Salivary proteome profile of women during fertile phase of menstrual cycle as characterized by mass spectrometry

CURRENT STATUS: UNDER REVIEW

BMC Women’s Health ■ BMC Series

Saibaba Ganesan
Bharathidasan University

Rajesh Durairaj
Bharathidasan University

Muthukumar Subramanian
Bharathidasan University

Sathiyarayanan Ganesan
Institut de biosciences et biotechnologies d'Aix-Marseille

Padmanabhan Parasuraman ppadmanabhan@ntu.edu.sg
Lee Kong Chian School of Medicine
Corresponding Author

Gulyas Balazs
Lee Kong Chian School of Medicine

Akbarsha Mohammad Abdulkader
Bharathidasan University

Archunan Govindaraju gargch56@yahoo.co.in
Bharathidasan University
Corresponding Author
ORCiD: 0000-0002-7094-0351

DOI: 10.21203/rs.2.13524/v1

SUBJECT AREAS

Epigenetics & Genomics Maternal & Fetal Medicine

KEYWORDS

Saliva, Ovulation, Biomarker, Cystatin, Gel electrophoresis, Protein, LC-MS/MS, SDS-PAGE
Abstract

Background Human saliva contains several biomolecules, especially proteins, some of which have been found to serve as biomarkers of different physiological statuses and/or pathological conditions. Saliva is a much superior biological material for investigation over the other body fluids. Several salivary proteins are present in minute quantities whereupon there is possibility to express the hormone receptors, stress proteins or antimicrobial peptides at subtle to major variations which can reveal the physiological and/or pathological statuses. Ovulation is such a critical physiological process that its non-invasive prediction has several advantages. It has been postulated that saliva, with one or more of biomolecules in it such as proteins, amino acids, antioxidants, antimicrobial peptides, and such others would effectively serve as non-invasive predictor(s)/detector(s) of ovulation.

Methods Samples were collected from women volunteers and the procedure adopted was approved by the Institutional Ethical Committee (DM/2014/101/38), Bharathidasan University. The saliva samples were collected between 8.00 to 9.00 AM from 30 healthy female volunteers (age, mean = 24, range = 19 - 30), with prior written consent. The protein expression pattern during different phases of menstrual cycle was analyzed using HR-LC-MS/MS and MALD TOF/TOF.

Results The functional annotation of salivary proteins identified therein revealed that the proteins get assigned to the class of “extracellular proteins” which are concerned with regulatory functions. As many as 530 proteins showed up in the saliva during ovulation phase whereas there were only 251 proteins during post-ovulation phase. The protein expression was also analyzed using 2D gel electrophoresis and it was found that the salivary proteins focused at pH range 4-7 and molecular weight around 97-14 kDa. The unique/differentially expressed protein spots appeared during ovulation phase was
identified by MALDI-TOF analysis.

Conclusions According to spot analysis, Cystatin-S, Prolactin-inducible protein, Cystatin-A, Cystatin-SN, BPI fold-containing family A member 2, Alpha-tubulin N-acetyltransferase 1, and Carbonic anhydrase 6 were highly expressed during ovulation phase. These proteins could serve as an indicator(s) for ovulation after extensive validation studies.

Introduction

Saliva is a clear oral fluid composed of 98% water and 2% other compounds, such as mixture of proteins, electrolytes and small molecular weight organic compounds. The term saliva stands for secretions from the major (submandibular, sublingual and parotid) and minor salivary glands, along with crevicular fluid, bacteria and cellular debris. Normally, human salivary glands secrete about 1.0–1.5 L saliva every day, which contains molecules from blood and salivary protein combined [1]. The secretion of saliva is regulated by the autonomic nervous system via signal transduction systems that couple receptor stimulation to ion transport and protein secretory mechanisms [2]. In recent years, saliva has been recognized as a diagnostic tool and general health indicator, and offers many advantages over serum in this regard. Many salivary biomolecules arrive from the blood through passive intracellular diffusion and active transport or extracellular ultrafiltration [3]. As revealed in several, reports the levels of salivary components vary in respect of the spectrum of oral and general health. For example, low levels of lysozymes [4] and presence of lactoferrin[5] were observed in saliva under condition of dental caries. Likewise, in the beginning of menstruation and during ovulation the protein content of saliva increases considerably, which turns out to be a rich source of food to bacteria. The bacterial count may also increase during menstruation and ovulation [6]. The concentration of analytes in saliva is 100- to 1000-fold lower compared to blood [7]. The major biochemical constituent of saliva is proteins which are influenced by the
physiological status of the body. As a diagnostic fluid, saliva and urine offers many advantages over blood, which include (i) simple, cost-effective and non-invasive nature of sample collection, (ii) no need of skilled personal to collect saliva, and (iii) saliva contains lesser protein concentration than plasma. Specifically, the less abundance of proteins in saliva makes it easier to investigate for diagnostic purposes [7].

Menstrual cycle is a complicated physiological process in which different endocrine glands, reproductive organs and brain have roles. Follicle Stimulating Hormone (FSH) and Luteinizing Hormone (LH) are important hormones from pituitary gland, which are concerned with, among other hormones, follicular growth and release of egg, respectively. The pituitary gland secretes high levels of LH during mid-cycle, which induces the ovary to release the egg which is characterized as ovulation. There is an increasing demand for a biomarker for accurate prediction/detection of fertile phase in women’s reproductive cycle [8]. Most of the animals have limited and short fertile period, the estrus. The external indications and attractiveness synchronize with ovulation and maximize the chance for fertilization [9]. Human females do not show any corresponding cyclical changes that would be an indicator of ovulation Therefore, it is felt essential to develop a method to identify the time of ovulation during the reproductive cycle [10].

The time of ovulation is associated with fertile phase of menstrual cycle in human. In the mammals, it is commonly accepted that many reproductive process such as ovulation, menstruation, implantation and parturition are linked with inflammation [11]. As consequence of these events there is upregulation of a host of inflammatory mediators, which include cytokines, growth factors and lipid mediators which influence the growth and function of the immune and vascular compartments [12]. Similarly, in response to inflammation in ovary, there are specific pro- or anti-inflammatory cytokine/protein expressions in the body fluids. This can as well be utilized to predict the time of ovulation
However, still there is not yet a reliable non-invasive kit or even method to detect the time of ovulation. Hence, a method for accurate prediction or detection of the fertile phase during menstrual cycle has enormous significance in promoting or controlling fertility. Saliva, for the reasons mentioned above, has long been speculated to possess one or more biomarkers indicting important events in the reproductive cycle. Thus, we adopted a proteome-based approach to detect salivary biomarkers for fertile phase [13]. Initially, polyacrylamide gel electrophoresis (SDS-PAGE), the single dimensional electrophoresis, was carried out to separate out the proteins based on molecular weight and their charges into distinctive protein bands. Thus, complex protein mixtures were analyzed qualitatively by SDS-PAGE [14], which suggested that SDS-PAGE is an adequate technique to assess protein composition of the human saliva [15]. However, in the recent times, 2-D PAGE is used to separate complex protein mixtures of saliva based on the different modifications and isoforms of the same protein. Further, recent advancements in mass spectrometry techniques, i.e., quadrupole/linear ion trap, time-of flight (TOF), quadrupole TOF (QTOF), Fourier transform ion cyclotron resonance (FT-ICR), and OrbiTrap are practiced to improve discovery a protein biomarker in saliva [3]. In our previous study [16], the ovulation-specific proteins in saliva were mapped, and validated adopting immunoblotting. However, the number of proteins and their variants (isoforms) present in the particular region are not known. If what we found is a group of proteins, it would be difficult to work it out for diagnostic purposes. Hence, it was thought that the identification of an ovulation-specific protein in saliva would do well for future application. Saliva, compared to other body fluids, as already mentioned, is the best biological fluid for exploring the marker to diagnose the reproductive status. Therefore, the present study was directed at identifying the proteins in human saliva in relation to phases in the menstrual cycle by adopting gel electrophoresis followed by mass spectrometry to discern
the various proteins, and map the ovulation-specific protein(s) (*supplementary Figure S1*).

Materials And Methods

Volunteers’ information and ethical statement

Samples were collected from women volunteers and the procedure adopted was approved by the Institutional Ethical Committee (DM/2014/101/38), Bharathidasan University. The saliva samples were collected between 8.00 to 9.00 AM from 30 healthy female volunteers (age, mean = 24, range = 19 - 30), with prior written consent [16]. The volunteers were instructed to abstain from smoking and drinking and not to consume food for 10 h before the sample collection. The volunteers were also asked to brush the teeth before collection of saliva so as to prevent microbial contamination.

Sample collection and process

The saliva was collected by spitting into a sterile vial, which was immediately kept in an ice box and brought to the laboratory. The duration of collection of saliva was about 10 min and the saliva secretion over the first minute was discarded. The samples were centrifuged at 16000 x g for 15 min to remove insoluble materials and cells, if any. The samples were stored at −80°C until further use. The saliva samples were assigned among three phases, viz., preovulatory (days 6 to 12), ovulatory (days 13 and 14) and postovulatory (days 15 to 26) phases according to the pattern of salivary hormones and fern pattern analysis, as was done in our previous study[16].

Protein precipitation and estimation

The salivary proteins were precipitated by trichloroacetic acid (TCA)-acetone precipitation method [17]. The samples were mixed with TCA:acetone (TCA–20% W/V; Acetone–90% V/V) in 1:1 ratio and 20 mM dithiothreitol (DTT) and incubated overnight at −20 °C. After incubation, the samples were centrifuged at 5000 x g at 4 °C for 30 min. The pellets were
washed twice with cold acetone and centrifuged at 5000 x g at 4 °C for 30 min. Finally, the pellets were air-dried and re-suspended in UTC (6M Urea, 3M Thiourea, 8% CHAPS) buffer. The protein concentration was determined adopting modified protocol of Bradford (1976) [18].

1D—Gel electrophoresis

The protein concentration in saliva differed slightly between ovulation and post-ovulation phases. The total proteome was fractionated by 12% SDS-PAGE (Figure 1A). The protein profile of ovulatory phase saliva was compared to that of postovulatory phase. Put together, during the two phases, a total of 12 distinct protein bands appeared in the Coomassie Brilliant blue-stained gels, and their molecular mass ranged from 14 to 97 kDa. Further, the protein pattern was verified in the gradient gel (Figure 1B) also and it was found to be similar to that revealed in SDS-PAGE. Among the various bands 66, 43, and 14.5 kDa were in the highest intensity during the ovulation phase compared to postovulatory phase.

Iso-electric focusing

Protein samples were mixed with an equal volume of UTC buffer (6M Urea, 3M Thiourea, 8% CHAPS, 100 mM DTT, and 2% IPG buffer (GE, Amersham), and incubated for 30 min in ice. The content was then diluted to the required volume using rehydration buffer (7M Urea, 2M Thiourea, 4% CHAPS, 0.5% ampholytes, 50 mM DTT, 1% IPG buffer (GE, Amersham), and 0.004% Bromophenol blue. De-streak TM reagent (GE Healthcare) was used for better resolution. The strips were then focused in IPGphor III after 16 hr of passive rehydration. The programme used for focusing 11 cm (3–10 pH) IPG strips was as follows: 200 V–3 hrs (Step and Hold); 500 V–2 hrs (Step and Hold); 2000 V–1 hr (Gradient); 4000 V– 2 hrs (Gradient); 6000 V—2 hrs (Gradient); 8000 V—6 hrs (Step and Hold). The
total of 8000 V was applied in 66842 V (16 hr). The focused strips were stored at –80 °C until further analysis.

2D—Electrophoresis

The frozen strips were brought to room temperature and subjected to reduction and alkylation. The strips were incubated in SDS-Equilibration buffer I (6 M Urea, 50 mMTris-Cl, 30% Glycerol, 2% SDS, 0.004% Bromophenol blue, and 1% DTT) for 15 min in a gel rocker. For alkylation, the strips were incubated in SDS-Equilibration buffer II (6 M urea, 50 mMTris-Cl, 30% Glycerol, 2% SDS, 0.004% Bromophenol blue, and 2.5% Iodoacetamide) for 15 min in a gel rocker. The strips were then placed on top of 12% polyacrylamide gel (14 cm x 14 cm x 1 mm) and sealed with an overlay of 0.5% agarose solution. In the electrophoresis apparatus, the upper tank contained 2x Tris-Glycine buffer (0.6 % Tris, 2.88% Glycine, and 0.2 % SDS) and the lower tank was filled with 1x buffer. The electrophoresis conditions were 0.5 W for 45 min and 2 W for 5 to 6 hrs until the tracking dye reached the bottom of the gel plate.

Colloidal Coomassie blue staining

After electrophoresis the gels were rinsed with distilled water and fixed with fixative solution (10% Acetic acid, 40% Ethanol, and 50% Distilled water), following which gels were stained with colloidal Coomassie blue stain (0.02% CBB G-250, 5% Ammonium sulfate, 10% Ethanol, and 2% Orthophosphoric acid) solution according to Dyballa and Metzger (2009)[20].

Gel analysis

Digital images of 2D-gels were acquired using ChemiDoc™ XRS imaging system (Bio-Rad) with internal calibration. The acquisition parameters were 300 dpi and epi white illumination. Gel analysis was performed by adopting PDQuest software (Bio-Rad) for spot
detection, according to manufacturer’s protocol. Spot volume normalization, in the various 2-DE maps, was carried out using the relative spot volumes (% Vol). Initially, automatic spot detection was performed, followed by manual editing for spot splitting and noise removal. The gels containing the largest number of protein spots for each phase were chosen as the reference gels. All other gels were matched with the reference gel by placing user landmarks on approximately 10% of major and minor protein spots, which were visualized to assist in automatic matching. Finally, all matches were checked for errors edited by manually.

HR-LC-MS/MS

The 1D protein spots were analyzed using 6550 i-Funnel QTOF-LC-MS/MS coupled with 1260 Infinity Nano pump and 1260 Cap pump along with 1260 Chip-cube (Agilent Technologies). The peptides were fractionated along with Solvent A (0.1% formic acid in milliQ water) and Solvent B (90% acetonitrile + 0.1% formic acid + 10% milliQ water). For MS measurements, we employed the positive-ion mode with mass range of up to m/z 4000 with the resolution setting 60,000 at m/z 400. The proteins were identified by comparison with the SWISS-PROT database entries. Search parameters for MS data were, species: *Homo sapiens*; Protein Mass: 0–500 kDa; Protein pI: 3–10; Enzyme: trypsin; Mispliceage: 1; Mass type: monoisotopic; Charge state: MH+; precursor and product mass tolerance +/−50 and +/−100ppm, respectively; Fixed modification: carboxyamidomethylation of Cystine (C); Variable modifications: oxidation of methionine (M). All the mass spectrometry data have been deposited in the ProteomeXchangeConsortium [21] PRIDE (http://proteomecentral.proteomexchange.org) partner repository with the dataset identifier PXD004511. The protein dataset of ovulation (*Supplementary file. S1*) and the post-ovulation (*Supplementary file. S2*) was obtained and listed.
MALD TOF/TOF analysis

2D protein spots were processed using an automated gel cutter and processor (Shimadzu, Xcise™). The gel spots were washed and destained with 50% ACN and 50 mM NH4HCO3 (Solvent 1), and subjected to in-gel digestion with 30 μL of solvent 7 (50 μl of trypsin stock solution in 4 ml of 50 mM of NH4HCO3) for 2 hr at 37 °C. ZipTips (C18) were wetted and conditioned with 50% ACN and 0.05% TFA (Solvent 5) and 0.1% TFA (Solvent 3), respectively. Cleaved peptides bound to the C–18 resin were desalted using 0.1% TFA (Solvent 3). The peptides were then eluted and spotted with 2.5 μL of Solvent 4 (5mg/ml of CHCA in 50% ACN and 5mM of NH4CHO3) onto a 384-well MALDI plate. Finally, samples were identified using MALDI TOF/TOF (AB Sciex 4800).

Data processing

The acquired mass spectra were processed using DataExplorer® software, and the mono-isotopic peptide masses were assigned and used in the database search. The protein identification was analyzed against Homo sapiens protein sequence inMASCOT database search (http://www.matrixscience.com) using SWISS-PROT database entries. Modification of cysteine by carbamidomethylation and methionine by oxidation was allowed. The precursor and product mass tolerance were set as +/-50 and +/-100 ppm, respectively. Two or more unique peptides for each protein were taken for confirmation of the protein present in the sample.

Functional annotation

The salivary proteins identified during the ovulation and post-ovulation phases were subjected to functional annotation using STRAP online database. The GO terms of proteins were classified based on the biological processes in which they participate, the cellular location and the molecular function. The results revealed that the ovulation phase had
more number of GO terms and greater percentage of annotations than during the post-

Molecular functional ontology
The GO entries were used to depict the percentage of proteins at molecular functional
level through Interproscan analysis in BLAST2GO. The cloud tag image confirmed that the
proteins identified in saliva of ovulation phase are essentially those with binding property
and catalytic activity. Particularly, among the ovulation phase salivary proteins (Figure
2A) showed up higher number of binding proteins (41.6%) and metal ion binding proteins
(16.1%) compared to other phases (Figure 2B). Further, the molecular functional network
was constructed using GO terms of salivary proteins. The integrated network map
revealed the proteins identified during ovulation phase to have glycoprotein binding, ion
binding, and immunoglobulin binding properties, also with receptor activity. Additionally,
the molecular network analysis revealed the interaction between the identified proteins.

Statistical analysis
The protein concentration and band intensity values corresponding to ovulation,
preovulation and post-ovulation phases were represented as mean ± SD and analyzed
using one-way analysis of variance (ANOVA) using SPSS 16 software (SPSS Inc., Cary, NC,
USA).

Results

Validation of ovulation
It is necessary to assess the ovulation phase after appropriate screening of the menstrual
cycle. Not less than 5 cycles were observed to confirm the length of the reproductive
cycle of the volunteers prior to sample collection. Those women who exhibited normal 28
day cycle length through the 5 or more cycles were chosen to be the volunteers, and the
saliva sample was collected. Ovulatory phase was confirmed from direct fertility marker viz., status of the follicle adopting ultrasonography, and biophysical fertility markers such as basal body temperature and fernpattern in saliva (Supplementary Figure.S1) [23].

HR-LC-MS/MS analysis

In order to identify the salivary proteins, the SDS-PAGE protein profiles of each phase were excised equally into six separate pieces, which were individually subjected to trypsin digestion followed by mass spectrometry analysis. In total, 781 proteins were identified combining ovulation and post-ovulation phases of menstrual cycle. During ovulation phase 530 proteins were found, whereas 251 proteins were found during postovulation phase. These results clearly indicates that the expression of number of proteins during ovulation phase than post-ovulation phase. Among these proteins, 35 were commonly present during both ovulation and post-ovulation phases. The schematic diagram, Venny, developed by Oliverios (http://bioinfogp.cnb.es/tools/venny) revealed the protein identities in each phase (Figure 1C).

Ovulation specific proteins

Several functionally important ovulation phase-specific proteins were identified and listed. Table 1 shows the list of 30 functionally important proteins related to reproduction during ovulation phase. The biological functions of protein were deduced from Software Tool for Researching Annotations of Proteins (STRAP 1.5 online database) (http://www.bumc.bu.edu/cardiovascularproteomics/cpctools/strap/); the theoretical pIs and monoisotopic molecular weights were calculated adopting the procedure in Swiss-Prot —ExPASy website (http://web.expasy.org/compute_pi). Cystatin-S, Disintegrin and Metalloproteinase domain-containing protein 7, TANK-binding kinase 1 and Exportin 7 appeared to be predominant, having more number of peptide identifications.
Gene ontology

The unknown, uncharacterized and hypothetical proteins were identified and removed. Further, the repeated proteins in the protein datasets were removed. GO entries were predicted using the GI number of proteins in UNIPROT database. After refinement of datasets the ovulation and post-ovulation phases contained 154 and 117 GO entries, respectively. The gene ontology clearly revealed more UNIPROT entries and greater percentage of annotation during the ovulation phase than the other phases.

Scatter plot for binding proteins

Overall, molecular function analysis exposed the proteins thus identified to possess binding property (Figure 3A). The GO terms were used to analyze the enrichment with log size by adopting REViGO to predict the scatter plot of binding proteins of each phase of menstrual cycle. Scatter plotting was carried out with semantic X and Y axes corresponding to log size value and log10 p-value, respectively. The proteins were segregated and grouped according to their functions, which were displayed with different colors. During ovulation phase, the cluster of yellow bubbles corresponds to the receptor-, protein complex-, peptide-, GABA- binding and MAP kinase activities. The GPCR-, heat shock-, and hyaluronic acid binding and lipid phosphatase-, ligase-, and motor activity proteins shown in linear green bubbles. GABA-A receptor activity and receptor activity proteins are denoted in orange bubbles (Figure 3B). Toll-like receptor-, fatty acid-, and lipid binding proteins, and protein transporter activity proteins during post ovulation phase are shown as separate clusters (Figure 3C). These proteins might be having a functional significance during ovulation phase.

2D—Gel electrophoresis

The salivary protein expression profiles were assessed during pre-ovulation, ovulation,
and post-ovulation phases of menstrual cycle (Figure 4A-C). In Commassie-stained 2D gels, protein spots were present in the pI range 4–7 and the molecular weight between 14–97 kDa. The spot analyses carried out during different phases using PDQuest software (Bio-rad) showed nearly 50 in each phase. Particularly, there were more number of spots during ovulation phase, and many of them had higher densities compared to the other phases. Additionally, we found that the quantitative differences in the spots were high in 14.5 to 21 kDa spot region of ovulatory phase proteins compared to the other phases. It was noticed that a few low molecular weight protein spots were specifically expressed during the ovulation phase (Figure 5A).

Differential expression of salivary protein

Based on the visual assessment and multi-channel image analysis from PDQuest (Bio-Rad) protein spot positions during pre- and post-ovulation phases were unchanged. Though ovulation phase had a different protein expression compared to pre- and post-ovulation phases, 16 spots were identified as unique and highly expressed during this phase. These protein spot expressions were also validated in melanie 3D viewer (Figure 5B).

Identification of proteins from selected spots

Sixteen spots with significant difference in intensities i.e., 2-fold increase, were excised from 2D gel of ovulation phase salivary proteins. The spots were subjected to trypsin digestion and submitted to mass spectrometry. The monoisotopic mass were searched in protein database of human from MASCOT search to identify the full length sequence. In case of spot 1, it closely matched with cystatin-S family protein with 71% sequence coverage and eight matched peptides (Figure 6A & B, Table 2). The differentially expressed spots were identified as (Table. 3): Cystatin-S, Prolactin-inducible protein, Cystatin-A, Cystatin-SN, BPI fold-containing family A member 2, Alpha-tubulin N-...
acetyltransferase 1, Carbonic anhydrase 6, Protein LEG1 homolog, Hemoglobin subunit beta, and Pancreatic alpha-amylase. The spots 1, 3, 4, 7, and 10 were identified as Cystatin-S and these spots might be isoforms/variants of Cystatin-S proteins (Table 3).

Discussion

Saliva is an important diagnostic biological fluid, which reflects the physiological as well as biochemical changes in the body [24]. Human saliva has been subjected to proteomic analysis rather extensively adopting proteomic technique viz., two-dimensional electrophoresis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) and quadrupole time-of-flight mass spectrometry (Q-TOF/MS)[25] as well as comparative proteomic analysis on intra- and inter-person variability of whole saliva using LC/ESI-TOF/MS[26]. Detailed salivary proteomic studies during menstrual cycle adopting the 2D-based mass spectrometry have not been conducted earlier. However, recent studies have been carried out to comprehensively catalog the salivary proteome with regard to cellular localization, biological processes and molecular functions [27]. In our previous study, we have reported that the 14.5 kDa protein band is consistently present and we projected it as the ovulation phase-specific protein. Analysis of this band revealed that the Cystatin-S expression was significantly higher during the ovulation phase, which was further validated adopting immunoblotting, confirming that Cystatin-S is the predominant protein during ovulation [16].

In the present study, a complete proteomic catalogue on human saliva has been mapped with as much as 781 proteins during the major phases of menstrual cycle. Amongst them, 495 proteins are ovulation-specific, and 216 proteins are post-ovulation-specific. Many proteins reported in human saliva have been previously identified in humans under different physiological conditions. The functionally important proteins associated with reproductive mechanisms such as Cystatin-S, Disintegrin and metalloproteinase domain-
containing protein 7 (ADAM7), TANK-binding kinase 1, Anoctamin–1, Carbonic anhydrase 6, and so on, appeared during ovulation phase. More specifically, Carbonic anhydrase is present during all phases of animals exhibiting the estrous cycle. Indeed, there is a significant expression of Carbonic anhydrase in cattle, camel and goat [28]. In the human, recent studies have confirmed that secretion of specific peptides/proteins is different in the pediatric age compared to adults [29].

The functional annotation of the identified proteins obtained from STRAP database showed that these proteins are associated with binding property and regulatory function. In addition, these extracellular proteins would play important role during the time of ovulation. It is to be noted that proteins having binding property are widely present along with volatiles in body fluids and facilitate chemical communication during the estrus period [30, 31]. A more recent report showed that in estrus cycling mammals binding protein are abundant during estrus compared to the other phases [32]. It clearly indicates that there is a specific role for binding proteins during the time of ovulation. The occurrence of large number of binding proteins, during ovulation phase, assigning to molecular function is an aspect of defense response and immunological process. The binding proteins may have a role in increasing the stability of other proteins [32].

The salivary proteins have been shown as biomarkers of various diagnostic contexts [33]. The advantages of salivary proteins as biomarkers include high stability, easy availability with higher half-life and noninvasive collection procedures. The salivary glands are less influenced by unstimulated saliva and are also understood to represent an equilibrated condition. In contrast, in some cases it was suggested that stimulated saliva may provide a more accurate detection of biomarkers [34]. Several salivary biomarkers such as Lactoferrin, Beta-2-microglobulin and Cystatin for Sjögren’s syndrome, C-erbB-2, and Epidermal growth factor (EGF) for breast cancer, and Lactoferrin for periodontitis and type
2 diabetes mellitus [35] have been listed using MS-based proteomic techniques. The 2D gel electrophoresis (2-DE) is capable of providing for better biomarker separation (based on both charge and mass) and, therefore, expounds a higher number of biomarkers. In most of the studies, 2DE is used as the first step for protein separation, followed by tandem MS (MS/MS). The whole saliva separated by isoelectric focusing showed most distinctive proteins at different pIs[36]. The outcome of the present study strongly agrees with the previous reports for the IEF separation between the pl 4–7. Recently, the 2DE analysis in periodontitis patients evidenced 15 altered spots out of 128. Further, a relationship that was uncovered between S100A8, S100A9 and S100A6 proteins during the periodontitis confirmed the potential involvement in periodontal inflammation [37]. Likewise, the present study revealed that 16 spots out of 62 were altered during the ovulation phase of menstrual cycle.

Since the composition of salivary proteins is influenced by physiological and environmental factors, they have the potential to access and monitor the diseases [38, 24]. Indeed, the differences in protein expression have been well documented in pathological conditions such as cystic fibrosis, dental caries, and periodontitis [39, 40]. So far, only limited proteomics studies have been carried out on human saliva with reference to variations in the different phases of menstrual cycle. On the other hand, proteomic analyses of saliva in ruminants are well established with regard to estrous cycle. Electrophoretic separation revealed many distinct protein bands in sheep and goat parotid secretion [41, 42]. A comparative salivary proteomic study was undertaken between goats and sheep [28], and goats and cattle [43]. In the more recent times, a odorant binding protein (OBP), which is around 19 kDa, in buffalo saliva with detailed post-translational modifications and estruslipocalin protein (14.5 kDa) was identified in house rat, which acts as shuttle for chemo-signals during communication with the conspecifics. Likewise,
salivary proteomics is a promising tool for the discovery of biomarkers for various diseases. Currently, researchers are interested in developing biochemical-based and/or protein-based marker from saliva for the detection of ovulation time in the human.

In order to make an in-depth salivary proteome analysis the following steps were followed: i) avoid protein loss and get enough protein concentration, ii) a good protein separation to avoid complexity of proteins and to remove abundant proteins, and iii) high mass accuracy peptides sequencing with resolution in scanning[44]. As reported previously, the total concentrations of salivary proteins are low, and do not exceed approximately 2.5 mg/mL [45]. Generally, the concentration of proteins can be assessed by several techniques such as dialysis, lyophilization, reverse-phase separation, ultra-filtration, and enrichment by affinity columns or beads, precipitation with TCA acetone or ammonium sulphate is also advisable[46, 47, 48]. The salivary proteins were efficiently extracted using TCA-Acetone method followed by the method of Gehrke (2006)[17].Our previous study showed the 14.5 kDa protein specifically expounded to be the dominant protein in saliva [16]. Similarly, the present study also confirms that the proteins are in low molecular weight range highly expressed in ovulation phase compared to other phases.

Recent proteomic platforms have showed about 3000 differentially expressed proteins and peptides in human saliva, many of which are of microbial origin [49]. Similarly, in the present study most of the proteins present in saliva are antimicrobial and defensive proteins. The proteins around 14.5 kDa, such as Cystatin-S, Prolactin-inducible protein, Cystatin-A, Cystatin-SN, BPI fold-containing family A member 2, Alpha-tubulin N-acetyltransferase 1, and Carbonic anhydrase 6 express high during ovulation phase. Among these proteins, 14.5 kDa Cystatin-S proteins were highly expressed as four isoforms falling in different pl ranges during ovulation phase. Further, the expression of Cystatin-S affirms the previous studies [16]. Likewise, Cystatin-A and cystatin isoforms
were reported in gingival crevicular fluid in periodontal patients and chicken egg white during embryogenesis, respectively [50, 51]. It is suggested that salivary glands respond to inflammation stimuli to secrete more Cystatin-C into saliva [50] and it has been considered as a biomarker candidate of renal function [52]. Alterations of serum Cystatin C were considered as early marker for hyperthyroidism, cancer, renal function in diabetic patients, and cardiovascular diseases [53–56]. Cystatin S is a promising tumor biomarker for early cancer diagnosis and treatment evaluation [57]. Carbonic anhydrases (CAs) are zinc-containing metalloenzymes that participate in the regulation of ion, water, and acid-base balance by catalyzing the reversible hydration of carbon dioxide in a reaction: CO2 + H2O ⇌ HCO3⁻ + H⁺ [58]. In many body fluids, CA appears to regulate acid-base balance [59], and possible expression of isoenzymes is found in human and animal reproductive organs [60]. Remarkably, carbonic anhydrase is present during all phases of the estrous cycle of animals including cattle, camel and goat [28]. Additionally, the salivary proteins and microbiota as biomarkers for to assess the early childhood caries risk [61]. In the present study, the variations in protein expression indicate that physiological changes influence the protein secretion in saliva. Hence, the specific expression of Cystatin-S in saliva during the ovulation phase would lead to develop an important biomarker for the ovulation detection in human.

Conclusion

The protein expression pattern in human saliva was characterized during different phases of menstrual cycle. The total salivary proteome profile is listed and it was found that as many as 530 proteins appeared during ovulation phase as compared to 251 proteins appearing during post-ovulation phase. Functional annotation of identified salivary proteins revealed them as extracellular proteins associated with regulatory function. The differential protein expression observed following 2D gel electrophoresis revealed that the
salivary proteins are focused between pH ranges 4–7 and molecular weight 97–14 kDa. The unique and differentially expressed protein spots during ovulation phase were identified and confirmed. Of these proteins Cystatin-S, Prolactin-inducible protein, Cystatin-A, Cystatin-SN, BPI fold-containing family A member 2, Alpha-tubulin N-acetyltransferase 1, and Carbonic anhydrase 6 are highly expressed during ovulation phase. Among the protein listed, Cystatin-S offers promise as a biomarker protein indicator of ovulation. Further study to characterize Cystatin-S to develop a suitable indicator to detect ovulatory phase in human has been initiated.

Declarations

Data Availability

All the mass spectrometry data have been deposited in the ProteomeXchange Consortium PRIDE (http://proteomecentral.proteomexchange.org) partner repository with the dataset identifier PXD004511.

Conflicts of Interest

“The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.”

Funding Statement

No funding received for this study.

Acknowledgments

G. S. (First author) thanks the Indian Council of Medical Research (ICMR-New Delhi, India; No. 45/5/2014-BIO/BMS) for the Senior Research Fellowship. G. A. of the article thanks to the University Grants Commission, New Delhi, for the award of UGC-BSR Faculty Fellow. Manali Jadhav and Pradnya Nikam thank SAIF, IIT-Bombay, Powai, Mumbai, for help in the LC-MS/MS analysis. The authors thank PRIDE Team for processing the data in the MS,
which have been deposited with the ProteomeXchange Consortium.

References

1. S. P. Humphrey and R. T. Williamson, A review of saliva: Normal composition, flow, and function. J Prosthet. Dent. 2001, 85, 162-169.

2. M. W. J. Dodds, D. A. Johnson and C. K. Yeh, Health benefits of saliva: A review. J Dent, 2005, 33, 223-233.

3. Y. H. Lee and D. T. Wong, Saliva: An emerging biofluid for early detection of diseases. Am. J Dent, 2009, 22, 241-248.

4. E. Mass, N. Gadoth, D. Harell and A. Wolff, Can salivary composition and high flow rate explain the low caries rate in children with familial dysautonomia? Pediatr. Dent, 2002, 24, 581-586.

5. L. F. Azevedo, et al. Analysis of the association between lactotransferrin (LTF) gene polymorphism and dental caries. J Appl Oral Sci, 2010, 18, 166-170.

6. R. E. Prout and R. M. Hopps, A relationship between human oral bacteria and the menstrual cycle. J Periodontol, 1970, 41, 98-101.

7. T. Pfaffe, J. Cooper-White, P. Beyerlein, K. Kostner and C. Punyadeera, Diagnostic potential of saliva: current state and future applications. Clin. Chem, 2011, 57, 675-687.

8. A. R. Martinez, Prediction and detection of the fertile phase of the menstrual cycle: an overview. Adv Contracept, 1997, 13, 131-138.

9. D. T. Baird, Prediction of ovulation, biophysical, physiological and biochemical coordinates. In Ovulation Methods for its Prediction and Detection. (Ed. Jeffcoate SL), (Chichester: John Wiley & Sons, USA, 1983), 1-17.

10. B. D. Albertson and M. J. Zinaman The prediction of ovulation and monitoring of the fertile period. Adv. Contracept, 1987, 3, 263-290.
11. B. Goswami, M. Rajappa, M. Sharma and A. Sharma, Inflammation: its role and interplay in the development of cancer, with special focus on gynecological malignancies. Int. J Gynecol. Cancer, 2008, 18, 591-599.

12. H. N. Jabbour, K. J. Sales, R. D. Catalano and J. E. Norman, Inflammatory pathways in female reproductive health and disease. Reproduction, 2009, 138, 903-919.

13. G. Saibaba and G. Archunan, Does salivary protein(s) act an ovulation indicator for women? A hypothesis. Med. Hypotheses, 2015, 84, 104-106.

14. R. Westermeier, Electrophoresis in Practice, 3rd Edn, (WILEY-VCH, Weinheim, 2001).

15. S. S. Schwartz, W. X. Zhu and L. M. Sreebnyl, Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of human whole saliva. Arch. Oral Biol, 1995, 40, 949-958.

16. G. Saibaba, et al. Proteomic analysis of human saliva: An approach to find the marker protein for ovulation. Reprod. Biol, 2016, 16, 287-294.

17. C. W. Gehrke, Total protein extraction for IEF and 2-D SDS-PAGE. http://proteomics.missouri.edu/protocols.php. November 2006.

18. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem, 1926, 72, 248-254.

19. U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227, 680-685.

20. N. Dyballa and S. Metzger, Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. J Vis. Exp, 2009, 30, 1431.

21. J. A. Vizcaíno, et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nature Biotechnol, 2014, 30, 223-226.

22. V. N. Bhatia, D. H. Perlman, C. E. Costello and M. E. McComb, Software tool for
researching annotations of proteins: Open-source protein annotation software with data visualization. Anal.Chem, 2009, 81, 9819-9823.

23. S. Alagendran, et al. Characterization of salivary protein during ovulatory phase of menstrual cycle through MALDI-TOF/MS. Ind. J Dent. Res, 2013, 24, 157-163.

24. L. F. Hofman, Human saliva as a diagnostic specimen. J Nutr, 2001, 131, 1621-1625.

25. C. M. Huang, Comparative proteomic analysis of human whole saliva. Arch. Oral. Biol, 2004, 49, 951-962.

26. K. M. Millea, I. S. Krull, A. B. Chakraborty, J. C. Gebler and S. J. Berger, Comparative profiling of human saliva by intact protein LC/ESI-TOF mass spectrometry. Biochim. Biophys. Acta, 2007, 1774, 897-906.

27. E. J. Helmerhorst and F. G. Oppenheim, Saliva: a dynamic proteome. J Dent. Res, 2007, 86, 680-693.

28. E. Lamy, et al. Sheep and goat saliva proteome analysis: a useful tool for ingestive behavior research? Physiol. Behav, 2009, 98, 393-401.

29. M. Castagnola, et al. Salivary biomarkers and proteomics: future diagnostic and clinical utilities. Acta Otorhinolaryngol. Ital, 2017, 37, 94-101.

30. N. Vanmuylder, L. Evrard, P. Daeleman, J. Van Reckand N. Dourov, Expression of heat shock proteins in salivary gland tumors. Immunohistochemical study of HSP27, HSP70, HSP90, and HSP110: apropos of 50 cases. Ann. Pathol, 2000, 20, 190-195.

31. S. Achiraman and G. Archunan, Urinary proteins and pheromonal communication in mammals. Ind. J ExpBiol, 2002, 40, 1077-1078.

32. S. Muthukumar, et al. Exploration of salivary proteins in buffalo: an approach to find marker proteins for estrus. FASEB J, 2014, 28, 4700-4709.

33. A. Caseiro, et al. Salivary proteome and peptidome profiling in type 1 diabetes mellitus using a quantitative approach. J Proteome Res, 2013, 12, 1700-1709.
34. C. F. Streckfus and W. P. Dubinsky, Proteomic analysis of saliva for cancer diagnosis. Expert Rev Proteomics, 2007, 4, 329–332.

35. S. K. Al-Tarawneh, M. B. Border, C. F. Dibble and S. Bencharit, Defining salivary biomarkers using mass spectrometry-based proteomics: A systematic review. OMICS, 2011, 15, 353–361.

36. J. D. Rudney, R. K. Staikov and J. D. Johnson, Potential biomarkers of human salivary function: a modified proteomic approach. Arch. Oral Biol, 2009, 54, 91–100.

37. B. J. Haigh, et al. Alterations in the salivary proteome associated with periodontitis. J Clin. Periodontol, 2010, 37, 241–247.

38. H. Tsai and L. A. Bobek, Human salivary histatins: promising anti-fungal therapeutic agents. Crit. Rev. Oral Biol. Med, 1998, 9, 480–497.

39. S. Anil, P. Remani, V. T. Beena, R. G. Nair and T. Vijayakumar, Immunoglobulins in the saliva of diabetic patients with periodontitis. Ann. Dent, 1995, 54, 30–33.

40. X. Tang, Y. Pan and Z. Wang, Sodium dodecyle sulphate polyacrylamide gel electrophoresis of whole salivary proteins from patients with adult periodontitis. Hua Xi Kou Qiang Yi Xue Za Zhi, 2003, 21, 98–100.

41. J. Patterson, P. Brightling and D. A. Titchen, Beta-Adrenergic effects on composition of parotid salivary secretion of sheep on feeding. Q. J. Exp. Physiol, 1982, 67, 57–67.

42. R. D. McLaren, J. T. McIntosh and G. W. Howe, The purification and characterization of bovine salivary proteins by electrophoretic procedures. Electrophoresis, 1987, 8, 318–324.

43. M. Mau, C. Muller, J. Langbein, C. Rehfeldt, J. P. Hildebrandt and T. M. Kaiser, Adhesion of bovine and goat salivary proteins to dental enamel and silicate. Arch. Tierz, 2006, 49, 439–446.

44. J. Adachi, C. Kumar, Y. Zhang, J. V. Olsen and M. Mann, The human urinary proteome
contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol, 2006, 7, 80-96.

45. G. Saibaba, M. Srinivasan, A. PriyAarthy, V. Silambarasan, G. Archunan, Ultrastructural and physico-chemical characterization of saliva during menstrual cycle in perspective of ovulation in human. Drug Discov. Ther, 2017,11, 91-97.

46. W. Sun, et al. Human urine proteome analysis by three separation approaches. Proteomics, 2005,5,4994-5001.

47. P. Tantipaiboonwong, S. Sinchaikul, S. Suriyam, S. Phutrakul and S. T. Chen, Different techniques for urinary protein analysis of normal and lung cancer patients. Proteomics, 2005,5,1140-1149.

48. L. Wang, et al. Concanavalin A-captured glycoproteins in healthy human urine. Mol. Cell Proteomics, 2006,5,560-562.

49. N. Grassl, et al. Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome. Genome Med, 2016,8, 44.

50. M. F. Blankenvoorde, et al. Cystatin A in gingival crevicular fluid of periodontal patients. J. Periodontal Res, 1997,32, 583-588.

51. K. Golab, J. Gburek, A. Gawel and M. Warwas, Changes in chicken egg white cystatin concentration and isoforms during embryogenesis. Br. Poult. Sci, 2001,42,394-398.

52. R. Jiang, C. Xu, X. Zhou, T. Wang and G. Yao, Detection of cystatin C biomarker for clinical measurement of renal disease by developed ELISA diagnostic kits. J Transl. Med, 2014,12, 205.

53. V. Jayagopal, B. G. Keevil, S. L. Atkin, P. E. Jennings and E. S. Kilpatrick, Paradoxical changes in cystatin C and serum creatinine in patients with hypo- and hyperthyroidism. Clin. Chem, 2003,49, 680-701.

54. G. Ohara, et al. Serum levels of cystatin C in elderly lung cancer patients. Oncol. Lett,
55. A. Vega, et al. Evaluation of methods based on creatinine and cystatin C to estimate glomerular filtration rate in chronic kidney disease. Int. Urol. Nephrol, 2014, 46, 1161-1167.

56. P. Svensson-Färbom, et al. Cystatin C identifies cardiovascular risk better than creatinine-based estimates of glomerular filtration in middle-aged individuals without a history of cardiovascular disease. J Intern. Med, 2014, 275, 506-521.

57. Z. Xiaojin, et al. Clinical significance of Cystatin S in cancer diagnosis and treatment assessment. J Clin. Oncol, 2014, 32, e22226.

58. W. S. Sly, and P. Y. Hu, Human carbonic anhydrases and carbonic anhydrase deficiencies. Ann Rev. Biochem, 1995, 64, 375-401.

59. J. Mühlhauser, et al. Immunohistochemistry of carbonic anhydrase in human placenta and fetal membranes. Histochemistry, 1994, 101, 91-98.

60. E. Ekstedt and Y. Ridderstråle, Histochemical localization of carbonic anhydrase in the testis and epididymis of the rabbit. Acta Anat, 1992, 143, 258-264.

61. A. S. Hemadi, R. Huang, Y. Zhou and J. Zou, Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int J Oral Sci, 2017, 9, e1.

Tables

Table 1. List of functionally important salivary proteins identified during ovulatory phase of menstrual cycle.

Swiss-Prot acc. no.	Name	Function
P01036	Cystatin-S	Strong inhibitor
Q9H2U9	Disintegrin and metalloproteinase domain-containing protein 7	Role in Reproduction
Q9UHD2	TANK-binding kinase 1	Regulating inflammatory responses
Q9UIA9	Exportin 7	Export of proteins
ID	Description	Function/Activity
--------	---	--
P29122	Proprotein convertase subtilisin/kexin type 6	Endoprotease activity
Q14031	Collagen alpha-6(IV) chain	Major structural component
Q5FYB1	Arylsulfatase I	Displays arylsulfatase activity at neutral pH
P02768	Serum albumin	Binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs
Q5XXA6	Anoctamin-1	Chloride conductance
Q9Y5E6	Protocadherin beta-3	Potential calcium-dependent cell-adhesion protein
P28566	5-hydroxytryptamine receptor	G-protein coupled receptor
Q496J9	Synaptic vesicle glycoprotein 2C	Positively regulates vesicle fusion
Q8WXI7	Mucin-1	Protective, lubricating barrier
Q969D9	Thymic stromal lymphopoietin	Antimicrobial peptide in the oral cavity
Q8TE04	Pantothenate kinase 1	Role in the physiological regulation
P50453	Serpin B9	Protease inhibitor
Q8TD43	Transient receptor (TRPM4)	Mediates transport of monovalent cations
Q3YEC7	Rab-like protein 6	May enhance cellular proliferation
Q13733	Sodium/potassium-transporting ATPase subunit alpha-4	Hydrolysis of ATP coupled with the exchange of sodium and potassium ions
Q8N587	Zinc finger protein 561	Transcriptional regulation
Q02790	Peptidyl-prolyl cis-trans isomerase FKBP4	Interacti on with heat-shock protein 90 (HSP90) Cysteine proteinase inhibitor
P28325	Cystatin-D	Component of the circadian clock
Q8WYA1	Aryl hydrocarbon receptor nuclear	Transcriptional activator which is required for calcium-dependent dendritic growth
O75177	translocator-like protein 2	Palmitoylates calnexin (CALX), which is required for its association with
Q9H6R6	Palmitoyltransferase ZDHHC6	
Accession	Protein Name	Description
-----------	--------------	-------------
Q05JX5	Apolipoprotein B	Ion binding
P16112	Aggrecan core protein	Resist compression in cartilage
Q5EK51	Lactotransferrin	Anti microbial response
Q8N4F0	Bactericidal/permeability-increasing protein-like 1	Lipid binding
O00154	Acyl-CoA thioesterase 7	Hydrolysis of acyl-CoAs
P12273	Prolactin-induced protein	Protein binding
P23284	Peptidylprolyl isomerase B	Accelerate the folding of proteins
P23280	Carbonic anhydrase 6	Unknown
P49895	Deiodinase	Hormone biosynthetic process
Q59FP8	Neogenin	Unknown

Proteins having at least one identified peptide in ovulation phase saliva are listed with their Swiss-Prot/TrEmbl accession numbers and length.

Functions were retrieved using the STRAP online database bioinformatics resource.

Theoretical pIs and monoisotopic molecular weights were calculated using the Swiss-Prot website.

Table 2. Mass values of cystatin-S. Observed and expected masses (M+H) of cystatin-S protein and tryptic digested peptide sequence map by MALDI-TOF/MS, which was retrieved from Mascot database. The matched peptides are bolded in black.
Table 3. List of highly and specifically expressed proteins in saliva during ovulation phase.

Spot no	Protein Name	Accession code	pI	MW (kDa)
1	Cystatin-S	P01036	4.95	16.21
2	Prolactin-inducible protein	P12273	8.26	16.57
3	Cystatin-S	P01036	4.95	16.21
4	Cystatin-S	P01036	4.95	16.21
5	Cystatin-A	P01040	5.38	11.00
6	Cystatin-A	P01040	5.38	11.00
7	Cystatin-S	P01036	4.95	16.21
8	Cystatin-SN	P01037	6.73	16.38
9	BPI fold-containing family A member 2	Q96DR5	5.35	27.01
10	Cystatin-S	P01036	4.95	16.21
11	Alpha-tubulin N-acetyltransferase 1	Q5SQI0	5.78	37.92
12	Carbonic anhydrase 6	P23280	6.51	35.36
13	Protein LEG1 homolog	Q6P5S2	5.78	37.90
14	Hemoglobin subunit beta	P18984	7.24	16.06
15	Carbonic anhydrase 6	P23280	6.51	35.36
16	Pancreatic alpha-amylase	P00690	6.52	50.07

Proteins having identified peptides in ovulation period saliva are listed with their Swiss-Prot/Uniprot accession numbers.

Theoretical pIs and monoisotopic molecular weights were calculated using the Swiss-Prot website (http://web.expasy.org/compute_pi/)

Figures
Figure 1

Figure 1. A) Salivary protein profile in 12% SDS-PAGE. O- Ovulation phase, PostO- Post-ovulation phase, M- Protein marker. B) Salivary protein profile in gradient gel (5-15%). O-Ovulation phase, PostO- Post-ovulation phase, M- Protein marker. C) Venn diagram for overall identified salivary proteins. In ovulation phase 495 proteins showed up whereas 216 proteins were observed during post-ovulation phase.
Figure 2.

Figure 2. The score distribution according to molecular functional ontology. A) Ovulation phase, B) Postovulation phase. Protein domain entries used to depict the percentage of proteins through Interproscan analysis in BLAST2GO.
Figure 3. A) Graphical representation of molecular functional proteins in ovulation and post-ovulation phases. The plots showed the clusters of protein and activity in B) ovulation and C) post-ovulation phases. The ovulation plot has higher
number of binding and lesser activity protein compared to post-ovulation stage.

Figure 4.

Figure 4. The 2D gel electropherogram of salivary proteins round the menstrual cycle. A) Pre-ovulation phase, B) Ovulation phase, C) Post-ovulation phase. The 11 cm IPG strips were used with 3-10 pH range and gel run with the 12% SDS-PAGE.
Figure 5.

Figure 5. Multi-channel image of 2D gel. A) The unique protein spots during ovulation phase. B) The expression level of spot 1 in pre-ovulation, ovulation and post-ovulation phases from the top respectively, by Melanie 3D viewer.
Figure 6. MALDI-mass spectrum and Sequence coverage of cystatin-S. (a) 2D Protein spot 1 was undergone for in-gel tryptic digestion and the spectra was collected form MALDI-MS. Number in the mass spectrum gives precise m/z (M+H) values for detected peptide ion signals. (b) Single letter coded protein sequence was obtained from mascot search. The matched 71% sequence coverage was highlighted in red colour.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.
Supplementary file.S1.xlsx
Supplementary file.S2.xlsx
Supplementary Figure S2.jpg
S1.tif
S3.tif