Rationale and limitations of the SpO₂/FiO₂ as a possible substitute for PaO₂/FiO₂ in different preclinical and clinical scenarios

ABSTRACT

Although the PaO₂/FiO₂ derived from arterial blood gas analysis remains the gold standard for the diagnosis of acute respiratory failure, the SpO₂/FiO₂ has been investigated as a potential substitute. The current narrative review presents the state of the preclinical and clinical literature on the SpO₂/FiO₂ as a possible substitute for PaO₂/FiO₂ and for use as a diagnostic and prognostic marker; provides an overview of pulse oximetry and its limitations, and assesses the utility of SpO₂/FiO₂ as a surrogate for PaO₂/FiO₂ in COVID-19 patients. Overall, 49 studies comparing SpO₂/FiO₂ and PaO₂/FiO₂ were found according to a minimal search strategy. Most were conducted on neonates, some were conducted on adults with acute respiratory distress syndrome, and a few were conducted in other clinical scenarios (including a very few on COVID-19 patients). There is some evidence that the SpO₂/FiO₂ criteria can be a surrogate for PaO₂/FiO₂ in different clinical scenarios. This is reinforced by the fact that unnecessary invasive procedures should be avoided in patients with acute respiratory failure. It is undeniable that pulse oximeters are becoming increasingly widespread and can provide costless monitoring. Hence, replacing PaO₂/FiO₂ with SpO₂/FiO₂ may allow resource-limited facilities to objectively diagnose acute respiratory failure.

KEYWORDS: COVID-19; SARS-CoV-2; Oxygen saturation; Oximetry; Blood gas analysis; Oxygen; Respiratory distress syndrome; Respiratory insufficiency; Prognosis; Infant; Infant, newborn; Adult

INTRODUCTION

Acute respiratory failure (ARF) is a ubiquitous issue in emergency departments (EDs), operating rooms (ORs) and intensive care units (ICUs) worldwide. Nevertheless, in many health care settings, such as prolonged field care and aeromedical evacuation, arterial blood gas (ABG) analysis—which is required for an objective ARF diagnosis—is unavailable. The COVID-19 pandemic has highlighted the urgency of developing rapid, affordable, and easily accessible ARF diagnostics, during the period when timely and appropriate management can have an impact on morbidity and mortality.
Although the ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen \((PaO_2/FiO_2)\), or \(P/F\), derived from ABG analysis remains the gold standard for ARF diagnosis, the arterial blood oxygen saturation to the FiO\(_2\) ratio \((SpO_2/FiO_2)\), or \(S/F\), has been investigated as a potential surrogate.\(^4\)\(^-\)\(^8\)

Replacement of PaO\(_2\) with SpO\(_2\) has shown promising results in other areas, such as the oxygenation index, used to assess the severity of hypoxic respiratory failure (HRF) in neonates.\(^9\)

Since the first investigations correlating \(S/F\) and \(P/F\), few studies have been published in this field. Some of these studies have used \(S/F\) as a substitute for the \(P/F\) in patients with acute respiratory distress syndrome (ARDS).\(^4\) Furthermore, \(S/F\) has been successfully used to impute \(P/F\) during Sequential Organ Failure Assessment (SOFA) score evaluation and in other scoring systems,\(^10,11\) and it has even been investigated in trauma and COVID-19.\(^3,12\)

This narrative review will discuss the current state of the literature on the \(S/F\), focusing on preclinical and clinical studies investigating it as a possible substitute for the \(P/F\). In addition, an overview of pulse oximetry and its limitations will be provided. Finally, the potential utility of the \(S/F\) as a surrogate for the \(P/F\) in the particular circumstances of the COVID-19 pandemic will be assessed.

METHODS

Literature search strategy

The PubMed®, Cochrane Library, and SciELO databases were searched for preclinical and clinical studies evaluating the \(S/F\) and its association with the \(P/F\), with no date or language restrictions. The following search queries were used, all with Boolean operators: oximetry AND \(S/F\); oximetry AND \(P/F\); oximetry AND \(SpO_2/FiO_2\); oximetry AND \(PaO_2/FiO_2\); \(S/F\) AND \(P/F\); \(SpO_2/FiO_2\) AND \(PaO_2/FiO_2\). Studies were eligible if they investigated the following aspects: pulse oximeter functioning and artifacts; pulse oximetry values under different inspired oxygen fractions; and any aspect related to \(S/F\) correlation. PICO questions were investigated as follows: Patient - sample size and patient characteristics (age and disease); Intervention - if receiving invasive or noninvasive mechanical ventilation (MV) or under spontaneous breathing; Comparison - correlation or regression between \(S/F\) and \(P/F\) and Outcome - association with survival, ventilator or intensive care-free days and length of stay.

AN OVERVIEW OF PULSE OXIMETRY

Rationale

Arterial blood oxygen saturation is one of the oldest monitoring measures in ICUs, EDs, and ORs. Since the ear oximeter was developed by Millikan in 1947 and improved by Aoyagi in 1970, pulse oximetry has gained importance in patient monitoring and is now a widespread technology.\(^2,13\)\(^-\)\(^15\) Considering its clinical utility, every health care provider should have at least a basic understanding of pulse oximetry.\(^14\)

Arterial blood oxygen saturation monitors calculate blood saturation levels, \(i.e.,\) the ratio of oxygen-bound hemoglobin (Hb) to unbound Hb in the arterial blood compartment.\(^16,17\) Using an LED light that emits fixed and selected wavelengths, pulse oximeters are equipped with a photodiode that quantifies light transmitted through a tissue based on Beer-Lambert’s law of light absorption, \(i.e., A = e \times b \times c\), where \(A\) is absorbance, \(e\) is the absorption (or extinction) coefficient of Hb at a specific wavelength, \(b\) is the length of the path that the emitted light travels through the vessel, and \(c\) is the Hb concentration.\(^14,16\) Pulse oximeters were previously calibrated using ABG samples from healthy subjects analyzed by a hemoximeter.\(^18\) Pulse oximetry is rarely contraindicated, although it has some limitations that must be understood to avoid pitfalls in interpreting SpO\(_2\) values, such as skin color. Two cohorts showed an approximate frequency three times higher that of occult hypoxemia (an arterial oxygen saturation < 88% despite oxygen saturation of 92 to 96% on pulse oximetry) in black patients when compared to white patients, suggesting that other variables should be used for the diagnosis of hypoxemia and the titration of supplementary oxygen levels.\(^19\) Table 1 summarizes the main limitations.

Although the precise normal range of SpO\(_2\) values is still a matter of debate, it is widely proposed that baseline SpO\(_2\) values for spontaneously breathing patients on room air should be interpreted as follows: > 97%, normal lung function; 91 - 96%, slightly to moderately abnormal lung function; and < 90%, hypoxemia (indicating a shunt effect). During MV with FiO\(_2\) = 1, normal SpO\(_2\) should always be 100%.\(^37\)
Table 1 - Main limitations of pulse oximetry

Limitation	Characteristics	References
Anemia	Anemia may cause underestimation of \(\text{SaO}_2 \) by \(\text{SpO}_2 \) readings in hypoxic patients. \(\text{SpO}_2 \) can accurately represent \(\text{SaO}_2 \) values in hematocrits as low as 10 - 14% in dogs	Zeserson et al.,(8) Hafen et al.,(14) Schnapp et al.,(15) Chan et al.,(16) Lee et al.,(20) Jay et al.,(21) Perkins et al.,(22) and Severinghaus et al.(23)
Carbon monoxide intoxication	In the presence of carboxyhemoglobin, pulse oximeters consistently overestimate \(\text{SpO}_2 \)	Schnapp et al.,(15) and Barker et al.(24)
Methemoglobinemia	\(\text{SpO}_2 \) readings may decrease when methemoglobin levels rise, but when the latter reach 30 - 35%, PO readings reach a plateau of 80 - 85%	Schnapp et al.,(15) Barker et al.(25) and Eisenkraft(26)
High venous pressure	High venous pressure, for example in right heart systolic insufficiency or tricuspid valve regurgitation, may cause falsely low \(\text{SpO}_2 \) values	Zeserson et al.,(8) Bucher et al.,(23) Fouzas et al.(28) and Stewart et al.(29)
Dyes and pigments	Indigo carmine, indocyanine green, and methylene blue may alter \(\text{SpO}_2 \) readings, since they cause tissue pigmentation, thereby altering light absorbance	Schnapp et al.,(15) and Fouzas et al.(28)
Excessive motion	Artifacts caused by excessive motion can be interpreted as pulse signals and increase the noise-to-signal ratio	Schnapp et al.,(15) and Louie et al.(30)
Hyperbilirubinemia	Although a case series reported overestimation of \(\text{SaO}_2 \) by pulse oximeters in cirrhotic patients with hyperbilirubinemia, bilirubin has a different light absorption spectrum	Fouzas et al.,(28) Nilles et al.,(31) Salyer(32) and Veyckemans et al.(33)
Hyperoxemia/hyperoxia	Pulse oximeters cannot detect hyperoxemia/hyperoxia, yet these events may evoke unwanted responses such as a decrease in cardiac output and heart rate (approximately 10%), 20% reduction in regional blood flow (cerebral, cardiac, skin, and skeletal muscle vascular beds), and a buildup of reactive oxygen species in the mitochondria, causing oxidative stress	Allardet-Servent et al.(34) and Sjöberg et al.(23)
Low perfusion	Low perfusion due to hypovolemia, hypothermia, use of vaspressors, and peripheral vascular disease may lead to poor sensor readings, increasing the noise-to-signal ratio	Schnapp et al.,(15) and Fouzas et al.(28)
External light sources	Although new pulse oximetry equipment can detect excessive light artifacts, there are reports of external light sources flooding the photodetector. Covering the sensor with an opaque material may prevent misreading	Schnapp et al.,(15) Fouzas et al.(28) and Manheimer(36)
Skin color	Occult hypoxemia (an arterial oxygen saturation of < 88% despite an oxygen saturation of 92 to 96% on pulse oximetry) was more common in Black (11.7%; 95%CI, 8.5 to 16.0) compared to White patients (3.6%; 95%CI, 2.7 to 4.7)	Sjöberg et al.(23)

\(\text{SaO}_2 \) - arterial hemoglobin oxygen saturation; \(\text{SpO}_2 \) - oxygen saturation; PO - pulse oximetry; 95%CI - 95% confidence interval.

Pulse oximetry as an everyday affordable monitoring technology

In the last few years, pulse oximeters have become available not only in health care settings but also to the general public as wearable gadgets. Fingertip oximeters can be purchased in pharmacies and retail stores without a prescription, although their availability has become limited since the COVID-19 pandemic. This shortage may indicate that pulse oximeters could be taking on a growing role in nonhealthcare settings, as blood pressure monitors did before them.

Oximeters embedded in mobile phones and smartwatches have shown variable levels of accuracy across devices. Three iPhone apps that allegedly could give precise \(\text{SpO}_2 \) values were proven unreliable in a recent study. This is also an important issue with portable, low-cost fingertip pulse oximeters, some of which demonstrate highly inaccurate readings. Nevertheless, many studies have shown a good correlation between standard oximeters and smartphone-based oximeters. When the user’s \(\text{SpO}_2 \) is > 90%, these devices generally provide good accuracy, creating the possibility for early detection of silent hypoxemia and reduction of ICU admissions, intubations, and mortality.

Pulse oximetry is unquestionably gaining ground in nonhealthcare settings and becoming an affordable technology.
monitoring technology. It is probably only a matter of time until the accuracy issues are addressed, and S/F may eventually be available on smartphones and smartwatches.

Why pulse oximeters?

It is always better to avoid invasive procedures when possible. As economists say, “There is no free lunch”. Arterial blood gas carries risks and contraindications of its own; it is a painful procedure and demands technical skills. Pulse oximetry has been recognized as a useful tool to detect hypoxemia in underresourced facilities lacking blood gas analysers. Even when blood gas analysers are available, venous blood gas (VBG) analysis combined with SpO2 could be an easier option. Together, SpO2 and VBG analysis could provide useful information about acid-base, ventilation, and oxygenation status in ICU patients. The S/F allows for continuous “on-screen” respiratory function monitoring. Last but not least, as a relatively old technology, pulse oximeters are much cheaper and more readily available than blood gas analysers.

CAN WE RELY ON THE CORRELATION BETWEEN S/F AND P/F?

One of the most important issues is whether there is an acceptable correlation between the S/F and P/F. To date, a small yet promising body of evidence has been published. First, it is imperative to discuss preclinical evidence for the role of SpO2 in predicting or even replacing PaO2 in different scenarios. One study conducted in dogs tried to predict PaO2 from SpO2 using the oxygen-Hb dissociation curve. However, it showed only a slight correlation (0.49 in room air breathing dogs and 0.74 in ventilated dogs, both p < 0.0001). Below a PaO2 of 60mmHg, small reductions in blood oxygen are followed by extreme SpO2 reductions, explained by the sigmoid portion of the oxygen-Hb dissociation curve. However, it showed only a slight correlation (0.49 in room air breathing dogs and 0.74 in ventilated dogs, both p < 0.0001). Below a PaO2 of 60mmHg, small reductions in blood oxygen are followed by extreme SpO2 reductions, explained by the sigmoid portion of the oxygen-Hb dissociation curve. In summary, three studies in canine models found P/F-to-S/F correlations ranging from 0.76 to 0.95. In another study of children with ARDS, SpO2-derived markers were found to be adequate surrogates for those using PaO2 when SpO2 is between 80 and 97%. Using the standard oxygen-Hb dissociation curve, a cohort study of children with ARDS showed that, approximately 95% of the time, an SpO2 of ≥ 90% indicated a PaO2 ≥ 60mmHg, while highlighting that clinical factors such as pH, PaCO2 and body temperature - all well-known causes of curve shifts - could affect the accuracy of inferring these values.

In an attempt to improve the prediction of the P/F from the S/F, researchers have used transcutaneous carbon dioxide measurements in children, with positive although preliminary results. In a prospective, multicenter observational study including six pediatric ICUs, a P/F value of 300 corresponded to an S/F value of 264 (95% confidence interval - 95%CI 259 - 269), while in moderate ARDS, a P/F value of 200 corresponded to an S/F value of 221 (95%CI 215 - 226). The relationship between S/F and P/F was better expressed by 1/S/F and 1/P/F, with a strong linear relationship using the regression equation 1/S/F = 0.00232 + 0.443/P/F. Furthermore, in this study, a cutoff S/F value of 221 exhibited an excellent discriminant ability for ARDS, with 88% and 78% sensitivity and specificity, respectively, for a P/F below 200. In critically ill children, the 1/S/F was strongly associated with the 1/P/F, yielding the equation 1/S/F = 0.000164 + 0.521/P/F.
Reference	Sample size (observations)	Population	Disease	Intervention (MV, NIV or SB)	Comparison between S/F and P/F	Outcomes
Neonatal and pediatric clinical studies						
Khemani et al.	1,201	Children within 7 days	NA	MV within 7 days in pediatric ICU	At D1, S/F better discriminated mortality than P/F (p = 0.0003)	S/F ≤ 150, mortality 38.3%; S/F = 150 - 221, mortality 6.0%; S/F = 221 - 265, mortality 1.5%; S/F > 265, mortality 2.6%
Thomas et al.	255 (2,839 observations)	Children and adolescents < 21 years	ARDS	Instillation of calfactant or placebo and 102 prone versus supine	S/F ≤ 253 indicated P/F ≤ 300 with 93% sensitivity and 43% specificity	S/F ≤ 212 indicated P/F ≤ 200 with 76% sensitivity and 83% specificity
Khemani et al.	137 (1,207 observations)	Children >27 weeks gestational age and < 18 years	Any that required MV	Controlled MV		NA
Lobete Prieto et al.	8 (40 observations)	Children admitted to ICU (age = 4.62 years)	Any that required intensive care	NA		NA
Lobete et al.	235 (1,643 observations)	Children admitted to ICU	Any that required intensive care	MV, NIV and SB		NA
Bilan et al.	70	Children admitted to ICU (age = 32 ± 5 months)	ARDS	MV	S/F = 235 indicated P/F < 300 with 57% sensitivity and 100% specificity	NA
Wong et al.	70	Pediatric ICU patients (1 day to 16 years)	ARDS	MV, NIV and SB	NA	S/F at D3: survivors: 221; nonsurvivors: 149; p = 0.006 S/F at D7: survivors: 277; nonsurvivors: 146; p = 0.002
No ARDS clinical studies						
Bass et al.	77	Clinical stable adult patients under MV	Any that required MV	MV with PEEP ≥ 5cmH2O		NA
Venegas Sosa et al.	25	Adults (mean age = 37 years)	Thoracic trauma	MV	Pearson r (all with p < 0.05) At admission: r = 0.616 7 hours from admission: r = 0.68 14 hours from admission: r = 0.86 24 hours from admission: r = 0.89 31 hours from admission: r = 0.92 38 hours from admission: r = 0.90 48 hours from admission: r = 0.91	NA

Continue...
Rationale and limitations of the SpO2/FiO2 as a possible substitute for PaO2/FiO2 in different preclinical and clinical scenarios

Reference	Sample size (observations)	Population	Disease	Intervention (MV, NIV or SB)	Comparison between S/F and P/F	Outcomes
Zeserson et al. \(^{26}\)	129	Adults	Any emergency department patient	MV, NIV or SB	SpO2 ≥ 90% correlated with a PaO2 ≥ 60mmHg	NA
Namendys-Silva et al. \(^{17,50}\)	232	ICU patients ≥16 years	Any that required ICU	MV	Used Pandharipande et al. \(^{31}\) for substituting P/F for S/F: S/F ≤ 512 indicating P/F ≤ 400 S/F ≤ 357 indicating P/F ≤ 300 S/F ≤ 214 indicating P/F ≤ 200 S/F ≤ 89 indicating P/F ≤ 100	Higher S/F ratio for survivors than for nonsurvivors at admission and at 48 hours of admission
Schmidt et al. \(^{51}\)	3,767 (7,544 observations)	Adults ≥ 18 years	Any that required MV	MV	Spearman r = 0.95 and correlation coefficient = 0.72 between S/F and P/F: log10 (P/F ratio) = 1.07* log10 (S/F ratio) - 0.15 No impact after PEEP inclusion S/F ≥ 295 indicated P/F ≤ 300 with 99% sensitivity and 9.9% specificity	NA
Kwack et al. \(^{49}\)	456	Adults (median age = 75 years)	NA	NA	NA	Lower S/F in patients transferred from general ward to ICU (medians 165 versus 330, p < 0.01) and in mortality versus survival groups (medians 217 versus 307, p < 0.01)
Sanz et al. \(^{58}\)	Valencian cohort: 926 Utah cohort: 213	Adults in Valencian cohort [73 years] Utah cohort [67 years]	Pneumonia	NA	Agreement when P/F < 200: (Ellis) \(^{56}\) - 92%, (Rice et al.) \(^{4}\) - 91% Agreement when P/F < 300: (Ellis) \(^{56}\) - 89%, (Rice et al.) \(^{4}\) - 70%	NA
Tripathi et al. \(^{52}\)	2,754 (4,439 observations)	Adults ≥18 years	General anesthesia (nonthoracic and noncardiac)	MV with PEEP	Correlation between P/F and S/F: r = -0.46, p < 0.01 significant in any PEEP Linear regression: S/F = (0.26 x P/F) + 128 S/F = 206 indicated P/F = 300 S/F = 180 indicated P/F = 200	NA
Serpa Neto et al. \(^{54}\)	260	Adults ≥18 years (mean age = 63 years)	Sepsis	NA	S/F ratio = 132.27 + 0.30 x (P/F) (p < 0.0001; r = 0.487) S/F = 154 indicated P/F = 100 S/F = 241 indicated P/F = 300	HR for death according to cutoff: S/F = 211 - 192 HR = 1.70 (0.77 - 3.78) S/F = 192 - 154 HR = 1.64 (0.68 - 4.08) S/F = 154 HR = 2.05 (1.11 - 3.81)
Mantilla et al. \(^{59}\)	462	Adults	Exacerbated COPD	MV, NIV and SB	NA	78.6% sensitivity and 39.2% specificity for S/F in predicting mortality
Adams et al. \(^{48}\)	25,944 (3,506,707 observations)	Adult nonparturient (mean age 85 years)	Any that required MV	MV	S/F and P/F showed moderate r = 0.47 correlation for measures available in same hour and strong r = 0.68 correlation when restricted to P/F < 400 and SpO2 ≤ 96% Proportion of time with S/F < 150 (S/F-TAR) associated with higher mortality in the first 24 hours of MV In the first 24 hours of MV S/F-TAR 0% = 18.4% mortality S/F-TAR 91% - 100% = 70.2% mortality Each 10% increase in S/F-TAR associated with 24% increase in hospital mortality (OR = 1.24 [95%CI 1.23 - 1.26], p < 0.001)	

ARDS clinical studies

| Rice et al. \(^{41}\) | 672 for derivation (2,673 observations) and 402 for validation (2,031 observations) | ARDS network trial patients: Derivation: Low VT group Validation: High PEEP versus Low PEEP groups | ARDS (Low VT and high versus low PEEP) | Spearman r = 0.69, p < 0.0001 S/F = 64 + 0.64 x (P/F) Effect of PEEP on S/F ratio (p < 0.001); S/F = 120 + 0.72 x (P/F) - 4.0 x (PEEP) - 0.008 x (PEEP) x (P/F) S/F = 235 indicated P/F = 200 and S/F = 315 indicated P/F = 300 | NA |

...continued
Another pediatric ARDS investigation suggested the following regression equation: $S/F = 57 + 0.61 \times P/F$. Nonlinear equations are more accurate in predicting P/F from S/F than linear or log-linear equations. An epidemiological study of pediatric ARDS showed reduced ventilator-free days and ICU-free days in children with a low S/F, highlighting the association between poor S/F and worse outcomes.

Despite its unquestionable value, notably in neonates, children, and resource-limited settings, further evidence and specific guidelines are required to support an accurate and safe use of the S/F as a surrogate for the P/F in these patients.

Adult patients without acute respiratory distress syndrome

A Spearman’s rho of 0.66 ($p < 0.001$) was found when trying to predict SaO_2 from SpO_2 in a Spanish study of adult pneumonia patients. Another study in anesthetized patients obtained the regression
equation \(S/F = (0.26 \times P/F) + 128 \), with P/F between 300 and 200 corresponding to S/F between 206 and 180, respectively.\(^{(57)}\) Investigating ICU patients in two countries (Brazil and Netherlands), researchers described another equation for linear regression of S/F and P/F: \(S/F = 132.27 + 0.30 \times (P/F) \).\(^{(58)}\) The same study showed that, in patients with septic shock, lower S/F (lowest tertile) represented increased mortality ratios (hazard ratio - HR = 2.04; 95% CI 1.05 - 3.94%) compared to the reference group (patients in the highest tertile, with S/F above 236) and that S/F were excellent at discriminating patients with \textit{versus} without severe hypoxemia (P/F under 100) and with \textit{versus} without hypoxemia (P/F above 300).\(^{(58)}\)

A single-center investigation of ICU patients receiving MV showed Spearman correlation coefficients of 0.83 (p < 0.05) for S/F and P/F, 83% sensitivity and 50% specificity for the S/F ≤ 315 indicating a P/F ≤ 300, and 70% sensitivity and 90% specificity for the S/F ≤ 235 indicating a P/F ≤ 200.\(^{(2)}\) In chest trauma patients, the S/F exhibits a good correlation with P/F (1 hour posttrauma: \(R^2 = 0.61 \); 7 hours posttrauma: \(R^2 = 0.68 \); 14 hours posttrauma: \(R^2 = 0.86 \); 24 hours posttrauma: \(R^2 = 0.89 \); 31 hours posttrauma: \(R^2 = 0.92 \); 38 hours posttrauma: \(R^2 = 0.90 \); 48 hours posttrauma: \(R^2 = 0.91 \); p < 0.05 for all abovementioned R\(^2\) values).\(^{(5)}\)

The S/F has also been investigated in chronic obstructive pulmonary disease (COPD). Colombian investigators reported 76.9% (95% CI 58.8 - 95%) sensitivity and 39.2% (95%CI 34.4 - 43.9%) specificity for 30-day mortality in COPD as compared to 80.8% (95%CI 63.7 - 97.8%) sensitivity and 53.2% (95%CI 48.3 - 58%) specificity when using P/F.\(^{(59)}\)

One major limitation in correlating S/F and P/F, with practical consequences, is when any form of supplemental oxygen is given and the SpO\(_2\) values are above 90%. In spontaneously breathing patients, supplemental oxygen often masks the ability of pulse oximeters to detect hypoventilation, showing significantly higher desaturation in patients breathing room air (9.0 \textit{versus} 2.3%; p = 0.02).\(^{(66)}\) Face masks and high-flow nasal cannula oxygen therapy are widely used in EDs and ORs; thus, increasing FiO\(_2\) in the steeper portion of the oxygen-Hb dissociation curve could mask ongoing gas-exchange issues. A study involving anesthetized patients showed only a moderate correlation (\(r = 0.46; p < 0.01 \)) between the S/F and P/F.\(^{(57)}\)

Adult patients with acute respiratory distress syndrome

Although it is easier to perform ABG in adults than in neonates and children, using S/F as a surrogate for P/F could be of great value, especially in resource-limited settings. Before discussing whether S/F is a good surrogate for P/F, it is important to highlight that another index using SpO\(_2\) instead of PaO\(_2\) has been evaluated. Just as the oxygenation index has been derived for neonates,\(^{(9)}\) the so-called oxygenation saturation index (mean airway pressure \(\times \) FiO\(_2\) \(\times \) 100/SpO\(_2\)) has been developed using SpO\(_2\) instead of PaO\(_2\) for adults. The oxygenation index and oxygenation saturation index both showed good predictive performance for ARDS mortality using Receiver Operating Characteristic (ROC) curve analysis.\(^{(62)}\)

Since ARDS definitions have been shaped in high-resource settings, applying them in facilities that lack resources is a huge challenge, given the requirement of positive pressure ventilation, ABG analysis, and chest radiographs.\(^{(67)}\) The challenge of diagnosing ARDS in resource-limited settings led researchers to investigate alternatives to ABG.\(^{(68)}\) In 2016, the Kigali modification was proposed, replacing computed tomography (CT) with lung ultrasound and the P/F with the S/F. It is remarkable that an ARDS definition applicable in resource-limited facilities – based on simple techniques such as pulse oximetry and lung ultrasound – could definitely reduce underdiagnosis and facilitate epidemiological and clinical studies of ARDS.\(^{(67)}\) A secondary analysis of a large observational cohort study concluded that ARDS patients diagnosed by S/F had similar outcomes to patients diagnosed by P/F, indicating that the S/F could be a surrogate for ARDS diagnosis.\(^{(63)}\) In addition, a single-center study proposed an S/F threshold of 181 – which would correspond to a P/F of 200 – for ARDS.\(^{(51)}\) Thus, the current evidence suggests that the S/F w ARF and, notably, ARDS in resource-limited scenarios.\(^{(50)}\) Figure 1 suggests an algorithm for using the S/F as a diagnostic and prognostic tool for ARDS in adults. The clinical benefits of establishing S/F cutoff values for ARF diagnosis are clear, and S/F have been successfully tested in an automated ARDS screening tool (Spearman correlation rho = 0.72, p < 0.001).\(^{(53)}\) A recent study showed that the S/F provided superior or equal accuracy in predicting ICU transfers from the respiratory ward compared to preexisting early warning scores (Modified Early Warning Scores – MEWS, National Early Warning Scores - NEWS, and Vitalpac Early Warning Score - ViEWS).\(^{(54)}\)
Use of the ratio of the arterial blood oxygen saturation to the fraction of inspired oxygen in clinical scores

The ratio of arterial blood oxygen saturation to the P/F has been validated as a surrogate for P/F in the SOFA score. For instance, values of 89, 214, 357, and 512 corresponded to P/F of 100, 200, 300, and 400, respectively, in mechanically ventilated patients. Different positive end-expiratory pressure (PEEP) values have been shown to impact S/F. When ventilating with PEEP < 8cmH₂O, S/F of 115, 240, 370, and 502 corresponded to P/F of 100, 200, 300, and 400, respectively. At a PEEP between 8 and 12cmH₂O, the same P/F corresponded to S/F of 130, 259, 387, and 515, while at PEEP > 12cmH₂O, they corresponded to S/F values of 129, 234, 332, and 425. Both the S/F and P/F correlated similarly with robust clinical endpoints, such as the ICU length of stay and the ventilator-free days, in this cohort of critically ill patients. Figure 2 shows the expected S/F according to the relevant values of P/F at different PEEP levels in ARDS patients and patients without ARDS, according to the log-log function between S/F and P/F provided by the study of Pandharipande et al., which used a relevant database from the ARDS Network.
Likewise, the S/F was successfully tested in a modified SOFA system (MEXSOFA). As previously described, PEEP improves ventilation/perfusion matching even though it does not interfere with the oxygen-Hb dissociation curve.

Despite the abovementioned limitations, the S/F has been shown to be a promising clinical tool. Two novel S/F-derived markers – the S/F time at risk (S/F-TAR) and respiratory rate-oxygenation (ROX) index – have been proposed. S/F-TAR displays the proportion of time within the first 24 hours of MV in which a patient has severe hypoxemia, defined by an S/F below 150. In the original study, patients with an S/F-TAR of 0% had significantly lower hospital mortality ratios than patients with a 24-hour S/F-TAR between 91% and 100% (16.4% versus 70.2%). The ROX index is defined as the S/F divided by the respiratory rate and has been investigated as a prognostic tool for intubation in patients under high flow nasal cannula (HFNC) therapy. This index is easily measured and may assist doctors in making decisions about intubation in HFNC patients since lower values indicate a higher intubation risk. Promising results have been reported in recent COVID-19 clinical studies.

COVID-19 clinical studies

Developing countries faced resource shortages long before the current pandemic. The Kigali modification for ARDS diagnosis is an excellent example of an effort to bypass these limitations. However, the COVID-19 pandemic has shown the importance of reducing medical costs to enable a massive, population-wide provision of care even in resource-rich countries. Accordingly, using S/F instead of P/F could be of great value in COVID-19 patient management. Unfortunately, there is only a small body of evidence to support this use; our literature review found only two studies on this topic. The first was a theoretical discussion of the use of smartphone-based pulse oximetry for the early detection of silent hypoxemia among COVID-19 outpatients, raising the possibility of early detection of pneumonia and consequent reductions in ICU admissions, intubations, and mortality. In the second study, the authors observed a sharp reduction in the S/F in nonsurvivors among COVID-19 ICU patients, highlighting a strong association between the S/F and mortality risk. The same study suggests that the S/F could represent a noninvasive prognostic marker in hospitalized COVID-19 patients.

FINAL COMMENTS

There is some evidence that the S/F criteria can be a surrogate for P/F in different clinical scenarios. This is reinforced by the fact that unnecessary invasive procedures should be avoided in patients with ARF, and clinical guidelines recommend continuous pulse oximetry monitoring of ARF patients. It is undeniable that pulse oximeters are becoming a widespread, low-cost monitoring technology; hence, replacing P/F with S/F may allow even resource-limited facilities to objectively diagnose ARF. Physicians may recognize the low value of the S/F as a single time point parameter and simultaneously use it in a longitudinal perspective and incorporate it into new indices that have shown relevance in recent clinical studies. Last but not least, the S/F may provide a zero-cost alternative for the diagnosis of ARF in COVID-19, although the limitations of pulse oximetry should always be kept in mind.

Funding

Supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Brasília, Brazil, the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) Rio de Janeiro, Brazil, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Authors’ contribution

E B Carvalho and P L Silva: conception, writing and review. T R S Leite and P R L Nascimento: conception and review. R F M Sacramento, C S Samary and P R M Rocco: writing and review.

REFERENCES

1. Batchinsky AI, Wendorff D, Jones J, Beely B, Roberts T, Choi JH, et al. Noninvasive SpO2/FiO2 ratio as surrogate for PaO2/FiO2 ratio during simulated prolonged field care and ground and high-altitude evacuation. J Trauma Acute Care Surg. 2020;89(Suppl 2):S126-3.
2. Bass CM, Sajed DR, Adesope AA, West TE. Pulmonary ultrasound and pulse oximetry versus chest radiography and arterial blood gas analysis for the diagnosis of acute respiratory distress syndrome: a pilot study. Crit Care. 2015;19(1):282.
3. Venegas Sosa AM, Cortés Munguía JA, Flores López EN, Colín Rodríguez J. Correlación de SpO2/FiO2 versus PaO2/FiO2 para monitorio de la oxigenación en pacientes con trauma de tórax. Med Crit (Cd Mex Med Crit). 2018;32(4):201-7.
4. Rice TV, Wheeler AP, Bernard GR, Hayden DL, Schoenfeld DA, Ware LB; National Institutes of Health, National Heart, Lung, and Blood Institute ARDS Network. Comparison of the SpO2/FiO2 ratio and the PaO2/FiO2 ratio in patients with acute lung injury or ARDS. Chest. 2007;132(2):410-7.
5. Carver A, Bragg R, Sullivan L. Evaluation of PaO2 /FiO2 and SaO2 /FiO2 ratios in postoperative dogs recovering on room air or nasal oxygen insufflation. J Vet Emerg Crit Care (San Antonio). 2016;26(3):437-45.

6. Khemani RG, Rubin S, Belani S, Leung D, Erickson S, Smith LS, et al. Pulse oximetry vs. PaO2 metrics in mechanically ventilated children: Berlin definition of ARDS and mortality risk. Intensive Care Med. 2015;41(1):94-102.

7. Thomas NJ, Shaffer ML, Willson DF, Shih MC, Curley MA. Defining acute lung injury in children with the oxygenation saturation index. Pediatr Crit Care Med. 2010;11(12):12-7.

8. Zeserson E, Goodgame B, Hess JD, Schultz K, Hoon C, Lamb K, et al. Correlation of venous blood gas and pulse oximetry with arterial blood gas in the undifferentiated critically ill patient. J Intensive Care Med. 2016;31(3):161-6.

9. Rawat M, Chandrasekharan PK, Williams A, Gagino S, Koenigskecht C, Swarts D, et al. Oxygen saturation index and severity of hypoxic respiratory failure. Neonatology. 2015;107(3):161-6.

10. Pandharipande PP, Shintani AK, Hagerman HE, St Jacques PJ, Rice TW, Sanders NW, et al. Derivation and validation of SpO2/Fio2 ratio to impute for PaO2/FiO2 ratio in the respiratory component of the Sequential Organ Failure Assessment score. Crit Care Med. 2009;37(4):1317-21.

11. Namendys-Silva SA, Silva-Medina MA, Vásquez-Barahona GM, Baltazar-Torres JA, Rivero-Sigaoria E, Fonseca-Lazzano JA, et al. Application of a modified sequential organ failure assessment score to critically ill patients. Braz J Med Biol Res. 2013;46(2):186-93.

12. Lu X, Jiang L, Chen T, Wang Y, Zhang B, Hong Y, et al. Continuously available ratio of SpO2/FIO2 serves as a noninvasive prognostic marker for intensive care patients with COVID-19. Respir Res. 2020;21(1):194.

13. Wahl JA, Trempuer KK, Samra S, Delpy DT. Near-infrared spectroscopy: theory and applications. J Cardiothorac Vasc Anesth. 1996;10(3):406-18.

14. Hafen BB, Sharma S. Oxygen saturation. 2021 Aug 12. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.

15. Schnapp LM, Cohen NH. Pulse oximetry. Uses and abuses. Chest. 1990;98(5):1244-50.

16. Chan ED, Chan MM, Chan MM. Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations. Respir Med. 2013;107(6):789-99.

17. Teo J. Early detection of silent hypoxia in Covid-19 pneumonia using smartphone pulse oximetry. J Med Syst. 2020;44(8):134.

18. Gehring H, Duembgen L, Peterlein M, Hagelberg S, Dibbelt L. Hemoximetry as the “gold standard”? Error assessment based on differences among identical blood gas analyzer devices of five manufacturers. Anesth Analg. 2007;106(Suppl):S24-S30.

19. Sjöberg F, Sjöberg F, Singer M. The medical use of oxygen: a time for critical thinking. Inten Med Intern. 2019;40(10):670-6.

20. Jordan TB, Meyers CL, Schrading WA, Donnelly JP. The utility of iPhone oximetry apps: a comparison with standard pulse oximetry measurement in the emergency department. Am J Emerg Med. 2020;38(5):925-8.

21. Lipnick MS, Feiner JR, Au P, Bernstein M, Bickler PE. The accuracy of 6 inexpensive pulse oximeters not cleared by the Food and Drug Administration: the possible global health implications. Anesth Analg. 2016;123(2):338-45.

22. Tomlinson S, Behrmann S, Cranford J, Louie M, Hashikawa A. Accuracy of smartphone-based pulse oximetry compared with hospital-grade pulse oximetry in healthy children. Telemed J E Health. 2018;24(7):527-35.

23. Modi A, Kirokas R, Scott JB. Accuracy of Smartphone Pulse Oximeters in Patients Visiting an Outpatient Pulmonary Function Lab for a 6-Minute Walk Test. Respir Care. 2019;64(Suppl 10):3238714.

24. Brilliante C, Binder A, Luo J, Prieto-Centurion V. Can Smartphone-Based Pulse Oximeters Be Used for Monitoring Patients with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2018;197:A4554.

25. Taylor I, Aflacan MA. Reliability of smartphone measurements of vital parameters: a prospective study using a reference method. Am J Emerg Med. 2019;37(8):1527-30.

26. Pagnucci N, Pagliaro S, Maccheroni C, Sichi M, Scateni M, Tolotti A. Reducing pain during emergency arterial sampling using three anesthetic methods: a randomized controlled clinical trial. J Emerg Med. 2020;58(6):857-63.

27. Farrell KS, Hopper K, Cagle LA, Epstein SE. Evaluation of pulse oximetry as a surrogate for PaO2 in awake dogs breathing room air and anesthetized dogs on mechanical ventilation. J Vet Emerg Crit Care (San Antonio). 2019;29(6):622-9.

28. Calabro JM, Prittie JE, Palma DA. Preliminary evaluation of the utility of comparing SpO2/FIO2 and PaO2/FIO2 ratios in dogs. J Vet Emerg Crit Care (San Antonio). 2013;23(3):280-5.

29. Abob J, Louis B, Jonson B, Brochard L. Relation between PaO2 /FiO2 ratio and FiO2: a mathematical description. Intensive Care Med. 2006;32(10):1494-7.

30. Khemani RG, Thomas NJ, Venkatashalam V, Scimone JP, Berutti T, Schneider JB, Ross PA, Willson DF, Hall MW, Newth CJ. Pediatric Acute Lung Injury and Sepsis Network Investigators (PALSIN). Comparison of SpO2 to PaO2 based markers of lung disease severity for children with acute lung injury. Crit Care Med. 2012;40(4):1309-16.

31. Lobete Prieto C, Medina Villanueva A, Modesto I Alapont V, Rey Galán C, Mayordomo Colunga J, Los Arcos Solas M. [Prediction of PaO2/FIO2 ratio from SpO2/FIO2 ratio adjusted by transcutaneous CO2 measurement in critically ill children]. An Pediatr (Barc). 2011;74(2):91-6. Spanish.
Rationale and limitations of the SpO2/FiO2 as a possible substitute for PaO2/FiO2 in different preclinical and clinical scenarios

50. Lobete C, Medina A, Rey C, Mayordomo-Colunga J, Concha A, Menéndez S. Correlation of oxygenation as measured by pulse oximetry/fraction of inspired oxygen ratio with PaO2/fraction of inspired oxygen ratio in a heterogeneous sample of critically ill children. J Crit Care. 2013;28(4):538-e1-7.

51. Bilan N, Dastranj A, Ghalehglab Bebahani A. Comparison of the SpO2/FiO2 ratio and the PaO2/FiO2 ratio in patients with acute lung injury or acute respiratory distress syndrome. J Cardiovasc Thorac Res. 2015;7(1):28-31.

52. Wong JJ, Loh TF, Testoni D, Yeo JG, Kim YH, Lee JH. Epidemiology of pediatric acute respiratory distress syndrome in Singapore: risk factors and predictive respiratory indices for mortality. Front Pediatr. 2014;2:78.

53. Schmidt MF, Gernand J, Kakarala R. The use of the pulse oximetric saturation to fraction of inspired oxygen ratio in an automated acute respiratory distress syndrome screening tool. J Crit Care. 2015;30(3):486-90.

54. Kwack WG, Lee DS, Min H, Choi YY, Yun M, Kim Y, et al. Evaluation of the SpO2/FiO2 ratio as a predictor of intensive care unit transfers in respiratory ward patients for whom the rapid response system has been activated. PLoS One. 2018;13(7):e0201632.

55. Sanz F, Dean N, Dickerson J, Jones B, Knox D, Fernández-Fabrellas E, et al. Accuracy of PaO2/FiO2 calculated from SpO2 for severity assessment in ED patients with pneumonia. Respirology. 2015;20(5):813-8.

56. Ellis RK. Determination of PO2 from saturation. J Appl Physiol. 1989;67(2):902.

57. Tripathi RS, Blum JM, Rosenberg AL, Tremper KK. Pulse oximetry saturation to fraction inspired oxygen ratio as a measure of hypoxia under general anesthesia and the influence of positive end-expiratory pressure. J Crit Care. 2010;25(3):542.e9-13.

58. Serpa Neto A, Cardoso SQ, Ong DS, Espósito DC, Pereira VG, Manetta JA, et al. The use of the pulse oximetric saturation/fraction of inspired oxygen ratio for risk stratification of patients with severe sepsis and septic shock. J Crit Care. 2013;28(5):681-6.

59. Mantilla BM, Ramirez CA, Valbuena S, Muñoz L, Hincapié GA, Bastidas AR. [Oxygen saturation/fraction of inspired oxygen as a predictor of mortality in patients with exacerbation of COPD treated at the Central Military Hospital]. Acta Med Colomb. 2017;42(4):215-23. Spanish.

60. Adams JY, Rogers AJ, Schuler A, Marelich GF, Fresco JM, Taylor SL, et al. Association between peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio time at risk and hospital mortality in mechanically ventilated patients. Perim J. 2020;24:19.

61. Brown SM, Grissom CK, Moss M, Rice TW, Schoenfeld D, Hou PC, Thompson BT, Brower RG, NIH/NHLBI PETAL Network Collaborators. Nonlinear imputation of Pao2/Fio2 From SpO2/FiO2 among mechanically ventilated patients in the ICU: a prospective, observational study. Crit Care Med. 2017;45(8):1317-24.

62. Fu ES, Downes JB, Schweiger JW, Miguel RV, Smith RA. Supplemental oxygen impairs detection of hypoventilation by pulse oximetry. Chest. 2004;126(6):1552-8.

63. Chen W, Janz DR, Shaver CM, Bernard GR, Bastarache JA, Ware LB. Clinical characteristics and outcomes are similar in ARDS diagnosed by oxygen saturation/Fio2 ratio compared with Pao2/Fio2 ratio. Chest. 2015;148(6):1477-83.

64. Wang Y, Lu X, Li Y, Chen H, Chen T, Su N, et al. Clinical course and outcomes of 344 intensive care patients with COVID-19. Am J Respir Crit Care Med. 2020;201(11):1430-4.

65. Brown SM, Duggal A, Hou PC, Tidswell M, Khan A, Exline M, Park PK, Schoenfeld D, Liu M, Grissom CK, Moss M, Rice TW, Hough CL, Rivers E, Thompson BT, Brower RG; National Institutes of Health (NIH)/National Heart, Lung, and Blood Institute (NHLBI) Prevention and Early Treatment of Acute Lung Injury (PETAL) Network. Nonlinear imputation of PaO2/FiO2 from SpO2/FiO2 among mechanically ventilated patients in the ICU: a prospective, observational study. Crit Care Med. 2017;45(8):1317-24.

66. Riviello ED, Jones DR, Scheiner R, Goodwin JS, Neff RA, et al. Ratio of oxygen saturation Index to guide management of nasal high flow therapy. Intensive Care Med. 2020;46(12):2238-47.

67. Fink DL, Goldman NR, Cai J, El-Shakankery KH, Sismey GE, Gupta-Wright A, et al. An index combining respiratory rate and oxygenation to predict outcome of nasal high-flow therapy. Am J Respir Crit Care Med. 2019;199(11):1368-76.

68. Mauri T, Carlesso E, Spinelli E, Turinì C, Corte FD, Russo R, et al. Increasing support by nasal high flow acutely modifies the ROX index in hypoxemic patients: a physiologic study. J Crit Care. 2019;53:183-5.

69. Ricard JD, Roca O, Lemoile V, Corley A, Braunlich J, Jones P, et al. Use of nasal high flow oxygen during acute respiratory failure. Intensive Care Med. 2020;46(1):2238-47.

70. Xu J, Yang X, Huang C, Zou X, Zhou T, Pan S, et al. A novel risk-stratification models of the high-flow nasal cannula therapy in COVID-19 patients with hypoxemic respiratory failure. Front Med (Lausanne). 2020;7:607821.

71. Liu L, Xie J, Wu W, Chen H, Li S, He H, et al. A simple nomogram for predicting failure of non-invasive respiratory strategies in adults with COVID-19: a retrospective multicentre study. Lancet Digit Health. 2021;3(3):e166-e174.

72. Richter F, Moore O, Weber-Carstens S, Nothacker M, Kaisers U, Weber-Carstens S, et al. Ratio of oxygen saturation to fraction of inspired oxygen ratio as a predictor of mortality of Acute Lung Injury (PETAL) Network Collaborators. Nonlinear imputation of Pao2/Fio2 From SpO2/FiO2 among patients with acute respiratory distress syndrome. Chest. 2016;150(2):307-13.