Safety and effectiveness of amoxicillin in the treatment of inflammatory acne

A.K. Guzman, MD a,⁎, J.K. Choi, MD b, W.D. James, MD b

a Division of Dermatology, Albert Einstein College of Medicine, Bronx, New York
b Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania

Article History:
Received 25 January 2018
Received in revised form 20 March 2018
Accepted 21 March 2018

Keywords:
Acne
pregnancy
amoxicillin
antibiotic medications

Acne is a common disease of the pilosebaceous unit, predominantly affecting teenagers and young adults. First-line treatment strategies are aimed at its pathogenetic mechanisms, including keratinocyte hyperproliferation, seborrhea, colonization of follicular ducts by Propionibacterium acnes, and inflammation (James, 2005). Systemic antibiotic therapy, when prescribed in combination with topical retinoids, benzoyl peroxide, hormonal therapy, and/or topical antibiotics, is indicated for moderate-to-severe inflammatory acne, typically in the form of tetracyclines, macrolides, and trimethoprim-sulfamethoxazole (Zaenglein et al., 2016). However, in certain cases, these antibiotics and other commonly prescribed treatments including oral contraceptives, spironolactone, and isotretinoin may be prohibited. These cases often involve pregnancy, drug intolerance, allergy, cost, and/or patient preference. In this retrospective study, we assessed the safety and efficacy of systemic amoxicillin, which has a favorable tolerability profile and compatibility with pregnancy in the treatment of inflammatory acne.

© 2018 The Authors. Published by Elsevier Inc. on behalf of Women’s Dermatologic Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
In this retrospective series, 84.6% of patients demonstrated clinical improvement in inflammatory acne with systemic amoxicillin prescribed in addition to topical and hormonal treatments. We recommend systemic antibiotics only in moderate-to-severe acne and in cases in which other regimens are poorly tolerated or contraindicated. Of note, the tetracycline class is considered first-line with doxycycline and minocycline demonstrating comparable efficacy (Garner et al., 2012). However, in addition to its contraindication in pregnancy, this antibiotic class is associated with adverse effects, including gastrointestinal distress and photosensitivity (doxycycline), and dizziness, tinnitus, and cutaneous pigment deposition (minocycline).

Limited data support the use of azithromycin (Fernandez-Obregon, 2000), cephalaxin (Fenner et al., 2008), and trimethoprim-sulfamethoxazole (Jen, 1980; Turowski and James, 2007) as second-line agents but they may be considered in patients who are intolerant of tetracyclines or with refractory disease. Limiting antibiotic use to the shortest possible duration is critical and may be facilitated with concomitant use of retinoids, benzoyl peroxide, and/or hormonal therapy or a retinoid/benzoyl peroxide regimen (Zaenglein et al., 2016). In patients for whom prolonged antibiotic therapy is required, regular follow-up and reassessment are paramount. Nonetheless, amoxicillin may represent a valuable second-line treatment option in inflammatory acne that warrants prospective exploration for its tolerability profile and pregnancy category B classification.

References

Fenner JA, Wiss K, Levin NA. Oral cephalaxin for acne vulgaris: Clinical experience with 93 patients. Pediatr Dermatol 2008;25(2):179–83.
Fernandez-Obregon AC. Azithromycin for the treatment of acne. Int J Dermatol 2000;39(1):45–50.
Garner SE, Eady A, Bennett C, Newton JN, Thomas K, Popescu CM. Minocycline for acne vulgaris: Efficacy and safety. Cochrane Database Syst Rev 2012;8:CD002086.
Jen I. A comparison of low dosage trimethoprim/sulfamethoxazole with oxytetracycline in acne vulgaris. Cutis 1980;26(1):106–8.
Tan JK, Tang J, Fung K, Gupta AK, Thomas DR, Sapra S, et al. Development and validation of a comprehensive acne severity scale. J Cutan Med Surg 2007;11(6):211–6.
Turowski CB, James WD. The efficacy and safety of amoxicillin, trimethoprim-sulfamethoxazole, and spironolactone for treatment-resistant acne vulgaris. Adv Dermatol 2007;23:155–63.
Zaenglein AL, Pathy AL, Schlosser BJ, Alikhan A, Baldwin HE, Berson DS, et al. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol 2016;74(5):945–973.e33.

Table 1
Baseline demographics

Total patients treated (n)	26
Female patients (%)	12 (46.2%)
Mean patient age (SD)	28.4 (7.2)
Patients on 1000 mg daily dose (%)	14 (53.8%)
Patients on 1500 mg daily dose (%)	12 (46.2%)
Median CASS score on face (range)	2 (0-4)
Median CASS score on chest (range)	1 (0-4)
Median CASS score on back (range)	1 (0-4)

CASS, Comprehensive Acne Severity Scale; SD, standard deviation

Table 2
Post-treatment outcomes

Cases with improvement on face (%)	23 (82.1%)
Mean improvement in CASS on face (SD)	−1.8 (1.4)
Cases with improvement on chest (%)	24 (85.7%)
Mean improvement in CASS on chest (SD)	−0.5 (0.8)
Cases with improvement on back (%)	20 (71.4%)
Mean improvement in CASS on back (SD)	−0.6 (1.0)

CASS, Comprehensive Acne Severity Scale; SD, standard deviation

* Outcomes are inclusive of cases that had no disease involvement of the respective treatment area at baseline.