The Anti-oxidant and Anti-inflammatory Properties of Cerium Oxide Nanoparticles Synthesized Using *Origanum majorana* L. Leaf Extract

Ali Es-haghi, Saynaz Aseyd Nezhad

Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Abstract

Introduction: Free radicals have one or more unpaired electrons in their outer electron layers rendering them high reactivity against biomolecules (i.e., DNA, carbohydrates, proteins, and lipids). Oxidative stress is created when the production of free radicals exceeds their removal by antioxidant systems and is involved in the pathogenesis of several diseases such as diabetes, arthritis, inflammatory conditions, and various cancers. Regarding the therapeutic potential of nanoparticles (NPs) in human diseases, the purpose of this study was to synthesize cerium oxide NPs using *Origanum majorana* leaf extract.

Methods: Cerium oxide nanoparticles (CeO$_2$-NPs) were synthesized using aqueous leaf extract of *O. majorana*. The sizes of NPs were characterized by a particle size analyzer. The antioxidant properties of the CeO$_2$-NPs were determined by Ferric-reducing antioxidant power (FRAP) assay. The anti-inflammatory effects of the NPs were also determined by measuring gene expressions of IL-1β and IL-10 using real-time polymerase chain reaction (PCR).

Results: The CeO$_2$-NPs were successfully synthesized using *O. majorana* leaf extract. The results of FRAP assay showed that the anti-oxidant activities of CeO$_2$-NPs at concentrations of 50, 100, and 400 μg/mL were 75%, 77.1%, and 94.5%, respectively. Moreover, interleukin 10 (IL-10) gene expressions increased by 4.6 folds while the expression of IL-1β gene decreased by 0.75-fold in HUVECs.

Conclusion: The CeO$_2$-NPs synthesized using the aqueous extract of *O. majorana* demonstrated antioxidant and anti-inflammatory properties. Therefore, these NPs can be used as potential therapeutic agents in medicine.

Keywords: Cerium oxide nanoparticle, Green synthesis, *Origanum majorana*, Interleukin, Anti-inflammatory.

Introduction

Free radicals have one or more unpaired electrons in their outer electron layers. These molecules inflict the structure and function of various biological molecules such as nucleic acids, proteins, and lipids.1,2 Living organisms benefit from various antioxidant mechanisms to neutralize these free radicals.3 An imbalanced ratio of production and removal of free radicals triggers oxidative stress affecting cellular metabolism and multiple biological processes such as signal transduction, gene expression, cellular proliferation, and programmed cell death.4 Oxidative stress is involved in the pathogenesis of many disorders such as neurological diseases, diabetes, arthritis, inflammation, and cancer.5

Inflammation is a complex host defense mechanism against invading microorganisms. Nevertheless, chronic inflammatory conditions can increase the risk of cancer and malignant transformation and modulate tumor angiogenesis and metastasis by suppressing anti-cancer immune responses.6

Nanoparticles (NPs) are materials with variable sizes (1-100 nm) and surface to volume ratios 7, giving them unique physical, chemical, and biological properties.$^8-10$ In previous studies, NPs have shown antioxidant,11 anti-bacterial, anti-inflammatory,12 anti-cancer and many other biological properties.13 Accordingly, NPs have considerably widespread
applications in medicine, as well as pharmaceutical, food safety, and other industries. Cerium oxide (CeO2) is a lanthanide metal oxide with anti-oxidative properties. CeO2 synthesized NPs (CeO2-NPs) have commonly been used in biomedicine as anti-cancer and wound healing agents.

Due to the presence of biologically active substances such as phenols, medicinal plants have been used for synthesizing NPs. *Origanum majorana* is a globally available medicinal plant grown in many regions of the world. In this study, the aqueous leaf extract of *O. majorana* was used to synthesize CeO2-NPs (i.e., green synthesis). The synthesized NPs were further characterized using the particle size analyzer. In addition, the anti-oxidant and anti-inflammatory properties of the CeO2-NPs were evaluated by Ferric-reducing antioxidant power (FRAP) assay and real-time PCR, respectively.

Materials and Methods

Chemicals and Reagents

The PCR Master Mix, SYBR green PCR master mix, RNeasy Mini Kit, and cDNA Synthesis Kit were purchased from Qiagen GmbH, Hilden (Germany). Other reagents not mentioned here were from Merck (Germany).

Preparation of Plant Extract and Synthesis of CeO2 NPs

In order to prepare the aqueous extract, 10 g of dried *O. majorana* leaf powder was added to 100 mL distilled water, heated up to 100°C and incubated for 10 minutes. For the biosynthesis of CeO2-NPs, 8.68 g of Ce(NO3)3·6H2O was allowed to react with 200 mL of aqueous leaf extract of *O. majorana*. In the next step, the CeO–O. majorana mixture was dried at 100°C for 48 hours. Finally, the green-synthesized CeO2-NPs were purified by heating at 450°C for 4 hours to obtain brownish pellets.

Characterization Procedures

The synthesized CeO2-NPs were characterized using a particle size analyzer. In brief, the size distribution of NPs was analyzed using Zetasizer instrument (Malvern, UK). The diameter of CeO2-NPs was determined using Nano-ZS90 dynamic light scattering instrument (Malvern, UK) at a 90° fixed-angle and room temperature.

FRAP Assay

The ferric reducing capacity of the CeO2-NPs was determined as described by Ozgen et al. One milliliter of different concentrations of CeO2-NPs was mixed with 2.5 mL potassium phosphate buffer (0.2 M, pH 6.6) and 2.5 mL potassium ferricyanide (1 g/100 mL). The mixture was incubated at 50°C for 25 minutes. Then, trichloroacetic acid (10%) was added to stop the reaction. An equal volume of distilled water was subsequently added followed by addition of 0.5 mL ferrous chloride (0.1 g/100 mL) (FeCl2). The procedure was carried out in triplicate. The mixture was allowed to stand for 30 minutes before measuring absorbance at 700 nm.

Expression of Anti-inflammatory and Pro-inflammatory Genes

The expressions of interleukin 10 (IL-10) and IL-1β genes were determined in human umbilical vein endothelial cell (HUVEC) lines treated with the synthesized NPs. The cells were seeded at 5×10^4 cells/mL concentration in a 6-well plate supplemented with RPMI 1640, FBS 10%, and Pen-Strep 0.5%. The cells were then treated with different concentrations of NPs (i.e., 0, 50, 100, and 200 µg/mL) and incubated for 48 hours. At the end of incubation, the treated cells were washed with phosphate-buffered saline (PBS, 0.1 M, pH 7.2) twice and scraped with Trypsin. The gene expression of IL-10 and IL-1β was assessed using real-time PCR and primers mentioned in Table 1.

RNA Extraction

After 48 hours of incubation with the NPs, total RNA was extracted from the HUVECs. Briefly, 1 mL of the ice-cold RNX-plus solution was added to homogenized cells and mixed by vortexing. Then, 200 µL chloroform was added and the solution was centrifuged at 12 000×g for 15 minutes at 4°C. An equal volume of isopropyl alcohol was added to the aqueous phase, and the mixture was centrifuged again. Afterwards, 75% ethanol (1 mL) was added to the supernatant. The solution was finally centrifuged to extract RNA. The RNA concentration was calculated using NanoDrop UV-Vis spectrophotometer followed by denaturing 1% agarose gel electrophoresis.

cDNA Synthesis

The cDNA was synthesized from the total extracted RNA using fermentase Kit according to the manufacturer's instructions. The mixture was incubated in thermal cycler for one cycle at 37°C for 15 minutes, one cycle at 85°C for 5 seconds and one cycle at 4°C for 5 minutes. In addition, samples without RT enzymes were used to detect contamination in the samples.

Real-Time Polymerase Chain Reaction

SYBR green-based real-time PCR (Qiagen Rotor-Gene Q, Hilden, Germany) was used to assess the expression of IL-1β and IL-10 genes. Amplification conditions were set as follows: an initial step at 95°C for 2 minutes followed by 30 cycles of 95°C for 15 seconds, one cycle at 85°C for 5 seconds and one cycle at 4°C for 5 minutes. In addition, samples without RT enzymes were used to detect contamination in the samples.

Table 1. Primer Sequences for Analysis of IL-10 and IL-1β Gene Expression

Gene	Sequences (5’ to 3’)
IL 10	F TGAGGACTTTAAGGGAAGCAG R GATCTCGGTTCTGTTTT
IL 1β	F GCCATACACGTGCACTGGA R CTGCTGCAGATTTCTGTT
GAPDH	F CTCAGGAGTGGAACCTCAG R AACATTTGAGTGAGATTAG

*Es-haghi and Aseyd Nezhad
International Journal of Basic Science in Medicine. Volume 4, Issue 3, 2019*
by monitoring the fluorescence of SYBR green signal from 65°C to 95°C. GAPDH (glyceraldehyde 3-phosphate dehydrogenase) was used as the reference gene. Negative control contained ddH2O.

Statistical Analysis
The obtained data were analyzed by ANOVA test using SPSS software version 22.0. Significant results were confirmed by Duncan’s multiple range test. P value of less than 0.05 was considered statistically significant. All tests were performed in triplicate, and the results were expressed as mean values ± standard deviations (mean ± SD).

Results
Nanoparticles Sizes
The results of particle size analysis are shown in Figure 1. The size of CeO$_2$-NPs ranged from 10 to 70 nm. The average particle size was about 25 nm.

Antioxidant Activity Assessments
The antioxidant activity was investigated using FRAP assay by determining free radical scavenging capacity of the CeO$_2$-NPs (Figure 2). The CeO-O. majorana mixture actively reduced Fe$^{3+}$ to Fe$^{2+}$. At concentrations of 50, 100, and 400 µg/mL, the antioxidant capacities of CeO$_2$-NPs were 75%, 77.1%, and 94.5%, respectively, indicating dose-dependent antioxidant activity of the synthesized CeO$_2$-NPs.

Gene Expression of IL-10
The anti-inflammatory activity of CeO$_2$-NPs was evaluated by measuring IL-10 gene expression as the main biomarker of anti-inflammatory immune response. HUVECs treated with 0, 50, 100, and 200 µg/mL CeO$_2$-NP for 24 hours showed significant up-regulation of IL-10 ($P<0.001$) as compared to untreated cells (Figure 3).

IL-1β Gene Expression
The pro-inflammatory activity of CeO$_2$-NPs was evaluated by assessing IL-1β gene expression as a pro-inflammatory biomarker. HUVECs treated with 50, 100, and 200 µg/mL CeO$_2$-NPs for 24 hours were analyzed. Only at the 200 µg/mL concentration, CeO$_2$-NPs significantly decreased the expression of IL-1β gene compared with untreated control cells ($P<0.001$, Figure 4).

Discussion
Several studies have reported potent antioxidant properties for CeO$_2$-NPs. In this study, the green-synthesized CeO$_2$-NPs (using O. majorana leaf extract) also revealed high antioxidant activity. At 400 µg/mL concentration, the synthesized CeO$_2$-NPs reduced more than 94% of ferric (Fe $^{3+}$) ions to ferrous (Fe $^{2+}$). In another study, ROS content significantly decreased in H9C2 cells exposed to CeO$_2$-NPs with sizes of 1, 10, and 100 nm for 24 hours. In another study, CeO$_2$-NPs synthesized using the extract of Hyssopus officinalis plant effectively scavenged DPPH free radicals.

We here investigated the effects of CeO$_2$-NPs on the gene expressions of IL-10 and IL-1β by real-time PCR. Accordingly, the expression of IL-10 (anti-inflammatory) significantly increased in a dose-dependent (50, 100, and 200 µg/mL CeO$_2$-NPs) manner. In addition, the expression of IL-1β (pro-inflammatory) significantly
Inflammation is a defensive mechanism protecting the body against various pathogens. Nevertheless, chronic inflammation can lead to various tissue damages and pathologic conditions. Chronic inflammatory conditions may be triggered by genetic mutations, autoimmune diseases, or multiple environmental factors. In some cases, chronic inflammation may even lead to cancer.

CeO$_2$-NPs (Ce$^{4+}$/Ce$^{3+}$) can have many therapeutic applications due to their potent antioxidative and anti-inflammatory properties. Both anti-inflammatory and free-radical scavenging properties of CeO$_2$-NPs have been shown in numerous studies. In another study, CeO$_2$-NPs represented anti-inflammatory properties in the brain tissue of mouse accompanied by increased expression of iNOS gene. In BALF lymphocytes, anti-inflammatory properties of CeO$_2$-NPs have been investigated by measuring pro-inflammatory genes expression (i.e., TNF-α, IL-1β, MIP-2, IL-13, and IFN-γ).

The anti-inflammatory properties of O. $majorana$ extract have also been investigated. In this study, we also assessed the anti-inflammatory effects of O. $majorana$ extract in HUVECs. Our results showed that the expression of pro-inflammatory genes such as IL-1β decreased, while the expression of anti-inflammatory genes such as IL-10 increased in HUVECs. The anti-inflammatory properties of O. $majorana$ extract can be attributed to anti-inflammatory signaling pathways triggered by its ingredients.

Conclusion

In this study, CeO$_2$-NPs were synthesized using O. $majorana$ L. leaf extract and a bio-reduction method. The synthesized NPs exhibited all characteristic features of functional NPs. Our results confirmed the antioxidant and anti-inflammatory properties of the CeO$_2$-NPs. Our results suggested that these NPs can be used as anti-inflammatory and anti-oxidative agents in biomedical fields. However, further in vivo studies are required.

Figure 4. The Gene Expression of IL-1β in HUVECs Upon Treatment With 50, 100, and 200 μg/mL CeO$_2$-NPs for 24 Hours. *$P<0.05$, and **$P<0.001$ indicated significant differences compared with the control (i.e., no CeO$_2$-NP treatment).

Ethical Approval

Not applicable.

Competing Interests

The authors have no conflict of interest to declare.

Acknowledgments

The authors would like to thank the Department of Biology of Islamic Azad University of Mashhad Branch for the provided chemicals and laboratory facilities.

References

1. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010;4(8):118-126. doi:10.4103/0973-7847.70902
2. Taghavizadeh Yazdi ME, Khara J, Housaindokht MR, et al. Biocomponents and antioxidant activity of Ribes khorasanicum. Int J Basic Sci Med. 2018;3(3):99-103. doi:10.15171/ijbsm.2018.18
3. Abdollahi M, Ranjbar A, Shadmia S, Nikfar S, Rezaie A. Pesticides and oxidative stress: a review. Med Sci Monit. 2004;10(6):Ra141-147.
4. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752-1761. doi:10.1172/jci21625
5. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1-40. doi:10.1016/j.cbii.2005.12.009
6. Hajhashemi V, Ghannadi A, Sharif B. Anti-inflammatory and analgesic effects of Coriandrum sativum L. in animal models. Journal of Shahrekord University of Medical Sciences. 2003;5(2):8-15. [Persian].
7. Taghavizadeh Yazdi ME, Khara J, Sadeghnia HR, Esmaeilzadeh Bahabadi S, Darroudi M. Biosynthesis, characterization, and antibacterial activity of silver nanoparticles using Rheum turkestanicum shoots extract. Res Chem Intermed. 2018;44(2):1325-1334. doi:10.1007/s11164-017-3169-z
8. Hamidi A, Taghavizadeh Yazdi ME, Amiri MS, Hosseini HA, Darroudi M. Biological synthesis of silver nanoparticles in Tribulus terrestris L. extract and evaluation of their photocatalyst, antibacterial, and cytotoxicity effects. Res Chem Intermed. 2019;45(5):2915-2925. doi:10.1007/s11164-019-03770-y
9. Taghavizadeh Yazdi ME, Modares M, Amiri MS, Darroudi M. Phyto-synthesis of silver nanoparticles using aerial extract of Salvia leriifolia Benth and evaluation of their antibacterial and photo-catalytic properties. Res Chem Intermed. 2019;45(3):1105-1116. doi:10.1007/s11164-018-3666-8
10. Taghavizadeh Yazdi ME, Khara J, Housaindokht MR, et al. Role of Ribes khorasanicum in the biosynthesis of silver nanoparticles and their antibacterial properties. IET Nanobiotechnol. 2019;13(2):189-192. doi:10.1049/iet-nbt.2018.5215
11. Tsai YY, Oca-Cossio J, Agering K, et al. Novel synthesis of cerium oxide nanoparticles for free
radical scavenging. Nanomedicine. 2007;2(3):325-332. doi:10.2217/17435889.2.3.325
12. Jin K, Luo Z, Zhang B, Pang Z. Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B. 2018;8(1):23-33. doi:10.1016/j.apsb.2017.12.002
13. Taghavizadeh Yazdi ME, Amiri MS, Hosseini HA, et al. Plant-based synthesis of silver nanoparticles in *Handelgia trichophylla* and their biological activities. Bull Mater Sci. 2019;42(4):155. doi:10.1007/s12034-019-1855-8
14. Bottini M, D'Annibale F, Magnini A, et al. Quantum doped silica nanoparticles as probes for targeting of T-lymphocytes. Int J Nanomedicine. 2007;2(2):227-233.
15. Javadi F, Taghavizadeh Yazdi ME, Baghani M, Es-Haghi A. Biosynthesis, characterization of cerium oxide nanoparticles using *Ceratonia siliqua* and evaluation of antioxidant and cytotoxicity activities. Mater Res Express. 2019;6(6):065408. doi:10.1088/2053-1591/ab08ff
16. Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011;3(4):1411-1420. doi:10.1039/c0nr00875c
17. Chigurupati S, Mughal MR, Okun E, et al. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials. 2013;34(9):2194-2201. doi:10.1016/j.biomaterials.2012.11.061
18. Amiri MS, Joharchi MR, Taghavizadeh Yazdi ME. Ethnomedicinal plants used to cure jaundice by traditional healers of Mashhad, iran. Iran J Pharm Res. 2014;13(1):157-162.
19. Modarres M, Esmaeilzadeh Bahabadi S, Taghavizadeh Yazdi ME. Enhanced production of phenolic acids in cell suspension culture of *Salvia leriifolia* Bentham. using growth regulators and sucrose. Cytotechnology. 2018;70(2):741-750. doi:10.1007/s10616-017-0178-0
20. Diás AM, Hussain A, Marcos AS, Roque AC. A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv. 2011;29(1):142-155. doi:10.1016/j.biotechadv.2010.10.003
21. Kumar B, Smita K, Cumbal I, Debut A. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J Biol Sci. 2017;24(1):45-50. doi:10.1016/j.sjbs.2015.09.006
22. Ozgen M, Reese RN, Tulo AZ Jr, Scheerens JC, Miller AR. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (abts) method to test antioxidant capacity of Selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2’-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem. 2006;54(4):1151-1157. doi:10.1021/jf051960d
23. Rim KT, Kim SJ, Song SW, Park JS. Effect of cerium oxide nanoparticles to inflammation and oxidative DNA damages in H9c2 cells. Mol Cell Toxicol. 2012;8(3):271-280. doi:10.1007/s13273-012-0033-5
24. Janeway CA, Travers P Jr, Walport M, Shlomchik MJ. Immunobiology: the immune system in health and disease. Vol 2. New York: Garland Pub; 2001.
25. Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204-7218. doi:10.18632/oncotarget.23208
26. Jörg S, Grohme DA, Erzler M, et al. Environmental factors in autoimmune diseases and their role in multiple sclerosis. Cell Mol Life Sci. 2016;73(24):4611-4622. doi:10.1007/s00018-016-2311-1
27. Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov. 2009;3(1):73-80. doi:10.2174/18722130978158371
28. Ivanov VK, Scherbakov AV, Usatenko AV. Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ Chem Rev. 2009;78(9):855-871. doi:10.1070/RC2009v078n09ABEH00458
29. Hirst SM, Karakoti AS, Tyler RD, Siriranganathan N, Seal S, Reilly CM. Anti-inflammatory properties of cerium oxide nanoparticles. Small. 2009;5(24):2848-2856. doi:10.1002/smll.200901048
30. Niu J, Wang K, Kolattukudy PE. Cerium oxide nanoparticles inhibit oxidative stress and nuclear factor-kappaB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J Pharmacol Exp Ther. 2011;338(1):53-61. doi:10.1124/jpet.110.179978
31. Pagliari F, Mandoli C, Forte G, et al. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano. 2012;6(5):3767-3775. doi:10.1021/nn2048069
32. Ocaña-Fuentes A, Arranz-Gutiérrez E, Señorans FJ, Reglero G. Supercritical fluid extraction of oregano (*Origanum vulgare*) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages. Food Chem Toxicol. 2010;48(6):1568-1575. doi:10.1016/j.fct.2010.03.026
33. Cho WS, Duffin R, Poland CA, et al. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect. 2010;118(12):1699-1706. doi:10.1289/ehp.1002201