16a, Lemme 3.2.1]). At the level of cochains, the actions of $n^\prime \in N_0^\prime$ and m are explicitly given as follows. For $\phi \in C^i(N_0^\prime, \pi)$, we have
\[
\begin{align*}
(n')^i \cdot \phi(n_0^\prime, \ldots, n_j^\prime) &= [n''^i] \cdot \phi(n_0^\prime, \ldots, n_j^\prime) \\
(m \cdot \phi)(n_0^\prime, \ldots, n_j^\prime) &= S' \cdot \phi(m^{-1} n_0^\prime \tilde{n}^{-1}_0 m, \ldots, m^{-1} n_j^\prime \tilde{n}^{-1}_j m)
\end{align*}
\]
for all $(n_0^\prime, \ldots, n_j^\prime) \in N_0^{j+1}$ (for $\bar{2}$) we use the fact that N_0^\prime is central in N_0, for $\bar{3}$ we use $\bar{1}$ and the fact that $n' \mapsto \tilde{n}'$ is a group homomorphism $N_0^\prime \to N_0/mN_0 m^{-1}$.

Using $\bar{2}$ and $\bar{3}$, we can give explicitly the Hecke action of m on $H^\bullet(N_0^\prime, \pi)^{N_0^\prime}$ at the level of cochains as follows. For $\phi \in C^i(N_0^\prime, \pi)$, we have
\[
(m \cdot \phi)(n_0^\prime, \ldots, n_j^\prime) = S \cdot \phi(m^{-1} n_0^\prime \tilde{n}^{-1}_0 m, \ldots, m^{-1} n_j^\prime \tilde{n}^{-1}_j m)
\]
for all $(n_0^\prime, \ldots, n_j^\prime) \in N_0^{j+1}$. Since the action of S on π is locally nilpotent and the image of a locally constant cochain is finite by compactness of N_0, we deduce that the Hecke action of m on $H^j(N_0^\prime, \pi)^{N_0^\prime}$ is locally nilpotent for all $j \geq 0$. Thus the Hecke action of m on $H^j(N_0^\prime, H^i(N_0^\prime, \pi))$ is locally nilpotent for all $i,j \geq 0$ by the induction hypothesis. We conclude using the spectral sequence of smooth R-representations of M^+
\[
H^i(N_0^\prime, H^j(N_0^\prime, \pi)) \Rightarrow H^{i+j}(N_0, \pi)
\]
(see the proof of [Hau16a, Proposition 3.2.3] and footnote $\bar{1}$).

$\bar{1}$We do not know whether [Eme10, Proposition 2.1.11] holds true when $\text{char}(F) = p$, but [Hau16a, Lemme 3.1.1] does and any injective object of $\text{Mod}^\infty_{M^+ \rtimes N_0^\prime}(R)$ is still N_0-acyclic.
Now, we prove the lemma without assuming \(pR = 0 \). We proceed by induction on the degree of nilpotency \(r \) of \(p \) in \(R \). If \(r \leq 1 \), then the lemma is already proved. We assume \(r > 1 \) and that we know the lemma for rings in which the degree of nilpotency of \(p \) is \(r - 1 \). There is a short exact sequence of smooth \(R \)-representations of \(M^+ \times N_0 \)

\[
0 \to p\pi \to \pi \to \pi/p\pi \to 0.
\]

Taking the \(N_0 \)-cohomology yields a long exact sequence of smooth \(R \)-representations of \(M^+ \)

\[
0 \to (p\pi)^{N_0} \to \pi^{N_0} \to (\pi/p\pi)^{N_0} \to H^1(N_0, p\pi) \to \cdots.
\]

If the Hecke action of \(m \) on \(\pi^{N_0} \) is locally nilpotent, then the Hecke action of \(m \) on \((p\pi)^{N_0} \) is also locally nilpotent so that the Hecke action of \(m \) on \(H^k(N_0, p\pi) \) is locally nilpotent for all \(k \geq 0 \) by the induction hypothesis (since \(p\pi \) is an \(R/p^{r-1}R \)-module). Using (4), we deduce that the Hecke action of \(m \) on \((\pi/p\pi)^{N_0} \) is also locally nilpotent so that the Hecke action of \(m \) on \(H^k(N_0, \pi/p\pi) \) is locally nilpotent for all \(k \geq 0 \) (since \(\pi/p\pi \) is an \(\mathbb{F}_p \)-vector space). Using again (4), we conclude that the Hecke action of \(m \) on \(H^k(N_0, \pi) \) is locally nilpotent for all \(k \geq 0 \).

2.2. Proof of the main result. We fix a compact open subgroup \(N_0 \) of \(N \) and we let \(M^+ \) be the open submonoid of \(M \) consisting of those elements \(m \) contracting \(N_0 \) (i.e. \(mN_0m^{-1} \subseteq N_0 \)). We let \(Z_M \) denote the centre of \(M \) and we set \(Z_M^+ := Z_M \cap M^+ \). We fix an element \(z \in Z_M^+ \) strictly contracting \(N_0 \) (i.e. \(\cap_{r \geq 0} z^rN_0z^{-r} = 1 \)).

Recall that the ordinary part of a smooth \(R \)-representation \(\pi \) of \(P \) is the smooth \(R \)-representation of \(M \)

\[
\text{Ord}_P(\pi) := (\text{Ind}^{M^+}_{M^+}(\pi^{N_0}))^{Z_M^{-1}\text{fin}}
\]

where \(\text{Ind}^{M^+}_{M^+}(\pi^{N_0}) \) is defined as the \(R \)-module of functions \(f : M \to \pi^{N_0} \) such that \(f(mm') = m \cdot f(m') \) for all \(m \in M^+ \) and \(m' \in M \), endowed with the action of \(M \) by right translation, and the superscript \(Z_M^{-1}\text{fin} \) denotes the subrepresentation consisting of locally \(Z_M^{-1}\text{fin} \)-finite elements (i.e. those elements \(f \) such that \(R[Z_M] \cdot f \) is contained in a finitely generated \(R \)-submodule). The action of \(M \) on the latter is smooth by [Vig10, Remark 7.6]. If \(R \) is artinian and \(\pi^{N_0} \) is locally \(Z_M^{-1}\text{fin} \)-finite (i.e. it may be written as the union of finitely generated \(Z_M^{-1}\text{fin} \)-invariant \(R \)-submodules), then there is a natural \(R \)-linear isomorphism

\[
\text{Ord}_P(\pi) \cong R[z^{\pm 1}] \otimes_{R[z]} \pi^{N_0}
\]

(cf. [Eme10b, Lemma 3.2.1 (1)], whose proof also works when \(\text{char}(F) = p \) and over any artinian ring).

If \(\sigma \) is a smooth \(R \)-representation of \(M \), then the \(R \)-module \(C_c^\infty(N, \sigma) \) of locally constant functions \(f : N \to \sigma \) with compact support, endowed with the action of \(N \) by right translation and the action of \(M \) given by \((m \cdot f) : n \mapsto m \cdot f(m^{-1}nm) \) for all \(m \in M \), is a smooth \(R \)-representation of \(P \). Thus we obtain a functor \(C_c^\infty(N, -) : \text{Mod}_M^\infty(R) \to \text{Mod}_P^\infty(R) \). It is \(R \)-linear, exact, and commutes with small direct sums. The results of [Eme10b, § 4.2] hold true when \(\text{char}(F) = p \) and over any ring, thus the functors

\[
C_c^\infty(N, -) : \text{Mod}_M^\infty(R)^{Z_M^{-1}\text{fin}} \to \text{Mod}_P^\infty(R)
\]

\[
\text{Ord}_P : \text{Mod}_P^\infty(R) \to \text{Mod}_M^\infty(R)^{Z_M^{-1}\text{fin}}
\]

are adjoint and the unit of the adjunction is an isomorphism.

Lemma 4. Assume \(R \) artinian, \(p \) nilpotent in \(R \), and \(\text{char}(F) = p \). Let \(\pi \) be a smooth \(R \)-representation of \(P \). If \(\pi^{N_0} \) is locally \(Z_M^{-1}\text{fin} \)-finite, then the Hecke action of \(z \) on \(H^k(N_0, \pi) \) is locally nilpotent for all \(k \geq 1 \).
Proof. We set \(\sigma := \text{Ord}_P(\pi) \). The counit of the adjunction between \(C^\infty_c(N, -) \) and \(\text{Ord}_P \) induces a natural morphism of smooth \(R \)-representations of \(P \)

\[
(6) \quad C^\infty_c(N, \sigma) \to \pi.
\]

Taking the \(N_0 \)-invariants yields a morphism of smooth \(R \)-representations of \(M^+ \)

\[
(7) \quad C^\infty_c(N, \sigma)^{N_0} \to \pi^{N_0}.
\]

By definition, \(\sigma \) is locally \(Z_M \)-finite so it may be written as the union of finitely generated \(Z_M \)-invariant \(R \)-submodules \(\langle \sigma_i \rangle_{i \in I} \). Thus \(C^\infty_c(N, \sigma)^{N_0} \) is the union of the finitely generated \(Z_M \)-invariant \(R \)-submodules \(\langle C^\infty_c(\pi^{-1}N_0\sigma^i, \sigma_i)^{N_0} \rangle_{r \geq 0, i \in I} \), so it is locally \(Z_M^+ \)-finite. By assumption, \(\pi^{N_0} \) is also locally \(Z_M^+ \)-finite. Therefore, using \((6) \) and its analogue with \(C^\infty_c(N, \sigma) \) instead of \(\pi \), the localisation with respect to \(z \) of \((7) \) is the natural morphism of smooth \(R \)-representations of \(M \)

\[
\text{Ord}_P(C^\infty_c(N, \sigma)) \to \text{Ord}_P(\pi)
\]

induced by applying the functor \(\text{Ord}_P \) to \((6) \), and it is an isomorphism since the unit of the adjunction between \(C^\infty_c(N, -) \) and \(\text{Ord}_P \) is an isomorphism.

Let \(\kappa \) (resp. \(\iota \)) be the kernel (resp. image) of \((6) \), hence two short exact sequences of smooth \(R \)-representations of \(P \)

\[
(8) \quad 0 \to \kappa \to C^\infty_c(N, \sigma) \to \iota \to 0
\]

\[
(9) \quad 0 \to \iota \to \pi \to \pi/\iota \to 0
\]

such that the third arrow of \((8) \) and the second arrow of \((9) \) fit into a commutative diagram of smooth \(R \)-representations of \(P \)

\[
\begin{tikzcd}
C^\infty_c(N, \sigma) \arrow{r} \arrow{dr}{\iota} & \pi \arrow{d} \\
\iota^{N_0} & \pi^{N_0}
\end{tikzcd}
\]

whose upper arrow is \((6) \). Taking the \(N_0 \)-invariants yields a commutative diagram of smooth \(R \)-representations of \(M^+ \)

\[
\begin{tikzcd}
C^\infty_c(N, \sigma)^{N_0} \arrow{r} \arrow{dr}{\iota^{N_0}} & \pi^{N_0} \arrow{d}
\end{tikzcd}
\]

whose upper arrow is \((7) \). Since the localisation with respect to \(z \) of the latter is an isomorphism, the localisation with respect to \(z \) of the injection \(\iota^{N_0} \hookrightarrow \pi^{N_0} \) is surjective, thus it is an isomorphism (as it is also injective by exactness of localisation). Therefore the localisation with respect to \(z \) of the morphism \(C^\infty_c(N, \sigma)^{N_0} \to \iota^{N_0} \) is an isomorphism.

Since \(C^\infty_c(N, \sigma) \cong \bigoplus_{n \in N_0/N_0} C^\infty_c(nN_0, \sigma) \) as a smooth \(R \)-representation of \(N_0 \), it is \(N_0 \)-acyclic (see [NSW05 § I.3]). Thus the long exact sequence of \(N_0 \)-cohomology induced by \((8) \) yields an exact sequence of smooth \(R \)-representations of \(M^+ \)

\[
(10) \quad 0 \to \kappa^{N_0} \to C^\infty_c(N, \sigma)^{N_0} \to \iota^{N_0} \to H^1(N_0, \kappa) \to 0
\]

and an isomorphism of smooth \(R \)-representations of \(M^+ \)

\[
(11) \quad H^k(N_0, z) \cong H^{k+1}(N_0, \kappa)
\]

for all \(k \geq 1 \). Since the localisation with respect to \(z \) of the third arrow of \((10) \) is an isomorphism, the Hecke action of \(z \) on \(\kappa^{N_0} \) is locally nilpotent. Thus the Hecke action of \(z \) on \(H^k(N_0, \kappa) \) is locally nilpotent for all \(k \geq 0 \) by Lemma [3]. Using \((11) \), we deduce that the Hecke action of \(z \) on \(H^k(N_0, \iota) \) is locally nilpotent for all \(k \geq 1 \).
Taking the N_0-cohomology of (9) yields a long exact sequence of smooth R-representations of M^+
\[(12) \quad 0 \to \iota^{N_0} \to \pi^{N_0} \to (\pi/\iota)^{N_0} \to H^1(N_0, \iota) \to \cdots.\]
Since the localisation with respect to z of the second arrow is an isomorphism and the Hecke action of z on $H^1(N_0, \iota)$ is locally nilpotent, the Hecke action of z on $(\pi/\iota)^{N_0}$ is locally nilpotent. Thus the Hecke action of z on $H^k(N_0, \pi/\iota)$ is locally nilpotent for all $k \geq 0$ by Lemma 3. We conclude using (12) and the fact that the Hecke action of z on $H^k(N_0, \iota)$ is locally nilpotent for all $k \geq 1$. □

Proof of Corollary 2 Assume R artinian, p nilpotent in R, and $\text{char}(F) = p$. Let
\[(13) \quad 0 \to \pi_1 \to \pi_2 \to \pi_3 \to 0\]
be a short exact sequence of admissible R-representations of G. Taking the N_0-invariants yields an exact sequence of smooth R-representations of M^+
\[(14) \quad 0 \to \pi_1^{N_0} \to \pi_2^{N_0} \to \pi_3^{N_0} \to H^1(N_0, \pi_1).\]
The terms $\pi_1^{N_0}, \pi_2^{N_0}, \pi_3^{N_0}$ are locally Z_M^+-finite (cf. [Eme10b, Theorem 3.4.7 (1)], whose proof in degree 0 also works when $\text{char}(F) = p$ and over any noetherian ring) and the Hecke action of z on $H^1(N_0, \pi_1)$ is locally nilpotent by Lemma 4. Therefore, using (5), the localisation with respect to z of (14) is the short sequence of admissible R-representations of M
\[0 \to \text{Ord}_P(\pi_1) \to \text{Ord}_P(\pi_2) \to \text{Ord}_P(\pi_3) \to 0\]
induced by applying the functor Ord_P to (13), and it is exact by exactness of localisation. □

2.3. Results on extensions. We assume R noetherian. The R-linear category $\text{Mod}_{G}^{\text{adm}}(R)$ is not abelian in general, but merely exact in the sense of Quillen ([Qui73]). An exact sequence of admissible R-representations of G is an exact sequence of smooth R-representations of G
\[\cdots \to \pi_{n-1} \to \pi_n \to \pi_{n+1} \to \cdots\]
such that the kernel and the cokernel of every arrow are admissible. In particular, each term of the sequence is also admissible.

For $n \geq 0$ and π, π' two admissible R-representations of G, we let $\text{Ext}^n_G(\pi', \pi)$ denote the R-module of n-fold Yoneda extensions ([Yon60]) of π' by π in $\text{Mod}_{G}^{\text{adm}}(R)$, defined as equivalence classes of exact sequences
\[0 \to \pi \to \pi_1 \to \cdots \to \pi_n \to \pi' \to 0.\]
We let $D(G)$ denote the derived category of $\text{Mod}_{G}^{\text{adm}}(R)$ ([Nee90] [Kee96] [Buh10]). The results of [Ver96] § III.3.2] on the Yoneda construction carry over to this setting (see e.g. [Pos11] Proposition A.13), hence a natural R-linear isomorphism
\[\text{Ext}^n_G(\pi', \pi) \cong \text{Hom}_{D(G)}(\pi', \pi[n]).\]

Proof of Corollary 2 Since Ind_G^M and Ord_P are exact adjoint functors between $\text{Mod}_{M}^{\text{adm}}(R)$ and $\text{Mod}_{G}^{\text{adm}}(R)$ by Theorem 3, they induce adjoint functors between $D(M)$ and $D(G)$, hence natural R-linear isomorphisms
\[\text{Ext}^n_M(\sigma, \text{Ord}_P(\pi)) \cong \text{Hom}_{D(M)}(\sigma, \text{Ord}_P(\pi)[n]) \cong \text{Hom}_{D(G)}(\text{Ind}_G^M(\sigma), \pi[n]) \cong \text{Ext}^n_G(\text{Ind}_G^M(\sigma), \pi)\]
for all $n \geq 0$. □
Remark. We give a more explicit proof of Corollary 2. The exact functor Ind_P^G and the counit of the adjunction between Ind_P^G and Ord_P induce an R-linear morphism

$$\text{Ext}^n_M(\sigma, \text{Ord}_P(\pi)) \to \text{Ext}^n_M(\text{Ind}_P^G(\sigma), \pi).$$

In the other direction, the exact (by Theorem 1) functor Ord_P and the unit of the adjunction between Ind_P^G and Ord_P induce an R-linear morphism

$$\text{Ext}^n_M(\text{Ind}_P^G(\sigma), \pi) \to \text{Ext}^n_M(\sigma, \text{Ord}_P(\pi)).$$

We prove that (16) is the inverse of (15). For $n = 0$ this is the unit-counit equations. Assume $n \geq 1$ and let

$$0 \to \text{Ord}_P(\pi) \to \sigma_1 \to \cdots \to \sigma_n \to \sigma \to 0$$

be an exact sequence of admissible R-representations of M. By [Yon60 § 3], the image of the class of (17) under (15) is the class of any exact sequence of admissible R-representations of G

$$0 \to \pi \to \pi_1 \to \cdots \to \pi_n \to \text{Ind}_P^G(\sigma) \to 0$$

such that there exists a commutative diagram of admissible R-representations of G

$$
\begin{array}{cccccccc}
0 & \to & \text{Ind}_P^G(\text{Ord}_P(\pi)) & \to & \text{Ind}_P^G(\pi_1) & \to & \cdots & \to & \text{Ind}_P^G(\pi_n) & \to & \text{Ind}_P^G(\sigma) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \cdots & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & \pi & \to & \pi_1 & \to & \cdots & \to & \pi_n & \to & \text{Ind}_P^G(\sigma) & \to & 0
\end{array}
$$

in which the upper row is obtained from (17) by applying the exact functor Ind_P^G, the lower row is (15), and the leftmost vertical arrow is the natural morphism induced by the counit of the adjunction between Ind_P^G and Ord_P. Applying the exact functor Ord_P to the diagram and using the unit of the adjunction between Ind_P^G and Ord_P yields a commutative diagram of admissible R-representations of M

$$
\begin{array}{cccccccc}
0 & \to & \text{Ord}_P(\pi) & \to & \sigma_1 & \to & \cdots & \to & \sigma_n & \to & \sigma & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \cdots & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & \text{Ord}_P(\pi) & \to & \text{Ord}_P(\pi_1) & \to & \cdots & \to & \text{Ord}_P(\pi_n) & \to & \text{Ord}_P(\text{Ind}_P^G(\sigma)) & \to & 0
\end{array}
$$

in which the lower row is obtained from (18) by applying the exact functor Ord_P, the upper row is (17), and the rightmost vertical arrow is the natural morphism induced by the unit of the adjunction between Ind_P^G and Ord_P. The leftmost vertical morphism is the identity by the unit-counit equations. Thus the image of the class of (18) under (16) is the class of (17) by [Yon60 § 3]. We have proved that (16) is a left inverse of (15). The proof that it is a right inverse is dual.

Corollary 5. Assume R artinian, p nilpotent in R, and $\text{char}(F) = p$. Let σ and σ' be two admissible R-representations of M. The functor Ind_P^G induces an R-linear isomorphism

$$\text{Ext}^n_M(\sigma', \sigma) \cong \text{Ext}^n_M(\text{Ind}_P^G(\sigma'), \text{Ind}_P^G(\sigma))$$

for all $n \geq 0$.

Proof. The isomorphism in the statement is the composite

$$\text{Ext}^n_M(\sigma', \sigma) \cong \text{Ext}^n_M(\sigma', \text{Ord}_P(\text{Ind}_P^G(\sigma))) \cong \text{Ext}^n_M(\text{Ind}_P^G(\sigma'), \text{Ind}_P^G(\sigma))$$

where the first isomorphism is induced by the unit of the adjunction between Ind_P^G and Ord_P, which is an isomorphism, and the second one is the isomorphism of Corollary 2 with σ' and $\text{Ind}_P^G(\sigma)$ instead of σ and π respectively.

□
We fix a minimal parabolic subgroup $B \subseteq G$, a maximal split torus $S \subseteq B$, and we write Δ for the set of simple roots of S in B. We say that a parabolic subgroup $P = MN$ of G is standard if $B \subseteq P$ and $S \subseteq M$. In this case, we write Δ_P for the corresponding subset of Δ, and given $\alpha \in \Delta_P$ (resp. $\alpha \in \Delta \setminus \Delta_P$) we write $P_\alpha = M_\alpha N_\alpha$ for the standard parabolic subgroup corresponding to $\Delta_P \setminus \{\alpha\}$ (resp. $\Delta_P \cup \{\alpha\}$).

Let C be an algebraically closed field of characteristic p. Given a standard parabolic subgroup $P = MN$ and a smooth C-representation σ of M, there exists a largest standard parabolic subgroup $P(\sigma) = M(\sigma)N(\sigma)$ such that the inflation of σ to P extends to a smooth C-representation $^c\sigma_P$ of $P(\sigma)$, and this extension is unique [AHV17, I.7 Corollary 1]. We say that a smooth C-representation of G is supercuspidal if it is irreducible, admissible, and does not appear as a subquotient of $\text{Ind}^G_P(\sigma)$ for any proper parabolic subgroup $P = MN$ of G and any irreducible admissible C-representation σ of M. A supercuspidal standard $C[G]$-triple is a triple (P, σ, Q) where $P = MN$ is a standard parabolic subgroup, σ is a supercuspidal C-representation of M, and Q is a parabolic subgroup of G such that $P \subseteq Q \subseteq P(\sigma)$. To such a triple is attached in [AHV17] a smooth C-representation of G

$$I_G(P, \sigma, Q) := \text{Ind}_P^G(\sigma \otimes \text{St}_Q^P(\sigma))$$

where $\text{St}_Q^P(\sigma) := \text{Ind}_Q^P(\sigma) / \sum_{Q \subseteq Q' \subseteq P(\sigma)} \text{Ind}_Q^P(\sigma')$ (here 1 denotes the trivial C-representation) is the inflation to $P(\sigma)$ of the generalised Steinberg representation of $M(\sigma)$ with respect to $M(\sigma) \cap Q$ ([GK13, Ly15]). It is irreducible and admissible (AHV17, 1.3 Theorem 1).

Proposition 6. Assume $\text{char}(F) = p$. Let (P, σ, Q) and (P', σ', Q') be two supercuspidal standard $C[G]$-triples. If $Q \not\subseteq Q'$, then the C-vector space

$$\text{Ext}_G^1(I_G(P', \sigma', Q'), I_G(P, \sigma, Q))$$

is non-zero if and only if $P' = P$, $\sigma' \cong \sigma$, and $Q' = Q^\alpha$ for some $\alpha \in \Delta_Q$, in which case it is one-dimensional and the unique (up to isomorphism) non-split extension of $I_G(P', \sigma', Q')$ by $I_G(P, \sigma, Q)$ is the admissible C-representation of G

$$\text{Ind}_{P(\sigma)}^G(\sigma \otimes (M(\sigma) \cap P, \sigma, M(\sigma)^\alpha \cap Q)).$$

Proof. There is a natural short exact sequence of admissible C-representations of G

$$0 \rightarrow \sum_{Q \subseteq Q' \subseteq P(\sigma')} \text{Ind}_{Q'}^P(\sigma') \rightarrow \text{Ind}_{Q''}^G(\sigma'') \rightarrow I_G(P', \sigma', Q') \rightarrow 0. \quad (19)$$

Note that we can restrict the sum to those Q'' that are minimal, i.e. of the form Q''_{α} for some $\alpha \in \Delta_{P(\sigma')} \setminus \Delta_Q$. Moreover, we deduce from [AHV17] Theorem 3.2 that its cosocle is isomorphic to $\bigoplus_{\alpha \in \Delta_{P(\sigma')} \setminus \Delta_Q} I_G(P', \sigma', Q'_\alpha)$. Now if $Q \not\subseteq Q'$, then $\text{Ord}_{Q'}(I_G(P, \sigma, Q)) = 0$ by [AHV17] Theorem 1.1 (ii) and Corollary 4.13 so that using Corollary 2 we see that the long exact sequence of Yoneda extensions obtained by applying the functor $\text{Hom}_G(-, I_G(P, \sigma, Q))$ to (19) yields a natural C-linear isomorphism

$$\text{Ext}_G^{n-1}((\sum_{Q \subseteq Q'' \subseteq P(\sigma')} \text{Ind}_{Q''}^G(\sigma''), I_G(P, \sigma, Q)) \rightarrow \text{Ext}_G^n(I_G(P', \sigma', Q'), I_G(P, \sigma, Q))$$

for all $n \geq 1$. In particular, with $n = 1$ and using the identification of the cosocle of the sum and [AHV17] 1.3 Theorem 2], we deduce that the C-vector space in the statement is non-zero if and only if $P' = P$, $\sigma' \cong \sigma$, and $Q = Q^\alpha$ for some $\alpha \in \Delta_{P(\sigma')} \setminus \Delta_Q$ (or equivalently $Q' = Q^\alpha$ for some $\alpha \in \Delta_Q$), in which case it is one-dimensional. Finally, using again [AHV17, Theorem 3.2], we see that for all $\alpha \in \Delta_Q$ the admissible C-representation of G in the statement is a non-split extension of $I_G(P, \sigma, Q^\alpha)$ by $I_G(P, \sigma, Q)$. \qed
Corollary 7. Assume $\text{char}(F) = p$. Let π and π' be two irreducible admissible C-representations of G. If π is supercuspidal and π' is not the extension to G of a supercuspidal representation of a Levi subgroup of G, then $\text{Ext}^1_G(\pi', \pi) = 0$.

Proof. By [AHHV17, L.3 Theorem 3], there exist two supercuspidal standard $C[G]$-triples (P, σ, Q) and (P', σ', Q') such that $\pi \cong I_G(P, \sigma, Q)$ and $\pi' \cong I_G(P', \sigma', Q')$. The assumptions on π and π' are equivalent to $P = G$ and $Q' \neq G$. In particular, $Q \not\subseteq Q'$ and $P \neq P'$ so that $\text{Ext}^1_G(\pi', \pi) = 0$ by Proposition 6.

REFERENCES

[AHHV17] N. Abe, G. Henniart, F. Herzig, and M.-F. Vignéras, A classification of irreducible admissible mod p representations of p-adic reductive groups, J. Amer. Math. Soc. 30 (2017), no. 2, 495–559.

[AHV17] N. Abe, G. Henniart, and M.-F. Vignéras, Modulo p representations of reductive p-adic groups: functorial properties, e-print arXiv:1703.06599v2 to appear in Transactions of the American Mathematical Society, 2017.

[Ber87] J. Bernstein, Second adjointness for representations of reductive p-adic groups, unpublished, available at http://www.math.tau.ac.il/~bernstei

[Büh10] T. Bühler, Exact categories, Expo. Math. 28 (2010), no. 1, 1–69.

[CGP15] B. Conrad, O. Gabber, and G. Prasad, Pseudo-reductive Groups, second ed., New Mathematical Monographs, vol. 17, Cambridge University Press, Cambridge, 2015.

[Dat09] J.-F. Dat, Finitude pour les représentations lisses de groupes p-adiques, J. Inst. Math. Jussieu 8 (2009), no. 2, 261–333.

[Eme10a] M. Emerton, Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties, Astérisque 331 (2010), 355–402.

[Eme10b] , Ordinary parts of admissible representations of p-adic reductive groups II. Derived functors, Astérisque 331 (2010), 403–459.

[GK14] E. Grosse-Klönne, On special representations of p-adic reductive groups, Duke Math. J. 163 (2014), no. 12, 2179–2216.

[Hau16a] J. Hauser, Extensions entre séries principales p-adiques et modulo p de $G(F)$, J. Inst. Math. Jussieu 15 (2016), no. 2, 225–270.

[Hau16b] , Parabolic induction and extensions, e-print arXiv:1607.02031 to appear in Algebra & Number Theory, 2016.

[Hau16c] , Sur une conjecture de Breuil-Herzig, to appear in Journal für die reine und angewandte Mathematik, published online doi:10.1515/crelle-2016-0039, 2016.

[Hu12] Y. Hu, Diagrammes canoniques et représentations modulo p de $GL_2(F)$, J. Inst. Math. Jussieu 11 (2012), no. 1, 67–118.

[Hu17] , An application of a theorem of Emerton to mod p representations of GL_2, J. London Math. Soc. (2) 96 (2017), no. 3, 545–564.

[Kel96] B. Keller, Derived categories and their uses, Handbook of Algebra, Volume 1, Elsevier, Amsterdam, 1996, pp. 671–701.

[Ly15] T. Ly, Représentations de Steinberg modulo p pour un groupe réductif sur un corps local, Pacific J. Math. 277 (2015), no. 2, 425–462.

[Nee90] A. Neeman, The derived category of an exact category, J. Algebra 135 (1990), no. 2, 388–394.

[NSW08] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of Number Fields, second ed., Grundlehren der Mathematischen Wissenschaften, vol. 329, Springer, Berlin, 2008.

[Pos11] L. Positselski, Mixed Artin-Tate motives with finite coefficients, Moscow Math. J. 11 (2011), no. 2, 317–402.

[Qui73] D. Quillen, Higher algebraic K-theory. I, Algebraic K-Theory I, Lecture Notes in Mathematics, vol. 341, Springer, Berlin, 1973, pp. 85–147.

[Ver96] J.-L. Verdier, Des catégories dérivées des catégories abéliennes, Astérisque 239 (1996).

[Vig96] M.-F. Vignéras, Répresentations l-modulaires d’un groupe réductif p-adique avec $l \neq p$, Progress in Mathematics, vol. 137, Birkhäuser, Boston, 1996.

[Vig16] M.-F. Vignéras, The right adjoint of the parabolic induction, Arbeitstagung Bonn 2013, Progress in Mathematics, vol. 319, Birkhäuser, Basel, 2016, pp. 405–425.

[Yon60] N. Yoneda, On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 8 (1960), 507–570.

Université de Lille, Département de Mathématiques, Cité scientifique, Bâtiment M2, 59655 Villeneuve d’Ascq Cedex, France

E-mail address: julien.hauseux@math.univ-lille1.fr