Howl variation across Himalayan, North African, Indian, and Holarctic wolf clades: tracing divergence in the world’s oldest wolf lineages using acoustics

Lauren HENNELLYa,*, Bilal HABIBa,*, Holly ROOT-GUTTERIDGEb, Vicente PALACIOSc, and Daniela PASSILONGOd

aDepartment of Animal Ecology and Conservation Biology, Wildlife Institute of India, Dehradun, India, bDepartment of Biology, Syracuse University, New York, 13210, USA, cCavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, Avenue de Blasco Ibáñez, València 46010, Spain, and dRicerca sulla Selvaggina e sui Miglioramenti Ambientali a Fini Faunistici (C.I.R.Se.M.A.F.), Piazzale delle Cascine 18, Firenze, 1-50144, Italy

*Address correspondence to Lauren Hennelly, E-mail: laurenhennelly@gmail.com; and Bilal Habib, E-mail: bh@wii.gov.in.

Received on 26 June 2016; accepted on 1 December 2016

Abstract

Vocal divergence within species often corresponds to morphological, environmental, and genetic differences between populations. Wolf howls are long-range signals that encode individual, group, and subspecies differences, yet the factors that may drive this variation are poorly understood. Furthermore, the taxonomic division within the Canis genus remains contended and additional data are required to clarify the position of the Himalayan, North African, and Indian wolves within Canis lupus. We recorded 451 howls from the 3 most basal wolf lineages—Himalayan C. lupus chanco—Himalayan haplotype, North African C. lupus lupaster, and Indian C. lupus pallipes wolves—and present a howl acoustic description within each clade. With an additional 619 howls from 7 Holarctic subspecies, we used a random forest classifier and principal component analysis on 9 acoustic parameters to assess whether Himalayan, North African, and Indian wolf howls exhibit acoustic differences compared to each other and Holarctic wolf howls. Generally, both the North African and Indian wolf howls exhibited high mean fundamental frequency (F0) and short duration compared to the Holarctic clade. In contrast, the Himalayan wolf howls typically had lower mean F0, unmodulated frequencies, and short howls compared to Holarctic wolf howls. The Himalayan and North African wolves had the most acoustically distinct howls and differed significantly from each other and to the Holarctic wolves. Along with the influence of body size and environmental differences, these results suggest that genetic divergence and/or geographic distance may play an important role in understanding howl variation across subspecies.

Key words: acoustic variation, Canis lupus, geographic variation, mammal communication.
contributes to a comprehensive view of the genetic, behavioral, and ecological attributes of a taxon, and often aids in the taxonomic recognition of cryptic species (Narins 1983; Henry 1994; Kingston et al. 2001).

Population-level variation in vocalizations is found across a wide range of mammalian species (seals—Terhune 1994; Risch et al. 2007; whales—Ford 1991; Rossi-Santos and Podos 2006; rodents—Conner 1982; Roux et al. 2002; Campbell et al. 2010; primates—Delgado 2007; bats—O’Farrell et al. 2000; Law et al. 2002), yet remains relatively unexplored for most mammal groups compared to other taxa, such as birds. Additional variation in vocalizations of some taxa have been demonstrated at the subspecies, group, and individual levels, including the howl acoustic structure of wolves Canis lupus (individual—Theberge and Falls 1967; Tooze et al. 1990; Palacios et al. 2007; Root-Gutteridge et al. 2014a, 2014b; group—Zaccaroni et al. 2012; subspecies—Kershenbaum et al. 2016). The howl is the main long-distance vocalization and is used for social spacing, reassembly between dispersed individuals, and territorial defense (Harrington and Mech 1979; Nowak et al. 2007). Previous studies have suggested geographic distance may play a role in howl differences across groups, such that distance among wolf packs increases the differences in howl acoustic qualities, producing a regional accent (Zaccaroni et al. 2012; Root-Gutteridge et al. 2014b). On a subspecies level, smaller canid species show a greater diversity of howl-type usages that may reflect differences in vocal production in different sized species, distinct acoustic properties of habitats, or varying emphases on the social role of howling (Kershenbaum et al. 2016). Taken together, this variation in howl acoustic structure may reflect the evolutionary history, morphology, and/or ecology of a population or subspecies.

Based on mitochondrial DNA, the wolves of Asia and North Africa appear to have a dynamic and poorly understood phylogeographic history. Recent research has recognized 3 basal lineages of gray wolves: the Himalayan wolf C. lupus chanco—Himalayan haplotype, Indian wolf C. lupus pallipes, and the North African wolf C. lupus lupaster (Aggarwal et al. 2003; Sharma et al. 2004; Rueness et al. 2011; Gaubert et al. 2012). The Himalayan wolf is the world’s oldest wolf lineage, having diverged from the rest of the wolf clade around 630,000–800,000 years ago. The same studies showed the Indian wolf mitochondrial lineage to be 270,000–400,000 years divergent from the Himalayan lineage and other wolves (Figure 1; Aggarwal et al. 2003; Sharma et al. 2004). Despite the Himalayan and Indian wolf’s unique ancestry, little is known about their ecology, distribution, and behavior—consequently giving little clarity regarding their taxonomic status (Shrotriya et al. 2012). Morphologically, the Himalayan and Indian wolf show no striking differences to other wolf lineages, as Indian and Himalayan wolves weigh about 25 kg and 35 kg, respectively, similar to other desert wolf subspecies and the Tibetan wolf (Table 1). Further information incorporating nuclear genetic analyses, morphology, and behavior using a comparative approach will help clarify taxonomic issues, such that a better understanding of wolf evolution and historical diversification can emerge.

Although once considered to fall within the golden jackal clade, the morphology and behavior of the North African wolf actually show more similarity toward wolves, such as the lack of spinal curvature in their aggressive posture and usage of howl types (Ferguson 1981; Gaubert et al. 2012; Kershenbaum et al. 2016). This third basal wolf lineage likely colonized Africa prior to the northern hemisphere radiation of C. lupus (Gaubert et al. 2012). Based on mitochondrial DNA, the wolf is considered to be C. lupus lupaster, yet a robust description of the wolf’s morphological and behavioral attributes is currently deficient due to recent taxonomic identification (Gaubert et al. 2012). While genetically verified North African wolves are larger than golden jackals, there are some individuals or populations that fall into an intermediate phenotype, making their identity unclear due to lack of knowledge on C. lupus lupaster morphological variation and extent of hybridization in the region (Gaubert et al. 2012). While recent genetic analyses have provided insights into wolf phylogenetics (vonHoldt et al. 2011), there is a lack of understanding in the ecology, morphology, and behavior of these basal wolf lineages, especially in light of possible behavioral and ecological barriers in the maintenance of these evolutionary distinct wolf populations.

Here, we quantify the magnitude and pattern of howl acoustic structure variation to evaluate whether these long-range vocalizations show acoustic differences across wolf subspecies. Using a set of 1,070 howls from 10 wolf subspecies, we measured 9 acoustic parameters to examine how certain wolf subspecies howls may differ across specific acoustic characteristics. To test whether the basal wolf lineages show the most divergent howls, we assess how Himalayan, North African, and Indian wolf howl acoustic structure compare to the Holarctic wolf clade and each other using principal component analysis (PCA) and random forest classifier. Lastly, we discuss the relative influences of evolutionary history, morphology, and environment on understanding the variation in wolf howl acoustic structure.

Materials and Methods

Data collection and sound analysis
Howl surveys for the Indian and Himalayan wolf were conducted in the grasslands of Maharashtra as well as the Trans-Himalayas of Spiti Valley in Himachal Pradesh and the Changthang plateau of Ladakh in Jammu and Kashmir, India. Although the geographic range of the Himalayan wolf has not been properly determined, the free-ranging wolves of Spiti Valley are considered Himalayan wolves based on a genetic sample in Sharma et al.’s (2004) study that originated from captive wolves captured near Kibber in Spiti Valley. The free-ranging wolves at the study site in Ladakh have yet to be genetically determined; however, mitochondrial DNA studies on museum specimens from Ladakh and Tibet have been found to fall within the Himalayan wolf clade (Sharma et al. 2004). Therefore, in this study we consider the Ladakh wolves to be C. lupus chanco—Himalayan haplotype.

Wild and captive wolf howling from all subspecies were either elicited by playbacks using previously recorded howls or were recorded as spontaneous howls (i.e., not elicited). The Himalayan and

Figure 1. Phylogenetic tree displaying the major relationships within C. lupus clade based on 726 bp of the Cyt b gene from Rueness et al. (2011).
Indian wolf howls were recorded by playback using a JBL Charge speaker (HARMAN, Stamford, CT) between 6 PM and 9 PM and 03 AM and 08 AM, corresponding to the peak daily howling time in wolves (Gazzola et al. 2002). Playback consisted of 3 trials with a 2-min wait time between trials for a howl response. Vocalizations were recorded using a Blue Yeti Pro USB Condenser Microphone (Blue Microphones, Westlake Village, CA) and a digital recorder [Zoom H4N Handheld Audio Recorder [Zoom Corporation, Tokyo, Japan)] with a sampling rate of 44.1 kHz and 16-bit accuracy. Analysis of recorded howling was performed with Raven Pro 1.3 software (Cornell Lab of Ornithology, Ithaca, NY) using the default Hanning window, 2,048 Hz time resolution, and spectrogram view (Cornell Lab of Ornithology). Recordings of other wolf subspecies were from captive and wild wolves from a variety of different sources given in Table 1 and Supplementary Table S2.

Fundamental frequency, was measured every 0.05 s for Himalayan, Indian, Iberian, and Italian wolves (Palacios et al. 2007; Passilongo et al. 2009). The howls for the other wolf subspecies were used from Kershenaum et al. (2016), in which 50 measurements of fundamental frequency was made for each howl, ranging from every 0.02 s to 0.31 s. Howl duration was from 0.52 s to 15.5 s. From these measurements, 9 acoustic parameters were obtained that were based from previous studies demonstrating them to be useful in individual and group-specific identification (Supplementary Table S3; Tooze et al. 1990; Palacios et al. 2007; Zaccaroni et al. 2012; Root-Gutteridge et al. 2014b).

Statistical analysis

To assess subspecies differences for each howl acoustic parameter, we compared each basal wolf lineage—the Himalayan, North Indian, and African wolf—howl acoustic parameters to each other and the subspecies within the Holarctic clade, which is comprised of the European, Iberian, Italian, Israeli, Arctic, Mexican, and Mackenzie Valley wolf subspecies. Due to the nonparametric nature of the data, we used a Kruskal–Wallis one-way analysis of variance under Dunn’s test with Bonferroni P value adjustments to assess acoustic differences across wolf subspecies. To distill major howl acoustic parameters into a single composite measure, we used PCA, which extracts linearly uncorrelated variables from a suite of potentially correlated variables, thereby reducing the dimensionality of the data. The first principal component (PC1) and second principal component (PC2) were used to evaluate subspecies differences using a Kruskal–Wallis one-way analysis of variance under Dunn’s test with Bonferroni P value adjustments. All possible subspecies comparisons were tested to investigate patterns in PC1 and PC2 differentiation within the *C. lupus* clade.

Subsequently, we applied Breiman’s random forest algorithm (Breiman 2001), a tree-based machine learning classifier for nonparametric data, to examine whether howls from each subspecies can be distinguished based on their 9 acoustic parameters and to identify the most important acoustic parameters in classifying wolf subspecies. The random forest algorithm consists of tree-structured classifiers, which each tree is trained on a bootstrapped sample with replacement from the training data and utilizes both bagging and random feature selection to construct decision trees (Breiman 2001). For building the random forest model, we used all 9 acoustic parameters and based the algorithm on 2,000 decision trees. Classical multidimensional scaling (MDS) was then applied to visualize dissimilarities in howl acoustic structure across wolf subspecies using the proximity matrix from the random forest algorithm.

Table 1: Wolf-subspecies included in the study with associated howl acoustic parameters, and body-size data

Clade	Wolf subspecies	Scientific classification	Number of individuals	Number of packs	Habitat (country recorded from)	Body size (number of packs)	Number of howls
Himalayan	Himalayan wolf	*C. lupus chanco*—Himalayan	15 (4)	6 packs	High-altitude, and mountains and valleys	~35 kg (6)	301
North African	North African wolf	*C. lupus lupaster*	10 (4)	2 packs	Semi-arid grassland and scrublands	~19.2–26.5 kg (5)	3.3
Holartic	Holartic wolf	*C. lupus pallipes*	12 (7)	9 packs	Trudna and mugor	~2.5–5.1 kg (5)	1.7
Arctic	Arctic wolf	*C. lupus signatus*	10 (4)	7 packs	Mountainous forested areas and scrublands	~19.2–26.5 kg (5)	6.5
Iberian	Iberian wolf	*C. lupus taurus*	11 (11)	11 packs	Deciduous forest	~2.5–3.5 kg (5)	1.7
Italian	Italian wolf	*C. lupus italicus*	5 (1)	5 packs	Arid scrubland and desert	~2.5–3.5 kg (5)	20.6
Israeli	Israeli wolf	*C. lupus arabs*	2 (1)	2 packs	Semi-arid forests, and semi-arid scrublands	~2.5–3.5 kg (5)	2.6
Mackenzie Valley	Mackenzie Valley wolf	*C. lupus occidentalis*	9 packs	9 packs	Mountainous forested areas, and scrublands	~32–44 kg (5)	17.4–22.5 kg (5)
Mexican	Mexican wolf	*C. lupus baileyi*	2 (1)	2 packs	Semi-arid forests, and semi-arid scrublands	~32–44 kg (5)	17.4–22.5 kg (5)
Mackenzie Valley	Mackenzie Valley wolf	*C. lupus occidentalis*	9 packs	9 packs	Mountainous forested areas, and scrublands	~32–44 kg (5)	17.4–22.5 kg (5)
Arctic	Arctic wolf	*C. lupus taurus*	11 (11)	11 packs	Deciduous forest	~2.5–3.5 kg (5)	1.7
Iberian	Iberian wolf	*C. lupus italicus*	5 (1)	5 packs	Arid scrubland and desert	~2.5–3.5 kg (5)	20.6
Israeli	Israeli wolf	*C. lupus arabs*	2 (1)	2 packs	Semi-arid forests, and semi-arid scrublands	~2.5–3.5 kg (5)	2.6
Mackenzie Valley	Mackenzie Valley wolf	*C. lupus occidentalis*	9 packs	9 packs	Mountainous forested areas, and scrublands	~32–44 kg (5)	17.4–22.5 kg (5)
Mexican	Mexican wolf	*C. lupus baileyi*	2 (1)	2 packs	Semi-arid forests, and semi-arid scrublands	~32–44 kg (5)	17.4–22.5 kg (5)

Note: A total of 1,070 howls were included in the analysis. Shrestha et al. 2012, Passilongo et al. 2010, Zaccaroni M et al. 2012, Claudio and Bonito 1998, Hailer and Gehlen 1999, Germain et al. 2000, Pfeiffer et al. 2004, Daniel et al. 2009, Reed et al. 2009, Reed et al. 2010, Gade-Jøgensen and Stagegard 2015, and Garcia-Mendoza et al. 2012, Pfeiffer et al. 2004, Daniel et al. 2009, Reed et al. 2009, Reed et al. 2010, Gade-Jøgensen and Stagegard 2015, and Garcia-Mendoza et al. 2012.
Results

Compared to the Holarctic clade, both the North African and Indian wolf typically exhibited high mean frequencies, wide frequency ranges, and short duration. The Himalayan wolf howls characterized by low mean frequency, short duration, and unmodulated frequency variation in howls compared to the Holarctic clade (Supplementary Table S4). Within the Holarctic clade, the smallest wolf subspecies—the Israeli wolf—had the highest mean frequency and shortest duration (average mean = 619 Hz, average duration = 2.92 s), whereas lower mean frequencies were generally observed in larger wolf subspecies, such as the Mackenzie Valley wolf (average mean = 492.5 Hz, average duration = 4.14 s) and European wolf (average mean = 418.7 Hz, average duration = 5.15 s).

The Kruskal–Wallis test for evaluating differences in each acoustic parameter across all wolf subspecies demonstrated clear acoustic dissimilarities across the majority of 9 acoustic parameters used in this study (Supplementary Tables S4–S12). For the PCA, the most important variables in PC1 were mean frequency, maximum frequency, and end frequency, while the coefficient of frequency variation, duration, minimum and maximum frequency were the most important variables for PC2 (Table 2). PC1 and PC2 each explained 39% and 29% of the total variation. The PCA plot illustrates that the Himalayan and North African wolf subspecies occupy distinct regions with some overlap within the Holarctic clade (Figure 2).

Comparing all possible wolf subspecies combinations using a Kruskal–Wallis one-way analysis of variance under Dunn’s test with Bonferroni P value adjustments on PC1 showed that the Himalayan wolf was acoustically distinct from both all Holarctic and the two other basal wolf subspecies (Table 3). The North African wolf showed significant differences for PC1 among all wolf subspecies except the Arctic and Israeli wolf. In contrast, the Indian wolf showed no significant differences in howl acoustic structure from any of the Holarctic wolf subspecies. Within the Holarctic clade, various wolf subspecies were also acoustically distinct from each other, yet these differences were less marked than those between and within the 2 most basal wolf lineages (Table 3). For the PC2 comparison, the Himalayan and Indian wolf showed the most distinct howls across all wolf subspecies (Table 4).

Using Breiman’s random forest algorithm, the most correctly classified howls belonged to the Himalayan wolf (87.7%), North African wolf (81.2%), and the Iberian wolf (68.4%) (Table 5). The most important variables for distinguishing howls of each subspecies were duration, range, maximum frequency, and coefficient of frequency variation (Table 2). In the MDS plot, the smaller wolf subspecies appear to form a tight cluster consisting of the North African, Indian, and Israeli wolf. Although Himalayan and Iberian wolf have highly variable proximity measures, both occupy a distinct region of the plot (Figure 3).

Discussion

Our quantitative study illustrates that the long-range vocalization of the wolf shows distinct acoustic differences across subspecies in the C. lupus clade. This complements the results from Kershenbaum et al. (2016) where howl-type usage varied among wolf subspecies. Acoustic differences in howls are most prominent in the Himalayan and North African wolf, which diverged before the radiation of the Holarctic clade across the Northern hemisphere (Sharma et al. 2004, Rueness et al. 2011). This suggests that geographic distance and/or genetic divergence may broadly be correlated with wolf howl acoustic structure. Additionally, we observe that smallest wolf subspecies, notably the North African, Indian, and Israeli wolf, have the highest mean frequencies in our study, indicating that body size may effect some acoustic parameters (Supplementary Table S1). Overall, our study contributes to a multi-step process in understanding the processes shaping howl acoustic variation in C. lupus.

Table 2. PC1 loadings, PC2 loadings, and the mean decrease in accuracy values

Howl acoustic parameter	Abbreviation	PC1 loadings	PC2 loadings	Mean decrease in accuracy
Mean frequency	Meanf	-0.52	0.014	96.15
Maximum frequency	Maxf	-0.50	-0.21	117.72
Minimum frequency	Minf	-0.43	0.30	86.14
End frequency	Endf	-0.44	0.30	96.14
Duration	Duration	0.13	-0.31	131.56
Range	Range	-0.27	-0.49	120.36
Coefficient of frequency variation (SD/Meanf × 100)	covf	-0.12	-0.54	109.24
Position of maximum frequency	Posmax	-0.0105	0.29	75.15
Position of minimum frequency	Posmin	-0.0089	-0.25	62.83

Notes: These values are based on gini impurity index for each howl acoustic parameter. Higher values of mean decrease in accuracy indicate variables that are more important in classification for the random forest model. The proportion of variance of PC1, PC2, and PC3 was 0.39, 0.29, and 0.14, respectively. SD, standard deviation.
Table 3. PC1 comparison across all wolf subspecies using a post hoc Kruskal–Wallis one-way analysis of variance under Dunn’s tests with Bonferroni P value adjustments

Wolf subspecies	Himalayan	North African	Indian	Arctic	European	Iberian	Mackenzie Valley	Israeli	Italian	Mexican
Himalayan	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.004
North African	<0.001	<0.001	0.43	<0.001	<0.001	<0.001	0.17	<0.001	<0.001	<0.001
Italian	<0.001	<0.001	0.17	0.095	1.00	0.26	0.31	1.00	0.43	1.00
Arctic	<0.001	0.43	0.17	<0.001	0.015	1.00	0.0016	1.00	0.26	0.0059
European	<0.001	<0.001	0.095	<0.001	0.015	1.00	0.0016	1.00	0.25	0.25
Iberian	<0.001	<0.001	0.26	0.015	0.041	1.00	0.0052	0.43	0.016	0.035
Mackenzie Valley	<0.001	<0.001	1.00	0.25	0.43	1.00	0.041	1.00	0.25	0.25
Israeli	<0.001	0.17	0.31	1.00	0.0016	0.43	0.43	0.43	0.23	0.23
Italian	<0.001	<0.001	1.00	0.26	0.013	1.00	0.035	0.43	0.43	0.23
Mexican	0.004	<0.001	0.43	0.0059	1.00	0.25	0.016	0.23		

Note: Each subspecies was treated as an independent unit. Bolded values indicate P values below 0.001.

Table 4. PC2 comparisons across all wolf subspecies using a post hoc Kruskal–Wallis one-way analysis of variance under Dunn’s tests with Bonferroni P value adjustments

Wolf subspecies	Himalayan	North African	Indian	Arctic	European	Iberian	Mackenzie Valley	Israeli	Italian	Mexican
Himalayan	<0.001	<0.001	1.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
North African	<0.001	<0.001	1.00	<0.001	<0.001	<0.001	0.21	0.95	0.77	
Indian	1.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Arctic	<0.001	1.00	<0.001	<0.001	<0.001	<0.001	0.26	0.85	1.00	1.00
European	<0.001	0.37	<0.001	1.00	<0.001	0.67	1.00	1.00	1.00	1.00
Iberian	<0.001	1.00	<0.001	1.00	<0.001	<0.001	0.0038	<0.001	0.044	
Mackenzie Valley	<0.001	<0.001	0.026	0.67	<0.001	<0.001	1.00	0.0021	1.00	
Israeli	<0.001	0.21	<0.001	0.85	1.00	0.0038	1.00	1.00	1.00	
Italian	<0.001	0.95	<0.001	1.00	<0.001	0.0021	1.00	1.00	1.00	
Mexican	0.004	<0.001	0.77	<0.001	1.00	0.044	1.00	1.00	1.00	

Note: Each subspecies was treated as an independent unit. Bolded values indicate P values below 0.001.

Table 5. Percent of howls classified correctly to each wolf subspecies on 9 acoustic parameters

Wolf subspecies	Percent correctly classified	Best guess	Percent misclassified as best guess
Himalayan wolf	87.7	Indian	5.3
North African wolf	81.2	Italian	9.1
Indian wolf	68.4	Himalayan	15.4
Arctic wolf	34.6	Italian	34.6
European wolf	32.3	Iberian	29.2
Iberian wolf	75.6	Italian	9.6
Israeli wolf	6.7	Italian	30.0
Italian wolf	52.4	Himalayan	17.7
Mackenzie Valley	62.2	Himalayan	18.1
Mexican wolf	54.8	Iberian	38.7

Notes: Best guess represents the specific wolf subspecies that was most commonly misclassified as the wolf subspecies being tested for. The overall estimate of error rate was 32.2%.

In some species, acoustic divergence is associated with genetic or geographic distance, suggesting that stochastic forces play an important role in the divergence of acoustic signals (Percy et al. 2006; Irwin et al. 2008; Amezquita et al. 2009; Chen et al. 2009; Campbell et al. 2010; Thinh et al. 2011). For canids, previous studies have shown that red wolves C. rufus have similar howl types to coyotes C. latrans, despite the red wolf’s intermediate morphology between gray wolves and coyotes (Chambers et al. 2012; Kershenbaum et al. 2016). Although it is debated whether red wolves are hybrids between gray wolves and coyotes (vonHoldt et al. 2016) or if red wolves and coyotes diverged from a common ancestor around 150,000–300,000 years ago (Wilson et al. 2000), similarities in acoustic behavior between the two species may suggest evolutionary history playing a role in howl acoustic variation. In our study, strong acoustic differences in the howls of the 2 most basal wolf lineages may indicate that genetic divergence and/or geographic distance may be broadly correlated with acoustic divergence in C. lupus. Previous studies on the Himalayan, North African, and Indian wolf show that these lineages have been isolated since before the radiation across the Northern Hemisphere (Sharma et al. 2004; Rueness et al. 2011), and during that time may have accumulated acoustic differences in their howls due to stochastic forces, such as behavioral drift. It is notable that the most basal wolf subspecies, the Himalayan wolf, appears to have a divergent acoustic howl.
structure from other similarly sized wolf subspecies (Table 1), further suggesting that geographic or genetic distance may play important roles in patterns of howl variation. Obtaining howls from adjacent wolf subspecies, such as the Tibetan wolf *C. lupus chanco* in Northern China and the Steppe wolf *C. lupus campestris* in Central Asia would aid in disentangling whether shared ancestry, geographic distance, and/or environmental differences is driving acoustic divergence in wolves.

Owing to the ability of gray wolves to inhabit almost every possible terrestrial environment (Mech and Boitani 2003), body sizes range widely across wolf subspecies and may have influenced some acoustic variables in our study (Table 1). Generally, our results show that the smallest wolf subspecies, such as the Israeli, Indian, and North African wolf, had the highest mean frequencies, a trend seen in previous studies on other taxa (Wallschäger 1980; Fitch 1997; Barclay et al. 1999). Smaller canids also commonly show a greater diversity in howl types and favor howls that end in sharp frequency drops (Kershenbaum et al. 2016). While the smallest subspecies, the North African wolf, has the highest mean frequency and greatest mean frequency range, whether an overall trend between geographic distance. Future research that includes a larger and more diverse sample of howls from current and additional wolf subspecies would further elucidate patterns and processes influencing wolf howl acoustic structure.

Figure 3. Classical MDS plot from the random forest algorithm using 9 acoustic parameters across the 10 wolf subspecies. Himalayan and Iberian wolves form distinct highly variable clusters, whereas North African and Indian wolves form tight clusters in the upper right section of the axis.

Acknowledgments

We thank Dawa Tashi, Stanzin Dorjay, Salvador Lyngdoh, Shivam Shrotriya, and members of Project Wolf for providing logistical support during fieldwork in India. Additionally, we thank the State Forest Departments of Himachal Pradesh, Jammu and Kashmir, Maharashtra, and various zoos in India for permissions to record wolf howls. Finally, we thank all who helped with the project: the staff at Colchester Zoo; the Wildwood Trust, the Borror Laboratory of Bioacoustics; the British Library; Lupus Laetus; Polish Mammal Research Institute; Tigress Productions; the BBC Natural History Unit; Longleat Safari Park; Tierstimmen Archiv; Wild Sweden; Wolf Park; the Macaulay Sound Library and the UK Wolf Conservation Trust; and Mike Collins, Teresa Palmer, Monty Sloan, Karl-Heinz Frommolt, Yorgos

References

[1] Barclay, A. et al. (1999). *Smaller canids also commonly show a greater diversity in howl types and favor howls that end in sharp frequency drops.*

[2] Shrotriya et al. (2012). *Acoustic descriptions of the Himalayan wolf and distinguish that, although morphologically similar to other wolf subspecies, there may be underlying behavioral differences reflecting their basal position in the Cynis clade.*

[3] Angulo et al. (2005). *Understanding possible behavioral differences in closely related species provides great insight into speciation.*

[4] Morton (1975). *Taxonomic confusion surrounding the Himalayan wolf has persisted for over 165 years, as the wolf was once first considered to be its own species C. laniger, yet later regarded as just another Tibetan wolf population C. lupus chanco.*

[5] Arnegard et al. (2010). *Although the wolves are genetically unique based on mitochondrial DNA, the classification still remains controversial and understudied, hindering its conservation.*

[6] Irwin et al. (2001). *This study is the first to provide detailed howl acoustic descriptions of the Himalayan wolf and distinguish that, although morphologically similar to other wolf subspecies, there may be underlying behavioral differences reflecting their basal position in the Canis clade.*

[7] Wilkins et al. (2013). *Future research that includes a larger and more diverse sample of howls from current and additional wolf subspecies would further elucidate patterns and processes influencing wolf howl acoustic structure.*
Iliaopoulos, Christine Anhalt, Louise Gentle, Richard Yarnell, and Victoria Allison Hughes. We also thank Geraldine Werhahn and Bryan Maitland for helpful comments on the manuscript.

Funding
We are thankful for the Fulbright Program and United States-India Education Foundation for financial support to L.H. as well as the Wildlife Institute of India for funding the Ecology and Conservation of the Himalayan wolf project.

Supplementary material
Supplementary material can be found at http://www.cz.oxfordjournals.org/.

References
Aggarwal RK, Ramadevi J, Singh L, 2003. Ancient origin and evolution of the Indian wolf: evidence from mitochondrial DNA typing of wolves from Trans-Himalayan region and Peninsular India. Genome Biol 4:2–16.
Amezquita A, Lima AP, Jehle R, Castellanos L, Ramos O, 2009. Calls, colours, shape, and genes: a multi-trait approach to the study of geographic variation in the Amazonian frog Allobates femoralis. Biol J Linn Soc 98:826–838.
Angulo A, Reichle S, 2008. Acoustic signals, species diagnosis, and species concepts: the case of a new cryptic species of Leptodactylus (Amphibia, Anura, Leptodactylidae) from the Chapare region, Bolivia. Zool J Linn Soc 152:59–77.
Arneggard ME, McIntyre PB, Harmon LJ, Zelditch ML, Crampton WGR et al., 2010. Sexual signal evolution outpaces ecological divergence during electric fish species radiation. Am Nat 176:335–356.
Badyaev AV, Leaf ES, 1997. Habitat associations of song characteristics in Phyllostomus and Hipposideros warblers. Auk 114:40–46.
Barclay RM, Fullard JH, Jacobs DS, 1999. Variation in the echolocation calls of the hoary bat Lasiurus cinereus: influence of body size, habitat structure, and geographic location. Can J Zool 77:530–534.
Braune P, Schmidt S, Zimmermann E, 2008. Acoustic divergence in the communication of cryptic species of nocturnal primates (Microcebus spp.). BMC Biol 6:19.
Breinan L, 2001. Random forest. Mach Learn 45:5–32.
Brown TJ, Handford P, 2000. Sound design for vocalizations: quality in the woods, consistency in the fields. Condor 102:81–92.
Campbell P, Pasch B, Pino JL, Crino OL, Phillips M et al., 2010. Geographic variation in the songs of neotropical singing mice: testing the relative importance of drift and local adaptation. Evolution 64:1955–1972.
Chambers SM, Fain SR, Fazio B, Amaral M, 2012. An account of the taxonomy of North American wolves from morphological and genetic analyses. North Am Fauna 77:1–67.
Charlton BD, Zhike Z, Snyder RJ, 2009. The information content of giant panda Ashiropoda melanoleuca bleats: acoustic cues to sex, age and size. Amm Belas 78:893–898.
Chen S, Jones G, Rossiter SJ, 2009. Determinants of echolocation call frequency variation in the Formosan lesser horseshoe bat Rhinolophus echuru. Proc R Soc Lond (Biol) 276:3901–3909.
Ciucci P, Boitani L, 1998. Elementi di biologia, gestione, ricerca. Istituto Nazionale per la Fauna Selvatica “Alessandro Ghigi”. Documenti tecnici 23.
Conner DA, 1982. Geographic variation in short calls of pika Ochotona princeps. J Mammal 63:48–52.
Daniel R, MacNulty, Douglas W, Smith L, Mech D et al., 2009. Body size and predatory performance in wolves: is bigger better? J Anim Ecol 78(3):532–539.
Dawes PR, Elander M, Ericson M, 1986. The wolf Canis lupus in east-central Finland. Acta Theriol 45(4):537–547.
Fitch TW, 1997. Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. J Acoust Soc Am 102:1213–1222.
Ford JKB, 1991. Vocal traditions among resident killer whales Orcinus Orca in coastal waters of British Columbia. Can J Zool 69:1454–1483.
Freedrickson R, Hedrick P, 2002. Body size in endangered Mexican wolves: effects of inbreeding and cross-lineage matings. Anim Conser 5:39–43.
Gade-Jørgensen I, Stassegaard R, 2000. Diet composition of wolves Canis lupus in north-western France. Mammalia 45:459–466.
Gazzola A, Avanzinelli E, Mauri L, Scandura M, Apollonio M, 2002. Temporal changes of howling in south European wolf packs. Ital J Zool 69:157–161.
Geffen E, Anderson MJ, Wayne RK, 2004. Climate and habitat barriers to dispersal in the highly mobile grey wolf. Mol Ecol 13:2481–2490.
Gerhardt CH, 1991. Female mate choice in treefrogs: static and dynamic acoustic criteria. Anim Behav 42:615–635.
Harrington HF, Mech DL, 1979. Wolf howling and its role in territorial maintenance. Behavior 68:207–249.
Hedrick PW, Miller PS, Geffen E, Wayne RK, 1997. Genetic evaluation of the three captive Mexican wolf lineages. Zoo Biol 16:47–69.
Helfer R, Geffen E, 1999. Group size and home range of the Arabian wolf Canis lupus in Southern Israel. J Mammal 80:611–619.
Heller KG, Helveren O, 1989. Resource partitioning of sonar frequency bands in rhinolophid bats. Oecologia 80:178–186.
Henry CS, 1994. Siring and cryptic speciation in insects. Trends Ecol Evol 9:389–392.
Irwin DE, Alstrom P, Olsson U, Benowitz-Fredericks ZM, 2001. Cryptic species in the genus Phylloscopus (Old World leaf warblers). Ibis 143:233–247.
Irwin DE, Thingman MP, Irwin JH, 2008. Call divergence is correlated with geographic and genetic distance in greenish warblers Phylloscopus trochiloides: a strong role for stochasticity in signal evolution? J Ecol Biol 21:435–448.
Jhala Y, 2003. Status, ecology, and conservation of the Indian wolf Canis lupus pallipes Sykes. J Bomb Nat Hist Soc 100:293–307.
Jones G, 1999. Scaling of echolocation call parameters in bats. J Exp Biol 202:3359–3367.
Kershenbaum A, Root-Gutteridge HAJ, Habib B, Koler-Matznick J, Mitchell B et al., 2016. Disentangling cand hows across multiple species and subspecies: structure in a complex communication channel. Behav Proc 124:149–157.
Kingston T, Lara MC, Jones G, Akbar Z, Kunz TH et al., 2001. Acoustic divergence in two cryptic Hipposideros species: a role for social selection? Proc B Soc Lond 268:1381–1386.
Law BS, Reinhold L, Pennay M, 2002. Geographic variation in the echolocation calls of Versipelus spp. (Vespertilionidae) from New South Wales and Queensland, Australia. Acta Chiropteron 4:201–215.
Lopez-Gonzalez C, Garcia-Mendoza DF, 2012. A checklist of the mammals (Mammalia) of Chihuahua, Mexico. Check List 8(6):1122–1133.
Masters JC, 1991. Loud calls of Galago crassicaudatus and G. garnettii and their relation to habitat structure. Primates 32:153–167.
McComb KE, 1991. Female choice for high roaring rates in red deer Cervus elaphus. Anim Behav 41:79–88.
Mech DL, Boitani L, 2003. Wolves: Behavior, Ecology, and Conservation. Chicago (IL): University of Chicago Press.
Mendelson TC, Shaw KL, 2005. Sexual ehavior: rapid speciation in an anthropod. Nature 433:375–376.
Mitani JC, Hasegawa T, Gros-Louis J, Marler P, Byrne R, 1992. Vocal traditions among resident killer whales Orcinus Orca in coastal waters of British Columbia. Can J Zool 69:1454–1483.
Mitani JC, Hasegawa T, Gros-Louis J, Marler P, Byrne R, 1992. Dialects in wild chimpanzees? Am J Primatol 27:233–243.
Mitani JC, Hanley KL, Murdoch ME, 1999. Geographic variation in the calls of wild chimpanzees: a reassessment. *Am J Primatol* 47:133–151.

Morton ES, 1975. Ecological sources of selection on avian sounds. *Am Nat* 109:17–34.

Musiani M, Leonard JA, Cluff DH, Gates CC, Mariani S et al., 2007. Differentiation of tundrartigga and boreal coniferous forest wolves: genetics, coat colour, and association with migratory caribou. *Mol Ecol* 16:4149–4170.

Narins PM, 1983. Divergence in acoustic communication systems of two sibling species of eleutherodactylid frogs. *Copeia* 4:1089–1090.

Nowak S, Jedrzejewski W, Schmidt K, Theuerkauf J, Myslajek RW et al., 2007. Howling activity of free-ranging wolves *Canis lupus* in the Białowieża Primeval Forest and the Western Beskidy Mountains (Poland). *J Ethol* 25:231–237.

O’Farrell MJ, Corben C, Gannon WL, 2000. Geographic variation in the echolocation calls of the hoary bat *Lasiurus cinereus*. *Acta Chiropterol* 2:185–196.

Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, 2001. Terrestrial ecoregions of the world: a new map of life on Earth. *BioScience* 51:933–938.

Palacios V, Font E, Marquez R, 2007. Iberian wolf howls: acoustic structure, individual variation, and a comparison with North American populations. *J Mammal* 88:606–613.

Passilongo D, Bucciante A, Dassi-Fulgheri F, Gazzola A, Zaccaroni M et al., 2010. The acoustic structure of wolf howls in some eastern Tuscany (central Italy) free ranging packs. *Bioacoustics* 19:139–175.

Percy DM, Taylor GS, Kennedy M, 2006. Psyllid communication: acoustic diversity, mate recognition, and phylogenetic signal. *Invertebr Syst* 20:431–445.

Perla BS, Slobodchikoff, 2002. Habitat structure and alarm call dialects in Gunnison’s prairie dog *Cynomys gunnisoni*. *Behav Ecol* 13:844–850.

Pfefferle D, Fischer J, 2006. Sounds and size: identification of acoustic variables that reflect body size in hamadryas baboons *Papio hamadryas*. *Anim Behav* 72:43–51.

Ramaisindrazana B, Goodman SM, Schoernan CM, Appleton B, 2011. Identification of cryptic species of *Miniopterus* bats (Chiroptera: Miniopteridae) from Madagascar and the Comoros using bioacoustics overlaid on molecular genetic and morphological characters. *Biol J Linnean Soc* 104:284–302.

Randi E, 2011. Genetics and conservation of wolves *Canis lupus* in Europe. *Mammal Rev* 41(2):99–111.

Reed JE, Ballard WB, Gipsen PS, Kelly BT, Krausman PR et al., 2006. Diets of free-ranging Mexican Gray wolves in Arizona and New Mexico. *Wildl Soc Bull* 34(4):1127–1133.

Reuven H, Geffen E, 1999. Group size and home range of the Arabian wolf *Canis lupus* in Southern Israel. *J Mammal* 80(2):611–619.

Risch D, Clark CW, Corkeron PJ, Elefandt A, Kovacs KM et al., 2007. Vocalizations of male bearded seals *Erignathus barbatus*: classification and geographical variation. *Anim Behav* 73:747–762.

Root-Guttermolle H, Bencsik M, Chebli M, Gentle LK, Terrell-Nield C et al., 2014a. Improving individual identification in captive Eastern grey wolves *Canis lupus lycaon* using the time course of howl amplitudes. *Bioacoustics* 23:39–53.

Root-Guttermolle H, Bencsik M, Chebli M, Gentle LK, Terrell-Nield C et al., 2014b. Identifying individual Eastern grey wolves *Canis lupus lycaon* using fundamental frequency and amplitude of howls. *Bioacoustics* 23:53–66.

Rossi-Santos MR, Podos J, 2006. Latitudinal variation in whistle structure of the estuarine dolphin *Sotalia guianensis*. *Behavior* 143:347–364.

Roux A, Jackson TP, Cherry MI, 2002. Differences in alarm vocalizations of sympatric populations of the whistling rat *Parotomys branisci* and *P. little-dalei* (Rodentia: Muridae). *J Zool* 257:189–194.

Ruessn ES, Asmyhr MG, Sillerø-Zubiri C, Macdonald DW, Atickem A et al., 2011. The cryptic African wolf: *Canis aureus lupaster* is not a Golden Jackal and is not endemic to Egypt. *PLoS ONE* 6:e16385. doi: 10.1371/journal.pone.0016385.

Russo D, Muscetta M, Bello M, Biscardi S, Pidunchedda E et al., 2007. Divergent echolocation call frequency in insular rhinolophids (Chiroptera): a case of character displacement? *J Biogeogr* 34:2129–2138.

Sharma DK, Maldonado JE, Jhala YV, Fleischer RC, 2004. Ancient wolf lineage in India. *Proc R Soc Lond B* 271:51–54.

Shrotiya S, Lyngdoh S, Habib B, 2012. Wolves in the Trans-Himalayas: 165 years of taxonomic confusion. *Carr Soc* 103:885–887.

Slabbekeen H, Peet M, 2003. Birds sing at a higher pitch in urban noise. *Nature* 424:276.

Slabbekeen H, Smith TB, 2002. Habitat-dependent song divergence in the Little Greenbul: an analysis of environmental selection pressures on acoustic signals. *Evolution* 56:1849–1858.

Terhune JM, 1994. Geographical variation of harp seal underwater vocalizations. *Can J Zool* 72:892–897.

Thabah A, Rossiter SJ, Kingston T, Zhang S, Parsons S et al., 2006. Genetic divergence and echolocation call frequency in crypic species of *Hipposideros larvatus* s.l. (Chiroptera: Hipposideridae) from the Indo-Malayan region. *Biol J Linnean Soc* 88:119–130.

Theberge JB, Falls BJ, 1967. Howling as a means of communication in timber wolves. *Am Zool* 7:331–338.

Thinh VN, Hallam C, Roos C, Hammerschmidt K, 2011. Concordance between vocal and genetic diversity in crested gibbons. *BMC Evol Biol* 11:36. 10.1186/1471-2148-11-36.

Toozo ZJ, Harrington FH, Fentress JC, 1990. Individually distinct vocalizations in timber wolves *Canis lupus*. *Anim Behav* 40:723–730.

vonzHoldt BM, Pollinger JP, Earl DA, Knowles JC, Boyko AR et al., 2011. A genome-wide perspective on the evolutionary history of enigmatic wolf–like canids. *Genome Biol* 21:1294–1305.

vonHoldt BM, Cahill JA, Fan Z, Gromau I, Robinson J et al., 2016. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. *Sci Adv* 2:150174.

Wallischger D, 1980. Correlation of song frequency and body weight in passerine birds. *Experientia* 36:412.

Wilkins MR, Seddon N, Safran RJ, 2013. Evolutionary divergence in acoustic signals causes and consequences. *Trends Ecol Evol* 28:156–166.

Wilson PJ, Grewal S, Lawford ID, Heal JNM, Granacki AG et al., 2000. DNA profiles of the eastern Canadian wolf and the red wolf provide evidence for a common evolutionary history independent of the gray wolf. *Can J Zool* 78:2156–2166.

Zaccaroni M, Passilongo D, Bucciante A, Dassi-Fulgheri F, Facchini C et al., 2012. Group specific vocal signature in free-ranging wolf packs. *Ethol Ecol Evol* 24:149–157.