Ferromagnetic behavior of native point defects and vacancy-clusters in ZnO studied by first principle calculation

Cai-Qin Luo1,2, Si-Cong Zhu3, Chi-Hang Lam3 and Francis Chi-Chung Ling1,*

1 Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
2 Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, People’s Republic of China
3 College of Science and Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, People’s Republic of China

E-mail: ccing@hku.hk

Keywords: ZnO, ferromagnetism, first principle calculation, native point defects, vacancy clusters

Abstract
The origin of room temperature ferromagnetism in undoped ZnO is still a question of debate. Experimental and theoretical findings are inconclusive as to the predominant contributor for the magnetic behavior of undoped ZnO. First principle calculation pseudopotential method was used to systematically determine the relaxed atomic geometry, the formation energies and the magnetic properties of the native point defects (vacancies, interstitials and antisites), and vacancy clusters ($V_{Zn}O, V_{Zn} - 2V_{O}$ and $2V_{Zn} - V_{O}$) in ZnO. The results show that ZnO cells consisting of the V_{Zn} and the O_{i} have non-zero magnetic moments, energetically favoring ferromagnetic states and close-to-room-temperature Curie temperatures (294 K). V_{Zn} and O_{i} are also characterized by their low formation energies, in particular in the case of n-type (i.e. Fermi level close to the conduction band minimum) and O-rich conditions. The energy differences between the ferromagnetic state and anti-ferromagnetic state for V_{Zn} and O_{i} are larger than kT at room temperature but still relatively small (~ 34 meV). Although V_{Zn} and O_{i} would contribute for the room temperature ferromagnetism, the ferromagnetism states would not be robustly stable for thermal excitation to the anti-ferromagnetic states.

Introduction
Diluted magnetic semiconductor (DMS) has been receiving extensive attention since Munekata et al.’s first fabrication of (In, Mn)As DMS [1]. These fundamental studies of DMS have been of interest for the development of spintronic devices [2]. The electron spins in spintronic devices are exploited as a further degree of freedom, increasing the efficiency of the device of information storage. A commonly used technique to obtain DMS was to dope magnetic elements into a semiconductor material, such as TiO$_2$ [3], GaN [4] and ZnO [5]. Other than being the DMS, ZnO is also a multi-functional material suitable for a variety of applications like ultra-violet optoelectronic, transparent electrode, sensors, and photocatalysis [6], which thus attracts extensive focus of research activities. In recent years, Dietl et al. [7] studied the Curie temperature T_C for different p-type semiconductors, found that room-temperature ferromagnetism (RTFM) can be realized in p-type ZnO doped by Mn. Despite numerous experimental observations of RTFM in transition metal (TM) doped ZnO, it is still uncertain as to what are the relevant origins of the RTFM in doped ZnO, which may be originated from the introduced dopant, the interaction between dopant and intrinsic defect, or second phase, etc. Most of the published work, based on theoretical calculation and experimental verification concluded that intrinsic defects play a crucial role in the magnetic behavior of doped ZnO. For example, Yi et al. [8] proposed that RTFM observed in Li-doped ZnO may be associated with the V_{Zn} vacancy based on the results of positron annihilation spectroscopy (PAS) study. They also found that doping with appropriate dopants can lower the formation energy of V_{Zn}. Besides, V_{O} is also critical in one way or another on magnetic property. Hsu et al. [9] found a
correlation between the enhancement of ferromagnetism and the increase of oxygen vacancies in Co-doped ZnO. By using soft x-ray absorption, x-ray magnetic circular dichroism and first-principle calculations, Herrg et al [10] found both Cu impurities and V_O were essential to the observed RTFM in Cu doped ZnO and proposed an indirect exchange model as the cause.

RTFM has also been reported in undoped ZnO material with different structures [11–13]. Despite of many efforts devoted [14–18], the origin of the observed RTFM in undoped ZnO is still inconclusive. With the comprehensive study based on first-principle calculation and photoluminescence, the observed RTFM in ZnO nano-particles grown by a solution method was attributed to singly ionized oxygen vacancies [19]. Xing et al [19] reported RTFM in ZnO nanowires obtained by using a vapor transport method, and the magnetic property was tunable by adjusting the oxygen deficiency during growth. Using density functional theoretical (DFT) study, Wang et al [20] found that the FM in undoped ZnO could be attributed to V_{Zn} instead of V_{O}, also indicated V_{Zn} prefer to form clusters. Similarly, Chakrabarty and Patterson [21] carried out a DFT study and suggested that the RTFM in undoped ZnO could originate from the isolated V_{Zn} and $(V_{Zn}V_{O})$-divacancy. With molecular dynamics and DFT studies, Tiezze et al [22] showed the presence of unpaired electrons at the grain boundary and these unpaired electrons were ferromagnetically coupled. Most of the RTFM theoretical studies of native defects in undoped ZnO focused on V_{Zn} V_{O}, and $V_{Zn}V_{O}$ divacency. It is no doubt that, under equilibrium condition, V_{Zn} and V_{O} are the predominant defects due to their relatively low formation energies [23]. However, for ZnO samples undergone non-equilibrium process, e.g. electron irradiation [24, 25] and ion implantation [26, 27], other kinds of intrinsic defects and vacancy clusters having higher formation energies would exist. It is thus also important to understand the magnetic properties of these defects to grip a more comprehensive view for interpreting the experimental data.

Using the density functional theory (DFT) method, we studied the relaxed atomic geometry, the formation energy and magnetic properties for all the native point defects (vacancies, interstitials and antisites) and vacancy clusters ($V_{Zn}V_{O}$, $2V_{Zn} - V_{O}$ and $2V_{O} - V_{Zn}$) in ZnO so as to gain the knowledge of their roles in ZnO materials exhibiting RTFM.

Method

All calculations in the present study were performed based on DFT, using the projector augmented wave method (PAW) as implemented in the Vienna ab initio Simulation Package. The exchange-correlation potential was represented by the spin-polarized generalized gradient approximation (SGGA). The plane wave cut-off energy was taken as 400 eV throughout the calculation. All the atoms in the supercell were fully relaxed until the Hellmann-Feynman force converged to less than 0.01 eV Å$^{-1}$. For the k-space integration, a $3 \times 3 \times 3$ k-points grid was used for sampling the irreducible wedge of the Brillouin zone. Test calculation for the selection of cutoff energy and k-points were performed, finding that the results remained unchanged with higher cutoff energy and denser k-points. A homogeneous background-charge was added or removed from the supercell to obtain the different charge states of the defects.

The present study covered all the relevant charge states of V_{O}, V_{Zn}, Zn_{O}, O_{Zn}, Zn_{i}, O_{i}, $V_{Zn}V_{O}$, V_{Zn}, $2V_{O}$ and $2V_{Zn} - V_{O}$. The total energies for the different defect configurations were calculated to yield the formation energies. The equilibrium defect concentration c depends on the Zn and O stoichiometries and bounds for the chemical potentials were calculated to yield the formation energies. The formation energy can be found by calculating the total energy of the supercell, as given by [28]:

$$E_f(X^q) = E_{tot}(X^q) - E_{tot}(\text{ZnO, perfect}) - \sum_i n_i \mu_i + q(E_V + E_F).$$

(1)

q is the charge state of the defects and $E_f(X^q)$ is the formation energy of the defect X in the supercell. $E_{tot}(X^q)$ is the total energy obtained from the DFT calculation for defect X with the charge state of q, $E_{tot}(\text{ZnO, perfect})$ is the total energy of the defect-free ZnO supercell, n_i is the number of atoms (type i) that have been added ($n_i > 0$) or removed ($n_i < 0$) from the supercell. μ_i is the chemical potential of the element i, E_F is the Fermi-level. E_e is the valence band maximum of ZnO, which is given as: $E_v = E_{tot}(\text{ZnO, defect free}) - E_{tot}(\text{ZnO, defect free})$. The chemical potential μ_i depends on the Zn and O stoichiometries and bounds for the chemical potentials were set for the conditions of Zn-rich and O-rich. As the chemical potential for Zn (μ_{Zn}^{min}) cannot be larger than that of Zn bulk, the maximum bound for the chemical potential of Zn (μ_{Zn}^{max}) was taken as the Zn bulk value for the Zn-rich condition. Similarly, under the O-rich condition, the upper limit of the chemical potential of O (μ_{O}^{max}) is bounded by half of the total energy of the O$_2$ molecule. The entropy of formation is given by $\Delta H_f(\text{ZnO}) = \mu_{Zn} + \mu_{O}$ and was found to be -3.5 eV in the present study. Therefore, the lower limit on μ_{Zn} and μ_{O} can be
described as $\mu_{\text{Zn}}^\text{min} = \Delta H_f (\text{ZnO}) - \mu_{\text{O}}^\text{max}$ and $\mu_{\text{O}}^\text{min} = \Delta H_f (\text{ZnO}) - \mu_{\text{Zn}}^\text{max}$ respectively for the O-rich and Zn-rich conditions respectively.

Results

Structural relaxation

All atoms in the supercell are fully relaxed during the optimized procedure. It is worthy to discuss the relaxation of the vacancies. For the neutral and $+1$ states of V_{O}, the nearest Zn atoms respectively displaced inward by 12.3% and 0.3% as compared with the equilibrium Zn-O bond length. For the $+2$ charge states of V_{O}, the neighboring Zn atoms displaced outward by 24%. For V_{Zn}, with neutral, -1 and -2 charge states, the relaxations were similar, i.e. 10.6% outward as compared to the equilibrium Zn-O bond length. Vacancy clusters are formed through removing the nearest neighboring atoms in the perfect supercell with the equilibrium Zn-O bond length of 1.98 Å respectively on the a-b basal plane and along the c-axis. For $2V_{\text{Zn}}$, both O atoms and Zn atoms neighboring the defect exhibited outward displacement. The most significant outward displacement occurred on the charge state of $(V_{\text{Zn}} - V_{\text{O}})^{+1}$. The nearest O atoms displaced outward by 6.2% at the basal plane and 16% along the c-axis, while the surrounding Zn atoms displaced outward by 4% along the c-axis and no obvious displacement at the a-b basal plane. For the $2V_{\text{O}} - V_{\text{Zn}}$ and $2V_{\text{Zn}} - V_{\text{O}}$ clusters, three nearest atoms were removed in a perfect supercell. The outward displacements for O and Zn atoms around the vacancy clusters are basically similar to that for $V_{\text{O}} - V_{\text{Zn}}$, whereas the nearest O atoms along the c-axis had the most significant outward displacement.

Formation energies

The formation energies of the different intrinsic point defects (namely $V_{\text{Zn}}, V_{\text{O}}, Z_{\text{ni}}, O_{\text{i}}, Z_{\text{niO}},$ and O_{Zn}) against the Fermi level positive (measured from the valence band minimum) obtained from the DFT calculation are shown in figure 1. The interstitial defects have two configurations in the wurtzite structure, namely the octahedral coordinated (oct) site and the tetrahedral coordinated (tet) site [23]. The oct-site usually has lower formation energy than that for the tet-site. Therefore, only the low-formation-energy oct-site was studied in the present study. The valence band maximum (VBM) is set to be at 0 eV, whereas the theoretical conduction band minimum (CBM) is indicated by the black dotted line in figure 1. The Fermi-level E_F varies from the valence band edge to the experimental conduction band edge, for which the experimental band gap was obtained by...
relevant charge states as the respectively. It is noticed that 2VO and VZn have lower formation energies than the other defects as points in optical transmittance measurement. The charge state transition levels of the defects are indicated by the square (supercell VZn,O Zn and Oi energy, but are still signi
cant higher than those along the direction for ferromagnetic Zni and ZnO have lower formation energies with different charge states were calculated, and their formation energies against the table 3. The unit cells containing VZn,O Zn,O i and O atoms, of the unit cell containing the defects having non-zero total magnetic moments are tabulated in
magnetic moments. The resultant total magnetic moments, as well as the corresponding contributions from Zn states were calculated. All the Zn and O atom sites in the supercell were included to calculate for the total vacancy clusters 2VO do not have net total magnetic moment. For the systems energetically favoring spin-polarized states, the total energy calculations of their

equation 2. The results found in the present calculation are in agreement with the findings in the most studies reported in the literature [23, 29, 30].

The formation energies for the vacancy cluster, namely VZn,V O, 2 VZn − VO and 2 VO − VZn, with the different charge states were calculated, and their formation energies against the EF position in the O-rich and O-poor conditions are shown in figures 2(a) and (b) respectively. Table 2 tabulates the formation energies of vacancy cluster defects in the O-rich and O-poor conditions while the EF is at the VBM and CBM. The tri-vacancy clusters 2VO − VZn and 2VZn − VO have two different configurations, namely laying on the a-b plane and along the c-axis, for which their formation energies are shown in figure 2 by the solid line and dashed line respectively. It is noticed that 2VO − VZn and 2VZn − VO staying at the a-b plane has lower formation energies as compared to those along the c-axis. For n-type environment with EF close to the CBM, the formation energies descend from 2VO − VZn, VZnVO, to 2VZn − VO for both the O-rich and O-poor conditions. Among the vacancy clusters, 2VZn − VO in both the configurations of a-b plane and c-axis have the lowest formation energy, but are still significant higher than those of the intrinsic point defects having low formation energies like VZnO, OZn and Oi

Magnetic properties
The total magnetic moments M_{total} of the unit cells containing the corresponding defects in the different charge states were calculated. All the Zn and O atom sites in the supercell were included to calculate for the total magnetic moments. The resultant total magnetic moments, as well as the corresponding contributions from Zn and O atoms, of the unit cell containing the defects having non-zero total magnetic moments are tabulated in table 3. The unit cells containing VZn,O Zn,Oi (oct), VZn,V O (a-b plane) and 2VZn − VO (c-axis) have non-zero magnetic moments for some of their charge states, while the unit cells containing VZn, ZnO,O Zn,i and VZn − 2VO do not have net total magnetic moment.

The energy difference between the spin-polarized state and non-polarized state was compared in the ZnO supercell (72 atoms) containing one defect. The spins on the Zn and O atoms neighboring the defect (parallel direction for ferromagnetic (FM) state and antiparallel arrangement for antiferromagnetic (AFM) state) were manually set. For the systems energetically favoring spin-polarized states, the total energy calculations of their

Defect	Charge state	O-rich condition	Zn-rich condition		
		VBM	CBM	VBM	CBM
VZn	0	2.33	2.33	5.83	5.83
	1−	2.39	−1.01	5.89	2.49
	2−	2.74	−4.06	6.24	−0.56
VO	0	5.24	5.24	1.74	1.74
	1+	4.13	7.53	0.63	4.03
	2+	2.70	9.50	−0.80	6.00
OZn	0	2.04	2.04	9.04	9.04
	1−	2.58	−0.82	9.58	6.18
	2−	3.78	−3.02	10.78	3.98
ZnO	0	10.83	10.83	3.83	3.83
	1+	8.82	12.22	1.82	5.22
	2+	7.20	14.00	0.20	7.00

Table 1. Shows the formation energies of native point defects with the relevant charge states in ZnO. These values are given for the O-rich and O-poor conditions, and Fermi-levels at the top of the valence band ($EF = 0$ eV) and at the bottom of the conduction band ($EF = 3.4$ eV).
FM and AFM states were extended to a larger unit cell with 144 atoms (i.e. having the size of the two original unit cells) with the separation between the defects being around 9.79 Å. The energy difference between the FM state and AFM state of the defects ($\Delta E = E_{\text{AFM}} - E_{\text{FM}}$) are tabulated in Table 3. The energy differences $E_{\text{AFM}}-E_{\text{FM}}$ are positive for $V_{\text{Zn}} - O_0$ (oct), $2V_{\text{Zn}} - V_0$ (c-axis) and $2V_{\text{Zn}} - V_0$ (a-b plane), indicating that the FM ordering is energetically more stable than the AFM ordering for these defects. The O_0^{2+} and $V_{\text{Zn}}^-V_0^{2+}$ states have negative

![Figure 2](image-url)

Figure 2. Formation energies of different vacancy clusters with their relevant charge states in ZnO as a function of the Fermi-level position under (a) O-rich condition; and (b) O-poor condition. The zero-point of the Fermi-level corresponds to the top of the valence-band. Only the lowest-energy states are shown. The square points indicate the transition levels in the band gap. For the $2V_{\text{Zn}} - V_0$ and $2V_0 - V_{\text{Zn}}$ defects, the solid line indicates the defect staying at the a-b plane while the dashed line represents the defect along the c-axis.

Table 2. Formation energies of vacancy clusters in ZnO supercell with the relevant charge states in ZnO. These values are given for the O-rich and O-poor conditions, and Fermi-level at the top of the valence band ($E_F = 0$ eV) and bottom of the conduction band ($E_F = 3.4$ eV).

Defect orientation	Charge state	O-rich condition VBM	O-rich condition CBM	Zn-rich condition VBM	Zn-rich condition CBM	
$V_0 - V_{\text{Zn}}$	0	4.16	4.16	4.16	4.16	
	1+	3.76	7.16	3.76	7.16	
	2+	3.74	10.54	3.74	10.54	
	1−	6.40	3.00	9.9	6.50	
	2−	6.94	0.14	10.44	3.64	
$2V_{\text{Zn}} - V_0$	c-axis	0	4.64	4.64	8.14	8.14
	1−	4.78	1.38	8.28	4.88	
	2−	5.26	−1.74	8.76	1.76	
$2V_{\text{Zn}} - V_0$	a-b plane	0	8.91	8.91	5.41	5.41
	1+	8.26	11.66	4.76	8.16	
	2+	5.73	12.53	2.23	9.03	
$2V_0 - V_{\text{Zn}}$	c-axis	0	8.80	8.80	5.30	5.30
	1+	6.83	10.23	3.33	6.73	
	2+	5.33	12.13	1.83	8.63	
EAFM−EFM of −4 meV and −3 meV respectively, implying that their AFM states are relatively stable than the FM states.

It would be worthy to discuss the results of the defects carrying non-zero magnetic moment and energetically favoring FM state. The supercell containing the VZn and Oi (oct) acceptors have respectively the total moment of 1.82 μB and 2.0 μB for the neutral state, while they decrease to 0.99 μB and 1.012 μB if the charge state is −1. It is noticed that adding a hole to the neutral VZn and Oi acceptors leads to the increase of their magnetic moments. The magnetic moments contributed from the Zn-site and O-site (MZn and MO respectively) as tabulated in table 1 show that the oxygen atoms give the major contribution for the total moments in the

Charge	Mtotal	MZn	MO	ΔE (meV)	TC (K)
VZn 0	1.820	0.010	1.810	38	294
1−	0.990	0.004	0.986	31	239
OZn 0	2.0	−0.01	2.01	−4	/
1−	2.0	0.013	1.987	20	155
Oi (oct)	0.102	0.002	0.10	38	294
1−	2.0	0.013	1.987	20	155
VZn − VZn 2+	1.384	0.034	1.350	−3	/
2VZn − VO(2 axis)	1.997	0.018	1.979	22	170
1−	0.948	0.039	0.909	29	224
2VZn − VO(a-b plane)	1.774	0.018	1.756	20	155
1−	0.999	0.005	0.994	7	54
Similarly, the asymmetric DOS are respectively shown in figures 3 and the Oi supercell. For the 2VZn0 supercell containing the Oi in neutral charge have the smaller magnetic moment as compared to that in the 1- charge. The surrounding Zn and O atoms also contribute to the magnetic moment in the supercell, which is consistent with the calculated total density of states (DOS) for the ZnO supercell with an Oi charge. The asymmetric DOS of the VO cluster having the neutral charge, the defect staying along the c-axis has a negligibly smaller magnetic moment while compared to that at the a-b plane (namely 0.948 μB and 0.999 μB). It is also noticed that the 2VZn0 – VO clusters in neutral charge have the smaller magnetic moment as compared to that in the 1- charge.

The Curie temperatures (T_C) were estimated by the mean-field approximation, which was given by:

$$T_C = \frac{2k_B}{3\pi} \left(\frac{\Delta E}{\Delta S} \right)_a$$

The resultant Curie temperatures are tabulated in table 3. The ZnO supercells with the VZn0 and the Oi$^-$ (oct) have T_C’s close to the room temperature which were 294 K. The Curie temperatures for 2VZn0 – VO$^-$ with the different charge states and configurations were all below the room temperature.

The calculated total density of states (DOS) for the ZnO supercell (72 atoms) with a VZn$^-$, VZn$^+$ and VZn$^{2-}$ are shown in figures 3(a)–(c) respectively. The asymmetric spin-up and spin-down densities of VZn$^-$ and VZn$^{1-}$ in figures 3(a) and (b) show that the spin-up states are fully occupied but the spin-down states are partially filled. The VZn$^{2-}$ has symmetric spin up and down densities and thus its magnetic moment is zero. The side views and top views of the corresponding spin-density distributions for VZn$^-$ and VZn$^{1-}$ are shown in figures 3(d)–(g). Note that the spin density is majorly localized on the neighboring O-site, with a minor contribution from the nearest neighboring Zn atoms.

The total DOSs for the ZnO supercell with an Oi and Oi$^-$ at the oct site are shown in figures 4(a)–(c) respectively. The spin-up bands are fully occupied while the spin-down bands are partially filled, resulting in the residual magnetic moments per Oi$^-$ and Oi. The Oi$^-$ has symmetric spin up and down densities and thus the supercell containing the Oi$^-$ has zero net magnetic moment. The spin-density distributions for the Oi and Oi$^-$ are respectively shown in figures 4(d)–(g), indicating that the effective spin is majorly localized at the Oi sites. The surrounding Zn and O atoms also contribute to the magnetic moment in the supercell, which is consistent with the projected DOS on O-p and Zn-d orbitals.

The asymmetric DOS’ of the (2VZn0 – V0) and (2VZn0 – V$^-$) in the a-b configuration as shown in figures 5(a) and (b) respectively reveal their non-zero magnetic moment, while the symmetric DOS of the (2VZn0 – V2) in the a-b plane configuration as shown in figure 5(c) reveals its non-ferromagnetic nature. Similarly, the asymmetric DOS’ of the (2VZn0 – V0) and (2VZn0 – V$^{-1}$) in the configuration of c-axis.

Figure 4. The DOS of ZnO with the (a) Oi0, (b) Oi$^-$ and (c) Oi$^{2-}$. The spin up (black line) and spin down (red line) DOS’ is set above and below the abscissa axis. The Fermi level is indicated by the black dash line at 0 eV. (d) The side view and (e) the top view of the effective spin density distribution for Oi$. (f) The side view and (g) the top view of the effective spin density distribution for Oi$^{-2}$. The iso-surface value is 0.02 e A$^{-3}$. The black, red and black balls represent Zn, O and vacancy atoms in supercell respectively.

supercell. For the $2\text{VZn} - \text{V}_\text{O}$ cluster having the neutral charge, the defect staying along the c axis has a slightly larger magnetic moment than that at the a-b plane (namely 1.997 μB and 1.774 μB). For the $2\text{VZn} - \text{V}_\text{O}$ cluster having the 1− charge, the defect staying along the c axis has a negligibly smaller magnetic moment while compared to that at the a-b plane (namely 0.948 μB and 0.999 μB). It is also noticed that the $2\text{VZn} - \text{V}_\text{O}$ clusters in neutral charge have the smaller magnetic moment as compared to that in the 1− charge.

The Curie temperatures (T_C) were estimated by the mean-field approximation, which was given by:

$$T_C = \frac{2k_B}{3\pi} \left(\frac{\Delta E}{\Delta S} \right)_a$$

The resultant Curie temperatures are tabulated in table 3. The ZnO supercells with the VZn0 and the Oi$^-$ (oct) have T_C’s close to the room temperature which were 294 K. The Curie temperatures for $2\text{VZn} - \text{V}_\text{O}$ with the different charge states and configurations were all below the room temperature.

The calculated total density of states (DOS) for the ZnO supercell (72 atoms) with a VZn$^-$, VZn$^+$ and VZn$^{2-}$ are shown in figures 3(a)–(c) respectively. The asymmetric spin-up and spin-down densities of VZn$^-$ and VZn$^{1-}$ in figures 3(a) and (b) show that the spin-up states are fully occupied but the spin-down states are partially filled. The VZn$^{2-}$ has symmetric spin up and down densities and thus its magnetic moment is zero. The side views and top views of the corresponding spin-density distributions for VZn$^-$ and VZn$^{1-}$ are shown in figures 3(d)–(g). Note that the spin density is majorly localized on the neighboring O-site, with a minor contribution from the nearest neighboring Zn atoms.

The total DOSs for the ZnO supercell with an Oi0, Oi$^-$ and Oi$^{2-}$ at the oct site are shown in figures 4(a)–(c) respectively. The spin-up bands are fully occupied while the spin-down bands are partially filled, resulting in the residual magnetic moments per Oi0 and Oi$. The Oi$^{-2}$ has symmetric spin up and down densities and thus the supercell containing the Oi$^{-2}$ has zero net magnetic moment. The spin-density distributions for the Oi0 and Oi$^-$ are respectively shown in figures 4(d)–(g), indicating that the effective spin is majorly localized at the Oi sites. The surrounding Zn and O atoms also contribute to the magnetic moment in the supercell, which is consistent with the projected DOS on O-p and Zn-d orbitals.

The asymmetric DOS’ of the (2VZn0 – V0) and (2VZn0 – V$^-$) in the a-b configuration as shown in figures 5(a) and (b) respectively reveal their non-zero magnetic moment, while the symmetric DOS of the (2VZn0 – V2) in the a-b plane configuration as shown in figure 5(c) reveals its non-ferromagnetic nature. Similarly, the asymmetric DOS’ of the (2VZn0 – V0) and (2VZn0 – V$^{-1}$) in the configuration of c-axis.
(figures 6(a) and (b) respectively) reveal their non-zero magnetic moment, while the symmetric DOS of the \((2V_{Zn} - V_O)^2\) in the c-axis configuration (figure 6(c)) shows that its magnetic moment is zero. The top views and side views of the effective spin density distributions for ferromagnetic \((2V_{Zn} - V_O)^0\) and \((2V_{Zn} - V_O)^1\) in the configurations of a-b plane and c-axis are respectively shown in figures 5(d)–(g) and figures 6(d)–(g) respectively. These effectively spin density distributions have a common feature that the p-electrons around the neighboring and the second neighboring O-atoms, as well as the d-electrons on the neighboring Zn atoms are the major contributors for the spin density. The magnetic moments are localized around the defects.

Discussion

The formation energies of all the native point defects, \(V_O V_{Zn}^0\), \(2V_{Zn} - V_O\) and \(2V_O - V_{Zn}\) with different charge states and in the different configurations were calculated. \(V_{Zn}\) has the lowest formation energy in the conditions of O-rich, O-poor and regardless of the Fermi level position, and thus \(V_{Zn}\) was the most probable intrinsic defect existing in ZnO. Among the vacancy clusters, \(2V_{Zn} - V_O\) has the lowest formation energy and in particular for the O-rich condition its formation energy is negative while \(E_F\) is close to the CBM.

For the point defects and vacancy clusters that favor FM ordering, the localized moments in the corresponding ZnO supercell strongly depend on the type of defects and the charge states. The magnetic study on the intrinsic point defects and the vacancy clusters showed that \(V_O^0\), \(V_{Zn}^0\), \(O_1^0\) (oct) and \(O_1^1\) (oct), \(2V_{Zn} - V_O^0\) and \(2V_{Zn} V_O\) in both the configurations of c-axis and a-b plane had non-zero magnetic moment, and energetically favorable to the FM state as compared to AFM state. Some of the charge states of \(O_{Zn}\) and \(V_{Zn} V_O\) carried non-zero magnetic moment but their AFM state was energetically more stable than the FM state by 3–4 meV. Among the defects favoring FM states, \(V_{Zn}^0\) and \(O_1^0\) (oct) had the largest energy differences between the AFM and FM states \((\Delta E)\), and the highest Curie temperature of 294 K among the others. \(V_{Zn}^0\) and \(O_1^0\) (oct) contribute for 1.82 \(\mu B\)/unit-cell and 1.01 \(\mu B\)/unit-cell respectively. Moreover, their formations energies are
low, in particular under the O-rich condition for n-type materials. The $2V_{\text{Zn}}V_{\text{O}}$’s in c-axis and ab-plane configurations with 0 and -1 charge states also have non-zero localized magnetic moment and favors for FM state, though the ΔE are relatively small and thus resulting in low Curie temperatures. The largest ΔE and highest Curie temperature among the different configurations and charge states for $2V_{\text{Zn}}V_{\text{O}}$’s is 29 meV and 224 K respectively, which occurs at the c-axis configuration and -1 charge. Thus, $2V_{\text{Zn}}V_{\text{O}}$ do not contribute FM effectively at room temperature, while VZn and Oi could be the probable defects responsible for the observed RT FM in ZnO. Khalid et al.\cite{33} studied the origin of RTFM in undoped ZnO using a comprehensive approach (SQUID, positron annihilation spectroscopy, x-ray diffraction and first principle calculation) and associated the observed RTFM to VZn, though there is no experimental report contributing the observed room temperature FM to Oi. However, the ΔE for ZnO is still relatively low and its Curie temperature is marginally close to the room temperature. The thermal stability of its RTFM would not be robust against thermal excitation.

The current study shows that (summarized in table 3) the defects possessing non-zero magnetic moment and energetically favoring ferromagnetic state are all acceptors and the magnetic moments are mainly contributed from the O atoms. It is also noticed that the localized magnetic moments are favored if these defects are filled by a hole in a more positive state. Kenmochi et al.\cite{34,35} in first principle magnetic studies of MgO, SrO and BaO suggested that FM originated from double exchange could be correlated with hole doping, for which Yamamoto and Katayama\cite{36} reported that hole-doping was favored by co-doping of donor and acceptor.

To discuss for the undertainties of the current results, it would be worthy to bring to the attention that the T_C estimated by the mean-field approximation does not involve the interaction range, which would lead to significant errors in the dilute magnetic semiconductor with low defect concentration\cite{37}. Therefore, the realistic T_C values could be lower than the ones obtained by the mean-field approximation. Seike et al.\cite{38} reported that to induce ferromagnetism under homogenous distribution conditions, 15%–20% doping concentration is required for RTFM\cite{38}. In the present study, the corresponding defect concentration is $\sim2.8\%$ for one defect in the unit cell, which is much lower than the threshold. For the practical fabrication of ZnO samples like film grown by pulsed laser deposition, the native defect like the V_{Zn}-related defect has

Figure 6. The DOS of ZnO with the (a) $(2V_{\text{Zn}}-V_{\text{O}})^0$, (b) $(2V_{\text{Zn}}-V_{\text{O}})^{-1}$ and (c) $(2V_{\text{Zn}}-V_{\text{O}})^2$ along c axis. The spin up (black line) and spin down (red line) DOS is set above and below the abscissa axis. The Fermi-level is indicated by the black dash line at 0 eV. (d) The top view and (e) the side view of the effective spin density distribution for $(2V_{\text{Zn}}-V_{\text{O}})^0$. (f) The top view and (g) the side view of the effective spin density distribution for $(2V_{\text{Zn}}-V_{\text{O}})^{-1}$. The iso-surface value is 0.02 e A$^{-3}$. The black, red and black balls represent Zn, O and vacancy atoms in supercell respectively.
concentration of $\sim 10^{15}$ cm$^{-3}$ ($\sim 0.01 \%$) in undoped ZnO [39]. Besides, the assumption of homogeneity is difficult to be confirmed for realistic DMS systems. Nano-scale inhomogeneity like spinodal decomposition cannot be exclude as the cause of the experimental observation of RTFM in the doped ZnO systems [40, 41].

Conclusion

In conclusion, first principle calculation was performed to systematically study the relaxed atomic geometry, formation energies and magnetic properties of all the native point defects (vacancies, interstitials and antisites) and the vacancy clusters $V_{Zn}V_{O}$, $V_{Zn} – 2V_{O}$ and $2V_{Zn} – V_{O}$ in ZnO. Only the unit cells of ZnO containing the $V_{Zn}O_{i}$ (oct) and $2V_{Zn} – V_{O}$ in the configurations of a-b plane and c-axis energetically favors for FM state as compared to AFM state and carry non-zero magnetic moments. The energy differences between the FM and AFM states ΔE, and the magnetic moments depends on the charge state and the defect configuration, varying from 7–38 meV and 0.9–2.0 μB per unit cell respectively. V_{Zn}’s and O_{i}’s are the two defects having the low formation energies, the largest ΔE and Curie temperatures (both are 38 meV and 294 K respectively). Their magnetic moments are 1.82 μB per unit cell and 1.01 μB per unit cell respectively. These two defects could be the origins of the experimental observed RTFM in ZnO materials, though their FM states are not robustly stable against thermal excitation to the AFM state as their ΔE’s are still relatively small. For the case of $2V_{Zn} – V_{O}$’s, their ΔE’s are even smaller (7–29 meV for different charge states and configurations). The low ΔE leads to the low Curie temperature, which is lower than the room temperature. The formation energies of $2V_{Zn} – 2V_{O}$’s are larger than those of V_{Zn} and O_{i}’s, indicating their relative lower abundance with the equilibrium situation. $2V_{Zn} – 2V_{O}$’s are thus not the important contributor to RTFM.

Acknowledgments

This work was financially supported by the HKSAR RGC GRF (project no. 17302115).

ORCID iDs

Cai-Qin Luo https://orcid.org/0000-0003-4368-0627

Si-Cong Zhu https://orcid.org/0000-0003-2103-3998

Francis Chi-Chung Ling https://orcid.org/0000-0003-4757-1065

References

[1] Ohno H, Munekata H, Penney T, Von Molnar S and Chang I 1992 Magnetotransport properties of p-type (In, Mn) As diluted magnetic III–V semiconductors Phys. Rev. Lett. 68 262–64

[2] Wolf S, Awshalom D, Buhrman R, Daughton J, von Molnár V S, Roukes M, Chichelekanova A Y and Treger D 2001 Spintronics: a spin-based electronics vision for the future Science 294 1488–95

[3] Hong N H, Sakai J, Pellier W, Hassini A, Ruyter A and Gervais F 2004 Ferromagnetism in transition-metal-doped TiO$_2$ thin films Physical Review B 70 195204

[4] Dhar S, Pérez L, Brandt O, Trampert A, Ploog K, Keller J and Beschoten B 2005 Gd-doped GaN: a very dilute ferromagnetic semiconductor with a Curie temperature above 300 K J. Phys. Chem. B 109 1795–7

[5] Sharma P, Gupta A, Rao K, Owens F J, Sharma R, Ahuja R, Guillen J O, Johansson B and Gehring G 2003 Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO Nat. Mater. 2 673–7

[6] Ozgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S-J and Morkoç H 2005 A comprehensive review of ZnO materials and devices J. Appl. Phys. 98 041301

[7] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand d 2000 Zener model description of ferromagnetism in zinc-blend magnetic semiconductors Science 287 1019–22

[8] Yi J, Lim C, Xing G, Fan H, Van L, Huang S, Yang K, Huang X, Qin X and Wang B 2010 Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO Phys. Rev. Lett. 104 137201

[9] Hsu H, Huang J-C A, Huang Y, Liao Y, Lin M, Lee C, Lee J, Chen S, Lai L and Liu C-P 2006 Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO Appl. Phys. Lett. 88 242507

[10] Herlitz G, Döring J, Bertl L, Yi J, Yang K, Dai Y, Feng Y, Santos L, Sanchez–Hank E and Cao X 2010 Room-temperature ferromagnetism of Cu-doped ZnO films probed by soft x-ray magnetic circular dichroism Phys. Rev. Lett. 105 207201

[11] Yan Z, Ma Y, Wang D, Wang J, Gao Z and Song T 2008a Surfactant-free fabrication of ZnO spheres and pseudospherical structures J. Phys. Chem. C 112 9219–22

[12] Yi J, Pan H, Lin J, Ding J, Feng Y, Thongmewe S, Liu T, Gong H and Wang L 2008 Ferromagnetism in ZnO nanowires derived from electro-deposition on AZO templates and subsequent oxidation Adv. Mater. 20 1107–4

[13] Liu W, Li W, Hu Z, Tang Z and Tang X 2011 Effect of oxygen defects on ferromagnetic of undoped ZnO J. Appl. Phys. 110 013901

[14] Banerjee S, Mandal M, Gayathri N and Sardar M 2007 Enhancement of ferromagnetism upon thermal annealing in pure ZnO Appl. Phys. Lett. 91 182501

[15] Lin X-L, Yan S-S, Zhao M-W, Hu S-J, Han C, Chen Y-X, Liu G-L, Dai Y-Y and Mei L-M 2011 Possible origin of ferromagnetism in undoped ZnO: first-principles calculations Phys. Lett. A 375 638–41
[16] Xu Q, Schmidt H, Zhou S, Poteger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P and Meinecke C 2008 Room temperature ferromagnetism in ZnO films due to defects Appl. Phys. Lett. 92 082508
[17] Zuo X, Yoon S-D, Yang A, Duan W-H, Vittoria C and Harris V G 2009 Ferromagnetism in pure wurtzite zinc oxide J. Appl. Phys. 105 07C508
[18] Yan Z, Ma Y, Wang D, Wang J, Gao Z, Wang L, Yu P and Song T 2008b Impact of annealing on morphology and ferromagnetism of ZnO nanorods Appl. Phys. Lett. 92 081911
[19] Xing G, Wang D, Yi J, Yang L, Gao M, He M, Yang J, Ding J, Sum T C and Wu T 2010 Correlated d 0 ferromagnetism and photoluminescence in undoped ZnO nanowires Appl. Phys. Lett. 96 112151
[20] Wang Q, Sun Q, Chen G, Kawazoe Y and Jena P 2008 Vacancy-induced magnetism in ZnO thin films and nanowires Phys. Rev. B 77 205411
[21] Chakrabarty A and Patterson C H 2011 Defect-trapped electrons and ferromagnetic exchange in ZnO Phys. Rev. B 84 054441
[22] Tietze T, Audehm P, Chen Y C, Schütz G, Straumal B B, Protasova S G, Mazilkin A A, Straudmal P B, Prokschaft A and Luetkens H 2015 Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study Sci. Rep. 5 8871
[23] Kohan A, Ceder G, Morgan D and Van de Walle C G 2000 First-principles calculations for defects and impurities: applications to III-nitrides Phys. Rev. B 64 15019
[24] Look D C, Reynolds D, Hemsky J W, Jones R and Sizelove J 1999 Production and annealing of electron irradiation damage in ZnO Appl. Phys. Lett. 75 811–3
[25] Tuomisto F, Saarinen K, Look D C and Farlow G C 2005 Introduction and recovery of point defects in electron-irradiated ZnO Phys. Rev. B 72 085206
[26] Dong Y, Tuomisto F, Svensson B G, Kuznetsov A Y and Brillson L J 2010 Vacancy defect and defect cluster energetics in ion-implanted ZnO Phys. Rev. B 81 081201
[27] Kucheyev S O, Williams J, Jagadish C, Zou J, Evans C, Nelson A and Hamza A 2003 Ion-beam-produced structural defects in ZnO Phys. Rev. B 67 094115
[28] Van de Walle C G and Neugebauer J 2004 First-principles calculations for defects and impurities: applications to III–nitrides J. Appl. Phys. 95 3853–79
[29] Janotti A and Van de Walle C G 2007 Native point defects in ZnO Phys. Rev. B 76 165202
[30] Oba F, Togo A, Tanaka I, Paier J and Kresse G 2008 Defect energetics in ZnO: a hybrid Hartree–Fock density functional study Phys. Rev. B 77 245202
[31] Kudrnovský J, Turek I, Drchal V, Máca F, Weinberger P and Bruno P 2004 Exchange interactions in III–V and group–IV diluted magnetic semiconductors Phys. Rev. B 69 115208
[32] Søren N, Dussan A, Mesa F, Castro F and González-Hernández R 2016 Electronic structure and magnetism of Mn–doped GaSb for spintronic applications: a DFT study J. Appl. Phys. 120 051704
[33] Khalid M et al 2009 Defect-induced magnetic order in pure ZnO films Phys. Rev. B 80 035331
[34] Kenmochi K, Ann Dinh V, Sato K, Yanase A and Katayama-Yoshida H 2004a Materials design of transparent and half-metallic ferromagnets of MgO, SrO and BaO without magnetic elements J. Phys. Soc. Jpn. 73 2952–4
[35] Kenmochi K, Seike M, Sato K, Yanase A and Katayama-Yoshida H 2004b New class of diluted ferromagnetic semiconductors based on CaO without transition metal elements Japan. J. Appl. Phys. 43 1934
[36] Yamamoto T and Katayama-Yoshida H 1997 Materials design for the fabrication of low-resistivity p-type GaN using a codoping method Japan. J. Appl. Phys. 36 L180
[37] Sato K, Schweika W, Dederichs P and Katayama-Yoshida H 2004 Low-temperature ferromagnetism in (Ga, Mn)N: ab initio calculations Phys. Rev. B 70 201202
[38] Dietl T, Sato K, Fukushima T, Bonanni A, Jamet M, Barski A, Kuroda S, Tanaka M, Hai P N and Katayama-Yoshida H 2015 Spinodal nanodecomposition in semiconductors doped with transition metals Rev. Mod. Phys. 87 1311
[39] Zilan W et al 2019 Vacancy cluster in ZnO films grown by pulsed laser deposition Sci. Rep. 9 5354
[40] Seike M, Dinh V A, Fukushima T, Sato K and Katayama-Yoshida H 2012 Self-organized nanostructures and high blocking temperatures in MgO-based d0 ferromagnets Japan. J. Appl. Phys. 51 050201
[41] Sato K, Bergqvist L, Kudrnovský J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H and Dinh V 2010 First-principles theory of dilute magnetic semiconductors Rev. Mod. Phys. 82 1633