A NEW SECOND CRITICAL EXPONENT AND LIFE SPAN FOR A QUASILINEAR DEGENERATE PARABOLIC EQUATION WITH WEIGHTED NONLOCAL SOURCES

LINGWEI MA AND ZHONG BO FANG*

School of Mathematical Sciences
Ocean University of China, Qingdao 266100, China

(Communicated by Wei Feng)

Abstract. In this paper, we consider positive solutions of a Cauchy problem for the following quasilinear degenerate parabolic equation with weighted nonlocal sources:

\[u_t = \Delta_p u + \left(\int_{\mathbb{R}^N} K(x)u^q(x,t)dx \right)^{\frac{r-1}{q}} u^{s+1}, \quad (x,t) \in \mathbb{R}^N \times (0,T), \]

where \(N \geq 1, p > 2, q, r \geq 1, s \geq 0, \) and \(r + s > 1. \) We classify global and non-global solutions of the equation in the coexistence region by finding a new second critical exponent via the slow decay asymptotic behavior of an initial value at spatial infinity, and the life span of non-global solution is studied.

1. Introduction. It is well known that the positive solution of a Cauchy problem for the semilinear parabolic equation

\[u_t = \Delta u + u^s, \quad (x,t) \in \mathbb{R}^N \times (0,T), \]

possesses the critical Fujita exponent \(s_c = 1 + \frac{2}{N} \) (cf. [3]). Fujita [3] also showed that the positive solution of the Cauchy problem (1) blows up at finite time for any nontrivial initial data, whenever \(1 < s < s_c; \) while there are global solutions for small initial data and non-global solutions for large initial data, if \(s > s_c. \) Furthermore, Hayakawa [7] and Weissler [14] proved that the critical case \(s = s_c \) belongs to blow-up case. From then on, considerable attention has been paid to the study on the critical Fujita exponent for the parabolic equation with local or nonlocal sources. For a parabolic equation with local source, Galaktionov [5] considered the positive solution of a Cauchy problem for the following quasilinear degenerate parabolic equation:

\[u_t = \Delta_p u + u^s, \quad (x,t) \in \mathbb{R}^N \times (0,T), \]

where \(p > 2, \) and obtained the critical Fujita exponent \(s_c = p-1 + \frac{2}{N}. \) Afterwards, Qi [13] pointed out that the critical case \(s = s_c \) belongs to blow-up case. Concerning a nonlocal source problem, Galaktionov and Levine [6] investigated the positive

2000 Mathematics Subject Classification. 35K65, 35B30, 35B40.

Key words and phrases. Weighted nonlocal sources, quasilinear degenerate parabolic equation, second critical exponent, life span.

This work is supported by the National Natural Science Foundation of China [Grant No. 11671188].

* Corresponding author.
solution of a Cauchy problem for the following semilinear parabolic equation with weighted nonlocal source:

\[u_t = \Delta u + \left(\int_{\mathbb{R}^N} K(x) u^q(x,t) dx \right)^{\frac{r-1}{q}} u^{s+1}, \quad (x,t) \in \mathbb{R}^N \times (0,T), \tag{3} \]

where \(q, r \geq 1, s \geq 0, \) and \(r+s > 1, \) and they derived the critical Fujita exponent by the parameter \(r \) to classify solutions of the equation. When the nonnegative weight function \(K(x) \) belongs to \(L^1(\mathbb{R}^N) \), the critical Fujita exponent \(r_c = 1 + \frac{2}{N} - s; \) while if the nonnegative weight function \(K(x) \) does not belong to \(L^1(\mathbb{R}^N) \) and \(K(x) \sim |x|^{-m} \) for \(|x| \) large enough, the critical Fujita exponent \(r_c = 1 + \frac{2q(1-\frac{m}{q})}{N(q-1)+m} \) for \(\frac{N}{q} < 1, \) which is included in blow-up case. Moreover, they also considered the \(p \)-Laplace equation with weight nonlocal sources when \(K(x) \in L^1(\mathbb{R}^N) \) and found the critical Fujita exponent \(r_c = p - 1 - s + \frac{p-2}{q} + \frac{p}{N} \) for \(s < \frac{p-2}{q} + \frac{p}{N}, \) which is included in blow-up case. Afterwards, Afanas’eva and Tedeev [1] studied the positive solution of a Cauchy problem for the following doubly degenerate parabolic equation with weighted nonlocal sources:

\[u_t = \nabla \cdot (u^l |\nabla u|^{p-2} \nabla u) + \left(\int_{\mathbb{R}^N} K(x) u^q(x,t) dx \right)^{\frac{r-1}{q}} u^{s+1}, \quad (x,t) \in \mathbb{R}^N \times (0,T), \]

where \(l + p - 1 > 0, \ l, s \geq 0, \ p, r > 0, \ r+s > 1, \ q \geq 1, \ K(x) = (1+|x|)^{-m}, \) and \(-N(q-1) < m < N \). They obtained the critical Fujita exponent \(s_c = p + l - 1 + \frac{p+1}{N} - (m + N(q-1)) \frac{r-1}{q} \), with respect to the parameter \(s \), but this Fujita exponent does not belong to blow-up case.

Note that for the critical Fujita exponent, the region satisfying \(s > s_c \) or \(r > r_c \) is a coexistence region of global and non-global solutions for the Cauchy problem. In order to identify global and non-global solutions in the coexistence region, Lee and Ni [8] introduced a new second critical exponent \(\alpha^* = \frac{2}{r+1} \) for problem (1) with \(s > s_c = 1 + \frac{2}{q} \) by virtue of the slow decay behavior of the initial data at spatial infinity. More precisely, for problem (1) with initial data \(u_0(x) = \lambda \varphi(x) \) and \(s > s_c = 1 + \frac{2}{q} \), there exist constants \(\mu, \Lambda, \Lambda_0 > 0 \) such that the solution blows up in finite time, whenever \(\liminf_{|x| \to \infty} |x|^\alpha \varphi(x) > \mu > 0 \) and \(\lambda > \Lambda, \) or exists globally, if \(\limsup_{|x| \to \infty} |x|^\alpha \varphi(x) < \infty \) with \(\alpha \geq \alpha^* \) and \(\lambda < \Lambda_0. \) Afterwards, Mu et al. [10] considered problem (2) with \(s > s_c = p - 1 + \frac{2}{q} \), and they derived a new second critical exponent \(\alpha^* = \frac{p}{p+1} \) and a life span of non-global solution. Moreover, concerning the second critical exponent for the Cauchy problem of porous medium equation or doubly degenerate parabolic equation with local sources, one can refer to [9, 11]. On the nonlocal problem, recently, Yang et al. [15] studied problem (3) with \(r > r_c, \ K(x) \in L^\infty(\mathbb{R}^N) \cap C(\mathbb{R}^N) \), and \(K(x) \sim |x|^{-m} \) for \(|x| \) large, and they found a new second critical exponent \(\alpha^* = \frac{2q(r-1)(N-m)\mu}{q(r+s-1)} \).

To the best of our knowledge, much less effort has been devoted to the second critical exponent and life span for the Cauchy problem of a quasilinear degenerate parabolic equation with weighted nonlocal sources. At a glance, our main difficulties lie in the treatment of \(p \)-Laplace operator and weighted nonlocal source, and the selection of test function. Motivated by the above works, we investigate the
parabolic p-Laplace equation with weighted nonlocal source

\[u_t = \Delta_p u + \left(\int_{\mathbb{R}^N} K(x)u^q(x,t)dx \right)^{\frac{q}{q-1}} u^{s+1}, \quad (x,t) \in \mathbb{R}^N \times (0,T), \tag{4} \]

subject to the initial condition

\[u(x,0) = u_0(x), \quad x \in \mathbb{R}^N, \tag{5} \]

where $N \geq 1$, $p > 2$, $q, r \geq 1$, $s \geq 0$, $r + s > 1$, and the initial data $u_0(x)$ is a nonnegative and continuous function. Meanwhile, the nonnegative weight function $K(x) \in L^1(\mathbb{R}^N)$ satisfies $K(x) \sim |x|^{-m}$ for $|x|$ large, where m is a positive constant.

Problem (4)-(5) arises in the theory of quasiregular and quasiconformal mappings, which can describe non-Newtonian flux in the mechanics of fluid, population of biological species, and so on (cf. [12, 4]). The essential purpose of this paper is to seek the effect of the slow decay behavior of initial data at spatial infinity for the positive solution of problem (4)-(5) and to derive a life span of non-global solution.

Firstly, recall that the critical Fujita exponent r_c to problem (4)-(5), given by Galaktionov and Levine [6], is such that $r_c = p - 1 - s + \frac{p-2}{q}$ for $s < \frac{p-2}{q}$.

Throughout the rest of this paper, $\mathcal{C}_b(\mathbb{R}^N)$ denotes the space of all bounded continuous functions in \mathbb{R}^N and let

\[\Pi_\alpha = \{ \varphi \in \mathcal{C}_b(\mathbb{R}^N) \mid \varphi(x) \geq 0, \liminf_{|x| \to \infty} |x|^\alpha \varphi(x) > 0 \}, \]
\[\Pi^\alpha = \{ \varphi \in \mathcal{C}_b(\mathbb{R}^N) \mid \varphi(x) \geq 0, \limsup_{|x| \to \infty} |x|^\alpha \varphi(x) < \infty \}. \]

Moreover, $u(x,t)$ denotes the solution of problem (4)-(5) with $r > r_c$ and $u_0(x) = \lambda \varphi(x)$. Then we can establish a new second critical exponent $\alpha^* = \frac{pq + (r-1)(N-m)}{q(r+s+1-p)}$.

The main results of this paper are as follows:

Theorem 1.1. Suppose that for $p > \max\left\{ 2, \frac{N[(r-1)q+2]}{N+q} \right\}$ and $r > r_c$, we have $\varphi(x) \in \Pi_\alpha$ and $0 < \alpha < \alpha^*$ or $\alpha \geq \alpha^*$ with λ large enough. Then the solution $u(x,t)$ of problem (4)-(5) blows up at finite time.

Theorem 1.2. Suppose that for $p > 2$ and $r > r_c$, we have $\varphi(x) \in \Pi^\alpha$ and $\alpha \geq \alpha^*$. Then there exist positive constants λ_0 and C such that the solution $u(x,t)$ of problem (4)-(5) exists globally, if $\lambda \in (0, \lambda_0)$, and $u(x,t)$ satisfies the inequality

\[\|u(x,t)\|_{L^\infty(\mathbb{R}^N)} \leq Ct^{-\alpha \beta} \quad \text{for all } t > 0, \]

where $\beta = \frac{1}{\alpha(p-2)+2}$.

Theorem 1.3. Suppose that $u(x,t)$ is a solution of problem (4)-(5) with initial data $u_0(x) = \lambda \varphi(x)$ which blows up at finite time T, and $\|\varphi\|_{L^\infty(\mathbb{R}^N)} = \lim_{|x| \to \infty} \varphi = \varphi_\infty$. Then the life span of $u(x,t)$ satisfies

\[\frac{c_4}{r+s-1} (\lambda \varphi_\infty)^{-(r+s-1)} \leq T \leq \frac{c_5}{r+s-1} (\lambda \varphi_\infty)^{-(r+s-1)}, \]

where $0 < c_4 \leq \min \left\{ \left(\int_{\mathbb{R}^N} K(x)dx \right)^{-\frac{r-1}{r}}, c_5 \right\}$.

The rest of this paper is organized as follows: In Section 2, by virtue of the test function method, we prove Theorem 1.1. Theorem 1.2 is proved in Section 3 by establishing a global supersolution for problem (4)-(5). Finally, we obtain a life span of the non-global solution for problem (4)-(5) in Section 4.
2. Non-global solution. In this section, by using the test function method, we derive a sufficient condition for which the solution of (4)-(5) blows up at finite time. We give a proof of Theorem 1.1 below:

Proof. Since \(\varphi(x) \in \Pi_\alpha \) and \(K(x) \sim |x|^{-m} \) for \(|x| \) large enough, there exist positive constants \(R_0 \), \(c_1 \), and \(c_2 \) such that \(\varphi(x) \geq c_1|x|^{-\alpha} \) and \(K(x) \geq c_2|x|^{-m} \) for \(|x| \geq R_0 \).

Now, we define the following test function:

\[
\phi_\epsilon(x) = A_\epsilon e^{-\epsilon |x| - R_0},
\]

where \(A_\epsilon = \frac{1}{\int_{E_{R_0}} e^{-\epsilon |x| - R_0} dx} \) and \(E_{R_0} = \{ x \in \mathbb{R}^N \mid |x| > R_0 \} \). Then it can be easily seen that

\[
\nabla \phi_\epsilon(x) = -\epsilon \phi_\epsilon \frac{x}{|x|},
\]

and

\[
\int_{E_{R_0}} \phi_\epsilon(x) dx = 1.
\]

Next, we introduce the auxiliary function

\[
\Theta(t) = \frac{1}{\sigma} \int_{E_{R_0}} u^\sigma \phi_\epsilon(x) dx,
\]

where \(0 < \sigma < \frac{1}{p} \). Firstly, differentiating \(\Theta(t) \), and using (6) and Green’s formula, we get

\[
\Theta'(t) = \int_{E_{R_0}} u^{\sigma-1} \phi_\epsilon(x) \left[\Delta_p u + \left(\int_{\mathbb{R}^N} K(x) u^2(x,t) dx \right) \frac{1}{p-1} u^{p+1} \right] dx,
\]

\[
= -\int_{E_{R_0}} (\sigma - 1) \phi_\epsilon(x) u^{\sigma-2} \| \nabla u \|_p^p dx + \epsilon \int_{E_{R_0}} u^{\sigma-1} \phi_\epsilon(x) \frac{\| \nabla u \|_p^{p-2}}{|x|} \nabla u \cdot x dx
\]

\[
+ \int_{E_{R_0}} \phi_\epsilon(x) u^{\sigma+s} \left(\int_{\mathbb{R}^N} K(x) u^q(x,t) dx \right)^{\frac{p-1}{q}}
\]

\[
\geq (1 - \sigma) \int_{E_{R_0}} \phi_\epsilon(x) u^{\sigma-2} \| \nabla u \|_p^p dx - \epsilon \int_{E_{R_0}} u^{\sigma-1} \phi_\epsilon(x) \| \nabla u \|_p^{p-1} dx
\]

\[
+ \int_{E_{R_0}} \phi_\epsilon(x) u^{\sigma+s} \left(\int_{\mathbb{R}^N} K(x) u^q(x,t) dx \right)^{\frac{p-1}{q}}.
\]

Applying Young’s inequality to the second term on the right-hand side of (8), we have the inequality

\[
\epsilon \int_{E_{R_0}} u^{\sigma-1} \phi_\epsilon(x) \| \nabla u \|_p^{p-1} dx
\]

\[
\leq \frac{p-1}{p} \int_{E_{R_0}} \phi_\epsilon(x) u^{\sigma-2} \| \nabla u \|_p^p dx + \frac{\epsilon}{p} \int_{E_{R_0}} \phi_\epsilon(x) u^{p+\sigma-2} dx.
\]

Since \(0 < \sigma < \frac{1}{p} \), it follows from (8) and (9) that

\[
\Theta'(t) \geq \int_{E_{R_0}} \phi_\epsilon(x) u^{\sigma+s} \left(\int_{\mathbb{R}^N} K(x) u^q(x,t) dx \right)^{\frac{p-1}{q}} - \frac{\epsilon}{p} \int_{E_{R_0}} \phi_\epsilon(x) u^{p+\sigma-2} dx.
\]
Then employing Hölder’s inequality and (7) to the last term on the right-hand side of (10), we obtain the inequality
\[
\int_{E_{R_0}} \phi_\epsilon(x) u^{p+\sigma-2} dx \leq \left(\int_{E_{R_0}} \phi_\epsilon(x) u^{\sigma+s} dx \right)^{\frac{p+\sigma-2}{\sigma+s}},
\]
by virtue of \(r > r_c = p - 1 - s + \frac{p-2}{q} + \frac{p}{N} \) and \(p > \max \left\{ 2, \frac{N[(r-1)q+2]}{N+q} \right\} \), where \(\frac{p+\sigma-2}{\sigma+s} \in (0,1) \). Thus, substituting (11) into (10), one can derive the inequality
\[
\Theta'(t) \geq \left(\int_{E_{R_0}} \phi_\epsilon(x) u^{\sigma+s} dx \right)^{\frac{p+\sigma-2}{\sigma+s}} \times \left[\left(\int_{E_{R_0}} \phi_\epsilon(x) u^{\sigma+s} dx \right)^{\frac{\sigma}{\sigma+s}} \left(\int_{\mathbb{R}^N} K(x) u^q(x,t) dx \right)^{\frac{\sigma+p-1}{\sigma+s}} - \frac{\epsilon^p}{p} \right].
\]
Comparing (18) and (21), when \(\alpha > \alpha^* \), we have

\[
\frac{1}{2} c^{p+\|s\|+1} \epsilon^{- \frac{(N-m)_{1.5}}{q}} \|y\|^{-\alpha \sigma} \geq \epsilon^{p}, \quad \text{for all } t \in [0, T).
\] (17)

By virtue of (17) and \(r > r_c \), we are led to

\[
\Theta(t) \geq \left(\frac{2}{c^p} \right)^{\frac{\sigma}{r+s-1}} \epsilon^{- \frac{(N-m)_{1.5}}{q}} \|y\|^{-\alpha \sigma}.
\]

Therefore, if \(\Theta(0) \) satisfies (18), then \(\Theta(t) \) increases and is bounded below by \(c_0 \) for all \(t \in [0, T) \). Integrating (16) over \([0, t] \), we have the inequality

\[
\Theta(t) \geq \left((\Theta(0))^{- \frac{r+s-1}{\sigma}} - \frac{(r+s-1) c'}{2 \sigma} t \right)^{- \frac{\sigma}{r+s-1}}.
\] (19)

Hence, one can see that the solution \(u(x,t) \) of problem (4)-(5) blows up in the measure of \(\Theta(t) \) at some finite time \(T \) that satisfies

\[
T \leq \frac{2 \sigma}{(r+s-1)c}(\Theta(0))^{- \frac{r+s-1}{\sigma}}.
\] (20)

Finally, we verify the blow-up condition (18). Since \(\varphi(x) \in \Pi_{\alpha} \), there exist positive constants \(R_0 \) and \(c_1 \) such that \(\varphi(x) \geq c_1 |x|^{-\alpha} \) for \(|x| \geq R_0 \), and hence, we can obtain

\[
\Theta(0) = \frac{1}{\sigma} \int_{E_{R_0}} u_0^2 \varphi_s(x) dx \geq \frac{\lambda^* c^p A_s}{\sigma} \int_{E_{R_0}} e^{-\epsilon |x-R_0|} |x|^{-\alpha \sigma} dx,
\]

\[
\geq \frac{\lambda^* c^p A_s}{\sigma} e^{-N+\alpha \sigma} \int_{E_{R_0}} e^{-\epsilon |x-R_0|} |y|^{-\alpha \sigma} dy.
\] (21)

Comparing (18) and (21), when \(0 < \alpha < \alpha^* = \frac{pq+(r-1)(N-m)_{1.5}}{q(r+s+1-p)} \), we get

\[
\alpha \sigma < \frac{\sigma p}{r+s-p+1} + \frac{\sigma (r-1)(N-m)_{1.5}}{q(r+s+1-p)},
\]

and so (18) holds for \(\epsilon > 0 \) small enough. If \(\alpha \geq \alpha^* \), there exists \(\lambda > 0 \) for any fixed \(\epsilon > 0 \), such that (18) holds for all \(\lambda > \lambda_c \). The proof is completed. \(\square \)

3. Global existence. In this section, we will prove Theorem 1.2 by constructing a global supersolution for problem (4)-(5).

Proof. Firstly, we consider the following Cauchy problem:

\[
U_t = \text{div}(|\nabla U|^{p-2} \nabla U), \quad x \in \mathbb{R}^N, \quad t > 0,
\] (22)

\[
U(x,0) = M |x|^{-\alpha}, \quad x \in \mathbb{R}^N,
\] (23)
where M is a positive constant given in (26). It is known that the existence and
uniqueness of the solution of (22)-(23) have been well established and the radially
symmetric self-similar solution
\[U(x, t) = t^{-\alpha \beta} f(\eta), \]
was given, see [16], where $\eta = \frac{|x|}{R}$, $\beta = \frac{1}{\alpha(p-2)+p}$, and the positive function $f(\eta)$ is
the solution of the following problem:
\[\left(|f'(\eta)|^{p-2} f'(\eta) \right)' + \frac{N-1}{\eta} |f'(\eta)|^{p-2} f'(\eta) + \eta \beta f'(\eta) + \alpha \beta f(\eta) = 0, \quad \eta > 0, \quad (25) \]
\[f(\eta) \geq 0, \quad \eta \geq 0, \quad f'(0) = 0, \quad \text{and } \lim_{\eta \to \infty} \eta^\alpha f(\eta) = M. \quad (26) \]
The solution of problem (25)-(26) is decreasing, we can refer to [2].

Since $\varphi(x) \in \Pi^\alpha$, there exists a positive constant c_3 such that $\varphi(x) \leq c_3(1+|x|)^{-\alpha}$
for all $x \in \mathbb{R}^N$. Hence, we can choose c_3 such that $\lim_{\eta \to \infty} \eta^\alpha f(\eta) = M > c_3$, and so,
there is a positive constant R_1 such that
\[\eta^\alpha f(\eta) > c_3 \text{ for } \eta \geq R_1. \quad (27) \]

By virtue of (27), it is not difficult to verify that there exists $t_0 \in (0, 1)$ such that
\[\|\varphi\|_{L^\infty(\mathbb{R}^N)} \leq U(x, t_0). \quad (28) \]

Next, we claim that
\[\int_{\mathbb{R}^N} K(x) U^q(x, t+t_0) dx \leq c(t+t_0)^{-\beta[\alpha q-(N-m)+]}. \quad (29) \]

Since $K(x) \in L^1(\mathbb{R}^N)$, $K(x) \sim |x|^{-m}$ for $|x|$ large enough, and $f(\eta)$ is decreasing,
when $m > N$, we have the inequalities
\[\int_{\mathbb{R}^N} K(x) U^q(x, t+t_0) dx \leq c\|U(t+t_0)\|_{L^\infty(\mathbb{R}^N)}^q \leq c(t+t_0)^{-\beta \alpha q}, \quad (30) \]
by (24). When $m < N$, since $\lim_{\eta \to \infty} \eta^\alpha f(\eta) = M$, we get $f(x) \sim |x|^{-\alpha}$ for $|x|$ large
enough, and because $\alpha > \alpha^* = \frac{p+1-(r-1)(N-m)}{q(r+s+1-p)}$, which can be led to $m > N - \alpha q$. We then obtain
\[\int_{\mathbb{R}^N} K(x) U^q(x, t+t_0) dx \leq c(t+t_0)^{-\beta \alpha q} \int_{\mathbb{R}^N} |x|^{-m} f^q \left(\frac{|x|}{t+t_0} \right) dx, \]
\[= c(t+t_0)^{-\beta[\alpha q-(N-m)]} \int_{\mathbb{R}^N} |y|^{-m} f^q(|y|) dy, \quad (31) \]
by a simple calculation.

If $m = N$, we can derive the inequalities
\[\int_{\mathbb{R}^N} K(x) U^q(x, t+t_0) dx \]
\[\leq \int_{|x| \leq R_0} K(x) U^q(x, t+t_0) dx + c \int_{|x| > R_0} |x|^{-N} U^q(x, t+t_0) dx, \quad (32) \]
\[\leq c\|U\|_{L^\infty}^q + c(t+t_0)^{-\beta \alpha q} \int_{\mathbb{R}^N} |y|^{-m} f^q(|y|) dy, \]
\[\leq c(t+t_0)^{-\beta \alpha q}. \]

Thus, combining (30)-(32), it can be seen that (29) holds.
Let $h(t)$ be the solution of the following ordinary differential equation:
\[
\begin{cases}
h'(t) = c\lambda^{r+s-1}(t + t_0)^{-\theta}h^{r+s}(t), & t > 0, \\
h(0) = 1,
\end{cases}
\] (33)
where $\theta > 1$. The local existence and uniqueness of the solution $h(t)$ for (33) follow from the standard theory of initial value problem on ordinary differential equation. Afterwards, we claim that there exists $\lambda_0 > 0$ such that $h(t)$ is bounded in $[0, +\infty)$ for all $\lambda \in [0, \lambda_0)$.

Integrating (33) over $[0, t]$, one can have
\[
1 - h^{1-r-s}(t) = c(r+s-1)\lambda^{r+s-1} \int_0^t (\tau + t_0)^{-\theta}d\tau \leq \frac{c(r+s-1)\lambda^{r+s-1}t_0^{-\theta+1}}{\theta - 1}.
\] (34)

Let $\lambda_0 > 0$ satisfy $\frac{c(r+s-1)\lambda_0^{r+s-1}t_0^{-\theta+1}}{\theta - 1} = 1$, and define c_λ and h_λ as
\[
c_\lambda = \frac{c(r+s-1)\lambda^{r+s-1}t_0^{-\theta+1}}{\theta - 1}, \quad h_\lambda = \left(\frac{1}{1 - c_\lambda} \right)^{\frac{1}{r+s}}.
\]

We then have $h(t) \leq h_\lambda$ for all $t \in [0, +\infty)$ and $\lambda \in [0, \lambda_0)$.

Now, we construct the following global solution:
\[
\tilde{u}(x, t) = \lambda h(t)U(x, t + t_0),
\] (35)
where $U(x, t + t_0)$ is the solution of (22)-(23) and $h(t)$ solves (33) with $\theta = \alpha\beta(r + s - 1) - \frac{\beta(N-m)_+(r-1)}{q}$. Note that $\theta > 1$ for $\alpha > \alpha^* = \frac{pq + (r-1)(N-m)_+(r-1)}{q(r+s+1-p)}$. Since $f(\eta)$ is decreasing, it follows from (29) that
\[
\tilde{u}_t - \Delta_p \tilde{u} - \left(\int_{\mathbb{R}^N} K(x)\tilde{u}^q(x, t)dx \right)^{\frac{r-1}{q}}\tilde{u}^{s+1}
\]
\[
= \lambda h'(t)U - \lambda^{r+s}h^{r+s}(t) \left(\int_{\mathbb{R}^N} K(x)U^q(x, t)dx \right)^{\frac{r-1}{q}}U^{s+1},
\]
\[
\geq \lambda U \left[h'(t) - c\lambda^{r+s-1}(t + t_0)^{-\theta}h^{r+s}(t) \right] \leq \lambda U \left[h'(t) - c\lambda^{r+s-1}(t + t_0)^{-\theta}h^{r+s}(t) \right] = 0,
\] (36)

where
\[
\theta - \alpha\beta s = \alpha\beta(r + s - 1) - \frac{\beta(N-m)_+(r-1)}{q} - \alpha\beta s = \alpha\beta(r - 1) - \frac{\beta(N-m)_+(r-1)}{q} = \beta[\alpha q - (N-m)_+(r-1)] \frac{1}{q}.
\]

Moreover, utilizing (28) to the initial data, we have
\[
\tilde{u}(x, 0) = \lambda U(x, t_0) \geq \lambda \varphi(x) = u_0.
\] (37)

Hence, combining (36) with (37), one can see that $\tilde{u}(x, t)$ is a global supersolution of problem (4)-(5). Furthermore, we can easily show that the decay estimate of the
solution \(u(x,t) \) for (4)-(5) is

\[
\|u(x,t)\|_{L^\infty(\mathbb{R}^N)} \leq \lambda h\|U(x,t)\|_{L^\infty(\mathbb{R}^N)} \leq ct^{-\alpha\beta},
\]

for all \(t > 0 \). The proof is completed.

4. Life span. In this section, we will give a life span of the non-global solution \(u(x,t) \) for problem (4)-(5) by giving a proof of Theorem 1.3.

Proof. Firstly, we have already obtained an upper bound of the blow-up time for \(u(x,t) \) in the measure of \(\Theta(t) \), given in the proof of Theorem 1.1, and the upper bound is given as

\[
T \leq \frac{2\sigma}{(r+s-1)c'} \left(\frac{\lambda^\sigma}{\sigma} \int_{E_{R_0}} \varphi^\sigma \phi_\epsilon dx \right)^{-\frac{r+s-1}{\sigma}}.
\]

Then, it follows from \(\|\varphi\|_{L^\infty(\mathbb{R}^N)} = \lim_{|x| \to \infty} \varphi = \varphi_\infty \) that there exists \(R_2 > 0 \) such that \(|\varphi - \varphi_\infty| < \varepsilon \) for \(|x| > R_0 \) and any \(\varepsilon > 0 \). Meanwhile, by the definition of test function \(\phi_\epsilon(x) \), we must have

\[
T < \frac{2\sigma}{(r+s-1)c'} \left(\frac{\lambda^\sigma}{\sigma} (\varphi_\infty - \varepsilon)^\sigma \right)^{-\frac{r+s-1}{\sigma}},
\]

for \(R_0 > R_2 \). Thus, from the arbitrariness of \(\varepsilon \), let \(\varepsilon \to 0 \) can yield that

\[
T \leq \frac{c_5}{r+s-1} (\lambda \varphi_\infty)^{-(r+s-1)},
\]

where \(c_5 = \frac{2\sigma}{c'} \). On the other hand, in order to get a lower bound of the blow-up time for the non-global solution \(u(x,t) \), we construct a supersolution of (4)-(5). Consider the following ordinary differential equation:

\[
\begin{cases}
g'(t) = \frac{1}{c_4} g^{r+s}(t), \quad t > 0 \\
g(0) = \lambda \varphi_\infty.
\end{cases}
\]

By a direct calculation, one can see that the solution \(g(t) \) of (39) is given by

\[
g(t) = \left\{ \left((\lambda \varphi_\infty)^{-(r+s-1)} - (r + s - 1)c_4^{-1}t \right) \right\}^{-\frac{1}{r+s-1}}.
\]

Now, applying \(c_4 \leq \left(\int_{\mathbb{R}^N} K(x)dx \right)^{-\frac{1}{r+s-1}} \) and the comparison principle, it can be easily shown that \(g(t) \) is a supersolution of problem (4)-(5). We then obtain a lower bound of the blow-up time, i.e.,

\[
T \geq \frac{c_4}{r+s-1} (\lambda \varphi_\infty)^{-(r+s-1)}.
\]

Therefore, combining (38), (41), and \(c_4 \leq c_5 \), we get the life span of the non-global solution for problem (4)-(5) as follows:

\[
\frac{c_4}{r+s-1} (\lambda \varphi_\infty)^{-(r+s-1)} \leq T \leq \frac{c_5}{r+s-1} (\lambda \varphi_\infty)^{-(r+s-1)}.
\]

The proof is completed.
Acknowledgments. This work is supported by the Natural Science Foundation of Shandong Province of China(ZR2012AM018) and the Fundamental Research Funds for the Central Universities(No.201362032). The authors would like to deeply thank all the reviewers for their insightful and constructive comments.

REFERENCES

[1] N. V. Afanas’eva and A. F. Tedeev, Theorems on the existence and nonexistence of solutions of the Cauchy problem for degenerate parabolic equations with nonlocal source, Ukr. Math. J., 57 (2005), 1687–1711.
[2] J. I. Diaz and J. E. Saa, Uniqueness of very singular self-similar solution of a quasilinear degenerate parabolic equation with absorption, Publ. Mat., 36 (1992), 19–38.
[3] H. Fujita, On the blowing up of solution of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124.
[4] J. Furter and M. Grinfeld, Local vs. non-local interactions in populations dynamics, J. Math. Biol., 27 (1989), 65–80.
[5] V. A. Galaktionov, Conditions for nonexistence in the large and localization of solutions of the Cauchy problem for a class of nonlinear parabolic equations, Zh. Vychisl. Mat. i Mat. Fiz., 23 (1983), 1341–1354.
[6] V. A. Galaktionov and H. A. Levine, A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal., 34 (1998), 1005–1027.
[7] K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic equation, DProc. Japan Acad., 49 (1973), 503–505.
[8] T. Y. Lee and W. M. Ni, Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc., 333 (1992), 365–378.
[9] Y. H. Li and C. L. Mu, Life span and a new critical exponent for a degenerate parabolic equation, J. Differential Equations, 207 (2004), 392–406.
[10] C. L. Mu, Y. H. Li and Y. Wang, Life span and a new critical exponent for a quasilinear degenerate parabolic equation with slow decay initial values, Nonlinear Anal. Real World Appl., 11 (2010), 198–206.
[11] C. L. Mu, R. Zeng and S. M. Zhou, Life span and a new critical exponent for a doubly degenerate parabolic equation with slow decay initial values, J. Math. Anal. Appl., 384 (2011), 181–191.
[12] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
[13] Y. W. Qi, Critical exponents of degenerate parabolic equations, Sci. China Ser. A, 38 (1995), 1153–1162.
[14] F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29–40.
[15] C. X. Yang, F. Y. Ji and S. S. Zhou, The second critical exponent for a semilinear nonlocal parabolic equation, J. Math. Anal. Appl., 418 (2014), 231–237.
[16] J. N. Zhao, On the Cauchy problem and initial traces for the evolution P-Laplacian equations with strongly nonlinear sources, J. Differential Equations, 121 (1995), 329–383.

Received September 2016; revised March 2017.
E-mail address: mlw1103@163.com
E-mail address: fangzb7777@hotmail.com