FLCN: A new regulator of AMPK-dependent Warburg metabolic reprogramming

Marie-Claude Gingras1,2 and Arnim Pause1,2,*

1Goodman Cancer Research Center; McGill University; Montréal, QC Canada; 2Department of Biochemistry; McGill University; Montréal, QC Canada

Keywords: AMPK, folliculin, glycolysis, HIF, metabolic adaptation, oxidative phosphorylation, PGC-1α, ROS, Warburg effect

Abbreviations: AMPK, AMP-activated protein kinase; BHD, Birt-Hogg-Dubé syndrome; FLCN, folliculin; FNIP, folliculin interacting protein; HIF, hypoxia-inducible factor; MEF, mouse embryonic fibroblast; PGC-1α, peroxisome proliferator-activated receptor γ coactivator 1α; ROS, reactive oxygen species.

Tumor cells manage their energy to support aberrant proliferation by reprogramming their cellular metabolism, for example through the Warburg effect. Although AMPK is a major regulator of energy homeostasis, its role in cancer metabolic adaptation is unclear. We recently identified the tumor suppressor folliculin as a new regulator of AMPK-dependent metabolic transformation.

Sustaining rapid and persistent proliferation represents a bioenergetic and biosynthetic challenge for cancer cells, which must efficiently manage their energetic resources to survive and grow in unfavorable environments. This is achieved through metabolic reprogramming to stimulate aerobic glycolysis, a process known as the Warburg effect, which is now a well-appreciated hallmark of cancer.1 However, the signaling pathways and key regulators of this metabolic transformation are still poorly defined. AMP-activated protein kinase (AMPK), a major physiological regulator of cellular energy homeostasis, is located at the center of a metabolic network.2 Indeed, AMPK functions as a sensor of cellular energy fluctuation and a driver of pathways that minimize energy consumption and maximize energy production upon energetic stress. Despite its critical function in cell metabolism, the role of AMPK in cancer is controversial as both pro- and anti-tumorigenic effects have been described.2 In fact, while AMPK activation might prevent tumor initiation through its ability to restrict cell proliferation, several reports have shown that AMPK gain of function acts as a driver of tumorigenesis by enhancing glycolytic energy production and cell survival under metabolic stress conditions.2 Our recent work sheds light on how AMPK activation could drive metabolic transformation and tumorigenesis.3

Germline inactivating mutations in the folliculin (FLCN) tumor suppressor gene predispose to Birt-Hogg-Dubé (BHD) syndrome, an inherited cancer disorder associated with lung cysts, pneumothorax susceptibility, renal cell carcinoma, and skin tumors.4 Although FLCN and its uncharacterized binding partners folliculin interacting protein 1 (FNIP1) and 2 (FNIP2) were identified as AMPK binding partners and phosphorylation target binding partner and phosphorylation target, its physiological role and tumor suppressor mechanism and its impact on AMPK-dependent functions are still poorly characterized. We previously reported that loss of FLCN enhances transcriptional activity of hypoxia-inducible factor (HIF) and increases the glycolytic rate in human kidney cancer cells.5 Moreover, a recent publication demonstrated that conditional deletion of FLCN in mouse kidney and muscle results in increased mitochondrial oxidative phosphorylation, suggesting that loss of FLCN enhances cellular metabolism.6 To maintain cellular homeostasis under hypoxic conditions, HIF drives the transcription of genes that stimulate glycolysis, angiogenesis, and energy supply, which in turn promotes solid tumor growth, invasion, and metastasis.7 However, how FLCN and AMPK regulate HIF activity and metabolic adaptation in normoxic conditions, and whether this effect is linked to tumorigenesis, is not defined.

Using untransformed Flcn−/− mouse embryonic fibroblasts (MEFs) and cancer cell lines naturally deficient for FLCN expression, we demonstrated that FLCN depletion constitutively activates AMPK independent of the cellular energy state. Using a non-phosphorylatable form of FLCN that is mutated at a previously identified AMPK phosphorylation and binding site we established that loss of FLCN binding to AMPK also results in constitutive AMPK activation.8 Chronic AMPK activation leads to upregulation of
the peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α), a known target of AMPK, which in turn increases mitochondrial content and the oxidative phosphorylation rate, leading to enhanced production of reactive oxygen species (ROS). Surprisingly, elevated mitochondrial ROS production is not associated with increased oxidative protein and DNA damage, but rather acts as a signaling molecule to activate HIF transcriptional activity without affecting HIF-1α protein stability. Upon FLNC deple

Figure 1. FLNC regulates AMPK activation and downstream Warburg metabolic reprogramming. Follucin (FLCN) binds and inhibits phosphorylation (P) of AMP-activated protein kinase (AMPK) via serine 62 (S62), a previously described AMPK phospho-site. Upon loss of FLNC, AMPK is activated by phosphorylation by an unidentified kinase (Kinase X) and stimulates transcription and expression of peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1), leading to enhanced mitochondrial biogenesis and reactive oxygen species (ROS) production. This drives hypoxia-inducible factor (HIF) transcriptional activation and enhances Warburg metabolic reprogramming.

References
1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646-74; PMID:21376230; http://dx.doi.org/10.1016/j.cell.2011.02.013
2. Faubert B, Vincent EE, Poffenberger MC, Jones RG. The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator. Cancer Lett 2014; S0304-3835(14)00054-8; PMID:24486219; http://dx.doi.org/10.1016/j.canlet.2014.01.018
3. Yan M, Gingras MC, Dunlop EA, Nourat Y, Dupuy F, Jalali Z, Posnik E, Coull BJ, Khatrindi D, Dydensborg AB, et al. The tumor suppressor folliculin regulates AMPK-dependent metabolic transformation. J Clin Invest 2014; 124(6):2640-50; PMID:24762438; http://dx.doi.org/10.1172/JCI71749
4. Schmidt LS, Nickerson ML, Warren MB, Glenn GM, Toto JR, Merino MJ, Turner ML, Choyke PL, Sharma N, Peterson J, et al. Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt-Hogg-Dube syndrome. Am J Hum Genet 2005; 76:1023-33; PMID:15852235; http://dx.doi.org/10.1086/430842
5. Preston RS, Philip A, Claessen T, Gijzen I, Dydensborg AB, Dunlop EA, Harper KT, Brinkhuizen T, Menko FH, Davies DM, et al. Absence of the Birt-Hogg-Dube gene product is associated with increased hypoxia-inducible factor transcriptional activity and a loss of metabolic flexibility. Oncogene 2011; 30:1159-73; PMID:21057536; http://dx.doi.org/10.1038/onc.2010.497
6. Husami H, Baba M, Husami Y, Huang Y, Oh H, Hughes RM, Klein ME, Takikita S, Nagashima K, Schmidt LS, et al. Regulation of Mitochondrial Oxidative Metabolism by Tumor Suppressor FLCN. J Natl Cancer Inst 2012; 104:1750-64; PMID:23150719; http://dx.doi.org/10.1093/jnci/djs418

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
The authors express gratitude to Andrew Tee for the figure design.
7. Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 2012; 12:9-22; PMID:22169972; http://dx.doi.org/10.1038/nrc3183

8. Wang L, Kobayashi T, Piao X, Shiono M, Takagi Y, Mineki R, Taka H, Zhang D, Abe M, Sun G, et al. Serine 62 is a phosphorylation site in folliculin, the Birt-Hogg-Dube gene product. FEBS Lett 2010; 584:39-43; PMID:19914239; http://dx.doi.org/10.1016/j.febslet.2009.11.033

9. Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, Park H, Kim SS, Choe W, Kang I, et al. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 2008; 29:713-21; PMID:18258605; http://dx.doi.org/10.1093/carcin/bgn032