Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering

Zhihao Yu1,*, Yiming Pan2,*, Yuting Shen3, Zilu Wang4, Zhun-Yong Ong5, Tao Xu3, Run Xin1, Lijia Pan1, Baigeng Wang2, Litao Sun3, Jinlan Wang4, Gang Zhang5, Yong Wei Zhang5, Yi Shi1 & Xinran Wang1

Molybdenum disulfide is considered as one of the most promising two-dimensional semiconductors for electronic and optoelectronic device applications. So far, the charge transport in monolayer molybdenum disulfide is dominated by extrinsic factors such as charged impurities, structural defects and traps, leading to much lower mobility than the intrinsic limit. Here we develop a facile low-temperature thiol chemistry route to repair the sulfur vacancies and improve the interface, resulting in significant reduction of the charged impurities and traps. High mobility $> 80 \text{ cm}^2\text{ V}^{-1}\text{ s}^{-1}$ is achieved in backgated monolayer molybdenum disulfide field-effect transistors at room temperature. Furthermore, we develop a theoretical model to quantitatively extract the key microscopic quantities that control the transistor performances, including the density of charged impurities, short-range defects and traps. Our combined experimental and theoretical study provides a clear path towards intrinsic charge transport in two-dimensional dichalcogenides for future high-performance device applications.
Despite its great promise as a two-dimensional (2D) channel material for logic transistors1,2, integrated circuits3,4 and photodetectors5,6, the charge transport in monolayer of molybdenum disulfide (MoS\textsubscript{2}) is still far away from the intrinsic limit. Theoretically, the phonon-limited mobility is \(\sim 410 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}\) at room temperature and is weakly dependent on carrier density until \(\sim 10^{13} \text{ cm}^{-2}\), where electron–electron scattering starts to play important roles7. Experimentally, however, very different behaviour is observed regardless of the sample preparation method. First, the electron mobility in backgated monolayer MoS\textsubscript{2} devices is limited to \(\sim 40 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}\) at room temperature, an order of magnitude lower than the phonon limit12,16. Second, the mobility is found to increase with carrier density even beyond \(10^{15} \text{ cm}^{-2}\) (refs 2,9). Third, at low carrier density, the charge transport is dominated by hopping mechanism11,12. Fourth, a metal–insulator transition (MIT) is observed at high carrier densities on the order of \(10^{13} \text{ cm}^{-2}\) (refs 2,9).

Owing to its atomic thickness, electrons in monolayer MoS\textsubscript{2} are more susceptible to impurities both inside MoS\textsubscript{2} and at the dielectric interface. Therefore, the engineering of defects and interface represents a logical route to further improve MoS\textsubscript{2} device performance. Recently, the use of thiol-terminated SiO\textsubscript{2} (ref. 16), boron nitride17 and suspended structure18 were found to improve the mobility of monolayer MoS\textsubscript{2} devices by several folds, showing the importance of interface. However, their mobility values are still much lower than the intrinsic limit, indicating that other sources of impurities, most likely inside MoS\textsubscript{2}, are still present.

In this work, we show that sulfur vacancies (SVs), which are the main type of intrinsic defects in MoS\textsubscript{2} (ref. 11), can be effectively repaired by (3-mercaptopropyl)trimethoxysilane (MPS) under mild annealing, resulting in significant reduction of CI and short-range scattering. Monolayer MoS\textsubscript{2} with both sides treated by MPS exhibits a record-high mobility of \(81 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}(320 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1})\) at room temperature (low temperature), much higher than untreated samples. In addition, we show that MIT in MoS\textsubscript{2} is due to localized trap states, which can be modulated by improving the sample and interface quality. A theoretical model that takes into account the major scattering sources (phonon, CI and short-range defects) and localized charge traps is developed to quantitatively understand the scaling of mobility, conductivity and MIT in monolayer MoS\textsubscript{2}. By fitting the experimental data, we are able to extract key microscopic quantities including the density of CI, short-range defects and charge traps, as well as derive a transport phase diagram for MoS\textsubscript{2}. The quantitative information also allows us to discuss the possible origins of these extrinsic factors, which serve as the basis for further device optimization.

Results

Repair of SVs by thiol chemistry. The monolayer MoS\textsubscript{2} samples studied here are obtained by mechanical exfoliation from bulk crystals (Supplementary Fig. 1). A high density of SV exists in as-exfoliated MoS\textsubscript{2} as demonstrated in earlier works11,19. These defects, which can act as catalytic sites for hydrodesulfurization reactions20,21, are chemically reactive. Therefore, it is possible to repair the SV by thiol chemistry. Here, we choose a specific molecule MPS (Fig. 1 inset) for two reasons. (i) The S-C bond in MPS is weaker than other thiol molecules like dodecanethiol due to the acidic nature of CH\textsubscript{3}-O- groups, leading to a low energy barrier for the reaction22. (ii) The trimethoxysilane groups in MPS react with the SiO\textsubscript{2} substrate to form a self-assembled monolayer23 (SAM, Supplementary Fig. 2). The SAM layer can effectively passivate the MoS\textsubscript{2}/SiO\textsubscript{2} interface, while the outstanding thiol group can also repair the SV on the bottom side of MoS\textsubscript{2}, which is otherwise difficult to access. This unique property of MPS allows us to systematically compare three types of MoS\textsubscript{2} samples: as-exfoliated on SiO\textsubscript{2}, top-side (TS) treated on SiO\textsubscript{2} and double-side (DS) treated. For the MPS treatment, we used a liquid-phase process22, followed by 350°C annealing in forming gas to repair the SV (see Methods and Supplementary Fig. 3 for details of sample preparation and characterization).

We first study the reaction kinetics of SV and MPS by density functional theory (Fig. 1). The reaction can be described by HS(CH\textsubscript{2})\textsubscript{3}Si(OCH\textsubscript{3})\textsubscript{3} + SV → CH\textsubscript{3}(CH\textsubscript{2})\textsubscript{3}Si(OCH\textsubscript{3})\textsubscript{3} (Supplementary Fig. 4; Supplementary Movie 1), which is exothermic with the enthalpy change of \(-333.3 \text{ kJ mol}^{-1}\) of MPS. The reaction process comprises two steps with an energy barrier of 0.51 eV and 0.22 eV, respectively. In the first step (Supplementary Fig. 5), MPS chemically absorbs onto an SV through the sulfur atom, and then it cleaves the S-H bond and forms a thiolate surface intermediate. The dissociated H atom is bonded to a neighbouring S atom. The second step involves cleavage of the S-C bond and hydrogenation of the thiolate intermediate to form the final product trimethoxysilylphos (propyl)silane (Supplementary Fig. 6). We note that the two-step process agrees well with earlier thiol absorption experiments on defective MoS\textsubscript{2} (refs 20,22). The relatively low energy barriers also facilitate the reaction to occur at low temperature.

To quantify the effect of MPS treatment on sample quality, we perform aberration-corrected transmission electron microscopy (TEM) on as-exfoliated and TS-treated monolayer MoS\textsubscript{2}. Figure 2 compares high-resolution TEM images of a typical as-exfoliated
and TS-treated sample. The SVs can be clearly distinguished by analysing the intensity profile as shown in Supplementary Fig. 9. Statistical analysis (from more than 15 areas in each case) indicates that the density of SV is reduced from $\sim 6.5 \times 10^{13}$ cm$^{-2}$ for the as-exfoliated samples to $\sim 1.6 \times 10^{13}$ cm$^{-2}$ for the TS-treated samples (Supplementary Fig. 9c,d). Owing to the difficulty in making TEM samples, we are not able to characterize the DS-treated MoS$_2$, where further reduction of SV is expected. During the course of TEM experiment, we have paid great attention to minimize the knock-on damage and lattice reconstruction caused by electron beam irradiation by limiting the exposure time to <60 s. The SV generation rate induced by electron irradiation under our experimental conditions was very low, $\sim 5.6 \times 10^{10}$ cm$^{-2}$ s$^{-1}$ (ref. 11). Therefore, the SVs in Fig. 2 are believed to be intrinsic rather than induced by electron irradiation.

Electrical transport properties. Next, we systematically investigated the effect of MPS treatment on electrical transport properties of MoS$_2$. We fabricated backgated field-effect transistors (FETs) on as-exfoliated, TS-treated and DS-treated monolayer MoS$_2$ samples, and carried out electrical measurements in high vacuum with a standard four-probe technique, unless otherwise stated (see Methods for details of device fabrication and measurement). All the devices exhibited very small hysteresis at room temperature, which became even smaller as they were cooled down (Supplementary Fig. 10). Therefore, in the following we only present electrical data from the forward sweep.

Figure 3a shows the four-probe conductivity $\sigma = (I_{ds})/(\Delta V) (L)/(W)$ as a function of backgate voltage V_g for three representative devices at room temperature (300 K), where I_{ds} is the source-drain current; ΔV, L and W are the voltage difference, distance and sample width between the two voltage probes, respectively. The MPS-treated samples show improved σ compared with the as-exfoliated one, indicating higher sample and interface quality. At carrier density $n = C_v V_g = 7.1 \times 10^{12}$ cm$^{-2}$ ($C_v = 11.6$ nF cm$^{-2}$ is the gate capacitance for 300 nm SiO$_2$ dielectrics), the DS-treated sample shows $\sigma = 1.52 \pm 2 \times 10^{12}$ cm$^{-2}$ s$^{-1}$ and field-effect mobility $\mu = (\partial \sigma)/(C_v \partial V_g) = 81$ cm2 V$^{-1}$ s$^{-1}$. To our best knowledge, this is the highest room-temperature field-effect mobility reported so far for monolayer MoS$_2$ regardless of the device geometry.

To gain further insights into the charge transport physics, we performed variable-temperature electrical measurements down to 10 K. Surprisingly, the three types of devices exhibit very different behaviour (Fig. 3; Supplementary Fig. 11). For the as-exfoliated sample, σ monotonically decreases during cooling over the entire range of n, indicating an insulating behaviour (Fig. 3d; Supplementary Fig. 11a). For the DS-treated sample, the transfer curves all intersect near $V_g = 80$ V (corresponding to $n \approx 5.7 \times 10^{12}$ cm$^{-2}$; Supplementary Fig. 11c), which is a signature of MIT. Metallic and insulating behaviours are observed down to the base temperature for $n > 6.6 \times 10^{12}$ cm$^{-2}$ and $n < 3.5 \times 10^{12}$ cm$^{-2}$, respectively. At intermediate n, the σ-T characteristics are not monotonic, and MIT occurs within our experimental temperature range (solid symbols in Fig. 3). For the TS-treated sample, MIT is observed for $n > 4.7 \times 10^{12}$ cm$^{-2}$ (solid symbols in Fig. 3e), while insulating behaviour is always observed at low temperatures (Fig. 3e; Supplementary Fig. 11b). As we shall see later, these distinct transport behaviours precisely reflect the quality of the MoS$_2$ and interface.

The scaling behaviour of μ is also very different for the three samples (Fig. 3b,c). The as-exfoliated sample shows the lowest μ among the three samples. The μ-T curve is not monotonic with a peak value of 31 cm2 V$^{-1}$ s$^{-1}$ near 175 K. In contrast, μ monotonically increases for the MPS-treated samples on cooling. For $T > 100$ K, $\mu \sim T^{-7}$, where $\gamma = 0.72$ and 0.64 for the DS-treated and TS-treated samples, respectively. For $T < 100$ K, μ gradually saturates. At $T = 10$ K, $\mu = 320$ cm2 V$^{-1}$ s$^{-1}$ for the DS-treated sample, which is ~ 3 (22) times higher than the TS-treated (as-exfoliated) one.

We stress that all the above-mentioned transport phenomena are reproducible among different samples. In Supplementary Fig. 12, we show three additional sets of data for two-terminal devices. Although the mobility is lower than their corresponding four-terminal counterparts due to contact resistance, all the key transport properties, including MIT, scaling of mobility and conductivity, are qualitatively reproduced.

Theoretical modelling of charge transport. Although some theories have been proposed to explain the mobility of monolayer MoS$_2$ (refs 13,25), a more complete physical model remains to be developed to fully understand the charge transport. In particular, the model should establish the correlation between different transport regimes and the underlying microscopic scattering mechanisms, provide quantitative information about the samples, and project device performance based on realistic parameters.

We start by calculating the mobility of monolayer MoS$_2$. According to Matthiessen’s rule, the mobility for free carriers is expressed as

$$\mu_0(n, T)^{-1} = \mu_{ph}(T)^{-1} + \mu_{CI}(n, T)^{-1} + \mu_{sr}^{-1}$$

where μ_{ph}, μ_{CI} and μ_{sr} are mobility limited by phonons, CI and short-range scatterings, respectively (the calculation of each term is described in Methods). The incorporation of μ_{sr} in our model is motivated by (i) TEM characterization that clearly shows the existence of short-range SV defects and (ii) the saturation of μ at low temperatures. We do not consider surface optical phonon scattering because the relatively high energy of the SiO$_2$ phonon modes makes them irrelevant to the low-field mobility phenomenon considered here.

The experimentally measured ‘effective’ field-effect mobility μ is not equal to the free-carrier mobility μ_0, due to the presence of charge traps that limits the free carrier population. Recently, localized trap states within the bandgap have been observed in both exfoliated and CVD monolayer MoS$_2$ (refs 11,14,15). The impurity band from these trap states can introduce a mobility edge that strongly affects the charge transport. In a simple picture, transport is carried only by electrons in the extended states, that is, states above the mobility edge. This model, which
Solid lines are the best theoretical fittings. The dashed red line shows the best theoretical fittings. (\(T=300\)K, a) Typical \(\sigma-V_g\) characteristics for as-exfoliated (black), TS-treated (blue) and DS-treated (red) monolayer MoS\(_2\) at \(T=300\)K. (b) \(\mu-T\) characteristics for the three devices at \(n=7.1 \times 10^{12} \text{cm}^{-2}\). Solid lines are the best theoretical fittings. The dashed red line shows \(T^{-0.72}\) scaling. (c) \(\mu-n\) characteristics for the three devices at \(T=80\)K. Solid lines are the best theoretical fittings. (d-f) Arrhenius plot of \(\sigma\) (symbols) and theoretical fittings (lines) for the as-exfoliated (d), TS-treated (e) and DS-treated (f) MoS\(_2\). From top to bottom, \(n=7.0, 6.0, 5.0\) and \(4.0 \times 10^{12} \text{cm}^{-2}\), respectively. The critical points of the MIT are highlighted by solid symbols in (e) and (f). Insets in (d-f) show the cartoon illustration of the corresponding MoS\(_2\) samples undergone different treatments.

Table 1 | The fitting parameters in our theoretical model for the three devices in Fig. 3.

	As-exfoliated	TS-treated	DS-treated
\(N_i\) (10^{12} \text{cm}^{-2})	0.7	0.59	0.24
\(N_s\) (10^{12} \text{cm}^{-2})	8.1	6.16	5.22
\(\Delta E_t\) (meV)	75	46	58
\(\mu_{tr}\) (cm\(^2\) V\(^{-1}\) s\(^{-1}\))	127	161	410

The fitting parameters in Table 1 give considerable insights into the microscopic origin of impurities in MoS\(_2\). In all of our samples, \(\mu\) is much lower than \(\mu_{ph}\), indicating that phonon scattering does not play a significant role. Rather, the mobility is largely limited by CI and short-range scatterings. We notice that \(N_i\) and \(\mu_{tr}\) are reduced by MPS treatment and are correlated for each sample, suggesting that CI partially shares the microscopic origin with short-range defects, most likely SV. CI also partially comes from the interface, as shown in our experimental data.

Discussion

With the above model, we can now quantitatively understand the obtained experimental data. The solid lines in Fig. 3 are the best fitting results using the parameters listed in Table 1. Remarkably, the scaling of mobility and conductivity with temperature and carrier density is well reproduced with a single set of parameters, suggesting that our model captures the essential physics. At low temperature and low carrier density, the calculated \(\sigma\) and \(\mu\) are lower than experiments (Fig. 3b,d,f), presumably due to the omission of hopping transport in our model. Hence, the discrepancy is the largest for the as-exfoliated sample (Fig. 3b,d) as \(N_{tr}\) is the highest.

The fitting parameters in Table 1 give considerable insights into the microscopic origin of impurities in MoS\(_2\). In all of our samples, \(\mu\) is much lower than \(\mu_{ph}\), indicating that phonon scattering does not play a significant role. Rather, the mobility is largely limited by CI and short-range scatterings. We notice that \(N_i\) and \(\mu_{tr}\) are reduced by MPS treatment and are correlated for each sample, suggesting that CI partially shares the microscopic origin with short-range defects, most likely SV. CI also partially comes from the interface, as shown in our experimental data.

For the MPS-treated samples, the high-temperature mobility is limited by CI, leading to the usual \(T^{-\gamma}\) scaling behaviour. Reference 13 predicts \(\gamma \sim 1\) for the range of carrier densities studied here. However, both short-range scattering (temperature independent) and thermal excitation from charge traps (which leads to the opposite trend since the density of electrons in the extended states \(n_t\) increases with temperature) can decrease the effective \(\gamma\) as observed here. Therefore, one cannot reliably infer the scattering mechanism solely by analysing \(\gamma\). When the charge traps become dominant (which usually happens at low temperature and low carrier density), the mobility even exhibits an insulating behaviour as commonly observed in backgated devices2,11,12 and in the as-exfoliated sample here (Fig. 3b).

The mobility increases with carrier density for all three samples from the combined effect of CI and charge traps (Fig. 3c). Below a threshold carrier density (equivalent to mobility edge), \(\mu\) becomes negligible due to the localized nature of electrons in charge traps. The mobility edge is found to decrease with temperature (Supplementary Fig. 13) because of the thermal excitation of electrons to the extended states. At \(T = 80\)K, the threshold density is about \(2 \times 10^{12}, 3 \times 10^{12}\) and \(5 \times 10^{12} \text{cm}^{-2}\) for the DS-treated, TS-treated and as-exfoliated samples, respectively (Fig. 3c). These values are on the same order of magnitude with \(N_{tr}\), further supporting the charge trap model.
The intersections with the solid line represent the estimate of parameters of DS-treated sample in Table 1. The MIT curves under different 1.2, 0.7 and 0.16 devices (black arrows). (Fig. 4a). When n > Ntr, the Fermi level is above the mobility edge and n0 is independent of temperature. Thus, the temperature dependence of σ is dominated by μo, showing metallic behaviour. Therefore, MIT occurs when n ≈ Ntr. Using the trap and CI parameters of the DS-treated sample in Table 1, we numerically calculated σ(n,T) (equation (6)) and obtained the n and T of each critical point as in Fig. 3f. Figure 4a shows the calculated transport phase diagram with metallic and insulating regions. Excellent agreement with experiment with any fitting parameters, showing the consistency of our model. From Fig. 4a, nMIT slowly increases with decreasing temperature and converges to n0 at T = 0K. When n > n0, metallic behaviour is always expected. When n < n0, MIT is always expected at finite temperature. Under realistic trap and CI parameters, n0 is linearly proportional to, but slightly higher than Ntr, (Fig. 4b; Supplementary Fig. 14). Therefore, n0 can be used as a rough estimate of Ntr. After careful comparison with literature, we find that the Ntr of our MPS-treated samples is indeed the lowest (Fig. 4b), indicating the highest sample quality.

From the above discussion, it is clear that the transport in current state-of-the-art monolayer MoS2 samples is still limited by charge traps, CI and short-range defects. To reach the real potential of monolayer MoS2 in high-performance devices, continuous improvement of sample and interface quality is still needed. In Fig. 4c, we project the room-temperature mobility as a function of Ntr in the ideal case, that is, without CI and short-range scattering. The mobility at low carrier density is rapidly degraded by even a small Ntr. A modest n = 7 × 10^12 cm^-2, Ntr has to be lower than 8.8 × 10^11 cm^-2, which is ~6 times lower than our DS-treated device, to achieve mobility > 400 cm^2V^-1s^-1.

In conclusion, we have shown that thiol chemistry is an effective approach to engineer the defects and interface in monolayer MoS2 towards intrinsic charge transport. A physical model that includes charge traps and major scattering sources has been developed to comprehensively describe the charge transport in MoS2 and to quantify the density of CI and charge traps in the samples. We believe that our model captures the essential charge transport physics for monolayer MoS2 and can be readily extended to other 2D semiconductors.

Methods

Density functional theory calculations. Density functional theory calculations were performed using the Vienna *ab initio* simulation package (VASP)36,37. Projector-augmented-wave38 potentials were used to describe ion–electron interactions, and the exchange correlation potential was represented by the local density approximation39. We used the climbing-image nudged elastic band method to locate the minimum energy paths and the transition state40. The defective MoS2 sheet was modelled by a 4 × 4 supercell of MoS2 with a single SV. A k-point sampling of 5 × 5 × 1 was used for all the calculations.

MoS2 sample preparation and MPS treatment. In this work, we exfoliated monolayer MoS2 from natural bulk flakes (SPI Supplies). The as-exfoliated samples were directly exfoliated on 300 nm SiO2/Si substrate. Before device fabrication, the samples were annealed in a mixture of H2/Ar at 350°C to remove organic residue.

For the TS-treated samples, we first exfoliated monolayer MoS2 on 300 nm SiO2/Si substrate, followed by annealing in a mixture of H2/Ar at 350°C to remove organic residue. The sample was then dipped in a fresh solution of 1/15 (v/v)

Finally, we can also understand MIT in the framework of charge traps. Strong electron–electron correlation in 2D electron gas has been proposed to explain the MIT in monolayer MoS2, which gives a universal threshold density nMIT ≈ 10^13 cm^-2 (ref. 2). In our experiments, however, nMIT is apparently dependent on sample quality (Fig. 3). The MIT can be intuitively understood from equation (6) (Methods). When n < Ntr, the density of conducting electrons in the extended states (n0) is exponentially dependent on temperature due to thermal activation, the temperature dependence of σ is dominated by n0, showing thermally activated insulating behaviour41,11,12,14. For even smaller n and T, transport is dominated by variable-range hopping because n can be ignored11,14 (Fig. 4a). When n > Ntr, the Fermi level is above the mobility edge and n0 is independent of temperature. Thus, the temperature dependence of σ is dominated by μo, showing metallic behaviour. Therefore, MIT occurs when n ≈ Ntr. Using the trap and CI parameters of the DS-treated sample in Table 1, we numerically calculated σ(n,T) (equation (6)) and obtained the n and T of each critical point as in Fig. 3f. Figure 4a shows the calculated transport phase diagram with metallic and insulating regions. Excellent agreement with experiment is achieved without any fitting parameters, showing the consistency of our model. From Fig. 4a, nMIT slowly increases with decreasing temperature and converges to n0 at T = 0K. When n > n0, metallic behaviour is always expected. When n < n0, MIT is always expected at finite temperature. Under realistic trap and CI parameters, n0 is linearly proportional to, but slightly higher than Ntr, (Fig. 4b; Supplementary Fig. 14). Therefore, n0 can be used as a rough estimate of Ntr. After careful comparison with literature, we find that the Ntr of our MPS-treated samples is indeed the lowest (Fig. 4b), indicating the highest sample quality.

From the above discussion, it is clear that the transport in current state-of-the-art monolayer MoS2 samples is still limited by charge traps, CI and short-range defects. To reach the real potential of monolayer MoS2 in high-performance devices, continuous improvement of sample and interface quality is still needed. In Fig. 4c, we project the room-temperature mobility as a function of Ntr in the ideal case, that is, without CI and short-range scattering. The mobility at low carrier density is rapidly degraded by even a small Ntr. A modest n = 7 × 10^12 cm^-2 Ntr has to be lower than 8.8 × 10^11 cm^-2, which is ~6 times lower than our DS-treated device, to achieve mobility > 400 cm^2V^-1s^-1.

In conclusion, we have shown that thiol chemistry is an effective approach to engineer the defects and interface in monolayer MoS2 towards intrinsic charge transport. A physical model that includes charge traps and major scattering sources has been developed to comprehensively describe the charge transport in MoS2 and to quantify the density of CI and charge traps in the samples. We believe that our model captures the essential charge transport physics for monolayer MoS2 and can be readily extended to other 2D semiconductors33-35.
MPS/dichloromethane for 24 h in a dry glove box to grow MPS on MoS2. After growth, the sample was taken out, rinsed thoroughly with dichloromethane and isopropanol (IPA), and blown dry with N2. Finally, the sample was annealed in a mixture of H2/Ar at 350 °C for 20 min to finish the MPS treatment and remove the extra MPS on MoS2 (Supplementary Fig. 3).

For exfoliated samples, the 300 nm SiO2/Si substrate was first subject to a 30-min UV/ozone treatment to enhance surface hydrophilicity. The substrate was then dipped in a 10% (v/v) MPS/dichloromethane solution for 12 h in a dry glove box to grow MPS SAM. After the SAM growth, the substrate was sonicated in a fresh solution of 1/15 (v/v) MPS/dichloromethane for 24 h in a dry glove box to grow MPS SAM. Finally, the sample was annealed in a mixture of H2/Ar at 350 °C for 20 min to finish the MPS treatment.

Device fabrication and electrical measurement. We used standard photo-lithography to pattern the electrodes of MoS2 backgated FETs on 300 nm SiO2/Si substrates. Ti/Pd (20 nm/20 nm) was electron beam evaporated as the contact metal for the probes and electrodes. The sample was annealed in a mixture of H2/Ar at 350 °C for 20 min to finish the MPS treatment. We then exfoliated monolayer MoS2 on the SAM-treated SiO2/Si substrate. After exfoliation, the sample was dipped in a fresh solution of 1/15 (v/v) MPS/dichloromethane for 24 h in a dry glove box to grow MPS on the top side of MoS2, followed by thorough rinsing. Finally, the sample was annealed in a mixture of H2/Ar at 350 °C for 20 min to finish the MPS treatment.

Theoretical modelling. The phonon-limited mobility is numerically calculated according to ref. 7:

\[\mu_{\text{ph}}(T) = \frac{\sigma_{\text{ph}}}{N_0} \int_0^{\theta} \frac{1}{c_{\text{ph}}(k^2)} \, dE \]

where \(\sigma_{\text{ph}} \) is the electron-phonon coupling constant, \(N_0 \) is the density of states in the conduction band, and \(m^* \) is the conduction band effective mass.42 The density of conducting electrons in the extended states is

\[n_0(n, T) = \int_0^{\infty} \frac{1}{e^{E/k_B T} - 1} \, dE \]

The conductivity is calculated by

\[\sigma(n, T) = e \mu_{\text{ph}}(n, T) \int_0^{\infty} \frac{1}{e^{E/k_B T} - 1} \, dE \]

and the 'effective' mobility is given by

\[\mu(n, T) = \mu_{\text{ph}}(n, T) \int_0^{\infty} n_0(n, T) \, dE \]

References

1. Liu, L., Kumar, S. B., Ouyang, Y. & Guo, J. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans. Electron Devices 58, 3042–3047 (2011).
2. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).
3. Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).
4. Chae, H. S. et al. Intrinsic and doped 2D transition metal dichalcogenide transistors. Nano Lett. 13, 1337–1342 (2014).
5. Yu, W. et al. Highly efficient gate-tunable photocurrent generation in heterostructures of layered materials. Nat. Nanotech. 8, 952–958 (2013).
6. Lopez-Sanchez, O., Lemkbe, D., Kayci, M., Radenovic, A. & Kis, A. Ultrathin sensitive photodetectors based on monolayer MoS2. Nat. Nanotech. 8, 497–501 (2013).
7. Kaasbjerg, K., Thyesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).
8. Schmidt, H. et al. Transport properties of monolayer MoS2 grown by chemical vapour deposition. Nano Lett. 14, 1909–1913 (2014).
9. Baugher, B. W., Churchill, H. O., Yang, Y. & Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13, 4212–4216 (2013).
10. Liu, H. et al. Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett. 13, 2640–2646 (2013).
11. Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).
12. Ghatak, S., Pal, A. N. & Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5, 7707–7712 (2011).
13. Ong, Z. Y. & Fischetti, M. V. Mobility enhancement and temperature dependence in top-gated single-layer MoS2. Phys. Rev. B 88, 165316 (2013).
14. Zhu, W. et al. Electronic transport and device prospects of monolayer molybdenum disulfide grown by chemical vapour deposition. Nat. Commun. 5, 3087 (2014).
15. Ghatak, S., Mukherjee, S., Jain, M., Das Sarma, D. D. & Ghosh, A. Microscopic origin of charged impurity scattering and flicker noise in MoS2 field-effect transistors, preprint at http://arxiv.org/abs/1403.3334 (2014).
16. Najmaei, S. et al. Tailoring the physical properties of molybdenum disulphide monolayers by control of interfacial chemistry. Nano Lett. 14, 1354–1361 (2014).
17. Chan, M. et al. Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates. NanoScale 5, 9572–9576 (2013).
18. Jin, T., Kang, J., Kim, E. S., Lee, S. & Lee, C. Suspended single-layer MoS2 devices. J. Appl. Phys. 114, 164509 (2013).
19. Komsa, H. P. et al. Engineering silicon oxide surfaces for vacuum deposition of MoOx contacts. Nano Lett. 13, 4674–4680 (2013).
20. Wiegenstein, C. G. & Schulz, K. H. Methanol adsorption on defective MoS2(001) surfaces. J. Phys. Chem. B 103, 6913–6918 (1999).
21. Peterson, S. L. & Schulz, K. H. Ethanol decomposition pathways on MoS2(001). Langmuir 12, 941–945 (1996).
22. Makarova, M., Okawa, Y. & Aono, M. Selective adsorption of thiol molecules at sulfur vacancies on MoS2(001), followed by vacancy repair via S–C dissociation. J. Phys. Chem. C 116, 22411–22416 (2012).
23. Onclin, S., Ravoo, B. J. & Reinhoudt, D. N. Engineering silicon oxide surfaces for vacuum deposition of MoOx contacts. Nano Lett. 13, 4674–4680 (2013).
24. Komsa, H. P. et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).
25. Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).
Acknowledgements
This work was supported in part by Chinese National Key Fundamental Research Project 2013CBA01604, 2011CB922103, 2011CB707601, 2010CB923401, 2011CB302004; National Natural Science Foundation of China 61261160499, 11274154, 61229401, 21173040, 21373045, 133279028, 61274114; National Science and Technology Major Project 2011ZX02707; Natural Science Foundation of Jiangsu Province BK2012302, BK20130055, BK20130016, BK2012024; Specialized Research Fund for the Doctoral Program of Higher Education 20120091110028, and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. J.W. acknowledges the computational resources provided by SEU and National Supercomputing Center in Tianjin.

Author contributions
X.W. and Y.S. conceived and supervised the project. Z.Y. and R.X. carried out sample preparation, device fabrication, electrical measurements and data analysis. Y.P., Z.-Y.O, B.W., G.Z. and Y.W.Z. performed modelling of charge transport. Y.S., T.X. and L.S. performed TEM characterizations and analysis. Z.W. and J.W. performed density functional theory calculations. L.P. devised the MPS treatment method. X.W., Y.S., L.S. and J.W. co-wrote the paper with all authors contributing to discussion and preparation of the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Yu, Z. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5:5290 doi: 10.1038/ncomms6290 (2014).