An action of the free product $\mathbb{Z}_2 \ast \mathbb{Z}_2 \ast \mathbb{Z}_2$ on the q-Onsager algebra and its current algebra

Paul Terwilliger

Abstract

Recently Pascal Baseilhac and Stefan Kolb introduced some automorphisms T_0, T_1 of the q-Onsager algebra O_q, that are roughly analogous to the Lusztig automorphisms of $U_q(\hat{sl}_2)$. We use T_0, T_1 and a certain antiautomorphism of O_q to obtain an action of the free product $\mathbb{Z}_2 \ast \mathbb{Z}_2 \ast \mathbb{Z}_2$ on O_q as a group of (auto/antiauto)-morphisms. The action forms a pattern much more symmetric than expected. We show that a similar phenomenon occurs for the associated current algebra A_q. We give some conjectures and problems concerning O_q and A_q.

Keywords. q-Onsager algebra, current algebra, tridiagonal pair.

2010 Mathematics Subject Classification. Primary: 33D80. Secondary 17B40.

1 Introduction

We will be discussing the q-Onsager algebra O_q [2, 20]. This algebra is infinite-dimensional and noncommutative, with a presentation involving two generators and two relations called the q-Dolan/Grady relations. The algebra appears in a number of contexts which we now summarize. The algebra O_q is a q-deformation of the Onsager algebra from mathematical physics [17, 21, Remark 9.1] and is currently being used to investigate statistical mechanical models such as the XXZ open spin chain [1, 2, 4, 6–8]. The algebra O_q appears in the theory of tridiagonal pairs; this is a pair of diagonalizable linear transformations on a finite-dimensional vector space, each acting on the eigenspaces of the other in a block-tridiagonal fashion [13, 19]. A tridiagonal pair of q-Racah type [14] is essentially the same thing as a finite-dimensional irreducible O_q-module [20, Theorem 3.10]. See [12, 15, 16, 21] for work relating O_q and tridiagonal pairs. The algebra O_q comes up in algebraic combinatorics, in connection with the subconstituent algebra of a Q-polynomial distance-regular graph [13, 18]. This topic is where O_q originated; to our knowledge the q-Dolan/Grady relations first appeared in [18, Lemma 5.4]. The algebra O_q appears in the theory of quantum groups, as a coideal subalgebra of $U_q(\hat{sl}_2)$ [3, 11, 16]. There exists an injective algebra homomorphism from O_q into the algebra \square_q [23, Proposition 5.6], and a noninjective algebra homomorphism from O_q into the universal Askey-Wilson algebra [22, Sections 9, 10], [25].

We will be discussing some automorphisms and antiautomorphisms of O_q. In [9] Pascal Baseilhac and Stefan Kolb introduced two automorphisms T_0, T_1 of O_q that are roughly
We now consider some automorphisms of \mathcal{O}_q. More information about T_0, T_1 is given in [24]. Using T_0, T_1 and a certain antiautomorphism of \mathcal{O}_q, we will obtain an action of the free product $\mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2$ on \mathcal{O}_q as a group of (auto/antiauto)-morphisms. The action seems remarkable because it forms a pattern much more symmetric than expected. We show that a similar phenomenon occurs for the current algebra \mathcal{A}_q of \mathcal{O}_q. Our main results are Theorem 2.11 and Theorem 3.9. At the end of the paper we give some conjectures and problems concerning \mathcal{O}_q and \mathcal{A}_q.

2 The q-Onsager algebra \mathcal{O}_q

We will define the q-Onsager algebra after a few comments. Let \mathbb{F} denote a field. All vector spaces discussed in this paper are over \mathbb{F}. All algebras discussed in this paper are associative, over \mathbb{F}, and have a multiplicative identity. A subalgebra has the same multiplicative identity as the parent algebra. For an algebra \mathcal{A}, an automorphism of \mathcal{A} is an algebra isomorphism $\mathcal{A} \to \mathcal{A}$. An antiautomorphism of \mathcal{A} is an \mathbb{F}-linear bijection $\sigma : \mathcal{A} \to \mathcal{A}$ such that $(XY)^\sigma = Y^\sigma X^\sigma$ for all $X, Y \in \mathcal{A}$. If \mathcal{A} is commutative, then there is no difference between an automorphism and antiautomorphism of \mathcal{A}. If \mathcal{A} is noncommutative, then no map is both an automorphism and antiautomorphism of \mathcal{A}. Recall the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$. Fix $0 \neq q \in \mathbb{F}$ that is not a root of unity. We will use the notation

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}} \quad n \in \mathbb{N}.$$

Definition 2.1. (See [2] Section 2, [20] Definition 3.9.) Define the algebra \mathcal{O}_q by generators A, B and relations

\begin{align*}
A^3 B - [3]_q A^2 B A + [3]_q A B A^2 - B A^3 &= (q^2 - q^{-2})^2(BA - AB), \tag{1} \\
B^3 A - [3]_q B^2 A B + [3]_q B A B^2 - B A^3 &= (q^2 - q^{-2})^2(AB - BA). \tag{2}
\end{align*}

We call \mathcal{O}_q the q-Onsager algebra. The relations (1), (2) are called the q-Dolan/Grady relations.

We now consider some automorphisms of \mathcal{O}_q. By the form of the relations (1), (2) there exists an automorphism of \mathcal{O}_q that swaps A, B. The following automorphisms of \mathcal{O}_q are less obvious. In [9] Pascal Baseilhac and Stefan Kolb introduced some automorphisms T_0, T_1 of \mathcal{O}_q that satisfy

\begin{align*}
T_0(A) &= A, & T_0(B) &= B + \frac{q A^2 B - (q + q^{-1}) ABA + q^{-1} BA^2}{(q - q^{-1})(q^2 - q^{-2})}, \tag{3} \\
T_1(B) &= B, & T_1(A) &= A + \frac{q B^2 A - (q + q^{-1}) BAB + q^{-1} AB^2}{(q - q^{-1})(q^2 - q^{-2})}. \tag{4}
\end{align*}

The inverse automorphisms satisfy

\begin{align*}
T_0^{-1}(A) &= A, & T_0^{-1}(B) &= B + \frac{q^{-1} A^2 B - (q + q^{-1}) ABA + qBA^2}{(q - q^{-1})(q^2 - q^{-2})}, \tag{5} \\
T_1^{-1}(B) &= B, & T_1^{-1}(A) &= A + \frac{q^{-1} B^2 A - (q + q^{-1}) BAB + qAB^2}{(q - q^{-1})(q^2 - q^{-2})}. \tag{6}
\end{align*}
In [9] the automorphisms T_0, T_1 are used to construct a Poincaré-Birkhoff-Witt (or PBW) basis for \mathcal{O}_q. In that construction the following result is used.

Lemma 2.2. (See [9, Lemma 3.1].) For the algebra \mathcal{O}_q, the map T_0 sends
\[qBA - q^{-1}AB \mapsto qAB - q^{-1}BA, \]
and the map T_1 sends
\[qAB - q^{-1}BA \mapsto qBA - q^{-1}AB. \]

Proof. The map T_0 is an automorphism of \mathcal{O}_q that fixes A. Therefore, T_0 sends $qBA - q^{-1}AB \mapsto qT_0(B)A - q^{-1}AT_0(B)$. To check that $qT_0(B)A - q^{-1}AT_0(B) = qAB - q^{-1}BA$, eliminate $T_0(B)$ using (3) and evaluate the result using (1). We have verified the assertion about T_0. The assertion about T_1 is similarly verified. □

The automorphism group $\text{Aut}(\mathcal{O}_q)$ consists of the automorphisms of the algebra \mathcal{O}_q; the group operation is composition.

Definition 2.3. Let N denote the subgroup of $\text{Aut}(\mathcal{O}_q)$ generated by $T_0^\pm 1, T_1^\pm 1$.

Lemma 2.4. (See [25, Section 1].) The group N is freely generated by $T_0^\pm 1, T_1^\pm 1$.

We have been discussing automorphisms of \mathcal{O}_q. We now bring in antiautomorphisms of \mathcal{O}_q.

Lemma 2.5. There exists an antiautomorphism S of \mathcal{O}_q that fixes A and B. Moreover $S^2 = 1$.

Proof. By the form of the q-Dolan/Grady relations. □

The antiautomorphism S is related to the automorphisms T_0, T_1 in the following way.

Lemma 2.6. For the algebra \mathcal{O}_q,
\[ST_0S = T_0^{-1}, \quad ST_1S = T_1^{-1}. \]

Proof. We verify the equation on the left in (9). In that equation, each side is an automorphism of \mathcal{O}_q. These automorphisms agree at A and B; this is checked using (5) and (5). These automorphisms are equal since A, B generate \mathcal{O}_q. We have verified the equation on the left in (9). The equation on the right in (9) is similarly verified. □

Let $\text{AAut}(\mathcal{O}_q)$ denote the group consisting of the automorphisms and antiautomorphisms of \mathcal{O}_q; the group operation is composition. The group $\text{Aut}(\mathcal{O}_q)$ is a normal subgroup of $\text{AAut}(\mathcal{O}_q)$ with index 2. An element of $\text{AAut}(\mathcal{O}_q)$ will be called an (auto/antiauto)-morphism of \mathcal{O}_q.

Definition 2.7. Let H denote the subgroup of $\text{AAut}(\mathcal{O}_q)$ generated by S. Let G denote the subgroup of $\text{AAut}(\mathcal{O}_q)$ generated by H and N.

Lemma 2.8. The following (i)–(iv) hold.
(i) The group H has order 2 and is not contained in N.

(ii) The group N is a normal subgroup of G with index 2.

(iii) $G = N \rtimes H$ (semidirect product).

(iv) $N = \text{Aut}(O_q) \cap G$.

Proof. (i) The group H has order 2 by the last assertion of Lemma 2.5. The group H is not contained in N, since $\text{Aut}(O_q)$ contains N but not S.

(ii) By Lemma 2.6 and part (i) above.

(iii) By parts (i), (ii) above.

(iv) The group G is the union of cosets N and NS. The elements of N are in $\text{Aut}(O_q)$, and the elements of NS are not in $\text{Aut}(O_q)$.

We now consider G from another point of view. Let Z_2 denote the group with two elements. The free product $Z_2 \ast Z_2 \ast Z_2$ has a presentation by generators a, b, c and relations $a^2 = b^2 = c^2 = 1$. Shortly we will display a group isomorphism $Z_2 \ast Z_2 \ast Z_2 \rightarrow G$. To motivate this isomorphism we give a second presentation of $Z_2 \ast Z_2 \ast Z_2$ by generators and relations.

Lemma 2.9. The group $Z_2 \ast Z_2 \ast Z_2$ is isomorphic to the group defined by generators $s, t_0^{\pm 1}, t_1^{\pm 1}$ and relations

\begin{align*}
 t_0t_0^{-1} &= t_0^{-1}t_0 = 1, \\
 t_1t_1^{-1} &= t_1^{-1}t_1 = 1, \\
 s^2 &= 1, \\
 st_0s &= t_0^{-1}, \\
 st_1s &= t_1^{-1}.
\end{align*}

An isomorphism sends

\begin{align*}
 a &\mapsto st_1, \\
 b &\mapsto t_0s, \\
 c &\mapsto s.
\end{align*}

The inverse isomorphism sends

\begin{align*}
 t_0 &\mapsto bc, \\
 t_0^{-1} &\mapsto cb, \\
 t_1 &\mapsto ca, \\
 t_1^{-1} &\mapsto ac, \\
 s &\mapsto c.
\end{align*}

Proof. One checks that each map is a group homomorphism and the maps are inverses. Consequently each map is a group isomorphism.

Proposition 2.10. There exists a group isomorphism $Z_2 \ast Z_2 \ast Z_2 \rightarrow G$ that sends

\begin{align*}
 a &\mapsto ST_1, \\
 b &\mapsto T_0S, \\
 c &\mapsto S.
\end{align*}

The inverse isomorphism sends

\begin{align*}
 T_0 &\mapsto bc, \\
 T_0^{-1} &\mapsto cb, \\
 T_1 &\mapsto ca, \\
 T_1^{-1} &\mapsto ac, \\
 S &\mapsto c.
\end{align*}

Proof. For notational convenience we identify the group $Z_2 \ast Z_2 \ast Z_2$ with the group defined in Lemma 2.9 via the isomorphism in Lemma 2.9. Comparing (11) with the relations in Lemmas 2.5, 2.6 we obtain a surjective group homomorphism $\gamma : Z_2 \ast Z_2 \ast Z_2 \rightarrow G$ that sends $s \mapsto S$ and $t_0^{\pm 1} \mapsto T_0^{\pm 1}$ and $t_1^{\pm 1} \mapsto T_1^{\pm 1}$. Using the identification (12) we find that γ acts as in (14). We show that γ is an isomorphism. Let \mathcal{N} denote the subgroup of $Z_2 \ast Z_2 \ast Z_2$ generated by $t_0^{\pm 1}, t_1^{\pm 1}$. From the relations (11) we see that $Z_2 \ast Z_2 \ast Z_2$ is the union of \mathcal{N} and $\mathcal{N}s$. We have $\gamma(\mathcal{N}) = N$ and $\gamma(\mathcal{N}s) = NS$. The cosets \mathcal{N}, NS are disjoint and N contains the identity, so the kernel of γ is contained in \mathcal{N}. This kernel is the identity by Lemma 2.4. Therefore γ is injective and hence an isomorphism. Line (15) follows from (13).
We now give our first main result. For notational convenience define
\[
C = \frac{q^{-1}BA - qAB}{q^2 - q^{-2}}. \tag{16}
\]

Theorem 2.11. The free product \(\mathbb{Z}_2 \ast \mathbb{Z}_2 \ast \mathbb{Z}_2\) acts on the algebra \(O_q\) as a group of (auto/antiauto)-morphisms in the following way.

(i) The generator \(a\) acts as an antiautomorphism that sends
\[
A \mapsto A + \frac{BC - CB}{q - q^{-1}}, \quad B \mapsto B, \quad C \mapsto C. \tag{17}
\]

(ii) The generator \(b\) acts as an antiautomorphism that sends
\[
B \mapsto B + \frac{CA - AC}{q - q^{-1}}, \quad C \mapsto C, \quad A \mapsto A. \tag{18}
\]

(iii) The generator \(c\) acts as an antiautomorphism that sends
\[
C \mapsto C + \frac{AB - BA}{q - q^{-1}}, \quad A \mapsto A, \quad B \mapsto B. \tag{19}
\]

(iv) On \(O_q\),
\[
a = ST_1 = T_1^{-1}S, \quad b = T_0S = ST_0^{-1}, \quad c = S, \tag{20}
\]
\[
T_0 = bc, \quad T_0^{-1} = cb, \quad T_1 = ca, \quad T_1^{-1} = ac. \tag{21}
\]

The above \(\mathbb{Z}_2 \ast \mathbb{Z}_2 \ast \mathbb{Z}_2\) action is faithful.

Proof. By Lemma 2.6 and Proposition 2.10, the group \(\mathbb{Z}_2 \ast \mathbb{Z}_2 \ast \mathbb{Z}_2\) acts faithfully on \(O_q\) as a group of (auto/antiauto)-morphisms in a way that satisfies (20), (21). By (20), each of \(a, b, c\) acts on \(O_q\) as an antiautomorphism. Their actions (17)–(19) are routinely obtained using (3)–(6) and (16), along with Lemmas 2.2, 2.5.

Note 2.12. Motivated by Theorem 2.11, one might conjecture that there exists an automorphism of \(O_q\) that sends \(A \mapsto B \mapsto C \mapsto A\). This conjecture is false, since \(A, B\) satisfy the \(q\)-Dolan/Grady relations and \(B, C\) do not. This last assertion can be checked by considering the actions of \(B, C\) on the 4-dimensional \(O_q\)-module given in the proof of [22, Lemma 10.8].

3 The current algebra \(A_q\)

In the previous section we obtained an action of \(\mathbb{Z}_2 \ast \mathbb{Z}_2 \ast \mathbb{Z}_2\) on the \(q\)-Onsager algebra \(O_q\). In this section we do something similar for the corresponding current algebra \(A_q\). In [6] Baseilhac and Koizumi introduce \(A_q\) in order to solve boundary integrable systems with hidden symmetries related to a coideal subalgebra of \(U_q(\widehat{sl}_2)\). In [10, Definition 3.1] Baseilhac and K. Shigechi give a presentation of \(A_q\) by generators and relations. The generators are
denoted \mathcal{W}_k, \mathcal{W}_{k+1}, \mathcal{G}_{k+1}, $\tilde{\mathcal{G}}_{k+1}$, where $k \in \mathbb{N}$. In [5, Lemma 2.1], Baseilhac and S. Belliard display some central elements $\{\Delta_{k+1}\}_{k \in \mathbb{N}}$ for \mathcal{A}_q. In [5, Corollary 3.1], it is shown that \mathcal{A}_q is generated by these central elements together with $\mathcal{W}_0, \mathcal{W}_1$. The elements $\mathcal{W}_0, \mathcal{W}_1$ satisfy the q-Dolan/Grady relations [5, eqn. (3.7)]. In [5, Conjecture 2] it is conjectured that \mathcal{O}_q is a homomorphic image of \mathcal{A}_q. We now recall the definition of \mathcal{A}_q.

Definition 3.1. (See [6], [10, Definition 3.1].) Define the algebra \mathcal{A}_q by generators

$$W_{-k}, \quad W_{k+1}, \quad G_{k+1}, \quad \tilde{G}_{k+1}, \quad k \in \mathbb{N}$$

(22)

and relations

$$[W_0, W_{k+1}] = [W_{-k}, W_1] = (\tilde{G}_{k+1} - G_{k+1})/(q + q^{-1}),$$

(23)

$$[W_0, G_{k+1}]_q = [\tilde{G}_{k+1}, W_0]_q = \rho W_{-k-1} - \rho W_{k+1},$$

(24)

$$[G_{k+1}, W_1]_q = [W_1, \tilde{G}_{k+1}]_q = \rho W_{k+2} - \rho W_{-k},$$

(25)

$$[W_{-k}, W_{-\ell}] = 0, \quad [W_{k+1}, W_{\ell+1}] = 0,$$

(26)

$$[W_{-k}, W_{\ell+1}] + [W_{k+1}, W_{-\ell}] = 0,$$

(27)

$$[W_{-k}, G_{\ell+1}] + [G_{k+1}, W_{-\ell}] = 0,$$

(28)

$$[W_{-k}, \tilde{G}_{\ell+1}] + [\tilde{G}_{k+1}, W_{-\ell}] = 0,$$

(29)

$$[W_{k+1}, G_{\ell+1}] + [G_{k+1}, W_{\ell+1}] = 0,$$

(30)

$$[W_{k+1}, \tilde{G}_{\ell+1}] + [\tilde{G}_{k+1}, W_{\ell+1}] = 0,$$

(31)

$$[G_{k+1}, G_{\ell+1}] = 0, \quad [\tilde{G}_{k+1}, \tilde{G}_{\ell+1}] = 0,$$

(32)

$$[\tilde{G}_{k+1}, G_{\ell+1}] + [G_{k+1}, \tilde{G}_{\ell+1}] = 0.$$

(33)

In the above equations $\ell \in \mathbb{N}$ and $\rho = -(q^2 - q^{-2})^2$. We are using the notation $[X, Y] = XY - YX$ and $[X, Y]_q = qXY - q^{-1}YX$.

There is a redundancy among the generators (22), since we could use (23) to eliminate $\{G_{k+1}\}_{k \in \mathbb{N}}$ or $\{\tilde{G}_{k+1}\}_{k \in \mathbb{N}}$ in (24)–(33). These eliminations yield the equations in the next lemma.

Lemma 3.2. The following equations hold in \mathcal{A}_q. For $k \in \mathbb{N},$

$$[[W_{k+1}, W_0], W_0] = [G_{k+1}, W_0],$$

(34)

$$[W_1, [W_1, W_{-k}]] = [W_1, G_{k+1}],$$

(35)

$$[W_0, [W_0, W_{k+1}]] = [W_0, \tilde{G}_{k+1}],$$

(36)

$$[[W_{-k}, W_1], W_1] = [\tilde{G}_{k+1}, W_1].$$

(37)

For $k, \ell \in \mathbb{N},$

$$[[W_0, W_{k+1}], [W_0, W_{\ell+1}]] = 0,$$

(38)

$$[[W_1, W_{-k}], [W_1, W_{-\ell}]] = 0.$$

(39)

We now consider some automorphisms of \mathcal{A}_q.

6
Lemma 3.3. (See [5] Remarks 1, 2.) There exists an automorphism Ω of A_q that sends $\mathcal{W}_{-k} \leftrightarrow \mathcal{W}_{k+1}$ and $\mathcal{G}_{k+1} \leftrightarrow \tilde{\mathcal{G}}_{k+1}$ for $k \in \mathbb{N}$. Moreover Ω fixes Δ_{k+1} for $k \in \mathbb{N}$. We have $\Omega^2 = 1$.

Lemma 3.4. (See [24] Proposition 7.4.) There exists an automorphism T_0 of the algebra A_q that acts as follows. For $k \in \mathbb{N}$, T_0 sends

- $\mathcal{W}_{-k} \mapsto \mathcal{W}_{-k}$,
- $\mathcal{W}_{k+1} \mapsto \mathcal{W}_{k+1} + \frac{q \mathcal{W}_0^2 \mathcal{W}_{k+1} - (q + q^{-1}) \mathcal{W}_0 \mathcal{W}_{k+1} \mathcal{W}_0 + q^{-1} \mathcal{W}_{k+1} \mathcal{W}_0^2}{(q - q^{-1})(q^2 - q^{-2})}$,
- $\mathcal{G}_{k+1} \mapsto \mathcal{G}_{k+1} + \frac{q \mathcal{W}_0^2 \mathcal{G}_{k+1} - (q + q^{-1}) \mathcal{W}_0 \mathcal{G}_{k+1} \mathcal{W}_0 + q^{-1} \mathcal{G}_{k+1} \mathcal{W}_0^2}{(q - q^{-1})(q^2 - q^{-2})} = \tilde{\mathcal{G}}_{k+1}$,
- $\tilde{\mathcal{G}}_{k+1} \mapsto \tilde{\mathcal{G}}_{k+1} + \frac{q \mathcal{W}_0^2 \tilde{\mathcal{G}}_{k+1} - (q + q^{-1}) \mathcal{W}_0 \tilde{\mathcal{G}}_{k+1} \mathcal{W}_0 + q^{-1} \tilde{\mathcal{G}}_{k+1} \mathcal{W}_0^2}{(q - q^{-1})(q^2 - q^{-2})}$,
- $\Delta_{k+1} \mapsto \Delta_{k+1}$.

Moreover T_0^{-1} sends

- $\mathcal{W}_{-k} \mapsto \mathcal{W}_{-k}$,
- $\mathcal{W}_{k+1} \mapsto \mathcal{W}_{k+1} + \frac{q^{-1} \mathcal{W}_0^2 \mathcal{W}_{k+1} - (q + q^{-1}) \mathcal{W}_0 \mathcal{W}_{k+1} \mathcal{W}_0 + q \mathcal{W}_{k+1} \mathcal{W}_0^2}{(q - q^{-1})(q^2 - q^{-2})}$,
- $\mathcal{G}_{k+1} \mapsto \mathcal{G}_{k+1} + \frac{q^{-1} \mathcal{W}_0^2 \mathcal{G}_{k+1} - (q + q^{-1}) \mathcal{W}_0 \mathcal{G}_{k+1} \mathcal{W}_0 + q \mathcal{G}_{k+1} \mathcal{W}_0^2}{(q - q^{-1})(q^2 - q^{-2})}$,
- $\tilde{\mathcal{G}}_{k+1} \mapsto \tilde{\mathcal{G}}_{k+1} + \frac{q^{-1} \mathcal{W}_0^2 \tilde{\mathcal{G}}_{k+1} - (q + q^{-1}) \mathcal{W}_0 \tilde{\mathcal{G}}_{k+1} \mathcal{W}_0 + q \tilde{\mathcal{G}}_{k+1} \mathcal{W}_0^2}{(q - q^{-1})(q^2 - q^{-2})} = \mathcal{G}_{k+1}$,
- $\Delta_{k+1} \mapsto \Delta_{k+1}$.

Definition 3.5. Define $T_1 = \Omega T_0 \Omega$, where Ω is from Lemma 3.3 and T_0 is from Lemma 3.4. By construction T_1 is an automorphism of the algebra A_q.

Lemma 3.6. For $k \in \mathbb{N}$, T_1 sends

- $\mathcal{W}_{k+1} \mapsto \mathcal{W}_{k+1}$,
- $\mathcal{W}_{-k} \mapsto \mathcal{W}_{-k} + \frac{q \mathcal{W}_0^2 \mathcal{W}_{-k} - (q + q^{-1}) \mathcal{W}_0 \mathcal{W}_{-k} \mathcal{W}_1 + q^{-1} \mathcal{W}_{-k} \mathcal{W}_1^2}{(q - q^{-1})(q^2 - q^{-2})}$,
- $\mathcal{G}_{k+1} \mapsto \mathcal{G}_{k+1} + \frac{q \mathcal{W}_0^2 \mathcal{G}_{k+1} - (q + q^{-1}) \mathcal{W}_0 \mathcal{G}_{k+1} \mathcal{W}_1 + q^{-1} \mathcal{G}_{k+1} \mathcal{W}_1^2}{(q - q^{-1})(q^2 - q^{-2})}$,
- $\tilde{\mathcal{G}}_{k+1} \mapsto \tilde{\mathcal{G}}_{k+1} + \frac{q \mathcal{W}_0^2 \tilde{\mathcal{G}}_{k+1} - (q + q^{-1}) \mathcal{W}_0 \tilde{\mathcal{G}}_{k+1} \mathcal{W}_1 + q^{-1} \tilde{\mathcal{G}}_{k+1} \mathcal{W}_1^2}{(q - q^{-1})(q^2 - q^{-2})} = \mathcal{G}_{k+1}$,
- $\Delta_{k+1} \mapsto \Delta_{k+1}$.
Moreover T_1^{-1} sends
\[\mathcal{W}_{k+1} \mapsto \mathcal{W}_{k+1}, \]
\[\mathcal{W}_{-k} \mapsto \mathcal{W}_{-k} + \frac{q^{-1}\mathcal{W}_0^2\mathcal{W}_{-k} - (q + q^{-1})\mathcal{W}_1\mathcal{W}_{-k}\mathcal{W}_1 + q\mathcal{W}_{-k}\mathcal{W}_1^2}{(q - q^{-1})(q^2 - q^{-2})}, \]
\[\mathcal{G}_{k+1} \mapsto \mathcal{G}_{k+1} + \frac{q^{-1}\mathcal{W}_0^2\mathcal{G}_{k+1} - (q + q^{-1})\mathcal{W}_1\mathcal{G}_{k+1}\mathcal{W}_1 + q\mathcal{G}_{k+1}\mathcal{W}_1^2}{(q - q^{-1})(q^2 - q^{-2})} = \mathcal{G}_{k+1}, \]
\[\tilde{\mathcal{G}}_{k+1} \mapsto \tilde{\mathcal{G}}_{k+1} + \frac{q^{-1}\mathcal{W}_0^2\tilde{\mathcal{G}}_{k+1} - (q + q^{-1})\mathcal{W}_1\tilde{\mathcal{G}}_{k+1}\mathcal{W}_1 + q\tilde{\mathcal{G}}_{k+1}\mathcal{W}_1^2}{(q - q^{-1})(q^2 - q^{-2})}, \]
\[\Delta_{k+1} \mapsto \Delta_{k+1}. \]

Proof. Use Lemma 3.4 and Definition 3.5. \(\square\)

We have been discussing automorphisms of A_q. We now consider antiautomorphisms of A_q.

Lemma 3.7. There exists an antiautomorphism S of A_q that sends
\[\mathcal{W}_{-k} \mapsto \mathcal{W}_{-k}, \quad \mathcal{W}_{k+1} \mapsto \mathcal{W}_{k+1}, \quad \mathcal{G}_{k+1} \mapsto \tilde{\mathcal{G}}_{k+1}, \quad \tilde{\mathcal{G}}_{k+1} \mapsto \mathcal{G}_{k+1} \]
For $k \in \mathbb{N}$. Moreover S fixes Δ_{k+1} for $k \in \mathbb{N}$. We have $S^2 = 1$.

Proof. The antiautomorphism S exists by the form of the defining relations (23)–(33) for A_q. The map S^2 is an automorphism of A_q that fixes $\mathcal{W}_{-k}, \mathcal{W}_{k+1}, \mathcal{G}_{k+1}, \tilde{\mathcal{G}}_{k+1}$ for $k \in \mathbb{N}$. These elements generate A_q, so $S^2 = 1$. For $k \in \mathbb{N}$ the map S fixes Δ_{k+1} by the form of Δ_{k+1} given in [5, Lemma 2.1]. \(\square\)

Lemma 3.8. For the algebra A_q,
\[ST_0 S = T_0^{-1}, \quad ST_1 S = T_1^{-1}. \] (40)

Proof. Similar to the proof of Lemma 2.6. \(\square\)

We now obtain our second main result. Recall the free product $\mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2$ from above Lemma 2.9 For $k \in \mathbb{N}$ define
\[\mathcal{W}_{-k}' = \mathcal{W}_{k+1}, \quad \mathcal{W}_{-k}'' = -\frac{\tilde{\mathcal{G}}_{k+1}}{q - q^{-1}}. \] (41)

Note by (23), (29), (31) that
\[[\mathcal{W}_{-k}, \mathcal{W}_0] = [\mathcal{W}_0, \mathcal{W}_{-k}'], \quad [\mathcal{W}_{-k}, \mathcal{W}_0'] = [\mathcal{W}_0', \mathcal{W}_{-k}'], \quad [\mathcal{W}_{-k}', \mathcal{W}_0] = [\mathcal{W}_0'', \mathcal{W}_{-k}]. \] (42)

Theorem 3.9. The free product $\mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2$ acts on the algebra A_q as a group of (auto/antiauto)-morphisms in the following way.

(i) The generator a acts as an antiautomorphism that sends
\[\mathcal{W}_{-k} \mapsto \mathcal{W}_{-k} + \frac{[\mathcal{W}_{-k}', \mathcal{W}_0']}{q - q^{-1}}, \]
\[\mathcal{W}_{-k}' \mapsto \mathcal{W}_{-k}', \quad \mathcal{W}_{-k}'' \mapsto \mathcal{W}_{-k}'', \quad \Delta_{k+1} \mapsto \Delta_{k+1}. \]
(ii) The generator b acts as an antiautomorphism that sends
\[W'_{-k} \mapsto W'_{-k} + \frac{[W''_{-k}, W_0]}{q - q^{-1}}, \]
\[W''_{-k} \mapsto W''_{-k}, \]
\[W_{-k} \mapsto W_{-k}, \]
\[\Delta_{k+1} \mapsto \Delta_{k+1}. \]

(iii) The generator c acts as an antiautomorphism that sends
\[W''_{-k} \mapsto W''_{-k} + \frac{[W_{-k}, W_0]}{q - q^{-1}}, \]
\[W_{-k} \mapsto W_{-k}, \]
\[W'_{-k} \mapsto W'_{-k}, \]
\[\Delta_{k+1} \mapsto \Delta_{k+1}. \]

(iv) On A_q,
\[a = ST_1 = T_1^{-1}S, \quad b = T_0S = ST_0^{-1}, \quad c = S, \quad (43) \]
\[T_0 = bc, \quad T_0^{-1} = cb, \quad T_1 = ca, \quad T_1^{-1} = ac. \quad (44) \]

Proof. For notational convenience we identify the group $\mathbb{Z}_2 \ast \mathbb{Z}_2 \ast \mathbb{Z}_2$ with the group defined in Lemma 2.9 via the isomorphism in Lemma 2.9. Comparing (11) with the relations in Lemmas 3.7, 3.8, we obtain a group homomorphism $\mathbb{Z}_2 \ast \mathbb{Z}_2 \ast \mathbb{Z}_2 \to \text{AAut}(A_q)$ that sends $s \mapsto S$ and $t_0^{\pm 1} \mapsto T_0^{\pm 1}$ and $t_1^{\pm 1} \mapsto T_1^{\pm 1}$. This group homomorphism gives an action of $\mathbb{Z}_2 \ast \mathbb{Z}_2 \ast \mathbb{Z}_2$ on the algebra A_q as a group of (auto/antiauto)-morphisms such that s, $t_0^{\pm 1}$, $t_1^{\pm 1}$ act as S, $T_0^{\pm 1}$, $T_1^{\pm 1}$, respectively. Using the identifications (12), (13) we find that this action satisfies condition (iv) in the theorem statement. By (43) each of a, b, c acts on A_q as an antiautomorphism. For these elements the action on W_{-k}, W'_{-k}, W''_{-k}, Δ_{k+1} is routinely obtained using Lemmas 3.4, 3.6, 3.7 along with Lemma 3.2 and (42). \qed

4 Suggestions for future research

In this section we give some conjectures and problems concerning O_q and A_q.

Earlier in this paper we gave a $\mathbb{Z}_2 \ast \mathbb{Z}_2 \ast \mathbb{Z}_2$ action on O_q and A_q. It is natural to ask whether these algebras are characterized by this sort of $\mathbb{Z}_2 \ast \mathbb{Z}_2 \ast \mathbb{Z}_2$ action. As we pursue this question, let us begin with the simpler case of O_q. The following concept is motivated by Theorem 2.11.

Definition 4.1. Let \mathcal{A} denote an algebra. A sequence A, B, C of elements in \mathcal{A} is called a **flipping triple** whenever:

(i) there exists an antiautomorphism of \mathcal{A} that sends
\[A \mapsto A + BC - CB, \quad B \mapsto B, \quad C \mapsto C; \]
(ii) there exists an antiautomorphism of \(\mathcal{A} \) that sends
\[
B \mapsto B + CA - AC, \quad C \mapsto C, \quad A \mapsto A;
\]
(iii) there exists an antiautomorphism of \(\mathcal{A} \) that sends
\[
C \mapsto C + AB - BA, \quad A \mapsto A, \quad B \mapsto B;
\]
(iv) the algebra \(\mathcal{A} \) is generated by \(A, B, C \).

Example 4.2. Recall from Definition [2.1] the generators \(A, B \) for the \(q \)-Onsager algebra \(\mathcal{O}_q \). Recall the element \(C \) from (16). By Theorem [2.11] the sequence \(A/(q - q^{-1}), B/(q - q^{-1}), C/(q - q^{-1}) \) is a flipping triple for \(\mathcal{O}_q \).

Example 4.3. Assume that \(A, B, C \) freely generate \(\mathcal{A} \). One routinely checks that \(A, B, C \) is a flipping triple for \(\mathcal{A} \).

Problem 4.4. Find all the sequences \(A, B, C, \mathcal{A} \) such that \(A, B, C \) is a flipping triple in the algebra \(\mathcal{A} \).

We define some notation. Let \(\lambda_1, \lambda_2, \ldots \) denote mutually commuting indeterminates. Let \(\mathbb{F}[\lambda_1, \lambda_2, \ldots] \) denote the algebra of polynomials in \(\lambda_1, \lambda_2, \ldots \) that have all coefficients in \(\mathbb{F} \). For a subset \(Y \subseteq \mathcal{A}_q \) let \(\langle Y \rangle \) denote the subalgebra of \(\mathcal{A}_q \) generated by \(Y \). Shortly we will encounter some tensor products. All tensor products in this paper are understood to be over \(\mathbb{F} \).

The following conjecture about \(\mathcal{A}_q \) is a variation on [5, Conjecture 1].

Conjecture 4.5. The following (i)–(v) hold:

(i) there exists an algebra isomorphism \(\mathbb{F}[\lambda_1, \lambda_2, \ldots] \rightarrow \langle \mathcal{W}_0, \mathcal{W}_{-1}, \ldots \rangle \) that sends \(\lambda_{k+1} \mapsto \mathcal{W}_{-k} \) for \(k \in \mathbb{N} \);

(ii) there exists an algebra isomorphism \(\mathbb{F}[\lambda_1, \lambda_2, \ldots] \rightarrow \langle \mathcal{W}_1, \mathcal{W}_2, \ldots \rangle \) that sends \(\lambda_{k+1} \mapsto \mathcal{W}_{k+1} \) for \(k \in \mathbb{N} \);

(iii) there exists an algebra isomorphism \(\mathbb{F}[\lambda_1, \lambda_2, \ldots] \rightarrow \langle \mathcal{G}_1, \mathcal{G}_2, \ldots \rangle \) that sends \(\lambda_{k+1} \mapsto \mathcal{G}_{k+1} \) for \(k \in \mathbb{N} \);

(iv) there exists an algebra isomorphism \(\mathbb{F}[\lambda_1, \lambda_2, \ldots] \rightarrow \langle \tilde{\mathcal{G}}_1, \tilde{\mathcal{G}}_2, \ldots \rangle \) that sends \(\lambda_{k+1} \mapsto \tilde{\mathcal{G}}_{k+1} \) for \(k \in \mathbb{N} \);

(v) the multiplication map
\[
\langle \mathcal{W}_0, \mathcal{W}_{-1}, \ldots \rangle \otimes \langle \mathcal{G}_1, \mathcal{G}_2, \ldots \rangle \otimes \langle \tilde{\mathcal{G}}_1, \tilde{\mathcal{G}}_2, \ldots \rangle \otimes \langle \mathcal{W}_1, \mathcal{W}_2, \ldots \rangle \rightarrow \mathcal{A}_q
\]
\[
u \otimes v \otimes w \otimes x \mapsto uvvx
\]
is an isomorphism of vector spaces.
A proof of Conjecture 4.5 would yield a PBW basis for \mathcal{A}_q.

The next conjecture concerns the center $Z(\mathcal{A}_q)$.

Conjecture 4.6. The following (i)–(iii) hold:

(i) there exists an algebra isomorphism $F[\lambda_1, \lambda_2, \ldots] \to Z(\mathcal{A}_q)$ that sends $\lambda_{k+1} \mapsto \Delta_{k+1}$ for $k \in \mathbb{N}$;

(ii) there exists an algebra isomorphism $O_q \to \langle W_0, W_1 \rangle$ that sends $A \mapsto W_0$ and $B \mapsto W_1$;

(iii) the multiplication map

$$\langle W_0, W_1 \rangle \otimes Z(\mathcal{A}_q) \to \mathcal{A}_q$$

$$u \otimes v \mapsto uv$$

is an isomorphism of algebras.

A proof of Conjecture 4.6 would yield an algebra isomorphism $O_q \otimes F[\lambda_1, \lambda_2, \ldots] \to \mathcal{A}_q$.

Above Lemma 3.2 we mentioned a redundancy among the generators (22) of \mathcal{A}_q. We now pursue this theme more deeply. Using (23) we eliminate the generators $\{G_{k+1}\}_{k \in \mathbb{N}}$:

$$G_{k+1} = \tilde{G}_{k+1} + (q + q^{-1})[W_1, W_{-k}] \quad (k \in \mathbb{N}).$$

Next we use (24), (25) to recursively eliminate W_{-k}, W_{k+1} for $k \geq 1$:

$$W_{-1} = W_1 - \frac{[\tilde{G}_1, W_0]_q}{(q^2 - q^{-2})^2},$$

$$W_3 = W_1 - \frac{[\tilde{G}_1, W_0]_q}{(q^2 - q^{-2})^2} - \frac{[W_1, \tilde{G}_2]_q}{(q^2 - q^{-2})^2},$$

$$W_{-3} = W_1 - \frac{[\tilde{G}_1, W_0]_q}{(q^2 - q^{-2})^2} - \frac{[W_1, \tilde{G}_2]_q}{(q^2 - q^{-2})^2} - \frac{[\tilde{G}_3, W_0]_q}{(q^2 - q^{-2})^2},$$

$$W_5 = W_1 - \frac{[\tilde{G}_1, W_0]_q}{(q^2 - q^{-2})^2} - \frac{[W_1, \tilde{G}_2]_q}{(q^2 - q^{-2})^2} - \frac{[\tilde{G}_3, W_0]_q}{(q^2 - q^{-2})^2} - \frac{[W_1, \tilde{G}_4]_q}{(q^2 - q^{-2})^2},$$

$$W_{-5} = W_1 - \frac{[\tilde{G}_1, W_0]_q}{(q^2 - q^{-2})^2} - \frac{[W_1, \tilde{G}_2]_q}{(q^2 - q^{-2})^2} - \frac{[\tilde{G}_3, W_0]_q}{(q^2 - q^{-2})^2} - \frac{[W_1, \tilde{G}_4]_q}{(q^2 - q^{-2})^2} - \frac{[\tilde{G}_5, W_0]_q}{(q^2 - q^{-2})^2},$$

$$\cdots$$
\[W_2 = W_0 - \frac{[W_1, \tilde{G}_1]}{(q^2 - q^{-2})^2}, \]
\[W_{-2} = W_0 - \frac{[W_1, \tilde{G}_1]}{(q^2 - q^{-2})^2} - \frac{[\tilde{G}_2, W_0]}{(q^2 - q^{-2})^2}, \]
\[W_4 = W_0 - \frac{[W_1, \tilde{G}_1]}{(q^2 - q^{-2})^2} - \frac{[\tilde{G}_2, W_0]}{(q^2 - q^{-2})^2} - \frac{[W_1, \tilde{G}_3]}{(q^2 - q^{-2})^2}, \]
\[W_{-4} = W_0 - \frac{[W_1, \tilde{G}_1]}{(q^2 - q^{-2})^2} - \frac{[\tilde{G}_2, W_0]}{(q^2 - q^{-2})^2} - \frac{[W_1, \tilde{G}_3]}{(q^2 - q^{-2})^2} - \frac{[\tilde{G}_4, W_0]}{(q^2 - q^{-2})^2}, \]
\[W_6 = W_0 - \frac{[W_1, \tilde{G}_1]}{(q^2 - q^{-2})^2} - \frac{[\tilde{G}_2, W_0]}{(q^2 - q^{-2})^2} - \frac{[W_1, \tilde{G}_3]}{(q^2 - q^{-2})^2} - \frac{[\tilde{G}_4, W_0]}{(q^2 - q^{-2})^2} - \frac{[W_1, \tilde{G}_5]}{(q^2 - q^{-2})^2}, \]

For any integer \(k \geq 1 \), the generators \(W_{-k}, W_{k+1} \) are given as follows.
For odd \(k = 2r + 1 \),
\[W_{-k} = W_1 - \sum_{\ell=0}^{r} \frac{[\tilde{G}_{2\ell+1}, W_0]}{(q^2 - q^{-2})^2} - \sum_{\ell=1}^{r} \frac{[W_1, \tilde{G}_{2\ell}]}{(q^2 - q^{-2})^2}, \]
\[W_{k+1} = W_0 - \sum_{\ell=0}^{r} \frac{[W_1, \tilde{G}_{2\ell+1}]}{(q^2 - q^{-2})^2} - \sum_{\ell=1}^{r} \frac{[\tilde{G}_{2\ell}, W_0]}{(q^2 - q^{-2})^2}. \]
For even \(k = 2r \),
\[W_{-k} = W_0 - \sum_{\ell=0}^{r-1} \frac{[W_1, \tilde{G}_{2\ell+1}]}{(q^2 - q^{-2})^2} - \sum_{\ell=1}^{r} \frac{[\tilde{G}_{2\ell}, W_0]}{(q^2 - q^{-2})^2}, \]
\[W_{k+1} = W_1 - \sum_{\ell=0}^{r-1} \frac{[\tilde{G}_{2\ell+1}, W_0]}{(q^2 - q^{-2})^2} - \sum_{\ell=1}^{r} \frac{[W_1, \tilde{G}_{2\ell}]}{(q^2 - q^{-2})^2}. \]

So far, we have expressed the generators \(\tilde{W}_k \) in terms of \(W_0, W_1, \{ \tilde{G}_k \}_{k \in \mathbb{N}} \). We now consider how these remaining generators are related to each other.

Lemma 4.7. The following relations hold in the algebra \(\mathcal{A}_q \):
\[[W_0, \tilde{G}_1] = [W_0, [W_0, W_1]], \]
\[[\tilde{G}_1, W_1] = [[W_0, W_1], W_1] \]
and for \(k \geq 1 \),
\[[\tilde{G}_{k+1}, W_0] = \frac{[W_0, [W_0, [W_0, \tilde{G}_k]]]}{(q^2 - q^{-2})^2}, \]
\[[W_1, \tilde{G}_{k+1}] = \frac{[[[W_0, W_0], W_1], W_1]}{(q^2 - q^{-2})^2}. \]
Proof. The first two relations are (36), (37) with $k = 0$. To obtain the third relation, use (36) and (25), (26) to obtain

\[
[\tilde{G}_{k+1}, W_0] = -[W_0, [W_0, [W_k, W_{k+1}]]_q]
\]
\[
= -[W_0, [W_0, W_{k+1}]]_q
\]
\[
= -[W_0, [W_0, W_{k+1} - W_{1-k}]]_q
\]
\[
= \frac{[W_0, [W_0, [W_1, \tilde{G}_k]]_q]}{(q^2 - q^{-2})^2}
\]
\[
= \frac{[W_0, [W_0, [W_1, \tilde{G}_k]]_q]}{(q^2 - q^{-2})^2}.
\]

The last relation is similarly obtained.

\[\square\]

Conjecture 4.8. The algebra A_q has a presentation by generators $W_0, W_1, \{\tilde{G}_{k+1}\}_{k\in\mathbb{N}}$ and relations

\[
[W_0, [W_0, [W_0, W_1]]_q] = (q^2 - q^{-2})^2[W_1, W_0],
\]
\[
[W_1, [W_1, [W_1, W_0]]_q] = (q^2 - q^{-2})^2[W_0, W_1],
\]
\[
[W_0, \tilde{G}_1] = [W_0, [W_0, W_1]]_q,
\]
\[
[\tilde{G}_1, W_1] = [[W_0, W_1]]_q,
\]
\[
[\tilde{G}_{k+1}, W_0] = \frac{[W_0, [W_0, [W_1, \tilde{G}_k]]_q]}{(q^2 - q^{-2})^2} \quad (k \geq 1),
\]
\[
[W_1, \tilde{G}_{k+1}] = \frac{[[[\tilde{G}_k, W_0]]_q, [W_1]]_q, W_1]}{(q^2 - q^{-2})^2} \quad (k \geq 1),
\]
\[
[\tilde{G}_{k+1}, \tilde{G}_{\ell+1}] = 0 \quad (k, \ell \in \mathbb{N}).
\]

5 Acknowledgment

The author thanks Pascal Baseilhac and Samuel Belliard for many discussions about the q-Onsager algebra and its current algebra.

References

[1] P. Baseilhac. An integrable structure related with tridiagonal algebras. Nuclear Phys. B 705 (2005) 605–619; \texttt{arXiv:math-ph/0408025}.

[2] P. Baseilhac. Deformed Dolan-Grady relations in quantum integrable models. Nuclear Phys. B 709 (2005) 491–521; \texttt{arXiv:hep-th/0404149}.

[3] P. Baseilhac and S. Belliard. Generalized q-Onsager algebras and boundary affine Toda field theories. Lett. Math. Phys. 93 (2010) 213–228; \texttt{arXiv:0906.1215}.
[4] P. Baseilhac and S. Belliard. The half-infinite XXZ chain in Onsager’s approach. *Nuclear Phys. B* 873 (2013) 550–584; [arXiv:1211.6304](https://arxiv.org/abs/1211.6304).

[5] P. Baseilhac and S. Belliard. An attractive basis for the q-Onsager algebra. [arXiv:1704.02950](https://arxiv.org/abs/1704.02950).

[6] P. Baseilhac and K. Koizumi. A new (in)finite dimensional algebra for quantum integrable models. *Nuclear Phys. B* 720 (2005) 325–347; [arXiv:math-ph/0503036](https://arxiv.org/abs/math-ph/0503036).

[7] P. Baseilhac and K. Koizumi. A deformed analogue of Onsager’s symmetry in the XXZ open spin chain. *J. Stat. Mech. Theory Exp.* 2005, no. 10, P10005, 15 pp. (electronic); [arXiv:hep-th/0507053](https://arxiv.org/abs/hep-th/0507053).

[8] P. Baseilhac and K. Koizumi. Exact spectrum of the XXZ open spin chain from the q-Onsager algebra representation theory. *J. Stat. Mech. Theory Exp.* 2007, no. 9, P09006, 27 pp. (electronic); [arXiv:hep-th/0703106](https://arxiv.org/abs/hep-th/0703106).

[9] P. Baseilhac and S. Kolb. Braid group action and root vectors for the q-Onsager algebra. [arXiv:1706.08747](https://arxiv.org/abs/1706.08747).

[10] P. Baseilhac and K. Shigechi. A new current algebra and the reflection equation. *Lett. Math. Phys.* 92 (2010) 47–65; [arXiv:0906.1482v2](https://arxiv.org/abs/0906.1482v2).

[11] S. Belliard and N. Crampe. Coideal algebras from twisted Manin triples. *J. Geom. Phys.* 62 (2012) 2009–2023; [arXiv:1202.2312](https://arxiv.org/abs/1202.2312).

[12] T. Ito, K. Nomura, P. Terwilliger. A classification of sharp tridiagonal pairs. *Linear Algebra Appl.* 435 (2011) 1857–1884; [arXiv:1001.1812](https://arxiv.org/abs/1001.1812).

[13] T. Ito, K. Tanabe, P. Terwilliger. Some algebra related to P- and Q-polynomial association schemes, in: *Codes and Association Schemes (Piscataway NJ, 1999)*, Amer. Math. Soc., Providence RI, 2001, pp. 167–192; [arXiv:math.CO/0406556](https://arxiv.org/abs/math.CO/0406556).

[14] T. Ito and P. Terwilliger. Tridiagonal pairs of q-Racah type. *J. Algebra* 322 (2009), 68–93; [arXiv:0807.0271](https://arxiv.org/abs/0807.0271).

[15] T. Ito and P. Terwilliger. The augmented tridiagonal algebra. *Kyushu J. Math.* 64 (2010) 81–144; [arXiv:0807.3990](https://arxiv.org/abs/0807.3990).

[16] S. Kolb. Quantum symmetric Kac-Moody pairs. *Adv. Math.* 267 (2014) 395-469; [arXiv:1207.6036](https://arxiv.org/abs/1207.6036).

[17] L. Onsager. Crystal statistics. I. A two-dimensional model with an order-disorder transition. *Phys. Rev. (2)* 65 (1944) 117–149.

[18] P. Terwilliger. The subconstituent algebra of an association scheme III. *J. Algebraic Combin.* 2 (1993) 177–210.

[19] P. Terwilliger. Two linear transformations each tridiagonal with respect to an eigenbasis of the other. *Linear Algebra Appl.* 330 (2001) 149–203; [arXiv:math.RA/0406555](https://arxiv.org/abs/math.RA/0406555).
[20] P. Terwilliger. Two relations that generalize the q-Serre relations and the Dolan-Grady relations. In *Physics and Combinatorics 1999 (Nagoya)*, 377–398, World Scientific Publishing, River Edge, NJ, 2001; [arXiv:math.QA/0307016](http://arxiv.org/abs/math.QA/0307016).

[21] P. Terwilliger. An algebraic approach to the Askey scheme of orthogonal polynomials. Orthogonal polynomials and special functions, 255–330, Lecture Notes in Math., 1883, Springer, Berlin, 2006; [arXiv:math.QA/0408390](http://arxiv.org/abs/math.QA/0408390).

[22] P. Terwilliger. The universal Askey-Wilson algebra. *SIGMA Symmetry Integrability Geom. Methods Appl.* 7 (2011) Paper 069, 22pp.

[23] P. Terwilliger. The q-Onsager algebra and the positive part of $U_q(\widehat{\mathfrak{sl}_2})$. *Linear Algebra Appl.* 521 (2017) 19–56; [arXiv:1506.08666](http://arxiv.org/abs/1506.08666).

[24] P. Terwilliger. The Lusztig automorphism of the q-Onsager algebra. *J. Algebra*. 506 (2018) 56–75; [arXiv:1706.05546](http://arxiv.org/abs/1706.05546).

[25] P. Terwilliger. The q-Onsager algebra and the universal Askey-Wilson algebra. *SIGMA Symmetry Integrability Geom. Methods Appl.* 14 (2018) Paper No. 044, 18 pp.

[26] P. Terwilliger and R. Vidunas. Leonard pairs and the Askey-Wilson relations. *J. Algebra Appl.* 3 (2004) 411–426; [arXiv:math.QA/0305356](http://arxiv.org/abs/math.QA/0305356).

Paul Terwilliger
Department of Mathematics
University of Wisconsin
480 Lincoln Drive
Madison, WI 53706-1388 USA
email: terwilli@math.wisc.edu