High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations. (English) Zbl 1376.65055 J. Comput. Phys. 325, 226-243 (2016).

Summary: We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique, the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization, we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need for matrix inversion, it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 10^2 innermost eigenpairs of a topological insulator matrix with dimension 10^9 derived from quantum physics applications.

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65F50 Computational methods for sparse matrices
68M20 Performance evaluation, queueing, and scheduling in the context of computer systems
81V65 Quantum dots as quasi particles

Keywords:
interior eigenvalues; Chebyshev filter polynomials; performance engineering; quantum physics; topological materials

Software:
FEAST; CIRR; ILUPACK; PARDISO; likwid; ARPACK

Full Text: DOI arXiv

References:
[1] Castro Neto, A. H.; Guinea, F.; Peres, N. M.R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene, Rev. Mod. Phys., 81, 109-162, (2009)
[2] Hasan, M. Z.; Kane, C. L., Topological insulators, Rev. Mod. Phys., 82, 3045-3067, (2010)
[3] Schubert, G.; Fehske, H., Metal-to-insulator transition and electron-hole puddle formation in disordered graphene nanoribbons, Phys. Rev. Lett., 108, (2012)
[4] Schubert, G.; Fehske, H.; Fritz, L.; Vojta, M., Fate of topological-insulator surface states under strong disorder, Phys. Rev. B, 85, (2012)
[5] Weiße, A.; Wellein, G.; Alvermann, A.; Fehske, H., The kernel polynomial method, Rev. Mod. Phys., 78, 275-306, (2006) · Zbl 1205.81090
[6] Kreutzer, M.; Hager, G.; Wellein, G.; Pieper, A.; Alvermann, A.; Fehske, H., Performance engineering of the kernel polynomial method on large-scale CPU-GPU systems, (Proc. of the 29th IEEE International Parallel & Distributed Processing Symposium, IPDPS15, (2015)), 417-426
[7] Manteuffel, T. A., The tchebychev iteration for nonsymmetric linear systems, Numer. Math., 28, 307-327, (1977) · Zbl 0361.65024
[8] Manteuffel, T. A., Adaptive procedure for estimating parameters for the nonsymmetric tchebychev iteration, Numer. Math., 31, 183-208, (1978) · Zbl 0413.65032
[9] Saad, Y., Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems, Math. Comput., 42, 567-588,
(1984) - Zbl 0539.65013

[10] Sorensen, D. C., Numerical methods for large eigenvalues problems, Acta Numer., 11, 519-584, (2002) - Zbl 1105.65325

[11] Saad, Y., Numerical methods for large eigenvalues problems. Classics in Applied Mathematics, vol. 66, (2011), Society for Industrial and Applied Mathematics (SIAM) Philadelphia - Zbl 1242.65068

[12] Zhou, Y.; Saad, Y.; Tiago, M. L.; Chehikowsky, J. R., Self-consistent-field calculations using Chebychev-filtered subspace iteration, J. Comput. Phys., 219, 172-184, (2006) - Zbl 1105.65111

[13] Neuhauser, D., Bound state eigenfunctions from wave packets: time → energy resolution, J. Chem. Phys., 93, 2611-2616, (1990)

[14] Mandelshtam, V. A.; Taylor, H. S., A low-storage filter diagonalization method for quantum eigenenergy calculation or for spectral analysis of time signals, J. Chem. Phys., 106, 5085-5090, (1997)

[15] Mandelshtam, V. A.; Taylor, H. S., Harmonic inversion of time signals and its applications, J. Chem. Phys., 107, 6756-6769, (1997)

[16] Di Napoli, E.; Polizzi, E.; Saad, Y., Efficient estimation of eigenvalue counts in an interval, Numer. Linear Algebra Appl., 23, 674-692, (2016) - Zbl 1413.65092

[17] Polizzi, E., Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B, 79, (2009)

[18] Krämer, L.; Di Napoli, E.; Galgon, M.; Lang, B.; Bientinesi, P., Dissecting the FEAST algorithm for generalized eigenproblems, J. Comput. Appl. Math., 244, 1-9, (2013) - Zbl 1260.65029

[19] Sakurai, T.; Sugihara, H., A projection method for generalized eigenvalue problems using contour integral integration, J. Comput. Appl. Math., 159, 119-128, (2003) - Zbl 1037.65040

[20] Sakurai, T.; Tanabe, H., CIRR: a Rayleigh-Ritz type method with contour integral method for real generalized eigenvalue problems, Hokkaido Math. J., 36, 745-757, (2007) - Zbl 1156.65035

[21] Schenk, O.; Bollhöfer, M.; Römer, R. A., On large-scale diagonalization techniques for the Anderson model of localization, SIAM Rev., 50, 91-112, (2008) - Zbl 1136.65044

[22] PARDISO solver project

[23] Bollhöfer, M.; Saad, Y.; Schenk, O., ILUPACK—preconditioning software package

[24] Lin, H. Q., Exact diagonalization of quantum-spin models, Phys. Rev. B, 42, 6561-6567, (1990) - Zbl 1243.82040

[25] Alvermann, A.; Littlewood, P. B.; Fehske, H., Variational discrete variable representation for excitons on a lattice, Phys. Rev.

[26] Kreutzer, M.; Thies, J.; Röhrig-Zöllner, M.; Pieper, A.; Shahzad, F.; Galgon, M.; Basermann, A.; Fehske, H.; Hager, G.; Wellein, G., GHOST: building blocks for high performance sparse linear algebra on heterogeneous systems, (2015)

[27] Jackson, D., On approximation by trigonometric sums and polynomials, Trans. Am. Math. Soc., 13, 491-515, (1912) - Zbl 0831.65036

[28] Williams, S.; Waterman, A.; Patterson, D., Roofline: an insightful visual performance model for multicore architectures, Commun. ACM, 52, 65-76, (2009)

[29] Treibig, J.; Hager, G.; Wellein, G., LIKWID: a lightweight performance-oriented tool suite for ×86 multicore environments, (Proceedings of PSTI2010, the First International Workshop on Parallel Software Tools and Tool Infrastructures, San Diego, CA, (2010))
[42] Sitte, M.; Rosch, A.; Altman, E.; Fritz, L., Topological insulators in magnetic fields: quantum Hall effect and edge channels with a nonquantized θ term, Phys. Rev. Lett., 108, (2012)

[43] Galgon, M.; Krämer, L.; Thies, J.; Basermann, A.; Lang, B., On the parallel iterative solution of linear systems arising in the FEAST algorithm for computing inner eigenvalues, Parallel Comput., 49, 153-163, (2015)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.