The layered iron arsenide oxides Sr$_2$CrO$_3$FeAs and Ba$_2$ScO$_3$FeAs

Marcus Tegela, Franziska Hummela, Sebastian Lacknera, Inga Schellenbergb, Rainer Pöttgenb, and Dirk Johrendt*a

a Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany

b Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149 Münster, Germany

Abstract. The iron arsenide oxides Sr$_2$CrO$_3$FeAs and Ba$_2$ScO$_3$FeAs were synthesized by high temperature solid state reactions and their crystal structures determined by the X-ray powder diffraction. Their structures are tetragonal (P4/nmm; Sr$_2$CrO$_3$FeAs: $a = 391.12(1)$ pm, $c = 1579.05(3)$ pm; Ba$_2$ScO$_3$FeAs: $a = 412.66(5)$ pm, $c = 1680.0(2)$ pm, $Z = 2$) and isotypic to Sr$_2$GaO$_3$CuS. Iron arsenide layers are sandwiched between perowskite-like metal oxide layers and separated by ~1600 pm, which is much larger compared to the ZrCuSiAs-type ‘1111’ iron arsenide superconductors. The bond lengths and angles within the FeAs layers are adapted to the space requirements of the oxide blocks. Measurements of the magnetic susceptibility, electrical resistivity and temperature-dependent crystal structure show no hint for a structural phase transition or magnetic anomaly in both compounds. Sr$_2$CrO$_3$FeAs shows Curie-Weiss paramagnetism above 160 K with an effective magnetic moment of $3.83(3)$ μ_B in good agreement with the theoretical value of 3.87 μ_B for Cr$^{3+}$ ($S = 3/2$). Antiferromagnetic ordering was detected below $T_N \sim 31$ K. 57Fe Mössbauer spectra of Sr$_2$CrO$_3$FeAs show one single signal that broadens below the Néel temperature due to a small transferred hyperfine field induced by the magnetic ordering of the chromium atoms. 57Fe-Mössbauer spectra of Ba$_2$ScO$_3$FeAs show single signals which are only subject to weak quadrupole splitting.

Running title: Sr$_2$CrO$_3$FeAs and Ba$_2$ScO$_3$FeAs

Keywords: Iron arsenides, Superconductors, Crystal structure, Magnetism, 57Fe Mössbauer-spectroscopy

*Prof. Dr. Dirk Johrendt
Department Chemie und Biochemie, Universität München
Butenandtstrasse 5–13 (Haus D), D-81377 München, Germany
e-mail: dirk.johrendt@cup.uni-muenchen.de
Introduction

The discovery of high-T_c superconductivity in iron arsenides [1] has generated an enormous and growing tide of interest [2], which is reflected in about 600 papers already published within one year. Besides outstanding superconducting properties with T_c’s up to 55 K [3] and very high critical fields of at least 70 T [4], it is certainly also the richness of crystal chemical and physical properties, that has pushed this class of materials in the spotlight of interest.

Up to now, the family of iron-based superconductors consists of rather simple ternary or quaternary compounds with long known crystal structures, namely LaOFeAs with the ZrCuSiAs-type structure [1, 5], BaFe$_2$As$_2$ with ThCr$_2$Si$_2$-type structure [6-8], LiFeAs with PbFCl-type structure [9, 10] and β-FeSe with the anti-PbO structure [11, 12]. The currently by far most investigated compounds are the REFeAsO (‘1111’, RE = rare earth) and AFe$_2$As$_2$ (‘122’, A = alkaline earth) based systems.

Superconductivity emerges in the FeAs layers built up by edge-sharing FeAs$_{4/4}$ tetrahedra, and is assumed to be unconventional [13, 14] because of the relatively high critical temperatures and the proximity to structural and magnetic transitions. The latter ones only occur in the non-superconducting ‘parent compounds’ like LaFeAsO [15] or BaFe$_2$As$_2$ [6] and have to be at least partially suppressed by doping or by external pressure before superconductivity arises [1, 8]. This scenario is reminiscent of the high-T_c cuprates, where also an antiferromagnetic ground-state of a layered parent compound like La$_2$CuO$_4$ becomes unstable upon doping before superconductivity appears [16]. However, this analogy is limited by the fact, that the doping of a Mott-insulator as in the case of the cuprates is of a very different nature compared to doping the metallic iron arsenides. Indeed, the metallic property of the parent compounds and the multi-band character of the Fermi-surfaces constitute significant differences between the cuprate and iron arsenide superconductors. It has also been shown that the anisotropy of the iron arsenide superconductors is significantly lower compared to the cuprates, which have even higher T_c’s [17].

Even though one should be careful in transferring principles from the cuprates, it is an important task to search for new iron arsenides with lower dimensional structures, i.e. with larger FeAs interlayer distances. Several pnictide oxide structures are considerable candidates [18], but also materials derived from copper sulfide oxides with
isoelectronic CuS layers [19, 20] are very promising. The first reported compound was Sr$_3$Sc$_2$O$_5$Fe$_2$As$_2$ [21] with the known structure of Sr$_3$Fe$_2$O$_5$Cu$_2$S$_2$ [20]. The iron arsenide is not superconducting and shows no structural anomaly or magnetic ordering. Then superconductivity at 17 K [22] has been found in the iron phosphide Sr$_2$ScO$_3$FeP with the Sr$_2$GaO$_3$CuS-type [19] structure. This T_c is considerably higher in comparison with the ZrCuSiAs-Type phosphide oxides like LaFePO (4-7K) and may promise even higher T_c’s in analogue arsenides.

In this paper, we report on the iron arsenide oxides Sr$_2$CrO$_3$FeAs and Ba$_2$ScO$_3$FeAs, both sharing the key feature of tetragonal iron arsenide layers with other iron arsenide superconductors, but the interlayer distances are much larger due to separation by perowskite-like metal oxide blocks. Their crystal structures were determined by X-ray powder diffraction and the physical properties were characterized by magnetic susceptibility and electrical resistivity measurements and 57Fe Mössbauer spectroscopy experiments. The electronic structure of the new compound Ba$_2$ScO$_3$FeAs is compared with the parent compounds of the superconducting iron arsenides.

Results

Crystal structure

The crystal structures of Sr$_2$CrO$_3$FeAs and Ba$_2$ScO$_3$FeAs are isotypic to the oxide sulfide Sr$_2$GaO$_3$CuS [19] in the space group $P4/nmm$. Figure 1 shows X-ray powder patterns, which could be completely fitted with one single phase in the case of Sr$_2$CrO$_3$FeAs using starting parameters from ref. [19]. Minor impurities of Sc$_2$O$_3$ and FeAs were detected in the Ba$_2$ScO$_3$FeAs sample. Crystallographic data, selected bond lengths and parameters of the Rietveld fits are compiled in Table 1. Further details of the structure determinations may be obtained from: Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany) by quoting the Registry No’s CSD-##### (Sr$_2$CrO$_3$FeAs) and CSD-##### (Ba$_2$ScO$_3$FeAs).

The crystal structure of Sr$_2$CrO$_3$FeAs and Ba$_2$ScO$_3$FeAs is shown in Figure 2. The FeAs layers perpendicular to the c-axis are separated by strontium atoms from chromium oxide and strontium oxide layers according to the stacking order (CrO$_2$)(SrO)(SrO)(CrO$_2$). The Fe–As bonds are shorter and the FeAs$_{4/4}$ tetrahedra are
less distorted in Sr$_2$CrO$_3$FeAs in comparison with Ba$_2$ScO$_3$FeAs. Also the Fe–Fe distance is significantly shorter in the strontium compound (276.6 pm) than in the barium compound (291.8 pm). This may be attributed to the larger required space of the barium ions and to a smaller extent the scandium ions, and it shows that the geometry of the FeAs layer is flexible and can be adapted to the oxide blocks. The interlayer distance of the iron arsenide layers equals the c lattice parameter for this structure type, thus Ba$_2$ScO$_3$FeAs ($c = 1680$ pm) exhibits the highest iron arsenide interlayer distance so far.

The powder patterns recorded at lower temperatures revealed no structural phase transitions for both compounds down to 10 K. At 10 K, the corresponding a lattice parameter is decreased by 0.73 pm (0.92 pm) and the c lattice parameter by 8.4 pm (6.0 pm) for Sr$_2$CrO$_3$FeAs (Ba$_2$ScO$_3$FeAs).

Magnetism and resistivity

Figure 3 shows the magnetic susceptibility of Sr$_2$CrO$_3$FeAs between 1.8 and 360 K. The compound obeys the Curie-Weiss law above ~160 K. An effective magnetic moment of 3.83(3) μ_B was found, which is in good agreement with the theoretical spin-only value of 3.87 μ_B for Cr$^{3+}$ ($S = 3/2$). The paramagnetic temperature is $-141(3)$ K. Antiferromagnetic ordering is discernible, the highest susceptibility was reached at $T_N \approx 31$ K. The origin of the anomaly around 120 K is not yet clear, but probably due to traces of ferromagnetic contamination. Ba$_2$ScO$_3$FeAs is Pauli-paramagnetic in the temperature range between 1.8 and 300 K (not shown). Neither compound shows any sign of anomaly in the course of the magnetic susceptibility at any applied external magnetic field. The resistivity of both Sr$_2$CrO$_3$FeAs and Ba$_2$ScO$_3$FeAs is depicted in Figure 4. Both compounds are poor metals over the whole measured temperature range and show no anomaly. Both magnetism and resistivity therefore indicate that there is no occurrence of a spin-density-wave anomaly in any of the compounds.

Mößbauer spectroscopy

The 57Fe Mößbauer spectra collected for the Sr$_2$CrO$_3$FeAs sample at various temperatures are shown in Figure 5 together with transmission integral fits. The corresponding fitting parameters are summarized in Table 2. As expected from the crystal structure (one single Fe site), the spectra at 298, 77, and 40 K are well
reproduced with single signals, which are subject to weak quadrupole splitting due to the non-cubic site symmetry (4m2) of the iron atoms. Within the standard deviations, the observed isomer shift, the experimental line width, and the quadrupole splitting of Sr$_2$CrO$_3$FeAs are almost identical with those obtained for Sr$_3$Sc$_2$O$_5$Fe$_2$As$_2$ [23], indicating a similar electronic situation for the iron atoms in both arsenide oxides. The observed isomer shift is in line with the recently reported 57Fe data for LaFePO [24], SrFe$_2$As$_2$ [25], and BaFe$_2$As$_2$ [26]. The increase of the isomer shift with decreasing temperature (0.29 → 0.45 mm/s) is due to a second order Doppler shift (SODS), well known for iron compounds.

In contrast to Sr$_3$Sc$_2$O$_5$Fe$_2$As$_2$ [21], where no magnetic ordering is observed down to 4.2 K, the chromium atoms in Sr$_2$CrO$_3$FeAs reveal antiferromagnetic ordering. This is also reflected in the 57Fe Mössbauer spectra at 20 and 4.2 K, i.e. well below the Néel temperature. In the magnetically ordered regime we observe significant broadening of the Mössbauer signal and the fits revealed increased line width and quadrupole splitting parameters. Since the transferred field (B_{hf}) is small, independent refinement of all parameters, δ, Γ, ΔE_Q, and B_{hf} showed strong correlations. In order to get an estimate for the transferred field, the 4.2 K spectrum was fitted with various fixed values for the hyperfine field. A reasonable fit was obtained for a fixed hyperfine field of 0.5 T and the refined values $\delta = 0.45(1)$ mm/s, $\Gamma = 0.84(2)$ mm/s, and $\Delta E_Q = 0.24(1)$ mm/s. From these fitting tests we estimate a transferred hyperfine field of 0.5±0.2 T at 4.2 K.

Figure 6 shows the 57Fe Mössbauer spectra of the Ba$_2$ScO$_3$FeAs sample at various temperatures together with transmission integral fits. The fitting parameters are listed in Table 2. In agreement with the single Fe site in the crystal structure, the spectra at 298, 77, and 4.2 K show single signals which are subject to weak quadrupole splitting. The 77 K isomer shifts of Ba$_2$ScO$_3$FeAs (Table 2), Sr$_3$Sc$_2$O$_5$Fe$_2$As$_2$ [23], and Sr$_2$CrO$_3$FeAs are almost identical. We can thus assume a similar electronic situation within the tetrahedral [Fe$_2$As$_2$] layers of the three structures. They are also comparable to LaFePO [24] and SrFe$_2$As$_2$ [25]. The increase of the isomer shift with decreasing temperature (0.35 → 0.50 mm/s) results from a second order Doppler shift. The spectra give no hint for magnetic ordering of the iron moments down to 4.2 K. Ba$_2$ScO$_3$FeAs and Sr$_3$Sc$_2$O$_5$Fe$_2$As$_2$ show a lower quadrupole splitting parameter (0.20 mm/s for both compounds) than Sr$_2$CrO$_3$FeAs (0.42 mm/s) at 4.2 K. Even smaller values of $\Delta E_Q = 0.19$ and -0.04 mm/s occur for LaFePO and BaFe$_2$As$_2$, respectively.
Electronic structure

The electronic structure of the iron arsenide superconductors have frequently been described [27-31] and some (maybe hidden) electronic order with respect to superconductivity is still under discussion [32]. Also Sr$_3$Sc$_2$O$_5$Fe$_2$As$_2$ and the superconducting phosphide Sr$_2$ScO$_3$FeP have been studied recently [33,34]. In all cases, the calculations predict a Fermi surface consisting of hole-like pockets at the center of the Brillouin zone (Γ) and similar electron-like pockets at the corners (M), which become largely congruent by a vector (π,π). This Fermi surface nesting is an unstable situation and typically favors charge- or spin-density ordering, often connected with structural distortions. We have calculated the band structure of Ba$_2$ScO$_3$FeAs in order to see whether the rather large metal oxide building blocks between the FeAs layers induces any appreciable perturbation of the bands close to the Fermi level and thus the Fermi surface. The band structure of Ba$_2$ScO$_3$FeAs (Figure 7, top) shows the typical features known from the iron arsenide superconductors [27]. Iron 3d band contributions (emphasized in Figure 7) clearly dominate the vicinity of the Fermi level, where no significant contributions of the oxide layers are found. Also the Fermi surface (Figure 7, bottom), reveals the typical cylinders around Γ and M and provides the unstable nesting situation as mentioned above. Thus from the view of the electronic structure, one would expect structural and magnetic anomalies in Ba$_2$ScO$_3$FeAs. The origin of the absence of any structural or magnetic instability and superconductivity in this and the related compounds is not clear and currently under investigation.

Conclusion

The iron arsenide oxides Sr$_2$CrO$_3$FeAs and Ba$_2$ScO$_3$FeAs crystallize in the tetragonal Sr$_2$GaO$_3$CuS-type structure (space group $P4/nmm$) and exhibit the largest distance between the FeAs layers so far due to separation by large perowskite-like metal oxide blocks. The chromium compound shows paramagnetism in agreement with Cr$^{3+}$ ($S = 3/2$) and antiferromagnetic ordering below 31 K, whereas Ba$_2$ScO$_3$FeAs is Pauli-paramagnetic. Both compounds are poor metals and show no structural or magnetic anomalies, even though the electronic structure predicts a nested Fermi surface. 57Fe-Mössbauer spectra are in agreement with the absence of magnetic ordering at the iron
site. In the case of Sr$_2$CrO$_3$FeAs, a small hyperfine field is transferred to the iron nuclei from the adjacent magnetically ordered CrO$_2$ layers.

Note added: While we were finalizing our manuscript, we recognized an unpublished manuscript by H. Ogino et al. [35]. Therein, the iron arsenide oxides Sr$_2$MO$_3$FeAs ($M =$ Sc, Cr) are reported. The resistivity and susceptibility data are slightly different from our results.

Acknowledgments

We thank Dipl.-Chem. Bele Boeddinghaus and Prof. Thomas Fässler for help with the magnetic measurements. This work was financially supported by the Deutsche Forschungsgemeinschaft.

Experimental

Synthesis

Sr$_2$CrO$_3$FeAs and Ba$_2$ScO$_3$FeAs were synthesized by heating stoichiometric mixtures of strontium, chromium, iron (III) oxide, arsenic oxide and barium, scandium, iron (III) oxide and arsenic oxide, respectively in alumina crucibles sealed in silica ampoules under an atmosphere of purified argon. The mixtures were heated to 1323 K at a rate of 80 K/h, kept at this temperature for 60 h and cooled down to room temperature. The products were homogenized in an agate mortar, pressed into pellets and sintered at 1323 K for 60 h, reground, pressed into pellets and sintered again at 1323 K for 50 h.

Crystal structure determination

Powder patterns were recorded on STOE STADI P Debye-Scherrer X-Ray diffractometers (Mo-K$_{\alpha 1}$ and Cu-K$_{\alpha 1}$ radiation, respectively, Ge-111 monochromator, Debye-Scherrer or transmission geometry). Rietveld refinements of both samples were performed with the TOPAS package [36] using the fundamental parameters approach as
reflection profiles (convolution of appropriate source emission profiles with axial instrument contributions as well as crystallite microstructure effects). In order to describe small peak half width and shape anisotropy effects, the approach of Le Bail and Jouanneaux [37] was implemented into the TOPAS program and the according parameters were allowed to refine freely. Preferred orientation of the crystallites was described with a spherical harmonics function of 4th or 8th order. In order to check for structural phase transitions, powder patterns between 10 and 300 K were recorded on a Huber G670 Guinier imaging plate diffractometer (Cu-Kα1 radiation, Ge-111 monochromator), equipped with a closed-cycle He-cryostat. These patterns were also refined with the TOPAS package using the approach described in Ref. [26].

Resistivity measurements

Sintered powder pellets (diameter = 6 mm, height ≈ 1.4 mm) of the samples were contacted with copper wires and silver conducting paint, and the electrical resistivity was measured between 10 and 320 K using a dc four-point current-reversal method [38].

Magnetic measurements

The magnetic properties were studied using a commercial SQUID magnetometer (Quantum Design MPMS-5) with external magnetic fields up to 50 kOe. Susceptibilities were measured at 100, 500, 1000, 5000 and 10000 Oe and hysteresis loops were taken at various temperatures to check for ferromagnetic ordering or impurity phases.

57Fe Mössbauer spectroscopy

A 57Co/Rh source was available for the 57Fe Mössbauer spectroscopy investigations. The quoted values of the isomer shifts are given relative to this material. The Sr3Sc2O5Fe2As2 sample was placed in a thin-walled PVC container. The measurements were conducted in the usual transmission geometry at temperatures between 4.2 and 298 K. The source was kept at room temperature. The total counting time was 1 day per spectrum. Fitting of the spectra was carried out with the NORMOS-90 program system [39].
Computational details

Electronic structure calculations for Ba$_2$ScO$_3$FeAs were performed with the WIEN2k program package [40] using density functional theory within the full-potential LAPW method and the local density approximation (LDA). Detailed descriptions for both methods are given elsewhere [41]. Full-potential LAPW, which was used for the WIEN2k calculations, is based on the muffin-tin construction with non-overlapping spheres. In the interstitial region between spheres, the potential is represented by a plane wave expansion. Because of the great flexibility and accuracy of this expansion for the potential and charge density, a very high numerical accuracy is achieved for the LAPW method. Mixed LAPW and APW + lo (lo = local orbitals) basis sets were used to increase the efficiency of the APW linearization [42]. Further technical details can be found in ref. [43] and the monograph of Singh [44]. The total energies and charge densities of the SCF cycles converged to changes smaller than 1×10^{-4} Ryd cell$^{-1}$ and 4374 k-points ($27 \times 27 \times 6$ mesh) were used in the irreducible wedges of the Brillouin zones. The basis sets consisted of 4192 plane waves up to a cutoff $R_{mt}K_{max} = 8.0$. The atomic sphere radii R_{mt} were 2.50 (Ba), 1.97 (Sc), 2.43 (Fe), 2.16 (As) and 1.75 au (O). Fermi surfaces were visualized with XCrysDen [45].

References

[1] Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, *J. Am. Chem. Soc.* **2008**, *130*, 3296.
[2] D. Johrendt, R. Pöttgen, *Angew. Chem. Int. Ed.* **2008**, *47*, 4782.
[3] Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, Z.-C. Li, G.-C. Che, X.-L. Dong, L.-L. Sun, F. Zhou, Z.-X. Zhao, *Chin. Phys. Lett.* **2008**, *25*, 2215.
[4] J. D. Corbett, *J. Solid State Chem.* **1981**, *37*, 335.
[5] V. Johnson, W. Jeitschko, *J. Solid State Chem.* **1974**, *11*, 161.
[6] M. Rotter, M. Tegel, I. Schellenberg, W. Hermes, R. Pöttgen, D. Johrendt, *Phys. Rev. B* **2008**, *78*, 020503(R).
[7] M. Pfisterer, G. Nagorsen, Z. Naturforsch. B - Chem. Sci. **1980**, *35B*, 703.
[8] M. Rotter, M. Tegel, D. Johrendt, *Phys. Rev. Lett.* **2008**, *101*, 107006.
[9] R. Juza, K. Langer, Z. Anorg. Allg. Chem. **1968**, *361*, 58.
[10] J. H. Tapp, Z. J. Tang, B. Lv, K. Sasmal, B. Lorenz, P. C. W. Chu, A. M. Guloy, Phys. Rev. B 2008, 78.

[11] F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, M. K. Wu, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14262.

[12] G. Hägg, A. L. Kindström, Z. Phys. Chem. B 1933, 22, 453.

[13] L. Shan, Y. L. Wang, X. Y. Zhu, G. Mu, L. Fang, C. Ren, H. H. Wen, Europhys. Lett. 2008, 83, 57004.

[14] A. D. Christianson, E. A. Goremychkin, R. Osborn, S. Rosenkranz, M. D. Lumsden, C. D. Malliakas, I. S. Todorov, H. Claus, D. Y. Chung, M. G. Kanatzidis, R. I. Bewley, T. Guidi, Nature 2008, 456, 930.

[15] C. d. l. Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliffe, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, P. Dai, Nature 2008, 453, 899.

[16] J. G. Bednorz, K. A. Mueller, M. Takashige, Science 1987, 236, 73.

[17] N. Ni, S. L. Bud'ko, A. Kreyssig, S. Nandi, G. E. Rustan, A. I. Goldman, S. Gupta, J. D. Corbett, A. Kracher, P. C. Canfield, Phys. Rev. B 2008, 78, 014507.

[18] T. C. Ozawa, S. M. Kauzlarich, Sci. Technol. Adv. Mater. 2008, 9, 033003.

[19] W. J. Zhu, P. H. Hor, Inorg. Chem. 1997, 36, 3576.

[20] W. J. Zhu, P. H. Hor, J. Solid State Chem. 1997, 134, 128.

[21] X. Zhu, F. Han, G. Mu, B. Zeng, P. Cheng, B. Shen, and H.-H. Wen, Phys Rev. B 2009, 79, 024516.

[22] H. Ogino, Y. Matsumura, Y. Katsura, K. Ushiyama, S. Horii, K. Kishio, J.-J. Shimoyama, arXiv:0903.3314 (unpublished).

[23] M. Tegel, I. Schellenberg, R. Pöttgen, D. Johrendt, Z. Naturforsch. B – Chem. Sci. 2009, submitted.

[24] M. Tegel, I. Schellenberg, R. Pöttgen, D. Johrendt, Z. Naturforsch. B – Chem. Sci. 2008, 63, 1057.

[25] M. Tegel, M. Rotter, V. Weiss, F. Schappacher, R. Pöttgen, D. Johrendt, J. Phys.: Condens. Matter 2008, 20.

[26] M. Rotter, M. Tegel, I. Schellenberg, F. M. Schappacher, R. Pöttgen, J. Deisenhofer, A. Gunther, F. Schrettle, A. Loidl, D. Johrendt, New J. Phys. 2009, 11.

[27] D. J. Singh, M. H. Du, Phys. Rev. Lett. 2008, 100, 237003.

[28] K. Haule, J. H. Shim, G. Kotliar, Phys. Rev. Lett. 2008, 100, 226402.
[29] G. Xu, H. J. Zhang, X. Dai, Z. Fang, *Europhys. Lett.* **2008**, *84*, 67015.
[30] D. J. Singh, *Phys. Rev. B* **2008**, *78*, 094511.
[31] I. A. Nekrasov, Z. V. Pchelkina, M. V. Sadovskii, *JETP Letters* **2008**, *88*, 144.
[32] V. B. Zabolotnyy, D. S. Inosov, D. V. Evtushinsky, A. Koitzsch, A. A. Kordyuk, G. L. Sun, J. T. Park, D. Haug, V. Hinkov, A. V. Boris, C. T. Lin, M. Knupfer, A. N. Yaresko, B. Büchner, A. Varykhalov, R. Follath, S. V. Borisenko, *Nature* **2009**, *457*, 569.
[33] I. R. Shein, A. L. Ivanovskii, *JETP Lett.* **2009**, *89*, 41.
[34] I. R. Shein, A. L. Ivanovskii, *arXiv*:0904.0117 (unpublished)
[35] H. Ogino, Y. Matsumura, Y. Katsura, K. Ushiyama, S. Horii, K. Kishio, J. Shimoyama, *arXiv*:0903.5124 (unpublished).
[36] A. Coelho, *TOPAS-Academic, version 4.1, Coelho Software*, Brisbane, **2007**.
[37] A. Le Bail, Jouanneaux, *J. Appl. Crystallogr.* **1997**, *30*, 265.
[38] KEITHLEY, *Low Level Measurements, Precision DC Current, Voltage and Resistance Measurements*, 5 ed., Keithley Instruments, Inc., Cleveland, Ohio, **1998**.
[39] R. A. Brand, *NORMOS Mössbauer fitting Program*, Universität Dortmund, **2002**.
[40] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, 6 ed., TU Wien, **2001**.
[41] K. Schwarz, P. Blaha, *Comput. Mat. Sci.* **2003**, *28*, 259.
[42] E. Sjostedt, L. Nordstrom, D. J. Singh, *Solid State Commun.* **2000**, *114*, 15.
[43] G. K. H. Madsen, P. Blaha, K. Schwarz, E. Sjostedt, L. Nordstrom, *Phys. Rev. B* **2001**, *64*, 195134/1.
[44] D. J. Singh, L. Nordstrom, *Planewaves, Pseudopotentials and the LAPW Method*, Springer, New York, **2006**.
[45] A. Kokalj, *Comp. Mat. Sci.* **2003**, *28*, 155.
Table 1. Crystallographic data for Sr$_2$CrO$_3$FeAs and Ba$_2$ScO$_3$FeAs at 297 K.

compound	Sr$_2$CrO$_3$FeAs	Ba$_2$ScO$_3$FeAs
space group	$P4/nmm$ (o2)	$P4/nmm$ (o2)
molar mass (g mol$^{-1}$)	406.001	498.375
lattice parameters (pm)	$a = 391.12(1)$	$a = 412.66(5)$
	$c = 1579.05(3)$	$c = 1680.0(2)$
cell volume, (nm3)	0.24156(1)	0.28608(7)
density, (g cm$^{-3}$)	5.582(1)	5.786(1)
μ (mm$^{-1}$)	76.869	25.109
Z	2	2
reflections (main phase)	108	259
d range	1.003 – 15.790	0.7631 – 16.800
atomic variables	13	12 (1 constraint)
profile variables	5	5
anisotropy variables	12	24
background variables	48	48
variables of impurity phases	0	20
other variables	8	12
R_P, wR_P	0.014, 0.018	0.036, 0.047
$R_{ ext{Bragg}}$, χ^2	0.002, 0.969	0.008, 1.186
wght. Durbin-Watson d stat.	1.707	1.140

Atomic parameters:

Sr1/Ba1
2c ($\frac{1}{4}$, $\frac{1}{4}$, z); $z = 0.1957(2)$; $U_{\text{iso}} = 83(5)$
2c ($\frac{1}{4}$, $\frac{1}{4}$, z); $z = 0.1860(1)$; $U_{\text{iso}} = 163(6)$
Sr2/Ba2
2c ($\frac{1}{4}$, $\frac{1}{4}$, z); $z = 0.4150(1)$; $U_{\text{iso}} = 98(7)$
2c ($\frac{1}{4}$, $\frac{1}{4}$, z); $z = 0.4145(1)$; $U_{\text{iso}} = 129(6)$
Cr1/Sc1
2c ($\frac{1}{4}$, $\frac{1}{4}$, z); $z = 0.3108(2)$; $U_{\text{iso}} = 88(9)$
2c ($\frac{1}{4}$, $\frac{1}{4}$, z); $z = 0.3092(4)$; $U_{\text{iso}} = 61(14)$
Fe1
2a ($\frac{1}{4}$, $\frac{1}{4}$, 0); $U_{\text{iso}} = 77(8)$
2a ($\frac{1}{4}$, $\frac{1}{4}$, 0); $U_{\text{iso}} = 190(11)$
As1
2c ($\frac{1}{4}$, $\frac{1}{4}$, z); $z = 0.0899(2)$; $U_{\text{iso}} = 79(8)$
2c ($\frac{1}{4}$, $\frac{1}{4}$, z); $z = 0.0777(2)$; $U_{\text{iso}} = 103(11)$
O1
4f ($\frac{1}{4}$, $\frac{1}{4}$, z); $z = 0.2931(4)$; $U_{\text{iso}} = 78(22)$
4f ($\frac{1}{4}$, $\frac{1}{4}$, z); $z = 0.2898(7)$; $U_{\text{iso}} = 262(32)$
O2
2c ($\frac{1}{4}$, $\frac{1}{4}$, z); $z = 0.4313(6)$; $U_{\text{iso}} = 88(30)$
2c ($\frac{1}{4}$, $\frac{1}{4}$, z); $z = 0.427(1)$; $U_{\text{iso}} = 262(32)$

Selected bond lengths (pm) and angles (degrees):

Sr/Ba – O
242.7(9)x1; 248.8(4)x4;
274.4(5)x4; 277.8(1)x4

Cr/Sc – O
190(1)x1; 197.5(1)x4

Fe – Fe
276.6(1)x4

Fe – As
241.7(2)x4

As – Fe – As
110.2(1)x4; 108.0(1)x2

O – Cr/Sc – O
88.9(1)x4; 98.1(2)x4; 163.7(4)x2

88.6(1)x4; 99.0(4)x4; 162.1(7)x2
Table 2. Fitting parameters of 57Fe Mössbauer spectra at different temperatures. Γ: experimental line width, δ: isomer shift; ΔE_Q: electric quadrupole splitting parameter (for details see text).

Sr$_2$CrO$_3$FeAs

T / K	Γ / mms$^{-1}$	δ / mms$^{-1}$	ΔE_Q / mms$^{-1}$
298	0.37(1)	0.29(1)	0.22(1)
77	0.36(1)	0.42(1)	0.24(1)
40	0.31(1)	0.43(1)	0.23(1)
20	0.48(1)	0.43(1)	0.28(1)
4.2	0.67(2)	0.45(1)	0.43(1)

Ba$_2$ScO$_3$FeAs

T / K	Γ / mms$^{-1}$	δ / mms$^{-1}$	ΔE_Q / mms$^{-1}$
298	0.39(1)	0.35(1)	0.21(1)
77	0.45(1)	0.47(1)	0.20(1)
4.2	0.43(2)	0.50(1)	0.20(1)
Fig. 1. Powder pattern (blue) and Rietveld fit (red) of Sr$_2$CrO$_3$FeAs and Ba$_2$ScO$_3$FeAs at 297 K (space group $P4/nmm$). Bottom: Sc$_2$O$_3$ and FeAs were included in the refinement as minor impurity phases.
Fig. 2. The crystal structure of Sr$_2$CrO$_3$FeAs and Ba$_2$ScO$_3$FeAs.
Fig. 3. Magnetic susceptibility (black), inverse susceptibility (red) and Curie-Weiss fit (blue) of Sr$_2$CrO$_3$FeAs.

Fig. 4. Resistivity of Sr$_2$CrO$_3$FeAs (black) and Ba$_2$ScO$_3$FeAs (red).
Fig. 5. Experimental and simulated 57Fe Mössbauer spectra of Sr$_2$CrO$_3$FeAs at various temperatures.
Fig. 6. Experimental and simulated 57Fe Mössbauer spectra of Ba$_2$ScO$_3$FeAs at various temperatures.
Figure 7. Top: Band structure of Ba$_2$ScO$_3$FeAs with the iron 3d contributions emphasized. Bottom: The Fermi surface showing the typical cylinders around the center (Γ, hole-like) and the corners (M, electron-like).